

SDIO Interface

User's Manual

Multimedia Processor for Mobile Applications EMMA Mobile TM EV2

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Technology Corp. website (http://www.renesas.com).

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
 of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
 No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
 of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to one with a different part number, confirm that the change will not lead to problems.

— The characteristics of MPU/MCU in the same group but having different part numbers may differ because of the differences in internal memory capacity and layout pattern. When changing to products of different part numbers, implement a system-evaluation test for each of the products.

How to Use This Manual

1. Purpose and Target Readers

This manual is designed to provide the user with an understanding of the hardware functions and electrical characteristics of the MCU. It is intended for users designing application systems incorporating the MCU. A basic knowledge of electric circuits, logical circuits, and MCUs is necessary in order to use this manual.

The manual comprises an overview of the product; descriptions of the CPU, system control functions, peripheral functions, and electrical characteristics; and usage notes.

Particular attention should be paid to the precautionary notes when using the manual. These notes occur within the body of the text, at the end of each section, and in the Usage Notes section.

The revision history summarizes the locations of revisions and additions. It does not list all revisions. Refer to the text of the manual for details.

The following documents apply to the EMMA Mobile EV2. Make sure to refer to the latest versions of these documents. The newest versions of the documents listed may be obtained from the Renesas Electronics Web site.

Document Type	Description	Document Title	Document No.
Data Sheet	Hardware overview and electrical characteristics	EMMA Mobile EV2 Datasheet	R19DS0010EJxxxx
User's manual (1chip)	Hardware whole specifications (pin assignments, memory maps, peripheral function specifications, electrical characteristics, timing charts) and operation description	EMMA Mobile EV2 User's manual 1chip	R19UH0036EJxxxx
User's manual (module)	Hardware each macro specifications and operation description.	EMMA Mobile EV2 User's manual each module	See below

Document Name	Document No.	Document Name	Document No.	
1chip	R19UH0036EJxxxx	DMA Controller	R19UH0043EJxxxx	
System Management Unit	R19UH0037EJxxxx	LP-DDR/DDR2 Controller	R19UH0039EJxxxx	
Timer	R19UH0054EJxxxx	SD Memory Card Interface	R19UH0061EJxxxx	
System Timer	R19UH0055EJxxxx	SDIO Interface (This manual)	R19UH0042EJxxxx	
HD Video Decoder	R19UH0056EJxxxx	CF Card Interface	R19UH0062EJxxxx	
Rotator	R19UH0057EJxxxx	Unified Serial Interface	R19UH0047EJxxxx	
Resizer	R19UH0058EJxxxx	UART interface	R19UH0040EJxxxx	
Image Composer	R19UH0038EJxxxx	USB 2.0 Host Controller	R19UH0045EJxxxx	
LCD Interface	R19UH0044EJxxxx	USB 2.0 Function Controller	R19UH0034EJxxxx	
ITU-R BT.656 Interface R19UH0059EJxxxx		IIC Interface	R19UH0052EJxxxx	
Digital Terrestrial TV Interface	R19UH0048EJxxxx	General Purpose I/O Interface	R19UH0041EJxxxx	
Camera Interface	R19UH0060EJxxxx	Pulse Width Modulation Interface	R19UH0063EJxxxx	

⁴ digits of end shows the version.

2. Notation of Numbers and Symbols

The notation conventions for register names, bit names, numbers, and symbols used in this manual are described below.

(1) Register Names, Bit Names, and Pin Names

Registers, bits, and pins are referred to in the text by symbols. The symbol is accompanied by the word "register," "bit," or "pin" to distinguish the three categories.

Examples the PM03 bit in the PM0 register

P3_5 pin, VCC pin

(2) Notation of Numbers

The indication "b" is appended to numeric values given in binary format. However, nothing is appended to the values of single bits. The indication "h" is appended to numeric values given in hexadecimal format. Nothing is appended to numeric values given in decimal format.

Examples Binary: 11b or 11

Hexadecimal: EFA0h

Decimal: 1234

3. Register Notation

The symbols and terms used in register diagrams are described below.

x.x.x XXX register

This register (XXXXXXX: xxxx_xxxxh)

7	6	5	4	3	2	1	0
Rese	rved	CHG_P1_LA	LATCH_P1_	Rese	rved	CHG_P0_LAT	CHG_P0_LAT_
		Т	SEL				SEL

Name	R/W	Bit No.	After Reset	Description
LATCH_P2_SEL	R/W	8	0	0: Use the P2_LAT bit of the P2_POWERSW register in the
				SMU to latch data.
				1: Use the CHG_P2_LAT bit to latch data.
Reserved	R	7:6	-	Reserved. If these bits are read, 0 is returned for each bit.
CHG_P1_LAT	R/W	5	1	0: Output data as is. 1: Output latched data.
LATCH_P1_SEL	RW	4	0	0: Use the P1_LAT bit of the P1_POWERSW register in the
	\			SMU to latch data.
				1: Use the CHG_P1_LAT bit to latch data.
Reserved	R	3:2	-	Reserved. If these bits are read, 0 is returned for each bit.
CHG_P0_LAT	R/W	1	1	0: Output data as is. 1: Output latched data.
CHG_P0_LAT_SEL	R/W	0	0	0: Use the P0_LAT bit of the P2_POWERSW register in the
		\setminus		SMU to latch data.
				1: Use the CHG_P0_LAT bit to latch data.
		\.		*3
		*1		

*1

R/W: Read and Write.

R: Read only.

W: Write only.

-: Nothing is assigned.

*2

Reserved bit.

Reserved bit. Set to specified value.

*3

· Nothing is assigned.

Nothing is assigned to the bit. As the bit may be used for future functions, if necessary, set to 0.

· Do not set to a value.

Operation is not guaranteed when a value is set.

· Function varies according to the operating mode.

The function of the bit varies with the peripheral function mode. Refer to the register diagram for information on the individual modes.

4. List of Abbreviations and Acronyms

Abbreviation	Full Form				
ACIA	Asynchronous Communication Interface Adapter				
bps	bits per second				
CRC	Cyclic Redundancy Check				
DMA	Direct Memory Access				
DMAC	Direct Memory Access Controller				
GSM	Global System for Mobile Communications				
Hi-Z	High Impedance				
IEBus	Inter Equipment Bus				
I/O	Input/Output				
IrDA	Infrared Data Association				
LSB	Least Significant Bit				
MSB	Most Significant Bit				
NC	Non-Connect				
PLL	Phase Locked Loop				
PWM	Pulse Width Modulation				
SFR	Special Function Register				
SIM	Subscriber Identity Module				
UART	Universal Asynchronous Receiver/Transmitter				
VCO	Voltage Controlled Oscillator				

Abbreviation	Full Form			
AHB	Advanced High-performance Bus			
ATA	Advanced Technology Attachment			
eMMC	Embedded Multi Media Card			
FIFO	First In, First Out			
GPIO	General Purpose I/O			
I/O	Input/Output			
MMC	Multi Media Card			
SDHC	SD High Capacity			
SMU	System Management Unit			

All trademarks and registered trademarks are the property of their respective owners.

EMMA Mobile is registered trademark of Renesas Electronics Corporation in Japan, USA and other countries.

Table of Contents

1. O	vervie	·W	1
1.1	Feat	ıres	1
	_		_
2. Pi	n Fun	ctions	2
2 D	: _4_		2
	_	TS	
3.1 3.2	_	ster Listster Details	
	.2.1	Block size register and block count register	
	2.2	Argument setting registers 0 and 1	
	2.3	Transfer mode setting register and command setting register	
	2.4	Response registers 0 and 1	
	2.5	Response registers 2 and 3	
	2.6	Response registers 4 and 5	
	2.7	Response registers 6 and 7	
	2.8	Buffer data port registers 0 and 1	
	2.9	State registers 0 and 1.	
	2.10	Host control setting, power control, block gap control, and wakeup control setting registers	
	2.11	Clock control, timeout, and software reset setting registers	
	2.12	Normal interrupt status register and error interrupt status register	
3.	2.13	Normal interrupt status enable register and error interrupt status enable register	
	2.14	Normal interrupt signal enable register and error interrupt signal enable register	
3.	2.15	Automatic CMD12 issuance error register	
3.	2.16	Capability registers 0 and 1	
3.	2.17	CMD12 error interrupt force event register and error interrupt force event register	
3.	2.18	ADMA1/2 error status register	27
3.	2.19	ADMA1/2 system address registers 0 and 1	28
3.	2.20	CE-ATA control register	29
3.	2.21	Slot interrupt status register and host controller version register	30
3.	2.22	AHB IF control register 0.	31
3.	2.23	AHB IF control register 1	32
3.	2.24	Clock delay setting register	33
3.	2.25	Module port setting register 0	
3.	2.26	Module port setting register 1	
3.	2.27	Module enable register	35
4. U	sage		36
4.1		O module initialization flow	
4.2		mand issue flow	
4.3		C initialization flow (reference)	
4.4		C single read flow (reference)	
4.5		C single write flow (reference)	
4.6	The	DETECT processing performed after return to the Power-On state from The Retention state	41

SDIO Interface

R19UH0042EJ0800 Rev.8.00 EMMA Mobile EV2 Jun 8, 2012

1. Overview

This module (SDIO) is an SD card interface that complies with SD card interface Physical Layer Version 2.00. In addition to performing I/O with a card, this module can also be used as a CE-ATA drive, SDIO card, or MMC/eMMC (4.2 or equivalent) host controller.

SDIO1, 2 is MMC non-correspondence.

1.1 **Features**

The main features of the SDIO module are as follows:

- O SD card Specification Physical Layer Specification Ver. 2.0
- O SDIO card Specification Ver. 2.0
- O MMC System Specification Ver. 4.2
- O SD cards, SDIO cards, SDIO multifunction cards, and combo cards can be connected
- O 1-bit or 4-bit SD bus
- O Supports high-speed SD cards (up to 50 MHz)

SD transfer clock does division (1-512) in the SDC as a SDC_SCLK source clock and uses.

SDC_SCLK makes divide PLL3/PLL4/OSC0/OSC1 as a source clock, and is generated.

Example) When choosing PLL3 (229.376MHz), it'll be 229.376/6 = 38.229MHz.

The maximum of the clock frequency which can be chosen as a SD clock in EM/EV will be 49MHz.

Maximum 50MHz of SD transfer clock is covered as a SDIO module element.

- O Supports SDHC cards
- O Supports the SDIO suspend/resume function
- O Supports the SDIO read wait function
- O Includes 4 KB, 3 KB, 1 KB, or 0.5 KB two-port RAM
- O Includes a DMA controller
- O Implements ADMA features
- O Supports CE-ATA Digital Protocol 1.1
- O MMC-HS (up to 52 MHz)

SD transfer clock does division (1-512) in the SDC as a SDC_SCLK source clock and uses.

SDC SCLK makes divide PLL3/PLL4/OSC0/OSC1 as a source clock, and is generated.

Example) When choosing PLL3 (229.376MHz), it'll be 229.376/6 = 38.229MHz.

The maximum of the clock frequency which can be chosen as a SD clock in EM/EV will be 49MHz.

Maximum 52MHz of MMC transfer clock is covered as a SDIO module element.

- O Supports MMC-HC
- O 1-bit, 4-bit, or 8-bit MMC bus
- O Implements an AMBA 2.0 AHB master interface as the DMA interface
- O Implements an AMBA 2.0 AHB slave interface as the control interface
- O Supports the big endian and little endian modes
- O Supplies an SD, SDIO, MMC, or CE-ATA transfer clock (0 to 52 MHz)
- O Prevents FIFO buffer overruns and underruns due to the transfer clock stopping
- O Supports automatic clock control, and outputs a clock request signal to the SMU when a clock is necessary

SDIO Interface 2. Pin Functions

2. Pin Functions

Pin Name	I/O	Function IO Voltage Alternate Pin F		Alternate Pin Function
SDI0_CKO	Output	SDI0 clock output	VDD33	GPIO_050
SDI0_CKI	Input	SDI0 clock output	VDD33	GPIO_051
SDI0_CMD	I/O	SDI0 command	VDD33	GPIO_052
SDI0_DATA0	I/O	SDI0 data bit 0	VDD33	GPIO_053
SDI0_DATA1	1/0	SDI0 data bit 1	VDD33	GPIO_054
SDI0_DATA2	1/0	SDI0 data bit 2	VDD33	GPIO_055
SDI0_DATA3	1/0	SDI0 data bit 3	VDD33	GPIO_056
SDI0_DATA4	I/O	SDI0 data bit 4	VDD33	GPIO_057
SDI0_DATA5	1/0	SDI0 data bit 5	VDD33	GPIO_058
SDI0_DATA6	1/0	SDI0 data bit 6	VDD33	GPIO_059
SDI0_DATA7	1/0	SDI0 data bit 7 VDD33 GPIO_060		GPIO_060
SDI1_CKO	Output	SDI1 clock output	VDD33	GPIO_061
SDI1_CKI	Input	SDI1 clock output	VDD33	GPIO_062
SDI1_CMD	I/O	SDI1 command	VDD33	GPIO_063
SDI1_DATA0	I/O	SDI1 data bit 0	VDD33	GPIO_064
SDI1_DATA1	I/O	SDI1 data bit 1	VDD33	GPIO_065
SDI1_DATA2	I/O	SDI1 data bit 2	VDD33	GPIO_066
SDI1_DATA3	I/O	SDI1 data bit 3	VDD33	GPIO_067
SDI2_CKO	Output	SDI2 clock output	VDD33	AB_A21/GPIO_097/CF_INTRQ
SDI2_CKI	Input	SDI2 clock output	VDD33	AB_A22/GPIO_098
SDI2_CMD	I/O	SDI2 command VDD33 AB_A23/GPIO_099		AB_A23/GPIO_099
SDI2_DATA0	I/O	SDI2 data bit 0	VDD33	AB_AD12/GPIO_089/CF_D12/USI5_CS1
SDI2_DATA1	I/O	SDI2 data bit 1	VDD33	AB_AD13/GPIO_090/CF_D13/USI5_CS2
SDI2_DATA2	I/O	SDI2 data bit 2	VDD33	AB_AD14/GPIO_091/CF_D14
SDI2_DATA3	I/O	SDI2 data bit 3	VDD33	AB_AD15/GPIO_092/CF_D15

Note: Use GPIO for a CD (Card Detect) and a WP (Write Protect).

3. Registers

3.1 Register List

The SDIO registers can only be accessed by way of the AHB slave devices, and only in 32-bit units. If register access in 16-bit or 8-bit units is attempted, it is handled as 32-bit access.

Base addresses: SDIO0: E290_0000H

SDIO1: E2A0_0000H SDIO1: E2B0_0000H

Address	Register Name	Register Symbol	R/W	Reset
0000H to 0002H	Reserved	-	-	-
0004H	Block size register	SDIO_BLKSIZE	R/W	0000H
0006H	Block count register	SDIO_BLKCOUNT	R/W	0000H
0008H	Argument setting register 0	SDIO_ARG0	R/W	0000H
000AH	Argument setting register 1	SDIO_ARG1	R/W	0000H
000CH	Transfer mode setting register	SDIO_MODE	R/W	0000H
000EH	Command setting register	SDIO_CMD	R/W	0000H
0010H	Response register 0	SDIO_RSP0	R	0000H
0012H	Response register 1	SDIO_RSP1	R	0000H
0014H	Response register 2	SDIO_RSP2	R	0000H
0016H	Response register 3	SDIO_RSP3	R	0000H
0018H	Response register 4	SDIO_RSP4	R	0000H
001AH	Response register 5	SDIO_RSP5	R	0000H
001CH	Response register 6	SDIO_RSP6	R	0000H
001EH	Response register 7	SDIO_RSP7	R	00H
0020H	Buffer data port register 0	SDIO_BUF0	R/W	_
0022H	Buffer data port register 1	SDIO_BUF1	R/W	-
0024H	State register 0	SDIO_STATE0	R	0000H
0026H	State register 1	SDIO_STATE1	R	000AH
0028H	Host control setting register	SDIO_HOST	R/W	00H
0029H	Power control setting register	SDIO_POWER	R/W	00H
002AH	Block gap control setting register	SDIO_BLKGAP	R/W	00H
002BH	Wakeup control setting register	SDIO_WAKEUP	R/W	00H
002CH	Clock control setting register	SDIO_CLKCTRL	R/W	0002H
002EH	Timeout setting register	SDIO_TIMEOUT	R/W	00H
002FH	Software reset setting register	SDIO_SOFTRST	R/W	00H
0030H	Normal interrupt status register	SDIO_NRMINT_STS	R, R/W	0000Н
0032H	Error interrupt status register	SDIO_ERRINT_STS	R/W	0000H
0034H	Normal interrupt status enable register	SDIO_NRMINT_STSEN	R/W	0000H
0036H	Error interrupt status enable register	SDIO_ERRINT_STSEN	R/W	0000H

Registers SDIO Interface 3.

				(2/2)
Address	Register Name	Register Symbol	R/W	Reset
0038H	Normal interrupt signal enable register	SDIO_NRMINT_SIGEN	R/W	0000H
003AH	Error interrupt signal enable register	SDIO_ERRINT_SIGEN	R/W	0000H
003CH	Automatic CMD12 issuance error register	SDIO_CMD12_ERR	R	0000_0000H
003EH	Reserved	-	_	-
0040H	Capability register 0	SDIO_CAP0	R	32B2H
0042H	Capability register 1	SDIO_CAP1	R	07FDH
0044H to 004EH	Reserved	-	-	_
0050H	CMD12 error interrupt force event register	SDIO_CMD12ERR_FORCE	R	0000H
0052H	Error interrupt force event register	SDIO_ERRINT_FORCE	R	0000H
0054H	ADMA1/2 error status register	SDIO_ADMA_ERR	R	0000H
0056H	Reserved	-	_	_
0058H	ADMA1/2 system address register 0 (lower 16 bits)	SDIO_ADMA_SYSADD0	R/W	0000_0000H
005AH	ADMA1/2 system address register 1 (higher 16 bits)	SDIO_ADMA_SYSADD1	R/W	0000_0000H
005CH to 007EH	Reserved	-	-	-
0080H	CE-ATA control register	SDIO_CEATA	R, R/W	0000_0010H
0082H to 00FAH	Reserved	-	-	_
00FCH	Slot interrupt status register	SDIO_SLOTINT_STS	R	00FFH
00FEH	Host controller version register	SDIO_HOSTVER	R	E101H
0100H	AHB IF control register 0	SDIO_AMBA0	R/W	0000_0000H
0102H	Reserved	-	_	-
0104H	AHB IF control register 1	SDIO_AMBA1	R/W	0000_0000H
0106H to DFFEH	Reserved	-	-	_
E000H	Clock delay setting register	SDIO_DLYCYRL	R/W	0000_0000H
E002H	Reserved	-	_	-
E004H	Module port setting register0	SDIO_GPIO0	R/W	0000_8000H
E006H	Reserved	-	_	-
E008H	Module port setting register1	SDIO_GPIO1	R/W	4000_0000H
E00AH to EFFCH	Reserved	-	_	_
F000H	Module enable register	SDIO_MODEN	R/W	0000_0000H
F002H to	Reserved	-	=	_

3.2 Register Details

3.2.1 Block size register and block count register

These registers (SDIO_BLKSIZE: 0004H and SDIO_BLKCOUNT: 0006H) specify the transfer data length.

31	30	29	28	27	26	25	24
			SDIO_BL	KCOUNT			
23	22	21	20	19	18	17	16
			SDIO_BL	KCOUNT			
15	14	13	12	11	10	9	8
	Reserved DATA_LENGTH						
7	6	5	4	3	2	1	0
			DATA_L	.ENGTH			

Name	R/W	Bit No.	After Reset	Description
SDIO_BLKCOUNT	R/W	31:16	0000H	These bits are used to count the blocks sent by performing a multiple
				block transfer.
Reserved	R	15:12	0H	Reserved. If these bits are read, 0 is returned for each bit.
DATA_LENGTH	R/W	11:0	000H	Specify the transfer data length.

3.2.2 Argument setting registers 0 and 1

These registers (SDIO_ARG0: 0008H and SDIO_ARG1: 000AH) specify command arguments.

31	30	29	28	27	26	25	24			
	SDIO_ARG1									
23	22	21	20	19	18	17	16			
			SDIO_	ARG1						
15	14	13	12	11	10	9	8			
			SDIO_	_ARG0						
							_			
7	6	5	4	3	2	1	0			
			SDIO_	_ARG0						

Name	R/W	Bit No.	After Reset	Description
SDIO_ARG1	R/W	31:16	0000H	Specify command arguments (in the higher 16 bits).
SDIO_ARG0	R/W	15:0	0000H	Specify command arguments (in the lower 16 bits).

ex) When setting 0x1234_5678 as an argument, 0x1234 is set as SDIO_ARG1 and 0x5678 is set as SDIO_ARG0.

3.2.3 Transfer mode setting register and command setting register

These registers (SDIO_MODE: 000CH and SDIO_CMD: 000EH) specify the transfer mode and the command to transfer.

	31	30	29	28	27	26	25	24			
	Reserved			CMD_INDEX							
_											
	23	22	21	20	19	18	17	16			
	CMD_	_TYPE	DATA_	CMD_INDEX_	CMD_CRC_	Reserved	RESP_	_TYPE			
			PRESENT	CHK	CHK						
_											
	15	14	13	12	11	10	9	8			
				Rese	erved						
	7	6	5	4	3	2	1	0			
I	Reserved		MULTI	TRANS_DIR	Reserved	AUTO_	BLK_COUNT_	DMA_EN			
						CMD12_EN	EN				

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:30	0H	Reserved. If these bits are read, 0 is returned for each bit.
CMD_INDEX	R/W	29:24	00H	Specify the command to transfer.
				If the command completion signal disable (CCSD) signal is issued
				while bits 5 and 3 of the SDIO_CEATA register are 1, the setting of
				these bits is invalid.
CMD_TYPE	R	23:22	01b	Indicates the command type.
				00: Normal command
				01: Suspend (CMD52 to write to the BR bit of the bus suspend
				register)
				10: Resume (CMD52 to select a function)
				11: Abort (CMD12 or CMD52 to abort IO)
DATA_PRESENT	R/W	21	0	Specify whether to send data.
				0: Do not send data
				1: Send data
CMD_INDEX_CHK	R/W	20	0	Specify whether to enable checking command indexes.
				0: Disable
				1: Enable
CMD_CRC_CHK	R/W	19	0	Specify whether to enable checking CRC7 in commands.
				0: Disable
				1: Enable
Reserved	R	18	0	Reserved. If this bit is read, 0 is returned.

(2/2)

Name	R/W	Bit No.	After Reset	Description
RESP_TYPE	R/W	17:16	00b	Specify the expected response type. 00: No response 01: 136-bit response 10: 48-bit response without a busy status 11: 48-bit response with a busy status
Reserved	R	15:6	000H	Reserved. If these bits are read, 0 is returned for each bit.
MULTI	R/W	5	0	Specify the transfer type. 0: Single transfer 1: Multiple block transfer
TRANS_DIR	R/W	4	0	Specify the direction to transfer data. 0: Write transfer 1: Read transfer
Reserved	R	3	0	Reserved. If this bit is read, 0 is returned.
AUTO_CMD12_EN	R/W	2	0	Specify whether to enable automatic CMD12 transfers. 0: Disable 1: Enable
BLK_COUNT_EN	R/W	1	0	Specify whether to enable block counting. 0: Disable 1: Enable
DMA_EN	R/W	0	0	Specify whether to enable DMA transfers. 0: Disable 1: Enable

3.2.4 Response registers 0 and 1

These registers (SDIO_RSP0: 0010H and SDIO_RSP1: 0012H) are used to store response data.

31	30	29	28	27	26	25	24			
	SDIO_RSP1									
23	22	21	20	19	18	17	16			
			SDIO_	RSP1						
15	14	13	12	11	10	9	8			
			SDIO_	RSP0						
7	6	5	4	3	2	1	0			
	SDIO_RSP0									

Name	R/W	Bit No.	After Reset	Description
SDIO_RSP1	R	31:16	0000H	Store response data R39 to R24 in these bits.
SDIO_RSP0	R	15:0	0000H	Store response data R23 to R8 in these bits.

3.2.5 Response registers 2 and 3

These registers (SDIO_RSP2: 0014H and SDIO_RSP3: 0016H) are used to store response data.

31	30	29	28	27	26	25	24			
	SDIO_RSP3									
23	22	21	20	19	18	17	16			
			SDIO_	RSP3						
15	14	13	12	11	10	9	8			
			SDIO_	RSP2						
7	6	5	4	3	2	1	0			
	SDIO_RSP2									

Name	R/W	Bit No.	After Reset	Description
SDIO_RSP3	R	31:16	0000H	Store response data R71 to R56 in these bits.
SDIO_RSP2	R	15:0	0000H	Store response data R55 to R40 in these bits.

3.2.6 Response registers 4 and 5

These registers (SDIO_RSP4: 0018H and SDIO_RSP5: 001AH) are used to store response data.

31	30	29	28	27	26	25	24				
	SDIO_RSP5										
23	22	21	20	19	18	17	16				
			SDIO_	RSP5							
15	14	13	12	11	10	9	8				
			SDIO_	RSP4							
7	6	5	4	3	2	1	0				
	SDIO_RSP4										

Name	R/W	Bit No.	After Reset	Description
SDIO_RSP5	R	31:16	0000H	Store response data R103 to R88 in these bits.
SDIO_RSP4	R	15:0	0000H	Store response data R87 to R72 in these bits.

3.2.7 Response registers 6 and 7

These registers (SDIO_RSP6: 001CH and SDIO_RSP7: 001EH) are used to store response data.

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			SDIO_	_RSP7						
15	14	13	12	11	10	9	8			
			SDIO_	_RSP6						
7	6	5	4	3	2	1	0			
	SDIO_RSP6									

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:24	00H	Reserved. If these bits are read, 0 is returned for each bit.
SDIO_RSP7	R	23:16	00H	Store response data R127 to R120 or automatically-issued CMD12
				command response data R39 to R24 in these bits.
SDIO_RSP6	R	15:0	0000H	Store response data R119 to R104 or automatically-issued CMD12
				command response data R23 to R8 in these bits.

3.2.8 Buffer data port registers 0 and 1

These registers (SDIO_BUF0: 0020H and SDIO_BUF1: 0022H) are used to store buffer data.

31	30	29	28	27	26	25	24			
	SDIO_BUF1									
23	22	21	20	19	18	17	16			
	SDIO_BUF1									
15	14	13	12	11	10	9	8			
			SDIO_	_BUF0						
7	6	5	4	3	2	1	0			
	SDIO_BUF0									

Name	R/W	Bit No.	After Reset	Description
SDIO_BUF1	R/W	31:16	-	Store buffer data in the higher 16 bits.
SDIO_BUF0	R/W	15:0	-	Store buffer data in the lower 16 bits.

3.2.9 State registers 0 and 1

These registers (SDIO_STATE0: 0024H and SDIO_STATE1: 0026H) indicate various statuses.

31	30	29	28	27	26	25	24
DAT7	DAT6	DAT5	DAT4		Reserved		CMD
23	22	21	20	19	18	17	16
DAT3	DAT3 DAT2 DAT1 DAT0				Rese	erved	
15	14	13	12	11	10	9	8
	Rese	erved		RDEN	WREN	RD_ACTIVE	WR_ACTIVE
7	6	5	4	3	2	1	0
		Reserved			DAT_ACTIVE	DAT_INHIBIT	CMD_INHIBIT

Name	R/W	Bit No.	After Reset	Description
DAT7	R	31	0	Indicates the DAT7 line level.
DAT6	R	30	0	Indicates the DAT6 line level.
DAT5	R	29	0	Indicates the DAT5 line level.
DAT4	R	28	0	Indicates the DAT4 line level.
Reserved	R	27:25	000b	Reserved. If these bits are read, 0 is returned for each bit.
CMD	R	24	1	Indicates the CMD line level.
DAT3	R	23	1	Indicates the DAT3 line level.
DAT2	R	22	1	Indicates the DAT2 line level.
DAT1	R	21	1	Indicates the DAT1 line level.
DAT0	R	20	1	Indicates the DAT0 line level.
Reserved	R	19:12	10100000b	Reserved. If these bits are read, 0 is returned for each bit.
RDEN	R	11	0	Indicates whether reading the data buffer is enabled.
				0: Disabled
				1: Enabled
WREN	R	10	0	Indicates whether writing the data buffer is enabled.
				0: Disabled
				1: Enabled
RD_ACTIVE	R	9	0	Indicates the read transfer status.
				0: Inactive
				1: Active
WR_ACTIVE	R	8	0	Indicates the write transfer status.
				0: Inactive
				1: Active
Reserved	R	7:3	00H	Reserved. If these bits are read, 0 is returned for each bit.
DAT_ACTIVE	R	2	0	Indicates the DAT line status.
				0: Inactive
				1: Active

(2/2)

Name	R/W	Bit No.	After Reset	Description
DAT_INHIBIT	R	1	0	Indicates whether issuing commands for data transfer is enabled.
				0: Enabled (DAT line enabled)
				1: Disabled
CMD_INHIBIT	R	0	0	Indicates whether issuing commands is enabled.
				0: Enabled
				1: Disabled

3.2.10 Host control setting, power control, block gap control, and wakeup control setting registers

These registers (SDIO_HOST: 0028H, SDIO_POWER: 0029H, SDIO_BLKGAP: 002AH, and SDIO_WAKEUP: 002BH) specify the settings for the host controller, power, block gap, and wakeup signal.

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
	Res	erved		BLKGAP_INT_	READ_WAIT	CONTINU_	STOP_AT_		
				EN		REQ	BG_REQ		
							_		
15	14	13	12	11	10	9	8		
	Res	erved			VOLT		Reserved		
7	6	5	4	3	2	1	0		
Rese	Reserved MMC8B			ASEL	HS	WIDTH	Reserved		

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:20	000H	Reserved. If these bits are read, 0 is returned for each bit.
BLKGAP_INT_EN	R/W	19	0	Specify whether to enable block gap interrupts.
				0: Disable
				1: Enable
READ_WAIT	R/W	18	0	Specify whether to enable keeping the read operation waiting.
				0: Disable
				1: Enable
CONTINU_REQ	R/W	17	0	Specify whether to enable resuming interrupted data transfers.
				0: Disable
				1: Enable
STOP_AT_BG_	R/W	16	0	Specify whether to enable stopping data transfers at block gaps.
REQ				0: Disable
				1: Enable
				If this bit is set to 1, be sure to set the READ_WAIT bit to 1.
				If this bit is set to 1, CMD12 is not issued automatically even if such
				issuance is specified.
Reserved	R	15:12	0H	Reserved. If these bits are read, 0 is returned for each bit.
VOLT	R/W	11:9	000b	The voltage value of the SD bus is indicated.
				(The function to which the IO voltage is changed isn't being
				supported.)
				101: 1.8 V
				110: 3.0 V
				111: 3.3 V

(2/2)

Name	R/W	Bit No.	After Reset	Description
POWER	R/W	8	0	Specify the SD bus power status.
				0: Power on
				1: Power off
Reserved	R	7:6	0H	Reserved. If these bits are read, 0 is returned for each bit.
MMC8B	R/W	5	0	Specify whether to enable wider MMC data (8 bits).
				0: Disable. The width specified for the WIDTH bit is used.
				1: Enable. The width is 8 bits.
DMASEL	R/W	4:3	00b	Specify the DMA type.
				00: No selection
				01: 32-bit ADMA1
				10: 32-bit ADMA2
				11: 64-bit ADMA2
HS	R/W	2	0	Specify the SD card interface mode.
				0: Normal mode (The signal is output at falling edges.)
				1: High-speed mode (The signal is output at rising edges.)
WIDTH	R/W	1	0	Specify the data bus width.
				0: 1 bit
				1: 4 bits
Reserved	R	0	0	Reserved. If this bit is read, 0 is returned.

3.2.11 Clock control, timeout, and software reset setting registers

These registers (SDIO_CLKCTRL: 002CH, SDIO_TIMEOUT: 002EH, and SDIO_SOFTRST: 002EH) are used to reset control blocks and specify the clock settings.

 31	30	29	28	27	26	25	24
		Reserved			SRST_DAT	SRST_CMD	SRST_ALL
23	22	21	20	19	18	17	16
Reserved					TOUT_	COUNT	
 15	14	13	12	11	10	9	8
			SDIO	LKDIV			
 7	6	5	4	3	2	1	0
		Reserved			SDIOLKEN	CLKSTA	CLKEN

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:27	00H	Reserved. If these bits are read, 0 is returned for each bit.
SRST_DAT	R/W	26	0	This bit is used to reset the following data control blocks:
				Buffer data port registers 0 and 1
				State registers 0 and 1
				Block gap control setting register
				Normal interrupt status register
				0: Cancels a reset
				1: Reset
SRST_CMD	R/W	25	0	This bit is used to reset the following command control blocks:
				State registers 0 and 1
				Normal interrupt status register
				0: Cancels a reset
				1: Reset
SRST_ALL	R/W	24	0	This bit is used to reset all control blocks except the following:
				DAT[7:0], CMD, WP, CD, STABLE, and INSERT bits of
				SDIO_STATE1 register
				Capability registers 0 and 1
				0: Cancels a reset
				1: Reset
Reserved	R	23:20	0H	Reserved. If these bits are read, 0 is returned for each bit.

(2/2)

Name	R/W	Bit No.	After Reset	Description
TOUT_COUNT	R/W	19:16	0000b	Specify the number of SDIO_TCLK cycles before a transfer times
				out due to no data being sent.
				0000: 2 ¹³ cycles 0001: 2 ¹⁴ cycles
				0010: 2 ¹⁵ cycles 0011: 2 ¹⁶ cycles
				0100: 2 ¹⁷ cycles 0101: 2 ¹⁸ cycles
				0110: 2 ¹⁹ cycles 0111: 2 ²⁰ cycles
				1000: 2 ²¹ cycles 1001: 2 ²² cycles
				1010: 2 ²³ cycles 1011: 2 ²⁴ cycles
				1100: 2 ²⁵ cycles 1101: 2 ²⁶ cycles
				1110: 2 ²⁷ cycles 1111: Reserved
SDIOLKDIV	R/W	15:8	00H	Specify the divisor for generating the count clock.
				0H: Undivided 1H: Divide by 2
				2H: Divide by 4 4H: Divide by 8
				8H: Divide by 16 10H: Divide by 32
				20H: Divide by 64 40H: Divide by 128
				80H: Divide by 256
Reserved	R	7:3	00H	Reserved. If these bits are read, 0 is returned for each bit.
SDIOLKEN	R/W	2	0	Specify whether to start or stop the SD transfer clock.
				(Terminal control of SDCLK)
				0: Stop
				1: Start
CLKSTA	R	1	1	Indicates the internal clock status.
				After setting "1" as CLKEN, when a clock became stable, "1" is set
				by this bit
				0: Not stable
				1: Stable
CLKEN	R/W	0	0	Specify whether to start or stop the internal clock.
				Be sure to set it as "1".
				0: Stop
				1: Start

3.2.12 Normal interrupt status register and error interrupt status register

These registers (SDIO_NRMINT_STS: 0030H and SDIO_ERRINT_STS: 0032H) indicate the status of normal interrupts and error interrupts and clear the interrupt sources.

31	30	29	28	27	26	25	24
		Rese	erved			ADMA_ERR	CMD12_ERR
23	22	21	20	19	18	17	16
Reserved	DATA_END	DATA_CRC	DATA_TOUT	CMD_INDEX	CMD_END	CMD_CRC	CMD_TOUT
							_
15	14	13	12	11	10	9	8
ERR			Rese	erved			CARD
7	6	5	4	3	2	1	0
Rese	erved	RREADY	WREADY	DMA	BGE	TRANCOMP	CMDCOMP

(1/3)

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:26	00H	Reserved. If these bits are read, 0 is returned for each bit.
ADMA_ERR	R/W	25	0	Indicates whether an ADMA1/ADMA2 error interrupt occurred and is
				used to clear the source.
				When DMA_ERR was asserted in DMA_EN=1, or a data transfer
				error was on the SD bus, and occurred, this bit is set by 1. (When
				ADMA1/2 is an enable.)
CMD12_ERR	R/W	24	0	Indicates whether an automatic CMD12 issuance error interrupt
				occurred and is used to clear the source.
				Logical sum of each bit of Auto CMD12 Error Status Register is
				reflected.
Reserved	R	23	0	Reserved. If this bit is read, 0 is returned.
DATA_END	R/W	22	0	Indicates whether a data end bit error interrupt occurred and is used
				to clear the source.
				Indicates whether a data end bit error of read data or a data end bit
				error of write CRC status.
DATA_CRC	R/W	21	0	Indicates whether a data CRC error interrupt occurred and is used to
				clear the source.
				Indicates whether a CRC error of read data or a CRC status error of
				CRC token.
DATA_TOUT	R/W	20	0	Indicates whether a data timeout error interrupt occurred and is used
				to clear the source.
CMD_INDEX	R/W	19	0	Indicates whether a command index error interrupt occurred and is
				used to clear the source.
				Disagreement of a command index and a response index is
				indicated.

(2/3)

Name	R/W	Bit No.	After Reset	Description
CMD_END	R/W	18	0	Indicates whether a command end bit error interrupt occurred and is
				used to clear the source.
				Indicates whether a data end bit error of command response.
CMD_CRC	R/W	17	0	Indicates whether a command CRC error interrupt occurred and is
				used to clear the source.
				Indicates whether a command CRC error or command conflict error.
CMD_TOUT	R/W	16	0	Indicates whether a command timeout error interrupt occurred and is
				used to clear the source.
				The command timeout error when the response doesn't return in the
				128 SDCLK cycle, or a command conflict error is indicated.
ERR	R	15	0	Indicates whether an error interrupt occurred.
				Logical sum of each bit of Error Interrupt Status Register is reflected.
Reserved	R	14:9	00H	Reserved. If these bits are read, 0 is returned for each bit.
CARD	R	8	0	Indicates whether an SDIO card interrupt occurred.
				Even if 1 is written in this register, this bit isn't cleared.
				An interrupt factor on a SDIO card is cleared to clear this bit.
				CARD_EN of a normal interrupt status enable register latches the
				value of this bit internally at 1.
Reserved	R	7:6	0H	Reserved. If these bits are read, 0 is returned for each bit.
RREADY	R/W	5	0	Indicates whether a buffer read ready interrupt occurred and is used
				to clear the source.
				When RDEN of State register 0 transferred in 1, this bit is set by 1.
				When the last block was forwarded when Auto CMD12 was an
				enable, before this bit is set by 1, Auto CMD12 is issued.
WREADY	R/W	4	0	Indicates whether a buffer write ready interrupt occurred and is used
				to clear the source.
				When WREN of State register 0 transferred in 1, this bit is set by 1.
				Clear this bit before writing in in a buffer.
DMA	R/W	3	0	Indicates whether a block size DMA interrupt occurred and is used to
				clear the source.
				When the interior counter reached the designated value in Host DMA
				Buffer Boundary, it's set.
				Attributes in Descriptor which refers during transmission Tran and
				INT When the bit is set, the data transfer established in Data length
				is to finish, and it's set.
				When End and the INT bit are set, Attributes will be set immediately.
				(In case of ADMA)
BGE	R/W	2	0	Indicates whether a block gap event interrupt occurred and is used
				to clear the source.
				The next block gap timing requested in Stop At Block Gap Request
				is indicated.

(3/3)

Name	R/W	Bit No.	After Reset	Description
TRANCOMP	R/W	1	0	Indicates whether a data transfer completion interrupt occurred and
				is used to clear the source.
				It's indicated at the timing of completion of data transaction including
				completion at a block gap by Stop At Block Gap Request. When an
				error was detected by the time of data transaction, this bit isn't set.
				When Auto CMD12 is an enable, before this bit is set by 1, Auto
				CMD12 is issued.
CMDCOMP	R/W	0	0	Indicates whether a command completion (response reception)
				interrupt occurred and is used to clear the source.
				When the last bit of the command response is received, this bit is set
				by 1. In case of the command which doesn't require the response,
				this bit is set by 1 just after the command issue.

Remark 0: Did not occur 1: Occurred

Note: It's possible to clear an interrupt factor by writing "1" in each bit.

3.2.13 Normal interrupt status enable register and error interrupt status enable register

These registers (SDIO_NRMINT_STSEN: 0034H and SDIO_ERRINT_STSEN: 0036H) specify whether to enable normal interrupts and error interrupts.

31	30	29	28	27	26	25	24
Rese	Reserved CEATA_ERR_			Reserved			CMD12_ERR_
		EN				EN	EN
23	22	21	20	19	18	17	16
Reserved	DATA_END_	DATA_CRC_	DATA_TOUT_	CMD_INDEX_	CMD_END_	CMD_CRC_	CMD_TOUT_
	EN	EN	EN	EN	EN	EN	EN
15	14	13	12	11	10	9	8
			Reserved				CARD_EN
7	6	5	4	3	2	1	0
Res	erved	RREADY_EN	WREADY_EN	DMA_BLKSIZ_	BGE_EN	TRANCOMP_	CMDCOMP_
				EN		EN	EN

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:30	0H	Reserved. If these bits are read, 0 is returned for each bit.
CEATA_ERR_EN	R/W	29	0	Specify whether to enable CE-ATA error interrupts.
Reserved	R	28:26	0H	Reserved. If these bits are read, 0 is returned for each bit.
ADMA_ERR_EN	R/W	25	0	Specify whether to enable ADMA1/ADMA2 error interrupts.
CMD12_ERR_EN	R/W	24	0	Specify whether to enable automatic CMD12 issuance error
				interrupts.
Reserved	R	23	0	Reserved. If this bit is read, 0 is returned.
DATA_END_EN	R/W	22	0	Specify whether to enable data end bit error interrupts.
DATA_CRC_EN	R/W	21	0	Specify whether to enable data CRC error interrupts.
DATA_TOUT_EN	R/W	20	0	Specify whether to enable data timeout error interrupts.
CMD_INDEX_EN	R/W	19	0	Specify whether to enable command index error interrupts.
CMD_END_EN	R/W	18	0	Specify whether to enable command end bit error interrupts.
CMD_CRC_EN	R/W	17	0	Specify whether to enable command CRC error interrupts.
CMD_TOUT_EN	R/W	16	0	Specify whether to enable command timeout error interrupts.
Reserved	R	15:9	00H	Reserved. If these bits are read, 0 is returned for each bit.
CARD_EN	R/W	8	0	Specify whether to enable SDIO card interrupts.
Reserved	R	7:6	0H	Reserved. If these bits are read, 0 is returned for each bit.
RREADY_EN	R/W	5	0	Specify whether to enable buffer read ready interrupts.
WREADY_EN	R/W	4	0	Specify whether to enable buffer write ready interrupts.
DMA_BLKSIZ_EN	R/W	3	0	Specify whether to enable block size DMA interrupts.
BGE_EN	R/W	2	0	Specify whether to enable block gap event interrupts.
TRANCOMP_EN	R/W	1	0	Specify whether to enable data transfer completion interrupts.

(2/2)

Name	R/W	Bit No.	After Reset				Des	scription		
CMDCOMP_EN	R/W	0	0	Specify	whether	to	enable	command	completion	(response
				reception	n) interrupt	s.				

Remark 0: Disable 1: Enable

The factor enable by this register is reflected by SDIO_NRMINT_STS register and SDIO_ERRINT_STS Note register.. The factor disable isn't reflected.

3.2.14 Normal interrupt signal enable register and error interrupt signal enable register

These registers (SDIO_NRMINT_SIGEN: 0038H and SDIO_ERRINT_SIGEN: 003AH) specify whether to enable normal interrupt and error interrupt signals.

31	30	29	28	27	26	25	24
Rese	erved	CEATA_ERR_		Reserved		ADMA_ERR_	CMD12_ERR_
		SIGEN				SIGEN	SIGEN
23	22	21	20	19	18	17	16
Reserved	DATA_SIGEN	DATA_CRC_	DATA_TOUT_	CMD_INDEX_	CMD_SIGEND	CMD_CRC_	CMD_TOUT_
	D_SIGEN	SIGEN	SIGEN	SIGEN	_SIGEN	SIGEN	SIGEN
							_
15	14	13	12	11	10	9	8
			Reserved				CARD_SIGEN
7	6	5	4	3	2	1	0
Rese	erved	RREADY_	WREADY_	DMA_SIGEN	BGE_SIGEN	TRANCOMP_	CMDCOMP_
		SIGEN	SIGEN			SIGEN	SIGEN

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:30	0H	Reserved. If these bits are read, 0 is returned for each bit.
CEATA_ERR_SIGEN	R/W	29	0	Specify whether to enable the CE-ATA error interrupt signal.
Reserved	R	28:26	0H	Reserved. If these bits are read, 0 is returned for each bit.
ADMA_ERR_SIGEN	R/W	25	0	Specify whether to enable the ADMA1/ADMA2 error interrupt signal.
CMD12_ERR_SIGEN	R/W	24	0	Specify whether to enable the automatic CMD12 issuance error interrupt signal.
Reserved	R	23	0	Reserved. If this bit is read, 0 is returned.
DATA_SIGEND_SIGEN	R/W	22	0	Specify whether to enable the data end bit error interrupt signal.
DATA_CRC_SIGEN	R/W	21	0	Specify whether to enable the data CRC error interrupt signal.
DATA_TOUT_SIGEN	R/W	20	0	Specify whether to enable the data timeout error interrupt signal.
CMD_INDEX_SIGEN	R/W	19	0	Specify whether to enable the command index error interrupt signal.
CMD_SIGEND_SIGEN	R/W	18	0	Specify whether to enable the command end bit error interrupt signal.
CMD_CRC_SIGEN	R/W	17	0	Specify whether to enable the command CRC error interrupt signal.
CMD_TOUT_SIGEN	R/W	16	0	Specify whether to enable the command timeout error interrupt signal.
Reserved	R	15:9	00H	Reserved. If these bits are read, 0 is returned for each bit.
CARD_SIGEN	R/W	8	0	Specify whether to enable the SDIO card interrupt signal.
Reserved	R	7:6	0H	Reserved. If these bits are read, 0 is returned for each bit.
RREADY_SIGEN	R/W	5	0	Specify whether to enable the buffer read ready interrupt signal.
WREADY_SIGEN	R/W	4	0	Specify whether to enable the buffer write ready interrupt signal.
DMA_SIGEN	R/W	3	0	Specify whether to enable the block size DMA interrupt signal.
BGE_SIGEN	R/W	2	0	Specify whether to enable the block gap event interrupt signal.

(2/2)

Name	R/W	Bit No.	After Reset	Description
TRANCOMP_SIGEN	R/W	1	0	Specify whether to enable the data transfer completion interrupt signal.
CMDCOMP_SIGEN	R/W	0	0	Specify whether to enable the command completion (response reception) interrupt signal.

Remark 0: Disable

1: Enable

Note: It falls below the interrupt factor made effective at this register and is reflected by a status register. (An invalidated interrupt factor isn't reflected.).

When the interrupt factor made effective here occurs, SDIx_INT active.

3.2.15 Automatic CMD12 issuance error register

This register (SDIO_CMD12_ERR: 003CH) indicates the automatic command issuance status.

31	30	29	28	27	26	25	24		
	Reserved								
23	22	21	20	19	18	17	16		
			Res	erved					
15	14	13	12	11	10	9	8		
			Res	erved					
7	6	5	4	3	2	1	0		
CMD12_NOT_	Rese	erved	CMD12_	CMD12_ENDB	CMD12_CRC_	CMD12_TIME	CMD12_NOT_		
ISSUE			INDEX_ERR	IT_ERR	ERR	OUT_ERR	EXEC		

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:8	00_0000H	Reserved. If these bits are read, 0 is returned for each bit.
CMD12_NOT_ISSUE	R	7	0	Indicates whether a data transfer command was issued in response
				to a CMD12 error occurring for the previous data transfer command.
				0: Issued
				1: Not issued
Reserved	R	6:5	0H	Reserved. If these bits are read, 0 is returned for each bit.
CMD12_INDEX_ERR	R	4	0	Indicates whether a CMD12 index error occurred.
				0: Did not occur
				1: Occurred
CMD12_ENDBIT_ERR	R	3	0	Indicates whether a CMD12 end bit error occurred.
				0: Did not occur
				1: Occurred
CMD12_CRC_ERR	R	2	0	Indicates whether a CMD12 CRC error occurred.
				0: Did not occur
				1: Occurred
CMD12_TIMEOUT_ERR	R	1	0	Indicates whether a CMD12 timeout error occurred.
				0: Did not occur
				1: Occurred
CMD12_NOT_EXEC	R	0	0	Indicates whether a CMD12 issuance error occurred.
				0: Did not occur
				1: Occurred

3.2.16 Capability registers 0 and 1

These registers (SDIO_CAP0: 0040H and SDIO_CAP1: 0042H) indicate various bus interface settings.

31	30	29	28	27	26	25	24
	Reserved		B64	Reserved	V18	V30	V33
23	22	21	20	19	18	17	16
SUSREG	DMA	HS	ADMA1	ADMA2	MMC8	MAX_	BLEN
15	14	13	12	11	10	9	8
Rese	Reserved			BCLK_	FREQ		
7	6	5	4	3	2	1	0
TCLK_UNIT	Reserved	TCLK_FREQ					

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:29	0H	Reserved. If these bits are read, 0 is returned for each bit.
B64	R	28	0	Indicates whether the 64-bit system bus is supported.
				0: Not supported
				1: Supported
Reserved	R	27	0	Reserved. If this bit is read, 0 is returned.
V18	R	26	1	Indicates whether the 1.8 V SD bus is supported.
				0: Not supported
				1: Supported
V30	R	25	1	Indicates whether the 3.0 V SD bus is supported.
				0: Not supported
				1: Supported
V33	R	24	1	Indicates whether the 3.3 V SD bus is supported.
				0: Not supported
				1: Supported
SUSREG	R	23	1	Indicates whether the suspend/resume function is supported.
				0: Not supported
				1: Supported
DMA	R	22	1	Indicates whether DMA transfers are supported.
				0: Not supported
				1: Supported
HS	R	21	1	Indicates whether the high-speed mode is supported.
				0: Not supported
				1: Supported
ADMA1	R	20	1	Indicates whether ADMA1 is supported.
				0: Not supported
				1: Supported

(2/2)

Name	R/W	Bit No.	After Reset	Description
ADMA2	R	19	1	Indicates whether ADMA2 is supported.
				0: Not supported
				1: Supported
MMC8	R	18	1	Indicates whether the 8-bit MMC bus is supported.
				0: Not supported
				1: Supported
MAX_BLEN	R	17:16	01b	Indicates the maximum block length.
				The size designated by this bit can be read and written in a buffer in
				SDIO Controller.
				(It can be forwarded without wait cycle.)
				00: 512 bytes
				01: 1,024 bytes
				10: 2,048 bytes
				11: 4,096 bytes (only when CE-ATA is supported)
Reserved	R	15:14	0	Reserved. If these bits are read, 0 is returned for each bit.
BCLK_FREQ	R	13:8	110010b	Indicates the base clock frequency.
				Maximum frequency of a SD clock is indicated. The unit = [MHz]
TCLK_UNIT	R	7	1	Indicates the unit of the clock frequency used for determining timeout
				occurrence.
				0: Undefined
				1: MHz
Reserved	R	6	0	Reserved. If this bit is read, 0 is returned.
TCLK_FREQ	R	5:0	110010b	Indicates the timeout clock frequency.

3.2.17 CMD12 error interrupt force event register and error interrupt force event register

These registers (SDIO_CMD12ERR_FORCE: 0050H and SDIO_ERRINT_FORCE: 0052H) indicate the forced error interrupt event.

31	30	29	28	27	26	25	24
Rese	Reserved			Reserved		ADMA_ERR	CMD12_ERR
23	22	21	20	19	18	17	16
Reserved	DATA_END	DATA_CRC	DATA_TOUT	CMD_INDEX	CMD_END	CMD_CRC	CMD_TOUT
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
CMD12_NOT_ ISSUE	Rese	erved	CMD12_INDE X_ERR	CMD12_ENDB IT_ERR	CMD12_CRC_ ERR	CMD12_TIME OUT_ERR	CMD12_NOT_ EXEC

ĺ	Name	R/W	Bit No.	After Reset	Description
ĺ					See the error interrupt status register (described in 3.2.13) and 3.2.16
ı					Automatic CMD12 issuance error register.

3.2.18 ADMA1/2 error status register

This register (SDIO_ADMA_ERR: 0054H) indicates the ADMA error status.

31	30	29	28	27	26	25	24			
	Reserved									
23	22	21	20	19	18	17	16			
			Rese	erved						
-										
15	14	13	12	11	10	9	8			
			Rese	erved						
7	6	5	4	3	2	1	0			
		Reserved	ADMA_MIS_	ADMA_E	RR_STS					
					ERR					

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:3	0000_0000H	Reserved. If these bits are read, 0 is returned for each bit.
ADMA_MIS_ERR	R	2	0	Indicates whether an ADMA error occurred.
				0: Did not occur.
				1: Occurred.
ADMA_ERR_STS	R	1:0	00b	Indicates the ADMA1/ADMA2 status after an ADMA error occurs.
				00: ST_STOP (DMA stopped)
				The value of the system address register maintains the address
				next to Error Descriptor.
				01: ST_FDS (Description fetched)
				The value of the system address register maintains the address
				next to Error Descriptor.
				10: SD_CARD (Address changed)
				11: ST_TFR (Data transferred)
				The value of the system address register maintains the address
				next to Error Descriptor.

Remark An ADMA error occurs under the following conditions:

- 1. When block counting is enabled and the total data length obtained from the descriptor table differs from the total data length calculated using the number of blocks and data length.
- 2. When the data length is not an even multiple of the block length.

3.2.19 ADMA1/2 system address registers 0 and 1

These registers (SDIO_ADMA_SYSADD0: 0058H and SDIO_ADMA_SYSADD1: 005AH) specify the system memory address used for ADMA.

31	30	29	28	27	26	25	24		
	SDIO_ADMA_SYSADD1								
23	22	21	20	19	18	17	16		
			SDIO_ADM#	A_SYSADD1					
15	14	13	12	11	10	9	8		
	SDIO_ADMA_SYSADD0								
7	6	5	4	3	2	1	0		
	SDIO_ADMA_SYSADD0								

Name	R/W	Bit No.	After Reset	Description
ADMA_SYSADD1	R/W	31:16	0000H	Specify the system memory address used for ADMA (in the higher
				16 bits).
ADMA_SYSADD0	R/W	15:0	0000H	Specify the system memory address used for ADMA (in the lower 16
				bits).

When using ADMA, the following table is made and start address in the table is set as SDIO_ADMA_SYSADD0,1.

The example which hangs ADMA transmission to 3 blocks

3.2.20 CE-ATA control register

This register (SDIO_CEATA: 0080H) sets up the CE-ATA commands.

 31	30	29	28	27	26	25	24
Reserved							
							_
23	22	21	20	19	18	17	16
			Rese	erved			
 15	14	13	12	11	10	9	8
			Rese	erved			
 7	6	5	4	3	2	1	0
Res	erved	CMERR_CMP	CE_ATA_MON	CE_ATA_EN	PDRV_DISEN	CM_CMP_DIS	CM_CMP_EM
		_EN				_EN	

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:6	000_0000H	Reserved. If these bits are read, 0 is returned for each bit.
CMERR_CMP_EN	R	5	0	Indicates whether issuing the command completion signal disable
				(CCSD) signal is enabled when a CE-ATA command error occurs.
				0: Disabled
				1: Enabled
CE_ATA_MON	R	4	1	Indicates whether CE-ATA is supported.
				0: Not supported
				1: Supported
CE_ATA_EN	R/W	3	0	Specify whether to enable the CE_ATA features.
				0: Disable
				1: Enable
PDRV_DISEN	R/W	2	0	Specify whether to enable the command line P drive.
				0: Enable
				1: Disable
CM_CMP_DIS_EN	R/W	1	0	Specify whether to enable the command completion signal disable
				(CCSD) signal.
				0: Disable
				1: Enable
CM_CMP_EN	R/W	0	0	Specify whether to enable the command completion signal (CCS).
				0: Disable
				1: Enable

3.2.21 Slot interrupt status register and host controller version register

These registers (SDIO_SLOTINT_STS: 00FCH and SDIO_HOSTVER: 00FEH) indicate the slot interrupt status, the vendor code, and SD Association specifications supported by the host controller.

31	30	29	28	27	26	25	24
			Rese	erved			
23	22	21	20	19	18	17	16
	VEND	_VER			SPEC	_VER	
15	14	13	12	11	10	9	8
			Rese	erved			
7	6	5	4	3	2	1	0
	Reserved						

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:24	00H	Reserved. If these bits are read, E1H is returned for each bit.
VEND_VER	R	23:20	0000b	Indicates the vendor code.
SPEC_VER	R	19:16	0001b	Indicates the version of the SD Association specifications supported
				by the host controller (Specification Ver. 2.0).
Reserved	R	15:1	00000001111	Reserved. If these bits are read, 0 is returned for each bit.
			111b	
SLOT0	R	0	1	Indicates whether an interrupt from slot 0 occurred.
				Logical sum of interruption and wake-up
				0: Did not occur
				1: Occured

Remarks If the interrupt signal or wakeup signal is 1, an interrupt occurred.

3.2.22 AHB IF control register 0

This register (SDIO_AMBA0: 0100H) specifies the AHB transfer protocol.

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
			Rese	erved				
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
		Reserved		TRANS_MODE				

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:3	0000_0000H	Reserved. If these bits are read, 0 is returned for each bit.
TRANS_MODE	R/W	2:0	000b	Specify the AHB transfer protocol.
				000: 4-burst incremental transfer
				001: 8-burst incremental transfer
				010: 16-burst incremental transfer
				011: Incremental transfer
				1xx: Single transfer

3.2.23 AHB IF control register 1

This register (SDIO_AMBA1: 0104H) enables AHB lock transfers.

31	30	29	28	27	26	25	24	
			Rese	erved				
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved							

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:1	0000_0000H	Reserved. If these bits are read, 0 is returned for each bit.
LOCK_EN	R/W	0	0	Specify whether to enable AHB lock transfers.
				0: Disable
				1: Enable
				It may be set as both.

3.2.24 Clock delay setting register

This register (SDIO_DLYCTRL: E000H) specifies the phase and delay for the module clock.

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
'								
15	14	13	12	11	10	9	8	
			Rese	erved				
7	6	5	4	3	2	1	0	
	Reserved		INV		Rese	erved		

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:5	000_0000H	Reserved. If these bits are read, 0 is returned for each bit.
INV	R/W	4	0	A clock for latches of an input data (SDIO_SCLK input from outside), a positive logic or a negative logic is chosen. 0: positive logic 1: negative logic
Reserved	R	3:0	0H	Reserved. If these bits are read, 0 is returned for each bit.

3.2.25 Module port setting register 0

This register (SDIO_GPIO0: E004H) specifies the SDIO module port.

31	30	29	28	27	26	25	24	
	Reserved							
23	22	21	20	19	18	17	16	
	Reserved							
15	14	13	12	11	10	9	8	
CD				Reserved				
7	6	5	4	3	2	1	0	
	Reserved							

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:16	0000H	Reserved. If these bits are read, 0 is returned for each bit.
CD	R/W	15	1	Card detect
				0 : Detection
				1 : Non-detection
Reserved	R	14:0	0000H	The setting can't be changed from defaults.

Note: If card detection is performed, set 0 in a bit [15].

3.2.26 Module port setting register 1

This register (SDIO_GPIO1: E008H) specifies the SDIO module port.

31	30	29	28	27	26	25	24
Rese	Reserved		Reserved				
23	22	21	20	19	18	17	16
			Rese	erved			
							_
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
	Reserved						

Name	R/W	Bit No.	After Reset	Description
Reserved	R/W	31:30	01b	The setting can't be changed from defaults.
INTSEL	R/W	29	0	Polarity of interrupt
				1 : Reverse
Reserved	R	28:0	00_0000H	The setting can't be changed from defaults.

Note: When using SDIx_INT, be sure to set "1" in a bit [29].

3.2.27 Module enable register

This register (SDIO_MODEN: F000H) specifies whether to enable the SDIO module.

31	30	29	28	27	26	25	24
			Rese	erved			
							_
23	22	21	20	19	18	17	16
			Rese	erved			
15	14	13	12	11	10	9	8
	Reserved						
7	6	5	4	3	2	1	0
Reserved					MODEEN		

Name	R/W	Bit No.	After Reset	Description
Reserved	R	31:1	0000_0000H	Reserved. If these bits are read, 0 is returned for each bit.
MODEEN	R/W	0	0	Specify whether to enable the SDIO module.
				0: Disable
				1: Enable

4. Usage

4.1 SDIO module initialization flow

Figure 4-1. SDIO module initialization flow

4.2 Command issue flow

Figure 4-2. Command issue flow

4.3 MMC initialization flow (reference)

Figure 4-3. MMC initialization flow (reference)

4.4 MMC single read flow (reference)

Figure 4-4. MMC single read flow (reference)

4.5 MMC single write flow (reference)

Figure 4-5. MMC single write flow (reference)

4.6 The DETECT processing performed after return to the Power-On state from The Retention state

DETECT processing is needed to make them return to the Power-On state from the Retention state.

- (1) SDIO_GPIO0 register (E004H) CD bit (bit[15]) : $1\rightarrow0$
- (2) After processing of the above "(1)", and about 200us wait. (SDIO_SCLK, more than for 64 cycles)
- (3) SDIO_CLKCTRL register (002CH) SDIOLKEN bit (bit[2]): 1
- (4) SDIO_HOST register (0028H) POWER bit (bit[8]): 1

REVISION HISTORY EMMA Mobile EV2 User's Manual: SDIO Interface
--

Rev. Date		Date Description				
		Page	Page Summary			
1.00	Mar 31, 2010	_	1 st revision release			
2.00	Jun 7, 2010	_	Incremental update from comments to the 1.0.			
3.00	Jun 30, 2010	_	Incremental update from comments to the 2.0.			
			(A change part from the old revision is "★" marked in the page left end.)			
4.00	Sep 30, 2010	_	Incremental update from comments to the 3.0.			
			(A change part from the old revision is "★" marked in the page left end.)			
5.00	Apr 15, 2011	_	Incremental update from comments to the 4.0.			
			(A change part from the old revision is "★" marked in the page left end.)			
6.00	May 31, 2011	_	Incremental update from comments to the 5.0.			
7.00	Dec 21, 2011	_	Incremental update from comments to the 6.0.			
		19	Chapter 3.2.13 corrected. (bit[7] and [6] Reserved.)			
		20	Chapter 3.2.14 corrected. (bit[7] and [6] Reserved.)			
		30	Chapter 3.2.24 corrected.			
8.00 Jun 8, 2012 — Incremental update from comments to the 3.00.		Incremental update from comments to the 3.00.				
		13	Chapter 3.2.10 corrected. (bit[8])			
		41	Chapter 4.6 added.			

EMMA Mobile EV2 User's Manual: SDIO Interface

Publication Date: Rev.1.00 Mar 31, 2010

Rev.8.00 Jun 8, 2012

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 7F, No. 363 Fu Shing North Road Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632 Tel: +65-6213-0200, Fax: +65-6278-8001

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

SDIO Interface

EMMA Mobile EV2

