An Auction-based Task Allocation Algorithm in Heterogeneous Multirobot System

Jieke Shi, Zhou Yang and Junwu Zhu

Yangzhou University, School of Information, China University of Guelph, Department of Computer Science, Canada

Presentation Structure

- Introduction
- Model and Algorithm Description
- Experiment Results and Analysis
- Conclusion and Future Work

1.1 Multi-agent System

- What is a Multi-agent System?
 - A coupled network of solvers that work together to solve problems that are beyond their individual capabilities.

1.2 MRTA Problem

- Multi-robot task allocation problem is an optimization problem.
- It aims to improve the efficiency of the whole agent system.
- Under certain circumstances, MRTA problem can be thought of as an assignment problem.

1.3 Auction Algorithm

- It is an iterative procedure and related to a sales auction, where multiple bids are compared to determine the best offer.
- An auction algorithm applies to several variations of a combinatorial optimization algorithm which solves assignment problems, and network optimization problems with linear and convex/nonlinear cost.

1.4 DAMCR

- In this kind of changing and dynamic multi-robot system, a successful task scheduling strategy show fulfill two points below:
 - **■**Optimization
 - **■**Dynamic

In response to the above two requirements, based on auction, we propose a merging method.

2 Model and Algorithm Description

- Model Description
- Algorithm Description
- A Simple Example
- Dynamic Adjustment

- The number, as well as the states of tasks are not static.
- The states of robots and the task allocation results are changing with time as well.

So time t is a significant parameter in this model.

• We use auction as a basic method to allocate tasks, a formalized auction can be represented as below:

$$A = \langle B, T \rangle$$

B is the set of bidders, in other words, robots waiting for tasks.

T is the set of tasks waiting to be assigned in this auction.

The damage that $task_i$ will cause to the system can be formalized as below:

$$cost_{i}^{j} = \int_{t_{0}}^{t_{0} + t_{ij}^{1}} cost_{j}(0)dt + \int_{t_{0} + t_{ij}^{1}}^{t_{0} + t_{ij}^{1} + t_{ij}^{2}} cost_{j}(AR_{j}^{t})dt$$

We need to point out that AR_i^t is the accomplishment rate of $task_j$ at time t.

Clearly, $AR_j^t \in [0,1]$

• The object of this auction is to minimize the whole damage system will get. So this problem can be view as a linear programming problem.

$$min \sum_{i \in B} \sum_{j \in T} cost_i^j$$

2.2 Algorithm Description

- Step 1: Set ϵ and p_k
- Step 2: *This step is an iterative process:*
 - Decision phase: obtain maximum relative gains and its second relative gains
 - Bidding phase: All robots bid for the most gainful task, the bidding price of the robot is determined as

$$a_{ij_i} = p_{ij_i} - u_i + v_i - \epsilon = cost_i^{j_i} + v_i - \epsilon$$

- Allocation phase: update the price of the task j to the highest bid price
- Step 3: each robot can meet the complementary slackness condition

2.3 A Simple Example

	r_1	r_2	r_3	r_4
$task_1$	6	3	7	5
$task_2$	2	6	3	9
$task_3$	6	4	2	5
task ₄	1	8	6	8

If we use the traditional auction model, the cost of the task we get will be:

And the cost of the best solution is:

2.4 Dynamic Adjustment

• In some special cases, we need to adjust the task executors. We quantify the emergency rate using E_j . The definition of urgency is:

$$E_j = \frac{w}{\beta v}$$

3 Experiment Results and Analysis

- Use randomly generated task cost matrix
- Choose the *Hungarian classical algorithm* for comparison.
 - The Hungarian algorithm is a combination optimization algorithm, which is used to solve assignment problem.

3 Experiment Results and Analysis

3 Experiment Results and Analysis

The number of tasks has a greater impact on the running time of the *Hungarian algorithm* than the algorithm we proposed.

4 Conclusion and Future Work

- We propose a new auction model and use the auction algorithm to study multi-robot task allocation problem.
- Compared with the Hungarian algorithm, when the number of tasks is small, the auction algorithm has a lower time complexity and the same exact result.
- The proposed auction algorithm has excellent computational complexity.

4 Conclusion and Future Work

- A mechanism must be added to the auction algorithm to find out the infeasibility of the problem.
- · Robots may need to stop their current work and carry out new tasks.
- The ability and preference of robots to perform certain tasks is not considered.
- For more urgent tasks, it should have priority and can be accomplished by more agents.