6 1. Evaluate $\lim_{x \to \infty} x^2 e^{-x}$.

Solution. We can rewrite x^2e^{-x} as $\frac{x^2}{e^x}$ and then letting x approach ∞ we find that the limit is of the indeterminate form $\frac{\infty}{\infty}$. Thus, we can apply L'Hôpitals Rule, to get

$$\lim_{x \to \infty} x^2 e^{-x} = \lim_{x \to \infty} \frac{x^2}{e^x} = \lim_{x \to \infty} \frac{2x}{e^x}.$$

As x goes to ∞ , again we find that the limit is the indeterminate form $\frac{\infty}{\infty}$. Thus, we can apply L'Hôpitals Rule a second time and find

$$\lim_{x \to \infty} \frac{2x}{e^x} = \lim_{x \to \infty} \frac{2}{e^x}.$$

Finally, letting x approach ∞ here, the limit equals $\frac{2}{\infty}=0$. Therefore, $\lim_{x\to\infty}x^2e^{-x}=0$

2. Find the most general antiderivative (indefinite integral) of $7 \sin \frac{\theta}{3}$, that is, $\int 7 \sin \frac{\theta}{3} d\theta$. Check your answer by differentiation.

Solution.

$$\int 7\sin\left(\frac{\theta}{3}\right)d\theta = -21\cos\left(\frac{\theta}{3}\right) + C.$$

Now we check this using differentiation:

$$\frac{d}{dx} - 21\cos\frac{\theta}{3} + C = -21\left(-\sin\left(\frac{\theta}{3}\right)\right) \cdot \left(\frac{1}{3}\right) + 0 \qquad = 7\sin\left(\frac{\theta}{3}\right)$$