Graph Mining & network science Graph Convolutional Networks

Nous cherchions à apprendre une représentation **d-dimensionnelle** des noeuds d'un graphe telle que des noeuds similaires soient proches dans l'espace :

Dans le cas de Node2Vec, l'encoder était peu profond: création d'embeddings ex-nihilo, accessibles par lookups

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \end{bmatrix} \times \begin{bmatrix} 17 & 24 & 1 \\ 23 & 5 & 7 \\ 4 & 6 & 13 \\ 10 & 12 & 19 \\ 11 & 18 & 25 \end{bmatrix} = \begin{bmatrix} 10 & 12 & 19 \end{bmatrix}$$
vecteur du mot "machine"

puis optimisation de ces embeddings en exploitant certaines métriques (produit scalaire, distance euclidienne, similarité cosinus, etc.)

Problèmes avec les méthodes d'embedding (hors FEATHER, plus récent) :

- n'incorporent pas de donnée extérieure à la structure du graphe
- apprentissage des embeddings massif : |V| x d paramètres
- apprentissage transductif : pas de façon simple de générer les embeddings de nouveaux noeuds dans le graphe

Les CNNs exploitent des images de taille fixe

Les RNNs exploitent des séquences

Définition du problème

Soit un graphe G:

- V est l'ensemble des sommets
- A est la matrice d'adjacence
- X est une matrice de taille (n, d) contenant les features des sommets
 - en cas d'absence de features : one hot encoding d'un noeud, ou vecteur constant = 1, ou caractéristiques d'un noeud (degré, cc, ...)
- Y une matrice de labels pour classification

Exemples:

- réseaux sociaux : profil de l'utilisateur, photo de profil
- réseaux biologiques : profils d'expression de gènes, fonctions des gènes

Définition du problème

Une approche naïve

- on concatène la matrice d'adjacence et les features
- on envoie chaque sample dans un réseau de neurones profond :

Une approche naïve

- on concatène la matrice d'adjacence et les features
- on envoie chaque sample dans un réseau de neurones profond :

Problèmes:

- O(n) paramètres
- pas de généralisation à des graphes de tailles supérieures
- et surtout : pas d'invariance par permutation des noeuds

Deep learning: rappels utiles

Machine learning comme problème optimisation

- Apprentissage supervisé :
 - o en entrée x
 - notre but : prédire le label y
- L'entrée x peut être :
 - vecteurs de nombres réels
 - séquences (NLP, speech to text)
 - matrices/tenseurs (images)
 - graphes (potentiellement avec des features de nodes ou d'edges)

Nous formalisons cette tâche comme un problème d'optimisation

Machine learning comme problème optimisation

- • : un ensemble de paramètre à optimiser
 - o peut contenir des scalaires, vecteurs, matrices, ...
 - exemple, $\Theta = \{Z\}$ avec Z notre matrice d'embedding (cf. lookup)
- Fonction loss:
 - une fonction qui prend en entrée notre prédiction et les valeurs observées
 - et nous renvoie un scalaire (un nombre réel) nous informant sur la qualité
 de la prédiction : plus la valeur est basse, plus notre problème est résolu
 - exemples : MSE, MAE, cross entropy, etc.

Exemple de fonction loss : cross entropy

Classification: directement entraı̂ner le modèle en choisissant une fonction loss comme l'entropie croisée. (y = ground truth, $\hat{y} = prédiction$)

Dans le cas d'une classification binaire (un médicament est-il toxique ?) :

$$\mathcal{L} = -y \cdot log(\hat{y}) - (1 - y) \cdot log(1 - \hat{y})$$

(dans Keras : binary_crossentropy)

Dans le cas d'une classification multi-class (à quelle catégorie appartient tel utilisateur ?) :

$$\mathcal{L} = -\sum_{i} y_{i} log(\hat{y}_{i})$$

(dans Keras: categorical_crossentropy)

Gradient d'une fonction

Comment résoudre notre problème d'optimisation?

- le gradient d'une fonction est un <u>vecteur</u> qui pointe dans la direction de la plus forte montée
- avec O₁, O₂, ... les composants de O:

$$\nabla_{\Theta} \mathcal{L} = (\frac{\partial \mathcal{L}}{\partial \Theta_1}, \frac{\partial \mathcal{L}}{\partial \Theta_2}, \dots)$$

 Gradient descent : mise à jour de ⊙ itérativement dans la direction opposée du gradient afin de minimiser L (+back-prop)

Implémentation du gradient

Comment calculer le gradient avec nos machines ?

- le calcul manuel d'un gradient est dans la plupart des cas prohibitivement long
- un réseau de neurones peut avoir une structure très complexe et peu régulière
- il nous faut une solution capable de calculer le gradient automatiquement de façon dynamique

Nombres duaux

Une première approche simple : les nombres duaux

un nombre dual est un nombre de la forme :

$$a+b\epsilon$$

- avec: $\epsilon^2 = 0$
- epsilon peut être interprétée comme une valeur infinitésimale non nulle

Avantages:

- une structure de donnée facile à coder (similaire à un nombre complexe)
- interprétation géométrique plaisante

Inconvénients:

- pas de généralisation aux fonctions irrationnelles (log, exp, ...)
- calculs prohibitifs pour de larges réseaux

Graphe de calcul

L'approche moderne : le graphe de calcul et la dérivation automatique

- un graphe de calcul est un graphe orienté où les noeuds correspondent soit à des opérations ou des variables
 - les variables envoient leurs valeurs aux opérations
 - les opérations envoient leurs résultats à d'autres opérations
- le gradient est calculé en appliquant les règles de dérivation classiques et la chain-rule, à chaque opération récursivement (de bas en haut ou de haut en bas)

Question : à quoi ressemble le graphe de calcul de 3x + y ?

Illustration de la dérivation automatique

$$(f+g)'=f'+g'$$

Illustration de la dérivation automatique

Graphe de calcul et dérivation automatique

Avantages:

- permet le calcul de toutes les dérivées partielles en une passe
- le calcul peut être massivement optimisé
- une fois le graphe de calcul construit, tout calcul devient très rapide
 (Python vs C++)

Convolution sur les graphes : intuition

Convolution classique : un filtre agit comme une fenêtre glissante sur l'ensemble de l'image et permet au CNN d'incorporer les features des cellules voisines

Notre objectif : généraliser les convolutions au delà d'une simple grille régulière, tout en exploitant les features/attributs de chaque noeud (texte, images, ...)

Comment faire cette convolution si notre graphe ressemble à ceux ci-dessous?

- La convolution classique peut être vue comme un cas particulier d'un graphe en grille.
- La convolution sur un graphe correspond donc à une somme pondérée des features des voisins d'un noeud.

Rappel : le voisinage est "encodé" dans la matrice d'adjacence

Intuition

- Soit (x_i) les features des noeuds.
- On cherche à inclure dans les features de i
- les features de ses voisins.
- Une solution évidente, faire la somme des features : $x_i' = \sum_{j \in N_i} x_j$

Problèmes:

- n'inclut pas les features de i
- la somme des features implique un risque "d'explosion" des valeurs

Intuition

Problèmes:

- n'inclut pas les features de i
- la somme des features implique un risque "d'explosion" des valeurs

Solutions:

- on ajoute un lien de i vers i
- somme -> moyenne

Ne pas oublier d'ajouter les boucles à notre graphe :

$$A \leftarrow A + I$$

Les features agrégées sont donc :

$$X' = D^{-1}AX$$

avec D la matrice des degrés du graphe avec boucles

X' est donc une nouvelle matrice de features, où chaque noeud contient une certaine information de ses voisins directs.

- idéalement, nous cherchons à inclure les features des voisins indirects : ceux étant à une distance 2, 3, etc.
- nous pourrions appliquer le calcul précédent plusieurs fois, afin que le noeud i contienne l'information de ses voisins de voisins de voisins ...
- nous aurions alors :

$$H^{(1)} = D^{-1}AX$$
$$H^{(2)} = D^{-1}AH^{(1)}$$

$$H^{(L)} = D^{-1}AH^{(L-1)}$$

Cela rappelle-t-il un réseau de neurones à plusieurs couches ?

Après une étape, chaque noeud "perçoit" les features de ses voisins directs.

Après 2 étapes, chaque noeud "perçoit" les features des voisins de ses voisins.

<u>Semi-supervised classification with graph convolutional networks - 2017</u>

En introduisant une fonction d'activation non-linéaire σ et une matrice de poids $W^{(k)}$ pour chaque layer, nous obtenons :

$$H^{(1)} = \sigma(D^{-1}AXW^{(0)})$$

$$H^{(2)} = \sigma(D^{-1}AH^{(1)}W^{(1)})$$
...
$$H^{(L)} = \sigma(D^{-1}AH^{(L-1)}W^{(L-1)})$$

En pratique, D⁻¹A est remplacé par D^{-1/2} AD^{-1/2}

• Et si σ est la fonction **ReLU**, cette formulation correspond à la méthode : Semi-supervised classification with GCN, de Kipf & Welling - 2017

Semi-supervised classification with graph convolutional networks - 2017

La représentation de chaque layer k + 1 est donnée par la formule suivante :

$$H^{(k+1)} = \sigma(D^{-\frac{1}{2}}AD^{-\frac{1}{2}}H^{(k)}W^{(k)})$$

avec $H^{(0)} = X$, la matrice initiale des features.

Graph neural networks

Idée générale : agrégation des voisins

Génération d'embeddings des noeuds à partir de leurs voisinages

Idée générale : agrégation des voisins

Intuition : les noeuds agrègent l'information contenue chez leurs voisins grâce à des réseaux de neurones (message passing)

Idée générale : agrégation des voisins

Chaque noeud dispose de son propre graphe de calcul

Modèle profond : plusieurs couches

Les modèles peuvent être de profondeur arbitraire :

- les noeuds ont un embedding à chaque layer
- au layer 0, les embeddings correspondent aux features X
- au layer **k**, les embeddings "reçoivent" l'information des noeuds

Modèle profond : plusieurs couches

Agrégation du voisinage : ce qui différencie chaque implémentation, c'est l'approche utilisée pour **agréger les voisins à travers chaque couche**.

Semi-supervised classification with graph convolutional networks - 2017

Approche vue précédemment, par Kipf & Welling

Semi-supervised classification with graph convolutional networks - 2017

La moyenne des embeddings des voisins peut en général être calculée efficacement en exploitant le fait que la matrice d'adjacence est **creuse** :

$$\sum_{u \in N(v)} \frac{h_u^{(l-1)}}{|N(v)|} = D^{-1}AH^{(l-1)}$$

Ce calcul est permis notamment par l'apparition du produit matriciel entre une matrice creuse et une matrice dense sur **Tensorflow** (tf.sparse.sparse_dense_matmul).

GraphSage, Hamilton et al. - 2018

GraphSage distingue le noeud considéré de ses voisins, puis concatène les deux embeddings.

Attention : cet algorithme ne considère pas v comme voisin de lui-même.

$$h_v^l = \sigma([W_l \cdot agg(\{h_u^{(l-1)}, \forall u \in N(v)\}), B_l h_v^{(l-1)}])$$

agrégation des voisins

embedding du noeud lui-même

concaténation des deux embeddings

GraphSage, Hamilton et al. - 2018

Plusieurs agrégations possibles

Moyenne : on agrège en faisant une moyenne pondérée des features des voisins.

$$agg = \sum_{u \in N(v)} \frac{h_u^{(l-1)}}{|N(v)|}$$

Pool : on transforme les embeddings des voisins, et on applique une fonction "élément par élément"

$$agg = \gamma(\{Qh_u^{(l-1)}, \forall u \in N(v)\})$$

LSTM: on applique un LSTM aux embeddings aléatoirement permutés des voisins

$$agg = LSTM([h_u^{(l-1)}, \forall u \in \pi(N(v))])$$

Récapitulons... Qu'est-ce qu'un GNN?

- un GNN génère des embeddings à partir des features du voisinage d'un noeud
- les noeuds agrègent l'information contenue chez leurs voisins grâce à des réseaux de neurones
 - le GNN de Kipf & Welling agrège les features en faisant une moyenne
 - GraphSage agrège les features en concaténant l'agrégation des embeddings des voisins et l'embedding du noeud considéré
- un GCN incorpore plusieurs couches permettant à un noeud d'incorporer les features de voisins de voisins ...

Attention! Deux notions de profondeur:

- la profondeur des réseaux de neurones d'agrégation
- la profondeur des graphes de calcul du GCN

Graph attention networks

Moyenne des embeddings

Récapitulons l'agrégation basique des embeddings :

$$h_v^{(l)} = \sigma(W_l \cdot \sum_{u \in N(v)} \frac{h_u^{(l-1)}}{|N(v)|})$$

- l'agrégation se fait sur tous les voisins de v
 (rappel : dans le cas général, v est voisin de lui-même).
- nous pouvons interpréter 1 / |N(v)| comme un facteur de pondération d'un voisin u
 - → Dans ce cas, tous les voisins sont de v sont également importants!

Peut-on faire mieux ? Peut-on imaginer un facteur de pondération défini implicitement, c'est-à-dire géré par le GNN lui-même ? (oui)

Notre objectif:

- assigner une pondération différente à chaque voisin d'un noeud d'un graphe
- on appelle ici cette pondération : α_{vi} (importance du voisin u de v).

Cela revient à calculer l'embedding de chaque noeud en suivant une stratégie "d'attention"

a, est calculé et directement optimisé par le GNN :

 calcul des coefficients d'attention (ou scores) e_{vu} de (v, u) basé sur leurs messages :

$$e_{vu} = \alpha(W_l \cdot h_u^{(l-1)}, W_l \cdot h_v^{(l-1)})$$

- e_{vu} indique l'importance du message du noeud u pour le noeud v. La fonction α est appelée mécanisme d'attention.
- on normalise les coefficients d'attention en utilisant la fonction softmax afin d'obtenir \mathbf{a}_{vu} : $\alpha_{vu} = \sum_{u \in N(v)} \frac{exp(e_{vu})}{\sum_{k \in N(v)} exp(e_{vk})}$

- l'approche générale est agnostique de la fonction α
 ex : on peut utiliser un réseau de neurones pour la calculer
- α a des paramètres à estimer :
 - o nous apprenons conjointement les matrices W_k et les paramètres de α en "end-to-end" (de bout en bout)
- à la manière des transformers (NLP), il est possible d'implémenter une "multi-head attention":
 - plusieurs systèmes d'attention implémentés en parallèle et indépendamment
 - leurs résultats sont agrégés (concaténation, somme, moyenne)

- computationnellement efficace :
 - le calcul des coefficients peut être parallélisé
 - l'agrégation peut être parallélisée
- économe en stockage :
 - les opérations sur des matrices creuses ne requièrent jamais plus de O(|V| + |E|) éléments à stocker
 - nombre de paramètres fixe, indépendant de la taille du graphe
- capacité inductive :
 - le calcul ne dépend pas de la structure globale du graphe et peut être appliqué à de nouveaux noeuds