Elimination distance to bounded degree on planar graphs

Alexander Lindermayr¹, Sebastian Siebertz¹ and **Alexandre Vigny**¹

¹Universität Bremen, Germany

MFCS, August 24-28, 2020

Outline

How trivial can a graph be?

Elimination distance Definition and observations

Algorithm

Tools used Proof's sketch

Conclusion & Futur works

Trivial graphs classes?

Graph problems: Hamilton path, FO / MSO model checking,

graph isomorphism,...

Graph classes: edgeless graphs, planar graphs, trees,...

Some hard problems are simple for some graph classes.

Running example

Graph isomorphism problem & Graphs with bounded degree

E.M. Luks (1982): XP algorithm for graph isomorphism (parametrized by the degree d)

Input: Graphs G, H.

Goal : Are G and H isomorphic?

Running time : $O(|G|^{f(d)})$

Parametrized by d: the degree of G and H.

Two graphs with only one node of degree > d.

The algorithm can be adapted.

How trivial can a graph be?

Step 1: Color the neighborhood of the high degree vertex.

Step 2: Remove the high degree vertex.

Step 3: Use the previous algorithm.

J. Guo, F. Hüffner, R. Niedermeier (2004): Distance from Triviality.

G at deletion distance k from \mathscr{C} iff $G - \{a_1, \dots, a_k\} \in \mathscr{C}$

Deletion distance

J. Guo, F. Hüffner, R. Niedermeier (2004): Distance from Triviality.

G at deletion distance k from \mathscr{C} iff $G - \{a_1, \dots, a_k\} \in \mathscr{C}$

J. Bulian, A. Dawar (2016): FPT algorithm for graph isomorphism (parametrized by deletion distance to degree d)

Input: Graphs G, H, integer d.

Goal : Are G and H isomorphic?

Running time : $O(f(k,d) \cdot |G|^{g(d)})$

Parametrized by k: the deletion distance (of G) to degree d.

k is computable in time $O(f(k,d) \cdot |G|)$.

Elimination distance

J. Bulian, A. Dawar (2016): Elimination distance to \mathscr{C} .

$$\operatorname{ed}_{\mathscr{C}}(G) = \begin{cases} 0 & \text{if } G \in \mathscr{C}, \\ 1 + \min \left\{ \operatorname{ed}_{\mathscr{C}}(G - v) \mid v \in V(G) \right\} & \text{if } G \text{ is connected,} \\ \max \left\{ \operatorname{ed}_{\mathscr{C}}(H) \mid H \text{ component of } G \right\} & \text{otherwise.} \end{cases}$$

How trivial can a graph be?

 \mathscr{C}_d : all graphs of degree at most d.

$$\operatorname{ed}_{\mathcal{C}_3}(G) = ??$$

Algorithm

 \mathscr{C}_d : all graphs of degree at most d.

$$\operatorname{ed}_{\mathscr{C}_3}(G) = ??$$

Round 1): [1]

 \mathscr{C}_d : all graphs of degree at most d.

$$\operatorname{ed}_{\mathscr{C}_3}(G) = ??$$

Round 1): [1]

How trivial can a graph be?

Round 2): [3,7]

 \mathscr{C}_d : all graphs of degree at most d.

$$ed_{\mathcal{C}_3}(G) = ??$$

Round 1): [1]

Round 2): [3,7]

Round 3): [4,5]

 \mathscr{C}_d : all graphs of degree at most d.

$$\operatorname{ed}_{\mathscr{C}_3}(G) = ??$$

Round 1): [1] Round 1): [7]

Round 2): [3,7] Round 2): [1]

Round 3): [4,5] Round 3): [3,4,5]

Bounded tree depth

Elimination distance is inspired from tree depth:

$$\operatorname{td}(G) = \begin{cases} 0 & \text{if } G \text{ is edgeless,} \\ 1 + \min\left\{\operatorname{td}(G - v) \mid v \in V(G)\right\} & \text{if } G \text{ is connected,} \\ \max\left\{\operatorname{td}(H) \mid H \text{ component of } G\right\} & \text{otherwise.} \end{cases}$$

Tree depth k = Elimination distance k to the edgeless graph.

Graph isomorphism & Graphs with bounded degree

J. Bulian, A. Dawar (2016): FPT algorithm for graph isomorphism (parametrized by elimination distance to degree d)

> Input: Graphs G, H, integer d.

Goal : Are G and H isomorphic?

Running time : $O(f(k,d) \cdot |G|^{g(d)})$

Parametrized by k: the elimination distance (of G) to degree d.

Questions

When is $ed_{\mathscr{C}}(G)$ easily computable ?

Restriction on \mathscr{C} : Edgeless graphs, Graph with bounded degree,...

Restriction on G: Parametrized by the tree width,

Parametrized by the size of an excluded minor,

Restricted to planar graph, ...

Our result

A. Lindermayr, S. Siebertz, A. Vigny:

Elimination distance to degree d is FPT over K_5 -minor-free graphs.

Input: Graph G, integers k, d.

Goal : Is G at elimination distance k to degree d?

Restriction : G exclude K_5 as a minor.

Running time : $O(f(k,d) \cdot |G|^c)$

Tools

We use:

- → Simple combinatoric
- → MSO expressibility
- → Courcelle's Theorem
- → Grid Theorem
- → Irrelevant vertex technique

Expressible in MSO

Algorithm

"ed_{$$\mathscr{C}_d$$}(G) = k ":
 $\forall H_1 \leq G, \exists a_1$
 $\forall H_2 \leq (H_1 - a_1), \exists a_2$
 $\forall H_3 \leq (H_2 - \{a_1, a_2\}), \exists a_3$
 \vdots
 $\forall H \leq (H_k - \{a_1, ..., a_k\}), \deg(H) \leq d$

If \mathscr{C} is MSO definable, then "ed $_{\mathscr{C}}(G) = k$ " is also MSO definable.

Courcelle's Theorem

Algorithm

B. Courcelle (1990):

Model checking of MSO formulas is FPT for bounded tree width graphs.

Input: Graph G, formula Φ .

Goal: Does $G \models \Phi$?

Running time : $O(f(|\phi|, k) \cdot |G|)$.

Parametrized by k: the tree width of G.

Grid Theorem

Algorithm

N. Robertson, P. D. Seymour (1986): Every graph has either a "small enough" tree width, or a "big enough" grid-minor.

Input : Graph G, integer k.

Output : Either a tree decomposition of width O(g(k))

Or a $k \times k$ grid minor

Running time : $O(f(k) \cdot |G|^c)$.

Proof in a special case

Algorithm

Special case: Graph with degree k + d.

In the full proof:

- $\rightarrow k + d < \deg(a)$
- $\rightarrow d < \deg(a) \le k + d$
- \rightarrow deg(a) $\leq d$

Here:

- \rightarrow $d < \deg(a) \le k + d$ (red nodes)
- \rightarrow deg(a) \leq d (blue nodes)

A little bit of combinatorics

Algorithm

How many red nodes can there be?

1 round of elimination
$$\rightarrow$$
 $k+d$ connected components.

k rounds of elimination
$$\rightarrow$$
 affect $(k+d)^{2(k+d)}$ nodes.

There are at most
$$r = (k+d)^{2(k+d)}$$
 nodes of degree $> d$.

More than r red nodes \rightarrow we have $\operatorname{ed}_{\mathscr{C}_d}(G) > k$. Otherwise we continue.

Using the grid theorem

Algorithm

We have two cases:

 \rightarrow Tree decomposition of width g(r).

Courcelle's Theorem : $O(f(\phi, g(r)) \cdot |G|)$

$$O(f(k,d)\cdot |G|)$$

 \rightarrow Grid minor of size $r \times r$.

Find an irrelevant vertex.

Large grid minor?

If *G* has a large grid minor, we can find an irrelevant vertex.

Vertex a is solution irrelevant: $\operatorname{ed}_{\mathscr{C}_d}(G) \leq k \Leftrightarrow \operatorname{ed}_{\mathscr{C}_d}(G - \{a\}) \leq k$

Large grid minor?

If *G* has a large grid minor, we can find an irrelevant vertex.

Vertex a is solution irrelevant: $\operatorname{ed}_{\mathscr{C}_d}(G) \le k \Leftrightarrow \operatorname{ed}_{\mathscr{C}_d}(G - \{a\}) \le k$

In our case a vertex is irrelevant if it is "far enough" from nodes with high degree.

1) Simple combinatorics

- 1) Simple combinatorics
- 2) Grid Theorem

- 1) Simple combinatorics
- 2) Grid Theorem
- 3) Courcelle's Theorem

- 1) Simple combinatorics
- 2) Grid Theorem
- 3) Courcelle's Theorem
- 4) Find and remove {a}

- 1) Simple combinatorics
- Grid Theorem
- 3) Courcelle's Theorem
- 4) Find and remove {a}

Total: $O(f(k,d) \cdot |G|^c)$

Open problem 1

FPT algorithm for "ed $_{\mathscr{C}_d}(G) = k$ " for any graph G.

Open problem 2

FPT algorithm for "ed_{\mathscr{C}_d}(G) = k" for any graph G of degree k+d.

Conjecture

Algorithm for open problem 2) \rightarrow algorithm for open problem 1).

Future work

Open problem 1

FPT algorithm for "ed $_{\mathscr{C}_d}(G) = k$ " for any graph G.

Open problem 2

FPT algorithm for "ed_{\mathscr{C}_d}(G) = k" for any graph G of degree k+d.

Conjecture

Algorithm for open problem 2) \rightarrow algorithm for open problem 1).

Thank you!