implementation of 4x1 multiplexer and 1x4 demultiplexer using logic gates

Aim:

To analyze the truth table and working of 1x4 De-Multiplexer by using 3-input NAND and 1-input NOT logic gate ICs and 4x1 Multiplexer by using 3-input AND, 3-input OR, and 1-input NOT logic gate ICs.

Introduction:

The function of a multiplexer is to select the input of any 'n' input lines and feed that to one output line. The function of a de-multiplexer is to inverse the function of the multiplexer and the shortcut forms of the multiplexer. The de-multiplexers are mux and de-mux. Some multiplexers perform both multiplexing and de-multiplexing operations.

Figure-1: Block diagram of Multiplexer and De-multiplexer

1) Multiplexer: Multiplexer is a device that has multiple inputs and a single line output. The select lines determine which input is connected to the output and increase the amount of data that can be sent over a network within a certain time. It is also called a data selector.

Multiplexers are classified into four types:

a)	2-1	multiplexer	(1	select	line)
b)	4-1	multiplexer	(2	select	lines)
c)	8-1	multiplexer	(3	select	lines)
d) 16-	1 multiplex	er (4 select lines)			

1.1) 4x1 Multiplexer

4x1 Multiplexer has four data inputs Do, D1, D2 & D3, two selection lines So & S1 and one output Y. The block diagram of 4x1 Multiplexer is shown in the following figure. One of these 4 inputs will be connected to the output based on the combination of inputs present at these two selection lines. Truth table of 4x1 Multiplexer is shown below.

Figure-2: Block diagram of 4x1 Multiplexer

Selection	Output	
S0	S1	Υ
0	0	D ₀
0	1	D ₁
1	0	D ₂
1	1	D3

Figure-3: Truth table of 4x1 Multiplexer

2) <u>De-multiplexer:</u> De-multiplexer is also a device with one input and multiple output lines. It is used to send a signal to one of the many devices. The main difference between a multiplexer and a demultiplexer is that a multiplexer takes two or more signals and encodes them on a wire, whereas a de-multiplexer does reverse to what the multiplexer

De-multiple	exers	are	classified	into	four	types:
a)1-2	dem	ultiplexer	(1	S	elect	line)
b)1-4	dem	ultiplexer	(2	se	elect	lines)
c)1-8	dem	ultiplexer	(3	se	elect	lines)
d)1-16	den	nultiplexer	(4	Se	elect	lines)

2.2) 1x4 De-multiplexer

1x4 De-Multiplexer has one input Data(D), two selection lines, S0 & S1 and four outputs Y0, Y1, Y2 & Y3. The block diagram of 1x4 De-Multiplexer is shown in the following figure.

Figure-4: Block diagram of 1x4 De-Multiplexer

Selection	Outputs				
S0	S 1	Y 3	Y ₂	Υ ₁	Υ ₀
0	0	0	0	0	D
0	1	0	0	D	0
1	0	0	D	0	0
1	1	D	0	0	0

Figure-5: Truth table of 1x4 De-Multiplexer

Experiment to perform 4:1 Multiplexer:

TRUTH TABLE FOR 4:1 MULTIPLEXER:

TRUTHI	ABLE		PRINT	Add	
Serial No.	S0	S1	OUTPUT (Y)	OUTPUT VALUE	
1	0	0	D 0	1	
2	0	1	D1	1	
3	1	0	D2	1	
4	1 1		D3	1	

Experiment to perform 1:4 De-Multiplexer:

TRUTH TABLE FOR 1:4 De-MULTIPLEXER:

TRUTH TABLE				ADD PRINT			
Serial No.	DATA	S0	S1	Yo	Y1	Y2	Y3
1	D	0	0	D= 0	0	0	0
2	D	0	0	D=1	0	0	0
3	D	0	1	0	D=1	0	0
4	D	1	0	0	0	D=1	0
5	D	1	1	0	0	0	D=1