Коэффициенты уравнений для определения запаса углерода во фракциях сосны (кг)

Фракция	Вид	\mathbf{a}_0	\mathbf{a}_1	a ₂	a ₃	\mathbb{R}^2
	функции					
Древесина ствола	1	0,0514	2,3545			0,965
	2	0,0058	1,9040	1,1463		0,991
	3	0,0226	2,2257	0,2992		0,967
Кора ствола	1	0,0013	2,7350			0,874
	2	0,0035	1,6423	0,7823		0,995
	3	2·E-05	2,2618	1,3681		0,908
Ветки	1	0,0103	2,0545			0,829
	2	0,0026	3,4818	-1,0529		0,893
	3	0,0154	2,1276	-0,1546		0,830
	4	0,0270	1,7169	0,2571		0,844
	5	0,0031	3,1723	-0,8270	0,2785	0,918
Хвоя	1	0,0085	2,0264			0,812
	2	0,0407	3,0593	-1,7136		0,856
	3	0,0217	2,2916	-0,5432		0,823
	4	0,0199	1,5634	0,3906		0,873
	5	0,0253	2,4446	-0,9710	0,3465	0,903

$$_{m=a_{0}*d^{a_{1}}} \tag{1}$$

$$m = a_0 * d^{a_1} * h^{a_2} (2)$$

$$m = a_0 * d^{a_1} * A^{a_2}$$

$$m = a_0 * d^{a_1} * z^{a_2}$$
(3)
(4)

$$m = a_0 * d^{a_1} * z^{a_2} (4)$$

$$m = a_0 * d^{a_1} * h^{a_2} * z^{a_3}$$
 (5)

Коэффициенты в уравнениях связи массы углерода во фракциях подлеска и подроста (г) с диаметром на высоте 50 см

		Коэ	\mathbb{R}^2		
Вид	Фракция	y			
		\mathbf{a}_0	\mathbf{a}_1	\mathbf{a}_3	
	Стволик	-0,4636	0,3634	2,1295	0,972
Рябина	Листья	1,7396	0,0287	2,1562	0,985
	Корни	0,6434	0,1205	2,1647	0,832
Крушина	Стволик	-1,9680	0,2945	2,2326	0,996
	Листья	0,9574	0,0328	2,2360	0,926
ломкая	Корни	0,0611	0,0976	2,2451	0,897
Береза	Стволик	0,5771	2,5830	1,4088	0,999
	Листья	0,4287	1,2770	1,2740	0,989
бородавчатая	Корни	0,3105	0,8786	1,3240	0,884
Лещина	Стволик	77,1082	0,0061	3,3018	0,997
·	Листья	70,3423	0,0055	3,3018	0,997
обыкновенная	Корни	9,2056	0,1474	3,4158	0,974
Дуб	Стволик	-0,5354	0,2614	2,3153	0,984
' ' '	Листья	-1,2698	0,0853	2,3043	0,665
черешчатый	Корни	-4,0087	0,0691	2,3354	0,849
Клен	Стволик	4,1036	0,0693	2,6145	1,000
	Листья	1,8600	0,0257	2,0773	0,998
остролистный	Корни	1,1656	0,0223	2,6325	0,887
Граб	Стволик	-0,8871	1,0008	1,7924	0,912
_	Листья	-0,0156	0,2376	1,5392	0,908
обыкновенный	Корни	0,4973	3,0141	1,7821	0,845
Ясень	Стволик	-2,5430	0,2203	2,2739	0,999
	Листья	-0,4948	2,6916	0,9128	0,925
обыкновенный	Корни	-0,5895	0,0811	2,3204	0,816

Возрастная динамика накопления углерода во фракциях соснового древостоя

1 – древесина ствола; 2 – кора ствола; 3 – корни; 4 – ветки; 5 – хвоя.

Возрастная динамика накопления углерода в сосновом биогеоценозе искусственного происхождения

1 — органический углерод минеральной части почвы; 2 — углерод в лесной подстилке; 3 — углерод в живом напочвенном покрове; 4 — углерод в древесной подпологовой растительности; 5 — углерод в древостое.

Принципиальная схема модели накопления углерода древостоем

Вход: информация о начальном состоянии экосистемы (A), погодно-климатических условиях (Б), уровне техногенной нагрузки (В), программе рубок ухода (Γ).

Выход (Д): информация о распределении запасов углерода по компонентам древостоя в возрастном разрезе.

Блоки: 1 блок расчета таксационных показателей (средний насаждения диаметр, густота, возраст, сумма площадей поперечного сечения); 2 - блок расчета прироста деревьев по диаметру; 3 – блок расчета отпада; 4 – блок расчета рубок; 5 – блок расчета запаса углерода во фракциях древостоя, вырубленных в результате промежуточного пользования и в блок расчета коэффициентов техногенного воздействия на отпад и прирост; 7 - блок расчета погоднокоэффициентов; 8 – генератор случайных климатических чисел.

Результаты моделирования накопления углерода сосновыми культурценозами

А) I^а бонитет

Б) І бонитет

В) II бонитет

1 — древесина ствола; 2 — кора ствола; 3 — корни; 4 — ветви; 5 — хвоя; 6 — древесный детрит.

Возрастная динамика накопления углерода в древостоях разной густоты посадки

Возрастная динамика накопления углерода в зависимости от уровня техногенного загрязнения

А) I^а бонитета

Б) І бонитет

В) II бонитет

Возрастная динамика накопления углерода при проведении рубок ухода различной степени изреживания

Условные обозначения: 1 — без рубок; 2 — слабая степень изреживания; 3 — умеренная степень изреживания; 4 — сильная степень изреживания.

Прогноз возрастной динамики поглощения углерода при различных сценариях изменения условий окружающей среды

1 – без изменений; 2 – сценарий № 1; 3 – сценарий № 2; 4 – сценарий № 3.