Dipl.-Ing. Michael Zimmermann

Buchenstr. 15 42699 Solingen

2 0212 46267

https://kruemelsoft.hier-im-netz.de

<u>BwMichelstadt@t-online.de</u>

Michelstadt (Bw)

Nebenuhr

Hardware Version 1
Software Version 7

© 2019 - heute Michael Zimmermann

Wichtige Hinweise

Die hier beschriebenen elektrischen Schaltungen sind nur für den Einsatz auf Modelleisenbahnanlagen vorgesehen. Der Autor dieser Anleitung übernimmt keine Haftung für Aufbau und Funktion von diesen Schaltungen bei unsachgemäßer Verwendung sowie für beliebige Schäden, die aus oder in Folge Aufbau oder Betrieb dieser Schaltungen entstehen.

Für Hinweis auf Fehler oder Ergänzungen ist der Autor dankbar.

Ein Nachbau ist nur zum Eigenbedarf zulässig, die kommerzielle Nutzung Bedarf der schriftlichen Zustimmung des Autors.

Inhalt

1	Nebenu	Nebenuhr			
		benuhr – Bedienung			
		benuhr – Anzeigen			
		benuhr – Anschlussmöglichkeiten			
	1.3.1	digitale Nebenuhr ohne analoge Uhr als FastClock-Slave (Modus 0)			
	1.3.2	Nebenuhr und Uhrenzentrale (Modus 1 oder 2)			
	1.3.3	direkte Verbindung von Nebenuhr und Uhrenzentrale (Modus 1 oder 2)			
2	Konfigu	ration			
	2.1 Üb	ersicht aller verwendeten CVs	6		
	2.2 Tal	pelle der CVs	7		
	2.3 Inb	etriebnahme mit der I ² C-LCD-Bedientafel	7		
	2.4 Me	nüstruktur	8		
3	Hardwa	re	<u>c</u>		
4	Softwar	e	<u>9</u>		
	4.1 HE	X-Dateien	9		
	4.2 Qu	ellcode	9		
	4.3 De	n AVR flashen	10		
	4.4 Ve	rsionsgeschichte	10		
5	Schaltpl	äne und Stücklisten	11		
	5.1 Ne	benuhr	11		
	5.1.1	Gehäusevorschlag	11		
	5.1.2	Nebenuhr als FastClock-Slave (Modus 0)	13		
	5.1.3	Nebenuhr als Taktempfänger (Modus 1 oder 2)			
	5.1.4	Prozessoreinheit (alle Modi)			
	5.1.5	Stückliste Prozessoreinheit (alle Modi)	16		
	5.2 Ne	benuhr LED-Panel (alle Modi)			
	5.2.1	Stückliste Nebenuhr LED-Panel (alle Modi)	19		
	5.2.2	Alternative Anzeigen (alle Modi)	20		
	5.3 Ne	benuhr Dekoder (Modus 1 oder 2)			
	5.3.1	Stückliste Nebenuhr Dekoder (Modus 1 oder 2)	22		
	5.4 Ne	benuhr Menütaster und Keypad-Adapter (Modus 1 oder 2)			
	5.4.1	Stückliste Nebenuhr Keypad-Adapter (Modus 1 oder 2)	24		
	5.4.2	Stückliste Nebenuhr Menütaster (Modus 1 oder 2, Taster)			
	5.5 I ² C	-LCD-Bedientafel (optional)			
	5.5.1	Stückliste I ² C-LCD-Bedientafel			
6		n-Informationen			
	6.1 Ko	mmunikation: LocoNET®-Telegramme	28		

All Schematic and Board are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License, see http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see http://www.gnu.org/licenses/>.

1 Nebenuhr

Zweck: Anzeige der Modellbahnzeit.

Die Nebenuhr arbeitet immer als Tochteruhr, der Uhrentakt kommt dabei:

- entweder aus einem FastClock-Telegramm über LocoNET® (Betriebsart 0)
- oder von extern über die:
 - o Frankenzentrale (Betriebsart 1) oder
 - <u>Uhrenzentrale</u> (Betriebsart 1 oder 2)

1.1 Nebenuhr - Bedienung

In der Betriebsart 0 (FastClock-Telegramm über LocoNET®) kommt das komplette Zeitsignal über das LocoNET®-Telegramm, eine Einstellung der Uhrzeit über Taster ist nicht erforderlich.

In den Betriebsarten

muss zum Betrieb der Nebenuhr die Uhrzeit eingestellt werden, bevor die Uhrsinnvoll betrieben werden kann.

Hierzu ist

- zuerst entweder der Taster
 - "Stunde" oder
 - o "Minute"

zu drücken und festzuhalten

- anschließend kann der Wert mit den Tasten
 - o "x1" oder
 - o "x10"

erhöht werden.

Jeder Tastendruck erhöht den Wert um den entsprechenden Faktor:

- o Stunden können im Bereich von 0 bis 23 eingestellt werden.
- o Minuten können im Bereich von 0 bis 59 eingestellt werden.

1.2 Nebenuhr - Anzeigen

In der 7-Segment-Anzeige wird

- entweder --:-- angezeigt: dann wurde noch kein gültiges FastClock-Telegramm über LocoNET® empfangen

- oder die FastClock-Zeit angezeigt. Blinkt der Dezimalpunkt in der Anzeige unten rechts, so läuft Uhr, ist der Dezimalpunkt aus, steht die Uhr.

1.3 Nebenuhr – Anschlussmöglichkeiten...

... wobei in allen Fällen der Anschluss der Fernbedienung optional ist...

1.3.1 ...digitale Nebenuhr ohne analoge Uhr als FastClock-Slave (Modus 0)

1.3.2 ... Nebenuhr und Uhrenzentrale (Modus 1 oder 2)

Nebenuhr und Uhrenzentrale mit direkter Ansteuerung der Nebenuhr über den Taktausgang der <u>Uhrenzentrale</u>

1.3.3 ...direkte Verbindung von Nebenuhr und Uhrenzentrale (Modus 1 oder 2)

Nebenuhr und <u>Uhrenzentrale</u> direkt über eine SUB-D9-Verbindung miteinander verbunden.

2 Konfiguration

2.1 Übersicht aller verwendeten CVs

CV	Bedeutung		
1	Eindeutige Identifikationsnummer 1126, Standard = 1		
2	Betriebsart		
	0 = Nebenuhr ist ein FastClock-Slave		
	das Uhrensignal kommt aus einer FastClock-fähigen Zentrale¹ (FastClock-		
	Master) über das LocoNET® (Interface rund um IC6 und T5 muss bestückt		
	sein), es werden weder X5 noch Keypad noch Taster noch der		
	Uhrendekoder benötigt.		
	In dieser Betriebsart wird intern auch CV9 Bit 2 als gesetzt angenommen.		
	1 = Nebenuhr reagiert wie der Uhrendekoder nach O.Spannekrebs		
	das Uhrensignal wird durch IC4 dekodiert, dieser muss vorhanden und programmiert sein. Der Anschluss erfolgt über die LocoNET®-Buchse,		
	Keypad und Taster sind erforderlich.		
	2 = Nebenuhr reagiert auf direkte Ansteuerung durch ein diskretes		
	Taktsignal		
	es werden weder das LocoNET®-Interface noch IC4 (Uhrendekoder)		
	benötigt, Keypad und Taster sind erforderlich.		
	Standard = 0		
	Wird bei Erst-IBN eingestellt und sollte danach nicht mehr geändert werden.		
	Bei der Einstellung ist darauf zu achten, dass die benötigte Hardware bestückt ist!		
3	Wird nicht verwendet.		
4	Wird nicht verwendet.		
5	Wird nicht verwendet.		
6	Wird nicht verwendet.		
7	Softwareversion, (eigentlich) nur lesbar:		
	Wird hier der Wert 0 eingetragen, so werden alle CVs auf ihren		
	Standardwert zurückgesetzt. Anschließend sind alle CVs auf ihren		
	richtigen Wert zu setzen (=neue Inbetriebnahme!)		
8	12 = Kennung "Nebenuhr", nur lesbar		
9	Allgemeine Konfigurationen 1:		
	Bit 0 =		
	Bit 1 =		
	Bit 2 ² = FastClock-Telegramm verwenden		
	In der Betriebsart 0 (CV2=0) wird dieses Bit als gesetzt angenommen. Bit 3 ² = FastClock läuft nach Initialisierung auch intern weiter		
	Bit 4 ² = FastClock-Telegramme von JMRI ³ unterstützen		
	Bit 5 = FastClock Phasenlage für Nebenuhr invertieren		
	Bit 6 = Bit 7 =		
	Standard = 00011100 (=28)		
	Wird bei Erst-IBN eingestellt und sollte danach nicht mehr geändert werden.		

 $^{^{1}}$ Getestet wurde sowohl mit meiner $\underline{\text{Uhrenzentrale}}$ als auch mit JMRI

 $^{^{\}rm 2}$ Wird JMRI als Uhrenzentrale verwendet, sind in CV9 die Bits 2, 3 und 4 zu setzen.

 $^{^{\}rm 3}$ JMRI-Telegramme werden ab Software-Version 6 unterstützt

2.2 Tabelle der CVs

CV	Wert	Aktueller/mein Wert
1	1	
2	0	
3	0	
4	0	
5	0	
6	5	
7	7	
8	12	
9	00011100	

2.3 Inbetriebnahme mit der I²C-LCD-Bedientafel

Nicht jeder, der eine Nebenuhr sein Eigen nennt, braucht auch eine I²C-LCD-Bedientafel – da diese aber ggf. zur Inbetriebnahme oder Diagnose benötigt wird, sollte es wenigstens eine Bedientafel im gesamten System geben...

Übrigens: diese Bedientafel wird auch zur Konfiguration diverser Baugruppen verwendet – kommt also vielfältig zum Einsatz...

Eine Konfiguration vor dem ersten Einsatz der Nebenuhr ist normalerweise nicht erforderlich, da hier die Standardeinstellungen ausreichen. Mit Hilfe einer I^2C -LCD-Bedientafel kann die Nebenuhr konfiguriert werden, für den eigentlichen Betrieb ist die I^2C -LCD-Bedientafel nicht erforderlich.

Am I^2C -Anschluss der Nebenuhr kann zu jeder Zeit – auch im bereits laufenden Betrieb – die I^2C -LCD-Bedientafel angeschlossen bzw. entfernt werden. Über diese Bedientafel können

- die CVs ausgelesen bzw. geändert werden,
- weitere Diagnosen durchgeführt werden.

Nach dem Anschließen der Bedientafel (bzw. nach dem Einschalten der Nebenuhr mit angeschlossener Bedientafel) erscheint auf dem Display die folgende Information:

Nebenuhr	
Version 7	

Durch Drücken einer beliebigen Taste gelangt man zur Auswahl der einzelnen Inbetriebnahme- bzw. Diagnosemöglichkeiten.

Für die vier kreuzförmig angeordneten Auswahltasten gilt:

- < beendet die aktuelle Auswahl, es wird nichts geändert bzw. gespeichert
- > aktiviert diese Auswahl
- wechselt zur vorherigen Auswahl
- v wechselt zur nächsten Auswahl

Die Taste **OK** wird für Bestätigungen oder Speicherfunktionen benötigt.

2.4 Menüstruktur

(nachfolgend dargestellte Menü-Struktur ist für das LCD-Bedientafel gültig)

8

⁴ xxxx = Anzahl empfangener FastClock-Telegramme; tt = an der Zentrale eingestellter Teiler (Hinweis: z.B. 10:50 wird als 1:05 angezeigt, die genauere Einstellung der Uhrenzentrale kann hier nicht angezeigt werden; s = Sync-Wert (0 oder 1); eeee = Angabe *Even* oder *Odd* des Minutenwertes

3 Hardware

Die entsprechenden Schaltbilder sind – ebenso wie die Stücklisten – im Abschnitt 5 zu finden.

Die Platinen sind professionell gefertigt und haben einen beidseitigen Bestückungsaufdruck, auf Bestückungspläne und –anleitung wird daher verzichtet. Viele Bauteile sind in der SMD-Variante verbaut, um den Aufbau kompakt gestalten zu können. SMD-Bauteile sind in der Stückliste farbig hervorgehoben.

Praxis für das Löten von SMD-Bauteilen sollte vorhanden sein.

4 Software

Der Prozessor benötigt eine Software, um seine Aufgabe zu erfüllen.

Die Software wurde mit der Entwicklungsumgebung für die frei verfügbare Arduino-IDE erstellt.

Die gesamte Software ist gemäß der zugehörigen Lizenz verfügbar.

4.1 HEX-Dateien

Im GitHub-Repository befindet sich im Ordner "Hexfiles" (https://github.com/Kruemelbahn/Nebenuhr/tree/main/Hexfiles) die bereits mit dem Quellcode kompilierte HEX-Datei. Diese Hex-Datei kann mit einem AVR-Programmiergerät auf den Prozessor geladen werden (siehe Kapitel 4.3 Den AVR flashen).

4.2 Quellcode

Der Quellcode im Hauptverzeichnis (https://github.com/Kruemelbahn/Nebenuhr) ist genau wie meine zugehörigen Bibliotheken unter GitHub verfügbar.

Der Quellcode wird nur benötigt, wenn

- Man neugierig ist
- Oder den Quellcode ändern und somit neu kompilieren möchte. Zum Kompilieren wird die aktuelle Arduino-IDE benötigt.

Die Kompilierung erfolgt für das Board "Arduino UNO".

Für eine erfolgreiche Kompilierung sind nachfolgende Arduino-Bibliotheken erforderlich:

Arduino-Library	(Link)
Adafruit-GFX-Library_master	https://github.com/adafruit/Adafruit-GFX-Library
Adafruit_LED_Backpack_Library_master	https://github.com/adafruit/Adafruit_LED_Backpack
Adafruit_RGB_LCD_Shield_Library_master	https://github.com/adafruit/Adafruit-RGB-LCD-Shield-Library
Bounce2mcp	https://github.com/cosmikwolf/Bounce2mcp
LocoNET®	http://mrrwa.org/loconet-interface/
MemoryFree	http://www.arduino.cc/playground/Code/AvailableMemory
4x7Segment	
HeartBeat	

LCDPanel erfordert: Adafruit-GFX-Library

(Bibliotheken, die grün hinterlegt sind, stehen in meinem Github zur Verfügung.)

4.3 Den AVR flashen

Hierzu kann jeder AVR-Brenner verwendet werden, der diesen Prozessor unterstützt; meine Prozessoren brenne ich mit AVRDude und *USB AVR Prog* von U.Radig (http://www.ulrichradig.de/).

Die Fuses sind wie folgt zu setzen: Ifuse = 0xFF; hfuse = 0xDE; efuse = 0xFD

4.4 Versionsgeschichte

V1		initiale Erstellung
V2		Umstellung auf OPC_PEER_XFER-Telegramme
V3	20.12.2020	Bugfix für OPC_PEER_XFER-Telegramme
V4	24.08.2022	CV-Editor optimiert
	26.06.2023	redaktionelle Korrekturen zum FastClock-Slave
V5	28.06.2023	Korrekturen nach Softwarebugfix
	02.07.2023	Bemaßung Frontplatte hinzugefügt, Ergänzungen in Kapitel 5.1.4 (Hinweise), Ergänzungen in Kapitel 5.2.3
	13.07.2023	Bemerkung zu T1T4 für das LED-Panel ergänzt
	02.08.2023	Link zur Uhrenzentrale korrigiert
V6	23.10.2023	Korrektur für FastClock-Telegramme, die von JMRI gesendet werden
	09.12.2023	Kapitel 4 "Software" aktualisiert
	17.12.2023	Kapitel 5 mit Stückliste zum Gehäusevorschlag ergänzt
	20.12.2023	redaktionelle Korrekturen in Kapitel 2.1
V7	21.12.2023	FastClock-Telegrammauswertung optimiert
	18.02.2024	fehlerhaften Link zu Unterlagen der Uhrenzentrale korrigiert
	23.08.2023	Kapitel 4 ergänzt
	21.09.2024	Links korrigiert, redaktionelle Korrekturen
	03.12.2024	Angabe zu Fuses hinzugefügt

5 Schaltpläne und Stücklisten

Es wurden hier bereits vorhandene Platinen eingesetzt und für die Nebenuhr verwendet.

Bestellnummern beziehen sich, wenn nicht anders angegeben, auf den Lieferanten Reichelt (https://reichelt.de). Es kann nicht sichergestellt werden, dass die in den Stücklisten genannten Bestellnummern aktuell sind, diese können geändert worden bzw. der Artikel nicht mehr lieferbar sein.

5.1 Nebenuhr

Die Nebenuhr besteht aus insgesamt bis zu fünf verschiedenen Komponenten:

- der Prozessorplatine "LN-Universal"
- der LED-Anzeigeeinheit

und optional je nach Ausbaustufe und verwendetem Modus:

- dem Keypad-Adapter mit
- Tastatur-Platine
- der Uhrendekoder-Platine

5.1.1 Gehäusevorschlag

Alle Platinen passen z.B. zusammen in das Gehäuse "SD 20 SW HALB", es werden zwei Halbschalengehäuse für ein komplettes Gehäuse benötigt.

Anzahl	Bauteil	Bestellnummer (Reichelt)	Anmerkung
2	Gehäuse	SD 20 SW HALB	Auch möglich: SD 20 GR HALB

Für die Befestigung der Prozessoreinheit (Logikteil):

			,
Anzahl	Bauteil	Bestellnummer (Reichelt)	Anmerkung
			Senkkopfschraube M3*16,
4	Schrauben M3	SKS M2X16-50	Beutel enthält 50 Stück
4	Muttern M3	SK M3	Beutel enthält 100 Stück
4	Distanzhülsen	VT DK 5MM	

Bemaßung Frontplatte

Für die Befestigung der LED-Platine:

Anzahl	Bauteil	Bestellnummer (Reichelt)	Anmerkung
4	Schrauben M2		Flachkopfschraube M2*20
4	Muttern M2		
4	Distanzhülsen	VT DK 10MM	

Das LED-Panel kann mit 2mm-Schrauben, Muttern und Abstandshaltern an einer Frontplatte befestigt werden. Die nachfolgende Maßskizze zeigt die Einbaumaße:

03.12.2024 | 11

5.1.2 Nebenuhr als FastClock-Slave (Modus 0)

5.1.3 Nebenuhr als Taktempfänger (Modus 1 oder 2)

5.1.4 Prozessoreinheit (alle Modi)

5.1.5 Stückliste Prozessoreinheit (alle Modi)

			2208 220 800
Anzahl	Bauteil	Bestellnummer (Reichelt)	Anmerkung
			Platine 65mm * 40mm, doppelseitig
4	C1, C2, C11, C12	X7R-G1206 100N	
2	C3, C4	NPO-G1206 22P	
1	C8	RAD 22/16	RM 2,54
1	C9	RAD 1/100	RM 2,54
1	D1	SMD-LED 1206 GE	
1	IC1	ATMEGA 328P-PU	
1	IC1	GS 28P-S	
1	IC6	LM 311 P	
1	IC6	GS 8P	
1	K1	WSL 14G	
1	K1	PFL 14	
1	K3	SL 1X40G 2,54	Es werden insgesamt vier Stifte benötigt, die Leiste enthält 40 Stifte.
1	Q1	16,0000-HC49-SMD	
2	R1, R14	SMD 1/4W 10K	
3	R2, R3, R12	SMD 1/4W 4,7K	
1	R4	SMD 1/4W 1,5K	
1	R9	SMD 1/4W 220K	
1	R13	SMD 1/4W 22K	
1	R15	SMD 1/4W 150K	
1	R16	SMD 1/4W 47K	
1	S1	TASTER 3301	Kurzhub-Taster flach
1	T5	BC 847C SMD	
2	X1,X2	WSL 6G	
2	X1,X2	PFL 6	
1	X7	MEBP 6-6S	
1	D5	1N 4001	
1	IC4	μΑ 7805	an Stelle von µA 78L05, extern
1	IC4	V 5801B	auf Kühlkörper befestigen
1	K4	HEBL 21	Hohlbuchse 2,1mm für 12V-Einspeisung⁵
		AWG 28-14G 3M	Benötigt werden ca. 15cm

03.12.2024

-

⁵ Siehe auch Hinweis zur Versorgung mit 5V anstelle von 12V

Hinweise:

Die 12V-Gleichspannungsversorgung wird über die Hohlbuchse (K4, Ø-Mittenstift 2,1mm) eingespeist, der Mittenstift ist der ,+'-Anschluss — Die Hohlbuchse wird über D5 an die Platine angeschlossen.

- D2, D4 werden nicht bestückt
- Es sind Verbindungen von der Prozessorplatine zu den einzelnen Platinen herzustellen:
 - o Der Anschluss des LED-Panel erfolgt von
 - K1(Prozessorplatine) nach
 - K1(LED-Panel)

mit einem 14poligen Flachbandkabel.

Weitere Verbindungen sind nur im Modus 1 oder 2 herzustellen:

- o Die Dekoder-Platine und die Menü-Taster-Platine werden über Einzeldrähte mit dem Keypad-Adapter (Tastatur-Platine) verbunden
- Der Anschluss des Keypad-Adapters erfolgt von
 - X5(Keypad-Adapter) nach
 - X2(Prozessorplatine)

mit einem 6poligen Flachbandkabel

- Um die Möglichkeit zu schaffen, die Uhrenzentrale direkt mit der Nebenuhr zu verbinden, wird ein SUB-D9-Stecker an der Nebenuhr verwendet, angeschlossen werden:
 - die Dekoder-Platine wird über zwei Drähte
 - die Prozessorplatine wird über drei Drähte

mit dem SUB-D9-Stecker verbunden, zusätzlich wird die 12V-Versorgung ebenfalls an den SUB-D9-Stecker angeschlossen, die Nebenuhr wird somit aus der Uhrenzentrale mit 12V-Gleichspannung versorgt.

- Der Stecker X1 (ICSP-Anschluss) wird zum Aufspielen der Software verwendet. Ist dieser nicht bestückt, muss zum Aufspielen der Software jedes Mal der Prozessor (IC1) aus seiner Fassung entfernt und anschließend wieder eingesetzt werden.
- Der Stecker X2 (I²C-Anschluss) wird in der Betriebsart 0 nicht benötigt. Es empfiehlt sich jedoch die Bestückung, um die I²C-LCD-Bedientafel anschließen zu können, damit bei Bedarf CVs geändert werden können oder im Fehlerfall Diagnoseinformationen ausgelesen werden können.

Versorgung durch 5V anstelle von 12V

Wird anstelle der 12V-Versorgung eine 5V-Versorgung verwendet, so kann o IC4 (7805) mit Kühlkörper

entfallen, am IC4 ist dann Anschluss 1 mit Anschluss 3 zu brücken. Die Diode D5 als Verpolungsschutz sollte nicht fehlen.

Für den Anschluss des 5V-Netzteils kann ebenfalls eine Hohlbuchse verwendet werden. Um eine fehlerhafte Einspeisung mit 12V zu verhindern, wird hier eine Hohlbuchse mit Ø-Mittenstift **2,5**mm empfohlen (HEBL 25)⁶. Auch hier ist der Mittenstift der ,+'-Anschluss ————. Die Hohlbuchse wird über D5 an die Platine angeschlossen.

17

03.12.2024

_

⁶ dann passt der dünne 2,1mm-Hohlstecker für 12V nicht in die dicke 2,5mm-Hohlbuchse für 5V

5.2 Nebenuhr LED-Panel (alle Modi)

5.2.1 Stückliste Nebenuhr LED-Panel (alle Modi)

Anzahl	Bauteil	Bestellnummer (Reichelt)	Anmerkung
			Platine 100mm * 36mm, doppelseitig
2	D1, D3	EVL 524SURD/S530	Flache LED 2x5mm
1	K1	WSL 14G	auch möglich: WSL 14W
1	K1	PFL 14	
4	LD1LD4	SA 08-11 RT	auch möglich: SA 08-11SURKWA
4	LD1LD4	GS 24P	Pin-Anzahl von 24 auf 16 kürzen
8	R1R8	SMD 1/4W 220	
4	R9R12	SMD 1/4W 4,7K	
2	R13, R18	SMD 1/4W 180	
4	T1T4	BC 858C SMD	funktioniert mit dem angegebenen Transistortyp, besser wäre hier der pinkompatible BC 807-40 NXP

Der Anschluss des LED-Panels an die Prozessorplatine kann komfortabel über Flachbandkabel erfolgen (AWG 28-14G 3m, siehe oben, es werden etwa 15cm benötigt):

5.2.2 Alternative Anzeigen (alle Modi)

Alternativ zum LED-Panel wären auch nachfolgende Anzeigen denkbar:

Andere 7-Segment-Anzeigen

Sollen andere 7-Segment-Anzeigen verwendet werden und kann das LED-Panel dann nicht mehr verwendet werden, so müssen die 7-Segment-Anzeigen auf einer Lochrasterplatine o.ä. aufgebaut werden, die SMD-Bauteile in Kapitel 5.2 Nebenuhr LED-Panel (alle Modi) bzw. in Kapitel 5.2.1 Stückliste Nebenuhr LED-panel (alle Modi) werden dann durch entsprechende THT-Bauteile ersetzt.

> TM1637

Beschreibung:

Ein Modul mit 4 Stellen aufgeteilt in eine 7-Segment-Anzeige. Der Treiber IC ist TM1637. Es kann zur Anzeige von Ziffern, Buchstaben etc. verwendet werden.

Details:

- 4 Stellen rot alpha numerische Anzeige
 - 8 einstellbare Leucht-Level
 - Eingangsspannung: 3.35.25V DC
 - Stromverbrauch (bei 5V): 30-80mA
 - Interface level kann bei 5V oder 3.3V liegen
 - Abmessungen: ca. 42x24x12mm
 - Gewicht: ca. 8g

MAX7219 8x32

MAX7219 8x32 4 in 1 Dot Matrix LED Anzeigemodul kompatibel mit Arduino und Raspberry Pi

- Leuchtstarkes LED-Display mit 4 x 64 = 256 Punkten; Auflösung 32 x 8 LEDs
- √ Maße (LxBxH): 130 x 32 x 19,5 mm; je LED-Panel: 32 x 32 x 7* mm (* 11 mm inkl. Pins)
- \checkmark Rote LEDs mit 3 mm Durchmesser und jeweils 1 mm Zwischenraum
- 🗸 Inkl. Kabel und zusätzlicher Pin-Leiste für leichte Erweiterbarkeit der Matrix

Diese Anzeigen werden von der aktuellen Software nicht unterstützt, eine Softwareergänzung ist nach Absprache möglich.

03.12.2024 | 20

5.3 Nebenuhr Dekoder (Modus 1 oder 2)

5.3.1 Stückliste Nebenuhr Dekoder (Modus 1 oder 2)

Anzahl	Bauteil	Bestellnummer (Reichelt)	Anmerkung
			Platine 23mm * 33mm, doppelseitig
1	D2	1N 4148 SMD	
1	IC4	PIC 12C509A-04P	Wird nur für Modus 1 benötigt Programmiert mit Software OS6025.hex (siehe CV2)
1	IC5	6N 137	
2	IC4, IC5	GS 8P	
1	K4	SL 1X40G 2,54	Es werden insgesamt vier Stifte benötigt, eine Leiste enthält 40 Stifte. Auch möglich: SL 1X40W 2,54
1	R16	SMD 1/4W 1K8	-
1	S1	TASTER 3301	Kurzhubtaster nur erforderlich in Betriebsart 1 (siehe CV2)
	X3		Wird nicht bestückt, stattdessen werden X5 und X6 bestückt
2	X5,X6	RTM 1,3-100	Es werden insgesamt zwei Stifte benötigt, die Packung enthält 100 Stifte

5.4 Nebenuhr Menütaster und Keypad-Adapter (Modus 1 oder 2)

Die Taster sind erforderlich, wenn die Nebenuhr Betriebsart 1 oder 2 verwendet wird.

5.4.1 Stückliste Nebenuhr Keypad-Adapter (Modus 1 oder 2)

Anzahl	Bauteil	Bestellnummer (Reichelt)	Anmerkung
			Platine 23mm * 40mm, doppelseitig, V1.0
1	C5	X7R-G1206 100N	
1	IC2	PCF 8574 AT bzw. PCF 8574 T	l ² C-Adresse: 0x39 ('A'-Version) bzw. 0x21 ('T'-Version)
1	K4	SL 1X40G 2,54	Es werden insgesamt acht Stifte benötigt, die Leiste enthält 40 Stifte.
1	R10	SIL 5-4 10K	
1	X5	WSL 6G	X5 kann auch mit WSL 6W bestückt werden, wenn die Platine separat verwendet wird
1	X5	PFL 6	
1			Keypad, siehe nachfolgende Hinweise

Hinweis:

- der Jumper J4 bleibt offen

Der Anschluss des Keypad-Adapters an die Prozessorplatine kann komfortabel über Flachbandkabel erfolgen:

5.4.2 Stückliste Nebenuhr Menütaster (Modus 1 oder 2, Taster)

Anzahl	Bauteil	Bestellnummer (Reichelt)	Anmerkung
			Platine Tastatur-Panel SoundFred
			45mm * 14mm, einseitig
			Es werden insgesamt fünf Stifte benötigt, eine Leiste enthält 40 Stifte.
1	K13	SL 1X40G 2,54	Auch möglich: SL 1X40W 2,54
4	S3S6	TASTER 3301	Kurzhubtaster

5.51²C-LCD-Bedientafel (optional)

Nicht jeder, der eine Nebenuhr sein Eigen nennt, braucht auch eine I²C-LCD-Bedientafel – da diese aber ggf. zur Inbetriebnahme oder Diagnose benötigt wird, sollte es wenigstens eine Bedientafel im gesamten System geben...

Übrigens: diese Bedientafel wird auch zur Konfiguration diverser Baugruppen verwendet – kommt also vielfältig zum Einsatz...

Die komplette LCD-Anzeigeeinheit gibt es z.B. bei Reichelt: https://www.reichelt.de/de/de/arduino-shield-display-lcd-kit-16x2-blau-weiss-arduino-shd-lcd-p159967.html (ARDUINO SHD LCD)

Ein passendes (HD44780-kompatibles) LCD-Modul ("LCD 162C LED") gibt es z.B. bei Reichelt: $\underline{ \text{https://www.reichelt.de/lcd-modul-2x16-h-5-6mm-ge-gn-m-bel--lcd-162c-led-p31653.html}$

5.5.1 Stückliste I²C-LCD-Bedientafel

Anzahl	Bauteil	Bestellnummer (Reichelt)	Anmerkung
			Platine 84mm * 60mm, doppelseitig
1	C1	X7R-G1206 100N	
1	Display1	LCD 162C LED	Anschluss über MPE 094-1-016 und mit SL 1X40G 2,54 sinnvoll
1	IC1	MCP 23017-E/SP	I ² C-Adresse: 0x20
1	IC1	GS 28P-S	
1	K1	SL 1X40G 2,54	Es werden insgesamt zwei Stifte benötigt, eine Leiste enthält 40 Stifte. Auch möglich: SL 1X40W 2,54
1	K2	WSL 6G	Auch möglich: WSL 6W
1	R1	23A-10K	
1	R2	SMD 1/4W 10K	
6	S1S6	TASTER 3301	Kurzhubtaster
1	T1	BC 847C SMD	

Hinweise:

- J1 bleibt offen
- An K1 kann ein Schalter (Schließer) zur Steuerung der LCD-Beleuchtung angeschlossen werden.
- Es wird empfohlen, das Display mit 16 Stiften aus SL 1X40G 2,54 zu bestücken, auf der Platine wird dann als Gegenstück die Buchsenleiste MPE 094-1-016 (beides nicht in der Stückliste oben enthalten) verwendet. Das Display selbst kann mit Gewindeschrauben M2 an der Platine befestigt werden und so bei Bedarf problemlos ausgetauscht werden.
- Für die Verwendung des AdaFruit-RGB-LCD-Shields (I²C-Adresse: 0x20) qilt:
 - Das Shield ist zur direkten Verwendung mit einem Arduino vorgesehen: der I²C-Anschluss (K2) ist mit Einzeldrähten herzustellen (siehe die zugehörige Anleitung).
 - Das Shield besitzt keinen Anschluss K1: ein Schalter bzw.
 Drahtbrücke ist direkt zwischen Pin 26 des MCP23017 und GND anzuschließen.

Meine I^2C -LCD-Anzeige-Einheit habe ich in ein Gehäuse aus zwei Halbschalen (Bestellnummer bei Reichelt: SD 10 SW HALB) mit einem seitlichen SUB-D9-Stecker für den Anschluss an den I^2C -Bus montiert.

Die Anzeigeeinheit ist auf diese Art universell auch für andere Anwendungen (Relaisblock, Stellwerk, Intervaluino, AVR-Sound, LocoIO-SV-Editor) einsetzbar.

Der Anschluss der I²C-Bedientafel an das FastClock-Modul kann komfortabel über Flachbandkabel erfolgen.

In meinem Fall habe ich den I²C-Anschluss mit einem SUB-D9-Stecker über ein Stück Flachbandkabel verbunden:

Das Anzeige-Modul ist so über den SUB-D9-Stecker an andere Geräte (z.B. mein Stellwerk oder meinen Intervaluino) angeschlossen werden.

03.12.2024 | 27

6 Experten-Informationen

6.1 Kommunikation: LocoNET®-Telegramme

Die genaue Kenntnis der verwendeten Telegramme ist nur für Diagnosezwecke erforderlich und dient hier zusätzlich als Dokumentation. Weil – irgendwo muss ich das ja beschreiben...

LocoNET®-FastClock empfängt und sendet Telegramme mit den OP-Codes

- OPC_PEER_XFER 0xE5 - OPC_SL_RD_DATA 0xE7 - OPC_WR_SL_DATA 0xEF

Die Telegramme werden in der LocoNET®-Spezifikation (https://www.digitrax.com/support/loconet/loconetpersonaledition.pdf) beschrieben,

das Telegramm für OPC_PEER_XFER ist hier

http://embeddedloconet.sourceforge.net/SV_Programming Messages v13 PE.pdf beschrieben, verwendet das ,Format 2' und folgt nicht der Empfehlung 2.2.6) Standard SV/EEPROM Locations für die Verwendung von SV1...SV3.

Die Unterstützung der OPC_PEER_XFER-Telegramme ermöglicht es, die CVs auch mit dem Tool "DecoderPro®" von JMRI (https://www.jmri.org/) auslesen und einstellen zu können, passende XML-Dateien und eine Anleitung sind verfügbar.