Julio Fernando Vicente Maldonado Altas energías primer semestre 2025

1 Simetrías y Grupos (representaciones)

Definición:

Es un conjunto de elementos, $G = \{g_1, g_2, \dots, g_n\}$, que satisface las siguientes propiedades:

Producto

- Cerradura: Para todo $g, g' \in G$, se tiene que $g \circ g' \in G$.
- \blacksquare Sociativo : Para todo $g,g'\in G$, se tiene que $(g\circ g')\circ g''=g\circ (g'\circ g'')$
- Identidad: Para todo $g \in G$ existe $e \in G$ tal que: $g \circ e = e \circ g = g$ Donde e es la identidad
- Inverso: para todo $g \in G$ y $g^{-1} \in G$, se tiene $g \circ g^{-1} = g^{-1} \circ g = \mathbb{I}$

1.1 Algunos ejemplos ilustrativos:

1.1.1. Grupo Z_3 (Permutaciones)

n objetos $(x_1, x_2, \dots x_n)$ S_n con n! elementos

$$\begin{array}{llll} n=1 & (x_1) & s_1=\{e\} & g(x_1)=(x_1) \\ n=2 & (x_1,x_2) & s_2=\{e,g_{12}\} & g_{12}(x_1,x_2)=(x_1) \\ n=3 & (x_1,x_2,x_3) & s_3=\{e,g_{12},g_{23},g_{31},g_{123},g_{132}\} \\ n=3 & (x_2,x_1,x_3) & s_3=\{e,g_{12},g_{23},g_{31},g_{123},g_{132}\} \\ n=3 & (x_1,x_3,x_2) & s_3=\{e,g_{12},g_{23},g_{31},g_{123},g_{132}\} \\ n=3 & (x_3,x_2,x_1) & s_3=\{e,g_{12},g_{23},g_{31},g_{123},g_{132}\} \\ n=3 & (x_3,x_1,x_2) & s_3=\{e,g_{12},g_{23},g_{31},g_{123},g_{132}\} \\ n=3 & (x_2,x_3,x_1) & s_3=\{e,g_{12},g_{23},g_{31},g_{123},g_{132}\} \end{array}$$

 S_3 esta es la única forma de de escribir los elementos.

1.2 Grupos Continuos

Ejemplo:

1.2.1. Grupo unitario de dimensión 1 U(1)

 $U(1) = \{ \exp(i\theta), 0 \le \theta < 2\pi \}$ Esto puede expresarse en un plano complejo, como se ve al lado izquierdo.

En el plano carteciano: \mathbb{R} $\begin{pmatrix} x \\ y \end{pmatrix}$ El grupo especial ortogonal en dos dimensiones, SO(2), se define como

$$SO(2) = \left\{ R \in \mathbb{R}^{2 \times 2} \mid R^T R = I \quad \text{y} \quad \det R = 1 \right\}.$$
Especial Ortogonal Matrices 2 × 2

Podemos desglosar esta definición de la siguiente forma:

• S (Special): Se refiere a que las matrices tienen determinante 1, es decir, preservan la orientación.

$$\det R = 1$$
.

• O (*Orthogonal*): Indica que las matrices son ortogonales, lo que implica que se conserva la norma (o la longitud) y los ángulos. Esto se expresa mediante:

$$R^T R = I$$
,

donde \mathbb{R}^T es la traspuesta de \mathbb{R} e \mathbb{I} es la matriz identidad.

 \blacksquare El 2 en SO(2) señala que estamos trabajando con matrices $2\times 2,$ es decir, en el plano.

De esta manera, la definición de SO(2) se entiende como el conjunto de todas las matrices 2×2 ortogonales con determinante 1, que corresponden a las rotaciones en el plano.

$$\begin{array}{c|c} M \in SO(2) & V^T(\theta) \\ M(\theta)v = v(\theta) & V^TM(\theta)^TM(\theta)V \\ \text{matriz} & V^TV \end{array}$$

Ejercicio

- 1. Mostrar que las matrices ortogonales de 2×2 solo pueden tener det1o-1
- 2. Si el determinante es (-1) corresponde a hacer una rotación y una reflexión.

2

Solución:

1) Recordemos que para que una matriz sea ortogonal debe de cumplirse:

$$A \cdot A = A^T \cdot A = \mathbb{I}$$

Es decir: La inversa de una matriz es su transpuesta:

$$A^{-1} = A^T$$

Entonces, podemos extender esto para toda matriz A de tamaño $n \times n$ que sea ortogonal:

$$det(A \cdot A^{T}) = det(A^{T} \cdot A) = det(\mathbb{I})$$
$$det(A) \cdot det(A^{T}) = det(A^{T}) \cdot det(A) = 1$$
$$\Rightarrow det(A) \cdot det(A) = det(A) \cdot det(A) = 1$$
$$det^{2}(A) = 1$$
$$det(A) = \pm 1.$$

2) Para esto, tomemos el caso de la matriz de rotación pura en 2×2 :

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

Primero sabemos que es una matriz ortogonal porqué cumple que:

$$A^T \cdot A = \mathbb{I}$$

cuyo determinante es 1. por otra parte, si tomamos la reflexión pura:

$$A = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}$$

Para esta matriz ortogonal se tiene en efecto det A = -1.

En general podemos decir pues; toda matriz ortogonal $A \in O(2)$ con det(A) = -1 puede expresarse como una **rotación seguida de una reflexión**. Por ejemplo:

Sea R una reflexión en el eje x:

$$R = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \det(R) = -1.$$

Una matriz con $\det = -1$ se escribe como, una rotación seguida de una reflexión:

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \cdot R = \begin{pmatrix} \cos \theta & \sin \theta \\ \sin \theta & -\cos \theta \end{pmatrix}.$$

Esto básicamente es:

primero hace una Rotaci'on: Gira el sistema por θ . luego hace una Reflexi'on: Invierte la coordenada y.

Entonces det(A) = -1 corresponde a una transformación que combina rotación y reflexión.

1.3 Transformaciones Infinitesimales

Para un grupo de Lie G, un elemento $g(\theta)$ cerca de la identidad $(\theta = 0)$ puede expandirse en serie de Taylor como:

$$g(\theta) = g(0) + \frac{\partial g}{\partial \theta} \bigg|_{\theta=0} \theta + \frac{1}{2} \frac{\partial^2 g}{\partial \theta^2} \bigg|_{\theta=0} \theta^2 + \cdots$$

Como $g(0) = \mathbb{I}$ (la identidad), para $\theta = \epsilon \ll 1$, la expansión se reduce a:

$$g(\epsilon) \approx \mathbb{I} + \frac{\partial g}{\partial \theta} \bigg|_{\theta=0} \epsilon.$$

El término $\frac{\partial g}{\partial \theta}\Big|_{\theta=0}$ es el **generador del grupo**, denotado por T. Así, escribimos:

$$q(\epsilon) = \mathbb{I} + iT\epsilon.$$

1.4 **Ejemplos de Generadores**

Grupo U(1)

El grupo U(1) consiste en números complejos de la forma $g(\theta)=e^{i\theta}$. Su generador se obtiene derivando:

$$\left. \frac{\partial g}{\partial \theta} \right|_{\theta=0} = \left. \frac{\partial}{\partial \theta} e^{i\theta} \right|_{\theta=0} = i.$$

Por lo tanto, el generador de U(1) es T=1.

1.4.2. Grupo SO(2)

El grupo SO(2) consiste en matrices de rotación en 2D:

$$M(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Su generador se obtiene derivando:

$$\left. \frac{\partial M}{\partial \theta} \right|_{\theta=0} = \begin{pmatrix} -\sin\theta & -\cos\theta \\ \cos\theta & -\sin\theta \end{pmatrix} \bigg|_{\theta=0} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

Por lo tanto, el generador de SO(2) es:

$$T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}.$$

1.5 Representaciones de un grupo

Es un mapeo D, de los elementos de ϵ en un set de operadores lineales:

$$\underbrace{D(\mathbb{I})}_{\text{I es la identidad}} = 1$$

$$D(g_1)D(g_2) = D(g_1 \cdot g_2)$$
(2)

$$D(g_1)D(g_2) = D(g_1 \cdot g_2) \tag{2}$$

Cuadro 1: Posibles permutaciones $(e = \mathbb{I})$

1.5.1. Ejemplo: Grupo Cíclico de Orden 3

Considere el grupo $G = \{e, a, b\}$ que sigue la siguiente regla:

Una representación unidimensional se construye usando raíces cúbicas de la unidad:

$$D(\mathbb{I}) = 1 \qquad \overbrace{D(\mathbb{I})}^{1} D(a) = D(I \cdot a) = D(a).$$

$$D(a) = e^{\frac{2}{3}\pi i} \qquad D(a)D(a) = D(a \cdot a) = D(b).$$

$$D(b) = e^{\frac{4}{3}\pi i} \qquad D(a)D(b) = D(a \cdot b) = D(\mathbb{I}).$$

1.6 Representación Regular: Construcción

Para grupos finitos, la **representación regular** actúa sobre un espacio vectorial con base $\{|g\rangle | g \in G\}$:

1. Primero construyo una base ortogonal:

$$|a\rangle |b\rangle |D(\mathbb{I})\rangle$$

2. Los elementos de la representación los voy a construir sobre la base:

$$D(g_1)|g_2\rangle = |g_1 \cdot g_2\rangle$$

3. Cambiando de notación, los elementos de D(g) van a ser:

$$[D(g)]_{ij} = \langle e_i | D(g) | e_j \rangle$$
$$|e_1\rangle = |\mathbb{I}\rangle \quad |e_2\rangle = |a\rangle \quad |e_3\rangle = |b\rangle$$

Entonces tomando:

$$g = \mathbb{I}$$

$$[D(e_1)]_{ij} = \langle e_i | D(e_1) | e_j \rangle = \langle e_i | \mathbb{I}e_j \rangle$$

$$[D(e_1)]_{ij} = \langle e_i | e_j \rangle = \delta_{ij}$$

$$[D(e_1)]_{ij} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Para
$$g = e_2 = a$$

$$[D(a)]_{ij} = \langle e_i | D(a) | e_j \rangle = \langle e_i | ae_j \rangle$$

tomando los casos correspondientes para:

$$\langle \mathbb{I} | ae_j \rangle \quad \langle a | ae_j \rangle \quad \langle b | ae_j \rangle$$

Se tiene la siguiente matriz:

$$[D(a)]_{ij} = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$

Ejercicio

Calcular: $[D(b)]_{ij}$

Solución:

Hacemos un procedimiento análogo al que se hizo para $e_2=a;$ Para $q=e_3=b$

$$[D(b)]_{ij} = \langle e_i | D(b) | e_j \rangle = \langle e_i | be_j \rangle$$

tomando los casos correspondientes para:

De esto ya se tiene la siguiente matriz:

$$[D(b)]_{ij} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}.$$

1.7 Representaciones de grupos continuos

Para grupos como SO(2) o SU(2), las representaciones se construyen usando **generadores** infinitesimales. Cerca de la identidad:

Sea $U \in G$ tales que $U(\alpha = 0) = 1$ (si esto es cierto puedo expandirlos en intervalos pequeños con series de Taylor)

$$U(\epsilon) = \mathbb{I} + i\epsilon_a T_a + \mathcal{O}(\epsilon^3)$$

Esto es:

$$D[\epsilon=0]=1.$$

La representación más general de ϵ es $D(\epsilon) = \mathbb{I} + i\epsilon_a T_a$ donde T_a son generadores del álgebra de Lie.

El mapeo del producto de todas las representaciones es:

$$D(g_1)D(g_2)\cdots D(g_n) = D(g_1\cdot g_2\cdots g_n)$$

Si se hace una parametrización exponencial esto es:

$$D(\alpha) = \lim_{k \to \infty} \left(1 + i \frac{\alpha_a}{k} T_a \right)^k$$

Ejercicio interesante

Se puede desmostar que $\exp[i\alpha_a T_a]$

Solución

Para k grande:

$$\left(\mathbb{I} + \frac{i\alpha_a T_a}{k}\right)^k = \sum_{m=0}^k \binom{k}{m} \left(\frac{i\alpha_a T_a}{k}\right)^m.$$

Entonces, Cuando $k \to \infty$, tenemos:

$$\binom{k}{m} \frac{1}{k^m} \approx \frac{1}{m!}.$$

Por lo tanto:

$$\lim_{k \to \infty} \sum_{m=0}^{k} \frac{(i\alpha_a T_a)^m}{m!} = \sum_{m=0}^{\infty} \frac{(i\alpha_a T_a)^m}{m!} = \exp(i\alpha_a T_a).$$

1.8 Representación exponencial de SO(2)

$$M(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

El generador T se obtiene derivando en $\theta = 0$:

$$T = -i \frac{\partial M}{\partial \theta} \Big|_{\theta=0} \quad \Rightarrow T = \begin{pmatrix} 0 & -1 \\ 1 & 0. \end{pmatrix}$$

La representación exponencial reconstruye la rotación:

$$D(\theta) = e^{i\theta T}$$

Expandimios esto, y tenemos:

$$D(\theta) = 1 + i\theta T + \frac{1}{2}(i\theta T)^2 + \ldots + \frac{1}{n!}(i\theta T)^n$$

Tenemos

$$T^{2} = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
$$T^{3} = T^{2} \cdot T = T$$

Tenemos los siguientes casos:

$$\begin{cases} pares = \mathbb{I} \\ impares = T \end{cases}$$

De esto se tiene entonces:

$$D(\theta) = \underbrace{\left(1 + \sum_{n=1}^{\infty} \frac{(i\theta)^{2n}}{2n!}\right) \mathbb{I}}_{\text{pares}} + \underbrace{\sum_{n=0}^{\infty} \frac{(i\theta)^{2n+1}}{(2n+1)!} T}_{\text{Impares}}$$

7

$$D(\theta) = \sum_{n=0}^{\infty} \frac{(i\theta)^{2n}}{(2n)!} \mathbb{I} + \sum_{n=0}^{\infty} \frac{(i\theta)^{2n+1}}{(2n+1)!} iT$$

$$D(\theta) = \sum_{n=0}^{\infty} \frac{(-1)^n \theta^{2n}}{(2n)!} \mathbb{I} + \sum_{n=0}^{\infty} \frac{(-1)^n \theta^{2n+1}}{(2n+1)!} iT$$

$$D(\theta) = \cos \theta \cdot \mathbb{I} \sin \theta \cdot iT$$

$$D(\theta) = \begin{pmatrix} \cos \theta & 0 \\ 0 & \cos \theta \end{pmatrix} + \begin{pmatrix} 0 & -\sin \theta \\ \sin \theta & 0 \end{pmatrix}$$

$$D(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

Obtenemos de nuevo la matriz de rotación, por lo cual funciona nuestro método aproximado. Nosotros vamos a trabajar con los grupos SU(n) y SO(n), Estos tienen los siguientes parametros:

$$SO(N)$$
 matrices $n \times n$ restricciones $n \times n$ como es ortogonal $Det = 1$ 1

Dimensión $\frac{1}{2}(N^2 - N) = \frac{N(N-1)}{2}$ Parámetros para $SU(N)$

Ejercicio

Para $U \in SU(2)$, demostrar que cerca de la identidad, $U(\epsilon) = \mathbb{I} + i\epsilon_a T_a$, donde T_a son los generadores de SU(2).

Solución

El grupo SU(2) está definido por matrices U que cumplen:

$$U^{\dagger}U = \mathbb{I}, \quad \det(U) = 1.$$

Cerca de la identidad ($\epsilon_a \ll 1$), una transformación infinitesimal se expande como:

$$U(\epsilon) \approx \mathbb{I} + i\epsilon_a T_a$$

donde T_a son los generadores del grupo. Para SU(2), estos generadores son:

$$T_a = \frac{\sigma_a}{2}$$
, $\sigma_a = \text{Matrices de Pauli}$,

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Los generadores T_a cumplen:

Anticonmutación:

$$\{T_a, T_b\} = \frac{1}{2}\delta_{ab}\mathbb{I}.$$

Conmutación (Álgebra de Lie de SU(2)):

$$[T_a, T_b] = i\epsilon_{abc}T_c,$$

donde ϵ_{abc} es el símbolo de Levi-Civita.

Comparando esto:

SO(2): Tiene solo 1 generador (es un grupo abeliano):

$$T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad [T, T] = 0.$$

Por otra parte, SU(2): Tiene3 generadores no conmutativos, lo que refleja su estructura no abeliana.

Para SU(2), cualquier elemento cerca de la identidad puede escribirse como:

$$U(\epsilon) = \exp(i\epsilon_a T_a) \approx \mathbb{I} + i\epsilon_a T_a + \mathcal{O}(\epsilon^2).$$

Ejemplo: Si $\epsilon_1 = \epsilon$, $\epsilon_2 = \epsilon_3 = 0$:

$$U(\epsilon) = \exp(i\epsilon T_1) \approx \mathbb{I} + i\epsilon \begin{pmatrix} 0 & 1/2 \\ 1/2 & 0 \end{pmatrix}.$$

¿Qué características tiene el generador?

U: Unitario y cumple $U^{\dagger}U=1$ Entonces:

$$\begin{split} (1-i\epsilon_a T_a^\dagger)(1+i\epsilon_a T_a) &= \mathbb{I} \\ 1-i\epsilon_a T_a^\dagger + i\epsilon_a T^a + \mathcal{O}(\epsilon^3) &= 1 \\ i\epsilon_a T_a^\dagger &= i\epsilon_a T_a \\ T_a^\dagger &= T_a \quad \text{Son matrices Hermíticas !} \end{split}$$

Ejercicio (Este implica mayor importancia)

Mostrar que cualquier matriz de 2×2 hemitica y de traza 0 se puede escribir como combinación lineal de las matrices de Pauli.

$$X = C_a \sigma_a$$
, donde $\sigma_a = {\sigma_1, \sigma_2, \sigma_3}$.

Los elementos del grupo SU(2) se expresan como:

$$U = \exp\left(i\alpha_a \sigma_a\right).$$

Por definición, SU(n) es el grupo de matrices unitarias ($U^{\dagger}U = \mathbb{I}$) con determinante 1:

$$\det(U) = 1$$

En el espacio de matrices 2×2 hermíticas y traceless tiene dimensión 3. Las matrices de Pauli:

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$

son hermíticas $(\sigma_a^{\dagger} = \sigma_a)$, traceless $(\text{Tr}(\sigma_a) = 0)$, y linealmente independientes. Por lo tanto, forman una base para este espacio.

Formalmente esto es:

Sea X una matriz 2×2 hermítica y traceless:

$$X = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad X^{\dagger} = X \implies a, d \in \mathbb{R}, \quad c = b^*.$$

Además, $Tr(X) = a + d = 0 \implies d = -a$. Expresando X en términos de σ_a :

$$X = C_1 \sigma_1 + C_2 \sigma_2 + C_3 \sigma_3 = \begin{pmatrix} C_3 & C_1 - iC_2 \\ C_1 + iC_2 & -C_3 \end{pmatrix}.$$

Igualando componentes:

$$C_3 = a$$
, $C_1 = \text{Re}(b)$, $C_2 = \text{Im}(b)$.

Por lo tanto, toda matriz X admite una descomposición en términos de σ_a .

Por otra parte: Las matrices $i\sigma_a$ son generadores del álgebra de Lie $\mathfrak{su}(2)$, que consiste en matrices antihermíticas $(X^{\dagger} = -X)$ y traceless.

Por el teorema de exponenciación de Lie , la aplicación exponencial lleva el álgebra de Lie al grupo:

$$\exp: \mathfrak{su}(2) \to SU(2).$$

Para $\alpha_a \in \mathbb{R}$, $i\alpha_a\sigma_a$ es antihermítica y traceless, por lo que

$$(U = \exp(i\alpha_a \sigma_a) \in SU(2)$$

1.9 Álgebras de Lie

Consideremos un elemento de la representación:

$$u(\lambda) = \exp[i\lambda\epsilon_a T_a]$$

Aplicando la regla de multiplicación del grupo

$$u(\lambda_1)u(\lambda_2) = u(\lambda_1 + \lambda_2)$$

Sin embargo, si los elementos son generados por una combinación lineal diferente

$$e^{i\alpha_a T_a} e^{i\beta_a T_a} \neq e^{i(\alpha_a + \beta_a)T_a}$$

Los elementos de la representación deben de poder expresarse como el exponente de una combinación lineal de los generadores.

$$e^{i\alpha_a T_a} e^{i\alpha_a T_a} = e^{i\delta_a T_a}$$
 para algún δ

Podemos construir una representación utilizando la parametrización exponencial. Para T_a los generadores de G $D(\alpha) = e^{i\alpha_a T_a}$ es una representación de G por lo que tendrá que ser cierto que:

$$e^{i\alpha_a T_a} e^{i\beta_b T_b} = e^{i\delta_c T_c}$$
 donde $\delta_a \neq \alpha_a + \beta_a$

Consideremos una transformación infinitesimal

$$i\delta_c T_c = \ln\left(e^{i\alpha_a T_a} e^{i\beta_b T_b} + \mathbb{I} - \mathbb{I}\right)$$

Intentemos escribir esta expresión como $\ln(\mathbb{I} + l)$, si k es infinitesimal podemos expandir alrededor de k = 0.

Para una transformación infinitesimal α_a, β_a son pequeños

$$k = e^{i\alpha_a T_a} e^{i\beta_b T_b} - \mathbb{I}$$

Expandiendo hata segundo orden tenemos:

$$k = [1 + i\alpha_a T_a - 1/2(\alpha_a T_a)^2][1 + i\beta_b T_b - 1/2(\beta_b T_b)^2] - 1$$

= 1 + i\alpha_a T_a + i\beta_b T_b - \alpha_a T_a \beta_b T_b - \frac{1}{2}(\alpha_a T_a)^2 - \frac{1}{2}(\beta_b T_b)^2 - 1

Para k pequeño se tiene:

$$i\delta_{c}T_{c} = \ln(1+k) = k - \frac{1}{2}k^{2} + \dots$$

$$= i\alpha_{a}T_{a} + i\beta_{b}T_{b} - \alpha_{a}T_{a}\beta_{b}T_{b} - \frac{1}{2}(\alpha_{a}T_{a})^{2} - \frac{1}{2}(\beta_{b}T_{b})^{2}$$

$$-\frac{1}{2}(i\alpha_{a}T_{a} + i\beta_{b}T_{b})^{2} + \dots$$

$$\frac{1}{2}(\alpha_{a}T_{a})^{2} + \frac{1}{2}(\beta_{b}T_{b})^{2} + \frac{1}{2}\alpha_{a}T_{a}\beta_{b}T_{b} + \frac{1}{2}\beta_{b}T_{b}\alpha_{a}T_{a}$$

$$i\delta_{c}T_{c} = i\alpha_{a}T_{a} + i\beta_{b}T_{b} - \frac{1}{2}\alpha_{a}\beta_{b}(T_{a}T_{b} - T_{b}T_{a}) + \dots$$

$$= i\alpha_{a}T_{a} + i\beta_{b}T_{b} - \frac{1}{2}\alpha_{a}\beta_{b}[T_{a}, T_{b}]$$

El conmutador del álgebra juega un papel similar al producto del grupo:

$$[T_a, T_b] = i \underbrace{f_{abc}}_{T_c} T_c$$

Donde f_{abc} Se le conoce como constante de estructura del grupo.

$$\rightarrow \delta_c = (\delta_{ac}\alpha_a + \delta_{bc}\beta_b + f_{abc}\alpha_a\beta_b)$$

Ejemplo

Las rotaciones en 3D están descritas por los elementos de SO(3)

$$R(\theta, \phi, \psi) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{pmatrix} \begin{pmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Necesitamos 3 parámetros para describir un elemento de $SO(3) \rightarrow 3$ generadores. Estos generadores son:

$$J_{1} = i \frac{\partial R}{\partial \theta} \Big|_{\theta, \phi, \psi = 0} = i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \quad J_{2} = i \frac{\partial R}{\partial \phi} \Big|_{\theta, \phi, \psi = 0} = i \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}$$

$$J_3 = i \frac{\partial R}{\partial \psi} \Big|_{\theta, \phi, \psi = 0} = i \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Donde

$$D(\theta_a) = \exp[-i\theta_a J_a]$$

$$\theta_a = \theta_1, \theta_2, \theta_3 = \theta, \phi, \psi$$

$$J_a = i\frac{\partial R}{\partial \theta_a}\Big|_{\theta_a = 0}$$

Ejercicio

Mostrar que el álgebra de Lie de SO(3)

$$[J_a, J_b] = i\epsilon_{abc}J_c$$

Solución Queremos demostar que los generadores de SO(3) satsfacen la relación de conmutación.

Entonces, cambiando de notación a los generadores por comodidad a L_a , que serían:

$$J_a = iL_a$$

Entonces, probemos pues los valores para las diferentes combinaciones, tomemos:

$$[J_1, J_2]$$

Usando el combenio definido anteriormente tenemos:

$$[J_1, J_2] = J_1 J_2 - J_2 J_1$$

$$= (iL_1)(iL_2) - (iL_2)(iL_1)$$

$$J_1 J_2 = i^2 L_1 L_2 = -L_1 L_2$$

$$J_2 J_1 = -L_2 L_1$$

$$[J_1, J_2] = -(L_1 L_2 - L_2 L_1) = -[L_1, L_2]$$

Pero ya sabemos que

$$[L_1L_2] = \epsilon_{123}L_3$$

Como $\epsilon_{123} = 1$, tenemos que:

$$[J_1, J_2] = -L_3$$

Si tomamos $J_3 = iL_3$, tnemos que

$$L_3 = \frac{J_3}{i} = -iJ_3$$

Entonces:

$$[J_1, J_2] = -(-iJ_3) = iJ_3$$

Esto podemos verlo con el cálculo explícito de $[J_1, J_2]$ Primero haciendo el Productos matriciales:

$$J_1 J_2 = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad J_2 J_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Tenemos el conmutador:

$$[J_1, J_2] = J_1 J_2 - J_2 J_1 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Notemos que este es el generador J_3

$$[J_1, J_2] = iJ_3$$
, donde $J_3 = i \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

Generalización

El símbolo de Levi-Civita ϵ_{abc} captura todas las combinaciones:

$$[J_a, J_b] = i\epsilon_{abc}J_c.$$

Por ejemplo:

$$[J_2, J_3] = iJ_1,$$
 $[J_3, J_1] = iJ_2.$

¿Qué nos dice el álgebra de Lie sobre cómo se comportan las rotaciones?

Consideremos una rotación infinitesimal (ϵ) alrededor de x, luego η al rededor de y luego $-\epsilon$ alrededor de x y luego $-\eta$ alrededor de y

$$R_y(-\eta)R_x(-\epsilon)R_y(\eta)R_x(\epsilon)$$

Esto es

$$\left(\mathbb{I} - i\eta J_2 - \frac{1}{2}\eta^2 J_2^2\right) \left(1 + i\epsilon J_1 - \frac{1}{2}\epsilon^2 J_1^2\right) R_y(\eta) R_x(\epsilon)
= \left(1 + i\eta J_2 + i\epsilon J_1 - \eta\epsilon J_2 J_1 - \frac{1}{2}\eta^2 J^2 - \frac{1}{2}\epsilon^2 J_1^2\right)
\times \left(1 - i\eta J_2 - i\epsilon J_1 - \eta\epsilon J_2 J_1 - \frac{1}{2}\eta^2 J^2 - \frac{1}{2}\epsilon^2 J_1^2\right)
= 1 + i\eta J_2 + i\epsilon J_1 - iJ_2 - i\epsilon J_1
\eta^2 J_2^2 + \eta\epsilon J_2 J_1 + \eta\epsilon J_1 J_2 + \epsilon \check{\mathbf{s}} J_1^2
- \eta\epsilon J_2 J_1 - \frac{1}{2}\eta^2 J_2^2 - \frac{1}{2}\epsilon^2 J_1^2 - \eta\epsilon J_2 J_1 - \frac{1}{2}\eta^2 J_2^2 - \frac{1}{2}\epsilon^2 J_1^2
= 1 + \eta\epsilon (J_1 J_2 - J_2 J_1) = 1 + \eta\epsilon [J_1, J_2]
= 1 + \eta\epsilon (-i)\epsilon_{123} J_3 = 1 - i(\eta\epsilon) J_3
\rightarrow = \exp(-i\eta\epsilon J_3)$$

Esto equivale a una rotación en $\epsilon \eta$ alrededor del eje z

1.10 La identidad de Jacobi

Los generadores satisfacen la identidad:

$$[T_a, [T_b, T_c]] + [T_b, [T_c, T_a]] + [T_c, [T_a, T_b]] = 0$$

Ejercicio

Mostrar que los generadores de las álgebras de Lie (para representaciones de dimensió finita) cumplen con la identidad de Jacobi

Solución

Calculemos cada término de la identidad de Jacobi usando la definición del conmutador. Entonces, para el primer Término:

$$[T_a, [T_b, T_c]] = T_a[T_b, T_c] - [T_b, T_c] T_a$$

$$= T_a(T_bT_c - T_cT_b) - (T_bT_c - T_cT_b)T_a$$

$$= T_aT_bT_c - T_aT_cT_b - T_bT_cT_a + T_cT_bT_a.$$

Para el segundo Término:

$$[T_b, [T_c, T_a]] = T_b[T_c, T_a] - [T_c, T_a] T_b$$

$$= T_b(T_cT_a - T_aT_c) - (T_cT_a - T_aT_c)T_b$$

$$= T_bT_cT_a - T_bT_aT_c - T_cT_aT_b + T_aT_cT_b.$$

y para el tercer término:

$$[T_c, [T_a, T_b]] = T_c[T_a, T_b] - [T_a, T_b] T_c$$

$$= T_c(T_a T_b - T_b T_a) - (T_a T_b - T_b T_a) T_c$$

$$= T_c T_a T_b - T_c T_b T_a - T_a T_b T_c + T_b T_a T_c.$$

Sumando las expresiones anteriores, obtenemos:

$$\left(T_a T_b T_c - T_a T_c T_b - T_b T_c T_a + T_c T_b T_a\right)
+ \left(T_b T_c T_a - T_b T_a T_c - T_c T_a T_b + T_a T_c T_b\right)
+ \left(T_c T_a T_b - T_c T_b T_a - T_a T_b T_c + T_b T_a T_c\right).$$

Ahora agrupamos los términos:

Notemos que los términos $T_aT_bT_c$ aparecen en el primer y tercer grupo con signos +1 y -1 respectivamente:

$$T_a T_b T_c - T_a T_b T_c = 0.$$

Y que los términos $T_aT_cT_b$ aparecen con -1 en el primer grupo y +1 en el segundo grupo:

$$-T_aT_cT_b + T_aT_cT_b = 0.$$

Además los términos $T_bT_cT_a$ aparecen con -1 en el primer grupo y +1 en el segundo grupo:

$$-T_bT_cT_a + T_bT_cT_a = 0.$$

Finalmente los términos $T_cT_bT_a$ aparecen con +1 en el primer grupo y -1 en el tercer grupo:

$$T_c T_b T_a - T_c T_b T_a = 0.$$

Y de la misma forma, los otros términos $(T_bT_aT_c, T_cT_aT_b)$ se cancelan de forma similar. Cada término se cancela exactamente con otro, lo que nos lleva a

$$[T_a, [T_b, T_c]] + [T_b, [T_c, T_a]] + [T_c, [T_a, T_b]] = 0.$$

1.11 La representación adjunta

Consideremos el álgebra de Lie $[T_a, T_b] = i f_{abc} T_c$ Tomando

$$[T_a, [T_b, T_c]] = i f_{bcd} [T_a, T_d] = -f_{bcd} f_{ade} T_e$$

La identidad de Jacobi toma la forma:

$$f_{bcd}f_{ade} + f_{cad}f_{bde} + f_{abd}f_{cde} = 0$$

Si definimos

$$[Y_a]_{bc} = -if_{abc}$$

para $f_{acb} = \epsilon_{abc}$

$$[Y_1]_{ab} = -i\epsilon_{1bc} = -i \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$

Reescribiendo la identidad de Jacobi

$$-f_{cbd}f_{ade} + f_{abd}f_{cde} = f_{cad}f_{dbe}$$

$$(-if_{cbd})(-if_{ade}) - (-if_{abd})(-if_{cde}) = if_{cad}[Y_d]_{be}$$

$$Y_cY_a - Y_aY_c = if_{cad}Y_d \quad | \quad \text{para } f_{abc} = \epsilon_{abc}$$

$$[Y_a, Y_c] = if_{acd}Y_c \quad | \quad Y_a$$

 Y_a son los generadores de SO(3) Los generadores de SO(3) son los generadores de la representación adjunta de SU(2)

1.12 Estados y operadores

Los elementos de una representación \rightarrow Operadores lineales

$$x_a |i\rangle = \sum_j |j\rangle \langle j| x_a |i\rangle = \sum_{\delta} |j\rangle [x_a]_{ij}$$

El elemento del grupo $e^{i\alpha_a T_a}$ transforma un ket

$$|i\rangle \to |i'\rangle = e^{i\alpha_a T_a} |i\rangle$$

y para un bra

$$\langle i| \rightarrow \langle i'| = \langle i| e^{i\alpha_a T_a}$$

Al aplicar un operador \mathcal{O}

$$\underbrace{e^{i\alpha_a T_a} \mathcal{O}e^{-i\alpha_a} T_a}_{\mathcal{O}'} \underbrace{e^{i\alpha_a T_a} \left(\mathcal{O} \mid i\right)}_{|i'\rangle}$$

Los operadores transforman

$$\mathcal{O} \to \mathcal{O}' = e^{i\alpha_a T_a} \mathcal{O} e^{-i\alpha_a T_a}$$

Para una transformación infinitesimal

$$e^{i\alpha_a T_a} \to 1 + \delta$$

$$-i\delta |i\rangle = -i[(1 + i\alpha_a T_a) |i\rangle - |i\rangle] = \alpha_a T_a |i\rangle$$

$$\langle i| i\delta = \langle i| \alpha_a T_a$$

Para el operador \mathcal{O}

$$-i[(1+i\alpha_a T_a)\mathcal{O}(1-i\alpha_a T_a) - \mathcal{O}] = -i\delta\mathcal{O}$$
$$-i[\mathcal{O}+i\alpha_a T_a \mathcal{O} - \mathcal{O}i\alpha_a T_a] - \mathcal{O} = -i\delta\mathcal{O}$$
$$-i\delta\mathcal{O} = [\alpha_a T_a, \mathcal{O}].$$

La invarianza de la matriz de elementos $\langle i | \mathcal{O} | i \rangle$

$$\langle i | \mathcal{O}(T_a | i \rangle) + \langle i | [T_a, \mathcal{O}] | i \rangle - (\langle i | x_a) \mathcal{O} | i \rangle = 0.$$

1.13 Momento Angular

Un espacio de N dimensiones, asumimos que este espacio transforma bajo una representación de SU(2)

- Que nos dice el álgebra sobre esta representación
- Diagonalizar tantos elementos como sea posible

Álgebra de Lie de SO(3)

$$[J_i, J_j] = i\epsilon_{ijk}J_k$$

SU(2): Solo podemos diagonalizar un generador. J_3 El estado con el elemento más grande es j

$$J_3 |m\rangle = m |m\rangle \quad m < j$$

Si definimos los operadores J^+ y J^- como

$$J^{\pm} = (J_1 \pm iJ_2)/\sqrt{2}$$

$$[J_3, J^{\pm}] = \pm J^{\pm}$$

 $[J^+, J^-] = J_z$

Se puede mostrar que si el espacio es finito -j < -m

Ejercicio, ver Georgi
$$\begin{cases} \langle j,m'|\,J_3\,|j,m\rangle = m\delta_{mm'} \\ \langle j,m'|\,J^+\,|j,m\rangle = \sqrt{(j+m+1)(j-m)/2}\delta_{m',m+1} \\ \langle j,m'|\,J^-\,|j,m\rangle = \sqrt{(j+m)(j-m+1)/2}\delta_{m',m-1} \end{cases}$$

Los elementos de matriz para la representación espín j

$$\begin{split} [J_a^j]_{kl} &= \langle j,j+1-k|\,J_a\,|j,j+1-l\rangle \quad k,l = \to 2j+1 \text{ posiciones} \\ [J_a^j]_{mm'} &= \langle j,m'|\,J_a\,|j,m\rangle \quad m,m' \to -j,j \end{split}$$

Para J = 1/2

$$[J_{+}^{1/2}]_{m',m} = \sqrt{(j+m+1)(j-m)/2} \delta_{m',m+1} \quad J_{+}^{1/2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \frac{1}{\sqrt{2}}$$
$$m = -\frac{1}{2} \to \sqrt{\left(\frac{1}{2} - \frac{1}{2} + 1\right)\left(\frac{1}{2} + \frac{1}{2}\right)/2} = \frac{1}{\sqrt{2}}$$

$$[J_{+}^{1/2}]_{m',m} = \sqrt{(j+m)(j-m+1)/2}\delta_{m',m-1} \quad J_{-}^{1/2} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \frac{1}{\sqrt{2}}$$

$$J_{1} = \frac{\sqrt{2}}{2}(J_{+} + J_{-}) = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$J_{2} = -i\frac{\sqrt{2}}{2}(J_{+} - J_{-}) = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$$

$$J_{3} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & -\frac{1}{2} \end{pmatrix}$$

$Ejercicio(como\ vendría\ en\ el\ \overline{examen\ })$

Obtener los generadores de la representación para $j=1, j=\frac{3}{2}$

Solución

Asumimos que se cumple el álebra:

$$[J_i, J_j] = i\epsilon_{ijk}J_k$$

Además de que los operadores escalera son:

$$J^{\pm} = \frac{1}{\sqrt{2}} (J_1 \pm i J_2)$$

Entonces, nuestra base de estados $\{|j,m\rangle\}$ es;

$$J_3 = |j, m\rangle = m |j, m\rangle$$

$$J_{+}|j,m\rangle = \sqrt{(j-m)(j+m+1)}|j,m+1\rangle$$

 $J_{-}|j,m\rangle = \sqrt{(j+m)(j-m+1)}|j,m-1\rangle$

Entonces, las representaciónes para j=1Definimos los estados de la base como:

$$|1,1\rangle$$
, $|1,0\rangle$, $|1,-1\rangle$

Y recordando que:

$$J_3 = |1, m\rangle = m |1, m\rangle, \quad m = 0, 1, -1$$

$$J_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$

Entonces tomando

$$J_{+}|1,m\rangle = \sqrt{(1-m)(1+m+1)}|1,m+1\rangle$$
$$J_{-}|1,m\rangle = \sqrt{(1+m)(1-m+1)}|1,m-1\rangle$$

Entonces, tenemos:

$$J_{+} |1, 1\rangle = 0$$

$$J_{-} |1, 1\rangle = \sqrt{(1+1)(1-1+1)} |1, 0\rangle = \sqrt{2} |1, 0\rangle$$

$$J_{+} |1, 0\rangle = \sqrt{(1-0)(1+0+1)} |1, 1\rangle = \sqrt{2} |1, 1\rangle$$

$$J_{-} |1, 0\rangle = \sqrt{(1, 0)(1-0+1)} |1, -1\rangle = \sqrt{2} |1, -1\rangle$$

$$J_{-} |1, -1\rangle = 0$$

$$J_{+} |1, -1\rangle = \sqrt{(1-(-1))(1+(-1)+1)} |1, 0\rangle = \sqrt{2} |1, 0\rangle$$

$$J_{+} = \begin{pmatrix} 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \\ 0 & 0 & 0 \end{pmatrix}$$

y para J_{-}

$$J_{-} = J_{+}^{\dagger} = \begin{pmatrix} 0 & 0 & 0 \\ \sqrt{2} & 0 & 0 \\ 0 & \sqrt{2} & 0 \end{pmatrix}$$

Entonces, los generadores son:

$$J_{1} = \frac{1}{\sqrt{2}} (J_{+} + J_{-})$$

$$J_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ \sqrt{2} & 0 & \sqrt{2} \\ 0 & \sqrt{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

$$J_{2} = \frac{1}{i\sqrt{2}} (J_{+} - J_{-})$$

$$J_{2} = \frac{1}{i\sqrt{2}} \begin{pmatrix} 0 & \sqrt{2} & 0 \\ -\sqrt{2} & 0 & \sqrt{2} \\ 0 & -\sqrt{2} & 0 \end{pmatrix} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

Para j = 3/2 tenemos

1.14 SU(2) de isospín

Los nucleones pueden ser vistos como si fueran 2 grados de libertad. (Protón neutrón) SU(2) transforma (n,p)

$$p = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad n = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\xrightarrow{\frac{1}{2}(T_1 \pm iT_3)} p$$

$$\xrightarrow{n} p$$

$$\xrightarrow{p} T_3$$

1.15 El grupo SU(3) y la carga de color.

¿Cuántos grados de libertad?

$$n^2 - 1 = 8$$
 grados de libertad

Es posible tener 2 matrices diagonales.

Una base de la representación fundamental de SU(3)

$$R = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} \quad G = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \quad B = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\left[\frac{\lambda_i}{2}, \frac{\lambda_j}{2}\right] = i \sum_k f_{ijk} \frac{\lambda_k}{2}$$

 f_{ijk} es anti simétrico.

$$f_{123} = 1$$
 $f = 458 = f_{678} = \frac{\sqrt{3}}{2}$
 $f_{147} = f_{165} = f_{246} = f_{257} = f_{376} = \frac{1}{2}$

Transformaciones de Lorentz

Tomando:

$$x' = \frac{x - vt}{\sqrt{1 - \frac{u^2}{c^2}}} \quad t' = \frac{t - \frac{ux}{c^2}}{\sqrt{1 - \frac{u^2}{c^2}}}$$
$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \gamma & -\beta\gamma \\ -\beta\gamma & \gamma \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$$

donde
$$\beta = \frac{u}{c} \ \mathrm{y} \gamma = \frac{1}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$c^2t^2 - x^2 = cte$$

Ahora, $\beta = \tanh \theta$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}} = \frac{1}{\sqrt{1 - \tanh^2 \theta}} = \frac{\cosh \theta}{\sqrt{\cosh \check{s}\theta - \sinh^2 \theta}} = \cosh \theta$$
$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \cosh \theta & -\sinh \theta \\ -\sinh \theta & \cosh \theta \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$$

Multiplicando por

$$\begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} ict' \\ x' \end{pmatrix} = \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cosh \theta & -\sinh \theta \\ -\sinh \theta & \cosh \theta \end{pmatrix} \begin{pmatrix} -i & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} i & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$$

$$\begin{pmatrix} ict' \\ x' \end{pmatrix} = \begin{pmatrix} \cosh \theta & -i \sinh \theta \\ \sinh \theta & \cosh \theta \end{pmatrix} \begin{pmatrix} ict \\ x \end{pmatrix}$$

Utilizando las siguientes definiciones hiperbólicas:

$$cosh x = cos(ix)
sinh x = -i sinh(ix)$$

$$\begin{pmatrix} ict' \\ x' \end{pmatrix} = \begin{pmatrix} \cosh(i\theta) & -\sin(i\theta) \\ -\sin(i\theta) & \cos(i\theta) \end{pmatrix} \begin{pmatrix} ict \\ x \end{pmatrix}$$

Esto es una Rotación (ict, x) de un ángulo $i\theta$, $v(\theta) = Rv$

$$v(\theta) \cdot v(\theta) = v^T(\theta)v(\theta) = v^T \underbrace{R^T(\theta)R(\theta)}_{\mathbb{T}} v = v^T v$$

Para $\mathcal{X} = (ict, \vec{x})$

$$\mathcal{X} \cdot \mathcal{X} = (ict)(ict) + (\vec{x} \cdot \vec{x}) = -c^2t^2 + \vec{x}^2 = \text{Invariante}$$

La rotación de un ángulo imaginario $i\theta$ deja invariante la norma del \mathcal{X}

$$\mathcal{X}(\theta) = B(\theta)\mathcal{X}$$

Donde $B(\theta)$ es una rotación de un ángulo imaginario $i\theta$

$$X^{T}(\theta) \cdot X(\theta) = X^{T}B^{T}(\theta)B(\theta)X = X^{T}X$$

Es fácil mostrar que $B(\theta)$ es ortogonal:

$$B^T B = \begin{pmatrix} \cos(i\theta) & \sin(i\theta) \\ -\sin(i\theta) & \cos(i\theta) \end{pmatrix} \begin{pmatrix} \cos(i\theta) & -\sin(i\theta) \\ \sin(i\theta) & \cos(i\theta) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

Cuando hablamos de las transformaciones de un vector espacio - tiempo

$$(t, \vec{x})$$

Pasamos de un espacio euclideano a un espacio de Minkoski.

La condición de ortogonalidad:

$$M^T \eta M = \eta$$

Para M = boost

$$\begin{pmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{pmatrix}$$

$$\begin{pmatrix} \cosh \theta & -\sinh \theta \\ \sinh \theta & -\cosh \theta \end{pmatrix} \begin{pmatrix} \cosh \theta & \sinh \theta \\ \sinh \theta & \cosh \theta \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = \eta$$

La norma del vetor en el espacio de Minkoski

$$\mathcal{X}^T \mathcal{X} \to \mathcal{X}^T \eta \mathcal{X} = (x^0)^2 - (\vec{x})^2$$

Para $\mathcal{X}' = M(\theta)\mathcal{X}$

La norma de \mathcal{X}' es :

$$(\mathcal{X}')^T \eta(\mathcal{X}') = \mathcal{X}^T \underbrace{M(\theta)^T \eta M(\theta)}_{n} \mathcal{X} = \mathcal{X}^T \mathcal{X} \quad \text{La norma es invariante}$$

La norma del vector espacio-tiempo es invariante para transformaciones que cumplan con la condición de ortogonalidad en el espacio de Minkowski.

$$M^T \eta M = \eta$$

Estas transformaciones para 1 - dim espacial son elementos del grupo SO(1,2)Para 3 - dim espaciales son elementos de SO(1,3)

$$\begin{array}{c} SO(1,3) \\ \hline \text{dim Temporal} \\ \end{array}$$

Si llamamos k_i al generador de los boost en la dirección i = 1, 2, 3

Podemos encontrar sus relaciones de conmutación:

$$[J_i,J_j]=i\epsilon_{ijk}J_k$$
 $J_i=$ generador del grupo de rotación, $SO(3)$ $[Ji,K_j]=i\epsilon_{ijk}K_k$ $[K_i,K_j]=-i\epsilon_{ijk}J_k$

Defino a $N_i^+ = \frac{1}{2}(J_i + iK_i)$ y $N_i^- = \frac{1}{2}(J_i - iK_i)$ Puedo mostrar que:

$$\begin{split} [N_i^+,N_j^+] &= i\epsilon_{ijk}N_k^+ \\ [N_i^-,N_j^-] &= i\epsilon_{ijk}N_k^- \\ [N_i^+,N_j^-] &= 0 \end{split}$$
 El álgebra de Lorentz se puede pensar
 Como dos álgebras de $SU(2)$

La transformaciónes de Lorentz Si tomamos T infinitesimal, la transformación infinitesimal de Lorentz:

$$\Lambda^{\mu}_{\nu} = \delta^{\mu}_{\nu} + w^{\mu}_{\nu} + \mathcal{O}(w^2)$$

Ejercicio

$$\Lambda^{\mu}_{\sigma}\Lambda^{\nu}_{\rho}\eta^{\sigma\rho}=\eta^{\mu\nu}$$

De la condición de que la norma del vector es invariante ante transformaciones de Lorentz.

$$(\delta^{\mu}_{\sigma} + w^{\mu}_{\sigma})(\delta^{\nu}_{\rho} + w^{\nu}_{\rho}) = \eta^{\mu\nu}$$
:

Mostrar que:

$$w^{\mu\nu} + w^{\nu\mu} = 0$$
 $w^{\mu}_{\nu} \to \theta_1 J_1 + \theta_2 J_2 + \theta_3 J_3 + \chi_1 k_1 + \chi_2 k_1 + \chi_3 k_3$

Solución

Dada la condición de invarianza de métrica, que es:

$$\Lambda^{\mu}_{\sigma}\Lambda^{\nu}_{\sigma}\eta^{\sigma\rho}=\eta^{\mu\nu}$$

Entonces, sustituyamos la expansión en la condición:

$$(\delta^{\mu}_{\sigma} + w^{\mu}_{\sigma})(\delta^{\nu}_{\rho} + w^{\nu}_{\rho})\eta^{\sigma\rho} = \eta^{\mu\nu}$$

expandiendo el producto y conservando solo los términos lineales en w se tiene:

$$\delta^{\mu}_{\sigma}\delta^{\nu}_{\rho}\eta^{\sigma\rho} + \delta^{\mu}_{\sigma}w^{\nu}_{\rho}\eta^{\sigma\rho} + w^{\mu}_{\sigma}\delta^{\nu}_{\rho}\eta^{\sigma\rho} = \eta^{\mu\nu}$$

Notemos que:

$$\delta^{\mu}_{\sigma}\delta^{\nu}_{\rho}\eta^{\sigma\rho}=\eta^{\mu\nu}$$

Entonces:

$$\begin{split} \eta^{\mu\nu} + \delta^{\mu}_{\sigma} w^{\nu}_{\rho} \eta^{\sigma\rho} + w^{\mu}_{\sigma} \delta^{\nu}_{\rho} \eta^{\sigma\rho} &= \eta^{\mu\nu} \\ \delta^{\mu}_{\sigma} w^{\nu}_{\rho} \eta^{\sigma\rho} + w^{\mu}_{\sigma} \delta^{\nu}_{\rho} \eta^{\sigma\rho} &= 0 \\ w^{\nu}_{\rho} \eta^{\mu\rho} + w^{\mu}_{\sigma} \eta^{\sigma\nu} &= 0 \end{split}$$

Ahora, subiendo indices:

$$w^{\mu\nu} \equiv \eta^{\mu\rho} w^{\nu}_{\rho}$$

Entonces, la ecuación anterior se escrimo como:

$$w^{\mu\nu} + w^{\nu\mu} = 0$$

Lo que implica que $w^{\mu\nu}$ es antisimétrico .

Grados de libertad: (4×4) 6 grados de libertad. \rightarrow 3 boost, 3 rotaciones.

$$(\mu^A)^{\mu\nu}$$
 $A = 1, 2, 3, 4, 5, 6$

 $[\rho,\sigma]$ con $\rho=0,1,2,3\rightarrow 6$ posibilidades $\Rightarrow 01,02,03,12,13,23$

$$[\mu^{\rho\sigma}]^{\mu\nu}$$

lo escribimos así para poder escribirlo como: Requisito $\to M^{01} = -M^{10} \Rightarrow A = 1 \Rightarrow [\overbrace{\rho}, \overbrace{\sigma}]$

$$\mu^{\nu\nu} = 0$$

$$\begin{split} [\mu^{\rho\sigma}]^{\mu\nu} &= \eta^{\rho\mu}\underline{\eta}^{\sigma\nu} - \eta^{\rho\nu}\eta^{\sigma\mu} = -[\mu^{\rho\sigma}]^{\nu\mu} \quad \checkmark \\ [\mu^{\sigma\rho}]^{\mu\nu} &= \eta^{\sigma\mu}\eta^{\rho\nu} - \underline{\eta}^{\sigma\nu}\eta^{\rho\mu} = -[\mu^{\rho\sigma}]^{\mu\nu} \\ [\mu^{\rho\sigma}]^{\mu\nu} &= \eta^{\rho\mu}\eta^{\sigma\nu} - \eta^{\rho\nu}\eta^{\sigma\mu} \quad x'^{\mu} = \Lambda^{\mu}_{\quad \nu}\mathcal{X}^{\nu} \\ \eta_{\nu\nu'}[\mu^{\rho\sigma}]^{\mu\nu} &= \eta_{\nu\nu'}\eta^{\rho\mu}\eta^{\sigma\nu} - \eta_{\nu\nu'}\eta^{\rho\nu}\eta^{\sigma\mu} \\ [\mu^{\rho\sigma}]^{\mu}_{\quad \nu'} &= \delta^{\sigma}_{\nu'}\eta^{\rho\mu} - \delta^{\rho}_{\nu'}\eta^{\sigma\mu} \end{split}$$

Para las rotaciones tenemos: La rotación en el eje $z=[\rho,\sigma]=[1,2]$

$$\begin{aligned} [\rho,\sigma] &= [1,2] \\ (\mu^{12})^{\mu\nu'} &= \eta_{\nu'}^2 \eta^{1\mu} - \delta_{\nu'}^1 \eta^{2\mu} \\ \mu^{12} &= \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \\ \nu' &= 2 \to \eta^{1\mu} \\ \nu' &= 1 \to -\eta^{2\mu} \end{aligned}$$

Y el boost 01,02,03

$$\Omega_{01} \to x_1 \quad \Omega_{10} = -x_1
\Omega_{12} \to \theta_z = \epsilon_{123}\theta_3 \to \Omega_{ij} = \epsilon_{ijk}\theta_k
\omega^{\mu\nu} = \frac{1}{2} \Big(\Omega_{01}(\mu^{01})^{\mu\nu} + \Omega_{02}(\mu^{02})^{\mu\nu} + \Omega_{03}(\mu^{03})^{\mu\nu} \Big) \quad \mu^{00} = 0
\Omega_{10}(\mu^{10})^{\mu\nu'} + \Omega_{20}(\mu^{20})^{\mu\nu} + \Omega_{30}(\mu^{30})^{\mu\nu} + \cdots
\Omega_{10} = -\Omega_{01} \quad \mu^{10} = -\mu^{01}
\Lambda = \exp\Big(\frac{1}{2}\Omega_{\rho\sigma}(\mu^{\rho\sigma})^{\mu\nu}\Big). \quad \to \omega^{\mu\nu} = \frac{1}{2}\Omega_{\rho\sigma}(\mu^{\rho\sigma})^{\mu\nu}$$

Se puede demostrar que el álgebra de los generadode del grupo de Lorentz está dado por la relación de conmutación :

$$[\mu^{\rho\sigma},\mu^{\tau\nu}]=\eta^{\sigma\tau}\eta^{\rho\nu}-\eta^{\rho\tau}\eta^{\sigma\nu}+\eta^{\rho\nu}\eta^{\sigma\tau}-\eta^{\sigma\nu}\eta^{\rho\tau}.$$

2 Evaluación 2

2.1 Tensores

Un tensor es algo cuyas componentes transforman como un tensor.

Generalizaciones de vectores y matrices:

• Un vector: v_i un índice.

• Matriz: R_{ij} dos índices

Consideremos un punto $\vec{x} \in \mathbb{R}^n$. Para describirlo con coordanadas necesitamos una base $\{\hat{e}_i\}$ con $i = 1, \ldots, n$. Tomando una base ortogonal: $\hat{e}_i \hat{e}_j = \delta_{ij}$. Cualquier vector se puede expresar como

$$\vec{x} = x_i \hat{e}_i$$

En cartesianas esto es:

Podemos considerar otras bases:

$$\hat{e}_i' = R_{ij}\hat{e}_j$$

Si pedimos que \hat{e}'_i también sea ortonormal:

$$\hat{e}'_i \cdot \hat{e}'_j = R_{ik} R_{jl} \underbrace{\hat{e}_k \cdot \hat{e}_l}_{\delta_{kl}} = \delta_{ij}$$

En notación de matrices, esto es:

$$R_{il}R_{li}^T \Rightarrow RR^T = \mathbb{I}$$
 matrices ortogonales.

El vector \vec{x} no cambia bajo cambio de coordenadas, pero sus componentes sí.

$$\vec{x} = x_i \hat{e}_i = x_i' \hat{e}_i' = x_i' R_{ij} \hat{e}_j$$

La componente tiene que transformar como:

$$x_j = xi'R_{ij} \quad \Rightarrow \quad x_jR_{kj} = x_i'R_{ij}R_{kj}$$

 $x_i' = R_{ij}x_j$

Un tensor es una generalización

$$T'_{i'_1,i'_2,\ldots,i'p} = R_{i_1,j_1}R_{i_2,j_2}\ldots R_{i_p,j_p}T_{j_1\ldots j_p}$$

No cualquier matriz es un tensor, veamos por ejemplo:

$$x_{i} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} R_{11}x + R_{12}y + R_{13}z \\ R_{21}x + R_{22}y + R_{23}z \\ R_{31}x + R_{32}y + R_{33}z \end{pmatrix} \quad \checkmark$$

Esto sería:

$$x' = Rx$$

Pero

$$\Lambda_i = \begin{pmatrix} x^2 \\ y^2 \\ z^2 \end{pmatrix} \to \begin{pmatrix} (R_{11}x + R_{12}y + R_{13}z)^2 \\ (R_{21}x + R_{22}y + R_{23}z)^2 \\ (R_{31}x + R_{32}y + R_{33}z)^2 \end{pmatrix} \quad \chi$$

No es un tensor, no se puede expresar como $R\Lambda$

2.2 Transformaciones de Lorentz

$$\Lambda^{\mu}{}_{\alpha}\Lambda^{\nu}{}_{\beta}\eta_{\mu\nu} = \eta_{\alpha\beta}$$

$$\begin{split} V^{\alpha} &\to V^{'\alpha} = \Lambda^{\alpha}{}_{\beta} V^{\beta} \\ u_{\alpha} &\to u_{\alpha}' = \eta_{\alpha\beta} U^{\prime\beta} = \eta_{\alpha\beta} \Lambda^{\beta}{}_{\gamma} u^{\gamma} = \eta_{\alpha\beta} \Lambda^{\beta}{}_{\gamma} \eta^{\gamma\gamma} u_{\sigma} \\ u_{\alpha} &= \Lambda_{\alpha}{}^{\sigma} u_{\sigma} = U_{\alpha} \end{split}$$

Debemos de tener en cuenta que $\eta_{\alpha\beta}$, $\eta^{\alpha\beta}$ son iguales numéricamente. Se puede mostrar que

$$\eta^{\alpha\beta}\eta_{\beta\mu} = \delta^{\alpha}_{\ \mu}$$

También se puede mostrar que:

$$\begin{split} &\Lambda_{\alpha}^{\quad \gamma} \Lambda^{\alpha}_{\ \beta} = \underbrace{\eta_{\alpha \delta} \eta^{\gamma \epsilon} \underline{\Lambda^{\delta}_{\ \epsilon} \Lambda^{\alpha}_{\ \beta}}}_{} \\ &= \eta^{\gamma \epsilon} \eta_{\epsilon \beta} = \delta^{\gamma}_{\ \beta} \end{split} \qquad \boxed{ \begin{array}{c} \text{Condición de Lorentz} \\ \end{array} }$$

 $\frac{\Lambda_{\alpha} \ _{\gamma} \text{ Es la inversa de } \Lambda^{\alpha}_{\beta}}{\text{Puedo construir invariantes:}}$

$$U'_{\alpha}V'^{\alpha} = \underbrace{\Lambda_{\alpha}^{\gamma}\Lambda^{\alpha}_{\beta}}_{\delta^{\gamma}_{\beta}}U_{\gamma}V^{\beta} = \text{Invariante}$$

2.3 ¿Cómo transforma el gradiente?

$$\frac{\partial}{\partial x^{\alpha}} \to \frac{\partial}{\partial x'^{\alpha}} = \frac{\partial x^{\beta}}{\partial x'^{\alpha}} \frac{\partial}{\partial x^{\beta}} \to \Lambda_{\alpha}{}^{\beta} \frac{\partial}{\partial x^{\beta}}$$

Esto lo excribimos como:

$$\begin{split} \partial_{\alpha} & \equiv \frac{\partial}{\partial x^{\alpha}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, \nabla\right) & \text{[Imporante!]} \\ & \rightarrow \partial_{\alpha}' = \Lambda_{\alpha}^{\ \beta} \partial_{\beta} & \text{Indice abajo} \rightarrow \text{Signo Positivo} \end{split}$$

$$\begin{split} \partial^{\alpha} &\equiv \frac{\partial}{\partial x_{\alpha}} = \left(\frac{1}{c}\frac{\partial}{\partial t}, -\nabla\right) \boxed{\text{Indice arriba} \rightarrow \text{Signo negativo}} \\ &\rightarrow \partial'^{\alpha} = \Lambda^{\alpha}_{\beta} \partial^{\beta} \end{split}$$

$$x'^{\alpha} = \Lambda^{\alpha}_{\beta} x^{\beta}$$

$$\Lambda_{\alpha}^{\gamma} x'^{\alpha} = \underbrace{\Lambda_{\alpha}^{\gamma} \Lambda^{\alpha}_{\beta}}_{\delta^{\gamma}_{\beta}} x^{\beta}$$

$$x^{\beta} = \Lambda_{\alpha}^{\beta} x'^{\alpha}$$

2.4 El d'Alembertiano es invariante Lorentz

(Operador cajita)

$$\Box = \partial^{\mu} \partial_{\mu} = \eta_{\mu\nu} \partial^{\mu} \partial^{\nu} = \frac{\partial^{2}}{\partial t} - \nabla^{2}$$

Tensor como un mapeo de otros tensores

Puedo escribir un vector con el producto de dos tensores:

$$A^{\alpha} = T^{\alpha\beta} B_{\beta}$$

$$A'^{\alpha} = \Lambda^{\alpha}{}_{\beta} A^{\beta}, \quad T'^{\alpha\beta} B'_{\beta} = \Lambda^{\alpha}{}_{\mu} \underbrace{\Lambda^{\beta}{}_{\nu} \Lambda_{\beta}^{\gamma}}_{\delta^{\gamma}{}_{\nu}} T^{\mu\nu} B_{\gamma}$$

$$= \Lambda^{\alpha}{}_{\mu} \delta^{\gamma}{}_{\nu} T^{\mu\nu} B_{\gamma}$$

$$= \Lambda^{\alpha}{}_{\mu} \underbrace{T^{\mu\nu} B_{\gamma}}_{A^{\mu}}$$

$$T'^{\alpha\beta} B'_{\beta} = \Lambda^{\alpha}{}_{\mu} A^{\mu}.$$

2.5 Electromagnetismo

$$\begin{cases} \nabla \cdot \vec{E} = \frac{\rho}{\epsilon_0} \\ \nabla \times \vec{E} = -\frac{\partial \vec{E}}{\partial t} \\ \nabla \cdot \vec{B} = 0 \\ \nabla \times \vec{B} = \mu_0 \left(\vec{J} + \epsilon_0 \frac{\partial E}{\partial t} \right) \end{cases} \rightarrow \text{Una}(2) \text{ ecuaciones invariantes}$$

$$\nabla \cdot (\nabla \times \vec{A}) = 0$$
$$\nabla \times (\nabla \phi) = 0$$

Escribir las ecuaciones en términos de \vec{A}, ϕ

$$\vec{B} = \nabla \times \vec{A}$$

$$\nabla \cdot \vec{B} = \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$$
(I)

Ley de Faraday

$$\nabla \times \vec{E} + \frac{\partial B}{\partial t}$$

$$\nabla \times \vec{E} + \frac{\partial}{\partial t} (\nabla \times \vec{A})$$

$$\nabla \times (\vec{E} + \frac{\partial}{\partial t} \vec{A}) = 0$$

$$\rightarrow \nabla \times (-\nabla \phi) = 0.$$

Puedo introducir un campo escalar ϕ

$$\vec{E} + \frac{\partial}{\partial t}\vec{A} = -\nabla\phi$$

$$\vec{E} = -\frac{\partial}{\partial t}\vec{A} - \nabla\phi. \tag{II}$$

$$\nabla \cdot E = \rho/\epsilon_0$$

$$\nabla \cdot \left(-\frac{\partial \vec{A}}{\partial t} - \nabla \phi\right) = \rho/\epsilon_0$$

$$\nabla^2 \phi + \frac{\partial}{\partial t} \left(\nabla \cdot \vec{A}\right) = -\rho/\epsilon_0.$$
(III)

$$\nabla \times \vec{B} = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$$

$$\partial \times (\nabla \times \vec{A}) = \mu_0 \vec{J} + \frac{1}{c^2} \frac{\partial}{\partial t} \left(-\frac{\partial \vec{A}}{\partial t} - \nabla \phi \right)$$

$$-\nabla^2 \vec{A} + \nabla(\nabla \cdot \vec{A}) = \mu_0 \vec{J} - \left(\frac{1}{c^2} \vec{\nabla} \frac{\partial \phi}{\partial t} + \frac{1}{c^2} \frac{\partial^2}{\partial t} \vec{A} \right)$$

$$\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \vec{A} = -\mu_0 \vec{J} + \nabla \left\{ \nabla \cdot \vec{A} + \frac{1}{c^2} \frac{\partial \phi}{\partial t} \right\}. \tag{IV}$$

B = tiene que ser únic.

 $\vec{A}' = \vec{A} + \nabla \mathcal{X}$. Transformación de Gauge

$$\begin{split} \vec{B} &= \nabla \times \vec{A}' = \nabla \times (\vec{A} + \nabla \mathcal{X}) = \nabla \times A + \nabla \times (\nabla \ \mathcal{X}^0) = \nabla \times \vec{A} \\ \vec{E} &= -\frac{\partial}{\partial t} A - \nabla \phi = -\frac{\partial}{\partial t} A' - \nabla \phi' \\ -\frac{\partial}{\partial t} A - \nabla \phi &= -\frac{\partial}{\partial t} (A + \nabla \mathcal{X}) - \nabla \phi' \\ \nabla \phi' &= \nabla \phi - \nabla \left(\frac{\partial X}{\partial t} \right) \\ \phi' &= \phi - \frac{\partial \mathcal{X}}{\partial t}. \end{split}$$

Puedo escoger un ser de potenciales (ϕ', \vec{A}') de modo que:

$$\nabla^2 \phi + \frac{\partial}{\partial t} (\nabla \cdot \vec{A}) = -\frac{\rho}{\epsilon_0}$$

$$\nabla^2 \phi - \frac{1}{c^2} \frac{\partial^2}{\partial t^2} \phi = -\frac{\rho}{\epsilon_0}.$$
(III)

$$\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = -\mu_0 \vec{J}. \tag{IV}$$

Tensor A^{μ} , J^{μ}

$$A^{\mu} = \begin{pmatrix} \phi/c \\ \vec{A} \end{pmatrix} \quad , \quad J^{\mu} = \begin{pmatrix} \rho c \\ \vec{J} \end{pmatrix}$$

Se puede desmotrar que las ecuaciones de Maxwell se pueden escribir, como:

$$\Box A^{\mu} = J^{\mu}$$

Haciendo usso del operador: $\partial^{\mu}\partial_{\mu} = \square$.

Si consideramos que \square es un tensor de rango 0

$$\Box' A'^{\mu} = J'^{\mu}$$

$$\partial_{\mu}A^{\mu} = 0$$
 derivada positiva $\partial_{\mu}J^{\mu} = 0$

Con la ecuación de

$$\partial_{\mu} = (1/c\partial_t, +\nabla)$$

$$\partial^{\mu} = (1/c\partial_t, -\nabla)$$

A diferencia de:

$$A^{\mu} = (A^0, +A^0)$$

$$A_{\mu} = (A_0, -A$$

 $A_{\mu}=(A_0,-A)$ continuidad escrirta como $\underbrace{\partial_{\mu}J^{\mu}=0}_{\text{c}} \text{ y las interacciónes gauge:}$

$$c\frac{\partial}{\partial t}\rho + \nabla \cdot \vec{J} = 0$$

$$\frac{c\frac{\partial}{\partial t}\rho + \nabla \cdot \vec{J} = 0}{\phi \to \phi - \frac{\partial x}{\partial t}}$$

$$\vec{A} \to A + \nabla x$$

$$= A_{\mu} - \partial_{\mu} \mathcal{X}$$

 \mathcal{X} : Función del espacio-tiempo.

Además, podemos formar el tensor antisimétrico $F_{\mu\nu}=\partial_{\mu}A_{\nu}-\partial_{\nu}A_{\mu}$. Que por construcción es invariante ante transformaciones Gauge.

$$F^{\mu\nu} \to F_{\mu\nu} - \partial_{\mu}\partial_{\nu}\mathcal{X} + \partial_{\nu}\partial_{\mu}\mathcal{X} = F_{\mu\nu}$$

y tiene la forma:

$$F_{\mu\nu} = \begin{pmatrix} 0 & E_x/c & E_y/c & E_z/c \\ -E_x/x & 0 & -B_z & B_y \\ -E_y/c & B_z & 0 & -B_x \\ -E_z/c & -B_y & B_x & 0 \end{pmatrix}$$

2.6 La Fuerza de Lorentz

$$\frac{d\vec{p}}{dt} = q(\vec{E} + \vec{v} \times \vec{B})$$

El cuadri-vector de momento-energía:

$$P^{\mu} = (P^0, \vec{P}) = m(u^0, \vec{u}) = (E/c, m\gamma \vec{v})$$

Donde

$$\vec{u} = \frac{\partial x^{\mu}}{\partial L}$$

$$u_0 = \frac{dx_0}{d\tau} = \frac{dx_0}{dt} \frac{dt}{\tau} = c\gamma$$

$$\vec{u} = \frac{d\vec{x}}{d\tau} = \frac{d\vec{x}}{dt} \frac{dt}{d\tau} = \vec{v}\gamma$$

$$u^{\mu} = \begin{pmatrix} \gamma c \\ \gamma \vec{v} \end{pmatrix}$$

$$\tau = \frac{t}{\gamma}, \quad x_0 = ct$$

Utilizado τ para reescribir la ecuación:

$$\frac{d\vec{P}}{\partial \tau} = \frac{d\vec{P}}{\partial t} \frac{dt}{d\tau} = q(\gamma \vec{E} + \gamma \vec{v} \times \vec{B})$$
$$= \frac{q}{c} (c\gamma \vec{E} + c\gamma \vec{v} \times \vec{B})$$
$$= \frac{q}{c} (u_0 \vec{E} + c\vec{u} \times \vec{B}) = \frac{d\vec{P}}{d\tau}.$$

La emponente temoral, udando trabajo:

$$\begin{split} \frac{dP^0}{d\tau} &= \frac{1}{c} \frac{dE}{dt} \frac{dt}{d\tau} \quad , \quad \frac{dW}{dt} = F \cdot \vec{v} = q \vec{E} \cdot \vec{v} = \frac{dE}{d\tau} \\ \frac{dP^0}{d\tau} &= \frac{1}{c} q E \cdot v \gamma \\ \frac{dP^0}{d\tau} &= \frac{q}{c} \vec{u} \cdot \vec{E} = \frac{dP^0}{d\tau} \end{split}$$

Esto en términos del tensoer electromagnetico, lo puedo escribir como:

$$\frac{dP^{\mu}}{d\tau} = qF^{\mu\nu}U_{\nu}.$$

Para $\mu = 1, 2, 3 = i$

$$\frac{dP_i}{d\tau} = qF^{i0}U_0 - qF^{ij}U_j$$

$$\frac{dP^i}{d\tau} = q\frac{E^i}{c}u_0 - q\underbrace{\left(-\epsilon_{ijk}B_k\right)u_j}_{\vec{u}\times\vec{B}}$$

$$\frac{d\vec{P}}{d\tau} = \frac{q}{c}\Big(u_0\vec{E} + c\vec{u}\times\vec{B}\Big)$$

Para $\mu = 0$

$$\frac{dP^0}{d\tau} = qF^{0\nu}u_{\nu}$$

$$= qF^{00}u_0 - qF^{0i}u_i$$

$$= -q\frac{E^i}{c}(-u^i)$$

$$\frac{dP^0}{d\tau} = \frac{q}{c}\vec{E} \cdot \vec{u}.$$

2.7 Mecánica lagrangiana

$$\frac{\frac{dP}{d\tau} = \frac{q}{c} \left(u_0 \vec{E} + \vec{u} \times \vec{B} \right)}{\frac{dP_0}{d\tau} = \frac{q}{c} \left(\vec{u} \times \vec{E} \right)} \right\} \rightarrow \frac{dP^{\mu}}{d\tau} = m \frac{du^{\mu}}{d\tau} = \frac{q}{c} F^{\mu\nu} u_{\nu}$$

$$S = \int_{\tau_1}^{\tau_2} L dt \quad \delta S = 0$$

Reescribiendo esto:

$$dt = \gamma d\tau$$

$$S = \int_{\tau_1}^{\tau_2} \gamma L d\tau$$
 , $L \to Invariante * \gamma^{-1}$

 $P^{\alpha} = mu^{\alpha}$

$$x'^{\alpha} = \Lambda^{\alpha}_{\beta} x^{\beta} + a^{\alpha}$$

Sabemos que u^{α}, x^{α} ¿ Qué invariantes puedo escribir con esto?

Lorentz:

$$\underbrace{X^{\mu}X_{\mu}}_{NO}, \overline{u^{\mu}u_{\mu}}^{\checkmark}, \underbrace{X^{\mu}u_{\mu}}_{NO}$$

Los términos que no son invariantes fallan, porqué no son invariantes ante traslaciones.

$$T.P \quad X^{\mu} \rightarrow x^{\mu} + a^{\mu} + T_L$$

El único invariante que puedo contruir para una partícula libre es: $u^{\mu}u_{\mu}$, y esto es:

$$u^{\alpha}u_{\alpha} = (c\gamma)^{2} - (\vec{u} \cdot \vec{u})\gamma^{2}$$

$$u^{\alpha}u_{\alpha} = \gamma^{2}(c^{2} - u^{2})$$

$$u^{\alpha}u_{\alpha} = \frac{\gamma^{2}}{c^{2}}\left(1 - \frac{u^{2}}{c^{2}}\right)$$

$$u^{\alpha}u_{\alpha} = c^{2}.$$

Vamos a intentar encontrar la ecuación de la particula libre:

$$L_{\text{free}} = -mx^2 \sqrt{1 - \frac{u^2}{c^2}}$$
$$= -mu^{\alpha} u_{\alpha} \gamma^{-1}$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) = 0 \qquad \begin{vmatrix} \frac{\partial \gamma^{-1}}{\partial u} = \frac{\partial}{\partial u} \left(1 - \frac{u^2}{c^2} \right)^{1/2} = \frac{1}{2} \gamma (-2) \frac{u}{c^2} = -\frac{\gamma u}{dt} = 0 \\ -mc^2 \frac{d}{dt} \frac{\partial \gamma^{-1}}{\partial u} = 0 \end{vmatrix} \qquad \frac{d}{dt} \left(m \not c^2 \gamma \frac{u}{c^2} \right) = \frac{d}{dt} (m\gamma u) = 0. \rightarrow \frac{dP}{dt} = 0.$$

$$L_{\text{free}} = -\frac{mc}{\gamma} \sqrt{u^{\alpha} u_{\alpha}}$$

$$\sqrt{u^{\alpha} u_{\alpha}} d\tau = \sqrt{\frac{dx_{\alpha}}{d\tau}} \frac{dx^{\alpha}}{d\tau} d\tau = \sqrt{\eta^{\alpha\beta} dx_{\alpha} dx_{\beta}}$$

$$S = -mx \int_{\tau_{1}}^{\tau_{2}} \sqrt{\eta^{\alpha\beta} \frac{dx_{\alpha}}{d\tau}} \frac{dx_{\beta}}{d\tau} d\tau$$

$$t \to \tau \quad \dot{q}_{i} \to \frac{\partial x_{\alpha}}{d\tau}$$

Aplicando la ecuación de Euler-Lagrande:

$$-mc\frac{d}{d\tau} \left\{ \frac{\partial}{\partial (\frac{dx_{\alpha}}{d\tau})} \left[\sqrt{\eta^{\mu\nu}} \frac{dx_{\mu}}{d\tau} \frac{dx_{\nu}}{d\tau} \right] \right\}$$
$$\eta^{\alpha\nu} \frac{dx_{\nu}}{d\tau} = \frac{dx^{\alpha}}{d\tau}$$
$$-mc\frac{d}{d\tau} \left\{ \frac{1/2}{\sqrt{\eta \frac{dx_{\mu}}{d\tau}} \frac{dx_{\nu}}{d\tau}} 2 \frac{dx^{\alpha}}{d\tau} \right\} = 0$$

Teniendo en cuenta que: $\sqrt{\eta^{\mu\nu}\frac{dx_{\mu}}{d\tau}\frac{dx_{\nu}}{d\tau}} = 0$

$$x \frac{c}{\sqrt{\frac{dx_{\beta}}{d\tau}} \frac{dx_{\alpha}}{d\tau} \eta^{\alpha\beta}}$$

$$-m \frac{d}{d\tau} \left\{ \frac{c}{\sqrt{(\dots)}} \frac{dx^{\alpha}}{d\tau} \right\} = 0 \quad , \quad -m \frac{c^{2}}{c^{2}}$$

$$m \frac{d^{2}x^{\alpha}}{d\tau^{2}} = 0$$

Una partícula cargada en presencia de un campo Electromanético:

$$u^{\alpha}=(c\gamma, \vec{v}\gamma). \qquad V=e\Phi$$

$$A^{\alpha}=(\frac{\phi}{c}, \vec{A}).$$
 Electromagnetismo
$$u^{\alpha}u_{\alpha} \qquad \overbrace{A^{\alpha}A_{\alpha}} \qquad u^{\alpha}A_{\alpha}$$
 Padiació

Donde el potencial de e es:

$$V = e\Phi$$

Entonces:

$$L_{\text{int}} = -e\Phi = \frac{-e}{c\gamma}(c\gamma)\Phi = -\frac{e}{\gamma}u^{0}\underbrace{\frac{\Phi}{c}}_{A^{0}}$$

$$L_{\text{int}} = -\frac{e}{\gamma}u^{0}A^{0} \to -\frac{e}{\gamma}u^{\mu}A_{\mu}$$

$$L_{\text{int}} = -\frac{e}{\gamma}u^{\mu}A_{\mu}$$

$$S = -\int_{\tau_{1}}^{\tau_{2}} \left[mc\sqrt{\eta_{\mu\nu}\frac{dx^{\mu}}{d\tau}\frac{dx^{\nu}}{d\tau}} + e\frac{dx_{\beta}}{d\tau}A^{\beta}(x)\right]d\tau$$

Entonces la ecuación de movimiento, E-L es:

$$-m\frac{d^2x^{\alpha}}{d\tau^2} + \frac{d}{d\tau} \left[\frac{\partial}{\partial (\frac{dx_{\alpha}}{d\tau})} \left(-e\frac{dx_{\beta}}{d\tau} A^{\beta}(x) \right) \right] - \frac{\partial}{\partial x_{\alpha}} \left(-e\frac{dx_{\beta}}{d\tau} A^{\beta}(x) \right) = 0$$
$$-m\frac{d^2x^{\alpha}}{d\tau^2} + \frac{d}{d\tau} [-eA^{\alpha}(x)] + e\frac{dx_{\beta}}{d\tau} \frac{\partial A^{\beta}}{\partial x_{\alpha}} = 0$$

Podemos escribir:

$$\frac{dA^{\alpha}(x)}{d\tau} = \frac{\partial A^{\alpha}}{\partial x_{\beta}} \frac{dx_{\beta}}{d\tau} = \partial^{\beta} A^{\alpha} \frac{dx_{\beta}}{d\tau}$$

Simplificando:

$$m\frac{d^2x^{\alpha}}{d\tau^2} + e(\partial^{\beta}A^{\alpha} - \partial^{\alpha}A^{\beta})\frac{dx_{\beta}}{d\tau} = 0$$

Teniendo: $\partial^\alpha=\frac{\partial}{\partial x_\alpha}$, $\partial_\alpha=\frac{\partial}{\partial x^\alpha}$, tenemos:

$$\frac{du^{\alpha}}{d\tau} = \frac{e}{m} F^{\alpha\beta} u_{\beta}$$

Que es la ecuación de la fuerza de Lorentz.

y su momento canónico:

$$P^{\alpha} = -\frac{\partial_{\nu}}{\partial \left(\frac{dx_{\alpha}}{d\tau}\right)} = mu^{\alpha} + eA^{\alpha}.$$

Ejercicio

Considerando una partícula que se mueve a velocidad v en presencia de un campo Electro magnetico, que experimenta una fuerza:

$$F = q\vec{E} + q\vec{v} \times \vec{B}$$

Mostrar que el Hamiltoniano clásico

$$H = \frac{1}{2m} \left(P - q\vec{A} \right)^2 + q\phi$$

Solución

Sabemos que la fuerza de lorentz sobre una partícula de carga q y velcoidad \vec{v} en un campo electromagnético es:

$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}.$$

Además el lagrangiano, para una partícula cargada en un campo electromagnético lo escribimos como:

$$L = \frac{1}{2}m\vec{v}^2 - q\phi + q\vec{v} \cdot \vec{A}$$

Por otra parte, el momento canónico P es:

$$\vec{P} = \frac{\partial L}{\partial \vec{v}} = m\vec{v} + q\vec{A}$$

y Al hamiltoniano, mediante la transformada de legendre del lagrangiano:

$$H = \vec{P} \cdot \vec{v} - L$$

Ahora sustituimos \vec{v} en términos de \vec{P} :

$$\vec{v} = \frac{P - qA}{m}$$

Y sustituimos v y L en la expresión del Hamiltoniano:

$$H = P \cdot \left(\frac{P - qA}{m}\right) - \left(\frac{1}{2}m\left(\frac{P - qA}{m}\right)^2 - q\phi + q\left(\frac{P - qA}{m}\right) \cdot A\right)$$

Simplificando esto, tenemos:

$$H = \frac{(P - qA)^2}{2m} + q\phi$$

2.8 El Hamiltoniano:

$$H = P \cdot \dot{q} - L = P \cdot v - L$$

Necesitamos escribir \vec{v} en térmios de \vec{P} y \vec{x}

$$P_i = m\gamma v_i + eA_i$$

Primero intentemos obetener una expresión para $\gamma = (1 - \frac{v^2}{c^2})^{-1/2}$

$$\begin{split} \vec{v}^2 &= v_1^2 + v_2^2 + v_3^2 = \left[(P_1 - eA_i)^2 + (P_2 - eA_2)^2 + (P_3 - eA_3)^2 \right] \frac{1}{m^2 \gamma^2} \\ \vec{v}^2 &= \frac{(P - eA)^2}{m^2} \left(1 - \frac{\vec{v}^2}{c^2} \right) \\ \vec{v}^2 \left(1 + \frac{(P - eA)^2}{m^2 c^2} \right) &= \frac{(P - eA)^2}{m^2} \\ \vec{v} \tilde{s} &= \frac{c^2 (P - eA)^2}{m^2 c^2 + (P - eA)^2} \end{split}$$

$$\gamma = \left(1 - \frac{v^2}{c^2}\right)^{-1/2} = \left[1 - \frac{(P - eA)^2}{m^2c^2 + (P - eA)^2}\right]^{-1/2}$$

$$= \left[\frac{m^2c^2 + (P - eA)^2 - (P - eA)^2}{m^2c^2 + (P - eA)^2}\right]$$

$$= \left[\frac{m^2c^2}{m\check{s}c^2 + (P - eA)^2}\right]^{-1/2}$$

Sustituyendo:

$$v_{i} = \frac{P_{i} - eA_{i}}{m\gamma} = \frac{c(P_{i} - eA_{i})}{\sqrt{m^{2}c^{2} + (P - eA)}}$$
$$\vec{v} = \frac{c(P - eA)}{\sqrt{m^{2}c^{2} + (P - eA)^{2}}}$$

Sustituyendo en el Hamiltoniano:

$$\begin{split} H &= \frac{P \cdot c(P - eA)}{\sqrt{m^2c^2 + (P - eA)^2}} - \left(-mc^2\gamma^{-1} - \frac{e}{\gamma}U^\alpha A_\alpha \right) \\ H &= \frac{cP \cdot (P - eA)}{\sqrt{m^2c^2 + (P - eA)^2}} + mc^2\gamma^{-1} + \frac{e}{\gamma}c\gamma\frac{\phi}{c} - \frac{e}{\gamma}\gamma v \cdot A \\ H &= \frac{cP \cdot (P - eA)}{\sqrt{m^2c^2 + (P - eA)^2}} + \frac{m^2e^3}{\sqrt{m^2c^2 + (P - eA)^2}} - \frac{ec(P - eA) \cdot A}{\sqrt{m^2c^2 + (P - eA)^2}} + e\phi \\ H &= \frac{CP^2 - CeP \cdot A - ecP \cdot A + e^2cA^2 + m^2c^3}{\sqrt{m^2c^2 + (P - eA)^3}} + e\phi \\ H &= c\sqrt{m^2c^2 + (P - eA)^2} + e\phi. \quad \text{Energía total de la pratícula} \end{split}$$

Notar que la energía de una partícula libre es:

$$E^2 = P^2 c^2 + m^2 c^4$$

Si utilizamos $P^{\mu} = mu^{\mu} + eA^{\mu} \rightarrow mu^{\mu} = P^{\mu} - eA^{\mu}$

$$mu^{0} = \frac{E}{c} - \frac{e}{c}\phi$$
$$m\vec{u} = P - eA$$

Sustituyendo:

$$(E - e\phi)^{2} = (P - eA)^{2}c^{2} + m^{2}c^{4} \leftrightarrow P^{\alpha}P_{\alpha} = (mc)^{2}$$
$$E = \sqrt{(P - eA)^{2}c^{2} + m^{2}c^{4}} + e\phi$$

2.9 Invarianza Gauge

En electro magnetismo, son invariantes ante transformaciones gauge. La carga eléctrica se consersva.

$$P^{\mu} \rightarrow P^{\mu} - igA^{\mu}$$

La ecuación de Schrödinger:

$$\begin{split} \left\{\frac{1}{2m}\Big(-i\nabla-q\vec{A}\Big)^2+q\phi\right\}\psi(x,t) &= \frac{i\partial(x,t)}{\partial t} \\ \frac{1}{2m}\underbrace{\Big(-i\nabla-q\vec{A}\Big)}_{-i\nabla}\psi(x,t) &= i\underbrace{\left(\frac{\partial}{\partial t}-q\phi\right)}_{\frac{\partial}{\partial t}}\psi(x,t) \end{split}$$

$$\vec{D} \equiv \nabla - iq\vec{A}$$

$$D^{\circ} \equiv \frac{\partial}{\partial t} + iq\phi$$

Transformaciones Gauge

$$\vec{A} \rightarrow \vec{A}' = \vec{A} + \nabla X \qquad \mathcal{X}$$

$$\vec{\phi} \rightarrow \vec{\phi} = \phi - \frac{\partial X}{\partial t} \qquad \checkmark$$

¿La ecuación de Schrodinger es covariante Gauge? R: No.

Ejercicio

Verificar que la ecuación de Schrödinger no es covariante Gauge.

$$\left[\frac{1}{2m}\left(-\nabla-q\vec{A'}\right)+q\phi'\right]\psi'(x,t)=i\frac{\partial(x,t)}{\partial t}\leftarrow$$

Solución

Pro-

poner que
$$\psi'(x,t) = \underbrace{e^{iqx}}_{\text{número Función}} \underbrace{\psi(\vec{x},t)}_{\text{Función}} \psi = f(\vec{x},t)$$

$$u(1) = \{exp(i\theta), \quad 0 \le \theta < 2\pi\}$$

$$-i\vec{D}'\psi' = (-i\nabla - qA') = [-i\nabla - \underbrace{qA - q\nabla\mathcal{X}}_{A'}] \underbrace{e^{iq\mathcal{X}}}_{\psi'}$$

$$= q\nabla\mathcal{X}e^{iqx}\psi + e^{iq\mathcal{X}}(-\nabla\psi) + e^{iq\mathcal{X}}(-q\vec{A}\psi) - q(\nabla\mathcal{X})e^{iq\mathcal{X}}\psi$$

$$= e^{iq\mathcal{X}}(-i\nabla - qA)\psi = -ie^{iq\mathcal{X}}\vec{D}\psi$$

La ecuacion de Schrodinger queda:

$$\frac{1}{2m}(-iD)^{2}\psi = iD^{0}\psi. \leftarrow$$

$$iD^{\prime 0}\psi' = i\left(\frac{\partial}{\partial t} + iq\phi'\right)e^{iq\mathcal{X}}\psi$$

$$= i\left(\frac{\partial}{\partial t} + iq\phi - iq\frac{\partial x}{\partial t}\right)e^{iqx}\psi$$

$$= i\left\{iq\frac{\partial x}{\partial t}e^{iq\mathcal{X}}\psi + e^{iq\mathcal{X}}\frac{\partial \psi}{\partial t} + iq\phi e^{iq\mathcal{X}}\psi - iq\frac{\partial x}{\partial t}e^{iq\mathcal{X}}\psi\right\}$$

$$= ie^{iq\mathcal{X}}\left(\frac{\partial}{\partial t} + iq\phi\right)\psi$$

$$= ie^{iq\mathcal{X}}D^{0}\psi.$$

Tarea

Mostrar que si transformo:

$$\vec{A} = A + \nabla X$$

$$\phi' = \phi - \frac{\partial X}{\partial t}$$

$$\psi' = e^{iqX}\psi \leftarrow U_{EM}(1)$$

La ecuación de Schrodinger es covariante.

Solución

Cuáles son los observables en la mecánica cuántica?

Observables:

$$\rho = |\psi'|^2 = |\psi|^2$$

$$j = \psi^*(\nabla \psi) - (\nabla \psi)^* \psi$$

$$\to \frac{\psi'^*(D'\psi')}{\cancel{e}^{-iqX}} = \psi^*(D'\psi')$$

$$\psi \to \psi' = e^{\alpha(x,t)}\psi \qquad \alpha(x,t) = q\chi(x,t)$$

→ Particula libre, entonces, la ecuación de Schrodinger ya no es covariante.

La libertad altera localmente la fase de ψ de una partícula cargada. solo es posible si algún tipo de Campo de fuerza en el que la partícula se está moviendo se introduce.

La ecuación de Schrodinger para $V \propto \frac{1}{|x|}$

$$\left(-\frac{1}{2m}\nabla^2 + \underbrace{\frac{e^2}{4\pi}\frac{1}{|x|}}_{V(x)}\right)\phi(x) = E\phi(x)$$

$$x' = x \cos \theta + y \sin \theta \qquad \phi'(x)$$
$$y' = -x \sin \theta + y \cos \theta$$
$$z' = z$$

$$\left(-\frac{1}{2m}\nabla'^2 + \frac{e^2}{4\pi}\frac{1}{|x'|}\right)\phi'(x') = \underline{E\phi'(x')}$$

Ejercicio

$$\nabla^2 = \nabla'^2$$

$$|x'| = |x|$$

$$\left(-\frac{1}{2m}\nabla^2 + \frac{e^2}{4\pi} \frac{1}{|x|}\right) \phi'(x') = E\phi'(x') \quad \checkmark$$

Si $\phi'(x') \propto \phi(x)$, $\phi'(x') = \phi(x)$ Dunciones de onda escalares.

La ecuación de Schrodinger para una partícula cargada en presencia de un campo magnético:

$$\left\{\frac{1}{2m}\left(\vec{P}+e\vec{A}\right)^2\right\}\psi=E\psi$$

$$\vdots$$

$$\left\{-\frac{1}{2m}\nabla^2+\underbrace{\frac{e}{2mc}\vec{B}\vec{L}}_{\text{Energía al momento angular orbital}}+\frac{e^2}{2m^2c^2}\vec{A}^2\right\}\psi=E\psi=i\frac{\partial\psi}{\partial t}$$

Experimentalmente se observa una diferencia de energías para l=0

2.10 Ecuación de Pauli

$$\left\{\frac{1}{2m} \left(\vec{P} + e\vec{A}\right)^2 + \underbrace{\frac{e}{m} \vec{S} \cdot \vec{B}}_{\text{tiene la misma forma del momento angular orbit}}\right\} \psi = E \psi$$

$$\begin{split} \psi &= \phi(\vec{x}) x \\ \text{para} \quad X &= a X_{\frac{1}{2}} + b X_{-\frac{1}{2}} \\ X_{\frac{1}{2}} &= \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad X_{-\frac{1}{2}} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{split}$$

Ecuación de Schrodinger para partículas de espín 1/2

¿ Es covariante ante rotaciones ?

Nos enfocamos en:

$$\frac{e}{2m}\underline{\sigma \cdot BX} = \underline{EX}$$

Entonces

$$B \to B'$$
 $\sigma \cdot B'x' = Ex'$

Rotaciones:

$$B'_{x} = B_{x} \cos \theta + B_{y} \sin \theta \quad \checkmark$$

$$B'_{y} = -B_{x} \sin \theta + B_{y} \cos \theta \quad \checkmark$$

$$B'_{z} = B_{z}$$

$$X' = \begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix} X = uX$$

$$\sigma \cdot BX = EX$$

$$\begin{pmatrix} B_z & B_x - iB_y \\ B_x + iB_y & -B_z \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = E \begin{pmatrix} a \\ b \end{pmatrix}$$

Multiplicando por u el lado izquierdo:

$$\begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix} \begin{pmatrix} B_z & B_x - iB_y \\ B_x + iB_y & -B_z \end{pmatrix} \underbrace{\begin{pmatrix} e^{-i\theta/2} & 0 \\ 0 & e^{i\theta/2} \end{pmatrix} \begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix}}_{\mathbf{I}} \begin{pmatrix} a \\ b \end{pmatrix} = E \underbrace{\begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}}_{\mathbf{I}} \begin{pmatrix} a \\ b \end{pmatrix} = E \underbrace{\begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}}_{\mathbf{I}} \begin{pmatrix} a \\ b \end{pmatrix} = E \underbrace{\begin{pmatrix} e^{i\theta/2} & 0 \\ 0 & e^{-i\theta/2} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}}_{\mathbf{I}} \begin{pmatrix} a \\ b \end{pmatrix} = E \underbrace{\begin{pmatrix} a \\ b \end{pmatrix}}_{\mathbf{I}} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\begin{pmatrix} B_z & (B_x - iB_y)e^{i\theta} \\ (B_x + iB_y) & -B_z \end{pmatrix} = \begin{pmatrix} B_z & \underbrace{(B_x \cos \theta + B_y \sin \theta) - i\underbrace{(B_y \cos \theta - B_x \sin \theta)}_{B_x'} - i\underbrace{(B_y \cos \theta - B_x \sin \theta)}_{B_y'} \\ -B_z & \underbrace{(B_x \cos \theta + B_y \sin \theta) + i\underbrace{(B_y \cos \theta - B_x \sin \theta)}_{B_y'} - B_z \end{pmatrix}}_{B_y'}$$

Por lo tanto:

$$\sigma \cdot B'X' = EX'.$$

Es covariante ante rotaciones.

Pensemos en los elementos de la representación construidos con las matrices de pauli :

$$e^{i\sigma_z\theta/2} = \mathbb{I} + i\sigma_z \frac{\theta}{2} + \frac{1}{2!}(i\sigma_z\theta)^2 + \cdots$$
 Como generadores

Notemos que:

$$\sigma_z^2 = \mathbb{I} \quad , \quad \sigma_z^3 = \sigma_z$$

$$e^{i\sigma_z\theta/2} = \mathbb{I}\cos(\theta/2) + i\sin(\theta/2)\sigma_z$$

$$e^{i\sigma_z\theta/2} = \begin{pmatrix} e^{i\theta/2} & 0\\ 0 & e^{-i\theta/2} \end{pmatrix}.$$

$$X' = \exp[i\hat{\sigma} \cdot \hat{n}\theta/2]$$

2.11 Generadores de la representación como operadores

Supongamos que ante una rotación R nuestro estado transforma como

$$|\psi\rangle \to |\psi'\rangle = U |\psi\rangle$$

La probabilidad de que el sistema descrito por $|\psi\rangle$ se encuentre en $|\phi'\rangle$ no debe de cambiar

$$\left| \left\langle \phi | \psi \right\rangle \right|^2 = \left| \left\langle \phi' | \psi' \right\rangle \right|^2 = \left| \left\langle \phi | U^{\dagger} u | \psi \right\rangle \right|^2$$

U debe de ser unitario.

 \to Los operadores $u(R_1),u(R_2)\cdots$, tienen la misma estructura que R_1,R_2,R_3,\cdots Son una representación del grupo de rotaciones

Los elementos de matriz del Hamiltoniano:

$$\langle \phi' | H | \psi' \rangle = \langle \phi | U^{\dagger} H u | \psi \rangle = \langle \phi | H | \psi \rangle$$

Para que sean invariantes

$$H = U^{\dagger}Hu \rightarrow [u, H] = 0$$

La transformación u no tiene dependencia explícita del tiempo.

La ecuación de movimiento es:

$$i\frac{d}{dt}|\psi(t)\rangle = H|\psi(t)\rangle$$

Es la misma bajo transformaciones que son una simetría.

Como consecuencia, el valor esperado de u es una constante de movimiento:

$$i\frac{d}{dt} \langle \psi(t) | u | \psi(t) \rangle = \langle \psi(t) | uH - Hu | \psi(t) \rangle = 0$$

Consideremos una rotación infinitesimal de un ángulo ϵ alrededor del eje z

$$u = \mathbb{I} - \frac{i}{\epsilon} J_3$$

Donde:

i: No importa mucho si no estamos trabajando en cuántica. J_3 es el generador de las rotaciones alrededor del eje z. Donde para que U sea unitario

$$\mathbb{I} = U^{\dagger}u$$

$$\mathbb{I} = (1 + i\epsilon J_3^+)(1 - i\epsilon J_3)$$

$$\mathbb{I} = \mathbb{I} + i\epsilon J_3^+ - i\epsilon J_3 + \mathcal{O}(\epsilon^3)$$

$$i\epsilon J_3^+ = i\epsilon J_3$$

$$\to J_3^+ = J_3 \qquad \text{Es Hermitico !}$$

 J_3 Es hermítico y con ello un observable.

Para una función de onda escalar

$$\phi'(\vec{r}) = \phi(\vec{r})$$

considerando una transformación activa en la que rotamos el sistema físico. La función de onda ψ' describe el estado rotado en \vec{r} .

$$\phi'(\vec{r}) = \phi(R^{-1}\vec{r})$$

Esto representa una rotación infinitesimal ϵ alrededor del eje z.

$$u\phi(x,y,z) = \phi(R^{-1}\vec{r}) \approx \phi(\underbrace{x + \epsilon y}_{x''}, \underbrace{y - \epsilon x}_{y''}, z)$$

Donde hemos usado:

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} \cos \epsilon & \sin \epsilon & 0 \\ -\sin \epsilon & \cos \epsilon & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} \simeq \begin{pmatrix} 1 & \epsilon & 0 \\ -\epsilon & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + \epsilon y \\ y - \epsilon x \\ z \end{pmatrix}$$

Ahora, podemos expandir ϕ alrededor de ϵ

$$\begin{split} u(\phi)(x,y,z) &\simeq \phi(x,y,z) + \frac{\partial \phi(R^{-1}\vec{r})}{\partial x''} \frac{\partial x''}{\partial \epsilon} \bigg|_{\epsilon=0} \epsilon + \frac{\partial \phi(R^{-1}\vec{r})}{\partial y''} \frac{\partial y''}{\partial \epsilon} \bigg|_{\epsilon=0} \epsilon \\ &\simeq \phi(x,y,z) + \frac{\partial \phi}{\partial x} y \epsilon - \frac{\partial \phi}{\partial y} x \epsilon \\ &\simeq \phi(x,y,z) + \epsilon \bigg(y \frac{\partial \phi}{\partial x} - x \frac{\partial \phi}{\partial y} \bigg) \end{split}$$

Usando $P = -i\nabla$, se tiene:

$$u\phi(x,y,z) \simeq \phi(x,y,z) + i\epsilon(yP_x - xP_y)\phi(x,y,z)$$

$$\simeq \left[\mathbb{I} - i\epsilon \underbrace{(xP_y - yP_x)}_{L_z \text{ momento angular}}\right]\phi(x,y,z)$$

Comparando la expresión de u

$$u\phi = (1 - i\epsilon J_3)\phi$$

Identificamos J_3 (generador de las rotaciones alrededor del eje z) Con la tercera componente del operador de momento angular.

2.12 Mecánica Cuántica No-Relativista (Notación de Schordinger)

$$E^{NR} = \frac{\mathcal{P}^2}{2m}$$
 Energía cinética

No incluye energía en reposo.

$$E \to i \frac{\partial}{\partial t}$$
 $\mathcal{P} \to -i\hbar P$

Ecuación de Schrodinger de la partícula libre:

$$i\frac{\partial}{\partial t}\psi(\vec{x},t) = -\frac{1}{2m}\nabla^2\psi(\vec{x},t) \tag{I}$$

 \rightarrow Las partículas no se cran ni se destruyen.

$$\rho = \psi * \psi = |\psi|^2 \qquad \vec{J}$$

Es la ecuación de continuidad:

$$-\frac{\partial}{\partial} \int \rho dv = \int J \cdot \hat{n} ds$$

Esta ecuación de continuidad, escrita de forma diferencial es:

$$\frac{\partial}{\partial t}\rho + \nabla \cdot \vec{J} = 0.$$

Tomamos la ecuación I y la multiplicamos por $-i\psi^*$, esto queda:

$$\frac{\partial \psi}{\partial t} \psi^* - \frac{1}{2m} (\nabla^2 \psi) \psi^* = 0 \tag{II}$$
$$(I)^* \cdot (i\psi)$$

$$\left(\frac{\partial \psi^*}{\partial t}\right)\psi + \frac{1}{2m}(\nabla^2 \psi^*)\psi = 0 \tag{III}$$

$$\underbrace{\left(\frac{\partial \psi}{\partial t}\right)\psi^* + \left(\frac{\partial \psi^*}{\partial t}\right)\psi}_{\frac{\partial}{\partial t}(\psi\psi^*)} - \frac{i}{2m}\left(\psi^*\nabla^2\psi - \psi\nabla^2\psi^*\right) = 0$$

$$\psi^* \nabla^2 \psi - \psi \nabla^2 \psi^* = \underbrace{\nabla \psi^* \nabla \psi + \psi^* \nabla^2 \psi}_{\nabla \cdot (\psi^* \nabla \psi)} - \nabla \psi^* \nabla \psi - \psi \nabla^2 \psi^*$$

Esto queda de la siguiente forma:

$$\frac{\partial}{\partial t} (\underbrace{\psi \psi^*}_{\rho}) + \nabla \cdot \left[\underbrace{-\frac{i}{2m} (\psi^* \nabla \psi - \psi \nabla \psi^*)}_{\vec{J}} \right] = 0$$
$$\frac{\partial}{\partial t} \rho + \nabla \cdot J = 0.$$

si tomo la función de onda para resolver la ecuación, (en unidades naturales) tenemos:

$$\psi(x,t) = N\exp[-iEt + i\vec{P} \cdot \vec{x}]$$

$$\rho = |N|^2. \quad \vec{J} = -\frac{i}{2m} \left[\psi^*(i\vec{P})\psi - \psi(-i\vec{P})\psi^* \right] = \frac{\vec{P}}{m} |N|^2$$

Covarianza lorenz: $x' = \Lambda x \ E = \sqrt{E^2 + m^2}$

$$\mathcal{P}^{\mu} = (E, \vec{P}) \qquad \mathcal{P}^{\mu} \mathcal{P}_{\mu} = E^2 - \vec{P}^2 = m^2 \quad \checkmark$$

2.13 Mecánica cuántica Relativista

2.13.1. La ecuación de Kein Gordon

$$E^{2} = P^{2} + m^{2}$$

$$E \to i \frac{\partial}{\partial t} \qquad \vec{P} \to -i \nabla$$

Obtenemos una ecuación de onda:

$$-\frac{\partial^2}{\partial t^2}\phi = -\nabla^2\phi + m^2\phi$$

$$\frac{\partial^2}{\partial t^2}\phi - \nabla^2\phi + m^2\phi = 0 \quad \text{Ec. Klein Gordon}$$

$$(\partial_\mu\partial^\mu + m^2)\phi = 0$$

$$(\Box + m^2)\phi = 0$$

Multiplicando la ecuación de Klein-Gordon por $(i\psi^*)$ se tiene:

$$i\frac{\partial^{2}\phi}{\partial t^{2}}\phi^{*} - i(\nabla^{2}\phi)\phi^{*} + im^{2}\phi^{*}\phi = 0$$

$$E.K.G \times (i\phi)$$

$$i\frac{\partial^{2}\phi^{*}}{\partial t^{2}}\phi - i(\nabla^{2}\phi^{*})\phi + im^{2}\phi^{*}\phi = 0$$

$$(IV) - (V)$$

$$i\frac{\partial^{2}\phi}{\partial t}\phi^{*} - i\frac{\partial^{2}\phi^{*}}{\partial t^{2}}\phi - i(\phi^{*}\nabla^{2}\phi - \phi\nabla^{2}\phi^{*}) = 0$$

$$\frac{\partial}{\partial t}\left[i\left(\phi^{*}\frac{\partial\phi}{\partial t} - \phi\frac{\partial\phi^{*}}{\partial t}\right)\right] + \nabla\cdot\left[-i\left(\underbrace{\phi^{*}\nabla\phi - \phi\nabla\phi^{*}}_{J}\right)\right] = 0$$

Esto lo puedo escribir como un 4- vector:

$$\mathcal{J}^{\mu} = (\rho, \vec{J}) = i[\phi^* \partial^{\mu} \phi - (\partial^{\mu} \phi^*) \phi]$$
$$\partial^{\mu} \mathcal{J}_{\mu} = 0 \quad \checkmark$$

Solución de la ecuación de Klein-Gordon:

La función de onda

$$\phi = Ne^{i\vec{P}\cdot\vec{x} - iEt} = Ne^{-i\rho x}.$$

$$\rho = i\left(\phi^* \frac{\partial \phi}{\partial t} - \phi \frac{\partial \phi^*}{\partial t}\right) = i(-2iE)|N|^2$$

$$J = -i(\phi^* \vec{\nabla} \phi - \phi \nabla \phi^*) = -i(2i\vec{P})|N|^2 = 2\vec{P}|N|^2$$

$$\int \mathcal{J}^{\mu} = 2P^{\mu}|N|^2$$

Probabilidad=

$$\int d^3x \rho = \int d^3x 2E|N|^2 = -\int d^3x 2(P^2 + m^2)^{1/2}$$

Acá tenemos un problema, porqué tenemos energías negativas E < 0.

No hay estabilidad en el sistema

No hay un estado Fundamental

Probabilidades < 0 ino son concebibles!

Tarea

Mostrar que al hacer un boost de velocidad v, el elemento de volumen sufre una contracción:

$$d^3x \to d^3x\sqrt{1-v^2}$$

de modo que para que ρd^3x sea invariante ρ debe de transformar como la componente temporal al cuadri-vector

$$\rho \to \frac{\rho}{\sqrt{1 - v^2}}$$

Solución

2.14 Dirac(1927)

Una ecuación lineal en $\frac{\partial}{\partial t}$, $\nabla \Rightarrow$ Partículas de s=1/2 Resuelve el problema de

$$\rho < 0$$

Dirac propone que el vació esta lleno de partículas de energía negativa o las anti-partículas.

$$e^- + e^+$$
$$E' + E \ge 2m$$

En 1934 Pauli y weisskoff, proponen:

$$\mathcal{J}^{\mu} = -ie(\phi^* \partial^{\mu} \phi - \phi \partial^{\mu} \phi^*) \quad \phi' \to e^{iqx} \phi \quad x = x(\vec{x}, t)$$

Figura 1: Mar de Dirac

$$\rho = \mathcal{J}'$$

$$\mathcal{J}^{\mu}(e^{-}) = -2e|N|^{2}(E,\vec{P}) \qquad \text{Partícula}$$

$$\mathcal{J}^{\mu}(e^{+}) = 2e|N|^{2}(E,\vec{P}) \qquad \text{Anti-Partícula}$$

$$\uparrow e^{+} \equiv \downarrow e^{-}$$

$$E > 0 \quad (-E) > 0$$

$$\rightarrow e^{-i(-E)(-t)} = e^{-Et}$$

<u>Punto crucial:</u> Hay diagramas que corresponden a la misma observacón, en los que vamos a incluir todos los posibles ordenamientos temporales:

2.15 La ecuación de Dirac

Escribir una ecuación lineal:

$$E^2 = \vec{P}^2 + m^0$$

K-G

$$E \to \partial_t \qquad \vec{P} \to -i\nabla \qquad m = 0$$

La propuesta de Dirac es:

$$H\psi = (\vec{\alpha} \cdot \vec{P} + \beta m)\psi \quad \checkmark$$

pero, ¿Cómo determino $\vec{\alpha}$ y β ?

$$H^{2}\psi = (\vec{P} + m^{2})\psi$$

$$= (\alpha_{i}P_{i} + \beta m)(\alpha_{j}P_{j} + \beta m)\psi$$

$$= (\alpha_{i}P_{i}\alpha_{j}P_{j} + \alpha_{i}P_{i}\beta m + \beta m\alpha_{j}P_{j} + \beta^{2}m^{2})\psi$$

$$= (\alpha_{i}^{2}P_{i}^{2} + \alpha_{i}\alpha_{j}P_{i}P_{j}|_{i\neq j} + (\alpha_{i}\beta + \beta\alpha_{i})P_{i}m + \beta^{2}m^{2})\psi$$

$$= (\alpha_{i}^{2}P_{i}^{2} + \alpha_{i}\alpha_{j}P_{i}P_{j}|_{i\neq j} + (\alpha_{i}\beta + \beta\alpha_{i})P_{i}m + \beta^{2}m^{2})\psi$$

Veamos que esto es ciero, si tomo i = j y $i \neq j$

$$\alpha_i^2 = \mathbb{I} \quad \& \quad \beta^2 = \mathbb{I}$$

Tomando al anti-conmutador como:

$$\alpha_i \beta + \beta \alpha_i = 0$$
$$\{\alpha_i, \beta\} = 0$$

Para la otra parte, si tomamos:

$$\alpha_i \alpha_j P_i P_j \Big|_{i=j} = (\alpha_i \alpha_j + \alpha_j \alpha_i) P_i P_j \Big|_{i< j}$$

Con las combinaciones correspondientes:

$$\begin{array}{ccccc}
i & j \\
1 & 2 \\
1 & 3 \\
2 & 1 \\
2 & 3 \\
3 & 1 \\
3 & 2
\end{array}$$

$$\Rightarrow \{\alpha_i, \alpha_i\} = 0$$

Necesitamos que:

$$H^2\psi = (\vec{P}^2 + m^2)\psi$$

Entoces, tenemos las siguientes condiciones:

- \bullet $\alpha_i^2=\mathbb{I}$ implica que $\alpha_1,\alpha_2,\alpha_3,\beta$ anti conmutan
- $\alpha_i \alpha_j + \alpha_j \alpha_i = 0$ implica que $\alpha_1^2 = \alpha_2^2 = \alpha_3^2 = \beta^2 = \mathbb{I}$
- $\alpha_i \beta + \beta \alpha_i = 0$
- $\beta^2 = \mathbb{I}$ para i = 1, 2, 3

Tarea

Mostrar que las propiedades de α_i y β son:

- 1. Hermíticas
- 2. Traza 0
- 3. Dimensión par
- 4. Autovalores +1 y -1

Solución

1. Hermiticidad: Ya que sabemos que la ecuación de Dirac tiene la forma:

$$H\psi = \left(\vec{\alpha} \cdot \vec{P} + \beta m\right)\psi$$

Queremos que el hamiltoniano H deba de ser Hermítico, para garantizar una evolución unitaria y probabilidades reales. Entonces, el momentum $P=-i\nabla$ y la masa m son reales y por tanto hermíticos, debemos requerir que las matrices α_i, β sean hermíticas, es decir:

$$\alpha_i^{\dagger} = \alpha_i \quad , \quad \beta^{\dagger} = \beta$$

Entonces:

$$H^{\dagger} = (\vec{\alpha} \cdot \vec{P} + \beta m)^{\dagger}$$
$$= \vec{\alpha}^{\dagger} \cdot \vec{\alpha}^{\dagger} + \beta^{\dagger} m^{\dagger} = \vec{\alpha} \cdot \vec{P} + \beta m = H.$$

Por lo tanto, cada uno de los operadores es Hermítico.

2. **Traza 0**

De lo visto anteriormente, sabemos que las matrices α_i , β satisfacen las relaciones de anti-conmutación:

$$\alpha_i, \beta = 0$$

Podemos aprovechar esto y tomar que:

$$\alpha_i \beta = -\beta \alpha_i$$

Entonces, tomando su traza y aplicando la propiedad ciclica de la traza: Tr(AB) = Tr(BA), tenemos:

$$Tr(\alpha_i \beta) = -Tr(\beta \alpha_i)$$

$$\Rightarrow 2Tr(\alpha_i \beta) = 0$$

$$\Rightarrow Tr(\alpha_i \beta) = 0.$$

Ahora, manipulemos la expresión de anticonmutación un poco, multiplicando por β

$$\alpha_i \underbrace{\beta \cdot \beta}_{\mathbb{I}} = -\beta \alpha_i \beta$$

$$\Rightarrow Tr(\alpha_i) = -Tr(\beta \alpha_i \beta)$$

$$Tr(\alpha_i) = -Tr(\alpha_i \beta^2) = -Tr(\alpha_i) \Rightarrow Tr(\alpha_i) = 0$$

De forma análoga podemos hacer lo mismo para β para obtener también que: $Tr(\beta)=0.$

1. Dimensión par

Sabemos que la dimensión más pequeña es de matrices de 4×4 , aunque solo tenemos 3 matrices de pauli, la cuarta se formaría como una combinación lineal de las matrices de pauli.

dado que nos adelantas que solo podemos tener dos valores propios posibles ± 1 y que además, ya vimos que su traza es cero. Entocnes, eel número de valores propios +1 debe ser igual an número de valores propios -1. Entonces, si interpretamos la dimensión n que es el número total de valores propios esta debe ser par: n=2k

Esto no se puede resolver con algebra lineal con el teorema de rango nulidad:

$$\dim(RanT) + \dim(Ker(T)) = \dim V$$

Porqué no aborda las relaciones entre las matrices de anti conmutación y no podemos forzar a que la matriz β anticonmute econ toas las matrices de pauli σ_i .

Lo correcto sería hacerlo con el álgebra de Clifford.

Donde los generadores serían α_i , β , de esta tendríamos una metríca que tiene una dimensión minima para 4 generadores que anticonmutan igual a 4.

Esta es la reprecentación Pauli- Dirac que se ve en la siguiente pagina.

2. Autovalores +1, -1

En esta podemos hacer uso de las propiedades:

$$\alpha_i^2 = \mathbb{I}$$
 & $\beta^2 = \mathbb{I}$

En esta, trabajandolo con álgebra lineal, podemos tener que: por ejemplo, sii tenemos una matriz M con $M^2=\mathbb{I}$ su polinomio característico es:

$$\lambda^2 - 1 = (\lambda - 1)(\lambda + 1) = 0$$

Y de ello sus valores y vectores propios serían $\lambda = \pm 1$

Entonces, usando esto, se tiene que: para cualquier valor propio λ de α_i , tenemos:

$$\alpha_i v = \lambda v \Rightarrow \alpha_i^2 v = \lambda^2 v = v$$

$$\Rightarrow \lambda^2 = 1$$

$$\Rightarrow \lambda = \pm 1$$

y analogamente para β .

La representaciín Dirac-Pauli

$$\alpha_i = \begin{pmatrix} 0 & \vdots & \sigma_i \\ \cdots & & \cdots \\ \sigma_i & \vdots & 0 \end{pmatrix} \quad , \quad \beta = \begin{pmatrix} \mathbb{I}_{2 \times 2} & \vdots & 0 \\ \cdots & & \cdots \\ 0 & \vdots & \mathbb{I}_{2 \times 2} \end{pmatrix} \quad \checkmark$$

Representación de Weyl

$$\alpha_i = \begin{pmatrix} -\sigma_i & \vdots & 0 \\ \cdots & \vdots & \cdots \\ 0 & \vdots & \sigma_i \end{pmatrix} \quad , \quad \beta = \begin{pmatrix} 0 & \vdots & \mathbb{I}_{2\times 2} \\ \cdots & \vdots & \cdots \\ \mathbb{I}_{2\times 2} & \vdots & 0 \end{pmatrix} \quad \checkmark$$

Tarea

Mostrar que la representaciones de Pauli-Dirac y la representación de Weyl cumplen con las características de la las matrices α_i, β

<u>Solución</u>

2.16 Solución a la ecuación de Dirac

$$H = \vec{\alpha} \cdot \vec{P} + m\beta$$
$$i\frac{\partial \psi}{\partial t} = (-i\vec{\alpha} \cdot \nabla + \beta m)\psi$$

Multiplicamos por β

$$\begin{pmatrix}
i\beta \frac{\partial}{\partial t} + i\beta \vec{\alpha} \cdot \nabla - m \end{pmatrix} \psi = 0$$

$$\gamma^{\mu} = (\beta, \beta \vec{\alpha}) \quad (\gamma_{ij})^{\mu}$$

$$(i\gamma^{\mu}\partial_{\mu} - m)\psi = 0 \quad \text{Notación} \quad \not A = \gamma^{\mu}A_{\mu}$$

$$(i \not \partial - m)\psi = 0$$

Donde

$$(\gamma_{ij})^{\mu}A_{\mu} = (\gamma_{ij})^{0}A_{0} + (\gamma_{ij})^{1}A_{1} + (\gamma_{ij})^{2}A_{2}$$

Se tiene:

$$\sum_{k} \left[\sum_{\mu} i(\gamma^{\mu})_{jk} \partial_{\mu} - m \delta_{jk} \right] \psi_{k} = 0 \quad \phi'(x') = \phi(x)$$

La representación Dirac-Pauli es de nuevo:

$$\alpha_i = \begin{pmatrix} 0 & \vdots & \sigma_i \\ \cdots & & \cdots \\ \sigma_i & \vdots & 0 \end{pmatrix} \quad , \quad \beta = \begin{pmatrix} \mathbb{I}_{2 \times 2} & \vdots & 0 \\ \cdots & & \cdots \\ 0 & \vdots & \mathbb{I}_{2 \times 2} \end{pmatrix} \quad \checkmark$$

Tarea

Mostrar que

$$\gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2\eta^{\mu\nu}$$

$$\gamma^{\mu} = \{\beta, \beta \vec{\alpha}\}$$

$$\gamma^0 = \beta \quad (\gamma^0)^+ = \gamma^0 \quad (\gamma^0)^2 = 1$$

$$\gamma^{\mu} = \{\beta, \beta \vec{\alpha}\}$$

$$\gamma^{0} = \beta \quad (\gamma^{0})^{+} = \gamma^{0} \quad (\gamma^{0})^{2} = 1$$

$$k = 1, 2, 3 \quad \gamma^{k} = \beta \alpha^{k} \quad (\gamma^{k})^{+} = (\beta \alpha^{k})^{+} = \alpha^{k} \beta = -\beta \alpha^{k} = -\gamma^{k}$$

$$(\gamma^k)^2 = (\beta \alpha^k \beta \alpha^k) = -\beta^2 \alpha^{k^2} = -\mathbb{I}$$

$$(\gamma^{\mu})^{+} = \gamma^{0} \gamma^{\mu} \gamma^{0}$$
$$(\gamma^{\mu})^{+} = \gamma^{0} \gamma^{i} \gamma^{0} = -\gamma^{0} \gamma^{0} \gamma^{i} = -\gamma^{i}$$

Solución

2.16.1. La ecuación de continuidad $\partial_m \mathcal{J}^{\mu} = 0$

$$i\gamma^{0}\frac{\partial\psi^{+}}{\partial t} - i\frac{\partial\psi}{\partial x^{k}}(-\gamma^{k}) - m\psi^{+} = 0$$

El hamiltoniano conjudado:

$$-i\frac{\partial \psi^{\dagger}}{\partial t}\gamma^{0} - i\frac{\partial \psi^{\dagger}}{\partial x^{k}}(\gamma^{k}) - m\psi^{\dagger} = 0$$

Multiplicando por γ^0

$$-i\frac{\partial(\gamma^0)}{\partial t}\gamma^0 + i\frac{\partial\psi^\dagger}{\partial x^k}\gamma^k\gamma^0 - m\psi^\dagger\gamma^0 = 0$$

Espinor adjunto $\overline{\psi} = \psi^\dagger \gamma^0$

$$-i\frac{\partial\overline{\psi}}{\partial t}\gamma^{0} - i\frac{\partial\overline{\psi}}{\partial x^{k}}\gamma^{k} - m\overline{\psi} = 0$$
$$i\partial_{u}\overline{\psi}\gamma^{\mu} + m\overline{\psi} = 0.$$

Ejercicio

Mostrar que la ecuación de continuidad tiene la forma

$$\partial_{\mu}\underbrace{(\overline{\psi}\gamma^{\mu}\psi)}_{\mathcal{I}^{\mu}} = 0$$

$$\rho = \mathcal{J}' = \overline{\psi} \gamma^0 \psi = \psi^{\dagger} \gamma^0 \gamma^0 \psi = |\psi|^2 = \sum_i |\psi_i|^2$$

Solución

Ejercicio

Mostrar que operando $\partial^{\mu}\partial_{\nu}$ en la ecuación de Dirac cada componente satisface la ecuación de Klein-Gordon

$$(\Box + m^2)\psi_i = 0$$

Solución

Regresando a la ecuación de Dirac:

$$i\frac{\partial}{\partial t}\psi = \left\{-i\left(\alpha^{1}\frac{\partial}{\partial x'} + \alpha^{2}\frac{\partial}{\partial x^{2}} + \alpha^{3}\frac{\partial}{\partial x^{3}}\right) + \beta m\right\}\psi$$

$$\to \psi(\vec{x}, t) = Nu(P)\underbrace{\exp[-i(P \cdot t - \vec{P} \cdot \vec{x})]}_{\exp(-iP^{\mu}\mathcal{X}_{\mu})}$$

Sustituyendo:

$$(\alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3 + \beta m)u - P^0 u = 0$$

$$u = \begin{pmatrix} a \\ b \\ \dots \\ f \\ g \end{pmatrix} \qquad \vec{\alpha} = \begin{pmatrix} 0 & \vdots & \sigma \\ \cdots & \vdots & \cdots \\ \sigma & \vdots & 0 \end{pmatrix} \qquad \beta = \begin{pmatrix} \mathbb{I} & \vdots & 0 \\ \cdots & \vdots & \cdots \\ 0 & \vdots & -\mathbb{I} \end{pmatrix}$$

$$\begin{pmatrix} \mathbb{I}m - \mathbb{I}p_0 & \vdots & \sigma_1 P_1 + \sigma_2 P_2 + \sigma_3 P_3 \\ \cdots & \cdot & \cdot \\ \sigma_1 P_1 + \sigma_2 P_2 + \sigma_3 P_3 & \vdots & -\mathbb{I}m - \mathbb{I}p_0 \end{pmatrix} \begin{pmatrix} a \\ b \\ -\overline{f} \\ g \end{pmatrix} =$$

$$\begin{pmatrix} m - P_0 & 0 & \vdots & P_3 & P_1 - iP_2 \\ 0 & m - P_0 & \vdots & P_1 + iP_2 & -P_3 \\ \cdots & \cdots & \vdots & \cdots & \cdots \\ P_3 & P_1 - iP_2 & \vdots & -(m + P_0) & 0 \\ P_1 + iP_2 & -P_3 & \vdots & 0 & -(m + P_0) \end{pmatrix} \begin{pmatrix} a \\ b \\ - \\ f \\ g \end{pmatrix}$$

Ejercicio

Calcular el determinante de la matriz anterior.

Dobo llegar a:

$$det[(.)] = [m^2 - (P^0)^2 + (\vec{P})^2]^2$$

Solución

Si

el determinante $det(4 \times 4) = 0$, el sistema no tiene solución porque existe una relación entre las componentes a:b:f:g

Ejercicio

Calcular el determinante de las matrices menores \rightarrow también tiene la forma $(P^0)^2 - m^2 - (\vec{P})^2 = 0$.

Solución

Uni-

camente 2 de las 4 componentes del espinor son independientes.

Sabiendo que esta relación se debe de cumplir, tenemos dos casos:

Caso(A)

$$P^{0} = (m^{2} + \vec{P}^{2})^{1/2}$$
$$\left\{-(m^{2} + \vec{P}^{2})^{1/2} + m\right\} a + P^{3} f + (P_{1} - iP_{2})g = 0$$
$$\left\{-(m^{2} + \vec{P}^{2})^{1/2} + m\right\} b + f(P_{1} - iP_{2}) - P^{3} g = 0$$

Si fijo dos de ellos, hago la propuesta:

1.

$$a = 1, \quad b = 0$$

2.

$$a = 0, \quad b = 1$$

Entonces

$$f = \frac{P_1}{(m^2 + \vec{P}^2)^{1/2} + m}, \qquad g = \frac{P_1 + iP_2}{(m^2 + \vec{P}^2)^{1/2} + m}$$

La constante de noramalización:

$$W_1 = N \begin{pmatrix} 1 \\ 0 \\ \frac{P_1}{(m^2 + \vec{P}^2)^{1/2} + m} \\ \frac{P_1 + iP_2}{(m^2 + \vec{P}^2)^{1/2} + m} \end{pmatrix}$$

y haciendo lo mismo para la segunda opción, el segundo espinor es:

$$W_2 = N \begin{pmatrix} 1 \\ 0 \\ \frac{-P_1 - iP_2}{(m^2 + \vec{P}^2)^{1/2} + m} \\ \frac{-P_1}{(m^2 + \vec{P}^2)^{1/2} + m} \end{pmatrix}$$

Repetri para $P^0 = -(m^2\vec{P}^2)^{1/2}$, partiendo que la energía es negativa. Donde escogemos las componentes f = 0, g = 1

$$W_3 = N \begin{pmatrix} \frac{P_1 - iP_2}{(m^2 + \vec{P}^2)^{1/2} + m} \\ \frac{P_1}{(m^2 + \vec{P}^2)^{1/2} + m} \\ - \\ 0 \\ 1 \end{pmatrix}$$

$$W_1 = N \begin{pmatrix} \frac{-P_3}{(m^2 + \vec{P}^2)^{1/2} + m} \\ \frac{-(P_1 + iP_2)}{(m^2 + \vec{P}^2)^{1/2} + m} \\ -\frac{1}{0} \end{pmatrix}$$

Esta fue la forma explicita, pero vamos a repetir lo mismo, haciendolo por bloques de 2×2 . Proponemos una solución:

$$\psi = u(P)e^{iPx}$$

$$(\partial^{\mu}P_{\mu} - m)u(P) = 0. \rightarrow (P - m)u = 0.$$

Encontramos los auto estados de energía para saber que es lo que nos estan representando, para ello despejamos el hamiltoniano:

$$Hu(P) = (\vec{\alpha} \cdot \vec{P} + \beta m)u = Eu$$

En la representación de Pauli -Dirac P=0 esto se simplifica, obtenemos directamente:

$$Hu = \beta mu = \begin{pmatrix} m\mathbb{I} & 0\\ 0 & -m\mathbb{I} \end{pmatrix} u$$

Veamos que tenemos 4 energías: $E = m, m_1, -m, -m_1$ Los que tienen energía positiva:

$$\begin{pmatrix} 1\\0\\0\\0 \end{pmatrix}$$
 , $\begin{pmatrix} 0\\1\\0\\0 \end{pmatrix}$ $E > 0$ Electrones

$$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad , \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \quad E < 0 \quad \text{Positrones}$$

Para $\vec{P} \neq 0$

$$Hu = \begin{pmatrix} m & \vec{\sigma} \cdot \vec{P} \\ \vec{\sigma} \cdot \vec{P} & -m \end{pmatrix} \begin{pmatrix} u_A \\ u_B \end{pmatrix} = E \begin{pmatrix} u_A \\ U_B \end{pmatrix}$$

Esto se reduce a:

$$mu_A + \vec{\sigma} \cdot \vec{P}u_B = Eu_A \quad \vec{\sigma} \cdot \vec{P}u_B = (E - m)u_A$$
 (I)

$$\vec{\sigma} \cdot \vec{P}u_A - mu_A = Eu_B \quad \vec{\sigma} \cdot \vec{P}u_A = (E+m)u_B \tag{II}$$

Para soluciones de, E > 0

$$u_A^{(s)} = \mathcal{X}^{(s)}, \quad \mathcal{X}^{(1)} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \mathcal{X}^{(2)} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

y despejando queda:

$$u_B^{(s)} = \frac{\vec{\sigma} \cdot \vec{P}}{E + m} \mathcal{X}^{(s)}$$

Ejercicio

Mostrar

$$(\vec{\sigma} \cdot \vec{P})^2 = \vec{P}^2 \mathbb{I}$$

Solución

Tomando el espinor: $u^{(s)} = \begin{pmatrix} \mathcal{X}^{(s)} \\ \frac{\vec{\sigma} \cdot \vec{P}}{E + m} \mathcal{X}^{(s)} \end{pmatrix}$

$$E\begin{pmatrix} \mathcal{X}^{(s)} \\ \frac{\vec{\sigma} \cdot \vec{P}}{E+m} \mathcal{X}^{(s)} \end{pmatrix} = \begin{pmatrix} m \mathbb{I} & \vec{\sigma} \cdot \vec{P} \\ \vec{\sigma} \cdot \vec{P} & -m \mathbb{I} \end{pmatrix} \begin{pmatrix} \mathcal{X}^{(s)} \\ \frac{\vec{\sigma} \cdot \vec{P}}{E+m} \end{pmatrix}$$
$$= \begin{pmatrix} m \mathcal{X}^{(s)} + \frac{\vec{\sigma} \cdot \vec{P}}{E+m} \mathcal{X}^{(s)} \\ \vec{\sigma} \cdot \vec{P} \mathcal{X}^{(s)} - \frac{m(\vec{\sigma} \cdot \vec{P})}{E+m} \mathcal{X}^{(s)} \end{pmatrix}$$

De la primera componente:

$$m\mathcal{X}^{(s)} + \frac{\vec{P}^2}{E+m}\mathcal{X}^{(s)} = m\mathcal{X}^{(s)} + \frac{E^2 - m^2}{E^2 + m}\mathcal{X}^{(s)}$$

= $m\mathcal{X}^{(s)} + (Ee - m)\mathcal{X}^{(s)} = E\mathcal{X}^{(s)}$

para la seguna componente tenemos:

$$(\vec{\sigma} \cdot \vec{P}) \left(1 - \frac{m}{E+m} \right) \mathcal{X}^{(s)} = (\vec{\sigma} \cdot \vec{P}) \frac{(E+m-m)}{E+m} \mathcal{X}^{(s)}$$
$$= E \frac{\vec{\sigma} \cdot \vec{P}}{E+m} \mathcal{X}^{(s)}$$

Para E < 0 Repetimos el mismo procedimiento, pero esta vez tenemos:

$$u_B^{(s)} = \mathcal{X}^{(s)} \to u_A = \frac{\vec{\sigma} \cdot \vec{P}}{E - m} u_B = -\frac{\vec{\sigma} \cdot \vec{P}}{|E| + m} \mathcal{X}^{(s)}$$

y obtenemos:

$$u^{(s)} = N \begin{pmatrix} \mathcal{X}^{(s)} \\ \frac{\vec{\sigma} \cdot \vec{P}}{E+m} \mathcal{X}^{(s)} \end{pmatrix} \qquad u^{(s)} = N \begin{pmatrix} -\frac{\vec{\sigma} \cdot \vec{P}}{|E+m|} \mathcal{X}^{(s)} \\ \mathcal{X}^{(s)} \end{pmatrix}$$
$$\mathcal{X}^{(s)} \to \mathcal{X}^{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad \mathcal{X}^{2} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Ejercicio

Verificar que los 4 espinores son ortogonales:

$$u^{(s)\dagger} + u^{(r)} = 0, \quad r \neq s$$

Solución

Un

operador que rompa la degeneración

$$\Sigma \cdot \hat{P} = \begin{pmatrix} \vec{\sigma} \cdot \hat{P} & 0 \\ 0 & \vec{\sigma} \cdot \hat{P} \end{pmatrix}, \quad \hat{P} = \frac{\vec{P}}{|\vec{P}|}$$

Ejercicio

Verificar que $\Sigma \cdot \hat{P}$ conmuta con H

2.16.2. Helicidad:

La proyección del espín en la dirección del momento, la defino como:

$$\frac{1}{2}\vec{\sigma}\cdot\hat{P}$$

$$\lambda = \begin{cases} \frac{1}{2} & \text{Helicidad positiva} \Rightarrow \\ -\frac{1}{2} & \text{Helicidad Negativa} & \Leftarrow \end{cases}$$

Recordemos que:

$$X^1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad X^2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

Para
$$\vec{P} = (0, 0, P)$$

$$\frac{1}{2}\sigma \cdot \hat{P}X^{3} = \frac{1}{2}\sigma_{3} \cdot \hat{P}X^{(s)} = \begin{pmatrix} 1/2 & 0\\ 0 & -1/2 \end{pmatrix}$$

Ejercicio

Calcular el espinor de helicidad 1/2 para un electrón con momento $P = (P\cos\theta, 0, P\sin\theta)$

¿Es la helicidad un buen numero cuántico?

Es un buen número cuántico cuando hablamos de partículas sin masa.

Ejercicio

Confirmar que la ecuación de Dirac describe partículas con momento angular intrínseco $\frac{1}{2}$ (espín 1/2)

1. Usando el conmutador $[x_i, P_j] = i\delta_{ij}$ mostrar

$$[H, L] = -i(\vec{\alpha} \times \vec{P})$$

2.

$$\Sigma = \begin{pmatrix} \sigma & 0 \\ 0 & \sigma \end{pmatrix} \qquad [H, \Sigma] = 2i(\vec{\alpha} \times \vec{P})$$

3. $J = L + 1/2\Sigma$ El operador de espín.

$$[H,J] = 0$$

2.17 Teoría de Perturbaciones No relativistas

Partícula libre independiente del tiempo.

$$H_0 \phi_n = E_n \phi_n$$

$$\int d^3 z \phi_n \phi_m^* = \delta_{nm}$$

En presencia de V, en notación de Schrodinguer:

$$(H_0 + V(\vec{x}, t))\psi = -i\frac{\partial \psi}{\partial t}$$
 | $V(\vec{x}, t) = \lambda H'$

La solución;

$$\psi = \sum_{n} a_n(t)\phi_n(\vec{x})e^{-iE_nt}$$

Sustituyendo:

$$(H_0 + V(\vec{x}, t)) \sum_n a_n(t) \phi_n(\vec{x}) e^{-iE_n t} = i \sum_n \frac{da_n(t)}{dt} \phi_n(\vec{x}) e^{-iE_n t} + \sum_n E_n a_n(t) \phi_n(\vec{x}) e^{-iE_n t}$$
$$i \sum_n \frac{da_n(t)}{dt} \phi_n(\vec{x}) e^{-iE_n t} = \sum_n V(\vec{x}, t) a_n(t) \phi_n(\vec{x}) e^{-iE_n t}$$

Multiplicamos por ϕ_f^* y integando $\int d^3x$

$$i\sum_{n} \frac{da_{n}(t)}{dt} e^{-iE_{n}t} \int \underbrace{d^{3}x \phi_{f}^{*} \phi_{n}(\vec{x})}_{\delta_{nf}} = i\frac{da_{f}(t)}{dt} e^{-iE_{f}t}$$

$$\frac{da_{f}(t)}{dt} = -i\sum_{n} a_{n}(t) \int d^{3}x \phi_{f}^{*}(\vec{x}) \phi_{n} e^{-i(E_{f} - E_{n})t}.$$

$$(H_0 + V(\vec{x}, t))\psi = i\frac{\partial \psi}{\partial t} \qquad | \quad H_0\phi_n = E_n\phi_n$$

$$\rightarrow \psi = \sum_n a_n(t)\phi_n(x)e^{-iE_nt} \qquad | \quad \int d^3x \phi_n^* \phi_m = \delta_{nm}$$

$$\rho = \psi^* \psi = \left(\sum_n a_n^*(t)\phi_n^*(\vec{x})e^{iE_nt}\right) \left(\sum_m a_m(t)\phi_m(x)e^{-iE_mt}\right)$$

$$= \sum_n \sum_m a_n^* a_m \phi_n^* \phi_m e^{iE_nt - iE_mt}$$

$$P = \int d^3x \rho = \sum_{m,n} a_n^* a_m \int d^3x \phi_n^* \phi_m e^{iE_nt - iE_mt}$$

$$= \sum_n |a_n|^2$$

$$\frac{da_f(t)}{dt} = -i\sum_n a_n(t) \int d^3x \phi_f^* V(\vec{x}, t)\phi_n(\vec{x})e^{i(E_f - E_i)t}.$$

$$H = H_0 + V(\vec{x}, t) = \underbrace{H_0 + \lambda H'}_{\text{Muy pequeño}}$$

Vamos a considerar, que el potencial es pequeño, perturbativo y transitorio. Siguiendo Halzen, tomando $t=(-\tau/2,\tau/2)$

A primer orden, tomando $t_{inicial} = -T/2$

$$a_i(-T/2) = 1$$

Interacción de tipo:

$$a_n(-T/2) = 0 \quad , \quad n \neq i$$

$$\frac{da_f}{dt} = -i\lambda \int_v d^3x \phi_f^* \underbrace{V(\vec{x,t})}_{H} \phi_i e^{i(E_f - E_i)t}$$

$$\int_{-T/2}^{t'} dt a_f(t) = -i \int_{-T/2}^{t'} dt \int_v d^3 x \phi_f^* V(\vec{x}, t) \phi_i e^{i(E_f - E_i)t}$$

$$\to a_f(t') - a_f({}^0/T/2) = -i \int_{-T/2}^{t'} dt \int_v d^3 x [\phi_f e^{-iE_f t}]^* V(\vec{x}, t) \phi_i e^{-iE_i t}$$

$$t_f = T/2$$

$$\to T_{fi}^{(1)} = a_f^{(1)} = -i \int_{-T/2}^{t'} dt' \int_v d^3 x [\phi_f e^{-iE_f t}]^* \underbrace{V(\vec{x}, t)}_{\lambda H'(x, t)} [\phi_i e^{-iE_i t}]$$

$$= -i \int d^4 x \phi_f^*(x) V(x) \phi(x)$$

Válido solo sí, $a_f(t) \ll 1$

$$\rightarrow \left|T_{f_i}^{(1)}\right|^2 = \left|a_f^{(1)}\right|^2 = \text{Probabilidad Transición}$$

Considerar un potencial independiente del tiempo: $T \to \infty$:

$$T_{fi} - iV_{fi} \int_{-\infty}^{\infty} dt e^{i(E_f - E_i)t}, \quad V_{fi} = \int d^3x \phi_f^*(x) \underbrace{V(x)}_{\lambda H'} \phi_i(x)$$
$$= -iV_{fi} \delta(E_f - E_i)$$

Es más útil definir la tasa de transición:

$$W = \lim_{T \to \infty} \frac{|T_{fi}|^2}{T}$$

$$W = \lim_{T \to \infty} \frac{2\pi |V_{fi}|^2}{T} \delta(E_f - E_i) \int_{-T/2}^{T/2} e^{i(E_f - E_i)t} dt$$

Recordemos que:

$$\int dE_f \delta(E_f - E_i) e^{i(E_F - E_i)t} = e^0$$

Entonces:

$$W = \lim_{T \to \infty} \frac{2\pi |V_{fi}|^2}{T} \delta(E_f - E_i) \underbrace{\int_{-T/2}^{T/2} dt}_{T}$$

$$W = 2\pi |V_{if}|^2 \delta(E_f - E_i)$$

$$W_{fi} = \int d_E f \rho(E_f) W = 2\pi |V_{fi}|^2 \rho(E_i). \quad \text{Regla de oro de Fermi.}$$

$$T_{ik} = -iV_{ik} \int_{0}^{T} dt' e^{i\Delta E_{ki}t'} = -\frac{V_{ki}}{\Delta E_{ki}} \left(e^{i\Delta E_{ki}t} - 1 \right)$$

$$T_{ki} = -\frac{V_{ki}}{\Delta E_{ki}} e^{\frac{i\Delta E_{ki}T}{2}} \underbrace{\left(e^{\frac{i\Delta E_{ki}t}{2}} - e^{\frac{i\Delta E_{ki}T}{2}} \right)}_{2\sin\left(\frac{\Delta E_{ki}t}{2}\right)}$$

$$T_{ik} = -\frac{2V_{ki}}{\Delta E_{ki}} e^{\frac{i\Delta E_{ki}t}{2}} \sin\left(\frac{\Delta E_{ki}t}{2}\right).$$

$$P(i \to k) = \frac{4|V_{ki}|^{2}}{(\Delta E_{ki})^{2}} \sin^{2}\left(\frac{\Delta E_{ki}t}{2}\right). \checkmark$$

Pico

$$\sin^{2}(x) = 1, \quad x = \frac{\pi}{2} + n\pi$$

$$\frac{\Delta E_{ik}t}{2} = \frac{\pi}{2}(1 + 2n)$$

$$\Delta E_{ki} = \frac{\pi}{t}(2n + 1) = (\frac{\pi}{t}, \frac{3\pi}{t}, \frac{5\pi}{t})$$

Vertices:

$$\sin^2(x) = 0 \quad x = \pi m$$
$$\Delta E_{ki} = \frac{2\pi m}{t} = (0, \frac{2\pi}{t}, \frac{4\pi}{t}, \dots)$$

En los picos

$$P = \frac{4\pi |V_{ki}|^2}{(\Delta E_{ki})^2} = \propto \frac{t^2}{\pi} |V_{ki}|^2$$

Tarea

Mostrar que en la siguiente aproximación

$$T_{fi} = -2\pi V_{fi}\delta(E_f - E_i) - 2\pi i \sum_{n \neq i} \frac{V_{fn}V_{ni}}{E_i - E_n + i\epsilon} \delta(E_f - E_i)$$

que en otras palabras

$$V_{fi} \to V_{fi} + \sum_{n \neq i} V_{fn} \frac{1}{E_i - E_n + i\epsilon} V_{ni}$$

2.18 Potencial que oscila en el tiempo: Radiación electro magnética.

Para incluir la presencia de un campo electro magnético:

$$P^{\mu} \rightarrow P^{\mu} - eA^{\mu}$$

Haciendo la sistitución o partiendo del hamiltoniano clásico:

$$-\frac{1}{2m}\nabla^2\psi - \underbrace{\frac{ie}{m}\vec{A}\cdot\vec{\nabla}\psi - \frac{ie}{2m}\psi\nabla\vec{A} + \frac{e^2\vec{A}^2}{2m}\psi}_{V(x)} = E\psi$$

Todo lo extra que me quede libre, porque es lo que puedo resolver con teoría de perturbaciones. Como el electromagnetismo es invariante gauge, El Gauge de Coulomb $\nabla \cdot \vec{A} = 0$:

$$V(x,t) = -\frac{ie}{m} \overbrace{\vec{A}}^{\text{fotones}} \cdot \nabla$$

Cuando hablamos de radiación electromagnética:

$$\nabla^2 \vec{A} - \frac{1}{c^2} \frac{\partial^2 A}{\partial t^2} = 0$$

Con
$$A_0 = (a+ib)\vec{\epsilon}$$
, $\vec{k} \cdot \vec{\epsilon} = 0$

$$A(x,t) = A_0 \exp\{i(\vec{k} \cdot \vec{\epsilon} - \omega t)\} + A_0^* \exp[-i(\vec{k} \cdot \vec{\epsilon} - \omega t)], \quad \omega = c |\vec{k}|$$

$$a_f^{(1)}(t) = \int_{t_0}^t dt' V_{fi}(t') e^{i(E_f - E_i)t}$$

$$V_{fi} = \int d^3 x \phi_f^* V(\vec{x}, t) \phi_i$$

$$= -\frac{ie}{m} \int d^3 x \phi_f^* \{\vec{A} \cdot \nabla\} \phi_i$$

$$\begin{split} V_{fi}(t) &= -\frac{ie}{m} \int d^3x \phi_f^* \left\{ \vec{A_0} e^{i\vec{k}\cdot\vec{x} - i\omega t} + \vec{A_0^*} e^{-i\vec{k}\cdot\vec{x} + i\omega t} \right\} \cdot \nabla \phi \\ &= -\frac{ie}{m} \left\{ e^{-i\omega t} \underbrace{\int d^3x \phi_f^* e^{-i\vec{k}\cdot\vec{x}} A_0 \cdot \nabla \phi_i}_{H_{fi}} + e^{i\omega t} \underbrace{\int d^3x \phi_f^* e^{i\vec{k}\cdot\vec{x}} A_0^* \cdot \nabla \phi_i}_{H_{fi}^*} \right\} \\ &= -\frac{ie}{m} \left\{ e^{-i\omega t} H_{fi} + ie^{i\omega t} H_{fi}^* \right\} \end{split}$$

Esto lo puedo reescribir como:

$$a_f^{(1)}(t) = -\frac{e}{m} H_{fi} \int_{t_0}^t dt' e^{-iwt} e^{i(E_f - E_i)t'} - \frac{e}{m} H_{fi}^* \int_{t_0}^t dt' e^{iwt'} e^{i(E_f - E_i)t'}$$
:

$$a_f^{(1)}(t) = \frac{2i\frac{e}{m}H_{fi}\sin[(E_f - E_o w)t/2]}{E_f - E_i - w}e^{i(E_f - E_i - w)t/2} + \frac{2ie}{m}\frac{H_{fi}^*\sin[(E_f - E_i + w)t/2]}{E_f - E_i + w}e^{i(E_f - E_i + w)t/2}$$

A tiempos muy largos la probabilidad de transición es muy grande solo para

$$E_f - E_i - w = 0 \tag{I}$$

$$E_f = E_i + w$$

Y

$$E_f - E_i + w = 0$$

$$E_f = E_i - w$$
(II)

De la tarea para revisar el nivel de cuantica, a segundo orden:

$$V_{fi} = \int d^3x \phi_\rho^* \underbrace{V(x)}_{\lambda H'} \phi_i$$

$$V_{fi} \to V_{fi} + \sum_{n \neq i} V_{fn} \frac{1}{E_i - E_n + i\epsilon} V_{ni} + \cdots$$

Dibujamos, asumiendo que \uparrow el tiempo en la coordenada yy \rightarrow al espacio:

- Por cada vértice aparece un término de interacción $|V_{ni}|$
- Por la propagación de un estado intermedio aparece un propagador:

$$\frac{1}{E_i - E_n}$$

Los estados intermedios, partículas virtuales, no se conserva la energía en los vértices.

2.19 Mecánica Cuántica Relativista

Formalismo de función de onda, ρ muchas partículas:

Partícula anti-partícula
$$\uparrow_{tiempo} e^+ \uparrow \equiv \downarrow e^-$$

2.20 Absorción de un fotón

Volvamos a las ecuaciones de interacción de una partícula con Radicación:

Partícula:

$$\int dt (e^{iE_f t})^* e^{-iwt} e^{-iE_i t} \to 2\pi \delta(E_f - w - E_i)$$
$$E_f = E_i + w$$

Anti-Parícula

$$\int dt [e^{-(-iE_f)t}]^* e^{-iwt} e^{-i(-E_f)t} \to 2\pi \delta(-E_i - w + E_f)$$
$$E_f = E_i + w$$

Una partícula cargada relativista en presencia de un potencial electromagnético: Ecuación de Klein-Gordon,

$$\begin{split} (\partial^\mu\partial_\mu-m^2)\phi&=0\quad \phi=\text{ sol. ec. de la partícula libre}\\ \partial^\mu&\to\partial^\mu+iqA^\mu\\ (\partial^\mu\partial_\mu-m^2)\phi&=0\to[(\partial^\mu-ieA^\mu)(\partial_\mu-ieA_\mu)-m^2]\phi=0\\ [\partial^\mu\partial_\mu-ieA^\mu\partial_\mu-ie\partial^\mu A_\mu-e^2A^\mu A_\mu-m^2]\phi&=0 \end{split}$$

Reescribiendo:

$$[\partial^{\mu}\partial_{\mu} - m^{2}]\phi = -V\phi$$
$$V = -ie(\partial_{\mu}A^{\mu} + A^{\mu}\partial_{\mu}) - e^{2}A^{2}$$

Despreciamos el término $\propto e^2$

Tarea

Mostrar que puedo resolverlo con teoría de perturbaciones.

Solución

$$T_{fi}^{1} = -i \int d^{4}x [\phi_{f}e^{-iE_{f}t}]^{*}V(x)[\phi_{i}e^{-iE_{i}t}]$$

$$T_{fi}^{1} = -i \int d^{3}x dt \underbrace{[\phi_{f}e^{-iE_{f}t}]^{*}}_{\varphi_{f}^{*}} (A^{\mu}\partial_{\mu} + \partial_{\mu}A^{\mu}) \underbrace{[\phi_{i}e^{-iE_{i}t}]^{*}}_{\varphi_{i}}$$

Reescribiendo:

$$\varphi_f^* \partial_\mu (A^\mu \varphi_i) = \partial_\mu (\varphi_f^* A^\mu \varphi_i) - (\partial_\mu \varphi_f^*) A^\mu \varphi_i$$

Entonces, puedo escribir:

$$\int d^4x \varphi_f^* \partial_\mu (A^\mu \varphi_i) = -\int d^4x (\partial_\mu \varphi_f^*) A^\mu \varphi_i$$

Sustituyendo:

$$T_{fi} = i(ie) \int d^4x \left\{ \phi_f^* A^\mu \partial_\mu \varphi_i - (\partial_\mu \varphi_f^*) A^\mu \varphi_i \right\}$$
$$= -i \int d^4x \mathcal{J}_\mu^{fi} A^\mu, \quad \mathcal{J}_\mu^{fi} = -ie \{ \phi_f^* (\partial_\mu \varphi_i) - (\partial_\mu \varphi_f^*) \varphi_i \}$$

 $\to \mathcal{J}_{\mu}^{fi}$: corriente de carga.

21 de marzo

$$T_{fi}^{(1)} = -i \int d^4x \left[\phi_f e^{-iE_f t} \right]^* V(x) \left[\phi_i e^{-iE_i t} \right]^*$$

$$T_{fi}^{(1)} = -i \int d^4x \underbrace{\left[\phi_f e^{-iE_f t} \right]^*}_{\varphi_f^*} \left(A^\mu \partial_\mu + \partial_\mu A^\mu \right) \underbrace{\left[\phi_i e^{-iE_i t} \right]^*}_{\varphi_i}$$

Reescribiendo esto:

$$\varphi_f^* \partial_\mu (A^\mu \varphi_i) = \partial_\mu \left(\varphi_f^* A^\mu \varphi_i \right) - (\partial_\mu \varphi_f^*) A^\mu \varphi_i$$

Entonces, puedo escribir:

$$T_{fi} = i(ie) \int d^4x \{ \phi_f^* A^\mu \partial_\mu \varphi_i - (\partial_\mu \varphi_f^*) A^\mu \varphi_i \}$$

= $-i \int d^4x \mathcal{J}_\mu^{fi} A^\mu \quad , \quad \mathcal{J}_\mu^{fi} = -ie \{ \phi_f^* (\partial_\mu \varphi_i) - (\partial_\mu \varphi_f^*) \varphi_i \}$

 $\to \mathcal{J}_{\mu}^{fi}$: Corriente de carga.

$$\varphi_i = N_i e^{-iP_i \cdot x}$$

$$\varphi_f = N_f e^{-ip_f \cdot x}$$

$$\mathcal{J}_{\mu}^{fi} = -eN_f N_i (P_i + P_f)_{\mu} e^{i(P_f - P_i) \cdot x}$$

 $\rightarrow A + B \rightarrow C + D$

Las ecuaciones de Maxwell

$$\Box A^{\mu} = J^{\mu}_{(2)}$$

$$J^{\mu}_{(2)} = -ieN_D N_B (P_D + P_B) e^{i(P_D - P_B)x}$$

$$\Box(e^{iq\cdot x}) = -q^2 e^{iq\cdot x}$$

 $A^{\mu} = -\frac{1}{q^2} \mathcal{J}^{\mu}_{(2)}, \quad q = P_D - P_B$

Sustituyendo:

$$T_{fi} = \int d^4x \mathcal{J}_{\mu}^{(1)} A^{\mu} = \int d^4x \mathcal{J}_{\mu}^{(1)} \left(-\frac{1}{q^2} \mathcal{J}_{(2)}^{\mu} \right)$$

$$T_{fi} = -i \int d^4x e^2 N_A N_B N_C N_D (P_A + P_C)_\mu \left(-\frac{1}{q^2} \right) (P_B + P_D)^\mu \underbrace{e^{i(P_C - P_A + P_D - P_B)}}_{(2\pi)^4 \delta^4 (P_D + P_C - P_B - P_A)}$$

$$T_{fi} = -i N_A N_B N_C N_D (2\pi)^4 \delta^4 (P_B + P_C - P_B - P_A) \mu$$

$$-i \mu = \left[i e (P_A + P_C)^\mu \right] \left(-\frac{\eta_{\mu\nu}}{q^2} \right) \left[i e (P_B + P_D) \right]^\nu. \quad q = P_D - P_B$$

 $\rightarrow \delta^4(~~)$ Representa la conservación de energía y momento.

El scattering entre un e^- y un μ^- a orden

$$e^2$$

 Por cada intercambio (propagador) de fotón

$$-\frac{\eta_{\mu\nu}}{q^2}$$

 La conservación de energía y momento en el vértice.

$$P = (E, P), \quad P^{\mu}P_{\mu} = E^2 - P^2 = m^2 = P^2$$

•

• $q^2 \neq 0$ en general, $q = P_D - P_B$, decimos que el fotón es virtual.

■ Por cada vértice asociamos un término proporcional a e y a la suma de los cuadrimomentos conectados al vértice.

$$\begin{split} &-i\int d^4x A^\mu \mathcal{J}_\mu \\ &\square A^\mu = |_{(2)}^\mu \\ &T_{fi} = -iN_A N_B N_C N_D (2\pi)^4 \delta^4 (P_A + P_B - P_C - P_D) \mu \\ &-i\mu = \underbrace{[ie(P_A + P_C)^\mu]}_{\text{v\'ertices}} \underbrace{\left(-\frac{i\eta_{\mu\nu}}{q^2}\right)}_{\text{Propoagadores}} \underbrace{[ie(P_B + P_D)^\nu]}_{\text{v\'ertice}} \end{split}$$

$$ie(P_i + P_f)^{\mu}$$

$$-\frac{i\eta_{\mu\nu}}{q^2}$$

 \boldsymbol{q} : por conservación de energía-momento

2.21 El origen del propagador

$$\rightarrow T_{fi}^{(2)} = -i \sum_{n \neq j} V_{fn} \frac{1}{E_i - E_n} V_{ni} 2\pi \delta(E_f - E_i)$$

Cómo puedo pasar

$$\frac{1}{E_i - E_n} \to \frac{1}{(P_A + P_B)^2} \quad ?$$

Consideremos e^-e^+

$$\mu = V_{in} \frac{1}{E_i - E_{\gamma}} V_{nf} + V_{in} \frac{1}{E_i - \underbrace{E_i + E_f + E_{\gamma}}_{2E_i + E_{\gamma}}}$$

$$\mu = V_{in} \left(\frac{1}{E_i - E_{\gamma}} - \frac{1}{E_i + E_{\gamma}} \right) V_{fn}$$

$$= V_{in} \left(\frac{E_i + E_f - E_i + E_{\gamma}}{E_i^2 - E_{\gamma}^2} \right) V_{nf} = V_{in} \left(\frac{2E_{\gamma}}{E_i^2 - E_{\gamma}^2} \right) V_{nf}$$

- ⇒ La energía no se conserva, se conserva el momento.
 - \Rightarrow Las partículas son físicas $P^2=m^2$

$$(E_i)^2 = (P_i)^2 + (\vec{P}_i)^2 = (P_A + P_B)^2 + (\vec{P}_A + \vec{P}_B)^2$$

$$(E_\gamma) = m\gamma^2 + (\vec{P}_\gamma)^2, \quad \vec{P}_\gamma = \vec{P}_A + \vec{P}_B$$

$$\frac{1}{E_i^2 - E_\gamma} = \frac{1}{(P_A + P_B)^2 + (\vec{P}_A + \vec{P}_B)^2 - m\gamma^2 - (\vec{P}\gamma)^2} = \frac{1}{(P_A + P_B)^2 - m\gamma^2} \to \frac{1}{q^2}$$

Para el proceso: $\gamma e^- \to \gamma e^-$ V

- EL momento se conserva pero la energía no.
- Las partículas intermedias Están siempre en la capa de masas $(P^2 = m^2)$.

- Los cuadrimomentos se conservan en el vértice.
- La partícula intermedia no está en la capa de masas.

25 de marzo

Se discute lo visto en la clase del 21 de marzo, para la interacción $e^-\mu^- \to e^-\mu^-$

$$e^-\mu^- \to e^-\mu^-$$

2.22 Scattering de Electrones

$$-\mu_{e^-e^-\to e^-e^-} = ie(P_A + P_C)^{\mu} \frac{-i\eta_{\mu\nu}}{(P_D - P_B)^2} ie(P_B + P_D)^{\nu} + ie(P_A + P_D)^{\mu} \frac{-i\eta_{\mu\nu}}{(P_C - P_B)^2} ie(P_B + P_C)^{\nu}$$

Notar que hay una simetría con respecto de $C \leftrightarrow D$, nos asegura una simetría $A \leftrightarrow B$.

$$-i\mu_{e^-e^-\to e^-e^-} = -i\left(-\frac{e^2(P_A + P_C)^{\mu}(P_B + P_D)_{\mu}}{(P_D - P_B)^2} - \frac{e^2(P_A + P_D)^{\mu}(P_B + P_C)_{\mu}}{(P_C - P_B)^2}\right)$$

Scattering electrón- positrón ($e^-e^+ ightarrow e^-e^+$) 2.23

$$-i\mu_{e^-e^+\to e^-e^+} = -i\left(\frac{-e(P_A + P_C)^{\mu}(-P_B - P_D)_{\mu}}{(p_B - P_D)^2} - \frac{e^2(P_A - P_B)_{\mu}(P_C - P_D)^{\mu}}{(P_C + P_D)^2}\right)$$

Simetría $P_C \leftrightarrow -P_B$

Ejercicio

Verificar:

$$\mu_{e^+e^-\to e^+e^-}(P_A,P_B,P_C,P_D) = \mu_{e^-e^-\to e^-e^-}(P_A,-P_D,P_C,-P_B)$$

Tarea

Usando las reglas de Feynmann para obtener la amplitud de los procesos:

- $\bullet e^-\mu^+ \to e^-\mu^+$
- $\bullet e^+e^- \to \mu^-\mu^+$

28 de marzo

2.24 Sección Eficaz

Función de onda de la partícula libre

$$\phi = Ne^{-ip \cdot x}$$

Recordemos que la densidad de probabilidad para partículas de espín 0

$$\rho = 2E|N|^2$$

 \rightarrow El que sea proporciona a la energía compensa la contracción de volumen y nos deja el número total de partículas invarainte.

Vamos a escoger la normalización para que existan 2E partículas por unidad de volumen V

$$\int_V dV \rho = 2E \to N = \frac{1}{\sqrt{V}}$$

Para un proceso $A + B \rightarrow C + D$, calculamos la transición por unidad de tiempo y volumen.

$$W_{fi} = \frac{\left| T_{fi} \right|^2}{TV}$$

Donde

$$T_{fi} = -iN_A N_B N_C N_D (2\pi)^4 \delta^4 (P_C + P_D - P_A - P_B) \mu$$

Al elevar al cuadrado T_{fi} dejamos una de las deltas como la integral de una función exponencial. Al utilizar $\delta^4(\sum P_i)$ para evaluar la función exponencial dando como resultado la integral de volumen y tiempo (TV):

$$W_{fi} = \frac{\frac{1}{V4}(2\pi)^4 \delta^4 (P_C + P_D - P_A - P_B)(TV)|\mu|^2}{TV}$$

$$W_{fi} = \frac{(2\pi)^4 \delta^4 (P_C + P_D - P_A - P_B)|\mu|^2}{V^4}$$

Sección eficaz = $\frac{W_{fi}}{\text{flujo inicial}}$ (número de estados finales) Número de estados finales en un volumen V:

Primero, vamos mostrar que dtdv es un invariante. Consideremos dos sistemas de referencia, uno en reposo \mathcal{O}_x y otro que se mueve a velocidad v, \mathcal{O}_y

$$y^{\mu} = \Lambda^{\mu}_{\ \nu} x^{\nu}$$

Para pasar del diferencial de volumen d^4x hacemos un cambio de variable:

$$\int d^4x \Rightarrow \int d^4y \left| \frac{\partial y^{\mu}}{\partial x^{\alpha}} \right|, \quad \frac{\partial y^{\mu}}{\partial x^{\alpha}} = \Lambda^{\mu}_{\nu} \frac{\partial x^{\nu}}{\partial x^{\alpha}} = \Lambda^{\mu}_{\alpha}$$

El jacobiano es el determinante de Λ , que sabemos para las transformaciones de lorentz propias y homogéneas = 1.

Ejercicio

4.1 de Halzen:

Para un volumen $V=L^3$ mostrar que el número de estados de momento permitidos en un rango $P_x, P_x + dP_x$ es $\frac{L}{2\pi}dP_x$

Número de estados finales/partícula = $\frac{Vd^3P}{(2\pi)^32E}$ Número de estados finales = $\frac{Vd^3P_c}{(2\pi)^32E_c}\frac{Vd^3P_D}{(2\pi)^32E_D}$ Respecto al flujo inicial, en el sistema de referencia del laboratorio: Número de partículas atravesando una unidad de área por unidad de tiempo:

$$\left|\vec{V}_A\right| \frac{2E_A}{V}$$

Por lo que el flujo inicial = $\left| \vec{V}_A \right| \frac{2E_A}{V} \frac{2E_B}{V}$ Al sustituir los factores de volumen se cancelan:

$$d\sigma = \frac{|\mu|^2}{F}dQ$$

¿ Esto es invariante Lorentz?

2.25 La ecuación de Pauli

$$\underbrace{\frac{1}{2m}\vec{P}^2\psi = E\psi}_{\text{partícula libre}} \rightarrow \left\{ \vec{P} \rightarrow \vec{P} + e\vec{A} \atop P^0 \rightarrow P^0 + e\phi \right. \\ \left. \rightarrow \underbrace{\frac{1}{2m}(\vec{P} + e\vec{A})^2\psi = E\psi}_{\text{No término de espín}} \right|_{\phi=0}$$

Ecuación de Pauli
$$\{\frac{1}{2m}(\vec{P}+e\vec{A})^2+\frac{e}{2m}\vec{S}\cdot\vec{B}\}\psi=E\psi$$

Pero $\psi=\phi(x)\mathcal{X}$

El término

$$(\vec{P} + e\vec{A})^2 \psi \to \left(-\frac{\nabla^2 \psi}{2m} + \underbrace{\frac{e}{2m} \vec{B} \cdot \vec{L}}_{\text{E potencial}} + \frac{e^2}{2m^2} A^2 \right) \psi$$
$$\vec{M} = -\frac{e}{2m} \vec{L}$$

De forma análoga puedo proponer que la energía a autovalores $\pm \frac{1}{2}$ de S_z .

Para $\vec{B} = (0, 0, B)$

$$\frac{eB}{2m}S_z$$
 donde $[S_i, S_j] = i\epsilon_{ijk}S_k$

Pero el valor observado e el doble para autovalores $\pm \frac{1}{2}$ de S_z

$$\frac{geB}{2m}S_z$$
 g : Razón giromagnética del electrón
$$g\approx 2$$

Uno de los triunfos de la ecuación de Dirac es predecir g=2 . El término asociado al espín:

$$\left(\frac{e}{2m}\vec{\sigma}\cdot\vec{B}\right)\psi \quad \psi = \phi(x)\chi$$

La ecuación de DIrac:

 \rightarrow En el límite no relativista $\psi = u(p) e^{-iP\cdot x}$

$$Hu = (\vec{\alpha} \cdot \vec{P} + \beta m)u = Eu$$
$$= \begin{pmatrix} m & \vec{\sigma} \cdot \vec{P} \\ \vec{\sigma} \cdot \vec{P} & -m \end{pmatrix} \begin{pmatrix} u_A \\ u_B \end{pmatrix} = E \begin{pmatrix} u_A \\ u_B \end{pmatrix}$$

que se puede reescribir como:

$$\vec{\sigma} \cdot \vec{P}u_B = (E - m)u_A$$
$$\vec{\sigma} \cdot \vec{P}u_A = (E + m)u_B$$

Cimparemos el tamañano de los espinores:

$$(\vec{\sigma} \cdot \vec{P})^2 |u_B|^2 = (E - m)^2 |u_A|^2$$

$$\frac{|u_B|^2}{|u_A|^2} = \frac{(E - m)^2}{P^2} \xrightarrow{N.R.} \frac{(m + \frac{P^2}{2m} - m)^2}{P^2} = \frac{P^2}{4m^2} = \frac{v}{4}$$

3 1 de abril

3.0.1. Ecuación de dirac

En el límite no- relativista de la ecuación de Dirac

$$\psi = \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}, \quad \frac{|\psi_A|}{|\psi_B|} \propto \frac{c}{v}$$

La ecuación de Dirac P' partícula cargada en presencia A^{μ}

$$P^{\mu} \Rightarrow P^{\mu} + eA^{\mu}$$

$$\begin{pmatrix} \mathbb{I}_{2\times 2}m & \sigma\cdot(\vec{P}+e\vec{A}) \\ \sigma\cdot(\vec{P}+e\vec{A}) & -m\mathbb{I}_{2\times 2} \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = (E+eA^0) \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$
$$(m-eA^0)\psi_A + \sigma\cdot(\vec{P}+e\vec{A})\psi_B = E\psi_A$$
$$\sigma\cdot(\vec{P}+e\vec{A}) - (m+eA^0)\psi_B = E\psi_B \quad \leftarrow$$

En el límite No relativista $m\gg eA^0$, m $m\gg E_{\rm Kin}^{\rm NR},\,E=m+E_{\rm Kin}^{\rm NR}$

$$\sigma \cdot (\vec{P} + e\vec{A})\psi_A = \underbrace{(E + m + eA^0)\psi_B}_{m + 2E_{\text{Kin}}^{NR} = 2m}$$

$$\psi_B = \underbrace{\frac{\sigma \cdot (\vec{P} + e\vec{A})}{2m}\psi_A}_{m + 2E_{\text{Kin}}^{NR} = 2m}$$

Sustituyendo:

$$[\sigma \cdot (\vec{P} + e\vec{A})][\sigma \cdot (\vec{P} + e\vec{A})]\psi_A = 2m(E - meA^0)\psi_A$$

$$[\sigma \cdot (\vec{P} + e\vec{A})][\sigma \cdot (\vec{P} + e\vec{A})] = (\vec{\sigma} \cdot \vec{P})(\vec{\sigma} \cdot \vec{P}) + e(\sigma \cdot \vec{P})(\vec{\sigma} \cdot \vec{A}) + e(\sigma \cdot \vec{A})(\vec{\sigma} \cdot \vec{P}) + e^{2}(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{A})$$
Pero
$$(\vec{\sigma} \cdot \vec{P})(\vec{\sigma} \cdot \vec{P}) = P^{2}$$

$$= \vec{P}^{2} + e^{2}\vec{A}^{2} + e[(\vec{\sigma} \cdot \vec{P})(\vec{\sigma} \cdot \vec{A}) + (\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{P})]$$

Tomando solo el último término:

$$\begin{split} (\vec{\sigma} \cdot \vec{P})(\vec{\sigma} \cdot \vec{A}) + (\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{P}) &= \sigma^i P^i \sigma^j A^j + \sigma^i A^i \sigma^j P^j \quad ij = 1, 2, 3 \\ &= \mathbb{I} \vec{P} \cdot A + \mathbb{I} \vec{A} \cdot \vec{P} + \sigma^i \sigma^j (P^i A^j + A^i P^j)_{i \neq j} \\ \sigma^i \sigma^j P^i A^j + \sigma^j \sigma^i P^j A^i &= i \epsilon^{ijk} \sigma^k (P^i A^j - P^j A^i)_{i < j} \\ &= i \sigma^k [\epsilon^{ijk} (P^i A^j - P^j A^i)]_{i < j} \\ &= i \sigma \cdot (\vec{P} \times \vec{A}) \\ \sigma^i \sigma^j A^j P^i \Big|_{i \neq j} &= i \sigma \cdot (\vec{A} \times \vec{P}) \end{split}$$

$$\sigma^i P^i \sigma^j A^j = \underbrace{i\epsilon_{ijk} P^i A^j}_{(P \times A)_k} \sigma_k$$

Tarea

Mostrar que:

$$(\vec{P} \times \vec{A} + \vec{A} \times \vec{P})\psi = -i\nabla \times A\psi = -iB\psi$$

Sustituyendo

$$i\sigma \cdot (\vec{P} \times \vec{A} + A \times \vec{P})\psi = \vec{\sigma} \cdot \vec{B}$$

Uniendo todas las partes:

$$[\sigma\cdot(\vec{P}+\vec{A})][\sigma\cdot(\vec{P}+\vec{A})] = (\vec{P}+e\vec{A})^2 + e\vec{\sigma}\cdot\vec{B}$$

3.0.2. El límite no relativista de la ecuación de dirac.

$$P^{\mu} \rightarrow P^{\mu} + eA^{\mu}$$

$$[\sigma(\vec{P} + \vec{A})][\sigma \cdot (\vec{P} + \vec{A})] = (\vec{P} + e\vec{A})^2 + e\vec{\sigma} \cdot \vec{B}$$

Sustituyendo

$$\{(P + e\vec{A})^2 + e\vec{\sigma} \cdot \vec{B}\}\psi_A = \underbrace{(E + m)}_{2m}(E - m + eA^0)\psi_A$$

No relativista:

$$E = m + E_{\text{Kin}}^{\text{NR}}, \quad m \gg E_{\text{Kin}}^{\text{NR}}, \quad m \gg eA^0$$

Sustituyendo:

$$\{(P+e\vec{A})^2+e\vec{\sigma}\cdot\vec{B}\}\psi_A=2m(E_{\rm Kin}^{NR}+eA^0)\psi_A\bigg|\psi=\phi(x)\chi$$

$$\bigg[\frac{1}{2m}(P+e\vec{A})^2+\frac{e}{2m}\vec{\psi}\cdot\vec{B}-eA^0\bigg]\psi_A=E_{\rm Kin}^{\rm NR}\psi_A.$$

 ψ no es una función escalara, lo debo de escribir como :

$$\psi = \phi(x)\chi$$

$$\vec{\mu} = -\frac{e}{2m}\vec{L}.$$

Resultado muy importanta:

$$\vec{\mu} = -\frac{e}{m}\vec{\sigma} = -g\frac{e}{2m}\vec{S}$$

Donde

$$q=2$$
.

Esta es la razón giro-magnética del electrón. El valor experimental es g=2,000232

$$g = 2 + \frac{\alpha}{\pi}$$

Hasta orden α^3

$$\left(\frac{g-2}{2}\right) = (1159655, 4 \pm 3, 3) \times 10^{-9}$$

$$\left(\frac{g-2}{2}\right)_{\text{exp}} = (1159657 \pm 3.5) \times 10^{-9}$$

Ejercicio Importante

Ejercicio 8.4 de Aitchison

P8.4 Consider an electron moving in an electrostatic potential $A^{0}(x)$, the steady-state equation being

$$E\psi = (c\alpha \cdot \hat{p} + \beta mc^2 + V)\psi, \qquad V = -eA^0(x)$$

Perform a reduction to 'large components' (analogous to that in section 8.6) by the following steps.

(a) Writing $E = mc^2 + E'$, $\psi = \begin{pmatrix} \Psi \\ \Phi \end{pmatrix}$, show that

$$(E' - V)\Psi = c\sigma \cdot \hat{\mathbf{p}}\Phi$$

$$(2mc^2 + E' - V)\Phi = c\sigma \cdot \hat{p}\Psi$$

(b) By expressing Φ in terms of Ψ , and keeping terms of first order in $(E-V)/2mc^2$ only, show that Ψ satisfies the equation

$$(E'-V)\Psi = \frac{1}{2m}\mathbf{\sigma}.\,\hat{\mathbf{p}}\left\{1 - \frac{(E'-V)}{2mc^2}\right\}\mathbf{\sigma}.\,\hat{\mathbf{p}}\Psi$$

(c) Prove that $\sigma \cdot \nabla V(x) \sigma \cdot \nabla = \nabla V(x) \cdot \nabla + i \sigma \cdot (\nabla V(x) \times \nabla) + V(x) \nabla^2$ and use this result to reduce the equation derived in (b) to

$$(E'-V)\Psi = \left\{ \left(1 - \frac{E'-V}{2mc^2}\right) \frac{\hat{\mathbf{p}}^2}{2m} - \frac{\mathrm{i}\hbar}{4m^2c^2} \nabla V \cdot \hat{\mathbf{p}} + \frac{\hbar}{4m^2c^2} \sigma \cdot (\nabla V \times \hat{\mathbf{p}}) \right\} \Psi$$

Thus $E'\Psi = \hat{\mathbf{p}}^2/2m + V + \text{terms of order } \mathbf{v}^2/c^2$. Deduce that to order \mathbf{v}^2/c^2 we can write

$$E'\Psi = \left\{ \frac{\hat{\mathbf{p}}^2}{2m} - \frac{\hat{\mathbf{p}}^4}{8m^2c^2} + V - \frac{i\cancel{n}}{4m^2c^2} \nabla V \cdot \hat{\mathbf{p}} + \frac{\cancel{n}}{4m^2c^2} \sigma \cdot (\nabla V \times \hat{\mathbf{p}}) \right\} \Psi$$

(d) Show that, if V = V(r), (r = |x|) the last term in the above equation is the spin-orbit interaction

$$\frac{1}{r} \frac{\mathrm{dV}}{\mathrm{d}r} \frac{\mathbf{S} \cdot \hat{\mathbf{L}}}{2m^2 c^2} \Psi$$

where $S = \frac{1}{2}\hbar\sigma$.

(e) This is not quite the whole story, however. The quantity multiplying Ψ on the right-hand side of the third equation of part (c) ought, presumably, to be the Hamiltonian, to this order in v/c (namely, to order v^2/c^2). But it contains non-Hermitian terms (which?). This means that the 'total probability' $\int \Psi^{\dagger} \Psi \ d^3 x$ would not be conserved. The reason (and the remedy) for this is well explained by Baym (1969). The true probability density is $\psi^{\dagger} \psi$, where $\psi = \begin{pmatrix} \Psi \\ \Phi \end{pmatrix}$; to order v^2/c^2 this is

 $\Psi^{\dagger}(1+\hat{\mathbf{p}}^2/4m^2c^2)\Psi$, not $\Psi^{\dagger}\Psi$ itself. We therefore expect that, if we define the wave function Ψ' by $\Psi'=(1+\hat{\mathbf{p}}^2/4m^2c^2)^{1/2}\Psi=(1+\hat{\mathbf{p}}^2/8m^2c^2)\Psi$ to this order, then Ψ' would satisfy an equation of the form of part (c) but with a Hermitian Hamiltonian. Check that this is so, by showing that $\hat{\mathbf{p}}^2V\Psi'-V\hat{\mathbf{p}}^2\Psi'=-\hbar^2(\nabla^2V)\Psi-2i\hbar\nabla V.\hat{\mathbf{p}}\Psi'$ and using this result to deduce that

$$E' \Psi' = \left\{ \frac{\hat{\bf p}^2}{2m} \; - \frac{\hat{\bf p}^4}{8m^2c^2} \; + \frac{{\rlap/} \pi^2}{8m^2c^2} \; {\bf \nabla}^2 V \; + \frac{{\rlap/} \pi}{4m^2c^2} \; {\bf \sigma} \; . \; ({\bf \nabla} V \times \hat{\bf p}) \right\} \Psi'$$

La ecuación de Dirac para $u(\vec{p}) /\!\!/ A = \gamma^{\mu} A_{\mu}$

$$(P - m)u(\vec{p}) = 0$$

71

Para $v(\vec{p})$

$$(-P - m)u(-\vec{p}) = 0$$

 $(P + m)v(\vec{p}) = 0, P^0 = E > 0$

3.0.3. Operador de carga

$$[\gamma^{\mu}(i\partial_{\mu} + eA_{\mu}) - m]\psi = 0 \quad \checkmark$$

Debe de debería poder escribir la ecuación de Dirac, para positrnes:

$$[\gamma^{\mu}(i\partial_{\mu} - eA_{\mu}) - m]\psi_c = 0 \quad \leftarrow \quad \checkmark$$

Necesitamos encontrar una transformación que cambie de signo el término proporcional a e.

$$([\gamma^{\mu}(i\partial_{\mu} + eA_{\mu}) - m]\psi)^* = 0$$

$$[(-)\gamma^{\mu*}(i\partial_{\mu} - eA_{\mu}) - m]\psi^* = 0$$

Un operador que satisfaga

$$\Rightarrow -(C\gamma^{0})\gamma^{\mu*} = \gamma^{\mu}(c\gamma^{0}) \qquad \psi_{c} = C\gamma^{0}\psi^{*} = c(\psi^{\dagger}\gamma^{0})^{T}$$

$$\psi_{c} = C\overline{\psi}^{T}.$$

$$O[-\gamma^{\mu*}(i\partial_{\mu} - eA_{\mu}) - m]\psi^{*} = 0$$

$$-O\gamma^{\mu*} = \gamma^{\mu}O \quad -m\underbrace{O\psi^{*}}_{\psi_{c}} = 0, \quad \psi_{c} = O\psi^{*}$$

$$\gamma^{\mu} \quad (i\partial_{\mu} - eA_{\mu})\underbrace{O\psi^{*}}_{\psi_{c}} = 0$$

Tarea

En la representación de Pauli-Dirac. Mostrar que una opción para C es:

$$C\gamma^0 = i\gamma^2 = \begin{pmatrix} 0 & 0 & 0 & 1\\ 0 & 0 & -1 & 0\\ 0 & -1 & 0 & 0\\ 1 & 0 & 0 & 0 \end{pmatrix}$$

Ejercicio

$$\begin{split} C^{-1}\gamma^{\mu}C &= (-\gamma^{\mu})^T \\ C &= -C^{-1} = -C^{\dagger} = -C^T \\ \overline{\psi}_c &= -\psi^T C^{-1} \end{split}$$

3.1 4 de abril

3.1.1. Antipartículas

$$\mathcal{U}^{(1,2)}e^{-ipx}$$
 Electrones, con $E > 0$

recordemos la interpretación de Feynamnnn - Stückelberg.

$$\begin{array}{c|c} \text{Ecuación K-G} \\ \mathcal{J}^{\mu} = -ie(\phi^*\partial^{\mu}\phi - \phi\gamma^{\mu}\phi^*) \\ = -2e\mathcal{P}^{\mu} \\ \end{array} \left| \begin{array}{c} e^-:E,\vec{P} \rightarrow \mathcal{J}^{\mu}(e^-) = 2e|N|^2(E,\vec{P}) \\ \text{Positrón} \\ e^+:\vec{E},\vec{P} \rightarrow \mathcal{J}^{\mu}(e^+) = 2e|N|^2(\vec{E},\vec{P}) \\ = -2e|N|^2(-\vec{E},-\vec{P}) \end{array} \right|$$

$$\mathcal{U}^{(3,4)}(-\vec{P})e^{-i(-P)x} \equiv \mathcal{V}^{2,2}e^{+iPx}.$$

Para $\mathcal{V}^{1,2}$, $P^0 = E > 0$

La ecuación de Dirac para $u(p) \not A = \gamma^{\mu} A_{\mu}$

$$(P - m)u(\vec{P}) = 0$$

para $v(\vec{p})$

$$(-P - m)u(-\vec{P}) = 0$$

 $(P + m)v(\vec{P}) = 0. \quad P^0 = E > 0$

3.1.2. Covarianza

 \rightarrow Para la ecuación de Schrödinger sea covariante: $\phi'(x') = \phi(x)$.

$$\psi(x) = \phi(x) \mathcal{X}_{1/2}$$

Entonces

$$\phi'(\vec{r}) = \phi(R^{-1}\vec{r}). \quad \vec{r}' = R\vec{r}$$

$$\phi' = u\phi$$

$$u\phi(x, y, z) = \phi(\underbrace{R^{-1}\vec{r}}_{r'} \approx \phi(x + \epsilon y, y - \epsilon x, z), \quad \epsilon \ll 1$$

Expansión para ϕ en términos de ϵ .

$$\begin{split} \approx \phi(x,y,z) + \epsilon \bigg(\frac{\partial \phi}{\partial x}y - \frac{\partial \phi}{\partial y}x\bigg) \\ = \Bigg(1 - i\epsilon \underbrace{(xP_y - yP_x)}_{\text{Momento angular en } z}\Bigg)\phi(x) \quad \checkmark \\ \mathcal{U}\phi(x,y,z) = (1 - i\epsilon J_3)\phi \quad e^{i\theta_a T_a} \quad SO(3) \end{split}$$

Puedo identificar el generador J_3 de las rotaciones. Con el operador momento angular.

$$\phi^a(x) \to D[\Lambda]^a_{b} \phi^b(\Lambda^{-1}x)$$

 $D[\Lambda]$: Elemto de una representación del grupo de lorentz.

→ Introducimos las álgeras de Clifford:

$$\begin{split} \{\gamma^{\mu},\gamma^{\nu}\} &= \gamma^{\mu}\gamma^{\nu} + \gamma^{\nu}\gamma^{\mu} = 2\eta^{\mu\nu}, \quad \mu = 0,1,2,3 \\ S^{\rho\sigma} &= \frac{1}{4}[\gamma^{\rho},\gamma^{\sigma}] = \begin{cases} 0 & \rho = 0 \\ \frac{1}{2}\gamma^{\rho}\gamma^{\sigma} & \sigma \neq \rho \end{cases} &= \frac{1}{2}\gamma^{\rho}\gamma^{\sigma} - \frac{1}{2}\eta^{\rho\sigma} \end{split}$$

Los generadores del grupo de Lorentz:

$$(\mu^{\rho\sigma})^{\mu\nu} = \eta^{\rho\mu}\eta^{\sigma\nu} - \eta^{\rho\nu}\eta^{\sigma\mu} \quad \checkmark$$

Se puede verificar:

$$[S^{\mu\nu}, \gamma^{\rho}] = \gamma^{\mu} \eta^{\nu\rho} - \gamma^{\nu} \eta^{\rho\mu}$$
$$[S^{\mu\nu}, S^{\rho\sigma}] = S^{\mu\sigma} - S^{\nu\sigma} - S^{\nu\sigma} \eta^{\rho\mu} + S^{\rho\mu} \eta^{\nu\sigma} - S^{\rho\nu} \eta^{\sigma\mu}$$

Los objetos sobre los que actúa las matrices $(S^{\mu\nu})^{\alpha}_{\ \beta}$ Son los espinores de Dirac.

$$\psi^{\alpha}(x) = S[\Lambda]^{\alpha}_{\beta} \psi^{\beta}(\Lambda^{-1})$$

$$\Lambda = \exp\left(\frac{1}{2}\Omega_{\rho\sigma}\mu^{\rho\sigma}\right)$$
$$S(\Lambda) = \exp\left(\frac{1}{2}\Omega_{\rho\sigma}S^{\rho\sigma}\right)$$

3.2 25 de abril

Recapitulación de Covarianza.

Puedo desmostar que $S^{\rho\sigma}$ tiene la misma álgebra de Lie que los generadores del Grupo de lorentez.

Rotaciones: $\rho, \sigma = i, j \text{ con } i, j = 1, 2, 3$

$$S^{ij} = \frac{1}{2} \begin{pmatrix} 0 & \sigma^i \\ -\sigma^i & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^j \\ -\sigma^j & 0 \end{pmatrix} = -\frac{1}{2} \begin{pmatrix} \sigma^i \sigma^j & 0 \\ 0 & \sigma^i \sigma^j \end{pmatrix} = -\frac{i}{2} \epsilon^{ijk} \begin{pmatrix} \sigma^k & 0 \\ 0 & \sigma^k \end{pmatrix}$$

Representación de weyl

$$\Omega_{ij} = -\epsilon_{ijk}\theta^k \to \Omega_{12} = -\theta^3$$

$$\epsilon_{ijk}\theta^k \epsilon^{ijl}\sigma^l = \delta^l_{k}\theta^k \sigma^l = \vec{\theta} \cdot \vec{\sigma}$$

$$S[\Lambda] = \exp\left(\frac{1}{2}\Omega_{\rho\sigma}S^{\rho\sigma}\right) \xrightarrow{\text{rot}} \begin{pmatrix} e^{i\frac{\vec{\theta}\cdot\vec{\sigma}}{2}} & \vdots & 0\\ \dots & \dots & \dots\\ 0 & \vdots & e^{i\frac{\vec{\theta}\cdot\vec{\sigma}}{2}} \end{pmatrix} \begin{pmatrix} \psi_L\\ \dots\\ \psi_R \end{pmatrix}$$

 $Rot2\pi$ al rededor de z.

$$\Omega_{12} = -\Omega_{21} = -\theta_z \quad \vec{\theta} = (0, 0, 2\pi)$$

$$S[\Lambda] = \begin{pmatrix} e^{i\pi\sigma^3} & 0 \\ 0 & e^{i\pi\sigma^3} \end{pmatrix} = -\mathbb{I} \quad \begin{pmatrix} e^{i\pi} \\ & e^{-i\pi} \\ & & e^{-i\pi} \end{pmatrix}$$

$$\psi^{\alpha}(x) \to \psi^{\alpha}(x)$$

Para un boost:

$$S^{oi} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{i} \\ -\sigma^{i} & 0 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -\sigma^{i} & \vdots & 0 \\ \dots & \ddots & \dots \\ 0 & \vdots & \sigma^{i} \end{pmatrix}$$

$$\Omega_{oi} = -\Omega_{io} = \beta_{i}$$

$$S[\Lambda] = \begin{pmatrix} e^{i\beta\sigma/2} & \vdots & 0 \\ \dots & \ddots & \dots \\ 0 & \vdots & e^{-\vec{\beta}\cdot\vec{\sigma}/2} \end{pmatrix}$$

 \rightarrow Las representaciónes del generador de Lorentz no son unitarias:

$$S[\Lambda]^{-1} = S[-\Lambda]^{\dagger} \qquad (S^{\rho\sigma})^{\dagger} = -S^{\rho\sigma} \leftarrow \qquad S[\Lambda]^{\dagger}S[\Lambda] = \mathbb{I}$$

$$\left(\mathbb{I} + \frac{1}{2}\Omega_{\rho\sigma}S^{\rho\sigma}\right)^{\dagger} \left(\mathbb{I} + \frac{1}{2}\Omega_{\mu\nu}S^{\mu\nu}\right) = \mathbb{I}$$

$$1 + \frac{1}{2}\Omega_{\rho\sigma}S^{\rho\sigma\dagger} + \frac{1}{2}\Omega_{\mu\nu}S^{\mu\nu} = \mathbb{I}$$

$$S^{\mu\nu} = \frac{1}{4}[\gamma^{\mu}, \gamma^{\nu}]$$

$$S^{\mu\nu} = \frac{1}{4} [\gamma^{\mu}, \gamma^{\nu}]$$

$$(S^{\mu\nu})^{\dagger} = \frac{1}{4} [(\gamma^{\nu})^{\dagger}, (\gamma^{\mu})^{\dagger}]$$

$$= \frac{1}{4} (\gamma^{\nu\dagger} \gamma^{\mu\dagger} - \gamma^{\mu\dagger} \gamma^{\nu\dagger})$$

$$= -\gamma^{0} (\frac{1}{4} [\gamma^{\mu}, \gamma^{\nu}]) \gamma^{0}$$

Recordemos $\gamma^0 \gamma^\mu \gamma^0 = \gamma^{\mu\dagger}, (\gamma^0)^2 = \mathbb{I}$

$$= -\gamma^0 S^{\mu\nu} \gamma^0$$
$$\gamma^0 (S^{\mu\nu})^{-1} \gamma^0$$

$$\psi(x) = \mathbb{I} + \frac{1}{2} \Omega_{\rho\sigma} (S^{\rho\sigma})^{-1} \quad (S^{\rho\sigma-1})^2$$

$$\psi^{\dagger}(x) = \psi^{\dagger} (\Lambda^{-1}x) S[\Lambda]^{\dagger}$$

$$\psi'^{\dagger} \psi' = \psi^{\dagger} (\Lambda^{-1}x) S[\Lambda]^{\dagger} S[\Lambda] \psi(\Lambda^{-1}x) + \psi^{\dagger}(x) \psi(x)$$

$$S^{-1} = \mathbb{I} + \frac{1}{2} \Omega_{\rho\sigma} (S^{\rho\sigma})^{-1}$$

$$S[\Lambda]^{\dagger} = \gamma^{0} (S[\Lambda]^{-1}) \gamma^{0}$$

$$\overline{\psi}\psi = \psi^{\dagger}\gamma^{0}\psi \rightarrow \psi^{\dagger}S[\Lambda]^{\dagger}\gamma^{0}S[\Lambda]\psi$$

$$\psi^{\dagger}\gamma^{0}(S[\Lambda]^{-1})\underbrace{\gamma^{0}\gamma^{0}}_{\mathbb{I}}S[\Lambda]\psi$$

$$\psi^{\dagger}\gamma^{0}\psi$$

$$= \overline{\psi}\psi$$

3.2.1. Complemento de la clase:

$$\rightarrow \overline{\psi} \gamma^\mu \psi' = \overline{\psi} S[\Lambda]^{-1} \gamma^\mu S[\Lambda] \psi$$
 Qué esperaríamos:

$$S[\Lambda]^{-1} \gamma^{\mu} S[\Lambda] = \Lambda^{\mu}_{\nu} \gamma^{\nu}$$

$$\overline{\psi}'\gamma^{\mu}\psi' = \Lambda^{\mu}_{\ \nu}\overline{\psi}\gamma^{\nu}\psi$$
$$\mathcal{J}'^{\mu} = \Lambda^{\mu}_{\ \nu}\mathcal{J}'^{\nu}$$

Transformación infinitesimal:

$$\Lambda = \exp\left[\frac{1}{2}\Omega_{\sigma\rho}\mu^{\sigma\rho}\right] \approx \mathbb{I} + \frac{1}{2}\Omega_{\sigma\rho}\mu^{\sigma\rho}$$
$$S[\Lambda] = \exp\left[\frac{1}{2}\Omega_{\sigma\rho}S^{\sigma\rho}\right] \approx \mathbb{I} + \frac{1}{2}\Omega_{\sigma\rho}S^{\sigma\rho}$$

3.3 2de mayo Paridad

$$P: \quad x^0 \to x^o \quad x^i \to -x^i$$

la paridad es una transformación que no puede ser descrita de esta forama
(no puedo describir infinitesimalmente alrededor de \mathbb{I})
. pero si regreso a las características de las transformaciones de lorentz:

$$\Lambda = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Bajo transformaciones de paridad puedo mostrar que mi espinor: $\psi \to \gamma^0 \psi$.

¿Cómo transforman los bilineales ? $\overline{\psi}\psi \to \overline{\psi}\psi$ escalar:

Veamos cómo transforma ahora:

$$\mathcal{J}^{\mu} = \overline{\psi} \gamma^{\mu} \psi \to \begin{cases} (\overline{\psi} \gamma^{0}) \gamma^{0} (\gamma^{0} \psi) = \overline{\psi} \gamma^{0} \psi \\ (\overline{\psi} \gamma^{0}) \gamma^{i} (\gamma^{0} \psi) = -\overline{\psi} \gamma^{i} \psi \end{cases} \qquad \mathcal{J}^{\mu \prime} = \Lambda^{\mu}_{\nu} \mathcal{J}^{\nu}$$

3.4 Chiralidad

$$\gamma^{5} = i\gamma^{0}\gamma^{1}\gamma^{2}\gamma^{3}$$

$$\{\gamma^{\mu}, \gamma^{5}\} = 0 \quad (\gamma^{5})^{2} = \mathbb{I} \quad [S^{\mu\nu}, \gamma^{5}] = 0$$

$$P_{\pm} = \frac{1}{2}(1 \pm \gamma_{5}) \quad (P_{\pm})^{2} = P_{\pm} \quad P_{+}P_{-} = 0$$

hay dos tipos de representaciones: pauli-dirac y la representacion de weyl, la que hemos estado usando es la de pauli-dirac.

En la representación de weyl

$$\gamma_5 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \quad \psi_{\pm} = P_{\pm}\psi \quad \psi = \psi_+ + \psi_-$$

la representación no tuvo mucho exito porqué los auto estados que representa no son autoestados físicos.

que pasa si en lugar de tener una matriz γ tengo un γ^5 ?

$$\overline{\psi}\gamma^5\psi \Rightarrow P: \overline{\psi}\gamma^5\psi \to \overline{\psi}\gamma^0\gamma^5\gamma^0\psi = -\overline{\psi}\gamma^5\psi$$

Esto transforma como un "pseudoescalar"

que pasa si tengo:

$$\mathcal{F}^{\mu} = \overline{\psi} \gamma^5 \gamma^{\mu} \psi \Rightarrow P : \overline{\psi} \gamma^5 \gamma^{\mu} \psi \to \overline{\psi} \gamma^0 \gamma^5 \gamma^{\mu} \gamma^0 \psi = -\overline{\psi} \underbrace{\gamma^5 \gamma^0 \gamma^{\mu} \gamma^0}_{\gamma^{\mu\dagger}} \psi$$

$$= \begin{cases} -\overline{\psi}\gamma^5\gamma^0\psi \\ \overline{\psi}\gamma^5\gamma^i\psi \end{cases} \qquad i = 1, 2, 3$$

Esto representa como un vector axial.

¿Cuál es la relevancia?

Lo que nos puede llamar la atención que el gamma 5 puede representar una proyección.

Para entontrarle utilidad a esto, regresamos a

3.5 Fermiones sin masa

Cuando escribimos la ecuación de dirac:

$$H\psi = (\overline{\alpha} \cdot \vec{P} + \beta^0 m)\psi$$

$$\to \alpha_i \alpha_j + \alpha_j \alpha_i = 2\delta_{ij} \qquad \alpha_i^+ = \alpha_i$$

puedo escribir(puedo usar las matrices de pauli porque son de dimension par):

$$E\mathcal{X} = -\vec{\sigma} \cdot \vec{P} \mathcal{X} \quad \nu_L, \overline{\nu}_R \tag{1}$$

$$E\phi = \vec{\sigma} \cdot \vec{P}\phi \quad \nu_R, \overline{\nu}_L \tag{2}$$

1) representa una parte de la partícula. 2) la particula sigue siendo puntual.

Tomando (1): $\rightarrow E > 0$

$$E = |\vec{P}| - \vec{\sigma} \cdot \vec{P} \mathcal{X} = -\vec{\sigma} \cdot \hat{P} |\vec{P}| \mathcal{X} = E \mathcal{X}$$

Puedo reescribirlo como:

$$-\underbrace{\vec{\sigma}\cdot\hat{P}}_{\text{beliefed}}\mathcal{X}=-\mathcal{X}$$

 \mathcal{X} : neutrino izquierdo.

y tiene helicidad $\lambda = -1/2$

Ahora: $\rightarrow E < 0$

$$E = -|\vec{P}| \quad \vec{\sigma} \cdot (-\vec{P})\mathcal{X} = -\vec{\sigma} \cdot \hat{P}|\vec{P}|\mathcal{X} = -E\mathcal{X}$$

$$\vec{\underline{\sigma}} \cdot \hat{\underline{P}} \mathcal{X} = \mathcal{X}$$

 \mathcal{X} : neutrino derecho.

Con helicidad $\lambda = 1/2$

Ejercicio

$$E\phi = \vec{\sigma} \cdot \vec{P}\phi$$

Neutrino ν_R Anti-neutrino $\overline{\nu}_L$

Empezo a ser útil cuando comenzamos a hablar de los neutrinos.

Los neutrinos solo interactúan con su parte izquierda.

La forma de la interacción: existe una interacción

$$J^{\mu} = \overline{\psi}_e \gamma^{\mu} \frac{1}{2} (1 - \gamma_5) \psi_{\nu} \quad V - A$$

$$\frac{1}{2}(1-\gamma_5)\mathcal{U}_{\nu} = \frac{1}{2} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}}_{\gamma_5} \end{bmatrix} \mathcal{U}_{\nu} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mathcal{U}_{\nu}$$

$$\mathcal{U}_{\nu} = \begin{pmatrix} \nu_R \\ \nu_L \end{pmatrix}$$

Este tipo de corriente se llama V - A.

Tarea

Mostrar que en el límite ultra relativista. La helicidad es equivalente a la cliralidad.

Tarea

Mostrar que la ecuación de Dirac es covariante Lorentz.

$$i\gamma^{\mu} \frac{\partial \psi}{\partial x^{\mu}} - m\psi = 0$$

3.6 13 de mayo

Tenemos la interacción:

$$e^-e^- \rightarrow e^-e^-$$

$$T_{fi}^{(1)} = -i \int d^2 \mathcal{X} \dot{\mathcal{J}}_{\mu} \qquad \mathcal{J}^{\mu} = \overline{\psi} \gamma^{\mu} \psi \quad \psi = \mathcal{U}(p) e^{-px}$$

$$T_{fi}^{(1)} = \left(-e \overline{\mathcal{U}}_{c} \gamma^{\mu} \mathcal{U}_{A} \right) \left(-\frac{\eta_{\mu\nu}}{q^2} \right) \left(\overline{-\mathcal{U}}_{D} \gamma^{\mu} \mathcal{U}_{B} \right) \int d^2 \mathcal{X} e^{ip_C \cdot \mathcal{X} - p_A \cdot \mathcal{X} + p_D \cdot \mathcal{X} - p_B \cdot \mathcal{X}}$$

Si haceamos el otro diagrama:

$$\mathcal{M} = \mathcal{M}_a + \mathcal{M}_b$$

Necesito que mi función sea anti simetríca, dbemos incluir el signo menos.

$$-i\mathcal{M}_b = -\Big(ie\overline{\mathcal{U}}_D\gamma^\mu\mathcal{U}_A\Big)\bigg(-\frac{\eta_{\mu\nu}}{q^2}\bigg)(ie\overline{\mathcal{U}}_C\gamma^\nu\mathcal{U}_B)$$

Cuando sumo los espinores, debo de considerar todos los espinores.

En la sección eficaz usamos:

$$|\mathcal{M}|^2 \to \overline{|\mathcal{M}|^2} = \frac{1}{2S_A + 1} \frac{1}{2S_B + 1} \sum_{Spin} |\mathcal{M}|^2$$

$$\mathcal{M}(\uparrow_A \uparrow_B \to \uparrow_C \uparrow_D) = \mathcal{M} = (\downarrow_A \downarrow_B \to \downarrow_C \downarrow_D) = e^2 \frac{(2m)(2m)}{(P_D - P_A)^2} - \frac{e^2(2m)^2}{(P_C - P_A)^2} = -e^2 (4m^2) \left(\frac{1}{t} - \frac{1}{u}\right)$$

$$\mathcal{M}(\uparrow \downarrow \to \uparrow \downarrow) = \mathcal{M}(\downarrow \uparrow \to \downarrow \uparrow) = 0 - \frac{e^2 (2m)^2}{(P_C - P_A)^2}$$

$$\mathcal{M}(\uparrow \downarrow \to \downarrow \uparrow) = \mathcal{M}(\downarrow \uparrow \to \uparrow \downarrow) = \frac{e^2 (2m)^2}{(P_D - P_A)^2} + 0$$

Primero formamos un poco de intuición: considerando el caso No-Relaticista: $P \to 0$

Electrón entratne
$$\mathcal{U}^{(s)} = \sqrt{2m} \begin{pmatrix} \mathcal{X}^{(s)} \\ 0 \end{pmatrix}$$

Electrón saliente: $\overline{\mathcal{U}}^{(s)}\sqrt{2m}\left(\mathcal{X}^{(s)^+}\quad 0\right)$

Entonces: tenemos: (esto es cierto si tenemos la particula con el mismo espín)

$$\overline{\mathcal{U}}^{(s)}\gamma^{\mu}\mathcal{U}^{(s)} = \begin{cases} \mathcal{U}^{\dagger}\gamma^{0}\gamma^{0}\mathcal{U} = 2m \\ \mathcal{U}^{\dagger}\gamma^{0}\gamma^{i}\mathcal{U} = \begin{pmatrix} \mathcal{X}^{(s)} & 0 \end{pmatrix} \begin{pmatrix} 0 & \sigma^{i} \\ \sigma^{i} & 0 \end{pmatrix} \begin{pmatrix} \mathcal{X}^{(s)} \\ 0 \end{pmatrix} = 0 \quad i = 1, 2, 3 \end{cases}$$
$$\gamma^{0}\gamma^{i} = \begin{pmatrix} 0 & \sigma^{k} \\ \sigma^{k} & 0 \end{pmatrix}$$

3.6.1. variables de interacción de dos a dos

$$A + B \rightarrow C + D$$

puedo construir:

$$P_A \cdot P_B = P_A \cdot P_C = P_A \cdot P_D$$

sabemos que $P_i^2=m_i^2$ también que: $P_A+P_B=P_C+P_D$ Escogemos las siguientes variables:

$$S = (P_A + P_B)^2$$
$$t = (P_A - P_C)^2$$
$$u = (P_A - P_D)^2$$

$$S + t + u = m_A^2 + m_B^2 + m_C^2 + m_D^2$$

Normalización

nececitamos que:

$$\rho = \psi^{\dagger} \psi$$

A esto le llamamos normalización covariante, esto es:

$$\int \rho dV = \int \psi^{\dagger} \psi dV = 2E$$

Si tomo un valor mayor que 1, se cumple la ecuación anterior. al fijar esta normalización. y partiendo del espinor:

$$u^{(s)} = N \begin{pmatrix} \mathcal{X}^{(s)} \\ \frac{\sigma \cdot P}{E + m} \mathcal{X}^{(s)} \end{pmatrix} \quad u^{(r)^{\dagger} u^{(s)}} = 2E \delta_{rs}$$

Ejercicio

mostar que

$$\overline{u}^{(s)}u^{(s)} = 2m\tag{1}$$

$$\overline{v}^{(s)}v^{(s)} = 2m\tag{2}$$

Derivar las relaciones de completitud:

$$\sum_{s=1,2} u^{(s)}(P)\overline{u}^{(s)}(P) = P + m\mathbb{I}$$

$$\sum_{s=1,2} v^{(s)}(P)\overline{v}^{(s)}(P) = P - m\mathbb{I}$$

Ejercicio opcional

$$\begin{split} & \Lambda_{+} = \frac{\cancel{P} + m}{2m} \quad \Lambda = \frac{\cancel{P} - m}{2m} \\ & \Lambda_{\pm}^{2} = \Lambda_{\pm} \quad \Lambda_{+} + \Lambda_{-} = \mathbb{I} \end{split}$$

Tomemos la interacción $e^-\mathcal{M}^- \to e^-\mathcal{M}^-$

$$-i\mathcal{M} = (ie\overline{\mathcal{U}}(R',S')\gamma^{\mu}\mathcal{U}_{A}(R,S))\left(\frac{-i}{q^{2}}\right)(ie\overline{\mathcal{U}}_{D}(p',r')\gamma^{\mu}\mathcal{U}_{B}(P,r))$$

La aplitud es:

$$\overline{\left|\mathcal{M}\right|^2} = \frac{e^4}{q^4} \lfloor_{e} \quad ^{\mu\nu} \rfloor_{\mu\nu} \quad ^{muon}$$

Entonces vamos a usar:

$$= [\overline{\mathcal{U}}(R', S')\gamma^{\nu}\mathcal{U}(R, S)]^{\dagger}$$

$$= [\mathcal{U}^{\dagger}(R', S')\gamma^{0}\gamma^{\nu}\mathcal{U}(R, S)]^{\dagger}$$

$$= [\mathcal{U}^{\dagger}(R, S)(\gamma^{\nu})^{\dagger}\gamma^{0}\mathcal{U}(R', S')]^{\dagger}$$

$$= [\mathcal{U}^{\dagger}(R, S)\gamma^{0}\gamma^{\nu}\gamma^{0}\gamma^{0}\mathcal{U}(R', S')]^{\dagger}$$

$$= [\overline{\mathcal{U}}(R, S)\gamma^{\nu}\mathcal{U}(R', S')]$$

Entonces:

para poder usar la relacion de completitud voy a cambiar de lugar la expresión anterior

Usando la relacion de completitud tenemos:

$$= \sum_{l,2} u(p,r)_v \overline{u}(p',r)_y = (\cancel{P} + m\mathbb{I})_{vy}$$

$$= \sum_{ijkl} (R'+m)_{li} \gamma^{\mu}_{ij} (\cancel{R} + m)_{jk} \gamma^{\nu}_{kl}$$

$$= Tr[(\cancel{R}' + m) \gamma^{\mu} (\cancel{R} + m) \gamma^{\nu}]$$