Function Approximations and Policy Gradients in Reinforcement Learning

Debabrota Basu

debabrota-basu.github.io

Spring School on Control Theory and Reinforcement Learning CWI Amsterdam, 2025

Revisiting MDPs and RL Algorithms

PART 1

Reinforcement Learning: The Philosophy

RL: sequentially learning to take optimal decisions under uncertainty.

The goal of the agent is to compute a policy or strategy that maximises the reward accumulated over a time horizon.

Formalism of the Environment: Markov Decision Processes

A Markov Decision Process (MDP) is a tuple $\mathcal{M} \triangleq \langle \mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- ▶ State: $s \in \mathcal{S} \subseteq \mathbb{R}^d$
- ▶ Action/Intervention/Control: $a \in A \subseteq \mathbb{R}^d$
- **Transition function/dynamics:** $\mathcal{P}(.|s,a)$ induces a distribution over s_{t+1} for s_t, a_t (previously f)
- ▶ Reward Function: $\mathcal{R}(.|s,a)$ induces a distribution over \mathbb{R} measuring goodness of an action a at state s (negative of cost function)

Formalism of the Agent: Policy and Value Function

- **Policy:** A deterministic or stochastic map $\pi(\cdot|s_t)$ from present state s_t to actions
- ▶ How good or bas is your policy? Value Function (Negative of cost of control)

$$V_{\pi}(s_0) \triangleq \sum_{t=0}^{\infty} \gamma^t \mathcal{R}_t(s_t, \pi(s_t))$$

Or, action-value functions or Q values

$$Q_{\pi}(s_0, a_0) \triangleq \mathcal{R}(s_0, a_0) + \sum_{t=1}^{\infty} \gamma^t \mathcal{R}_t(s_t, \pi(s_t))$$

Goal: Find an optimal policy π^* maximising $V_{\pi}(s_0)$.

RL: The Generic Formalism

Courtesy: Niao He, RLSS 2023

A Generic Template of RL Algorithms: Generalised Policy Iteration

Algorithm Generalised Policy Iteration

- 1: **Input:** Initial Policy π_0
- 2: **for** episode k = 1, 2, ... **do**
- 3: Observe an initial state s_0^k
- 4: Rollouts: Collect trajectory data $\{r(s_h^k, a_h^k), s_{h+1}^k\}_{h=0}^H$ and state s_{h+1}^k by playing policy π_k
- 5: **Policy Evaluation:** Compute the value function of the policy $V_{\pi_k}(s_0^k)$
- 6: **Policy Optimisation:** Use $V_{\pi_k}(s_0^k)$ to compute a better policy π_{k+1}
- 7: end for
- 8: **return** policy π_K .

A Taxonomy of RL Algorithms

- **1** Level of interaction with the environment:
 - ▶ Online: Sequentially learn while collecting data by interacting with the environment
 - ▶ Offline: Use data collected in advance by some behavioural policy (e.g. Monte-Carlo methods)

A Taxonomy of RL Algorithms

- Level of interaction with the environment:
 - ▶ Online: Sequentially learn while collecting data by interacting with the environment
 - ▶ Offline: Use data collected in advance by some behavioural policy (e.g. Monte-Carlo methods)
- Approach to optimal solution:
 - lacksquare Value-based RL (Off-policy): Find optimal value function $V_{\mathcal{M}}^*$, use it to compute π^\star
 - ▶ Policy-based RL (On-policy): Evaluate π , improve π , and repeat

A Taxonomy of RL Algorithms

- Level of interaction with the environment:
 - ▶ Online: Sequentially learn while collecting data by interacting with the environment
 - ▶ Offline: Use data collected in advance by some behavioural policy (e.g. Monte-Carlo methods)
- Approach to optimal solution:
 - \blacktriangleright Value-based RL (Off-policy): Find optimal value function $V_{\mathcal{M}}^*$, use it to compute π^*
 - ▶ Policy-based RL (On-policy): Evaluate π , improve π , and repeat
- Strowledge of the model:
 - ightharpoonup Planning: $\mathcal R$ and $\mathcal P$ are known (dynamic programming)
 - \blacktriangleright Model-based/model-predictive/model-learning: estimate ${\cal R}$ and ${\cal P}$ from data yielded through interactions
 - ightharpoonup Model-free: no knowledge of $\mathcal R$ and $\mathcal P$ is used- only transition data

(Iterative) Policy Evaluation in MDPs with Discrete State-Actions

Algorithm Iterative Policy Evaluation

- 1: **Input:** A policy π , steps K
- 2: **Initialise:** value function $V_0(s) = 0$ for all $s \in \mathcal{S}$
- 3: **for** steps k = 1, 2, ..., K **do**
- 4: **for** states $s \in \mathcal{S}$ **do**
- 5: Using collected dataset or by rolling out π , compute the Bellman update equation

$$V_k(s) \leftarrow \mathcal{T}V_{k-1}(s) = \mathcal{R}(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s, \pi(s))V_{k-1}(s')$$
(1)

- 6: end for
- 7: end for
- 8: **return** estimated value function $V_{\pi}(s) \leftarrow V_{K}(s)$ for all s.

Policy Improvement in MDPs with Discrete State-Actions \rightarrow Q-value Iteration

Greedy improvement: Bellman optimality equations

Value function

Q-Value function

$$V_{\mathcal{M}}^{*}(s) = \max_{a} Q_{\mathcal{M}}^{*}(s, a)$$

$$Q_{\mathcal{M}}^{*}(s,a) = \mathcal{T}^{*}Q_{\mathcal{M}}^{*}(s,a) = \mathcal{R}(s,a) + \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s,a)V_{\mathcal{M}}^{*}(s)$$

Policy Improvement in MDPs with Discrete State-Actions \rightarrow Q-value Iteration

Greedy improvement: Bellman optimality equations

Value function

Q-Value function

$$V_{\mathcal{M}}^{*}(s) = \max_{a} Q_{\mathcal{M}}^{*}(s, a)$$

$$Q_{\mathcal{M}}^*(s,a) = \mathcal{T}^* Q_{\mathcal{M}}^*(s,a) = \mathcal{R}(s,a) + \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s,a) V_{\mathcal{M}}^*(s)$$

Algorithm Q-value iteration (Off-policy, Planning with full information)

- 1: Input: Steps K
- 2: **Initialise:** Q-value function $Q_0(s,a)=0$ for all $s,a\in\mathcal{S}\times\mathcal{A}$
- 3: **for** episodes $k=1,2,\ldots,K$, and state-action pairs $(s,a)\in(\mathcal{S},\mathcal{A})$ **do**
- 4: Compute Q-table: Evaluate the greedy policy using the Bellman update equation

$$Q_k(s, \pi(s)) \leftarrow \mathcal{R}(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s, \pi(s)) \max_b Q_{k-1}(s', b)$$
 (2)

- 5: end for
- 6: **return** the **greedy policy** for all s

$$\pi_K(s) \in \operatorname*{arg\,max}_{a \in A} Q_K(s, a)$$
 (3)

Why Does Q-iteration Work?

Q-iteration is a fixed point contraction through stochastic approximation.

$$\|Q_k - Q_{\mathcal{M}}^*\|_{\infty} = \|\mathcal{T}^*Q_{k-1} - Q_{\mathcal{M}}^*\|_{\infty} \le \gamma \|Q_{k-1} - Q_{\mathcal{M}}^*\|_{\infty}$$

Alternative update of Equation (2)

$$Q_k(s) = (1 - \alpha)Q_{k-1}(s) + \alpha \mathcal{T}^* Q_{k-1}(s)$$

This works as

- (1) Bellman operator is a contraction, and
- (2) $\mu_k = (1 \alpha)\mu_{k-1} + \alpha \times$ new sample is a consistent stochastic approximation of mean.

Limitations of GPIs in MDPs with Discrete State-Actions

Dynamic programming algorithms require an exact representation of value functions and policies.

Limitations of GPIs in MDPs with Discrete State-Actions

Dynamic programming algorithms require an exact representation of value functions and policies.

Thus, GPI with tabular MDPs suffer from:

- ▶ Discrete States
- ▶ No generlisation and only look-up tables
- ▶ Computationally expensive to handle large state-action spaces
- Discrete Actions

Limitations of GPIs in MDPs with Discrete State-Actions

Dynamic programming algorithms require an exact representation of value functions and policies.

Thus, GPI with tabular MDPs suffer from:

- Discrete States
- ▶ No generlisation and only look-up tables
- Computationally expensive to handle large state-action spaces
- ► Discrete Actions

Approximate RL

Can we approximately learn good representations of transitions and rewards or directly the Q-value functions, and use them to find a good policy π ?

Goal: Find a policy π and functional representation f such that the performance loss $\|V_{\mathcal{M}}^* - V_{\pi}^f\|$ is as small as possible

Four Key Challenges in RL

- ▶ Planning in Large Spaces (Curse of Dimensionality)
 - How to optimise the policy when the number of reachable states and decidable actions are big?
- Succinct Representation of Information
 - How to succinctly represent the available information regarding states, actions, dynamics and policies?
- Exploration—Exploitation Trade-off (Effect of Incomplete Information)
 - Should you try out new decisions which may prove to be beneficial or play as best as you can with your existing knowledge?
- ▶ Planning under Incomplete Information (Exploration + Planning)
 - How to estimate the effect of an action and how to predict the future state reached from a state through the action?

Four Key Challenges in RL and Solutions

- ▶ Planning in Large Spaces (Curse of Dimensionality)
 - → Approximate RL
- ► Succinct Representation of Information
 - \rightarrow Abstractions (Frans) + Approximate RL ++
- Exploration—Exploitation Trade-off (Effect of Incomplete Information)
 - \rightarrow Bandits (Bert) + Q-learning (Sean) + Optimism (Friday)
- Planning under Incomplete Information (Exploration + Planning)
 - \rightarrow Approximate RL + Optimism (Friday)

PART 2

Function Approximations in RL

From Discrete to Continuous States: Dynamic Programming with Learning

From Discrete to Continuous World: From Q-tables to Q-functions

Q-table

From Discrete to Continuous World: From Q-tables to Q-functions

Q-table

No generalisation across discretisations.

From Discrete to Continuous World: From Q-tables to Q-functions

Q-table

No generalisation across discretisations.

Q-function

Learn the Q-values as a function of (s, a).

Approximate RL

Problem

Exactly computing a Q-function across a continuous state-action space while looking into trajectories is not possible.

Question

Can we approximately learn good representations of transitions and rewards or directly the Q-value functions, and use them to find a good policy π ?

Approximate RL: Planning with Learning (Step 1)

Problem

Exactly computing Q-function across continuous state-action space while using trajectories is not possible.

Question 1

Can we approximately learn generalisable and accurate representations of Q-value?

Solution:

Turn the Q-function computation into a learning problem.

$$Q_k(s, a) \leftarrow \mathcal{T}^{\star}Q_{k-1} = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s, \pi(s)) \max_b Q_{k-1}(s', b)$$

a. Write a parametric Bellman update:

$$\boxed{Q_{\theta}(s, a) = R(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s, \pi(s)) \max_{b} Q_{\theta}(s', b)}.$$

Approximate RL: Planning with Learning (Step 1)

Problem

Exactly computing Q-function across continuous state-action space while using trajectories is not possible.

Question 1

Can we approximately learn generalisable and accurate representations of Q-value?

Solution:

a. Write a parametric Bellman update:

$$\boxed{Q_{\theta}(s, a) = R(s, a) + \gamma \sum_{s' \in S} \mathcal{P}(s'|s, \pi(s)) \max_{b} Q_{\theta}(s', b)}.$$

b. Sample trajectories of $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$, and solve the regression problem to learn θ^* :

$$\theta^{\star} = \operatorname*{arg\,min}_{\theta} \sum_{i=1}^{n} \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{b} Q_{\theta}(s_i', b) \right)^2$$

How to Choose a Function Approximation Space?

Linear Models

$$Q_{\mathcal{M}}^* \in \{\theta^{\top} \phi(s, a), \theta \in \mathbb{R}^d\},\$$

where $\phi: \mathcal{S} \times \mathcal{A} \rightarrow [0, M]$.

How to Choose a Function Approximation Space?

Linear Models

$$Q_{\mathcal{M}}^* \in \{\theta^{\top} \phi(s, a), \theta \in \mathbb{R}^d\},\$$

where $\phi: \mathcal{S} \times \mathcal{A} \rightarrow [0, M]$.

Kernel Models

$$Q_{\mathcal{M}}^* \in \{\text{GaussianProcess}(\mu_Q, \Sigma_V Q, \theta \in \mathbb{R}^d) \}.$$

Neural Models

$$Q_{\mathcal{M}}^* \in \{f_{\theta}(s, a), \theta \in \mathbb{R}^d\}$$
.

Approximate RL: Planning with Learning (Step 2)

$$\theta^* = \underset{\theta}{\operatorname{arg \, min}} \sum_{i=1}^n \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_b Q_{\theta}(s_i', b) \right)^2$$

Problem

Unlike in standard approximation schemes (e.g. supervised learning), we have only limited access to the target function, i.e. Q_M^* .

Question 2

What would be a good way to generate data to directly learn optimal Q-value function?

Approximate RL: Planning with Learning (Step 2)

Problem

We have only limited access to the target function, i.e. $Q_{\mathcal{M}}^*$.

Question 2

What would be a good way to generate data to directly learn optimal Q-value function?

Solution:

GPI (e.g. Q-value iteration) tends to iteratively learn functions which are close to the optimal value function. Leverage the contraction to generate data.

$$\theta_{k+1} = \operatorname*{arg\,min}_{\theta} \sum_{i=1}^n \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_b Q_{\theta_k}(s_i', b)\right)^2$$
 for $k = 1, 2, \dots$

Approximate RL: Planning with Learning (Step 3)

Question 3

How to use the learned Q-function \hat{Q}_{π} to find a policy close to optimal π^* ?

Approximate RL: Planning with Learning (Step 3)

Question 3

How to use the learned Q-function \hat{Q}_{π} to find a policy close to optimal π^* ?

Solution:

If \hat{Q}_{π} is a good approximation of $Q_{\mathcal{M}}^*$, use it to compute the greedy policy.

$$\pi_K(s) = \operatorname*{arg\,max}_{a \in \mathcal{A}} \hat{Q}_{\theta_K}(s, a)$$

Why would it work?

An Approximate RL Algorithm: Fitted Q-iteration (FQI)

Three Components

- 1. Sample trajectories of $\{(s_i, a_i, r_i)\}_{i=1}^n$, and solve the regression problem with $r_i + \gamma \max_b Q_{\theta}(s_i', b)$ as data and Q_{θ} as the parametric function to learn θ^* .
- 2. Use the $Q_{\theta_{k-1}}$ as the target function to generate data and apply regression iteratively.
- 3. If \hat{Q}_{θ_K} is a good approximation of $Q_{\mathcal{M}}^*$, use it to compute the greedy policy.

An Approximate RL Algorithm: Fitted Q-iteration (FQI)

Algorithm Fitted Q-Iteration (FQI)

- 1: Input: Steps K , initial state distribution ho and initial policy π_0
- 2: **Initialise:** parameter of Q-value function θ_0
- 3: for episodes $k = 1, 2, \dots, K$ do
- 4: Draw n samples $(s_i, a_i) \sim \rho \pi_0$.
- 5: Draw n next states $s_i' \sim \mathcal{P}(\cdot|s_i, a_i)$ and rewards $r_i \sim \mathcal{R}(s_i, a_i)$
- 6: Create a dataset $\mathcal{H}_k = \{(s_i, a_i), y_i\}$ such that $y_i \triangleq r_i + \gamma \max_b Q_{\theta_k}(s_i', b)$
- 7: Solve the regression problem

$$\theta_{k+1} = \underset{\theta}{\operatorname{arg\,min}} \sum_{i=1}^{n} \left(Q_{\theta}(s_i, a_i) - r_i - \gamma \max_{b} Q_{\theta_k}(s_i', b) \right)^2$$

- 8: end for
- 9: ${f return}$ the ${f greedy}$ ${f policy}$ for all s

$$\pi_K(s) \in \operatorname*{arg\,max}_{a \in \mathcal{A}} Q_{\theta_K}(s, a)$$

Why Does FQI Work?

Performance Loss to Learning Error: Contraction of Greedy Policy

$$\left\|V_{\mathcal{M}}^* - V_{\pi_K,\theta_K}\right\|_{\infty} \le \frac{2\gamma}{1-\gamma} \left\|V_{\mathcal{M}}^* - V_{\theta_K}\right\|_{\infty}$$

Why Does FQI Work?

Performance Loss to Learning Error: Contraction of Greedy Policy

$$\left\|V_{\mathcal{M}}^* - V_{\pi_K, \theta_K}\right\|_{\infty} \le \frac{2\gamma}{1-\gamma} \left\|V_{\mathcal{M}}^* - V_{\theta_K}\right\|_{\infty}$$

From Learning Error to Estimation and Approximation Errors (Lazaric et al., 2012)

$$\|V_{\mathcal{M}}^* - V_{n,\theta_K}\|_{\mathcal{P}_{\pi}} \le \left\|V_{\mathcal{M}}^* - \hat{V}_n\right\|_{\mathcal{P}_{\pi}} + \left\|\hat{V}_n - V_{n,\theta_K}\right\|_{\mathcal{P}_{\pi}}$$

- **Estimation Error:** Depends on the complexity of the function class and the coverage of samples collected
- Approximation Error: How good is the function class to approximate the optimal value function and generalise across state-action space.

Limitations of FQI

- ▶ FQI is an Offline RL algorithm.
- ▶ FQI loops over all possible actions to get next best action a_{t+1} :

$$\underset{a \in \mathcal{A}}{\arg\max} \, Q_{\theta}^{k}(s_{t}, a)$$

- ▶ FQI encounters instability (target depends on $Q_{\theta}^{k-1}(s_{t+1}, a)$).
- ▶ Collects data at every episode and forget them in the next one.

From FQI to DQN: Baby Steps to Deep RL

- ▶ DQN is an Online RL algorithm
- lackbox One forward pass to get all $Q_{\theta_k}(s_t,a)$
- ▶ Use a target network $Q_{\theta_{k-1}}(s_{t+1}, a)$ to ensure stability
- ▶ Uses replay buffer to reuse the data

```
Algorithm 1 Deep O-learning with Experience Replay
                     Initialize replay memory \mathcal{D} to capacity N
                     Initialize action-value function Q with random weights
                     for episode = 1. M do
                         Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
epsilon-greedy
                         for t = 1. T do
                             With probability \epsilon select a random action a_t
                             otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
                             Execute action a_t in emulator and observe reward r_t and image x_{t+1}
                                                                                                                 enviconment
                             Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
replay buffer
                             Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
and sampling
                             Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from \mathcal{D}
                                                                                                                regression
                                                                                                                  target
       gradient
                         Perform a gradient descent step on (u_i - O(\phi_i, a_i; \theta))^2 according to equation 3
          step
                         end for
                     end for
```

Courtesy: Antoin Raffin, RLSS 2023

The Deadly Triad of RL

If we use FQI or DQN with experience replay, we face the deadly triads of RL.

- Function approximation: Using a neural network or linear model to fit Q-values.
- **3** Bootstrapping: Using $\max_a Q_{\theta}(s, a)$ to construct the target data.
- Off-policy learning: the replay holds data from a mixture of past policies.

The Deadly Triad of RL

If we use FQI or DQN with experience replay, we face the deadly triads of RL.

- **9** Function approximation: Using a neural network or linear model to fit Q-values.
- **② Bootstrapping:** Using $\max_a Q_{\theta}(s, a)$ to construct the target data.
- Off-policy learning: the replay holds data from a mixture of past policies.

The Silver Lining or Myopia?

Empirically, we rarely see the deadly triad appearing destructively, while some explosions of Q-value that recover after an initial phase are common.

Do we need a better and new approach to approximate RL theory?

Intermediate Summary: Value-based Approximate RL

- \blacktriangleright Leverage Bellman operator's contraction to iteratively approximate $Q_{\mathcal{M}}^*$.
- ▶ Parametrise the Q-value functions and turn learning it into an iterative regression problem.

$$heta_{k+1} = rg \min_{ heta} \ \sum_{i=1}^n \left(Q_{ heta}(s_i, a_i) - r_i - \gamma \max_b Q_{ heta_k}(s_i', b)
ight)^2 \quad ext{ for } k = 1, 2, \dots, K \,.$$

- ▶ Use a "good" data-generating policy to cover the state-action space and/or reuse the old collected data "smartly".
- ▶ Use greedy policy once a good approximation Q_{θ_K} is computed.

Policy Gradient Algorithms
From Dynamic Programming to Parametric Policy Optimisation

PART 3

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy $\pi: \mathcal{S} \to \Delta_A$, as a parametric family (π_θ) .

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy $\pi: \mathcal{S} \to \Delta_{\mathcal{A}}$, as a parametric family (π_{θ}) .

Discrete Actions

1. Direct Parametrisation:

$$\pi_{ heta}(a|s) = heta_{s,a}$$
 such that $\sum_{s,a} heta_{s,a} = 1$ and $heta_{s,a} \geq 0$.

2. Log-linear Policy:

$$\pi_{\theta}(a|s) = \frac{\exp(\theta^{\top}\phi(a,s))}{\sum_{s,a} \exp(\theta^{\top}\phi(a,s))}.$$

3. Neural Softmax Policy:

$$\pi_{\theta}(a|s) = \frac{\exp(f_{\theta}(a,s))}{\sum_{s,a} \exp(f_{\theta}(a,s))}.$$

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy $\pi: \mathcal{S} \to \Delta_A$, as a parametric family (π_θ) .

Discrete Actions

- 1. Direct Parametrisation
- 2. Log-linear Policy
- 3. Neural Softmax Policy

$$\pi_{\theta}(a|s) = \frac{\exp(f_{\theta}(a,s))}{\sum_{s,a} \exp(f_{\theta}(a,s))}.$$

Continuous Actions

1. Gaussian:

$$\pi_{\theta}(a|s) = \frac{1}{\sqrt{2\pi\sigma_{\theta}^2(s)}} \exp\left(\frac{(a - \mu_{\theta}(s))^2}{2\sigma_{\theta}^2(s)}\right).$$

2. Beta (for Bounded Actions) [Chou et al., ICML 2017]:

$$\pi_{\theta}(a|s) = \text{Beta}\left(\frac{a + A_{\text{max}}}{2A_{\text{max}}}; \alpha_{\theta}(s), \beta_{\theta}(s)\right).$$

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy $\pi: \mathcal{S} \to \Delta_{\mathcal{A}}$, as a parametric family (π_{θ}) .

Step 2: Policy Optimisation. Find the parameter θ^* that maximises the long-term expected reward

$$\theta^{\star} = \arg\max_{\theta} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma \mathcal{R}(s_t, a_t) \mid s_0 \sim \rho, a_t \sim \pi_{\theta}(\cdot | s_t) \right]$$
$$= \arg\max_{\theta} \mathbb{E}_{s_0 \sim \rho} \left[V^{\pi_{\theta}}(s_0) \right]$$

Here, ρ is the initial state distribution.

Step 1: Policy Parametrisation. Represent the probability distribution over actions, i.e. a stochastic policy $\pi: \mathcal{S} \to \Delta_{\mathcal{A}}$, as a parametric family (π_{θ}) .

Step 2: Policy Optimisation. Find the parameter θ^* that maximises the long-term expected reward

$$\theta^* = \operatorname*{arg\,max}_{\theta} \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma \mathcal{R}(s_t, a_t) \mid s_0 \sim \rho, a_t \sim \pi_{\theta}(\cdot | s_t) \right]$$
$$= \operatorname*{arg\,max}_{\theta} \mathbb{E}_{s_0 \sim \rho} \left[V^{\pi_{\theta}}(s_0) \right]$$

Here, ρ is the initial state distribution.

The Hill Ahead

 $\mathbb{E}_{s_0 \sim \rho} \left[V^{\pi_{\theta}}(s_0) \right]$ is non-concave in θ .

Policy Gradient Algorithms

Apply gradient ascent on
$$J(\pi_{\theta})=\mathbb{E}_{s_0\sim\rho}\left[V^{\pi_{\theta}}(s_0)
ight]$$

$$\theta_{k+1}\leftarrow\theta_k+\eta_k\nabla_{\theta}J(\pi_{\theta})\,.$$

Policy Gradient Algorithms

Apply gradient ascent on
$$J(\pi_{\theta})=\mathbb{E}_{s_0\sim \rho}\left[V^{\pi_{\theta}}(s_0)
ight]$$

$$\theta_{k+1}\leftarrow\theta_k+\eta_k\nabla_{\theta}J(\pi_{\theta})\,.$$

Issue

We cannot exactly compute the gradient of $J(\pi_{\theta})$.

Policy Gradient Algorithms

Apply gradient ascent on $J(\pi_{\theta}) = \mathbb{E}_{s_0 \sim \rho} \left[V^{\pi_{\theta}}(s_0) \right]$

$$\theta_{k+1} \leftarrow \theta_k + \eta_k \nabla_{\theta} J(\pi_{\theta})$$
.

Issue

We cannot exactly compute the gradient of $J(\pi_{\theta})$.

Solution: Stochastic Approximation

Construct a stochastic estimate of $\nabla_{\theta} J(\pi_{\theta})$ from data collected by playing π_{θ_k} .

Research Question

How to construct a "good" estimator of $\nabla_{\theta} J(\pi_{\theta})$?

Theorem (Policy Gradient Theorem (Williams, 1992))

$$abla_{ heta}J(\pi_{ heta}) = \mathbb{E}_{ extbf{ au} \sim \mathcal{P}_{ heta}} \left[Z(au) \sum_{t=0}^{\infty}
abla_{ heta} \log \pi_{ heta}(a_t|s_t)
ight]$$

Theorem (Policy Gradient Theorem (Williams, 1992))

$$abla_{ heta} J(\pi_{ heta}) = \mathbb{E}_{oldsymbol{ au} \sim \mathcal{P}_{oldsymbol{ heta}}} \left[Z(oldsymbol{ au}) \sum_{t=0}^{\infty}
abla_{ heta} \log \pi_{ heta}(a_t|s_t)
ight]$$

au is a trajectory $\{s_1, a_1, \ldots, s_t, a_t, \ldots\}$ generated by the probability distribution induced by policy π_{θ} and transition function \mathcal{P} :

$$\mathcal{P}_{\theta}(\tau) = \rho(s_0) \prod_{t=0}^{\infty} \pi_{\theta}(a_t|s_t) \mathcal{P}(s_{t+1}|s_t, a_t)$$

Theorem (Policy Gradient Theorem (Williams, 1992))

$$abla_{ heta} J(\pi_{ heta}) = \mathbb{E}_{ au \sim \mathcal{P}_{ heta}} \left[\left[\frac{oldsymbol{Z}(au)}{oldsymbol{z}} \sum_{t=0}^{\infty}
abla_{ heta} \log \pi_{ heta}(a_t | s_t)
ight]$$

ightharpoonup au is a trajectory $\{s_1, a_1, \ldots, s_t, a_t, \ldots\}$ generated by the probability distribution induced by policy π_{θ} and transition function \mathcal{P} :

$$\mathcal{P}_{\theta}(\tau) \triangleq \rho(s_0) \prod_{t=0}^{\infty} \pi_{\theta}(a_t|s_t) \mathcal{P}(s_{t+1}|s_t, a_t)$$

▶ $Z(\tau)$ is the return from the trajectory τ : $Z(\tau) \triangleq \sum_{t=0}^{\infty} \gamma^t r_t$.

Theorem (Policy Gradient Theorem (Williams, 1992))

$$abla_{ heta} J(\pi_{ heta}) = \mathbb{E}_{ au \sim \mathcal{P}_{ heta}} \left[Z(au) \sum_{t=0}^{\infty} \left| \nabla_{ heta} \log \pi_{ heta}(a_t|s_t) \right| \right]$$

- au is a trajectory $\{s_1, a_1, \dots, s_t, a_t, \dots\}$ generated by the probability distribution $\mathcal{P}_{\theta}(\tau)$ induced by policy π_{θ} and transition function \mathcal{P} .
- ▶ $Z(\tau)$ is the return from the trajectory τ : $Z(\tau) \triangleq \sum_{t=0}^{\infty} \gamma^t r_t$.
- ▶ The gradient $\nabla_{\theta} \log \pi_{\theta}(a_t|s_t) = \frac{\nabla_{\theta} \pi_{\theta}(a_t|s_t)}{\pi_{\theta}(a_t|s_t)}$ is called the score function and exists for differentiable parametric policies.

Example: Score Function of log-linear Policies

If
$$\pi_{\theta}(a|s) = \frac{\exp(\theta^{\top}\phi(a,s))}{\sum_{s,a}\exp(\theta^{\top}\phi(a,s))}$$
, then $\nabla_{\theta}\log\pi_{\theta}(a|s) = \phi(a,s) - \mathbb{E}_{a \sim \pi_{\theta}(\cdot|s)}\left[\phi(a,s)\right]$.

REINFORCE: The Monte-Carlo Estimator

Algorithm REINFORCE

- 1: **Input:** Learning rate η , episode number K
- 2: **Initialise:** Initial policy parameter θ_0
- 3: for episodes $k=0,\ldots,K$ do
- 4: Generate a trajectory au_K from policy $\pi_{ heta_k}$
- 5: Estimate the gradient at $\theta = \theta_k$:

$$\nabla_{\theta}^{REINFORCE} J(\pi_{\theta}) \leftarrow \left(\sum_{t=0}^{\infty} \gamma_{t} r_{t}\right) \left(\sum_{t=0}^{\infty} \gamma_{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})\right)$$

6: Apply policy gradient ascent

$$\theta_{k+1} \leftarrow \theta_k + \eta \nabla_{\theta}^{REINFORCE} J(\pi_{\theta}) \mid_{\theta = \theta_k}$$

7: end for

REINFORCE: The Monte-Carlo Estimator

Algorithm REINFORCE

- 1: **Input:** Learning rate η , episode number K
- 2: **Initialise:** Initial policy parameter θ_0
- 3: for episodes $k = 0, \dots, K$ do
- 4: Generate a trajectory au_K from policy $\pi_{ heta_k}$
- 5: Estimate the gradient at $\theta = \theta_k$:

$$\nabla_{\theta}^{REINFORCE} J(\pi_{\theta}) \leftarrow \left(\sum_{t=0}^{\infty} \gamma_{t} r_{t}\right) \left(\sum_{t=0}^{\infty} \gamma_{t} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t})\right)$$

6: Apply policy gradient ascent

$$\theta_{k+1} \leftarrow \theta_k + \eta \nabla_{\theta}^{REINFORCE} J(\pi_{\theta}) \mid_{\theta = \theta_k}$$

7: end for

- A single infinite-length trajectory is enough to create an unbiased estimate unbiased without learning transition \mathcal{P} .
- Estimator has high variance due to correlation of $Z(\tau)$ and $\{\pi_{\theta}(a_t|s_t)\}_t$.

REINFORCE: The Q-function and Advantage Function based Estimators

How to leverage the Markovianity in estimation?

Q-value Function version of Policy Gradient Theorem

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \mathcal{P}_{\theta}} \left[\left(\sum_{t=0}^{\infty} \gamma^{s} r_{i} \right) \sum_{t=0}^{\infty} \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right] = \mathbb{E}_{\tau \sim \mathcal{P}_{\theta}} \left[\sum_{t=0}^{\infty} \left(\sum_{i=t}^{\infty} \gamma^{i} r_{i} \right) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right]$$
$$= \mathbb{E}_{\tau \sim \mathcal{P}_{\theta}} \left[\sum_{t=0}^{\infty} \left[\gamma^{t} Q_{\pi_{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right] \right]$$

REINFORCE: The Q-function and Advantage Function based Estimators

How to decrease variance of the estimator?

Baseline Function version of Policy Gradient Theorem

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \mathcal{P}_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} Q_{\pi_{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right]$$
$$= \mathbb{E}_{\tau \sim \mathcal{P}_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(Q_{\pi_{\theta}}(s_{t}, a_{t}) - b(s_{t}) \right) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right]$$

if the baseline function satisfies $\mathbb{E}_{a \sim \pi_{\theta}}[b(s)\nabla_{\theta}\log \pi_{\theta}(a|s)] = 0.$

REINFORCE: The Q-function and Advantage Function based Estimators

How to decrease variance of the estimator?

Baseline Function version of Policy Gradient Theorem

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \mathcal{P}_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(Q_{\pi_{\theta}}(s_{t}, a_{t}) - b(s_{t}) \right) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right]$$
(4)

if the baseline function satisfies $\mathbb{E}_{a \sim \pi_{\theta}}[b(s)\nabla_{\theta}\log \pi_{\theta}(a|s)] = 0.$

A good choice of b(s) is $V_{\pi\rho}(s)$.

Advantage Function version of Policy Gradient Theorem

$$\nabla_{\theta} J(\pi_{\theta}) = \mathbb{E}_{\tau \sim \mathcal{P}_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} \left(Q_{\pi_{\theta}}(s_{t}, a_{t}) - V_{\pi_{\theta}}(s_{t}) \right) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right]$$
$$= \mathbb{E}_{\tau \sim \mathcal{P}_{\theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} A_{\pi_{\theta}}(s_{t}, a_{t}) \nabla_{\theta} \log \pi_{\theta}(a_{t}|s_{t}) \right]$$

Natural Policy Gradient (NPG): The Covariance Corrected Estimator

Algorithm Natural Policy Gradient (NPG)

- 1: **Input:** Learning rate η , episode number K
- 2: **Initialise:** Initial policy parameter θ_0
- 3: for episodes $k = 0, \dots, K$ do
- 4: Generate a trajectory τ_K from policy π_{θ_k}
- 5: Estimate the gradient at $\theta = \theta_k$
- 6: Estimate the covariance Σ_{θ_k} at $\theta = \theta_k$
- 7: Apply covariance/curvature-calibrated policy gradient ascent

$$\theta_{k+1} \leftarrow \theta_k + \eta \left(\Sigma_{\theta_k} \right)^{\dagger} \hat{\nabla}_{\theta} J(\pi_{\theta}) \mid_{\theta = \theta_k}$$

8: end for

Here,
$$\Sigma_{\theta_k} = \mathbb{E}_{\tau \sim \mathcal{P}_{\theta_k}} \left[\nabla_{\theta} \log \pi_{\theta}(a|s) \left(\nabla_{\theta} \log \pi_{\theta}(a|s) \right)^{\top} \right]$$

Different Proximal Estimators and Optimisers: PPO, TRPO,...

We can reinterpret the NPG as a proximal gradient ascent step:

$$\theta_{k+1} = \underset{\theta}{\operatorname{arg\,max}} J(\pi_{\theta}) \quad \text{s.t.} \quad \operatorname{KL}(\mathcal{P}_{\theta_k} || \mathcal{P}_{\theta}) \leq \epsilon \ .$$

where we do a second order approximation of KL: $\frac{1}{2}(\theta-\theta_k)^{\top} \Sigma_{\theta_k}(\theta-\theta_k) \leq \epsilon \ .$

Different Proximal Estimators and Optimisers: PPO, TRPO,...

We can reinterpret the NPG as a proximal gradient ascent step:

$$\theta_{k+1} = \underset{\theta}{\operatorname{arg\,max}} J(\pi_{\theta}) \quad \text{s.t.} \quad \operatorname{KL}(\mathcal{P}_{\theta_k}||\mathcal{P}_{\theta}) \leq \epsilon \ .$$

where we do a second order approximation of KL: $\frac{1}{2}(\theta-\theta_k)^{\top} \Sigma_{\theta_k}(\theta-\theta_k) \leq \epsilon \;.$

Success of this approach motivates development of different proximal policy gradient algorithms.

TRPO (Schulman et al., 2015)

$$\max_{\theta} \mathbb{E}_{\tau \sim \mathcal{P}_{\theta_k}} \left[\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A_{\pi_{\theta}}(s, a) \right] \quad \text{s.t.} \quad \mathbb{E}_{s \sim \mathcal{P}_{\theta_k}} \left[\text{KL} \left(\pi_{\theta}(\cdot|s) || \pi_{\theta_k}(\cdot|s) \right) \right] \leq \epsilon \,.$$

PPO (Schulman et al., 2017)

$$\max_{\theta} \mathbb{E}_{\tau \sim \mathcal{P}_{\theta_k}} \left[\min \left\{ \frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)} A_{\pi_{\theta}}(s, a), \operatorname{clip} \left(\frac{\pi_{\theta}(a|s)}{\pi_{\theta_k}(a|s)}; 1 + \delta, 1 - \delta \right) A_{\pi_{\theta}}(s, a) \right\} \right].$$

When Does Policy Gradient Work?: Convergence Analysis

Optimisation Perspective

When $J(\pi_{\theta})$ is a "concave-like" function, the stochastic gradient ascent would work.

$$J(\pi_{\theta^*}) - J(\pi_{\theta}) = \mathcal{O}(\|\nabla_{\theta}J(\pi_{\theta})\|).$$

¹1. Lin Xiao. On the convergence rates of policy gradient methods. JMLR, 2022.

^{2.} Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy gradient methods: Optimality, approximation, and distribution shift. JMLR, 2021.

^{3.} Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with policy gradient methods in markov decision processes. COLT, 2020.

When Does Policy Gradient Work?: Convergence Analysis

Optimisation Perspective

When $J(\pi_{\theta})$ is a "concave-like" function, the stochastic gradient ascent would work.

$$J(\pi_{\theta^*}) - J(\pi_{\theta}) = \mathcal{O}(\|\nabla_{\theta}J(\pi_{\theta})\|).$$

Statistical Perspective

If we have data with enough "coverage" of the state-action space and we have an unbiased estimator, we can apply the policy gradient theorems almost surely.

$$\|\nabla_{\theta} J(\pi_{\theta}) - \widehat{\nabla}_{\theta} J(\pi_{\theta})\| \le \epsilon(\#samples, \delta)$$
 with probability $1 - \delta$.

For details, check some interesting works below.¹

¹1. Lin Xiao. On the convergence rates of policy gradient methods. JMLR, 2022.

^{2.} Alekh Agarwal, Sham M. Kakade, Jason D. Lee, and Gaurav Mahajan. On the theory of policy gradient methods: Optimality, approximation, and distribution shift. JMLR, 2021.

^{3.} Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. Optimality and approximation with policy gradient methods in markov decision processes. COLT, 2020.

Challenges in Policy-based RL Algorithm Design

- Hard to choose the good stepsize
 - ▶ Use clipping, hyperparameter tuning
- High sample complexity if we cannot use the samples collected from previous policies
 - ▶ Use importance sampling, replay buffer
- The stochastic gradient estimators suffer high variance
 - ▶ Use baseline functions with actor-critic methods

PART 4
What's ahead?

Actor-Critic Algorithms, Exploration-Exploitation Trade-offs, and

Actors vs. Critics: Value-based RL vs. Policy-based RL

Value-based RL (Critics)

Approach: Learn the optimal Value or Q-value

function

Algorithms: Value/Q-value Iteration, Q-learning, Fitted Q-iteration, DQN

Pros: Low variance, good convergence guarantees

Cons: Scales badly with dimensions

Actors vs. Critics: Value-based RL vs. Policy-based RL

Value-based RL (Critics)

Approach: Learn the optimal Value or Q-value function

Algorithms: Value/Q-value Iteration, Q-learning, Fitted Q-iteration, DQN

Pros: Low variance, good convergence guarantees

Cons: Scales badly with dimensions

Policy-based RL (Actors)

Approach: Learn the optimal (parametrised) policy directly

Algorithms: Policy Iteration, REINFORCE, NPG, TRPO, PPO

Pros: Scales for large state-action spaces

Cons: High variance and sample complexity

Actor-Critic Algorithms

What We Have not Covered?

- ▶ What are the theoretical guarantees of RL algorithms? How to derive them?
 - ightarrow Convergence analysis
 - → Regret upper bounds
 - \rightarrow Stability analysis
 - → Sample-complexity bounds
- How to understand generalisation ability of the learned function approximators and corresponding RL policies?
 - → Learning theory and generalisation errors meet RL
- ▶ How to explore either while collecting data for RL training or while running the RL algorithm itself?
 - ightarrow Exploration-exploitation trade-offs
- ▶ How to be robust and safe while learning and execution?
 - \rightarrow Robust MDPs and Safe RL

Thanks to our collaborators, teachers, and the audience!

Questions?

References I