信号与系统作业 Homework

尹超

中国科学院大学,北京100049

Carter Yin

University of Chinese Academy of Sciences, Beijing 100049, China

2024.8 - 2025.1

序言

本文为笔者概率论与数理统计的作业。 望老师批评指正。

目录

序	言		J
目	录		2
1	电路	\$模型和电路定律	1
	1.1	电路和电路模型	1
2	第一	- 章作业	2
	2.1	习题总结	2
		2.1.1 反证法	2
3	基础	出: 逻辑和证明	3
	3.1	逻辑	3
		3.1.1 真值表	3
		3.1.2 比特运算真值表	3
4	事件		4
	4.1	Space	4
	4.2	附录: 拟合用 Python 代码	5
参	考文献	献	7
附	录 A.	中英文对照表	8
	A .1	中英文对照表	8
	A.2	支撑材料列表	8
附	录 B.	代码	9

Homework 1 电路模型和电路定律

1.1 电路和电路模型

5种基本的理想电路元件

• 电阻元件:表示消耗电能的元件

• 电感元件:表示产生磁场,储存磁场能量的元件 • 电容元件:表示产生电场,储存电场能量的元件

• 电压源和电流源:表示将其它形式的能量转变成电能的元件

注意

- 5 种基本理想电路元件有三个特征:
 - (a) 只有两个端子
 - (b) 可以用电压、电流按数学方式描述
 - (c) 不能被分解为其他元件

Homework 2 第一章作业

2.1 习题总结

2.1.1 反证法

间接证明法 (indirect proof)

直接证明法有的时候比较困难不从前提开始、以结论结束的证明方法叫间接证明法

反证法 (proof by contraposition) 归谬证明法 (proof by contradiction)

反证法 (proof by contraposition)

条件语句 $p \rightarrow q$ 等价于它的逆否命题 $\neg q \rightarrow \neg p$ 证明当 $\neg q$ 为真时, $\neg p$ 一定为真

示例 1:

证明"如果 n 是一个整数且 3n+2 是奇数,则 n 是奇数" 直接证明比较困难 假设 n 不是奇数,即 n 为偶数,则 n=2k,k 为某个整数 3n+2=3(2k)+2=6k+2=2(3k+1),即 3n+2 为偶数,逆否命题为真,所以原命题也为真

示例 2:

证明"如果 n 是一个整数且 n^2 是奇数,则 n 是奇数" 直接证明比较困难:假设 n^2 是奇数,很难推导下去 假设 n 不是奇数,即 n 为偶数,则 n=2k,k 为某个整数 $n^2=(2k)^2=4k^2=2(2k^2)$,即 n^2 为偶数 即我们证明了逆否命题"如果 n 是一个偶数,则 n^2 是偶数" 由反证法,"如果 n 是一个整数且 n^2 是奇数,则 n 是奇数"

示例:

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$A \lor B = \begin{bmatrix} 1 \lor 0 & 0 \lor 1 & 1 \lor 0 \\ 0 \lor 1 & 1 \lor 1 & 0 \lor 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

$$A \land B = \begin{bmatrix} 1 \land 0 & 0 \land 1 & 1 \land 0 \\ 0 \land 1 & 1 \land 1 & 0 \land 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Homework 3 基础: 逻辑和证明

3.1 逻辑

3.1.1 真值表

下面是一个包含所有真值运算的真值表 (包括异或运算)

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$	$p\oplus q$
T	T	F	T	T	T	Т	F
T	F	F	F	T	F	F	T
F	Т	T	F	T	Т	F	T
F	F	T	F	F	T	T	F

3.1.2 比特运算真值表

下面是一个和上面的表对应的比特运算真值表

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$	$p\oplus q$
1	1	0	1	1	1	1	0
1	0	0	0	1	0	0	1
0	1	1	0	1	1	0	1
0	0	1	0	0	1	1	0

Homework 4 事件的概率

4.1 Space

Probability Space

- 概率模型的三个要素, (Ω, Σ, P)
- Samples space, event sets, probability measure
- Σ : the set of subsets

$$\frac{u_j^k - u_j^{k-1}}{h_t} = a\theta \frac{u_{j+1}^k - 2u_j^k + u_{j-1}^k}{h_{-}^2} + a(1-\theta) \frac{u_{j+1}^{k-1} - 2u_j^{k-1} + u_{j-1}^{k-1}}{h_{-}^2}$$
(4.1)

其中 $\theta \in [0,1]$ 为权重,其截断误差 $R = a\left(\frac{1}{2} - \theta\right)h_t\left[\frac{\partial^3 u}{\partial x^2 \partial t}\right]_j^k + O(h_t^2 + h_x^2)$,因此当 $\theta = \frac{1}{2}$ 时,方程具有 $O(h_t^2 + h_x^2)$ 精度,称为 Crank-Nicolson 格式(CN 格式)。

公式??的增长因子及稳定性条件为:

$$G(h_t, \sigma) = \frac{1 - 4(1 - \theta)ar\sin^2\frac{\sigma h}{2}}{1 + 4\theta ar\sin^2\frac{\sigma h}{2}}, \begin{cases} r \leqslant \frac{1}{2a(1 - 2\theta)}, & \theta \in [0, \frac{1}{2}) \\ \text{£ } \$ + \$ \, \&c, & \theta \in [\frac{1}{2}, 1] \end{cases}$$
(4.2)

Theorem.1 (这是一个Line Theorem): 你好你好你好

Theorem. 2 (这是一个 Block Theorem):

你好你好你好

定理2的证明:

你好你好你好

4.2 附录: 拟合用 Python 代码

```
1
    #Figure_1.py
2
       import numpy as np
3
    import matplotlib.pyplot as plt
4
    from matplotlib import rcParams
5
6
    # 设置中文字体
7
    rcParams['font.sans-serif'] = ['SimHei'] # 使用黑体
    rcParams['axes.unicode_minus'] = False # 解决负号显示问题
8
9
   # 数据
10
11
    n = np.array([0, 1, 2, 3, 4])
12
   T_ms = np.array([1586.011, 1672.654, 1755.244, 1833.753, 1909.52])
13
    T_s = T_ms / 1000 # 将时间单位从毫秒转换为秒
14
    m1 = (213.03+2.60) / 1000 # 滑块加条形挡光片质量,单位为kg
15
    m2 = 25.02 / 1000
                      # 骑码质量,单位为kg
    m = m1 + n * m2 # 总质量,单位为kg
16
17
    # 进行线性拟合
18
19
    coefficients = np.polyfit(m, T_s**2, 1)
20
    poly = np.poly1d(coefficients)
21
22
    # 计算相关系数
23
    correlation_matrix = np.corrcoef(m, T_s**2)
24
    correlation_coefficient = correlation_matrix[0, 1]
25
26
    # 拟合结果
27
    print(f"拟合得到的系数: {coefficients}")
28
    print(f"相关系数: {correlation_coefficient}")
29
30
    # 绘图
31
    plt.scatter(m, T_s**2, label='实验数据')
    plt.plot(m, poly(m), label='拟合曲线', color='red')
32
33
34
    # 显示图线方程和相关系数
35
    equation_text = f'$T^2 = {coefficients[0]:.4f} \cdot m + {coefficients[1]:.4f}$\n相关系
        数: {correlation_coefficient:.4f}'
36
    plt.text(0.45, 0.45, equation_text, transform=plt.gca().transAxes, fontsize=12,
       verticalalignment='top')
37
38
    plt.xlabel('质量 $m$ (kg)')
39
    plt.ylabel('周期平方 $T^2$ (s$^2$)')
40
    plt.legend()
41
    plt.title('$T^2 - m$ 拟合')
    plt.show()
42
```

Listing 4.1: Figure's Python code

表 4.1: 符号含义与约定

符号	符号含义	单位
符号1	含义1	单位1
符号2	含义2	单位 2
符号3	含义3	单位3
符号4	含义4	单位4

参考文献

- [1] Donald E. Knuth. The TeXbook. Addison-Wesley, 1984.
- [2] Leslie Lamport. Latex: A document preparation system. Addison-Wesley, 1994.
- [3] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The latex companion. In *Addison-Wesley Series* on *Tools and Techniques for Computer Typesetting*, 1993.
- [4] Wikipedia contributors. Bibtex wikipedia, the free encyclopedia, 2024. Accessed: 2025-04-15.

附录 A. 中英文对照表

A.1 中英文对照表

表 A.2: 中英文对照表

English	中文
voltage	电压
current	电流
power	功率
resistance	电阻
conductance	电导
inductance	电感
capacitance	电容
frequency	频率
circuit	电路
circuit element	电流元件
signal	信号
circuit analysis	电路分析
circuit synthesis	电路综合
circuit design	电路设计
circuit topology	电路拓扑

表 A.3: 中英文对照表

English	中文
voltage	电压
current	电流
power	功率
resistance	电阻
conductance	电导
inductance	电感
capacitance	电容
frequency	频率
circuit	电路
circuit element	电流元件
signal	信号
circuit analysis	电路分析
circuit synthesis	电路综合
circuit design	电路设计
circuit topology	电路拓扑

A.2 支撑材料列表

这里插入一张图片 (类似思维导图那种)

附录 B. 代码

```
MATLAB code here
1
2
    x = 0:0.1:2*pi;
    y = sin(x);
4
    plot(x, y);
    xlabel('x');
    ylabel('sin(x)');
6
7
    title('Sine Function');
8
    ... (MATLAB code here, 最好是插入文件)
9
    MATLAB code here
10
    x = 0:0.1:2*pi;
11
    y = sin(x);
12
    plot(x, y);
13
    xlabel('x');
    ylabel('sin(x)');
14
15
    title('Sine Function');
16
    ... (MATLAB code here, 最好是插入文件)
17
    MATLAB code here
    x = 0:0.1:2*pi;
18
19
    y = sin(x);
20
    plot(x, y);
21
    xlabel('x');
    ylabel('sin(x)');
22
23
    title('Sine Function');
24
    ... (MATLAB code here, 最好是插入文件)
25
   MATLAB code here
    x = 0:0.1:2*pi;
26
27
    y = sin(x);
28
    plot(x, y);
29
    xlabel('x');
    ylabel('sin(x)');
30
    title('Sine Function');
31
32
    ... (MATLAB code here, 最好是插入文件)
   MATLAB code here
33
34
    x = 0:0.1:2*pi;
    y = sin(x);
35
    plot(x, y);
36
37
    xlabel('x');
38
    ylabel('sin(x)');
39
    title('Sine Function');
    ... (MATLAB code here, 最好是插入文件)
40
    MATLAB code here
41
42
    x = 0:0.1:2*pi;
43
    y = sin(x);
44
    plot(x, y);
    xlabel('x');
45
    ylabel('sin(x)');
```

```
title('Sine Function');
48
    ... (MATLAB code here, 最好是插入文件)% ... (MATLAB code here, 最好是插入文件)% ... (
       MATLAB code here, 最好是插入文件)% ... (MATLAB code here, 最好是插入文件)% ... (
       MATLAB code here, 最好是插入文件)A
49
    MATLAB code here
50
    x = 0:0.1:2*pi;
51
    y = sin(x);
52
    plot(x, y);
53
    xlabel('x');
54
    ylabel('sin(x)');
55
   title('Sine Function');
   ... (MATLAB code here, 最好是插入文件)
56
```