Overview Implementation Details Results Conclusions Section no. 4

Offline Handritting Word Recognition

Thijs Kooi, Davide Modolo

January 27, 2011

Table of contents

- Overview
 - General
 - Dataset
- 2 Implementation Details
 - Pipeline
 - Pre-Processing
 - Feature Extraction
 - Hidden-Markov Model
- Results
- 4 Conclusions
- 5 Section no. 4
 - blocs

Overview of the Project

Off-line handwriting recognition

- It involves the automatic conversion of text in an image into letter codes which are usable within computer and text-processing applications
- Off-line handwriting recognition is comparatively difficult, as different people have different handwriting styles

Figure: 'Students' written by different authors

Our Al Project

A lot of research has been done over the past years.

We explored the topic and implemented a full pipeline for the task. The research touched different fields:

- Data Collection
- Image Processing
- Features extraction
- Machine Learning

Dataset

The IAM Handwriting Database 3.0¹

- Unconstrained handwritten text (scanned at a resolution of 300dpi and saved as PNG images with 256 gray levels)
- 1'539 pages of scanned text of 657 writers
- 13'353 isolated and labeled text lines
- 115'320 isolated and labeled words

 $^{^{1}}$ http://www.iam.unibe.ch/fki/databases/iam-handwriting-database 1 1 2 2

Example of a page of scanned text

Sentence Database

N01-009

"Good lack, Air Marshal," she said geath. "The waiting for you at the Hotel Roma at six this evening - and I shall look forward to meeting you both at midnight." They might have been arranging supper party. Then she rang off. Alastair admitted that never in a not altogether uneventful life had be come across a girl who sounded so charming and appeared to be so efficient.

Good buck, to Marshal, " sur said gently "I'll be Haiting for you at the total Roma at the time the Roma at the total wind you both at midwight." They aright have been alranging a supple pary. Then the long of that a decorate an area of the had we can a give in a sure of the world so chasting and appeared to be so efficient.

Overview Implementation Details Results Conclusions Section no. 4

Pipeline Pre-Processing Feature Extraction Hidden-Markov Model

Implementation Details

Pipeline

Figure: Pipeline of a word recognition system

Pipeline Pre-Processing Feature Extraction Hidden-Markov Model

Implementation Details

Pre-Processing

Pre-processing

Figure: Pipeline for the pre-processing/normalization step

Line Segmentation

Original image segmented in lines

Vertical histograms and significant minima

Skew and Slope Correction

Figure: Skew detection and correction pipeline

Slant Correction

Figure: Slant detection and correction pipeline

Word segmentation

Baseline Estimation

Vertical Scaling

Words with baselines

Normalization to fixed height and fixed baselines

Figure: Examples of vertical scaling process

Skeletonization

Figure: Skeletonization process

Remembering the entire pipeline....

Why repeating skew and slant correction twice?

The normalizations are necessary for:

First

Words segmentation

is to be use of a reeful of lobus

Second

Not all the words have the same slope, slant and lower baseline

is to be made at a neeting of labor.

Pipeline Pre-Processing Feature Extraction Hidden-Markov Model

Implementation Details

Feature Extraction

Features

Extracted from the skeleton of the words.

Mainly 2 types:

- Statistical
- Morphological

Statistical Features

Percentage of white pixels in the 3 zones of the word:

Upper Zone: 0.0124 %

Middle Zone: 0.0338 %

Lower Zone: 0.0033 %

Figure: Example

Morphological Features

Obtained by connected component analysis.

 A connected component it is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices.

Figure: Example of words divided in different components (colors)

Morphological Features

We extract:

Loops

Junctions

Dots

Endpoints

HMM

- A set of N states $S = (s_1, s_2, ..., s_N)$, where the state of the system at time t is denoted q_t
- A set of priors $\pi = (\pi_1, \pi_2, \dots, \pi_N)$, providing the probability $P(q_1 = s_i)$.
- A transition function **A**, where $a_{ij} = P(q_{t+1} = s_j | q_t = s_i)$.
- An observation function **B**, mapping each observation at every state to a probability $b_i(\mathbf{o}_t) = P(\mathbf{o}_t|q_t = s_i, \lambda)$, where λ denotes the model parameters.

The model is trained to estimate the posterior probability $P(\mathbf{O}|\lambda)$ of an observation sequence \mathbf{O} , with D-dimensional observation vectors $\mathbf{o}_t = (o_1, o_2, \dots, o_D)$.

HMM

Figure: Left-to-right HMM with N states

Main problems in an HMM

- The probability of an observation sequence, given the model, $P(\mathbf{O}|\lambda)$.
- ② The most likely parameters of the model $\lambda^* = \max P(X|\lambda)$, given a training set of M observation sequences $X = (\mathbf{O}_1, \mathbf{O}_2, \dots, \mathbf{O}_M)$.
- **3** The most likely state sequence, underlying a given observation sequence and the model, $Q^* = \max P(Q|\mathbf{0}, \lambda)$.

Main problems in an HMM

• The probability of an observation sequence, given the model, $P(\mathbf{O}|\lambda)$.

Sum-product algorithm: forward-backward algorithm

② The most likely parameters of the model $\lambda^* = \max P(X|\lambda)$, given a training set of M observation sequences $X = (\mathbf{O}_1, \mathbf{O}_2, \dots, \mathbf{O}_M)$.

EM-algorithm: Baum-Welch reestimation

3 The most likely state sequence, underlying a given observation sequence and the model, $Q^* = \max P(Q|\mathbf{0}, \lambda)$.

Dynamic programming: Viterbi algorithm

Forward probability

$$\alpha_{t}(i) \equiv$$

$$P(o_{1}, o_{2}, \dots, o_{t} | q_{t} = s_{i}, \lambda) =$$

$$\left[\sum_{j=1}^{N} \alpha_{t-1}(j) a_{ij}\right] b_{j}(o_{t})$$
(1)

Figure: Computation of forward probability

Forward probability

$$\alpha_{t}(i) \equiv$$

$$P(o_{1}, o_{2}, \dots, o_{t} | q_{t} = s_{i}, \lambda) =$$

$$\left[\sum_{j=1}^{N} \alpha_{t-1}(j) a_{ij}\right] b_{j}(o_{t})$$

$$(2)$$

$$P(\mathbf{O}|\lambda) = \sum_{i=1}^{N} \alpha_{T}(i)$$

$$(3)$$

Problem 1 solved.

Figure: Computation of forward probability

Learning the parameters

The forward-backward algorithm also commes with a backward probability:

$$\beta_{t}(j) \equiv P(o_{t+1}, o_{t+2}, \dots, o_{T} | q_{t} = s_{j}, \lambda) = \sum_{i=1}^{N} a_{ij} b_{i}(o_{t+1}) \beta_{i}(o_{t+1})$$

$$(4)$$

With this we can define the probability of being in a state at a timestep as:

$$\gamma_t(i) \equiv (P(\mathbf{O}|\lambda))^{-1} \alpha_t(i) \beta_t(i)$$
 (5)

Where normalisation constant

$$P(\mathbf{O}|\lambda) = \sum_{j=1}^{N} \alpha_t(i)\beta_t(i) = \sum_{j=1}^{N} \alpha_T(j).$$

Learning the parameters

 $\hat{a}_{ij} = frac Prob.$ of being in i and transfering to jProb. of begin in i =

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \gamma_t(i)}$$
(6)

The priors remain fixed, for the left-to-right model.

Updating the parameters

Comparison with GMM:

Model:	GMM	HMM		
Model parameters:	$\lambda = \pi, \mu, \Sigma$	$\lambda = \pi, \mathbf{A}, \mathbf{B}$		
Hyper parameters:	Number of compo-	Topology (states,		
	nents	transitions), observa-		
		tion function		
Observed variables:	Data points	Observations		
Latent variables:	Priors of a component	State sequence		

Updating parameters

Model:	GMM	HMM
E-step:	Estimate the probabil-	Estimate the probabil-
	ity of a component,	ity of being in a state
	given the data and	at a timestep and the
	current parameters.	probability of trans-
		fering from a state to
		another state.
M-step:	Maximise π , μ and Σ .	Maximise π , A and B

Consider the following observation:

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$

Singularities. Consider the following observation:

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 3\frac{1}{3} & 0 \\ 0 & 0 \end{pmatrix}$$

Singularities

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$
$$\mathbf{\Sigma} = \begin{pmatrix} 3\frac{1}{3} & 0 \\ 0 & 0 \end{pmatrix}$$
$$|\mathbf{\Sigma}| = 0$$

Possible solution: Add some random noise.

Singularities

$$\mathbf{O} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 1 & 0 \\ -2 & 0 \end{pmatrix}$$

$$\Sigma = \begin{pmatrix} 3\frac{1}{3} & 0\\ 0 & 0 \end{pmatrix}$$

-¿ Add some random noise, also to prevent variance from collapsing.

Short words have less likelihood.

Harder to recognise, more subject to writer variations. tried to solve this by using MOG.

Results on simple task

Simple experiment, train the model on intensity features and run it on typewritten words. Feed features from letter to both models.

Table: Results for simple typewritten words, avg over 40 runs

Word	Letter	Number	Differe
LL Intensity N=6 K=1 10EM	121.68	106.36	15
LL All features N=6 K=1 10EM	795.45	14.08	781
LL All features N=1 K=1 10EM	602.22	-90.02	692
LL All features N=6 K=3 10EM	-186.45	-330.14	143
LL All features N=6 K=3 30EM	226.96	-820.30	1.0
LL ALL , N=6, K=1, 10EM, diagonal cov	871.16	531.27	487
LL ALL, N=6, K=1, 10EM, isotropc cov	-179.00	-272.23	197
	< □ → * * □ → ·	(B) (B)	₽

Results on simple task

Step 2, take cursive words of the same length.

Table: Results for simple handwritten words, avg over 40 runs

Word	Before	People	
LL All features N=6 K=1 10EM	1.17e + 03	1.19e + 03	
LL All features N=1 K=1 10EM	602.22	-90.02	
LL All features N=6 K=3 10EM	-186.45	-330.14	
LL All features N=6 K=3 30EM	226.96	-820.30	
LL ALL , N=6, K=1, 10EM, diagonal cov	871.16	531.27	
LL ALL, N=6, K=1, 10EM, isotropc cov	-179.00	-272.23	

Conclusions

blabla