r any two ct, 1A for est
25,35,etc, inator = Σf
how working
ther
tuting for
tuting for k
•
: 10100 ~

		NESI NICIED 内部文件	Ŧ	
		Solutions	Marks	
4.	(a)	2a = 3b = 5c		
		$\frac{2a}{30}=\frac{3b}{30}=\frac{5c}{30}$	1M	
		$\therefore a:b:c=15:10:6$	2A	Correct ratio not in this form, 1A only
		Alternatively		
		$\frac{a}{b} = \frac{3}{2} , \qquad \frac{b}{c} = \frac{5}{3}$		
		Writing $\frac{a}{b} = \frac{15}{10}$, $\frac{b}{c} = \frac{10}{6}$	1M	
		$\therefore a:b:c=15:10:6$	2A	See above
	(b)	a = 15k	1	
	\ ,	b = 10k	} 1M	for either
		c = 6k		Tot etther
		a - b + c = (15 - 10 + 6) k	1	
		= 55	1M	
		k = 5		
		c = 30	1A	
			6	
5.	sin	$^{2}\theta - 3\cos\theta - 1 = 0$		
	1 -	$\cos^2\theta - 3\cos\theta - 1 = 0 \qquad \dots$	1M	$\sin^2\theta = 1 - \cos^2\theta$
	cos	$^{2}\theta$ + $3\cos\theta$ = 0	1A	
	cos	$\theta(\cos\theta+3)=0$		
		$\theta = 0$ or $\cos \theta = -3$ (rejected)	1A+1A	Accept $\cos \theta = 0$
	($\theta = 90^{\circ} \text{ or } 270^{\circ} \left(\frac{\pi}{2} \text{ or } \frac{3\pi}{2}\right)$	1A+1A	Withhold 1 mark
				for each extraneous answer
			6	

		RESTRICTED 内部文件	=	
		Solutions	Marks	
6.	(a)	Putting $x = 0$, $y = 5$. $\therefore A = (0,5)$	1A	OR The coordinates of A are x=0, y=5
	(b)	$x = 1 \text{ or } 5$ $\therefore B = (1,0)$ $C = (5,0)$ Putting $y = x + 5$ (or $x = y - 5$)	1A 1A	
	(-,	$x + 5 = x^2 - 6x + 5$ $(y = (y - 5)^2 - 6(y - 5) + 5)$ $x^2 - 7x = 0$ x(x - 7) = 0 x = 0 or 7	1A	
		At D , $x = 7$	1A 1A	#)
		$y = x^{2} - 6x + 5$ $D(7, 12)$ $A = x + 5$ $C((1, 0))$		
, =	(a)	$\alpha + \beta = -\frac{20}{10} (= -2)$	6 1A	
		$4^{\alpha} \times 4^{\beta} = 4^{\alpha+\beta}$	1A	
		$= 4^{-2} \left(= \frac{1}{16} = 0.0625 \right)$	1A	
	(b)	$\alpha\beta = \frac{1}{10}$	1A	
		$\log_{10}\alpha + \log_{10}\beta = \log_{10}\alpha\beta$	1A	
		$= \log_{10} \frac{1}{10}$		
		= -1	1A	

	RESTRICTED 内部文件	Marks	
(a)	$L_2: y-2=1(x-0)$		
	x - y = -2 (or $x - y + 2 = 0$, etc.)	2A 7	
	$L_3: \frac{x}{5} + \frac{y}{5} = 1$	1A }	2+1
	i.e. $x + y = 5$ (or $x + y - 5 = 0$, etc.)		
(b)	The region is determined by the inequalities		Withhold 1 max
` '			if '=' omitted
	$\begin{array}{c} x \le 4 \\ x - y \ge -2 \end{array}$	1A 1A	for each extra neous constrai
	$x + y \ge 5$	1A	Note other
		3	equivalent for
(c)	(i) Drawing the line $x + 2y - 3 = c$	1M	OR Finding t
		+ 1A	values of P at any vertex
	P is minimum at the point (4, 1) and the minimum		
	value of $P = 4 + 2(1) - 3 = 3$.	1A	At $(4,6)$, $P=1$ $(4,1)$, $P=3$
	(ii) $x + 2y - 3 \ge 7$	1A	(1.5,3.5), P=5
	$x + 2y \ge 10$	ın.	
	Drawing $x + 2y = 10$ in the figure.	1A	
	The possible range of values of x is $2 \le x \le 4$.	1 A	
		6	
	$L_1 - L_2$		
,			
6			
+			
7	\mathcal{R}		
3			
2.	1 \(\sigma \)		
4			
1			

0

2

1

1

		Solutions	Marks				
9.	(a)	C = (2,1) $A = (2,0)$ y	1A 1A				
		\mathcal{L}					
		$B \nearrow$					
		$\begin{pmatrix} c \\ + (2,1) \end{pmatrix} s$		Ģ.			
		O $A(1,0)$					
	(b)	Putting $y = mx$ in S	1M	Let $\angle COA = \theta$			
				$\tan\theta = \frac{1}{2}$ 1M			
		$x^2 + (mx)^2 - 4x - 2mx + 4 = 0$		\(\alpha \) BOA = 20 1M			
_		$(1 + m^2)x^2 - (4 + 2m)x + 4 = 0$	_1A	$\therefore m = \tan 2\theta \qquad 1A$ $= \frac{2 \tan \theta}{1} \qquad 1A$			
			.14	$1 - \tan^2\theta$			
				$= \frac{2 \times \frac{1}{2}}{1 - \frac{1}{ 4 }} = \frac{4}{3} 1A$			
				$1 - \frac{1}{4}$ 3			
		For tangency, $(4 + 2m)^2 - 4(1 + m^2)(4) = 0$ $3m^2 - 4m = 0$	1M 1A				
		$m = \frac{4}{3} \text{ as } m \neq 0$	1A				
	(c)	(i) As OA , OB are tangents, $\angle OAC = 90^{\circ}$ and $\angle OBC = 90^{\circ}$	1	For either			
		$\therefore \angle OAC + \angle OBC = 180^{\circ}$					
		So O, A, C, B are concyclic.	1				
_		(ii) As \(\langle OAC = 90\), OC is a diameter of the required circle,					
		whose centre = $(1, \frac{1}{2})$ and radius = $\frac{\sqrt{5}}{2}$.	1A+1A				
		Equation of the circle is $(x-1)^2 + (y-\frac{1}{2})^2 = \frac{5}{4}$	1A				
		i.e. $x^2 + y^2 - 2x - y = 0$					
			5	9			
		Alternatively					
		(1) Let the circle be $x^2 + y^2 + ax + by + c = 0$					
		Values of a, b, c obtained by substitution	1 A +1	A+1A			
		(2) As OC is a diameter, the circle is					
		$\frac{y-0}{x-0}\cdot\frac{y-1}{x-2}=-1$	2A				
		i.e. $x^2 + y^2 - 2x - y = 0$	1A				

	Solutions	Marks	
10. (a)	 (i) The probability that the candidate fails on the first attempt but passes on the second is (1 - 0.7) × 0.7 = 0.21 (ii) The probability of passing Part A in no more than 2 attempts is 0.7 + 0.21 = 0.91 (iii) The probability of passing Part B in no more than 2 attempts is 0.6 + 0.4 × 0.6 = 0.84 ∴ the required probability = 0.91 × 0.84 = 0.764 (0.7644) 	1A + 1M 1A 1A 1A 1M 1A 1M 1A 1O	1 - 0.7 $p \times 0.7$ Alternatively 1A for any two: 0.6×0.7 0.3×0.6×0.7 0.4×0.6×0.7 0.3×0.4×0.6×0. $p_1+p_2+p_3+p_4=1$ Ans. 2A
(b)	No. expected = 0.764 × 10000 = 7640 (7644)	1M 1A 	

11.

	Solutions	Marks	
(a)	Let ∠AOA' = θ		
	$OA \times \theta = 40\pi$	1	
	$OB \times \theta = 80\pi$	- 1A	for either
	$\frac{OA}{OB} = \frac{40\pi}{80\pi} \left(= \frac{1}{2} \right)$	1A	
	$\frac{OA}{OA+60} = \frac{1}{2}$		
	OA = 60 cm	1A	
	$60\theta = 40\pi \text{ (or } 120\theta = 80\pi\text{)}$	1м	
	$\theta = \frac{2}{3}\pi (= 120^\circ)$	1A	
		5	
	Alternatively		
	From Fig.5a, by similiar triangles, $\frac{OA}{OB} = \frac{40}{80} \ (= \frac{1}{2})$ $OA \qquad 1$	2A	
	$\frac{OA}{OA + 60} = \frac{1}{2}$ $\therefore OA = 60 \text{ cm}$	1A	
	Let $\angle AOA' = \theta$ $60\theta = 40\pi$ (or $120\theta = 80\pi$) $\theta = \frac{2}{3}\pi$	1M 1A	
(b)	Area of ABB'A' = $\frac{1}{3}\pi 120^2 - \frac{1}{3}\pi 60^2$	1M	Area of secto
	$= 3600\pi \text{cm}^2$	+ 1M 1A 	V - V
(c)	The shortest distance = distance between A and C in Figure 5b.	1M	Attempt to fi
	$\angle AOC = \frac{120}{2} = 60^{\circ}$	1A	AC
	$AC^2 = OA^2 + OC^2 - 2(OA)(OC)\cos 60^\circ$	1м 7	∠ CAO = 90°
	$= 60^2 + 120^2 - 2(60)(120)(\frac{1}{2})$		$\angle CAO = 90^{\circ}$ $\sin 60^{\circ} = \frac{AC}{OC}$ $\therefore AC = 60\sqrt{3} \text{ cm}$ $(= 104)$
	= 10800	1 /	$\therefore AC = 60\sqrt{3} \text{cm}$
	\therefore AC = 104 cm (103.923)		(= 104)
		4	

<u>·</u>		RESTRICTED 内部文件		
		Solutions	Marks	
12.	(a)	$d_3 = 0.9 d_1$		
		= 7.2	1A	
		$d_5 = d_3 \times 0.9 = 6.48$	1 A	
		$d_{2n-1} = 8(0.9)^{n-1}$	2 A	
			4	
	(b)	$d_6 = 10 \times 0.9^2 = 8.1$	1A	
		$d_{2n} = 10 \times 0.9^{n-1}$	1 A	
		·		
	(c)	(i) $d_1 + d_3 + d_5 + \cdots + d_{2n-1}$		
		$= 8 + 8(0.9) + 8(0.9)^{2} + + 8(0.9)^{n-1}$		
		$= \frac{8[1-(0.9)^n]}{1-0.9}$	1M	Attempting to sum
		1 0.5		as G.P.
		$= 80 (1 - 0.9^{n})$ (ii) $d_2 + d_4 + d_6 + \cdots + d_{2n}$	1A	
		$= 10 + 10(0.9) + 10(0.9)^{2} + \dots + 10(0.9)^{n-1}$		
		$= \frac{10[1 - (0.9)^n]}{1 - 0.9}$		
		$= 100(1 - 0.9^n)$	1A	
			3	
	(d)	$d_0 + d_1 + d_2 + d_3 + \cdots$		
		$= 10 + (d_1 + d_3 + d_5 + \cdots) + (d_2 + d_4 + d_6 + \cdots)$	1M	Grouping even and odd terms
		$= 10 + \frac{8}{1 - 0.9} + \frac{10}{1 - 0.9} \dots$	1M	Either infinite
		= 190	1A	sum
		d = 10	3	
		$d_0 = 10$		
		d_4		
		$d_1 = 8$ d_5 d_3		
		d_{6}		
		$d_2 = 10$		

		Solutions	Marks	
13.	(a)	Consider ABC and ABD .		
		AB = AB (common side) BC = BD (radii of the same circle) CA = DA (radii of the same circle)	1A 1A 1A	
		∴ $\triangle ABC \equiv \triangle ABD$ (SSS)	3	
	(b)	(i) $\angle CAD = 2 \angle FED \ (= 110^{\circ})$ $\angle CAB = \frac{1}{2} \angle CAD = \angle FED$	1M	
		$= 55^{\circ} \dots \dots$	1A	
		\(\alpha \text{ABC} = 180 - 95 - 55 \) = 30°	1M 1A	
		$ \therefore \angle EFD = \angle ABC \\ = 30^{\circ} \dots $	1A	
		(ii)(1)		

	A labelled diagram showing a cirlce through $\it D$ touching $\it CF$ at $\it F$.	1A		
(2)	Through F draw a diameter FG . Join DG .		<u>OR</u>	
	$\angle DGF = 30^{\circ}$ (\angle in alt. segment)	1A	∠ DGF = 30°	1A .
	$\angle FDG = 90^{\circ} \ (\angle in a semi-circle) \dots$	1 A	∠ DFG = 60°	1 A
	$\frac{DF}{FG} = \frac{1}{2} \ (= \sin 30^{\circ})$		∴ ∠ <i>FDG</i> = 90°	
	i.e. FG = 2DF	1 A	FG = 2DF	1 A
		9		
	Alternatively		П	
	Through F and D, draw the radii FO and DO. As $OF \perp CF$, $\angle DFO = 90^{\circ} - 30^{\circ} = 60^{\circ}$. As FO and DO are radii of the same circle,	1A		
	$\angle FDO = 60^{\circ}$	1A		
	\therefore $\triangle DFO$ is equilateral The diameter = $2 \times FO = 2 \times DF$.	1A		

	RESTRICTED 内部文件					
		Solutions	Marks			
14.	(a)	Consider AGH .				
		$GH = 1000 \sin \theta m$	1A			
		$AH = 1000\cos\theta \text{ m}$	1A			
			2			
	(b)	$\angle HAB = 30^{\circ} \text{ (or } \angle AHB = 60^{\circ}\text{)}$	1A			
		BH = AHsin30°	1A	BH = GH		
		$= 1000\cos\theta\sin30^{\circ}$		= 1000sin0		
		= $500\cos\theta$ m	1A			
		Since $\angle GBH = 45^{\circ}$, $BH = GH$	1M			
		$500\cos\theta = 1000\sin\theta$		a -		
		$\tan\theta = \frac{1}{2}$				
		$\theta = 26.6^{\circ}$ (26.565)	1 A	Accept 26°34'~26°36'		
				20 34 20 30		
	(c)	$EF = AB = AH\cos 30^{\circ}$				
		= 1000cos26.565° x cos30°		·		
		= 774.597m ~ 775m	1A	Accept 774m		
		BE = CE		-		
		= DF				
		= 800				
		EH = 800 - 500 cos26.565°				
		= 352.786 = 353m	1A			
		$\tan \angle FHE = \frac{774.597}{352.786} \left(\text{or} \frac{775}{353} \right)$	1M			
•		$\angle FHE \approx 65.5^{\circ}$ (or $\angle EFH = 24.5^{\circ}$)	1A	65°29′~65°30′		
		G is S65.5°E of D (or 114°)	1A	(24°29′~24°30′)		
		NORTH	5			
	/	E 1000 m				