High Energy Analysis at KamLAND and Application to Dark Matter Search

Michinari Sakai

University of Hawaii, Manoa michinar@hawaii.edu

July 17, 2015

Overview

Introduction

Neutrino directionality

Issues

Idea

Validation

Track reconstruction and particle discrimination

Algorithm

Validation

KamLAND: ν detector in Japan

KamLAND: features

- Commissioned: 2001
- Detector medium: liquid scintillator
- ▶ Size: 1 kt
- Photomultiplier tubes:
 1325 17-inch, 779 20-inch (Hamamatsu), 34 %
 photo-coverage
- Analysis ν energy: \sim MeV
- Energy resolution: $7.0 \pm 0.1 \%$
- Vertex resolution: $13.8 \pm 2.3 \, \text{cm} / \sqrt{\text{E(MeV)}}$

KamLAND: features

- Commissioned: 2001
- Detector medium: liquid scintillator
- ▶ Size: 1 kt
- Photomultiplier tubes:
 1325 17-inch, 779 20-inch (Hamamatsu), 34 %
 photo-coverage
- Analysis ν energy: \sim MeV
- Energy resolution: $7.0 \pm 0.1 \%$
- ▶ Vertex resolution: $13.8 \pm 2.3 \, \text{cm} / \sqrt{\text{E}(\text{MeV})}$
- Directional sensitivity: NONE

KamLAND: features

- Commissioned: 2001
- Detector medium: liquid scintillator
- ▶ Size: 1 kt
- Photomultiplier tubes:
 1325 17-inch, 779 20-inch (Hamamatsu), 34 %
 photo-coverage
- Analysis ν energy: \sim MeV
- Energy resolution: $7.0 \pm 0.1 \%$
- ▶ Vertex resolution: $13.8 \pm 2.3 \, \text{cm} / \sqrt{\text{E}(\text{MeV})}$
- Directional sensitivity: NONE
- No analysis at higher energies

Directionality in water

Super-Kamiokande

Cherenkov rings

Directionality in water

Super-Kamiokande

- Cherenkov rings
- Tell charged particle direction

Directionality in water

Super-Kamiokande

- Cherenkov rings
- Tell charged particle direction
- Can we do something similar in scintillator?

Cherenkov is emitted

- Cherenkov is emitted
- Along with isotropic Scintillation

- Cherenkov is emitted
- Along with isotropic Scintillation

Furthermore...

Inverse-beta decay

Furthermore...

Inverse-beta decay

 KamLAND is used to seeing simple kinematics at low energies (MeV)

Furthermore...

Inverse-beta decay

- KamLAND is used to seeing simple kinematics at low energies (MeV)
- single final-state lepton

But at higher energies, the kinematics is not so simple

204 μ 's overlaid

204 μ 's overlaid

204 μ 's overlaid

Prepulsing is few % effect.

204 μ 's overlaid

- Prepulsing is few % effect.
- fitters must to be robust against these statistical outliers

Light is produced isotropically

- Light is produced isotropically
- At high energies
 - complicated kinematics
 - multiple final-state particles

- Light is produced isotropically
- At high energies
 - complicated kinematics
 - multiple final-state particles
- Let's change perspective and think more simple

- Light is produced isotropically
- At high energies
 - complicated kinematics
 - multiple final-state particles
- Let's change perspective and think more simple
- ► There are two pieces of information arriving at PMTs

- Light is produced isotropically
- At high energies
 - complicated kinematics
 - multiple final-state particles
- Let's change perspective and think more simple
- ► There are two pieces of information arriving at PMTs
 - ▶ Time
 - Charge

 Use center of charge to fit middle of track

- Use center of charge to fit middle of track
- Use center of time to fit near one end of track

- Use center of charge to fit middle of track
- Use center of time to fit near one end of track
- And just connect dots to find direction!

Question:

Question:

▶ But, what do we use for the <u>weights</u> in the **weighted mean**:

$$\frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}},$$

when calculating center of charge and time?

Question:

▶ But, what do we use for the <u>weights</u> in the **weighted mean**:

$$\frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}},$$

when calculating center of charge and time?

Let's review some basic physics

What weight is used for center of gravity?

What weight is used for center of gravity?

To find center of gravity: $\label{eq:center} \mbox{net torque} = -(m_1g)l_1 + (m_2g)l_2 = 0$

What weight is used for center of gravity?

To find center of gravity: $\text{net torque} = -(m_1g)l_1 + (m_2g)l_2 = 0 \\ \Longrightarrow -m_1l_1 + m_2l_2 = 0$

What weight is used for center of gravity?

To find center of gravity: net torque $= -(m_1g)l_1 + (m_2g)l_2 = 0$ $\implies -m_1l_1 + m_2l_2 = 0$ \therefore weight is mass: $w_i = m_i$

... weight is square root of charge: $w_i = \sqrt{q_i}$

$$\begin{array}{l} \text{Let } \Delta t_i \equiv t_i - t_0 \\ \Longrightarrow \ \Delta t_1 = \frac{l_1}{c}, \quad \Delta t_2 = \frac{l_2}{c} \\ \Longrightarrow \ -(\frac{1}{\Delta t_1})\frac{l_1}{c} + (\frac{1}{\Delta t_2})\frac{l_2}{c} = 0 \end{array}$$

$$\begin{array}{l} \text{Let } \Delta t_i \equiv t_i - t_0 \\ \Longrightarrow \ \Delta t_1 = \frac{l_1}{c}, \quad \Delta t_2 = \frac{l_2}{c} \\ \Longrightarrow \ -(\frac{1}{\Delta t_1})\frac{l_1}{c} + (\frac{1}{\Delta t_2})\frac{l_2}{c} = 0 \\ \Longrightarrow \ -(\frac{1}{\Delta t_1})l_1 + (\frac{1}{\Delta t_2})l_2 = 0 \end{array}$$

$$\begin{split} \text{Let } \Delta t_i &\equiv t_i - t_0 \\ &\Longrightarrow \Delta t_1 = \frac{l_1}{c}, \quad \Delta t_2 = \frac{l_2}{c} \\ &\Longrightarrow -(\frac{1}{\Delta t_1})\frac{l_1}{c} + (\frac{1}{\Delta t_2})\frac{l_2}{c} = 0 \\ &\Longrightarrow -(\frac{1}{\Delta t_1})l_1 + (\frac{1}{\Delta t_2})l_2 = 0 \end{split}$$

 \therefore weight is inverse of time: $w_i = \frac{1}{\Delta t_i}$

Conclusion

▶ Use **mass** as weight for *center of gravity*.

Conclusion

- Use mass as weight for center of gravity.
- Use $\sqrt{\text{charge}}$ as weight for *center of charge*.

Conclusion

- Use mass as weight for center of gravity.
- Use $\sqrt{\text{charge}}$ as weight for *center of charge*.
- Use $\left(\frac{1}{\text{time}}\right)$ as weight for *center of time*.

Test algorithm against μ (Data)

Deviation from

Test algorithm against ν (MC)

- ▶ Black line: 1σ of reconstructed angle from ν direction
- \blacktriangleright Red line: 1σ of lepton angle from ν direction

Test algorithm against T2K events (Data)

Test algorithm against T2K events (Data)

Track Reconstruction and Particle ID

Hellgartner's algorithm

$$h(\vec{x},t) = \sum_{i=1}^{N_{\text{PMT}}} \Theta(q_i - q_{\text{threshold}}) \sum_{j=1}^{N_{\gamma}} f(t_{ij} - t_i^{\text{TOF}}, t)$$

where N_{PMT} : number of PMTs

 N_{γ} : number of photon hits to count per PMT

 q_i : charge on i-th PMT, $q_{\text{threshold}}$: minimum charge for analysis

 t_{ij} : j-th hit time on i-th PMT

 t_i^{TOF} : expected time-of-flight between *i*-th PMT and \vec{x}

$$f(\Delta t, t) \propto (t - \Delta t) \exp \left[-\frac{(\Delta t - t)^2}{2\sigma_{\mathsf{tts}}} \right]$$

Figure of merit for each test point in space $= \int_{-\infty}^{\infty} |h(\vec{x},t)|^2 dt$

Test Hellgartner on double 1 GeV muons (MC)

Dominikus Hellgartner

Test Hellgartner on 2 GeV $\nu_{\rm e}$ (MC)

Test Hellgartner on T2K events (Data)

Lepton discrimination algorithm

Explanation is here.

Test lepton discrimination (MC)

Reconstructed Ellipticity

