Instructor: Dr. Shijun Zheng 01/14/2020

Course website

§1.1 Functions and Their Graphs

Absolute Value Function. $|x| = \begin{cases} x, & x \ge 0 \\ -x, & x < 0 \end{cases}$

Example 4. The function

$$f(x) = \begin{cases} -x, & x < 0 \\ x^2, & 0 \le x \le 1 \\ 1, & x > 1 \end{cases}$$

is just one function whose domain is the entire set of real numbers.

§1.2 Combining Functions; Shifting and Scaling Graphs

Definition. If f and g are functions, the **composite** function $f \circ g$ is defined by $(f \circ g)(x) = f(g(x))$. The domain of $f \circ g$ consists of the numbers x in the domain of g for which g(x) lies in the domain of f.

Example 2. If $f(x) = \sqrt{x}$ and g(x) = x + 1, find (a) $(f \circ g)(x)$ (c) $(f \circ f)(x)$.

Exercise 16.* Evaluate each expression using the functions

$$f(x) = 2 - x,$$
 $g(x) = \begin{cases} -x, & -2 \le x < 0 \\ x - 1, & 0 \le x \le 2. \end{cases}$

(a) f(g(0)) (b) g(f(3)) (c) g(g(-1)).

 $\S 1.5 \ Exponential \ Functions$

Definition. If $a \neq 1$ is a positive constant, the function $f(x) = a^x$ is the **exponential** function with base a.

Rules for Exponents. If a > 0 and b > 0, the following rules hold for all real numbers x and y.

1.
$$a^x \cdot a^y = a^{x+y}$$
 2. $\frac{a^x}{a^y} = a^{x-y}$ **3.** $(a^x)^y = (a^y)^x = a^{xy}$ **4.** $a^x \cdot b^x = (ab)^x$ **5.** $\frac{a^x}{b^x} = \left(\frac{a}{b}\right)^x$

Example 2. We use the rules for exponents to simplify some numerical expressions.

1.
$$3^{1.1} \cdot 3^{0.7}$$
 2. $\frac{(\sqrt{10})^3}{\sqrt{10}}$ 3. $(5^{\sqrt{2}})^{\sqrt{2}}$ 4. $7^{\pi} \cdot 8^{\pi}$ 5. $(\frac{4}{9})^{1/2}$

Definition. For every real number x, we define the **natural exponential function** to be $f(x) = e^x$, where e = 2.7182818284590452353602874713527... is an irrational number.

§1.6 Inverse Functions and Logarithms

Definition. A function f(x) is **one-to-one** on a domain D if $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$ in D.

Example 1. (a) $f(x) = \sqrt{x}$ is one-to-one on any domain of nonnegative numbers. (b) $g(x) = \sin x$ is not one-to-one on the interval $[0, \pi]$. It is one-to-one on $[0, \frac{\pi}{2}]$.

Definition. Suppose that f is a one-to-one function on a domain D with range R. The **inverse function** f^{-1} is defined by $f^{-1}(b) = a$ if f(a) = b. The domain of f^{-1} is R and the range of f^{-1} is D.

Example 2. Suppose a one-to-one function y = f(x) is given by a table of values

A table for the values of $x = f^{-1}(y)$ is

Example 3. Find the inverse of $y = \frac{1}{2}x + 1$, expressed as a function of x.

Example 4. Find the inverse of the function $y = x^2$, $x \ge 0$, expressed as a function of x.

Definition. The logarithm function with base a, written $y = \log_a x$, is the inverse of the base a exponential function $y = a^x$ ($a > 0, a \ne 1$). The function $\log_e x$ is called the natural logarithm function and is written as $\ln x$.

Theorem 1. For any numbers b > 0 and x > 0, the natural logarithm satisfies the following rules:

- 1. Product Rule: $\ln(bx) = \ln b + \ln x$
- **2.** Quotient Rule: $\ln \frac{b}{x} = \ln b \ln x$

3. Reciprocal Rule: $\ln \frac{1}{x} = -\ln x$

4. Power Rule: $\ln x^r = r \ln x$

Example 5. We use the properties in Theorem 1 to simplify three expressions.

(a) $\ln 4 + \ln \sin x$ (b) $\ln \frac{x+1}{2x-3}$ (c) $\ln \frac{1}{8}$

Property.

- (1) The inverse of e^x is given by $y = \ln x$.
- (2) The inverse of a^x is given by $y = \log_a x$ for a > 0.
- (3) Every exponential function is a power of the natural exponential function: $a^x = e^{x \ln a}$.

§1.6 Inverse Functions and Logarithms (Continued)

Change of Base Formula. Every logarithmic function is a constant multiple of the natural logarithm: $\log_a x = \frac{\ln x}{\ln a}$ $(a > 0, a \neq 1)$.

Definition. $y = \sin^{-1} x = \arcsin x$ is the number in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ for which $\sin y = x$. $y = \cos^{-1} x = \arccos x$ is the number in $[0, \pi]$ for which $\cos y = x$.

Example 8. Evaluate (a) $\arcsin(\frac{\sqrt{3}}{2})$ and (b) $\arccos(-\frac{1}{2})$.