ANTI-HUMAN NERVE GROWTH FACTOR MONOCLONAL ANTIBODY

Patent number:

JP5076384

Publication date:

1993-03-30

Inventor:

KOTOMURA NAOE; FUJIMORI KIYOSHI; FUKUZONO

SHINICHI; SHIMIZU NORIO

Applicant:

HITACHI LTD

Classification:

- international:

C12N5/20; C12N15/06; C12P21/08; G01N33/53; G01N33/577; C12N5/20; C12N15/06; C12P21/08; G01N33/53; G01N33/577; (IPC1-7): C12N5/20; C12N15/06; C12P21/08; G01N33/53; G01N33/577

- european:

Application number: JP19910241136 19910920 Priority number(s): JP19910241136 19910920

Report a data error here

Abstract of JP5076384

PURPOSE:To obtain a new anti-human NGF monoclonal antibody capable of recognizing human NGF. CONSTITUTION:An anti-human nerve growth factor monoclonal antibody prepared by using a fusion type human nerve growth factor (one prepared by adding a total of 8 amino acids of 6 amino acids at N end side of trpL polypeptide of tryptophane operon, glutamic acid and phenylalanine to the upper stream side of N end of human nerve growth factor) as an antigen. The anti-human nerve growth factor monoclonal antibody is obtained by culturing hybridoma 1-7-78 (FERM P-12,508).

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-76384

(43)公開日 平成5年(1993)3月30日

G01N	21/08 33/53 33/577			庁内整理番号 8214-4B 8310-2J 9015-2J	FI			技術表示箇所
•	<i>აა/ 3/ 1</i>		D	7236 – 4 B	С	1 2 N	5/00 B	
				8828-4B			15/00 C	
					密查請求	未請求	諸求項の数5(全 5 頁)	最終頁に続く
(21)出願番号		特顏平3-241136			(71)	出願人	000005108	
							株式会社日立製作所	
(22)出顧日		平成3年(1991)9月20日					東京都千代田区神田駿河台	四丁目6番地
					(72)	発明者		
							埼玉県比企郡鳩山町赤沼25	
					()		社日立製作所基礎研究所内	
					(72)	発明者		
							埼玉県比企郡鳩山町赤沼25	
					(70)	rda sora "La	社日立製作所基礎研究所内	
					(72)	発明者	福蘭真一	
							埼玉県比企郡鳩山町赤沼25	
							社日立製作所基礎研究所内	
					(74)	代理人	弁理士 小川 勝男	
								最終頁に続く

(54)【発明の名称】 抗ヒト神経成長因子モノクローナル抗体

(57)【要約】

【目的】遺伝子工学的に生産したヒトNGFを認識する、抗ヒトNGFモノクローナル抗体を作製することを目的とする。

【構成】融合型ヒトNGFを抗原としてマウスを免疫し、免疫された脾臓細胞をミエローマと細胞融合することでハイブリドーマを得る。その中より抗ヒトNGF抗体を産生するものをスクリーニングし、クローニングを行なう。クローンの培養上清液あるいは復水より抗ヒトNGFモノクローナル抗体を得る。

図 |

1

【特許請求の範囲】

【請求項1】融合型ヒト神経成長因子を抗原として作製 した抗ヒト神経成長因子モノクローナル抗体。

【請求項2】請求項1記載の融合型ヒト神経成長因子 が、ヒト神経成長因子のN末端上流側に、トリプトファ ンオペロンのtrpLポリペプタイドのN末端側6個のアミ ノ酸とグルタミン酸とフェニルアラニンの合計8個のア ミノ酸を付加したものであること。

【請求項3】請求項1記載の融合型ヒト神経成長因子 と。

【請求項4】請求項1記載の抗ヒト神経成長因子モノク ローナル抗体が、変性処理した神経成長因子を認識する 抗体であること。

【請求項5】請求項1記載の抗ヒト神経成長因子モノク ローナル抗体を用いたウエスタンプロット法によって、 遺伝子組換え体から抽出したタンパク質中に存在するヒ ト神経成長因子を特異的に検出する方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は遺伝子組換え大腸菌で生 産したヒトの神経成長因子 (Nerve GrowthFactor, 以下 NGFと略す)を特異的に認識するモノクローナル抗体 およびそれを用いたヒトNGFの検出方法に関するもの である。

[0002]

【従来の技術】NGFは、交感神経細胞の生存と分化に 関わるタンパク質であり、現在までにマウス、ウシ、ニ ワトリ等から単離されている。マウスNGFは分子量約 14万で、 α 、 β 、 γ のサプユニットからなるが、 β サブ 30 ユニットのみが神経成長因子としての生物活性を有して いる。このマウスβNGFの遺伝子と類似した遺伝子が ヒトの遺伝子ライブラリーから単離され、これから推定 されたヒトNGFの118個のアミノ酸配列もまたマウス BNGFと類似していることが示された。しかし、これ までに人体からのヒトNGFの単離に成功した例がない ことから、その存在量はごく微量と考えられ、遺伝子工 学による大量生産が検討されている。

【0003】遺伝子組換え体によって生産されたタンパ 場合が多い。この際、目的のタンパク質の検出には、2 ーメルカプトエタノールとSDS(ドデシル硫酸ナトリ ウム)により変性処理したタンパク質を検出するウエス タンプロット法が一般に用いられている。これは、遺伝 子工学的に生産されたヒトNGFについても同様であ る.

【0004】現在知られている抗NGFモノクローナル 抗体としては、市販されているペーリンガー・マンハイ ム山之内社製の抗マウスNGFモノクローナル抗体と、

9593) がある。前者は、マウスNGFの他、ウシや ラットのNGFにも反応し、マウスNGFに対する中和 活性がある。後者は、ヒトとマウスのNGFに反応し、 両NGFに対して中和活性があると報告されている。 両 抗体は、NGFの検出、定量用試薬や阻害剤として使用 されている。

2

[0005]

【発明が解決しようとする課題】我々は、既に遺伝子組 換え大腸菌によるヒトNGFの遺伝子工学的生産方法に が、遺伝子組換え大腸菌により生産されたものであるこ 10 ついて特許を出願(特願平2-38358)している。 従来技術で述べた抗マウスNGFモノクローナル抗体 は、我々の遺伝子組換え大腸菌が生産した融合型ヒトN GFに対し非常に低い親和性しか示さなかった。そこ で、遺伝子組換え大腸菌HB101 [pTRLNGF] (微工研菌寄第11283号) が生産した融合型ヒトN GFを抗原とし、ヒトNGFを認識する新たなモノクロ ーナル抗体を作製することにした。

> 【0006】本発明は、ヒトNGFの検出に使用可能 な、抗ヒトNGFモノクローナル抗体を提供するもので 20 ある。

[0007]

【課題を解決するための手段】抗原には、遺伝子組換え 大腸菌HB101 [pTRLNGF] が生産した融合型 ヒトNGFを用いた。このプラスミドpTRLNGF は、トリプトファン調節遺伝子につながったトリプトフ ァンオペロンのtrpLポリペプタイドのN末端側の6個の アミノ酸とグルタミン酸とフェニルアラニンの合計8個 のアミノ酸をコードする遺伝子にヒトNGFをコードす る遺伝子が連結された遺伝子を、融合型ヒトNGFとし て大腸菌菌体内で発現させることの可能なものである。 融合型ヒトNGFの調製方法の一例を次に示す。遺伝子 組換え大腸菌HB101 [pTRLNGF] を培養して 得られた菌体を、超音波処理等で破砕し、その破砕液を 遠心分離した際の沈殿物を塩酸グアニジンや尿素等で可 溶化し、次に可溶化剤を除去するためにPBS(リン酸 塩緩衝液) 等に透析して、抗原として用いる融合型ヒト NGFを調製した。

【0008】該抗原による免疫は、該抗原とアジュパン トの混合物を、マウスの皮下、静脈、または腹腔に1回 ク質の検出は、抗血清やモノクローナル抗体でなされる 40 あたり $40\sim100\,\mu$ g、 $10日\sim1\,$ ヵ月毎に $4\sim6$ 回注射す ることで行うことが可能である。

【0009】細胞融合は、ケラーとミルスタインらの方 法に準じて行なえる。融合パートナーは、マウスパルプ シー (BALB/c) 由来のエックス 6 3 (X63) 細胞、ピー スリーユーワン (P3U1) 細胞、エヌエスワン (NS-1) 細 胞およびエスピーツー (SP2) 細胞などのミエローマ細 胞を利用できる。予め培養した該ミエローマ細胞に対し て該抗原で免疫したマウスの脾臓細胞を2~10倍混合し て遠心分離した後、上清液を除去してミエローマ細胞と 東ソーの抗NGFモノクローナル抗体(特開平2-21 50 脾臓細胞との混合ペレットを得る。このペレットを良く

ほぐして、予め37℃で加温した30~50%PEG (ポリエ チレングリコール;分子量1000~4000) を加え30~37℃ で反応させる。次いで、血清を含まない培地を滴下混合 して反応を止める。更に血清を含まない培地を多量に添 加混合した後、遠心分離により細胞を回収する。該細胞 をHAT(ヒポキサンチン、アミノブテリン、チミジン 含有) 培地に懸濁し、96ウェルプレートに分注して37℃ で培養する。培養3~4日後より2~3日毎に培養液の 半量を吸引除去して新鮮なHAT培地を添加して、ハイ プリドーマのみを増殖させる。該ハイブリドーマが充分 10 に増殖した後に、該抗原を用いた免疫定量 (Enzyme Lin ked ImmunosorbentAssay、以下ELISAと略す)法に より、抗ヒトNGF抗体産生ハイブリドーマをスクリー ニングする。そしてスクリーニング陽性ハイブリドーマ を限界希釈法によってクローニングし、出現したクロー ンについても上記ELISA法によりスクリーニングを 行ない、抗ヒトNGF抗体産生クローンを得る。尚、遺 伝子組換え菌を用いて生産したヒトNGFを検出するた めには、その抗体が大腸菌由来タンパク質を認識しては ならない。従ってクローンのスクリーニングでは、抗体 20 がヒトNGFを認識し、大腸菌由来タンパク質と交差反 応を示さないものを選ぶ必要がある。

【0010】得られたクローンからモノクローナル抗体 を得る方法としては次のような方法がある。該クローン を予めプリスタンを投与したBALB/cマウスの腹腔 へ移植し、10~14日後に復水を採取することで抗体が得 られる。また、該クローンを動物細胞培養装置などで培 養することでも抗体を生産できる。そして抗体は、復水 または細胞培養液から硫安分園、イオン交換クロマトグ ラフィーなどの工程を経て精製することができる。

[0011]

【実施例】以下に実施例を示し、本発明を具体的に説明 するが、本発明はこれら実施例に限定されるものではな

【0012】1. モノクローナル抗体の作製 1) 抗原の調製

大陽菌HB101 [pTRLNGF] (微工研菌寄第1 1283号) を40mlのM9培地 (NELC1 1g, Naz HPO4 6 g, KH2PO4 3 g, NaC 1 0.5 g, CaC 1 2 · 2H2 00.015 g, MgSO4・7H2O 0.5 g, カザミノ酸 2.5 g, グルコ-ス 5 g, 酵母エキス1.5 g, トリプトファン0.04 g, プロリン 0.1 g, チアミン 0.1 g, アンピシリン 50 mg, 水 1 1. pH 7.0)に接種し、37℃で一晩培養した。翌日、大 膈菌培養液を、400mlの新鮮なM9 (-Trp) 培地 (前 記したM9培地より酵母エキス、トリプトファンを除 く) へ移し、37℃で培養した。6.5時間培養後、3-8 -インドールアクリル酸(濃度; 15mg/1) およびカ ザミノ酸(濃度;2.5g/1)を添加し、更に37℃で1 晩培養した。培養後の菌体を遠心分離により回収し、P BSで洗浄した後、純水40m1に懸濁し超音波処理によ 50 の抗ヒトNGF抗体の有無を調べた。

り破砕した。その破砕液を遠心分離して沈殿物を回収 し、塩酸グアニジンで可溶化した後、PBSに透析した ものを融合型ヒトNGF抗原として用いた。

【0013】2)免疫

BALB/c、早、6週令マウスに以下の方法で免疫を 行なった。融合型ヒトNGF84~166μg/m1、アジ ュパントペプチド30μg/m!になるように調製した混 合液を、10~14日間隔で合計5回、マウス1頭あたり0. 5mlずつ腹腔内接種した。5回目の免疫から1ヵ月後 に、上記混合液をマウス1頭あたり0.5mlずつ腹腔内 接種し最終免疫を行なった。

【0014】3)脾臓細胞の調製

最終免疫から3日後にマウスより無菌的に摘出した脾臓 を、ERDF-RD1培地 (極東製薬工業社製) の入っ たシャーレに回収し、シャーレを2~3枚換えて脾臓を 培地で洗浄した後、ピンセットの背で脾臓を押し潰し、 脾臓細胞を培地中に浮遊させた。脾臓細胞浮遊液を15m 1遠心管に移し、2~3分放置し組織片を沈殿させた。 脾臓細胞を含む上清液を別の遠心管に回収して 1600rp m、5分間遠心し、上清液を除去した。細胞をERDF -RD1培地 10m1に懸濁し、細胞濃度を計数後、融 合に供した。

【0015】4) ミエローマの調製

融合用のミエローマとしてP3U1細胞を使用した。P 3U1細胞は、融合の1週間前より10%FBS (牛胎児 血清) 添加ERDF-RD1培地を用いて、培養を開始 した。融合当日、培養器より遠心管へP3U1細胞を移 して 1000rpm、5分間遠心し、上清液を除去した。細胞 をERDF-RD1培地 10mlに懸濁し、細胞濃度を 30 計数後、融合に供した。

【0016】5) 細胞融合

脾臓細胞とP3U1細胞を5:1の割合で混合して、18 00rpm、5分間遠心し、上清液を除去した。細胞を遠心 管壁面に蒋く分散させた後、37℃に加温した50%PEG150 0/75mM HEPES 1 m 1 を1分間かけて滴下、混合した。 更にERDF-RD1培地 1mlを1分間かけて滴下、 混合した。最後にERDF-RD1培地8mlを3分間 かけて滴下、混合後、1000rpm、5分間遠心し、上清液 を除去した。脾臓細胞濃度が5×10°個/m1となるよ うにHAT培地に懸濁し、96ウェルプレートの各ウェル に100 μ I ずつ分注した。 培養 4 および 6 日目にHAT 培地を50μ1ずつ添加し、8および10日目に上清液100 μ Ι を除去し、ΗΑΤ培地100μ Ι を添加した。以後、 2あるいは3日毎にHT培地(HAT培地よりアミノブ テリンを除いたもの)で培地交換をしながら、ハイブリ ドーマが増殖するまで培養を続けた。

【0017】6) ハイブリドーマのスクリーニング 肉眼で観察できる程度にハイブリドーマのコロニーが大 きくなった段階で、ELISA法により、培養上清液中

広件の給討

5

【0018】融合型ヒトNGF溶液 (10~30μg/m きELISA用96ウェルプレートに50μ1/ウェル で添加し、37℃、1時間反応させた。溶液を除去しPB Sでウェル内を3回洗浄した後、4倍希釈したブロック エース (大日本製薬社製) を200μ1/ウェルで添加 し、37℃、1時間反応させた。溶液を除去しPBSでウ ェル内を3回洗浄した後、ハイブリドーマが産生した抗 体を含む培養上清液を50 µ 1/ウェルで添加し、37℃、 1~2時間反応させた。溶液を除去しPBSでウェル内 を3回洗浄した後、ビオチン化2次抗体(フナコシ社 10 た。 製)を50µ1/ウェルで添加し、37℃、1時間反応させ た。溶液を除去しPBSでウェル内を3回洗浄した後、 あらかじめ調製したアビジンービオチン化ペルオキシダ -ゼ複合体(フナコシ社製)の溶液を50μ1/ウェルで 添加し、37℃、30分間反応させた。溶液を除去しPBS でウェル内を3回洗浄した後、o-フェニレンジアミン と0.015%過酸化水素を含む0.1Mくえん酸緩衝液 (pH5. 4) を50 µ 1/ウェルで添加し、室温で10~15分間放置 した後、各ウェルの412nmの吸光度を測定し、陽性ウェ ル(吸光度の高いウェル)のハイブリドーマを選んだ。 【0019】7)クローニング

陽性ウェル中のハイブリドーマを限界希釈法によりクロ -ニングした。 【0020】クローニングを行なうハイブリドーマを、

10%FBS添加ERDF-RD1培地に17~18個/m1 の濃度で懸濁した。その際、フィーダー細胞として脾臓 細胞を1×10°個/m1の濃度で添加した。尚、脾臓細 胞は、BALB/c、♀、マウスより採取した。10%F BS添加ERDF-RD1培地を50μ1/ウェルで添加 しておいた96ウェルプレートに、上記のハイブリドーマ 30 調製液を50 µ 1/ウェルで添加し、培養した。コロニー が1つだけ出現したウェルの培養上清液をELISA法 により調べ、抗ヒトNGF抗体を産生しているクローン を選んだ。上記した手順で3個の陽性ハイブリドーマを クローニングし、ハイブリドーマ1-7-78(微工研 菌寄第12508号(FERM P-12508))、ハイブリドーマ 24-13 (微工研菌寄第12509号(FERM P-1250 9)) 、およびハイブリド-マ25-11 (微工研菌寄第 12510号(PERM P-12510)) の合計3個の抗ヒトNG F抗体産生クローンを得た。

【0021】2. 抗体の反応性の検討

上記したクローン1-7-78の産生する抗体の反応性 を給酎した。

【0022】1) クローン1-7-78の培養および培 卷上清液の回収

クローン1-7-78を10%FBS添加ERDF-R D1 培地に懸濁し、T型フラスコ中で培養した。クロー ンが底一面に増殖し、培地が黄変した段階で培養上滑液 を回収した。

抗体検定用の試料には、マウスNGF(東洋紡績社

6

製)、融合型ヒトNGF、遺伝子組換え菌抽出タンパク 質、および宿主大腸菌抽出タンパク質を用いた。

【0024】試料をSDSと2-メルカプトエタノール 存在下で100℃、3分間の加熱処理後、急冷し、15%ポ リアクリルアミドゲル電気泳動を行った。泳動後、ホラ イズブロット(アトー社製)を用いて、ゲル中のタンパ ク質をクリアプロット·P膜(アト-社製)上に転写し

【0025】転写後の膜をプロックエース原液に浸し、 37℃、1時間反応させた。膜を溶液より取りだし、0.01 %ツィーン添加PBSで3回洗浄した後、上記培養上清 液に浸し37℃、1~2時間反応させた。膜を溶液より取 りだし、0.01%ツィーン添加PBSで3回洗浄した後、 ピオチン化2次抗体溶液に浸し、37℃、1時間反応させ た。膜を溶液より取りだし、0.01%ツィーン添加PBS で3回洗浄した後、あらかじめ調製したアビジンービオ チン化ペルオキシダーゼ複合体溶液に浸し、37℃、30分 間反応させた。膜を溶液より取りだし、0.01%ツィーン を含むPBSで3回洗浄した後、3,3'-ジアミノベ ンジジン四塩酸塩と0.015%過酸化水素を含むPBSに 浸し、室温で約10分間反応させた。膜を蒸留水で3回洗 浄して酵素反応を止め、発色パターンを検討した。 結果 を図1に示す。マウスNGF、融合型ヒトNGFおよび 遺伝子組換え菌抽出液タンパク質のレーン (図1の1 1、12および13)では各NGFの分子量に相当する 位置に発色が認められたが、宿主大腸菌抽出タンパク質 のレーン (図1の14) では発色が認められなかった。 これより抗体は融合型ヒトNGFと反応し、大腸菌抽出 タンパク質とは反応しないことが確認できた。このこと は、上記抗体を用いたウエスタンプロット法により遺伝 子組換え体から抽出したタンパク質中に存在するヒトN GFを特異的に検出できることを示している。また抗体 はヒトNGFだけでなく、マウスNGFとも反応するこ とも確認できた。

【0026】3)ドットプロット法による抗体の反応性 の検討

マウスNGFについて、SDSと2-メルカプトエタノ ール存在下で100℃、3分間の変性処理を行なったもの と未処理のものを試料として、抗体の反応性を検討し

【0027】ニトロセルロース膜に、上記2種のNGF 溶液 (200 µg/m1程度) を滴下し、室温に30分間放 置して、風乾させた後、上記したクリアプロット・P膜 に転写後の膜と同様な処理を行なった。対照として培養 上清液中の抗体の代わりに、抗マウスNGFモノクロー ナル抗体(5μg/m1、ペーリンガー・マンハイム山 之内社製)を用いた。結果を図2に示す。図2におい 【0023】2)ウエスタンブロット法による抗体の反 50 て、Aは抗ヒトNGFモノクローナル抗体を反応させた

場合、Bは抗マウスNGFモノクローナル抗体を反応さ せた場合である。これより本発明の抗体は変性処理を行う なったマウスNGFには反応し(図2(A)の黒丸22 で示す発色)、未処理のマウスNGFには反応しない (図2(A)の点線で示す丸21)ことが確認できた。 一方、対照の抗マウスNGFモノクローナル抗体は未処 理のマウスNGFには反応し(図2(B)の黒丸21で 示す発色)、変性処理を行なったマウスNGFには反応 しなかった (図2 (B) の点線で示す丸22)。

【0028】以上より、本発明の抗体は公知の抗体と反 10 【符号の説明】 応性が異なる新規な抗体であることが明らかになった。 [0029]

【発明の効果】本発明により抗ヒトNGFモノクローナ ル抗体を得ることができ、この抗体を用いれば、従来の モノクローナル抗体では検出できないヒトNGFを検出 することが可能になる。

【図面の簡単な説明】

【図1】抗ヒトNGFモノクローナル抗体のウエスタン プロット分析結果を示す図。

8

【図2】抗ヒトNGFモノクローナル抗体と抗マウスN GFモノクローナル抗体のドットブロット分析結果を示 す図であり、Aは抗ヒトNGFモノクローナル抗体を反 応させた場合、Bは抗マウスNGFモノクローナル抗体 を反応させた場合である。

11…マウスNGF、12…融合型ヒトNGF、13… 遺伝子組換え菌抽出タンパク質、14…宿主大腸菌抽出 タンパク質、、21…未処理マウスNGFの反応結果を 示す丸、22…変性処理マウスNGFの反応結果を示す

【図1】

团

【図2】

图 2

フロントページの続き

(51) Int. Cl. 5

識別記号 庁内整理番号 FΙ

技術表示箇所

// C12N 5/20

15/06

(C 1 2 P 21/08

C12R 1:91)

(72) 発明者 清水 範夫

埼玉県比企郡鳩山町赤沼2520番地 株式会 社日立製作所基礎研究所內