Modelagem e Identificação de sistemas lineares

Tassiano Neuhaus

Universidade Federal do Rio Grande do Sul - Departamento de Engenharia Elétrica Av. Osvaldo Aranha, 103 - Bairro Bom Fim CEP: 90035-190 - Porto Alegre - RS - Brasil

Resumo—

Neste trabalho será apresentado diversos meios para a identificação de sistemas lineares. Existem dois grupos principais de métodos para esta identificação, sendo um deles conhecido como identificação não paramétrica onde existem infinitos parâmetros para serem estimados e que normalmente é utilizado para identificação de funções gráficas. Outro método é conhecido como identificação paramétrica onde o número de parâmetros a ser estimado é finito. Este último método será abordado neste trabalho, por possuir uma aplicabilidade maior e a possibilidade de estimar processos em funções matemáticas que descrevem o comportamento do sistema muitas vezes com mais informação que os métodos gráficos.

Para este trabalho será utilizado um processo de controle de posição angular, controlado por um motor de corrente continua. Serão apresentados dois métodos para identificação do sistema: mínimos quadrados e variáveis instrumentais. A fim de comparação, será identificado o sistema utilizando-se um modelo que não consegue descrever o sistema de forma completa.

Ao fim será apresentado uma breve analise qualitativa dos resultados obtidos no decorrer das estimativas.

Palavras-chave—Identificação de sistemas lineares, métodos paramétricos.

I. INTRODUÇÃO

Neste trabalho será apresentado um sistema de para controle de posição angular, manipulado por um motor de corrente continua (DC). O objetivo principal, é estimar os valores das variáveis existentes no modelo escolhido para representar este sistema.

Inicialmente será explicado o processo de escolha do modelo que representa a dinâmica deste sistema (Seção (II)). Será explicitado quais considerações sobre o sistema foram feitas para se obter o modelo que será utilizado nas seções seguintes, de estimativas dos parâmetros.

Em seguida, será utilizado o método dos Mínimos quadrados (MQ), para estimar o sistema, considerando-se para isso que o ruido sobre o sistema sofre influência dos mesmos polos que estão na planta, ou seja, que o modelo para o sistema se comporta como um modelo ARX. Nesta mesma seção (IV) será apresentado os resultados para o sistema, baseado nos mesmos dados, mas para um modelo que não representa o sistema físico, ou que não consegue representa-lo.

Na seção (V) será apresentado o método das variáveis instrumentais, para estimar os valores do parâmetro para o modelo. Serão utilizados dois tipos de dados para estimar os valores dos parâmetros do modelo, primeiramente será utilizado dados provenientes da entrada da planta e de sua saída, e em um segundo momento serão utilizados os dados de referencia e de saída do sistema considerando-se o controlador do tipo PID que está presente no equipamento utilizado para a coleta dos dados.

Ao fim, será apresentado uma breve discussão sobre os resultados obtidos em ambos os métodos utilizados, e as considerações finais.

II. MODELAGEM DO SISTEMA

O objetivo da modelagem de um sistema é encontrar um modelo (função com parâmetros livres) que consiga representar o sistema físico de forma completa. A partir do conhecimento do sistema físico, fazem-se considerações sobre o sistema, para simplifica-lo a fim de tornar o modelo matemático o mais simples possível, mas que ainda represente o sistema real, com a margem de preciosidade definida pela quantidade e qualidade das simplificações aplicadas para chegar-se ao modelo matemático do sistema. [1]

A. Sistema Físico

O sistema físico em estudo neste trabalho, é um sistema para controle de posição, onde o atuador é um motor de corrente continua (DC). Desta forma a entrada do sistema é a tensão aplicada sobre os terminais do motor em Volts [V], e a saída é a posição angular do motor em radianos [rad].

Na Figura (1) pode ser vista a representação elétrica e mecânica do motor em questão.

Figura 1. Representação elétrica e mecânica do motor

As variáveis consideradas para a modelagem são as apresentadas abaixo:

- ω = Velocidade do motor.
- V = Tensão aplicada na armadura.
- Ia = corrente de armadura.
- L = Indutância da armadura.
- $e = Forca\ contra\ eletromotriz = K_2\omega$
- R = Resistência do enrolamento da armadura.
- $T = Torque \ aplicado = K_i ia$
- J = Momento de inercia da carga.
- f = Atrito viscoso no eixo.

Tem-se desta forma as duas equações que descrevem o sistema para a parte elétrica (1) e mecânica (2).

$$V(t) - R \cdot Ia(t) - L\frac{\mathrm{d}Ia(t)}{\mathrm{d}t} - e(t) = 0 \tag{1}$$

$$J\dot{\omega}(t) = T - f\omega(t) \tag{2}$$

A partir destas equações diferenciais pode-se chegar ao sistema de equações de estado descrito em (3).

$$\begin{bmatrix} \dot{I}a \\ \dot{\omega} \\ \dot{\theta} \end{bmatrix} = \begin{bmatrix} -R/L & -K_2/L & 0 \\ K_i/J & -f/J & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} Ia \\ \omega \\ \theta \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} V \quad (3)$$

B. Modelagem e considerações

Com este sistema de equações de estado (3), é possível obter-se as funções de transferências, que descrevem o sistema, para uma entrada e uma saída. Na equação (4) apresenta-se a função de transferência do motor, que relaciona a posição com a tensão de entrada do motor.

$$G(s) = \frac{k_1/JL}{s(s+f/L)(s+R/L) + s \ k_1k_2/JL}$$
(4)

Devido a dinâmica do sistema mecânico ser muito mais lenta que a dinâmica do sistema elétrico, pode-se desconsiderar a influencia do polo elétrico do sistema, ficando a função de transferência como a seguir:

$$G(s) = \frac{\frac{k_1}{JL}}{s\left(s + \frac{fL + k_1 k_2}{JL}\right)}$$

A equação (4) representa o comportamento da posição angular do motor baseado na entrada de tensão aplicada sobre seus terminais. Esta Função de transferência descreve este comportamento em tempo continuo, nosso sistema é digital e com isso precisamos de uma representação discreta para esta mesma função, para isso pode ser utilizados diversos métodos, como Euler backward, Euler forward, entre outras aproximações. Iremos neste trabalho utilizar a aproximação de Euler Forward (5).

$$s \cong \frac{(z-1)}{T_S} \tag{5}$$

Desta forma, chega-se a uma função de transferência (6).

$$G(z) = \frac{a}{(z-1)(z-b)} \tag{6}$$

Onde:

$$a = \alpha T_S^2$$

$$b = \beta T_S - 1$$

$$\alpha = \frac{k_1}{JL}$$

$$\beta = \frac{fL + k_1 k_2}{JL}$$

Com T_S sendo a frequência de amostragem utilizada.

Desta forma chega-se a uma modelagem do sistema que relaciona a posição em função da tensão aplicada sobre o motor. Para tanto foi considerado que a dinâmica da parte mecânica do sistema é muito mais predominante que a dinâmica da parte elétrica, podendo esta ser desconsiderada

III. AQUISIÇÃO DOS DADOS PARA IDENTIFICAÇÃO DO SISTEMA

O sistema apresentado na seção (II) é a descrição matemática para a planta do sistema, e a função de transferência utilizada é a que descreve a posição angular do sistema com relação a tensão aplicada sobre os terminais do motor.

Na prática o que o que foi utilizado é um sistema como o apresentado na Figura (2) onde a planta que se quer identificar esta sendo controlada por um controlador do tipo PID (Proporcional, integral diferencial) [2]. Onde aplica-se uma referencia e o sistema deve seguir esta referencia.

Figura 2. Representação do sistema utilizado para a coleta dos dados a serem utilizados no processo de estimativa dos parâmetros da função G(q).

Com este sistema foi possível fazer coleta dos dados dos sinais r(t), y(t) além do sinal u(t) que é o sinal de entrada da planta a ser identificada.

Com estes dados é possível proceder de duas maneiras distintas para estimar os valores dos parâmetros de G(q), é possível apenas utilizar os sinais r(t) e y(t) e adicionar ao modelo apresentado na seção (II) o modelo do controlador PID, já que este tem um modelo conhecido e seus parâmetros foram previamente escolhidos (antes da simulação).

Outra maneira possível é utilizar apenas os sinais u(t) e y(t), desta forma pode-se ignorar a existência do controlador PID, e utilizar o método desejado, apenas com o modelo do processo (6).

A. Dados considerando-se o controlador PID

Quando se considera o PID para a estimativa dos parâmetros, deve-se adicionar esta informação para efetuar as estimativas. O modelo do controlador PID pode ser descrito como em (7).

$$u(t) = k_p(r(t) - y(t)) + k_i \int_0^t r(\tau) - y(\tau) d\tau + k_d \left(\frac{\mathrm{d}r(t)}{\mathrm{d}x} - \frac{\mathrm{d}y(t)}{\mathrm{d}x}\right)$$
(7)

Nas medidas efetuadas em laboratório foi utilizado os seguintes valores para o ajuste do controlador PID, Tabela (I).

Aplicando-se os valores da Tabela (I) sobre a equação (7) obtém-se o controlador PID utilizado:

$$u(t) = 3(r(t) - y(t)) + 0.05(\frac{dr(t)}{dx} - \frac{dy(t)}{dx})$$

Tabela I Valores dos parâmetros para ajuste do controlador PID utilizado

Parâmetro	valor
kp	3
ki	0
kd	0.05

Utilizando-se a transformada de Laplace tem-se:

$$PID(s) = k_p + k_d s$$

Utilizando a aproximação de Euler Forward (5) obtém-se:

$$PID(z) = k_p + k_d (z - 1)/T_s = 3 + 5z - 5 = 5z - 2$$
 (8)

IV. MÉTODO DOS MÍNIMOS QUADRADOS

O método dos mínimos quadrados (MMQ) é um dos mais conhecidos e mais utilizados nas mais diversas áreas da ciência e tecnologia. A origem da ideia básica pode ser encontrada nos trabalhos de Gaus sobre o estudo astronômicos. [3]

A. Sistema com solução única

Considerando-se que o sistema que será observado seja linear e invariante no tempo. Se a função f que descreve o sistema for não linear o sistema poderá em principio ser identificado por modelos não lineares. Com base nestas restrições temos que:

$$\begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$$

$$y = X\theta$$

Com $X \in \Re^{nxn}$. Desde que X seja não singular é possível determinar θ :

$$\theta = X^{-1}y\tag{9}$$

B. Sistema sobredeterminado

Para sistemas sobredeterminados onde N>n, A variável X da equação (9) fica $X\in\Re^{Nxn}$. Como esta matriz não é quadrada, não é possível de ser invertida. Multiplicando-se a equação (9) por X^T tem-se: [3]

$$X^T y = X^T X \theta$$

De onde vem:

$$\theta = [X^T X]^{-1} X^T y \tag{10}$$

O método dos mínimos quadrados minimiza o critério apresentado em (11).

$$J(\theta) = \frac{1}{2N} \sum_{t=1}^{N} [y(t) - \hat{y}(t, \theta)]^2$$
 (11)

Onde $\hat{y}(t, \theta)$ é a predição do sistema e pode ser representado como abaixo:

$$\hat{y}(t,\theta) = \theta^T \phi(t)$$

Desta forma pode se dizer que o sistema real é o próprio sistema estimado mais algum erro de estimativa e(t):

$$y(t) = \hat{y}(t, \theta) + e(t) = \theta^T \phi(t) + e(t)$$

C. Estruturas de modelagem

De forma genérica modelos para descrição de sistemas podem ser representados como em (12).

$$A(q,\theta)Y(t) = \frac{B(q,\theta)}{F(q,\theta)}U(t) + \frac{C(q,\theta)}{D(q,\theta)}e(t)$$
 (12)

Onde:

$$A(q,\theta) = 1 + a_1 q^{-1} + a_2 q^{-2} + \dots + a_{na} q^{-na}$$

$$B(q,\theta) = b_1 q^{-1} + b_2 q^{-2} + \dots + b_{nb} q^{-nb}$$

$$C(q,\theta) = 1 + c_1 q^{-1} + c_2 q^{-2} + \dots + c_{nc} q^{-nc}$$

$$D(q,\theta) = 1 + d_1 q^{-1} + d_2 q^{-2} + \dots + d_{na} q^{-nd}$$

$$F(q,\theta) = 1 + f_1 q^{-1} + f_2 q^{-2} + \dots + f_{nf} q^{-nf}$$

Baseado nestas informações existem modelos onde apenas alguns destes polinômios são diferentes de 1. Na Tabela (II) são apresentados alguns destes modelos mais comumente utilizados.

Tabela II MODELOS COMUMENTE UTILIZADOS PARA IDENTIFICAÇÃO DE SISTEMAS

Modelo	Polinômios diferentes de 1		
FIR	В		
ARX	A B		
ARMAX	АВС		
ARMA	A C		
ARARMAX	A B C D		
OE	ВF		
BJ	BFCD		

O método dos mínimos quadrados utiliza intrinsecamente o modelo ARX para descrever o sistema.

D. Controle de posição angular do motor DC

O sistema descrito na seção (II) quando utilizamos o método dos mínimos quadrados, intrinsecamente utilizamos o modelo ARX para descrever este sistema. A partir de (12) tem-se que o modelo ARX fica (13).

$$A(q,\theta)Y(t) = B(q,\theta)U(t) + e(t)$$
(13)

A equação (13) pode ser reescrita:

$$Y(t) = b_1 q^{-1} U(t) + b_2 q^{-2} U(t) + \dots + b_{nb} q^{-nb} U(t) - a_1 q^{-1} Y(t) - b_2 q^{-2} Y(t) - \dots - a_{na} q^{-na} Y(t) + e(t)$$

O que pode ser escrito como em (14).

$$Y(t) = \varphi'\theta + e(t) \tag{14}$$

Onde:

$$\theta = \begin{bmatrix} a_1 \\ \vdots \\ a_{na} \\ b_1 \\ \vdots \\ b_{nb} \end{bmatrix} \qquad \varphi(t) = \begin{bmatrix} y(t-1) \\ \vdots \\ y(t-na) \\ u(t-1) \\ \vdots \\ u(t-nb) \end{bmatrix}$$

$$\Phi = \begin{bmatrix} \varphi'(1) \\ \varphi'(2) \\ \vdots \\ \varphi'(N) \end{bmatrix}$$

Para o sistema de posicionamento do motor DC, a equação (13) fica como em (15).

$$G(q,\theta) = \frac{a}{(q-b)(q-c)} \ H(q,\theta) = \frac{q^2}{(q-b)(q-c)}$$
 (15)

A partir de (15) tem-se que o modelo pode ser descrito como abaixo:

$$\theta = \begin{bmatrix} a & b+c & -bc \end{bmatrix} \quad \varphi(t) = \begin{bmatrix} r(t-2) \\ y(t-1) \\ y(t-2) \end{bmatrix}$$

Sabe-se de antemão que o valor esperado para a variável $c \in 1$, já que existe um integrador na planta em estudo. No Apêndice (A) está o script utilizado para obter os resultados para a estimativa do modelo utilizando o método dos mínimos quadrados.

Foram efetuadas medidas sobre o sistema aplicando-se entradas com formas de ondas diferentes. Inicialmente foi utilizado um sistema controlado por um controlador do tipo PID onde aplicou-se uma referencia do tipo: Rampa, senoidal ou quadrada, e mediu-se a entrada da planta (u(t)) e a saída da planta (y(t)). Nas Figuras (3), (4), (5) e (6) são apresentados estas formas de onda.

Figura 3. Entrada aplicada sobre o sistema G(q) quando submetido a uma referencia do tipo rampa

A Figura (7) apresenta os valores estimados para o sistema quando submetido a uma referencia do tipo rampa, assim como

Figura 4. Entrada aplicada sobre o sistema G(q) quando submetido a uma referencia do tipo senoidal.

Figura 5. Entrada aplicada sobre o sistema G(q) quando submetido a uma referencia do tipo rampa.

Figura 6. Entrada aplicada sobre o sistema G(q) quando submetido a uma referencia do tipo onda quadrada.

na Figura (8), a diferença entre ambos os sinais é a frequência da onda de referência.

Na Figura (9) é apresentado os resultados para a estimativa do sistema quando a referência para o sistema é uma onda quadrada.

Figura 7. Estimativas das variáveis a e b para o conjunto de dados 1.

Figura 8. Estimativas das variáveis a e b para o conjunto de dados 3.

Para o caso quando temos na entrada do sistema uma senoide puramente, não é possível estimar os parâmetros do modelo sem que haja erro de polarização. Isso é devido ao fato de que a entrada do sistema não é suficientemente excitável para o sistema. Obtém-se desta forma valores defasados dos que foram obtidos com as outras entradas aplicadas sobre o sistema. Isso é claramente observado na Figura (10).

Na Tabela (III) é apresentado os valores encontrados para cada conjunto de dados. Apresenta-se também para questões de exemplificar, o resultado obtido quando altera-se o tamanho do conjunto de dados que é utilizado para estimar os parâmetros.

Figura 9. Estimativas das variáveis a e b para o conjunto de dados 4.

Figura 10. Estimativas das variáveis a e b para o conjunto de dados 2.

Tabela III Valores estimados de G(q) para o método dos mínimos Quadrados (ARX)

Conjunto	N	Media a	Media b
1 - Rampa	150	0.0235	0.8478
1 - Rampa	300	0.0234	0.848
1 - Rampa	600	0.0234	0.8481
1 - Rampa	1500	0.0234	0.8482
2 - Sin	150	0.0137	0.92
2 - Sin	300	0.0137	0.92
2 - Sin	600	0.0136	0.9201
2 - Sin	1500	0.0135	0.9209
3 - Rampa	150	0.0185	0.8807
3 - Rampa	300	0.0185	0.8807
3 - Rampa	600	0.0185	0.8807
3 - Rampa	1500	0.0185	0.8808
4 - Quadrada	150	0.0203	0.8624
4 - Quadrada	300	0.0203	0.8624
4 - Quadrada	600	0.0203	0.8624
4 - Quadrada	1500	0.0202	0.8629

E. Simulação para modelo considerando o PID

Nesta seção será apresentado os resultados obtidos para o método dos mínimos quadrados quando se considera o sistema com o controlador do tipo PID, Figura (2).

Neste caso, os dados coletados e utilizados para estimar os parâmetros a e b são os dados de referência (onda quadrada, rampa, e senoidal) e a saída do sistema y(t).

Utilizando-se o modelo do PID encontrado em (8), o modelo a ser utilizado no método dos mínimos quadrados é:

$$G(q,\theta) = \frac{a(5q-2)}{(q-b)(q-c)} \ H(q,\theta) = \frac{q^2}{(q-b)(q-c)}$$

Da onde o método dos mínimos quadrados fica:

$$\theta = \begin{bmatrix} 5a & -2a & b+1 & -b \end{bmatrix} \quad \varphi(t) = \begin{bmatrix} r(t-1) \\ r(t-2) \\ y(t-1) \\ y(t-2) \end{bmatrix}$$

No apêndice (A) é apresentado o script utilizado para efetuar o processo de estimativa dos parâmetros.

Na figura (11) pode ser observado a entrada do sistema r(t) e a saída y(t). Este conjunto de dados proporcionou o seguinte resultado para a estimativa dos parâmetros do sistema, Figura (12).

Figura 11. Entrada aplicada sobre o sistema e a respetiva saída, quando considerado o controlador PID na planta.

Para a entrada do tipo rampa, Figura (13), os resultados para as estimativas foram apresentados na Figura (14).

F. Resultados para um modelo incompleto - MQ ARX

Nesta seção será apresentado resultados para uma estimativa utilizando um modelo que não consegue descrever o sistema propriamente. Serão utilizados os mesmos dados da estimativa da seção IV-D).

O modelo utilizado é descrito em (16). Observa-se que o integrador não esta presente neste modelo, desta forma tem-se

Figura 12. Estimativa obtida para os parâmetros a e b considerando-se o controlador PID e aplicando-se uma referencia do tipo onda quadrada.

Figura 13. Entrada aplicada sobre o sistema e a respetiva saída, quando considerado o controlador PID na planta.

Figura 14. Estimativa obtida para os parâmetros a e b considerando-se o controlador PID e aplicando-se uma referencia do tipo rampa sobre o sistema.

que o modelo das variáveis a serem utilizadas no método dos mínimos quadrados ficam como em (17).

$$G(q,\theta) = \frac{a}{(q-b)} \ H(q,\theta) = \frac{q}{(q-b)} \tag{16}$$

$$\theta = \begin{bmatrix} a & b \end{bmatrix} \quad \varphi(t) = \begin{bmatrix} r(t-1) \\ y(t-1) \end{bmatrix}$$
 (17)

Para este modelo chegou-se aos valores dos parâmetros a e b apresentados na Figura (15).

Figura 15. Resultado da estimativa dos parâmetros do sistema, quando utilizado um modelo que não consegue descrever o sistema por completo. Observa-se o erro de polarização do sistema, quando comparado aos resultados obtidos com um modelo completo.

Observa-se que para este sistema, considerando-se um conjunto com N=150 obteve-se uma média para os valores dos parâmetros a=0.0335 e b=1.0147. Valores muito distantes dos obtidos utilizando o modelo descrito na seção anterior, e que os resultados para o conjunto de dados 4 é apresentado na Tabela (III).

V. MÉTODO DA VARIÁVEL INSTRUMENTAL - IV

Uma alternativa para a minimização da polarização PPA (propriedades de pequenas amostras) na estimativa do sistema é a polarização assintótica. A ideia é relaxar um pouco a definição PPA e, por um lado, permitir que haja polarização para uma amostra pequena, mas por outro lado, verificar se tal polarização desaparece à medida que o tamanho do conjunto de observações cresce. [3]

Para utilização deste método, escolhe-se um Instrumento ${\cal Z}(t)$:

$$Z(t) \in \Re^p \ \forall t \ E(Z(t)\nu) = 0$$
 (18)

$$\hat{y}(t,\theta) = \phi^T(t)\theta$$

$$E[Z(t)(y(t) - \hat{y}(t, \theta))] = 0$$

$$E[Z(t)\phi^T(t)]\theta = E[Z(t)y(t)]$$

De onde vem:

$$\hat{\theta}_N^{iv} = \left[\sum_{t=1}^N Z(t)\phi^T(t)\right]^{-1} \left[\sum_{t=1}^N Z(t)y(t)\right]$$
 (19)

Após a escolha da estimativa Z(t) que satisfaça (19) o passo seguinte é calcular (20).

$$E[\hat{\theta}_N^{iv} - \theta_0] = 0 \tag{20}$$

A. Método aplicado ao controle de posição

Primeiro passo para aplicar o método das *Variáveis instrumentais* é escolher o instrumento que será utilizado, este instrumento pode ser praticamente qualquer coisa contanto que não seja correlacionado com o ruido, uma escolha comum é escolher a própria entrada do sistema defasada no tempo, como foi escolhido abaixo (F(q)).

$$w(t) = F(q)u(t)$$

$$F(q) = q^{-1}$$

$$w(t) = u(t - 1)$$

O que resulta em um instrumento apresentado em (21).

$$Z(t) = \begin{bmatrix} w(t) \\ w(t-1) \\ \vdots \\ w(t-p) \end{bmatrix}$$
 (21)

No Apêndice (A) encontra-se o script utilizado para as simulações deste método. Foram utilizados os sinais de entrada apresentados nas Figuras (3), (4), (5) e (6).

B. Resultados

Os resultados obtidos com a utilização do método das variáveis instrumentais proporcionou as estimativas para os parâmetros a e b que são apresentados na Tabela (IV).

Conjunto	N	Media a	Media b
1 - Rampa	150	0.0179	0.8771
1 - Rampa	300	0.0179	0.877
1 - Rampa	600	0.018	0.8768
1 - Rampa	1500	0.018	0.8769
2 - Sin	150	-0.0126	1.0739
2 - Sin	300	-0.0136	1.0796
2 - Sin	600	-0.0135	1.0789
2 - Sin	1500	-0.0137	1.0804
3 - Rampa	150	0.0151	0.8962
3 - Rampa	300	0.015	0.8964
3 - Rampa	600	0.0151	0.8961
3 - Rampa	1500	0.015	0.8966
4 - Quadrada	150	0.0113	0.8621
4 - Quadrada	300	0.0114	0.8575
4 - Quadrada	600	0.0114	0.8553
4 - Quadrada	1500	0.0114	0.8538

A Figura (16) apresenta os valores da estimativa para uma referencia do tipo onda quadrada (Figura (6)) utilizando o método das variáveis instrumentais e um conjunto de dados N=150.

Figura 16. Estimativas das variáveis a e b para o conjunto de dados 4. Utilizando o método das variáveis instrumentais.

VI. CONCLUSÕES APÊNDICE

1 - Script para Simulação do MQ para o modelo ARX

```
% Identificação de sistemas
% Tassiano Neuhaus
% tassianors@gmail.com
% UFRGS
%-----
close all; clear all;
% LOAD DATA
data_in_4
data_out_4
% Defines
% Number or unknown variables to be determined by
    this method
step_size = 1500;
N=0:
j=1;
% Total number of points colected
Ntot = size(input, 1);
while N+step_size < Ntot
    % load partial number of points
    y=output(N+1:N+step\_size,1);
    u=input(N+1:N+step\_size,1);
    phy=zeros(step_size, n);
    for t=3: step_size
         phy (t, 1)=u(t-2);
         phy(t, 2)=y(t-1);
phy(t, 3)=y(t-2);
    % make sure, rank(phy) = n :)

teta=inv(phy'*phy)*phy'*y;

% to be used in grafic plot
    a(j) = teta(1);
    b(j) = -teta(3);
    c(j) = teta(2) - b(j);
     j=j+1:
    N=N+step_size;
end
PN=[a', b'];
ma=mean(a)
```

```
sa = std(a):
mb=mean(b)
mc=mean(c)
% from here is only to plot the estimated points plot(a, b, 'bo');
hold:
plot(ma, mb, 'rx');
hold:
title ('Estimativa dos parametros a e b do modelo
    para uma referencia do tipo onda Quadrada.
    \hat{N}=150'
xlabel('Valor da estimativa para a variavel a')
ylabel('Valor da estimativa para a variavel b')
legend ('Estimativas', 'Media')
% chi^2 for 95% of confiability
chi = 5.991;
ang = linspace(0,2*pi,360)';
[avetor, SCR, avl] = princomp(PN);
Diagonal = diag(sqrt(chi * avl));
elipse=[cos(ang) sin(ang)] * Diagonal * avetor ' + repmat(mean(PN), 360, 1);
```

Listing 1. Método dos mínimos quadrados

2 - Script para Simulação do método das variáveis instrumentais

```
% Identificacao de sistemas
% Tassiano Neuhaus
% tassianors@gmail.com
%_____
close all; clear all;
% LOAD DATA
data in 4
data_out_4
% Defines
% Number or unknown variables to be determined by
    this method
step_size = 1700;
N=0:
j = 1;
% Total number of points colected
Ntot = size(input, 1);
while N+step_size <= Ntot
    % load partial number of points
    y=output (N+1:N+step_size, 1);
    u=input(N+1:N+step\_size,1);
    phy=zeros(step_size, n);
    z=zeros(step_size, n);
    for t=3: step_size
        phy(t, 1)=u(t-2);

phy(t, 2)=y(t-1);
        phy(t, 3)=y(t-2);
    end
    for t=4: step_size
        % auxiliary instrument z
        z(t, 3)=u(t-1);
        z(t, 2)=u(t-2);
        z(t, 1)=u(t-3);
    end
    teta=inv(z'*phy)*z'*y;
    % to be used in grafic ploting
    a(j) = teta(1);
    b(i) = -teta(3);
```

```
c(i) = teta(2) - b(i):
    j = j + 1;
    N=N+step_size;
PN=[a', b'];
ma=mean(a)
mb=mean(b)
mc=mean(c)
% from here is only to plot the estimated points plot(a, b, 'bo');
hold:
plot(ma, mb, 'rx');
hold;
title ('Estimativa usando o metodo das variaveis
    instrumentais. Ref onda quadrada, N=150')
xlabel('Valor da estimativa para a variavel a')
ylabel('Valor da estimativa para a variavel b')
legend('Estimativas', 'Media')
% chi^2 for 95% of confiability
chi = 5.991;
ang = linspace(0,2*pi,360);
[avetor, SCR, av1] = princomp(PN);
Diagonal = diag(sqrt(chi*avl));
elipse=[cos(ang) sin(ang)] * Diagonal * avetor ' +
    repmat (mean(PN), 360, 1);
```

Listing 2. Método das variáveis instrumentais

3 - Script para Simulação do método dos minimos quadrados considerando o PID

```
% Identificação de sistemas
% Tassiano Neuhaus
% tassianors@gmail.com
% UFRGS
%-----
close all; clear all;
% LOAD DATA
data7
% Defines
% Number or unknown variables to be determined by
    this method
step_size = 150;
N=0:
j=1;
% Total number of points colected
Ntot=size (value, 1);
while N+step_size <= Ntot
    % load partial number of points
    y=value(N+1:N+step\_size,1);
    u=value(N+1:N+step\_size,2);
    phy=zeros(step_size, n);
    z=zeros(step_size, n);
    for t=3: step_size
phy(t, 1)=u(t-1);
        phy (t, 2)=u(t-2);
        phy(t, 3)=y(t-1);
        phy(t, 4)=y(t-2);
    % make sure, rank(phy) = n :)

teta = inv(phy'*phy)*phy'*y;
    % to be used in grafic ploting
    a(j) = teta(1)/5;
    b(i) = -teta(4);
```

```
c(i)=teta(3)-b(i):
     j=j+1;
    N=N+step_size;
PN=[a', b'];
ma=mean(a)
mb=mean(b)
mc=mean(c)
% from here is only to plot the estimated points plot(a, b, 'bo');
hold:
plot(ma, mb, 'rx');
hold;
title ('Estimativa usando o metodo dos min
     quadrados. Ref rampa, N=150')
xlabel('Valor da estimativa para a variavel a')
ylabel('Valor da estimativa para a variavel b')
legend ('Estimativas', 'Media')
% chi^2 for 95% of confiability
chi = 5.991;
ang = linspace(0,2*pi,360);
[avetor, SCR, av1] = princomp(PN);
Diagonal = diag(sqrt(chi*avl));
elipse=[cos(ang) sin(ang)] * Diagonal * avetor' +
  repmat(mean(PN), 360, 1);
line(elipse(:,1), elipse(:,2), 'linestyle', '-',
     'color', 'k');
```

Listing 3. Método dos minimos quadrados considerando-se o controlador PID

REFERÊNCIAS

- [1] T. Soderstrom and P. Stoica, *System idendification*. New york: Prentice Hall, 2001.
- [2] K. Ogata, Engenharia de controle moderno, 3rd ed. Minnesota: Prentice-Hall, 1997.
- [3] L. A. Aguirre, Introdução à identificação de sistemas, Técnicas lineares e não-lineares aplicadas a sistemas reais, 2nd ed. Belo Horizonte, Minas Gerais: Editora UFMG, 2004, vol. 1.