

Magnetic Subsystem Design and Testing for the NASA Magnetic Latching Cryogenic Coupler

Paul Bean, Nic Heersema, Andrew Holguin, Jonathan Lopez, & Scott Stebbins

NASA AFRC

AIAA Scitech, 23-27 Jan 2023

This material is a work of the U.S. Government and is not subject to copyright protection in the United States

Outline

- Magnetic latching cryogenic (CryoMag) coupler
 - Overview
 - Requirements
- Magnetic subsystem
 - Patterned magnetic interfaces
 - Design & operation
- Testing results
 - Thermal extremes
 - Force profile
- Conclusions & future work

Cryogenic Magnetic (CryoMag) Coupler

- Quick-disconnect cryogenic coupler
- Magnets provide mating forces
- Operate in dusty (lunar) environment

Operational Scenario

- Temporary connection between cryogen tanks
- In-Situ Resource Utilization
- Pressurized rovers
- LN₂ only for initial development

Requirements

- Lunar representative environment
 - Temperature range: -178°C to +127°C
 - Lunar regolith simulant dust surface loading
- Usability
 - Single-user operation
 - No external tools
- Interfaces between subsystems
 - Physical geometry
 - Force profile

Patterned Magnetic Interfaces

➤ Advantages

- Reduced physical complexity
- Assisted/automated mating
- Self-alignment
- Self-latching and reseating
- Tailorable characteristics
- Dust tolerance

- Disadvantages
 - Permanent magnet field
 - Lower holding force
 - Brittle material

Design Overview

Socket

Probe

Magnetic Subsystem Operation

- Mate operation:
 - Poles are aligned
- Demate operation:
 - User twists coupler to un-align poles
- Magnet patterns/functions
 - Full auto
 - Soft assist
 - Firm assist

Full Auto

Soft Assist

Demate

Test Results: Thermal

Test Results: Thermal

➤ Ice build up

➤ Pattern visibility

Test Results: Thermal

Torque

Shear

Test Results: Force Profile

Test Fixture

Demate orientation

Off-nominal alternate alignment

Test Results: Force Profile

Force profile of magnets alone versus Magnetic subsystem

Mate and demate force profile of Magnetic subsystem

Conclusions & Future Work

- Non-traditional mate/latch method developed using magnets
- Tested as part of CryoMag Early Career Initiative project
 - Thermal - successful
 - Force profile - successful
 - Integrated functional – in progress
- Potential future work
 - Coating evaluation
 - Pattern optimization
 - Testing in more-representative environments

Points of Contact

- Authors:
 - Paul Bean: paul.bean@nasa.gov
 - Nic Heersema: nicole.a.heersema@nasa.gov
- Related papers:
 - Manley, W., and Heersema, N., “Low Force Disconnect Cryogenic Coupler Design Development,” AIAA Scitech 2023
 - Stebbins, S., and Heersema, N., “Low-cost Testing in Representative Lunar Regolith Environment, “ AIAA Scitech 2023
- Interested in the technology?
 - Technology Transfer Office, NASA AFRC Edwards, CA 93523

AMERICAN INSTITUTE OF
AERONAUTICS AND ASTRONAUTICS

Backup

Pattern Selection

- Magnet patterns/functions
 - Full auto
 - Soft assist
 - Firm assist

Firm Assist

