Gleberson Gregorio da Silva Antunes Orientador: Prof. Dr. Kisnney Emiliano de Almeida

Café com Teorema UEFS-UFBA

08 de Maio de 2023

Estrutura da apresentação

- ① Grupos topológicos e continuidade de homomorfismos
- 2 Vizinhanças do elemento neutro
- 3 Subgrupos, conexidade e compacidade

Definição 1

Sejam (G, \cdot) um grupo e τ_G uma topologia em G. O trio (G, \cdot, τ_G) é dito um grupo topológico se as funções

$$i: G \longrightarrow G$$
 $\cdots : G \times G \longrightarrow G$
 $x \longmapsto x^{-1}$ $(x,y) \longmapsto x \cdot y,$

chamadas de inversão e operação de G, respectivamente, são contínuas.

Definição 1

Sejam (G, \cdot) um grupo e τ_G uma topologia em G. O trio (G, \cdot, τ_G) é dito um **grupo topológico** se as funções

$$i: G \longrightarrow G$$
 $\cdots : G \times G \longrightarrow G$
 $x \longmapsto x^{-1}$ $(x,y) \longmapsto x \cdot y,$

chamadas de **inversão** e **operação de** G, respectivamente, são contínuas.

Definição 1

Sejam (G, \cdot) um grupo e τ_G uma topologia em G. O trio (G, \cdot, τ_G) é dito um **grupo topológico** se as funções

$$i: G \longrightarrow G$$
 $\cdots : G \times G \longrightarrow G$
 $x \longmapsto x^{-1}$ $(x,y) \longmapsto x \cdot y,$

chamadas de **inversão** e **operação de** G, respectivamente, são contínuas.

Definição 1

Sejam (G, \cdot) um grupo e τ_G uma topologia em G. O trio (G, \cdot, τ_G) é dito um **grupo topológico** se as funções

$$i: G \longrightarrow G$$
 $\cdots : G \times G \longrightarrow G$
 $x \longmapsto x^{-1}$ $(x,y) \longmapsto x \cdot y,$

chamadas de **inversão** e **operação de** G, respectivamente, são contínuas.

O conjunto

$$\mathbb{K}_4 = \{e, a, b, ab\},\$$

	е		b	ab
е	е		b	ab
		е	ab	b
b	b	ab	е	
ab	b	b		е

O conjunto

$$\mathbb{K}_4 = \{e, a, b, ab\},\$$

	е		b	ab
е	е		b	ab
		е	ab	b
b	b	ab	е	
ab	b	b		е

O conjunto

$$\mathbb{K}_4 = \{e, a, b, ab\},\$$

	е		b	ab
е	е		b	ab
		е	ab	b
b	b	ab	е	
ab	b	b		е

O conjunto

$$\mathbb{K}_4 = \{e, a, b, ab\},\$$

	e	a	b	ab
e	е	a	b	ab
a	a	e	ab	b
b	b	ab	e	a
ab	b	b	a	e

Considere o grupo (\mathbb{K}_4,\cdot) e $\tau_{\mathbb{K}_4} = \{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\}$. Note que

- (i) · é contínua pois:
- $\bullet \cdot^{-1}(\emptyset) = \emptyset.$

Considere o grupo (\mathbb{K}_4,\cdot) e $\tau_{\mathbb{K}_4}=\{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\}$. Note que

- (i) · é contínua pois:
- $\bullet \cdot^{-1}(\emptyset) = \emptyset.$

Considere o grupo (\mathbb{K}_4,\cdot) e $\tau_{\mathbb{K}_4}=\{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\}$. Note que

- (i) · é contínua pois:
- $\bullet \cdot^{-1}(\emptyset) = \emptyset.$

Considere o grupo (\mathbb{K}_4,\cdot) e $\tau_{\mathbb{K}_4}=\{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\}$. Note que

- (i) · é contínua pois:
- $\bullet \cdot^{-1}(\emptyset) = \emptyset.$

Considere o grupo (\mathbb{K}_4,\cdot) e $\tau_{\mathbb{K}_4}=\{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\}$. Note que

- (i) · é contínua pois:
- $\bullet \cdot^{-1}(\emptyset) = \emptyset.$

Considere o grupo (\mathbb{K}_4,\cdot) e $\tau_{\mathbb{K}_4}=\{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\}$. Note que

- (i) · é contínua pois:
- $\bullet \cdot^{-1}(\emptyset) = \emptyset.$

Considere o grupo (\mathbb{K}_4,\cdot) e $\tau_{\mathbb{K}_4}=\{\emptyset, \{1, ab\}, \{a, b\}, \mathbb{K}_4\}$. Note que

- (i) · é contínua pois:
- $\bullet \cdot^{-1}(\emptyset) = \emptyset.$

Da mesma maneira, temos que

- (ii) i é contínua pois:

Da mesma maneira, temos que

- (ii) i é contínua pois:
 - $\bullet i^{-1}(\emptyset) = \emptyset.$
 - $i^{-1}(\mathbb{K}_4) = \mathbb{K}_4.$

Da mesma maneira, temos que

- (ii) i é contínua pois:
 - $\bullet i^{-1}(\emptyset) = \emptyset.$
 - $i^{-1}(\mathbb{K}_4) = \mathbb{K}_4.$
 - $i^{-1}(\{1,ab\}) = \{1,ab\}.$

Da mesma maneira, temos que

- (ii) i é contínua pois:
 - $\bullet i^{-1}(\emptyset) = \emptyset.$
 - $i^{-1}(\mathbb{K}_4) = \mathbb{K}_4.$
 - $i^{-1}(\{1,ab\}) = \{1,ab\}.$

Da mesma maneira, temos que

- (ii) i é contínua pois:
 - $\bullet i^{-1}(\emptyset) = \emptyset.$
 - $i^{-1}(\mathbb{K}_4) = \mathbb{K}_4.$
 - $i^{-1}(\{1,ab\}) = \{1,ab\}.$
 - $\bullet i^{-1}(\{a,b\}) = \{a,b\}.$

Da mesma maneira, temos que

- (ii) i é contínua pois:
 - $\bullet i^{-1}(\emptyset) = \emptyset.$
 - $i^{-1}(\mathbb{K}_4) = \mathbb{K}_4.$
 - $i^{-1}(\{1,ab\}) = \{1,ab\}.$
 - $\bullet i^{-1}(\{a,b\}) = \{a,b\}.$

Da mesma maneira, temos que

- (ii) i é contínua pois:
 - $\bullet i^{-1}(\emptyset) = \emptyset.$
 - $i^{-1}(\mathbb{K}_4) = \mathbb{K}_4.$
 - $i^{-1}(\{1,ab\}) = \{1,ab\}.$
 - $\bullet i^{-1}(\{a,b\}) = \{a,b\}.$

O conjunto

$$\mathbb{Q}_8 = \{1, \bar{1}, i, \bar{i}, j, \bar{j}, k, \bar{k}\},\$$

	1	1					k	
1	1	Ī					k	
$\bar{1}$	Ī							
			$\bar{1}$	1			j	
			1	1				
					1	1		
					1			
k	k	\bar{k}					1	1
\bar{k}	\bar{k}	k					1	1

O conjunto

$$\mathbb{Q}_8 = \{1, \bar{1}, i, \bar{i}, j, \bar{j}, k, \bar{k}\},\$$

	1	Ī					k	
1	1	Ī					k	
1	Ī	1						
			1	1		k	j	
			1	1	k			j
					1			
			\bar{k}		1		i	
k	k	k						1
\overline{k}	\overline{k}	k					1	1

O conjunto

$$\mathbb{Q}_8 = \{1, \bar{1}, i, \bar{i}, j, \bar{j}, k, \bar{k}\},\$$

	1	1					k	
1	1	$\bar{1}$					k	
1	Ī	1						k
			1	1		k	j	
					Ī	1		
					1		i	
k	k	k						
\bar{k}	\overline{k}	k					1	1

O conjunto

$$\mathbb{Q}_8 = \{1, \bar{1}, i, \bar{i}, j, \bar{j}, k, \bar{k}\},\$$

	1	$\bar{1}$	i	\overline{i}	j	$ar{j}$	k	\bar{k}
1	1	$\bar{1}$	i	\overline{i}	j	\bar{j}	k	\bar{k}
$\bar{1}$	$\bar{1}$	$\begin{array}{c} \frac{1}{i} \\ \frac{i}{j} \\ \frac{j}{k} \end{array}$	$rac{i}{i}$	$ar{i}$ i	$rac{j}{ar{j}}$	$ar{j} \ j$	\bar{k}	k
$rac{i}{i} \ rac{j}{j} \ k$	i	\overline{i}		$\frac{1}{1}$		k	j	$ar{j} \ ar{i} \ ar{i}$
\overline{i}	\bar{i}	i	1	$\bar{1}$	k	$ar{k}$	$rac{\mathrm{j}}{i}$	j
j	j	$ar{j}$	$rac{k}{ar{k}}$	\bar{k}	$\bar{1}$	1	\overline{i}	i
$ar{j}$	$\begin{bmatrix} \frac{j}{j} \\ k \end{bmatrix}$	j	\bar{k}	k	1	$\bar{1}$	i	
		\bar{k}	j	$ar{j}$	$\overline{\overline{i}}$	i	$\bar{1}$	1
\bar{k}	\bar{k}	k	\bar{j}	j	i	\overline{i}	1	Ī

Considere o grupo (\mathbb{Q}_8,\cdot) e N = {1, $\bar{1}$ }. A topologia τ gerada pela base

$$\mathcal{B} = \{\{1, \bar{1}\}, \{i, \bar{i}\}, \{j, \bar{j}\}, \{k, \bar{k}\}\},\$$

torna (\mathbb{Q}_8,\cdot) um grupo topológico.

Considere o grupo (\mathbb{Q}_8,\cdot) e N = {1, \$\bar{1}\$}. A topologia \$\tau\$ gerada pela base

$$\mathscr{B} = \{\{1, \, \bar{1}\}, \, \{\mathrm{i}, \, \bar{i}\}, \, \{\mathrm{j}, \, \bar{j}\}, \, \{\mathrm{k}, \, \bar{k}\}\},$$

torna (\mathbb{Q}_8 , ·) um grupo topológico.

Exemplo 3

O grupo aditivo dos números reais $(\mathbb{R}, +)$ munido de $\tau_{\mathbb{R}}$, a topologia usual de \mathbb{R} , é um grupo topológico.

Exemplo 4

Seja (\mathbb{C}^*,\cdot) o grupo dos números complexos não-nulos, com a operação de multiplicação. A topologia da **bola aberta** torna $(\mathbb{C}^*,\cdot,\tau_{\mathbb{C}^*})$ um grupo topológico.

Exemplo 3

O grupo aditivo dos números reais $(\mathbb{R}, +)$ munido de $\tau_{\mathbb{R}}$, a topologia usual de \mathbb{R} , é um grupo topológico.

Exemplo 4

Seja (\mathbb{C}^*,\cdot) o grupo dos números complexos não-nulos, com a operação de multiplicação. A topologia da bola aberta torna $(\mathbb{C}^*,\cdot,\tau_{\mathbb{C}^*})$ um grupo topológico.

Exemplo 3

O grupo aditivo dos números reais $(\mathbb{R}, +)$ munido de $\tau_{\mathbb{R}}$, a topologia usual de \mathbb{R} , é um grupo topológico.

Exemplo 4

Seja (\mathbb{C}^*,\cdot) o grupo dos números complexos não-nulos, com a operação de multiplicação. A topologia da **bola aberta** torna $(\mathbb{C}^*,\cdot,\tau_{\mathbb{C}^*})$ um grupo topológico.

Exemplo 3

O grupo aditivo dos números reais $(\mathbb{R}, +)$ munido de $\tau_{\mathbb{R}}$, a topologia usual de \mathbb{R} , é um grupo topológico.

Exemplo 4

Seja (\mathbb{C}^*,\cdot) o grupo dos números complexos não-nulos, com a operação de multiplicação. A topologia da **bola aberta** torna $(\mathbb{C}^*,\cdot,\tau_{\mathbb{C}^*})$ um grupo topológico.

Aplicações de translação

Fixado $g \in G$, as aplicações D_g , E_g , C_g : $G \longrightarrow G$, dadas por $D_g(x) = xg$, $E_g(x) = gx$ e $C_g(x) = gxg^{-1}$, são chamadas de translação à direita, translação à esquerda e conjugação por g, respectivamente.

Apresentamos agora alguns resultados sobre as aplicações de translação.

Aplicações de translação

Fixado $g \in G$, as aplicações D_g , E_g , $C_g : G \longrightarrow G$, dadas por $D_g(x) = xg$, $E_g(x) = gx$ e $C_g(x) = gxg^{-1}$, são chamadas de translação à direita, translação à esquerda e conjugação por g, respectivamente.

Apresentamos agora alguns resultados sobre as aplicações de translação.

Fixado $g \in G$, as aplicações D_g , E_g , $C_g : G \longrightarrow G$, dadas por $D_g(x) = xg$, $E_g(x) = gx$ e $C_g(x) = gxg^{-1}$, são chamadas de translação à direita, translação à esquerda e conjugação por g, respectivamente.

Apresentamos agora alguns resultados sobre as aplicações de translação.

Teorema 5

Seja (G, \cdot, τ_G) um grupo topológico. As aplicações D_g, E_g, C_g : $G \longrightarrow G$ são homeomorfismos.

Teorema 6

Sejam (G, \cdot, τ_G) um grupo topológico e $g \in G$. Então, toda vizinhança U de g é a imagem de uma vizinhança V de 1_G por uma aplicação de translação.

Teorema 7

Seja (G, \cdot, τ_G) um grupo topológico. Então G é discreto se, e somente se, $\{1_G\}$ é aberto.

Teorema 5

Seja (G, \cdot, τ_G) um grupo topológico. As aplicações D_g, E_g, C_g : $G \longrightarrow G$ são homeomorfismos.

Teorema 6

Sejam (G, \cdot, τ_G) um grupo topológico e $g \in G$. Então, toda vizinhança U de g é a imagem de uma vizinhança V de 1_G por uma aplicação de translação.

Teorema 7

Seja (G, \cdot, τ_G) um grupo topológico. Então G é discreto se, e somente se, $\{1_G\}$ é aberto.

Teorema 5

Seja (G, \cdot, τ_G) um grupo topológico. As aplicações D_g, E_g, C_g : $G \longrightarrow G$ são homeomorfismos.

Teorema 6

Sejam (G, \cdot, τ_G) um grupo topológico e $g \in G$. Então, toda vizinhança U de g é a imagem de uma vizinhança V de 1_G por uma aplicação de translação.

Teorema 7

Seja (G, \cdot, τ_G) um grupo topológico. Então G é discreto se, e somente se, $\{1_G\}$ é aberto.

Continuidade de homomorfismos

Agora determinaremos uma condição para que um homomorfismo de grupos seja contínuo.

Teorema 8

Sejam (G, \cdot, τ_G) e (H, \circ, τ_H) grupos topológicos e $f: G \to H$ um homomorfismo de grupos. Então, f é contínua se, e somente se, f é contínua em $1_G \in G$.

Continuidade de homomorfismos

Agora determinaremos uma condição para que um homomorfismo de grupos seja contínuo.

Teorema 8

Sejam (G,\cdot,τ_G) e (H,\circ,τ_H) grupos topológicos e $f:G\to H$ um homomorfismo de grupos. Então, f é contínua se, e somente se, f é contínua em $1_G\in G$.

A resposta é **sim**!

Teorema 9

Sejam (G,\cdot,τ_G) um grupo topológico e (H,\times) um grupo isomorfo a (G,\cdot) . Seja $f:G\longrightarrow H$ um isomorfismo. A coleção

$$\tau_H = \{ U \subset H \mid f^{-1}(U) \in \tau_G \},\$$

A resposta é **sim**!

Teorema 9

Sejam (G,\cdot,τ_G) um grupo topológico e (H,\times) um grupo isomorfo a (G,\cdot) . Seja $f:G\longrightarrow H$ um isomorfismo. A coleção

$$\tau_H = \{ U \subset H \mid f^{-1}(U) \in \tau_G \},\$$

A resposta é **sim**!

Teorema 9

Sejam (G,\cdot,τ_G) um grupo topológico e (H,\times) um grupo isomorfo a (G,\cdot) . Seja $f:G\longrightarrow H$ um isomorfismo. A coleção

$$\tau_H = \{ U \subset H \mid f^{-1}(U) \in \tau_G \},\$$

A resposta é **sim**!

Teorema 9

Sejam (G,\cdot,τ_G) um grupo topológico e (H,\times) um grupo isomorfo a (G,\cdot) . Seja $f:G\longrightarrow H$ um isomorfismo. A coleção

$$\tau_H = \{ U \subset H \mid f^{-1}(U) \in \tau_G \},\$$

A resposta é **sim**!

Teorema 9

Sejam (G,\cdot,τ_G) um grupo topológico e (H,\times) um grupo isomorfo a (G,\cdot) . Seja $f:G\longrightarrow H$ um isomorfismo. A coleção

$$\tau_H = \{ U \subset H \mid f^{-1}(U) \in \tau_G \},\$$

Exemplo 10

Exemplo 10

Considere o grupo topológico $(\mathbb{K}_4, \cdot, \tau_{\mathbb{K}_4})$ do Exemplo 1. Ele é isomorfo ao grupo $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$. Então é possível tornar $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$ um grupo topológico homeomorfo a $(\mathbb{K}_4, \cdot, \tau_{\mathbb{K}_4})$ por meio da topologia do teorema anterior.

Vizinhanças do elemento neutro

Nosso objetivo nesta seção é entender como o filtro de todas as vizinhanças do elemento neutro funciona e sobre como ele descreve uma única topologia sobre o grupo.

Mais informações sobre filtros podem ser encontradas em [3].

Vizinhanças do elemento neutro

Nosso objetivo nesta seção é entender como o filtro de todas as vizinhanças do elemento neutro funciona e sobre como ele descreve uma única topologia sobre o grupo.

Mais informações sobre filtros podem ser encontradas em [3].

- i. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V \subset U$.
- ii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V^{-1} \subset U$.
- iii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V^{-1} \subset U$.
- iv. Para cada $U \in \mathcal{F}$ e $a \in G$, tem-se que aUa^{-1} , $a^{-1}Ua \in \mathcal{F}$.

- i. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V \subset U$.
- ii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V^{-1} \subset U$.
- iii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V^{-1} \subset U$.
- iv. Para cada $U \in \mathcal{F}$ e $a \in G$, tem-se que aUa^{-1} , $a^{-1}Ua \in \mathcal{F}$.

- i. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V \subset U$.
- ii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V^{-1} \subset U$.
- iii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V^{-1} \subset U$.
- iv. Para cada $U \in \mathcal{F}$ e $a \in G$, tem-se que aUa^{-1} , $a^{-1}Ua \in \mathcal{F}$.

- i. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V \subset U$.
- ii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V^{-1} \subset U$.
- iii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V^{-1} \subset U$.
- iv. Para cada $U \in \mathcal{F}$ e $a \in G$, tem-se que aUa^{-1} , $a^{-1}Ua \in \mathcal{F}$.

- i. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V \subset U$.
- ii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V^{-1} \subset U$.
- iii. Para cada $U \in \mathcal{F}$, existe $V \in \mathcal{F}$ tal que $V \cdot V^{-1} \subset U$.
- iv. Para cada U $\in \mathcal{F}$ e a $\in G$, tem-se que aUa^{-1} , $a^{-1}Ua \in \mathcal{F}$.

Definição 12

Sejam (G, \cdot) um grupo e τ uma topologia em G. Dado $g \in G$, chamamos de filtro de todas as vizinhanças de g o conjunto

$$\mathcal{V}(g) := \{ \mathbf{U} \subset \mathbf{G} \mid \mathbf{g} \in N_g \subset U, \, N_g \in \tau_G \}.$$

formado por todas as vizinhanças de $g \in G$.

Daí, segue o seguinte lema.

Lema 13

Sejam (G, \cdot, τ_G) um grupo topológico e $\mathcal{V}(1_G)$ o filtro de todas as vizinhanças de 1_G nessa mesma topologia. Então $\mathcal{V}(1_G)$ é um filtro viável.

Definição 12

Sejam (G, \cdot) um grupo e τ uma topologia em G. Dado $g \in G$, chamamos de filtro de todas as vizinhanças de g o conjunto

$$\mathcal{V}(g) := \{ \mathbf{U} \subset \mathbf{G} \mid \mathbf{g} \in N_g \subset U, \, N_g \in \tau_G \}.$$

formado por todas as vizinhanças de $g \in G$.

Daí, segue o seguinte lema.

Lema 13

Sejam (G, \cdot, τ_G) um grupo topológico e $\mathcal{V}(1_G)$ o filtro de todas as vizinhanças de 1_G nessa mesma topologia. Então $\mathcal{V}(1_G)$ é um filtro viável.

Definição 12

Sejam (G, \cdot) um grupo e τ uma topologia em G. Dado $g \in G$, chamamos de filtro de todas as vizinhanças de g o conjunto

$$\mathcal{V}(g) := \{ \mathbf{U} \subset \mathbf{G} \mid \mathbf{g} \in N_g \subset U, \, N_g \in \tau_G \}.$$

formado por todas as vizinhanças de $g \in G$.

Daí, segue o seguinte lema.

Lema 13

Sejam (G, \cdot, τ_G) um grupo topológico e $\mathcal{V}(1_G)$ o filtro de todas as vizinhanças de 1_G nessa mesma topologia. Então $\mathcal{V}(1_G)$ é um filtro viável.

O próximo teorema é o resultado mais importante desta seção. É através dele que, dado um grupo (G,\cdot) , podemos determinar uma única topologia τ em G de forma que (G,\cdot,τ) seja um grupo topológico, por meio de filtros.

Antes de enunciarmos esse teorema, citaremos três lemas que relacionam a topologia em um grupo com a continuidade das aplicações de translação e que são úteis para a prova do mesmo.

O próximo teorema é o resultado mais importante desta seção. É através dele que, dado um grupo (G, \cdot) , podemos determinar uma única topologia τ em G de forma que (G, \cdot, τ) seja um grupo topológico, por meio de filtros.

Antes de enunciarmos esse teorema, citaremos três lemas que relacionam a topologia em um grupo com a continuidade das aplicações de translação e que são úteis para a prova do mesmo.

Filtros viáveis e grupos topológicos

Definição 14

Sejam (G, \cdot) um grupo e τ um topologia em G. Diremos que τ é **invariante à direita** quando, para cada $U \in \tau$ e $g \in G$, $Ug \in \tau$. De forma análoga, diremos que τ é **invariante à esquerda** quando para cada $U \in \tau$ e $g \in G$, $gU \in \tau$.

Segue que

Lema 15

Se τ é uma topologia invariante à direita ou à esquerda, então a topologia produto em $G\times G$ é também invariante à direita ou à esquerda.

Lema 16

Sejam (G, \cdot) um grupo, $g \in G$ e τ um topologia em G. Então, τ é invariante à direita se, e somente se, D_g é um homeomorfismo. Da mesma maneira, τ é invariante à esquerda se, e somente se, E_g é um homeomorfismo.

Segue que

Lema 15

Se τ é uma topologia invariante à direita ou à esquerda, então a topologia produto em $G\times G$ é também invariante à direita ou à esquerda.

Lema 16

Sejam (G,\cdot) um grupo, $g\in G$ e τ um topologia em G. Então, τ é invariante à direita se, e somente se, D_g é um homeomorfismo. Da mesma maneira, τ é invariante à esquerda se, e somente se, E_g é um homeomorfismo.

Lema 17

Seja (G, \cdot) um grupo munido de uma topologia τ invariante à direita e à esquerda, respectivamente. Então (G, \cdot, τ) é um grupo topológico se, e somente se, as seguintes condições são satisfeitas:

```
i. \cdot é contínua em (1_G, 1_G).
```

ii. i é contínua em 1_G .

Lema 17

Seja (G,\cdot) um grupo munido de uma topologia τ invariante à direita e à esquerda, respectivamente. Então (G,\cdot,τ) é um grupo topológico se, e somente se, as seguintes condições são satisfeitas:

i. \cdot é contínua em $(1_G, 1_G)$.

ii. i é contínua em 1_G .

Lema 17

Seja (G, \cdot) um grupo munido de uma topologia τ invariante à direita e à esquerda, respectivamente. Então (G, \cdot, τ) é um grupo topológico se, e somente se, as seguintes condições são satisfeitas:

- i. \cdot é contínua em $(1_G, 1_G)$.
- ii. i é contínua em 1_G .

Filtro viáveis e grupos topológicos

Teorema 18

Sejam (G, \cdot) um grupo e \mathcal{V} um filtro viável. Então, existe uma única topologia τ em G que torna (G, \cdot, τ) um grupo topológico e que faz \mathcal{V} coincidir com $\mathcal{V}(1_G)$, o filtro de todas as vizinhanças de 1_G nessa topologia.

Demonstração: A saber

 $\tau := \{ U \subset G \mid \text{para cada } u \in U, \, \text{existe } V \in \mathcal{V}, \, \text{tal que } \, uV \subset U \}.$

Filtro viáveis e grupos topológicos

Teorema 18

Sejam (G, \cdot) um grupo e \mathcal{V} um filtro viável. Então, existe uma única topologia τ em G que torna (G, \cdot, τ) um grupo topológico e que faz \mathcal{V} coincidir com $\mathcal{V}(1_G)$, o filtro de todas as vizinhanças de 1_G nessa topologia.

Demonstração: A saber

 $\tau := \{ U \subset G \mid \text{para cada } u \in U, \, \text{existe } V \in \mathcal{V}, \, \text{tal que } \, uV \subset U \}.$

Exemplo 19

Seja $(\mathbb{Z}, +)$ o grupo aditivo dos números inteiros. Dado um número primo p, considere a família

$$V_p := \{ U \subset \mathbb{Z} \mid \text{ existe } n \in \mathbb{N}, \, p^n \mathbb{Z} \subset U \}.$$

 V_p determina uma topologia em \mathbb{Z} , chamada de **topologia p-ádica**, tornando-o um grupo topológico.

Exemplo 19

Seja $(\mathbb{Z},+)$ o grupo aditivo dos números inteiros. Dado um número primo p, considere a família

$$V_p := \{ U \subset \mathbb{Z} \mid \text{ existe } n \in \mathbb{N}, \, p^n \mathbb{Z} \subset U \}.$$

 V_p determina uma topologia em \mathbb{Z} , chamada de **topologia p-ádica**, tornando-o um grupo topológico.

Faz sentido irmos mais fundo, isto é, observar se conseguimos gerar um filtro que satisfaça as condições do Teorema 18. Isso é de fato possível. Daremos exemplos de bases de filtros que geram filtros viáveis e que satisfazem o Teorema 18.

Faz sentido irmos mais fundo, isto é, observar se conseguimos gerar um filtro que satisfaça as condições do Teorema 18. Isso é de fato possível. Daremos exemplos de bases de filtros que geram filtros viáveis e que satisfazem o Teorema 18.

Faz sentido irmos mais fundo, isto é, observar se conseguimos gerar um filtro que satisfaça as condições do Teorema 18. Isso é de fato possível. Daremos exemplos de bases de filtros que geram filtros viáveis e que satisfazem o Teorema 18.

Exemplo 20

A topologia pró-finita, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{B} , a família de todos os subgrupos normais de indíce finito em G.

Exemplo 21

A topologia pró-p-finita, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{P} , a família de todos os subgrupos normais cujo indíce é finito e é uma potência de p primo em G.

Exemplo 22

A topologia pró-enumerável, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{H} , a família de todos subgrupos normais de indíce enumerável em G.

25 / 35

Exemplo 20

A topologia pró-finita, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{B} , a família de todos os subgrupos normais de indíce finito em G.

Exemplo 21

A topologia pró-p-finita, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{P} , a família de todos os subgrupos normais cujo indíce é finito e é uma potência de p primo em G.

Exemplo 22

A topologia pró-enumerável, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{H} , a família de todos subgrupos normais de indíce enumerável em G.

Exemplo 20

A topologia pró-finita, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{B} , a família de todos os subgrupos normais de indíce finito em G.

Exemplo 21

A topologia pró-p-finita, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{P} , a família de todos os subgrupos normais cujo indíce é finito e é uma potência de p primo em G.

Exemplo 22

A topologia pró-enumerável, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{H} , a família de todos subgrupos normais de indíce enumerável em G.

25 / 35

Exemplo 20

A topologia pró-finita, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{B} , a família de todos os subgrupos normais de indíce finito em G.

Exemplo 21

A topologia pró-p-finita, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{P} , a família de todos os subgrupos normais cujo indíce é finito e é uma potência de p primo em G.

Exemplo 22

A topologia pró-enumerável, cuja base do filtro de vizinhanças do elemento neutro é \mathcal{H} , a família de todos subgrupos normais de indíce enumerável em G.

25 / 35

opológicos e continuidade de homomorfismos Vizinhanças do elemento neutro Subgrupos, conexidade e compacidade Referências

Nesta seção apresentaremos uma série de proposições sobre subgrupos, axiomas de separação e grupos topológicos conexos e compactos.

Teorema 23

- i. H é aberto se, e somente se, possui interior não-vazio.
- ii. Se H é aberto, então H é fechado.
- iii. Se H é fechado e $\mid G:H\mid <\infty$ então H é aberto.
- iv. Se H é aberto e (G, \cdot, τ_G) é compacto, então $\mid G: H \mid < \infty$.

Teorema 23

- i. H é aberto se, e somente se, possui interior não-vazio.
- ii. Se H é aberto, então H é fechado.
- iii. Se H é fechado e $\mid G:H\mid <\infty$ então H é aberto.
- iv. Se H é aberto e (G, \cdot, τ_G) é compacto, então $\mid G: H \mid < \infty$.

Teorema 23

- i. H é aberto se, e somente se, possui interior não-vazio.
- ii. Se H é aberto, então H é fechado.
- iii. Se H é fechado e $\mid G:H\mid <\infty$ então H é aberto.
- iv. Se H é aberto e (G, \cdot, τ_G) é compacto, então $\mid G: H \mid < \infty$.

Teorema 23

Sejam (G, \cdot, τ_G) um grupo topológico e H um subgrupo de G. Então

- i. H é aberto se, e somente se, possui interior não-vazio.
- ii. Se H é aberto, então H é fechado.
- iii. Se H é fechado e $\mid G:H\mid <\infty$ então H é aberto.

iv. Se H é aberto e (G,\cdot,τ_G) é compacto, então $\mid G:H\mid<\infty.$

Teorema 23

- i. H é aberto se, e somente se, possui interior não-vazio.
- ii. Se H é aberto, então H é fechado.
- iii. Se H é fechado e $\mid G:H\mid <\infty$ então H é aberto.
- iv. Se H é aberto e (G, \cdot, τ_G) é compacto, então $\mid G: H \mid < \infty$.

Ainda sobre subgrupos, temos que

Teorema 24

i.
$$\overline{H} = \bigcap_{U \in \mathcal{V}(1_G)} (UH) = \bigcap_{U \in \mathcal{V}(1_G)} (HU) = \bigcap_{U,V \in \mathcal{V}(1_G)} (UHV).$$

- ii. Se H é um subgrupo de G então \overline{H} também é um subgrupo G. Se H é normal então \overline{H} também é normal.
- iii. $N = \overline{\{1\}}$ é um subgrupo fechado e normal.

Ainda sobre subgrupos, temos que

Teorema 24

i.
$$\overline{H} = \bigcap_{U \in \mathcal{V}(1_G)} (UH) = \bigcap_{U \in \mathcal{V}(1_G)} (HU) = \bigcap_{U,V \in \mathcal{V}(1_G)} (UHV).$$

- ii. Se H é um subgrupo de G então \overline{H} também é um subgrupo G. Se H é normal então \overline{H} também é normal.
- iii. $N = \overline{\{1\}}$ é um subgrupo fechado e normal.

Ainda sobre subgrupos, temos que

Teorema 24

i.
$$\overline{H} = \bigcap_{U \in \mathcal{V}(1_G)} (UH) = \bigcap_{U \in \mathcal{V}(1_G)} (HU) = \bigcap_{U,V \in \mathcal{V}(1_G)} (UHV).$$

- ii. Se H é um subgrupo de G então \overline{H} também é um subgrupo G. Se H é normal então \overline{H} também é normal.
- iii. $N = \overline{\{1\}}$ é um subgrupo fechado e normal.

Ainda sobre subgrupos, temos que

Teorema 24

i.
$$\overline{H} = \bigcap_{U \in \mathcal{V}(1_G)} (UH) = \bigcap_{U \in \mathcal{V}(1_G)} (HU) = \bigcap_{U,V \in \mathcal{V}(1_G)} (UHV).$$

- ii. Se H é um subgrupo de G então \overline{H} também é um subgrupo G. Se H é normal então \overline{H} também é normal.
- iii. $N = \overline{\{1\}}$ é um subgrupo fechado e normal.

Definição 25

Um espaço topológico (X, τ_X) é dito **regular** quando dados um conjunto fechado F e um ponto x que não pertence a F, existem abertos U e V disjuntos que contém F e x, respectivamente.

Teorema 26

Todo grupo topológico é regular.

Definição 25

Um espaço topológico (X, τ_X) é dito **regular** quando dados um conjunto fechado F e um ponto x que não pertence a F, existem abertos U e V disjuntos que contém F e x, respectivamente.

Teorema 26

Todo grupo topológico é regular.

Ainda sobre os axiomas de separação, temos que

Teorema 27

i.
$$(G, \tau_G)$$
 é \mathbb{T}_3 .

ii.
$$(G, \tau_G)$$
 é \mathbb{T}_2 .

iii.
$$(G, \tau_G)$$
 é \mathbb{T}_1 .

iv.
$$(G, \tau_G)$$
 é \mathbb{T}_0 .

Ainda sobre os axiomas de separação, temos que

Teorema 27

i.
$$(G, \tau_G)$$
 é \mathbb{T}_3 .

ii.
$$(G, \tau_G)$$
 é \mathbb{T}_2 .

iii.
$$(G, \tau_G)$$
 é \mathbb{T}_1 .

iv.
$$(G, \tau_G)$$
 é \mathbb{T}_0 .

Ainda sobre os axiomas de separação, temos que

Teorema 27

i.
$$(G, \tau_G)$$
 é \mathbb{T}_3 .

i.
$$(G, \tau_G)$$
 é \mathbb{T}_2 .

iii.
$$(G, \tau_G)$$
 é \mathbb{T}_1 .

iv.
$$(G, \tau_G)$$
 é \mathbb{T}_0 .

Ainda sobre os axiomas de separação, temos que

Teorema 27

i.
$$(G, \tau_G)$$
 é \mathbb{T}_3 .

ii.
$$(G, \tau_G)$$
 é \mathbb{T}_2 .

iii.
$$(G, \tau_G)$$
 é \mathbb{T}_1 .

iv.
$$(G, \tau_G)$$
 é \mathbb{T}_0 .

Ainda sobre os axiomas de separação, temos que

Teorema 27

i.
$$(G, \tau_G)$$
 é \mathbb{T}_3 .

ii.
$$(G, \tau_G) \in \mathbb{T}_2$$
.

iii.
$$(G, \tau_G)$$
 é \mathbb{T}_1 .

iv.
$$(G, \tau_G)$$
 é \mathbb{T}_0 .

Ainda sobre os axiomas de separação, temos que

Teorema 27

i.
$$(G, \tau_G)$$
 é \mathbb{T}_3 .

ii.
$$(G, \tau_G) \in \mathbb{T}_2$$
.

iii.
$$(G, \tau_G)$$
 é \mathbb{T}_1 .

iv.
$$(G, \tau_G)$$
 é \mathbb{T}_0 .

Ainda sobre os axiomas de separação, temos que

Teorema 27

i.
$$(G, \tau_G)$$
 é \mathbb{T}_3 .

ii.
$$(G, \tau_G) \in \mathbb{T}_2$$
.

iii.
$$(G, \tau_G)$$
 é \mathbb{T}_1 .

iv.
$$(G, \tau_G)$$
 é \mathbb{T}_0 .

- i. O quociente $G/_H$ é discreto se, e somente se, H é aberto.
- ii. O quociente G/H é Hausdorff se, e somente se, H é fechado.

- i. O quociente $G/_H$ é discreto se, e somente se, H é aberto.
- ii. O quociente G/H é Hausdorff se, e somente se, H é fechado.

- i. O quociente $G/_{H}$ é discreto se, e somente se, H é aberto.
- ii. O quociente G/H é Hausdorff se, e somente se, H é fechado.

- i. O quociente $G/_H$ é discreto se, e somente se, H é aberto.
- ii. O quociente G/H é Hausdorff se, e somente se, H é fechado.

Conexidade e compacidade

Teorema 28

- i. Se N e $G/_N$ são conexos então G é conexo.
- ii. Se G é compacto então $G\big/_N$ é compacto.
- iii. Se N e $G/_N$ são compactos então G é compacto.

Agradecimentos

Agradeço ao Professor Dr. Kisnney Emiliano de Almeida, meu orientador, pelo convite para realizar a apresentação. Agradeço também a FAPESB pelo apoio financeiro concedido a mim.

Referências

- [1] DIKRANJAN, Dikran. Introduction to topological groups. preparation, http://users.dimi.uniud.it/~dikran.dikranjan/ITG.pdf, 2013.
- [2] KUMAR, A. Muneesh; GNANACHANDRA, P. Exploratory results on finite topological groups. JP Journal of Geometry and Topology, v. 24, n. 1-2, p. 1-15, 2020.
- [3] MEZABARBA, Renan Maneli. Fundamentos de Topologia Geral. [S. l.: s. n.], 2022. 574 p. Disponível em: https:
 - //sites.google.com/view/rmmezabarba/home?authuser=0. Acesso em: 10 set. 2022.
- [4] SAN MARTIN, Luiz AB. **Grupos de lie**. Editora Unicamp, 2016.

pológicos e continuidade de homomorfismos Vizinhanças do elemento neutro Subgrupos, conexidade e compacidade **Referências**

Thank You