Stochastic Processes: Midterm Exam

Chris Hayduk

October 21, 2020

Problem 1.

(A) We know the deck contains 10 cards and that the draws are independent and uniform. Hence, the probability of drawing any single card is $\frac{1}{10}$. So, if we suppose that we have seen a certain card i times in a row, the probability of selecting that card for the i+1 time in a row would be $\frac{1}{10}$. Thus, it is clear that, for $n \geq 1$, we have $P(X_{n+1} = i + 1 | X_n = i, X_{n-1} = i_{n_1}, \dots, X_0 = 0) = \frac{1}{10} = P(X_{n+1} = i + 1 | X_n = i)$.

In the case of n=0, we have $X_0=0$ by definition. In addition, note that $P(X_{n+1}=0|X_n=i)=\frac{9}{10}$ for $i\neq 0$. Since $X_{n+1}=i+1, X_{n+1}=0$ are the only possible transitions from $X_n=i, i\neq 0$, we have that they add up to 1 as required. Moreover, we can define any other transitions as 0 probability, so $p(i,j)\geq 0$ for any i,j in the state space as required. In the case of i=0, these conditions still hold, as the only possible transition is $P(X_{n+1}=1|X_n=0)=1$.

As a result, we have that this defines a valid Markov chain with the following transition probability matrix,

$$p = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & \cdots \\ 0 & 1 & 0 & 0 & 0 & \cdots \\ 9/10 & 0 & 1/10 & 0 & 0 & \cdots \\ 9/10 & 0 & 0 & 1/10 & 0 & \cdots \\ 9/10 & 0 & 0 & 0 & 1/10 & \cdots \\ \vdots & & \vdots & & \cdots \end{pmatrix}$$

That is, we have,

$$p(0,1) = 1$$

and for i > 0, we have,

$$p(i,0) = 9/10$$
$$p(i,i+1) = 1/10$$

(B) Let us consider the transition matrix \tilde{p} , where we eliminate every state after 9 and consider state 9 an absorbing state:

We are able to make this change because we have not altered any of the states which lead to 9 and for the purposes of this analysis, we do not need to consider any of the states which come after 9. Let us now construct the matrix r by removing the rows and columns corresponding to state 9:

$$r = \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 9/10 & 0 & 1/10 & 0 & 0 & 0 & 0 & 0 & 0 \\ 9/10 & 0 & 0 & 1/10 & 0 & 0 & 0 & 0 & 0 \\ 9/10 & 0 & 0 & 0 & 1/10 & 0 & 0 & 0 & 0 \\ 9/10 & 0 & 0 & 0 & 1/10 & 0 & 0 & 0 \\ 5 & 9/10 & 0 & 0 & 0 & 0 & 1/10 & 0 & 0 \\ 6 & 7 & 9/10 & 0 & 0 & 0 & 0 & 0 & 1/10 & 0 \\ 7 & 9/10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1/10 \\ 8 & 9/10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Now we must evaluate I - r, where I is the 9×9 identity matrix,

$$I - r = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -9/10 & 1 & -1/10 & 0 & 0 & 0 & 0 & 0 & 0 \\ -9/10 & 0 & 1 & -1/10 & 0 & 0 & 0 & 0 & 0 \\ -9/10 & 0 & 0 & 1 & -1/10 & 0 & 0 & 0 & 0 \\ -9/10 & 0 & 0 & 1 & -1/10 & 0 & 0 & 0 \\ 5 & -9/10 & 0 & 0 & 0 & 1 & -1/10 & 0 & 0 \\ 6 & -9/10 & 0 & 0 & 0 & 0 & 1 & -1/10 & 0 \\ 7 & -9/10 & 0 & 0 & 0 & 0 & 0 & 1 & -1/10 \\ 8 & -9/10 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

Once we take the inverse and multiply by the column vector of all 1s, we get,

$$(I-r)^{-1}\mathbb{1} = \begin{pmatrix} 211, 111, 110 \\ \vdots \end{pmatrix}$$

So the expected number of moves starting from state 0 is 211, 111, 110. For a brief sanity check, we see that the probability of seeing a specific card 9 times in a row is

$$1 \cdot \frac{1}{10^8} = \frac{1}{100,000,000}$$
$$= 1 \times 10^{-8}$$

So our answer makes sense given the extremely low probability of reaching state 9.

Problem 2.

The system of equations for f_1 is,

$$f_1(a) = \frac{1}{3}$$

$$f_1(b) = \frac{1}{6}$$

$$f_1(c) = \frac{1}{3}$$

$$f_1(d) = 0$$

$$f_1(e) = \frac{1}{6}$$

Then for f_2 we have,

$$f_2(a) = \frac{1}{6}$$

$$f_2(b) = \frac{1}{6}$$

$$f_2(c) = \frac{1}{12}$$

$$f_2(d) = \frac{1}{4}$$

$$f_2(e) = \frac{1}{6}$$

And for f_3 ,

$$f_3(a) = \frac{1}{12}$$

$$f_3(b) = \frac{1}{8}$$

$$f_3(c) = \frac{5}{24}$$

$$f_3(d) = \frac{1}{8}$$

$$f_3(e) = \frac{5}{12}$$

Problem 3.

Let us label the vertices as follows:

Since each vertex is connected to three other vertices, we have that the transition probability is 1/3 between any two vertices sharing an edge and 0 between all others. This yields the following transition probability matrix:

$$p = \begin{pmatrix} a & b & c & d & e & f & g & h \\ 0 & 0 & 0 & 1/3 & 0 & 1/3 & 0 & 1/3 \\ 0 & 0 & 1/3 & 0 & 1/3 & 0 & 1/3 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 0 & 0 & 1/3 \\ d & 1/3 & 0 & 1/3 & 0 & 0 & 0 & 1/3 & 0 \\ e & d & 0 & 1/3 & 0 & 0 & 0 & 1/3 & 0 \\ 0 & 1/3 & 0 & 0 & 0 & 1/3 & 0 & 1/3 \\ f & 1/3 & 0 & 0 & 0 & 1/3 & 0 & 1/3 & 0 \\ g & 0 & 1/3 & 0 & 1/3 & 0 & 1/3 & 0 & 0 \\ h & 1/3 & 0 & 1/3 & 0 & 1/3 & 0 & 0 & 0 \end{pmatrix}$$

Now we need to find $P(T_a < T_b | X_0 = a)$. That is, the probability that the first return to a will be sooner than the first return to b when we start from state a.

We have three distinct cases here: $X_1 = d$, $X_1 = h$, and $X_1 = f$. We will consider all three cases with both a and b as absorbing states. Thus, the probability $P(T_a < T_b | X_0 = a)$ will be equivalent to $\frac{1}{3}(\lim_{n\to\infty} \tilde{p}^n(d,a) + \lim_{n\to\infty} \tilde{p}^n(h,a) + \lim_{n\to\infty} \tilde{p}^n(f,a))$. This is true because, since a and b are both absorbing states, $\lim_{n\to\infty} \tilde{p}^n(d,a)$ will show the probability

of reaching a (and therefore not reaching b) starting from state d. The case of the other two states is the same. We multiply by 1/3 because each possibility for $X_1 = d, h, f$ has a 1/3 chance of occurring.

Let us now set up the new transition probability matrix:

$$\tilde{p} = \begin{pmatrix} a & b & c & d & e & f & g & h \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1/3 & 0 & 1/3 & 0 & 0 & 0 & 1/3 \\ 1/3 & 0 & 1/3 & 0 & 0 & 0 & 1/3 & 0 \\ 0 & 1/3 & 0 & 0 & 0 & 1/3 & 0 & 1/3 \\ f & 1/3 & 0 & 0 & 0 & 1/3 & 0 & 1/3 & 0 \\ g & h & 1/3 & 0 & 1/3 & 0 & 1/3 & 0 & 0 \\ h & 1/3 & 0 & 1/3 & 0 & 1/3 & 0 & 0 & 0 \end{pmatrix}$$

Note that we can reformulate our above discussion such that,

$$P(T_a < T_b | X_0 = a) = \frac{1}{3} (\lim_{n \to \infty} \tilde{p}^n(d, a) + \lim_{n \to \infty} \tilde{p}^n(h, a) + \lim_{n \to \infty} \tilde{p}^n(f, a))$$

$$= \frac{1}{3} (P(V_a < V_b | X_0 = d) + P(V_a < V_b | X_0 = h) + P(V_a < V_B | X_0 = f))$$

This is possible since a and b are both absorbing states now.

Now let $P_x(V_a < V_b) =: j(x)$. Let j(a) = 1 and j(b) = 0. Then we have the following system of equations,

$$j(a) = 1$$

$$j(b) = 0$$

$$j(c) = \frac{1}{3}(j(d) + j(h))$$

$$j(d) = \frac{1}{3}(1 + j(c) + j(g))$$

$$j(e) = \frac{1}{3}(j(f) + j(h))$$

$$j(f) = \frac{1}{3}(1 + j(e) + j(g))$$

$$j(g) = \frac{1}{3}(j(d) + j(f))$$

$$j(h) = \frac{1}{3}(1 + j(c) + j(e))$$

Note also that we must have j(d) = j(h) = j(f) and j(g) = j(e) = j(c) because each of these vertices are the same number of moves away from a and b and each move has the same probability. In addition, each vertex that they can possibly move to is the same number of

moves from a or b. So let's revise this system of equations, using one representative from each equivalence class,

$$j(a) = 1$$

$$j(b) = 0$$

$$j(c) = \frac{2j(d)}{3}$$

$$j(d) = \frac{1}{3}(1 + 2j(g))$$

$$j(e) = \frac{2j(d)}{3}$$

$$j(f) = \frac{1}{3}(1 + 2j(g))$$

$$j(g) = \frac{2j(d)}{3}$$

$$j(h) = \frac{1}{3}(1 + 2j(g))$$

Plugging j(g) into the equation for j(d) yields,

$$j(d) = \frac{3}{5}$$

and

$$j(g) = \frac{2}{5}$$

Hence, our system of equations is,

$$j(a) = 1$$

$$j(b) = 0$$

$$j(c) = \frac{2}{5}$$

$$j(d) = \frac{3}{5}$$

$$j(e) = \frac{2}{5}$$

$$j(f) = \frac{3}{5}$$

$$j(g) = \frac{2}{5}$$

$$j(h) = \frac{3}{5}$$

Thus, we have,

$$P(T_a < T_b | X_0 = a) = \frac{1}{3} (P(V_a < V_b | X_0 = d) + P(V_a < V_b | X_0 = h) + P(V_a < V_B | X_0 = f))$$

$$= \frac{1}{3} (\frac{3}{5} + \frac{3}{5} + \frac{3}{5})$$

$$= \frac{3}{5}$$

For a quick sanity check, we compute the matrix powers of \tilde{p} (done in the R programming language) and find,

$$\tilde{p}^{1000} = \begin{pmatrix} a & b & c & d & e & f & g & h \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.4 & 0.6 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0.6 & 0.4 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Hence, we have $P(V_a < V_b | X_0 = d) = P(V_a < V_b | X_0 = h) = P(V_a < V_B | X_0 = f) = 0.6 = \frac{3}{5}$ as required.

Problem 4.

Fix $i \in \mathcal{S}$. Suppose $X_n = i$ for some n. Now consider the state $j \in \mathcal{S}$ such that j < i. It is possible to reach j from i because p(i,0) = 1/4. Once we are at 0, we have that p(0,1) = 3/4, p(1,2) = 3/4. Hence, by induction, we have p(j-1,j) = 3/4.

Now assume j > i. We can perform the same process, except without returning to 0. We have $p(i, i+1) = p(i+1, i+2) = \cdots = p(j-1, j) = 3/4$. Thus, we can reach j from i when j > i.

Lastly, when j = i, we need to perform the same process as j < i. We can return to 0 with probability p(i,0) = 1/4, and then we have, $p(0,1) = p(1,2) = \cdots p(i-1,i) = 3/4$. Hence, we have that we can reach i from state i.

Since i was arbitrary and we covered every possible case for another state j, this holds for any state in S. Thus, every state in S communicates with every other state, and so the chain is irreducible.

Now we need to show that there is a positive recurrent state in the chain. Let us consider state 0. Consider $P_0(T_0 = \infty) = 1 - P_0(T_0 < \infty)$. We have that,

$$P_0(T_0 = \infty) = p(0,1) \cdot p(1,2) \cdot p(2,3) \cdot p(3,4) \cdots$$
$$= \sum_{i=0}^{\infty} p(i,i+1)$$

Since p(i, i + 1) = 3/4 for every $i \in \mathcal{S}$, this sum is equivalent to,

$$\lim_{n\to\infty} 3n/4$$

Thus, we have that,

$$P_0(T_0 < \infty) = 1 - P_0(T_0 = \infty)$$

= $1 - \lim_{n \to \infty} 3n/4$
= $1 - 0 = 1$

Hence, 0 is recurrent in the sense that we will certainly return. Now consider E_0T_0 . Note that from each state x, we have probability 1/4 of returning to 0. Define g(x) as the function which denotes the expected time to return to 0 from state x. Then we have,

$$g(x) = 1 + \frac{3}{4}g(x+1)$$

So, we have,

$$g(0) = 1 + \frac{3}{4} \sum_{i=1}^{\infty} g(i)$$