clamual execution minimum spanning thee using Prim's algorithm

cloisuc et ma Doris CR 915/1

	Evertices, 12 edges	Eclge	Cost
0 5	1 2	110->1	5
		2)074	4
41X	3 /2 /3	3)0->5	3
2	V V	e 4)1 →2	2
4	5 6	7 51 >4	2
		6)1→5	1
		4)2 > 3	2
		8)2 -> 5	7
		9)276	3
		10) 3 > 6	2
		11) 3 -> 7	4
		12)576	4
	CoCochal		THE RESERVE OF THE PERSON NAMED IN COLUMN

MST = a subset of colors of a commeded, edge - weighted Undirected from that commeded from that eommeds at the vertices together.

WITHOUT ANY CYCLEST and with the min.
Possible weight.

PRIMIS ALFORITHM.

• a grudy alg. That finds a MST for a runiquited und grown.

• it finds a subset of mer the edges that fams a tree that in
cludes every vertex,

where the total weight in the tree is ninit.

- Carrier and Carr				
	selected edge	visited	edges	MST
imitialization		0	93	0
itenation1	(5,0)-3	0,5	4(50)}	3
itenationz	(4,5)-1	0,5,1	4(5,0), (4,5)}	
iteration 3	(2,4)-2	0,5,1,2	(5,0), (4,5), (3,1)	2 2
iteration 4	(3,2)-2	95,4,2,3	(50),(15),(2,1)	200
iteration 5	(4,1) - 2	0,5,1,2,3,4	(5,0),(4,5),(2,1)	2 3 4
iten ation 6	(6,3)-2	0,5,1,2,3,4,6	9(5,0),(15),(2,4) (3,2),(4,1),(6,3)	6 7
ilenation ?	(7,3)-4	0,5, 1, 23,4, 6,7	(5,0),(1,5),(2,1) (3,2),(9,1),(6,3),(4,3)	Cent = 16
itenation 8		all vertices		[1/2]

ANOTHER MST WITH THE SAME COST = 16

Minimum Spanning True using Praim's algorithm

0	5	1	4		
	4	1	2	1 2	5
	2	3		4	

Edges am	d costs
edge	cost
1)0 -> 1	5
2)1->2	4
3)1 -> 3	3
4)1->5	4
5)2 -> 3	2
6)2 -> 4	3
9)3->4	2
83 >5	1
9)4 ->5	1

MINIMUM SPANNING TREE 1 starting vertex is 0.

TOTAL
$$COST = 12(5 + 3 + 1 + 2 + 1)$$

1 3 2 5 2 4

MINIMUM SPANNINGTREE @ Houting vertex is 5,