PROJECT PART3:

QN1:

The new variable Y is added to the data set:

```
FAA$Y <- ifelse(FAA$distance < 1000,1,ifelse((FAA$distance>=1000 & FAA$distance<2500),2,3))
```

The distance variable is removed from the data set:

```
FAA <- subset( FAA, select = -distance )
```

As was seen the previous two projects the variables speed_air and speed_ground are highly correlated. Hence, the variable speed_air is removed from the model:

```
FAA <- subset(FAA, select = -speed_air)
```

The NA values are omited and a multinomial model is fitted using the Y variable as the predicted variable and the rest as predictor variables:

```
FAA <- na.omit(FAA)
modl <- multinom(Y~.,FAA)
```

The step wise model selection algorithm based on AIC is used for the model Selection:

modl reduced <- step(modl)

	Df	AIC
<none></none>	10	420.6864
- pitch	8	421.5598
- height	8	544.6126
- aircraft	8	599.5388
- speed ground	8	1435.0477

It can be seen from the step wise model that the variables pitch, height, aircraft and speed ground are useful in characterizing the multinomial Y variable.

The model is:

```
modl3 \le multinom(Y \sim pitch + height + aircraft + speed\_ground, FAA\_new) summary(modl3)
```

Coefficients:

(Intercept)	aircraftboeing	speed_ground	height	pitch
2	-21.67806	4.065194	0.2431976	0.1557486	-0.3987472
3	-135.02763	8.988756	1.2159693	0.3977880	0.9396833

Std. Errors:

(Intercept)	aircraftboeing	speed_ground	height	pitch
2 2.09113433	0.4340363	0.02026387.	0.01856171	0.2793028
3 0.03719281	0.8697689	0.02874032	0.04079031	0.7484298

Residual Deviance: 400.6864

AIC: 420.6864

A new data frame was created without the output variable:

A misclassification table is created with the predicted values and the actual values:

xtabs(~predict(modl_reduced) + FAA_new\$Y)

Table 1: The misclassification table

The total misclassification rate is:

$$(31+38+6+5)/(207+31+38+400+6+5+94) = 0.102$$

Log-odds	Aircraft =	speed_ground	Height	Pitch
	boeing			
Log(Y=2/Y=1)	58.26	1.27	1.17	0.67
Log(Y=3/Y=1)	8006	3.37	1.49	2.56

Table 2: The log odds ratio

ggplot(FAA_new, aes(x=aircraft, fill=Y)) + geom_bar(position = 'dodge')

The plot shows the predicted Y value as a function of aircraft. The boeing aircraft has more proportion of Y=2,3 values compared to airbus.

From the above plot it is clear that as the speed_ground increases the proportion of Y=2,3 increases compared to Y=1.

ggplot(FAA_test, aes(x=height, y=Y1)) + geom_point()

There seems to be very little variation in Y values as the height changes.

ggplot(FAA_test, aes(x=pitch, y=Y1)) + geom_point()

The pitch does not seem to affect the landing distance much.

Conclusion:

- 1. The main variables that seem to affect the multinominal variable Y are:
- Aircraft
- Speed Ground
- Height
- Pitch
- 2. The aircraft and speed_ground have a greater influence on the multi-nominal variable Y than height and pitch.
- 3. The aircraft boeing has a higher proportion of the landing distance in the Y=2,3 category compared to airbus.
- 4. Speed ground seems to directly influence the landing distance. As the speed ground increases the proportional of the Y=2,3 landing increases.
- 5. The height and pitch seem to have marginal influence on the landing distance.
- 6. The log odds ratio is presented in the Table 2. It clearly follows the pattern which we predicted by the plots.

QN2:

We can use poisson distribution to predict the number of passengers on board.

```
FAA_new <- subset(FAA, select = -speed_air)
FAA_new\saircraft <- ifelse(FAA_new\saircraft == "boeing",0,1)
FAA_new <- na.omit(FAA_new)
```

A modle was built using the glm function using family as poisson the cleaned data set

```
mdl no pasg <- glm(no pasg ~ ., family=poisson, FAA new)
```

The step function was used to get a simplified model:

```
modl_simp <- step(mdl_no_pasg)
summary(modl_simp)</pre>
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.095709 0.004616 887.2 <2e-16 ***
```

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 742.75 on 780 degrees of freedom Residual deviance: 742.75 on 780 degrees of freedom

AIC: 5374.8

The goodness of fit and dispersion factor was found for the model:

```
gof<-sum(residuals(modl_simp,type="pearson")^2) dp<-gof/modl_simp$df.res
```

The dispersion factor was found to be 0.94. The revised summary using the dispersion factor is found below:

```
summary(modl_simp,dispersion=dp)
```

Coefficients:

```
Estimate Std. Error z value Pr(>|z|) (Intercept) 4.095709 0.004482 913.7 <2e-16 *** Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

(Dispersion parameter for poisson family taken to be 0.9427883)

Null deviance: 742.75 on 780 degrees of freedom Residual deviance: 742.75 on 780 degrees of freedom

AIC: 5374.8

Number of Fisher Scoring iterations: 4

Conclusion:

It is found that No variable is predicting the number of passengers in the aircraft as is expected. It is solely dependent on the intercept.