Motivation: das Newton-Verfahren Allgemeine Definitionen Normale Familien und exzeptionelle Punkte Periodische Punkte

Dynamische Systeme

Matthias Hofmann

19. Januar 2014

Gliederung

Motivation: das Newton-Verfahren

Allgemeine Definitionen

Normale Familien und exzeptionelle Punkte

Periodische Punkte

Motivation: das Newton-Verfahren

Die Newtoniteration ist gegeben durch die Abbildung

$$\Phi(z)=z-\frac{f(z)}{f'(z)}.$$

Dabei ist für einen Startwert zo folgendes Verhalten denkbar

- ▶ Die Newtoniteration konvergiert gegen eine Nullstelle von f,
- Das Newton-Verfahren konvergiert nicht.

Das Newton-Verfahren konvergiert lokal. Wie ist das Konvergenzumgebung?

—— Newton-Fraktale.

Motivation: das Newton-Verfahren

Allgemeine Definitionen Normale Familien und exzeptionelle Punkte Periodische Punkte

Abbildung : Newton-Fraktal für $f(z) = z^4 - 1$

Dies motiviert das Konzept der Fatou- bzw. Juliamenge:

Fatou-Menge Die Startwerte aus dieser Menge führen unter Iteration zu einer "stetigen" Dynamik, das heißt, eine kleine Änderung des Startwert führt zu einer ähnlichen Dynamik.

Julia-Menge Beschreibt die Menge der Startpunkte, die zu den "instabilen" Prozessen gehören. Jede noch so kleine Änderung des Startwerts führt zu einer komplett anderen Dynamik.

Notation: F(f) bezeichnet die Fatoumenge von f und J(f) analog die Juliamenge von f.

Charakterisierung periodischer Punkte

Definition 1

Sei z_0 periodischer Punkt bzgl. f mit Periode n, d.h. $f^n(z_0) = z_0$. Dann heißt er

- stark anziehend, falls $|(f^n)'(z_0)| = 0$,
- ▶ anziehend, falls $0 < |(f^n)'(z_0)| < 1$,
- indifferent, wenn $|(f^n)'(z_0)| = 1$,
- ▶ abstoßend, wenn $|(f^n)'(z_0)| > 1$.

Definition 2 (Einzugsgebiet)

Ist z_0 ein anziehender periodischer Punkt von f, dann ist die Menge

$$A_f(z_0) = \{ z \in \overline{\mathbb{C}} : \exists_{L \subset \mathbb{N}} \lim_{L \ni k \to \infty} f^k(z) = z_0 \}$$

das Einzugsgebiet (engl. basin of attraction) von z₀ bzgl. f.

Definition 3 (Julia-Menge)

Wir definieren die Julia-Menge durch

$$J(f) := \overline{\{z \in \overline{\mathbb{C}} : z \text{ abstossender periodischer Punkt von } f\}}$$

Und die Fatou-Menge durch $F(f) = J(f)^c$

Normale Familie und exzeptionelle Punkte

Definition 4

Eine Familie $\{F_n\}$ analytischer Funktionen operiert *normal* auf U, falls jede Folge $(F_{n_i})_{i\in\mathbb{N}}$ eine Teilfolge $(F_{n_{i_j}})_{j\in\mathbb{N}}$ besitzt, sodass einer der beiden Eigenschaften erfüllt ist:

- $ightharpoonup F_{n_{i_i}}$ konvergiert gleichmäßig auf kompakten Mengen $K\subset U$.
- ▶ F_{n_i} divergiert gleichmäßig gegen ∞ auf U.

Eine Familie $\{F_n\}$ analytischer Funktionen operiert *nicht normal* bei z_0 , falls er in keiner Umgebung *normal* operiert.

Beispiel 5

Betrachte die Funktion F, gegeben durch F(x) = ax. Definiere die Familie $\{F^n\}$.

Fall 1: 0 < |a| < 1. so konvergiert für jede kompakte Teilmenge die Funktionenfolge $F^n(z) = a^n \cdot z$ gleichmäßig gegen 0. Also operiert $\{F^n\}$ normal auf jeder Umgebung $U \subset \mathbb{C}$.

$$\longrightarrow J(f) = \{\infty\}, F(f) = \mathbb{C}, A_F(0) = \mathbb{C}, A_F(\infty) = \{\infty\}.$$

Fall 2: |a| > 1. Die Familie $\{F\}$ operiert nicht normal bei 0, denn für $z \neq 0$ konvergiert jede beliebige Teilfolge gegen ∞ . Nun konvergiert aber $F^{n_{i_j}}$ für beliebige Teilfolgen bei z=0 gleichmäßig gegen 0.

$$\longrightarrow J(F) = \{0\}, \ F(f) = \overline{\mathbb{C}} \setminus \{0\}, \ A(0) = \{0\}, \ A(\infty) = \overline{\mathbb{C}} \setminus \{0\}.$$

Proposition 6

Sei F analytisch, z_0 ein abstoßender periodischer Punkt bzgl. F. Dann operiert die Familie $\{F^n\}_{n\in\mathbb{N}}$ nicht normal bei z_0 .

Korrolar 7

Sei F eine analytische Funktion. Die Familie $\{F^n\}_{n\in\mathbb{N}}$ operiert nicht normal für $z\in J(F)$.

Theorem 8 (Montels Theorem)

Sei $\{F_n\}$ eine Familie analytischer Funktionen auf einer Umgebung U. Angenommen es gibt $a,b\in\mathbb{C}, a\neq b$, sodass $F_n(z)\neq a\wedge F_n(z)\neq b$ für alle $n\in\mathbb{N}$ und $z\in U$. Dann operiert $\{F_n\}$ normal auf $U\subset\mathbb{C}$. (ohne Beweis)

Korrolar 9

Sei F eine analytische Funktion. Sei $z_0 \in J(F)$ und sei U eine beliebige Umgebung von z_0 . Dann existiert höchstens ein $a \in \mathbb{C}$ mit

$$a \notin \bigcup_{n=1}^{\infty} F^n(U).$$

Wir nennen einen solchen Punkt exzeptionellen Punkt.

Theorem 10

Sei P ein Polynom mit Grad ≥ 2 . Angenommen es gibt einen Punkt $z_0 \in J(P)$ samt einer Umgebung U von z_0 und ein $a \in \mathbb{C}$, sodass

$$\bigcup_{n=0}^{\infty} P^n(U) = \mathbb{C} \setminus \{a\}$$

so folgt $P(z) = a + \lambda(z - a)^k$ für $\lambda \in \mathbb{C}$, $k \in \mathbb{N}$ geeignet. Insbesondere ist P mit Grad $n \geq 2$ topologisch konjugiert zu $Q: z \mapsto z^n$, d.h. das ein Homöomorphismus H existiert mit $Q \circ H = H \circ P$.

Beispiel 11

Für $Q(z) = z^n$, $n \ge 2$ folgt $J(Q) = S^1$. Sei U eine Umgebung um $z_0 \in S^1$ mit $0 \notin U$, dann folgt

$$0 \notin \bigcup_{k=0}^{\infty} Q^k(U).$$

Insbesondere ist a = 0 exzeptioneller Punkt.

periodische Punkte

Theorem 12 (Koenigs Linearisationstheorem)

Sei f eine analytische Funktion mit f(0)=0 und $f'(0)=\lambda$ mit $|\lambda| \not\in \{0,1\}$, dann existiert ein Diffeomorphismus $\varphi: U \to V$ mit $\varphi(0)=0$, sodass

$$\varphi \circ f(z) = \lambda \cdot \varphi(z) \tag{*}$$

für $z \in U$, wobei U und V Umgebungen von 0 sind. Dieses φ ist bis auf Multiplikation mit einer Konstanten eindeutig.

Proposition 13

Sei z_0 ein anziehender periodischer Punkt bzgl. einer analytischen Funktion f, so existiert eine Umgebung U um z_0 , sodass $U \subset A_f(z_0)$. Wir nennen die Zusammenhangskomponente von $z_0 \in A_f(z_0)$ auch das unmittelbare Einzugsgebiet (engl. immediate basin of attraction) von z_0 bzgl. f.

Beispiel 14

Sei P ein Polynom vom Grad $n \ge 2$, dann ist ∞ ein stark anziehender Fixpunkt bzgl. P. Tatsächlich ist

$$|P'(\infty)| = \lim_{z \to 0} \left| \frac{\mathrm{d}}{\mathrm{d}z} \left[\frac{1}{P(1/z)} \right] \right|$$

$$= \lim_{z \to 0} \left| \frac{P'(1/z)}{z^2 P(1/z)^2} \right|$$

$$= \lim_{z \to 0} \underbrace{|z|^{n+1}}_{z \to 0} \underbrace{\left| \frac{z^{n-1} P'(1/z)}{z^{2n-2} z^2 P(1/z)^2} \right|}_{\text{beschränkt}} = 0.$$

Theorem 15

Sei P ein Polynom vom Grad $n \ge 2$ und sei z_0 ein (stark) anziehender periodischer Punkt von P. Dann liegt im Einzugsgebiet von z_0 bzgl. P ein kritischer Punkt.

Bemerkung

 $z_0=\infty$ ist ein stark anziehender Punkt. Insbesondere ist z_0 kritisch nach Beispiel 14.