The Power of Reformulation: From Validation to Planning in PDDL+

Francesco Percassi¹, Enrico Scala², Mauro Vallati¹

¹ School of Computing and Engineering, University of Huddersfield, UK

² Dipartimento di Ingegneria dell'Informazione, Università degli Studi di Brescia, Italy

The 32nd International Conference on Automated Planning and Scheduling ICAPS 2022

PDDL+ planning problem

- A PDDL+ planning problem is a tuple $\Pi = \langle F, X, I, G, A, E, P \rangle$ where: F and X are the sets of **propositional** and **numeric variables**; I and G are the **initial** and **goal state**; A is the set of **actions** and E and P are the sets of **events** and **processes**.
- A PDDL+ plan is a tuple $\langle \pi, \langle t_s, t_e \rangle \rangle$ where: $\pi = \langle \langle a_1, t_1 \rangle, ..., \langle a_n, t_n \rangle \rangle$, with $t_i \in \mathbb{Q}$, is a sequence of time-stamped actions and $\langle t_s, t_e \rangle$, with $t_s, t_e \in \mathbb{Q}$, is the **temporal envelope** within π is executed.

Processes and events

Processes and Events are used to model the exogenous and environmental changes.

- A **process** ρ is a tuple $\langle pre(\rho), eff(\rho) \rangle$ where $pre(\rho)$ is a logical formula involving conditions over F and X and $eff(\rho)$ is a set of **continuous numeric effects** having the form $\langle x, \xi \rangle$, where $x \in X$ and ξ is a mathematical expression defined over X and \mathbb{Q} ; if $pre(\rho)$ holds and time passes continuously then ρ contributes additively to the **first derivative** of X with ξ for each $\langle x, \xi \rangle \in eff(\rho)$.
- An **event** ε is a tuple $\langle pre(\varepsilon), eff(\varepsilon) \rangle$ where $pre(\varepsilon)$ is a logical formula and $eff(\varepsilon)$ is a set of conditional effects $c \triangleright e$ where c is a logical formula and e is a set of **numeric** and **Boolean assignments** having the form $\langle \{inc, dec, asgn\}, x, \xi \rangle$ and $\langle f := \{\bot, \top\} \rangle$, respectively; if $pre(\varepsilon)$ is triggered then the state changes instantaneously according to $eff(\varepsilon)$.

PDDL+ semantics: Intuitively, a PDDL+ problem consists of finding a number of time-stamped actions along with a potentially infinite timeline, whilst conforming to a number of processes and events that may change the state of the world in a **continuous** or an **instantaneous** manner as time goes by.

Research Question

Definition 1 ((Discrete) Validation Problem). Let Π be a PDDL+ problem, π_t be a plan for Π . The validation problem aims at establishing whether π_t is valid for Π . The discrete validation problem aims at establishing whether π_t is valid for Π under $\delta \in \mathbb{Q}$ discretisation.

■ Can reformulation be used to validate PDDL+ plans using planning techniques?

Methodology

Given Π and π_t , we **reformulate** the validation problem into a PDDL+ planning problem $\Pi_{\mathcal{V}}$ which is solvable (unsolvable) iff π_t is valid (invalid) w.r.t. Π .

We also reformulate $\Pi_{\mathcal{V}}$ through $\mathcal{Z} \in \{\text{POLY, EXP}\}$, which are translations for **discretising** a PDDL+ problem into a numeric one (Percassi et al., 2021), to produce a PDDL2.1 planning problem $\Pi_{\mathcal{V} \circ \mathcal{Z}}$ used for doing discrete PDDL+ validation.

Depending on the planning engine used to reason over $\Pi_{\mathcal{V}}$, it is possible to validate plans w.r.t. **discrete** or **continuous semantics**.

	Continuous	Discrete	Polynomial	Non-Polynomial
	Semantics	Semantics	Dynamic	Dynamic
VAL	\checkmark	X	√	X
OUR	√	\checkmark	√	\checkmark

Baseline translation \mathcal{V}_0

Given $\Pi = \langle F, X, I, G, A, E, P \rangle$ and $\pi_t = \langle \pi, \langle t_s, t_e \rangle \rangle$ plan for Π , \mathcal{V}_0 produces a new validating PDDL+ problem $\Pi^{\pi_t}_{\mathcal{V}_0} = \langle F \cup F_A \cup \{\mathsf{T}\}, X \cup \{\mathit{time}\}, I \cup \{\mathit{a-d_0}, \langle \mathit{time} := t_s \rangle, \mathsf{T}\}, G \wedge a-d_n \wedge \langle \mathit{time} = t_e \rangle, A_{\pi}, E, P \cup \{\rho_{\mathit{time}}\} \rangle$ such that $\rho_{\mathit{time}} = \langle \mathsf{T}, \{\langle \mathit{time}, 1 \rangle\} \rangle$ and:

$$F_A = igcup_{i=0}^{n=|\pi|} \{a ext{-}d_i\}$$
 $A_\pi = igcup_{\langle a_i, t_i \rangle \ in \ \pi} \{\langle \textit{pre}(a_i) \land a ext{-}d_{i-1} \land \neg a ext{-}d_i \land \langle \textit{time} = t_i
angle, \textit{eff}(a_i) \cup \{a ext{-}d_i\}
angle \}$

Key aspects: the only actions executable in $\Pi_{\mathcal{V}_0}^{\pi_t}$ are those from π_t . These actions can only be executed in the same ordering and at the same time-stamps prescribed by π_t .

Constrained translations \mathcal{V}_{U} and \mathcal{V}_{D}

 $\mathcal{V}_{\mathbf{U}}$: Given Π and π_t plan for Π , $\mathcal{V}_{\mathbf{U}}$ produces $\Pi^{\pi_t}_{\mathcal{V}_{\mathbf{U}}} = \langle F \cup F_A \cup \{\mathsf{T}\}, X \cup \{\mathsf{time}\}, I \cup \{a-d_0, \langle \mathsf{time} := t_s \rangle, \mathsf{T}\}, G \wedge a-d_n \wedge \langle \mathsf{time} = t_e \rangle, A_{\pi}, E, P_{\mathbf{U}} \rangle$, where:

$$P_{\mathsf{U}} = \bigcup_{\rho \in P \cup \{\rho_{time}\}} \{\langle\langle time < t_e \rangle \land pre(\rho), eff(\rho) \rangle\}$$

The main idea of \mathcal{V}_U is to avoid some dead-ends by disallowing the occurrence of any process whenever time gets beyond what is prescribed by the plan. So, when time flows beyond t_e , then the processes P_U can not cause any change.

 $\mathcal{V}_{\mathbf{D}}$: Given Π and π_t plan for Π , $\mathcal{V}_{\mathbf{D}}$ produces $\Pi^{\pi_t}_{\mathcal{V}_{\mathbf{D}}} = \langle F \cup F_A \cup \{\mathsf{T}\}, X \cup \{\mathsf{time}\}, I \cup \{a-d_0, \langle \mathsf{time} := t_s \rangle, \mathsf{T}\}, G \wedge a-d_n \wedge \langle \mathsf{time} = t_e \rangle \wedge \mathsf{T}, A_{\pi}, E \cup E_{\mathbf{D}}, P_{\mathbf{D}} \cup \{\rho_{\mathsf{time}}\} \rangle$, where:

$$E_{D} = \bigcup_{\substack{\pi(t') \text{ in } \pi \\ \pi(t') \neq \langle \rangle \land t' \neq t_{e}}} \{ \langle \langle time \rangle t' \rangle \land \neg a - d_{last(\pi(t'))} \land \mathsf{T}, \{\neg \mathsf{T}\} \rangle \}$$

$$P_{D} = \bigcup_{\substack{\pi(t') \neq (\rho) \land \mathsf{T}, eff(\rho) \land \mathsf{T}}} \{ \langle pre(\rho) \land \mathsf{T}, eff(\rho) \rangle \}$$

The main idea of \mathcal{V}_D is to prevent time from flowing unless all the actions prescribed by π_t up to the current instant have been executed.

 $\mathcal{V}_{\mathsf{UD}}$: Jointly usage of \mathcal{V}_{U} and \mathcal{V}_{D} , i.e., $\mathcal{V}_{\mathsf{UD}} = \mathcal{V}_{\mathsf{U}} \circ \mathcal{V}_{\mathsf{D}}$.

Can we use PDDL2.1 engines to validate PDDL+ plans?

To **enable** the usage of numeric planners for doing PDDL+ validation we concatenate $\mathcal{V} \in \{\mathcal{V}_0, \mathcal{V}_U, \mathcal{V}_D, \mathcal{V}_{UD}\}$ with POLY. The resulting translation is denoted as $\mathcal{V} \circ \text{POLY}$ and the resulting PDDL2.1 validating task is denoted as $\Pi^{\pi_t}_{\mathcal{V} \circ \text{POLY}}$.

This chaining **obscures** the search properties provided by the constrained translations when $\mathcal{V} \in \{\mathcal{V}_U, \mathcal{V}_D\}$. We designed a variant of POLY, namely POLY, which is **aware of** the validation problem. POLY is **equivalent** in terms of search properties to \mathcal{V}_{UD} . The resulting PDDL2.1 validating task is denoted as $\Pi_{POLY}^{\pi_t}$.

Experimental Analysis

We can efficiently and effectively validate plans, even complex ones.

Selected Bibliography

- Abdulaziz, M.; and Lammich, P. 2018. A Formally Verified Validator for Classical Planning Problems and Solutions. In Proc. of ICTAI 2018, 474–479.
- Fox, M.; and Long, D. 2003. PDDL2.1: PDDL2.1: An Extension to PDDL for Expressing Temporal Planning Domains. *J. Artif. Intell. Res.* 20: 61–124.
- Fox, M.; and Long, D. 2006. Modelling Mixed Discrete-Continuous Domains for Planning. *J. Artif. Intell. Res.* 27:235–297.
- Percassi, F.; Scala, E.; and Vallati, M. 2021. Translations from Discretised PDDL+ to Numeric Planning. In Proc. of ICAPS 2021, 252–261.