(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 March 2001 (15.03.2001)

PCT

(10) International Publication Number WO 01/18045 A1

(51) International Patent Classification⁷: C07K 14/00, G01N 33/573

(21) International Application Number: PCT/US00/24700

(22) International Filing Date: 8 September 2000 (08.09.2000)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/152,753 8 September 1999 (08.09.1999) US

(71) Applicants (for all designated States except US): SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH [US/US]; 1275 York Avenue, New York, NY 10021 (US). THE TRUSTEES OF COLUMBIA UNI-VERSITY IN THE CITY OF NEW YORK [US/US]; West 116th Street and Broadway, New York, NY 10027 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): PAVLETICH, Nikola [YU/US]; Apartment 38A, 330 East 75th Street, New York, NY 10021 (US). FINNIN, Michael [US/US]; 504 East 63rd Street, Apt. 19S, New York, NY 10021 (US). DONIGIAN, Jill [US/US]; 13 Union Place, North Arlington, NJ 07031 (US). RICHON, Victoria [US/US]; 504 East 63rd Street, Apt. 28M, New York, NY 10021 (US). RIFKIND, Richard, A. [US/US]; Apt. #48A, 425 East 58th Street, New York, NY 10022 (US). MARKS, Paul, A. [US/US]; 7 Rossiter Road, Washington, CT 06793 (US). BRESLOW, Ronald [US/US]; 275 Broad Avenue, Englewood, NJ 07631 (US).

- (74) Agent: WHITE, John, P.; Cooper & Dunham LLP, 1185 Avenue of the Americas, New York, NY 10036 (US).
- (81) Designated States (national): CA, JP, US.
- (84) Designated States (regional): European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Al

(54) Title: CRYSTAL STRUCTURE OF A DEACETYLASE AND INHIBITORS THEREOF

(57) Abstract: The present invention provides three-dimensional structural information from the hyperthermophilic bacterium Aquifex aeolicus which is a histone deacetylase-like protein (HDLP). HDLP shares 35.2% amino acid sequence identity with human histone deacetylase (HDAC1). The present invention further provides three-dimensional structural information of HDLP bound by inhibitor molecules. The three-dimensional structural information of the present invention is useful to design, isolate and screen deacetylase inhibitor compounds capable of inhibiting HDLP, HDAC family members and HDLP-related molecules. The invention also relates to nucleic acids encoding a mutant HDLP which facilitates the determination of the three-dimensional structure of HDLP in the presence of a zinc atom.

CRYSTAL STRUCTURE OF A DEACETYLASE AND INHIBITORS THEREOF

5

This application claims priority of U.S. Provisional Application No. 60/152,753, filed September 8, 1999, the contents of which are hereby incorporated by reference.

10

This invention has been made with government support under National Institutes of Health Grant No. RO1 CA-65698. Accordingly, the U.S. Government may have certain rights in the invention.

15

20

Throughout this application, various publications are referenced by author, date and citation. The disclosures of these publications in their entireties are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.

Introduction

25 The present invention relates to a histone deacetylase homologue from the hyperthermophilic bacterium Aquifex aeolicus, HDLP (histone deacetylase like protein; also known as AcuCl), which shares 35.2 % sequence identity with human histone deacetylase (HDACl), that can be co-crystallized with an inhibitory ligand, and more particularly, to the detailed crystallographic data obtained from said co-crystallization which is disclosed herein. The invention also relates to methods of using the crystal structure and x-ray crystallographic coordinates of the apo-HDLP and

- 2 -

inhibitor-bound HDLP to design, isolate and screen compounds which bind to and inhibit the active site of HDLP and HDLP-related proteins, such as those proteins belonging to the HDAC family, including HDAC1.

5

10

15

Background of the Invention

The reversible modification of histones by acetylation is associated with changes in nucleosome conformation and chromatin structure, and plays an important role in the regulation of gene expression (reviewed in Davie and Chadee, 1998, J. Cell Biochem. Suppl. 30-31:203-213). The histone acetylase and deacetylase enzymes that carry out these modifications are involved in many cellular processes such as cell cycle progression and differentiation, and their deregulation is associated with several types of human cancer (reviewed in Kouzarides, 1999, Curr. Opin. Genet. Dev. 9:40-48; Hassig et al., 1997, Chem. Biol. 4:783-789; Fenrick and Heibert, 1998, J. Cell. Biochem. Suppl. 30-31:194-202).

20

25

30

Recently, several experimental antitumor compounds, such as trichostatin A (TSA), trapoxin, suberoylanilide hydroxamic acid (SAHA), and phenylbutyrate have been shown to act, at least in part, by inhibiting histone deacetylases. Richon et al., 1998, Proc. Natl. Acad. Sci., USA 95:3003-3007; Yoshida et al., 1990, J. Biol. Chem. 265:17174-17179; Kijima et al., 1993, J. Biol. Chem. 268:22429-22435. Additionally, diallyl sulfide and related molecules (Lea et al., 1999, Int. J. Oncol. 2:347-352), oxamflatin (Kim et al., 1999, Oncogene 15:2461-2470), MS-27-275, a synthetic benzamide derivative (Saito et al., 1999, Proc. Natl. Acad. Sci. 96:4592-4597),

butarate derivatives (Lea and Tulsyan, 1995, Anticancer Res. 15:879-883), FR901228 (Nokajima et al., 1998, Exp. Cell Res. 241:126-133), depudecin (Kwon et al., 1998, Proc. Natl. Acad. Sci. USA 95:3356-3361) and m-carboxysinnamic acid bishydroxamide (CBHA; Richon et al., Proc. Natl. Acad. Sci. USA 95:3003-3007) have been shown to inhibit histone deacetylases. In vitro, these compounds can inhibit the growth of fibroblast cells by causing cell cycle arrest in the G1 and G2 phases (Richon et al., 1996, Proc. Natl. Acad. Sci. USA 93:5705-5708; Kim et al., 1999, 18:2461-2470; Yoshida et al., 1995, Bioessays 17:423-430; Yoshida & Beppu, 1988, Exp. Cell. Res. 177:122-131), and can to the terminal differentiation and loss transforming potential of a variety of transformed cell Richon et al., 1996, Proc. Natl. Acad. Sci. USA 93:5705-5708; Kim et al., 1999, Oncogene 18:2461-2470; Yoshida et al., 1987, Cancer Res. 47:3688-3691. In vivo. phenylbutyrate is effective in the treatment of acute promyelocytic leukemia in conjunction with retinoic acid. Warrell et al., 1998, J. Natl. Cancer Inst. 90:1621-1625. SAHA is effective in preventing the formation of mammary tumors in rats, and lung tumors in mice. Desai et al., 1999, Proc. AACR 40: abstract #2396; Cohen et al., Cancer Res., submitted.

25

30

5

10

15

20

Histone deacetylases catalyze the removal of acetyl groups from the ε -amino groups of lysine residues clustered near the N-terminus of nucleosomal histones, and this process is associated with transcriptional repression (reviewed in Struhl, 1998, *Genes Dev.* 12:599-606). Deletion of the yeast histone deacetylase gene, rpd3, or its pharmacological

WO 01/18045

5

25

30

inactivation with trichostatin A reduces the transcriptional repression in a subset of promoters, such as those of Ume6-regulated genes. Kadosh & Struhl, 1998, Mol. Cell. Biol. 18:5121-5127. This is accompanied by the increased acetylation of H4 histones in the repressed promoter and its vicinity, but has no effect on histones at promoter distal regions. Kadosh & Struhl, 1998, Mol. Cell. Biol. 18:5121-5127; Rundlett et al., 1998, Nature 392:831-835.

Histone deacetylases are recruited to specific promoters by associating with DNA-binding transcriptional repressors, either directly or through co-repressors that bridge the deacetylase to the transcriptional repressors. For example, the Mad and Ume6 repressors bind to the co-repressor Sin3A (Laherty et al., 1997, Cell 89:349-356; Hassig et al., 1997, Cell 89:341-347; Kadosh & Struhl, 1997, Cell 89:365-371), and the nuclear receptors bind N-CoR and the related SMRT co-repressors. Nagy et al., 1997, Cell 89:373-380; Alland et al, 1997, Nature 387:49-55; Heinzel et al, 1997, Nature 387:43-48.

The deregulation of histone deacetylase recruitment appears to be one of the mechanisms through which these enzymes contribute to tumorigenesis. In acute promyelocytic leukemia (APL), chromosomal translocations fuse the retinoic acid receptor- α (RAR α) to either PLZF or to PML. These fusion oncoproteins have aberrant transcriptional repression activity resulting, in part, through the recruitment of a co-repressor and, in turn, HDACs. Grignani et al, 1998, Nature 391:815-818; Lin et al., 1998, Nature 391:811-814. Treatment of PLZF-RAR α APL cells with TSA enhances their

- 5 -

responsiveness to retinoic acid-induced differentiation. Grignani et al, 1998, Nature 391:815-818; Lin et al., 1998, Nature 391:811-814.

5 The histone deacetylases comprise a large family of proteins, conserved from yeast to man, and are divided into two related classes. Class I is characterized by human HDAC1, 2, 3 (Taunton et al., 1996, Science 272:408-411; Yang et al., 1996, Proc. Natl. Acad. Sci. USA 93:12845-12850; Emiliani et al., 1998, Proc. Natl. Acad. Sci. USA 95:2795-10 2800), and yeast RPD3 (Videl & Gaber, 1991, Mol. Cell. Biol. 11:6317-6327), and class II by the human HDAC4, 5, 6 (Grozinger et al., 1999, Proc. Natl. Acad. Sci. USA 96:4868-4873; Fischle, et al., 1999, J. Biol. Chem. <u>274</u>:11713-15 11720), and yeast HDA1 (Rundlett et al., 1996, Proc. Natl. Acad. Sci. USA 93:14503-14508). The two classes share a ~390 amino acid region of sequence similarity, comprising the deacetylase core, but are divergent outside this region. The histone deacetylase genes belong to an even larger 20 superfamily (Leipe & Landsman, 1997, Nucleic Acids Res. <u>25</u>:3693-3697) that contains the prokaryotic acetoin utilization proteins (AcuC; 28.1% sequence identity to HDAC1), and the prokaryotic acetylpolyamine amidohydrolases (APAH; 15.0 % sequence identity to HDAC1). The enzymatic activity of AcuC is not clear, but its disruption reduces 25 the ability of B. subtilis to breakdown acetoin and utilize it as a carbon source. Grundy et al., 1993, Mol. Microbiol. 10:259-271. APAHs catalyze the deacetylation of polyamines by cleaving a non-peptide amide bond (reviewed in Leipe & 30 Landsman, 1997, Nucleic Acids Res. 25:3693-3697).

- 6 -

It is useful to address the questions of how HDACs and HDACrelated proteins catalyze the deacetylation of histones and how the above-referenced compounds, particularly those compounds with antitumor activity, inhibit this activity in order to better understand the mechanism of inhibition of HDACs and to facilitate discovery of additional useful compounds which may inhibit this activity. To this end, the present invention has determined the three dimensional structure of a HDAC1-like protein from the thermophilic bacterium Aquifex aeolicus, herein after HDLP. The determination of the nucleic acid coding sequence of HDLP was described by Deckert et al., 1998, Nature 392:353-358. The encoded 375 residue protein, whose sequence was determined from the nucleic acid encoding sequence, shares 35.2% amino acid sequence identity with HDAC1, deacetylates histones in vitro, and is inhibited by TSA, SAHA and several other HDAC inhibitors. The determination of the threedimensional structure of HDLP is useful in the design, identification and screening of new HDAC family inhibitory compounds which are useful for the inhibition of cell growth both in vivo and in vitro.

Summary of the Invention

5

10

15

20

25

30

In general, it is the object of the present invention to provide detailed three-dimensional structural information for a family of proteins known as histone deacetylases (HDAC), and particularly a homologue from the hyperthermophilic bacterium Aquifex aeolicus HDLP (histone deacetylase-like protein) which shares 35.2 % sequence identity with human histone deacetylase (HDAC1). It is also an object of the present invention to provide three-

- 7 -

dimensional structural information of an HDLP bound to an inhibitory compound.

In one embodiment of the invention, three-dimensional structure information is obtained from a crystal of wildtype HDLP (SEQ ID NO:1) (the nucleic acid encoding wild-type HDLP is SEQ ID NO:2). In a further embodiment of the invention, three-dimensional information is obtained from a mutant HDLP comprising two mutations (1) cysteine 75 to a serine and (2) cysteine 77 to a serine (Cys75Ser/Cys77Ser double mutant; SEQ ID NO:3) (the nucleic acid encoding HDLP Cys75Ser/Cys77Ser double mutant is SEQ ID NO:4). The HDLP mutant of the present invention facilitates the determination of three-dimensional structural information of HDLP bound to a zinc atom at its zinc atom-binding site.

5

10

15

20

25

30

In a preferred embodiment of the invention, the threedimensional structural information is obtained from a cocrystal of a protein-inhibitor compound complex that comprises HDLP or HDLP Cys75Ser/Cys77Ser double mutant and trichostatin A (TSA). In another preferred embodiment of the invention the three-dimensional structural information is obtained from a co-crystal of a protein-inhibitor compound complex that comprises HDLP HDLP or Cys75Ser/Cys77Ser double mutant and suberoylanilide hydroxamic acid (SAHA). Any HDLP or HDLP-related protein (e.g. \mbox{HDAC}) inhibitor compound that may be co-crystallized with HDLP may be used to form a co-crystal of the present invention.

The protein crystals and protein-inhibitory complex cocrystals of the present invention diffract to a high

- 8 -

resolution limit of at least equal to or greater than 4 angstrom (Å). In a preferred embodiment, the protein crystals and protein-inhibitory complex co-crystals of the present invention diffract to a high resolution limit of greater than 2.5 Å.

5

10

15

20

A crystal of the present invention may take a variety of forms, all of which are contemplated by the present invention. In a preferred embodiment, the crystal has a space group of C2 with one molecule in the asymmetric unit and with unit dimensions of a = 51.4 Å, b = 93.8 Å, 78.7 Å and $\beta = 96.9^{\circ}$ (see, e.g., Example 2, below). another preferred embodiment, the crystal has a space group of P2₁2₁2₁ with two molecules in the asymmetric unit and with unit dimensions of a = 53.4 Å, b = 94.4 Å, c = 156.3 Å (see, e.g., Example 2, below). The HDLP structure comprises a parallel β sheet with α helices packing against both faces. At one end of the β sheet, the HDLP has a narrow, tube-like pocket formed by several well-ordered loops. The walls of the pocket are lined with hydrophobic residues and there is a zinc binding site and several polar side chains at the bottom of the pocket. The inhibitory compounds of the present invention bind in the pocket.

The three-dimensional structural information obtained from crystals of HDLP, HDLP Cys75Ser/Cys77Ser double mutant, HDLP Cys75Ser/Cys77Ser double mutant comprising a zinc atom, HDLP comprising an inhibitory compound such as TSA or SAHA, and HDLP Cys75Ser/Cys77Ser double mutant comprising an inhibitor compound such as TSA or SAHA may be employed to solve the structure of any HDLP-related protein (e.g. HDAC) crystal,

- 9 -

or any mutant HDLP-related protein and particularly any wild type or mutant of HDLP-related protein complexed with a ligand, including a substrate or inhibitor compound. If the crystals are in a different space group than the known structure, molecular replacement may be employed to solve the structure, or if the crystals are in the same space group, refinement and difference fourier methods may be employed. The structure of HDLP-related proteins (e.g. HDAC1) comprise no greater than a 2.0 Å root mean square deviation (rmsd) in the positions of the $C\alpha$ atoms for at least 50% or more of the amino acids of the full-length HDLP structure.

5

10

15

20

25

30

The present invention also provides a nucleic acid molecule encoding an HDLP Cys75Ser/Cys77Ser double mutant having the amino acid sequence of SEQ ID NO:3 and the nucleic acid sequence of SEQ ID NO:4. It is also contemplated by the invention that mutations be made in HDLP-related proteins at cysteine residues, as with the Cys75Ser/Cys77Ser double mutant, in order to facilitate the determination of the structure of said proteins bound to a zinc atom. Additionally, the present invention provides expression vectors which comprise the nucleic acid molecule encoding an HDLP Cys75Ser/Cys77Ser double mutant encoded by the sequence represented by SEQ ID NO:4 operatively linked to expression control sequences.

It is another object of the present invention to provide methods for the design, identification and screening of potential inhibitor compounds of the HDLP/HDAC family. In a preferred embodiment the method for the rational design,

screening of potential inhibitor identification and compounds for HDLP and HDLP-related proteins (e.g. HDACs) comprising deacetylase activity comprises the steps of: (a) using a three-dimensional structure of an HDLP as defined by the atomic coordinates of the present invention; employing said three-dimensional structure to design or select said potential inhibitor compound; (c) synthesizing and/or selecting said potential inhibitor; (d) contacting said potential inhibitor compound with said enzyme in the presence of acetylated substrate; and (e) determining the percent inhibition of deacetylase activity to determine the inhibitory activity of said potential inhibitor compound. In a further preferred embodiment, the binding properties of said rationally designed inhibitory compound may be determined by a method comprising the steps of: (a) forming a complex comprising said inhibitory compound and HDLP or a HDLP-related protein, (b) co-crystallizing said inhibitory compound-HDLP complex; (c) determining said dimensional structure of said co-crystal through molecular replacement or refinement and difference fourier with the molecular coordinates of HDLP as defined by the present invention; and (d) analyzing the three-dimensional structure to determine the binding characteristics of said potential inhibitor compound.

25

20

5

10

15

It is a further object of the present invention to identify a defined class of HDLP/HDAC family inhibitor compounds. The HDLP/HDAC family inhibitor compounds of the present invention are represented by formula (I):

(I)

5

wherein X comprises a cap group which binds to at least one amino acid selected from the group consisting of proline and leucine; Y comprises an aliphatic chain group which binds to at least one amino acid selected from the group consisting of leucine, phenylalanine and glycine; and Z comprises and active site binding group which binds to at least one amino acid selected from the group consisting of aspartic acid, tyrosine and histidine and may further bind to a zinc atom.

15

10

20

25

30

- 12 -

Brief Description of the Drawings

Figure 1 is a table listing the statistics from the X-ray crystallographic analysis of a HDLP crystal, a HDLP-TSA cocrystal, and a HDLP-SAHA co-crystal.

5

Figure 2 shows an alignment of various HDAC homologues with percent sequence identity depicted.

Figure 3 shows a graph indicating the histone deacetylase

10 activity of HDLP and HDAC1 and the inhibition of HDLP and

HDAC1 by the inhibitors TSA and HC-toxin.

Figure 4 shows (A & B) a schematic representation of the $HDLP-Zn^{2+}-TSA$ complex in two approximately orthogonal views, (C) a topology diagram of HDLP indicating the regions of homology with HDAC1, and (D) a close-up schematic representation of the $HDLP-Zn^{2+}-SAHA$ complex.

Figure 5 shows (A) a schematic representation of a slice through a surface representation of HDLP with the pocket internal cavities and position of the β sheet indicated, (B) a schematic representation of a close-up view of the active site looking down into the pocket in an orientation similar to Figure 4B.

25

30

15

Figure 6 shows (A) a space-filling representation of TSA in the active site pocket, (B) a closeup stereo view of the structure of the $HDLP-ZN^{2+}-TSA$ complex in a similar orientation to Figure 4B, and (C) a schematic representation of the HDLP-TSA interactions.

- 13 -

Figure 7 shows (A) a schematic representation of the regions of homology shared between HDLP and HDAC1 in an orientation similar to that of Figure 4A, and (B) a detailed schematic representation of the homology shared in the pocket and internal cavity between HDLP and HDAC1 in an orientation similar to that of Figure 4B.

Figure 8 shows a schematic representation of the proposed catalytic mechanism for the deacetylation of acetylated lysine.

Figure 9 shows a schematic representation of a space filling diagram showing the conserved amino acids in the active site and nearby grooves.

15

30

10

5

Figure 10 is the nucleic acid sequence of HDLP from Aquifex aeolicus (SEQ ID NO. 2).

Figure 11 is the amino acid sequence of full length HDLP from Aquifex aeolicus (SEQ ID NO. 1).

Figure 12 is the nucleic acid sequence of the HDLP active site mutant Tyr297Phe (SEQ ID NO. 6).

Figure 13 is the amino acid sequence of the HDLP active site mutant Tyr297Phe (SEQ ID NO. 5).

Figure 14 is the nucleic acid sequence of a double mutant of HDLP from Aquifex aeolicus comprising a Cys75Ser and Cys77Ser mutation (SEQ ID NO. 4).

- 14 -

Figure 15 is the amino acid sequence of a double mutant of HDLP from Aquifex aeolicus comprising a Cys75Ser and Cys77Ser mutation (SEQ ID NO. 3).

Figure 16-1 to 16-49 lists the atomic structure coordinates for HDLP as derived by X-ray diffraction from a crystal of HDLP.

Figure 17-1 to 17-49 lists the atomic structure coordinates

for HDLP Cys75Ser/Cys77Ser double mutant comprising a zinc

atom in the active site as derived by X-ray diffraction from

a crystal of the HDLP Cys75Ser/Cys77Ser double mutant.

Figure 18-1 to 18-99 lists the atomic structure coordinates

for HDLP Cys75Ser/Cys77Ser double mutant as derived by X-ray
diffraction from a co-crystal of HDLP complexed with TSA.

Figure 19-1 to 19-48 lists the atomic structure coordinates for HDLP Cys75Ser/Cys77Ser double mutant as derived by X-ray diffraction from a co-crystal of HDLP complexed with SAHA.

- 15 -

Detailed Description of the Invention

The present invention provides crystals of a histone deacetylase (HDAC) homologue grown in the presence and absence of a compound capable of inhibiting the histone deacetylase activity of said HDAC homologue. As referred to herein, a HDAC homologue (as well as a HDLP-related protein) is any protein molecule having (a) greater than 15% sequence identity to over the 375 amino acid residues of HDLP; (b) having no more than twenty insertions or deletions for a total of no more than 100 amino acids; and (c) deacetylase activity. Sequence identity is calculated by the program DNAstar™ using the identity matrix weighing scheme clustal method (DNAstar program, Madison, WI).

A HDLP/HDAC inhibitor compound, as used herein, refers to any compound represented by Formula (I):

(I)

20

25

30

5

10

wherein X comprises a cap group which binds to at least one amino acid selected from the group consisting of tyrosine, proline and leucine; Y comprises an aliphatic chain group from about 5 to about 10 Å, preferably 7Å, which binds to at least one amino acid selected from the group consisting of phenylalanine and glycine; and Z comprises a active site binding group which binds to at least one amino acid selected from the group consisting of aspartic acid, tyrosine and histidine and which may further bind to a zinc atom. The HDAC inhibitory compounds of the present

- 16 -

invention can inhibit greater than 50% of the histone deacetylase activity of a HDAC homologue or a HDLP-related protein.

To grow the crystals of the present invention, the HDAC and HDAC-inhibitory compound complex are purified to greater than 80% total protein and more preferably purified to greater than 90% total protein. For expression and purification purposes, the full-length HDLP (Genbank accession number AE000719) may be subcloned from Aquifex aeolicus chromosomal DNA preparation by the polymerase chain reaction (PCR) and inserted into an expression vector.

15

20

25

30

A large number of vector-host systems known in the art may be used. Possible vectors include, but are not limited to, plasmids or modified viruses, but the vector system must be compatible with the host cell used. Examples of vectors include E. coli bacteriophages such as lambda derivatives, or plasmids such as pBR322 derivatives or pUC plasmid derivatives, e.g., pGEX vectors (Amersham-Pharmacia, Piscataway, New Jersey), pET vectors (Novagen, Madison, WI), pmal-c vectors (Amersham-Pharmacia, Piscataway, New Jersey), pFLAG vectors (Chiang and Roeder, 1993, Pept. Res. 6:62-64), baculovirus vectors (Invitrogen, Carlsbad, CA; Pharmingen, San Diego, CA), etc. The insertion into a cloning vector can, for example, be accomplished by ligating the DNA fragment into a cloning vector which has complementary cohesive termini, by blunt end ligation if no complementary cohesive termini are available or by through nucleotide linkers using techniques standard in the art. E.g., Ausubel et al. (eds.), Current Protocols in Molecular

- 17 -

Biology, (1992). Recombinant vectors comprising the nucleic acid of interest may then be introduced into a host cell compatible with the vector (e.g. E. coli, insect cells, mammalian cells, etc.) via transformation, transfection, infection, electroporation, etc. The nucleic acid may also be placed in a shuttle vector which may be cloned and propagated to large quantities in bacteria and then introduced into a eukaryotic cell host for expression. The vector systems of the present invention may provide expression control sequences and may allow for the expression of proteins in vitro.

In a preferred embodiment, the full length HDLP (SEQ ID NO:2) is subcloned from Aquifex aeolicus chromosomal DNA preparation into pGEX4T3 (Amersham-Pharmacia, Piscataway, New Jersey). In order to construct a double mutant comprising a Cys75Ser and Cys77Ser mutation (SEQ ID NO:4), and to construct the HDLP active site mutant Tyr297Phe (SEQ ID NO:5 and SEQ ID NO:6), PCR site directed mutagenesis may be employed with verification by DNA sequencing by methods known to those skilled in the art (see, e.g., Example 1 below). The mutants of the present invention may be subcloned into a suitable expression vector and introduced into a host cell for protein production, as described above.

25

30

5

10

15

20

The HDLP nucleic acids of the present invention may be subcloned into an expression vector to create an expression construct such that the resultant HDLP molecule which is produced comprises a fusion protein wherein said fusion protein comprises a tag for ease of purification. As referred to herein, a "tag" is any additional amino acids

which are provided in a protein either c-terminally, nterminally or internally for the ease of purification, for the improvement of production or for any other purpose which may facilitate the goals of the present invention (e.g. to achieve higher levels of production and/or purification). Such tags include tags known to those skilled in the art to be useful in purification such as, but not limited to, his tag, glutathione-s-transferase tag, flag tag, mbp (maltose binding protein) tag, etc. In a preferred embodiment, the wild-type and mutant HDLPs of the present invention are tagged with glutathione-s-transferase (see Example 1 below). In another preferred embodiment, HDAC1 is flag tagged (see Example 1 below). Such tagged proteins may also be engineered to comprise a cleavage site, such as a thrombin, enterokinase or factor X cleavage site, for ease of removal of the tag before, during or after purification. Vector systems which provide a tag and a cleavage site for removal of the tag are particularly useful to make the expression constructs of the present invention.

20

25

30

15

5

10

The tagged HDLPs and HDACs of the present invention may be purified by immuno-affinity or conventional chromatography, including but not limited to, chromatography employing the (Amersham-Pharmacia, glutathione-sepharose™ following: Piscataway, New Jersey) or an equivalent resin, nickel or cobalt-purification resins, anion exchange chromatography, cation exchange chromatography, hydrophobic resins, gel resin, reverse filtration, antiflag epitope chromatography, etc. After purification, the HDLP and HDLPinhibitor compound complex may be concentrated to greater than 1 mg/ml for crystallization purposes. In a preferred HDLP-inhibitor complexes embodiment HDLP and

- 19 -

concentrated to greater than 10 mg/ml for crystallization and in a particularly preferred embodiment, HDLP and HDLP-inhibitor complexes are concentrated to greater than 20 mg/ml.

5

10

15

20

25

30

In order to determine whether the purified HDLPs of the present invention demonstrate histone deacetylase activity, the purified HDLPs and also any HDLP-related protein may be assayed by any method known to those skilled in the art for the determination of said activity. In a preferred embodiment, the purified HDLPs of the present invention are incubated in the presence of [3H]acetyl-labeled histone substrate (Carmen et al., 1996, J. Biol. Chem. 271:15837-15844) in a buffer suitable for detection of histone deacetylase activity (see Example 3 below); stopping the reaction; extracting the released acetate and measuring said released acetate, as described by Henzel et al. (J. Biol. Chem. 266:21936-21942 (1991); Example 3 below). preferred embodiment, the HDLPs of the present invention are inclubated in the presence of ZnCl2 in order to obtain histone deacetylase activity therefrom (Example 3 below).

In another embodiment, the crystals of the present invention comprise purified wild-type HDLP (SEQ ID NO:1) and are grown at room temperature by the hanging-drop vapor-diffusion method from a crystallization solution comprising one or more precipitants selected from the group consisting of isopropanol, polyethylene glycol, and tert butanol (see Example 2 below). The crystallization solution may further comprise one or more salts including salts selected from the group consisting of NaCl and KCl, and one or more buffers

- 20 -

including buffers selected from the group consisting of Tris (tris(hydroxymethyl)aminomethane and bis-tris propane-Cl (1,3-bis[tris(hydroxymethyl)methyl-amino] propane) (see Example 2 below). The pH of the crystallization solution is preferably between pH 5 to 9, although other pH values are also contemplated by the present invention (see Example 2 below).

/

Any crystallization technique known to those skilled in the art may be employed to obtain the crystals of the present invention, including, but not limited to, batch crystallization, vapor diffusion (either by sitting drop or hanging drop) and micro dialysis. Seeding of the crystals in some instances may be required to obtain X-ray quality crystals. Standard micro and/or macro seeding of crystals may therefore be used.

The crystals of the present invention may form in the space group C2 with one molecule in the asymmetric unit and with unit dimensions of a=51.4 Å, b=93.8 Å, c=78.7 Å and $\beta=96.9^{\circ}$ (see Example 2 below). The crystals of the present invention may also form in the space group $P2_12_12_1$ with two molecules in the asymmetric unit and with unit dimensions of a=53.4 Å, b=94.4 Å, c=156.3 Å (see Example 2 below). However, the present invention contemplates crystals which form in any space group including, but not limited to, C2, $P2_1$, $P2_12_12_1$, $P3_121$, $P4_32_12_1$, and $C222_1$. The crystals diffract to a resolution greater than 4 Å, preferably greater than 2.5 Å.

30

25

5

10

15

20

To collect diffraction data from the crystals of the present

5

10

15

20

25

30

- 21 -

the crystals may be flash-frozen in the invention, crystallization buffer employed for the growth of said crystals, however with preferably higher precipitant concentration (see, e.g., Example 2 below). For example, but not by way of limitation, if the precipitant used was 28% PEG 1500, the crystals may be flash frozen in the same crystallization solution employed for said crystal growth wherein the concentration of the precipitant is increased to 35% (see Example 2 below). If the precipitant is not a sufficient cryoprotectant (i.e. a glass is not formed upon flash-freezing), cryoprotectants (e.g. glycerol, molecular weight PEGs, alcohols, etc) may be added to the solution in order to achieve glass formation upon flashfreezing, providing the cryoprotectant is compatible with preserving the integrity of the crystals. The flash-frozen crystals are maintained at a temperature of less than -110°C and preferably less than -150°C during the collection of the crystallographic data by X-ray diffraction. diffraction data may be processed with DENZO and SCALEPACK (Otwinowski & Minor, 1997, Method Ensemble. 276:307-326) but any method known to those skilled in the art may be used to process the X-ray diffraction data.

In order to determine the atomic structure of HDLP according to the present invention, multiple isomorphous replacement (MIR) analysis, model building and refinement may be performed. For MIR analysis, the crystals may be soaked in heavy-atoms to produce heavy atom derivatives necessary for MIR analysis. As used herein, heavy atom derivative or derivitization refers to the method of producing a chemically modified form of a protein or protein complex

5

10

15

20

25

crystal wherein said protein is specifically bound to a heavy atom within the crystal. In practice a crystal is soaked in a solution containing heavy metal atoms or salts, or organometallic compounds, e.g., lead chloride, gold cyanide, thimerosal, lead acetate, uranyl acetate, mercury chloride, gold chloride, etc, which can diffuse through the crystal and bind specifically to the protein. location(s) of the bound heavy metal atom(s) or salts can be determined by X-ray diffraction analysis of the soaked This information is used to generate MIR phase crystal. information which is used to construct the three-dimensional structure of the crystallized HDLPs and HDLP-related In a preferred proteins of the present invention. embodiment, the heavy atoms comprise thimerosal, KAu(CN)2 and Pb(Me)3OAc (see Example 2 below). The MIR phases may be calculated by any program known to those skilled in the art and preferably with the program MLPHARE (The CCP4 suite: Programs for computational crystallography, 1994, Crystallogr. D. 50:760-763) and may also use the anomalous diffraction signal from the thimerosal derivative. preferred embodiment, the MIR phases were calculated at 2.5 A and have a mean figure of merit of 0.55 (see Figure 19 and The phases may be improved where Example 2 below). necessary by solvent flattening by methods known to those skilled in the art including, but not limited to, through the use of the program DM (The CCP4 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D <u>50</u>:760-763).

30 Thereafter, an initial model of the three-dimensional structure may be built using the program O (Jones et al.,

- 23 -

1991, Acta Crystallogr. A <u>47</u>:110-119). The interpretation and building of the structure may be further facilitated by use of the program CNS (Brunger et al., 1998, Acta Crystallogr. D <u>54</u>:905-921).

5

10

15

For the determination of the HDLP-inhibitor compound complex structure, if the space group of the HDLP-inhibitor compound complex crystal is different, molecular replacement may be employed using a known structure of apo-HDLP (as referred to herein, apo-HDLP or apo-HDAC is the enzyme which is not complexed with an inhibitor compound) or any known HDLP/inhibitor complex structure whose structure may be determined as described above and below in Example 2. If the space group of the HDLP-inhibitor compound crystals is the same, then rigid body refinement and difference fourier may be employed to solve the structure using a known structure of apo-HDLP (as referred to herein, apo-HDLP or apo-HDAC is the enzyme which is not complexed with an inhibitor compound) or any known HDLP/inhibitor complex structure.

. 20

25

30

The term "molecular replacement" refers to a method that involves generating a preliminary model of the three-dimensional structure of the HDLP crystals of the present invention whose structure coordinates are unknown prior to the employment of molecular replacement. Molecular replacement is achieved by orienting and positioning a molecule whose structure coordinates are known (in this case the previously determined apo-HDLP) within the unit cell as defined by the X-ray diffraction pattern obtained from an HDLP or HDLP-related protein crystal whose structure is

unknown so as to best account for the observed diffraction pattern of the unknown crystal. Phases can then be calculated from this model and combined with the observed amplitudes to give an approximate Fourier synthesis of the structure whose coordinates are unknown. This in turn can be subject to any of several forms of refinement to provide a final, accurate structure.

5

10

15

20

25

30

Any method known to the skilled artisan may be employed to determine the structure by molecular replacement. example, the program AMORE (The CCP4 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D. 50:760-763) may be employed to determine the structure of an unknown histone deacetylase +/- an inhibitor by molecular replacement using the apo-HDLP coordinates (Figure 16). For the structure determination of the inhibitory compound TSA, the structure of TSA was obtained from the Cambridge Structural (Refcode TRCHST. Database http://www.ccdc.cam.ac.uk >>) may be employed to define the stereochemical restraints used in the refinement with the program CNS (Brunger et al., 1998, Acta Crystallogr. D <u>54</u>:905-921).

The three-dimensional structural information and the atomic coordinates associated with said structural information of HDLP are useful for solving the structure of crystallized proteins which belong to the HDAC family by molecular replacement. Similarly, any structure of a crystallized protein which is thought to be similar in structure based on function or sequence similarity or identity to HDLP may be solved by molecular replacement with the HDLP structural

information of the present invention. The structure of HDLP-related proteins as determined by molecular replacement as described above and in Example 2 below, comprise a root mean square deviation (rmsd) of no greater than 2.0 Å in the positions of $C\alpha$ atoms for at least 50% or more of the amino acids of the structure over the 375 residues of full-length HDLP. Such a rmsd may be expected based on the amino acid sequence identity. Chothia & Lesk, 1986, Embo J. $\underline{5}$:823-826.

5

10

15

20

25

30

The refined three-dimensional HDLP structures of the present invention, specifically apo-HDLP, Cys75Ser/Cys77Ser double mutant HDLP comprising a zinc atom in the active site, HDLP/TSA complex comprising a zinc atom in the active site, and HDLP/SAHA complex comprising a zinc atom in the active site, are represented by the atomic coordinates set forth in Figures 16 to 19 respectively. The refined model for apo-HDLP comprising amino acids 1-375 consists of wild-type HDLP residues 2 to 373 with residues 1, 374 and 375 not modeled and presumed disordered and was determined to a resolution of 1.8 Å. Similarly, the refined model Cys75Ser/Cys77Ser double mutant HDLP comprising a zinc atom in the active site also consists of residues 2 to 373 with residues 1, 374 and 375 not modeled and presumed disordered and was determined to a resolution of 2.0 Å. The refined model for the HDLP/TSA complex comprising a zinc atom in the active site consists of the Cys75Ser/Cys77Ser double mutant HDLP residues 2 to 373 with residues 1, 374 and 375 not modeled and presumed disordered, has TSA in the binding pocket and was determined to a resolution of 2.1 Å. HDLP/SAHA complex is similar to the HDLP/TSA complex but has SAHA in the binding pocket and was determined to a resolution of 2.5 Å.

For the purposes of further describing the structure of HDLP and HDLP-related proteins, including, but not limited to, HDACs, from the data obtained from the HDLP crystals of the present invention, the definition of the following terms is provided:

5

10

15

20

30

The term "\$\beta\$ sheet" refers to two or more polypeptide chains (or β strands) that run alongside each other and are linked in a regular manner by hydrogen bonds between the main chain C=O and N-H groups. Therefore all hydrogen bonds in a beta-sheet are between different segments of polypeptide. Most β -sheets in proteins are all-parallel interiors) or all-antiparallel (one side facing solvent, the Hydrogen bonds in other facing the hydrophobic core). antiparallel sheets are perpendicular to the chain direction and spaced evenly as pairs between strands. Hydrogen bonds in parallel sheets are slanted with respect to the chain direction and spaced evenly between strands.

The term "\alpha helix" refers to the most abundant helical conformation found in globular proteins. The average length of an α helix is 10 residues. In an α helix, all amide protons point toward the N-terminus and all carbonyl oxygens point toward the C-terminus. The repeating nature of the phi, psi pairs ensure this orientation. Hydrogen bonds 25 within an α helix also display a repeating pattern in which the backbone C=O of residue X (wherein X refers to any amino acid) hydrogen bonds to the backbone HN of residue X+4. The α helix is a coiled structure characterized by 3.6 residues per turn, and translating along its axis 1.5 Å per amino acid. Thus the pitch is 3.6x1.5 or 5.4 Å. The screw sense of alpha helices is always right-handed.

- 27 -

The term "loop" refers to any other conformation of amino acids (i.e. not a helix, strand or sheet). Additionally, a loop may contain bond interactions between amino acid side chains, but not in a repetitive, regular fashion.

5

10

15

Amino acid residues in peptides shall herein after be abbreviated as follows: Phenylalanine is Phe or F; Leucine is Leu or L; Isoleucine is Ile or I; Methionine is Met or M; Valine is Val or V; Serine is Ser or S; Proline is Pro or P; Threonine is Thr or T; Alanine is Ala or A; Tyrosine is Tyr or Y; Histidine is His or H; Glutamine is Gln or Q; Asparagine is Asn or N; Lysine is Lys or K; Aspartic Acid is Asp or D; Glutamic Acid is Glu or E; Cysteine is Cys or C; Tryptophan is Trp or W; Arginine is Arg or R; and Glycine is Gly or G. For further description of amino acids, please refer to Proteins: Structure and Molecular Properties by Creighton, T.E., W.H. Freeman & Co., New York 1983.

20

25

30

The term "positively charged amino acid" refers to any amino acid having a positively charged side chain under normal physiological conditions. Examples of positively charged amino acids are Arg, Lys and His. The term "negatively charged amino acid" refers to any amino acid having a negatively charged side chain under normal physiological conditions. Examples of negatively charged amino acids are Asp and Glu. The term "hydrophobic amino acid" refers to any amino acid having an uncharged, nonpolar side chain that is relatively insoluble in water. Examples of hydrophobic amino acids are Ala, Leu; Ile, Gly, Val, Pro, Phe, Trp and Met. The term "hydrophilic amino acid" refers to any amino acid having an uncharged, polar side chain that is

- 28 -

relatively soluble in water. Examples of hydrophilic amino acids are Ser, Thr, Tyr, Asp, Gln, and Cys. The term "aromatic amino acid" refers to any amino acid comprising a ring structure. Examples of aromatic amino acids are His, Phe, Trp and Tyr.

The term "charge relay system" refers to a His-Asp arrangement as described by Fersht & Sperling, 1973, J. Mol. Biol. 74:137-149; Blow et al., 1969, Nature 221:337-340.

10

15

20

25

30

5

from the three-dimensional The information obtained structures of the present invention reveal that HDLP has a single-domain structure that belongs to the open α/β class of folds (see, e.g., Branden, 1980, Q. Rev. Biophys. 13:317-38). Two orthogonal views of the overall threedimensional structure of HDLP are depicted in Figure 4A and The HDLP structure has a central eight-stranded parallel β sheet (strands arranged as $\beta 2 - \beta 1 - \beta 3 - \beta 8 - \beta 7 - \beta 4 - \beta 5 - \beta 6 - \beta 7 - \beta 6 - \beta 7 - \beta 6 - \beta 7 - \beta 7 - \beta 7 - \beta 8 - \beta 7 - \beta 7$ and sixteen α helices (labeled α 1 through α 16 respectively). See Figure 4C. Four of the helices pack on either face of the β sheet (α 7, α 8, α 9, α 10 and α 11, α 12, α 13, α 14) forming the core α/β structure characteristic of this class of folds. Most of the remaining eight helices are positioned near one side of the β sheet, near stands β 2β1-β3-β8. Large, well defined loops (Loops L1-L7; Figure 4C) originate from the C-terminal ends of the β -strands. The extra helices and the large L1-L7 loops are associated with a significant extension of the structure beyond the core α/β motif. This extension of the structure gives rise to two prominent architectural features: a deep, narrow pocket and an internal cavity adjacent to the pocket. These

- 29 -

two architectural features comprise the active site (see Figure 5A). The structure of HDLP-related proteins (e.g. HDACs) may also comprise the conserved α/β structure characteristic.

5

10

15

The term "active site" comprises any or all of the following sites in HDLP, the substrate binding site, the site where the cleavage of an acetyl group from a substrate occurs or the site where an inhibitor of the HDAC family or, more particularly, HDLP binds. The active site, as referred to herein, comprises Aspl66, Asp258, His170, Tyr297, His131, His132, Asp168, Asp173, Phe141, Phe198, Leu265, Pro22 and Gly140, and also a metal bound at the bottom of the pocket by Asp173, Asp168 and His defined by the coordinates listed in Figures 16 to 19 with an rmsd of 2.0 Å. The metal which binds at the bottom of the pocket will be a divalent cation selected from the group consisting of zinc, cobalt or manganese.

20

The deep narrow pocket has a tube-like shape with a depth of $\sim 11~\text{Å}$. The pocket opening constricts half way down to $\sim 4.5~\text{by }5.5~\text{Å}$, and becomes wider at the bottom (see Figure 5A). The pocket and its immediate surroundings are made up of loops L1 through L7.

25

30

The walls of the pocket are covered with side chains of hydrophobic and aromatic residues (Pro22, Tyr91 near the entrance; and Gly140, Phe141, Phe 198, Leu265 and Tyr297 further down; Figure 5B). For numbering of amino acids please refer to SEQ ID NO:1. Of particular interest are Phe141 and Phe198, whose phenyl groups face each other in

- 30 -

parallel at a distance of 7.5 Å, marking the most slender portion of the pocket (see Figure 5B). Of particular interest is that only one pocket residue differs in HDAC1 when the sequences are aligned (alignment may be accomplished using DNAstar™ MegAlign™ program, Madison, WI), this residue is Glu98 of HDAC1 which is Tyr91 in HDLP. The structure reveals that this residue in HDLP is mostly solvent exposed.

5

10

15

20

25

30

Near the bottom of the pocket of the active site at its narrowest point, is located a zinc ion (see Figure 6A). In order to obtain the zinc in the structure, the crystals may be soaked in zinc (e.g. $ZnCl_2$) or co-crystalized in the presence of zinc. The zinc ion is coordinated by Aspl68 (0 δ 1, 2.1 Å), His170 (N δ 1, 2.1 Å), Asp258 (0 δ 1, 1.9 Å) and a water molecule (2.5 Å). See Figure 5B and 6B. The amino acid residues that coordinate zinc are arranged in a tetrahedral geometry, but the position of the water molecule, which is also hydrogen bonded to His131, deviates from this geometry by ~25°.

In addition to the zinc ligands, the bottom of the pocket contains two histidine (Hisl31 and Hisl32), two aspartic acids (Asp166 and Asp173) and a tyrosine (Tyr297). See Figure 5B and 10B. Each of the histidines makes a hydrogen bond through its Nol to an aspartic acid carboxylate oxygen, with the oxygen located in the plane of the imidizole ring (Figure 5B). This His-Asp arrangement is characteristic of the charge relay system present in the active sites of serine proteases, where it serves to polarize the imidizole Ne and increase its basicity. Fersht & Sperling, 1973, J.

- 31 -

Mol. Biol. <u>74</u>:137-149; Blow et al., 1969, Nature <u>221</u>:337-340.

The Asp166-His131 charge pair relay (hereafter referred to as "buried charged relay") is positioned even deeper in the pocket and more buried compared to the Asp173-His132 charge relay (hereafter referred to as "exposed charge relay") which is partially solvent exposed. The buried charge relay makes a hydrogen bond (2.6 Å) to the zinc-bound water molecule referred to above, and this hydrogen bond could contribute to the deviation of the water-zinc coordination from ideal geometry (Figure 5B). The exposed charge relay is directed to a point ~ 2.5 Å away from the water molecule and closer to the surface.

15

20

25

10

5

Tyr 297 is positioned next to the zinc, opposite from where the two charge relay systems are located. The Tyr hydroxyl group lies 4.4 Å away from the zinc atom and has no interactions with the rest of the protein (Figure 5B). Next to Tyr297, there is an opening in the pocket wall, which leads to the adjacent internal cavity.

The floor of the internal cavity is made up of portions of the L3 and L7 loops as they emerge from the β strands, and the roof is made up by the $\alpha 1$ -L1- $\alpha 2$ segment. The L1 loop appears more flexible than other loops in the structure. This may allow the transient exchange of the cavity contents with the bulk solvent.

The cavity is lined primarily with hydrophobic residues and is particularly rich in glycine residues (Ala127, Gly128, Gly129, Met130, and Phe141 of L3; Gly293, Gly294, Gly295 and

5

10

15

20

25

30

- 32 -

Gly296 of L7; and Tyr17, Pro22 and Leu23 of L1). There are only two charged residues in the cavity (Arg27 and His 21) and these are contributed by the L1 loop.

The cavity may provide space for the diffusion of the acetate product away from the catalytic center, which may otherwise be crowded and shielded during deacetylation from the solvent when the substrate is bound. Such a role for the cavity is supported by the observation that the cavity contains three water and two isopropanol molecules (from the crystallization buffer) in the 1.8 Å apo-protein structure. The cavity may also bind another cofactor, in addition to zinc, for the facilitation of the enzymatic activity of the HDLP. A proposed catalytic mechanism for deacetylation is provided in Figure 8.

The structure of HDLP as defined by the present invention, in conjunction with the HDAC1 sequence homology, shows that the 375-amino acid HDLP protein corresponds to the histone deacetylase catalytic core which is conserved across the HDAC family (see Figure 2). The 35.2% HDLP-HDAC1 sequence identity predicts structural similarity with a rmsd in $C\alpha$ Chothia and Lesk describe the positions of $\sim 1.5 \text{ Å}.$ relation between the divergence of sequence and structure of proteins in Embo J. $\underline{5}:823-826$ (1986). The 40residue C-terminus of HDLP is likely to have a divergent structure since this region has lower homology to HDAC1, although the α 16 helix in this region is part of the conserved open α/β core fold and HDAC1 is likely to comprise a similar helix. However divergent this C-terminal region may be, this region is outside the active site and is likely to not effect the structure of the active site. Beyond the

C-terminus of the histone deacetylase catalytic core, HDAC family members are divergent in length and sequence. In the HDAC family, this region (amino acid residues ~390-482) is highly polar, populated with acidic residues, and is likely to be flexible or loosely folded.

5

10

15

20

25

30

The HDLP-HDAC homology maps primarily to the hydrophobic core and to the L1-L7 loops, with portions of the loops that make up the pocket and adjacent cavity having the highest level of amino acid residue sequence conservation (Figure 9A and 9B). Specifically, all of the polar residues in the active site (the zinc ligands, the two charge relay systems, and Tyr297) and the hydrophobic residues that make up the walls of the pocket (Gly140, Phe141, Phe198 and Leu265) are identical. Among the residues that make up the internal cavity, the ones closest to the active site are either identical or conservatively substituted (for example, Leu23 → Met and Met130→ Leu). Surface residues around the pocket are conserved to a lesser extent, but are still above 35% average sequence identity.

The information obtained from the inhibitor-bound HDLP complex crystal structures of the present invention reveal detailed information which is useful in the design, isolation, screening and determination of potential inhibitor compounds which may inhibit HDLP/HDAC family members. As described above, the HDLP structure consists of a parallel β sheet with α helices packing against both faces (Figure 4A, 4B, and 4C). At one end of the β sheet, 7 loops (L1-L7) form a narrow, tube-like pocket which are lined with hydrophobic residues and which comprise a zinc binding site, several polar side chains, including two Asp-His charge

- 34 -

relay systems. Mutation of the zinc ligands and other polar residues at the pocket bottom reduces or eliminates the catalytic activity.

5 The present inventors found that mutation at the Tyr297Phe site reduced activity. See also, Hassig et al., 1998, Proc. Natl. Acad. Sci. USA 95:3519-3524; Kadosh & Struhl, 1998, Genes Dev. <u>12</u>:797-805. The elimination of activity by mutation of these residues indicates that this region is the enzyme active site. Adjacent to the active site, there is an internal cavity that may provide space for the diffusion of the acetate reaction product. Homology at the active site between HDLP and HDAC1, as described above, indicates that they share structural and functional homology.

15

20 .

25

30

10

The inhibitor compound, trichostatin A (TSA) (Tsuji et al., 1976, J. Antibiotics 29:1-6) binds HDLP by inserting its long aliphatic chain, which has a hydroxamic acid group at one end, into the pocket (Figure 6A, 6B and 6C). aliphatic chain makes multiple contacts in the well-like, hydrophobic portion of the pocket. The hydroxamic acid reaches the polar bottom of the pocket, where it coordinates the zinc in a bidentate fashion and also forms hydrogen bonds with the polar residues in the active site, including the two charge relay system histidines. The aromatic dimethylamino-phenyl group at the other end of the TSA chain makes contacts at the pocket entrance and serves to cap it. The amino acid residues of HDLP which contact TSA are conserved in HDAC, indicating that TSA binds and inhibits HDAC in a similar fashion to HDLP.

In the complex, the hydroxamic acid, most of the aliphatic chain and part of the dimethylamino-phenyl group of TSA are buried (60% of TSA's surface area; Figure 6A). The hydroxamic acid group binds the zinc in a bidentite fashion forming bonds through its carbonyl (2.4 Å) and hydroxyl groups (2.2 Å) resulting in a penta-coordinated Zn²+ (Figure 6B and 6C). The hydroxamic acid hydroxyl group replaces the water molecule that binds to the zinc in the apo-HDLP structure described above. The hydroxamic acid also hydrogen bonds with both charge relay system histidines (hydroxyl oxygen to His131 Ne2, 2.8 Å; and nitrogen to His132 Ne2, 2.8 Å), and the Tyr297 hydroxyl group (2.4 Å; Figure 6B and 6C).

5

10

15

20

25

30

The 5-carbon long branched alkene chain of TSA fits snugly in the narrow portion of the pocket making multiple van der Waals contacts with all of the hydrophobic groups lining the pocket (Figure 6B and 6C). Near its center, the chain contains a methyl substituted carbon-carbon double bond which is sandwiched between the phenyl groups of the Phe141 and Phe98 at the tightest point of the pocket (Figure 6A and 6B). The length of the alkene chain appears optimal for spanning the length of the pocket, and allowing contacts both at the bottom and at the entrance of the pocket, although, the cap group of Formula (I) may provide length to span the pocket allowing for a shorter alkene chain (aliphatic chain).

At the entrance of the pocket, one face of the planar structure formed by the dimethylamino-phenyl and adjacent carbonyl groups of TSA makes contacts at the rim of the pocket (Pro22, Tyr91, Phe141; Figure 6B and 6C). This

- 36 -

packing is facilitated by the roughly 110° angle in the overall structure of TSA at the junction of the aliphatic chain and the dimethylamino-phenyl group (occurring at the sp³ hybridized C8 carbon). Upon TSA binding, the side chain of Tyr91, which is mostly solvent exposed, changes conformation to make space for the dimethylamino-phenyl group. This is the only change near the active site observed upon TSA binding.

5

The hydroxamic acid group is a common motif in zinc 1.0 metalloprotease inhibitors. See U.S. Patent No. 5,919,940 and 5,917,090; See also, Grams et al., 1995, Biochemistry 34:14012-14020; Lovejoy et al., 1999, Nat. Struct. Biol. 6:217-221; and Holmes & Matthews, 1981, Biochemistry 20:6912-6920. Like TSA, these inhibitors also coordinate 15 the active site zinc in a bidentate fashion using their hydroxamate hyroxyl and carbonyl oxygens, replace the nucleophilic water molecule with their hydroxamate hydroxyl groups and form hydrogen bonds to the general base (Grams et 20 al., 1995, Biochemistry 34:14012-14020; Lovejoy et al., 1999, Nat. Struct. Biol. 6:217-221; and Holmes & Matthews, 1981, Biochemistry 20:6912-6920).

SAHA, which has a ~30-fold weaker inhibitory activity than

TSA (Richon et al., 1998, Proc. Natl. Acad. Sci. USA

95:3003-3007), binds HDLP similarly to TSA (see, e.g.,

Figure 4D). The SAHA hydroxamic acid group makes the same

contacts to the zinc and active site residues, and the

importance of these interactions is underscored by the loss

of activity of SAHA derivatives lacking the hydroxamic group

(Richon et al., 1998, Proc. Natl. Acad. Sci. USA 95:3003-

- 37 -

3007). The six-carbon long aliphatic chain of SAHA packs in the tube-like hydrophobic portion of the pocket. Compared to TSA however, SAHA's aliphatic chain packs less snugly and makes fewer van der waals contacts, in part, because SAHA lacks TSA's C15 methyl group branch. SAHA also lacks TSA's double bonds in this region, and this may lead to increased flexibility of the aliphatic chain. The cap group of SAHA consists of a phenyl-amino ketone group. In the crystal structure, the phenyl group has weak electron density, suggesting that it does not pack as well as the cap group of TSA. This may be due to the larger separation between the hydroxamic and cap groups of SAHA compared to TSA (compare TSA, Formula (III) and SAHA, Formula (III), below).

15 (II)

5

10

25 (III)

30

- 38 -

The determination of the structure of HDLP and HDLP bound to an inhibitory compound has enabled, for the first time, the identification of the active site of HDLP and of related HDLP proteins, such as proteins belonging to the HDAC family.

The three-dimensional structural information and the atomic coordinates associated with said structural information of HDLP bound to an inhibitory compound is useful in rational drug design providing for a method of identifying inhibitory compounds which bind to and inhibit the enzymatic activity of HDLP, HDAC family proteins and other histone deacetylaselike proteins related to HDLP. Said method for identifying said potential inhibitor for an enzyme comprising deacetylase activity comprises the steps of (a) using a three-dimensional structure of HDLP as defined by its atomic coordinates listed in Figure 16 to 19; (b) employing said three-dimensional structure to design or select said potential inhibitor; (c) synthesizing said potential inhibitor; (d) contacting said potential inhibitor with said enzyme in the presence of an acetylated substrate; and (e) determining the ability of said inhibitor to inhibit said deacetylase activity.

The potential HDLP and HDLP-related (e.g. HDAC) inhibitors identified by the method of the present invention are represented by formula (I)

5

1.0

15

- 39 -

(I)

5

10

15

wherein X comprises a cap group which binds to at least one amino acid selected from the group consisting of proline and leucine; Y comprises an aliphatic chain group which binds to at least one amino acid selected from the group consisting of leucine, phenylalanine and glycine; and Z comprises an active site binding group which binds to at least one amino acid selected from the group consisting of aspartic acid, tyrosine and histidine and wherein Z may further bind to a zinc atom and with the provision that the compound of Formula (I) is not TSA, trapoxin, SAHA, SAHA derivatives described in U.S. Patent Nos. 5,608,108; 5,700,811; 5,773,474; 5840,960 and 5,668,179.

20

25

30

The present invention permits the use of molecular design techniques to design, identify and synthesize chemical entities and compounds, including inhibitory compounds, capable of binding to the active site of HDLP and HDLP-related proteins. The atomic coordinates of apo-HDLP and inhibitor-bound HDLP may be used in conjunction with computer modeling using a docking program such as GRAM, DOCK, HOOK or AUTODOCK (Dunbrack et al., 1997, Folding & Design 2:27-42) to identify potential inhibitors of HDLP and HDLP-related proteins (e.g. HDAC1). This procedure can include computer fitting of potential inhibitors to the active site of HDLP to ascertain how well the shape and the

5

10

15

20

25

- 40 -

of the potential chemical structure inhibitor complement the active site or to compare the potential inhibitors with the binding of TSA or SAHA in the active See Bugg et al, 1998, Scientific American December: 92-98; West et al., 1995, TIPS 16:67-74. potential inhibitors designed by modeling with a docking program conform to the general formula (I) as described Computer programs may also be employed to estimate the attraction, repulsion and stearic hindrance of the HDLP and potential inhibitor compound. Generally, the tighter the fit, the lower the stearic hindrances, the greater the attractive forces, and the greater the specificity which are important features for a specific inhibitory compound which is more likely to interact with HDLP and HDLP-related proteins rather than other classes of proteins. features are desired particularly where the inhibitory compound is a potential antitumor drug.

The compounds of the present invention may also be designed by visually inspecting the three-dimensional structure to determine more effective deacetylase inhibitors. This type of modeling may be referred to as "manual" drug design.

Manual drug design may employ visual inspection and analysis using a graphics visualization program such as "O" (Jones, T.A., Zhou, J.Y., Cowan, S.W., and Kjeldgaard, M., Improved method for building protein models in electron density maps and the location of errors in these models, Acta Crystallog., A47, 110-119.

Initially potential inhibitor compounds can be selected for their structural similarity to the X, Y and Z constituents

5

10

15

20

25

30

- 41 -

of formula (I) by manual drug design. The structural analog thus designed can then be modified by computer modeling programs to better define the most likely effective candidates. Reduction of the number of potential candidates is useful as it may not be possible to synthesize and screen a countless number of variations compounds that may have some similarity to known inhibitory molecules. analysis has been shown effective in the development of HIV protease inhibitors (Lam et al., 1994, Science 263:380-384; Wlodawer et al., 1993, Ann. Rev. Biochem. 62:543-585; Appelt, 1993 Perspectives in Drug Discovery and Design 1:23-48; Erickson, 1993, Perspectives in Drug Discovery and Design 1:109-128. Alternatively, random screening of an small molecule library could lead to potential inhibitors whose inhibitory activity may then be analyzed by computer modeling as described above to better determine their effectiveness as inhibitors.

The compounds designed using the information of the present invention may be competitive or noncompetitive inhibitors. These designed inhibitors may bind to all or a portion of the active site of HDLP and may be more potent, more specific, less toxic and more effective than known inhibitors for HDLP and HDLP-related proteins, particularly HDACs. The designed inhibitors may also be less potent but have a longer half life in vivo and/or in vitro and therefore be more effective at inhibiting histone deacetylase activity in vivo and/or in vivo for prolonged periods of time. Said designed inhibitors are useful to inhibit the histone deacetylase activity of HDLP and HDLPrelated proteins (e.g. HDAC1), to inhibit cell growth in

- 42 -

vitro and in vivo and may be particularly useful as antitumor agents.

The present invention also permits the use of molecular design techniques to computationally screen small molecule data bases for chemical entities or compounds that can bind to HDLP in a manner analogous to the TSA and SAHA as defined by the structure of the present invention. computational screening may identify various groups which may be defined as "X", "Y" or "Z" of formula (I) above and may be employed to synthesize the potential inhibitors of the present invention comprising formula (I). Such potential inhibitors may be assayed for histone deacetylase inhibitory activity in a histone deacetylase activity assay (see Example 3 below), may be co-crystallized with HDLP to binding characteristics the through crystallography techniques defined above (e.g. said cocrystal structure may be determined by molecular replacement to assess the binding characteristics of said potential inhibitor), or may be assessed based on binding activity by incubating said potential inhibitor with said HDLP, performing gel filtration to separate any free potential inhibitor to HDLP-bound inhibitor, and determining the amount of histone deacetylase activity of the inhibitorbound HDLP. To measure binding constants (e.g., Kd), methods known to those in the art may be employed such as Biacore™ analysis, isothermal titration calorimetry, Elisa with a known drug on the plate to show competitive binding, or by a deacetylase activity assay.

5

10

15

20

5

10

15

20

25

30

The design of potential inhibitors of the present invention is further facilitated by reference to Figure 9, which is a surface representation figure that depicts the surface grooves. Analysis of such grooves gives insight into the constituents of the cap group of formula (I). The surface grooves are labeled groove A, groove A', groove B and groove C, into which additional cap groups may bind. The structure of HDLP bound to either TSA or SAHA shows that the cap groups of TSA and SAHA bind in groove A. By analysis of the amino acid sequence identity of HDLP and HDACs, Groove A is well conserved in HDACs, has a significant hydrophobic component, appears deep enough to allow for significant interactions and is also the largest of the four grooves. In addition to the dimethylamino phenyl group of the TSA, the A groove can fit approximately 200 daltons worth of groups (e.g. groove A could accommodate a naphthalene-like group after an appropriate spacer, etc.). Groove A, as referred to herein, is characterized by the following conserved residues of HDLP: His 21, Pro22, Lys24, Phe141, Leu265 and Phe335. The periphery of groove A comprises unconserved residues. Additionally, Groove A', as referred to herein, comprises primarily unconserved residues.

Groove B is immediately adjacent to the pocket. Of significance is that the bottom of groove B comprises the N-epsilon nitrogen of His170, which coordinates the zinc through its N-delta nitrogen. Significant binding energy may be achieved by contacting the Ne proton of His170 with a carboxylic acid or sulfate group. In addition, groove B may be large enough to fit a phenyl group, the face of which may comprise a partial negative charge which may pack over the N-epsilon proton of His170. The conserved residues of

- 44 -

groove B, as referred to herein are: His170, Tyr196 and Leu265.

Groove C is not as well conserved as the other two grooves and the amino acid residues which comprise groove C are mostly polar and solvent exposed. Groove C, as referred to herein comprises the following conserved residues: Asn87, Gly140 and Phe198.

The compounds of the present invention are represented by formula (I):

(I)

5

(x) (x) (x)

Examples for suitable X constituents wherein X comprises a cap group may be described in three categories, depending upon which surface of groove A, A', B and/or C they are targeted to. The cap group may comprise all three categories on the same compound. Of particular benefit may be replacing the cap group of TSA or SAHA with a large, rigid structure. Nonlimiting examples for suitable cap groups (X) of formula (I) which may bind in groove A are: (1) attaching a 1-3 methyl linker followed by a phenyl or naphthalene group from the para or meta position of SAHA's phenyl group represented by formula (IV):

25

(IV)

5

(2) attaching a 2-3 methyl linker followed by a phenyl or naphthalene group from the meta position of TSA's phenyl cap group, or from TSA's dimethyl amino group represented by formula (V):

(V)

15

20

10

and which may bind in groove B is a 1-3 methyl group spacer followed by a carboxylate, sulfate or phenyl group as represented by formula (VI):

(VI)

30

With respect to the aliphatic (Y) group, the diameter of the pocket suggests that one more methyl "side chain" could fit, in addition to the C15 methyl group on the C10 carbon. Nonlimiting suitable examples for Y constituents wherein Y comprises an aliphatic chain group are as follows: (1) add

- 46 -

a methyl group to TSA on the C12 carbon (with or without a methyl group on the C10 carbon and with or without double bonds and with or without substituting the X and/or Z constituents of formula (I) as represented by formula (VII):

5 (VII)

10 (2) add a methyl group to TSA on the C9 carbon (with or without a methyl group on the C10 carbon; with or without both or either of the double bonds, and with or without substituting the X and/or Z constituents of formula (I) as represented by formula (VIII):

15

(VIII)

20

(3) replace the two alkalene double bonds of TSA with only one between C10 and C11, which may free the C11 and C12 torsion to allow for a better fit, the X and/or Z groups may also be substituted as represented by formula (IX):

25 (IX)

(4) cyclize C15 and C12 carbons of TSA through a sulphur atom (or nitrogen atom), the X and/or Z groups may also be substituted as represented by formula (X):

5

(5) extend from the C9 carbon of TSA such that the extension approaches and/or enters groove B (see Figure 9); making C9 sp3 so that it can have some freedom; attach to C9 a 1-3 methyl group spacer which may include a double bond and they attaching thereto a sulfate, carboxylate, sulfate, hyroxyl, or phenyl group which may make an interaction with the N-epsilon proton of His170 which may coordinate the zinc atom as represented by formula (XI):

(XI)

20

25 (6) extend off the C8 carbon (replacing C14) of TSA such that the extension approaches or enters groove B; attach a 1-3 methyl group spacer (which may include a double bond) and then link thereto a carboxylate, sulfate, hydroxyl or phenyl group such that an interaction is made with the N-epsilon proton of His170 that coordinates the zinc atom; the X and/or Z constituents may also be substituted as represented by formula (XII):

- 48 -

(XII)

$$X \xrightarrow{R_1} CH_2 \text{in} \qquad COOH \\ SO_4 \\ OH$$

(7) substitute the C8 carbon at the end of the aliphatic chain such that the substitution may contact groove A, A', B and or C, in such an example, a cap group (X) may or may not be required and the X and Z constituents may be substituted as well, as represented by formula (XIII):

(XIII)

15

20

25

30

10

5

(8) formulas VII through XIII above wherein the aliphatic chain further comprises a methyl group between the active site binding group (Z) and the C8 carbon, and preferably just before the C8 carbon, increasing the distance between X and Z, (9) make the connection between the aliphatic chain and the cap group more rigid (e.g., by closing a 6-membered ring which may or may not comprise oxygen, the X and Z group may also be substituted as represented by formula (XIV):

(XIV)

and (10) combining two or more of the changes depicted by formulas (VII-XIV).

Additionally, nonlimiting examples for suitable Z groups wherein Z comprises an active site binding group are as follows: (1) hydroxamic acid, (2) carboxylic acid, (3) sulfonamide, (4) acetamide, (5) epoxyketone, (6) an ester with a methyl linker and a hydroxyl of acetate ester group to lead into the cavity and interact with a conserved arginine (Arg27) as represented by formula (XV): (XV)

$$R_1 = \begin{cases} CH_2 \text{in} & 0 \\ 0 & C \\ 0 & C \end{cases}$$

$$R_1 = \begin{cases} -OH & 0 \\ -C & CH_3 \end{cases}$$

$$O - CH_3$$

and (7) an alphaketone as represented by formula (XVI): (XVI)

$$\begin{array}{c} \text{HO} \\ \text{C} \\ \text{C} \\ \text{R}_1 \end{array} = \begin{cases} - - (\text{CH}_2)_0 - - \text{OH} \\ - (\text{CH}_2)_0 - - \text{CH}_3 \end{cases}$$

5

10

15

25

30

Additionally, other suitable X, Y and Z constituents may be envisioned by the skilled artisan given the three-dimensional structural information of the present invention.

After having determined potential suitable X, Y and Z constituents, the constituents are combined to form a compound of formula (I) using combinatorial chemistry techniques. This may be achieved according to U.S. Patent Nos. 5,608,108; 5,700,811; 5,773,474; 5,840,960 and 5,668,179, incorporated herein by reference. Any methods

- 50 -

known to one of skill in the art may be employed to synthesize compounds of formula (I) comprising X, Y and Z constituents as determined by the methods described above.

As mentioned above, the compounds of formula (I) are useful to inhibit the histone deacetylase activity of HDLP and HDAC-related proteins. Such inhibition may allow for a reduction or cessation of cell growth in vitro and in vivo.

10 For in vitro use, such reduction or cessation of cell growth is useful to study the role of histone deacetylation and differentiation during the cell cycle and also to study other mechanisms associated with cell cycle arrest and particularly how the repression of transcription is involved 15 in cell cycle progression which may be studies in a yeast model system such as that described by Kadosh & Struhl, 1998, Mol. Cell. Biol. 18:5121-5127. In vitro model systems which may be employed to study the effects of potential inhibitors on cell cycle progression and also tumor growth 20 include those described by: Richon et al, 1998, Proc. Natl. Acad. Sci. USA 95:3003-3007; Yoshida et al., 1995, Bioessays 17:423-430; Kim et al., 1999, Oncogene 18:2461-2470; Richon et al., 1996, Proc. Natl. Acad. Sci. USA 93:5705-5708; and Yoshida et al., 1987, Cancer Res. 47:3688-3691.

25

30

For in vivo use, such a reduction or cessation of cell growth is useful to study the effect of said inhibitor compounds in non-human animal model systems of cancer and is also useful for the treatment of cancer in a recipient in need of such treatment. Non-limiting examples of animals which may serve as non-human animal model systems include

mice, rats, rabbits, chickens, sheep, goats, cows, pigs, and non-human primates. See, e.g., Desai et al., 1999, Proc. AACR 40: abstract #2396; Cohen et al., 1999, Cancer Res., submitted. The compounds of the present invention may be administered to a transgenic non-human animal wherein said animal has developed cancer such as those animal models in which the animal has a propensity for developing cancer (e.g. animal model systems described in U.S. Patents 5,777,193, 5,811,634, 5,709,844, 5,698,764, and 5,550,316). Such animal model systems may allow for the determination of toxicity and tumor reduction effectiveness of the compounds of the present invention.

A preferred compound of the present invention may comprise high specific activity for HDLP and HDAC-related proteins, good bioavailability when administered orally, activity in reducing or ceasing cell growth in tumor cell lines, and activity in reducing or ceasing tumor growth in animal models of various cancers.

20

25

30

5

10

15

Accordingly, another aspect of this invention is a method of eradicating or managing cancer in a recipient, which may be an animal and is preferably a human. Said method comprises administering to said recipient a tumor reducing amount of a compound as defined by formula (I) above, or a physiological acceptable salt thereof.

In a further aspect of the invention, there is provided a composition comprising the compound of formula (I) and an excipient or carrier. Administration of the foregoing agents may be local or systemic. Such carriers include any

- 52 -

suitable physiological solutions or dispersant or the like. The physiologic solutions include any acceptable solution or dispersion media, such as saline, or buffered saline. The carrier may also include antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like. Except insofar as any conventional media, carrier or agent is incompatible with the active ingredient, its use in the compositions is contemplated.

- Routes of administration for the compositions containing the delivery vehicle constructs of the present invention include any conventional and physiologically acceptable routes, such as, for example, oral, pulmonary, parenteral (intramuscular, intraperitoneal, intravenous (IV) or subcutaneous injection), inhalation (via a fine powder formulation or a fine mist), transdermal, nasal, vaginal, rectal, or sublingual routes of administration and can be formulated in dosage forms appropriate for each route of administration.
- The following examples are provided to more clearly illustrate the aspects of the invention and are not intended to limit the scope of the invention.

EXAMPLES

30

5

25 Example 1: Protein Production and Purification:

Full-length wild-type HDLP (Genbank accession number AE000719) was subcloned from an Aquifex aeolicus chromosomal DNA preparation (provided by Robert Huber of Universitaet of Regensburg, Germany) into the pGEX4T3 (Amersham-Pharmacia, Piscataway, NJ) vector using the polymerase chain reaction (PCR). The cysteine-to-serine and active site mutants were constructed by PCR site directed mutagenesis and were

sequenced. The HDLP-glutathione S-transferase (GST) fusion protein was produced in Escherichia coli, purified by affinity chromatography using a column qlutathione-sepharose resin (Amersham-Pharmacia, Piscataway. NJ), and by anion-exchange chromatography (Q-sepharose™; Amersham-Pharmacia, Piscataway, NJ). HDLP was cleaved from the fusion protein with thrombin at 4° C, was purified by anion-exchange (Q-sepharose™; Amersham-Pharmacia, Piscataway, NJ) and gel filtration chromatography (Superdex[™]200; Amersham-Pharmacia, Piscataway, NJ), and was concentrated to typically 25 mg/ml in a buffer of 25 mM bis-tris propane (BTP), 500 mM NaCl, 5 mM dithiothrietiol (DTT), 2% isopropanol, pH 7.0.

5

10

Although, it is not known what metal cofactor HDLP contains 15 in vivo, it is presumed to be zinc because of the arrangement of the ligands and the similarities in the active site to the zinc proteases. The lack of metal in the purified HDLP is presumed due, in part, to the use of DTT during purification. HDLP was reconstituted with Zn2+ by 20 mixing the Cys75Ser/Cys77Ser double mutant at 10 mg/ml with a 5-fold molar excess of ZnCl2 in a buffer of 25 mM bis-tris propane, 200 mM NaCl, 1% isopropanol, pH 7.0. Unbound ZnCl² was removed by fractionating HDLP through a G25 desalting 25 (Amersham-Pharmacia, Piscataway, column NJ). HDLP-Zn2+-TSA complex was prepared by incubating the Zn2+ reconstituted HDLP mutant with 1 mM TSA for 45 minutes, followed by gel filtration chromatography (Superdex™200; Amersham-Pharmacia, Piscataway, NJ) to remove excess TSA, 30 and concentration to typically 25 mg/ml in a buffer of 25 mM bis-tris propane, 500 mM NaCl, 1% isopropanol, pH 7.0.

5

20

25

30

FLAG epitope tagged human HDAC1 was overexpressed using a baculovirus expression system in Hi5 (Invitrogen, Carlsbad, CA) insect cells grown in suspension in serum-free media (Sf900, Gibco, Grand Island, NY). The fusion protein was purified by anion exchange and affinity chromatography using Anti-FLAG M2 affinity resin (Sigma, St. Louis, MO) and FLAG Peptide (Sigma, St. Louis, MO).

Example 2: Crystallization and data collection:

10 Crystals of apo-HDLP were grown at room temperature by the hanging-drop vapor-diffusion method, from 7.5% isopropanol, 28% PEG 1500, 425 mM NaCl, 100 mM Tris-Cl, pH 7.0. They form in space group C2 with a = 51.4 Å, b = 93.8 Å, c = 78.7 Å, β = 96.9 Å, and contain one HDLP molecule in the asymmetric unit. Diffraction data were collected with crystals flash-frozen in a buffer of 7.5% isopropanol, 35% PEG 1500, 75 mM NaCl, 100 mM Tris-Cl, pH 8.0, at -170° C.

The structure of the HDLP- Zn²⁺ complex was determined from HDLP Cys75Ser/Cys77Ser double mutant crystals grown from 23% tert-butanol, 27% PEG 1500, 400 mM KCl, 100 mM bis-tris propane-Cl, pH 6.8. Space group and cell dimensions were identical to the apocrystals. The HDLP-Zn²⁺ crystals were harvested and frozen in 27% tert-butanol, 22% PEG 1500, 50 mM KCl, 20 mM NaCl, 0.2 mM ZnCl₂, 100 mM bis-tris propane, pH 6.8, at -170° C.

Crystals of the HDLP-Zn²⁺-TSA complex comprised HDLP Cys75Ser/Cys77Ser double mutant and were grown from 23% tert-butanol, 27% PEG 1500, 600 mM KCl, 100 mM bis-tris propane-Cl, pH 6.8, by microseeding. The crystals were grown in the presence of zinc. They form in space group

 $P2_12_12_1$ with a = 53.4 Å, b = 94.4 Å, c = 156.3 Å and contain two HDLP- Zn^{2+} -TSA complexes in the asymmetric unit. The HDLP- Zn^{2+} -TSA crystals were harvested and frozen in the same cryobuffer as the HDLP- Zn^{2+} crystals except that 0.5mM TSA was added. Data were processed with DENZO and SCALEPACK (Otwinowski & Minor, 1997, Method. Ensemble. 276:307-326). MIR analysis, model building and refinement.

5

The HDLP-Zn²⁺-SAHA complex crystals were grown and evaluated the same as the HDLP-Zn²⁺-TSA crystals. However, the restraints for the SAHA structure were constructed based on stereochemical parameters from TSA. Like the apo-HDLP crystals, the SAHA/HDLP co-crystals grew in space group C2.

15 Heavy-atom soaks were performed with the apo-HDLP crystals in a buffer of 7.5% isopropanol, 30% PEG 1500, 75 mM NaCl, 100 mM Tris-Cl, pH 8.0, supplemented with 1.0 mM thimerosal for 2h, 5 mM KAu(CN)₂ for 1h, and 1 mM Pb(Me)₃OAc for 2h. MIR phases were calculated with the program MLPHARE (The 20 CCP4 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D <u>50</u>:760-763) at 2.5 Å using the anomalous diffraction signal from the thimerosal derivative, and had a mean figure of merit of 0.55. The phases were improved by solvent flattening with the program DM (The CCP4 25 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D 50:760-763) , and were used to build the initial model with the program O (Jones et al., 1991, Acta Crystallogr. A 47:110-109). Successive rounds of rebuilding and simulated annealing refinement with the program CNS (Brunger et al., 1998, Acta Crystallogr. D 30 54:905-921) allowed interpretation of HDLP from residues 2

- 56 -

to 373. Residues 1, 374, and 375 were not modeled and are presumed to be disordered.

The structure of the HDLP-Zn2+-TSA and HDLP-Zn2+-SAHA complex were determined by molecular replacement with the program (The CCP4 suite: Programs for computational crystallography, 1994, Acta Crystallogr. D 50:760-763) using the apo-HDLP structure as a search model. The initial electron density maps had strong and continuous difference density for the entire TSA molecule. However the SAHA molecule was not as well ordered in the cap group region. The structure of TSA was obtained from the Cambridge Structural Database (Refcode TRCHST) and was used to define stereochemical restraints used in the refinement with the program CNS. The restraints of SAHA were constructed based on stereochemical parameters from TSA and surrounding amino acid residues. The dimer interface in the HDLP-Zn2+-TSA and HDLP-Zn2+-SAHA crystals primarily involves Phe200 on the protein surface. The Phe200 side chain contacts Tyr91, whose side chain conformation changes on TSA binding, and part of the dimethyl amino phenyl group of TSA from the second protomer. The HDAC family does not contain a phenylalanine residue at the equivalent position.

25 Example 3: Histone deacetylase assays:

5

10

15

20

30

Purified proteins were assayed by incubating 10 μg of [3H] acetyl-labeled murine erythroleukemia histone substrate and HDAC assay buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 10% glycerol) for 30-60 minutes at 37° C in a total volume of 30 μ l. The final concentrations of HDLP and HDACl-FLAG were 3.6 μ M and 0.24 μ M, respectively. Assays were performed in duplicate. The reactions were stopped and the

- 57 -

released acetate was extracted and assayed as described (Hendzel et al., 1991, J. Biol. Chem. 266:21936-21942). [3H] acetyl-labeled murine erythroleukemia histones were prepared essentially as described (Carmen et al., 1996, J. Biol. Chem. 271:15837-15844). Inhibitors were added in the absence of substrate and incubated on ice for 20 minutes, substrate was added, and the assay performed as described above. HDLP was inclubated with 20 μ M ZnCl₂ and 20 μ M MnCl₂(H2O)₄ in HDAC buffer and tested for activity:

10

5

Only HDLP dialyzed against ${\rm ZnCl_2}$ had activity. HDAC1-FLAG was dialyzed against 20 μM ${\rm ZnCl_2}$ in HDAC buffer which had no effect on activity. Therefore, HDAC1-FLAG contains a metal as purified.

15

20

The in vivo substrate of HDLP is not known. HDLP may have a role in acetoin utilization like the B. subtilis AcuC gene product, and it has been annotated as such in the genome sequence, but the reaction catalyzed by AcuC is also not known. Furthermore, the A. aeolicus genome appears to lack the acuA and acuB genes that are part of the acuABC operon of B. subtilis (Deckert et al., 1998 Nature 392:353-358), and HDLP is as similar to human HDAC1 (35.2 % identity) as it is to B. subtilis AcuC (34.7 % identity).

What is claimed is:

20

25

30

- A crystal of an enzyme comprising deacetylase activity wherein said crystal effectively diffracts X-rays for the determination of the atomic coordinates of said 5 enzyme to a resolution of greater than 4 Å and wherein the structure of said enzyme comprises a conserved core α/β structure characteristic fold wherein said conserved α/β fold comprises an eight-stranded parallel 10 β sheet and eight α helices and wherein four of the helices pack on either face of said parallel β sheet and wherein said structure of said enzyme comprises an rmsd of less than or equal to 1.5 Å in the positions of $C\alpha$ atoms for at least 2/3 or more of the amino acids of 15 HDLP as defined by the atomic coordinates of HDLP.
 - The crystal of claim 1, wherein said protein structure further comprises:
 - (a) eight α helices positioned near one side of the β sheet; and
 - (b) at least large, seven well defined loops originating from the C-terminal ends of the β strands of said eight-stranded parallel β sheet wherein the eight extra helices and the seven large loops are associated with a significant extension of the structure beyond the core α/β motif and wherein said extension of the structure gives rise to a deep, narrow pocket and an internal cavity adjacent to the pocket.

3. The crystal of claim 1, wherein said enzyme comprising deacetylase activity is selected from the group

- 59 -

consisting of HDLP, HDLP-related proteins, HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC-related proteins, APAH, AcuC, and functional derivatives thereof.

5

20

- 4. The crystal of claim 2 further comprising a specifically bound zinc atom in the active site of said enzyme.
- 10 5. The crystal of claim 2 further comprising a specifically bound deacetylase inhibitor compound in the active site of said enzyme.
- 6. The crystal of claim 2 define by the atomic coordinates according to Figure 16.
 - 7. A method for identifying a potential deacetylase inhibitor compound for an enzyme which comprises deacetylase activity, said method comprising the steps of:
 - a. using a three-dimensional structure of HDLP as defined by atomic coordinates according to Figure 16;
 - b. employing said three-dimensional structure to design or select said potential inhibitor;
 - c. synthesizing said potential inhibitor;
 - d. contacting said potential inhibitor with said enzyme in the presence of an acetylated substrate; and
- determining the deacetylase inhibitory activity of said potential inhibitor.

- 60 -

- 8. The method of claim 7, wherein the three-dimensional structure is designed or selected using computer modeling.
- 5 9. The method of claim 7, wherein the potential deacetylase inhibitor is designed de novo.
- 10. The method of claim 7, wherein the potential deacetylase inhibitor is designed based on a known inhibitor.
- 11. The method of claim 7, wherein said enzyme comprising deacetylase activity is selected from the group consisting of HDLP, HDLP-related proteins, HDAC1, HDAC2, HDAC3, HDAC4, HDAC5, HDAC6, HDAC-related proteins, APAH, and AcuC.
- 12. A method of evaluating the binding properties of the potential deacetylase inhibitor compound comprising the steps of:

25

- a. co-crystallizing said compound with HDLP;
- b. determining the three-dimensional structure of said HDLP-potential inhibitor complex co-crystal by molecular replacement using the threedimensional structure of HDLP as defined by atomic coordinates according to Figure 16; and
- c. analyzing said three-dimensional structure of said HDLP bound to said potential inhibitor compound to evaluate the binding characteristics of said potential inhibitor compound.
- 13. A method for solving the structure of an HDAC family

member crystal comprising the steps of:

5

10

20

- a. collecting X-ray diffraction data of said crystal wherein said data diffracts to a high resolution limit of greater than 4 Å;
- b. using the atomic coordinates of HDLP accoding to Figure 16 to perform molecular replacement or refinement and difference fourier with said X-ray diffraction data of said HDAC family member crystal to determine the structure of said HDAC family member; and
 - c. refining said structure of said HDAC family member.
- 14. The method of claim 13, wherein said HDAC family member is HDAC1.
 - 15. A Cys75Ser/Cys77Ser double mutant of HDLP wherein said mutant is encoded by the nucleic acid sequence of SEQ ID NO:4.
 - 16. A Cys75Ser/Cys77Ser double mutant of HDLP wherein said mutant has the amino acid sequence of SEQ ID NO:3.
 - 17. A nucleotide sequence according to SEQ ID NO:4
 - 18. An expression vector comprising the nucleotide sequence of claim 17.
- 19. A method of using the crystal of claim 1 for screening30 for a novel drug comprising:
 - a. selecting a potential ligand by performing

5

10

- 62 -

rational drug design with the three-dimensional structure determined for the crystal;

b. contacting the potential ligand with the ligand binding domain of the crystal; and

c. detecting the binding potential of the potential ligand for the ligand binding domain, wherein the novel drug is selected based on its having a greater affinity for the ligand binding domain than that of a known drug.

Statistics from the crystallographic analysis

TABLE 1.

1/263

B-factor 3.83 3.55 1.04 (Å²) P2,2,2, 2.1 180,427 50,796 93.8 7.1 RMSD angles .63 1.48 C2 2.0 125,769 23,643 ponds 0.010 0.009 0.008 (F) R-free 25.8 24.0 25.8 8 1.10 R-factor 19.8 22.0 22.4 C2 3.5 11,454 4,040 86.4 9.6 1.24 0.78 Water atoms 228 434 456 Native thimerosal 79,023 15,958 1.47 95.7 0.92 atoms Total 3214 3424 6475 134,952 32,143 92.3 C2 1.8 2.9 Resolution Reflections (IFI > 1d) 31,550 23,582 44,122 MIR analysis (20.0-2.5 Å): Refinement statistics: 2.0 € 8. Data coverage (%) HDLP-Zn-TSA 2.1 Unique reflections phasing power Space Group Resolution (A) Observations Rcullis (ano) HDLP-Zn R_{sym} (%) Data set HDLP Data Set

where $<F_{\lambda j}>$ is the root-mean-square heavy atom structure factor and E is the residual lack of closure error. Rcullis is the mean residual lack of closure error divided by the dispersive difference. R-factor = $\Sigma |F_{obs}$ merit = IF(hkl)_{best}l/F(hkl). R-free = R-factor calculated using 5% of the reflection data chosen randomly and omitted from the start of refinement. RMSD: root mean square deviations from ideal geometry and root Asym = $\Sigma_h \Sigma_i$ II_{h,i}-<hi>/ $\Sigma_h \Sigma_i$ I_{h,i} for the intensity (I) of i observations of reflection h. Phasing power = <F_{\(\mu\)}>/E, F_{calc}l/ΣΙF_{obs}l, where F_{obs} and F_{calc} are the observed and calculated structure factors, respectively. Figure of mean square variation in the B-factor of bonded atoms.

Figure 1

2/263

igure 2

Figure 3

4/263

Figure 4

Figure 4c

6/263

Figure 4D

8/263

Figure 6

WO 01/18045 PCT/US00/24700

10/263

Figure 7

Figure 9

10	20	30	40
10			
ATGAAGAAGGITAAACI			
AGTACAGATATCCCAAA			
AGTITOCTACTCCTTA			
ATAGATGAGAAGGAATI			
AAGAAGAACTCCTTTTA			
	220	230	240
210			
CACTTTAATGGAAGCGG			
GAGCTAGGGAAAGTA			
CCGTATCTTACGCGATC			
CCGTATCTTALGCGATC			
AATGTAGCTTTCAATCC			
	420	430	440
410 . 			220
TTAAAAGCAGGGCAAAG			
COCTGTGGGAATTGAG			
AGAATACICTACATAGA			
GIGITCAGGAAGCCTT			
CCTGTCCCTTCACCAG:			
	620	630	640
610			
GAGAAGGCTTCCTGG			
AGGGCTACAACCTGAAG			
CGACAACGAGTTCCTC			
ATAGTCAAAGAAGTAT			
AACTCGGAACTGACCC			
810	820	830	840
			
GTICAACCTCICAAAO			
ATCGTTCGTGAGGTTT			
GAGGCGGATACCATCC			
CCTAATCTGGTGCGAG AAGCTAAACAATAAAG			
			-
1010	1020	1030	1040
ACTITGAAGAGTTIGA			
GCTCGAAACCCTAAAG			
AGGAAAGAAGTAAAGG	ATACGCTT	GAAAAGGCGA	AAGCCT 1120
CATCITA 1127			

	10	20	30	40	
سلسب	بتلتيتكية	بيليبيلي		للث	
MKKVKLI	GILDYGKYRYI	PKNHPLKIPR	VSLLLRFLDA	MNL	40
IDEKELII	KSRPATKEELI	LIFHTEDYIN	TLMEAERCOCY	JPK	80
GAREKYN	IGGYENPVSYZ	AMFTGSSLAT	GSTVQAIEEFT	LKG	120
NVAFNPA	3CMHHAFKSR/	ANGECYINDP	AVGIEYLRKK	ΞFK	160
RILYIDLI	DAHHCDGVQE	AFYDIDQVFVI	LSLHQSPEYAI	FPF	200
	210	220	230	240)
mul n	سلبنسلت	uluulu	uluulu	ىلى	
EKGFLEE	IGEGKGKGYNI	NIPLPKGLNI	NEFLFALEK!	SLE	240
IVKEVFE	PEVYLLQLGTI	OPLLEDYLSKI	TNLSNVAFLK	AFN	280
IVREVFGE	EVYLOGOGYI	IPYALARAWII	LIWCELSGRE	JPE	320
KLNNKAKE					
	ILKSIDFEE	DDEVDRSYM	LETLKDPWRG	ŒV	360

10	20	30	40
mulmulmu	سيليب	ليبيلينيا	لببيا
ATGAAGAAGGTTAAAC	TTATCGG	AACTITAGACTA	COGAA 40
AGTACAGATATCCCAA			
AGITICOCTACTCCTI	AGGTTTT.	PAGATOCCATGA	ACCTT 120
ATAGATGAGAAGGAAT			
AAGAAGAACICCTTTI			
210	220	230	240
		- - -	لبيب
CACTITAATGGAAGCG		•	
GGAGCTAGGGAAAAGI			
CCGTATCTTACGCGAT			
GGGTTCAACAGTGCAG			
AATGTAGCTTTCAATC	:0090999	AGGTATGCACCA	ACGCTT 400
410	420	430	440
ىلىسلسىلىس	سيليب	Handana	لسبا
TTAAAAGCAGGGCAAA	CGGCTTT	IGCTACATAAA	GACCC 440
CGCTGTGGGAATTGAC	TACTTGA	GAAAAAAAAGGC	TTAAG 480
AGAATACICTACATAG	ACCTTGA	TGCCCACCACT	SCGACG 520
GTGTTCAGGAAGCCTT			
CCTGTCCCTTCACCAG	TCGCCCG	AGTACGCCTTTC	CCTTT 600
610	620	630	640
muluuluul			
GAGAAGGCTTCCTGC			
AGGGCTACAACCTGAA			
CGACAACGAGITCCIC			
ATAGTCAAAGAAGTAT			
AACTCGGAACTGACCC	ACICCIT	GAAGATI'ACCI'	MCCAA 800
810	820	830	840
<u> malandanda</u>	سيلب	ليسليسا	لسب
GITCAACCTCTCAAACC	FIIGCCII	TTTAAAAGCTT	TCAAC 840
ATCGTTCGTGAGGTTT	ICGGGGAG	XGGAGTATACCT	CGGAG 880
GAGGCGGATTCCATCC	MACGCCC	TCGCAAGGGCA	TGGAC 920
CCTAATCTCGTGCGAG	TTTCCCCC	AAGOGAAGTGC	CGGAA 960
AAGCTAAACAATAAAGC	CAAAAGAG	CTTTTAAAGAG	TATAG 1000
1010	1020	1030	1040
mulmulm	سلس	لسطسط	لسل
ACTTIGAAGAGTTIGAG	CACGAGG	TGGACCGCTCG	TACAT 1040
GCTCGAAACCCTAAAGC	EACCOCTG	GAGAGGAGGAG	AGGTA 1080
AGGAAAGAAGTAAAGG?	ATACGCTT	GAAAAGGCGAA	AGCCT 1120
CATCITA 1127			

WO 01/18045 PCT/US00/24700

16/263

	10	20	30	40	
سلسب	بلبيبلي	<u>سيداين</u>	<u> Lillian</u>	لبييل	
MKKVKLJ	GILDYGKYR	YPKNHPLK	IPRVSLLLRI	LDAMNL	40
			YINTLMEAEI		80
			LATGSTVQA		120
NVAFNPA	GGMHHAFKS	RANGFCYI	NDPAVGIEY	LRKKGFK	160
RILYIDL	DAHHCDGVÇ	EAFYDID	VFVLSLHQS	PEYAFPF	200
	210	220	230	240) .
سلسب	بليتناير	سيلين	سيليينك	لسنب	
EKGFLEE	IGEGKGKG	NLNIPLP	GLNDNEFLF	ALEKSLE	240
IVKEVFE	PEVYLLQLO	TOPLLEDY	LSKFNLSNV	AFLKAFN	280
IVREVFG	EGVYLGGG	FHPYALAF	RAWILIWCEL	SGREVPE	320
KLNNKAK	ELLKSIDFI	EFDDEVDF	RSYMLETLKD	PWRGGEV	360
דרואנידיאם	T.FKAKASS	375			

17/263 Figure 14

	10	20	30	40
بيليين	سلسسلت	سلسبلت	uduudu	4
ATGAAGA	AGGITAAACI	TATOGGAACT	TTAGACTACG	3AA 40
AGTACAG	ATATCCCAAA	AACCATCCTC	TTAAAATACC	AAG 80
AGTTTCC	CTACTCCTTA	GGTTTTTAGA	TGCCATGAACC	TT 120
ATAGATG	AGAAGGAATT.	AATCAAGAGC	'AGACCCGCAAC	TA 160
AAGAAGA	ACTCCTTTTA'	TTCCACACGC	AAGACTACATA	AAA 200
	210	220	230	240
بيلييد			uluulu	
		•	GAGCGTTCCGA	
			GGATACGAAA	
		-	CITCICICGCA	
			COAAATTTTTA.	
AATGTAG	CTTTCAATOO	GCGGGAGGI	'ATGCACCACGC	TT 400
	410	420	430	440
سليس	uluulu	سلسبلب		سا
TTAAAAG	CAGGGCAAAC	CTTTTGCT	'ACATAAACGAC	CC 440
CCCTCTC	GAATTGAGT/	ACTTGAGAAA	AAAAGGCTTTA	AG 480
AGAATAC	ICTACATAGA(CTTGATGCC	CACCACTGCGA	ACG 520
GIGITCA	GAAGCCTTT.	TACGATACAG	ACCAGGIGITC	CT 560
CCIGICO	CTTCACCAGT	CGCCCGAGTA	eccerricce:	TT 600
	610	620	630	640
ببليبيد	بيلينيلي	بيلنينيلي	سلسسلب	سل
GAGAAGG	GETTCCTGGAC	GAGATAGGA	GAAGGAAAAGC	AA 640
AGGGCTA	CAACCTGAAC	ATTCCCCTGC	CAAAGGGCTTC	AA 680
CGACAAC	SAGITOCICIT	TIGCCCTAGA	AAAATCTCTGC	AA 720
ATAGTCA	AAGAAGTATIT	TGAGCCCGAG	GITTACCITCI	TC 760
AACTCGG	AACTGACCCAC	TCCTTGAAG	ATTACCTTTCC	008 AA
	810	820	830	840
سلسد	بيانستان	بيلسيلن	بيلييلي	للب
GTTCAACC	CICICAAACGI	TGCCTTTTT	AAAAGCTTTCA	AC 840
ATCGITCO	FIGAGGITTIC	CGGGAGGGA	GTATACCTCCC	AG 880
GAGGCGGZ	ATACCATCCTT	ACCCCTCC	CAAGGGCATGG	AC 920
CCTAATCT	TGGTGCGAGCT	TTCGGGAAG	GGAAGTGCCGC	AA 960
AAGCTAAA	ACAATAAAGCA	AAAGAGCTT	TTAAAGAGTAT	AG 1000
	1010	1020	1030	1040
بيبليين	سيلسيك	سلسبلن	سلسبلت	سل
ACTITIGAZ	AGAGTTTGACC	ACGAGGTGG	ACCGCTCGTAC	AT 1040
GCTCGAAZ	ACCCTAAAGGA	CCCCTGGAG	AGGAGGAGAGG	TA 1080
AGGAAAGA	AGTAAAGGAT	ACGCTTGAA	AAGGCGAAAGC	XT 1120
CATCTTA	1127			

	10	20	30	40	
سيلتبت	ليبيليد	يبيليي	Luli	لسبل	
MKKVKLI	GTLDYGKY	RYPKNHPLK	IPRVSLLLRI	LDAMNL	40
			YINILMEAEI		80
GAREKYN	IGGYENPV	SYAMFIGSS	LATGSTVQAI	EEFLKG	120
NVAFNPA	GGMHHAFK	SRANGFCYI	NDPAVGIEYI	RKKGFK	160
			VFVLSLHQSE		200
	210 .		230	240	
سلسد			سيلسب		
EKGFLEE					~
		TIMENT PLIPE	ュレハレハヒトレトク	LEKST F.	240
IVKEVFE	PEVYLLQL	SIDPLIEDY	SKFNLSNVA	LEKSLE	
IVKEVFE	PEVYLLQLO	STOPLLEDY	SKFNLSNVA	FLKAFN	280
IVKEVFE IVREVFG	BGVATGGC BEAATTÓT	STDPLLEDY SYHPYALAR	SKFNLSNVA WILIWCELS SYMLEILKDF	FLKAFN GREVPE	280 320

WO 01/18045 PCT/US00/24700

19/263

				Lignie 10	- 1			
			Residue	# X	Y	Z	OCC. B	Segment ID
ATOM	•	CB ALA	2	45.336	35.880	75.042	1.10 59.90	segment 19
ATOM	ŝ	C ALA	3	46.410	38.631	-3.528	1.00 52.87	
				45.780		-1.052		àààà.
ATOM	3		2		39.595		1.00 62.46	AAAA
ATOM	4	n ala	2	47.540	37.826	75.673	1.09 58.52	aaaa.
ATOM	5	CA ALA	2	46.568	37.432	74.527	1.00 57.32	AAAA
ATOM	6	N LYS	3	46.390	38.570	72.389	1.00 39161	AAAA
ATOM	7	CA LYS	3	46.587	39.669	71.440	1.00 19.58	AAAA
ATOM	8	CB LYS	3	47.855	39.763	70.459	1.00 36.03	AAAA
ATCM	9	CG LYS	. 3	49.217	40.007	71.102	1.00 55.16	AAAA
ATOM	10	CD LYS	3	50.315	40.000	70.039	1.00 66.28	AAAA
			3 .	51.730	40.153	70.655	1.10 73.41	
ATOM	11	CE LYS						hhhh
ATOM	12	NZ LYS	3	52.791	40.047	69.642	1.00 69.64	AAAA
MOTA	13	C LYS	3	45.407	39.422	70.642	1.00 13.29	شششش
ATOM	14	O LYS	3	44.984	38.262	73.487	1.00 27.41	AAAA.
ATOM	15	N WAL	4	44.814	40.498	70.138	1.30 15.18	AAAA
ATOM	16	CA VAL	4	43.535	40.418	69.349	1.00 01.20	AAAA
ATOM	17	CB VAL	4	42.501	41.365	£9.887	1.00 31.46	2882
ATOM	18	CG1 VAL	4	41.314	41.202	69.066	1.00 06.85	ñâĥâ
ATOM	19	CG2 VAL	-1	42.244	41.080	71.548	1.00 34.98	AAAA
ATOM	20	C VAL	4	43.983	40.851	67.961	1.30 25.33	AAAA
ATOM	21	O FAL	4	44.557	41.927	67.778	1.30 21.19	AAAA
			5	43.654	40.023	66.978		
ATOM	22	n Lys	5					AAAA
ATOM	23	CA LYS	5	44.052	40.291	65.607	1.00 20.10	AAAA
ATOM	24	CB LYS	5	45.247	39.214	65.177	1.10 23.35	AAAA
MOTA	25	CG LYS	2	46.301	39.092	55.049	1.00 03.75	aaaa
ATOM	26	CD LYS	0 510 53	47.183	40.334	65.919	1.00 23.70	AAAA
ATOM	27	CE LYS	5	48.510	40.151	55.669	1.05 24.34	aaaa
ATOM	28	HZ LYS	5	49.351	41.387	66.585	1.00 12.04	AAAA
ATOM	29	C LYS	5	42.914	40.294	54.596	1.00 20.27	AAAA
ATOM	30	O LYS	5	41.949	39.535	54.728	1.00 18.48	AAAA
ATOM	31	N LEU	6	43.071	41.111	63.564	1.00 19.28	AAAA
MOTA	32	CA LEU	6	42.097	41.156	62.483	1.00 20.68	AAAA
ATOM	33	CB LEU	6	41.571	42.574	62.291	1.30 23.51	جودوم جماحة
		CG LEU	6	40.373	42.712	51.342	1.30 30.59	
ATOM	34		5	40.373	44.192	51.153	1.00 29.90	AAAA.
ATOM	35	CD1 LEU						ببهب
ATOM	36	CD2 LEU	á	40.557	42.085	39.995	1.00 38.98	aaaa
atom	37	C LEU	6	42.964	40.701	51.237	1.30 19.17	AAAA
atom	38	D LEU	ó	43.911	41.249	60.919	1.00 22.31	aaaa
ATOM	39	: ILE	7	42.359	39.689	50.538	1.00 19.15	2442
ATOM	40	CA ILE	7	43.045	39.199	59.338	1.00 18.38	ääää
ATOM	41	CE CLE	7	42.922	37.674	39.191	1.00 19.05	AAAA
ATOM	42	CGC ILE	-	43.930	37.162	33.144	1.00 16.45	AAAA
ATOM	43	SGI SLE	-	43.053	37.007	50.531	1.00 02.81	AAAA
ATOM	14	CDI ILE	-	43.296	35.543	50.450	1.00 34.39	AAAA
ATOM	45	: ILE		42.396	39.850	58.125	1.30 17.95	AAAA
ATOM	46	: LE	?	41.138	39.729	57.928	1.30 19.07	nnn
	47	: GLY	9	43.193	40.552	57.330	1.00 17.70	بين بينه
ATOM		· CA JLY	3	42.523	41.193	55.148	1.30 18.11	AAAA
ATOM			3	43.540	41.957	55.243	1.00 20.91	nana nana
ATOM	19	C GLY				22.243		
atom	50	o GLY	3	44.849	41.840	55.504	1.00 33.27	AAAA
ATOM	51	H THR	ò	43.134	42.429	54.155	1.30 23.99	ääää
ATOM	52	CA THR	9	43.950	43.141	53.183	1.30 25.95	شهه
ATOM	53	CB THR	Э	44.739	42.195	52.263	1.30 15.80	AAAA
ATOM	5.4	IGI THR	9	45.321	42.952	51.199	1.30 16.56	ሕ ሕ ሕ
ATOM	55	CGI THR	9	43.823	41.144	51.557	1.30 25.24	AAAA
ATOM	56	I THR	è	43.025	43.957	52.294	1.00 09.04	AAAA
ATOM	57	THR	9	41.572	43.582	52.082	1.00 23.05	àAA;
ATOM	56	:: בני	10	43.517	45.079	51.781	1.00 29.19	تممم
ATOM	59	CA LEU	10	42.690	45.396	50.895	1.00 32.55	AAA
			10	43.256	47.319	50.761	1.00 23.09	AAA
ATCM	50		10	43.142	48.256	51.958	1.30 33.00	AAA
atom	61 63	IG LEV	-0				1,30 26.65	
ATCM	62	בבו בבע	10	-1. £\$0	48.403	52.347		بجج
atom	63	CCC LEU	10	43.938	47.744	53.126	1.00 41.33	٨٨٨
ATCM	54	C LEU	10	42.556	45.251	49.512	1,00 32.68	-AA
ATCM	55	: LEV	10	41.736	45.€84	48.702	1.30 26.97	AAA
ATOM	56	:: ASP	11	43.377	44.234	49.256	1,00 05.75	يتبثث
						-		

N COM	67	CA	ASP	11	43.367	43.541	47.970	1.00 35.74	AAAA
MOTA								,	
MOTA	68	CB	ASP	11	44.477	42.485	47.922	1.00 37.61	AAAA
MOTA	69	CG	ASP	11	45.858	43.093	48.079	1.00 46.75	AAAA
ATOM	70	OD1	ASP	11	46.110	44.136	47.444	1.00 46.34	AAAA
ATOM	71	OD2	ASP	11	46.690	42.528	48.821	1.00 58.94	AAAA
								1.00 34.26	AAAA
MOTA	72	С	ASP	11	42.034	42.898	47.607		
ATOM	73	0	ASP	11	41.748	42.696	46.420	1.00 31.12	AAAA
MOTA	74	N	TYR	12	41.220	42.558	48.609	1.00 26.19	AAAA
MOTA	. 75	CA	TYR	12	39.923	41.963	48.314	1.00 28.45	AAAA
							49.601	1.00 29.35	AAAA
MOTA	76	CB	TYR	12	39.119	41.720	49.001		
MOTA	77	CG	TYR	12	39.648	40.595	50.470	1.00 28.47	AAAA
					40.137	40.846	51.755	1.00 32.17	AAAA
MOTA	78	CD1	TYR	. 12					
MOTA	79	CE1	TYR	12	40.592	39.808	52.572	1.00 30.35	AAAA
				12	39.629	39.276	50.017	1.00 22.97	AAAA
MOTA	80	CD2	TYR						
MOTA	81	CE2	TYR	12	40.077	38.228	50.822	1.00 19.60	AAAA
	82	CZ	TYR	12	40.554	38.499	52.096	1.00 21.42	AAAA
MOTA									
MOTA	83	OH	TYR	12	40.964	37.456	52.907	1.00 23.49	AAAA
MOTA	84	С	TYR	12	39.144	42.907	47.390	1.00 26.67	AAAA
								1.00 30.51	AAAA
MOTA	85	0	TYR	12	38.307	42.466	46.593		
MOTA	86	N	GLY	13	39.441	44.201	47.492	1.00 30.22	AAAA
					38.767	45.203	46.675	1.00 25.13	AAAA
ATOM	87	CA	GLY	13				-	
MOTA	88	С	GLY	13	38.911	45.009	45.177	1.00 27.31	AAAA
				13	38.096	45.522	44.415	1.00 29.38	AAAA
MOTA	89		GLY						
ATOM	90	N	LYS	14	39.937	44.269	44.755	1.00 33.56	AAAA
	91	CA	LYS	14	40.176	44.005	43.337	1.00 39.81	AAAA
MOTA									
MOTA	92	CB	LYS	14	41.680	44.026	43.031	1.00 51.10	AAAA
MOTA	93	CG	LYS	14	42.292	45.424	42.907	1.00 64.99	AAAA
				_				1.00 72.74	AAAA
MOTA	94	CD	LYS	14	41.757	46.218	41.692		
ATOM	95	CE	LYS	14	42.183	45.639	40.336	1.00 67.25	AAAA
					41.637	44.280	40.045	1.00 70.06	AAAA
MOTA	96	NZ	LYS	14				_	
ATOM	97	С	LYS	14	39.589	42.688	42.834	1.00 39.98	AAAA
	98	0	LYS	14	39.746	42.350	41.658	1.00 46.99	AAAA
MOTA									AAAA
MOTA	99	N	TYR	15	38.927	41.944	43.717	1.00 32.64	
ATOM	100	CA	TYR	15	38.318	40.655	43.355	1.00 41.01	AAAA
								1.00 26.48	AAAA
ATOM	101	CB	TYR	15	38.996	39.512	44.126		
ATOM	102	CG	TYR	15	40.496	39.571	44.033	1.00 34.97	AAAA
			TYR	15	41.289	39.401	45.167	1.00 43.28	AAAA
ATOM	103	CD1							
MOTA	104	CE1	TYR	15	42.677	39.548	45.106	1.00 36.05	AAAA
	105	CD2	TYR	15	41.127	39.879	42.827	1.00 40.78	AAAA
MOTA									AAAA
MOTA	106	CE2	TYR	15	42.508	40.027	42.756	1.00 37.13	
ATOM	107	CZ	TYR	15	43.275	39.865	43.899	1.00 36.87	AAAA
				15	44.644	40.044	43.844	1.00 35.40	AAAA
MOTA	108	OH:	TYR						
MOTA	109	С	TYR	15	36.838	40.705	43.714	1.00 38.62	AAAA
	110	0	TYR	15	36.344	39.868	44.468	1.00 37.82	AAAA
atom									AAAA
ATOM	111	N	ARG	16	36.141	41.703	43.177	1.00 44.85	
ATOM	112	CA	ARG	16	34.716	41.890	43.431	1.00 45.75	AAAA
					34.320	43.348	43.187	1.00 54.17	AAAA
MOTA	113	CB	ARG	16					
ATOM	114	CG	ARG	16	35.170	44.399	43.875	1.00 66.77	AAAA
				16	34.920	44.506	45.369	1.00 72.39	AAAA
MOTA	115	CD	ARG				_		AAAA
ATOM	116	NE	ARG	16	35.649	45.646	45.923	1.00 85.39	
	117	CZ	ARG	16	35.489	46.906	45.518	1.00 81.94	AAAA
ATOM								1.00 80.19	AAAA
ATOM	118	NHI	ARG	16	34.624	47.197	44.554	•=	
ATOM	119	NH2	ARG	16	36.205	47.878	46.069	1.00 85.46	AAAA
				16	33.915	41.029	42.460	1.00 43.50	. AAAA
ATOM	120	C	ARG	10					
ATOM	121	0	ARG	16	34,400	40.667	41.385	1.00 38.62	AAAA
				17	32.689	40.692	42.833	1.00 32.68	AAAA
MOTA	122	N	TYR						AAAA
ATOM	123	CA	TYR	17	31.850	39.923	41.930	1.00 37.55	
	124	CB	TYR	17	30.662	39.306	42.672	1.00 41.05	AAAA
MOTA							42 E10		AAAA
MOTA	125	CG	TYR	17	31.040	38.104	43.519.		
ATCM	126	CDI	TYR	17	32.039	38.194	44.493	1.00 32.59	AAAA
							45.277	1.00 29.32	AAAA
ATOM	127	CE1	TYR	17	32.383	37.095			
ATOM	128	CD2	TYR	17	30.393	36.875	43.346	1.00 31.46	AAAA
				17	30.726	35.772	44.122	1.00 28.64	AAAA
ATOM	129	CE2							AAAA
ATOM	130	CZ	TYR	17	31.721	35.887	45.088	1.00 27.14	
	131	ОН	TYR	17	32.044	34.807	45.881	1.00 21.73	AAAA
ATOM								1.00 40.97	AAAA
ATOM	132	С	TYR	17	31.380	40.871	40.836	1.00 40.97	بمحجن
_							•		•

	122 0	TYR	17	31.435	42.097	40.984	1.00 29.58	AAAA
ATCM	133 O 134 N	PPO	18	3 - · · · ·		39.722	1.00 41.02	AAAA
ATCM	134 N		18		38.910	39.318	1.00 48.67	AAAA
ATOM	136 CA		18	30.459		38.649	1.00 49.35	AAAA
ATOM ATOM	137 CB		18			37.481	1.00 59.04	AAAA
ATOM	138 CG	_	18	29.756		38.179	1.00 54.15	AAAA
ATOM	139 C	PRO	18	29.178		38.864	1.00 54.97	RAAA
ATOM	140 0	PRO	18	28.457	_	39.850	1.00 46.85	AAAA
ATOM	141 N	LYS	19	28.961		37.904	1.00 60.87	AAAA AAAA
MOTA	142 CA		19	27.777	43.696	37.749	1.00 67.78 1.00 73.26	AAAA
ATOM	143 CE	LYS	19 -	27.155	43.278	36.425	1.00 73.28	AAAA
MOTA	144 CC		19	26.971	41.752	36.414	1.00 77.87	AAAA
ATOM	145 CI		19	26.276	41.166	35.209 35.471	1.00 82.45	AAAA
MOTA	146 CF		19	26.039	39.680 38.959	34.331	1.00 83.11	AAAA
ATOM	147 N2		19	25.417 26.688	43.594	38.814	1.00 64.15	AAAA
MOTA	148 C	LYS	19	26.810	44.047	39.949	1.00 65.73	AAAA
MOTA	149 0	LYS	19 20	25.604	42.986	38.345	1.00 59.78	AAAA
MOTA	150 N	ASN A ASN	20	24.353	42.703	39.025	1.00 59.91	AAAA
ATOM	151 CZ 152 CZ	_	20	23.516	41.844	38.077	1.00 68.08	AAAA
ATOM	152 CI 153 CC		20	22.108	42.355	37.907	1.00 78.73	AAAA
MOTA MOTA	154 0	D1 ASN	20	21.894	43.498	37.496	1.00 78.67	AAAA
MOTA		D2 ASN	20	21.132	41.505	38.211	1.00 83.22	AAAA
ATOM	156 C		20	24.474	41.977	40.361	1.00 53.35	AAAA
ATOM	157 0		20	23.611	42.112	41.234	1.00 59.92	AAAA AAAA
ATOM	158 N		21	25.543	41.206	40.511	1.00 44.23 1.00 28.15	AAAA
ATOM	159 C.	A HIS	21	25.768	40.397	41.707	1.00 28.13	AAAA
ATOM	160 C		21	27.088	39.639	41.570 42.418	1.00 31.34	AAAA
MCTA	161 C		21	27.155	38.411 38.259	43.752	1.00 25.03	AAAA
ATOM T	-	D2 HIS	21	27.344 26.929	37.148	41.917	1.00 34.81	AAAA
MOTA		D1 HIS	21	26.979	36.269	42.900	1.00 17.01	AAAA
MOTA		E1 HIS	21 21	27.228	36.917	44.026	1.00 32.31	AAAA
MOTA		E2 HIS HIS	21	25.763	41.135	43.051	1.00 29.37	AAAA
ATOM	166 C		21	26.346	42.210	43.186	1.00 28.54	AAAA
ATOM	167 O		22	25.093	40.565	44.066	1.00 29.14	AAAA
ATOM ATOM		D PRO	22	24.301	39.322	44.061	1.00 31.20	AAAA AAAA
ATOM		A PRO	22	25.034	41.185	45.395	1.00 32.84	AAAA
ATOM		B PRO	22	24.174	40.192	46.187	1.00 34.98 1.00 30.11	AAAA
ATOM		G PRO	22	23.257	39.634	45.109	1.00 34.37	AAAA
ATOM	173 C	PRO	22	26.411	41.415	46.044 46.916	1.00 34.37	AAAA
MOTA	174 0		22	26.554	42.272 40.644	45.629	1.00 29.22	AAAA
ATOM	175 N		23	27.415 28.765	40.781	46.181	1.00 26.49	AAAA
ATOM	-	A LEU	23	29.414	39.397	46.332	1.00 22.30	AAAA
ATOM		B LEU	23	28.703	38.527	47.380	1.00 21.04	AAAA
ATOM		CD1 LEU	23 23	29.307	37.113	47.410	1.00 19.35	AAAA
ATOM		D1 LEU	23	28.850	39.197		1.00 26.51	AAAA
ATOM		LEU	23	29.561	41.718		1.00 25.81	AAAA
ATOM		LEU	23	30.893	41.693	45.477		AAAA
ATOM ATOM		1 LYS	24	29.018	42.539			AAAA AAAA
ATOM		A LYS	24	29.696			1.00 27.35	AAAA
ATOM		CB LYS	24	28.662	44.244			AAAA
ATOM		G LYS	24	29.118				AAAA
ATOM		CD LYS	24	28.025				AAAA
ATOM	168	CE LYS	24	26.688				AAAA
ATOM	189	NZ LYS	24	25.595				AAAA
ATOM		C LYS	24	30.332 31.412				AAAA
ATOM		O LYS	24	29.652			1.00 26.90	AAAA
ATOM		N ILE	25 25	30.151			1.00 25.02	AAAA
ATOM		CA ILE	25	29.105			1.00 28.34	AAAA
ATOM	_	CB ILE	25	27.961		47.23	7 1.00 23.84	AAAA
ATOM		CG1 ILE	25	28.661	. 44.869	48.49		AAAA
ATOM		CD1 ILE	25	27.718	45.051	49.660		AAAA AAAA
ATOM		C ILE	25	31.424	45.463	47.48	3 1.00 32.19	AAAA
ATOM								

Figure	16-4

					•				
MOTA	199	0	ILE	25	31.736	44.271	47.623	1.00 26.54	AAAA
	200	N	PRO	26	32.191	46.463	47.956	1.00 30.14	
ATOM									አልልል
ATOM	201	CD	PRO	26	31.979	47.907	47.770	1.00 36.38	AAAA
ATOM	202	CA	PRO	26	33.431	46.241	48.707	1.00 30.63	AAAA
MOTA	203	CB	PRO	26	34.014	47.652	48.814	1.00 34.29	AAAA
ATOM -	204	CG	PRO	26	33.397	48.373	47.617	1.00 43.39	AAAA
ATOM	205	c	PRO	26	32.943	45.727	50.061	1.00 25.99	AAAA
	206	0	PRO	26	31.854	46.110	50.484	1.00 25.51	
MOTA									AAAA
MOTA	207	N	ARG	27	33.719	44.880	50.743	1.00 21.98	AAAA
MOTA	208	CA	ARG	27	33.267	44.347	52.035	1.00 26.17	AAAA
MOTA	209	CB	ARG	27	32.641	42.969	51.834	1.00 22.70	AAAA
MOTA	210	CG	ARG	27	31.442	43.039	50.890	1.00 26.75	AAAA -
ATOM	211	CD	ARG	27 .	30.832	41.672	50.581-	1.00 33.22	AAAA
MOTA	212	NE	ARG	27	30.121	41.098	51.716	1.00 28.66	AAAA
ATOM	213	CZ	ARG	27	30.582	40.129	52.503	1.00 31.79	AAAA
			ARG	27	31.778	39.598			
MOTA	214	•					52.290	1.00 34.08	- AAAA
MOTA	215	NH2		27	29.833	39.688	53.505	1.00 26.16	AAAA
ATOM	216	С	ARG	27	34.358	44.297	53.090	1.00 24.10	AAAA
ATOM	217	0	ARG	27	34.326	45.074	54.038	1.00 23.50	AAAA
MOTA	218	N	VAL	28	35.314	43.390	52.960	1.00 21.45	AAAA
ATOM	219	CA	VAL	28	36.385	43.385	53.953	1.00 21.75	AAAA
ATOM	220	CB	VAL	28	37.221	42.101	53.866	1.00 26.55	AAAA
	221		VAL	28	38.407	42.177	54.830	1.00 23.84	AAAA
ATOM									
MOTA	222			28	36.337	40.906	54.214	1.00 19.20	AAAA
MOTA	223	С	VAL	28	37.277	44.611	53.736	1.00 20.86	AAAA
MOTA	224	0	VAL	28	37.770	45.223	54.702	1.00 25.15	AAAA.
MOTA	225	N	SER	29	37.480	44.996	52.475	1.00 19.22	AAAA
MOTA	226	CA	SER	29	38.320	46.169	52.209	1.00 19.63	AAAA
MOTA	227	CB	SER	29	38.591	46.352	50.702	1.00 24.45	AAAA
ATOM	228	OG	SER	29	37.411	46.697	49.984	1.00 28.74	AAAA
ATOM	229	C	SER	29	37.579	47.381	52.756	1.00 21.50	AAAA
				29	38.184				AAAA
MOTA	230	0	SER			48.320	53.271	1.00 18.95	
MOTA	231	N	LEU	30	36.256	47.353	52.673	1.00 19.56	AAAA
MOTA	232	CA	LEU	30	35.499	48.481	53.177	1.00 25.97	AAAA
ATOM	233	CB	LEU	30	34.032	48.396	52.744	1.00 22.90	AAAA
MOTA	234	CG	LEU	30	33.085	49.541	53.157	1.00 26.62	AAAA
MOTA	235	CD1	LEU	30	32.885	49.539	54.648	1.00 38.27	AAAA
MOTA	236	CD2	LEU	30	33.653	50.885	52.698	1.00 25.71	AAAA
ATOM	237	С	LEU	30	35.604	48.509	54.596	1.00 18.44	AAAA
ATOM	238	ō	LEU	30	35.704	49.580	55.273	1.00 25.05	AAAA
ATOM	239	N	LEU	31	35.578	47.336	55.336	1.00 19.65	AAAA
					35.672	47.270	56.797		AAAA
MOTA	240	CA	LEU	31				1.00 20.47	
ATOM	241	CB	LEU	31	35.613	45.821	57.300	1.00 20.60	AAAA
MOTA	242	CG	LEU	31	34.988	45.456	58.665	1.00 39.80	AAAA
ATOM	243	CD1	LEU	31 -	35.712	44.219	59.257	1.00 23.99	AAAA
ATOM	244	CD2	LEU	31	35.085	46.591	59.637	1.00 28.48	AAAA
MOTA	345	C .	LEU	31	37.009	47.870	57.229	1.00 23.85	AAAA
ATOM	246	0	LEU	31	37.070	48.673	58.154	1.00 21.24	AAAA
ATOM	247	N	LEU	32	38.079	47.462	56.562	1.00 23.91	AAAA
ATOM	248	CA	LEU	32	39.400	47.965	56.899	1.00 24.82	AAAA
		CB	LEU	32	40.479		56.018	1.00 24.81	AAAA
MOTA	349								
ATOM	250	CG	LEU	32	40.849	45.854	56.276	1.00 27.00	AAAA
MOTA	251		LEU	32	41.995	45.435	55.354	1.00 27.13	AAAA
MOTA	. 252	CD2	LEU	32	41.285	45.687	57.720	1.00 34.49	AAAA
MOTA	253	С	LEU	32	39.466	49.475	56.763	1.00 19.56	AAAA
MOTA	254	0	LEU	32	39.958	50.143	57.662	1.00 20.71	AAAA
ATOM	255	N	ARG	33	38.974	50.006	55.645	1.00 23.25	AAAA
ATOM	256		ARG	33		51.449	55.441	1.00 24.33	AAAA
				33	38.575	51.806	54.013	1.00 23.46	AAAA
ATOM	257	CB	ARG						
ATOM	358	CG	ARG	33		51.327	52.945	1.00 26.94	AAAA
atom	259	CD	ARG	33		51.976	51.585	1.00 42.13	AAAA
ATOM	260	NE	ARG	33	38.023	51.661	51.037	1.00 59.06	AAAA
ATOM	261	CZ	ARG	33	37.583	52.088	49.857	1.00 60.87	AAAA
ATOM	362	NH1	ARG	33	38.353		49.095	1.00 65.33	አጹጹል
· ATOM	263		ARG	33	36.373	51.743	49.433	1.00 56.24	AAAA
ATOM	264	C	ARG	33	38.124	52.156	56.455	1.00 30.33	AAAA
AIUII	-04	-			50.224				

		6.				00 05 45	AAAA
•	255 0 370	33	38.441	53.252	56.905 1	.00 25.45	
MOTA	265 O ARG			51.514		.00 24.98	AAAA
ATOM	266 N PHE	34	-		57.789 1	00 27.09	AAAA
ATOM	267 CA PHE	34				00 24.88	AAAA
ATOM	268 CB PHE	34			•	.00 20.46	AAAA
	269 CG PHE	34	33.719			00 20.40	AAAA
MOTA		34	33.043	53.018		00 18.74	-
MOTA	270 CD1 PHE			51.383	59.889	.00 20.19	AAAA
ATOM	271 CD2 PHE	34		53.627	58.956 1	1.00 23.04	AAAA
MOTA	272 CE1 PHE	34			60.681	1.00 25.08	AAAA
MOTA	273 CE2 PHE ·	34		51.974		1.00 23.31	AAAA
	274 CZ PHE	34		53.104	•••	1.00 23.93	AAAA
MOTA		34	36.709	52.115	• • • • •	1.00 23.93	AAAA
MOTA		34	36.668	53.138	59.883	1.00 21.71	
MOTA	276 O PHE		37.298	51.013	59.645	1.00 21.33	AAAA
ATOM	277 N LYS	35	37.862	51.084	60.978	1.00 22.54	AAAA
ATOM	278 CA LYS	35		49.716	61.476	1.00 29.70	AAAA
ATOM	279 CB LYS	35	38.276	49.710	61.924	1.00 29.48	AAAA
ATOM	280 CG LYS	35	37.082	48.890	~ — · -	1.00 42.17	AAAA
	281 CD LYS	35	37.517	47.535		1.00 42.17	AAAA
MOTA	#U	35	38.157	46.762		1.00 34.89	AAAA
MOTA		35	39.372	47.412	60.719	1.00 67.18	
MOTA	283 NZ LYS		39.027	52.055	61.040	1.00 24.68	AAAA
MOTA	284 C LYS	35	39.282	52.640	62.085	1.00 22.33	AAAA
ATOM	285 O LYS	35		52.231	59.926	1.00 25.67	AAAA
ATOM	286 N ASP	36	39.724		59.898	1.00 25.57	AAAA
ATOM	287 CA ASP	36	40.842	53.163	58.621	1.00 32.26	AAAA
	288 CB ASP	36	41.669	52.984		1.00 33.92	AAAA
MOTA	289 CG ASP	36	42.881	53.914	58.572	1.00 40.22	AAAA
MOTA	•••	36	43.641	53.969	59.563	1.00 40.22	AAAA
MOTA		36	43.078	54.575	57.538	1.00 40.06	
ATOM	291 OD2 ASP	36	40.285	54.578	59.973	1.00 28.04	AAAA
ATOM	292 C ASP		40.761	55.397	60.765	1.00 29.52	AAAA
MOTA	293 O ASP	36 37	39.272	54.864	59.159	1.00 23.32	AAAA
MOTA	294 N ALA	3 7	38.651	56.192	59.163	1.00 28.22	AAAA
ATOM	295 CA ALA	37		56.251	58.119	1.00 25.93	AAAA
ATOM	296 CB ALA	37	37.506		60.565	1.00 28.41	AAAA
ATOM	297 C ALA	37	38.127	56.549	60.972	1.00 29.27	AAAA
MOTA	298 O ALA	37	38.186	57.708		1.00 24.76	AAAA
ATOM	299 N MET	38	37.639	55.547		1.00 25.45	AAAA
	300 CA MET	38	37.103	55.727		1.00 25.45	AAAA
ATOM	301 CB MET	38	36.077	54.625		1.00 22.22	AAAA
MOTA		38	34.816	54.660	62.148	1.00 22.32	AAAA
MOTA		38	33.733	55.983	62.702	1.00 29.90	
ATOM	303 SD MET	38	33.402	55.417		1.00 26.51	AAAA
MOTA	304 CE MET		38.203	55.667		1.00 26.42	AAAA
MOTA	305 C MET	38	37.924	55.818		1.00 23.77	AAAA
MOTA	306 O MET	38	39.437	55.434		1.00 26.21	AAAA
MOTA	307 N ASN	39		55.308		1.00 28.53	AAAA
MOTA	308 CA ASN	39	40.607			1.00 33.95	AAAA
ATOM	309 CB ASN	39	40.926	56.643		1.00 29.46	AAAA
	310 CG ASN	39	41.153			1.00 36.28	AAAA
ATOM		39	41.930			1.00 30.20	AAAA
MOTA		39	40.472	58.880	64.046	1.00 40.03	AAAA
MOTA	·	39	40.374		3 65.205	1.00 30.07	AAAA
MOTA	313 C ASN	39	40.682		0 66.395	1.00 25.47	AAAA
MOTA	314 O ASN		39.814			1.00 28.19	
ATOM	315 N LEU	40	39.527			1.00 25.50	AAAA
MOTA	316 CA LEU	40				1.00 32.14	AAAA
ATOM	317 CB LEU	40	38.060				AAAA
ATOM	318 CG LEU	40	37.044				AAAA.
ATOM	319 CD1 LEU	40	35.637				AAAA
	320 CD2 LEU	40	37.325				AAAA
MOTA		40	40.433	50.77			AAAA
MOTA		40	40.157	7 49.68			AAAA
MOTA		41	41.528	3 50.97			AANA
MOTA		41	42.459		2 64.459		
ATOM	324 CA ILE		42.010			1.00 25.01	AAAA
ATCM	325 CB ILE	41	42.06			1.00 22.74	AAAA
ATOM	326 CG2 ILE	41	42.91			1.00 31.01	AAAA
MOTA	327 CG1 ILE	41				1.00 42.18	AAAA
ATCM	328 CD1 ILE	41	42.89				AAAA
ATOM	329 C ILE	41	43.90				AAAA
ATOM	330 O ILE		44.12	8 51.40	JO		•
ATOM	•						

			rig	uic 10-0				
ATOM	331 N	ASP	42	44.866	49.634	64.787	1.00 28.95	ÄÄÄÄ
	332 CA	ASP	42	46.279	49.988		1.00 32.52	AAAA
MOTA	333 CB	ASP	42	46.951	50.094		1.00 34.24	AAAA
ATOM	334 CG	ASP	42	46.267	51.097	66.911	1.00 51.23	AAAA
MOTA		ASP	42	46.079	52.250	66.467	1.00 50.19	AAAA
MOTA		ASP	42	45.924	50.736	68.062	1.00 53.00	AAAA
ATOM	336 OD2	ASP	42	46.985	48.919	63.808	1.00 31.13	AAAA
MOTA		ASP	42	46.594	47.758	63.838	1.00 26.71	AAAA
ATOM		GLU	43 .	48.036	49.312	63.092	1.00 29.99	AAAA
ATOM	339 N 340 CA	GLU	43	48.793	48.392	62.240	1.00 31.34	AAAA
MOTA		GLU	43	50.078	49.045	61.724	1.00 36.12	AAAA
ATOM	341 CB	GLU	43	49.886	50.118	60.676	1.00 52.72	AAAA
ATOM	342 CG	GLU	43	51.214	50.556	60.083	1.00 60.39	AAAA
MOTA	343 CD	GLU	43	51.928	49.688	59.536	1.00 70.32.	AAAA
ATOM		GLU	43	51.550	51.755	60.163	1.00 60.38	AAAA
MOTA	_		43	49.196	47.070	62.859	1.00 38.04	AAAA
MOTA .	346 C	GLU GLU	43	49.125	46.024	62.209	1.00 36.83	AAAA
ATOM	347 0		44	49.636	47.103	64.105	1.00 28.26	AAAA
MOTA	348 N	LYS LYS	44	50.084	45.879	64.740	1.00 32.71	AAAA
MOTA	349 CA	LYS	14	50.974	46.245	65.927	1.00 44.28	AAAA
ATOM	350 CB	LYS	44	52.211	47.007	65.418	1.00 59.37	AAAA
MOTA	351 CG	LYS	44	53.187		66.491	1.00 68.87	AAAA
ATOM	352 CD	LYS	44	54.373	48.167	65.849	1.00 67.21	AAAA.
MOTA	353 CE		44		48.648	66.850	1.00 74.00	AAAA
MOTA	354 NZ	LYS	44	48.982	44.889	65.115	1.00 26.75	AAAA
MOTA	355 C	LYS LYS	44	49.265	43.792	65.586	1.00 27.37	AAAA
MOTA	356 O	GLU	45	47.731	45.278	64.881	1.00 29.20	AAAA
ATOM	357 N	GLU	45	46.580	44.414	65.165	1.00 21.58	AAAA
ATOM	358 CA 359 CB	GLU	45	45.387	45.243	65.676	1.00 18.24	AAAA
MOTA	359 CB 360 CG	GLU	45	45.551	45.828	67.077	1.00 26.57	AAAA
MOTA	361 CD	GLU	45	44.418	46.772	67.453	1.00 23.12	AAAA
MOTA		GLU	45	44.224	47.783	66.746	1.00 21.64	AAAA
MOTA		GLU	45	43.725	46.509	68.454	1.00 26.48	AAAA
ATOM	364 C	GLU	45 .	46.163	43.710	63.870	1.00 26.31	AAAA
MOTA	365 0	GLU	45	45.400	42.739	63.889	1.00 22.32	AAAA
ATOM	366 N	LEU	46	46.674	44.204	62.748	1.00 20.15	AAAA
MOTA MOTA	367 CA	LEU	46	46.317	43.642	61.448	1.00 25.80	AAAA
ATOM	368 CB	LEU	46	46.137	44:774	60.433	1.00 27.25	AAAA
ATOM	369 CG	LEU	46	45.763	44.397	58.997	1.00 37.72	AAAA
ATOM		1 LEU	46	44.356	43.810	58.984	1.00 39.46	AAAA
ATOM		2 LEU	46	45.822	45.632	58.101	1.00 35.43	بمممم
MOTA	372 C	LEU	46	47.305	42.623	60.896	1.00 28.88	А л АА А л АА
ATOM	373 0	LEU	46	48.513	42.860		1.00 31.98	
ATOM	374 N	ILE	17	46.791	41.469	60.482	1.00 16.92	AAAA AAAA
ATOM	375 CA	ILE	47	47.638	40.448		1.00 20.98	AAAA
ATOM		ILE	47	47.412	39.046	67.513	1.00 21.51	AAAA
ATOM		2 ILE	47	48.115	37.958		1.00 20.32	AAAA
MOTA		1 ILE	47	47.947				AAAA
ATOM		1 ILE	47	49.450				AAAA
ATOM	380 C	ILE	47	47.227			1.00 24.50	AAAA
ATOM	381 0	ILE	47	46.036				AAAA
ATOM	382 N	LYS	48	48.195				AAAA
STOM	383 CA	LYS	48	47.883				AAAA
ATOM	384 CB		48	49.095				AAAA
MOTA	385 CG		48	48.836		53.738	1.00 23.25	AAAA
ATOM	386 CD	LYS	48	50.072				AAAA
ATOM	387 CE		18	49.796				AAAA
ATOM	388 NZ		48 .	48.704				AAAA
ATOM	389 C	LYS	48	47.473				AAAA
ATOM	390 0	LYS	48	48.177				AAAA
ATOM	391 N	SER	49	46.343			1.00 16,61	AAAA
ATOM	392 CA		÷ 9	.45.838	37.780			AAAA
ATOM	393 CE		49	44.517				AAAA
ATOM	394 00		49	43.509	38.613			AAAA
ATOM	395 C		49	46.810			1.00 24.11	aaaa aaaa
ATOM	396 0	SER	49	47.463	37.81	5 _52.663	1.00 19.59	· France
31011								-

			0/203				
		Fig	gure 16-7				
				35.805	53.519	1.00 16.83	AAAA
MOTA	397 N ARG	50			52.610	1.00 23.88	AAAA
ATOM	398 CA ARG	50				1.00 27.48	AAAA
MOTA	399 CB ARG	50				1.00 22.99	AAAA
MOTA	400 CG ARG	50 50			54.759	1.00 25.20	AAAA
MOTA	401 CD ARG	50				1.00 15.88	AAAA
MOTA	402 NE ARG	50 50			55.368	1.00 14.34	AAAA
ATOM	403 CZ ARG	50	48.023		54.117	1.00 15.78	AAAA
MOTA	404 NH1 ARG	. 50	48.150		56.312	1.00 16.78	AAAA
MOTA	405 NH2 ARG 406 C ARG	50	46.821	34.023	51.905	1.00 20.20	AAAA
ATOM	406 C ARG 407 O ARG	50 -	45.763		52.414	1.00 18.63	AAAA
MOTA	408 N PRO	51	47.203	33.596		1.00 15.63	AAAA
ATOM	409 CD PRO	51	48.322	34.028	49.850	1.00 19.45	AAAA
MOTA	410 CA PRO	51	46.387	32.606	49.994	1.00 14.35	AAAA
ATOM ATOM	411 CB PRO	51	47.076	32.514	48.629	1.00 17.73	AAAA
ATOM	412 CG PRO	51	47.707	33.890	48.47-5	1.00 17.62	AAAA AAAA
ATOM	413 C PRO	51	46.452	31.256	50.708	1.00 15.73	AAAA
ATOM	414 O PRO	51	47.460	30.942	51.350	1.00 18.67 1.00 11.47	AAAA
ATOM	415 N ALA	52	45.377	30.470	50.618	1.00 11.47	AAAA
ATOM	416 CA ALA	52	45.375	29.117	51.161	1.00 9.78	AAAA
ATOM	417 CE ALA	52	43.967	28.529	51.112	1.00 17.19	AAAA
ATOM	418 C ALA	52	46.301	28.342	50.209	1.00 16.46	AAAA
ATOM	419 O ALA	52	46.307	28.609	49.006 50.723	1.00 16.40	AAAA
ATOM	420 N THR	53	47.081	27.392 26.615	49.843	1.00 16.32	AAAA
MOTA	421 CA THR	53	47.952	25.959	50.612	1.00 15.82	AAAA
ATOM	422 CB THR	53	49.109 48.582	25.939	51.559	1.00 16.25	AAAA
MOTA	423 OG1 THR		49.923	27.030	51.336	1.00 14.34	AAAA
ATOM	424 CG2 THR	53	47.104	25.520	49.215	1.00 14.06	AAAA
MOTA	425 C THR	53 53	46.012	25.241	49.690	1.00 17.87	AAAA
ATOM		54	47.599	24.903	48.145	1.00 16.10	AAAA
MOTA	427 N LYS- 428 CA LYS	54	46.848	23.832	47.492	1.00 19.00	AAAA
MOTA	429 CB LYS	54	47.671	23.245	46.339	1.00 22.92	AAAA
MOTA	430 CG LYS	54	46.955	22.172	45.539	1.00 32.99	AAAA
MOTA MOTA	431 CD LYS	54	45.787	22.733	44.757	1.00 51.34	AAAA AAAA
ATOM	432 CE LYS	54	46.244	23.565	43.561	1.00 64.17	AAAA
ATOM	433 NZ LYS	54	46.898	22.733	42.505	1.00 63.45 1.00 22.48	AAAA
ATOM	434 C LYS	54	46.554	22.738	48.520	1.00 22.48	AAAA
MOTA	435 O LYS	54	45.463	22.158	48.555	1.00 25.65	AAAA
ATOM	436 N GLU	5 5	47.536	22.465	49.364 50.383	1.00 25.08	AAAA
ATOM	437 CA GLU	55	47.389	21.432	51.116	1.00 25.40	AAAA
ATOM	438 CB GLU	5 5 .	48.718	21.241 20.185	52.199	1.00 48.95	AAAA
ATOM	439 CG GLU	55	48.703	19.821	52.673	1.00 64.21	AAAA
ATOM	440 CD GLU	55	50.220	19.033	53.640	1.00 62.38	AAAA
MOTA	441 OE1 GLU	55 55	51.093	20.311		1.00 58.22	AAAA
MOTA	42 OE2 GLU	55 55	46.273	21.773		1.00 18.91	AAAA
MOTA	.43 C GLU	55		20.908		1.00 17.43	AAAA
ATOM		56	46.196	23.029	_	1.00 16.80	AAAA
ATOM	445 N GLU 446 CA GLU	56	45.137	23.432			AAAA
MOTA	447 CB GLU		45.399	24.855			AAAA
atom atom	448 CG GLU		46.709	24.941			AAAA AAAA
MOTA	449 CD GLU	_	47.087				AAAA
MOTA	450 OE1 GLU		46.713				AAAA
ATOM	451 OE2 GLU		47.773		55.394		AAAA
ATOM	452 C GLU	56	43.781				AAAA
ATOM	453 O GLU	56	42.799				AAAA
ATOM	454 N LEU	57	43.722				AAAA
ATOM	455 CA LEU		42.466	23.579			AAAA
ATOM	456 CB LEU		42.591				AAAA
ATOM	457 CG LEU		42.773				AAAA
ATOM	458 CD1 LEU		42.923 41.546				AAAA
ATOM	459 CD2 LEU		42.016				AAAA
MOTA	460 C LEU		40.824				AAAA
ATOM	461 0 LE		42.975		-		AAAA
ATOM	462 N LEV	, ,	,		•		•

ATOM	463	CA	LEU	58	42.662	19.822	49.475	1.00 15.18	AAAA
ATOM	464	CB	LEU	58	43.788	19.113	48.727	1.00 16.09	AAAA
ATOM	465	CG	LEU	58	44.029	19.682	47.321	1.00 21.72	AAAA
ATOM	466	CD1	LEU	58	45.221	18.982	46.680	1.00 31.92	AAAA
ATOM	467	CD2		58	42.786	19.549	46.469	1.00 34.38	AAAA
ATOM	468	C	LEU	58	42.339	19.116	50.787	1.00 21.19	AAAA
ATOM	469	ō	LEU	58	42.067	17.914	50.795	1.00 20.40	AAAA
ATOM	470	N	LEU	59	42.377	19.849	51.896	1.00 13.50	`AAAA
MOTA	471	CA	LEU	59	41.958	19.261	53.173	1.00 15.58	AAAA
ATOM	472		LEU	59	42.182	20.236	54.339	1.00 18.98	AAAA
ATOM	473	CG	LEU	59	43.619		54.774	1.00 22.57	AAAA
ATOM	474		LEU	59	43.640	21.654	55.808	1.00 19.88	AAAA
ATOM	475		LEU	59.		19.253	55.339	1.00 26.71	AAAA
ATOM	476	C	LEU	59	40.446	18.979	53.043	1.00 17.55	AAAA
ATOM	477	ŏ	LEU	59	39.897	18.112	53.724	1.00 18.02	AAAA
MOTA	478	N	PHE	60	39.766	19.737	52.179	1.00 14.64	- AAAA
MOTA	479	CA	PHE	60	38.338	19.536	51.970	1.00 18.17	AAAA
MOTA	480	CB	PHE	60	37.519	20.694	52.557	1.00 18.80	AAAA
ATOM	481	CG	PHE	60	36.028	20.564	52.316	1.00 15.94	AAAA
ATOM	482		PHE	60	35.320	19.476	52.817	1.00 19.98	AAAA
ATOM	483		PHE	60	35.339	21.524	51.576	1.00 18.09	AAAA
ATOM	484		PHE	60	33.947	19.338	52.587	1.00 18.72	AAAA ·
ATOM	485	CE2	PHE	60	33.964	21.399	51.338	1.00 19.19	AAAA
ATOM	486	CZ	PHE	60	33.268	20.295	51.850	1.00 18.43	AAAA
ATOM	487	С	PHE	60	37.916	19.337	50.510	1.00 16.45	AAAA
ATOM	488	0	PHE	60	37.227	18.371	50.179	1.00 19.18	AAAA
ATOM	489	N	HIS	61	38.308	20.257	49.638	1.00 18.26	AAAA
ATOM	490	CA	HIS'	61	37.913	20.163	48.235	1.00 14.47	AAAA
ATOM	491	CB	HIS	61	38.004	21.545	47.582	1.00 17.15	AAAA
ATOM	492	CG	HIS	61	36.968	22.494	48.084	1.00 14.20	AAAA
ATOM	493	CD2	HIS	61	35.645	22.580	47.816	1.00 11.05	AAAA
ATOM	494	ND1	HIS	61	37.237	23.477	49.012	1.00 23.25	AAAA
MOTA	495	CE1	HIS	61	36.121	24.131	49.291	1.00 13.35	AAA A
MOTA	496	NE2	HIS	61	35.143	23.606	48.579	1.00 21.07	AAAA
MOTA	197	C	HIS	61	38.695	19.157	47.417	1.00 18.29	AAAA
MOTA	498	0	HIS	61	39.828	18.819	47.761	1.00 17.50	AAAA
ATOM	499	N	THR	62	38.071	18.658	46.346	1.00 15.39	AAAA
ATOM	500	CA	THR	62	38.741	17.686	45.473	1.00 19.02	AAAA
MOTA	501	CB	THR	62	37.734	16.767	44.756	1.00 19.61	AAAA
HTOM	502	OG1		62	36.795	17.548	44.006	1.00 22.05	AAAA
ATOM	503	CG2	THR	62	36.995	15.925	45.767	1.00 28.99	AAAA
ATOM	504	C	THR	62	39.595	18.398	44.440	1.00 23.22	AAAA
ATOM	505	0	THR	62	39.311	19.532	44.044	1.00 17.47	AAAA
ATOM	506	13	GLU	63	40.657	17.732	44.009	1.00 18.94	AAAA
MOTA	507	CA	GLU	63	41.571	18.324	43.046	1.00 22.44	AAAA
ATOM	508 509	CB CG	GLU	63 63	42.736 43.885	17.384 17.476	42.750 43.708	1.00 28.31 1.00 60.37	AAAA AAAA
atom atom	510	CD	GLU	63	45.154	16.893	43.708	1.00 65.08	AAAA
ATOM	511		GLU	63	45.603	17.407	42.065	1.00 66.44	AAAA
ATOM	512		GLU	63	45.697	15.927	43.694	1.00 00.44	AAAA
ATOM	513	C	GLU	63	40.983	18.764	41.730	1.00 18.63	AAAA
ATOM	514	õ	GLU	63	41.340	19.827	41.228	1.00 18.37	AAAA
ATOM	515	N	ASP	64	40.108	17.943	41.153	1.00 19.77	AAAA
ATOM	515	CA	ASP	64	39.508	18.277	39.864	1.00 17.88	AAAA
ATOM	517	CB	ASP	64	38.584	17.159	39.372	1.00 20.43	AAAA
ATOM	518	CG	ASP	64	37.429	16.884	40.330	1.00 42.71	AAAA
ATOM	519		ASP	64	36.415	16.291	39.899	1.00 45.01	AAAA
ATOM	520	OD2		64	37.537	17.243	41.521	1.00 51.77	AAAA
ATOM	521	c	ASP	64	38.701	19.582	39.964	1.00 21.90	AAAA
ATOM	522	0	ASP	64	38.726	20.410	39.042	1.00 17.35	AAAA
ATOM	523	N	TYR	65	37.980	19.750	41.072	1.00 16:17	AAAA
ATOM	524	CA	TYR	65	37.178	20.957	41292	1.00 15.62	SAAS
ATOM	525	CB	TYR	65	36.258	20.796	42.529	1.00 12.04	KAAA
ATOM	526	CG	TYR	65	35.501	22.065	42.886	1.00 12.23	AAAA
ATOM	527		TYR	65	34.699	22.718	41.940	1.00 14.73	aaa.
ATCM	528		TYR	65	34.028	23.910	42.253	1.00 18.23	AAAA

								•			
, mon	529	CD2	かくら	65	35.	609	22.631	44.163	1.00	13.67	AAAA
ATOM				65	34.		23.824	44.486	1.00	18.16	AAAA
ATOM	530	CE2	TYR				24.461	43.533	1.00		AAAA
MOTA	531	CZ	TYR	65	34.				1.00		AAAA
MOTA	532	он	TYR	65	33.		25.665	43.837			
MOTA	533	С	TYR	65	38.	090	22.177	41.459	1.00		AAAA
ATOM	534	Ō	TYR	65	37.	882	23.189	40.798	1.00		AAAA
		N	ILE	66	39.	098	22.073	42.321	1.00	14.29	AAAA
ATOM	535			66	40.		23.179	42.540	1.00	18.86	AAAA
MOTA	536	CA	ILE				22.836	43.617	1.00		AAAA
MOTA	537	CB	ILE	66	41.				1.00		AAAA
MOTA	538	CG2	ILE	66	42.		23.943	43.698			AAAA
ATOM	539	CG1	ILE	66	40.	405	22.659	44.967		19.68	
ATOM	540	CD1	ILE	66	39.	717	23.948	45.454		29.11	AAAA
	541	C	ILE	66	40.	716	23.519	41.236	1.00	25.20	AAAA '
MOTA				66		809	24.692	40.895	1.00	14.60	AAAA
MOTA	542	0	ILE			190	22.508	40.498	1.00	18.21	AAAA
ATOM	543	N	ASN	67				39.236	_	20.03	AAAA
MOTA	544	CA	ASN	67		879	22.789			21.73	AAAA
ATOM	545	CB	ASN	67		448	21.523	38.580			
ATOM	546	CG	ASN	67	43.	645	20.954	39.333 ·		21.69	AAAA
ATOM	547		ASN	67	44.	293	21.645	40.110		23.97	AAAA
			ASN	67		947	19.692	39.086	1.00	23.23	AAAA
ATOM	548			67		970	23.500	38.250	1.00	15.87	AAAA
MOTA	549	С	ASN			431	24.347	37.473		18.64	AAAA
MOTA	550	0	ASN	67						16.55	AAAA
ATOM	551	N	THR	68		681	23.180			20.34	AAAA
MOTA	552	CA	THR	68		729	23.814	37.400		22.99	AAAA '
ATOM	553	CB	THR	68		360	23.114	37.441			
ATOM	554	OG1	THR	68	37.	511	21.760			21.75	AAAA
ATOM	555	CG2	THR	68	36.	378	23.827	36.536		17.37	AAAA
	556	C	THR	68	. 38.	561	25.291			16.66	AAAA
MOTA	557	Ö	THR	68	38.	472	26.139	36.871		18.79	AAAA
ATOM			LEU	69		534	25.604		1.00	14.82	AAAA
MOTA	558	N		69		405	27.000			15.20	AAAA
ATOM	559	CA	LEU			. 295	27.126		1.00	16.87	AAAA ·
MOTA	560	CB	LEU	69						14.76	AAAA
MOTA	561	CG	LEU	69		.057	26.551			16.81	AAAA
MOTA	562		LEU	69		. 212	26.643			17.26	AAAA
ATOM	563	CD2	LEU	69		. 832	27.312				AAAA
ATOM	564	С	LEU	69		. 623	27.796			15.11	
ATOM	565	0	LEU	69	39	.500	28.934			13.30	AAAA
MOTA	566	N	MET	70	40	. 803	27.204	39.090		13.40	AAAA
	567	CA	MET	70	42	.019	27.894	38.659		16.97	AAAA
ATOM		CB	MET	70		.254	27.114		1.00	14.87	AAAA
ATOM .	568		MET	70		.335	26.886		1.00	15.18	AAAA
MOTA	569	CG		70		.828	25.954		1.00	28.71	AAAA
MOTA	570	SD	MET			.051	27.228		1.00	21.19	AAAA
ATOM	571	CE	MET	70			28.119		1 00	19.11	AAAA
MOTA	572	С	HET	70		.064				17.10	AAAA
MOTA	573	0	MET	70		.498	29.170				AAAA
MOTA	. 574	N	GLI	71		.648	27.118		1.00	15.06	
ATOM	575	CA	GLU	71	41	. 651	27.22		1.00	16.12	AAAA
ATOM	576	CB	GLU	71	41	.397	25.85	5 34.305	1.00	16.12	AAAA
	577	CG	GLU	71	41	.387	25.882	2 32.800	1.00	20.26	AAAA
ATOM	578	CD	GLU	71	42	.782	25.920	32.193	1.00	32.31	AAAA
MOTA			GLU	71		. 893	25.74	1 30.958	1.00	27.07	AAAA
ATOM	579			71	43	.762	26.11			24.85	AAAA
MOTA	580		2 3LU			.580	28.20			16.48	AAAA
ATOM	581	С	GLU	71					1 00	17.20	AAAA
MOTA	- 582	0	GLU	71		.831	29.06		_	15.68	AAAA
ATOM	583	N	ALA	72		.380	28.09				AAAA
MOTE	584	CA	ALA	72		.300	28.99			16.07	AAAA
ATOM	585	CB	ALA	72	37	.035	28.66			17.21	
	586		ALA	72	38	.678	30.45	3 34.897	1.00	19.07	AAAA
ATOM	587		ALA	72		.448	31.32	6 34.054	1.00	15.92	AAAA
ATOM			GLU	73		.260	30.72			15.86	AAAA
ATOM	588			73		.616	32.09			15:50	AAAA
ATOM	589		GLU			.046	32.21			14.12	AAAA
ATOM	590		GLU	73						14.24	AAAA
ATOM	591	CG		73		. 430			1 1 0	0 17.23	AAAA
ATOM	592	CD		73		.961				0 18.51	AAAA
ATOM	593		1 GLU	73		.147			1.0	0 20 00 0 10.3T	AAAA
ATOM	594		2 GLU	73	42	.201	33.75	3 39.79	1.0	0 20.88	-
Alon	•										•

	595 C	GLU	73	40.706	32.709	35.495	1.00 20.36	AAAA
MOTA	596 0	GLU	73	40.527	33.806		1.00 17.74	AAAA
MOTA	597 N	ARG	74	41.832	32.020		1.00 21.57	KAAK
MOTA	598 C		74	42.911	32.623	34.574	1.00 19.48	AAAA
MOTA MOTA	599 CI		74	44.256	31.912	34.834	1.00 18.48	AAAA
	600 C		74	44.365	30.489	34.351	1.00 14.96	AAAA
MOTA MOTA	601 CI		74	45.723	29.892	34.745	1.00 15.05	AAAA
MOTA	602 N		74	45.918	28.696	33.950	1.00 18.16	AAAA
MOTA	603 C		- 74	46.439	28.682	32.727	1.00 16.31	AAAA
MOTA		H1 ARG	74	46.843	29.811	32.145	1.00 19.74	AAAA
ATOM		H2 ARG	74	46.466	27.536	32.047	1.00 14.73	AAAA
ATOM	606 C	_	74	42.643	32.718	33.084	1.00 16.86	AAAA
ATOM	607 0		74	43.148	33.621	32.426	1.00 15.41 1.00 17.56	AAAA AAAA
ATOM	608 N		75	41.859	31.794	32.547	1.00 17.36	AAAA
MOTA	609 C		75	41.544	31.833	31.115 30.545	1.00 18.24	AAAA
MOTA	610 C		75	41.474	30.414	30.545	1.00 20.34	AAAA
ATOM		G CYS	75	43.047	29.514 32.561	30.372	1.00 15.81	AAAA
MOTA	612 C		75	40.216 39.762	32.748	29.762	1.00 17.79	AAAA
MOTA	613 0		75 76	39.601	32.959	32.007	1.00 15.63	AAAA
ATOM	614 N		76	38.339		32.010	1.00 23.22	AAAA
ATOM		A GLN B GLN	76	38.595	35.122	31.530	1.00 22.99	AAAA
A·I·OM		G GLN	76	37.564	36.107	32.027	1.00 44.69	AAAA
MOTA		D GLN	76	37.588	36.229	33.535	1.00 47.78	AAAA
MOTA MOTA		E1 GLN	76	37.563	35.228	34.243	1.00 62.95	AAAA
ATOM		E2 GLN	76	37.619	37.452	34.033	1.00 45.96	AAAA
MOTA	621 C		76	37.304	32.975	31.135	1.00 23.43	AAAA
ATOM	622 C		76	36.826	33.512	30.135	1.00 19.93	AAAA AAAA
ATOM	623 N		77	36.951	31.754	31.521	1.00 15.97 1.00 18.91	AAAA
MOTA		A CYS	77	36.004	30.979	30.741	1.00 18.91	AAAA
MOTA	-	B CYS	77	36.738	30.225 28.887	29.623 30.269	1.00 24.04	AAAA
MOTA		G CYS	77 -7	37.848 35.302	29.951	31.594	1.00 19.68	AAAA
MOTA	627		77 7 7	35.685	29.702	32.732	1.00 20.02	AAAA
MOTA	628		78	34.254	29.366	31.022	1.00 16.00	AAAA
ATOM		VAL	78	33.531	28.288	31.671	1.00 18.73	AAAA
MOTA		B VAL	78	32.016	28.455	31.557	1.00 15.57	AAAA
MOTA MOTA		G1 VAL	78	31.312	27.304	32.262	1.00 21.27	AAAA
ATOM .		G2 VAL	78	31.603	29.792	32.151	1.00 19.47	AAAA
ATOM		VAL	78	33.950	27.077	30.859	1.00 24.02	AAAA AAAA
ATOM		O VAL	78	33.499	26.894	29.718	1.00 24.08	AAAA
ATOM	636	1 PRO	79	34.848		31.420	1.00 18.91 1.00 17.70	AAAA
MOTA	637 (D PRO	79	35.470	26.341	32.756	1.00 17.70	AAAA
ATOM		CA PRO	79	35.320	25.056 24.432	30.720 31.732	1.00 21.92	AAAA
MOTA		CB PRO	79 70	36.295 36.802	25.677	32.498	1.00 20.90	AAA
MOTA		CG PRO	79 79	34.152	24.144		1.00 27.44	AAA.
ATOM		C PRO	79	33.177	24.064	31.119	1.00 22.20	AAA
MOTA	_	O PRO N LYS	80	34.245	23.488	29.224	1.00 23.35	AAAA
ATOM		N LYS CA LYS	80	33.212	22.570		1.00 26.78	AAAA
MOTA MOTA		CB LYS	80	33.708	21.853		1.00 32.33	AAAA
ATOM		CG LYS	80	35.098	21.256		1.00 51.34	AAAA AAAA
MOTA		CD LYS	80	35.669	20.817			AAAA
MOTA		CE LYS	80	37.131	20.401			AAAA
ATOM	649	NZ LYS	80	37.688		25.141		AAAA
ATOM	650	C LYS	80	32.875				AAAA
ATOM		O LYS	80	33.770				AAAA
ATCM		N GLY	81	31.582				AAAA
MOTA		CA GLY	51 C1	31.126 31.151				AAAA
ATOM		C GLY	S1	31.131				AAAA
ATOM		O GLY	\$1 82	31.754				AAAA
ATOM		N ALA	82	31.858			1.00 20.65	АААА
ATOM		CA ALA CB ALA	82	33.065			1.00 20.41	AAAA
ATCM		C YTY	82	30.610			1.90 21.81	AAAA
ATCM ATCM		O ALA	82	30.425			1.00 16.95	AAAA
ATOM.	550					-		-

WO 01/18045 PCT/US00/24700

29/263

				_									
ATCM	661	N	ARG	83	29.	758	23.9	926	33.897	1.00		AAAA	
						549	24.5	596	34.360	1.00	15.04	AAAA	
ATCM	662	CA	AEG	83					33.176		21.02	AAAA	
ATCM	663	CB	ARG	83	-	777	25.3					AAAA	
ATCM	664	CG	ARG	83	26.	938	26.3	395	33.528		36.77		
	665	CD	ARG	83	26.	061	26.	167	34.729	1.00	41.28	AAAA	
ATCM							27.		35.105	1 00	40.05	AAAA	
ATCM	666	NE	ARG	83		366					51.15	AAAA	
ATCM	667	CZ	ARG	83	24.	530	27.	492	36.134				
	668	NHl		83	24.	286	26.	432	36.893		55.10	AAAA	
ATOM						931	28.	646	36.399	1.00	54.26	AAAA	
ATCM	669	NH2		83							21.33	AAAA	
ATCM	670	C	ARG	83		701	23.		35.030				
ATCM	671	0	ARG	83 -	27.	193	23.	708	36.130		24.88	AAAA	
			GLU	84	27	565	22.	406	34.352	1.00	18.76	AAAA	
ATOM	672	И					21.		34.859	1 00	24.12	AAAA	
MOTA	673	CA	GLU	84		768						AAAA	
ATCM	674	CB	GLU	84	26.	527	20.		33.744		32.64		
	675	CG	GLU	84	27.	769	19.	994	32.925		37.91	AAAA	
MOTA					_	832	20.		31.612	1.00	51.24	AAAA	
ATOM	676	CD	GLU.	84					30.545		24.82	AAAA	
ATOM	677	OEl	GLU	84		. 585		152					
ATCM	678	OE2	GLU	84	28	.114	22.	018	31.650		22.57	AAAA	
			GLU	84	27	.394	20.	570	36.043	1.00	25.36	AAAA	
MOTA	679	C				.739		321	37.057	1 00	26.17	AAAA	
MOTA	680	0	GLU	84							18.78	AAAA	
ATCM	681	N	LYS	85	28	.665		232	35.897				
	682	CA	LYS	85	29	.399	19.	497	36.915		20.03	AAAA	
ATCM				85		.658		900	36.280	1.00	18.59	AAAA	
ATCM	683	СВ	LYS					223	37.268		35.69	AAAA	
ATCH	684	CG	LYS	85		.603						AAAA	
MOTA	685	CD	LYS	85	31	.151	16.	832	37.644		51.51		
	686	CE	LYS	85	31	.451	15.	864	36.520		59.18	AAAA	
ATOM				85		.914	15	858	36.240	1.00	56.63	AAAA	
ATOM	687	NZ	LYS						38.181		18.31	AAAA	
MOTA	688	С	LYS	85		.811		263			21.65	AAAA	
MOTA	689	0	LYS	85	29	.696	19.	738	39.290				
	690	N	TYR	86	3.0	.274	21.	495	38.012		19.45	AAAA	
ATCM						.776		.272	39.145	1.00	14.26	AAAA	
ATOM	691	CA	TYR	86					38.840		14.95	AAAA	
MOTA	692	CB	\mathtt{TYR}	86		.207		.692				AAAA	
ATCM	693	CG	TYR	86	33	.107	21.	.508	38.585		19.76		
			TYR	86 .	3.3	.384	2.0	.591	39.601		18.83	AAAA	
MOTA	694					.247		.519	39.388	1.00	20.29	AAAA	
ATOM	695	CE1		86						1 00	18.14	AAAA	
ATCM	696	CD2	TYR	86		.711		.322	37.337			AAAA	
ATOM	697	CE2		86	34	.567	20	.261	37.112		22.66		
			TYR	86	3.4	.832	19	.364	38.145	1.00	22.51	AAAA	
MOTA	698	CZ						.317	37.921	1 00	23.68	AAAA	
ATOM	699	OH	TYR	86		.680					19.03	AAAA	
ATOM	700	С	TYR	86	29	.967		.493	39.526			AAAA	
ATOM	701	0	TYR	86	30	.353	24	.226	40.450		19.18		
				87	28	.87.3	23	.721	38.803	1.00	17.59	AAAA	
ATOM	702	N	ASN					.843	39.071		18.07	AAAA	
ATOM	703	CA	ASN	87		.953				1 00	23.87	AAAA	
ATCM	704	CB	ASN	87	27	.413		.730	40.514				
	705	CG	ASN	87	26	.020	25	.349	40.688	1.00	30.67	'AAAA'	
ATOM		-		87		.531	25	.520	41.819	1.00	31.55	AAAA	
ATOM	706		. ASN	-				.661	39.580		20.18	AAAA	
MOTA	707	ND2	ASN	87		.370				3.00	24.24	AAAA	
ATCM	708	С	ASN	87	28	3.641		.197	38.875	1.00	J 24.24	AAAA	
	709	ē.	ASN	87	28	3.283	27	.190	39.519	1.00	0 18.57		
ATCM						.617	26	.237	37.970	1.00	0 18.80	AAAA	
ATCM	710	Ŋ	ILE	88				.471			0 18.55	AAAA	١
ATCM	711	CA	ILE	88		353				1 0	0 26.44	AAAA	
ATOM	712	CB	ILE	88		1.865		.166		1.0	0 20.44		
	713	CG2		88	32	2.613	28	.406	37.044	1.0	0 43.71	AAAA	
ATCM						.439	26	.703	38.835	1.0	0 36.30	AAAA	
MOTA	714		ILE	88				7.735			0 24.08	AAAA	à
MOTA	715	CDI	ILE	88	32	2.295	21				0 14.36	SAAA	
ATOM	716	С	ILE	88		9.887		1.142			0 14.30		
			ILE	38		9.584		.459	35.426	1.0	0 21.93	AAAA	
ATOM	717	0				843		.473			0 18.71	AAA	
ATCM	718	N	GLY	89							0 20.23	AAA A	Ą
ATOM	719	CA	GLY	89		9.479		162		1.0	0 20 05	AAA	
	720		GLY	89	2	B.147).873			0 20.85		
ATCM				89		B.006		1.817	34.330	1.0	0 25.47	አልጹና	
ATOM	701	9	GLY).414			0 21.17	AAAi	à
ATCM	722	N	GLY	90		7.172				1.0	0 24.44	AAA	
ATOM	723		GLY	90		5.863		1.060			D 20 C2		
			GLY	90	2	5.862	2 32	2.371	36.668	1.0	0 30.60	AAA	
ATOM	724			90		6.900		2.788		1.0	0 28.13	AAA	
ATOM	725		GLY							1 0	0 23.38	AAA	À
≥ 7 0M	726	N	TYR	91	2	4.708		3.036	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 1.0			

WO 01/18045 PCT/US00/24700

				0.1	24.598	34.299	37.490	1.00 28.48	AAAA
MOTA	727		TYR	91	23.144	34.753	37.545	1.00 29.88	· AAAA
ATOM	728		TYR	91		35.899	38.518	1.00 33.88	AAAA
MOTA	729		TYR	91	22.923		38.207	1.00 39.69	AAAA
MOTA	730	CD1	TYR	91	23.329	37.197		1.00 33.03	AAAA
MOTA	731	CE1	TYR	91	23.130	38.250	39.104		AAAA
-MOTA	732	CD2	TYR	91	22.317	35.678	39.759	1.00 40.63	
	733		TYR	91	22.115	36.720	40.664	1.00 37.07	AAAA
ATOM	734	CZ	TYR	.91	22.521	38.002	40.327	1.00 36.22	AAAA
ATOM		ОН	TYR	91	22.306	39.035	41.210	1.00 44.71	AAAA
MOTA	735		TYR	91	25.075	34.157	38.937	1.00 23:59	AAAA
MOTA	736	_		91	25.713	35.041	39.502	1.00 22.64	AAAA
MOTA	737	0	TYR		24.724	33.032	39.531	1.00 23.09	AAAA
ATOM	738	N	GLU	92	25.048	32.747	40.917	1.00 26.61	AAAA
ATOM	739	CA	GLU	92 .		31.476	41.306	1.00 32.57	AAAA
ATOM	740	CB	GLU	92	24.289		42.657	1.00 41.38	AAAA
ATOM	741	CG	GLU	92	24.595	30.892		1.00 49.02	· AAAA
ATOM	742	CD	GLU	92	23.604	29.800	43.023		AAAA
ATOM	743.	OE1	GLU	92	24.008	28.829	43.715	1.00 45.51	AAAA
ATOM	744		GLU	92	22.418	29.931	42.628	1.00 38:16	
	745	C	GLU	92	26.541	32.636	41.251	1.00 25.78	AAAA
MOTA	746	0 .	GLU	92	27.045	33.358	42.125	1.00 24.95	AAAA
MOTA			ASN	93	27.243	31.742	40.556	1.00 21.41	KAAA
ATOM	747	N.		93	28.674	31.519	40.777	1.00 21.14	AAAA
MOTA	748	CA	ASN		28.876	30.075	41.226	1.00 17.27	AAAA
MOTA	749	CB	ASN	93	27.905	29.682	42.320	1.00 15.34	AAAA
ATOM	750	CG	ASN	93		30.290	43.399	1.00 20.33	AAAA
MOTA	751		ASN	93	27.882		42.047	1.00 20.49	AAAA .
ATOM	752	ND2	ASN	93 .	27.078	28.674		1.00 22.25	AAAA
ATOM	753	С	asn	93	29.378	31.778	39.445	1.00 20.29	AAAA
ATOM	754	0	ASN	93	29.901	30.865	38.806		AAAA
ATOM	755	N-	PRO	94	29.451	33.057	39.045	1.00 25.45	AAAA
ATOM	756	CD	PRO	94	29.027	34.221	39.839	1.00 23.03	
	757	CA	PRO	94	30.055	33.523	37.794	1.00 23.05	AAAA
MOTA	758	CB	PRO	94	29.669	35.004	37.759	1.00 28.71	AAAA
MOTA		CG	PRO	94	28.528	35.112	38.755	1.00 40.02	AAAA
MOTA	759		PRO	94	31.554	33.384	37.697	1.00 26.51	AAAA
MOTA	760	C		94	32.232	33.185	38.688	1.00 17.36	AAAA
MOTA	761	0	PRO		32.068	33.498	36.478	1.00 21.12	AAAA
MOTA	762	N	VAL	95	33.506	33.493	36.281	1.00 17.00	AAAA.
MOTA	763	CA	VAL	95		33.242	34.796	1.00 25.15	AAAA
MOTA	764	CB	VAL	95	33.851		34.533	1.00 27.19	AAAA
ATOM	765		VAL	95	35.326	33.537		1.00 17.37	AAAA
ATOM	766	CG2	VAL	95	33.551	31.791	34.443	1.00 17.42	AAAA
ATOM	767	С	VAL	95	33.989	34.899	36.686	1.00 17.42	AAAA
ATOM	768	O	VAL	95	33.426	35.894	36.237	1.00 23.43	AAAA
ATOM	769	N	SER	96	34.986	34.982	37.563	1.00 18.84	AAAA
MOTA	770	CA	SER	96	35.564	36.270		1.00 21.77	AAAA
MOTA	771	CB	SER	96	. 34.608	37.070		1.00 23.11	
	772	0G	SER	96	34.723	36.679		1.00 24.43	AAAA
MOTA			SER	96	36.835	35.987	38.789	1.00 29.09	AAAA
MOTA	773	С	SER	96	37.117	34.828	39.115	1.00 27.12	AAAA
ATCM	774	0		97	37.610	37.020		1.00 17.51	AAAA
ATOM	775	N	TYR		38.803	36.751			AAAA
MOTA	776	CA	TYR	97	39.865	37.835			AAAA
MOTA	777	СВ	TYR	97		37.748			AAAA
MOTA	778	CG	TYR	97	40.492				AAAA
MOTA	779		LTYR	97	39.936				AAAA
ATOM	780	CE:	TYR	97	40.473				AAAA
ATOM	781	CD	2 TYR	97	41.599				AAAA
ATOM	782		2 TYR	97	42.144				AAAA
ATOM	783	CZ	TYR	97	41.578	37.439			AAAA
	784	он	TYR	97	42.122	37.273	34.501		
ATOM	785		TYR	97	38.510				AAAA
ATOM			TYR	97	39.413			1.00 19.76	AAAA
ATOM	786			98	37.243			1.00 18.56	AAAA
ATOM	787		ALA	98	36.899			1.00 22.23	AAAA
ATOM	788				35.561				AAAA
MOTA	789			98					AAAA
ATOM	790		ALA	98	36.776				AAAA
ATOM	791	0	ALA	98	36.931				AAAA
ATCM	792	Ŋ	MET	99	36.538	34.09	-	. 1.00 10.01	•
•									

		•	- 0					AAAA
		·	99	36.295	32.643	42.117	1.00 17.60	
ATOM		MET				40.736	1.00 17.05	AAAA
ATOM	794 CB !	1ET	99				1.00 11.16	AAAA
• •		1ET	99	36.999	31.824	39.793	1.00 11.10	
ATOM	, , ,				31.698	38.113	1.00 16.54	AAAA
MOTA	796 SD 1	1ET	99	36.314			1.00 17.83	AAAA
		·IET	99	35.165	30.295	38.312	1.00 17.05	
ATOM				37.432	31.800	42.650	1.00 18.98	AAAA
MOTA	798 C 1	4ET	99				1.00 18.21	AAAA
		MET	99	37.197	30.753	43.251	1.00 10.22	
MOTA				38.670	32.216	42.420	1.00 12.87	AAAA
ATOM	800 N 1	PHE	100			42.987	1.00 17.13	AAAA
		PHE	100	39.774	31.439			AAAA
MOTA	-		100	40.559	30.681	41.917	1.00 15.23	
ATOM	802 CB					42.492	1.00 15.20	AAAA
MOTA	803 CG	PHE	100	41.647	29.834		1.00 22.96	AAAA
			100	41.342	28.638	43.140	1.00 22.30	
ATOM				42.972	30.282	42.488	1.00 17.12	AAAA .
MOTA	805 CD2	PHE	100				1.00 19.23	AAAA
	806 CE1	DHE	100	42.341	27.901	43.782	1.00 15.25	AAAA
ATOM				43.974	29.552	43.129	1.00 16.99	
MOTA	807 CE2	PHE	100			43.779	1.00 17.78	AAAA
	808 CZ	PHE	100	43.658	28.360	-		AAAA
MOTA			100	40.755	32.305	43.774	1.00 20.54	
ATOM		PHE		41.088	31.990	44.912	1.00 21.45	AAAA
ATOM	810 0	PHE	100				1.00 18.02	AAAA
	-	THR	101	41.219	33.401	43.187	1.00 10.02	
ATOM				42.177	34.245	43.902	1.00 15.25	AAAA
ATOM	812 CA	THR	101	42.17		42.976	1.00 16.33	AAAA
	813 CB	THR	101	42.715	35.341		1.00 16 01	AAAA
MOTA	•		101	43:386	34.720	41.870	1.00 16.01	
MOTA	814 OG1			43.706	36.226	43.697	1.00 16.31	AAAA
ATOM	815 CG2	THR	101				1.00 14.12	AAAA
		THR	101	41.567	34.860	45.160	1.00 14.12	
MOTA	816 C			42.110	34.707	46.244	1.00 16.86	AAAA
MOTA	817 0	THR	101			45.008	1.00 13.77	AAAA
	818 N	GLY	102	40.435	35.541		1.00 16 30	AAAA
MOTA			102	39.770	36.145	46.156	1.00 16.29	
ATOM	819 CA	GLY			35.065	47.133	1.00 16.75	AAAA
ATOM	820 C	GLY	102	39.330	_		1.00 14.48	AAAA
		GLY	102	39.502	35.202	48.338	1.00 14.40	
ATOM	821 0			38.752	33.986	46.615	1.00 16.24	AAAA
MOTA	822 N	SER	103			47.488	1.00 16.72	AAAA
	823 CA	SER	103	38.315	32.890		1.00 15 07	AAAA
MOTA			103	37.567	31.821	46.684	1.00 15.97	
MOTA	824 CB	SER		-	32.349	46.197	1.00 26.86	AAAA
ATOM	825 OG	SER	103	36.339			1.00 17.88	AAAA
		SER	103	39.494	32.264		1.00 17.00	AAAA
MOTA				39.405	31.974	49.419	1.00 14.17	
ATOM	827 O	SER	103				1.00 11.40	AAAA
	828 N	SER	104	40.604	32.057			AAAA
MOTA			104	41.780	31.484	48.181		
MOTA	829 CA	SER		42.888	31.206		1.00 15.89	AAAA
ATOM	830 CB	SER	104			46 262		AAAA
	-	SER	104	42.525	30.102			AAAA
ATOM				42.332	32.404	49.271	1.00 17.02	
MOTA	832 C	SER	104				1.00 15.37	AAAA
ATOM	833 O	SER	104	42.867			10	AAAA
		LEU	105	42.206	33.698			AAAA
MOTA	834 N			42.709		50.016	1.00 16.95	
ATOM	835 CA	LEU	105					AAAA
	836 CB	ĽĖU	105	42.728				AAAA
MOTA			105	43.613	37.108	3 49.981	1.00 23.66	
MOTA	837 CG	LEU		45.086		49.959	1.00 20.25	AAAA
ATOM	838 CD1	LEU	105		· · · · · · · · · · · · · · · · · · ·			AAAA
	839 CD2	2 LEU	105	43.438	38 418			AAAA
ATOM			105	41.837	34 63	7 51.282	1.00 14.81	
ATOM	840 C	LEU		40.336			1.00 17.74	AAAA
MOTA	841 0	LEU	105	42.334				AAAA
		ALA	106	40.532	34.53	1 51.09		AAAA
ATOM	842 N			39.601		3 52.224	4 1.00 12.39	
MOTA	843 CA	λ L λ	106					AAAA
	844 CB	ALA	106	38.140				AAAA
ATOM			106	39.80	33.21	0 53.02	3 1.00 14.73	AAAA
MOTE	845 C	ALA		39.704	33.20	3 54.25	0 1.00 13.58	
ATOM	846 0	<u> </u>	106					AAAA
	•	THR	107	40.114	32.12	8 52.31		AAAA
MOTA	847 N			40.31	4 30.81	9 52.95	6 1.00 13.21	
MOTA	848 CA	THR	107					AAAA
	849 CB	THR	107	40.18				AAAA
MOTA			107	38.86	8 29.79	2 51.33		
MOTA	850 OG			40.42			1 1.00 9.51	AAAA
ATOM .	851 CG	2 THR	107					AAAA
		THR	107	41.64	9 30.75			AAAA
ATCM	852 C			41.73		6 54.79	2 1.00 15.63	
ATOM	853 O	THR	107		_			AAAA
	854 N	GLY	108	42.69				AAAA
atom			108	43.96	8 31.29	8 53.76	5 1.00 14.62	AAAA
ATOM	855 CA			43.80			1 1.00 20.05	
	856 C	GLY	108					AAAA
ATOM		GLY	108	44.41				AAAA
MOTA			109	42.96		58 54.98	38 1.00 15.26	'Anny
ATCM	858 N	SER	105	32.70		•		•
			•					

ATOM	859	CA	SER	109	42.727	34.020	56.153	1.00 14.54	AAAA
ATOM	860	CB	SER	109	41.906	35.248	55.737	1.00 15.58	AAAA
ATOM	861	OG	SER	109	42.627	36.045	54.809	1.00 16.97	AAAA
ATOM	862	С	SER	109	42.037	33.264	57.297	1.00 15.56	AAAA
ATOM	863	0	SER	109	42.189	33.600	58.487	1.00 17.00	AAAA
MOTA	864	N	THR	110	41.261	32.247	56.944	1.00 14.37	AAAA
MOTA	865	CA	THR	110	40.608	31.435	57.957	1.00 12.89	AAAA
MOTA	866	CB	THR	110	39.452	30.628	57.360	1.00 14.54	AAAA
MOTA	867	OG1	THR	110	38.346	31.519	57.163	1.00 18.11	AAAA
MOTA	868	CG2	THR	110	39.061	29.452	58.278	1.00 12.91	AAAA
MOTA	869	С	THR	110	41.633	30.524	58.601	1.00 18.44	AAAA
MOTA	870	0	THR	110	41.574	30.302	59.806	1.00 16.30	AAAA
MOTA	871	N	VAL	111	42.584	30.013	57.816	1.00 15.20	AAAA
MOTA	872	CA	VAL	111	43.514	29.180	58.403	1.00 20.45	AAAA
MOTA	873	CB	VAL	111	44.517	28.514	57.323	1.00 20.02	AAAA
MOTA	874		VAL	111	45.652	27.765	58.005	1.00 21.79	AAAA
MOTA	875	CG2		111	43.697	27.537	56.482	1.00 19.07	AAAA AAAA
MOTA	876	C	VAL	111	44.456	30.075	59.327 60.431	1.00 18.21 1.00 18.65	AAAA
MOTA	877	0	VAL	111	44.838	29.672	58.890	1.00 16.82	AAAA
ATOM	878	И	GLN	112	44.731 45.493	31.302 32.232	59.719	1.00 20.13	AAAA
MOTA	879	CA	GLN	112 112	45.751	33.540	58.970	1.00 22.39	AAAA
ATOM	880	CB	GLN	112	46.593	33.360	57.723	1.00 21.17	AAAA
MOTA	881 882	CG CD	GLN	112	46.797	34.651	56.982	1.00 24.82	AAAA
MOTA MOTA	883		GLN	112	47.772	35.381	57.219	1.00 25.62	AAAA
MOTA	884		GLN	112	45.866		56.091	1.00 13.16	ሕ ሕሕሕ
ATOM	885	C	GLN	112	44.743	32.516	61.012	1.00 23.99	ሕ ሕሕ ሕ
MOTA	886	ō	GLN	112	45.340	32.593	62.079	1.00 17.94	AAAA
MOTA	887	N	ALA	113	43.431	32.700	60.924	1.00 15.60	AAAA
ATOM	888	CA	ALA	113	42.653	32.941	62.138	1.00 15.04	AAAA
ATOM	889	CB	ALA	113	41.191	33.138	61.802	1.00 18.65	AAAA
MOTA	890	С	ALA	113	42.807	31.751	63.083	1.00 14.84	AAAA
ATOM	891	Ο .	ALA	113	42.941	31.909	64.296	1.00 21.05	AAAA
MOTA	892	N	ILE	114	42.767	30.550	62.534	1.00 16.45	AAAA
MOTA	893	CA	ILE	114	42.919	29.383	63.389	1.00 15.38	AAAA AAAA
MOTA	894	CB	ILE	114	42.600	28.100	62.637 63.537	1.00 15.22 1.00 15.72	AAAA
ATOM	895		ILE	114	42.888 41.110	26.893 28.112	62.244	1.00 19.28	AAAA
ATOM	896		ILE	114 114	40.744	27.038	61.191	1.00 13.43	AAAA
MOTA	897 898	CD1	ILE	114	44.329	29.318	63.968	1.00 18.02	AAAA
ATOM ATOM	899	ò	ILE	114	44.508	28.998	65.156	1.00 20.38	AAAA
MOTA	900	N	GLU	115	45.328	29.629	63.144	1.00 15.27	 አልል
MOTA	901	CA	GLU	115	46.726	29.626	63.614	1.00 21.48	AAAA
ATOM	902	CB	GLU	115	47.690	30.080	62.506	1.00 21.76	AAAA
ATOM	903	CG	GLU	115	47.884	29.080	61.386	1.00 15.78	AAAA
A OM	904	CD	GLU	115	48.670	29.648	60.211	1.00 20.04	AAAA
A COM	905	0E1	GLU	115		30.843		1.00 21.48	AAAA
ATOM	906	OE2	GLU	115	48.901	28.902	59.241	1.00 26.59	AAAA
MOTA	907	C	GLU	115	46.877	30.559	64.814	1.00 23.55	AAAA
ATOM	908	0	GLU	115	47.509	30.212	65.815	1.00 23.03	AAAA AAAA
ATOM	909	N	GLU	116	46.295	31.748	64.703	1.00 22.73	AAAA
ATOM	910	CA	GLU	116	46.367	32.735	65.774	1.00 20.54 1.00 18.40	AAAA
ATOM	911	CB	GLU	116	45.744	34.044	65.320 64.279	1.00 18.40	AAAA
MOTA	.912	CG	GLU	116	46.562 47.985	34.765 34.998	64.756	1.00 27.24	AAAA
MOTA	913	CD	GLU	116 116	48.164	35.630	65.815	1.00 18.44	AAAA
ATOM	914		GLU	116	48.919		64.078	1.00 23.17	AAAA
ATOM	915		GLU	116	45.682	32.253	67.034	1.00 25.39	AAAA
ATOM	916 917	0	GLU	116	46.207	32.427	68.137	1.00 22.87	AAAA
MOTA	917	Ŋ	PHE	117	44.510	31.647	66.872	1.00 18.78	аада
ATOM ATOM	918	CA	PHE	117	43.778	31.139	68.019	1.00 22.11	AAAA
ATOM	920	СВ	PHE	117	42.451	30.530		1.00 23.14	AAAA
ATOM	921	CG	PHE	117	41.603	30.054		1.00 24.06	AAAA
ATOM	922		PHE	117	40.880	30.961		1.00 19.67	AAAA
. ATOM	923		PHE	117	41.559	28.701			Алад
ATOM	924	CE1	PHE	117	40.115	30.531	70.586	1.00 23.68	KAAA

		40.799 28.262 70.156 1.00 24.04	AAAA
ATOM	925 CE2 PHE 117	40 078 29 179 70.915 1.00 19.62	AAAA
MOTA	926 CZ PHE 117	44 597 30 068 68.747 1.00 23.87	AAAA
MOTA	321 6 5112	44 613 30.031 69.979 1.00 24.40	АААА АААА
MOTA	J20 0 110	45.238 29.194 67.981 1.00 21.09	AAAA
MOTA	929 11 220	46.025 28.113 68.549 1.00 20.73	AAAA
MOTA	750 011 =-	46.358 27.075 67.480 1.00 17.50	AAAA
ATOM	931. CB LEU 118 932 CG LEU 118	45,146 20,26	AAAA
MOTA	933 CD1 LEU 118	43.331 23.200	AAAA
MOTA	934 CD2 LEU 118	44.320 23.330 3.00.26.49	AAAA
MOTA MOTA	935 C LEU 118	41.230 20.001	AAAA
ATOM	936 O LEU 118	47.900 27.030	AAAA
MOTA	937 N LYS 119	47.072 23.040 1 00 30 53	AAAA
ATOM	938 CA LYS 119	48.633 30.433 616 68.805 1.00 30.15	AAAA
MOTA	939 CB LYS 119	49.392 31.050 67.437- 1.00 35.14	AAAA
ATOM	940 CG LYS 119	50 201 22 549 66 716 1.00 28.98	AAAA
ATOM	941 CD LYS 119	50.005 32.262 65.380 1.00 31.07	AAAA
MOTA	942 CE LYS 119	7 105 22 551 64 745 1.00 22.40	AAAA
MOTA	943 NZ LYS 119	48.335 31.053 70.932 1.00 35.74	4444 4444
ATOM	Jag C 222	49.117 31.541 71.750 1.00 27.10	AAAA
MOTA	743	47.018 31.050 71.103 1.00 25.20	AAAA
MOTA	340 11 022	46.445 31.605 72.309 1.00 30.18 46.445 33.007 72.122 1.00 31.91	AAAA
MOTA	947 CA GLY 120 948 C GLY 120	45.913 35.007	AAAA
ATOM	949 O GLY 120	43.340 33.003 70.007 7.00 20 56	AAAA
MOTA	950 N ASN 121	45.669 33.433 70.601 1.00.25 58	AAAA
MOTA MOTA	951 CA ASN 121	40.000	AAAA
MOTA	952 CB ASN 121	40.278 35.037 70.427 1.00 24.43	AAAA
ATOM	953 CG ASN 121	47.841 33.824 70.588 1.00 54.63	AAAA
ATOM	954 OD1 ASN 121	70.044 27.045 70.817 1.00 41.69	AAAA
MOTA	955 ND2 ASN 121	43 941 34.759 70.135 1.00 18.85	AAAA AAAA
MOTA	956 C ASN 121 957 O ASN 121	43.421 33.675 69.899 1.00 24.77	AAAA
ATOM	100	43.310 35.918 69.991 1.00 19.55	AAAA
MOTA	950 11. 122	41.936 35.994 69.499 1.00 22.90	AAAA
ATOM	959 CA VAL 122 960 CB VAL 122	41.055 50.052 1 00 31 52	AAAA
ATOM	961 CG1 VAL 122	39.049 37.000 20 1 00 32 50	AAAA
MOTA MOTA	962 CG2 VAL 122	40.980 30.132 - 120 2 00 16 97	AAAA
ATOM	963 C VAL 122	41.953 50.552 67 638 3 00 24 08	AAAA
ATOM	964 O VAL 122	42.310 37.713 67.159 1.00 18.67	AAAA
ATOM	965 N ALA 123	41.321 33.532 65.821 1.00 10.18	AAAA
ATOM	966 CA ALA 123	25 743 64 990 1.00 19.04	AAAA
MOTA	967 CB ALA 123	40 000 36.551 65.131 1.00 13.72	AAAA AAAA
ATOM	968 C ALA 123	39.108 35.761 65.439 1.00 20.78	AAAA
ATCM	909 0 124	39 871 37.457 64.180 1.00 12.32	AAAA
ATCM	270 10 124	38.649 37.610 63.40 1.00 14.67	AAAA
ATOM	9/1 (25 124	37.904 38.878 63.856 1.00 14.07	AAAA
ATCM	972 CB PHE 124 973 CG PHE 124	36.660 39.209 63.049 1.00 28.20	AAAA
MOTA	974 CD1 PHE 124	33.011 30.00 10 53	AAAA
MOTA MOTA	975 CD2 PHE 124	30.200 40.31	AAAA
MOTA	976 CE1 PHE 124	34.603 30.332 62 193 1.00 20.18	AAAA
MOTA	977 CE2 PHE 124	33.072 30.967 61.744 1.00 21.57	AAAA
ATOM	978 CZ PHE 124	34.242 33.001 61.930 1.00 22.60	AAAA
ATOM	979 C PHE 124	20 022 20 558 61 535 1.00 19.22	AAAA
MOTA	980 O PHE 124	36 R20 61 126 1.00 19.39	AAAA AAAA
ATOM	981 N ASN 125	38.651 36.858 59.691 1.00 16.80	AAAA
ATCM	982 CA ASN 125	39.122 35.507 59.150 1.00 15.71	AAAA
MOTA	20 3CN 125	39.063 35.469 57.649 1.00 12.04	AAAA
ATCM	205 201 3EM 125	39.216 36.508 57.006 1.00 14.51	AAAA
ATOM	305 0D2 101 125	38.033 34.212 50 030 1 00 16 22	AAAA
ATOM	200 NEE 3CM 125	3/.313 3/.22 == == 1 00 15 20	AAAA
ATCM	988 O ASN 125	30.302 30.330 = 1 00 14 04	AAAA
ATOM ATOM	989 N PRO 126	37.071 33.33. 50.053 1.00.18.10	AAAA
ATOM	CD DPO 126	37.908 39.684 59.032 1.00 10.10	•
7,01			

ATOM	991	CA	PRO	126		35.811	38.910	58.156	1.00 17.33	مممم
MOTA	992		PRO	126		35.912	40.434	58.177	1.00 16.32	AAAA
	993		PRO	126		37.416	40.655	58.008	1.00 20.95	AAAA
ATOM			PRO	126		35.549	38.359	56.752	1.00 13.78	AAAA
MOTA	994			126		34.404	38.291	56.322	1.00 17.03	AAAA
MOTA	995		PRO			36.607	37.972	56.042	1.00 14.57	AAAA
- MOTA	996		ALA	127			37.443	54.691	1.00 17.37	AAAA
MOTA	997		ALA	127		36.463		53.930	1.00 14.48	AAAA
ATOM	998	CB	ALA	127		37.816	37.540		1.00 19.77	AAAA
ATOM	999	C	ALA	127		35.982	35.998	54.702		AAAA
ATOM	1000	0	ALA	127		35.490	35.500	53.688	1.00 15.62	
ATOM	1001		GLY	128		36.111	35.339	55.849	1.00 13.54	AAAA
	1002		GLY	.128		35.725	33.939	55.971	1.00 13.53	AAAA
ATOM			GLY	128	•	34.234	33.679	56.101	1.00 14.49	AAAA
MOTA	1003	C		128	•	33.414	34.585	56.017	1.00 15.65	AAAA
MOTA	1004		GLY			33.883	32.420	56.314	1.00 13.35	AAAA
ATOM	1005	N	GLY	129				56.446	1.00 16.28	AAAA
ATOM	1006	CA	GLY	129		32.487	32.058	55.130	1.00 15.69	AAAA
MOTA	1007	C	GLY	129		31.754	31.831		1.00 16.10	AAAA
ATOM	1008	0	GLY	129		30.543	32.021	55.072		AAAA
ATOM	1009	N	MET	130		32.479	31.448	54.079	1.00 15.00	
ATOM	1010	CA	MET	130		31.879	31.163	52.757	1.00 13.35	AAAA
	1011	CB	MET	130		32.969	31.215	51.689	1.00 12.20	AAAA
MOTA		CG	MET	130		33.680	32.573	51.731	1.00 17.03	AAAA
MOTA	1012		MET	130		34.863	32.877	50.425	1.00 15.41	AAAA
MOTA	1013	SD		130		33.752	32.973	49.073	1.00 46.82	AAAA
MOTA	1014	CE	MET			31.296	29.756	52.885	1.00 12.49	AAAA
MOTA	1015	С	MET	130				52.297	1.00 19.54	AAAA
ATOM	1016	Э	MET	130		31.785	28.789	53.617	1.00 16.24	AAAA
ATOM	1017	37	HÌS	131		30.188	29.695		1.00 13.80	AAAA
MOTA	1018	CA	HIS	131		29.556	28.448	54.014	1.00 15.80	AAAA
ATOM	1019	CB	HIS	131		28.772	28.694	55.316	1.00 15.91	
ATOM	1020	CG	HIS	131		27.606	29.625	55.175	1.00 13.08	AAAA
ATOM	1021		HIS	131		26.712	30.063	56.096	1.00 12.46	AAAA
	1022		HIS	131		27.225	30.190	53.976	1.00 22.48	AAAA
MOTA			HIS	131		26.148	30.936	54.166	1.00 16.56	AAAA
MOTA	1023			131		25.817	30.875	55.442	1.00 23.56	AAAA
MOTA	1024		HIS		-	28.673	27.663	53.066	1.00 13.69	AAAA
MOTA	1025	C	HIS	131		28.125	26.658	53.470	1.00 17.21	AAAA
MOTA	1026	0	HIS	131		-	28.115	51.830	1.00 14.51	AAAA
ATOM	1027	14	HIS	132		28.523		50.887	1.00 20.19	AAAA
ATOM	1028	CA	HIS	132		27.669	27.400		1.00 17.26	AAAA
ATOM	1029	CB	HIS	132		26.863	28.416	50.054	1.00 17.20	AAAA
ATOM	1030	CG	HIS	132		25.748	29.070	50.810		AAAA
MOTA	1031	CD2	HIS	132		24.787	28.542	51.604	1.00 13.74	AAAA
ATOM	1032	ND1	HIS	132		25.497	30.424	50.756	1.00 24.80	
ATOM	1033		HIS	132		24.429	30.700	51.486	1.00 12.68	AAAA
	1034		HIS	132		23.980	29.576	52.010	1.00 28.65	AAAA
MOTA	1035	ε	HIS	132		28.372	26.412	49.946	1.00 16.89	AAAA
MOTA	1035		HIS	132		27.731	25.487	49.460	1.00 14.58	AAAA
MOTA		-		133		29.669	26.580	49.689	1.00 16.79	AAAA
ATOM	1037	:1	ALA	133		30.338	25.680		1.00 13.76	AAAA
ATCM	1038	JÀ.				31.738	26.194		1.00 14.95	AAAA
MOTA	1039	CB	ALA	133		30.418	24.219		1.00 18.80	AAAA
MOTA	1040	С	ALA	133						AAAA
MOTA	1041	·O	ALA	133		30.557	23.939		1.00 13.76	AAAA
ATOM	1042	:1	PHE	134		30.306	23.306			AAAA
MOTA	1043	CA	PHE	134		30.378	21.868			AAAA
ATOM	1044	CB	PHE	134		29.311			1.00 15.59	AAAA
MOTA	1045	ĊĠ	PHE	134		27.917	21.525			
	1046		PHE	134		27.135	22.259	47.091		AAAA
MOTA			PHE	134		27.392			1.00 21.68	AAAA
MOTA	1047			134		25.836			1.00 23.07	AAAA
MOTA	1048		PHE			26.099				AAAA
MOTA	1049		PHE	134						AAAA
ATOM	1050	CZ	PHE	134		25.323				AAAA
ATOM	1051	0	PHE	134		31.763				AAAA
MOTA	1052	Э	PHE	134		32.547				AAAA
ATOM	1053	:4	LYS	135		32.060	20.124			AAAA
ATOM	1054	SA.	LYS	135		33.369			1.00 10.24	AAAA
ATOM	1055		LYS	135		33.360				AAAA
ATOM	1056					34.640	17.300	48.400	1.00 30.43	
ATOM	2000									-

Figure 16-17

			_	-Ban-1	
				34.597 15.867 48.977 1.00 30.26	AAAA
MOTA		D LYS	135	74 062 15 805 50 486 1.00 35.01	AAAA '
MOTA		E LYS	135 135	26 204 16 023 50 895 1.00 20.61	AAAA
MOTA		NZ LYS	135	33.854 19.687 46.836 1.00 16.60	AAAA AAAA
MOTA		C LYS	135	35.020 20.020 46.584 1.00 17.24	AAAA
ATOM		N SER	136	32.944 19.483 45.893 1.00 18.01	AAAA
ATOM		CA SER	136	33.301 19.528 44.490 1.00 15.26 33.301 19.528 43.940 1.00 18.07	AAAA
MOTA		CB SER	136	33.333 10.034 10.00 10 10 20 20	AAAA
ATOM ATOM		OG SER	136	34,133 17.202 1 00 15 40	AAAA
ATOM		C SER	136	32.343 20.333 1 00 10 77	AAAA
ATOM		O SER	136	32.102 20.071	AAAA
MOTA	1068	n arg	137	31./34 21.431 1 00 17 20	AAAA
ATOM	1069	CA ARG	137	30.803 22.210 43.366 1.00 24.19	AAAA
MOTA		CB ARG	137	28 290 22.273 42.937 1.00 32.56	AAAA
MOTA		CG ARG	137	27 226 21 424 42 980 1.00 47.98	AAAA
MOTA	1072	CD ARG	137 137	26.951 20.493 41.862 1.00 50.95	AAAA AAAA
ATOM	1073	NE ARG	137	26.392 20.781 40.691 1.00 30.38	AAAA
MOTA	1074 1075	NH1 ARG	137	25.854 21.976 40.485 1.00 45.26	AAAA
MOTA	1075	NH2 ARG	137	20.373 13.07	AAAA
MOTA MOTA	1077	C ARG	137	30.337 23.330 1 00 16 88	AAAA
MOTA	1078	O ARG	137	30.439 23.741 15.000 1 00 19 07	AAAA
ATOM	1079	N ALA	138	30.393 23.023 100 21 48	AAAA
ATOM	1080	CA ALA	138	20 460 27 024 42 631 1.00 16.55	AAAA
MOTA	1081	CB ALA	138	20.440 27.000 44.135 1.00 21.04	AAAA
ATOM	1082	C ALA	138	27 700 25 339 43 641 1.00 18.97	AAAA
MOTA	1083	O ALA		28.321 27.019 45.029 1.00 13.83	AAAA AAAA
MOTA	1084	N ASN		26.952 27.158 45.468 1.00 12.92	AAAA
MOTA	1085 1086	CA ASN	_	26.566 25.899 46.274 1.00 13.14 26.566 25.899 46.832 1.00 20.34	AAAA
MOTA MOTA	1087	CG ASN		25.102 25.501	AAAA
MOTA	1088	OD1 ASN		24.100 20.000 10.16.36	AAAA
ATOM	1089	ND2 ASN	139	25.040 25.002	AAAA
MOTA	1090	C ASN		27.603 28.738 47.148 1.00 16.81	AAAA
ATOM	1091	O ASN		25 644 29 105 46 086 1.00 19.30	AAAA
MOTA	1092	N GLY		25.330 30.295 46.864 1.00 21.34	AAAA
MOTA	1093	CA GLY		26 202 21 379 46 888 1.00 20.19	AAAA AAAA
MOTA	1094	C GLY		26.653 31.968 47.943 1.00 18.77	AAAA
ATOM	1095 1096	O GLY		20.330 31.033	AAAA
MOTA MOTA	1097	CA PHI		28.034 32.073 3 00 20 03	AAAA
ATOM	1098	CB PHI		41.711	AAAA
ATOM	1099	CG PHI		26.333 35.526 46 997 1.00 24.25	AAAA
ATOM	1100	CD1 PH		25.600 34.170 45.029 1.00 30.11	AAAA
ATOM		CD2 PH	E 141	25.52 36 116 46 775 1.00 25.91	AAAA
ATOM	1102	CE1 PH	E 141 E 141	24 346 34 766 44 801 1.00 Z1.6:	AAAA AAAA
MOTA		CE2 PH		23 870 35.741 45.677 1.00 24.4	AAAA
MOTA		CZ PH		29.357 32.188 46.158 1.00 14.43	AAAA
MOTA		O PH		30.330 32.31	AAAA
MOTA MOTA				29.309 30.305 1 00 17 71	AAAA
ATOM			s 142	30.023 30.20	AAAA
ATOM			s 142	30.347 23.043	AAAA
ATOM		SG CY		29.000 30.553 46.401 1.00 18.09	AAAA
MOTA	1111			30 647 39 527 45 856 1.00 16.60	AAAA
ATOM	1112			20 630 20 639 46 272 1.00 12.50	AAAA AAAA
MOTA				33,429 28.603 45.478 1.00 15.32	AAAA
ATON				34.333 29.322 44.473 1.00 15.07	AAAA
ATO				33.614 30.338 43.612 1.00 15.80	AAAA
ATO				33.390 31.99	AAAA
ATO				32.740 32.336 1 00 14 60	AAAA
ATOI ATOI			YR 143	33.137 23.33 1 00 10 74	AAAA
ato: ato:		CE2 T	YR 143	32.301 33.339 42.008 1.00 20.89	AAAA
ATO		1 CZ T	YR 143	32.301 32.229 42.008 1.00 20.89 31.698 33.177 41.208 1.00 18.87	AAAA
ATO			YR 143	21.090 33.177	•
		•			

				1 4 2	34	310	27.723	46.358	1.00 17.35	AAAA
ATOM			ryr	143 143					1.00 16.67	AAAA
MOTA			ryr	144			28.262		1.00 14.93	AAAA
MOTA	1125		ILE	144		599	27.500		1.00 14.17	AAAA
MOTA	1126		ILE			018	28.069	48.440	1.00 14.87	AAAA
MOTA	1127		ILE	144		864	27:332		1.00 13.55	AAAA
MOTA	1128	CG2		144	_	611	28.027	47.021	1.00 16.98	AAAA
ATOM	1129	-	ILE	144		052	28.537	46.901	1.00 17.42	AAAA
MOTA	1130		ILE	144	34.		27.615	49.788	1.00 17.22	AAAA
MOTA	1131	-	ILE	144		.606	28.716	50.220	1.00 14.72	AAAA
ATOM	1132		ILE	144		.798	26.486	50.474	1.00 13.46	AAAA
MOTA	1133		ASN	145		. 170	26.493	51.797	1.00 16.09	AAAA
MOTA	1134		ASN	145		.401	25.178	51.988	1.00 14.50	AAAA
MOTA	1135		ASN	145		.428	25.239	53.148	1.00 15.64	AAAA
MOTA	1136		ASN	145		.800	25.587	54.263	1.00 14.97	AAAA
MOTA	1137	OD1	ASN	145		.170	24.916	52.882	1.00 16.74	AAAA
ATOM	1138	ND2		145		.266	26.639	52.873	1.00 15.04	AAAA
MOTA	1139		ASN	145		.812	25.637	53.338	1.00 15.72	AAAA
MOTA	1140	0	ASN	145		.599	27.865	53.282	1.00 12.34	AAAA
MOTA	1141	N	ASN	146		.685	28.006	54.262	1.00 15.31	AAAA
MOTA	1142	CA	ASN	146		.161	29.464	54.354	1.00 15.81	AAAA
ATOM	1143	CB	ASN	146		.101	30.396	54.865	1.00 15.25	AAAA
ATOM	1144	CG	ASN	146		.113	30.757	56.034	1.00 13.57	AAAA
ATOM	1145	OD1		146		.156	30.775	53.996	1.00 10.85	AAAA
MOTA	1146	ND2		146		.306	27.400	55.613	1.00 13.04	AAAA
MOTA	1147	C	ASN	146		.160	26.865	56.314	1.00 14.76	AAAA
MOTA	1148	0	ASN	146	_	.025	27.489	56.016	1.00 14.28	AAAA
MOTA	1149	И	PRO	147 147		.817	28.175	55.515	1.00 7.62	AAAA
ATOM	1150	CD	PRO			.750	26.843	57.307	1.00 13.51	AAAA
MOTA	1151	CA .	PRO	147 147		.251	27.058	57.482	1.00 14.44	AAAA
ATOM	1152	CB	PRO	147		.056	28.436	56.827	1.00 12.32	AAAA
ATOM	1153	CG	PRO	147	-	.118	25.330	57.278	1.00 18.86	AAAA
MOTA	1154	C	PRO PRO	147		.678	24.796	58.251	1.00 16.24	AAAA
MOTA	1155	0	ALA	148		.818	24.642	56.171	1.00 15.01	AAAA
MOTA	1156	N CA	ALA	148		.122	23.200	56.080	1.00 15.58	AAAA
MOTA	1157 1158	CB	ALA	148		.402	22.561	54.882	1.00 12.93	AAAA
MOTA	1159	C	ALA	148		5.624	22.956	55.984	1.00 14.94	AAAA
ATOM	1160	0	ALA	148	31	7.138	21.999	56.560	1.00 14.69	AAAA
MOTA	1161	N	VAL	149	3.	7.328	23.817	55.263	1.00 12.49	АААА АААА
MOTA MOTA	1162	CA	VAL	149	38	3.778	23.708	55.163	1.00 15.31	AAAA
ATOM	1163	CB	VAL	149		9.364	24.797	54.243	1.00 14.77	AAAA
ATOM	1164		VAL	149		0.899	24.870	54.369	1.00 14.68	AAAA
ATOM	1165		VAL	149	3	8.981	24.501	52.808	1.00 12.50	AAAA
ATOM	1166	C	VAL	149		9.323	23.887	56.572	1.00 20.14	AAAA
ATOM	1167	ō	VAL	149	4	0.172	23.109		1.00 17.32 1.00 15.45	AAAA
ATOM	1168	N	GLY	150		8.815	24.899		1.00 15.45	AAAA
ATOM	1169	CA	GLY	₋ 50		9.284	25.168			AAAA
ATOM	1170	С	GLY	_50	3	9.030	24.053			AAAA
ATOM	1171	0	GLY	150		9.888	23.738			AAAA
ATCM	1172	11	ILE	151		7.842	23.465			AAAA
MOTA	1173	CA	ILE	151		7.490				AAAA
MCTA	1174	СВ	ILE	151		5.992				AAAA
ATOM	1175	CG2	: ILE	151		5.667				· AAAA
ATOM	1176	CG1	ILE	151		5.180				AAAA
MOTA	1177	CDI	ILE	151		3.686	23.123			AAAA
MOTA	1178	С	ILE	151		8.352				AAAA
ATOM	1179	၁	ILE	151		8.796				
ATCM	1180	N	GLU	152	3	8.599	20.861			
ATOM	1181		GLU	152		9.434				
ATOM	1182	CB	GLU	152		9.362				_
ATOM		CG	GLU	152		8.033				
ATOM		מס	GLU	152		7.838				ሕ ጸ ጸል
ATOM			1 GLU	152		6.720				AAAA
ATOM		CE	2 GLU	152		8.800				s' Aaaa
ATOM		, C	GLU	152		0.865				AAAA
ATCM		3 0	GLU	152	4	11.629	19.11			•

					_					
			77. (7)	153	•	41.228	21.290	58.931	1.00 14.74	AAAA
ATOM				153			21.672		1.00 17.71	AAAA
ATOM	1190 1191			153		42.757			1.00 13.26	AAAA
MOTA	1191		TYR	153		44.059			1.00 16.36	AAAA AAAA
MOTA MOTA	1193	CD1		153		45.234			1.00 18.41 1.00 21.03	AAAA
ATOM	1194	CEl		153		46.438		59.511	1.00 21.03	AAAA
ATOM	1195	CD2		153		44.115	24.220	61.028	1.00 21.10	AAAA
ATOM	1196	CE2		153		45.288	24.705	61.570 60.824	1.00 25.97	AAAA
MOTA	1197	CZ	TYR	153		46.440	24.711 25.235	61.410	1.00 23.15	AAAA
ATOM	1198	OH	TYR	153		47.571 42.712	21.274	60.828	1.00 20.00	AAAA
MOTA	1199	C	TYR	153 -	•	42.712	20.698	61.247	1.00 19.61	AAAA
MOTA	1200	0	TYR	153 154		41.683	21.569	61.616	1.00 17.78	AAAA
MOTA	1201	N	LEU	154		41.698	21.239	63.042	1.00 17.26	AAAA
ATOM	1202 1203	CA CB	LEU	154		40.511	21.913	63.744	1.00 20.44	AAAA AAAA
MOTA MOTA	1203	CG	LEU	154		40.636	23.434	63.942	1.00 19.57	AAAA
ATOM	1205		LEU	154		39.277	24.046	64.309	1.00 22.48 1.00 20.84	AAAA
ATOM	1206	CD2	LEU	154		41.692	23.709	65.044 63.262	1.00 19.69	AAAA
MOTA	1207	С	LEU	154		41.669	19.715 19.191	64.149	1.00 22.91	AAAA
MOTA	1208	0	LEU	154		42.357 40.878	18.996	62.469	1.00 20.88	AAAA
ATOM	1209	N	ARG	155 155		40.840	17.539	62.622	1.00 22.64	AAAA
MOTA	1210	CA	ARG	155		39.829	16.905	61.652	1.00 25.69	AAAA
MOTA	1211 1212	CB CG	ARG ARG	155		38.384	17.394	61.893	1.00 27.64	AAAA AAAA
ATOM	1212	CD	ARG	155		37.382	16.834	60.892	1.00 25.67	AAAA
MOTA MOTA	1214	NE	ARG	155		36.931	15.497	61.246	1.00 30.88 1.00 36.28	AAAA
ATOM	1215	CZ	ARG	155		36.135	14.753	60.488 59.318	1.00 36.25	AAAA
MOTA	1216		ARG	155		35.705	15.218 13.562	60.923	1.00 27.33	AAAA.
MOTA	1217		ARG	155		35.737 42.235	16.966	62.390	1.00 28.00	AAAA
MOTA	1218	С	ARG	155		42.233	16.070	63.119	1.00 28.05	AAAA
MOTA	1219	0	ARG LYS	155 156		42.949	17.486	61.395	1.00 23.53	AAAA
ATOM	1220 1221	N CA	LYS	156		44.290	16.977	61.128	1.00 26.79	AAAA AAAA
MOTA MOTA	1222	CB	LYS	156		44.854	17.558	59.824	1.00 26.01 1.00 29.70	AAAA
ATOM	1223	CG	LYS	156		46.213	16.955	59.444	1.00 29.70	AAAA
ATOM	1224	CD	LYS	156		46.632	17.308	58.035 57.005	1.00 39.79	AAAA
ATOM	1225	CE	LYS	156		45.685	16.692 15.192			AAAA
ATOM	1226	NZ	LYS	156		45.671 45.233	17.260		1.00 26.40	AAAA
ATCM	1227	С	LYS	156 156		46.188			1.00 26.19	AAAA
MOTA	1228		LYS LYS	157		44.960	18.337	63.032		aaaa aaaa
MOTA	1229 1230	N CA		157		45.757	18.709	64.204		AAAA
MOTA MOTA	1231			157		45.535				AAAA
ATCM	1232			157		46.160	21.215			AAAA
ATOM	1233	CD	LYS	157		47.669				AAAA
ATCM	1234	CE		157		48.281 49.742		62.406	1.00 40.01	AAAA
ATCM	1235			157		45.421			1.00 22.98	AAAA
MOTA	1236		LYS	157 157		46.085			1 1.00 27.77	AAAA
ATCM	1237		LYS GLY	158		44.392		5 65.284		AAAA AAAA
MOTA	1238 1239			158		44.023	16.106			AAAA
ATOM ATOM			GLY	158		42.773		9 67.163		AAAA
ATOM			GLY	158		42.423				AAAA
ATCM			PHE	159		42.085				AAAA
ATOM				159		40.860			6 1.00 27.53	AAAA
ATOM				159		41.26			7 1.00 27.26	AAAA
ATOM				159 159		42.43			0 1.00 28.12	AAAA
ATOM			D1 PHE	159		40.92	6 20.84	2 69.07		AAAA AAAA
ATOM			E1 PHE	159		43.26	4 21.71			AAAA
ATOM			E2 PHE	159		41.73	8 21.76			AAAA
ATCM ATCM				159		42.90				AAAA
ATOM			PHE	159		39.79				AAAA
ATCM	125	2 0		159		39.63 39.05			0 1.00 24.79	AAAA
· ATC	1 125					38.01				AAAA
ATON	1 125	4 C.	A LYS	160		. بار		•		•
			•							

ATOM 1317 N LEU 167 25.647 32.510 62.407 1.00 14.61 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA AAAA											
ATOM 1256 CC LYS 160 39.625 13.424 68.157 1.00 43.16 AAAA ATOM 1258 CE LYS 160 39.236 11.343 69.577 1.00 62.87 AAAA ATOM 1259 NZ LYS 160 38.154 11.890 70.446 1.00 66.11 AAAA ATOM 1259 NZ LYS 160 36.599 15.822 68.225 1.00 22.13 AAAA ATOM 1260 C LYS 160 36.599 15.822 68.225 1.00 22.13 AAAA ATOM 1261 C ATOM 1262 N ARG 161 36.476 17.042 68.733 1.00 22.13 AAAA ATOM 1262 N ARG 161 36.476 17.042 68.733 1.00 22.68 AAAA ATOM 1265 CG ARG 161 34.865 17.467 70.572 1.00 26.84 AAAA ATOM 1265 CG ARG 161 34.865 17.467 70.572 1.00 26.84 AAAA ATOM 1266 CD ARG 161 34.213 16.025 72.543 1.00 22.99 AAAA ATOM 1266 CD ARG 161 34.213 16.025 72.543 1.00 22.99 AAAA ATOM 1268 CZ ARG 161 34.213 16.025 72.543 1.00 32.99 AAAA ATOM 1268 CZ ARG 161 36.277 16.794 73.489 1.00 31.49 AAAA ATOM 1269 MH1 ARG 161 35.071 19.060 68.680 1.00 13.88 AAAA ATOM 1270 MR2 ARG 161 35.711 19.060 68.680 1.00 18.98 AAAA ATOM 1271 C ARG 161 35.552 19.922 69.466 1.00 23.557 AAAA ATOM 1272 C ARG 161 35.552 19.922 69.467 1.00 17.81 AAAA ATOM 1273 C ARG 161 35.552 19.922 69.467 1.00 18.98 AAAA ATOM 1275 C B LE 162 35.522 20.717 65.626 1.00 18.33 AAAA ATOM 1276 C CGZ LLE 162 35.542 22.110 65.042 1.00 18.33 AAAA ATOM 1276 C CGZ LLE 162 35.542 22.10 65.042 1.00 18.33 AAAA ATOM 1278 C C LE 162 33.316 21.86 66.724 1.00 18.98 AAAA ATOM 1278 C LE 162 33.316 21.86 66.724 1.00 18.99 AAAA ATOM 1278 C LE 162 33.316 21.86 66.724 1.00 18.33 AAAA ATOM 1278 C LE 162 33.316 21.86 66.724 1.00 18.33 AAAA ATOM 1278 C LE 162	A TOM	1255	СВ	LYS	160		38.360	14.098			
ATOM 1257 CD LYS 160 40.222 12.417 69.141 1.00 54.US AAAA ATOM 1259 NZ LYS 160 38.154 11.890 70.446 1.00 54.US AAAA ATOM 1259 NZ LYS 160 38.154 11.890 70.446 1.00 68.11 AAAA ATOM 1261 0 LYS 160 35.532 15.C72 68.051 1.00 21.12 AAAA ATOM 1262 N ARG 161 35.632 15.C72 68.051 1.00 22.43 AAAA ATOM 1262 N ARG 161 35.6476 17.042 68.731 1.00 19.68 AAAA ATOM 1263 CA ARG 161 35.164 17.594 69.073 1.00 20.84 AAAA ATOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ATOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ATOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ATOM 1265 CG ARG 161 35.098 16.734 73.445 1.00 28.47 AAAA ATOM 1265 CG ARG 161 35.098 16.734 73.445 1.00 30.88 AAAA ATOM 1267 NE ARG 161 35.098 16.734 73.445 1.00 30.88 AAAA ATOM 1269 NH1 ARG 161 35.098 16.734 73.445 1.00 30.88 AAAA ATOM 1270 NH2 ARG 161 36.722 16.278 73.888 1.00 40.149 AAAA ATOM 1270 NH2 ARG 161 37.003 17.001 74.422 1.00 38.54 AAAA ATOM 1270 NH2 ARG 161 35.098 16.734 73.445 1.00 38.54 AAAA ATOM 1270 C ARG 161 35.571 19.002 79.00 79.82 AAAA ATOM 1271 C ARG 161 35.571 19.002 79.00 79.82 AAAA ATOM 1271 C ARG 161 35.571 19.002 79.00 79.82 AAAA ATOM 1271 C ARG 161 35.571 19.002 79.00 79.82 AAAA ATOM 1274 C A ILE 162 34.744 19.10 70 66.947 19.82 AAAA ATOM 1274 C A ILE 162 35.552 10.00 79.82 AAAA ATOM 1275 CB ILE 162 35.552 10.00 79.82 AAAA ATOM 1275 CB ILE 162 35.552 10.00 79.85 1.00 18.98 AAAA ATOM 1276 CG ILE 162 35.552 20.10 79.75 66.947 19.82 AAAA ATOM 1278 CG ILE 162 35.552 20.00 79.75 66.947 19.82 AAAA ATOM 1278 CG ILE 162 35.552 20.00 79.75 66.947 19.82 AAAA ATOM 1278 CG ILE 162 35.562 29.00 67.061 1.00 17.99 AAAA ATOM 1278 CG ILE 162 35.562 20.00 79.75 66.947 10.00 13.65 AAAA ATOM 1278 CG ILE 162 35.562 20.00 79.75 66.947 10.00 13.65 AAAA ATOM 1278 CG ILE 162 35.562 20.00 79.75 66.947 10.00 13.65 AAAA ATOM 1280 C ILE 163 32.500 20.492 66.126 1.00 18.57 AAAA ATOM 1290 C ILE 163 32.500 20.492 66.126 1.00 18.57 AAAA ATOM 1290 C ILE 163 32.500 20.00 66.947 1.00 11.50 AAAA ATOM 1290 C ILE 165 32.500 20.00 66.947 1.00 11.50 AAAA A							39.625		•		
ATOM 1258 CE LYS 160 39.236 11.343 59.577 1.00 62.87 AAAA ATOM 1250 NZ LYS 160 36.599 15.822 68.225 1.00 21.12 AAAA ATOM 1261 O LYS 160 36.599 15.822 68.225 1.00 21.12 AAAA ATOM 1261 O LYS 160 36.597 15.672 68.511 1.00 22.43 AAAA AAAA ATOM 1262 N ARG 161 36.476 17.042 68.733 1.00 19.68 AAAA AAAA ATOM 1263 CA ARG 161 36.476 17.594 69.7073 1.00 20.84 AAAA AAAA ATOM 1265 CG ARG 161 34.715 16.015 71.080 1.00 28.47 AAAA ATOM 1265 CG ARG 161 34.715 16.015 71.080 1.00 28.47 AAAA ATOM 1265 CG ARG 161 34.715 16.015 71.080 1.00 28.47 AAAA ATOM 1267 NE ARG 161 36.272 16.278 73.883 1.00 30.38 AAAA ATOM 1267 NE ARG 161 36.724 15.094 73.445 1.00 21.99 AAAA ATOM 1270 NIVA ARG 161 36.724 15.094 73.445 1.00 21.99 AAAA ATOM 1271 C ARG 161 35.5171 19.060 68.680 1.00 18.98 AAAA ATOM 1272 O ARG 161 35.5171 19.060 68.680 1.00 18.98 AAAA ATOM 1273 N ILE 162 34.744 20.700 66.947 1.00 18.98 AAAA ATOM 1275 CB ILE 162 35.522 20.717 65.626 1.00 13.65 AAAA ATOM 1275 CB ILE 162 35.522 20.717 65.626 1.00 13.65 AAAA ATOM 1278 CD ILE 162 35.522 20.717 65.626 1.00 13.65 AAAA ATOM 1278 CD ILE 162 35.522 20.717 65.626 1.00 13.65 AAAA ATOM 1278 CD ILE 162 35.522 20.717 65.626 1.00 17.99 AAAA ATOM 1278 CD ILE 162 35.522 20.717 65.626 1.00 17.99 AAAA ATOM 1280 O ILE 162 35.522 20.717 65.626 1.00 17.99 AAAA ATOM 1280 O ILE 162 35.522 20.717 65.626 1.00 17.99 AAAA ATOM 1280 O ILE 162 35.522 20.717 65.626 1.00 10.815 AAAA ATOM 1280 O ILE 162 35.522 20.717 65.626 1.00 10.815 AAAA ATOM 1280 O ILE 16				_			40.222	12.417			
ATOM 1260 C LYS 160 38.154 11.890 70.446 1.00 68.11 AAAA ATOM 1261 O LYS 160 36.599 15.822 68.251 1.00 21.12 ATOM 1262 N ARG 161 35.632 15.672 68.051 1.00 22.43 AAAA ATOM 1262 N ARG 161 35.164 17.042 68.051 1.00 22.43 AAAA ATOM 1263 CA ARG 161 35.164 17.594 69.073 1.00 20.84 AAAA ATOM 1264 CS ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ATOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ATOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ATOM 1267 N ARG 161 36.272 15.072 1.00 22.99 AAAA ATOM 1267 N ARG 161 36.272 15.072 1.00 22.99 AAAA ATOM 1267 N ARG 161 36.272 15.074 73.445 1.00 12.99 AAAA ATOM 1267 N ARG 161 36.272 15.088 1.00 12.99 AAAA ATOM 1270 NN12 ARG 161 36.272 15.094 73.485 1.00 12.99 AAAA ATOM 1270 NN12 ARG 161 35.171 19.00 18.98 10.00 18.98 AAAA ATOM 1271 C ARG 161 35.171 19.00 66.947 1.00 18.98 AAAA ATOM 1272 O ARG 161 35.552 19.962 9.460 1.00 23.57 AAAA ATOM 1273 N ILE 162 34.742 19.322 67.458 1.00 19.82 AAAA ATOM 1274 CA ILE 162 34.742 19.322 67.458 1.00 19.82 AAAA ATOM 1275 CE ILE 162 35.552 20.171 65.624 1.00 19.82 AAAA ATOM 1275 CE ILE 162 35.542 22.110 65.042 1.00 19.82 AAAA ATOM 1275 CE ILE 162 36.937 10.00 06.947 1.00 17.81 AAAA ATOM 1276 CG ILE 162 36.937 10.00 06.947 1.00 17.81 AAAA ATOM 1278 CI ILE 162 35.542 22.110 65.042 1.00 18.33 AAAA ATOM 1278 CI ILE 162 36.937 10.00 06.947 1.00 17.99 AAAA ATOM 1280 C ILE 162 36.937 10.00 06.947 1.00 17.99 AAAA ATOM 1280 C ILE 162 36.937 10.00 06.947 1.00 17.99 AAAA ATOM 1280 C ILE 162 36.937 10.00 06.940 1.00 19.99 AAAA ATOM 1280 C ILE 162 36.937 10.00 06.940 1.00 19.99 AAAA ATOM 1280 C ILE 162 36.937 10.00 06.940 1.00 19.99 AAAA ATOM 1280 C ILE 162 36.937 10.00 06.93 N.00 18.15 AAAA ATOM 1280 C ILE 163 39.966 1.00 19.99 AAAA ATOM 1280 C ILE 163 39.696 1.00 19.99 AAAA ATOM 1280 C ILE 163 39.696 1.00 19.99 AAAA ATOM 1290 CA FURL 164 30.959 1.00 19.99 AAAA ATOM 1290 C A FURL 164 30.959 1.00 18.45 AAAA ATOM 1290 C A FURL 164 30.959 1.00 18.45 AAAA ATOM 1290 C A FURL 164 30.959 1.00 18.45 AAAA ATOM 1290 C A FURL 164 30.959 1.00 18.97 AAAA							39.236	11.343			
ATOM 1260 C					160		38.154				
APAC					160		36.599	15.822			
ATOM 1262 N ARG 161 36.476 17.042 68.733 1.00 19.88 AAAA ARTOM 1265 CA ARG 161 34.865 17.467 70.572 1.00 26.02 AAAA ARTOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ARTOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ARTOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ARTOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ARTOM 1267 NE ARG 161 36.272 16.278 73.883 1.00 30.38 AAAA ARTOM 1268 CZ ARG 161 36.272 16.278 73.883 1.00 40.49 AAAA ARTOM 1270 NML ARG 161 36.724 15.094 73.455 1.00 31.49 AAAA ARTOM 1270 NML ARG 161 37.003 17.014 74.712 1.00 38.54 AAAA ARTOM 1270 NML ARG 161 35.171 19.060 68.680 1.00 18.98 AAAA ARTOM 1272 O ARG 161 35.171 19.060 68.680 1.00 18.98 AAAA ARTOM 1272 O ARG 161 35.572 19.932 69.460 1.00 23.57 AAAA ARTOM 1273 N ILE 162 34.744 20.700 66.947 1.00 19.82 AAAA ARTOM 1273 N ILE 162 34.744 20.700 66.947 1.00 19.82 AAAA ARTOM 1273 CG ILE 162 35.532 20.717 65.626 1.00 19.83 AAAA ARTOM 1275 CG ILE 162 35.532 20.717 65.626 1.00 19.83 AAAA ARTOM 1275 CG ILE 162 35.532 20.717 65.626 1.00 19.83 AAAA ARTOM 1278 CD ILE 162 37.722 19.852 64.670 1.00 12.55 AAAAA ARTOM 1278 CD ILE 162 37.722 19.852 64.670 1.00 12.55 AAAAA ARTOM 1278 CD ILE 162 37.722 19.852 64.670 1.00 12.55 AAAAA ARTOM 1278 CD ILE 162 37.732 19.852 64.670 1.00 12.55 AAAAA ARTOM 1280 CD ILE 162 32.530 20.492 66.126 1.00 17.99 AAAAA ARTOM 1280 CD ILE 162 32.530 20.492 66.126 1.00 17.99 AAAAA ARTOM 1280 CD ILE 163 32.966 22.374 67.721 7.00 18.45 AAAAA ARTOM 1280 CD ILE 163 31.653 32.990 69.60 1.00 12.73 AAAAA ARTOM 1280 CD ILE 163 31.653 32.990 69.70 1.00 18.47 AAAAA ARTOM 1280 CD ILE 163 32.966 CD 2.774 60.00 18.47 AAAAA ARTOM 1280 CD ILE 163 32.966 CD 2.774 60.00 19.99 AAAAA ARTOM 1280 CD ILE 163 32.960 CD 2.775 60.00 18.40 AAAAA ARTOM 1280 CD ILE 163 32.960 CD 2.777 60.00 18.40 AAAAA ARTOM 1280 CD ITM 164 30.656 22.346 60.00 10.00 18.40 AAAAA ARTOM 1280 CD ITM 164 30.656 22.346 60.00 10.00 18.40 AAAAA ARTOM 1280 CD ITM 164 30.656 22.346 60.00 10.00 18.40 AAAAAARTOM 1289 CD ITM 164 30.656 22.346 60.00 10.0							35.632	15.C72			
APPLIED 1263 CA ARG 161 35.164 17.594 69.073 1.00 26.02 84 AAAA AATOM 1264 CB ARG 161 34.815 17.467 70.572 1.00 26.02 84 AAAA ATOM 1265 CG ARG 161 34.915 16.031 71.080 1.00 28.47 AAAA AATOM 1266 CD ARG 161 34.213 16.025 72.523 1.00 30.38 AAAA AAAA ATOM 1267 NE ARG 161 36.272 16.278 73.883 1.00 40.49 AAAA ATOM 1268 CZ ARG 161 36.272 16.278 73.883 1.00 40.49 AAAA ATOM 1269 NHI ARG 161 36.724 15.094 73.489 1.00 31.49 AAAA ATOM 1270 NH2 ARG 161 35.512 19.932 69.460 1.00 38.54 AAAA ATOM 1271 C ARG 161 35.512 19.932 69.460 1.00 23.57 AAAA ATOM 1273 N 1LE 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1274 CA ILE 162 34.743 19.332 67.458 1.00 17.81 AAAA ATOM 1275 CB ILE 162 35.542 20.717 65.626 1.00 18.33 AAAA ATOM 1276 CG2 ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1278 CD1 ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1279 C ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1279 C ILE 162 33.316 21.184 66.724 1.00 14.79 AAAA ATOM 1279 C ILE 162 33.552 20.492 66.126 1.00 13.65 AAAA ATOM 1279 C ILE 163 33.165 21.384 66.724 1.00 14.79 AAAA ATOM 1279 C ILE 163 33.165 21.384 66.724 1.00 14.79 AAAA ATOM 1280 D ILE 162 33.532 20.492 66.126 1.00 14.91 AAAA ATOM 1280 C ILE 163 33.165 22.996 22.374 67.217 1.00 16.93 AAAA ATOM 1280 C ILE 163 33.165 22.996 22.374 67.217 1.00 16.93 AAAA ATOM 1280 C ILE 163 33.165 22.996 66.126 1.00 17.91 AAAA ATOM 1280 C ILE 163 33.165 22.996 68.469 1.00 17.91 AAAA ATOM 1280 C ILE 163 33.165 22.996 68.469 1.00 16.93 AAAA ATOM 1280							36.476	17.042			
ATOM 1264 CB ARG 161 34.915 16.031 71.080 1.00 28.47 AAAA ATOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ATOM 1266 CD ARG 161 34.715 16.031 71.080 1.00 32.99 AAAA ATOM 1268 CZ ARG 161 35.098 16.734 73.485 1.00 40.49 AAAA ATOM 1268 CZ ARG 161 35.098 16.734 73.485 1.00 31.49 AAAA ATOM 1270 NH2 ARG 161 36.724 15.094 73.489 1.00 31.49 AAAA ATOM 1270 NH2 ARG 161 35.707 11.9060 68.680 1.00 31.49 AAAA ATOM 1270 NH2 ARG 161 35.707 11.9060 68.680 1.00 18.98 AAAA ATOM 1272 O ARG 161 35.575 19.932 69.460 1.00 18.98 AAAA ATOM 1273 N LE 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1273 N LE 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1275 CB LE 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1275 CB LE 162 35.522 20.717 65.625 1.00 18.33 AAAA ATOM 1275 CB LE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1278 CDI ILE 162 36.937 70.200 65.895 1.00 18.15 AAAA ATOM 1279 C LE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1279 C LE 162 33.316 21.184 66.724 1.00 13.65 AAAA ATOM 1279 C LE 162 33.316 21.184 66.724 1.00 13.65 AAAA ATOM 1280 O ILE 162 33.316 21.184 66.724 1.00 13.65 AAAA ATOM 1280 O ILE 162 33.316 21.184 66.724 1.00 13.65 AAAA ATOM 1280 C LEU 163 32.962 22.374 67.217 1.00 16.93 AAAA ATOM 1280 C LEU 163 32.962 22.374 67.217 1.00 16.93 AAAA ATOM 1280 C LEU 163 32.962 22.374 67.217 1.00 16.93 AAAA ATOM 1280 C LEU 163 32.962 22.374 67.217 1.00 16.93 AAAA ATOM 1280 C LEU 163 32.962 22.374 67.217 1.00 18.95 AAAA ATOM 1280 C LEU 163 32.960 22.374 67.217 1.00 18.99 AAAA ATOM 1280 C LEU 163 32.960 22.374 67.217 1.00 18.99 AAAA ATOM 1280 C LEU 163 32.960 22.374 67.217 1.00 18.91 AAAA ATOM 1280 C LEU 163 32.960 24.751 69.870 1.00 18.74 AAAA ATOM 1280 C LEU 163 32.960 24.751 69.870 1.00 18.95 AAAA ATOM 1280 C LEU 163 32.960 24.751 69.870 1.00 18.95 AAAA ATOM 1280 C LEU 163 32.960 24.751 69.870 1.00 18.95 AAAA ATOM 1280 C LEU 163 32.060 24.898 66.188 1.00 18.97 AAAA ATOM 1290 C ATWR 164 29.279 28.986 61.983 1.00 18.97 AAAA ATOM 1290 C ATWR 164 29.279 29.896 61.993 1.00 18.50 AAAA ATOM 1290 C ATWR 164 29.279 29.896 61.9							35.164	17.594			
ATOM 1265 CG ARG 161 34.715 16.031 71.080 1.00 28.47 AAAA ATOM 1266 CD ARG 161 34.213 16.025 72.523 1.00 30.38 AAAA ATOM 1267 NE ARG 161 35.098 16.734 73.445 1.00 32.99 AAAA ATOM 1268 CZ ARG 161 36.727 16.278 73.883 1.00 40.49 AAAA ATOM 1269 NH1 ARG 161 36.727 16.278 73.883 1.00 40.49 AAAA ATOM 1270 NH2 ARG 161 35.571 19.060 68.680 1.00 38.54 AAAA ATOM 1271 C ARG 161 35.571 19.060 68.680 1.00 18.98 AAAA ATOM 1272 O ARG 161 35.571 19.060 68.680 1.00 18.98 AAAA ATOM 1273 N 11E 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1274 CA 1LE 162 34.744 19.332 67.458 1.00 19.82 AAAA ATOM 1275 CB 1LE 162 35.522 20.717 65.626 1.00 18.33 AAAA ATOM 1276 CG2 1LE 162 35.522 20.107 65.626 1.00 18.33 AAAA ATOM 1278 CD1 1LE 162 35.522 20.107 65.626 1.00 18.33 AAAA ATOM 1278 CD1 1LE 162 35.522 20.107 65.626 1.00 18.15 AAAA ATOM 1278 CD1 1LE 162 35.522 20.00 65.895 1.00 18.15 AAAA ATOM 1278 CD1 1LE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1280 O 1LE 163 32.996 22.374 67.217 1.00 16.93 AAAA ATOM 1281 N LEU 163 31.153 22.00.692 66.126 1.00 17.93 AAAA ATOM 1282 CA LEU 163 31.153 22.00 692 66.126 1.00 17.93 AAAA ATOM 1284 CG LEU 163 31.153 22.306 66.126 1.00 18.45 AAAA ATOM 1285 CD1 LEU 163 31.153 22.306 66.126 1.00 18.45 AAAA ATOM 1286 CD2 LEU 163 31.155 23.366 68.421 1.00 18.45 AAAA ATOM 1287 C LEU 163 31.153 22.306 66.126 1.00 18.94 AAAA ATOM 1288 O LEU 163 31.053 22.902 67.061 1.00 18.95 AAAA ATOM 1289 C TYR 164 30.555 22.466 68.863 1.00 18.97 AAAA ATOM 1280 O LEU 163 31.053 22.902 67.061 1.00 18.95 AAAA ATOM 1280 O LEU 163 32.966 22.374 67.217 1.00 18.95 AAAA ATOM 1280 O LEU 163 31.053 22.902 67.061 1.00 18.95 AAAA ATOM 1280 O LEU 163 31.053 22.902 67.061 1.00 18.95 AAAA ATOM 1290 CA TYR 164 30.555 25.466 68.863 1.00 18.97 AAAA ATOM 1290 CA TYR 164 30.556 25.466 68.863 1.00 18.97 AAAA ATOM 1290 CA TYR 164 30.556 25.466 68.863 1.00 18.97 AAAA ATOM 1290 CA TYR 164 30.556 25.97 66.198 1.00 18.05 AAAA ATOM 1290 CA TYR 164 29.279 29.879 66.489 1.00 15.03 AAAA ATOM 1290 CA TYR 164 29.279 29.879 66.489 1.00 15.05 AAAA ATOM 1300 O TYR							34.865			1.00 26.02	
ATOM 1266 CD ARG 161 36.213 16.025 72.523 1.00 30.38 AAAA ATOM 1267 NE ARG 161 35.098 16.734 73.445 1.00 32.99 AAAA ATOM 1268 CZ ARG 161 36.724 16.278 73.883 1.00 40.49 AAAA ATOM 1269 NNH ARG 161 36.724 15.094 73.489 1.00 31.49 AAAA ATOM 1270 NN2 ARG 161 36.724 15.094 73.489 1.00 31.49 AAAA ATOM 1270 NN2 ARG 161 35.571 19.060 68.680 1.00 18.98 AAAA ATOM 1271 C ARG 161 35.571 19.060 68.680 1.00 18.98 AAAA ATOM 1272 O ARG 161 35.571 19.060 68.680 1.00 18.98 AAAA ATOM 1273 N 1LE 162 34.744 19.332 67.458 1.00 19.82 AAAA ATOM 1273 N 1LE 162 34.744 19.332 67.458 1.00 19.82 AAAA ATOM 1275 CB 11E 162 35.552 19.932 69.460 1.00 17.81 AAAA ATOM 1275 CB 11E 162 35.542 20.717 65.626 1.00 18.33 AAAA ATOM 1275 CG 11E 162 35.542 20.717 65.626 1.00 18.33 AAAA ATOM 1276 CG2 11E 162 35.542 20.717 65.626 1.00 13.65 AAAA ATOM 1278 CD 11E 162 33.552 20.717 65.626 1.00 13.65 AAAA ATOM 1278 CD 11E 162 33.532 20.717 65.026 1.00 13.65 AAAA ATOM 1278 CD 11E 162 33.532 20.717 65.026 1.00 13.65 AAAA ATOM 1278 CD 11E 162 33.552 20.717 65.026 1.00 13.05 AAAA ATOM 1278 CD 11E 162 32.520 20.00 65.895 1.00 13.65 AAAA ATOM 1278 CD 11E 162 32.520 20.00 65.895 1.00 13.65 AAAA ATOM 1278 CD 11E 162 32.520 20.00 65.895 1.00 13.65 AAAA ATOM 1278 CD 11E 162 32.520 20.00 65.00 13.00 13.05 AAAA ATOM 1278 CD 11E 162 32.520 20.00 65.00 13.00 13.05 AAAA ATOM 1280 O 11E 162 32.520 20.00 65.00 13.00 13.00 13.05 AAAA ATOM 1280 O 11E 162 32.520 20.00 65.00 13.0							34.715	16.031			
ATOM 1268 CP ARG 161 36.724 15.094 73.485 1.00 32.99 AAAA ATOM 1268 CP ARG 161 36.727 16.278 73.883 1.00 40.49 AAAA ATOM 1269 NH1 ARG 161 36.727 16.278 73.883 1.00 40.49 AAAA ATOM 1270 NH2 ARG 161 37.003 17.014 74.712 1.00 38.54 AAAA ATOM 1271 C ARG 161 35.571 19.060 68.680 1.00 18.98 AAAA ATOM 1271 C ARG 161 35.571 19.060 68.680 1.00 18.98 AAAA ATOM 1272 O ARG 161 35.552 19.932 69.460 1.00 23.57 AAAA ATOM 1273 N ILE 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1273 N ILE 162 34.744 20.700 66.947 1.00 17.81 AAAA ATOM 1275 CB ILE 162 35.542 20.717 65.626 1.00 18.33 AAAA ATOM 1275 CB ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1276 CG ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1277 CGI ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1278 CDI ILE 162 35.542 22.110 66.7042 1.00 13.65 AAAA ATOM 1278 CDI ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1280 O ILE 163 32.995 22.374 67.217 1.00 16.93 AAAA ATOM 1280 O ILE 163 32.995 22.374 67.217 1.00 16.93 AAAA ATOM 1281 N LEU 163 31.653 22.992 67.061 1.00 17.93 AAAA ATOM 1282 CA LEU 163 31.653 22.992 67.061 1.00 18.45 AAAA ATOM 1284 CG LEU 163 31.653 22.992 67.061 1.00 18.94 AAAA ATOM 1286 CD LEU 163 31.652 29.902 66.126 1.00 18.94 AAAA ATOM 1286 CD LEU 163 31.652 29.902 66.126 1.00 18.94 AAAA ATOM 1286 CD LEU 163 31.652 29.902 67.061 1.00 18.94 AAAA ATOM 1287 C LEU 163 31.705 24.236 68.463 1.00 18.94 AAAA ATOM 1289 O TTW 164 30.752 24.236 68.463 1.00 18.94 AAAA ATOM 1287 C LEU 163 31.705 24.236 68.463 1.00 18.94 AAAA ATOM 1280 O LEU 163 32.607 24.756 68.463 1.00 19.99 AAAA ATOM 1280 O LEU 163 32.607 24.756 68.463 1.00 19.99 AAAA ATOM 1280 O LEU 163 32.607 24.756 68.463 1.00 19.99 AAAA ATOM 1280 O LEU 163 32.607 24.756 68.463 1.00 19.99 AAAA ATOM 1280 O LEU 163 32.607 24.756 68.463 1.00 19.99 AAAA ATOM 1290 CA TWR 164 30.752 24.236 66.958 1.00 12.00 18.94 AAAA ATOM 1290 CA TWR 164 30.752 24.236 66.958 1.00 12.00 18.94 AAAA ATOM 1290 CA TWR 164 30.752 24.256 66.564 29.19 1.00 15.65 AAAA ATOM 1290 CA TWR 164 30.752 24.758 66.958 1.00 12.05 AAAA ATOM 129							34.213		_	1.00 30.38	
ATOM 1268 CZ ARG 161 36.272 16.278 73.488 1.00 40.49 AAAA ATOM 1270 NH2 ARG 161 36.724 15.094 73.489 1.00 31.49 AAAA ATOM 1270 NH2 ARG 161 37.003 17.014 73.489 1.00 31.49 AAAA ATOM 1271 C NH2 ARG 161 35.171 19.060 68.680 1.00 18.98 AAAA ATOM 1271 C ARG 161 35.552 19.932 69.460 1.00 23.57 ATOM 1272 C ARG 161 35.552 19.932 69.460 1.00 23.57 AAAA ATOM 1273 N ILE 162 34.744 20.700 66.947 1.00 17.81 AAAA ATOM 1275 CB ILE 162 35.552 20.717 65.626 1.00 18.33 AAAA ATOM 1275 CB ILE 162 35.542 22.110 65.042 1.00 13.65 AAAAA ATOM 1276 CG2 ILE 162 35.542 22.110 65.042 1.00 13.65 AAAAA ATOM 1278 CD1 ILE 162 37.722 19.852 64.670 1.00 22.52 AAAA ATOM 1279 C ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1279 C ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1279 C ILE 162 32.520 20.492 66.126 1.00 17.99 AAAA ATOM 1280 O ILE 163 31.653 22.902 67.061 1.00 22.52 ATOM 1280 O ILE 163 31.653 22.902 67.061 1.00 16.93 AAAA ATOM 1280 C ILEU 163 31.653 22.902 67.061 1.00 16.93 AAAA ATOM 1280 C ILEU 163 31.653 22.906 67.061 1.00 18.40 ATOM 1280 C ILEU 163 31.653 22.906 67.061 1.00 19.99 AAAA ATOM 1280 C ILEU 163 32.966 24.751 69.870 1.00 18.74 AAAOM 1280 C ILEU 163 32.966 24.751 69.870 1.00 18.74 ATOM 1280 C ILEU 163 32.667 24.071 66.106 1.00 18.74 AAAA ATOM 1280 C ILEU 163 32.667 24.071 66.106 1.00 18.74 AAAA ATOM 1280 C ILEU 163 32.667 24.071 66.106 1.00 18.74 AAAA ATOM 1280 C ILEU 163 32.667 24.071 69.870 1.00 18.74 AAAA ATOM 1280 C ILEU 163 32.667 24.071 66.106 1.00 18.74 AAAA ATOM 1280 C ILEU 163 32.667 24.071 66.106 1.00 18.74 AAAA ATOM 1280 C ILEU 163 32.667 24.071 66.106 1.00 18.74 AAAA ATOM 1280 C ILEU 163 32.667 24.071 66.106 1.00 18.74 AAAA ATOM 1290 C TYR 164 30.752 24.128 65.186 1.00 17.00 16.97 AAAA ATOM 1290 C TYR 164 30.752 24.128 65.186 1.00 17.00 16.97 AAAA ATOM 1290 C TYR 164 30.752 24.754 62.816 1.00 17.00 16.97 AAAA ATOM 1290 C TYR 164 30.752 24.754 62.816 1.00 18.03 ATOM 1300 C TYR 164 30.752 24.754 62.816 1.00 15.66 AAAA ATOM 1290 C TYR 164 30.752 24.754 62.816 1.00 15.57 AAAA ATOM 1300 C TYR 164 30.752 24.75					161	-	35.098				
ATOM 1269 NH1 ARG 161 36.724 15.094 73.489 1.00 31.497 AAAA ATOM 1271 C ARG 161 37.003 17.014 74.712 1.00 38.54 AAAA ATOM 1271 C ARG 161 35.571 19.060 68.680 1.00 18.98 AAAA ATOM 1271 C ARG 161 35.572 19.932 69.460 1.00 23.577 AAAAA ATOM 1272 C ARG 161 35.522 19.932 69.460 1.00 23.577 AAAAA ATOM 1273 N ILE 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1274 CA ILE 162 34.744 20.700 66.947 1.00 17.81 AAAAA ATOM 1275 CB ILE 162 35.522 20.717 65.626 1.00 13.65 AAAAA ATOM 1276 CG2 ILE 162 35.542 22.110 65.042 1.00 13.65 AAAAA ATOM 1276 CG2 ILE 162 36.337 20.200 65.995 1.00 18.15 AAAAA ATOM 1277 CG1 ILE 162 37.722 19.852 64.670 1.00 17.99 AAAA ATOM 1279 C ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1279 C ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1279 C ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1280 O ILE 163 32.996 22.574 67.217 1.00 16.93 AAAA ATOM 1280 C ILEU 163 31.1653 22.902 67.061 1.00 20.73 AAAA ATOM 1280 C ILEU 163 31.1653 22.902 67.061 1.00 20.73 AAAA ATOM 1280 C ILEU 163 31.1653 22.902 67.061 1.00 12.07 AAAA ATOM 1283 CB ILEU 163 31.653 22.902 67.061 1.00 12.07 AAAA ATOM 1283 CB ILEU 163 31.653 22.902 67.061 1.00 18.45 AAAA ATOM 1285 CD ILEU 163 31.653 22.902 67.061 1.00 18.45 AAAA ATOM 1285 CD ILEU 163 31.653 22.902 67.061 1.00 18.45 AAAA ATOM 1286 CD2 ILEU 163 31.653 22.902 67.061 1.00 18.45 AAAA ATOM 1286 CD2 ILEU 163 31.053 22.902 67.061 1.00 18.74 AAAA ATOM 1286 CD2 ILEU 163 31.053 22.902 67.061 1.00 18.74 AAAA ATOM 1286 CD2 ILEU 163 31.053 22.902 67.061 1.00 18.74 AAAA ATOM 1286 CD2 ILEU 163 31.053 22.902 66.051 1.00 18.74 AAAA ATOM 1287 C ILEU 163 31.053 22.902 67.061 1.00 18.74 AAAA ATOM 1280 C ILEU 163 31.053 27.832 60.598 1.00 18.75 AAAA ATOM 1280 C ITYR 164 30.752 41.128 65.186 1.00 14.07 AAAA ATOM 1280 C ITYR 164 30.752 41.718 65.188 1.00 18.55 AAAA ATOM 1290 C ITYR 164 30.592 25.851 61.797 1.00 16.07 AAAA ATOM 1290 C ITYR 164 30.592 25.851 61.00 10.00 11.76 AAAA ATOM 1290 C ITYR 164 30.762 24.754 62.816 61.00 10.15.67 AAAA ATOM 1290 C ITYR 164 29.279 25.891 60.00 16.37 AA					161		36.272	16.278			
ATOM 1270 NH2 ARG 161 37.003 17.014 74.12 1.00 30.30 AAAA ATOM 1271 C ARG 161 35.552 19.932 69.460 1.00 18.98 AAAA ATOM 1273 N ILE 162 34.744 19.332 67.458 1.00 19.82 AAAA ATOM 1274 CA ILE 162 34.744 20.700 66.947 1.00 17.81 AAAA ATOM 1275 CB ILE 162 35.552 19.932 69.460 1.00 23.57 AAAA ATOM 1275 CB ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1275 CGI ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1276 CGI ILE 162 36.937 20.200 66.995 1.00 18.15 AAAA ATOM 1276 CGI ILE 162 37.722 19.852 64.670 1.00 12.55 AAAA ATOM 1278 CDI ILE 162 37.722 19.852 64.670 1.00 17.99 AAAA ATOM 1278 CDI ILE 162 33.516 21.184 66.724 1.00 14.71 AAAA ATOM 1279 C ILE 162 33.516 21.849 66.724 1.00 17.99 AAAA ATOM 1280 O ILE 163 32.996 22.774 67.217 1.00 16.93 AAAA ATOM 1281 N LEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1285 CB LEU 163 31.155 32.376 68.421 1.00 17.99 AAAA ATOM 1285 CB LEU 163 31.155 32.376 68.421 1.00 18.45 AAAA ATOM 1285 CDI LEU 163 29.867 23.408 67.975 1.00 18.45 AAAA ATOM 1285 CDI LEU 163 29.867 23.408 67.975 1.00 18.45 AAAA ATOM 1285 CDI LEU 163 32.960 24.751 69.870 1.00 18.40 AAAA ATOM 1286 CD2 LEU 163 31.00 29.609 24.751 69.870 1.00 18.40 AAAA ATOM 1286 CD2 LEU 163 31.002 29.609 24.751 69.870 1.00 18.40 AAAA ATOM 1286 CD2 LEU 163 32.000 24.781 69.870 1.00 18.40 AAAA ATOM 1280 O LEU 163 32.000 24.781 69.870 1.00 18.40 AAAA ATOM 1280 CC TYR 164 30.752 24.128 65.186 1.00 19.0 18.40 AAAA ATOM 1290 CA TYR 164 30.752 24.128 65.186 1.00 14.07 AAAA ATOM 1290 CA TYR 164 30.752 24.128 65.186 1.00 14.07 AAAA ATOM 1290 CA TYR 164 30.550 25.246 64.252 1.00 11.76 AAAA ATOM 1290 CA TYR 164 30.550 25.246 64.252 1.00 11.76 AAAA ATOM 1290 CA TYR 164 30.550 25.246 64.252 1.00 11.76 AAAA ATOM 1290 CA TYR 164 30.550 25.246 64.252 1.00 11.76 AAAA ATOM 1290 CA TYR 164 30.550 25.246 64.252 1.00 11.76 AAAA ATOM 1290 CA TYR 164 29.259 CB				ARG	161						
ATOM 1272 C ARG 161 35.572 19.932 69.460 1.00 23.57 AAAA ATOM 1273 N ILE 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1273 N ILE 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1275 CB ILE 162 35.522 20.717 65.626 1.00 13.65 AAAA ATOM 1275 CG ILE 162 35.522 20.717 65.626 1.00 13.65 AAAA ATOM 1276 CG2 ILE 162 35.522 20.717 65.626 1.00 13.65 AAAA ATOM 1276 CG2 ILE 162 35.522 20.100 65.942 1.00 13.65 AAAA ATOM 1276 CG1 ILE 162 35.522 20.100 65.942 1.00 13.65 AAAA ATOM 1278 CD1 ILE 162 37.722 19.852 64.670 1.00 22.52 AAAA ATOM 1279 C ILE 162 33.316 21.884 66.724 1.00 14.71 AAAA ATOM 1279 C ILE 162 33.316 21.884 66.724 1.00 14.71 AAAA ATOM 1280 O ILE 162 32.520 22.574 67.217 1.00 16.93 AAAA ATOM 1280 C ILEU 163 32.996 22.374 67.217 1.00 16.93 AAAA ATOM 1280 C ILEU 163 32.996 22.374 67.217 1.00 16.93 AAAA ATOM 1280 C ILEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1280 C ILEU 163 31.653 22.902 67.061 1.00 19.99 AAAA ATOM 1280 C ILEU 163 31.653 22.902 67.061 1.00 19.99 AAAA ATOM 1280 C ILEU 163 29.846 24.236 68.463 1.00 19.99 AAAA ATOM 1280 C ILEU 163 29.846 67.975 1.00 15.66 AAAA ATOM 1280 C ILEU 163 32.9609 24.751 69.870 1.00 18.74 AAAA ATOM 1280 C ILEU 163 32.9609 24.751 66.106 1.00 18.74 AAAA ATOM 1280 C ILEU 163 32.607 24.089 67.975 1.00 15.66 AAAA ATOM 1280 C ILEU 163 32.607 24.889 66.188 1.00 16.97 AAAA ATOM 1280 C ILEU 163 32.607 24.889 66.188 1.00 16.97 AAAA ATOM 1280 C ILEU 163 32.607 24.889 66.188 1.00 16.97 AAAA ATOM 1290 C ITR 164 30.752 24.128 65.186 1.00 14.07 AAAA ATOM 1290 C ITR 164 30.595 25.851 61.797 1.00 18.74 AAAA ATOM 1290 C ITR 164 30.595 25.851 61.797 1.00 18.56 AAAA ATOM 1290 C ITR 164 30.595 25.851 61.00 14.07 AAAA ATOM 1290 C ITR 164 30.596 25.861 60.00 16.97 AAAA ATOM 1290 C ITR 164 30.596 29.896 60.898 1.00 12.189 AAAA ATOM 1290 C ITR 164 30.596 29.896 60.998 1.00 14.51 AAAA ATOM 1290 C ITR 164 30.596 29.896 60.998 1.00 14.51 AAAA ATOM 1290 C ITR 164 30.596 29.896 60.998 1.00 14.51 AAAA ATOM 1300 C ILE 165 27.795 92.896 60.991 1.00 14.51 AAAA ATOM 1300 C ILE 165 27.895 92.896 60.991 1.0			NH2	ARG	161						
ATOM 1273 N ILE 162 34.743 19.332 67.458 1.00 19.82 AAAA ATOM 1274 CA ILE 162 34.744 20.700 66.947 1.00 17.81 AAAA ATOM 1276 CG2 ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1276 CG2 ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1277 CG1 ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1278 CD1 ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1278 CD1 ILE 162 37.722 19.852 64.670 1.00 22.52 AAAA ATOM 1278 CD1 ILE 162 33.316 21.1884 66.724 1.00 14.71 AAAA ATOM 1279 C ILE 162 33.316 21.1884 66.724 1.00 14.71 AAAA ATOM 1280 O ILE 163 33.316 22.370 67.277 1.00 16.93 AAAA ATOM 1280 O ILE 163 31.653 22.902 67.061 1.00 20.73 AAAAA ATOM 1281 N LEU 163 31.653 22.902 67.061 1.00 18.45 AAAA ATOM 1282 CA LEU 163 31.155 22.374 68.463 1.00 19.99 AAAA ATOM 1283 CB LEU 163 29.866 24.236 68.421 1.00 18.45 AAAA ATOM 1288 CD1 LEU 163 28.657 23.408 67.975 1.00 15.66 AAAA ATOM 1287 C LEU 163 31.053 22.902 67.061 1.00 20.73 AAAA ATOM 1288 CD1 LEU 163 29.609 24.751 69.870 1.00 18.74 AAAA ATOM 1288 CD2 LEU 163 31.053 22.902 67.061 1.00 18.74 AAAA ATOM 1287 C LEU 163 32.966 92.4.751 69.870 1.00 18.74 AAAA ATOM 1289 N TYR 164 30.752 24.178 69.870 1.00 18.74 AAAA ATOM 1289 N TYR 164 30.752 24.178 66.106 1.00 18.40 AAAA ATOM 1290 CA TYR 164 30.752 24.754 62.816 1.00 14.07 AAAA ATOM 1291 CB TYR 164 30.752 24.754 62.816 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.553 25.851 61.797 1.00 14.51 AAAA ATOM 1293 CDT TYR 164 30.752 24.754 62.816 1.00 14.07 AAAA ATOM 1293 CDT TYR 164 30.752 24.754 62.816 1.00 14.07 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.193 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.193 1.00 27.45 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.193 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.193 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.193 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.993 1.00 16.35 AAAA ATOM 1300 C TYR 164 29.857 28.764 58.993 1.00 16.05 6.35 AAAA ATOM 1300 C A LE 165 27.759 28.596 60.698 1.00 12.13 AAAA ATOM 1300 C C ILE 165 27.853 28.906 63.779 1.00 11.00 13.04 AAAA ATOM			С	ARG	161 .						
ATOM 1274 CA ILE 162 34.744 20.700 66.947 1.00 17.81 AAAA ATOM 1275 CB ILE 162 35.522 20.717 65.626 1.00 18.33 AAAA ATOM 1276 CG2 ILE 162 35.522 20.717 65.626 1.00 18.35 AAAA ATOM 1277 CG1 ILE 162 35.522 20.717 65.626 1.00 18.35 AAAA ATOM 1278 CD1 ILE 162 35.522 20.717 65.626 1.00 18.35 AAAA ATOM 1279 C ILE 162 35.522 20.717 65.626 1.00 18.35 AAAA ATOM 1279 C ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1280 O ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1281 N LEU 163 32.996 22.374 67.217 1.00 16.93 AAAA ATOM 1281 N LEU 163 31.653 32.996 70.611 1.00 20.73 AAAA ATOM 1283 CB LEU 163 31.653 32.996 70.611 1.00 20.73 AAAA ATOM 1288 CD1 LEU 163 31.515 23.376 68.421 1.00 18.45 AAAA ATOM 1286 CD2 LEU 163 31.00 29.846 24.236 68.463 1.00 19.56 AAAA ATOM 1286 CD2 LEU 163 31.00 29.846 79.870 1.00 18.74 AAAA ATOM 1288 CD1 LEU 163 31.00 29.846 79.870 1.00 18.40 AAAA ATOM 1288 CD2 LEU 163 31.00 29.846 79.870 1.00 18.40 AAAA ATOM 1288 CD2 LEU 163 31.00 24.889 66.186 1.00 18.40 AAAA ATOM 1288 O LEU 163 32.607 24.189 65.186 1.00 18.40 AAAA ATOM 1290 CA TVR 164 30.782 24.128 65.186 1.00 18.65 AAAA ATOM 1290 CA TVR 164 30.782 24.128 65.186 1.00 14.76 AAAA ATOM 1290 CA TVR 164 30.782 24.754 62.816 1.00 14.76 AAAA ATOM 1290 CA TVR 164 30.782 24.754 62.816 1.00 14.76 AAAA ATOM 1292 CD TVR 164 30.782 24.754 62.816 1.00 14.76 AAAA ATOM 1292 CD TVR 164 30.782 24.754 62.816 1.00 14.76 AAAA ATOM 1290 CA TVR 164 30.782 24.754 62.816 1.00 14.76 AAAA ATOM 1290 CA TVR 164 30.782 24.754 62.816 1.00 14.76 AAAA ATOM 1290 CA TVR 164 30.782 24.754 63.81 61.00 14.00 14.51 AAAA ATOM 1290 CA TVR 164 30.782 24.754 63.81 61.00 14.01 11.76 AAAA ATOM 1290 CA TVR 164 30.782 24.754 63.81 61.00 14.00 14.51 AAAA ATOM 1290 CA TVR 164 29.879 28.894 89.894 1.00 121.89 AAAA ATOM 1290 CA TVR 164 29.879 28.764 64.893 1.00 18.37 1.00 21.89 AAAA ATOM 1290 CA TVR 164 29.879 28.764 69.870 1.00 14.51 AAAA ATOM 1300 N ILE 165 29.895 29.896 60.00 13.00 13.01 N ILE 165 29.895 28.896 60.00 13.00 13.01 N ILE 165 29.895 28.896 60.00 13.00 13.01 AAAA ATOM 1300 CD T			0	ARG	161						
ATOM 1275 CB ILE 162 35.522 20.717 65.626 1.00 18.33 AAAA ATOM 1276 CG2 ILE 162 35.542 20.710 65.626 1.00 13.65 AAAA ATOM 1277 CG1 ILE 162 35.542 20.110 65.042 1.00 13.65 AAAA ATOM 1278 CD1 ILE 162 37.722 19.852 64.670 1.00 22.52 AAAA ATOM 1279 C ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1280 O ILE 162 32.520 20.492 66.126 1.00 17.99 AAAA ATOM 1280 O ILE 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1282 CD LEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1282 CD LEU 163 31.155 22.374 67.217 1.00 16.93 AAAA ATOM 1283 CB LEU 163 31.155 22.902 67.061 1.00 20.73 AAAA ATOM 1285 CD1 ILEU 163 28.657 23.408 67.975 1.00 18.45 AAAA ATOM 1285 CD1 LEU 163 28.657 23.408 67.975 1.00 18.45 AAAA ATOM 1286 CD2 LEU 163 29.609 24.751 69.870 1.00 18.74 AAAA ATOM 1287 C LEU 163 31.705 24.071 66.106 1.00 18.74 AAAA ATOM 1288 O LEU 163 31.705 24.071 66.106 1.00 18.74 AAAA ATOM 1289 N TYR 164 30.552 25.246 64.252 1.00 11.76 AAAA ATOM 1289 N TYR 164 30.552 25.246 64.252 1.00 11.76 AAAA ATOM 1290 CA TYR 164 30.552 25.246 64.252 1.00 11.76 AAAA ATOM 1292 CG TYR 164 30.552 25.286 61.797 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.559 25.851 61.797 1.00 14.07 AAAA ATOM 1293 CD1 TYR 164 30.559 25.851 61.070 1.00 14.07 AAAA ATOM 1294 CEI TYR 164 30.593 25.851 61.070 1.00 14.07 AAAA ATOM 1299 CD2 TYR 164 29.415 25.916 61.070 1.00 12.45 AAAA ATOM 1299 CD2 TYR 164 29.415 25.916 61.070 1.00 12.45 AAAA ATOM 1299 CD2 TYR 164 29.415 25.916 61.070 1.00 12.45 AAAA ATOM 1299 CD2 TYR 164 29.415 25.916 61.070 1.00 12.45 AAAA ATOM 1299 CD2 TYR 164 29.455 25.916 61.070 1.00 14.51 AAAA ATOM 1299 CD2 TYR 164 29.415 25.916 61.070 1.00 14.51 AAAA ATOM 1299 CD2 TYR 164 29.455 25.851 60.070 1.00 12.45 AAAA ATOM 1300 CD1 TYR 164 29.455 29.359 66.891 60.073 1.00 12.45 AAAA ATOM 1300 CD1 TYR 164 29.279 25.873 64.465 1.00 16.07 AAAA ATOM 1300 CD1 ILE 165 27.855 28.901 60.598 1.00 16.67 AAAA ATOM 1300 CD1 ILE 165 27.855 28.901 60.073 7.00 13.65 AAAA ATOM 1300 CD1 ILE 165 28.493 28.299 66.3799 1.00 15.63 AAAA ATOM 1300 CD1 ILE 165 28.493 29.299 25.895 66.419 1.			N	ILE							
ATOM 1276 CG2 ILE 162 35.542 22.110 65.042 1.00 13.65 AAAA ATOM 1277 CG1 ILE 162 36.937 20.200 65.895 1.00 18.15 AAAA ATOM 1277 CG1 ILE 162 36.937 20.200 65.895 1.00 18.15 AAAA ATOM 1279 C ILE 162 32.520 20.492 66.126 1.00 17.99 AAAA ATOM 1279 C ILE 162 32.520 20.492 66.126 1.00 17.99 AAAA ATOM 1281 N LEU 163 32.996 22.374 67.217 1.00 16.93 AAAA ATOM 1282 CA LEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1283 CB LEU 163 31.152 32.376 68.421 1.00 18.45 AAAA ATOM 1283 CB LEU 163 31.152 32.376 68.421 1.00 18.45 AAAA ATOM 1286 CD2 LEU 163 31.152 32.376 68.421 1.00 18.45 AAAA ATOM 1286 CD2 LEU 163 29.806 24.751 69.870 1.00 18.74 AAAA ATOM 1287 C LEU 163 31.052 24.754 69.870 1.00 18.74 AAAA ATOM 1288 CD2 LEU 163 32.607 24.889 67.975 1.00 18.66 AAAA ATOM 1288 CD2 LEU 163 32.607 24.889 66.188 1.00 18.65 AAAA ATOM 1288 CD2 LEU 163 32.607 24.889 66.186 1.00 18.40 AAAA ATOM 1289 C TYR 164 30.656 25.246 64.252 1.00 11.76 AAAA ATOM 1290 CA TYR 164 30.656 25.246 64.252 1.00 11.76 AAAA ATOM 1290 CB TYR 164 30.782 24.754 62.816 1.00 14.07 AAAA ATOM 1292 CB TYR 164 30.585 25.881 61.797 1.00 14.51 AAAA ATOM 1292 CB TYR 164 30.585 25.881 61.797 1.00 14.51 AAAA ATOM 1292 CC TYR 164 30.582 25.881 61.797 1.00 14.51 AAAA ATOM 1292 CC TYR 164 30.582 25.891 61.502 1.00 27.04 AAAA ATOM 1292 CC TYR 164 30.582 25.891 61.00 20.21.45 AAAA ATOM 1293 CD1 TYR 164 30.585 25.881 61.797 1.00 14.51 AAAA ATOM 1292 CC TYR 164 29.455 25.916 61.070 1.00 21.45 AAAA ATOM 1293 CD1 TYR 164 30.585 25.881 61.797 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 30.585 25.891 61.502 1.00 27.04 AAAA ATOM 1299 C TYR 164 29.455 25.996 60.581 1.00 15.67 AAAA ATOM 1299 C TYR 164 29.455 25.916 61.070 1.00 21.45 AAAA ATOM 1299 C TYR 164 29.457 27.878 64.674 1.00 14.07 AAAA ATOM 1300 C TYR 164 29.457 29.895 60.658 1.00 20.1.567 AAAA ATOM 1300 C TYR 164 29.857 28.766 6.594 9.30 60.00 14.52 AAAA ATOM 1300 C TYR 164 29.857 28.766 6.594 9.30 60.00 14.55 AAAA ATOM 1300 C TYR 164 29.857 28.796 66.499 1.00 13.06 6.379 AAAA ATOM 1300 C TYR 164 29.857 28.996 66.419 1.00 15.54 AAAA AT			CA	ILE	162						
ATOM 1276 CG2 ILE 162 35.542 22.110 65.042 1.00 18.15 AAAA ATOM 1277 CG1 ILE 162 37.722 19.852 64.670 1.00 22.52 AAAA ATOM 1278 CD1 ILE 162 32.520 20.492 66.126 1.00 14.71 AAAA ATOM 1280 0 ILE 162 32.996 22.374 67.217 1.00 16.93 AAAA ATOM 1281 N LEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1282 CA LEU 163 31.515 23.376 68.421 1.00 18.45 AAAA ATOM 1284 CB LEU 163 31.115 23.376 68.421 1.00 18.999 ATOM 1285 CD1 LEU 163 29.866 24.216 68.463 1.00 19.99 AAAA ATOM 1286 CD2 LEU 163 31.00 24.875 68.421 1.00 18.74 AAAA ATOM 1287 C LEU 163 32.906 24.751 69.870 1.00 18.74 AAAA ATOM 1288 O LEU 163 32.607 24.889 66.186 1.00 18.65 AAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 18.67 AAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 18.67 AAAA ATOM 1290 CA TYR 164 30.752 24.128 65.186 1.00 18.67 AAAA ATOM 1291 CB TYR 164 30.752 24.128 65.186 1.00 18.07 AAAA ATOM 1292 CG TYR 164 30.556 25.246 64.252 1.00 11.76 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1294 CE1 TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1295 CD2 TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1296 CZ TYR 164 29.193 26.891 60.137 1.00 27.08 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1290 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1290 C TYR 164 29.193 26.891 60.137 1.00 16.07 AAAA ATOM 1290 C TYR 164 29.193 26.891 60.137 1.00 27.44 AAAA ATOM 1290 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1300 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1300 C TYR 164 29.193 26.891 60.137 1.00 27.44 AAAA ATOM 1300 C TYR 164 29.193 26.891 60.137 1.00 12.05 AAAA ATOM 1300 C TYR 164 29.193 26.891 60.137 1.00 12.52 AAAA ATOM 1300 C TYR 164 29.193 26.891 60.137 1.00 12.52 AAAA ATOM 1300 C TYR 164 29.193 26.891			CB	ILE							
ATOM 1278 CD1 ILE 162 37.722 19.852 64.670 1.00 22.52 AAAA ATOM 1278 CD1 ILE 162 33.316 21.184 66.724 1.00 14.71 AAAA ATOM 1280 0 ILE 162 32.520 20.492 66.126 1.00 17.99 AAAA ATOM 1281 N LEU 163 32.996 22.374 67.217 1.00 16.93 AAAA ATOM 1282 CA LEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1283 CB LEU 163 31.155 23.376 68.421 1.00 18.45 AAAA ATOM 1284 CG LEU 163 31.155 23.376 68.463 1.00 19.99 AAAA ATOM 1285 CD1 LEU 163 29.846 24.236 68.463 1.00 19.99 AAAA ATOM 1286 CD2 LEU 163 31.705 24.071 66.106 1.00 18.45 AAAA ATOM 1287 C LEU 163 32.607 24.889 66.188 1.00 18.65 AAAA ATOM 1288 O LEU 163 32.607 24.889 66.188 1.00 18.65 AAAA ATOM 1288 O LEU 163 32.607 24.889 66.188 1.00 18.65 AAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 11.76 AAAA ATOM 1290 CA TYR 164 30.559 25.246 64.252 1.00 11.76 AAAA ATOM 1291 CB TYR 164 30.593 25.851 61.07 10.014.51 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.07 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.552 1.00 27.08 AAAA ATOM 1296 CC2 TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1297 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1298 ON TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 14.51 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 16.07 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1300 O TYR 164 29.279 25.873 64.684 1.00 16.35 AAAA ATOM 1300 C TYR 164 29.856 29.996 66.254 1.00 16.37 AAAA ATOM 1300 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1300 C TYR 164 29.857 28.769 66.254 1.00 13.06 AAAA ATOM 1300 C TYR 164 29.857 28.769 66.254 1.00 15.67 AAAA ATOM 1300 C TYR 164 29.856 29.996 66.254 1.00 13.06 AAAA ATOM 1300 C TYR 164 29.856 29.996 66.254 1.00 13.06 AAAA ATOM 1300 C TYR 164 29.856 26.508 29.919 1.00 16.07 AAAA ATOM 1300 C TYR 164 29.856 29.996 66.254 1.00 13.06 AAAA ATOM 1300 C TYR 165 28.696 26.508 2		1276									
ATOM 1279 C ILE 162 37.722 19.852 64.870 1.00 14.71 AAAA ATOM 1280 O ILE 162 32.520 20.492 66.126 1.00 14.71 AAAA ATOM 1281 N LEU 163 32.520 20.492 66.126 1.00 14.71 AAAA ATOM 1282 CA LEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1283 CB LEU 163 31.153 23.376 68.421 1.00 18.45 AAAA ATOM 1284 CG LEU 163 29.846 24.236 68.463 1.00 19.99 AAAA ATOM 1285 CD1 LEU 163 28.657 23.408 67.975 1.00 18.66 AAAA ATOM 1286 CD2 LEU 163 28.657 23.408 67.975 1.00 18.74 AAAA ATOM 1287 C LEU 163 31.705 24.071 66.106 1.00 18.74 AAAA ATOM 1288 O LEU 163 31.705 24.071 66.106 1.00 18.74 AAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 18.65 AAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 18.67 AAAA ATOM 1290 CA TYR 164 30.782 24.754 62.816 1.00 11.76 AAAA ATOM 1291 CB TYR 164 30.782 24.754 62.816 1.00 11.76 AAAA ATOM 1292 CG TYR 164 30.782 24.754 62.816 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.782 24.754 62.816 1.00 14.07 AAAA ATOM 1293 CD TYR 164 30.782 24.754 62.816 1.00 14.07 AAAA ATOM 1294 CEI TYR 164 31.353 27.832 60.598 1.00 27.08 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1296 CZ TYR 164 29.415 25.916 61.070 1.00 21.89 AAAA ATOM 1299 C TYR 164 29.415 25.916 61.070 1.00 21.89 AAAA ATOM 1299 C TYR 164 29.415 25.916 61.070 1.00 21.89 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.08 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.08 AAAA ATOM 1299 C TYR 164 29.957 28.764 58.913 1.00 27.08 AAAA ATOM 1300 O TYR 164 29.279 25.873 64.463 1.00 16.35 AAAA ATOM 1301 N ILE 165 27.789 28.896 60.254 1.00 16.35 AAAA ATOM 1302 CA ILE 165 27.789 29.8596 66.445 1.00 15.67 AAAA ATOM 1303 CB ILE 165 27.789 29.8596 66.445 1.00 15.63 AAAA ATOM 1300 C TYR 164 29.957 28.764 58.913 1.00 27.64 AAAA ATOM 1300 C TYR 164 29.957 28.764 58.913 1.00 27.65 AAAA ATOM 1300 C TYR 164 29.957 28.764 58.913 1.00 27.65 AAAA ATOM 1301 N ILE 165 29.666 59.959 1.00 15.03 AAAA ATOM 1303 C B ILE 165 27.789 29.8596 66.419 1.00 15.63 AAAA ATOM 1300 C TYR 166 26.670 29.799 25.873 60.666 1.00 12.56 AAAA ATOM 1310 C A SP 166 26.503		1277	CG1	ILE							
ATOM 1280 O ILE 162 33.316 21.184 68.724 1.00 17.79 AAAA ATOM 1281 N LEU 163 32.906 22.374 67.217 1.00 16.93 AAAA ATOM 1282 CA LEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1283 CB LEU 163 31.115 23.376 68.421 1.00 18.45 AAAA ATOM 1285 CD1 LEU 163 29.846 24.236 68.463 1.00 19.99 AAAA ATOM 1285 CD1 LEU 163 29.846 24.236 68.421 1.00 18.45 AAAA ATOM 1285 CD1 LEU 163 29.609 24.751 69.870 1.00 18.40 AAAA ATOM 1287 C LEU 163 31.705 24.071 66.106 1.00 18.40 AAAA ATOM 1288 O LEU 163 31.705 24.071 66.106 1.00 18.40 AAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 16.97 AAAA ATOM 1290 CA TYR 164 30.752 24.128 65.186 1.00 16.97 AAAA ATOM 1291 CB TYR 164 30.822 24.754 62.816 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.822 24.754 62.816 1.00 14.07 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 26.21 AAAA ATOM 1293 CD2 TYR 164 31.573 26.822 61.562 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.89 AAAA ATOM 1295 CD2 TYR 164 29.857 28.764 58.913 1.00 27.08 AAAA ATOM 1295 CD2 TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1295 CD2 TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 15.67 AAAA ATOM 1300 C TYR 164 29.857 28.764 58.913 1.00 15.67 AAAA ATOM 1300 C TYR 164 29.857 28.764 58.913 1.00 15.67 AAAA ATOM 1300 C TYR 164 29.857 28.856 66.254 1.00 15.67 AAAA ATOM 1300 C TYR 164 29.857 28.856 66.254 1.00 15.67 AAAA ATOM 1300 C TYR 164 29.857 28.856 66.254 1.00 15.67 AAAA ATOM 1300 C TYR 164 29.857 28.856 66.257 1.00 14.55 AAAA ATOM 1300 C TYR 164 29.857 28.856 66.257 1.00 15.66 AAAA ATOM 1300 C TYR 164 29.857 28.856 66.257 1.00 15.66 AAAA ATOM 1300 C TYR 164 29.857 28.856 66.257 1.00 15.66 AAAA ATOM 1300 C TYR 16		1278	CDl	ILE	162						
ATOM 1280 O ILE 162 32.520 20.492 68.128 1.00 17.97 AAAA ATOM 1281 N LEU 163 31.956 22.374 67.217 1.00 16.93 AAAA ATOM 1282 CA LEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1283 CB LEU 163 31.653 22.902 67.061 1.00 18.45 AAAA ATOM 1284 CG LEU 163 29.846 24.236 68.463 1.00 19.99 AAAA ATOM 1285 CD1 LEU 163 29.846 24.236 68.463 1.00 19.99 AAAA ATOM 1286 CD2 LEU 163 29.609 24.751 69.870 1.00 18.74 AAAA ATOM 1287 C LEU 163 31.705 24.071 66.106 1.00 18.74 AAAA ATOM 1287 C LEU 163 32.607 24.889 66.188 1.00 18.65 AAAA ATOM 1289 N TYR 164 30.556 25.246 66.188 1.00 16.97 AAAA ATOM 1289 N TYR 164 30.556 25.246 64.252 1.00 11.76 AAAA ATOM 1291 CB TYR 164 30.582 24.754 62.816 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.07 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 14.07 AAAA ATOM 1295 CD2 TYR 164 31.353 27.832 60.598 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.857 28.764 58.913 1.00 27.08 AAAA ATOM 1295 CD2 TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1290 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.057 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.859 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.859 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.859 1.00 15.67 AAAA ATOM 1300 C AASP 166 26.654 29.359 66.254 1.00 13.30 AAAA ATOM 1300 C TILE 165 27.759 28.596 66.254 1.00 13.30 AAAA ATOM 1300 C TILE 165 28.759 28.596 66.249 1.00 15.67 AAAA ATOM 1300 C AASP 166 26.676 28.85 60.698 1.00 15.02 AAAA ATOM 1310 C AASP 166 26.725 88.95 66.624 1.00 13.31 AAAA ATOM 1310 C AASP 166 26.279 29.666 59.393 1.00 16.67 AAAA ATOM 1310 C AASP 166 26.279 29.666 59.393 1.00 16.67 AAAA ATOM 1311 C AASP 166 26.27		1279	С	ILE							
ATOM 1281 CA LEU 163 31.653 22.902 67.061 1.00 20.73 AAAA ATOM 1283 CB LEU 163 31.115 23.376 68.421 1.00 18.45 AAAA ATOM 1285 CD1 LEU 163 29.846 24.236 68.463 1.00 19.99 AAAA ATOM 1285 CD1 LEU 163 29.609 24.751 69.870 10.0 18.74 AAAA ATOM 1287 C LEU 163 31.705 24.071 66.106 1.00 18.74 AAAA ATOM 1288 O LEU 163 32.607 24.889 66.188 1.00 18.65 AAAA ATOM 1289 N TYR 164 30.752 24.071 66.106 1.00 18.65 AAAA ATOM 1289 N TYR 164 30.656 25.246 64.252 1.00 11.76 AAAA ATOM 1291 CB TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 60.137 1.00 21.85 AAAA ATOM 1295 CD2 TYR 164 29.857 28.783 59.896 1.00 15.67 AAAA ATOM 1297 CZ TYR 164 29.857 28.783 59.896 1.00 15.67 AAAA ATOM 1299 C TYR 164 29.857 28.784 58.913 1.00 27.04 ATOM 1299 C TYR 164 29.857 28.786 58.913 1.00 27.44 AAAA ATOM 1295 CD2 TYR 164 29.857 28.786 58.913 1.00 27.44 AAAA ATOM 1296 CE2 TYR 164 29.857 28.786 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.786 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.786 58.913 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.455 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.455 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.85 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.85 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 25.179 64.893 1.00 18.37 AAAA ATOM 1300 C TYR 164 28.60 25.179 64.893 1.00 18.37 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.85 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.85 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 25.177 64.85 1.00 15.67 AAAA ATOM 1300 C TYR 164 28.60 26.00 27.787 64.893 1.00 18.37 ATOM 1300 C TYR 164 28.60 26.00 26.00 27.787 64.893 1.00 18.37 ATOM 1300 C TYR 164 29.85 29.99 29.39 60.00 10.00 10.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.0			0	ILE							
ATOM 1283 CB LEU 163	ATOM	1281	N							1.00 10.33	
ATOM 1283 CB LEU 163 31.13 29.846 24.236 68.463 1.00 19.99 AAAA ATOM 1285 CD1 LEU 163 28.657 23.408 67.975 1.00 15.66 AAAAA ATOM 1286 CD2 LEU 163 29.609 24.751 69.870 1.00 18.74 AAAA ATOM 1287 C LEU 163 31.705 24.071 66.106 1.00 18.40 AAAA ATOM 1288 O LEU 163 32.607 24.889 66.188 1.00 18.65 AAAA ATOM 1288 O LEU 163 32.607 24.889 66.188 1.00 16.97 AAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 16.97 AAAA ATOM 1290 CA TYR 164 30.782 24.754 62.816 1.00 11.76 AAAA ATOM 1291 CB TYR 164 30.782 24.754 62.816 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1296 CE2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1297 CZ TYR 164 29.857 28.764 58.91 31.00 27.44 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.91 31.00 27.44 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1300 O TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1300 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1300 O TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1300 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1300 C TYR 164 29.857 28.764 58.913 1.00 15.07 AAAA ATOM 1300 C TILE 165 27.759 28.596 66.254 1.00 13.31 AAAA ATOM 1300 C TILE 165 27.759 28.596 66.254 1.00 13.31 AAAA ATOM 1303 C B ILE 165 27.959 28.596 66.254 1.00 13.06 AAAA ATOM 1306 CD1 ILE 165 27.853 28.926 63.779 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 27.853 28.926 63.779 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 27.853 28.926 63.779 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 27.853 28.926 63.779 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.553 28.926 63.779 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.553 28.926 63.779 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 27.853 28.926 63.779 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 15.03 AAAA ATOM 1306 CD1 ILE 165 26.654 29.259 66.49 1.00 13.06 AAAA ATOM 1307	MOTA	1282	CA	LEU						1.00 20.75	
ATOM 1285 CD1 LEU 163 29.640 24.751 69.870 1.00 15.66 AAAA ATOM 1286 CD2 LEU 163 31.705 24.071 66.106 1.00 18.74 AAAA ATOM 1287 C LEU 163 32.607 24.889 66.188 1.00 18.65 AAAAA ATOM 1288 O LEU 163 32.607 24.889 66.188 1.00 18.65 AAAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 14.07 AAAA ATOM 1290 CA TYR 164 30.656 62.246 64.252 1.00 11.76 AAAA ATOM 1291 CB TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1294 CE1 TYR 164 31.353 27.832 60.598 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.89 AAAA ATOM 1297 CZ TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1299 C TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1299 C TYR 164 29.895 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.895 25.873 64.463 1.00 15.67 AAAA ATOM 1299 C TYR 164 29.895 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 C TYR 165 2940 27.187 64.655 1.00 16.07 AAAA ATOM 1300 C TYR 165 2940 27.187 64.655 1.00 15.02 AAAA ATOM 1300 C TYR 165 2940 27.187 64.655 1.00 15.07 AAAA ATOM 1300 C TYR 165 2940 27.187 64.655 1.00 15.07 AAAA ATOM 1300 C TYR 165 27.78 27.887 64.893 1.00 18.37 AAAA ATOM 1300 C TYR 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1305 CGI ILE 165 27.853 28.926 66.254 1.00 13.31 AAAA ATOM 1305 CGI ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1306 CD1 ILE 165 28.759 29.733 63.569 1.00 15.02 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.03 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.05 AAAA ATOM 1310 CA ASP 166 26.503 39.799 61.942 1.00 15.05 AAAA ATOM 1310 CA ASP 166 26.503 39.799 61.942 1.00 15.05 AAAA ATOM 1311 CB ASP 166 26.503 39.799 61.942 1.00 15.05 AAAA ATOM 1313 OD1 ASP 166 26.503 39.799 66.419 1.00 14.02 AAAA ATOM 1315 CA ASP 166	ATOM	1283	CB								
ATOM 1285 CD1 LEU 163 29.609 24.751 69.870 1.00 18.74 AAAA ATOM 1287 C LEU 163 31.705 24.071 66.106 1.00 18.40 AAAA ATOM 1288 O LEU 163 32.607 24.889 66.188 1.00 18.65 AAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 16.97 AAAA ATOM 1290 CA TYR 164 30.656 25.246 64.252 1.00 11.76 AAAA ATOM 1291 CB TYR 164 30.593 25.851 61.797 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1292 CG TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 60.598 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 31.353 27.832 60.598 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1297 CZ TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1298 OH TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1298 OH TYR 164 29.29.99 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.760 25.177 64.455 1.00 16.07 AAAA ATOM 1300 CD TYR 164 28.760 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 2940 27.187 64.855 1.00 16.07 AAAA ATOM 1302 CA ILE 165 2778 27.887 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.595 28.596 66.254 1.00 13.31 AAAA ATOM 1303 CB ILE 165 27.595 28.596 66.254 1.00 13.31 AAAA ATOM 1303 CB ILE 165 27.595 28.596 66.254 1.00 13.31 AAAA ATOM 1303 CB ILE 165 27.595 28.596 66.254 1.00 13.31 AAAA ATOM 1303 CB ILE 165 28.792 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 28.792 29.733 63.569 1.00 15.02 AAAA ATOM 1309 N ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1309 N ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1310 CA ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.40 13.41 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.60 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1311 CB ASP 166 26.276 33.34 30.740 62.477 1.00 14.61 AAAA AT	MOTA										
ATOM 1286 CD2 LEU 163	MOTA										
ATOM 1288 O LEU 163 31.003 24.018 1.00 18.65 AAAA ATOM 1289 N TYR 164 30.752 24.128 65.186 1.00 16.97 AAAA ATOM 1290 CA TYR 164 30.782 24.754 62.816 1.00 14.07 AAAA ATOM 1291 CB TYR 164 30.782 24.754 62.816 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1294 CE1 TYR 164 31.353 27.832 60.598 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.45 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.758 27.987 64.893 1.00 18.37 AAAA ATOM 1304 CG2 ILE 165 27.959 28.596 66.419 1.00 13.06 AAAA ATOM 1304 CG2 ILE 165 27.959 28.596 66.419 1.00 13.06 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 28.8759 29.733 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.8759 29.733 63.569 1.00 15.67 AAAA ATOM 1300 C ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.856 60.698 1.00 12.31 AAAA ATOM 1314 CA ASP 166 26.276 28.856 60.698 1.00 12.31 AAAA ATOM 1315 C ASP 166 26.276 28.856 60.698 1.00 12.31 AAAA ATOM 1313 CB ASP 166 26.276 28.856 60.698 1.00 12.31 AAAA ATOM 1314 CA ASP 166 26.276 28.856 60.698 1.00 15.54 AAAA ATOM 1315 C ASP 166 26.276 28.856 60.698 1.00 12.55 AAAA ATOM 1315 C ASP 166 26	MOTA										
ATOM 1288 0 N TYR 164 30.752 24.128 65.186 1.00 16.97 AAAA ATOM 1290 CA TYR 164 30.656 25.246 64.252 1.00 11.76 AAAA ATOM 1291 CB TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.193 26.891 1.00 26.21 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1298 CM TYR 164 29.193 26.891 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1301 N ILE 165 29.40 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.578 27.987 64.893 1.00 18.37 AAAA ATOM 1302 CA ILE 165 27.578 27.987 64.893 1.00 18.37 AAAA ATOM 1304 CG2 ILE 165 27.578 27.987 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1308 O ILE 165 28.493 28.209 68.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.493 28.209 68.779 1.00 15.02 AAAA ATOM 1308 O ILE 165 28.672 29.733 63.569 1.00 15.02 AAAA ATOM 1308 O ILE 165 28.672 29.733 63.569 1.00 15.02 AAAA ATOM 1308 O ILE 165 28.672 29.733 63.569 1.00 15.67 AAAA ATOM 1308 O ILE 165 28.672 29.733 63.569 1.00 15.67 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 15.67 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 15.67 AAAA ATOM 1310 CA ASP 166 26.726 28.885 60.698 1.00 12.31 AAAA ATOM 1311 CB ASP 166 26.726 28.885 60.698 1.00 12.31 AAAA ATOM 1313 CA ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1314 OD2 ASP 166 26.276 29.666 59.393 1.00 16.06 AAAA ATOM 1315 CA ASP 166 26.276 29.666 59.393 1.00 16.06 AAAA ATOM 1311 CB ASP 166 26.276 29.666 59.393 1.00 16.06 AAAA ATOM 1313 CA ASP 166 26.276 29.666 59.393 1.00 16.06 AAAA ATOM 1314 OD2 ASP 166 26.276 29.666 59.393 1.00 16.06 AAAA ATOM 1315 CA ASP 166 26.276 29.	MOTA										
ATOM 1299 CA TYR 164 30.656 25.246 64.252 1.00 11.76 AAAA ATOM 1291 CB TYR 164 30.782 24.754 62.816 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1292 CG TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1294 CE1 TYR 164 31.353 27.832 60.598 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1300 O TYR 164 29.279 25.873 64.663 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.^60 25.177 64.655 1.00 16.07 AAAA ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.795 28.596 66.254 1.00 13.31 AAAA ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 27.959 28.596 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 17.28 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1300 CA ASP 166 26.572 28.901 63.084 1.00 15.37 AAAA ATOM 1300 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1301 CA ASP 166 26.572 28.901 63.084 1.00 15.37 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1313 CD ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1313 CD ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1313 CD ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1315 CA ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1315 CA ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1313 CD ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1313 CD ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1315 CA ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1315 CA ASP 166 25.378 30.508 59.213 1.00 12.00 AAAA ATOM 1316 CA											AAAA
ATOM 1291 CB TYR 164 30.782 24.754 62.816 1.00 14.07 AAAA ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1293 CD2 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 29.279 25.873 64.465 1.00 15.67 AAAA ATOM 1301 N ILE 165 29.40 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.78 27.878 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.01 AAAA ATOM 1304 CG ILE 165 26.654 29.359 66.254 1.00 13.01 AAAA ATOM 1305 CGI ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 28.893 28.209 68.739 1.00 15.02 AAAA ATOM 1308 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1308 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1308 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.725 28.895 60.698 1.00 12.31 AAAA ATOM 1310 CA ASP 166 26.725 28.895 60.698 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.725 28.895 60.698 1.00 12.31 AAAA ATOM 1311 CB ASP 166 26.725 28.885 60.698 1.00 12.31 AAAA ATOM 1313 ODI ASP 166 26.725 28.885 60.698 1.00 12.31 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1315 CA ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1315 CA ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1316 CA ASP 166 26.725 28.985 60.698 1.00 12.31 AAAA ATOM 1316 CA ASP 166 26.725 28.985 60.698 1.00 12.31 AAAA ATOM 1313 ODI ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1315 CA ASP 166 26.725 28.985 60.698 1.00 12.31 AAAA ATOM 1316 CA ASP 166 26.725 28.985 60.698 1.00 12.31 AAAA ATOM 1316 CA ASP 166 26.725 28.985 60.698 1.00 12.55 AAAA ATOM 1316 CA AS											
ATOM 1292 CG TYR 164 30.593 25.851 61.797 1.00 14.51 AAAA ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1294 CE1 TYR 164 31.353 27.832 60.598 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1299 C TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1298 OH TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 29.40 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.578 27.987 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.254 1.00 13.31 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1308 O ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1308 O ILE 165 28.8759 29.733 63.569 1.00 15.63 AAAA ATOM 1310 CA ASP 166 26.276 28.895 60.698 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 15.63 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1314 CB ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1315 CG ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1315 CB ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1315 CB ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1315 CB ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1315 CB ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1316 CB ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1315 CB ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1316 CB ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1316 CB ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1316 CB ASP 166 25.378 30.508 65.011 1.00 15.54 AAAA ATOM 1316 CB ASP										1.00 14.07	
ATOM 1293 CD1 TYR 164 31.573 26.822 61.562 1.00 27.08 AAAA ATOM 1294 CE1 TYR 164 31.353 27.832 60.598 1.00 26.21 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1296 CE2 TYR 164 29.415 25.916 61.070 1.00 21.89 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1297 CZ TYR 164 30.148 27.839 59.896 1.00 16.35 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.78 27.987 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.78 27.987 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.78 27.987 64.893 1.00 18.37 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 28.493 28.209 68.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.7853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.503 29.779 61.942 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.762 28.801 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1313 OD1 ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1317 N LEU 167 25.345 33.239 65.091 1.00 14.61 AAAA AAAA ATOM 1317 N LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1318 CA LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1310 CB											
ATOM 1294 CE1 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.889 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.889 AAAA ATOM 1297 CZ TYR 164 30.148 27.839 59.896 1.00 16.35 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 2778 27.887 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.578 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.36 AAAA ATOM 1305 CG1 ILE 165 28.493 28.209 68.739 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 20.75 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 15.63 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.63 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.572 28.901 63.084 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.576 28.885 60.698 1.00 15.63 AAAA ATOM 1313 OD1 ASP 166 26.276 28.885 60.698 1.00 15.54 AAAA ATOM 1314 OD2 ASP 166 26.7187 29.466 59.393 1.00 15.54 AAAA ATOM 1315 C ASP 166 26.276 28.885 60.698 1.00 15.54 AAAA ATOM 1315 C ASP 166 26.279 29.666 59.393 1.00 16.07 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1315 C ASP 166 25.378 30.508 59.213 1.00 16.06 AAAA ATOM 1315 C ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.05 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.01 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.00 AAAA ATOM 1316 O ASP 166 25									61.562	1.00 27.08	
ATOM 1295 CD2 TYR 164 29.415 25.916 61.070 1.00 21.45 AAAA ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1297 CZ TYR 164 30.148 27.839 59.896 1.00 16.35 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.178 27.987 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.595 28.596 66.254 1.00 13.31 AAAA ATOM 1303 CB ILE 165 27.595 28.596 66.254 1.00 13.31 AAAA ATOM 1305 CGI ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CDI ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1306 CDI ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1308 O ILE 165 28.493 28.209 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.795 29.733 63.669 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 16.37 AAAA ATOM 1313 ODI ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1313 ODI ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1313 ODI ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1313 ODI ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1313 ODI ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1315 CB ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1315 CB ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1315 CB ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1315 CB ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1316 O ASP 166 26.503 29.779 61.942 1.00 15.65 AAAAA ATOM 1316 CB ASP 166 26.503 29.779 61.942 1.00 15.60 AAAA ATOM 1316 CB ASP 166 26.503 29.779 61.942 1.00 15.05 AAAA ATOM 1316 CB ASP 166 26.503 29.709 60.665 1.00 12.05 AAAA ATOM 1316 CB ASP 166 26.505 334 30.740 62.174 1.00 14.02 AAAA ATOM 1316 CB ASP 166 26.505 334 30.740 62.477 1.00 14.02 AAAA ATOM									60.598		
ATOM 1296 CE2 TYR 164 29.193 26.891 60.137 1.00 21.89 AAAA ATOM 1297 CZ TYR 164 30.148 27.839 59.896 1.00 16.35 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 29.40 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.959 28.596 66.254 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.172 27.573 67.376 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1308 O ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1315 C ASP 166 25.378 30.508 59.213 1.00 15.554 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 15.554 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.50 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.55 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.55 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.55 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.55 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 12.55 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.61 AAAA ATOM 1316 O ASP 166 24.509 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.545 33.239 65.091 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.545 33.239 65.091 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.									61.070	1.00 21.45	
ATOM 1297 CZ TYR 164 30.148 27.839 59.896 1.00 16.35 AAAA ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.78 27.887 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.8759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1310 CA ASP 166 26.572 28.896 69.99 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.279 29.666 59.393 1.00 15.63 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 15.54 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 13.41 AAAA ATOM 1315 C ASP 166 26.279 29.666 59.393 1.00 13.41 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.554 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 15.554 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 25.647 32.010 62.407 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.647 32.010 62.407 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.647 32.010 62.407 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.5458 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.5458 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.5458 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.5458 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.5458 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.5458 33.239 65.091 1.00 17.20									60.137		
ATOM 1298 OH TYR 164 29.857 28.764 58.913 1.00 27.44 AAAA ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.00 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 2778 27.987 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27959 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.493 28.926 63.779 1.00 20.75 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.576 28.885 60.698 1.00 15.63 AAAA ATOM 1312 CG ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1313 OD1 ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1313 OD1 ASP 166 26.276 28.855 69.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 16.06 AAAA ATOM 1315 C ASP 166 25.378 30.508 59.213 1.00 16.06 AAAA ATOM 1316 O ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1320 CG LEU 167 25.051 33.962 65.091 1.00 17.20							30.148	27.839			
ATOM 1299 C TYR 164 29.279 25.873 64.463 1.00 15.67 AAAA ATOM 1300 O TYR 164 28.60 25.177 64.455 1.00 16.07 AAAA ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.78 27.887 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1313 OD1 ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1313 OD1 ASP 166 26.276 28.885 60.698 1.00 13.41 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 12.60 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 12.60 AAAA ATOM 1317 N LEU 167 25.647 32.910 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.345 33.239 65.091 1.00 17.20							29.857	28.764		1.00 27.44	
ATOM 1300 O TYR 164 28.^60 25.177 64.455 1.00 16.07 ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 2778 27.987 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1315 C ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 24.598 32.993 65.091 1.00 17.20 AAAA		_								1.00 15.67	
ATOM 1301 N ILE 165 2940 27.187 64.674 1.00 14.52 AAAA ATOM 1302 CA ILE 165 27.78 27.887 64.893 1.00 18.37 AAAA ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1314 OD2 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1315 C ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1316 OD ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1315 C ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1316 OD ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1316 OD ASP 166 25.378 30.508 59.213 1.00 15.54 AAAA ATOM 1316 OD ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 OD ASP 166 24.160 30.355 62.137 1.00 12.60 AAAA ATOM 1317 N LEU 167 25.647 32.910 62.407 1.00 14.02 AAAA ATOM 1317 N LEU 167 25.647 32.910 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.932 65.091 1.00 17.20			_		164		28.^60	25.177		1.00 16.07	
ATOM 1302 CA ILE 165 27.178 27.987 64.893 1.00 18.37 ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.31 ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.06 ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 20.75 ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 16.67 ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 ATOM 1312 CG ASP 166 26.276 28.885 60.698 1.00 12.31 ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 13.41 ATOM 1315 C ASP 166 27.187 29.428 58.551 1.00 16.06 ATOM 1316 O ASP 166 27.187 29.428 58.551 1.00 15.54 ATOM 1316 O ASP 166 24.160 30.355 62.137 1.00 12.60 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.345 33.239 65.091 1.00 17.20					165					1.00 14.52	
ATOM 1303 CB ILE 165 27.959 28.596 66.254 1.00 13.31 AAAA ATOM 1304 CG2 ILE 165 26.654 29.359 66.419 1.00 13.06 AAAA ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 17.28 AAAA ATOM 1306 CD1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 17.20 AAAA					165					1.00 18.37	
ATOM 1304 CG2 ILE 165 26.654 29.359 68.419 1.00 17.28 AAAA ATOM 1305 CG1 ILE 165 28.493 28.209 68.739 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 65.091 1.00 17.20			CB	ILE	165						
ATOM 1305 CG1 ILE 165 28.172 27.573 67.376 1.00 15.02 AAAA ATOM 1306 CD1 ILE 165 27.853 28.209 68.739 1.00 15.02 AAAA ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 20.75 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1319 CB LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 65.091 1.00 17.20			CG2	ILE							
ATOM 1306 CD1 ILE 165 28.493 28.209 63.779 1.00 20.75 AAAA ATOM 1308 0 ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1320 CG LEU 167 25.345 33.239 65.091 1.00 17.20		1305	CG1	ILE	165						
ATOM 1307 C ILE 165 27.853 28.926 63.779 1.00 16.67 AAAA ATOM 1308 O ILE 165 28.759 29.733 63.569 1.00 16.67 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 27.187 29.428 58.551 1.00 16.06 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA		1306	CD	ILE							
ATOM 1308 O ILE 165 28.759 29.733 63.369 1.00 10.07 AAAA ATOM 1309 N ASP 166 26.725 28.901 63.084 1.00 15.37 AAAA ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 27.187 29.428 58.551 1.00 16.06 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA		1307	C	ILE							
ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 15.63 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 27.187 29.428 58.551 1.00 16.06 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 24.160 30.355 62.137 1.00 12.60 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA		1308	0	ILE	165					1.00 10.07	
ATOM 1310 CA ASP 166 26.503 29.779 61.942 1.00 12.31 AAAA ATOM 1311 CB ASP 166 26.276 28.885 60.698 1.00 12.31 AAAA ATOM 1312 CG ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 27.187 29.428 58.551 1.00 16.06 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 24.160 30.355 62.137 1.00 12.60 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 17.20 AAAA ATOM 1320 CG LEU 167 25.345 33.239 65.091 1.00 17.20		1309	N								
ATOM 1311 CB ASP 166 26.279 29.666 59.393 1.00 16.37 AAAA ATOM 1313 OD1 ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 27.187 29.428 58.551 1.00 16.06 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 24.160 30.355 62.137 1.00 12.60 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1319 CB LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA		1310	CA								
ATOM 1312 CG ASP 166 25.378 30.508 59.213 1.00 13.41 AAAA ATOM 1314 OD2 ASP 166 27.187 29.428 58.551 1.00 16.06 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1316 O ASP 166 24.160 30.355 62.137 1.00 12.60 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1320 CG LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA		1311	CB	ASP							
ATOM 1313 OD1 ASP 166 25.376 30.308 58.551 1.00 16.06 AAAA ATOM 1314 OD2 ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATOM 1315 C ASP 166 25.334 30.740 62.174 1.00 12.60 AAAA ATOM 1316 O ASP 166 24.160 30.355 62.137 1.00 12.60 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1320 CG LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA		1312	CG	ASP							
ATCM 1314 OD2 ASP 166 27.187 29.428 36.331 1.00 15.54 AAAA ATCM 1315 C ASP 166 25.334 30.740 62.174 1.00 15.54 AAAA ATCM 1316 O ASP 166 24.160 30.355 62.137 1.00 12.60 AAAA ATCM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATCM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATCM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATCM 1320 CG LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA											
ATCM 1315 C ASP 166 25.334 30.740 62.174 1.00 12.60 AAAA ATCM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATCM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATCM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATCM 1320 CG LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA		1314	000	2 ASP							
ATOM 1316 0 ASP 166 24.160 30.353 02.137 1.00 14.02 AAAA ATOM 1317 N LEU 167 25.647 32.010 62.407 1.00 14.02 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1320 CG LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA										1 00 12 60	
ATOM 1317 N LEU 167 25.647 32.510 62.407 1.00 12.05 AAAA ATOM 1318 CA LEU 167 24.598 32.993 62.665 1.00 12.05 AAAA ATOM 1319 CB LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATOM 1320 CG LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA											· AAAA
ATCM 1318 CA LEU 167 25.051 33.962 63.767 1.00 14.61 AAAA ATCM 1320 CG LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA	MOTA									1.00 12.05	AAAA
ATCM 1319 CS LEU 167 25.345 33.239 65.091 1.00 17.20 AAAA	atom									1 00 14.61	AAAA
ATCM 1320 CG LEO 107 25.555 5	ATCM	_								1.00 17.20	AAAA
		1320	CG	LEU	167		∠5.343				•
	•	•		•							

					55 635	24 271	66.169	1.00 28.82	AAAA
MOTA		CD1 I		167	25.635	_	65.513	1.00 18.59	AAAA
ATOM	1322	CD2 I	LEU	167	24.148	32.372	61.449	1.00 12.62	AAAA
ATOM		C I	LEU	167	24.122	33.776		1.00 15.00	AAAA
ATOM	1324	0 1	LEU	167	23.288	34.678	• • •	1.00 14.35	AAAA
ATOM	1325		ASP	168	24.667.	33.431		1.00 10 50	AAAA
	1326		ASP	168	24.277	34.056		1.00 19.50	
ATOM			ASP	168	25.060	33.409	•	1.00 25.15	AAAA
MOTA			ASP	168	24.908	34.145		1.00 48.45	AAAA
MOTA	1328	OD1		168	25.477	35.247		1.00 64.45	AAAA
MOTA	1329			168	24.215	33.633		1.00 44.71	AAAA
MOTA	1330	OD2			22.787	33.751	58.834	1.00 16.30	AAAA
MOTA	1331		ASP	168	22.327	32.696	59.252	1.00 17.72	AAAA
ATOM	1332		ASP	168	22.059	34.657	58.175	1.00 14.11	AAAA
MOTA	1333		ALA	169	20.618	34.503	57.934	1.00 19.61	AAAA
MOTA	1334		ALA	169	20.006	35.856	57.470	1.00 13.56	AAAA
MOTA	1335		ALA	169		33.400	56.926	1.00 18.23	AAAA
MOTA	1336	С	ALA	169	20.277	33.159	56.641	1.00 17.20	AAAA
MOTA	1337	0	ALA	169	19.105		56.373	1.00 16.53	AAAA
ATOM	1338	N	HIS	170	21.301	32.750	55.436	1.00 17.51	AAAA
ATOM	1339	CA	HIS	170	21.075	31.652		1.00 22.32	AAAA
ATOM	1340	CB	HIS	170	21.616	31.973	54.033	1.00 25.38	AAAA
MOTA	1341	CG	HIS	170	20.954	33.142	53.377	1.00 19.33	AAAA
ATOM	1342	CD2		170	19.934	33.196	52.487	1.00 19.33	AAAA
	1343	ND1		170	21.308	34.448	53.638	1.00 18.17	AAAA
ATOM	1344	CEI		170	20.535	35.257	52.935	1.00 30.34	ÄAAA
MOTA	1345	NE2		170	19.692	34.523	52.229	1.00 17.51	AAAA
MOTA	1346	C	HIS	170	21.781	30.413	55.967	1.00 16.72	AAAA
MOTA		Ö	HIS	170	22.827	30.511	56.610	1.00 15.92	
MOTA	1347		HIS	171	21.209	29.245	55.682	1.00 15.28	AAAA
MOTA	1348	N	HIS	171	21.751	27.961	56.123	1.00 12.53	AAAA
MOTA	1349	CA	HIS	171	20.702	26.878	55.814	1.00 14.09	AAAA
MOTA	1350	CB	HIS	171	21.180	25.468	55.980	1.00 17.27	AAAA
MOTA	1351	CC		171	21.249		55.090	1.00 12.48	AAAA
MOTA	1352		HIS	171	21.622		57.181	1.00 26.73	AAAA
MOTA	1353		HIS	171 ·	21.948		57.021	1.00 15.98	AAAA
MOTA	1354		HIS		21.729		55.761	1.00 20.03	AAAA
MOTA	1355		HIS	171	23.107		55.498	1.00 15.55	AAAA
MOTA	1356	С	HIS	171	23.318		54.298	1.00 17.03	AAAA
MOTA	1357	0	HIS	171	24.026			1.00 14.33	AAAA
MOTA	1358	N	CZZ	172	25.350			1.00 13.65	AAAA
ATOM	1359	CA	CYS	172	26.330			1.00 12.99	AAAA
ATOM	1360	CB	CYS	172				1.00 17.17	AAAA
MOTA	1361	SG	CYS	172	25.680			1.00 16.52	AAAA
MOTA	1362	С	CYS	172	25.212			1.00 14.95	AAAA
ATOM	1363	0	CYS	172	25.75				AAAA
ATOM	1364	N	ASP	173	24.51			1.00 14.75	AAAA:
ATOM	1365	CA	ASP	173	24.30				AAAA
MOTA	1366	CB	ASP	173	23.33	23.956			AAAA
ATOM	1367		ASP	173	23.76		-		AAAA
ATOM	1368	_	L ASP	173	23.10				AAAA
ATOM	1369		2 ASP	173	24.73				AAAA
ATOM	1370		ASP	173	25.59				AAAA
MOTA	1371		ASP	173	25.68				AAAA
MOTA			GLY	174	26.58				AAAA
			GLY	174	27.86	9 - 23.34	6 52.360		AAAA
ATOM				174	28.50			1.00 18.44	AAAA
MOTA			GLY	174	28.97	0 21.58	6 53.540	1.00 15.48	AAAA
ATOM			VAL	175	28.55	4 23.45		5 1.00 16.84	AAAA
ATOM			. VAL	175	29.13		3 55.946		AAAA
MOTA				175	29.20		1 57.03	7 1.00 15.88	
MOTA				175	29.92			7 1.00 15.35	AAAA
ATOM			1 VAL	175	29.92			6 1.00 15.62	AAAA
MOTA			2 VAL		28.31			7 1.00 19.21	AAAA
ATOM			VAL	175	28.87			1 1.00 17.75	AAAA
ATOM		2 2	VAL	175	26.99			7 1.00 17.74	AAAA
ATCM		3 N	GLN	176	26.16			2 1.00 15.66	AAAA
ATOM		4 CA			24.6			5 1.00 16.64	AAAA
ATOM			_		24.0				AAAA
ATOM		6 CG	GLN	176	23.7	J 13.10	,0 =0.00		•
			•						

										21 62	3337
ATOM	1387	CD	GLN	176	22.32		0.106	56.884	1.00		AAAA AAAA
ATOM	1388	OE1	GLN	176	21.85		1.016	57.567		21.72	
MOTA	1389	NE2		176	21.58		9.348	56.064		20.30	AAAA
ATOM	1390		GLN	176	26.52		9.387	56.121		16.33	AAAA
ATOM	1391	_	GLN	176	26.75		8.354	56.748		17.46	AAAA
MOTA	1392		GLU	177	26.58		9.443	54.799		22.24	AAAA .
ATOM	1393		GLU	177	26.90	9 1	8.251	54.021		19.67	AAAA
	1394		GLU	177	26.85		8.587	52.533		15.55	AAAA
MOTA	1395		GLU	177	27.13		7.388	51.623		20.24	AAAA
MOTA	1396	-	GLU	177	26.96	0 1	7.740	50.159	1.00	27.00	AAAA
ATOM		OE1		177	27.97		7.935	49.450		30.23	AAAA
ATOM	1397	OE2		177	25.79	6 1	7.853	49.725		26.89	AAAA
ATOM	1398		GLU	177	28.28		7.713	54.376	1.00	20.42	AAAA
MOTA	1399	С О	GLU	177	28.48		6.503	54.527		17.05	AAAA
MOTA	1400		ALA	178	29.23	3 1	8.626	54.527	1.00	19.67	AAAA
MOTA	1401		ALA	178	30.61		8.259	54.839	1.00	18.18	AAAA
MOTA	1402	CA	ALA	178	31.46		9.519	54.918		12.76	AAAA
MOTA	1403	CB	ALA	178	30,.80		7.418	56.106		17.56	AAAA
MOTA	1404	C	ALA	178	31.69		6.555	56.167		17.72	AAAA
MOTA	1405	0	PHE	179	29.98		7.656	57.116		18.82	AAAA
MOTA	1406	N	PHE	179	30.12		6.945	58.379		20.26	AAAA
MOTA	1407	CA		179	30.55		7.948	59.439		13.17	AAAA
MOTA	1408	CB	PHE	179	31.77		8.693	59.048	1.00	16.28	AAAA
MOTA	1409	CG	PHE	179	31.70		0.017	58.610	1.00	13.77	AAAA
MOTA	1410		PHE	179	33.00		8.031	58.995		15.57	AAAA
MOTA	1411		PHE	179	32.84		20.673	58.114	1.00	20.03	AAAA
MOTA	1412		PHE	179	34.14	_	18.677	58.500	1.00	20.30	AAAA
MOTA	1413		PHE PHE	179	34.0		20.002	58.058		19.51	AAAA
MOTA	1414	CZ	PHE	179	28.8		16.219	58.833		18.52	AAAA
ATOM	1415	С 0	PHE	179	28.7		15.828	60.000		20.21	AAAA
MOTA	1416	И	TYR	180	27.9		16.016	57.895		18.33	AAAA
ATOM	1417 1418	CA	TYR	180	26.6		15.379	58.176		19.93	AAAA
MOTA	1419	CB	TYR	180	25.8	74	15.310		1.00	20.97	AAAA
MOTA	1420	CG	TYR	180	24.4		15.341		1.00	19.80	AAAA
ATOM	1421	CD1		180	23.5	65	14.337			23.87	AAA:A AAAA
ATOM ATOM	1422	CE1		180	22.2	03	14.391		1.00	21.32	AAAA
ATOM	1423	CD2		180	23.8		16.416		1.00	19.02	AAAA
ATOM	1424	CE2		180	22.4		16.482		1.00	26.84	AAAA
ATOM	1425	CZ	TYR	180	21.6		15.462		1.00	30.54 22.81	AAAA
ATOM	1426	ОН	TYR	180	20.3		15.514				AAAA
ATOM	1427	C	TYR	180	26.8		13.970			22.61 23.44	AAAA
ATOM	1428	Ō	TYR	180	26.0		13.526		1.00	0 22.27	AAAA
ATOM	1429	N	ASP	181	27.8		13.298		1.0	0 33.84	AAAA
ATOM	1430	CA	ASP	181	28.2		11.920		1.0	0 41.74	AAAA
MOTA	1431	СВ	ASP	181	28.9		11.318		1.0	0.57.71	AAAA
ATOM	1432	CG	ASP	181	30.0		10.363			0 61.40	AAAA
MOTA	1433		ASP	181	30.9		10.780		1.0	0 65.77	AAAA
ATOM	1434		2 ASP	181	29.9	165	9.197			0 30.21	AAAA
ATOM	1435	C	ASP	181	29.1	.07	11.654	59.838		0 27.84	AAAA
ATOM	1436	Ó	ASP	181	29.3	307	10.497			0 27.53	AAAA
ATOM	1437	N	THR	182	29.6	15	12.696			0 21.19	AAAA
MOTA	1438	CA	THR	182	30.4		12.466			0 26.55	AAAA
ATOM	1439		THR	182	31.9		12.97			0 25.62	AAAA
ATOM	1440		1 THR	182	32.		12.76			0 21.67	AAAA
MOTE	1441	CG	2 THR	182	31.9		14.47			0 25.02	AAAA
ATOM	1442	С	THR	182	30.0		13.05			0 23.56	AAAA
MOTA	1443	0	THR	182	29.		14.04			0 19.66	AAAA
MOTA	1444	N	ASP	183	30.4		12.42			0 21.52	AAAA
ATCM	1445	CA	ASP	183	30.		12.89			0 28.52	AAAA
ATOM	1446	CB	ASP	183	29.		11.70			0 32.30	AAAA
ATCM	1447	CG	ASP	183	30.		10.78			0 30.99	AAAA
MOTA	1448	OD	1 ASP	183	31.		10.50			0 48.65	AAAA
MCTA	1449		2 ASP	183	31.		10.32			00 16.66	AAAA
ATOM	1450		ASP	183	31.		13.68			00 23.37	AAAA
ATOM	1451		ASP	183	31.		14.09			00 21.95	AAAA ·
ATOM			GLN	184	32.	∠86	13.90	,, 03.13	`		•
	•		•	• •							

	•			J				
				33.437 1	4.672 6	5.590 1.	00 17.65	AAAA
MOTA		CA GLN	184			4.866 1.	.00 21.36	AAAA
MOTA		CB GLN	184			5.102 1.	.00 27.38	AAAA
MOTA		CG GLN	184	36.485	2.476 6	4.691 1	.00 31.96	AAAA
MOTA		CD GLN	184			3.573 1	.00 29.90	AAAA
MOTA		OE1 GLN	184		1.878 6	55.599 1	.00 31.84	AAAA
MOTA		NE2 GLN	184		16.165		.00 18.54	AAAA
MOTA		C GLN	184			65.972 1	.00 18.11	AAAA
MOTA	1460	O GLN	184 185		16.481	64.519 1	.00 19.18	AAAA
MOTA	1461	N VAL	185			64.267 1	.00 21.57	AAAA AAAA
MOTA	1462	CA VAL		32.261			.00 22.64	AAAA
MOTA	1463	CB VAL		31.994	19.768	•	.00 16.26	AAAA
MOTA	1464	CG2 VAL		33.722			.00 16.77	AAAA
ATOM	1465	C VAL		30.449	_ • • • • •	••••	.00 16.91	AAAA
ATOM	1466 1467	O VAL		29.658	.	•	.00 20.79 .00 18.73	AAAA
MOTA	1468	N PHE		30.081			.00 16.22	AAAA
MOTA	1469	CA PHE		28.687			.00 16.83	AAAA
ATOM ATOM	1470	CB PHE		28.432		T	1.00 10.03	AAAA.
ATOM	1471	CG PHE		26.976	19.682	67.299 1 67.968 3	1.00 23.24	AAAA
ATOM	1472	CD1 PHE	186	26.319	18.656	66.904	1.00 15.41	AAAA
MOTA	1473	CD2 PHE	186	26.240	20.797 18.738	68.235	1.00 18.99	AAAA
MOTA	1474	CE1 PHE	186	24:953	20.887	67.168	1.00 24.05	AAAA
MOTA	1475	CE2 PHE		24.879	19.846	67.838	1.00 22.93	AAAA
ATOM	1476	CZ PHI		24.234 28.437	20.789	64.778	1.00 17.16	AAAA
MOTA	1477	C PHI		29.192	21.725	64.993	1.00 19.37	AAAA
MOTA	1478	O PHI		27.391	20.874	63.961	1.00 19.67	AAAA
MOTA	1479	N VA	_	27.075	22.116	63.277	1.00 17.74	AAAA
MOTA	-1480	CA VAI		27.010	21.914		1.00 18.65	AAAA AAAA
MOTA	1481 1482	CB VA		26.578	23.211		1.00 17.31	AAAA
ATOM	1482	CG2 VA		28.359	21.453	61.194	1.00 16.65 . 1.00 18.46	AAAA
MOTA	1484	C VA		25.732	22.637	63.746	1.00 20.64	AAAA
ATOM ATOM	1485	O VA		24.752	21.903	63.764 64.150	1.00 14.42	AAAA
ATOM	1486	N LE		25.708	23.899 24.563	64.567	1.00 16.68	AAAA
ATOM	1487	CA LE		24.482	25.070	66.009	1.00 13.98	AAAA
ATOM	1488	CB LE		24.568 23.522	26.119	66.450	1.00 13.66	AAAA
MOTA	1489	CG LE		22.103	25.556	66.401	1.00 15.55	AAAA
MOTA	1490	CD1 LE		23.844	26.585	67.861	1.00 16.40	AAAA
ATOM	1491	CD2 LE		24.272	25.756	63.667	1.00 20.01	AAAA AAAA
ATOM	1492	C LE		25.164	26.595	63.506	1.00 18.86	AAAA
ATOM	1493	-	ER 189	23.106	25.845	63.057	1.00 14.46 1.00 14.56	AAAA
ATOM	1494 1495		ER 189	22.841	27.011	62.230	1.00 14.50	AAAA
ATOM			ER 189	22.896	26.668	60.737 60.008	1.00 14.09	AAAA
MOTA MOTA			ER 189	22.619	27.851	62.508	1.00 15.24	AAAA
ATOM			ER 189	21.487	27.606 26.885	62.578	1.00 21.46	AAAA
ATOM			ER 189	20.509	28.921		1.00 14.92	AAAA
ATOM			EU 190	21.423 20.128			1.00 15.54	AAAA
ATOM			EU 190	20.128			1.00 21.02	AAAA
ATOM		_	EU 190	20.594			1.00 30.17	AAAA
MOTA	1503		EU 190 EU 190	19.736		66.210	1.00 19.75	AAAA AAAA
ATOM				20.547		65.831	1.00 19.08	AAAA
ATOM		_	EU 190	20.035	30.250		1.00 14.31	AAAA
ATOM		·	EU 190	21.031	30.752		1.00 15.43	AAAA
ATOM			IS 191	18.855	30.285		1.00 16.88 1.00 14.34	AAAA
MOTA			IS 191	18.732	30.884		1.00 17.34	AAAA
COTA COTA			IS 191	19.50			1.00 14.27	AAAA
ATON		1 CG H	HIS 191		28.546 1 27.578		1.00 9.60	AAAA
ATO		2 CD2 F	HIS 191				1.00 21.22	AAAA
ATO	_	3 ND1 F	IIS 191				1.00 17.22	AAAA
ATC		4 CE1 F	is 191		-		1.00 20.70	AAAA
ATO	M 151	5 NE2 !				6 59.110	1.00 16.19	AAAA
ATC:	M 151	•	HIS 191			9 59.766	1.00 16.73	AAAA AAAA
ATO!	M 151	-	HIS 191 GLN 191				1.00 14.78	
		- 10 1		_		-		

					•	•		_		****
- mov	1519	CA C	SLN	192		L5.683	31.968	•	1.00 16.33	AAAA
ATOM			LN	192	:	15.669	32.871	56.283	1.00 17.07	AAAA
ATOM	1520			192		16.174	34.270		1.00 18.15	AAAA
ATOM	1521		GLN			16.408	34.965		1.00 14.74	AAAA
MOTA	1522		GLN	192		15.490	35.566	54.587	1.00 20.46	አጸጸአ
ATOM	1523	OE1 (SLN	192				54.665	1.00 13.44	AAAA
ATOM .	1524	NE2	GLN	192		17.630	34.839	• • • •	1.00 15.06	AAAA
	1525		GLN	192		15.262	30.584	_	1.00 15.00	AAAA
ATOM		-	GLN	192		16.071	29.843		1.00 19.23	
ATOM	1526		SER	193		14.007	30.223		1.00 15.63	AAAA
MOŢK	1527	-				13.561	28.907	56.877	1.00 13.84	AAAA
ATOM	1528		SER	193		12.097	28.677	57.284	1.00 17.28	aaaa
MOTA	1529		SER	193			27,439	56.750	1.00 17.58	AAAA
MOTA	1530	OG	SER	193		11.639		55.350	1.00 11.80	AAAA
MOTA	1531	С	SER	193		13.687	28.704		1.00 18.44	AAAA
ATOM	1532		SER	193		13.400	29.601	54.569	1.00 10.44	AAAA
	1533		PRO	194		14.103	27.505	54.928	1.00 14.59	AAAA
MOTA			PRO	194		14.335	26.325	55.782	1.00 19.22	
ATOM	1534	_		194		14.268	27.143	53.513	1.00 15.30	AAAA
ATOM	1535		PP.O			14.892	25.737	53.573	1.00 18.33	АААА
ATOM	1536	CB	PRO	194			25.587	55.007	1.00 22.34	AAAA
ATOM	1537	CG	PRO	194		15.359		52.866	1.00 16.40	AAAA
ATOM	1538	С	PRO	194		12.880	27.104		1.00 19.43	AAAA
	1539	Ö	PRO	194		12.757	27.003	51.640	1.00 19.43	AAAA
ATOM		N	GLU	195		11.828	27.151	53.681	1.00 20.57	
MOTA	1540			195		10.483	27.161	53.099	1.00 30.15	AAAA
MOTA	1541	CA	GLU			9.386	27.037	54.173	1.00 31.91	AAAA
MOTA	1542	CB	GLU	195		8.987	28.325	54.879	1.00 45.60	AAAA
ATOM	1543	CG	GLU	195			29.119	54.174	1.00 34.45	AAAA
MOTA	1544	CD	GLU	195		7.880	-	54.612	1.00 43.98	AAAA
ATOM	1545	OE1	GLU	195		7.635	30.259		1.00 38.39	AAAA
ATOM	1546	OE2	GLU	195 ·		7.241	28.627	53.210	1.00 26.92	AAAA
	1547	C	GLU	195		10.333	28.474	52.318	1.00 20.52	AAAA
MOTA			GLU	195		9.522	28.557	51.395	1.00 24.59	AAAA
MOTA	1548	0		196		11.116	29.501	52.669	1.00 18.16	
MOTA	1549	N	TYR	196		11.024	30.753		1.00 15.81	AAAA
MOTA	1550	CA	TYR			10.208	31.801		1.00 20.01	AAAA
ATOM	1551	CB	TYR	196			32.353		1.00 19.77	AAAA
MOTA	1552	CG	TYR	196		10.868	33.408		1.00 18.24	AAAA
MOTA	1553	CD1	TYR	196		11.779			1.00 18.50	AAAA
ATOM	1554	CE1	TYR	196		12.407	33.898		1.00 18.12	AAAA
	1555	CD2		196 .		10.598			1.00 10.12	AAAA
MOTA	1556	CE2		196		11.223	32.283	56.339	1.00 21.09	AAAA
ATOM			TYR	196		12.125	33.326	56.235	1.00 20.39	
MOTA	1557	CZ		196		12.759		57.367	1.00 16.20	AAAA
MOTA	. 1558	HC	TYR			12.342			1.00 16.89	AAAA
ATOM	1559	С	TYR	196		12.336			1.00 23.08	6444
MOTA	1560	e	\mathtt{TYR}	196					1.00 17.52	AAAA
MOTA	1561	N	ALA	197		13.466		_		AAAA
ATOM	1562	CA	ALA	197		14.754	. 31.400			AAAA
ATOM	1563		ALA	197		15.315		52.659		AAAA
	1564		ALA	197		15.814	30.392	2 51.074		AAAA
MOTA			ALA	197		15.787	29.229	9 51.457		AAAA
ATOM	1565			198		16.757	30.86	9 50.257	1. 70 18.01	
MOTA	1566		PHE	198		17.861	30.04	9 49.782	1.00 17.97	AAAA
ATOM	1567		PHE			18.929			1.00 20.38	AAAA
MOTA	1568		PHE	198		20.00				á.aka
MOTA	1569		PHE	198		20.094				AAAA
MOTA	1570	(2)	PHE	198		20.039				AAAA.
ATOM			2 PHE	198		21.229				AAAA
			PHE	198		21.09	1 28.90			. AAAA
ATOM				198		22.29	0 29.14	5 48.807		AAAA
ATOM				198		22.21		6 47.493	3 1.00 22.74	
MOTA.	1574		PHE			18.45			2 1.00 16.02	AAAA
ATOM	157		PHE	198					1 1.00 20.95	AAAA
ATCM		5 C	PHE	198		18.55				aaaa
ATOM			PRO	199		18.94				aaaa
			PRO	199		19.60				AAAA
ATOM			_	199		18.99	0 27.31			AAAA
ATOM				199		20.10		4 50.09		AAAA
atom				199		19.81		37 51.53	4 1.00 23.16	
ATCM:						17.71			2 1.00 30.97	aaa aaa
ATOM			PRO	199		17.73			2 1.00 23.25	AAA
·ATOM		3 O	PRO			11.13				AAA
ATON		4 N	PHE	200		16.62	1 20.73	, , , , , , , , ,	,	•
			•							

		~ ~	D11C	200	15.319	26.166	49.752	1.00 20.27	AAAA
ATOM				200	14.840	26.533		1.00 19.77	AAAA
MOTA	1586 1587		PHE	200	14.752	27.999		1.00 18.06	AAAA
ATOM	1588	CD1		200	15.742	28.644		1.00 18.97	AAAA AAAA
MOTA MOTA		CD2		200	13.654	28.736		1.00 19.06 1.00 21.67	AAAA
MOTA	1590	CEl		200	15.635	30.003	• • • • • •	1.00 21.60	AAAA
ATOM	1591	CE2		200	13.539	30.101		1.00 22.00	AAAA
ATOM	1592		PHE	200	14.527	30.736	47.482 49.845	1.00 18.44	AAAA
ATOM	1593	-	PHE	200	15.294	24.637 24.049	50.272	1.00 20.74	AAAA
MOTA	1594		PHE	200	14.302	24.049	49.418	1.00 20.77	AAAA
MOTA	1595		GLU	201	16.384 16.522	22.542	49.399	1.00 27.34	AAAA
MOTA	1596		GLU	201	17.498	22.146	48.284	1.00 28.99	AAAA
MOTA	1597	CB	GLU	201 201	17.024	22.458	46.881	1.00 34.82	AAAA
MOTA	1598	CG	GLU	201	18.123	22.265	45.848	1.00 32.40	AAAA
MOTA	1599 1600	CD OE1		201	18.701	21.155	45.769	1.00 38.28	AAAA AAAA
MOTA	1601	OE2		201	18.405	23.230	45.111	1.00 40.08	AAAA
MOTA MOTA	1602	C	GLU	201	17.007	21.891	50.695	1.00 23.51 1.00 23.17	AAAA
ATOM	1603	ō	GLU	201	16.845		50.886	1.00 20.03	AAAA
MOTA	1604	N	LYS	202	17.619		51.571 52.829	1.00 17.01	AAAA
MOTA	1605	CA	LYS	202	18.178		52.634	1.00 19.24	AAAA
MOTA	1606	CB	LYS	202	19.666 19.903		51.611	1.00 36.04	AAAA
MOTA	1607	CG	LYS	202	20.997		50.648	1.00 45.11	AAAA
MOTA	1608	CD	LYS	202 202	21.060		49.463	1.00 55.83	AAAA
MOTA	1609	CE	LYS LYS	202	22.024		48.422	1.00 28.09	AAAA
MOTA	1610 1611	NZ C	LYS	202	18.016	23.240	53.899	1.00 17.02	AAAA AAAA
MOTA	1612	Ö	LYS	202	. 17.705		53.585	1.00 20.20 1.00 22.94	AAAA
MOTA MOTA	1613	N	GLY	203	18.232	22.875	55.160	1.00 22.94	AAAA
MOTA	1614	CA	GLY	203	18.064		56.223 57.128	1.00 20.48	AAAA
MOTA	1615	C .	GLY	203	16.874			1.00 18.55	AAAA
MOTA	1616	0	GLY	203	16.607 16.150			1.00 15.42	AAAA
MOTA	1617	N	PHE	204	14.983			1.00 20.73	AAAA
MOTA	1618	CA	PHE	204 204	14.01			1.00 19.97	AAAA
MOTA	1619	CB	PHE PHE	204	13.44			1.00 19.63	AAAA AAAA
MOTA	1620 1621	CG CD1	PHE	204	14.13	7 21.801		1.00 24.96	AAAA
MOTA	1622		PHE	204	12.23	0 22.523		1.00 18.92	AAAA
MOTA MOTA	1623	CE:		204	13.63			1.00 20.86	AAAA
ATOM	1624	CE		204	11.72			1.00 23.66	AAAA
ATOM -		CZ	PHE	204	12.42			1.00 18.73	AAAA
MOTA	1626	С	PHE	204	15.37 16.41			1.00 20.18	AAAA
MOTA	1627	0	PHE	204	14.51			1.00 19.46	AAAA
MOTA	1628	N	LEU	205 205	14.72		4 61.356	1.00 21.09	AAAA
MOTA	1629			205	13.54		4 62.233	1.00 23.44	AAAA AAAA
MOTA	1630			205	13.50	6 21.22	2 63.693	1.00 23.23	AAAA
MOTA	1631 1632		1 LEU	205	14.71	.7 21.73			AAAA
atom Atom	1633		2 LEU	205	12.22	24 21.74			AAAA
ATOM	1634		LEU	205	14.94				AAAA
MOTA	1635		LEU	205	15.65				AAAA
ATOM	1636	N	GLU	206	14.35 14.48				AAAA
ATOM	1637			206	13.34			3 1.00 28.90	AAAA
ATOM	1638			206 206	12.00			1.00 48.55	AAAA
MOTA				206	12.1		2 59.042		AAAA AAAA
MOTA			GLU	206	11.3		59.17		AAAA
ATOM			2 GLU	206	13.0	76 18.83			AAAA
MOTA			GLU	206	15.8				AAAA
MOTA MOTA			GLU	206	16.0				AAAA
ATOM		-	GLU	207	16.6		16 59.63 73 59.15		AAAA
MOTA		-		207	17.9				AAAA
ATOM				207	18.4 17.6			3 1.00 18.44	AAAA
ATOM		8 C			17.6			3 1.00 24.75	AAAA
ATOM	164				18.7				AAAA
MOTA		0 0	E1 GLU	207	10.,		•		•
	•		•	-					

, mov.	1651	OE2	CLH	207	16.646	19.854	55.396	1.00 15.50	àààà
ATOM				_	18.921	17.379	60.350	1.00 28.83	AAAA
ATOM	1652		GŢŪ	207	_		60.687	1.00 18.11	AAAA
MOTA	1653	0	GLU	207	19.506	18.416			
ATOM	1654	N	ILE	208	19.081	16.218	60.988	1.00 21.60	AAAA
ATOM	1655	CA	ILE	208	19.930	16.138	62.168	1.00 22.37	AAAA
				208	19.113	15.652	63.403	1.00 28.84	AAAA
MOTA	1656	CB	ILE			15.693	64.653	1.00 43.26	AAAA
MOTA	1657	CG2	ILE	208	19.968				
ATOM	1658	CG1	ILE	208	17.905	16.561	63.625	1.00 21.61	AAAA
ATOM	1659	CD1	ILE	.208	17.029	16.160	64.786	1.00 41.40	AAAA
				208	21.156	15.260	61.981	1.00 24.74	AAAA
MOTA	1660	C	ILE			14.850	62.943	1.00 22.68	AAAA
ATOM	1661	0	ILE	208	21.785				AAAA
ATOM	1662	N	GLY	209	21.512	14.969	60.738	1.00 22.80	
ATOM	1663	CA	GLY	209	22.690	14.153	60.535	1.00 20.43	AAAA
			GLY	209	22.342	12.769	60.037	1.00 25.56	AAAA
MOTA	1664	C			21.165	12.447	59.850	1.00 25.22	AAAA
MOTA	1665	0	GLY	209				1.00 26.07	AAAA
ATOM	1666	N	GLU	210	23.373	11.944	59.888	1.00 26.07	
ATOM	1667	CA	GLU	210	23.235	10.601	59.348	1.00 25.78	AAAA
	1668	CB	GLU	210	23.404	10.731	57.835	1.00 28.27	AAAA
ATOM				210	23.041	9.569	56.965	1.00 56.41	AAAA
MOTA	1669	CG	GLU				55.495	1.00 65.37	AAAA
ATOM	1670	CD	GLU	210	23.170	9.952			AAAA
MOTA	- 1671	OE1	GLU	210	24.290	10.327	55.075	1.00 62.00	
MOTA	1672		GLU	210	22.153	9.894	54.768	1.00 73.24	AAAA
			GLU	210	24.329	9.709	59.936	1.00 31.85	AAAA
MOTA	1673	C			25.447	10.170	60.217	1.00 28.85	AAAA
ATOM	1674	0	GLU	210				1.00 27.84	AAAA
ATOM	1675	N	GLY	211	24.012	8.431	60.121		
MOTA	1676	CA	GLY	211	24.991	7.502	60.657	1.00 26.25	AAAA
	1677	C	GLY	211	25.545	7.942	61.995	1.00 27.79	Ann
ATOM				211	24.788	8.324	62.874	1.00 28.66	AAAA
MOTA	1678	0	GLY			7.880	62.150	1.00 34.62	AAAA
MOTA	1679	N	LYS	212	26.865			1.00 34.39	AAAA
MOTA	1680	CA	LYS	212	27.512	8, 287	63.393		
MOTA	1681	CB	LYS	212	29.029	8.132	63.273	1.00 40.40	AAAA
	1682	CG	LYS	212	29.505	6.712	62.996	1.00 53.97	AAAA
ATOM				212	29.139	5.770	64.131	1.00 61.93	AAAA
MOTA	1683	CD	LYS			4.347	63.863	1.00 62.74	AAAA
ATOM	1684	CE	LYS	212	29.612			1.00 70.11	AAAA
MOTA	1685	NZ	LYS	212	31.091	4.258	63.711		
ATOM	1686	С	LYS	212	27.181	9.741	63.725	1.00 36.04	AAAA
	1687	ō	LYS	212	27.109	10.126	64.897	1.00 28.34	AAAA
MOTA				213	26.959	10.543	62.688	1.00 31.47	AAAA
MOTA	1688	N	GLY		26.648	11.948	62.898	1.00 31.68	AAAA
MOTA	1689	CA	GLY	213				1.00 28.78	AAAA
MOTA	1690	С	GLY	213	25.189	12.291	63.142		AAAA
ATOM	1691	0	GLY	213	24.840	13.460	63.259	1.00 22.56	
ATOM	1692	N	LYS	214	24.317	11.292	63.222	1.00 28.54	AAAA
			LYS	214	22.905	11.585	63.463	1.00 31.11	AAAA
MOTA	1693	CA			22.080	10.295		1.00 31.03	AAAA
ATOM	1694	CB	LYS	214		10.461		1.00 38.15	· AAAA
ATOM	1695	CG	LYS	214	20.583				AAAA
ATOM	1696	CD	LYS	214	19.968	9.115		1.00 40.49	
ATOM	1697	CE	LYS	214	18.490	9.220	62.537	1.00 48.02	AAAA
	1698	NZ	LYS	214	17.927	7.924	62.064	1.00 44.99	AAAA
ATOM					22.834	12.160	64.875		AAAA
MOTA	1699	C	LYS	214	22.034	11.524		1.00 33.33	AAAA
ATOM	1700	0	LYS	214	23.260				AAAA
MOTA	1701	N	GLY	215	22.310	13.376		1.00 24.38	AAAA
MOTA	1702	CA	GLY	215	22.230	14.034	66.290	1.00 26.03	
	1703	C	GLY	215	23.298	15.115	66.447	1.00 27.03	AAAA
ATOM				215	23.352	15.820		1.00 23.34	AAAA
MOTA	1704	0	GLY			15.260			AAAA
ATOM	1705	N	TYR	216	24.152				AAAA
ATOM	1706	CA	TYR	216	25.217	16.257			
ATOM	1707	CB	TYR	216	26.592	15.576			AAAA
	1708	CG	TYR	_	26.900	14.671		1.00 26.47	AAAA
ATOM					26.221	13.464			AAAA
ATOM	1709		TYR						AAAA
ATOM	1710	CE1	TYR		26.455	12.660			አልልፋ
STOM	1711	CD2	TYR	216	27.832	15.052			AAAA
ATOM	1712			_	28.074	14.254	68.675	1.00 34.45	
		CZ	TYR		27.378	13.063		1.00 40.53	AAAA
ATOM	1713			_	27.580				
ATOM	1714	OH	TYR						AAAA
ATOM	1715	C	TYR		25.104	17.391			AAAA
ATOM	1716		TYR	216	26.097	18.014	64.126	1.00 13.70	- Carrest

WO 01/18045 PCT/US00/24700

			•	164.0				
		2 (2)	217	23.889 17			.00 22.88	AAAA
	1717 N	ASN ASN	217	23.621 18	3.729 6		.00 22.60	AAAA AAAA
MOTA	1718 CA		217	23,453 18			.00 16.61	AAAA
MOTA	1719 CE		217	23.233 19			.00 17.16 .00 20.23	AAAA
MOTA		1 ASN	217	22.098 19			.00 12.18	AAAA
MOTA		2 ASN	217	24.00.			.00 12.18	AAAA
MOTA	1723. C	ASN	217	22.311 1			.00 17.63	AAAA
MOTA	1724 0	ASN	217				.00 21.68	AAAA
MOTA MOTA	1725 N		218		• • •	53.793 <u>1</u> 64.320 1	.00 21.20	AAAA
ATOM	1726 C		218			65.808 1	.00 17.73	AAAA
ATOM	1727 C		218			66.647 1	.00 32.30	AAAA
ATOM	1728 C		218			67.944	.00 24.51	AAAA
ATOM	1729 C	D1 LEU	218	20.228 2 18.862 2	2.464	65.903	00 40.08	AAAA
MOTA		D2 LEU	218	20.700 2	2.459	63.554	1.00 19.46	AAAA
ATOM	1731 C		218	21.467 2	3.425	63.615- 3	1.00 16.70	AAAA
MOTA	1732 0		218 219	19.590 2	2.441		1.00 15.43	AAAA AAAA
MOTA	1733 N		219	19.143 2			1.00 14.05	AAAA
MOTA		A ASN B ASN	219	18.634 2	23.232	• • • •	1.00 15.92 1.00 22.73	AAAA
ATOM		G ASN	219		22.738		1.00 17.90	AAAA
ATOM		D1 ASN	219	~	23.232	22.	1.00 17.50	AAAA
ATOM ATOM		ID2 ASN	219	10.00	21.789	58.868 62.821	1.00 21.98	AAAA
ATOM	1739		219		24.256	63.262	1.00 18.65	AAAA
ATOM	1740		219		23.569 25.580	62.952	1.00 16.82	AAAA
MOTA		1 ILE	220		26.298	63.640	1.00 13.22	AAAA
ATOM	_	A ILE	220		27.115	64.823	1.00 15.70	AAAA
MOTA		B ILE	220 220	16.411	27.912	65.479	1.00 15.18	алал Алал
MOTA	-	G2 ILE	220		26.193	65.823	1.00 19.11	AAAA
MOTA	_	CG1 ILE	220	17.350	25.259	66.632	1.00 22.75 1.00 18.80	AAAA
ATOM '	_	C ILE	220	16.363	27.246	62.573	1.00 15.52	AAAA
MOTA	_	O ILE	220	16.810	28.386	62.419 61.826	1.00 15.32	AAAA
MOTA MOTA		N PRO	221	15.341	26.790	61.826	1.00 18.83	AAAA
ATOM		CD PRO		14.612	25.518 27.628	60.785	1.00 19.83	AAAA
ATOM		CA PRO		14.739	26.615	59.948	1.00 20.76	AAAA
ATOM		CB PRO		13.930 14.409	25.241	60.462	1.00 28.73	AAAA
MOTA		CG PRO		13.849	28.664	61.444	1.00 21.26	AAAA
MOTA	1754	C PRO		13.061	28.318	62.314	1.00 22.46	AAAA AAAA
MOTA	1755	O PRO N LEU		13.977	29.926	61.028	1.00 19.70	AAAA
ATOM	1756	N LEU		13.209	31.018	61.612	1.00 21.62 1.00 16.46	AAAA
ATOM	1757 1758	CB LEU		14.163	31.972	62.319	1.00 18.40	AAAA
MOTA	1759	CG LEU		14.868	31.232	63.466 64.014	1.00 21.32	AAAA
MOTA MOTA		CD1 LEU		16.026	32.072	64.555	1.00 19.98	AAAA
MOTA	-	CD2 LEU	ງ 222	13.857	30.925 31.763	60 590	1.00 19.68	AAAA
ATOM		C LE		12.350 12.687	31.830		1.00 18.07	AAAA
ATOM		O LEV		11.220	32.329		1.00 19.37	AAAA
ATOM	1764	N PRO		10.723	32.249		1.00 17.38	AAAA AAAA
MOTA		CD PRO		10.264	33.065	60.203	1.00 19.59	AAAA
MOTA		CA PRO		9.006	33.083	61.074	1.00 20.08	AAAA
ATCM				9.608	33.304		1.00 21.96 1.00 23.15	
MOTA		CG PR		10.606	34.458	59.723	1.00 25.15	
ATOM		O PR		11.525	35.101	60.214	49	
MOTA MOTA		N LY		9.830	34.912	58.745 58.200		AAAA
ATOM		CA LY		9.975	36.254			AAAA
MOTA		CB LY	s 224	9.002	36.446 35.441			AAAA
ATOM		CG LY		9.163			1.00 25.49) AAAA
ATO	1775	CD LY		8.109 8.209			1.00 24.14	AAAA
ATON	g 1776	CE LY		7.207		3 52.618	1.00 34.08	3 AAAA
ATC	M 1777	NZ LY		9.638		9 59.284	1 1.00 15.7	
ATO		C LY		8.819	37.03	2 60.186		•
ATO		O LY		10.239	38.46			
ATO:		N GI CA GI		9.974				•
ATO			LY 225	10.556	39.28	6 61.50	, 1.00 20.0	•
ATO								
•								

> mov	1783	0	GLY	225		10.	128	39.912	62.468	1.00	20.66	•	AAAA
ATOM	1784		LEU	226			540	38.395	61.606		20.37		AAAA
ATOM	1785		LEU	226		12.	154	38.063	62.893		18.71		AAAA
MOTA	1786		LEU	226			354	37.145	62.670		13.63		AAAA
MOTA			LEU	226			836	36.443	63.939		18.44		AAAA
MOTA	1787	CD1		226			834	35.329	64.243		18.09		AAAA
ATOM -	1788	CD2		226			232	35.844	63.741	1.00	17.96	5	AAAA
ATOM	1789		LEU	226			649	39.309	63.642		19.84		AAAA
MOTA	1790	C		226			320	40.151	63.052		18.13		AAAA
MOTA	1791	0	LEU ASN	227			336	39.421	64.932		23.30		AAAA
ATOM	1792	N	ASN	227			815	40.571	65.692		20.88		AAAA
ATOM	1793	CA		.227			. 682	41.261	66.485		21.73		AAAA
MOTA	1794	CB	ASN	227			.061	40.368	67.546 -		20.4		AAAA
MOTA	1795	CG	ASN	227			.762	39.736	68.341		23.80		AAAA
MOTA	1796		asn asn	227			.729	40.340	67.581	1.00	21.0	8	AAAA
MOTA	1797		ASN	227			.950	40.152	66.612	1.00	25.2	4	- AAAA
MOTA	1798	C	ASN	227			. 282	38.965	66.702	1.00	18.5	4	AAAA
MOTA	1799 -		ASP	228			.547	41.124	67.296		19.4		AAAA
ATOM	1800	N	ASP	228			. 682	40.844	68.169		22.1		AAAA
MOTA	1801	CA CB	ASP	228			.208	42.141	68.802		16.8		AAAA
MOTA	1802 1803	CG	ASP	228			.852	43.060	67.796		30.6		AAAA
MOTA			ASP	228			.182	42.576	66.690		23.8		AAAA
ATOM	1804 1805		ASP	228			.053	44.256	68.123		25.0		AAAA
ATOM	1806	C	ASP	228			.440	39.835	69.265		18.8		AAAA
MOTA	1807	0	ASP	228			.298	39.002	69.536		16.2		AAAA
MOTA	1808	N	ASN	229		14	.291	39.930	69.928		20.7		AAAA
MOTA	1809	CA	ASN	229			.975	39.015			21.7		AAAA
ATOM	1810	CB	NS.S.	229		12	.706	39.483		1.00	19.4	16	AAAA
MOTA MOTA	1811	CG	ASN	229		12	943	40.738			27.1		KAAA
	1812		ASN	229		13	.588	40.691	73.556		33.0		AAAA
ATOM ATOM	1813		ASN	229	•	12	.464	41.874		1.00	0 21.3	35	AAAA
ATOM	1814	C	ASN	229		13	.833	37.59€			0 18.4	1 /	AAAA AAAA
ATOM	1815	ŏ	ASN	229		14	.284	36.644			0 22.4		AAAA
ATOM	1816	N	GLU	230		13	.252	37.454			0 17.7		AAAA
ATOM	1817	CA	GLU	230			.081	36.125			0 21.1	E 4	AAAA
MOTA	1818	CB	GLU	230			2.152	36.193		_	0 20.5	04	AAAA
MOTA	1819	CG	GLU	230			.765	36.714			0 28.9 0 24.3	36	AAAA:
MOTA	1820	CD	GLU	230			.870	36.816			0 22.0		AAAA
MOTA	1821		GLU	230			360	37.296			0 24.		AAAA
ATOM	1822	OE2	GLU	230			3.683	36.44			0 16.		AAAA
MOTA	1823	С	GLU	230			.422	35.50			0 19.		AAAA
ATOM	1824	C	GLU	230.			1.663	34.32			0 15.		AAAA
ATOM	1825	N	PHE	231			5.305	36.30			0 15.		AAAA
ATOM	1826	CA	PHE	231		_	5.616	35.78 36.86			0 13.		AAAA
MOTA	1827	CB	PHE	23.1			7.420	36.36			0 20.		AAAA
ATOM	1828		PHE	231			8.719	35.44			0 18.	42	AAAA
MOTA	1829		1 PHE	231			8.723				0 21.	10	AAAA
MOTA	1830		2 PHE	231			9.936				0 17.	67	AAAA
MOTA	1831		1 PHE	231			9.918				0 28.	29	AAAA.
MOTA	1832		2 PHE	231			1.144 1.130				00 27.	85	AAAA
ATOM	1833	CZ		231			7.385				00 18.		AAAA
ATOM	1834	С	PHE	231			7.363 7.869		•		00 18.	86	AAAA
MOTA	1835	0	PHE	231			7.665 7.495				00 19.	07	AAAA
MOTA	1836	N	LEU	232			7.433 8.239				00 17.	.39	AAAA
MOTA	1837			232			8.415			7 1.0	00 24.	. 53	AAAA
ATOM	1838			232					-		00 16.	. 64	AAAA
MOTA	1839			232			9.214			4 1.	00 26.	.70	AAAA
ATOM	1840		1 LEU	232			9.134 0.659				00 18	.77	AAAA
ATOM	1841		2 LEU	232						8 1.	00 19	. 82	AAAA
atom	1842		LEU	232			7.607				00 21	.80	AAAA
ATOM	1843		LEU	232			8.309 6.281			8 1.	00 17	.18	AAAA
ATOM			PHE	233			5.587			9 1.	00 23	. 34	AAAA
MOTA				233			4.074			5 1.	00 19	.17	AAAA
ATOM				233			3.289			3 1.	00 21	.40	AAAA
ATOM				233			2.86			-	00 29		AAAA
ATOM	1848	CE	1 PHE	233		1	. 2 . 00.	, ,,,,,,,					•
			•										

			6	
			12.942 31.473 71.596 1.00 19.92	AAAA
ATOM	1849 CD2		12.342 31 206 74 229 1.00 29.35	AAAA
ATOM	1030	PHE 233	71.966 1.00 25.37	AAAA
MOTA	100-	PHE 233	73. 73. 783 1.00 30.28	AAAA
ATOM	1852 CZ	PHE 233	71 660 1.00 23.12	AAAA
ATOM	1853 C	PHE 233	72 33 72 332 1.00 18.35	AAAA
ATOM	1854 0	PHE 233	16.433 31.279 70.332 1.00 17.26	AAAA
ATOM	1855 N	ALA 234	13.901 32.203 50 502 1 00 17 67	AAAA
ATOM	1856 CA	ALA 234	16.332 31.327 68 046 1.00 19.08	AAAA
ATOM	1857 CB	ALA 234	16.085 31.257 33.000 1.00 16.31	AAAA
ATOM	1858 €	ALA 234	17.780 30.032 300 16 75	AAAA
ATOM	1859 0	ALA 234	18.12/ 29.401 00 16 73	AAAA
	1860 N	LEU 235	18.646 31.643 70.051 1.00 19.14	AAAA '
MOTA MOTA	1861 CA	LEU 235	20.0/4 31.412 60.056 1.00.21.72	AAAA
MOTA	1862 CB	LEU 235	20.823 32.790 69 345 1.00 36.73	AAAA
	1863 CG	LEU 235	22.226 32.750 70.105 1.00 20.69	AAAA
MOTA		LEU 235	23.026 33.044 69.393 1.00 22.96	AAAA
MOTA MOTA		LEU 235	22.317 31.326 71 421 1.00 18.71	AAAA
	1866 C	LEU 235	20.354 30.777 71 522 1.00 18.59	AAAA
ATOM ATOM	1867 0	LEU 235	21.020 23.300 72 479 1.00 25.43	AAAA
	1868 N	GLU 236	19.831 31.333 73.839 1.00 19.75	AAAA
MOTA	1869 CA	GLU 236	20.046 30.005 74.000 1.00 23.18	AAAA
MOTA	1870 CB	GLU 236	19.335 31.475 74 777 1 00 38 53	AAAA
ATOM	1870 CD	GLU 236	19.725 33.223 75 640 3 00 42 42	AAAA
MOTA	1871 CD	GLU 236	18:85/ 34.113 75 428 1 00 45.43	AAAA
ATOM	1873 OE1	L GLU 236	17.617 34.170 76.548 1.00 48.76	AAAA
ATOM	1874 OE2	2 GLU 236	19.425 54.700 = 1.011 1.00 25 85	AAAA
MOTA	1875 C	GLU 236	19.541 25.452 74.507 1.00.21.36	AAAA
MOTA	1876 0	GLU 236	20.222 28.003 73.501 1.00 23.16	AAAA
MOTA	1877 N	LYS 237	18.343 29.123 - 510 1 00 17 06	AAAA
MOTA		LYS 237	17.752 27.072 == 303 1 00 26 98	AAAA
MOTA		LYS 237	16.282 27.533 77.538 1.00.52.00	AAAA
MOTA		227	15.483 20.711 1 00 56 40	AAAA
MOTA	200.	007	14.078 27.110 75 103 1 00 52 03	AAAA
MOTA			14.131 2/10/10 11 1 100 55 53	AAAA
MOTA		~~~	12.702 20.32205 1 00 19 46	AAAA
ATOM		LYS 237	18.502 20.022 73.331 1.00.21.20	AAAA
MOTA	1884 C 1885 O	LYS 237	18.691 23.002 71 579 1 00 21.28	AAAA
ATOM	1000	SER 238	18.932 27.100 70 776 1 00 16.47	AAAA
ATOM		220	19.049 20.200	AAAA
ATOM	-000 07	* ==	19.745 20.000 30.00 3.00 32 52	AAAA
ATOM		220	20.475 27.000 71 761 1 00 18 79	AAAA
ATOM		SER 238	21.039 23.323 1 00 20 60	AAAA
ATOM		SER 238	21.321 24.700 025 1 00 22 95	AAAA
MOTA		220	21.090 20.000 100 20 98	AAAA
MOTA	1003 (23.004 20.702 = 20.0 10.10.30	AAAA
ATOM			23.652 20.666 622 1 00 20 02	AAAA
MOTA			23.963 23.012 - 636 1 00 27 02	AAAA
MOTA		D1 LEU 239	24.536 50.522 1 00 20 31	AAAA
ATON		D2 LEU 239	25.010 20.330 73 600 1 00 25 16	AAAA
ATO		~~~ ^~	22.882 23.733 73.030.1.00.20.70	AAAA
ATO		220	23.780 24.722 7. 200 1 00 24 93	AAAA
OTA		216	21.700 23.000 1 00 25 72	AAAA
ATO		A GLU 240	21.570 23.522 -2.727 1 00 29 10	AAAA
ATO		B GLU 240	20.331 43.330 501 1 00 49 56	AAAA
OTA		G GLU 240	20.042 23.00 10 63 15	AAAA
OTA			19.053 23.212 72 067 1 00 69 26	AAAA
ATO		D GLU 240 DE1 GLU 240	17.935 23.333 702 1 00 66 68	AAAA
ATO		DE2 GLU 24	0 19.400 25.410 75.046 1.00 23.44	AAAA
ato	1007	24	0 21.440 23.402 = 674 1.00 23 10	AAAA
ATO		~ ~ .	0 21.951 22.535 75.674 1.00 25.25	AAAA
ATC		1	1 20.771 23.294 73.913 1.00 24 06	AAAA
ATC	761	^4	1 20.598 21.978 73.321 1.00 24.00	AAAA
. ATC	M 1910	~4	19.705 22.039 72.052 1.00 23.00	AAAA
ATC	OM 1911 '		1 19.718 20.678 71.323 1.00 28.60	AAAA
ATO	M 1912	CO2	1 18.281 22.433 72.439 1.00 23.00	AAAA
ATO		CG1 ILE 24 CD1 ILE 24	22 600 71.457 1.00 27.03	•
3.77	OM 1914	و مید دری		

					21 053	21.404	72.941	1.00 25.48	AAAA
MOTA	1915	С	ILE	241	21.957			1.00 23.43	AAAA
ATOM	1916	0	ILE	241	22.244	20.234			
			VAL	242	22.799	22.235		1.00 20.41	AAAA
MOTA	1917				24.116	21.782	71.928	1.00 23.17	AAAA
ATOM	1918	CA	VAL	242			71.107	1.00 26.48	AAAA
MOTA	1919	CB	VAL	242	24.853	22.856			
ATOM	1920	CG1		242	26.273	22.394	70.807	1.00 18.67	AAAA
				242	24.093	23.135	69.802	1.00 26.97	AAAA
ATOM	1921	CG2				21.456	73.154	1.00 24.81	AAAA
ATOM	1922	С	VAL	242				1.00 22.49	AAAA
ATOM	1923	0	VAL	242	25.566	20.384	73.235		
	1924	N	LYS	243	24.989	22.387	74.102	1.00 25.06	AAAA
MOTA					25.775	22.202	75.311	1.00 32.57	AAAA
MOTA	1925	CA	LYS	243		23.379	76.272	1.00 28.53	AAAA
ATOM	1926	CB	LYS	243	25.599				AAAA
ATOM	1927	CG	LYS	243	26.386	23.183	77.568	1.00 43.21	
		CD	LYS	243	26.022	24.191	78.653	1.00 53.10	AAAA
ATOM	1928				26.407	25.607	78.287	1.00 50.30	AAAA
MOTA	1929	CE	LYS	243			79.389	1.00 59.15	AAAA
MOTA	1930	NZ	LYS	243	26.045	26.548			AAAA
ATOM	1931	С	LYS	243	25.433	20.917	76.046	1.00 30.38	
		-	LYS	243	26.321	20.255	76.578	1.00 35.44	AAAA
MOTA	1932	0			24.161	20.542	76.076	1.00 28.12	AAAA
MOTA	1933	N	GLU	244				1.00 37.54	AAAA
ATOM	1934	CA	GLU	244	23.798	19.320	76.798		
MOTA	1935	CB	GLU	244	22.288	19.260	77.048	1.00 35.34	AAAA
				244	21.735	20.459	77.816	1.00 55.88	AAAA
MOTA	1936	CG	GLU		20.281	20.275	7.8.230	1.00 57.89	AAAA
ATOM	1937	CD	GLU	244				1.00 60.60	AAAA
ATOM	1938	OE1	GLU	244	19.673	21.246	78.738		
	1939		GLU	244	19.753	19.152	78.062	1.00 57.73	AAAA
MOTA				244	24.231	18.034	76.102	1.00 38.17	AAAA
MOTA	1940	С	GLU			16.978	76.727	1.00 38.46	AAAA
ATOM	1941	0	GLU	244	24.294			1.00 30.29	AAAA
MOTA	1942	N	VAL	245	24.541	18.124	74.817		AAAA
	1943	CA	VAL	245	24.933	16.958	74.042	1.00 29.17	
ATOM				245	23.984	16.778	72.833	1.00 46.68	AAAA
MOTA	1944	CB	VAL			15.641	71.942	1.00 53.09	AAAA
MOTA	1945	CG1	VAL	245	24.462			1.00 54.19	AAAA
MOTA	1946	CG2	VAL	245	22.581	16.488	73.327		
	1947	Ċ	VAL	245	26.364	16.982	73.508	1.00 34.90	AAAA
ATOM				245	26.915	15.939	73.164	1.00 34.73	AAAA
ATOM	1948	0	VAL		26.980	18.156	73.465	1.00 29.22	AAAA
MOTA	1949	N	PHE	246				1.00 29.17	AAAA
MOTA	1950	CA	PHE	246	28.324	18.256	72.897	1.00 25.17	AAAA
ATOM	1951	CB	PHE	246	28.178	18.800	71.464	1:00 30.42	
		CG	PHE	246	29.384	18.588	70.585	1.00 25.62	AAAA
MOTA	1952				29.695	17.326	70.097	1.00 28.89	AAAA
ATOM	1953		PHE	246			70.196	1.00 25.17	AAAA
ATOM	. 1954	CD2	PHE	246	30.167	19.668			AAAA
ATOM	1955	CE1	PHE	246	30.771	17.138	69.222	1.00 23.43	
	1956		PHE	246	31.248	19.495	69.322	1.00 22.40	AAAA
ATOM					31.549	18.236	68.835	1.00 19.88	AAAA
MOTA	1957	CZ	PHE	246		19.176	73.712	1.00 23.38	AAAA
MOTA	1958	С	PHE	246	29.233			1.00 29.15	AAAA
ATOM	1959	0	PHE	246	28.867	20.312	74.002	1.00 29.13	AAAA
ATOM	1960	N	GLU	247	30.410	18.682	74.094	1.00 29.73	
					31.395	19.481	74.841	1.00 28.10	AAAA
MOTA	1961	CA	GLU	. 247		18.726	76.074	1.00 35.75	AAAA
ATOM	1962	CB	GLU	247	31.912			1.00 60.78	AAAA
MOTA	1963	CG	GLU	247	30.972	18.707		1.00 00.70	AAAA
	1964	CD	GLU	247	29.700	17.892	77.077	1.00 70.07.	
ATOM				247	28.913	18.220	76.165	1.00 79.95	AAAA
MOTA	1965		GLU			16.920		1.00 76.80	AAAA
MOTA	1966	OE2	GLU	247	29.481			1.00 28.90	AAAA
MOTA	1967	С	GLU	247	32.554	19.741			AAAA
ATOM	1968	0	GLU		33.490	18.946		1.00 23.67	
					32.531	20.891	73.181	1.00 25.02	AAAA
atom	1969	N	PRO						AAAA
ATOM	1970	CD	PRO	248	31.574				AAAA
ATOM	1971	CA	PRO	248	33.566				AAAA
	1972	CB	PRO		33.050	22.575			
ATOM					31.551		71.897	1.00 34.57	AAAA
MOTA	1973	CG	PRO						AAAA
ATOM	1974	С	PRO		34.968				aaaa
ATOM	1975	0	PRO	248	35.132				AAAA
	1976		GLU		35.965	21.013	71.983	1.00 24.34	
MOTA					37.366	21.195		1.00 25.98	AAAA
ATOM	1977		GLU						AAAA
ATOM	1978	CB	GLU		38.275				AAAA
MOTS	1979		GLU	249	38.046	18.726		1.00 33.40	AAAA
	1980				39.005	17.767	7 71.445	1.00 29.15	AAAA
ATOM	1700	CD.	GLU				-		•

				4 78	54.6.6				
				40	39.071	17.770	70.199	1.00 27.62	AAAA
MOTA		DE1 G1	ឬប 2	.49 .49	39.694	17.004	72.161	1.00 26.19	AAAA
MOTA				249	37.692	22.561	71.786	1.00 26.04	AAAA AAAA
MOTA				49	38.582	23.271	72.262	1.00 26.39	AAAA
MOTA				250	36.953	22.921	70.744	1.00 23.83	AAAA
MOTA			- —	250	37.151	24197	70.086	1.00 19.67	AAAA
ATOM				250	38.438	24.178	69.210	1.00 20.88	AAAA
MOLY		CG1 V		250	38.348	23.117	68.128	1.00 18.18	AAAA
MOTA		CG2 V		250	38.647	25.530	68.591	1.00 16.71 1.00 20.78	AAAA
MOTA				250	35.946	24.483	69.207	1.00 19.60	AAAA
MOTA				250 -	35.299	23.556	68.746	1.00 19.00	AAAA
MOTA MOTA				251	35.633	25.757	69.000 68.153	1.00 22.44	AAAA
ATOM				251	34.497	26.109	69.022	1.00 16.57	AAAA
ATOM	1994			251	33.261	26.437	69.575	1.00 22.36	AAAA
ATOM	1995	CG 7		251	33.207	27.856	68.823	1.00 18.12	AAAA
ATOM	1996	CD1		251	32.654	28.896 30.185	69.308	1.00 20.40	AAAA
ATOM	1997		-	251	32.612	28.160	70.842	1.00 20.04	AAAA
ATOM	1998		TYR	251	33.715 33.676	29.475	71.349	1.00 16.60	AAAA
MOTA	1999		TYR	251	33.070	30.473	70.573	1.00 14.68	AAAA
MOTA	2000		TYR	251	33.120	31.780	71.011	1.00 21.79	AAAA
ATOM	2001		TYR	251	34.811	27.294	67.236	1.00 20.28	AAAA
MOTA	2002		TYR	251	35.695	28.107	67.525	1.00 19.91	AAAA
MOTA	2003	_	TYR	251 252	34.097	27.360	66.109	1.00 17.90	аааа аааа
ATOM	2004	-	LEU LEU	252	34.216	28.466	65.161	1.00 18.58	AAAA
MOTA	2005		LEU	252	34.679	28.001	63.767	1.00 17.55	AAAA
ATOM	2006		LEU	252	36.028	27.290	63.718	1.00 23.36 1.00 27.78	AAAA
MOTA	2007 2008	CD1		252	35.819	25.820	64.017		AAAA
MOTA	2009	CD2	LEU	252	36.631	27.440			AAAA
ATOM ATOM	2010	C	LEU	252	32.816				AAAA
MOTA	2011	ō	LEU .	252	31.819				AAAA
MOTA	2012	N	LEU	253	32.756	30.360 31.105			AAAA
ATOM	2013	CA	LEU	253	31.498			1.00 15.49	AAAA
ATOM	2014	CB	LEU	253	31.379 30.326			1.00 17.75	AAAA
ATOM	2015	CG	LEU	253	28.946			2 1.00 20.85	AAAA
ATOM	2016	CDI	LEU	253	30.536			1 1.00 19.05	AAAA
MOTA	2017		LEU	253	31.516		63.580		AAAA AAAA
MOTA	2018	C	LEU	253 253	32.474	32.727	63.37	1 1.00 18.14	AAAA
ATOM	2019	0	LEU GLN	254	30.466	31.91	62.76		AAAA
ATOM	2020	N	GLN	254	30.411	32.73			AAAA
ATOM	2021 2022	CA CB	GLN	254	30.085	31.86			AAAA
MOTA		CG	GLN	254	28.647	7 31.79			AAAA
MOTA			GLN	254	28.33		8 58.70		AAAA
MOTA MOTA			GLN	254	28.74				AAAA
MOTA			GLN	254	27.61	3 33.79 4 33.81			AAAA
ATOM			GLN	254	29.38				AAAA
MOTA			GLN	254	28.28			8 1.00 14.42	AAAA
ATOM		N	LEU	255	29.76 28.98			3 1.00 17.99	AAAA
ATOM		CA	LEU	255	29.83			9 1.00 20.68	AAAA
ATOM	2031		LEU	255	30.24			54 1.00 22.90	AAAA AAAA
ATOM			LEU	255 255	31.44			35 1.00 29.36	
ATOM			LEU	255	29.04		4 64.90	00 1.00 14.80	
MOTA			2 LEU	255	28.54	1 37.06	60.59	1.00 19.32	
MOTA			LEU LEU	255	28.83	8 38.20	50 60.5		
MOTA			GLY	256	27.82	7 36.40	59.6		
ATON				256	27.34	17 37.2	59 58.5	16 1.00 15.64 28 1.00 17.31	
OTA			GLY	256	26.41				
ATO			GLY	256	25.73				
ATO			THR	257	26.38	39.4			AAAA
ATO! ATC!				257	25.5		- ·		2 AAAA
ATO		_ 3 CB	THR	257	26.2			06 1.00 17.5	8 AAAA
ATO			1 THR		26.5			92 1.00 19.6	7 AAAA
ATO			2 THR	257	27.5 24.1				AAAA 8
ATO			THR	257	24.1	JJ 40.0	•		•
			•	•					

									1 00 14 EO	* * * *
MOTA	2047	0	THR	257		23.403	41.545	58.266	1.00 14.59	AAAA
				258		23.927	39.639	57.213	1.00 16.56	AAAA
MOTA	2048	N	ASP				39.646	56.525	1.00 16.39	AAAA
MOTA	2049	CA	ASP	258		22.651				AAAA
ATOM	2050	CB	ASP	258		22.604	38.611	55.388	1.00 18.38	
			ASP	258		23.037	37.229	55.811	1.00 25.85	AAAA
MOTA	2051	CG				23.222	36.995	57.022	1.00 22.32	AAAA
ATOM -	2052	OD1	ASP	258					1.00 18.12	AAAA
MOTA	2053	OD2	ASP	258		23.187	36.370	54.909		
				258		21.396	39.563	57.397	1.00 21.25	ÁAAA
MOTA	2054	C	ASP				39.781	56.897	1.00 22.52	AAAA
MOTA	2055	0	ASP	258		20.300				AAAA
ATOM	2056	N	PRO	259		21.510	39.172	58.680	1.00 18.17	
	_			259		22.614	38.528	59.422	1.00 25.88	AAAA
MOTA	2057	CD	PRO				39.139	59.482	1.00 21.24	AAAA
MOTA	2058	CA	PRO	259		20.281		19.402		AAAA
ATOM	2059	CB	PRO	259	•	20.710	38.363		1.00 21.18	
				259		22.174	38.707	60.846	1.00 36.11	AAAA
MOTA	2060	CG	PRO				40.534	59.820	1.00 20.88	AAAA
MOTA	2061	С	PRO	259		19.705				-AAAA
ATOM	2062	0	PRO	259		18.572	40.647	60.280	1.00 19.25	
				260		20.473	41.591	59.571	1.00 18.75	AAAA
MOTA	2063	N	LEU				42.949	59.875	1.00 22.16	AAAA
MOTA	2064	CA	LEU	260		20.023				AAAA
ATOM	2065	CB	LEU	260		21.202	43,935	59.778	1.00 20.35	
				260		22.403	43.640	60.682	1.00 21.82	AAAA
MOTA	2066	CG	LEU					60.253	1.00 18.57	AAAA
ATOM	2067	CD1	LEU	260		23.604	44.486			AAAA
	2068	CD3	LEU	260		22.032	43.873	62.123	1.00 19.18	
MOTA				260		18.876	43.469	59.014	1.00 24.16	AAAA
ATOM	2069	С	LEU					57.826	1.00 21.69	AAAA
ATOM	2070	0	LEU	260		18.742	43.144			
	2071	N	LEU	261		18.049	44.300	59.634	1.00 19.54	AAAA
MOTA				261		16.903	44.913	58.965	1.00 17.34	AAAA
MOTA	2072	CA	LEU					59.892	1.00 19.96	AAAA
ATOM	2073	CB	LEU	261		16.285	45.967			AAAA
	2074	CG	LEU	261		15.204	46.879	59.300	1.00 29.99	
MOTA				261		14.080	46.040	58.732	1.00 33.66	AAAA
MOTA	2075		LEU				47.819	60.376	1.00 44.71	AAAA
MOTA	2076	CD2	LEU	261		14.682				AAAA
ATOM	2077	С	LEU	261		17.262	45.550	57.620	1.00 18.11	
				261		16.539	45.386	56.634	1.00 19.02	AAAA
MOTA	2078	0	LEU				46.249	57.566	1.00 22.68	AAAA
MOTA	2079	N	GLU	262		18.391			1.00 18.46	AAAA
ATOM	2080	CA	GLU	262		18.802	46.921	56.338		
			GLU	262		19.875	47.965	56.641	1.00 22.01	AAAA
MOTA	2081	CB				19.365	49.136	57.443	1.00 22.94	AAAA
ATOM	2082	CG	GLU	262					1.00 23.11	AAAA
ATOM	2083	CD	GLU	262		19.434	48.902	58.927		AAAA
	2084		GLU	262		19.668	47.748	59.357	1.00 24.58	
ATOM						19.238	49.883	59.667	1.00 27.06	AAAA
MOTA	2085	OE	GLU	262					1.00 25.65	AAAA
ATOM	2086	С	GLU	262		19.281	46.034			AAAA
	2087	0	GLU	262		19.446	46.510	54.070	1.00 25.49	
MOTA				263		19.501	44.750	55.467	1.00 22.45	AAAA
MOTA	2088	N	ASP				43.851	_	1.00 15.93	AAAA
MOTA	2089	CA	ASP	263		19.959			1.00 18.99	AAAA
MOTA	2090	CB	ASP	263		20.981	42.859			
	-			263		21.706	42.081	53.907	1.00 22.21	AAAA
ATOM	2091	CG	ASP			22.876	41.730		1.00 23.19	AAAA
ATOM	2092	OD:	l ASP	263					1.00 25.02	AAAA
MOTA	2093	OD	2 ASP	263		21.112	41.809		1.00 25.02	AAAA
			ASP	263		18.733	43.165	53.837	1.00 22.32	
MOTA	2094	С				18.012		54.519	1.00 18.50	AAAA
ATOM	2095	0	ASP	263			• _			AAAA
ATOM	2096	N	TYR	264		18.500				AAAA
			TYR	264		17.339	42.936	51.865	1.00 29.92	
ATOM	2097	CA				17.077				AAAA
MOTA	2098	CB	TYR	264						AAAA
MOTA	2099	CG	TYR	264		17.910			1.00 54.05	AAAA
			1 TYR	264		17.677	42.249	48.660	1.00 69.38	
MOTA	2100					18.420			1.00 68.71	AAAA
ATOM	2101	CE.	1 TYR	264						AAAA
ATOM	2102	CD	2 TYR	264		18.915			1.00 00.00	AAAA
	2103			264		19.670	43.975		1.00 74.50	
ATOM				264		19.415		47.094	1.00 72.57	AAAA
MOTA	2104	CZ								AAAA
ATOM	2105	OH	TYR	264		20.154				AAAA
	2106		TYR	264		17.445	41.461			
ATOM						16.448		51.190	1.00 30.11	AAAA
MOTA	2107		TYR	264						AAAA
ATOM	2108	N	LEU	265		18.639				AAAA
	2109			265		18.753	39.476	51.337		
MOTA				265		20.186		50.969	1.00 29.81	AAAA
atom	2110									AAAA
ATOM	2111	CG	LEU	265		20.509				AAAA
ATCM			1 LEU	265		21.847	38.930	0 49.100	1.00 44.30	•=
71011								-	•	•

51/263Figure 16-33

					10 422		3.990	48.603	1.00 40	6.72	AAAA
ATOM	2113	CD2		265	19.422			52.447	1.00 2	2.33	AAAA
MOTA	2114	С	LEU	265	18.209				1.00 2	3 48	AAAA
ATOM	2115	0	LEU	265	18.279				1.00 1	7 50	AAAA
MOTA	2116		SER	266	17.67				1.00 1	7.50	AAAA
	2117	CA	SER	266	17.05	5 38			1.00 1		AAAA
MOTA		CB	SER	266	17.91	2 38			1.00 2	0.73	
MOTA	2118			266	17.69		9.442		1.00 2	2.81	AAAA
ATOM	2119	OG	SER		15.73	9 30	9.048	54.950	1.00 1	9.75	AAAA
ATOM	2120	С	SER	266	15.57		0.265	54.840	1.00 2	3.66	AAAA
ATOM	2121	0	SER	266			8.229	55.402	1.00 1	8.40	AAAA
MOTA	2122	N	LYS	267	14.79		8.759	55.851	1.00 2	0.64	AAAA
MOTA	2123	CA	LYS	267	13.52			55.513	1.00 2	0.96	AAAA
MOTA	2124	CB	LYS	267	12.39	1 3	7.787		1.00 2	5 60	AAAA
ATOM	2125	CG	LYS	267	12.26		7.536	54.025	1.00 2	3 47	AAAA
ATOM	2126	CD	LYS	267	12.09		8.823	53.259	1.00 3	0 40	AAAA
	2127	CE	LYS	267	11.98		8.540	51.772	1.00 3	10.43	AAAA
ATOM	2128	NZ	LYS	267	11.95	4 3	9.793	50.991	1.00 3	33.11	AAAA
MOTA			LYS	267	13.60	1 3	8.987	57.365	1.00 2	20.63	
MOTA	2129	C		267	12.58		9.192	58.017	1.00 2	25.38	AAAA
MOTA	2130	0	LYS		14.81		8.937	57.915	1.00	18.98	AAAA
MOTA	2131	N	PHE	268	15.03	_	9.182	59.345	1.00	18.50	AAAA
MOTA	2132	CA	PHE	268	16.32		8.510	59.833	1.00	20.91	AAAA
MOTA	2133	CB	PHE	268			7.006	59.967	1.00		AAAA
MOTA	2134	CG	PHE	268	16.25			60.415	1.00	16.61	AAAA
ATOM	2135	CD1	PHE	268	17.37		6.290	59.682	1.00	18 13	AAAA
ATOM	2136		PHE	268	15.08		6.303		1.00	14 81	AAAA
ATOM	2137		PHE	268	17.33		34.904	60.581	1.00	17 15	AAAA
	2138	CE2		268	15.02		34.900	59.849	1.00	17.45	AAAA
MOTA	2139	CZ	PHE	268	16.14	14 3	34.208	60.296	1.00	16.01	AAAA
MOTA		C	PHE	268	15.1	79 4	40.699	59.510	1.00	18.33	
MOTA	2140			268	15.7	33 4	41.371	58.644	1.00	18.28	AAAA
MOTA	2141	0	PHE	269	14.6		41.236	60.613	1.00	21.04	AAAA
ATOM	2142	N	ASN		14.7		42.675	60.859	1.00	22.89	AAAA
ATOM	2143	CA	ASN	269	13.3		43.298	60.940	1.00	20.55	AAAA
ATOM	2144	CB	ASN	269	12.5		43.071		1.00	26.13	AAAA
MOTA	2145	CG	ASN	269			43.192	58.571	1.00	29.17	AAAA
ATOM	2146	ODI	ASN	269	13.0		43.152	59.860	1.00	28.26	AAAA
MOTA	2147	ND2	ASN	269	11.2			62.159	1 00	19.00	AAAA
ATOM	2148	С	ASN	269	15.4		42.967	63.019	1.00	21.85	AAAA
ATOM	2149	0	ASN	269	14.9		43.683		1.00.	17.71	AAAA
ATOM	2150	11	LEU	270	16.6		42.435	62.298	1.00.	18.57	AAAA
	2151	CA	LEU	270	17.4	41	42.642	63.521	1.00	18.95	AAAA
ATOM	2152	CB	LEŲ	270	18.4	41	41.507	63.712	1.00	10.55	AAAA
MOTA	2152	CG	LEU	270	17.9	45	40.058			20.54	AAAA
ATOM	_		1 LEU	270	19.0		39.174	64.152	1.00	14.19	
MOTA	2154	CD.	TEO	270	16.6	79	39.853			19.05	AAAA
MOTA	2155		2 LEU		18.2		43.971		1.00	22.83	AAAA
MOTA	2156		LEU	270	18.4		44.643		1.00	18.25	AAAA
ATOM	2157	0	LEU	270	18.6	223	44.318		1.00	20.95	AAAA
ATOM	2158	N	SER	271			45.518			18.28	AAAA
ATOM	2159	CA		271	19.4		46.150			18.73	AAAA
ATOM	2160	CB	SER	271	18.9					22.28	AAAA
ATOM	2161		SER	271	19.3	347	45.327			19.98	AAAA
MOTA	2162		SER	271	20.	375	45.073			18.82	AAAA
ATOM	2163		SER	271	21.	122	43.899			16.17	AAAA
	2164		ASN	272	21.	828	45.994			10.17	AAAA
MOTA	2165			272	23.	270	45.695			20.70	AAAA
MOTA				272	24.	176	46.903	64.884		37.49	AAAA
ATOM				272	24.		47.378	3 63.483	3 1.00	54.53	
ATOM					24.	702	48.45		9 1.00	45.61	AAAA
MOTA	2168		1 ASN	272	23.		46.59		9 1.00	60.55	AAAA
MOTA	2169		2 ASN	272	23.		45.34		0 1.00	18.03	AAAA
ATOM) C	ASN	272			44.62			18.58	AAAA
ATOM		1 0	ASN	272		545	45.93			19.57	AAAA
ATOM			VAL	273	22.	831			_	0 22.12	AAAA
ATOM		_		273		053	45.69			0 26.91	AAAA
	·			273		345	46.76		_	0 39.69	AAAA
ATOM		-	31 VAL		22.	440	46.42		_	0 33.03	AAAA
ATOM	·		32 VAL		23.	034	48.11		_	0 34.73	AAAA
ATOM		-	VAL		22.	636	44.29		_	0 22.06	
atom	217					249	43.70	8 70.21	7 1.0	0 16.89	AAAA

	2170	NT	27.7	274	21.601	43.747	68.713	1.00 21.79	AAAA
ATOM	2179	N	ALA	274	21.207	42.383	69.035	1.00 21.31	AAAA
MOTA	2180	CA	ALA		19.806	42.092	68.475	1.00 18.95	AAAA
MOTA	2181	CB	ALA	274	22.259	41.451	68.400	1.00 17.83	AAAA
MOTA	2182	С	ALA	274		40.389	68.947	1.00 20.38	AAAA
ATOM.	2183	0	۸LA	274	22.569		67.245	1.00 16.01	AAAA
MOTA	2184	N	PHE	275	22.798	41.859		1.00 16.46	AAAA
MOTA	2185	CA	PHE	275.	23.828	41.089	66.536		AAAA
ATOM	2186	CB	PHE	275	24.220	41.835	65.253	1.00 24.56	
ATOM	2187	CG	PHE	275	25.363	41.222	64.492	1.00 23.01	AAAA
ATOM	2188	CD1	PHE	275	25.209	40.035	63.788	1.00 23.88	AAAA
ATOM	2189		PHE	275	26.590	41.877	64.443	1.00 22.40	AAAA
MOTA	2190		PHE	275	26.266	39.510	63.038	1.00 28.74	AAAA
	2191		PHE	275	27.654	41.365	63.700	1.00 35.03	AAAA
MOTA	2192	CZ	PHE	275	27.489	40.181	62.996	1.00 24.63	AAAA
ATOM	2193	C.	PHE	275	25.030	40.964	67.469	1.00 25.06	AAAA
MOTA	2193	o	PHE	275	25.619	39.888	67.632	1.00 19.71	AAAA
ATOM			LEU	276	25.366	42.080	68.101	1.00 17.49	AAAA
MOTA	2195	N	LEU	276	26.482	42.139	69.030	1.00 24.23	AAAA
MOTA	2196	CA		276	26.736	43.606	69.416	1.00 20.44	AAAA
MOTA	2197	CB	LEU		28.001	43.967	70.211	1.00 39.65	AAAA
MOTA	2198	CG	LEU	276	27.948	45.447	70.589	1.00 29.65	AAAA
MOTA	2199		LEU	276		43.143	71.460	1.00 32.41	AAAA
ATOM	. 2200	CD2	LEU	276	28.102		70.262	1.00 18.86	AAAA
ATOM ·	2201	С	LEU	276	26.180	41.278	70.727	1.00 17.99	AAAA
MOTA	2202	0	LEU	276	27.045	40.529		1.00 17.55	AAAA
ATOM	2203	N	LYS	277	24.968	41.374	70.805	1.00 19.87	AAAA
MOTA	2204	CA	LYS	277	24.644	40.552	71.964		AAAA
ATOM	2205	CB.	LYS	277	23.265	40.888	72.532	1.00 23.84	AAAA
ATOM	2206	CG	LYS	277	23.247	42.126	73.366	1.00 40.87	AAAA
ATOM	2207	CD	LYS	277	22.069	42.086	74.325	1.00 54.73	
ATOM	2208	CE	LYS	277	22.172	40.884	75.254	1.00 58.85	AAAA
MOTA	2209	NZ	LYS	277	21.051	40.844	76.228	1.00 55.34	AAAA
MOTA	2210	C	LYS	277	24.695	39.068	71.660	1.00 22.12	AAAA
ATOM	2211	O	LYS	277	25.074	38.264	72.513	1.00 22.19	AAAA
MOTA	2212	Ŋ	ALA	278	24.311	38.700	70.441	1.00 20.23	AAAA
ATOM	2213	CA	ALA	278	24.325	37.291	70.039	1.00 17.06	AAAA
ATOM	2214	СВ	ALA	278	23.798	37.154	68.589	1.00 19.27	AAAA
ATOM	2215	c	ALA	278	25.760	36.767	70.127	1.00 16.94	AAAA
	2216	ŏ	ALA	278	26.035	35.676	70.648	1.00 14.93	AAAA
MOTA	2217	N	PHE	279	26.679	37.564	69.606	1.00 18.88	AAAA
MOTA	2218	CA	PHE	279	28.099	37.231	69.626	1.00 21.01	AAAA
MOTA	2219	CB	PHE	279	28.880	38.392	68.998	1.00 16.79	AAAA
MOTA	2220	CG	PHE	279	30.370	38.264	69.120	1.00 20.23	AAAA
MOTA	2221		PHE	279	31.062	37.272	68.423	1.00 21.61	AAAA
MOTA	2222		PHE	279	31.088	39.159	69.905	1.00 23.24	AAAA
ATOM			PHE	279	32.461	37.185	68.509	1.00 30.98	AAAA
ATOM	2223	CE.	2 PHE	279	32.480	39.081	69.995	1.00 24.82	AÁAA
ATOM	2224			279	33.169	38.095	69.295	1.00 30.27	AAAA
MOTA	2225	CZ	PHE	279	28.576	36.995	71.067	1.00 25.48	AAAA
MOTA	2226	С	PHE	279	29.275	36.016		1.00 16.30	AAAA
MOTA	2227	0	PHE		28.194	37.898	71.962	1.00 22.30	AAAA
ATOM	2228	N	ASN	280	28.599	37.777	73.352		AAAA
MOTA	2229	CA	ASN	280	28.391	39.109	74.080	1.00 27.17	AAAA
MOTA	2230	CB	ASN	280	29.344	40.183	_	1.00 20.88	AAAA
MOTA	2231	CG		280	29.344	39.897			AAAA
MOTA	2232		1 ASN	. 280	30.503				AAAA
ATOM	2233	ND:	2 ASN	280	28.875	41.421			AAAA
ATOM	2234	C	ASN	280	27.928	36.636			AAAA
MOTA	223,5	0	ASN	280	28.510				AAAA
MOTA	2236	N	ILE	281	26.711				AAAA
MOTA	2237	CA	ILE	281	26.005				AAAA
MOTA	2238		ILE	281	24.566				AAAA
ATOM	2239	CG	2 ILE	281	23.977				AAAA
ATOM	2240		1 ILE		23.710				AAAA
ATOM	2241		1 ILE		22.279			1.00 26.47	AAAA
ATOM	2242		ILE		26.743			1.00 18.54	AAAA
ATOM	2243		ILE		26.830		74.801	1.00 19.69	
ATOM	2244		VAL		27.258	33.765	72.744	1.00 17.72	AAAA
21012								•	-

53/263 Figure 16-35

	_			2.52	27.976	32.553	72.352	1.00 14.89	AAAA
MOTA				282	28.359	32.565	70.852	1.00 18.50	AAAA
MOTA			VAL	282		31.440		1.00 20.73	አ ልፋភ
MOTA		CG1 '		282	29.342			1.00 17.49	AAAA
MOTA	2248	CG2	VAL	282	27.105	32.363	73.198	1.00 21.79	AAAA
ATOM	2249	C .	VAL	282	29.241	32.433	. •	1.00 25.80	AAAA
	2250		VAL	282	29.568	31.360	. •	1.00 25.00	AAAA
MOTA	2251	-	ARG	283	29.935	33.549	. •	1.00 19.14	
MOTA			ARG	283	31.161	33.548		1.00 23.51	AAAA
MOTA	2252.			283	31.851	34.898	74.023	1.00 20.64	AAAA
ATOM	2253		ARG		32.338		72.607	1.00 19.65	AAAA
MOTA	2254	_	ARG	283	32.754		72.474	1.00 25.70	AAAA
MOTA	2255		ARG	283	33.970		73.215	1.00 36.05	AAAA
MOTA	2256	NE	ARG	283		_	73.681	1.00 34.61	AAAA
ATOM	2257	CZ	ARG	283	34.277		73.488	1.00 35.23	AAAA
ATOM	2258	NH1	ARG	283	33.448		74.326	1.00 29.30	AAAA
ATOM	2259	NH2	ARG	283	35.419	38.332		1.00 25.44	AAAA
ATOM	2260	С	ARG	283	30.911		75.622	1.00 23.12	AAAA
	2261	Ō	ARG	283	31.754		76.272	1.00 25.12	AAAA
MOTA	2262	N	GLU	284	29.765		76.151		AAAA
MOTA	2263	CA	GLU	284	29.462	33.338	77.553	1.00 31.77	
MOTA			GLU	284	28.243		78.033	1.00 30.96	AAAA.
MOTA	2264	CB		284	28.399		77.957	1.00 50.56	AAAA
MOTA	2265	CG	GLU		27.13		78.365	1.00 63.75	AAAA
MOTA	2266	CD	GLU	284	26.085		77.738	1.00 68.93	AAAA
ATOM	2267		GLU	284	27.19		79.309	1.00 72.01	AAAA
MOTA	2268	OE2	GĻŪ	284			77.733	1.00 31.57	AAAA
ATOM	2269	С	GLU	284	29.18		78.803	1.00 33.08	AAAA
MOTA	2270	0	GLU	284	29.41		76.686	1.00 23.37	AAAA
MOTA	2271	N	VAL	285	28.67		76.774	1.00 23.25	AAAA
ATOM	2272	CA	VAL	285	28.35		75.789	1.00 24.77	AAAA
ATOM	2273	CB	VAL	285	27.22			1.00 26.98	AAAA
ATOM	2274	CG1	VAL	285	26.95		75.881	1.00 24.98	AAAA
ATOM	2275		VAL	285	25.94	0 30.181	76.107	1.00 24.30	AAAA
	2276	C ·	VAL	285	29.56	7 28.942		1.00 31.41	AAAA
ATOM	2277	Ö	VAL	285	29.83	3 27.983		1.00 25.34	AAAA
MOTA	2278	N	PHE	286	30.31	6 29.276	75.431	1.00 27.27	AAAA
MOTA			PHE	286	31.46	3 28.457		1.00 22.47	
ATOM	2279	CA		286	31.28		73.667	1.00 22.26	AAAA
MOTA	2280	CB	PHE	286	30.16	8 26.918	73.536	1.00 25.71	AAAA
ATOM	2281	CG	PHE		28.97			1.00 22.88	AAAA
MOTA	2282		PHE	286	30.29			1.00 24.49	AAAA
MOTA	2283		PHE	286	27.91			1.00 19.85	AAAA
MOTA	. 2284		PHE	286	29.24			1.00 27.48	AAAA
MOTA	2285	CE2		286			_	1.00 24.59	AAAA
ATOM	2286	CZ	PHE	286	28.05		· —		AAAA
ATOM	2287	С	PHE	286	32.85				AAAA
ATOM	2288	0	PHE	286	33.84				AAAA
ATOM	2289	N	GLY	287	32.9				AAAA
ATOM	2290	CA	GLY	287	34.2		5 75 901		AAAA
MOTA	2291		GLY	287	34.7		9 74.562		AAAA
	2292		GLY	287	33.8		0 • 73.667		AAAA
MOTA	2293		GLU	288	36.0	17 31.57			AAAA
MOTA	2294			288	36.5		5 73.170		AAAA
ATOM				288	37.9		2 73.410		AAAA
ATOM	2295			288	37.9				
MOTA				288	37.1		2 73.745	1.00 43.77	AAAA
ATOM					37.2			1.00 36.82	AAAA
MOTA			1 GLU	288	36.3			1.00 51.56	AAAA
MOTA			2 GLU	288	36.6			2 1.00 20.85	AAAA
ATOM	2300) C	GLU	288	36.9			2 1.00 18.10	AAAA
ATOM		. 0	GLU	288				3 1.00 26.12	AAAA
ATOM		N	GLY	289	36.4	-			AAAA
ATOM		CA	GLY	289	36.5				AAAA
ATOM			GLY	289	37.1				AAAA
ATOM			GLY	289	37.6				AAAA
	·	_	VAL	290	37.0				AAAA
ATOM				290	37.5				AAAA
ATOM			-	290	38.1	150 30.19			. AAAA
ATOM		0 00	1 VAL		38.6				AAAA
4OTA			2 VAL		39.2		gg <u>6</u> 5.92	0 1.00 20.40	· Marie
MOTA	4 231	0 00	, VAL				=	•	

	2211	~		290	36.408	32.040	65.427	1.00 20.90	ششش
MOTA	2311		VAL			31.439	65.193	1.00 19.33	AAAA
MOTA	2312	0	VAL	290	35.351				AAAA
ATOM	2313	N	TYR	291	36.598	33.325	65.125	1.00 15.37	
ATOM	2314	CA	TYR	291	35.543	34.140	64.524	1.00 16.79	AAAA
			TYR	291	35.412	35.438	65.317	1.00 16.42	AAAA
MOTA	2315	CB			35.375	35.181	66.808	1.00 18.60	AAAA
ATOM	2316	CG	TYR	291				1.00 21.77	AAAA
MOTA	2317	CD1	TYR	291	36.366	35688	67.659		
ATOM	2318	CE1	TYR	291	36.368	35.385	69.030	1.00 22.55	AAAA
					34.388	34.374	67.361	1.00 17.34	AAAA
ATOM	2319	CD2		. 291			68.718	1.00 20.24	AAAA
MOTA	2320	CE2	TYR	291	34.381	34.066		1.00 25.85	AAAA
MOTA	2321	CZ	TYR	291 -	35.367	34.568	69.545		
	2322	OH	TYR	291	35.338	34.246	70.885	1.00 25.57	AAAA
ATOM				291	35.720	34.446	63.031	1.00 14.97	AAAA
MOTA	2323	С	TYR		36.773	34.921	62.586	1.00 15.21	AAAA
MOTA	2324	0	TYR	291				1.00 14.06	AAAA
MOTA	2325	N	LEU	292	34.660	34.189	62.273		
ATOM	2326	CA	LEU	292	34.674	34.392	60.824	1.00 15.03	AAAA
			LEU	292	34.461	33.046	60.108	1.00 13.66	AAAA
ATOM	2327	CB			35.342	31.856	60.496	1.00 19:04	AAAA
MOTA	2328	CG	LEU	292				1.00 15.17	AAAA
MOTA	2329	CD1	LEU	292	34.909	30.615	59.665		
ATOM	2330	CD2	LEU	292	36.792	32.190	60.252	1.00 19.18	AAAA
			LEU	292	33.564	35.327	60.396	1.00 16.62	AAAA
MOTA	2331	С				35.488	61.107	1.00 14.76	AAAA
MOTA	2332	0	LEU	292	32.575				AAAA
MOTA	2333	N	GLY	293	33.724	35.932	59.216	1.00 18.62	
ATOM	2334	CA	GLY	293	32.696	36.816	58.699	1.00 17.10	AAAA
			GLY	293	.31.611	35.954	58.068	1.00 23.44	AAAA
MOTA	2335	C			31.407	34.798	58.459	1.00 23.60	AAAA
MOTA	2336	С	GLY	293				1.00 24.96	AAAA
ATOM	2337	N	GLY	294	30.915	36.501	57.085		AAAA
ATOM	2338	CA	GLY	294	29.871	35.738	56.434	1.00 27.07	
	2339	C	GLY	294	29.132	36.632	55.474	1.00 28.41	AAAA
ATOM					29.605	37.722	55.167	1.00 25.66	AAAA
MOTA	2340	0	GLY	294			55.011	1.00 20.33	AAAA
MOTA	2341	N	GLY	295	27.972	36.168		1.00 20.14	AAAA
ATOM	2342	CA	GLY	295	27.164	36.936	54.085		
MOTA	2343	С	GLY	295	26.742	38.244	54.730	1.00 25.34	AAAA
			GLY	295	26.550	38.317	55.942	1.00 28.89	AAAA
MOTA	2344	.0			26.614	39.274	53.909	1.00 28.52	AAAA
ATOM	2345	N	GLY	296			54.367	1.00 23.21	AAAA
MOTA	2346	CA	GLY	296	26.230	40.598			AAAA
MOTA	2347	С	GLY	296	26.314	41.342	53.059	1.00 26.34	
	2348	Ö	GLY	296	27.359	41.324	52.414	1.00 26.05	AAAA
MOTA				297	25.235	42.008	52.662	1.00 22.61	· AAAA
ATOM	2349	N	TYR			42.644	51.360	1.00 22.58	AAAA
МОТК	2350	CA	TYR	297	25.228			1.00 23.68	AAAA
MOTA	2351	CB	TYR	297	24.265	41.861	50.457		AAAA
ATOM	2352	CG	TYR	297	24.502	40.352	50.521	1.00 25.14	
		CDI		297	23.981	39.571	51.568	1.00 28.31	AAAA
ATOM	2353				24.269	38.196	51.662	1.00 24.18	AAAA
MOTA	2354		TYR	297		39.725	49.577		AAAA .
ATOM	2355	CD2	TYR	297	25.307			1.00 27.09	AAAA
ATOM	2: 36	CE2	TYR	297	25.598	38.362	49.664		
ATOM	257	CZ	TYR	297	25.085	37.606	50.696	1.00 28.68	AAAA
			TYR	297	25.407	36.261	50.739	1.00 28.17	АААА
MOTA	2538	ОН			24.916	44.138	51.320	1.00 24.98	AAAA
atom	2359	С	TYR	297			50.237	1.00 26.51	AAAA
ATOM	2360	0	TYR	2 97	24.841	44.714			AAAA
ATOM	2361	N	HIS	298	24.740	44.752	52.491		
	2362	CA	HIS	298	24.480	46.188	52.591	1.00 23.44	AAAA
ATOM					23.325			1.00 23.37	AAAA
MOTA	2363	CB	HIS	298.					AAAA
MOTA	2364	CG	HIS	298	22.956				AAAA
MOTA	2365	CD	2 HIS	298	23.491				AAAA
	2366		HIS	298	22.011	48.487	52.707	1.00 38.29	
MOTA				298	21.978	_	52.868	1.00 25.60	AAAA
ATOM	2367		1 HIS						AAAA
ATOM	2368	NE:	2 HIS	298	22.867				AAAA
MOTA	2369	С	HIS	298	25.757			1.00 23.11	AAAA
ATOM	2370		HIS	298	26.135	46.439			
				399	26.430		52.445	1.00 21.07	AAAA
ATOM	2371	7	PRO		26.078				AAAA
ATOM	2372			299					AAAA
ATOM	2373	CA	PRO	299	27.676				AAAA
ATOM	2374			299	28.041				AAAA
	2375				26.678	49.600	51.196	1.00 35.16	
ATOM					27.644			1.00 25.75	AAAA
ATOM	2376	С	PRO	433	27.047		•		•

55/263 Figure 16-37

			6				
				48.845	55.068	00 24.36	AAAA
MOTA	2377 O P	RO 299	- 4 660		54.504	.00 24.48	AAAA
ATOM	2378 N T	YR 300	26.602		55.766	.00 22.94	AAAA
ATOM		YR 300	26.495		55.734	.00 25.24	AAAA
		YR 300	25.317			1.00 30.44	AAAA
ATOM		YR 300	25.411	32.0		1.00 26.01	AAAA
MOTA			26.366			1.00 29.66	AAAA
MOTA		YR 300				1.00 29.00	AAAA
MOTA						1.00 31.37	AAAA
MOTA	2384 CD2 T	YR 300		54.677		1.00 35.88	
MOTA	2385 CE2 T			54.689		1.00 38.44	AAAA
MOTA		TYR 300		55.700	51.990	1.00 33.41	AAAA
MOTA	250	TYR 300	26 200	49.515	56.921	1.00 22.80	AAAA
ATOM		TYR 300		49.643	57:983	1.00 19.14	AAAA
ATOM		TYR 300		48.568	56.705	1.00 23.08	AAAA
ATOM		ALA 30:		47.589	57.719	1.00 21.68	AAAA
ATOM	2391 CA 7	ALA 30:		46.687	57.198	1.00 19.52	- AAAA
MOTA		ALA 30:	23.893		58.098	1.00 23.49	AAAA
		ALA 30	26.216	46.762	59.274	1.00 21.21	AAAA
MOTA	2000	ALA 30	1 26.507	46.570		1.00 23.19	AAAA
MOTA		LEU 30	2 26.904	46.275	57.072	1.00 20.66	AAAA
MOTA	2333	LEU 30	2 28.090	45.463	57.234	1.00 23.31	AAAA.
ATOM		LEU 30		45.057	55.844	1.00 23.31	AAAA
MOTA	233.				55.611	1.00 36.66	AAAA
ATOM			-		54.170	1.00 38.41	
ATOM	2399 CD1				55.879	1.00 28.52	AAAA
MOTA	2400 CD2				58.012	1.00 22.08	AAAA
MOTA		LEU 30			59.020	1.00 20.43	AAAA
MOTA		LEU 30			57.549	1.00 19.58	AAAA
MOTA	2403 N	ALA 30			58.197	1.00 19.77	AAAA
ATOM	2404 CA	ALA 30			57.432	1.00 21.69	AAAA
ATOM	2405 CB	ALA 30			59.657	1.00 19.19	AAAA
ATOM	2406 C	ALA 30	30.324		60.489	1.00 22.51	AAAA
MOTA	2407 0	ALA 30	31.216		59.993	1.00 20.12	AAAA
MOTA	2408 N	ARG 30	29.128		61.377	1.00 18.04	AAAA
	2409 CA		04 28.872			1.00 21.09	AAAA
ATOM	2410 CB		04. 27.56		61.511	1.00 24.34	AAAA
MOTA	2411 CG		04 27.53	2 51.481		1.00 27.09	AAAA
ATOM			04 26.25	9 52.259		1.00 45.73	AAAA
MOTA			04 25.09	0 51.398		1.00 43.73	AAAA
MOTA		• • • • •	04 23.96	5 51.549	61.808	1.00 39.02	AAAA
MOTA	2414 CZ		04 23.81		62.677	1.00 28.40	AAAA
MOTA			04 22.99	1 50.667	61.647	1.00 41.77	AAAA
MOTA			04 28.79		62.280	1.00 21.00	AAAA
MOTA	2417 C				63.397	1.00 19.45	AAAA
MOTA	2418 O			_		1.00 19.93	
MOTA	2419 N					1.00 18.70	AAAA
ATOM	2420 CA	_			61.933	1.00 18.26	AAAA
ATOM	2421 CB					1.00 16.46	AAAA
ATOM			305 29.31			1.00 9.49	AAAA
MOTA			305 29.56			1.00 1.92	AAAA
MOTA			30.15				AAAA
MOTA		TRP	306 31.42				AAAA
ATOM		TRP	306 32.15			01 74	AAAA
ATOM		TRP	306 31.6		-	40 00	AAAA
			306 31.85				AAAA
ATOM			306 31.2		5 58.949		AAAA
ATOM			306 32.5	07 42.55	6 57.87		AAAA
MOTA			306 30.9	19 41.61	0 60.99	05.	AAAA
MOTA			306 30.6	80 40.53	5 60.17		AAAA
ATOM			306 31.2		2 57.78		AAAA
ATOM	4 2433 CZ		306 32.5		1 56.72	5 1.00 29.69	AAAA
ATON	•	• • • • • • • • • • • • • • • • • • • •	^		3 56.69	1 1.00 17.04	
MOTA	4 2435 CH				8 63.01	8 1.00 20.26	
OTA						2 1.00 21.20	AAAA
ATO						1 1.00 18.60	AAAA
ATO			307 .32.0			2 1.00 16.88	AAAA
ATO		THR	307 32.8			2 1.00 22.05	AAAA
ATO	M 3440 CE	THR	307 32.5			1.00 21.58	AAAA
ATO	M 2441 00	1 THR	307 33.2			/	AAAA
ATO		32 THR	307 33.1	20 45.0	, , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		•
710			•				

					- 0 403	47 146	65.187	1.00 17.47	AAAA
ATOM	2443	C '	THR	307	32.493		66.039	1.00 18.94	AAAA
ATOM	2444	0	THR	307	33.377		65.487	1.00 19.97	AAAA
MOTA	2445	N	LEU	308	31.216			1.00 22.54	AAAA
ATOM	2446	CA	LEU	308	30.834	46.587		1.00 21.13	AAAA
ATOM	2447	CB	LEU	308	29.318	46.365		1.00 22.82	AAAA
MOTA	2448	CG	LEU	308	28.415	47.579		1.00 25.01	AAAA
MOTA	2449	CD1	LEU	308	26.937	47.219		1.00 29.09	AAAA
MOTA	2450	CD2		308	28.870	48.710		1.00 22.98	AAAA
ATOM	2451		LEU	308	31.578	45.331	•	1.00 22.35	AAAA
ATOM	2452		LEU	308	32.056	45.250			AAAA
ATOM	2453	N	ILE	309	31.677	44.342	66.454	1.00 22.54	AAAA
MOTA	2454	CA	ILE	309	32.377	43.114	66.801	1.00 17.09	AAAA ·
ATOM	2455	CB	ILE	309	32.318	42.073	65.664	1.00 18.12	AAAA
MOTA	2456	CG2		309	33.170	40.870	66.033	1.00 24.16	AAAA
MOTA	2457		ILE	309	30.871	41.655	65.399	1.00 18.26	AAAA
MOTA	2458	CD1		309	30.205	40.989	66.586	1.00 26.57.	
	2459	C	ILE	309	33.849	43.410	67.067	1.00 20.84	AAAA
MOTA	2460	Ö	ILE	309	34.426	42.905	68.031	1.00 25:20	AAAA
ATOM	2461	N	TRP	310	34.466	44.223	66.214	1.00 16.86	AAAA
MOTA	2462	CA	TRP	310	35.888	44.517	66.411	1.00 17.86	AAAA
MOTA		CB	TRP	310	36.439	45.319	65.235	1.00 14.83	AAAA
ATOM	2463		TRP	310	37.879	45.648	65.397	1.00 16.63	AAAA
MOTA	2464	CG	TRP	310	38.967	44.718	65.560	1.00 18.62	AAAA
MOTA	2465			310	40.131	45.478	65.799	1.00 25.60	AAAA
MOTA	2466	CE2		310	39.069	43.319	65.529	1.00 24.06	AAAA
MOTA	2467		TRP	310	38.418	46.895	65.533	1.00 19.82	AAAA
MOTA	2468		TRP		39.768	46.801	65.777	1.00 25.84	AAAA
MOTA	2469		TRP	310	41.383	44.887	66.006	1.00 26.14	AAAA
MOTA	2470	CZ2		310	40.308	42.730	65.735	1.00 24.89.	AAAA
MOTA	2471	CZ3	TRP	310	41.452	43.515	65.971	1.00 24.96	AAAA
MOTA	2472		TRP	310	36.112	45.263	67.733	1.00 20.86	AAAA
MOTA	2473	С	TRP	310	37.050	44.957	68.478	1.00 21.38	AAAA
ATOM	2474	0	TRP	310	35.242	46.226	68.030	1.00 24.22	AAAA
ATOM	2475	N	CYS	311		46.971	69.280	1.00 27.66	AAAA
ATOM	2476	CA	CYS	311	35.349	48.097	69.343	1.00 25.37	AAAA
ATOM	2477	CB	CYS	311	34.297	49.528	68.253	1.00 27.22	AAAA
MOTA	2478	SG	CYS	311	34.618	46.042	70.490	1.00 22.95	AAAA
MOTA	2479	С	CYS	311	35.224	46.180	71.441	1.00 25.47	AAAA
ATOM	2480	0	CYS	311	35.986		70.457	1.00 17.03	AAAA
ATOM	2481	N	GLU	312	34.284	45.089	71.569	1.00 22.44	AAAA
MOTA	2482	CA	GLU	312	34.120	44.129	71.280	1.00 20.81	. AAAA
ATOM	2483	CB	GLU	312	33.011	43.110 43.048	72.258	1.00 43.65	AAAA
ATOM	2484	CG	GLU	312	31.856		-	1.00 29.63	AAAA
ATOM	2485	CD	GLU	312	32.265	42.971		1.00 38.85	AAAA
ATOM	2486	OE1	GLU	312	33.022	42.059		1.00 53.22	AAAA
ATOM	2487	OE2	GLU	312	31.804	43.844	71.778	1.00 27.47	AAAA
ATOM	2488	С	GLI	312	35.395	43.309		1.00 22.33	AAAA
MOTA	2489	0	GLi.	312	35.899				AAAA
ATOM	2490	N	LEU	313	35.899				AAAA
MOTA	2491	CA	LEU	313	37.101				AAAA
ATOM		СВ	LEU	313	37.380		69.422		AAAA
ATOM		CG	LEU	313	36.403		_		AAAA
ATOM			1 LEU	313	36.839				AAAA
ATOM			2 LEU	313	36.379				AAAA
ATOM			LEU	. 313	38.343	42.670			AAAA
ATOM			LEU	313	39.119	42.205			AAAA
ATOM			SER	314	38.492			1.00 19.41	AAAA
				314	39.627	44.753			AAAA
MOTA					39.625		69.663		AAAA
MOTA					40.732	46.696	69.759		AAAA
MOTA			SER		39.619		9 72.144	1.00 30.18	AAAA
MOTA			SER		40.63	45.96	9 72.590		алал Алал
MOTA			GLY		38.47	7 45.40	7 72.806		алал Алад
MOTA					38.39		9 74.119		алал Алад
ATOM			GLY		38.32		8 74.109		аааа Аааа
ATOM				_	38.81		8 75.022		
ATOM			GLY ARG	_	37.73			5 1.00 31.33	AAAA .
ATCM	2508	3 N	WKG	, , , , ,	3		•		•

57/263

								73.042	1.00 39.10	AAAA
ATOM	2509	CA Z	ARG	316	_	.631	49.536		1.00 45.15	AAAA
ATOM		CB 2	ARG	316		.347	50.108		1.00 46.02	AAAA
ATOM			ARG	316		.722	49.834		1.00 44.83	AAAA
ATOM		CD.	ARG	316		.620	50.459		1.00 37.91	AAAA
ATOM			ARG	316		.898	49.767	69.357	1.00 37.31	AAAA
			ARG	316	40	.945	50.219	68.674		AAAA
MOTA	2515		ARG	316	40	.854	51.371	68.034	1.00 50.24	AAAA
ATOM	2516		ARG	316	42	.054	49.493	68.572	1.00 34.51	
ATOM	2517		ARG	316	36	.179	49.984	73.058	1.00 35.43	AAAA
MOTA	2518		ARG	316	35	.292	49.271	72.596	1.00 30.71	AAAA
MOTA	2519		GLU	317		.931	51.162	73.612	1.00 34.06	AAAA
MOTA			GLU	317		.569	51.663	73.671	1.00 37.96	AAAA
MOTA	2520		GLU	317		.481	52.914	74.552	1.00 43.60	AAAA
ATOM	2521		GLU	317		.961	52.630	75.960	1.00 60.36	AAAA
MOTA	2522		GLU	317		.768	51.575	76.701	1.00 70.70	AAAA
MOTA	2523	CD		317		.375	51.217	77.832	1.00 76.71	AAAA
MOTA	2524		GLU	317		.793	51.104	76.162	1.00 78.36	AAAA
MOTA	2525		GLU	317		.068	51.958	72.280	1.00 35.65	AAAA
MOTA	2526	C	GLU	317		.843	52.322	71.390	1.00 32.91	AAAA
MOTA	2527	0	GLU	317		2.767	51.772	72.094	1.00 30.52	AAAA
ATOM	2528	N	VAL			2.138	52.012	70.808	1.00 37.04	AAAA
MOTA	2529	CA	VAL	318		0.877	51.138	70.638	1.00 36.48	AAAA
MOTA	2530	CB	VAL	318		278	51.366	69.268	1.00 40.43	AAAA
MOTA	2531	CG1		318		1.222	49.674	70.846	1.00 33.75	AAAA
MOTA	2532		VAL	318		1.719	53.465	70.737	1.00 28.96	AAAA
MOTA	2533	C	VAL	318 .		0.930	53.915	71.556	1.00 33.56	AAAA
MOTA	2534	0	VAL	318	3	2.258	54.229	69.773	1.00 29.20	AAAA
MOTA	2535	N	PRO	319		3.243	53.924	68.726	1.00 31.62	AAAA
MOTA	2536	CD	PRO	319		1.858	55.637	69.684	1.00 28.99	AAAA
MOTA	2537	CA	PRO	319	3	2.709	56.154	68.528	1.00 32.17	AAAA
MOTA	2538	CB	PRO	319		2.850	54.926	67.664	1.00 41.36	AAAA
MOTA	2539	CG	PRO	319		0.365	55.680	69.377	1.00 36.95	AAAA
MOTA	2540	C	PRO	319		9.847	54.795	68.695	1.00 32.86	AAAA
ATOM	2541	0	PRO	319		9.646	56.683		1.00 34.61	AAAA
MOTA	2542	N	GLU	320		8.230	56.657		1.00 35.13	AAAA
MOTA	2543	CA	GLU	320		7.419	57.416		1.00 52.97	AAAA
MOTA	2544	CB	GLU	320		7.751	58.875		1.00 56.06	AAAA
MOTA	2545	CG	GLU	320		6.822			1.00 65.58	AAAA
ATOM	2546	CD	GLU	320		5.604			1.00 64.27	AAAA
MOTA	2547	OE1		320		7.306			1.00 72.99	AAAA
ATOM	2548	OE2		320		27.943			1.00 35.13	AAAA
MOTA	2549	С	GLU	320		26.916	_		1.00 37.43	AAAA
ATOM	2550	0	GLU	320		28.880			1.00 28.22	AAAA
MOTA	2551	N	LYS	321		28.700			1.00 36.58	AAAA
ATOM	2552	CA	LYS	321		28.666	-			AAAA
MOTA	2553	CB	LYS	321		29.987				AAA".
ATOM	2554	CG	LYS	321		30.305		-	1.00 57.27	AAA:
ATOM	2555	CD	LYS	321		31.733				AAA (
MOTA	2556	CE	LYS	321		32.024				AAAA r
MOTA	2557	NZ	LYS	321		29.823				1 AAAA
MOTA	2558	С	LYS	321		30.91				3 AAAA
MOTA	2333	0	LYS	321		29.549				l aaar
MOTA	2560		LEU	322		30.57				5 AAAF
MOTA	2561	CA		322		29.96	-			1 AAAF
ATOM	2562	CB		322						4 AAAF
MOTA	2563	CG		322		29.24				4 AAA?
ATOM			1 LEU	322		29.00	-			1 AAAJ
ATOM			2 LEU	322		30.07				s AAA
MOTA			LEU	322		31.22				5 AAAi
ATOM			LEU	322		30.54				
ATOM			ASN	323		32.53				
ATOM				323		33.20	8 60.82			•
ATOM				323		34.70	1 60.73			
ATOM		i co		323		35.48				3 AAA
ATOM		OI	1 ASN	323		35.21				
ATOM			2 ASN	323		36.45	5 60.80			
, ATOM	-					33.02	7 61.1	11 20.02	. I.VU 34.0	• .

					~ ~ .	20 6	50.395	60.075	1.00 34.06	AAAA
MOTA	2575		ASN	323	32.4			60.390	1.00 23.73	AAAA
MOTA	2576	N	ASN	324	33.5				1.00 31.06	AAAA
ATOM	2577	CA	ASN	324	33.3		62.720	58.995	1.00 31.00	AAAA
MOTA	2578		ASN	324	33.8		64.155	58.784		AAAA
	2579	-	ASN	324	32.9		65.163	59.450	1.00 45.77	
ATOM		OD1		324	31.	765	65 [.] . 189	59.206	1.00 39.55	AAAA
ATOM		ND2		324	33.5		66.008	60.291	1.00 39.12	AAAA
MOTA	2581			324	34.0		61.810	57.971	1.00 24.87	AAAA
MOTA	2582	C	ASN	324	33.		61.483	56.941	1.00 31.91	AAAA
MOTA	2583	0	ASN		35.		61.405	58.250	1.00 27.73	AAAA
MOTA	2584	14	LYS	325	35.		60.538	57.333	1.00 29.55	AAAA
MOTA	2585	CA	LYS	325			60.182	57.929	1.00 37.43	AAAA
MOTA	2586	CB	LYS	325	37.			57.004	1.00 44.84	AAAA
ATOM	2587	CG	LYS	325	38.		59.396	57.502	1.00 50.89	AAAA
ATOM	2588	CD	LYS	325	39.		59.435		1.00 54.82	AAAA
ATOM	2589	CE	LYS	325	40.		60.873	57.561	1.00 65.70	AAAA
MOTA	2590	NZ	LYS	325	41.		60.980	57.969	1.00 27.99	AAAA
MOTA	2591	.C	LYS	325	35.	161	59.279	57.078	1.00 27.33	AAAA
	2592	Ō	LYS ·	325	35.	016	58.836	55.938	1.00 31.80	
ATOM	2593	N	ALA	326	34.	602	58.721	58.142	1.00 26.07	AAAA
MOTA	2594	CA	ALA	326		781	57.506	58.030	1.00 24.38	AAAA
MOTA				326		470	56.982	59.428	1.00 27.34	AAAA
MOTA	2595	CB	ALA			478	57.709	57.231	1.00 25.78	AAAA
MOTA	2596	С	ALA	326		131	56.890	56.369	1.00 27.37	AAAA
MOTA	2597	0	ALA	326		749	58.790	57.496	1.00 27.31	AAAA
MOTA	2598	N	LYS	327			59.027	56.758	1.00 28.56	AAAA
MOTA	2599	CA	LYS	327		502	60.251	57.313	1.00 28.87	AAAA
MOTA	2600	CB	LYS	327		759	60.209	58.812	1.00 36.72	AAAA
ATOM	2601	CG	LYS	327		491		59.255	1.00 40.34	AAAA
MOTA	2602	CD	LYS	327		643	61.407		1.00 38.91	AAAA
ATOM	2603	CE	LYS	327		. 645	61.594	60.769	1.00 47.67	AAAA
ATOM	2604	NZ	LYS	327		.163	60.429	61.556	1.00 47.07	AAAA
MOTA	2605	C	LYS	327	30	.792	59.244	55.269	1.00 23.12	AAAA
ATOM	2606	ō	LYS	327	30	.097	58.719	54.393	1.00 27.76	AAAA
	2607	N	GLU	328	31	. 829	60.015	54.972	1.00 31.59	AAAA
MOTA	2608	CA	GLU	328	32	.167	60.265	53.581	1.00 28.93	
MOTA		CB	GLU	328		. 257	61.332	53.515	1.00 32.30	AAAA
ATOM	2609			328		.745	62.652	54.067	1.00 47.50	AAAA
MOTA	2610	CG	GLU	328		.764	63.772	54.032	1.00 46.67	AAAA
ATOM	2611	CD	GLU			.325	64.037	52.951	1.00 56.88	AAAA
MOTA	2612		1 GLU	328		.984	64.402	55.087	1.00 42.24	AAAA
MOTA	2613		2 GLU	328		.575	58.975		1.00 30.46	AAAA
MOTA	.2614	С	GLU	328			58.753		1.00 26.29	AAAA
MOTA	2615	0	GLU	328		.226	58.112		1.00 24.93	LAAA
ATOM	2616	N	LEU	329		.292	56.828			AAAA
ATOM	2617	CA	LEU	329		.701				AAAA
ATOM	2618	CB	LEU	329		.478	56.003	_		AAAA
ATOM	2619		LEU	329		.730	54.522			AAAA
MOTA	2620		1 LEU	329	. 2	.569	54.413			AAAA
ATOM	2621		2 LEU	329		.412	53.833			AAAA
	2622		LEU	329	2ر	.443	56.059			AAAA
ATOM	2623		LEU	329		.310	55.650	51.453		AAAA
MOTA			LEU	. 330	31	.516	55.881	53.539	1.00 23.02	
ATOM	2524			330		.289	55.145		1.00 23.85	AAAA
ATCM				330		.414	55.030		1.00 21.74	AAAA
ATOM						0.039	54.252		1.00 25.29	AAAA
MOTA	2627			330		3.984	54.053		1.00 30.55	AAAA
MOTA	2628		1 LEU	330			52.90			AAAA
ATOM	2629	CE	2 LEU	330		.538	55.769			AAAA
ATCM	2630) C	LEU	330		.491				AAAA
ATOM		L O	LEU	330		3.968				AAAA
ATCM			LYS	331		9.404		·		AAAA
MOTA			LYS	331		B.667				
			-	331		8.537				
ATOM				331		7.814				
ATOM				331		7.688				
ATOM				331		6.828			9 1.00 53.98	
ATOM				331	-	6.634		5 52.23		
ATCM				331		9.315			2 1.00 30.C7	·
ATOM			LYS	331		8.634				, AAAA
ATON	264	0 0	LYS		2	J. 75 -		•		•
• •			•							

59/263

				30.608 57.305 49.657 1.00 30.08	aaaa
MOTA	2641 N	SER	332	30.000 37.303	AAAA
ATOM	2642 CA	SER	332	31.322 37.133	aaaa
ATOM	2643 CB	SER	332	34.534 37.522	aaaa
ATOM	2644 OG		332	33.330 30.103 1 00 37 77	AAAA
ATOM	2645 C	SER	332	31.001 33.001	AAAA
MOTA	2646 0	SER	332	31.334 33.002 1 00 30 61	AAAA
ATOM	2647 N	ILE	333	30.521 54.005	AAAA
	2648 CF		333	30.219	AAAA
ATOM	2649 CI		333	29.901 32.332 100 37 05	AAAA
ATOM	2650 CC	32 ILE	333	29.738 31.114	AAAA
ATOM	2651 C	31 ILE	333	31.013 32.303	AAAA
MOTA	-	D1 ILE	333	30.700 31.727 4 00: 43 43	AAAA
ATOM		ILE	333 .	78.330 33.020	AAAA
ATOM		_	333	21.803 33.070 2.00 47 07	AAAA
MOTA			334	29.136 33.423 200 53 47	AAAA
MOTA	2655 N		334	27.976 53.447 44.847 1.00 53.47 -	AAAA
ATOM	2656 C		334	28.333 53.535 43.358 1.00 61.32	AAAA
MOTA	2657· C		334	29.223 52.406 42.89/ 1.00 64.75	AAAA
MOTA	2658 C	D1 ASP	334	29 379 52.248 41.566 1.00 66.33	AAAA
MOTA		D2 ASP	334	29.779 51.691 43.758 1.00 65.93	AAAA
MOTA			334	27 248 52.144 45.161 1.00 51.03	AAAA
MOTA	2661 C		334	27 626 51.067 44.699 1.00 46.80	AAAA
MOTA	2662 C		335	26.215 52.249 45.986 1.00 34.90	AAAA
MOTA	2663 N			25 455 51.080 46.392 1.00 50.60	
MOTA		A PHE	335	25 413 51.003 47.920 1.00 39.55	AAAA
MOTA		B PHE	335	24 380 50 054 48,440 1.00 37.98	AAAA
ATOM		G PHE	335	24.300 48.715 48.054 1.00 46.72	AAAA
ATOM		D1 PHE	335	24.363 50.506 49.262 1.00 34.23	AAAA
ATOM	. 2668	D2 PHE	335	23.300 47.842 48.478 1.00 49.80	AAAA
ATOM	2669	CE1 PHE	335	22 261 49 644 49 689 1.00 48.51	AAAA
ATOM	2670	CE2 PHE	335	22.373 49.309 49.296 1.00 40.44	AAAA
MOTA	2671	CZ PHE	335	44.3/3 40.303	AAA A
ATOM	2672	C PHE	335 _.	24.033 31.000 45 370 1 00 59 24	AAAA
MOTA		O PHE	335	23.603 93.553 45 000 1 00 50 94	AAAA
ATOM		N GLU	336	23.302 32.100	AAAA
MOTA		CA GLU	336	21.923 34.123 120 60 27	AAAA
		CB GLU	336	21.000	AAAA
MOTA		CG GLU	336	20.430 31.027	AAAA
MOTA		CD GLU	336	20.332 31.223 1 00 84 64	AAAA
MOTA		OE1 GLU	336	70.860 30.043	AAAA
ATOM		OE2 GLU	336	19./// 21.001	AAAA
ATOM		C GLU	336	21.000 51.455	አ አአአ
ATOM			336	21.219 49.91/ 40.00	AAAA
ATOM	2682		337	20.131 31.07	AAAA
MOTA	2683		337	19.207 30.000	AAAA
ATOM	2684		337	18.510 51.822 48.764 1.00 47.75	AAAA
MOTA	2685		337	10 004 51 205 50.0// 1.00 33.02	AAAA
MOTA	2686		337	19.269 50.720 50.904 1.00 50.17	AAAA
MOTA		CD GLU	337	20.111 51.548 51.345 1.00 30.05	AAAA
ATOM	2688	OE1 GLU	337	19 358 49,494 51.105 1.00 51.25	AAAA
ATOM		OE2 GLU		18 294 50.083 46.936 1.00 49.43	AAAA
ATOM		C GLU	337	17 816 50.588 45.916 1.00 48.61	AAAA
ATOM	2691	O GLU		10 015 10 037 47 313 1.00 48.15	AAAA
ATOM		N PHE		17 092 48,000 46.547 1.00 48.12	
ATOM		CA PHE		17.070 46 658 47.249 1.00 54.54	AAAA
ATOM		CB PHE		10.000 45 777 46 548 1.00 57.22	1AAA
ATOM		CG PHE		15.883 45.366 45.243 1.00 60.01	AAA
ATOM		CD1 PHE	338	10.113 45.398 47.171 1.00 55.04	AAAA
ATOM		CD2 PHE	338	14.099 43.33	LAAA
		CE1 PHE		15.105 44.55	iaaa
MOTA		CE2 PHE		13.730 45 100 1 00 57 18	iaaa
ATON.		CZ PHE		14.002 44.22	aaai
ATON		C PHE		10./22 30./22 10.00 1 11	AAA
OTA		O PHE		13.274 40.300 17 501 1 00 40 38	AAA
ATO				13.134 43.030	AAA
ATO				13.890 49.820 47.488 1.00 43.37	AAA
ATO				13.270 49.821 48.886 1.00 53.23	AAA
ATO	M 2705	CB AS		12.000 50.659 48.968 1.00 57.40	

MOTA	2707	OD1	3.00	339	12.039	51 858	48.616	1.00 53.79	AAAA
								-	
MOTA	2708	OD2		339	10.963	50.118	49.401	1.00 51.15	አልአል
MOTA	2709	C	ASP	339	14.215	51.248	47.076	1.00 55.06	AAAA
MOTA	2710	0	ASP	339	14.994	51.922	47.748	1.00 56.47	AAAA
		_			13.623	51.708	45.978	1.00 58.46	AAAA
ATOM	2711	N	ASP	340					
ATOM	2712	CA	ASP	340	13.874	53.059	45.484	1.00 67.72	AAAA
MOTA	2713	CB	ASP	340	12.683	53.559	44.664	1.00 71.52	AAAA
	2714	CG	ASP	340	12.611	52.913	43.295	1.00 79.72	AAAA
MOTA									
MOTA	2715	OD1	ASP	340	12.528	51.667	43.224	1.00 86.74	AAAA
MOTA	2716	OD2-	ASP	340	12.640	53.655	42.288	1.00 83.40	AAAA
MOTA	2717	С	ASP	340	14.209	54.072	46.572	1.00 69.65	AAAA
					15.204	54.794	46.463	1.00 70.13	AAAA
MOTA	2718	0	ASP	340					
MOTA	2719	N	GLU	341	13.392	54.130	47.620	1.00 67.11	AAAA
ATOM	2720	CA	GLU	341	13.668	55.077	48.689	1.00 67.87	AAAA
MOTA	2721	CB	GLU	341	13.195	56.478	48.278	1.00 74.87	AAAA
					13.502	57.576	49.298	1.00 82.72	AAAA
MOTA	2722	CG	GLU	341					
MOTA	2723	CD	GLU	341	13.162	58.974	48.790	1.00 90.80	AAAA
ATOM	2724	OE1	GLU	341	11.988	59.215	48.431	1.00 90.38	AAAA
ATOM	2725	OE2	GLU	341	14.072	59.835	48.752	1.00 93.36	AAAA
					13.101	54.719	50.058	1.00 60.22	AAAA
MOTA	2726	С	GLU	341					
MOTA	2727	0	GLU	341	11.929	54.955	50.347	1.00 58.81	AAAA
ATOM	2728	N	VAL	342	13.956	54.144	50.897	1.00 57.28	AAAA
ATOM	2729	CA	VAL	342	13.594	53.781	52.262	1.00 52.09	AAAA
					14.195	52.419	52.669	1.00 53.17	AAAA
MOTA	2730	CB	VAL	342					
MOTA	2731	CG1	VAL	342	13.730	52.042	54.070	1.00 46.16	AAAA
ATOM	2732	CG2	VAL	342	13.815	51.356	51.663	1.00 59.09	AAAA
ATOM	2733	С	VAL	342	14.263	54.843	53.124	1.00 53.31	AAAA
					13.763	55.230	54.185	1.00 57.79	AAAA
MOTA	2734	0	VAL	342					
MOTA	2735	N	ASP	343	15.398	55.306	52.610	1.00 46.24	AAAA
MOTA	2736	CA	ASP	343	16.268	56.289	53.243	1.00 42.60	AAAA
ATOM	2737	CB	ASP	343	15.521	57.510	53.781	1.00 43.88	AAAA
			ASP	343	16.480	58.581	54.290	1.00 46.82	AAAA
ATOM	2738	CG							
MOTA	2739	OD1	ASP	343	16.028	59.581	54.887	1.00 46.16	AAAA
MOTA	2740	OD2	ASP	343 -	17.700	58.414	54.075	1.00 33.01	AAAA
ATOM	2741	С	ASP	343	17.012	55.636	54.395	1.00 35.45	AAAA
				343	16.487	55.480	55.502	1.00 29.39	AAAA
MOTA	2742	0	ASP						
ATOM	2743	N	ARG	344	18.247	55.249	54.124	1.00 30.51	AAAA
ATOM	2744	CA	ARG	344	19.059	54.613	55.140	1.00 29.43	AAAA
ATOM	2745	CB	ARG	344	19.736	53.377	54.561	1.00 30.10	AAAA
	2746		ARG	344	18.803	52.258	54.180	1.00 33.95	AAAA
MOTA		CG						1.00 20.92	AAAA
MOTA	2747	CD	ARG	344	17.981	51.770	55.365		
MOTA	2748	NE	ARG	344	17.120	50.673	54.936	1.00 29.72	AAAA
ATOM	2749	CZ	ARG	344	16.110	50.176	55.639	1.00 29.13	AAAA
ATOM	2750		ARG	344	15.805	50.668	56.835	1.00 29.63	AAAA
					15.379	49.198	55.120	1.00 27.19	AAAA.
MOTA	2751		ARG	344		43.130			AAAA
MOTA	2752	C	ARG	344	20.116	55.769	55.660	1.00 34.31	
ATOM	2753	0	ARG	344	21.005	5557	56.391	1.00 29.09	AAAA
ATOM	2754	N	SER	345	20.011	56. 45	55.294	1.00 28.34	AAAA
				345	20.999	57.839	55.715	1.00 30.95	AAAA
MOTA	2755	CA	SER						AAAA
MOTA	2756	CB	SER	345	20.669	59.199	55.109	1.00 29.56	
MOTA	2757	OG	SER	345	19.429	59.648	55.610	1.00 29.38	AAA A
ATOM	2758	.C	SER	345 .	21.137	57.988	57.230	1.00 30.92	LAAA
				345	22.155	58.488	57.718	1.00 31.15	LAAA
MOTA	2759	0	SER					1.00 25.64	LAAA
MOTA	2760	7,1	TYR	346	20.116	57.576	57.975		
MOTA	2761	CA	TYE	346	20.158	57.659	59.433	1.00 26.81	LAAA
ATOM	2762	CB	TYR	346	18.823	57.189	60.006	1.00 34:41	LAAA
	2763	CG	TYR		18.529	55.723	59.716	1.00 27.35	LAAA
ATOM							60.556	1.00 24.87	AAA
ATOM	2764		TYR	346	19.003	54.708			
MOTA	2765	CE1	TYR	346	18.744	53.352	60.278	1.00 28.05	AAA
ATOM	2766	CD2		346	17.795	55.358	58.588	1.00 27.70	AAA
				346	17.533		. 58.297	1.00 26.59	AAA
ATOM	2767	CE2	TYR					1.00 23.35	AAA
ATCM	2768	CZ	TYR	346	. 18.008	53.015	59.145		
ATOM	2769	OH	TYR	346	17.737	51.691	58.855	1.00 26.06	AAA
ATCM	2770	C	TYR	346	21.277	56.766	59.977	1.00 25.57	AAA
	2771	õ		346	21.769	56.970	61.085	1.00 28.07	AAA
ATOM			TYR				59.198	1.00 29.08	AAA
ATCM	2772	N	MET	347	21.666	55.761	JJ.138	1.00 43.00	
									•

MOTA	2773	CA	MET	347	22	.720	54.837		1.00 24.19	AAAA
ATOM	2774		MET	347	22	. 844	53.678		1.00 24.87	AAAA
ATOM	2775		MET	347		. 609	52.806		1.00 23.66	AAAA
ATOM	2776	_	MET	347		.780	51.503		1.00 27.02	аааа Аааа
ATOM	2777	CE.	MET	347		.115	52.375		1.00 37.69 1.00 29.45	AAAA
ATOM	2778		MET	347	24	.054	55.540		1.00 28.08	AAAA
ATOM	2779		MET	347		.937	55.092	60.479 59.007	1.00 23.71	AAAA
MOTA	2780		LEU	348		.188 .418	56.650 57.446	58.998	1.00 34.11	AAAA
MOTA	2781		LEU	348		.463	58.351	57.757	1.00 25.37	AAAA
MOTA	2782		LEU	348 348		.320	57.785	56.344	1.00 30.38	AAAA
MOTA	2783 2784	CG CD1	LEU	348		.307	58.944	55.340	1.00 27.44	AAAA
ATOM	2785	CD2		348		.459	56.814	56.041	1.00 36.44	AAAA
ATOM ATOM	2786	C	LEU	348	25	.507	58.332	60.237	1.00 36.09	AAAA
ATOM	2787	ō	LEU	348		.561	58.894	60.539	1.00 33.30	AAAA AAAA
ATOM	2788	N	GLU	349		.394	58.445	60.953	1.00 30.51 1.00 35.53	AAAA
ATOM	2789	CA	GLU	349		.313	59.292 59.896	62.136 62.217	1.00 31.35	AAAA
ATOM	2790	CB	GLU	349		.908 .518	60.717	61.006	1.00 29.09	AAAA
MOTA	2791	CG	GLU	349 349		.481	61.859	60.746	1.00 31.78	AAAA
MOTA	2792	OE1	GLU	349		.937	62.476	61.730	1.00 30.98	AAAA
MOTA	2793 2794	OE2	GLU	349		.766	62.155	59.569	1.00 30.67	AAAA
MOTA MOTA	2795	C	GLU	349		.663	58.633	63.471	1.00 38.48	AAAA
ATOM	2796	ō	GLU	349		.727	59.303	64.502	1.00 40.12	AAAA AAAA
ATOM	2797	N	THR	350		.878	57.326	63.461 64.681	1.00 33.58 1.00 29.74	AAAA
ATOM	2798	CA	THR	350	_	.221	56.612 56.363	65.559	1.00 35.74	AAAA
MOTA	2799	CB	THR	350		3.992	57.615	65.952	1.00 45.03	AAAA
ATOM	2800	0G1	THR	350 350		1.382	55.586		1.00 49.48	AAAA
MOTA	2801 2802	CGZ	THR THR	350		.821	55.267	64.330	1.00 30.63	AAAA
MOTA MOTA	2802	o	THR	350		5.535	54.709	63.274	1.00 26.62	AAAA
MOTA	2804	N	LEU	351	26	5.644	54.740	65.225	1.00 29.07	AAAA AAAA
ATOM	2805	CA	LEU	351		7.271	53.461		1.00 24.59 1.00 29.91	AAAA
ATOM	2806	CB	LEU	351		3.584	53.367	65.757 65.267	1.00 29.91	AAAA
ATOM	2807	CG	LEU	351		9.591	52.327 52.467	66.039	1.00 37.09	AAAA
MOTA	2808		LEU	351		0.887 9.024	50.935	65.415	1.00 54.03	AAAA
MOTA	2809		LEU	351 351		6.314	52.336	65.377	1.00 29.71	AAAA
MOTA	2810 2811	C	LEU	351		6.130	51.364	64.641	1.00 30.53	AAAA
MOTA MOTA	2812	N	LYS	352		5.697	52.481	66.543	1.00 28.64	AAAA AAAA
ATOM	2813	CA	LYS	352		4.763	51.479		1.00 32.72 1.00 27.37	AAAA
ATOM	2814	CB	LYS	352		4.913	51.381		1.00 27.37	AAAA
ATOM	2815	CG	LYS	352		6.230	50.787 51.068		1.00 46.77	AAAA
ATOM	2816	CD	LYS	352		6.536 5.484	50.538		1.00 51.52	AAAA
MOTA	2817	CE	LYS	352		5.850			1.00 62.08	AAAA
MO A	2818	NZ C	LYS LYS	352 352		3.330	51.856		1.00 32.49	AAAA
MO', A	2819 2820	0	LYS	352		2.953	53.010		1.00 31.90	AAAA
A.OM ATOM	2821	N	ASP	353	2	2.525	50.916		1.00 31.44	AAAA AAAA
ATOM	2822		ASP	353		1.136			1.00 26.50 1.00 50.09	AAAA
ATOM	2823	CB	ASP	353		0.543			1.00 52.79	AAAA
MOTA	2824	CG	ASP	353		0.880				AAAA
MOTA	2825		1 ASP	353		1.980 0.040				AAAA
ATOM	2826		2 ASP	353		0.328				AAAA
MOTA	2827		ASP ASP	353 353		0.806			1.00 25.73	AAAA
ATOM	2828 2829		PRO	354		9.118		67.385		AAAA
MOTA MOTA	2830		PRO	354	1	8.428	52.429	9 66.495		AAAA AAAA
MOTA	2831		PRO	354	3	18.276	51.19			AAAA
ATOM	2832			354		L7.091				AAAA
ATOM	2833			354		16.974		9 66.833 6 68.512		KAAA
ATOM	2834		PRO	354		17.838 17.829		1 67.452		AAAF
MOTA			PRO	354		17.48			1.00 23.89	TAAK
ATCM			TRP TRP	355 355		17.01		8 69.669	1.00 33.84	AAA
ATOM						16.65			5 1.00 33.84	iaaa

ATOM	2839	CG	TRP	355	17.844	46.946	71.832	1.00 49.97	<i>مُمْمَ</i> مُ
	_			355	18.364	45.622	71.905	1.00 46.60	AAAA
MOTA	2840		TRP	-					
MOTA	2841		TRP	355	19.567	45.682	72.639	1.00 54.73	AAAA
MOTA	2842	CE3	TRP	355	17.931	44.386	71.419	1.00 46.90	AAAA
MOTA	2843	CDl	TRP	355	18.723	47.746	72.507	1.00 56.10	AAAA
	2844	NE1		355	19.765	46.991	72.997	1.00 56.07	AAAA
ATOM							72.897	1.00 55.25	AAAA
MOTA	2845	CZ2		355	20.340	44.552		-	
MOTA	2846	CZ3	TRP	355	18.696	43.267	71.674	1.00 50.74	AAAA
MOTA	2847	CH2	TRP	355	19.887	43.356	72.405	1.00 50.68	AAAA
	2848	C	TRP	355	15.789	47.712	68.776	1.00 33.12	AAAA
MOTA					15.096	48.705	68.550	1.00 29.41	AAAA
ATOM	2849	0	TRP	355 -					
ATOM	2850	N	ARG	356	15.547	46.508	68.263	1.00 23.90	AAAA _.
MOTA	2851	CA	ARG	356	14.413	46.237	67.387	1.00 23.96	AAAA
ATOM	2852	CB	ARG	356	14.892	46.096	65.935	1.00 22.66	AAAA
	2853		ARG	356	15.505	47.385	65.393	1.00 29.06	AAAA
ATOM		CG					64.108	1.00 28.92	AAAA
MOTA	2854	CD	ARG	356	16.291	47.212			
ATOM	2855	NE	ARG	356	16.833	48.503	63.686	1.00 24.73	AAAA
MOTA	2856	CZ	ARG	356	17.733	48.668	62.724	1.00 23.57	AAAA
ATOM	2857	NHI	ARG	356	18.209	47.616	62.066	1.00 22.15	AAAA
	2858		ARG	356	18.153	49.891	62.418	1.00 22.69	AAAA
ATOM						44.944	57.878	1.00 24.89	AAAA
MOTA	2859	С	ARG	356	13.781				
MOTA	2860	0	ARG	356	13.785	43.925	67.189	1.00 22.25	AAAA
ATOM	2861	N	GLY	357	13.231	44:993	69.085	1.00 23.91	AAAA
ATOM	2862	CA	GLY	357	12.631	43.805	69.657	1.00 26.72	AAAA
	2863	C	GLY	357	11.138	43.671	69.465	1.00 26.90	AAAA
ATOM	_					44.330	68.619	1.00 29.87	AAAA
MOTA	2864	0	GLY	357	10.536				
ATOM	2865	N	GLY	358	10.544	42.797	70.265	1.00 28.22	AAAA
MOTA	2866	CA	GLY	358	9.118	42.561	70.188	1.00 30.96	AAAA
MOTA	2867	С	GLY	358	8.800	41.274	70.920	1.00 30.03	AAAA
	2868	ō	GLY	358	9.626	40.757	71.663	1.00 24.03	AAAA
ATOM					7.601	40.747	70.715	1.00 28.34	AAAA
MOTA	2869	N	GLU	359					AAAA
MOTA	2870	CA	GLU	359	7.218	39.509	71.366	1.00 24.37	
ATOM	2871	CB	GLU	359	5.699	39.372	71.375	1.00 32.52	AAAA
ATOM	2872	CG	GLU	359	4,981	40:327	72.299	1.00 45.44	aaaa
ATOM	2873	CD	GLU	359	3.472	40.250	72.132	1.00 50.43	AAAA
			GLU	359	2.924	39.125	72.151	1.00 42.92	AAAA
ATOM	2874					41.316	71.987	1.00 40.72	AAAA .
MOTA	2875	OE2	GLU	359	2.839				AAAA
MOTA	2876	С	GLU	359	7.804	38.323	70.628	1.00 27.35	
ATOM	2877	0	GLU	359	8.138	38.415	69.449	1.00 22.94	AAAA
ATOM	2878	N	VAL	360	7.944	37.208	71.325	1.00 19.68	AAAA
	2879	CA	VAL	360	8.441	36.017	70.672	1.00 21.28	AAAA .
ATOM					9.300	35.188	71.621	1.00 26.71	AAAA
ATOM	2880	CB	VAL	360			70.912	1.00 20.64	AAAA
MOTA	2881		VAL	360	9.783	33.917			
ATOM	2882	CG2	VAL	360	10.486	36.038	72.113	1.00 25.79	AAAA
MOTA	2683	C	VAL	360	7.228	35.202	70.197	1.00 25.51	AAAA
ATOM	2884	0	VAL	360	6.442	34.700	71.011	1.00 19.75	AAAA
			ARG	361	7.065	35.094	د .81.86	1.00 18.48	AAAA
ATOM	2885	N				34.337	68.3C`	1.00 22.01	AAAA
ATOM	2886	CA	ARG	361	5.947			1.00 19.31	AAAA
ATOM	2887	CB	ARG	361	5.988	34.389	66.772		
ATOM	2888	CG	ARG	361	5.446	35.671	66.204	1.00 30.86	AAAA
ATOM	2889	CD	ARG	361	5.735	35.730	64.723	1.00 37.95	AAAA
	2890	NE	ARG	361	7.111	36.148	64.460	1.00 30.73	AAAA
MOTA					7.616	36.275	63.242	1.00 22.89	SAAA
MOTA	2891	CZ	ARG	361				1.00 19.02	AAAA
MOTA	2892		ARG	361	6.851	36.006·			AAAA
ATOM	2893	NH2	ARG	361	8.861	36.704	63.081	1.00 23.47	
ATOM	2894	C	ARG	361	5.897	32.879	68.714	1.00 26.11	AAAA
	2895	ō	ARG	361	6.926	32.255	68.968	1.00 21.79	ሕጸጸሕ
MOTA					4.681	32.338	68.763	1.00 24.89	AAAA
atom	2896	51	LYS	362			69.125	1.00 28.63	AAAA
ATOM	2897	CA	LYS	362	4.479	30.938			
ATOM	2898	CB	LYS	362	2.981		69.070	1.00 22.91	АААА
ATOM	2399	CG	LYS	362	2.145	31.200	70.168	1.00 50.86	AAAA
	2900	CD	LYS	362	2.290	32.715	70:157	1.00 57.51	AAAA
MOTA					1.923	33.278	68.799	1.00 50.87	AAAA
ATCM	2901	CE	LYS	362			68.711	1.00 22.99	AAAA
atcm	2902	NZ	LYS	362	2.307	34.683		1.00 22.55 1.00 15 77	AAAA
ATCM	2903	C	LYS	362	5.269	30.014	68.202	1.00 16.77	
ATOM	2904	0	LYS	362	5.808	29.007	68.647	1.00 22.90	AAAA
							-		•

ATOM	2905	N	GLU	363	5.311	30.355	66.913	1.00 25.24	AAAA
		CA	GLU	363	6.055	29.577	65.910	1.00 26.29	AAAA
MOTA	2906						64.608	1.00 33.50	AAAA
MOTA	2907	CB	GLU	363	6.207	30.342			
MOTA	2908	CG	GLU	363	4.999	30.639	63.824	1.00 48.73	AAAA
ATOM	2909	CD	GLU	363	5.368	31.494	62.638	1.00 42.01	AAAA
ATOM -	2910	OE.1	GLU	363	6.299	31.087	61.895	1.00 28.50	àAàà.
ATOM .	2911		GLU	363	4.738	32.558	62.461	1.00 44.91	AAAA
							66.349	1.00 19.00	ÀAAA
ATOM	2912	C	GLU	363	7.481	29.326			
MOTA	2913	0	GLU	363	8.011	28.218	66.226	1.00 18.66	AAAA
MOTA	2914	2.7	VAL	364	8.121	30.399	66.790	1.00 20.69	AAAA
ATOM	2915	CA	VAL	364	9.501	30.303	67.219	1.00 23.13	aaaa
ATOM	2916	CB	VAL	364	10.096	31.681	67.510	1.00 16.98	AAAA
MÓTA	2917		VAL	364	11.515	31.513	68.010-	1.00 22.32	AAAA
				364	10.082	32.548	66.242	1.00 23.99	AAAA
MOTA	2918		VAL		9.625		68.448	1.00 19.28	AAAA
MOTA	2919	С	VAL	364		29.415			
MOTA	2920	0	VAL	364	10.507	28.548	68.510	1.00 20.17	- AAAA
MOTA	2921	N	LYS	365	8.735	29.600	69.417	1.00 21.11	AAAA
MOTA	2922	CA	LYS	365	8.780	28.768	70.612	1.00 18:15	AAAA
ATOM	2923	CB	LYS	365	7.711	29.210	71.626	1.00 25.22	AAAA
ATOM	2924	CG	LYS	365	7.921	30.611	72.167	1.00 32.99	AAAA
			LYS	365	6.901	30.949	73.253	1.00 36.09	äAää
ATOM	292.5	CD					73.790	1.00 28.99	AAAA
MOTA	2926	CE	LYS	365	7.121	32.357			
MOTA	2927	NZ	LYS	365	6.178	32.736	74.882	1.00 38.98	AAAA
ATOM	2928	C	LYS	365	8.574	27.305	70.236	1.00 19.49	AAAA
ATOM	2929	0	LYS	365	9.255	26.417	70.758	1.00 22.04	AAAA
ATOM	2930	N .	ASP	366	7.635	27.048	69.327	1.00 22.45	aaaa
ATOM	2931	CA	ASP	366	7.386	25.669	68.915	1.00 22.62	AAAA
ATOM	2932	CB	ASP	366	. 6.173	25.574	67.967	1.00 21.69	AAAA
					4.870	25.987	68.634	1.00 27.75	AAAA
MOTA	2933	CG	ASP	366			69.881	1.00 31.01	AAAA
MOTA	2934		ASP	366	4.763	25.890			
ATOM	2935	CD2	ASP	366	3.938	26.382	67.907	1.00 33.20	AAAA
ATOM	2936	С	ASP	366	8.606	25.034	68.237	1.00 24.53	AAAA
ATOM	2937	0	ASP	366	8.924	23.871	68.480	1.00 21.13	AAAA
ATOM	2938	31	THR	367	9.281	25.787	67.380	1.00 26.19	AAAA
MOTA	2939	CA	THR	367	10.462	25.252	66.694	1.00 21.68	AAAA
	2940	СB	THR	367	11.035	26.301	65.742	1.00 14.56	AAAA
ATOM				367	10.085	26.545	64.697	1.00 21.76	AAAA
MOTA	2941	0G1	THR				65.138	1.00 19.83	AAAA
MOTA	2942	C G 2	THR	367	12.340	25.825			AAAA
MOTA	2943	C	THR	367	11.523	24.822	67.710	1.00 19.02	
MOTA	. 2944	0	THR	367	12.071	23.717	67.625	1.00 21.79	AAAA
ATOM	2945	13	LEU	368	11.802	25.684	68.683	1.00 18.42	AAAA
ATOM	2946	CA	LEU	368	12.797	25.348	69.700	1.00 21.02	مممم
ATOM	2947	CB	LEU	368	13.148	26.569	70.560	1.00 17.34	AAAA
ATOM	2948	CG	LEU	368	14.206	27.518	69.959	1.00 17.45	AAAA
	2949		LEU	368	15.525	26.758	69.817	1.00 16.83	AAAA
ATOM					13.756	28.041	68.593	1.00 19.49	AAAA
ATOM	2950		LEU	368		24.189	70.589	1.00 23.17	AAAA
MOTA	2951	<i>:</i>	LEU	368	12.361				
ATOM	2952	·	LEU	368	13.203	23.420	71.052	1.00 24.81	AAAA
ATOM	3953	N	GLU	369	11.059	24.055	70.839	1.00 23.97	AAAA
ATOM	2954	CA	GLU	369	10.597	22.929	71.653	1.00 19.36	AAAA
ATOM	2955	СВ	GLU	369	9.127	23.113	72.063	1.00 21.81	AAAA
	2956	cs	GLU	369	8.913	24.225	73.100	1.00 40.15	AAAA
ATOM					7.450	24.416	73.487	1.00 49.38	AAAA
MOTA	2957	CD	GLU	369			73.905	1.00 43.26	AAAA
ATOM	2958	CEI	GLU	369	6.806	23.429			
ATOM	2959	OE2	GLU	369	6.948	25.558	73.382	1.00 57.31	AAAA
ATOM	2960	C	GLU	369	10.778	21.623	70.859	1.00 24.29	AAAA
ATOM	2961	2	GLU	369	11.172	20.605	71.420	1.00 25.96	AAAA
ATOM	2962	N	LYS	370	10.488	21.643	69.560	1.00 22.98	AAAA
	2963	CA	LYS	370	10.665	20.437	68.746	1.00 23.19	AAAA
ATOM				370	10.051	20.596	67.347	1.00 26.83	AAAA
ATOM	2964	CB	LYS			20.461	67.287	1.00 36.68	AAAA
atom	2965	23	LYS	370	8.537			1.00 39.85	AAAA
MOTA	2966	CD	LYS	370	8.056	20.431	65.832		
MOTA	2967	CE	LYS	370	6.567	20.105	65.740	1.00 56.23	ÄAAÄ
ATCM	2968	:12	LYS	370	6.082	19.996	64.326	1.00 56.10	aaaa
ATOM	2969	C	LYS	370	12.148	20.123	68.602	1.00 31:53	AAAA
ATOM	2970	õ	LYS	370	12.549	18.958	68.587	1.00 36.88	AAAA
	•	-					-		

ATOM	2971	N	ALA	371	12.961	21.170	68.491	1.00 26.25	AAAA
ATOM	2972	CA	ALA	371	14.407	21.009	68.360	1.00 27.33	AAAA
ATOM	2973	CB	ALA	371	15.079	22.370	68.188	1.00 23.70	AAAA
ATOM	2974	С	ALA	371	14.989	20.308	69.581	1.00 26.74	AAAA
ATOM	2975	0	ALA	371	15.892	19.482	69.452	1.00 29.52	AAAA
ATOM	2976	N	ALA	372	14.484	20.652	70.764	1.00 24.83	AAAA
ATOM	2977	CA	ALA	372	14.959	20.055	72.012	1.00 34.24	AAAA
ATOM	2978	CB	ALA	372	14.305	20.750	73.214	1.00 37.17	AAAA
ATOM	2979	С	ALA	.372	14.663	18.564	72.061	1.00 45.62	AAAA
ATOM	2980	0	ALA	372	15.563	17.741	72.280	1.00 35.52	AAAA
ATOM	2981	N	ALA	373	13.394	18.216	71.869	1.00 44:50	AAAA AAAA
MOTA	2982	CA	ALA	373	13.004	16.813	71.892	1.00 49.88 1.00 49.32	AAAA .
MOTA	2983	CB	ALA	373	11.506	16.681 16.072	71.628 70.825	1.00 44.64	AAAA
ATOM	2984	С	ALA	373	13.807	15.250	70.823	1.00 58.19	AAAA
MOTA	2985	0	ALA	373	14.669 13.591	16.337	69.626	1.00 30.13	AAAA
ATOM	2986		ALA	373	36.368	43.907	49.242	1.00 13.03	SOLV
HETATM	2987		WAT	1 2	23.107	30.584	59.802	1.00 11.42	SOLV
HETATM			TAW TAW	3	20.594	33.744	61.457	1.00 14.73	SOLV
HETATM HETATM			WAT	4	31.359	16.551	51.590	1.00 19.84	SOLV
HETATM			WAT	5	30.389	18.140	45.769	1.00 19.94	· SOLV
HETATM		_	TAW	6	16.925	41.748	56.551	1.00 13.33	. SOLV
HETATM			WAT	7	28.448	16.084	62.316	1.00 14.08	SOLV
HETATM			WAT	8	40.375	38.476	55.678	1.00 19.10	SOLV
HETATM			TAW	9	18.455	29.667	54.797	1.00 18.81	SOLV
HETATM			TAW	10 ·	26.305	18.390	59.507	1.00 16.65	SOLV
HETATM			WAT	11	50.145	32.063	58.142	1.00 16.53	SOLV
HETATM			WAT	12	45.935	30.996	40.672	1.00 25.08	SOLV
HETATM		OH2	TAW	13	26.358	43.110	74.179	1.00 22.91	SOLV
HETATM		он2	WAT	14	48.727	24.720	56.917	1.00 25.49	SOLV
HETATM		OH2	WAT	15	30.244	18.663		1.00 25.78	SOLV
HETATM	3002	OH2	WAT	16	10.615	28.799	63.631	1.00 22.40	SOLV
HETATM	3003	OH2	WAT	17	18.401	20.018	62.704	1.00 21.46	SOLV
HETATM			WAT	18	22.195	47.791	60.896	1.00 26.19 1.00 20.38	SOLV
HETATM			WAT	19	3.278	32.141	65.350	1.00 20.38	SOLV
HETATM			TAW	20	23.643	22.897 23.101	59.512 48.818	1.00 21.27	SOLV.
HETATM			TAW	21	50.287 44.725	34.256	46.541	1.00 18.74	SOLV
HETATM			TAW	22 23	8.346	30.527	49.922	1.00 22.33	SOLV
HETATM			TAW TAW	24	39.855	33.795	67.390	1.00 20.43	SOLV
HETATM HETATM			WAT	25	7.827	32.763	57.779	1.00 19.24	SOLV
HETATM			WAT	26	45.388	34.567	36.246	1.00 20.86	SOLV
HETATM			WAT	27	47.636	32.244	33.388	1.00 20.41	SOLV
HETATM			WAT	28	32.514	35.684	41.278	1.00 24.76	SOLV
HETATM	3015		WAT	29	26.188	15.341	61.913	1.00 19.63	SOLV
HETATM		OH2	WAT	30	14.957	43.169		1.00 23.80	SOLV
HETATM	3017		WAT	31	24.483	43.556	55.704	1.00 27.25	SOLV
HETATM		OH2	TAW	32	41.141	16.376	48.456	1.00 25.99	SOLV
HETATM	3019	OH2	WAT	33	23.104	17.625	54.086	1.00 26.37	SOLV
HETATM		OH2	WAT	34	51.301	28.602	57.694	1.00 32.78 1.00 24.27	SOLV
HETATM			WAT	35	51.376	29.469	53.156	1.00 24.27	SOLV
HETATM			WAT	36	12.518	22.131	49.816 50.861	1.00 25.87	SOLV
HETATM			WAT	37	6.521	27.442 33.757	34.190	1.00 19.87	SOLV
HETATM			WAT	38	30.390 8.328	29.586		1.00 32.01	SOLV
HETATM			TAW.	39	30.180	24.235	30.724	1.00 22.61	SOLV
HETATM			TAW	40	44.521	30.663	38.395	1.00 27.52	SOLV
HETATM	1 302/		TAW	41 42	30.981	18.043	41.186	1.00 23.45	SOLV
HETATM			WAT	42	14.632	37.127	73.830	1.00 29.36	SOLV
HETATM			WAT	43. 44	39.332	25.953	72.230	1.00 21.87	SOLV
HETATM			WAT	45	7.597	37.592		1.00 39:62	SOLV
HETATM HETATM			TAW TAW	46	15.027	18.079		1.00 26.65	SOLV
HETATM			TAW	47	11.076	45.493		1.00 39.18	SOLV
HETATM			TAW	48	42.124	18.055	37.233	1.00 28.62	SOLV
HETATM	1 3034		WAT	49	48.736			1.00 31.88	SOLV
HETATM			WAT	50	50.383	27.254		1.00 24.36	solv
TEINIE .		Unz	. 1101				•		•

HETATM	3037	CH2	TAD	51	48.659	36.025	68.226	1.00 33.89	SOLV
HETATM		OH2		52	36.998	27.228	71.440	1.00 21.03	SOLV
			-			16.309	55.307	1.00 32.23	SOLV
HETATM		OH2		53	41.303				
HETATM	3040	OH2	WAT	54	33.242	39.524	49.454	1.00 29.77	SOLV
HETATM		OH2	WAT	55	45.004	25.973	35.031	1.00 21.59	SOLV
HETATM		OH2		56	19.039	25.829	45.793	1.00 33.48	SOLV
						35.542	50.154	1.00 37.51	SOLV
MTATEH		OH2	WAT	57	17.922				
HETATM	3044	OH2	TAW	58	10.409	26.864	73.166	1.00 26.54	SOLV
HETATM		OH2	'VAT	59	11.835	22.805	59.408	1.00 20.83	SOLV
		OH2		60 .	18.254	48.699	53.224	1.00 28.41	SOLV
HETATM					10.426	26.647	60.447	1.00 32.72	SOLV
HETATM			WAT	61					
HETATM	3048	он2	TAW	62	21.304	55.086	63.510	1.00 28.84	SOLV
HETATM		OH2	WAT	63	32.532	51.211	45.469	1.00 32.48	SOLV
HETATM			WAT	64	22.658	61.079	57.420	1.00 27.32	SOLV
					16.734	24.334	74.721	1.00 27.44	SOLV
HETATM			WAT	. 65			54.391	1.00 25.07	SOLV
HETATM		OH2	WAT	66	32.758	37.824			
HETATM	3053	OH2	WAT	67	11.142	25.859	49.706	1.00 29.66	SOLV
HETATM		OH2	WAT	68	24.192	15.261	53.236	1.00 30.21	SOLV
			TAW	69	19.816	17.916	66.357	1.00 30.50	SOLV
HETATM					-	23.975	53.197	1.00 28.08	SOLV
HETATM	3056		$\mathbf{T}\mathbf{A}$ W	70	50.347				
HETATM	3057	OH2	WAT	71	50.258	30.918	51:113	1.00 20.19	SOLV
HETATM	3058	OH2	TAW	72	21.047	17.624	68.693	1.00 41.23	SOLV
			VAT	73	26.782	33.756	49.995	1.00 25.80	SOLV
HETATM					12.570	43.844	64.441	1.00 31.03	SOLV
HETATM			TAVI	74					SOLV
HETATM	3061	OH2	TAW	75	35.555	41.287	50.852	1.00 24.03	
HETATM	3062	OH2	WAT	76	27.764	18.231	61.827	1.00 18.28	SOLV
HETATM		OH2	MAT	77	26.715	29.236	38.391	1.00 23.18	SOLV
				78	21.461	23.245	48.872	1.00 23.80	SOLV
HETATM			TAW			28.263	65.477	1.00 21.52	SOLV
HETATM	3065		WAT	79	49.246				
HETATM	3066	OH2	WAT	80	31.785	13.301	69.606	1.00 31.11	SOLV
HETATM	3067	OH2	TAW	81	49.811	34.740	59.229	1.00 31,76	SOLV
			TAW	82	45.670	33.188	42.470	1.00 23.13	SOLV
HETATM					9.408	39.751	55.872	1.00 31.53	SOLV
HETATM			TAW	83				1.00 37.32	SOLV
HETATM	3070	OH2	TAW	84 -	35.166	35.878	29.899		
HETATM	3071	OH2	TAW	85	41.927	22.970	73.694	1.00 44.07	SOLV
HETATM			WAT	86	22.125	34.577	49.199	1.00 44.65	SOLV
					43.984	33.541	37.965	1.00 24.88	SOLV
HETATM			TAW	87		_	56.312	1.00 34.85	SOLV
HETATM	3074		TAW	88	11.997	17.962			SOLV
HETATM	3075	OH2	TAW	89	42.194	14.737	59.766	1.00 25.91	
HETATM			TAW	90	49.313	24.200	41.684	1.00 29.29	SOLV
			WAT	91	48.504	33.595	61.519	1.00 30.32	SOLV
HETATM					24.773	18.356	33.365	1.00 53.13	SOLV
HETATM			WAT	92			47.470	1.00 41.41	SOLV
HETATM	3079	OH2	TAW	93	35.160	35.656			SOLV
HETATM	3080	OH2	WAT	94	44.682	36.658	39.962	1.00 29.24	
HETATM		OH2	TAW	95	9.576	41.033	52.549	1.00 51.83	SOLV
HETATM			WAT	`6	47.199	20.112	42.102	1.00 40.39	SOLV
				_	49.254	26.331	59.641	1.00 37.03	SOLV
HETATM			TAW	7ر ٠			38.172	1.00 28.74	SOLV
HETATM	3084		TAW	۔ 8	26.808	37.600			
HETATM	3085	OH2	TAN	99	40.749	14.572	64.635	1.00 33.42	SOLV
HETATM			WAT	100	24.850	44.161	47.775	1.00 27.89	SOLV
			TAV	101	34.326	42.063	46.714	1.00 42.22	SOLV
HETATM					30.226	34.544	52.026	1.00 30.77	SOLV
HETATM			TAW	102					SOLV
HETATM	3089	OH2	WAT	103	47.824	39.054	78.097	1.00 52.16	
HETATM		OH2	WAT	104	19.665	18.953	47.438	1.00 51.70	SOLV
HETATM			WAT	105	46.857	36.525	46.232	1.00 23.65	SOLV
					48.069	19.460	67.360	1.00 37.56	SOLV
HETATM			TKI!	106				1.00 46.95	SOLV
HETATM	3093		TAW	107	15.553	56.850	61.838		sorv
HETATM	3094	OH2	HAT	108	44.026	19.119	70.671	1.00 39.55	
HETATM			WAT	109	8.139	42.064	65.674	1.00 42.61	SOLV
					50.624	36.591	65.779	1.00 31.59	SOLV
HETATM	2096		TAK	110			61.043	1.00 49.09	SOLV
HETATM	3097		TAK	111	51.398	26.073		1.00 42.03	SOLV
HETATM		OH2	WAT	112	26.174	33.692	33.551	1.00 36.61	
HETATM			WAT	113	23.545	20.203	53.001		SOLV
			TAW	114	9.083	42.965	57.697	1.00 33.65	SOLV
HETATM					8.442	39.898	64.594		SOLV
HETATM	:101		TAW	115					SOLV
HETATM	3102	CH2	TAW :	116	15.219	35.897	51.951	1.00 40.33	
				• .					•
				•					

110m2m4 2302	CH2 WAT	117	15.417	38.438	50.473	1.00 34.46	SOLV
HETATM 3103							
HETATM 3104	OH2 WAT	118	40.757	26.310	29.206	1.00 29.12	SOLV
HETATM 3105	OH2 WAT	119	27.717	18.542	46.553	1.00 28.17	SOLV
HETATM 3106	OH2 WAT	120	18.612	13.786	56.845	1.00 38.56	SOLV
	OH2 WAT	121	43.198	31.377	72.139	1.00 26.31	SOLV
HEIRIN SIO							
HETATM 3108	OH2 WAT	122	44.188	35.704	33.802	1.00 29.81	SOLV
HETATM 3109	OH2 WAT	123	50.736	40.909	58.456	1.00 32.40	SOLV
HETATM 3110	OH2 WAT	124	31.302	33.760	31.742	1.00 30.84	SOLV
						1.00 34.67	SOLV
HETATM 3111	OH2 WAT	125	36.895	21.264	34.198		
HETATM 3112	OH2 WAT	126	47.474	22.252	67.427	1.00 34:35	SOLV
HETATM 3113	OH2 WAT	127	. 7.178	25.936	64.063	1.00 31.77	SOLV
HETATM 3114	OH2 WAT	128	36.362	66.647	54.021	1.00 36.88	SOLV
			42.486	35.503	30.348	1.00 26.61	SOLV
HETATM 3115	OH2 WAT	129					
HETATM 3116	OH2 WAT	130	8.432		50.442	1.00 37.45	SOLV
HETATM 3117	OH2 WAT	131	37.644	49.018	48.946	1.00 37.33	SOLV
HETATM 3118	OH2 WAT	132	50.273	41.645	63.380	1.00 37.33	SOLV
	OH2 WAT	133	7.518	26.633	61.571	1.00 45.42	SOLV
HETATM 3119							
HETATM 3120	OH2 WAT	134	31.483	46.197	72.538	1.00 28:02	SOLV
HETATM 3121	OH2 WAT	135	41.501	16.604	58.054	1.00 32.78	SOLV
HETATM 3122	OH2 WAT	136	45.898	47.740	55.185	1.00 43.47	SOLV
HETATM 3123	OH2 WAT	137	16.300	33.614	49.519	1.00 30.37	SOLV
						1.00 46.34	SOLV
HETATM 3124	OH2 WAT	138	51.148	36.946	55.148		
HETATM 3125	OH2 WAT	139	21.525	53.761	50.892	1.00 38.27	SOLV
HETATM 3126	OH2 WAT	140	21.603	54.580	68.690	1.00 33.10	SOLV
HETATM 3127	OH2 WAT	141	10.191	29.237	60.325	1.00 30.24	SOLV
	•		16.951	18.120	66.901	1.00 40.85	SCLV
HETATM 3128	OH2 WAT	142					
HETATM 3129	OH2 WAT	143	4.943	24.912	51.199	1.00 49.13	SOLV
HETATM 3130	OH2 WAT	144	10.711	25.291	58.177	1.00 30.72	SOLV
HETATM 3131	OH2 WAT	145	30.815	43.398	36.040	1.00 42.23	SOLV
HETATM 3132	OH2 WAT	146	21.763	24.512	46.695	1.00 28.31	SOLV
						1.00 26.15	SOLV
HETATM 3133	OH2 WAT	147	51.788	33.122	50.887		
HETATM 3134	OH2 WAT	148	24.531	44.741	72.420	1.00 27.99	SOLV
HETATM 3135	OH2 WAT	149	50.938	23.483	60.422	1.00 38.20	SOLV
HETATM 3136	OH2 WAT	150	. 24.860	47.932	61.067	1.00 18.89	SOLV
-	•	151	27.336	37.304	35.642	1.00 33.58	SOLV
HETATM 3137	OH2 WAT						SOLV
нетатм 3138	OH2 WAT	152	38.680	35.535	35.974	1.00 26.89	
HETATM 3139	OH2 WAT	153	24.441	16.097	33.317	1.00 48.33	SOLV
HETATM 3140	OH2 WAT	154	20.343	18.124	73.416	1.00 36.28	SOLV
HETATM 3141	OH2 WAT	155	49.765	37.948	74.801	1.00 48.41	SOLV
		156	34.329	31.169	47.547	1.00 25.33	SOLV
HETATM 3142	OH2 WAT						
HETATM 3143	OH2 WAT	157	43.028	24.554	72.536	1.00 41.54	SOLV
HETATM 3144	OH2 WAT	158	39.888	15.082	42.035	1.00 28.76	SOLV
HETATM 3145	OH2 WAT	159	41.886	20.780	73.179	1.00 51.03	SOLV
HETATM 3146	OH2 WAT	160	22.962	49.969	58.518	1.00 35.04	SOLV
				15.261	68.016	1.00 55.47	SOLV
HETATM 3147	OH2 WAT	161	14.696	_			SOLV
HETATM 3148	OH2 WAT	162	14.915	18.181	64.866	1.00 42.00	
HETATM 3149	OH2 WAT	163	30.608	49.029	52.612	1.00 47.32	. SOLV
HETATM 3150	OH2 WAT	164	52.566	30.906	57.612	1.00 36.71	SOLV
HETATM 3151	OH2 WAT	165	23.699	27.331	77.729	1.00 32.22	SOLV
						1.00 43.05	SOLV
HETATM 3152	OH2 WAT	166	36.971	59.046	63.272		
HETATM 3153	OH2 WAT	167	46.053	45.927	52.876	1.00 33.66	SOLV
HETATM 3154	OH2 WAT	168	42.780	49.151	58.106	.1.00 44.63	SOLV
HETATM 3155	OH2 WAT	169	15.100	44.506	72.183	1.00 45.43	SOLV
			31.677	60.998		1.00 34.51	SOLV
HETATM 3156	OH2 WAT	170					SOLV
HETATM 3157	OH2 WAT	171	25.336	45.674	45.578	1.00 55.85	
HETATM 3158	OH2 WAT	172	17.481	18.266	49.018	1.00 32.73	SOLV
HETATM 3159	OH2 WAT	173	26.112	18.147	31.404	1.00 49.94	SOLV
	-	174	45.874	43.142	70.985	1.00 32.89	SOLV
HETATM 3160	OH2 WAT					1.00 42.20	SOLV
HETATM 3161	CH2 WAT	175	34.517	17.884	33.278		
HETATM 3162	OH2 WAT	176	16.330	54.886	50.466	1.00 40.74	SOLV
HETATM 3163	OH2 WAT	177	31.400	51.087	74.689	1.00 38.56	SOLV
HETATM 3164	OH2 WAT	178	50.971	27.079	67.130	1.00 44.49	SOLV
			7.933	23.412	54.691	1.00 42.84	SOLV
HETATM 3165	OH2 WAT	179					SOLV
HETATM 3166	OH2 WAT	180	33.498	47.596	73.612	1.00 35.99	
HETATM 3167	OH2 WAT	181	26.016	19.583	44.954	1.00 51.31	SOLV
HETATM 3168	OH2 WAT	182	40.139	17.026	74.920	1.00 43.64	SOLV
		. –	_		_		

WO 01/18045 PCT/US00/24700

	2.60	0110	1.13 (D)	183	10.441	42.659	62.744	1.00 34.51	SOLV
HETATM		OH2		184	2.095	34.482	65.810	1.00 36.49	SOLV
HETATM		OH2	_		45.749	18.286	51.615	1.00 28.19	SOLV
HETATM		OH2		185	25.771	38.332	76.707	1.00 45.53	SOLV
HETATM		OH2		186	7.228	40.382	57.542	1.00 48.91	SOLV
HETATM		OH2		187		52.824	67.739	1.00 39.99	SOLV
HETATM		OH2		188	42.972	13.189	73.277	1.00 44.91	SOLV
HETATM		OH2		189	20.137	19.193	47.581	1.00 52.88	·SOLV
HETATM		OH2		190	48.945	34.547	47.665	1.00 49.15	SOLV
HETATM	3177		TAW	191	14.549	20.567	26.536	1.00 42.23	SOLV
HETATM			WAT	192	31.765	39.303	74.222	1.00 32.10	SOLV
MTATM			TAW	193	9.784		52.375	1.00 50.98	SOLV
HETATM	3180		TAW	194	28.865	12.481 12.804	70.409-	1.00 52.43	SOLV
HETATM			TAW	195	- 24.030		50.698	1.00 43.03	SOLV
HETATM	3182		WAT	196	47.209	39.536	27.306	1.00 41.11	SOLV
HETATM			WAT	197	35.618	18.114	43.853	1.00 48.20	SOLV
HETATM			TAW	198	23.625	48.145	54.185	1.00 34.99	SOLV
HETATM	3185		WAT	199	37.090	59.044	59.080	1.00 36.58	SOLV
HETATM			TAW	200	34.478	12.208 29.583	76.228	1.00 33.95	SOLV
HETATM	3187		WAT	201	22.142	42.619	53.973	1.00 40.44	SOLV
HETATM			WAT	202	13.608 42.647	18.701	72.526	1.00 55.64	SOLV
HETATM			TAW	203	37.005	35.993	77.480	1.00 34.82	SOLV
HETATM			TAW	204	34.154	20.512	33.327	1.00 31.00	SOLV
HETATM			TAW	205	37.264	57.546	47.642	1.00 49.58	SOLV
HETATM			TAW	206 2 0 7	17.924	35.195	79.003	1.00 38.45	SOLV
HETATM	3193		WAT	207	51.172	31.581	62.378	1.00 35.37	SOLV
HETATM			TAW TAW	208	50.503	36.726	79.224	1.00 39.95	SOLV
HETATM			WAT	210	18.382	13.162	63.852	1.00 52.08	SOLV
HETATM			TAW	211	27,245	8.351	55.199	1.00 39.12	SOLV
HETATM	3197		WAT	212	18.354	13.545	59.540	1.00 30.15	SOLV
HETATM	3138		WAT	213	49.088	51.744	63.388	1.00 36.69	SOLV
HETATM	3133		TAW	214	23.251	33.160	50.871	1.00 42.11	SOLV
HETATM	3200		WAT	215	12.989	35.073	50.651	1.00 38.63	SOLV
HETATM			TAW	216	24.414	44460	43.239	1.00 37.93	SOLV
HETATM			TAW	217	24.690		73.117	1.00 34.17	SOLV
HETAT			TAW	218	19.844	17.949	81.360	1.00 40.74	SOLV
HETAT	1 3205		TAW	219	40.169	27.215	74.247	1.00 37.83	SOLV
HETATI	1 3205		TAW	220	38.737	39.516	73.171	1.00 49.20	SOLV
HETATI	1 3207	CH	TAW S	221	50.628	21.408	46.879	1.00 45.57	SOLV
HETATI	4 3208		TAW S	222	35.436		75.660	1.00 37.33	SOLV
HETAT	1 3209		TAW S	223	34.390		55.285	1.00 35.10	SOL7 SOLV
HETATI	4 3210		2 WAT	224	21.800			1.00 46.29	SOLV
HETATI	4 3211		TAW S	225	15.751			1.00 62.75	SOLV
HETATI			2 WAT	226	23.844		_		SOLV
	M 3213		TAW S	227	47.225				SOLV
	4 3214		TAW 2	228	23.426	19.272	50.565	1.00 30.07	2011

WO 01/18045 PCT/US00/24700

						" v		7	000	n	C	T D
) mo).	1	CD			Residue		Y 36 963	Z 75.052	OCC.	B 64.01	Segment	ID
. ATOM	1	CB	ALA		5	43.739	36.862	72.971		60.02	6 6	
ATOM	2	C	AĻA		2	44.405	38.106	72.908		57.94	8	
ATOM	3	0	ALA		2	43.251	38.536	74.497		62.88	7	
MOTA	4	N	ALA		2	46.142	37.179	73.923		63.02	6	
ATOM	5	CA	ALA		2	44.776	36.966				7	
ATOM	6	11	LYS		3	45.398	38.588	72.233		55.40		
ATOM	7	CA	LYS		3	45.196	39.671	71.287		53.02	6	
MOTA	8	CB	LYS		3	46.443	39.830	70.421		53.11	6	
MOTA	9	CG	LYS			47.703	40.093	71.217		57.36	6	
MOTA	10	CD	LYS		3	48.941	39.976	70.349		60.94	6	
ATOM	11	CE	LYS		3	48.909	40.957	69.196		63.48	6	
ATOM	12	NZ	LYS		3	50.075	40.765	68.294		66.87	7	
MOTA	13	C	LYS		3	.43.986	39.401	70.399		50.49	6	
MOTA	14	0	LYS		3	43.691	38.255	70.063		52.50	8	
MOTA	15	N	VAL		4	43.281	40.464	70.034		45.96	7	
MOTA	16	CA	VAL		4	42.122	40.352	69.167		41.16	6	
MOTA	17	СВ	VAL		4	40.983	41.272	69.638		41.53	6	
MOTA	18		VAL		4	39.734	41.028	68.797		40.07	6	
MOTA	19		VAL			40.705	41.033	71.115		38.31	6	
MOTA	20	С	VAL		4	42.619	40.796	67.796		39.96	6	
MOTA	21	0	VAL		4	43.123	41.914	67.645		39.15	8	
MOTA	22	N	LYS		5	42.486	39.916	66.807		36.24	7	
MOTA	23	CA	LYS		5	42.956	40.186	65.449		35.66	6	
ATOM	24	CB	LYS		5	43.930	39.088	65.024		37.33	5	
ATOM T	25	CG	LYS		5	45.197	38.978	65.860		38.24	6 .	
ATOM	26	CD	LYS		5	46.113	40.179	65.659		35.41	6	
MOTA	27	CE	LYS		5	47.436	39.957	66.369		37.46	6	
MOTA	28	NZ	LYS		5	48.345	41.121	66.245		35.63	7	
MOTA	29	C	LYS		5	41.840	40.254	64.415		34.40	6	
ATOM ·	30	0	LYS		5	40.788	39.641	64.588		33.92	8	
ATOM	31	Ŋ	LEU		6	42.082	40.983	63.329		32.52	7	
MOTA	32	CA	LEU		6	41.097	41.094	62.253		33.64	6	
ATOM	33	CB	LEU		6	40.589	42.532	62.114		31.83	6	
ATOM	34	CG	LEU		6	39.346	42.823	61.248		32.93	6	
ATOM	35		LEU		6	39.356	44.295	60.899		28.95	6 6	
ATOM	36		LEU		6	39.336	42.031	59.964		32.87		
MOTA	37	С	LEU		6	41.802	40.721	60.955		35.09	6 8	
MOTA	38	0	LEU		6	42.631	41.491	60.468		36.93	7	
MOTA	39	N	ILE		7	41.494	39.561	60.382		35.52	6	
MOTA	40	CA	ILE			42.145	39.199	59.129		35.14	_	
ATOM	41	CB	ILE		7	42.062	37.711	58.850		33.68		
ATOM	42		ILE		7	42.731	37.409	57.517 59.975		32.87 33.32		
ATOM	43		ILE		7	42.746	36.941	59.755		35.09		
MOTA	44		ILE		7	42.744	35.451	57.971		37.13		
MOTA	45	C	ILE		7	41.487	39.935	57.855		35.21	8	
ATOM	46	0	ILE		7	40.258	39.933 40.563	57.124		37.25		
ATOM	47	N	GLY		8	42.304	40.305	55.994		38.69		
atom -	48	CA	GLY		8	41.771		55.079		39.73		
ATOM	49	C	GLY		8	42.809	41.939	55.321		39.21		
MOTA	50	0	GLY		8	44.015	41.827	54.033		39.41		
MOTA	51	N	THR		9	42.335	42.622			38.69		
MOTA	52	CA	THR		9	43.212	43.268	53.057 52.390		37.27		-
MOTA	53	CB	THR		9	44.132	42.210			36.82		
ATOM	54	OG1	THR		9	44.754	42.771	51.230 52.001		38.59		
MOTA	55		THR		9	43.332	40.972			38.60		
ATOM	56	C	THR		9	. 42.447	44.045	51.970				
ATCH	57	0	THR		9	41.434	43.569	51.452		37.30		
MOTA	58	N	LEU		10	42.939	45.238	51.628		38.14		
MOTA	59	CA	LEU		10	42.304	46.077	50.609		39.39		
atom	60	CB	LEU		10	43.026	47.418	50.456		38.98		
atom	61	CG	LEU		10	42.836	48.506	51.510		39.68		
ATOM	6 2		LEU		10	41.343	48.830	51.594		40.22		
ATOM	63		LEU		10	43.382	48.057	52.857		40.11		٠
ATOM	64	С	LEU		10	42.238	45.432	49.239		41.66		
'ATCM	65	O	LEU		10	41.462	45.963	48.381		42.08		
ATOM	őő	N	ASP	A	11	43.052	44.408	49.025	1.00	43.51	7	

Figure 17-2

		·
	65 G1 16D 1 11	43.071 43.731 47.737 1.00 47.27 6
ATOM	67 CA ASP A 11	44 250 42 765 47 694 1.00 51.03 6
ATOM	68 CB ASP A 11	45 579 43 479 47 858 1.00 54.10 6
ATOM	69 CG ASP A 11	45 944 44 282 46.975 1.00 55.93 8
ATOM	70 OD1 ASP A 11	46 255 43 251 48.879 1.00 57.79 8
ATOM	71 OD2 ASP A 11	41.756 43.016 47.423 1.00 46.36 5
ATOM	72 C ASP A 11	41.472 42.702 46.266 1.00 43.49 8
ATOM	73 O ASP A 11	31.3.2
ATOM	74 N TYR A 12	40 204 1 00 45 92 6
ATOM	75 CA TYR A 12	39.034 44.240 100 11 30 6
ATOM	76 CB TYR A 12	38.933 41.942 30.00 1.00 20.00 6
ATOM	77 CG TYR A 12	39.338 40.007 33.05 5
MOTA	78 CD1 TYR A 12	39.531 40.720 32.75
MOTA	79 CE1 TYR A 12	39.869 33.860 32.11
ATOM	80 CD2 TYR A 12	39.333
ATOM -	81 CE2 TYR A 12	33.000 30.000 1 00 34 10 6
MOTA	82 CZ TYR A 12	40.032 30.031 0
ATOM	83 OH TYR A 12	1 00 46 E6 6
MOTA	84 C TYR A 12	38.786 42.500 47.30
MOTA	85 O TYR A 12	37.021
MOTA	86 N GLY A 13	39.130 94.24
MOTA	87 CA GLY A 13	30.355 43.101
ATOM	88 C GLY A 13	1 00 42 60 9
ATOM	89 O GLY A 13	37.895 45.401 44.117 1.00 43.88 6 39.725 44.210 44.672 1.00 46.52 7
MOTA	90 N LYS A 14	40.112 43.908 43.296 1.00 47.28 6
ATOM	91 CA LYS A 14	41.629 43.748 43.201 1.00 50.22 6
ATOM	92 CB LYS A 14	42.396 45.044 43.307 1.00 57.12 6
ATOM	93 CG LYS A 14	42.038 46.004 42.161 1.00 63.60 6
MOTA	94 CD LYS A 14	42.349 45.422 40.768 1.00 66.65 6
MOTA	95 CE LYS A 14	41.529 44.220 40.387 1.00 67.70 7
ATOM -	96 NZ LYS A 14	39.460 42.643 42.769 1.00 44.18 6
MOTA	97 C LYS A 14	39 564 42 325 41.585 1.00 40.33 8
MOTA	98 O LYS A 14	38 700 41 926 43 661 1.00 43 25 7
MOTA	99 N TYR A 15	38 145 40.665 43.317 1.00 43.18 6
MOTA	100 CA TYR A 15 -	38 789 39 547 44.142 1.00 36.88 6
MOTA	101	40 302 39 560 44.053 1.00 32.96 6
MOTA		41 084 39 107 45.108 1.00 30.90 6
MOTA	100 002	42 476 39 144 45.035 1.00 30.94 b
ATOM	10	40 052 40 049 42.912 1.00 33.01 6
MOTA	100 052	42 341 40 092 42.826 1.00 29.68 6
MOTA		43 198 39 639 43.890 1.00 30.99 b
ATOM	107 CZ TYR A 15 108 OH TYR A 15	44.471 39.673 43.809 1.00 28.02 6
ATOM	109 C TYR A 15	36.661 40.778 43.621 1.00 45.56 6
MOTA	110 O TYR A 15	36.149 40.153 44.552 1.00 45.22 8
ATOM	111 N ARG A 16	35.981 41.599 42.830 1.00 48.81
ATOM ATOM	112 CA ARG A 16	34,553 41.819 42.999 1.70 53.22 0
ATOM	113 CB ARG A 16	34.193 43.263 42.654 1 30 57.11
ATOM	114 CG ARG A 16	34.032 44.330 43.55
ATOM	115 CD ARG A 16	34.280 44.400 34.500 100 77 50 7
ATOM	116 NE ARG A 16	34.798 45.590 45.502
ATOM	117 CZ ARG A 16	34.612 40.037
ATOM	118 NH1 ARG A 16	33.91, 47.003
ATOM	119 NH2 ARG A 16	35.142 47.830 10.000 1.00 51.79 6
ATOM	120 C ARG A 16	33.757 40.503
ATOM	121 O ARG A 16	34.192 40.333
MOTA	122 N TYR A 17	32.596 40.405 42.552
ATOM	123 CA TYR A 17	31./3/ 39.034 10.500 1.00 45.80 6
ATOM	124 CB TYR A 17	30.534 39.113
ATOM	125 CG TYR A 17	30.803 37.833 3.00 43 45 6
ATOM	126 CD1 TYR A 17	31.569 37.552 15.100 1 100 13 36 6
ATOM	127 CE1 TYR A 17	31.950 36.750 13.00 30 80 6
ATOM	128 CD2 TYR A 17	30.125 36.006 43.003 1.00 40 56 6
ATOM	129 CE2 TYR A 17	30.443 33.320 33.00 6
ATOM	130 CZ TYR A 17	31.333 35.370 15.500 1 00 34 55 8
	131 OH TYR A 17	31.600 34.43.6
ATOM	132 C TYR A 17	31.245 40.547 40.622 1.00 51.88 6

					43 777	40.726	1.00 47.86	8
MOTA	133 0	TYR A	17	31.332	-	39.534	1.00 54.38	7
ATOM	134 N	PRO A	18	30.730		39.190	1.00 54.21	6
ATOM	135 CD	PRO A	18	30.548	50.55	38.449	1.00 56.43	6
ATOM	136 CA	PRO A	18	30.243	40.809		1.00 56.84	6
ATOM	137 CB	PRO A	18	29.601	39.792		1.00 56.46	6
ATOM -	138 CG	PRO A	18	29.260	38.613		1.00 58.74	6
ATOM	139 C	PRO A	18	29.273	41.891	38.932	1.00 55.72	8 .
ATOM	140 0	PRO A	18	28.791	41.861	40.066	1.00 62.10	7
ATOM	141 N	LYS A	19	29.017	42.851	38.052	1.00 64.85	6
ATOM	142 C		19	28.127	43.973	38.314	1.00 64.83	6
ATOM	143 CF		19	27.972	44.781	37.022		6
MOTA	144 CC		19	28.008	43.925	35.740	1.00 74.99	6
MOTA	145 CI		19 .	26.895	42.881	35.668-	1.00 78.18	6
ATOM	146 CI		19	26.981	42.010	34.420	1.00 80.24	7
ATOM	147 N		19	25.867	41.010	34.361	1.00 81.13	6 -
ATOM	148 C	LYS A	19	26.750	43.619	38.869	1.00 64.77	8
ATOM	149 0	LYS A	19	26.414	43.961	40.001	1.00 66.50	7
ATOM	150 N		20	25.957	42.933	38.062	1.00 63.75	6
ATOM	151 C		20	24.612	42.556	38.439	1.00 62.96	6
ATOM	152 C		20	23.870	42.031	37.208	1.00 67.42	6
MOTA	153 C	-	20	22,392	41.833	37.459	1.00 72.29	8
ATOM		D1 ASN A	20	21.666	42.785	37.772	1.00 75.25	7
ATOM		D2 ASN A	20	21.931	40.594	37.322	1.00 74.38	6
ATOM	156 C	_	20	24.602	41.512	39.547	1.00 61.30	8
	157 0		20	23.629	40.773	39.698	1.00 61.49	7
MOTA MOTA	158 N		21	25.681	41.444	40.321	1.00 57.30	6
ATOM		A HIS A	21	25.755	40.480	41.418	1.00 54.68	6
ATOM	-	B HIS A	21	27.071	39.700	41.373	1.00 52.63 1.00 49.39	6
ATOM		G HIS A	.21	27.058	38.449	42.195	1.00 49.39	6
ATOM		D2 HIS A	21	27.336	38.236	43.503	1.00 49.39	7
ATOM		ID1 HIS A	21	26.664	37.229	41.686	1.00 48.27	6
ATOM		E1 HIS A	21	26.704	36.320	42.643	1.00 47.33	7
MOTA		NE2 HIS A	21	27.108	36.905.	43.757	1.00 47.33	6
MOTA	166		21	25.664	41.215	42.760	1.00 52.52	8
MOTA	167		21	26.295	42.256	42.947	1.00 50.81	7
MOTA		N PRO A	22	24.880	40.679	43.713	1.00 48.50	6
ATOM	169	D PRO A	22	24.076	39.444	43.661 45.029	1.00 48.02	6
ATOM	170 (CA PRO A	22	24.734	41.310	45.783	1.00 47.45	6
ATOM	171 (CB PRO A	.22	23.860	40.308	44.667	1.00 47.76	6
ATOM	172	CG PRO A	22	22.990		45.727	1.00 46.48	6
ATOM	173 (C PRO A	22	26.074		46.615	1.00 45.69	8
ATOM	174	O PRO A	22	26.164			1.00 44.97	7
ATOM	175	N LEU A		27.107		45.906	1.00 41.31	6
ATOM	176	CA LEU A		28.441				6
ATOM		CB LEU A		29.076			1.00 37.71	6
ATOM		CG LEU A		28.264 29.075			4 00 75 07	6
ATOM		CD: LEU A	. 23	27.896				6
ATOM		CD1 LEU A		29.334				6
ATOM		C LEU A		30.556			1.00 39.00	8
ATOM		O LEU A		28.706				7
ATOM		N LYS A		29.430			1.100 42.88	6
ATOM		CA LYS A		28.480				6
MOTA		CB LYS A		28.40			1.00 44.08	6
ATOM		CG LYS A				•	1.00 44.47	6
ATOM	187	CD LYS A		28.24° 26.73			1.00 43.23	6
ATCM		CE LYS ?					1.00 39.79	7
ATOM	189	NZ LYS ?		25.98				6
ATOM	190	C LYS A		30.03 31.02			7 1.00 47.22	8
ATOM	191	O LYS						7
MOTA	192	N ILE A		29.43		-		6
ATCM	193	CA ILE A		29.87				6
MOTA	194	CB ILE A		28.76				6
ATOM	195	CG2 ILE A		27.53	_			, 6
ATOM	196	CG1 ILE		28.41				, 6
ATOM	197	CD1 ILE		27.30	_			
TOM	198	C ILE	A 25	31.07	8 45.62		_	

						47 100	1.00 38.90	8
> mO24	199 0	ILE A	25	31.419	44.441		1.00 36.50	
MOTA				31.762	46.616	47.709	1.00 40.18	7
MOTA	200 N		26		48.051	47.533	1.00 40.58	6
ATOM	201 C	D PRO A	26	31.523				6
		A PRO A	26	32.939	46.437		1.00 38.31	
ATOM	_			33.478	47.860	48.688	1.00 37.14	6
ATOM	203 C	B PRO A	26				1.00 38.77	6.
	204 C	G PRO A	26	32.940	48.537	• • • • • •		
MOTA			26	32.433	45.903		1.00 37.32	6
MOTA	205 C				46.372	50.412	1.00 32.70	8
MOTA	206 C	PRO A	26	31.416		_	1.00 36.54	7
	207 N	ARG A	27	33.134	44.930		1.00 30.34	
MOTA			27	32.685	44.359	51.711	1.00 37.39	6
ATCM		A ARG A			42.952	51.455	1.00 35.29	6
MOTA	209 C	B ARG A	27	32.116			1.00 32.69	6
		G ARG A	27	31.047	42.956	50.355		
MOTA	_		27	30.507	41.573	49.956	1.00 33.87	6
ATOM		D ARG A		20.307	40.909	51.021	1.00 36.16	7
ATOM	212 N	VE ARGA	2 7	29.757	40.505		1.00 37.11	6
		Z ARG A	27	30.293	40.132	51.959		
MOTA		WH1 ARG A	27	31.604	39.903	51.976	1.00 34.42	7
MOTA				29.516	39.597	52.896	1.00 33.67	7
ATOM	215 N	NH2 ARG A	27			52.732	1.00 36.35	6
ATOM	216	ARG A	27	33.813	44.329	52.752		8
			27	33.881	45.188	53.610	1.00 35.77	
MOTA				34.703	43.351	52.607	1.00 34.93	7
MOTA	218 1	VAL A	28			53.537	1.00 34.00	6
ATOM	219	CA VAL A	28	35.810	43.230	33.337		6
		CB VAL A	28	36.633	41.954	53.252	1.00 36.21	
MOTA				37.574	41.652	54.424	1.00 33.59	6
ATOM		CG1 VAL A	28		40.790	52.992	1.00 37.05	6
MOTA	222	CG2 VAL A	28	35.696			1.00 31.91	6
		C VAL A	28	36.712	44.454	53.423		
ATOM			28	37.216	44.959	54.427	1.00 31.45	8
MOTA		O VAL A			44.936	52.199	1.00 33.12	7
ATOM	225	N SER A	29	36.908			1.00 32.03	6
ATOM	-	CA SER A	29	37.751	46.111	51.967		6
			29	38.205	46.181	50.499	1.00 31.77	
MOTA				37.113	46.223	49.600	1.00 30.80	8
MOTA	228	OG SER A	29			52.353	1.00 30.16	6
ATOM		C SER A	29	37.003	47.380	14.333		8
		O SER A	29	37.604	48.404	52.650	1.00 28.70	
MOTA				35.682	47.310	52.352	1.00 32.43	7
ATOM	231	N LEU A	30			52.745	1.00 34.56	6
ATOM	232	CA LEU A	30	34.900	48:465		1.00 36.44	6
	233	CB LEU A	30	33.463	48.358	52.221		
MOTA				32.508	49.513	52.560	1.00 36.79	6
MOTA	234	CG LEU A	30		49.446	54.012	1.00 36.73	6
ATOM	235	CD1 LEU A	30	32.070			1.00 37.84	6
ATOM	236	CD2 LEU A	30	33.202	50.840	52.256		6
			30	34.902	48.527	54.262	1.00 34.89	
Atom	237			35.033	49.601	54.841	1.00 37.58	8
MOTA	238	O LEU A	30			54.897	1.00 34.07	7
ATOM	239	N LEU À	31	34.761			1.00 34.85	6
	240	CA LEU A	31	34.743		56.350		
ATOM			31	34.768	45.808	56.791	1.00 36.37	6
ATOM	241	CB LEU A		-		58.261	1.00 36.04	6
MOTA	242	CG LEU A		34.459			1.00 35.13	6
ATOM	243	CD1 LEU A	31	34.841				. 6
		CD2 LEU A	31	35.228	46.357	59.194	1.00 35.86	
ATOM	244			35.976			1.00 36.43	6
ATOM	245	C LEU A					1.00 35.87	8
ATOM	246	O LEU A	31	35.855				7
	247	N LEU A		37.157				
ATOM				38.420		57.087	1.00 36.82	6
ATCM	248	CA LEU A		20.420				6
ATOM	249	CB LEU A	32	39.611				6
	250	CG LEU A		40.030	45.888			
ATOM				41.11		55.815	1.00 35:16	6
ATOM	251	CD1 LEU A					1.00 37.73	6
ATOM	252	CD2 LEU A	. 32	40.538				6
	253	C LEU A		38.500				8
ATOM				38.84		5 57.644	1.00 36.58	
ATOM:	254	O LEU A						7
ATOM	255	N ARG A		38.18				6
ATOM	256	CA ARG A		38.24				
				37.92	7 51.39			0
ATOM	257			38.48			1.00 35.88	6 6 7
atom	258	CG ARG A						6
ATCM	259	CD ARG A	33	38.10	7 52.75			7
	260	NE ARG		38.52	1 51.58			
ATCM				38.34		9 49.497	7 1.00 52.27	
ATCM	261	CZ ARG					3 1.00 51.75	7
ATCM	262	NH1 ARG A		37.77				
ATCM	263	NH2 ARG A		38.73	9 50.36			
_		C ARG		37.27	4 52.10	2 55.989	4 1.00 32.32	

						•								
	265	0	ARG A		3 3		37.	471	53	.299	56.196	1.00 2	9.23	8
ATOM			PHE A		34		36	. 231	51	.445	56.484	1.00 3		7
MOTA	266	N			34			216		.096	57.304	1.00 3	2.69	6
MOTA	267	CA	PHE A					952		.232	57.359	1.00 3	1.22	· 6
MOTA	268	CB .	PHE A		34					.825	58.183	1.00 2		6
MOTA	269	CG	PHE 3		34			. 838			57.700		2.76	6
ATOM	270	CD1	PHE A		34			.085		.888			8.09	6
MOTA	271	CD2	PHE A	A :	34			. 551		.322	59.456	1.00 2		6
ATOM	272	CE1	PHE 2	4	34			.061		.441	58.472			
ATOM	273	CE2	PHE A	4	34		31	. 524		.873	60.235	1.00 2		6
	274	CZ	PHE A		34		30	.781	52	.929	59.741		1.39	6
MOTA	275	c	PHE A		34		35	.734	52	.319	58.719	1.00 3		6
MOTA	276	0	PHE A		34		35	. 635	53	.425	59.258	1.00 3		8
MOTA			LYS A		35			.276	51	.264	59.323	1.00 3	4.52	7
MOTA	277	N	LYS A		35			.805		.360	60.678	1.00 3	6.51	6
ATOM	278	CA		-	35			.118		.977	61.235	1.00 3	6.47	6
MOTA	279	CB	LYS		35			.912		.074	61.343	1.00 4	0.81	6
MOTA	280	CG	LYS					.246		.801	62.090		4.10	6
MOTA	281	CD	LYS		35			.347		7.029	61.402	1.00 4		6
ATOM	282	CE	LYS A		35		3/	601		7.823	61.276		3.53	7
MOTA	283	NZ	LYS .		35			.601			60.735		6.61	6
MOTA	284	С	LYS .		35			.054		2.222	61.766	1.00		8
ATOM	285	0	LYS .	A	35			.352	54	2.824		1.00		7
ATOM	286	N	ASP .	A	36			.794		2.267	59.635	1.00		6
MOTA	287	CA	ASP	A	36		-	.980		3.090	59.592		44.78	6
ATOM	288	CB	ASP	Α	36			.679		2.937	58.239			6
ATOM	289	CG	ASP		36			.863		3.892	58.075		47.10	
MOTA	290		ASP	Α	36		42	.803		3.352	58.906		44.02	8
ATOM	291	OD2	ASP	Α	36		41	.843		4.682	57.106		48.43	8
ATOM .	292	c	ASP		36		39	.508	5	4.530	59.789	-	39.99	6
ATOM	293	Ö	ASP		36		40	0.023	5	5.258	60.536	_	40.76	8
	294	N.	ALA		37		38	3.506	5	4.919	59.007		38.59	7
MOTA	295	CA	ALA		37		37	7.939	5	6.258	59.066		37.14	6
MOTA	296	CB	ALA		37		36	5.857	5	6.402	58.000		35.85	6
MOTA			ALA		37			7.354		6.549	60.446	1.00	38.34	6
MOTA	297	C	ALA		37			7.391		7.687	60.928	1.00	37.32	8
MOTA	298	0			38			5.809		5.518	61.079	1.00	36.19	7
MOTA	299	И	MET		38			5.213		5.674	62.397	1.00	36.80	6
MOTA	300	CA	MET					5.141		4.598	62.606	1.00	37.38	6
MOTA	301	CB	MET		38 38			3.938		4.717	61.673	1.00	37.60	6
MOTA	302	CG	MET					2.887	_	6.165	61.999	1.00	33.61	16
MOTA	303	SD	MET		38			2.398		5.824	63.680	1.00	35.60	6
ATOM .	304	CE	MET		38			7.262		5.582	63.502	1.00	35.84	6
MOTA	305	C	MET		38			6.937		5.688	64.692		34.89	8
MOTA	306	0	MET		38			8.518	_	5.400	63.100		33.83	7
MOTA	307	Ŋ	ASN		39			9.626		5.264	64.044		34.94	6
ATOM	308	CA	ASN		39		_			6.582		7 1 1 1	32.48	6
MOTA	309	CB	ASN		39			9.897					32.34	6
ATOM	310	CG			39			0.213		7.717			31.85	8
ATOM	311	OD:	1 ASN	Α	39			1.128		7.521			30.92	7
ATCM	312	ND:	2 ASN	Α	39			9.455	_	8.800			36.87	6
MOTA	313	С	ASN	Α	39			9.253		4.183			36.60	8
ATOM	314	0	ASN	Α	39			9.403		54.357		•	37.48	7.
ATOM	315	N	LEU	Α	40		3	8.752		53.067				6
ATOM	316	CA	LEU	A	40			8.341		51.933			39.66 41.35	6
ATOM	317	CB			40		3	6.863	. :	51.622	65.086			6
ATOM	. 318	CG			40		3	5.858		52.712			42.69	6
	319	CD	1 LEU		40		3	4.448	: !	52.261			45.05	6
MOTA	320		2 LEU		40			5.951		52.989			39.44	6
ATOM		C C	LEU		40		_	9.184		50.687	65.05		39.79	6
ATOM	321				40		_	8.804		49.575	65.43	=	36.88	
ATOM	322		LEU		41			0.337		50.889		1.00	40.50	
MOTA	323		ILE				- A	1.237		49.790			41.39	6
MOTA	324				41			0.780		49.14			39:24	6
ATOM	325				41					50.10			36.97	6
MOTA	326		2 ILE		41		4	1.01		47.82			36.76	6
MOTA	327				41			1.51		46.71			35.59	
ATOM	328) ILE		41			1.08					44.37	
MOTA	329	C	ILE		41			2.684		50.29	-		46.01	
MOTA	330	0	ILE		41		4	12.92	/	51, 32	03.2/	, 1.00		-

			43 646 49 582 64.497 1.00 45.19 7	
MOTA	331 N ASP A 42		43.646 49.582 64.437 1.00 45.62 6	
ATOM	332 CA ASP A 42		45.049 49.982 64.372 1.00 45 17 6	
MOTA	333 CB ASP A 42		45./16 50.050 55.05	
ATOM	334 CG ASP A 42		44.966 51.003 66.002 1.00 39.84 8	
ATOM	335 OD1 ASP A 42		44.731 32.177 00.322 1.00 49 50 8	
ATOM	336 OD2 ASP A 42		44.012 30.22 62 551 1 00 48 47 6	
MOTA	337 C ASP A 42		45.750 40.515 60 545 1 00 49 85 8	
ATOM	338 O ASP A 42		43.310 47.310 49.24 7	
MOTA	339 N GLU A . 43		40.830 43.235 62 028 1 00 50 79 6	
ATOM	340 CA GLU A 43		47.533 48.525 61.431 1.00 49.90 6	
MOTA	341 CB GLU A 43	-	48.820 40.939 60.378 1.00 57.20 6	
MOTA	342 CG GLU A 43		40 000 50 537 59.690 1.00 59.56 6	
ATOM	343 CD GLU A 43		50 517 49 721 59.061 1.00 65.05 8	
ATOM	J44 0mm		50 095 51.750 59.772 1.00 57.82 8	
MOTA	J45 022 020 1		47 918 47.020 62.733 1.00 49.73 6	
MOTA	340 6 550		47 813 45.943 62.149 1.00 49.18	
ATOM	347 O GLU A 43 348 N LYS A 44		48.324 47.118 03.332 1.00 49.00	
MOTA	349 CA LYS A 44		48.730 43.73	
MOTA	350 CB LYS A 44		49.31/ 40.410	
MOTA MOTA	351 CG LYS A 44		50.440 47.422 200 1 00 50 74 6	
ATOM	352 CD LYS A 44		51.10/ 9/	
ATOM	353 CE LYS A 44		52.32/ 48.704 00.333	
MOTA	354 NZ LYS A 44		33.122 30.000 6	
MOTA	355 C LYS A 44		47.032 43.738 65.290 1.00 45.13 8	
ATOM	356 O LYS A 44		46 379 45 298 64.854 1.00 45.25 /	
MOTA	357 N GLU A 45		45 268 44.374 65.046 1.00 43.09 6	
ATOM	350 C C		44.024 45.143 65.514 1.00 41.19	
MOTA	359 CB GLU A 45 360 CG GLU A 45		44.192 45.859 66.844 1.00 36.63 6	
ATOM-	361 CD GLU A 45		43.003 46.741 67.204 1.00 38.92	
ATOM ATOM	362 OE1 GLU A 45		42.707 47.752 50 252 1 00 36 33 8	
MOTA	363 OE2 GLU A 45		42.388 40.47 62 726 : 00 43 04 6	
ATOM	364 C GLU A 45		44.969 45.000 1 00 45 03 8	
ATOM	365 O GLU A 45		44.480 42.323 50 60 70 70 7	
ATOM	366 N LEU A 46		45.262 44.342 61.299 1.00 37.16 6	
MOTA	367 CA LEU A 46		44 910 44 990 60.331 1.00 37.86 6	
MOTA	368 CB LEU A 46		44.822 44.658 58.845 1.00 39.22 6	
MOTA	J05 CG ===		43.655 43.726 58.563 1.00 40.68	
ATOM	370 CD1 LEU A 46 371 CD2 LEU A 46		44.673 45.964 58.080 1.00 41.62 6	
MOTA	372 C LEU A 46		46.090 42.860 60.774 1.00 30 86 8	
MOTA MOTA	373 O LEU A 46		47.275 43.192 60.696 2.00 33.49 7	
ATOM	374 N ILE A 47		45.646 41.662 66.664 1.00.30.51 6	,
MOTA	375 CA ILE A 47		46.540 40.057 55.00 24 21 6	j
ATOM	376 CB ILE A 47		48.333 39.262 59.930 1.00 32.16 6	
ATOM	377 CG2 ILE A 47		46 504 39 328 62,010 1.00 32.65 6	
MOTA	378 CG1 ILE A 47		17 059 39 846 62.448 1.00 38.97 6	
MOTA	377 001 101		46.196 40.570 58.362 1.00 28.36	
MOTA	300 0 222		45.037 40.342 58.003 1.00 26.11	
MOTA	JU1 0 222 1		47.194 40.772 57.504 1.00 27.77	6
ATOM	382 N LYS A 48 383 CA LYS A 48		46.985 40.713 33.330 1 00 23 91	6
MOTA	384 CB LYS A 48		48.258 41.007 33.305 1.00 34 90	6
MOTA MOTA	385 CG LYS A 48		48.056 41.273 33.011 1 00 26 30	6
ATOM	386 CD LYS A 48		49.389 41.332 53.670 1 00 27 71	6
ATOM	387 CE LYS A 48		49.233 41.884 51.895 1.00 32.59	7
MOTA	388 NZ LYS A 48		48.7/4 43.2/3 51.050 21.00 26.32	6
MOTA	389 C LYS A 48		46.595 39.299 55.035 1.00 27.85	8
ATCM	390 O LYS A 48		15 735 30 183 54.653 1.00 24.73	7
ATOM	391 N SER A 49		45 200 37 876 54.205 1.00 27.36	6
ATOM	392 CA SER A 49		43.952 37.979 53.479 1.00 25.04	6
ATOM	393 65 651 10		42.911 38.329 54.373 1.00 26.94	8
ATOM	354 CO AC		46.322 37.211 53.293 1.00 28.97	8
ATOM	395 C SER A 45		47.095 37.885 52.612 1.00 31.89	-

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	397 N ARG A 50 398 CA ARG A 50 399 CB ARG A 50 400 CG ARG A 50 401 CD ARG A 50 402 NE ARG A 50 403 CZ ARG A 50 404 NH1 ARG A 50 405 NH2 ARG A 50 406 C ARG A 50 407 O ARG A 50 408 N PRO A 51 409 CD PRO A 51 411 CB PRO A 51 411 CB PRO A 51 411 CB PRO A 51 412 CG PRO A 51 413 C PRO A 51	46.315 35.879 53.296 1.00 29.71 7 47.211 35.087 52.463 1.00 25.78 6 48.249 34.351 53.318 1.00 26.20 6 47.687 33.204 54.172 1.00 22.71 6 48.818 32.468 54.890 1.00 22.95 6 48.359 31.385 55.762 1.00 19.20 7 47.708 30.306 55.345 1.00 16.85 6 47.430 30.151 54.055 1.00 17.77 7 47.334 29.385 56.223 1.00 14.56 7 46.370 34.051 51.723 1.00 23.30 6 45.319 33.635 52.206 1.00 16.92 8 46.823 33.628 50.534 1.00 21.06 7 46.086 32.633 49.761 1.00 20.50 6 46.862 32.592 48.451 1.00 21.57 6 47.503 33.984 48.392 1.00 20.57 6 46.153 31.300 50.498 1.00 26.71 6 </th <th>· -</th>	· -
MOTA MOTA	414 O PRO A 51 415 N ALA A 52	45.176 30.435 50.250 1.00 26.02 7	
MOTA	416 CA ALA A 52 417 CB ALA A 52	43.720 28.585 50.933 1.00 21.42	5
ATOM ATOM	417 CB ALA A 52 418 C ALA A 52	46.013 28.227 50.000 1.00 26.31	
ATOM	419 O ALA A 52	45.878 28.233 40.100 26.80	7
atom atom	420 N THR A 53 421 CA THR A 53	47.759 26.578 49.831 1.00 27.32	6 6
ATOM	422 CB THR A 53	48 255 25 053 51.641 1.00 29.51	8
atom atom	423 OG1 THR A 53 424 CG2 THR A 53	49.522 27.076 51.502 1.00 24.66	6 6
ATOM	425 C THR A 53	46.908 25.462 49.209 1.00 26.58 45.778 25.228 49.634 1.00 21.98	8
ATOM.	426 O THR A 53 427 N LYS A 54	47.455 24.782 48.203 1.00 29.62	7 6
MOTA MOTA	428 CA LYS A 54	46.739 23.713 47.307 1.00 31 99	6
MOTA	429 CB LYS A 54 430 CG LYS A 54.	46.985 21.967 45.629 1.00 36.62	6
MOTA MOTA	431 CD LYS A 54	45.733 22.352 44.866 1.00 40.69	.6 6
MOTA	432 CE LYS A 54	46 844 22 393 42.614 1.00 50.68	7
MOTA MOTA	433 NZ LYS A 54 434 C LYS A 54	46.348 22.595 48.465 1.00 36.00	6 8
MOTA	435 O LYS A 54	47 216 22 336 49.443 1.00 37.91	7
MOTA MOTA	436 N GLU A 55 437 CA GLU A 55	46.979 21.290 50.433 1.00 36.96	6 6
ATOM	438 CB GLU A 55	48.246 19.887 52.195 1.00 47.95	6
ATOM	439 CG GLU A 55 440 CD GLU A 55	49.552 19.654 52.891 1.00 51.01	6 8
ATOM ATOM	441 OE1 GLU A 55	49.659 18.688 53.679 1.00 52.65 50.497 20.437 52.646 1.00 51.27	8
ATOM	442 OE2 GLU A 55 443 C GLU A 55	45.771 21.609 51.322 1.00 34.10	6
atom atom	444 O GLU A 55	44.892 20.769 51.496 1.00 33.08 45.723 22.827 51.866 1.00 32.39	8 7
ATOM	445 N GLUA 56 446 CA GLUA 56	44.621 23.256 52.733 1.00 30.13	6
atom atom	447 CB GLU A 56	44.824 24.714 53.177 1.00 25.28	6 6
ATOM	448 CG GLU A 56	46 421 26 450 54.181 1.00 30.74	6
MOTA MOTA	449 CD GLU A 56 450 OE1 GLU A 56	46.072 27.369 53.398 1.00 29.77	8
ATOM	451 OE2 GLU A 56	43 264 23 114 52 024 1.00 29.63	6
ATOM	452 C GLU A 56 453 O GLU A 56	42.299 22.584 52.595 1.00 29.90	8 7
ATOM ATOM	454 N LEU A 57	43.188 23.581 50.780 1.00 26.76	6
ATOM	455 CA LEU A 57	42 132 24.103 48.629 1.00 22.68	6
atom atom	456 CB LEU A 57 457 CG LEU A 57	42.402 25.612 48.572 1.00 22.39	5 6
ATOM	458 CD1 LEU A 57	22.334 26.366 49.156 1.00 17.66	6
ATOM	459 CD2 LEU A 57 460 C LEU A 57	41.479 22.037 49.896 1.00 26.02	6 8
ATOM ATOM	461 O LEU A 57	40.204 21.732 10.00 24 92	7
ATOM	462 N LEU A 58	42.444 21.143 49.675 1.00 24.82	
• ••	-		

	463	C 3	LEU A	58	Δ	2.	194	19	.718	49.	526	1.00			6
MOTA			LEU A	58			434		.027	48.		1.00			6
ATOM			LEU Y	58			838		.471	47.	558	1.00			6
MOTA			LEU A	58			212		.908	47.	176			0.35	6
MOTA	-			58			755		.033	46.		1.00	2	3.28	6
MOTA	-		LEU A	58			797		.054	50.				5.20	6
MOTA	-		LEU A				.456		.867		854	1.00	2	6.55	8
ATOM			LEU A	58			. 858		.794		938			5.44	7
MOTA	-		LEU A	59			.446		.212		211	1.00	2	5.24	6
MOTA	471		LEU /	59			.559		.229		350			4.68	6
ATOM	472		LEU !	59			.956		.490		912			7.05	6 .
MOTA	473	CG	LEU .	59			.912		. 565		001			4.76	6
ATOM	474		LEU .	59			.492	10	.184		474			6.99	6
MOTA	475		LEU .	59			.991	19	.807		045			4.22	6
ATOM	476	C	LEU .	59 .			.548		.794		581			1.18	8
MOTA	477	0	LEU	59			.270		.615		270			5.00	7
MOTA	478	N	PHE	60			.859	10	.403		011			5.00	6
ATOM	479	CA	PHE	60		_	.054	7.2).560	52	605			26.34	6
ATOM	480	CB	PHE	60			.600	20).555	52	223			29.37	6
MOTA	481	CG	PHE	60			.811		.422		427			27.57	6
MOTA	482		PHE	60			.015		1.692		661			27.33	6
MOTA	483		PHE	60			.466	10	2.419		.077			27.00	6
MOTA	484		PHE	60			.670		1.699		306			28.08	6
MOTA	485	CE2	PHE	60			.893		0.559		.513			29.48	6
ATOM	486	CZ	PHE	60			.506		9.214		.538			27.78	6
MOTA	487	C	PHE	60			.022		B.143	50	.158			31.57	8
ATOM	488	0	PHE	60			.734	21	0.220		.696			26.76	7
MOTA	489	N	HIS	61			.376		0.056		.287	1.0	0	28.84	6
MOTA	490	CA	HIS	61			.365		1.405		.561			27.76	6
MOTA	491	CB	HIS	61			3.385		2.396		.117	1.0		30.54	6
MOTA	492	CG	HIS	61			.056		2.549		.907	1.0	0	33.74	6
MOTA	493		HIS	61			5.750	2	3.401		.987			34.02	7
ATOM	494		HIS	61			5.691	2	4.135		.286	1.0	0	32.07	6
MOTA	495		HIS	61.			1.649		3.638		.644			34.10	7
ATOM	496		HIS	61			3.278		9.056		.539	1.0	0	28.38	6
MOTA	497	С	HIS	61			9.287		8.604		.072			25.81	8
MOTA	498	0	HIS	61 62			7.895		8.705		.310			32.88	7
ATOM	499	N	THR	62		_	3.658		7.749		.488	1.0	00	34.68	6
MOTA	500	CA	THR THR	62			7.715		6.739	44	.778	1.0		34.36	6
MOTA	501	CB		62			6.942		7.415	43	.778	1.0	00	34.81	8
ATOM	502	0G1		62			6.759		6.112	45	.778	1.0		34.33	6
MOTA	503	CG2	THR	62			9.485	1	8.454	44	.408		00	35.60	6
MOTA	504	C 0	THR	62			9.017		9.418	43	.790	1.		30.85	8
ATOM	505 506	И	GLU	63			0.700	1	7.958	44	1.166			37.38	7
MOTA	507	CA	GLU	63			1.587	1	8.555	43	3.165			40.68	6
MOTA MOTA	508	CB	GLU	63			2.759		7.626		2.840	1.	00	43.75	6
	509	CG	GLU	63		4	3.719	1	17.389		3.987		00	50.68	6
MOTA	510	CD	GLU	63			5.026	3	16.760		3.529		00	55.36	6
ATOM	511		GLU	63			5.789		17.441	4:	2.808	1.	00	53.03	8
ATOM	512		GLU	63		4	5.285	1	15.585		3.883		00	59.56	8
ATOM	513	C	GLU	63		4	0.894	1	18.939		1.860		00	39.26	6
ATOM	514	ō	GLU	63			0.771	- 2	20.116		1.535		00	42.33	8
MOTA	515	N	ASP	64			0.453	. :	17.948		1.102			37.07	. 7
MOTA	516	CA	ASP	64		3	9.782	:	18.224		9.845			36.98	6
ATOM	517	CB	ASP	64			8.957	' :	17.000		9.426			42.19	6
MOTA	518	CG	ASP	64			8.037		16.501		0.533			47.66	6
ATOM	519		l ASP				7.039		17.193	4	0.85			47.95	8
MOTA	520		2 ASF				8.325		15.413		1.09			50.07	8
MOTA	521	C C	ASF				8.908		19.480) 3	9.90			33.40	
ATOM	521	0	ASF				8.927	'	20.293	3	8.98	-		33.64	
ATCM	523	N	TYF				8.156		19.641	1 4	0.99	-		3057	
ATOM	524	CA					7.286		20.806		1.15		, 00	29.65	6
ATOM	525	CB					6.300		20.560		2.31		. 00	30.16	6
MOTA	526	CG					35.55	7	21.79	0 4	2.81			28.49	5
ATOM	527		1 TYF				34.79		22.57		1.94	•		30.25	_
ATOM	528		1 TYP			3	34.12	6	23.71	5 4	2.39	9 1	. 00	28.36	, 6
ATOM	320									•					

						_
> mOV	529 CD2 TYR A 65	35.638	22.181		1.00 28.28	6
MOTA	227 002 1-1-	34.980		44.617	1.00 26.96	6
MOTA	330 020 -31				1.00 29.79	6
ATOM	531 CZ TYR A 65				1.00 28.53	8
ATOM	532 OH TYR A 65	33.568	25.201			
	332 0	38.118	22.061	41.418	1.00 29.15	6
MOTA	333 0			40.857	1.00 30.45	8
ATOM	534 O TYR A 65				1.00 26.61	7
MOTA	535 N ILE A 66		21.926		1.00 20.01	
	536 CA ILE A 66	39.986	23.041		1.00 26.35	6
ATOM			22.652	43.687	1.00 26.25	6
MOTA	537 CB ILE A 66				1.00 21.20	6
ATOM	538 CG2 ILE A 66	42.009	23.753			6
	539 CG1 ILE A 66	40.264	22.341		1.00 29.30	
MOTA		39.478	23.517	45.555	1.00 30.52	6
MOTA	3.0 002	40.761	23.504	41.381	1.00 28.07	6
MOTA	541 C ILE A 66				1.00 31.26	8
ATOM	542 O ILE A 66	41.039	24.696	41.225		
	543 N ASN A 67	41.125	22.559	40.521	1.00 28.47	7
MOTA	343	41.902	22.898	39.337	1.00 30.15	6
ATOM	343 0		21.656	38.726	1.00 34.20	6
MOTA	545 CB ASN A 67	42.563			1.00 38.78	6
ATOM	546 CG ASN A 67	43.712	21.118	39.578		
	547 OD1 ASN A 67	44.674	21.841	39.878	1.00 43.34	8
MOTA		43.626	19.845	39.956	1.00 37.14	7
ATOM	340		23.554	38.314	1.00 28.41	6
ATOM	549 C ASN A 67	41.020			1.00 28.05	8
ATOM	550 O ASN A 67	41.494	24.354	37.499		
	551 N THR A 68	39.733	23.221	38.361	1.00 25.32	7
MOTA	332	38.787	23.791	37.416	1.00 21.75	6
MOTA	332 0		23.111	37.500	1.00 16.99	6
MOTA	553 CB THR A 68	37.438			1.00 16.99	8
MOTA	554 OG1 THR A 68	37.620	21.695	37.371		
	555 CG2 THR A 68	36.549	23.591	36.359	1.00 17.59	6
MOTA	555 555	38.633	25.263	37.732	1.00 22.13	6
MOTA	300		26.088	36.830	1.00 21.97	8
ATOM	557 O THR A 68	38.529			1.00 22.32	7.
ATOM	558 N LEU A 69	38.645	25.582	39.023		6.
	559 CA LEU A 69	38.535	26.956	39.482	1.00 23.97	
MOTA	JJ, U	38.376	26.982	41.000	1.00 24.99	6
MOTA	300		26.527	41.548	1.00 29.08	6
ATOM	561 CG LEU A 69	37.023			1.00 30.99	6
MOTA	562 CD1 LEU A 69	37.087	26.416	43.066		6
	563 CD2 LEU A 69	35.942	27.528	41.120	1.00 28.69	
ATOM	505 022 22	39.772	27.757	39.088	1.00 24.90	6
MOTA	30.	39.683	28.921	38.674	1.00 25.04	8
ATOM	565 O LEU A 69			39.218	1.00 24.67	7
ATOM	566 N MET A 70	40.932	27.128		1.00 23.62	6
ATOM	567 CA MET A 70	42.183	27.794	38.897		
	568 CB MET A 70	43.358	26.953	39.380	1.00 26.92	6
MOTA	, , , , , , , , , , , , , , , , , , ,	43.418	26.751	40.884	1.00 26.69	6
MOTA	30, 00		25.929	41.325	1.00 30.71	16
ATOM	570 SD MET A 70	44.970			1.00 23.20	6
ATOM	571 CE MET A 70	46.137	27.077	40.642		ő
	572 C MET A 70	42.324	28.040	37.412	1.00 21.62	
MOTA	3.5	42.903	29.041	36.982	1.00 18.99	8
MOTA	J,J U		27.122	3€ 632	1.00 23.93	7
MOTA	574 N GLUA 71	41.769		31.189	1.00 24.41	6
ATOM	575 CA GLU A 71	41.859	27.204	3103	1.00 26.22	6
	576 CB GLU A 71	41.681	25.814	34 582		
ATOM.		42.224	25.695	33.167	1.00 31.75	6
MOTA		43.737	25.905	33.099	1.00 33.00	6
MOTA	578 CD GLU A 71			31.983		8
MOTA	579 OE1 GLU A 71	44.288	25.855		1.00 30.13	8
	580 OE2 GLU A 71	44.377	26.116	34.154		
MOTA	300 0	40.845	28.160	34.592	1.00 21.86	6
MOTA		41.144	28.851		1.00 21.54	8
MOTA	582 O GLU A 71				1.00 19.22	7
MOTA	583 N ALA A 72	39.649	28.197		1.00 19.39	6
ATOM	584 CA ALA A 72	38.589	29.067			
		37.298	28.743	35.397	1.00 19.23	6
MOTA	. 505 02	38.931	30.536		1.00 26.72	6
ATOM	586 C ALA A 72					8
MOTA	587 C ALA A 72	38.711	31.383			7
	588 N GLU A 73	39.470	30.835			
ATOM	200 10	39.820	32.202	36.436	1.00 29.44	6
ATOM	303 011 121	40.157	32.282			6
ATOM	590 CB GLU A 73					6
ATOM	591 CG GLU A 73	40.646				6
ATOM	592 CD GLU A 73	40,840				8
		39.841	33.776	40.582		
atom		41.996		40.277	1.00 31.77	8
ATOM	594 OE2 GLU A 73	41.550	33.700	•		

77/263 Figure 17-10

	595 C GLU A 73	40.946 32.840 35.615 1.00 31.83 6
ATOM	595 C GLU A 73 596 O GLU A 73	40.859 34.024 35.259 1.00 33.52 8
MOTA MOTA	597 N ARG A 74	41.992 32.071 33.303
MOTA	598 CA ARG A 74	43.128 32.011 34.33
ATOM	599 CB ARG A 74	44.405 31.826 34.074 2.06 1.00 31.42 6
ATOM	600 CG ARG A 74	44.514 30.467 34.263 1.00 30 73 6
MOTA	601 CD ARG A 74	45.702 25.713 33 33 1 00 34 18 7
MOTA	602 NE ARG A 74	46.041 20.534 32.748 1.00 35.55 6
MOTA	603 CZ ARG A 74	46 989 29.818 32.232 1.00 29.64 7
ATOM	604 NH1 ARG A 74	46 906 27.514 32.079 1.00 34.07
MOTA	003 1112 1110 11	42 894 32.623 33.051 1.00 28.61 0
MOTA	606 C ARG A 74 607 O ARG A 74	43.431 33.465 32.338 1.00 24.38 8
MOTA	608 N CYS A 75	42.107 31.6/3 32.360 1.00 20.32
ATOM ATOM	609 CA CYS A 75	41.796 31.619 31.140 1.00 32 91 6
MOTA	610 CB CYS A 75	41.00/ 30.101 20 777 1 00 37 09 16
ATOM	611 SG CYS A 75	43.281 29.290 30.056 1.00.37 10 6
MOTA	612 C CYS A 75	40 029 32 598 29.834 1.00 30.74 8
MOTA	613 O CYS A 75	39 914 32.787 32.088 1.00 34.42 7
MOTA	614 N GLN A 76 615 CA GLN A 76	38 691 33.575 32.144 1.00 33.20 6
MOTA	015 01. 020	38.986 34.962 31.578 1.00 32.09 6
MOTA	616 CB GLN A 76 617 CG GLN A 76	38.089 36.064 32.094 1.00 39.40 0
MOTA MOTA	618 CD GLN A 76	30.479 30.512 3 00 45 02 8
MOTA	619 OE1 GLN A 76	38.5/4 33.733 34.420 1.00 42 22 7
ATOM	620 NE2 GLN A 76	30.703 37.034 37.00 37.30 6
MOTA	621 C GLN A 76	37.381 32.328 30.760 1.00 34.19 8
MOTA	622 O GLN A 76	37 522 31 598 31.370 1.00 31.81
MOTA	623 N CYS À 77	36.511 30.862 30.627 1.00 31.47 6
ATOM	024 0	37.187 30.181 29.454 1.00 30.25
MOTA	625 CB CYS A 77 626 SG CYS A 77	18.4/9 29.0/1
MOTA MOTA	627 C CYS A 77	35.851 29.793 31.498 1.00 35.15 8
ATOM	628 O CYS A 77	36.333 23.303 3
ATOM	629 N VAL A 78	34.750 29.139 31.747 1.00 30.55 6
ATOM	630 CA VAL A 78	32 539 28 287 31.720 1.00 30.06 6
MOTA	631 CB VAL A 78	31.881 27.030 32.293 1.00 28.23 6
MOTA	032 002 112	32.129 29.503 32.526 1.00 30.67 6
ATOM	633 CG2 VAL A 78 634 C VAL A 78	34.420 26.794 31.110 1.00 29.65 8
MOTA MOTA	635 O VAL A 78	33.851 26.422 30.077 1.00 28 55 7
ATOM	636 N PRO A 79	35.337 20.535 32.025 3.00.24.39 6
MOTA	637 CD PRO A 79	35.985 20.333 31 261 1.00 28.89 6
ATOM	638 CA PRO A 79 639 CB PRO A 79	26 622 24 218 32,434 1.00 24.49 6
MOTA	055 02	37,239 25.500 32.922 1.00 25.68
ATOM	6 0 CG PRO A 79 6.1 C PRO A 79	34.668 23.776 30.881 1.00 30.13
MOTA	6-2 O PRO A 79	33.03/ 23.022 3.00 33 44 7
MOTA MOTA	643 N LYS A 80	34.796 23.136 23.727 1.00 39 52. 6
MOTA	644 CA LYS A 80	33.758 22.216 23.335 1.00 45.18 6
MOTA	645 CB LYS A 80	34.202 21.334 28.278 1.00 55.18 6
ATOM	646 CG LYS A 80	25 700 19 827 27,000 1.30 60.80 6
MOTA	647 CD LYS A 80	37 035 18.976 27.168 1.00 64.25
MOTA	.040	37.367 18.252 25.911 1.00 68.95
MOTA	649 NZ LYS A 80 650 C LYS A 80	33.411 21.267 30.443 1.00 30.50
MOTA	651 O LYS A 80	34.293 20.773 31.104 1.00 32 57 7
MOTA MOTA	652 N GLY A 81	32.112 21.035 30.602 1.00 29.81 6
MOTA	653 CA GLY A 81	31.634 20.133 31.040 1.00 28.30 6
ATOM	654 C GLY A 81	30.544 20.612 33.723 1.00 25.49 8
ATOM	655 O GLY A 81	32 380 21.830 33.218 1.00 25.99
MOTA	656 N ALA A 82	32.384 22.602 34.458 1.00 26.72 6
MOTA	657 CA ALA A 82 658 CB ALA A 82	33.485 23.674 34.406 1.00 22.64
ATOM	330 02	31.066 23.245 34.886 1.00 27.84
MOTA	659 C ALA A 82 660 O ALA A 82	30.729 23.224 36.068 1.00 30.00
ATOM		
•		

										_
:	c C 3	N 1	ARG A	83		30.310	23.811	33.951	1.00 31.15	7
ATOM	661					29.071	24.462	34.345	1.00 32.50	6
ATOM	662	CA	ARG A	83					1.00 37.19	6
ATOM	663	CB	ARG A	83		28.285	24.941	33.127		
	664		ARG A	83		27.439	26.189	33.408	1.00 42.23	6
MOTA			ARG A	83		26.480	26.020	34.585	1.00 48.02	6
atom	665					25.904	27.303	34.996	1.00 53.00	7
ATOM-	666	NE	ARG A	83				36.005	1.00 56.84	6
ATOM	667	CZ	ARG A	83		25.046	27.460		1.00 53.05	7 .
ATOM	668	NHl	ARG A	83 .		24.649	26.413	36.724	1.00 53.05	
	669	-	ARG A	83		24.588	28.672	36.304	1.00 58.03	7
HOTE				83		28.208	23.531	35.189	1.00 31.50	6
ATOM	670		ARG A			28.056	23.749	36.386	1.00 29.62	8
ATOM	671	0	ARG A	83				34.581	1.00 33.06	7
MOTA	672	N	GLU A	84		27.648	22.491		1.00 35.40	6
ATOM	673	CA	GLŲ A	84	•	26.819	21.568	35.343	1.00 33.40	
	674	CB	GLU A	84		26.112	20.562	34.417	1.00 37.35	6
ATOM			GLU A	84		26.989	19.684	33.496	1.00 40.01	6
ATOM	675	CG				27.551	20.418	32.267	1.00 44.49	6 -
ATOM	676	CD	GLU A	84			19.723	31.292	1.00 41.12	8
ATOM	677		GLU A	84		27.925		32.270	1.00 41.01	8
ATOM	678	OE2	GLU A	84		27.636	21.671		1.00 41.01	6
ATOM	679	С	GLU A	84		27.617	20.823	36.417	1.00 35.42	
	680	Ö	GLU A	84		27.246	20.816	37.594	1.00 34.66	8
ATOM				85		28.727	20.226	36.002	1.00 35.21	7
ATOM	681	N	LYS A			29.604	19.450	36.878	1.00 37.93	6
ATOM	682	CA	LYS A	85			19.030	36.076	1.30 40.61	6
MOTA	683	C3	LYS A	85		30.841			1.00 42.63	6
MCTA	684	CG	LYS A	85		31.739	17.977	36.706		6
	685	CD	LYS A	85		31.038	16.640	36.872	1.00 45.48	
ATOM		CE	LYS A	85		32.954	15.523	37.078	1.00 45.60	6
MOTA	686			85		33.032	15.833	38.154	1.00 46.16	7
MCTA	687	NZ	LYS A				20.159	38.175	1.00 37.56	6
ATOM	688	С	LYS A	85		30.032		39.222	1.00 38.40	8
ATOM	689	0	LYS A	85		30.161	19.516		1.00 35.60	7
ATOM	690	N	TYR A	86		30.254	21.472	38.116		6
	691	CA	TYR A	86	•	30.671	22.216	39.307	1.00 32.67	
ATOM			TYR A	86		32.151	22.610	39.200	1.00 32.09	6
MOTA	692	СВ				33.065	21.424	38.995	1.00 33.63	6
MOTA	693	CG	TYR A	86			20.393	39.932	1.00 32.12	6
MOTA	694	CD1	TYR A	86		33.120		39.723	1.00 33.59	6
ATOM	695	CE1	TYR A	86		33.918	19.266			6
ATOM	696	CD2	TYR A	86		33.839	21,306	37.841		
	697	CE2		86		34.645	20.178	37.623	1.00 34.55	6
atom				86		34.675	19.162	38.566	1.00 32.38	6
MOTA	698	CZ	TYR A			35.431	18.034	38.336	1.00 29.17	8
ATOM	. 699	ОН	TYR A	86			23.455	39.597	1.00 30.21	6
ATOM	700	С	TYR A	86		29.831		40.445	1.00 29.12	8
ATOM	701	0	TYR A	86		30.192	24.265			7
-TOM	702	N	ASN A	87		28.712	23.594	38.893		6
	703	CA	ASN A	87		27.797	24.717	39.086	1.00 28.58	
ATOM			ASN A			27.154	24.618	40.470	1.00 25.63	6
ATOM	704	CB				25.871	25.428		1.00 28.05	6
ATOM	705	CG	ASN A			25.275			1.00 71.32	8
ATOM	706	OD:	l asn a				25.477			7
ATOM	707	ND:	2 ASN A	87		25.434	26.055		1.00 . 0.35	6
ATOM	708	С	ASN A	87		28.580	26.015			8
	709	ō	ASN A			28.319	26.981	39.677		•
ATOM						29.545			1.00 32.05	7
atom	710	N	ILE A			30.407				6
ATOM	711	ÇÀ	ILE A							6
ATOM	712	CE	ILE A	. 88		31.894				6
ATOM	713	CG:				32.759				6
	714	CG				32.357				9
ATOM						32.350		40.176		6
MOTA	715	CD				30.085			1.00 32.28	6
ATOM	716		ILE A							8
ATOM	717	0	ILE A			29.708				7
ATOM	7i8		GLY A	89		30.237				6
ATOM	719			89		29.994	29.91			6
	720		GLY P			28.696				
ATOM						28.528			1.00 30.42	8
ATOM	721		GLY ?	_		27.670			1.00 31.51	7
ATOM	722		GLY A							5
ATOM	723	CA	GLY ?			26.38				_
ATOM			GLY 2	90		26.31	6 32.24			
	725		GLY A			27.30	2 32.67	1 37.129		_
, TCW			TYR A			25.14		2 36.50	4 1.00 33.88	•
1.00M	726	N	IIR /	~ / /				-		

79/263 Figure 17-12

	727 CA TYR A 91	24.924 34.146 37.206 1.00 35.76 6
ATOM	728 CB TYR A 91	23.465 34.589 37.030 1.00
ATOM	729 CG TYR A 91	23.089 35.733 37.990 1.00 42.40 0
MOTA	730 CD1 TYR A 91	23.41/ 37.03
ATOM	731 CE1 TYR A 91	23.103 30.100 205 3 00 44 07 6
ATOM	732 CD2 TYR A 91	22.444 35.484 39.203 1.00 10.67
MOTA	733 CE2 TYR A 91	22,132 30.320
ATOM	734 CZ TYR A 91	22.462 37.825 33.775 1.00 43.69 8
MOTA	735 OH TYR A 91	22.130 30.033 30.703 1.00 34 15 6
ATOM ATOM	736 C TYR A 91	25.242 34.082 38.704 4.00 29 52 8
MOTA	737 O TYR A 91	25.821 35.014 39.200 1.00 34 79 7
ATOM	738 N GLU A 92	24.837 32.980 33.353 1.00 38 46 6
ATOM	739 CA GLU A 92	25.024 32.75
ATOM	740 CB GLU A 92	27.233 31.304 42.700 1.00 52.10 6
ATOM	741 CG GLU A 92	23 394 30 161 43 097 1.00 58.00 6
MOTA	742 CD GLU A 92	24 001 29 126 43.058 1.00 60.63 8
MOTA	743 OE1 GLU A 92	22 087 30 149 43.434 1.00 59.58 8
MOTA	744 010 010	26 492 32.669 41.208 1.00 36.42 6
MOTA	743	26.902 33.287 42.193 1.00 32.92 8
MOTA	740 0 525	27.280 31.883 40.473 1.00 34.12
ATOM	747 N ASN A 93 748 CA ASN A 93	28.693 31.671 40.808 1.00 33.24 6
ATOM	749 CB ASN A 93	28.8/1 30.233
MOTA ATOM	750 CG ASN A 93	27.734 23.00 12.355 1.00 21.76 8
ATOM	751 OD1 ASN A 93	27.547 30.457 43.335 1.00 21 79 7
MOTA	752 ND2 ASN A 93	26.956 28.055 20.55 1 00.35 04 6
MOTA	753 C ASN A 93	29,529 51.033 50 1 00 33 91 8
ATOM	754 O ASN A 93	30.160 30.091 39.010 1.00 36.19 7
ATOM	755 N PRO A 94	20.020 34.231 39.690 1.00 34.62 6
ATOM	756 CD PRO A 94	20.274 33.560 37.808 1.00 34.80 6
MOTA	757 CA PRO A 94 758 CB PRO A 94	29 924 35.050 37.791 1.00 33.94 0
ATOM	750 02 200	28.619 35.095 38.516 1.00 36.13
MOTA	733 60 21.0	31 775 33,379 37.733 1.00 34.63
ATOM	760 C PRO A 94 . 761 O PRO A 94	32.443 33.103 38.730 1.00 34.72 3
ATOM	762 N VAL A 95	32.299 33.556 36.528 1.00 30 31 6
MOTA ATOM	763 CA VAL A 95	33.735 33.499 36.307 1.00 29 88 6
MOTA	764 CB VAL A 95	34.000 33.2.2 5 6 70 20 53 6
MOTA	765 CG1 VAL A 95	35.561 33.433 34.563 1.00 28.05 6
MOTA	766 CG2 VAL A 95	34.305 34.910 35.624 1.00 29.86 6
ATOM	767 C VAL A 95	33 524 35.879 36.272 1.00 29.07 8
ATOM	768 0 VAL A 95	35.318 35.019 37.317 1.00 30.89
MOTA	.00	35.889 36.310 37.68/ 1.00 32.27
MOTA	770 CA SER A 96 771 CB SER A 96	34.885 37.145 38.501 1.00 36.77 8
ATOM	772 OG SER A 96	34.600 36.545 39.730 1.00 32 96 6
MOTA MOTA	773 C SER A 96	37.111 33.55 30 511 3 00 33 77 8
ATOM	774 O SER A 96	37.603 34.883 30.312 21.00 32.66 7
ATOM	775 N TYR A 97	37.803 36.712 40.132 1.00 31.95 6
ATOM	776 CA TYR A 97	38.733 30.756 39.923 1.00 31.81 6
ATOM	777 CB TYR A 97	10 416 37 729 38.525 1.00 30.39
ATOM	778 CG TYR A 97	30 030 38 434 37.479 1.00 30.63 6
ATOM	779 CD1 TYR A 97	40 327 38.358 36.178 1.00 28.49
MOTA	, 80 022	41.536 36.945 38.236 1.00 28.43
MOTA		42.046 36.858 36.942 1.00 24.73 6
MOTA	.02 022 220	41.437 37.565 35.919 1.00 27.27
MOTA	783 CZ TYR A 97	41.915 37.455 34.633 1.00 30.10 6
ATOM	785 C TYR A 97	38.350 36.616 42.405 1 00 33 01 8
MOTA	786 O TYR A 97	39.178 36.735 42.435 1.00 31.11
ATOM	787 N ALA A 98	37.059 36.398 41.818 1.00 30.06 5
atom atom	738 CA ALA A 98	36.510 36.241 43.156 1.00 27.71 6
ATOM	-89 CB ALA A 98	35.141 36.326 43.357 1.00 31.24 6
ATCM	-90 C ALA A 98	36.330 34.238 44.487 1.00 29.66 8
ATOM	791 O ALA A 98	36.335 34.238 44.487 1.00 29.50 7 36.249 34.030 42.230 1.00 29.50 7
ATOM	792 N MET A 99	JU. 247 Janes 2
•		

	202 6	. 1677	. Tr	99	36	048	32.589	9 4	2.207	1.00 2		6
MOTA	793 C		T A	99		774	32.123		0.778	1.00 3	0.48	6
MOTA	794 C		TΑ	99		942	32.265		9.822	1.00 2	9.63	6
ATOM	795 C	-	A T	99		426	31.939		8.126	1.00 2	9.78	16
ATOM	796 S		A T	99		629	30.27		8.347	1.00 2	5.05	6
MOTA	797 C		ATA	99		199	31.800		2.783	1.00 3	0.81	6
MOTA	798 C		TA	99		993	30.75		3.406	1.00 3		8
MOTA	799 0		A TE			417	32.27		2.569	1.00 3		7
MOTA	800 11	21	E A	100	30.	554	31.55		3.114	1.00 3		6
ATOM	-	A Ph	E A	100		322	30.81		2.029	1.00 3		6
ATCM			iE A			.434	29.97		2.578	1.00 4		6
MOTA			HE A			.152	28.86		3.364	1.00 4		6
MOTA		D1 PF	IE A	100	47	.768	30.33	_	2.372	1.00		6
ATOM		D2 PI	IL A	100		.185	28.11		3.941	1.00		6
MOTA		E1 P	HE A			.808	29.60		12.944	1.00	40.50	6
MOTA	•		HE A			.517	28.48		13.729	1.00	39.89	6
MOTA	-		HE A			.519	32.43		43.895	1.00	33.98	6
MOTA	809 . 0		HE A			.706	32.23	-	45.088	1.00		8
ATOM	810		HR A			.137	33.41		43.245	1.00		7
MOTA	811 N		HR A			.063	34.26		43.969	1.00	22.19	6
ATOM				101		.623	35.37	78	43.072	1.00		6
ATOM		B T				.441	34.79		42.052	1.00		8
MOTA		JG1 1	א אח	101		.468	36.33		43.876	1.00		6
MOTA	•			101		.408	34.86		45.205	1.00	21.71	6
MOTA	-			101		.988	34.84		46.282	1.00	23.82	8
MOTA		T	A AR	102		.197	35.37		45.068		21.79	7
ATOM		0 A.C.	1 A Y	102		.533	35.94		46.231		21.23	6
MOTA			IV Y	102		.072	34.83	33	47.153		23.03	6
ATOM		C G	ע עזי	102		.209	34.90		48.378		20.41	8
ATOM				103		.512	33.79		46.544		22.59	7
MOTA				103		.028	32.64	40	47.276		26.51	6
ATOM	_			103		.454	31.59		46.314		28.10	6
ATOM		OG S	ER A	103		.314	32.09	99.	45.639		32.01	8
MOTA				103		.188	32.0	40	48.032	1.00	27.73	6
ATOM		0 5	ER A	103		.019	31.5	44	49.144	1.00	30.61	8
MOTA MOTA				104	40	364	32.0	80	47.410	1.00	28.76	7
ATOM	-			104		.590	31.5		48.008		28.55	6
ATOM				104	42	2.769	31.6	83	47.039		28.74	6 8
MOTA		OG S	ER A	104		2.501	31.0		45.804		35.04	6
MOTA				104.		1.870	32.4		49.226	1.00	25.67 25.17	8
ATOM		0 9	SER 2	104		2.026	31.8		50.338		23.17	7
ATOM	834			105		1.909	33.7		48.986		23.01	6
ATOM	835			A 105 .		2.163	34.6		50.008		23.57	6
ATOM	836			A 105		2.049	36.0		49.382		26.30	6
ATOM	837	CG 1	LEU A	A 105		3.158			49.672 49.178		22.38	6
ATOM	838	CD1 I	LEU A	A 105		4.502	36.5		48.984		27.36	
ATOM	839	CD2	LEU A	A 105		2.823	38.4	172	51.182		23.48	. 6
ATCM	840			A 105		1.187			52.331		21.60	8
MOTA	841			A 105	_	1.604	_		50.897		25.32	7
ATOM	842		ALA A	A 106		9.887			51.957	•	26.04	6
ATOM	843			A 106		8.884			51.358		24.28	6
ATOM	844			A 106		7.471			52.790		25.76	6
MOTA	845			A 106		9.088			54.015	_	22.75	8
MOTA	846	0 .	ĂLΆ.	A 106		8.953			52.111		25.65	7
MOTA	847			A 107		9.410			52.754		25.54	6
MOTA	848			A 107		9.620			51.713		21.92	6
ATOM	849			A 107		9.706			50.868		26.40	8
ATOM	850			A 107		8.559			52.387		17.36	6
MOTA	851			A 107		9.742			53.583		28.16	6
ATCM	852	3	THR	A 107	_	0.901			54.72		28-:07	8
ATCM	853	0	THR	A 107		0.906			52.99		28.51	. 7
ATOM	854			A 108		1.994			53.71		28.37	7 6
atch	855	CA	GLY	A 108		3.24° 3.02°			55.01		30.26	; 6
ATCM	856	c	GLY	A 108		3.50		499	56.07	6 1.00	32.98	3 8
ATCM	857		GLY	A 108		2.28		018			0 24.81	
ATOM	958	N	SER	A 109	4				•			
		•										

Figure 17-14

ATOM	859 CA SER A 109	42.002 33.810 56.119 1.00 24.86 6 41.222 35.066 55.727 1.00 24.74 6
ATOM	860 CB SER A 109	41.222 33.000 54.072 1.00.21.07 8
	861 OG SER A 109	41.992 35.898 34.672 1.00 27.89 6
MOTA MOTA	862 C SER A 109	41.240 32.996 37.173 1.00 30 92 8
ATOM	863 O SER A 109	41.424 33.214 3.00 23 91 7
ATOM	864 N THR A 110	40.389 32.064 36.744 1.00 24 80 6
ATOM	865 CA THR A 110	39.676 31.239 37.721 1.00 39.65 6
ATOM	866 CB THR A 110	38.641 30.230 30.45 8
MOTA	867 OG1 THR A 110	37.409 31.010 50 067 1 00 29 00 6
MOTA	868 CG2 THR A 110	38.228 29.209 58 478 1.00 24.34 6
ATOM	869 C THR A 110	40.712 30.443 59.699 1.00 24.74 8
ATOM	870 O THR A 110	11 715 29 954 57.764 1.00 23.01
ATOM	871 N VAL A 111	42 750 20 173 58,416 1.00 24.13 6
ATOM	872 CA VAL A 111	43 695 28.495 57.391 1.00 25.77
ATOM	873 CB VAL A 111 874 CG1 VAL A 111	44.845 27.773 58.121 1.00 22.51
ATOM		42 888 27.502 56.534 1.00 22.67 0
MOTA		43.576 30.071 59.329 1.00 23.14 8
MOTA	876 C VAL A 111 877 O VAL A 111	43.720 29.793 60.518 1.00 24.11 0
MOTA	878 N GLN A 112	44.101 31.156 50.772 1.00 25 12 6
MOTA	879 CA GLN A 112	44.895 32.100 59.334 1.00 25 14 6
ATOM ATOM	880 CB GLN A 112	45.082 33.413 38.773 = 1.55
ATOM	881 CG GLN A 112	45.545 33.224 37.330 2.00 29 13 6
MOTA	882 CD GLN A 112	45.769 34.339 56.837 1.00 31.22 8
ATOM	883 OE1 GLN A 112	46.779 33.219 55 694 1.00 29.31 7
ATOM	884 NE2 GLN A 112	107 22 362 60 827 1.00 24.62 6
MOTA	885 C GLN A 112	61 939 1.00 21.10 8
MOTA	886 O GLN A 112 887 N ALA A 113	42.813 32.622 60.644 1.00 24.41
MOTA	117	41.914 32.904 61.751 1.00 23.33 6
ATOM		40.516 33.183 61.224 1.00 19.80 6
MOTA	889 CB ALA A 113	41.901 31.733 31. 20 02 60 0
MOTA	891 O ALA A 113	41.923 31.530 23.31 1.00 24.39 7
MOTA MOTA	892 N ILE A 114	41.839 30.300 1 00 24 49 6
MOTA	893 CA ILE A 114	41.867 23.333 62 371 1.00 23.46 6
ATOM	894 CB ILE A 114	41.524 28.042 63.227 1.00 18.97 6
MOTA	895 CG2 ILE A 114	22 22 23 62 034 1.00 21.17
MOTA	896 CG1 ILE A 114	39 598 26.791 61.239 1.00 22.31
ATOM	897 CD1 ILE A 114 898 C ILE A 114	43.230 29.227 63.757 1.00 24.32
MOTA	3 3 3 4	43.328 28.817 64.90/ 1.00 24.74
ATOM	999 O ILE A 114 900 N GLU A 115	44.280 29.580 63.019 1.00 25.89 6
MOTA MOTA	901 CA GLU A 115	45.638 29.518 63.551 1.00 22.63 6
ATOM	902 CB GLU A 115	40.039 43.33 63 100 20 39 6
ATOM	903 CG GLU A 115	46.554 29.204 60.244 1.00 21.39 6
ATOM	904 CD GLU A 115	17.000 20.887 60.016 1.00 19.60 8
ATOM	905 OE1 GLU A 115	10 763 20 769 59 722 1.00 22.53
ATOM	906 OE2 GLU A 115	45 724 30.422 64.774 1.00 27.36
MOTA	907 C GLU A 115 908 O GLU A 115	46 173 30.006 65.837 1.00 25.96
ATOM	116	45.267 31.660 64.615 1.00 31.15
MOTA	909 N GLU A 116 910 CA GLU A 116	45.282 32.631 65.705 1.00 35.80
ATOM	911 CB GLU A 116	44.676 33.959 63.257 21.00 41.14 6
MOTA MOTA	912 CG GLU A 116	45.434 34.605 64.430 1.00 43.09 6
MOTA	913 CD GLU A 116	40.072 35.006 65.267 1.00 43.42 8
MOTA	914 OE1 GLU A 116	47.072 33.060 63.849 1.00 41.76 8
ATOM	915 OE2 GLU A 116	32 131 66 947 1.00 35.11
ATOM	916 C GLU A 116	45 054 32.228 68.061 1.00 37.26 8
ATOM	917 O GLU A 116	43 343 31.598 66.761 1.00 34.30
ATOM	918 N PHE A 117 919 CA PHE A 117	12 577 31.096 67.893 1.00 34.44 5
atom	200 CP DUE : 117	41.300 30.399 67.415 1.00 33.43 6
ATOM	001 CC DUE 2 117	40.383 29.979 68.533 1.00 37.14
ATOM	ent nur 1 117	39.705 30.930 69.290 1.00 33.80 6
ATOM	923 CD2 PHE A 117	40.196 28.630 00.032 1.00 32.00 6
atom atom	cm num 1 117	38.853 30.549 70.323 1.00 38.08
ATOM		•

				39.338	28.234	69.874	1.00 40.44	6
ATOM	925	CE2 PHE	n 11/				1.00 38.64	6
ATOM	926	CZ PHE	A 117	38.668	29.198			
			A 117	43.424	30.094	68.669	1.00 34.24	6
ATOM	927	C PHE	H 11/			69.898	1.00 33.54	8
MCTA	928	O PHE	A 117	43.490	30.136			
		NI I TI	A 118	44.069	29.194	67.933	1.00 33.14	7
MCTA	929				28.158	68.523	1.00 32.62	6
ATOM-	930	CA LEU .	A 118	44.898				6
			A 118	45.155	27.056	67.488	1.00 30.59	
ATOM	931			43.900	26.297	67.038	1.00 27.87	6
ATOM	932	CG LEU	A 118					6
	933	CD1 LEU	A 118	44.244	25.232	65.996	1.00 20.81	
ATOM				43.259	25.662	68.257	1.00 28.37	6
MOTA	934	CD2 LEU	Y 178				1.00 34.37	6
MOTA	935	C LEU	A 118	46.216	28.696	69.084		
				46.983	27.964	69.708	1.00 36.15	8
ATQM	936		A 118		29.974	68.843	1.00 34.75	7
MOTA	937	N LYS	A 119 '	46.481				6
	938	CA LYS	A 119	47.679	30.609	69.365	1.00 34.34	
ATOM		on IVC	à 119	48.143	31.739	68.448	1.00 33.52	6
MCTA	939				31.270	67.100	1.00 37.98	6 -
MOTA	940	CG LYS	A 119	48.614			: 00 13 10	6
	941		A 119	49.111	32.430	66.263	1.00 43.40	
MCTA				49.691	31.928	64.949	1.00 46.52	6
ATOM	942		A 119			64.092	1.00 51.48	7
MOTA	943	NZ LYS	A 119	50.167	33.050			6
	944		A 119	47.273	31.191	70.705	1.00 34.85	
MOTA				48.112	31.465	71.562	1.00 38.12	8
MCTA	945		A 119	45: 053	31.372	70.869	1.00 34.15	7
MOTA	946	N GLY	A 120	45.967				6
	947	CA GLY	A 120	45.431	31.927	72.094	1.00 36.25	
ATOM				44.860	33.310	71.851	1.00 39.02	6
ATOM	948		A 120			72.796	1.00 46.23	8
ATOM	949	O GLY	A 120	44.640	34.072			7
	950		A 121	44.619	33.644	70.586	1.00 38.48	
MCTA			À 121	44.079	34.956	70.247	1.00 37.47	6
ATOM	951	CA ASN	A 121			69.170	1.00 39.57	6
ATOM	952	CB ASN	A 121 ·	44.928.			1.00 41.81	6
	953	CG ASN	'A 121	46.340	35.871	69.622		
ATOM		OD1 ASN		47.078	34.938	69.926	1.00 47.67 .	8
MOTA	954	ODI Y2M	A 121	46.727	37.134	69.675	1.00 43.63	7
ATOM	955	ND2 ASN					1.00 36.59	6
ATOM	956	C ASN	A 121	42.637	34.893	69.772	1.00 30.33	
		O ASN	A 121	42.037	33.818	69.704	1.00 34.08	8
ATOM	957	U ASIA	. 177	42.092	36.061	69.446	1.00 33.53	7
ATOM	958		A 122				1.00 34.77	6
ATOM	959	CA VAL	A 122	40.720	36.166	68.976		6
	960		A 122	39.861	37.064	69.898	1.00 38.20	
ATOM		CD VAD	3 3 3 3	38:418	37.096	69.388	1.00 37.55	6
ATOM	961	CG1 VAL	A 122	30.410		71.342	1.00 37.77	6.
ATOM	962	CG2 VAL	A 122	39.918			1.00 31.08	6
	963	C VAL	A 122	40.731	36.781	67.596		
ATOM		0 7737	A 122	40.991	37.967	67.441	1.00 34.19	8
ATOM	964			40.451		66.588	1.00 31.14	7
MCTA	965	N ALA	A 123				1.00 30.26	6
ATOM	966	CA ALA	A 123	40.451				
		CB ALA	A 123	41.307	35.588	64.327	1.00 32.14	6
ATOM	967	CD ALIA	. 123	39.038			1.00 28.26	6
MCTA	968		A 123				1.00 29.28	8
ATOM	969	o ala	A 123	38.132				7
	970	N PHE	A 124	38.875	· 37.276	63.631	1.00 28.70	
ATOM				37.601		62.976	1.00 28.38	6
ATOM	971		A 124				1.00 29.16	6
ATOM	972	CB PHE	A 124	36.920			1.00 31.20	6
	973		E A 124	35.645	39.099	62.874		
ATOM				34.679			1.00 32.00	6
ACOM	974	CD1 PHE	A 124					6
ATOM	975	CD2 PHE	E A 124	35.378				6
ATOM	976		E A 124	33.463		61.973		
			A 124	34.165		61.988	1.00 27.45	6
ATOM	977			33.207				6
ATOM	. 978		E A 124					6
ATOM	979	C PHE	E A 124	37.880				8
			E A 124	38.427	7 38.695	61.095	1.00 32.10	0
ATOM	980			37.545			1.00 32:16	7
ATOM	981		N A 125					6
ATCM	982		N A 125	37.73				6
	983	CB ASI	N A 125	38.24	7 35.393			
ATOM				38.28			1.00 33.79	6
ATOM	984		N A 125	30.20.				8
ATOM	985	OD1 ASI	N A 125	38.75				7
		מב לעוני	N A 125	37.79	0 34.26	B 56:609		
ATOM	986		1 1 1 2 5	36.40		3 58.584	1.00 29.80	6
ATOM	987		N A 125					8
ATOM	988	O ASI	N A 125	35.62	0 30.20			. 7
	989	N PR	O A 126	36.13	5 38.38	6 58.45		_
ATCM			O A 126	36.99		6 58.83	3 1.00 29.22	0
ATCM	990	CD PR	O 7 120	20.22		•		

83/263 Figure 17-16

			_				
		PRO A 126	34.909	38.891		1.00 27.92	6
MOTA	991 CA	PRO A 126	35.139	40.407		1.00 29.07	6
MOTA	992 CB	PRO A 126	36.649	40.520	57.775	1.00 26.54	6
ATOM	993 CG	PRO A 126	34.651	38.339		1.00 27.54	6
MOTA	994 C	PRO A 126	33.532	38.402		1.00 28.66	8
ATOM	995 0	PRO A 120	35.687	37.795	55.820	1.00 26.99	7
MOTA	996 N	ALA A 127	35.548	37.244	54.477	1.00 26.54	6
MOTA	997 CA	ALA A 127	36.822	37.505	53.684	1.00 22.43	5
MOTA	998 CB	ALA A 127	35.225	35.744	54.480	1.00 27.38	6
MOTA	999 C	ALA A-127	35.038	35.140	53.423	1.00 29.04	8
MOTA	1000 0	ALA A 127	35.166	35.142	55.663	1.00 26.97	7
MOTA	1001 N	GLY A 128 GLY A 128	34.874	33.724	55.737	1.00 25.65	6
ATOM	1002 CA	GLY A 128	33.389	33.486	55.880	1.00 26.17	6
MOTA	1003 C	GLY A 128	32.600	34.428	55.804	1.00 27.39	8
MOTA	1004 0	GLY A 129	32.998	32.234	56.083	1.00 23.87	7
MOTA	1005 N	GLY A 129	31.588	31.936	56.236	1.00 25.17	5 6
MOTA	1006 CA 1007 C	GLY A 129	30.847	31.674	54.937	1.00 25.88	8
MOTA		GLY A 129	29.643	31.908	54.848	1.00 25.07	7
ATOM	1008 O 1009 N	MET A 130	31.566	31.198	53.927	1.00 25.69	6
ATOM		MET A 130	30.981	30.872	52.622	1.00 26.48	6
ATOM		MET A 130	32.103	30.907	51.567	1.00 28.53	6
MOTA		MET A 130	32.795	32.288	51.467	1.00 26.54	16
MOTA		MET A 130	34.413	32.366	50.613	1.00 26.29	6
MOTA		MET A 130	34.080	31.512	49.062	1.00 25.85 1.00 24.47	6
ATOM	1014 CE 1015 C	MET A 130	30.355	29.463		1.00 17.67	8
MOTA	1016 0	MET A 130	30.761			2.00 23.28	7
MOTA	1017 N	HIS A 131	29.347	29.389		1.00 26.33	5
MOTA MOTA	1018 CA	HIS A 131	28.647	28.161		1.00 26.98	6
	1019 CB	HIS A 131	27.685	28.485		1.00 28.50	6
MOTA MOTA	1020 CG	HIS A 131	26.663			1.00 28.65	6
MOTA	1021 CD	2 HIS A 131	26.225			1.00 33.04	7
ATOM	1022 ND	1 HIS A 131	25.90			1.00 27.75	6
ATOM	1023 CE	1 HIS A 131	25.05			1.00 26.97	7
ATOM	1024 NE	2 HIS A 131	25.22			1.00 28.44	6
ATOM	1025 C	HIS A 131	. 27.91				-3
MOTA	1026 0	HIS A 131	27.43			1.00 30.64	7
MOTA	1027 N	HIS A 132	27.86			1.00 28.71	6
ATOM	1028 CA	HIS A 132	27.11 26.32	-		1.00 27.21	6
ATOM	1029 CE	HIS A 132	25.40			1.00 28.83	6
ATOM	1030 CG	HIS A 132	25.40		-	1.00 28.92	6
MOTA		2 HIS A 132	24.68		0 51.773	1.00 31.80	7
MOTA	1032 NI	ol HIS A 132	23.98			1.00 29.95	6
MOTA		1 HIS A 132	24.22		3 51.579		7
MOTA		E2 HIS A 132 HIS A 132	27 88	9 25.97	0 49.851	1.00 28.51	6 8
ATOM	1035 C	HIS A 132	27.39	9. 24.37	5 49.533	1.00 23.44	_
ATOM	1036 0	193	29.09	3 26.37	9 49.40		6
MOTA	1037 N 1038 C		29.95	8 25.58			
ATOM			31.29				
MOTA	1039 CI 1040 C		30.19	9 24.16			
ATOM	1041 0	177	30.70				
ATOM	1041 O	111	29.89	50 23.17			
MOTA MOTA	1043 C	171	30.04		73 48.61 55 47.87		
MOTA	1044 C	174	29.0				
	1045 C	G PHE A 134	27.6				
MOTA MOTA	1046 C	D1 PHE A 134	26.9			1	3 6
ATOM		D2 PHE A 134	26.9				4 6
MOTA	1048 C	E1 PHE A 134	25.6				7 6
atom	1049	E2 PHE A 134	25.6			1.00 14.5	96
ATOM		Z PHE A 134	24.9			9 1.00 29.4	8 6
ATOM	: 25:	PHE A 134	31.4			2 1.00 33.1	9 8
ATOM	4050 0	PHE A 134	32.2		• .	0 1.00 31.5	
atom	1053	LYS A 135	31.7 33.0			27 1.00 29.1	5 6
ATOM	1054	A LYS A 135	32.9		-	1.00 29.4	5 6
ATCM	1055	CB LYS A 135	34.1				6 6
ATOM		CG LYS A 135	34.1		•		
	•	•					

															_	
	224	1057	CD	LYS A	135		33.	965	15.734	49	.221	1.0	00 2	9.67	6	
ATO		_		DIS A	135		2.4	234	15.703	50	716	1.0	00 3	0.09	6	
ATC	MC	1058		LYS A										6.25	7	•
ATO		1059	NZ ·	LYS A	135		35.	679	15.973		.001					
				LYS A			33	513	19.516	4 €	5.993	1.0	OO 3	0.22	6	
AT(OM							714	19.672		5.763	1.0	00 3	30.00	8	
ATC	OM	1061	0	LYS A										1.69	7	
AT		1062	N	SER A	136		32	. 600	19.434		5.028					
		1063	CA	SER A			32	.995	19.489	44	1.619			32.88	6	
AT		-						.038	18.077	4	1.040	1.	00 3	31.41	6	
AT	OM	1064	CB	SER A										35.41	8	
AT		1065	OG	SER A	136		33	.882	17.241		4.810	1.	00 3	55.41		
		1066	C	SER A			32	. 297	20.347		3.727			33.55	6	
ÄΤ								.921	20.031	4	2.553	1.	00 3	36.11	8	
ΑT	OM	1067	0	SER A							4.262			30.61	7	
AΤ	MO	1068	N	ARG A	137			.536	21.425						·6	
	MO	1069	CA	ARG A	137		30	. 564	22.272	4.	3.459			32.28		
				ARG A			29	.324	21.554	4	3.202	1.	00 :	35.91	б	
AT	OM .	1070	CB					.224	22.458	4	2.627	1.	00 4	43.90	6	
AT	MO'	1071	CG	ARG A										48.28	6	
	MO	1072	CD	ARG A	137		26	.819	21.836		2.751					
		1073	NE	ARG A			26	.571	20.767	4	1.787			53.38	7	
	MO			ARG A	137			.150	20.960		0.538	1.	00	55:30	6	
ΑT	MO	1074	CZ								0.090	1	00	54.06	7	
AΤ	MO	1075		ARG A				.921	22.185						7	
	MO	1076	NH2	ARG A	137		25	.969	19.922		9.728			58.96		
		1077	С	ARG A			30	.405	23.631	4	4.113			30.24	6	
A.I	MO							.380	23.748		5.338	1.	00	23.11	8	
ra	MOT	1078	0	ARG A							3.279			27.33	7	
AΠ	MOT	1079	N	ALA A				.219	24.653			٠.	20	27.35		
		1080	CA	ALA A			29	.944	26.000		3.757			27.36	6	
	MO			ALA A				.149	26.997	4	2.645	1.	.00	27.57	6	
ΑJ	MOT	1081	CB					. 496	26.003		4.213	1	0.0	26.45	6	•
A7	MOT	1082	С	ALA A	138									27.30	8	
רב	MOT	1083	0	ALA A	. 138		27	.747	25.083		3.865				7	
		1084	11	ASN A	139		28	.090	27.021	. 4	4.975			22.47		
	TOM			ASN A			26	.711	27.063	4	5.471			23.85	6	
A.	rom	1085	CA					.406	25.738		6.218	1	.00	16.82	6	
A:	TOM	1086	CB	ASN A							6.900			14.45	6	
A'	TOM	1087	ÇG	ASN A				.040	25.718					13.39	8	
	TOM	1088	OD1	ASN A	139		24	.019	26.084		16.319					
		1089	VID.5	ASN A	139		25	.018	25.249	9 4	18.139			20.08	7	
	TOM			2017	130			.444	28.277	7 4	16.368	1	.00	26.09	6	
A'	TOM	1090	С		139 -				28.600		17.260	1	.00	27.50	8	
A'	TOM	1091	0	ASN A				.239				1	00	24.83	7	
'د	TOM	1092	N	GLY A	140			.326	28.954	-	46.114				6	
	TOM	1093	CA	GLY 2	140		24	1.965	30.106		46.916	1	.00	22.24		
					140			5.991	31.21	1 4	46.890			22.35	6	
	TOM	1094	C	GLI	140			5.256	31.843		47.910	1	.00	23.50	8	ļ
À	MOT	1095	0		140						45.717		0.0	25.60	7	l .
A	TOM	1096	N	PHE A	A 141			5.570	31.43				. 0 0	26.47	6	
	TOM	1097	CA	PHE A	A 141		2.	7.582	32.47		45.518		.00	20.47		
		1098	CB		4 141		2	7.204	33.76	5	46.258			28.05	6	
	MOT.							5.925	34.39		45.792	1	.00	28.61	6	í
Ą	MOT.	1099	CG		A 141				35.42	_	46.518			30.74	€	5
A	MOT	1100	CD3	PHE	A 141			5.352					- 00	29.10	E	
	TOM	1101	CD2	PHE	A 141			5.312		כ	44.620			29.10		
		1102		PHE			2	4.193	36.04	4	46.087		00	29.33	e	
	MC							4.150		3	44.177	1	.00	31.03	ε	5
A	MO	1103		PHE .	H 141						44.912	1	.00	32.59	•	5
	VI'CM	1104	CZ		A 141			3.589		_				24.63		5
	MOT	1105	С	PHE .	A 141			8.954			45.991			24.03		
			ō		A 141		. 2	9.938	32.72	7	45.733		00	29.72		В
	MOT	1106						9.025	30.89	7	46.667	, ,	. 00	21.11	_	7
۾ _	MOTA	1107	N		A 142						47.192		0.0	22.30	(6
2	TOM	1108	CA	CYS	a 142			0.296						21.31		6
	MOTA	1109	CE		A 142		3	0.062	29.78	7	48.56			21.31		
					A 142		2	8.943	30.74	8	49.582	2 3	L.00	22.93	1	
	MOT	1110	SG					1.017			46.32	5 :	1.00	22.13		6
- 7	MOTA	1111	C		A 142						45.87			22,97		8
	MOT	1112	J		A 142			0.408						23.09		7
	TOM	1113	:4		A 143	-	3	2.317	29.57	3	46.11			, 23.09		
					A 143			3.129		12	45.33			23.05		6
	MOTA	1114	CA				-	4.063			44.37	5	1.00	21.60) [6
7	MOTA	1115	ac		A 143				_		43.48			24.09		6
	TOM	1116	CG		A 143			3.377						23.29		6
		1117	CD		A 143		3	2.969	31.60		43.99	_				2
	ATOM				A 143			2.365		55	43.19			23.26		5
	ATOM	1118	CΞ					3.154			42.13	5	1.00	22.52		6
	MOTA	1119	ĆĐ		A 143						41.31	_	1.00	24.82	2	6
	ATOM	1120	CE		A 143			2.544						27.55		6
	ATOM	1121			A 143			2.153			41.85					8
					A 143			1.55			41.06	4	1.00	0 32.3	2	O
	STOM	1122	Cn	- 11	~ ~ ~ ~ ~ ~		_				-		•			

		TYR A 143	33.960	27.766	46.290 1		6
MOTA	1123 C	TYR A 143	34.266	26.606	45.998 1		8
ATOM	1124 0		34.327		47.437 1	1.00 23.83	7
ATOM.	1125 N	ILE A 144	35.086	27.566		2.00 20.24	6
ATOM	1126 C		36.547		48.453	1.00 17.27	6
MOTA	1127 CF		37.231	27.354		1.00 11.03	6
ATOM		32 ILE A 144	37.185	27.603		1.00 14.93	6
ATOM		31 ILE A 144	38.601	28.028	46.946	1.00 19.68	6
ATOM		D1 ILE A 144	34.495	27.703		1.00 21.77	6
MOTA	1131 C	ILE A 144	34.288	28.811		1.00 21.19	8
ATOM	1132 0	ILE A 144	34.212	26.555		1.00 23.00	7
MOTA	:133 N		33.616	26.508	-	1.00 20.92	6.
ATOM	1134 C		32.902	25.170		1.00 17.08	6
MOTA	1135 C		32.902	25.125		1.00 21.04	6
MOTA	1136 C		32.549	25.508	54.276	1.00 20.97	8
MOTA		D1 ASN A 145	30.844	24.640		1.00 20.93	7
. ATOM		D2 ASN A 145	34.706	26.669		1.00 19.68	6
MOTA	1139 C		35.201	25.679		1.00 20.64	8
MOTA	1140 0		35.079	27.911	53.100	1.00 16.28	7
MOTA	1141 N	ASN A 146	36.123	28.143	54.088	1.00 19.34	6
MOTA		A ASN A 146	36.428	29.651	54.207	1.00 20.27	6
MOTA		B ASN A 146	35.292	30.444	54.795	1.00 18.05	6
ATOM		G ASN A 146	35.079	30.421	55.999	1.00 25.83	8
MOTA.		D1 ASN A 146	34.552	31.149	53.948	1.00 16.04	7
MOTA		D2 ASN A 146	35.775	27.504	55.443	1.00 20.48	6
MOTA	1147 C		36.663	27.027	56.151	1.00 19.88	8
ATOM	1148 C		34.482	27.485	55.819	1.00 19.38	7
ATOM	1149 N		33.312	28.068	55.135	1.00 17.48	6
MOTA			34.058	26.877	57.087	1.00 22.25	6
MOTA			32.539	27.065	57.057	1.00 20.15	6
MOTA			32.407	28.378	56.305	1.00 20.81	6
MOTA			34.443	25.383	57.188	1.00 26.89	6
MOTA			35.066	24.954	58.169	1.00 29.10	8
ATOM			34.070	24.596	56.176	1.00 25.88	7
ATOM			34.372	23.164	56.174	1.00 25.47	6
ATOM		CA ALA A 148 CB ALA A 148	33.670	22.468	55.009	1.00 21.84	6
ATOM		C ALA A 148	35.870	22.916	56.100	1.00 25.94	6
MOTA		ALA A 148	36.382	21.971	56.701	1.00 27.19	8
MOTA		N VAL A 149	36.574	23.756	55.349	1.00 26.11	7
MOTA		CA VAL A 149	38.017	23.609	55.233	1.00 24.04	6
ATOM		CB VAL A 149	38.622	24.663	54.267	1.00 26.16	6
ATOM		CG1 VAL A 149	40.135		54.158	1.00 25.36	6
MOTA		CG2 VAL A 149	37.970		52.886	1.00 26.81	6
MOTA MOTA		C VAL A 149	38.516		56.640	1.00 23.57	6 8
ATOM		O VAL A 149	39.453		57.122	1.00 19.75	7
ATOM		N GLY A 150	37.850	24.815	57.299	1.00 22.20	6
MOTA		CA GLY A 150	38.210		58.654	1.00 25.43 1.00 27.19	6
ATOM		C GLY A 150	38.130	23.975	59.568	1.00 27.13	8
ATOM		O GLY A 150	39.112			1.00 27.05	7
ATOM		N ILE A 151	36.959			1.00 25.56 1.00 28.24	6
ATOM	1173	CA ILE A 151	36.775			1.00 28.24	6
ATCM	1174	CB ILE A 151	35.317		60.389	1.00 26.02	6
MOTA	1175	CG2 ILE A 151	35.251		60.869	1.00 20.02	6
MOTA	1176	CG1 ILE A 151	34.394			1.00 36.83	6
MOTA	1177	CD1 ILE A 151	34.25				6
ATOM	1178	C ILE A 151	37.72				8
ATOM	1179	O ILE A 151	38.340				7
ATOM	1180	N GLU A 152	37.84				6
MOTA	1181	CA GLU A 152	38.70				6
ATOM	1182	CB GLU A 152	38.57				6
ATOM	1183	CG GLU A 152	37.26	9 13.84			6
MOTA	1184	CD GLU A 152	37.12				8
ATOM	1185	OE1 GLU A 152	36.08				8
ATOM	1186	OE2 GLU A 152	38.03				6
ATOM	1187	C GLU A 152	40.14	5 19.90			8
ATOM		O GLU A 152	40.87	9 18.94		, 1.00 50.15	-

										_
ATOM	1189	N	TYR A			40.541	21.170	58.765	1.00 33.90	7
ATOM	1190	CA	TYR A	153		41.875	21.563	59.193	1.00 32.04	6
	1191	CB	TYR A			42.019	23.074	59.058	1.00 34.88	6
MOTA										6
ATOM	1192	CG	TYR A			43.280	23.667	59.639	1.00 38.03	
MCTA	1193	CDl	TYR A	153		44.498	23.611	58.948	1.00 42.34	6
ATCM	1194	CE1	TYR A	153		45.658	24.207	59.475	1.00 43.38	6
					•			60.869	1.00 37.19	6
ATOM	1195	CD2		-		43.250	24.321			
ATOM	1196	CE2	TYR A	153		44.387	24.913	61.401	1.00 41.09	6
MCTA	1197	CZ	TYR A	153		45.587	24.860	60.704	1.00 43.34	6
	1198		TYR A			46.696	25.480	61.241	1.00 44.86	8
ATOM									1.00 32.59	6
ATOM	1199	C	TYR A			41.919	21.168	60.667		
ATOM	1200 -	0	TYR A	153		42.867	20.518	61.120	1.00 32.24	8
MCTA	1201	N	LEU A	154	•	40.869	21.556	61.397	1.00 30.10	7
	1202	CA	LEU A			40.730	21.261	62.823	1.00 29.38	6
ATOM	_					39.443	21.889	63.378	1.00 28.60	6
ATOM	1203	CB	LEU A							
ATOM	1204	CG	LEU A	154		39.399	23.407	63.518	1.00 31.20	6 -
MOTA	1205	CD1	LEU A	154		37.991	23.833	64.041	1.00 28.53	6
ATOM	1206	CD2	LEU A	154		40.418	23.787	64.691	1.00 24.95	6
						40.732	19.772	63.146	1.00 29.56	6
MOTA	1207	C	LEU A							
ATOM	1208	O	LEU A	154		41.223	19.363	64.196	1.00 28.36	8
ATOM	1209	N	ARG A	155		40.174	18.958	62.256	1.00 31.95	7
ATOM	1210	CA	ARG A	155		40.134	17.522	62.499	1.00 33.00	6
						39.127	16.847	61.561	1.00 33.13	6
ATOM	1211	CB	ARG A							
ATOM	1212.	CG	ARG A	155		37.708	17.368	61.769	1.00 32.84	6
ATOM	1213	CD	ARG A	. 155		36.678	16.719	60.863	1.00 32.92	6
MCTA	1214	NE	ARG A			36.152	15.451	61.363	1.00 33.98	7
						35.195	14.760	60.741	1.00 37.93	6
MOTA	1215	CZ	ARG A							. 7
ATOM	1216	NH1	ARG A			34.671	15.216	59.605	1.00 38.39	
ATOM	1217	NH2	ARG A	155		34.732	13.631	61.259	1.00 38.67	7
ATOM	1218	С	ARG A	155		41.521	16.929	62.331	1.00 33.97	6
	1219		ARG A		•	41.869	15.941	62.985	1.00 32.95	8
MOTA		0							1.00 34.20	7
MOTA	1220	N	LYS A			42.318	17.548	61.467		
MCTA	1221	CA	LYS A	156		43.679	17.081	61.243	1.00 36.32	6
ATCM	1222	CB	LYS A	156		44.249	17.662	59.942	1.00 37.57	6
	1223	CG	LYS A			45.673	17.187	59.638	1.00 40.32	6
ATOM						46.116	17.532	58.220	1.00 40.33	6
ATOM	1224	CD	LYS A							6
ATOM	1225	CE	LYS >	156		45.180	16.909	57.184	1.00 41.27	
ATCM	1226	NZ	LYS A	156		45.015	15.435	. 57.364	1.00 37.92	7
ATOM	1227 -	С	LYS A	156		44.539	17.501	62.428	1.00 36.17	6
	1228	ŏ	LYS A			45.582	16.905	62.699	1.00 34.53	8
ATOM						44.093	18.537	63.132	1.00 36.71	7
ATOM	1229	N	LYS A							6
ATOM	1230	CA	LYS A	157		44.820	19.026	64.294	1.00 37.09	
MOTA	1231	CB	LYS A	157		44.495	20.501	64.566	1.00 37.02	6
ATOM	1232	CG	LYS A	157		44.982	21.435	63.477	1.00 36.22	6
			LYS A			46.468	21.231	63.239	1.00 37.91	6
ATOM	1233	CD						62.107	1.00 39.35	6
ATOM	1234	Ξ	LYS A			46.993	22.100		1.00 39.33	7
ATOM	1235	.JZ	LYS A	157		48.434	21.815	61.842	1.00 38.78	
ATOM	1236	Ų.	LYS A	157		44.498	18.178	65.515	1.00 35.61	6
ATOM	1237	Ο.	LYS A			45.204	18.232	66.518	1.00 36.38	8
						43.433	17.392	65.431	1.00 34.37	7
ATOM	1238	N	GLY A						1.00 38.08	6
ATOM	1239	CA	GLY A			43.097	16.537	66.552		
ATOM	1240	· C	GLY A	158		41.782	16.781	67.267	1.00 38.78	6
ATCM	1241	0	GLY A			41.460	16.053	68.208	1.00 41.07	8
			PHE A			41.023	17.791	66.855	1.00 36.75	7
ATOM	1242	N							1.00 33.83	6
MCTA	1243	CA	PHE A			39.743	18.046	67.505		
ATOM	1244	CB	PHE A	159		39.246	19.459	67.213	1.00 32.65	6
ATOM	1245	CG	PHE A			40.115	20.521	67.787	1.00 29.97	6
	1246		PHE A			41.404	20.724	67.297	1.00 30.20	6
ATOM									1.00 29.28	6
ATOM	1247		PHE A			39.672	21.289	68.853		
ATOM	1248	CE1	PHE A			42.241	21.680	67.862	1.00 28.96	6
ATTM	1249	CE2	PHE ?			40.498	22.246	69.428	1.00 29.67	5
	1250	CZ	PHE A			41.785	22.442	68.931	1.00 30.59	. 6
ATOM						38.732	17.026	67.025	1.00 33.41	6
RICM	1251	C	PHE ?						1.00 31.61	8
ATOM	1252	0	PHE 2			38.664	16.716	65.938		
ATCM	1253	N	LYS A	160		37.951	16.506	67.966	1.00 35.13	7
ATOM	1254	CA	LYS ?			36.947	15.493	67.677	1.00 35.39	6
	** 7 3	~						•	•	

ATOM	1255 CB LYS A 160	37.342 14.198 68.389 1.00 36.43 6 38.535 13.502 67.708 1.00 40.67 6
	1256 CG LYS A 160 1257 CD LYS A 160	39.312 12.538 68.615 1.00 44.68 6
	100	38.425 11.536 69.345 1.00 49.23 6
	1258 CE LYS A 160 1259 NZ LYS A 160	37.593 12.182 70.411 1.00 50.63
***	1260 C LYS A 160	35.524 15.941 00.021 1.00 35 72 8
	1261 O LYS A 160	34.561 15.241 07.001 1.00 34 35 7
	1262 N ARG A 161	35.399 17.038 66.710 1.00 34 95 6
MOTA	1263 CA ARG A 161	34.091 17.025 70.535 1.00 33.94 6
ATOM	1264 CB ARG A 161	33.427 16.132 70.992 1.00 38.25 6
ATOM	1265 CG ARG A 161 - 1266 CD ARG A 161	32.823 16.131 72.386 1.00 41.17
ATOM	1266 CD ARG A 161 1267 NE ARG A 161	33.719 16.722 73.378 1.00 47.64
MOTA	1268 CZ ARG A 161	34.912 16.233 73.705 1.00 47.52 3
MOTA MOTA	1269 NH1 ARG A 161	35.372 13.132 74.616 3 00 46 95 7
ATOM	1270 NH2 ARG A 161	33.646 10.636 68.598 1.00 34.58 6
MOTA	1271 C ARG A 161	34 468 19.980 69.357 1.00 33.77 8
MOTA	1272 O ARG A 161 1273 N ILE A 162	33.741 19.280 67.341 1.00 31.74 /
MOTA	1273 N ILE A 162 1274 CA ILE A 162	33.735 20.594 66.735 1.00 23.03
ATOM ATOM	1275 CB ILE A 162	34.429 20.542 65.502 2.00 30 57 6
ATOM	1276 CG2 ILE A 162	34.380 21.342 35 532 1 00 28 81 6
MOTA	1277 CG1 ILE A 162	35.801 15.685 64.224 1.00 33.05 6
ATOM	1278 CD1 ILE A 162 1279 C ILE A 162	32,300 21.050 66.560 1.00 29.66 6
ATOM	163	31.416 20.241 66.266 1.00 25.24 8
MOTA	1280 0 ILE A 162 1281 N LEU A 163	32.081 22.351 66.745 1.00 30 49 6
MOTA MOTA	1282 CA LEU A 163	30.754 22.945 66.617 1.60 32 25 6
ATOM	1283 CB LEU A 163	30.236 23.339 68.044 1.00 31.21 6
MOTA	1284 CG LEU A 163	27 804 23.494 67.326 1.00 31.58 6
MOTA	1285 CD1 LEU A 163 1286 CD2 LEU A 163	28.569 24.502 69.493 1.00 25.00 6
ATOM	1286 CD2 LEU A 163 1287 C LEU A 163	30.717 24.122 65.654 1.00 29 72 8
MOTA MOTA	1288 O LEU A 163	31.596 24.980 65.634 1.00 29 68 7
ATOM	1289 N TYR A 164	29.673 24.134 63.899 1.00 29.89 6
MOTA	1290 CA TYR A 164	29.512 24.688 62.470 1.00 27.81 6
MOTA	1291 CB TYR A 164 1292 CG TYR A 164	29.377 25.742 61.399 1.00 27.79 6
MOTA	1292 CG TYR A 164 1293 CD1 TYR A 164	30.390 26.670 61.168 1.00 24.52
MOTA MOTA	1294 CE1 TYR A 164	30.247 27.655 60.136 1.00 27.61 6
ATOM	1295 CD2 TYR A 164	28.216 25.328 59.662 1.00 25.67 6
MOTA	1296 CE2 TYR A 164	29 078 27.718 59.451 1.00 25.63 6
MOTA	1297 CZ TYR A 164 1298 CH TYR A 164	28.898 28.704 58.506 1.00 27.10 8
MOTA	1298 OH TYR A 164 1299 C TYR A 164	28.149 25.907 64.218 1.00 28.38
MOTA MOTA	1300 O TYR A 164	27.119 25.225 64.277 1.00 24 30 7
ATOM	1301 N ILE A 165	26.160 27.229 64.754 1.00 22.93 6
ATCM	1302 CA ILE A 165	26.341 27.549 66.143 1.00 22.00 6
MOTA	1303 CB ILE A 165 1304 CG2 ILE A 165	25.765 29.559 66.312 1.00 16.15 6
ATOM	1304 CG2 ILE A 165 1305 CG1 ILE A 165	27.033 27.567 67.240 1.00 20.70 6
MOTA MOTA	1305 CO1 ILE A 165	27.185 28.101 68.650 1.00 24 45 6
ATOM	1307 C ILE A 165	26.784 29.010 63.037 20.023.17 8
MOTA	1308 O ILE A 165	27.803 29.871 62.895 1.00 24.20 7
MOTA	1309 N ASP A 100	25 478 29.726 61.749 1.00 20.78 6
ATOM		25.314 28.809 60.548 1.00 17.64 6
ATOM	1010 CC 1CB 4 166	25.410 29.529 59.256 1.00 19.93
MOTA MOTA	1313 OD1 ASP A 166	24.536 30.391 59.491 1.00 17.64 8
MOTA	1314 OD2 ASP A 166	26.366 29.231 30.431 1.00 22.79 6
ATOM	1315 C ASP A 166	24.290 30.356 61.826 1.00 22.70 8
ATOM	1316 5 ASP A 160	24 583 31.952 62.085 1.00 25.40
ATCM	1 1317 N LEU A 167	23.536 32.954 62.250 1.00 25.76 6
ATOM	. 210 CB (FILA 167	23.963 33.991 63.288 1.00 26.65 6
ATOM	1 100 00 1511 3 167	24.364 33.463 64.674 1.00 26.75 6

•		8	
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1321 CD1 LEU A 167 1322 CD2 LEU A 167 1323 C LEU A 167 1324 O LEU A 167 1325 N ASP A 168 1326 CA ASP A 168 1327 CB ASP A 168 1328 CG ASP A 168 1329 OD1 ASP A 168 1330 OD2 ASP A 168 1331 C ASP A 168 1332 O ASP A 168 1333 N ALA A 169 1334 CA ALA A 169 1335 CB ALA A 169 1336 C ALA A 169 1337 O ALA A 169 1338 N HIS A 170 1340 CB HIS A 170 1340 CB HIS A 170 1341 CG HIS A 170 1342 CD2 HIS A 170 1344 CH HIS A 170 1345 NE2 HIS A 170 1346 C HIS A 170 1347 O HIS A 170 1348 N HIS A 170 1348 N HIS A 171 1350 CB HIS A 171 1351 CG HIS A 171 1351 CG HIS A 171 1352 CD2 HIS A 171 1353 ND1 HIS A 171 1355 CH HIS A 171 1356 C HIS A 171 1357 O HIS A 171 1358 N CYS A 171 1358 N CYS A 172 1360 CB CYS A 172 1361 SG CYS A 172 1363 O CYS A 172 1366 CB ASP A 173 1367 CG ASP A 173 1368 OD1 ASP A 173 1368 OD1 ASP A 173 1369 OD2 ASP A 173 1369 OD2 ASP A 173 1360 CB CYS A 172 1361 CG ASP A 173 1362 C CYS A 172 1363 O CYS A 172 1364 N ASP A 173 1365 CA ASP A 173 1366 CB ASP A 173 1371 O ASP A 173 1372 N GLY A 174 1373 CA GLY A 174 1374 C GLY A 174 1375 O GLY A 174 1375 O GLY A 174 1376 N VAL A 175	24.741 34.647 65.552 1.00 26.24 6 23.225 32.661 65.302 1.00 23.45 6 23.162 33.660 60.951 1.00 26.37 6 22.386 34.613 60.971 1.00 25.95 8 23.726 33.208 59.828 1.00 29.66 7 23.410 33.787 58.520 1.00 33.29 6 24.057 32.987 57.390 1.00 33.49 8 24.892 34.388 55.659 1.00 39.48 8 22.893 33.531 55.364 1.00 33.40 8 21.906 33.614 58.408 1.00 26.16 7 21.354 32.648 58.948 1.00 24.39 6 21.793 34.524 57.711 1.00 24.39 6 19.793 34.415 57.579 1.00 24.39 6 19.793 34.415 57.579 1.00 22.34 8 20.405 32.542 56.824 1.00 22.34 8 20.405 32.542 56.156 1.00 25.76 6 </td <td>3 3 7 5 5 5</td>	3 3 7 5 5 5
MOTA MOTA	1371 O ASP A 173	24.940 21.708 52.784 1.00 28.38 8 25.926 23.737 52.793 1.00 25.24	7
	1373 CA GLY A 174	27.227 23.198 52.447 1.00 23.11	6
	1374 C GLY A 174	27.896 22.303 33.462 1.00 27.67	8
		27.848 23.144 54.778 1.00 24.29	
MOTA MOTA	1376 N VAL A 1/5 1377 CA VAL A 175	28.459 22.602 55.989 1.00 22.20	6
ATOM	1378 CB VAL A 175	28.536 23.672 57.101 1.00 20.11	6
MOTA	1379 CG1 VAL A 175 1380 CG2 VAL A 175	29.015 24.989 56.530 1.00 18.74	6
ATOM TOM	1380 CG2 VAL A 175	27.647 21.409 56.505 1.00 22.85	6 8
atom atom	1382 O VAL A 175	28.173 20.512 57.173 1.00 24 12	7
ATOM	1383 N GLN A 176	25.510 20.303 56.629 1.00 27.18	6
ATOM	1384 CA GLN A 176 1385 CB GLN A 176	24.045 20.611 56.355 1.00 32.86	6
Mota Mota	176 CC CLY 1 176	23.084 19.483 56.726 1.00 36.04	
Alon		•	

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1389 N 1390 C 1391 O 1392 N 1393 C 1394 C 1395 C	E1 GLN A 176 E2 GLN A 176 GLN A 176 GLN A 176 GLU A 177 A GLU A 177 B GLU A 177 G GLU A 177	21.113 20.934	20.782 19.151 19.083 18.066 19.194	57.185 1 55.649 5 55.841 56.416 54.519 53.698 52.220 51.287 49.818	1.00 38.59 1.00 38.81 1.00 27.70 1.00 26.89 1.00 27.96 1.00 31.16 1.00 30.37 1.00 36.20 1.00 40.70	6 8 7 6 8 7 6 6 6 6 6
MOTA MOTA	1397 0	E1 GLU A 177	27.322 25.155	17.967 17.590	49.234 49.250	1.00 46.78 1.00 39.39	8 8
MOTA	1398 C	E2 GLU A 177	27.702	17.516	54.137	1.00 31.66	6 8
ATOM ATOM	1400	GLU A 177	27.868	16.317	54.356 54.287	1.00 32.81 1.00 33.39	7
MOTA	1401 N		28.663 30.026	18.419 18.072	54.673	1.00 31.63	6
MOTA	_	A ALA A 178 B ALA A 178	30.830	19.338	54.856	1.00 30.96	6 6
MOTA MOTA		ALA A 178	30.204	17.185	55.897 55.876	1.00 30.63 1.00 27.95	8
ATOM) ALA A 178 N PHE A 179	31.032 29.444	16.276 17.444	56.961	1.00 31.01	7
ATOM		N PHE A 1/9 CA PHE A 179	29.590	16.656	58.184	1.00 31.34	6 6
MOTA MOTA		CB PHE A 179	30:147	17.532	59.310 58.858	1.00 30.13 1.00 27.78	6
ATOM		CG PHE A 179	31.189 30.827	18.505 19.790	58.466	1.00 28.24	6
MOTA		CD1 PHE A 179 CD2 PHE A 179	32.522	18.124	58.766	1.00 28.33	6
MOTA MOTA	1411 (CE1 PHE A 179	31.778	20.688	57.988	1.00 26.68 1.00 28.79	6 6
ATOM	1413	CE2 PHE A 179	33.487	19.013 20.300	58.285 57.895	1.00 28.67	6
MOTA		CZ PHE A 179 C PHE A 179	33.111 28.300	16.003	58.664	1.00 32.06	6
MOTA		O PHE A 179 O PHE A 179	28.218	15.542	59.803	1.00 30.58	8 7
MOTA MOTA		N TYR A 180	27.305	15.960	57.787 58.099	1.00 34.25 1.00 38.60	6
MOTA	1418	CA TYR A 180	26.001 25.062	15.377 15.605	56.911	1.00 38.99	6
MOTA		CB TYR A 180 CG TYR A 180	23.593	15:453	57.220	1.00 37.91	6
MOTA MOTA		CD1 TYR A 180 CD1 TYR A 180	22.938	14.232	57.064	1.00 35.83 1.00 39.20	6 6
ATOM	1422	CE1 TYR A 180	21.589	14.103	57.373 57.694	1.00 37.56	6
ATOM	1423	CD2 TYR A 180	22.861 21.518	16.543 16.430	58.007	1.00 40.28	6
MOTA	1424 1425	CE2 TYR A 180 CZ TYR A 180	20.882	15.211	57.848	1.00 41.92	6
atom Atom	1425	OH TYR A 180	19.549	15.110	58.188	1.00 43.41 1.00 40.28	8 6
ATOM	1427	C TYR A 180	26.133	13.884 13.192	58.382 58.680	1.00 39.27	8
ATOM	1428	O TYR A 180 N ASP A 181	25.158 27.363	13.402	58.319	1.00 43.51	7
ATOM	1429 1430	N ASP A 181 CA ASP A 181	27.638	11.994		1.00 45.89	6 6 ·
ATOM ATOM	1431	CB ASP A 181	28.414			1.00 51.00 1.00 56.84	6
MOTA	1432	CG ASP A 181	28.830		E0 34E		8
ATOM	1433	OD1 ASP A 181 OD2 ASP A 181	29.637 28.348	9.221	56.629	1.00 60.73	8
ATOM	1434 1435	C ASP A 181	28.398	11.665	59.804		6 8
atom atom	1436	O ASP A 181	28.257	10.568			7
ATOM	1437	N THR A 182	29.194 29.975			1.00 39.51	6
ATOM	1438	CA THR A 182 CB THR A 182	31.408		61.355	1.00 39.19	6
atom Atom	1439 1440	OG1 THR A 182	32.171	12.508	62.505		8 6
MOTA		CG2 THR A 182	31.395				
MOTA	1442	C THR A 182	29.370 28.609			1.00 41.24	8
ATCM		O THR A 182 N ASP A 183	29.71		63.890	1.00 37.39	
ATOM		N ASP A 183 CA ASP A 183	29.21	1 12,77			
atom atom		CB ASP A 183	28.82				
ATOM	1447	CG ASP A 183	30.01 30.72			1.00 42.53	. 8
ATOM		OD1 ASP A 183 OD2 ASP A 183	30.22		4 67.640	0 1.00 42.46	8
ATOM ATOM		C ASP A 183	30.28	6 13.62			6
ATOM		O ASP A 183	30.10		1 66.983 0 65.15		
ATCM		N GLN A 184	31.40	U 13.63			
		•			•		

י שטא	1453	CA	GLN A	184	32.506	14.635	65.671	1.00 37.08	6
MOTA					33.830	14.252	64.994	1.00 33.77	6
MOTA	1454		GLN A						6
MOTA	1455	CG	GLN A :	184	34.229	12.804	65.166	1.00 33.63	
ATOM	1456	CD	GLN A	184	35.599	12.499	64.593	1.00 32.74	6
			GLN A		35.853	12.704	63.413	1.00 31.17	8 ه
MOTA	1457					11.999	65.436	1.00 36.58	7
MOTA	1458		GLN A		36.490				
MOTA	1459	C	GLN A	184	32.222	16.110	65.403	1.00 36.42	6
ATOM	1460		GLN A		32.803	16.994	66.034	1.00 37.41	8
					31.329	16.372	64.456	1.00 33.14	7
MOTA	1461		VAL A				64.119	1.00 32.40	6
MOTA	1462		VAL A		30.984	17.740			
MOTA	1463	CB	VAL A	185	31.308	18.052	62.641	1.00 33.03	6
	1464		VAL A		31.009	19.520	62.331	1.00 29.27	6
MOTA			VAL A		32.773	17.738	62.357	1.00 34.58	6
MOTA	1465							1.00 31.51	6
MOTA	1466	С	VAL A	185	29.508	17.972	64.360		
ATOM	1467	0	VAL A	185	28.680	17.124	64.038	1.00 31.71	8
MOTA	1468	N	PHE A	186	29.185	19.119	64.946	1.00 30.98	7
			PHE A		27.798	19.463	65.207	1.00 31.44	6
MOTA	1469						66.716	1.00 30.96	6
MOTA	1470		PHE A		27.524	19.532			
ATOM	1471	CG	PHE A	186	26.059	19.617	67.066	1.00 31.59	6
ATOM	1472	CD1	PHE A	186	25.552	18.901	68.153	1.00 30.54	6
	1473		PHE A		25.179	20.395	66.308	1.00 31.50	6
MOTA						18.951	68.478	1.00 33.28	6
MOTA	1474		PHE A		24.191				
ATOM	1475	CE2	PHE A	186	23.815	20.457	66.622	1.00 33.04	6
ATOM	1476	CZ	PHE A	186	23.318	19.733	67.708	1.00 32.35	6
	-	c	PHE A		27.490	20.798	64.551	1.00 30.37	6
ATOM	1477				28.189	21.789	64.751	1.00 31.32	8
MOTA	1478	0	PHE A					1.00 31.14	7
ATOM	1479		VAL A		26.435		63.752		
ATOM	1480	CA	VAL A	187	26.024	22.015	63.063	1.00 32.05	6
	1481	CB	VAL A		26.018	21.805	61.525	1.00 33.54	6
MOTA					25.574	23.081	60.813	1.00 32.07	6
MOTA	1482		VAL A					1.00 35.44	6
MOTA	1483	CG2	VAL A	187	27.420	21.389	61.056		
ATOM	1484	С	VAL A	187	24.638	22.439	63.524	1.00 31.47	6
ATOM	1485	0	VAL A	187	23.666	21.686.	63.410	1.00 29.06	8
		N	LEU A		24.579	23.638	64.090	1.00 29.44	7
ATOM	1486				23.336	24.228	64.551	1.00 29.39	6
MOTA	1487	CA	LEU A					1.00 29.62	6
MOTA	1488	CB	LEU A		23.433	24.665	66.009		
MOTA	1489	CG	LEU A	188	22.293	25.589	66.458	1.00 27.92	6
	1490		LEU A		20.970	24.844	66.414	1.00 25.87	6
ATOM			LEU A		22.574	26.107	67.861	1.00 27.69	6
MOTA	1491					25.454	63.675	1.00 31.89	6
MOTA	1492	С	LEU A		23.161			1.00 31.50	8
ATOM	1493	0	LEU A	188	24.130	26.175	63.388		
ATOM	1494	N	SER A	189	21.929	25.700	63.250	1.00 29.93	7
	1495	CA	SER A		21.682	26.831	62.390	1.00 24.65	6
MOTA					21.873	26.411	60.942	1.00 22.40	6
MOTA	1496	CB	SER A	189			60.083	1.00 19.12	8
MOTA	1497	OG	SER A		21.585	27.485			6
ATOM	1498	С	SER A	189	20.716	27.462	62.540	1.00 27.00	
ATOM	1499	0	SER A		19.,,96	26.774	62.577	1.00 26.72	8
		N	LEU A		20.521	28.783	62.669	1.00 27.41	7
ATOM	1500				19.096		62.735	1.00 29.68	6
ATOM	1501	CA	LEU A					1.00 29.84	6
HOTA	1502	CB	LEU A	190	19.185		63.771		
ATOM	1503	CG	LEU A	190	19.108	30.366	55.264	1.00 26.79	6
	1504		LEU A		19.020	31.662	66.045	1.00 23.44	6
ATOM			LEU A		17.881		65.546	1.00 27.63	6
MOTA	1505							1.00 29.58	6
ATOM	1506	C	LEU A		19.046		61.329		8
ATOM	1507	0	LEU A	190	20.084	30.525	60.790	1.00 32.40	0
	1508	N	HIS A		17.864	30.206	60.727	1.00 29.61	7
ATOM			HIS A		17.766		59.368	1.00 29.72	6
MOTA	1509	CA					58.432	1.00 26.47	6
MOTA	1510	CB	HIS A		18.595				6
MOTA	1511	CG	HIS A	191	18.225		58.504	1.00 28.18	0
ATOM	1512		HIS A		18.918	27.313	58.940	1.00 28.88	6
		יחות	HIS A	191	16.989		58.118	1.00 31-00	7
ATOM	1513	זחמי	A CIE	101	16.938		58.312	1.00 30.54	6
atom	1514	CE1	HIS A	121					7
ATOM	1515	NE2	HIS A	191	18.095				6
ATCM	1516	С	HIS A	191	16.329	30.812			
	1517	ō	HIS A	191-	15.385			1.00 27.81	8
ATOM				192	16.183				7
ATCM	1518	N	GLN A	156	10.103	71.740			

					-				
			- 100		14.886	31.494	57.008 1		5
ATOM	1519 C	A GLN	A 192			32.416	55.796 1	.00 24.94	5
MOTA	1520 C	B GLN	A 192		15.016			.00 21.66	6
		G GLN	A 192		15.622	33.773		.,	6
MOTA			A 192		15.701	34.690			
MOTA		E1 GLN	λ 192		14.684	35.173			В
MOTA		EI GLN	, n 102		16.914	34.925			7
ATOM		NE2 GLN	A 192			30.104	56.570	1.00 32.71	6
MOTA	1525	GLN	A 192		14.435		55.853	1.00 33.85	8
ATOM	1526	GLN	A 192		15.157	29.403	57.011		7
ATOM	-	N SER	R A 193		13.249	29.694			6
			RA 193		12.751	28.376			6
MOTA			R A 193		11.264	28.249		1 ,00	
MOTA			R A 193		10.786	26.987			8 .
MOTA		OG SEF	N 103		12.974	28.150	55.171	1.00 34.79	6
MOTA		C SEF	R A 193		12.775	29.051	54.356	1.00 33.74	8
MOTA	1532	O SEF	R A 193		13.404	26.938		1.00 37.57	7
MOTA	1533	N PRO	D A 194			25.775	55.658	1.00 38.89	6
MOTA	1534	CD PRO	O A 194		13.689		53.403	1.00 37.81	6
ATOM		CA PRO	O A 194	•	13.654	26.600		1.00 39.30	6
ATOM		CB PRO	D A 194		14.248	25.194	53.498		6
			O A 194		14.840	25.163	54.916		6
MOTA			O A 194		12.340	26.617	52.638	1.00 36.81	
MOTA		O DR	O A 194		12.317	26.443	51.425	1.00 34.09	8
ATOM			Ú A 195		11.246	26.835	53.364	1.00 39.25	7
MOTA		N GL	U A 195		9.928	26.866	52.750	1.00 41.54	6
MOTA		CA GL	U A 195		8.843	26.600	53.812	1.00 45.84	6
MOTA	1542	CB GL	U A 195			27.811	54.608	1.00 53.30	6
ATOM	1543		U A 195		8.360		53.960	1.00 55.91	6
ATOM	1544	CD GL	U A 195		7.160	28.502		1.00 55.14	8
ATOM	1545	OE1 GL	U A 195		6.735	29.571	54.461	1.00 57.75	8
	1546	OE2 GL	U A 195		6.631	27.966	52.956	1.00 37.73	6
MOTA	1547	C GL	U A 195		9.700	28.208	52.047	1.00 39.30	8
MOTA			U A 195		8.651	28.431	51.452	1.00 40.21	7
ATOM	1548	N TO	R-A 196		10.689	29.096	52.098	1.00 37.13	
MOTA	1549	N TY	R A 196		10.549	30.379	51.434	1.00 35.50	6
MOTA	1550	CA TY	R A 196		9.602	31.274		1.00 36.36	6
MOTA	1551	CB TY	R A 196		10.175	31.816	53.538	1.00 37.28	6
ATOM	1552	CG TY	R A 196			32.848		1.00 35.42	6
ATOM	1553		R A 196		11.120	33.366		1.00 33.10	6
ATOM	1554	CE1 TY	/R A 196		11.637	31.311		1.00 36.75	6
ATOM	1555	CD2 TY	R A 196		9.764			1.00 35.26	6
ATOM	1556	CE2 TY	R A 196		10.279	31.825		1.00 35.84	6
MOTA	1557	CZ TY	YR A 196		11.213			1.00 37.09	8
	1558	OH TY	YR A 196		11.704			1.00 34.89	6
MOTA	1559	C T	YR A 196		11.878				8
MOTA		O T	YR A 196		11.896	32.256		1.00 31.61	7
ATOM	1560	N 31	LA A 197		12.991		51.437	1.00 34.39	
MOTA	1561	N A	LA A 197		14.297		51.242	1.00 34.82	6
MOTA	1562	CA A	LA A 197		14.684	31.826	52.489	1.00 32.48	6
MOTA	1563	CB A	LA A 197		15.418			1.00 36.59	6
MOTA	1564	C A	LA A 197		15.407			1.00 37.46	8
ATOM	1565	O A	LA A 197					1.00 36.22	7
MOTA	1566	N P	HE A 198		16.388			1.00 37.68	6
MOTA	1567	CA P	HE A 198		17.548			1.00 40.89	6
ATOM	1568	CB P	HE A 198		18.597				6
MOTA	1569	CG P	HE A 198		19.810			1.00 44.74	6
	1570	CD1 P	HE A 198		19.783	3 29.40		1.00 41.86	6
ATOM	1571	CD2 P	HE A 198		20.970	29.92	9 49.336	1.00 41.00	6
MOTA		CE1 P	HE A 198		20.89	4 28.72	9 46.833	1.00 41.42	
MOTA	1572		HE A 198		22.07		1 48.849		6
ATOM	1573				22.04	·		1.00 41.86	6
MOTA	1574		HE A 198		18.13			1.00 37.00	6
ATOM	1575	C P	HE A 198		18.15			1.00 36.43	8
ATOM	1576	O F	HE A 198					1.00 37.63	7
ATOM	1577	N F	RO A 199		18.64				6
MOTA		CD F	RO A 199		19.29	8 27.23			6
		CA F	PRO A 199	i	18.72				6
MOTA		CB F	PRO A 199	1	19.70	2 25.93			6
MOTA		CG !	PRO A 199	}	19.28		0 51.565		6
ATOM		C	PRO A 199)	17.40		0 49.222	1.00 35.72	8
ATOM		0 1	PRO A 199)	17.38	6 25.66	3 48.22		7
ATOM	1583	O 3	PHE A 200)	16.33			2 1.00 33.78	,
3 moM	1584	iV .	- ME W	-			•		

ATOM	1585	CA	PHE A 200		15.004	26.090		1.00 32.15	6
ATOM	1586	CB	PHE A 200		14.562			1.00 28.39	6
ATOM	1587	CG	PHE A 200		14.600	27.827		1.00 26.29	6 6
ATOM	1588	CD1	PHE A 200		15.749	28.385	-	1.00 24.82 1.00 28.04	6
ATOM	1589	CD2	PHE A 200		13.466	28.623		1.00 25.68	6
ATOM-	1590	CEl			15.767	29.712		1.00 23.03	6
ATOM	1591	CE2	PHE A 200		13.475	29.955		1.00 24.90	6 .
MOTA	1592	CZ	PHE A 200		14.626	30.498		1.00 32.66	6
MOTA	1593	С	PHE A 200		14.947	24.574 24.033	50.264	1.00 31.22	8
MOTA	1594	0	PHE A 200		13.925	23.896	49.499	1.00 33.60	7
ATOM	1595	N	GLU A 201		16.043 16.128	22.438	49.585	1.00 30.86	6
ATOM	1596	CA	GLU A 201 GLU A 201		17.213	21.931	48.637-	1.00 32.98	6
ATOM	1597	CB CG	GLU A 201		16.879	22.182	47.175	1.00 33.52	6
MOTA	1598 1599	CD			18.012	21.864	46.232	1.00 34.56	6
MOTA MOTA	1600		GLU A 201		18.396	20.678	46.117	1.00 36.35	8 -
MOTA	1601		GLU A 201		18.523	22.814	45.605	1.00 36.52	8
ATOM	1602	C	GLU A 201		16.369	21.911	50.981	1.00 28.52	6 8
MOTA	1603	0	GLU A 201		15.537	21.199	51.520	1.00 28.91 1.00 31.64	7
ATOM	1604	N	LYS A 202		17.511	22.239	51.566 52.917	1.00 32.34	6
MOTA	1605	CA	LYS A 202		17.795	21.780	52.917	1.00 36.91	6
ATOM	1606	CB	LYS A 202		19.276	21.432 20.226	52.307	1.00 43.74	6
MOTA	1607	CG	LYS A 202		19.789 20.212	20.220	50.891	1.00 49.31	6
MOTA	1608	CD	LYS A 202 LYS A 202		20.212	19.428	50.227	1.00 49.34	6
MOTA	1609	CE NZ	LYS A 202		21.504	19.802	48.895	1.00 49.89	7
MOTA	1610 1611	C 142	LYS A 202		17.421	22.849	53.937	1.00 30.55	6
MOTA MOTA	1612	0	LYS A 202		16.877	23.890	53.586	1.00 26.55	8
MOTA	1613	N	GLY A 203		17.710	22.571	55.203	1.00 30.59	7
ATOM	1614	CA	GLY A 203		17.422	23.519	56.259	1.00 30.24 1.00 29.23	6 6
ATOM	1615	С	GLY A 203	·	16.216	23.210	57.125	1.00 29.23	8
ATOM	1616	0	GLY A 203		15.915	23.975 22.104	58.041 56.866	1.00 26.32	7
ATOM	1617	N	PHE A 204		15.526 14.344	21.779	57.657	1.00 23.25	6
MOTA	1618	CA	PHE A 204		13.366	20.917	56.863	1.00 21.25	6
MOTA	1619	CB	PHE A 204 PHE A 204		12.855	21.573	55.635	1.00 18.60	6
MOTA	1620 1621	CG CD1	PHE A 204		13.605	21.560	54.461	1.00 16.43	6
ATOM ATOM	1622		PHE A 204		11.654	22.273	55.664	1.00 14.82	6
ATOM	1623	CE			13.168	22.245	53.333	1.00 16.91 1.00 15.28	6 6
ATOM	1624	CE2			11.206	22.962	54.544	1.00 15.28 1.00 18.34	6
MOTA	1625	CZ	PHE A 204		11.965	22.952	53.375 58.979	1.00 18.34	6
ATOM	1626	С	PHE A 204		14.626	21.094 20.318	59.118	1.00 22.68	8
MOTA	1627	0	PHE A 204		15.578 13.760	21.376	59.942	1.00 20.94	7
MOTA	1628	N	LEU A 205 LEU A 205		13.700	20.818	61.272	1.00 24.83	6
ATOM	1629	CA CB	LEU A 205	•	12.678	21.259	52.110	1.00 21.29	6
MOTA	1630 1631	CG	LEU A 205		12.672	20.811	33.568	1.00 22.67	6
MOTA MOTA	1632		1 LEU A 205		14.011	21.182	74.245	1.00 19.76	6
ATOM	1633	CD	2 LEU A 205		11.478	21.456	64.275	1.00 20.62	6 6
ATOM	1634		LEU A 205		14.002	19.293	61.303	1.00 28.79 1.00 28.59	. 8
ATOM	1635	0	LEU A 205		14.443	18.730	62.310	1.00 23.55	7
MOTA	1636		GLU A 206		13.625	18.628 17.166	60.211 60.142	1.00 39.79	6
ATOM	1637		GLU A 206		13.693 12.736	16.616		1.00 44.37	6
ATOM	1638		GLU A 206		11.284	17.060		1.00 50.75	6
MOTA	1639		GLU A 206 GLU A 206		11.014			1.00 55.31	6
ATOM	1640	CD	1 GLU A 206,		9.972		58.797	1.00 55.36	8
MOTA	1641 1642	OF	2 GLU A 206		11.839		57.661	1.00 56.48	8
MOTA	1643		GLU A 206		15.114		59.847		6
MOTA MOTA	1644		GLU A 206		15.483	15.541	60.180		8 7
ATOM	1645		GLU A 207		15.903				6
MOTA	1646		GLU A 207		17.286				6
ATOM	1647		GLU A 207		17.776				6
ATOM	1648	G CG	GLU A 207		16.983				6
ATOM	1649) CD			16.978	19.452			8
MOTA) OE	1 GLU A 207		18.071	20.016	, 'כב.נג'	2.55 55.33	

		207	15.870	19.891	55.389 1	. • • • • •	8
		2 GLU A 207 GLU A 207		_,	60.134 1		6
	1652 C	GLU A 207		18.303			8
	1653 O	ILE A 208	18.381	16.059	•••		7
ATOM			19.164		• • • •	.,00 00.00	6
ATOM '	1655 CA 1656 CE	000	18.260	15.511		1.00 41.12	6 6
MOTA	1657 CC		19.097	15.273		1.00 41.36	6
ATOM		1 ILE A 208	17.193	16.581	•••	1.00 42.21	6
MOTA		1 ILE A .208	.16.291	16.286	• • • • •	1.00 44.81 1.00 36.66	6
ATOM ATOM	1660 C	ILE A 208	20.407	15.074		1.00 34.03	В
ATOM	1661 0	ILE A 208	21.243	15.110		1.00 36.80	7
ATOM	1662 N	GLY A 209	20.540	14.284		1.00 38.99	6
ATOM	1663 C	A GLY A 209	21.703	13.428	59.805	1.00 40.93	6
MOTA	1664 C	GLY A 209	21.509	12.246 12.124	59.145	1.00 40.26	8
ATOM	1665 0	GLY A 209	20.477 22.508	11.370	59.775	1.00 42.16	7
ATOM .	1666 N		22.492	10.185		1.00 43.30	6
MOTA	1667 C	A GLU A 210	22.810	10.586	57.488	1.00 47.08	6
MOTA	1668 C		22.826	9.453	56.478	1.00 53.90	6
MOTA	1669 C	010	23.256	9.915	55.089	1.00 56.27	6
MOTA		D GLU A 210 E1 GLU A 210	24.412	10.371	54.941	1.00 56.19	8
ATOM	1671 O 1672 O	E2 GLU A 210	22.437	9.826	54.145	1.00 60.28	8 6
ATOM	1672 C		23.583	9.276	59.473	1.00 41.47 1.00 43.97	8
MOTA	1674		24.750	9.457	59.152	1.00 43.97	7
MOTA MOTA	1675 N	GLY A 211	23.203	8.307	60.299	1.00 37.34	6
ATOM		A GLY A 211	24.181	7.405	60.885 62.224	1.00 37.84	6
ATOM	1677	GLY A 211	24.642	7.952	63.019	1.00 37.30	8
ATOM	1678	GLY A 211	23.820	8.408 7.910	62.485	1.00 38.52	7
ATOM		LYS A 212	25.948 26.490	8.440	63.733	1.00 38.29	6
MOTA		A LYS A 212	28.020	8.359	63.731	1.00 40.54	6
MOTA		CB LYS A 212 CG LYS A 212	28.570	6.950	63.675	1.00 46.39	6
MOTA			28.149	6.147	64.910	1.00 51.59	6
MOTA		CD LYS A 212 CE LYS A 212	28.556	4.676	64.809	1.00 52.77	6 7
MOTA		NZ LYS A 212	30.030	4.478	64.662	1.00 55.48 1.00 37.68	6
MOTA MOTA		LYS A 212	26.061	9.897	63.866	1.00 37.00	
ATOM		O LYS A 212	. 25.814	10.389		1.00 38.89	7
ATOM		N GLY A 213	25.956	10.574		1.00 43.58	6
MOTA	1689	CA GLY A 213	25.577 24.126	11.975 12.295		1.00 43.99	6
MOTE		C GLY A 213	23.737			1.00 44.67	8
MOTA		G GLY A 213	23.321	11.268		1.00 46.02	7
MOTA		N LYS A 214 CA LYS A 214	21.907		63.562	1.00 45.61	6
ATOM		CB LYS A 214 CB LYS A 214	21.168	10.130	63.469	1.00 47.77	6 6
ATOM	1694 1695	CG LYS A 214	19.675		63.249	1.00 49.25 1.00 51.64	6
MOTA		CD LYS A 214	19.078	8.901		1.00 54.30	6
MOTA MOTA	1697	CE LYS A 214	17.637			1.00 56.09	7
MOTA	1698	NZ LYS A 214	17.030	7.727		1.00 44.22	6
ATOM	1699	C LYS A 214	21.809			1.00 45.04	8
ATOM	1700	O LYS A 214	22.210				7
ATOM	1701	N GLY A 215	21.292 21.193			1.00 40.20	6
MCTA	1702	CA GLY A 215	22.29			1.00 39.90	6
MOTA	1703	C GLY A 215 O GLY A 215	22.35		8 67.668	1.00 40.12	8
MOTA	1704	116	23.17		1 65.612		7
MOTA		N TYR A 216 CA TYR A 216	24.26	1 16.08	6 65.726		6 6
ATOM		CB TYR A 216	25.63	2 15.42	1 65.618		6
ATOM		CG TYR A 216	25.93	5 14.46			6
ATOM		CD1 TYR A 216	25.29				6
MOTA MOTA		CE1 TYR A 216	25.56				
ATOM		CD2 TYR A 216	26.85				6
ATOM		CE2 TYR A 216	27.12				6
ATOM		CZ TYR A 216	26.47			2 1.00 43.04	. 8
ATOM		OH TYR A 216	26.74 24.18			9 1.00 34.21	. 6
ATOM	1715	C TYR A 216 O TYR A 216	25.19				8
	1716	O TYR A 216			_		

			101 1 217		22.976	17.471	64.212	1.00 33.83	7
MOTA	1717		ASN A 217						6
ATOM	1718	CA	ASN A 217		22.726	18.558	63.267	1.00 30.20	
			ASN A 217		22.699	18.057	61.823	1.00 27.74	6
MOTA	1719							1.00 25.61	6
MOTA	1720	CG	ASN A 217		22.457	19.177	60.826		
	1721		ASN A 217		21.354	19.705	60.719	1.00 25.00	8
MOTA						19.558	60.103	1.00 30.43	7
ATOM	1722	ND2	ASN A 217		23.501				
	1723	С	ASN A 217		21.369	19.116	63.645	1.00 29.09	6
MOTA						18.351	63.885	1.00 26.93	8
MOTA	1724	0	ASN A 217		20.433				
MOTA	1725	N	LEU A 218		21.263	20.440	63.710	1.00 27.19	7
					20.010	21.071	64.089	1.00 25.33	6
ATOM	1726	CA	LEU A 218						ó
MOTA	1727	CB	LEU A 218		20.026	21.379	65.590	1.00 23.23	
	1728	CG	LEU A 218		18.729	21.704	66.346	1.00 21.00	6
MOTA							67.695	1.00 18.62	6
MOTA	1729	CDl	LEU A 218		19.100	22.313			
ATOM	1730	CD2	LEU A 218		17.872	22.675	65.583	1.00 18.48	6
					19.785	22.368	63.325	1.00 25.04	6
ATOM	1731	С	LEU A 218						8
ATOM	1732	0	LEU A 218		20.596	23.287	63.415	1.00 25.23	
	1733		ASN A 219		18.681	22.436	62.584	1.00 28.44	7
ATOM		Ŋ					61.829	1.00 28.76	6
ATOM	1734	CA	ASN A 219		18.310	23.636			
ATOM	1735	CB	ASN A 219		17.809	23.298	60.417	1.00 25.69	6
					18.748	22.408	59.646	1.00 26.10	6
ATOM .	1736	CG	ASN A 219					1.00 28.53	8
ATOM	1737	op1	ASN A 219		19.927	22.708	59.505		
	1738		ASN A 219		18.220	21.311	59.114	1.00 26.97	7
MOTA					17.129	24.248	62.582	1.00 31.96	6
ATOM	1739	С	ASN A 219					1.00 34.84	8
ATOM	1740	0	ASN A 219		16.373	23.539	63.246		
	1741	N	ILE A 220		16.952	25.556	62.472	1.00 32.96	7
ATOM					15.826	26.196	63.129	1.00 32.50	6
MOTA	1742	CA	ILE A 220					1.00 32.32	6
ATOM	1743	CB	ILE A 220		16.259	27.037	64.350		
ATOM	1744	CG2	ILE A 220		15.029	27.644	65.014	1.00 29.46	6
		CG1	ILE A 220		16.978	26.160	65.374	1.00 29.65	6
MOTA	1745				16.080	25.138	66.027	1.00 28.65	6
MOTA	1746	CD1	ILE A 220						6
ATOM	1747	C	ILE A 220		15.140	27.106	62.123	1.00 35.36	
ATOM	1748	0	ILE A 220		15.469	28.290	62.009	1.00 35.52	8
			PRO A 221		14.185	26.553	61.359	1.00 36.87	7
MOTA	1749	N					61.359	1.00 35.12	6
MOTA	1750	CD	PRO A 221	-	13.718	25.158			
ATOM	1751	CA	PRO A 221		13.445	27.318	60.356	1.00 35.41	6
	1752	CB	PRO A 221		12.509	26.262	59.767	1.00 35.68	6
MOTA			FRO A 221		13.319	24.992	59.911	1.00 33.86	6
MOTA	1753	CG	PRO A 221					1.00 34.37	6
MOTA	1754	С	PRO A 221		12.696	28.437	61.053		
	1755	0	PRO A 221		12.014	28.199	62.043	1.00 38.79	8
MOTA					12.815	29.655	60.547	1.00 34.76	7
ATOM	1756	N	LEU A 222					1.00 33.87	6
ATOM	1757	CA	LEU A 222		12.138	30.796	61.166		
ATOM	1758	CB	LEU A 222		13.173	31.735	61.798	1.00 35.13	6
			LEU A 222		14.104	31.163	62.876	1.00 33.07	6
MOTA	1759	CG				32.150	63.154	1.00 34.04	6
MOTA	1760		LEU A 222		15.234				. 6
ATOM	1761	CD2	LEU A 222		13.312	30.856	64.141	1.00 32.39	
	1762	C	LEU A 222		11.287	31.567	60.157	1.00 32.15	6
ATOM '	1702				11.669	31.740	59.000	1.0 31.32	8
MOTA	1763	0	LEU A 222		11.009			1.17 30.97	7
ATOM	1764	N	PRO A 223		10.127	32.060	60.601	1.1) 30.51	
	1765	CD	PRO A 223		9.606	31.913	61.972	1.00 32.34	6
MOTA			200 3 223		9.173	32.818	59.789	1.00 30.55	6
ATOM	1766	CA	PRO A 223				60.702		6
ATOM	1767	CB	PRO A 223		7.957	32.893			
ATOM	1768	CG	PRO A 223		8.626	33.068	62.046	1.00 31.02	6
			PRO A 223		9.645	34.205	59.366	1.00 29.20	6
atom	1769	С					59.796	1.00 31.95	8
MOTA	1770	0	PRO A 223		10.694	34.680			7
MOTA	1771	N	LYS A 224		8.841	34.841	58.521	1.00 26.14	′-
			LYS A 224		9.115	36.172	58.026	1.00 23.54	6
ATOM	1772	CA	DID A 444				56.766		6
ATOM	1773	CB	LYS A 224		8.285	36.443			6
ATOM	1774	CG	LYS A 224		8.563	35.500	55.619	1.00 23.83	
		CD	LYS A 224		7.737	35.800	54.394	1.00 20.59	6
ATOM	1775					- 14 -	53.329		6
ATOM	1776	CE	LYS A 224		8.065				7
ATOM	1777	NZ	LYS A 224		7.198		52.122		- :
	1778	c	LYS A 224		.8.702		59.111	1.00 25.48	6
ATOM			77.C 7 33.4		7.999	_	60.055		8
atom	1779	0	LYS A 224				58.960		7
ATOM	1780		GLY A 225		9.124				6
ATOM	1781		GLY A 225		8.777		59.925		
	1782		GLY A 225		9.396		61.286	1.00 32.96	6
ATCM	± 102	_	371 V #=2				-		

					0 069	39.861	62.271	1.00 31.20	8
MOTA		0	GLY A 225		9.068	38.216	61.338	1.00 32.86	7
MOTA		N	LEU A 226		10.299 10.975	37.877	62.575	1.00 34.55	6
MOTA		CA	LEU A 226			36.958	62.255	1.00 34.46	6
ATOM	1786	CB	LEU A 226		12.149	36.413	63.407	1.00 34.48	6
MOTA	1787	CG	LEU A 226		12.982	35.425	64.212	1.00 33.18	6
MOTA	1788	CD1	LEU A 226		12.146		62.847	1.00 31.39	6
ATOM	1789	CD2	LEU A 226		14.207	35.724	63.255	1.00 36.29	6
ATOM	1790	С	LEU A 226		11.481	39.160	62.613	1.00 33.87	8
ATOM	1791	0	LEU A 226		12.156	39.970	64.531	1.00 37.31	7
ATOM	1792	N	ASN A 227		11.131	39.358	65.279	1.00 37.26	6
ATOM	1793	CA	ASN A 227	٠	11.592	40.536	66.053	1.00 35.57	6
ATOM	1794	CB	ASN A 227		10.444	41.212	67.208	1.00 36.07	6
ATOM	1795	CG	ASN A 227		9.920	40.368	68.089	1.00 35.08	8
ATOM	1796	OD1	ASN A 227		10.678	39.940	67.218	1.00 32.33	7
ATOM	1797	ND2	ASN A 227		8.611	40.143	66.259	1.00 37.95	6
ATOM	1798	С	ASN A 227		12.688	40.096	66.473	1.00 37.08	8
ATOM	1799	0	ASN A 227		12.869	38.890	66.832	1.00 36.07	7
ATOM	1800	N	ASP A 228		13.403	41.063 40.754	67.751	1.00 37.63	6
ATOM	1801	CA	ASP A 228		14.505			1.00 36.48	6
ATOM	1802	CB	ASP A 228		14.996	42.007 43.088		1.00 37.52	6
ATOM	1803	CG	ASP A 228		15.480			1.00 35.28	8
MOTA	1804	OD1	ASP A 228		15.936	42.752		1.00 39.01	8
ATOM	1805	OD2	ASP A 228		15.426			1.00 37.56	6
ATOM	1806	С	ASP A 228		14.204	39.678		1.00 39.53	8
MOTA	1807	0	ASP A 228		14.921	38.678		1.00 38.37	7
MOTA	1808	N	ASN A 229		13.155	39.889 38.935		1.00 37.49	6
MOTA	1809	CA	ASN A 229		12.766	39.352		1.00 37.38	6
ATOM	1810	CB	ASN A 229		11.422	40.709		1.00 40.47	6
ATOM	1811	CG	ASN A 229		11.490	40.703		1.00 41.76	8
ATOM	1812	ODI	ASN A 229		12.041	41.735		1.00 36.50	7
MOTA	1813	ND2	2 ASN A 229		10.960			1.00 37.64	6
MOTA	1814	С	ASN A 229		12.680			1.00 35.76	8
MOTA	1815	0	ASN A 229		13.446 11.758				7
MOTA	1816	N	GLU A 230		11.738				6
MOTA	1817	CA	GLU A 230		10.753		-	1.00 35.55	6
ATOM	1818	CB	GLU A 230		9.382			1.00 36.95	6
MOTA	1819	CG	GLU A 230		8.580			1.00 35.30	6
MOTA	1820	CD	GLU A 230 1 GLU A 230		9.042			1.00 36.98	8
ATOM	1821	OE			7.490			1.00 36.71	8
MOTA	1822	OE	GLU A 230		12.916			1.00 33.92	6
MOTA	1823	C	GLU A 230		13.143			1.00 32.74	8
ATOM	1824	0	PHE A 231		13.804				7
ATOM	1825	N	0.0.1		15.116		2 67.123		. 6
ATOM	1826	CA CB			15.932	36.82	1 66.460	1.00 33.86	6
MOTA	1827				17.295		1 66.012	1.00 36.97	6
ATOM	1828	C.0	1 HE A 231		17.438		4 65.102		6
ATOM	1829	C 5	2 .HE A 231		18.436				6
ATOM	1830	CE	1 PHE A 231		18.709	34.93			6
ATOM	1831 1832	CE	2 PHE A 231		19.71		66.049		6
ATOM	1833				19.849				6
MOTA			PHE A 231		15.83	5 35.23			6
ATOM			PHE A 231		16.17				8
ATOM			LEU A 232		16.04	9 36.16			7
ATOM					16.74			6 1.00 22.82	6 6
ATOM					16.72	4 37.0			
ATOM					17.50		82 70.89		6
ATOM			1 LEU A 232		17.31				6
MOTA			02 LEU A 232		18.99		03 70.78	7 1.00 27.39	
MOTA			LEU A 232		16.15	0 34.6			6
MOTA			LEU A 232		16.88				8
ATOM					14.82	5 34.5			
ATOM					14.13	1 33.4	22 71.90		
ATOM			- 000		12.62			1.00 24.37	
ATOM					11.81				
ATOM	104		01 PHE A 233		11.49		64 73.50	1,00 45.55	, ,

	1849 C	D2 PHE A 233	11.339			1.00 25.75	6
		E1 PHE A 233	10.698	31.198	73.974		6
		E2 PHE A 233	10.548	30.327	-	1.00 24.02	6 6
		Z PHE A 233	10.228	30.232		1.00 22.77	6
ATOM	1853 C		14.661	32.133		1.00 26.64	8
ATOM-	1854 0		15.094	31.209		1.00 28.34 1.00 27.27	7
ATOM	1855 N	ALA A 234	14.624	32.087	69.949	1.00 27.27	6 .
ATOM		A ALA A 234	15.080	30.921	69.209	1.00 30.24	6
ATOM		B ALA A 234	14.797	31.107	67.720 69.433	1.00 30.76	6
ATOM	1858 C	: ALA A 234	16.563	30.645	69.433	1.00 30.04	8
ATOM	1859) ALA A 234	16.981	29.491	69.563	1.00 31.84	7
MOTA	1860 N	1 LEU A 235	17.363	31.695 31.486	69.790	1.00 32.83	6
ATOM	1861	TA LEU A 235	18.789	32.819	69.703	1.00 34.12	6
MOTA		B LEU A 235	19.548 21.039	32.745	69.316	1.00 36.33	6
MOTA		CG LEU A 235	21.625	34.156	69.205	1.00 36.44	6 -
MOTA		CD1 LEU A 235	21.803	31.939	70.330	1.00 35.64	6
MOTA		CD2 LEU A 235 C LEU A 235	18.970	30.846	71.176	1.00 30.75	6
MOTA			19.648	29.835	71.312	1.00 30.12	8
MOTA			18.347	31.435	72.192	1.00 29.03	7
MOTA	_	N GLU A 236 CA GLU A 236	18.418	30.931	73.561	1.00 33.32	6
MOTA		CB GLU A 236	17.479	31.730	74.452	1.00 35.06	6 6
MOTA		CG GLU A 236	17.843	33.176	74.635	1.00 42.35	6
MOTA MOTA		CD GLU A 236	16.610	34.022	74.843	1.00 47.12 1.00 48.91	8
ATOM		OE1 GLU A 236	15.686	33.557	75.556	1.00 49.07	8
ATOM		OE2 GLU A 236	16.572	35.150	74.297	1.00 34.65	6
ATOM	1875	C GLU A 236	17.988	29.473	73.639 74.116	1.00 30.43	8
MOTA		O GLU A 236	18.715	28.593 29.250	73.176	1.00 35.67	7
MOTA	1877	N LYS A 237	16.767	_	73.175	1.00 35.51	6
MOTA		CA LYS A 237	16.138 14.791		72.452	1.00 37.01	6
ATOM		CB LYS A 237	13.745		72.848	1.00 39.65	6
MOTA		CG LYS A 237 CD LYS A 237	12.712		73.821	1.00 40.66	6
ATOM	1881		13.312		75.153	1.00 40.58	6
MOTA	1882	NZ LYS A 237	12.250		76.083	1.00 32.05	7
MOTA	1883 1884	C LYS A 237	17.025		72.485	1.00 35.07	6 8
MOTA	1885	O LYS A 237	17.315		73.061	1.00 30.60 1.00 33.59	7
MOTA MOTA	1886	N SER A 238	17.455	27.200		1.00 33.39	6
ATOM	1887	CA SER A 238	18.279			1.00 32.10	6
ATOM	1888	CB SER A 238	18.453			1.00 37.80	8
MOTA	1889	OG SER A 238	19.014			1.00 31.94	6
MOTA	1890	C SER A 238	19.650 20.064				8
MOTA	1891	O SER A 238	20.35			1.00 31.19	7
MOTA	1892	N LEU A 239	21.66			1.00 30.82	6
ATOM	1893	CA LEU A 239 CB LEU A 239	22.29			1.00 28.03	F
MOTA	1894	CB LEU A 239 CG LEU A 239	22.65		71.817		(
ATOM	1895 1896	CD1 LEU A 239	23.21		72.695		f
ATOM	1897	CD2 LEU A 239	23.66	3 28.681			6 6
MOTA	1898	C. LEU A 239	21.46				8
MOTA MOTA	1899	O LEU A 239	22.27				7
ATOM	1900	N GLU A 240	20.36				6
ATOM	1901	CA GLU A 240	20.09				6
ATOM	1902	CB GLU A 240	18.79	9 25.369			6
ATOM	1903	CG GLU A 240	18.50				6
ATCM	1904	CD GLU A 240	19.67		.		8
ATOM	1905	GE1 GLU A 240	19.96			1.00 55.12	8
MOTA	1906	OE2 GLU A 240	20.31 20.03			1.00 39.28	6
MOTA	1907	C GLU A 240	20.03			, 1.00 38.83	8
ATOM	1908	O GLU A 240	19.42			7 1.00 40.74	7
ATOM	1909	N ILE A 241 CA ILE A 241	19.31			5 1.00 38.08	
ATOM	1910		18.46	55 21.87	1 71.73		
ATOM	1911	CB ILE A 241 CG2 ILE A 241	18.53	6 20.50	6 71.08		6
ATCM		CG1 ILE A 241	17.01	2 22.22	6 72.05		
ATOM ATOM		CD1 ILE A 241	16.14			3 1.00 27.53	, 0
2717274	2723						

ATOM 1915 C ILE A 241 20.713 21.372 72.747 1.00 39.56 2.700 1916 O ILE A 241 20.984 20.189 72.936 1.00 40.82 20.981 1917 N VAL A 242 21.605 22.254 72.299 1.00 41.93 20.981 1918 CA VAL A 242 22.979 21.842 72.015 1.00 45.76 20.981 1919 CB VAL A 242 23.808 22.959 71.329 1.00 45.76 20.981 1920 CG1 VAL A 242 23.808 22.959 71.329 1.00 45.76 20.981 1921 CG2 VAL A 242 23.182 23.334 69.991 1.00 46.41 20.981 1921 CG2 VAL A 242 23.698 21.453 73.300 1.00 45.69 20.970 1923 O VAL A 242 23.698 21.453 73.300 1.00 45.69 20.970 1924 N LYS A 243 24.191 20.331 73.423 1.00 46.30 20.970 1925 CA LYS A 243 24.427 22.088 75.513 1.00 46.96 20.970 1925 CG LYS A 243 24.214 23.217 76.527 1.00 49.49 20.970 1926 CB LYS A 243 24.214 23.217 76.527 1.00 49.49 20.970 1928 CD LYS A 243 24.214 23.217 76.527 1.00 49.49 20.970 1928 CD LYS A 243 24.214 23.217 76.527 1.00 64.13 24.214 23.217 76.527 1.00 64.33 24.214 23.217 76.527 1.00 64.33 24.214 23.217 76.527 1.00 64.33 24.214 23.217 76.527 1.00 64.33 24.214 23.217 76.527 1.00 64.33 24.214 23.217 76.527 1.00 64.33 24.214 23.217 76.527 1.00 64.33 24.214 23.217 76.527 1.00 64.33 24.214 23.217 76.527 1.00 64.33 24.214 23.217 76.527 1.00 64.33 24.214 24.214 23.217 76.527 1.00 64.33 24.214 24.214 23.217 76.527 1.00 64.33 24.214 24.214 24.214 24.214 24.214 24.214 24.214 24.214 24.214	7 6 6 6 6 6 7 6 8 7 6 8 7
ATOM 1917 N VAL A 242 22.979 21.842 72.015 1.00 45.09 ATOM 1918 CA VAL A 242 23.808 22.959 71.329 1.00 45.76 ATOM 1920 CG1 VAL A 242 25.242 22.479 71.116 1.00 43.09 ATOM 1921 CG2 VAL A 242 23.182 23.334 69.991 1.00 46.41 ATOM 1922 C VAL A 242 23.698 21.453 73.300 1.00 45.69 ATOM 1923 O VAL A 242 24.191 20.331 73.423 1.00 46.30 ATOM 1924 N LYS A 243 24.191 20.331 73.425 1.00 46.96 ATOM 1925 CA LYS A 243 24.427 22.088 75.513 1.00 46.96 ATOM 1926 CB LYS A 243 24.214 23.217 76.527 1.00 49.49 ATOM 1927 CG LYS A 243 24.214 23.217 76.527 1.00 49.49 ATOM 1928 CD LYS A 243 24.652 23.934 78.939 1.00 58.95 ATOM 1929 CE LYS A 243 24.652 23.934 78.939 1.00 58.95 ATOM 1929 CE LYS A 243 24.652 23.934 78.939 1.00 66.93 ATOM 1930 NZ LYS A 243 24.782 25.399 78.577 1.00 64.13 ATOM 1931 C LYS A 243 24.274 26.283 79.676 1.00 66.93 ATOM 1931 C LYS A 243 24.7782 25.399 78.577 1.00 64.13 24.274 26.283 79.676 1.00 66.93 ATOM 1931 C LYS A 243 24.7782 25.399 78.577 1.00 64.33 24.274 26.283 79.676 1.00 47.06 ATOM 1932 O LYS A 243 24.7735 20.113 76.845 1.00 47.55 27.716 20.380 75.878 1.00 47.55 27.	666668766667687
ATOM 1918 CA VAL A 242 ATOM 1919 CB VAL A 242 ATOM 1920 CG1 VAL A 242 ATOM 1921 CG2 VAL A 242 ATOM 1922 C VAL A 242 ATOM 1923 O VAL A 242 ATOM 1924 N LYS A 243 ATOM 1925 CA LYS A 243 ATOM 1926 CB LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 O LYS A 243 ATOM 1936 CF LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1939 C LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 O LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1936 C LYS A 243 ATOM 1936 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM	6 6 6 6 8 7 6 6 6 6 6 7 6 8 7
ATOM 1919 CB VAL A 242 ATOM 1920 CG1 VAL A 242 ATOM 1921 CG2 VAL A 242 ATOM 1922 C VAL A 242 ATOM 1923 O VAL A 242 ATOM 1924 N LYS A 243 ATOM 1925 CA LYS A 243 ATOM 1926 CB LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 C LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1936 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1939 C LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 C LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1936 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1939 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 C LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1936 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1939 C LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 C LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1936 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 19	6 6 8 7 6 6 6 6 7 6 8 7 8 8 9 1
ATOM 1920 CG1 VAL A 242 ATOM 1921 CG2 VAL A 242 ATOM 1922 C VAL A 242 ATOM 1923 O VAL A 242 ATOM 1924 N LYS A 243 ATOM 1925 CA LYS A 243 ATOM 1926 CB LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1936 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1939 C LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 C LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938	6 8 7 6 6 6 6 7 6 8 7 6 8 7 6 8 7
ATOM 1921 CG2 VAL A 242 ATOM 1922 C VAL A 242 ATOM 1923 O VAL A 242 ATOM 1924 N LYS A 243 ATOM 1925 CA LYS A 243 ATOM 1926 CB LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 C LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1936 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1939 C LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 C LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1939 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 C LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938	8 7 6 6 6 6 7 6 8 7 6 8 7
ATOM 1922 C VAL A 242 ATOM 1923 O VAL A 242 ATOM 1924 N LYS A 243 ATOM 1925 CA LYS A 243 ATOM 1926 CB LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O	7 6 6 6 6 6 7 6 8 7 8 7
ATOM 1923 O VAL A 242 ATOM 1924 N LYS A 243 ATOM 1925 CA LYS A 243 ATOM 1926 CB LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O L	7 6 6 6 6 6 7 6 8 7 6 8 7
ATOM 1924 N LYS A 243 ATOM 1926 CB LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 C LYS A 243 ATOM 1936 C LYS A 243 ATOM 1937 C LYS A 243 ATOM 1938 O LYS A 243 ATOM 1938 O LYS A 243 ATOM 1939 O LYS A 243 ATOM 1930 O LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1934 C LYS A 243 ATOM 1935 O LYS A 243 ATOM 1936 O LYS A 243 ATOM 1937 O LYS A 243 ATOM 1938 O LYS	6 6 6 6 7 6 8 7 8 7
ATOM 1925 CA LYS A 243 ATOM 1926 CB LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1934 O LYS A 243 ATOM 1935 O LYS A 243 ATOM 1936 CF LYS A 243 ATOM 1937 O LYS A 243 ATOM 1938 O LYS	6 6 6 7 6 8 8 7
ATOM 1926 CB LYS A 243 ATOM 1927 CG LYS A 243 ATOM 1928 CD LYS A 243 ATOM 1929 CE LYS A 243 ATOM 1930 NZ LYS A 243 ATOM 1931 C LYS A 243 ATOM 1931 C LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1932 O LYS A 243 ATOM 1933 O LYS A 243 ATOM 1934 CF LYS A 243 ATOM 1935 O LYS A 243 ATOM 1936 CF LYS A 243 ATOM 1937 O LYS A 243 ATOM 1938 O LYS A 243	6 6 7 7 6 6 9 8
ATOM 1928 CD LYS A 243 24.652 23.934 78.939 1.00 58.93 ATOM 1929 CE LYS A 243 24.782 25.399 78.577 1.00 64.13 ATOM 1930 NZ LYS A 243 24.274 26.283 79.676 1.00 66.93 ATOM 1931 C LYS A 243 23.965 20.767 76.135 1.00 47.06 ATOM 1932 O LYS A 243 24.735 20.113 76.845 1.00 46.33 ATOM 1932 O LYS A 243 22.716 20.380 75.878 1.00 47.53	6 7 6 6 8 1
ATOM 1929 CE LYS A 243 24.782 25.399 76.37 1.00 66.93 ATOM 1930 NZ LYS A 243 24.274 26.283 79.676 1.00 66.93 ATOM 1931 C LYS A 243 23.965 20.767 76.135 1.00 47.06 ATOM 1932 O LYS A 243 24.735 20.113 76.845 1.00 46.39 ATOM 1932 O LYS A 243 22.716 20.380 75.878 1.00 47.55	7 5 6 9 8 1 7
ATOM 1930 NZ LYS A 243 24.274 26.283 79.876 1.00 47.06 ATOM 1931 C LYS A 243 23.965 20.767 76.135 1.00 47.06 ATOM 1932 O LYS A 243 24.735 20.113 76.845 1.00 46.39 ATOM 1932 O LYS A 244 22.716 20.380 75.878 1.00 47.55	6 9 8 1 7
ATOM 1931 C LYS A 243 24.735 20.113 76.845 1.00 46.39 ATOM 1932 O LYS A 243 22.716 20.380 75.878 1.00 47.55	9 1 7
ATOM 1932 O LYS A 243 22.716 20.380 75.878 1.00 47.5	1 7
	36
ATOM 1933 N GLO 22 172 19.136 76.429 1.00 51.3	
ATOM 1934 CA GBO A 211 20 650 19 061 76.259 1.00 54.4	9 6
ATOM 1936 CC CLU A 244 19.843 20.199 76.842 1.00 62.0	16 56
ATOM 18.360 20.089 /8.469 1.00	
ATOM 1938 OE1 GLU A 244 17.572 20.980 76.000 1.00 64.8	2 8
1939 OE2 GLU A 244 17.986 19.108 75.609 1.00 50.1	
NTOM 1940 C GLU A 244 42 75 346 76 259 1 00 51 5	4 8
ATOM 1941 O GLU A 244 22.304 18 148 74.441 1.00 47.7	0 7
ATOM 1942 N VAL A 245 23 587 17 063 73 611 1.00 45.4	3 6
ATOM 1943 CA VAL 2 22.704 16.980 72.336 1.00 48.4	7 6
ATOM 1944 COLUMN 245 23.082 15.765 71.499 1.00 51.6	17 6 55 6
ATOM 1945 CG2 VAI A 245 21.226 16.934 72.731 1.00 43.6	_
25.056 17.070 73.245 1.00 39 3	
1948 O VAL A 245 25.620 16.005 /2.340 1.00 40.5	3 7
27.0M 1949 N PHE A 246 25.882 10.221 73.633 1 00 38.5	6 6
ATOM 1950 CA PHE A 246 27.003 18.700 71.154 1.00 36.1	35 6
ATOM 1951 CB PHE A 246 27 315 18 487 70 415 1.00 36.	46 6
ATOM 1952 CG PRE A 246 28 749 17.201 70.098 1.00 32.	95. 6 51 6
ATOM 1933 CD2 PME 1 246 29.064 19.582 69.967 1.00 33.	
29 903 17.004 03.337 2.00 05.	
30.222 19.37 CR 889 1 00 35.	
TOM 1957 CZ PHE A 246 30.040 10.331 73.371 1.00.40.	83 6
ATOM 1958 C PHE A 246 27.513 20.478 73.549 1.00 40.	32 8
ATOM 1959 O PHE A 246 27 141 18 839 73 802 1.00 42.	54 7
ATOM 1960 N GLU A 247 30.128 19.695 74.467 1.00 43.	93 6 67 6
ATOM 1962 CB GLU A 247 30.655 19.075 75.770 1.00 45.	63 6
29.763 19.243 77.005	
270M 1964 CD GLU A 247 28.478 18.424 76.558 1 00 62	
atom 1965 OE1 GLU A 247 27 557 77 845 1.00 59	.43 8
ATOM 1966 OE2 GLU A 247 20.268 19.839 73.464 1.00 43	.62 6
ATOM 1967 C GLU A 247 32 077 18 931 73 294 1.00 44	. 25 8
ATOM 1968 O GLU A 247 31 342 20.988 72.780 1.00 43	.65 7
ATOM 1989 N PRO 3 248 30.439 22.143 72.863 1.00 42	.73 6 .28 6
ATOM 1971 C3 PRO à 248 32.371 21.260 71.779 1.00 43	
ATOM 1971 CB PRO A 248 31.802 22.480 71.042 1.00 43	
1973 CG PRO A 248 30.317 22.474 73.331 1 00 43	
1974 C PRO A 248 33.759 21.552 72.355 1 00 45	.44 8
TOM 1975 O PRO A 248 33.896 22.266 73.300 1.00 42	.38 7
STOM 1976 N GLU A 249 34.766 20.362 72.136 1.00 41	56 6
2TOM 1977 CA GLU A 249 30 375 71 528 1.00 42	.06 6
ATOM 1978 CB GLU A 249 36.935 18.816 71.887 1.00 44	.28 6
ATOM 1979 CG GLU A 249 38.015 17.908 71.295 1.00 44	
ATOM 1980 CD SDS	

													_
ATOM	1981	OE1 GLU	J A 2	249		208		.938	70.		1.00		3
ATOM	1982	OE2 GLU	J A 2	249	38.	666	17.	.168			1.00		8
ATOM	1983	C GLT	J A 2	249	36.	443		. 654	71.			40.99	6
ATOM	1984		J A 2			.150		.450	72.			42.83	8
ATOM	1985	N VAI	; A 2	250	35.	. 879		.936	70.			37.65	7
ATOM	1986	CA VAI	LA 2	250	36	. 059		.221	69.			34.87	6
MOTA	1987	CB VAI	L A 2	250	37	. 294	24	.203	68.			34.53	6
MOTA	1988		LA			.129	23	.113		728		32.76	6
ATOM	1989		LAS		37	. 487		.581		144	1.00	29.62	6
ATOM	1990		L.A.			.830		.527		891		32.67	5
ATOM	1991	O VA	LA	250	34	.162	23	.610		421		33.96	8
MOTA	1992		R A		34	.539		.810		690		29.71	7
ATOM	1993	CA TY	R A	251	33	.368		.183		916		27.07	6
ATOM	1994	CB TY	R A	251	32	.185		.451		860	1.00	29.11	6
MOTA	1995		RA.			.080		.872		406		31.46	6
ATOM	1996		R A			. 553		.903		622		31.14	6 6
ATOM	1997		R A			.439		.196		106		31.66	6
MOTA	1998		R A			.494		.181		696		30.20	6
ATOM	1999		R A			.384		.477		193		33.89	6
ATOM	2000		R A			.854		.482	-	391		34.75 33.52	8
ATOM	2001		RA			.743		.773		867	1.00	27.48	6
ATOM	2002		R A			.570		.384		.992	3.00	24.78	3
ATOM	2003		RA			.167		.402		.366		24.80	7
ATOM	2004		U A			.063		.254		.773 .915		23.40	6
ATOM	2005		A U			.150		3.332		. 451		21.32	6
ATOM	2006		A U			.631		7.810		.385		21.84	6
MOTA	2007		TU A			.126		7.456 5.373		.395		22.51	6
ATOM	2008	CD1 LE	UA	252		457		5.999	•	.986		22.07	5
MOTA	2009	CD2 LE				. 499		3.959		.729	1.00	22.56	6
MOTA	2010		U A			.750		3.266		.856		21.99	8
MOTA	2011		A U			734		0.277		.554	1.00		7
MOTA	2012	N LI	A UE	253 253				1.047		.461		18.89	ć
MOTA	2013		EU A			3.352		1.944		.695		20.05	6
ATOM	2014		A UE			1.198		2.942		.842		21.61	6
ATOM	2015	CG LI	5U A	253		7.849		2.220		.860	1.00	22.23	6
MOTA	2016	CD2 LI	EU A	253		395		3.716		.145	1.00	22.90	6
MOTA	2017 2018	C LI	EU A	253		5.539		1.901	63	.198		20.05	
MOTA	2019	O L	EU A	253		1.466		2.691		.987		18.17	8
ATOM ATOM	2020	N G	LN A	254		9.544	3	1.720	62	.340		19.40	7
MOTA	2021	CA G	LN A	254	25	9.488		2.490		.115		18.17	6
MOTA	2022	CB G	LN A	254	2	9.017		1.592		.969			
ATOM	2023	CG G	LN A	254	2	7.584		1.713		.601		18.43	
MOTA	2024	CD G	LN A	254		7.368		2.766		.549) 19.97) 22.54	
MOTA	2025	OE1 G	LN A	254		7.917		2.677		450		22.34	
ATOM	2026	NE2 G	LN A	254	_			3.769	56	. 869		0 19.75	
ATOM	2027	C G	LN A	254		8.520		3.634		. 444		0 18.77	
MOTA	2028	O G	LN A	254		7.470		3.415		060		0 23.02	
MOTA	3029	N L	EU A	255		8.905		4.854		L.067 L.369		0 23.77	
ATOM	2030	CA L	EU A	255		8.132		6.052		2.242	_	0 26.84	
ATOM	2031		EU A	255		8.963		6.993		3.684	_	0 29.34	
MOTA	2032		EU A			9.226		6.556		1.331		0 30.65	
ATOM	2033	CD1 L	EU A	255		0.196		7.520	_	4.456	_	0 28.42	
MOTA	2034		EU A	255		7.902		6.506	_	0.19		0 24.84	
MOTA	2035		EU A	255		7.605		16.842 18.066		0.149	_	0 24.94	1 8
MOTA -	2036		EU A	255		7.774 6.969		6.158		9.25		0 25.0	7 7
MOTA	2037	N G	LY A	256		6.408		36.858		B.11		0 26.13	1 6
ATOM	2038		LY A	256		5.506		37.956	_	8.64	_	0 27.1	16
ATOM	2039			256		4.742		37.734	_	9.58		0 25.6	7 8
atom	2040		PX Y	256		5.599		39.150	_	8.07	2 1.0	0 27 8	5 7
ATOM	2041			257		4.75		10.244	_	8.53	6 1.0	0 29.2	8 6
MOTA			nn A	257		5.51		41.597	_	8.54	5 1.0	0 27.9	
MOTA	2043		את את: י סטי	257 257		6.00		11.895	_	7.23	2 1.0	0 31.9	1 8
atom	2044		א את.	A 257		6.68		41.54	-	9.51	0 1.0	0 26.4	5 6
ATOM	2045					3.47		40.39		7.72		0 28.3	96
MOTA	12046	5 C 7	א אתן	257	-		•		•	_	-		

	2047	^	THR A	257	22.74	17 4	1.370	57.879	1.00 29.49	8
ATOM ATOM	2047 2048	N O	ASP A	258	23.19	92 3		56.867	1.00 29.13	7
ATOM	2049	CA	ASP A	258	21.97	_	39.471	56.065	1.00 30.49	6 6
ATOM	2050	CB	ASP A	258	22.00		88.432	54.933	1.00 28.22 1.00 29.39	6
MOTA	2051	CG	ASP A	258	22.33		37.033	55.416	1.00 29.39	8
MOTA	2052	ODl	ASP A	258	21.89		36.653	56.520	1.00 30.10	8
ATOM	2053	OD2	ASP A	258	23.0		36.292	54.667 56.826	1.00 30.50	6
MOTA	2054	С	ASP A		20.6		39.355	56.248	1.00 32.87	8
MOTA	2055	0	ASP A	258	19.60		39.622 38.912	58.101	1.00 30.76	7
MOTA	2056	N	PRO A	259	20.65 21.7		38.338	58.952	1.00 33.56	6
ATOM	2057	CD	PRO A	259 -	19.3		38.821	58.806	1.00 31.73	6
MOTA	2058	CA	PRO A	255	19.7		37.912	59.987	1.00 31.87	6
MOTA	2059 2060	CB CG	PRO A		21.0		38.373	60.333	1.00 31.73	6
MOTA	2061	C	PRO A	259	18.8	17	40.184	59.260	1.00 30.86	6
ATOM ATOM	2062	Ö	PRO A		17.7		40.270	59.845	1.00 29.78	8 . 7
ATOM	2063	N	LEU A	260	19.5		41.245	58.980	1.00 29.58 1.00 29.15	6
MOTA	2064	CA	LEU A	260 .	19.1		42.592	59.375 59.275	1.00 27.14	6
ATOM	2065	CB	LEO A	260	20.3		43.542 43.286	60.234	1.00 22.17	6
ATOM	2066	CG	LEU A		21.5 22.7		43.200	59.684	1.00 15.79	6
MOTA	2067		LEU A		21.2		43.793	61.633	1.00 16.25	6
MOTA	2068		LEU A	260	17.9		43.165	58.576	1.00 28.09	6
MOTA	2069 2070	C 0	LEU A	260	17.7		42.834	57.410	1.00 29.61	8
MOTA MOTA	2070	N	LEU A		17.2	37	44.044	59.223	1.00 29.29	7
ATOM	2072	CA	LEU A		16.0		44.693	58.596	1.00 29.71 1.00 29.62	6 6
ATOM	2073	CB	LEU A	261	15.5		45.788	59.513	1.00 28.14	6
MOTA	2074	CG	LEU A	261	14.4		46.664	58.950 58.803	1.00 24.82	6
MOTA	2075	CDI	LEU A	261	13.1 14.1		45.819 47.859	59.882	1.00 25.45	6
MOTA	2076		LEU A		16.4		45.322	57.259	1.00 29.50	6
MOTA	2077	C	LEU A		15.		45.198	56.295	1.00 31.67	8
MOTA	2078	N	GLU A		17.6		45.998	57.201	1.00 31.54	7
MOTA	2079 2080	CA	GLU	262	18.0		46.664	55.973	1.00 31.93	6
MOTA MOTA	2081	СВ	GLU A	262	19.0	049	47.758	56.279	1.00 29.34	6 6
ATOM	2082	CG	GLU A	262	18.		48.931	57.086	1.00 28.52 1.00 29.76	6
ATOM	2083	CD	GLU A	3 262	18.		48.687	58.589 59.029	1.00 30.12	8
ATOM	2084	OE:	1 GLU A	A 262	18.		47.548 49.661	59.338	1.00 27.69	8
MOTA	2085	OE:	2 GLU 2	3 262	18. 18.		45.754	54.857	1.00 34.29	6
MOTA	2086	C	GLU A	A 262 A 262	18.		46.199	53.722	1.00 35.20	8
MOTA	2087 2088	0	2 SP 2	A 263	18.		44.486	55.158		7
MOTA MOTA	2089	CA	ASP	A 263	19.		43.582	54.117		6 6
ATOM	2090		ASP .	A 263		354	42.672	54.641		6
ATOM	2091		ASP .	A 263		982	41.847	53.538 53.762		8
ATOM	2092		1 ASP	A 263		064	11.263 11.779		EA	8
MOTA	2093		2 ASP	A 263		384 046	2.775	53.634	1.00 42.83	6
ATOM	2094		ASP	A 263 A 263		474	41.966		1.00 44.22	8
MOTA	2095		TVD TVD	A 264		673	43.002		1.00 44.14	7
MOTA	2096 2097		TYR	A 264		508	42.357	51.796		6
MOTA MOTA	2098		TYR	A 264	16.	031	43.149			6 6
ATOM	2099		TYR	A 264		824	42.939			
ATOM	2100		1 TYR	A 264		510	41.897			
ATOM	2101	CE	1 TYR	A 264		230	41.709			
MOTA	2102			A 264		.882	43.700			. 6
MCTA	2103			A 264		.611 .279.			B 1.00 69.08	6
MOTA	2104			A 264 A 264		.989			6 1.00 69.01	. 8
MOTA	2105			A 264		.665	40.88	3 51. 45	1 1.00 43.89	
ATOM	2106		TIK	A 264	15	. 663	40.18	5 51:29		8
ATOM	2107 2108			A 265		.897	40.40	51.33		7 5 6
ATOM	2109		LEU	A 265	18	.051	38.98	4 51.01		
atom atom	2110		B LEU	A 265		.474	38.64			
ATCM	2111	i co	G LEU	A 265		.905				
ATOM	2112		D1 LEU	A 265	21	.176	38.53	J 430.70		
			•	•	•					

ATOM	2113	CD2 L	EU A	265		18.	828			48.1		1.00	34.	. 41	6
ATOM		C L	EU A	265		17.			131	52.2 52.3		1.00			6 8
MOTA	2115		EU A			18. 16.			000 694	53.0		1.00			7
MOTA		N S	ER A ER A	266		16.			013	54.		1.00	36	. 46	6
MOTA			ER A			17.			136	55.4	427	1.00	37	.22	6
ATOM -			ER A			17.			440	55.5		1.00	37	.41	8 .
ATOM ATOM			ER A			14.	997		705	54.		1.00			6
ATOM			ER A			_	889		.927	54.		1.00			8 7
ATOM		N I	YS A				018		.928	55. 55.		1.00	34	13	6
MOTA		CA L	YS A	267			750 596		. 493 . 548	55.		1.00			6
MOTA	2124		YS A YS A	. 267		11.	503		.222	53.	705-	1.00	36	.79	6
ATOM	2125		JYS A JYS A				453	38	.487	52.	869	1.00			6
MOTA MOTA	2126 2127	CE I	LYS A	267			369	38	.170	51.	389	1.00	41	. 60	6 7 -
ATOM	2128	NZ I	LYS A	267			503		.413		569	1.00			6
MOTA	2129	C I	LYS A	267			791 ·		.738 .867		043 694	1.00			8
ATOM	2130		YS A				.758 .998		.775		595	1.00	32	2.82	7
MOTA	2131		PHE A			14	.192	39	.021		016	1.00			6
MOTA	2132 2133	CA I	PHE A	268			.477		.337		495	1.00			6
MOTA MOTA	2134		PHE A				. 379		. 839		604	1.00	34	1.54	6 6
ATOM	2135	CD1	PHE A	268			.506		.087		940	1.00	3 3 4	4 57	6
ATOM	2136		PHE A		•		.161 .423		.178		108	1.00	3	5.44	6
MOTA	2137	CE1	PHE A	268			.066		.784		594	1.00	3 (6.00	6
ATOM	2138 2139		PHE A			15	.201		.040	59	.936	1.00	3	4.68	6
MOTA MOTA	2140	c	PHE A	268		14	.319		.530		.190	1.00	3	0.94 0.27	6 8
ATOM	2141	0	PHE A	268			.983		192		.394	1.00	7 3	2.53	7
ATOM	2142	N	ASN A	269			.693 .760		2.527		.448	1.00	3	5.83	6
MOTA	2143	CA CB	ASN A	269			.344		3.115	60	.570	1.00	3 3	7.23	6
MOTA MOTA	2144 2145	CG	ASN A	269			.478	42	2.809	. 59	.360	1.00	0 4	0.75	6 8
ATOM	2146	OD1	ASN A	A 269			.830		3.148		.227 .594	1.0	0 4 n 3	3.88 9.61	7
MOTA	2147	ND2	ASN A	A 269			.335		2.165		.710	1.0		5.45	6
MOTA	2148		ASN A	A 269 A 269			.095		3.621		.560	1.0	0 4	1.47	8
ATOM ATOM	2149 2150	0 N	LEU A	A 270			.747	4:	2.285		.827			3.27	7 6
MOTA	2151	CA	LEU A	A 270			.571		2.510		.004	1.0		0.68 27.41	6
ATOM	2152	CB		A 270			7.638 7.140		1.431		.114 .988	_	0 2	23.76	6
MOTA	2153	CG	LEU A	A 270 A 270			3.222		9.106		.543	1.0	0 2	27.14	6
MOTA	2154 2155	CD3	LEU .	A 270			.855	3	9.801	63	.772		0 2	00.85	6 6
MOTA MOTA	2156	c	LEU	A 270			7.258	_	3.856		.033		0 3	32.30 36.27	8
MOTA	2157	0	LEU	A 270			7.347		4.554 4.207		2.017 1.216		0 :	30.33	7
MOTA	2158	N	SER	A 271			7.7 49 8.465		5.457		.424	1.0	00	30.79	6
ATOM	2159	CA CB	SER	A 271 A 271			7.816		6.249		5.562	1.0	00	29.53	6
ATCM ATOM	2160 2161	OG	SER	A 271			7.712	4	5.471		5.739	_	00	30.43	8 6
MOTA	2162	C	SER	A 271			9.911		5.109		4.768 5.172		י טע חר	33.09 29.64	8
MOTA	2163	0	SER	A 271			0.194		3.972 6.069		4.586		00	32.36	7
ATOM	2164	N	ASN	A 272 A 272			0.821 2.234		5.846		4.896	1.6	00	31.65	6
MOTA	2165 2166	CA CB	72N	A 272			3.036		7.141	. 6	4.771	_	00	33.76	6
MOTA MOTA	2167	CG		A 272		2	3.101	4	17.658		3.36		00	37.76 36.12	6 8
ATOM	2168	OD1	ASN	A 272			3.719		18.686		3.100 2.43		00	44.79	
MOTA	2169		ASN	A 272			2.460 2.369		16.952 15.33	_	6.32		00	32.61	6
ATOM	2170	C	ASN	A 272 A 272			2.303		14.28		6.56	5 1.	00	27.95	. 8
MOTA	2171 2172	.N	VAL	A 273			1.80	3 4	46.09	1 6	7.25		00	33.22	7
MOTA MOTA			VAL	A 273		2	1.839	9 4	45.74		8.66		OU OU	35.52 37.80	
ATOM	2174	CB	VAL	A 273			0.92		46.66 46.27	_	9.48 0.96		00	39.00) 6
ATCM	2175	CG1	VAL	A 273			0.98		48.27		9.27	5 1.	00	38.88	3 6
ATOM			VAL	A 273 A 273			1.41		44.30	0 6	8.90	8 1.		34.26	
atom atom			VAL	A 273			2.06		43.58		9.67	9 1.	.00	35.96	5 8
A1011				٠.	٠.					•					

> mov/	2179	N	ALA A 274	2	0	.328	43.8	889	68.262	1.00 3	2.36	7
ATCM							42.		68.385	1.00 3	1 09	6
ATCM	2180	CA	ALA A 274			.834						
ATCM	2181	CB	ALA A 274	1	. 8	.574	42.	356	67.578	1.00 2		6
			ALA A 274			.923	41.	588	67.861	1.00 3	1.74	6
ATCM	2182	C								1.00 3		8
MOTA	2183	0	ALA A 274	2	1	.323	40.	634	68.533			
	2184	N	PHE A 275	2	1	.401	41.	879	66.655	1.00 3	0.05	7
ATCM							41.		66.036	1.00 3	1 30	6
ATCM	2185	CA	PHE A 275			. 467						6
ATCM	2186	CB	PHE A 275	2	22	.932	41.	810	64.751	1.00 3		
	_		PHE A 275	-	7	.938	41.	029	63.941	1.00 3	1.76	6
ATCM	2187	CG							63.365	1.00 3		6
ATCM	2188	CD1	PHE A 275			. 597	39.					
ATCM	2189	CD2	PHE A 275		25	.219	41.	529	63.729	1.00 3		6
		CE1	PHE A 275			.513	39.	100	62.586	1.00 3	2.27	6
MOTA	2190				-				62.950	1.00 3		6
MCTA	2191	CE2	PHE A 275			.149	40.					
MOTA	2192	CZ	PHE A 275		25	.793	39.	613	62.378	1.00 3		6
			PHE A 275		73	. 632	40	999	67.040	1.00 2	9.98	6
MOTA	2193	С							67.200	1.00 2	0 41	8
ATCH	2194	0	PHE A 275			.252		950				
ATCM	2195	N	LEU A 276		23	.908	42.	099	67.726	1.00 3		7
			LEU A 276		24	.988	42.	144	68.698	1.00 3	12.29	6
ATCM	2196	CA						594	69.141	1.00 3		6
ATCM	2197	CB	LEU A 276			.221						
ATCM	2198	CG	LEU A 276		26	.415	43.	908	70.050	1.00 3		6
	2199	CD1	LEU A 276		26	.683	45.	391	70.025	1.00 3	35.02	6
ATCM									71.467	1.00 3		6
MOTA	2200	CD2	LEU. A 276			.147		433				6
ATCM	2201	С	LEU A 276		24	. 682	41.	244	69.894	1.00 3		
		ō	LEU A 276		25	.560	40.	530	70.371	1.00	30.74	8
ATOM	2202							273	70.384	1.00		7
MOTA	2203	N	LYS A 277			.445						6
ATCM	2204	CA	LYS A 277		23	.086	40.	413	71.505	1.00		
	2205	CB	LYS A 277		21	.623	40.	588	71.902	1.00	35.76	6
ATOM						.343		842	72.687	1.00	42 31	6
ATCM	2206	CG	LYS A 277						_	1.00		6
MCTA	2207	CD	LYS A 277		20	.743	41.	.508	74.049			
	2208	CE	LYS A 277		21	.665	40.	601	74.865	1.00		6
ATOM						.140		378	76.244	1.00	44.36	7
ATOM	2209	NZ	LYS A 277							1.00		6
MCTA	2210	C	LYS A 277		23	.302	38.	. 974	71.092			
	2211	0	LYS A 277		23	.875	38.	. 179	71.845	1.00		8
ATOM						.832	3.0	. 654	69.886	1.00	37.17	7
ATOM	2212	N	ALA A 278							1.00		6
ATOM	2213	CA	ALA A 278		22	2.952		.311	69.323			
	2214	CB	ALA A 278		22	2.638	37	.341	67.820	1.00		6
MOTA						.368		.831	69.550	1.00	30.63	6
ATOM	2215	С	ALA À 278							1.00		8
MOTA	2216	0	ALA A 278		24	1.605		.790	70.167	1.00	27.02	
ATOM	2217	N	PHE A 279		25	5.303	37	.624	69.049	1.00		7
			PHE A 279		26	5.722	37	.347	69.167	1.00	31.48	6
ATCM	2218	CA						.558	68.645		33.25	6
ATIM	2219	CB	PHE A 279			7.490						6
ATOM	2220	CG	PHE A 279		28	3.974	38	.396	68.663	1.00	39.28	
	2221	CD1	PHE A 279		20	9.578	37	.337	68.000	1.00	41.15	6
ATOM			. FRE A 272			776		.328	69.315		40.66	6
ATOM	2222	CD2									44.22	6
ATOM	2223	CE1	PHE A 279		3(0.960		.209	67.987			
	2224		PHE A 279		3	1.153	39	.213	69.378	1.00	41.38	6
ATOM			7.2 7. 27.0		-	1.750		.152	68.614	1.00	44.52	6
ACCM	2225	CZ	PHE A 279							1 00	31.81	6
ATOM	2226	С	PHE A 279			7.116		.043	70.611			
	2227	0	PHE A 279		2.	7.627	35	.953	70.935		27.51	8
ATCM						6.860		.005	71.503	1.00	29.32	7
ATOM	2228	N	ASN A 280							1 00	29.26	6
ATOM	2229	CA	ASN A 280			7.192		.851	72.907	1.00	20.20	
	2230	CB	ASN A 280		2	6.927	39	.153	73.660		30.39	6
ATOM			ASN A 280			7.907	40	.245	73.278	1.00	30.68	6
ATOM	2231	CG							73.303		33.34	8
ATOM	2232	OD:	L ASN A 280			9.117		.030	-			7
ATOM	2233	ND?	2 ASN A 280		2	7.395	41	.419	72.931		27.00	
			ASN A 280			6.524		.680	73.616	1.00	30.01	6
ATCM	2234	С							74.419	1 00	29.58	8
MOTA	2235	0	ASN A 280			7.167		.004				7
ATOM	2236	N	ILE A 281		2	5.252	36	.423	73.335		30.46	
			ILE A 281			4.594		.291	73.983		33.71	6
ATOM	2237	CA							73.569		36.14	6
ATOM	2238	CB	ILE A 283	•		3.107		.161				6
ATOM	2239	CG:	2 ILE A 283		2	2.541		.820			36.18	
		CG				2.298		3.307	74:177		33.52	6
ATCM	2240					0.835		.243			37.16	6
ATCM	2241	CD:									34.06	6
ATOM	2242	С	ILE A 283			5.330		.006				
	2243		ILE A 28		2	5.385	3.3	.071	74.437		31.94	
ATOM						5.896		.960			35.31	7
2-0M	2244	N	VAL A 28	•	ئە	٠٠٠٠	, , ,	, , , , , ,				

			-					
> moM	2245	CA .VAL A 282		26.654	32.785	72.005	1.00 36.45	6
MOTA		CB VAL A 282		27.084	32.871	70.524		6 .
MOTA		CG1 VAL A 282		27.829	31.604	70.126	1.00 31.20	6
MOTA				25.880	33.080	69.646	1.00 34.51	6
MOTA				27.919	32.723	72.857	1.00 37.80	6
MOTA		C VAL A 282		28.182	31.722	73.532	1.00 36.12	8
MOTA	2250	O VAL A 282			33.808	72.821	1.00 38.45	7
MOTA	2251	N ARG A 283		28.693		73.587	1.00 40.06	6
ATOM	2252	CA ARG A 283		29.929	33.884		1.00 39.38	6
MOTA	2253	CB ARG A 283		30.551	35.272	73.449	1.00 41.90	6
MOTA		CG ARG A 283		30.974	35.625	72.027	1.00 41.36	6
MOTA		CD ARG A 283		31.492	37.048	71.968		7
MOTA		NE ARG A 283		32.647	37.206	72.840	1.00 43.35	6
	2257	CZ ARG A 283		33.162	38.373	73.215	1.00 42.55	7
ATOM ATOM		NH1 ARG A 283		32.628	39.516	72.797	1.00 39.95	
	2259	NH2 ARG A 283		34.220	38.392	74.014	1.00 41.72	7
MOTA	2259	C ARG A 283		29.614	33.587	75.044	1.00 40.01	6
MOTA		O ARG A 283		30.350	32.862	75.716	1.00 39.01	8
MOTA	2261			28.506	34.141	75.520	1.00 40.30	7
ATOM	2262			28.084	33.923	76.894	1.00 43.19	6
ATOM	2263			26.753	34.647	77.165	1.00 47.53	6
MOTA	2264			26.875	36.176	77.090	1.00 56.10	6
MOTA	2265			25.542	36.923	77.179	1.00 60.77	6
MOTA	2266	CD GLU A 284		24.659	36.682	76.329	1.00 61.41	8
MOTA	2267	OE1 GLU A 284		25.383	37.763	78.096	1.00 62.21	8
MOTA	2268	OE2 GLU A 284		27.953	32.429	77.179	1.00 40.72	6
ATOM	2269	C GLU A 284			31.922	78.120	1.00 45.29	8
ATOM	2270	O GLU A 284		28.565	31.721	76.354	1.00 34.82	7
MOTA	2271	N VAL A 285		27.186	30.288	76.551	1.00 30.84	6
MOTA	2272	CA VAL A 285	•	26.975	29.752	75.647	1.00 27.74	6
MOTA	2273	CB VAL A 285		25.842			1.00 22.95	6
ATOM .	2274	CG1 VAL A 285		25.698	28.253	75.982	1.00 26.26	6
ATOM	2275	CG2 VAL A 285		24.545	30.433	76.341	1.00 31.93	6
MOTA	2276	C VAL A 285		28.181	29.366		1.00 33.46	ė
MOTA	2277	O VAL A 285		28.492	28.556	77.214	1.00 29.43	7
ATOM	2278	N PHE A 286.		28.845	29.466	75.191	1.00 24.26	6
MOTA	2279	CA PHE A 286		29.973	28.586	74.907	1.00 24.20	6
ATOM	2280	CB PHE A 286		29.830	27.957	73.519	1.00 22.37	6
ATOM	2281	CG PHE A 286		28.607	27.095	73.345	1.00 23.90	6
ATOM	2282	CD1 PHE A 286		27.409	27.639	72.885	1.00 23.30	6
MOTA	2283	CD2 PHE A 286		28.664	25.718	73.608	1.00 24.90	6
ATOM	2284	CE1 PHE A 286		26.281	26.814	72.681	1.00 24.90	6
MOTA	2285	CE2 PHE A 286		27.547	24.892	73.411		6
ATOM	2286	CZ PHE A 286		26.357	25.437	72.945	1.00 20.23 1.00 25.14	6
MOTA	2287	C PHE A 286		31.368	29.200	74.991	1.00 23.14	8
ATOM	2288	O PHE A 286		32.338			1.00 23.16	7
MOTA	2289	N GLY A 287		31.480			1.00 25.51	6
	229.	CA GLY A 287		32.783	31.065	75.614	1.00 26.86	6
ATOM	2291	C GLY A 287		33.353	31.511	74.270	1.00 26.28	8
ATOM	2294	O GLY A 287		32.644	31.549			7
MOTA	3293	N GLU A 288		34.637				
MOTA		CA GLU A 288		35.274	32.291	72.996	1.00 33.20	6
MOTA	2294	CB GLU A 288		36.680		73.269	1.00 35.09	6
MOTA	2295			36.726			1.00 41.67	6
MOTA	2296			35.970			1.00 43.13	6
ATOM	2297	OE1 GLU A 288		36.221			1.00 45.39	8
MOTA	2298	OEI GLU A 200		35.130			1.00 47.64	8
MOTA	2299	OE2 GLU A 288		35.386			1.00 32.87	6
ATCM	2300	C GLU A 288		35.596			1.00 31.59	8
MOTA		O GLU A 288				-	1.00 31.93	7
MOTA		N GLY A 289		35.268 35.373			1.00 29.58	6
ATOM		CA GLY A 289						6
ATOM		C GLY A 289		35.948				8
ATOM		O GLY A 289		36.55			05 (1	7
ATOM		N VAL A 290		35.76				6
ATOM	_	CA VAL A 290		36.27	7 31.34			
ATOM		CB VAL A 290		37.01				
· ATOM		CG1 VAL A 290		37.61				
ATOM				38.10	0 29.63	2 [65.85]	2 1.00 1	

ATOM	2311 C VAL A 290	35.137 31.975 65.105 1.00 25.97 6 34.218 31.279 64.672 1.00 22.32 8
MOTA	2312 O VAL A 290	34.210 33.293 64.914 1.00 27.33 7
MOTA	2313 N TYR A 291 2314 CA TYR A 291	34 188 34.052 64.203 1.00 26.69 6
MOTA	> 201	33 925 35.356 64.939 1.00 23.34
ATOM		33 935 35.178 66.435 1.00 28.73 6
MOTA		35 025 35.596 67.191 1.00 29.72
MOTA		35.059 35.414 68.563 1.00 25.33
ATOM	2318 CE1 TYR A 291 2319 CD2 TYR A 291	32.874 34.565 67.094 1.00 27.33
ATOM	2320 CE2 TYR A 291	32.898 34.377 68.466 1.00 31.05 6
ATOM ATOM	2321 CZ TYR A 291 -	33.997 34.808 69.194 1.00 32.03 8
MOTA	2322 OH TYR A 291	34.030 34.047 70.302 21.00 27 99 6
ATOM	2323 C TYR A 291	34.327 34.343 62.415 1.00 24.83 8
ATOM	2324 O TYR A 291	33.608 34.042 61.880 1.00 30.17 7
ATOM	2325 N LEU A 292	73 736 34 220 60.441 1.00 28.26 6
MOTA	2326 CA LEU A 292	33 561 32.861 59.741 1.00 27.70 6
MOTA	2327 CB LEU A 292 2328 CG LEU A 292	34 191 31.643 60.435 1.00 24.64
MOTA		33 867 30.380 59.661 1.00 24.66 6
MOTA	2329 CD1 LEU A 292 2330 CD2 LEU A 292	35.686 31.825 80.333 1.00 35.56
ATOM	2331 C LEU A 292	32.649 35.175 39.944 1.00 18 11 8
ATOM ATOM	2332 O LEU A 292	31.540 35.394 60.511 1.00 30 55 7
MOTA	2333 N GLY A 293	32.869 35.749 36.770 2.00
ATOM	2334 CA GLY A 293	31.676 30.033
MOTA	2335 C GLY A 293	30.722 33.023 58.234 1.00 34.11 8
MOTA	2336 O GLY A 293	70 036 36 312 56,689 1.00 35.34
MOTA	2337 N GLY A 294	28 918 35.581 56.124 1.00 34.84 6
MOTA	2338 CA GLY A 294 2339 C GLY A 294	28 142 36,445 55.155 1.00 34.79
ATOM	204	28.644 37.473 54.699 1.00 37.05 8
MOTA	2340 O GLY A 294 2341 N GLY A 295	26.917 36.035 54.842 1.00 31.07
MOTA	2342 CA GLY A 295	26.102 36.806 33.923 1.00 27 09 6
MOTA ATOM	2343 C GLY A 295	23.909 30.233 == 546 1 00 27 03 8
ATOM	2344 O GLY A 295	20.192 30.330 00.00 00 04 67 7
ATOM	2345 N GLY A 296	25.390 35.227 53.757 1.00 25.28 6
ATOM	2346 CA GLY A 296	25 562 41 262 52 446 1.00 27.64 6
MOTA	2347 C GLY A 296 2348 O GLY A 296	26 501 41 163 51 771 1.00 26.65 8
MOTA		24 526 42.009 52.078 1.00 30.21
ATCM	2349 N TYR A 297 2350 CA TYR A 297	24.543 42.704 50.801 1.00 30.62 6
ATOM	2351 CB TYR A 297	23.560 42.011 49.053 1.00 30 33 6
MOTA MOTA	2352 CG TYR A 297	23.717 40.516 49.933 1.00 30.86 6
ATOM	2353 CD1 TYR A 297	23.174 33.022 1 00 30 74 6
ATOM	2354 CE1 TYR A 297	23.430 30.934 49.062 1.00 31.20 6
ATOM	2355 CD2 TYR A 297	24.333 39.460 49.247 1.00 32 08 6
MOTA	2356 CE2 TYR A 297 2357 CZ TYR A 297	27 27 27 201 50 332 1.00 30 92
MOTA		24.539 36.440 50.509 1.00 29 80 6
MOTA	2358 OH TYR A 297 2359 C TYR A 297	24.267 44.193 30.373 1.00 33 83
ATOM	2360 O TYR A 297	24.134 44.849 49.840 1.00 31 41 7
MOTA MOTA	2361 N HIS A 298	24.180 44.725 32.034 1.00 33 94 6
ATOM	2362 CA HIS A 298	23.951 46.430 53 194 1.00 34.75 6
ATOM	2363 CB HIS A 298	22.761 47.980 53.256 1.00 35.16 6
ATOM	7364 CG HIS A 298	22.575 49.809 54.224 1.00 35.72 6
ATOM	2365 CD2 HIS A 298	21 779 48.538 52.205 1.00 34.10
MOTA	2366 ND1 HIS A 298 2367 CE1 HIS A 298	21.605 49.809 52.522 1.00 31.84
ATOM	co 1000 1155 3 298	22.069 50.000 53.742 1.00 33.40
ATOM	C STC 3 298	25.213 46.697 52.962 1.00 36.21
ATOM	200 0 1175 3 298	25.4/1 46.403 54.233 1 00 36 69 7
ATOM	2371 N PRO A 299	25.992 37.519 32.233 1.00 35.57 6
MOTA MOTA	2372 CD PRO A 299	25.680 47.997 30.681 1.00 35.17 6
ATOP AOTA	1 2373 CA PRO A 299	27.236 40.073 51 525 1.00 37.75 6
ATON	. 2374 CB PRO A 299	27.360. 49.399 50.954 1.00 37.76 6
ATON	4 2375 CG PRO A 299	26.216 49.399 50.000 1.00 34.47 6
ATO	2000 0 200 4 622	•
	•	

							- 0 1	40 (70	E4 063	1.00 33.67	8
ATOM	2377	0	PRO A	299		27.		48.670	54.963	1.00 33.67	7
ATOM	2378	N	TYR A	300		26.0	-	49.763	54.026	1.00 32.03	6
MOTA	2379	CA	TYR A	300		25.		50.521	55.227	1.00 35.56	6
MOTA	2380	CB	TYR A	300		24.4		51.377	55.009	1.00 35.96	6
ATOM	2381	CG	TYR A	300		24.		52.524	54.028	1.00 39.37	6
ATOM-	2382	CD1	TYR A			25.		52.367	52.842	1.00 39.92	6
ATOM	2383	CEl	TYR A			25.		53.405	51.907	1.00 35.92	6
ATOM	2384	CD2	TYR A			24.		53.752	54.259	1.00 35.32	6
ATOM	2385	CE2	TYR A			24.		54.793	53.334		6
ATOM	2386	CZ	TYR A	300		24.		54.612	52.161	1.00 38.09 1.00 37.68	8
ATOM	2387	ОН	TYR A	300		24.		55.634	51.251	1.00 37.88	6
ATOM	2388	С	TYR A	300		25.		49.546	56.3.69		8 .
ATOM	2389	0	TYR A	300	•	26.		49.692	57.440	1.00 30.62	7
ATOM	2390	N	ALA A			24.		48.541	56.125	1.00 32.55	6
MOTA	2391	CA	ALA A	301		24.		47.541	57.145	1.00 31.64	6 -
MOTA	2392	CB	ALA A	301		23.		46.602	56.624	1.00 24.69	6
ATOM	2393	C	ALA A	301		25.		46.727	57.552	1.00 30.06	8
ATOM	2394	Ō	ALA A	301		25.	848	46.579	58.734	1.00 31.91	7
ATOM	2395	N	LEU A	302			223	46.192	56.557	1.00 28.94	6
ATOM	2396	CA	LEU A	302		27.	404	45.383	56.795	1.00 30.55	6
ATOM	2397	CB	LEU A	302			012	45.002	55.441	1.00 31.83	6
ATOM	2398	CG	LEU A				315	44.223		1.00 30.01	6
MOTA	2399	CD1	LEU A	302		29.	491	43.781	53.888	1.00 32.09	
MOTA	2400	CD2	_	302		-	475	45.077	55.762	1.00 32.23	6 6
ATOM	2401	С	LEU A				418	46.136	57.663	1.00 29.79	8
MOTA	2402	Ö	LEU A	302		28.	796	45.676	58.746	1.00 27.68	7
MOTA	2403	N	ALA A				842	47.299	57.179	1.00 27.92	6
ATOM	2404	CA	ALA A				818	48.119	57.877	1.00 25.00	6
ATOM	2405	CB	ALA A	303			.026	49.424	57.137	1.00 23.62	6
ATOM	2406	С	ALA A	303		29.	. 397	48.397	59.305	1.00 25.06	8
MOTA	2407	ō	ALA A	303			.088	48.015	60.248	1.00 26.90	7
ATOM	2408	N	ARG A				. 258	49.054	59.472	1.00 24.06	6
ATOM	2409	CA	ARG A	304			.794	49.382	60.810	1.00 24.37	6
ATOM	2410	CB	ARG A	304 -			.420	50.052	60.758	1.00 23.99 1.00 28.77	6
MOTA	2411	CG	ARG A	304		26	.328	51.257	59.815	1.00 28.77	6
ATOM	2412	CD	ARG A	304			.106	52.089	60.156	1.00 29.90	7
MOTA	2413	NE	ARG A	304			.943	51.233	60.369	1.00 37.01	6
MOTA	2414	CZ	ARG A	304			.893	51.573	61.110	1.00 37.01	ž
MOTA	2415	NH		304			.854	52.757	61.713	1.00 34.36	7
ATOM	2416	NH					.896	50.719	61.269	1.00 24.24	6
ATOM	2417	С	ARG A	A 304			.727	48.142	61.691	1.00 22.34	8
ATOM	2418	0	ARG A	A 304			.343			1.00 24.51	7
ATOM	2419	N		A 305			.994	47.132		1.00 22.70	6
MOTA	2420	CA	ALA A	A 305			.801	45.883			6
ATOM	2421	CB	ALA A	A 305			.880	44.960			. 6
ATOM	2422	С	ALA :	. 305			.089	45.142			8
MOTA	2423	0	ALA .	. 305			.237	44.725			7
ATOM	2424	N	TRP .	306			.016	44.961			6
ATOM	2425	CA	TRP	A 306			.244	44.270			6
ATOM	2426	CB		A 306			.029	43.842			· 6
MOTA	2427			A 306			.604	42.503			6
MOTA	2428	CE		A 306			.861	42.013			6
MOTA	2429		2 TRP	A 306			.366	40.688			6
MOTA	2430	CE		A 306			.462	42.563			6
MOTA	2431	CI	1 TRP				.983	41.484			
MOTA	2432			A 306			.837				6
ATOM	2433			A 306			.450				6
ATOM			3 TRP	A 306			548				6
ATOM				A 306			1.042				6
ATOM				A 306			.129				8
ATCM		0	TRP	A 306			1.908				7
ATOM			THR	A 307			1.003				6
ATOM		C	THR	A 307			1.785				_
ATOM) CI		A 307			1.484				
ATOM	244:		S1 THR	A 307			1.994				_
ATOH		2 C	32 THR	A 307	•	32	2.120	49.70	* 04.13	, 2.23	
			•	•	•						

						c4 063	1.00 29.35	6
MOTA	2443 C	. THR A 3	307	31.441	47.041	64.863 65.725	1.00 32.56	8
ATOM	2444 O	THR A	307	32.316	4.6.989	• • •	1.00 30.60	7
MOTA	2445 N	LEU A	308	30.159	46.857		1.00 33.69	6.
MOTA	2446 C			29.740	46.555	•••	1.00 34.48	6
	2447 CI			28.256	46.215	••		6
MOTA	2448 C		308	27.338	47-337		1.00 34.79	6
MOTA		D1 LEU A	308	25.903	46.887	• • •	1.00 31.98	
MOTA		D2 LEU A	308	27.569	48.542	66.924	1.00 36.96	6
MOTA			308	30.531	45:353	66.965	1.00 34.57	6
MOTA			308	31.230	45.417	67.975	1.00 33.75	8 7
MOTA	~		309	30.423	44.262	66.208	1.00 35.78	
MOTA	2453 N 2454 C		309	31.108	43.017	66.540	1.00 35.87	6
MOTA	2454 C 2455 C		309	30.939	41.949	65.431	1.00 34.95	6
MOTA		G2 ILE A		31.733	40.695	65.799	1.00 31.21	6
MOTA		G1 ILE A	309	29.445	41.631	65.212	1.00 34.25	6
MOTA		D1 ILE A	309	28.726	41.014	66.407-	1.00 25.04	6
ATOM	2459 C		309	32.589	43.238	66.772	1.00 35.81	8
MOTA	2460 C		309	33.183	42.617	67.657	1.00 38.19	7
MOTA	2461 N		310	33.197	44.111	65.977	1.00 36.10 1.00 35.26	6
MOTA NOTA		A TRP A	310	34.612	44.384	66.169	1.00 33.20	6
ATOM		B TRP A	310	35.150	45.311	65.075	1.00 32.01	6
MOTA		G TRP A	310	36.619	45.588	65.220	1.00 29.93	6
ATOM ATOM		D2 TRP A	310	37.679	44.620	65.274	1.00 28.42	6
ATOM		E2 TRP A	310	38.882	45.330	65.474	1.00 28.42	6
MOTA		E3 TRP A	310	37.731	43.224	65.174	1.00 30.62	6
ATOM		D1 TRP A	310	37.206	46.804	65.380	1.00 29.37	7
ATOM		NE1 TRP A	310	38.565	46.659	65.536	1.00 27.91	6
MOTA		CZ2 TRP A		40.126	44.691	65.578 65.279	1.00 28.06	6
MOTA		CZ3 TRP A	310	38.978	42.585	65.479	1.00 26.50	6
ATOM-		CH2 TRP A	310	40.150	43.322 45.040	67.545	1.00 36.00	6
ATOM		C TRP A	310	34.744		68.440	1.00 36.24	8
MOTA	2474	O TRP A	310	35.365			1.00 34.57	7
ATOM	2475	N CYS A	311	34.134		68.985	1.00 32.82	6
MOTA		ÇA CYS A	311	34.183 33.169		68.996	1.00 35.62	6
MOTA	2477	CB CYS A	311	33.439			1.00 32.36	16
MOTA	2478	SG CYS A	311	33.912			1.00 32.01	6
MOTA		C CYS A	311	34.452			1.00 29.82	8
ATOM	2480	O CYS A	312	33.062			1.00 32.57	7
MOTA	2481		312	32.731			1.00 33.86	6
ATOM	2482		312	31.557			1.00 34.19	6
ATOM	2483		312	30.442			1.00 40.27	6
ATCM	2484	CD GLU A	312	30.923		73.239	1.00 43.80	6 8
MOTA	2485	OE1 GLU A	312	31.685	5 41.831	73.383	1.00 44.81	8
MOTA	2486 2487	CE2 GLU A	312	30.516				6
MOTA	2488	C GLU A	312	33.953	3 43.298			8
MOTA	2489	O GLU A	312	34.25	3 42.95			7
MOTA MOTA	2490	N LEU ?	313	34.64				6
ATOM	2491	CA LEU A	313	35.84				6
ATOM	2492	CE LEU A	A 313	36.17		5 69.113	1.00 27.73	6
ATOM	2493	CG LEU	A 313	35.15				6
ATOM		CD1 LEU	A 313	35.58				6
ATCM	- ·	CD2 LEU	A 313	35.05				6
ATOM		C LEU	A 313	36.97				8
ATOM		O LEU	A 313	37.60	5 42.79 6 44.06			7
ATCM		N SER	A 314	37.20				6
ATOM		CA SER	A 314	38.23			5 1.00 36.47	6
ATOM		CB SER	A 314	38.10 39.14			3 1.00 44.55	8
ATCM	2501		A 314	39.14			o 1.30 37.82	6
ATOM	2502	C SER	A 314	39.01			5 1.00 37.32	. 8
ATOM	2503	O SER	A 314	36.79			5 1.00 38.05	7
ATCM	2504	N GLY	A 315	36.50			8 1.00 42.42	6
ATOM	2505	CA GLY	A 315 A 315	36.29		4 73.56	8 1.00 46.80) 6
ATOM	2506	C GLY	A 315	35.92			8 1.00 47.85	8
ATOM		O GLY	A 316	36.5			8 1.00 48.90	7
ATC:	2508	n Arg		•		-		
		•						

MOTA	2509		ARG A 31		36.346	49.885	72.448 71.283	1.00 52.27 1.00 53.60	6 6
MOTA	2510		ARG A 31		37.144 36.730	50.479 50.007	69.900	1.00 52.11	6
ATOM	2511		ARG A 31		37.734	50.514	68.870	1.00 53.76	6
ATOM	2512		ARG A 31		39.028	49.854	69.019	1.00 53.67	7
MOTA	2513 2514		ARG A 31		40.135	50.221	68.383	1.00 55.34	6
ATOM - MOTA	2515		ARG A 31		40.110	51.253	67.552	1.00 55.44	7
ATOM	2516		ARG A 31		41.266	49.546	68.569	1.00 55.80	7
MOTA	2517	С	ARG A 31	6	34.882	50.343	72.391	1.00 52.06	6
MOTA	2518	0	ARG A 31		34.075	49.781		1.00 54.96	8 7
MOTA	2519.	N	GLU A 31		34.547	51.361	73.182	1.00 51.87 1.00 52.67	6
MOTA	2520	CA	GLU A.31		33.185	51.900	73.222 74.123	1.00 52.07	6
MOTA	2521	CB	GLU A 31		33.111 32.549	53.139 52.901	75.527	1.00 60.94	6
MOTA	2522	CG	GLU A 31 GLU A 31		33.353	51.912	76.361	1.00 64.62	6
MOTA	2523 2524	CD OE1	GLU A 31		33.025	51.741	77.556	1.00 64.59	8 -
ATOM ATOM	2525	OE2	GLU A 31		34.305	51.302	75.832	1.00 68.64	8
ATOM	2526	C	GLU A 31		32.642	52.256	71.843	1.00 51.27	6
ATOM	2527	0	GLU A 31		33.270	52.983	71.077	1.00 49.34	8
ATOM	2528	N	VAL A 31		31.457	51.733	71.548	1.00 51.30	7 6
MOTA	2529	CA	VAL A 31		30.780	51.962	70.280 70.169	1.00 48.80 1.00 47.11	6
MOTA	2530	CB	VAL A 31		29.522 28.875	51.071 51.237	68.808	1.00 45.53	6
MOTA	2531	CG1	VAL A 31 VAL A 31		29.895	49.631	70.424	1.00 47.05	6
MOTA	2532	CG2 C	VAL A 31		30.349	53.411	70.178	1.00 47.64	6
ATOM ATOM	2533 2534	o	VAL A 31		29.511	53.867	70.953	1.00 47.61	8
ATOM	2535	Ŋ	PRO A 31		30.925	54.165	69.234	1.00 48.14	7
ATOM	2536	CD	PRO A 31	19	31.960	53.836	68.247	1.00 48.87	6
MOTA	2537	CA	PRO A 31		30.538	55.569	69.093	1.00 52.54 1.00 49.96	6 6
MOTA	2538	CB	PRO A 31		31.438	56.051 54.802	67.954 67.141	1.00 49.90	6
MOTA	2539	CG	PRO A 31		31.612 29.052		68.764	1.00 55.84	6
ATOM	2540 2541	C	PRO A 31		28.531		67.953	1.00 56.06	8
ATOM	2542	N 0	GLU A 32		28.369		69.402	1.00 59.20	7
MOTA MOTA	2543	CA	GLU A 32		26.942		69.167	1.00 62.61	6
ATOM	2544	CB	GLU A 3		26.302		70.313	1.00 65.59	6 6
MOTA	2545	CG	GLU A 3		26.727		70.365	1.00 73.01 1.00 76.93	6
ATOM	2546	CD.	GLU A 3		26.007		71.451 71.446	1.00 77.37	8
MOTA	2547		GLU A 3:		24.755 26.697		72.303	1.00 79.46	8
MOTA	2548 2549	OE2 C	GLU A 3		26.698		67.863	1.00 61.40	6
ATOM	2550	0	GLU A 3		25.663		67.699	1.00 62.33	8
MOTA ATOM	2551	N	LYS A 3		27.650	57.463	66.939	1.00 59.47	7
ATOM	2552	CA	LYS A 3	21	27.519		65.662	1.00 59.54	6 6
ATOM	2553	CB	LYS A 3		27.340		65.897	1.00 61.36 1.00 65.23	6
ATOM	2554	CG	LYS A 3	21	23.620		66.366 67.643	1.00 66.59	6
MOTA	2555	CD	LYS A 3	21	19.169 33.564		67.960	1.00 67.34	6
MOTA	2556	CE	LYS A 3 LYS A 3		30.591			1.00 68.58	7
ATOM ·	2557 2558	NZ C	LYS A 3		28.766			1.00 59.24	6
MOTA MOTA	2559	ō	LYS A 3		29.845		65.319		8
ATOM	2560	N	LEU A 3		28.608			1.00 57.55	7
ATOM	2561	CA	LEU A 3	22	29.702			1.00 54.72 1.00 52.96	6 6
ATOM	2562	CB	LEU A 3		29.171			1.00 52.90	6
MOTA	2563	CG	LEU A 3		28.141 27.708				6
ATOM	2564		LEU A 3	22	28.716				6
MOTA	2565		LEU A 3		30.250			1.00 53.47	6
MOTA	2566 2567		LEU A 3		29.512			1.00 53.39	8
MOTA ATOM	2568		ASN A 3		31.530		61.965	1.00 51.43	7
ATOM	2569		ASN A 3	123	32.08				6
ATOM	2570		ASN A 3	123	33.59				6 6
MOTA	2571	CG	ASN A 3	323	34.42				8
ATCM	2572	ָם כ	1 ASN A 3	323	34.38				. 7
MOTA	2573		2 ASN A 3	323	35.19 31.84				6
ATOM	2574	C	ASN A 3	22	.24.14	01.17	, 50.243		

				rigu.	16 17-40				
ATOM	2575	0	ASN A 3	23	31.135	60.479	59.538	1.00 47.52	8
MOTA	2576	N	ASN A 3	24	32.426	62.304	59.792	1.00 47.66	7
MOTA	2577	CA	ASN A 3	24	32.242	62.769	58.419	1.00 49.25	6
ATOM	2578	CB	ASN A 3		32.758	64.200	58.292	1.00 50.73	6
ATOM	2579	CG	ASN A 3		32.025	65.154	59.205	1.00 53.83	6
ATOM	2580	OD1	ASN A 3		30.812	65.314	59.096	1.00 56.90 1.00 54.93	8 7
MOTA	2581	ND2	ASN A 3		32.755	65.789	60.119	1.00 49.34	6
MOTA	2582	С	ASN A 3		32.906	61.891 61.502	57.367 56.379	1.00 49.34	8
ATOM	2583	0	ASN A 3 LYS A 3		32.275 34.182	61.502	57.586	1.00 47.22	7
ATOM	2584 2585	N CA	LYS A 3		34.152	60.759	56.676	1.00 46.57	6
ATOM ATOM	2586	CB	LYS A 3		36.314	60.453	57.305	1.00 49.94	6
ATOM	2587	CG	LYS A 3		37.299	59.737	56.399	1.00 54.75	6
ATOM	2588	CD	LYS A 3		38.562	59.329	57.173	1.00 58.22	6
ATOM	2589	CE	LYS A 3	25	39.236	60.521	57.844	1.00 58.35	6
ATOM	2590	NZ	LYS A 3		40.473	60.128	58.566	1.00 59.81	7
ATOM	2591	С	LYS A 3		34.202	59.458	56.410	1.00 44.85	6
MOTA	2592	0	LYS A 3		34.065	59.027	55.263	1.00 43.59	8 7
MOTA	2593	N	ALA A 3		33.712	58.843	57.483 57.387	1.00 42.27	6
MOTA	2594	CA	ALA A 3		32.964 32.663	57.59 7 57.067	58.773	1.00 36.86	6
ATOM	2595 2596	CB C	ALA A 3		31.666	57.803	55.612	1.00 43.30	6
ATOM ATOM	2597	0	ALA A 3		31.342	57.028	55.705	1.00 42.83	8
ATOM	2598	N	LYS A 3		30.918	58.843	56.977	1.00 45.56	7
ATOM	2599	CA	LYS A 3		29.657	59.146	56.306	1.00 47.23	6
ATOM	2600	CB	LYS A 3		29.023	60.407	56.892	1.00 49.59	6
ATOM	2601	CG	LYS A 3	127	28.547	60.263	58.329	1.00 54.63	6
MOTA	2602	CD	LYS A 3		28.024	61.591	58.862	1.00 55.89	6
ATOM	2603	CE	LYS A 3		27.529	61.483	60.299 60.426	1.00 58.28 1.00 59.91	6 7
ATOM	2604	NZ	LYS A 3		26.304 29.888	60.644 59.347	54.816	1.00 46.97	6
ATOM	2605 2606	C	LYS A 3		29.000	58.913	53.990	1.00 48.10	8
ATOM ATOM	2607	O N	GLU A 3		30.986	60.012	54.480	1.00 44.99	7
ATOM	2608	CA	GLU A 3		31.325	60.264	53.091	1.00 43.18	6
ATOM	2609	СВ	GLU A 3		32.417	61.326	53.027	1.00 47.93	6
ATOM	2610	CG	GLU A 3	128	31.993	62.621	53.710	1.00 53.65	6
MOTA	2611	CD	GLU A 3		33.112	63.630	53.831	1.00 55.79	6
MOTA	2612		GLU A		33.642	64.060	52.783	1.00 58.73	8 8
MOTA	2613		GLU A		33.459	63.991 58.971	54.979 52.437	1.00 58.13 1.00 41.56	6
	2614	C	GLU A 3		31.789 31.537	58.743	51.255	1.00 39.41	8
ATOM ATOM	2615 2616	И О	LEU A 3		32.465	58.123	53.211	1.00 40.64	7
ATOM	2617	CA	LEU A 3		32.940	56.844	52.695	1.00 36.45	6
ATOM	2618	CB	LEU A 3		33.623	56.032	53.801	1.00 34.70	6
ATOM	2619	CG	LEU A 3	329	34.100	54.610	53.433	1.00 35.69	6
MOTA	2620	CD1	LEU A 3	329	35.195	54.642		1.00 30.11	6
MOTA	2621		LEU A	329	34.619	53.926	54.683	1.00 34.63	6
ATOM	2622	C	LEU A		31.746	56.064	52.157 50.975	1.00 35.77 1.00 34.94	6 8
MOTA	3623	0	LEU A		31.692 30.784	55.746 55.770	53.029	1.00 34.78	7
ATOM	2624	N	LEU A 3		29.599	55.028	52.630	1.00 34.95	6
ATOM ATOM	2625 2626	CA CB	LEU A		28.631	54.914	53.803	1.00 30.95	6
ATOM	2627	CG	LEU A 3		29.164	54.115	54.991	1.00 32.66	6
ATOM	2628		LEU A		28.051	53.,904	56.022	1.00 31.74	6
ATOM	2629		LEU A	330	29.674	52.769	54.509	1.00 30.73	6
MOTA	2630	С	LEU A		28.877	55.631	51.428	1.00 37.28	6
ATOM	2631	0	LEU A		28.395	54.901	50.557	1.00 40.56	8 7
MOTA	2632	N	LYS A		28.806	56.957	51.383	1.00 38.24 1.00 39.59	6
MOTA	2633	CA	LYS A		28.140	57.661	50.294 50.643	1.00 39.39	E
ATOM	2634	CB	LYS A		27.994 27.129	59.146 59.399	51.873	1.00 45.93	6
ATCM	2635	CD	LYS A	331	27.129	60.879	52.244	1.00 49.72	6
MOTA	2636 2637	CE	LYS A	331	26.271	61.698	51.193	1.00 53.66	6
ATOM ATOM	2638	NZ	LYS A		26.053	63.114	51.640	1.00 54.22	7
ATOM	2639	C	LYS A	331	28.863	57.514	48.958	1.00 41.02	6
ATOM	2640	ŏ	LYS A	331	28.220	57.485	47.904	1.00 39.58	8

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	2642 (2643 (2644 (2645 (2646 (2647)	SER A 332 CA SER A 332 CB SER A 332 CG SER A 332 C SER A 332 C SER A 332 C SER A 333 CA ILE A 333	30.192 30.998 32.494 32.862 30.634 30.706 30.241 29.869	57.274 57.243 56.066 56.007 55.959 54.982 53.713	47.792 48.124 48.823 47.040 45.811 47.786 47.187	1.00 42.69 1.00 46.02 1.00 47.51 1.00 50.97 1.00 48.51 1.00 49.45 1.00 51.56 1.00 54.86	7 6 6 8 6 8 7 6 6
MOTA	2649	CB ILE A-333	29.657	52.626 51.285	48.246 47.559	1.00 55.80 1.00 52.34	6
ATOM		CG2 ILE A 333 CG1 ILE A 333	29.388 30.892	52.522	49.140	1.00 56.89	6
MOTA		CG1 ILE A 333 CD1 ILE A 333	30.766	51.456	50.204	1.00 60.31	6
MOTA MOTA		C ILE A 333	28.579	53.813	46.396	1.00 57.07 1.00 55.59	6 8
MOTA		O ILE A 333	27.572	54.321	46.897 45.160	1.00 55.35	7
MOTA		N ASP A 334	. 28.623 27.456	53.320 53.300	44.281	1.00 65.55	6
MOTA		CA ASP A 334 CB ASP A 334	27.888	53.259	42.811	1.00 69.19	6
MOTA MOTA	2657 2658	CG ASP A 334	28.784	52.073		1.00 70.21	6
MOTA	2659	OD1 ASP A 334	29.097	51.875	41.298	1.00 71.47 1.00 70.91	8 8
ATOM	2660	OD2 ASP A 334	29.181 26.660	51.344 52.041	43.427	1.00 65.65	6
MOTA	2661	C ASP A 334 O ASP A 334	26.797	50.996	43.990	1.00 63.91	8
MOTA	2662 2663	O ASP A 334 N PHE A 335	25.822	52.153	45.649	1.00 65.73	7
ATOM ATOM	2664	CA PHE A 335	25.041	51.021	46.104	1.00 63.44	6 6
ATOM	2665	CB PHE A 335	24.980	51.034	47.632	1.00 58.05 1.00 53.82	6
MOTA	2666	CG PHE A 335	24.039 24.178	50.028 48.679	48.195 47.886	1.00 52.40	6
ATOM	2667	CD1 PHE A 335 CD2 PHE A 335		50.429	48.989	1.00 51.33	6
ATOM	2668 2669	CE1 PHE A 335		47.742	48.356	1.00 52.73	6
MOTA MOTA	2670	CE2 PHE A 335	22.062	49.503	49.462	1.00 53.20	6 6
MOTA	2671	CZ PHE A 335	22.204	48.151	49.144	1.00 51.76 1.00 65.55	.6
ATOM	2672	C PHE A 335	23.629 23.230	50.893 49.810	45.097	1.00 67.33	8
ATOM	2673	O PHE A 335 N GLU A 336		51.986	45.537	1.30 66.47	7
MOTA	2674 2675	CA GLU A 336		51.948	45.048	1.00 67.43	6
MOTA MOTA	2676	CB GLU A 336	21.422	51.379	43.626	1.00 71.79 1.00 78.77	6 6
MOTA	2677	CG GLU A 336		51.245 50.505	43.116	1.00 82.67	6
MOTA	2678	CD GLU A 336	19.868 20.232	49.306	41.734	1.00 83.29	8
ATOM	2679 2680	OE1 GLU A 330 OE2 GLU A 330			40.801	1.00 84.26	8
atom atom	2681	C GLU A 33		51.069	45.971	1.00 64.72	6 8
ATOM	2682	O GLU A 330	20.686		45.876 46.858	1.00 59.84 1.00 64.47	7
MOTA	2683	N GLU A 33	19.901 19.045		47.805	1.00 65.83	6
ATOM	2684	CA GLU A 33			48.759	1.00 64.20	6
ATOM	2685 2686	CB GLU A 33		51.370	49.964	1.00 64.26	6 6
MOTA MOTA	2687	CD GLU A 33	7 18.774		50.850	1.00 64.04 1.00 61.66	8
ATOM	2688	OE1 GLU A 33	7 19.741		51.261 51.132		8
MOTA	2689	OE2 GLU A 33	7 18.608 7 17.950		47.063	1.00 67.13	6
ATOM	2690	C GLU A 33 O GLU A 33		_		1.00 68.27	8
MOTA ATOM	2691 2692	N PHE A 33	8 17.779	48.960	47.394		7 6
MOTA	2693	CA PHE A 33	8 16.764		46.748		6
ATOM	2694	CB PHE A 33	8 16.445		47.626 47.187		6
MOTA	2695	CG PHE A 33	8 15.228 8 15.122			1.00 72.37	6
ATOM	2696	CD1 PHE A 33 CD2 PHE A 33			48.074	1.00 73.61	6
MOTE	2697 2698	CE1 PHE A 33	8 13.980	44.984	45.478		6 6
ATOM ATOM	2699	CE2 PHE A 33	8 13.024	45.250			6
ATOM	2700	CZ PHE A 33	8 12.929				6
atom		C PHE A 33	8 15.483 8 15.286			1.00 67.92	8
ATOM	2702	O PHE A 33 N ASP A 33			47.426	1.00 68.98	7
ATOM		N ASP A 33		8 49.759	47.26		6 6
MOTA MOTA:		CB ASP A 33	9 12.59				
3701				1 50.678	3 48.58	1.00 ,2.03	-

									_
> mo>4	2707	א ומר	SP A 339		11.548	51.893		1.00 72.29	8
ATOM	2708	א כתר	P A 339		10.262	50.188	• -	1.00 71.03	8
MOTA		C AS	SP A 339		13.715	51.183		1.00 73.18	6
MOTA	•	D AS	SP A 339		14.407	51.884	47.592	1.00 73.78	8 7
ATOM		y As	SP A 340		13.247	51.600	45.677	1.00 76.36	
MOTA	5 . - -	CA AS	SP A 340		13.518	52.943	45.152	1.00 78.34	6
MOTA		CB AS	SP A 340		12.410	53.385	44.189	1.00 77.55	6
		CG A	SP A 340		12.462	52.655	42.864	1.00 78.90	6
ATOM		OD1 A	SP A 340		12.348	51.408	42.855	1.00 78.38	8
ATOM		יש דמט	SP A 340		12.620	53.336	41.830	1.00 78.74	8
MOTA		C A	SP A 340		13.687	54.017	46.214	1.00 79.51	6
MOTA		0 A	SP A 340		14.587	54.856	46.117	1.00 80.19	8 . 7
MOTA	_	N G	LU A 341		12.824	54.000	47.224	1.00 79.64	6
MOTA			LU A 341		12.922	54.998	48.271	1.00 80.05	6
MOTA		CB G	LU A 341		12.269	56.301	47.811	1.00 83.75	6
MOTA		CG G	LU A 341		12.411	57.442	48.806	1.00 89.02	6
MOTA	2723		LU A 341		11.756	58.724	48.328	1.00 91.52 1.00 93.33	8
ATOM	2724	OE1 G	LU A 341		10.515	58.738	48.175	1.00 93.35	8
MOTA MOTA	2725	OE2 G	LU A 341		12.484	59.716	48.102	1.00 92.63	6
MOTA	2726		LU A 341		12.317	54.578	49.597	1.00 77.30	8
ATOM	2727		LU A 341		11.102	54.610	49.777	1.00 74.49	7
MOTA	2728	N V	AL A 342		13.179	54.181	50.523	1.00 71.55	6
ATOM	2729	CA V	AL A 342		12.745	53.793	51.859	1.00 72.40	6
ATOM	2730	CB V	AL A 342		13.224	52.383	52.245	1.00 71.16	6
MOTA	2731	CG1 V	/AL A 342		12.672	52.004	53.610	1.00 74.35	6
ATOM	2732	CG2 V	/AL A 342		12.797	51.391	51.207	1.00 68.46	6
ATOM	2733	C 1	JAL A 342		13.454	54.778	52.766 53.829	1.00 68.96	8
ATOM	2734	0 7	JAL A 342		12.952	55.154	52.311	1.00 61.61	7
ATOM	2735	N A	ASP A 343		14.636	55.184 56.114	53.029	1.00 54.91	6
MOTA	2736	CA A	ASP A 343		15.486		53.543	1.00 55.06	6
ATOM	2737	CB 2	ASP A 343		14.678		54.114	1.00 54.44	6
ATOM	2738		ASP A 343		15.556			1.00 56.20	8
ATOM	2739	OD1	ASP A 343		15.002			1.00 49.32	8
ATOM	2740	OD2 .	ASP A 343		16.795			1.00 50.85	6
MOTA	2741	С.	ASP A 343		16.152 15.557			1.00 49.32	8
ATOM	2742	0	ASP A 343		17.396			1.00 47.84	7
MOTA	2743	N	ARG A 344		18.195			1.00 45.34	6
MOTA	2744	CA	ARG A 344		18.883			1.00 45.00	6
ATOM	2745	CB	ARG A 344		17.950			1.00 38.03	6
MOTA	2746	CG	ARG A 344		17.185			1.00 35.83	6
MOTA	2747	CD	ARG A 344 ARG A 344		16.278			1.00 39.20	7
ATOM	2748	NE	ARG A 344		15.350		55.724		6
ATOM	2749	CZ	ARG A 34	i	15.217		56.917		7 .
ATOM	2750	NULL	ARG A 34		14.566	48.976		1.00 40.75	6
MOTA	2751		ARG A 34		19.250	55.278			
ATC I	2752 2753	С 0	ARG A 34	1	20.170	54.86			7
ATCM	2754	Ŋ	SER A 34	5	19.11				
ATOM ATOM	2755	CA	SER A 34	5	20.04				
	2756	CB	SER A 34	5	19.53			45 65	
MOTA MOTA	2757	0G	SER A 34	5	18.29				
ATOM	2758	Ċ	SER A 34	5	20.25				
ATOM	2759	ō	SER A 34	5	21.36		2 57.552		
ATOM		N	TYR A 34	6	19.20		4 57.85		
ATOM		CA	TYR A 34	6	19.28				
ATOM		CB	TYR A 34	6	17.97				
ATOM		CG	TYR A 34	6	17.66				
ATOM	^ ^	CD1	TYR A 34	6	18.33	1 54.33			
ATOM		CE1	TYR A 34	6	18.04				
ATOM		CD2	TYR A 34	6	16.71			10 6	
ATCM		_	TYR A 34	6	16.41				6 5
ATCM			TYR A 34	6	17:08			4 1.00 39.6	0 8
ATCM		OH	TYR A 34	6	16.80 20.46		·	6 1.00 42.9	26
ATCM		С	TYR A 34	6	20.46	01 56.84		9 1.00 42.6	5 8
ATCM	1 2771		TYR A 34	0	20.75	57 55.44		44 5	97
ATC		N	MET A 3	1	20.7:	,, JJ.41			
			•						

											- 00	_
3 mov	2773 C	A MET A	347	21.	859	54.5		59.38		00 4	5.89	6
ATOM	-		347	21.	950	53.4		58.35		1.00 4	5.51	6
ATOM	2774 C	· .			727	52.	567	58.24		1.00 4		6
MOTA	2775 C	G MET A	347			51.		57.00		1.00 4	7.13	16
ATOM	2776 S	D MET A	347	_	062			55.6		1.00 4	4 : 55	6
ATOM	2777 C	E MET A	347		545	52.				1.00 4	0 17	6
	2778 C		347	23.	188	55.	286	59.40	-	1.00 4	0.47	
ATOM -			347	24.	129	54.	888	60.09		1.00 4	19.49	8 .
MOTA	2779				259	56.		58.6	10	1.00 4	19.03	7 .
MOTA	2780 N				458	57.		58.4		1.00 4	18.86	6
ATOM	2781	A LEU A		24.	356	_		57.2		1.00	45.51	6
ATOM	2782	B LEU A	348	24.	355	58.		57.2		1.00		6
MOTA		G LEU A	348		280	57.		55.8	_	1.00		6
	2784	D1 LEU A	348	23.	908	58.	476	54.8		1.00	43.62	
MOTA		D2 LEU A	348 -	25.	618	56.	757	55.5	65 -	1.00	42.53	6
MOTA	_		348		644	58.	049	59.7	38	1.00	49.33	6
ATOM					.765		369	60.1	23	1.00	49.78	8
MOTA	2787 (LEU A	340				428	60.3		1.00	48.34	7 -
MOTA	2788	GLU A			. 537			61.5		1.00		6
ATOM	2789	CA GLU A			.591		279			1 00	48.36	6
ATOM	2790	CB GLU A	349		.198		848	61.8		3 00	45.52	6
		CG GLU A	349	21	.628		.584	60.6				6
MOTA	2792	CD GLU A		22	.598	61.	.619	60.0	65		42.94	
MOTA	-	OE1 GLU A	349		.934	62.	. 560	60.8	312		40.82	8
MOTA		OFI GEO Y	342		.028		. 483	58.9	900	1.00	38.30	8
MOTA	2794	OE2 GLU A	349		.119		.531	62.7	145 .	1.00	48.32	6
MOTA		C GLU A						63.2	19		47.87	8
ATOM	2796	O GLU A	349		.226		.783			1 00	48.97	7
ATOM		N THR A	350		.325		. 602	63.2		1.00	50.70	6
	2798	CA THR A	350		.744		.832	64.		1.00	50.70	6
ATOM	2799	CB THR A		22	.558	56	.596	65.		1.00	51.02	
ATOM		OG1 THR A		22	.071	57	.865	65.	B03	1.00	49.11	8
MOTA	2800		350		.983	55	.763	66.	537	1.00	51.58	6
MOTA	2801		350		.361		.507	63.	954	1.00	49.56	6
MOTA	2802	C THR A			.979		.947	62.	923	1.00	50.55	8
MOTA	2803	O THR A	350					64.		1.00		7
MOTA	2804	N LEU A			.333		.028				45.35	6
ATOM	2805	CA LEU A	351		.018		.781			1.00	47.05	6
	2806	CB LEU A	351	27	.342		.726	65.		1.00	40.54	6
MOTA	2807	CG LEU A		28	3.257	52	.502	65.		1.00	49.54	
ATOM		CD1 LEU A	351	29	.575	52	.777	65.	766	1.00	51.50	
ATOM	2808	CD2 LEU A	351		7.603	51	.302	65.	692	1.00	48.35	6
MOTA	2809		251		5.145		.584	64.	772	1.00	44.79	6
MOTA	2810	C LEU A			5.131		. 578		061	1.00	41.45	8
MOTA	2811	O LEU A	351				.711		880	1.00	45.27	7
MOTA	2812	N LYS A	352		4.420				375	1 00	44.62	6
ATOM	2813	CA LYS A	352		3.531		.662			1 00	42.23	6
ATOM	2814	CB LYS A	352		3.764		L.464		873	1.00	44.94	
MOTA	2815	CG LYS A	352	2	5.197		1.075		187	1.00	46.80	
	2816	CD LYS A	352	2	5.572	.51	1.262		650	1.00	46.00	
MOTA		CE LYS	352	2	4.765	50	0.389	70.	.581	1.00	45.79	
MOTA	2817		352		5.236		0.586		. 975	1.00	47.31	7
ATOM	2818	NZ LYS A	3 332		2.096		2.087		.116	1.00	45.12	2 6
ATOM	2819	C LYS	3 3 3 2		1.837		3.236		.756	1.00	47.07	78
ATOM	2820	O LYS	A 352				1.161		. 285	1.00	44.62	2 7
ATOM	2821	N ASP	A 353		1.162				.060	1.00	46.43	36
ATOM	2822	CA ASP A	A 353		9.761		1.474				49.3	
	2823	CB ASP	A 353	1	9.302		0.943	_	. 692	1.00	5 51 5	
ATOM	2824	CG ASP	A 353	1	9.813	4	9.546		.396	.1.0	51.5	
ATCM		OD1 ASP	A 353	2	1.028	4	9.396	64	.158	1.0	55.3	
MOTA	2825	OD2 ASP	353		9.005	5 4	8.596	64	.398	1.0	52.3	5 8
MOTA	2826	ODZ ASP	7 3E3		8.841		0.968		.165	1.0	0 45.9	0 6
ATOM	2827		A 353		9.152		0.001		.854	1.0	0 45.9	8 8
ATOM	2828		A 353						.348	_	0 45.8	6 7
ATOM	2829	N PRO	A 354		7.687		1.629		.587	_	0 45.3	
ATOM	2830	CD PRO	A 354		7.16		2.77			_	0 45.5	
	2831	CA PRO	A 354		6.72	_	1.24		.378	_	0 44 7	
ATOM		CB PRO	A 354	1	5.58	5 5	2.24		.159	_	0 44.7	
ATOM	2832	כם בעט	A 354		5.68		2.51		.664	1.0	0 45 0	
ATOM		CG PRO	3 354		6.27		9.80		1.188	1.0	0 44.1	3 6
atom	2834	C PRO	A 354		16.35		9.27		.078	1.0	0 42.9	0 8
ATOM	2835	O PRO	A 354				9.17	_	.267	1.0	0 42.7	7
ATOM		N TRP	A 355		15.82	. 4	3.11		.168		0 43.3	5 6
ATCM		CA TRP	A 355	_	15.35		7.80	_).539		0 47.1	
ATOM		CB TRP	A 355	1	14.98	2 4	7.22	> /\	,. 55			_

							3	_
ATOM	2839	CG	TRP A 355	16.168			1.00 52.43	6
	2840	CD2	TRP A 355	16.574	45.391	71.519	1.00 53.15	6
MOTA	2841		TRP A 355	17.789	45.416		1.00 54.97	6
ATOM	2842	CE3	TRP A 355	16.031	44.153		1.00 53.39	6
ATOM			TRP A 355	17.125	47.526	71.916	1.00 54.39	6
MOTA	2843		TRP A 355	18.103	46.731		1.00 57.31	7
ATOM ·	2844		TRP A 355	18.469	44.249	72.602	1.00 54.97	6
ATOM	2845		TRP A 355	16.706	42.995	71.518	1.00 55.77	6
MOTA	2846	CZ3	TRP A 355	17.913	43.052	72.234	1.00 54.84	6
MOTA	2847		TRP A 355	14.177	47.690	68.230	1.00 41.94	6
MOTA	2848	C	TRP A 355	13.508	48.677	67.915	1.00 41.39	8
MOTA	2849	0	TRP A 333	13.942	46.471	67.775	1.00 38.60	7
ATOM	2850	N	ARG A 356	12.855	46.185	66.866	1.00 36.55	6
MOTA	2851	CA	ARG A 356	13.413	46.044	65.451	1.00 35.06	6
MOTA	2852	CB	ARG A 356	14.120	47.308	64.976	1.00 32.47	6
MOTA	2853	CG	ARG A 356 ARG A 356	14.969	47.082	63.733	1.00 29.54	6
MOTA	2854	CD	ARG A 350	15.600	48.323	63.296	1.00 28.91	7
ATOM	2855	NE	ARG A 356	16.514	48.403	62.335	1.00 30.60	6
MOTA	2856	CZ	ARG A 356	16.916	47.305	61.702	1.00 33.52	7
MOTA	2857	NH1	ARG A 356	17.020	49.582	61.996	1.00 30.10	7
MOTA	2858	NH2	ARG A 356	12.270	44.879	67.361	1.00 36.01	6
MOTA	2859	C	ARG A 356	12.447	43.831	66.742	1.00 38.38	8
MOTA	2860	0	ARG A 356	11.587	44.949	68.499	1.00 36.04	7
MOTA	2861	N	GLY A 357	11.001	43.758	69.085	1.00 36.08	6
ATOM	2862	CA	GLY A 357	9.514	43.596	68.851	1.00 34.51	6
ATOM	2863	C	GLY A 357 GLY A 357	8.943	44.196	67.943	1.00 36.77	8
MOTA	2864	0	GLY A 357	8.892	42.772	69.687	1.00 36.04	7
MOTA	2865	N		7.466	42.506	69.593	1.00 32.26	6
MOTA	2866	CA	GLY A 358	7.106	41.263	70.385	1.00 29.85	6
MOTA	2867	С	GLY A 358	7.832	40.839	71.288	1.00 28.86	8
MOTA	2868	0	GLY A 358 GLU A 359	5.975	40.667	70.055	1.00 30.88	7
MOTA	2869	N	GLU A 359	5.550	39.455	70.743	1.00 32.58	6
MOTA	2870	CA	GLU A 359	4.034	39.289	70.604	1.00 38.60	6
MOTA	2871	CB	GLU A 359 GLU A 359	3.230	40.435	71.222	1.00 47.44	6
MOTA	2872	CG	GLU A 359	1.957	40.762	70.445	1.00 50.93	6
MOTA	2873	CD	GLU A 359	1.123	39.852	70.221	1.00 52.13	8
MOTA	2874			1.798	41.942	70.061	1.00 51.03	8
MOTA	2875	OE2	GLU A 359	6.250	38.275	70.091	1.00 28.29	6
MOTA	2876	C	GLU A 359	6.790	38.382	68.997	1.00 27.88	8
MOTA	2877	0	VAL A 360	6.263	37.147	70.772	1.00 27.97	7
MOTA	2878	N	VAL A 360	6.859	35.957	70.193	1.00 25.86	6
ATOM	2879	CA	VAL A 360	7.673	35.168	71.237	1.00 22.02	6
MOTA	2880		VAL A 360	8.155	33.849	70.641	1.00 19.45	6
MOTA	2881			8.850	36.009	71.698	1.00 17.88	6
ATOM	2882		VAL A 360	5.703	35.099	69.670	1.00 28.04	6
MOTA	2883		VAL A 360	4.842	34.655	70.440	1.00 27.34	8
MOTA	2884		ARG A 361	5.663	34.898	68.358	1.00 27.70	7
MOTA	2885		ARG A 361	4.612	34.091		1.00 32.85	6
MOTA	2886		ARG A 361	4.693	34.164	66.242		6
MOTA	2887		ARG A 361	4.243		65.687	1.00 38.81	6
ATOM	2888			4.546		64.201		6
MOTA	2889		261	5.974			1.00 38.77	7
ATOM	2890			6.514		62.763		6
MOTA	2891			5.748			1.00 40.79	7
MOTA	2892			7.822			1.00 42.94	7
ATOM	2893		ARG A 361	4.689		8 68.222		6
MOTA	2894		ARG A 361	5.768			1.00 37.08	8
ATOM	2895		LYS A 362	3.526		7 68.347		7
MOTA	2896		262	3.436		68.757	1.00 39.91	6
MOTA	2897			1.982		2 68.648		6
ATOM	2898	_		1.014			1.00 45.11	6
MOTA	2899			1.11			3 1.00 49.43	6
atom	2900			0.81		2 68.32	7 1.00 45.02	6
ATOM				0.96			2 1.00 41.08	7
MOTA			1 7 7 7 3 6 3 6 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	4.32		9 67.83	1 1.00 39.25	6
ATOM			LYS A 362 LYS A 362	4.95				8
2 TON	2904	4 0	722 Y 205	3.70				

30.229 66.568 1.00 41.13 4.358 GLU A 363 2905 N MOTA 1.00 43.96 6 5.147 29.554 65.539 GLU A 363 ATOM 2906 CA 1.00 45.90 6 30.416 64.278 5.225 GLU A 363 2907 CB MOTA 30.876 63.741 1.00 50.68 6 GLU A 363 3.892 2908 CG MOTA 31.738 6 62.507 1.00 54.11 4.045 GLU A 363 CD 2909 MOTA 1.00 53.90 8 61.494 4.571 31.224 OE1 GLU A 363 ATOM 2910 3.648 1.00 56.05 32.927 62.552 OE2 GLU A 363 2911 MOTA 6 1.00 42.39 66.046 6.558 29.296 GLU A 363 2912 C MOTA 1.00 41.48 R 28.169 65.989 7.062 GLU A 363 2913 0 MOTA 1.00 37.27 66.540 7.183 30.360 VAL A 364 VAL A 364 2914 N MOTA 1.00 35.30 6 67.064 30.291 8.535 2915 CA MOTA 1.00 36.88 6 31.696 67.469 VAL A 364 9.038 2916 CB MOTA 1.00 37.77 6 10.444 31.599 68.043 CG1 VAL A 364 2917 MOTA 1.00 34.78 9.018 8.650 66.252 32.628 CG2 VAL A 364 2918 MOTA 6 29.361 68.268 1.00 33.01 VAL A 364 2919 MOTA 1.00 31.55 8 9.622 28.614 68.379 VAL A 364 2920 0 MOTA 1.00 32.61 7 69.165 7.664 29.409 LYS A 365 2921 N MOTA 70.362 1.00 30.96 6 28.567 LYS A 365 7.674 2922 CA MOTA 1.00 30.13 29.010 71.358 6.598 LYS A 365 2923 CB MOTA 1.00 36.02 6.826 30.409 71.899 LYS A 365 2924 CG ATOM 1.00 38.94 6 72.995 30.781 LYS A 365 5.837 CD 2925 MOTA 1.00 41.58 32.187 73.509 6.120 CE LYS A 365 2926 ATOM 1.00 44.29 1.00 30.32 74.585 LYS A 365 5.191 32.611 2927 ΝZ MOTA 6 70.007 7.452 27.114 LYS A 365 ATOM 2928 С 1.00 31.32 70.442 8.195 26.237 LYS A 365 0 2929 MOTA 7 69.209 1.00 29.85 26.863 ASP A 366 6.427 2930 N MOTA 1.00 32.07 68.807 6.115 25.509 ASP A 366 2931 CA 1.00 35.98 1.00 39.88 ATOM 67.818 6 4.948 25.522 ASP A 366 2932 CB MOTA 6 3.711 26.206 68.381 ASP A 3.66 2933 CG ATOM 1.00 40.16 3.124 25.692 69.359 OD1 ASP A 366 2934 MOTA R 1.00 43.21 27.266 67.848 3.326 OD2 ASP A 366 2935 MOTA 7.343 1.00 33.07 6 68.161 ASP A 366 ASP A 366 24.866 C MOTA 2936 7.753 1.00 32.64 8 68.540 23.763 2937 0 MOTA 1.00 31.89 7 67.193 25.565 7.932 THR A 367 2938 N MOTA 1.00 31.17 9.088 25.045 66.490 CA THR A 367 2939 **ATOM** 65.572 1.00 31.55 CB THR A 367 9.712 26.070 2940 MOTA 1.00 34.37 8 8.707 64.714 26.620 OG1 THR A 367 2941 ATOM 1.00 33.55 6 64.723 CG2 THR A 367 10.780 25.404 2942 MOTA 1.00 33.09 6 67.472 24.633 10.146 THR A 367 2943 C MOTA 1.00 38.62 10.586 23.476 67.485 THR A 367 2944 0 MOTA 7 68.298 1.00 31.85 25.579 10.570 LEU A 368 2945 N MOTA 11.582 1.00 32.87 6 69.288 25.264 CA LEU A 368 MOTA 2946 1.00 27.73 6 70.179 11.848 26.478 LEU A 368 2947 C3 MOTA 1.00 29.05 27.449 69.588 12.887 LEU A 368 2948 CG MOTA 1.00 23.05 26.777 27.896 14.260 69.541 CD1 LEU A 368 2949 MOTA 12.473 1.00 26.53 6 68.193 CD2 LEU A 368 2950 ATOM 1.00 35.16 6 70.107 24.053 LEU A 368 11.157 ATOM 2951 C 8 1.00 35.18 70.217 23.077 11.910 0 LEU A 368 2952 MOTA 7 1.00 37.56 70.649 9.942 24.101 GLU A 369 2953 N MOTA 1.00 40.23 9.431 22.993 71.442 CA GLU A 369 ATOM 2954 71.770 1.00 42.07 6 7.956 23.216 GLU A 369 2955 CB ATOM 6 1.00 48.51 7.722 72.617 24.460 GLU A 369 2956 CG MOTA 1.00 51.93 24.616 73.067 6.281 GLU A 369 CD 2957 MOTA 1.00 52.84 73.782 23.724 5.777 OE1 GLU A 3'69 2958 MOTA 72.710 70.701 1.00 58.33 25.636 OE2 GLU A 369 5.652 2959 21.672 MOTA 1.00 41.14 6 9.633 GLU A 369 С 2960 MOTA 8 71.286 1.00 41.87 10.087 20.684 GLU A 369 2961 0 1.00 39.65 MOTA 69.411 9.309 21.653 LYS A 370 2962 N ATOM 1.00 38.26 6 68.636 20.443 CA LYS A 370 CB LYS A 370 9.497 MOTA 2963 6 1.00 40.63 67.166 9.144 20.654 2964 MOTE 1.00 44.49 20.597 66.854 7.675 LYS A 370 2965 CG ATOM 20.358 . 6 1.00 49.95 65.363 7.495 CD LYS A 370 2966 ATOM 1.00 54.28 65.015 6.052 20.023 CE LYS A 370 2967 ATOM 19.679 1.00 55.44 63.574 NZ LYS A 370 5.890 2968 68.730 1.00 37.85 6 ATOM 10.948 20.034 LYS A 370 2969 С ATOM 69.156 1.00 37.95 11.261 18.930 LYS A 370 2970 0 ATOM

```
1.00 37.78
                                 11.827 20.944 68.325
                 ALA A 371
                                                          1.00 36.39
       2971
MOTA
                                 13.264 20.704
                                                 68.340
                 ALA A 371
             CA
ATOM
       2972
                                                          1.00 37.73
                                                                        6
                                                 68.200
                                         22.030
                 ALA A 371
                                 14.007
             CB
       2973
                                                                        6
                                                         1.00 35.42
ATOM
                                                 69.603
                                         19.972
                                 13.719
                 ALA A 371
       2974
             С
                                                         1.00 32.06
                                                                        8
MOTA
                                                 69.525
                                         18.964
                                 14.424
                 ALA A 371
       2975
             0
                                                                        7
                                                         1.00 33.96
MOTA
                                                 70.766
                                         20.478
                                 13.317
                 ALA A 372
                                                         1.00 32.22
MOTA
       2976
             N
                                                                        6
                                                 72.024
                                         19.848
                                 13.695
                ALA A 372
                                                         1.00 28.27
             CA
       2977
                                                 73.165
                                                                        6
MOTA
                                         20.486
                                 12.946
                 ALA A 372
             CB
       2978
                                                          1.00 31.75
MOTA
                                                  71.953
                                         18.362
                                 13.372
                  ALA A-372
       2979
             С
                                                         1.00 31.56
MOTA
                                         17.517
                                                  72.338
                                 14.183
                  ALA A 372
             0
                                                         1.00 32.72
                                                                        7
       2980
MOTA
                                         18.059
                                                  71.432
                                12.187
                  ALA A 373
                                                         1.00 32.32
       2981
             N
                                                                        6
MOTA
                                                 71.305
                                 11.710
                                         16.684
                 ALA A 373
                                                         1.00 30.18
       2982
             CA
                                                                        6
MOTA
                                                 71.103
                                         16.689
                                 10.206
                 ALA A 373
                                                 70.172 1.00 33.13
             CB
                                                                        6
       2983
MOTA
                                 12.385 15.921
                  ALA A 373
             C
                                                          1.00 35.87
       2984
ATOM
                                 13.078 - 14.926
                                                  70.468
              OT1 ALA A 373
       2985
                                                         1.00 34.11
ATOM
                                 12.218 16.320
                                                  69.003
              OT2 ALA A 373
                                                  53.990 1.00 36.45
                                                                         6
        2986
ATOM
                                          34.497
                                 22.693
                  ZN Z 951
                                                          1.00 9.27
        2987
              ZN
MOTA
                                                  49.416
                                 35.654
                                          44.211
              OH2 WAT S
        2988
                                                          1.00 21.27
                                                                         8
MOTA
                                                  53.069
                                  24.480
                                          33.130
                          2
              OH2 WAT S
        2989
                                                                         8
                                                  59.314
                                                          1.00 14.69
MOTA
                                          30.277
                                  22.124
                          3
              OH2 WAT S
                                                           1.00 27.94
        2990
MOTA
                                                  75.741
                                          20.611
                                 13.839
              OH2 WAT S
                           4
                                                           1.00 44.54
                                                                         8
        2991
 MOTA
                                                  46.522
                                          41.903
                                 34:033
                          5
              OH2 WAT S
        2992
                                                  55.781
                                                           1.00 23.79
                                                                         8
 MOTA
                                 15.039 42.130
32.737 41.397
                          6
              OH2 WAT S
                                                          1.00 15.80
        2993
                                                                         8
 MOTA
                                                  75.900
                          7
              OH2 WAT S
                                                                         8
        2994
                                                           1.00 23.37
 MOTA
                                          22.606 58.814
                                 11.367
                          8
              OH2 WAT S
                                                           1.00 29.93
        2995
                                                   65.105
 MOTA
                                 13.909 18.160
              OH2 WAT S
                          9
                                                           1.00 50.54
        2996
 MOTA
                                          56.108
                                                   58.029
                                 29.655
                          10
              OH2 WAT S
                                                           1.00 9.28
                                                                         8
        2997
 MOTA
                                          17.964
                                                   51.885
                                  45.405
                          11
              OH2 WAT S
                                                           1.00 32.78
                                                                         8
        2998
 MOTA
                                          35.873
                                                   34.515
                                  21.870
              OH2 WAT S
                          12
        2999
                                                           1.00 28.85
 MOTA
                                  43.504 35.670
                                                   33.779
                         13
              OH2 WAT S
        3000
                                                           1.00 40.53
 MOTA
                                                   68.430
                                  2.054 37.997
               OH2 WAT S
                          14
                                                           1.00 21.42
                                                                          8
         3001
 MOTA
                                  49.730 28.024
                                                   55.966
              OH2 WAT S
                          15
                                  47.503 32.289
6.101 26.102
10.761 46.748
                                                                          8
         3002
 MOTA
                                                   34.336
                                                           1.00 26.13
               OH2 WAT S
                         16
         3003
                                                            1.00 21.69
                                                                          8
 MOTA
                                                   64.434
               OH2 WAT S
                         17
                                                   45.836 1.00 15.79
         3004
                                                                          8
 MOTA
                         18
               OH2 WAT S
                                                            1.00 16.68
         3005
 MOTA
                                                   61.441
                                  9.146 16.861
               OH2 WAT S
                         19
20
                                                            1.00 37.53
                                                                          8
         3006
                                   5.684 34.080
  MOTA
                                                   76.599
               OH2 WAT S
                                                            1.00 34.17
                                                                          8
         3007
  MOTA
                                   14.896 33.163
                                                    49.117
               CH2 WAT S
                          21
                                                            1.00 35.64
         3008
  MOTA
                                                   36.825
                                   43.346
                                           40.839
               OH2 WAT S
                         22
                                                            1.00 21.02
1.00 29.80
         3009
                                                                          8
  MOTA
                                                   69.174
                                           27.705
                                   0.516
               OH2 WAT S
                         23
                                                                          8
         3010
  MOTA
                                                   29.717
                                   41.270 25.444
               OH2 WAT S
                          24
                                                            1.00 27.92
                                                                          8
         3011
  MOTA
                                                   54.584
                                   17.818 29.142
               OH2 WAT S
                           25
                                                            1.00 16.77
                                                                          8
         3012
                                                   56.912
  MOTK
                                           60.572
                                   21.512
                          26
               OH2 WAT S
                                                            1.00 23.93
  ATOM
         3013
                                                   48.347
                                           33.582
                                   21.211
               OH2 WAT S
                          27
                                                            1.00 23.73
                                                                          8
         3014
  MOTA
                                           24.638
                                                   56.619
                                   47.805
               OH2 WAT S
                           28
                                                                          8
                                                            1.00 16.79
  MOTA
         3015
                                                   58.154
                                   44.624 50.302
                          2.5
               OH2 WAT S
                                                             1.00 26.61
                                                                           8
         3016
                                                   51.311
  MOTA
                                   31.096 16.437
                           3.
31
               OH2 WAT S
                                                                           8
                                                            1.00 32.28
         3017
                                                   55.145
63.704
  MOTA
                                           38.833
                                   39.837
               OH2 WAT S
                                                                           8
                                                            1.00 22.94
         3018
  MOTA
                                           43.601
                                   11.660
               OH2 WAT S
                           32
                                                             1.00 26.85
         3019
                                            23.474 53.058
                                                                           8
  MOTA
                                   49.899
               OH2 WAT S
                           33
                                                             1.00 21.18
                                                                           8
         3020
  ATOM
                                                   32.228
                                            17.734
                                   34.624
               OH2 WAT S
                           34
                                                            1.00 27.01
          3021
  MOTA
                                                    62.444
                                           15.913
                                    26.926
                           35
                                                             1.00 27.68
               OH2 WAT S
                                                                           8
          3022
  MOTA
                                                    63.905
                                           28.686
                                    8.893
               OH2 WAT S
                           36
                                                                           8
                                                            1.00 24.42
          3023
  MOTA
                                            26.634 43.532
                                    23.381
                           37
               OH2 WAT S
                                                            1.00 34.86
          3024
                                                    65.270
  MOTA
                                    48.484
                                            27.990
                           38
                OH2 WAT S
                                                            1.00 25.68
                                                                           8
          3025
  MOTA
                                                    74.379
                                  43.382
                                            28.410
                OH2 WAT S
                          39
                                                            1.00 29.45
                                                                           8
          3026
                                                    70.272
   MOTA
                                            18.967
                                    42.904
                          40
                OH2 WAT S
                                                             1.00 22.35
   MOTA
          3027
                                                    50.298
                                           53.828
                                    20.521
                          41
                                                             1.00 23.32
                OH2 WAT S
                                                                           R
          3028
   MOTA
                                                     48.404
                                    13.310
                                            38.921
                OH2 WAT S
                           42
                                                                            8
                                                             1.00 33.51
          3029
                                                     60.012
   MOTA
                                            46.265
                                    9.787
                           43
                OH2 WAT S
                                                             1.00 47.75
          3030
   ATOM
                                                     51.377
                                            30.416
                                    36.089
                OH2 WAT S
                           44
                                                            1.00 50.96
          3031
                                                     42.151
   ATOM
                                    14.831
                                             48.131
                                                     60.971 1.00 22.66
63.509 1.00 33.73
33.130 1.00 35.80
                           45
                OH2 WAT S
          3032
   ATOM
                                             48.194
                           46
                                    54.162
                OH2 WAT S
                                                                            8
          3033
   ATOM
                                    38.943
                                             61.290
                OH2 WAT S
                            47
                                                                            R
          3034
   ATCM
                                    29.980 18.112
                OH2 WAT S
                            48
                                                     44.528 1.00 24.39
          3035
 . ATOM
                                    31.879 50.673
                           49
                OH2 WAT S
```

3036

ATCM

114/263

	2027	OH2 WAT S	50	39.863	14.629	64.307	1.00 24.19	8
Mota	3037				29.471	38.549	1.00 27.78	8
MOTA	3038	OH2 WAT S	51	26.119				
ATOM	3039	OH2 WAT S	52	48.070	41.589	44.011	1.00 36.38	8
	3040	OH2 WAT S	53	50.802	29.649	52.495	1.00 31.04	8
MOTA			54	49.540	35.532	71.585	1.00 20.96	8
MOTA	3041	OH2 WAT S				64.961	1.00 17.49	8
ATOM -	3042	OH2 WAT S	55	6.887	23.426			
ATOM	3043	CH2 WAT S	56	25.698	39.891	37.674	1.00 51.51	8
		OH2 WAT S	57	45.498	44.101	55.393	1.00 37.34	8
MOTA	3044			44.661	34.733	46.902	1.00 44.52	8
MOTA	3045	CH2 WAT S	58				1.00 26.96	8
ATOM	3046	OH2 WAT S	59	21.912	21.320	79.233		
	3047	OH2 WAT S	60	27.290	21.016	77.320	1.00 27.74	8
MOTA		OH2 WAT S.	61	19.809	49.810	61.716	1.00 46.14	8
MOTA	3048				18.035	41.441	1.00 42.23	8
MOTA	3049	OH2 WAT S	62	30.843				
ATOM	3050	OH2 WAT S	63	19.055	33.379	60.511	1.00 28.99	8.
	3051	OH2 WAT S	64	47.925	33.253	61.470	1.00 34.93	8
ATOM			65	32.500	36.000	41.000	1.00 35.33	8 -
ATOM	3052	OH2 WAT S				44.579	1.00 34.19	8
ATOM	3053	OH2 WAT S	66	27.245	56.551			
ATOM	3054	OH2 WAT S	67	5.176	32.914	54.669	1.00 41.89	8
	3055	OH2 WAT S	68	41.159	51.018	49.348	1.00 27.31	8
ATOM				12.869	50.298	61.877	1.00 31.30	8
MOTA	3056	CH2 WAT S	69				1.00 24.91	8
MOTA	3057	OH2 WAT S	70	17.499	12.826	63.854		
ATOM	3058	OH2 WAT S	.71	27.152	12.189	53.999	1.00 18.76	8
		OH2 WAT S	72	25.213	54.809	67.866	1.00 61.35	8
MOTA	3059	UHZ WAI 5		17.671	48.515	53.188	1.00 37.63	8
ATOM	3060	OH2 WAT S	73				1.00 21.81	8
ATOM	3061	OH2 WAT S	74	23.765	60.846	66.579	1.00 21.61	
ATOM	3062	CH2 WAT S	75	35.535	27.040	70.698	1.00 34.04	8
		CH2 WAT S	76	26.280	16.065	76.564	1.00 32.20	8
ATOM	3063			18.451	25.555	45.150	1.00 28.55	8
MOTA	3064.	OH2 WAT S	77 .				1.00 44.74	8
MOTA	3065	CH2 WAT S	78	10.446	61.273	48.633		
ATOM	3066	OH2 WAT S	79	13.256	24.051	73.017	1.00 35.45	8
		OH2 WAT S	80	23.571	13.292	69.937	1.00 49.49	8
MOTA	3067			29.891	18.071	46.109	1.00 22.84	8
MOTA	3068	CH2 WAT S	81				1.00 35.31	8.
ATOM	3069	OH2 WAT S	82	12.886	42.723	75.807		
ATOM	3070	OH2 WAT S	83 ·	41.348	15.471	45.004	1.00 47.24	8
	3071	OH2 WAT S	84	13.406	44.647	71.349	1.00 49.67	8
MOTA				30.444	35.217	51.882	1.00 38.15	8
MOTA	3072	OH2 WAT S	85			61.244	1.00 19.51	8
ATOM	3073	OH2 WAT S	86	5.217	40.817			8
MOTA	3074	CH2 WAT S	87	8.891	21.532	56.838	1.00 30.72	
	3075	CH2 WAT S	88	41.816	25.022	72.452	1.00 22.92	8
ATOM		V	89	50.621	36.644	60.248	1.00 29.29	8
MOTA	3076			26.008	34.532	49.627	1.00 45.42	8
MOTA	3077	OH2 WAT S	90				1.00 31.50	8
MOTA	3078	OH2 WAT S	91	8.131	39.168	54.903		
ATOM	3079	OH2 WAT S	92	16.591	58.091	57.551	1.00 34.73	8
	3080	OH2 WAT S	93	34.773	54.065	69.382	1.00 36.05	8
MOTA		••••	94	42.105	31.720	71.257	1.00 35.49	8
MOTA	3081	OH2 WAT S				73.172	1.00 35.17	8
MOTA	3082	CH2 WAT S	95	29.684	52.077			8
MOTA	3083	OH2 WAT S	96	26.411	37.426	38.934	1.00 41.68	
	3084	OH2 WAT S	97	41.183	52.989	62.927	1.00 50.77	8
MOTA			98	21.167	6.202	63.102	1.00 33.36	8
ATOM	3085	CH2 WAT S			18.985	36.669		8
ATOM	3086	OH2 WAT S	99	25.060				8
ATOM	3087	OH2 WAT S	100	37.304	39.027	73.722		
	3088	CH2 WAT S	101	15.911	54.635	39.343		.8
ATOM				48.730	25.803	59.572	1.00 37.97	8
MOTA	3089	CH2 WAT S	102					8
ATOM	3090	OH2 WAT S	103	24.029	42.997			8
MOTA	3091	OH2 WAT S	104	42.477	21.773			
		OH2 WAT 5	105	29.984	22.945	31.397	1.00 44.21	8
MOTA	-3092	0112 1171 5	106	40.850		31.885	1.00 43.26	8
MOTA	3093	OH2 WAT 5	100					8
ATOM	3094	OH2 WAT S	107	9.750				8
MOTA	3095	CH2 WAT S	108	7.618	30.171			
		CH2 WAT S	109	17.603		59.767	1.00 50.33	8
MOTA	3096	ONZ WAI 5	110	22.590				8
ATOM	3097	CH2 WAT 5	IIO					8
ATOM	3098	OH2 WAT S	111	21.034			1 00 53.02	8
MOTA	3099	OH2 WAT S	112	24.791	14.674	50.081		
			113	40.750		54.056	1.00 46.98	8
atom	3100	ב זעוו פונט	114	7.708			1.00 34.08	8
ATOM	3101	OH2 WAT S	114					8
ATOM	3102	OH2 WAT S	115	32.375	49.136	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.00	_

3.00M	3103	OH2 WAT 5 116		5.596	17.009	64.551	Z 1 0 0 0 0 1	8
ATOM ATOM		OH2 WAT S 117		20.194			2.00 22	8
ATOM		OH2 WAT S 118		23.853	64.927	•	1.00 27.16	8 8
ATOM		OH2 WAT S 119		9.277	43.601	46.279	1.00 32.31 1.00 55.20	8
MOTA		OH2 WAT S 120		15.613	24.398	46.723	1.00 35.20	8
ATOM		OH2 WAT S 121		33.110	16.122	54.229	1.00 37.49	8
MOTA		OH2 WAT S 122		26.772	34.085	33.852	1.00 47.30	8
ATOM	3110	OH2 WAT S 123		28.654	37.783	75.829	1.00 37.33	8
ATOM	3111	OH2 WAT S 124		49.180	22.653	59.678	1.00 67.86	8
ATOM	3112	OH2 WAT S 125		20.561	27.788 13.344	65.975 57.366	1.00 36.18	8
ATOM	3113	OH2 WAT S 126		34.251	36.854	48.117	1.00 33.63	8
ATOM		OH2 WAT S 127		49.215 45.826	19.588	41.601	1.00 44.07	8
MOTA	3115	OH2 WAT S 128		18.693	56.382	64.014	1.00 47.77	8
MOTA	3116	OH2 WAT S 129		44.181	24.202	36.963	1.00 32.70	8
MOTA	3117	OH2 WAT S 130 OH2 WAT S 131		19.160	51.901	38.133	1.00 54.07	8
MOTA	3118	OH2 WAT S 131 OH2 WAT S 132		16.904	36.558	48.679	1.00 42.21	8
MOTA	3119	OH2 WAT 5 133		46.851	26.029	34.353	1.00 56.33	8
MOTA	3120 3121	OH2 WAT S 134		3.925	41.533	68.647	1.00 45.99	8
MOTA	3122	OH2 WAT S 135		44.590	38.382	78.167	1.00 44.50	8
ATOM ATOM	3123	OH2 WAT S 136		6.384	19.317	71.166	1.00 28.17	8
MOTA	3124	OH2 WAT S 137		17.982	39.823	66.487	1.00 49.31	8 8
ATOM	3125	OH2 WAT S 138		8.317	22.286	61.863	1.00 43.42	8
ATOM	3126	OH2 WAT S 139		29.248	14.196	55.622	1.00 35.55 1.00 43.94	8
ATOM	3127	OH2 WAT S 140		30.377	33.180	80.320	1.00 24.82	8
MOTA	3128	OH2 WAT S 141		41.842	32.906	27.392 64.002	1.00 24.02	8
ATOM	3129	OH2 WAT S 142		33.971	3.859 8.087	70.916	1.00 49.03	8
MOTA	3130	OH2 WAT S 143		27.314 4.310	39.006	64.550	1.00 32.70	8
MOTA	3131	OH2 WAT S 144		2.940	19.950	63.265	1.00 33.24	8
MOTA	3132	OH2 WAT S 145		24.134	47.625	60.121	1.00 44.24	8
MOTA	3133	OH2 WAT S 146 OH2 WAT S 147		25.035	53.746	42.337	1.00 47.82	8
ATOM	3134			32.767	38.897	49.651	1.00 21.86	8
MOTA	3135 3136	OH2 WAT S 148 OH2 WAT S 149		37.145	57.288	47.392	1.00 36.13	8
MOTA	3137	OH2 WAT S 150		25.171	18.011	32.273	1.00 38.04	8
MOTA MOTA	3138	OH2 WAT S 151		24.054	43.182	55.583	1.00 41.68	8 8
ATOM	3139	OH2 WAT S 152		27.686	64.936	52.937	1.00 60.62 1.00 22.62	8
ATOM	3140	OH2 WAT S 153		24.084	39.543	76.589	1.00 22.02	8
ATOM	3141	OH2 WAT S 154		42.110	10.159	68.662 75.335	1.00 26.45	8
MOTA	3142	OH2 WAT S 155		9.675 4.506	22.905 34.799	52.857	1.00 33.84	8
ATOM	3143	OH2 WAT S 156		32.583	35.051	76.446	1.00 36.27	8
MOTA	3144	OH2 WAT S 157		40.341	58.311	60.390	1.00 54.69	8
MOTA	3145	OH2 WAT S 158 OH2 WAT S 159		29.473	58.378	71.881	1.00 28.59	8
MOTA	3146	OH2 WAT S 159 OH2 WAT S 160		11.829		56.138	1.00 37.67	8
MOTA	3147	OH2 WAT S 161		24.247		67.935	1.00 56.62	8
MOTA	3148 3149	OH2 WAT S 162		ز 12.85		77.503	1.00 29.88	8
MOTA MOTA	3150	OH2 WAT S 163		9.49`				8
ATOM	3151	OH2 WAT S 164		27.424				8 8
MOTA	3152	OH2 WAT S 165		8.512				8
ATOM	3153	OH2 WAT S 166		30.721				8
ATOM	3154	OH2 WAT S 167		49.594				8
MOTA	3155	OH2 WAT 5 168		41.994				8
ATOM	3156	OH2 WAT S 169		42.092				8
ATOM	3157	OH2 WAT S 170		34.547	1 12.749 1 60.862			8
ATOM	3158	OH2 WAT S 171		15.377 31.854	42.110			8
MOTA	3159	OH2 WAT S 172	٠.	48.743				8
ATCM	3160	OH2 WAT S 173		8.723			1.00 32.87	8
MOTA	3161	OH2 WAT S 174		14.25			1.00 40.51	8
ATOM	3162	OH2 WAT S 175 OH2 WAT S 176		31.91			3 1.00 40.43	8
ATCM	3163			23.92			2 1.00 47.97	8
MOTA	3164			27.97		B 69.94		8
ATOM	3165			7.85	0 25.09	3 51.34		8
MOTA	3166 3167			22.08	0 48.84		3 1.00 53.81	8
MOTE	3168			34.78	0 48.22	0 77.41	9 1.00 30.86	8

WO 01/18045 PCT/US00/24700

ATOM	3169	OH2 WAT S	182	43.893.	35.526	52:018	1.00 47.14	8
ATOM	3170	OH2 WAT S	183	29.166	21.424	28.950	1.00 45.08	8
ATOM	3171	OH2 WAT S	184	51.175	51.545	62.599	1.00 33.88	8
ATOM	3172	OH2 WAT S	185	18.520	46.208	42.323	1.00 50.85	8
MOTA	3173	OH2 WAT S	186	44.774	30.219	38.653	1.00 45,36	8
ATOM	3174	OH2 WAT S	187	30.770	9.460	69.837	1.00 32.44	8
MOTA	3175	OH2 WAT S	188	22.157	39.535	78.736	1.00 37.01	8
ATOM	3176	OH2 WAT S	189	11.778	50.526	68.987	1.00 41.34	8
MOTA	3177	OH2 WAT S	190	31.339	60.910	49.439	1.00 21.88	8
ATOM	3178	OH2 WAT S	191	31.165		74.907	1.00 27.47	8
MOTA	3179	OH2 WAT S	192	39.705	15.398	70.464	1.00 47.05	8
MOTA	3180	OH2 WAT S	193	3.668	34.304	72.937	1.00 39.82	8
MOTA	3181	OH2 WAT S	194	25.256	9.360	67.925	1.00 33.21	8
MOTA	3182	OH2 WAT S	195.	47.575	17.667	48.773	1.00 40.79	8
MOTA	3183	OH2 WAT S	196	32.017	13.045	34.633	1.00 37.00	8
ATOM	3184	OH2 WAT S	197	35.476	7.006	64.436	1.00 49.59	[*] 8
ATOM	3185		198	12.180	16.270	56.288	1.00 47.22	8
MOTA	3186		199	37.133	21.226	75.963	1.00 38.59	8
MOTA	3187		200	40.268	15.712	48.199	1.00 39.24	8
MOTA	3188	OH2 WAT S	201	25.159	17.768	46.858	1.00 49.88	8
MOTA	3189	OH2 WAT S	202	24.593	27.104	65.727	1.00 53.46	8
MOTA	3190		203	36.741	20.267	33.858	1.00 41.90	8
ATOM	3191	OH2 WAT S	204	10.013	53.930	47.546	1.00 48.06	8
MOTA	3192		205	22.305	16.731	54.471	1.00 27.07	8
MOTA	3193		206	47.454	34.778	74.101	1.00 47.44	8
MOTA	3194		207	35.189	55.767	45.193	1.00 59.49	8
ATOM	3195		208	37.827	18.151	36.382	1.00 45.31	8
MOTA	3196		209	6.823	37.405	51.989	1.00 58.23	8
ATOM	3197		210	32.040.	43.551	36.157	1.00 30.78	8
ATOM	3198		211	17.038	52.360	63.283	1.00 34.08	8
MOTA	3199 3200		212	30.001	18.471	49.568	1.00 33.92	8
MOTA MOTA	3200		213 214	23.045	28.615	33.729	1.00 44.22	8
ATOM	3201		214	26.130 33.881	61.496	75.246	1.00 40.49	8
MOTA	3202	OH2 WAT S	-	23.887	32.473 45.987	46.604	1.00 39.35 1.00 36.50	8
ATOM	3203		217	6.925	43.987	44.362 65.917	1.00 36.50 1.00 34.22	8 8
ATOM	3205		217	32.823	8.977	59.213	1.00 34.22	8
END	2203	OUT MAI 3	2.10	JZ. UZJ	0.511	23.413	1.00 27.03	ø

PCT/US00/24700 WO 01/18045

117/263

717/200										
					Figure 18		_		C	7.0
	_			Residu		Y	Z	В	Segment	TD
ATOM	1	CB	ALA A	2	46.726		138.208		56.80	
MOTA	2	С	ALA A	2	47.943		138.561		58.93	
ATOM	3	0	ALA A	2	48.857		137.884		60.99	
ATOM	4	N	ALA A	2	46.995		140.488		56.88	
atom	5	CA	ALA A	2	46.801		139.052		59.41	
ATOM-	6	N	LYS A	3	47.890		138.903		53.81	
MOTA	7	CA	LYS A	3	48.937		138.492		53.62	
MOTA	8	CB	LYS A	3	48.736		139.156		50.26	
Mota	9	CG	LYS A	3	48.917		140.665		56.64	
ATOM	10	CD	TAR Y	3	48.950		141.285		57.18	
ATOM	11	CE	LYS A	3	49.160		142.796		56.74	
MOTA	12	NZ	LYS A.	3	50.423		143.165		54.86	
MOTA	13	С	LYS A	3	49.063		136.986		49.95	
ATOM	14	0	LYS A	3	48.088		136.248		44.34	
ATOM	15	N	VAL A	4	50.287		136.550		46.01	
ATOM	16	CA	VAL A	4	50.609		135.142		42.48	-
ATOM	17	CB	VAL A	4	51.901		134.809		43.42	
MOTA	18		VAL A	4	52.179		133.307		39.20	
MOTA	19		VAL A	4	51.773		135.310		39.34	
ATOM	20	C	VAL A	4	50.787		134.806		38.41	
ATOM	21	0	VAL A	4	51.659		135.351		37.08	
ATOM	22	N	LYS A	5	49.959		133.899		37.79	
ATOM	23	CA	LYS A	5	50.016		133.515		38.17	
ATOM	24	CB	LYS A	5	.48.700		133.887		38.40	
MOTA	25	CG	LYS A	5	48.411		135.385		42.84	
ATOM	26	CD	LYS A	5	49.384		136.070		44.10	
ATOM	27	CE	LYS A	5	49.017		137.534		45.97	
ATOM	28	NZ	LYS A	5	49.045		138.322		51.78	
ATOM	29	C .	LYS A	5 5	50.275 49.992		132.030 131.201		38.31 38.13	
MOTA	30	0	LYS A	6	50.817		131.717		35.05	
MOTA	31	N	LEU A	6	51.082		130.346		31.46	
ATOM	32 33	CA	LEU A	6	52.582		130.340		28.46	
ATOM	34	CB CG	LEU A	_	53.094		128.720		30.91	
ATOM	35		LEU A	6 ·	52.618		128.295		33.05	
ATOM ATOM	36		LEU A	6	52.630		127.744		21.96	
ATOM	37	C	LEU A	6	50.307		130.164		30.50	
ATOM	38	Ö	LEU A	6	50.453		130.955		32.82	
ATOM	39	N	ILE A	7	49.459		129.145		26.94	
ATOM	40	CA	ILE A	7	48.676		128.893		28.29	
ATOM	41	CB	ILE A	7	47.218		128.493		28.94	
ATOM	42	CG2	ILE A	7	46.499		128.041		32.57	
ATOM	43		ILE A	7	46.447		129.688		36.59	
ATOM	44		ILE A	7	46.979		130.236		46.80	
ATOM	45	С	ILE A	7	49.341		127.770		31.09	
ATOM	46	Ō	IL A	7	49.600		126.695	1.00	27.65	
ATOM	47		·GL: A	8	49.638	0.201	128.029	1.00	27.30	
MOTA	48	CA	GL'. A	8	50.277	-0.614	127.016	1.00	25.50	
ATOM	49	С	GLY A	8	50.578	-2.024	127.480	1.00	30.66	
ATOM	50	0	GLY A	8	50.224	-2.421	128.592	1.00	30.02	
ATOM	51	N	THR A	9	51.238	-2.777	126.611	1.00	28.94	
ATOM	52	CA	THE A	9	51.614	-4.156	126.877	1.00	33.63	
ATOM	53	CB	THE A	9	50.393	-5.083	126.857	1.00	36.19	
ATOM ·	54	OG1		9	50.827	-6.441	126.992	1.00	34.87	
MOTA	55	CG2	THR A	9	49.633	-4.931	125.548		36.49	
ATOM	56	С	THR A	9	52.567	-4.637	125.794		34.83	
ATOM	57	0	THE A	9	52.545		124.677		36.91	
ATOM	58	N	LEU A	10	53.407		126.129		39.15	
MOTA	59	CA	LEU A	10	. 54.345		125.164	1.00	40.21	
ATOM	60	CB	LEU A	10	55.402		125.881	1:00	42.40	
ATOM	61	CG	LEU A	10	56.482		126.687		42.29	
MOTA	62	CD1	LEU A	10	55.870		127.647		42.92	
ATCM	63	CD2	LEU A	10	57.319		127.424		40.29	
ATCM	64	С	LEU A	10	53.591		124.159		41.70	
ATOM	65	0	LEU A	10	54.055		123.044		37.13	
ATOM	66.	N	asp a	11	52.419	-7.519	124.557	1.00	47.28	

N TOM	67 CA ASP A 11	51.617 -8.369 123.683 1.00 53.30
MOTA	68 CB ASP A 11	50.230 -8.608 124.287 1.00 52.35
MOTA		50 295 -9.331 125.610 1.00 53.33
MOTA	0,5 00 1121	51 004 -10.358 125.685 1.00 52.21
MOTA	, , , , , , , , , , , , , , , , , , , ,	49 630 -8.883 126.567 1.00 58.48
ATOM	,1 000	51 459 -7.840 122.257 1.00 53.33
ATOM	, 2	51.360 -8.626 121.311 1.00 54.31
MOTA	73 O ASP A 11	51.424 -6.521 122.092 1.00 51.92
MOTA	74 N TYR A 12	51.275 -5.970 120.749 1.00 51.41
MOTA	75 CA TYR A 12	51.328 -4.437 120.755 1.00 49.05
MOTA	76 CB TYR A 12	J1.J20 4.4J, 123
ATOM	77 CG TYR A 12	50.10
ATOM	78 CD1 TYR A 12	30.230 3.231 2.30 42 53
MOTA	79 CE1 TYR A 12	97.232 2.122
ATOM	80 CD2 TYR A 12	48.952
MOTA	81 CE2 TYR A 12	47.500 2.00.
ATOM	82 CZ TYR A 12	100 100 100 100 10 65
MOTA	83 OH TYR A 12	27.00
ATOM	84 C TYR A 12	52.55. 100 AF FF
ATOM	85 O TYR A 12	32.23.
MOTA	86 N GLY A 13	33.10.
ATOM	87 CA GLY A 13	34.5
ATOM	88 C GLY A 13	34.13
ATOM	89 O GLY A 13	
ATOM	90 N LYS A 14	33.043 -2.234 112.20
MOTA	91 CA LYS A 14	32.333 -10.310 110.31
ATOM	92 CB LYS A 14	32.022 11.13
MOTA	93 CG LYS A 14	33.000 12.002 12.00 1 00 61 61
MOTA	94 CD LYS A 14	33.934 13.134 11
ATOM	95 CE LYS A 14	J4.141 12.000 12.00
ATOM	96 NZ LYS A 14	JJ.J.4 10.110 =
ATOM	97 C LYS A 14	31,433
ATOM	98 O LYS A 14	
MOTA	99 N TYR A 15	51.143
ATOM	100 CA TYR A 15	30.031
MOTA	101 CB TYR A 15	
ATOM	102 CG TYR A 15	48.436 -8.733 110.300 1.00 52 10
MOTA	103 CD1 TYR A 15	40.100 0.233 223 337 300 51 72
MOTA	104 CE1 TYR A 15	47.722 -9.053 120.685 1.00 51.72 48.283 -10.166 118.208 1.00 54.67
MOTA	105 CD2 TYR A 15	47.838 -10.976 119.250 1.00 55.69
ATOM	106 CE2 TYR A 15	47.561 -10.412 120.485 1.00 54.18
MOTA	107 CZ TYR A 15	47 130 -11 208 121 520 1.00 55.42
MOTA	108 OH TYR A 15	50 592 -7 617 115.353 1.00 46.20
MOTA	109 C TYR A 15	49 933 -6.635 115.018 1.00 43.72
MOTA	110	51 758 -7 924 114.791 1.00 46.29
MOTA	172 17 170 1 16	52 347 -7 109 113.727 1.00 45.66
ATOM		53 779 -7 545 113,441 1.00 50.56
ATOM		54 677 -7 698 114 636 1.00 56.90
ATOM		54 992 -6 388 115.315 1.00 60.72
MOTA		56 021 -6 602 116.328 1.00 66.70
MOTA	110 110	57 211 -7 141 116,070 1.00 66.68
MOTA	-1, 02 12.	57 520 -7 519 114.834 1.00 65.68
MCTA	1	58 093 -7.314 117.046 1.00 66.33
MOTA	122 11112	51.573 -7.298 112.429 1.00 44.20
MOTA	120 0 0000	50 971 -8 293 112.254 1.00 43.41
MOTA		51.715 -6.346 111.514 1.00 39.23
ATOM	122 N TYR A 17 123 CA TYR A 17	51.067 -6.453 110.215 1.00 38.71
MOTA	124 CB TYR A 17	50.913 -5.072 109.565 1.00 33.83
ATOM	125 CG TYR A 17	49.744 -4.255 110.084 1.00 27.35
ATOM	126 CD1 TYR A 17	49.598 -3.982 111.443 1.00 27.25
ATOM		48.540 -3.184 111.909 1.00 27.16
ATOM	127 CE1 TYR A 17 128 CD2 TYR A 17	48.807 -3.720 109.204 1.00 25.78
ATOM	129 CE2 TYR A 17	47.752 -2.925 109.656 1.00 26.34
ATOM	130 CZ TYR A 17	47.626 -2.659 111.009 1.00 27.28
ATOM	131 OH TYR A 17	46.602 -1.842 111.450 1.00 22.04
MOTA MOTA	132 C TYR A 17	51.972 -7.350 109.368 1.00 41.52
AIUTI		

		U
		53.150 -7.525 109.683 1.00 35.63
MOTA	133 O TYR A 17	51.440 -7.925 108.278 1.00 46.68
ATOM	134 N . PRO A 18	11.44
ATOM	135 CD PRO A 18	30.070
ATOM	136 CA 'PRO A 18	32.203
	137 CB PRO A 18	
MOTA		50.343 -7.837 106.274 1.00 55.13
MOTA	100 00	53 556 -8 303 106.885 1.00 49.57
MOTA	133	53.788 -7.101 106.766 1.00 49.33
MOTA	140 O PRO A 18	33.700
ATOM	141 N LYS A 19	34,332
ATOM	142 CA LYS A 19	33.000
MOTA	143 CB LYS A 19	30.223
ATOM	144 CG LYS A 19	33.003 10.320 76
ATOM	145 CD LYS A 19	J3.4JJ
	146 CE LYS A 19	53.004 -10.653 103.162 1.00 73.70
ATOM	140 02 200	52.116 -9.701 102.442 1.00 79.01
MOTA	147	56 229 -7 757 105.405 1.00 55.93
MOTA	1.0	57 230 -7 150 105.796 1.00 59.86
MOTA	147 0 000	55 515 -7 338 104.367 1.00 49.62
MOTA		55 925 -6.130 103.652 1.00 50.02
ATOM	151 CA ASN A 20	55.829 -6.359 102.143 1.00 50.62
ATOM	152 CB ASN A 20	56.729 -7.487 101.670 1.00 51.26
ATOM	153 CG ASN A 20	30.723
MOTA	154 OD1 ASN A 20	37.323
ATOM	155 ND2 ASN A 20	30.130
ATOM	156 C ASN A 20	33.10
ATOM	157 O ASN A 20	33.402
MOTA	158 N HIS A 21	34.102
	159 CA HIS A 21	53.374 -3.863 105.321 1.00 32.39
ATCM	160 CB HIS A 21	52.198 -4,355 106.162 1.00 29.34
ATOM	161 CG HIS A 21	51.118 -3.339 106.348 1.00 30.50
ATOM	101 00 11	50.999 -2.314 107.223 1.00 22.88
MOTA	100 000	40 003 -3 298 105.552 1.00 30.15
MOTA		49.226 -2.293 105.933 1.00 30.96
ATOM		49 814 -1 680 106.945 1.00 36.41
MOTA	103 1.22 1.22	54 104 -2·879 106.155 1.00 29·18
ATOM	100 0	EE 030 -3 279 106 963 1.00 26.92
ATOM	167 O HIS A 21	53 965 -1 572 105,969 1.00 31.12
MOTA	168 N PRO A 22	53 027 -0 912 105.043 1.00 29.46
ATOM	169 CD PRO A 22	EA 702 -0 567 106.739 1.00 29.27
ATOM	170 CA PRO A 22	54.012 0.732 106.326 1.00 26.00
ATOM	171 CB PRO A 22	53.670 0.434 104.875 1.00 31.52
ATOM	172 CG PRO A 22	33.010
ATOM	173 C PRO A 22	J4:024 000 1 00 27 47
ATOM	174 O PRO A 22	100 24 54
ATOM	175 N LEUA 23	33.302
ATOM	176 CA LEU A 23	33.303
ATOM	177 CB LEU A 23	31.033
ATOM	178 CG LEU A 23	J#. J 77
ATCM	179 CD1 LEU A 23 .	45.050
ATOM	180 CD2 LEU A 23	32.000 3.00 1.00 31 64
ATOM	181 C LEU A 23	33.773
	182 O LEU A 23	
ATOM	183 N LYS A 24	54.753 -3.636 110.012 1.00 28.25
MOTA	184 CA LYS A 24	55.200 -4.929 110.513 1.00 30.90
ATOM	185 CB LYS A 24	55.718 -5.810 109.372 1.00 36.59
ATOM	7.4	E7 170 _5 650 108.982 1.00 40.//
MOTA	100 00	57.546 -4.259 108.535 1.00 44.51
Mota	20.	EO DEOA 303 107.755 1.00 50.44
ATOM	24	59,959 -4,990 108.487 1.00 51.30
ATCM	105	56 382 -4 736 111.581 1.00 32.57
ATOM	190 C LYS A 24	56 605 -5 683 112.245 1.00 29.83
ATOM	191 0 LYS A 24	56 729 -3 497 111.750 1.00 27.06
ATOM	192 N ILE A 25	57 755 -3 200 112,739 1.00 30.45
ATOM	193 CA ILE A 25	50 416 -1 822 112.499 1.00 33.37
ATOM	194 CB ILE A 25	50 056 -1 757 111.120 1.00 33.22
ATCM	195 CG2 ILE A 25	39.030
ATOM	196 CG1 ILE A 25	37.301 0
· ATCM	197 CD1 ILE A 25	
ATCM	198 C ILE A 25	57.156 -3.129 114.141 1.00 32.10
A10.5		

						_			15
ATOM	199	0 ;	ILE A	25		55.967	-2.851		1.00 28.15
	200		PBO A	26		57.979	-3.382	115.168	1.00 31.64
MOTA			_	26		59.395	-3 768	115.139	1.00 31.11
MOTA	201		PRO A					116.556	1.00 31.04
ATOM	202	CA :	PRO A	26		57.507			1.00 32.41
ATOM	203	CB	PRO A	26		58.709		117.347	
	204		PRO A	26		59.454		116.324	1.00 39.33
MOTA				26		57.265	-1.840	116.827	1.00 28.42
MOTA	205	•	PRO A					116.315	1.00 22.23
MOTA	206		PRO A	26		58.001	-0.534	110.515	1.00 24.16
MOTA	207	N	ARG A	27		56.251	-1.514	117.614	
	208		ARG A	27		55.977	-0.116	117.899	1.00 28.53
MOTA				27		54.787	0.358	117.048	1.00 29.77
MOTA	209		ARG A		•		0.301	115.554	1.00 29.64
ATOM	210	CG	ARG A	27		55.075		113.534	1.00 26.61
ATOM	211	CD	ARG A	27		53.918	0.538	114.620	
	212		ARG A	27		53.622	1.965	114.517	1.00 28.52
ATOM				27		52.649	2.591	115.173	1.00 29.70
ATOM	213	CZ	ARG A			51.857	1.924	115.99 9	1.00 30.17
ATOM	214		ARG A	27				114.983	1.00 23.25
MOTA	215	NH2	ARG A	27		52.451	3.889		
ATOM	216	С	ARG A	27		55.746	0.114	119.387	1.00 30.71
	217	ō	ARG A	27		56.679	0.490	120.113	1.00 24.60
MOTA				28		54.529	-0.117	119.863	1.00 23.51
MOTA	218	1.1	VAL A			54.282	0.093	121.282	1.00 29.33
MOTA	219	CA	VAL A	28					1.00 34.56
ATOM	220	CB	VAL A	28		52.800	-0.124	121.635	1.00 34.30
	221		VAL A	28		52.599	0.002	123.142	1.00 32.42
MOTA				28		51.947	0.908	120.903	1.00 33.77
MOTA	222	CG2				55.158	-0.816	122.145	1.00 29.75
MOTA	223	C	VAL À	28					1.00 32.49
ATOM	224	0	VAL A	28		55.673	-0.394		
ATOM	225	74	SER A	29		55.341	-2.059		
•	226	CA	SER A	29		56.162	-2.982	122.483	1.00 31.39
ATOM				29		56.058	-4.399	121.905	1.00 26.92
MOTA	227	CB	SER A			56.562	-4.464		1.00 33.85
ATOM	228	ЭG	SER A	29					1.00 34.77
ATOM	229	С	SER A	29		57.609	-2.482	122.453	
ATOM	230	O	SER A	29		58.378	-2.718	123.391	_
			LEU A	30		57.967	-1.778	121.380	1.00 31.20
ATOM	231	:1		30		59.317	-1.234	121.240	1.00 32.03
MOTA	232	CA	LEU A			59.554	-0.669	119.829	1.00 30.86
ATOM	233	CB	LEU A	30					1.00 33.22
ATOM	234	CG	LEU A	30		61.008	-0.550	119.333	
ATOM	235	CD1		30		61.066	0.484	118.224	
			LEU A	30		61.948	-0.135	120.441	1.00 35.11
ATOM	236		ב דיני			59.423	-0.089		1.00 30.29
MOTA	237	C	LEU A	30			0.019		1.00 27.69
ATOM	238	O.	LEU A	30		60.397			1.00 27.38
ATOM	239	N	LEU A	31		58.408	0.769	_ :	
	240	CA	LEU A	31		58.372	1.915	5 123.126	
MOTA				31		57.008	2.590	5 123.042	1.00 24.92
MOTA	241	CB	LEU A			56.918	4.069		1.00 30.49
MOTA	242	CG	LEU A	31				123.881	1.00 24.71
MOTA	243	CD1	LEU A	31		55.492	4.35	123.001	1.00 27.32
MOTA	244	CD2		31		57.851	4.35	5 124.603	
-	245		LEU A	31		58.610	1.42	9 124.564	1.00 28.18
MOTA				31		59.489	1.92	8 125.263	1.00 33.64
ATCM	246		LEU A			57.831	0 44	5 125.000	1.00 30.17
MOTA	247		LEU A	32			0.44	4 126.357	1.00 30.59
ATOM	248	CA	LEU A	32		57.965	~0.08	4 120.557	1.00 30.55
ATOM	249		LEU A	32		56.944	-1.20	6 126.601	1.00 30.55
			LEU A			55.458	-0.87	9 126.402	1.00 29.50
ATOM	250					54.611	-2.10	7 126.727	1.00 28.31
MOTA	251	CD1	LEU A				0.27	3 [.] 127.287	
MOTA	. 252	್ ರಾ2	LEU A	32		55.058		7 127.20.	
ATOM	253	Ç	LEU A	32		59.376		7 126.657	
	254		LEU A	32		59.961	-0.24	3 127.682	1.00 36.51
MOTA						59.926	-1.42	9 125,777	1.00 29.75
ATOM	255		ARG A			61.271		3 125.999	1.00 33.49
ATOM	256	CA	ARG A						
ATOM	257		ARG A	. 33		61.630			
	258		ARG A			60.814		3 125.024	
ATOM						61.237		6 123.933	1.00 53.68
ATOM	259		ARG A	_		60.515		2 124.007	1.00 56.66
MOTA	260		ARG A						
ATOM	261		ARG A			60.611	_		
	262					61.402		1 126.045	
ATOM			_			59.911	_8.51	1 124.991	1.00 57.91
MOTA	263					62.314		15 125.978	1.00 31.45
ATOM	264	1 C	ARG A	33		02.017			

				63 200	-0.885	126 727	1.00 26.49
ATOM'	265 0		33		-0.005		1.00 32.42
ATOM	266 N	PHE A	34	62.103	0.146		1.00 32.42
MOTA	267 CA		34	63.042			
	268 CB		34	62.617	2.180		1.00 31.68
MOTA		PHE A	34	63.653	3.202		1.00 29.05
ATOM			34	64.825	2.819		1.00 29.21
ATOM	270 CD1			63.458	4.546	123.781	1.00 28.25
MOTA	271 CD2		34	65.793		122.484	1.00 29.35
MOTA	272 CE1		34				1.00 32.67
MOTA	273 CE2	PHE A.	34	64.416			1.00 29.08
MOTA	274 CZ	PHE A	34	65.589			1.00 23.00
ATOM	275 C	PHE A	34	63.083		126.305	
	276 0	PHE A	34	64.155		126.852	1.00 27.49
MOTA	277 N	LYS A	35 .	61.912		126.802	1.00 29.34
ATOM	278 CA	LYS A	35	61.848	3.191	128.042	1.00 31.48
MOTA		LYS A	35	60.406	3.576	128.374	1.00 30.82
MOTA	_		35	59.803		127.395	1.00 32.98
ATOM	280 CG	LYS A	35	58.404		127.790	1.00 40.93
ATOM	281 CD	LYS A		57.410	3.827	127.688	1.00 44.56
ATOM	282 CE	LYS A	35	57.754	2.656	128.548	1.00 55.10
ATOM	283 NZ	LYS A	35		2.387	129.183	1.00 34.47
ATOM	284 C	LYS A	35	62.443		130.043	1.00 32.01
MOTA	285 O	LYS A	35	63.136	2.933		1.00 36.28
ATOM	286 N	ASP A	36	62.180		129.190	
ATOM	287 CA	ASP A	36	62.710		130.242	1.00 37.93
	288 CB	ASP A	36	62.145		130.126	1.00 41.27
ATOM	289 CG	ASP A	36	62.731	-2.117	131.157	1.00 43.77
MOTA		_	36	62.660	-1.793	132.360	1.00 43.92
ATOM			36	63.261	-3.178	130.765	1.00 45.78
ATOM	291 OD	ASP A	36 -	64.227	0.181	130.174	1.00 38.74
MOTA	292 C		36	64.902	0.187	131.201	1.00 36.23
MOTA	293 O	ASP A		64.760	0.127		1.00 37.96
MOTA	294 N	ALA A	37	66.201	0.080	128.768	1.00 39.49
MOTA	295 CA		37	66.525	-0.158	127.299	1.00 39.74
ATOM	296 CB		37		1 386	129.244	1.00 40.09
MOTA	297 C	ALA A	37	66.832	1.402	129.714	1.00 38.80
ATOM	298 0	ALA A	37	67.962	2.477		1.00 39.04
MOTA	299 N	MET A	38	66.085	3.789		1.00 38.71
MOTA	300 CA	MET A	38	66.567			1.00 36.66
ATOM	301 CE	MET A	38	65.965	4.863	120.040	1.00 39.16
ATOM	302 CG	MET A	38	66.335	4.744	127.173	1.00 37.55
ATOM	303 SE	MET A	38	68.005		126.840	1.00 35.74
MOTA	304 CE		38	67.892	7.033		1.00 40.58
MOTA	305 C	MÉT A	3 B	66.187	4.094	130.995	1.00 40.30
ATOM	306 0	MET A	38	66.484	5.173	131.502	
MOTA	307 N	ASN A	39	65.530	3.147	131.657	1.00 38.41
ATOM	308 C		39	65.094	3.346	5 133.039	1.00 42.46
	309 CI		39	66.298	3.494	1 133.979	1.00 46.06
ATOM	310 C		39	67.125	2 224	134.074	1.00 51.69
ATOM		D1 ASN A		66.625	1.175	5 134.487	1.00 54.33
ATOM		D2 ASN A		68.396	2 31:	3 133.695	1.00 49.13
MOTA				64.222		4 133.134	1.00 41.19
MOTA	313 C			64.375		2 134.050	1.00 42.74
MOTA	314 0			63.301		6 132.188	1.00 40.22
MOTA	315 N			62.427		9 132.170	1.00 39.85
MOTA	316 C			62.524		0 130.812	
ATOM	317 C			62.324		4 130.447	
MOTA	318 C			63.940		3 129.088	
ATOM .	319 C	D1 LEU A	40	63.916			
ATOM	320 C	D2 LEU A	40	64.470		7 737.273	
ATOM	321 C			60.967		0 132.505	
ATOM	322 0			60.076		9 132.213	
ATOM	323 N			60.720		1 133.124	
		A ILE A		59.363		9 133.520	1.00 42.43
ATOM		B ILE ?	_	58.536	3.57	5 132.330	1.00 39.13
MOTA		G2 ILE ?		.59.137	7 2.27	1 131.820	1.00 36.51
ATOM		G1 ILE A		57.082	2 3.36	7 132.774	1 1.00 38.71
MOTA				56.14	7 2.92	0 131.67	5 1.00 44.05
ATOM			_	59.37	6 3.05	66 134.619	1.00 42.40
ATOM	329 C			60.25	_	5 134.65	1.00 43.05
ATOM	330 C	, 105 /	11	• • • • • • • • • • • • • • • • • • • •			

\ mo\/	331	NI A	SP A	42	58.414	3.148	135.532	1.00 47.83
MOTA				42	58.301		136.620	1.00 49.23
ATOM	332		SP A				137.984	1.00 46.60
MOTA	333	CB A	ASP A	42	58.243			
ATOM	334	CG A	ASP A	42	59.493		138.284	
	335		ASP A	42	60.614	3.146	138.141	1.00 49.28
MOTA				42	59.355	4.866	138.678	1.00 52.47
ATOM	336.		ASP A		57.034		136.405	1.00 51.22
MOTA	337		ASP A	42			135.864	1.00 48.07
ATOM	338	0 7	ASP A	42	56.048			1.00 51.41
ATOM	339	N (GLU A	43	57.072		136.832	
	340		GLU A	43	55.945	-0.792	136.673	1.00 50.67
ATOM			GLU A	43	56.234	1 -2.094	137.412	1.00 54.49
MOTA	341			43	55.208		137.185	1.00 60.55
MOTA	342		GLU A		55.524	-	137.974	1.00 66.12
ATOM	343		GLU A	43			137.861	1.00 70.33
MOTA	344	OE1	GLU A	43	54.76			1.00 67.39
ATOM	345	OE2	GLU A	43	56.53		138.711	1.00 07.33
ATOM	346	C	GLU A	43	54.64	5 -0.178	137.178	1.00 50.20
	347		GLU A	43	53.56	7 -0.475	136.658	1.00 48.27
MOTA				44	54.75		138.186	1.00 49.04
MOTA	348		LYS A		53.60			1.00 47.56
ATOM	349		LYS A	44				1.00 54.73
ATOM	350	CB	LYS A	44	54.01			1.00 58.07
ATOM	351	CG	LYS A	44	53.19			1.00 30.07
ATOM	352		LYS A	44	53.70			1.00 61.24
			LYS A	44	52.84	9 5.727	140.151	1.00 61.93
MOTA	353			44	51.50		139.519	1.00 62.80
MOTA	354		LYS A		52.92			1.00 44.52
MOTA	355	С	LYS A	44				1.00 45.31
MOTA	356	0	LYS A	44	51.75			1.00 41.03
ATOM	357	N	GLU A	45	53.67			1.00 41.23
ATOM	358	CA	GLU A	45	53.14			
ATOM	359	CB	GLU A	45	54.27			1.00 38.52
		CG	GLU A	45	54.97	3 5.572	136.589	1.00 40.30
MOTA	360			45	56.24		2 136.096	1.00 38.06
MOTA	361	CD	GLU A		57.17			1.00 36.93
MOTA	362	OE1	GLU A	45		-		1.00 32.57
ATOM	363	OE2	GLU A	45	56.30	· -		1.00 40.69
MOTA	364	Ċ	GLU A	45.	52.47		_	
ATOM	365	0	GLU A	45	51.78			
	366	N	LEU A	46	52.70	00 1.95		1.00 36.90
MOTA	367	CA	LEU A	46	52.16		7 133.517	1.00 40.46
MOTA				46	53.22		9 133.034	1.00 35.52
ATOM	368	CB	LEU A		52.87			1.00 43.75
ATOM	369	CG	LEU A	46	52.5			1.00 42.06
ATOM	370	CD1	LEU A	46				1.00 42.90
MOTA	371	CD2	LEU A	46	54.03			1.00 40.03
ATOM	372	С	LEU A	46	50.85		7 133.780	
ATOM	373	0	LEU A	46	50.7			
	374	N	ILE A	47	49.8	61 0.71		1.00 34.03
MOTA		CA	ILE A	47	48.5	60 0.06	8 133.033	1.00 32.12
MOTA	375				47.4			1.00 32.35
TOM	376	CB	ILE A		46.0	69 0 36	0 132.833	1.00 30.60
MOTe.	377		ILE A					
MOIG	378	CG1			47.4			
ATOM	379	CD1	ILE A	47	46.3			
ATOM	380		ILE A		48.4			
	381		ILE A		48.5			
MOTA					48.2	31 -2.19	5 132.205	1.00 32.98
ATOM	382		LYS A	_	48.1			1.00 30.98
MOTA	383		LYS A		48.0			
MOTA	384	CB	LYS A				_	
MOTA	385	CG	LYS A		47.9			
ATOM	386		LYS A		47.9		2 131.509	
	387		LYS A		47.9			1.00 54.43
ATOM					49.1		99 129.580	1.00 50.43
ATOM	388		LYS A	_	46.8			1.00 29.55
ATOM	389		LYS A		45.7			1.00 29.65
ATCM	390) c	LYS >			74.0		
ATOM	39:		SER A	49	47.0			00 77
	39		SER A		45.9			
ATOM	39:		SER A		46.5	551 -2.8	05 126.60	
ATOM			SER A		47.5		34 126.44	3 1.00 30.74
atom	39				44.9		16 128.14	7 1.00 31.31
ATOM	39		SER A					6 1.00 34.44
ATOM	39	6 0	SER A	4 49	45.2	-5.0		

		43 688 _3 582 127.922 1.00 32.87
MOTA	397 N ARG A 50	45.888 5.582 12.150
	398 CA ABG A 50	42.632 -4.582 127.960 1.00 31.45
ATOM	3,00 0	41.636 -4.325 129.101 1.00 28.35
MOTA	3,7,7 02	40 729 -3 103 128,915 1.00 32.05
ATOM		39.653 -3.055 130.008 1.00 30.46
MOTA	401 CD ARG A 50	33.033 3.000 == -1: 20.25.21
ATOM	402 NE ARG A 50	38.021
ATOM	403 CZ ARG A 50	37.330
	404 NH1 ARG A 50	17.120 2.300 2.300
ATOM		37.238 -0.439 129.087 1.00 24.92
MOTA	305	41.894 -4.470 126.638 1.00 31.12
ATOM	300	41 895 -3 406 126.019 1.00 24.62
MOTA	407 O ARG A 50	41.264 -5.566 126.181 1.00 32.55
MOTA	408 N PRO A 51	91.204
ATOM	409 CD PRO A 51	41.104
ATOM	410 CA PRO A 51	90.33
	411 CB PRO A 51	
ATOM	412 CG PRO A 51	
ATOM		39.309 -4.630 125.134 1.00 31.61
MOTA	310	38.877 -4.431 126.267 1.00 29.84
MOTA		20 755 -4 093 124.058 1.00 29.09
MOTA	415 N ALA A 52	37.556 -3.294 124.183 1.00 29.61
MOTA	416 CA ALA A 52	37.330 3.232 2.20 2.00 2.0 6.7
ATOM	417 CB ALA A 52	37.303
ATOM	418 C ALA A 52	30.437
	419 O ALA A 52	30.003
MOTA	415	35.318 -3.947 124.896 1.00 32.98
MOTA	420 11 2101	34.192 -4.868 124.997 1.00 36.61
ATOM	721	33.253 -4.514 126.166 1.00 34.22
ATOM	100	32 734 -3 193 125.970 1.00 42.24
MOTA	423 OG1 THR A 53	33.998 -4.579 127.493 1.00 36.45
ATOM	424 CG2 THR A 53	33.33
ATOM	425 C THR A 53	33.411
ATOM	426 O THR A 53	33.33
ATOM	427 N LYS A 54	32.37
	428 CA LYS A 54	31.732 3.00 41 60
ATOM	429 CB LYS A 54	
MOTA		30.367 -7.034 120.597 1.00 49.42
MOTA	430 00 211	20 541 -8 310 120,508 1.00 51.82
MOTA	401 CD 210	29 075 -8 588 119.087 1.00 52.94
MOTA	432 CE LYS A 54	20 216 -8 879 118 182 1.00 54.26
ATOM	433 NZ LYS A 54	30.210
ATOM	434 C LYS A 54	30.913
ATOM	435 O LYS A 54	30.713
ATOM	436 N GLU A 55	30.404 4.073 === 1.00 36 10
	437 CA GLU A 55	23.334 2.322 2.2 1.0 1.0 1.0
ATOM	438 CB GLU A 55	23.103
MOTA		28.223 -1.694 125.476 1.00 46.04
ATOM	433 00	27.873 ~1.639 126.953 1.00 51.13
MOTA	770	27 002 -0 748 127 343 1.00 56.53
MOTA	341 002 024	$\frac{1}{20}$ $\frac{382}{382}$ $\frac{-2}{-2}$ $\frac{482}{482}$ $\frac{127.72}{72}$ $\frac{1.00}{1.00}$
ATOM	442 002 000	20 278 -1 607 123.32: 1.00 35.45
ATOM	443 C GLU A 55	30.2.0
ATOM	444 O GLU A 55	23.721
ATOM	445 N GLU A 56	31.340 =
ATOM	446 CA GLU A 56	32.203
	447 CB GLU A 56	33.033
MOTA	44, 02	33.474 -0.484 125.746 1.00 35.09
MOTA		34.787 -0.675 126.479 1.00 32.23
MOTA	44,5	25 645 -1 434 125,986 1.00 34.54
MOTA	450 022 000	24 051 -0 094 127,569 1.00 33.25
MOTA	451 OE2 GLU A 56	34.332 3.000 1.00 32 51
ATCM	452 C GLU A 56	32.433
ATOM	453 O GLU A 56	32.341
ATOM	454 N LEU A 57	32.00
	455 CA LEU A 57	33.033 #1
ATOM	433 62 57	
ATOM	430 00 220	34 829 -3.030 119.814 1.00 30.13
ATOM	457 66 220	35.095 -4.390 119.183 1.00 33.09
ATOM	430 054 555 3 57	$\frac{1}{2}$
ATOM	459 CD2 LEU A 57	21 772 -0 717 119.157 1.00 30.02
A100	160 0 1511 5 57	31.116
	400 C 22-	23 828 0 067 118.205 1.00 34.74
ATOM	461 0 LEU A 57	31.828 0.067 118.205 1.00 32.72 31.828 1.328 119.620 1.00 32.35
	400 C	31.828

		o
, movi	463 CA LEU A 58	29.353 -0.898 119.004 1.00 33.21
ATOM	464 CB LEU A 58	28.260 -1.844 119.495 1.00 35.17
ATOM	465 CG LEU A 58	28.504 -3.296 119.077 1.00 33.71
ATOM	466 CD1 LEU A 58	27.338 -4.166 119.524 1.00 36.80
ATOM	467 CD2 LEU A 58	28.665 -3.364 117.570 1.00 36.50
MOTA	468 C LEU A 58	28.940 0.543 119.222 1.00 30.99
MOTA	469 0 LEU A 58	27.915 0.985 118.700 1.00 35.50
MOTE	470 H LEU A 59	29.733 1.279 119.993 1.00 32.55
ATOM ATOM	471 CA LEU A 59	29.443 2.687 120.217 1.00 30.37
ATOM	472 CB LEU A 59	30.387 3.279 121.268 1.00 28.01
ATOM	473 CG LEU A 59 -	30.174
ATOM	474 CD1 LEU A 59	31.240
ATOM	475 CD2 LEU A 59	20.700
ATOM	476 C LEU A 59	23.032
ATOM	477 O LEU A 59	29.020 4.442 118.652 1.00 31.80 30.482 2.850 118.026 1.00 29.79
MOTA	478 N PHE A 60	30.726 3.454 116.716 1.00 30.24
MOTA	479 CA PHE A 60	32 131 4.055 116.637 1.00 29.99
MOTA	400 02	32 443 4 691 115.299 1.00 28.88
MOTA	401 00 011	71 706 5 780 114.845 1.00 25.58
MOTA	402 CD1 1112	33,448 4.178 114.479 1.00 24.00
MOTA		31 959 6 351 113 592 1.00 25 12
MOTA	484 CE1 PHE A 60 485 CE2 PHE A 60	33.709 4.740 113.226 1.00 25.98
MOTA	486 CZ PHE A 60	32.963 5.828 112.781 1.00 24.53
ATOM ATOM	487 C PHE A 60	30.536 2.520 115.529 1.00 30.30
ATOM	488 C PHE A 60	29.810 2.854 114.602 1.00 32.82 31.195 1.363 115.543 1.00 32.85
MOTA	489 N HIS A 61	31.133
MOTA	490 CA HIS A 61	31.073
MOTA	491 CB HIS A 61	32.230
MOTA	492 CG HIS A 61	33.576 0.238 114.116 1.00 34.25 34.225 0.532 112.967 1.00 34.67
MOTA	493 CD2 HIS A 61	34.328 0.786 115.133 1.00 37.78
MOTA	474	35.390 1.382 114.619 1.00 37.50
MOTA	4,55 022 1122	35.350 1.243 113.307 1.00 37.91
ATOM	496 NE2 HIS A 61	29.824 -0.449 114.480 1.00 38.44
MOTA MOTA	498 0 HIS A 61	29.213 -0.612 115.538 1.00 35.78
ATOM	499 N THR A 62	29.462 -1.015 113.327 1.00 39.73 28.278 -1.868 113.218 1.00 38.05
ATOM	500 CA THR A 62	28.276
ATOM	501 CB THR A 62	27.002 -1.025 11.00 1 100 11 15
MOTA	502 OG1 THR A 62	28.631 -2.345 110.867 1.00 41.13 27.348 -0.404 111.418 1.00 38.27
MOTA	503 CG2 THR A 62	20 509 -3 317 113.551 1.00 39.06
MOTA	504 C THR A 62	29 731 -3 768 113 392 1.00 39.32
MOTA	505 5 500	27.582 -4.034 114.017 1.00 40.92
ATOM	506 N GLU A 63 507 CA GLU A 63	27.696 -5.441 114.393 1.00 40.68
ATOM ATOM	508 CB GLU A 63	26.303 -6.000 114.704 1.00 43.19
ATOM	509 CG GLU A 63	26.269 -7.451 115.171 1.00 46.90 26.472 -7.593 116.665 1.00 53.11
ATOM	510 CD GLU A 63	20.372
ATOM	511 OE1 GLU A 63	20.001
ATOM	512 OE2 GLU A 63	20.407
MOTA	513 C GLU A 63	28.320 -6.263 113.268 1.00 36.19 29.272 -7.011 113.481 1.00 29.70
ATOM	514 O GLU A 63	27 755 -6 319 112.074 1.00 35.85
ATOM	515 N ASP A 64	28 198 -6 841 110.886 1.00 37.61
ATOM	310 01.	27.363 -6.382 109.697 1.00 43.30
ATOM		27.313 -4.872 109.582 1.00 53.38
ATOM	320 00 1124	28.290 -4.269 109.089 1.00 52.15
ATOM	519 OD1 ASP A 64 520 OD2 ASP A 64	26.298 -4.285 110.018 1.00 53.97
ATOM	521 C ASP A 64	29.673 -6.660 110.594 1.00 35.04
atom atom	522 0 ASP A 64	30.379 -7.625 110.303 1.00 33.60 30.144 -5.423 110.671 1.00 33.88
ATOM	523 N TYR A 65	30.144
ATOM	524 CA TYR A 65	31.334 3.33 3.75 3.00 3.1 80
ATCM	505 CB TYR A 65	100 35 19
ATOM	526 CG TYR A 65	34 000 -3 751 109 163 1.00 28 43
ATOM	527 CD1 TYR A 65	35.352 -3.411 109.024 1.00 32.52
ATOM	528 CE1 TYR A 65	33.334 -3.314 103.424

33.863 -2.398 111.134 1.00 34.08 65 CD2 TYR A 529 -2.050 111.002 1.00 29.89 MOTA 35.211 CE2 TYR A 65 530 MOTA -2.560 109.948 1.00 35.29 35.949 65 CZ TYR A MOTA 531 1.00 29.81 -2.231 109.825 37.286 TYR A 65 OH 532 MOTA -5.813 111.504 1.00 27.65 TYR A 65 32.405 1.00 27.65 533 С ATOM 33.339 -6.557 111.209 TYR A 65 534 0 1.00 27.32 MOTA -5.559 112.765 32.070 66 N ILE A 535 1.00 25.82 MOTA -6.153 113.858 32.822 66 CA ILE A 536 1.00 32.25 MOTA -5.764 115.217 32.227 66 ILE A CB 537 MOTA -6.403 116.338 1.00 28.85 33.029 CG2-ILE A 66 538 1.00 31.48 ATOM -4.242 115.364 32.226 66 CG1 ILE A 539 MOTA 1.00 38.02 -3.612 115.282 33.607 66 CD1 ILE A 540 1.00 31.21 MOTA -7.677 113.736 32.836 66 ILE A 1.00 30.25 MOTA 541 С -8.305 113.844 33.891 ILE A 66 0 542 ATOM 31.672 -8.279 113.507 1.00 33.28 67 ASN A 543 N ATOM 1.00 35.87 -9.731 113.372 31.627 CA ASN A 67 544 1.00 33.07 MOTA 30.190 -10.242 113.177 67 545 CB ASN A MOTA 1.00 37.34 29.338 -10.072 114.421 ASN A 67 CG ATOM 546 29.807 -10.296 115.535 1.00 35.20 67 OD1 ASN A 547 1.00 34.83 MOTA 28.071 -9.709 114.236 67 ND2 ASN A 548 1.00 31.00 ATOM 32.499 -10.198 112.219 ASN A 67 33.132 -11.248 112.306 549 С MOTA 1.00 37.26 ASN A 67 0 MOTA 550 1.00 30.91 -9.426 111.140 32.543 THR A 68 551 N 1.00 31.04 1.00 34.01 MOTA -9.814 109.997 33.368 CA THR A 68 552 MOTA -8.894 108.792 -9.037 108.352 33.133 THR A 68 553 CB 1.00 33.26 ATOM 31.780 OG1 THR A 68 554 -9.256 107.646 ATOM 1.00 30.84 34.072 CG2 THR A 68 1.00 33.31 ATOM 555 -9.794 110.378 34.844 -9.794 110.378 35.591 -10.708 110.024 THR A 68 556 С ATOM 1.00 32.52 35.591 -10.700 220---35.267 -8.768 111.117 THR A 68 557 0 1.00 30.30 MOTA LEU A 69 36.669 -8.686 111.534 36.938 -7.409 112.351 36.859 -6.049 111.647 37.154 -4.929 112.647 37.868 -6.004 110.505 37.036 -9.902 112.372 38.084 -10.519 112 155 558 N MOTA 36.669 -8.686 111.534 1.00 28.20 LEU A 69 559 CA MOTA 1.00 28.25 LEU A 69 560 CB 1.00 30.18 MOTA CG LEU A 69 561 1.00 31.08 1.00 27.85 MOTA CD1 LEU A 69 562 MOTA CD2 LEU A 69 1.00 31.65 563 ATOM 69 LEU A 564 С MOTA 1.00 23.95 38.084 -10.519 112.165 69 LEU A 565 0 36.169 -10.243 113.321 1.00 30.78 MOTA 70 MET A 566 N MOTA 36.411 -11.383 114.193 1.00 34.50 MET A 70 567 CA ATOM 35.318 -11.486 115.258 1.00 31.96 MET A 70 568 CB 1.00 36.26 MOTA 35.203 -10.259 116.147 70 MET A CG 569 1.00 37.52 MOTA 33.948 -10.454 117.431 70 MET A 570 SD 34.633 -11.815 118.403 1.00 37.36 MOTA MET A 70 CE MOTA 571 1.00 33.33 36.484 -12.685 113.401 70 1.00 31.47 1.00 35.37 1.00 36.6 572 С MET A MOTA 37.392 -13.488 113.607 70 MET A 0 MOTA 573 35.534 -12.887 112.494 71 GLU A 574 N MOTA 35.516 -14.098 111.681 GLU A 71 575 CA 1.00 37.3 ATOM 34.245 -14.160 110.834 71 576 CB GLU A 1.00 46.37 MOTA 34.206 -15.359 109.897 71 GLU A 577 CG ATOM 1.00 46.37 34.257 -16.693 110.633 71 GLU A 578 CD 1.00 48.94 MOTA 34.355 -17.733 109.952 OE1 GLU A 71 579 1.00 45.53 MOTA 34.190 -16.705 111.882 71 580 OE2 GLU A ATOM 36.732 -14.169 110.769 1.00 35.96 71 GLU A 581 C MOTA 37.342 -15.228 110.617 1.00 32.99 GLU A 71 MOTA 582 0 1.00 36.50 37.079 -13.039 110.159 N ALA A 72 1.00 33.98 583 MOTA 38.225 -12.981 109.264 584 CA ALA A 72 1.00 33.23 1.00 34.60 MOTA 38.366 -11.580 108.675 CS ALA A 72 585 MOTA 39.498 -13.362 109.998 72 ALA A 586 C ATCM 1.00 31.53 40.337 -14.094 109.466 ALA A 72 39.647 -12.873 111.224 587 0 1.00 30.87 ATOM GLU A 73 588 N 1.00 29.66 ATOM GLU A 73 GLU A 73 GLU A 73 GLU A 73 40.847 -13.177 111.985 589 CA 41.004 -12.224 113.180 1.00 33.33 ATOM 1.00 32.80 590 CB ATCM 42.234 -12.545 114.033 591 CG 1.00 40.07 42.390 -11.634 115.233 MOTA 1.00 41.02 592 CD OE1 GLU A 73 OE2 GLU A 73 42.601 -10.418 115.044 ATCM 42.298 -12.138 116.372 1.00 41.21 593 · ATOM 594 ATOM

1.00 31.73 40.906 -14.615 112.485 73 GLU A 595 C MOTA 1.00 32.96 41.957 -15.249 112.409 73 596 0 GLU A ATOM 1.00 35.85 39.798 -15.145 112.992 ARG A 74 597 N ATOM 39.847 -16.511 113.502 1.00 43.24 ARG A 74 598 CA ATOM 1.00 43.63 38.548 -16.892 114.216 74 ATOM 599 CB ARG A 1.00 51.20 37.450 -17.349 113.294 74 600 CG ARG A MOTA 36.366 -18.087 114.063 1.00 51.13 74 ARG A MOTA 601 CD 1.00 57.40 35.534 -18.871 113.158 74 ARG A MOTA 602 NE 1.00 56.36 35.991 -19.870 112.403 ARG A .74 CZ 603 MOTA 1.00 51.10 37.273 -20.208 112.446 MOTA 604 NH1 ARG A 74 1.00 58.75 35.172 -20.517 111.586 74 NH2 ARG A 605 ATOM 1.00 43.06 40.125 -17.506 112.372 ARG A 74 С MOTA 606 1.00 42.52 40.916 -18.429 112.541 74 607 ARG A ATOM 0 1.00 43.63 39.485 -17.305 111.222 75 608 SER A N MOTA 1.00 44.93 39.670 -18.186 110.066 75 SER A ATOM 609 ÇA 1.00 42.05 38.485 -18.089 109.113 SER A 75 610 CB MOTA 1.00 38.43 38.420 -16.799 108.532 75 SER A 611 OG MOTA 1.00 46.44 40.910 -17.797 109.282 SER A 75 C ATOM 612 1.00 45.17 41.339 -18.522 108.383 SER A 75 613 0 MOTA 1.00 46.18 41.466 -16.638 109.618 76 GLN A ATOM 614 N 1.00 44.73 42.642 -16.116 108.936 GLN A 76 615 CA MOTA 1.00 37.36 43.868 -16.973 109.226 76 616 CB GLN A ATOM 45.162 -16.208 109.045 1.00 43.96 76 GLN A 617 CG ATOM 1.00 41.86 45.415 -15.214 110.176 44.499 -14.537 110.655 76 618 CD GLN A ATOM 1.00 37.78 76 OE1 GLN A 619 MOTA 46.669 -15.111 110.591 1.00 45.00 NE2 GLN A 76 620 MOTA 1.00 44.17 42.374 -16.120 107.429 76 GLN A MOTA 621 C 43.233 -16.495 106.630 1.00 40.49 76 622 GLN A 0 MOTA 41.168 -15.713 107.053 1.00 43.11 SER A 77 623 N ATOM 1.00 44.66 40.784 -15.667 105.649 77 SER A 624 CA MOTA 40.182 -17.004 105.220 1.00 44.56 77 SER A 625 CB MOTA 1.00 42.58 38.974 -17.246 105.925 77 SER A OG 626 ATOM 1.00 44.80 39.747 -14.573 105.448 77 627 С SER A ATOM 39.096 -14.142 106.395 1.00 45.11 77 SER A 628 0 MOTA 1.00 46.06 39.590 -14.137 104.207 78 629 VAL A N MOTA 1.00 47.65 38.632 -13.095 103.888 78 VAL A 630 CA MOTA 39.107 -12.245 102.701 1.00 49.63 CB VAL A 78 631 MOTA 1.00 51.25 38.076 -11.167 102.391 78 CG1 VAL A 632 MOTA 1.00 53.00 40.454 -11.627 103.017 78 CG2 VAL A 633 MOTA 1.00 48.07 37.275 -13.682 103.530 78 VAL A 634 C MOTA 1.00 42.31 37.111 -14.301 102.480 78 VAL A 635 0 MOTA 1.00 49.82 36.282 -13.492 104.407 PRO A 79 ATOM 636 N 1.00 50.81 36.347 -12.782 105.696 79 PRO A 637 CD MOTA 1.00 51.31 34.927 -13.998 104.186 79 638 CA PRO A ATOM . 34.170 -13.450 105.396 1.00 53.13 79 639 PRO A CB ATOM 35.244 -13.469 106.469 1.00 53.50 -9 PRO A 640 CG MOTA 34.343 -13.517 102.858 1.00 52.42 ;9 PRO A MOTA 641 C 1.00 55.73 34.670 -12.428 102.382 PRO A .⁺9 642 0 ATOM 33.482 -14.343 102.273 1.00 49.63 80 643 N LYS A ATOM 1.00 51.62 32.824 -14.053 101.002 LYS A 80 MOTA 644 CA 1.00 53.92 31.632 -15.004 100.822 LYS A 80 645 CB MOTA 1.00 56.27 99.545 30.817 -14.808 80 LYS A 646 CG MOTA 1.00 56.61 29.586 -15.712 99.560 CD LYS A 80 647 MOTA 1.00 56.04 98.298 28.744 -15.579 80 648 CE LYS A MOTA 1.00 58.90 29.471 -16.036 97.081 80 NZ LYS A 649 1.00 51.10 MOTA 32.338 -12.607 100.874 80 LYS A 650 C ATOM 1.00 49.22 31.539 -12.140 101.689 LYS A 80 651 0 ATOM 1.00 51.14 32.821 -11.914 99.842 81 GLY A 652 N ATOM 1.00 47.07 32.418 -10.537 99.592 81 GLY A ATOM 653 CA 1.00 46.90 -9.496 100.599 32.876 GLY A 81 654 C ATOM 1.00 43.90 -8.301 100.397 32.671 GLY A 81 655 0 1.00 44.50 ATOM -9.942 101.681 33.504 82 ALA A ATOM 656 N 1.00 44.69 -9.029 102.715 33.973 82 ALA A 657 CA 1.00 44.62 ATOM -9.825 103.903 82 34.497 ALA A 658 ಡ೦ ATOM 1.00 41.82 -8.073 102.215 35.049 ALA A 82 659 ATOM Ç 1.00 35.92 -6.925 102.662 35.132 82 ALA A 660 0 ATOM

					•				
ATOM	661	N	ARG A	83		35.874	-8.549	101.289	1.00 43.30
ATOM	662	CA	ARG A	83		36.959		100.741	1.00 43.25
ATOM	663	CB	ARG A	83		37.715	-8.533	99.677	1.00 46.60
ATOM	664	CG	ARG A	83		38.988	-7.865	99.222	1.00 51.32 1.00 55.55
ATOM	665	CD	ARG A	83		39.636	-8.632	98.086	1.00 64.08
MOTA	666	NE	ARG A	83		40.995	-8.164	97.810 97.540	1.00 63.01
MOTA	667	CZ	ARG A	83		41.330	-6.905 -5.954	97.540	1.00 62.76
MOTA	668	NH1	ARG A	83		40.403 42.599	-6.600	97.304	1.00 59.66
MOTA	669	NH2	ARG A	83		36.453	-6.435	100.134	1.00 44.58
ATOM	670	C	ARG A	83 83		37.002	-5.365	100.395	1.00 38.05
ATOM	671	0	ARG A GLU A	84		35.404	-6.528	99.323	1.00 41.82
ATOM	672 673	N CA	GLU A	84		34.824	-5.356	98.678	1.00 41.44
ATOM ATOM	674	CB	GLU A	84		34.145	-5.765	97.367	1.00 46.27
MOTA	675	CG	GLU A	84		33.621	-7.185	97.388	1.00 52.61
ATOM	676	CD	GLU A	84		34.749	-8.198	97.308	1.00 54.12
ATOM	677	OE1	GLU A	84		34.555	-9.344	97.764	1.00 59.66 1.00 50.30
ATOM	678	OE2		84		35.823	-7.850	96.769 99.545	1.00 37.36
MOTA	679	С	GLU A	84		33.831 33.692	-4.595 -3.379	99.416	1.00 34.30
ATOM	680	0	GLU A	84		33.032	-5.301		1.00 36.00
ATOM	681	N	LYS A	85 85		32.154	-4.646	101.280	1.00 36.95
MOTA	682	CA CB	LYS A LYS A	85		31.089	-5.649		1.00 36.60
MOTA MOTA	683 684	CG	LYS A	85		29.975	-5.042	102.570	1.00 40.72
ATOM .	685	CD	LYS A	85		28.939	-6.092	102.963	1.00 46.21
ATOM	686	CE	LYS A	85		27.839	-5.487		1.00 49.06
MOTA	687	NZ	LYS A	85		26.859	-6.513		1.00 52.72 1.00 36.48
ATOM	688	С	LYS A	85		32.785	-4.008		1.00 30.40
ATOM	689	0	LYS A	85		32.353 33.819	-2.949 -4.649		1.00 33.69
MOTA	690	N	TYR A	86		34.468		104.250	1.00 35.23
MOTA	691	CA	TYR A	86 86		34.410	-5.281		1.00 33.65
ATOM	692 693	CB CG	TYR A	86		32.990	-5.665		1.00 35.09
ATOM ATOM	694	CDI				32.165	-4.765		1.00 34.06
MOTA	695	CE		86		30.866		106.704	1.00 34.32
MOTA	696	CD2		. 86		32.470	-6.923		1.00 33.17
ATOM	697	CE		86		31.162	-7.271	- -	1.00 33.91 1.00 34.21
ATOM	698	CZ	TYR A	86		30.369	-6.350 -6.658		1.00 35.20
MOTA	699	OH	TYR A	86		29.079	-3.672		1.00 36.09
MOTA	700	C	TYR A	86 86		35.901 36.552	-3.208		1.00 36.06
MOTA	701	0	TYR A ASN A	87		36.382	-3.777		1.00 36.46
MOTA	702 703	N CA	ASN A	87		37.712	-3.313		1.00 32.71
ATOM ATOM	704		ASN A	87		37.768	-1.793		1.00 36.26
ATOM	705		ASN A	87		38.989	-1.19	101.926	1.00 37.25
ATOM	706		1 ASN A	87		39.305	-1.51	B 100.784	1.00 36.29 1.00 45.25
ATOM	707		2 ASN A			39.675		0 102.640 6 103.217	
MOTA	708		ASN A			38.855		5 103.512	
MOTA	709		ASN A	87		39.868 38.687		7 103.523	
MOTA	710		ILE A			39.676			1.00 33.65
ATOM	711					39.030			1.00 38.66
MOTA	712 713					40.021			1.00 41.31
MOTA MOTA	714					38.536			
MOTA	715					39.641			
ATOM	716		ILE A			40.251		0 103.318	
MOTA	717		ILE A	. 88		39.555			
MOTA	718	N	GLY A	89		41.517			
MOTA	719					42.124			
MOTA	720		GLY A			43.134 43.951			1.00 32.81
ATOM	721		GLY A			43.931			1.00 31.39
ATOM	722		GLY A			44.005			1.00 23.90
ATOM	723 724		GLY A			45.340		3 101.040	1.00 28.78
ATOM	729		GLY A			45.563	-6.33	9 102.163	
MOTA MOTA	72		TYR A			46.221		5 100.36	7 1.00 28.26
MOTA		- ••							

-4.850 100.918 47.539 91 727 CA TYR A MOTA 1.00 22.62 -4.365 99.805 48.477 91 TYR A MOTA 728 CB 1.00 24.28 48.066 -3.03999.194 TYR A 91 CG 729 MOTA 99.822 1.00 21.55 -1.82948.374 730 91 CD1 TYR A ATOM 1.00 24.69 47.970 -0.609 99.275 TYR A 91 731 CEL MOTA 1.00 24.86 98.002 -2.997 47.341 91 MOTA 732 CD2 TYR A 1.00 29.92 -1.78697.447 46.931 91 TYR A CES MOTA 73,3 1.00 29.04 47.250 -0.59798.086 91 CZ TYR A 734 MOTA 1.00 29.51 97.516 0.593 91 46.861 TYR A 735 OH MOTA 1.00 27.52 47.452 -3.777 101.998 TYR A 91 736 C ATOM 1.00 27.20 -3.689 102.869 48.314 91 737 0 TYR A MOTA 1.00 26.75 -2.971 101.938 46.402 92 GLU A 738 N ATOM 1.00 28.38 -1.879 102.882 46.232 92 GLU A MOTA 739 CA 1.00 28.57 -0.881 102.310 45.234 92 GLU A CB MOTA 740 0.471 102.982 1.00 36.94 45.232 92 741 CG GLU A ATOM 1.00 37.40 1.395 102.396 44.178 92 742 CD GLU A ATOM 1.293 102.794 1.00 31.22 42.999 92 GE1 GLU A 743 MOTA 2.209 101.516 1.00 40.54 44.527 92 744 OE2 GLU A 1.00 29.20 ATOM -2.343 104.259 45.770 92 GLU A 745 С MOTA 1.00 21.86 46.389 -2.015 105.268 746 GLU A 92 0 MOTA 1.00 26.51 -3.117 104.286 93 44.687 ASN A 747 Ŋ ATOM 1.00 24.02 -3.613 105.527 44.109 ASN A 93 748 CA MOTA 1.00 24.51 -2.988 105.690 42.727 93 ASN A 749 CE MOTA 1.00 28.61 -1.488 105.405 42.738 93 ASN A 750 CG MOTA 1.00 25.30 -0.727 106.079 -1.063 104.393 43.428 93 OD1 ASN A 751 MOTA 1.00 20.45 41.987 93 ND2 ASN A 752 MOTA 1.00 24.79 -5.132 105.407 43.999 93 753 C ASN A ATOM -5.680 105.291 1.00 21.89 42.905 ASN A 93 0 754 MOTA -5.828 105.429 1.00 24.60 94 45.142 N PRO A 755 MOTA 1.00 22.93 -5.246 105.540 46.493 94 CD PRO A 756 ATOM 1.00 27.23 -7.285 105.312 45.241 PRO A 94 757 CA MOTA 1.00 25.46 -7.488 105.093 46.730 94 PRO A 758 CB MOTA 1.00 26.20 1.00 31.04 -6.431 106.046 47.299 PRO A 94 CG 759 ATCM -8.112 106.489 44.743 94 PRO A 760 C 1.00 29.10 MOTA -7.589 107.558 44.411 94 PRO A 761 MOTA С 1.00 28.27 -9.422 106.266 44.696 95 VAL A 762 N MOTA 1.00 28.82 44.299 -10.367 107.291 VAL A 95 763 CA MOTA 1.00 30.75 43.938 -11.737 106.677 95 764 CЭ VAL A MOTA 1.00 33.60 43.745 -12.766 107.776 95 VAL A 765 CG1 MOTA 1.00 24.87 42.679 -11.611 105.849 95 CG2 VAL A 766 MOTA 1.00 29.98 45.503 -10.549 108.204 95 VAL A 767 C ATOM 1.00 31.36 46.637 -10.649 107.729 95 VAL A 768 0 MOTA 1.00 29.38 45.264 -10.572 109.510 96 SER A 11 ATOM 769 1.00 32.56 46.335 -10.766 110.485 96 SER A 770 CA 1.00 34.15 MOTA -9.600 110.454 47.325 SER A 96 ATOM 771 CB 1.00 28.33 46 758 -8.448 111.051 45.681 -10.804 111.854 -8.448 111.051 96 CG SER A 772 MOTA 1.00 32.10 96 773 С SER A 1.00 37.91 ATOM 44 458 -10.839 111.950 96 SER A 0 774 ATOM 1.00 32.57 46.484 -10.795 112.913 775 N . TYR A 97 ATOM 45.914 -10.801 114.248 1.00 34.95 97 776 CA TYR A ATOM 1.00 35.47 46.685 -11.735 115.182 97 777 TYR A CΞ ATOM 46.492 -13.187 114.817 1.00 40.65 97 778 CG TYR A 1.00 40.63 MOTA 47.319 -13.812 113.882 97 779 CD1 TYR A ATCM 1.00 42.16 47.083 -15.121 113.475 97 780 CE1 TYR A MOTA 45.421 -13.910 115.338 1.00 38.82 97 781 TYR A CD2 ATOM 1.00 42.82 45.175 -15.219 114.936 97 782 CES TYR A ATOM 1.00 42.56 46.010 -15.816 114.005 TYR A CE 97 MOTA 783 1.00 46.03 45.772 -17.105 113.601 TYR A 97 784 СЖ 1.00 37.56 ATOM 45.862 -9.394 114.813 97 TYR A 785 С 1.00 39.06 MOTA 45.501, -9.195 115.998 97 TYR A 0 786 ATCM 1.00 31.96 -8.418 113.948 46.115 98 ALA A 787 \mathbb{R} 1.00 30.43 ATOM -7.024 114.341 46.048 98 ALA A 788 CA ATOM -6.211 113.600 1.00 29.64 47.105 98 789 CB ALA A ATOM 1.00 30.35 -6.533 113.962 44.658 98 ALA A 790 ATOM -5.655 114.612 1.00 31.82 44.099 98 791 ALA A 0 1.00 30.40 ATCM -7.130 112.915 44.094 99 MET A 792 N ATCM

		42.788 -6.730 112.420 1.00 27.54
ATOM	793 CA MET A 99	42.700
ATOM	794 CB MET A 99	42.510
MOTA	795 CG MET A 99	42.032
ATOM	796 SD MET A 99	
ATOM	797 CE MET A 99	40.770
ATOM -	798 C MET A 99	41.703
ATOM	799 O MET A 99	40.010
ATOM	800 N PHE A 100	41.752 -7.614 114.449 1.00 26.07
	801 CA PHE A 100	40.759 -7.583 115.516 1.00 30.47
ATOM	802 CB PHE A 100	39.738 -8.718 115.404 1.00 30.29
MOTA	803 CG PHE A 100	38.693 -8.657 116.475 1.00 29.35
ATOM	804 CD1 PHE A. 100	37.722 -7.662 116.455 1.00 27.01
ATOM		38 756 -9.506 117.575- 1.00 30.68
MOTA		36.834 -7.507 117.519 1.00 31.41
MOTA	806 CE1 PHE A 100 807 CE2 PHE A 100	37.873 -9.356 118.644 1.00 28.39
MOTA		36.913 -8.355 118.618 1.00 24.06
ATOM		41 345 -7.616 116.922 1.00 29.67
MOTA		41.028 -6.751 117.740 1.00 29.67
ATOM		42.181 -8.610 117.222 1.00 31.30
ATOM		42 770 -8.701 118.562 1.00 31.37
MOTA		43.610 -9.977 118.732 1.00 31.63
ATOM	101	42.777 -11.119 118.532 1.00 31.64
MOTA		44 197 -10.045 120.137 1.00 27.38
ATOM		43.647 -7.493 118.884 1.00 31.66
MOTA		43.502 -6.875 119.942 1.00 30.71
MOTA		44 562 -7 166 117,976 1.00 27.40
MOTA		45.430 -6.018 118.193 1.00 27.19
MOTA		44 631 -4.728 118.266 1.00 27.26
ATOM		44.785 -3.940 119.201 1.00 27.68
MOTA		43.767 -4.515 117.279 1.00 30.52
MOTA		42.941 -3.314 117.216 1.00 31.91
MOTA		42.085 -3.334 115.949 1.00 34.63
MOTA	824 CB SER A 103 825 OG SER A 103	42.896 -3.265 114.791 1.00 35.94
ATOM	826 C SER A 103	42.046 -3.163 118.441 1.00 32.44
ATOM	827 O SER A 103	41.891 -2.065 118.984 1.00 25.70
ATOM	828 N SER A 104	41.455 -4.270 118.871 1.00 30.47
ATOM ATOM	829 CA SER A 104	40.584 -4.251 120.038 1.00 30.22 28 978 -5.633 120.265 1.00 23.88
ATOM	830 CB SER A 104	39.970 3.00 3.00 3.00 3.00 3.00
MOTA	831 OG SER A 104	33.070
ATOM	832 C SER A 104	41.00/ 510
ATOM	833 O SER A 104	40.872
MOTA	834 N LEU A 105	42.334 4.55 100 100 20 52
ATOM	835 CA LEU A 105	43,443
ATOM	836 CB LEU A 105	44.004 -4.522 122.114 1 00 40 34
ATOM	837 CG LEU A 105	43.401
MOTA	838 CD1 LEU à 105	44.320
ATOM	839 CD2 LEU A 105	40.302
MOTA	840 C LEU A 105	43.034 = 00 20 20
ATOM	841 O LEU A 105	43.000 20 214 1 00 30 26
ATOM	842 N ALA A 106	44.081 -2.029 121.314 1.00 30.21 44.448 -0.626 121.151 1.00 28.31
MOTA	843 CA ALA A 106	44.958 -0.386 119.738 1.00 23.88
MOTA	844 CB ALA A 106	43.243 0.268 121.434 1.00 26.04
ATOM	845 C ALA A 106	43 300 1 376 121.952 1.00 20.63
ATOM	846 O ALA A 106	42 058 -0 224 121.099 1.00 26.86
ATOM	847 N THR A 107	40 841 0 542 121.322 1.00 25.04
ATOM	848 CA THR A 107	20 706 0 007 120,443 1.00 26.50
ATOM	849 CB THR A 107	40 111 0.092 119.069 1.00 24.62
ATOM	850 OG1 THR A 107	38.439 0.824 120.629 1.00 19.80
MOTA	851 CG2 THR A 107	40 450 0.503 122.798 1.00 27.90
ATOM	352 C THR A 107	40.039 1.515 123.361 1.00 29.04
ATOM	353 O THR A 107	40.585 -0.662 123.422 1.00 24.01
ATOM	854 N GLY A 108 855 CA GLY A 108	40 256 -0.767 124.832 1.00 24.86
ATOM		41 181 0.155 125.603 1.00 23.86
ATOM		40 771 0 790 126 572 1.00 26.97
ATCM	100	42.434 0.236 125.158 1.00 23.07
atcm	858 % SER A 109	

* mom	859	CA	SER A 109		43.421	1.090		1.00 20.96
ATOM					44.795	0 910	125.160	1.00 24.84
ATOM	860	CB	SER A 109		-			1.00 25.84 .
ATOM	861	OG	SER A 109		45.294	-0.393		
			SER A 109		43.008	2.552	125.759	1.00 21.13
ATOM	862	С					126.672	1.00 23.17
ATCM	863	0	SER A 109		43.323			1.00 20.27
	864	N	THR A 110		42.311	2.949	124.698	1.00 20.83
MOTA					41.841		124.583	1.00 21.84
MOTA	865	CA	THR A 110			4.327	123.303	1.00 24.33
ATOM	866	CB	THR A 110		41.332	4.548	123.161	
			THR A 110		42.452	4.769	122.276	1.00 25.38
ATOM	867	OG1					123.144	1.00 21.18
ATOM	868	CG2	THR A 110		40.543			1.00 28.52
ATOM	869	С	THR A 110		40.725		125.600	
			THR A 110		40.632	5.637	126.197	1.00 28.27
MOTA	870	0					125.809	1.00 26.88
ATOM	871	N	VAL A 111		39.882			1.00 30.04
MOTA	872	CA	VAL A 111		38.811		126.793	1.00 30.04
			VAL A 111		37.820	2.519	126.742	1.00 29.94
MOTA	873	CB			36.737		127.802	1.00 27.07
MOTA	874		VAL A 111					1.00 25.26
ATOM	875	CG2	VAL A 111		37.193		125.355	
	876	C	VAL A 111		39.440	3.797	128.187	1.00 28.10
ATOM					38.968		129.039	1.00 26.06
ATOM	877	0	VAL A 111					1.00 23.92
ATOM	878	N	GLN A 112		40.521	3.056	128.415	
	879	CA	GLN A 112		41.188	3.097	129.711	1.00 30.27
MOTA			GEN A 112		42.268		129.804	1.00 28.61
MOTA	880	CB	GLN A 112		42.200	2.020	120.001	1.00 28.90
ATOM	881	CG	GLN A 112		41.77 [†]		129.481	1.00 28.30
	882	CD	GLN A 112		42.883	-0.397	129.564	1.00 28.60
MOTA					43.344		130.653	1.00 29.68
ATOM	883	OE1	GLN A 112				128.409	1.00 22.13
MOTA	884	NE2	GLN A 112		43.333			
	885	С	GLN A 112		41.834	4.461	129.931	1.00 29.99
MOTA					41.791	5.006	131.035	1.00 28.43
MOTA	886	0	GLN A 112			5.000	128.885	1.00 28.64
MOTA	887	N	ALA A 113		42.453	5.004	125.003	1.00 26.62
ATOM	888	CA	ALA A 113		43.083	6.315	129.001	1.00 26.62
			ALA A 113		43.693	6.732	127.684	1.00 23.49
MOTA	889	CB			42.005	7 307	129.407	1.00 24.63
ATOM	890	С	ALA A 113			2.307	120.340	1.00 26.38
ATOM	891	0	ALA A 113		42.232	8.183	130.240	1.00 20.38
	892	N	ILE A 114		40.824	7.163	128.822	1.00 25.26
ATOM					39.728	8 063	129.145	1.00 27.05
MOTA	893	CA	ILE A 114			7 007	128.156	1.00 26.93
ATOM	894	CB	ILE A 114		38.554	1.001	120.130	
ATOM	895	CG	ILE A 114		37.387	8.770	128.576	1.00 25.86
					39.008	8.259	126.739	1.00 28.38
MOTA	896	CG:			37.938		125.669	1.00 28.64
ATOM	897	CD:						1.00 31.36
ATOM	. 898	С	ILE A 114		39.239	7.823		
	899	ō	ILE A 114		38.898	8.770	131.291	1.00 24.56
MOTA			100 7 117		39.210	6 563	131.005	1.00 31.17
ATOM	900	N	GLU A 115			()57	132.358	1.00 32.12
ATOM	901	CA	GLU A 115		38.750	0.237	132.330	
ATOM	902	CB	GLU A 115		38.729	4.744	132.607	
			GLU A 115		37.904	3.947	131.598	1.00 32.84
ATOM	903	CG			37.875	2 450	131.912	1.00 34.12
ATOM	904	CD	GLU A 115			- 01/	122.325	
ATOM	905	OE	1 GLU A 115)	38.910	1.910	132.345	1 00 30.30
	906	OF	2 GLU A 115		36.826	1.827	131.699	1.00 31.38
ATOM			GLU A 115		39.675	6.932	2 133.357	1.00 31.65
MOTA	907				39.224	7 111	134.383	1.00 29.25
ATOM	908	0	GLU A 115			7.990	134.303	
ATOM	909		GLU A 116		40.970	6.93	3 133.053	
				;	41.942	7.564	133.934	1.00 32.34
ATOM	910				43.367	7 28	5 133.457	1.00 33.29
ATOM	911	CB				7.20.	122 623	
ATOM	.912	CG	GLU A 110	5	43.805	5.84	2 133.633	
STOM	913				43.701	5.37	8 135.079	1.00 36.87
					44.329	6.00	3 135.961	1.00 34.07
ATOM	914				42.003	4 30	5 135.335	
ATOM	915	OE	2 GLU A 11	>	42.993	4.30	7 134 000	
ATOM	916	· c	GLU A 11	5	41.702		7 134.006	
			GLU A 11		41.863	9.67	8 135.066	1.00 34.39
ATOM	917				41.317			1.00 31.19
ATOM	918	N	PHE A 11		31.31			
ATOM	919	CA	PHE A 11	7	41.038			
	920				40.593	11.50	9 131.444	
ATOM					40.044			1.00 35.78
ATOM	921	CG						1.00 33.39
ATOM	922	CE	1 PHE A 11	,	40.882			
TOM	923	CI	2 PHE A 11	7	38.675			
	924	7 (-	1 PHE A 11	7	40.372	15.29	9 131.466	1.00 30.65
ATOM	229	. C		-	-			

» mow	925 CE2 PHE A 117	38.153		1.00 36.50
MOTA	926 CZ PHE A 117	39.003		1.00 35.41
ATOM		39.908	11.401 133.811	1.00 32.78
ATOM			12.377 134.566	1.00 29.82
MOTA		38.874	10.568 133.771	1.00 28.61
MOTA	929 N LEU A 118	37.720	າດ 751 134.632	1.00 32.00
ATOM	930 CA LEU A 118	36.621	9.748 134.263	1.00 29.19
MOTA	931 CB LEU A 118		9.830 132.820	1.00 34.47
ATOM	932 CG LEU A 118	36.098	8.836 132.622	1.00 32.69
MOTA	933 CD1 LEU A 118	34.962	11.240 132.522	1.00 32.24
ATOM	934 CD2 LEU A 118		10.590 136.094	1.00 31.17
MOTA	935 C LEU A 118		11.260 136.964	1.00 28.32
MOTA	936 O LEU A 118			1.00 27.23
MOTA	937 N LYS A 119	39.083		1.00 30.95
MOTA	938 CA LYS A 119	39.531		1.00 26.35
ATOM	939 CB LYS A 119	40.203	8.130 137.884	1.00 20.33
ATOM	940 CG LYS A 119	39.293	6.954 137.540	1.00 32.44
ATOM	941 CD LYS A 119	39.895	5.624 137.986	1.00 33.31
ATOM	942 CE LYS A 119	41.280	5.385 137.411	1.00 33.40
ATOM	943 NZ LYS A 119	41.874	4.102 137.904	1.00 33.40
ATOM	944 C LYS A 119	40.493	10.594 138.173	1.00 32.83
ATOM	945 O LYS A 119	41.050	10.548 139.270	
ATOM	946 N GLY A 120	40.689	11.583 137.308	1.00 33.77
ATOM	947 CA GLY A 120	41.571	12.677 137.652	1.00 33.84
ATOM	948 C GLY A 120	43.035	12.448 137.340	1.00 34.27
ATOM	949 O GLY A 120	43.880	13.227 137.776	1.00 36.80
	950 N ASN A 121	43.347	11.384 136.606	1.00 30.77
ATOM ATOM	951 CA ASN A 121	44.731	11.122 136.244	1.00 31.73
	952 CB ASN A 121	45.089	9.646 136.437	1.00 29.34
ATOM	953 CG ASN A 121	44.856	9.170 137.851	1.00 35.83
MOTA MOTA	954 OD1 ASN A 121	45.190	9.861 138.816	1.00 32.74
ATOM	955 ND2 ASN A 121	44.304	7.970 137.986	1.00 33.20
ATOM	956 C ASN A 121	44.954	11.506 134.790	1.00 32.59 1.00 34.69
ATOM	957 O ASN A 121	44.031	11.952 134.110	1.00 32.74
ATOM	958 N VAL A 122	46.186	11:334 134.322	1.00 32.74
ATOM	959 CA VAL A 122	46.540	11.653 132.946	1.00 36.05
ATOM	960 CB VAL A 122	47.571	12.790 132.882 13.121 131.438	1.00 37.58
MOTA	961 CG1 VAL A 122	47.884	13.121 131.438 14.021 133.602	1.00 37.19
ATOM	962 CG2 VAL A 122	47.029	10.397 132.352	1.00 34.47
ATOM	963 C VAL A 122	47.147	9.801 132.939	1.00 31.28
MOTA	964 O VAL A 122	48.053 46.646	9.989 131.196	1.00 28.06
MOTA	965 N ALA A 123	47.142	8.784 130.563	1.00 30.73
ATOM	966 CA ALA A 123	46.133	7.666 130.727	1.00 32.69
ATOM	967 CB ALA A 123	47.466	8.969 129.088	1.00 30.55
MOTA	968 C ALA A 123	46.909	9.830 128.406	1.00 32.89
MOTA	969 O ALA A 123	48.380	8.136 128.613	1.00 27.53
MOTA	970 N PHE A 124 971 CA PHE A 124	48.807	8.157 127.229	1.00 26.56
MOTA	- 101	50.261	8.660 127.157	1.00 25.32
MOTA		50.903	8.544 125.793	1.00 27.84
ATOM	104	50.179	8.785 124.629	1.00 24.77
MOTA		52.266	8.266 125.686	1.00 21.79
ATOM	454	50.802	8.753 123.385	1.00 29.19
MOTA		52.894	8.235 124.449	1.00 27.38
ATOM		52.164	8.478 123.296	
MOTA	978 CZ PHE A 124 979 C PHE A 124	48.671	6.749 126.675	
MOTA	980 O PHE A 124	49.181	5.795 127.260	1.00 25.38
ATOM	981 N ASN A 125	47.933	6.624 125.580	
ATOM	982 CA ASN A 125	47.750	5.342 124.905	
ATOM	983 CB ASN A 125	46.271	4.982 124.756	1.00 22.99
ATOM	984 CG ASN A 125	46.073	3.784 123.856	1.00 24.08
ATOM	985 OD1 ASN A 125	46.916	2.888 123.822	
MOTA	986 ND2 ASN A 125	44.960		
ATOM	987 C ASN A 125	48.380		
ATCM ATCM	988 O ASN A 125	47.718		
ATOM	989 N PRO A 126	49.680		
ATOM	990 CD PRO A 126	50.589	4.730 124.51	1.00 22.01
- 1 Ot 1				

ATOM	991 CA PRO A 126	50.413		1.00 22.39
ATOM	992 CB PRO A 126	51.829 51.564		1.00 25.43
ATOM	993 CG PRO A 126			1.00 23.18
MOTA	994 C PRO A 126	49.867		1.00 20.12
ATOM	995 O PRO A 126	50.173	3.232 121.423	1.00 23.27
ATOM	996 N ALA A 127	49.058	J. 232	1.00 23.89
ATOM	997 CA ALA A 127	48.493		1.00 24.82
ATOM	998 CB ALA A 127	48.176		1.00 24.76
ATOM	999 C ALA A 127	47.241		1.00 24.76
MOTA	1000 O ALA A 127	46.806	2.360 118.745	1.00 28.99
ATOM	1001 N GLY A 128	. 46.666	3.906 120.367	1.00 22.12
ATOM	1002 CA GLY A 128	45.461	4.494 119.809	1.00 21.43
ATOM	1003 C GLY A 128	45.732	5.521 118.725	1.00 23.33
MOTA	1004 O GLY A 128	46.875	5.695 118.291	1.00 23.23
ATOM	1005 N GLY A 129	44.680	6.199 118.283	1.00 18.03
MOTA	1006 CA GLY A 129	44.822	7.205 117.243	1.00 24.99
ATOM	1007 C GLY A 129	44.600	6.655 115.847	1.00 23.11
ATOM	1008 O GLY A 129	44.963	7.293 114.857	1.00 20.01
ATOM	1009 N MET A 130	44.002	5.470 115.765	
ATOM	1010 CA MET A 130	43.729	4.825 114.481	1.00 23.63 1.00 22.77
ATOM	1011 CB MET A 130	43.360	3.361 114.744	1.00 26.30
ATOM	1012 CG MET A 130	44.455	2.661 115.563	
ATOM	1013 SD MET A 130	44.198	0.913 115.989	1.00 26.57 1.00 27.59
ATOM	1014 CE MET A 130	42.665	1.030 116.936	1.00 27.39
ATOM	1015 C MET A 130	42.580	5.617 113.869	1.00 25.70
ATOM	1016 O MET A 130	41.421	5.199 113.901	
ATOM	1017 N HIS A 131	42.926	6.766 113.294	1.00 20.66 1.00 20.99
ATOM	1018 CA HIS A 131	41.933	7.687 112.775	
MOTA	1019 CB HIS A 131	42.474	9.125 112.891	1.00 21.01 1.00 28.30
ATOM	1020 CG HIS A 131	43.699	9.391 112.069	1.00 28.30
ATOM	1021 CD2 HIS A 131	44.498	8.549 111.373	1.00 17.05
ATOM	1022 ND1 HIS A 131	44.246	10.649 111.917	1.00 20.48
ATOM	1023 CE1 HIS A 131	45.328	10.567 111.163	1.00 24.18
MOTA	1024 NE2 HIS A 131	45.503	9.302 110.820 7.513 111.416	1.00 23.76
ATOM	1025 C HIS A 131	41.280		1.00 21.95
ATOM	1026 O HIS A 131	40.453		1.00 25.12
ATOM	1027 N HIS A 132	41.600		1.00 23.32
MOTA	1028 CA HIS A 132	41.006	6.257 109.354 5.715 108.388	1.00 17.87
MOTA	1029 CB HIS A 132	42.060	6.689 108.072	1.00 24.79
MOTA	1030 CG HIS A 132	43.148 44.496	6.574 108.144	1.00 21.72
MOTA	1031 CD2 HIS A 132	44.496	7.944 107.556	1.00 13.58
MOTA	1032 ND1 HIS A 132	44.044	8.558 107.323	1.00 15.41
ATOM	1033 CE1 HIS A 132	45.028	7.748 107.668	1.00 15.27
MOTA	1034 NE2 HIS A 132	39.752	5.386 109.208	1.00 23.38
MOTA	1035 C HIS A 132	38.947	5.615 108.304	1 00 24.70
MOTA	1036 O HIS A 132	39.587	4.388 110.070	00 23.34
MOTA	1037 N ALA A 133	38.453	3.471 109.953	1 00 23.77
MOTA	1038 CA ALA A 133	38.515	2.417 111.053	1.00 27.49
MOTA	1039 CB ALA A 133	.37.093	4.145 109.966	1.00 23.02
ATOM	1040 C ALA A 133	36.878	5.117 110.691	1.00 25.98
MOTA	1041 O ALA A 133	36.179	3.633 109.148	1.00 18.90
MOTA	1042 N PHE A 134 1043 CA PHE A 134	34.831	4.173 109.103	1.00 23.73
ATOM		34.317	4.296 107.663	1.00 24.29
MOTA		35.119	5.225 106.801	1.00 26.67
MOTA		36.025	4.724 105.867	1.00 28.69
ATOM		34.975	6.605 106.921	1.00 32.49
ATOM		36.775	5.582 105.063	1.00 28.65
ATOM	·	35.724	7.479 106.119	1.00 27.86
ATOM		36.623	6.967 105.188	1.00 23.93
ATOM		33.894	3.260 109.884	1.00 25.91
MOTA		34.270	2.172 110.319	1.00 27.20
ATOM		32.670	3.728 110.062	1.00 29.14
MOTA		31.638	2.984 110.765	1.00 35.25
atch		30.294	3,628 110.429	1.00 35.86
ATOM		29.072	2.779 110.667	1.00 46.26
ATOM	1056 CG LYS A 135			

			 O	•
	1057	D LYS A 135	27.834	3.542 110.211 1.00 47.72
ATOM		D LYS A 135	26.610	2.645 110.169 1.00 53.65
MOTA		CE LYS A 135	26.788	1.549 109.167 1.00 53.27
ATOM		NZ LYS A 135		1.490 110.414 1.00 35.62
ATOM	1060	C LYS A 135	31.617	0.635 111.301 1.00 32.58
MOTA	1061	O LYS A 135	31.609	
ATOM-		N SER A 136	31.629	2.20
ATOM		CA SER A 136	31.555	
		CB SER A 136	30.172	-0.474 108.083 1.00 38.87
ATOM		OG SER A 136	29.146	-0.072 108.975 1.00 43.54
ATOM	-	C -SER A 136	32.608	-0.616 107.660 1.00 37.84
ATCM			32.350	-1.491 106.828 1.00 36.33
MOTA		O SER A 136	33.788	-0.008 107.705 1.00 33.23
MOTA		N ARG A 137	34.797	-0.368 106.724 1.00 30.89
MOTA		CA ARG A 137	34.456	0.291 105.385 1.00 33.88
MOTA		CB ARG A 137	35.009	-0.465 104.201 1.00 44.41
MOTA		CG ARG A 137		0.261 102.880 1.00 46.27
MOTA	1072	CD ARG A 137	34.809	-0.645 101.768 1.00 48.87
ATOM	1073	NE ARG A 137	35.091	-0.261 100.526 1.00 48.64
ATOM	1074	CZ ARG A 137	35.352	1.029 100.220 1.00 51.82
ATOM	1075	NH1 ARG A 137	35.372	
ATOM	1076	NH2 ARG A 137	35.592	20 21 21
ATOM	1077	C ARG A 137	36.209	0.022
ATOM	1078	O ARG A 137	36.428	1.079 107.742 1.00 30.36
	1079	N ALA A 138	37.166	-0.845 106.828 1.00 30.06
ATOM	1080	CA ALA A 138	38.560	-0.588 107.158 1.00 32.24
MOTA		CB ALA A 138	39.367	-1.864 107.048 1.00 31.25
MOTA	1081		39.095	0.449 106.187 1.00 29.49
ATOM	1082		38.612	0.551 105.063 1.00 26.11
MOTA	1083	O ALA A 138	40.099	1,206 106,615 1.00 29.54
MOTA	1084	N ASN A 139	40.673	2 241 105.767 1.00 26.99
MOTA	1085	CA ASN A 139	39.685	3 415 105.662 1.00 24.10
MOTA	1086	CB ASN A 139	40.209	4.556 104.811 1.00 28.02
MOTA	1087	CG ASN A 139	40.729	4.334 103.727 1.00 26.90
MOTA	1088	OD1 ASN A 139		5.789 105.293 1.00 23.55
MOTA	1089	ND2 ASN A 139	40.050	2.713 106.285 1.00 30.17
MOTA	1090	C ASN A 139	42.027	2.827 107.497 1.00 27.55
MOTA	1091	O ASN A 139	42.245	
ATOM	1092	N GLY A 140	42.944	2.000
ATOM	1093	CA GLY A 140	44.277	
ATOM	1094	C GLY A 140	45.000	
MOTA	1095	O GLY A 140	45.560	
ATOM	1096	N PHE A 141	45.006	
MOTA	1097	CA PHE A 141	45.679	
MOTA	1098	CB PHE A 141	47.031	1.146 108.197 1.00 26.40
	1099	CG PHE A 141	47.997	1.366 107.062 1.00 30.31
ATOM	1100	CD1 PHE A 141	49.145	2.125 107.269 1.00 31.60
ATOM		CD2 PHE A 141	47.781	0.811 105.802 1.00 29.44
MOTA	1101		50.066	2.331 106.243 1.00 30.44
ATOM	1102		48.694	1 008 104 770 1.00 27.91
ATOM	1103	CE2 PHE A 141	49.840	1 771 104.991 1.00 29.38
ATOM	1104	CZ PHE A 141	44.846	0 387 109.056 1.00 23.53
ATOM	1105	C PHE A 141	45.194	-0 399 109.941 1.00 23.09
MOTA	1106	O PHE A 141	43.760	1 143 109 159 1.00 22.86
MOTA	1107	N CYS A 142		1 00 22 07
ATOM	1108	CA CYS A 142	42.925	
MOTA	1109	CB CYS A 142	42.472	
MOTA	1110	SG CYS A 142	43.828	
MOTA	1111	C CYS A 142	41.694	
ATCM	1112	O CYS A 142	40.932	2000
MOTA	1113	N TYR A 143	41.498	
	1114	CA TYR A 143	40.335	-1.546 111.236 1.00 26.07
MOTA	1115	CB TYR A 143	40.728	-2.958 111.680 1.00 27.89
MOTA		CG TYR A 143	41.829	-3.582 110.855 1.00 27.30
ATOM	1116		43.169	-3.329 111.137 1.00 25./6
ATOM	1117		44.185	3 -3.875 110.346 1.00 25.//
ATOM	1118		41.526	4.394 109.762 1.00 25.8/
MOTA	1119		42.531	1 -4.941 108.967 1.00 23.10
atom	1120		43.854	-4.679 109.262 1.00 22.93
ATCM			44.849	
ATOM	1122	OH TYR A 143	4,4,04	

		0		
	1123 C TYR A 143	39.281 -	0.991 112.193 1	00 24.56
ATOM	1123 C TYR A 143 1124 O TYR A 143	38.085 -		00 24.88
NOTA NOTA	1125 N ILE A 144			.00 23.77
ATOM ATOM	1126 CA ILE A 144	38.833	J. 1 J J J J J J J J J J J J J J J J J J	.00 27.11
ATOM	1127 CB ILE A 144		· · · · · · · · · · · · · · · · · · ·	1.00 24.56
ATOM	1128 CG2 ILE A 144	•		1.00 23.47
ATOM	1129 CG1 ILE A 144			1.00 28.51 1.00 28.70
ATOM	1130 CD1 ILE A 144			1.00 24.15
MOTA	1131 C ILE A 144	39.248		1.00 24.13
MOTA	1132 O ILE A 144	40.428		1.00 22.04
ATOM .	1133 N ASN A 145	38.277	3.866 114.920	1.00 21.31
MOTA	1134 CA ASN A 145	38.555 37.559		1.00 18.87
MOTA	1135 CB ASN A 145	37.956	6.205 114.091	1.00 22.21
MOTA	1136 CG ASN A 145 1137 OD1 ASN A 145	38.223	6.823 115.124	1.00 22.47
ATOM	1137 OD1 ASN A 145 1138 ND2 ASN A 145	37.978	6.776 112.892	1.00 23.78
ATOM	1139 C ASN A 145	38.417		1.00 22.63
atom atom	1140 O ASN A 145	37.338	4.535 116.880	1.00 22.45
ATOM	1141 N ASN A 146	39.495	3.941 117.178	1.00 16.63 1.00 23.57
MOTA	1142 CA ASN A 146	39.423	4.160 118.628	1.00 23.37
MOTA	1143 CB ASN A 146	40.708	3.678 119.320 4.508 118.967	1.00 27.81
MOTA	1144 CG ASN A 146	41.924 42.299	5.421 119.704	1.00 19.55
ATOM	1145 OD1 ASN A 146	42.299	4.202 117.827	1.00 19.55
ATOM	1146 ND2 ASN A 146	39.079	5.602 119.023	1.00 26.32
ATOM	1147 C ASN A 146 1148 O ASN A 146	38.452	5.827 120.059	1.00 28.34
ATOM		39.512	6.605 118.231	1.00 28.46
MOTA	1149 N PRO A 147 1150 CD PRO A 147	40.383	6.637 117.042	1.00 27.18
ATOM ATOM	1151 CA PRO A 147	39.150	7.972 118.618	1.00 24.15 1.00 25.13
ATOM	1152 CB PRO A 147	39.859	8.815 117.558	1.00 30.05
ATOM	1153 CG PRO A 147	41.081	7.959 117.235 8.136 118.578	1.00 26.71
ATOM	1154 C PRO A 147	37.618	8.760 119.456	1.00 24.93
ATOM	1155 O PRO A 147	37.017 36.989	7:557 117.562	1.00 21.42
MCTA	1156 N ALA A 148 1157 CA ALA A 148	35.536	7.633 117.416	1.00 21.03
MOTA		35.112	7.044 116.072	1.00 19.98
ATOM	1158 CB ALA A 148 1159 C ALA A 148	34.838	6.891 118.552	1.00 20.49
atom atom	1160 O ALA A 148	33.822	7.344 119.067	1.00 21.44 1.00 19.20
ATOM	1161 N VAL A 149	35.381	5.739 118.928 4.950 120.016	1.00 19.20
ATOM	1162 CA VAL A 149	34.818	3.608 120.181	1.00 25.96
ATOM	1163 CE VAL A 149	35.570 35.158	2.918 121.485	1.00 26.58
MOTA	1164 CG1 VAL A 149	35.262	2.704 118.995	1.00 25.67
ATOM	1165 CG2 VAL A 149 1166 C VAL A 149	34.947	5.752 121.304	1.00 23.56
MOTA	1166 C VAL A 149 1167 O VAL A 149	33.990	5 887 122.064	1.00 22.52
MCTA MOTA	1168 N GLY A 150	36.143	6.287 121.536	1.00 24.65
ATOM	1169 CA GLY A 150	36.390	7.074 122.731	1.00 22.82 1.00 25.46
ATOM	1170 C GLY A 150	35.477	8.281 122.838	1.00 23.40
ATOM	1171 O GLY A 150	34.919	8.564 123.904 9.001 121.733	1.00 24.38
ATCM	1172 N ILE A 151	35.327 34.481	10.180 121.716	
ATOM	1173 CA ILE A 151	34.610	10.928 120.371	1.00 24.45
ATOM	1174 CB ILE A 151 1175 CG2 ILE A 151	33.598	12.077 120.306	1.00 24.71
ATOM		26.041	11.462 120.222	1.00 28.02
ATOM	1176 CG1 ILE A 151 1177 CD1 ILE A 151		12.056 118.854	1.00 27.10
ATOM	1178 C ILE A 151	33.018	9.806 121.987	1.00 28.19 1.00 26.37
MOTA MOTA	1179 O ILE A 151	32.337	10.482 122.763	1.00 26.32
ATOM	1180 N GLU A 152	32.532	8.734 121.364 8.314 121.601	
ATOM	1181 CA GLU A 152	31.149		
ATOM	1182 CB GLU A 154	30.758 30.609		1.00 27.68
ATOM	1193 CG GLU A 154			1.00 31.82
ATOM			8.777 117.773	1.00 33.51
ATOM			9,009 119.918	1.00 34.73
ATOM			7.879 123.055	1.00 28.00
ATOM =TOM				1.00 31.23

							2 252	123.583	1.00 28.72
MOTA	1189	N 3	ryr a	153		32.054	1.253	123.303	
ATOM	1190	CA ?	ryr a	153		32.066			1.00 31.35
ATOM	1191		ryr A	153		33.427	6.204	125.307	1.00 31.56
	_		ryr A			33.617	5.839	126.759	1.00 33.17
MOTA	1192					33.111		127.280	1.00 35.43
MOTA	1193		TYR A					128.619	1.00 33.52
MOTA	1194		TYR A			33.321			
A'TOM	1195	CD2	TYR A	153		34.329		127.611	1.00 34.29
ATOM	1196		TYR A			34.544		128.944	1.00 35.34
	1197		TYR A			34.041	5.154	129.444	1.00 37.50
ATOM			TYR A		-	34.260	4 835	130.767	1.00 30.10
ATOM	1198					31.828	0 022	125.857	1.00 32.71
MOTA	1199		TYR A				3.000	126.787	1.00 29.14
ATOM	1200		TYR A			31.026	7.988	120.707	1.00 29.65
MOTA	1201	N :	LEU A	154		32.538	9.102	125.552	
ATOM	1202	CA :	LEU A	154		32.413	10.332	126.310	1.00 32.87
MOTA	1203		LEU A			33.477 ·		125.847	1.00 31.46
	1204		LEU A			34.910	11.053	126.324	1.00 29.68
MOTA			LEU A			35.898	11.953	125.605	1.00 29.29
MOTA	1205					34.989		127.829	1.00 27:19
MOTA	1206		LEU A					126.232	1.00 34.63
MOTA	1207		LEU A			31.020	10.952		1.00 32.58
MOTA	1208		LEU A			30.475	11.379	127.250	
ATOM	1209	N	ARG A	155		30.443	10.999	125.035	1.00 36.63
	1210	CA	ARG A	155		29.107	11.569	124.869	1.00 38.36
ATOM			ARG A			28.661	11.502	123.405	1.00 36.32
MOTA	1211					29.581	12.253	122.460	1.00 43.15
ATOM	1212		ARG A	155			12.201	121.023	1.00 41.10
MOTA	1213	CD		155		29.100		120.768	1.00 44.00
ATOM	1214		ARG A			27.936	13.047		
ATOM	1215		ARG A			27.331	13.140	119.583	
ATOM	1216	NH1	ARG A	155		27.772	12.441	118.540	1.00 51.61
ATOM	1217	MHS	ARG A	155		26.291	13.948	119.424	1.00 51.76
	1218	C	ARG A	155		28.112	10.821	125.745	1.00 36.25
MOTA			ARG A			27.270	11.433	126.397	1.00 39.00
MOTA	1219	0				28.213	9.496	125.765	1.00 36.48
MOTA	1220	N		156			8.698	126.587	1.00 39.06
ATOM	1221	CA	LYS A			27.315		126.256	1.00 41.88
ATOM	1222	CB	LYS A			27.460	7.213		1.00 51.15
ATOM	1223	CG	LYS A	156		26.672	6.816		
ATOM	1224	CD	LYS A	156		27.169	7.505	123.781	1.00 55.56
MOTA	1225	CE	LYS A			26.117	7.502	122.676	1.00 55.63
	1226	NZ	LYS A			24.993	8.425	123.013	1.00 49.15
MOTA			LYS A			27.527	8.932	128.076	1.00 39.91
MOTA	1227	c				26.636	8.658		1.00 37.01
ATOM	.1228	0	LYS A				9.431		1.00 37.73
MOTA	1229	N	LYS A	157		28.703	9.725		1.00 36.52
MOTA	1230	CA	LYS A			28.985		129.047	1.00 35.64
MOTA	1231	CB	LYS A			30.493	9.700		
ATOM	1232	CG	LYS A	157		31.094	8.308		1.00 35.44
	1233	CD	LYS A			30.509	7.510	131.335	1.00 31.28
MOTA	1234	CE	LYS A			31.077	6.106	131.388	1.00 31.48
MOTA			TAC 3	157		30.464	5.310		1.00 36.39
ATOM	1235	NZ	LYS A	7 727		28.423	11 097	130.197	1.00 38.12
ATOM	1236	C	LYS A				11.537	131.336	1.00 37.61
MOTA	1237	0	LYS A			28.531	11.347	129.205	1.00 36.27
ATOM	1238	N	GLY A			27.842	11.766	129.205	1.00 34.31
MOTA	1239	CA	GLY A	158		27.257		129.452	
ATOM	1240	С	GLY A	158		27.972	14.293		1.00 36.36
	1241	õ	GLY A			27.438	15.399	128.963	1.00 32.96
ATOM			PHE A			29.170	14.117	128.344	1.00 33.89
MOTA	1242	N				29.892	15 260	127.796	1.00 30.29
MOTA	1243	CA	PHE A			31.346	14 89	127.504	1.00 28.62
ATOM	1244	CB	PHE ?	1 159			14.054	128.730	1.00 28.80
MOTA	1245	CG	PHE A			32.137			1.00 30.41
ATOM	1246	CD1	PHE A	159		32.043	13.300		1.00 30.41
ATOM	1247	CD2		A 159		32.951	15.51		
	1248	CE1		A 159		32.749	12.99	5 130.472	
ATOM	1249	CE2		159		33.661	15.22	3 130.488	
MOTA			מוני ב	A 159		33.561	13.96		1.00 32.32
ATOM	1250	CZ	rni 4	150		29.224	15.78		
ATOM	1251	C	PHE	A 159		28.765			
ATOM	1252	0	PHE	A 159				0 126.402	
. ATCM	1253		LYS	A 160		29.180		C 125.302	
ATOM	1254	CA	LYS .	A 160		28.550	17.76	6 125.254	1.00 33.70

1.00 36.87 27.390 18.653 125.719 LYS A 160 1255 CB MOTA 17.914 126.419 1.00 39.48 26.273 LES A 160 MOTA 1256 CG 1.00 48.58 25.105 18.850 126.723 LYS A 160 1257 CD MOTA 1.00 50.81 20.003 127.651 25.500 LYS A 160 CE 1258 MOTA 19.534 129.008 1.00 49.79 25.924 LYS A 160 1259 NZ ATOM 1.00 32.59 18.616 124.394 29.484 LYS A 160 MOTA 1260 С 1.00 30.98 19.085 123.327 29.093 LYS A 160 MOTA 1261 0 18.846 124.867 30.700 1.00 31.43 N ARG A 161 1262 MOTA 19.626 124.108 1.00 29.97 ARG A .161 31.665 ATOM 1263 CA 1.00 34.45 21.048 124.673 31.781 ARG A 161 CB 1264 MOTA 1.00 37.63 21.854 124.610 . 30.476 ARG A 161 1265 CG MOTA 23.321 124.966 1.00 39.01 30.705 ARG A 161 1266 CD MOTA 23.503 126.341 23.337 127.414 1.00 43.76 31.158 ARG A 161 1267 NE MOTA 1.00 43.33 30.389 ARG A 161 1268 CZ MOTA 22.985 127.274 29.117 30.893 1.00 45.95 NH1 ARG A 161 1269 ATOM 23.518 128.627 1.00 43.74 NH2 ARG A 161 1270 MOTA 1.00 32.71 18.910 124.161 33.009 ARG A 161 С 1271 **ATOM** 33.792 19.090 125.092 1.00 28.53 ARG A 161 1272 0 ATOM 1.00 32.50 18.087 123.149 17.313 123.049 15.821 122.820 33.257 ILE A 162 1273 N ATOM 1.00 28.52 34.485 1274 ILE A 162 CA MOTA 1.00 31.42 ILE A 162 34.146 1275 CB MOTA 1.00 24.95 35.407 14.976 122.898 CG2 ILE A 162 1276 MOTA 1.00 30.25 1.00 34.27 15.355 123.879 33.147 CG1 ILE A 162 CD1 ILE A 162 1277 ATOM 32.564 13.977 123.635 1278 MOTA 1.00 26.46 17.816 121.886 17.973 120.762 35.353 ILE A 162 1279 С MOTA 1.00 27.88 34.876 ILE A 162 1280 0 MOTA 1.00 23.13 18.067 122.168 36.626 LEU A 163 1281 И ATOM 18.534 121.156 1.00 25.74 37.575 CA LEU A 163 CB LEU A 163 MOTA 1282 38.384 39.626 39.213 40.361 38.547 1.00 26.25 19.729 121.681 1283 MOTA 1.00 24.39 20.138 120.862 LEU A 163 CG MOTA 1284 1.00 26.25 20.591 119.473 CD1 LEU A 163 1285 MOTA 21.252 121.560 1.00 27.76 CD2 LEU A 163 1286 ATOM 1.00 27.09 17.416 120.792 38.547 LEU A 163 1287 C MOTA 16.721 121.674 1.00 25.25 39.053 LEU A 163 1288 0 MOTA 1.00 26.97 17.257 119.496 38.808 TYR A 164 1289 MOTA N 16.241 119.010 1.00 26.97 39.747 TYR A 164 1290 CA ATOM 1.00 23.38 15.181 118.179 39.021 TYR A 164 1291 CB MOTA 14.146 117.565 1.00 21.76 39.944 TYR A 164 1292 CG ATOM 13.179 118.353 1.00 22.49 40.563 CD1 TYR A 164 CE1 TYR A 164 1293 MOTA 1.00 22.90 12.224 117.794 41.419 1294 MOTA 1.00 18.74 14.142 116.194 40.202 CD2 TYR A 164 1295 MOTA 13.190 115.616 1.00 23.36 41.060 TYR A 164 1296 CE2 MOTA 1.00 21.50 12.235 116.426 41.663 TYR A 164 MOTA 1297 CZ11.296 115.878 1.00 18.41 TYR A 164 42.506 1298 OH 1.00 21.67 ATOM 16.923 118.138 40.798 TYR A 164 1299 C MOTA 1.00 19.75 17.511 117.112 40.473 TYR A 164 1300 0 ATOM 16.843 118.551 1.00 25.61 42.057 ILE A 165 1301 N MOTA 1.00 24:43 17.462 117.804 ILE A 165 43.149 1302 CA MOTA 18.396 118.717 1.00 26.41 CB ILE A 165
CG2 ILE A 165
CG1 ILE A 165 43.963 1303 ATOM 19.017 117.937 1.00 19.36 45.127 1304 MOTA 1.00 23.36 19.482 119.274 43.035 1305 ATOM 1.00 25.05 20.402 120.299 43.685 CD1 ILE A 165 1306 ATOM 1.00 26.91 16.365 117.234 44.040 ILE A 165 1307 С MOTA 1.00 21.91 15.505 117.971 44.538 ILE A 165 1308 0 MOTA 16.408 115.920 1.00 24.20 44.242 ASP A 166 1309 N MOTA 1.00 27.11 15.386 115.228 14.765 114.137 45.022 ASP A 166 1310 CA ATOM 1.00 28756 44.140 ASP A 166 1311 CB ATOM 13.461 113.599 1.00 34.59 44.699 ASP A 166 1312 CG ATOM 13.456 113.068 1.00 30.37 45.831 OD1 ASP A 166 1313 MOTA 1.00 23.27 12.437 113.717 43.995 OD2 ASP A 166 1314 ATOM 1.00 24.47 15.924 114.614 ASP A 166 46.319 1315 С 1.00 23.19 ATOM 46.295 16.613 113.591 ASP A 166 1316 Э ATCM 15.597 115.227 1.00 23.43 47.452 48.738 LEU A 167 1317 M ATOM 1.00 24.67 16.068 114.722 LEU A 167 1318 CA 1.00 21.90 ATOM 16.382 115.887 49.682 LEU A 167 1319 CB 17.444 116.858 1.00 26.62 ATOM 49.143 1320 CG LEU A 167 ATCM.

ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1322 CD2 1323 C 1324 O 1325 N 1326 CA 1327 CB 1328 CG 1329 C 1330 OD 1331 OD 1332 OD 1333 N 1334 CA 1335 CB 1336 C 1337 O 1348 N 1349 CA 1344 CD 1344 CD 1344 CD 1344 CD 1345 CC 1355 NE 1350 CE 1357 O 1358 N 1359 CA 1351 CC 1357 NE 1358 CC 1357 NE 1356 C 1357 NE 1358 CC 1357 CC 1358 CC 1358 CC 1357 CC 1358 CC	HIS A 170 1 HIS A 170 1 HIS A 170 2 HIS A 170 2 HIS A 170 HIS A 171 CYS A 172	50.249 48.658 49.405 50.504 48.736 49.244 48.209 48.722 49.423 48.629 49.641 50.693 52.068 49.641 48.673 47.592 46.044 47.550 48.830 49.842 50.502 49.23 41.85 41.43 40.72 39.65 40.06 43.16 41.46 41.46 41.46 41.46 41.46 41.46 41.46 41.46 41.46 41.46 41.46 41.46 41.46 41.46	10.750 13.312 13.927 13.498 13.636 14.204 12.746 12.445 12.867 10.950 10.420 9.982 9.634 10.329 9.828 13.231 13.661 14.242 14.719 15.648 14.271 15.669 12.533 11.411 12.852 12.852 12.852 13.661 14.787 15.669 12.533 11.411 12.852 13.231 13.661 14.787 15.669 12.533 11.411 12.852 13.231 13.661 14.787 15.669 12.533 11.411 12.852 13.231 13.231 13.661 14.787 15.669 12.533 11.411 12.852 13.231 13.231 13.231 13.661 14.787 15.669 12.533 11.411 12.852 13.231	16.092 13.755 13.262 13.488 12.555 12.410 11.608 11.209 10.865 112.227 10.364 10.446 109.140 108.601 108.601 108.093 107.000 108.406 107.468 108.045 107.385 107.385 107.385 106.577 105.273 106.577 107.591 107.634 107.634 107.634 107.634 107.634 107.634 107.634 107.573 108.204 107.634 107.573 108.204 107.573 108.204 107.286 109.286 109.286 109.286 109.286 109.286 109.314 109.314 109.914	25.88 1.00 25.82 1.00 21.89 1.00 24.69 1.00 27.12 1.00 28.11 1.00 24.17 1.00 17.18 1.00 25.40 1.00 21.29 1.00 25.00 1.00 21.7 1.00 26.57 1.00 26.57 1.00 26.57 1.00 24.12 1.00 23.17 1.00 24.12 1.00 23.17 1.00 24.12 1.00 23.17 1.00 25.60 1.00 24.33 1.00 24.33 1.00 24.33 1.00 24.33 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.57 1.00 25.58 1.00 27.62 1.00 27.62 1.00 29.61 1.00 27.62 1.00 29.47 1.00 29.47 1.00 29.47 1.00 29.47 1.00 25.69 1.00 28.21 1.00 28.21 1.00 26.78
ATOM	1360 CI	B CYS A 172				1.00 25.69
			40.23	7 11.797	109.314	
MOTA	1363 0	CYS A 172			109.914	1.00 20.75
ATOM	1364 N	ASP A 173	40.21 38.94		107.350	1.00 27.39
MOTA	1365 C. 1366 C		39.16	7 10.646	105.931	1.00 30.47
MOTA MOTA	1366 C		39.82	4 9.264	105.922	1.00 29.77 1.00 21.14
MOTA	1368 0	D1 ASP A 173	39.88		104.830 106.978	1.00 30.04
ATOM		D2 ASP A 173	40.28 37.89		108.105	1.00 27.86
ATOM	1370 C 1371 O		36.72	0 10.762	2 108.120	1.00 23.47
MOTA MOTA	1371 O		38.30	9.31		1.00 25.84 1.00 28.49
MOTA		A GLY A 174	37.34		3 109.490 5 110.619	
MOTA	1374 C	GLY A 174	36.69 35.4			1.00 21.39
MOTA	1375		37.5	0 9.98	4 111.409	1.00 27.24
MOTA	1376 N 1377 C	A VAL A 175	36.99	95 10.77	3 112.523	1.00 25.53
ATOM ATOM	1378	3 VAL A 175	38.1			1.00 30.54
MOTA	1379	G1 VAL A 175	37.5			1.00 21.30
ATOM		G2 VAL A 175 VAL A 175	38.9° 36.1	63 11.95	5 112.035	1.00 25.01
ATOM	1381 C	VAL A 175	35.1	30 12.28	2 112.623	1.00 21.60
MOTA MOTA		GLN A 176	36.6	01 12.59	4 110.957	1.00 25.43
ATOM		GLN A 176	35.8		0 110.426 6 109.205	
ATCM	1385	B GLN A 176	36.5 35.6		9 108.469	
ATOM	1386	CG GLN A 176	٠. د د	V. 13.34	-	

		36.385 16.002 107.306 1.00 29.54
ATOM	1387 CD GLN A 176	
ATOM	1388 CE1 GLN A 176	37.302 20.00 3 00 37 50
	1389 NE2 GLN A 176	
ATOM		34.446 13.316 110.029 1.00 27.63
ATCM	1390 C GLN A 176	
MOTA	1391 O GLN A 176	23.401 74.004
		34.330 12.173 109.362 1.00 32.21
MOTA	1392 N GLU A 177	33.027 11.696 108.915 1.00 32.72
MOTA	1393 CA GLU A 177	33.021
	1394 CB GLU A 177	
MOTA		31 905 10 069 107 329 1.00 39 40
ATOM	1395 CG GLU A 177	
ATOM	1396 CD GLU A 177	32.000
	1397 OE1 GLU A 177	
MOTA	·	32.206 8.947 105.264 1.00 42.35
MOTA	1398 OE2 GLU A 177	
ATOM	1399 C GLU A 177	32.120
•	1400 O GLU A 177	
MOTA		22 707 10 750 111.114 1.00 27.03
MOTA	1401 N ALA A 178	
MOTA	1402 CA ALA A 178	31.3/1
ATOM	1403 CB ALA A 178	32,505
		31.261 11.519 113.003 1.00 33.21
MOTA		30.145 11.355 113.493 1.00 28.64
ATOM	1405 O ALA A 178	30,143
ATOM	1406 N PHE A 179	31.000 12.000 10.00 10.00
		31.256 13.801 113.751 1.00 30.49
ATOM		32.071 14.128 115.001 1.00 24.44
ATCM	1408 CB PHE A 179	32.071
ATOM	1409 CG PHE A 179	32.402
		33,745 12,375 100 00 00 00
ATOM	1410 CD1 FHE A 1/9	31 536 12 233 116.563 1.00 23.09
MOTA	1411 CD2 PHE A 179	32.00 16 56
ATOM	1412 CE1 PHE A 179	34.105 11.101
	1413 CE2 PHE A 179	31.861 11.650
MOTA	170	33.170 10.515 117.067 1.00 20.30
MOTA		31.079 15.037 112.891 1.00 31.00
MOTA	1415 C PHE A 179	31.073
ATOM	1416 O PHE A 179	11.000 1000 100 100 100 100
		30.980 14.828 112.584 1.00 31.68
MOTA		20 929 15 925 110.646 1.00 32.76
MOTA	1418 CA TYR A 180	30.023 23 3 00 35 12
ATOM	1419 CB TYR A 180	30.331 100.36 37
	1420 CG TYR A 180	31,001 40,000
MOTA		30.427 16.846 107.204 1.00 37.31
MOTA	1421 CD1 TYR A 180	30.801 17.791 106.244 1.00 34.81
ATOM	1422 CE1 TYR A 180	30.004 2.00
ATOM	1423 CD2 TYR A 180	32.024 10.23
MOTA		22 088 18 304 106.250 1.00 36.05
MOTA	1425 CZ TYR A 180	72,700 ==
ATOM	1426 OH TYR A 180	32.440
	1427 C TYR A 180	29.510
MOTA		29.459 17.894 110.560 1.00 30.42
ATOM		29 473 .16 026 111.299 1.00 31.56
ATCM	1429 N ASP A 181	
ATOM	1430 CA ASP A 181	27.100 20.002 1 00 27 60
	1431 CB ASP A 181	
atom		25.645 14.689 111.705 1.00 39.86
MOTA	1432 CG ASP A 181	26 505 13 963 112,233 1.00 43.25
ATOM	1433 OD1 ASP A 181	
ATOM	1434 OD2 ASP A 181	29.423
	1435 C ASP A 181	
Mota	- 10:	25,571 17.286 113.109 1.00 33.91
ATOM	1436 O ASP A 181	23.372 22.010 1 00 40 86
ATOM	1437 N THR A 182	27.003 27.003 207
	1438 CA THR A 182	
ATOM		27.433 16.201 116.133 1.00 37.99
ATOM		27 013 16 595 117.448 1.00 35.64
ATOM	1440 OG1 THR A 182	27.013
ATOM	1441 CG2 THR A 182	20.000
ATOM		29.365 18.673 115.433 1.00 40.07
ATOM	1443 O THR A 182	27 557 19 369 116,582 1.00 37.01
ATOM	1444 N ASP A 183	27.337 23.003 == 00 37 74
		20,230 20 20 20 30 36 66
ATOM	103	27.313 21.706 117.228 1.00 35.30
ATOM	103	26 136 21 493 118 155 1.00 38.01
ATCM	1447 CG ASP A 183	20.130 21.320 1 00 34 94
ATOM	1448 OD1 ASP A 183	43.014 40.00
		23,720 22,370
ATOM		28 762 20.161 118.578 1.00 33.27
ATCM	1450 C ASP A 183	20 227 21 015 119 251 1.00 35.16
ATCM	1451 O ASP A 183	23.33, 21.33 010 1 00 35 10
170M		28.562 18.917 119.012 1.00 35.10

139/263

MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463	CA GLN A 184 CB GLN A 184 CG GLN A 184 CD GLN A 184 OE1 GLN A 184 NE2 GLN A 184 C GLN A 184 C GLN A 184 N VAL A 185 CA VAL A 185 CB VAL A 185	29.030 28.155 26.663 25.881 26.027 25.036 30.479 31.135 30.976 32.348 32.393	17.382 120.906 17.718 120.988 16.725 121.838 15.512 121.696 17.243 122.723 18.035 120.253 17.825 121.275 17.883 119.028 17.443 118.804 15.990 118.259	1.00 35.16 1.00 36.94 1.00 38.34 1.00 43.68 1.00 35.48 1.00 51.06 1.00 36.32 1.00 34.24 1.00 34.51 1.00 33.59 1.00 35.11 1.00 23.80
ATOM	1464	CG1 VAL A 185	33.834 31.731	15.567 118.003 15.045 119.242	1.00 26.00
MOTA	1465	CG2 VAL A 185 C VAL A 185	33.053	18.354 117.803	1.00 33.11
ATOM	1466 1467	O VAL A 185	32.545	18.593 116.714	1.00 27.73
ATOM	1467	N PHE A 186	34.215	18.872 118.184	1.00 31.49
MOTA MOTA	1469	CA PHE A 186	34.985	19.729 117.291	1.00 30.63 1.00 30.34
ATOM	1470	CB PHE A 186	35.420	21.023 117.991	1.00 30.34 1.00 30.22
ATOM	1471	CG PHE A 186	36.008	22.047 117.051 23.156 116.656	1.00 30.22
MOTA	1472	CD1 PHE A 186	35.265 37.284	21.879 116.524	1.00 29.37
MOTA	1473	CD2 PHE A 186	35.785	24.078 115.748	1.00 27.87
MOTA	1474	CE1 PHE A 186 CE2 PHE A 186	37.813	22.794 115.615	1.00 28.54
MOTA	1475 1476	CZ PHE A 186	37.064	23.892 115.227	1.00 30.80
MOTA MOTA	1477	C PHE A 186	36.232	18.952 116.879	1.00 33.38 1.00 28.30
MOTA	1478	O PHE A 186	36.952	18.426 117.729 18.877 115.574	1.00 32.00
MOTA	1479	N VAL A 187	36.478	18.877 115.574 18.171 115.060	1.00 29.70
MOTA	1480	CA VAL A 187 CB VAL A 187	37.645 37.252	17.095 114.019	1.00 30.03
MOTA	1481 1482	CB VAL A 187 CG1 VAL A 187	38.510	16.488 113.405	1.00 27.77
MOTA MOTA	1483	CG2 VAL A 187	36.410	16.003 114.672	1.00 25.98
ATOM	1484	C VAL A 187	38.604	19.153 114.392 19.895 113.491	1.00 31.03 1.00 31.88
ATOM	1485	O VAL A 187	38.215	19.895 113.491 19:157 114.857	1.00 24.88
MOTA	1486	N LEU A 188	39.850 40.899	20.010 114.304	1.00 26.92
MOTA	1487	CA LEU A 188 CB LEU A 188	41.468	20.959 115.361	1.00 27.04
MOTA	1488 1489	CB LEU A 188	42.823	21.565 114.963	1.00 25.15
MOTA MOTA	1490	CD1 LEU A 188	42.686	22.315 113.648	1.00 18.53 1.00 28.81
ATOM	1491	CD2 LEU A 188	43.330	22.485 116.068 19.113 113.815	1.00 25.31
MOTA	1492	C LEU A 188	42.022 42.579		1.00 25.83
ATOM	1493	O LEU A 188	42.369		1.00 30.53
MOTA	1494	N SER A 189 CA SER A 189	43.429	18.399 112.007	1.00 30.13
atom atom	1495 1496	CA SER A 189 CB SER A 189	42.821	17.249 111.199	1.00 33.41
ATOM	1497	OG SER A 189	43.837		1.00 32.98 1.00 27.94
ATOM	1498	C SER A 189	44.448		1.00 27.34
ATOM	1499	O SER A 189	44.084 45.728		1.00 24.80
ATOM	1500		46.805		1.00 22.23
MOTA	1501	CA LEU A 190 CB LEU A 190	47.955	20.000 111.459	1.00 23.69
MOTA MOTA	1502 1503		47.733	21.075 112.522	1.00 28.92
ATOM	1504	CD1 LEU A 190	49.070		1.00 23.01
MOTA	1505	CD2 LEU A 190	46.691		
MOTA	1506		47.300 47.416		1.00 16.55
MOTA	1507	O LEU A 190	47.599	18.353 108.587	1.00 19.22
ATOM	1508		48.04	5 17.210 107.804	1.00 23.28
ATOM	1509 1510		46.87	16.242 107.650	1.00 15.58
ATOM ATOM	1511	CG HIS A 191	45.59		
ATOM	1512	CD2 HIS A 191	45.03		
ATOM	1513	ND1 HIS A 191	44.59 43.64	A 07 F A	5 1.00 19.78
ATCM	1514		43.82	3 17.746 106.246	5 1.00 27.87
ATCM	1515		48.57	0 17.620 106.43	4 1.00 23.65
ATOM	151		48.41	9 18,761 106.01	7 1.00 23.89
atom atom	151	100	49.20		6 1.00 23.49
Alon		-			

			49.718	16.950 10	4.412	1.00 20.55
ATOM	1519	CA GLN A 192	50.474	15.738 10		1.00-23.63
ATOM	1520	CB GLN A 192		15.181 10		.00 24.07
MOTA	1521	CG GLN A 192				1.00 26.90
ATOM	1522	CD GLN A 192				
ATOM	1523	OE1 GLN A 192	52.986		•	1.00 20.21
	1524	NE2 GLN A 192	51.605			1.00 23.52
MOTA			48.478	17.174 10		1.00 21.41
Mota	1525		47.478		3.726	1.00 20.15
ATOM	1526	O GLN A 192	_			1.00 24.36
MOTA	1527	N SER A 193	48.528	10.107 10		1.00 23.98
ATOM	1528	CA SEE A 193	47.397			1.00 24.60
MOTA	1529	CB SER A 193				
ATOM	1530	OG SER A 193	46.729			1.00 25.83
ATOM	1531	C SER A 193	46.985	17.200 10		1.00 23.74
	1532	O SER A 193	47.829			1.00 19.80
MOTA			45.674	16.936 10		1.00 24.85
ATOM	1533		44.561		1.507	1.00 25.08
MOTA	1534	CD PRO A 194	45.151	15.772 10	0.235	1.00 29.25
MOTA	1535	CA PRO A 194			00.444	1.00 30.51
ATOM	1536	CB PRO A 194	43.641	16.643 10		1.00 30.21
ATOM	1537	CG PRC A 194	43.554		01.750	1.00 30.75
MOTA	1538	C PRO A 194	45.527		8.756	
ATOM	1539	O PRO A 194	45.420		98.041	1.00 30.04
	1540	N GLU A 195	45.967		98.298	1.00 26.28
ATOM	1541	CA GLU A 195	46.343	17.127	96.898	1.00 31.11
MOTA			46.738	18.570	96.571	1.00 29.52
ATOM	1542		45.680		96.933	1.00 38.32
MOTA	1543		45.976		96.352	1.00 44.15
MOTA	1544	CD GLU A 195	47.139		96.434	1.00 44.23
MOTA	1545	OE1 GLU A 195	45 037		95.825	1.00 45.06
MOTA	1546	OE2 GLU A 195	. 45.037		96.552	1.00 30.81
ATOM	1547	C GLU A 195	47.499		95.426	1.00 37.17
ATOM	1548	O GLU A 195	47.582			1.00 25.01
ATOM	1549	N TYR A 196	48.377		97.515	1 00 23 43
MOTA	1550	CA TYR A 196	49.517		97.242	1.00 23.43
ATOM	1551	CB TYR A 196	50.810		97.223	1.00 26.67
	1552	CG TYR A 196	51.255	16.424	98.572	1.00 26.78
MOTA	1553	CD1 TYR A 196	51.957	15.625	99.476	1.00 26.08
MOTA	1554	CE1 TYR A 196	52.338	16.110 1	.00.734	1.00 26.77
MOTA		CD2 TYR A 196	50.944	17.731	98.958	1.00 27.55
ATOM	1555		51.320	18.226 1	.00.216	1.00 25.95
MOTA	1556		52.012		01.096	1.00 24.78
MOTA	1557	CZ TYR A 196	52.356	17.879	02.345	1.00 25.50
ATOM	1558	OH TYR A 196	49.670	13.906	98.229	1.00 27.05
MOTA	1559	C TYR A 196	50.585	13.088	98.096	1.00 24.02
MOTA	1560	O TYR A 196		13.822	99.214	1.00 22.10
ATOM	1561	N ALA A 197	48.785	12.760		1.00 24.90
MOTA	1562	CA ALA A 197	48.928		101.437	1.00 27.83
ATOM	1563	CB ALA A 197	49.627			1.00 26.20
ATOM	15 54	C ALA A 197	47.644	12.069		1.00 20.20
MOTA	1: 65	O ALA A 197	46.553	12.617	100.484	1.00 22.02
	1536	N PHE A 198	47.795	10.849		1.00 31.74
ATCM	1567	CA PHE A 198	46.663		101.580	1.00 28.74
ATOM	1568	CB PHE A 198	47.130	8.691	102.036	1.00 30.66
ATOM			46.009	7.766	102.399 [.]	1.00 29.61
ATOM	1569		45.496		101.463	1.00 28.76
ATOM	1570	CD1 PHE A 198	45.426		103.657	1.00 28.43
ATOM	1571	CD2 PHE A 198			101.773	1.00 35.72
MOTA	1572	CE1 PHE A 198	44.415		103.970	1.00 34.62
MOTA	1573	CE2 PHE A 198	44.340		103.029	1.00 35.73
ATOM	1574	CZ PHE A 198	43.837	• • • • •	103.023	1.00 28.95
ATOM	1575		46.121			1.00 25.72
ATOM	15.76		46.892		103.596	1.00 23.72
	1577		44.792		102.941	1.00 28.27
ATOM	1578		44.100		104.099	1.00 33.97
ATOM			43.313	10.364	102.008	1.00 32-80
ATCM	1579			10.312	102.858	
ATOM	1580		42.665		103.592	1.00 37.32
ATOM	1581		43.773		100.965	1.00 35.02
MOTA	1582		44.052		101.280	1.00 48.84
MOTA.	1583				99.734	
MOTA	1584	N PHE A 200	43.441	. 11.170		

			2	•			
MOTA	1585	CA PHE A 200		43.418	12.179	98.718	1.00 28.12
ATOM	1586	CB PHE A 200		43.927	11.579	-	1.00 25.69
ATOM	1587	CG PHE A 200		45.226	10.833		1.00 27.33 1.00 29.79
ATOM	1588	CD1 PHE A 200		45.239	9.510	97.995 97.302	1.00 24.38
MOTA	1589	CD2 PHE A 200		46.439	11.461 8.820	98.168	1.00 29.45
MOTA	1590	CE1 PHE A 200		46.444 47.651	10.782	97.473	1.00 31.41
MOTA	1591	CE2 PHE A 200 CZ PHE A 200		47.653	9.458	97.906	1.00 29.64
MOTA	1592			42.042	12.795	98.518	1.00 26.15
ATOM	1593 1594	O PHE A 200		41.935	13.889	97.986	1.00 27.96
ATOM ATOM	1595	N GLU A 201		41.002	12.101	98.979	1.00 28.52
ATOM	1596	CA GLU A 201		39.614	12.534	98.806	1.00 35.04 1.00 33.61
MOTA	1597	CB GLU A 201	•	38.695	11.316	98 ⁷ .810 97.838	1.00 37.80
MOTA	1598	CG GLU A 201		39.087 38.222	10.240 9.016	97.997	1.00 43.48
ATOM	1599	CD GLU A 201		36.992	9.142	97.825	1.00 40.96
ATOM	1600	OE1 GLU A 201 OE2 GLU A 201		38.772	7.937	98.298	1.00 44.17
ATOM	1601 1602	C GLU A 201		39.077	13.516	99.837	1.00 36.30
MOTA MOTA	1603	O GLU A 201		38.087	14.206	99.592	1.00 36.47 1.00 34.63
ATOM	1604	N LYS A 202		39.693	13.552	101.007 102.030	1.00 34.03
ATOM	1605	CA LYS A 202		39.229	14.460 13.729	102.030	1.00 40.88
ATOM	1606	CB LYS A 202		38.294 37.011	13.729	102.292	1.00 43.17
ATOM	1607	CG LYS A 202 CD LYS A 202		35.935	12.854		1.00 47.39
MOTA	1608 1609	CD LYS A 202 CE LYS A 202		34.628	12.663	102.469	1.00 47.74
MOTA MOTA	1610	NZ LYS A 202		33.504	12.290	103.378	1.00 53.56
ATOM	1611	C LYS A 202		40.382	15.101	102.753	1.00 36.27 1.00 28.06
ATOM	1612	O LYS A 202		41.520		102.613	1.00 31.91
ATOM	1613	N GLY A 203		40.080 41.115		104.228	1.00 33.75
MOTA	1614	CA GLY A 203 C GLY A 203		41.288	18.288	103.729	1.00 30.54
MOTA	1615 1616	C GLY A 203 O GLY A 203		42.174	18.996	104.200	1.00 28.04
MOTA ATOM	1617	N PHE A 204		40.458	18.713		1.00 29.93
ATOM	1618	CA PHE A 204		40.557	20:.077		1.00 35.76 1.00 31.41
ATOM	1619	CB PHE A 204		39.863	20.217 19.416	100.901	1.00 31.41
ATOM	1620	CG PHE A 204		40.498 40.169	19.416		1.00 35.66
MOTA	1621	CD1 PHE A 204 CD2 PHE A 204		41.431	20.002		1.00 30.79
ATOM	1622 1623	CD2 PHE A 204 CE1 PHE A 204		40.761	17.329	98.597	1.00 35.20
MOTA MOTA	1624	CE2 PHE A 204		42.033	19.267		1.00 36.08
ATOM	1625	CZ PHE A 204		41.697	17.928		1.00 36.54 1.00 37.30
ATOM	1626	C PHE A 204		39.967			1.00 33.56
ATOM	1627	O PHE A 204		39.088 40.451			1.00 38.52
ATOM	1628	N LEU A 205 CA LEU A 205		40.012	23 427	103.993	1.00 36.81
ATOM	1629 1630	CA LEU A 205 CB LEU A 205		40.801	24.695	103.659	1.00 34.73
atom atom	1631	CG LEU A 205		40.496	25.954	104.479	1.00 40.98 1.00 39.87
ATOM	1632	CD1 LEU A 205		40.690		7 105.965 9 104.032	
ATOM	1633	CD2 LEU A 205		41.415		104.032	
ATOM	1634	C LEU A 205		38.520 37.931			1.00 40.98
ATOM	1635	O LEU A 205 N GLU A 206		37.909			1.00 36.07
ATOM	1636 1637			36.486		B 102.586	1.00 36.30
atom atom	1638			36.107	23.59		1.00 39.98
ATOM	1639			36.890			
ATOM	1640	CD GLU A 206		38.307			
ATOM	1641			39.146	_		
atom	1642			38.583			1.00 33.85
ATOM	1643			34.43		3 103.718	3 1.00 26.22
ATOM	1644 1645			36.07	1 21.67	9 103.80	
atom atom	1646	CA GLU A 207	•	35.29	7 20.72	6 104.599	
ATOM	1647	CB GLU A 207	7	36.00		9 104.566 1 103.17	
ATOM	1648	G GLU A 201		36.04 37.18			
ATOM	1649	CD GLU A 201	;	37.18 37.48	2 11.13 7 17 02	5 103.99	
ATOM	1650	OE1 GLU A 20	,	37.40		-	

			207	37.760	17.688	101.916	1.00 35.48
MOTA	1651		GLU A 207	35.182	21.229		1.00 35.06
MOTA	1652		GLU A 207	36.009	20.894		1.00 34.16
MOTA	1653	0	GLU A 207	-	22.024		1.00 35.99
ATOM	1654	11	ILE A 208	34.150	22.024	100.302	1.00 38.96
MOTA	1655	CA	ILE A 208	33.968	22.604		1.00 42.74
MOTA	1656	CB	ILE A 208	33.737	24.134	107.529	
ATOM	1657	CG2	ILE A 208	33.717	24.762	108.914	1.00 48.29
ATOM	1658	CG1	ILE A 208	34.841	24.795	106.700	1.00 40.34
ATOM	1659	CD1	ILE A 208	36.207	24.758	107.335	1.00 46.23
ATOM	1660	C	ILE A 208	32.821	21.998	108.452	1.00 38.32
	1661	0	ILE A 208	32.558	22.434	109.571	1.00 40.08
ATOM	1662	N	GLY A 209	32.142	20.997	107.901	1.00 34.36
ATOM		CA	GLY A 209	31.047	20.374	108.620	1.00 33.32
MOTA	1663		GLY A 209	 29.699	20.673	107.993	1.00 37.87
MOTA	1664	C	GLY A 209	29.579	21.581	107.173	1.00 40.56
MOTA	1665	0	GLU A 210	28.676	19.917	108.380	1.00 37.38
MOTA	1666	N	GLU A 210	27.337	20.118		1.00 42.34
MOTA	1667	CA		27.008		106.823	1.00 42,73
MOTA	1668	CB	GLU A 210	26.860			1.00 47.38
ATOM	1669	CG	GLU A 210	26.633			1.00 52.68
MOTA	1670	CD	GLU A 210	26.335		106.860	1.00 50.59
ATOM	1671	OE1	GLU A 210		15.373	105.226	1.00 53.78
MOTA	1672		GLU A 210	26.711		108.938	1.00 42.90
MOTA	1673	С	GLU A 210	26.287		110.022	1.00 45.94
MOTA	1674	0	GLU A 210	26.516		108.654	1.00 43.16
ATOM	1675	N	GLY A 211	25.130		109.642	1.00 43.98
MOTA	1676	CA	GLY A 211	24.068			1.00 45.01
ATOM	1677	C	GLY A 211	24.514		110.911	1.00 48.15
MOTA	1678	0	GLY A 211	25.186		110.858 112.059	1.00 41.63
MOTA	1679	N	LYS A 212	24.145			1.00 45.07
MOTA	1680	CA	LYS A 212	24.528	21.495	113.328	1.00 46.59
ATOM	1681	CB	LYS A 212	23.913		114.490	1.00 40.33
ATOM	1682	CG	LYS A 212	22.386	20.591	114.462	1.00 57.42
ATOM	1683	CD	LYS A 212	21.651		114.481	1.00 57.42
ATOM	1684	CE	LYS A 212	21.749		113.151	1.00 57.43
ATOM	1685	NZ	LYS A 212	21.051	24.017	113.178	1.00 37.43
ATOM	1686	С	LYS A 212	26.046	21.513	113.469	
ATOM	1687	0	LYS A 212	26.598	22.326	114.207	1.00 40.03
ATOM	1688	13	GLY A 213	26.713		112.751	1.00 39.51
ATOM	1689	CA	GLY A 213	28.163			1.00 40.11
ATOM	1690	С	GLY A 213	28.888	21.519	111.916	1.00 38.25
ATOM	1691	0	GLY A 213	30.122	21.575	111.913	1.00 34.70
ATOM	1692	N	LYS A 214	28.131		111.143	1.00 37.31
ATOM	1693	CA	LYS A 214	28.736	23.274	110.250	1.00 39.58
ATOM	1694	CB	LYS A 214	27.656	24.017		1.00 44.69
ATOM	1695	CG	LYS A 214	28.189	25.030	108.461	1.00 44.53
ATOM	1696	CD	LYS A 214	27.047	25.704	107.720	1.00 47.71
MOTA	1697	CE	LY A 214	27.553	26.759	106.754	1.00 52.94
MOTA	1698	NZ	LYL A 214	28.453	26.183	105.717	1.00 57.45
ATOM	1699	5	LYS A 214	29.547	24.259	111.085	1.00 40.16
ATOM	1700		LYS A 214	29.002	24.963	111.933	1.00 37.92
ATOM	1701	N	GLY A 215	30.851	24.295	110.846	1.00 36.57
ATOM	1702	CA	GLY A 215	31.716	25.183	3 111.593	1.00 35.03
ATOM	1703		GLY A 215	32.431	24.448	3 112.709	1.00 34.57
MOTA	1704		GLY A 215	33.216	25.039	9. 113.454	1.00 33.76
	1705		TYR A 216	32.168	23.153	3 112.837	1.00 34.61
MOTA	1705		TYR A 216	32.816	22.378	3 113.885	1.00 35.00
ATOM	1707		TYR A 216	31.763	21.683	3 114.753	1.00 36.19
MOTA	1708		TYR A 216	30.928	22.67	1 115.547	1.00 36.68
ATCM	1708			29.961	23.462	2 114.925	1.00 35.83
MOTA	1710		1 TYR A 216	29.249	24.43	1, 115.641	1.00 40.89
ATOM				31.163	22.86	9 116.910	1.00 41.50
ATOM	1711	. (2)	2 TYR A 216	30.459	- 23.83	4 117.634	1.00 40.69
ATOM	1712		TYR A 216	29.505	24.61	2 116.994	1.00 40.17
ATOM	1713 1714			28.816	25.56	6 117.708	1.00 38.09
MOTA	1719		TYR A 216	33.877	21.38	4 113.401	1.00 34.05
ATOM	1716		TYR A 216	34.263		2 114.127	1.00 31.87
MOTA	2120						

				_				
		., ,	CN : 217		34.343	21.580	112.170	1.00 29.90
ATOM	1717	N A	SN A 217 SN A 217		35.398	20.748	111.606	1.00 30.02
ATOM	1718				34.833	19.727	110.615	1.00 26.46
MOTA	1719	CE A	SN A 217		35.897	18.764	110.105	1.00 30.13
MOTA	1720	CG A	SN A 217		36.558	19 022	109.097	1.00 29.80
MOTA	1721	OD1 A	ASN A 217		36.094	17 659	110.831	1.00 19.92
ATOM	1722	11D2 >	ASN A 217			21 686	110.915	1.00 30.23
ATOM	1723	C ?	ASN A 217		36.378	22.502	110.080	1.00 27.88
MOTA	1724	0 7	ASN A 217		35.983	22.302	111.271	1.00 29.45
ATOM	1725	N I	LEU A 218		37.655	22.377	110.698	1.00 28.76
ATOM	1726	CA - I	LEU A 218		38.670	23.444	111.753	1.00 29.02
ATOM	1727	CB I	LEU A 218		39.160	23.999	111.307	1.00 34.69
MOTA	1728	CG I	LEU A 218		39.513	25.480		1.00 32.93
MOTA	1729	CD1 I	LEU A 218		40.432 40.197	24.873		1.00 30.69
MOTA	1730		LEU A 218		39.870	21.657		1.00 26.65
MOTA	1731		LEU A 218		40.527	20.981		1.00 25.25
ATOM	1732	0 1	LEU A 218		40.327	21.752		1.00 25.21
MOTA	1733	N .	ASN A 219		41.287	21 069	108.294	1.00 21.91
ATOM	1734	CA	ASN A 219		40.875	20.314		1.00 23.69
MOTA	1735	CB .	ASN A 219		39.972	19.144	107.298	1.00 27.88
MOTA	1736	CG .	ASN A 219		40.153	18.440		1.00 29.28
MOTA	1737	OD1	ASN A 219		39.018	18.900		1.00 24.48
MOTA	1738		ASN A 219		42.355	22.074		1.00 23.46
MOTA	1739	C	ASN A 219 ASN A 219		42.059	23.073		1.00 28.17
MOTA	1740		ILE A 220		43.595	21.804		1.00 23.90
MOTA	1741		ILE A 220		44.702	22.684	107.945	1.00 23.22
MOTA	1742		ILE A 220		45.468	23.131	109.212	1.00 28.73
ATOM	1743	CB CG2	ILE A 220		46.601	24.078	108.831	1.00 26.01
MOTA	1744	CG2	ILE A 220		44.502	23.783	110.212	1.00 26.36
MOTA	1745 1746	CD1	ILE A 220		43.771	25.004	109.688	1.00 25.74
MOTA	1747	C	ILE A 220	•	45.669	21.929	107.018	1.00 25.29
ATOM	1748	0	ILE A 220		46.631	21.315	5 107.477	1.00 20.44
MOTA	1749	N	PRO A 221		45.396	21.924	1 105 703	1.00 26.34
MOTA MOTA	1750	CD	PRO A 221		44.234	22:497	7 104.999	1.00 28.22
ATOM	1751	CA	PRO A 221		46.271	21.234	1 104.747	1.00 26.92 1.00 27.81
ATOM	1752	CB	PRO A 221		45.454		9 103.457	1.00 27.81
MOTA	1753	CG	PRO A 221		44.774		2 103.582	1.00 30.02
ATOM	1754	С	PRO A 221		47.595		7-104.625	1.00 31.21
ATOM	1755	0	PRO A 221		47.603	23.19	9 104.457 2 104.703	1.00 26.01
ATOM	1756	N	LEU A 222		48.704		8 104.640	1.00 26.41
MOTA	1757	CA	LEU A 222		50.038		0 105.997	1.00 26.12
MOTA	1758	CB	LEU A 222		50.726		2 107.150	
MOTA	1759	CG	LEU A 222		49.960 50.531		9 108.497	
MOTA	1760	CD1	LEU A 222		50.531		9 106.985	
MOTA	1761		LEU A 222		50.024		6 103.504	1.00 28.97
MOTA	1762		LEU A 222		50.784		8 103.117	1.00 27.95
MOTA	1763		LEU A 222		51.82		6 102.964	1 00 31.52
ATOM	1764		PRO A 223		52.059		8 103.358	1.00 29.08
ATCM	1765		PRO A 223 PRO A 223		52.72	7 21.75	3 101.865	1.00 29.93
ATCM	1766		PRO A 223		53.26	23.10	9 101.428	1.00 29.16
ATOM	1767		PRO A 223		53.458	3 23.77	1 102.779	1.00 25.86
ATOM	1768		PRO A 223		53.86	20.78	32 102.206	1.00 33.62
MOTA	1769		PRO A 223		54.17		31 103.376	1.00 26.55
MOTA	1770		LYS A 224		54.47	9 20.25	57 101.153	3 1.00 34.00
MOTA	1771		LYS A 224		55.59		20 101.264	
ATOM	1772		LYS A 224		55.93		57 99.884	
ATOM	1773 1774		LYS A 224		54.76	1 18.20	99.11	
ATOM	1775		LYS A 224		55.15	0 17.99	98 97.65	1.00 45.23
ATOM	1776		LYS A 224		53.98	9 17.4	78 96.83	
ATOM	177		LYS A 224		54.33	1 17.4		
ATCM	1778		LYS A 224		56.31	7 20.0	54 101.79	
ATOM	1779		LYS A 224		56.93	3 21.2	70 101.64	
atom atom			GLY A 225		57.73		05 102.40	
ATOM	178	_	GLY A 225		58.94		96 102.94	
ATOM			GLY A 225		58.72	7 20.7	92 104.15	4 1.00 22.44
ATOM								

	_	-6
ATOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM	1837 CA LEU A 232 1838 CB LEU A 232 1839 CG LEU A 232 1840 CD1 LEU A 232 1841 CD2 LEU A 232 1842 C LEU A 232	53.371 26.542 114.800 1.00 26.98
ATOM	1837 CA LEU A 232	55 422 25.617 115.933 1.00 25.15
	1839 CG LEU A 232	56.176 24.372 116.420 1.00 28.11
ATOM	1840 CD1 LEU A 232	55.268 23.540 117.328 1.00 27.87
	1842 C LEU A 232	53.371 26.542 114.800 1.00 26.98
ATOM	1843 O LEU A 232	53 694 27.232 113.708 1.00 24.99
ATOM	1844 N PHE A 233	52 950 28,426 113,312 1.00 28,13
atom atom	1846 CB PHE A 233	53.542 29.029 112.029 1.00 30.77
ATOM	1 1847 CG PHE A 233	32.713 30.111 962 1 00 32.80
ATON		32.003

			-			
MOTA	1849	CD2. PHE A 233	51.8		3 110.412	1.00 31.59
ATOM	1850	CE1 PHE A 233	52.0		8 111.452	1.00 33.90 1.00 32.47
ATOM	1851	CE2 PHE A 233	51.0			1.00 32.47
ATOM	1852	CZ PHE A 233	51.1		08 110.415	1.00 32.50
ATOM	1853	C PHE A 233	51.5		9 113.031 3 113.532	1.00 25.88
ATOM	1854	O PHE A 233	50.5			1.00 23.30
MOTA	1855	N ALA A 234	51.3			1.00 25.68
MOTA	1856	CA ALA A 234	50.0	56 26.43	79 110.864	1.00 20.08
ATOM	1857	CB ALA A 234	50.1			1.00 25.17
MOTA	1858	C ALA A 234	49.3		28 113.234	1.00 25.21
MOTA	1859	O ALA A 234	48.1 50.0		35 113.987	1.00 28.18
MOTA	1860	N LEU A 235 CA LEU A 235	49.3			1.00 33.70
MOTA	1861		50.3			1.00 32.70
MOTA	1862 1863	CB LEU A 235 CG LEU A 235	49.7	72 22.7	88 116.820	1.00 36.89
MOTA	1864	CD1 LEU A 235	50.6	34 22.5	45 118.052	1.00 31.37
MOTA MOTA	1865	CD2 LEU A 235	48.3	344 23.0	72 117.231	1.00 31.47
MOTA	1866	C LEU A 235	48.8		25 116.062	1.00 33.38
MOTA	1867	O LEU A 235	47.6		26 116.455	1.00 28.13 1.00 34.02
MOTA	1868	N GLU A 236	49.	710 26.8		1.00 34.02
ATOM	1869	CA GLU A 236	49.		26 117.199 72 117.400	1.00 37.30
MOTA	1870	CB GLU A 236	50.			1.00 49.54
MOTA	1871	CG GLU A 236	51. 52.			1.00 55.02
ATOM	1872	CD GLU A 236	53.			1.00 56.19
ATOM	1873	OE1 GLU A 236 OE2 GLU A 236	52.			1.00 54.84
ATOM	1874	C GLU A 236	48.			1.00 33.98
MOTA MOTA	1875 1876	O GLU A 236	. 47.		98 117.362	1.00 37.01
ATOM	1877	N LYS A 237	48.		37 115.354	1.00 33.94
ATOM	1878	CA LYS A 237	47.			1.00 33.10
ATOM	1879	CB LYS A 237	47.			1.00 36.08 1.00 33.62
ATOM	1880	CG LYS A 237	48.			1.00 37.99
ATOM	1881	CD LYS A 237		395 32.5 569 33:4		1.00 45.24
ATOM	1882	CE LYS A 237		569 33:4 285 34.7		1.00 43.49
MOTA	1883	NZ LYS A 237		820 29.1		1.00 31.40
ATOM	1884	C LYS A 237 O LYS A 237		793 29.6	680 115.131	1.00 31.67
	1885	O LYS A 237 N SER A 238		841 27.8	861 114.354	1.00 28.72
ATOM ATOM	1887	CA SER A 238	44.	610 27.0	080 114.335	1.00 31.74
ATOM	1888	CB SER A 238	44.		720 113.660	1.00 28.90 1.00 25.18
ATOM	1889	OG SER A 238		760 24.	924 114.372	1.00 23.18
ATOM	1890	C SER A 238		041 26.		1.00 34.79
MOTA	1891	O SER A 238		.823 26. .907 26.		1.00 35.27
MOTA	1892	N LEU A 239		.907 26. .413 26.	587 118.108	1.00 37.57
MOTA	1893	CA LEU A 239		554 26.	307 119.090	1.00 38.58
MOTA	1894	CB LEU A 239 CG LEU A 239		176 24.	907 119.038	1.00 39.74
MOTA	1895	CD1 LEU A 239		276 24.	797 120.075	1.00 35.82
ATOM	1896 1897	CD2 LEU A 239		.109 23.	861 119.301	1.00 34.93
ATOM ATOM	1898	C LEU A 239	43	.670 27.	852 118.521	1.00 39.09
ATOM	1899	O LEU A 239			782 119.174	1.00 35.50
ATOM	1900	N GLU A 240			007 118.131	1.00 39.27
ATOM	1901	CA GLU A 240			281 118.450	
ATOM	. 1902	CB GLU A 240		.366 31.	448 117.883 747 118.602	
MOTA	1903	CG GLU A 240		.661 31.	884 117.942	
MOTA	1904	CD GLU A 240		.407 32. .772 33.	925 117.665	1.00 49.00
ATOM	1905	OE1 GLU A 240		624 32.	745 117.70	1.00 54.05
ATOM:		040		.165 30.	312 117.849	1.00 39.58
ATOM	1907	0.40		224 30.	822 118.45	5 1.00 40.99
ATOM	1908 1909			.039 29	.764 116.64	5 1.00 35.70
ATCM	1909		40	.754 29.	.726 115.96	1.00 38.23
MOTA	1911		40	904 29	.150 114.54	6 1.00 37.55
atom atom	1912	CG2 ILE A 241	39	.535 29	.005 113.89	5 1.00 37.30 4 1.00 38.36
ATOM	1913	CG1 ILE A 241			.048 113.72	
ATOM	1914		42	.106 29	.541 112.32	0 1.00 50.15
0						

		•••
	1915 C ILE A 241	39.751 28.881 116.737 1.00 37.31
MOTA		38,591 29,264 116,884 1,00 37,91
ATOM		40.203 27.732 117.231 1.00 37.07
MOTA		39.336 26.832 117.981 1.00 38.35
ATOM		40 025 25.477 118.250 1.00 37.58
MOTA		39 120 94 581 119,078 1.00 31.91
MOTA	1920 CG1 VAL A 242	40 364 24 803 116.928 1.00 39.21
ATOM	1921 CG2 VAL A 242	39 930 27 451 119 305 1.00 40 40
ATOM	1922 C VAL A 242	37.759 27.422 119.675 1.00 38.19
MOTA	1923 O VAL A 242	39.905 28.008 120.014 1.00 45.47
ATOM	1924 N LYS A 243	an con an cea 121 303 1 00 48.74
MOTA	1925 CA 210 1 210	40 945 29 319 121.801 1.00 51.01
MOTA	1926 CB LYS A 243	41 853 28 426 122.614 1.00 56.09
ATOM	1927 CG LYS A 243	41.250 28.149 123.991 1.00 57.39
ATOM	1928 CD LYS A 243 1929 CE LYS A 243	41 054 29 436 124.783 1.00 59.53
MOTA		40.448 29.193 126.127 1.00 57.91
MOTA		38,559 29,705 121.260 1.00 51.67
MOTA		37.815 29.871 122.226 1.00 52.84
MOTA	6 4 4	38.451 30.410 120.140 1.00 53.77
MOTA	2.4.4	37.460 31.471 120.004 1.00 54.74
MOTA		37 954 32 497 118.986 1.00 55.15
MOTA	1935 CB GLU A 244 1936 CG GLU A 244	37.068 33.717 118.865 1.00 60.63
MOTA	1937 CD GLU A 244	37,602 34.714 117.868 1.00 65.87
ATOM	1938 CE1 GLU A 244	38.746 35.181 118.053 1.00 70.36
ATOM	1939 OE2 GLU A 244	36.879 35.031 116.900 1.00 67.09
MOTA MOTA	1940 C GLU A 244	36.051 31.025 119.626 1.00 52.65
ATOM	1941 C GLU A 244	35.127 31.838 119.606. 1.00 55.59
MOTA	1942 N VAL A 245	35.869 29.745 119.332 1.00 50.57 34.546 29.269 118.947 1.00 45.75
ATOM	1943 CA VAL A 245	34.340 20 40 01
ATOM	1944 CB VAL A 245	34.473 27.00 1 00 52 62
MOTA	1945 CG1 VAL A 245	33.003 20.003 20.00 40 34
ATOM	1946 CG2 VAL A 245	34:023
MOTA	1947 C VAL A 245	34.130 27.130
ATOM	1948 0 VAL A 245	33.021 27.000 100 100 100 100 100 100 100 100 100
ATOM	1949 N PHE A 246	33.001 2
MOTA	1950 CA PHE A 246	34.662 26.168 121.139 1.00 37.47 35.106 24.991 120.257 1.00 37.00
MOTA	1951 CB PHE A 246	34.450 23.685 120.604 1.00 33.22
ATOM	1952 CG PHE A 246	23 111 23 467 120.302 1.00 33.93
ATOM	1953 CD1 PHE A 246	35 168 22 674 121.234 · 1.00 32.13
MOTA	1954 CD2 PHE A 246	32 493 22.260 120.621 1.00 37.75
MOTA	1955 CE1 PHE A 246 1956 CE2 PHE A 246	34 561 21.459 121.561 1.00 35.92
ATOM		33,217 21,252 121,251 1.00 36,30
MOTA		35 322 26.065 122.509 1.00 38.93
ATOM	1958 C PHE A 246	36 546 26,158 122.630 1.00 40.66
ATOM	1960 N GLU A 247	34.500 75.870 123.537 1.00 38.59
MOTA MOTA	1961 CA GLU A 247	34.970 5.733 124.515 2.00 47 07
MOTA	1962 CB GLU A 247	34.146 . 3.613 123.003 1.00 56 16
MOTA	1963 CG GLU A 247	33.161 27.569 125.105 1.00 50.03
ATOM	1964 CD GLU A 247	31.944 26.865 124.577 1.00 63.05
ATOM	1965 OE1 GLU A 247	32.096 26.088 125.007 1.00 64 59
ATOM	1966 OE2 GLU A 247	30.822 27.094 125.005 1.00 30.40
ATOM	1967 C GLU A 247	34.774 24.269 125.265 1.66 35.06
ATOM	1968 D GLU A 247	33.727 23.879 125.734 1.00 38 64
MOTA	1969 :: PRO A 248	33.752 23.412 124 493 1 00 33.25
ATOM	1970 CD PRO A 248	37.111 23.006 125 316 1 00 35 84
ATOM	1971 CA PRO A 248	53 124 549 3 00 36 05
ATOM	1972 CB PRO A 248	37.070, 22 687 124.982 1.00 34.21
ATOM	1973 CG PRO A 248	35 736 21 611 126.779 1.00 33.94
ATOM	1974 C PRO A 440	35.756 22.386 127.597 1.00 32.05
ATOM	1975 C PRO A 24	34 914 20.616 127.096 1.00 29.39
ATOM	1976 :: GLU A 44	34 841 20.105 128.459 1.00 33.12
ATOM		33 521 19 361 128 693 1.00 30 36
ATOM		32 284 20.212 128.564 1.00 35.98
ATOM	1979 CG GLU A 24	7
ATC	1980 CD GLU A 24	

	4001	073 6741 3 349	30.817	18.509	127.804	1.00 40.27
ATOM	1981	OE1 GLU A 249	30.252			1.00 38.57
MOTA	1982	OE2 GLU A 249				1.00 32.30
MOTA	1983	C GLU A 249	35.995			1.00 28.51
ATOM	1984	O GLU A 249	36.47	18.884		1.00 33.74
MOTA	1985	N VAL A 250	36.43			1.00 29.31
ATOM-	1986	CA VAL A 250	37.51	17.563		
ATOM	1987	CB VAL A 250	36.98	3 16.174		1.00 29.85
ATOM	1988	CG1 VAL A 250	35.90	3 15.711	126.958	1.00 24.36
ATOM	1989	CG2 VAL A 250	38.12	1 15.166	127.978	1.00 25.60
	1990	C _VAL A 250	38.06		126.076	1.00 29.30
MOTA		0 VAL A 250	37.35		125.114	1.00 24.46
ATOM	1991		39.32		125.930	1.00 27.96
MOTA	1992		39.86		124.585	1.00 30.06
MOTA	1993	CA TYR A 251	40.58		124.165	1.00 25.89
MOTA	1994	CB TYR A 251	41.99	8 18 370	124.692	1.00 29.90
MOTA	1995	CG TYR A 251	43.08			1.00 26.02
MOTA	1996	CD1 TYR A 251	44.39			1.00 29.20
ATOM	1997	CE1 TYR A 251				1.00 31.96
MOTA	1998	CD2 TYR A 251	42.24		126.338	1.00 31.54
ATOM	1999	CE2 TYR A 251	43.55			1.00 31.46
ATOM	2000	CZ TYR A 251	44.61			1.00 29.69
ATOM	2001	OH TYR A 251	45.89		126.152	1.00 27.56
MOTA	2002	C TYR A 251	40.80			1.00 27.30
MOTA	2003	O TYR A 251	41.38		125.436	1.00 28.23
ATOM	2004	N LEU A 252	40.90		123.227	1.00 23.52
ATOM	2005	CA LEU A 252	. 41.80		122.919	1.00 26.53
ATOM	2006	CB LEU A 252	41.05	7 12.930	122.293	1.00 25.74
ATOM	2007	CG LEU A 252	40.26	6 12.001	123.221	1.00 28.49
ATOM	2008	CD1 LEU A 252	39.12	2 12.753	123.868	1.00 27.67
ATOM	2009	CD2 LEU A 252	39.72	7 10.835	122.414	1.00 32.00
	2010	C LEU A 252	42.84	2 14.638	121.932	1.00 27.53
ATOM		0.00	42.52			1.00 24.42
MOTA	2011		44.07	5 14.176	122.078	1.00 24.60
MOTA	2012		45.15	7 14.599	121.204	1.00 25.04
ATOM	2013		46.17		122.017	1.00 22.48
MOTA	2014		47.45	6 15 880	121.323	1.00 21.05
MOTA	2015	CG LEU A 253	47.10	16 833	120.175	1.00 23.05
ATOM	2016	CD1 LEU A 253	48.3		122.360	1.00 16.40
ATOM	2017	CD2 LEU A 253	45.83			1.00 23.55
MOTA	2018	C LEU A 253	46.3	20 12 516	121.303	1.00 22.11
MOTA	2019	O LEU A 253	45.8	12.310	119.248	1.00 22.33
ATOM	2020	N GLN A 254	46.4	17 17 150	118.552	1.00 19.84
MOTA	2021	CA GLN A 254	-	17 12.130	117.348	1.00 23.09
ATOM	2022	CB GLN A 254	45.5	32 11./21	117.963	1.00 35.49
MOTA	2023	CG GLN A 254	46.0		115.453	1.00 31.26
MOTA	2024	CD GLN A 254	47.0		114.961	1.00 33.69
ATOM	2025	OE1 GLN A 254	46.7		1 114.501	1.00 31.02
TOM	2026	NE2 GLN A 254	48.3	38 11.345	115.574	1.00 22.46
MOT.	2027	C GLN A 254	47.8		5 118.153	1.00 17.56.
rom	2028	O GLN A 254	48.0	34 13.599	117.478	1.00 17.50.
ATOM	2029	N LEU A 255	48.8	04 11.78	1 118.590	1.00 17.04
MOTA	2030	CA LEU A 255	50.2		118.383	1.00 17.04
MOTA	2031	CB LEU A 255	50.8	94 12.13	5 119.750°	1.00 14.75
ATOM	2032	CG LEU A 255	50.2	77 13.19	6 120.670	1.00 25.02
ATOM	2033	CD1 LEU A 255	50.7	32 12.99	6 122.107	1.00 21.99
ATOM	2034	CD2 LEU A 255	50.6	36 14.57	8 120.149	1.00 18.30
	2035	C LEU A 255	51.0	23 11.16	9 117.476	1.00 21.34
MOTA	2035	O LEU A 255	52.0	89 10.70	5 117.875	1.00 18.73
ATOM		N GLY A 256	50.5	43 10.92	8 116.259	1.00 22.75
MOTA	2037		51.2	91 10.09	3 115.330	1.00 24.09
ATOM	2038		52.6		1 115.126	1.00 24.27
MOTA	2039		52.8		5 115.134	1.00 19.15
ATOM	2040		53.6		3 114.948	1.00 24.14
ATOM	2041		55.0	14 10 44	0 114.765	1.00 21.32
MOTA	2042	- 0 = 0	56.0	48 0 50	2 115.511	1.00 17.24
MOTA	2043		56.0		8 115.004	1.00 17.48
ATOM	2044		55.7	778 0.29	2 117.016	1.00 15.73
ATOM	2045		55.4 55.4		7 113.290	
ATOM	2046	C THR A 257	55.4	103 10.32		-

			8		
• moM	2047	O THR A 257	56.517	10.941 112.974	1.00 20.39
ATOM ATOM	2048	N ASP A 258	54.493		1.00 22.20
ATOM	2049	CA ASP A 258	54.863	10.229 110.961	1.00 26.56
ATOM	2050	CB ASP A 258	53.849	9.496 110.056	1.00 25.06
ATOM	2051	CG ASP A 258	52.415	9.944 110.252	1.00 29.08
ATOM	2052	C ASP A 258	55.222	11.596 110.364	1.00 27.87
MOTA	2053	O ASP A 258	55.756	11.661 109.254	1.00 25.61
ATOM	2054	OD1 ASP A 258	52.173	11.070 110.742	1.00 29.86
ATOM	2055	OD2 ASP A 258	51.513	9.168 109.869	1.00 33.25
ATOM	2056	N PRO A 259	54.884	12.710 111.045	1.00 31.06
ATOM	2057	CD PRO A 259	54.019	12.928 112.220	1.00 28.39
ATOM	2058	CA PRO A 259	55.268	14.006 110.469 14.993 111.296	1.00 35.06
MOTA	2059	CB PRO A 259	54.447		1.00 35.00
ATOM	2060	CG PRO A 259	54.418	14.320 112.636 14.268 110.583	1.00 33.20
MOTA	2061	C PRO A 259	56.790	15.251 110.044	1.00 29.70
MOTA	2062	O PRO A 259	57.300 57.508	13.389 111.280	1.00 22.68
MOTA	2063	N LEU A 260	58.960	13.545 111.455	1.00 28.41
MOTA	2064	CA LEU A 260 CB LEU A 260	59.461	12.576 112.533	1.00 22.47
ATOM	2065		58.970	12.791 113.969	1.00 20.14
ATOM	2066	CG LEU A 260 CD1 LEU A 260	59.352	11.599 114.826	1.00 22.83
MOTA	2067 2068	CD2 LEU A 260	59.592	14.079 114.532	1.00 20.48
MOTA	2069	C LEU A 260	59.770	13.344 110.160	1.00 27.95
MOTA MOTA	2070	O LEU A 260	59.407	12.535 109.299	1.00 27.03
MOTA	2071	N LEU A 261	60.874	14.081 110.040	1.00 26.76
ATOM	2072	CA LEU A 261	61.742	14.010 108.865	1.00 26.56
ATOM	2073	CB LEU A 261	63.067	14.737 109.137	1.00 23.06 1.00 29.52
MOTA	2074	CG LEU A 261	64.131	14.615 108.025	1.00 23.52
MOTA	2075	CD1 LEU A 261	63.642	15.325 106.770 15.219 108.475	1.00 26.71
MOTA	2076	CD2 LEU A 261	65.460	12.577 108.443	1.00 28.23
MOTA	2077	C LEU A 261	62.063 61.880	12.198 107.289	1.00 26.52
MOTA	2078	O LEU A 261 N GLU A 262	62.539	11.787. 109.397	1.00 28.70
MOTA	2079	N GLU A 262 CA GLU A 262	62.938	10.416 109.135	1.00 31.76
MOTA	2080 2081	CB GLU A 262	63.685	9.855 110.351	1.00 29.72
MOTA MOTA	2082	CG GLU A 262	64.890	10.683 110.803	1.00 31.33
MOTA	2083	CD GLU A 262	64.521	11.847 111.708	1.00 28.07
ATOM	2084	OE1 GLU A 262	63.324	12.195 111.789	1.00 28.75 1.00 26.08
ATOM	2085	OE2 GLU A 262	65.433	12.424 112.340	
ATOM	2086	C GLU A 262	61.847	9.429 108.721 8.305 108.350	
ATOM	2087	O GLU A 262	62.158		1.00 28.07
ATOM	2088	N ASP A 263	60.582 59.513		1.00 26.85
MOTA	2089	CA ASP A 263	58.305	100 222	1.00 25.26
ATOM	2090	CB ASP A 263 CG ASP A 263	57.261	7.998 109.185	1.00 33.14
ATOM	2091	CG ASP A 263 OD1 ASP A 263	56.638	7.636 110.209	1.00 29.91
ATOM	2092 2093	OD2 ASP A 263	57.042	7.509 108.051	1.00 26.56
MOTA MOTA	2094	C ASP A 263	59.150	9.146 106.95	1.00 29.44
ATOM	2095	O ASP A 263	58.740		1.00 24.70
ATOM	2096	N TYR A 264	59.303		1.00 27.51 1.00 33.89
MOTA	2097	CA TYR A 264	59.031		
ATOM	2098	CB TYR A 264	59.576		
MOTA	2099	CG TYR A 264	61.059		
MOTA	2100	CD1 TYR A 264	61.565	251	
MOTA	2101		62.933		
ATOM	2102		61.960 63.329		1.00 56.61
MOTA	2103		63.809		1.00 56.22
ATOM	2104		65.161		1.00 55.90
MOTA	2105		57.56	8.394 104.294	1 1.00 31.33
MOTA	2106		57.31	8.825 103.178	1.00 27.15
STOM	2107 2108	2/5	56.64	1 8.059 105.172	2 1.00 26.88
ATOM	2109		55.24	4 8.209 104.792	1.00 24.39
ATOM ATOM		CB LEU A 265	54.36	7.189 105.52	7 1.00 26.55 8 1.00 29.80
ATOM		CG LEU A 265			
ATOM				4 4.836 105.50	3 1.00 21.17
21011	-				

MOTA	2113	CD2	LEU A 265	54.93	1 5.620	103.682	1.00 33.35
						104.921	1.00 20.81
ATOM	2114	C	LEU A 265	54.66			
		0	LEU A 265	53.45	7 9.796	104.979	1.00 21.30
MOTA	2115	U					1.00 23.23
ATOM	2116	N	SER A 266	55.54		104.959	
		CA	SER A 266	55.08	12.011	105.008	1.00 26.30
ATOM	2117						1.00 25.16
ATOM	2118	CB	SER A 266	54.85		106.444	
	_		SER A 266	56.07	14 12.845	107.084	1.00 22.92
MOTA	2119	QG					1.00 30.17
MOTA	2120	C	SER A 266	56.19		104.355	
			SER A 266	57.33	14 12 555	104.385	1.00 31.65
MOTA	2121	0				102 757	1.00 31.56
MOTA	2122	N	LYS A 267	55.73	31 13.985		
			LYS A 267	56.69	6 14.873	103.140	1.00 27.65
MOTA	2123	CA					1.00 30.54
MOTA	2124	CB	LYS A 267	56.14			
			LYS A 267	55.83	15 14.327	100.819	1.00 34.13
ATOM	2125	CG					1.00 29.09
MOTA	2126	CD	LYS A 267	57.03			
		CE	LYS A 267	56.7	45 12.376	99.524	1.00 37.61
MOTA	2127						1.00 31.91
MOTA	2128	NZ	LYS A 267	57.9			
	2129	С	LYS A 267	57.0	50 16.004	104.107	1.00 30.85
MOTA							1.00 27.86
MOTA	2130	0	LYS & 267	57.6	24 17.017		
	2131	N	PHE A 268	56.6	88 15.826	105.377	1.00 24.19
MOTA							1.00 25.34
ATOM	2132	CA	PHE A 268	57.0			
	2133	CB	PHE A 268	56.0	14 16.730	107.579	1.00 24.54
MOTA				54.6			1.00 21.68
MOTA	2134	CG	PHE A 268				
	2135	CD1	PHE A 268	53.6	31 17.223	108.216	1.00 28.65
ATOM						106.011	1.00 25.14
MOTA	2136	CD2	PHE A 268	54.3			
. ATOM	2137	CEl	PHE A 268	52.3	57 17.728	107.944	1.00 25.34
				53.0		105.730	1.00 23.79
ATOM	2138	CE2	PHE A 268				
ATOM	2139	CZ	PHE A 268	52.0	82 18.275	5 106.702	1.00 28.13
				58.4		106.908	1.00 25.66
MOTA	2140	С	PHE A 268				
MOTA	2141	0	PHE A 268	58.7	78 15.299	106.994	1.00 28.44
				59.1	94 17.490	107.230	1.00 25.81
ATOM	2142	N	ASN A 269				1.00 30.60
MOTA	2143	CA	ASN A 269	60.5			
			ASN A 269	61.5	66 17.93	3 106.767	1.00 31.97
ATOM	2144	CB		61.3	00 17.50		1.00 35.83
ATOM	2145	CG	ASN A 269	61.3			
		OD1		61.2	35 16.33	2 105.020	1.00 33.93
MOTA	2146						1.00 33.95
MOTA	2147	ND2	ASN A 269	61.4			
	2148	С	ASN A 269	60.7	23 17.84	3 109.110	1.00 31.80
ATOM				61.6		5 109.348	1.00 28.13
MOTA	2149	0	ASN A 269				
ATOM	2150	N	LEU A 270	59.8	88 17.39	7 110.043	1.00 29.70
					54 17.91	8 111.406	1.00 26.87
ATOM	2151	CA	LEU A 270				
ATOM	2152	CB	LEU A 270	58.5		3 112.074	
			LEU A 270		92 18.42	5 111.297	1.00 29.62
ATOM	2153	CG					1.00 28.54
ATOM	2154	CD1	LEU A 270	56.1			
		CD2			40 19.82	5 110.790	1.00 29.40
ATOM	2155			_			1.00 26.83
ATOM	3156	С	LEU A 270	60.9	. •		
	2157	0	LEU A 270	61.4	90 16.15	8 111.990	1.00 19.60
MOTA						6 113.420	1.00 21.66
ATOM	2158	N	SER A 271	61.2			1.00 22.00
	2159	CA	SER A 271	62.2	20 17.36	5 114.393	1.00 27.08
ATOM			22. /. 27.		89 19 46	0 114.846	1.00 24.64
MOTA	2160	CB	SER A 271			2 115 (20	1.00 18.60
ATOM	2161	OG	SER A 271	62.4	199 19.43	3 115.626	
							1.00 23.70
ATOM	2162	C	SER A 271	01.4			
ATCM	2163	0	SER A 271	60.2			
			ASN A 272	62.1	57 16.12	9 116.470	1.00 28.35
MOTA	2164	N					1.00 31.03
MOTA	2165	CA	ASN A 272	61.6			
	2166	CB	ASN A 272		774 14.88	0 118.498	1.00 28.80
MOTA					·		1.00 36.65
ATOM	2167	CG	ASN A 272	62.8			
	3168	ODI		63.7	712 12.70	9 118.705	1.00 29.89
ATOM							1.00 40.80
ATOM	2169	ND2				-	
	2170	С	ASN A 272		16.69	5 118.661	1.00 31.83
ATOM	21/0		1011 1 271		190 15 51	8 119.261	1.00 27.50
ATOM	2171	0	ASN A 272		220 20.02	2 110 004	1.00 31.49
ATOM	2172	N	VAL A 273	62.0		3 118.804	
				61.		7 119.667	1.00 31.58
ATOM	1173	CA	VAL A 27				
ATOM	1174	CB	VAL A 27	63.			
					804 20.98	8 120.500	1.00 48.07
ATOM	2175	CG	. אאר א ביי				
ATOM	2176	CG	VAL A 27	64.			1.00 30.13
	2177	c	VAL A 27	60.	608 19.66	55 119.234	1.00 30.13
ATCM	!!		AVD V 2.				1.00 31.44
ATOM	2178	0	VAL A 27	59.	012 20.1	, , , , , , , , , , , , , , , , , , , ,	2.00 -2

150/263

					. —			
MOTA	2179	N i	ALA A 274		60.405	19.800		1.00 24.15
ATOM	2180		ALA A 274		59.258	20.558		1.00 26.27
ATOM	2181	CB .	ALA A 274		59.341	20.780		1.00 21.85
ATOM	2182		ALA A 274		58.005	19.759	117.789	1.00 25.68 1.00 23.76
ATOM	2183		ALA A 274		56.961	20.324	118.132	
ATOM	2184	N	PHE A 275		58.122	18.438	117.680	1.00 25.20 1.00 25.89
MOTA	2185	CA .	PHE A 275		57.015	17.538	117.974	1.00 25.21
MOTA	2186		PHE A 275		57.449	16.092	117.710 117.870	1.00 28.85
MOTA	2187	CG	PHE A 275		56.340	15.088	116.982	1.00 32.60
MOTA	2188	CD1	PHE A 275	-	55.278 56.365		118.910	1.00 28.93
MOTA	2189	CD2	PHE A 275	•	54.248		117.119	1.00 33.75
MOTA	2190	CEI	PHE A 275 PHE A 275		55.343	13.231	119.059	1.00 30.83
ATOM	2191 2192		PHE A 275		54.282	13.214	118.160	1.00 34.19
MOTA	2192	C	PHE A 275		56.607	17.712	119.445	1.00 24.63
MOTA MOTA	2194	0	PHE A 275		55.428	17.877	119.767	1.00 22.40
ATOM	2195		LEU A 276		57.594	17.673	120.331	1.00 25.45
ATOM	2196		LEU A 276		57.357	17.837	121.766	1.00 27.94
ATOM	2197	CB	LEU A 276		58.667	17.692	122.534	1.00 26.11 1.00 31.15
ATOM	2198	CG	LEU A 276		58.651	18.132	124.001 124.761	1.00 31.13
MOTA	2199	CD1	LEU A 276		57.609	17.351	124.761	1.00 27.98
MOTA	2200		LEU A 276		60.033	17.937 19.208	122.058	1.00 30.12
MOTA	2201	С	LEU A 276		56.770 55.822	19.348	122.838	1.00 28.69
ATOM	2202	0	LEU A 276 LYS A 277	,	57.353		121.425	1.00 30.99
MOTA	2203	N	LYS A 277	,	56.913	21.593	121.603	1.00 27.04
MOTA	2204 2205	CA CB	LYS A 27	,	57.742		120.704	1.00 30.38
MOTA	2205	CG	LYS A 27	, .	57.941	23.934	121.237	1.00 36.46
MOTA MOTA	2207	CD	LYS A 27	7	56.633		121.454	1.00 42.73
ATOM	2208	CE	LYS A 27	7	56.870	26.059	122.049	1.00 45.70
ATOM	2209	NZ	LYS A 27	7	57.528		123.390	1.00 44.64 1.00 30.26
ATOM	2210	С	LYS A 27	7	55.432	21.683	121.242 121.972	1.00 30.20
MOTA	2211	0	LYS A 27		54.640	22.284	120.115	1.00 30.15
MOTA	2212	N	ALA A 27	3	55.057 53.662	21.076	119.676	1.00 30.51
MOTA	2213	CA	ALA A 27	3	53.496	20.270		1.00 28.96
MOTA	2214 2215	CB C	ALA A 27		52.789	20.527	120.786	1.00 30.99
ATOM	2216	Ö	ALA A 27	8	51.735	21.067	121.108	1.00 30.36
ATOM ATOM	2217	N	PHE A 27		53.245	19.422	121.360	1.00 27.85
ATOM	2218	CA	PHE A 27	9	52.540		122.448	1.00 29.62 1.00 26.83
ATOM	2219	CB	PHE A 27	9	53.343	17.534		1.00 20.03
ATOM	2220	CG	PHE A 27		52.786	16.823	124.078	1.00 28.86
ATOM	2221	CD1			51.556 53.505	16.170	125.267	1.00 33.03
ATOM	2222	CD2			51.054	15.500	125.121	1.00 37.90
MOTA	2223		PHE A 27 PHE A 27			16.114	126.386	1.00 38.01
MOTA	2224 2225	CZ	PHE A 27	9	51.783	15.469	126.313	1.00 36.23
MOTA MOTA	2226	C	PHE A 27	9.	52.362	19.730	123.521	1.00 30.57
ATOM	2227	õ	PHE A 27		51.265	19.853	124.184	1.00 26.26
ATOM	2228	11	ASN A 28		53.432	20.429	123.990	1.00 32.03
ATOM	2229	CA	ASN A 28	0	53.339	21.37	125.104	1.00 30.54 1.00 26.79
ATOM	2230	СЭ	ASN A 28		54.724	21.81	9 125.583 5 126.227	1.00 23.75
MOTA	2231	CG	ASN A 28		55.508	10 99	5 126.227	
MOTA	2232		ASN A 28	0	54.958 56.809	20.66	125.973	
MOTA	2233		ASN A 28		52.493		7 124.781	1.00 30.46
MOTA	2234	C	ASN A 28 ASN A 28		51.899	23.18	2 125.677	1.00 27.66
ATOM	2235 2236		ILE A 28		52.429	22.96	0 123.509	1.00 27.32
MOTA MOTA	2237		ILE A 28		51.620	24.10	7 123.128	1.00 31.07
ATOM	2238		ILE A 28		51.878	24.51	7 121.666	1.00 35.08
ATOM	2239		2 ILE A 28	1	50.776	25.44	5 121.174	1.00 3433
ATOM	2240	CGI	ILE A 28	31	53.253		5 121.562	1.00 33.53 1.00 34.88
ATCM	2241	CD	ILE A 28	31	53.590		4 120.178	
ATOM	2242		ILE A 28	31	50.141		8 123.329 1 123.854	
ATOM	2243		ILE A 2		49.391	29.62	6 122.923	
MOTA	2244	1 11	VAL A 2	32	49.723	22.60	·	

	17	_
MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA	2245 CA VAL A 282 2246 CB YAL A 282 2247 CG1 VAL A 282 2248 CG2 VAL A 282 2249 C VAL A 282 2250 O VAL A 282 2251 N ARG A 283 2252 CA ARG A 283 2253 CB ARG A 283 2254 CG-ARG A 283 2255 CD ARG A 283 2255 CD ARG A 283 2256 NE ARG A 283 2257 CZ ARG A 283 2257 CZ ARG A 283 2258 NH1 ARG A 283 2259 NH2 ARG A 283	48.332 22.214 123.081 1.00 30.76 48.075 20.797 122.523 1.00 35.10 46.641 20.358 122.841 1.00 28.72 48.313 20.781 121.018 1.00 28.66 47.952 22.236 124.558 1.00 31.39 46.884 22.715 124.917 1.00 32.70 48.837 21.720 125.406 1.00 29.86 48.587 21.675 126.840 1.00 34.82 49.629 20.785 127.519 1.00 31.44 49.551 19.334 127.061 1.00 29.49 50.729 18.539 127.554 1.00 30.67 50.730 18.314 128.990 1.00 30.78 51.826 18.351 129.742 1.00 35.27 53.012 18.611 129.198 1.00 36.46 51.742 18.100 131.035 1.00 35.90
ATOM	2260 C ARG A 283	48.561 23.065 127.473 1.00 36.06
MOTA	2261 O ARG A 283	47.830 23.302 128.439 1.00 35.04
MOTA	2262 N GLU A 284	49.350 23.985 126.928 1.00 35.70
ATOM	2263 CA GLU A 284	49.376 25.348 127.448 1.00 40.93
ATOM		50.499 26.166 126.799 1.00 44.17
ATOM		51 917 25.702 127.141 1.00 56.39
MOTA		52,989 26,495 126,401 1.00 60.69
MOTA		53.012 27.738 126.542 1.00 63.13
ATOM		53.810 25.880 125.680 1.00 62.79
MOTA		48.039 26.014 127.148 1.00 39.24
ATOM	2269 C GLU A 284 2270 O GLU A 284	47 525 26.783 127.954 1.00 38.52
ATOM	2271 N WAL A 285	47.472 25.704 125.986 1.00 33.75
MOTA	2272 CA VAL A 285	46.205 26.294 125.592 1.00 35.82
MOTA MOTA	2272 CB VAL A 285	46.039 26.291 124.062 1.00 34.14 46.654 26.811 123.693 1.00 36.43
ATOM	2274 CG1 VAL A 285	44.034 20.011 100 1 00 37 26
ATOM	2275 CG2 VAL A 285	
ATOM	2276 C VAL A 285	
ATOM	2277 O VAL A 285	44.043 20.330 100 27 57
ATOM	2278 N PHE A 286	44.331 24.330 ==
MOTA	2279 CA PHE A 286	43,700 23:000 1 00 70 57
MOTA	2280 CB PHE A 286	43.159 22.723 125.657 1.00 32.53 42.544 23.490 124.529 1.00 30.15
ATOM	2281 CG PHE À 286	42 104 23 459 123 256 1.00 33.96
MOTA	2282 CD1 PHE A 286	41 309 24 245 124 736 1.00 30.30
ATOM	2283 CD2 PHE A 286	42 527 24 170 122 202 1.00 32.96
MOTA	2284 CE1 PHE A 286 2285 CE2 PHE A 286	40.813 24.958 123.693 1.00 31.67
MOTA		41 381 24.919 122.419 1.00 31.66
ATOM		43 922 22,773 128.015 1.00 35.18
MOTA	2287 C PHE A 286 2288 O PHE A 286	42 984 22.080 128.409 1.00 36.97
MOTA	2289 N GLY A 287	45 086 22.840 128.656 1.00 30.87
ATOM ATCM	2290 CA GLY : 287	33.23
ATOM	2291 C GLY : 287	43.323 23.323 1 00 32 54
ATOM	2292 O GLY 7. 287	43.314 23.22 132 500 1 00 28 42
MOTA	2293 N GLU A 288	45.200 15.720 20.00 20.00
MOTA	2294 CA GLU A 288	45.404 121 662 1 00 37 02
ATOM	2295 CB GLU A 288	45.015 11.51
ATCM	2296 CG GLU A 288	40.010 17.000
ATOM	2297 CD GLU A 288	48.140 17.121 060 1 00 46 42
ATCM	2298 OE1 GLU A 288	40 106 18 245 131.571 1.00 50.78
MOTA	2299 OE2 GLU A 288	44 309 17 623 129 546 1.00 30.98
ATCM	2300 C GLU A 288	43 144 17.957 129.762 1.00 28.67
atom	2301 O GLU A 288	44 641 16.694 128.657 1.00 29.50
MOTA		43 625 15.999 127.886 1.00 28.08
ATCM	700	43,922 14,510 127.861 1.00 30.45
ATCM	220F 0 CTV 1 789	44 618 14.007 128.739 1.00 25.90
ATCM	790	43.384 13.807 126.868 1.00 26.21
ATOM	200	43.612 12.373 126.718 1.00 27.31 43.612 12.373 126.412 1.00 26.53
ATOM	200 00 7737 2 200	92.200 11.020 00. 00. 25 36
ATOM ATOM	2309 CG1 VAL A 290	12.00 107 505 107 505 100 24 38
ATOM		41.308 11.822 127.565 1.00 24.38

ATOM 2330 CI ATOM 2331 C ATOM 2332 O ATOM 2333 N ATOM 2334 CI ATOM 2335 C ATOM 2336 O ATOM 2337 N ATOM 2338 CI ATOM 2339 CI ATOM 2340 O ATOM 2341 N ATOM 2341 N ATOM 2342 CI ATOM 2343 CI ATOM 2344 CI ATOM 2345 N ATOM 2345 N ATOM 2346 CI ATOM 2347 CI ATOM 2347 CI ATOM 2348 CI ATOM 2347 CI ATOM 2350 CI ATOM 2350 CI ATOM 2351 CI ATOM 2351 CI ATOM 2351 CI ATOM 2351 CI ATOM 2353 CI ATOM 2353 CI ATOM 2356 CI ATOM 2357 CI ATOM 2358 CI ATOM 2358 CI ATOM 2358 CI ATOM 2358 CI ATOM 2356 CI ATOM 2356 CI ATOM 2356 CI ATOM 2356 CI ATOM 2357 CI ATOM 2358 CI ATOM 2358 CI ATOM 2358 CI ATOM 2358 CI ATOM 2356 CI ATOM 2357 CI ATOM 2358 CI ATOM 2360 CI ATOM 2360 CI ATOM 2361 CI ATOM 2361 CI ATOM 2361 CI ATOM 2362 CI ATOM 2363 CI ATOM 2366 CI ATOM 2367 CI ATOM 2368 ATOM 2369 ATOM 2370 ATOM 2371 CI ATOM 2369 ATOM 2360 ATOM 2360 ATOM 2369 ATOM 2360 ATOM 2360 ATOM 2369 ATOM 2360 ATOM 2369 ATOM 2360 ATOM 23	TYR A 291 12 TYR A 291 13 TYR A 291 14 TYR A 291 15 TYR A 291 16 TYR A 291 17 TYR A 291 17 TYR A 291 17 TYR A 292 18 LEU A 292 18 LEU A 292 18 LEU A 292 18 LEU A 293 18 GLY A 293 18 GLY A 293 18 GLY A 293 18 GLY A 294 18 GLY A 295 18 GLY A 297 18 TYR A 297 19 TYR A 297 19 TYR A 297 10 TYR A 299	48.326 48.326 48.200 47.634 47.504 47.786 47.631 46.768 46.757 46.757 46.757 46.757 45.482 43.001 44.008 47.953 48.301 48.908 49.459 49.459 49.035 50.956 49.459 50.721 52.185 52.541 53.038 55.778 56.598 56.137 54.203 55.3713 52.352 50.206 60.91 62.407 63.27 64.52 66.37	15.489 1 16.657 1 10.118 1 9.082 1 10.142 1 8.924 8.842 9.063 8.959 8.055 9.684 7.624 7.624 7.094 6.150 7.203 6.724 7.094 6.062 4.898 3.780 4.695 3.346 6.150 7.203 6.762 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 6.162 7.094 7.094 6.162 7.094	28.214 25.503 26.220 27.575 28.283 124.044 124.707 122.711 121.902 121.076 121.814 120.826 122.930 120.617 120.491 119.554 117.148 115.779 114.769 115.136 113.498 112.472 112.478 112.472 112.690 113.196 113.396 113.396 113.396 113.396	1.00 26.33 1.00 28.74 1.00 33.08 1.00 31.83 1.00 32.49 1.00 29.10 1.00 27.81 1.00 27.81 1.00 25.07 1.00 29.37 1.00 26.09
ATOM 2368 ATOM 2369 ATOM 2370	C HIS A 298 O HIS A 298 N PRO A 299 CD PRO A 299 CA PRO A 299	60.37 60.12 60.82 61.28 61.02	1 4.18 0 5.02 9 2.96 5 1.93 4 2.49	8 112.996 0 113.865 3 113.297 2 112.352 1 114.665	1.00 27.81 1.00 25.07 1.00 29.37 1.00 26.09 1.00 29.46
ATOM 2374 ATOM 2375 ATOM 2376	CB PRO A 299 CG PRO A 299 C PRO A 299	61.67 62.41 61.84	1 1.30	8.114.469 6 113.13 3 115.57	7 1.00 27.34

153/263

				•			
3.00M	2377	O PRO	A 299	61.480	3.622		1.00 32.45
MOTA	2378		A 300	62.959	3.932	115.058	1.00 27.41
MOTA	_		A 300	63.803		115.878	1.00 27.34
ATOM	2379		A 300	65.163		115.207	1.00 26.84
ATOM	2380		A 300	65.912	3.821	114.738	1.00 29.09
MOTA	2381			65.517	2 539	115.120	1.00 30.93
MOTA	2382		A 300	66.214	1 411	114.682	1.00 30.68
MOTA	2383		A 300	-	2.411	113.908	1.00 29.72
MOTA	2384		A 300	67.027	2.241	113.466	1.00 30.76
ATOM	2385		A 300	67.730		113.854	1.00 33.89
ATOM	2386		R A 300	67.320	1.568	113.034	1.00 34.70
ATOM	2387		R A 300	68.011	0.471	113.404	1.00 23.44
ATOM	2388		R A 300	63.113		116.137	1.00 23.44
ATOM	2389		00E A 9	63.108		117.264	1.00 23.87
ATOM	2390	N ALA	A A 301	62.530		115.092	1.00 26.50
ATOM	2391		A 301	61.839	7.993	115.216	1.00 24.16
ATOM	2392		A A 301	61.266		113.864	1.00 24.16
ATOM	2393	C AL.	A A 301	60.715		116.237	
ATOM	2394	O AL	A A 301	60.556		117.117	1.00 22.47
MOTA	2395	N LE	J A 302	59.940	6.808	116.110	1.00 23.27
MOTA	2396	CA LE	J A 302	58.818		116.996	1.00 26.50
ATOM	2397	CB LE	J A 302	58.036			1.00 26.02
ATOM	2398	CG LE	J A 302	56.866			1.00 29.73
ATOM	2399		J A 302	55.983		116.394	1.00 31.01
MOTA	2400		J A 302	57.394		118.465	1.00 32.99
MOTA	2401	C LE	U A 302	59.246		118.451	1.00 27.49
ATOM	2402		U A 302	58.648		119.358	1.00 25.22
ATOM	2403		A A 303	60.289	5.580	118.672	1.00 27.85
ATOM	2404		A A 303	60.76		120.024	1.00 27.33
ATOM	2405		A A 303	61.854		119.990	1.00 29.17
ATOM	2406		A A 303	61.27	6.580	120.714	1.00 26.64
MOTA	2407		A A 303	60.94	6.849	121.875	1.00 23.18
MOTA	2408	N AR	G A 304	62.09	7.354	120.003	1.00 27.48
ATOM	2409		G A 304	62.64	8.570	120.581	1.00 25.46
	2410		G A 304	63.77	9.136	119.704	1.00 21.31
MOTA	2411		G A 304	65.00		119.562	1.00 25.98
MOTA	2412		G A 304	66.15	9.042	118.951	1.00 27.87
MOTA	2413		G A 304	65.64	7 9.766	117.796	1.00 36.76
MOTA	2414		G A 304	66.20	7 10.838	117.261	1.00 30.79
MOTA	2415		G A 304	67.32	3 11.345	117.768	1.00 30.11
MOTA	2416		G A 304	65.62	3 11.419	116.225	1.00 36.07
MOTA MOTA	2417		G A 304	61.58	5 9.634	120.803	1.00 25.46
	2418		G A 304	61.51	9 10.237	121.876	1.00 24.23
MOTA MOTA	2419		A A 305	60.74		119.802	1.00 22.22
	2420		A A 305	59.70	0 10.868	119.910	1.00 26.70
MOTA MOTA	2421		A A 305	58.91	4 10.960	118.607	1.00 28.14
ATOM	2422		A A 305	58.74	9 10.626	121.072	1.00 25.54
ATOM	2423		A A 305	58 51	3 11.520	121.883	1.00 24.17
ATOM	2424		RP A 306	58 1.8	9 9.426	121.160	1.00 25.66
ATOM	2425		RP A 306	57.27	0 9.157	122.253	1.00 28.01
ATOM	2426	CB TF	RP A 306	56.45	4 7.873	122.012	1.00 18.66
ATOM	2427		RP A 306	55.38	2 8.052	2 120.973	1.00 21.80
MOTA	2428		RP A 306	54.70	9 7.019	120.240	1.00 24.88
	2429		RP A 306	53.72	5 7.646	119.442	1.00 23.98
MOTA MOTA	2430		RP A 306	54.83	9 5.623	3 120.181	1.00 23.26
	2431		RP A 306	54.79	5 9.22	3 120.599	1.00 20.24
ATOM	2432		RP A 306	53.7.9	9 8.99	5 119.681	1.00 24.18
MOTA		C22 TI	RP A 306	52.87	5 6.92	6 118.590	1.00 24.30
MOTA	2433		RP A 306	53.99	3 4.90	6 119.335	1.00 23.89
ATOM	2434	C63 11	RP A 306	53.02	4 5.56	2 118,550	1.00 24.12
ATOM	2435		kP A 306	57.90	9.11	3 123.605	1.00 27.93
ATOM	2436		RP A 306	57.3	9.31	9 124.637	1.00 28.58
ATOM	2437		HR A 307	59.2	73 8.85	1 123.615	1.00 26.76
ATOM	2438		HR A 307	60.0	0 8.85	0 124.881	1.00 22.81
ATOM	2439		HR A 307	61.4	8.31	9 124.730	1.00 25.54
ATOM	2440	CB T	HR A 307	61.4	35 6.90	2 124.504	1.00 22.73
ATCM	2441	COLT	HR A 307	62.2		9 125.988	1.00 24.03
ATOM	2442	CQ2 T	11 201	J = + =	3.22		

	2442	C THR A 3	0.7	60.027	10.288		1.00 26.54
MOTA	2443 2444	O THE A 3	07	59.925	10.526	126.604	1.00 25.34
MOTA MOTA	2445	N LEU A 3	08	60.152	11.247		1.00 21.65 1.00 21.41
ATOM	2446	CA LEU A 3	08	60.172	12:657		1.00 21.41
ATOM	2447	CB' LEU A 3	80	60.442	13.558		1.00 21.31
MOTA	2448	CG LEU A 3	80	61.797	13.386		1.00 21.75
ATOM	2449	CD1_LEU A 3	80	61.900	14.362 13.622		1.00 19.26
ATOM	2450	CD2 LEU A 3	08	62.937	13.622		1.00 25.18
MOTA	2451	C LEU A 3	08	58.811	13.565		1.00 21.35
ATOM	2452	O LEU A 3	80	58.731 57.743	12.567		1.00 21.74
MOTA	2453	N ILE A 3	09 .	56.394	12.799	125.298	1.00 19.23
MOTA	2454	CA ILE A 3 CB ILE A 3	09	55.337	12.149	124.366	1.00 19.63
ATOM	2455	CB ILE A 3	09	53.945	12.321	124.948	1.00 19.54
ATOM	2456 2457	CG1 ILE A 3	09	55.403		122.979	1.00 20.80
MOTA MOTA	2458	CD1 ILE A 3	109	55.118		122.988	1.00 20.08 1.00 23.97
MOTA	2459	C ILE A 3	309	56.228		126.701 127.602	1.00 23.37
ATOM	2460	O ILE A	309	55.731		126.888	1.00 26.45
ATOM	2461	N TRP A	310	56.652		128.192	1.00 28.35
MOTA	2462	CA TRP A	310	56.525 56.940	8.872	128.132	1.00 23.95
MOTA	2463	CB TRP A		56.874	8.203	129.479	1.00 29.60
MOTA	2464	CG TRP A CD2 TRP A		55.697	7.967	130.263	1.00 31.40
ATOM	2465 2466	CE2 TRP A	310	56.115	7.390	131.480	1.00 32.47
MOTK MOTK	2467	CE3 TRP A		54.329	8.189	130.055	1.00 32.30 1.00 33.42
ATOM	2468	CD1 TRP A		57.926	7.770	130.232	1.00 33.42
MOTA	2469	NE1 TRP A	310	57.480	7.282	131.436 132.492	1.00 29.93
ATOM	2470	C22 TRP A		55.213	7.030	131.062	1.00 29.72
MOTA	2471	CZ3 TRP A		53.432 53.881	7.259	132.265	1.00 24.53
MOTA	2472	CH2 TRP A		57.308	11.048	129.293	1.00 33.49
MOTA	2473 2474	C TRP A O TRP A		56.820	11.137	130.426	1.00 27.59
MOTA MOTA	2475	N CYS A	311	58.512	11.535	128.984	1.00 29.34 1.00 30.06
MOTA	2476	CA CYS A	311	59.305	12.247	129.994	1.00 30.08
ATOM	2477	CB CYS A	311	60.722	11 084	129.479 129.327	1.00 33.17
MOTA	2478	SG CYS A		61.804 58.612	13.560	130.397	1.00 29.25
ATOM	2479	C CYS A O CYS A	311	58.612	13.940	131.570	1.00 28.80
ATOM	2480 2481	O CYS A N GLU A	312	58.021	14.247	129.425	1.00 23.13
MOTA MOTA	2482	CA GLU A	312	57.308	15:496	129.696	1.00 30.31 1.00 28.97
ATOM	2483	CB GLU A	312	56.648	16.032	2 128.427 3 127.988	1.00 41.67
ATOM	2484	CG GLU A	312	57.080		129.059	1.00 44.21
ATOM	2485	CD GLU A	312	56.905 - 55.813	18.534	129.658	1.00 54.15
ATOM	2486		312	57.860	19.23	3 129.290	1.00 43.90
MOTA	2487 2488		312	56.204	15.22	5 130.712	1.00 28.03
MOTA MOTA	2489		312	56.120		9 131.751	1.00 30.64 1.00 31.06
ATOM		N LEU A	313	55.343		0 130.388 8 131.266	
MOTA		CA LEU A	313	54.231		3 130.604	1.00 28.83
MOTA			313	53.337 52.493		2 129.429	1.00 34.62
MOTA			313	51.818	12.14	6 128.788	1.00 33.05
ATOM	- 405		313	51.471	14.35	7 129.914	1.00 27.27
ATOM			313	54.685	13.37	7 132 610	1.00 33.97
MOTA MOTA		O LEU A	313	54.131		0 133.644 8 132.577	
ATOM		N SER A	314	55.688		0 133.776	
ATOM	2499		314	56.233 57.183		3 133.388	3 1.00 35.88
ATOM	2500		314	56.51		132.628	3 1.00 45.88
ATOM				57.00	2 12.84	6 134.65	1.00 31.54
ATOM				57.33	9 12.51	L3 135.78	8 1.00 27.69 0 1.00 35.50
atom atom		A N GLY A	315	57.31		134.13	
ATON	•	5 CA GLY A	315	58.05		6 134.90 34 135.09	9 1.00 38.47
ATO!	350	6 C GLY A	315	59.51 60.13		19 136.07	8 1.00 41.57
ATC	g 350		315	60.08		62 134.18	
ATC		8 N ARG	316	00.00			

			. •		
> mo>4	2500	CA ARG A 316	61.490 1		00 39.06
ATOM		CB ARG A 316	61.641 1	1.982 134.413	00 39.16
MOTA	-	CG ARG A 316	61.233 1		1.00 39.11
MOTA		CD ARG A 316	61.426		1.00 41.21
ATOM		NE ARG A 316	60.461		1.00 40.97
MOTA		CZ ARG A 316	60.524	0.022	1.00 36.40
MOTA	2515	NH1 ARG A 316	61.511		1.00 38.93
ATOM	2516	NH2 ARG A 316	59.583		1.00 30.53
MOTA	2517	C ARG A 316	62.369		1.00 40.17
ATOM	2518	O -ARG A 316	61.910		1.00 34.27
MOTA MOTA	2519	N GLU A 317	63.633		1.00 41.26
ATOM	2520	CA GLU A 317	64.580		1.00 44.42
MOTA	2521	CB GLU A 317	65.901		1.00 46.84
ATOM	2522	CG GLU A 317			1.00 57.66
ATOM	2523	CD GLU A 317			1.00 65.46 1.00 68.38
MOTA	2524	OE1 GLU A 317			1.00 67.24
ATOM	2525	OE2 GLU A 317			1.00 37.24
MOTA	2526	C GLU A 317			1.00 38.84
ATOM	2527	O GLU A 317		12.748 131.636 14.525 130.275	1.00 37.64
ATOM	2528	N VAL A 318		13.720 129.108	1.00 39.13
ATOM	2529	CA VAL A 318		14.417 127.810	1.00 42.75
MOTA	2530	CB VAL A 318		13.544 126.610	1.00 41.84
ATOM	2531	CG1 VAL A 318	65.192 63.364	14.701 127.867	1.00 42.38
MOTA	2532	CG2 VAL A 318		13.495 129.037	1.00 38.45
MOTA	2533	C VAL A 318		14.442 128.910	1.00 36.04
MOTA	2534	O VAL A 318	67.261	12.236 129.156	1.00 39.54
ATOM	2535	N PRO A 319 CD PRO A 319	66.512	10.994 129.397	1.00 40.47
MOTA	2536		68.695	11.949 129.088	1.00 43.85
MOTA	2537	CA PRO A 319 CB PRO A 319	68.745	10.439 129.319	1.00 44.12
MOTA	2538	CG PRO A 319	67.419	9.986 128.745	1.00 46.48
MOTA	2539 2540	C PRO A 319	69.228	12.353 127.718	1.00 43.55
ATOM	2541	O PRO A 319	68.563	12.141 126.708	1.00 43.45
MOTA MOTA	2542	N GLU A 320	70.420	12.936 127.689	1.00 42.52
MOTA	2543	CA GLU A 320	71.026	13.380 126.440	1.00 45.19
ATOM	2544	CB GLU A 320	72.384	14.032 126.706	1.00 43.86 1.00 52.62
MOTA	2545	CG GLU A 320	73.121	14.412 125.434	1.00 52.36
ATOM	2546	CD GLU A 320	74.507	14.967 125.697	1.00 56.25
MOTA	2547	OE1 GLU A 320	75.219	15.271 124.720 15.101 126.875	1.00 52.25
ATCM	. 2548	OE2 GLU A 320	74.883	12.266 125.421	1.00 43.52
ATOM	2549	C GLU A 320	71.223	12.200 123.421	1.00 41.89
MOTA	2550	O GLU A 320	70.876 71.781	11.150 125.867	1.00 43.35
MOTA	2551	N LYS A 321	72.059	10.041 124.969	1.00 43.53
MOTA	2552	CA LYS A 321	73.561	9.808 124.879	1.00 42.78
MOTA	2553	CB LYS A 321 CG LYS A 321	74.238	9.340 126.180	1.00 49.38
MOTA	2554		74.272	10.396 127.307	1.00 57.82
MOTA	2555	CD LYS A 321 CE LYS A 321	72.978	10.497 128.129	1.00 53.81
MOTA	2 5 56 2557	NZ LYS A 321	72.660	9.245 128.883	1.00 54.17
ATOM ATOM	2558	C LYS A 321	71.407	8.731 125.345	1.00 41.52
ATOM	2559	O LYS A 321	70.954	8.540 126.469	1.00 41.98
MOTA	2560	N LEU A 322	71.378	7.820 124.382	1.00 38.64 1.00 40.46
MOTA	2561	CA LEU A 322	70.815	6.508 124.613	1.00 40.40
MOTA	2562	CB LEU A 322	70.442	5.845 123.289	1.00 42.22
MOTA	2563	CG LEU A 322	69.595	6.632 122.287	1.00 41.13
MOTA	2564	CD1 LEU A 322	69.204	5.737 121.125 7.148 122.967	1.00 44.41
MOTA	256.5	CD2 LEU A 322	68.361	5.702 125.268	1.00 41.36
ATOM	2566	C LEU A 322	71.918	5.825 124.884	1.00 44.16
ATOM	2567	O LEU A 322	73.079	4.894 126.265	1.00 39.89
ATOM	2568	N ASN A 323	71.579 72.594	4.067 126.895	1.00 40.96
MOTA	2569		72.136	3.556 128.259	1.00 43.00
MOTA	2570		70.787	2.886 128.202	1.00 45.59
ATOM	2571	CG ASN A 323	70.482	2.151 127.264	1.00 45.71
atom	2572	OD1 ASN A 323	69.975	3.114 129.224	1.00 48.08
atom	2573		72.828	2.894 125.954	1.00 44.88
MOTA	2574	C ASN A 323	, 2		

· mow	2575 O ASN A 323	72.124 2.739 124.955 1.00 46.41
ATOM ATOM	2576 N ASN A 324	73.809 2.062 126.268 1.00 45.98
ATOM	2577 CA ASN A 324	74.122 0.938 125.404 1.00 49.82
MOTA	2578 CB ASN A 324	75.386 0.244 125.904 1.00 53.88
ATOM	2579 CG ASN A 324	75.960 -0.711 124.888 1.00 60.09
MOTA	2580 OD1 ASN A 324	75.344 -1.723 124.550 1.00 66.99
MOTA	2581 ND2 ASN A 324	77.143 -0.386 124.378 1.00 58.06
ATOM	2582 C ASN A 324	72.979 -0.070 125.267 1.00 47.12
ATOM	2583 O ASN A - 324	72.784 -0.644 124.197 1.00 43.63 72.220 -0.276 126.339 1.00 46.39
ATOM	2584 N LYS A 325	72.22
ATOM	2585 CA LYS A 325	71.100
MOTA	2586 CB LYS A 325	10.420 2.00 E4 21
MOTA	2587 CG LYS A 325	71.252 1.00 50 50
MOTA	2588 CD LYS A 325	72.160 -0.750 129.526 1.00 56.67 73.329 -0.289 128.671 1.00 57.45
MOTA	2589 CE LYS A 325.	74.091 0.816 129.307 1.00 58.32
MOTA	2590 NZ LYS A 325	70.062 -0.791 125.296 1.00 45.17
ATOM	2591 C LYS A 325 2592 O LYS A 325	69 474 -1.625 124.601 1.00 42.73
MOTA		69.832 0.514 125.213 1.00 41.43
MOTA		68.861 1.054 124.276 1.00 41.61
MOTA		68.562 2.508 124.616 1.00 42.80
MOTA	2595 CB ALA A 326 2596 C ALA A 326	69.365 0.940 122.838 1.00 43.80
MOTA	2597 O ALA A 326	68.595 0.625 121.926 1.00 45.17
MOTA MOTA	2598 N LYS A 327	70.658 1.191 122.637 1.00 43.46
ATOM	2599 CA LYS A 327	71.235 1.120 121.296 1.00 43.26
ATOM	2600 CB LYS A 327	72.723
ATOM	2601 CG LYS A 327	73.037
ATOM	2602 CD LYS A 327	74.544
MOTA	2603 CE LYS A 327	74.510 4.500 222.
MOTA	2604 NZ LYS A 327	74.256 5.670 121.715 1.00 52.72 71.063 -0.274 120.728 1.00 41.29
MOTA	2605 C LYS A 327	70.625 -0.437 119.592 1.00 38.83
MOTA	2606 O LYS A 327 2607 N GLU A 328	71 403 -1 278 121.526 1.00 39.95
MOTA		71 276 -2.660 121.090 1.00 42.40
MOTA		71.875 -3.605 122.135 1.00 43.05
MOTA	2609 CB GLU A 328 2610 CG GLU A 328	73.369 -3.432 122.295 1.00 48.81
MOTA MOTA	2611 CD GLU A 328	74.096 -3.529 120.963 1.00 52.11
ATOM	2612 OE1 GLU A 328	73.972 -4.574 120.291 1.00 55.44
ATOM	2613 OE2 GLU A 328	74.785 -2.558 120.584 1.00 51.64 69.825 -3.030 120.818 1.00 39.51
ATOM	2614 C GLU A 328	03.023
ATOM	2615 O GLU A 328	09.550 5.012
ATOM	2616 N LEU A 329	00.011
ATOM	2617 CA LEU A 329	67.496 -2.717 121.380 1.00 36.03 66.646 -1.958 122.400 1.00 34.66
ATOM	2618 CB LEU A 329	65.133 -2.110 122.213 1.00 33.88
MOTA	2619 CG LEU A 329 2620 CD1 LEU A 329	64 755 -3 572 122.351 1.00 36.21
MOTA		54 391 -1 268 123,240 1.00 34.00
MOTA	2621 CD2 LEU A 329 2622 C LEU A 329	67.120 -2.268 119.971 1.00 33.64
ATOM	2623 O LEU A 329	66.655 -3.061 119.162 1.00 31.29
ATOM ATOM	2624 N LEU A 330	67.333 -0.990 119.681 1.00 33./8
ATOM	2625 CA LEU A 330	67.004 -0.461 118.366 1.00 36.38
ATOM	2626 CB LEU A 330	67.326 1.033 118.294 1.00 30.74 66.514 1.958 119.205 1.00 31.51
MOTA	2627 CG LEU A 330	100.321
ATOM	2628 CD1 LEU A 330	00.037
ATOM	2629 CD2 LEU A 330	no.U20 1.720 1
ATOM	2630 C LEU A 330	07.723
ATOM	2631 O LEU A 330	107.11
STOM	2632 N LYS A 331	03,003 2,004 1 22
ATCM	2633 CA LYS A 331	71 256 -2 272 116.874 1.00 44.74
ATOM	2634 CB LYS A 331	71 054 -0 019 116.869 1.00 44.68
ATOM	2635 CG LYS A 331	73 350 -0.964 117.498 1.00 51.42
ATOM		74.315 -1.889 116.765 1.00 53.71
ATOM		73.928 -3.327 116.855 1.00 50.13
ATOM	- can o . vo a 321	69 258 -3 612 116.173 1.00 42.33
HOTE		
ATOM	2040 0 515 551	

			•		
ATOM	2641	N SER A 332	68.734	-4.270 117.200	1.00 41.56
ATOM	2642	CA SER A 332	68.226	-5.629 117.039	1.00 46.88
ATOM	2643	CB SER A 332	68.045	-6.298 118.400	1.00 42.19 1.00 39.55
MOTA	2644	OG SER A 332	66.959	-5.714 119.096 -5.687 116.297	1.00 48.58
MOTA	2645	C SER A 332	66.896	-6.774 116.017	1.00 45.78
MOTA	2646	O SER A 332	66.393	-4.531 115.979	1.00 48.27
MOTA	2647	N ILE A 333	66.325 65.041	-4.503 115.292	1.00 51.82
MOTA	2648	CA ILE A 333 CB ILE A 333	64.378	-3.119 115.402	1.00 52.16
MOTA	2649	CB ILE A 333 CG2 ILE A 333	63.038	-3.122 114.683	1.00 52.64
MOTA	2650 2651	CG1 ILE A 333	64.163	-2.765 116.871	1.00 52.70
MOTA MOTA	2652	CD1 ILE A 333	63.550	-1.402 117.077	1.00 56.70
ATOM	2653	C ILE A 333	65.112	-4.887 113.820	1.00 53.43
ATOM	2654	O ILE A 333	66.118	-4.675 113.145	1.00 56.45 1.00 55.53
ATOM	2655	N ASP A 334	64.016	-5.461 113.344 -5.892 111.962	1.00 59.58
MOTA	2656	CA ASP A 334	63.865 62.845	-7.040 111.918	1.00 62.69
ATOM	2657	CB ASP A 334 CG ASP A 334	61.546	-6.712 112.664	1.00 66.23
ATOM	2658 2659	CG ASP A 334 OD1 ASP A 334	60.795	-5.814 112.227	1.00 63.25
ATOM ATOM	2660	OD2 ASP A 334	61.277	-7.354 113.704	1.00 63.45
MOTA	2661	C ASP A 334	63.385	-4.705 111.125	1.00 60.81
ATOM	2662	O ASP A 334	62.239	-4.673 110.681	1.00 59.47 1.00 60.00
ATOM	2663	N PHE A 335	64.266	-3.736 110.889 -2.545 110.147	1.00 59.37
MOTA	2664	CA PHE A 335	63.864	-2.545 110.147 -1.298 110.952	1.00 53.38
MOTA	2665	CB PHE A 335 CG PHE A 335	64.247 63.895	-0.013 110.275	1.00 49.13
MOTA	2666	CG PHE A 335 CD1 PHE A 335		0.189 109.770	1.00 44.32
MOTA MOTA	2667 2668	CD2 PHE A 335		0.993 110.127	1.00 49.91
MOTA	2669	CE1 PHE A 335	62.288	1.373 109.122	1.00 42.74 1.00 46.40
ATOM	2670	CE2 PHE A 335	64.526	2.180 109.483 2.370 108.978	1.00 42.77
MOTA	2671	CZ PHE A 335		2.370 108.978 -2.399 108.696	1.00 60.85
ATOM	2672	O PHE A 335		-2.914 107.785	1.00 66.28
ATOM	2673 2674	O PHE A 335		-1:671 108.493	1.00 57.40
MOTA MOTA	2675	CA GLU A 336		-1.411 107.174	1.00 58.96
ATOM	2676	CB GLU A 336	65.782	-2.579 106.211	1.00 62.66 1.00 68.51
ATOM	2677	CG GLU A 336		-2.377 104.846 -3.590 103.943	1.00 08.31
MOTA	2678	CD GLU A 33		-4.678 104.333	1.00 73.30
MOTA	2679	OE1 GLU A 330 OE2 GLU A 330		-3.457 102.843	1.00 75.74
MOTA	2680 2681	OE2 GLU A 330 C GLU A 330			1.00 55.70
MOTA MOTA	2682	O GLU A .33	64.281	-0.023 106.253	1.00 55.28
MOTA	2683	N GLU A 3.3	7 66.338		1.00 54.75 1.00 55.99
MOTA	2684	CA GLU A 33	7 65.986		1.00 51.75
ATOM	2685	CB GLU A 33	^^	•	1 00 52.28
ATOM	2686	CG GLU A 33			:.00 43.72
MOTA MOTA	2687 2688	OE1 GLU A 33	·	4.640 108.474	00 42.21
ATOM	2689	OE2 GLU A 33	7 65.072		1.00 47.31
MOTA	2690	C GLU A 33	7 65.485		1.00 57.56 1.00 58.29
MOTA	2691	O GLU A 33			
ATOM	3692	N PHE A 33			
MOTA	2693	CA PHE A 33 CB PHE A 33			1.00 60.86
ATOM	2694 2695	CB PHE A 33		3.493 101.401	1.00 61.92
MOTA ATOM	2696	CD1 PHE A 33	_	2.391 101.094	1.00 62.99
ATOM	2697	CD2 PHE A:33	8 61.970		
ATOM	2698	CE1 PHE A 33	8 60.392		
MOTA	2699	CE2 PHE A 33	8 61.315 8 60.523		
ATOM	2700				1.00 64.33
ATOM	2701			3 2.781 100.616	1.00 62.45
MOTA	2702 2703		·	7 4.130 102.194	1.00 64.11
MOTA MOTA	2703	CA ASP A 33	9 66.68		1.00 67.42
ATOM	2705	CB ASP A 33	9 66.56		
ATOM	2706	CG ASP A 33	9 67.64	1 0.030 100.40	

					~~ ~~ ~~
	2707	OD1 ASP A 339	67.796		00 72.20
ATOM	2707	ODI WEE W 222		7.740 100.904	1.00 64.15
MOTA	2708	OD2 ASP A 339	68.346	, , , , , , , , , , , , , , , , , , , ,	1.00 68.73
	2709	C ASP A 339	68.088	1.230	
MOTA			68.511	4.628 102.869	1.00 68.17
ATOM	2710	O ASP A 339			1.00 71.90
ATOM	2711	N ASP A 340	68.796		
			70.151		1.00 73.59
ATOM	2712		70.778	2.601 99.848	1.00 75.47
MOTA	2713	CB ASP A 340		0.002	1.00 76.03
	2714	CG ASP A 340	69.953		
MOTA			69.761	0.449 99.823	1.00 76.90
MOTA	2715	OD1 ASP A 340		0.425	1.00 80.23
ATOM	2716	OD2 ASP A 340	69.492	* · · · · · · · · · · · · · · · · · · ·	
			. 71.069	4.155 101.766	1.00 72.77
MOTA	2717		71.618	3.946 102.845	1.00 73.08
ATOM	2718	O ASP A 340			1.00 73.15
	2719	N GLU A 341	71.242	J	
ATOM			72.112		1.00 74.56
MOTA	2720	CA GLU A 341			1.00 77.06
MOTA	2721	CB GLU A 341	72.917		1.00 82.57
	2722	CG GLU A 341	73.878	8.034 100.792	1.00 82.37
ATOM			74.924	7.571 101.794	1.00 85.34
MOTA	2723	CD GLU A 341			1.00 86.64
	2724	OE1 GLU A 341	75.718	6.669 101.450	1.00 00.03
MOTA		OE2 GLU A 341	74.951	8.106 102.924	1.00 85.37
ATOM	2725	OEZ GLO M 341		7.453 102.245	1.00 72.47
ATOM	2726	C GLU A 341	71.327		1.00 76.75
	2727	O GLU A 341	70.822	8.364 101.589	1.00 /0./3
ATOM			71.228	7.381 103.566	1.00 67.86
MOTA	2728	N VAL A 342		8.393 104.323	1.60 64.84
MOTA	2729	CA VAL A 342	70.503	0.333 104.323	
	2730	CB VAL A 342	69.160	7.853 104.850	1.00 66.27
MOTA		. CD VAD A 342	68.256	7.494 103.701	1.00 67.95
ATOM	2731	CG1 VAL A 342		7.324 105 700	1.00 65.37
	2732	CG2 VAL A 342	69.400	6.637 105.722	
MOTA			71.305	8.871 105.520	1.00 61.75
MOTA	2733	C VAL A 342		10.066 105.795	1.00 64.14
MOTA	2734	O VAL A 342	71.375	70.000 105.775	1.00 56.79
	2735	N ASP A 343	71.912	7.925 106.225	
MOTA			72.692	8.229 107.417	1.00 54.53
ATOM-	2736	CA ASP A 343		9.340 107.158	1.00 56.31
MOTA	2737	CB ASP A 343	73.707	9,340 107.130	1.00 58.81
	2738	CG ASP A 343	74.531	9.660 108.388	1.00 30.01
MOTA		- 4-	75.298	10.644.108.357	1.00 65.36
MOTA	2739			8.918 109.387	1.00 54.29
MOTA	2740	OD2 ASP A 343	74.420	0.710 107.307	1.00 50.70
	2741	C ASP A 343	71.765	8.675 108.534	
MOTA			71.442	9.859 108.651	1.00 46.00
ATOM	2742	O ASP A 343		7.717 109.341	1.00 46.20
ATOM	2743	N ARG A 344	71.328	1.111 103.341	1.00 41.18
		CA ARG A 344	70.452	8.004 110.463	1.00 41.10
MOTA	2744	CA ANG A 344	69.121	7.268 110.299	1.00 39.81
MOTA	2745	CB ARG A 344		7.711 109.098	1.00 35.08
ATOM	2746	CG ARG A 344	68.289	7.711 109.098	1 00 39 37
	-	CD ARG A 344	68.036	9.211 109.121	1.00 28.37
MOTA	2747	CD ENG N 244	67.157	9.645 108.036	1.00 30.90
ATOM	2748	NE ARG A 344		10.909 107.649	1.00 31.05
MOTA	2749	CZ ARG A 344	67.013	10.303 107.043	1.00 30.49
	2750	NH1 ARG A 344	67.693	11.874 108.258	1.00 30.49
MOTA	_	NUT WAS Y 244	66.201	11.212 106.646	1.00 31.76
MOTA	2751	NH2 ARG A 344		7 561 111 742	1.00 38.46
	2752	C ARG A 344	71.147	7.561 111.742	1 00 34 00
ATOM			70.516	7.370 112.773	1.00 34.99
ATOM	2753	O ARG A 344		7.418 111.662	1.00 33.97
ATOM	2754	N SER A 345	72.464	7.410 111 705	1.00 33.68
ATOM	2755		73.261	6.981 112.795	1.00 33.00
		CD CED X 2/E	74.742	6.972 112.404	1.00 39.11
ATOM	2756			8.260 111.990	1.00 42.80
ATOM	2757	OG SER A 345	75.163	0.200 111.550	1.00 31.83
	2758		73.054	7.826 114.053	1.00 31.03
Mota			73.100	7.314 115.167	1.00 24.35
ATOM	2759	O SER A 345			1.00 33.10
ATOM	2760	N TYR A 346	72.819		1 00 34 50
		- 4 -	72.614	10.003 115.015	1.00 34.50
MOTA	2761		72.397	11.437 114.522	1.00 35.16
MOTA	2762				1.00 39.69
	2763		71.168	11.615 113.659	
ATOM			69.909	11.814 114.227	1.00 36.57
MOTA	2764			11.940 113.424	1.00 40.23
MOTA	2765		68.767		
			71.260	11.544 112.270	
ATOM	2766		70.131	11.667 111.463	1.00 38.65
ATOM	2767		70.131		
	2768		68.890	11.864 112.041	
ATOM			67.776	11.982 111.234	
ATOM	2769		71.432	9.560 115.874	1.00 3/./2
ATOM	2770	C TYR A 346	/1.434		
		3 4 6	71.396	115 765	
ATCM			70.472		7.00 33.36
ATCM	277	C IN LIEI W 24,	, 3		

			CD 205	8.418 116.004	1.00 36.97
MOTA	2773	CA MET A 347	69.295	0.120 22-	1.00 33.45
ATOM	2774	CB MET A 347	68.226		
MOTA	2775	CG MET A 347	67.853	0.002	1.00 28.09
	2776	SD MET A 347	66.471		1.00 32.14
ATOM	-		67.058	6.647 112.457	1.00 39.25
MOTA	2777		69.632	7.363 117.055	1.00 34.67
ATOM-	2778	C MET A 347			1.00 33.46
ATOM	2779	O MET A 347	68.890		
MOTA	2780	N LEU A 348	70.747		1.00 36.42
	2781	CA LEU A 348	71.137		1.00 34.57
ATOM			71.841	4.476 117.152	1.00 34.16
ATOM	2782		71.066	3.655 116.121	1.00 35.61
ATOM	2783	CG LEU A 348		2.660 115.469	1.00 36.58
MOTA	2784	CD1 LEU A 348	72.010	2.000 113.403	1.00 42.34
MOTA	2785	CD2 LEU A 348	69.906	2.935 116.788	
ATOM	2786	C LEU A 348	72.075	6.232 118.885	1.00 37.10
	2787	O LEU A 348	72.583	5.513 119.745	1.00 37.75
ATOM		N GLU A 349	72.295	7.541 118.801	1.00 38.31
ATOM	2788		73.192	8.231 119.726	1.00 42.86
MOTA	2789	CA GLU A 349	74.150	9.136 118.948	1.00 47.04
ATOM	2790	CB GLU A 349		8.426 117.867	1.00 53.27
ATOM	2791	CG GLU A 349	74.942		1.00 58.36
ATOM	2792	CD GLU A 349	75.828	7.325 118.410	
ATOM	2793	OE1 GLU A 349	76.681	7.619 119.279	1.00 59.59
	2794	OE2 GLU A 349	75.669	6.166 117.963	1.00 59.17
MOTA			72.458	9.080 120.752	1.00 41.72
ATOM	2795		72.564	8.852 121.959	1.00 42.27
ATOM	2796	O GLU A 349		10.067 120.261	1.00 37.05
ATOM	2797	N THR A 350	71.716		1.00 40.78
MOTA	2798	CA THR A 350	70.992		
ATOM	2799	CB THR A 350	71.468	12.418 120.900	1.00 41.69
ATOM	2800	OG1 THR A 350	71.359	12.733 119.508	1.00 43.25
	2801	CG2 THR A 350	72.918	12.575 121.325	1.00 44.11
ATOM			69.474	10.911 120.968	1.00 41.47
ATOM	2802		68.968	10.608 119.884	1.00 39.72
MOTA	2803	O THR A 350		11.199 122.054	1.00 38.68
ATOM	2804	N LEU A 351	68.760	11.199 122.054	1.00 35.91
ATOM	2805	CA LEU A 351	67.299	11.185 122.056	
ATOM	2806	CB LEU A 351	66.763	11.210 123.487	1.00 35.94
ATOM	2807	CG LEU A 351	66.752	9.890 124.251	1.00 37.67
	2808	CD1 LEU A 351	66.290	10.118 125.677	1.00 40.11
MOTA			65.813	8.920 123.544	1.00 39.29
ATOM	2809		66.679	12.342 121.294	1.00 37.76
ATOM	2810	C LEU A 351		12.149 120.512	1.00 34.86
ATOM	2811	O LEU A 351	65.747	13.544 121.525	1.00 34.79
MOTA	2812	N LYS A 352	67.192	13.544 121.525	1.00 38.73
ATOM	2813	CA LYS A 352	66.651	14.724 120.870	
ATOM	2814	CB LYS A 352	66.676	15.911 121.835	1.00 36.48
	2815	CG LYS A 352	66.062	15.580 123.179	1.00 42.08
ATOM			66.202	16.701 124.196	1.00 43.22
ATOM	2816		65.349	17.901 123.845	1.00 49.81
ATOM	2817	CE LYS A 352	65.342	18.880 124.972	1.00 52.70
MOTA		NZ LYS A 352		15.063 119.610	1.00 38.77
MOTA	2819	C LYS A 352	67.425	15.003 119.010	1.00 36.21
MOTA	2820	O LYS A 352	68.654	15.098 119.601	1.00 37.69
MOTA	2821	N ASP A 353	66.697	15.293 118.530	1.00 37.09
ATOM	2822	CA ASP A 353	67.337	15.647 117.286	1.00 39.89
	2823	CB ASP A 353	66.532	15.075 116.110	1.00 43.53
MOTA			65.058	15.368 116.211	1.00 47.99
MOTA	2824	CG ASP A 353		14.623 115.593	1.00 38.06
ATOM	2825	OD1 ASP A 353	64.253	16.352 116.898	1.00 52.94
ATOM	2826	OD2 ASP A 353	64.706	16.352 110.696	1.00 39.20
ATOM	2827	C ASP A 353	67.457	17.165 117.247	1.00 35.40
MOTA	2828	O ASP A 353	66.890	17.861 118.092	1.00 35.66
	2829	N PRO A 354	68.244	17.696 116.302	1.00 40.75
ATOM			69.047	17.005 115.279	1.00 40.05
ATOM	2830		68.426	19.145 116.179	1.00 38.41
MOTA	2831	CA PRO A 354		19.250 115.140	1.00 36.24
ATOM	2832	CB PRO A 354	69.534	18.095 114.225	1.00 39-41
ATOM	2833	CG PRO A 354	69.190	18.033 114.423	1.00 37.28
ATOM	2834	C PRO A 354	67.144	19.780 115.689	1.00 31.20
	2835		66.299	19.106 115.094	1.00 31.87
MOTA	_	255	66.993	21.074 115.934	1.00 37.87
ATOM	2836		65.804	21.757 115.472	1.00 40.04
MOTA	2837		65.714	23.157 116.080	1.00 42.85
ATOM	2838	CB TRP A 355	03.714	44.44	

			•			
	2020	CG TRP A 355		64.333	23.471 116.569	1.00 53.01
ATOM	2839				24.463 116.047	1.00 54.23
ATOM	2840	CD2 TRP A 355		63.439		1.00 52.59
ATOM	2841	CE2 TRP A 355		62.234	24.368 116.783	
MOTA	2842	CE3 TRP A 355		63.538	25.422 115.028	1.00 52.82
		CD1 TRP A 355		63.655	22.836 117.575	1.00 51.80
MOTA	2843			62.393	23.368 117.708	1.00 51.38
MOTA	2844	NE1 TRP A 355				1.00 51.28
ATOM	2845	CZ2 TRP A 355		61.134		
MOTA	2846	CZ3 TRP A 355		62.444	26.245 114.779	1.00 53.22
		CH2 TRP A 355		61.257	26.126 115.531	1.00 50.50
MOTA	2847			65.935	21.836 113.954	1.00 37.34
MOTA	2848	C TRP A 355			21.929 113.422	1.00 39.01
MOTA	2849	O TRP A 355		67.041		
MOTA	2850	N ARG A 356		64.809	21.764 113.259	1.00 36.31
	2851	CA ARG A 356		64.797	21.820 111.802	1.00 35.22
MOTA				64.317	20.469 111.252	1.00 33.36
ATOM	2852	CB ARG A 356			19.340 111.564	1.00 34.50
MOTA	2853	CG ARG A 356		65.310		1.00 28.06
MOTA	2854	CD ARG A 356		64.729	17.927 111.468	
ATOM	2855	NE ARG A 356		65.745	16.956 111.870	1.00 24.79
	2856	CZ ARG A 356		65.499	15.703 112.236	1.00 27.56
MOTA				64.253	15.237 112.259	1.00 19.09
MOTA	2857				14.918 112.604	1.00 21.34
ATOM	2858	NH2 ARG A 356		66.502		1.00 33.74
ATOM	2859	C ARG A 356		63.874	22.955 111.390	
	2860	O ARG A 356		62:746	22.732 110.950	1.00 34.68
MOTA		N GLY A 357		64.361	24.181 111.550	1.00 35.60
MOTA	2861			63.556	25.345 111.220	1.00 35.43
ATOM	2862	CA GLY A 357			25.932 109.830	1.00 38.08
MOTA	2863	C GLY A 357		63.719		
ATOM	2864	O GLY A 357		64.112	25.250 108.885	
	2865	N GLY A 358		63.406	27.218 109.721	1.00 39.67
ATOM		CA GLY A 358		63.493	27.925 108.457	1.00 36.36
MOTA	2866			62.398	28.966 108.499	1.00 39.45
MOTA	2867	C GLY A 358			29.131 109.539	1.00 37.58
MOTA	2868	O GLY A 358		61.763		
ATOM	2869	N GLU A 359		62.163	29.662 107.391	1.00 40.89
ATOM	2870	CA GLU A 359		61.121	30.682 107.358	1.00 41.37
		CB GLU A 359		61.310	31.627 106.172	1.00 44.64
MOTA	2871			60.956	30.977 104.848	1.00 52.13
MOTA	2872	CG GLU A 359			31.973 103.708	1.00 59.14
MOTA	2873	CD GLU A 359		60.833		1.00 60.47
MOTA	2874	OE1 GLU A 359		60.448	31.551 102.593	
ATOM	2875	OE2 GLU A 359		61.119	33.173 103.923	1.00 57.77
	2876	C GLU A 359		59.770	30.006 107.200	1.00 38.02
MOTA				59.689	28.828 106.850	1.00 35.29
ATCM	2877			58.708	30.762 107.441	1.00 36.81
MOTA	. 2878	N VAL A 360			30.237 107.291	1.00 35.97
MOTA	2879	CA VAL A 360		57.363		1.00 34.90
ATOM	2880	CB VAL A 360		56.401	30.789 108.368	
MOTA	2881	CG1 VAL A 360	1	54.999	30.251 108.133	
		CG2 VAL A 360		56.888	30.393 109.755	1.00 37.06
ATOM	2882			56.886	30.690 105.928	1.00 36.74
ATOM	2883	C VAL A 360			31.881 105.712	
ATOM	2884	O VAL A 360		56.661	31.861 105.722	
ATOM	2885	N ARG A 36:		56.753	29.741 105.004	1.00 33.40
ATCM	2886	CA ARG A 36:		56.301	30.049 103.652	1.00 38.21
	2887	CB ARG A 36		56.152	28.776 102.815	1.00 39.76
ATOM				57.416	28.342 102.098	1.00 39.93
ATCM	2888				26.963 101.486	
ATCM	2889	CD ARG A 36	-	57.225	20.303 101.400	
ATCM	2890	NE ARG A 36	L	57.112	25.940 102.525	
ATCM	2891	CZ ARG A 36		56.952	24.643 102.286	1.00 38.79
	2892	NH1 ARG A 36		56.881	24.200 101.036	1.00 32.40
MOTA		מונט אנים אי של איני	- \	56.899		1.00 36.58
MOTA	2893	NH2 ARG A 36				
ATOM	2894	C ARG A 36		54.996		
ATCM	2895	O ARG A 36	ì	54.120		
	2896			54.880	31.634 102.573	1.00 39.95
ATCM			2	53.709		1.00 42.73
ATCM	2897		-	53.931		3 1.00 44.92
ATCM	2898		2			
ATCM	2899	CG LYS A 36		54.995		
ATOM	2900	CD LYS A 36	2	56.351		
ATOM	2901		2	56.907		
	2902		2	58.224	32.283 101.15	
ATOM				52.434	31.634 102.20	0 1.00 40.51
ATOM	2903			51.391		8 1.00 36.10
ATOM	2904	O LYS A 36	4	21.331	. 31.770 101.74	

			50 505	30.527 101.469	1.00 37.79
ATOM	2905	N GLU A 363	52.506		1.00 40.96
MOTA	2906	CA GLU A 363	51.313	45.105 = -	
ATOM	2907	CB GLU A 363	51.587		1.00 43.62
	2908	CG GLU A 363	52.729		1.00 47.01
ATOM	_		52.995	26.547 99.683	1.00 51.65
MOTA	2909		52.080	25.737 99.409	1.00 45.63
ATOM	2910	OE1 GLU A 363			1.00 48.44
MOTA	2911	OE2 GLU A 363	54.116		1.00 37.74
ATOM	2912	C GLU A 363	50.788	29.209 102.636	1.00 34.79
ATOM	2913	O GLU A.363	49.582	29.113 102.834	
ATOM	2914	N VAL A 364	51.691	28.910 103.564	1.00 33.64
	2915	CA VAL A 364	51.274	28.455 104.886	1.00 32.39
ATOM			52.484	28.048 105.749	1.00 33.99
ATOM	2916		52.018	27.676 107.160	1.00 36.90
MOTA	2917	CG1 VAL A 364			1.00 29.56
ATOM	2918	CG2 VAL A 364	53.198		1.00 34.33
ATOM	2919	C VAL A 364	50.506	29.574 105.589	1.00 29.80
MOTA	2920	O VAL A 364	49.454	29.336 106.188	
MOTA	2921	N LYS A 365	51.027	30.797 105.499	1.00 38.12
	2922	CA LYS A 365	50.381	31.952 106.119	1.00 36.77
MOTA		CB LYS A 365	51.255	33.204 105.969	1.00 37.98
MOTA	2923		52.629	33.084 106.610	1.00 37.99
ATOM	2924	CG LYS A 365	53.449	34.357 106.429	1.00 35.50
ATOM	2925	CD LYS A 365		34.190 107.032	1.00 40.35
ATCM	2926	CE LYS A 365	54.837		1.00 43.74
ATOM	2927	NZ LYS A 365	55.674		
ATOM	2928	C LYS A 365	49.025	32.191 105.468	
MOTA	2929	O LYS A 365	48.038	32.469 106.148	1.00 33.53
	2930	N ASP A 366	48.968	32.073 104.147	1.00 37.05
MOTA		CA ASP A 366	47.708	32.278 103.449	1.00 37.72
MOTA	2931		47.906	32.237 101.929	1.00 40.57
MOTA	2932		48.833	33.334 101.427	1.00 43.98
MOTA	2933	CG ASP A 366		34.304 102.176	1.00 38.51
MOTA	2934	OD1 ASP A 366	49.078		1.00 41.96
MOTA	2935	OD2 ASP A 366	49.297		1.00 39.24
ATOM	2936	C ASP A 366	46.670	31.238 103.862	
ATOM	2937	O ASP A 366	45.497	31.562 104.029	
	2938	N THR A 367	47.096	29.990 104.031	1.00 38.99
ATOM		CA THR A 367	46.167	28.935 104.432	1.00 36.80
MOTA	2939		46.868	27,560 104.527	1.00 33.84
MOTA	2940	CB THR A 367	47.332	27.167 103.232	1.00 34.92
ATOM	2941	OG1 THR A 367		26.509 105.046	1.00 35.11
MOTA	2942	CG2 THR A 367	45.904	29.257 105.786	1.00 36.58
ATOM	2943	C THR A 367	45.532		1.00 30.18
ATOM	2944	O THR A 367	44.307		1.00 35.32
ATOM	2945	N LEU A 368	46.363	29.581 106.776	
ATOM	2946	CA LEU A 368		29.926 108.095	1.00 35.46
	2947	CB LEU A 368		30.169 109.077	1.00 34.03
MOTA		CG LEU A 368		28.925 109.794	1.00 39.04
MOTA	2948			28.358 110.688	1.00 37.35
MOTA	2949			27.871 108.797	1.00 39.52
MOTA	2950	CD2 LEU A 368		31.156 107.994	1.00 38.12
MOTA	2951	C LEU A 368			1.00 31.70
ATOM	2952	O LEU A 368			1.00 40.45
ATOM	2953	N GLU A 369		100 000	1.00 45.36
ATOM	2954	CA GLU A 369	44.509	33.261 106.866	
ATOM	2955	CB GLU A 369	45.128	34.126 105.765	1.00 47.38
	2956	CG GLU A 369	46.020	35.228 106.283	1.00 53.81
MOTA					1.00 59.97
MOTA	2957				1.00 60.65
ATCM	2958	OE1 GLU A 369			1.00 63.69
MOTA	2959	OE2 GLU A 369			
MOTA	2960	C GLU A 369	43.100		
ATOM	2961	O GLU A 369	42.130		
ATOM	2962) 42.983		
	2963		41.666	31.631 104.977	1.00 43.36
ATOM	2964			30.773 103.704	1.00 44.79
ATOM				31.546 102.419	1.00 48.93
ATOM	2965				1.00 51.41
ATOM	2966				
ATOM	2967				
ATOM	2968		45.339		
· ATOM	2969	C LYS A 37	0 40.959		
ATOM	2970		0 39.74	30.977 106.248	1.00 41.34
ATOM					

162/263

Figure 18-46

30.037 106.802 1.00 39.56 41.715 ALA A 371 MOTA 2971 N 1.00 43.57 29.238 107.861 41.120 ALA A 371 2972 CA MOTA 28.440 108.594 1.00 39.11 ALA A 371 42.193 2973 CB 1.00 46.10 MOTA 30.132 108.837 40.365 ALA A 371 2974 C MOTA 1.00 46.07 29.829 109.210 39.230 ALA-A 371 2975 0 MOTA 31.239 109.227 1.00 46.62 40.981 LYS A 372 N 2976 ATOM 1.00 48.18 32.178 110.192 LYS A 372 40.391 2977 CA MOTA 1.00 51.67 32.698 109.664 39.052 LYS A 372 С 2978 MOTA 1.00 53.21 1.00 47.22 33.318 110.432 38.294 LYS A 372 2979 0 ATOM 33.364 110.413 41.334 LYS A 372 2980 CB 1.00 20.00 ATOM 32.949 110.510 42.804 LYS A 372 2981 CG MOTA 1.00 20.00 34.131 110.752 43.746 LYS A 372 CD 2982 MOTA 33.715 110.849 1.00 20.00 45.216 LYS A 372 CE 2983 ATOM 1.00 20.00 34.850 111.081 46.121 LYS & 372 2984 NZ MOTA 1.00 57.71 32.476 108.397 38.751 ALA A 373 N ATOM 2985 32.933 107.806 1.00 58.67 37.492 ALA A 373 CA 2986 ATOM 1.00 57.19 33.632 106.480 37.758 ALA A 373 CB2987 MOTA 1.00 59.58 31.773 107.594 36.524 ALA A 373 C MOTA 2988 1.00 60.89 31.797 108.205 35.432 ALA A 373 0 2989 MOTA 1.00 60.10 30.853 106.822 36.870 OXT ALA A 373 2990 56.836 MOTA 1.00 55.77 54.881 -4.431 CB ALA B 2 3014 1.00 57.58 MOTA 56.480 -2.137 53.960 2 ALA 3 3015 С MOTA 1.00 56.75 54.920 -1.720 57.131 ALA B 2 3016 0 MOTA 1.00 58.22 54.557 54.263 -3.672 2 ALA B 3017 N ATOM 1.00 58.47 56.008 -3.584 2 53.914 ALA B CA 3018 ATOM 1.00 52.79 56.151 52.919 -1.376 N LYS B 3019 ATOM 1.00 49.68 56.543 52.855 0.022 3 LYS 3 3020 CA ATOM 1.00 53.14 0.700 55.896 51.643 3 LYS 3 CB 3021 MOTA 54.377 1.00 53.37 51.751 0.785 LYS 3 3 3022 CG 1.00 55.40 MOTA 53.786 1.681 50.685 3 LYS 3 3023 CD ATOM 1.00 59.51 52.277 50.808 1.783 3 LYS B 3024 CE MOTA 1.00 56.88 51.884 2.323 52.140 LYS B 3 NZ 3025 1.00 46.83 MOTA 58.059 0.238 52.849 LYS B 3 3026 С MOTA 1.00 41.63 58.830 -0.607 52.389 LYS B 3027 0 MOTA 1.00 41.46 58.467 53.376 1.385 4 3028 N VAL 3 1.00 40.85 MOTA 59.871 1.751 VAL 3 4 53.483 3029 CA 1.00 39.55 MOTA 60.163 2.288 54.893 3030 CB VAL B 4 1.00 41.23 MOTA 61.648 2.541 55.070 4 CG1 VAL B 3031 1.00 38.96 ATOM 59.652 1.306 55.916 CG2 VAL B 3032 1.00 38.92 MOTA 60.230 2.813 52.451 4 VAL 3 C 3033 1.00 42.80 1.00 34.90 MOTA 3.916 59.691 52.472 VAL B 4 3034 0 MOTA 61.157 51.559 2.479 5 LYS B 3035 И 1.00 31.22 MOTA 3.396 61.558 5 50.501 LYS B 3036 CA ATOM 61.215 1.00 33.76 2.796 49.133 LYS B 3037 CB 1.00 36.60 ATOM 59.726 2.623 48.841 5 LYS B 3038 CG MOTA 1.00 41.48 59.032 48.667 3.964 5 LYS B 3039 CD MOTA 1.00 43.62 57.577 3.803 48.234 5 LYS 3 3040 CE ATOM 1:00 42.53 56.781 3.025 49.215 5 3041 ΝZ LYS 3 MOTA 63.038 1.00 32.67 3.749 50.512 5 LYS B 3042 C 63.878 MOTA 1.00 25.78 51.012 2.995 LYS B 5 3043 0 1.00 27.07 MOTA 63.343 4.906 49.937 6 LEU B 3044 N 1.00 31.09 MOTA 64.712 5.379 49.821 LEU B 6 1.00 30.13 3045 CA MOTA 64.896 6.696 50.596 LEU B 6 3046 CB 1.00 28.09 MOTA 66.285 7.340 50.691 6 LEU B 3047 .CG ATOM 1.00 38.87 66.728 49.333 7.827 6 CD1 LEU B 3048 1.00 24.87 MOTA 67.282 6.338 51.248 CD2 LEU B 6 3049 ATOM 1.00 29.52 5.594 64.924 48.324 6 3050 C LEU B MOTA 64.149 1.00 33.36 47.669 6.287 LEU B 6 3051 0 1.00 28.02 MOTA 65.960 4.975 47.777 ILE B 7 N 3052 1.00 23.83 MOTA 5.111 66.250 46.361 7 ILE 5 3053 CA ATOM 1.00 25.11 3.761 66.670 45.736 7 ILE B 3054 CB 1.00 23.59 ATOM 67.127 44.309 3.974 CG2 ILE B 1.00 31.00 3055 MOTA 65.477 -2.79445.690 CG1 ILE B 3056 1.00 38.60 MOTA 64.906 2.406 47.021 CD1 ILE B 1.00 26.49 3057 MOTA 6.130 67.363 46.179 ILE B 3058 C 1.00 26.68 MOTA 68.430 46.766 6.005 ILE B 3059 0

MOTA

	3060	N	GLY B	8		45.372	7.151	67.106	1.00 29.51
				8		45.151	8.170	68.117	1.00 30.28
	3061		GLY B				9.273	67.667	1.00 28.79
ATOM	3062	С	GLY B	8		44.217			
ATOM	3063	0	GLY B	8		43.629	9.207	66.590	
	3064	-	THR B	9		44.088	10.291	68.509	1.00 26.46
ATOM				9		43.234	11.438	68.238	1.00 29.37
ATOM-	3065		THR B			41.748	11.064	68.311	1.00 32.64
ATCM	3066	CB	THR B	9					1.00 30.35
MOTA	3067	OG1	THR B	9		40.959	12.253	68.218	
	3068		THR B	9		41.431	10.383	69.637	1.00 33.42
MOTA			THR B	9		43.479	12.496	69.302	1.00 33.42
ATOM	3069		-			43.884	12.173	70.416	1.00 30.46
ATOM	3070	0	THR B	9				68.961	1.00 32.05
ATOM	3071	N	LEU B.	10		43.228	13.754		1.00 34.75
ATOM	3072	CA	LEU B	10	-	43.396	14.840	69.914	
	3073	СВ	LEU B	10		43.381	16.189	69.190	1.00 38.02
ATOM			LEU B	10		44.605	16.578	68.355	1.00 40.82
MOTA	3074	CG				44.961	15.472	67.394	1.00 43.62
ATOM	3075		LEU B	10				67.605	1.00 34.99
ATOM	3076	CD2	LEU B	10		44.314	17.869		1.00 34.25
ATOM	3077	С	LEU B	10		42.272	14.809	70.945	
	3078	Ō	LEU B	10		42.415	15.348	72.042	1.00 33.13
ATOM			ASP B	11		41.158	14.169	70.595	1.00 30.61
MOTA	3079	N				40.011	14.098	71.501	1.00 33.08
MOTA	3080	CA	ASP B	11			13.167	70.945	1.00 37.57
MOTA	3081	CB	ASP B	11		38.928		69.621	1.00 43.14
ATOM	3082	CG	ASP B	11		38.372	13.643		
ATOM	3083		ASP B	11		38.013	14.834	69.525	1.00 42.22
	3084		ASP B	11		38.281	12.825	68.681	1.00 45.58
MOTA				11		40.358	13.654	72.919	1.00 32.19
MOTA	3085	C	ASP B			39.688	14.053	73.875	1.00 23.44
ATOM	3086	0	ASP B	11			12.822	73.066	1.00 28.02
ATOM	3087	N	TYR B	12		41.386			1.00 32.00
ATOM	3088	CA	TYR B	12		41.770	12.373	74.402	
	3089	CB	TYR B	12		43.011	11.476	74.363	1.00 28.67
MOTA		CG	TYR B	12		42.821	10.108	73.737	1.00 25.33
MOTA	3090			12		43.338	9.823	72.475	1.00 23.74
MOTA	3091	CD1					8.546	71.924	1.00 22.85
MOTA	3092	CE1	TYR B	12		43.235		74.436	1.00 21.93
ATOM	3093	CD2	TYR B	12		42.183	9.077		1.00 21.99
ATOM	3094	CE2	TYR B	12		42.074	7.793	73.889	1.00 21.99
	3095	CZ	TYR B	12		42.605	7.538	72.640	1.00 22.99
MOTA			TYR B			42.532	6.273	72.109	1.00 18.79
ATOM	3096	он				42.054	13.567	75.319	1.00 32.74
MOTA	3097	C	TYR B			41.986	13.450	76.542	1.00 23.85
MOTA	3098	0	TYR B					74.720	1.00 26.96
MOTA	3099	N	GLY B	13		42.374	14.710		1.00 34.92
ATOM	3100	CA	GLY B	13		42.658	15.900	75.501	
ATOM	3101	c	GLY B	13		41.452	16.396	76.277	1.00 36.82
		ō	GLY B			41.580	17.228	77.176	1.00 34.10
ATOM	3102					40.279	15.875	75.929	1.00 37.23
ATOM	3103	N	LYS E			39.031	16.247	76.584	1.00 41.77
MOTA	3104	CA	LYS E					75.537	1.00 45.82
MOTA	3105	CB	LYS E			37.925	16.406		1.00 51.38
MOTA	3106	CG	LYS E	14		38.110	17.585	74.579	
ATOM	3107	CD	LYS E			37.805	18.939	75.241	
		CE	LYS E			38.752	19.285	76.388	1.00 58.82
MOTA	3108					38.387	20.568	77.070	1.00 55.06
ATOM	3109	NZ	LYS E			38.591	15.226	77.627	1.00 39.50
ATOM	3110	C	LYS E					78.252	
ATOM	3111	0	LYS E	3 14		37.546	15.385		
ATOM	3112	N	TYR E	3 15		39.395			
	3113	CA	TYR I	_		39.070	13.128	78.768	1.00 44.15
MOTA						38.863	11.827	77.990	1.00 44.42
ATOM	3114	CB	TYR I			37.850			1.00 42.02
ATCM	3115	CG	TYR I	_					
ATOM	3116	CD:	1 TYR I			38.064			
ATCM	3117			3 15		37.138	11.530		
	3118			_		36.678			1.00 42.99
ATOM						35.748			1.00 43.30
MOTE	3119					35.984			1.00 45.49
ATOM	3120			_					
ATOM	3121	OH				35.066			
ATOM	3122		TYR			40.151			
	3123		TYR			40.519			7 1.00 41.20
ATOM	3124		ARG			40.647	7 14.052		
ATCM			_			41.686		2 81.41	1.00 43.70
atom	3125	CA	WVG						

164/263

> mo>r	3126	СВ	ARG B	16	42.250	15.410		1.00 49.13
MOTA	3127		ARG B	16	42.656	16.197		1.00 54.22
MOTA			-	16	43.858	15.624	79.751	1.00 55.13
MOTA	3128		ARG B		44.303	16.549	78.718	1.00 62.87
MOTA	3129		ARG B	16	44.628	17.818	78.951	1.00 64.92
MOTA	3130		ARG B	16	44.556	18.308	80.182	1.00 65.86
MOTA	3131		ARG B	16		18.600	77.954	1.00 67.15
atom	3132	NH2	ARG B	16	45.022	13.531	82.728	1.00 42.97
ATOM	3133	С	ARG B	16	41.093		82.927	1.00 38.44
MOTA	3134	0	ARG B	16	39.882	13.593	83.628	1.00 39.36
ATCM	3135	N	TYR B	17	41.949	13.056	84.945	1.00 37.67
MOTA	3136	CA	TYR B	17	41.494	12.637	85.584	1.00 37.69
ATOM	3137	CB	TYR B	17	42.500	11.679		1.00 28.00
ATOM	3138	CG	TYR B	17	42.413	10.250	85.087	1.00 22.89
ATOM	3139	CD1	TYR B	17	42.530	9.944	83.732	1.00 21.42
ATOM	3140	CE1	TYR B	17	42.502	8.618	83.287	1.00 24.67
ATOM	3141	CD2	TYR B	17	42.258	9.196	85.984	1.00 24.48
ATOM	3142	CE2	TYR B	17	42.229	7.873	85.556	1.00 24.48
ATOM	3143	CZ	TYR B	17	42.355	7.587	84.210	
ATOM	3144	он	TYR B	17	42.371	6.271	83.796	1.00 19.94 1.00 38.94
ATOM	3145	С	TYR B	17	41.377	13.927	85.765	
ATOM	3146	0	TYR B	17	41.947	14.951	85.391	1.00 39.65
ATOM	3147	N	PRO B	18	40.647	13.893	86.891	1.00 41.27
ATOM	3148	CD	PRO B	18	39.958	12.728	87.462	1.00 43.62
MOTA	3149	CA	PRO B	18	40.448	15.058	87.762	1.00 45.33
ATOM	3150	CB	PRO B	18	39.648	14.473	88.928	1.00 44.09
	3151	CG	PRO B	18	40.096	13.015	88.933	1.00 49.22
MOTA MOTA	3152	c	PRO B	18	41.702	15.809	88.221	1.00, 45.86
ATOM	3153	Ö	PRO B	18	42.789	15.244	88.317	1.00 45.44
	3154	Ŋ	LYS B	19	41.506	17.095	88.507	1.00 48.42
MOTA MOTA	3155	CA	LYS B	19	42.535	18.040	88.952	1.00 51.03
MOTA	3156	СВ	LYS B	19	41.873	19.122	89.814	1.00 56.35
ATOM	3157	CG	LYS B	19	40.630	18.657	90.563	1.00 65.69
ATOM	3158	CD	LYS B	19	40.894	17.441	91.423	1.00 68.96
MOTA	3159	CE	LYS B	19	39.602	16.882	91.999	1.00 71.85
ATOM	3160	NZ	LYS B	19 .	39.825	15.603	92.731	1.00 72.79
MOTA	3161	C	LYS B	19	43.830	17.593	89.639	1.00 48.62
MOTA	3162	ō	LYS B	19	44.912	18.009	89.235	1.00 49.04
ATOM	3163	N	ASN B	20	43.745	16.775	90.678	1.00 43.99
ATOM	3164	CA	ASN B	20	44.957	16.356	91.375	1.00 43.86
ATOM	3165	CB	ASN B	20	44.740	_	92.890	1.00 45.92 1.00 49.44
ATOM	3166		ASN B	20	44.418		93.355	1.00 47.72
ATOM	3167		1 ASN B	20	45.194		93.138	1.00 47.72
MOTA	3168		2 ASN B		43.268			1.00 49.42
ATOM	3169		ASN B		45.460	14.960		1.00 38.24
ATCM	3170		ASN B		46.496			1.00 36.24
ATOM	3171		HIS B	21	44.729			
ATOM	3172				45.091			
ATOM	3173				43.948			
ATOM	3174				44.068			
ATOM	3175		2 HIS E		44.779			
ATOM	3176		1 HIS E		43.431			
ATOM	3177		1 HIS E		43.743	8.686		
ATOM	3178				44.560	8.75		
ATCM	3179		HIS E		46.348			
ATOM	3180		HIS E		46.536			
ATOM	3181		PRO E		47.22	5 11.93		
ATOM	3182				47.18			
	3183				48.44	6 11.88		
atom atom	3184				49.05			
	318				43.65			
ATCM ATCM			PRO		48.17			
			PRO		48.98			
ATOM	_		LEU	B 23	47.03			
ATOM					46.68			
atom atom					45.93			
ATCM		_	_		46.76	0 8.85	2 84.55	0 1.00 23.32
F10.0								

WO 01/18045 PCT/US00/24700

165/263

М	3192 3193		LEU B	23 23	45.868 47.805	7.628 8.905	84.402 83.446	1.00 24.94 1.00 24.80
M M M	3194 3195	0	LEU B	23 23	45.891 45.166	12.638 12.528	84.367 83.373	1.00 27.95 1.00 24.42
M	3196	:1	LYS B	24	46.011 45.261	13.793 14.946	85.018 84.530	1.00 31.01
M M	3197 3198	CA CB	LYS B	24 24	44.934	15.923	85.665	1.00 33.03
M M	3199 3200	CG CD	LYS B LYS B	24 24	45.979 47.300	16.969 16.397	85.999 86.422	1.00 33.54 1.00 39.10
M M	3201 3202	CE NZ	LYS B	24 24	48.109 48.224	17.466 18.737	87.152 86.380	1.00 45.49 1.00 45.95
M	3203 3204	0	LYS B	24 24	46.039 45.508	15.653 16.523	83.425 82.736	1.00 30.02 1.00 28.82
M M	3205	N	ILE B	25	47.298	15.262 15.858	83.246 82.212	1.00 25.93 1.00 29.48
)M)M	3206 3207	CA CB	ILE B	25 25	48.139 49.641	15.528	82.409	1.00 33.61
M(M(3208 3209	CG2 CG1	ILE B	25 25	50.126 49.851	16.033 14.014	83.775 82.263	1.00 32.27 1.00 28.17
M(3210 3211	CD1 C	ILE B	25 25	51.310 47.784	13.584 15.318	82.188 80.834	1.00 36.32 1.00 30.08
M	3212 3213	9	ILE B PRO B	25 26	47.263 48.064	14.210 16.101	80.704 79.783	1.00 25.37 1.00 29.19
M(M(3214	CD	PRO B	26	48.650	17.448	79.770 78.413	1.00 32.47 1.00 29.52
M(M(3215 3216	CA	PRO B	26 26	47.782 48.103	15.673 16.921	77.593	1.00 29.84
MC MC	3217 3218	CG C	PRO B PRO B	26 26	47.930 48.789	18.046 14.561	78.599 78.137	1.00 36.40 1.00 27.64
MC MC	3219 3220	Э Э	PRO B	26 27	. 49.920 48.403	14.620 13.557	78.629 77.360	1.00 23.08 1.00 23.09
MC	3221 3222	CA CB	ARG B	27 27	49.326 48.987	12.469 11.264	77.072 77.962	1.00 23.00 1.00 26.21
MC	3223	CG	ARG B	27	49.101	11.617	79.449 80.416	1.00 17.03 1.00 26.83
MC MC	3224 3225	NE	ARG B ARG B	27 27	48.663 49.586	10.507 9.375	80.502	1.00 22.99
MC MC	3226 3227	CZ NH1	ARG B ARG B	27 27	49.444 48.408	8.220 8.022	79.856 79.059	1.00 25.06 1.00 17.74
MC MC	3228 3229	NH2 C	ARG B	27 27	50.336 49.329	7.253 12.097	80.027 75.595	1.00 23.38
MC	3230 3231	o N	ARG B VAL B	27 28	50.214 48.352	12.526 11.318	74.852 75.148	1.00 21.86 1.00 20.64
MC	3232	CA	VAL B	28	48.337 47.242	10.954	73.739 73.424	1.00 26.57 1.00 30.92
OM MO	3233 3234	CB CG1	VAL B	28 28	47.195	9.645	71.925	1.00 27.04
OM OM	3235 3236	CG2 C	VAL B	28 28	47.535 48.150	8.616 12.189	74.172 72.866	1.00 25.45
MO MO	3037 3.38	C V	VAL B SER B	28 29	48.780 47.298	12.311 13.112	71.808 73.304	1.00 30.88 1.00 24.30
OM	3139 3240	CA	SER B SER B	29 29	47.082 45.939	14.326 15.169	72.523 73.110	1.00 29.48 1.00 31.72
MO	3241	ЭG	SER 3	29	46.218	15.614 15.125	74.424 72.514	1.00 34.55
OM OM	3242 3243	С Э	SER B	29 29	48.379 48.680	15.820	71.545	1.00 28.85
MO'	3244 .3245	N CA	LEU B	30 30	49.157 50.427	15.003 15.721	73.589	1.00 31.59
MO' MO'	3246 3247	CB C G	LEU B	30 30	51.046 52.066	15.593 16.660	75.079 75.513	1.00 29.49 1.00 34.37
MO'	3248 3249		LEU B	30 30	52.937 52.951	16.083 17.098	76.610 74.357	1.00 30.15 1.00 32.90
MO	3250	C	LEU B	30	51.371 52.052	15.085 15.777	72.672 71.913	1.00 25.90 1.00 25.10
MO'	3251 3252	O M	LEU B	30 31	51.404	13.756	72.675	1.00 22.10 1.00 25.52
MO'.	3253 3254	CA CB	LEU B	31 31	52.268 51.966	13.013	71.764	1.00 26.41
COM	3255 3256	CG CD1	LEU B	31 31	53.066 52.425	10.524 9.198	71.441 71.042	1.00 28.93 1.00 23.69
MO	3257		LEU B	31	53.873	11.049	70.300	1.00 30.41

						C2 010	13.489	70.335	1.00 25.38
ATOM	3258	С	LEU 3	31		52.010			1.00 21.03
MOTA	3259	0	LEU 3	31		52.940	13.851	69.614	
MOTA	3260		LEU B	32		50.741	13.481	69.933	1.00 21.27
				32		50.364	13.899	68.585	1.00 27.91
MOTA	3261		LEU 3					68.408	1.00 26.60
ATOM	3262	CB	LEU B	32		48.841	13.798		1.00 27.30
ATOM	3263	CG	LEU 3	32		48.195	12.419	68.514	
		CD1.		32		46.699	12.504	68.321	1.00 31.60
MOTA	3264					48.837	11.391	67.708	1.00 26.90
MOTA	3265		LEU 3	32					1.00 26.07
MOTA	3266	C	LEU 3	. 32		50.835	15.317	68.242	
ATOM	3267		LEU 3	32		51.458	15.533	67.205	1.00 22.45
			ARG 3	33	-	50.545	16.282	69.111	1.00 28.19
MOTA	3268	N				50.962	17.660	68.865	1.00 31.77
ATOM	3269	CA	ARG B	33					1.00 34.22
MOTA	3270	CB	ARG B	33		50.395	18.601	69.930	1.00 34.22
	3271	CG	ARG B	33		48.887	18.740	69.904	1.00 40.33
ATOM			ARG B	33		48.420	19.713	70.970	1.00 47.67
ATOM	3272	CD					19.931	70.924	1.00 56.24
ATOM	3273	NE	ARG B	33		46.977			1.00 60.10
MOTA	3274	CZ	ARG 3	33		46.330	20.505	69.912	
	3275	NH1	ARG 3	33		46.997	20.929	68.845	1.00 63.11
MOTA			ARG B	33		45.011	20.652	69.965	1.00 63.81
ATOM	3276	NH2					17.791	68.852	1.00 30.12
MOTA	3277	С	ARG 3	33		52.476			1.00 30.20
ATOM	3278	0	ARG B	33		53.028	18.580	68.097	
	3279	N	рне з	34		53:147	17.012	69.694	1.00 30.70
ATOM				34		54.600	17.060	69.774	1.00 29.42
MOTA	3280	CA	PHE B					70.920	1.00 30.46
MOTA	3281	CB	PHE B	34		55.096	16.176		
ATOM	3282	CG	PHE 3	34		56.556	16.358	71.248	1.00 28.56
	3283	CD1	_	34		57.001	17.515	71.885	1.00 26.92
MOTA						57.481	15.373	70.932	1.00 28.88
MOTA	3284	CD2		34				72.206	1.00 28.15
MOTA	3285		PHE B	34		58.346	17.684		1.00 20.13
ATOM	3286	CE2	PHE B	34		58.831	15.530	71.246	1.00 31.47
	3287	CZ	PHE 3	34		59.265	16.689	71.887	1.00 28.15
MOTA				34		55.202	16.583	68.460	1.00 33.78
MOTA	3288	С	PHE B					67.873	1.00 33.71
MOTA	3289	0	PHE 3	34		56.049	17.259		
ATOM	3290	N	LYS B	35		54.770	15.413	67.999	
	3291	CA	LYS 3	35		55.294	14.880	. 66.753	1.00 34.33
MOTA						54.684	13.509	66.454	1.00 32.97
MOTA	3292	CB	LYS 5				12.423	67.414	1.00 34.93
ATOM	3293	CG	LYS 3			55.141			1.00 41.43
MOTA	3294	CD	LYS B	35		54.580	11.066	67.047	
ATOM	3295	CE	LYS B			53.070	11.004	67.205	1.00 44.04
						52.335	11.984	66.345	1.00 60.09
MOTA	3296	NZ				55.015	15.842	65.608	1.00 35.78
ATOM	3297	C	LYS 3					64.752	1.00 33.39
ATOM	3298	0	LYS 3	35		55.869	16.061		
MOTA	3299	N	ASP B	36		53.823	16.426	65.602	1.00 32.32
			ASP B			53.468	17.365	64.552	1.00 36.31
ATOM	3300	. CA				52.015	17.800	64.698	1.00 42.56
ATOM	3301	CB	ASP B						1.00 43.03
ATOM	3302	CG	ASP E	36		51.617	18.822	63.661	
	3303	OD1	ASP B	3 6		51.812	18.544	62.461	1.00 '9.17
MOTA			ASP E			51.111	19.897	64.043	1.00 .4.34
ATOM	3304					54.371	18.590	64.578	1.00 6.14
ATOM	3305	C	ASP E						1.00 32.40
ATOM	3306	0	ASP E	3 3 6		54.764	19.099	63.534	1.00 32.40
	3307	· N	ALA E			54.694	19.061	65.777	1.00 34.80
ATOM			ALA E			55.554	20.226	65.924	1.00 36.82
ATOM	3308	CA				55.599	20.659	67.383	1.00 38.54
ATOM	3309	CB	ALA E	3 37					1.00 37.66
ATOM	3310	C	ALA 3	3 37		56.959	19.901	65.429	1.00 37.00
	3311	ō	ALA :			57.675	20. 7 76	64.950	1.00 30.56
MOTA						57.346	18.635	65.541	1.00 37.42
ATOM	3312	Ŋ	MET E			_		65.107	
ATOM	3313	CA	MET	3 38		58.670	18.192		
	3314	CB	MET	3 38		59.158	17.059	66.013	
ATOM			MET			59.341	17.438	67.474	1.00 37.68
atom	3315					60.841			
MOTA	3316		MET						
ATOM	3317		MET	38		62.093			
	3318	_	MET :			58.639	17.690	63.663	
ATOM			MET			59.659			1.00 32.69
ATOM	3319					57.470			
ATOM	3320	N	ASN :						
ATOM	3321	CA	ASN	в 39		57.321			
	3322			в 39		58.156			
ATCM						57.670		60.591	1.00 47.57
atom	3323	,	V-274			-			

, mov	3324	ODI	ASN B	39		56.524	19.801	60.212	1.00 48.78
ATOM						58.540	20.486	60.933	1.00 46.52
ATOM	3325	ND2	ASN B	39			15.804	61.569	1.00 39.12
MOTA	3326	С	ASN B	39		57.759			1.00 35.75
MOTA	3327	0	ASN B	39		58.465	15.416	60.639	
MOTA	3328	N	LEU B	40		57.332	14.997	62.535	1.00 34.64
ATOM	3329	CA	LEU B	40		57.700	13.590	62.556	1.00 35.10
ATOM	3330	CB	LEU B	40		58.347	13.248	63.898	1.00 35.97
ATOM	3331	CG	LEU B	40		59.595	14.073	64.227	1.00 36.21
MOTA	3332		LEU B	40		60.148	13.648	65.573	1.00 36.57
	3333		LEU B	40		60.646	13.880	63.145	1.00 36.79
MOTA			LEU B	40		56.549	12.626	62.264	1.00 37.58
MOTA	3334	C				56.637	11.438	62.573	1.00 39.15
ATOM	3335	0	LEU B	40		55.476	13.131	61.663	1.00 36.79
ATOM	3336	N	ILE B	41		54.340	12.290	61.314	1.00 35.42
MOTA	3337	CA	ILE B	41		_		62.536	1.00 35.21
MOTA	3338	CB	ILE B	41		53.445	11.991		1.00 33.21
ATOM	3339	CG2	ILE B	41		52.793	13.271	63.047	1.00 32.68
MOTA	3340	CG1	ILE B	41		52.367	10.980	62.141	
ATOM	3341	CD1	ILE B	41		51.470	10.550	63.285	1.00 36.46
MOTA	3342	С	ILE B	41		53.492	12.937	60.229	1.00 37.52
ATOM	3343	0	ILE B	41		53.352	14.157	60.183	1.00 40.24
ATOM	3344	N	ASP B	42		52.943	12.114	59.345	1.00 39.55
MOTA	3345	CA	ASP B	42		52.094	12.615	58.273	1.00 45.30
ATOM	3346	CB	ASP B	42		52.569	12.119	56.901	1.00 45.93
ATOM	3347	CG	ASP B	42		53.972	12.584	56.564	1.00 47.09
ATOM	3348	OD1		42		54.244	13.799	56.686	1.00 46.60
	3349	OD2	ASP B	42		54.797	11.736	56.162	1.00 45.16
ATOM	3350	C	ASP B	42		50.677	12.134	58.524	1.00 45.15
ATOM	3351	Ö	ASP B	42		50.467	11.051	59.069	1.00 47.06
ATOM			GLU B	43		49.707	12.944	58.121	1.00 48.13
ATOM	3352	И	GLU B	43		48.303	12.618	58.312	1.00 50.50
MOTA	3353	CA				47.441	13.637	57.571	1.00 53.54
MOTA	3354	CB	GLU B	43		45.961	13.505	57.840	1.00 59.52
MOTA	3355	CG	GLU B	43			14.518	57.065	1.00 64.03
ATOM	3356	CD	GLU B	43		45.155	14.515	57.215	1.00 68.54
ATOM	3357	OE1			•	43.914		56.301	1.00 66.95
ATOM	3358	OE2		43		45.765	15.298		1.00 47.81
MOTA	3359	С	GLU B	43		47.972	11.205	57.836	1.00 47.61
MOTA	3360	0	GLU B	43		47.092	10.547	58.390	1.00 46.21
ATOM	3361	N	LYS B	44		48.690	10.744	56.817	
MOTA	3362	CA	LYS B	44		48.484	9.409	56.251	1.00 48.28 1.00 49.96
MOTA	3363	CB	LYS B	44		49.207	9.311	54.894	1.00 49.90
ATOM	3364	CG	LYS B	44		49.639	7.903	54.470	1.00 52.18
ATOM	3365	CD	LYS B	44		50.970	7.532	55.127	1.00 61.03
ATOM	3366	CE	LYS B	44		51.399	6.095	54.844	1.00 62.80
MOTA	3367	NZ	LYS B	44		50.511	5.098	55.510	1.00 65.34
MOTA	3368	С	LYS B	44		48.899	8.249	57.161	1.00 45.92
ATOM	3369	0	LYS B	44		48.418	7.127	57.009	1.00 41.30
ATOM	3370	N	GLL B	45		49.797	8.517	58.100	1.00 42.18
ATOM	3371	CA	GLU B	45		50.268	7.486	. 59.014	1.00 38.41
ATOM	3372	CB	GLU B	45		51.684	7.812	59.468	1.00 33.73
ATOM	3373	CG	GLU B	45		52.694	7.887	58.351	1.00 37.58
	3374	CD	GLU B	45		53.998	8.504	58.813	1.00 34.34
ATOM	3375	OE1		45		53.997	9.699	59.176	1.00 38.04
ATOM	3376	OE2		45		55.020	7.799	58.821	1.00 33.37
MOTA			GLU B	45		49.368	7.403	60.238	1.00 36.86
ATOM	3377	C		45		49.461	6.462	61.032	1.00 34.98
ATOM	3378	0	GLU B			48.489	8.386	60.386	1.00 30.86
ATCM	3379	17	LEU B	46			8.438	61.545	1.00 30.65
ATOM	3380	CA	LEU B	46		47.608		62.019	1.00 32.74
MOTA	3381	CB	LEU B	46		47.501	9.889	63.250	1.00 34.76
ATOM	3382	CG	LEU B	46		46.642	10.163		1.00 34.70
ATOM	3383		LEU B	46		47.189	9.379	64.425	1.00 32.24
MOTA	3384	CD2		46		46.639	11.656	63.548	1.00 33.94
ATOM	3385	С	LEU B	46		46.212	7.861	61.318	1.00 31.30
ATOM	3386	0	LEU B	46		45.530	8.218	60.363	1.00 31.78
ATOM	3387	N	ILE B	47		45.801	6.957	62.203	1.00 31.18
ATCM	3388	CA	ILE B	47		44.479	6.338	62.139	
ATOM	3389	CB	ILE B	47		44.564	4.802	62.258	1.00 28.62

MOTA	3390	CG2.	ILE B	47		43.161	4.205	62.407	1.00 28.80
ATOM	3391	CG1	ILE B	47		45.266	4.230	61.028 61.054	1.00 29.42 1.00 31.12
ATOM	3392	CD1	ILE B	47		45.419	2.722 6.875	63.303	1.00 32.22
MOTA	3393	C	ILE B	47		43.659 44.063	6.755	64.461	1.00 31.17
ATOM	3394	0	ILE B	47		42.514	7.475	62.999	1.00 28.39
MOTA	3395	11	LYS B	48 48		41.662	8.037	64.340	1.00 32.37
MOTA	3396		LYS B			40.517	8.840	63.414	1.00 36.32
ATOM	3397 3398	CB	LYS B	48		39.607	9.514	64.430	1.00 43.08
ATOM	3399	CD	LYS B			38.535	10.361	63.747	1.00 44:38
ATOM ATOM	3400	CE	LYS B			37.657	11.074	64.768	1.00 45.91
ATOM	3401	NZ	LYS B			38.451	11.991	65.643	1.00 42.66
MOTA	3402	С	LYS B	48		41.095	6.943	64.937	1.00 31.08
ATOM	3403	0	LYS B			40.524	5.962	64.457	1.00 26.24 1.00 27.89
MOTA	3404	N	SER B			41.260	7.121	66.244 67.232	1.00 27.89
MOTA	3405	CA	SER B			40.770	6.168 6.639	68.642	1.00 24.41
ATOM	3406	CB	SER B			41.146 42.539	6.858	68.777	1.00 31.79
MOTA	3407	oG	SER B			39.248	6.054	67.160	1.00 29.07
MOTA	3408 3409	C O	SER B	_		38.565	7.034	66.879	1.00 28.47
MOTA MOTA	3410	N	ARG B			38.723	4.859	67.409	1.00 26.13
ATOM	3411	CA	ARG B			37.278	4.658	67.430	1.00 24.24
ATOM	3412	CB	ARG E			36.810	3.700	66.323	1.00 25.03
MOTA	3413	CG	ARG E			37.231	2.233	66.507	1.00 26.54 1.00 26.21
MOTA	3414	CD	ARG E			36.570	1.340	65.452 65.504	1.00 25.21
MOTA	3415	NE	ARG E			37.006 36.700	-0.058 -0.924	66.468	1.00 26.09
ATOM	3416	CZ	ARG E	_		35.941	-0.558	67.497	1.00 23.42
MOTA	3417 3418	NH1 NH2				37.157	-2.168	66.402	1.00 23.91
ATOM ATOM	3419	C	ARG E			36.937	4.037	68.775	1.00 23.83
ATOM	3420	ō	ARG E			37.782	3.392	69.403	1.00 21.60
ATOM	3421	N	PRO F			35.700	4.223	69.243	1.00 22.99 1.00 25.09
ATOM	3422	CD	PRO I			34.554	4.962 _. 3.628	68.688 70.530	1.00 25.48
ATOM	3423	CA	PRO I			35.338 33.949	4.217	70.802	1.00 26.32
MOTA	3424 3425	CB.	PRO PRO P			33.936	5.503	69.953	1.00 28.65
MOTA MOTA	3426	c	PRO I			35.264	2.118	70.325	1.00 26.73
MOTA	3427	ō	PRO I			35.142	1.646	69.194	1.00 18.87
ATOM	3428	N	ALA i			35.355	1.359	71.408	1.00 23.64 1.00 23.27
ATOM	3429	CA	ALA 1			35.237	-0.083	71.291 72.521	1.00 25.27
MOTA	3430	CB	ALA I			35.811 33.733	-0.757 -0.324	71.223	1.00 25.25
ATOM	3431 3432	c	ALA :			32.950	0.515	71.677	1.00 22.78
ATOM	3432	N 0	THR			33.321	-1.447	70.651	1.00 22.77
atom atom	3434	CA	THR			31.900	-1.760	70.596	1.00 26.90
ATOM	3435	CB	THR			31.567	-2.732	69.456	1.00 30.00
ATOM	3436		THR :	E 53		32.305	-3.950	69.642	1.00 25.59 1.00 23.33
MOTA	3437	CG2				31.917	-2.117	68.103 71.916	1.00 30.41
Mota	3438	C	THR			31.579 32.484	-2.445 -2.917	72.609	1.00 26.13
MOTA	3439	0	THR			30.300	-2.504	72.268.	1.00 29.12
MOTA	3440 3441	N CA	LYS LYS			29.909	-3.140	73.514	.1.00 30.24
MOTA MOTA	3442	CB	LYS	_	-	28.396	-3.027	73.720	1.00 32.78
ATOM	3443	CG	LYS			27.947	-3.351		1.00 34.85
MOTA	3444	CD	LYS	B 54		26.445	-3.204	75.268	
MOTA	3445	CE	LYS	_		26.008	-3.366	76.709 77.582	
MOTA	3446	NZ	LYS			26.464	-2.257	73.442	
ATOM	3447	C	LYS			30.329 30.779	-4.603 -5.183	74.430	1.00 26.71
ATOM	3448	O 14	LYS GLU			30.775		72.256	1.00 23.97
ATOM	3449 3450	n Ca	GLU			30.577		72.032	1.00 28.08
atom atom	3451	CB	GLU			30.288	-6.965	70.579	
ATOM	3452		GLU	Б 55		30.671			1.00 33.40
ATOM	3453	CD	GLU	B 55		30.453			
ATOM	3454	OE	1 GLU			30.638	_		
ATOM	3455	OE	2 GLU	5 55		30.101	-7.833	07.504	1.00

			8			
ATOM	3456	C GLU B 55	32.066			.00 25.82
ATOM	3457	O GLU B 55	32.429			1.00 23.83
ATOM	3458	N GLU B 56	32.931			L.00 25.04 L.00 25.30
ATOM	3459	CA GLU B 56	34.365			1.00 24.31
ATOM	3460	CB GLU B 56	35.141	-5.003		1.00 32.15
ATOM-	3461	CG GLU B 56	34.866	-5.039		1.00 32.13
MOTA	3462	CD GLU B 56	35.512	-3.903	69.073 69.568	1.00 28.54
ATOM	3463	OE1 GLU B 56	35.486	-2.759	67.959	1.00 28.89
ATOM	3464	OE2 GLU B 56	36.012	-4.147	73.595	1.00 28.88
MOTA	3465	C GLUB 56	34.653	-5.988 -6.766	74.137	1.00 25.07
ATOM	3466	O GLU B 56	35.450 33.996	-5.050	74.272	1.00 24.52
ATOM	3467	N LEU B 57	34.203	-4.891	75.702-	1.00 27.34
ATOM	3468	CA LEU B 57	33.416	-3.694	76.231	1.00 22.79
ATOM	3469		33.859		75.722	1.00 23.57
ATOM	3470	CG LEU B 57	33.008	-1.247	76.366	1.00 22.27
ATOM	3.471 3.472	CD2 LEU B 57	35.342	-2.089	76.061	1.00 17.24
ATOM	3473	C LEU B 57	33.785	-6.144	76.452	1.00 26.92
MOTA	3474	O LEU B 57	34.458	-6.568	77.396	1.00 24.06
MOTA MOTA	3475	N LEU B 58	32.670	-6.732	76.029	1.00 23.35 1.00 25.60
MOTA	3476	CA LEU B 58	32.154	-7.931	76.674	1.00 23.00
ATOM	3477	CB LEU B 58	30.718	-8.207	76.221 76.649	1.00 30.91
ATOM	3478	CG LEU B 58	29.734	-7.110 -7.468	76.043	1.00 28.93
ATOM	3479	CD1 LEU B 58	28.323	-7.466 -6.945	78.157	1.00 33.44
MOTA	3480	CD2 LEU B 58	29.794 33.027	-9.153	76.446	1.00 24.59
MOTA	3481	C LEU B 58	33.027	-10,216	76.991	1.00 19.76
ATOM	3482	O LEU B 58 N LEU B 59	34.065	-9.006	75.630	1.00 23.99
ATOM	3483			-10.108	75.411	1.00 25.11
ATOM	3484 3485	CA LEU B 59 CB LEU B 59	36.018	-9.757	74.332	1.00 21.64
MOTA	3486	CG LEU B 59	35.483	-9.652	72.905	1.00 24.24
MOTA MOTA	3487	CD1 LEU B 59	36.585	-9.177	71.975	1.00 24.25 1.00 19.91
ATOM	3488	CD2 LEU B 59		-11.014	72.468	1.00 19.91
ATOM	3489	C LEU B 59	35.699	-10.371	76.733	1.00 23.84
ATOM	3490	O LEU B 59		-11.489	76.992 77.577	1.00 21.80
ATOM	3491	N PHE B 60	35.793	-9.344 -9.510	78.876	1.00 23.08
MOTA	3492	CA PHE B 60	36.462 37.809	-8.770	78.908	1.00 18.22
ATOM	3493	CB PHE B 60	38.544	-8.906	80.230	1.00 21.72
ATOM	3494	CG PHE B 60 CD1 PHE B 60	38.975		80.680	1.00 19.23
ATOM	3495		38.757	-7.791	81.048	1.00 17.75
ATOM	3496 3497		39.602	-10.301	81.927	1.00 18.80
ATOM ATOM	3498		39.384	-7.923		1.00 19.23
ATOM	3499		39.807			1.00 16.10 1.00 21.58
ATOM	3500		35.648			1.00 22.21
ATOM	3501		35.508			1.00 20.65
ATOM	3502	N HISB 61	35.128			1.00 23.32
ATOM	3503					1.00 27.60
ATOM	3504		~~ ~~			1.00 31.83
ATOM	3505					1.00 26.86
ATOM	3506					1.00 34.35
ATOM	3507				80.887	1.00 34.78
ATOM	3508				82.204	1.00 36.27
ATOM	3509	n 61		2 -7.77		1.00 28.04
ATOM	3510 3511		32.349	-8.16		
atom atom	3513		32.27			
ATOM	3513	CA THR B 62		2 -8.08		40
ATOM	3514	4 CB THR B 63		8 -8.549		
ATOM	3515	5 OG1 THR B 62				
ATOM	351	6 CG2 THR B 6				1.00 26.06
ATOM	351	7 C THR B 6				1.00 24.14
ATOM	351		71	8 -7.30		1.00 28.01
ATOM	351					1.00 30.77
. ATCM	352	0 01. 020 2				
ATCM	352	1 CB GLU B 6				

25.213 -6.210 80.667 1.00 41.12 GLU B 63 CG MOTA 3522 79.168 1.00 44.47 GLU B 63 25.189 -5.987 25.105 24.361 -5.177 3523 CD MOTA 1.00.42.64 78.689 OE1 GLU B 63 3524 MOTA 1.00 45.96 78.465 25.992 -6.640 OE2 GLU B 63 3525 MOTA 1.00 27.29 . 27.436 -5.326 82.498 GLU-B 63 3526 С MOTA 1.00 25.13 -4.118 82.252 27.381 GLU B 63 MOTA 3527 0 83.713 1.00 24.38 -5.834 27.272 ASP B 64 3528 N MOTA 1.00 29.27 84.897 -5.023 ASP B 64 27.010 3529 CA MOTA 1.00 36.30 86.112 -5.944 26.887 ASP B 64 CB 3530 MOTA 86.198 1.00 50.77 -6.935 28.022 CG ASP B 64 3531 MOTA 1.00 52.71 1.00 51.98 86.630 29.128 -6.540 OD1 ASP B 64 3532 MOTA 27.812 -8.106 85.802 OD2 ASP B 64 3533 1.00 26.49 ATOM 28.075 -3.967 85.143 ASP B 64 MOTA 3534 C 1.00 18.33 85.422 27.768 -2.806 ASP B 64 0 MOTA 3535 29.332 30.420 85.052 1.00 22.75 -4.373 TYR B 65 3536 N MOTA 1.00 19.32 -3.435 85.251 TYR B 65 3537 CA ATOM 1.00 16.59 85.256 -4.186 31.751 TYR B 65 CB 3538 ATOM 85.366 1.00 19,19 -3.285 32.949 65 3539 CG TYR B ATOM 1.00 21.35 -2.328 86.383 CD1 TYR B .65 33.033 3540 MOTA 1.00 18.32 34.135 -1.489 86.489 CE1 TYR B 65 3541 MOTA 1.00 18.65 84.456 65 34.004 -3.382 CD2 TYR B 3542 MOTA 1.00 21.01 84.554 -2.544 CE2 TYR B 65 35.116 3543 MOTA 1.00 20.61 85.573 -1.601 35.172 CZ TYR B 65 3544 MOTA 1.00 17.77 1.00 22.01 85.682 -0.775 36.262 OH TYR B 65 3545 MOTA 84.146 -2.373 30.392 65 TYR B 3546 С MOTA 1.00 18.20 84.421 30.399 -1.167€5 TYR B 3547 0 MOTA 1.00 19.49 82.894 -2.815 30.330 ILE B 66 N 3548 MOTA 1.00 19.68 81.786 -1.870 30.305 CA ILE E 66 3549 1.00 23.31 MOTA -2.592 80.432 30.208 CB ILE B 56 3550 MOTA 1.00 21.30 79.303 CG2 ILE B 30.200 -1.571 3551 66 ATOM 1.00 27.67 80.260 -3.541 31.400 66 3552 MOTA 1.00 29.29 32.758 -2.839 80.291 CD1 ILE B 66 3553 MOTA 1.00 26.99 81.940 -0.909 29.128 66 ILE B 3554 С MOTA 1.00 23.36 81.848 0.309 29.294 ILE B 66 3555 0 1.00 24.98 1.00 27.70 1.00 25.58 MOTA ASN B 67 27.939
ASN B 67 26.782
ASN B 67 25.492
ASN B 67 25.081
ASN B 67 25.199
ASN B 67 24.572
ASN B 67 26.982
ASN B 67 26.524
THR B 68 27.664
THR B 68 27.903
THR B 68 28.516
THR B 68 28.576
LEU B 69 30.788
LEU B 69 31.915
LEU B 69 32.960
1 LEU B 69 33.643 82.198 27.939 -1.447 ASN B 67 3556 N MOTA 82.363 -0.580 3557 CA MOTA -1.389 82.580 3558 CB MOTA -2.183 -1.701 1.00 26.91 81.341 CG ASN B 3559 MOTA 1.00 31.48 80.220 OD1 ASN B 3560 1.00 23.80 MOTA 81.545 -3.387 ND2 ASN B 3561 MOTA 1.00 25.34 83.513 0.401 С 3562 MOTA 1.00 22.53 83.448 1.539 3563 0 1.00 23.65 MOTA -0.031 84.568 3564 N MOTA 1.00 25.25 85.696 0.863 CA 3565 1.00 29.08 ATOM 86.891 0.119 3566 CB ATOM 1.00 25.94 87.396 -0.826 OG1 THR B 3567 1.00 22.90 1.00 25.91 MOTA 88.002 1.100 CG2 THR B 3568 MOTA 85.287 2.009 3569 С 1.00 28.47 MOTA 3.156 85.661 ATOM 3570 0 1.00 25.13 84.519 1.702 3571 N MOTA 84.054 1.00 24.37 2.729 3572 CA MOTA 1.00 21.32 CB LEU B 69 CG LEU B 69 CD1 LEU B 69 83.201 2.122 3573 MOTA 83.889 1.00 22.33 1.231 3574 MOTA 1.00 22.57 82.859 0.786 3575 ATOM 1.00 23.20 2.000 85.008 CD2 LEU B 69 33.643 3576 1.00 23.02 ATOM 83.229 30.036 3.764 LEU B 69 С 3577 ATOM 1.00 18.98 83.444 4.966 30.190 69 LEU B 3578 C ATOM 1.00 19.62 82.294 29.218 3.290 70 MET B 3579 N ATOM 1.00 25.87 81.434 28.449 4.181 70 MET B CA 1.00 24.80 3580 ATOM 80.401 3.371 27.660 70 СЗ MET B 1.00 30.37 3581 ATCM 79.490 2.511 28.531 3582 MET B 70 CG 1.00 30.35 ATOM 78.227 1.599 27.592 70 3583 SD MET B 1.00 30.20 ATOM 77.245 26.922 2.986 CE 70 MET B 1.00 28.82 ATOM 3584 82.242 5.062 27.489 70 C MET B 3585 MOTA 27.391 26.786 1.00 24.09 82.009 6.273 70 MET B 0 3586 1.00 28.21 MOTA 4.458 83.194 GLU B 71 3587 N MOTA

TOM ATOM ATOM ATOM ATOM ATOM ATOM ATOM A	3647 C VAL B 78 3648 3 VAL B 78	25.837 25.014 24.072 23.333 22.934 26.559 26.115 27.671 28.454 29.8658 31.633 31.744 28.895 29.846 31.959 28.895 29.846 31.633 31.419 22.6008 23.609 24.558 24.598 25.794 25.794 25.794 25.794 26.678 27.678 28.895 26.678 27.678 28.895 29.886 20.608 20.608 20.608 20.608 20.608 20.609 20.608 20.6	4.268 5.005 5.867 6.638 5.769 7.341 5.781 6.662 7.881 6.662 7.886 7.886 7.886 7.886 9.009 8.461 9.1067 9.186 10.914 10.038 8.153 9.1368 10.312 10.312 11.014 12.555 11.473 12.555 11.473 12.555 11.473 12.555 11.473 12.555 13.681 14.582 15.682 16.682 16.662 17.886 10.914 10.038 10.316	84.889 85.832 86.889 87.889 885.836 885.836 885.773 886.396 885.481 886.396 885.329 886.329 886.329 887.329 881.3636 882.3416 883.329 881.3646 882.3416 883.329 883	1.00 39.03 1.00 35.95 1.00 36.60 1.00 33.03 1.00 36.91 1.00 34.37 1.00 34.19 1.00 34.93 1.00 38.25 1.00 36.73
MOTA	3645 CG1 VAL B 78	29.955	5.499	93.163	1.00 34.37
	3040 CON 11NT B 78	27.461	6.43	92.082	1.00 34.93
	3648 0 VAL B 78	26.897			
ATOM	3649 H PRO B 79	26.971 27.532	5.52		1.00 37.44
ATOM	3650 CD PRO B 79	∠/.⊃32 25 739	4.77	9 91.493	3 1.00 38.33
ATOM	3651 CA PRO B 79	25.738		-	
	70 70	25.668			
ATOM	3652 CT TRO B 79	26.293		4 89.20	1 1.00 37.41
ATOM		20.20			
Aton					

						•			
3 TOM	3654	С	PRO B	79		25.788	4.046		1.00 36.92
MOTA MOTA	3655		PRO B	79		26.854	3.648		1.00 33.03
MOTA	3656		LYS B	80		24.623	3.881		1.00 38.43
	3657		LYS B	80		24.482	3.206	94.736	1.00 39.73
ATOM	3658		LYS B			23.003	2.871		1.00 43.33
ATOM	3659		LYS B	80		22.679	2:129		1.00 44.60
ATOM	3660		LYS B	80		21.198	1.742	96.287	1.00 48.09
MOTA	3661	CE	LYS B	80		20.805	1.014	97.559	1.00 50.12 1.00 53.16
ATOM	3662	NZ	LYS B			20.932	1.890	98.760	1.00 40.35
MOTA	3663		LYS B			25.315	1.928	94.854 94.047	1.00 36.67
MOTA	3664		LYS B		•	25.181	1.011 1.880	95.869	1.00 38.26
MOTA	3665		GLY B			26.173 26.996	0.709	96.104	1.00 34.69
MOTA	3666		GLY B			28.066	0.407	95.071	1.00 34.63
MOTA	3667	C	GLY E			28.861	-0.513	95.255	1.00 33.92
MOTA	3668	N O	ALA E			28.100	1.178	93.992-	1.00 31.26
MOTA	3669 3670	CA	ALA E			29.082	0.963	92.936	1.00 34.88
MOTA	3671	CB	ALA E			28.755	1.848	91.751	1.00 23.13
MOTA MOTA	3672	C	ALA E			30.517	1.223	93.405	1.00 36.85
ATOM	3673	Ō	ALA E	_		31.461	0.580	92.945	1.00 32.17
ATOM	3674	N	ARG E	83		30.677	2.168	94.323	1.00 36.52 1.00 38.75
MOTA	3675	CA	ARG I	83	٠	31.994	2.522	94.830	1.00 40.24
MOTA	3676	CB	ARG I			31.865	3.616	95.885 96.330	1.00 49.12
MOTA	3677	CG	ARG I			33.187	4.180 5.239	97.404	1.00 53.26
MOTA	3678	CD	ARG I			33.015 34.240	6.010	97.624	1.00 59.30
MOTA	3679	NE	ARG I			35.437	5.486	97.883	1.00 61.56
MOTA	3680	CZ NH1	ARG I	_		35.598	4.170	97.958	1.00 63.53
ATOM	3681 3682	NH2	ARG			36.479	6.285	98.073	1.00 62.02
ATOM ·	3683	C	ARG			32.719	1.326	95.426	1.00 37.75
MOTA	3684	ō	ARG	_		33.893	1.094	95.146	1.00 37.18
ATOM	3685	N	GLU	в 84		32.011	0.564	96.249	1.00 35.29 1.00 35.29
MOTA	3686	CA	GLU			32.581	-0.609	96.898	1.00 40.14
MOTA	3687	CB	GLU		•	31.876	-0.855 -0.383	98.236 98.240	1.00 46.30
MOTA	3688	CG	GLU			30.443 30.356	1.132	98.293	1.00 48.30
MOTA	3689	CD	GLU			29.339	1.690	97.834	1.00 43.07
ATOM	3690	OE1		_		31.306	1.762	98.814	1.00 50.07
MOTA	3691 3692	OE2 C	GLU			32.527	-1.880	96.055	1.00 32.90
MOTA MOTA	3693	o	GLU	_		33.371	-2.765	96.193	1.00 28.68
MOTA	3694	N	LYS	_		31.533	-1.984	95.187	1.00 27.12
ATOM	3695	CA	LYS			31.412	-3.177	94.361	1.00 30.46 1.00 30.01
ATOM	3696	·CB	LYS	B 85		29.950	-3.401	93.967 93.117	1.00 30.01
ATOM	3697	CG	LYS			29.717	-4.643 -4.807	92.775	1.00 32.87
MOTA	3698	CD	LYS	_		28.234 28.000	-6.048	91.928	1.00 34.15
MC A	3699	CE	LYS			26.582	-6.186		1.00 35.34
A.OM	3700	NZ	LYS LYS			32.267	-3.096		1.00 28.98
MOLA	3701 3702	С О	LYS	_		32.817	-4.098	92.652	1.00 24.69
MOTA	3702	N	TYR	_		32.391	-1.896	92.550	1.00 27.81
ATOM ATOM	3704	CA	TYR			33.141	-1.692		
ATOM	3705	CB	TYR			32.206	-1.050		1.00 28.88 1.00 31.29
MOTA	3706	CG	TYR			31.008	-1.927		
ATOM	3707	CD:				31.178	-3.137		
MOTA	3708	CE:				30.095	-3.955		
ATCM	3709					29.713 28.611	-1.553 -2.370		
MOTA	3710					28.815	-3.569		1.00 28.46
ATOM	3711		TYR			27.747	-4.379		1.00 22.70
ATOM	3712		TYR TYR	_		34.422	-0.870	91.489	1.00 24.64
MOTA	3713		TYR			35.160	-0.645	90.530	1.00 27.19
ATOM	3714 3715		ASN			34.674	-0.418		
atom Atom	3716					35.881	0.341		
MOTA			ASN	B 87		37.105			
ATOM		CG	ASN	B 87		38.343			
ATOM		OD (1 ASN	в 87	'	38.309	0.45	2 24.03	, ,,

		1100	ASN B	87		39.449	0.012	92.775	1.00 35.86
MOTA	3720					36.070	1.622	92.223	1.00 29.72
MOTA	3721		ASN B			37.194	1.998	91.876	1.00 24.01
MOTA	3722		ASN B					91.932	1.00 29.43
MOTA	3723	N	ILE B			34.956	2.282	91.196	1.00 30.64
MOTA	3724	CA	ILE B			34.945	3.536		1.00 37.12
ATOM-	3725	CB	ILE B			33.959	3.464	90.027	
ATOM	3726	CG2	ILE B	88		33.821	4.829	89.379	1.00 40.62
MOTA	3727	CG1	ILE B	88		34.421	2.433	89.008	1.00 35.43
ATOM	3728	CD1	ILE B	88		35.684	2.821	88.324	1.00 41.80
ATOM	3729	С	ILE B	88		34.483	4.669	92.118	1.00 31.90
ATOM	3730	0	ILE B			33.681	4.445	93.024	1.00 28.86
ATOM	3731	N	GLY B			34.977	5.881	91.875	1.00 30.36
ATOM	3732	CA	GLY B	89	•	34.574	7.022	92.686	1.00 29.54
ATOM	3733	C	GLY B			35.601	7.524	93.685	1.00 31.49
ATOM	3734	ō	GLY B			35.497	8.652	94.177	1.00 37.26
MOTA	3735	N	GLY B			36.583	6.687	94.005	1.00 30.97
	3736	CA	GLY B			37.612	7.086	94.949	1.00 31.03
MOTA	3737	C	GLY B			38.655	7.936	94.247	1.00 34.78
ATOM	3738	0	GLY E			38.455	8.344	93.103	1.00 32.73
ATOM	3739	N	TYR E			39.772	8.201	94.915	1.00 29.39
MOTA		CA	TYR E			40.820	9.023	94.322	1.00 28.15
ATOM	3740		TYR E			41.810	9.463	95.405	1.00 27.29
ATOM	3741	CB	TYR E			42.609	8.330	96.007	1.00 26.60
MOTA	3742	CG				43.738	7.823	95.359	1.00 28.55
ATOM	3743	CD1				44.456	6.762	95.896	1.00 28.75
ATOM	3744	CE1	TYR E			42.219	7.741	97.208	1.00 28.35
ATOM	3745	CD2	TYR E			42.219	6.680	97.751	1.00 27.58
MOTA	3746	CE2	TYR E	_			6.196	97.094	1.00 30.12
MOTA	3747	CZ	TYR E			44.043	5.154	97.637	1.00 36.59
MOTA	3748	OH	TYR E			44.753	8.271	93.226	1.00 29.27
MOTA	3749	С	TYR F			41.563	8.874	92.308	1.00 25.22
MOTA	3750	0	TYR I			42.109		93.318	1.00 28.32
ATCM	3751	N	GLU I			41.568	6.948		1.00 27.06
MOTA	3752	CA	GLU I			42.286	6.124	92.924	1.00 27.00
MOTA	3753	CB	GLU I			42.474	4.726	92.324	1.00 29.80
MOTA	3754	CG	GLU I			43.502	3.884	92.826	1.00 35.34
MOTA	3755	CD	GLU I			43.585	2.500	92.477	1.00 32.15
MOTA	.3756	OE1				42.742	1.645	93.678	1.00 31.61
MOTA	3757	OE2				44.475	2.278	90.997	1.00 23.42
ATOM	3758	С	GLU I			41.594	6.024	89.962	1.00 20.47
MOTA	3759	0	GLU 1			42.204	6.260		1.00 18.85
MOTA	3760	N	ASN 1			40.314	5.677	91.017	1.00 21.96
MOTA	3761	CA	ASN :			39.534	5.509	89.795	1.00 23.90
ATOM	3762	CB	ASN :			39.165	4.033	89.664	1.00 24.78
ATCM	3763	CG	ASN :			40.351	3.120	89.943	1.00 22.35
ATOM	3764		ASN			41.362	3.160	89.239	1.00 13.35
MOTA	3765	ND2	ASN			40.240	2.311	90.987	1.00 13.33
ATOM	3766	C	ASN			38.285	6.362	89.944	1.00 20.91
ATCM	3767	0	ASN			37.183	5.843	90.121	1.00 26.37
ATCM	3768	N	PRO	B 94		38.449	7.693	89.887	1.00 20.37
ATOM	3769	CD	PRO	B 94		39.738	8.389	89.716	1.00 19.55
ATOM	3770	CA	PRO			37.373	8.676	90.024	1.00 25.95
ATOM	3771	CB	PRO	B 94		38.147	9.972	90.200	1.00 23.93
MOTA	3772	CG	PRO			39.297	9.740	89.223	1.00 22.00
MOTA	3773	C	PRO	B 94		36.384	8.777	88.873	1.00 25.74
ATOM	3774	0	PRO	B 94		36.562	8.176	87.808	
ATOM	3775	N	VAL	B 95		35.332	9.553	89.112	1.00 27.14
ATOM	3776	CA	VAL	в 95		34.317	9.812	88.103	1.00 25.94
ATOM	37 77	CB	VAL	B 95		33.035	10.393	88.742	1.00 23.75
ATOM	3778	CG1	VAL	B 95		32.067	10.855	87.662	1.00 26.34
ATOM	3779	CG2				32.378	9.346		
ATOM	3780	C	VAL			34.912	10.861	87.175	
ATOM	3781	ō	VAL			35.564	11.793	`	
ATOM	3782	N	SER			34.708	10.699		1.00 28.02
ATOM	3783	Cλ	SER			35.199	11.647		
ATOM	3784	CB	SER			36.729	11.705	84.850	
ATOM	3785	OG	SER			37.274	10.548	84.229	1.00 23.99
7.1011									

		_		0.0		34.726	11.127	83.519	1.00 26.22
MOTA	3786	-	SER B	96		33.943	10.174	83.462	1.00 23.57
atom	3787		SER B	96			11.744	82.438	1.00 22.83
ATOM	3788		TYR B	97		35.195		02.930	1.00 28.59
MOTA	3789	CA	TYR B	97		34.818	11.279	-	
MOTA	3790	CB	TYR B	97		34.536	12.452		1.00 31.45
ATOM	3791		TYR B	97		33.279	13.203	80.548	1.00 35.09
	3792		TYR B	97		33.316	14.239	81.480	1.00 32.87
ATOM				97		32.148	14.863	81.911	1.00 37.73
MOTA	3793		TYR B	-		32.036	12.812	80.049	1.00 34.85
MOTA	3794		TYR B	97			13.430	80.475	1.00 38.61
MOTA	3795	CE2	TYR B	97		30.858		81.408	1.00 39.45
MOTA	3796	CZ	TYR B	97		30.924	14.453		1.00 35.36
ATOM	3797	OH	TYR B	97		29.768	15.047	81.852	
ATOM	3798	C	TYR B	97		35.883	10.354	80.534	1.00 28.93
	3799	ō	TYR B	97		35.859	9.992	79.358	1.00 28.26
MOTA		И	ALA B	98		36.822	.9.968	81.385	1.00 29.09
MOTA	3800			98		37.866	9.044	80.980	1.00 26.88
MOTA	3801	CA	ALA B			39.167	9.369	81.692	1.00 27.99
MOTA	3802	СВ	ALA B	98			7.657	81.382	1.00 22.53
MOTA	3803	С	ALA B	98		37.395		80.722	1.00 21.98
ATOM ·	3804	0	ALA B	98		37.721	6.675		1.00 23.51
MOTA	3805	N	MET B	99		36.603	7.595	82.453	
ATOM	3806	CA	MET B	99		36.106	6.326	82.986	1.00 26.36
	3807	CB	MET B	99		35.179	6.568	84.185	1.00 24.05
ATOM			MET B	99		33.822	7.188	83.875	1.00 28.37
MOTA	3808	CG	MET B	99		32.966	7.704	85.406	1.00 27.91
MOTA	3809	SD				33.106	6.227	86.409	1.00 22.12
MOTA	3810	CE	MET B	99		35.430	5.435	81.953	1.00 25.76
MOTA	3811	C	MET B	99				82.031	1.00 26.11
MOTA	3812	0	MET B	99		35.544	4.212	80.992	1.00 22.17
ATOM	3813	N	PHE B	100		34.724	6.027		1.00 22.35
ATOM	3814	CA	PHE B	100		34.107	5.222	79.940	1.00 22.33
ATOM	3815	CB	PHE B	100		32.582	5.133	80.088	1.00 22.01
MOTA	3816	CG	PHE B			31.947	4.254	79.038	1.00 24.22
	3817		PHE B	100		32.143	2.872	79.061	1.00 26.61
ATOM			PHE B			31.280	4.813	77.953	1.00 21.22
MOTA	3818					31.691	2.059	78.012	1.00 26.91
MOTA	3819	CE1				30.825	4.010	76.894	1.00 24.80
MOTA	3820	CE2					2.632	76.924	1.00 24.85
MOTA	3821	CZ	PHE B		*	31.033	5.695	78.514	1.00 24.86
ATOM	3822	С	PHE B			34.425			1.00 21.40
ATOM	3823	0	PHE B	100		34.922	4.920	77.694	1.00 24.24
MOTA	3824	N	THR B	101		34.131	6.957	78.204	
ATOM	3825	CA	THR B	101		34.390	7.469	76.854	1.00 24.54
MOTA	3326	CB	THR B			33.914	8.926	76.708	1.00 24.46
	3827	OG1				32.504	8.985	76.953	1.00 27.64
ATOM		CG2				34.191	9.445	75.297	1.00 22.19
MOTA	3828		THR E			35.872	7.387	76.483	1.00 25.26
MOTA	3829	С				36.231	6.856	75.430	1.00 25.47
MOTA	3830	О	THR E	101				77.350	1.00 23.74
MOTA	3831	N	GLY E	102		36.725	7.867	77.096	1.00 24.53
ATOM	3832	CA	GLY E	102		38.153			1.00 24.06
ATOM	3833	С	GLY E	102		38.657	6.434	77.046	1.00 22.53
ATOM	3834	0	GLY F	102		39.346			1.00 22.33
MOTA	3835	N	SER E	103		38.316	5.651		1.00 22.02
	3836	CA	SER E	103		38.730	4.253	78.146	
MOTA			SER E	103		38.193		79.427	1.00 25.21
MOTA	3637	CB	SER E			38.820			1.00 26.48
MOTA	3838	OG				38.268			1.00 20.53
MOTA	3839	С	SER E						
MOTA	3840	0		103		39.034			
ATCM	3841	11		3 104		37.014			
MOTA	3842			3 104		36.462			
	3543	CB		3 104		34.980	3.289		1.00 22.73
ATOM	3844		SER 1	B 104		34.424		74.161	
MOTA			CED !	B 104		37.221			1.00 21.97
MOTA	3845			B 104		37.451			1.00 22.83
atcm	3546					37.619			1.00 23.00
MOTA	3847		LEU	B 105		38.354			1.00 25.12
ATCM	3848		LEU	B 105					
ATOM	3349		LEU	B 105		38.443			
ATOM	3850	CG	LEU	B 105		38.70			
ATOM			1 LEU	B 105		37.662	2 6.888	3 70.512	1.00 552
71011									

ATOM	3852 CD2 LEU B 105	38.529 8.802 71.819 1.00 34.30 38.755 4.374 72.813 1.00 27.39
	3853 C LEU B 105	39.733
	3854 O LEU B 105	40.202 3.333 0.00 1 00 23 63
	3855 N ALA B 106	40.371
ATOM	3856 CA ALA B 106	41.704 3.052
ATOM	3857 CB ALA B 106	42.200 3.300 1.00 20 77
MOTA	3858 C ALA B 106	41.035
ATOM	3859 O ALA B 106	42.363 1.33
ATOM	3860 N THR B 107	40.525 4.50
MOTA	3861 CA THR B 107	40.555 0.155 -1.047 1.00.22 85
ATOM	3862 CB THR B 107	39 572 -0 128 76.306 1.00 16.29
MOTA	3863 OG1 THR B 107	39 095 -1 917 74.787 1.00 17.21
MOTA	3864 CG2 THR B 107 3865 C THR B 107	40 036 -0 169 72.571 1.00 23.47
MOTA		40.540 -1.138 72.001 1.00 19.25
MOTA	3866 C THR B 107 3867 N GLY B 108	39.191 0.656 71.959 1.00 24.87
ATOM	3868 CA GLY B 108	38.879 0.434 70.560 1.00 21.32 40.161 0.594 69.757 1.00 22.01
ATOM ATOM	3869 C GLY B 108	40.101
ATOM	3870 O GLY B 108	40.300
ATOM	3871 N SER B 109	41.010 1.300 1.00 10 37
ATOM	3872 CA SER B 109	42.2/9 1./93 - 00 10 70
ATOM	3873 CB SER B 109	42.350 4.145 69.882 1.00 21.29
MOTA	3874 OG SER B 109 3875 C SER B 109	43 168 0 513 69.542 1.00 20.70
MOTA		42 940 0 261 68,617 1.00 20.69
MOTA	= 11A	43.065 -0.259 70.616 1.00 20.34
MOTA	3877 N THR B 110 3878 CA THR B 110	43.858 -1.475 70.729 1.00 19.98
MOTA MOTA	3879 CB THR B 110	43.826 -2.043 72.158 1.00 20.63 43.826 -1.215 73.007 1.00 20.72
MOTA	3880 OG1 THR B 110	44.032
ATOM	3881 CG2 THR B 110	44.371
ATOM	3882 C THR B 110	43.333 -2.507 69.738 1.00 21.61 44.115 -3.239 69.127 1.00 18.11
MOTA	3883 O THR B 110	42 012 -2 557 69.567 1.00 18.29
ATOM	3884 N VAL B 111 3885 CA VAL B 111	43 432 -3:486 68.608 1.00 20.36
MOTA		39.886 -3.494 68.677 1.00 23.94
ATOM	_ 111	39 324 -4.442 67.619 1.00 24.37
MOTA	3887 CG1 VAL B 111 3888 CG2 VAL B 111	39.426 -3.937 70.063 1.00 21.60 41.872 -3.080 67.197 1.00 20.35
MOTA MOTA	3889 C VAL B 111	41.0/2
MOTA	3890 O VAL B 111	42.140
ATOM .	3891 N GLN B 112	41.333 1.73
MOTA	3892 CA GLN B 112	42.307 1.230 65.513 1.00 24.54
ATOM	3893 CB GLN B 112	40 810 0 729 65.843 1.00 20.63
MOTA	3894 CG GLN B 112 3895 CD GLN B 112	40.700 2.236 65.742 1.00 21.19
MOTA	_ 110	40.664 2.794 64.645 1.00 26.73
MOTA	3896 OE1 GLN B 112 3897 NE2 GLN B 112	40.66/ 2.903 00.000
MOTA ATOM	3898 C GLN B 112	43.020 1.00
ATOM	3899 O GLN B 112	426 66 389 1 00 20.60
ATOM	3900 N ALA B 113	1 700 (6 249 1 00 18.02
ATOM	3901 CA ALA B 113	46 704 -1 536 67 548 1.00 20.84
MOTA	3902 CB ALA B 113	46 170 -3 262 65.863 1.00 23.78
MOTA	3903 C ALA B 113 3904 O ALA B 113	46.982 -3.642 65.023 1.00 19.53
MOTA		45.331 -4.091 66.477 1.00 21.45
ATOM		45.344 -5.511 66.168 1.00 24.26
ATOM	3906 CA ILE B 114 3907 CB ILE B 114	44.507 -6.306 67.191 1.00 20.72
MOTA	3907 CS THE B 114	44.476 -7.779 60.600 1.00 24 32
atom atom	3909 CG1 ILE B 114	45.116 -6.144 68.595 1.00 19.01
ATOM	3910 CD1 ILE B 114	44.364 -6.872 69.094 1.00 26.75
ATOM	3911 C ILE B 114	6 500 54.032 1.00 20.18
ATOM	3912 0 ILE B 114	12 702 5 000 64.347 1.00 24.59
ATOM	3913 N GLU B 113	13 243 -5.198 63.005 1.00 29.26
ATOM	3914 CA GLU B 115	42.043 -4.278 62.770 1.00 29.07
atom	CC CTI B 11'	5 40.940 -4.421 63.800 1.00 32.31
ATCM	TARE OF CITE B 11	
ATOM	391, 65 320 = -0.	

176/263

NOT	3918	OE1 G	SLU E 115		39.980	-2.374	63.072	1.00 40.63
ATOM		OE2 G	LU B 115		38.607	-3.940	63.758	1.00 39.86
MOTA			LU B 115		44.334	-4.906		1.00 31.52
MOTA		_	LU B 115		44.444	-5.603		1.00 26.43
ATOM			LU B 116		45.141	-3.879		1.00 26.04
ATOM			SLU B 116		46.226	-3.522		1.00 26.21
ATOM			SLU B 116		46.909	-2.227	61.775	1.00 23.21
ATOM		CG	GLU B 115		46.055	-0.983	61.601	1.00 23.82
MOTA			GLU B.116		45.576	-0.817	60.163	1.00 31.43
MOTA			GLU B 116		46.425	-0.734	59.253	1.00 26.45
MOTA			GLU B 116		44.349	-0.771	59.945	1.00 24.59
ATOM			GLU B 116		47.256	-4.644	61.243	1.00 28.60
MOTA	3930		GLU B 116		47.857	-4.884	60.189	1.00 25.01
MOTA	3931		PHE B 117		47.470	-5.324	62.363	1.00 26.22
ATOM	3932		PHE B 117		48.421	-6.425	62.400	1.00 28.05
ATOM	3933		PHE B 117		48.516	-7.007	63.805	1.00 32.15 1.00 33.88
MOTA	3934		PHE B 117		49.278	-8.299	63.869	1.00 33.50
ATOM	3935	CD1	PHE B 117		50.656	-8.321	63.713	1.00 33.32
ATOM	3936		PHE B 117		48.604	-9.502	64.054 63.740	1.00 32.63
MOTA	3937		PHE B 117		51.356	-9.521	64.082	1.00 35.69
ATOM	3938		PHE B 117			-10.710 -10.717	63.926	1.00 36.72
MOTA	3939		PHE B 117			-7.508	61.456	1.00 26.43
MOTA	3940		PHE B 117		47.929 48.689	-8.061	60.669	1.00 27.61
MOTA	3941		PHE B 117		46.642	-7.809	61.551	1.00 23.59
MOTA	3942		LEU B 118	•	46.048	-8.820	60.705	1.00 29.15
MOTA	3943		LEU B 118		44.585	-9.039	61.099	1.00 28.78
MOTA	3944		LEU B 118 LEU B 118		44.375	-9.478	62.557	1.00 35.24
MOTA	3945	CG	LEU B 118		42.898	-9.763	62.788	1.00 31.92
MOTA	3946	CD1	LEU B 118		45.205	-10.723	62.856	1.00 33.40
MOTA	3947	CD2	LEU B 118		46.153	-8.422	59.236	1.00 30.15
MOTA	3948 3949	0	LEU B 118		46.350	-9.276	58.379	1.00 27.04
MOTA	3950	N	LYS B 119		46.035	-7.128	58.947	1.00 27.96
ATOM ATOM	3951	CA	LYS B 119		46.127	-6.663	57.569	1.00 26.69
MOTA	3952	CB	LYS B 119		45.470	-5.291	57.412	1.00 23.94
MOTA	3953	CG	LYS B 119		43.998	-5.260	57.795	1.00 24.41 1.00 27.53
ATOM	3954	CD	LYS B 119		43.327	-3.970	57.350	1.00 27.33
ATOM	3955	CE	LYS B 119		44.024	-2.739	57.886	1.00 27.75
ATOM	3956	NZ	LYS B 119		43.371	-1.479	57.428 57.101	1.00 29.12
MOTA	3957	С	LYS B 119		47.577	-6.598 -6.160	55.984	1.00 35.25
MOTA	3958	0	LYS B 119		47.864	-7.034	57.958	1.00 30.25
ATOM	3959	N	GLY B 120		48.493 49.896		57.585	1.00 28.38
ATOM	3960	CA	GLY B 120		50.642		57.861	1.00 27.91
MOTA	3961	C	GLY B 120 GLY B 120		51.775		57.403	1.00 22.25
ATOM	3962	0	GLY B 120 ASN B 121		50.024		58.600	1.00 25.42
ATOM	3963	N	ASN B . 21		50.695		58.919	1.00 29.49
ATOM	3964	CA CB	ASN B 121		49.758		58.727	1.00 30.07
ATOM	3965 3966	CG	ASN B 121		49.201		57.325	1.00 32.25
ATOM	3967	CO	ASN B 121		49.924	-2.491		1.00 35.44
MOTA	3968	ND2	ASN B 121		47.917	-2.006	57.217	. 1.00 32.26
ATOM ATOM	3969	C	ASN B 121		51.172		60.361	1.00 30.92
ATOM	3970	ō	ASN B 121		50.971	-4.631	61.059	
ATOM	3971	N	VAL B 122		51.810			
ATOM	3972	CA	VAL B 122		52.309			
ATOM	3973	CB	VAL B 122		53.840	-2.352		
MOTA	3974	CG1	VAL B 122		54.334			
STOM	3975		VAL-B 122		54.446			
ATCM	3976		VAL B 122		51.713			17
ATOM	3977		VAL B 122		51.800			
STOM			ALA B 123		51.100 50.47			
ATOM			ALA B 123		48.96			1.00 21.65
ATCM			ALA B 123		50.87			1.00 28.62
ATCM			ALA B 123 ALA B 123		51.22			1.00 26.96
ATCM			PHE B 124		50.80			
MOTA	3983	N	tur D 154		30			

				_		1.577	67.847	1.00 17:31
ATOM	3984	CA	PHE B 124				-	1.00 16.88
	3985	CB	PHE B 124	5	2.419	2.404	67.876	1.00 10.00
ATOM					2.762	3.000	69.225	1.00 18.52
ATOM	3986	CG	PHE B 124			• • • • •	70.403	1.00 17.52
MCTA	3987	CD1	PHE B 124		2.533			1.00 17.00
		CD2	PHE B 124	5	3.382	4.245	69.297	1.00 17.88
MOTA	3988				2.914		71.638	1.00 25.77
ATOM-	3989	CE1	PHE B 124					1.00 21.97
	3990	CE2	PHE B 124	5	3.769	4.790	70.517	
ATOM			DVID D 124		3.535	4.084	71.698	1.00 20.16
MOTA	3991	CZ	PHE B 124			2.348	68.421	1.00 18.77
MOTA	3992	С	PHE B 124		19.937			1.00 16.62
-	3993	0	_PHE B 124	4	19.462	3.311	67.820	1.00 10.02
ATOM					19.418	1.868	69.546	1.00 16.69
ATOM	3994	N				2.528	70.238	1.00 16.22
MOTA	3995	CA	ASN B 125		18.320			1.00 12.71
		CB	ASN B 125	4	17.129	1.603	70.435	1.00 12.71
ATOM	3996				46.095	2.209	71.346	1.00 19.79
ATOM	39 97	CG				3.430	71.372	1.00 20.83
ATOM	3998	OD1	ASN B 125		45.930			1.00 12.31
	3999	ND2			45.376	1.371	72.087	1.00 12.31
ATOM					48.790	3.004	71.600	1.00 19.19
ATOM	4000	С	ASN B 125				72.585	1.00 20.99
MOTA	4001	0	ASN B 125		48.687	2.280		1.00 19.02
		N	PRO B 126		49.335	4.226	71.668	1.00 19.02
MOTA	4002				49.595	5.156	70.555	1.00 21.39
ATOM	4003	CD	PRO B 126			4.805	72.917	.1.00 21.60
ATOM	4004	CA	PRO B 126		49.833			1.00 21.07
		CB	PRO B 126		50.398	6.161	72.459	1.00 21.07
ATOM	4005		7NO D 126		49.530	6.487	71.269	1.00 17.70
ATOM	4006	CG	PRO B 126			4.942	74.034	1.00 20.69
MOTA	4007	С	PRO B 126		48.808			1.00 19.79
		0	PRO B 126		49.178	5.053	75.198	
ATOM	4008		710 D 127		47.525	4.937	73.689	1.00 16.67
ATOM	4009	N	ALA B 127				74.698	1.00 20.44
ATOM	4010	CA	ALA B 127		46.476	5.065		1.00 19.56
		СВ	ALA B 127		45.198	5.609	74.066	
MOTA	4011				46.169	3.747	75.401	1.00 20.80
ATOM	4012	. С	ALA B 127			3.742	76.472	1.00 19.47
MOTA	4013	0	ALA B 127		45.555			1.00 20.52
	4014	N	GLY B 128		46.587	2.634	74.800	
MOTA			CT V D 120		46.325	1.333	75.399	1.00 19.43
MOTA	4015	CA	GLY B 128		40.323	0.910	76.463	1.00 20.56
MOTA	4016	С	GLY B 128		47.327			1.00 18.37
	4017	0	GLY B 128 -		48.182	1.697	76.869	1.00 18.57
ATOM			GLY B 129		47.215	-0.333	76.929	1.00 19.68
ATOM	4018	N	GLY B 149			-0.820	77.943	1.00 19.93
MOTA	4019	CA	GLY B 129		48.136			1.00 25.25
	4020	С	GLY B 129		47.620	-0.619	79.358	1.00 25.25
ATOM					48.383	-0.686	80.329	1.00 18.98
MOTA	4021	0			46.317	-0.374	79.474	1.00 16.04
ATOM	4022	N	MET B 130					1.00 19.26
	4023		MET B 130		45.677	-0.161	80.768	1.00 13.04
ATOM					44.301	0.451	80.519	1.00 17.94
atom	4024				44.413	1.728	79.653	1.00 22.95
ATOM	4025	CG	MET B 130				79.307	
ATOM	4026	SD	MET B 130		42.873	2.615		
					41.957	1.358	78.382	
ATOM	4027		, MEI D 130		45.598	-1.548	81.421	1.00 22.63
ATOM	4028	C	MET B 130				81.486	
ATOM	4029	0	MET B 130		44.546	-2.173		
			HIS B 131		46.737	-1.999		
ATOM	4030		****C D 121		46.853	-3.343	82.472	1.00 17.07
ATOM	4031		HIS B 131		48.323	-3.804		
ATOM	4032	CE	HIS B 131					
	4033				49.316	-2.979		
RTOM			2 UTC P 131		49.138	-1.904	83.915	1.00 13.47
ATOM	4034	CL	2 HIS B 131			-3.190		1.00 18.00
ATOM	4035	NI	ol HIS B 131		50.680			
	4036		E1 HIS B 131		51.297	-2.281	83.789	
ATOM			2 HIS B 131		50.384	-1.489	84.324	1.00 17.21
ATOM	4037		25 HTD D TOT		46.329	-3.724		1.00 16.41
ATOM	4038	3 C	HIS B 131		40.349			
	4039		HIS B 131		46.452	-4.883		
ATOM			122		45.721	-2.794	84.586	
ATOM	4040		NID D 134		45.241	-3.112		5 1.00 20.87
ATOM	404	1 C	A HIS B 132					
	404		B HIS B 132		45.513	-1.939		
ATOM					46.966	-1.686	87.15	
ATOM	104				47.715	-0.563		0 1.00 15.74
ATOM	404	4 C	D2 HIS B 132		47.713			
	404	5 N	D1 HIS B 132		47.810	-2.65		
ATOM			E1 HIS B 132		49.014	-2.13	9 87.83	
ATOM					48.984	-0.87		2 1.00 14.88
ATOM	404		E2 HIS B 132					
ATOM		_	HIS B 132		43.778			
		-	177		43.478	-4.29	8 87.07	0 1.00 17.04
ATOM	404	ح و						

					_						
MOTA	4050	N	ALA B	133		42.87	8	-3.088	85.271	1.00	
ATOM	4051	CA	ALA B			41.45		-₹.396	85.424	1.00	
ATOM	4052	CB	ALA B	133		40.65		-2.704	84.328	1.00	
ATOM	4053	С	ALA B			41.12		-4.883	85.439	1.00	
ATOM	4054	0	ALA B			41.71		-5.677	84.696	1.00	
MOTA	4055	N	PHE B			40.18		-5.257	86.294	1.00	
MOTA	4056	CA	PHE B			39.76		-6.649	86.365	1.00	
ATOM	4057	CB	PHE B			39.58		-7.122	87.818 88.646	1.00	
MOTA	4058	CG	PHE B			40.83		-7.053 -6.009	89.544	1.00	
MOTA	4059	CD1	PHE B			41.82		-8.027	88.522	1.00	22.80
MOTA	4060		PHE B			42.20		-5.935	90.311	1.00	
MOTA	4061 4062	CE1	PHE B			42.99		-7.964	89.283	1.00	27.74
MOTA	4062	CZ	PHE B			43.19		-6.917	90.178	1.00	
MOTA MOTA	4064	C	PHE B			38.44	4	-6.816	85.621	1.00	
MOTA	4065	ō	PHE B			37.81		-5.849	85.196	1.00	
MOTA	4066	N	LYS B			38.05		-8.064	85.454	1.00	19.78 28.09
ATOM	4067	CA		135		36.81		-8.421	84.782		34.06
MOTA	4068	CB	LYS B			36.50		-9.879	85.125 84.953		42.76
MOTA	4069	CG	LYS B	135			7	-10.310 -11.745	85.437		48.44
MOTA	4070	CD	LYS B	135		34.92		-12.152	85.531	1.00	55.66
ATOM	4071	CE	LYS B	135 135				-11.332	86.544		51.65
ATOM	4072	NZ C	LYS B			35.6		-7.512	85.172	1.00	28.27
MOTA	4073 4074	0	LYS B	135		34.9		-6.999	84.309		24.86
MOTA	4075	N	SER B			35.4		-7.292	86.470		29.89
MOTA MOTA	4076	CA	SER B			34.3		-6.477	86.933		30.86
MOTA	4077	CB	SER B	136		33.2		-7.388	87.582		31.57
ATOM	4078	OG	SER B	136		32.9		-8.434	86.698		45.10 31.50
MOTA	4079	С	SER B			34.7		-5.380	87.923 88.765		24.54
MOTA	4080	0	SER B			33.8		-4.997 -4.854	87.835	1.00	22.63
MOTA	4081	N	ARG B			35.9 36.2		-3.826	88.794		25.51
MOTA	4082	CA	ARG B			36.6		-4:486	90.136	1.00	29.62
MOTA	4083	CB CG	ARG E			36.3		-3.578	91.318	1.00	36.21
MOTA MOTA	4084 4085	CD	ARG E			36.8		-4.160	92.631	1.00	40.79
ATOM	4086	NE	ARG E			36.3	65	-3.357	93.744		45.95
ATOM	4087	CZ	ARG E	137		36.8		-3.369	94.973		41.97 43.42
ATOM	4088	NH				37.8		-4.144	95.263		46.65
MOTA	4089	NH:				36.3		-2.604	95.913 88.339		24.73
MOTA	4090	С	ARG E			37.4 38.4		-2.956 -3.441	87.734	1.00	19.32
MOTA	4091	0	ARG E			37.3		-1.663	88.631	1.00	16.77
MOTA	4092		ALA E	138		38.4			88.270	1.00	18.50
ATOM	4093 4094		ALA I			37.9			88.401	1.00	17.24
MOTA	4095	C	ALA I			39.5	97	-0.964	89.216		22.62
MOTA MOTA	4096		ALA I	3 138		39 4			90.346		18.98
ATOM	4097		ASN I	3 139		40.3					20.82
ATOM	4098					41.9					20.59
. ATOM	. 4099		ASN I	в 139		42.3				1.00	27.70
MOTA	4100		ASN	B 139		43.5				1.00	22.43
ATOM	4101			B 139		44.4				1.00	24.43
MOTA	4102			B 139 B 139		43.				1.00	22.37
MOTA	4103 4104		ASN .	B 139		43.				1.00	17.50
ATOM	4109		GLY	B 140		43.5			89.920	1.00	21.67
MOTA MOTA	4106		GLY	B 140		45.	166	1.249		1.00	23.06
ATOM	4107		GLY	B 140		45.				1.00	26.29 22.47
ATOM	4108		GLY	B 140		45.				1.00	22.33
MOTA	4109		PHE	B 141		43.				1.0	0 19.01
ATOM	4110		PHE	B 141		43.				1 0	0 22.90
ATOM	411		PHE	B 141		44. 45.		_		7 1.0	0 23.17
ATOM	411		PHE PHE	B 141		47.			87.842	1.0	0 22.17
MOTA	411	ב כו זיי א	D2 PHE	B 141		45.		1 5.63	5 89.36	5 1.0	0 23.40
MOTA	411 411		El PHE	B 141		47.		6 6.46	2 88.83	3 1.0	0 24.02
MOTA	411										

				46.033	6.244	90.361	1.00 23.03
MOTA		CE2 PHE B		-	6.658	90.092	1.00 25.15
MOTA		CZ PHE B		47.335		86.214	1.00 23.69
MOTA	4118	C PHE B		43.029		85.335	1.00 18.88
ATOM	4119	O PHE B		42.596	4.283	86.122	1.00 15.03
MOTA	4120	N CYS B		42.962		••	1.00 19.55
ATOM		CA CYS B		42.380		•	1.00 20.38
ATOM		CB CYS B	142	43.193			1.00 20.30
ATOM	4123	SG CYS B	142	44.933	0.662	• • • • • •	1.00 37.40
ATOM	4124	C CYS B	142	40.923	1.171		1.00 22.77
MOTA	4125	O CYS B	142	40.561	0.514	•	1.00 23.04
ATOM	4126	N TYR B	143	40.094	1.557	84.130	1.00 15.24
ATOM	4127	CA TYR B	143	38.675	1.194	84.155	1.00 21.97
	4128	CB TYR B	143	37.795	2.372	83.723	1.00 18.06
MOTA	4129	CG TYR B	143	38.016	3.622	84.535	1.00 24.34
MOTA	4130	CD1 TYR B	143	39.038	4.516	84.214	1.00 23.20
MOTA	4131	CE1 TYR B	143	39.265	5.658	84.991	1.00 27.42
MOTA	4132	CD2 TYR B		37.226	3.892	85.652	1.00 19.15
MOTA	4133	CE2 TYR B	143	37.441	5.023	86.432	1.00 21.92
ATOM	4134	CZ TYR B	143.	38.458	5.900	86.099	1.00 23.94
MOTA	4135	OH TYR B		38.655	7.015	86.877	1.00 22.37
MOTA	4136	C TYR B		38.431	0.008	83.218	1.00 19.91
MOTA	4137	O TYR B	143	37:665	-0.902	83.535	1.00 22.50
MOTA	4138	N ILE B		39.083	0.026	82.061	1.00 19.20
ATOM	4139	CA ILE B		38.938	-1.055	81.082	1.00 19.68
ATOM	4140	CB ILE B		38.282	-0.528	79.787	1.00 20.26
ATOM	4141	CG2 ILE B		38.151	-1.649	78.760	1.00 15.37
ATOM	4142	CG1 ILE B	144	36.901	0.053	80.113	1.00 20.93
ATOM ATOM	4143	CD1 ILE B		36.198	0.697	78.917	1.00 23.75
ATOM	4144	C ILE B	144	40.320	-1.627	80.774	1.00 22.78 1.00 22.01
MOTA	4145	O ILE B	144	41.281	-0.873	80.600	1.00 22.01
ATOM	4146	N ASN B	145	40.422	-2.956	80.723	1.00 20.63
ATOM	4147	CA ASN B		41.698	-3.623	80.451 81.243	1.00 17.81
ATOM	4148	CB ASN B	3 145	41.778	-4.935	81.243	1.00 25.17
ATOM	4149	CG ASN E		43.188	-5.531	80.227	1.00 23.63
ATOM	4150	OD1 ASN E	3 145	43.804	-5.742 -5.819	82.472	1.00 22.69
ATOM	4151	ND2 ASN E		43.693	-3.918	78.955	1.00 21.18
MOTA	4152	C ASN E	3 145	41.780 41.389	-5.002	78.508.	
MOTA	4153	O ASN I	3 145	42.293	-2.968	78.177	1.00 15.23
MOTA	4154	N ASN I	3 146	42.253	-3.175	76.733	1.00 19.71
ATCM	4155	CA ASN I		42.773	-1.880	76.015	1.00 17.65
MOTA	4156	CB ASN CG ASN		44.196	-1.458	76.306	1.00 19.86
ATOM	4157	CG ASN DOD1 ASN D		45.109	-1.735	75.532	1.00 20.27
MOTA	4158	ND2 ASN	B 146	44.395	-0.798	77.435	1.00 11.85
ATOM	4159	C ASN	В 146	43.277	-4.342	76.331	1.00 19.07
ATOM	4160	O ASN	B 146	43.030	-4.996	75.328	1.00 18.61
MOTA	4161 4162	N PRO	B 147	44.358	-4.598	77.082	1.00 17.78
ATOM	4163	CD PRO	B 147	44.953	-3.919		
MOTA ATOM	4164	CA PRO	В 147	45.197	-5.735		
ATOM	4165	CB PRO	B 147	46.338	-5.694		
ATOM	4166	CG PRO	B 147	46.425	-4.201		
MOTA	4167	C PRO	B 147	44.377	-7.041		
ATOM	4168	O PRO	B 147	44.461	-7.892		
MOTA	4169	N ALA	B 148	43.568	-7.172		
MOTA	4170	CA ALA	B 148	42.732	-8.362		
ATOM	4171	CB ALA	B 148	42.049	~8.312		
ATOM	4172	C ALA	B 148	41.683	-8.473		
ATCM	4173	O ALA	B 148	41.419	-9.567 -7.341		1.00 22.48
ATOM	4174	n val	B 149	41.080	-7.341 -7.300		1.00 19.04
ATOM	4175	CA VAL	B 149	40.086	-5.87		1.00 18.95
ATOM	4176	CB VAL	B 149	39.503 38.691	-5.80		1.00 17.32
ATOM	4177	CG1 VAL	B 149	38.621	-5.53		2 1.00 15.33
ATOM	4178		B 149	40.763	-7.70	9 74.166	5 1.00 22.12
ATOM	4179		B 149 B 149	40.240	-8.53		1 1.00 21.83
, ATOM	4180		B 150	41.927	-7.12		
atom	4181	N GLY	2 4-0	•	– –		

	*100	~ ~	LY B 150	4	2.657	-7.433	72.689	1.00 19.32
ATOM	4182	CA G	LY 3 150		3.033	-8.901	72.606	1.00 19.59
ATOM	4183				2.862	-9.550	71.568	1.00 22.28
ATOM	4184	0 G	LY B 150		3.558	-9.435	73.700	1.00 19.51
MOTA	4185	N I	LE B 151	4	2.330		73.723	1.00 23.21
MOTA	4186	CA I	LE B 151			-10.834	75.053	1.00 23.50
MOTA	4187	CB I	LE B 151			-11.175		1.00 20.01
ATOM	4188	CG2 I	LE B 151			-12.679	75.158	1.00 20.01
	4189	CG1 I	LE B 151	4	5.988	-10.394	75.129	1.00 21.98
ATOM ·	4190	CD1 I	LE B 151	4	6.716	-10.502	76.457	1.00 21.24
MOTA		CD1 1	LE B 151	4	2.749	-11.741	73.490	1.00 28.40
ATOM	4191	C	LE B 151			-12.692	72.706	1.00 22.96
ATOM	4192	0 3	LE D 101		1 623	-11.450	74.144	1.00 27.32
ATOM	4193	И	LU B 152			-12.265	73.939	1.00 27.62
MOTA	4194	CA C	SLU E 152	4	0.417	-11.845	74.886	1.00 26.46
ATOM	4195	CB C	GLU B 152		9.234	12 200	76.347	1.00 28.26
MOTA	4196	CG C	GLU B 152			-12.200	76.592	1.00 31.10
ATOM	4197		GLU B 152			-13.708		1.00 29.55
ATOM	4198	OE1 (GLU B 152	3	39.668	-14.123	77.767	
ATOM	4199	OE2	GLU B 152			-14.481	75.617	
	1200		GLU B 152			-12.125	72.497	1.00 30.30
MOTA	4201		GLU B 152			-13.082	71.893	1.00 25.58
MOTA	4202		TYR B 153		40.093	-10.923	71.948	1.00 26.23
MOTA	•		TYR B 153		39.720	-10.669	70.563	1.00 28.19
MOTA	4203		TYR B 153		40.082		70.190	1.00 27.94
atom	4204				39.379		68.735	1.00 28.46
ATOM	4205	CG '	TYR B 153		38.618		68.240	1.00 25.69
ATOM	4206		TYR B 153		38.447		66.898	1.00 30.73
MOTA	4207		TYR B 153				67.856	1.00 24.82
ATOM	4208		TYR B 153		40.962		66.526	1.00.29.26
MOTA	÷209	CE2	TYR B 153		40.801			1.00 31.25
ATOM	4210	CZ	TYR B 153		39.547		66.054	1.00 34.22
ATOM	4211		TYR B 153		39.406			1.00 34.22
ATOM	4212		TYR B 153			-11.627		1.00 20.11
ATOM	4213	-	TYR B 153		39.975			1.00 22.06
	4214		LEU B 154		41.510	-11.725	69.944	1.00 26.77
ATOM	4215	CA	LEU B 154		42.681	-12.597	69.168	1.00 28.79
MOTA	4216	CB	LEU B 154		44.142	2 -12.386		1.00 28.06
MOTA		CS	LEU B 154		44.789	-11.087	69.083	1.00 27.71
MOTA	4217		LEU B 154			-10.860		1.00 34.15
MOTA	4218		LEU B 154			3 -11.171		1.00 26.71
ATOM	4219	CD2	LEU B 154		42 299	9 -14.074	69.274	1.00 25.98
MOTA	4220	C			42 282	2 -14.787		1.00 29.88
MOTA	4221	0			41 096	6 -14.536	70.480	1.00 23.19
ATOM	÷222	N	ARG B 155		41 62	2 -15.936		1.00 29.47
ATOM	4223	CA	ARG B 155		41 22	9 -16.23		
MOTA	4224	C3	ARG B 155		41.35	7 -15.96	73.053	
ATOM	4225	CG	ARG B 155		42.52	2 16 27		
MOTA	4226	CD	ARG B 155		42.21	2 -16.27	_	
ATOM	4227	NE	ARG B 155		42.16	5 -17.70		
ATOM	4228	CZ	ARG B 155		41.86	9 -18.20	75.986	47
MOTA	4229	NH1	ARG B 155		41.59	1 -17.39	4 77.002	
MOTA	4230				41.87	2 -19.52	3 76.178	
	4231		ARG B 155		40.39	3 -16.26	0 69.832	
ATOM	4232		ARG B 155		40.32	5 -17.31	1 69.203	
ATOM			LYS B 156		39.41	9 -15.35	7 69.828	1.00 28.99
ATOM	4233		LYS B 156		38.21	6 -15.57	3 69.031	1.00 34.63
MOTA	4234		LYS B 156		37 :4	8 -14.53	4 69.38	6 1.00 36.63
ATOM	4235				36 30	3 -14.88		6 1.00 42.18
ATOM	4236		LYS B 156		37 29	2 -14.90	-	8 1.00 51.38
ATCM	4237	CD	LYS B 156		37.23	5 -15.71		
ATOM	423,8	CE	LYS B 156		30.00	13 -13.72		
ATOM	4239		LYS B 156		30.56	1 -17.17		
ATOM	4240		LYS B 156			4 -15.56		
ATCM	4241		LYS B 156		37.72	2 -16.08	8 66.75	
ATOM	4242	N	LYS B 157		39.62	5 -14.96	6 67.14	
	4243		LYS B 157		39.99	96 -14.94	5 65.73	
ATOM			LYS B 157		40.88	38 -13.74	65.41	
ATOM	4244		LYS B 157		40.15	57 -12.42	6 65.35	9 1.00 31.52
ATOM	4245		LYS B 157		39.13	32 -12.42	24 64.23	1 00
ATOM	4246		LYS B 157		38.39	95 -11.10	1 64.17	1 1.00 31.90
atom	4247	7 CE	DIO D IJ/				•	

	4249	NZ LYS	a 157	37.	406 -	-11.380	63.054	1.00 32.91
ATOM	4248		B 157	40	724	-16.234	65.381	1.00 31.92
ATOM	4249	C LYS!	2 127			-16.421	64.246	1.00 33.58
ATOM	4250		B 157			-17.111	66.368	1.00 28.97
ATOM	4251	N GLY	3 158	40.	546	10 270	66.112	1.00 28.98
ATOM	4252		в 158			-18.379		1.00 33.33
ATOM	4253	C GLY	B 158	. 42.	962	-18.569	66.622	
ATOM	4254		B 158	43.	.503	-19.672	66.522	1.00 30.58
	4255	N PHE	B 159			-17.521	67.164	1.00 32.80
ATOM	4256		B. 159	44	.937	-17.657	67.678	1.00 28.89
MOTA		CB - PHE		45	560	-16.286	67,934	1.00 30.33
MOTA	4257	CB - PHE	B 159			-15.470	66.692	1.00 28:53
ATOM	4258	CG PHE	B 123	4.4	692	-14.787	66.121	1.00 24.58
MOTA	4259	CD1 PHE	B 129	44	002	-15.420	66.068	1.00 24.21
ATOM	4260	CD2 PHE	B 159				64.948	1.00 25.26
MOTA	4261	CE1 PHE	B 159			-14.066	64.895	1.00 23.66
MOTA	4262		B 159	47	.168	-14.706		1.00 26.65
ATOM	4263	CZ PHE	B 159	46	.095	-14.026	64.332	
ATOM	4264	C PHE	B 159	44	.969	-18.484	68.958	1.00 30.92
	4265	O PHE	B 159	44	.102	-18.334	69.820	1.00 24.26
ATOM	4266	N LYS	в 160			-19.347	69.077	1.00 28.86
ATOM		CA LYS	B 160			-20.224	70.237	1.00 30.27
ATOM	4267		B 160	46	085	-21.692	69.800	1.00 32.05
ATOM	4268	CB LYS	B 100	4.6	906	-22.117	69.113	1.00 41.13
ATOM	4269	CG LYS	B 160	44	. 000	-23.621	68.826	1.00 40.73
ATOM	4270	CD LYS	B 160	44	.809	-23.621	67.904	1.00 43.16
ATOM	4271	CE LYS	B 160			-24.031		1.00 48.69
A.TOM	4272	NZ LYS	B 160			-23.408	66.554	1.00 28.23
ATOM	4273	C LYS	B 160	47	.394	-19.997	71.048	1.00 28.23
ATOM	4274	O LYS	B 160	47	.552	-20.561	72.130	1.00 25.29
	4275		B 161	48	.320	-19.206	70.520	1.00 28.51
ATOM		CA ARG	B 161	49	.550	-18.921	71.247	1.00 25.84
ATOM	4276	DA AN	B 161			-19.719	70.667	1.00 25.33
MOTA	4277		D 101	50	551	-21.245	70.781	1.00 27.47
ATOM	4278	CG ARG	B 161	50	033	-21.985	70.394	1.00 32.27
MOTA	4279	CD ARG	B 161				69.002	1.00 34.90
MOTA	4280	NE ARG	B 161	52	.218	-21.761	67.954	1.00 38.45
ATOM	4281	CZ ARG	B 161			-22:276		1.00 38.77
ATOM	4282	NH1 ARG	B 161	50).527	-23.056	68.130	1.00 38.64
ATOM	4283	NH2 ARG	B 161	51	1.999	-22.000	66.725	1.00 30.04
ATOM	4284	C ARG	B 161	49	818.6	-17.421	71.182	1.00 30.40
	4285	O ARG	B 161	50	3.393	-16.912	70.218	1.00 27.50
ATOM	4286	N ILE	B 162	49	3.376	-16.722	72.221	1.00 25.64
MOTA			B 162			-15.273	72.303	1.00 27.44
MOTA	4287	CA ILE	B 162			-14.618	72.545	1.00 24.53
MCTA	4288	CB ILE	D 162	4	2 2 4 9	-13.101	72.473	1.00 25.49
ATOM	4289	CG2 ILE	B 162	7.	7 117	-15.101	71.487	1.00 29.46
ATOM	4290	CG1 ILE	B 162			-14.707		
ATOM	4291	CD1 ILE	B 162	4	0.000	14 060		
ATOM	4292		B 162	5	0.465	-14.868		
ATOM	4293	O ILE	B 162	5	^.311	-15.302		
ATOM	4294	N LEU	B 163	5	454	-14.042	73.100	
ATOM	4295	CA LEU	в 163	5	425	-13.561	74.081	4
	4296	CB LEU	B 163	5	3.850	-13.686	73.528	
ATOM		CG LEU	B 163	. 5	4.979	-12.975	74.295	1.00 18.84
ATOM	1297	CD1 LEU		ς	5.102	-13.538	75.690	1.00 20.55
ATOM	4298	CDI LEO	, p 163	5	6 293	-13.148		1.00 18.57
ATOM	4299	CD2 LEU	, p 163	5	2 159	-12.099		
ATCM	4300	C LEU	3 163	2	2.100	3 -11.277		
ATOM	4301	o LEU	в 163	2	1.090	11.27		
ATOM	4302		R B 164	5	2.22	7 -11.780		
ATOM	4303		R B 164	5	2.02	7 -10.411	76.191	01
ATOM	4304		R B 164	5	0.77	7 -10.323		
	4305		R B 164		0.534		77.667	
ATOM	4306		R B 164	5	0.14	8 -7.869	76.869	
ATOM			R B 164		9.94		77.418	3 1.00 12.88
ATOM	4307		R B 164		0.71		1 79.021	
atom	4308		R B 164		0.52			3 1.00 13.66
atom	4309				0.13			2 1.00 14.72
ATOM	4310		R B 164	-	9.95	2 -5.16		4 1.00 13.54
ATOM	4311		R B 164	4	7.77	6 -10.01		
ATOM	4312		R B 164					
ATOM	4313	O TY	R B 164	-	دد. در	9 -10.64		

PCT/US00/24700

Figure 18-66

1.00 22.40 -8.992 76.573 53.964 ILE B 165 4314 N MOTA 1.00 17.72 77.285 55.148 -8.518 ILE B 165 4315 CA MOTA 76.343 1.00 22.51 -8.465 ILE B 165 56.352 4316 CB ATOM 1.00 16.36 -7.902 77.079 57.582 CG2 ILE B 165 4317 MOTA 1.00 19.82 -9.880 75.818 56.632 CG1 ILE B 165 4318 MOTA 74.742 1.00 21.74 -9.942 57.721 CD1 ILE B 165 MOTA 4319 1.00 22.54 77.850 54.851 -7.126 ILE B 165 C 4320 MOTA 1.00 16.60 77.111 -6.223 54.478 ILE B 165 4321 0 ATOM 1.00 15.78 79.156 -6.961 55.046 ASP B 166 4322 N MOTA 1.00 20.62 -5.704 79.840 54.740 **ASP B 166** 4323 CA MOTA 1.00 17.57 80.949 -5.996 53.719 ASP B 166 4324 CB ATOM 1.00 25.39 81.486 -4.742 53.063 ASP B 166 4325 CG ATOM 1.00 19.68 82.003 53.779 -3.859 OD1 ASP B 166 MOTA 4326 1.00 29.22 81.377 -4.637 51.824 OD2 ASP B 166 4327 MOTA 1.00 19.01 -5.002 80.423 55.976 ASP B 166 4328 С MOTA 1.00 19.74 56.509 -5.412 81.456 ASP B 166 4329 0 MOTA 79.775 1.00 17.88 -3.923 56.414 LEU B 167 N 4330 MOTA 1.00 14.99 80.235 -3.211 LEU B 167 57.598 4331 CA 1.00 19.22 MOTA 79.044 -2.710 58.412 LEU B 167 4332 CB ATOM 1.00 22.68 58.871 -3.799 78.069 LEU B 167 ATOM 4333 CG 1.00 25.35 77.074 59.835 -3.179 CD1 LEU B 167 4334 MOTA 78.808 1.00 17.54 -4.943 59.570 CD2 LEU B 167 4335 ATOM 1.00 17.49 81.183 57.284 -2.059 **LEU B 167** 4336 C MOTA 1.00 13.39 81.639 -1.359 58.189 LEU B 167 4337 0 MOTA 1.00 20.03 81.479 82.412 ~1.878 56.003 ASP 5 168 4338 N MOTA 1.00 21.98 -0.848 55.549 ASP B 168 4339 CA MOTA 1.00 21.21 82.597 -0.955 54.030 CB ASP B 168 4340 MOTA 1.00 24.92 83.428 0.186 ASP B 168 53.453 4341 CG ATOM 1.00 22.98 83.753 56.241 -1.139**ASP B 168** 4342 C ATOM 1.00 18.36 84.091 56.447 -2.3044343 0 ASP B 168 MOTA 1.099 1.00 22.03 82.825 OD1 ASP B 168 52.849 4344 MOTA 1.00 18.43 0.189 84.676 53.606 OD2 ASP B 168 4345 MOTA 1.00 15.46 84.514 -0.095 56.581 ALA B 169 4346 N MOTA 1.00 18.73 85.807 57.263 -0.268 ALA B 169 -4347 CA MOTA 1.00 11.98 86.323 57.764 1.084 ALA B 169 4348 CB ATOM 1.00 21.82 1.00 22.51 -0.940 86.886 56.400 ALA B 169 4349 С ATOM 56.886 -1.262 87.980 ALA B 169 4350 0 MOTA 1.00 18.75 86.600 -1.134 HIS B 170 55.120 4351 ATOM N 1.00 22.70 87.570 -1.776 54.238 HIS B 170 4352 CA 1.00 22.11 ATOM -3.096 87.015 53.716 HIS B 170 ATOM 4353 С 1.00 21.94 85.809 -3.244 53.536 HIS B 170 0 ATOM 4354 1.00 21.28 87.927 -0.867 HIS B 170 53.050 4355 CB 1.00 18.89 ATOM 53.449 0.475 88.460 HIS B 170 4356 CG ATOM 87.626 1.00 19.13 53.695 1.539 ND1 HIS B 170 4357 ATOM 1.00 19.41 88.412 54.046 2.539 CE1 HIS B 170 MOTA 4358 1.00 19.02 89.746 0.854 53.660 CD2 HIS B 170 4359 ATOM 89.710 1.00 20.45 2.174 54.042 NE2 HIS B 170 4360 ATOM 1.00 19.20 87.907 87.519 -4.047 53.474 HIS B 171 ATOM 4361 N 1.00 21.20 52.961 -5.352 HIS B 171 ATOM 4362 CA 88.722 1.00 22.00 -6.284 52.964 HIS B 171 ATOM 4363 CB 1.00 24.64 88.400 -7.683 52.541 HIS B 171 4364 CG ATCM 1.00 19.19 87.540 -8.594 53.056 CD2 HIS B 171 ATOM 4365 1.00 25.71 88.979 -8.279 51.441 ND1 HIS B 171 4366 MOTA 1.00 25.30 88.487 51.295 -9.497 CE1 HIS B 171 4367 1.00 24.71 ATOM 87.612 -9.713 NE2 HIS B 171 52.261 ATOM 4368 1.00 23.91 -5.306 86.943 51.549 HIS B 171 C 4369 ATOM 1.00 18.93 87.479 -4.620 50.677 HIS B 171 4370 O MOTA 1.00 15.36 85.865 -6.062 51.332 CYS B 172 4371 N ATOM 1.00 20.03 85.207 50.036 -6.141CYS 3 172 CA 4372 MOTA 1.00 22.46 83.732 -6.534 50.240 CYS 3 172 4373 CB ATCM 1.00 23.49 83.419 51.259 -3.030 CYS B 172 4374 SG MOTA 1.00 18.05 85.913 -7.146 49.110 CYS B 172 4375 MOTA C 1.00 18.23 85.327 48.712 -8.151 4376 CYS B 172 1.00 16.78 0 ATOM 87.170 -6.871 48.767 **ASP B 173** 4377 N 1.00 18.81 ATOM 87.928 -7.776 47.909 ASP B 173 4378 CA ATOM 1.00 20.39 89.344 47.638 -7.236 ASP B 173 4379 CB ATCM

89.354 1.00 23.40 46.961 -5.871 4380 CG ASP B 173 1.00 18.64 ATOM 90.455 46.564 -5.435 OD1 ASP B 173 1.00 19.24 4381 MOTA 88.291 46.834 -5.231 OD2 ASP B 173 4382 ATOM 1.00 17.46 -8.116 87.219 46.595 ASP B 173 С 4383 1.00 15.53 MOTA -9.272 87.224 46.162 **ASP B 173** 4384 0 1.00 13.46 MOTA -7.130 86.580 45.978 **GLY B 174** 4385 N 1.00 18.18 MOTA -7.391 85.876 44.733 GLY B 174 4386 CA ATOM 1.00 17.85 84.741 -8.392 44.904 GLY B 174 С ATOM 4387 1.00 18.27 84.583 -9.316 GLY B 174 44.104 4388 0 1.00 16.14 MOTA 83.943 45.951 -8.214 **VAL B 175** N 1.00 17.00 4389 MOTA 82.829 46.206 -9.111 CA VAL B 175 1.00 27.22 4390 ATOM 81.902 -8.552 47.305 VAL B 175 4391 CB 1.00 19.75 80.731 MOTA -9.507 CG1 VAL B 175 47.533 4392 81.396 1.00 18.66 MOTA 46.896 -7.169 CG2 VAL B 175 4393 1.00 22.82 MOTA 83.324 46.635 -10.486 VAL B 175 С 1.00 18.06 MOTA 4394 46.255 -11.503 82.754 VAL B 175 4395 O 1.00 21.67 ATOM 84.378 47.439 -10.520 GLN B 176 4396 N 1.00 21.55 MOTA 84.911 47.889 -11.798 GLN B 176 CA1.00 19.68 4397 ATOM 48.824 -11.602 86.105 GLN B 176 4398 CB 1.00 20.17 ATOM 49.088 -12.905 86.862 GLN B 176 CG 1.00 25.42 4399 MOTA 87.996 50.066 -12.759 GLN B 176 1.00 21.56 CD MOTA 4400 51.243 -12.442 87.786 OE1 GLN B 176 4401 1.00 20.18 1.00 24.78 MOTA 89.217 49.592 -13.000 NE2 GLN B 176 4402 MOTA 85.348 46.689 -12.630 GLN B 176 4403 C 1.00 22.91 MOTA 46.618 -13.817 85.057 GLN B 176 0 4404 45.751 -12.007 44.571 -12.727 43.703 -11.825 86.051 1.00 23.69 MOTA GLU B 177 N 1.00 27.01 4405 MOTA 86.523 GLU B 177 87.394 1.00 24.73 88.138 1.00 37.46 4406 CA MOTA GLU B 177 CВ 4407 88.138 MOTA 42.633 -12.581 **GLU B 177** 1.00 42.48 4408 CG ATOM 88.987 41.767 -11.676 GLU B 177 88.432 1.00 44.35 CD 4409 MOTA 40.875 -11.002 OE1 GLU B 177 90.213 1.00 45.63 4410 MOTA 41.993 -11.627 OE2 GLU B 177 1.00 26.56 4411 43.732 -13.247 85.370 43.240 -14.375 85.408 MOTA **GLU B 177** 1.00 27.71 1.00 24.58 4412 С MOTA 85.408 **GLU B 177** 4413 O 84.344 ATOM 43.573 -12.418 ALA B 178 1.00 25.86 1414 N MOTA 83.174 42.776 -12.775 ALA B 178 4415 CA 1.00 24.20 MOTA 42.778 -11.628 82.171 ALA B 178 CB 4416 43.231 -14.054 42.406 -14.838 44.535 -14.282 1.00 25.72 MOTA 82.485 ALA B 178 C 1.00 22.38 4417 ATOM 82.036 ALA B 178 1.00 27.19 MOTA 4418 0 82.395 PHE B 179 N 1.00 27.05 4419 MOTA 44.990 -15.489 81.703 PHE B 179 1.00 25.22 4420 CA MOTA 45.714 -15.086 80.418 PHE B 179 1.00 20.36 CB 4421 MOTA 79.644 44.992 -14.020 PHE B 179 4422 CG 1.00 25.23 MOTA 79.735 45.387 -12.687 CD1 PHE B 179 4423 1.00 19.22 MOTA 78.902 43.860 -14.332 CD2 PHE B 179 1.00 19.25 4424 MOTA 79.102 44.659 -11.6?7 1.00 20.65 CE1 PHE B 179 1425 ATOM 78.272 43.128 -13.315 CE2 PHE B 179 1.00 25.64 4426 ATOM 78.374 43.528 -12.001 CZ PHE B 179 82.556 1.00 23.50 4427 MOTA 45.866 -16.398 PHE B 179 1.00 18.26 4428 C 46.652 -17.182 45.689 -16.313 46.479 -17.106 ATOM 82.038 PHE B 179 83.868 - 1.00 23.24 4429 0 MOTA TYR B 180 84.799 1.00 26.76 MOTA 4430 N TYR B 180 1.00 25.72 CA 4431 MOTA 46.150 -16.665 86.231 TYR B 180 1.00 29.66 4432 CB MOTA 47.226 -16.969 87.247 CG TYR B 180 CD1 TYR B 180 1.00 27.07 4433 MOTA 47.037 -17.942 88.237 1.00 30.08 MOTA 4434 89.170 48.039 -18.222 CE1 TYR B 180 1.00 29.68 4435 ATOM 87.216 48.444 -16.283 CD2 TYR B 180 1.00 30.99 4436 MOTA 49.451 -16.552 88.139 CE2 TYR B 180 1.00 33.16 4437 ATCM 49.248 -17.521 89.112 TYR B 180 1.00 28.47 CZ 4438 MOTA 90.006 50.262 -17.791 TYR B 180 1.00 29.13 4439 OH ATOM 84.649 46.256 -18.619 TYR B 180 4440 С 1.00 23.43 ATOM 47.163 -19.416 84.922 TYR B 180 1.00 25.67 0 1441 ATOM 84.190 45.073 -19.021 ASP B 181 4442 N 1.00 28.28 84.075 ATOM 44.784 -20.445 ASP B 181 1.00 32.13 CA 4443 84.757 ATOM 43.446 -20.759 ASP B 181 1.00 36.12 CB 42.247 -20.410 83.890 1444 ATOM ASP B 181 CG 1445 ATCM

1.00 41.04

184/263 Figure 18-68

42.202 -19.300 83.329 4446 OD1 ASP B 181 MOTA 41.334 -21.249 83.782 1.00 44.36 OD2 ASP B 181 ATOM 4447 44.773 -21.018 82.664 1.00 32.41 ASP B 181 4448 С ATOM 1.00 31.67 44.246 -22.115 82.444 4449 0 ASP B 181 MOTA 1.00 29.24 81.702 45.345 -20.302 THR B 182 4450 MOTA N 45.363 -20.823 44.468 -20.008 1.00 30.57 80.340 THR B 182 4451 CA MOTA 1.00 30.03 79.397 CB THR B 182 4452 MOTA 44.516 -20.598 1.00 28.22 78.095 OG1 THR B 182 4453 MOTA 1.00 26.55 44.947 -18.561 79.310 CG2 THR B 182 4454 MOTA 1.00 32.31 46.759 -20.870 79.740 THR B 182 4455 С 1.00 27.27 1.00 29.94 1.00 31.40 ATOM 80.008 47.591 -20.007 THR B 182 4456 0 MOTA 46.999 -21.878 78.909 ASP B 183 4457 N MOTA 78.273 48.296 -22.049 ASP B 183 4458 CA MOTA 1.00 33.36 78.228 48.648 -23.536 ASP B 183 4459 CB MOTA 1.00 33.33 47.718 -24.319 77.328 ASP B 183 MOTA 4460 CG 46.513 -23.988 1.00 28.06 77.287 OD1 ASP B 183 OD2 ASP B 183 ATOM 4461 48.186 -25.271 1.00 38.19 76.675 4462 ATOM 1.00 31.14 1.00 28.74 76.864 48.321 -21.462 ASP B 183 MOTA 4463 С 49.332 -21.557 76.168 ASP B 183 4464 2 MOTA 1.00 25.34 47.217 -20.852 76.446 GLN B 184 4465 N MOTA 1.00 28.59 75.118 47.151 -20.251 CA GLN B 184 4466 ATOM 74.581 1.00 26.84 45.712 -20.256 GLN B 184 CB 4467 MOTA 1.00 34.86 45.060 -21.632 74.529 GLN B 184 4468 CG ATOM 73.736 1.00 32.27 43.760 -21.647 GLN B 184 4469 CD MOTA 1.00 35.43 1.00 28.92 42.897 -20.789 73.912 OE1 GLN B 184 4470 MOTA 43.611 -22.641 47.672 -18.817 47.871 -18.171 72.870 NE2 GLN B 184 4471 MOTA 75.175 1.00 27.28 4472 GLN B 184 С MOTA 74.148 1.00 29.70 GLN B 184 MOTA 4473 0 47.900 -18.325 1.00 27.64 76.386 **VAL B 185** 4474 N ATOM 76.575 1.00 26.26 CA VAL B 185 48.400 -16.972 4475 MOTA 77.145 77.395 1.00 22.85 47.304 -16.039 CB VAL B 185 4476 MOTA 1.00 23.10 47.879 -14.642 4477 CG1 VAL B 185 ATOM 1.00 21.67 76.191 46.136 -15.967 CG2 VAL B 185 4478 MOTA 1.00 27.01 49.570 -16.964 77.547 **VAL B 185** 4479 C ATOM 78.663 1.00 23.75 49.456 -17.469 VAL B 185 4480 0 MOTA 77.115 1.00 22.02 50.696 -16.403 PHE B 186 MOTA 4481 N 77.978 1.00 21.83 51.868 -16.301 CA PHE B 186 4482 ATOM 77.252 53.142 -16.763 77.252 54.336 -16.921 78.170 1.00 17.02 PHE B 186 4483 CB MOTA 1.00 24.84 PHE B 186 4484 CG MOTA 54.756 -18.189 78.580 1.00 22.70 CD1 PHE B 186 CD2 PHE B 186 4485 ATOM 55.004 -15.805 78.670 1.00 20.26 4486 MOTA 55.819 -18.338 79.471 1.00 21.47 CE1 PHE B 186 MOTA 4487 56.071 -15.941 56.481 -17.206 52.032 -14.827 1.00 20.01 79.563 4488 CE2 PHE B 186 ATOM 79.968 1.00 17.84 4489 CZ PHE B 186 MOTA 78.368 1.00 18.12 PHE B 186 4490 C ATOM 1.00 15.92 52.038 -13.946 77.508 PHE B 186 4491 0 ATO: 1.00 18.06 79.661 52.161 -14.565 VAL B 187 4492 N ATO.4 1.00 17.67 52.348 -13.208 80.153 VAL B 187 4493 CA rıOTA 1.00 22.85 51.282 -12.839 81.225 VAL B 187 4494 CB ATOM 1.00 24.08 51.608 -11.473 49.882 -12.808 53.735 -13.060 81.840 CG1 VAL B 187 4495 MOTA 80.598. 1.00 18.82 CG2 VAL B 187 1496 MOTA 80.788 1.00 18.32 **VAL B 187** 4497 С ATOM 54.092 -13.807 81.707 1.00 18.82 **VAL B 187** 4498 0 MOTA 1.00 14.70 1.00 18.84 54.503 -12.103 80.282 LEU B 188 4499 N ATCM 55.832 -11.789 80.798 CA LEU B 188 4500 MOTA 1.00 18.64 56.900 -11.948 79.716 4501 CB LEU B 188 ATCM 1.00 21.23 80.082 58.230 -11.277 LEU B 188 4502 CG ATOM 1.00 18.55 58.769 -11.832 81.395 CD1 LEU B 188 4503 MOTA 1.00 20.49 59.227 -11.489 78.957 CD2 LEU B 188 4504 81.280 1.00 22.14 80.517 1.00 19.96 82.540 1.00 21.08 ATOM 55.836 -10.339 LEU B 188 4505 ATOM 55.527 -9.410 LEU 3 188 4506 ATOM 0 56.187 -10.133 56.203 -8.782 **SER B 189** ATOM 4507 N 83.061 1.00 21.85 SER B 189 4508 CA . ATOM 83.908 1.00 25.95 -8.543 SER B 189 54.956 4509 CB ATOM 84.475 1.00 21.91 54.988 -7.252 OG SER B 189 4510 ATOM 83.883 1.00 23.62 57.423 -8.420 4511 C SER B 189 ATCM

ATOM	4512		ER B 189		57.829			1.00 18.61 1.00 20.33
ATOM	4513	N L	EU B 190		58.020		83.569 84.347	1.00 20.85
MOTA	4514	CA L	EU B 190		59.149	-6.767 -6.226	83.473	1.00 22.85
MOTA	4515		EU B 190		60.278 60.964	-7.089		1.00 32.59
ATOM	4516		EU B 190 EU B 190		62.337	-6.479		1.00 29.27
MOTA	4517	CD1 L	EU B 190		61.136	-8.511	82.379	1.00 31.98
MOTA	4518		EU B 190		58.505	-5.613	85.085	1.00 21.28
MOTA	4519 4520	C L	EU B 190		57.695	-4.897	84.501	1.00 15.72
_ATOM _ATOM	4521	N - H	IS B 191		58.857	-5.421	•	1.00 18.16
ATOM	4522		HIS B 191		58.249	-4.357	87.145	1.00 17.46
ATOM	4523	CB F	HIS B 191		56.759	-4.690	87.369	1.00 16.00 1.00 22.14
ATOM	4524	CG F	RIS B 191	-	56.517	-6.085	87.880 89.143	1.00 22.24
ATOM	4525	CD2 F	HIS B 191		56.341 56.372	-6.551 -7.179	87.049	1.00 18.02
MOTA	4526	ND1 :	HIS B 191		56.119	-8.256	87.775	1.00 8.17
MOTA	4527	CE1 F	HIS B 191		56.094	-7.902	89.049	1.00 19.79
MOTA	4528	C I	HIS B 191		58.945	-4.197	88.484	1.00 17.41
ATOM	4529 4530	0 1	HIS B 191		59.769	-5.029	88.867	1.00 18.74
MOTA MOTA	4531	И	GLN B 192		58.618	-3.114	89.182	1.00 18.20
ATOM	4532	CA (GLN B 192		59.173	-2.854	90.502	1.00 18.41 1.00 20.71
ATOM	4533	CB (GLN B 192		58.690	-1.500	91.034 90.072	1.00 20.71
ATOM	4534	CG (GLN B 192		58.871	-0.334	90.072	1.00 20.65
MOTA	4535	CD (GLN B 192		58.226 58.775	0.930 1.615	91.459	1.00 21.52
MOTA	4536		GLN E 192		57.029	1.226	90.098	1.00 15.10
MOTA	4537	NE2	GLN B 192 GLN B 192		58.608	-3.945	91.395	1.00 17.55
MOTA	4538 4539	0	GLN B 192		57.415	-4.256	91.320	1.00 17.48
MOTA MOTA	4540	11	SER B 193		59.447	-4.522	92.240	1.00 15.71
ATOM	4541		SER B 193		58.986	-5.574	93.143	1.00 20.58 1.00 20.71
ATOM	4542		SER B 193		60.093	-5.963	94.120	1.00 20.71
MOTA	4543		SER B 193		59.571	-6.804	95.138 93.947	1.00 21.81
MOTA	4544		SER B 193		57.774 57.769	-5.112 -4:003	94.486	1.00 20.82
MOTA	4545		SER B 193 PRO B 194		56.745	-5.967	94.063	1.00 21.80
ATOM	4546	N CD	PRO B 194 PRO B 194		56.648	-7.331	93.524	1.00 24.27
ATOM	4547 4548	CA	PRO B 194		55.524	-5.643	94.812	1.00 23.58
MOTA MOTA	4549	CB	PRO B 194		54.678	-6.909	94.642	1.00 22.98
ATOM	4550	CG	PRO B 194		55.168	-7.458	93.317	1.00 26.35 1.00 25.79
MOTA	4551	С	PRO B 194		55.841	-5.366	96.283 97.022	1.00 27.26
ATOM	4552	၁	PRO B 194		55.009	-4.831 -5.736	96.710	1.00 23.20
ATOM	4553	:1	GLU B 195		57.045 57.428		98.093	1.00 29.56
ATOM	4554	CA	GLU B 195 GLU B 195		58.816		98.379	1.00 32.38
ATOM	4555	CB CG	GLU B 195		58.940		98.049	1.00 45.25
ATOM	4556 4557	CD	GLU B 195		60.206		98.613	1.00 50.44
atom atom	4558	OE1	GLU B 195		61.290		98.471	:.00 50.51
ATOM	4559	OE2	GLU B 195		60.118			1.00 49.77 1.00 25.11
ATOM	4560	C	GLU B 195		57.414			1.00 29.05
ATOM	4561	0	GLU B 195		57.095			1.00 22.90
ATOM	4562	N	TYR B 196		57.729 57.743			1.00 22.46
ATOM	4563	CA	TYR B 196 TYR B 196		59.188			1.00 22.72
ATCM	4564	C3	TYR B 196		59.855		96.301	1.00 24.17
MOTA	.4565 4566	CG	TYR B 196		59.639	-0.203	95.385	1.00 20.87
MOTA MOTA	4567	CE1			60.229	-0.222		1.00 18.31
ATOM	4568		TYR B 196		60.684			
ATOM	4569	CE2	TYR B 196		61.276			
ATOM	4570	CZ	TYR B 196		61.042			
ATCM	4571		TYR 3 196		61.592 56.896			1.00 23.54
atom	4572		TYR B 196		56.77			1.00 17.53
ATOM	4573 • 574		ALA B 197		56.29			1.00 22.11
ATOM	4574		ALA B 197		55.50		94.779	
ATOM	4575 4576		ALA B 197		56.31	0 -0.61		1.00 23.03
atom atom	4577		ALA B 197		54.15	3 -1.41	2 94.413	1.00 22.80

							04 540	1.00 17.67
MOTA	4578	0 2	ALA B]	.97	53.910	-2.609	94.549	1.00 26.40
ATOM	4579	N I	PHE B 1	98	53.278	-0.541	93.932	
		CA I	PHE B	98	51.956	-0.950	93.495	1.00 28.19
MOTA				98	51.152	0.263	93.035	1.00 29.51
MOTA					49.721	-0.050	92.711	1.00 29.50
MOTA				198		0.100	93.674	1.00 32.77
MOTA				198	48.732			1.00 25.82
ATOM	4584	CD2	PHE B	198	49.367	-0.533	91.455	
ATOM	4585	CE1	PHE B	198	47.410	-0.223	93.394	1.00 36.70
	4586		PHE B.		48.050	-0.858	91.170	1.00 29.29
ATOM				198	47.071	-0.703	92.141	1.00 33.05
MOTA	4587				52.170	-1.858	92.284	1.00 28.28
ATOM	4588		PHE B			-1.602	91.456	1.00 27.15
ATOM	4589			198	53.045		-	1.00 31.37
MOTA	4590	N	PRO B	199	51.407	-2.952	92.185	
ATOM	4591	CD	PRO B	199	51.440	-3.887	91.045	1.00 37.07
	4592		PRO B	199	50.386	-3.369	93.144	1.00 35.32
MOTA			PRO B		49.545	-4.328	92.321	1.00 33.88
MOTA	4593				50.641	-5.068	91.578	1.00 36.75
ATOM	4594			199		-4.082	94.184	1.00 36.93
MOTA	4595		PRO B		51.241		93.860	1.00 50.93
MOTA	4596		PRO B		52.308	-4.603		
ATOM	4597	N	PHE B	200	50.804	-4.127	95.422	1.00 37.04
	4598	CA	PHE B	200	51.644	-4.763	96.421	1.00 30.13
ATOM		CB	PHE B		51.547	-3.968	97.723	1.00 28.70
MOTA	4599		PHE B		51.760	-2.485	97.543	1.00 29.98
MOTA	4600	CG	PHE B	200	50.717	-1.660	97.137	1.00 28.92
MOTA	4601		PHE B				97.746	1.00 23.60
ATOM	4602		PHE B		53.016	-1.919	-	1.00 27.63
ATOM	4603	CE1	PHE B	200	50.922	-0.289	96.938	1.00 27.83
ATOM	4604		PHE B		53.229	-0.558	97.547	1.00 23.56
	4605	CZ	PHE B		52.182	0.260	97.143	1.00 28.37
ATOM			PHE B	200	51.296	-6.227	96.658	1.00 25.51
MOTA	4606	C			52.112	-6.984	97.167	1.00 20.92
MOTA	4607	0	PHE B			-6.618	96.252	1.00 27.41
ATOM	4608	N	GLU B		50.094			1.00 31.98
MOTA	4609	CA	GLU B		49.576	-7.972	96.454	1.00 31.50
MOTA	4610	CB	GLU B	201	48.056	-7.928	96.487	
	4611	CG		201	47.486	-ó:935	97.449	1.00 39.17
MOTA	4612	CD	GLU B	201	45.987	-6.853	97.316	1.00 40.31
ATOM				201	45.332	-7.902	97.500	1.00 38.90
ATOM	4613	OE1			45.475	-5.751	97.019	1.00 35.04
MOTA	4614	OE2		201		-9.018	95.422	1.00 30.83
MOTA	4615	C	GLU B	201	49.979			1.00 26.34
MOTA	4616	0	GLU B	201		-10.219	95.690	1.00 24.95
ATOM	4617	N	LYS B	202	50.362	-8.573	94.234	
ATOM	4618	CA	LYS B	202	50.764	-9.501	93.195	1.00 22.79
	4619	CB		202	49.588	-9.773	92.258	1.00 25.12
MOTA			LYS B	202	48.484		93.000	1.00 35.38
MOTA	4620	CG			47.431		92.103	1.00 38.67
MOTA	4621	CD	LYS B		46.498		92.903	1.00 40.98
ATOM	4623	CE	LYS B	202				1.00 46.65
MOTA	4623	NZ	LYS B	202	45.491	-12.659	92.026	1.00 24.62
ATOM	4624	C.	LYS B	202	51.975	-9.007	92.435	
	4625	Ö	LYS B	202	52.355	-7.838	92.549	1.00 21.83
MOTA			GLY B	203	52.598		91.684	1.00 17.60
MOTA	1626	11			53.779			1.00 19.41
MOTA	4627	CA	GLY B	203	55.773	-10.297		1.00 20.36
ATOM	4628	C	GLY B	203		10.237		1.00 23.83
ATOM	4629	0	GLY B	203	56.101	-10.070	90.000	
ATOM	4630	N	PHE B	204	54.855	-11.201	92.358	
	4631	CA	PHE B	204	55.992	-11.957	92.859	
MOTA			PHE B	204	55.690	-12.567	94.236	1.00 22.72
MOTA	4632	CB			55 485	-11.549	95.322	1.00 25.26
ATOM	4633	CG	PHE B		54 225	-10.977		
MOTA	4634		PHE B	204	24.432	11 150		
MOTA	4635	CD2	PHE B	204	56.551	-11.159		
ATOM	4636	CE1	PHE 3	204		3 - 10.036		
	4637	CE2		204	56.377	7 -10.221	97.141	
ATOM		CE	PHE 3	204	55.124			1.00 25.54
ATOM	4638		PHE E		56 411	-13.057		1.00 25.86
				204	50.914			
atom	4639		PRE	204	'EE 61'	₹ _: ₹ 500	91.091	1.00 20.65
	4639 4640	0	PHE F	204	55.61	3 -13.540	91.091 91.986	
atom		0	PHE E	3 204 3 205	57.67	5 -13.449	91.986	1.00 24.25
MOTA MOTA MOTA	4640	0 N	PHE E LEU E LEU E	204 205 205	57.676 58.23	5 -13.449 3 -14.472	91.986 91.114	1.00 24.25
MOTA MOTA	4640 4641 4642	0 N CA	PHE E	204 205 205	57.676 58.23	5 -13.449	91.986 91.114	1.00 24.25

				U			
MOTA	4644		LEU B 205	60.495 -			1.00 34.12 1.00 32.95
MOTA	4645		LEU 3 205	60.356 -			1.00 36.49
ATOM	4646		LEU 3 205	61.957 -			1.00 30.51
ATOM	4647		LEU B 205	57.535 -		90.220	1.00 25.89
ATOM	4648		LEU 3 205	57.467 -		92.382	1.00 30.43
MOTA	4649		GLU B 206	57.010 -		92.505	1.00 30.64
MOTA	4650	CA (GLU B 206	56.338 - 56.025 -	17 601	94.093	1.00 34.77
MOTA	4651	CB (GLU B 206	57.227		95.033	1.00 42.50
MOTA	4652	CG	GLU B 206	57.718		95.270	1.00 45.76
MOTA	4653	CD	GLU 3 206	58.228		94.333	1.00 42.62
MOTA	4654	OE1	GLU B 206	57.585		96.413	1.00 50.22
MOTA	4655		GLU B 206 GLU B 206	55.045		91.811	1.00 31.13
MOTA	4656	C	GLU B 206	54.607		91.563	1.00 28.18
ATOM	4657 4658		GLU B 207	54.430		91.425	1.00 25.16
ATOM	4659	CA	GLU B 207	53.178	-16.499	90.664	1.00 28.78
MOTA MOTA	4660	CB	GLU B 207	52.546	-15.107	90.695	1.00 30.76
ATOM	4661		GLU B 207	52.121		92.093	1.00 29.39
ATOM	4662	CD	GLU B 207	52.057		92.230	1.00 27.87
ATOM	4663	OE1	GLU B 207	51.656		91.261	1.00 24.38 1.00 25.36
ATOM	4664	OE2	GLU B 207	52.389	-12.636	93.316	1.00 25.36 1.00 29.48
ATOM	4665	С	GLU B 207	53:453		89.224 88.351	1.00 27.48
MOTA	4666	0	GLU B 207	53.658		88.976	1.00 26.67
MOTA	4667	N	ILE B 208		-18.230 -18.754	87.646	1.00 32.60
MOTA	466B	CA	ILE B 208		-19.877	87.740	1.00 34.26
MOTA	4669	CB	ILE B 208	55 230	-20.296	86.352	1.00 41.65
ATOM	4670	CG2	ILE B 208	56.008	-19.404	88.532	1.00 36.07
MOTA	4671	CG1	ILE B 208	56.814	-18.338	87.851	1.00 45.18
ATOM	4672 4673	CDI	ILE B 208	52.522	-19.289	86.870	1.00 32.26
ATOM ATOM	4674	0	ILE B 208	52.668	-19.799	85.759	1.00 27.43
ATOM	4675	Ŋ	GLY B 209		-19.165	87.442	1.00 32.60 1.00 35.07
MOTA	4676	CA	GLT B 209	50.139		86.760	1.00 35.07 1.00 36.19
ATOM	4677	С	GLY B 209	49.565	-20.892	87.420 88.235	1.00 31.61
MOTA	4678	0	GLY B 209	50.230	-21.524 -21.245	87.066	1.00 36.98
MOTA	4679	N	GLU B 210	48.335 47.677	-22.412	87.647	1.00 40.60
MOTA	4680	CA	GLU B 210	46.633	-21.964	88.672	1.00 37.98
MOTA	4681	CB	GLU B 210 GLU B 210	45.446	-21.234	88.058	1.00 42.78
MOTA	4682	CG	GLU B 210 GLU B 210	44.470	-20.717	89.098	1.00 48.41
MOTA	4683 4684	CD OE1		43.400	-20.202	88.709	1.00 51.03
MOTA ATOM	4685	OE2		44.778	-20.814	90.306	1.00 49.90 1.00 39.48
ATOM	4686	c	GLU B 210	46.996	-23.248	86.564	1.00 39.48 1.00 33.65
ATOM	4687	ō	GLU B 210		-22.751	85.471	1.00 33.03
MOTA	4688	N	GLY B 211		-24.515		1.00 38.43
ATOM	4689	CA	GLY B 211	46.087	-25.399 -25.500		
MOTA	4690	C	GLY B 211	40.0//	-25.610		
ATOM	4691	0	GLY B 211	46 187	-25.458		1.00 40.90
MOTA	4692	N	LYS B 212 LYS B 212	46.864	-25.538		1.00 43.53
MOTA	4693	CA CB	LYS B 212	45.842	-25.548	81.080	1.00 47.87
ATOM	4694 4695		LYS B 212	44.795	-26.665	81.144	
atom atom	4696		LYS B 212		-28.076		
ATOM	4697		LYS B 212	46.069	-28.454	82.452	
ATOM	4698		LYS B 212	46.670	-29.825	82.420	
ATOM	4699		LYS B 212	47.823	-24.363	82.040	
ATOM	4700		LES B 212		-24.457		
ATOM	4701		GLY B 213	47.543	-23.262	82.731 82.627	
ATOM	4702		GLY B 213	48.389	-22.081 -22.10		
MOTA	4703		GLY B 213	49.025	$\frac{-22.10}{5}$		1.00 25.85
ATOM	4704		GLY B 213	10 70	-23.18		3 1.00 33.33
atom	4705		LYS B 214	49.75 50 051	-23.18 3 -23.29		R 1.00 37.90
ATOM	1706		214		5 -24.59		4 1.00 38.89
ATOM	4707				2 -24.78	6 86.93	B 1.00 39.29
ATOM	4708 4709		1		6 -26.09		4 1.00 43.60
ATCM	- i / U	, (1)	D			•	

ATOM	4710	CE LYS B 214			1.00 47.36
			53.165 -25.264	89.666	1.00 54.03
MOTA	4711	NZ LYS B 214			1.00 34.16
ATOM	4712	C LYS B 214	32.203		
ATOM	4713	O LYS B 214	52.404 -24.136	83.438	1.00 34.70
			53.057 -22.279	84.523	1.00 33.58
MOTA	4714	N GLY B 215			1.00 28.27
MOTA	4715	CA GLY B 215	54.275 -22.152	83.743	
	4716	C GLY B 215	54.104 -21.155	82.605	1.00 31.02
MOTA			55.033 -20.911	81.833	1.00 23.68
MOTA	4717	O GLY B 215	55.055 -20.511		
ATOM	4718	N TYR B 216	52.918 -20.564	82.493	1.00 22.45
		CA TYR B 216	52.683 -19.605	81.426	1.00 24.03
ATOM	4719		. 51.458 -20.013	80.603	1.00 17.60
MOTA	4720	CB TYR B 216			
MOTA	4721	CG TYR B 216	. 51.682 -21.291	79.806	1.00 25.96
			51.692 -22.538	80.435	1.00 21.41
MOTA	4722			79.729	1.00 23.78
MOTA	4723	CE1 TYR B 216	51.988 -23.704		
MOTA	4724	CD2 TYR B 216	51.970 -21.242	78.439	1.00 19.62
			52.269 -22.402	77.72-2	1.00 26.39
ATOM	4725		52.277 -23.630	78.379	1.00 29.35
MOTA	4726	CZ TYR B 216			
ATOM	4727-	OH TYR B 216	52.577 -24.782	77.690	1.00 27.75
			52.575 -18.153	81.884	1.00 24.53
MOTA	4728		52.065 -17.298	81.159	1.00 18.99
ATOM	4729	O TYR B 216			
MOTA	4730	N ASN B 217	53.052 -17.886	83.098	1.00 21.41
			53.073 -16.534	83.642	1.00 21.23
MOTA	4731			84.669	1.00 16.78
MOTA	4732	CB ASN B 217	51.954 -16.325		
	4733	CG ASN B 217	51.882 -14.889	85.162	1.00 22.07
MOTA			52.506 -14.521	86.163	1.00 23.13
MOTA	4734			84.435	1.00 19.26
ATOM	4735	ND2 ASN B 217	51.146 -14.058		1.00 19.20
MOTA	4736	C ASN B 217	54.437 -16.339	84.291	1.00 19.40
			54.857 -17.145	85.124	1.00 19.28
MOTA	4737			83.905	1.00 18.65
ATOM	4738	N LEU B 218	55.130 -15.273		
ATOM	4739	CA LEU B 218	56.459 -15.004	84.444	1.00 16.41
			57.512 -15.244	83.368	1.00 18.29
MOTA	4740		58.851 -15.872	83.782	1.00 28.15
MOTA	4741	CG LEU B 218			1.00 20.50
ATOM	4742	CD1 LEU B 218	59.873 -15.563 _.		
		CD2 LEU B 218	59.332 <i>-</i> 15.348	85.116	1.00 22.53
MOTA	4743		56.595 -13.562	84.926	1.00 17.89
MOTA	4744	C LEU B 218			1.00 14.48
MOTA	4745	O LEU B 218	56.469 -12.627	84.128	
	4746	N ASN B 219	56.859 -13.395	86.219	1.00 14.09
MOTA			57.044 -12.075	86.821	1.00 18.41
ATOM	4747	CA ASN B 219		88.111	1.00 14.64
MOTA	4748	CB ASN B 219	56.238 -11.922		
ATOM	4749	CG ASN B 219	54.748 -11.898	87.868	1.00 27.12
			54.286 -11.332	86.880	1.00 20.21
ATOM	4750			88.787	1.00 23.62
MOTA	4751	ND2 ASN B 219			
ATOM	4752	C ASN B 219	58.504 -11.843	87.172	1.00 20.39
	4753	O ASN B 219	59.115 -12.672	87.841	1.00 20.41
MOTA			59.056 -10.717	86.729	1.00 15.11
MOTA	4754	N ILE B 220			
ATOM	4755	CA ILE B220	60.441 -10.394	87.033	1.00 17.10
	4756	CB ILE B 220	61.250 -10.083	85.740	1.00 20.78
ATOM		20 715 5 720	62.736 -9.821	86.094	1.00 18.08
ATOM	4757	CG2 ILE B 22C		84.748	1.00 17.62
ATOM	4758	CG1 ILE B 220	61.138 -11.250		1.00 27.02
	4759	CD1 ILE B 220	61.646 -12.590	85.273	1.00 20.72
ATOM			60.475 -9.161	87.947	1.00 21.17
MOTA	4760	C ILE B 220		87.470	.1.00 16.03
ATOM	4761	O ILE B 220	60.565 -8.036		1.00 21.74
MOTA	4762	N PRO B 221	60.367 -9.357	89.274	1.00 21.74
			60.135 -10.619	90.000	1.00 22.96
MOTA	4763		60.394 -8.225	90.213	1.00 19.16
ATOM	4764	CA PRO B 221	* -		1.00 19.40
ATOM	4765	CB PRO B 221	59.947 -8.869	91.523	
	4766	CG PRO B 221	60.564 -10.251	91.407	1.00 23.02
ATOM			61.799 -7.634	90.289	1.00 22.42
ATOM	4767	C PRO B 221			1.00 20.71
ATOM	4768	O PRO B 221	62.780 -8.369	90.425	1.00 20.71
	4769	N LEU B 222	61.899 -6.309	90.202	1.00 22.74
ATOM			63.198 -5.643	90.223	1.00 21.18
ATOM	4770	CA LEU B 222			
ATOM	4771	CB LEU B 222	63.453 -4.993		1.00 17.11
	4772		63.467 -6.027		1.00 20.26
ATCM			63.453 -5.354	86.361	1.00 20.00
ATCM	4773	CD1 LEU B 222			1.00 21.93
ATCM	4774	CD2 LEU B 222			
ATOM	4775	C LEU B 222	63.335 -4.616	91.353	1.00 20.01
ALON				-	

189/263

								. 00 17 50
ATOM	4776	0	LEU B	222		-4.030	91.806	1.00 17.58
ATOM	4777		PRO B			-4.394	91.830	1.00 19.48
ATOM	4778	CD	PRO B	223	65.806	-5.072	91.400	1.00 16.80
ATOM	4779	CA	PRO B	223		-3.454	92.915	1.00 20.38
ATOM	4780	CB	PRO B	223	66.274	-3.881	93.327	1.00 26.11
ATOM	4781	CG	PRO B	223	66.884	-4.161	91.973	1.00 19.74
ATOM	4782		PRO B		64.818	-1.971	92.553	1.00 21.39
ATOM	4783	Ċ	PRO B		64.815	-1.598	91.380	1.00 17.16
ATOM	4784		LYS B		64.798	-1.142	93.589	1.00 20.65
MOTA	4785			224	64.755	0.311	93.462	1.00 27.00
ATOM	4786	CB	LYS B		64.577	0.938	94.844	1.00 36:47
ATOM	4787	CG	LYS .B		63.415	0.389	95651	1.00 37.72
ATOM	4788	CD		224	63.541	0.833	97.101	1.00 42.06
ATOM	4789	CE		224	62.420	0.276	97.955	1.00 45.18
MOTA	4790	NZ	LYS B	224	62.645	0.570	99.399	1.00 46.30
MOTA	4791	С		224	66.071	0.808	92.874	1.00 27.01
ATOM	4792	0	LYS B	224	67.098	0.139	92.995	1.00 21.54
ATOM	4793	N		225	66.038	1.989	92.259	1.00 22.66
MOTA	4794	CA		225	67.239	2.565	91.669	1.00 25.67
ATOM	4795	С	GLY B	225	67.768	1.809	90.459	1.00 24.95
MOTA	4796	Ö		225	68.917	1.975	90.069	1.00 26.83
MOTA	4797	N		226	66.926	0.980	89.855	1.00 21.79 1.00 22.91
ATOM	4798	CA	LEU B	226	67.319	0.180	88.692	
ATOM	4799	CB	LEU B	226	66.067	-0.473	88.099	1.00 23.29 1.00 26.71
ATOM	4800	CG	LEU B	226	66.238	-1.605	87.091	1.00 26.71
MOTA	4801		LEU B	226	66.846	-2.804	97.813 86.508	1.00 20.44
ATOM	4802		LEU B	226	64.877	-1.997	87.603	1.00 22.56
ATOM	4803	С	LEU B	226	68.008 67.517	1.017 2.087	87.250	1.00 20.19
ATOM	4804	0	LEU B	226	69.134	0.549	87.060	1.00 15.52
MOTA	4805	N	ASN B	227	69.134	1.317	85.998	1.00 19.49
MOTA	4806	CA	ASN B	227	71.304	1.474	86.270	1.00 20.43
ATOM	4807	CB	ASN B	227 227	72.062	0.161	86.206	1.00 28.97
ATOM	4808	CG	ASN B	227	72.015	-0.546	85.199	1.00 24.30
ATOM	4809	OD1		227	72.786	-0.160		1.00 20.88
ATOM	4810		ASN B	227	69.548	0.671	84.630	1.00 21.26
ATOM	4811	C	ASN B	227	69.004	-0.432	84.555	1.00 18.90
ATOM	4812	:1 O		228	69.949	1.347	83.552	1.00 20.98
ATOM	4813 4814	CA	ASP B		69.720	0.817	82.208	1.00 22.51
MOTA	4815	CB	ASP B		70.270	1.753	31.126	1.00 23.46
ATOM ATOM	4816	CG	ASP 3		69.596	3.113	81.119	1.00 26.12
ATOM	4817	001		228	68.387	3.193	81.415	1.00 26.75
ATOM	4818	OD2			70.276	4.101	80.773	1.00 30.22
ATOM	4819	C	ASP B		70.286	-0.573	81.952	1.00 23.49
ATOM	4820	O	ASP B	228	69.651	-1.390	81.288	1.00 19.31
ATCM	4821	N	ASN B	229	71.484	-0.836	82.453	1.00 22.24
ATOM	4822	CA	ASN B	229	72.111	-2.135	82.250	1.00 23.30
ATCM	4823	CB	ASN B	229	73.562	-2.101	82.737	1.00 20.99 1.00 25.71
ATCM	4824	CG	ASN B	229	74.441	-1.237	81.859	1.00 25.71
ATOM	4825	OD1	ASN B	229	74.644	-1.538	80.678	1.00 27.44
ATCM	4826	ND2		229	74.955	-0.151	82.417	1.00 27.44
atom	4827	C	ASN B	229	71.341	-3.252	82.943	1.00 20.51
ATOM	∔ 828	0	asn B	229	71.207	-4.346	82.402 84.139	1.00 23.06
MOTA	4829	71	GLU B	230	70.832	-2.976		1.00 23.01
MOTA	4830	CX	GLU B	230	70.069	-3.977 -3.480		1.00 24.73
ATOM	4831	CB	GLU 3		69.799	-3.480		1.00 27.28
MOTA	4832	CG	GLU E		71.069 - 70.792	-2.649		1.00 27.47
ATOM	4833	CD	GLU E	3 230	70.086	-1.625		1.00 27.87
ATOM	4834		GLU E	320	70.086	-3.232		
ATOM	4835	OE	GLU E	3 230	68.749	-4.281		
ATOM	4836	C	GLU E	3 230	68.347	-5.445		1.00 15.89
ATOM	4837		GLU E	220	68.391	-3.242		1.00 21.46
ATOM	÷838		PHE E	3 231	66.814	-3.429		1.00 22.84
ATOM	4839		PHE E	3 231	66.210	-2.079		1.00 23.96
. ATOM	4840 4841			3 231	64.803			
ATOM	4041	CG		-			•	

3 TOM	4842	נ נמט	PHE B 2	31	63.738	-2.514	82.805	1.00 25.00
ATOM					64.550	-1.956	80.627	1.00 22.93
MOTA	4843		PHE B 2				82.304	1.00 25.03
MOTA	4844	CE1 I	PHE B 2.	31	62.440	-2.618		
ATOM	4845	CE2	PHE B 2	31	63.250	-2.059	80.114	1.00 27.46
			PHE B 2		62.196	-2.390	80.957	1.00 20.25
MOTA	4846					-4.288	81.677	1.00 23.14
MOTA	4847	C 1	PHE B 2	31	66.978			
ATOM	4848	0	PHE B 2	31	66.221	-5.239	81.464	1.00 20.02
			LEU B 2		67.963	-3.952	80.845	1.00 22.02
MOTA	4849						79.614	1.00 19.97
MOTA	4850	CA :	LEU B 2	32	68.200	-4.697		
ATOM	4851	CB :	LEU B 2	32	69.192	-3.942	78.734	1.00 24.99
					68.665	-2.581	78.263	1.00 29.73
MOTA	4852			32			77.454	1.00 28.11
MOTA	4853			32	69.746	-1.856		
MOTA	4854	CD2	LEU B 2	32	67.409	-2.784	77.414	1.00 26.54
			LEU B 2		68.688	-6.119	79.898	1.00 19.25
MOTA	4855						79.162	1.00 19.49
MOTA	4856		LEU B 2		68.365	-7.051		
	4857	N	PHE B 2	33	69.468	-6.280	80.962	1.00 20.50
MOTA			PHE B 2		69.950	-7.599	81.378	1.00 20.70
MOTA	4858		_			-7.471	82.632	1.00 23.75
MOTA	4859			.33	70.825			
ATOM	4860	CG	PHE B 2	.33	71.217	-8.790	83.239	1.00 28.58
			PHE B 2		72.285	-9.519	82.731	1.00 30.48
MOTA	4861				70.481	-9.328	84.294	1.00 25.32
MOTA	4862			:33				
MOTA	4863	CE1	PHE B 2	133		-10.762	83.262	
	4864			:33	70.803	-10.573	84.832	1.00 31.26
MOTA					71 071	-11.292	84.317	1.00 32.29
ATOM	4865	CZ	_	233				
MOTA	4866	C .	PHE B 2	233	68.712	-8.439	81.727	
	4867	0	PHE B 3	33	68.553	-9.567	81.270	1.00 21.56
MOTA					67.842	-7.878	82.560	1.00 21.26
MOTA	4868	N	ALA B					1.00 19.60
MOTA	4869	CA	ALA B 2		66.626	-8.576	82.963	
MOTA	4870	CB	ALA B 2	234	65.835	-7.733	83.950	1.00 19.25
			ALA B		65.772	-8.898	81.749	1.00 18.87
ATOM	4871	С				-10.010	81.624	1.00 21.91
MOTA	4872	0	ALA B					
MOTA	4873	N	LEU B	235	65.634	-7.934	80.845	_
	4874	CA	LEU B 2	235	64.822	-8.141	79.652	1.00 19.53
MOTA					64.773	-6:874	78 ⁻ .795	1.00 24.07
MOTA	4875	CB		235				1.00 27.87
MOTA	4876	CG	LEU B	235	63.465	-6.607	78.024	
MOTA	4877	CD1	LEU B	235	63.783	-5.813	76.770	1.00 20.77
			LEU B	235	62.761	-7.897	77.664	1.00 26.94
ATOM	4878					-9.276	78.795	1.00 20.79
MOTA	4879	С	LEU B	235	65.376			1.00 18.25
ATOM	4880	0	LEU B	235	64.648	-10.205	78.431	
	4881	N		236	66.665	-9.191	78.462	1.00 19.33
MOTA		-				-10.206	77.629	1.00 27.93
MOTA	4882	CA		236			77.384	1.00 31.06
MOTA	4883	CB	GLU B	236	68.777	-9.853		1.00 31.00
MOTA	4884	CG.	GLU B	236	68.969	-8.597	76.548	1.00 43.60
				236	70.428	-8.292	76.259	1.00 45.19
MOTA	4885	CD			70.697	-7.309	75.538	1.00 48.77
ATOM	4886		GLU B					1.00 52.72
ATOM	4887	OE2	GLU B	236	71.300	-9.032	76.751	
	4888	С	GLU B		67.20.	-11.607	78.209	1.00 24.89
ATOM			CLU D	226	66.865		77.501	1.00 22.06
ATCM	4889	0	GLU B				79.492	1.00 24.20
ATCM	4890	N	LYS B		67.520	-11.748		1.00 27.10
ATOM	4891	CA	LYS B	237	67.449	-13.058	80.130	1.00 27.10
			LYS B	237	67 989	-12.984	81.562	1.00 23.43
ATOM	4892	CB			60.466	-12.641	81.650	1.00 29.46
ATOM	4893	CG	LYS 3		69.400	-12.091		1.00 31.65
ATOM	4894	CD	LYS B	237	70.305	-13.683	80.924	
		CE	LYS B		71.782	-13.356	80.993	1.00 39.70
NOTA	4895		D13 D	227		-14.363	80.242	1.00 46.74
MOTA	4896	NZ	LYS B		12.500	17 (15		1.00 30.92
MOTA	4897	C	LYS B	237	66.019	-13.615	80.143	
	4898	ō	LYS B		65.789	-14.766	79.763	1.00 31.42
ATOM			222 2	238		-12.806		1.00 25.86
MOTA	4899	N	SER B	-30	63.637	12 200		
ATOM	4900	CA	SER B		63.677	-13.280		1.00 27.00
	1901	СЗ	SER B		62.776	-12.241	81.289	
ATOM			SER B	238	62 756	-11.028	80.565	1.00 29.27
ATCM	4902	OG	DEK D	230	62 1/5	-13.642		
ATOM	4903	С	SER B	23B	03.143	-13.042		
MOTA	4904	0	SER B	238	62.387	-14.605	79.089	
	4905		LEU B	239	63.536	-12.886	78.203	
ATOM			750 0	230	63 079	-13.192	76.846	1.00 32.52
atcm	4906		LEU B	437	65.073	12.12	_	- 00 53
ATCM	4907	CB	LEU B	239	63.544	-12.129		* . • • • • • •

						_
	4000	CG LEU B 239	62.833	-10.772	75.895	1.00 36.06
ATOM	4908	CG LEU B 239		-9.836	74.842	1.00 29.64
MOTA	4909	CD1 LEU B 239	63.404			1.00 30.73
ATOM	4910	CD2 LEU B 239	61.338		75.667	
	4911	C LEU B 239	63.598	-14.563	76.430	1.00 34.15
ATOM			62.879	-15.340	75.803	1.00 33.23
ATOM	4912		64.844		76.788	1.00 31.39
ATOM	4913	N GLU B 240				1.00 33.79
MOTA	4914	CA GLU B 240	65.434		76.472	
ATOM	4915	CB GLU B 240	66.859		77.011	1.00 38.51
		CG GLU B. 240	67.878	-15.407	76.275	1.00 40.56
ATOM	4916	CG GLO B. 240	69.256		76.903	1.00 48.20
ATOM	4917	CD GLU B 240			77.161	1.00 45.36
ATOM	4918	CE1 GLU B 240		-16.679		1.00 48.21
MOTA	4919	OE2 GLU B 240		-14.492	77.130	
	4920	C GLU B 240	64.604	-17.258	77.108	1.00 33.23
ATOM			64 391	-18.310	76.510	1.00 32.15
ATOM	4921	O GLU B 240		-17.017	78.331	1.00 29.72
MOTA	4922	11 ILE B 241		-17.989	79.047	1.00 29.85
MOTA	4923	CA ILE B 241				1.00 30.42
ATOM	4924	CB ILE B 241		-17.489	80.466	
	4925	CG2 ILE B 241	62.049	-18.456	81.162	1.00 29.88
ATOM		CG1 ILE B 241	64.309	-17.311	81.254	1.00 29.77
ATOM	4926	CG1 1PP B 241	64 118	-16.760	82.654	1.00 32.92
ATOM	4927	CD1 ILE B 241		-18.247	78.298	1.00 34.65
MOTA	4928	C ILE B 241				1.00 30.22
MOTA	4929	C ILE B 241	61.592	-19.396	78.149	
ATOM	4930	N VAL B 242	61.379	-17.178	77.823	1.00 31.16
		CA VAL B 242	60.114	-17.312	77.105	1.00 34.55
MOTA	4931	010		-15.937	76.825	1.00 30.77
MOTA	4932			-16.113	76.038	1.00 32.18
ATOM	4933	CG1 VAL B 242			78.140	1.00 31.57
ATOM	4934	CG2 VAL B 242		-15.214		
ATOM	4935	C VAL B 242		-18.042	75.787	
MOTA	4936	O VAL B 242	59.572	-18.959	75.453	1.00 33.93
		N LYS B 243	61.337	-17.627	75.042	1.00 38.64
MOTA	4937			-18.241	73.760	1.00 44.36
ATOM	4938			-17.659	73.214	1.00 48.33
MOTA	4939	CB LYS B 243			72.386	1.00 53.88
MOTA	4940	CG LYS B 243	62.810			
ATOM	4941	CD LYS B 243	62.185	-16.718	71.036	
ATOM	4942	CE LYS B 243	63.056	-17.681	70.242	1.00 54.69
		NZ LYS B 243	62.456	-18.025	68.923	1.00 57.75
MOTA	4943		61.793		73.824	1.00 43.21
MOTA	4944	_	61.432		72.884	1.00 42.92
· ATOM	4945	0 LYS B 243			74.935	1.00 45.77
ATOM	4946	: GLU B 244	62.312			1.00 47.72
ATOM	4947	CA GLU B 244	62.528		75.085	1.00 47.72
ATOM	4948	CB GLU B 244	63.669	-21.925	76.075	1.00 50.89
		CG GLU B 244	64.080	-23.378	76.208	1.00 57.16
ATOM	4949		65.223	-23.564	77.173	1.00 57.74
MOTA	4950		66.295		76.942	1.00 60.18
ATOM	4951	CE1 GLU B 244		-24.308	78.160	1.00 61.59
MOTA	4952	OE2 GLU B 244	65.049	-24.300	76.100	1.00 47.78
MOTA	4953	C GLU B 244	61.312	-22.507	75.505	1.00 47.70
MOTA	4954	O GLU B 244	61.376	-23.736	75.544	1.00 51.39
	4955	N VAL B 245	60.200	-21.851	75.805	1.00 43.31
ATOM				-22.589		1.00 43.55
atom	4956			-22.514		1.00 45.89
ATOM	4957	CB VAL B 245	50.007	22.32.		
ATOM	4958	CG1 VAL B 245		-23.322		
ATOM	4959	CG2 VAL B 245		23.040		
ATOM	4960	C VAL B 245	57.727	-22.115	75.565	
			56.659	-22.676	75.798	1.00 39.36
MOTA	4961			-21.101		1.00 34.37
MOTA	4962] PHE B 246		-20.602		
MOTA	4963	CA PHE B 246				
ATOM	4964	CB PHE B 246		5 -19.517		
ATOM	4965	CG PHE B 246	54.54	2 -19.230	74.644	
	4966	CD1 PHE B 246	53.54	3 -20.142	74.989	
MOTA				1 -18.048	74.003	1.00 28.20
ATOM	4967			7 -19.878		1.00 26.71
ATOM	4968	CE1 PHE B 246		5 -17.773		
ATCM	4969	CE2 PHE B 246				
ATOM	4970	CC PHE B 246		0 -18.689		
ATOM	: 4971	C PHE B 246	56.90	4 -20.040		1.00 33.32
	4972	14/	57.74	0 -19.15		1.00 31.73
ATOM	4973		56.20	5 -20.56	g 71.683	1.00 37.00
ATOM	43/3	GLO 2 2.			•	

192/263 Figure 18-76

MOTA	4974	CA C	GĻU B	247	56.363			70.296	1.00 40	
MOTA	4975			247	56.518			69.370	1.00 43	
ATOM	4976	CG (GLU B	247	56.670			70.073	1.00 51	
MOTA	4977	CD (247	55.381			70.718		. 29
MOTA	4978			247	54.887			71.691	1.00 49 1.00 60	
MOTA	4979			247	54.859			70.241		.04
MOTA	4980			247	-		19.379	69.939 69.436		. 49
MOTA	4981			247	55.076		19.960 18.064	70.182		.13
MOTA	4982			248	56.188		17.270	70.733		.57
ATOM	4983		PRO E				17.273	69.916		.03
ATOM	4984		PRO B	248			15.878	70.562		.33
MOTA	4985			248	55.844		15.880	70.233		. 85
MOTA	4986 4987			248			16.990	68.457		.44
MOTA	4988			248			16.808	67.604	1.00 29	.38
MOTA MOTA	4989		GLU B	249	52.26		17.012	68.182		.23
MOTA	4990		GLU B	249	51.77	3 –	16.782	66.828	1.00 29	.35
ATOM	4991		GLU B	249	50.37		17.366	66.645		.87
ATOM	4992		GLU B	249			18.867	66.787		.64
ATOM	4993		GLU B	249			19.338	66.747		.37
ATOM	4994		GLU B	249	48.06		18.917	67.630		.38
ATOM	4995	OE2	GLU B	249			20.115	65.835		.71
MOTA	4996		GLU B	249			15.273	66.650		1.25 47
MOTA	4997		GLU B	249			14.765	65.537 67.768		77
MOTA	4998		VAL B	250	51.56		14.564	67.756		.41
ATOM	4999	CA	VAL B	250 250			12.676	67.750		.42
MOTA	5000		VAL B	250	49.03		13.196	68.378		0.96
MOTA	5001		VAL B	250	49.93		11.166	67.243		1.68
ATOM	5002 5003	C	VAL B	250			12.608	69.168	1.00 22	2.88
MOTA MOTA	5003	0	VAL B		51.59		13.354	70.133	1.00 18	3.00
ATOM	5005	и	TYR B	251	52.20		-11.359	69.295	_	0.28
ATOM	5006	CA	TYR B		52.48	1 -	-10.823	70.620		2.33
MOTA	5007	CB	TYR B		53.95		-11.043	70.999		0.67
ATOM	5008	ĊG	TYR B				-10.045	70.427		1.89
MOTA	5009	CD1			55.19		-8.834	71.072		9.31
MOTA	5010	CEl	TYR B		56.12		-7.922	70.562		3.73 B.72
ATOM	5011	CD2	TYR B		55.65		-10.321	69.254 68.734		2.71
MOTA	5012	CE2	TYR B		56.58 56.81		-9.417 -8.220	69.390		7.33
MOTA	5013	CZ	TYR B		57.70		-7.308	68.865		3.18
ATOM	5014	он	TYR B		52.13		-9.349	70.732		5.71
MOTA	5015 5016	C 0	TYR B		52.09		-8.622	69.728		0.14
ATOM ATOM	5017	N	LEU B		51.83		-8.930	71.958		1.13
ATOM	5018	CA	LEU B		51.53		-7.532	72.252	1.00 2	
MOTA	5019	CB	LEU B		50.15	54	-7.373	77.897	1.00 2	2.88
ATOM	5020	CG	LEU B	252	48.91		-7.435	1.996	1.00 2	3.73
ATOM	5021	CD1	LEU B	252	48.77		-8.792	~ 1.360	1.00 2	3.18
ATOM	5022	CD2	LEU B	252	47.69		-7.119	72.833	1.00 2	
ATOM	5023	С	LEU B		52.61		-7.044	73.217	1.00 2 1.00 2	3 33
MOTA	5024	0	LEU B	252	53.06		-7.797	74.076	1.00 2	0 14
ATOM	5025	N	LEU B	253	53.01		-5.786	73.071 73.911	1.00 2	0.13
MOTA	5026	CA	LEU B	253	54.05		-5.209 -4.946		1.00 1	5.18
ATOM	5027	CB	LEU B	253	55.30 56.49		-4.210	73.688	1.00 1	8.34
MOTA	5028	CG	LEU B	253	57.00		-5.044	74.829	1.00 1	4.11
ATOM	5029	CD1)	57.5		-3.953	72.624	1.00 1	9.60
ATOM	5030		LEU E	252	53.5		-3.913	74.536	1.00 2	0.54
ATOM	5031	c ၁	LEU E	253	53.2		-2.974	73.821	1.00 2	2.80
ATOM	5032 5033	Ŋ	GLN E	254	53.4		-3.858	75.865	1.00 2	0.37
ATOM	5033	CA	GLN E	254	53.0		-2.654	76.539	1.00 2	1.77
atom atom	5035	CB	GLN E	3 254	52.1		-3.040	77.755	1.00	.7.85
ATOM	5036	CG	GLN E		52.7		-2.815	79.124	1.00 3	2.51
ATOM	5037	CD	GLN E		52.5		-1.396	79.609	1.00	.0.17
ATCM	5038		GLN E		51.5		-0.996	80.124	1.00 2	6 90
ATOM	5039		GLN E		53.6	03	-0.619	79.432	1.00	, 0 . 50

193/263 Figure 18-77

						F4 011	-1.793	76.887	1.00 20.15
ATOM	5040		LN B			54.211			
ATOM	5041	0 G	LN B	254		55.186	-2.254	77.497.	1.00 20.11
MOTA	5042		EU B			54.146	-0.532	76.468	1.00 19.46
			EU B			55.268	0.386	76.614	1.00 15.99
ATOM	5043					-		75.211	1.00 18.15
ATOM	5044		EU B			55.692	0.831		
MCTA	5045	CG L	EU B	255		56.143	-0.316	74.296	1.00 21.80
	5046	CD1 L				56.215	0.159	72.850	1.00 16.70
MCTA						57.501	-0.843	74.771	1.00 13.76
ATOM	5047		EU B						
ATOM	5048	C L	EU B	255		55.083	1.614	77.492	1.00 21.41
ATCM	5049	0 .L	EU B	255		55.379	2.741	77.065	1.00 18.40
			LY B			54.618	1.408	78.718	1.00 16.80
ATOM	5050						2.519	79.634	1.00 19.90
ATOM	5051		LY B			54.456			
ATOM	5052	C G	LY B	256	•	55.816	3.181	79.818	1.00 17.68
	5053		LY B			56.854	2.514	79.841	1.00 13.96
ATOM			THR B			55.824	4.497	79.936	1.00 19.55
MOTA	5054						5.205	80.098	1.00 19.47
ATOM	5055		HR B	257		57.081			
ATOM	5056	CB T	HR B	257		57.044	6.547	79.340	1.00 21.49
	5057		THR B	257		55.989	7.365	79.858	1.00 17.43
MCTA				257		56.780	6.311	77.850	1.00 22.49
ATOM	5058							81.564	1.00 20.75
MOTA	5059		THR B			57.440	5.466		
ATOM	5060	0 1	THR B	257		58.480	5.054	81.843	1.00 25.01
	5061	N A	ASP B	258		56.618	5.004	82.504	1.00 17.23
ATOM		14 2	101 D	250		56.929	5.277	83.906	1.00 17.42
ATOM	5062		ASP B					84.846	1.00 12.75
ATOM	5063		ASP B			55.744	4.940		
ATOM	5064	CG F	ASP B	258		55.197	3.524	84.676	1.00 21.60
	5065		ASP B			58.245	4.718	84.460	1.00 16.09
ATOM						58.667	5.116	85.542	1.00 22.07
ATOM	5066		ASP B						1.00 17.74
ATOM	5067	OD1 A	ASP B	258		55.901	2.642	84.150	
ATOM	5068		ASP B	258		54.041	3.281	85.109	1.00 18.68
			PRO B			58.879	3.746	83.779	1.00 20.98
ATOM	5069					58.474	2.901	82.641	1.00 17.75
MOTA	5070		PRO B	259				84.321	1.00 22.63
ATOM	5071	CA I	PRO B	259		60.154	3.257		
ATOM	5072	CB I	PRO B	259		60.395	1.988	83.506	1.00 23.46
			PRO B			59.800	2:343	82.199	1.00 27.08
ATOM	5073					61.305	4.284	84.172	1.00 23.86
ATOM	5074		PRO B						1.00 24.24
ATOM	5075	0	PRO B	259		62.406	4.082	84.698	
MOTA	5076	N I	LEU B	260		61.054	5.387	83.465	1.00 20.49
	5077		LEU B			62.080	6.417	83.262	1.00 15.17
ATOM						61.626	7.408	82.185	1.00 17.03
ATOM	5078		LEU B					80.760	1.00 16.02
MOTA	5079		LEU B			61.431	6.881		
ATOM	5080	CD1	LEU B	260		60.703	7.915	79.901	1.00 17.03
	5081	CD2	LEU B	260		62.803	6.546	80.163	1.00 18.58
ATOM						62.449	7.194	84.541	1.00 22.45
ATOM	5082		LEU B					85.412	1.00 17.84
ATOM	5083	0	LEU B	260		61.611	7.440		1.00 22.90
MOTA	5084	N	LEU B	261		63.713	7.588	84.635	
	3085	CA	LEU B	261		64.219	8.332	85.782	1.00 26.34
ATOM		C.R.	1 = 11 = 5	261		65.605	8.914	85.473	1.00 20.58
ATOM	3086		LEU B	201			9.850	86.553	1.00 28.44
ATOM	5087		LEU E			66.180			
ATOM	5088	CD1	LEU E	261		66.481	9.055	87.812	1.00 29.84
	5089	CD2	LEU E	261		67.462	10.522	86.057	1.00 32.10
ATOM						63.315	9.475	86.227	1.00 27.61
ATOM	5090		LEU E				9.586	87.408	
ATOM	5091		LEU E			62.978			
ATOM	5092	17	GLU E	262		62.934	10.315	85.269	1.00 23.33
	5093		GLU E			62.126	11.490	85.530	1.00 23.38
ATOM						62.115	12.415	84.302	1.00 23.17
ATOM	5094		GLU E					83.806	
ATOM	5095	CG	GLU E	3 262		63.503	12.854		
ATOM	5096	CD	GLU E	262		64.179	11.831	82.902	
			GLU E			63.702	10.673	82.838	1.00 29.28
ATOM	5097					65.201	12.186	82.264	
ATOM	5098		GLU F						
ATOM	5099	С	GLU E			60.693	11.249		
ATOM	5100	0	GLU F	262		60.013	12.192		
			ASP :			60.219	10.011	85 927	1.00 22.25
ATOM	5101	11				58.840			
ATOM	5102	CA	ASP I						
ATOM	5103	CB	ASP I			58.214			
ATOM	5104	CG	ASP 1	B 263		56.710			
	5105		ASP :			55.995	8.318	84.656	1.00 21.82
ATOM	2103	1001						•	

	= : 0 €	OD2 ASP	12	263	56.	239	8.666	86.811	1.00	18.31
MOTA	5106		-	203				87.814		26.39
ATOM	5107		В			834	9.339			
ATOM	5108	O ASP	В	263	59.	437	8.335	88.179	1.00	
			В		58.	155	10.124	88.648	1.00	25.81
MOTA	5109					101	9.864	90.084	1.00	30.96
ATOM	5110	CA TYP		264						36.80
ATOM	5111	CB TYP	В	264	57.	511	11.055	90.841		
	5112	CG TYF		264	58.	241	12.356	90.645		46.58
MOTA						981	13.166	89.542	1.00	47.03
MOTA	5113			264				89.364		50.25
MOTA	5114.			264		654	14.370			
MOTA	5115	CD2 TYF	В	264	59.	197	12.779	91.565		50.94
				264	59.	876	13.977	91.396	1.00	51.28
MOTA	5116	CEZ III		204		600	14.769	90.297	1 00	52.21
ATOM	5117	CZ TYF	B	264	• •				1.00	49.65
MOTA	5118	OH TYP	B	264	60.	268	15.961	90.142		
	5119	C TYP	P 19	264	57.	340	8.628	90.525		31.04
MOTA				264			8.181	91.657	1.00	24.50
ATOM	5120						8.074	89.666		26.68
ATOM	5121			265		491				
ATOM	5122	CA LE	JB	265	55.	744	6.900	90.086		24.17
				265	54.	371	6.838	89.390	1.00	24.69
MOTA	5123					415	7.982	89.761	1.00	26.00
ATOM	5124			265						22.21
MOTA	5125	CD1 LEV	JB	265		970	7.583	89.460		
	5126	CD2 LET	I B	265	53.	530	8.281	91.238		29.31
MOTA		C I E	1 5	265	56	478	5.568	89.948	1.00	25.83
MOTA	5127						4.512	89.908		21.74
ATOM	5128	O LE	JB	265		848				
MOTA	5129	N SE	R B	266	5 7 .	. 808	5.618	89.867		23.30
	5130		R B	266	58	608	4.398	89.813	1.00	20.75
MOTA						820	3.900	88.378	1.00	19.67
ATOM	5131			266				87.739		18.11
ATOM	5132	OG SE	R B	266		. 863	4.615			
ATOM	5133	C SE	R B	266	59	. 963	4.710	90.420		23.01
	5134			266	60	.437	5.845	90.345	1.00	17.74
MOTA						.590	3.707	91.023	1.00	24.25
ATOM	5135			267				91.613	1 00	23.79
MOTA	5136	CA LY	S B	267	61	. 905	3.916			
ATOM	5137	CB LY	S B	267	62	.027	3.153	92.929		23.71
		CG LY	c 5	267	60	.989	3.582	93.960		27.29
MOTA	5138		2 5	207		.059	5.088	94.207	1.00	30.33
MOTA	5139	CD LY	SB	267				-	1 00	30.90
ATOM	5140	CE LY	S B	267		.067	5.535	95.273		
ATOM	5141	NZ LY	S B	267	60	. 155	7.004	95.509		33.37
		CIV	- B	267	62	.990	3.483	90.634		26.41
MOTA	5142	C LY	3 5	207		.153	3.317	91.016	1 00	25:33
ATOM	5143	O LY	SB	267					1 00	22.18
MOTA	5144	N PH	E B	268		.595	3.288	89.375		
ATOM	5145	. CA PH	E B	268	63	. 529	2.919	88.318		22.78
		CD DU		268	62	.814	2.171	87.179	1.00	20.55
MOTA	5146					.389	0.761	87.526	1 00	19.23
MOTA	5147		E B						1.00	
ATOM	5148		E B			.722	-0.025	86.585		
MOTA	5149	CD2 PH	E B	268	62	. 673	0.207	88.773	1.00	
		CE1 PH	E 0	268		.344	-1.336	86.875	1.00	18.83
MOTA	5150	CEI PR	E 5	200		.300			1.00	20.05
MOTA	5151	CE2 PH	E B	268					1.0	
ATOM	5152	CZ PH	E B	268		.634	-1.879	88.122		
	5153	C PH	E B	268	64	.114	4.222	87.785	1.00	
ATOM		0 11	E 5	268		.412	5.232	87.692	1.00	19.40
MOTA	5154	O PF	LE E	200			4.203	87.437		21.96
ATOM	5155			269		.396				
ATOM	5156	CA AS	N B	269	66	.060	5.396	86.926		25.04
	5157			269	67	.243	5.783	87.824		25.68
ATOM						.845	5.946	89.273	1.00	27.04
MOTA	5158			269						28.81
MOTA	5159	OD1 AS	N E	269		.832	6.557	89.579		20.02
	5160	ND2 AS			67	.659	5.419	90.176	1.00	31.12
ATOM		0 30	מ זאכ	269		.579	5.151	85.523	1.00	25.87
MOTA	5161	C AS	21A E	203			5.336	85.268		24.58
ATOM	5162			3 269		.769				21.37
ATOM	5163	N LI	EU E	3 270	65	6.695	4.757			21.21
		C3 11	711	3 270	66	.116	4.462	83.241		0 16.35
MOTA	5164	CA. LI		270		.176			1.0	0 24.12
ATOM	5165			3 270						0 27.89
ATOM	5166		EU E			1.909	_		1.0	0 23 01
ATOM	5167	CD1 L			64	1.181	1.136	82.515	1.0	0 23.01
				2 270	66	5.221	1.547	83.904	1.0	0 23.92
ATOM	5168			270		.184			1.0	0 20.06
ATOM	5169			3 270					1 10	0 16.34
ATOM	5170		EU :	3 270		5.654			1.0	0 20.03
ATOM	5171			3 271	66	5.839	5.497	81.193	1.0	0 20.07
A 1 C 2121	1		•							

195/263 Figure 18-79

					•				
MOTA	5172	CA	SER	В	271	66.989	6.546	80.200	1.00 21.20
MOTA	5173	CB	SER			68.437	6.621	79.714	1.00 21.80
ATOM	5174	OG	SER	В	271	68.772	5.485	78.921	1.00 21.47
ATOM	5175	С	SER	В	271	66.106	6.228	79.000	1.00 22.83
ATOM	5176	Ó	SER		271	65.631	5.102	78.854	1.00 16.12
ATOM	5177	11	ASN		272	65.916	7.238	78.154	1.00 20.84
ATOM	5178	CA	ASN		272	65.152	7.156	76.906	1.00 27.82
ATOM	5179	CB	ASN		272	65.263	8.478	76.123	1.00 30.30
ATOM	5180	CG	ASN		272	64.198	9.456	76.475	1.00 37.83
MOTA	5181	OD1	ASN		272	64.167	10.575	75.946	1.00 37.72
ATOM	5182		ASN		272	63.299	9.052	77.360	1.00 41.69
ATOM	5183	C	ASN		272	65.701	6.088	75.974	1.00 26.88
ATOM	5184	ō	ASN		272	64.967	5.280	75.412	1.00 23.12
ATOM	5185	N	VAL		273	67.012	6.160	75.774	1.00 20.40
ATOM	5186	CA	VAL		273	67.745	5.260	74.899	1.00 27.34
ATOM	5187	CB	VAL	В	273	69.225	5.705	74.805	1.00 30.40
ATOM	5188		VAL		273	70.036	4.691	74.029	1.00 34.98
ATOM	5189	CG2	VAL	Б	273	69.299	7.057	74.115	1.00 33.57
ATOM	5190	С	VAL		273	67.664	3.812	75.343	1.00 24.23
ATOM	5191	0	VAL		273	67.590	2.913	74.513	1.00 24.19
ATOM	5192	N	ALA	В	274	67.690	3.580	76.648	1.00 20.96
MOTA	5193	CA	ALA	В	274	67.589	2.220	77.151	1.00 18.12
ATOM	5194	CB	ALA	В	274	67.858	2.195	78.646	1.00 19.09
MOTA	5195	С	ALA	В	274	66.172	1.729	76.863	1.00 18.23
MOTA	5196	0	ALA	В	274	65.962	0.567	76.525	1.00 20.77
MOTA	5197	N	PHE	_	275	65.207	2.631	77.003	1.00 18.50
MOTA	5198	CA	PHE	В	275	63.802	2.310	76.761	1.00 21.25
MOTA	5199	CB	PHE	В		62.941	3.546	77.037	1.00 22.24
ATOM	5200	CG	PHE		275	61.466	3.303	76.921	1.00 24.72
MOTA	5201		PHE		275	60.815	2.483	77.826	1.00 23.64
MOTA	5202		PHE		275	60.732	3.893	75.907	1.00 27.31
ATOM	5203	CE1	PHE		275	59.450	2.254	77.722	1.00 27.82
ATOM	5204	CE2	PHE		275	59.365	3.670	75.795	1.00 27.62
MOTA	5205	CZ		В	275	58.727	2.851	76.701	1.00 25.78
ATOM	5206	C	PHE		275	63.642	1.860	75.305	1.00 24.47 1.00 22.68
MOTA	5207	0	PHE		275	63.045	0.821	75.030	1.00 22.05
ATOM	5208	N		В	276	64.183	2.648	74.378 72.946	1.00 21.28
ATOM	5209	CA		В	276	64.128	2.330 3.421	72.340	1.00 19.87
ATOM	5210	CB	LEU		276	64.814 65.114	3.421	70.662	1.00 24.94
MOTA	5211	CG	LEU		276 276	63.818	2.852	69.936	1.00 24.81
ATOM	5212 5213		LEU		276	65.840	4.312	70.018	1.00 21.01
MOTA	5213	CD2	LEU		276	64.841	1.021	72.653	1.00 22.33
MOTA	5214	0		В	276	64.348	0.191	71.886	1.00 20.73
MOTA MOTA	5216	N			277	66.011	0.857	73.261	1.00 20.72
ATOM	5217	CA	LYS			66.823	-0.335	73.076	1.00 24.36
ATOM	5218	CB	LYS			68.086	-0.239	73.938	1.00 27.37
ATOM	5219	CG	LYS			69.303	-0.973	73.381	1.00 35.58
ATOM	5220	CD	LYS		277	69.061	-2.456	73.188	1.00 43.87
ATOM	5221	CE	LYS		277	70.283	-3.137	72.580	1.00 44.87
ATOM	5222	NZ	LYS		277	70.616	-2.586	71.230.	1.00 49.66
ATOM	5223	C	LYS		277	66.000	-1.554	73.482	1.00 24.22
ATOM	5224	ō	LYS		277	65.987	-2.568	72.777	1.00 19.90
MOTA	5225	N	ALA		278	65.319	-1.454	74.624	1.00 22.32
ATOM	5226	CA	ALA		278	64.476	-2.544	75.114	1.00 21.71
ATOM	5227	CB	ALA		278	63.752	-2.117	76.381	1.00 17.34
ATOM	5228	c	λLA			63.459	-2.896	74.031	1.00 22.68
ATCM	5229	Ö	ALA		278	63.231	-4.068	73.723	1.00 19.27
ATOM	5230	N	PHE		279	62.849	-1.862	73.464	1.00 24.79
ATOM	5231	CA	PHE		279	61.860	-2.014	72.398	1.00 22.74
ATOM	5232	CB	PHE		279	61.395	-0.629	71.955	1.00 22.46
ATOM	5233	CG	PHE		279	60.467	-0.640	70.778	1.00 22.62
ATOM	5234	CD1			279	59.196	-1.182	70.882	1.00 21.74
ATOM	5235		PHE	В	279	60.862	-0.078	69.567	1.00 26.07
ATOM	5236		PHE			58.325	-1.162	69.799	1.00 27.02
ATCM	5237	CE2	PHE	В	279	60.001	-0.051	68.476	1.00 25.57

				E0 727	-0.594	68.592	1.00 25.13
ATOM	5238	CZ	PHE B 279	58.727			
ATOM	5239	С	PHE B 279	62.472	-2.768	71.212	1.00 23.60
			PHE B 279	61.866	-3.697	70.678	1.00 26.54
MOTA	5240	0				70.804	1.00 21.93
MOTA	5241	N	ASN B 280	63.677	-2.376		
ATOM	5242	CA	ASN B 280	64.318	-3.046	69.680	1.00 23.70
			ASN B 280	65.520	-2.248	69.164	1.00 22.63
MOTA	5243	CB		65.107	-0.937	68.505	1.00 30.83
MOTA:	5244	CG	ASN B 280				1.00 25.81
MOTA	5245	OD1	ASN B 280	64.094	0.878	67.796	
	5246	MD2	ASN B.280	65.900	0.112	68.714	1.00 26.54
MOTA			ASN B 290	54.746	-4.466	70.009	1.00 26.10
MOTA	5247	С			-5.321	69.124	1.00 26.16
ATOM	5248	0	ASN B 280 -	64.775			
MOTA	5249	N	ILE B 281	65.080	-4.724	71.272	1.00 26.10
	5250	CA	ILE B 291	65.485	-6.067	71.667	1.00 25.81
MOTA				66.006	-5.098	73.124	1.00 28.50
MOTA	5251	CB	ILE B 281	-	-7.527	73.648	1.00 28.53
ATOM	5252	CG2		66.046			1.00 32.07
MOTA	5253	CG1	ILE B 281	67.392	-5.454	73.1 7 3	
ATOM	5254	CD1		68.038	-5.442	74.541	1.00 28.24
			ILE B 281	64.320	-7.030	71.507	1.00 25.77
MOTA	5255	C		64.484	-8.131	70.982	1.00 23.39
MOTA	5256	0	ILE B 281				1.00 21.30
MOTA	5257	N	VAL B 282	63.139	-6.618	71.950	
ATOM	5258	CA	VAL B 282	61.961	-7.465	71.813	1.00 22.90
			VAL B 282	60.703	-6.775	72.387	1.00 24.07
MOTA	5259	СВ		59.464	-7.611	72.093	1.00 22.28
ATOM	5260	CG1					1.00 26.89
MOTA	5261	CG2	VAL B 282	.60.865	-6.587	73.906	
ATOM	5262	C.	VAL B 282	61.718	-7,795	70.339	1.00 23.87
			VAL B 182	61.462	-8.949	69.978	1.00.22.65
ATOM	5263	0		61.799	-6.779	69.488	1.00 23.19
MOTA	5264	N	ARG B 293				1.00 27.95
MOTA	5265	CA	ARG B 283	61.576	-6.971	68.060	
ATOM	5266	CB	ARG B 283	61.510	-5.612	67.359	1.00 25.48
	5267	CG	ARG B 283	60.337	-4.760	67.838	1.00 26.55
MOTA				60.442	-3.333	67.339	1.00 31.52
ATOM	5268	CD	ARG B 283			65.908	1.00 24.43
ATOM	5269	NE	ARG B 283	60.210	-3.208		1.00 26.45
ATOM	5270	CZ	ARG B 283	60.915	-2.414	65.116	
	5271	NH1		61.902	-1.676	65.622	1.00 26.04
ATOM				60.634	-2.356	63.825	1.00 29.64
MOTA	5272	NH2		62.634	-7.855	67.402	1.00 32.04
ATOM	5273	C	ARG B 283				1.00 29.76
MOTA	5274	0	ARG B 283	62.341	-8.552	66.431	1.00 23.70
ATOM	5275	N	GLU B 284	63.859	-7.821	67.923	1.00 31.50
	5276	CA	GLU B 284	64.934	-8.646	67.381	1.00 32.42
ATOM			GLU B 284	66.289	-8.260	67.992	1.00 38.31
ATOM	5277	CB	GLU B 254	66.798	-6.864	67.640	1.00 48.93
ATOM	5278	CG	GLU B 284				1.00 56.28
ATOM	5279	CD	GLU B 284	68.102	-6.518	68.362	1.00 50.20
ATOM	5280	OE	L GLU B 284	69.084	-7.281	68.222	1.00 57.37
	5281	051	GLU B 284	68.150	-5.485	69.069	1.00 55.42
ATOM			GLU B 284		-10.105	67.714	1.00 31.93
ATOM	5282	C		64 000	-11.001		
MOTA	5283	0	GLU B 284				1.00 28.09
ATOM	5284	N	VAL B 285		-10.340	68.901	
ATOM	5285	CA	VAL B 285		-11.697	69.325	1.00 30.67
	5286	СВ	VAL B 285	63.687	-11.802	70.863	1.00 28.33
ATOM		C5	VAL D 205		-13.206	71.262	1.00 29.84
ATOM	5287	CG:	1 VAL B 285			71.478	
ATOM	5288	CG	2 VAL B 285		-11.470		
ATOM	5289	С	VAL B 295		-12.265	68.758	1.00 31.19
	5290	ō	VAL B 285	62.422	-13.423	68.349	- 1.00 31.38
ATOM					-11.460	68.729	1.00 28.21
atom	5291	N	PHE B 286		-11.948	68.249	
MOTA	5292	CA	PHE B 286				
3.00OM	5293	CB	PHE B 286		-11.853	69.374	
ATOM	5294	ÇĞ			-12.804	70.514	
		20	1 PHE B 286		-12.331	71.779	1.00 25.16
ATOM	5295				-14.180	70.319	
ATCM	5296	CD:	2 PHE B 186			72.833	
MOTA	5297	CE	1 PHE B 336	59.880	-13.213		
ATOM	5298	CE			-15.063	71.362	
	5299	CZ		59.772	-14.578	72.626	1.00 26.75
ATOM			PHE B 286		-11.318		1.00 25.90
ATOM	5300		PHE B 200	50 300	-11.630	66.620	
ATCM-	5301	0	PHE 5 286				
ATOM	5302	N	GLY B 287		-10.451		
ATOM	5303			59.756	-9.814	65.130	1.00 23.38
A I Cri	220					•	

	5304	_	GLY B 287		58.765	-8.719	65.498	1.00 29.17
ATCM	5304	С				-8.216	56.517	1.00 22.88
ATCM	5305	0	GLY B 287		58.786			
ATCM	5306	N	GLU B 288		57.896	-8.361	64.558	1.00 26.77
ATOM	5307	CA	GLU B 288		56.893	-7.324	64.754	1.00 25.38
	5308	CB	GLU B 288		56.405	-6.791	63.405	1.00 29.51
MOTA					57.430	-6.003	62.605	1.00 36.06
ATCM	5309	CG	GLU B 288					
ATCM	5310	CD	GLU B 288		57.906	-4.769	63.347	1.00 41.10
ATCM	5311	OE1	GLU B 288		57.058	-4.055	63.919	1.00 41.19
ATCM	5312		GLU B 288		59.125	-4.503	63.348	1.00 44.69
	5313		-GLU B 288		55.682	-7.819	65.527	1.00 27.87
MOTA					55.209	-8.931	65.308	1.00 26.80
MOTA	5314	0	GLU B 288				66.419	1.00 24.53
MOTA	5315	N	GLY B 289		55.176	-6.973		
ATCM	5316	ÇA	GLY B 289	•	54.006	-7.326	67.204	1.00 29.17
ATCM	5317	С	GLY B 289		53.015	-6.171	67.244	1.00 30.46
ATCM	5318	0	GLY B 289		53.005	-5.326	66.358	1.00 26.17
	5319	N	VAL B 290		52.171	-6.142	68.268	1.00 23.95
ATOM			VAL B 290		51.194	-5.079	68.440	1.00 22.25
ATCM	5320	CA			49.794	-5.655	68.783	1.00 18.71
atom	5321	CB	VAL B 290				69.047	1.00 22.67
ATCM	5322	CG1			48.810	-4.525		
ATOM	5323	CG2	VAL B 290		49.289	-6.504	67.629	1.00 19.26
ATCM	5324	С	VAL B 290		51.722	-4.232	69.593	1.00 21.55
MOTA	5325	0	VAL B 290		51.960	-4.741	70.687	1.00 21.32
ATOM	5326	N	TYR B 291		51.913	-2.941	69.346	1.00 21.06
MOTA	5327	CA	TYR B 291		52.479	-2.063	70.357	1.00 19.29
	5328	CB	TYR B 291		53.582	-1.216	69.711	1.00 20.40
ATOM			TYR B 291		54.553	-2.072	68.918	1.00 23.09
MOTA	5329	CG			54.740	-1.875	67.549	1.00 19.52
ATCM	5330	CD1					66.809	1.00 20.67
ATOM	5331	CE1	TYR B 291		55.580	-2.712		•
ATOM	5332	CD2	TYR B 291		55.234	-3.122	69.527	1.00 22.88
MOTA	5333	CE2	TYR B 291		56.070	-3.960	68.800	1.00 26.04
ATOM ·	5334	CZ	TYR B 291		56.235	-3.752	67.442	1.00 23.44
ATOM	5335	OH	TYR B 291		57.027	-4.612	66.722	1.00 28.02
	5336	c.	TYR B 291		51.465	-1.180	71.068	1.00 26.89
ATOM			TYR B 291		50.668	-0.479	70.429	1.00 20.26
ATOM	5337	0		•	51.522	-1.204	72.399	1.00 21.75
ATCM	5338	N	LEU B 292			-0.426	73.227	1.00 22.11
ATCM	5339	CA	LEU B 292		50.604			1.00 20.92
ATOM	5340	CB	LEU B 292		49.765	-1.369	74.088	
ATOM	5341	CG	LEU B 292		49.091	-2.542	73.375	1.00 22.94
MCTA	5342	CD1	LEU B 292		48.328	-3.362	74.411	1.00 21.03
ATOM	5343	CD2			48.149	-2.043	72.281	1.00 18.04
ATOM	5344	С	LEU B 292		51.330	0.557	74.147	1.00 21.59
ATOM	5345	Ö	LEU B 292		52.514	0.404	74.426	1.00 19.96
	5346	N	GLY B 293		50.606	1.571	74.613	1.00 23.31
ATOM			GLY B 293		51.195	2.537	75.521	1.00 20.76
ATOM	5347	CA	GLI B 233		51.163	1.979	76.930	1.00 26.15
ATOM	5348	C	GLY B 293			0.765	77.133	1.00 20.96
ATOM	5349	0	GLY B 293		51.263			1.00 24.63
ATOM	5350	N	GLY B 294		51.017	2.859	77.914	
ATCM	5351	CA	GLY B 294		50.980	2.407	79.293	1.00 20.00
ATCM	5352	С	GLY B 294		51.176	3.538	80.285	1.00 22.59
ATOM	5353	ō	GLY B 294		51.145	4.719	79.916	1.00 17.46
ATOM	5354	N	GLY B 295		51.373	3.179	81.551	1.00 17.10
	5355	CA	GLY B 295		51.577	4.180	82.582	1.00 16.52
MCTA					52.695	5.145	82.232	1.00 19.54
atom	5356	Č	GLY B 295		53.738	4.737	81.732	1.00 16.31
ATOM	5357	J	GLY B 295					1.00 21.93
ATCM	5358	N	GLY B 296		52.467	6.430	82.497	1.00 20.05
ATOM	5359	CA	GLY B 296		53.448	7.465	82.207	
ATOM	5360	С	GLY B 296		52.869	8.750	82.759	1.00 22.20
ATOM	5361	0	GLY B 296		51.790	9.160	82.336	1.00 20.48
ATOM	5362	N	TYR B 297		53.573	9.402	83.682	1.00 20.93
ATOM	5363	CA	TYR B 297		53.025	10.598	84.306	1.00 23.25
	5364	CB	TYR B 297		52.731	10.284	85.774	1.00 19.93
ATOM			TYR B 297		52.041	8.944	85.900	1.00 24.76
ATOM	5365	CG	TOP G GVM		52.779	7.758	85.936	1.00 21.97
ATOM	5366		TYR B 297		52.148	6.514	85.912	1.00 19.79
ATOM	5367	CEI				8.850	85.849	1.00 20.86
ATOM	5368		TYR B 297		50.653		85.822	1.00 19.57
ATOM	5369	CE	TYR B 297		50.012	7.612	. 022	1.00 17.57

	E = E O	C7 1	TYR B 2	07	50.758	6.457	85.851	1.00 23.85
ATOM	5370		lik b 2		50.106	5.254	85.806	1.00 17.83
MOTA	5371			.97			84.181	1.00 25.22
ATOM	5372	C '	TYR B 2	297	53.839	11.877	-	
ATOM	5373	0 '	TYR B 2	297	53.451	12.925	84.705	1.00 21.77
	5374		HIS B 2		54.974	11.794	83.497	1.00 23.21
ATOM					55.787	12.976	83.270	1.00 25.62
MOTA	5375			298			83.534	1.00 22.88
MOTA	5376		HIS B 2		57.270	12.713		1.00 25.13
MOTA	5377	CG	HIS B 2	298	58.097	13.956	83.502	
	5378		HIS B 2		58.406	14.791	82.482	1.00 28.22
MOTA	_		HIS B 2		58.617	14.536	84.641	1.00 32.76
MOTA	5379				59.209	15.674	84.323	1.00 26.52
ATOM	5380	CEl	HIS B 2	298				1.00 32.15
ATOM	5381	NE2	HIS B 2	298	59.094	15.852	83.019	
ATOM	5382	С	HIS B 2	298	55.589	13.307	81.795	1.00 25.66
	5383	ō	HIS B	298	56.087	12.589	80.923	1.00 25.84
MOTA			PRO B		54.901	14.424	81.496	1.00 27.02
MOTA	5384				54.388	15.424	82.447	1.00 29.91
MOTA	5385	CD	PRO B					1.00 26.53
ATOM	5386	CA		299	54.616	14.864	80.127	
MOTA	5387	CB	PRO B	299	53.952	16.232	80.342	1.00 27.76
	5388	CG		299	54.583	16.696	81.656	1.00 27.97
ATOM			PRO B		55.815	14.930	79.194	1.00 27.08
ATOM	5389	C	PRO D	200	55.738	14.472	78.057	1.00 28.58
MOTA	5390	0	PRO B				79.668	1.00 27.30
MOTA	5391	N		300	56.925	15.484		
ATOM	5392	CA	TYR B	300	58.114	15.593	78.824	
MOTA	5393	СВ		300	59.173	16.496	79.466	1.00 31.65
	5394	CG		300	58.684	17.851	79.921	1.00 31.61
MOTA				300	57.414	18.318	79.582	1.00 32.71
MOTA	5395	CD1			56.971	19.568	80.014	1.00 38.52
MOTA	5396	CE1		300				1.00 30.92
MOTA	5397	CD2	TYR B	300	59.499	18.670	80.701	
ATOM	5398	CE2	TYR B	300	59.072	19.917	81.138	1.00 32.13
	5399	CZ		300	57.808	20.361	80.795	1.00 39.17
MOTA				300	57.374	21.585	81.252	1.00 43.90
MOTA	5400	OH			58.731	14.218	78.572	1.00 25.20
MOTA	5401	С		300			77.445	1.00 25.15
MOTA	5402	0		300	59.106	13.894		1.00 20.55
ATOM	5403	N	ALA B	301	58.845	13.419	79.628	
ATOM	5404	CA		301	59.414	12.080	79.508	1.00 22.12
		CB		301	59.417	11.388	80.874	1.00 17.09
MOTA	5405			301	58.608	11.260	78.505	1.00 15.20
MOTA	5406	C	ALA B		59.161	10.629	77.613	1.00 17.12
MOTA	5407	0	ALA B	301			78.667	1.00 18.02
MOTA	5409	N		302	57.295	11.290		1.00 19.88
MOTA	5409	CA	LEU B	302	56.381	10.553	77.815	
MOTA	5410	CB		302	54.957	10.702	78.362	1.00 21.72
		CG		302	53.767	10.118	77.606	1.00 31.08
MOTA	5411			302	52.576	9.980	78.549	1.00 31.35
MOTA	5412	CD1			53.434	11.011	76.415	1.00 27.11
ATOM	5413	CD2		302			76.351	1.00 21.13
ATOM	5414	Ç	LEU B	302	56.445	10.988		
ATOM	5415	0	LEU B	302	56.473	10.149		1.00 21.70
ATOM	5416	N	ALA B	303	56.472	12.293	76.115	1.00 17.69
		CA	ALA B	303	56.516	12.811	74.755	1.00 17.79
ATOM	5417		ALA D	303	56.357	14.326	74.780	1.00 24.50
ATOM	5418	CE	ALA B			12.425	74.040	
ATOM	5419	С	ALA B		57.803			1.00 19.33
ATOM	5420	O	ALA B		57.781	11.968	72.891	
MOTA	5421	N	ARG B		58.930	12.594	74.723	
	5422	CA	ARG B		60.215	12.269	74.120	
MOTA			ARG B		61.375	12.825	74.962	1.00 18.37
MOTA	5423	CB			61.427			
MOTA	5424	CG	ARG B					
ATOM	5425	CD	ARG B		62.797			
ATOM	5426	NE	ARG B		63.073	13.938		1.00 33.40
	5427	CZ	APG B		64.271	13.689	77.283	
MOTA					65.363			1.00 24.98
ATOM	5428	NH1			64.365			1.00 36.15
ATOM	5429		ARG B					
MOTA	5430	С	ARG B		60.406			
ATCM	5431	၁	ARG B		60.850			
ATOM	5432		ALA B		60.070			
			ALA B		60.226	8.542		1.00 19.70
ATCM			ALA B		59.847			1.00 24.24
ATCM	5434				59.407			
ATOM	5435	С	угу з	202	39.401	,		

		_		205	E0 030	7 104	72.888	1.00 19.12
MOTA	5436	0		305	59.938	7.184		
MOTA	5437	N	TRP B	306	58.113	8.230	73.659	1.00 18.65
ATOM	5438	CA		306	57.298	7.668	72.600	1.00 19.57
					55.800	7.856	72.893	1.00 18.26
ATOM	5439	CB		306				
MOTA	5440	CG	TRP B	306	55.301	6.911	73.953	1.00 20.71
	5441	CD2		306	54.087	7.025	74.708	1.00 23.94
ATOM							75.513	1.00 24.73
MOTA	5442	CE2	TRP B	306	53.988	5.870		
ATOM	5443	CE3	TRP B	306	53.073	7.991	74.780	1.00 26.01
		CD1		306	55.872	5.721	74.326	1.00 20.04
ATOM	5444						75.260	1.00 19.17
ATOM	5445	NE1	TRP B	306	55.092	5.093		
ATOM	5446	CZ2	TRP B	306	52.912	5.655	76.385	1.00 28.04
	5447	CZ3		306	52.001	7.779	75.646	1.00 28.68
ATOM					51.930	6.619	76.437	1.00 31.22
MOTA	5448	CH2		306				
MOTA	5449	С	TRP B	306	57. 6 65	8.223	71.226	1.00 23.48
MOTA	5450	0	TRP B	306	57.416.	7.574	70.212	1.00 22.38
	5451	N		307	58.262	9.412	71.176	1.00 22.36
MOTA						9.953	69.880	1.00 25.94
MOTA	5452	CA		307	58.672			
MOTA	5453	СВ	THR B	307	59.143	11.417	69.986	1.00 25.88
ATOM	5454	OG1	THR B	307	58.015	12.261	70.258	1.00 21.07
				307	59.827	11.864	68.686	1.00 22.52
ATOM	5455	CG2						1.00 30.09
MOTA	5456	С		307	59.815	9.078	69.350	
ATOM	5457	0	THR B	307	59.922	8.834	68.144	1.00 25.82
	5458	N		308	60.664	8.596	70.258	1.00 27.54
MOTA				308	61.773	7.734	69.857	1.00 26.76
MOTA	5459	CA						
ATOM	5460	CB		308	62.691	7.424	71.054	1.00 24.24
ATOM	5461	CG	LEU B	308	63.420	8.614	71.718	1.00 31.16
ATOM	5462	CD1		308	64.282	8.147	72.877	1.00 24.71
		CD2		308	64.289	9.325	70.700	1.00 24.59
MOTA	5463					6.443	69.287	1.00 27.20
ATOM	5464	С		308	61.184			_
MOTA	5465	0	LEU B	308	61.609	5.961	68.234	1.00 23.52
ATOM	5466	N	ILE B	309	60.190	5.898	69.980	1.00 25.10
	5467	CA		309	59.537	4.679	69.530	1.00 25.14
MOTA					58.387	4.266	70.485	1.00 27.05
ATOM	5468	CB		309				
MOTA	5469	CG2	ILE B	309	57.646	3.∕058	69.926	1.00 23.57
ATOM	5470	CG1	ILE B	309	58.9 5 2	3.947	71.868	1.00 22.98
ATOM	5471	CD1		309	59.927	2.793	71.868	1.00 24.25
				309	58.958	4.885	68.133	1.00 25.41
ATOM	5472	С						1.00 22.13
ATOM	5473	0	ILE B	309	59.177	4.064	67.243	
MOTA	5474	N	TRP B	310	58.232	5.984	67.943	1.00 27.45
ATOM	5475	CA	TRP B	310	57.618	6.266	66.648	1.00 29.27
				310	56.721	7.505	66.715	1.00 27.00
MOTA	5476	CB				7.847	65.378	1.00 28.26
MOTA	5477	CG		310	56.112			
MOTA	5478	CD2	TRP B	310	55.172	7.061	64.633	
ATOM	5479	CE2	TRP B	310	54.947	7.729	63.408	1.00 30.47
	5480	CE3		310	54.500	5.856	64.877	1.00 29.85
ATOM					56.406	P.929	64.597	1.00 29.76
MOTA	5481	CD1		310				1.00 26.71
ATOM	5482	NE1	TRP B		55.713	. 865	63.415	
ATOM	5483	CZ2			54.076	.234	62.429	1.00 28.23
ATOM	5484	CZ3			53.636	5.362	63.901	1.00 30.24
					53.433	6.053	62.692	1.00 27.63
ATOM	5485	CH2	TRP B	310			65.520	1.00 30.16
ATOM	5486	C	TRP B		58.629	6.424		
ATOM	5487	0	TRP B	310	58.378	5.964	64.410	1.00 30.04
ATOM	5488	N	CYS B		59.762	7.069	65.793	1.00 24.26
					60.782	7.233	64.764	1.00 27.97
ATOM	5489	CA	CYS B					1.00 28.21
MOTA	5490	CB	CYS B	311	61.893	8.157	65.252	
ATOM	5491	SG	CYS B	311	61.422	9.905	65.381	1.00 33.38
ATOM	5492	Ċ	CYS B		61.380	5.886	64.351	1.00 30.02
					61.670	5.660	63.172	1.00 25.45
ATOM	5493	0	CYS B		61 570		65.327	1.00 31.59
ATOM	5494	N	GLU B	512	- 61.570	5.001		
ATOM	5495	CA	GLU B	31∠	62.111	3.669	65.067	1.00 33.48
ATOM	5496	CB	GLU B	312	62.142	2.843	66.352	1.00 34.78
			GLU B	312	63.487	2.307	66:758	1.00 39.45
ATOM	5497	CG			64.171	1.513	65.675	
ATOM	5498	CD	GLU B					
ATOM	5499	OE:			63.539	0.614	65.081	
ATOM	5500	OE2	GLU B	312	65.358	1.782	65.437	1.00 39.26
	5501	c	GLU B	312	61.197	2.959	64.080	1.00 29.97
ATCM	7001	_	G 000 D					

» mOM	5502	0 .0	GLU B	312		61.640	2.497		1.00 31.38
MOTA MOTA	5503		LEU B			59.919	2.865	-	1.00 26.70
ATOM	5504		LEU B			58.930	2.203		1.00 26.73
ATOM	5505		LEU B			57.571	2.173		1.00 25.83
ATOM	5506		LEU B			57.429	1.224		1.00 35.18
ATOM	5507		LEU B			56.063	1.434	66.130	1.00 32.49
ATOM	550.8		LEU B		٠	57.595	-0.215	64.989	1.00 29.71
ATOM	5509	C	LEU B	313		58.768	2.866	62.248	1.00 29.03
ATOM	5510		LEU B			58.716	2.187	61.228	1.00 25.39
ATOM	5511		SER E			58.677	4.194	62.263	1.00 30.13
ATOM	5512		SER E			58.498	5.006	61.060	1.00 34.06
ATOM	5513		SER E			58.206	6.456	61.445	1.00 31.15
MOTA	5514		SER E			57.041	6.537	62.234	1.00 48.58
ATOM	5515		SER E			59.707	5.003	60.151	1.00 31.84
ATOM	5516	0	SER E	3 314		59.632	5.469	59.026	1.00 34.15 1.00 31.81
MOTA	5517	N	GLY F	3 315		60.831	4.515	60.655	1.00 31.81 1.00 37.27
MOTA	5518		GLY !			62.036	4.485	59.848	1.00 37.27
ATOM	5519	С	GLY S			62.659	5.851	59.616	1.00 39.79
ATOM	5520	0	GLY :			63.363	6.054	58.624	1.00 38.22
ATOM	5521	N	ARG 1			62.422	6.798	60.518 60.336	1.00 38.66
MOTA	5522	CA	ARG 1			63.004	8.121 9.184	60.275	1.00 40.20
MOTA	5523	CB	ARG I			61.908	9.184	61.520	1.00 39.00
MOTA	5524	CG	ARG			61.089 60.032	10.398	61.284	1.00 42.13
ATOM	5525	CD	ARG			59.002	9.954	60.352	1.00 45.09
MOTA	5526	NE	ARG			58.075	10.754	59.838	1.00 40.84
MOTA	5527	CZ	ARG		÷	58.064	12.033	60.170	1.00 48.44
MOTA	5528	NH1	ARG			57.150	10.278	59.014	1.00 35.96
MOTA	. 5529	NH2	ARG	B 316 B 316	•	64.031	8.467	61.408	1.00 39.03
ATOM	5530	С		B 316		63.952	7.988	62.539	1.00 34.34
MOTA	5531	0		B 317		65.003	9.296	61.035	1.00 39.58
MOTA	5532 5533	N CA	GLU.	B 317	•	66.074	9.697	61.943	1.00 43.35
MOTA	5534	CB	GLU			67.142	10.509	61.203	1.00 49.34
ATOM ATOM	5535	CG	GLU			67.609	9.910	59.884	1.00 57.04
MOTA	5536	CD	GLU			66.546	10.009	58.798	1.00 62.79
MOTA	5537	OE1	GLU			66.146	11.149	58.467	1.00 63.46
ATOM	5538	OE2	GLU			66.108	8.954	58.280	1.00 64.46 1.00 41.58
ATOM	5539	С	GLU	B 317		65.555	10.528	63.100	1.00 41.38
ATOM	5540	0		B 317		64.658	11.356	62.939	1.00 35.74
MOTA	5541	N	VAL			66.118	10.301	64.278 65.448	1.00 38.76
ATOM	5542	CA		B 318		65.706	11.049	66.750	1.00 42.28
MOTA	5543	CB	VAL			66.000	10.265 11.080	67.962	1.00 38.26
MOTA	5544	CG1	VAL	B 318		65.560 65.287	8.916	66.722	1.00 39.99
MOTA	5545			B 318		66.459	12.370	65.478	1.00 41.82
ATOM	5546		VAL	B 318		67.689	12.395	65.570	1.00 37.20
MOT.	5547	0	VAL	B 318		65.735	13.491	65.356	1.00 43.18
ATOM	5548	N	PRO	B 319		64.290	13.672	65.155	1.00 41.90
MOT	5549	CD	PRO	B 319 B 319		66.402	14.792	65.388	1.00 44.31
ATOM	5550			B 319		65.241	15.763	65.181	1.00 44.58
MOTA	5551 5552			B 319		64.079	15.011	65.795	1.00 43.34
MOTA	5553			в 319		67.086	14.965		1.00 44.62
ATOM	5554		280	B 319		66.541	14.565		
ATOM ATOM	.5555			B 320		68.277	15.552		
ATOM	5556		GLU	в 320		69.029	15.762		1.00 45.92
ATOM	5557			в 320		70.381	16.406		
ATOM	5558			B 320		71.165	16.768		
MOTA	5559	CD	GLU	B 320		72.455	17.505		
MOTA	5560) OE	1 GLU	B 320		73.161	17.874		
ATOM	5561		2 GLU	в 320		72.762	17.714		
ATOM	5562		GLU	B 320		68.311	16.625	68.995	40 00
ATOM	5563			B 320		68.244			
ATCM	5564		LYS	B 321		67.778			
ATOM	5565			B 321		67.102			
ATOM	5566			B 321		67.853	20.000		
ATOM	5567	7 CG	LYS	B 321		67.890	20.80		

	•							
ATOM	5568	CD	LYS 3	321	68.700	20.144	67.057	1.00 57.24
ATOM	5569	CE	LYS E	321	67.936	19.062	66.280	1.00 55.24
ATOM	5570	NZ	LYS B	321	66.738	19.588	65.558	1.00 55.31
MOTA	5571	С		321	65.662	18.971	69.098	1.00 43.44
MOTA	5572	0		321	65.211	18.736	67.978	1.00 43.03
MOTA	5573	N		322	64.947	19.512	70.076	
ATOM	5574	CA		322	63.563	19.885	69.875	
ATOM	5575	CB		322	62.846	20.034	71.215 72.234	1.00 40.88
ATOM	5576	CG		322	62.943	18.901	73.388	1.00 38.17
ATOM	5577			322	62.001 62.588	19.175 17.596	71.580	1.00 41:56
ATOM	5578			322	62.588	21.244	69.197	1.00 41.33
ATOM	5579	C		322	64.466	22.070	69.531	1.00 39.22
ATOM	5580	0	LEU B	323	62.735	21.473	68.233	1.00 40.04
ATOM	5581	Ŋ		323	62.703	22.771	67.582	1.00 43.32
ATOM	5582 5583	CA CB	ASN B		61.985	22.707	66.234	1.00 41.53
MOTA MOTA	5584	CG	ASN B		60.617	22.085	66.335	1.00 41.89
ATOM	5585		ASN B	323	59.889	22.308	67.304	1.00 39.79
ATOM	5586				60.243	21.317	65.317	1.00 40.43
ATOM	5587	С	ASN B	323	61.949	23.690	68.532	1.00 44.76
MOTA	5588	0	ASN B	323	61.402	23.237	69.539	1.00 45.80
MOTA	5589	N	ASN B	324	61.902	24.973	68.210	1.00 46.85
ATOM	5590	CA	ASN B	324	61.234	25.930	69.076	1.00 47.60
ATOM	5591	CB	ASN B	324	61.460	27.348	68.549	1.00 50.87
ATOM	5592	CG	ASN B		61.089	28.407	69.562	1.00 55.06
ATOM	5593		ASN B	324	59.925	28.565	69.919	1.00 60.68
A.TOM	5594		'ASN B	324	62.091	29.131	70.048 69.249	1.00 59.17 1.00 43.97
ATOM	5595	C	ASN B	324	59.740	25.664	70.322	1.00 43.37
MOTA	5596	0	ASN B		59.190 59.087	25.898 25.168	68.201	1.00 43.49
ATOM	5597	N	LYS B		57.655	24.892	68.264	1.00 45.95
ATOM	5598	CA	LYS B		57.112	24.415	66.909	1.00 48.97
ATOM	5599 5600	CB	LYS B		57.212	25.400	65.731	1.00 53.41
ATOM	5601	CD	LYS B		58.582	25.386	65.024	1.00 58.77
MOTA MOTA	5602	CE	LYS B		59.700	26.013	65.846	1.00 58.10
ATOM	5603	NZ	LYS B		61.024	25.906	65.178	1.00 53.38
ATOM	5604	С	LYS B		57.368	23.822	69.309	1.00 45.79
ATOM	5605	0	LYS B		56.375	23.891	70.034	1.00 43.91
ATOM	5606	N	ALA B		58.245	22.829	69.381	1.00 44.28
ATOM	5607	CA	ALA B		58.078	21.746	70.336	1.00 44.25
ATOM	5608	CB	ALA B		59.013	20.589	69.986 71.757	1.00 41.44
ATOM	5609	C	ALA B		58.342	22.233	72.688	1.00 40.92
ATOM	5610	0	ALA B		57.639 59.352	23.085	71.922	1.00 38.14
ATOM	5611	N	LYS B		59.689	23.603	73.246	1.00 40.11
ATOM	5612	CA	LYS B	327	60.892	24.552	73.178	1.00 42.36
ATOM	5613 5614	CB CG	LYS E	327	62.174	23.922	72.:59	1.00 45.78
atom atom	5615	CD	LYS E		63.325	24.926	72.675	1.00 48.46
ATOM	5616	CE	LYS E		64.594	24.367	72.031	1.00 49.62
ATOM	5617	NZ	LYS E		65.108	23.139	72.700	
ATOM	5618	C	LYS B		58.500	24.338	73.841	1.00 39.17
ATOM	5619	ō	LYS E		58.132	24.112	74.994	1.00 38.87
ATOM	5620	N	GLU E	328	57.898	25.215	73.048	1.00 41.06
ATOM	5621	CA	GLU E		56.750	25.986	73.512	1.00 42.35
ATOM	5622	CB	GLU E		56.357	27.028	72.463	1.00 44.02
ATOM	5623	CG	GLU E		57.434	28.084	72.258	1.00 44.80
MOTA	5624	CD	GLU E		57.835	28.742	73.569	1.00 48.40 1.00 51.20
ATOM	5625	OE1			56.949	29.317	74.237	1.00 51.20
ATOM	5626	OE2			59.029	28.680 25.087	73.935 73.839	1.00 47.81
ATOM	5627	C	GLU E		55.569	25.377	74.750	
ATCM	5638	0	GLU E		54.794 .55.429	23.999	73.090	
ATOM	5629	Ŋ	LEU E		54.349	23.999	73.334	
ATOM	5630	CA	LEU E		54.404	21.900		
ATOM	5631	CB	LEU E		53.344	20.813	72.544	
ATOM	5632	CC	LEU E		51.958	21.430		
ATOM	5633	الذب			22.220			- · · -

202/263 Figure 18-86

1 mov4	E C 3 /	CD3	LEU B	220	53.521	19.699	71.525	1.00	32.36
ATOM	5634				54.504	22.507	74.747		34.07
ATOM	5635		LEU B		-			1.00	
MOTA	5636	0	LEU B	329	53.621	22.664	75.583		
MOTA	5637	N	LEU B	330	55.640	21.873	75.013	1.00	
MOTA	5638			330	55.889	21.311	76.330	1.00	34.99
				330	57.267	20.642	76.382	1.00	37.01
MOTA	5639				57.466	19.428	75.470	1.00	34.91
MOTA	5640	CG		330			75.728		34.69
MOTA	5641	CD1	LEU B	330	58.832	18.817			
MOTA	5642	CD2	LEU B	330	56.369	18.396	75.742		34.10
MOTA	5643	С	LEU B	330	55.789	22.363	77.429	1.00	37.12
	5644	ō	LEU B		55.210	22.110	78.482	1.00	34.19
ATOM			LYS B		56.353	23.540	77.186	1.00	34.34
MOTA	5645	N			56.313	24.604	78.181	1.00	
MOTA	5646	CA		331				1.00	
ATOM	5647	CB	LYS B	331	57.162	25.788	77.712		
ATOM	5648	CG	LYS B	331	58.658	25.496	77.685		51.07
MOTA	5649	CD	LYS B	331	59.482	26.610	77.021		49.96
ATOM	5650	CE		331	59.371	27.957	77.733	1.00	53.08
	5651	NZ		331	58.013	28.569	77.662	1.00	56:18
ATOM					54.892	25.069	78.494	1.00	42.06
MOTA	5652	С	LYS B				79.631		43.05
ATOM	5653	0	LYS B		54.588	25.416			
ATOM	5654	N	SER B	332	54.018	25.056	77.492		44.54
MOTA	5655	CA	SER B	332	52.639	25.502	77.679		46.58
ATOM	5656	CB	SER B	332	51.975	25.751	76.329		48.75
					51.769	24.527	75.646	1.00	49.55
ATOM	5657	OG			51.780	24.507	78.451		49.56
ATOM	5658	С				24.791	78.749		46.67
ATOM	5659	0	SER B		50.618	_			50.55
MOTA	5660	N	ILE B	333	52.341	23.345	78.770		
MOTA	5661	CA	ILE B	333	51.586	22.326	79.488		51.93
ATOM	5662	CB	ILE B	333	52.259	20.945	79.376		51.82
MOTA	5663	CG2	ILE B		51.447	19.902	80.134	1.00	50.29
			ILE B		52.359	20.539	77.905	1.00	52.18
MOTA	5664	CG1	•		53.044	19.210	77.693	1.00	55.42
MOTA	5665	CD1				22.634	80.964		51.45
MOTA	5666	С	ILE B		51.367				50.96
MOTA	5667	0	ILE B		52.180	23.290	81.614		
ATOM	5668	N	ASP B	334	50.245	22.141	81.472		54.05
ATOM	5669	CA	ASP B	334	49.850	22.306	82.865		58.15
ATOM	5670	CB	ASP B		48.320	22.216	82.959		60.38
	5671	CG	ASP B		47.751	20.972	82.262	1.00	63.85
ATOM					48.017	19.833	82.710	1.00	59:16
MOTA	5672	9D1				21.138	81.252	1.00	59.71
MOTA	5673	OD2			47.033		83.701		
ATOM	5674	С	ASP B	334	50.506	21.207			
ATOM	5675	၁	ASP B		49.833	20.291	84.171	1.00	
ATOM	5676	N	PHE B	335	51.816	21.307	83.906	1.00	
MOTA	5677	CA	PHE B		52.524	20.266	84.641	1.00	56.60
	5673	CB	PHE E		53.718	19.784	83.811	1.00	53.01
ATOM					54.522	18.717	84.482	1.00	49.30
MOTA	5679	CG	PHE E		53.898	17.589	85.008	1 00	45.61
MOTA	568C	CDI	PHE B	3 3 3 5			84.605	1 00	46.83
ATCM	5681		PHE E		55.901	18.843		1.00	45.95
ATOM	5682	CE1	PHE E	3 3 3 5	54.637	16.600	85.651		
MOTA	5683	CE2		3 3 3 5	56.651	17.860	85.247		46.02
ATOM	5684	CZ	PHE E		56.018	16.737	85.772	1.00	46.08
		c	PHE E		52.971	20.559	86.072	1.00	57.29
ATOM	5685		PRE C	, ,,,,	52.197	20.378	87.012	1.00	63.54
ATOM	5686	0	PHE E		54.223	20.983	86.229	1 00	55.21
ATOM	5687	N	GLU E					1.00	60.30
MOTA	5688	CA	GLU E	3 3 3 6	54.818	21.286	87.535		
ATOM	5689	СЗ	GLU F	3 3 3 6	53.783	21.846	88.517	1.00	64.95
ATOM	5690	CG	GLU F	3 3 3 6	54.375	22.225	89.867		71.50
		כם	GLU I		53.363	22.882	90.787	1.00	
ATCM	5691	CD			52.796	23.925		1.00	75.32
ATOM	5692		GLU I	226	53.137	22.361			76.84
ATOM	5693	OE2							55.66
ATOM	5694	С		B 336	55.485	20.058		1.00	49.97
ATOM	5695	ဝ	GLU !	в 336	54.823	19.093		1.00	, 43.31 , ca oc
MOTA	5696	N		в 337	56.807	20.125		1.00	54.26
ATCH	5697	CA		В 337	57.630	19.047		1.00	54.35
				B 337	59.101			1.00	54.08
ATCM	5698	CB		B 337	60.074			1.00	54.15
atom	5699	CG	GEO 1	D 331	00.079	20.545			

203/263 Figure 18-87

> mov	E700	CD C	LU B	337	59.856	17.496	87.259	1.00 48.94
ATOM	5700				59.958	18.049	86.142	1.00 41.06
MOTA	5701		_	337	59.581	16.292	87.391	1.00 50.23
MOTA	5702			337	-		90.227	1.00 55.08
MOTA	5703			337	57.278	18.740	-	
ATOM	5704	0 0	GLU B	337	57.130	19.651	91.039	
ATOM	5705	N :	PHE B	338	57.140	17.458	90.557	1.00 56.20
MOTA	5706	CA S	HE B	338	56.798	17.048	91.918	1.00 57.73
MOTA	5707			338	56.713	15.527	92.020	1.00 58.47
ATOM	5708			338	56.231	15.034	93.359	1.00 63.17
	5709			338	54.882	15.096	93.696	1.00 64.86
ATOM	5710			338	57.129	14.526	94.293	1.00 63.51
ATOM				338	54.434	14.656	94.943	1.00 65.25
ATOM	5711				56.693	14.087	95.539	1.00 63.64
MOTA	5712			338	55.342	14.152	95.864	1.00 66.30
MOTA	5713			338	57.836	17.539	92.918	1.00 61.85
MOTA	5714			338		17.807	94.078	1.00 58.15
ATOM	5715			338	57.520		92.466	1.00 64.63
MOTA	5716			339	59.081	17.636		1.00 67.53
MOTA	5717			339	60.167	18.099	93.316	1.00 67.33
MOTA	5718	CB 3		339	61.286	17.059	93.362	
ATOM	5719	CG 2		339	62.474	17.524	94.174	1.00 68.13
ATOM	5720	OD1	ASP B	339	62.280	17.909	95.346	1.00 68.68
ATOM	5721	OD2	ASP B	339	63.603	17.502	93.646	1.00 69.03
ATOM	5722			339	60.718	19.435	92.829	1.00 69.03
ATOM	5723			339	61.211	19.545	91.708	1.00 67.54
ATOM	5724			340	60.626	20.442	93.693	1.00 72.19
ATOM	5725			340	61.088	21.797	93.402	1.00 75.20
ATOM	5726			340	61.113	22.623	94.689	1.00 77.04
	5727			340	59.766	22.671	95.375	1.00 78.70
ATOM	5728			340	58.803	23.181	94.763	1.00 79.66
ATOM				340	59.668	22.194	96.525	1.00 80.53
ATOM	5729			340	62.464	21.856	92.751	1.00 74.82
MOTA	5730				62.615	22.400	91.659	1.00 78.48
ATOM	5731			340	63.465	21.303	93.426	1.00 74.11
MOTA	5732			341	64.827	21.303	92.907	1.00 76.25
MOTA	5733			341		21.596	94.040	1.00 79.54
ATOM	5734			341	65.818		93.596	1.00 82.33
ATOM	5735			341	67.277	21.653	92.577	1.00 83.24
ATOM	5736			341	67.539	22.750		1.00 85.25
ATOM	5737			341	67.333	23.937	92.910	1.00 83.23
ATOM	5738			341	67.950	22.427	91.443	1.00 83.72
MOTA	5739			341	65.196	19.998	92.227	
MOTA	5740	0	GLU B		65.627	19.051	92.883	1.00 77.10
ATOM	5741	11	VAL B	342	65.033	19.946	90.910	1.00 71.92
ATOM	5742	CA	VAL B	342	65.354	18.744	90.151	1.00 68.51
ATOM	5743	CB	VAL B	342	64.081	18.027	89.663	1.00 68.83
MOTA	5744	CG1	VAL 3	342	63.268	17.552	90.837	1.00 67.57
ATOM	5745	CG2	VAL B	342	63.255	18.969	88.806	1.00 67.72
ATOM	5746	С	VAL B	342	66.201	19.059	88.927	1.00 65 35
ATOM	5747		VAL B		67.177	18.366	88.640	1.00 68.31
ATOM	5748		ASP B		65.819	20.112	88.213	1.00 60.89
ATOM	5749		ASP B		66.514	20.520	86.998	1.00 58.89
ATOM	5750	CB	ASP B		68.024	20.636	87.223	1.00 63.48
	5751	CG	ASP B		68.763	21.070	85.966	1.00 66.69
MOTA			ASP B		70.012	21.070	85.970	1.00 67.64
ATOM	5752		ASP B		68.089	21.420	84.973	1.00 65.42
ATOM	5753		ASP B		66.264	19.499	85.900	1.00 53.17
ATOM	5754	C			66:993	18.516	85.766	1.00 49.70
ATOM	5755	0	ASP B		65.216	19.735	85.124	1.00 50.24
MOTA	5756	N	ARG B			18.853	84.022	1.00 46.49
ATOM	5757	CA	ARG B		64.868		84.228	1.00 42.41
MOTA	5758	CB	ARG B		63.467	18.269	85.452	1.00 38.59
ATCM	5759	CG	ARG B		63.317	17.367		1.00 37:12
ATOM	5760	CD	ARG B		64.344	16.246	85.432	1.00 37.12
ATOM	5761	NE	ARG B		64.169	15.310	86.537	
MOTA	5762	CZ	ARG B		65.078	14.413	86.905	1.00 37.20
ATOM	5763		ARG B	344	66.234	14.331	86.259	
ATOM	5764	NH2	ARG B	344	64.830	13.595		
ATOM	5765	С	ARG B		64.910	19.660	82.732	1.00 44.45
							-	

			_			64 220	19.269	81.720	1.00 38.73
ATOM	5766		ARG B			64.328			1.00 42.44
ATOM	5767	N	SER B	345		65.618	20.784	82.783	_
MOTA	5768	CA	SER B	.345		65.740	21.677	81.637	1.00 41.74
MOTA	5769		SER B			66.661	22.849	81.993	1.00 43.47
			SER B			67.956	22.388	82.351	1.00 46.96
MOTA	5770					66.244	20.981	80.375	1.00 36.32
MOTA	5771	С	SER B						1.00 35.70
MOTK	5772	0	SER B			65.840	21.333	79.273	
MOTA	5773	N ·	TYR B	346		67.117	19.992	80.534	1.00 33.93
ATOM	5774		TYR B			67.661	19.264	79.391	1.00 34.77
	5775	CB	TYR B			68.660	18.206	79.877	1.00 36.09
MOTA				_		68.054	17.146	80.774	1.00 34.27
MOTA	5776	CG	TYR B		•		16.013	80.240	1.00 37.62
ATOM	5777		TYR B			67.433			
MOTA	5778	CE1	TYR B	346		66.843	15.048	81.077	1.00 36.73
ATOM	5779	CD2	TYR B	346		68.072	17.294	82.157	1.00 36.40
ATOM	5780	CE2	TYR B	346		67.489	16.344	82.999	1.00 36.54
	5781	cz	TYR B			66.878	15.228	82.457	1.00 36.54
ATOM			TYR B			66.310	14.306	83.306	1.00 33.35
MOTA	5782	ОН				66.563	18.599	78.570	1.00 36.26
ATOM	5783	С	TYR B					77.367	1.00 40.50
MOTA	5784	0	TYR B			66.719	18.385		
ATOM	5785	N	MET B			65.445	18.282	79.214	1.00 32.72
ATOM	5786	CA	MET B	347		64.346	17.628	78.516	1.00 35.43
ATOM	5787	CB	MET B			63.280	17.164	79.513	1.00 34.36
	5788	CG	MET B			63.819	16.292	80.635	1.00 28.32
MOTA			MET B			62.515	15.604	81.669	1.00 34.47
MOTA	5789	SD				61.654	17.027	82.142	1.00 39.60
ATOM	5790	CE	MET B					77.465	1.00 39.04
MOTA	5791	С	MET B			63.701	18.525		
MOTA	5792	0	MET B	347		63.060	18.029	76.540	1.00 37.38
ATOM	5793	N	LEU B	348		63.857	19.839	77.606	1.00 39.21
ATOM	5794	CA	LEU B	348		63.272	20.773	76.645	1.00 40.81
MOTA	5795	CB	LEU B			62.806	22.058	77.339	1.00 36.87
			LEU B	_		61.690	21.975	78.384	1.00 42.66
MOTA	5796	CG				61.507	23.337	.79.032	1.00 43.41
MOTA	5797		LEU B						1.00 40.47
ATOM	5798	CD2	LEU B			60.391	21.511	77.741	1.00 40.47
ATOM	5799	C	LEU B	348		64.289	21,133	75.573	
MOTA	5800	Ō	LEU B	348		64.018	21.968	74.711	1.00 38.93
MOTA	5801	N	GLU E	349		65.455	20.495	75.632	1.00 37.70
MOTA	5802	CA	GLU E			66.527	20.757	74.681	1.00 42.48
	5803	CB	GLU E			67.856	20.953	75.422	1.00 45.02
MOTA						67.834	22.035	76.493	1.00 53.82
ATOM	5804	CG	GLU E			67.483	23.402	75.938	1.00 57.46
MOTA	5805	CD	GLU E					75.044	1.00 59.62
MOTA	5806	OE1	GLU E			68.211	23.885		
ATOM	5807	OE2	GLU E	3 3 4 9		66.480	23.993	76.397	
MOTA	5808	С	GLU E	349		66.709	19.638	73.664	1.00 43.57
ATOM	5809	0	GLU E	3 3 4 9		66.577	19.849	72.459	1.00 41.26
ATOM	5810	N	THR E			67.027	18.448	74.161	1.00 41.95
		CA	THR E			67.264	17.299	73.298	1.00 40.02
ATOM	5811		mun I	350		68.689	16.775	73.504	1.00 43.08
ATOM	5812	CB	THR E	3 3 3 0			16.490	74.894	1.00 41.07
ATOM	5813	OG1				68.894			1.00 45.05
ATOM	5814	CG2		3 3 5 0		69.703	17.816	73.049	1.00 37.56
ATOM	5815	С	THR E	3 3 5 0		66.278	16.154	73.510	
MOTA	5816	0	THR E	3 3 5 0		65.754	15.966	74.611	1.00 33.64
ATOM	5817	N	LEU E			66.043	15.391	72.445	1.00 32.86
			LEU E	2 351		65.126	14.260	72.475	1.00 35.00
ATOM	5818	CA	1 201 1	2 251		64.776	13.810		1.00 31.61
ATOM	5819	CB	LEU I				14.601	70.312	1.00 35.31
MOTA	5820	CG	LEU I			63.709			1.00 37.88
ATOM	5821	CD1	LEU I	B 351		63.552	14.064	68.904	1 00 30 34
ATOM	5822	CD2		B 351		62.397	14.474	71.068	1.00 39.36
ATOM	5823	С		B 351		65.662	13.065	73.240	1.00 33.33
ATOM	5824	Š		B 351		64.956	12.469	74.046	1.00 31.48
				B 352		66.915	12.720		1.00 29.58
ATOM	5825	N				67.527	11.576		1.00 36.77
ATOM	5826	CA		B 352				72.647	
ATCM	5827	CB		B 352		68.457	10.864		
ATOM	5828	CG		в 352		67.777	10.563		
ATOM	5829	CD		a 352		68.703	9.949		
ATCM	5830	CE		в 352		69.110	8.541		
	5831	NZ		B 352		69.831	7.905		1.00 44.15
ATCM	2021	.,,	-13					•	

						•			
ATOM	5832	С	LYS B	352		68.295	11.983	74.878	1.00 36.30
ATOM	5833	Ö	LYS 3			69.086	12.931	74.865	1.00 36.65
ATOM	5834	N		353		68.049	11.275	75.96 7	1.00 30.01
ATOM	5835	CA	ASP B			68.757	11.569	77.188	1.00 33.99
ATOM	5836	CB	ASP B			67.852	11.308	78.394	1.00 38.57
MOTA	5837	CG	ASP B			67.134	9.986	78.315	1.00 43.90
ATOM	5838	OD1		353		66.034	9.851	78.926	1.00 22.39
MOTA	5839			353		67.679	9.078	77.649	1.00 50.42
ATOM	5840	C		353		70.022	10.723	77.202	1.00 35.83
ATOM	5841		ASP B			70.189	9.833	76.368	1.00 23.71
ATOM	5842	N		354		70.954	11.025	78.116	1.00 36.36
ATOM	5843	CD		354		70.928	12.093	79.132	1.00 38.28
ATOM	5844	CA		354		72.205	10.277	78.212	1.00 33.62
MOTA	5845	CB	PRO B	354		73.003	11.104	79.213	1.00 34.46
ATOM	5846	CG		354		71.896	11.556	80.164	1.00 38.08
ATOM	5847	C	PRO B	354		71.924	8.883	78.733	1.00 33.62
ATOM	5848	0	PRO B	354		70.894	8.643	79.366	1.00 24.82
ATOM	5849	N	TRP B	355		72.833	7.954	78.468	1.00 31.76
ATOM	5850	CA	TRP B	355		72.535	6.611	78.969	1.00 30.01
ATOM	5851	CB	TRP B	355		73.653	5.655	78.359	1.00 34.02
MOTA	5852	CG	TRP B	355		73.025	4.378	77.910	1.00 44.37
MOTA	5853	CD2	TRP B	355		73.263	3.072	78.436	1.00 45.39
ATOM	5854	CE2	TRP B	355		72.418		77.734	1.00 44.31
ATOM	5855	CE3		355		74.107	2.569	79.432	1.00 47.19
MOTA	5856	CD1	TRP B	355		72.073	4.230	76.935	1.00 42.18
ATOM	5857	NE1		355		71.704	2.910	76.826	1.00 37.84
ATOM	5858	CZ2		355		72.395	0.808 1.207	77.999 79.694	1.00 44.97 1.00 50.83
ATCM	5859	CZ3	TRP B	355	•	74.084	0.341	78.979	1.00 35.23
ATOM	5860	CH2		355		73.231	6.685	80.485	1.00 30.67
ATOM	5861	C	TRP B	355		72.819 73.622	7.474	80.981	1.00 26.93
MOTA	5862	0	TRP B	355		72.061	5.880	81.218	1.00 24.96
MOTA	5863	N				72.147	5.848	82.671	1.00 23.57
MOTA	5864	CA	ARG B			70.811	6:319	83.257	1.00 24.71
MOTA	5865	CB	ARG B			70.534	7.795	82.941	1.00 23.66
ATOM	5866	CG	ARG B			69.067	8.212	83.055	1.00 20.14
ATOM	5867 5868	CD NE	ARG B			68.926	9.610	82.642	1.00 20.59
ATOM	5869	CZ	ARG B			67.787	10.192	82.288	1.00 25.41
MOTA MOTA	5870	NHI				66.644	9.508	82.287	1.00 17.01
ATOM	5871	NH2				67.796	11.464	81.910	1.00 20.07
ATOM	5872	С	ARG B			72.481	4.410	83.085	1.00 26.57
ATOM	5873	Č	ARG B			71.610	3.641	83.485	1.00 23.02
ATOM	5874	N	GLY B			73.761	4.063	82.978	1.00 23.92
ATOM	5875	CA	GLY B	357		74.186	2.712	83.294	1.00 25.54
ATOM	5876	С	GLY B			74.796		84.657	1.00 24.35
ATOM	5877	0	GLY B	357		74.523	3.161	85.628	1.00 25.88
ATCM	5878	N	GLY B	358		75.638	1.444	84.718	1.00 24.32
ATOM	5879	CA	GLY B	358		76.282	1.070	85.960	1.00 23.56
ATCM	5880	С	GLY B			76.412	-0.441	85.924	1.00 29.26
ATCM	5881	Ö	GLY B			76.146	-1.051	84.889	1.00 23.71 1.00 27.64
ATCM	5882	N	GLU B			76.814	-1.051	87.033	1.00 27.84
ATOM	5883	CA	GLU B	359		76.955	-2.503	87.078	1.00 32.15
ATOM	5884	CB	GLU B			77.822	-2.936	88.265 89.601	1.00 30.40
ATOM	5885	CG	GLU B			77.125		90.741	
ATOM	5886	CD.	GLU B			77.844	-3.479 -3.521	91.861	
ATCM	5887	JE:				77.287		90.520	
ATOM	5888	OE:				78.959 75.571		87.261	
ATOM	5889	C	GLU B			74.612			
ATOM	5890	0	GLU E			75.482			
ATCM	5891	N	VAL E			74.230			
ATCM	5892	CA	VAL E			74.230			
ATOM	5893	C3	VAL E VAL E			72.764			
ATOM	5894	CG:				73.969			
ATOM	5895	CG:	VAL E			74.342			
ATCM	5896	C O	VAL E			75.150			
ATOM	5897	J	AWD E	, ,,,,,,			- • - • -	•	

WO 01/18045

MOTA	5898	N	ARG B	361	•	73.553	-5.289	89.575	1.00 26.45
ATOM	5899		ARG B		•	73.558	-5.821	90.935	1.00 28.47
	5900	CB	ARG B			72.479	-5.146	91.787	1.00 30.55
MOTA			ARG B			72.937	-3.877	92.485	1.00 32.61
ATOM	5901	CG	ARG B			71.749	-3.163	93.117	1.00 35.00
ATOM	5902	CD				70.858	-2.617	92.094	1.00 30.31
MOTA	5903	NE	ARG B			69.753	-1.925	92.350	1.00 29.45
MOTA	5904	CZ	ARG B				-1.689	93.605	1.00 18.49
MOTA	5905	NH1	ARG B			69.385		91.348	1.00 30.49
MOTA	5906	NH2	ARG B	.361		69.041	-1.428		1.00 30.43
MOTA	5907	С	ARG B			73.351	-7.322	91.001	
ATOM	5908	0	ARG B	361		72.665	-7.910	90.168	1.00 23.60
MOTA	5909	N	LYS B	362		73.949	-7.922	92.022	1.00 33.09
ATOM	5910	CA	LYS B			73.864	-9.351	92.272	1.00 36.94
ATOM	5911	СВ	LYS B			74.687	-9.706	93.513	1.00 40.24
MOTA	5912	CG	LYS B			76.190	-9.527	93.337	1.00 52.55
	5913	CD	LYS B			76.571	-8.126	92.849	1.00 56.65
ATOM	5914	CE	LYS E			76.149	-7.032	93.819	1.00 53.39
MOTA	5915	NZ	LYS E			76.553	-5.680	93.341	1.00 48:87
ATOM			LYS E			72.427	-9.826	92.463	1.00 32.84
MOTA	5916	C	LYS E				-10.867	91.938	1.00 28.27
MOTA	5917	0	GLU E			71.628	-9.075	93.215	1.00 34.67
ATOM	5918	N				70.245	-9.493	93.435	1.00 35.72
MOTA	5919	CA	GLU E			69.519	-8.532	94.390	1.00 36.04
MOTA	5920	CB	GLU F			69.502	-7.077	93.977	1.00 44.81
ATOM	5921	CG	GLU E				-6.186	95.033	1.00 52.14
MOTA	5922	CD	GLU E			68.859	-6.370	95.341	1.00 48.46
ATOM	5923	OE1				67.661		95.566	1.00 57.31
ATOM	5924	OE2				69.562	-5.300	92.111	1.00 30.68
MOTA	5925	С	GLU I			69.501	-9.619		1.00 30.45
MOTA	5926	0	GLU I				-10.530	91.944	1.00 26.19
ATOM	5927	N	VAL I			69.784	-8.724	91.166	
MOTA	5928	CA	VAL 1	364		69.138	-8.789	89.852	
MOTA	5929	CB.	VAL 1			69.536	-7.599	88.958	1.00 23.49
ATOM	5930	CG1	VAL I	B 364		68.924	-7.770	87.563	1.00 21.01
ATOM	5931	CG2	VAL 1	B 364		69.049	~6.·293	89.587	1.00 23.08
ATOM	5932	С		B 364		69.530	-10.083	89.144	1.00 23.19
ATOM	5933	Ó		B 364		68.691	-10.749	88.542	1.00 23.06
ATOM	5934	N	LYS	B 365		70.810	-10.436	89.216	1.00 27.15
ATOM	5935	CA	LYS			71.296	-11.668	88.594	1.00 29.18
ATOM	5936	CB		B 365			-11.758	88.704	1.00 28.61
ATOM	5937	CG	LYS	B 365			-10.617	88.030	1.00 30.27
ATOM	5938	CD		в 365		75.074	-10.768	88.154	1.00 32.58
MOTA	5939	CE	LYS	B 365		75.790	-9.587	87.516	1.00 29.13
	5940	NZ	LYS			77.271	-9.689	87.606	1.00 35.17
MOTA	5941	C	LYS			70.666	-12.879	89.276	1.00 25.30
ATOM	5942	Ö		B 365		70.282	-13.837	88.613	1.00 26.81
MOTA	5943	N		B 366			-12.831	90.604	1.00 26.10
ATOM		CA	755	B 366		69 963	-13.938	91.347	1.00 28.29
ATOM	5944 5945	CB	YED	B 366		70.105	-13.731	92.859	1.00 29.44
ATOM	-			B 366		71.557	-13.669	93.311	1.00 32.95
ATOM	5946	CC		в 366		72 446	-14.099	92.551	1.00 26.37
ATOM	5947	OD:	LASP	D 366		71 811	-13.216	94.442	1.00 35.26
MOTA	5946	OD:		B 366		68 487	-14.110	90.986	1.00 28.61
MOTA	5949	C		B 366		68 000	-15.231		1.00 27.00
MOTA	5950			B 366		67 777	-13.002	90.801	1.00 28.63
MOTA	5951		THR	B 367		66 365	-13.080		1.00 27.35
MOTA	5952			B 367		66.363	-11.683		1.00 27.63
ATOM	5953			B 367		65.720	11.003		
ATOM	5954			B 367		65.771	-11.068		
MOTA	5955			B 367		64.280	-11.786		
ATOM	5956	С		B 367		66.197	-13.782		
ATOM	5957			B 367		55.389	-14.693	88.964	
ATOM	5958		LEU	з 368		66.962	-13.361	88.092	_
ATOM	5959		LEU	з 368		66.857	-13.990	86.785	
ATOM	5960			B 368		67.719	-13.256	85.759	
ATOM	5961			B 368		67.060	-12.070	85.046	
ATOM	5962			B 368		65.923	3 -12.607	84.195	
ATOM	5963		2 LEU	B 368		66.546	5 -11.027	86.043	1.00 19.43
7.013								-	

MOTA	5964	С	LEU B	368	67.262	-15.454	86.888	1.00 32.40
ATOM	5965	0	LEU 3	368		-16.309	86.179	1.00 31.80
MOTA	5966	N		369		-15.735	87.774	1.00 33.59
MOTA	5967	CA		369		-17.101	88.003	1.00 39.68 1.00 42.61
MOTA	5968	CB		369		-17.141 -17.138	89.082 88.537	1.00 42.61
ATOM	5969	CG		369 369		-18.443	87.842	1.00 55.81
MOTA MOTA	5970 5971	CD OE1		369		-18.561	87.299	1.00 57.42
ATOM	5972	OE2		369		-19.353	87.841	1.00 58.37
ATOM	5973	C		369		-17.954	88.442	1.00 34.94
ATOM	5974	0		369		-18.974	87.827	1.00 32.71
ATOM	5975	N		370		-17.541	89.512	1.00 34.92
ATOM	5976	CA		370		-18.295	89.993	1.00 35.12
ATOM	5977	CB		370		-17.679 -17.916	91.268 92.532	1.00 37.39 1.00 44.70
ATOM	5978 5979	CD CD		370 370		-16.741	92.892	1.00 44.70
ATOM ATOM	5980	CE		370		-15.537	93.346	1.00 47.82
ATOM	5981	NZ	LYS B			-14.387	93.786	1.00 45.41
ATOM	5982	С	LYS B.		64.581	-18.375	88.930	1.00 33.21
MOTA	5983	0	LYS B			-19.409	88.773	1.00 29.52
ATOM	5984	N		371		-17.288	88.191	1.00 31.62
ATOM	5985	CA		371		-17.274	87.153 86.403	1.00 37.19 1.00 35.65
MOTA	5986	CB		371 371	63.572	-15.938. -18.431	86.181	1.00 33.03
ATOM ATOM	5987 5988	С 0	ALA B	371		-19.137	85.838	1.00 34.46
ATOM	5989	N		372		-18.644	85.759	1.00 40.10
ATOM	5990	CA	LYS B	372		-19.698	84.792	1.00 40.46
ATOM	5991	С	LYS B	372		-21.066	85.348	1.00 43.15
ATOM	5992	0	LYS B	372		-22.053	84.591	1.00 43.57 1.00 40.51
MOTA	5993	CB	LYS B	372 372		-19.694 -18.925	84.517 83.248	1.00 20.00
MOTA MOTA	5994 5995	CG CD		372	68.352	-19.390	82.635	1.00 20.00
MOTA	5996	CE	FIR B	372		-20.907	82.706	1.00 20.00
ATOM	5997	NZ		372.		-21:354	82.116	1.00 20.00
ATOM	5998	N	ALA B	373	64.412	-21.159	86.624	1.00 47.80
MOTA	5999	ÇÃ		373		-22.425	87.239	1.00 49.71
ATOM	6000	CB		373	64.762	-22.639 -22.443	88.546 87.494	1.00 48.25 1.00 53.38
ATOM	6001 6002	C	ALA B	373 373	62.515 61.844	-23.313	86.903	1.00 58.01
MOTA MOTA	6002	O OXT		373	62.029	-21.589	88.269	1.00 55.13
HETATM		ZN	2X C	1	49.660	9.211		1.00 32.54
HETATM		31	TSA D	2	47.669	8.189	109.464	1.00 28.76
HETATM		02	TSA D	2	49.952	6.981	108.340	1.00 25.81
HETATM		03	TSA D	2	52.458	5.101	101.667	1.00 36.93 1.00 31.21
HETATM		N1	TSA D	2 2	47.800 53.013	7.789		1.00 31.21
HETATM HETATM		N2 C1	TSA D	2	51.859		101.610	1.00 28.47
HETATM		C2	TSA D	2	50.907		101.666	1.00 25.57
HETATM		C3	TSA D	2	51.241		101.551	1.00 21.68
HETATM	3000	C4	TSA D	2	52.626		101.366	1.00 23.11
HETATM		C5	TSA D	2	53.589		101.303	1.00 25.02
HETATM		. C6	TSA D	2	53.218 51.572		101.418 101.734	1.00 29.24 1.00 32.98
HETATM		c?	TSA D TSA D	2 2	50.108		101.734	1.00 29.05
HETATM HETATM		C8 C9	TSA D	2	50.052		103.338	1.00 28.13
HETATM		C10		2	49.060		104.279	1.00 25.99
HETATM		C11		2	49.315		105.504	1.00 32.05
HETATM	3008	C12	TEA D	2	48.515		106.595	1.00 27.37
HETATM		C13		2 2 2	48.855		107.756	1.00 29.02 1.00 30.21
HETATM		C14		2	49.680 47.776		100.864	1.00 30.21
HETATM		C15		2	54.438		101.139	1.00 23.45
HETATM HETATM		C16			52.044		101.316	1.00 23.15
HETATM		ZN	ZN E	1	52.949	1.842	85.681	1.00 28.19
HETATM	6005	01	TSA F	2	50.964	0.911		1.00 24.72
HETATM		02	TSA F	2	51.255	3.324	86.654	1.00 30.24

208/263 Figure 18-92

											02 210	1 00	27.89
HETATM	6007	03	TSA	F	2		51.5		6.5		93.219		
HETATM	6008	Nl	TSA		2 .		50.3	147	1.2	21	86.634		27.23
					2		47.0	161	11.1	39	93.713	1.00	16.24
MTATM		N2	TSA				49.4		7.5		93.304		27.18
HETATM	6010	Cl	TSA		2								25.98
HETATM	6011	C2	TSA	F	2		48.0		7.5		93.267		
HETATM	6012	C3	TSA	F	2		47.2	227	8.6	57	93.398	1.00	24.59
HEIAIM	6012				2		47.8	227	9.9	71	93.583	1.00	25.75
HETATM	90T3		TSA								93.626		26.53
HETATM	6014	C5	TSA	F	2		49.2		10.0				
HETATM	6015	C6	TSA	F	2		50.0	041	8.8	69	93.495		28.36
UDIAII.	6016	C7	TSA		2		50.3	349	6.4	05	93.167	1.00	25.27
HETATM	9010						49.		5.0		92.905	1.00	24.18
HETATM	6017	C8	TSA		2	•					91.518		27.20
HETATM	6018	C9	TSA	F	2		50.:		4.5	_			
HETATM	6019	C10	TSA	F	2		49.4	419	3.8	07	90.616		30.21
DETAIN	6020		TSA		2		50.	118	3.5	53	89.327	1.00	27.18
HETATM	6020						49.		2.6		88.409		23.47
HETATM	6021	C12			2								28.28
HETATM	6022	C13	TSA	F	2		50.	529	2.4		87.170		
HETATM	6023	C14			2		50.	208	4.0	119	93.994		28.83
UEINI	6024	C15			2		48.	013	3.2	70	90.863	1.00	26.16
HETATM	6024						47.		12.4		93.883	1.00	27.37
HETATM	6025		TSA		2								25.36
HETATM	6026	C16	TSA	F	2		45.		11.1		93.679		
HETATM	6027	OH2	WAT	G	1		61.	391	6.7	723	88.062		12.93
HETATM	6029		WAT		2		55.	595	-4.4	143	83.558	1.00	7.53
								656	12.7		106.749	1.00	12.33
HETATM		OH2			3								14.54
HETATM	6030	OH2	WAT	G	4			347	15.2		111.460		
HETATM		OH2	WAT	G	5		45.	523	13.6	527	76.224		11.14
HETATM	6033		WAT		6		24.	466	-6.0	064	85.688	1.00	22.41
HETATM	6032				7				-17.7	745	80.769	1.00	21.99
HETATM	6033		WAT				40.	312	15 6	640	87.809		26.67
HETATM	6034	OH2	TAV	' G	8		56.	344	-15.6	540			
HETATM	6035	OH2	TAW	' G	9		48.	554	-14.9	901	83.717		23.94
HETATM	6036		WAT		10		57.	540	-7.6	620	122.771	1.00	26.96
HETAIR	6030						-	414	-2.4	497	84.029	1.00	22.51
HETATM			raw :		11						114.616		32.15
HETATM	6038	OH2	raw :	G	12			671	10.	U / 4	114.010	1.00	19.47
HETATM	6039	OH2	LAW :	' G	13		62.	335	10.	679.	117.140		
HETATM	6040	OH	TAW S	G	14		45.	565	9 :∙	469	79.366		18.81
REIAIR					15		43	311	8.3	237	79.508	1.00	26.11
HETAT	1 6041		raw !					628			104.423		24.28
HETATM	1 6042		CAW S		16						81.576		18.30
HETATM	1 6043	OH	NAT	G	17			672		507			
HETATN	6044	OHO	NAT	' G	18		61.	830	10.		77.709		22.27
HETATI	4 6045		NAT		19		57.	813	0.	831	108.580		24.68
HETATI	1 6045							885		660	77.823	1.00	30.00
HETATI	4 6046		CAW S		20				-8.		88.841		17.32
HETAT	1 6047		AW S		21			382					27.38
HETATI	4 6048	CH:	NAT	r .G	22.		39.	.316	-10.		86.422		
מית מית שני	4 6049		AW S		23		54.	802	-3.	446	90.346	1.00	21.73
DEIAII	. 6050		2 WA		24			.292	12.	112	140.537	1.00	34.17
HETATI	4 6050							747		830	60.744	1.00	40.67
	M 6051	OH:	2 WA'	r G	25				-	30:	100.118	1.00	1 27 92
HETAT!	M 6052	OH:	2 WA:	r G	26			. 952	9.	19	100.116	1.00	27.32
מבתשתו	M 6053		2 'WA'		27		. 31	.268			106.695	1.00	24.31
HEINT	6054		2 WA		28		68	.342	17.	79:	111.076	1.00	30.93
HETATI	M 6054							.651		985		1.00	29.34
HETATI	M 6055		2 WA		29								22.61
HETAT	M 6056	OH:	2 WA'	r G	30			.287		257			20.05
HETATI	м 6057	OH	2 WA'	ГG	31		61	.221		462			29.85
HEIAT.	6050		2 WA'		32		38	.167	22.	692	107.435	.1.00	36.40
	M 6058							.657		682			18.70
	м 6059		2 WA'		33								30.02
HETAT	M 6060	CH	2 WA'	ΤG	34			. 059		698		1.5	0 30.02
HETAT	M 6061		Z WA	ТG	35		38	.480		763			0 28.03
neini	4 6062		2 :YA		36		57	.899	7.	654	112.976	1.0	0 26.46
HETAT	и 6062							.092		145			0 22.31
HETAT	M 6063		2 WA		37					400	118.878		0 30.83
HETAT	M 6064	OH	2 WA	ΤG	38			.194		. 400	110.0/0		0.30.98
TETTATE	M 6065	он	2 WA	ТG	39		69	.400			123.379	1.0	0.30.30
WEINI	M 5065	On On	2 WA		40		24	.024	6.	. 540	79.852	2 1.0	0 38.13
RETAT	M 6066						A E	657	-10			1.0	0 29.24
HETAT	M 6067		2 WA		41					400	109.692		0 46.34
HETAT	M 6068		2 WA	TG	42			.976	13.	. 403	04 754		0 23.11
HETAT	M 6069		2 WA		43			.533		. 511		1.0	0 22 11
thems in	M 6070	กษ	2 WA		44		51	.448	13.	. 833	86.30		0 27.08
HEIAI	M COT-	OI:			45			.578	4	.183	105.248	3 1.0	0 42.42
HETAT	M 6071	. OH	2 WA							. 936			0 38.97
HETAT	M 6072	OF	12 WA	TG	46		53	. 938		عرو.	,		-
•													

209/263 Figure 18-93

HETATM	6073	OH2	WAT G	47	38.458	-0.443	63.035	1.00 28.35
HETATM		OH2	WAT G	48	64.786	7.930	107.466	1.00 34.46
			WAT G	49	50.823		114.809	1.00 40.51
HETATM							68.080	1.00 39.11
HETATM			WAT G	50	33.963			
HETATM	6077	OH2	WAT G	51		-14.321	86.007	1.00 33.30
HETATM		OH2	WAT G	52	63.272	10.210	79.836	1.00 35.75
PETATM			WAT G	53	59.263	-12.096	94.306	1.00 29.57
					46.041		76.561	1.00 27.97
HETATM	6080		WAT G	54				
HETATM	6081	OH2	WAT G	55		-13.620	89.775	1.00 24.25
HETATM		OH2.	WAT G	56	76.600	0.622	89.097	1.00 29.19
HETATM			WAT G	57	53.555	6.439	79.089	1.00 34.05
			WAT G	58	71.301		83.310	1.00 35.02
HETATM	0004						81.594	1.00 33.21
HETATM			WAT G	59	28.188			
HETATM	6086	OH2	WAT G	60	53.084		98.483	1.00 27.64
HETATM		OH2	WAT G	61	59.484	8.630	93.423	1.00 30.30
HETATM			WAT G	62	26.195	-3.809	95.805	1.00 33.04
			WAT G	63	26.095		89.620	1.00 37.39
HETATM							109.711	1.00 20.88
HETATM			WAT G	64	47.100			
HETATM	6091	OH2	WAT G	65	23.273	0.731	92.275	1.00 30.38
HETATM		OH2	WAT G	66	45.340	-24.751	72.694	1.00 37.51
HETATM			WAT G	67	33.754	16.234	111.676	1.00 34.63
MEIAIM	6000		WAT G	68	52.831		126.276	1.00 47.11
HETATM								1.00 26.24
HETATM			WAT G	69	50.218			
HETATM	6096	OH2	WAT G	70	44.791			1.00 24.95
HETATM		OH2	WAT G	71	49.517	-18.731	82.921	1.00 29.48
HETATM		OH2		72	76.379	10.131	116.550	1.00 48.70
			WAT G	73	30.214			1.00 46.35
HETATM								1.00 30.80
HETATM		OH2		74	45.320			
HETATM	6101	OH2	WAT G	75	72.881			1.00 29.04
HETATM	6102	OH2	WAT G	76	59.674	-23.046		1.00 41.96
HETATM			WAT G	77	40.619	7.921	100.345	1.00 26.45
		OH2		78		-19.477		1.00 36.27
HETATM								1.00 25.78
HETATM		OH2		79	46.408			
HETATM	6106	OH2	WAT G	80	35.743	3 -12:230		1.00 28.34
HETATM	6107	OH2	WAT G	81	28.268	8.745	121.961	1.00 41.15
HETATM		OH2		82	68.843	3.154	71.986	1.00 32.34
				83		-11.158		1.00 24.14
HETATM		OH2						1.00 26.12
HETATM	6110	OH2		84	75.37			
HETATM	6111	OH2	₩AT G	85	46.95			1.00 37.07
HETATM	6112	OH2	WAT G	86	63.789	9.551		1.00 55.58
HETATM		OH2	WAT G	87	60.672	2 21.185	72.215	1.00 58.55
		OH2		88	56.54	7 9.505	82.064	1.00 31.10
HETATM					26.36			1.00 29.70
HETATM			WAT G	89				1.00 32.85
HETATM	6116	OH2		90		4 -16.583		
HETATM	6117	OH2	WAT G	91	23.91	1.899	82.068	1.00 42.95
HET! IM		OH2	WAT G	92	50.03	2 4.106		1.00 30.05
HETA.IM			WAT G	93	26.77	4 -9.492	83.952	1.00 43.59
				94	42.71		113.787	1.00 40.17
HETA.M			WAT G				134.170	1.00 47.82
HETATM			WAT G	95	57.96			
HETATM	6122	OH2	WAT G	96	54.47		119.086	1.00 36.62
HETATM		CH2	WAT G	97	53.06	5 11.696	101.718	1.00 41.62
HETATM			WAT G	98		6 -23.645	68.207	1.00 45.98
				99	54.85	5 -9 614	121.975	1.00 34.57
HETATM			WAT G					1.00 42.14
HETATM	1 6126		WAT G		57.40			
HETATM	6127	OH2	WAT G	101	63.59		123.667	1.00 33.87
HETATM			MAT G		48.12	9 -23.143	3 72.392	1.00 30.23
HETATM			WAT G		62.83			1.00 52.01
					34.56			1.00 36.29
HETATM		OH2					-	1.00 36.85
HETATM	1 6131	OH2			51.58			1.00 30.83
HETATM	6132	OH2			28.16		129.379	1.00 42.07
HETATM	1 6133	OH2	WAT G	107	49.08	2 -11.45		1.00 43.62
HETATI	1 5734		WAT G		44.71	7 -8.60	5 93.281	1.00 41.95
			WAT G		67.08	8 -11.90	94.019	1.00 35.71
HETATM	1 0772				49.56		3 100.800	
HETATM			2 WAT G				0 124.536	
HETATA	6137		WAT G		75.85		0 126 00-	
HETATE		OH	WAT G	112	54.38	3 8.93	0 136.095	1.00 36.40
							•	

210/263 Figure 18-94

		Tigure 10 3 1
HETATM 6139 HETATM 6140 HETATM 6141 HETATM 6142 HETATM 6143 HETATM 6144 HETATM 6145 HETATM 6146 HETATM 6147 HETATM 6150 HETATM 6151 HETATM 6152 HETATM 6153 HETATM 6155 HETATM 6155 HETATM 6156 HETATM 6157 HETATM 6156 HETATM 6166 HETATM 6161 HETATM 6160 HETATM 6161 HETATM 6161 HETATM 6161 HETATM 6161 HETATM 6161 HETATM 6161 HETATM 6163 HETATM 6164 HETATM 6165 HETATM 6167 HETATM 6167 HETATM 6170 HETATM 6171 HETATM 6171 HETATM 6172 HETATM 6173 HETATM 6173 HETATM 6174 HETATM 6176 HETATM 6176 HETATM 6177 HETATM 6177 HETATM 6178 HETATM 6181	OH2 WAT G 133 OH2 WAT G 134 OH2 WAT G 135 OH2 WAT G 136 OH2 WAT G 137 OH2 WAT G 138 OH2 WAT G 139 OH2 WAT G 140 OH2 WAT G 141 OH2 WAT G 144 OH2 WAT G 144 OH2 WAT G 145 OH2 WAT G 146 OH2 WAT G 147 OH2 WAT G 148 OH2 WAT G 148 OH2 WAT G 150 OH2 WAT G 150 OH2 WAT G 151 OH2 WAT G 152 OH2 WAT G 155 OH2 WAT G 155 OH2 WAT G 155 OH2 WAT G 155 OH2 WAT G 156 OH2 WAT G 157	33.114
	OH2 WAT G 154	63.586 -1.894 99.003 1.00 41.15
HETATM 6181	OH2 WAT G 156	54.145 -22.222 88.415 1.00 40.92
HETATM 6182	OH2 WAT G 15/	02.445
	OH2 WAT G 158	37,701 -5.528 119.322 1 00 45.00
HETATM 6185	OH2 WAT G 160	43.599 13.442 131.274 1 00 38.43
HETATM 6186	OH2 WAT G 161 OH2 WAT G 162	23.540 -1.137 96.111 1 00 51.83 59.915 -4.318 110.873 1.00 41.92
HETATM 6187 HETATM 6188	OH2 WAT G 162	51.265 -8.264 60.546 1.00 31.25
HETATM 6189	OH2 WAT G 164	58.109 7.024 98.294 1.00 46.30 46.553 18.195 74.179 1.00 37.53
HETATM 6190 HETATM 6191	OH2 WAT G 165 OH2 WAT G 166	55.706 -21.025 92.515 1.00 43.91
HETATM 6192	OH2 WAT G 167	67.146 -1.958 109.704 1.00 43.13
HETATM 6193	OH2 WAT G 168	47.445 -3.047 134.746 1.00 27.99 65.193 5.304 63.562 1.00 36.05
HETATM 6194 HETATM 6195	OH2 WAT G 169 OH2 WAT G 170	36.176 8.979 102.024 1.00 39.63
HETATM 6196	OH2 WAT G 171	70.527 5.797 70.886 1.00 44.69
HETATM 6197	OH2 WAT G 172	67.166 8.735 74.628 1.00 51.41 19.700 9.630 81.850 1.00 53.49
HETATM 6198 HETATM 6199		55.875 11.277 87.176 1.00 38.63
HETATM 6200	OH2 WAT G 175	61.874 8.432 91.682 1.00 40.08
HETATM 6201	OH2 WAT G 176	36.771 -6.815 121.530 1.00 32.57 63.224 7.776 89.317 1.00 29.83
HETATM 6202 HETATM 6203		29.606 15.345 132.470 1.00 47.28
HETATM 6204		52.811 11.799 98.957 1.00 36.09

		38.589 18.249 88.356 1.00 36.19
HETATM 6205	OH2 WAT G 180	30.307 20.225
HETATM 6206	OH2 WAT G 181	
HETATM 6207	OH2 WAT G 182	32,200 20.000
HETATM 6208	OH2 WAT G 183	57.121 -11.129 126.206 1.00 45.78
HETATM 6209	OH2 WAT G 184	50.011 -19.367 92.127 1.00 36.55
HETATM 6210	OH2 WAT G 185	56.880 2.453 95.969 1.00 39.12
HETATM 6211	OH2 WAT G 186	26.356 14.125 125.052 1.00 32.68
HETATM 6212	OH2 WAT G 187	24.631 20.230 122.650 1.00 45.67
HETATM 6213	OH2 WAT G.188	23.516 4.964 81.599 1.00 42.16
HETATM 6214	OH2 WAT G 189	55.017 14.964 62.948 1.00 50.18
HETATM 6215	OH2 WAT G 190	33.371 13.710 105.640 1.00 37.04
HETATM 6216	OH2 WAT G 191	44.466 -10.386 91.144 1.00 36.62
HETATM 6217	OH2 WAT G 192	28.437 22.668 121.285 1.00 38.19
HETATM 6217	OH2 WAT G 193	29.786 24.957 122.112 1.00 42.05
	OH2 WAT G 194	28.852 3.461 96.101 1.00 48.35
HETATM 6219	OH2 WAT G 194 OH2 WAT G 195	41.681 11.318 92.011 1.00 32.60
HETATM 6220	OH2 WAT G 196	26.812 -10.229 111.631 1.00 47.70
HETATM 6221	OH2 WAT G 198	42.432 -23.250 76.629 1.00 48.86
HETATM 6222	OH2 WAT G 197	25.484 12.756 121.410 1.00 43.09
HETATM 6223	OH2 WAT G 198	43.514 -20.514 111.706 1.00 46.80
HETATM 5224	OH2 WAT G 199	74.273 -13.079 95.699 1.00 44.89
HETATM 6225		59.982 24.381 103.984 1.00 40.63
HETATM 6226	OH2 WAT G 201	67.164 -12.771 74.705 1.00 35.13
HETATM 6227	OH2 WAT G 202	28.708 9.211 79.238 1.00 33.53
HETATM 6228	OH2 WAT G 203	53.256 -3.576 122.243 1.00 48.49
HETATM 6229	OH2 WAT G 204	50.706 16.208 87.357 1.00 41.26
нетатм 6230	CH2 WAT G 205	50.000 34.998 98.339 1.00 39.15
HETATM 6231	OH2 WAT G 206	68.078 -16.236 83.621 1.00 29.70
HETATM 6232	OH2 WAT G 207 OH2 WAT G 208	24.395 -4.134 111.635 1.00 50.82
HETATM 6233	OH2 WAT G 209	53.384 -2.664 114.289 1.00 44.49
HETATM 6234	OH2 WAT G 200	60.120 -9.482 94.788 1.00 31.97
HETATM 6235	OH2 WAT G 210	23.405 17.472 111.744 1.00 44.97
HETATM 6236	OH2 WAT G 211	46.214 20.943 76.878 1.00 59.14
HETATM 6237	OH2 WAT G 212	29.754 6:983 97.109 1.00 41.78
HETATM 6238 HETATM 6239	OH2 WAT G 214	46.820 -0.465 55.181 1.00 41.02
HETATM 6240	OH2 WAT G 215	59.143 22.096 124.775 1.00 38.42
HETATM 6241	OH2 WAT G 216	42.674 14.088 66.037 1.00 32.50
HETATM 6242	OH2 WAT G 217	55.009 -7.248 98.186 1.00 56.50
HETATM 6243	OH2 WAT G 218	63.361 -8.209 109.653 1.00 49.66
HETATM 6244	OH2 WAT G 219	66.583 -8.146 94.671 1.00 50.91
HETATM 6245	OH2 WAT G 220	44.627 -2.583 93.919 1.00 36.99
HETATM 6246	OH2 WAT G 221	24.470 -8.606 79.502 1.00 47.24
HETATM 6247	OH2 WAT G 222	76.913 -7.777 83.973 1.00 50.43
HETATM 6248	OH2 WAT G 223	32.788 0.651 129.136 1.00 42.47
HETATM 6249	OH2 WAT G 224	73.731 -16.880 88.817 1.00 46.69
HETATM 6250	OH? WAT G 225	78.567 -2.802 93.970 1.00 43.17
HETATM 6251	OH. WAT G 226	45.681 1.248 57.532 1.00 35.84
HETATM 6252	OH1 WAT G 227	38.263 15.236 84.711 1.00 42.39
HETATM 6253	OH2 WAT G 228	38.933 35.224 108.488 1.00 52.23
HETATM 6254	OH2 WAT G 229	33.755 14.939 70.228 1.00 46.56
HETATM 6255	OH2 WAT G 230	51.521 34.184 100.859 1.00 52.96 34.140 0.565 63.039 1.00 31.02
HETATM 6256	CH2 WAT G 231	
HETATM 6257	OH2 WAT G 232	
HETATM 6258	OH2 WAT G 233	
HETATM 6259	OH2 WAT G 234	31.718
HETATM 6260	OH2 WAT G 235	00.00
HETATM 6261	OH2 WAT G 236	77.00
HETATM 6262	OH2 WAT G 237	
HETATM 6263		2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
HETATM 6264	OH2 WAT G 239	7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7
HETATM 6265	CH2 WAT G 240	3
HETATM 5266		7.00
HETATM 6267	OH2 WAT G 242	29.687 1.898 127.376 1.00 44.83 49.534 -10.150 113.501 1.00 38.32
HETATM 6268	OH2 WAT G 243	57.252 9.773 96.696 1.00 48.83
HETATM 6269	OH2 WAT G 244	62.310 13.262 80.972 1.00 38.54
HETATM 6270	OH2 WAT G 245	02.310 13.202 00.372 1.00 3000

212/263Figure 18-96

					_							
	(271	CH2 W	מית כ	246		50.24	8	-5.552	2 10	02.815	1.00 4	13.23
HETATM	6271	OH2 W				47.96		21.564		79.321	1.00	
HETATM						62.50		20 866	5 10	08.414	1.00	
HETATM		OH2 W				53.97		19.76		51.067	1.00	
HETATM	6274	OH2 W						9.82		57.749	1.00	
HETATM		OH2 W				38.40				56.319	1.00	
HETATM	6276		JAT G			35.30		-6.17				
RETATM	6277		AT G					12.66		85.610	1.00	
HETATM	6278	OH2 W	IAT G	253		56.35		5.08		97.225	1.00	
HETATM	6279	OH2 W	VAT G	254		69.85				22.119	1.00	
METATM			VAT G			75.70				28.600	1.00	
HETATM	6281		VAT G			32.01	9 -	12.97	3 1:	13.965	1.00	
HETATM	6282		VAT G			54.08	1	3.42		56.994	1.00	
HETATM	6283		AT G			32.80	1	-6.17	0 !	91.078	1.00	
HETATM	6284		NAT G			45.04	0	0.30		95.449	1.00	
HETATM	6285		JAT G			39.81	5	21.46	0 1	28.855	1.00	
HETATM	6286		NAT G			28.76		10.40		93.790		44.39
HETATM	6287		AT G			49.66	8 -	-12.05	0	60.539	1.00	50.89
HETATM	6288		WAT G			64.35		20.01	5 1	17.495		62.67
HETATM	6280		NAT G			75.18		13.02	1 1	28.124		50.42
HETATM	6203		WAT G			46.28		6.82	6	52.485	1.00	46.86
HETATM	6230		WAT G			68.70		13.97	3	70.958	1.00	37.90
			WAT G			71.50				30.029	1.00	38.78
HETATM	6232		WAT G			36.30				30.364	1.00	42.92
HETATM	6293					65.97		12.19		79.625		51.68
HETATM		CH2		269		71.95		13.02	-	74.292		37.70
HETATM	6295		WAT G			44 43	13	-17.57		62.734		49.33
HETATM	6296		WAT G			26.93		15.03	-	89.067	1.00	38.07
HETATM	6297		WAT G			63.38				26.550		41.73
HETATM	6298	OH2	WAT G	2/3		63.36		-5.35		95.641		37.54
HETATM	6299	OH2	WAT G	2/4				-13.01		97.485		37.42
HETATM	6300		WAT G					25.01		17.328		48.37
HETATM	6301		WAT G			26.40				98.201		46.36
HETATM			WAT G					-10.25)	17.764		49.87
HETATM	6303		WAT G			30.3		20.30	10 1 1 0 1	111.056		43.93
HETATM				279 .		45.1				120.511		54.02
HETATI			WAT G			50.5		-1.30	נ ככ	105.130		31.10
	6306		WAT G			60.4				70.246		45.19
HETATI	1 6307		WAT G			30.3		2.20		127.736		33.17
	4 6308		WAT G			60.3				62.117		45.81
HETATI	1 6309		WAT G			64.1		3.43		105.853		48.98
	4 6310		WAT G			45.4				98.279		46.45
HETATI	4 6311		WAT G			47.5		3.8				40.04
HETAT	4 6312		MAT 0			72.1		-6.3		77.930		43.62
HETATI	4 6313	OHE	WAT C	288		54.1		-5.1		99.674		46.98
HETATI	4 6314		WAT G			48.9		13.2		65.822	1.00	51.76
HETATI	4 6315	OH2	WAT C	290		41.1				115.807		44.27
HETATI	M 6316		WAT C			36.4				104.170	1.00	40.96
HETATI	4 6317	OH2	WAT C	292		48.5		23.1		85.456	1.00	40.95
HETATI	M 6318	OH2	WAT C	293		55.8		22.9		98.099		41.21
HETAT	M 6319	OH2	WAT C	3 294		61.7	20	11.0		89.427		42.32
HETAT	M 6320		WAT C					-18.5	52	114.112		37.41
HETAT	M 6321	OH2	WAT C	3 296		53.0				129.052		
HETAT	м 6322	OH2	WAT C	3 297		70.2		24.9	28	82.843		48.09
HETAT	M 6323	OH2	WAT	3 298		77.4				130.507		51.77
HETAT	M 6324	OH2	WAT C	3 299		32.2				83.028		53.51
	M 6325	OH2	WAT (3 3 0 0		40.6				65.747		46.49
HETAT	M 6326		WAT			50.9	77			114.597		48.51
HETAT	M 6327	OH2	WAT	3 3 0 2		54.2	36	3.8		92.196		41.15
SETAT	м 6328		WAT	3 3 0 3		59.5				107.471	1.00	36.71
HETAT	M 6329		WAT			70.3				89.312		47.70
	M 6330		WAT			60.6			69	127.780		41.96
:::T1T	M 6331		WAT			42.3	56			133.156		32.19
 ያያቸው	M 6332		WAT	G 307		58.3	88	16.5	14	99.413		53.60
תבתבת	M 6333		WAT			67.5	517	-1.5	89	96,570		40.36
:::::::::::::::::::::::::::::::::::::	M 6334		WAT			35.8	368	-10.9	236	98.849	1.00	48.80
TETTAL	M 6335			G 310		45.	576	25.3	88	131.914	1.0	48.99
	M 6336		WAT			37.5				64.257	1 1.0	0 37.06
== : M.1	סכנט גג	٠.،٠								•		

HETATM	6337	OH2	WAT G	312	66.759	16.408	94.600	1.00 45.07
HETATM		OH2	MAT G	313	24.142	11.212	113.340	1.00 52.23
			WAT G		69.409		64.230	1.00 39.88
HETATM								
HETATM			WAT G		22.064		115.328	1.00 50.23
HETATM	6341	OH2	WAT G	316	50.171	9.551	100.345	1.00 37.32
HETATM		OH2	WAT G	317	55.104	31.302	119.497	1.00 44.78
HETATM			WAT G			-10.105	95.866	1.00 44.21
							128.127	1.00 41.95
HETATM		–	WAT G		31.415			
HETATM	6345		WAT G		37.423	13.143	88.069	1.00 44.79
HETATM	6346	OH2.	WAT G	321	43.619	14.292	96.509	1.00 54.69
HETATM			WAT G		68.048	14.555	126.016	1.00 42.75
HETATM			WAT C		34.778		130.204	1.00 37.06
							103.841	1.00 47.34
HETATM			WAT C		27.972			
HETATM			WAT C		53.550		97.592	1.00 38.03
HETATM	6351	OH2	WAT G	326	33.776		103.451	1.00 50.60
HETATM		OH2	WAT C	327	37.862	35.632	114.870	1.00 48.34
HETATM			WAT C		50.893	14.612	93.478	1.00 38.77
			WAT C			-20.913	86.137	1.00 47.69
HETATM							74.502	1.00 41.94
HETATM			WAT C			-23.133		
HETATM	6356	OH2	WAT C	331	41.520	7.269	60.583	1.00 54.93
HETATM	6357	OH2	WAT C	332	75.879	13.737	106.089	1.00 44.65
HETATM		OH2	WAT G	333	51.923	9.027	138.493	1.00 41.08
HETATM			WAT C		49.511		79.363	1.00 39.05
					69.385		110.192	1.00 41.42
HETATM			WAT					
HETATM	6361		WAT		40.952		101.880	1.00 42.50
HETATM	6362	OH2	WAT C	337	32.998		103.784	1.00 54.22
HETATM	6363	OH2	WAT C	338	54.366	15.261	136.205	1.00 52.69
HETATM		OH2	WAT (339	35.674		89.792	1.00 35.83
			WAT			-21.361	87.138	1.00 46.26
HETATM							131.550	1.00 45.27
HETATM			TAW		72.053			
HETATM			WAT		28.072		70.419	1.00 34.92
HETATM	6368	OH2	WAT (343	23.611	-3.981	76.422	1.00 52.99
HETATM			WAT C		53.684	2.564	122.150	1.00 58.16
HETATM			WAT		30.624		125.556	1.00 34.71
					27.870		113.997	1.00 44.91
HETATM			WAT				116.327	1.00 55.34
HETATM			WAT (31.903			
HETATM	6373	CH2	WAT	348	71.763		63.739	1.00 48.99
HETATM	6374	OH2	TAW	349	25.258	-2.536	114.760	1.00 37.19
HETATM		OH2	WAT (350	43.765	12.162	78.143	1.00 42.32
HETATM			WAT		32.452	5.338	73.909	1.00 33.70
HETATM			WAT		52.896		101.894	1.00 46.40
					47.968		115.852	1.00 34.62
HETATM			WAT					
HETATM	6379		WAT (38.561		90.596	1.00 49.80
HETATM	6380	OH2	WAT	355	63.791	17.454	74.354	1.00 56.40
HETATM	6381	OH2	WAT (3.56	41.360	2.648	133.760	1.00 50.00
HETATM		OH2	WAT (357	42,467	-7.937	122.328	1.00 38.01
HETATM			WAT (50.890	-0.362	116.668	1.00 39.26
						-23.881	67.865	1.00 55.18
HETATM			WAT (
HETATM			WAT		64.959		105.032	1.00 38.83
HETATM	6386	OH2	WAT (361	58.113	-19.846	82.288	1.00 38.60
HETATM			WAT (42.245	-1.140	93.572	1.00 31.47
HETATM			WAT (73.552		125.885	1.00 54.89
			WAT		68.769		106.810	1.00 45.53
HETATM								1.00 45.15
HETATM			WAT		37.543		78.866	
HETATM			TAW		55.583		95.087	1.00 44.99
HETATM		OH2	WAT (3 3 6 7	41.284	9.699	78.250	1.00 36.58
HETATM			WAT (25.203		126.362	1.00 46.60
HETATM			TAW		74.742			1.00 47.85
					70.349	19.871	69.925	1.00 51.46
HETATM			WAT			20.011		1.00 38.66
HETATM		OH2	WAT	371 و	42.936		94.720	
HETATM	5397		WAT			-16.114	114.141	1.00 44.01
HETATM			WAT (33.863	16.838	100.275	1.00 44.66
HETATM			WAT		21.613	12.569	86.140	1.00 43.89
				375		-13.302	100.583	1.00 53:53
HETATM				3 376		13 305	117.505	1.00 52.02
HETATM						10.100	131.799	1.00 46.47
HETATM	5402	OHZ	WAT	3 377	41.853	19.108	1,31./39	1.00 40.47

214/263 Figure 18-98

	0 270		55.780 -14.9 40.990 21.2	86 65 487	1.00 49.09
HETATM 6403	OH2 WAT G 378		40 990 21.2	05 91.611	1.00 41.02
HETATM 6404			48.157 1.0	57 116.992	1.00 44.84
HETATM 6405	OH2 WAT G 380		37.954 -6.2	21 128.334	1.00 37.09
HETATM 6406	OH2 WAT G 381		30.221 27.7		1.00 39.92
HETATM 6407	OH2 WAT G 382		49.926 -12.8	26 118 421	1.00 58.95
HETATM 6408	GH2 WAT G 383		42.435 -17.6	36 81 477	1.00 48.47
HETATM 6409	OH2 WAT G 384		58.226 -25.9	90 71 378	1.00 48.18
HETATM 6410	OH2 WAT G 385		40.495 17.9	44 128 741	1.00 43.82
HETATM 6411	OH2 WAT G 386		31 9/3 6 3	01 109.475	
HETATM 6412	OH2 WAT G 387		31.943 6.3 47.277 2.5	59 100.509	1.00 43.00
HETATM 6413	OH2 WAT G 388		38.862 9.1	12 102.620	1.00 31.70
HETATM 6414	OH2 WAT G 389		71 (57 14 5	69 105 167	1.00 49.63
HETATM 6415	OH2 WAT G 390 OH2 WAT G 391		68.554 -10.5	18 73.331	1.00 38.16
HETATM 6416	OH2 WAT G 391		70.496 -16.1	60 84.425	1.00 32.16
HETATM 6417	OH2 WAI G 392		44.698 -24.9	75.603	1.00 43.38
HETATM 6418 HETATM 6419	OH2 WAT G 393 OH2 WAT G 394		56.172 15.3	369 55.027	1.00 47.44
HETATM 6420	CH2 WAT G 395		46.150 -9.4	141 99.999	1.00 47.98
HETATM 6421	OH2 WAT G 396		20,032 -0.	356 89.057	1.00 34.99
HETATM 6422	OH2 WAT G 396 OH2 WAT G 397		31.737 14.3	380 90.395	1.00 50.78
HETATM 6423				824 62.777	1.00 50.86
HETATM 6424	OH2 WAT G 399		37.312 15.3	242 134.977	1.00 43.57
HETATM 6425	OH2 WAT G 400		33.728 13.	773 126.419	1.00 57.13
HETATM 6426	OH2 WAT G 401		45.269 27.5	937 130.311	1.00 49.55
HETATM 6427	OU2 WAT G 402		45.269 27.9 44.887 -17.6	414 111.508	1.00 54.29
HETATM 6428	OH2 WAT G 403		68.928 0.43.271 -21.	455 136.711	1.00 49.90
HETATM 6429	OH2 WAT G 404		43.271 -21.	571 64.425	1.00 48.61
HETATM 6430	OH2 WAT G 405		24.243 -4.	781 108.590	1.00 51.05
HETATM 6431	OH2 WAT G 406		54.828 5. 53.460 27.	311 59.009	1.00 43.43
HETATM 6432	она мат с 407		53.460 27.	992 124.076	1.00 47.83
HETATM 6433	OH2 WAT G 408	•	70.833 -18.	390 85.386	1.00 49.26
HETATM 6434	OH2 WAT G 409		71.497 15.	287 113.071	1.00 34.52 1.00 55.43
HETATM 6435	OH2 WAT G 410		36.407 -18.	480 110.466	1.00 47.69
HETATM 6436	OH2 WAT G 411		26.220 -9.	551 /8.158	
HETATM 6437	OH2 WAT G 412			326 82.038	
HETATM 6438	OH2 WAT G 413		76.173 14. 58.379 6.	336 133 034	
HETATM 6439	OH2 WAT G 414		72.162 -16.	705 82 719	1.00 50.63
HETATM 6440	OH2 WAT G 415		72.102 -10.	152 65.944	1.00 39.83
HETATM 6441	OH2 WAT G 416		63.557 26. 38.935 23.	070 122.742	
HETATM 6442	OH2 WAT G 417 OH2 WAT G 418		55.256 -10.	714 124.501	
HETATM 6443	OH2 WAT G 410		55 443 -9.	037 110.170	
HETATM 6444	CH2 WAT G 419 CH2 WAT G 420		73.873 16.	578 123.288	1.00 46.54
HETATM 6445	CH2 WAT G 420		74 426 12.	663 111.541	1.00 43.02
HETATM 6446	OH2 WAT G 422		52.374 -0.	368 51.502	1.00 56.99
HETATM 6447 HETATM 6448	OH2 WAT G 423		60.339 20.	215 84.713	1.00 36.27
HETATM 6445			48.308 1.	354 54.561	1.00 38.53
HETATM 6450			61.757 21.	.606 115.976	1.00 61.09
HETATM 6451			33.222 -14.	916 119.528	1.00 51.12
HETATM 6452			47.477 3.	.359 112.298	1.00 46.10
HETATM 6453				.272 138.388	1.00 35.33
HETATM 6454			•	.336 126.262	
HETATM 6455				.857 119.191	1.00 51.45
HETATM 6456	OH2 WAT G 431		44.139 -3	.812 132.964	1.00 44.91
HETATM 6457	OH2 WAT G 432			.594 95.398	1.00 50.23
HETATM 6458	OH2 WAT G 433			.064 55.271	
HETATM 6459	OH2 WAT G 434			.731 101.129	
HETATM 6460	OH2 WAT G 435		64.772 5	.808 71.942	
HETATM 6461	CH2 WAT G 436			.705 80.180	
HETATM 6462	OH2 WAT G 437			.551 65.371 .989 60.087	
HETATM 6463	OH2 WAT G 438		58.318 -7	.474 120.408	1.00 46.28
HETATM 6464	CH2 WAT G 439		26.982 5	.233 90.050	
HETATM 6465				.971 118.393	
HETATM 6466				.594 113.941	
• HETATM 6467			61 450 11	.576 71.140	1.00 61.67
HETATM 6468	OH2 WAT G 443		01.409 11	.310 . ** . **	2,00

215/263 Figure 18-99

HETATM HETATM HETATM HETATM HETATM	6470 6471 6472 6473	OH2 WAT COME	445 446 447 448	59.592 47.407 36.254 49.525 21.801	18.203 32.050 -5.358	58.518 111.310 99.930 116.235 81.109 95.380	1.00 42.66 1.00 45.14 1.00 44.76 1.00 47.72 1.00 42.07 1.00 40.76
HETATM HETATM		OH2 WAT O		52.131 39.712	-14.007 -19.983	72.499	1.00 51.69
HETATM HETATM		OH2 WAT O		67.651 77.344	5.620 1.313	67.102 79.207	1.00 42.38 1.00 63.64
HETATM HETATM	6478	OH2 WAT O	453	55.249 64.429	-29.426 -11.004	86.187 98.104	1.00 44.98 1.00 49.12
HETATM HETATM	6480 6481	OH2 WAT O	456	•••	-0.814 -14.790 5.611	129.510 68.028 94.924	1.00 61.60 1.00 40.08 1.00 58.32
MTATH:	6482	OH2 WAT	3 457	. 34.732	3.011	24.224	1.00 30.32

216/263Figure 19-1

		rigule 19-1				TD
	Resid	lue # X	Y	Z	Segment	
- 001	1 CB ALA A 2	45.368			.00 57.10	بنبين
ATCM		46.751			00 55.49	AAAA
ATOM	i company	46.339	39.800	73.750	00 55.57	ښممد
MOTA	2 C ALA A 2 3 C ALA A 2 4 N ALA A 2	48.280	37.746	74.937	00 57.26	aaaa
ATOM			37.537	74.110	00 56.37	AAAA
ATOM	5 CA ALA A 2	47.062		71.938	.00 53.94	AAAA
ATCM	6 M LVS A 3 7 CA LVS A 3	46.976	.38.628	71.530	2.00 51.97	AAAA
	7 CA LYS A 3	46.721	39.716			
ATCH	8 CE LYS A 3	47.815	39.778	69.939	1.00 53.86	AAAA
ATOM		49.223	.39.276		1.00 56.47	AAAA
ATOM		50.252	39.670	69.387	1.00 57.84	بمممن
ATOM	10 CD LYS A 3	51.654	39.597	69.957	1.00 58.89	λλλλ
ATOM	11 CE LYS A 3		39.283	68.895	1.00 59.33	AAAA
ATOM	12 11Z LYS A 3	52.643				KAAA
ATOM	13 C LYS A 3	45.393	39.494		1.00 49.57	AAAA
	14 0 LYS A 3	44.894	38.373			
ATOM	15 N VAL A 4	44.826	40.574		1.00 46.23	дада
ATOM		43.561	40.516		1.00 42.51	AAAA
HOTE		42.543	41.516	69.630	1.00 42.26	AAAA
MOTA		41.213	41.352	68.940	1.00 41.51	aaaa
ATCM	18 CG1 VAL A 4		41.307	71.128	1.00 42.00	AAAA
ATOM	19 CG2 VAL A 4	42.401		67.638	1.00 39.94	AAAA
ATOM	20 C VAL A 4	43.918	40.913		1.00 40.39	AAAA
	31 0 VAL A 4	44.332	42.032	67.395		AAAA
ATOM	22 N LYS A 5	43.766	40.001	66.695	1.00 36.94	
MOTA		44.142	40.305	65.323	1.00 34.10	AAAA
ATOM		45.179	39.290	64.846	1.00 35.02	AAAA
ATOM			39.182	65.698	1.00 34.07	مممم
ATOM		47.233	40.452	65.652	1.00 33.44	ääää
ATOM	26 CD LYS A 5		40.432	66.333	1.00 32.38	anna
ATOM	27 CE LYS A 5	48.565		56.222	1.00 31.25	aaaa
ATOM	as no LYS A 5		41.460		2.00 31.23	AAAA
	29 C LYS A 5	42.997	40.293	64.333	1.00 31.38	AAAA
ATOM	30 0 LYS A 5		39.523	64.466	1.00 31.74	
ATOM			41.142	63.326	1.00 28.50	AAAA
ATOM	J		41.167	62.289	1.00 26.90	AAAA
MOTA	J				1.00 26.43	AAAA
MOTA	33 CB LEU A 6		42.748	61.129	1.00 25.89	aaaa
ATOM	34 CG LEU A 🤅		44.224	60.826	1.00 25.50	àààà
MOTA	35° CD1 LEU A · 6			59.828	1.00 26.64	AAAA
ATCM	36 CD2 LEU A		42.032		1.00 25.74	ሕ <mark>አ</mark> ሕሕ
	37 C LEU A	42.818	40.701	61.049		AAAA
ATOM	38 0 LEV A	43.877	41.226	60.717	1.00 24.60	AAAA
MOTA			39.704	60.367	1.00 25.90	
ATCM	- 35 -		39.212	59.173	1.00 26.75	AAAA
ATOM			_		1.00 26.58	አልጐሱ
ATCM	41 33 TLE A				1.00 27.88	بتبتيت
ATCM	42 032 DLE A	; 43.474 ; 43.528			1.00 27.02	inni
ATOM	40	43.528			1.00 27.46	AAAA
ATOM	44 CD1 ILE A	43.507	35.640		1.00 26.70	مممم
	45 C ILE A	42.339	39.814		1.00 25.70	AAAA
ATCM	46 3 ILE A	41.162	39.655	57.581	1.00 27.68	AA A
ATOM		8 43.144		57.142	1.00 27.94	
ATOM		8 42.598		55.944	1.00 29.78	AA/ A
ATCM		•		55.027	1.00 30.38	AAAA
ATOM	7				1.00 29.39	AAAA
ATOM	3 0			53.971	1.00 31.64	તંત્રતત
ATCM	51 N THR A	9 43.05			1.00 32.41	AAAA
ATCM	52 CA THR A	9 43.83			1.00 31.12	AAAA
	53 CB THR A	9 44.60		52.064	2.00 31.22	AAAA
ATCM		9 45.32	42.325		1.00 30.74	AAAA
ATOM	32	9 43.65		51.411	1.00 30.27	
ATOM		·			1.00 32.94	AAAA
ATCM	56 C THR A				1.00 33.62	AAAA
ATCM	57 C THR A					AAAA
ATOM	58 H LEU A 1	0 43.39				2222
MOTA	59 CA LEU A 1	0 42.57	3 45.84			
	60 CB LEU A 1	0 43.11	7 47.27	5 50.484		
ATCM		0 43.14	2 48.24	5 51.566		
ATOM	• • • • • • • • • • • • • • • • • • • •	0 41.74		6 52.288		
ATOM			6 47.73	4 52.575	1.00 34.71	ลัสสัส
ATOM					1 1 00 33 - 4	AAAA
ATCM	• •			_	1,00 32.53	شششة ا
ATOM		11.37		•		5 ሕሕሕ
ATCM		1 43.23	0 44.12	_ =		•

217/263 Figure 19-2

ATOM	67	CA	ASP A	. 11	43.240	43.489	47.716	1.00 34.24	AAAA
ATOM	68		ASP A		44.393	42.499	47.607	1.00 35.81	AAAA
	69		ASP A		45.739	43.190	47.604	1.00 37.57	AAAA
MOTA					45.890	44.178	46.855	1.00 37.95	AAAA
MOTA	70		ASP A		46.650	42.750	48.332	1.00 40.31	AAAA
ATOM	71		ASP A				47.341	1.00 34.03	AAAA
ATOM -	72		ASP A		41.929	42.813		1.00 34.80	
MOTA	73		ASP A		41.629	42.652	46.150		AAAA
MOTA	74	N	TYR A		41.142	42.417	48.335	1.00 32.34	AAAA
ATOM	75	CA	TYR A		39.871	41.803	48.017	1.00 32.53	AAAA
ATOM	76	CB	TYR A	12	39.043	41.569	49.290	1.00 31.32	AAAA
ATOM	77	CG	TYR A	12	39.551	40.438	50.162	1.00 29.95	AAAA
ATOM	78	CD1	TYR A	1. 12	39.983	40.669	51.469	1.00 28.52	AAAA
ATOM	79	CE1	TYR A	12	40.413	39.614	52.279-	1.00 28.03	AAAA
ATOM	80	CD2	TYR A	12	39.568	39.128	49.688	1.00 28.47	AAAA
ATOM	81	CE2	TYR A	12	39.992	38.083	50.483	1.00 28.47	AAAA
ATOM	82	CZ	TYR A		40.408	38.330	51.775	1.00 28.43	- AAAA
ATOM	83	ОН	TYR A		40.786	37.277	52.569	1.00 29.86	AAAA
MOTA	84	C	TYR A		39.146	42.749	47.066	1.00 33.16	AAAA
ATOM	85	Ö	TYR A		38.554	42.324	46.082	1.00 33.36	AAAA
ATOM	86	N	GLY A		39.237	44.041	47.356	1.00 34.76	AAAA
ATOM	87	CA	GLY A		38.594	45.065	46.546	1.00 36.60	AAAA
ATOM	88	C	GLY A		38.814	44.961	45.052	1.00 37.85	AAAA
	89	Ö	GLY A		38.105	45.591	44.275	1.00 37.40	AAAA
MOTA	90	N	LYS A		39.799	44.171	44.647	1.00 39.55	AAAA
MOTA	91	CA	LYS A		40.091	43.981	43.231	1.00 40.66	AAAA
ATOM	92		LYS A		41.605	43.977	42.995	1.00 42.26	AAAA
ATOM	93	CB	LYS A		42.300	45.309	43.239	1.00 44.54	AAAA
ATOM		CG			41.820	46.445	42.304	1.00 46.32	AAAA
MOTA	94	CD	LYS A		42.033	46.158	40.810	1.00 46.64	AAAA
ATOM	95	CE	LYS A		41.133	45.086	40.256	1.00 47.23	AAAA
MOTA	96	NZ	LYS A		39.499	42.675	42.707	1.00 40.35	AAAA
ATOM	97	C	LYS A		39.593	42.377	41.511	1.00 39.97	AAAA
ATOM	98	0	LYS A		38.897	41.901	43.605	1.00 39.95	AAAA
MOTA	99	N	TYR A				43.245	1.00 40.30	AAAA
MOTA	100	CA	TYR A			40.617	44.050	1.00 40.30	AAAA
ATOM	101	CB	TYR A	_	38.962	39.490		•	AAAA
MOTA	102	CG	TYR I		40.472	39.519	44.021	1.00 37.01 1.00 36.24	AAAA
ATOM	103		TYR A	_	41.213	39.136	45.137	1.00 35.73	AAAA
MOTA	104	CE1			42.604	39.220	45.144	1.00 35.73	AAAA
ATOM	105		TYR I		41.163	39.976	42.902	1.00 36.54	AAAA
MOTA	106	CE2			42.556	40.064	42.898	1.00 36.33	AAAA
MOTA	107	CZ	TYR A		43.271	39.689	44.028		AAAA
ATOM	108	OH	TYR A		44.648	39.816	44.042	1.00 36.49	AAAA
MOTA	109	С	TYR .		36.802	40.647	43.556	1.00 41.98	AAAA
MOTA	110	0	TYR .		36.288	39.786	44.280	1.00 42.59 1.00 42.81	AAAA
ATOM	111	N	ARG A		36.101	41.638	43.014		AAAA
ATOM	112	CA		A 16	34.670	41.753	43.257	1.00 43.47	AAAA
ATOM	113	CB	ARG .		34.205	43.197	43.111	1.00 45.27	AAAA
MOTA	114	CG	ARG .		35.021	44.234	43.833	1.00 48.06	
MOTA	115	CD	ARG .		34.891	44.196	45.339	1.00 49.63	AAAA
MOTA	116	NE	ARG .		35.632	45.322	45.905	1.00 51.65	AAAA
ATOM	117	CZ	ARG .		35.382	46.602	45.622	1.00 52.71	AAAA
ATOM	118	NH1	ARG .		34.406	46.931	44.781	1.00 53.28	AAAA
ATOM	119	NH2	ARG .	A 16	36.124	47.560	46.162	1.00 53.43	AAAA
ATOM	120	С	ARG .	A 16	33.913	40.929	42.230	1.00 42.86	AAAA
ATOM	121	0	ARG .	A 16	34.455	40.541	41.193	1.00 41.83	AAAA
MOTA	122	N	TYR .	A 17	32.651	40.668	42.523	1.00 42.42	AAAA
ATOM	123	CA	TYR	A 17	31.818	39.942	41.590	1.00 42.76	AAAA
ATOM	124	CB	TYR		30.675	39.254	42.333	1.00 40.11	AAAA
MOTA	125	CG	TYR		31.097	38.061	43.180	1.00 38.35	AAAA
ATOM	126		TYR		32.169	38.148	44.071	1.00 36.15	AAAA
ATOM	127	CE1			32.519	37.069	44.874	1.00 34.76	AAAA
ATOM	128	CD2			30:386	36.855	43.116	1.00 36.40	AAAA
ATOM	129	CE2			30.726		43.912	1.00 35.31	AAAA
ATOM	130	CZ	TYR	_	31.792	35.887	44.790	1.00 35.00	AAAA
ATOM	131	ОН	TYR		32.115		45.584	1.00 33.29	AAAA
ATOM	132	C	TYR		31.296	41.000	40.613	1.00 44.43	AAAA
							•		•

218/263 Figure 19-3

					•						
ATOM	133	0 '	TYR A	17	31.3	46 4	12.194	40.905	1.00 4		AAAA
ATOM	134	_	PBO A	18	30.7		10.574	39.440	1.00 4		AAAA
MOTA	135		PRO A	18	30.7	-	39.175	38.994	1.00 4		AAAA
ATOM	136	CA	PRO A	18	30.2		41.465	38.402	1.00 4		AAAA
ATOM	137	CB	PRO A	18	29.8		40.482	37.312	1.00 4		AAAA AAAA
MOTA	138	CG	PRO A	18	30.8		39.338	37.511	1.00 4	18.98	AAAA
ATOM	139		PRO A	18	29.1		42.390	38.834		19.11	AAAA
ATOM	140		PRO A	18	28.2	-	42.020	39.660 38.253	1.00		AAAA
MOTA	141		LYS A	19	29.1		43.593 44.654	38.519	1.00		AAAA
ATOM	142		LYS A	19	28.1		45.466	37.246	1.00		AAAA
ATOM	143		LYS A	19	27.8 29.1		45.400	36.498	1.00		AAAA
MOTA	144		LYS A	19	28.7		46.508	35.142	1.00		AAAA ·
MOTA	145		LYS A	19 19	29.9	-	46.774	34.288	1.00		AAAA
MOTA	146		LYS A	19	29.6	-	47.277	32.932	1.00	61.03	AAAA
MOTA	147 148		LYS A	19	26.7		44.162	39.012	1.00		AAAA
ATOM	149	0	LYS A	19	26.2		44.556	40.071	1.00		AAAA
MOTA	150	И	ASN A	20	26.3		43.314	38.203		50.13	AAAA
ATOM ATOM	151	CA	ASN A	20	24.8		42.750	38.482	1.00		AAAA
ATOM	152	CB	ASN A	20	24.3	336	42.061	37.209	1.00		AAAA
ATOM	153	ĊG	ASN A	20	25.3		41.132	36.613	1.00		AAAA· AAAA
ATOM	154	OD1	ASN A	20	25.0		40.064	37.154	1.00	53.00	AAAA
ATOM	155	ND2	ASN A	20	25.		41.562	35.509	1.00		AAAA
MOTA	156	С	ASN A	20	24.		41.765	39.649 39.877		44.67	AAAA
ATOM	157	0	ASN A	20	23.		41.127	40.398		42.71	AAAA
MOTA	158	N	HIS A	21	25. 25.		40.709			40.69	AAAA
MOTA	159	CA	HIS A	21	27.		39.857	41.353		40.16	AAAA
MOTA	160	CB	HIS A	21 21	27.		38.587	42.140		39.93	AAAA
MOTA	161 162	CD3	HIS A	21	27.		38.353	43.467	1.00	39.27	AAAA
MOTA	163		HIS A	21	26.		37.359	41.557		39.47	AAAA
atom atom	164		HIS A	21	26.	948	36.425	42.493	1.00	39.36	AAAA
MOTA	165		HIS A	21	27.	174	37.003	43.660		39.44	AAAA
ATOM	166	С	HIS A	21	25.		41.349	42.892		38.93 38.78	AAAA AAAA
ATOM	167	Ο.	HIS A	21	26.		42.338	43.116		37.11	AAAA
ATOM	168	N	PRO A	22	25.		40.778	43.853 43.814		36.09	AAAA
MOTA	169	CD	PRO A	22		371	39.579 41.361	45.199		35.81	AAAA
MOTA	170	CA	PRO A	22		224 473	40.306	46.012		36.04	AAAA
MOTA	171	CB	PRO A	22		464	39.810	45.003		36.19	AAAA
MOTA	172	CG	PRO A	22 22		638	41.637	45.751		34.39	AAAA
MOTA	173 174	C ပ	PRO A	22		867	42.653	46.417		34.09	AAAA
ATOM ATOM	175	N	LEU A	23		572	40.731	45.451		31.98	AAAA
ATOM	176	CA	LEU A	23	28.	954	40.827	45.900	1.00		AAAA
MOTA	177	СВ	LEU A	23	_	564	39.432	46.014		27.88	AAAA AAAA
MOTA	178	CG	LEU A	23		896	38.528	47.048	1.00	27.31 26.64	TAAA.
MOTA	179	CD1	LEU A			656	37.217			26.75	AAAA .
MOTA	180		LEU A	23		879	39.212 41.709			29.20	AAAA
ATOM	181	C	LEU A			. 838 . 057	41.606			28.38	AAAA
MOTA	182	0	LEU A			204	42.582				AAAA
MOTA	183	N	LYS A			903	43.512			29.30	AAAA
ATOM	184	CA	LYS A			.881	44.091		1.00	29.75	AAAA
MOTA	185 186	CB CG	LYS A			.328	45.265		1.00	32.55	AAAA
MOTA	187	CD	LYS A			.537	46.526	41.994		34.37	AAAA
MOTA MOTA	188	CE	LYS A			. 025	46.337			34.32	AAAA
ATOM	189	NZ	LYS A			.221	47.542	42.208		34.37	AAAA
ATCM	190		LYS A		30	. 580	44.620		1.00	28.14	AAAA AAAA
ATOM	191	ŏ	LYS A			.617	45:162		1.00	27.93	AAAA
ATOM	192		ILE A	25		.990	44.919		1.00	27.07 25.82	AAAA
ATOM	193		ILE A	25		.468	45.945		1 1.00	25.82	AAAA
ATOM	194	CB	ILE A	25		.425	46.262		1 1 00	25.71	AAAA
ATOM	195		2 ILE A		28	.190	46.846			25.26	AAAA
MOTA	196		L ILE A		29	.142	45.163		1.00	25.17	· AAAA
MOTA	197		l ILE A			.700	45.550		1.00	25.28	AAAA .
ATOM	198	С	ILE A	25	٦.			•			•
							•				

Figure 19-4

							40 102	1 00 24 48	AAAA
ATOM	199	0 :	ILE A	25	32.037	44.379	47.183	1.00 24.48	
ATOM	200	11	PRO A	26	32.375	46.547	47.714	1.00 24.98	AAAA
			PRO A	26	32.062	47.980	47.638	1.00 24.98	AAAA
MOTA	201				33.570	46.367	48.543	1.00 24.44	AAAA
MOTA	202		PRO A	26		-	48.701	1.00 24.75	AAAA
ATOM	203	CB :	PRO A	26	34.094	47.792			AAAA
ATOM	204	CG :	PRO A	26	33.435	48.546	47.538	1.00 25.51	
	205		PRO A	26	33.021	45.838	49.862	1.00 23.42	AAAA
ATOM				26	31.930	46.233	50.272	1.00 22.12	aaaa
MOTA	206		PRO A		33.754	44.960	50.532	1.00 23.06	AAAA
ATOM	207		ARG A	27				1.00 23.04	AAAA
MOTA	208	CA .	ARG A	27	33.244	44.421	51.776		
ATOM	209	CB .	ARG A	27	32.633	43.043	51.492	1.00 22.20	AAAA
	210		ARG A	27	31.463	43.152	50.503	1.00 19.84	AAAA
ATOM				27	30.762	41.844	50.160	1.00 18.64	AAAA
MOTA	211		ARG A			41.168	51.315	1.00 16.51	AAAA
MOTA	212	NE	ARG A	27	30.181			1.00 16.57	AAAA
MOTA	213	CZ	ARG A	27	30.774	40.188	51.982		
ATOM	214	NHI	ARG A	27	31.969	39.763	51.605	1.00 17.50	AAAA
			ARG A	27	30.185	39.643	53.038	1.00 16.45	AAAA
MOTA	215			27	34.265	44.381	52.905	1.00 23.62	AAAA
MOTA	216		ARG A			45.077	53.919	1.00 23.69	AAAA
ATOM	217	0	ARG A	27	34.107			1.00 24.25	AAAA
MOTA	218	N	VAL A	28	35.305	43.570	52.736		
MOTA	219		VAL A	28	36.355	43.466	53.737	1.00 23.36	AAAA
		-	VAL A	28	37.022	42.062	53.671	1.00 22.75	AAAA
MOTA	220				38.292	42.031	54.475	1.00 22.95	AAAA
MOTA	221		VAL A	28		41.011	54.249	1.00 22.20	AAAA
ATOM	222	CG2	VAL A	28	36.061			1.00 23.70	AAAA
ATOM	223	С	VAL A	28	37.363	44.609	53.511		
ATOM	224	0	VAL A	28	37.943	45.156	54.455	1.00 22.62	AAAA
	225	N	SER A	29	37.538	44.989	52.253	1.00 24.27	AAAA
ATOM			SER A	29	38.444	46.082	51.910	1.00 26.03	ર્તર્સન
MOTA	226	CA			38.632	46.178	50.381	1.00 25.95	AAAA
MOTA	227	CB	SER A	29			49.716	1.00 27.57	AAAA
MOTA	228	OG	SER A	29	37.395	46.417			
ATOM	229	С	SER A	29	37.793	47.354	52.440	1.00 25.52	AAAA
	230	o	SER A	29	38.463	48.311	52.828	1.00 25.49	AAAA
MOTA			LEU A	30	36.468	47.342	52.448	1.00 26.09	AAAA
ATOM	231	N			35.692	48.471	52.926	1.00 26.39	AAAA
ATOM	232	CA	LEU A	30		48.365	52.393	1.00 25.89	AAAA
ATOM	233	CB	LEU A	30	34.262			1.00 27.15	AAAA
ATOM	234	CG	LEU A	30	33.265	49.470	52.755		
ATOM	235	CD1	LEU A	30	32.486	49.101	53.999	1.00 26.34	AAAA
	236		LEU A	30	34.015	50.813	52.897	1.00 25.81	AAAA
MOTA			LEU A	30	35.713	48.534	54.453	1.00 26.26	AAAA
MOTA	237	C			35.731	49.612	55.037	1.00 27.50	AAAA
ATOM	238	0	LEU A	30		47.379	55.097	1.00 25.57	AAAA
MOTA	239	N	LEU A	31	35.730			1.00 26.87	AAAA
ATOM	240	CA	LEU A	31	35.776	47.343	56.545		AAAA
MOTA	241	CB	LEU A	31	35.752	45.900	57.029	1.00 27.28	
	242	ĊĠ	LEU A	31	35.135	45.563	58.383	1.00 27.87	AAAA
ATOM			LEU A	31	35.855	44.313	58.906	1.00 27.01	AAAA
ATOM	243				35 261	46.706		1.00 26.32	AAAA
MOTA	244		LEU A		. 3. 201	48.003	57.012	1.00 28.08	AAAA
ATOM	245	С	LEU A	31	31.087			1.00 27.42	AAAA
MOTA	246	0	LEU A	31	37 094	48.854	57.901	1.00 27.42	
ATOM	247	N	LEU A		38.197	47.584	56.409	1.00 29.52	AAAA
	248	CA	LEU A		39.508	48.121	56.750	1.00 30.96	AAAA
MOTA					40.607	47.394	55.950	1.00 31.58	AAAA
MOTA	249	CB	LEU A		40.007	45.904	56.293	1.00 31.63	AAAA
MOTA	250	CG	LEU A		40.792				AAAA
ATOM	251	CD1	LEU A	32	41.810	45.246		1.00 31.32	AAAA
ATOM	252	CD2	LEU A	32	41.232	45.780		1.00 32.23	
	253	c	LEU A		39.599	49.635	56.543		AAAA
ATOM					40.081			1.00 31.70	АААА
ATOM	254	0	LEU A	_	39.140				AAAA
ATOM	25,5	N	ARG A						AAAA
ATOM	256	CA	ARG A		39.178				AAAA
ATOM	257	CB	ARG A	. 33	38.643				
ATOM	258	CG	ARG A		39.627	51.609			АААА
	259	CD	ARG A		39.310	52.412	51.374	1.00 39.33	AAAA
ATCM					38.255			1.00 42.51	AAAA
MOTA	260	NE	ARG A		37.662				AAAA
MOTA	261	CZ	ARG ?			52.333			AAAA
ATOM	262	NH1	ARG A	33	38.016				AAAA
ATOM	263	NH2	ARG ?	33	36.723			1.00 43.43	AAAA
ATCM	264	С	ARG A		38.352	52.305	56.168	1.00 33.48	ANAA
		-					-		•

220/263 Figure 19-5

						•					
ATOM	265	0 2	ARG A	33		38.713		3.390	56.592	1.00 33.6	
ATOM	266		PHE A	34		37.247	5	1.682	56.562	1.00 33.7	
ATOM	267		PHE A	34		36.292	5	2.233	57.517	1.00 33.7	
ATOM	268		PHE A	34		35.065		1.310	57.573	1.00 33.8	
ATOM	269		PHE A	34		33.925		1.840	58.405	1.00 33.1	
ATOM	270	CD1	PHE A	34		33.108		2.856	57.925	1.00 32.7	
ATOM	271	CD2	PHE A	34		33.668		1.315	59.672	1.00 33.0	
ATOM	272	CE1	PHE A	34		32.044		3.343	58.695	1.00 32.8	
ATOM	273	CE2	PHE A	34		32.607		1.797	60.454	1.00 33.0	
ATOM	274	CZ	PHE A	34		31.794		2.809	59.966	1.00 32.5	
ATOM	275	С	PHE A	34	-	36.881		2.414	58.918	1.00 34.0	
ATOM	276	0	PHE A	34 .		36.903		3.524	59.455	1.00 33.4	
ATOM	277	N	LYS A	35		37.350		1.324	59.516	1.00 34.0	
MOTA	278	CA	LYS A	35		37.928		1.401	60.843	1.00 33.9	
MOTA	279	CB	LYS A	35		38.230		0.010	61.362	1.00 34.0	
ATOM	280	CG	LYS A	35		37.000		9.190	61.662	1.00 33.5	
MOTA	281	CD	LYS A	35		37.414		7.810	62.106	1.00 35.	
MOTA	282		LYS A	35		38.062		7.072	60.948 60.236	1.00 35.	
ATOM	283		LYS A	35		39.058		7.928	60.881	1.00 34.	
ATOM	284	С	LYS A	35		39.189		2.255	61.929	1.00 34.	
ATOM	285	0	LYS A	35		39.55		52.775 52.384	59.745	1.00 33.	
MOTA	286	N	ASP A	36		39.85		3.216	59.680	1.00 35.	
MOTA	287	СA	ASP A	36		41.03		52.943	58.388	1.00 37.	
MOTA	288	CB	ASP A	36		41.81	_	3.908	58.186	1.00 38.	• •
MOTA	289	CG	ASP A	36		43.64		54.218	59.184	1.00 40.	
MOTA	290		ASP A	36		43.20	-	54.341	57.035	1.00 38.	
MOTA	291		ASP A	36		40.56		54.670	59.724	1.00 35.	
MOTA	292	C	ASP A	36 36	•	41.23		55.527	60.306	1.00 36.	
ATOM	293	0		37		39.42		54.940	59.111	1.00 34.	
ATOM-	294	N CA	ALA A	37		38.85		56.280	59.108	1.00 34.	47 AAAA
ATOM	295 296	CB	ALA A	37		37.75		56.373	58.067	1.00 33.	
MOTA	297	СВ	ALA A	37		38.29		56.617	60.499	1.00 34.	
MOTA MOTA	298	Ô	ALA A	37		38.26		57.779	60.899	1.00 34.	
ATOM	299	N	MET A	3.8		37.83		55.600	61.226	1.00 34.	
MOTA	300	CA	MET A	38		37.28	7	55.794	62.572	1.00 33.	
MOTA	301	CB	MET A	38		36.28		54.687	62.917	1.00 32.	
ATOM	302	CG	MET A	38		35.08		54.559	61.996	1.00 32.	
ATOM	303	SD	MET A	38		33.98		55.948	62.101	1.00 33	
ATOM	304	CE	MET A	38		33.55		55.878	63.849	1.00 33	
MOTA	305	С	MET A	38		38.43		55.724	63.583	1.00 33	
ATOM	306	0	MET A	38		38.22		55.930		1.00 32	•
MOTA	307	N	asn a	39		39.62		55.428		1.00 32	
ATOM	308	CA	ASN A	39		40.80		55.266 56.600		1.00 32	. • •
ATOM	309	CB	ASN A	39		41.20		57.736		1.00 34	
ATOM	310	CG	ASN A	39		41.39		57.624			98 AAAA
MOTA	311		ASN A			42.18		58.838			.52 AAAA
MOTA	312		ASN A			40.48		54.212			.69 AAAA
ATOM	313	С	ASN A			40.56		54.490			.12 AAAA
ATOM	314	0	ASN A			40.09		53.010			.76 AAAA
MOTA	315	N	LEU A			39.75		51.898		1.00 32	.48 AAAA
MOTA	316 317	CA CB	LEU A			38.25	59	51.559		1.00 32	.55 AAAA
ATOM	.318	CG	LEU A			37.23	31	52.581	65.879	1.00 32	.84 AAAA
MOTA	319		LEU A			35.83		52.089	65.554	1.00 33	.79 AAAA
MOTA ATOM	320		LEU A			37.3		52.798	67.376		.45 AAAA
ATOM	321	c	LEU A			40.5		50.628			
ATOM	322	ō	LEU A			40.1		49.530			.64 AAAA
ATOM	323	N	ILE A			41.6		50.794	64.464		.12 AAAA
ATOM	324	CA	ILE A			42.5		49.680			.07 AAAA
ATOM	325		ILE A			42.0	17	48.991			
ATOM	326	_	ILE A			42.0		49.952		1.00 33	
ATOM	327		ILE A			42.8		47.790		1.00 35	
MOTA	328		I ILE A			42.8		46.701			
ATOM	329		ILE A	41		43.9		50.226			
ATOM	330	0	ILE A	41		44.1	06	51.346	63.413		

Figure 19-6

					_	U				
, mon	331	N .	ASP A	42		44.914	49.446	64.329	1.00 40.61	AAAA
ATOM			AŞP A	42			.49.843	64.181	1.00 42.57	AAAA
MOTA	332		ASP A	42		46.973	50.021	65.553	1.00 42.42	AAAA
ATOM	333		ASP A	42		46.316	51.110	66.381	1.00 42.27	AAAA
MOTA	334			42		46.227	52.250	65.883	1.00 41.20	AAAA
ATOM	335		ASP A	42		45.891	50.833	67.526	1.00 43.36	AAAA
ATOM.	336		ASP A	42		47.011	48.752	63.392	1.00 44.05	AAAA
ATOM	337		ASP A	42		46.525	47.620	63.333	1.00 44.88	`AAAA`
ATOM	338		GLU A			48.147	49.090	62.789	1.00 45.10	AAAA
MOTA	339		GLU A	43		48.905	48.141	61.980	1.00 46.11	AAAA
ATOM	340		GLU A	43		50.172	48.796	61.454	1.00 46.89	AAAA
ATOM	341		GLU A	43		49.924	50.057	60.668	1.00 49.30	AAAA
MOTA	342		GLU A	43		51.187	50.580	60.028	1.00 49.67	AAAA
MOTA	343 344		GLU A	43		51.760	49.839	59.201	1.00 50.60	AAAA
MOTA	345		GLU A	43		51.601	51.714	60.349	1.00 49.60	AAAA
MOTA	346	C	GLU A	43		49.290	46.859	62.701	1.00 46.27	- AAAA
MOTA	347	Ö	GLU A	43		49.214	45.773	62.131	1.00 46.00	AAAA
ATOM ATOM	348	N	LYS A	44		49.708	46.986	63.954	1.00 46.52	AAAA
ATOM	349	CA	LYS A	44		50.135	45.832	64.730	1.00 46.31	AAAA
ATOM	350	CB	LYS A	44		50.762	46.306	66.048	1.00 48.16	AAAA
ATOM	351	CG	LYS A	44		51.977	47.215	65.799	1.00 51.59	AAAA
ATOM	352	CD	LYS A	44		52.641	47.734	67.071	1.00 52.87	AAAA
MOTA	353	CE	LYS A	44		53.851	48.601	66.727	1.00 53.34	AAAA
ATOM	354	NZ	LYS A	44		54.615	49.033	67.936	1.00 53.45	AAAA
ATOM	355	С	LYS A	44		49.029	44.828	64.996	1.00 44.74	AAAA
ATOM	356	0	LYS A	44		49.296	43.735	65.480	1.00 45.35	AAAA
ATOM	357	N	GLU A	45		47.793	45.190	64.659	1.00 42.49	AAAA
ATOM	358	CA	GLU A	45		46.638	44.320	64.894	1.00 40.54	AAAA AAAA
ATOM	359	CB	GLU A	45		45.493	45.125	65.517	1.00 40.55	AAAA
ATOM	360	ÇG	GLU A	4.5		45.788	45.731	66.882	1.00 38.87 1.00 37.57	AAAA
ATOM	361	CD	GLU A			44.663		67.360	1.00 36.29	AAAA
MOTA	362		GLU A			44.383	47.631	66.693	1.00 38.44	AAAA
MOTA	363		GLU A			44.056	46.300	68.399 63.630	1.00 39.15	AAAA
ATOM	364	С	GLU A			46.126	43.648 42.737	63.681	1.00 39.29	AAAA
MOTA	365	0	GLU A			45.301	44.115	62.497	1.00 37.62	AAAA
MOTA	366	N	LEU A			46.619 46.219	43.589	61.211	1.00 35.88	AAAA
MOTA	367	CA	LEU A			46.125	44.750	60.229	1.00 36.09	AAAA
MOTA	368	CB	LEU A			45.608	44.550	.58.817	1.00 36.50	AAAA
MOTA	369	CG	LEU A			44.182	44.021	58.843	1.00 36.66	AAAA
ATOM	370		LEU A			45.646	45.893	58.113	1.00 35.85	AAAA
ATOM	371	CD2	LEU A			47.211	42.542	60.714	1.00 34.97	AAAA
ATOM	372 373	0	LEU A			48.424	42.670	60.900	1.00 35.72	AAAA
ATOM	374	Ŋ	ILE A			46.680	41.484	60.118	1.00 33.25	AAAA
ATOM		CA	ILE 2	-		47.497	40.411	59.560	1.00 30.92	AAAA
atom atom	376	CB	ILE 2			47.144	39.024	60.167	1.00 31.22	AAAA
ATOM	377		ILE A			48.093	37.97€	59.640	1.00 28.55	AAAA
ATOM	378		ILE A			47.220	39.063	61.694	1.00 32.04	AAAA
ATOM	379		ILE A			48.596		62.242	1.00 34.13	AAAA
ATOM	380	С	ILE A			47.138		58.076	1.00 29.70	AAAA AAAA
MOTA	381	0	ILE A	47		45.956		57.714		AAAA
ATOM	382	N	LYS 2	A 48		48.150			1.00 28.78	AAAA
ATOM	383	CA	LYS A			47.920			1.00 28.42 1.00 27.53	AAAA
ATOM	384	CB	LYS 2			49.203				AAAA
MOTA	385	ÇG	LYS A			49.116			1.00 29.67	AAAA
MOTA	386	CD	LYS .			50.464		52.941		AAAA
ATOM	387	CE	LYS .	_		50.493				AAAA
ATOM	388	NZ	LYS .			49.409				AAAA
MOTA	389	C	LYS			47.449				AAAA
ATOM	390		LYS			48.024				AAAA
ATOM	391		SER			46.385				AAAA
ATOM	392		SER			45.854 44.514				AAAA
ATOM	393		SER			43.541				AAAA
ATOM	394		SER			46.814				AAAA
ATOM	395		SER			47.462				AAAA
ATOM	396	0	SER	n 47		9,,904		•		•

222/263 Figure 19-7

					0				
ATOM	397	N	ARG A	50	46.910	35.576	53.354	1.00 25.51	AAAA
ATOM	398		ARG A	50	47.755	34.794	52.474	1.00 25.45	AAAA
ATOM	399		ARG A	50	48.807	33.985	53.252	1.00 25.85	AAAA
MOTA	400		ARG A	50	48.229	32.819	54.009	1.00 27.16	AAAA
ATOM	401	CD	ARG A	50	49.280	31.995	54.720	1.00 27.57	AAAA
MOTA	402	NE	ARG A	50	48.673	30.896	55.482	1.00 27.90	AAAA
MOTA	403	CZ	ARG A	50	48.106	29.820	54.946	1.00 28.34	AAAA
MOTA	404	NH1	ARG A	50	48.055	29.672	53.630	1.00 28.19	AAAA
MOTA	405	NH2	ARG A	50	47.592	28.884	55.735	1.00 28.62	AAAA AAAA
	. 406	С	ARG A	50	46.806	33.834	51.762	1.00 24.91 1.00 23.57	AAAA
ATOM	407	0	ARG A	50	45.740	33.510	52.283 50.549	1.00 23.37	AAAA
MOTA	408	N	PRO A	51	47.172	33.392 33.761	49.770	1.00 24.28	AAAA .
MOTA	409	CD	PRO A	51	48.361 46.355	32.462	49.776	1.00 24.18	AAAA
MOTA	410	CA	PRO A	51	47.012	32.512	48.390	1.00 24.24	AAAA
MOTA	411	CB	PRO A	51 51	47.766	33.862	48.405	1.00 24.11	AAAA
ATOM	412	CG C	PRO A	51	46.473	31.070	50.393	1.00 23.69	AAAA
ATOM	413 414	0	PRO A	51	47.545	30.680	50.839	1.00 24.13	AAAA
MOTA	415	N.	ALA A	52	45.381	30.325	50.422	1.00 23.36	AAAA
MOTA MOTA	416	CA	ALA A	52	45.419	28.972	50.952	1.00 23.64	AAAA
ATOM	417	CB	ALA A	52	44.012	28.405	51.029	1.00 23.86	AAAA
ATOM	418	C	ALA A	52	46.260	28.145	49.994	1.00 23.58	AAAA
ATOM	419	0	ALA A	52	46.240	28.383	48.806	1.00 24.52	AAAA
ATOM	420	N	THR A	53	47.009	27.185	50.501	1.00 24.41	AAAA
ATOM	421	CA	THR A	53	47.815	26.352	49.628	1.00 26.26	AAAA AAAA
MOTA	422	CB	THR A	53	48.933	25.642	50.405	1.00 26.37 1.00 26.51	AAAA
ATOM	423	OG1	THR A	53	48.355	24.763	51.375 51.106	1.00 24.48	AAAA
MOTA	424	CG2	THR A	53	49.810	26.648 25.299	49.034	1.00 27.63	AAAA
MOTA	425	C	THR A	53	46.889 45.870	24.982	49.620	1.00 29.22	AAAA
MOTA	426	0	THR A	53 54	47.240	24.776	47.867	1.00 29.31	AAAA
ATOM	427 428	N CA	LYS A	54	46.450	23.752	47.189	1.00 30.61	AAAA
MOTA	429	CB	LYS A	54	47.249	23.182	46.015	1.00 31.68	AAAA
MOTA MOTA	430	CG	LYS A	54.	46.585	22:020	45.304	1.00 34.38	AAAA
MOTA	431	CD	LYS A	54	45.449	22.464	44.417	1.00 36.00	AAAA
ATOM	432	CE	LYS A	54	45.943	22.850	43.025	1.00 37.55	AAAA
ATOM	433	NZ	LYS A	54	46.425	21.664	42.236	1.00 37.57	AAAA AAAA
MOTA	434	C	LYS A	54	46.127	22.640	48.170	1.00 31.26 1.00 31.72	AAAA
ATOM	435	0	LYS A	54	45.025	22.097	48.176 49.006	1.00 31.72	AAAA
MOTA	436	N	GLU A	55	47.102	22.312 21.260	50.011	1.00 32.29	AAAA
MOTA	437	CA	GLU A	55	46.961 48.266	21.280	50.778	1.00 34.43	AAAA
MOTA	438	CB	GLU A	55 55	48.265	19.901	51.706	1.00 38.39	AAAA
MOTA	439 440	CG CD	GLU A	55	49.513	19.839	52.584	1.00 41.46	AAAA
MOTA	441	OE1		55	49.745	18.770	53.200	1.00 43.30	· AAAA
MOTA MOTA	442		GLU A	55	50.245	20.859	52.672	1.00 42.45	AAAA
ATOM	443	c	GLU A	55	45.851	21.555	51.013	1.00 30.43	AAAA
MOTA	444	0	GLU A	55	45.048	20.681	51.332	1.00 30.59	AAAA
ATOM	445	N	GLU A	56	45.822	22.782	51.517	1.00 28.23	AAAA AAA A
ATOM	446	CA	GLU A	56	44.812	23.164	52.488	1.00 27.69	AAAA
ATOM	447	CB	GLU A	56	45.078	24.588	52.989	1.00 27.90 1.00 26.64	AAAA
ATOM	448	CG	GLU A	56	46.434	24.721	53.670	1.00 26.35	AAAA
MOTA	449	CD	GLU A	56	46.769	26.135		1.00 25.12	AAAA
MOTA	450		GLU A		46.615	27.057 26.315		1.00 25.70	AAAA
ATOM	451		GLU A		47.213 43.408	23.043	51.914		AAAA
ATOM	452	C	GLU A		42.495			1.00 26.25	AAAA
ATOM	153	0	GLU A		43.252				AAAA
ATOM	454 155	N C2	LEU A		41.965			1.00 27.17	AAAA
MOTA	455 456	CA	LEU A		42.077			1.00 26.62	AAAA
MOTA	457	CG	LEU A		42.491			1.00 27.64	AAAA
atom atom	458		LEU A		42.770		47.269	1.00 26.66	AAAA
ATOM	459		LEU A		41.389	26.341	49.349		AAAA AA AA
ATOM	460	c	LEU A		41.552			1.00 27.26	AAAA AAAA
ATOM	461	0	LEU A		40.363				AAAA
ATOM	462	N	LEU A		42.547	21.085	49.641	1.00 27.42	
									-

Figure 19-8

ATOM 463 ATOM 464 ATOM 465		LEU A	58 58	42.293 43.486	19.675 19.019	49.457 48.794	1.00 26.10 1.00 25.43	AAAA AAAA
		LEU A	5.8	43.486	19 019	48.794	1.00 25.43	7777
	~~				20.020			
W1011 - 202	(()	LEU A	58	43.623	19.577	47.385	1.00 26.66	AAAA
		LEU A	58	44.760	18.884	46.705	1.00 27.12	AAAA
		LEU A	58	42.334	19.355	46.600	1.00 26.43	AAAA
ATOM 467					18.956	50.731	1.00 25.79	AAAA
ATOM 468	C	LEU A	58	41.938				
ATOM 469	0	LEU A	58	41.648	17.763	50.692	1.00 26.50	AAAA
ATOM 470	N	LEU A	59	41.977	19.666	51.858	1.00 24.91	AAAA
ATOM 471	CA	LEU A	59	41.595	19.070	53.136	1.00 25.15	AAAA
ATOM 472	CB	LEU A	59	41.958	19.991	54.322	1.00 25.44	AAAA
•••	CG	LEU A	59	43.423	20.280	54.710	1.00 24.67	AAAA
				43.502	21.461	55.652	1.00 23.70	AAAA
ATOM 474		LEU A	59				1.00 24.08	AAAA
ATOM 475	CD2	LEU A	59	44.044	19.044	55.357		
ATOM 476	С	LEU A	59	40.074	18.870	53.090	1.00 25.41	AAAA
ATOM 477	0	LEU A	59	39.503	18.266	53.993	1.00 25.88	AAAA
ATOM 478	N	PHE A	60	39.436	19.392	52.031	1.00 25.05	AAAA
ATOM 479	CA	PHE A	60	37.983	19.276	51.823	1.00 24.11	AAAA
	CB	PHE A	60	37.250	20,476	52.440	1.00 21.80	AAAA
•				35.778	20.534	52.098	1.00 20.07	AAAA
ATOM 481	CG	PHE A	60		19.501	52.462	1.00 19.27	AAAA
ATOM 482		PHE A	60	34.917			1.00 19.82	AAAA
ATOM 483	CD2	PHE A	60	35.249	21.628	51.399		
ATOM 484	CE1	PHE A	60	33.550	19.557	52.136	1.00 19.26	AAAA
ATOM 485	CE2	PHE A	60	33.890	21.688	51.071	1.00 17.45	AAAA
ATOM 486	CZ	PHE A	60	33.042	20.652	51.440	1.00 17.92	AAAA
	c	PHE A	60	37.557	19.139	50.345	1.00 24.02	AAAA
	ō	PHE A	60	36.846	18.201	49.974	1.00 23.27	AAAA
				37.982	20.079	49.511	1.00 24.40	AAAA
ATOM 489	N	HIS A	61		20.053	48.099	1.00 25.04	AAAA
ATOM 490	CA	HIS A	61	37.626			1.00 24.19	AAAA
ATOM 491	CB	HIS A	61	37.768	21.449	47.494		
ATOM 492	CG	HIS A	61	36.744	22.429	47.979	1.00 24.44	AAAA
ATOM 493	CD2	HIS A	61	35.429	22.559	47.683	1.00 24.12	AAAA
ATOM 494		HIS A	61	37.038	23.444	48.864	1.00 24.36	AAAA
ATOM 495		HIS A	61	35.952	24.159	49.089	1.00 23.18	AAAA
		HIS A	61	34.962	23.643	48.385	1.00 23.91	AAAA
				38.416	19.054	47.253	1.00 25.60	AAAA
ATOM 497	C	HIS A	61		18.805	47.498	1.00 26.94	AAAA
ATOM 498	0	HIS A	61	39.596		46.244	1.00 26.68	AAAA
ATOM 499	N	THR A	62	37.754	18.496		1.00 28.17	AAAA
ATOM 500	CA	THR A	62	38.369	17.522	45.333		
ATOM 501	CВ	THR A	62	37.290	16.695	44.614	1.00 28.15	AAAA
ATOM 502	OG1	THR A	62	36.544	17.541	43.731	1.00 28.10	AAAA
ATOM 503	CG2		62	36.334	16.094	45.629	1.00 28.24	AAAA
ATOM 504	c	THR A	62	39.226	18.217	44.278	1.00 29.28	AAAA
	0	THR A	62	38.876	19.286	43.792	1.00 29.52	AAAA
				40.344	17.606	43.912	1.00 31.33	AAAA
ATOM 506	N	GLU A	63	41.249	18.202	42.928	1.00 32.42	AAAA
ATOM 507	CA	GLU A	63			42.536		AAAA
ATOM 508	CB	GLU A	63	42.333	17.219			AAAA
ATOM 509	CG	GLU A	63	43.304	16.869	43.609		
ATOM 510	CD	GLU A	63	44.427	16.022	43.052	1 00 38.79	AAAA
ATOM 511	OE1	GLU A	63	45.100	16.499	42.097	1.00 37.96	AAAA
ATOM 512		GLU A	63	44.619	14.892	43.564	1.00 39.68	AAAA
		GLU A	63	40.607	18.687	41.639	1.00 31.96	AAAA
	Č		63	40.824	19.816	41.215	1.00 32.10	AAAA
ATOM 514	0	GLU A			17.814	40.998	1.00 31.52	AAAA
ATOM 515	N	ASP A	64	39.845		39.753	1.00 31.36	AAAA
ATOM 516	CA	ASP A	64	39.204	18.165			AAAA
ATOM 517	CB	ASP A	64	38.301	17.018	39.295	1.00 33.99	
ATOM 518	CG	ASP A	64	37.213	16.694	40.302	1.00 37.38	AAAA
ATOM 519		ASP A	64	36.375	15.801	40.027	1.00 39.80	AAAA
ATOM 520		ASP A	64	37.188	17.332	41.374	1.00 38.67	AAAA
		ASP A	64	38.412	19.465	39.902	1.00 30.02	AAAA
ATOM 521	Ç			38.462	20.331	39.026	1.00 30.47	AAAA
ATOM 522		ASP A	64		19.608	41.012	1.00 27.51	AAAA
ATOM 523		TYR A	65	37.695			1.00 26.03	AAAA
ATCM 524	CA	TYR A	65	36.918	20.814	41.248	1.00 20.03	AAAA
ATOM 525		TYR A	65	36.010	20.654	42.467	1.00 25.42	
ATCM 526		TYR A	65	35.339	21.946		1.00 24.90	AAAA
ATOM 527	נטי	TYR A	65	34.525	22.636		1.00 25.04	AAAA
		TYR A	65	33.914	23.823	42.308	1.00 25.01	AAAA.
ATOM 528	لابت					•		•

Figure 19-9

•	•				- 00 04 65	
ATOM	529 CD2 TYR A 65	35.525	22.486	44.136	1.00 24.65	AAAA
	530 CE2 TYR A 65	34.920	23.677	44.497	1.00 25.86	AAAA
MOTA		34.110	24.349	43.576	1.00 26.69	AAAA
MOTA	531 CZ TYR A 55	_		43.924	1.00 27.20	AAAA
MOTA	532 OH TYR A 65	33.499	25.543			
ATOM .		37.814	22.022	41.464	1.00 24.91	AAAA
MIOH		37.460	23.129	41.096	1.00 25.62	AAAA
MOTA			21.812	42.080	1.00 23.20	AAAA
ATOM	535 N ILE A 56	38.965			1.00 22.33	AAAA
MOTA	536 CA ILE A 66	39.877	22.902	42.328		
	537 CB ILE A 66	40.924	22.520	43.402	1.00 21.45	AAAA
MOTA		41.927	23.652	43.617	1.00 20.00	AAAA
ATOM	538 CG2 ILE A 56			44.729	1.00 20.16	AAAA
MOTA	539 CG1 ILE A 66 ·	40.220	22.289			
ATOM	540 CD1 ILE A 66	39.528	23.523	45.228	1.00 19.68	AAAA .
	J.,	40.558	23.261	41.023	1.00 22.68	AAAA
MOTA			24.425	40.665	1.00 23.19	AAAA
MOTA	542 O ILE A 66	40.636			1.00 22.96	AAAA
MOTA	543 N ASNA 67	41.036	22.262	40.295		
	544 CA ASN A 67	41.698	22.545	39.029	1.00 23.92	AAAA
MOTA	J	42.292	21.261	38.395	1.00 24.24	AAAA
MOTA			20.588	39.289	1.00 23.38	AAAA
MOTA	546 CG ASN A 67	43.344			1.00 23.47	AAAA
MOTA	547 OD1 ASN A 67	44.196	21.256	39.859		
	548 ND2 ASN A 67	43.290	19.258	39.392	1.00 23.20	AAAA
ATOM		40.717	23.216	38.063	1.00 23.82	AAAA
ATOM	J.5 C		23.996	37.204	1.00 24.63	AAAA
MOTA	550 O ASNA 67	41.123			1.00 24.08	AAAA
MOTA	551 N THR A 68	39.427	22.928	38.213		
	552 CA THR A 68	38.428	23.534	37.343	1.00 25.28	AAAA
MOTA	302	37.030	22.904	37.525	1.00 24.55	AAAA
MOTA		37.090	21.500	37.258	1.00 24.64	AAAA
ATOM	554 OG1 THR A 68				1.00 23.58	AAAA
MOTA	555 CG2 THR A 68	36.049	23.534	36.564		
ATOM	556 C THR A 68	38.322	25.023	37.664	1.00 26.31	AAAA
•		38.114	25.854	36.771	1.00 26.69	AAAA
MOTA		38.462	25.351	38.945	1.00 26.59	KAAA
MOTA	558 N LEU A 69			39.378	1.00 27.05	AAAA
MOTA	559 CA LEU A 59	38.381	26.729			AAAA
ATOM	560 CB LEU A 69	38.321	26.807	40.904	1.00 27.15	
		37.003	26.397	41.551	1.00 25.68	AAAA
ATOM	5	37.088	26.491	43.062	1.00 26.30	AAAA
MOTA	562 CD1 LEU A 69			41.044	1.00 26.14	AAAA
ATOM	563 CD2 LEU A 69	35.933	27.316			AAAA
ATOM	564 C LEU A 69	39.570	27.508	38.867	1.00 28.44	
	565 O LEU A 69	39.425	28.619	38.356	1.00 28.59	AAAA
MOTA	303 0	40.748	26.914	39.009	1.00 29.31	AAAA
MOTA	566 N MET A 70		27.536	38.571	1.00 29.89	AAAA
ATOM	567 CA MET A 70	41.981			1.00 31.04	AAAA
ATOM	568 CB MET A 70	43.160	26.692	39.044	1.00 31.04	AAAA
	569 CG MET A 70	43.164	26.528	40,562	1.00 31.79	
ATOM	305 00 1121	44.608	25.684	41.183	1.00 32.58	AAAA
MOTA	J. U U D	45.859	26.820	40.670	1.00 30.82	AAAA
ATOM	571 CE MET A 70			37.057	1.00 30.36	AAAA
MOTA	572 C MET A 70	42.017	27.723		1.00 30.30	AAAA
ATOM	573 O MET A 70	42.462	28.769		1.00 30.18	
		41.538	26.719	36.328		AAAA
MOTA	_	41.519	26.795	34.874	1.00 30.73	AAAA
ATOM	575 CA GLU A 71				1.00 33.47	AAAA
ATOM	576 CB GLU A 71	41.140				AAAA
MOTA	577 CG GLU A 71	41.122	25.430		1.00 37.11	
		42.513	25.676	32.093	1.00 40.49	AAAA
ATOM		42.570			1.00 41.95	AAAA
MOTA	579 OE1 GLU A 71				1.00 40.74	AAAA
ATOM	580 OE2 GLU A 71	43.541	25.738			AAAA
ATOM	581 C GLU A 71	40.537	27.851	34.392		
		40.852	28.642	33.508	1.00 27.82	AAAA
MOTA		39.352			1.00 29.85	AAAA
MOTA	583 N ALA A 72					AAAA
MOTA	584 CA ALA A 72	38.296				AAAA
ATOM	585 CB ALA A 72	37.022	28.432		1.00 29.07	
		38.667	30.238	34.907	1.00 30.78	AAAA
ATOM		38.359				AAAA
ATOM	587 O ALA A 💯					AAAA
ATOM	588 N GLUA 73	39.336				AAAA
MOTA	589 CA GLU A 73	39.710				
		40.243		37.785	1.00 30.52	AAAA
atom		40.643			1.00 28.73	AAAA
ATOM	591 CG GLU A 73					AAAA
ATOM	592 CD GLU A 73	41.076				AAAA
ATOM	593 OE1 GLU A 73	40.239	33.260	40.546	1.00 20.34	
	594 OE2 GLU A 73	42.258		39.906	1.00 28.57	AAAA
ATOM	ביו א טעט גבט פּכּנ			-		•

225/263Figure 19-10

					1.50.0	. •			
- mow	595	С	GLU A	73	40.726	32.461	35.378	1.00 33.54	AAAA
ATOM ATOM	596		GLU A	73	40.456	33.499	34.767	1.00 34.93	AAAA
ATOM	597		ARG A	74	41.885	31.832	35.214	1.00 34.35	AAAA
ATOM	598	CA	ARG A	74	42.890	32.428	34.334	1.00 36.04	AAAA
ATOM	599	CB	ARG A	74	44.238	31.710	34.482	1.00 36.92	AAAA
ATOM-	600	CG	ARG A	74	44.327	30.313	33.923	1.00 38.14	AAAA
ATOM	601	CD	ARG A	74	45.508	29.589	34.543	1.00 39.55	AAAA
ATOM	602	NE	ARG A	74	45.893	28.404	33.785	1.00 42.02 1.00 42.69	AAAA AAAA
ATOM	603	CZ	ARG A	74	46.632	28.436	32.675	1.00 42.69	AAAA
MOTA	604		ARG A	74	47.071	29.593 27.309	32.191 32.046	1.00 42.70	AAAA
MOTA	605		ARG A	74	46.933 42.476	32.532	32.864	1.00 36.56	AAAA
ATOM	606	C	ARG A	74 74	42.842	33.493	32.187	1.00 37.73	AAAA
ATOM	607 608	0	ARG A SER A	75	41.711	31.567	32.367	1.00 36.60	AAAA
MOTA	609	CA	SER A	75	41.248	31.622	30.987	1.00 36.82	AAAA
MOTA MOTA	610	CB	SER A	75	40.916	30.218	30.478	1.00 36.10	- AAAA
ATOM	611	OG	SER A	75	39.736	29.723	31.083	1.00 36.39	AAAA
ATOM	612	С	SER A	.75	39.980	32.476	31.001	1.00 36.90	AAAA
ATOM	613	0	SER A	75	39.401	32.791	29.963	1.00 36.25 1.00 37.62	AAAA AAAA
MOTA	614	N	GLN A	76	39.568	32.845	32.208 32.427	1.00 37.02	AAAA
ATOM	615	CA	GLN A	76	38.368	33.639 35.100	32.049	1.00 37.32	AAAA
MOTA	616	CB	GLN A	76 76	38.613 37.630	36.048	32.717	1.00 40.67	AAAA
ATOM	617	CG	GLN A		37.929	36.298	34.199	1.00 41.40	AAAA
ATOM	618 619	CD OE1	GLN A		38.226	35.379	34.973	1.00 40.79	AAAA
atom atom	620	NE2			37.833	37.556	34.597	1.00 42.32	AAAA
ATOM	621	C	ĠŁN A		37.223	33.064	31.600	1.00 37.75	AAAA
ATOM	622	Ō	GLN A		. 36.521	33.789	30.901	1.00 38.13	AAAA
ATOM	623	N	SER A	. 7 7	37.045	31.749	31.685	1.00 37.52	AAAA AAAA
ATOM	624	CA	SER A		35.990	31.061	30.950	1.00 37.75 1.00 37.90	AAAA
MOTA	625	CB	SER A		36.537	30.440 31.441	29.664 28.724	1.00 40.32	AAAA
MOTA	626	0Ġ	SER A		36.851 35.338	29.960	31.757	1.00 37.55	AAAA
ATOM	627	C	SER A		35.790	29.620	32.846	1.00 36.81	AAAA
MOTA	628 629	и	VAL A		34.264	29.412	31.198	1.00 37.82	AAAA
ATOM ATOM	630	CA	VAL A		33.538	28.309	31.812	1.00 37.99	AAAA
ATOM	631	CB	VAL A		32.027	28.514	31.715	1.00 37.19	AAAA
ATOM	632	CG1	VAL A	78	31.310	27.439	32.497	1.00 36.84	AAAA AAAA
MOTA	633		VAL A		31.662	29.906	32.201	1.00 37.60 1.00 38.28	AAAA
MOTA	634	С	VAL A		33.918	27.089 26.959	30.976 29.819	1.00 38.28	AAAA
ATOM	635	0	VAL A		33.497 34.734	26.187	31.537	1.00 37.69	AAAA
ATOM	636 637	N CD	PRO A		35.347	26.167	32.869	1.00 37.65	AAAA
ATOM	638	CA	PRO A		35.146	24.998	30.797	1.00 37.54	AAAA
ATOM	639	CB	PRO A			24.325		1.00 37.45	AAAA
atom atom	640	CG	PRO A		36.655	25.489	32.557	1.00 37.65	AAAA
ATOM	641	С	PRO A		33.980	24.089		1.00 37.20	. AAAA AAAA
ATOM	642	0	PRO A	3 79	32.958	24.050		1.00 36.43 1.00 37.42	AAAA
ATOM	643	N	LYS A		34.154	23.363		1.00 37.42	AAAA
ATOM	644	CA	LYS A		33.160	22.423 21.586			AAA
ATOM	645	CB	LYS A		33.757 32.928	20.379		1.00 38.94	AAAA
ATOM	646 647	CG	LYS A		31.835	20.710		1.00 39.07	AAAA
atom atom	.648	CE	LYS		31.320		25.688	1.00 40.43	AAAA
ATOM	649	NZ	LYS		30.498				AAAA
ATOM	650	c	LYS		32.752				AAAA
ATOM	651	0	LYS 2		33.610				AAAA AAAA
ATOM	652	N	GLY A		31.443				AAAA
ATOM	653	CA	GLY .		30.903				AAAA
ATOM	-654	C	GLY A		31.110				AAAA
ATOM	655	0	GLY		30.749 31.677				AAAA
ATOM	656	N	ALA		31.919			1.00 35.02	AAAA
ATOM	657 658	CA CB	ALA .	_	33.076		34.208	1.00 35.13	AAAA
ATOM	659	CB	ALA		30.674	23.378	34.797		AAAA
atom atom	660		ALA		30.451		36.001	1.00-33.82	AAAA
ALON,		-					-		•

29.858 23.960 33.932 1.00 34.77 AAAA ATOM 661 N ARG A 83 28.637 24.613 34.361 1.00 35.34 AAAA 662 CA ARG A 83 ATOM 33.150 1.00 36.26 AAAA 27.899 25.180 663 ARG A 83 ATOM CB 1.00 37.09 27.045 26.395 33.464 AAAA 664 CG ARG A 83 ATOM 26.209 26.141 34.686 1.00 37.48 AAAA 665 CD ARG A 83 ATOM 25.475 27.310 1.00 37.35 35.134 AAAA ARG A 83 666 NE ATOM 24.711 27.311 24.606 26.204 24.040 28.401 1.00 37.77 36.218 AAAA 667 CZARG A 83 MOTA 1.00 37.29 36.940 AAAA NH1 ARG A 83 668 MOTA 36.568 1.00 38.34 AAAA 669 NH2 ARG A. 83 MOTA 27.739 23.603 35.065 1.00 36.30 AAAA ARG A 83 ARG A 83 670 С MOTA 27.232 23.854 36.154 1.00 36.17 AAAA 671 0 MOTA 1.00 37.19 1.00 37.80 27.565 22.450 34.431 AAAA N GLU A 84 672 ATOM 26.721 21.382 34.948 AAAA 673 CA GLU A 84 MOTA 26.466 20.375 25.643 19.171 25.362 18.268 33.833 1.00 40.55 AAAA 674 GLU A 84 CB MOTA 34.232 1.00 43.12 AAAA GLU A 84 MOTA 675 CG 33.046 1.00 44.98 AAAA 676 GLU A 84 CD ATOM 24.573 17.301 1.00 46.36 AAAA 33.195 OE1 GLU A 84 677 MOTA 18.532 31.962 1.00 44.94 AAAA 84 25.937 OE2 GLU A 678 MOTA 36.158 1.00 37.07 AAAA 27.290 20.657 GLU A 84 679 С ATOM 26.642 20.555 37.199 1.00 36.17 AAAA 680 0 GLU A 84 MOTA 28.506 20.152 35.999 1.00 36.23 AAAA LYS A 85 681 N MOTA 1.00 35.36 29.202 19.412 30.449 18.761 37.043 AAAA LYS A 85 682 CA MOTA 36.437 1.00 36.96 AAAA LYS A 85 LYS A 85 LYS A 85 683 CB MOTA 31.394 18.158 37.465 1.00 39.04 AAAA 584 CG MOTA AAAA 1.00 40.59 30.995 16.766 37.919 685 CD MOTA 36.933 1.00 41.88 15.719 AAAA 31.508 LYS A 85 CE MOTA 686 1.00 42.00 36.757 AAAA 15.817 LYS A 85 32.998 687 NZ MOTA 1.00 33.86 20.202 38.289 AAAA 29.620 LYS A 85 MOTA 588 1.00 33.82 AAAA LYS A 85 TYR A 86 TYR A 86 39.404 29.576 19.679 689 0 ATOM 1.00 32.06 AAAA 30.014 21.458 38.097 590 N MOTA AAAA 22.279 39.194 1.00 29.44 30.514 691 CA MOTA 38.875 1.00 29.97 AAAA TYR A 86 31.956 22.683 692 CB ATOM 32.872 21.496 38.621 1.00 29.99 AAAA 86 MOTA 693 CG TYR A 20:666 AAAA 39.666 1.00 29.24 33.281 CD1 TYR A 86 694 MOTA 39.437 1.00 29.85 AAAA 86 . 19.582 CE1 TYR A 34.126 695 ATOM AAAA 37.329 1.00 30.16 .33.329 21.204 696 CD2 TYR A 86 ATOM AAAA 1.00 29.61 20.118 37.087 34.173 697 CE2 TYR A 86 MOTA AAAA 19.313 38.148 1.00 29.79 CZ 34.570 86 698 TYR A MOTA AAAA 18.253 37.923 1.00 29.48 86 35.414 599 OH TYR A ATOM 1.00 27.81 AAAA 39.572 29.705 23.509 ATOM 700 С TYR A 86 1.00 27.56 AAAA 40.524 30.052 24.202 701 TYR A 86 ATOM 0 AAAA 23.784 38.828 1.00 26.60 **87** . 28.642 702 N ASN A MOTA AAAA 1.00 26.56 27.777 24.924 39.111 87 ASN A 703 CA ATOM 27.172 24.772 40.508 AAAA 1.00 26.39 704 ASN A 87 CB MOTA AAAA 25.863 25.544 40.684 1.00 26.64 ASN A 87 MOTA 705 CG 41.790 AAAA 1.00 26.84 25.632 25.335 OD1 ASN A 87 706 MOTA 39.597 1.00 26.33 AAAA 25.330 26.084 707 ND2 ASN A 87 ATOM 39.024 AAAA 1.00 26.40 28.587 26.217 87 708 С ASN A MOTA 1.00 24.80 AAAA 27.129 39.832 28.430 87 709 0 ASN A MOTA 1.00 27.57 AAAA 26.273 38.015 29.448 88 710 N ILE A MOTA 1.00 27.88 1.00 27.38 AAAA 27.409 37.767 711 30.330 ILE A 88 CA MOTA AAAA 37.648 26.932 31.817 712 CB ILE A 88 MOTA 1.00 26.34 AAAA 36.986 27.994 32.684 713 CG2 ILE A 88 MOTA 1.00 28.35 AAAA 39.026 26.543 714 CG1 ILE A 88 32.354 ATOM AAAA 32.356 27.671 40.042 1.00 27.78 CD1 ILE A 88 MOTA 715 AAAA 1.00 29.17 29.946 - 28.110 36.472 716 C ILE A 88 ATOM 35.515 1.00 29.75 AAAA 27.469 29.530 717 :) ILE A 88 MOTA AAAA 1.00 29.96 30.092 29.429 36.443 89 718 N GLY A ATOM 1.00 30.24 AAAA 35.229 30.162 29.791 89 719 CA GLY A MOTA 1.00 30.44 AAAA 35.242 28.430 30.805 89 GLY A 720 С ATOM. AAAA 1.00 31.14 34.514 721 722 723 28.177 31.769 O GLY A 89 ATOM AAAA 1.00 30.00 36.061 27.542 30.268 N GLY A 90 ATOM 1.00 30.52 AAAA 30.841 36.129 26.221 GLY A 90 MOTA CA 26.283 32.262 36.661 1.00 31.09 27.356 32.795 36.962 1.00 30.34 25.112 32.873 36.768 1.00 31.09 AAAA GLY A 90 724 C MOTA AAAA 725 O 90 GLY A . ATCM AAAA 726 N TYR A 91 ATOM

ATOM	727	CA	TYR A	91 .	24.977	34.213	37.290	1.00 31.27	AAAA
	728	CB	TYR A	91	23.515	34.634	37.195	1.00 31.82	AAAA
ATOM			_			35.825	38.047	1.00 31.81	AAAA
ATOM	729	CG	TYR A	91	23.169				
ATOM	730	CD1	TYR A	91	23.536	37.108	37.670	1.00 32.44	AAAA
ATOM	731	CEl	TYR A	91	23.250	38.203	38.475	1.00 31.88	AAAA
	732		TYR A	91	22.505	35.663	39.254	1.00 32.63	AAAA
ATOM					22.215	36.754	40.068	1.00 32.60	AAAA
ATOM	733		TYR A	91				1.00 31.59	AAAA
ATOM	734	CZ	TYR A	91	22.589	38.016	39.668		
MOTA	735	OH	TYR A	91	22.283	39.094	40.450	1.00 31.94	AAAA
	736	С	TYR A	91	25.384	34.202	38.753	1.00 31.56	AAAA
ATOM				91	26.075	35.105	39.233	1.00 31.21	AAAA
MOTA	737	0	TYR A				39.438	1.00 31.51	AAAA
ATOM	738	N	GLU A	92	24.925	33.158			
ATOM	739	CA	GLU A	92	25.143	32.941	40.865	1.00 32.70	AAAA
ATOM	740	CB	GLU A	92	24.463	31.626	41.268	1.00 33.55	AAAA
	741	CG	GLU A	92	24.174	31.495	42.747	1.00 34.16	AAAA
ATOM					23.311	30.278	43.087	1.00 35.31	AAAA
MOTA	742	CD	GLU A	92			43.152	1.00 34.30	AAAA
ATOM	743	OEl	GLU A	92	23.857	29.148			
ATOM	744	OE2	GLU A	92	22.076	30.466	43.275	1.00 35.36	AAAA
ATOM	745	С	GLU A	92	26.619	32.902	41.248	1.00 33.02	AAAA
	746	Ö	GLU A	92	27.073	33.623	42.140	1.00 32.91	AAAA
MOTA					27.358	32.049	40.550	1.00 32.84	AAAA
ATOM	747	N	ASN A	93				1.00 31.92	AAAA
ATOM	748	CA	ASN A	93	28.785	31.861	40.777		
MOTA	749	CB	ASN A	93	29.015	30.437	41.278	1.00 31.18	AAAA
ATOM	750	ÇG	ASN A	93	27.948	29.994	42.259	1.00 30.34	AAAA
				93	27.723	30.642	43.271	1.00 31.20	AAAA
ATOM	751	OD1	ASN A		27.284	28.892	41.955	1.00 29.02	AAAA
MOTA	752		ASN A	93				1.00 30.84	AAAA
ATOM	753	С	ASN A	93	29.442	32.052	39.411		
ATOM	754	0	ASN A	93	29.823	31.082	38.758	1.00 30.82	AAAA
ATOM	755	N	PRO A	94	29.605	33.309	38.975	1.00 29.56	AAAA
	756		PRO A	94	29.312	34.590	39.626	1.00 29.03	AAAA
MOTA		CD				33.564	37.671	1.00 28.89	AAAA
MOTA	757	CA	PRO A	94	30.209			1.00 28.22	AAAA
MOTA	758	CЗ	PRO A	94	29.890	35.045	37.416		
ATOM	759	CG	PRO A	94	28.839	35.377	38.435	1.00 29.50	AAAA
ATOM	760	С	PRO A	94 .	31.698	33.351	37.664	1.00 28.25	AAAA
	761	Ö	PRO A	94	32.308	32.996	38.671	1.00 28.21	AAAA
MOTA					32.257	33.593	36.488	1.00 27.36	AAAA
MOTA	762	N	VAL A	95			36.247	1.00 26.24	AAAA
ATOM	763	CA	VAL A	95	33.676	33.530			
ATOM	764	CЭ	VAL A	95	33.945	33.289	34.741	1.00 26.10	AAAA
MOTA	765	CG1	VAL A	95	35.373	33.717	34.357	1.00 25.47	AAAA
	766	CG2	VAL A	95	33.736	31.826	34.434	1.00 25.59	AAAA
MOTA				95	34.178	34.919	36.647	1.00 26.56	AAAA
MOTA	767	C	VAL A				36.307	1.00 27.18	AAAA
MOTA	768	0	VAL A		33.560	35.937			AAAA
MOTA	769	N	SER A	96	35.280	34.966	37.382	1.00 25.23	
ATOM	770	CA	SER A	96	35.858	36.237	37.790	1.00 24.51	AAAA
MOTA	771	СЗ	SER A		34.935	36.961	38.774	1.00 23.22	·AAAA
				_	34.941	36.297	40.014	1.00 19.76	AAAA
ATOM	772	og	SER A			35.920	38.485	1.00 24.84	AAAA
ATOM	773	С	SER A		37.169		38.530	1.00 25.97	AAAA
ATOM	774	0	SER A	96	37.590	34.764			AAAA
ATOM	775	N	TYR A	97	37.824	36.933	39.030	1.00 24.02	
ATOM	776	CA	TYR A		39.047	36.664	39.744	1.00 24.55	AAAA
	777	CE	TYR A		40.071	37.762	39.504	1.00 23.94	AAAA
ATOM					40.682	37.636	38.128	1.00 23.72	AAAA
Mota	778	CG	TYR A					1.00 23.11	AAAA
ATOM	779	CD1	TYR A		40.177	38.341	37.039		
ATOM	780	CEl	TYR A	. 97	40.700	38.136	35.758	1.00 23.50	AAAA
ATOM	781		TYR A		41.717	36.735	37.903	1.00 22.25	AAAA
	782	CE2			42.236	36.526	36.640	1.00 22.86	AAAA
ATOM						37.217	35.572	1.00 23.56	AAAA
ATOM	783	CI	TYR A		41.730			1.00 24.06	AAAA
ATOM	784	OH.	TYR A		42.232	36.941	34.318		
MOTA	785	C	TYR A	. 97	38.800	36.436	41.228	1.00 25.08	AAAA
ATOM	786	Ö	TYR A		39.739	36.266	42.009	1.00 26.91	AAAA
			ALA A	-	37.522	36.406	41.589	1.00 24.73	AAAA
ATCM	787	И				36.159	42.951	1.00 24.50	AAAA
ATOM	788	CA	ALA A		37.083			1.00 24.48	AAAA
ATOM	789	CB	ALA A		35.800		43.235		
ATCM	790	С	ALA A	98	36.824	34.661		1.00 23.95	AAAA
ATOM	791	Ö	ALA A		36.929	34.100	44.171	1.00 24.21	AAAA
			MET 2		36.502		41.976	1.00 23.10	AAAA
ATOM	792	71	MET 6	. 77	50.502		•		
•									

					1 00 22 61	
ATOM	793 CA MET A 99	36.208	32.584		1.00 22.61	٨٨٨٨
MOTA	794 CB MET A 99	35.855	32.089		1.00 23.25	AAAA
		37.009	32.063	39.607	1.00 23.22	AAAA
ATOM			31.808		1.00 25.21	AAAA
MOTA	796 SD MET A 99	36.360			1.00 22.04	AAAA
MOTA	797 CE MET A 99	35.328	30.374			
ATOM	798 C MET A 99	37.319	31.720		1.00 21.80	AAAA
	799 O MET A 99	37.052	30.695		1.00 21.29	AAAA
MOTA		38.567	32.111	42.380	1.00 21.87	AññA
MOTA		39.650	31.322	42.936	1.00 21.11	AAAA
MOTA	801 CA PHE A 100				1.00 20.25	AAAA
ATOM	802 CB PHE A 100	40.388	30.552		1.00 20.14	AAAA
MOTA	803 CG PHE A 100 .	41.451	29.648			
ATOM	804 CD1 PHE A 100	41.114	28.462		1.00 20.49	AAAA
	805 CD2 PHE A 100	42.785	30.050		1.00 19.82	AAAA
ATOM		42.090	27.695	43.646	1.00 19.54	AAAA
MOTA		43.755	29.300	43.001	1.00 19.22	AAAA
MOTA	807 CE2 PHE A 100		28.122	43.641	1.00 19.47	AAAA
ATCM	808 CZ PHE A 100	43.410		42 742	1.00 21.37	AAAA
ATOM	809 C PHE A 100	40.649	32.161	43.743		AAAA
ATOM	810 O PHE A 100	40.959	31.822	44.887	1.00 21.26	
	811 N THR A 101	41.142	33.252	43.161 .	1.00 20.94	AAAA.
ATOM		42.119	34.097	43.847	1.00 21.95	AAAA
MOTA		42.691	35.181	42.905	1.00 22.21	AAAA
ATOM	813 CB THR A 101			41.917	1.00 22.90	AAAA
ATOM	814 OG1 THR A 101	43.511	34.552		1.00 21.38	AAAA
MOTA	815 CG2 THR A 101	43.535	36.186	43.667		AAAA
ATOM	816 C THR A 101	41.584	34.755	45.117	1.00 22.60	
ATOM	817 O THR A 101	42.248	34.723	46.147	1.00 23.38	AAAA
	818 N GLY A 102	40.394	35.343	45.049	1.00 22.13	الممماء ا
MOTA		39.826	35.972	46.227	1.00 22.03	AAAA
MOTA		39.340	34.928	47.221	1.00 21.36	AAAA
MOTA		39.433	35.104	48.439	1.00 20.02	AAAA
ATOM	821 O GLY A 102			46.677	1.00 21.86	AAAA
MOTA	822 N SER A 103	38.816	33.833		1.00 21.68	AAAA
MOTA	823 CA SER A 103	38.311	32.719	47.466	1.00 21.56	AAAA
ATOM	824 CB SER A 103	37.699	31.668	46.557		AAAA
MOTA	825 OG SER A 103	36.604	32.216	45.857	1.00 23.67	
	826 C SER A 103	39.450	32.098	48.229	1.00 22.67	AAAA
ATOM	827 O SER A 103	39.314	31.806	49.412	1.00 22.44	AAAA
MOTA	·	40.578	31.898	47.545	1.00 23.37	AAAA
ATOM		41.746	31.305	48.183	1.00 23.50	AAAA
MOTA	829 CA SER A 104		31.070	47.172	1.00 24.80	AAAA
MOTA	830 CB SER A 104	42.862		46.175	1.00 28.38	AAAA
MOTA	831 OG SER A 104	42.441	30.169		1.00 22.79	AAAA
ATOM	832 C SER A 104	42.254	32.230	49.256		AAAA
ATOM	833 O SER A 104	42.707	31.794	50.307	1.00 22.66	
ATOM	834 N LEU A 105	42.160	33.518	48.970	1.00 22.08	AAAA
	835 CA LEU A 105	42.626	34.541	49.870	1.00 21.70	AAAA
MOTA		42.524	35.882	49.159	1.00 21.89	AAAA
ATOM		43.332	37.038	49.718	1.00 23.64	AAAA
MOTA	837 CG LEU A 105	44.830			1.00 22.01	AAAA
MOTA	838 CD1 LEU A 105		38.304		1.00 23.60	AAAA
MOTA	839 CD2 LEU A 105	43.004			1.00 22.29	AAAA
ATOM	840 C LEU A 105	41.767			1.00 21.95	AAAA
ATOM	841 O LEU A 105	42.277	34.595			AAAA
ATOM	842 N ALA A 106	40.458	34.429		1.00 22.23	
	843 CA ALA A 106	39.515	34.394	52.042	1.00 22.32	AAAA
ATOM		38.068		51.526	1.00 22.05	AAAA
MOTA		39.704			1.00 21.99	AAAA
MOTA	845 C ALA A 106	39.578			1.00 23.18	አልልል
MOTA	846 O ALA A 106				1.00 21.24	AAAA
ATOM	847 N THR A 107	40.011	32.032		1.00 20.60	AAAA
ATOM	848 CA THR A 107	40.209			1.00 19.82	AAAA
ATOM	849 CB THR A 107	40.170			1.00 19.62	AAAA
ATOM	850 GG1 THR A 107	38.903		51.083	1.00 18.56	
	851 CG2 THR A 107	40.360	28.242		1.00 18.58	AAAA
ATOM		41.516			1.00 21.41	· AAAA
ATOM		41.537			1.00 23.16	AAAA
ATOM	853 O THR A 107	42.601	31.176			AAAA
ATOM	854 N GLY A 108					AAAA
ATOM	855 CA GLY A 108	43.878				AAAA
ATOM	956 C GLY A 108	43.739				AAAA
ATOM	857 O GLY A 108	44.335				AAAA .
ATOM	858 N SER A 109	42.909	32.969	54.929	1.00 10.30	, anna
				-		•

	859	CA S	ER A 109)	42.683	33.805	56.098	1.00 19.67	AAAA
ATOM			SER A 103		41.899	35.058		1.00 20.27	AAAA
ATOM			ER A 109		42.618	35.803	54.746	1.00 21.80	AAAA
ATOM			SER A 109		41.955	33.066	57.219	1.00 19.61	AAAA
MOTA			ER A 109		42.078	33.426	58.388	1.00 18.40	AAAA
MOTA					41.186	32.042	56.866	1.00 19.88	AAAA
ATOM -			THR A 110		40.493	31.288	57.891	1.00 20.51	AAAA
MOTA			THR A 110		39.365	30.438	57.304	1.00 20.62	ÄAAA
MOTA			THR A 110		38.236	31.284	57.050	1.00 20.80	AAAA
MOTA	867		THR A 110			29.313	58.262	1.00 20.53	AAAA
ATOM	868		THR A 110		38.974	30.420	58.601	1.00 20.36	AAAA
ATOM	869		THR A 110		41.504	30.420	59.822	1.00 20.78	AAAA
MOTA	870		THR A 110		41.455	29.855	57.832	1.00 20.85	AAAA
MOTA	871		JAL A 11:		42.431	29.833	58.423	1.00 21.03	AAAA
ATOM	872		JAL A 11:		43.480	28.323	57.345	1.00 21.05	AAAA
ATOM	873		VAL A 11		44.318	28.323	57.983	1.00 19.91	-AAAA
MOTA	874		VAL A 11		45.537	27.044	56.648	1.00 18.39	AAAA
MOTA	875		VAL A 11		43.460		59.232	1.00 21.84	AAAA
ATOM	876		VAL A 11		44.374	30.005	60.331	1.00 22.73	AAAA
MOTA	877		VAL A 11		44.825	29.671	58.712	1.00 21.62	AAAA
MOTA	878		GLN A 11		44.612	31.204	59.452	1.00 21.89	AAAA
ATOM	879		GLN A 11		45.449	32.133	58.690	1.00 22.50	AAAA
ATOM	880		GLN A 11		45.630		57.335	1.00 23.68	AAAA
ATOM	881	CG (GLN A 11	2	46.288			1.00 23.00	AAAA
MOTA	882		GLN A 11		46.414		56.569	1.00 23.10	AAAA
ATOM	883		GLN A 11		47.389		56.722 55.752	1.00 21.90	AAAA
MOTA	884		GLN A 11		45.413		60.774	1.00 21.84	AAAA
ATCM	885		GLN A 11		44.766		61.835	1.00 22.47	AAAA
MOTA	886		GLN A 11		45.389		60.700	1.00 21.34	AAAA
MOTA	887		ALA A 11		43.468		61.884	1.00 20.84	AAAA
MOTA	888		ALA A 11		42.682		61.504	1.00 18.52	AAAA
MOTA	889		ALA A 11		41.244		62.865	1.00 21.75	AAAA
ATOM	890		ALA A 11		42.795		64.084	1.00 22.24	AAAA
MOTA	891		ALA A 11		42.880		62.329	1.00 22.54	AAAA
MOTA	892	N	ILE A 11		42.797		63.160	1.00 23.16	AAAA
MOTA	893		ILE A 11		42.891		62.352	1.00 23.33	AAAA
ATOM	894	CB	ILE A 11		42.557		63.106	1.00 23.80	AAAA
MOTA	895		ILE A 11		42.939		62.047	1.00 23.48	AAAA
MOTA	896		ILE A 11		40.610		61.204	1.00 22.08	AAAA
ATOM	897		ILE A 13		44.268		63.792	1.00 24.33	AAAA
MOTA	898	C	ILE A 1		44.37	_	64.990	1.00 25.30	AAAA
ATCM	899	0	ILE A 1		45.319		63.002	1.00 24.96	AAAA
ATCM	900	N	GLU A 1		46.699	_	63.503	1.00 26.61	AAAA
MOTA	901	CA	GLU A 1		47.70		62.406	1.00 24.75	AAAA
ATOM	902	CB	GLU A 13		47.44		61.103	1.00 25.80	AAAA
MOTA	903	CG	GLU A 1		48.47		60.030	1.00 26.07	AAAA
ATCM	904		GLU A 1		48.91		59.940	1.00 27.15	AAAA
MOTA	905		GLU A 1		48.81			1.00 25.45	AAAA
MOTA	906		GLU A 1		46.87			1.00 27.89	AAAA
ATCM	907	C	GLU A 1	12	47.48		_	1.00 28.04	AAAA
ATOM	908	0	GLU A 1		46.33				AAAA
ATOM	909	N	GLU A 1		46.40			1.00 29.42	AAAA
MOTA	910	CA	GLU A 1		45.75	the second secon			AAAA
atom	911	CB	GLU A 1		46.48				AAAA
MOTA	912	CG	GLU A 1		47.90				AAAA
MOTA	913	CD	GLU A 1		48.08				AAAA
ATCM	914		GLU A 1		48.83	_			AAAA
ATOM	91,5		GLU A 1		45.73				AAAA
ATOM	916	C	GLU A 1		46.33				AAAA
ATOM	917	0	GLU A 1		44.49	_			AAAA
ATCM	918	11	PHE A 1		44.45				AAAA
ATOM	919	CA	PHE A 1	17	42.42				AAAA
ATOM	920	CB	PHE A 1		41.60				AAAA
atom	921	CG	PHE A 1		41.00	0 31.010			AAAA
ATOM	922	CD1	PHE A 1	17	41.44				AAAA
ATCM	923	CD2	PHE A 1	17	40.26				AAAA
ATOM	924	CEl	PHE A 1	. 1 /	40.20	2 30.300			•

						_				
	225 0		D1:17 >	117		40.695	28.284	70.009	1.00 29.16	AAAA
MOTA			PHE A			40.103	29.227	70.862	1.00 29.03	AAAA
MOTA			PHE A					68.671	1.00 29.22	AAAA
ATOM	927 C		PHE A			44.545	30.195			
ATOM	928 C) 1	PHE A	117		44.677	30.315	69.884	1.00 30.29	AAAA
ATOM	929 N		LEU A			45.066	29.195	67.965	1.00 29.24	AAAA
			LEU A			45.864	28.145	68.576	1.00 29.50	AAAA
ATOM						46.182	27.047	67.550	1.00 28.57	AAAA
MOTA			LEU A			44.962	26.296	66.989	1.00 28.16	AAAA
ATOM			LEU A					66.191	1.00 25.58	AAAA
ATOM			LEU A			45.421	25.090			AAAA
ATOM	934 (D2 :	LEU A	. 118		44.053	25.846	68.128	1.00 27.64	
ATOM			LEU A	118		47.150	28.649	69.227	1.00 30.14	AAAA
			LEU A			47.727	27.954	70.056	1.00 29.94	AAAA
MOTA			LYS A			47.602	29.845	68.847	1.00 31.36	AAAA
MOTA						48.798	30.451	69.448	1.00 32.52	AAAA
MOTA			LYS A				31.539	68.559	1.00 32.38	AAAA
ATOM	939 (LYS A			49.396			1.00 32.30	AAAA
MOTA	940 (CG	LYS À	. 119		49.882	31.108	67.199		
MOTA	941 (CD	LYS A	119		50.371	32.321	66.411	1.00 32.74	AAAA
ATOM		CE	LYS A	119		50.681	31.939	64.972	1.00 33.94	AAAA
			LYS A			51.125	33.099	64.152	1.00 34.93	AAAA
MOTA			LYS A			48.385	31.143	70.744	1.00 33.74	AAAA
MOTA						49.218	31.748	71.413	1.00 34.85	AAAA
MOTA			LYS A				31.079	71.073	1.00 33.68	AAAA
ATOM	946 1		GLY A			47.096				AAAA
ATOM	947		GLY ?			46.600	31.736	72.263	1.00 33.69	
ATOM	948	С	GLY A	120		45.987	33.110	71.988	1.00 34.11	AAAA
ATOM	-		GLY 2			45.588	33.802	72.932	1.00 33.65	AAAA
		N	ASN A			45.904	33.513	70.717	1.00 33.58	AAAA
ATOM		CA	ASN A			45.326	34.820	70.368	1.00 33.35	AAAA
MOTA						46.194	35.537	69.341	1.00 33.18	AAAA
MOTA	-	CB	ASN A		•	47.570	35.828	69.859	1.00 34.31	AAAA
ATOM		CG	ASN A					70.154		AAAA
MOTA			ASN A			48.333	34.921		1.00 33.07	AAAA
ATOM	955	ND2	ASN A			47.897	37.096	69.975		AAAA
ATOM	956	С	ASN A	A 121		43.888	34.805	69.839	1.00 32.85	
MOTA		0	ASN A			43.304	33.751	69.599	1.00 32.78	AAAA
		N		A 122		43.338	36.003	69.655	1.00 32.47	AAAA
ATOM		CA		A 122		41.980	36.200	69.148	1.00 30.89	AAAA
MOTA				A 122		41.182	37.145	70.070	1.00 31.05	AAAA
MOTA		CB				39.831	37.423	69.489	1.00 30.95	AAAA
MOTA			VAL					71.440	1.00 31.19	AAAA
ATOM	962	CG2	VAL .			41.038	36.516		1.00 30.19	AAAA
MOTA	953	C	VAL .	A 122		42.056	36.805	67.750		AAAA
ATOM .	964	0	VAL .	A 122		42.694	37.840	67.535	1.00 31.28	
ATOM		N	ALA .	A 123		41.405	36.147	66.800	1.00 28.62	AAAA
		CA		A 123		41.415	36.589	65.421	1.00 26.49	AAAA
ATOM	967	CB		A 123		42.323	35.708	64.599	1.00 26.51	AAAA
ATOM				A 123		40.038	36.570	64.836	1.00 25.59	AAAA
MOTA	968	C				39.173	35.814	65.252	1.00 26.27	AAAA
MOTA		0		A 123			37.421	62.847	1.00 25.44	AAAA
ATOM	970	N	PHE	A 124		39.848			1.00 23.87	AAAA
ATOM	971	CA	PHE	A 124		38.590		60.156		AAAA
ATOM	972	CB	PHE	A 124		37.832	38.779	63.646	1.00 23.58	
ATOM	973	CG	PHE	A 124		36.591	39.119	62.841	1.00 23.71	AAAA
ATOM	974			A 124		35.668	38.140	62.495	1.00 23.44	AAAA
	975	CD2	DHE	A 124		36.311	40.449	62.498	1.00 23.75	AAAA
MOTA						34.479		61.823	1.00 23.31	AAAA
ATOM	976			A 124		35.131				AAAA
ATOM	977			A 124						AAAA
ATOM	. 978	CZ		A 124		34.217				AAAA
MOTA	979	C	PHE	A 124		38.951			1.00 23.20	AAAA
ATCM	980	0	PHE	A 124		39.720				AAAA
	981	N		A 125		38.427	36.759	60.897		
ATOM		CA		A 125		38.622			1.00 21.08	AAAA
ATOM	982					39.181				AAAA
ATOM	983	CB		A 125						AAAA
ATOM	984	CG		A 125		39.098				AAAA
ATOM	385			A 125		39.389				AAAA
ATOM	986	ND2	ASN	A 125		38.721			1.00 19.33	AAAA
ATOM	987	С		A 125		37.269	37.059	58.813		
	988	ō		A 125		36.469		58.579	1.00 19.21	AAAA
ATOM				A 126		36.991	_		1.00 19.14	AAAA
ATOM	989	7				37.893				AAAA
ATOM	390	CD	אלט	A 126		31.073			_	
•			•							

•				35.766	38.849	57.932	1.00 19.52	AAAA
MOTA	991		PRO A 126			57.941	1.00 18.55	AAAA
ATOM	992		PRO A 126	36.005	40.359			
MOTA	993	CG	PRO A 126	37.511	40.465	57.799	1.00 17.97	AAAA
ATOM	994	С	PRO A 126	35.456	38.313	56.526	1.00 19.41	AAAA
ATOM	995		PRO A 126	34.303	38.349	56.080	1.00 19.68	AAAA
			ALA A 127	36.477	37.814	55.835	1.00 18.17	AAAA
MOTA	996			•	37.314	54.481	1.00 17.66	AAAA
MOTA	997		ALA A 127	36.283			1.00 17.08	AAAA
MOTA	998	CB	ALA A 127	37.547	37.520	53.658		
ATOM	999	С	ALA A 127	35.875	35.857	54.443	1.00 17.46	AAAA
MOTA	1000	0	ALA A 127	35.438	35.359	53.409	1.00 18.92	AAAA
	1001	N	GLY A 128	36.019	35.180	55.570	1.00 15.94	AAAA
MOTA			GLY A 128	35.685	33.780	55.642	1.00 15.45	AAAA
MOTA	1002			34.226	33.593	55.955	1.00 16.08	AAAA
MOTA	1003	C	GLY A 128		34.557	55.997	1.00 15.43	AAAA
ATOM	1004	0	GLY A 128	33.485			1.00 16.77	AAAA
ATOM	1005	N	GLY A 129	33.821	32.353	56.198		
ATOM	1006	CA	GLY A 129	32.426	32.082	56.462	1.00 17.82	AAAA
ATOM	1007	С	GLY A 129	31.669	31.822	55.169	1.00 18.64	AAAA
	1008	ō	GLY A 129	30.469	32.051	55.108	1.00 18.48	AAAA
ATOM			MET A 130	32.380	31.368	54.137	1.00 20.45	AAAA
MOTA	1009	N		31.790	31.029	52.826	1.00 21.60	AAAA
MOTA	1010	CA	MET A 130			51.744	1.00 22.02	AAAA
ATOM	1011	CB	MET A 130	32.866	31.117		1.00 21.75	AAAA
MOTA	1012	CG	MET A 130		32.472	51.698		
ATOM	1013	SD	MET A 130	34.971	32.56 7	50.599	1.00 24.75	AAAA
ATOM	1014	CE	MET A 130	34.268	32.137	49.048	1.00 24.40	AAAA
			MET A 130	31.328	29.587	53.002	1.00 22.08	AAAA .
MOTA	1015	C.			28.641	52.546	1.00 22.98	AAAA
MOTA	1016	0	MET A 130		29.452	53.659	1.00 22.25	AAAA
MOTA	1017	N	HIS A 131				1.00 20.49	AAAA
ATOM	1018	CA	HIS A 131		28.171	54.062		AAAA
ATOM	1019	CB	HIS A 131	28.832	28.421	55.342	1.00 20.00	
MOTA	1020	CG	HIS A 131	27.679	29.360	55.161	1.00 17.93	AAAA
ATOM	1021		HIS A 131		29.846	54.043	1.00 17.88	AAAA
			HIS A 131		29.854	56.219	1.00 19.33	AAAA
MOTA	1022				30.607	55.758	1.00 16.99	AAAA
MOTA	1023		HIS A 131		30.617	54.441	1.00 17.43	AAAA
MOTA	1024	NE2	HIS A 131				1.00 19.97	AAAA
MOTA	1025	C	HIS A 131		27.332		1.00 19.51	AAAA
ATOM	1026	0	HIS A 131	28.330	26.262	53.541	1.00 19.61	
ATOM	1027	N	HIS A 132	28.518	27.796	51.923	1.00 20.11	AAAA
ATOM	1028	CA	HIS A 132		27.058	50.994	1.00 17.76	AAAA
	1029	CB	HIS A 132		28.044	50.127	1.00 16.76	AAAA
MOTA			HIS A 132		28.815	50.862	1.00 15.35	AAAA
ATOM	1030	CG			30.146	50.920	1.00 14.15	AAAA
ATOM	1031	CD2	HIS A 132		28.200	51.557	1.00 16.15	AAAA
MOTA	1032		HIS A 132			52.005	1.00 14.13	AAAA
MOTA	1033		HIS A 132		29.119		1.00 14.65	AAAA
ATOM	1034	NE2	HIS A 132	24.405	30.307	51.632	1.00 14.05	-
MOTA	1035	С	HIS A 13	28.355	26.051	50.065	1.00 17.99	AAAA
	1.36	0	HIS A 13		25.053	49.684	1.00 18.54	AAAA
MOTA	1 3 3 7	N	ALA A 13		26.305	49.690	1.00 17.82	AAAA
MOTA			ALA A 13		25.441		1.00 18.38	AAAA
MOTA	1,38	CA	ALA A 13.		25.961	48.507	1.00 17.53	AAAA
MOTA	1039	CB	ALA A 13		23.970		1.00 20.92	AAAA
MOTA	1040	С	ALA A 13					AAAA
ATOM	1041	0	ALA A 13		23.633			AAAA
MOTA	1042	N	PHE A 13	30.184	23.086		1.00 20.58	
ATOM	1043	CA	PHE A 13		21.663	48.455	1.00 21.38	AAAA
	1044	CB	PHE A 13		20.860	47.731	1.00 19.41	AAAA
MOTA					21.229		1.00 18.32	AAAA
MOTA	1045	CG	PHE A 13				1.00 19.22	AAAA
MOTA	1046		PHE A 13				1.00 19.14	AAAA
ATOM	1047	CD2	PHE A 13	27.193	20.701		1.00 19.14	AAAA
MOTA	1048		PHE A 13		22.438			
ATOM	1049		PHE A 13				1.00 17.72	AAAA
	1050	cz	PHE A 13				1.00 18.01	AAAA
MOTA			PHE A 13	-			1.00 22.90	AAAA
MOTA	1051	C		•			1.00 23.37	AAAA
atom	1052	0	PHE A 13					AAAA
ATOM	1053	N	LYS A 13					AAAA
ATOM	1054	CA	LYS A 13					AAAA
ATOM	1055	CB	LYS A 13					
ATOM	1056	CG	LYS A 13		16.843	48.292	1.00 31.01	AAAA
ALON.			- - · · ·			-		•

> mo>4	1057	CD	LYS A	135	33.879	15.472	48.910	1.00 32.75	AAAA
MOTA	1058		LYS A		33.961	15.495	50.457	1.00 33.96	AAAA
MOTA MOTA	1059		LYS A		35.371	15.664	50.976	1.00 33.04	AAAA
	1060		LYS A		33.577	19.390	46.673	1.00 27.37	AAAA
ATOM ATOM	1061		LYS A		34.769	19.596	46.437	1.00 27.35	AAAA
ATOM	1062	N	SER A		32.658	19.354	45.714	1.00 27.32	AAAA
	1063		SER A		33.028	19.527	44.313	1.00 28.31	AAAA
MOTA	1064	CB	SER A		33.093	18.162	43.626	1.00 28.56	AAAA
MOTA	1065	0G	SER A		33.822	17.242	44.417	1.00 29.28	AAAA
MOTA MOTA	1066	C	SER A		31.993	20.395	43.599	1.00 28.91	AAAA
ATOM	1067	ō	SER A		. 31.568	20.080	42.486	1.00 28.78	AAAA
ATOM	1068	N	ARG A		31.595	21.502	44.212	1.00 29.08	AAAA.
ATOM	1069	CA	ARG A		30.574	22.311	43.576	1.00 29.66	AAAA
ATOM	1070	CB	ARG A		29.259	21.528	43.657	1.00 31.65	AAAA
MOTA	1071	CG		A 137	27.989	22.273	43.355	1.00 33.89	AAAA
ATOM	1072	CD		A 137	26.862	21.267	43.373	1.00 35.93	AAAA
ATOM	1073	NE	ARG 2	A 137	26.961	20.366	42.228	1.00 36.31	AAAA
ATOM	1074	CZ	ARG A	A 137	26.505	20.660	41.015	1.00 35.99	AAAA
ATOM	1075	NHl	ARG A	A 137	25.915	21.834	40.798	1.00 34.63	AAAA
ATOM	1076	NH2	ARG 2		26.650	19.786	40.025	1.00 35.35	AAAA
ATOM	1077	С		A 137	30.402	23.723	44.116	1.00 28.53	AAAA AAAA
MOTA	1078	0		A 137	30.418	23.946	45.324	1.00 28.51 1.00 27.53	AAAA
ATOM	1079	N		A 138	30.247	24.673	43.202	1.00 27.53	AAAA
MOTA	1080	CA		A 136	30.039	26.063	43.581	1.00 27.84	AAAA
MOTA	1081	CB		A 138	30.236	26.984	42.381 44.079	1.00 27.87	AAAA
ATOM	1082	С		A 138	28.601	26.130	43.671	1.00 27.27	AAAA
MOTA	1083	0		A 138	27.769	25.321	44.951	1.00 26.16	AAAA
MOTA	1084	N		A 139	28.292	27.080 27.134	45.480	1.00 25.39	AAAA
MOTA	1085	CA		A 139	26.945	25.847	46.282	1.00 24.58	AAAA
ATOM	1086	CB		A 139	26.673 25.343	25.872	47.017	1.00 25.37	AAAA
MOTA	1087	CG		A 139	24.272	26.017	46.413	1.00 24.20	AAAA
MOTA	1088	ODI	ASN	A 139 A 139	25.408	25.720	48.338		AAAA
ATOM	1089			A 139		28.358	46.341	1.00 24.90	AAAA
ATOM	1090 1091	Ö Ö		A 139	27.346	28.570	47.348	1.00 24.98	AAAA
MOTA	1091	Ŋ		A 140	25.702	29.145	45.916	1.00 24.46	AAAA
ATOM ATOM	1092	ÇA		A 140	25.294	30.336	46.625	1.00 22.96	AAAA
ATOM	1094	Ċ		A 140	26.383	31.358	46.755	1.00 22.24	AAAA
ATOM	1095	ō		A 140	26.663	31.817	47.867	1.00 23.09	AAAA
ATOM	1096	N		A 141	26.992	31.711	45.625	1.00 20.60	AAAA
MOTA	1097	CA		A 141	28.075	32.700	45.572	1.00 19.43	AAAA AAAA
ATOM	1098	CB		A 141	27.758			1.00 19.86	AAAA
ATOM	1099	CG		A 141	26.453			1.00 21.18 1.00 20.49	AAAA
ATOM	1100	CD1	PHE	A 141	25.974			1.00 20.43	· AAAA
MOTA	1101			A 141	25.723			1.00 21.42	AAAA
MOTA	1102	CE1	PHE	A 141	24.800	36.242 34.859		1.00 :1.76	AAAA
MOTA	1103		PHE	A 141	24.540				AAAA
ATOM	1104	CZ		A 141	29.396				AAAA
MOTA	1105	Ċ		A 141	30.438				AAAA
ATOM	1106	0		A 141 A 142	29.367				AAAA
ATOM	1107	N		A 142	30.594			1.00 16.80	AAAA
MOTA	1108 1109	CA CB		A 142	30.323		48.509	1.00 16.51	AAAA
MOTA	1110	SG		A 142	29.524		49.617	1.00 15.01	AAAA
MOTA MOTA	1111	c		A 142	31.227		46.221	1.00 16.45	AAAA
ATOM	1112	ō		A 142	30.533		45.556	1.00 15.32	AAAA
ATOM	1113			A 143	32.558				AAAA
ATOM	1114	CA		A 143	33.340	28.394	45.362		AAAA
ATOM	1115			A 143	34.298	3 29.154			<i>А</i> ААА АААА
ATOM	1116			A 143	33.664	30.214			AAAA AAAA
ATOM	1117			A 143	33.480				AAAA
ATOM	1118	CE	1 TYR	A 143	32.85	5 32.473			AAAA
ATOM	1119	CD:	2 TYR	A 143	33.213				AAAA
ATOM	1120		2 TYR	A 143	32.58				AAAA
ATOM	1121	CZ		A 143					AAAA
ATOM	1122	ОН	TYR	A 143	31.78	7 33.07	41.228	5 1.00 23.30	

			1 iguio 17 i	O			
	1122	C MVD N 1/12	34.162	27.490	46.283	1.00 19.06	AAAA
ATOM	1123	C TYR A 143 O TYR A 143	34.319	25.289	46.032	1.00 18.40	AAAA
ATOM	1124 1125	O TYR A 143 N ILE A 144	34.695	28.087	47.344	1.00 19.15	AAAA
ATOM	1126	CA ILE A 144	35.490	27.350	48.315	1.00 19.97	AAAA
atom Atom	1127	CB ILE A 144	36.952	27.861	48.355	1.00 19.74	AAAA
ATOM	1128	CG2 ILE A 144	37.757	27.088	49.410	1.00 18.03	AAAA
ATOM	1129	CG1 ILE A 144	37.584	27.671	46.965	1.00 20.12	AAAA
ATOM	1130	CD1 ILE A 144	39.053	28.072	46.846	1.00 21.05	AAAA
ATOM	1131	C ILE A 144	34.833	27.532	49.665	1.00 20.22	AAAA
ATOM	1132	O _ILE A 144	34.357	28.626	49.981	1.00 19.94	AAAA
MOTA	1133	N ASN A 145	34.787	26.451	50.440	1.00 20.57	AAAA
ATOM	1134	CA ASN A 145	34.165	26.448	51.770	1.00 20.39	AAAA
MOTA	1135	CB ASN A 145	33.450	25.114	51.990	1.00 19.39	AAAA AAAA
MOTA	1136	CG ASN A 145	32.505	25.143	53.171	1.00 19.31 1.00 21.26	AAAA
MOTA	1137	OD1 ASN A 145	32.862	25.583	54.263	1.00 21.28	- AAAA
ATOM	1138	ND2 ASN A 145	31.290	24.667	52.960 52.856	1.00 17.08	AAAA
ATOM	1139	C ASN A 145	35.236	26.621	53.421	1.00 19.75	AAAA
ATOM	1140	O ASN A 145	35.690 35.644	25.622 27.862	53.148	1.00 20.06	AAAA
MOTA	1141	N ASN A 146	36.671	28.075	54.166	1.00 20.98	AAAA
MOTA	1142	CA ASN A 146 CB ASN A 146	37.019	29.573	54.333	1.00 21.78	AAAA
ATOM	1143	CB ASN A 146 CG ASN A 146	35.876	30.411	54.882	1.00 22.78	AAAA
MOTA	1144 1145	OD1 ASN A 146	35.651	30.465	56.091	1.00 22.83	AAAA
MOTA MOTA	1145	ND2 ASN A 146	35.144	31.078	53.983	1.00 23.70	AAAA
ATOM	1147	C ASN A 146		27.413	55.496	1.00 21.18	AAAA
MOTA	1148	O ASN A 146		26.823	56.139	1.00 21.48	AAAA
ATOM	1149	N PRO A 147	35.031	27.476	55.922	1.00 20.88	AAAA
ATOM	1150	CD PRO A 147		28.120	55.358	1.00 21.85	AAAA AAAA
MOTA	1151	CA PRO A 147		26.831	57.183	1.00 21.42 1.00 21.00	AAAA
MOTA	1152	CB PRO A 147		27.073	57.261	1.00 21.00	AAAA
MOTA	1153	CG PRO A 147		28.408 25.334	56.605 57.174	1.00 20.47	AAAA
MOTA	1154	C PRO A 147		24.833	58.099	1.00 25.69	AAAA
MOTA	1155	O PRO A 147		24.635	56.136	1.00 22.34	AAAA
ATOM	1156	N ALA A 148 CA ALA A 148		23.193	56.070	1.00 22.23	AAAA
ATOM	1157 1158	CA ALA A 148 CB ALA A 148		22.561	54.825	1.00 22.87	AAAA
MOTA	1159	C ALA A 148		22.998	56.054	1.00 22.33	AAAA
MOTA MOTA				22.249	56.861	1.00 23.42	AAAA
MOTA				23.661	55.122	1.00 22.50	AAAA
ATOM			38.505	23.569	55.018	1.00 21.29	AAAA AAAA
ATOM		CB VAL A 149		24.581	54.002	1.00 20.46 1.00 19.36	AAAA
ATOM	1164			24.607		1.00 19.30	AAAA
ATOM				24.229 23.848	52.593 56.367	1.00 21.48	AAAA
ATOM						1.00 22.11	AAAA
ATOM				24.826	57.088	1.00 21.19	AAAA
ATOM				25.176		1.00 21.70	AAAA
ATOM				24.043		1.00 22.31	AAAA
ATOM				23.597		1.00 22.51	AAAA
atom atom				23.566	59.453	1.00 22.86	AAAA
ATOM				22.474			AAAA
ATOM			35.894	22.124		1.00 21.51	AAAA
ATOM		CG2 ILE A 15	35.542	20.899		1.00 21.36	AAAA AAAA
ATOM		GG1 ILE A 15	35.051	23.329		1.00 20.39 1.00 16.88	AAAA
ATOM	1177	CD1 ILE A 15	33.576				AAAA
ATOM							AAAA
ATOM							AAAA
ATCN							AAAA
ATON						1.00 25.07	AAAA
ATON						1.00 24.56	AAAA
ATON						1.00 25.00	AAAA
ATON					57.011	1.00 26.40	AAAA
atoi atoi					5 57.897		AAAA
ATO			2 40.694			1.00 26.06	AAAA
ATO		1 E		19.035	59.331	1.00 26.40	AAAA
,,, 0.	-, ===	•					-

						•		
> mov	1189	N	TYR A 153	41.085	21.225		1.00 27.30	AAAA
MOTA	1190	CA	TYR A 153	42.422	21.632		1.00 27.63	AAAA
ATOM	1191	CB	TYR A 153	42.532	23.153	59.268	1.00 26.99	AAAA
MOTA MOTA	1192		TYR A 153	43.856	23.719	59.710	1.00 27.03	AAAA
ATOM	1193		TYR A 153	44.942	23.790		1.00 27.78	AAAA
MOTA	1194	CE1	TYR A 153	46.165	24.356	59.250	1.00 28.40	AAAA
MOTA			TYR A 153	44.017	24.215	61.007	1.00 27.52	AAAA
MOTA	1196		TYR A 153	45.216	24.774	61.425	1.00 27.66 1.00 28.15	AAAA AAAA
ATOM	1197		TYR A 153	46.284	24.845	60.547	1.00 28.13	AAAA
ATOM	1198		TYR A 153	47.457	25.407	60.974	1.00 28.83	AAAA
ATOM	1199		TYR A 153	42.618	21.172	60.769 61.110	1.00 27.02	AAAA
ATOM	1200		TYR A 153	43.613	20.552 21.487	61.604	1.00 29.25	AAAA
MOTA	1201		LEU A 154	41.636 41.665	21.138	63.014	1.00 29.35	AAAA
MOTA	1202		LEU A 154 LEU A 154	40.507	21.829	63.715	1.00 30.25	AAAA
MOTA	1203	CB CG	LEU A 154	40.685	23.346	63.792	1.00 31.10	AAAA
MOTA	1204 1205		LEU A 154	39.348	24.020	64.092	1.00 31.24	AAAA
MOTA MOTA	1205	CD2	LEU A 154	41.747	23.669	64.852	1.00 29.84	AAAA
MOTA	1207	C	LEU A 154	41.625	19.639	63.263	1.00 29.73	AAAA
MOTA	1208	ō	LEU A 154	42.313	19.151	64.150	1.00 30.51	AAAA AAAA
ATOM	1209	N	ARG A 155	40.832	18.903	62.489	1.00 28.95 1.00 28.94	AAAA
ATOM	1210	CA	ARG A 155	40.771	17.459	62.671 61.723	1.00 28.64	AAAA
MOTA	1211	CB	ARG A 155	39.742	16.820 17.312	61.723	1.00 27.82	AAAA
MOTA	1212	CG	ARG A 155	38.312 37.319	16.751	60.955	1.00 27.19	AAAA
MOTA	1213	CD	ARG A 155 ARG A 155	36.804	15.444	61.338	1.00 28.86	AAAA
MOTA	1214	NE	ARG A 155	35.939	14.742	60.612	1.00 28.93	AAAA
ATOM	1215 1216	CZ NTL 1	ARG A 155	35.500	15.227	59.459	1.00 29.47	AAAA
MOTA MOTA	1217	NH2	ARG A 155	35.486	13.574	61.053	1.00 28.76	AAAA
ATOM	1218	C	ARG A 155	42.158	16.853	62.438	1.00 30.20	AAAA
ATOM	1219	ō	ARG A 155	42.572	15.949	63.164	1.00 30.74	AAAA AAAA
MOTA	1220	N	LYS A 156	42.890	17.362	61.447	1.00 30.32 1.00 30.07	AAAA
ATOM	1221	CA	LYS A 156	44.224	16.838	61.173 59.847	1.00 30.26	AAAÀ
MOTA	1222	CB	LYS A 156	44.771	17.373 16.869	59.525	1.00 30.16	AAAA
MOTA	1223	CG	LYS A 156	46.168 .46.686	17.368	58.181	1.00 31.19	AAAA
MOTA	1224	CD	LYS A 156 LYS A 156	45.884	16.813	56.986	1.00 31.70	AAAA
ATOM	1225	CE NZ	LYS A 156	45.963	15.324	56.824	1.00 31.20	AAAA
ATOM	1226 1227	C	LYS A 156	45.167	17.202	62.306	1.00 30.08	AAAA
MOTA MOTA	1228	ō	LYS A 156	46.192		62.485	1.00 29.16	AAAA AAAA.
ATOM	1229	N	LYS A 157	44.816	18.252	63.053	1.00 30.08 1.00 31.03	AAAA
MOTA	1230	CA	LYS A 157	45.608			1.00 31.03	AAAA
MOTA	1231	CB	LYS A 157	45.446			1.00 32.12	AAAA
MOTA	1232	CG	LYS A 157	46.067 47.580		63.348	1.00 31.34	AAAA
MOTA	1233	CD	LYS A 157	48.080			1.00 32.66	AAAr
ATOM	1234	CE	LYS A 157 LYS A 157	49.556			1.00 32.74	AAA
MOTA	1235 1236	NZ C	LYS A 157				1.00 31.73	AAA
MOTA MOTA	1237	Ö	LYS A 157	45.652	18.230		1.00 31.93	AAAA
ATOM	1239	N	GLY A 158	44.312			1.00 32.41	AAAA AAAA
MOTA	1239		GLY A 158	43.901			1.00 32.34 1.00 32.65	AAAA
ATOM	1240		GLY A 158	42.604				AAAA
ATOM	1241	0	GLY A 158					AAAA
ATCM	1242		PHE A 159					AAAA
ATOM			PHE A 159					AAAA
ATOM	1244	•	PHE A 159				1.00 34.01	AAAA
ATOM	1245		PHE A 159 1 PHE A 159				1.00 34.18	AAAA
MOTA			2 PHE A 159			69.166	1.00 34.61	AAAA
MOTA			1 PHE A 159		21.610	67.874		AAAA
MOTA MOTA			2 PHE A 159		21.924	69.718		AAAA AAA A
ATOM			PHE A 159	42.878				AAAA
ATOM			PHE A 159	39.645				AAAA
ATOM			PHE A 159					AAAA
ATOM	1253		LYS A 160					AAAA
ATOM		CA	LYS A 160	37.79	15.41	, 57.936		•

					. `							
ATOM	1255	CB .	LYS A	160		38.0	60	14.140	68.763		33.97	AAAA
ATOM	1256		LYS A			39.4		13.491	68.457		35.31	AAAA
ATOM	1257		LYS A			39.8		12.364	69.429	1.00	36.48	AAAA
	1258		LYS A			39.0		11.037	69.243	1.00	37.97	AAAA
MOTA	1259		LYS A			37.6		11.080	69.568		39.67	AAAA
MOTA	1260		LYS A			36.3		15.941	68.210	1.00	31.68	AAAA
MOTA	1261		LYS A			35.4		15.290	67.887	1.00	31.51	AAAA
MOTA	1262		ARG A			36.2		17.114	68.819	1.00	31.11	AAAA
MOTA			ARG A			35.0		17.719	69.114	1.00	30.92	AAAA
MOTA	1263 1264	CB	ARG A			34.6		17.592	70.604	1.00	31.78	AAAA
MOTA	1265	CG	ARG A			34.4		16.157	71.102	1.00	32.91	AAAA
MOTA		CD	ARG A			33.9		16.126	72.570		33.26	AAAA
ATOM	1266	NE	ARG A			34.9		16.797	73.476		34.01	AAAA
MOTA	1267	CZ	ARG A			36.1		16.404	73.698	1.00	34.88	AAAA
MOTA	1268		ARG A	161		36.6	75	15.334	73.081	1.00	34.89	AAAA
MOTA	1269		ARG A			36.9		17.084	74.537	1.00	34.71	AAAA
MOTA	1270	C	ARG A			35.0		19.185	68.714	1.00	30.28	AAAA
MOTA	1271	0	ARG A			35.3		20.059	69.529	1.00	29.86	AAAA
MOTA	1272 1273	И	ILE A			34.7		19.433	67.437	1.00	28.86	AAAA
MOTA	1273	CA	ILE A			34.7		20.774	66.862	1.00	26.41	AAAA
ATOM	1275	CB	ILE A			35.4		20.762	65.464	1.00	26.87	AAAA
ATOM	1275		ILE A			35.4		22.160	64.872	1.00	26.91	AAAA
MOTA	1277	CG1	ILE A			36.8		20.234	65.578		28.19	AAAA
MOTA	1277		ILE A			37.6		20.090	64.240	1.00	28.24	AAAA
MOTA	1278	CDI	ILE A			33.3		21.283	66.731	1.00	24.08	AAAA
MOTA	1280	Ö	ILE A			32.4		20.572	66.267		24.40	AAAA
MOTA	1281	N	LEU A			33.1		22.519	67.153		22.25	AAAA
ATOM	1282	CA	LEU A			31.8		23.126	67.074		20.48	AAAA
ATOM	1282	CB	LEU A			31.4		23.671	68.440		20.97	AAAA
MOTA MOTA	1284	CG	LEU A			30.0		24.477	68.486		20.50	AAAA
ATOM	1285		LEU A			28.		23.695	67.799		19.07	AAAA
	1286		LEU A			29.		24.802	69.950	1.00	19.76	AAAA
MOTA MOTA	1287	C	LEU A			31.		24.241	66.055		18.76	AAAA
	1288	Ö	LEU A			32.		24.986	65.894		18.41	AAAA
MOTA MOTA	1289	N	TYR A			30.		24.344			17.85	AAAA
ATOM	1290	CA	TYR A			30.		25.372	64.373		17.16	AAAA
ATOM	1291	СВ	TYR A			30.	644	24.768			17.45	AAAA
ATOM	1292	CG	TYR A			30.	484	25.783			17.70	AAAA
ATOM	1293		TYR A			31.	444	26.772			16.23	AAAA
ATOM	1294		TYR A			31.	280	27.734			17.35	AAAA
ATOM	1295	CD2				29.	350	25.781			17.95	AAAA
ATOM	1296	CE2				29.	173	26.746			18.03	AAAA
ATOM	1297	CZ		164		30.	138	27.717			17.30	AAAA
ATOM	1298	ОН	TYR A	164		29.	955	28.647			0 16.70	AAAA
ATOM	1299	С	TYR A	164		29.	123	26.016			0 15.85	AAAA
ATOM	1300	0		164		28.		25.351			0 16.44	AAAA
ATOM	1301	N	ILE A	A 165		29.	115	27.319			0 15.54	AAAA
ATOM		· CA		A 165 ·	•	27.	878	28.088			0 15.71	AAAA
ATOM	1303	CB	ILE A	A 165			869	28.819			0 15.18	AAAA AAAA
ATOM	1304	CG2	ILE A	A 165			621	29.685			0 13.94	AAAA
ATOM	1305	CG1	ILE A	A 165			000	27.79	7 67.386		0 13.94	AAAA
MOTA	1306	CD1	. ILE A	A 165			356	28.42			0 13.94	AAAA
ATOM	1307	C	ILE A	A 165			808	29.12	4 63.754		0 16.00	AAAA
ATOM	1308	0	ILE A	A 165			711	29.94			0 16.56	
ATOM	1309	N	ASP A	A 166			721	29.08		•	0 16.18	AAAA AAAA
ATOM	1310	CA	ASP A	A 166			524	29.96			0 16.67	
MOTA	1311	CB	ASP A	A 166			240	29.06			0 18.05	AAAA
ATOM	1312	CG	ASP A	A 166			238	29.80			0 19.21	AAAA AAAA
ATOM	1313		ASP A				353	30.65			0 18.36	AAAA
ATOM	1314		ASP	A 166			131	29.52			0 19.19	AAAA
ATOM	1315	С	ASP .	A 166			342	30.90			0 17.57	АААА АААА
ATOM	1316	0	ASP .	A 166			206				0 17.26	
ATOM	1317	N	LEU .	A 167			605			_	0 16.67	AAAA
ATOM	1318		LEU .	A 167			526				0 16.89	AAAA AAA A
ATOM	1319		LEU .	A 167			923				00 17.27	
ATOM	1320			A 167		25	499	33.52	9 64.95	g 1.(00 18.37	AAAA
•••••									-			•

					_					
ATOM	1321	CD1	LEU A	4 167	2	5.760	34.671	65.933	1.00 18.72	AAAA
ATOM	1322		LEU A		2	4.566	32.507	65.547	1.00 17.06	AAAA
ATOM	1323		LEU A		2	4.146	33.897	61.307	1.00 17.18	AAAA
ATOM	1324	0	LEU A	A 167		3.390	34.850	61.358	1.00 17.21	AAAA
ATOM	1325	N	ASP A	A 168		4.683	33.457	60.178	1.00 17.83	AAAA
ATOM	1326	CA	ASP A	A 168		4.382	34.067	58.904	1.00 17.84	AAAA
ATOM	1327	CB	ASP A	A 168	2	5.178	33.397	57.807	1.00 20.42	AA-AA
ATOM	1328	CG		A 168	2	5.140	34.162	56.529	1.00 21.41	AAAA
ATOM	1329	С	ASP A	A. 168	2	2.915	33.783	58.660	1.00 18.35	AAAA
MOTA	1330	0	ASP A	A 168		22.419	32.722	59.032	1.00 19.62	AAAA
ATOM	1331	OD1	ASP .	A 168		26.066	34.972	56.330	1.00 22.42	AAAA
ATOM	1332	OD2		A 168		24.186	33.971	55.746	1.00 21.79	AAAA
MOTA	1333	N	ALA .	A 169		22.239	34.717	58.010	1.00 17.98 1.00 17.36	AAAA AAAA
ATOM	1334	CA		A 169		20.824	34.601	57.708	1.00 17.36	AAAA
ATOM	1335	CB		A 169		20.348	35.860	57.007	1.00 17.00	AAAA
ATOM	1336	С		A 169		20.439	33.377	50.00,	1.00 19.46	AAAA
MOTA	1337	0		A 169		19.255	33.043	56.819	1.00 19.40	AAAA
MOTA	1338	N		A 170		21.412	32.712	56.262 55.464	1.00 18.43	AAAA
ATOM	1339	CA		A 170		21.107	31.518	55.986	1.00 18.02	AAAA
MOTA	1340	С		A 170		21.802	30.265 30.332	56.514	1.00 17.20	AAAA
MOTA	1341	0_		A 170		22.910	31.678	54.004	1.00 18.79	AAAA
MOTA	1342	CB		A 170		21.539	32.968	53.386	1.00 17.65	AAAA
MOTA	1343	CG		A 170		21.137	34.162	53.828	1.00 18.08	AAAA
ATOM	1344			A 170		21.644 21.112	35.081	53.020	1.00 18.95	AAAA
MOTA	1345			A 170		20.301	33.194	52.348	1.00 18.81	AAAA
MOTA	1346			A 170		20.301	34.544		1.00 19.66	AAAA
MOTA	1347			A 170 A 171		21.142	29.124	55.793	1.00 17.53	AAAA
ATOM	1348	N		A 171		21.662	27.822	56.193	1.00 16.38	AAAA
MOTA	1349	CA		A 171		20.644	26.740	55.830	1.00 16.32	AAAA
MOTA	1350	CB CG		A 171		21.157	25.337	55.958	1.00 15.91	AAAA
MOTA	1351 1352			A 171		21.241	24.336	55.051	1.00 14.14	AAAA
MOTA	1353			A 171		21.602	24.807	57.151	1.00 16.79	AAAA
MOTA ATOM	1354	CE1	HIS	A 171		21.937	23.543	56.973	1.00 14.91	AAAA
MOTA	1355	NE2	HIS	A 171		21.725	23.234	55.709	1.00 15.45	AAAA
MOTA	1356	C		A 171		22.982		55.509	1.00 16.94	AAAA
ATOM	1357	0		A 171		23.146		54.318	1.00 18.71	AAAA AAAA
ATOM	1358	N		A 172		23.926		56.279	1.00 16.99	AAAA
ATOM	1359	CA	CYS	A 172		25.237		55.778	1.00 16.23 1.00 17.89	AAAA
MOTA	1360	CB		A 172		26.219		56.947	1.00 17.89	AAAA
MOTA	1361	SG		A 172		25.638		58.397 55.210	1.00 16.57	AAAA
MOTA	1362	С		A 172		25.205		55.670	1.00 17.66	AAAA
MOTA	1363	0		A 172		25.947			1.00 18.25	AAAA
MOTA	1364	N	ASP	A 173		24.364			1.00 19.91	AAAA
MOTA	1365	CA		A 173		24.253 23.342			1.00 20.86	AAAA
MOTA	1366	CB		A 173 A 173		23.780			1.00 21.90	AAAA
MOTA	1367	CG		A 173		23.257				AAAA
MOTA	1368			A 173		24.624			1.00 21.35	AAAA
MOTA	1369			A 173		25.573			1.00 21.02	AAAA
MOTA	1370 1371	С 0		A 173		25.673			1.00 22.79	AAAA
MOTA	1371	N		A 174		26.579			1.00 20.03	AAAA
MOTA	1373	CA		A 174		27.870		52.553	1.00 19.72	AAAA
MOTA	1374	C		A 174		28.53		53.771	1.00 20.27	AAAA
MOTA MOTA	1375	ō	GLY	A 174		29.110		53.711		AAAA
ATOM	1376	Ŋ		A 175		28.448				AAAA
ATOM	1377	CA		.A 175		29.05				AAAA
ATOM	1378	CB	VAL	A 175		29.03	24.040			AAAA AAAA
ATOM	1379			A 175		29.85				AAAA
ATOM	1380		2 VAL	A 175		29.56				
ATOM	1381	С	VAL	, A 175		28.30				AAAA
ATOM	1382		VAL	A 175		28.89				AAAA
ATOM	1383	N		A 176		26.99		56.452		AAAA
ATOM	1384	CA		A 176		26.17				
ATCM	1385	CB		A 176		24.68				AAAA
ATOM	1386	CG	GLN	1 A 176		23.79	9 19.739	5 57.036	, 1.00 20.23	

MOTA	1387	CD	GLN	A	176	22.334	20.094	57.069	1.00 27.17	AAAA
							20 070	57.911	1.00 28.24	AAAA
MOTA	1388	OE1	CTTA	А	1/0	21.902	20.879	-		
MOTA	1389	NE2	CLN.	2	176	21.556	19.522	56.151	1.00 26.54	AAAA
MOTA	1390	С	GLN	A	176	26.512	19.293	56.180	1.00 25.67	AAAA
MOTA	1391	0	GLN-	2.	176	26.789	18.285	56.820	1.00 26.98	AAAA
MOTA.	1392	N	GLU	A	177	26.490	19.309	54.853	1.00 26.34	AAAA
	1202	C 3	GLU			26.786	18.117	54.073	1.00 26.18	AAAA
MOTA	1393	CA								_
MOTA	1394	CB	GLU	Α	177	26:746	18.468	52.580	1.00 27.13	AAAA
						26.769	17.269	51.628	1.00 29.77	AAAA
MOTA	1395	ÇG	GLU							
ATOM	1396	CD .	GLU	Α	177	26.623	17.660	50.147	1.00 31.29	AAAA
							17.935	49.500	1.00 31.35	AAAA
ATOM	1397		GLU			27.655				
MOTA	1398	OE2	GLU	Α	177	25.471	17.703	49.636	1.00 32.05	AAAA
•							17.556	54.460	1.00 26.38	AAAA
ATOM	1399	С	GLU	Α	1//	28.160				
ATOM	1400	0	GLU	A	177	28.338	16.349	54.595	1.00 25.41	AAAA
						29.115	18.458	54.659	1.00 27.58	AAAA
MOTA	1401	N	ALA	А	1/8			-		
MOTA	1402	CA	ALA	Α	178	30.495	18.119	55.004	1.00 27.66	AAAA -
						31.345	19.385	54.994	1.00 26.20	AAAA
MOTA	1403	CB	ALA							
MOTA	1404	С	ALA	A	178	30.713	17.370	56.318	1.00 28.33	AAAA
			ALA			31.685	16.626	56.439	1.00 29.44	AAAA
MOTA	1405	0								
ATOM	1406	N	PHE	Α	179	29.849	17.564	57.308	1.00 28.25	AAAA
	1407	CA	PHE	D.	170	30.036	16.852	58.561	1.00 29.20	AAAA
ATOM										
MOTA	1408	CB	PHE	Α	179	30.570	17.794	59.624	1.00 29.35	AAAA
ATOM	1409	CG	PHE	Δ	179	31.751	18.572	59.171	1.00 30.26	AAAA
ATOM										
MOTA	1410	CD1	PHE	А	179	31.582	19.777	58.497	1.00 31.01	AAAA
MOTA	1411	CD2	DHE	Δ	179	33.033	18.069	59.339	1.00 30.37	AAAA
					-					
MOTA	1412	CEl	PHE	Α	179	32.670	20.470	57.993	1.00 31.20	AAAA
ATOM	1413	CE2	PHE	A	179	34.133	18.749	58.840	1.00 31.74	AAAA
									1.00 31.81	AAAA
MOTA	1414	CZ	PHE	A	179	33.950	19.960	58.161		
MOTA	1415	С	PHE	Α	179	28.760	16.180	59.040	1.00 30.33	AAAA
								60.215	1.00 31.82	AAAA
MOTA	1416	0	PHE	A	179	28.624	15.810			
MOTA	1417	N	TYR	Α	180	27.842	15.994	58.105	1.00 29.18	AAAA
						26.564	15.379	58.389	1.00 28.99	AAAA
MOTA	1418	CA	TYR	n	180					
ATOM	1419	CB	TYR	Α	180	25.725	15.343	57.123	1.00 28.30	AAAA
		CG			180 .	24.244	15.422	57.384	1.00 28.27	AAAA
MOTA	1420									
ATOM	1421	CD1	TYR	А	180	23.392	14.386	57.021	1.00 27.05	AAAA
	1422	CEI	TYR	2	180	22.029	14.491	57.197	1.00 28.51	AAAA
ATOM									1.00 29.34	AAAA
ATOM	1423	CD2	TYR	A	180	23.686	16.573	57.942		
ATOM	1424	CF2	TYR	Δ	180	22.316	16.691	58.125	1.00 29.27	AAAA
							15.645	57.746	1.00 29.33	AAAA
MOTA	1425	CZ	TYR	ř.	180	21.495				
ATOM	1426	OH	TYR	A	180	20.141	15.775	57.893	1.00 30.83	AAAA
					180	26.673	13.970	58.940	1.00 28.79	AAAA
ATOM	1427	С								
MOTA	1428	0	TYR	A	180	25.877	13.577	59.785	1.00 28.71	AAAA
	1429	N	300	3	181	27.662	13.214	. 58 . 472	1.00 29.03	AAAA
ATCM										AAAA
ATOM	1430	CA	ASP	A	181	27.813	11.828	58.914	1.00 28.49	
ATOM	1431	CB	200	Δ	181	28.140	10.930	57.715	1.00 27.59	\cdot AAAA
AICH									1.00 28.82	AAAA
ATOM	1432		ASP				11 122		1.00 20.02	
ATOM	1433	001	ASP	Α	181	29:981	12 292	57.183	1.00 29.25	AAAA
							,10 119	56.887	1.00 28.68	AAAA
ATOM	1434				181					
ATOM	1435	С	ASP	A	181	28.863	11.631	60.009	1.00 27.67	AAAA
	1436	ō ·			181	29.271	10.504	60.293	1.00 27.57	AAAA
ATOM										AAAA
ATCM	1437	N	THR	Α	182	29.308	12.713	60.628		
ATCM	1438	CA			182	30.284	12.544	61.689	1.00 26.22	AAAA
									1.00 25.92	AAAA
ATOM	1439	CB	THR	Α	182	31.670	13.118	61.317		
ATCM	1440	OG1	THR	A	182	32.564	12.935	62.416	1.00 25.06	AAAA
								60.974	1.00 25.25	AAAA
ATOM	1441	CG2	THR	A	182	31.577	14.594			
ATOM	1442	С	THR	A	182	29.792	13.223	62.934	1.00 25.87	AAAA
						28.942	14.102	62.863	1.00 26.35	AAAA
ATOM	1443	0			182					
ATCM	1444	11	ASP	Α	183	30.327	12.804	64.071	1.00 25.86	AAAA
					183	29.953	13.370	65.355	1.00 26.12	AAAA
ATOM	1445	CA								AAAA
ATOM	1446	CB	ASP	Α	. 183	29.468	12.260	66.274	1.00 27.10	
					183	30.515	11.194	66.488	1.00 28.80	AAAA
ATOM	1447	CG							1.00 29.78	AAAA
ATOM	1448				183	31.063	10.691	65.480		
	1449				183	30.781	10.852	67.657	1.00 29.21	AAAA
ATOM			AJP	-	100				1.00 26.77	AAAA
ATCM	1450	С	ASP	Α	183	31.126	14.120			
ATCM	1451	0	ACD	Δ	183	31.034	14.566	67.146	1.00 26.65	AAAA
					104		14.254	65.254	1.00 26.05	AAAA
ATCM	1452	Ŋ	GLN	A	184	32.229	19.604		1.00 20.00	
										•

					_						
MOTA	1453	CA	GLN A	184	33.	381	14.983	65.766	1.00	25.85	AAAA
ATOM	1454		GLN A		34.	674	14.510	65.095	1.00		AAAA
ATOM	1455		GLN A		34.	920	13.030	65.303	1.00		AAAA
ATOM	1456		GLN A	184	36.	273	12.583	64.822	1.00		AAAA
ATOM	1457		GLN A		36.	685	12.905	63.709	1.00		AAAA
ATOM	1458		GLN A				11.816	65.651	1.00		AAAA
MOTA	1459		GLN A			159	16.474	65.536		25.22	AAAA
ATOM	1460		GLN A			734	17.316	66.220	1.00	24.57	AAAA
	1461		VAL A			290	16.791	64.584	1.00	25.17	AAAA
MOTA	1462		VAL A			975	18.182	64.291		24.49	AAAA
ATOM	1463		VAL A			324	18.563	62.832		23.20	AAAA
ATOM	1464		VAL A			045	20.050	62.599		19.72	AAAA
ATOM	1465		VAL A			777	18.205	62.543		20.67	AAAA "
MOTA	1466		VAL A			494	18.421	64.501		24.81	AAAA
ATOM	1467		VAL A		29.	664	17.787	63.844		27.07	AAAA
ATOM ATOM	1468		PHE A			162	19.311	65.434		23.40	AAAA
	1469		PHE A			768	19.645	65.684		20.31	AAAA
MOTA	1470	-	PHE A			513	19.937	67.164	1.00	19.77	AAAA
ATOM	1471	CG	PHE A			.057	20.037	67.500		18.55	AAAA
ATOM	1472		PHE A			359	18.918	67.945	1.00	17.70	AAAA
MOTA MOTA	1473		PHE A			358	21.213	67.263		17.46	AAAA
	1474		PHE A			999	18.964	68.147	1.00	17.35	AAAA
MOTA	1475		PHE A			.997	21.271	67.459		18.83	AAAA
ATOM ATOM	1476	CZ.	PHE A		24	308	20.138	67.905	1.00	18.67	AAAA
ATOM	1477	C	PHE A			464	20.911	64.895		19.18	AAAA
ATOM	1478	ō	PHE A			.079	21.940	65.129		18.82	AAAA
ATOM	1479	N	VAL A			. 520	20.834	63.964		18.34	AAAA
ATOM	1480	CA		187	27	.137	21.993	63.160		16.47	AAAA
ATOM	1481	CB	VAL A			.006	21.630	61.655		14.30	AAAA
ATOM	1482		VAL A		26	.628	22.869	60.828		10.34 .	
ATOM	1483		VAL A		28	.314	21.031	61.160		12.07	AAAA
ATOM	1484	C		A 187		.806	22.511	63.665		17.43	AAAA
MOTA	1485	Ö		A 187	24	.852	21.746	63.792		16.95	AAAA
ATOM	1486		LEU Z		25	.763	23.809	63.960		18.66	AAAA
ATOM	1487	CA		A 188	24	.555	24.507	64.460		20.51	AAAA
ATOM	1488	CB		A 188	24	.752	24.995	65.914		21.24	AAAA
ATOM	1489	CG	LEU Z	A 188	23	.702	26.019	66.395		20.80	AAAA
ATOM	1490	CD1	LEU A	A 188	22	.365	25.323	66.493		19.77	AAAA
ATOM	1491	CD2	LEU 2	A 188		.085	26.627	67.750	1.00	20.63	AAAA
ATOM	1492	С		A 188		.297	25.735	63.591		20.41	AAAA AAAA
ATOM	1493	0	LEU .	A 188		.223	26.484	63.288		21.86	AAAA
ATOM	1494	N		A 189		.049	25.987	63.233		19.32	AAAA
ATOM	1495	CA	SER .	A 189		.786	27.130	62.381		18.06	AAAA
ATOM	1496	CB	SER .	A 189		.970	26.715	60.906		18.54	AAAA
ATOM	1497	OG		A 189		.559	27.731	59.998	1.00	17.47	AAAA
MOT A	1498	С	SER	A 189		.418	27.751	62.554	1.00	19.54	AAAA
MO'L &	1499	0	SER	A 189		.404	27.051	62.540	1.00	16.97	AAAA
A.OM	1500	N		A 190		.386	29.067	62.722	1.00	18.49	AAAA
MOTA	1501	CA	LEU	A 190		.117	29.772	62.797	1.00	17.78	AAAA
ATOM	1502	ÇB	LEU	A 190		.097	30.865	63.886 65.337	. 1 00	17.10	AAAA
ATOM	1503	CG		A 190		.534	30.600		1.00	15.50	AAAA
ATOM	1504			A 190		.643	31.406	66.266		15.15	AAAA
MOTA	1505			A 190		.455	29.147	65.686 61.416		19.35	AAAA
MOTA	1506	C		A 190		.111	30.408	60.967		19.75	AAAA
MOTA	1507	Ö		A 190		.136	30.891			21.75	AAAA
ATOM	1508	N		A 191		.975	30.397	50.730		23.55	AAAA
MOTA	1509	CA		A 191		.897	30.955			23.63	AAAA
MOTA	1510	CB		A 191		.626	30.013			24.26	
MOTA	1511	CG		A 191		.157	28.597			23.78	AAAA
ATOM	1512			A 191		.770	27.485			0 24.73	AAAA
ATOM	1513		HIS	À 191		.869	28.217			0 23.90	AAAA
ATOM	1514			A 191		7.709	26.935			0 24.51	AAAA
ATOM	1515			A 191	18	.849	26.467		_	4 - 4	AAAA
ATOM	1516			A 191		.446	31.119		_	0 24.94	AAAA
ATOM	1517		HIS	A 191		5.519	30.658			0 24.33	. مممم
MOTA	1518	N	GLN	A 192	17	7.249	31.789	57.794	1.0		
	•										

						5				
ATOM	1519	CA	GLN A	192		15.899	31.959	57.269	1.00 25.77	AAAA
ATOM	1520		GLN A			15.881	32.896	56.060	1.00 26.51	AAAA
MOTA	1521		GLN A			16.467	34.271	56.325	1.00 26.99	AAAA
ATOM	1522		GLN A			16.581	35.076	55.062	1.00 27.98	AAAA
ATOM	1523		GLN A			15.583	35.496	54.493	1.00 30.48	AAAA
ATOM	1524		GLN A			17.802	35.274	54.595	1.00 29.04	AAAA
	1525	C	GLN A			15.463	30.573	56.832	1.00 25.77	AAAA
ATOM	1526	0	GLN A			16.211	29.865	56.169	1.00 26.73	AAAA
ATOM	1527	N	SER A			14.259	30.184	57.214	1.00 25.48	AAAA
ATOM	1527	CA	SER A			13.750	28.877	56.863	1.00 24.51	AAAA
ATOM	1528	CB	SER A			12.288	28.788	57.286	1.00 23.77	AAAA
ATOM		OG	SER A			11.753	27.517	57.010	1.00 24.81	AAAA
ATOM	1530	C	SER A			13.906	28.597	55.361	1.00 24.53	AAAA
MOTA	1531		SER A			13.736	29.479	54.522	1.00 22.32	AAAA
MOTA	1532 1533	И .	PRO A			14.226	27.348	55.007	1.00 25.69	AAAA
ATOM	1534	CD.	PRO A			14.411	26.167	55.862	1.00 25.02	AAAA
ATOM	1535	CA	PRO A			14.399	26.976	53.604	1.00 27.05	AAAA
ATOM	1536	CB		194		14.906	25.535	53.697	1.00 26.30	AAAA
ATOM	1537	CG	PRO A			15.479	25.466	55.124	1.00 26.44	AAAA
ATOM	1538	C	PRO A			13.076	27.057	52.849	1.00 27.79	AAAA
ATOM	1539	0	PRO A			13.066	27.057	51.625	1.00 28.82	AAAA
MOTA MOTA	1540	N	GLU A			11.966	27.133	53.582	1.00 28.29	AAAA
	1541	CA	GLU A			10.656	27.187	52.950	1.00 29.08	AAAA
MOTA	1542	CB	GLU A			9.534		54.001	1.00 31.08	AAAA
MOTA	1543	CG	GLU A			9.070	28.294	54.722	1.00 35.07	AAAA
ATOM	1544	CD	GLU A			7.850	28.980	54.064	1.00 38.05	AAAA
ATOM	1545		GLU A			7.389	30.017	54.601	1.00 38.80	AAAA
ATOM ATOM	1546	OES	GLU A	195		7.342	28.487	53.024	1.00 39.20	AAAA
ATOM	1547	C	GLU A			10.483	28.471	52.150	1.00 28.05	AAAA
MOTA	1548	o	GLU A			9.722	28.512	51.189	1.00 28.57	AAAA
MOTA	1549	N		196		11.223	29.510	52.514	1.00 27.39	AAAA
ATOM	1550	CA		196.		11.108	30.769	51.802	1.00 25.80	AAAA
ATOM	1551	CB		196		10.275	31.743	52.645	1.00 24.97	AAAA
ATOM	1552	CG	TVR	196		10.971	32.281	53.868	1.00 23.41	AAAA
ATOM	1553	CD1		A 196		11.911	33.306	53.765	1.00 23.99	AAAA
ATOM	1554	CE1		A 196		12.559	33.805	54.892	1.00 23.44	AAAA
	1555	CD2		A 196		10.697	31.768	55.126	1.00 23.24	AAAA
ATOM	1556	CE2		A 196		11.336	32.256	56.254	1.00 23.93	AAAA
ATOM	1557	CZ		A 196		12.265	33.270	56.133	1.00 24.07	AAAA
ATOM	1558	OH		A 196		12.913	33.731	57.247	1.00 25.06	AAAA
ATOM	1559	C	TYR Z	A 196		12.450	31.406	51.411	1.00 24.97	, AAAA
ATOM	1560	ō		A 196		12.475	32.495	50.840	1.00 25.14	AAAA
MOTA	1561	N		A 197	-	13.563	30.737	51.686	1.00 23.81	AAAA
MOTA	1562	CA		a 197		14.855	31.330	51.337	1.00 23.32	AAAA
ATOM	1563	CB		A 197		15.350	32.220	52.488	1.00 23.33	AAAA
ATOM -	1564	С	ALA A	A 197		15.952	30.356	50.957	1.00 22.74	AAAA
ATOM	1565		ALA A	A 197		15.951		.51.37	1.00 22.47	AAAA
ATOM -		N	. PHE	A-198 -		16, 900	30.852	50.16	1.00 23.23	AAAA
ATOM	1567	CA		A 198 ·		18.062	30.081	49.741	1.00 23.68	AAAA
MOTA	1568	CB		A 198		19.083	31.006	49.069	1.00 23.33	AAAA
ATOM	1569	CG		A 198		20.250	30.280	48.464	1.00 22.98	AAAA
ATOM	1570	CD1	PHE	à 198		20.151	29.713	47.203	1.00 22.75	AAAA
ATOM	1571	CD2	PHE	A 198		21.436	30.127	49.175	1.00 23.32	AAAA
MOTA	1572		PHE .			21.207	29.003	46.645	1.00 22.13	AAAA
ATOM	1573		PHE .			22.512	29.408	48.622	1.00 22.83	AAAA
ATOM	1574	CZ		A 198		22.386	28.849	47.351	2.00	AAAA
ATOM	1575	С	PHE .	à 198		18.689	29.490		1.00 23.69	AAAA
ATOM	1576	Ō		A 198		18,.802	30.171		1.00 22.85	AAAA
ATOM	1577	N	PRO	A 199		19.166	28.236		1.00 23.96	AAAA
ATOM	1578	CD	PRO	A 199		19.833	27.639		1.00 24.26	AAAA
ATOM	1579	CA		A 199		19.199	27.286		1.00 24.70	AAAA
ATOM	1580	CB	PRO	A 199		20.163	26.222			AAAA
ATOM	1581	ĊĠ	PRO	A .199		19.797				AAAA
ATOM	1582	c		A 199		17.885				AAAA
ATOM	1583	ō		A 199		17.866				AAAA
ATOM	1584	N		A 200		16.811	26.756	50.116	1.00 25.09	AAAA
								•		•

					•					
	1585	CA	PHE A 2	00	15	.497	26.190	49.763	1.00 26.29	તેતૈત
MOTA						.064	26.567	48.340	1.00 25.65	AAAA
ATOM	1586		PHE A 2						1.00 24.65	AAAA
MOTA	1587	CG	PHE A 2	00		1.863	28.035	48.122		
	1588	CD1	PHE A 2	00	15	. 806	28.781	47.439	1.00 24.42	AAAA
MOTA						3.735	28.671	48.608	1.00 23.79	AAAA
MOTA	1589		PHE A 2					47.246	1.00 24.41	AAAA
ATOM-	1590	CE1	PHE A 2	.00		6.631	30.125			
	1591	CE2	PHE A 2	0.0	13	3.552	30.035	48.418	1.00 24.94	AAAA
MOTA						1.499	30.760	47.738	1.00 24.57	'AAAA
MOTA	1592		PHE A 2				_	49.863	1.00 28.54	AAAA
ATOM	1593	С	PHE A 2	:00		5.415	24.656			
	1594	0	PHE A 2	00	14	1.386	24.096	50.251	1.00 28.76	AAAA
MOTA			GLU A 2		1.6	5.499	23.981	49.504	1.00 29.67	AAAA
MOTA	1595						22.528	49.524	1.00 31.88	AAAA
MOTA	1596		GLU A 2			5.539			1.00 32.71	AAAA
ATOM	1597	CB	GLU A 2	201 -	1	7.434	22.045	48.392		
			GLU A 2		1	6.897	22.415	47.017	1.00 34.87	AAAA
MOTA	1598	CG				7.898	22.147	45.912	1.00 35.14	AAAA
ATOM	1599	CD	GLU A 2						1.00 36.09	. AAAA
ATOM	1600	OE1	GLU A 2	201	1	8.299	20.982	45.735		
	1601	OE2	GLU A 2		1	8.286	23.112	45.221	1.00 36.30	AAAA
MOTA	-				-	6.997	21.894	50.835	1.00 32.77	AAAA
ATOM	1602	С	GLU A 2					51.046	1.00 33.44	AAAA
MOTA	1603	0	GLU A 2	201		6.806	20.690			
	1604	N	LYS A	202	1	7.599	22.690	51.711	1.00 32.31	AAAA
ATOM			LYS A	202		8.101	22.168	52.974	1.00 32.09	AAAA
MOTA	1605	CA						52.811	1.00 33.02	AAAA
MOTA	1606	· CB	LYS A			9.565	21.750			AAAA
	1607	CG	LYS A	202	1	9.836	20.847	51.623	1.00 34.95	
MOTA			LYS A	202		1.334	20.619	51.436	1.00 37.92	AAAA
MOTA	1608	CD	PI2 W	202			19.804	50.169	1.00 39.19	AAAA
ATOM	1609	CE	LYS A	202		1.655			1.00 38.58	AAAA
ATOM	1610	NZ	LYS A	202	2	3.120	19.522	49.988		
		C	LYS A		1	7.995	23.241	54.037	1.00 30.85	AAAA
MOTA	1611					7.706	24.389	53.739	1.00 30.49	AAAA
ATOM	1612	0	LYS A						1.00 30.81	AAAA
MOTA	1613	N	GLY A	203		8.238	22.867	55.281		AAAA
	1614	CA	GLY A	203	1	8.159	23.831	56.356	1.00 30.86	
MOTA			GLY A			6.991	23.578	57.280	1.00 30.84	AAAA
MOTA	1615	С					24.285	58.272	1.00 31.58	AAAA
MOTA	1616	0	GLY A			6.828			1.00 30.54	AAAA
ATOM	1617	· N	PHE A	204	1	6.182	22.570	56.965		
		CA	PHE A		1	5.025	22.241	57.797	1.00 30.51	AAAA
ATOM	1618					4.061	21.317	57.058	1.00 29.06	AAAA
MOTA	1619	CB	PHE A							AAAA
ATOM	1620	CG	PHE A	204		.3.524				AAAA
ATOM	1621	CD1	PHE A	204	3	4.222	21.762	54.601	1.00 26.52	
		CDS	PHE A	204	1	2.307	22.548	55.779	1.00 26.50	AAAA
MOTA	1622		PRE A	204					1.00 26.44	AAAA
MOTA	1623	CE1				13.713			1.00 26.69	AAAA
ATOM	1624	CE2	PHE A	204]	L1.786				AAAA
	1625	CZ	PHE A		1	12.490	22.931	53.416	1.00 25.65	
MOTA						15.401			1.00 30.87	AAAA
ATOM	. 1626	С	PHE A							AAAA
ATOM	1627	0	PHE A	204		16.395			1.00 31.22	AAAA
ATOM	1628	N	LEU A	205		14.580				
		CA	LEU A	205		14.782	21.329	61.489		AAAA
MOTA	1629		120 11	225		13.575			1.00 31.42	AAAA
ATOM	1630	CB	LEU A	2 '5						AAAA
MOTA	- 1631	CG	LEU A	235		13.603				AAAA
ATOM	1632		LEU A	2:5		14.894	21.492			
		CD	LEU A	205		12.379	21.516	64.536	1.00 31.31	AAAA
MOTA	1633		LEUA	205						AAAA
MOTA	1634	С	LEU A			15.026				AAAA
MOTA	1635	0	LEU A	205		15.714		62.546		AAAA
	1636		GLU A			14:448	19.059	60.707	1.00 31.79	
MOTA						14.509		60.706	1.00 32.08	AAAA
MOTA	1637		GLU A	200						AAAA
MOTA	1638	CB.	GLU A	206		13.485				AAAA
MOTA	1639		GLU A	206		12.069	17.651			
			GLU A	206		11.973	3 19.136	59.453	1.00 33.44	AAAA
ATOM	1640								1.00 33.32	AAAA
MOTA	1641	OE	1 GLU A	206		10.854				AAAA
ATOM	1642	OE:	2 GLU A	206		13.005				
			GLU A			15.882		60.363		
MOTA	1643					16.209				AAAA
ATOM	1644	9	GLU A							AAAA
MOTA	1645	<u> </u>	GLU A	207		16.680				
	1646			207		18.017	7 17.43	1 59.28		
MOTA						18.552			3 1.00 30.39	AAAA
MOTA	1647									AAAA
MOTA	1648	3 CG				17.76				
MOTA			GLU A	207		17.95	3 19.54	7 56.12		
			1 GLU A			19.10	_		1 1.00 30.31	AAAA
MOTA		, UE	T GDO W	207				•		•
	-		•	•						

•						20 070	55.604	1.00 30.76	AAAA
MOTA	1651	OE2	GLU A		16.947	20.070	60.537	1.00 32.04	AAAA
MOTA	1652	С	GLU A	207	18.879	17.433			
MOTA	1653	0	GLU A	207	19.472	18.448	60.910	1.00 31.57	AAAA
MOTA	1654	N	ILE A		18.935	16.272	61.178	1.00 32.57	AAAA
		CA	ILE A		19.674	16.111	62.408	1.00 33.37	AAAA
ATOM	1655				18.709	15.647	63.519	1.00 33.65	AAAA
MOTA	1656	CB	ILE A		_		64.806	1.00 34.11	AAAA
ATOM	1657		ILE A		19.443	15.380		1.00 33.94	AAAA
MOTA	1658	CG1	ILE A	208	17.673	16.742	63.757		
ATOM	1659		ILE A.		16.628	16.386	64.794	1.00 37.00	AAAA
	1660	c	ILE A		20.863	15.174	62.280	1.00 34.00	AAAA
ATOM			ILE A		21.506	14.829	63.265	1.00 34.40	AAAA
ATOM	1661	0			21.177	14.768	61.062	1.00 34.64	AAAA
MOTA	1662	N	GLY A					1.00 35.55	AAAA
ATOM	1663	CA	GLY A	209	22.321	13.903	60.913		AAAA
ATOM	1664	С	GLY A	209	22.164	12.671	60.057	1.00 36.80	
ATOM	1665	0	GLY A	209	21.148	12.461	59.400	1.00 37.32	AAAA
		N	GLU A		23.199	11.836	60.100	1.00 37.78	AAAA
MOTA	1666				23.256	10.621	59.315	1.00 38.04	AAAA
MOTA	1667	CA	GLU A			11.013	57.892	1.00 38.54	AAAA
ATOM	1668	CB	GLU A		23.600			1.00 38.99	AAAA
MOTA	1669	CG [°]	GLU A		23.469	9.960	56.858		AAAA
ATOM	1670	CD	GLU A	210 -	24.118	10.412	55.580	1.00 40.10	
	1671	OE1	GLU A		25.365	10.437	55.555	1.00 40.86	AAAA
MOTA			GLU A		23.396	10.767	54.619	1.00 40.41	AAAA
MOTA	1672	OE2				9.770	59.894	1.00 37.98	AAAA
MOTA	1673	С	GLU A		24.377			1.00 38.52	AAAA
ATOM	1674	0	GLU A		25.498	10.244	60.041	1.00 38.02	AAAA
ATOM	1675	N	GLY A	211	24.085	8.517	60.220		
ATOM	1676	CA	GLY A		25.116	7.654	60.770	1.00 38.09	AAAA
			GLY A		25.542	8.075	62.164	1.00 38.26	AAAA
MOTA	1677	C			24.697	8.443	52.977	1.00 37.82	AAAA
MOTA	1678	0	GLY A			8.030	62.434	1.00 38.20	AAAA
MOTA	1679	N	LYS A		26.848			1.00 37.56	AAAA
MOTA	1680	CA	LYS A	212	27.396	8.399	63.743		AAAA
ATOM	1681	CB	LYS A		28.921	8.209	63.766	1.00 38.86	
	1682	ĊĠ	LYS A		29.416	6.810	63.385	1.00 40.93	AAAA
MOTA			LYS A		29.001	5.746	64.405	1.00 42.04	AAAA
MOTA	1683	CD			29.251	4.318	63.891	1.00 42.80	AAAA
MOTA	1684	CE	LYS A			4.002	63.562	1.00 42.32	AAAA
ATOM	1685	NZ	LYS A		30.673			1.00 37.08	AAAA
MOTA	1686	C	LYS A		27.093	9.859	64.054		AAAA
ATOM	1687	0	LYS A	212	27.075	10.269	65.218	1.00 36.94	
ATOM	1688	N	GLY A		26.854	10.636	63.002	1.00 35.41	AAAA
		CA	GLY A	213	26.592	12.054	63.170	1.00 34.24	AAAA
ATOM	1689				25.163	12.438	63.470	1.00 33.27	AAAA
ATOM	1690	С	GLY A			13.611	63.666	1.00 33.29	AAAA
ATOM	1691	0	GLY A		24.861		63.512	1.00 31.79	AAAA
MOTA	1692	N	LYS A		24.280	11.451		1.00 30.47	AAAA
ATOM	1693	CA	LYS A	214	22.883	11.710	63.794		
ATOM	1694	CB	LYS A	214	22.111	10.396	63.737	1.00 30.35	AAAA
	1695	CG	LYS A	214	20.676	10.552	63.280	1.00 30.45	AAAA
MOTA			LYS A	214	20.141	9.241	62.759	1.00 29.75	AAAA
ATOM	1696	CD	LISA	214	18.737			1.00 30.19	AAAA
MOTA	1697	CE	LYS A	214				1.00 31.35	AAAA
MOTA	1698	NZ	LYS A	214	18.179			1.00 30.31	AAAA
ATOM	1699	C	LYS A	214	22.778			1.00 30.31	AAAA
ATOM	1700	0	LYS A	214	23.193	11.814			
ATOM	1701	N	GLY A	215	22.243	13.590	65.192	1.00 29.95	AAAA
		CA	GLY A	215	22.128		66.437	1.00 29.16	AAAA
MOTA	1702		GLI	215	23.222			1.00 28.54	AAAA
MOTA	1703	С	GLY A					1.00 28.27	AAAA
MOTA	1704	0	GLY P	215	23.306				AAAA
ATOM	1705	N	TYR A	216	24.063				AAAA
ATOM	1706	CA	TYR A	216	25.150	16.497			
	1707			216	26.516	15.800		1.00 28.38	AAAA
MOTA					26.786			1.00 30.21	AAAA
ATOM	1708	CG			26.138				AAAA
atom	1709	CD.	1 TYR A	4 410					AAAA
ATOM	1710	CE	1 TYR A	. 216	26.311				AAAA
ATOM	1711			a 216	27.619				AAAA
ATOM	1712				27.798	3 14.741			
	1713			A 216	27.143		69.138	1.00 30.84	AAAA
ATOM					27.297				AAAA
atcm	1714		TYK	216					AAAA
MOTA	1715		TYR A	A 216	25.055				AAAA
ATOM	1716	0	TYR A	A 216	26.046	5 18.240	, _04.243	20.50	•

				_					
) MOM	1717	N	ASN A 217	23	.845	17.791		1.00 23.55	AAAA
MOTA MOTA	1718		ASN A 217		.549	18.830		1.00 21.52	AAAA
ATOM	1719	CB	ASN A 217		.431	18.282		1.00 20.64	AAAA
ATOM	1720	CG	ASN A 217		.202	19.386	60.669	1.00 20.29 1.00 18.03	AAAA AAAA
MOTA	1721		ASN A 217		.089	19.888 19.790	60.499 60.004	1.00 19.95	AAAA
MOTA	1722		ASN A 217		.274 .216	19.730	63.605	1.00 21.64	AAAA
MOTA	1723	С 0	ASN A 217 ASN A 217		.263	18.576	63.757	1.00 20.34	AAAA
MOTA	1724 1725	Ŋ	LEU A 218		.165	20.647	63.873	1.00 22.22	AAAA
MOTA MOTA	1725	CA	LEU A 218		.960	21.282	64.388	1.00 22.03	AAAA
ATOM	1727	CB	LEU A 218		.195	21.711	65.840	1.00 20.97	AAAA
ATOM	1728	CG	LEU A 218		.051	21.838	66.841	1.00 20.94 1.00 20.31	AAAA AAAA
ATOM	1729		LEU A 218		.513	22.744	67.936 66.227	1.00 20.31	AAAA
MOTA	1730		LEU A 218		3.818 3.669	22.412 22.513	63.547	1.00 22.70	AAAA
ATOM	1731	C	LEU A 218 LEU A 218		.451	23.454	63.557	1.00 22.64	AAAA
MOTA	1732 1733	0 N	ASN A 219		.564	22.491	62.808	1.00 24.00	AAAA
ATOM ATOM	1734	CA	ASN A 219		3.166	23.626	61.990	1.00 25.33	AAAA
ATOM	1735	CB	ASN A 219		3.656	23.190	60.614	1.00 26.94	AAAA AAAA
ATOM	1736	CG	ASN A 219		737	22.601	59.749	1.00 26.68 1.00 28.06	AAAA
ATOM	1737		ASN A 219		812	23.169 21.471	59.626 59.117	1.00 26.26	AAAA
MOTA	1738		ASN A 219		9.446 3.046	24.345	62.710	1.00 25.69	AAAA
MOTA	1739	С 0	ASN A 219 ASN A 219		7.118	23.706	63.210	1.00 27.51	AAAA
ATOM	1740 1741	N	ILE A 220		8.122	25.667	62.753	1.00 25.05	AAAA
ATOM ATOM	1742	CA	ILE A 220	1	7.107	26.457	63.428	1.00 25.87	AAAA
ATOM	1743	CB	ILE A 220		7.733	27.331		1.00 25.04 1.00 25.24	AAAA AAAA
ATOM	1744	CG2	ILE A 220		6.654	28.152	65.227 65.584	1.00 23.24	AAAA
MOTA	1745		ILE A 220	_	8.460 7.557	26.447 25.502	66.378	1.00 22.28	AAAA
MOTA	1746	CDI	ILE A 220 ILE A 220		6.430	27.370	62.414	1.00 26.20	AAAA
MOTA MOTA	1747 1748	o	ILE A 220		6.801	28.534	62.265	1.00 25.35	AAAA
MOTA	1749	N	PRO A 221		5.421	26.850	61.704	1.00 26.70	AAAA AAAA
ATOM	1750	CD	PRO A 221 .	1	4.840	25.501	61.778	1.00 27.17 1.00 27.67	AAAA
MOTA	1751	CA	PRO A 221		4.706	27.640 26.613	60.703 60.064	1.00 26.81	AAAA
MOTA	1752	CB	PRO A 221		3.771 4.473	25.293	60.346	1.00 27.36	AAAA
MOTA	1753 1754	CG C	PRO A 221 PRO A 221		3.944	28.763	61.390	1.00 28.61	AAAA
MOTA MOTA	1755	ō	PRO A 221		3.218	28.515	62.363	1.00 29.91	AAAA
MOTA	1756	N	LEU A 222		4.100	29.990	60.900	1.00 28.15 1.00 28.48	AAAA AAAA
ATOM	1757	CA	LEU A 222		3.408	31.117	61.511	1.00 28.48	AAAA
MOTA	1758	CB	LEU A 222		5.187	32.041	62.191 63.371	1.00 28.67	AAAA
MOTA	1759	CG	LEU A 222		6.304	32.300	63.837	1.00 28.62	AAAA
MOTA	1760 1761	בעט נמט	LEU A 222 LEU A 222		4.231	31.106	64.527	1.00 27.65	AAAA
MOTA MOTA	1762	C	LEU A 222		2 26	31.882	60.518	1.00 28.44	AAAA
ATOM	1763	ō	LEU A 222		.2.318		59.325	1.00 27.90 1.00 28.79	AAAA AAAA
MOTA	1764	N	PRO A 223		.113			1.00 28.73	AAAA
MOTA	1765	CD	PRO A 223		.0.966 .0.437			1.00 29.36	AAAA
ATOM	1766	CA	PRO A 223 PRO A 223	د	9.256			1.00 28.98	AAAA
MOTA	1767. 1768	CB CG	PRO A 223		9.965			1.00 28.68	AAAA
MOTA MOTA	1769	c	PRO A 223	1	0.890	34.585	59.753	1.00 30.15	AAAA AAAA
MOTA	1770		PRO A 223		1.864				AAAA
ATOM	1771	N	LYS A 224		10.150				AAAA
MOTA	1772	CA	LYS A 224]	10.398 9.491				AAAA
MOTA	1773	CB	LYS A 224 LYS A 224		9.491			1.00 30.06	AAAA
MOTA	1774 1775				8.640			1.00 30.91	AAAA
MOTA MOTA	1776				8.575	35.051	53.705	1.00 32.15	AAAA AAAA
MOTA	1777		LYS A 224		7.628				AAAA
ATOM	1778		LYS A 224	:	10.050				AAAA
ATOM	1779		LYS A 224		9.308				AAAA
ATOM	1780		GLY A 225		10.555 10.261			1.00 29.87	. AAAA
MOTA	1781		GLY A 225 GLY A 225		10.201	_			AAAA
MOTA	1782	C	GDI W 557				•		•

* WOM	1783	0	GLY A	225		10.371	40.051	62.392	1.00 29.85	AAAA
MOTA	1784		LEU A			11.775	38.536	61.499	1.00 29.50	AAAA
ATOM	_		LEU A			12.374	38.175	62.778	1.00 29.80	AAAA
ATOM	1785		LEU A			13.513	37.170	62.570	1.00 28.81	AAAA
MOTA	1786		LEU A			14.097	36.514	63.820	1.00 27.29	AAAA
MOTA	1787		LEU A			13.132	35.452	64.275	1.00 26.06	AAAA
ATOM	1788		LEU A			15.455	35.888	63.538	1.00 27.03	AAAA
ATOM	1789.					12.936	39.428	63.448	1.00 30.68	AAAA
MOTA	1790		LEU A			13.636	40:217	62.804	1.00 30.57	AAAA
MOTA	1791					12.624	39.617	64.729	1.00 31.46	AAAA
ATOM	1792	N	ASN A			13.139	40.769	65.469	1.00 32.06	AAAA
MOTA	1793		ASN A		•	12.012	41.507	66.217	1.00 31.74	AAAA
MOTA	1794	CB CG	ASN A			11.291	40.630	67.234	1.00 32.07	AAAA
MOTA	1795		ASN A			11.914	40.017	68.104	1.00 31.61	AAAA
MOTA	1796 1797		ASN A			9.962	40.592	67.141	1.00 31.59	AAAA
MOTA	1798	C	ASN A			14.225	40.334	66.444-	1.00 32.45	AAAA
MOTA	1799	ō	ASN A			14.413	39.140	66.688	1.00 32.78	AAAA
MOTA MOTA	1800	N	ASP A		•	14.943	41.297	67.002	1.00 33.32	AAAA
ATOM	1801	CA	ASP A			16.017	40.976	67.928	1.00 34.75	AAAA
ATOM	1802	CB	ASP A			16.508	42.233	68.654	1.00 36.77	AAAA
ATOM	1803	CG	ASP A			17.154	43.238	67.714	1.00 37.28	AAAA
ATOM	1804		ASP A			17.662	42.816	66.652	1.00 37.78	AAAA
ATOM	1805		ASP A			17.180	44.443	68.054	1.00 37.21	AAAA
ATOM	1806	C	ASP A			15.707	39.892	68.964	1.00 34.93	AAAA
ATOM	1807	0	ASP A			16.448	38.919	69.056	1.00 36.92	AAAA
ATOM	1808	N	ASN A	A 229		14.635	40.054	69.741	1.00 33.90	AAAA
ATOM	1809	CA	ASN A			14.268	39.079	70.775	1.00 33.01	AAAA AAAA
ATOM	1810	CB		A 229		12.965	39.481	71.455	1.00 33.79 1.00 34.04	AAAA
ATOM	1811	CG		A 229		13.131	40.663	72.369	1.00 34.04	AAAA
ATOM -	1812	OD1				13.783	40.564	73.405	1.00 34.25	AAAA
ATOM	1813		ASN A			12.550	41.797 37.656	71.988 70.276	1.00 32.98	AAAA
MOTA	1814	C		A 229		14.114	36.697	70.944	1.00 32.77	AAAA
MOTA	1815	0		A 229		14.529 13.496	37.523	69.108	1.00 32.02	AAAA
MOTA	1816	N .		A 230		13.430	36.227	68.516	1.00 30.72	AAAA
MOTA	1817	CA		A 230 A 230		12.399	36.375	67.272	1.00 31.38	AAAA
ATOM	1818	CB CG		A 230		11.006	36.896	67.583	1.00 31.02	AAAA
ATOM	1819	CD		A 230		10.175	37.187	66.350	1.00 31.52	AAAA
MOTA	1820 1821		GLU Z			10.644	37.970	65.497	1.00 31.89	AAAA
ATOM	1822					9.047	36.655	66.241	1.00 31.04	AAAA
MOTA ATOM	1823	C		A 230		14.628	35.622	68.180	1.00 30.79	AAAA
ATOM	1824	õ		A 230		14.905	34.465	68.512	1.00 31.05	AAAA
ATOM	1825	N		A 231		15.490	36.412	67.553	1.00 30.05	AAAA
MOTA	1826	CA		A 231		16.811	35.920	67.191	1.00 28.94	AAAA
ATOM	1827	CB	PHE .	A 231		17.632	37.015	66.528	1.00 29.33	AAAA
ATOM	1828	CĠ		A 231		18.949	36.537	65.972	1.00 28.79	AAAA AAAA
ATOM	1829	CD1	PHE .	A 231		18.982	35.585	64.957	1.00 28.93 1.00 28.55	AAAA
MOTA	1830		PHE			20.152	37.067	66.436	1.00 28.33	AAAA
MOTA	1831		PHE			20.195	35.160	64.397 65.888	1.00 28.32	AAAA
MOTA	1832	CE2	PHE			21.376	36.657	64.860		AAAA
MOTA	1833	CZ		A 231		21.397	35.695	68.413	1.00 28.25	AAAA
MOTA	1834	C		A 231		17.559 17.999	35.443 34.302	68.485		AAAA
MOTA	1835	0		A 231		17.691	36.329			AAAA
MOTA	1836	N		A 232		18.425	36.003	70.590		AAAA
ATOM	1837	CA	LEU	A 232		18.521	37.234	71.484		AAAA
ATOM	1838	CB		A 232 A 232		19.220		70.747		AAAA
MOTA	1839	CG		A 232		19.203	39.629	71.587		AAAA
ATOM	1840			A 232		20.639				AAAA
ATOM	1841		. LEU	A 232		17.815			1.00 27.95	AAAA
ATOM	1842 1843	С 0		A 232		18.526			1.00 27.92	AAAA
ATOM	1844	N		A 233		16.495			1.00 28.81	AAAA
ATCM	1845	CA	PHE	A 233		15.786		71.972		AAAA
ATOM	1846	CB	PHE	A 233		14.278		71.745		AAAA
ATOM ATOM	1847	CG		A 233		13.465		72.308	1.00 32.38	AAAA
ATOM	1948		PHE	A 233		13.257		73.677	1.00 33.66	AAAA
A LOPI								-		•

•											•	
3.COM	1849	°D2	PHE A 23	3	12.9	28	31.741	71.467		33.51		AAAA
MOTA		CEL	PHE A 23	3	12.5	18	31.537	74.201		35.10		AAAA
MOTA			PHE A 23		12.		30.677	71.975	1.00	34.21		AAAA
ATOM					11.9		30.572	73.344	1.00	35.23	}	AAAA
ATOM			PHE A 23					71.483		30.55		AAAA
ATOM	1853	-	PHE A 23		16.2		32.301			30.65		AAAA
ATOM -		0	PHE A 23	33	16.4	138	31.391	72.280				
ATOM			ALA A 23		16.3	317	32.151	70.165		30.21		AAAA
			ALA A 23		16.	598	30.892	69.549		28.97		AAAA
MOTA			ALA A 23		16.		30.942	68.065	1.00	30.40)	AAAA
MOTA					18.		30.571	69.761	1.00	28.27	7	AAAA
MOTA	1858		ALA A 23					69.830		26.6		AAAA
MOTA	1859	0	ALA A 23	34	18.		29.401		1.00	27.50	•	AAAA
MOTA		N	LEU A 2	35	18.	978	31.614	69.855		27.30	7	
ATOM		CA	LEU A 23	35 ·	20.	402	31.427	70.055 -		29.1		AAAA
			LEU A 2		21.	126	32.767	69.989		29.04		AAAA
MOTA			LEU A 2		22.		32.757	69.378	1.00	28.5	4	AAAA
MOTA					23.		33.837	70.058	1.00	27.0	5	- AAAA
MOTA		CDI	LEU A 2	35			31.408	69.558		27.2		AAA
ATOM	1865	CD2	LEU A 2		23.					30.9		AAAA
ATOM	1866	С	LEU A 2	35	20.		30.799	_		31.6		AAAA
MOTA	1867	0	LEU A 2	35	21.	159	29.697					
	1868	N	GLU A 2		20.	242	31.514			31.8		AAAA
ATOM			GLU A 2		20.	409	31.042	73.838		32.9		AAAA
ATOM	1869	CA	GLU A 2			689	31.990	74.790	1.00	34.6	3	AAAA
MOTA	1870	CB				980	33.449			36.7		AAAA
MOTA	1871	CG	GLU A 2							38.9		AAAA
MOTA	1872	CD	GLU A 2			044	34.360			39.0		AAAA
MOTA	1873	CE1	GLU A 2	36		803	34.303					AAAA
ATOM	1874	CE2	GLU A 2	36	19.	559	35.132			41.5		
	1875	Ċ	GLU A 2	36	19.	806	29.656	73.982		32.9		AAAA
MOTA			GLU A 2			379	28.753			31.7		AAAA
MOTA	1876	0				631	29.503		1.00	32.8	3	AAAA
ATOM	1877	11	LYS A 2	37			28.256			33.5		AAAA
MOTA	1878	CA	LYS A 2			906		_		0 35.0		AAAA
MOTA	1879	CB	LYS A 2			504	28.506			0 36.6		AAAA
ATOM	1880	CG	LYS A 2	137	15.	516	27.436			0 30.0) J	AAAA
	1881	CD	LYS A 2		14.	310	28.008			0 38.5	3	
MOTA	1882	CE	LYS A 2	77	14	636	28.331	75.392	1.0	0 39.2	27	AAAA
ATOM			LYS A 2	37 .		398			1.0	0 39.4	12	AAAA
MOTA	1883	NZ	PIS V 5			619	27.129		1.0	0 33.3	14	AAAA
MOTA	1884	С	LYS A 2	237		.850	26.05			0 33.3	29	.AAAA
MOTA	1885	0	LYS A 2							0 32.		AAAA
MOTA	1886	N	SER A 2	238		.985	27.37			0 31.2	25	AAAA
MOTA	1887	CA	SER A 2	238		. 671	26.34					AAAA
MOTA	1888	CB	SER A	238	19	.740	26.71			0 30.	52	AAAA
	1889	OG	SER A		20	.544	27.85			0 29.		
MOTA		C	SER A	238		.075	26.06	4 71.236	1.0			AAAA
Mota	1890		SER A	238		.556	24.92		1.0	0 30.	06	AAAA
MOTA		. 0	SER A			.740	27.07			0 31.	71	AAAA
MOTA	1892	11	LEU A							0 33.		AAAA
MOTA	1893	CA	LEU A	239		.070	26.84			0 31.	25	AAAA
MOTA	1894	CB	LEU A	239		.698	28.13		1.0	0 21.	27	AAAA
ATOM	1895	CG	LEU A	239	23	.988	29.30		1 1.0	0 29.	00	AAAA
	1896	CD1	LEU A	239	24	.589	30.41			0 29.		
ATOM		CD2	LEU A	239		.919		3 70.87	2 1.0	0 29.	36	AAAA
MCTA	1897		LEUA	220		.933			2 1.0	0 35.	41	AAAA
MOTA	1898	С	LEU A			.812			5. 1.0	0 36.	25	AAAA
ATOM	1899	0	LEU A							00 37.	34	AAAA
ATOM	1900	N	GLU A	240		.816			1 1 (00 39.	30	AAAA
ATOM	1901	CA	GLU A	240	21	.594		5 75.33)O JJ.	00	AAAA
ATOM	1902	СВ	GLU A	240	20	.281	25.36			00 41.		AAAA
	1903	ĈĠ	GLU A	240	20	.040	24.61	0 77.30		00 45.		-
MOTA			GLU A	240		.665		2 78.43	2 1.0	00 47.	.80	AAAA
ATOM	1904	CD				.670			4 1.0	00 49.		AAAA
MOTA	1905		L GLU A							00 48.		AAAA
ATOM	1906	CE2	2 GLU A	240		.364			5 1	00 38	80	AAAA
MOTA	1907	С	GLU A			. 583		· _		00 37	85	AAAA
MOTA	1908	၁	GLU A			.224				00 3/.	. U J	AAAA
	1909	N	ILE A		20	.847	23.29			00 39	. 00	
ATOM			ILE A			.751		55 73.22	3 1.	00 40	.81	AAAA
ATCM	1910	CA				.912		· ·	7 1.	00 41	.10	AAAA
ATOM	1911	CB	ILE A	241						00 40	. 88	AAAA
ATOM	1912	CG:	2 ILE A	241		850	_			00 41		AAAA
ATOM	1913		1 ILE.A			3.502				00 41	14	AAAA
ATOM			1 ILE A		17	7.641	22.7	45 70.99	2 1.	JU 41		
ATOM	·											

				. •					
N COM	1915	С.	ILE A 241		22.159	21.424	72.893	1.00 41.66	AAAA
MOTA MOTA			ILE A 241		22.445	20.229	73.045	1.00 42.10	AAAA
ATOM			VAL A 242	:	23.026	22.324	72.432	1.00 41.42	AAAA
ATOM		CA	VAL A 242		24.394	21.977	72.076	1.00 41.23	AAAA
ATOM	1919	CB	VAL A 242		25.089	23.146	71.351	1.00 40.40	AAAA AAAA
MOTA	1920		VAL A 242		26.556	22.850	71.171	1.00 39.25 1.00 39.79	AAAA
ATOM	1921		VAL A 242		24.438	23.384	70.004 73.298	1.00 33.73	AAAA
MOTA	1922		VAL A 242		25.228	21.604 20.562	73.233	1.00 41.83	AAAA
MOTA	1923		VAL A 242		25.882 25.198	20.362	74.318	1.00 44.41	AAAA
MOTA	1924		LYS A 243 LYS A 243		25.130	22.215	75.523	1.00 46.51	AAAA
ATOM	1925		LYS A 243		25.797	23.363	76.522	1.00 47.29	AAAA
ATOM	1926 1927		LYS A 243		26.820	23.312	77.564	1.00 48.40	AAAA ·
MOTA MOTA	1928	CD	LYS A 243		26.479	24.248	78.823	1.00 48.88	AAAA
ATOM	1929	CE	LYS A 243		26.355	25.691	78.380	1.00 49.62	AAAA
ATOM	1930	NZ	LYS A 243		25.926	26.576	79.505	1.00 50.11	AAAA AAAA
ATOM	1931	С	LYS A 243		25.639	20.891	76.209	1.00 47.59 1.00 48.17	AAAA
ATOM	1932	0	LYS A 243		26.537	20.216	76.711 76.237	1.00 48.17	AAAA
MOTA	1933	N	GLU A 244		24.362 23.957	20.517 19.262	76.237	1.00 50.82	AAAA
MOTA	1934	CA	GLU A 244		22.432	19.202	77.103	1.00 52.08	AAAA
MOTA	1935	CB	GLU A 244		21.818	20.405	77.829	1.00 53.82	AAAA
MOTA	1936	CD CD	GLU A 244 GLU A 244		20.359	20.174	78.230	1.00 54.49	AAAA
MOTA	1937 1938		GLU A 244		19.666	21.158	78.595	1.00 55.15	AAAA
ATOM ATOM	1939		GLU A 244		19.912	19.006	78.200	1.00 54.98	AAAA
ATOM	1940	С	GLU A 244		24.338	18.046	76.033	1.00 51.06	AAAA AAAA
ATOM	1941	0	GLU A 244		24.206	16.905	76.477	1.00 51.68 1.00 51.12	AAAA
MOTA	1942	N	VAL A 245		24.810	18.292	74.820 73.904	1.00 50.08	AAAA
MOTA	1943	CA	VAL A 245		25.149	17.212 17.263	72.677	1.00 50.22	AAAA
MOTA	1944	CB	VAL A 245		24.217 24.615	16.217	71.651	1.00 51.07	AAAA
ATOM	1945		VAL A 245 VAL A 245		22.794	17.049	73.118	1.00 50.79	AAAA
MOTA	1946 1947	C	VAL A 245		26.578	17.254	73.397	1.00 49.43	AAAA
MOTA MOTA	1948	Ö	VAL A 245		27.101	16.250	72.917	1.00 48.65	AAAA
ATOM	1949	N	PHE A 246		27.220	18.408	73.522	1.00 48.65	AAAA AAAA
MOTA	1950	CA	PHE A 246		28.556	18.552	72.982	1.00 47.97 1.00 46.45	AAAA
ATOM	1951	CB	PHE A 246		28.420	19.212	71.607	1.00 45.35	AAAA
MOTA	1952	CG	PHE A 246		29.553	18.932 17.629	70.671 70.280	1.00 44.13	AAAA
ATOM	1953	CD1	PHE A 246		29.841 30.291	19.972	70.233	1:00 44.40	AAAA
MOTA	1954		PHE A 246 PHE A 246		30.840	17.370	69.356	1.00 43.95	AAAA
MOTA	1955 1956		PHE A 246		31.292	19.721	69.197	1.00 43.47	AAAA
MOTA MOTA	1957	CZ	PHE A 246		31.566	18.422	68.811	1.00 44.05	AAAA
MOTA	1958	C	PHE A 246		29.481	19.383	73.860	1.00 48.60	AAAA AAAA
MOTA	1959	0	PHE A 246		29.132	20.501	74.239	1.00 49.59 1.00 48.69	AAAA
ATOM	1960	N	GLU A 247		30.647	18.834	74.198 74.977	1.00 49.45	AAAA
. MOTA		CA	GLU A 247		31.644		76.178	1.00 51.91	AAAA
MOTA	1962	CB	GLU A 247		32.174 31.257		77.398	1.00 54.39	AAAA
MOTA	1963	CG	GLU A 247 GLU A 247		29.986		77.146	1.00 57.34	AAAA
MOTA	1964 1965	CD OF 3	GLU A 247		29.100			1.00 58.48	AAAA
MOTA MOTA	1966		2 GLU A 247		29.877			1.00 57.95	AAAA
MOTA	1967	c	GLU A 247		32.807			1.00 47.39	AAAA
ATOM	1968	0	GLU A 247		33.742				AAAA AAAA
MOTA	1969	Ŋ	PRO A 248	•	32.748				AAAA
MOTA	1970	CD	PRO A 248		31.651	22.033			AAAA
MOTA	1971	CA	PRO A 248		33.710 33.063				AAAA
ATOM	1972	CB	PRO A 248		33.063				AAAA
MOTA	1973	CG	PRO A 248 PRO A 248		35.155			1.00 44.29	AAAA
ATOM	1974	С 0	PRO A 248		35.401		_	1.00 44.57	AAAA
MOTA	1975 1976	N	GLU A 249		36.100	21.364	72:059		AAAA
MOTA MOTA	1977	CA			37.522	21.526			AAAA
MOTA	1978	CB	GLU A 249		38.344				AAAA AAAA
MOTA	1979	CG	GLU A 249		37.960				AAAA
ATOM	1980	CD	GLU A 249		38.825	5 18.007	71.241	1.00 40.30	
			•						

							(0.006	1.00 41.55	AAAA
MOTA	1981	OE1 (GLU A 2	249	38.871	18.017	69.996	1.00 42.49	
ATOM	1982	OE2	GLU A 2	249	39.462	17.187	71.926		AAAA
ATOM	1983		GLU A 2		37.840	22.873	71.718	1.00 38.81	KAAA
	1984		GLU A 2		38.715	23.617	72.181	1.00 38.27	AAAA
MOTA					37.109	23.160	70.644	1.00 36.60	AAAA
ATOM	1985		VAL A			24.402	69.890	1.00 34.20	AAAA
ATOM	1986		VAL A 2		37.242			1.00 33.73	AAAA
MOTA	1987	CB	VAL A 2	250	38.379	24.321	68.862		
ATOM	1988	CG1	VAL A	250	38.085	23.209	67.864	1.00 33.26	AAAA
	1989		VAL A.		38.546	25.678	68.153	1.00 33.75	AAAA
MOTA			VAL A		35.945	24.617	69.130	1.00 31.98	AAAA
MOTA	1990				35.205	23.658	68.904	1.00 32.36	AAAA
MOTA	1991		VAL A				68.760	1.00 28.65	AAAA
ATOM	1992		TYR A		35.657	25.863			AAAA
ATOM	1993	CA	TYR A	251	34.449	26150	67.991	1.00 26.49	
ATOM	1994		TYR A		33.241	26.442	68.906	1.00 24.32	AAAA
			TYR A		33.193	27.853	69.465	1.00 22.96	AAAA
MOTA	1995				32.771	28.931	68.668	1.00 22.21	AAAA
MOTA	1996		TYR A			30.234	69.151	1.00 21.29	AAAA
MOTA	1997		TYR A		32.791		70,771	1.00 21.47	AAAA
ATOM	1998	CD2	TYR A	251	33.628	28.124			AAAA
MOTA	1999	CE2	TYR A	251	33.651	29.425	71.265	1.00 20.80	
	2000	CZ	TYR A		33.237	30.475	70.449	1.00 20.77	AAAA
MOTA			TYR A	251	33.309	31.768	70.913	1.00 21.41	AAAA
MOTA	2001	OH			34.691	27.345	67.092	1.00 24.59	AAAA
ATOM	2002	С	TYR A					1.00 25.87	AAAA
ATOM	2003	0	TYR A	251	35.504	28.216	67.410		AAAA
MOTA	2004	N	LEU A	252	33.984	27.374	65.970	1.00 22.49	
	2005	CA	LEU A		34.082	28.482	65.045	1.00 20.96	AAAA
MOTA			LEU A	252	34.523	28.018	63.657	1.00 21.31	AAAA
MOTA	2006	CB			35.940	27.472	63.556	1.00 21.03	AAAA
MOTA	2007	CG	LEU A				63.977	1.00 22.16	AAAA
ATOM	2008		LEU A		35.947	26.028		1.00 22.13	AAAA
ATOM	2009	CD2	LEU A	252	36.440	27.594	62.143		
ATOM	2010	Ċ	LEU A		32.731	29.159	64.959	1.00 10.00	· AAAA
			LEU A		31.689	28.523	65.070	1.00 19.95	AAAA
ATOM	2011	0			32.748	30.461	64.756.	1.00 17.95	AAAA
MOTA	2012	N	LEU A				64.675	1.00 17.33	AAAA
ATOM	2013	CA	LEU A		31.521			1.00 16.31	AAAA
ATOM	2014	CB	LEU A	253	31.441		65.900	1.00 10.31	AAAA
MOTA	2015	CG	LEU A	253	30.266		66.153	1.00 15.81	
	2016		LEU A		28.990	32.267	66.377	1.00 14.74	AAAA
ATOM			LEU A		30.602	33.925	67.368	1.00 15.83	AAAA
ATOM	2017				31.564		63.386	1.00 16.60	AAAA
MOTA	2018	С	LEU A				63.132	1.00 16.40	AAAA
ATOM	2019	0	LEU A		32.548			1.00 15.88	AAAA
ATOM	2020	N	GLN A		30.526		62.557		AAAA
ATOM	2021	CA	GLN A	254	30.507	32.716	61.328	1.00 16.27	
	2022	СВ	GLN A	254	30.045	31.881	60.121	1.00 15.88	AAAA
MOTA			GLN A		28.587	32.048	59.734	1.00 18.52	AAAA
MOTA	2023	CG			28.380		58.519	1.00 17.54	AAAA
MOTA	2024	CD	GLN A				57.391	1.00 15.89	AAAA
ATOM	2025	OE1	GLN A	254	28.714			1 00 18.49	AAAA
MOTA	2026	NE2	GLN A	254	27.828			1 00 10.42	AAAA
ATOM	2027	С	GLN A	254	29.527		61.650	1 00 16.91	
	2028	0	GLN A		28.450	33.571	62.198	1 00 17.41	AAAA
ATOM		N	LEU A	255	29.911		61.319	1.00 16.68	AAAA
ATOM	2029		LEU A	255	29.102				AAAA
ATOM	2030	CA	LEU A						AAAA
MOTA	2031	CB	LEU A	255	29.861				AAAA
MOTA	2032	CG	LEU A	255	30.269				AAAA
MOTA	2033	CD1	LEU A	255	31.494	36.924			
	2034	CD2	LEU A	255	29.083	36.202	64.774	1.00 12.80	AAAA
MOTA			LEU A	255	28.699		60.404	1.00 18.32	AAAA
MOTA	2035	C					_		AAAA
MOTA	2036	0	LEU A		29.170				AAAA
MOTA	2037	N	GLY A		27:813		55.500		AAAA
ATOM	2038	CA	GLY A	256	27.322				AAAA
	2039	C	GLY A		26.422	38.302	58.927	1.00 21.73	
MOTA			GLY A		25.642			1.00 21.38	AAAA
MOTA	2040	0			26.528				AAAA
ATOM	2041	N	THR A	231			_		AAAA
ATOM	2042	CA	THR A	257	25.72				AAAA
ATOM	2043	CB	THR A	257	26.460				AAAA
MOTA	2044	OG1		.257	26.72				
	2045		THR A	257	27.78		59.329	1.00 24.07	AAAA
MOTA.				257	24.43			1.00 24.97	AAAA
ATOM	2046				~		•		•
			•						

			•	9				
			257	23.692	41.672	58.048	i.00 25.84	AAAA
MOTA	2047 0	THR A ASP A	257	24.152		57.154	1.00 25.18	AAAA
ATOM	2048 N		258	22.935	39.753	56.379	1.00 26.18	AAAA
MOTA	2049 CA			22.950	38.830	55.149	1.00 25.52	AAAA
MOTA	2050 CB 2051 CG			23.211	37.392		1.00 26.33	AAAA
ATOM		ASP A		21.649	39:574	3	1.00 26.74	AAAA
MOTA	2052 C 2053. O	ASP A		20.571	39.823		1.00 26.57	AAAA
ATOM	2053. OE	1 ASP A		23.014	37.029		1.00 26.85	AAAA
ATOM	2055 OF	2 ASP A	258	23.585	36:623	• • • •	1.00 24.06	AAAA
MOTA	2056 N	PRO A	259	21.727	39.114		1.00 26.95	AAAA
MOTA MOTA	2057 CI			22.834	38.589		1.00 27.34	AAAA
MOTA	2058 CA	_	259	20.467	38.976	59.190	1.00 27.05	АААА АААА
ATOM	2059 CE		259	20.886	38.186	60.425	1.00 26.38	AAAA
ATOM	2060 CC			22.247	38.718	60.669	1.00 27.84	AAAA
MOTA	2061 C	PRO A	259	19.914	40.365	59.543	1.00 27.32 1.00 27.29	AAAA
ATOM	2062 0	PRO A		18.739	40.510	59.871-	1.00 27.29	AAAA
ATOM	2063 N	LEU A	260	20.771	41.383	59.452	1.00 26.74	AAAA
ATOM	2064 C	LEU A	260	20.389	42.763	59.752 59.680	1.00 27.21	AAAA
ATOM	2065 CI	B LEU A	260	21.621	43.680	60.709	1.00 27.01	AAAA
ATOM	2066 C	LEU A	260	22.732	43.465	60.408	1.00 25.51	AAAA
ATOM	2067 CI	ol LEU A	1 260	23.889	44.380 43.718	62.112	1.00 27.39	AAAA
ATOM	2068 CI	D2 LEU A	3 260	22.189	43.718	58.865	1.00 26.47	AAAA
MOTA	2069 C	LEU A	A 260	19.295 19.278	43.137	57.649	1.00 26.72	AAAA
MOTA	2070 0	LEU A	A 260	18.413	44.126	59.494	1.00 26.32	AAAA
MOTA	2071 N		A 261	17.283	44.808	58.846	1.00 27.20	AAAA
MOTA	2072 C		A 261 A 261	16.732	45.885	59.780	1.00 28.71	AAAA
MOTA	2073 C	B LEU A	A 261	15.644	46.789	59.190	1.00 29.24	AAAA
ATOM	2074 C	D1 LEU 2	261	14.433	45.954	58.883	1.00 29.44	AAAA
ATOM	2075 C 2076 C	D2 LEU A	A 261	15.284	47.906	60.162	1.00 29.72	AAAA
- MOTA	2076 C	LEU .	A 261	17.506	45.454	57.473	1.00 27.90	AAAA
MOTA ATOM	2077 C	LEU	A 261	16.675		56.577	1.00 28.21	AAAA AAAA
MOTA	2079 N	GLU	A 262	18.597	46.202	57.310	1.00 27.61	AAAA
MOTA		A GLU	A 262 ·	18.887		56.043	1.00 26.92 1.00 25.85	AAAA
ATOM		B GLU	A 262	19.949		56.241	1.00 25.36	AAAA
ATOM	_	G GLU	A 262	19.549		57.117	1.00 25.78	AAAA
ATOM		D GLU	A 262	19.552		58.580 58.938	1.00 24.64	AAAA
ATOM	2084	E1 GLU	A 262	19.859			1.00 25.82	AAAA
MOTA			A 262	19.255 19.346			1.00 28.79	AAAA
MOTA	2086	GLU	A 262	19.346			1.00 28.70	AAAA
MOTA		GLU	A 262	19.743			1.00 29.57	AAAA
MOTA		N ASP	A 263 A 263	20.230		54.145	1.00 28.99	AAAA
MOTA		CA ASP	A 263	21.160			1.00 27.89	AAAA
MOTA		CB ASP	A 263	21.986		53.714	1.00 29.02	AAAA .
ATOM	2091 (2092 (DD1 ASP	A 263	23.194			1.00 28.06	AAAA AAAA
MOTA MOTA	2092	DD2 ASP	A 263	21.43	3 41.663		1.00 28.80	AAAA
MOTA		C ASP	A 263	19.06	5 43.197		1.00 29.73	AAAA
ATOM		O ASP	A 263	18.25				AAAA
ATOM		N TYR	A 264	19.00				AAAA
ATOM		CA TYR	A 264	17.92				AAAA
ATOM	2098	CB TYR	A 264	17.91				AAAA
MOTA	2099	CG TYR	A 264	17.62		8 49.983		AAAA
ATOM	2100	CD1 TYR	A 264	18.66		5 50.068		AAAA
ATOM			A 264	18.40 16.31		-		AAAA
ATOM		CD2 TYR	A 264	16.04				AAAA
ATOM			A 264	17.09			1.00 42.75	AAAA
MOTA	2104	CZ TYR	A 264 A 264	16.83			1.00 44.65	AAAA
MOTA	:-		A 264	17.89		5 51.135	1.00 32.50	AAAA
ATOM			A 264	16.81			3 1.00 32.49	AAAA
ATOM		O TYR	A 265	19.06	·	0 51.17		AAAA
ATOM		CA LEU	A 265	19.12	2 39.28			AAAA AAAA
ATOM		CB LEU	A 265	20.52	5 38.82		7 1.00 32.75	AAAA
ATOM		CG LEU	A 265	20.80				AAAA
ATOM ATOM		CD1 LEU	A 265	22.21	38.58	48.77	1 1.00 31.59	
A.Or.								

			•		19.803	38.166	48.361	1.00 34.62	AAAA
ATOM	2113	CD2	LEU A 2	.65				1.00 30.33	AAAA
MOTA	2114		LEU A 2		18.693	38.540	52.296		AAAA
ATOM	2115	0	LEU A 2	:65	19.024	37.375	52.484	1.00 30.30	
MOTA	2116	N	SER A 2	:66	17.945	39.230	53.147	1.00 29.23	AAAA
	2117	CA	SER A 2	66	17.434	38.649	54.371	1.00 29.72	AAAA
MOTA			SER A 2	66	18.398	38.894	55.519	1.00 32.09	AAAA
ATOM -	2118	CB	SER A 2		-	38.810	56.771	1.00 33.43	AAAA
ATOM	2119	OG	SER À 2		17.728			1.00 28.71	ÀAAA
MOTA	2120	С	SER A 2		16.115	39.290	54.698		AAAA
ATOM	2121	0	SER A 2	266	15.924	40.473	54.444	1.00 29.67	
	2122	N	LYS A 2		15.209	38.517	55.276	1.00 27.82	AAAA
MOTA			LYS A 2	67	13.908	39.045	55.654	1.00 27.56	AAAA
ATOM	2123	CA	LIS A 4		12.821	38.076	55.222	1.00 28.75	AAAA
MOTA	2124	CB	LYS A .2				53.718	1.00 29.67	AAAA
MOTA	2125	CG	LYS A 2	267	12.733	37.922		1.00 30.13	AAAA
ATOM	2126	CD	LYS A 2		12.343	39.223	53.053		AAAA
ATOM	2127	CE	LYS A	267	12.303	39.036	51.546	1.00 31.86	
	2128	NZ	LYS A	267	11.796	40.252	50.843	1.00 33.92	AAAA -
MOTA		C	LYS A	267	13.800	39.327	57.152	1.00 27.18	AAAA
MOTA	2129		LYS A	267	12.707	39.591	57.665	1.00 27.18	AAAA
MOTA	2130	0	LYS A	201		39.267	57.836	1.00 26.12	AAAA
MOTA	2131	N	PHE A	268	14.944			1.00 25.72	AAAA
ATOM	2132	CA	PHE A	268	15.048	39.532	59.271		AAAA
ATOM	2133	CB	PHE A	268	16.272	38.830	59.856	1.00 24.94	
	2134	CG	PHE A		16.157	37.334	59.896	1.00 25.07	AAAA
MOTA			PHE A		17.271	36.565	60.267	1.00 24.56	AAAA
ATOM	2135				14.955	36.687	59.629	1.00 23.76	AAAA
MOTA	2136	CD2	PHE A	268			60.384	1.00 23.71	AAAA
ATOM	2137	CE1	PHE A	268	17.174	35.169		1.00 23.86	AAAA
MOTA	2138	CE2	PHE A	268	14.850	35.303	59.739		AAAA
ATOM	2139	CZ	PHE A	268	15.966	34.542	60.121	1.00 23.68	
ATOM	2140	С	PHE A		15.190	41.030	59.513	1.00 25.77	AAAA
		ō	PHE A		15.811	41.734	58.726	1.00 25.81	AAAA
ATOM	2141		ASN A	260	14.606	41.524	60.595	1.00 26.02	AAAA
ATOM	2142	N			14.718	42.943	60.890	1.00 26.58	AAAA ·
MOTA	2143	CA	ASN A				61.058	1.00 25.47	AAAA
MOTA	2144	CB	ASN A	269	13.330	43.584		1.00 25.37	AAAA
ATOM	2145	CG	ASN A	269	12.379	43.252	59.906		AAAA
MOTA	2146	001	ASN A		12.761	43.260	58.734	1.00 23.82	
	2147	2חוא	ASN A	269	11.123	42.985	60.245	1.00 24.03	AAAA
MOTA			ASN A	269	15.540	43.112	62.169	1.00 26.82	AAAA
MOTA	2148	C			15.089	43.715	63.150	1.00 27.98	AAAA
MOTA	2149	0	ASN A	203		42.559	62.149	1.00 26.07	AAAA
MOTA	2150	N	LEU A	270	16.744		63.289	1.00 25.97	AAAA
ATOM	2151	CA	LEU A	270	17.639	42.642		1.00 23.76	AAAA
ATOM	2152	CB	LEU A	270	18.634	41.479	63.265	1.00 23.70	AAAA
ATOM	2153	CG	LEU A	270	18.048	40.070	63.225	1.00 23.36	
	2154		LEU A		19.115	39.090	63.710	1.00 21.90	AAAA
MOTA	2155	CD	LEU A	270	16.824	39.971	64.122	1.00 22.05	AAAA
MOTA			LEU A	270	18.420	43.961	63.360	1.00 27.13	AAAA
MOTA	2156	С	LEU A	270	18.475	44.750		1.00 25.99	AAAA
MOTA	2157	0	LEU A				64.517	1.00 27.97	· AAAA
MOTA	2158	N	SER A		19.038	44.176		1.00 27.95	AAAA
ATOM	2159	CA	SER A	271	19.832	45.370		1.00 27.22	AAAA
ATOM	2160	СВ	SER A	271	19.235	46.137		1.00 27.32	
	2161	0G	SER A	271	19.184	45.297	67.089	1.00 27.90	AAAA
ATOM			SER A		21.276	44.987		1.00 28.15	AAAA
MOTA	2162	C			21.574	43.832		1.00 26.99	AAAA
MOTA	2163	0	SER A		22.156	45.980			AAAA
MOTA	2164	N	ASN A						AAAA
MOTA	2165	CA	ASN A		23.590	45.861			AAAA
ATOM	2166	CB	ASN A	272	24.247	47.243			AAAA
	2167		ASN A		24.647	47.640	63.850	1.00 31.20	
MOTA			1 ASN A		24.960	48.794	63.594	1.00 31.73	AAAA
ATOM	2168				24.670	46.674			AAAA
ATOM	2169		2 ASN A	272	23.070	45.309			AAAA
MOTA	2170		ASN A	212					AAAA
MOTA	2171	0	ASN A	272	24.574	44.361			AAAA
ATOM	2172		VAL A	273	23.180				AAAA
ATOM	2173				23.290	45.602	68.994		AAAA
	2174				22.436				
ATOM			1 VAL A	273	22.716			1.00 33.17	AAAA
MOTA	2175		T AWD W	272	22.740			1.00 31.82	AAAA
MOTA	2176		2 VAL A	2/3					· AAAA
MOTA	2177		VAL A		22.883		· _		. AAAA
ATOM	2178	3 0	VAL A	273	23.550	43.431	70.022	, 1.00 01.00	•

					_						
	2170 1		ALA A	274	21	.785	43.706	68.659	1.00 3	30.25	AAAA
ATOM	_	N A	ALA A	274		.327	42.333	68.840	1.00 2		AAAA
ATOM			ALA A			.005	42.119	68.112	1.00 2		AAAA
ATOM ATOM			ALA A			.395	41.438	68.247	1.00 2	29.35	AAAA
ATOM			ALA A		22	.707	40.373	68.778	1.00	29.18	AAAA
ATOM	_		PHE A			.946	41.893	67.127	1.00	29.30	AAAA
ATOM			PHE A		23	.991	41.170	66.428	1.00		AAAA AAAA
ATOM		CB	PHE A	275		.375	41.909	65.150	1.00	28.// 20.00	AAAA
ATOM			PHE A			.354	41.170	64.308	1.00	20.00	AÁAA
MOTA	2188		PHE A			.015	39.954	63.740		29.48	AAAA
ATOM	2189	CD2	PHE A	275		.621	41.684	64.077		29.40	AAAA
ATOM	2190	CE1	PHE A	. 275		.928	39.259	62.945	1.00	29.24	AAAA
MOTA	2191	CE2	PHE A	. 275		.546	40.988	63.279 62.716	1 00	28.30	AAAA
MOTA	2192		PHE A			1.193	39.779 41.058	67.351		27.64	AAAA
ATOM			PHE A		-	.196 .728	39.975	67.558	1.00	28.65	AAAA
MOTA		0	PHE A			5.606	42.189	67.902	1.00	26.81	AAAA
MOTA			LEU A	276		5.732	42.260	68.831	1.00	27.38	AAAA
ATOM	2196	CA	LEU A	276		5.878	43.700	69.353	1.00	27.53	AAAA
MOTA	2197	CB	LEU A			3.202	44.213	69.928		26.37	AAAA
MOTA	2198	CG	LEU A			7.923	45.488	70.721	1.00	25.71	AAAA
MOTA			LEU A			3.842	43.189	70.827	1.00	27.06	AAAA
ATOM	2200	C	LEU A	276		5.486	41.317	70.021	1.00	26.49	AAAA
MOTA MOTA	2202	0	LEU A			7.387	40.603	70.471	1.00	25.26	AAAA AAAA
ATOM	2203	Ŋ	LYS A	A 277		5.257	41.322	70.524	1.00	27.46 28.63	AAAA
ATOM	2204	CA	LYS A	A 277		4.894	40.468	71.642		30.63	AAAA
ATOM	2205	CB	LYS A	A 277		3.542	40.862	72.223		33.14	AAAA
MOTA	2206	CG	LYS 2	A 277		3.590	42.029	73.153 74.268	1 00	34.94	AAAA
ATOM	2207	CD	LYS A	A 277		2.599	41.791	75.029	1 00	36.17	AAAA
ATOM	2208	CE	LYS	A 277		2.964	40.519 40.194	76.104	1.00	38.64	AAAA
MOTA	2209	NZ	LYS .	A 277		1.979 4.846	38.997	71.297	1.00	28.53	AAAA
ATOM	2210	C	LYS	A 277		5.118	38.152	72.146		28.45	AAAA
MOTA	2211	0	LYS	A 277		4.466	38.681	70.064	1.00	28.47	AAAA
MOTA	2212	N	ALA	A 278 A 278		4.404	37.280	69.656	1.00	27.66	AAAA
MOTA	2213	CA		A 278		3.941		68.201	1.00	26.40	AAAA
ATOM	2214	CB C	מ.ז.מ	A 278		5.833	36.754	69.820	1.00	26.63	AAAA
MOTA	2215 2216	0	ALA	A 278	2	6.081	35.644	70.317	1.00	25.19	AAAA
ATOM ATOM	2217	N	PHE	A 279	2	6.764		69.427	1.00	26.50	AAAA AAAA
MOTA	2218	CA	PHE	A 279		8.181				25.83 26.35	AAAA
MOTA	2219	СВ	PHE	A 279		8.934				27.92	AAAA
MOTA	2220	CG	PHE	A 279		0.413				28.58	AAAA
ATOM	2221	CD1	PHE	A 279		0.949				28.33	AAAA
MOTA	2222	CD2	PHE	A 279		31.280				28.22	AAAA
MOTA	2223	CE1	PHE	A 279		32.330 32.666				28.11	AAAA
MOTA	2224		PHE	A 279		33.185				28.21	AAAA
MOTA	2225	CZ	PHE	A 279		28.665			1.00	25.47	AAAA
MOTA	2226	C	PHE	A 279		29.284			1.00	0 24.32	AAAA
MOTA	2227	0) CM	A 279 A 280		28.382			1.00	0 25.12	AAAA
MOTA	2228	N	J CM	A 280	- 3	28.841		73.147	1.0	0 25.05	AAAA
MOTA	2229 2230	CA CB		A 280		28.708		73.887	1.0	0 24.42	AAAA
MOTA	2231	CG		A 280		29.683		73.364		0 24.56	AAAA AAAA
MOTA ATOM	2232			A 280		30.841				0 23.24	AAAA
ATOM	2233	ND:	2 ASN	A 280	;	29.233				0 24.59	AAAA
ATCM	2234	C	ASN	A 280		28.213				0 24.79 0 24.96	AAAA
ATOM	2235	0	ASN	A 280		28.828			_	0 24.87	AAAA
MOTA	2236	N	ILE	A 281		26.99				0 24.80	AAAA
ATOM	2237	CA	ILE	A 281		26.33				0 24.40	AAAA
ATOM		CB	ILE	A 281		24.86			_	0 25.03	AAAA
MOTA	2239		2 ILE	A 281		24.29		_		0 24.70	AAAA
ATOM	2240	CG	1 ILE	A 281		24.07 22.61				0 26.49	AAAA
ATOM	2241		1 ILE	A 281		27.04			4 1.0	0 25.21	AAAA
ATOM			ILE	A 281		27.22			0 1.0	0 24.97	AAAA
ATOM			ILE	A 281		27.44		-	0 1.0	0 25.98	AAAA
ATCM	2244	И	VAL	, A 282				•			•

				20	150	32.656	72.193	1.00 25.15	AAAA
ATOM	2245		VAL A 282		.150			1.00 23.83	AAAA
MOTA	2246		VAL A 282		.451	32.666	70.677		
MOTA	2247	CG1	VAL A 282	29	.315	31.470	70.311	1.00 23.58	AAAA
ATOM	2248		VAL A 282		.173	32.633	69.899	1.00 22.73	AAAA
	2249		VAL A 282		.478	32.553	72.936	1.00 25.73	AAAA
ATOM	-				.928	31.457	73.275	1.00 25.31	AAAA
ATOM	2250		VAL A 282			33.702	73.176	1.00 26.90	AAAA
MOTA	2251		ARG A 283		.100			1.00 28.87	AAAA
MOTA	2252		ARG A 283		.372	33.760	73.885		
MOTA	2253	CB	ARG A 283		.027	35.131	73.684	1.00 28.16	AAAA
MOTA	2254	CG	ARG A 283	32	.364	35.440	72.240	1.00 27.22	AAAA
ATOM	2255		ARG A 283		.821	36.862	72.098	1.00 27.08	AAAA
			ARG A 28		.035	37.116	72.854	1.00 26.73	AAAA
MOTA	2256		ARG A 28		.514	38.327	73.091	1.00 26.82	AAAA
MOTA	2257	CZ			.873	39.384	72.626	1.00 27.36	AAAA
MOTA	2258		ARG A 28				73.798	1.00 26.95	AAAA
ATOM	2259	NH2	ARG A 28		.622	38.484		1.00 20.33	AAAA
MOTA	2260	С	ARG A 28		183	33.494	75.376		AAAA
ATOM	2261	0	ARG A 28		.086	32.981	76.027	1.00 30.68	
ATOM	2262	N	GLU A 28	30	0.014	33.842	75.911	1.00 32.71	AAAA
ATOM	2263	CA	GLU A 28		735	33.623	77.323	1.00 35.53	AAAA
	2264	СВ	GLU A 28		3.482	34.391	77.751	1.00 37.39	AAAA
MOTA			GLU A 28		3.538	35.854	77.392	1.00 41.73	AAAA
MOTA	2265	CG			7.272	36.631	77.754	1.00 45.27	AAAA
ATOM	2266	CD	GLU A 28	-			77.610	1.00 46.66	AAAA
MOTA	2267		GLU A 28		5.151	36.078		1.00 46.94	AAAA
ATOM	2268	OE2	GLU A 28		7.405	37.817	78.148		
ATOM	2269	С	GLU A 28	-	9.524	32.133	77.564	1.00 36.25	AAAA
ATOM	2270	0	GLU A 28	4 29	9.920	31.593	78.601	1.00 37.85	AAAA
ATOM	2271	N	VAL A 28		3.916	31.464	76.591	1.00 35.24	AAAA
	2272	CA	VAL A 28		8.637	30.041	76.708	1.00 33.88	AAAA
MOTA		CB	VAL A 28		7.505	29.619	75.737	1.00 33.71	AAAA
MOTA	2273			-	7.201	28.137	75.888	1.00 32.59	AAAA
MOTA	2274		VAL A 28	-	6.254	30.457	76.001	1.00 32.77	AAAA
MOTA	2275		VAL A 28	_			76.456	1.00 33.47	AAAA
MOTA	2276	С	VAL A 28	-	9.847	29.149		1.00 34.23	AAAA
MOTA	2277	0	VAL A 28		0.140	28.262	77.257		AAAA
ATOM	2278	N	PHE A 28		0.568	29.389	75.364	1.00 32.34	
MOTA	2279	CA	PHE A 28	6 3	1.706	28.535	75.036	1.00 29.92	AAAA
ATOM	2280	CB	PHE A 28		1.533	27.960	73.635	1.00 29.77	AAAA
	2281	CG	PHE A 28		0.267	27.179	73.444	1.00 28.64	AAAA
ATOM			PHE A 28	-	9.152	27.772	72.863	1.00 28.75	AAAA
MOTA	2282		PHE A 28	-	0.197	25.837	73.827	1.00 28.55	AAAA
atom	2283				7.983	27.039	72.660	1.00 29.04	AAAA
MOTA	2284		PHE A 28	-		25.095	73.629	1.00 28.19	AAAA
MOTA	2285		PHE A 28	_	9.037		73.025	1.00 28.73	AAAA
ATOM	2286	CZ	PHE A 28	_	7.929	25.694		1.00 29.13	AAAA
ATOM	2287	С	PHE A 28	-	3.106	29.113	75.132	1.00 29.13	AAAA
ATOM	2288	0	PHE A 28		4.073	28.436	74.760	1.00 28.54	
ATOM	2289	N	GLY A 28	7 3	3.224	30.341	75.637	1.00 28.42	AAAA
ATOM	2290	CA			4.525	30.987	75.744	1.00 27.07	AAAA
	2291	c	GLY A 28		4.932	31.611	74.419	1.00 26.64	AAAA •
ATOM			GLY A 28		4.088		73.649	1.00 27.13	AAAA
MOTA	2292	0	CIU A 20		6.227		74.146	1.00 27.20	AAAA
MOTA	2293	N	GLU A 28		6.719	32.238	72.900	1.00 27.52	AAAA
ATOM	2294	CA	GLU A 28	-			73.108	1.00 28.18	AAAA
MOTA	2295	CB	GLU A 2	-	8.073			1.00 28.88	AAAA
MOTA	2296	CG	GLU A 2		8.036	34.177	73.959	1.00 20.00	AAAA
ATOM	2297	CD	GLU A 2		7.329			1.00 29.58	AAAA
MOTA	2298	OE1	GLU A 2	18 3	7.807	35.813		1.00 29.94	
	2299		GLU A 2		6.281	35.761	73.782	1.00 31.89	AAAA
ATOM	2300	c	GLU A 2		6.877		71.843	1.00 27.44	AAAA
ATOM			GLU A 2		7.169			1.00 27.87	AAAA
ATOM	2301	0			6.663				AAAA
MOTA	2302	N	GLY A 2						AAAA
ATOM	2303	CA	GLY A 2	-	6.795				AAAA
MOTA	2304	C	GLY A 2	_	37.285				AAAA
ATOM	2305	0	GLY A 2	39 3	37.635				AAAA
MOTA	2306	N	VAL A 2		37.320	30.765			
ATOM	2307		VAL A 2		7.756		65.863	1.00 23.76	AAAA
	2308		VAL A 2		8.288		64.867	1.00 24.94	AAAA
ATOM			VAL A 2		8.835			1.00 22.73	АААА
ATOM	2309				39.375				AAAA
MOTA	2310	CG	VAL A 2		,,,,,,,	. 23.300			•
			•						

	2211	_	VAL A 290	3.6	. 536	32.122	65.277	1.00 23.90	AAAA
ATOM	2311 2312	-	VAL A 290		.497	31.502	65.100	1.00 25.15	AAAA
ATOM	2312		TÝR A 291		. 662	33.415	64.976	1.00 23.09	AAAA
ATOM	2313		TYR A 291		.544	34.211	64.446	1.00 21.41	AAAA
ATOM ATOM	2315		TYR A 291		.472	35.540	65.193	1.00 20.57	AAAA
ATOM	2316		TYR A 291		.511	35:346	66.677	1.00 19.87	AAAA
ATOM	2317		TYR A 291		.596	35.782	67.432	1.00 20.86	AAAA
ATOM	2318		TYR A 291	36	. 677	35.513	68.793	1.00 21.47	AAAA
ATOM	2319		TYR A 291	34	.509	34:647	67.318	1.00 20.90	AAAA
ATOM	2320		TYR A 291	34	.579	34.372	68.675	1.00 21.90	AAAA
ATOM	2321		TYR A 291	-	.661	34.800	69.403	1.00 21.25	AAAA
ATOM	2322	OH	TYR A 291		.737	34.469	70.730	1.00 23.75	AAAA AAAA
MOTA	2323	С	TYR A 291		6.607	34.483	62.946	1.00 21.25 1.00 21.10	AAAA
MOTA	2324	0	TYR A 291		5.573	35.077	62.451 62.231	1.00 21.10	AAAA
MOTA	2325	N	LEU A 292		1.557	34.084 34.260	60.779-	1.00 20.92	AAAA
ATOM	2326	CA	LEU A 292		1.518	32.916	60.080	1.00 19.93	AAAA
ATOM	2327	CB	LEU A 292		5.104	31.688	60.399	1.00 17.31	AAAA
MOTA	2328	CC	LEU A 292 LEU A 292		1.685	30.515	59.528	1.00 16.05	AAAA
MOTA	2329		LEU A 292		5.552	32.000	60.163	1.00 18.07	AAAA
MOTA	2330 2331	CDZ	LEU A 292		3.515	35.288	60.283	1.00 21.12	AAAA
ATOM ATOM	2332	Õ	LEU A 292		2.652	35.741	61.020	1.00 20.70	AAAA
ATOM	2333	N	GLY A 293	3:	3.660	35.660	59.017	1.00 21.74	AAAA
ATOM	2334	CA	GLY A 293	33	2.752	36.612	58.410	1.00 21.48	AAAA
ATOM	2335	С	GLY A 293		1.612	35.856	57.770	1.00 21.65	AAAA
ATOM	2336	0	GLY A 293		1.237	34.790	58.235	1.00 22.25	AAAA
ATOM	2337	N	GLY A 294		1.060	36.392		1.00 22.66	AAAA AAAA
MOTA	2338	CA	GLY A 294		9.957	35.714	56.034	1.00 23.61 1.00 24.56	AAAA
ATOM	2339	С	GLY A 294		9.180	36.653	55.146 54.790	1.00 25.54	AAAA
ATOM -	2340	0	GLY A 294	_	9.679	37.727 36.265	54.794	1.00 24.06	AAAA
MOTA	2341	N	GLY A 295		7.956 7.139	37.093	53.927	1.00 22.78	AAAA
MOTA	2342	CA	GLY A 295 GLY A 295		6.902	38.479	54.483	1.00 23.11	AAAA
MOTA	2343	C .	GLY A 29		6.870	38.676	55.696	1.00 22.87	AAAA
ATOM	2344 2345	N O	GLY A 29		6.733	39.442	53.584	1.00 22.78	AAAA
MOTA MOTA	2346	CA	GLY A 29		6.497	40.813	53.993	1.00 23.44	AAAA
ATOM	2347	C	GLY A 29		6.471	41.618	52.718	1.00 23.72	AAAA
MOTA	2348	ō	GLY A 29		7.474	41.661	52.004	1.00 23.73	AAAA
ATOM	2349	N	TYR A 29	2	5.356	42.280	52.425	1.00 23.41	AAAA AAAA
ATOM	2350	CA	TYR A 29		5.282	42.991	51.163	1.00 22.71 1.00 21.55	AAAA
MOTA	2351	CB	TYR A 29		4.252	42.294	50.296 50.317	1.00 21.33	AAAA
MOTA	2352	CG	TYR A 29		4.496	40.809	51.375	1.00 20.95	AAAA
MOTA	2353	CD1			4.036	38.678	51.481	1.00 21.59	AAAA
MOTA	2354	CE1		-	5.320	40.217	49.358	1.00 21.71	AAAA
MOTA	2355	CD2	TYR A 29 TYR A 29	_	5.688			1.00 21.99	AAAA
MOTA	2356 2357	CZ	TYR A 29		5.242	38.127	50.511	1.00 22.18	AAAA
MOTA	2358	ОН	TYR A 29		5.721		50.615	1.00 21.35	AAAA
MOTA MOTA	2359	C	TYR A 29		5.042		51.225	1.00 22.90	AAAA
ATOM	2360	ō	TYR A 29		5.106		50.203	1.00 23.17	AAAA
MOTA	2361	N	HIS A 29	3 2	4.772		52.417	1.00 22.47	AAAA
ATOM	2362	CA	HIS A 29	3 2	24.572		52.566	1.00 24.27	AAAA AAAA
ATOM	2363	CB	HIS A 29		3.468			1.00 23.17 1.00 23.20	AAAA
ATOM	2364	CG	HIS A 29		3.097			1.00 23.20	AAAA
MOTA	2365	CD2	HIS A 29		23.588				AAAA
ATOM	2366	NDI	HIS A 29		22.199				AAAA
MOTA	2367	CEI	HIS A 29		22.151 22.986				AAAA
ATOM	2368		HIS A 29		22.986 25.886				AAAA
MOTA	2369	C	HIS A 29 HIS A 29		26.282				AAAA
ATOM	2370 2371	0	PRO A 29		26.563			1.00 26.37	AAAA
ATOM	2372	CD	PRO A 29		26.178			1.00 27.01	AAAA
MOTA	2373	CA	PRO A 29		27.840		52.752	1.00 27.31	AAAA
MOTA MOTA	2374	CB	PRO A 29	9 :	28.156	49.383		1.00 27.04	AAAA
ATOM	2375	CG	PRO A 29	9 :	26.743				AAAA
ATCM	2376	c	PRO A 29		27.824		54.149	1.00 27.77	AAAA
							-		•

3 TOM	2377	0	PRO A 2	99	28	.755	48.	826	54.9		1.00	28	3.04		AAAA
MOTA	2378		TYR A 3		26	.769	49.	794	54.4	452			7.04		AAAA
ATOM			TYR A 3			. 629	50.	477	55.	740			7.59		AAAA
MOTA	2379		TYR A 3			.425	51.	437	55.	700	1.0	3 (5.57		AAAA
MOTA	2380		TYR A 3			.516		599	54.		1.0	32	2.91		AAAA
MOTA	2381	CG	TYRA	000		.181		464	53.				3.45		AAAA
ATOM -	2382		TYR A 3					487	52.				3.91		AAAA
MOTA	2383		TYR A 3			.160			54.				4.19		AAAA
MOTA	2384		TYR A 3			.837		801					4.64		AAAA
MOTA	2385		TYR A 3			.809		830	54.				4.56		AAAA
ATOM	2386		TYR A 3			.468		657	52.		1.0				AAAA
ATOM	2387	OH	TYR A 3	300		.389		630	51.				6.05		AAAA
MOTA	2388	С	TYR A 3	300	26	. 454		538	56.				6.48		
ATOM	2389	0	TYR A	300 ·	27	.073		726		979 -			5.81		AAAA
ATOM	2390	N	ALA A		25	.581	48.	547		791			5.41		AAAA
	2391	CA	ALA A		25	.328	47.	606	57.	865			4.64		AAAA
MOTA	2392	CB	ALA A		24	.164	46.	.731		511	1.0	0 2	5.32		-AAAA
ATOM		C	ALA A	301		.568	46.	.775	58.	067	1.0	0 2	5.53		AAAA
MOTA	2393		ALA A			.030		. 567		194			6.39		AAAA
MOTA	2394	0	LEU A			.108		.304	56.	950	1.0	0 2	5.83		AAAA
MOTA	2395	N				.323		.500		926	1.0	0 2	6.32	<u>.</u>	AAAA
MOTA	2396	CA	LEU A			.782		.378		479	1.0	0 2	7.38	}	AAAA
MOTA	2397	CB	LEU A			.081		.723		024			8.18		AAAA
MOTA	2398	CG	LEU A					. 840		502			9.32		AAAA
ATOM	2399	CD1	LEU A	302		.119				.613			7.38		AAAA
MOTA	2400	CD2	LEU A			.296		.389					6.41		AAAA
MOTA	2401	С		302		.398		.187		.764	1.0		6.62		AAAA
ATOM	2402	0	LEU A			.874		.648		. 755			6.50		AAAA
ATOM	2403	N	ALA A	303		.756		.397		. 353			25.92		AAAA
ATOM	2404	CA	ALA A	303		.778		.176		.022					AAAA
ATOM	2405	CB	ALA A	303	31	001		.475		.277			25.24		AAAA
ATOM	2406	C	ALA A	303	30	.490		.464		.487	1.0	00 2	26.03	3	
ATOM	2407	ŏ	ALA. A	303	` 31	.325	48	.175		.340	1.0	00 2	26.95	2	AAAA
ATOM	2408	N	ARG A	304	29	3.322	49	.028		.792	1.0	00 2	25.29	9	AAAA
ATOM	2409	CA	ARG A	304	28	3.999	49	.353		.179	1.0	00 2	23.4	6	AAAA
	2410	CB	ARG A		21	7.641	50	.059	61	.291	1.0	00 2	23.7	8	AAAA
MOTA	2411	CG	ARG A		2	7.553	51	.451	60	.629	1.	00 2	24.5	9	AAAA
MOTA	2412	CD	ARG A	304	2 (5.302	52	.223	61	.091	1.	00	25.8	5	AAAA
MOTA		NE	ARG A	304	25	5.067	51	.465	60	.869	1.	00	27.5	4	AAAA
MOTA	2413	CZ	ARG A			3.978		.547	61	.637	1.	00	28.3	6	AAAA
MOTA	2414 2415		ARG A			3.957		.362	62	.695	1.	00	26.4	8	AAAA
ATOM		MIL	ARG A	304		2.910		.794	61	.358	1.	00	28.4	5	AAAA
ATOM	2416		ARG A	304		8.991		.118	62	.053			23.1		AAAA
ATOM	2417	C	ARG A			9.591		.099		.135	1.	00	22.2	6	AAAA
ATOM	2418	0	AKG A			8.330		.075		.560	1.	00	23.2	0	AAAA
MOTA	2419	N				8.200		5.817		.292	1.	00	22.3	3	AAAA
MOTA	2420	CA	ALA A			7.319		.866		.516	1.	00	22.1	.7	AAAA.
MOTA	2421	CB	ALA A			9.516	_	5.137		.621	1.	00	22.2	7	AAAA
MOTA	2422	С	ALA A			9.763		1.757		.760	1.	00	22.4	8	AAAA
MOTA	2423	0	ALA A	305		0.366		.969		.620	1	00	22.5	7	AAAA
MOTA	2424	· 11	TRP A					1.307		.861	1.	00	21.2	8	AAAA
MOTA	2425	CA	TRP A	306		1.634				553			21.0		AAAA
ATOM	2426	CB	TRP A	306		2.279		3.885		0.004	. 1	00	20.7	15	AAAA
MOTA	2427	CG	TRP A			1.703		2.618		3.683	1	00	19.5	. <u>Δ</u>	AAAA
MOTA	2428	CD2	TRP A	306		1.886		2.103			1.	00	19.1	R	AAAA
ATOM	2429	CE	TRP A	306		1.352		0.795		3.668		00	19.5		AAAA
MOTA	2430		TRP A	306		2.456		2.616		7.510	1.	00	13.2	: 1	AAAA
MOTA	2431	CD	TRP A	306		1,071		1.632		7.713			20.5		AAAA
MOTA	2432	NE	L TRP A	306	3	0.864		0.537		9.922		00	19.7	14	AAAA
MOTA	2433	CZ	2 TRP A	306	3	1.368	3	9.990		7.524		00	19.1	18	AAAA
MOTA	2434		3. TRP A	306		2.474		1.810		6.367		00	18.9	9 B	
	2435			306		1.933		0.513		6.388		.00	19.2	1 2	AAAA
MOTA	2435		TRP A	306		2.571		5.159	62	2.674		00	20.8	30	AAAA
ATOM			TRP A			3.459		4.630	6	3.341	1.	.00	20.5	55	AAAA
ATOM	2437		THR A	307		2.373		6.475	6	2.614	1	.00	20.1	17	· AAAA
ATCM	2438			307		3.175		7.399	6.	3.407	1	.00	20.5	54	AAAA
MOTA	2439					2.861		8.881		3.045	1	.00	21.0	09	AAAA
ATOM	2440	CB				3.329		9.159		1.718	1	.00	21.2	25	AAAA
ATOM		OG	1 THR A	307		3.523		9.839		4.030		.00	20.	09	AAAA
MOTA	2442	. CG	2 THR A	. 307	-		. 4	J. UJ.	•		_				•
			•												

									CA 003	1 0	ر د م	0.88	AAAA
ATOM	2443 C	THE	R A	307		. 853	47.		64.893	1 0	10 2	1.89	AAAA
ATOM	2444 0	THI	A S	307		.738	47.		65.747 65.192			0.10	AAAA
MOTA	2445 N		JA		_	. 588		851	66.559	1 (10 2	1.10	AAAA
MOTA	2446 C		JA			.189		543 340	66.644	1 (00 2	0.99	AAAA
ATOM	2447 CI		JA			. 671		656	66.674			1.54	AAAA
MOTA	2448 C		JA			.897		473	66.411			9.91	AAAA
MOTA		D1 LE			21	.397 .177		283	68.045			21.04	AAAA
MOTA	_	D2 LE	U A	308	23	.886		284	67.052	1.0	00 2	21.98	AAAA
MOTA	2451 C		U A			.284		186	68.215	1.	00 3	22.17	AAAA
MOTA	2452 0	LE	U A E A	300		.023		310	66.165	1.	00 :	22.32	AAAA
ATOM	2453 N	1 L	EA	309		.658		069	66.544	1.	00	23.12	AAAA
MOTA	2454 C. 2455 C		EA		-	.590		016	65.413	1.	00	22.33	AAAA
ATOM			EA		33	.356		.787	65.827	1.	00	21.76	AAAA AAAA
ATOM ATOM			EA			.140		678	65.061	1.	00	22.16 22.01	AAAA
ATOM	• • •	D1 IL	ΕA	309		.366		. 037	66.166	1.	00	24.52	AAAA
MOTA	2459 C	IL	EA	309		.115		. 377	66.790 67.709	3	00	25.72	AAAA
ATOM	2460 O		EA			.734		. 828	65.957			24.70	AAAA
MOTA	2461 N		PA			. 673		.253 .570	66.099	1.	00	24.20	AAAA
ATOM			PA			6.075 5.587		.417	64.944	1.	00	23.29	AAAA
MOTA		B TF	PA	310		.040		.712	65.123	1.	00	23.17	AAAA
MOTA				310		.104		.752	65.257	1.	00	21.36	AAAA
MOTA				310		.291		.472	65.490	1.	.00	20.62	AAAA
MOTA				310		.165	43	.354	65.202			20.01	AAAA AAAA
MOTA MOTA	2468	D1 TF	RP A	310		3.614		.938	65.273	1.	.00	22.82	AAAA
ATOM				310		9.967		. 803	65.497	1	.00	22.30 19.91	AAAA
MOTA		ZZ TI		310		1.521		.845	65.668		00	19.08	AAAA
ATOM	2471			310		3.388		.734	65.381 65.610			19.40	AAAA
ATOM	2472	CH2 TI				1.547		.477	67.411		.00	25.26	AAAA
ATOM				310		6.318 7.262		.945	68.109	_	.00	24.71	AAAA
MOTA			RP A	310		5.467		.247		1	.00	26.76	AAAA
MOTA			YS A	311		5.608		.975	69.007	1	.00	27.89	AAAA
MOTA		CB C'	76 7	311		4.548		.081	69.113		.00	28.98	AAAA
MOTA				311		4.798		.462	67.991		.00	31.89	AAAA AAAA
MOTA MOTA				311		5.495		6.043	70.212		.00	27.51 26.90	AAAA
ATOM	_	o c	YS A	311		6.289		5.127	71.135		00.	27.33	AAAA
ATOM				312		4.495		.169			00	28.03	AAAA
ATOM	2482			312		4.246		1.210 3.287			.00	28.55	AAAA
ATOM				312		1.903		3.333			.00	28.93	AAAA
MOTA		CG G	LU A	A 312 A 312		2.232		2.958		4 1	00	29.78	AAAA
MOTA		CD G	LU A	A 312 A 312		2.954		1.957		5 1	00	30.81	AAAA
MOTA	2486 2487	OE2 G	T.TT 2	A 312		1.754	4	3.653	74.07		1.00	30.79	AAAA
MOTA	_	C G	LU	A 312	3	5.463	4	3.357			1.00	28.91	AAAA AAAA
MOTA MOTA	2489	0	LU	A 312		5.822		3.110			1.00	30.57 29.04	
ATOM	2490	N I	EU	A 313		6.081		2.889			1.00	28.87	
ATOM	2491			A 313		37.266		2.045			1 00	29.39	
MOTA	2492	CB I	EU	A 313		37.524		1.373 0.313			1.00	30.32	AAAA
ATOM	2493	CG I	EU .	A 313		36.548 36.910		9.872			1.00	30.26	, AAAA
ATOM	2494	CD1 I	EU .	Y 212		36.582		9.114		3	1.00	30.42	AAAA :
ATOM	2495	CD2 I	EU.	A 313		38.474		2.888		5	1.0	27.75	AAAA
MOTA	2496			A 313	-	39.215		2.553	3 71.80		1.0	0 27.34	AAAA
MOTA	2497 2498	N S	SER	A 314		38.642	. 4	3.98			1.0	0 27.95	AAAA AAAA g
MOTA	2499	CA	SER	A 314	:	39.736		4.92			1.0	0 28.62	_
MOTA MOTA	2500	CB S	SER	A 314		39.690		5.93		1	1.0	0 27.49 0 30.12	
MOTA	2501	OG :	SER	A 314		40.703		6.90	4 69.34 3 71.72		1.0	0 29.6	_
ATOM		C :	SER	A 314		39.66		5.65			1 0	0 29.00	
ATOM		0	SER	A 314		40.48		6.51 5.30			1.0	0 30.7	B AAAA
ATOM	2504	N	GLY	A 315		38.67 38.53		15.30			1.0	0 32.93	2 AAAA
MOTA	2505	CA	GLY	A 315		38.54		17.45			1.0	0 34.9	2 AAAA
ATCM		C	CIV	A 315 A 315		39.14		8.09			1.0	0 35.1	7 AAAA
ATCM		О И	7BC GPI	A 316		37.88		48.04		94	1.0	0 36.8	8 .AAA.
ATOM	2508			.,					=				-

ATOM	2509	CA	ARG A 316	37.841	49.493	72.702	1.00 39.49	AAAA
				38.608	49.968	71.484	1.00 39.86	AAAA
ATOM	2510	CB	ARG A 316					
ATOM	2511	CG	ARG A 316	37.946	49.677	70.161	1.00 40.77	AAAA
	2512	CD	ARG A 316	38.843	50.226	69.077	1.00 41.47	AAAA
MOTA						69.092	1.00 42.36	AAAA
MOTA	2513	NE	ARG A 316	40.140	49.566			
MOTA	2514	CZ	ARG A 316	41.224	50.057	68.515	1.00 43.38	AAAA
				41.159	51.217	67.882	1.00 44.76	AAAA
MOTA	2515		ARG A 316					AAAA
MOTA	2516	NH2	ARG A 316	42.361	49.385	68.556	1.00 43.71	
	2517	С	ARG A 316	36.418	50.015	72.631	1.00 41.54	AAAA
MOTA				35.564	49.429	71.959	1.00 42.64	AAAA
MOTA	2518	0	ARG A 316					
MOTA	2519	N	GLU A 317	36.163	51.119	73.329	1.00 43.10	AAAA
	2520	CA	GLU A 317	34.830	51.720	73.356	1.00 44.51	AAAA
MOTA					52.936	74.293	1.00 46.17	AAAA
ATOM	2521	CB	GLU A 317	34.809				
ATOM	2522	CG	GLU A 317	34.472	52.614	75.759	1.00 49.65	AAAA
	2523	CD	GLU A 317	35.426	51.623	76.439	1.00 52.51	AAAA
MOTA						77.607	1.00 53.37	AAAA
MOTA	2524		GLU A 317	35.153	51.251			
ATOM	2525	OE2	GLU A 317	36.444	51.214	75.831	1.00 54.14	AAAA
	2526		GLU A 317	34.318	52.098	71.974	1.00 43.86	AAAA
ATOM		C ,				71.108	1.00 42.46	AAAA.
ATOM	2527	0	GLU A 317	35.067	52.532			
ATOM	2528	N	VAL A 318	33.023	51.916	71.779	1.00 44.79	AAAA
			VAL A 318	32.394	52.197	70.502	1.00 45.57	AAAA
ATOM	2529	CA				70.324	1.00 45.36	AAAA
ATCM	2530	CB	VAL A 318	31.098	51.369			
ATOM	2531	CG1	VAL A 318	30.537	51.558	68.924	1.00 45.44	AAAA
			VAL A 318	31.366	49.911	70.612	1.00 46.35	AAAA
MOTA	2532						1.00 46.41	AAAA
MOTA	2533	С	VAL A 318	32.007	53.652	70.377		
MOTA	2534	0	VAL A 318	31.199	54.145	71.165	1.00 46.53	AAAA
				32.584	54.370	69.396	1.00 46.89	AAAA .
MOTA	2535	N	PRO A 319				1.00 46.44	AAAA
ATOM	2536	CD	PRO A 319	33.581	54.017	68.375		
	2537	CA	PRO A 319	32.209	55.774	69.247	1.00 47.62	AAAA
MOTA					56.206	68.024	1.00 46.96	AAAA
MOTA	2538	CB	PRO A 319				1.00 46.38	AAAA
MOTA	2539	CG	PRO A 319	33.161	54.922	67.251		
MOTA	2540	С	PRO A 319		55.743	68.97 7	1.00 48.64	AAAA
					54.860	68.262	1.00 48.61	AAAA
MOTA	2541	0	PRO A 319				1.00 49.24	AAAA
MOTA	2542	N	GLU A 320	29.944	56:.667	69.544		
ATOM	2543	CA	GLU A 320	28.522	. 56.598	69.288	1.00 50.01	AAAA
					57.330	70.363	1.00 51.15	AAAA
MOTA	2544	CB	GLU A 320				1.00 53.01	AAAA
ATOM	2545	CG	GLU A 320	27.828	58.831	70.339	1.00 33.01	
ATOM	2546	CD	GLU A 320	26.825	59.474	71.282	1.00 54.34	AAAA
					59.273	71.077	1.00 54.04	AAAA
ATOM	2547		GLU A 320	•			1.00 55.06	AAAA
ATOM	2548	QE2	GLU A 320	27.255	60.171	72.228		
ATOM	2549	C	GLU A 320	28.206	57.168	67.921	1.00 49.78	AAAA
-			GLU A 320		56.861	67.324	1.00 49.79	AAAA
MOTA	2550	0					1.00 49.26	AAAA
ATOM	2551	N	LYS A 321		57.980	67.407		AAAA
MOTA	2552	CA	LYS A 321	28.906	` 58.589	66.109	1.00 49.20	
			LYS A 321		60.106	66.251	1.00 50.38	AAAA
MOTA	2553	CB	DIS A 323				1.00 52.88	AAAA
MOTA	: 354	CG	LYS A 321		60.674		1.00 52.00	AAAA
ATOM	:.555	CD	LYS A 321	30.717	60.180	68.002	1.00 53.76	
			LYS A 321		60.348	68.154	1.00 55.00	AAAA
MOTA	2356	CE			61.725	67.829	1.00 55.95	AAAA
MOTA	2557	NZ	LYS A 321					AAAA
ATOM	2558	С	LYS A 321	30.037	58.207	65.171	1.00 48.64	
			LYS A 321		57.650	65.590	1.00 48.58	AAAA
ATOM	2559	0				63.894	1.00 47.78	AAAA
ATOM	2560	N	LEU A 322	29.854	58.511		1.00 47.70	AAAA
MOTA	2561	CA	LEU A 322	30.870	58.238	62.896	1.00 46.13	
			LEU A 322		57.638	61.638	1.00 46.84	AAAA
ATOM	2562	CB				61.848	1.00 47.71	AAAA
MOTA	2563	CG	LEU A 322		56.504		1.00 10.00	AAAA
MOTA	2564	CD1	LEU A 322	28.788	55.998	60.491	1.00 48.02	
		200	LEU A 322		55.374	62.667	1.00 48.21	AAAA
MOTA	2565					62.580	1.00 44.61	AAAA
ATOM	2566	С	LEU A 322		59.608		1.00 44.02	AAAA
MOTA	2567	0	LEU A 322	30.674	60.571	62.491	1.00 44.73	
					59.706	62.447	1.00 42.66	AAAA
ATOM	2568	N	ASN A 32					AAAA
ATOM	2569	CA	ASN A 323	33.360	60.976			AAAA
	2570	СВ	ASN A 32	34.860	60.904	62.402	1.00 41.07	
ATOM			3 Chi 3 70		60.001	_		AAAA
ATOM	2571	CG	ASN A 32					AAAA
ATOM	2572	OD1	ASN A 32	35.117	58.901			AAAA
	2573	כעומ	ASN A 32	36.720	60.449	60.943	1.00 41.77	
ATCM			, AUI A JE.					AAAA
ATOM	2574	С	ASN A 32	33.068	01.223	60.658	1.00 100	•
•		•						

			1 iguio 15 io				
			. 22 430	60.395	60.010	1.00 40.19	AAAA
MOTA		ASN A 323	321-31			1.00 40.11	AAAA
MOTA	2576 N		33.523 33.268			1.00 39.99	AAAA
MOTA	2577 C		33.711			1.00 39.54	AAAA
MOTA	2578 CI					1.00 40.88	AAAA
MOTA	2579 CC		33.003			1.00 40.77	AAAA
MOTA		01 ASN A 324	31.763	65.938		1.00 40.63	AAAA
ATOM		02 ASN A 324	33.779	61.786		1.00 40.10	AAAA
ATOM	2582 C		33.918	61.468		1.00 39.24	AAAA
MOTA	2583 C		33.320 35.144	61.376		1.00 40.41	AAAA
ATOM	2584 N			60.519		1.00 41.41	AAAA
MOTA	2585 C			60.319		1.00 42.64	AAAA
MOTA	2586 C		37.262 38.224	59.504	56.828	1.00 44.45	AAAA
MOTA	2587 C		39.575	59.199	57.491	1.00 45.61	AAAA
MOTA	2588 C		40.358	60.464	57.850	1.00 45.88	AAAA
ATOM	2589 C	E LYS A 325	41.717	60.151	58.404	1.00 46.27	AAAA
ATOM	2590 N		35.124	59.248	56.856	1.00 41.56	aaaa
MOTA	2591 C		35.042	58.781	55.716	1.00 41.35	AAAA
MOTA	2592 0		34.524	58.703	57.906	1.00 41.32	AAAA
MOTA	2593 N		22 722	57.492	57.774	1.00 41.07	ñAññ
MOTA			33.452	56.912	59.143	1.00 40.87	AAAA
MOTA	2595 C		32.420	57.722	57.019	1.00 41.24	AAAA
MOTA	2596 C		32.045	56.913	56.174	1.00 40.91	AAAA
MOTA	2597 O			58.815	57.316	1.00 41.92	AAAA
MOTA		A LYS A 327	30.451	59.097	56.631	1.00 42.20	AAAA
ATOM		B LYS A 327	29.796	60.374	57.170	1.00 43.61	AAAA
MOTA		G LYS A 327	29.534	60.413	58,670	1.00 45.83	بالممم
MOTA		D LYS A 327		61.681	59.029	1.00 47.34	aaaa
MOTA		E LYS A 327	28.682	61.952	60.538	1.00 48.28	AAAA
MOTA MOTA		IZ LYS A 327	28.090	60.845	61.351	1.00 48.98	AAAA
ATOM	2605		30.673	59.266	55.125	1.00 41.33	AAAA
ATOM	2606		29.879	58.797	54.309	1.00 40.78	AAAA AAAA
ATOM		GLU A 328	31.761	59.950	54.781	1.00 40.39	AAAA
ATOM	_	A GLU A 328	32.129	60.217	53.399	1.00 38.91	AAAA
ATOM		B GLU A 328	33.300	61.199	53.369	1.00 40.04	AAAA
MOTA		G GLU A 328	32.941	62.576	53.909	1.00 41.94 1.00 43.77	AAAA
ATOM	2611 (D GLU A 328	34.131	63.515	53.994	1.00 43.77	AAAA
ATOM		DE1 GLU A 328	34.904	63.595	53.010	1.00 45.11	AAAA
ATOM	2613	DE2 GLU A 328	34.285	64.189	55.040 52.675	1.00 43.1.1	AAAA
ATOM	2614 (GLU A 328	32.497	58.938	51.525	1.00 37.31	AAAA
MOTA		O GLU A 328	32.114	58.722	53.355	1.00 35.67	AAAA
ATOM		N LEU A 329	33.255	58.091 56.320	52.783	1.00 33.03	AAAA
ATOM		CA LEU A 329	33.657	56.012	53.813	1.00 30.62	AAAA
MOTA	2618	CB LEU A 329		54.549	53.481		AAAA
MOTA		CG LEU A 329	34.760 35.549		52.193	1.00 36.24	AAAA
MOTA		CD1 LEU A 329			54.622	1.00 25.74	AAAA
MOTA		CD2 LEU A 329				1.00 33.24	AAAA
MOTA		C LEU A 329			51.205	1.00 32.72	AAAA
ATOM		O LEU A 329				1.00 33.92	AAAA
MOTA		N LEU A 330				1.00 34.91	AAAA
MOTA		CA LEU A 330				1.00 34.02	AAAA
ATOM		CB LEU A 330 CG LEU A 330				1.00 34.06	AAAA
MOTA		CG LEU A 330	·			1.00 33.63	ĀĀĀĀ
MOTA		CD2 LEU A 330				1.00 33.82	AAAA
ATOM						1.00 35.94	AAAA
MOTA						1.00 36.14	AAAA
ATOM	2631				51.883	1.00 38.17	AAAA
ATOM						1.00 41.05	AAAA
ATOM						1.00 41.83	AAAA
MOTA					52.497		AAAA
MOTA		CG LYS A 33			52.755	1.00 44.15	AAAA
ATOM					51,730		AAAA
ATOM		NZ LYS A 33	_		51.993		AAAA 2222
ATOM		C LYS A 33	-	57.681	49.490		AAAA
MOTA		O LYS A 33		57.980	48.480	1.00 41.94	AAAA
MOTA	2040				-		•
•							

					_											
			SER A	222		3.0	618	57.	316	49.4	163	1.0	0 4	4.	45	AAAA
MOTA	2641						351	57.		48.2		1.0				AAAA
MOTA	2642		SER A				854	57.		48.4		1.0				AAAA
MOTA	2643		SER A				380	56.		49.0		1.0				AAAA
ATOM	2644		SER A				093	55.		47.		1.0				AAAA
MOTA	2645		SER A				262	55.		46.2		1.0				AAAA
ATOM -	2646		SER A					54.		48.2		1.0				AAAA
ATOM	2647		ILE A				697	53.		47.1		1.0				AAAA
MOTA	2648		ILE A				420	52.		48.		1.0	ñ	52.	35	AAAA
MOTA	2649	CB	ILE A	.333			246	51.		48.		1.0				AAAA
ATOM	2650						.889			49.		1.0				AAAA
MOTA	2651		ILE A				. 522	52. 51.		50.		1.0				AAAA
MOTA	2652		ILE A				. 403	53.			924 -	1.0				AAAA
MOTA	2653	С	ILE A		•		.120		178	47.		1.0				AAAA
MOTA	2654	0	ILE A				.122	.53.		45.		1.0				AAAA
MOTA	2655	N	ASP A				.118		263		940	1.0				AAAA
MOTA	2656	CA	ASP A				.863		460		433	1.0				AAAA
MOTA	2657	CB	ASP A				.050 .976		446		823	1.0				AAAA
ATOM	2658	CG	ASP A				.853		194		606	1.0				AAAA
ATOM	2659	ODI	ASP A	334			.839		925		559				. 34	AAAA
ATOM			ASP A	334			.251		898		215				. 95	AAAA
MOTA	2661	C	ASP A		•		.803		861		840				.15	AAAA
MOTA	2662	0	ASP A				.113		914		897				. 56	AAAA
MOTA	2663	N	PHE A				.414		701		257				. 12	AAAA
MOTA	2664	CA	PHE A				.311	_	621		779				.40	AAAA
MOTA	2665	CB	PHE A				.224		714		263				.98	AAAA
MOTA	2666	CG		335			.180		379		868				.54	AAAA
MOTA	2667	CDI	PHE A	1 222			.234		197		107				.12	AAAA
ATOM	2668	CD2	PHE A	, 22E			.163		. 539		305				.75	AAAA
MOTA	2669	CEI	PHE A	4 222 • 225			.213		.367		552				.79	AAAA
MOTA	2670		PHE A				.177		.034		150	1.	00	66	.01	AAAA
ATOM	2671	CZ	PHE	A 335 A 335			.025		.626		640	1.	00	65	.41	AAAA
MOTA	2672	C		A 335			.591		.564		.184				.27	AAAA
MOTA	2673	0		A 336			.338		.763		.618				.38	AAAA
MOTA	2674	N		A 336			.980		.826		.097				.49	AAAA
MOTA	2675	CA		A 336			893		.260		. 673	1.	00	68	.25	AAAA
ATOM	2676	CB		A 336			.459		.230		.116	1.	00	69	.15	AAAA
ATOM	2677 2678	CG CD		A 336			334		.465		.804	1.	00	69	.40	AAAA
MOTA	2679		GLU				.710		.271		.784				.57	AAAA
ATOM	2680	OEI	GLU	A 336			.851	51	.051	40	.804				.10	AAAA
MOTA	2681	C	GLU	A 336			.098	50	.999	46	.025	1.	00	67	.68	AAAA
ATOM	2682	Õ	GLU	A 336			.216	49	.776	46	.082	1.	00	67	.58	AAAA
MOTA ATOM	2683	N	GLU	A 337		ŻĆ	.227	51	.679	46	.761	1.	00	67	.87	AAAA
ATOM	2684	CA	GLU	A 337		19	3.317		.020		.686				3.66	AAAA
ATOM	2685			A 337		18	3.583	52	.085		.502				3.88	AAAA
MOTA	2686	CG	GLU	. 337		18	3.279		.715		.944	1.	00	68	3.12	AAAA
MOTA	2687	CD	GLU	A 337		19	9.527	51	.587		.789	1.	00	67	7.70	AAAA
ATOM	2688		GLU			20	0.319	52	.554		.851	1.	00	6	7.05	AAAA
MOTA	2689		GLU			19	9.711	50	.518		.398				7.79	AAAA
MOTA	2690	С	GLU	A 337		18	B.322		.222		. 827	1.	.00	6:	9.28	AAAA
MOTA	2691	ō		A 337		1	7.886		.705		.780	1.	.00	6:	9.50	AAAA
ATOM	2692	N		A 338		1	7.966		.012		.259				9.55	AAAA AAAA
ATOM	2693	CA		A 338			7.035		1.176		.497				9.67	AAAA
ATOM	2694	CB		A 338			6.995		.759		.066				0.51	AAAA
ATOM	2695			A 338			6.225		.789		.221	1.	. 00	!	1.57	AAAA
ATOM	2696			A 338			6.666	4.5	.462		.936		. 00	1	2.04	AAAA
MOTA	2697			A 338			5.052		.208		.698	1	. 00	1	1.69	AAAA
MOTA	2698		1 PHE	A 338			5.944		1.566		.138		.00	7	2.23	AAAA
ATOM	2699	CE:	2 PHE	A 338			4.323		1.313		.909				1.93	AAAA
MOTA	2700		PHE	A 338			4.770		3.991		.627				2.11	AAAA
ATOM	2701			A 338			5.633		3.770		.494				9.26	AAAA
ATOM	2702			A 338			5.072		9.029		. 434				8.86	AAAA
ATOM	2703		ASP	A 339			5.053		3.962		7.674		. 00	, 6	9.35	AAAA
ATOM	2704		ASP	A 339			3.733		9.572		7.755		. 00	, 6	9.61	AAAA
· ATOM			ASP	A 339			3.134		9.457		9.157		.00	, 6	9.48	AAAA
MOTA				A 339		1	1.819	5	0.233	49	9.299	1	. 00	<i>j</i> 6	9.72	
			•							•						

								40 050	1.00 6	:0 20	AAAA
MOTA	2707	OD1 :	ASP A	339		.813	51.462	49.058	1.00	29.39	
ATOM	2708	OD2	ASP A	339		.790	49.618	49.655	1.00	59.78	AAAA
	2709		ASP A		13	.972	51.035	47.440	1.00		AAAA
MOTA			ASP A			.305	51.815	48.333	1.00	69.92	AAAA
MOTA	2710					.810	51.389	46.168	1.00 1	70.23	AAAA
ATOM	2711		ASP A					45.699		70.39	AAAA
MOTA	2712		ASP A			.023	52.748		1.00		AAAA
ATOM	2713	CB	ASP A	340	12	.757	53.283	45.041			
ATOM	2714	CG	ASP A	340	12	.397	52.517	43.791	1.00	70.86	AAAA
	2715		ASP A		12	.126	51.302	43.903	1.00		AAAA
ATOM			ASP A			.399	53.125	42.699	1.00	70.89	AAAA
MOTA	2716					.482	53.674	46.807	1.00	70.63	AAAA
MOTA	2717		ASP A					47.008		71.13	AAAA
ATOM	2718	0	ASP A	340		.688	53.847			69.95	AAAA
ATOM	2719	N	GLU A	341	13	.543	54.259	47.544	1.00	65.33	
ATOM	2720	CA	GLU A	341	13	.947	55.150	48.619		69.17	AAAA
	2721		GLU A		13	.636	56.613	48.266		70.83	AAAA
MOTA			GLU A			.098	57.601	49.347	1.00	73.44	AAAA
ATOM	2722	CG				.956	59.071	48.951	1.00	75.27	AAAA
MOTA	2723	CD.	GLU A				59.518	48.646		76.21	AAAA
MOTA	2724		GLU A			.825				75.69	AAAA
ATOM	2725	OE2	GLU A	341		.984	59.786	48.954	1.00	67.09	AAAA
MOTA	2726	С	GLU A	341	13	.367	54.819	49.983	1.00	67.09	
ATOM	2727	Ō	GLU A	341	12	2.233	55.176	50.297		66.57	AAAA
	2728	N	VAL A			.158	54.114	50.785		64.87	AAAA
MOTA	_				-	.767	53.779	52.148	1.00	62.55	AAAA
MOTA	2729	CA	VAL A			. 265	52.377	52.589		62.81	AAAA
MOTA	2730	CB	VAL A					54.081		62.56	AAAA
MOTA	2731		VAL A			1.042	52.193			63.69	AAAA
ATOM	2732	CG2	VAL A	342		3.513	51.298	51.849			AAAA
ATOM	2733	С	VAL A	342	14	1.483	54.822	52.982	1.00	59.94	
	2734	Ö	VAL A		14	1.022	55.215	54.054		59.91	AAAA
MOTA			ASP A			5.609	55.278	52.442	1.00	56.85	AAAA
ATOM	2735	И				5.457	56.266	53.085	1.00	54.01	AAAA
ATOM	2736	CA	ASP A				57.446	53.605		54.18	AAAA
MOTA	2737	CB	ASP A			5.639				53.96	AAAA
ATOM	2738	CG	ASP A			6.505	58.511	54.241	1.00	54.59	AAAA
ATOM	2739	OD1	ASP A	343		5.947	59.485	54.785			AAAA
ATOM	2740			343 .	1	7.747	58.373	54.191		53.61	
	2741	C	ASP A	343	1	7.186	55.609	54.242		51.92	AAAA
ATOM			ASP A		1	6.611	55.371	55.307		51.89	AAAA
MOTA	2742	0				8.458	55.306	54.029	1.00	48.86	AAAA
MOTA	2743	N	ARG A			9.240	54.676	55.069	1.00	45.59	AAAA
ATOM	2744	CA	ARG A					54.573		43.94	AAAA
ATOM	2745	CB	ARG A			9.847	53.369			41.70	AAAA
ATOM	2746	CG	ARG A	344		8.847	52.289	54.220			AAAA
ATOM	2747	CD	ARG A	344	1	7.953	51.955	55.385		38.94	
ATOM	2748	NE	ARG A		1	7.139	50.781	55.096	1.00	36.78	AAAA
	2749	CZ	ARG :		1	6.176	50.316	55.888		34.81	AAAA .
MOTA						5.890	50.927	57.033	1.00	34.11	AAAA
MOTA	2750	NH1				5.506	49.228	55.537	1.00	31.84	AAAA ·
MOTA	2751	NH2	ARG A						1 00	44.83	AAAA
MOTA	2752	С	ARG A	344		0.340			1.00	43.97	AA A
ATOM	2753	0	ARG A	A 344		1.308			1.00	44.32	A-AA
ATOM	2754	N	SER A	345	2	0.192			1.00	44.32	
ATOM	2755	CA		A 345	2	1.199	57.877	55.618	1.00	43.74	AAAA
		СВ		A 345	2	0.860	59.248	55.039	1.00	44.49	AAAA
ATOM	2756			A 345		9.645			1.00	46.07	AAAA
MOTA	2757	OG				1.307				42.82	AAAA
MOTA	2758	С		A 345						42.91	AAAA
MOTA	2759	0	SER A	A 345		2.304				41.48	AAAA
ATOM	2760	N	TYR	A 346		0.282				1 40 35	AAAA
ATOM	2761	CA		A 346	2	0.296	57.549			40.35	
	2762	CB		A 346	1	8.947	57.068	59.858		40.38	AAAA
ATOM						8.630			1.00	39.28	AAAA
MOTA	2763	CG		A 346		9.293				38.74	AAAA
ATOM	2764		L TYR						1 0	37.71	AAAA
ATOM	2765	CE:		A 346		9.022				38.49	AAAA
ATOM	2766	CD	TYR .	A 346		7.682			_	0 20.43	AAAA
ATOM	2767			A 346	2	17.405				0 38.17	
	2768			A 346	1	18.079	52.899	59.126		0 37.59	AAAA
ATOM				A 346		7.794				0 37.14	AAAA
ATOM	2769		7 I I	7 346		21.436			_	0 39.91	AAAA
ATOM	2770			A 346					_	0 40.28	AAAA
ATOM	2771	. 0		A 346		21.967				0 39.14	AAAA
ATOM	2772	N	MET	A 347		21.800	55.640	59.113	, 1.0	5 55.14	

: mo14	2773	CA	MET A	347	22.879	54.756	59.530	1.00 38.19	AAAA
ATOM	2774		MET A		23.042	53.582	58.566	1.00 38.26	AAAA
ATOM			MET A		21.973	52.523	58.694	1.00 38.17	AAAA
ATOM	2775		MET A		22.317	51.115	57.641	1.00 38.05	AAAA
MOTA	2776		MET A		22.237	51.892	56.101	1.00 37.61	AAAA
MOTA	2777		MET A		24.189	55.494	59.603	1.00 38.00	AAAA
MOTA	2778		MET A		25.127	55.033	60.250	1.00 37.40	AAAA
MOTA	2779		LEU A		24.248	56.637	58.929	1.00 38.08	AAAA
ATOM	2780				25.449	57.463	58.898	1.00 38.07	AAAA
ATOM	2781		LEU A		25.445	58.330	57.638	1.00 36.66	AAAA
MOTA	2782		LEU A		25.379	57.583	56.310	1.00 35.47	AAAA
MOTA	2783		LEU A		25.285	58.559	55.165	1.00 34.51	AAAA
MOTA	2784				26.605	56.716	56.167	1.00 36.56	AAAA
ATOM	2785		LEU A		25.521	58.353	60.138	1.00 39.07	AAAA
ATOM	2786		LEU A		26.546	58.980	60.406	1.00 38.81	AAAA
ATOM	2787		GLU A		24.432	58.385	60.898	1.00 39.90	AAAA
ATOM	2788		GLU A		24.363	59.213	62.092	1.00 40.95	AAAA
MOTA	2789	CA			22.961	59.821	62.203	1.00 41.70	AAAA
MOTA	2790	CB	GLU A GLU A		22.515	60.629	60.966	1.00 42.28	AAAA
ATOM	2791	CG			23.349	61.891	60.708	1.00 42.51	AAAA
ATOM	2792	CD	GLU A		23.414	62.778	61.587	1.00 42.38	AAAA
ATOM	2793		GLU A		23.933	61.998	59.614	1.00 43.34	AAAA
ATOM	2794		GLU A		24.740	58.511	63.406	1.00 41.12	AAAA
ATOM	2795	C	GLU A		24.664	59.118	64.476	1.00 41.38	AAAA
MOTA	2796	0	GLU A		25.140	57.243	63.326	1.00 40.86	AAAA
MOTA	2797	N	THR A		25.555	56.475	64.504	1.00 40.69	AAAA
MOTA	2798	CA	THR A		24.405	56.283	65.510	1.00 41.56	AAAA
MOTA	2799	CB			24.062	57.549	66.078	1.00 41.48	AAAA
ATOM	2800		THR A		24.821	55.345	66.638	1.00 41.19	AAAA
ATOM	2801	CG2	THR A		26.109	55.109	64.141		AAAA
ATOM	2802	C	THR A		25.857	54.595	63.055	1.00 39.93	AAAA
ATOM	2803	0 N	LEU A		26.865	54.527	65.067	1.00 40.32	AAAA
ATOM	2804	N CA	LEU A		27.491	53.227	64.857	1.00 40.70	AAAA
ATOM	2805 2806	CB	LEU A		28.855	53.213	65.540	1.00 39.89	AAAA
ATOM	2807	CG	LEU A		29.911	52.290	64.951	1.00 39.68	AAAA
ATOM	2809		LEU A		31.170	52.403	65.772	1.00 39.88	AAAA
MOTA ATOM	2809		LEU A		29.414	50.861	64.945	1.00 40.70	AAAA
ATOM	2810	C	LEU A		26.612	52.091	65.384	1.00 41.12	AAAA
ATOM	2811	Ô	LEU A		26.467	51.060	64.736	1.00 40.02	AAAA
ATOM	2812	N	LYS A		26.040	52.292	66.567	1.00 42.99	AAAA
ATOM	2813	CA	LYS A		25.138	51.326	67.201	1.00 43.93	AAAA
ATOM	2814	CB	LYS A		25.412	51.225	68.707	1.00 43.38	AAAA
ATOM	2815	CG	LYS A		26.743	50.597	69.055	1.00 44.68	AAAA
ATCM	2816	CD	LYS A		27.185	50.927	70.482	1.00 45.48	AAAA
ATOM	2817	CE	LYS A		26.189	50.500	71.539	1.00 46.21	AAAA
MOTA	2818		LYS A	352	76.646	50.944	72.895	1.00 47.34	AAAA
ATOM	2819	C	LYS A	352	23.723	51.838	67.003	1.00 44.40	AAAA
ATCM	2820	Ó	LYS A	352	.23.375	52.917	67.488	1.00 45.79	AAAA
ATCM	2821	N	ASP A	353	22.904	51.083	66.287	1.00 44.78	AAAA
ATOM	2822	CA	ASP A		21.532	51.509	66.074	1.00 44.79	AAAA
ATOM	2823	CB	ASP A		21.050	51.030	64.702°	1.00 45.20	AAAA
ATOM	2824	CG	ASP A		21.146	49.544	64.546	.1.00 45.21	AAAA
ATOM	2825	OD1	ASP A	353	21.806	49.086	63.581	1.00 45.06	AAAA
ATOM	2826	OD2	ASP A	353	20.549	48.841	65.391	1.00 45.54	AAAA AAAA
ATCM	2827	С	ASP A	353	20.645	50.993	67.217	1.00 44.44	
ATCM	2828	0	ASP A		21.042	50.113	67.973	1.00 44.29	AAAA AAAA
ATOM	2829	N	PRO A		19.439	51.553	67.367	1.00 44.22	AAAA
MCTA	2830	CD	PRO A		18.839	52.617	66.550	1.00 44.38	AAAA
ATCM	2831	CA	PRO A		18.500			1.00 44.18	
ATCH	2832	CB	PRO A	354	17.371	52.170	68.238	1.00 44.52	AAAA
ATCM	2833	CG	PRO A		17.368	52.341	66.749	1.00 44.66	AAAA
ATOM	2834	С	PRO A	354	17.995		68.328	1.00 43.87	AAAA AAAA
ATOM	2835	0	PRO A		17.962		67.249	1.00 44.48	AAAA
ATCM	2836	N	TRP A		17.588			1.00 43.23	AAAA
ATOM	2837	CA	TRP A	355	17.051		69.500		AAAA.
ATCM	2838	CB	TRP A	355	16.743	47.401	70.927	1.00 46.42	. AAAA
							_		-

			255		17.959	47.052	71.695	1.00 49.91	AAAA
MOTA	2839		TRP A 355				71.903	1.00 51.56	AAAA
MOTA	2840		TBP A 355		18.476		72.627	1.00 52.03	AAAA
ATOM	2841		TRP A 355		19.684			1.00 52.25	AAAA
ATOM	2842		TRP A 355		18.038			1.00 50.53	AAAA
ATOM	2843	CD1 '	TRP A 355		18.846			1.00 51.63	AAAA
ATOM	2844	NE1	TRP A 355		19.885	47-208	72.846		
	2845		TRP A 355		20.460	44.763	73.003	1.00 52.64	AAAA
MOTA	2846		TRP A 355		18.810	43.352	71.921	1.00 53.12	AAAA
MOTA	_		TRP A 355		20.008	43.518	72.642	1.00 53.02	AAAA
ATOM	2847		TRP A 355		15.788	47.767	68.675	1.00 40.28	AAAA
MOTA	2848				15.017	48.720	68.591	1.00 39.82	AAAA
MOTA	2849		TRP A 355	•	15.591	46.610	68.065	1.00 36.83	AAAA
ATOM	2850		ARG A 356			46.365	67.225	1.00 33.70	AAAA
MOTA	2851		ARG A 356		14.440		65.772	1.00 29.50	AAAA
MOTA	2852	CB	ARG A 356		14.901	46.197	65.256	1.00 25.22	AAAA
ATOM	2853	CG	ARG A 356		15.635	47.423		1.00 21.53	AAAA
ATOM	2854		ARG A 356		16.418	47.194	63.973	1.00 21.33	AAAA
	2855	NE	ARG A 356		17.055	48.435	63.533	1.00 18.55	
ATOM	2856	cz	ARG A 356		17.976	48.533	62.574	1.00 17.06	AAAA
ATOM			ARG A 356		18.403	47.451	61.919	1.00 17.64	AAAA
MOTA	2857	MUT	ARG A 356.		18.445	49.721	62.241	1.00 11.56	AAAA
MOTA	2858		ARG A 330.		13.831	45.095	67.773	1.00 34.63	AAAA
ATOM	2859	С	ARG A 356			44.117	67.051	1.00 35.86	AAAA
ATOM	2860	0	ARG A 356		13.605		69.079	1.00 34.58	AAAA
ATOM	2861	N	GLY A 357		13.587	45.112		1.00 34.33	AAAA
ATOM	2862	CA	GLY A 357		13.003	43.960	69.734	1.00 34.31	AAAA
ATOM	2863	С	GLY A 357		11.536	43.783	69.395	1.00 34.31	AAAA
,	2864	ō ·	GLY A 357		11.006	44.418	68.484	1.00 33.56	AAAA
ATOM	2865	N	GLY A 358		10.876	42.906	70.139	1.00 34.47	
MOTA		CA	GLY A 358		9.468	42.656	69.916	1.00 34.61	AAAA
MOTA	2866		GLY A 358		9.114	41.389	70.655	1.00 34.47	AAAA
MOTA	2867	C	GLI A 330		9.962	40.821	71.345	1.00 34.27	AAAA
ATOM -	2868	0	GLY A 358		7.869	40.948	70.523	1.00 34.16	AAAA
MOTA	2869	N	GLU A 359			39.729	71.180	1.00 33.94	AAAA
ATOM	2870	CA	GLU A 359		7.438		71.174	1.00 34.78	AAAA
ATOM	2871	CB	GLU A 359		5.910	39.644	72.123	1.00 36.70	AAAA
MOTA	2872	CG	GLU A 359		5.278	40.648		1.00 38.40	AAAA
ATOM	2873	ĊD	GLU A 359		3.863	41.020	71.740	1.00 39.65	AAAA
ATOM	2874	· OE1			3.017	40.108	71.600	1.00 39.63	AAAA
	2875	OE2	GLU A 359		3.598	42.234	71.584	1.00 38.52	AAAA
ATOM	2876	C	GLU A 359		8.058	38.549	70.464	1.00 32.86	
MOTA			GLU A 359		8.678	38.692	69.427	1.00 32.92	AAAA
MOTA	2877	0	VAL A 360		7.918	37.375	71.036	1.00 32.63	AAAA
MOTA	2878	N	VAL A 300		8.480	36.215	70.409	1.00 32.70	AAAA
MOTA	2879	CA	VAL A 360		9.422	35.472	71.376	1.00 33.24	AAAA
MOTA	2880	CB	VAL A 360		10.017				AAAA
MOTA	2881	CG1	VAL A 360						AAAA
ATOM	2882	CG2	VAL A 360		10.521				AAAA
MOTA	2883	· C	VAL A 360		7.339				AAAA
ATOM	2884	0	VAL A 360		6.702	34.660			AAAA
ATOM	2885		ARG A 361		7.084				AAAA
ATOM	2886		ARG A 361		6.035	34.508	68.086	1.00 33.52	AAAA
	2887		ARG A 361		6.148	34.558	66.565		
ATOM			ARG A 361		5.731		65.967	1.00 34.35	AAAA
ATOM	2888		ARG A 361		6.041			1.00 33.90	AAAA
MOTA	2889		ARG A 301		7.430		64.193	1.00 31.70	AAAA
MOTA	2890		ARG A 361		7.890			1.00 31.18	AAAA
ATOM	2891		ARG A 361		7.068				AAAA
MOTA	2892	NH:	1 ARG A 361						AAAA
MOTA	2893	NH	2 ARG A 361		9.162				AAAA
ATOM	2894	_C	ARG A 361		6.066				AAAA
ATOM	2895		ARG A 361		7.101				AAAA
		N	LYS A 362		4.914	32.407	68.496		AAAA
ATOM	2897				4.808				AAAA
MOTA			LYS A 362		3.350	30.55	5 68.782		
ATOM		CB			2.378			6 1.00 40.38	AAAA.
ATOM		- cc	710 X 363		2.50			7 1.00 42.09	AAAA
ATOM	2900		LYS A 362		2.20				AAAA
ATCM	290:		LYS A 362		2.47	3 34.90			AAAA
ATOM		2 NZ	LYS A 362						AAAA
ATCM		3 C	LYS A 362		5.71				AAAA
ATCM			LYS A 362		6.42	5 29.30	T 00.40	, 2.00 34.25	•

			•					
ATOM	2905	N.	GLU A 363	5.661	30.460	66.703	1.00 35.12	AAAA
ATOM	2906	CA	GLU A 363	6.445	29.741	65.699	1.00 35.62	AAAA
MOTA	2907	CB	GLU A 363	6.567	30.560	64.424	1.00 36.81	KAKA
MOTA	2908	CG	GLU A 363	5.280	30.808	63.711	1.00 38.66	AAAA
ATOM	2909	CD	GLU A 363	5.477	31.704	62.517	1.00 39.60	AAAA
ATOM .	2910		GLU A 363	6.287 4.826	31.324 32.782	61.637	1.00 39.11 1.00 39.95	AAAA AAAA
MOTA MOTA	2911 2912	C C	GLU A 363 GLU A 363	7.836	29.450	62.469 66.181	1.00 35.33	ÄAAA
MOTA	2913	o	GLU A 363	8.321	28.316	66.098	1.00 34.50	AAAA
ATOM	2914	N	VAL A 364	8.475	30.505	66.671	1.00 34.96	AAAA
ATOM	2915	CA	VAL A 364	9.830	30.431	67.180	1.00 34.44	AAAA
MOTA	2916	CB	VAL A 364	10.338	31.821	67.570	1.00 33.68	AAAA
MOTA	2917		VAL A 364	11.739	31.722		- 1.00 34.13	AAAA
ATOM	2918		VAL A 364	10.337	32.715	66.347	1.00 31.83 1.00 34.44	AAAA AAAA
ATOM	2919 2920	C O	VAL A 364 VAL A 364	9.908 10.789	29.499 28.640	68.370 68.430	1.00 34.44	AAAA AAAA-
MOTA MOTA	2921	N	LYS A 365	8.980	29.649	69.305	1.00 33.27	AAAA
ATOM	2922	CÀ	LYS A 365	8.970	28.790	70.476	1.00 33.20	AAAA
ATOM	2923	CB	LYS A 365	7.968	29.319	71.508	1.00 34.28	AAAA
ATOM	2924	CG	LYS A 365	8.307	30.705	72.033	1.00 33.67	AAAA
MOTA	2925	CD	LYS A 365	7.282	31.181	73.039	1.00 34.85	AAAA
MOTA	2926	CE	LYS A 365	7.658	32.534	73.638	1.00 36.47 1.00 37.91	AAAA AAAA
MOTA	2927 2928	NZ C	LYS A 365 LYS A 365	6.698 8.654	32.990 27.342	74.710 70.109	1.00 37.91	AAAA
MOTA MOTA	2929	0	LYS A 365	9.071	26.421	70.818	1.00 31.95	AAAA
ATOM	2930	N	ASP A 366	7.919	27.136	69.012	1.00 32.81	AAAA
ATOM	2931	CA	ASP A 366	7.600	25.777·		1.00 33.65	AAAA ,
ATOM	2932	CB	ASP A 366	6.459	25.726	67.557	1.00 33.98	AAAA '
MOTA	2933	CG	ASP A 366	5.131	26.107	68.140	1.00 33.94	AAAA AAAA
MOTA	2934 2935		ASP A 366 ASP A 366	4.870	25.767 26.722	69.307 67.412	1.00 33.89 1.00 35.08	AAAA
ATOM ATOM	2935	C C	ASP A 366	8.820	25.167	67.940	1.00 33.05	AAAA
ATOM	2937	Õ	ASP A 366	9.140	24.006	68.172	1.00 33.66	AAAA
ATOM	2938	N	THR A 367	9.473		67.102	1.00 33.07	AAAA
ATOM	2939	CA	THR A 367	10.684	25.540	66.412	1.00 32.27	AAAA
ATOM	2940	CB	THR A 367	11.304	26.719	65.641	1.00 32.28	AAAA AAAA
MOTA	2941 2942		THR A 367 THR A 367	10.473 12.711	27.039 26.377	64.520 65.166	1.00 30.64 1.00 33.29	AAAA
ATOM ATOM	2942	C	THR A 367	11.680	25.044	67.442	1.00 33.23	AAAA
ATOM	2944	ō	THR A 367	12.178	23.918	67.352	1.00 30.45	AAAA
MOTA	2945	N	LEU A 368	11.955	25.896	68.426	1.00 32.05	AAAA
MOTA	2946	CA	LEU A 368	12.888	25.560	69.482	1.00 32.49	AAAA
ATOM	2947	CB	LEU A 368	13.085	26.749	70.421 69.960	1.00 32.27 1.00 32.71	AAAA AAAA
MOTA	2948	CG	LEU A 368	14.097 15.488	27.809 27.170	69.899	1.00 32.71	AAAA
atom Atom	2949 2950		LEU A 368	13.709	28 393	68.597	1.00 33.86	AAAA
ATOM	2951	C	LEU A 368	12.455	24.334	70.256	1.00 33.82	AAAA
MOTA	2952	0	LEU A 368	13.266	23.133	70.489	1.00 34.29	AAAA
ATOM	2953	N	GLU A 369	11.183	24.285	70.645	1.00 34.30	AAAA
ATOM	2954	CA	GLU A 369	10.687	23.135	71.375	1.00 36.07	AAAA AAAA
MOTA	2955 2956	CB	GLU A 369 GLU A 369	9.211 8.974	23.319 24.285	71.748° 72.920	1.00 38.71	AAAA
MOTA MOTA	2957	CD	GLU A 369	7.509	24.359	73.341	1.00 41.56	AAAA
ATOM	.2958		GLU A 369	6.917	23.276	73.572	1.00 41.83	AAAA
ATOM	2959		GLU A 369	6.957	25.489	73.451	1.00 41.74	AAAA
MOTA	2960	С	GLU A 369	10.893	21.822	70.611	1.00 37.16	AAAA
ATOM	2961	0	GLU A 369	11.338	20.831	71.196	1.00 37.00	AAAA
ATOM	2962	N	LYS A 370	10.586	21.788	69.315 68.567	1.00 37.71 1.00 38.46	AAAA AAAA
ATOM	2963 2964	CA	LYS A 370 LYS A 370	10.797 10.166	20.547 20.604	67.177	1.00 38.46	AAAA
ATOM ATOM	2965	CB CG	LYS A 370	8.646	20.532	67.186	1.00 42.68	AAAA
ATOM	2966	CD	LYS A 370	8.092	20.320	65.775	1.00 44.54	AAAA
ATOM	2967	CE	LYS A 370	6.572	20.075	65.781	1.00 45.55	AAAA
MOTA	2968	NZ	LYS A 370	6.009	19.797	64.409	1.00 45.50	AAAA
ATOM	2969	C	LYS A 370	12.282	20.235	68.452	1.00 38.34	AAAA aaa
ATCM	2970	0	LYS A 370	12.683	19.071	68.493	1.00 37.86	AAAA

					6							
						13.105	21.266	68.311	1.00	37.69		AAAA
ATOM	2971	N	ALA A' ALA A	3/1		14.543	21.057	68.226	1.00	37.20		AAAA
,,,	2972		ALA A	371		15.258	22.375	67.936	1.00	35.48		AAAA AAAA
MOTA	2973 2974	CB C	ALA A	371		15.023	20.477	69.558	1.00	37.63		AAAA
ATOM	2975	0	ALA A	371		15.920	19.626	69.585	1,00	37.12 37.59		AAAA
ATOM	2976	И	LYS A	372		14.426	20.930	70.665		37.46		AAAA
ATOM ATOM	2977	CA	LYS A	372		14.796	20.432	71.995		36.52		AAAA
ATOM	2978	СВ	LYS A	372		14.022	21.156	73.095 73.111		22.67		AAAA
ATOM	2979	CG	LYS A	372		14.287	22.634 23.396	74.022		22.67	-	AAAA
MOTA	2980	CD	LYS A	372		13.309 13.600	24.874	73.901	1.00	22.67		AAAA
MOTA	2981	CE	LYS A	372		12.692	25.708	74.785	1.00	22.67		AAAA
MOTA	2982	NZ	LYS A	372		14.495	18.957	72.077	1.00	37.60		AAAA ·
MOTA	2983	С 0	LYS A	372		15.367	18.171	72.407		37.26	1	AAAA AAAA
ATOM	2984 2985	N	ALA A	373		13.249	18.595	71.789		38.17 39.55		AAAA
MOTA	2986	CA	ALA A	373		12.812	17.206	71.829		39.34	, 1	AAAA
ATOM ATOM	2987	СВ	ALA A	373		11.365	17.109			41.02	2·	AAAA
ATOM	2988	С	ALA A	373		13.675	16.277		·	42.26	5	AAAA
ATOM	2989	0	ALA A	373		14.366	15.410 16.416		5 1.00	42.06	5	AAAA
ATOM	2990	OXT	ALA A	373		13.663 23.696	34.788		2 1.00	27.38	В	ZONE
HETATM	2991	ZN		951		24.578	33.295		8 1.00	31.9	5	SAHA
HETATM	2992	01	SHA C			24.294	35:218	51.44	_	33.5	1	SAHA
HETATM	1 2993	02	SHA			24.578	· · · ·	52.06		34.0	3 -	SAHA SAHA
HETATM	2994	N1 C1	SHA			24.063	34.053			34.2 36.8	ວ 7	SAHA
HETATM HETATM	1 2995	C2	SHA			23.090				39.3	, 1	SAHA
HETAT	1 2997	C3	SHA (2 1		23.548		48.81 47.85		40.8	6	AHAR
HETAT	1 2998	C4	SHA			22.498				43.3	7	AHA
HETATI	1 2999	C5	SHA			21.590 21.061			2 1.00	46.7	2	SAHA
HETATI	3000	¢6	SHA			19.754			7 1.00	0 48.7	5	SAHA
HETATI	M 3001	C7	SHA	C 1		19.960		0 44.69		0 50.7	5	SAHA SAHA
HETATI	M 3002	C8 03	SHA			20.381	35.46			0 51.0) B : 2	SAHA
HETATI	м 3003 м 3004		SHA	_		19.59			_	0 52.5 0 54.2) <u>5</u>	SAHA
HETAT	M 3005	C9	SHA			19.847		0 44.50 1 45.2		0 55.7	76	SAHA
нетат	м 3006	Cl	O SHA	C 1		19.24			_	0 56.5	53	SAHA
HETAT	м 3007	Cl	1 SHA	C 1		19.42		•	45 1.0	0 56.5	58	SAHA
HETAT	M 3008	C1	2 SHA	C 1		20.75			27 1.0	0 55.9	93	SAHA
HETAT	M 3009		3 SHA 4 SHA	c 1 c 1		20.61				0 54	65	SAHA SOLV
HETAT	M 3010		2 WAT	D 2		36.48	5 44.02			_		SOLV
HETAT	M 3011 M 3012		2 WAT	_		27.70			62 1.0	0 10.		SOLV
HETAT	M 3013					23.25				0 21.	13	SOLV
HETAT	M 3014	OH	2 WAT	D 5		33.82	5 41.86			0 23.	72	SOLV
HETAT	MM 3015	OH	2 WAT	D 6		34.14	6 44.45		90 1.0	00 18.	19	SOLV
H TAI	MM 3016	5 OH	12 WAT	D 7		7.92			99 1.0	00 20.	79	SOLV
HTAT	M 3017		12 WAT	8 q		17.86		78 64.0		00 28.	94	SOLV
HLTAT	M 3018		12 WAT			35.58		10 74.8		00 31.	62	SOLV
HETAT	rm 3019		12 WAT	D 11		49.20	8 27.79			00 14. 00 25.	01	SOLV
HETAT	rm 302	-	12 WAT	D 12		20.49				00 25. 00 25.	90	SOLV
HETA!	TM 302	2 01	12 WAT	D 13	3	44.75	33.1			00 15	21	SOLV
HETA	TM 302	3 OF	H2 WAT	D 14		22.45				00 20	.66	SOLV
HETA'	TM 302	4 O	H2 WAT	D 15		3.39 32.27			510 1.	00 22	.37	SOLV
HETA'	TM 302	5 01	H2 WAT	D 10		26.32			427 1.	00 27	.86	SOLV
HETA'	TM 302		H2 WAT			48.24			778 1.	00 15	.09	SOLV
HETA	TM 302		H2 WAT H2 WAT			15.2	49 44.5	52 72.		00 40	. 45 66	SOLV
HETA	TM 302 TM 302		H2 WAT			26.4	44 9.2			00 26 00 11	42	SOLV
HETA	TM 302		H2 WAT	D 2		26.5				00 20	.32	SOLV
TETA	TM 303	1 0	H2 WAT	2 מי:	2	39.4			359 1.	00 37	.22	SOLV
HETA	.TM 303	2 0	H2 WAT	7 D 2	.3	26.7 44.6			068 1	.00 32	. 27	SOLV
HETA	TM 303	3 0	H2 WAT	D 2	4	14.7			663 1	.00 29	.24	SOLV
HETA	TM 303	4 0	H2 WAT		.5 .6	45.1		356 69.	864 1	.00 29	.58	SOLV SOLV
· HETA	MTM 303	5 0	H2 WAT	-	7	30.0		386 49.	758 1	.00 15	.52	2010
	TM 303	, o	. WA			-		•				

HETATM :	3037	OH2	TAW	D	28.	20.659	28.788	43.520	1.00 28.55	SOLV
HETATM			WAT		29	32.271	38.000	53.512	1.00 47.72	SOLV
HETATM			WAT		30	18.285	29.333	54.536	1.00 21.34	SOLV
HETATM			WAT		31	49.978	38.669	73.461	1.00 31.02	SOLV
HETATM			WAT		32.	21.587	50.386	71.043	1.00 14.52	SOLV
HETATM			WAT		33	46.784	32.121	33.375	1.00 31.79	SOLV
HETATM	3042		WAT		34	33.359	39.755	49.117	1.00 16.13	SOLV
HETATM			WAT		35	7.687	37.657	51.568	1.00 27.22	SOLV
HETATM			TAW		36	44.238	35.392	33.961	1.00 19.67	SOLV
HETATM	3045		WAT		37.	10.908	25.384	58.206	1.00 33.51	SOLV
HETATM	2040		WAT		38	36.758		70.552	1.00 39.61	SOLV.
HETATM	2047		WAT		39	45.825	_	54.654	1.00 32.43	SOLV
HETATM			WAT		40	52.489		52.165	1.00 39.37	SOLV
HETATM	2050		WAT		42	12.117		56.596	1.00 27.74	SOLV
HETATM			WAT		43	45.023		35.172	1.00 14.09	SOLV
HETATM			WAT		44	39.392		62.066	1.00 35.15	SOLV
HETATM			WAT		45	3.930		63.814	1.00 22.23	SOLV
HETATM	3053					8.454		71.677	1.00 32.36	SOLV
HETATM	3054		WAT		46	20.280		73.237	1.00 33.88	SOLV
HETATM			TAW		47	9.321		54.873	1.00 18.57	SOLV
HETATM			WAT		48	50.852		58.048	1.00 21.25	SOLV
HETATM			WAT		49	37.134		60.315	1.00 61.70	SOLV
HETATM	3058		WAT		50	14.944		48.613	1.00 42.50	SOLV
HETATM	3059		TAW		51	6.494		51.420	1.00 40.65	SOLV
HETATM	3060		WAT		52	24.913		72.298	1.00 17.10	SOLV
HETATM	3061		TAW		53	51.156		48.814	1.00 23.05	SOLV
HETATM	3062		TAW		54	16.518		45.596	1.00 49.25	SOLV
HETATM			TAW		55	10.326		61.267	1.00 46.03	SOLV
HETATM			TAW		56	25.316		73.062	1.00 22.73	SOLV
HETATM	3065		TAW		57	4.01		76.173	1.00 44.82	SOLV
HETATM		-	TAW		58	24.840		36.805	1.00 34.67	SOLV
HETATM			TAW		59	15.930		61.737	1.00 55.56	SOLV
HETATM			WAT		60	49.66		48.982	1.00 28.72	SOLV
HETATM	3069		WAT		61	23.23		53.920	1.00 13.11	SOLV
HETATM			WAT		62.	39.29		33.289	1.00 35.79	SOLV
HETATM			TAW TAW		63 64	19.90		44.339	1.00 24.33	SOLV
HETATM			WAT		65	33.25		69.560	1.00 45.10	SOLV
HETATM			WAT		66	27.52		68.629	1.00 44.79	SOLV
HETATM HETATM	3075		WAT		67	18.77		52.865	1.00 54.01	SOLV
HETATM			WAT		68	10.87			1.00 27.08	SOLV
HETATM			WAT		69	43.05		28.786	1.00 30.16	SOLV
HETATM			WAT		70	24.81		43.447	1.00 20.11	SOLV
HETATM			TAW		71	37.36		46.381	1.00 33.55	SOLV
HETATM	3080		TAV		72	9.03	8 18.327	63.519	1.00 31.34	SOLV
HETATM			WAT		73	51.79	9 20.829	65.265	1.00 28.32	· SOLV
HETATM			WAT		74	17.55	6 58.515	57.254	1.00 19.27	SOLV
HETATM	3083		WAT		75	28.43	6 27.904		1.00 27.13	SOLV
HETATM	3084		WAT		76	18.93	9 35.798		1.00 94.18	SOLV
HETATM			WAT		7 7	34.35	9 31.251		1.00 73.70	SOLV
HETATM	3086		WAT		78	44.37	3 51.649		1.00 30.23	SOLV
HETATM	3087		TAW		79	28.53	7 63.478			SOLV
HETATM	3088		WAT		80	6.86	9 44.113			SOLV
HETATM	3089		WAT		81	42.88	2 18.761		1.00 31.80	SOLV
HETATM			TAW		82	36.71	2 59.078		1.00 40.11	SOLV
HETATM	3091		WAT		83	37.50	6 42.495		1.00 51.37	SOLV
HETATM	3092		TAW		84	40.05	4 38.439		1.00 20.07	SOLV
HETATM	3093		WAT		85	32.17	0 56.633			SOLV
HETATM	3094		TAW		86	24.47	0 53.877			SOLV
HETATM	3095		TAW S		87	48.58	5 35.663			SOLV
HETATM	3096		TAW S		88	29.54				SOLV
HETATM	3097		WAT		89	47.81				SOLV
HETATM	3098		TAW S			49.37	7 52.112			SOLV
HETATM	3099		LAW S			44.21			1.00 39.90	SOLV
HETATM	3100		LAW S			25.91			1.00 48.28	SOLV
HETATM	3101		LAW S			8.62	3 30.749			SOLV
HETATM	3102		CAW S			45.63	4 41.08	40.990	1.00 21.46	SOLV
				_				•		•

				_						
HETATM			WAT		95	29.984	34.886	51.725	1.00 35.75	SOLV
HETATM	3104	OH2	WAT	D	96	13.051	21.934	49.804	1.00 46.73	SOLV
HETATM	3105	OH2	WAT	D	97	32.412	65.913	55.822	1.00 43.39	SOLV
HETATM	3106	OH2	WAT	D	98	35.056	43.390	38.348	1.00 34.53	SOLV
HETATM			WAT		99	22.360	47.680	60.688	1.00 19.16	SOLV
HETATM			WAT			50.755	19.722	57.906	1.00 42.45	SOLV
			WAT			7.875	37.690	74.094	1.00 37.18	SOLV
HETATM										-
HETATM			WAT		–	24.080	26.796	43.617	1.00 30.72	SOLV
HETATM			WAT			45.206	34.126	75.765	1.00 39.89	SOLV
HETATM			TAW			26.110	54.786	40.685	1.00 29.58	SOLV
HETATM	3113		\mathbf{WAT}			. 25.918	39.658	77.647	1.00 44.04	SOLV
HETATM	3114	OH2	WAT	D	106	41.578	18.191	36.809	1.00 42.22	SOLV
HETATM	3115	OH2	TAW	D	107	31.945	51.420	73.896	1.00 41.15	SOLV
HETATM	3116	OH2	TAW	D	108	16.722	60.311	51.182	1.00 48.74	SOLV
HETATM		OH2	WAT	D	109	43.604	38.573	78.141	1.00 36.22	SOLV
HETATM			WAT			16.063	15.496	69.430	1.00 55.36	SOLV
HETATM			WAT			21.630	22.785	49.145	1.00 36.52	SOLV
HETATM			WAT			27.479	56.647	44.026	1.00 50.82	SOLV
HETATM			TAW			14.739	51.674	61.674	1.00 35.55	SOLV
			WAT			. 50.063	26.435	54.358	1.00 50.86	SOLV
HETATM						43.935	38.427	73.129	1.00 44.21	SOLV
HETATM			WAT					57.709		SOLV
HETATM			TAW			49.707	31.478		1.00 36.11	
HETATM			TAW			25.032	43.463	55.676	1.00 38.06	SOLV
HETATM			WAT			10.618	46.623	59.838	1.00 26.33	SOLV
HETATM			WAT			48.466	33.382	61.437	1.00 19.82	SOLV
HETATM	3128		WAT			44.157	40.058	37.907	1.00 42.95	SOLV
HETATM	3129	OH2	WAT	D	121	51.267	29.446	52.889	1.00 38.93	SOLV
HETATM	3130	OH2	WAT	D	122	16.653	15.228	72.975	1.00 45.41	SOLV
HETATM	3131	OH2	WAT	D	123	36.898	45.148	41.936	1.00 27.00	SOLV
HETATM	3132	OH2	WAT	D	124	49.655	34.591	59.117	1.00 38.97	SOLV
HETATM		OH2	WAT	D	125	12.285	57.594	42.107	1.00 23.56	SOLV
HETATM	3134	OH2	WAT	D	126	28.294	57.644	73.289	1.00 34.79	SOLV
HETATM			WAT			19.138	60.403	61.551	1.00 28.58	SOLV
HETATM			WAT			30.300	33.685	34.047	1.00 27.37	SOLV
HETATM			WAT			40.898	53.983	47.254	1.00 16.30	SOLV
HETATM			WAT			43.550	32.160	38.272	1.00 38.86	SOLV
HETATM			WAT			18.624	13.959	56.194	1.00 37.70	SOLV
HETATM			WAT			18.580	12.901	62.894	1.00 27.28	SOLV
HETATM			WAT			35.830	30.296	50.621	1.00 42.47	SOLV
			WAT			51.219	35.855	51.878	1.00 20.37	SOLV
HETATM			WAT			50.428	22.486	49.267	1.00 39.37	SOLV
HETATM			_			51.633	29.369	63.918	1.00 33.99	SOLV
HETATM			WAT				43.924	55.825	1.00 33.99	SOLV
HETATM			WAT			46.384	25.767	28.762	1.00 25.84	SOLV
HETATM			WAT			30.356				SOLV
HETATM			WAT			25.070	47.842	60.819	1.00 25.00	
HETATM			WAT			47.097	49.394	69.367	1.00 30.58	solv
HETATM	_		TAW			15.246	37.581	73.398	1.00 36.82	SOLV
HETATM			WAT			8.341	23.099	64.695	1.00 35.89	SOLV
HETATM			WAT			30.065	18.220	46.048	1.00 14.26	SOLV
HETATM	3152	OH2	WAT	D	144	11.930	46.453	57.606	1.00 36.15	SOLV

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/24700

A 07	COUNTRY							
A. CLASSIFICATION OF SUBJECT MATTER								
IPC(7) :C07K 14/00; G01N 33/573 US CL :Please See Extra Sheet.								
According to International Patent Classification (IPC) or to both national classification and IPC								
B. FIELDS SEARCHED								
Winner	documentation searched (classification system follow	wed by classification symbols)						
U.S. :	Please See Extra Sheet.							
Documents	tion searched other than minimum documentation	to the extent that such desurrant						
searched		the extent that such documents are	included in the fields					
Electronic	data base consulted during the international search	(name of data base and where preside)						
Please Se	e Extra Sheet.	(Note: or call blue and, where practical)	e, search terms used)					
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT							
Category*	Citation of document, with indication, where	apparantiate of the relevant	Dia					
	The state of the s	Tribulate, of the relevant passages	Relevant to claim No.					
Y	KAKUTA et al. Crystal Structure of t Human Heparan Sulfate N-Deacetyla Journal of Biological Chemistry. Number 16, pages 10673-10676, see	ase/N-Sulfotransferase 1. The local April 1999, Volume 274,	1-19					
Y								
		•	ļ					
		ļ						
İ			•					
1		-						
X Further documents are listed in the continuation of Box C. See patent family annex.								
Special categories of cited documents: The later document published after the international filing date or priority								
A document defining the general state of the art which is not considered to be of particular relevance date and not in conflict with the application but cited to understand the principle or theory underlying the invention								
	earlier document published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be							
"L" docs	Le document which may throw doubts on priority claim(s) or which is when the document is taken about to take a town							
Cillo	to establish the publication date of another citation or other ial reason (as specified)	"Y" document of particular relevance; the	claimed invention cannot be					
	ment referring to an oral disclosure, me, exhibition or other	considered to involve an inventive step with one or more other such docume obvious to a person skilled in the art	hen the document is combined					
"P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed								
	Date of the actual completion of the international search Date of mailing of the international search report							
	ABER 9000	25 JAN 2001						
Name and m	lame and mailing address of the ISA/US Authorized officer							
Box PCT	er of Patents and Trademarks	Mise Mily						
Washington, Facsimile No	D.C. 20231 . (703) 305-3230	Telephone No. (703) 308-0198						

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US00/24700

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.	
	Change of devalued, while the property of the		
Y	AHMAD et al. WD Repeats of the p48 Subunit of Chicken Chromatin Assembly Factor-1 Required for in Vitro Interaction with Chicken Histone Deacetylase-2. The Journal of Biological Chemistry. 04 June 1999, Volume 274, Number 23, pages 16646-16653, see especially the abstract.	1-19	
Y	JOHN et al. Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proceedings of the National Academy of Sciences, USA. January 1993, Volume 90, pages 625-629, see especially the abstract.	1-19	
A	US 5,780,594 A (CARTER) 14 July 1998, see the entire disclosure.	1-19	
		-	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/24700

A. CLASSIFICATION OF SUBJECT MATTER: US CL :

530/350 and 435/7.9

B. FIELDS SEARCHED
Minimum documentation searched
Classification System: U.S.

530/300,533,550; 435/6,7.9; 514/9

B. FIELDS SEARCHED

Electronic data bases consulted (Name of data base and where practicable terms used):

CAS, BIOTECH ABS, MEDLINE, EMBASE, WPI, WEST covering search terms: deacetylase, human, crystal, histone, inhibitor, x-ray, and crystallography