

Pontifícia Universidade Católica do Paraná

Plano de Ensino

Lscola/ Campus:	Politécni	ica					
Curso:	BCC		Ano/Semestre	: 2021/2			
Código/Nome da disciplina:	Fundame	Fundamentos de Sistemas Ciber-Físicos / Fundamentals of Cyber Physical Systems					
Carga Horária:	80						
Requisitos:	-	-					
Créditos:	4	Período: 2º/3º	Turma: U T	urno: noite			
Professor Responsável:	Afonso Ferreira Miguel / Edson J. R. Justino						

1. Ementa

Esta disciplina, dirigida a acadêmicos de 2º período dos cursos de Bacharelado em Sistemas de Informação (BSI) e Bacharelado em Ciência da Computação (BCC) e Bacharelado em Cibersegurança (BCS), e 3º período do curso de Bacharelado em Engenharia de Software (BES), tem por referência o estudo de módulos microprocessados, mecanismos de comunicação e serviços em nuvem aplicados à Sistemas Ciber-Físicos e Internet das Coisas (IoT - *Internet of Things*). Nela, os estudantes aprendem a relacionar arquiteturas, redes, sistemas operacionais e nuvem computacional. Ao final da disciplina, são capazes de solucionar problemas estruturados integrando adequadamente configurações de hardware e software aplicados ao mundo físico.

2. Relação com disciplinas precedentes e posteriores

A disciplina de Fundamentos de Sistemas Ciber-físicos não tem nenhuma outra disciplina como pré-requisito, porém o conhecimento prévio de programação é fortemente recomendado.

E disciplina contribui com os resultados de aprendizagem das disciplinas Conectividade e Sistemas Ciber-físicos e Performance em Sistemas Ciber-físicos.

3. Temas de estudo

- TE 1. Sistemas de Numeração Binário, Hexadecimal, Operações Aritméticas (*Arquitetura de Computadores*);
- TE 2. Hardware básico CPU, Memória, Dispositivos de Entrada e Saída e Interrupções (*Arquitetura de Computadores*);
- TE 3. Sistemas de suporte Processos, gerência de memória, entrada e saída, sistemas de arquivos, chamadas de sistema (**Sistemas Operacionais**);

- TE 4. Módulos microprocessados Configuração, Programação, Linux básico (*Arquitetura de Computadores* e *Sistemas Operacionais*);
- TE 5. Sensores e Atuadores Bibliotecas, Montagem e Programação (*Arquitetura de Computadores* e *Programação*);
- TE 6. Conectividade Endereçamento Físico, Redes comutadas e Internet (Hub, Switch, Roteadores), Quadros e Pacotes, Protocolos de Transporte (TCP e UDP), Endereçamento de rede (IP), DNS, DHCP, Protocolos de Aplicação (HTTP, MQTT e CoAP), (**Redes de Computadores**);
- TE 7. Serviços de Nuvem Tipos de serviço, Configuração e uso (**Serviços de Nuvem para lo T**).

4. Resultados de Aprendizagem

Tabela 1: Correlação entre Competências, Elementos de Competências e RAs para Bacharelado em Ciência da Computação

Bacharelado em Ciência da Computação	RA 1	RA 2	RA 3	RA 4
C1.1 Integrar sistemas computacionais, considerando a documentação, as políticas e as diretrizes				
organizacionais, em prol da preservação dos critérios de dependabilidade, de forma cooperativa e				
negociada.				
EC 1.1.1. Integrar arquiteturas, redes, sistemas operacionais e nuvem computacional para suportar	X	X	v	X
aplicações diversas	Λ	Λ	Λ	Λ
C1.2 Projetar infraestrutura computacional sustentável, com segurança e dependabilidade,				
considerando tecnologias, estrutura organizacional e plano diretor de tecnologia da informação,				
implantando e monitorando sua execução de forma ética e resiliente.				
EC 1.2.1. Selecionar configuração adequada de hardware e software na solução de problemas		X		v
computacionais		Λ		X

Tabela 2: Correlação entre Competências, Elementos de Competências e RAs para Bacharelado em Sistemas de Informação

Bacharelado em Sistemas de Informação	RA 1	RA 2	RA 3	RA 4
C2.1 Projetar soluções computacionais de acordo com especificações de requisitos, utilizando				
diretrizes da Engenharia de Software, considerando as tecnologias atuais de forma autorregulada				
EC 2.1.1. Usar configuração adequada de hardware e software na solução de problemas		v		X
computacionais (semelhante, mas menos abrangente que EC 1.2.1)		Λ		Λ
EC 2.1.2. Integrar arquiteturas, redes e sistemas operacionais e nuvem computacional para suportar	X	v	v	X
aplicações diversas (mesmo que EC 1.1.1)	Λ	Λ	Λ	Λ

Tabela 3: Correlação entre Competências, Elementos de Competências e RAs para Bacharelado em Engenharia de Software

Bacharelado em Engenharia de Software	RA 1	RA 2	RA 3	RA 4
---------------------------------------	------	------	------	------

C1.1 Conceber soluções computacionais para cenários diversos, combinando métodos e técnicas				
apropriados ao contexto de forma precisa, crítica e inovadora (Especificação)				
EC 1.1.1. Planejar arquiteturas inovadoras de software baseadas em padrões e normas	X	X	X	X
EC 1.2.1. Selecionar configuração adequada de hardware e software na solução de problemas		v		v
computacionais (mesmo que EC 1.2.1)		Λ		Λ

Tabela 4: Correlação entre Competências, Elementos de Competências e RAs para Bacharelado em Cibersegurança

Bacharelado em Cibersegurança	RA 1	RA 2	RA 3	RA 4
C1.1 Implantar soluções seguras com tecnologia da informação e comunicação, seguindo				
especificações, padrões e boas práticas de desenvolvimento e testes, de forma inovadora, ética,				
sistematizada e autorregulada.				
EC 1.1.1. Analisar o contexto e requisitos de hardware e software	X	X	X	X
EC 1.2.1. Elaborar soluções tecnológicas de forma inovadora		X		X

Tabela 5: Correlação entre Resultados de Aprendizagem e Temas de Estudo

RA1	Reconhecer as principais unidades computacionais de hardware e software suas	TE 1, TE 2, TE 3
	funcionalidades.	
RA2	Resolver problemas estruturados, integrando hardware e software.	TE 2, TE 3, TE 4, TE 5
RA3	Reconhecer as principais unidades de redes e nuvem computacional.	TE 6, TE 7
RA4	Resolver problemas estruturados, integrando hardware e software, dispositivos de	TE 2, TE 3, TE 4, TE 5, TE 6,
	comunicação e nuvem computacional.	TE 7

5. Mapa Conceitual

Figura 1: Mapa conceitual

6. Metodologia e Avaliação

Tabela 6: Processos avaliativos, métodos e técnicas por ID/RA

	Ali	nhamento Construtivo	
Resultado de aprendizagem	Indicadores de desempenho	Processos de Avaliação	Métodos ou técnicas empregados
RA 1: Reconhecer as principais unidades computacionais de hardware e software suas funcionalidades.	1.1 Realiza conversões e operações lógicas/aritméticas entre bases binária e hexadecimal; 1.2 Enumera as características das principais unidades computacionais de Hardware e Software; 1.3 Correlaciona as características das principais unidades computacionais de Hardware e Software;	Avaliações formativas 1 a 6: estudo dirigido em sala de aula envolvendo Hardware e Software. Feedback coletivo em sala de aula. Avaliações somativas 1 e 2: avaliação em sala de aula sobre os TEs 1, 2 e 3. Feedback em sala de aula com retomada de conteúdos, se necessários.	Estudo dirigido com aprendizagem por pares. Team based learning - resoluções de problemas usando programação. Prova escrita sobre os conteúdos dos TEs 1, 2 e 3. Todas as interações serão realizadas pelo Blackboard
RA 2: Resolver problemas estruturados, integrando hardware e software.	2.1 Implementa uma solução para problemas estruturados integrando hardware e software;	Avaliação somativa Projeto: implementação de um sistema embarcado com sensoriamento e processamento local.	PjBL – avaliação em equipe – empregando TEs 1, 2, 3, 4 e 5. Todas as interações serão realizadas pelo Blackboard
RA 3: Reconhecer as principais unidades de redes e nuvem computacional.	3.1 Enumera as características das principais unidades de redes e nuvem computacional; 3.2 Correlaciona as características das principais unidades de redes e nuvem computacional;	Avaliações formativas 7 e 8: estudo dirigido em sala de aula envolvendo unidades de redes e nuvem computacional. Feedback coletivo em sala de aula. Avaliação somativa 3: avaliação em sala de aula sobre os TEs 5, 6 e 7. Feedback em sala de aula com	Estudo dirigido com aprendizagem por pares. Team based learning - resoluções de problemas usando programação. Prova escrita sobre os conteúdos dos TEs 5, 6 e 7. Todas as interações serão realizadas pelo Blackboard

			retomada de conteúdos, se necessários.	
RA 4: Resolver problemas estruturados, integrando hardware, software, dispositivos de comunicação e nuvem computacional.	estruturados inte hardware, so dispositivos	oblemas egrando oftware,	Avaliação somativa Projeto: implementação de um sistema Ciber-físico.	PjBL – avaliação em equipe– empregando todos os TEs. Todas as interações serão realizadas pelo Blackboard

Tabela 7: Descrição de Atividades

	Descrição Atividade
S1	[Avaliação Somativa] Sist. Numeração
S2	[Avaliação Somativa Fundamentos Computação
S3	[Avaliação Somativa] SO e Redes
S4 (Pj)	[Avaliação Somativa] Projeto
F1	[Formativa] Sobre Máquina de Turing
F2	[Formativa] Arquitetura Von Neumann
F3	[Formativa] ULA - Unidade Lógica e Aritmética
F4	[Formativa] Memórias de computador
F5	[Formativa] Processamento e Execução de Programas
F6	[Formativa] Processamento: Otimização
F7	[Formativa] Sistemas Operacionais
F8	[Formativa] Redes de Computadores

Tabela 8: Distribuição de pesos por RA

	S1	S2	S3	S4 (Pj)	F1	F2	F3	F4	F5	F6	F7	F8
RA1	40,0%	40,0%	13,3%	6,7%	1,7%²	1,7%²	1,7%²	1,7%²	1,3%²	1,3%²	0,8%2	
RA2		47,6%	23,8%	28,6%	1,4%²	1,4%²	1,4%2	1,4%²	1,4%2	1,4%2	1,4%2	
RA3			66,7%	33,3%								10,0%²
RA4			25,0%	75,0%					2,5%²	2,5%²	2,5%²	2,5%²

IMPORTANTE:

- 1. A nota semestral será computada a partir da média ponderada pelos pesos indicados na Tabela 8. O estudante será aprovado se alcançar aproveitamento mínimo de 70%;
- 2. As avaliações formativas (F1 a F8) são lançadas como bônus de nota.

Caso o estudante não alcance o aproveitamento satisfatório na Avaliação Somativa 1 (S1), uma recuperação será realizada junto com a Avaliação Somativa 2 (S2).

Caso o estudante não alcance o aproveitamento satisfatório na Avaliação Somativa 2 (S2), uma recuperação será realizada junto com a Avaliação Somativa 3 (S3).

Caso o estudante não alcance o aproveitamento satisfatório na Avaliação Somativa 3 (S3), uma recuperação será realizada na Semana Estendida de Recuperação

7. Cronograma de atividades

Tabela 9: Cronograma de Atividades

Período (semana)	RAs	Atividades pedagógicas	Em aula / TDE	Carga horária da atividade
1	RA1	Sistemas de Numeração	Em Aula	4HA
2	RA1	Sistemas de Numeração; Estudo Dirigido*	Em Aula	4HA
3	RA1	Avaliação Somativa 1	Em Aula	4HA
4	RA1	Princípios da computação	Em Aula	4HA
5	RA1	Princípios da computação	Em Aula	4HA
6	RA1	Princípios da computação; Estudo Dirigido*	Em Aula	4HA

7	RA2, RA4	Módulos Microprocessados	Em Aula/TDE	4HA + 4HR (TDE)
8	RA2, RA4	Módulos Microprocessados	Em Aula/TDE	4HA + 4HR (TDE)
9	RA1	Avaliação Somativa 2	Em Aula	4HA
10	RA3	Sistemas Operacionais	Em Aula	4HA
11	RA3	Sistemas Operacionais; Estudo Dirigido*	Em Aula	4HA
12	RA3	Redes de Computadores	Em Aula	4HA
	RA2, RA4	Conectividade Módulos Microprocessados;	Em Aula/TDE	4HA + 4HR (TDE)
13		Estudo Dirigido*		
14	RA3	Avaliação Somativa 3	Em Aula	4HA
15	RA4	Avaliação Somativa 4 - Apresentação de Projeto*	Em Aula	4HA

Entregas de atividades pedagógicas para atribuição de frequência	CH contabilizada	Data de entrega
Sistemas de Numeração; Estudo Dirigido*	8HA	Semana 2
Princípios da computação; Estudo Dirigido*	16HA	Semana 6
Sistemas Operacionais; Estudo Dirigido*	20HA	Semana 11
Conectividade Módulos Microprocessados; Estudo Dirigido*	8HA	Semana 14
Avaliação Somativa 4 - Apresentação de Projeto*	8HA	Semana 16

8. Referências Bibliográficas

Básica:

- TANENBAUM, Andrew S. **Organização estruturada de computadores, 6ed.** Pearson 628 ISBN 9788581435398.
- KUROSE, James F.; Ross, Keith W. Redes de Computadores e a Internet: uma abordagem top-down 5ª edição. Pearson 644 ISBN 9788588639973.
- SOLOMAN, S. Sensores e sistemas de controle na indústria. Rio de Janeiro, 2012. ISSN: 978-85-216-2807-1

Complementar:

- PAIXÃO, Renato Rodrigues. Arquitetura de computadores PCs. São Paulo Erica 2014 1 recurso online ISBN 9788536518848.
- COMER, Douglas E. Redes de computadores e internet. 6. Porto Alegre Bookman 2016 1 recurso online ISBN 9788582603734.
- STALLINGS, William. Arquitetura e Organização de Computadores: projeto para o desempenho 8ª edição. Pearson 642 ISBN 9788576055648.
- LUIS ANTONIO AGUIRRE. **Fundamentos de Instrumentação.** Pearson 354 ISBN 9788581431833.

• STEVAN JUNIOR, Sergio Luiz. **Automação e instrumentação industrial com Arduino** teoria e projetos. São Paulo Erica 2015 1 recurso online ISBN 9788536518152.

9. Acessibilidade

Não há nenhum estudante que exige algum tido de tratamento diferenciado. Para adaptar a disciplina para a pandemia COVID-19, as atividades práticas estão sendo realizadas remotamente.

10. Adaptações para práticas profissionais

O projeto será realizado em equipes remotas, com os estudantes adquirindo os próprios kits (ESP32) para implementação.