2. Sucesiones y series de funciones.

2.1. Convergencia puntual y uniforme de sucesiones funcionales

Sea $A \subseteq \mathbb{R}$ y supongamos que para toda $n \in \mathbb{N}$ existe la función $f_n : A \to \mathbb{R}$. Se dice entonces que $\{f_n\}$ es una sucesión funcional de A en \mathbb{R} . Para toda $x \in A$, la sucesión funcional da lugar a una sucesión numérica $\{f_n(x)\}$. Esta sucesión numérica puede converger para algunos valores de A, y diverger para otros.

Definición 2.1. Sea $\{f_n\}$ una sucesión funcional de $A \subseteq \mathbb{R}$ en \mathbb{R} , sea $A_0 \subseteq A$ y sea $f: A_0 \to \mathbb{R}$. Se dice que la sucesión funcional f_n converge puntualmente a f en A_0 si para cada $x \in A_0$ la sucesión numérica $\{f_n(x)\}$ converge al valor $f(x) \in \mathbb{R}$. Para simbolizar que f_n converge puntualmente a f es A_0 escribimos

$$\lim_{n\to\infty} f_n = f$$
 en A_0

o

$$f_n \to f$$
 en A_0

El conjunto A_0 de todas las $x \in A$ para los cuales las $f_n(x)$ converge y se denomina dominio de la convergencia puntual.

Una definición equivalente de convergencia puntual puede enunciarse haciendo uso de la definición de convergencia de una sucesión numérica así:

Definición 2.2. $\{f_n\}$ converge puntualmente a f(x) en A_0 si $\forall \epsilon > 0$ y $\forall x \in A_0$, $\exists \mathbb{N}(\epsilon, x) \in \mathbb{N}$ tal que $\forall n > N$

$$|f_n(x) - f(x)| < \epsilon$$

Ejemplo 2.1.

$$f_n(x) = \frac{\sin nx}{n}, \quad A = \mathbb{R}$$

 $como | \sin nx | \le 1$ para cada $x \in \mathbb{R}$ se sigue que

$$\lim_{n \to \infty} \frac{\sin(nx)}{n} = 0,$$

entonces $f(x) \equiv 0$ y $A_0 = \mathbb{R}$. Por tanto, $f_n(x) \to f(x)$ en \mathbb{R}

Ejemplo 2.2. $f_n(x) = x^n$, $A = \mathbb{R}$ entonces

$$f_n(x) \to 0$$
 $|x| < 1,$
 $f_n(x) \to 1$ $x = 1,$
 $f_n(x) \text{ diverge}$ $|x| > 1,,$
 $f_n(x) \text{ diverge}$ $x = -1.$

de tal manera que $A_0 = (-1, 1] y$

$$f(x) = \begin{cases} 0 & |x| < 1\\ 1 & x = 1 \end{cases}$$

Ejemplo 2.3.

$$f_n(x) = \frac{x}{n}, \quad A = \mathbb{R}$$

$$Si \ x = 0, \ f_n(0) = 0 \to 0. \ Si \ x \neq 0, \ f_n(x) = x/n \to 0. \ Asi \ A_0 = A = \mathbb{R} \ y \ f(x) \equiv 0.$$

En el ejemplo anterior tenemos una sucesión funcional de funciones continuas que converge puntualmente a una función continua.

Ejemplo 2.4.

$$f_n(x) = \frac{nx}{1+nx}, \quad A = \mathbb{R}^+.$$

Para x = 0, $f_n(0) = 0 \to 0$. Para x > 0,

$$f_n(x) = \frac{n}{1/x + n} = \frac{1}{\frac{1}{nx} + 1} = 1$$

 $asi\ A_0 = A\ y$

$$f(x) = \begin{cases} 0 & x = 0 \\ 1 & x > 0 \end{cases}$$

En el ejemplo anterior tenemos una sucesión de funciones continuas que converge puntualmente a una fución discontinua.

Ejemplo 2.5.

$$f_n(x) = \frac{x^n}{1 + x^{2n}}, \quad A = \mathbb{R}$$

Para $|x| < 1, f_n(x) \to 0.$

Para |x| > 1,

$$f_n(x) = \frac{1}{\left(\frac{1}{x}\right)^n + x^n} \to 0.$$

Para x = 1, $f_n(1) = 1/2 \rightarrow 1/2$.

Para x = -1, $f_n(-1)$ diverge. Así $A_0 = (-\infty, -1) \cup (-1, +\infty)$ y

$$f(x) = \begin{cases} 0 & |x| \neq 1\\ 1/2 & x = 1 \end{cases}$$

El concepto de convergencia uniforme, permite garantizar el paso de algunas propiedades de las funciones que forman la sucesión a la función límite.

Definición 2.3. Convergencia uniforme La sucesión funcional $\{f_n\}$ definida en $A \subseteq \mathbb{R}$ converge uniformemente en $A_0 \subseteq A$ a la función $f: A_0 \to \mathbb{R}$ si para todo $\epsilon > 0 \exists N(\epsilon)$ tal que para todo $n > N(\epsilon)$ y todo $x \in A_0$

$$|f_n(x) - f(x)| < \epsilon$$

Notación: $f_n(x) \Rightarrow f(x)$ en A_0

La diferencia entre convergencia puntual y uniforme estriba en que para la puntual $\exists N$ para cada ϵ y cada x y en la uniforme para cada ϵ existe un único N válido para todos los x de A_0

Ejemplo 2.6. Analicemos la sucesión $f_n(x) = x/n$. Sabemos que $f_n(x) = x/n \rightarrow f(x) = 0$ en $A_0 = \mathbb{R}$. La convergencia puntual en $A_0 = \mathbb{R}$ está dada por

$$\left|\frac{x}{n}\right| < \epsilon \implies n\epsilon > |x| \implies n > \frac{|x|}{\epsilon}$$

 $asi, \ \forall \ \epsilon > 0 \ y \ \forall \ x \in \mathbb{R}$

$$\exists N(x,\epsilon) = \left| \frac{|x|}{\epsilon} \right| : \forall n > N$$

$$|f_n(x) - f(x)| < \epsilon.$$

Notemos que no podemos hallar $N(\epsilon)$ que sirva para toda $x \in \mathbb{R}$. No hay convergencia uniforme en \mathbb{R} . Sin embargo, si tomamos A_0 en un intervalo acotado (por ejemplo [a,b]) entonces $\exists M$ tal que |x| < M y por tanto $\forall \epsilon > 0 \exists N = \frac{M}{\epsilon}$ tal que $\forall n > N$ y $\forall x \in A_0$,

$$|f_n(x) - f(x)| = \frac{|x|}{n} < \frac{M}{n} < \epsilon,$$

lo cual implica que hay convergencia uniforme.

Definición 2.4. Sea $\varphi : A \subseteq \mathbb{R} \to \mathbb{R}$ acotada en A. La norma uniforme de φ en A se define por

$$\left\|\varphi\right\|_{A}=\sup\ \left\{ \left|\varphi(x)\right|:\ x\in A\right\}$$

Teorema 2.5. Criterio de convergencia uniforme Una sucesión de funciones acotadas $\{f_n\}$ converge uniformemente a f en A si y sólo si

$$\lim_{n\to\infty} ||f_n - f||_A = 0$$

Demostración.

 (\Rightarrow) Supongamos que $f_n \rightrightarrows f$ en A, entonces $\forall \epsilon > 0 \exists N(\epsilon) : \forall n > N \ y \ \forall x \in A$

$$|f_n(x) - f(x)| < \epsilon$$

y por tanto

$$||f_n - f||_{\Delta} \le \epsilon \quad \forall \ n > N$$

como $\epsilon > 0$ es arbitraria se obtiene que $\lim_{n \to \infty} \|f_n - f\|_A = 0$.

 (\Leftarrow) Si $||f_n - f||_A \to 0$, entonces $\forall \epsilon > 0 \exists N(\epsilon)$ tal que si n > N entonces

$$||f_n - f||_A < \epsilon \implies |f_n(x) - f(x)| < \epsilon$$

para toda n > N y toda $x \in A$. Por tanto, f_n converge uniformemente a f en A. \square

Ejemplo 2.7. $f_n(x) = x^n$ converge puntualmente en $A_0 = (-1, 1]$ a la función

$$f(x) = \begin{cases} 0 & |x| < 1\\ 1 & x = 1 \end{cases}$$

entonces

$$f_n(x) - f(x) = \begin{cases} x^n & |x| < 1\\ 0 & x = 1 \end{cases}$$

y

$$||f_n(x) - f(x)||_A = \sup \{|x|^n : x \in (-1, 1]\} = 1$$

 $\lim_{n \to \infty} ||f_n(x) - f(x)||_A = 1$

lo cual implica que la sucesión funcional no converge uniformemente en (-1,1].

Sea ahora $A_0 = [-1 + \alpha, 1 - \alpha], \ \forall \ 0 < \alpha < 1.$ Entonces $f_n(x) - f(x) = x^n$ para $x \in A_0$.

$$||f_n(x) - f(x)||_{A_0} = \sup \{|x|^n : x \in [-1 + \alpha, 1 - \alpha]\} = |1 - \alpha|^n \to 0$$

con lo que podemos ver que converge uniformemente.

Del teorema anterior se puede obtener un criterio para la no convergencia uniforme. Si existe una subsucesión $x_n \in A_0$ tal que

$$|f_n(x_n) - f(x_n)| \nrightarrow 0$$

entonces no hay convergencia uniforme.

Ejemplo 2.8. Sea

$$f_n(x) = \frac{nx}{1 + nx}$$

que converge puntualmente en $[0, +\infty)$ a la función

$$f(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$$

Tomemos $x_n = 1/n$, entonces

$$|f_n(x_n) - f(x_n)| = \left| \frac{n \cdot \frac{1}{n}}{1 + n \cdot \frac{1}{n}} - 1 \right| = \left| \frac{1}{2} - 1 \right| = \frac{1}{2}$$

y por tanto

$$\lim_{n \to \infty} |f_n(x_n) - f(x_n)| = \frac{1}{2} \neq 0,$$

no hay convergencia uniforme.

Sea ahora $A_0 = [a, b]$ con a > 0, entonces

$$|f_n(x_n) - f(x_n)| = \left| \frac{nx}{1 + nx} - 1 \right| = \frac{1}{1 + nx}$$

$$||f_n(x) - f(x)||_A = \frac{1}{1 + na} \to 0,$$

hay convergencia uniforme.

Teorema 2.6. Criterio de Cauchy. Sea $\{f_n\}$ una sucesión de funciones acotadas en $A \subseteq \mathbb{R}$. La sucesión f_n converge uniformemente a f en A si y sólo si $\forall \epsilon < 0$ $\exists N(\epsilon)$ tal que para toda n < N, toda $p \in \mathbb{N}$

$$|f_{n+p}(x) - f_n(x)| < \epsilon$$

para toda $x \in A$.

Teorema 2.7. Sea f_n una sucesión funcional de funciones continuas en $A \subseteq \mathbb{R}$ que converge uniformemente a $f: A \subseteq \mathbb{R}$ en A. Entonces, f es continua en A

Demostración.

Como $f_n \rightrightarrows f$ en $A, \forall \epsilon > 0, \exists N = N(\epsilon)$ tal que si n > N, entonces, $|f_n(x) - f(x)| < \epsilon/3$ para toda $x \in A$.

Sea $c \in A$. Mostremos que f es continua en c. Como $f_n(x)$ es continua en c, entonces existe $\delta > 0$ tal que para todo $x \in A$, con $|x - c| < \delta$ se cumple que $|f_n(x) - f_n(c)| > \epsilon/3$. Por tanto

$$|f(x) - f(c)| = |f(x) - f_n(x) + f_n(x) - f_n(c) + f_n(c) - f(c)|$$

$$\leq |f(x) - f_n(x)| + |f_n(x) - f_n(c)| + |f_n(c) - f(c)|$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon.$$

Por supuesto, entonces que si c es un punto de acumulación de A, f_n es continua y

$$\lim_{n \to +\infty} \lim_{x \to c} f_n(x) = \lim_{n \to \infty} f_n(c) = f(c) = \lim_{x \to c} f(x) = \lim_{x \to c} \lim_{n \to \infty} f_n(x).$$

Veamos que la convergencia uniforme de funciones continuas es una condición suficiente para garantizar la continuidad de la función límite, pero no es necesaria.

Ejemplo 2.9. A = [0, 1]

 $f_n \rightrightarrows f$, entonces

$$f_n(x) = \begin{cases} n^2 x & 0 \le x < 1/n \\ -n^2 (x - 2/n) & 1/n \le x < 2/n \\ 0 & 2/n \le x \le 1 \end{cases}$$

La sucesión de funciones continuas converge puntualmente a f(x) = 0 continua. Escojamos $x_n = 1/n^2$, entonces $f_n(x_n) = n^2 \cdot (1/n^2) = 1$

$$|f_n(x_n) - f(x_n)| = 1 \nrightarrow 0$$

así, no hay convergencia uniforme.

El teorema puede utilizarse para demostrar que la convergencia de determinada sucesión de funciones no es uniforme.

Ejemplo 2.10. Sea A = [0, 2] y

$$f_n(x) = \frac{x^n}{1 + x^n}$$

una sucesión funcional que converge puntualmente a la función

$$f(x) = \begin{cases} 0 & 0 \le x < 1\\ 1/2 & x = 1\\ 1 & x > 1 \end{cases}$$

Como $f_n(x)$ es una sucesión de funciones continuas en [0,2] y la función límite no es continua en [0,2] entonces $f_n(x) \Rightarrow f(x)$ en [0,2].

Teorema 2.8. Teorema de aproximación de Weierstrass Si f es una función continua en un intervalo cerrado, entonces \exists una sucesión de polinomios que converge uniformemente a f(x).

Demostración. Consideremos que f(x) es continua en [0,1] y consideremos los polinomios de Berstein definidos en [0,1] según

$$f_n(x) = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$

 $n = 0, 1, 2, \dots$ Mostremos que $f_n(x) \rightrightarrows f(x)$ en [0, 1].

Denotando por

$$P_k(x) = \frac{n!}{k!(n-k)!} x^k (1-x)^{n-k},$$

se tiene que

$$\sum_{k=0}^{n} P_k(x) = \sum_{k=0}^{n} \frac{n!}{k!(n-k)!} x^k (1-x)^{n-k} = (x+1-x)^n = 1$$

У

$$\sum_{k=0}^{n} (k - nx)^{2} P_{k}(x) = nx(1 - x)$$

$$= n\left(\frac{1}{2} - \left(\frac{1}{2} - x\right)\right) \left(\frac{1}{2} + \frac{1}{2} - x\right)$$

$$= n\left(\frac{1}{4} - \left(\frac{1}{2} - x\right)^{2}\right) < \frac{n}{4}.$$
(1)

Como f es continua en [0,1], entonces f es uniformemente continua, luego para toda $\epsilon > 0 \; \exists \; \delta : \forall \; x_1, x_2 \in [0,1] \; \text{con} \; |x_1 - x_2| < \delta \; \text{se cumple que} \; |f(x_1) - f(x_2)| < \epsilon.$ Además $\exists \; M \; \text{tal que} \; |f(x)| < M \; \forall \; x \in [0,1].$

$$|f_{n}(x) - f(x)| = \left| \sum_{k=0}^{n} f\left(\frac{k}{n}\right) p_{k}(x) - f(x) \right|$$

$$= \left| \sum_{k=0}^{n} \left(f\left(\frac{k}{n}\right) - f(x) \right) p_{k}(x) \right|$$

$$\leq \sum_{k=0}^{n} \left| \left(f\left(\frac{k}{n}\right) - f(x) \right) p_{k}(x) \right| + \sum_{k=0}^{n} \left| \left(f\left(\frac{k}{n}\right) - f(x) \right) p_{k}(x) \right|$$

$$= \left| \sum_{k=0}^{n} \left(f\left(\frac{k}{n}\right) - f(x) \right) p_{k}(x) \right|$$

$$\leq \sum_{k=0}^{n} \left| \frac{k}{n} - x \right| < \delta$$

$$\leq \epsilon \sum_{k=0}^{n} P_{k}(x) + 2M \sum_{k=0}^{n} P_{k}(x) .$$

Para la primera suma tenemos

$$\underbrace{\sum_{k} P_k(x)}_{\left|\frac{k}{n} - x\right| < \delta} \le \sum_{k=0}^{n} P_k(x) = 1.$$

Para la segunda suma, como

$$\left| \frac{k}{n} - x \right| > \delta$$

$$\frac{k - nx}{n\delta} > 1$$

$$\left(\frac{k - nx}{n\delta} \right)^2 > 1$$

se tiene que

$$\sum_{k} P_{k}(x) \leq \sum_{k} \left(\frac{k - nx}{n\delta}\right)^{2} P_{k}(x)$$

$$\leq \sum_{k=0}^{n} \left(\frac{k - nx}{n\delta}\right)^{2} P_{k}(x)$$

$$= \sum_{k=0}^{n} \left(\frac{k - nx}{n\delta}\right)^{2} P_{k}(x)$$

$$= \frac{n}{n^{2}\delta^{2}} x(1 - x) \leq \frac{1}{\delta^{2}n} \cdot \frac{1}{4}.$$

Sustituyendo se obtiene

$$|f_n(x) - f(x)| < \epsilon + \frac{M}{2n\delta^2}.$$

Lo anterior es válido para todo $x\in[0,1]$ luego, $\forall\ \epsilon>0,\ \exists\ N=\left\lfloor\frac{M}{2n\delta^2}\right\rfloor$, tal que $\forall\ n>N$ se tiene que

$$|f_n(x) - f(x)| < \epsilon + \epsilon = 2\epsilon.$$

Problema 2.1. $A = \mathbb{R} \ y$

$$f_n(x) = \begin{cases} 1 & x < 0 \\ 1 - nx & 0 \le x < 1/n \\ 0 & 1/n \le x \end{cases}$$

Hallar la función límite y probar que la convergencia no es uniforme.

Problema 2.2. $A_0 = [0,1] y$

$$f_n(x) = \frac{2nx}{1 + n^2x^2}$$

Hallar f(x) y probar que la convergencia no es uniforme aún cuando la sucesión de funciones continuas y la función límite es continua.

2.2. Integración y derivación término a término de sucesiones funcionales

Consideremos ahora la relación que existe entre la diferenciabilidad de las funciones que forman una sucesión funcional y la diferenciabilidad de la función límite. Por ejemplo, dada una sucesión de funciones diferenciables $\{f_n\}$ de la convergencia de $\{f_n\}$ se deduce la convergencia de la sucesión de las derivadas $\{f'_n\}$? Puede converger $\{f'_n\}$ si $\{f_n\}$ no converge. ¿Qué papel juega la convergencia uniforme?

Definición 2.9. Diremos que una sucesión funcional $\{f_n\}$ de funciones diferenciables en A, es diferenciable término a término en A si tanto $\{f_n\}$ como $\{f'_n\}$ convergen y la función límite de $\{f'_n\}$ es la derivada de la función límite de $\{f_n\}$

Ejemplo 2.11. $f_n(x) = x^n$, A = (-1,1), $f(x) \equiv 0$. $f'_n(x) = nx^{n-1}$, $\{nx^{n-1}\} \rightarrow g(x) \equiv 0$ en A. Notar que $f_n(x) = x^n$ es diferenciable término a término, sin embargo que $\{x^n\}$ no converge uniformemente en (-1,1) y es fácil demostrar que $\{nx^{n-1}\}$ tampoco converge uniformemente en (-1,1)

Ejemplo 2.12.

$$f_n(x) = \frac{\sin nx}{n}$$

f(x) = 0 y $f_n(x) \Rightarrow f(x)$ en R. Analicemos la sucesión de las derivadas.

$$f_n'(x) = \cos nx$$

esta sucesión diverge para todo $x \neq 0$. Por lo tanto la convergencia uniforme de la sucesión original no garantiza la convergencia de la sucesión de las derivadas.

Ejemplo 2.13. $f_n(x) = x + n$ no converge para ningún x. Sin embargo, $f'_n(x) = 1$ converge uniformemente. Por tanto, la convergencia uniforme de $\{f'_n\}$ no garantiza la diferenciabilidad término a término.

Ejemplo 2.14.

$$f_n(x) = \frac{2x}{1 + n^2 x^2}, \quad A = [0, +\infty),$$

 $f_n(x) \rightrightarrows f(x) \equiv 0$ en A. Sin embargo

$$f'_n(x) = \frac{2(1 - n^2 x^2)}{(1 + n^2 x^2)^2} \rightarrow g(x) = \begin{cases} 2 & x = 0\\ 0 & x > 0 \end{cases}$$

Como g(x) es discontinua, no hay convergencia uniforme, además $g(x) \neq f'(x)$. Sin embargo la sucesión es diferenciable término a término en $[a, +\infty)$, $\forall a > 0$. Aquí, tanto $f_n(x)$ como f'(n)(x) convergen uniformemente g(x) = f'(x).

Teorema 2.10. Sea $\{f_n\}$ una sucesión de funciones diferenciables definidas en [a,b] tal que $f_n(c)$ converge para algún $a \le c \le b$ y la sucesión funcional $\{f'_n\}$ converge uniformemente en [a,b]. Entonces la sucesión funcional $\{f_n\}$ converge uniformemente a la función diferenciable f y

$$f'(x) = (\lim_{n \to \infty} f_n(x))' = \lim_{n \to \infty} f'_n(x).$$

Demostración.

Como $f_n(c)$ converge entonces, $\forall \epsilon > 0 \exists N_0(\epsilon)$ tal que $\forall n > N \ y \ \forall p \in \mathbb{N}$,

$$|f_{n+p}(c) - f_n(c)| < \frac{\epsilon}{2}.$$

Como f'_n converge uniformemente entonces, $\forall \epsilon > 0 \; \exists \; N_1 \; \text{tal que} \; \forall \; n > N_1 \; \text{y} \; \forall \; p \in \mathbb{N}$,

$$\left| f'_{n+p}(x) - f'_n(x) \right| < \frac{\epsilon}{2(b-a)} \ \forall x \in [a,b].$$

Si tomamos $N = max (N_0, N_1)$ ambas desigualdades se cumplen $\forall n > N \ y \ \forall p \in \mathbb{N}$.

$$|f_{n+p}(x) - f_n(x)| = |f_{n+p}(x) - f_{n+p}(c) - f_n(x) + f_n(c) + f_{n+p}(c) - f_n(c)|$$

$$\leq |f_{n+p}(x) - f_n(x) - (f_{n+p}(c) - f_n(c))| + |f_{n+p}(c) - f_n(c)|$$

Aplicando el teorema del valor medio a la función $f_{n+p}(x) - f_n(x)$ tenemos que $\exists \xi \in (a,b)$:

$$= |f'_{n+p}(\xi) - f'_n(\xi)|(b-a) + |f_{n+p}(c) - f_n(c)| < \epsilon$$

con lo que queda demostrada la convergencia uniforme.

Sea ahora $x_0 \in [a, b]$ y consideremos las funciones F_n definidas en [a, b] como sigue

$$F_n(x) = \begin{cases} \frac{f_n(x) - f_n(x_o)}{x - x_0} & x \neq x_0\\ f'_n(x_0) & x = x_0 \end{cases}$$

Como f_n es diferenciable en [a, b] entonces $F_n(x)$ es continua en [a, b]. Si $x \neq x_0$, aplicando el teorema del valor medio

$$|F_{n+p}(x) - F_n(x)| = \left| \frac{f_{n+p}(x) - f_{n+p}(x_0)}{x - x_0} - \frac{f_n(x) - f_n(x_0)}{x - x_0} \right|$$
$$= \left| \frac{f_{n+p}(x) - f_n(x) - (f_{n+p}(x_0) - f_n(x_0))}{x - x_0} \right|$$

 $\exists \xi \text{ entre } x \text{ y } x_0 \text{ tal que}$

$$= |f'_{n+n}(\xi) - f'_n(\xi)| < \epsilon.$$

Si $x = x_0$ entonces

$$|F_{n+p}(x_0) - F_n(x_0)| = |f'_n(x_0) - f'_n(x_0)| < \epsilon,$$

por tanto $\forall n > N, \forall p \in \mathbb{N} \ y \ \forall x \in [a, b],$

$$|F_{n+p}(x) - F_n(x)| < \epsilon,$$

es decir, $F_n(x)$ converge uniformemente en [a,b] y su función límite es continua en [a,b] por el teorema de la clase anterior. Además

$$\lim_{n \to \infty} F_n(x) = F(x) = \begin{cases} \frac{f(x) - f(x_0)}{x - x_0} & x \neq x_0 \\ \lim_{n \to \infty} f'_n(x_0) & x = x_0 \end{cases}$$

De la continuidad de F para cualquier punto x_0 en [a,b]obtenemos que

$$f'(x_0) = \lim_{x \to x_0} F(x) = \lim_{n \to \infty} f'_n(x_0)$$

Integración término a término

Teorema 2.11. Sea $\{f_n\}$ una sucesión de funciones Riemann integrables en [a,b] que convergen uniformemente a la función f. Entonces la función límite es Riemann integrable y se cumple que

$$\lim_{n \to \infty} \int_a^b f_n(x) dx = \int_a^b \lim_{n \to \infty} f_n(x) dx = \int_a^b f(x) dx$$

Demostración.

 $\forall \ \epsilon > 0 \ \exists \ N : \forall \ n > N$

$$|f(x) - f_n(x)| < \frac{\epsilon}{4(b-a)}, \quad \forall \ x \in [a, b].$$

Como $f_n(x)$ es Riemann integrable \exists la partición $P_{\epsilon} = \{x_0, x_1, \dots, x_s\}$ de [a, b] tal que

$$U(P_{\epsilon}, f_n) - L(P_{\epsilon}, f_n) < \frac{\epsilon}{2}.$$

Como

$$|f(x) - f_n(x)| < \frac{\epsilon}{4(b-a)} \quad \forall \ x,$$

entonces

$$f(x) \le f_n(x) + \frac{\epsilon}{4(b-a)} \quad \forall \ x \in [a,b]$$

y por tanto

$$U(P_{\epsilon}, f) = \sum_{k=1}^{s} M_k(f) \Delta x_k \le \sum_{k=1}^{m} \left(M_k(f_n) + \frac{\epsilon}{4(b-a)} \right) (x_k - x_{k-1}) = U(P_{\epsilon, f_n}) + \frac{\epsilon}{4}.$$

Una desigualdad análoga puede obtenerse para las sumas inferiores, así

$$U(P_{\epsilon,f}) \leq U(P_{\epsilon}, f_n) + \frac{\epsilon}{4}$$

 $L(P_{\epsilon}, f) \geq L(P_{\epsilon}, f_n) - \frac{\epsilon}{4}$

y por tanto

$$U(P_{\epsilon,f}) - L(P_{\epsilon},f) \le U(P_{\epsilon},f_n) - L(P_{\epsilon},f_n) + \frac{\epsilon}{2} < \epsilon.$$

Ejemplo 2.15. Sea

$$f_n(x) = \begin{cases} n^2 x & 0 \le x \le 1/n \\ -n^2 (x - 2/n) & 1/n \le x \le 2/n \\ 0 & 2/n \le x \le 1 \end{cases}$$

 $y f(x) \equiv 0 [0,1]$. $f_n(x)$ es continua y por tanto es Riemann integrable.

$$\int_{0}^{1} f_{n}(x)dx = \int_{0}^{1/n} n^{2}xdx + \int_{1/n}^{2/n} -n^{2}(x-2/n)dx$$
$$= n^{2} \frac{x^{2}}{2} \Big|_{0}^{1/n} - n^{2} \frac{(x-2/n)^{2}}{2} \Big|_{1/n}^{2/n}$$
$$= \frac{1}{2} + \frac{1}{2} = 1 \quad n > 2$$

asi

$$\int_0^1 f(x)dx = 0 \neq \lim_{n \to \infty} \int_0^1 f_n(x)dx$$

y por el teorema anterior no hay convergencia uniforme.

Ejemplo 2.16. *Sea*

$$f_n = \frac{nx}{1 + nx}$$

definida en [0,1] y

$$f(x) = \begin{cases} 0 & x = 0 \\ 1 & x \neq 0 \end{cases}$$

$$\int_0^1 \frac{nx}{1+nx} dx = \int_0^1 dx - \int_0^1 \frac{dx}{1+nx} = 1 - \frac{1}{n} \ln(1+nx) \Big|_0^1$$
$$= 1 - \frac{1}{n} \ln 1 + n$$

$$\lim_{n \to \infty} \int_0^1 \frac{nx dx}{1 + nx} = \lim_{n \to \infty} 1 - \frac{1}{n} \ln(1 + n) = 1 = \int_0^1 f(x) dx,$$

es decir,

$$\lim_{n\to\infty} \int_0^1 f_n(x) = \int_0^1 \lim_{n\to\infty} f_n$$

sin embargo no hay convergencia uniforme pues la función lmite no es continua.

Problema 2.3. Probar que $f_n(x) = nx(1+x)^n$ es integrable término a término pero no converge uniformemente

Problema 2.4. Sea

$$f_n(x) = \frac{x}{1 + n^2 x^2}$$

Muestre que $\lim_{n\to\infty} f_n' \neq (\lim_{n\to\infty} f_n)'$. ¿Qué condiciones del teorema no se cumplen?

Problema 2.5. Probar que $f_n(x) = xe^{-nx^2}$ converge uniformemente en [-1,1] y que no es derivable término a término.

Problema 2.6. Será

$$f_n(x) = \frac{e^{-nx}}{n}$$

diferenciable término a término.

2.3. Series funcionales. Convergencia Uniforme

Al igual que en el caso de las series numéricas, dada una sucesión funcional $\{f_n\}$, definida en $A \subseteq \mathbb{R}$, una serie funcional $\sum_{n=1}^{\infty} f_n(x)$ se define a través de la sucesión funcional $S_n(x)$ de sumas parciales:

$$S_n(x) = \sum_{k=1}^n f_k(x)$$

Decimos que la serie converge puntualmente (uniformemente) en el dominio $A \subseteq \mathbb{R}$ si la sucesión funcional S_n converge puntualmente (uniformemente) en A. La función límite S(x) de la sucesión $\{S_n\}$ funcional se denomina función suma de la serie funcional.

Ejemplo 2.17.

$$\sum_{n=0}^{\infty} x^n$$

$$S_n(x) = \sum_{k=0}^{n} x^k = \frac{1 - x^{n-1}}{1 - x} \ (para) \ x \neq 1$$

La serie converge puntualmente en (-1,1). Veamos si hay convergencia uniforme. Debemos analizar el límite cuando $n \to \infty$ de

$$||S_n(x) - S_x||_{(-1,1)} = \sup_{x \in (-1,1)} \left| \frac{1 - x^{n-1}}{1 - x} - \frac{1}{1 - x} \right|$$
$$||S_n(x) - S_x||_{(-1,1)} = \sup_{x \in (-1,1)} \frac{|x|^{n+1}}{|1 - x|}$$

Veamos que si

$$x_n = 1 - \frac{1}{n+1}$$

entonces

$$|S_n(x_n) - S(x_n)| = \frac{\left(1 - \frac{1}{n+1}\right)^{n+1}}{\frac{1}{n+1}} \to \infty,$$

por tanto no hay convergencia uniforme. Sin embargo si $A = [-1 + \delta, 1 - \delta], \ \forall \ 0 < \delta < 1 \ entonces$

$$|S_n(x_n) - S(x_n)| = \frac{|x|^{n+1}}{|1 - x|} \le \frac{(1 - \delta)^{n+1}}{(2 - \delta)} \to 0 \text{ si } n \to \infty$$

lo que implica que

$$\lim_{n\to\infty} ||S_n(x) - S(x)||_{(-1+\delta, 1-\delta)} = 0$$

así podemos decir que hay convergencia uniforme.

Criterio de Cauchy de Convergencia Uniforme

Teorema 2.12. $\sum f_n(x)$ converge uniformemente en A si y sólo si \forall $\epsilon > 0$ \exists $N = N(\epsilon) : \forall$ n > N y \forall $p \in \mathbb{N}$

$$\left| \sum_{k=n+1}^{n+p} f_n(x) \right| < \epsilon \quad \forall \ x \in A$$

Teorema 2.13. (Condición necesaria) Si $\sum f_n(x)$ converge uniformemente en A entonces $f_n \rightrightarrows 0$ en A

Ejemplo 2.18. Sea $\sum_{n=1}^{\infty} x^n$, A = (-1, 1).

$$||f_n(x) - 0||_{(-1,1)} = ||x^n||_{(-1,1)} = 1 \rightarrow 0$$

luego $x^n \rightrightarrows 0$, entonces $\sum_{n=1}^{\infty} x^n$ no converge uniformemente en A = (-1,1).

Teorema 2.14. Criterio de Weierstrass Sea $\sum f_n(x)$ es una serie funcional definida en A y $\sum a_n$ una serie numérica convergente, tal que $|f_n(x)| \leq a_n$ para $x \in A$. Entonces $\sum f_n(x)$ converge absolutamente y uniformemente en A

Demostración.

La convergencia absoluta se obtiene como consecuencia directa del criterio de comparación para series numéricas de términos positivos. Como $\sum_{n=1}^{\infty} a_n$ converge y además $a_n \geq 0$, entonces por el criterio de Cauchy para series numéricas $\forall \ \epsilon > 0$ $\exists \ N : \forall \ n > N \ \forall \ p \in \mathbb{N}$

$$\left| \sum_{k=n+1}^{n+p} f_k(x) \right| \le \sum_{k=n+1}^{n+p} a_n < \epsilon \quad \forall \ x \in A$$

Ejemplo 2.19. Analizar la convergencia de la siguiente serie funcional.

$$\sum_{n=1}^{\infty} \frac{2x}{2 + n^3 x^2}$$

$$\left| \frac{2x}{2 + n^3 x^2} \right| = \frac{2|x|}{2 + n^3 x^2} < \frac{2|x|}{2n^{3/2}|x|} = \frac{1}{n^{3/2}} \text{ si } x \neq 0$$

 $Si \ x = 0, \ f_n(0) = 0 \ entonces$

$$|f_n(x)| < \frac{1}{n^{3/2}} \ \forall \ n \ y \ \forall \ x \in \mathbb{R}$$

y como

$$\sum \frac{1}{n^{3/2}}$$
 converge

por el criterio de Weierstrass la serie

$$\sum_{n=0}^{\infty} \frac{2x}{2+n^3x^2} \text{ converge absoluta y uniformemente}$$

Ejemplo 2.20. Analizar la convergencia de la siguiente serie funcional.

$$\sum_{n=1}^{\infty} \arctan\left(\frac{2x}{x^2 + n^4}\right) \ x \in \mathbb{R}$$

Como la función $\arctan(x)$ es creciente

$$\left|\arctan\left(\frac{2x}{x^2+n^4}\right)\right| = \arctan\left(\frac{2|x|}{x^2+n^4}\right) < \arctan\frac{2|x|}{2|x|n^2} = \arctan\frac{1}{n^2} \ si \ x \neq 0$$

y para x = 0, $\arctan(2x/(x^2 + n^4)) = 0$, por tanto

$$\left|\arctan\left(\frac{2x}{x^2+n^4}\right)\right| < \arctan\frac{1}{n^2} < \frac{1}{n^2} \ \forall \ x \in \mathbb{R}$$

Como

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \quad converge$$

entonces

$$\sum_{n=1}^{\infty}\arctan\left(\frac{2x}{x^2+n^4}\right)\ converge\ absoluta\ y\ uniformemente$$

Ejemplo 2.21.

$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n!}} (x^n + x^{-n}) \quad \frac{1}{2} \le |x| \le 2$$

$$\frac{n^2}{\sqrt{n!}} (x^n + x^{-n}) \le \frac{n^2}{\sqrt{n!}} \cdot \left(2^n + \left(\frac{1}{2}\right)^{-n}\right) = \frac{n^2 2^{n+1}}{\sqrt{n!}}$$

Analicemos con el criterio de D'Alambert la serie

$$\sum_{n=1}^{\infty} \frac{n^2 2^{n+1}}{\sqrt{n!}}$$

$$\frac{a_{n+1}}{a_n} = \frac{(n+1)^2 2^{n+2}}{\sqrt{(n+1)!}} \cdot \frac{\sqrt{n!}}{n^2 2^{n+1}} = 2\left(\frac{n+1}{n}\right) \cdot \frac{1}{\sqrt{n+1}} \to 0$$

entonces la serie numérica converge y la serie funcional converge absoluta y uniformemente.

Ejemplo 2.22.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^p}$$

$$\left| \frac{\sin nx}{n^p} \right| < \frac{1}{n^p}$$

 $converge\ absoluta\ y\ uniformemente\ para\ p>1$

Otros criterios de convergencia uniforme.

Teorema 2.15. (Criterio de Abel) La serie funcional $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ converge uniformemente en $A \subseteq \mathbb{R}$ si la serie $\sum_{n=1}^{\infty} f_n(x)$ converge uniformemente y si la sucesión $g_n(x)$ está uniformemente acotada en A y para cada $x \in A$ la sucesión $\{g_n(x)\}$ es monótona

Nota 2.1. Uniformemente acotada significa que $|f_n(x)| < M \ \forall \ x \in A \ y \ \forall \ n \in \mathbb{N}$

Ejemplo 2.23.

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^x}, \quad A = [1, +\infty)$$

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \cdot \frac{1}{n^{x-1}}$$

como la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ converge uniformemente (pues no depende de x), y además

$$\left| \frac{1}{n^{x-1}} \right| < 1$$
 uniformemente acotada

entonces la serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^x}$ converge uniformemente.

Teorema 2.16. (Criterio de Dirichlet) La serie $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ converge uniformemente en A si la sucesión funcional $S_n(x) = \sum_{k=1}^n f_n(x)$ es uniformemente acotada en A y $\{g_n(x)\}$ converge uniformemente a cero en A.

Ejemplo 2.24.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n^p} \quad 0
$$\left| \sum_{k=1}^{n} \sin kx \right| \le \frac{2}{|\sin x/2|} \quad para \quad x \ne 2k$$

$$\frac{2}{|\sin x/2|} < \frac{2}{\sin \delta/2} \quad [\delta, 2\pi - \delta]$$$$

luego, $\sum_{k=1}^n \sin kx$ está uniformemente acotada en $[\delta, 2\pi - \delta]$ con $0 < \delta < 2\pi$. Por otro lado $1/n^p \to 0 \ \forall \ p > 0 \ y$ como no depende de x, entonces la convergencia es uniforme.

$$\Rightarrow \sum_{n=1}^{\infty} \frac{\sin nx}{n^p} \quad converge \ uniformemente \ en \ [\delta, 2\pi - \delta].$$

¿Qué relación hay entre la convergencia uniforme y la absoluta?

Propiedades de las series que convergen uniformemente.

Teorema 2.17. (Continuidad) $Si \sum f_n$ es una serie uniformemente convergente en A de funciones continuas, entonces la función suma es continua en A. si x es un punto de acumulación de <math>A entonces

$$S(x_0) = \lim_{x \to x_0} S(x) = \lim_{x \to x_0} \sum_{n=1}^{\infty} f_n(x) = \sum_{n=1}^{\infty} \lim_{x \to x_0} f_n(x) = \sum_{n=1}^{\infty} f_n(x_0).$$

Teorema 2.18. (Derivación término a término) Sea $\sum f_n$ una serie de funciones diferenciables en [a,b] que converge para cierto punto $c \in [a,b]$ y tal que la serie $\sum f'_n$ converge uniformemente en [a,b]. Entonces la serie $\sum_{n=1}^{\infty} f_n$ converge uniformemente a la función diferenciable S(x) tal que

$$S'(x) = \left(\sum f_n\right)' = \sum f_n'$$

Ejemplo 2.25.

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n2^n}, \quad x \in \mathbb{R}$$

Evidentemente converge para x = 0. Hallemos la serie de las derivadas:

$$\sum_{n=1}^{\infty} \frac{n \cos nx}{n2^n} = \sum_{n=1}^{\infty} \frac{\cos nx}{2^n}$$
$$\left| \frac{\cos nx}{2^n} \right| < \frac{1}{2^n}$$
$$\sum_{n=1}^{\infty} \frac{1}{2^n} \quad converge \implies$$

 $\sum_{n=1}^{\infty} \frac{\cos nx}{2^n}$ converge uniformemente en \mathbb{R} por el criterio de Weierstrass.

luego

$$\sum_{n=1}^{\infty} \frac{\sin nx}{n2^n} \quad x \in \mathbb{R}$$

converge uniformemente y es válida la derivación término a término.

Teorema 2.19. (Integración término a término) $Si \sum f_n$ es una serie uniformemente convergente de funciones Riemann integrables en [a,b]. Entonces la función suma es Riemann integrable en [a,b] y

$$\int_{a}^{b} S(x)dx = \int_{a}^{b} \sum_{n=1}^{\infty} f_{n}(x)dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_{n}(x)dx.$$