Analysis

Otto Martinwall

2022

Contents

1	Pro	oof Techniques	2
	1.1	Mathematical Induction	2
2	Set	Theory	4
	2.1	Ordered Pairs	4
	2.2	Relation	6
	2.3	Functions	8
		2.3.1 Properties of Functions	9
		2.3.2 Composition Function	1
		2.3.3 Inverse function	2
	2.4	Cardinality	4
3	The	e Real Numbers $\mathbb R$	0
4	Exe	ercises and My Solutions 2	3
	4.1	Analysis with an Introduction to Proof - Steven R. Lay	24
		4.1.1 Sets and Functions	25
		4.1.1.1 Exercises 3	25
		4.1.2 The Real Numbers	29
		4.1.2.1 Exercises 1	29

Chapter 1

Proof Techniques

1.1 Mathematical Induction

Axiom 1.1. (Well-Ordering Property of \mathbb{N}). If S is a nonempty subset of \mathbb{N} , then there exists an element $m \in S$ such that $m \leq k$ for all $k \in S$.

Theorem 1.2 (Principle of Mathematical Induction). Let P(n) be a statement that is either true or false for each $n \in \mathbb{N}$. Then P(n) is true for all $n \in \mathbb{N}$, provided that

- 1. P(1) is true, and
- 2. for each $k \in \mathbb{N}$, if P(k) is true, then P(k+1) is true.

Proof. This will be a proof by contradiction, using the tautology " $(p \Rightarrow q) \Leftrightarrow [(p \land \sim q) \Rightarrow c]$ ", where " \sim " denotes negation and "c" is a false statement. Suppose that (a) and (b) hold, but P(n) is false for some $n \in \mathbb{N}$. Let

$$S = \{n \in \mathbb{N} : P(n) \text{ is false}\}.$$

Then S is not empty and the well-ordering property guarantees the existence of an element $m \in S$ that is a least element of S. Since P(1) is true by (1), $1 \notin S$, so that m > 1. It follows that m - 1 is also a natural number, and since m is the least element in S, we must have $m - 1 \notin S$.

But since $m-1 \notin S$, it must be that P(m-1) is true. We now apply (2) with k=m-1 to conclude that P(k+1)=P(m) is true. this implies that

 $m \in S$, which contradicts our original choice of m. We conclude that P(n) must be true for all $n \in \mathbb{N}$.

A more general form of mathematical induction is

Theorem 1.3. Let $m \in \mathbb{N}$ and let P(n) be a statement that is either true or false for each $n \geq m$. Then P(n) is true for all $n \geq m$, provided that

- 1. P(m) is true, and
- 2. for each $k \geq m$, if P(k) is true, then P(k+1) is true.

Proof. The proof will use the original principle of induction. For each $r \in \mathbb{N}$, let Q(r) be the statement "P(r+m-1) is true.". Then from (1) we know that Q(1) holds. Now let $j \in \mathbb{N}$ and suppose that Q(j) holds. That is, P(j+m-1) is true. Since $j \in \mathbb{N}$,

$$j + m - 1 = m + (j - 1) \ge m$$

, so by (2), P(j+m) must be true. Thus Q(j+1) holds and the induction step is verified. We conclude that Q(r) holds for all $r \in \mathbb{N}$.

Now if $n \geq m$, let r = n - m + 1, so that $r \in \mathbb{N}$. Since Q(r) holds, P(r+m-1) is true. But P(r+m-1) is the same as P(n), so P(n) is true for all $n \geq m$.

Chapter 2

Set Theory

2.1 Ordered Pairs

Definition 2.1 (Ordered Pair). The **ordered pair** (a, b) is the set whose members are $\{a\}$ and $\{a, b\}$. In symbols we have

$$(a,b) = \{\{a\}, \{a,b\}\}\$$

This definition ensures that order matters. To show this, this theorem and its proof should suffice.

Theorem 2.2 (Ordered Pair Theorem). ^a

$$(a,b) = (c,d) \leftrightarrow a = c, b = d$$

Proof. If a = c and b = d, then

$$(a,b) = \{\{a\}, \{a,b\} = \{\{c\}, \{c,d\}\} = (c,d)\}$$

Conversely, suppose that (a,b)=(c,d). Then by our definition we have $\{\{a\},\{a,b\}\}=\{\{c\},\{c,d\}\}$. We wish to conclude that a=c and b=d. To this end we consider two cases, depending on whether a=b or $a\neq b$.

If
$$a = b$$
, then $\{a\} = \{a, b\}$, so $(a, b) = \{\{a\}\}$. Since $(a, b) = (c, d)$, we

 $[^]a{\rm this}$ is a made up name by me

then have

$$\{\{a\}\} = \{\{c\}, \{c, d\}\}.$$

The set on the left has only one member, $\{a\}$. Thus the set on the right can have only one member, so $\{c\} = \{c, d\}$, and we can conclude that c = d. But then $\{\{a\}\} = \{\{c\}\}$, so $\{a\} = \{c\}$ and a = c. Thus a = b = c = d.

On the other hand, if $a \neq b$, then from the preceding argument it follows that $c \neq d$. Since (a, b) = (c, d), we must have

$${a} \in {\{c\}, \{c, d\}\}},$$

which means that $\{a\} = \{c\}$ or $\{a\} = \{c, d\}$. In either case we have $c \in \{a\}$, so a = c. Again, since (a, b) = (c, d), we must also have

$$\{a,b\} \in \{\{c\},\{c,d\}\}.$$

Thus $\{a,b\} = \{c\}$ or $\{a,b\} = \{c,d\}$. But $\{a,b\}$ has two distinct members and $\{c\}$ has only one, so we must have $\{a,b\} = \{c,d\}$. Now $a=c, a \neq b$, and $b \in \{c,d\}$, which implies that b=d.

Definition 2.3 (Cartesian Product). If A and B are sets, then the **Cartesian product** (or **cross product**) of A and B, written $A \times B$, is the set of all ordered pairs (a,b) such that $a \in A$ and $b \in B$. In symbols,

$$A\times B=\{(a,b):(a\in A)\wedge (b\in B)\}.$$

2.2 Relation

Definition 2.4 (Relation). Let A and B be sets. A **relation between** A **and** B is any subset R of $A \times B$. We say that an element a in A is **related** by R to an element b in B if $(a,b) \in R$, and we often denote this by writing "aRb". The first set A is referred to as the **domain** of the relation and denoted by dom R. If B = A, then we speak of a relation $R \subseteq A \times A$ being a **relation** on A.

Definition 2.5 (Equivalence Relation). A relation R on a set S is an equivalence relation if it has the following properties for all $x, y, z \in S$:

- Reflexive property: xRx
- Symmetric property: $xRy \leftrightarrow yRx$
- Transitive property: $(xRy \wedge yRz) \rightarrow xRz$

An example for a **equivalence relation** is the relation "is parallel to" when considering all lines in the plane, if we agree that a line is parallel to itself.

Definition 2.6 (Equivalence Class). Given an equivalence relation R on a set S, the **equivalence class** with respect to R of $x \in S$ is the set

$$E_x = \{ y \in S : y Rx \}$$

Example. Let $S = \{a : a \text{ lives in Sweden}\}$, which is the set of all people living in Sweden. Also, let a equivalence relation on this set be

$$R = \{(a, b) \in S \times S : a \text{ was born in the same year as } b\}.$$

Then

$$E_x = \{ y \in S : y Rx \}$$

is the set of all people living in Sweden who was born during the same year as some person x who is also living in Sweden. \diamond

Theorem 2.7. Two equivalence classes on the same set S with the same equivalence relation R must be disjoint or equal.

Proof. Let R be an equivalence relation on a set S, and let E_x and E_y be two equivalence classes with respect to R of $x \in S$. Suppose that they overlap, then there exists some $w \in E_x \cap E_y$. For all $x' \in E_x$ we have x'Rx, and because $w \in E_x$, wRx, and by symmetry, xRw. Also, $w \in E_y$ so wRy. By using transitivity, x'Rx and xRw and wRy implies that x'Ry, which means that $x' \in E_y$ and that $E_x \subseteq E_y$.

Conversely, for all $y' \in E_y$ we have y'Ry, and because $w \in E_y$, wRy, and by the symmetry property, yRw. Also, $w \in E_x$ so wRx. By using the transitivity property, y'Ry and yRw and wRx implies that y'Rx and that $E_y \subseteq E_x$. Since $E_x \subseteq E_y$ and $E_x \supseteq E_y$, it must be that $E_y = E_x$.

Definition 2.8. A **partition** of a set S is a collection P of nonempty subsets of S such that

- Each $x \in S$ belongs to some subset $A \in P$.
- For all $A, B \in P$, if $A \neq B$, then $A \cap B = \emptyset$.

A member of P is called a **piece** of the partition.

Example. Two equivalence classes on the same set S with the same equivalence relation R who are not equal (and therefore disjoint) are two pieces of a partition P on the set S.

2.3 Functions

Definition 2.9 (Function between two sets). Let A and B be sets. A function from A to B is a nonempty relation $f \subseteq A \times B$ that satisfies the following two conditions:

- 1. Existance: $\forall a \in A, \exists b \in B \ni (a, b) \in f$
- 2. Uniqueness: $([(a,b) \in f] \land [(a,c) \in f]) \Rightarrow (b=c)$

A is called the **domain** of f and is denoted by dom f. B is referred to as the **codomain** of f. We may write $f: A \to B$ to indicate that f has domain A and codomain B. The **range** of f, denoted rng f, is the set of

$$\operatorname{rng} f = \{ b \in B : \exists a \in A \ni (a, b) \in f \}$$

The domain of a function is either obtained from context or it is stated explicitly. Unless told otherwise, whenever a function is specified by a formula, possibly like this

$$f(x) = 3x^2 - 5,$$

then the domain of f is assumed to be the largest possible subset of \mathbb{R} for which the formula will result in a real number.

2.3.1 Properties of Functions

Definition 2.10 (Surjection). A function $f: A \to B$ is called **surjective** (or is said to map A **onto** B) if $B = \operatorname{rng} f$. A surjective function is also referred to as a **surjection**.

Definition 2.11 (Injection). A function $f: A \to B$ is called **injective** (or **one-to-one**) if, for all a and a' in A, f(a) = f(a') implies that a = a'. An injective function is also referred to as an **injection**.

Definition 2.12 (Bijection). A function $f: A \to B$ is called **bijective** or a **bijection** if it is both surjective and injective.

If a function is bijective, then it is particularly well behaved.

Definition 2.13 (Image and pre-image). Suppose that $f: A \to B$ and that $C \subseteq A$, then the subset $f(C) = \{f(x) : x \in C\}$ of B is called the **image** of C in B.

If we let $D \subseteq B$, then the subset $f^{-1}(D) = \{x \in A : f(x) \in D\}$ of A is called the **pre-image** of D in A, or f inverse of D.

Remark. In the second case where $D \subseteq B$ and $f^{-1}(D) = \{x \in A : f(x) \in D\}$, it must not be that rng f includes all of D, because D must not be a subset of A.

Theorem 2.14. Suppose that $f:A\to B$. Let $C\subseteq A$ and let $D\subseteq B$. Then the following hold:

- 1. $C \subseteq f^{-1}[f(C)]$
- $2. \ f[f^{-1}(D)] \subseteq D$

Proof. We begin with case 1.

Suppose that $f: A \to B$, and that $C_1 \subseteq A$ and $C_2 \subseteq A$, and that $C_1 \cap C_2 = \emptyset$ and that $f(C_1) = f(C_2)$. Then $f^{-1}[f(C_1)] = C_1 \cup C_2$, which must contain more members than C_1 . Therefore, $C \subseteq f^{-1}[f(C)]$ as was to

be prooven.^a

For case 2, suppose that $f: A \to B$ and $D \subseteq B$. Let $D_1 = \{d \in D: \exists a \in A \ni f(a) = d\}$, and let $D_2 = \{d \in D: \forall a \in A, f(a) \neq d\}$. This implies that $D = D_1 \cup D_2$ and $D_1 \cap D_2 = \emptyset$. The definition of D_1 also means that $f[f^{-1}(D_1)] = D_1$. Also, because of the definition of D_2 , $f^{-1}(D) = f^{-1}(D_1 \cup D_2) = f^{-1}(D_1)$ since $f^{-1}(D_2) = \emptyset$.

Since $f[f^{-1}(D_1)] = D_1 = f[f^{-1}(D)]$ and $D_1 \cap D_2 = \emptyset$, it must be that $f[f^{-1}(D)] \subseteq D$ because D has equal or more members than D_1 .

Theorem 2.15. Suppose that $f: A \to B$. Let $C \subseteq A$ and $D \subseteq B$. Then the following hold:

- 1. If f is injective, then $f^{-1}[f(C)] = C$.
- 2. If f is surjective, then $f[f^{-1}(D)] = D$.

Proof. We begin with case 1.

Suppose that $f: A \to B$, and that $C_1 \subseteq A$ and $C_2 \subseteq A$, and that $f(C_1) = f(C_2)$. Then $f^{-1}[f(C_1)] = C_1 \cup C_2$. Since f is injective, and $f(C_1) = f(C_2)$, it must be that $C_1 = C_2$, and therefore $f^{-1}[f(C_1)] = C_1$.

For case 2, suppose that $f: A \to B$ and $D \subseteq B$. Let $D_1 = \{d \in D: \exists a \in A \ni f(a) = d\}$, and let $D_2 = \{d \in D: \forall a \in A, f(a) \neq d\}$. This implies that $D = D_1 \cup D_2$ and $D_1 \cap D_2 = \emptyset$. The definition of D_1 also means that $f[f^{-1}(D_1)] = D_1$. Since f is surjective, $D_2 = \emptyset$, which means that $D = D_1$ since $D_1 \cup D_2 = D_1$, and therefore $f[f^{-1}(D_1)] = D_1$ implies that $f[f^{-1}(D)] = D$.

^aif f were injective (which it isn't in the proof) then $C = f^{-1}[f(C)]$, which is shown in the proof of 2.15.

2.3.2 Composition Function

Definition 2.16 (Composition Function). Suppose that $f: A \to B$ and $g: B \to C$, then $\forall a \in A, f(a) \in B$, and since f(a) is an object in $B, g(f(a)) \in C$. This is called the **composition** of f and g.

$$g \circ f = g(f(a)), \quad \forall a \in A$$

In terms of ordered pairs,

$$g \circ f = \{(a,c) \in A \times C : [\exists b \in B \ni (a,b) \in f] \land [(b,c) \in g]\}$$

Theorem 2.17. Let $f: A \to B$ and $g: B \to C$. Then

- 1. f and g are surjective $\Rightarrow g \circ f$ is surjective.
- 2. f and g are injective $\Rightarrow g \circ f$ is injective.
- 3. f and g are bijective $\Rightarrow g \circ f$ is bijective.

Proof. Case 1:

Since g is surjective, rng g = C, which means that $\forall c \in C, \exists b \in B \ni g(b) = c$. Now since f is surjective, $\exists a \in A \ni f(a) = b$. But then $(g \circ f)(a) = g(f(a)) = g(b) = c$, so $g \circ f$ is surjective.

Case 2:

Suppose that $b' = f(a') \in B$ and $b = f(a) \in B$, and that $g(b') = g(b) \in C$. This implies that b' = b since g is injective, which means that f(a') = f(a), but because f too is injective, this implies that a' = a. This results in that $g(f(a')) = g(f(a)) \Rightarrow a' = a$, so by definition, $g \circ f$ is injective.

Case 3:

By the result of case 1 and 2, if f and g are bijective, then $g \circ f$ is bijective. \square

2.3.3 Inverse function

To extend the idea of pre-image from 2.13, we can define a **inverse function**.

Definition 2.18 (Inverse Function). Suppose that $f: A \to B$. The inverse function of f is the function f^{-1} given by

$$f^{-1} = \{(y, x) \in B \times A : (x, y) \in f\}$$

Remark. If $f: A \to B$ is bijective, then $f^{-1}: B \to A$ is bijective.

Definition 2.19 (Identity Function). A function defined on a set A that maps each element in A onto itself is called the **identity function** on A, and is denoted by i_a .

Remark. If $f: A \to B$ and f is bijective, then

- $f^{-1} \circ f = i_A$,
- $f \circ f^{-1} = i_B$.

Theorem 2.20. Let $f: A \to B$ and $g: B \to C$ be bijective. Then the composition $g \circ f: A \to C$ is bijective and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof. By theorem 2.17 we know that $g \circ f$ is bijective, so there exists an inverse $(g \circ f)^{-1}$. We are asked to verify the equality of the two functions $(g \circ f)^{-1}$ and $f^{-1} \circ g^{-1}$, as sets of ordered pairs. To this end, suppose $(c, a) \in (g \circ f)^{-1}$. By the definition of an inverse function, this means $(a, c) \in g \circ f$. The definition of composition implies that

$$\exists b \in B \ni [(a,b) \in f] \land [(b,c) \in g].$$

Since f and g are bijective, this means that $(b,a) \in f^{-1}$ and $(c,b) \in g^{-1}$. That is, $f^{-1}(b) = a$ and $g^{-1}(c) = b$. But then,

$$(f^{-1} \circ g^{-1})(c) = f^{-1}(g^{-1}(c)) = f^{-1}(b) = a$$
 (2.1)

so that $(c, a) \in (f^{-1} \circ g^{-1})$ and $(g \circ f)^{-1} \subseteq (f^{-1} \circ g^{-1})$.

To the other end, suppose that $(c,a) \in (f^{-1} \circ g^{-1})$. The definition of

composition implies that

$$\exists b \in B \ni [(c,b) \in g^{-1}] \land [(b,a) \in f^{-1}].$$

This implies that $(b,c) \in g$ and that $(a,b) \in f$ and therefore $(a,c) \in g \circ f$. Since both f and g are bijective, there must exist an inverse $(g \circ f)^{-1}$ such that $(c,a) \in (g \circ f)^{-1}$. Now, since $(c,a) \in (f^{-1} \circ g^{-1})$ implies that $(c,a) \in (g \circ f)^{-1}$, and $(c,a) \in (g \circ f)^{-1}$ implies that $(c,a) \in (f^{-1} \circ g^{-1})$, it must be that $(g \circ f)^{-1} = (f^{-1} \circ g^{-1})$.

2.4 Cardinality

Definition 2.21 (Set Equivalence). Two sets S and T are called **set equivalent**, and we write $S \sim T$, if there exists a bijective function from S onto T.

This definition ensures that if two sets are set equivalent, they contain the same number of elements, since a bijective function between them will set up a one-to-one correspondence between the elements of each set.

Definition 2.22 (Finite or Infinite Set). A set S is said to be **finite** if $S = \emptyset$ or if there exists $n \in \mathbb{N}$ and a bijection $f : \{1, 2, ..., n\} \to S$. If a set is not finite, it is said to be **infinite**.

Definition 2.23. The **cardinal number** of the set $I_n = \{1, 2, ..., n\}$ is n, and if $S \sim I_n$, we say that S has n elements. The cardinal number of \emptyset is taken to be 0. If a cardinal number is not finite, it is called **transfinite**.

Definition 2.24. A set S is said to be **denumerable** if there exists a bijection $f: \mathbb{N} \to S$. If a set is finite or denumerable, it is called **countable**. If a set is not countable, it is **uncountable**. The cardinal number of a denumerable set is denoted by \aleph_0 .

Remark. Against our intuition from finite sets, if E is the set of all even natural numbers, then $\mathbb{N} \sim E$, because if f(n) = 2n, then $f : \mathbb{N} \to E$ is bijective. Therefore, both \mathbb{N} and E has the cardinal number \aleph_0 even though $E \subset \mathbb{N}$.

Example. \mathbb{Z} , the set of all integers, is denumerable since $f: \mathbb{N} \to \mathbb{Z}$ is bijective if

$$f(n) = \begin{cases} 0 \text{ if } n = 1\\ \frac{n}{2} \text{ if } n \text{ is even}\\ \left\lceil -\frac{n}{2} \right\rceil \text{ if } n \text{ is odd} \end{cases}$$

^aMoving forward, we will make use of the set $I_n = \{1, 2, ..., n\}$.

because this leads to that

$$\begin{split} f(1) &\rightarrow 0 \\ f(2) &\rightarrow 1 \\ f(3) &\rightarrow (-1) \\ f(4) &\rightarrow 2 \\ f(5) &\rightarrow (-2) \\ &\vdots \end{split}$$

So for any $b \in \mathbb{Z}$, there exists a $a \in \mathbb{N}$ such that f(a) = b, which implies that f is surjective, and there is also a one to one correspondence between the two sets so f is injective, and therefore bijective.

Notation. For any nonempty finite set S, there exists a bijection $f: I_n \to S$ for some $n \in \mathbb{N}$. Therefore, we use this function to count the members as $f(1), f(2), f(3), \ldots, f(n)$. Letting $f(k) = s_k$ we can write $S = \{s_1, s_2, \ldots, s_n\}$. We can also do this for any denumerable set T, since because it is denumerable, there exists a bijection $g: \mathbb{N} \to T$, so we can use $g(k) = t_k$ to write $T = \{t_1, t_2, t_3, \ldots\}$.

Lemma 2.25. Every subset of a finite set is finite.

Proof. — NOT DONE

Theorem 2.26. Let S be a countable set and let $T \subseteq S$. Then T is countable.

Proof. If T is finite, then we are done. Thus we may assume that T is infinite. This implies that S is infinite^a, so S is denumerable (since it is countable and infinite). Therefore, there exists a bijection $f: \mathbb{N} \to S$ and we can write S as a list of distinct members

$$S = \{s_1, s_2, s_3, \ldots\}$$

where $f(n) = s_n$. Now let

$$A = \{ n \in \mathbb{N} : s_n \in T \}.$$

Since A is a nonempty subset of \mathbb{N} , the Well-Ordering Property of \mathbb{N} implies that A has a least member, say a_1 . Similarly, the set $A \setminus \{a_1\}$ has a least member, say a_2 . In general, having chosen a_1, \ldots, a_k , let a_{k+1} be the least member in $A \setminus \{a_1, \ldots, a_k\}$. Essentially, if we select from our listing of S those terms that are in T and keep them in the same order, then a_n is the subscript of the nth term in this new list.

Now define a function $g: \mathbb{N} \to \mathbb{N}$ by $g(n) = a_n$. Since T is infinite, g is defined for every $n \in \mathbb{N}$. Since $a_{n+1} \notin \{a_1, \ldots, a_n\}$, g must be injective b. Thus tje composition $f \circ g$ is also injective. Since each element of T is somewhere in the listing of S, $g(\mathbb{N})$ includes all the subscripts of terms in T. Thus $f \circ g$ is a bijection from \mathbb{N} onto T and T is denumerable. \square

Theorem 2.27. Let S be a nonempty set. The following three conditions are equivalent.

- 1. S is countable.
- 2. There exists an injection $f: S \to \mathbb{N}$.
- 3. There exists a surjection $g: \mathbb{N} \to S$.

Proof. Suppose that S is countable. Then there exists some bijection $h: J \to S$ where $J = I_n$ for some $n \in \mathbb{N}$ if S is finite, or $J = \mathbb{N}$ if S is infinite. In either case, $h^{-1}: S \to \mathbb{N}$ is at least injective. Thus (1) implies (2).

Now suppose that there exists an injection $f: S \to \mathbb{N}$. Then f is a bijection from S to f(S), so f^{-1} is a bijection from f(S) to S. Let $g: \mathbb{N} \to S$ be defined by

$$g(n) = \begin{cases} f^{-1}(n), & \text{if } n \in f(S) \\ p, & \text{if } n \notin f(S) \end{cases}$$

where $p \in S$. Then $g[f(S)] = f^{-1}[f(S)] = S$ and $g[\mathbb{N} \setminus f(S)] = \{p\}$, so that g is a surjection from \mathbb{N} onto S. Thus, (2) implies (3).

Finally, suppose that there exists a surjection $g:\mathbb{N}\to S$. Define $h:S\to\mathbb{N}$

^aThis implication is true by lemma 2.25

^bI suppose that this is a small proof by induction that g is injective? This proof is not mine and is taken from *Analysis with an Introduction to Proof.*

by

$$h(s)$$
 is the smallest $n \in \mathbb{N}$ such that $g(n) = s$.

Then h is an injection from S to \mathbb{N} , and hence a bijection from S onto the subset h(S) of \mathbb{N} . Since \mathbb{N} is countable, theorem 2.26 implies that h(S) is countable. Since S and h(S) are set equivalent, because there exists a bijection between the two sets, S is also countable.

Theorem 2.28. The set \mathbb{R} of real numbers is uncountable.

Proof. Since any subset of a countable set is countable (theorem 2.26), it suffices to show that the interval J = (0, 1) is uncountable. If J were countable, we could list its members and have

$$J = \{x_1, x_2, x_3, \ldots\} = \{x_n : n \in \mathbb{N}\}.$$

Each element of J has an infinite decimal expansion, so we can write

$$x_1 = 0.a_{11}a_{12}a_{13}...,$$

 $x_2 = 0.a_{21}a_{22}a_{23}...,$
 $x_3 = 0.a_{31}a_{32}a_{33}...,$
:

where each $a_{ij} \in \{0, 1, ..., 9\}$. We now construct a real number $y = b_1 b_2 b_3 ...$ by defining

$$b_n = \begin{cases} 2, & \text{if } a_{nn} \neq 2\\ 3, & \text{if } a_{nn} = 2 \end{cases}$$

Since each digit in the decimal expansion of y is either 2 or 3, $y \in J$. But y is not one of the numbers x_n , since it differs from x_n in the nth decimal place. This contradicts our assumption that J is countable, so J must be uncountable.

Definition 2.29 (Cardinal Number of a Set). We denote the cardinal number of a set S by |S|, so that we have |S| = |T| iff S and T are set equivalent, which implies that there exists a bijection $f: S \to T$. We define $|S| \le |T|$ to mean that there exists an injection $f: S \to T$, and |S| < |T| means that $|S| \le |T|$ and $|S| \ne |T|$.

Theorem 2.30. If $S \subseteq T$, then $|S| \leq |T|$.

Proof. (1) If $S \subseteq T$, then for each $s \in S$ there exists one $t \in T$ with the relation s = t. If we let a function $f: S \to T$ be defined by f(s) = s, it is injective, and since there exists an injection that maps S into T, we say that $|S| \leq |T|$ by definition.

Remark. $|\mathbb{R}|$ is usually written as c, for continuum. Since $\mathbb{N} \subseteq \mathbb{R}$, we have $\aleph_0 \leq c$ by the theorem above. In fact, since \mathbb{N} is countable and \mathbb{R} is uncountable, we have $\aleph_0 < c$. Therefore, there exists more than one transfinite cardinal number.

Definition 2.31 (Power Set). For any set S, $\mathscr{P}(S)$ is the collection of all subsets of S. This collection is called the **power set** of S.

Theorem 2.32. For any set S, we have $|S| < |\mathscr{P}(S)|$

Proof. The function $g: S \to \mathscr{P}(S)$ given by $g(s) = \{s\}$ is injective, so we have $|S| \leq |\mathscr{P}(S)|$. To prove that $|S| \neq |\mathscr{P}(S)|$, we show that no function from S to $\mathscr{P}(S)$ can be surjective^a. Suppose that $f: S \to \mathscr{P}(S)$. Then for each $x \in S$, $f(x) \subseteq S$. For some x in S it may be that $x \in f(x)$, or $x \notin f(x)$. Let

$$T = \{x \in S : x \notin f(x)\}.$$

Then $T \subseteq S$, so $T \in \mathcal{P}(S)$. If f were surjective, then T = f(y) for some $y \in S$. Now either $y \in T$ or $y \notin T$. If $y \in T$, then by the definition of T, $y \notin T$. If $y \notin T$, then by the definition of T, $y \in T$. Therefore, $y \in T$ iff

Chapter 3

The Real Numbers \mathbb{R}

This will be an axiomatic approach, not constructive.

Axiom 3.1. (\mathbb{R} is an Ordered Field).

We assume the existence of a set \mathbb{R} , called the set of real numbers, and two operations "+" and "·", called addition and multiplication, such that the following properties apply:

- 1. For all $x, y \in \mathbb{R}$, $x + y \in \mathbb{R}$ and if x = w and y = z, then x + y = w + z.
- 2. For all $x, y \in \mathbb{R}$, x + y = y + x.
- 3. For all $x, y, z \in \mathbb{R}$, x + (y + z) = (x + y) + z.
- 4. There is a unique real number 0 such that x + 0 = x, for all $x \in \mathbb{R}$.
- 5. For each $x \in \mathbb{R}$ there is a unique real number -x such that x+(-x)=0.
- 6. For all $x, y \in \mathbb{R}$, $x \cdot y \in \mathbb{R}$ and if x = w and y = z, then $x \cdot y = w \cdot z$.
- 7. For all $x, y \in \mathbb{R}$, $x \cdot y = y \cdot x$.
- 8. For all $x, y \in \mathbb{R}$, $x \cdot (y \cdot z) = (x \cdot y) \cdot z$.
- 9. There is a unique real number 1 such that $1 \neq 0$ and $x \cdot 1 = x$ for all $x \in \mathbb{R}$.
- 10. For each $x \in \mathbb{R}$ with $x \neq 0$, there is a unique real number 1/x such that x(1/x) = 1. We also write x^{-1} or $\frac{1}{x}$ in place of 1/x.
- 11. For all $x, y, z \in \mathbb{R}$, $x \cdot (y + z) = x \cdot y + x \cdot z$.

Also, $\mathbb R$ satisfies four order axioms, which identify the properties of the relation "<". We may write y > x instead of x < y, and $x \le y$ is equivalent to "x < y or x = y".

- 1. For all $x, y \in \mathbb{R}$, exactly one of the relations x = y, x > y, or x < y holds.
- 2. For all $x, y, z \in \mathbb{R}$, if x < y and y < z, then x < z.
- 3. For all $x, y, z \in \mathbb{R}$, if x < y then x + z < y + z.
- 4. For all $x, y, z \in \mathbb{R}$, if x < y and z > 0, then xz > yz.

 $[^]a$ These first eleven axioms are called field axioms because they describe a system known as a **field** in abstract algebra.

^bThis is the **trichotomy law**.

Note. The set of complex numbers, \mathbb{C} , is not an ordered field and does not satisfy the order axioms.

These fifteen axioms are not unique to \mathbb{R} , but also hold for \mathbb{Q} , as an example. What makes \mathbb{R} unique is its completeness axiom. To define this axiom, we must first develop some tools for it.

Definition 3.2 (Upper & Lower Bounds). Let $S \subseteq \mathbb{R}$. If there exists a real number m such that $m \geq s$ for all $s \in S$, then m is called an **upper bound** of S, and we say that S is bounded above. If $m \leq s$ for all $s \in S$, then m is a **lower bound** of S and S is bounded below.

If an upper bound m of S is a member of S, then m is called the **maximum** of S, denoted by max S.

Similarly, if a lower bound of S is a member of S, then it is called the **minimum** of S, denoted by min S.

Definition 3.3 (Supremum & Infimum). Let $S \subseteq \mathbb{R}$. Suppose that S is bounded above, then the least upper bound is called the **supremum** of S, also denoted as $\sup S$. Iff $m = \sup S$, then

- 1. m > s for all $s \in S$, and
- 2. if m' < m, then there exists a s' > m' in such that $s \in S$.

Also, suppose that S is bounded below, then the greatest lower bound is called the **infinum** of S, denoted as inf S. Iff $k = \inf S$, then

- 1. $k \leq s$ for all $s \in S$, and
- 2. if k' > k, then there exists a s' < k' such that $s' \in S$.

Chapter 4

Exercises and My Solutions

4.1 Analysis with an Introduction to Proof - Steven R. Lay

4.1.1 Sets and Functions

4.1.1.1 Exercises 3

- (21) Suppose that $f: A \to B$ and let C be a subset of A.
 - 1. Prove or give a counterexample: $f(A \setminus C) \subseteq f(A) \setminus f(C)$.
 - 2. Prove or give a counterexample: $f(A)\backslash f(C)\subseteq f(A\backslash C)$.
 - 3. What condition on f will ensure that $f(A \setminus C) = f(A) \setminus f(C)$? Prove your answer.
 - 4. What condition of f will ensure that $f(A \setminus C) = B \setminus f(C)$? Prove your answer.

Proof. (1) Suppose that $f(A \setminus C) \subseteq f(A) \setminus f(C)$.

Let $x \in A \setminus C$, $x' \in C$ and f(x) = f(x'). Then, $f(x) \in f(A \setminus C)$, and therefore $f(x') \in f(A \setminus C)$. But since $f(x') \in f(C)$ and therefore $f(x) \in f(C)$, neither f(x) or f(x') is in $f(A) \setminus f(C)$. This contradicts our original statement because there exists a member in $f(A \setminus C)$ which is not in $f(A) \setminus f(C)$, so $f(A \setminus C) \nsubseteq f(A) \setminus f(C)$.

Proof. (2) For any $y \in f(A) \setminus f(C)$, there exists an $x \in A$ such that f(x) = y. If $x \in C$, then $f(x) \in f(C)$ which means that $f(x) \neq y$, so by contradiction it must be that $x \notin C$. This implies that $x \in A \setminus C$, and therefore that $f(x) \in f(A \setminus C)$ and $y \in f(A \setminus C)$. Since $y \in f(A) \setminus f(C)$ implies that $y \in f(A \setminus C)$, the statement $f(A) \setminus f(C) \subseteq f(A \setminus C)$ must be true.

Proof. (3) Proof 2 have already shown that $f(A)\backslash f(C)\subseteq f(A\backslash C)$, so to prove that $f(A)\backslash f(C)=f(A\backslash C)$ I must only prove the reverse of the first statement.

Let f be injective^a. For any $y \in f(A \setminus C)$, there exists one and only one $x \in A \setminus C$ such that f(x) = y. Since $x \in A \setminus C$, $x \in A$ and $f(x) \in f(A)$. Also, since $x \in A \setminus C$, $x \notin C$ and $f(x) \notin f(C)$. This implies that $f(x) \in f(A) \setminus f(C)$ and thus $y \in f(A) \setminus f(C)$. Since $y \in f(A \setminus C)$ implies $y \in f(A) \setminus f(C)$, and $y \in f(A) \setminus f(C)$ implies $y \in f(A \setminus C)$ from proof 2, it must be that $f(A \setminus C) = f(A) \setminus f(C)$.

^athis is the necessary condition such that $f(A \setminus C) = f(A) \setminus f(C)$.

^aProof 3 needed the condition that f was injective, and since proof 4 needs f to be surjective and is based on proof 3, f is now bijective.

(32) Suppose that $f:A\to B$ is any function. Then a function $g:B\to A$ is called a

- left inverse for f if g(f(x)) = x for all $x \in A$,
- right inverse for f if f(g(y)) = y for all $y \in B$.
- 1. Prove that f has a left inverse iff f is injective.
- 2. Prove that f has a right inverse iff f is surjective.

Proof. (1) Suppose that f is injective. Let $g = \{(b, a) \in B \times A : (a, b) \in f\} \cup \{(b, a) \in B \times A : b \notin f(A)\}^a$. By definition, each $a \in A$ corresponds to one and only one $b \in B$ such that f(a) = b, and because of the definition of g, for each $b \in B$ such that f(a) = b, g(b) = a, which implies that g(f(a)) = a for all $a \in A$.

Conversely, suppose that $f(x) \in B$ and $f(x') \in B$, and that f(x) = f(x'). If g(f(a)) = a for all $a \in A$, g(f(x)) = g(f(x')) implies that x = x'. Therefore, f is injective.

Proof. (2) Suppose that f has a right inverse and therefore f(g(y)) = y for all $y \in B$. This implies that f is surjective, since for all $y \in B$ there exists some $x \in A$, which may be g(y), such that f(x) = y.

^aI added the part $\cup \{(b,a) \in B \times A : b \notin f(A)\}$ to g to show that f must not be surjective.

(33) Let S be a nonempty set and let F be the set of all functions that map S into S. Suppose that for every f and g in F we have

$$(f \circ g)(x) = (g \circ f)(x), \forall x \in S$$

Prove that S has only one element.

Proof. If S contains more than one element, then there exists some functions f and g in F that are neither surjective nor injective. Suppose that $x, x' \in S$ and that $x \neq x'$, and that f(x) = x' and f(x') = x', and that g(x) = x and g(x') = x. Then f(g(x)) = f(x) = x', and g(f(x)) = g(x') = x, which contradicts the statement that $(f \circ g)(x) = (g \circ f)(x), \forall x \in S$, so S must contain less than two elements. Since S is nonempty, it must therefore contain one element.

4.1.2 The Real Numbers

4.1.2.1 Exercises 1

(3) Prove that $1^2 + 2^2 + \ldots + n^2 = \frac{1}{6}n(n+1)(2n+1)$ for all $n \in \mathbb{N}$. First, we must know if this is true for n=1.

$$1^2 = \frac{1}{6}(1)(2)(3)$$
$$1 = 1$$

Now, suppose that the statement is true for some $k \in \mathbb{N}$,

$$1^{2} + 2^{2} + \ldots + k^{2} = \frac{1}{6}k(k+1)(2k+1).$$

$$1^{2} + 2^{2} + \dots + k^{2} + (k+1)^{2} = \frac{1}{6}k(k+1)(2k+1) + (k+1)^{2} =$$

$$= \frac{1}{6}k(k+1)(2k+1) + (k^{2} + 2k + 1) =$$

$$= \frac{1}{6}(2k^{3} + k^{2} + 2k^{2} + k) + (k^{2} + 2k + 1) =$$

$$= \frac{1}{6}(2k^{3} + k^{2} + 2k^{2} + k) + \frac{1}{6}(6k^{2} + 12k + 6) =$$

$$= \frac{1}{6}(2k^{3} + 9k^{2} + 13k + 6) =$$

$$= \frac{1}{6}(k+1)(2k^{2} + 7k + 6) =$$

$$= \frac{1}{6}(k+1)(k+2)(2k+3) =$$

$$= \frac{1}{6}[k+1]([k+1] + 1)(2[k+1] + 1)$$

Since the statement is true for n=1, and if it is true for some $k \in \mathbb{N}$ then it it also true for $(k+1) \in \mathbb{N}$, it must be that the statement is true for all $n \in \mathbb{N}$ by induction.

(16) If a, b and $c \in \mathbb{N}$ such that a - b is a multiple of c, prove that $a^n - b^n$ is a multiple of c for all $n \in \mathbb{N}$.

$$a^{n} - b^{n} = (a - b)(a + b)(a^{2} + b^{2})(a^{4} + b^{4})(a^{8} + b^{8})\dots(a^{n/2} + b^{n/2}) =$$

$$= \prod_{k=0}^{\frac{n}{2}-1} (a - b)(a^{2^{k}} + b^{2^{k}})$$

for all $n = 2^k$ such that $k \in \mathbb{N}$.

—Not Finished—

I can only prove it for $n=2^k$ such that $k \in \mathbb{N}$, not for all $n \in \mathbb{N}$: