Assignment 25 (MOEA / D)

Take a look at the Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D) from the lecture and answer the following questions.

- Please explain the basic concept of MOEA/D and how it tries to solve a multi-objective problem.
- Decomposes the multi-objective problem into a number of single-objective problems by using scalarization functions.
- Use of a **neighbourhood structure** between these problems.
- Aims to find different parts by assigning different weights on the PF by solving the SOPs.
- Merge all the objectives into one single value with a weighted sum of objective functions.

- What are possible advantages and disadvantages of this approach?
 - + Does **NOT** rely on Pareto dominance.
 - + In comparison to NSGA-2, it provides a **good distribution** of solutions along with the PF.
 - + By the good distribution of reference directions, it provides better **diversity.**
 - Choice of appropriate scalarization function is crucial which is problem-dependent.
 - For disconnected PFs, the **reference directions** might be unsuitable.

In the following, MOEA/D is used for a **minimization** problem with 2 objectives, a population size of N=5, a neighborhood size of T=3 and an archive size of 5. The neighborhood B(i) of each problem i consists of its closest weight vectors in terms of Euclidean distance. The following table shows the weight vectors and the current population of MOEA/D. The archive consists of the same 5 solutions.

i	$ec{\lambda}^i$	$\vec{f}(x^i)$
1	(0.9, 0.1)	(1.0, 7.0)
2	(0.7, 0.3)	(2.0, 4.0)
3	(0.5, 0.5)	(3.0, 3.0)
4	(0.3, 0.7)	(4.0, 2.0)
5	(0.1, 0.9)	(8.0, 1.0)

• Identify the neighborhoods B(i) for $i = \{1, ..., 5\}$.

By Euclidean distance,

Population	$\vec{f}(x^1)$	$\vec{f}(x^2)$	$\vec{f}(x^3)$	$\vec{f}(x^4)$	$\vec{f}(x^5)$
$\vec{f}(x^1)$	0	3.16	4.47	5.83	9.21
$\vec{f}(x^2)$	3.16	0	1.41	2.82	6.70
$\vec{f}(x^3)$	4.47	1.41	0	1.41	5.38
$\vec{f}(x^4)$	5.83	2.82	1.41	0	4.12
$\vec{f}(x^5)$	9.21	6.70	5.38	4.12	0

Solutions in lighter font indicate farthest

The weighted sum on $\vec{f}(x^i)$ & $\vec{f}(y)$,

F(x ¹)	1.6	F(y¹)	1.5
F(x²)	2.6	F(y²)	2.5
F(x³)	3	F(y³)	3.5
F(x ⁴)	2.6	F(y ⁴)	4.5
F(x ⁵)	1.7	F(y ⁵)	5.5

Solutions in green font indicate archive updated

Neighbourhood updated with new solutions,

Population	$\vec{f}(x^1)$	$\vec{f}(x^2)$	$\vec{f}(x^3)$	$\vec{f}(x^4)$	$\vec{f}(x^5)$	$\vec{f}(y)$
$\vec{f}(x^1)$	0	3.16	4.47	5.83	9.21	1
$\vec{f}(x^2)$	3.16	0	1.41	2.82	6.70	2.23
$\vec{f}(x^3)$	4.47	1.41	0	1.41	5.38	3.60
$\vec{f}(x^4)$	5.83	2.82	1.41	0	4.12	5
$\vec{f}(x^5)$	9.21	6.70	5.38	4.12	0	5
$\vec{f}(y)$	1	2.23	3.60	5	5	0

Solutions in lighter font indicate farthest