BARANI INSTITUTE OF MANAGEMENT SCIENCES

Final-Term Exam

Fall Semester 2020

Course Title : Theory of Automata	Course Code : CS-536
Discipline /Program : BSCS-6	Total Marks: 30
Time allowed : 24 Hours	Instructor's Name: Saira Sultana

Q.No.1 Answer the following short questions

(7)

- i. For the language $L=a^nb^nc^nd^m$ where n and m>=1, which sort of machine is need to accept the language. (2)
- ii. Define a language L, in a recursive way where the strings containing fifth latter must followed by an and last latter should be followed by bb defined over alphabet {a,b}. also mention minimum length of string from above language. (3+2)

Answer the following long questions

- Q.No.2 Design a DFA graph and its transition table for the RE (a+b)a(aa)*(a+b)*bb. (5)
- **Q.No.3** You are required to build a Turing machine for the given language is $L = \{w^n x^n y^n z^n\}$ where $n \ge 1$. Also write at least four invalid strings for the machine and drive a valid string of length 12 over the tape to evaluate that either the designed machine accept the given string or not. (7)
- **Q.No.4** Construct a PDA that accepts the language= $\{x^{3a} y^a z^b /a,b \ge 1 \text{ where } \sum = \{x,y,z\}$ (5+2)

Note: Also derive any Two valid strings accepted by the followed PDA

Q.No.5 Write a CFG to generate string that belongs the language $x^a y^b z^c$: a=b or $b \ne c$ where $\sum = \{x,y,z\}$

Note: Also derive any four valid strings accepted by the produced CFG