Is Bitcoin Really Untethered?

John M. Griffin and Amin Shams

The Journal of Finance: Vol. LXXV, No. 4

Bitcoin: The Greatest Bubble in Human History...

How Bitcoin Stacks Up to Other Asset Bubbles

Sources: Bloomberg, International Center for Finance at Yale School of Management, Peter Garber

Bitcoin Hits New Record, This Time With Less Talk of a Bubble

The crazy cousin of traditional currencies, which fell below \$4,000 in March, passed \$19,783. More investors now are buying it for the long term.

Daily Highs for Price of Bitcoin

Source: CoinDesk, as of Monday morning Eastern time - The New York Times

Tether-Bitcoin Manipulation

- Tether (USDT): "stable coin" issued by Tether Limited
- Each Tether is backed by 1 USD in reserve
- Tether is issued on demand: 1 USD for 1 USDT
- Tether facilitates transactions between cryptocurrency exchanges
- Tether accounts for 80% of bitcoin trading volume
- Bitfinex and Tether Ltd. are owned by the same board
- Tether could be printed by Tether Ltd. and distributed through Bitfinex
- Tether Ltd. could print Tether to support Bitcoin price

Panel A. Tether Blockchain

Panel B. Bitcoin Blockchain

Panel B. Percentage of Trade Volume in USD and Tether Panel A. Tether and Bitcoin Price over Time 100 20000 2500 Percentage Volume 40 60 80 Total Authorization (\$M) 500 1000 1500 2000 15000 Total Authorization (BTC) 100000 200000 300000 BTC Price 10000 5000 20 0 -SIC ELLY LIC ABBOHEOS EL SE AND TEC BANDE BOE BAND OLD Dec2016 Jun2017 Dec2017 Jul2016 Date Total Auth ---- BTC Denom Auth Bitfinex Tether USD **BTC Price**

Bitcoin Price Manipulation?

Tethers and BTC Linear Regression Plot

Figure 1: Linear regression plot of Tethers in circulation vs BTC price (USD) log transformed showing a linear relationship between tethers and bitcoin price $R^2 = 0.9655$, F(1,1016) = 2.932e+04, p < .001

- "Pulled" Hypothesis
 - Tether issuance is driven by legitimate demand from investors by exchanging fiat money for Tether
- "Pushed" Hypothesis
 - Tether is created out of thin air (unbacked by fiat dollar) by the creator to purchase Bitcoin

• "Pulled" Hypothesis

- H1A: Tether flows should be accompanied by changes in Tether/USD exchange rate
- H1B: If Tether is demanded to facilitate cross-exchange arbitrage, Tether flows should correspond to arbitrage spread

• "Pushed" Hypothesis

- H2A: Tether outflows should follow periods of negative Bitcoin returns
- H2B: Bitcoin price should go up after Tether flows into the market
- H2C: Bitcoin returns may show a return reversal after Tether flows in
- H2D: Tether authorization should be more pronounced at round-number thresholds
- H2E: To show adequate reserves in EOM accounting statements, Tether creators may liquidate Bitcoins into USD, and thus causes negative returns in Bitcoin at the EOM

Data and Algorithms

- 200 GB blockchain data from March 2017 to March 2018
- Clustering Bitcoin wallets: connected components inputting into the same address are considered as a group of wallets controlled by the same entity
- Bitcoin and Tether net flows:

$$NetBTCFlow_{t} = \left(\sum_{t=1}^{t} BTC_{PLX \to BFX} - \sum_{t=1}^{t} BTC_{BFX \to PLX}\right) + \left(\sum_{t=1}^{t} BTC_{BTX \to BFX} - \sum_{t=1}^{t} BTC_{BFX \to BTX}\right), \qquad (1)$$

$$NetTetherFlow_{t} = \left(\sum_{t=1}^{t} Tether_{BFX \to PLX} - \sum_{t=1}^{t} Tether_{PLX \to BFX}\right) + \left(\sum_{t=1}^{t} Tether_{BFX \to BTX} - \sum_{t=1}^{t} Tether_{BTX \to BFX}\right), \qquad (2)$$

- "Pulled" Hypothesis
 - H1A: Tether flows should be accompanied by changes in Tether/USD exchange rate
 - H1B: If Tether is demanded to facilitate cross-exchange arbitrage, Tether flows should correspond to arbitrage spread
- "Pushed" Hypothesis
 - H2A: Tether outflows should follow periods of negative Bitcoin returns
 - H2B: Bitcoin price should go up after Tether flows into the market
 - H2C: Bitcoin returns may show a return reversal after Tether flows in
 - H2D: Tether authorization should be more pronounced at round-number thresholds
 - H2E: To show adequate reserves in EOM accounting statements, Tether creators may liquidate Bitcoins into USD, and thus causes negative returns in Bitcoin at the EOM

The Effect of Flow of Tether on Bitcoin Return

$$\frac{1}{3}\sum_{i=0}^{2}R_{t+i} = \beta_0 + \beta_1 Flow_{t-1} + Controls + \epsilon_t,$$

	(1) Auth	(2) NoAuth	(3) L.Ret < 0	$\begin{array}{c} (4) \\ L.Ret > 0 \end{array}$	(5) L.Ret < 0_Auth
Lag PLX BTX Flow	3.855^{*}	-0.354	2.694^{*}	-1.100	8.134**
	(2.30)	(-0.48)	(2.18)	(-1.20)	(2.93)
LagRet	-0.00600	-0.00985	0.0634^{*}	-0.0518	0.0897
	(-0.18)	(-0.57)	(1.97)	(-1.72)	(1.46)
Volatility	103.9	97.00	-52.33	-70.32	-102.3
	(1.17)	(1.38)	(-0.67)	(-0.89)	(-0.70)
Volatility*Lag Ret	-0.343	-0.289	-1.443^{***}	0.609	-1.660**
	(-0.94)	(-1.14)	(-3.40)	(1.58)	(-2.85)
Constant	-8.071	-1.387	4.261	5.105	2.062
	(-1.44)	(-0.46)	(1.26)	(1.50)	(0.24)
Observations	2,645	6,856	4,488	5,009	1,258
Adjusted R ²	0.012	0.005	0.020	0.001	0.045

Panel B: Regression of Returns on Lagged Decomposed Flows

	(1) Auth	(2) NoAuth	(3) L.Ret < 0	$\begin{array}{c} (4) \\ L.Ret > 0 \end{array}$	$\begin{array}{c} (5) \\ L.Ret < 0_Auth \end{array}$
Lag 1LSg Flow	4.240*	-0.484	2.379^{*}	-1.300	8.206***
	(2.37)	(-0.57)	(1.97)	(-1.24)	(3.61)
Lag Other PLX BTX Flow	5.531	-0.513	4.602	-0.372	12.22
	(1.20)	(-0.26)	(1.23)	(-0.16)	(1.32)
Lag Other Flow	-6.483^{*}	1.599	-0.514	0.322	-8.328^{*}
	(-2.36)	(1.43)	(-0.34)	(0.25)	(-2.38)
LagRet	-0.00562	-0.0108	0.0650^{*}	-0.0523	0.0958
2)	(-0.17)	(-0.63)	(2.01)	(-1.73)	(1.57)

Prices of Bitcoin around High-Flow Events

How Significant is the Price Effect?

How Significant is the Price Effect?

- "Pulled" Hypothesis
 - H1A: Tether flows should be accompanied by changes in Tether/USD exchange rate
 - H1B: If Tether is demanded to facilitate cross-exchange arbitrage, Tether flows should correspond to arbitrage spread
- "Pushed" Hypothesis
 - H2A: Tether outflows should follow periods of negative Bitcoin returns
 - H2B: Bitcoin price should go up after Tether flows into the market
 - H2C: Bitcoin returns may show a return reversal after Tether flows in
 - H2D: Tether authorization should be more pronounced at round-number thresholds
 - H2E: To show adequate reserves in EOM accounting statements, Tether creators may liquidate Bitcoins into USD, and thus causes negative returns in Bitcoin at the EOM

Bitcoin Return Reversals and Tether Flows

 $R_t = \beta_0 + \beta_1 R_{t-1} + \beta_2 Flow_{t-1} + \beta_3 R_{t-1} * Flow_{t-1} + Controls + \epsilon_t,$

Panel	A: Using Aggregat	e Flows to PLX and BTX	
	Full Sample	Neg Lagged Returns	Pos Lagged Returns
Lag Ret	-0.0198	0.0004	-0.0420
	(-0.62)	(0.01)	(-0.69)
Lag Flow	0.0003	-0.0002	0.0001
	(1.68)	(-0.53)	(0.34)
Lag Flow × Lag Ret	-0.0326**	-0.0669**	-0.0073
	(-2.73)	(-2.67)	(-0.36)
Lag Volatility	0.0093	0.0060	0.0100
	(1.38)	(0.49)	(0.88)
Lag Volatility × Lag Ret	-0.3961	-0.5918	-0.2719
	(-0.98)	(-0.85)	(-0.37)
Constant	-0.0002	-0.0000	-0.0001
	(-0.67)	(-0.07)	(-0.29)
Observations	9,503	4,488	5,011
Adjusted R^2	0.007	0.011	0.001
	Panel B: Using D	ecomposed Flows	
	Full Sample	Neg Lagged Returns	Pos Lagged Returns
Lag Ret	-0.0125	0.0166	-0.0320
	(-0.38)	(0.27)	(-0.52)
Lag 1LSg Flow	0.0003	-0.0001	-0.0000
	(1.71)	(-0.19)	(-0.02)
Lag 1LSg Flow × Lag Ret	-0.0280^{*}	-0.0545^{*}	0.0050
	(-2.23)	(-2.17)	(0.22)
Lag Volatility	0.0094	0.0060	0.0110
	(1.40)	(0.49)	(0.97)
Lag Volatility × Lag Ret	-0.4986	-0.7798	-0.4123
	(-1.20)	(-1.11)	(-0.55)
Lag PLX BTX Flow × Lag Ret	-0.0200	-0.0272	-0.0153
	(-1.61)	(-1.41)	(-0.95)

- "Pulled" Hypothesis
 - H1A: Tether flows should be accompanied by changes in Tether/USD exchange rate
 - H1B: If Tether is demanded to facilitate cross-exchange arbitrage, Tether flows should correspond to arbitrage spread
- "Pushed" Hypothesis
 - H2A: Tether outflows should follow periods of negative Bitcoin returns
 - H2B: Bitcoin price should go up after Tether flows into the market
 - H2C: Bitcoin returns may show a return reversal after Tether flows in
 - H2D: Tether authorization should be more pronounced at round-number thresholds
 - H2E: To show adequate reserves in EOM accounting statements, Tether creators may liquidate Bitcoins into USD, and thus causes negative returns in Bitcoin at the EOM

Flow of Tether around Round Thresholds of Bitcoin Price

 $Flow_t = \beta_0 + \beta_1 Below Round Cutof f_{t-1} + \epsilon_t$.

	P	anel A: Flo	ws around	Round T	hresholds	3			
		I	Full		Autl	h		NoAuth	
Below Round Cutoff		14.	.75*		60.83	***		0.221	
		(2.	.02)		(3.52))		(0.03)	
Constant	int		.26***		45.55	***		31.93***	
			.52)		(5.19)			(6.78)	
Observations		1	,603		464			1,139	
Adjusted R^2		0.	0.002 0.028					-0.001	
Panel I	3: Flows t	to Different	Exchange	s—Days	Following	g Authori	zation		
	1LSg	Oth BTX	Oth PLX	Binance	HitBTC	Huobi	Kraken	OKEx	
Below Round Cutoff	52.60***	2.059	6.172	7.497	3.810	6.289	5.252	0.971	
	(3.71)	(0.60)	(1.62)	(1.27)	(1.92)	(1.90)	(0.83)	(0.46)	
Constant	34.75***	4.885***	5.915**	13.66***	0.564	3.766**	-1.071	3.841***	
	(4.63)	(3.93)	(3.08)	(4.42)	(0.64)	(3.01)	(-0.38)	(3.52)	
Observations	464	464	464	305	464	464	464	260	
Adjusted R^2	0.030	-0.001	0.004	0.002	0.007	0.008	-0.000	-0.003	
	Panel (C: Flows to	Different l	Exchange	s—Other	Days			
	1LSg	Oth BTX	Oth PLX	Binance	HitBTC	Huobi	Kraken	OKEx	
Below Round Cutoff	5.815	-2.825	-2.768	-1.085	-0.835	-0.476	0.207	2.043	
	(0.89)	(-1.33)	(-1.47)	(-0.47)		(-0.12)	(0.17)	(0.71)	
Constant	19.93***	4.982***	7.015***	3.442	0.761	* 4.123	-0.0051	9 - 0.542	
	(4.99)	(3.43)	(5.43)	(2.01)	(2.29)	(1.32)	(-0.01)	(-0.22)	
Observations	1,139	1,139	1,139	731	1,139	1,139	1,139	483	
Adjusted R^2	-0.000	0.001	0.001	-0.001	0.001	-0.001	-0.001	-0.001	

Price Effect of Flows around Round Threshold

$$\frac{1}{3} \sum_{i=0}^{2} R_{t+i} = \beta_0 + \beta_1 F \hat{low}_{t-1} + \epsilon_t,$$

Panel A: Returns around Round Thresholds					
	Auth	NoAuth	$Auth_L.Ret < 0$	Auth_L.Ret > 0	
Below Round Cutoff	20.61*	-3.397	32.87*	11.91	
	(2.42)	(-0.74)	(2.58)	(1.29)	
Constant	1.765	5.466	11.75	-7.205	
	(0.33)	(1.87)	(1.39)	(-1.15)	
Observations	464	1,138	214	250	
Adjusted \mathbb{R}^2	0.012	0.000	0.025	0.002	

Panel B: Instrumenting the Flow using the Round Thresholds

	All	Auth	Auth_L.Ret < 0	Auth L.Ret > 0
- Til				
Flow	26.42* (2.06)	33.88* (2.05)	45.34* (2.37)	22.92 (0.97)
Constant	-5.724	-13.67	-10.75	-16.81
Observations	(-1.05) $1,602$	(-1.27) 464	(-0.72) 214	(-1.23) 250
Wald F-statistic	19.44	12.03	8.217	5.264

Panel C: Instrumenting the 1LSg Flow using the Round Thresholds

	All	Auth	$Auth_L.Ret<0$	$Auth_L.Ret > 0$
1LSg Flow	38.52*	65.44*	89.35	47.27
	(2.09)	(2.03)	(1.79)	(1.11)
Oth PLX/BTX Flow	-21.19	-52.65	-76.91	-47.82
	(-1.78)	(-1.45)	(-1.08)	(-1.26)
Oth Flow	-10.18	-38.09^{*}	-35.38	-40.03
	(-1.92)	(-2.10)	(-1.73)	(-1.21)
Constant	-3.364	-10.28	-8.653	-11.08
	(-0.75)	(-1.01)	(-0.53)	(-0.99)
Observations	1,602	464	214	250
Wald F-statistic	19.49	7.639	3.291	4.277

• "Pulled" Hypothesis

- H1A: Tether flows should be accompanied by changes in Tether/USD exchange rate
- H1B: If Tether is demanded to facilitate cross-exchange arbitrage, Tether flows should correspond to arbitrage spread

"Pushed" Hypothesis

- H2A: Tether outflows should follow periods of negative Bitcoin returns
- H2B: Bitcoin price should go up after Tether flows into the market
- H2C: Bitcoin returns may show a return reversal after Tether flows in
- H2D: Tether authorization should be more pronounced at round-number thresholds
- H2E: To show adequate reserves in EOM accounting statements, Tether creators may liquidate Bitcoins into USD, and thus causes negative returns in Bitcoin at the EOM

EOM Bitcoin Returns and Tether Issuance

EOM Bitcoin Returns and Tether Issuance

 $R_t = \beta_0 + \beta_1 EOM_t + \beta_2 Issuance_t + \beta_3 EOM_t * Issuance_t + \epsilon_t$

(2) NoIssuance ** -0.000788 (-0.14)	de de la companya de	(4) All -0.00669 (-1.41) 0.00123 (0.39)	(5) All -0.000788 (-0.14)	(6) Issuance -0.0251*** (-4.70)	(7) All -0.00869 (-1.84) 0.00546	(8) All
NoIssuance ** -0.000788	Issuance –0.0377***	-0.00669 (-1.41) 0.00123 (0.39)	All -0.000788	Issuance -0.0251***	All -0.00869 (-1.84)	All -0.000788
		$(-1.41) \\ 0.00123 \\ (0.39)$			(-1.84)	-0.000788 (-0.14)
,,	,,	0.00123 (0.39)	,,			,,
					(1.63)	
		$-0.0222^{**} \ (-2.85)$			$-0.0107^* \ (-2.04)$	
		(2.55)	$-0.0187^{st} \ (-2.27)$		(2.01)	$-0.0187^{st} \ (-2.27)$
			-0.0307^{**}			-0.0307^{**} (-2.70)
			-0.0615^*			-0.0232^*
			$\boldsymbol{0.0117}^*$			(-1.98) 0.0117^*
			0.00933			(2.08) 0.00933
			0.00908			$(1.32) \\ 0.0126 \\ (1.57)$
				(-2.71) -0.0615^* (-2.40) 0.0117^* (2.08) 0.00933 (1.33)	(-2.71) -0.0615^* (-2.40) 0.0117^* (2.08) 0.00933 (1.33) 0.00908	(-2.71) -0.0615^* (-2.40) 0.0117^* (2.08) 0.00933 (1.33) 0.00908

Conclusions

- This paper examines whether Tether is primarily driven by investor demand or is supplied by its creator to inflate cryptocurrency prices.
- Evidence suggests that one large player on Bitfinex uses Tether to purchase large amounts of Bitcoin when prices are falling.
- The findings support the view that price manipulation can have substantial distortive effects in cryptocurrencies.
- Innovative technologies designed to bypass traditional banking systems have not eliminated the need for external regulatory framework as many had believed.