Cyber-Physical Systems (CSC.T431)

Safety Requirements (1)

Instructor: Takuo Watanabe (Department of Computer Science)

Agenda

Safety Requirements (1)

Course Support & Material

- Slides: OCW-i
- Course Web: https://titech-cps.github.io
- Course Slack: titech-cps.slack.com

Safety Requirements

- Safety requirements: Nothing bad ever happens
 - Ex. No two threads can run in the critical section at the same time.
 - The negation of "something bad" is an *invariant* of a *transition system* that models the behaviors of the target system.

- Cf. Liveness requirements: Something good eventually happens
 - Ex. If a thread tries to enter the critical section, it will eventually be able to enter.

Transition Systems

- A transition system T is a triple (S, Init, Trans) where:
 - S : a finite set of typed *state variables* defining the set \mathcal{Q}_{S} of *states*,
 - Init: an initialization defining the set $[Init] \subseteq Q_S$ of initial states, and
 - Trans: a transition description $defining the set <math>[Trans] \subset Q_S \times Q_S$ of transition between states.

SRCs as Transition Systems

- C = (I, O, S, Init, React): synchronous reactive component
- We can naturally construct a transition system (S, Init, Trans) in which Trans is obtained from React as follows.
 - Variables in I and O are declared as local variables in Trans
 - The values of variables in I are nondeterministically chosen (at each transition).
 - $(s,t) \in [[Trans]]$ if $s \stackrel{i/o}{\to} t \in [[React]]$ for some $i \in Q_I$ and $o \in Q_O$.

SRCs as Transition Systems

Ex. TriggeredCopy

Programs as Transition Systems

Ex. GCD

```
GCD(m, n):

nat x := m, y := n;

while (x > 0 \land y > 0)

if (x > y) then x := x - y

else y := y - x;

if (x = 0) then x := y
```



```
T_{\gcd} = (\{x, y, mode\}, Init, Trans) if (x = y) then x := y [[Init]] = \{(m, n, loop)\} \quad (m, n \in \mathbb{N}) [[Trans]] = \{((j, k, loop), (j - k, k, loop)) \mid j, k \in \mathbb{N} \land j > 0 \land k > 0 \land j > k\} \cup \{((j, k, loop), (j, k - j, loop)) \mid j, k \in \mathbb{N} \land j > 0 \land k > 0 \land j \leq k\} \cup \{((0, k, loop), (k, k, stop)) \mid k \in \mathbb{N}\} \cup \{((j, 0, loop), (j, 0, stop)) \mid j \in \mathbb{N}\}
```

Execution and Reachable States

- Let T = (S, Init, Trans) be a transition system. An *execution* of T is a finite sequence of the form s_0, s_1, \ldots, s_k such that:
 - 1. $s_j \in Q_S$ for $0 \le j \le k$,
 - 2. $s_0 \in [[Init]]$, and
 - 3. $(s_{j-1}, s_j) \in [[Trans]] \text{ for } 1 \le j \le k.$
- ullet Ex. An execution of $T_{
 m gcd}$:
 - (6,4,loop) → (2,4,loop) → (2,2,loop) → (2,0,loop) → (2,0,stop)
- If s_0, s_1, \ldots, s_k is a sequence of T, s_k is said to be a *reachable state* of T.
 - $Reach(T) \subseteq Q_S$ denotes the set of reachable states of T.

Properties

- T = (S, Init, Trans): a transition system
- A property of T is a Boolean-valued expression over S.
 - Ex: φ_{gcd} : gcd(m, n) = gcd(x, y)
- A state $q \in Q_S$ satisfies the property φ if φ evaluates to 1 when all variables are assigned values according to q.
 - We say that $q \in Q_S$ violates φ if q does not satisfy φ .
- $[\![\phi]\!] \subseteq Q_S$ is the set of all states that satisfy ϕ .

Invariants

- T = (S, Init, Trans): a transition system
- A property ϕ is an *invariant* of T if every reachable state of T satisfies ϕ .
 - A property φ is an invariant iff $Reach(T) \subseteq \llbracket \varphi \rrbracket$.
 - ${\bf L}$ Ex. ϕ_{gcd} is an invariant of $T_{\rm gcd}$
 - $Ex. (mode = stop) \rightarrow (\gcd(m, n) = x) is an invariant of T_{\gcd}$
- A property ϕ is *reachable* if some reachable states of T satisfy ϕ .
 - A property φ is an reachable iff $Reach(T) \cap \llbracket \varphi \rrbracket \neq \emptyset$.
 - Note: Reachability is dual to invariance.

Invariant Verification

- Problem to check whether ϕ is an invariant of T
 - T: a transition system, φ : a property of T
- If φ is NOT an invariant, there must be a state s such that it is reachable and violates φ . In other words, $\neg \varphi$ is reachable.
- An execution s_0, s_1, \ldots, s_k is called a *counterexample* of φ (or, *witness* of $\neg \varphi$) if s_k violates φ .

Ex. Railroad System

Modeling Trains

using a nondeterministic SRC

{green, red} signal

always enabled mode-switch to express nondeterministic behaviors

else: satisfied when none of other guard conditions are satisfied

event({arrive, leave}) out

Composite System & Safety Requirement

- RailroadSystem = Controller $\| \operatorname{Train}_W \| \operatorname{Train}_E$
 - $\operatorname{Train}_W = \operatorname{Train}[out \mapsto out_W, signal \mapsto signal_W], \operatorname{Train}_E = \cdots$
- Safety Requirement: Both trains should not be on the bridge at the same time.
 - TrainSafety = $\neg (mode_W = bridge \land mode_E = bridge)$

Controller1

```
event(\{arrive, leave\}) out_W
                                                  event({arrive, leave}) out<sub>E</sub>
\{green, red\}\ west := green, east := green
       A_1: west \mapsto signal_W
                                                   A_2: east \mapsto signal_F
          signal_{W} := west
                                                       signal_E := east
                 A_3: west, east, out<sub>W</sub>, out<sub>E</sub> \mapsto west, east
    if out_E? leave then west := green;
    if out_W? leave then east := green;
    if out_E? arrive then west := red
    else if out_W? arrive then east := red
         \{green, red\} signal_W 
                                               \lfloor \{green, red\} \ signal_E
```

Example Execution of RailroadSystem1 = Controller1 \parallel Train $_E$

		init	1	2	3	4	5
Controller	west	green	red	red	green	red	red
	east	green	green	green	green	green	green
	$signal_W$		green	red	red	green	red
	$signal_{E}$		green	green	green	green	green
Train _W	$mode_W$	away	wait	wait	wait	bridge	bridge
	out_W		arrive				
$Train_E$	$mode_{E}$	away	wait	bridge	away	wait	bridge
	out_E		arrive	<u>L</u>	leave	arrive	<u></u>

TrainSafety is not an invariant of RailroadSystem1.

Controller2

```
event(\{arrive, leave\}) out_W
                                                   event({arrive, leave}) out<sub>E</sub>
\{green, red\}\ west := red, east := red; bool\ near_W := 0, near_E := 0\}
      A_1: west \mapsto signal_w
                                                   A_1: east \mapsto signal_F
         signal_{W} := west
                                                        signal_{F} := east
                 A_3: west, east, out<sub>W</sub>, out<sub>E</sub>, near<sub>W</sub>, near<sub>E</sub>
                     \mapsto west, east, near<sub>W</sub>, near<sub>E</sub>
   if out_E? arrive then near_E := 1;
                                             if \neg near_E then east := red
   if out_E? leave then near_E := 0;
                                            else if west = red
   if out_W? arrive then near_W := 1;
                                                   then east := green;
   if out_W? leave then near_W := 0;
                                             if \neg near_W then west := red
                                              else if east = red
                                                   then west := green
        \{green, red\} signal_W 
                                                 {green, red} signal<sub>E</sub>
```

Safety of RailroadSystem2 = Controller2 \parallel Train $_E$

- TrainSafety is an invariant of RailroadSystem2
- How can we prove it?
 - Do you think you need to enumerate all the reachable states of the composite system to check them? (How many?)
 - How should we do if the number of the states is infinite?

Safety Monitor

- Ex. A sort of "fairness" requirement: Suppose that a train arrives at a bridge. While it waits for the signal to turn green, the other train should not be allowed to enter the bridge repeatedly.
 - I.e., While a train is waiting at a bridge with its signal red, the other train should not leave the bridge twice.
- It is difficult to formulate the above requirement as an invariant directly.
- To express such an invariant, we introduce another component classified as safety monitors.

Safety Monitor

Ex. Fairness on Train_W

While $Train_W$ is waiting with the signal red, $Train_E$ should not leave the bridge twice.

WestFairMonitor. $mode \neq 3$ is an invariant of RailroadSystem || WestFairMonitor.

WestFairMonitor

Safety Monitor

Definition

- A safety monitor of an SRC $C = (I_C, O_C, S_C, Init_C, React_C)$ consists of an SRC $M = (I_M, O_M, S_M, Init_M, React_M)$ such that:
 - $-I_M\subseteq I_C\cup O_C,$
 - $O_M \cap (I_C \cup O_C) = \emptyset$, and
 - $React_M$ is given as an extended-state machine along with a subset F of the modes declared as accepting.
- C satisfies the monitor specification if M . $mode \notin F$ is an invariant of $C \parallel M$.

Inductive Invariants

- Let T = (S, Init, Trans) be a transition system.
- ϕ is an *inductive invariant* of T if:
 - 1. for all $s \in [[Init]]$, s satisfies φ , and
 - 2. for all $s, t \in Q_S$, if s satisfies φ and $(s, t) \in [[Trans]]$, then t satisfies φ .
- If φ is an inductive invariant of T, it is an invariant of T.

Inductive Invariants Ex. GCD

```
\begin{split} T_{\text{gcd}} &= (\{x, y, mode\}, Init, Trans) \\ & [\![Init]\!] = \{(m, n, \mathsf{loop})\} \quad (m, n \in \mathbb{N}) \\ & [\![Trans]\!] = \{((j, k, \mathsf{loop}), (j - k, k, \mathsf{loop})) \mid j, k \in \mathbb{N} \land j > 0 \land k > 0 \land j > k\} \\ & \cup \{((j, k, \mathsf{loop}), (j, k - j, \mathsf{loop})) \mid j, k \in \mathbb{N} \land j > 0 \land k > 0 \land j \leq k\} \\ & \cup \{((0, k, \mathsf{loop}), (k, k, \mathsf{stop})) \mid k \in \mathbb{N}\} \cup \{((j, 0, \mathsf{loop}), (j, 0, \mathsf{stop})) \mid j \in \mathbb{N}\} \end{split}
```

- Let φ_{gcd} be a property given by gcd(m, n) = gcd(x, y).
- We show that ϕ_{gcd} is an inductive invariant of T_{gcd} .
- If $s \in [Init]$, clearly s satisfies φ_{gcd} because s(x) = m and s(y) = n.
- Suppose that $s=(j,k,\mathsf{loop})$ and s satisfies φ_{gcd} .
 - If $j > 0 \land k > 0 \land j > k$ and $(s,t) \in \llbracket Trans \rrbracket$ where t = (j-k,k, loop), then t satisfies φ_{\gcd} since $\gcd(j-k,k) = \gcd(j,k)$ (: any divisor of both j and k is also a divisor of j-k and any divisor of both j and j-k is also a divisor of k).
 - Similar arguments can be used for other cases.

Strengthening Invariants

Ex. IncDec(m)

$$(x < m) \rightarrow$$

$$\{x := x + 1; \ y := y - 1\}$$

$$\text{int } x := 0, y := m$$

- Let $m \in \mathbb{N}$. IncDec(m) = $(\{x, y\}, Init, Trans)$ is a transition system where:
 - $[[Init]] = \{(0, m)\}$, and
 - $[[Trans]] = \{((a,b), (a+1,b-1)) \mid a,b \in \mathbb{Z} \land a < m\}.$
- $\varphi_x: 0 \leq x \leq m$
- To show φ_{χ} is an invariant of IncDec(m), we show that it is an inductive invariant of IncDec(m).
 - If $s \in [Init]$, clearly s satisfies φ_x because s(x) = 0.
 - If $(s,t) \in \llbracket Trans \rrbracket$ and s satisfies φ_x (i.e., $0 \le s(x) \le m$), then t satisfies φ_x because $t(x) = s(x) + 1 \le m$ (: s(x) < m).

Strengthening Invariants

Ex. IncDec(m)

- $\varphi_y: 0 \leq y \leq m$
- To show that φ_y is an invariant of IncDec(m), we would like to show that it is an inductive invariant of IncDec(m).
 - Obviously $(0, m) \in [Init]$ satisfies φ_{y} .
 - Let $(s,t) \in [Trans]$ and s satisfies φ_y . Is it possible to show that t satisfies φ_y ?
 - The answer is NO.
 - What we should show is $(0 \le s(y) \le m) \to (0 \le s(y) 1 \le m)$. However, it does not hold. For example, consider $((0,0),(1,-1)) \in \llbracket Trans \rrbracket$. (0,0) satisfies φ_v , but (1,-1) does not.

Strengthening Invariants

Ex. IncDec(m)

- φ_{xy} : $0 \le y \le m \land x + y = m$
 - It is clear that $\varphi_{xy} \to \varphi_y$. Thus, if we can show that φ_{xy} is an inductive invariant of IncDec(m), then we can say that φ_y is an invariant of IncDec(m).
- Proof: ϕ_{xy} is an inductive invariant of IncDec(m).
 - Clearly $(0, m) \in [Init]$ satisfies φ_{xy} .
 - Suppose s=(a,b) that satisfies φ_{xy} (i.e., $0 \le b \le m \land a+b=m$) and a < m. Then $(s,t) \in \llbracket Trans \rrbracket$ if t=(a+1,b-1). Since a+b=m and a < m, we can say b>0. It follows that $0 \le b-1 \le m$ and (a+1)+(b-1)=m. Thus, t satisfies φ_{xy} .

Proof Rule for Invariants

- To show that φ is an invariant of T, find a property ψ such that:
 - 1. ψ is an inductive invariant of T, and
 - 2. $\psi \rightarrow \varphi$.
- The rule is sound and complete:
 - Soundness: If ψ is an inductive invariant, then all reachable states of T satisfy ψ . Since $\psi \to \varphi$, every state satisfying ψ also satisfies φ . So φ is an invariant of T.
 - Completeness: If ϕ is an invariant of T, there exist an inductive invariant ψ that implies ϕ .
- Identifying ψ sometimes requires expertise.

Summary

- Safety Requirements (1)
 - What are safety requirements
 - Transition Systems
 - SRCs as Transition Systems, Programs as Transition Systems
 - Execution, Reachable States, Properties, Invariants
 - Safety Monitors
 - Verifying Invariants
 - Inductive Invariants
 - Proof Rule for Invariants