Generalized Linear Models

- <u>Last time</u>: definition of exponential family, derivation of mean and variance (*memorize*)
- Today: definition of GLM, maximum likelihood estimation
 - Include predictors \mathbf{x}_i through a regression model for θ_i
 - Involves choice of a link function (systematic component)
 - Examples for counts, binomial data
 - Algorithm for maximizing likelihood

Systematic Component, Link Functions

Instead of modeling the mean, μ_i , as a linear function of predictors, \mathbf{x}_i , we introduce on one-to-one continuously differentiable transformation $g(\cdot)$ and focus on

$$\eta_i = g(\mu_i),$$

where $g(\cdot)$ will be called the <u>link function</u> and η_i the linear predictor.

We assume that the transformed mean follows a linear model,

$$\eta_i = \mathbf{x}_i' \boldsymbol{\beta}.$$

Since the link function is invertible and one-to-one, we have

$$\mu_i = g^{-1}(\eta_i) = g^{-1}(\mathbf{x}_i'\boldsymbol{\beta}).$$

Note that we are transforming the expected value, μ_i , instead of the raw data, y_i .

For classical linear models, the mean is the linear predictor.

In this case, the identity link is reasonable since both μ_i and η_i can take any value on the real line.

This is not the case in general.

Link Functions for Poisson Data

For example, if $Y_i \sim \text{Poi}(\mu_i)$ then μ_i must be > 0. In this case, a linear model is not reasonable since for some values of $\mathbf{x}_i \ \mu_i \leq 0$.

By using the model, $\eta_i = \log(\mu_i) = \mathbf{x}_i' \boldsymbol{\beta}$, we are guaranteed to have $\mu_i > 0$ for all $\boldsymbol{\beta} \in \Re^p$ and all values of \mathbf{x}_i .

In general, a link function for count data should map the interval $(0, \infty) \to \Re$ (i.e., from the + real numbers to the entire real line).

The log link is a natural choice

Link Functions for Binomial Data

For the binomial distribution, $0 < \mu_i < 1$ (mean of y_i is $n_i \mu_i$)

Therefore, the link function should map from $(0,1) \to \Re$

Standard choices:

1. logit:
$$\eta_i = \log{\{\mu_i/(1-\mu_i)\}}$$
.

- 2. <u>probit</u>: $\eta_i = \Phi^{-1}(\mu_i)$, where $\Phi(\cdot)$ is the N(0,1) cdf.
- 3. <u>complementary log-log</u>: $\eta_i = \log\{-\log(1 \mu_i)\}$.

Each of these choices is important in applications & will be considered in detail later in the course

Recall that the exponential family density has the following form:

$$f(y_i; \theta_i, \phi) = \exp\left\{\frac{y_i \theta_i - b(\theta_i)}{a(\phi)} + c(y_i, \phi)\right\}.$$

where $a(\cdot)$, $b(\cdot)$ and $c(\cdot)$ are known functions.

Specifying the GLM involves choosing $a(\cdot), b(\cdot), c(\cdot)$:

- 1. Specify $a(\cdot), c(\dot)$ to correspond to particular distribution (e.g., Binomial, Poisson)
- 2. Specify $b(\cdot)$ to correspond to a particular link function

Recall that mean & variance are

$$\mu_i = b'(\theta_i)$$
 and $\sigma^2 = b''(\theta_i)\phi$.

Using $b'(\theta_i) = g^{-1}(\mathbf{x}_i'\boldsymbol{\beta})$, we can express the density as $f(y_i; \mathbf{x}_i, \boldsymbol{\beta}, \phi)$, so that the conditional likelihood of y_i given \mathbf{x}_i depends on parameters $\boldsymbol{\beta}$ and ϕ .

It would seem that a natural choice for $b(\cdot)$ and hence $g(\cdot)$, would correspond to $\theta_i = \eta_i = \mathbf{x}_i' \boldsymbol{\beta}$, so that $b'(\cdot)$ is the inverse link

Canonical Links and Sufficient Statistics

Each of the distributions we have considered has a special, <u>canonical</u>, link function for which there exists a sufficient statistic equal in dimension to β .

Canonical links occur when $\theta_i = \eta_i = \mathbf{x}_i' \boldsymbol{\beta}$, with θ_i the canonical parameter

As a homework exercise, please show for next Thursday that the following distributions are in the exponential family and have the listed canonical links:

Normal
$$\eta_i = \mu_i$$

Poisson $\eta_i = \log \mu_i$
binomial $\eta_i = \log \{\mu_i/(1 - \mu_i)\}$
gamma $\eta_i = \mu_i^{-1}$

For the canonical links, the sufficient statistic is $\mathbf{X}'\mathbf{y}$, with components $\Sigma_i x_{ij}y_i$, for $j=1,\ldots,p$.

Although canonical links often nice properties, selection of the link function should be based on prior expectation and model fit

Example: Logistic Regression

Suppose $y_i \sim \text{Bin}(1, p_i)$, for i = 1, ..., n, are independent 0/1 indicator variables of an adverse response (e.g., preterm birth) and let \mathbf{x}_i denote a $p \times 1$ vector of predictors for individual i (e.g., dose of dde exposure, race, age, etc).

The likelihood is as follows:

$$f(\mathbf{y} \mid \boldsymbol{\beta}) = \prod_{i=1}^{n} p_i^{y_i} (1 - p_i)^{1 - y_i} = \prod_{i=1}^{n} \left(\frac{p_i}{1 - p_i}\right)^{y_i} (1 - p_i)$$

$$= \prod_{i=1}^{n} \exp\left\{y_i \log\left(\frac{p_i}{1 - p_i}\right) - \log\left(\frac{1}{1 - p_i}\right)\right\}$$

$$= \exp\left[\sum_{i=1}^{n} \left\{y_i \theta_i - \log(1 + e^{\theta_i})\right\}\right].$$

Choosing the canonical link,

$$\theta_i = \log\left(\frac{p_i}{1 - p_i}\right) = \mathbf{x}_i' \boldsymbol{\beta},$$

the likelihood has the following form:

$$f(\mathbf{y} \mid \boldsymbol{\beta}) = \exp\left[\sum_{i=1}^{n} \left\{ y_i \mathbf{x}_i' \boldsymbol{\beta} - \log(1 + e^{\mathbf{x}_i' \boldsymbol{\beta}}) \right\} \right].$$

This is logistic regression, which is widely used in epidemiology and other applications for modeling of binary response data.

In general, if $f(y_i; \theta_i, \phi)$ is in the exponential family and $\theta_i = \theta(\eta_i)$, $\eta_i = \mathbf{x}_i' \boldsymbol{\beta}$, then the model is called a generalized linear model (GLM)

Model fitting

• Choosing a GLM results in a likelihood function:

$$L(\mathbf{y}; \boldsymbol{\beta}, \phi, \mathbf{x}) = \prod_{i=1}^{n} \exp \left\{ \frac{y_i \theta_i - b(\theta_i)}{a(\phi)} + c(y_i, \phi) \right\},$$

where θ_i is a function of $\eta_i = \mathbf{x}_i' \boldsymbol{\beta}$.

• The maximum likelihood estimate is defined as

$$\widehat{\boldsymbol{\beta}} = \sup_{\boldsymbol{\beta}} L(\mathbf{y}; \boldsymbol{\beta}, \phi, \mathbf{x}),$$

with ϕ initially assumed to be known

- ullet Frequentist inferences for GLMs typically rely on $\widehat{oldsymbol{eta}}$ and asymptotic approximations.
- In the normal linear model special case, the MLE corresponds to the least squares estimator
- ullet In general, there is no closed form expression so we need an algorithm to calculate $\widehat{oldsymbol{eta}}$.

Maximum Likelihood Estimation of GLMs

All GLMs can be fit using the same algorithm, a form of iteratively re-weighted least squares:

1. Given an initial value for $\widehat{\boldsymbol{\beta}}$, calculate the estimated linear predictor $\widehat{\eta}_i = \mathbf{x}_i' \widehat{\boldsymbol{\beta}}$ and use that to obtain the fitted values $\widehat{\mu}_i = g^{-1}(\widehat{\eta}_i)$. Calculate the adjusted dependent variable,

$$z_i = \hat{\eta}_i + (y_i - \widehat{\mu}_i) \left(\frac{d\eta_i}{d\mu_i}\right)_0,$$

where the derivative is evaluated at $\widehat{\mu}_i$.

2. Calculate the iterative weights

$$W_i^{-1} = \left(\frac{d\eta_i}{d\mu_i}\right)_0 V_i.$$

where V_i is the variance function evaluated at $\widehat{\mu}_i$.

3. Regress z_i on \mathbf{x}_i with weight W_i to give new estimates of $\boldsymbol{\beta}$

Justification for the IWLS procedure

Note that the log-likelihood can be expressed as

$$l = \sum_{i=1}^{n} \{y_i \theta_i - b(\theta_i)\}/a(\phi) + c(y_i, \phi).$$

To maximize this log-likelihood we need $\partial l/\partial \beta_j$,

$$\frac{\partial l}{\partial \beta_{j}} = \sum_{i=1}^{n} \frac{\partial l_{i}}{\partial \theta_{i}} \frac{d\theta_{i}}{d\mu_{i}} \frac{d\mu_{i}}{d\eta_{i}} \frac{\partial \eta_{i}}{\partial \beta_{j}}$$

$$= \sum_{i=1}^{n} \frac{(y_{i} - \mu_{i})}{a(\phi)} \frac{1}{V_{i}} \frac{d\mu_{i}}{d\eta_{i}} x_{ij},$$

$$= \sum_{i=1}^{n} (y_{i} - \mu_{i}) \frac{W_{i}}{a(\phi)} \frac{d\eta_{i}}{d\mu_{i}} x_{ij}$$

since $\mu_i = b'(\theta_i)$ and $b''(\theta_i) = V_i$ implies $d\mu_i/d\theta_i = V_i$.

With constant dispersion $(a(\phi) = \phi)$, the MLE equations for β_j :

$$\sum_{i=1}^{n} W_{i}(y_{i} - \mu_{i}) \frac{d\eta_{i}}{d\mu_{i}} x_{ij} = 0.$$

Fisher's scoring method uses the gradient vector, $\partial l/\partial \boldsymbol{\beta} = \mathbf{u}$, and minus the expected value of the Hessian matrix

$$-E\left(\frac{\partial^2 l}{\partial \beta_r \partial \beta_s}\right) = \mathbf{A}.$$

Given the current estimate **b** of $\boldsymbol{\beta}$, choose the adjustment $\delta \mathbf{b}$ so

$$\mathbf{A}\delta\mathbf{b}=\mathbf{u}.$$

Excluding ϕ , the components of **u** are

$$u_r = \sum_{i=1}^n W_i(y_i - \mu_i) \frac{d\eta_i}{d\mu_i} x_{ir},$$

so we have $A_{rs} = -E(\partial u_r/\partial \beta_s) =$

$$-E\sum_{i=1}^{n} \left[(y_i - \mu_i) \frac{\partial}{\partial \beta_s} \left\{ W_i \frac{d\eta_i}{d\mu_i} x_{ir} \right\} + W_i \frac{d\eta_i}{d\mu_i} x_{ir} \frac{\partial}{\partial \beta_s} (y_i - \mu_i) \right].$$

The expectation of the first term is 0 and the second term is

$$\sum_{i=1}^{n} W_{i} \frac{d\eta_{i}}{d\mu_{i}} x_{ir} \frac{\partial \mu_{i}}{\partial \beta_{s}} = \sum_{i=1}^{n} W_{i} \frac{d\eta_{i}}{d\mu_{i}} x_{ir} \frac{d\mu_{i}}{d\eta_{i}} \frac{\partial \eta_{i}}{\partial \beta_{s}} = \sum_{i=1}^{n} W_{i} x_{ir} x_{is}.$$

The new estimate $\mathbf{b}^* = \mathbf{b} + \delta \mathbf{b}$ of $\boldsymbol{\beta}$ thus satisfies

$$\mathbf{A}\mathbf{b}^* = \mathbf{A}\mathbf{b} + \mathbf{A}\delta\mathbf{b} = \mathbf{A}\mathbf{b} + \mathbf{u},$$

where
$$(\mathbf{Ab})_r = \sum_s A_{rs} b_s = \sum_{i=1}^n W_i x_{ir} \eta_i$$
.

Thus, the new estimate \mathbf{b}^* satisfies

$$(\mathbf{Ab}^*)_r = \sum_{i=1}^n W_i x_{ir} \{ \eta_i + (y_i - \mu_i) d\eta_i / d\mu_i \}.$$

These equations have the form of linear weighted least squares equation with weight W_i and dependent variable z_i .

Some Comments

- The IWLS procedure is simple to implement and converges rapidly in most cases
- Procedures are available to calculate MLEs and implement frequentist inferences for GLMs in most software packages.
- In R or S-PLUS the $glm(\cdot)$ function can be used try help(glm)
- In Matlab the $glmfit(\cdot)$ function can be used

Example: Smoking and Obesity

- $y_i = 1$ if the child is obese and $y_i = 0$ otherwise, for $i = 1, \ldots, n$
- $\mathbf{x}_i = (1, age_i, smoke_i, age_i \times smoke_i)'$
- Bernoulli likelihood,

$$L(\mathbf{y}; \boldsymbol{\beta}, \mathbf{x}) = \prod_{i=1}^{n} \mu_i^{y_i} (1 - \mu_i)^{1 - y_i},$$

where $\mu_i = \Pr(y_i = 1 \mid \mathbf{x}_i, \boldsymbol{\beta})$.

• Choosing the canonical link, $\mu_i = 1/\{1 + \exp(-\mathbf{x}_i'\boldsymbol{\beta})\}$, results in a logistic regression model:

$$\Pr(y_i = 1 \mid \mathbf{x}_i, \boldsymbol{\beta}) = \frac{\exp(\mathbf{x}_i' \boldsymbol{\beta})}{1 + \exp(\mathbf{x}_i' \boldsymbol{\beta})},$$

Hence, probability of obesity depends on age and smoking through a non-linear model • Letting X = cbind(age,smoke,age*smoke) and Y = 0/1 obesity outcome in R, we use

to implement IWLS and fit the model

- Note that data are available on the web try to replicate results (note children a year or younger have been discarded)
- The command summary(glm) yields the results:

Coefficients:

Value Std. Error t value

(Intercept) -2.365173738 0.50112688 -4.7197104

age -0.066204429 0.08957593 -0.7390873

smoke -0.043079741 0.22375895 -0.1925275

age:smoke -0.008448488 0.04010827 -0.2106420

Null Deviance: 1580.905 on 3874 degrees of freedom

Residual Deviance: 1574.663 on 3871 degrees of freedom

Number of Fisher Scoring Iterations: 6

Correlation of Coefficients:

(Intercept) age smoke

age -0.9382877

smoke -0.9067235 0.8520241

age:smoke 0.8496495 -0.9062117 -0.9391875

• Thus, the IWLS algorithm converged in 6 iterations to the MLE:

$$\widehat{\boldsymbol{\beta}} = (-2.365, -0.066, -0.043, -0.008)'$$

- For any value of the covariates we can calculate the probability of obesity
- For example, for non-smokers the age curves can be plotted by using:

beta<- fit\$coef

introduce grid spanning range of observed ages
x<- seq(min(obese\$age),max(obese\$age),length=100)
calculate fitted probability of obesity
py<- 1/(1+exp(-beta[1]+beta[2]*x))</pre>

• Meaning of the rest of the R/S-PLUS output will be clear after next class

plot(x,py,xlab="age in years", ylab="Pr(obesity)")

Next Class

Topic: Frequentist inference for GLMs

Have homework exercise completed and written up for next Thursday

Complete the following exercise:

1. Write down generalized linear models for the Caesarian data (grouping the two different infection types) and the cellular dif-

ferentiation data.

2. Show the different components of the GLM, expressing the likeli-

hood in exponential family form & using a canonical link function

3. Fit the GLM using maximum likelihood and report the param-

eter estimates.

23