Cálculo Diferencial e Integral I

LEA, LEM, LEAN, MEAer, MEMec

2º Semestre de 2006/2007

8^a Aula Prática

- 1. (Exercício 4.9 de [2]) Determine o domínio, o domínio de diferenciabilidade e calcule a derivada das seguintes funções:
 - a) $\log(x \operatorname{sh} x)$ (ver Ex. 11),
 - b) arcsen(arctg x),
 - c) $\frac{e^x}{1+x}$.
- 2. Calcule, se existirem, as derivadas laterais no ponto 0 da função $f: \mathbb{R} \to \mathbb{R}$ dada por

$$f(x) = \begin{cases} \frac{x}{1 + e^{1/x}} & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases}$$

3. (Exercício 4.2 de [2]) Determine as derivadas laterais no ponto 0 da função f contínua em $\mathbb R$ e cujos valores para $x \neq 0$ são dados por

$$f(x) = x \frac{1 + e^{\frac{1}{x}}}{2 + e^{\frac{1}{x}}}, \quad x \neq 0.$$

4. Considere a função $f: \mathbb{R} \to \mathbb{R}$ definida por

$$f(x) = \begin{cases} x^2 \operatorname{sen}(\frac{1}{x}) & \text{se } x \neq 0 \\ 0 & \text{se } x = 0. \end{cases}$$

- a) Justifique que f é diferenciável em $\mathbb{R}/\{0\}$, calcule f' para $x \neq 0$ e mostre que $\lim_{x\to 0} f'(x)$ não existe.
- b) Justifique que f é diferenciável no ponto 0 e calcule f'(0).
- 5. Sejam f e g duas funções em $\mathbb R$ tais que f é diferenciável em $\mathbb R$, verifica $f(0) = f(\pi) = 0$, e g é dada por $g(x) = f(\sin x) + \sin f(x)$. Obtenha o seguinte resultado:

$$g'(0) + g'(\pi) = f'(0) + f'(\pi).$$

6. Seja $f: \mathbb{R} \to \mathbb{R}$, diferenciável. Calcule $(\operatorname{arctg} f(x) + f(\operatorname{arctg} x))'$.

- 7. Sendo $g: \mathbb{R} \to \mathbb{R}$ uma função duas vezes diferenciável, considere a função $\varphi:]0, +\infty[\to \mathbb{R}$ definida por $\varphi(x) = e^{g(\log x)}$. Supondo conhecidos os valores de g, g' e g'' em pontos convenientes, determine $\varphi'(1)$ e $\varphi''(e)$.
- 8. Sendo $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^4 e^{-x}$ para todo o x, e sendo $g: \mathbb{R} \to \mathbb{R}$ diferenciável, calcule $(g \circ f)'(x)$ em termos da função g'
- 9. Seja $g: \mathbb{R} \to \mathbb{R}$ uma função vezes diferenciável e estritamente monótona, com g(0) = 2 e $g'(0) = \frac{1}{2}$. Considere $f: [-1,1] \to \mathbb{R}$ dada por $f(x) = g(\arcsin x)$.
 - a) Justifique que f é diferenciável em]-1,1[e calcule f'(0).
 - b) Justifique que f é injectiva e, sendo f^{-1} a sua inversa, calcule $(f^{-1})'(2)$.
- 10. (Exame de 14-6-06) Considere uma função $f:\mathbb{R}\to]-1,1[$ uma função vezes diferenciável e bijectiva, tal que f(2)=0 e f'(2)=2. Seja g a função definida por

$$g(x) = \arccos(f(x)).$$

- a) Justifique que g é injectiva e diferenciável e, sendo sendo g^{-1} a função inversa de g determine g'(2) e $(g^{-1})'(\frac{\pi}{2})$.
- b) Determine o domínio de g^{-1} e justifique que g^{-1} não tem máximo nem mínimo. Será g^{-1} limitada ?
- 11. As funções seno hiperbólico e coseno hiperbólico definem-se da forma

$$sh(x) = \frac{e^x - e^{-x}}{2}$$
 $ch(x) = \frac{e^x + e^{-x}}{2}$.

- a) Deduza as igualdades (comparando-as com as correspondentes para funções trigonométricas):
 - $i) \cosh^2 x \sinh^2 x = 1$
 - ii) $\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y$
 - iii) $\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y$
 - iv) sh(2x) = 2 sh x ch x
 - $v) ch(2x) = ch^2 x + sh^2 x$
- b) Verifique que a função sh é ímpar, e a função ch é par.
- c) Calcule $\lim_{x\to+\infty} \operatorname{sh} x$, $\lim_{x\to+\infty} \operatorname{ch} x$, $\lim_{x\to-\infty} \operatorname{sh} x$, $\lim_{x\to-\infty} \operatorname{ch} x$.
- d) Estude shx e chx quanto à continuidade e diferenciabilidade. Calcule $(\operatorname{sh} x)'$ e $(\operatorname{ch} x)'$.
- e) Estude shx e chx quanto à intervalos de monotonia e extremos e esboçe os respectivos gráficos.

f) As funções inversas das funções hiperbólicas shx e chx designam-se, respectivamente por argsh e argch, isto é, $x = \operatorname{sh} y$ sse $y = \operatorname{argsh} x$, $y \in \mathbb{R}$, e $x = \operatorname{ch} y$ sse $y = \operatorname{argch} x$, $y \in \mathbb{R}^+$. Deduza

$$\operatorname{argsh} x = \log(x + \sqrt{x^2 + 1})$$
 $\operatorname{argch} x = \log(x + \sqrt{x^2 - 1})$

Calcule $(\operatorname{argsh} x)' \in (\operatorname{argch} x)'$.

12. (Exercício 4.27 de [2]) Seja $f:]0,1[\to \mathbb{R}$ uma função diferenciável tal que

$$f\left(\frac{1}{n+1}\right) = 0,$$
 para todo $n \in \mathbb{N}_1$.

Diga se cada uma das seguintes proposições é verdadeira ou falsa. Justifique as respostas.

- a) Para qualquer $n \geq 2$, a função f tem necessariamente máximo no intervalo $\left[\frac{1}{n+1},\frac{1}{n}\right]$.
- b) A função f é necessariamente limitada.
- c) A função f' tem necessariamente infinitos zeros.
- 13. Prove que se $f: \mathbb{R} \to \mathbb{R}$ é duas vezes diferenciável e o seu gráfico cruza a recta y = x em três pontos, então f'' tem pelo menos um zero.
- 14. Prove que a equação $3x^2 e^x = 0$ tem exactamente três zeros.

Outros exercícios: 4.5, 4.6, 4.10, 4.11, 4.12, 4.17 de [2].

- [1] J. Campos Ferreira. Introdução à Análise Matemática, Fundação Calouste Gulbenkian, $8^{\rm a}$ ed., 2005.
 - [2] Exercícios de Análise Matemática I e II, IST Press, 2003.