Package 'ftaproxim'

October 13, 2022

Type Package

Version 0.0.1 Maintainer Hossein Haghbin haghbin@pgu.ac.ir Description Calculation and plotting of instantaneous unavailabilities of basic events along with the top event of fault trees are issues important in reliability analysis of com-
Description Calculation and plotting of instantaneous unavailabilities of ba-
· · · · · · · · · · · · · · · · · · ·
plex systems. Here, a fault tree is provided in terms of its minimal cut sets, along with reliability and maintainability distribution functions of the basic events. All the methods are derived from Horton (2002, ISBN: 3-936150-21-4), Niloofar and Lazarova-Molnar (2022).
License GPL (>= 2)
Encoding UTF-8
RoxygenNote 7.2.0
Imports plyr, ggplot2
NeedsCompilation no
Author Parisa Niloofar [aut] (https://orcid.org/0000-0002-3147-0078), Sanja Lazarova-Molnar [aut], Hossein Haghbin [aut, cre] (https://orcid.org/0000-0001-8416-2354)
Repository CRAN
Date/Publication 2022-07-03 09:10:09 UTC
CalageInt
Index

2 calProb

calageInt	
Carageriic	

Age Intensity Function

Description

This function returns a numeric value indicating the pending time (in terms of time steps, delta) for a given state change of a proxel.

Usage

```
calageInt(state, proxel, delta)
```

Arguments

state a string value

proxel a data frame containing a state, age intensity and the probability.

delta a numeric value as time step

Value

a numeric value as the age intensity

Examples

```
proxel <- data.frame(State = "OK", ageInt = 0, Prob = 1)
state <- "OK"
delta <- 0.2
calageInt(state, proxel,delta)</pre>
```

calProb

Transition Probability Function

Description

This function returns the transition probability for a given basic event and a proxel.

Usage

```
calProb(BE, state, proxel, delta)
```

Arguments

BE a list containing states, transition matrix, distributions and their parameters for a

basic event

state a string value

proxel a data frame containing a state, age intensity and a probability.

delta a numeric value as time step

FTUna 3

Value

a numeric value between 0 and 1 as the transition probability

Examples

```
## A repairable basic event with Uniform(2, 2.5) failure distribution function
## and a fixed repair time of 0.3.
delta <- 0.2
BE <- list(
    states = c("OK", "F"),
    G = rbind(
        c(NA, 1),
        c(1, NA)
    ),
    dist = c("unif", "unif"),
    param = list(c(2, 2.5), c(0.3 - delta, 0.3 + delta))
)
state <- "OK"
proxel <- data.frame(State = "OK", ageInt = 0, Prob = 1)
calProb(BE, state, proxel, delta)</pre>
```

FTUna

Fault Tree Unavailability

Description

This function returns a list where the first element is a data frame of unavailabilities and the second element is the plot of the unavailabilities

Usage

```
FTUna(belist, mcs, totaltime, delta, tol)
```

Arguments

```
belist a list containing all the basic components of a fault tree

mcs a list of minimal cuts sets

totaltime an integer value for the total time

delta a numeric value as time step

tol a numeric value for the tolerance level
```

Value

A list of unavailabilities for the basic events as well as the system, and their plots againts time steps

4 hazard

Examples

```
A<-list(
 states=c("OK","F"),
 G=rbind(c(NA,1),
         c(1,NA)),
dist=c("exp", "exp"),
 param=list(c(0.1), c(1))
)
B<-list(
 states=c("OK","F"),
 G=rbind(c(NA,1),
         c(1,NA)),
 dist=c("exp", "exp"),
 param=list(c(0.01), c(2))
)
C<-list(
 states=c("OK","F"),
 G=rbind(c(NA,1),
         c(1,NA)),
 dist=c("exp", "weibull"),
param=list(c(0.1), c(5,2))
)
D<-list(
 states=c("OK", "F"),
 G=rbind(c(NA, 1),
         c(1,NA)),
 dist=c("lnorm", "exp"),
 param=list(c(2, 0.1), 2)
)
BElist<-list(A,B,C,D)</pre>
names(BElist)<-c("A", "B", "C", "D")
MCS<-list(c("A", "C", "D"), c("B", "C", "D"))
x<-FTUna(BElist, MCS, 5, 0.2, 1e-07)
# Unavailabilities
x$Unavailability
#Plots
x$Plot
```

hazard

nextLevel 5

Description

For a given vector of times and a probability distribution function, this function calculates the hazard rate values.

Usage

```
hazard(t, D, P, ...)
```

Arguments

```
t a numeric value as time

D a density function

P a cumulative density function

More parameters
```

Details

Hazard rate functions defined as the ratio of the density function and the survival function. That is:

Value

A numeric vector of hazard rate values.

Examples

```
## Standard normal distribution
t <- c(0.1, 0.01)
P <- pnorm
D <- dnorm
hazard(t, D, P)

## Uniform distribution with min=2.0 and max=2.5
t <- 2.2
P <- punif
D <- dunif
hazard(t, D, P, 2.0, 2.5)</pre>
```

nextLevel

Proxels of the next time step

Description

For a given basic event and a proxel, this function calculates all the possible proxels for the next time step.

Usage

```
nextLevel(BE, proxel, delta)
```

6 ProxelBE

Arguments

BE a list containing states, transition matrix, distributions and their parameters for a

basic event

proxel a data frame containing a state, age intensity and a probability.

delta a numeric value as time step

Value

a data frame where each row is a proxel

Examples

```
#A multi-state basic event with Weibull(2, 3) transition distribution function
#from working (OK) to an Intermediate State (IS), a fixed time of 0.5 transition
#from IS to failure (F), and a fixed repair time of 0.1 (transition from state F to state OK).
delta <- 0.1
BE <- list(
    states = c("OK", "IS", "F"),
    G = rbind(
        c(NA, 1, 0),
        c(0, NA, 1),
        c(1, 0, NA)
    ),
    dist = c("weibull", "unif", "unif"),
    param = list(c(2, 3), c(0.5 - delta, 0.5 + delta), c(0.1 - delta, 0.1 + delta))
)
proxel <- data.frame(State = "IS", ageInt = 0.1, Prob = 0.9)
delta <- 0.1
nextLevel(BE, proxel, delta)</pre>
```

ProxelBE

Instantaneous Unavailability Vector

Description

This function calculates the isntantaneous unavailability/reliability values of a basic event.

Usage

```
ProxelBE(BE, state, totaltime, delta, tol)
```

Arguments

BE a list containing states, transition matrix, distributions and their parameters for a

basic event

state a string value for the state

TM 7

```
totaltime an integer value for the total time
delta a numeric value as time step
tol a numeric value for the tolerance level
```

Details

For a multistate event, if the state is IS this function returns a vector of instantaneous probabilities of being in the intermediate state

Value

a numeric vector of instantaneous unavailabilities when the state is F

Examples

```
#A multi-state basic event with Weibull(2, 3) transition distribution function
#from working (OK) to an Intermediate State (IS), a fixed time of 0.5 transition
#from IS to failure (F), and a fixed repair time of 0.1 (transition from state F to state OK).
delta <- 0.1
BE <- list(
    states = c("OK", "IS", "F"),
    G = rbind(
        c(NA, 1, 0),
        c(0, NA, 1),
        c(1, 0, NA)
    ),
    dist = c("weibull", "unif", "unif"),
    param = list(c(2, 3), c(0.5 - delta, 0.5 + delta), c(0.1 - delta, 0.1 + delta))
)
probIS <- ProxelBE(BE, state = "IS", totaltime = 5, delta = 0.2, tol = 0.000000001)
plot(probIS, type = "l")</pre>
```

TM

Transition Probability Matrix

Description

This function returns a matrix of transition probabilities at a time point for a given basic event with specified transition distribution functions.

Usage

```
TM(G, dist, param, t, delta, states)
```

8 TM

Arguments

G	a matrix of 1's, 0's and NA's. 1 and NA: transition is possible, 0: transition is not possible
dist	a string vector of transition distribution functions
param	a list of parameters of the transition distribution functions
t	a numeric value as time
delta	a numeric value as time step
states	a string vector of states' labels for the basic event

Value

A numeric matrix of transition probabilities.

Examples

```
## failure distribution function Uniform(2, 2.5)
## and a fixed repair time of 0.3
t < -0.1
delta <- 0.2
states <- c("OK", "F")
G \leftarrow rbind(c(NA, 1), c(1, NA))
dist <- c("unif", "unif")</pre>
param <- list(c(2, 2.5), c(0.3 - delta, 0.3 + delta))
TM(G, dist, param, t, delta, states)
## failure distribution function exp(0.001)
## and not repairable
t <- 0.1
delta <- 0.2
states <- c("OK", "F")
G <- rbind(c(NA, 1), c(0, 1))
dist <- c("exp")</pre>
param <- list(c(0.001))
TM(G, dist, param, t, delta, states)
```

Index

```
calageInt, 2
calProb, 2

FTUna, 3
hazard, 4
nextLevel, 5
ProxelBE, 6
TM, 7
```