Superradiant scattering at Kerr black holes

José Sá

Mestrado em Física Departamento de Física e Astronomia 2017

Orientador

João Rosa, Professor Auxiliar Convidado, Faculdade de Ciências da Universidade do Porto

Coorientador

Orfeu Bertolami, Professor Catedrático, Faculdade de Ciências da Universidade do Porto

Todas as correções determinadas pelo júri, e só essas, foram efetuadas.

O Presidente do Júri,

Porto, ____/___/___

UNIVERSIDADE DO PORTO

MASTER'S THESIS

Superradiant scattering at Kerr black holes

Author: Supervisor:

José SÁ João Rosa

Co-supervisor:

Orfeu BERTOLAMI

A thesis submitted in fulfilment of the requirements for the degree of Master of Science

at the

Faculdade de Ciências da Universidade do Porto Departamento de Física e Astronomia

July 2017

Acknowledgements

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

UNIVERSIDADE DO PORTO

Abstract

Faculdade de Ciências da Universidade do Porto Departamento de Física e Astronomia

Master of Science

Superradiant scattering at Kerr black holes

by José SÁ

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

UNIVERSIDADE DO PORTO

Resumo

Faculdade de Ciências da Universidade do Porto Departamento de Física e Astronomia

Mestre de Ciência

Superradiant scattering at Kerr black holes

por José SÁ

Tradução em português do "Abstract" escrito em inglês mais a cima. A página é centrada vertical e horizontalmente, podendo espandir para o espaço superior da página em branco ...

Contents

A	knov	vledgements	ii
Al	ostrac	et	V
Re	sum	v	ii
Co	onten	ts i	ix
Li	st of	Figures	xi
Αl	brev	iations xi	ii
N	otatio	n and Conventions x	(V
1		erradiance	1
		Introduction	1
	1.2	Black hole superradiance	2
2	Mat	hematical formalism	3
	2.1	General Relativity	3
	2.2	Kinnersley tetrad	3
	2.3	Newman-Penrose formalism	3
A	Spir	n-weighted spheroidal harmonics	5
	A.1	Connection with spheroidal and spherical harmonics	5
Ri	bliog	ranhy	7

List of Figures

Abbreviations

QM Quantum Mechanics

BH Black Hole

GR General Relativity

SWSH Spin-Weighted Spheroidal Harmonic

Notation and Conventions

Units

Unit convetions

Tensors and GR related

Metric definitions and stuff

Chapter 1

Superradiance

1.1 Introduction

The first appearance of the concept of *superradiance* was in 1954, when Dicke [1] showed that a gas could be excited by a pulse into "superradiant states" from thermal equilibrium and then emit coherent radiation.

Zel'dovich [2, 3] showed that a absorbing surface rotating with an angular velocity Ω could scatter incident wave with frequency ω which satisfies

$$\omega - m\Omega < 0 \tag{1.1}$$

where m is the usual azimuthal number of the monochromatic plane wave relative to the rotation axis. Condition (1.1) was to become one of the most important results of (rotational) superradiance as it presents itself in multiple examples in the literature, *i.e.* Vavilov-Cherekov effect and anomalous Doppler effect.

Actually, radiation amplification can be traced to birth of Quantum Mechanics, in the beginnings of the 20th century. First studies of the Dirac equation by Klein [4] revealed the possibility of electrons propagating in a region with a sufficiently large potential barrier without the expected dampening from non-relativistic QM tunnel effect. Due to some confusion, this result was wrongly interpreted by some authors as fermionic superradiance, as if the reflected current by the barrier could be greater than the incident current. The problem was named *Klein paradox* by Sauter [5] and this misleading result was due to a incorrect calculation of the group velocities of the reflected and transmitted waves.

Today, it is known that fermionic currents cannot be amplified for this particular problem [6, 7], which was correctly calculated in Klein's original paper. On the contrary, superradiant scattering could indeed occur for bosonic fields.

1.2 Black hole superradiance

Chapter 2

Mathematical formalism

- 2.1 General Relativity
- 2.2 Kinnersley tetrad
- 2.3 Newman-Penrose formalism

Appendix A

Spin-weighted spheroidal harmonics

SWSHs play an important role BH physics and was first introduced by Teukolsky when considering non-scalar wave perturbations on a Kerr background, obtaining a separable master equation in four dimensions. After the usual change of coordinates, the polar differential equation goes as

$$\frac{1}{S}\frac{d}{dx}\left((1-x^2)\frac{dS}{dx}\right) + (cx)^2 - 2csx - \frac{(m+sx)^2}{1-x^2} + s = -\lambda \tag{A.1}$$

with $x = \cos \theta$, where λ is the eigenvalue for a given SWSH solution. Periodic boundary conditions on the azimuthal wave function constrains m to the integers.

A.1 Connection with spheroidal and spherical harmonics

By setting s=0 (scalar) and c=0 (spherical), then it's clear that (A.1) appears as a generalization of the spherical harmonics equation. In this last case, the solution are given by the associated Legendre polynomials, $P_{\ell}^m(x)$, for which the eigenvalue is $\ell(\ell+1)$, restricted to the condition of $|m| \leq \ell$. The closed form for spherical harmonics, after normalization, is

$${}_{0}Y_{\ell}^{m}(x) = (-1)^{m} \sqrt{\frac{(2\ell+1)}{4\pi} \frac{(\ell-m)!}{(\ell+m)!}} P_{\ell}^{m}(x)$$
(A.2)

where P_{ℓ}^{m} are the associated Legendre polynomials which can be obtained using the famous Rodrigues' formula.

Bibliography

- [1] R. H. Dicke, Coherence in Spontaneous Radiation Processes, Phys. Rev. 93, 99 (1954).
- [2] Y. B. Zel'dovich, Generation of Waves by a Rotating Body, JETP Lett. 14, 180 (1971), [Zh. Eksp. Teor. Fiz. Pis'ma Red. 14, 270 (1971)].
- [3] Y. B. Zel'dovich, Amplification of Cylindrical Electromagnetic Waves Reflected from a Rotating Body, Sov. Phys. JETP **35**, 1085 (1972), [Zh. Eksp. Tear. Fiz. **62**, 2076 (1972)].
- [4] O. Klein, Die Reflexion von Elektronen an einem Potentialsprung nach der relativistischen Dynamik von Dirac, Z. Phys. 53, 157 (1929).
- [5] F. Sauter, *Uber das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs*, Z. Phys. **69**, 742 (1931).
- [6] C. A. Manogue, The Klein paradox and superradiance, Ann. Phys. 181, 261 (1988).
- [7] R. Brito, V. Cardoso and P. Pani, Superradiance: Energy Extraction, Black-Hole Bombs and Implications for Astrophysics and Particle Physics, Lecture Notes in Physics, Vol. 906 (Springer International Publishing, 2015) arXiv:1501.06570.
- [8] J. G. Rosa, Superradiance in the sky, Phys. Rev. **D95**, 064017 (2017), arXiv:1612.01826 [gr-qc].
- [9] S. Chandrasekhar, *The Mathematical Theory of Black Holes*, Oxford Classic Texts in the Physical Sciences (Clarendon Press, 1998).
- [10] A. A. Starobinsky, *Amplification of waves reflected from a rotating "black hole"*, Sov. Phys. JETP **37**, 28 (1973), [Zh. Eksp. Teor. Fiz. **64**, 48 (1973)].
- [11] W. H. Press and S. A. Teukolsky, *Perturbations of a Rotating Black Hole. II. Dynamical Stability of the Kerr Metric*, Astrophys. J. **185**, 649 (1973).

- [12] S. A. Teukolsky and W. H. Press, *Perturbations of a rotating black hole. III. Interaction of the hole with gravitational and electromagnetic radiation*, Astrophys. J. **193**, 443 (1974).
- [13] S. A. Teukolsky, *Perturbations of a rotating black hole. I. Fundamental equations for gravitational electromagnetic and neutrino field perturbations*, Astrophys. J. **185**, 635 (1973).
- [14] S. A. Teukolsky, Rotating Black Holes: Separable Wave Equations for Gravitational and Electromagnetic Perturbations, Phys. Rev. Lett. 29, 1114 (1972).
- [15] E. Berti, V. Cardoso and M. Casals, Eigenvalues and eigenfunctions of spin-weighted spheroidal harmonics in four and higher dimensions, Phys. Rev. **D73**, 02401 (2006), [Erratum: Phys. Rev. **D73**, 109902 (2006)], arXiv:gr-qc/051111 [gr-qc].
- [16] R. G. Winter, Klein Paradox for the Klein-Gordon Equation, Am. J. Phys. 27, 355 (1959).