Recycling Quantum Computation.

David Ponarovsky

May 9, 2023

Consider the CSS code composed by C_x , C_z^{\perp} at length n. Define the 1-SWAP test on $|\psi\rangle\otimes|\phi\rangle$ to be:

- 1. Applay the hadamard gate on ancile.
- 2. Pick a random coordinate $i \sim [n]$.
- 3. condinatal on the ancile a swap between the *i*th qubit of $|\psi\rangle$ to the *i*th qubit of $|\phi\rangle$.
- 4. Applay the hadammard again on the ancile and massure. If $|0\rangle$ massured then accept, otherwise reject.

suppose for the moment that $|\psi\rangle$ and $|\phi\rangle$ are in the code. Thus:

$$\begin{split} |\psi\rangle &= \frac{1}{\sqrt{|C_z^\perp|}} \sum_{z \in C_z^\perp} |\psi + z\rangle \\ (1 - \mathbf{SWAP}) \, |0\rangle \, |\psi\rangle \, |\phi\rangle &= \frac{1}{|C_z^\perp|} \sum_{z,\xi \in \in C_z^\perp} (1 - \mathbf{SWAP}) \, |0\rangle \, |\psi + z\rangle \, |\phi + \xi\rangle \\ &= \frac{1}{\sqrt{2}|C_z^\perp|} \sum_{z,\xi \in \in C_z^\perp} H \, |\pm\rangle \, \Big(|\psi + z\rangle \, |\phi + \xi\rangle \pm |(\phi + \xi)_i \, (\psi + z)_{/i}\rangle \, |(\psi + z)_i \, (\phi + \xi)_{/i}\rangle \Big) \\ \Rightarrow \mathbf{Pr} \, [|0\rangle] &= \frac{1}{4|C_z^\perp|^4} (\\ 2|C_z^\perp|^4 + 2 \sum_{z',\xi',z,\xi \in \in C_z^\perp} \sum_{z',\xi',z,\xi \in \in C_z^\perp} \frac{A}{\Big(\langle \psi + z' | \, \langle \phi + \xi' | \, |(\phi + \xi)_i \, (\psi + z)_{/i}\rangle \, |(\psi + z)_{/i}\rangle \, |(\psi + z)_{/i}\rangle \Big)} \\ &= \frac{1}{\Big(\langle (\phi + \xi')_i \, (\psi + z')_{/i} | \, \langle (\psi + z')_i \, (\phi + \xi')_{/i} | \, |(\phi + \xi)_{/i}\rangle \, |(\psi + z)_{/i}\rangle \, |(\psi + z)_{/i}\rangle \, |(\psi + z)_{/i}\rangle \, |(\psi + z)_{/i}\rangle \Big)} \end{split}$$

$$A = \langle \psi + z' | | (\phi + \xi)_i (\psi + z)_{/i} \rangle \langle \phi + \xi' | | (\psi + z)_i (\phi + \xi)_{/i} \rangle$$