Automating Abstract Logics

Gregory Malecha Jesper Bengtson Adam Chlipala gmalecha@cs.harvard.edu

Harvard SEAS ITU Denmark MIT CSAIL

July 18, 2014

Automating **Everything**

Gregory Malecha Jesper Bengtson Adam Chlipala gmalecha@cs.harvard.edu

Harvard SEAS ITU Denmark MIT CSAIL

July 18, 2014

- Math
- Meta-theory
- Program verification

- Math
- Meta-theory
- Program verification

Formalize a language (Java[BJB12], x86[JBK13], C[App11], Bedrock[Chl11])

Difficulties

Binding, validation, etc.

- Math
- Meta-theory
- Program verification

- Binding, validation, etc.
- ② Enriched logics
 - State, step-indexing...

```
Formalize
a language

(Java[BJB12],
x86[JBK13],
C[App11],
Bedrock[Chl11])

Develop a logic
(Charge![BJB12],
MSL[App11], ...)
```

- Math
- Meta-theory
- Program verification

- Binding, validation, etc.
- ② Enriched logics
 - State, step-indexing...
- Oustomization/extension

```
Formalize a language \longrightarrow Develop a logic \longrightarrow Verify programs \longrightarrow (Java[BJB12], (Charge![BJB12], (database[MMSW10], \times86[JBK13], MSL[App11], ...) sha-256[App14], ...) Bedrock[Chl11])
```

- Math
- Meta-theory
- Program verification

- Binding, validation, etc.
- 2 Enriched logics
 - State, step-indexing...
- Customization/extension

- Math
- Meta-theory
- Program verification

- Binding, validation, etc.
- ② Enriched logics
 - State, step-indexing...
- Oustomization/extension

Arith

Entailment

SymEval

Arith

Entailment

 ${\sf SymEval}$

Arith

Entailment

 ${\sf SymEval}$

RTac

```
Definition arith := AUTO arith_hints.

Definition entail :=
   rtac_extern (fun us vs s goal ⇒
        entailer us vs s goal arith).

Definition sym_eval := REPEAT 10

FIRST [APPLY read_syn entail
   ; APPLY write_syn entail
   ; ... ].
```


$$\frac{\vdots}{\vdash P \land Q \to Q \land P}$$

$$\frac{\vdots}{P \land Q \vdash Q \land P}$$
 Intro

$$\frac{\vdots}{ \begin{array}{c} P, Q \vdash Q \land P \\ \hline P \land Q \vdash Q \land P \end{array}} \text{DESTRUCT} \\ \hline \vdash P \land Q \rightarrow Q \land P \end{array} \text{INTRO}$$

$$\frac{\vdots}{P,Q \vdash P} \quad \frac{\vdots}{P,Q \vdash Q}$$

$$\frac{P,Q \vdash Q \land P}{P \land Q \vdash Q \land P} \quad \text{DESTRUCT}$$

$$\vdash P \land Q \rightarrow Q \land P \quad \text{INTRO}$$

$$\frac{\vdots}{P,Q \vdash P} \quad \frac{P,Q \vdash Q}{P,Q \vdash Q} \quad \text{Assume} \\
\frac{P,Q \vdash Q \land P}{P \land Q \vdash Q \land P} \quad \text{DESTRUCT} \\
\frac{P \land Q \vdash Q \land P}{\vdash P \land Q \rightarrow Q \land P} \quad \text{INTRO}$$

$$\frac{P, Q \vdash P \qquad P, Q \vdash Q}{P, Q \vdash Q \land P} \xrightarrow{\text{SPLIT}} \frac{P, Q \vdash Q \land P}{P \land Q \vdash Q \land P} \xrightarrow{\text{DESTRUCT}} \frac{P \land Q \vdash Q \land P}{P \land Q \rightarrow Q \land P} \xrightarrow{\text{INTRO}}$$

• Write a procedure

- Write a procedure
 - Pick the abstraction

- Write a procedure
 - Pick the abstraction

- Write a procedure
 - Pick the abstraction

(1) Define syntax.

 $\mathtt{Ind}\ \mathtt{prop} = \underline{\mathtt{True}} \mid \mathtt{p} \ \underline{\wedge}\ \mathtt{q} \mid \underline{\mathtt{X}}_{\#}$

(1) Define syntax.

 $\mathtt{Ind}\ \mathtt{prop} = \underline{\mathtt{True}} \mid \mathtt{p} \ \underline{\wedge} \ \mathtt{q} \mid \underline{\mathtt{X}}_{\#}$

```
(2) Define meaning.
```

```
(1) Define syntax.
```

```
Def prove hyps goal : bool
:= match goal with
      \underline{\mathsf{True}} \Rightarrow \mathsf{true}
    | p∧q ⇒
      prove hyps p && prove hyps q
```

Ind prop = $\underline{\mathsf{True}} \mid \mathsf{p} \land \mathsf{q} \mid \underline{\mathsf{X}}_{\#}$

(3) Write a procedure.

find_assumption hyps goal

(2) Define meaning.

```
Fix propD (ps:env Prop) (p:prop):Prop
:= match p with
      True ⇒ True
    | p \land q \Rightarrow
     propD ps p ∧ propD ps q
    | \underline{\mathbf{X}}_p \Rightarrow \text{lookup ps p}
```

```
(1) Define syntax.
```

Ind prop = $\underline{\text{True}} \mid p \land q \mid \underline{X}_{\#}$

(3) Write a procedure.

(2) Define meaning.

```
Fix propD (ps: env Prop) (p: prop): Prop
:= match p with

True \Rightarrow True

| p \land q \Rightarrow

propD ps p \land propD ps q

| \underline{X}_p \Rightarrow lookup ps p
```

```
Theorem prove_sound: ∀ ps hs goal, prove hs goal = true → All (propD ps) hs ⊢ propD ps goal.

Proof. ... Qed.
```

(4) Prove the procedure.

A Generic Tautology Solver

```
Ind prop = \underline{\text{True}} \mid p \land q \mid \underline{X}_{\#}

Def prove hyps goal : bool := match goal with \underline{\text{True}} \Rightarrow \text{true} \mid p \land q \Rightarrow prove hyps p && prove hyps q \mid \_ \Rightarrow find_assumption hyps goal
```

Abstract Prop

```
:= match p with

True ⇒ True

| p ∧ q ⇒
propD ps p ∧ propD ps q

| Xp ⇒ lookup ps p

Theorem prove_sound : ∀ ps hs goal,
prove hs goal = true →
All (propD ps) hs ⊢
propD ps goal.
Proof. ... Qed.

Similar proof
```

Fix propD (ps : env L) (p : prop) : L

MIRRORCORE (Cog'14)

A Generic Tautology Solver

Extensions

- ▶ Modalities
- ∗, -∗ Connectives
- $\bullet \mapsto$, Ilist Predicates

```
Ind prop = True | p ∧ q | X#
Def prove hyps goal : bool
:= match goal with
    True ⇒ true
| p∧q ⇒
    prove hyps p && prove hyps q
| _ ⇒
        find_assumption hyps goal
| | solve_by_extern hyps goal
```

An Extensible Tautology Solver?

$$x \in y \vdash x \in z \cup y$$
 Add-Union

Not everything is a tautology

```
a:: b = c:: d \vdash a = c Cons-Inj
```

```
Ind prop = True | p ∧ q | X#
Def prove hyps goal : bool
:= match goal with
    True ⇒ true
| p∧q ⇒
    prove hyps p && prove hyps q
| _ ⇒
        find_assumption hyps goal
| | solve_by_extern hyps goal
```

```
Fix propD (ps: env L) (p: prop): L
:= match p with

True \Rightarrow True
| p \land q \Rightarrow
propD ps p \land propD ps q
| \underline{X}_p \Rightarrow lookup ps p

Theorem prove_sound: \forall ps hs goal,
prove hs goal = true \rightarrow
All (propD ps) hs \vdash
propD ps goal.
```

Proof. ... Qed.

An Extensible Tautology Solver?

$$x \in y \vdash x \in z \cup y$$
 Add-Union

 $a:: b = c:: d \vdash a = c$ Cons-Inj

Not everything is a tautology

```
Ind prop = True | p ∧ q | X#
Def prove hyps goal : bool
:= match goal with
    True ⇒ true
| p∧q ⇒
    prove hyps p && prove hyps q
| _ ⇒
        find_assumption hyps goal
| | solve_by_extern hyps goal
```

```
Fix propD (ps: env L) (p: prop): L
:= match p with

True \Rightarrow True

| p \land q \Rightarrow
propD ps p \land propD ps q

| X_p \Rightarrow lookup ps p

Theorem prove_sound: \forall ps hs goal,
prove hs goal = true \rightarrow
All (propD ps) hs \vdash
propD ps goal.
Proof. ... Qed.
```

Enriching the Syntax

• STLC + base types & terms

Enriching the Syntax

• STLC + base types & terms

Enriching the Syntax

STLC + base types & terms

Enriching the Syntax, Compositionally

- STLC + base types & terms
 - Compositional (see [MCB14])

An Extensible Tautology Solver

$$\overline{x \in y \vdash x \in z \cup y}$$
 Add-Union

 $a:: b = c:: d \vdash a = c$ Cons-Inj

Not everything is a tautology

```
Ind typ = t_1 \rightarrow t_2 \mid \underline{\mathbf{T}}_{\#}

Ind expr = e_1 \stackrel{@}{\underline{@}} e_2 \mid \underline{\lambda} \, \mathbf{t} \cdot \mathbf{e} \mid \underline{\mathbf{X}}_{\#} \mid \dots

Def prove hyps goal : bool := match goal with \underline{\mathbf{X}}_{True} \Rightarrow \mathbf{true} \mid \underline{\mathbf{X}}_{\wedge} \stackrel{@}{\underline{@}} \mathbf{p} \stackrel{@}{\underline{@}} \mathbf{q} \Rightarrow prove hyps p && prove hyps q \mid \underline{\phantom{A}} \Rightarrow find_assumption hyps goal \mid \underline{\phantom{A}} \mid \mathbf{solve\_by\_extern} hyps goal \mid \underline{\phantom{A}} \mid \mathbf{solve\_by\_extern}
```

```
Fix exprD (ps: env L) (p: expr): L
:= match p with

\underline{X}_p \Rightarrow \text{lookup ps p}
\mid p \land q \Rightarrow
\text{exprD ps p} \land \text{exprD ps q}
\mid ... \Rightarrow ...

Theorem prove_sound: \forall ps hs goal, prove hs goal = true \rightarrow
All (propD ps) hs \vdash
propD ps goal.

Proof. ... Qed.
```

An Extensible Tautology Solver

$$\overline{x \in y \vdash x \in z \cup y}$$
 Add-Union

 $a:: b = c:: d \vdash a = c$ Cons-Inj

Not everything is a tautology

```
Ind typ = t_1 \rightarrow t_2 \mid \underline{\mathbf{T}}_{\#}

Ind expr = e_1 \stackrel{@}{\underline{\mathbf{0}}} e_2 \mid \underline{\lambda} \ \mathbf{t} \cdot \mathbf{e} \mid \underline{\mathbf{X}}_{\#} \mid \dots

Def prove hyps goal : bool := match goal with \underline{\mathbf{X}}_{True} \Rightarrow \mathbf{true} \mid \underline{\mathbf{X}}_{\wedge} \stackrel{@}{\underline{\mathbf{0}}} \underline{\mathbf{0}} \underline{\mathbf{q}} \Rightarrow prove hyps p && prove hyps q \mid \underline{\phantom{\mathbf{X}}} \Rightarrow find_assumption hyps goal \mid \underline{\phantom{\mathbf{X}}} \mid \mathbf{solve\_by\_extern} hyps goal
```

```
 \begin{array}{l} := \mathtt{match} \ \mathtt{p} \ \mathtt{with} \\ & \underline{\mathtt{X}}_p \Rightarrow \mathtt{lookup} \ \mathtt{ps} \ \mathtt{p} \\ & | \ \mathtt{p} \land \mathtt{q} \Rightarrow \\ & = \mathtt{exprD} \ \mathtt{ps} \ \mathtt{p} \land \mathtt{exprD} \ \mathtt{ps} \ \mathtt{q} \\ & | \ \ldots \Rightarrow \ldots \\ \\ \\ \text{Theorem prove\_sound} : \forall \ \mathtt{ps} \ \mathtt{hs} \ \mathtt{goal}, \\ & \mathtt{prove} \ \mathtt{hs} \ \mathtt{goal} = \mathtt{true} \rightarrow \\ & \mathtt{All} \ (\mathtt{propD} \ \mathtt{ps}) \ \mathtt{hs} \vdash \\ & \mathtt{propD} \ \mathtt{ps} \ \mathtt{goal}. \\ \end{array}
```

Fix exprD (ps : env L) (p : expr) : L

Polymorphic over (contrained) extensions[MCB14]

Proof. ... Qed.

An Extensible Tautology Solver

$$\overline{x \in y \vdash x \in z \cup y}$$
 Add-Union

 $a:: b = c:: d \vdash a = c$ Cons-Inj

Not everything is a tautology

```
Ind typ = t_1 \rightarrow t_2 \mid T_{\#}
Ind expr = e_1 \otimes e_2 \mid \ddot{\lambda} t \cdot e \mid X_{\#} \mid ...
Def prove hyps goal : bool
:= match goal with
      X_{True} \Rightarrow true
    | X_{\wedge} @p@q \Rightarrow
      prove hyps p && prove hyps q
    | _ ⇒
            find_assumption hyps goal
       || solve_by_extern hyps goal
```

```
Too much effort to write!
```

```
Fix exprD (ps : env L) (p : expr) : L
:= match p with
      \underline{\mathbf{X}}_p \Rightarrow \text{lookup ps p}
   | p \land q \Rightarrow
    exprD ps p \land exprD ps q
   | ... ⇒ ...
Theorem prove_sound : \forall ps hs goal,
  prove hs goal = true \rightarrow
  All (propD ps) hs ⊢
  propD ps goal.
Proof. ... Qed.
```

Assembling Custom Automation

Use these reflectively

```
Lem list_eq : \forall x y xs ys,
  x = y \rightarrow xs = ys \rightarrow x :: xs = y :: ys.
Lem list_len : ∀ xs ys,
   |xs \cup ys| = |xs| + |ys|.
Lem add_in : \forall x y z,
  x \in z \rightarrow x \in (y \cup z).
```

Assembling Custom Automation

Def prove (g : expr) : bool := match g with $| (@ (@ X_{\in} e) (@ (@ X_{\cup} s1) s2)) \Rightarrow$ prove $(\underline{0} \ (\underline{0} \ \underline{X}_{\in} \ e) \ s1)$ $\mid \ (\underline{X}_{=[\mathbb{N}]} \ \underline{0} \ (\underline{X}_{::} \ \underline{0} \ x \ \underline{0} \ xs) \ (\underline{X}_{::} \ \underline{0} \ y \ \underline{0} \ ys) \Rightarrow$ prove $(\underline{X}_{=\mathbb{N}} \ \underline{0} \ x \ \underline{0} \ y) \&\&$ prove $(\underline{X}_{=_{[\mathbb{N}]}} \underline{0} \times \underline{0} ys)$ | ... ⇒ ... Thm prove_sound : \forall ts fs ...

Use these reflectively

```
Lem list_eq : \forall x y xs ys,
  x = y \rightarrow xs = ys \rightarrow x :: xs = y :: ys.
Lem list_len : ∀ xs ys,
   xs \cup ys| = |xs| + |ys|.
Lem add_in : \forall x y z,
  x \in z \rightarrow x \in (y \cup z).
```

Assembling Custom Automation

Build reflective procedures automatically from lemmas.

Reflective lemma "application" Unification & substitutions Lem list_eq : \forall x y xs ys, $x = y \rightarrow xs = ys \rightarrow x :: xs = y :: ys.$ Lem list_len : ∀ xs ys, $xs \cup ys| = |xs| + |ys|$. Lem add_in : \forall x y z, Def prove (g : expr) : bool := $x \in z \rightarrow x \in (y \cup z)$. match g with Bound variables $| (@ (@ X_{\in} e) (@ (@ X_{\cup} s1) s2)) \Rightarrow$ prove $(\underline{0} \ (\underline{0} \ \underline{X}_{\in} \ e) \ s1)$ $\mid \ (\underline{X}_{=_{[\mathbb{N}]}} \ \underline{@} \ (\underline{X}_{::} \ \underline{@} \ x \ \underline{@} \ xs) \ (\underline{X}_{::} \ \underline{@} \ y \ \underline{@} \ ys) \Rightarrow$ prove $(\underline{X}_{=\mathbb{N}} \ \underline{0} \ x \ \underline{0} \ y) \&\&$ prove $(\underline{X}_{=_{[\mathbb{N}]}} \underline{0} \times \underline{0} ys)$ l ... ⇒ ... Thm prove_sound : ∀ ts fs ...

Lemmas, External Hints & Hint Databases

Build reflective procedures automatically from lemmas.

Reflective lemma "application"

Unification & substitutions

Semantic reasoning

Lemmas, External Hints & Hint Databases

Build reflective procedures automatically from lemmas.

Reflective lemma "application"

- Unification & substitutions
- Semantic reasoning

Parameterized automation

- auto
 - autorewrite

Lem list_eq: \forall x y xs ys, x = y \rightarrow xs = ys \rightarrow x: xs = y :: ys. Lem list_len: \forall xs ys, $|xs \cup ys| = |xs| + |ys|$. Lem add_in: \forall x y z, $x \in z \rightarrow x \in (y \cup z)$.

Generic, reflective proof search!

(Semantic) Unification

Applying lemmas generically requires unification

$$\vdash (\mathtt{f} \ \Box_1 \ \mathtt{y}) \sim (\mathtt{f} \ \mathtt{x} \ \Box_2) \hookrightarrow \{\Box_1 \mapsto \mathtt{x} \ , \ \Box_2 \mapsto \mathtt{y}\}$$

(Semantic) Unification = Equality (e)Prover

 $\mathtt{unify} : \mathtt{expr} \to \mathtt{expr} \to \mathtt{subst} \to \mathtt{option} \ \mathtt{subst}$

Applying lemmas generically requires unification

$$\vdash (\mathtt{f} \ \Box_1 \ \mathtt{y}) \sim (\mathtt{f} \ \mathtt{x} \ \Box_2) \hookrightarrow \{\Box_1 \mapsto \mathtt{x} \ , \ \Box_2 \mapsto \mathtt{y}\}$$

(Semantic) Unification = Equality (e)Prover

 $\mathtt{unify} : \mathtt{expr} \to \mathtt{expr} \to \mathtt{subst} \to \mathtt{option} \ \mathtt{subst}$

• Applying lemmas generically requires unification

$$\vdash (\mathtt{f} \ \Box_1 \ \mathtt{y}) \sim (\mathtt{f} \ \mathtt{x} \ \Box_2) \hookrightarrow \{\Box_1 \mapsto \mathtt{x} \ \mathsf{,} \ \Box_2 \mapsto \mathtt{y}\}$$

• Programmable - Coq's native unification is fixed

$$\vdash (x + y) \sim (y + x) \hookrightarrow \{\}$$

$$x = y \vdash (f x) \sim (f y) \hookrightarrow \{\}$$

(Semantic) Unification = Equality (e)Prover unify: expr \rightarrow expr \rightarrow typ \rightarrow subst \rightarrow option subst

Applying lemmas generically requires unification

$$\vdash (f \square_1 y) \sim_{\tau} (f x \square_2) \hookrightarrow \{\square_1 \mapsto x, \square_2 \mapsto y\}$$

Programmable – Cog's native unification is fixed

$$\vdash (x + y) \sim_{\mathbf{N}} (y + x) \hookrightarrow \{\}$$

$$x = y \vdash (f x) \sim_{\tau} (f y) \hookrightarrow \{\}$$

Typed – Cog's native unification is untyped

$$\vdash$$
 () $\sim_{\text{unit}} x \hookrightarrow \{\}$

(Simple) Reflective Tactics

auto is somewhat limited

- Backward reasoning from a goal
- Limited ability to customize proof search
- Must solve the goal entirely

(Simple) Reflective Tactics

auto is somewhat limited

- Backward reasoning from a goal
- Limited ability to customize proof search
- Must solve the goal entirely

Building blocks for reflective procedures

(Simple) Reflective Tactics

auto is somewhat limited

- Backward reasoning from a goal
- Limited ability to customize proof search
- Must solve the goal entirely

Building blocks for reflective procedures

RTac: Reflective Tactics

Ltac

```
repeat first [ apply read ; auto | apply write ; auto | ... ]
```

RTac

```
Def the_tac db := REPEAT 10

(FIRST [ APPLY read_syn (AUTO db)

| APPLY write_syn (AUTO db)

| ... ]).
```

RTac: Reflective Tactics

Ltac

```
repeat first [apply read; auto | apply write; auto | ... ]
```

RTac Def the_tac db := REPEAT 10

```
(FIRST [ APPLY read_syn (AUTO db)
           APPLY write_syn (AUTO db)
          ... ]).
Thm the_tac_sound db : hints_sound db
    \rightarrow rtac sound the tac.
Proof. intro.
 apply REPEAT_sound.
 apply FIRST_sound.
 + apply APPLY_sound;
    [exact read apply AUTO_sound; auto].
 + apply APPLY_sound;
    [exact write | apply AUTO_sound; auto
Qed.
```

Soundness is a predicate transformer

RTac: Reflective Tactics

Ltac

```
repeat first [ apply read ; auto | apply write ; auto | ... ]
```

- Simple proofs
- Reflective (separate proofs)
- Stable across Coq versions
- Shallow embedding → extensible

Easy to use custom procedures

RTac

```
Def the_tac db := REPEAT 10
  (FIRST [ APPLY read_syn (AUTO db)
           APPLY write_syn (AUTO db)
          ... ]).
Thm the_tac_sound db : hints_sound db
    \rightarrow rtac sound the tac.
Proof. intro.
 apply REPEAT_sound.
 apply FIRST_sound.
 + apply APPLY_sound;
    [exact read apply AUTO_sound; auto].
 + apply APPLY_sound;
    [exact write | apply AUTO_sound; auto
Qed.
```

Soundness is a predicate transformer

Next time you need customizable, reflective automation...

¹Refactoring in progress

Next time you need **customizable**, **reflective** automation...

¹Refactoring in progress

Next time you need customizable, reflective automation...

- 1) Existing generic automation
- 2) Extend automation (auto)
- 3) RTac "tactics"
- 4) Custom procedures

¹Refactoring in progress

Next time you need customizable, reflective automation...

- 1) Existing generic automation
- 2) Extend automation (auto)
- 3) RTac "tactics"
- 4) Custom procedures

Folds Lifting Unification Substitution ...

Reuse the meta-theory & tactics

¹Refactoring in progress

Related Work

- "Intensional" Theories (e.g. Coq, Agda)
 - Simple Types [GW07] Similar term representation
 - Modular Meta Theory [DdSOS13]
 - AAC Tactics, ROmega, field, ring [BP11, GM05, Les11] reflective procedures
 - Posteriori Simulation [CCGHRGZ13] Faster computation
 - Mtac [ZDK⁺13] − Coq extension (proof-generating)
 - SSreflect [GM10] Coq library (proof-generating)

Related Work

- "Intensional" Theories (e.g. Coq, Agda)
 - Simple Types [GW07] Similar term representation
 - Modular Meta Theory [DdSOS13]
 - AAC Tactics, ROmega, field, ring [BP11, GM05, Les11] reflective procedures
 - Posteriori Simulation [CCGHRGZ13] Faster computation
 - Mtac [ZDK⁺13] − Coq extension (proof-generating)
 - SSreflect [GM10] − Coq library (proof-generating)
- "Extensional" Theories
 - VeriML [SS10], NuPrl
 - 2 LF

Related Work

- "Intensional" Theories (e.g. Coq, Agda)
 - Simple Types [GW07] Similar term representation
 - Modular Meta Theory [DdSOS13]
 - AAC Tactics, ROmega, field, ring [BP11, GM05, Les11] reflective procedures
 - Posteriori Simulation [CCGHRGZ13] Faster computation
 - Mtac [ZDK+13] Coq extension (proof-generating)
 - SSreflect [GM10] Coq library (proof-generating)
- "Extensional" Theories
 - VeriML [SS10], NuPrl
 - 2 LF
- Non-dependent Theories
 - Isabelle, HOL, ...

MIRRORCORE

- Generic logic automation (i.e. for lifted logics)
- Extensible syntax (e.g. user-defined types and functions)
- Extensible automation (e.g. auto, autorewrite)
- Simple tactic language

https://github.com/gmalecha/mirror-core https://github.com/jesper-bengtson/MirrorCharge

References I

Andrew W. Appel.

Verified software toolchain.

In Proc. ESOP, volume 6602 of LNCS, pages 1-17, Springer-Verlag, 2011,

Verification of a cryptographic primitive: Sha-256, May 2014.

Jesper Bengtson, Jonas Braband Jensen, and Lars Birkedal.

Charge! – a framework for higher-order separation logic in Coq. In *Interactive Theorem Proving*, pages 315–331, 2012.

Using reflection to build efficient and certified decision procedures.

In *Proc. TACS*, 1997.

Thomas Braibant and Damien Pous.

Tactics for reasoning modulo AC in Coq.

In Proc. CPP, 2011.

Guillaume Claret, Lourdes Carmen Gonzlez Huesca, Yann Rgis-Gianas, and Beta Ziliani.

Lightweight proof by reflection using a posteriori simulation of effectful computation.

In Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie, editors, *Interactive Theorem Proving*, volume 7998 of

Lecture Notes in Computer Science, pages 67–83. Springer Berlin Heidelberg, 2013.

Mostly-automated verification of low-level programs in computational separation logic. In *Proc. PLDI*, pages 234–245. ACM, 2011.

References II

Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers.

Meta-theory a la carte.

SIGPLAN Not., 48(1):207-218, January 2013,

B. Grégoire and A. Mahboubi.

Proving equalities in a commutative ring done right in Cog.

In Proc. TPHOLs, 2005.

Georges Gonthier and Assia Mahboubi.

An introduction to small scale reflection in Cog. Journal of Formalized Reasoning, 3(2):95-152, 2010.

Franois Garillot and Benjamin Werner.

Simple types in type theory: Deep and shallow encodings.

In Theorem Proving in Higher Order Logics, volume 4732 of LNCS, pages 368-382. Springer Berlin Heidelberg, 2007.

Jonas B. Jensen, Nick Benton, and Andrew Kennedy.

High-level separation logic for low-level code.

In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL '13, pages 301-314, New York, NY, USA, 2013. ACM.

Stéphane Lescuyer.

Formalisation et développement d'une tactique réflexive pour la démonstration automatique en Coq. Thèse de doctorat, Université Paris-Sud, January 2011.

Gregory Malecha, Adam Chlipala, and Thomas Braibant.

Compositional computational reflection.

In Interactive Theorem Proving, 2014.

To Appear.

References III

Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky.

Toward a verified relational database management system. In *POPL'10*, January 2010.

Antonis Stampoulis and Zhong Shao.

VeriML: typed computation of logical terms inside a language with effects. In *Proc. ICFP*, pages 333–344. ACM, 2010.

Beta Ziliani, Derek Dreyer, Neel Krishnaswami, Aleksandar Nanevski, and Viktor Vafeiadis.

Mtac: A monad for typed tactic programming in Coq.

In Proc. ICFP, 2013.