

Deadline: 23:00pm of next Monday (2022/03/07)

Please send your homework into

TA's mailbox:

12132430@mail.sustech.edu.cn.

MECHANICS OF MATERIALS

YAHUI XUE (薛亚辉)

SPRING, 2022

Vocabulary

- Elastic (弹性的)
- Plastic(塑性的)
- Indeterminate (非静定的)
- Moment (弯矩)
- Stress (应力)
- Strain (应变)
- Modulus of elasticity (弹性模量) Dilation (膨胀)

- Saint Venant's principle (圣维南原理)
- Resultant (合力)
- Fracture (断裂)
- Yield (屈服)
- Ductile(软的)
- Fatigue (疲劳)

- Compatibility (协调性)
- Poisson (泊松)
- Resilience (弹性恢复)
- Elastoplastic (弹塑性)
- Strain hardening (应变硬化)

Problem 1

F4–1. The 20-mm-diameter A-36 steel rod is subjected to the axial forces shown. Determine the displacement of end *C* with respect to the fixed support at *A*.

Problem 2

F4–6. The 20-mm-diameter 2014-T6 aluminum rod is subjected to the triangular distributed axial load. Determine the displacement of end A.

$$E_{\rm st} = 73.1 \; {\rm GPa}$$

Problem 3

4–46. If the gap between C and the rigid wall at D is initially 0.15 mm, determine the support reactions at A and D when the force P = 200 kN is applied. The assembly is made of solid A-36 steel cylinders. $E_{\rm st} = 200$ GPa

Homework-II

Problem 4

4–47. The support consists of a solid red brass C83400 copper post surrounded by a 304 stainless steel tube. Before the load is applied the gap between these two parts is 1 mm. Given the dimensions shown, determine the greatest axial load that can be applied to the rigid cap *A* without causing yielding of any one of the materials.

Problem 5

4–55. The three suspender bars are made of A992 steel and have equal cross-sectional areas of 450 mm². Determine the average normal stress in each bar if the rigid beam is subjected to the loading shown.

$$E_{\rm st} = 200 \, \mathrm{GPa}$$

Problem 6

10–33. A rod has a radius of 10 mm. If it is subjected to an axial load of 15 N such that the axial strain in the rod is $\epsilon_x = 2.75(10^{-6})$, determine the modulus of elasticity E and the change in the rod's diameter. $\nu = 0.23$.

Homework- $\int_{\text{then released, determine the permanent elongation of the specimen.}}$ F3–11. The material for the 50-mm-long specimen has the stress-strain diagram shown. If P = 150 kN is applied and then released, determine the permanent elongation of the specimen.

Problem 7

$$E_{\rm st} = 200 \; \rm GPa$$

Average Mechanical Properties of Typical Engineering Materials^a (SI Units)

Materials	Density ρ (Mg/m³)	Moduls of Elasticity E (GPa)	Modulus of Rigidity G (GPa)	Yiel Tens.	d Strength (N σ_Y Comp. $^{ m b}$	APa) Shear	Ultin	nate Strength $\sigma_{ m u}$ Comp. $^{ m b}$	(MPa) Shear	%Elongation in 50 mm specimen	Poisson's Ratio v	Coef. of Therm. Expansion α (10 ⁻⁶)/°C
Metallic Aluminum 2014-T6 Wrought Alloys 6061-T6	2.79 2.71	73.1 68.9	27 26	414 255	414 255	172 131	469 290	469 290	290 186	10 12	0.35 0.35	23 24
Cast Iron Gray ASTM 20 Alloys Malleable ASTM A-197	7.19 7.28	67.0 172	27 68	-	_	_	179 276	669 572		0.6 5	0.28 0.28	12 12
Copper Red Brass C83400 Alloys Bronze C86100	8.74 8.83	101 103	37 38	70.0 345	70.0 345	_	241 655	241 655	-	35 20	0.35 0.34	18 17
Magnesium Alloy [Am 1004-T61]	1.83	44.7	18	152	152	<u> </u>	276	276	152	1	0.30	26
Structural A-36 Steel Alloys Stainless 304 Tool L2	7.85 7.85 7.86 8.16	200 200 193 200	75 75 75 75	250 345 207 703	250 345 207 703	1 1 1	400 450 517 800	400 450 517 800	-	30 30 40 22	0.32 0.32 0.27 0.32	12 12 17 12
Titanium Alloy [Ti-6Al-4V]	4.43	120	44	924	924	-	1,000	1,000	-	16	0.36	9.4
Nonmetallic Concrete Low Strength High Strength	2.38 2.37	22.1 29.0	-	-	-	12 38	-		_	-	0.15 0.15	11 11
Plastic Kevlar 49 Reinforced 30% Glass	1.45 1.45	131 72.4	-	-	-	-	717 90	483 131	20.3	2.8	0.34 0.34	-
Wood Select Structural — Douglas Fir Grade — White Spruce	0.47 3.60	13.1 9.65	-	-	- -	-	2.1° 2.5°	26 ^d 36 ^d	6.2 ^d 6.7 ^d	-	0.29 ^e 0.31 ^e	- -

^a Specific values may vary for a particular material due to alloy or mineral composition, mechanical working of the specimen, or heat treatment. For a more exact value reference books for the material should be consulted.

^b The yield and ultimate strengths for ductile materials can be assumed equal for both tension and compression.

^c Measured perpendicular to the grain.

^d Measured parallel to the grain.

^e Deformation measured perpendicular to the grain when the load is applied along the grain.