

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.03.04 Программная инженерия

ОТЧЕТ

по лабораторной работе № 4

Название:	Исследование мультиплексоров
	1

Дисциплина: Архитектура ЭВМ

Студент	ИУ7-46Б	11.05.2021	Д. В. Варин
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			А. Ю. Попов
		(Подпись, дата)	(И.О. Фамилия)

Цель работы – изучение принципов построения, практического применения и экспериментального исследования мультиплексоров.

Задание 1

Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8-1 цифровых сигналов:

- а) на информационные входы D0 ...D7 мультиплексора подать комбинацию сигналов, заданную преподавателем из табл. 2. Логические уровни 0 и 1 задавать источниками напряжения U=5 B и 0 B (общая);
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой 500 кГц.
- в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе

Вариант 3

Собранная схема:

Логический анализатор:

Одно из применений мультиплексора — быть анализатором логической функции.

Изучив сигналы, можно прийти к выводу, что они совпадают с входными данными.

Задание 2

Исследование ИС ADG408 или ADG508 в качестве коммутатора MUX 8 – 1 аналоговых сигналов:

- а) на информационные входы D0 ...D7 мультиплексора подать дискретные уровни напряжений с источников напряжения UCC (приложение Multisim): 0 B; 0.7 B; 1.4 B; 2.1 B; 2.8 B; 3.5 B; 4.2 B; 5.0 B;
- б) на адресные входы A2, A1, A0 подать сигналы Q3, Q2. Q1 соответственно с выходов 4-разрядного двоичного счетчика (младший разряд Q0). На вход счетчика подать импульсы генератора с частотой $500 \text{ к}\Gamma$ ц;
- в) снять временную диаграмму сигналов при EN=1 и провести ее анализ. Наблюдение сигналов выполнить на логическом анализаторе, выходного сигнала мультиплексора на логическом анализаторе и осциллографе. Совместить развертки сигналов, регистрируемых логическим анализатором и осциллографом.

Собранная схема:

Логический анализатор:

Осцилограф:

На логическом анализаторе замечаем, что истина на мультиплексоре соответствует ситуации, когда напряжение на нём достигает значения, большего половине напряжения стробирующего сигнала EN.

Так же можно заметить наличие помех, которые возникают в результате гонки сигналов.

Задание 3

Исследование ИС ADG408 или ADG508 как коммутатора MUX 8 – 1 цифровых сигналов в качестве формирователя Φ AЛ четырех переменных.

- ФАЛ задается преподавателем.
- Проверить работу формирователя в статическом и динамическом режимах.
- Снять временную диаграмму сигналов формирователя ФАЛ и провести ее анализ.

$\Phi A \Pi$: **0011 1110 1010 1100**

Схема:

Логический анализатор:

Полученный значения совпадают с синтезированной таблицей.

№ набора	X4	X3	X2	X1	F	Примечание
0	0	0	0	0	0	$D_0 = 0$
1	0	0	0	1	0	
2	0	0	1	0	1	$D_1 = 1$
3	0	0	1	1	1	
4	0	1	0	0	1	$D_2 = 1$
5	0	1	0	1	1	
6	0	1	1	0	1	$D_3 = \neg x 1$
7	0	1	1	1	0	
8	1	0	0	0	1	$D_4 = \neg x 1$
9	1	0	0	1	0	
10	1	0	1	0	1	$D_5 = \neg x 1$
11	1	0	1	1	0	
12	1	1	0	0	1	$D_6 = 1$
13	1	1	0	1	1	
14	1	1	1	0	0	$D_7 = 0$
15	1	1	1	1	0	

Задание 4

Наращивание мультиплексора.

Построить схему мультиплексора MUX 16-1 на основе простого мультиплексора MUX 4-1 и дешифратора DC 2-4.

Исследовать мультиплексора MUX 16 – 1 в динамическом режиме.

На адресные входы подать сигналы с 4-разрядного двоичного счетчика, на информационные входы D0 ...D15 – из табл. 2.

Провести анализ временной диаграммы сигналов мультиплексора MUX 16-1. мультиплексора MUX 16-1.

Набор значений: 0011 1110 1010 1100

Собранная схема:

Логический анализатор

Можем заметить, что полученные значения совпадают с исходным мультиплексором, значит, схема собрана верно.

Вывод:

По выполнении лабораторной работы удалось изучить принципы построения мультиплексоров, а также их практического применения и экспериментального исследования.