This notebook is an exercise in the Pandas (https://www.kaggle.com/learn/pandas) course. You can reference the tutorial at this link (https://www.kaggle.com/residentmario/summary-functions-and-maps).

Introduction

Now you are ready to get a deeper understanding of your data.

Run the following cell to load your data and some utility functions (including code to check your answers).

```
import pandas as pd
pd.set_option("display.max_rows", 5)
reviews = pd.read_csv("../input/wine-reviews/winemag-data-130k-v2.csv",
index_col=0)

from learntools.core import binder; binder.bind(globals())
from learntools.pandas.summary_functions_and_maps import *
print("Setup complete.")

reviews.head()
```

Setup complete.

Out[1]:

	country	description	designation	points	price	province	region 1	region 2	taste
С	Italy	Aromas include tropical fruit, broom, brimston	Vulkà Bianco	87	NaN	Sicily & Sardinia	Etna	NaN	Kerii OʻKe
1	Portugal	This is ripe and fruity, a wine that is smooth	Avidagos	87	15.0	Douro	NaN	NaN	Rog
2	US	Tart and snappy, the flavors of lime flesh and	NaN	87	14.0	Oregon	Willamette Valley	Willamette Valley	Paul Greç
3	US	Pineapple rind, lemon pith and orange blossom	Reserve Late Harvest	87	13.0	Michigan	Lake Michigan Shore	NaN	Alex Pear
4	US	Much like the regular bottling from 2012, this	Vintner's Reserve Wild Child Block	87	65.0	Oregon	Willamette Valley	Willamette Valley	Paul Greç

Exercises

1.

What is the median of the points column in the reviews DataFrame?

```
In [2]:
    median_points = reviews.points.median()

# Check your answer
q1.check()
```

Correct

```
In [3]:
    #q1.hint()
    #q1.solution()
```

2.

What countries are represented in the dataset? (Your answer should not include any duplicates.)

```
In [4]:
    countries = reviews.country.unique()

# Check your answer
    q2.check()
```

Correct

```
In [5]:
    #q2.hint()
    #q2.solution()
```

3.

How often does each country appear in the dataset? Create a Series reviews_per_country mapping countries to the count of reviews of wines from that country.

```
In [6]:
    reviews_per_country = reviews.country.value_counts()

# Check your answer
q3.check()
```

Correct

```
In [7]:
    #q3.hint()
    #q3.solution()
```

4.

Create variable centered_price containing a version of the price column with the mean price subtracted.

(Note: this 'centering' transformation is a common preprocessing step before applying various machine learning algorithms.)

```
In [8]:
    centered_price = reviews.price - reviews.price.mean()

# Check your answer
q4.check()
```

Correct

```
In [9]: #q4.hint() #q4.solution()
```

5.

I'm an economical wine buyer. Which wine is the "best bargain"? Create a variable bargain_wine with the title of the wine with the highest points-to-price ratio in the dataset.

```
In [10]:
    bargain_wine = reviews.loc[ (reviews.points / reviews.price).idxmax(),
    'title']

# Check your answer
q5.check()
```

Correct

```
In [11]:
    #q5.hint()
    #q5.solution()
```

6.

There are only so many words you can use when describing a bottle of wine. Is a wine more likely to be "tropical" or "fruity"? Create a Series descriptor_counts counting how many times each of these two words appears in the description column in the dataset.

```
In [12]:
    n_trop = reviews.description.map(lambda desc: "tropical" in desc).sum()
    n_fruity = reviews.description.map(lambda desc: "fruity" in desc).sum()
    descriptor_counts = pd.Series([n_trop, n_fruity], index=['tropical', 'f
    ruity'])

# Check your answer
    q6.check()
```

Correct

```
In [13]:
    #q6.hint()
    #q6.solution()
```

7.

We'd like to host these wine reviews on our website, but a rating system ranging from 80 to 100 points is too hard to understand - we'd like to translate them into simple star ratings. A score of 95 or higher counts as 3 stars, a score of at least 85 but less than 95 is 2 stars. Any other score is 1 star.

Also, the Canadian Vintners Association bought a lot of ads on the site, so any wines from Canada should automatically get 3 stars, regardless of points.

Create a series star_ratings with the number of stars corresponding to each review in the dataset.

```
In [14]:
    def star_num(index):
        if index.country == 'Canada':
            return 3
        elif index.points >= 95:
            return 3
        elif index.points >= 85:
            return 2
        else:
            return 1

    star_ratings = reviews.apply(star_num, axis='columns')

# Check your answer
q7.check()
```

Correct

```
In [16]:
    #q7.hint()
    #q7.solution()
```

Keep going

Continue to grouping and sorting (https://www.kaggle.com/residentmario/grouping-and-sorting).

Have questions or comments? Visit the Learn Discussion forum (https://www.kaggle.com/learn-forum/161299) to chat with other Learners.

7 of 7