Task - 09

Batch - 04

Name:

K Harish

U. Amrutha Varshini

B. N. Mallikarjuna

T. Venkata Sai Kumar

Radha Chaurasiya

Vishal Babu

Ajay Prakash

Solutions available for FPGA Development Using Al

The intersection of FPGA development and AI has seen significant advancements, offering robust solutions for various applications, particularly in fields requiring high-speed processing and real-time data analysis. Here are some solutions available for FPGA development using AI:

1. Xilinx Vitis AI: Xilinx Vitis AI is a comprehensive AI development platform optimized for Xilinx hardware, including FPGAs and adaptive compute acceleration platforms (ACAPs). It enables developers to deploy machine learning models on Xilinx devices efficiently.

Key Features:

- Provides a library of optimized and pre-trained AI models.
- Includes a deep learning processor unit (DPU) that accelerates inference.
- Compatible with TensorFlow, PyTorch, and Caffe.
- Supports deployment on both edge devices and cloud environments.
- **2. Intel OpenVINO Toolkit:** The OpenVINO (Open Visual Inference and Neural Network Optimization) Toolkit is an Intel offering that enables developers to optimize and deploy AI inference across Intel hardware, including Intel FPGAs.

Key Features:

- Converts and optimizes models from popular frameworks like TensorFlow, PyTorch, and ONNX.
- Provides a unified API for running inference on various Intel hardware.
- > Offers a model zoo with a wide range of pre-trained models.
- Designed for edge AI applications, providing tools for low-latency inference.

3. Deep Learning Frameworks for FPGA (DNNWEAVER and FINN)

DNNWEAVER: DNNWEAVER is a framework developed by Microsoft Research that simplifies the mapping of deep neural networks (DNNs) to FPGAs.

Key Features:

- Automates the process from high-level model description to FPGA implementation.
- Focuses on resource utilization and performance optimization.
- Supports various DNN architectures.
- **4. FINN:** FINN is a framework from Xilinx Research Labs that focuses on quantized neural network (QNN) inference on FPGAs.

Key Features:

- Allows customization of network architectures and quantization levels.
- > Optimized for high-throughput, low-latency inference.
- Integrates with the Xilinx Vitis AI toolchain.
- **5. Efinix Trion FPGA with Quantum Acceleration:** Efinix Trion FPGAs incorporate Quantum technology, providing an efficient platform for AI acceleration.

Key Features:

- ➤ Enhances the performance of AI and machine learning algorithms.
- Optimized for power and resource efficiency.
- Supports a wide range of Al applications, from edge to cloud.

6. Custom Al Solutions from Vendors (e.g., Gyrfalcon, BrainChip)

Gyrfalcon Technology: Gyrfalcon Technology offers AI accelerators designed to work with FPGAs, providing efficient inference capabilities for edge AI applications.

Key Features:

- Optimized for low-power, high-performance AI inference at the edge.
- Scalable solutions suitable for various applications.
- **7. BrainChip Akida:** BrainChip's Akida platform provides a neuromorphic processor that can be integrated with FPGAs to deliver efficient Al inference.

Key Features:

- Mimics brain processing for efficient AI computation.
- Designed for ultra-low-power AI applications.
- > Suitable for real-time inference tasks.

References:

- 1. https://www.electronicdesign.com/technologies/embedded/article/21168273/electronic-design-using-ai-to-design-fpga-based-solutions
- 2. https://vlsifirst.com/blog/using-artificial-intelligence-and-machine-learning-in-fpga-design