TOPIC #3 CKT Analysis

Circuit model

Circuit model

- The V/I output behavior of A is independent of the load B.
- Usually, we have Thevenin and Norton equivalence circuit
- The main purpose of the circuit model is to focus on the circuit behavior but not how to construct the circuit

Kirchhoff's Laws(1/5)

- A node is a point where two or more circuit elements join
 - If only two elements connect to form a node, they are in series
 - Elements in series share the same current

• Closed path: a loop starting and ending at the same node and pass

intermediate nodes only once

Kirchhoff's Laws(2/5)

- Kirchhoff's current law (KCL)
 - For any node, the algebraic sum of all the currents equals to zero

$$\sum_{n} in = 0$$

Charge conservation

Kirchhoff's voltage law (KVL)

• For any closed path, the algebraic sum of all the voltages equals to zero

$$\sum_{n} Vn = 0$$

Energy conservation

Kirchhoff's Laws(3/5)

• Find each current and each voltage when R1 = 8 Ω , v2 = -10 V, i3 = 2 A, and R3 = 1 Ω . Also, determine the resistance R2 .

Kirchhoff's Laws(4/5)

• Determine the value of the current

Kirchhoff's Laws(5/5)

- Find Vo (t) when
 - Vs (t)= 50 V; Vc (t)= $40-40e^{-25t}$ V

Voltage division (1/2)

- KCL: all resistors have the same current
- Used to find the voltage drop across a single resistance from a collection of series-connected resistance.

$$v_n = \frac{R_n}{R_1 + R_2 + \dots + R_k} \bullet v_s$$

Voltage division(2/2)

• Find V₂

Resistors in Parallel(1/2)

- Equivalent resistance R_{eq} is always smaller than the minimum resistance in parallel connection
- And the smallest resistance dominates the equivalent value
 - Why? Because more current is needed to satisfy KVL
- When we only have two resistors in parallel
 - Current inversely proportional

$$R_{eq} = \frac{(R_1 R_2)}{(R_1 + R_2)}$$

$$i_2 = \frac{R_1}{(R_1 + R_2)} i_s$$

Resistors in Parallel(2/2)

Find

- (a) the current in each branch,
- (b) the equivalent circuit, and
- (c) the voltage v.

Circuit analysis(1/5)

- Voltage sources connected in series $\leftarrow \rightarrow$ a single voltage source
 - The voltage of the equivalent voltage source is equal to the algebraic sum of voltages of the series voltage sources
- Same concept for current sources

Circuit analysis(2/5)

 In each circuit, replace the series voltage sources with an equivalent voltage source and the parallel current sources with an equivalent current source

Circuit analysis(3/5)

• Determine the value of the current i

Circuit analysis(4/5)

• Determine the resistance measured

15

Circuit analysis(5/5)

• Determine the values of i3, v4, i5, and v6 (pay attention to sign)

Defining various terms

• Number of essential branch (be) identifies the total unknowns

Name	Definition
node	A point where two or more circuit elements join
essential node	A node where three or more circuit elements join
path	A trace of adjoining basic elements with no elements included more than once
branch	A path that connects two nodes
essential branch	A path which connects two essential nodes without passing through an essential node
loop	A path whose last node is the same as the starting node
mesh	A loop that does not enclose any other loops
planar circuit	A circuit that can be drawn on a plane with no crossing branches

Node, branch, mesh and loop

• 6 unknown currents

Node-Voltage Method(1/6)

- Meant to simplify our circuit analysis
- A reference node is chosen from among the essential nodes
- Steps:
 - 1. Identify essential node
 - 2. Choose an essential node as ground
 - 3. Using KCL to find the parameters of others node
 - 4. Super node

Node-Voltage Method (2/6)

- Writing out the equation sets
 - Do you need to write down KCL for node b?
- If $R_1 = 1\Omega$; $R_2 = R_3 = 0.5 \Omega$, and $I_s = 4 A$

Node-Voltage Method (3/6)

- Writing out the equation sets
 - Do you need to write down KCL for node b?
- If $R_1 = 1\Omega$; $R_2 = R_3 = 0.5 \Omega$, and $I_s = 4 A$

Node-Voltage Method (4/6)

- Introducing supernode
- Two nodes connected by an independent or a dependent voltage source

Node-Voltage Method (5/6)

Determine the node voltages V₁ and V₂

Node-Voltage Method (6/6)

Determine the values of the node voltages V_a and V_b

Source transformations(1/3)

- In reality, we have nonideal sources
- What is an ideal source?
 - Voltage source
 - 100% of the voltage can be applied to the load
 - Current source
 - 100% of the current can be applied to the load
- Real sources: we have loss!
 - Voltage source
 - Need to add series resistance Rs
 - Current source
 - Need to add parallel resistance Rp

Source transformations (2/3)

- Allows real voltage/current sources to be interchanged
- How to determine the parameters?
 - Let's connect a load between a and b

Source transformations (3/3)

Thévenin equivalent ckt

$$v_s = R_p i_p$$
 and $R_s = R_p$

Norton equivalent ckt

$$i_{\rm p} = \frac{v_{\rm s}}{R_{\rm s}}$$
 and $R_{\rm p} = R_{\rm s}$

Thévenin equivalent ckt(1)

- Thévenin equivalent ckt
 - Open-circuit voltage: V_{oc} or V_{Th}
 - Short-circuit current: i_{sc}
 - Thévenin resistance: R_t or R_{Th}

Thévenin equivalent ckt(2)

- Method 1: the obedient way
 - Find open circuit voltage → V_{th}
 - Find short circuit current → i_{sc}

Thévenin equivalent ckt(3)

• Method 2:

 Use series source transformation when circuit contains ONLY independent sources

Thévenin equivalent ckt(4)

- Method 3: finding RTH
 - For circuit with ONLY independent sources

Deactivate all sources
Voltage source → short
Current source → open

Thévenin equivalent ckt(5)

- Find the Thévenin equivalent circuit
 - Method 1

Thévenin equivalent ckt(6)

- Find the Thévenin equivalent circuit
 - Method 2

Thévenin equivalent ckt(7)

• Find the Thévenin equivalent circuit

Maximum power transfer

• Maximum power transfer occurs when $R_L = R_t$

Maximum power transfer

- Find R₁ that will result in maximum power delivery
 - Also determine p_{max} delivered to the load resistor

36