Exercise session 2

Week 3

https://moodle.epfl.ch/pluginfile.php/271357 0/mod_resource/content/2/ExerciseW3_Q.p df

Municipal solid waste (MSW) is separated by a mechanical sorting plant into a combustible fraction (30%) and another fraction (70%) that is digested by a subsequent biochemical process. Approximately half of the latter fraction is transformed to biogas during the anaerobic treatment.

- 1. Draw the system as a quantitative flow chart.
- 2. The concentrations of Hg are: Municipal solid waste input 1.5 mg/kg, combustible fraction 1 mg/kg, biogas 0.005 mg/kg, digestion product 3.4 mg/kg. Calculate all mass flows and transfer coefficients for Hg.

Exercise 1 — Theory

$$A_{i,1} = A_1 * w_{i,1}$$

$$TC_{i,2} = \frac{A_2 * w_{i,2}}{A_1 * w_{i,1}} = \frac{A_{i,2}}{A_{i,1}}$$

 $oldsymbol{A}_i$ Mass flow

W Mass fraction

Municipal solid waste is separated by a mechanical sorting plant into a combustible fraction (30%) and another fraction (70%) that is digested by a subsequent biochemical process. Approximately half of the latter fraction is transformed to biogas during the anaerobic treatment.

Draw the system as a quantitative flow chart.

MSW – municipal solid waste, **NCF** – non–combustible fraction, **CF** – combustible fraction, **DP** – digestion product, **OG** – off–gas (biogas)

2. Calculate all mass flows and transfer coefficients for Hg.

Calculating mass flows:

2. Calculate all mass flows and transfer coefficients for Hg.

Hg in MSW = Hg concentration_{\rm MSW~input} \times Total MSW = 1.5 mg/kg \cdot 100 kg = 150 mg

Calculating mass flows:

Assuming initial mass of 100kg

Hg in OG = Hg concentration _OG \times Off–gas = 0.005 mg/kg \cdot 35 kg = 0.175 mg

2. Calculate all mass flows and transfer coefficients for Hg.

Calculating mass flows:

Hg in OG = Hg concentration
_OG
$$\times$$
 Off–gas = 0.005 mg/kg \cdot 35 kg
 = 0.175 mg

Hg in DP = Hg concentration
_DP
$$\times$$
 Digestion product = 3.4 mg/kg \cdot 35 kg
 = 119 mg

2. Calculate all mass flows and transfer coefficients for Hg.

Calculating mass flows:

Hg in MSW = Hg concentration_{\rm MSW~input}
$$\times$$
 Total MSW = 1.5 mg/kg \cdot 100 kg = 150 mg

Hg in OG = Hg concentration
_OG
$$\times$$
 Off–gas = 0.005 mg/kg \cdot 35 kg = 0.175 mg

Hg in DP = Hg concentration
_DP
$$\times$$
 Digestion product = 3.4 mg/kg \cdot 35 kg
 = 119 mg

Hg in CF = Hg concentration
CF
$$\times$$
 Combustible fraction = 1 mg/kg \cdot 30 kg
 = 30 mg

2. Calculate all mass flows and transfer coefficients for Hg.

$$TC_{CF} = \frac{\text{Hg concentration}_{\text{Combustible fraction}} \times \text{Combustible fraction}}{\text{Hg concentration}_{\text{MSW input}} \times \text{Total MSW}}$$
$$= \frac{1 \text{ mg/kg} \cdot 30 \text{ kg}}{1.5 \text{ mg/kg} \cdot 100 \text{ kg}} = 0.2$$

Calculating transfer coefficients (TC):

2. Calculate all mass flows and transfer coefficients for Hg.

Calculating transfer coefficients (TC):

$$TC_{CF} = \frac{\text{Hg concentration}_{\text{Combustible fraction}} \times \text{Combustible fraction}}{\text{Hg concentration}_{\text{MSW input}} \times \text{Total MSW}}$$
$$= \frac{1 \text{ mg/kg} \cdot 30 \text{ kg}}{1.5 \text{ mg/kg} \cdot 100 \text{ kg}} = 0.2$$

$$\begin{split} TC_{OG} &= \frac{\text{Hg concentration}_{\text{Biogas}} \times \text{Off-gas}}{\text{Hg concentration}_{\text{MSW input}} \times \text{Total MSW}} \\ &= \frac{0.005 \text{ mg/kg} \cdot 35 \text{ kg}}{1.5 \text{ mg/kg} \cdot 100 \text{ kg}} = 0.0012 \end{split}$$

2. Calculate all mass flows and transfer coefficients for Hg.

Calculating transfer coefficients (TC):

$$TC_{CF} = \frac{\text{Hg concentration}_{\text{Combustible fraction}} \times \text{Combustible fraction}}{\text{Hg concentration}_{\text{MSW input}} \times \text{Total MSW}}$$
$$= \frac{1 \text{ mg/kg} \cdot 30 \text{ kg}}{1.5 \text{ mg/kg} \cdot 100 \text{ kg}} = 0.2$$

$$\begin{split} TC_{OG} &= \frac{\text{Hg concentration}_{\text{Biogas}} \times \text{Off-gas}}{\text{Hg concentration}_{\text{MSW input}} \times \text{Total MSW}} \\ &= \frac{0.005 \text{ mg/kg} \cdot 35 \text{ kg}}{1.5 \text{ mg/kg} \cdot 100 \text{ kg}} = 0.0012 \end{split}$$

$$TC_{DP} = \frac{\text{Hg concentration}_{\text{Digestion product}} \times \text{Digestion product}}{\text{Hg concentration}_{\text{MSW input}} \times \text{Total MSW}}$$
$$= \frac{3.4 \text{ mg/kg} \cdot 35 \text{ kg}}{1.5 \text{ mg/kg} \cdot 100 \text{ kg}} = 0.79$$

The production of photovoltaic cells can be represented in a simplified manner depicting only the two main processes; silicon wafer production and photocell production. The flow data for each of the processes are as follows:

Wafer production (for 1kg silicon wafers)		
Input		
Silicon [kg]	1	
Energy [MJ/kg]	420	
Output		
Silicon wafers [kg]	1	

Photocell production (for 1m ² photovoltaic	
cells)	
Input	
Energy [MJ/m ²]	13.6
Glass [kg]	10
Silicon wafers [kg]	1.6
Output	
Photovoltaic cells [m ²]	1

- 1. Perform a system analysis: establish the system diagram and derive the balance equations.
- 2. Develop the output equations considering each of the inputs, and calculate the amount of energy, silicon and glass needed to produce 1 m² of PV cells.

$$Input_{E1} \cdot k_1 + Input_{Si} \cdot k_2 = Output_1 \cdot k_3$$

$$Input_{E1} \cdot k_1 + Input_{Si} \cdot k_2 = Output_1 \cdot k_3$$

$$Output_1 \cdot k_3 + Input_E \cdot k_4 + Input_G \cdot k_5 = Output_2 \cdot k_6$$

$$Input_{E1} \cdot k_1 + Input_{Si} \cdot k_2 = Output_1 \cdot k_3$$

$$Output_1 \cdot k_3 + Input_E \cdot k_4 + Input_G \cdot k_5 = Output_2 \cdot k_6$$

$$Input_{E1} \cdot k_1 + Input_{Si} \cdot k_2 + Input_{E2} \cdot k_4 + Input_{G} \cdot k_5 = Output_2 \cdot k_6$$

x kg Si-wafers = $k_2 \cdot x$ kg Si + $k_1 \cdot x$ MJ energy

x kg Si-wafers = $1 \cdot x$ kg Si + $420 \cdot x$ MJ energy

 $y \text{ m}^2 \text{ PV cells} = k_3 \cdot y \text{ Si-wafers} + k_5 \cdot y \text{ kg glass} + k_4 \cdot y \text{ MJ energy}$

 $y \text{ m}^2 \text{ PV cells} = 1.6 \cdot y \text{ Si-wafers} + 10 \cdot y \text{ kg glass} + 13.6 \cdot y \text{ MJ energy}$

Therefore, to produce 1 m² of PV cells, we need 1.6·1 kg Si, $10\cdot1$ kg glass, and $(420\cdot1.6 + 13.6\cdot1)$ MJ energy.

→ 1.6 kg Si, 10 kg glass, and 685.6 MJ energy is required.

