Determination of Zeta Potential by Microelectrophoresis

Teng-Jui Lin
Department of Chemical Engineering, University of Washington
Surface and Colloid Science

Zeta potential is the electrical potential at the slip plane of the electric double layer

- ψ electrical potential difference between dispersing medium and ...
 - $\circ \; \psi_{\infty} \equiv 0$ the dispersing medium
 - \circ ψ_0 the surface of colloidal particle
 - True surface potential
 - \circ ψ_{δ} the outer first layer of counterions
 - Effective (Stern) surface potential
 - $\circ \zeta$ the slip plane (medium velocity = 0)
 - Zeta potential, electrokinetic potential
- The slip plane may be slightly further out into the solution than Stern layer
 - $\circ \; \psi_\delta pprox \zeta$

Electro-osmosis and electrophoresis give the same zeta potential

- Electro-osmosis diffuse layer of ions beside a charged immobile surface move under E field, which sets the liquid into motion by the action of viscosity
 - Liquid moves, solid at rest

- Electrophoresis diffuse layer of ions beside a charged particle surface move under E field, which sets the particle into motion
 - Solid moves, liquid at rest

Electro-osmosis

Electrophoresis

Electrophoretic mobility allows determination of zeta potential

• Electrophoretic mobility - $u_E[(\mu m/s)/(V/cm)]$

$$\circ \; u_E = rac{V_p}{E_x} = egin{cases} rac{arepsilon arepsilon_0 \zeta}{\mu} & (\kappa a > 200) \ rac{2}{3} rac{arepsilon arepsilon_0 \zeta}{\mu} & (\kappa a < 0.1) \end{cases}$$

- ullet u_E Electrophoretic mobility
- ullet V_p Particle velocity
- ullet E_x Electric field strength
- ε Dielectric constant of the medium
- ε_0 Permittivity of free space
- ζ Zeta potential
- ullet μ Viscosity of the medium
- κ Debye length
- a Particle radius

Point of zero charge and isoelectric point define pH at which potentials are zero

- Potential determining ions ions whose concentration determines surface potential
 - Crystalline solid lattice ions
 - \circ Oxides $\mathrm{H_3O^+}$, $\mathrm{OH^-}$ (pH)
- Point of zero charge (PZC) pH at which $\psi_0=0$
 - pH < PZC: $\psi_0 > 0$
 - pH > PZC: $\psi_0 < 0$
- Isoelectric point (IEP, pI) pH at which $\zeta pprox \psi_\delta = 0$
 - $\circ \ u_E = 0 \Rightarrow V_p = 0$

Darkfield illumination microscopy visualizes colloidal particles under *E* field

$$egin{aligned} ullet \ u_E &= rac{V_p}{E_x} = rac{arepsilon arepsilon_0 \zeta}{\mu} \ &\circ \left[\zeta = rac{\mu V_p}{arepsilon arepsilon_0 E_x}
ight] \end{aligned}$$

• Electrophoresis has solid particles moving when liquid is at rest $(v_x = 0)$

top view (on edge)

$$\circ \ v_x = 0 ext{ when } y = egin{cases} 0.205w \ 0.795w \end{cases}$$

Laser Doppler electrophoresis determines zeta potential with more sensitivity

