Práctica 5. Tablas Hash

Análisis de tablas hash

Alberto Herreros Magaña ahm00040

Para implementar la tabla hash, se han utilizado 3 funciones generadoras de hash:

- h1(x) y h2(x) son funciones de dispersión doble
- h3(x) es una función cuadrática

 $\tilde{\lambda} = n/t$

Para realizar el análisis se deben de considerar factores de carga de 0,65 y 0,68.

```
Número de datos \rightarrow 10.000 usuarios.

\mathring{\lambda} = 0,65

t = n / \mathring{\lambda} \rightarrow 10.000 / 0.65 = 15.384 \rightarrow Siguiente primo es 15391

Número de datos \rightarrow 10.000 usuarios.

\mathring{\lambda} = 0,68

t = n / \mathring{\lambda} \rightarrow 10.000 / 0.68 = 14.705 \rightarrow Siguiente primo es 14713
```

Funciones hash utilizadas:

```
h1(x) = ((x\%t) + (i*((x\%q) + 1)))\%t

h2(x) = ((x\%t) + (i*(q-(x\%primo))))\%t

h3(x) = (x + i^2)\%t
```

t = 15391						
	Factor de carga	Promedio de colisiones	Máximo de colisiones	> 10 colisiones		
h1(x)	0.64973	0.6218	17	13		
h2(x)	0.64973	0.6055	17	7		
h3(x)	0.64973	0.7091	18	11		

t = 14713						
	Factor de carga	Promedio de colisiones	Máximo de colisiones	> 10 colisiones		
h1(x)	0.679671	0.6764	13	9		
h2(x)	0.679671	0.6855	14	11		
h3(x)	0.679671	0.7803	18	32		

La función h2(x) con t = 15391 es la mejor opción, y por lo tanto la elegida puesto que nos ofrece un menor promedio de colisiones y menor número de veces en las que se sobrepasa las 10 colisiones, aunque alcanza máximos más grandes que con otras configuraciones.