Journal of Computational Physics 330 (2017) 134-155

Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Resonance treatment using pin-based pointwise energy slowing-down method

Sooyoung Choi^a, Changho Lee^b, Deokjung Lee^{a,*}

Guillermo Ibarra

Nuclear Engineering Research Seminar, April 28th, 2020

^a Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan 44919, Republic of Korea

b Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, United States

Introduction

- ► Equivalence theory used resonance calculations.
- Cao reported overestimation of multi-group ²³⁸U absorption XS (2015).
- Present paper proposes a new resonance self-shielding method using a pointwise energy slowing-down solution (PSM).

Equivalence Theory

Transport equation with collision probabilities:

$$\Sigma_{t,F}(E)\phi_F(E)V_F = P_{FF}V_FQ_{s,F}(E) + P_{MF}(E)V_MQ_{s,M}(E), \tag{1}$$

Equivalence Theory

Transport equation with collision probabilities:

$$\Sigma_{t,F}(E)\phi_F(E)V_F = P_{FF}V_FQ_{s,F}(E) + P_{MF}(E)V_MQ_{s,M}(E), \tag{1}$$

where

$$Q_{s,F}(E) = \sum_{r \in F} N^r \int_E^{E/\alpha^r} \sigma_s^r(E') \phi_F(E') \frac{1}{1 - \alpha^r} \frac{dE'}{E'}$$
 (2)

$$Q_{s,M}(E) = \sum_{r \in M} N^r \int_{E}^{E/\alpha^r} \sigma_s^r(E') \phi_M(E') \frac{1}{1 - \alpha^r} \frac{dE'}{E'}$$
 (3)

IR approximation

$$\int_{E}^{E/\alpha^{r}} \sigma_{s}^{r}(E') \phi_{F}(E') \frac{1}{1-\alpha^{r}} \frac{dE'}{E'} \approx \lambda^{r} \sigma_{p}^{r} \frac{1}{E} + (1-\lambda^{r}) \sigma_{s}^{r}(E) \phi_{F}(E), \qquad (4)$$

$$\int_{E}^{E/\alpha^{r}} \sigma_{s}^{r}(E') \phi_{M}(E') \frac{1}{1-\alpha^{r}} \frac{dE'}{E'} \approx \lambda^{r} \sigma_{p}^{r} \frac{1}{E}$$

Updated Collision Probabilities

Rewriting Eq. 1 using the approximate scattering source and a reciprocity theorem:

$$\Sigma_{t,F}(E)\phi_F(E)V_F = P_{FF}\left[\lambda_F \Sigma_{p,F} \frac{1}{E} + (1 - \lambda_F) \Sigma_{s,F}(E)\phi_F(E)\right] + P_{FM}(E)\Sigma_{t,F}(E)V_F \frac{1}{E},\tag{6}$$

Updated Collision Probabilities

Rewriting Eq. 1 using the approximate scattering source and a reciprocity theorem:

$$\Sigma_{t,F}(E)\phi_F(E)V_F = P_{FF}\left[\lambda_F \Sigma_{p,F} \frac{1}{E} + (1 - \lambda_F) \Sigma_{s,F}(E)\phi_F(E)\right] + P_{FM}(E)\Sigma_{t,F}(E)V_F \frac{1}{E},\tag{6}$$

where $\lambda_X \Sigma_{p,X} = \sum_{r \in X} \lambda^r N^r \sigma_p^r$, (X = F or M); and the reciprocity theorem:

$$P_{FM}(E)\Sigma_{t,F}(E)V_F = P_{MF}(E)\Sigma_{t,M}V_M \approx P_{MF}(E)\lambda_M\Sigma_{p,M}V_M. \tag{7}$$

Updated Collision Probabilities

Rewriting Eq. 1 using the approximate scattering source and a reciprocity theorem:

$$\Sigma_{t,F}(E)\phi_F(E)V_F = P_{FF}\left[\lambda_F \Sigma_{p,F} \frac{1}{E} + (1 - \lambda_F) \Sigma_{s,F}(E)\phi_F(E)\right] + P_{FM}(E)\Sigma_{t,F}(E)V_F \frac{1}{E},\tag{6}$$

where $\lambda_X \Sigma_{p,X} = \sum_{r \in X} \lambda^r N^r \sigma_p^r$, (X = F or M); and the reciprocity theorem:

$$P_{FM}(E)\Sigma_{t,F}(E)V_F = P_{MF}(E)\Sigma_{t,M}V_M \approx P_{MF}(E)\lambda_M\Sigma_{p,M}V_M. \tag{7}$$

Then, fuel-to-fuel collision probability is approximated by rational equation:

$$P_{FF}(E) = 1 - P_{FM}(E) = \sum_{n=1}^{N} \frac{\beta_n \Sigma_{t,F}(E)}{\Sigma_{t,F}(E) + \alpha_n \Sigma_e},$$
(8)

Total Flux

Using a multi-term rational approximation, total flux is formulated as a linear combination:

$$\phi_F(E) = \sum_{n=1}^N \beta_n \phi_{F,n}(E) = \sum_{n=1}^N \beta_n \frac{\lambda_F \Sigma_{p,F} + \alpha_n \Sigma_e}{\Sigma_{a,F}(E) + \lambda_F \Sigma_{r,F}(E) + \lambda_F \Sigma_{p,F} + \alpha_n \Sigma_e} \frac{1}{E}, \tag{9}$$

Total Flux

Using a multi-term rational approximation, total flux is formulated as a linear combination:

$$\phi_F(E) = \sum_{n=1}^N \beta_n \phi_{F,n}(E) = \sum_{n=1}^N \beta_n \frac{\lambda_F \Sigma_{p,F} + \alpha_n \Sigma_e}{\Sigma_{a,F}(E) + \lambda_F \Sigma_{r,F}(E) + \lambda_F \Sigma_{p,F} + \alpha_n \Sigma_e} \frac{1}{E}, \tag{9}$$

Dividing by N^r

$$\phi_F(E) = \sum_{n=1}^{N} \beta_n \phi_{F,n}(E) = \sum_{n=1}^{N} \beta_n \frac{\sigma_{b,n}^r}{\sigma_a^r(E) + \lambda^r \sigma_{rs}^r(E) + \sigma_{b,n}^r} \frac{1}{E},$$
(10)

Total Flux

Using a multi-term rational approximation, total flux is formulated as a linear combination:

$$\phi_F(E) = \sum_{n=1}^N \beta_n \phi_{F,n}(E) = \sum_{n=1}^N \beta_n \frac{\lambda_F \Sigma_{p,F} + \alpha_n \Sigma_e}{\Sigma_{a,F}(E) + \lambda_F \Sigma_{r,F}(E) + \lambda_F \Sigma_{p,F} + \alpha_n \Sigma_e} \frac{1}{E}, \tag{9}$$

Dividing by N^r

$$\phi_F(E) = \sum_{n=1}^{N} \beta_n \phi_{F,n}(E) = \sum_{n=1}^{N} \beta_n \frac{\sigma_{b,n}^r}{\sigma_a^r(E) + \lambda^r \sigma_{rs}^r(E) + \sigma_{b,n}^r} \frac{1}{E},$$
(10)

with the background XS:

$$\sigma_{b,n}^r = \frac{1}{N^r} (\lambda_F \Sigma_{p,F} + \alpha \Sigma_e). \tag{11}$$

Lethargy Form

$$\phi_F(u) = \sum_{n=1}^{N} \beta_n \phi_{F,n}(u) = \sum_{n=1}^{N} \beta_n \frac{\sigma'_{b,n}}{\sigma'_{a}(u) + \lambda^r_{rs}(u) + \sigma^r_{b,n}}$$
(12)

Multi-group XS definition:

$$\sigma_{x,g} = \frac{\int_{\Delta u_g} \sigma_x^r(u)\phi_F(u)du}{\int_{\Delta u_g} \phi_F(u)du} = \frac{\int_{\Delta u_g} \sigma_x^r(u)\sum_{n=1}^N \beta_n \frac{\sigma_{b,n}}{\sigma_a^r(u)+\sigma_{b,n}}du}{\int_{\Delta u_g} \sum_{n=1}^N \beta_n \frac{\sigma_{b,n}}{\sigma_a^r(u)+\sigma_{b,n}}du}$$

$$= \frac{\sum_{n=1}^N \beta_n \int_{\Delta u_g} \sigma_x^r(u) \frac{\sigma_{b,n}}{\sigma_a^r(u)+\sigma_{b,n}}du}{\sum_{n=1}^N \beta_n \int_{\Delta u_g} \frac{\sigma_{b,n}}{\sigma_a^r(u)+\sigma_{b,n}}du} = \frac{\sum_{n=1}^N \beta_{n,g} \sigma_{x,n,g}^r(u)\phi_{n,g}}{\sum_{n=1}^N \beta_{n,g}\phi_{n,g}}$$

$$(13)$$

Lethargy Form

$$\phi_F(u) = \sum_{n=1}^{N} \beta_n \phi_{F,n}(u) = \sum_{n=1}^{N} \beta_n \frac{\sigma_{b,n}^r}{\sigma_a^r(u) + \lambda_{r,s}^r(u) + \sigma_{b,n}^r}$$
(12)

Multi-group XS definition:

$$\sigma_{x,g} = \frac{\int_{\Delta u_g} \sigma_x^r(u)\phi_F(u)du}{\int_{\Delta u_g} \phi_F(u)du} = \frac{\int_{\Delta u_g} \sigma_x^r(u)\sum_{n=1}^N \beta_n \frac{\sigma_{b,n}}{\sigma_a^r(u)+\sigma_{b,n}}du}{\int_{\Delta u_g} \sum_{n=1}^N \beta_n \frac{\sigma_{b,n}}{\sigma_a^r(u)+\sigma_{b,n}}du}$$

$$= \frac{\sum_{n=1}^N \beta_n \int_{\Delta u_g} \sigma_x^r(u) \frac{\sigma_{b,n}}{\sigma_a^r(u)+\sigma_{b,n}}du}{\sum_{n=1}^N \beta_n \int_{\Delta u_g} \frac{\sigma_{b,n}}{\sigma_a^r(u)+\sigma_{b,n}}du} = \frac{\sum_{n=1}^N \beta_{n,g} \sigma_{x,n,g}^r(u)\phi_{n,g}}{\sum_{n=1}^N \beta_{n,g}\phi_{n,g}}$$

$$(13)$$

where,

$$\sigma_{x,n,g}^r = \sigma_{x,g}^r \left(\sigma_{b,n,g}^r \right), \quad x = a, s, f, \tag{14}$$

$$\phi_{n,g} = \phi_g \left(\sigma_{b,n,g}^r \right) = \frac{\sigma_{b,n,g}^r}{\sigma_{a,n,g}^r + \sigma_{b,n,g}^r} \tag{15}$$

$$\sigma_{b,n,g}^r = \frac{1}{N^r} \left(\sum_r \lambda_g^r N^r \sigma_p^r + \alpha_{n,g} \Sigma_e \right)$$
 (16)

Resonance Integral Form

$$\sigma_{x,g}^{r} = \frac{\sum_{n=1}^{N} \beta_{n,g} R I_{x,n,g}^{r}}{1 - \sum_{n=1}^{N} \beta_{n,g} \frac{R I_{a,n,g}^{r}}{\sigma_{b,n,g}^{r}}},$$
(17)

Resonance Integral Form

$$\sigma_{x,g}^{r} = \frac{\sum_{n=1}^{N} \beta_{n,g} R I_{x,n,g}^{r}}{1 - \sum_{n=1}^{N} \beta_{n,g} \frac{R I_{a,n,g}^{r}}{\sigma_{b,n,g}^{r}}},$$
(17)

where

$$RI_{x,n,g}^{r} = \frac{\int_{\Delta u_g} \sigma_x^{r}(u)\phi_{F,n}(u)du}{\int_{\Delta u_g} du} = RI_{x,n}^{r} \left(\sigma_{b,n,g}^{r}\right) = \sigma_{x,n,g}^{r}\phi_{n,g}.$$
 (18)

Modified Forms of Equivalence Theory WIMS

$$\sigma_{x,g}^{r} = \frac{\sum_{n=1}^{N} \beta_{n,g} R I_{x,n,g}^{r}}{1 - \sum_{n=1}^{N} \beta_{n,g} \frac{\lambda R I_{rs,n,g}^{r} + R I_{a,n,g}^{r}}{\sigma_{b,n,g}^{r}}},$$
(19)

Yamamoto

$$\tilde{\sigma}_{a,g}^r \sum_{n=1}^N \beta_{n,g} \frac{\sigma_{b,n,g}^r}{\tilde{\sigma}_{a,g}^r + \sigma_{b,n,g}^r} = \sum_n^N \beta_n \frac{\sigma_{a,n,g}^r \sigma_{b,n,g}^r}{\sigma_{a,n,g}^r + \sigma_{b,n,g}^r},\tag{20}$$

$$\sigma_{a,g}^{r} + \sigma_{b,n,g}^{r} = \frac{\nabla_{a,n,g} + \sigma_{b,n,g}^{r}}{\nabla_{a,n,g}^{r} + \sigma_{b,n,g}^{r}} = \frac{\sum_{n=1}^{n} \beta_{n,g} \sigma_{x,n,g}^{r} \frac{\sigma_{b,n,g}^{r}}{\sigma_{a,n,g}^{r} + \sigma_{b,n,g}^{r}}}{\sum_{n=1}^{N} \beta_{n,g} \frac{\sigma_{b,n,g}^{r}}{\sigma_{a,g}^{r} + \sigma_{b,n,g}^{r}}}$$
(21)

$$\sigma_{x,g}^{r} = \frac{\sum_{n=1}^{N} \beta_{n,g} \sigma_{x,n,g}^{r} \phi_{n,g}^{SD}}{\sum_{n=1}^{N} \beta_{n,g} \phi_{n,g}^{SD}}$$
(22)

Numerical Test with Equivalence Theory

Pointwise Energy Approach

$$\Sigma_{t,F}(u)\phi_F(u) = P_{FF}(u)Q_{s,F} + P_{FM}(u)\Sigma_{t,F}(u)$$
(23)

Pointwise Energy Approach

$$\Sigma_{t,F}(u)\phi_F(u) = P_{FF}(u)Q_{s,F} + P_{FM}(u)\Sigma_{t,F}(u)$$
(23)

Flux specified as a rational approximation:

$$\phi_F(u) = \sum_{n=1}^{N} \beta_n \frac{Q_{s,F}(u) + \alpha_n \Sigma_e}{\Sigma_{t,F}(U) + \alpha_n \Sigma_e}$$
(24)

Pointwise Energy Approach

$$\Sigma_{t,F}(u)\phi_F(u) = P_{FF}(u)Q_{s,F} + P_{FM}(u)\Sigma_{t,F}(u)$$
(23)

Flux specified as a rational approximation:

$$\phi_F(u) = \sum_{n=1}^{N} \beta_n \frac{Q_{s,F}(u) + \alpha_n \Sigma_e}{\Sigma_{t,F}(U) + \alpha_n \Sigma_e}$$
(24)

Assuming that total flux is a linear combination and the IR approximation:

$$\phi_F(u) = \sum_{n=1}^N \beta_n \frac{\lambda \Sigma_{p,F} + \alpha_n \Sigma_e}{\Sigma_{t,F}(U) + \alpha_n \Sigma_e} = \sum_{n=1}^N \beta_n \phi_{F,n}(u)$$
 (25)

separated fluxes

$$\Sigma_{t,F}(u)\phi_{F,n}(u) = \frac{\Sigma_{t,F}(u)}{\sum_{t,F}(u) + \alpha_n \Sigma_e} Q_{s,F,n}(u) + \left(1 - \frac{\Sigma_{t,F}(u)}{\sum_{t,F}(u) + \alpha_n \Sigma_e}\right), \quad n = 1, \dots, N,$$
 (26)

$$\sigma_{x,g}^r = \frac{\int_{\Delta u_g} \sigma_x^r(u) \sum_{n=1}^N \beta_n \phi_{F,n}(u) du}{\int_{\Delta u_g} \sum_{n=1}^N \beta_n \phi_{F,n}(u) du},\tag{27}$$

where

$$Q_{s,F,n}(E) = \sum_{r \in F} N^r \int_{E}^{E/\alpha^r} \sigma_s^r(E') \phi_{F,n}(E') \frac{1}{1 - \alpha^r} \frac{dE'}{E'}$$
 (28)

$$\Sigma_{t,F}(u)\phi_{F}(u) = \sum_{n=1}^{N} \beta_{n} \frac{\Sigma_{t,F}(u)}{\Sigma_{t,F}(u) + \alpha_{n}\Sigma_{e}} Q_{s,F}(u) + \left(1 - \sum_{n=1}^{N} \beta_{n} \frac{\Sigma_{t,F}(u)}{\Sigma_{t,F}(u) + \alpha_{n}\Sigma_{e}}\right) \Sigma_{t,F}(u)$$
(29)

$$\sigma_{x,g}^{r} = \frac{\int_{\Delta u_g} \sigma_x^{r}(u)\phi_F(u)du}{\int_{\Delta u_g} \phi_F(u)du}$$
(30)

Difference between fluxes:

$$\phi_F^S(u) - \phi_F^C(u) = \sum_{n=1}^N \beta_n \frac{Q_{F,n}(u) - Q_F(u)}{\sum_{t,F}(u) + \alpha_n \sum_e} \neq 0$$
 (31)

Numerical Test with Pointwise Energy Approach

Numerical Test with Pointwise Energy Approach

Collision Probability

Numerical Test Without Resonance Scattering Cross Section

Numerical Test Without Resonance Scattering Cross Section

Numerical Test Without Resonance Scattering Cross Section

New Resonance Self-Shielding Method

- Comteporary spatially dependent methods
 - ► SDDM
 - ESSM
- ► Pin-based pointwise energy slowing-down method (PSM)

PSM Collision Probability

PSM Escape Probability

PSM Calculation Flowchart

base pin problem

Fig. 11. Comparison of fuel region averaged ²³⁸U absorption XS for PSM submesh sensitivity test (base pin-cell problem).

base pin problem

Fig. 13. Comparison of region-wise ²³⁸U absorption XS of resonance groups 7, 11 and 12 (base pin-cell problem; relative radius = outer radius of submesh/radius of fuel pellet).

additional tests

additional tests

additional tests

Table 3
Unrodded and rodded FA analyses results.

Method	Unrodded FA 3.1	wt.% UO ₂ fu	el	Rodded FA 3.1 wt.% UO ₂ fuel			
	k-inf difference (pcm)	Pin power difference (%) RMS Max		k-inf difference (pcm)	Pin power difference (%) RMS Max		
MCNP6	1.18309 ±4	±0.07	±0.09	0.78728 ±4	±0.09	±0.09	
EQ	-630	0.11	0.30	-264	0.16	0.40	
DRI	-634	0.11	0.30	-269	0.16	0.40	
SDDM	-492	0.11	0.30	-188	0.16	0.40	
PSM-1	-158	0.16	0.50	57	0.19	0.50	
PSM	10	0.11	0.30	158	0.17	0.50	

Table 4Gadolinia FA and Pyrex FA analyses results.

Method	Gadolinia FA 3.1 v	vt.% UO ₂ fuel	l	Pyrex FA 3.1 wt.% UO ₂ fuel			
	k-inf difference (pcm)	Pin power difference (%) RMS Max		k-inf difference (pcm)	Pin power difference (%) RMS Max		
MCNP6	0.92690	±0.08	±0.09	0.97530	±0.08	±0.09	
	±5			±4			
EQ	-583	0.11	0.30	-499	0.12	0.40	
DRI	-582	0.11	0.30	-505	0.12	0.40	
SDDM	-484	0.12	0.30	-395	0.12	0.40	
PSM-1	-174	0.12	0.40	-97	0.13	0.40	
PSM	8	0.12	0.40	34	0.13	0.40	

Comparison of Computing Time

Table 5 Comparison of computing time in 17 imes 17 FA analysis between EQ and PSM.

MOC ray condition ^a	Method	Elapsed time (sec)						
		MOC FSP for fuel ^b	MOC FSP for clad ^c	Using MG library ^d	PW energy calculation ^e	XS total ^f	Total ^g	
Coarse	EQ	2.3	2.2	1.4	-	8.1	50.9	
(0.05/48/3)	PSM	0.2	2.2	0.4	4.9	8.9	51.9	
Rigorous	EQ	31.5	29.8	1.4	-	64.8	627.4	
(0.01/128/3)	PSM	2.2	29.8	0.3	5.0	38.7	580.9	

a Ray distance (cm)/the number of azimuthal angels/the number of polar angles.

b Elapsed time in whole problem MOC fixed source calculation for the fuel.

^c Elapsed time in whole problem MOC fixed source calculation for the clad.

d Elapsed time in using MG XS and RI look-up table.

e Elapsed time for PSM such as pointwise XS interpolation, pointwise flux calculation, XS condensation and etc.

f Elapsed time in all of multi-group XS calculations including 'MOC FSP', 'Using MG library', 'PW energy calculation' and etc.

g Total elapsed time including multi-group XS calculation and eigenvalue calculation.

Conclusions

- ▶ PSM eliminates the limitations of conventional equivalence methods.
- Spatially dependent pointwise energy slowing down equation
- Shadowing effect correction factors
- ightharpoonup Good agreement of PSM with MCNP6 (< 100 pcm) and 1% difference in absorption XSs

Thanks!

Questions?