SNA Experiment-6

Step 1: The given network of pages:

- Page A links to Page B and Page C.
- Page B does not link to any page.
- Page C links back to Page A.

Step 2: Initial Conditions

- PageRank (PR) for all pages is initially 1.
- **Damping factor (d)** is 0.85, meaning that the surfer will follow links with probability 0.85 and will randomly jump to a page with probability 0.15 (this is known as the "random jump").

We will use the **PageRank formula** to update the rank of each page.

Step 3: PageRank Formula

The formula for updating the PageRank for a given page PPP is:

```
PR(P)=1-dN+d\sum i\in In(P)PR(i)L(i)PR(P)= \frac{1-d}{N}+d\sum i\in In(P)PR(i)L(i)PR(P)=\frac{1-d}{N}+d\sum i\in In(P)PR(i)L(i)PR(i)
```

Where:

- NNN is the total number of pages in the network (3 in our case: A, B, and C).
- ddd is the damping factor (0.85).
- $In(P)\setminus\{In\}(P)In(P)$ represents the set of pages linking to page PPP.
- L(i)L(i)L(i) is the number of outgoing links from page iii.

Step 4: Setting Up for Iteration

The random surfer model will converge iteratively, so we will perform multiple iterations until the PageRank values stabilize. We will iterate for a couple of steps to show the process.

Step 5: First Iteration (Using the Initial PageRank)

Initial PageRank:

- PR(A) = 1
- PR(B) = 1
- PR(C) = 1

PageRank Calculation for Each Page:

- 1. For Page A:
 - o **Incoming Links to A**: Page C links to A.
 - o The formula becomes:

```
PR(A) = 1 - 0.853 + 0.85 \times PR(C) \\ 1 = 0.153 + 0.85 \times 1 = 0.05 + 0.85 = 0.9PR(A) \\ = \frac{1}{1} - 0.85 \\ 3 + 0.85 \times 1 = 0.05 + 0.85 \\ = 0.05 + 0.85 \\ = 0.9PR(A) \\ = 31 - 0.85 + 0.85 \times 1 \\ = 0.05 + 0.85 \\ = 0.9PR(A) \\ = 31 - 0.85 + 0.85 \times 1 \\ = 0.05 + 0.85 \\ = 0.9PR(A) \\ = 31 - 0.85 + 0.85 \times 1 \\ = 0.05 + 0.85 \\ = 0.9PR(A) \\ = 0.05 + 0.85 \\ = 0.9PR(A) \\ = 0.05 + 0.85 \times 1 \\ = 0.05 + 0.85
```

2. For Page B:

- o **Incoming Links to B**: Page A links to B.
- The formula becomes:

```
PR(B) = 1 - 0.853 + 0.85 \times PR(A) \\ 2 = 0.153 + 0.85 \times 12 = 0.05 + 0.425 = 0.475 \\ PR(B) = \frac{1 - 0.85}{3} + 0.85 \times \frac{PR(A)}{2} = \frac{0.15}{3} + 0.85 \times \frac{12}{3} + 0.85 \times \frac{12}{3} = 0.05 + 0.425 = 0.475 \\ PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 21 = 0.05 + 0.425 = 0.475 \\ PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 21 = 0.05 + 0.425 = 0.475 \\ PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 21 = 0.05 + 0.425 = 0.475 \\ PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 21 = 0.05 + 0.425 = 0.475 \\ PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 21 = 0.05 + 0.425 = 0.475 \\ PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 21 = 0.05 + 0.425 = 0.475 \\ PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 21 = 0.05 + 0.425 = 0.475 \\ PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 21 = 0.05 + 0.425 = 0.475 \\ PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.85 \times 2PR(A) = 0.475 \\ PR(B) = 30.15 + 0.475 \\ PR(B) =
```

3. For Page C:

- o **Incoming Links to C**: Page A links to C.
- o The formula becomes:

```
PR(C)=1-0.853+0.85\times PR(A)2=0.153+0.85\times 12=0.05+0.425=0.475PR(C)= \\  \{1-0.85\}\{3\}+0.85\times frac\{PR(A)\}\{2\}= \\  \{1-0.85\}\{3\}+0.85\times frac\{PR(A)\}\{3\}+0.85\times frac\{PR(A)\}\{4\}+0.85\times frac\{PR(A)\}
```

So after the first iteration, the PageRank values are:

- PR(A) = 0.9
- PR(B) = 0.475
- PR(C) = 0.475

Step 6: Second Iteration (Using Updated PageRank)

1. For Page A:

- o **Incoming Links to A**: Page C links to A.
- o The formula becomes:

```
PR(A) = 1 - 0.853 + 0.85 \times PR(C) \\ 1 = 0.153 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(A) = \frac{1 - 0.85}{3} + 0.85 \times \frac{PR(C)}{1} = \frac{0.15}{3} + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(A) = 31 - 0.85 + 0.85 \times 1 \\ PR(C) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(A) = 31 - 0.85 + 0.85 \times 1 \\ PR(C) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(A) = 31 - 0.85 + 0.85 \times 1 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.85 \times 0.475 = 0.05 + 0.40375 = 0.45375 \\ PR(B) = 30.15 + 0.40375 \\ PR(B) = 30.15 + 0.40375 \\ PR(B) = 30.15 + 0.40375 \\ PR(B) = 30.
```

2. For Page B:

- o **Incoming Links to B**: Page A links to B.
- o The formula becomes:

```
PR(B) = 1 - 0.853 + 0.85 \times PR(A)2 = 0.153 + 0.85 \times 0.92 = 0.05 + 0.3825 = 0.4325 PR(B) \\ = \frac{1 - 0.85}{3} + 0.85 \times \frac{PR(A)}{2} = \frac{0.15}{3} + 0.85 \times \frac{PR(A)}{2} = \frac{0.15}{3} + 0.85 \times \frac{PR(A)}{2} = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 PR(B) = 0.05 + 0.3825 = 0.4325 PR(B) = 31 - 0.85 + 0.85 \times 2PR(B) = 0.05 + 0.3825 = 0.4325 PR(B) = 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.05 + 0.0
```

3. For Page C:

- o **Incoming Links to C**: Page A links to C.
- The formula becomes:

```
PR(C) = 1 - 0.853 + 0.85 \times PR(A) \\ 2 = 0.153 + 0.85 \times 0.92 = 0.05 + 0.3825 = 0.4325 PR(C) \\ = \frac{1 - 0.85}{3} + 0.85 \times \frac{PR(A)}{2} = \frac{0.15}{3} + 0.85 \times \frac{PR(A)}{2} = \frac{0.15}{3} + 0.85 \times \frac{1.05}{2} = 0.4325 PR(C) \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(A) = 30.15 + 0.85 \times 20.9 = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(C) = 31 - 0.85 + 0.85 \times 2PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 31 - 0.85 + 0.85 \times 2PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.3825 = 0.4325 \\ = 0.4325 PR(C) = 0.05 + 0.05 + 0.05 \\ = 0.05 PR(C) = 0.05 + 0.05 + 0.05 \\ = 0.05 PR(C) = 0.05 + 0.05 \\ = 0.05 PR(C) = 0.
```

After the second iteration, the PageRank values are:

- PR(A) = 0.45375
- PR(B) = 0.4325
- PR(C) = 0.4325

Step 7: Convergence Check

If the values are close to each other (as they are in this case), we can stop iterating. At this point, we can conclude the PageRank values have converged.

Final PageRank:

After a few iterations, the final converged PageRank values are approximately:

- **PR(A)** ≈ 0.45375
- **PR(B)** ≈ 0.4325
- **PR(C)** ≈ 0.4325

```
import numpy as np
    def pagerank(links, damping_factor=0.85, max_iterations=5, tol=1.0e-6):
        pages = list(links.keys())
        N = len(pages)
        # Initialize PageRank values
        PR = {page: 1.0 for page in pages}
        # Construct adjacency matrix
        M = np.zeros((N, N))
        for i, page in enumerate(pages):
            if links[page]:
                for linked_page in links[page]:
                    j = pages.index(linked_page)
                    M[j, i] = 1 / len(links[page])
        # Iteratively calculate PageRank
        for iteration in range(max_iterations):
            new_PR = {}
            for i, page in enumerate(pages):
                sum_rank = sum(M[i, j] * PR[pages[j]] for j in range(N))
                new_PR[page] = (1 - damping_factor) / N + damping_factor * sum_rank
            # Print PageRank for this iteration
            print(f'Iteration {iteration + 1}:')
            for page, rank in new_PR.items():
                print(f' PR({page}) = {rank:.5f}')
            print()
            # Check for convergence
            if all(abs(new_PR[page] - PR[page]) < tol for page in pages):</pre>
                break
            PR = new_PR
        return PR
```

```
# Define the network
links = {
    'A': ['B', 'C'],
    'B': [],
    'C': ['A']
}

# Compute PageRank
page_ranks = pagerank(links)

# Print final PageRank values
print("Final PageRank values:")
for page, rank in page_ranks.items():
    print(f'PR({page})) = {rank:.5f}')
```

```
→ Iteration 1:
      PR(A) = 0.90000
      PR(B) = 0.47500
      PR(C) = 0.47500
    Iteration 2:
      PR(A) = 0.45375
      PR(B) = 0.43250
      PR(C) = 0.43250
    Iteration 3:
      PR(A) = 0.41762
      PR(B) = 0.24284
      PR(C) = 0.24284
    Iteration 4:
      PR(A) = 0.25642
      PR(B) = 0.22749
      PR(C) = 0.22749
    Iteration 5:
      PR(A) = 0.24337
      PR(B) = 0.15898
      PR(C) = 0.15898
    Final PageRank values:
    PR(A) = 0.24337
    PR(B) = 0.15898
    PR(C) = 0.15898
```

Conclusion: After running the PageRank algorithm for five iterations, node A achieves the highest PageRank value compared to nodes B and C. This indicates that node A holds the most influence within the given network structure, as it receives direct or indirect importance from other pages.