Leaf Energy Balance

March 18, 2024

Instructor: Dennis Baldocchi
Professor of Biometeorology
Ecosystem Science Division
Department of Environmental Science, Policy and Management
345 Hilgard Hall
University of California, Berkeley
Berkeley, CA 94720

Quadratic Solutions for Leaf Temperature and Latent Heat Exchange

Isothermal Energy Balance

One Sided Leaf

March 18, 2024

Taylor expansion Series

$$E[f(x)] = f(x) + \frac{df(x)}{dx}(x - x) + \frac{1}{2}\frac{d^2f(x)}{dx^2}(x - x)^2$$

Linearization of Clausis Claperyon, saturation vapor pressure-temperature function, e_s(T)

$$e_s(T_s) = e_s(T_a) + \frac{de_s(T_a)}{dT}(T_s - T_a) + \frac{1}{2}\frac{d^2e_s(T_a)}{dT^2}(T_s - T_a)^2$$

$$(T_s - T_a)^2 = T_s^2 - T_a T_s + T_a^2$$

Linearization of Stefan Bolzmann, T⁴

$$\varepsilon \sigma T_s^4 = \varepsilon \sigma T_a^4 + 4\varepsilon \sigma T_a^3 (T_s - T_a) + 6\varepsilon \sigma T_a^2 (T_s - T_a)^2$$

Solve for set of coupled energy balance equations, one Sided case

Sensible heat flux

$$H = \rho C_p g_h (T_s - T_a)$$

Latent heat flux

$$\lambda E = \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} (e_{s}(T_{s}) - e_{a})$$

$$g_w = 1/(r_b + r_s) = \frac{1}{\frac{1}{g_b} + \frac{1}{g_s}} = \frac{g_s g_b}{g_s + g_b}$$

$$\lambda E = \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) + \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) + \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - e_{a}]$$

Isothermal radiation budget, single sided leaf

$$Q = R \downarrow -R \uparrow + L \downarrow -L \uparrow$$

$$L \downarrow -L \uparrow = L \downarrow -(1-\varepsilon)L \downarrow = \varepsilon L \downarrow$$

$$Q = R \downarrow (1 - \rho) + \varepsilon L \downarrow$$

$$R_n = (1 - \alpha)R_{\sigma} + \varepsilon L \downarrow -\varepsilon \sigma T_{\varsigma}^4 = \lambda E + H$$

$$R_n = Q - \varepsilon \sigma T_s^4 = \lambda E + H$$

$$T_s = \frac{H}{\rho C_p g_h} + T_a$$

$$H = Q - \lambda E - \varepsilon \sigma T_s^4$$

$$H = \rho C_p g_h (T_s - T_a) = Q - \lambda E - \varepsilon \sigma T_s^4$$

$$H = Q - \lambda E - \varepsilon \sigma T_a^4 - 4\varepsilon \sigma T_a^3 (T_s - T_a) - 6\varepsilon \sigma T_a^2 (T_s - T_a)^2$$

$$T_s - T_a = \frac{Q - \lambda E - \varepsilon \sigma T_a^4 - 4\varepsilon \sigma T_a^3 (T_s - T_a) - 6\varepsilon \sigma T_a^2 (T_s - T_a)^2}{\rho C_p g_h}$$

$$T_{s} - T_{a} = \frac{Q - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) + \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) + \frac{1}{2} \frac{d^{2}e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - e_{a}] - \varepsilon \sigma T_{a}^{4} - 4\varepsilon \sigma T_{a}^{3} (T_{s} - T_{a}) - 6\varepsilon \sigma T_{a}^{2} (T_{s} - T_{a})^{2}}{\rho C_{p} g_{h}}$$

$$T_{s} - T_{a} = \frac{Q - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) - e_{a}] - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - \varepsilon \sigma T_{a}^{4} - 4\varepsilon \sigma T_{a}^{3} (T_{s} - T_{a}) - 6\varepsilon \sigma T_{a}^{2} (T_{s} - T_{a})^{2}}{\rho C_{n} g_{h}}$$

$$(T_{s} - T_{a})\rho C_{p}g_{h} = Q - \frac{\rho m_{v}}{Pm_{a}}\lambda g_{w}[e_{s}(T_{a}) - e_{a}] - \frac{\rho m_{v}}{Pm_{a}}\lambda g_{w}\frac{de_{s}(T_{a})}{dT}(T_{s} - T_{a}) - \frac{\rho m_{v}}{Pm_{a}}\lambda g_{w}\frac{1}{2}\frac{d^{2}e_{s}(T_{a})}{dT^{2}}(T_{s} - T_{a})^{2} - \varepsilon\sigma T_{a}^{4} - 4\varepsilon\sigma T_{a}^{3}(T_{s} - T_{a}) - 6\varepsilon\sigma T_{a}^{2}(T_{s} - T_{a})^{2}$$

$$0 = Q - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) - e_{a}] - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - \varepsilon \sigma T_{a}^{4} - 4\varepsilon \sigma T_{a}^{3} (T_{s} - T_{a}) - 6\varepsilon \sigma T_{a}^{2} (T_{s} - T_{a})^{2} - (T_{s} - T_{a}) \rho C_{p} g_{h}$$

$$(T_{s} - T_{a})^{2} \left[-\frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} - 6\varepsilon\sigma T_{a}^{2} \right] + (T_{s} - T_{a}) \left[-\frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} - \rho C_{p} g_{h} - 4\varepsilon\sigma T_{a}^{3} \right]$$

$$+ Q - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \left[e_{s}(T_{a}) - e_{a} \right] - \varepsilon\sigma T_{a}^{4} = 0$$

$$(T_{s} - T_{a})^{2} \left[\frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} + 6\varepsilon\sigma T_{a}^{2} \right] + (T_{s} - T_{a}) \left[\frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} + \rho C_{p} g_{h} + 4\varepsilon\sigma T_{a}^{3} \right]$$

$$-Q + \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \left[e_{s}(T_{a}) - e_{a} \right] + \varepsilon\sigma T_{a}^{4} = 0$$

$$a(T_s - T_a)^2 + b(T_s - T_a) + c = 0$$

$$a = \left[6\varepsilon\sigma T_a^2 + \frac{\rho m_v}{Pm_a}\lambda g_w \frac{1}{2}\frac{d^2 e_s(T_a)}{dT^2}\right]$$

$$b = \left[\rho C_p g_h + \frac{\rho m_v}{P m_a} \lambda g_w \frac{de_s(T_a)}{dT} + 4\varepsilon \sigma T_a^3\right]$$

$$c = \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) - e_{a}] + \varepsilon \sigma T_{a}^{4} - Q$$

Substitute gw with gs and gb:

$$a = \left[6\varepsilon\sigma T_a^2 + \frac{\rho m_v}{Pm_a} \lambda \frac{g_s g_b}{g_s + g_b} \frac{1}{2} \frac{d^2 e_s(T_a)}{dT^2}\right]$$

$$b = \left[\rho C_p g_h + \frac{\rho m_v}{P m_a} \lambda \frac{g_s g_b}{g_s + g_b} \frac{de_s(T_a)}{dT} + 4\varepsilon \sigma T_a^3\right]$$

$$c = \frac{\rho m_v}{P m_a} \lambda \frac{g_s g_b}{g_s + g_b} [e_s(T_a) - e_a] + \varepsilon \sigma T_a^4 - Q$$

The leaf energy balance can also be used to derive a quadratic equation for latent heat exchange (λE ; W m⁻²):

$$a LE^2 + b LE + c = 0$$

We can solve directly for latent heat flux density

$$\lambda E = \frac{0.622 \lambda \rho_a (e_s(T_l) - e_a)}{P} \frac{g_s g_a}{g_a + g_s} = \frac{0.622 \lambda \rho_a (e_s(T_l) - e_a)}{P(r_s + r_a)}$$

Linearize $(e_s(T_l) - e_a)$ with 2nd order Taylor Expansion

$$\lambda E = \frac{0.622 \lambda \rho_a g_w}{P} [(e_s(T_a) + s(T_a)(T_l - T_a) + \frac{e_s(T_a)"}{2} (T_l - T_a)^2 - e_a]$$

I have second order terms of $(T_l - T_a)$

Substituting

Use 1st order expansion of Ts for LE

$$\varepsilon\sigma T_s^4 = \varepsilon\sigma T_a^4 + 4\varepsilon\sigma T_a^3 (T_s - T_a)$$

$$T_{s} - T_{a} = \frac{Q - \lambda E - \sigma \varepsilon T_{a}^{4}}{(\rho_{a} C_{p} g_{h} + 4\varepsilon \sigma T_{a}^{3})}$$

$$\lambda E = \frac{0.622\lambda\rho_a g_w}{P} \left[(e_s(T_a) - e_a) + s(T_a) \left(\frac{Q - \lambda E - \sigma \varepsilon T_a^4}{\rho_a C_p g_h + 4\varepsilon \sigma T_a^3} \right) + \frac{e_s(T_a)"}{2} \left(\frac{Q - \lambda E - \sigma \varepsilon T_a^4}{\rho_a C_p g_h + 4\varepsilon \sigma T_a^3} \right)^2 \right]$$

Multiply LE by $\rho_a C_p g_h + 4\varepsilon\sigma T_a^3$

$$\begin{split} \lambda E(\rho_a C_p g_h + 4\varepsilon\sigma T_a^3) &= \frac{0.622\lambda \rho_a g_w}{P} [(e_s(T_a) - e_a)(\rho_a C_p g_h + 4\varepsilon\sigma T_a^3) + s(T_a)(Q - \lambda E - \sigma\varepsilon T_a^4) \\ &+ \frac{e_s(T_a)"}{2} (\frac{(Q - \lambda E - \sigma\varepsilon T_a^4)^2}{\rho_a C_p g_h + 4\varepsilon\sigma T_a^3})] \end{split}$$

The squared term is:

$$(Q - \lambda E - \sigma \varepsilon T_a^4)(Q - \lambda E - \sigma \varepsilon T_a^4) =$$

$$QQ - Q\lambda E - Q\sigma \varepsilon T_a^4 - \lambda EQ + \lambda E\lambda E + \lambda E\sigma \varepsilon T_a^4 - \sigma \varepsilon T_a^4 Q + \sigma \varepsilon T_a^4 \lambda E + \sigma \varepsilon T_a^4 \sigma \varepsilon T_a^4 =$$

$$QQ - 2Q\lambda E - 2Q\sigma \varepsilon T_a^4 + 2\lambda E\sigma \varepsilon T_a^4 + \sigma \varepsilon T_a^4 \sigma \varepsilon T_a^4 + \lambda E\lambda E$$

Substitute squared term and Simplifying:

$$\begin{split} \lambda E(\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}) &= \frac{0.622\lambda\rho_{a}g_{w}}{P}[(e_{s}(T_{a}) - e_{a})(\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}) + s(T_{a})(Q - \lambda E - \sigma\varepsilon T_{a}^{4}) \\ &+ \frac{e_{s}(T_{a})"}{2}(\frac{QQ - 2Q\lambda E - 2Q\sigma\varepsilon T_{a}^{4} + 2\lambda E\sigma\varepsilon T_{a}^{4} + \sigma\varepsilon T_{a}^{4}\sigma\varepsilon T_{a}^{4} + \lambda E\lambda E}{\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}})] \end{split}$$

Organize in terms of LE² LE and intercept

$$\begin{split} 0 &= \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[\frac{e_{s}(T_{a})"}{2} \left(\frac{\lambda E\lambda E}{\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}} \right) \right] \\ &- \lambda E(\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}) - \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[s(T_{a})\lambda E + \frac{e_{s}(T_{a})"}{2} \left(\frac{2\lambda E\sigma\varepsilon T_{a}^{4} - 2Q\lambda E}{\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}} \right) \right] \\ &\frac{0.622\lambda\rho_{a}g_{w}}{P} \left[(e_{s}(T_{a}) - e_{a})(\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}) + s(T_{a})(Q - \sigma\varepsilon T_{a}^{4}) \right. \\ &\left. + \frac{e_{s}(T_{a})"}{2} \left(\frac{QQ - 2Q\sigma\varepsilon T_{a}^{4} + \sigma\varepsilon T_{a}^{4}\sigma\varepsilon T_{a}^{4}}{\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}} \right) \right] \end{split}$$

$$\begin{split} 0 = & + \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[\frac{e_{s}(T_{a})"}{2} \left(\frac{\lambda E\lambda E}{\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}} \right) \right] \\ & + \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[\frac{e_{s}(T_{a})"}{2} \left(\frac{2\lambda E\sigma\varepsilon T_{a}^{4} - 2Q\lambda E}{\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}} \right) \right] - \lambda E\rho_{a}C_{p}g_{h} - \lambda E4\varepsilon\sigma T_{a}^{3} - \frac{0.622\lambda\rho_{a}g_{w}}{P} s(T_{a})\lambda E \\ & + \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[\frac{e_{s}(T_{a})"}{2} \left(\frac{QQ - 2Q\sigma\varepsilon T_{a}^{4} + \sigma\varepsilon T_{a}^{4}\sigma\varepsilon T_{a}^{4}}{\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}} \right) \right] \\ & + \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[(e_{s}(T_{a}) - e_{a})(\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}) + s(T_{a})(Q - \sigma\varepsilon T_{a}^{4}) \right] \end{split}$$

Separate out a, b and c for quadratic solution

$$a = \frac{0.622\lambda \rho_a g_w}{P(\rho_a C_p g_h + 4\varepsilon\sigma T_a^3)} \frac{e_s(T_a)"}{2}$$

$$b = \frac{0.622\lambda\rho_a g_w}{P} \left[e_s(T_a)"(\frac{\sigma\varepsilon T_a^4 - Q}{\rho_a C_p g_h + 4\varepsilon\sigma T_a^3})\right] - \rho_a C_p g_h - 4\varepsilon\sigma T_a^3 - \frac{0.622\lambda\rho_a g_w}{P} s(T_a)$$

$$c = \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[\frac{e_{s}(T_{a})"}{2} \left(\frac{QQ - 2Q\sigma\varepsilon T_{a}^{4} + \sigma\varepsilon T_{a}^{4}\sigma\varepsilon T_{a}^{4}}{\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}} \right) \right] + \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[(e_{s}(T_{a}) - e_{a})(\rho_{a}C_{p}g_{h} + 4\varepsilon\sigma T_{a}^{3}) + s(T_{a})(Q - \sigma\varepsilon T_{a}^{4}) \right]$$

Compute Latent Heat Exchange

1: **Hypostomatous** leaves have stomata on one side. Their two-sided net radiation balance is:

$$R_n = 2H + \lambda E = (R \downarrow -R \uparrow + L \downarrow -L \uparrow)_{top} + (R \uparrow -R \downarrow +L \uparrow -L \downarrow)_{bottom}$$

$$R_n = 2H + \lambda E = Q_{in} - 2\varepsilon\sigma T_{sfc}^4$$

$$H = \rho C_p g_h (T_s - T_a)$$

Latent heat flux

$$\lambda E = \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} (e_{s}(T_{s}) - e_{a})$$

$$g_w = 1/(r_b + r_s) = \frac{1}{\frac{1}{g_b} + \frac{1}{g_s}} = \frac{g_s g_b}{g_s + g_b}$$

$$\lambda E = \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) + \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) + \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - e_{a}]$$

$$2H = Q_{in} - \lambda E - 2\varepsilon\sigma T_s^4$$

$$2H = 2\rho C_p g_h (T_s - T_a) = Q_{in} - \lambda E - 2\varepsilon \sigma T_s^4$$

1st order expansion

$$2H = 2\rho C_p g_h(T_s - T_a) = Q_{in} - \lambda E - 2\varepsilon\sigma T_a^4 - 8\varepsilon\sigma T_a^3 (T_s - T_a)$$

$$T_{s} - T_{a} = \frac{Q_{in} - \lambda E - 2\sigma\varepsilon T_{a}^{4}}{(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})}$$

The leaf energy balance can also be used to derive a quadratic equation for latent heat exchange (λE ; W m⁻²):

$$a LE^2 + b LE + c = 0$$

We can solve directly for latent heat flux density

$$\lambda E = \frac{0.622 \lambda \rho_a(e_s(T_l) - e_a)}{P} \frac{g_s g_a}{g_a + g_s} = \frac{0.622 \lambda \rho_a(e_s(T_l) - e_a)}{P(r_s + r_a)}$$

Linearize $(e_s(T_l) - e_a)$ with 2nd order Taylor Expansion

$$\lambda E = \frac{0.622 \lambda \rho_a g_w}{P} [(e_s(T_a) + s(T_a)(T_l - T_a) + \frac{e_s(T_a)"}{2} (T_l - T_a)^2 - e_a]$$

Substituting

Use 1st order expansion of Ts for LE

$$\varepsilon \sigma T_s^4 = \varepsilon \sigma T_a^4 + 4\varepsilon \sigma T_a^3 (T_s - T_a)$$

$$T_s - T_a = \frac{Q_{in} - \lambda E - 2\sigma\varepsilon T_a^4}{(2\rho_a C_n g_b + 8\varepsilon\sigma T_a^3)}$$

$$\lambda E = \frac{0.622\lambda \rho_a g_w}{P} [(e_s(T_a) - e_a) + s(T_a) (\frac{Q_{in} - \lambda E - 2\sigma\varepsilon T_a^4}{2\rho_a C_p g_h + 8\varepsilon\sigma T_a^3}) + \frac{e_s(T_a)"}{2} (\frac{Q_{in} - \lambda E - 2\sigma\varepsilon T_a^4}{2\rho_a C_p g_h + 8\varepsilon\sigma T_a^3})^2]$$

Multiply LE by $2\rho_a C_p g_h + 8\varepsilon\sigma T_a^3$

$$\begin{split} \lambda E(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}) &= \frac{0.622\lambda\rho_{a}g_{w}}{P}[(e_{s}(T_{a}) - e_{a})(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}) + s(T_{a})(Q_{in} - \lambda E - 2\sigma\varepsilon T_{a}^{4}) \\ &+ \frac{e_{s}(T_{a})"}{2}(\frac{(Q_{in} - \lambda E - 2\sigma\varepsilon T_{a}^{4})^{2}}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}})] \end{split}$$

The squared term is:

$$(Q - \lambda E - 2\sigma \varepsilon T_a^4)(Q - \lambda E - 2\sigma \varepsilon T_a^4) =$$

$$QQ - Q\lambda E - Q2\sigma \varepsilon T_a^4 - \lambda EQ + \lambda E\lambda E + \lambda E2\sigma \varepsilon T_a^4 - 2\sigma \varepsilon T_a^4Q + 2\sigma \varepsilon T_a^4\lambda E + 2\sigma \varepsilon T_a^42\sigma \varepsilon T_a^4 =$$

$$QQ - 2Q\lambda E - 4Q\sigma \varepsilon T_a^4 + 4\lambda E\sigma \varepsilon T_a^4 + 4\sigma \varepsilon T_a^4\sigma \varepsilon T_a^4 + \lambda E\lambda E$$

Substitute squared term and Simplifying:

$$\begin{split} \lambda E(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}) &= \frac{0.622\lambda\rho_{a}g_{w}}{P}[(e_{s}(T_{a}) - e_{a})(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}) + s(T_{a})(Q - \lambda E - 2\sigma\varepsilon T_{a}^{4}) \\ &+ \frac{e_{s}(T_{a})"}{2}(\frac{QQ - 2Q\lambda E - 4Q\sigma\varepsilon T_{a}^{4} + 4\lambda E\sigma\varepsilon T_{a}^{4} + 4\sigma\varepsilon T_{a}^{4}\sigma\varepsilon T_{a}^{4} + \lambda E\lambda E}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}})] \end{split}$$

Organize in terms of LE² LE and intercept

$$\begin{split} 0 &= \frac{0.622\lambda\rho_{a}g_{w}}{P} \big[\frac{e_{s}(T_{a})"}{2} (\frac{\lambda E\lambda E}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}})\big] \\ &-\lambda E(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}) - \frac{0.622\lambda\rho_{a}g_{w}}{P} \big[s(T_{a})\lambda E + \frac{e_{s}(T_{a})"}{2} (\frac{4\lambda E\sigma\varepsilon T_{a}^{4} - 2Q\lambda E}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}})\big] \\ &\frac{0.622\lambda\rho_{a}g_{w}}{P} \big[(e_{s}(T_{a}) - e_{a})(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}) + s(T_{a})(Q - 2\sigma\varepsilon T_{a}^{4}) \\ &+ \frac{e_{s}(T_{a})"}{2} (\frac{QQ - 4Q\sigma\varepsilon T_{a}^{4} + 4\sigma\varepsilon T_{a}^{4}\sigma\varepsilon T_{a}^{4}}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}})\big] \end{split}$$

$$\begin{split} 0 = & + \frac{0.622\lambda\rho_{a}g_{w}}{P} \big[\frac{e_{s}(T_{a})''}{2} \big(\frac{\lambda E\lambda E}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}} \big) \big] \\ & + \frac{0.622\lambda\rho_{a}g_{w}}{P} \big[\frac{e_{s}(T_{a})''}{2} \big(\frac{4\lambda E\sigma\varepsilon T_{a}^{4} - 2Q\lambda E}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}} \big) \big] - \lambda E2\rho_{a}C_{p}g_{h} - \lambda E8\varepsilon\sigma T_{a}^{3} - \frac{0.622\lambda\rho_{a}g_{w}}{P} s(T_{a})\lambda E \\ & + \frac{0.622\lambda\rho_{a}g_{w}}{P} \big[\frac{e_{s}(T_{a})''}{2} \big(\frac{QQ - 4Q\sigma\varepsilon T_{a}^{4} + 4\sigma\varepsilon T_{a}^{4}\sigma\varepsilon T_{a}^{4}}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}} \big) \big] \\ & + \frac{0.622\lambda\rho_{a}g_{w}}{P} \big[(e_{s}(T_{a}) - e_{a})(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}) + s(T_{a})(Q - 2\sigma\varepsilon T_{a}^{4}) \big] \end{split}$$

Separate out a, b and c for quadratic solution

$$a = \frac{0.622\lambda \rho_a g_w}{P(2\rho_a C_p g_h + 8\varepsilon\sigma T_a^3)} \frac{e_s(T_a)"}{2}$$

$$b = \frac{0.622\lambda \rho_{a}g_{w}}{P} [e_{s}(T_{a})"(\frac{4\sigma\varepsilon T_{a}^{4} - 2Q}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}})] - 2\rho_{a}C_{p}g_{h} - 8\varepsilon\sigma T_{a}^{3} - \frac{0.622\lambda \rho_{a}g_{w}}{P}s(T_{a})$$

$$c = \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[\frac{e_{s}(T_{a})"}{2} \left(\frac{QQ - 4Q\sigma\varepsilon T_{a}^{4} + 4\sigma\varepsilon T_{a}^{4}\sigma\varepsilon T_{a}^{4}}{2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}} \right) \right] \\ + \frac{0.622\lambda\rho_{a}g_{w}}{P} \left[(e_{s}(T_{a}) - e_{a})(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}) + s(T_{a})(Q - 2\sigma\varepsilon T_{a}^{4}) \right]$$

Leaf Temperature

2nd order expansion

$$2H = 2\rho C_{p}g_{h}(T_{s} - T_{a}) = Q_{in} - \lambda E - 2\varepsilon\sigma T_{a}^{4} - 8\varepsilon\sigma T_{a}^{3}(T_{s} - T_{a}) - 12\varepsilon\sigma T_{a}^{2}(T_{s} - T_{a})^{2}$$

$$T_{s} - T_{a} = \frac{Q_{in} - \lambda E - 2\varepsilon\sigma T_{a}^{4} - 8\varepsilon\sigma T_{a}^{3}(T_{s} - T_{a}) - 12\varepsilon\sigma T_{a}^{2}(T_{s} - T_{a})^{2}}{2\rho C_{a}g_{b}}$$

$$T_{s} - T_{a} = \frac{Q - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) + \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) + \frac{1}{2} \frac{d^{2}e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - e_{a}] - 2\varepsilon\sigma T_{a}^{4} - 8\varepsilon\sigma T_{a}^{3} (T_{s} - T_{a}) - 12\varepsilon\sigma T_{a}^{2} (T_{s} - T_{a})^{2}}{2\rho C_{p}g_{h}}$$

$$T_{s} - T_{a} = \frac{Q - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) - e_{a}] - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{1}{2} \frac{d^{2}e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - 2\varepsilon\sigma T_{a}^{4} - 8\varepsilon\sigma T_{a}^{3} (T_{s} - T_{a}) - 12\varepsilon\sigma T_{a}^{2} (T_{s} - T_{a})^{2}}{2\rho C_{p}g_{h}}$$

$$(T_{s} - T_{a}) 2\rho C_{p}g_{h} = Q - \frac{\rho m_{v}}{Pm_{a}} \lambda g_{w}[e_{s}(T_{a}) - e_{a}] - \frac{\rho m_{v}}{Pm_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) - \frac{\rho m_{v}}{Pm_{a}} \lambda g_{w} \frac{1}{2} \frac{d^{2}e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - 2\varepsilon\sigma T_{a}^{4} - 8\varepsilon\sigma T_{a}^{3} (T_{s} - T_{a}) - 12\varepsilon\sigma T_{a}^{2} (T_{s} - T_{a})^{2}$$

$$0 = Q - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) - e_{a}] - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - 2\varepsilon\sigma T_{a}^{4} - 8\varepsilon\sigma T_{a}^{3} (T_{s} - T_{a}) - 12\varepsilon\sigma T_{a}^{2} (T_{s} - T_{a})^{2} - (T_{s} - T_{a}) 2\rho C_{p} g_{h}$$

$$(T_{s} - T_{a})^{2} \left[-\frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} - 12\varepsilon\sigma T_{a}^{2} \right] + (T_{s} - T_{a}) \left[-\frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} - 2\rho C_{p} g_{h} - 8\varepsilon\sigma T_{a}^{3} \right]$$

$$+ Q - \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \left[e_{s}(T_{a}) - e_{a} \right] - 2\varepsilon\sigma T_{a}^{4} = 0$$

$$(T_{s} - T_{a})^{2} \left[\frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} + 12\varepsilon\sigma T_{a}^{2} \right] + (T_{s} - T_{a}) \left[\frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} + 2\rho C_{p} g_{h} + 8\varepsilon\sigma T_{a}^{3} \right]$$

$$-Q + \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \left[e_{s}(T_{a}) - e_{a} \right] + 2\varepsilon\sigma T_{a}^{4} = 0$$

$$a(T_s - T_a)^2 + b(T_s - T_a) + c = 0$$

$$a = \left[12\varepsilon\sigma T_a^2 + \frac{\rho m_v}{Pm_a}\lambda g_w \frac{1}{2}\frac{d^2 e_s(T_a)}{dT^2}\right]$$

$$b = \left[2\rho C_p g_h + \frac{\rho m_v}{P m_a} \lambda g_w \frac{de_s(T_a)}{dT} + 8\varepsilon \sigma T_a^3\right]$$

$$c = \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) - e_{a}] + 2\varepsilon \sigma T_{a}^{4} - Q$$

Substitute gw with gs and gb:

$$a = \left[12\varepsilon\sigma T_a^2 + \frac{\rho m_v}{Pm_a} \lambda \frac{g_s g_b}{g_s + g_b} \frac{1}{2} \frac{d^2 e_s(T_a)}{dT^2}\right]$$

$$b = \left[2\rho C_p g_h + \frac{\rho m_v}{P m_a} \lambda \frac{g_s g_b}{g_s + g_b} \frac{de_s(T_a)}{dT} + 8\varepsilon\sigma T_a^3\right]$$

$$c = \frac{\rho m_v}{P m_a} \lambda \frac{g_s g_b}{g_s + g_b} [e_s(T_a) - e_a] + 2\varepsilon \sigma T_a^4 - Q$$

1: **Amphistomatous** leaves have stomata on both sides. Their two-sided net radiation balance is:

Basic Equations

$$R_{n} = H + \lambda E = (R \downarrow -R \uparrow + L \downarrow -L \uparrow)_{top} + (R \uparrow -R \downarrow +L \uparrow -L \downarrow)_{bottom}$$

$$Q = (R \downarrow -R \uparrow +L \downarrow)_{top} + (R \uparrow -R \downarrow +L \uparrow)_{bottom}$$

$$(L \uparrow)_{top} + (L \downarrow)_{bottom} = 2\varepsilon\sigma T_{s}^{4}$$

$$R_{n} = H + \lambda E = Q_{in} - 2\varepsilon\sigma T_{sfc}^{4}$$

$$H = 2\rho C_{n}g_{h}(T_{s} - T_{a})$$

For Amphistomatous leaves, the stomatal resistance or conductance is defined as $r_{s,leaf}$, which is the sum of the parallel resistors of the top and bottom. If we assume r_{top} equals r_{bottom}

$$r_{s,leaf} = \frac{r_{top}r_{bottom}}{r_{top} + r_{bottom}} = \frac{r_s}{2} = \frac{2}{g_{s,leaf}}$$

$$\frac{1/g_{top}1/g_{bottom}}{1/g_{top} + 1/g_{bottom}} = \frac{\frac{1}{g_{top}g_{bottom}}}{g_{top}g_{bottom}} = \frac{\frac{1}{g_{top}g_{bottom}}}{\frac{1}{g_{top}g_{bottom}}} = \frac{1}{2g_s}$$

Also the boundary layer and stomatal resistances of the top and bottom are in series and r_{bottom} equal r_{top} equal r_{stom} .

$$r_{w,leaf} = \frac{(r_{top} + r_a)(r_{bottom} + r_a)}{(r_{top} + r_a) + (r_{bottom} + r_a)} = \frac{(r_{stom} + r_a)}{2}$$

$$g_{w,leaf} = \frac{2}{(r_{stom} + r_a)} = \frac{2g_{stom}g_a}{g_{stom} + g_a}$$

$$g_{w,leaf} = \frac{2}{(1/g_{s1side} + 1/g_a)} = \frac{2}{(g_a/g_ag_{s1side} + g_{s1side}/g_{s1side}g_a)} = \frac{2}{g_{s1side} + g_a} = \frac{2g_{s1side}g_a}{g_{s1side} + g_a}$$

Be careful and not to put factor of 2 twice, in gw and in LE..

$$\lambda E = \frac{0.622\lambda \rho_a g_w(e_s(T_l) - e_a)}{P} = \frac{0.622\lambda \rho_a(e_s(T_l) - e_a)}{P \cdot r_{w,leaf}} = 2\frac{0.622\lambda \rho_a(e_s(T_l) - e_a)}{P(r_s + r_a)}$$

Solve for Surface Temperature, Ts

From Ohm's Law

$$T_s = \frac{H}{2\rho C_p g_h} + T_a$$

From Energy Balance of two-sided leaf by simplifying common denominator

$$H = Q - \lambda E - 2\varepsilon\sigma T_s^4$$

$$H = 2\rho C_p g_h (T_s - T_a) = Q - \lambda E - 2\varepsilon \sigma T_s^4$$

Taylor's Expansion for T⁴

1st order

$$\varepsilon \sigma T_s^4 = \varepsilon \sigma T_a^4 + 4\varepsilon \sigma T_a^3 (T_s - T_a)$$

$$2\rho C_p g_h(T_s - T_a) = Q - \lambda E - 2\varepsilon\sigma T_a^4 - 8\varepsilon\sigma T_a^3 (T_s - T_a)$$

$$T_{s} - T_{a} = \frac{Q - \lambda E - 2\sigma \varepsilon T_{a}^{4}}{(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})}$$

2nd order

$$2\varepsilon\sigma T_s^4 = 2\varepsilon\sigma T_a^4 + 8\varepsilon\sigma T_a^3 (T_s - T_a) + 12\varepsilon\sigma T_a^2 (T_s - T_a)^2$$

$$H = Q - \lambda E - 2\varepsilon\sigma T_a^4 - 8\varepsilon\sigma T_a^3 (T_s - T_a) - 12\varepsilon\sigma T_a^2 (T_s - T_a)^2$$

$$H = 2\rho C_p g_h(T_s - T_a) = Q - \lambda E - 2\varepsilon\sigma T_a^4 - 8\varepsilon\sigma T_a^3 (T_s - T_a) - 12\varepsilon\sigma T_a^2 (T_s - T_a)^2$$

Solve for delta T, as the equation above shows that delta T is a function of delta T

$$2\rho C_p g_h (T_s - T_a) + 8\varepsilon\sigma T_a^3 (T_s - T_a) = Q - \lambda E - 2\varepsilon\sigma T_a^4 - 12\varepsilon\sigma T_a^2 (T_s - T_a)^2$$

Insert Term for Latent Heat Exchange

$$\lambda E = \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} [e_{s}(T_{a}) + \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) + \frac{1}{2} \frac{d^{2} e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} - e_{a}]$$

$$\lambda E = \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} (e_{s}(T_{a}) - e_{a}) + \frac{\rho m_{v}}{P m_{a}} \lambda g_{w} \frac{d e_{s}(T_{a})}{d T} (T_{s} - T_{a}) + \frac{\rho m_{v}}{2 P m_{a}} \lambda g_{w} \frac{d^{2} e_{s}(T_{a})}{d T^{2}} (T_{s} - T_{a})^{2}$$

$$\begin{split} &2\rho C_{p}g_{h}(T_{s}-T_{a})+8\varepsilon\sigma T_{a}^{3}(T_{s}-T_{a})=Q\\ &-\frac{\rho m_{v}}{Pm_{a}}\lambda g_{w}(e_{s}(T_{a})-e_{a})-\frac{\rho m_{v}}{Pm_{a}}\lambda g_{w}\frac{de_{s}(T_{a})}{dT}(T_{s}-T_{a})-\frac{\rho m_{v}}{2Pm_{a}}\lambda g_{w}\frac{d^{2}e_{s}(T_{a})}{dT^{2}}(T_{s}-T_{a})^{2}\\ &-2\varepsilon\sigma T_{a}^{4}\\ &-12\varepsilon\sigma T_{a}^{2}(T_{s}-T_{a})^{2} \end{split}$$

Set terms to zero

$$2\rho C_{p}g_{h}(T_{s}-T_{a})+8\varepsilon\sigma T_{a}^{3}(T_{s}-T_{a})+\frac{\rho m_{v}}{Pm_{a}}\lambda g_{w}(e_{s}(T_{a})-e_{a})$$

$$+\frac{\rho m_{v}}{Pm_{a}}\lambda g_{w}\frac{de_{s}(T_{a})}{dT}(T_{s}-T_{a})+\frac{\rho m_{v}}{2Pm_{a}}\lambda g_{w}\frac{d^{2}e_{s}(T_{a})}{dT^{2}}(T_{s}-T_{a})^{2}$$

$$+2\varepsilon\sigma T_{a}^{4}+12\varepsilon\sigma T_{a}^{2}(T_{s}-T_{a})^{2}-Q=0$$

Re-arranged to form Quadratic Equation in terms of Ts-Ta

$$\begin{split} & + \frac{\rho m_{v}}{2Pm_{a}} \lambda g_{w} \frac{d^{2}e_{s}(T_{a})}{dT^{2}} (T_{s} - T_{a})^{2} + 12\varepsilon\sigma T_{a}^{2} (T_{s} - T_{a})^{2} \\ & 2\rho C_{p}g_{h}(T_{s} - T_{a}) + 8\varepsilon\sigma T_{a}^{3} (T_{s} - T_{a}) + \frac{\rho m_{v}}{Pm_{a}} \lambda g_{w} \frac{de_{s}(T_{a})}{dT} (T_{s} - T_{a}) \\ & + \frac{\rho m_{v}}{Pm_{a}} \lambda g_{w} (e_{s}(T_{a}) - e_{a}) + 2\varepsilon\sigma T_{a}^{4} - Q = 0 \end{split}$$

$$a(T_s - T_a)^2 + b(T_s - T_a) + c = 0$$

$$a = \frac{\rho m_v}{2Pm_a} \lambda g_w \frac{d^2 e_s(T_a)}{dT^2} + 12\varepsilon\sigma T_a^2$$

$$b = 2\rho C_p g_h + 8\varepsilon\sigma T_a^3 + \frac{\rho m_v}{Pm} \lambda g_w \frac{de_s(T_a)}{dT}$$

$$c = \frac{\rho m_{v}}{P m_{a}} \lambda g_{w}(e_{s}(T_{a}) - e_{a}) + 2\varepsilon \sigma T_{a}^{4} - Q$$

The leaf energy balance can also be used to derive a quadratic equation for latent heat exchange (λE ; W m⁻²):

$$a LE^2 + b LE + c = 0$$

We can solve directly for latent heat flux density

$$\lambda E = g_w \frac{0.622 \lambda \rho_a(e_s(T_l) - e_a)}{P} = 2 \frac{g_s g_a}{g_a + g_s} \frac{0.622 \lambda \rho_a(e_s(T_l) - e_a)}{P} = 2 \frac{0.622 \lambda \rho_a(e_s(T_l) - e_a)}{P(r_s + r_a)}$$

$$\lambda E = \frac{0.622\lambda \rho_a g_w}{P} [(e_s(T_a) + s(T_a)(T_l - T_a) + \frac{e_s(T_a)"}{2} (T_l - T_a)^2 - e_a]$$

Just to make sure I don't miss any multiplication factors and signs, I factored this out

$$\lambda E = \frac{0.622\lambda \rho_a g_w}{P} [(e_s(T_a) - e_a] + \frac{0.622\lambda \rho_a g_w}{P} s(T_a)(T_l - T_a) + \frac{0.622\lambda \rho_a g_w}{2P} e_s(T_a)"(T_l - T_a)^2$$

Substituting

For Algebraic simplicity we will introduce a truncated version of the second order expansion of surface energy balance and temperature into the equation for latent heat exchange, for the amphistomatous leaf

$$T_{s} - T_{a} = \frac{Q - \lambda E - 2\sigma\varepsilon T_{a}^{4}}{(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})}$$

Be careful if factor of 2 on gw don't need to multiply again by 2

$$\begin{split} \lambda E &= \frac{0.622 \lambda \rho_a g_w}{P} [(e_s(T_a) - e_a] + \frac{0.622 \lambda \rho_a g_w}{P} s(T_a) \frac{Q - \lambda E - 2\sigma \varepsilon T_a^4}{(2\rho_a C_p g_h + 8\varepsilon \sigma T_a^3)} \\ &+ \frac{0.622 \lambda \rho_a g_w}{2P} e_s(T_a) \text{"} (\frac{Q - \lambda E - 2\sigma \varepsilon T_a^4}{(2\rho_a C_p g_h + 8\varepsilon \sigma T_a^3)})^2 \end{split}$$

Multiply LE by $2\rho_a C_p g_h + 8\varepsilon\sigma T_a^3$

$$\begin{split} &(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})\lambda E=(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})\frac{0.622\lambda\rho_{a}g_{w}}{P}[(e_{s}(T_{a})-e_{a}]+\frac{0.622\lambda\rho_{a}g_{w}}{P}s(T_{a})(Q-\lambda E-2\sigma\varepsilon T_{a}^{4})\\ &+\frac{0.622\lambda\rho_{a}g_{w}}{2P}e_{s}(T_{a})"\frac{(Q-\lambda E-2\sigma\varepsilon T_{a}^{4})^{2}}{(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})} \end{split}$$

The squared term in the numerator is:

$$(Q - \lambda E - 2\varepsilon\sigma T_a^4)(Q - \lambda E - 2\varepsilon\sigma T_a^4) =$$

$$QQ - Q\lambda E - Q2\varepsilon\sigma T_a^4$$

$$-Q\lambda E + \lambda E \lambda E + 2\lambda E \varepsilon\sigma T_a^4$$

$$-Q2\varepsilon\sigma T_a^4 + 2\lambda E \varepsilon\sigma T_a^4 + 4\varepsilon\sigma T_a^4 \varepsilon\sigma T_a^4)$$

$$(Q - \lambda E - 2\varepsilon\sigma T_a^4)(Q - \lambda E - 2\varepsilon\sigma T_a^4) =$$

$$QQ - 2Q\lambda E - 4Q\varepsilon\sigma T_a^4$$

$$+ \lambda E \lambda E + 4\lambda E \varepsilon\sigma T_a^4$$

$$+ 4\varepsilon\sigma T_a^4 \varepsilon\sigma T_a^4)$$

Insert the squared term into the main equation

$$QQ - 2Q\lambda E - 4Q\varepsilon\sigma T_a^{\ 4} + \lambda E\,\lambda E + 4\lambda E\,\varepsilon\sigma T_a^{\ 4} + 4\varepsilon\sigma T_a^{\ 4}\,\varepsilon\sigma T_a^{\ 4}$$

$$\begin{split} &(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})\lambda E=(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})\frac{0.622\lambda\rho_{a}g_{w}}{P}[(e_{s}(T_{a})-e_{a}]+\frac{0.622\lambda\rho_{a}g_{w}}{P}s(T_{a})(Q-\lambda E-2\sigma\varepsilon T_{a}^{4})\\ &+\frac{0.622\lambda\rho_{a}g_{w}}{2P}e_{s}(T_{a})"\frac{(QQ-2Q\lambda E-4Q\varepsilon\sigma T_{a}^{4}+\lambda E\lambda E+4\lambda E\varepsilon\sigma T_{a}^{4}+4\varepsilon\sigma T_{a}^{4}\varepsilon\sigma T_{a}^{4})}{(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})} \end{split}$$

Reorganize the Main Equation and collect terms

$$\begin{split} 0 &= (2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})\frac{0.622\lambda\rho_{a}g_{w}}{P}[(e_{s}(T_{a}) - e_{a}] + \frac{0.622\lambda\rho_{a}g_{w}}{P}s(T_{a})(Q - \lambda E - 2\sigma\varepsilon T_{a}^{4}) \\ &+ \frac{0.622\lambda\rho_{a}g_{w}}{2P}e_{s}(T_{a})"\frac{(QQ - 2Q\lambda E - 4Q\varepsilon\sigma T_{a}^{4} + \lambda E\lambda E + 4\lambda E\varepsilon\sigma T_{a}^{4} + 4\varepsilon\sigma T_{a}^{4}\varepsilon\sigma T_{a}^{4})}{(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})} - (2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})\lambda E \end{split}$$

Collect terms for the quadratic function

$$\begin{split} &+\lambda E\,\lambda E\,\frac{0.622\lambda\rho_{a}g_{w}}{2P(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}e_{s}(T_{a})"\\ &-\lambda E\,\frac{0.622\lambda\rho_{a}g_{w}}{P}s(T_{a})-(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})\lambda E\\ &\frac{-2Q\lambda E}{(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}\frac{0.622\lambda\rho_{a}g_{w}}{P(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}e_{s}(T_{a})"+\frac{4\lambda E\,\varepsilon\sigma T_{a}^{4}}{(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}\frac{0.622\lambda\rho_{a}g_{w}}{P(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}e_{s}(T_{a})"\\ &+(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})\frac{0.622\lambda\rho_{a}g_{w}}{P}[(e_{s}(T_{a})-e_{a}]+\frac{0.622\lambda\rho_{a}g_{w}}{P}s(T_{a})(Q-2\sigma\varepsilon T_{a}^{4})\\ &+\frac{0.622\lambda\rho_{a}g_{w}}{2P}e_{s}(T_{a})"\frac{(QQ-4Q\varepsilon\sigma T_{a}^{4}+4\varepsilon\sigma T_{a}^{4}\,\varepsilon\sigma T_{a}^{4})}{(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})} \end{split}$$

$$\begin{split} &+\lambda E\,\lambda E\,\frac{0.622\lambda\rho_{a}g_{w}}{2P(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}e_{s}(T_{a})"\\ &\lambda E[-\frac{0.622\lambda\rho_{a}g_{w}}{P}s(T_{a})-(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})\\ &-\frac{2Q}{(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}\frac{0.622\lambda\rho_{a}g_{w}}{2P(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}e_{s}(T_{a})"+\frac{4\varepsilon\sigma T_{a}^{4}}{(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}\frac{0.622\lambda\rho_{a}g_{w}}{2P(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}e_{s}(T_{a})"]\\ &+(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})\frac{0.622\lambda\rho_{a}g_{w}}{P}[(e_{s}(T_{a})-e_{a}]+\frac{0.622\lambda\rho_{a}g_{w}}{P}s(T_{a})(Q-2\sigma\varepsilon T_{a}^{4})\\ &+\frac{0.622\lambda\rho_{a}g_{w}}{2P}e_{s}(T_{a})"\frac{(QQ-4Q\varepsilon\sigma T_{a}^{4}+4\varepsilon\sigma T_{a}^{4}\varepsilon\sigma T_{a}^{4})}{(2\rho_{a}C_{p}g_{h}+8\varepsilon\sigma T_{a}^{3})}\end{split}$$

$$a = \frac{0.622\lambda \rho_a g_w}{2P(2\rho_a C_p g_h + 8\varepsilon\sigma T_a^3)} e_s(T_a)$$
"

$$\begin{split} b = & [-\frac{0.622\lambda\rho_{a}g_{w}}{P}s(T_{a}) - (2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3}) \\ - & \frac{Q}{(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})} \frac{0.622\lambda\rho_{a}g_{w}}{P(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})} e_{s}(T_{a})" + \frac{2\varepsilon\sigma T_{a}^{4}}{(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})} \frac{0.622\lambda\rho_{a}g_{w}}{P(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})} e_{s}(T_{a})"] \end{split}$$

$$\begin{split} c &= + (2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})\frac{0.622\lambda\rho_{a}g_{w}}{P}[(e_{s}(T_{a}) - e_{a}] + \frac{0.622\lambda\rho_{a}g_{w}}{P}s(T_{a})(Q - 2\sigma\varepsilon T_{a}^{4}) \\ &+ \frac{0.622\lambda\rho_{a}g_{w}}{2P}e_{s}(T_{a})"\frac{(QQ - 4Q\varepsilon\sigma T_{a}^{4} + 4\varepsilon\sigma T_{a}^{4}\varepsilon\sigma T_{a}^{4})}{(2\rho_{a}C_{p}g_{h} + 8\varepsilon\sigma T_{a}^{3})} \end{split}$$