INDEX

Ex. No	Ch. No	Date	Name Of the Experiment	Page No	Sign				
CHAPTER 1									
1	1	12-08-2022	Least Square Method	7					
CHAPTER 2									
2	2 (A)	13-08-2022	Newton Raphson Method	13					
3	2 (B)	19-08-2022	Bisection Method	18					
4	2 (C)	22-08-2022	Regula Falsie Method	22					
CHAPTER 3									
5	3 (A)	27-08-2022	Gauss Elimination Method	25					
6	3 (B)	29-08-2022	Gauss Jordon Method	29					
			CHAPTER 4						
7	4	03-09-2022	Gauss Seidel Method	34					
			CHAPTER 5						
8	5 (A)	05-09-2022	Newton's Forward Difference Interpolation	40					
9	5 (B)	09-09-2022	Newton's Backward Difference Interpolation	43					
10	5 (C)	12-09-2022	Newton's Divided Difference	46					
11	5 (D)	16-09-2022	Lagrange's Interpolation	50					
			CHAPTER 6						
12	6 (A)	17-09-2022	Newton's Forward Method	54					
13	6 (A)	22-09-2022	Newton's Backward Method	58					
			CHAPTER 7						
14	7 (A)	23-09-2022	Trapezoidal Method	62					
15	7 (B)	29-09-2022	Simpon's 1/3 rd Rule	64					
16	7 (C)	30-09-2022	Simpon's 3/8 th Rule	66					
			CHAPTER 8						
17	8 (A)	10-10-2022	Taylor's Series Method	69					
18	8 (B1)	11-10-2022	Euler Method	72					
19	8 (B2)	12-10-2022	Improved Euler Method	75					
20	8 (B3)	17-10-2022	Modified Euler Method	78					
21	8 (C1)	21-10-2022	Runge Kutta 2 order Method	81					
22	8 (C2)	25-10-2022	Runge Kutta 3 order Method	84					
23	8 (C3)	29-10-2022	Runge Kutta 4 order Method	87					
24	8 (D1)	31-10-2022	Adams Bash forth Method	91					
25	8 (D2)	04-10-2022	Milne - Thomson Method	94					
CHAPTER 9									
26	9 (A1)	07-10-2022	Liebman's Method	98					
27	9 (A2)	11-11-2022	Poisson's Method	102					
28	9 (B1)	12-11-2022	Bender - Schmidt Method	105					
29	9 (B2)	17-11-2022	Crank - Nicholson Method	108					
30	9 (C)	18-11-2022	Explicit Scheme Method	111					

CONTENTS

S.NO	EX.NO	TOPIC	PAGE.NO	
1	1	Least Square Method	7	
2	2 (A)	Newton Raphson Method	13	
3	2 (B)	Bisection Method	18	
4	2 (C)	Regula Falsie Method	22	
5	3 (A)	Gauss Elimination Method	25	
6	3 (B)	Gauss Jordon Method	29	
7	4	Gauss Seidel Method	34	
8	5 (A)	Newton's Forward Difference Interpolation	40	
9	5 (B)	Newton's Backward Difference Interpolation	43	
10	5 (C)	Newton's Divided Difference	46	
11	5 (D)	Lagrange's Interpolation	50	
12	6 (A)	Newton's Forward Method	54	
13	6 (A)	Newton's Backward Method	58	
14	7 (A)	Trapezoidal Method	62	
15	7 (B)	Simpon's 1/3 rd Rule	64	
16	7 (C)	Simpon's 3/8 th Rule	66	
17	8 (A)	Taylor's Series Method	69	
18	8 (B1)	Euler Method	72	
19	8 (B2)	Improved Euler Method	75	
20	8 (B3)	Modified Euler Method	78	
21	8 (C1)	Runge Kutta 2 order Method	81	
22	8 (C2)	Runge Kutta 3 order Method	84	
23	8 (C3)	Runge Kutta 4 order Method	87	
24	8 (D1)	Adams Bash forth Predictor & Corrector Method	91	
25	8 (D2)	Milne Predictor & Corrector Method	94	
26	9 (A1)	Liebman's Method	98	
27	9 (A2)	Poisson's Method	102	
28	9 (B1)	Bender - Schmidt Method	105	
29	9 (B2)	Crank - Nicholson Method	108	
30	9 (C)	Explicit Scheme Method	111	

MODULE 1

- ➤ Least Squares Method
- Bisection Method
- > Regula Falsie Method
- > Newton Raphson Method
- ➤ Gauss Elimination Method
- ➤ Gauss Jordon Method
- ➤ Gauss Seidel Method

MODULE 2

- ➤ Newton's Gregory Forward Method
- Newton's Gregory Backward Method
- ➤ Lagrange's Method
- ➤ Newton's Divided Difference Method

MODULE 3

- > Newton's Forward Difference Method
- > Newton's Backward Difference Method
- > Trapezoidal Method
- ➤ Simpson's 1/3th Method
- > Simpson's 3/8 th Method

MODULE 4

- > Taylor's Method
- ➤ Euler Method
- ➤ Modified Euler Method
- > Improved Euler Method
- ➤ Runge Kutta 2nd Order Method
- ➤ Runge Kutta 3rd Order Method
- ➤ Runge Kutta 4th Order Method
- ➤ Milne's Method
- > Adams Bash Forth Method

MODULE 5

- ➤ Liebman's Method
- Poisson's Method
- ➤ Blender Schmidt Method
- Crank Nicolson Method
- ➤ Explicit Scheme Method

MODULE

LEAST SQUARE METHOD

Objective:

Fitting the given data line/curve using least square method

Input:

The Country and its percentage of NEET Exam passing in year 2019.

Country	Passing Rate
1	52
2	71
3	44
4	58
5	75
6	67
7	36
8	70
9	59
10	46
11	39

Link:

https://news.careers 360.com/neet-2019-result-statistics-released-nta-797042-candidates-qualified-exam/amp

Procedure/Methodology:

Country (x)	1	2	3	4	5	6	7	8	9	10	11
Percentage of Passing (y)	52	71	44	58	75	67	36	70	59	46	39

Tabular Column:

X	Y	U= X-6	V= Y-67	\mathbf{U}^{2}	U ³	U ⁴	U ² V	UV
1	52	-5	-15	25	-125	625	-375	75
2	71	-4	4	16	-64	256	64	16
3	44	-3	-23	9	-27	81	-207	69
4	58	-2	-9	4	-8	16	-36	18
5	75	-1	8	1	-1	1	8	-8
6	67	0	0	0	0	0	0	0
7	36	1	-31	1	1	1	-31	-31
8	70	2	3	4	8	16	12	6
9	59	3	-8	9	27	81	-72	-24
10	46	4	-21	16	64	256	-336	-82
11	39	5	-28	25	125	625	-700	-140
		ΣU= 0	ΣV= -120	ΣU ² = 110	$\Sigma U^3 = 0$	ΣU ⁴ = 1958	$\Sigma U^2 V = -1673$	ΣUV= -133

Straight line:

$$\sum v = a\Sigma u + bn$$

 $\sum uv = a\Sigma u^2 + b\Sigma u$

 \Rightarrow

$$-120=0(a)+11(b)$$
 -- (1)

$$-133=110(a) + 0(b)$$
 -- (2)

From Equation (1)

$$-120=11b$$

$$b = \frac{-120}{11}$$

$$b = -10.9091$$

From Equation (2)

$$-133=110a$$

$$a = \frac{-133}{110}$$

$$a = -1.2091$$

Substitute the value of a & b,

Where v = Y-67 and u = X-6

$$v = au + b$$

 $v = -1.21(u) + (-10.91)$
 $v = -1.21(X-6) + (-10.91)$
 $v = -1.21(X) + 7.26 - 10.91$
 $Y - 67 = -1.21(X) - 3.65$
 $Y = -1.21(X) + 63.35$
1.21 X+Y = 63.35

Curve fitting

$$\sum v = a\sum u^2 + b\Sigma u + cn$$

$$\sum uv = a\Sigma u^3 + b\Sigma u^2 + c\sum u$$

$$\sum u^2v = a\sum u^4 + b\Sigma u^3 + c\sum u^2$$

 \Rightarrow

$$-120 = 110(a) + 0(b) + 11(c) \qquad -- (1)$$

$$-133 = 0(a) + 110(b) + 0(c) -- (2)$$

$$-1673 = 1958(a) + 0(b) + 110(c)$$
 -- (3)

From Equation (2)

$$-133 = 0(a) + 110(b) + 0(c)$$

$$-133 = 110(b)$$

$$b = -133 / 110$$

$$b = -1.21$$

By Solving Equation (1) and (3)

(1) x 10
(3) x 1

$$1100 (a) + 110 (c) = -1200$$
(-) 1958 (a) + 110 (c) = -1673

$$-858 (a) = 473$$

$$a = 473 / - 858$$

$$a = -0.5513$$

Substitute the value a = -0.5513 in equation (1)

$$110 (a) + 11 (c) = -120$$

$$110(-0.5513) + 11 (c) = -120$$

$$11 (c) = -120 + 60.643$$

$$c = -59.357/11$$

$$c = -5.357$$

Substitute the value of a, b & c

Where
$$u = X-6$$
 and $v = -1.21(X) - 3.65$

$$v = au^{2} + bu + c$$

$$V = (-0.5513) u^{2} + (-1.21) + (-5.357)$$

$$-1.21 X - 3.65 = (-0.5513) (x - 6)^{2} + (-1.21) (x - 6) - 5.357$$

$$-1.21 X - 3.65 = (-0.5513) (x^{2} - 12x + 6) + (-1.21) (x - 6) - 5.357$$

$$-1.21 X - 3.65 = -0.5513 x^{2} + 6.6156 x - 19.8468 - 1.21 x + 7.26 - 5.357$$

$$-3.65 = -0.5513x^{2} + 6.6156 x - 17.9829$$

$$Y = 0.5513x^{2} - 6.6156 x + 14.3329$$

Coding:

```
clc; clear all;
x=[1:1:11];
y=[52,71,44,58,75,67,36,70,59,46,39];
n=length(x);
sx=sum(x);
sy=sum(y);
sx4=sum(x.^4);
sx3=sum(x.^3);
sx2=sum(x.^2);
sxy=sum(x.*y);
sx2y = sum((x.^2).*y);
disp("Curve Fitting")
//sy = a1*sx2+b1*sx+c1*n;
//sxy = a1*sx3+b1*sx2+c1*sx;
//sx2y=a1*sx4+b1*sx3+c1*sx2;
A=[sx2,sx,n;sx3,sx2,sx;sx4,sx3,sx2];
B=[sy,sxy,sx2y]';
//X = [a1,b1,c1]';
R1=inv(A);
X=R1*B;
disp(A, 'A=')
disp(B,'B=')
disp(R1, 'R1=')
a1=X(1); b1=X(2); c1=X(3);
disp(a1,'a1=')
disp(b1, 'b1=')
disp(c1, 'c1=')
printf("Equation: y = (\%.4f).x^2 + (\%.4f).x + (\%.4f)",a1,b1,c1);
figure(1);
y1=a1*x^2+b1*x+c1
\underline{\text{scatter}}(x,y)
plot(x,y1)
//
disp("Line Fitting")
//sy=a2*sx+b2*n;
//sxy = a2*sx2+b2*sx;
A1=[sx,n;sx2,sx];
B1=[sy,sxy]';
//X = [a2,b2]';
R2=inv(A1);
X1=R2*B1;
disp(A1, 'A1=')
disp(B1,'B1=')
```

```
disp(R2,'R2=')

a2=X1(1); b2=X1(2);
disp(a2,'a2=')
disp(b2,'b2=')
printf("Equation: y = (%.4f).x + (%.4f)",a2,b2);
figure(2);
y2=a2*x+b2
scatter(x,y)
plot(x,y2)
```


BISECTION METHOD

Objective:

Fitting the root using Bisection method

Input:

$$3x + \sin x - e^x = 0$$

Link:

http://sdcamzn.in/Images/DisclosureFile/CBNSTASSIGN1.pdf

&

&

Procedure/Methodology:

$$f(x) = 3x + \sin(x) - e^x = 0$$

When x = 0

$$f(0) = -1 \text{ (-ve)}$$

When x = 1

$$f(1) = 1.1232 (+ve)$$

Iteration 1:

Here
$$f(0) = -1 < 0$$

$$f(1) = 1.1232 > 0$$

∴ Root lies between 0 & 1

$$X_0=\frac{0\!+\!1}{2}$$

$$X_0 = 0.5$$

$$f(Xo) = f(0.5) = 3(0.5) + \sin(0.5) - e^{0.5}$$

= 0.3307 > 0

Iteration 2:

Here
$$f(0) = -1 < 0$$

$$f(0.5) = 0.3307 > 0$$

∴ Root lies between 0 & 0.5

$$X_1=\frac{0\!+\!0.5}{2}$$

$$X_1 = 0.25$$

$$f(X_1) = f(0.25) = 3(0.25) + \sin(0.25) - e^{0.25}$$

= -0.2866 < 0

Iteration 3:

Here
$$f(0.25) = -0.2866 < 0$$
 &
$$f(0.5) = 0.3307 > 0$$

∴ Root lies between 0.25 & 0.5

$$X_{2} = \frac{0.25 + 0.5}{2}$$

$$X_{2} = 0.375$$

$$f(x_{2}) = f(0.375) = 3(0.375) + \sin(0.375) - e^{0.375}$$

$$= 0.0363 > 0$$

Iteration 4:

Here
$$f(0.25) = -0.2866 < 0$$
 &
$$f(0.375) = 0.0363 > 0$$

∴ Root lies between 0.25 & 0.375

$$X_3 = \frac{0.25 + 0.375}{2}$$

$$X_3 = 0.3125$$

$$f(x_3) = f(0.3125) = 3(0.3125) + \sin(0.3125) - e^{0.3125}$$
$$= -0.1219 < 0$$

Iteration 5:

Here
$$f(0.3125) = -0.1219 < 0$$
 & $f(0.375) = 0.0363 > 0$

∴ Root lies between 0.3125 & 0.375

$$X_4 = \frac{0.3125 + 0.375}{2}$$

$$X_4 = 0.3438$$

$$f(x_4) = f(0.3438) = 3(0.3438) + \sin(0.3438) - e^{0.3438}$$

$$= -0.042 < 0$$

Iteration 6:

Here
$$f(0.3438) = -0.042 < 0$$
 & $f(0.375) = 0.0363 > 0$

∴ Root lies between 0.3438 & 0.375

$$X_5 = \frac{0.3438 + 0.375}{2}$$

$$X_5 = 0.3594$$

$$\begin{split} f(x_5) &= f\left(0.3594\right) = 3(0.3594) + sin\left(0.3594\right) - e^{0.3594} \\ &= -0.0026 < 0 \end{split}$$

Iteration 7:

Here
$$f(0.3594) = -0.0026 < 0$$
 & $f(0.375) = 0.0363 > 0$

∴ Root lies between 0.3594 & 0.375

$$X_6 = \frac{0.3594 + 0.375}{2}$$
$$X_6 = 0.3672$$

$$\begin{split} f(x_6) &= f\left(0.3672\right) = 3(0.3672) + sin\left(0.3672\right) - e^{0.3672} \\ &= 0.0169 > 0 \end{split}$$

Iteration 8:

Here
$$f(0.3672) = 0.0169 > 0$$
 & $f(0.3594) = -0.0026 < 0$

∴ Root lies between 0.3672 & 0.3594

$$X_{7=} \frac{0.3672\!+\!0.3594}{2}$$

$$X_7 = 0.3633$$

$$f(x_7) = f(0.3633) = 3(0.3633) + \sin(0.3633) - e^{0.3633}$$
$$= 0.0071 > 0$$

Iteration 9:

Here
$$f(0.3633) = 0.0071 > 0$$
 & $f(0.3594) = -0.0026 < 0$

∴ Root lies between 0.3633 & 0.3594

$$X_{8=} \frac{0.3633 + 0.3594}{2}$$

$$X_{8} = 0.3613$$

$$f(x_8) = f(0.3613) = 3(0.3613) + \sin(0.3613) - e^{0.3613}$$
$$= 0.0023 > 0$$

Iteration 10:

Here
$$f(0.3613) = 0.0023 > 0$$
 &
$$f(0.3594) = -0.0026 > 0$$

$$\therefore \text{ Root lies between } 0.3613 & 0.3594$$

$$X_{9} = \frac{0.3613 + 0.3594}{2}$$

$$X_{9} = 0.3604$$

$$f(x_{9}) = f(0.3604) = 3(0.3604) + \sin(0.3604) - e^{0.3604}$$

$$= -0.0002 > 0$$

Result:

The approximation root of the equation $3x + \sin x - e^x = 0$ using bisection method is 0.3604 (after 10 iterations)

Coding:

```
clc;clear all;
\underline{\text{deff}}('y=f(x)','y=3*x+\sin(x)-\%e^{x'});
x1=input("Enter first approximation: ");
x2=<u>input</u>("Enter second approximation: ");
d=input("Enter accuracy : ");
while abs(x1-x2)>d
  m=(x1+x2)/2;
  printf('\t%f\t%f\t%f\n',x1,x2,m,f(m));
  if f(m)*f(x1)>0
    x1=m;
  else
    x2=m;
  end
  c=c+1;
printf('\nNumber of Iterations : %d\n\n',c);
printf('The solution of equation after %i iteration is %g',c,m);
```

```
Scilab 6.1.1 Console
File Edit Control Applications ?
Scilab 6.1.1 Consol
Enter first approximation: 0
Enter second approximation : 1
Enter accuracy : 0.0001
Succesive approximation by Bisection Method:
        xl
            x2 m
                                               f (m)
                                               0.330704
                   1.000000
0.500000
                                0.500000
0.250000
      0.000000
      0.000000
                                                -0.286621
                   0.500000
                                 0.375000
                                               0.036281
      0.250000
      0.250000
                   0.375000
                                 0.312500
                                                -0.121899
                   0.375000
      0.312500
                                 0.343750
                                                -0.041956
                   0.375000
      0.343750
                                  0.359375
                                                -0.002620
      0.359375
                    0.375000
                                  0.367188
                                                0.016886
      0.359375
                   0.367188
                                 0.363281
                                               0.007147
      0.359375
                   0.363281
                                 0.361328
                                               0.002267
                                                -0.000175
                                 0.360352
      0.359375
                   0.361328
      0.360352
                    0.361328
                                  0.360840
                                                0.001046
                   0.360840
                                 0.360596
                                               0.000435
      0.360352
                   0.360596
                                0.360474
                                               0.000130
      0.360352
       0.360352
                   0.360474
                                 0.360413
                                               -0.000023
Number of Iterations: 15
The solution of equation after 15 iteration is 0.360413
-->
```

REGULAR FALSI METHOD

Objective:

Find the roots using Regular Falsi method

Input:

$$3x + \sin x - e^x = 0$$

Link:

http://sdcamzn.in/Images/DisclosureFile/CBNSTASSIGN1.pdf

Procedure/Methodology:

$$f(x) = 3(x) + \sin x - e^x$$

When x = 0

$$f(0) = -1 \text{ (-ve)}$$

When x = 1

$$f(1) = 1.1232 \text{ (+ve)}$$

Iteration 1:

Here
$$f(0) = -1 < 0$$
 &
$$f(1) = 1.1232 > 0$$

∴ Root lies between 0 & 1

Here
$$x_0=0$$
 & $x_1=1$

$$X_2 = \frac{x0.f(x1) - x1.f(x0)}{f(x_1) - f(x_0)}$$
$$= \frac{0(1.1232) - 1(-1)}{1.1232 - (-1)}$$

$$x_2 = 0.471$$

$$f(x_2) = f(0.471) = 3(0.417) + \sin(0.417) - e^{0.417}$$
$$= 0.2652 > 0$$

Iteration 2:

Here
$$f(0.471) = 0.2652 > 0$$
 &
$$f(0) = -1 < 0$$

∴ Root lies between 0.471 & 0

Here
$$x_0 = 0$$
 & $x_1 = 0.471$

$$x_3 = \frac{x_0.f(x_1) - x_1.f(x_0)}{f(x_1) - f(x_0)}$$

$$= \frac{0(0.2652) - 0.471(-1)}{0.2652 - (-1)}$$

$$x_3 = 0.3723$$

$$f(x_3) = f(0.3723) = 3(0.3723) + \sin(0.3723) - e^{0.3723}$$

$$= 0.0295 > 0$$

Iteration 3:

Here
$$f(0.3723) = 0.0295 > 0$$
 &
$$f(0) = -1 < 0$$

$$\therefore \text{ Root lies between } 0 \& 0.3723$$
Here $x_0=0$ & $x_1=0.3723$

$$x_4 = \frac{x_0.f(x_1) - x_1.f(x_0)}{f(x_1) - f(x_0)}$$

$$X_{4} = \frac{x_{0.1}(x_{1}) - x_{1.1}(x_{0})}{f(x_{1}) - f(x_{0})}$$

$$= \frac{0(0.0295) - 0.3723(1)}{0.0295 - (-1)}$$

$$X_{4} = 0.3616$$

$$f(x_4) = f(0.3616) = 3(0.3616) + \sin(0.3616) - e^{0.3616}$$
$$= 0.0029 > 0$$

Iteration 4:

Here
$$f(0.3616) = 0.0029 > 0$$
 & $f(0) = -1 < 0$

∴ Root lies between 0.3616 & 0

Here
$$x_0 = 0$$
 & $x_1 = 0.3616$

$$X_5 = \frac{\text{x0.f(x1)} - \text{x1.f(x0)}}{f(x_1) - f(x_0)}$$
$$= \frac{0(0.0029) - 0.3616(-1)}{0.0029 - (-1)}$$

$$x_5 = 0.3605$$

$$\begin{split} f(x_5) &= f\left(0.3605\right) = 3(0.3605) + sin\left(0.3605\right) - e^{0.3605} \\ &= 0.0003 > 0 \end{split}$$

Iteration 5:

Here
$$f(0.3605) = 0.0003 > 0$$
 &
$$f(0) = -1 < 0$$

$$\therefore \text{ Root lies between } 0.3605 \& 0$$
Here $x_0 = 0$ & $x_1 = 0.3605$

$$X_6 = \frac{x_0.f(x_1) - x_1.f(x_0)}{f(x_1) - f(x_0)}$$

$$= \frac{0(0.0003) - 0.3605(-1)}{0.0003 - (-1)}$$

$$X_6 = 0.3604$$

$$f(x_6) = f(0.3604) = 3(0.3604) + \sin(0.3604) - e^{0.3604}$$

$$= 0.0003 > 0$$

Iteration 6:

Here
$$f(0.3604) = 0.0003 > 0$$
 &
$$f(0) = -1 < 0$$

$$\therefore \text{ Root lies between } 0.3604 \& 0$$
Here $x_0 = 0$ & $x_1 = 0.3604$

$$X_7 = \frac{x_0.f(x_1) - x_1.f(x_0)}{f(x_1) - f(x_0)}$$

$$= \frac{0(0.0003) - 0.3604(-1)}{0.0003 - (-1)}$$

$$X_7 = 0.3604$$

$$f(x_6) = f(0.3604) = 3(0.3604) + \sin(0.3604) - e^{0.3604}$$

$$= 0.0003 > 0$$

Result:

The approximation root of the equation $3x + \sin x - e^x = 0$ using Regula falsi method is 3.604 (after 6 iterations)

Coding:

```
clc; clear all;
\frac{\text{deff}}{\text{deff}}(y=f(x)', y=3*x+\sin(x)-\%e^{x'});
a=input("Enter first approximation: ");
b=<u>input("Enter second approximation:");</u>
while(i < = 6)
  c=(a*f(b)-b*f(a))/(f(b)-f(a));
  printf('\t%f\t%f\t%f\t%f\n',a,b,c,f(c));
  if (f(a)*f(c)<0) then
    b=c;
  else
    a=c;
  end
  i=i+1;
end
//disp(i)
printf('\nNumber of Iterations : %d\n\n',i);
printf('The solution of equation after 7 iterations is \%g\n\,c);
```

```
Scilab 6.1.1 Console
File Edit Control Applications ?
Enter first approximation: 0
Enter second approximation: 1
Successive Approximation by Regula Falsi Method:
                    b
                                                  f(c)
      0.000000 1.000000 0.470990
0.000000 0.470990 0.372277
                                                 0.265159
                                                 0.029534
      0.000000
                   0.372277
                                  0.361598
                                                  0.002941
                                  0.360537
                    0.361598
                                                  0.000289
       0.000000
                     0.360537
                                   0.360433
                                                  0.000028
                              0.360423
      0.000000
                    0.360433
                                                 0.000003
Number of Iterations: 7
The solution of equation after 7 iterations is 0.360423
-->
```

NEWTON RAPHSON METHOD

Objective:

Find the roots using Newton Raphson method

Input:

$$3x + \sin(x) - e^x = 0$$

Procedure/Methodology:

$$f(x) = 3(x) + \sin(x) - e^x$$

$$f'(x) = 3 + \cos(x) - e^x$$

When x = 0

$$f(0) = -1$$
 (-ve)

When x = 1

$$f(1) = 1.1232 (+ve)$$

Here
$$f(0) = -1 < 0$$

$$f(1) = 0.839 > 0$$

∴Root lies between 0 & 1

$$x_0 = \frac{0+1}{2} = 0.5$$

$$X_{0}=0.5$$

Iteration 1:

$$f(x_0) = f(0.5) = 3(0.5) + \sin(0.5) - e^{0.5}$$

$$= 0.3307$$

$$f'(x_0) = f'(0.5) = 3(0.5) + \cos(0.5) - e^{0.5}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_1 = 0.5 - \frac{0.3307}{1.4}$$

$$X_1 = 0.3516$$

Iteration 2:

$$f(x_1) = f(0.3516) = 3(0.3516) + \sin(0.3516) - e^{0.3516}$$

$$= -0.0221$$

$$f'(x_1) = f'(0.3516) = 3 + \cos(0.3516) - e^{0.3516}$$

$$= 2.5174$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

$$x_2 = 0.3516 - \frac{(-0.0221)}{2.5174}$$

$$x_2 = 0.3604$$

Iteration 3:

$$f(x_2) = f(0.3604) = 3(0.3604) + \sin(0.3604) - e^{0.3604}$$

$$= 0$$

$$f'(x_2) = f'(0.3604) = 3 + \cos(0.3604) - e^{0.3604}$$

$$= 2.5019$$

$$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)}$$

$$x_3 = 0.3604 - \frac{0}{2.5019}$$

$$x_3 = 0.3604$$

Result:

The Approximation roots of the equation $3x + \sin x - e^x = 0$ using Newton Raphson method is 3.604 (after 3 iterations)

Coding:

```
Scilab 6.1.1 Console
File Edit Control Applications ?
Enter first approximation: 0
Enter second approximation : 1
Successive approximation by Newton Raphson Method:
      x
0.351626
0.360394
0.360422
             f(x)
                          fl(x)
                     -0.022073
                                   2.517436
                                  2.501863
                    -0.000068
                    -0.000000
                                  2.501814
                   0.000000
                                  2.501814
Number of Iterations :5
The Solution of Equation after 5 iteration is 0.360422
-->
```

GAUSS ELIMINATION METHOD

Objective:

Find the solution of system of linear equations using Gauss elimination method.

Input:

$$a + b + 3c - d = 4$$

 $3b - c + d = 2$
 $a + 2b - 2c + 5d = 0$
 $a + b - 5c + 2d = 3$

Link:

https://images.app.goo.gl/FxnGBUk3qCdoyhpw8

Procedure/Methodology:

$$a + b + 3c - d = 4$$

 $3b - c + d = 2$
 $a + 2b - 2c + 5d = 0$
 $a + b - 5c + 2d = 3$

Converting the equations into matrix form, AX=B

Augmented Matrix:

$$[A, B] = \begin{pmatrix} 1 & 1 & 3 & -1 & | & 4 \\ 0 & 3 & -1 & 4 & | & 2 \\ 1 & 2 & -2 & 5 & | & 0 \\ 1 & 1 & -5 & 2 & | & 3 \end{pmatrix}$$

$$R3 \leftarrow R3 - R1$$

$$= \left(\begin{array}{ccccccc} 1 & 1 & 3 & -1 & | & 4 \\ 0 & 3 & -1 & 4 & | & 2 \\ 0 & 1 & -5 & 6 & | & -4 \\ 1 & 1 & -5 & 2 & | & 3 \end{array}\right)$$

$$R4 \leftarrow R4 - R1$$

$$= \begin{pmatrix} 1 & 1 & 3 & -1 & | & 4 \\ 0 & 3 & -1 & 4 & | & 2 \\ 0 & 1 & -5 & 6 & | & -4 \\ 0 & 0 & -8 & 3 & | & -1 \end{pmatrix}$$

$$R3 \leftarrow R3 - 0.3333 \times R2$$

$$= \begin{pmatrix} 1 & 1 & 3 & -1 & | & 4 \\ 0 & 3 & -1 & 4 & | & 2 \\ 0 & 0 & -4.67 & 4.67 & | & -4.67 \\ 0 & 0 & -8 & 3 & | & -1 \end{pmatrix}$$

$$R4 \leftarrow R4 - 1.7143 \times R3$$

$$= \begin{pmatrix} 1 & 1 & 3 & -1 & | & 4 \\ 0 & 3 & -1 & 4 & | & 2 \\ 0 & 0 & -4.67 & 4.67 & | & -4.67 \\ 0 & 0 & 0 & -5 & | & 7 \end{pmatrix}$$

We get,

$$a + b + 3c - d = 4 \qquad \longrightarrow (1)$$

$$3b - c + 4d = 2 \qquad \rightarrow (2)$$

$$-4.67 c + 4.67 d = -4.67 \rightarrow (3)$$

$$-5d = 7$$
 $\rightarrow (4)$

Now use back substitution method,

From equation (4)

$$-5d = 7$$

 $d = -1.4$

In equation (3), Substitute the value of d,

$$-4.67 c + 4.67 d = -4.67$$

$$-4.67 c + 4.67 (-1.4) = -4.67$$

$$-4.67 c = 1.868$$

$$c = -0.4$$

In equation (2), Substitute the value of d & c,

$$3b - c + 4d = 2$$

$$3b - (-0.4) + 4(-1.4) = 2$$

$$3b - 5.2 = 2$$

$$b = 2.4$$

In equation (1), Substitute the value of b c & d,

$$a + b + 3c - d = 4$$

$$a + (2.4) + 3(-0.4) - (1.4) = 4$$

$$a + 2.6 = 4$$

$$a = 1.4$$

Result:

The solution of system of linear equation using Gauss Elimination Method is

$$a = 1.4$$
; $b = 2.4$; $c = -0.4$; $d = 1.4$

Coding:

```
\\elimination
C = [1,1,3,-1;0,3,-1,4;1,2,-2,5;1,1,-5,2];
b = [4,2,0,3]'
A = [C b];
n = size(A,1);
x = zeros(n,1);
for i=1:n-1
  for j=i+1:n
     m = A(j,i)/A(i,i)
     A(j,:) = A(j,:) - m*A(i,:)
  end
end
x(n) = A(n,n+1)/A(n,n)
for i=n-1:-1:1
  su = 0
  for j=i+1:n
     su = su + A(i,j)*x(j)
     x(i) = (A(i,n+1) - su)/A(i,i)
  end
end
```

```
      Scilab 6.1.0 Console

      File Edit Control Applications ?

      Scilab 6.1.0 Console

      --> X

      X =

      1.4

      2.4

      -0.4

      -1.4
```

GAUSS JORDON METHOD

Objective:

Find the solution of system of linear equations using Gauss Jordon Method.

Input:

$$a + b + 3c - d = 4$$

 $3b - c + d = 2$
 $a + 2b - 2c + 5d = 0$
 $a + b - 5c + 2d = 3$

Link:

https://images.app.goo.gl/FxnGBUk3qCdoyhpw8

Procedure/Methodology:

$$a + b + 3c - d = 4$$

 $3b - c + d = 2$
 $a + 2b - 2c + 5d = 0$
 $a + b - 5c + 2d = 3$

Converting the equations into matrix form, AX=B

Augmented Matrix:

$$[A, B] = \begin{pmatrix} 1 & 1 & 3 & -1 & | & 4 \\ 0 & 3 & -1 & 4 & | & 2 \\ 1 & 2 & -2 & 5 & | & 0 \\ 1 & 1 & -5 & 2 & | & 3 \end{pmatrix}$$

$$R3 \leftarrow R3 - R1$$

$$= \left(\begin{array}{cccccccc} 1 & 1 & 3 & -1 & | & 4 \\ 0 & 3 & -1 & 4 & | & 2 \\ 0 & 1 & -5 & 6 & | & -4 \\ 1 & 1 & -5 & 2 & | & 3 \end{array}\right)$$

$$R4 \leftarrow R4 - R1$$

$$= \begin{pmatrix} 1 & 1 & 3 & -1 & | & 4 \\ 0 & 3 & -1 & 4 & | & 2 \\ 0 & 1 & -5 & 6 & | & -4 \\ 0 & 0 & -8 & 3 & | & -1 \end{pmatrix}$$

$$R2 \leftarrow R2 \div 3$$

$$= \begin{pmatrix} 1 & 1 & 3 & -1 & 4 \\ 0 & 1 & -0.3333 & 1.3333 & 0.6667 \\ 0 & 1 & -5 & 6 & -4 \\ 0 & 0 & -8 & 3 & -1 \end{pmatrix}$$

$$R1 \leftarrow R1 - R2$$

$$= \begin{pmatrix} 1 & 0 & 3.3333 & -2.3333 & 3.3333 \\ 0 & 1 & -0.3333 & 1.3333 & 0.6667 \\ 0 & 1 & -5 & 6 & -4 \\ 0 & 0 & -8 & 3 & -1 \end{pmatrix}$$

$$R3 \leftarrow R3 - R2$$

$$= \begin{pmatrix} 1 & 0 & 3.3333 & -2.3333 & 3.3333 \\ 0 & 1 & -0.3333 & 1.3333 & 0.6667 \\ 0 & 0 & -4.6667 & 4.6667 & -4.6667 \\ 0 & 0 & -8 & 3 & -1 \end{pmatrix}$$

$$R3 \leftarrow R3 \times -0.2143$$

$$= \begin{pmatrix} 1 & 0 & 3.3333 & -2.3333 & 3.3333 \\ 0 & 1 & -0.3333 & 1.3333 & 0.6667 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & -8 & 3 & -1 \end{pmatrix}$$

$$R1 \leftarrow R1 - 3.3333 \times R3$$

$$= \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & -0.3333 & 1.3333 & 0.6667 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & -8 & 3 & -1 \end{pmatrix}$$

$$R2 \leftarrow R2 + 0.3333 \times R3$$

$$= \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & -8 & 3 & -1 \end{pmatrix}$$

$$R4 \leftarrow R4 + 8 \times R3$$

$$= \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & -5 & 7 \end{pmatrix}$$

We Get,

$$a = 1.4$$
 $b = 2.4$
 $c = -0.4$
 $d = -1.4$

Result:

The solution of system of linear equation using Gauss Jordon Method is

$$a = 1.4$$
; $b = 2.4$; $c = -0.4$; $d = 1.4$

Coding:

```
//jordan
clc; clear all;
C = [1,1,3,-1;0,3,-1,4;1,2,-2,5;1,1,-5,2];
b = [4,2,0,3]'
A = [C b];
n = size(A,1);
x = zeros(n,1);
for i=1:n-1
  for j=i+1:n
     m = A(j,i)/A(i,i)
     A(j,:) = A(j,:) - m*A(i,:)
  end
end
for j=n:-1:2
  for i=j-1:-1:1
     m1=A(i,j)/A(j,j);
     A(i,:)=A(i,:)-m1*A(j,:);
  end
end
//x(1)=A(1,4)/A(1,1)
//x(2)=A(2,4)/A(2,2)
//x(3)=A(3,4)/A(3,3)
for i=1:n
  x(i)=A(i,n+1)/A(i,i);
end
```


GAUSS SEIDAL METHOD

Objective:

Find the solution of system of linear equations using Gauss Seidel Method.

Input:

$$a + b + 3c - d = 4$$

 $3b - c + d = 2$
 $a + 2b - 2c + 5d = 0$
 $a + b - 5c + 2d = 3$

Link:

https://images.app.goo.gl/FxnGBUk3qCdoyhpw8

Procedure/Methodology:

$$a + b + 3c - d = 4$$

 $3b - c + d = 2$
 $a + 2b - 2c + 5d = 0$
 $a + b - 5c + 2d = 3$

Converting the equations into matrix form, AX=B

Augmented Matrix:

$$[A, B] = \begin{pmatrix} 1 & 1 & 3 & -1 & | & 4 \\ 0 & 3 & -1 & 4 & | & 2 \\ 1 & 2 & -2 & 5 & | & 0 \\ 1 & 1 & -5 & 2 & | & 3 \end{pmatrix}$$

The coefficient matrix of the given system is not diagonally dominant.

Hence, we re-arrange the equations as follows, such that the elements in the coefficient matrix are diagonally dominant.

$$a + b + 3c - d = 4$$
 $0a + 3b - c + 4d = 2$
 $a + b - 5c + 2d = 3$
 $a + 2b - 2c + 5d = 0$

From the above equations

$$a_{k+1} = 1/1[4 - b_k - 3c_k + d_k]$$

$$b_{k+1} = 1/3[2 - 0a_{k+1} - c_k - 4d_k]$$

$$c_{k+1} = 1/(-5)[3 - a_{k+10} - b_{k+1} - 2d_k]$$

$$d_{k+1} = 1/5[0 - a_{k+1} - 2b_{k+1} + 2c_{k+1})]$$

Initial gauss (a, b, c, d) = (0,0,0,0)

1st Approximation:

$$a_1 = 1/1 [4-(0)-3(0)+(0)]$$
 = 1/1[4] = 4
 $b_1 = 1/3[2-0(4)+(0)-4(0)]$ = 1/3[2] = 0.6667
 $c_1 = 1/-5[3-(4)-(0.6667)-2(0)]$ =1/-5[-1.6667] = 0.3333
 $d_1 = 1/5[0-(4)-2(0.6667)+2(0.3333)]$ =1/5[-4.6667] = -0.9333

2nd Approximation

$$a_2 = 1/1 [4-(0.6667)-3(0.3333)+(-0.9333)]$$
 = 1/1[1.4] = 1.4
 $b_2 = 1/3 [2-0(1.4)+(0.3333)-4(-0.9333)]$ = 1/3[6.0667] = 2.0222
 $c_2 = 1/-5 [3-(1.4)-(2.0222)-2(-0.9333)]$ = 1/-5 [1.4444] = -0.2889
 $d_2 = 1/5 [0-(1.4)-2(2.0222)+2(-0.2889)]$ = 1/5 [-6.0222] = -1.2044

3rd Approximation

$$\begin{array}{lll} a_3 = 1/1 \ [4 - (2.0222) - 3(-0.2889) + (-1.2044)] & = 1/1 [1.64] & = 1.64 \\ b_3 = 1/3 \ [2 - 0(1.64) + (-0.2889) - 4(-1.2044)] & = 1/3 [6.5289] & = 2.1763 \\ c_3 = 1/-5 \ [3 - (1.64) - (2.1763) - 2(-1.2044)] & = 1/-5 [1.5926] & = -0.3185 \\ d_3 = 1/5 \ [0 - (1.64) - 2(2.1763) + 2(-0.3185)] & = 1/5 [-6.6296] & = -1.3259 \end{array}$$

4th Approximation

$$a_4 = 1/1 [4-(2.1763)-3(-0.3185)+(-1.3259)] = 1/1[1.4533] = 1.4533$$
 $b_4 = 1/3 [2-0(1.4533)+(-0.3185)-4(-1.3259)] = 1/3[6.9852] = 2.3284$ $c_4 = 1/-5 [3-(1.4533)-(2.3284)-2(-1.3259)] = 1/-5[1.8701] = -0.374$ $d_4 = 1/5 [0-(1.4533)-2(2.3284)+2(-0.374)] = 1/5[-6.8582] = -1.3716$

5th Approximation

$$a_4 = 1/1 [4-(2.3284)-3(-0.374)+(-1.3716)] = 1/1[1.422] = 1.422$$
 $b_4 = 1/3 [2-0(1.422)+(-0.374)-4(-1.3716)] = 1/3[7.1125] = 2.3708$
 $c_4 = 1/-5 [3-(1.422)-(2.3708)-2(-1.3716)] = 1/-5[1.9504] = -0.3901$
 $d_4 = 1/5 [0-(1.422)-2(2.3708)+2(-0.3901)] = 1/5[-6.9439] = -1.3888$

6th Approximation

$$a_4 = 1/1 [4-(2.3708)-3(-0.3901)+(-1.3888)] = 1/1[1.4106] = 1.4106$$
 $b_4 = 1/3 [2-0(1.4106)+(-0.3901)-4(-1.3888)] = 1/3[7.165] = 2.3883$
 $c_4 = 1/-5 [3-(1.4106)-(2.3883)-2(-1.3888)] = 1/-5[1.9786] = -0.3957$
 $d_4 = 1/5 [0-(1.4106)-2(2.3883)+2(-0.3957)] = 1/5[-6.9787] = -1.3957$

7th Approximation

$$a_4 = 1/1 [4-(2.3883)-3(-0.3957)+(-1.3957)] = 1/1[1.4031] = 1.4031$$
 $b_4 = 1/3 [2-0(1.4031)+(-0.3957)-4(-1.3957)] = 1/3[7.1873] = 2.3958$
 $c_4 = 1/-5 [3-(1.4031)-(2.3958)-2(-1.3957)] = 1/-5[1.9927] = -0.3985$
 $d_4 = 1/5 [0-(1.4031)-2(2.3958)+2(-0.3985)] = 1/5[-6.9916] = -1.3983$

8th Approximation

$$a_4 = 1/1 [4-(2.3958)-3(-0.3985)+(-1.3983)] = 1/1[1.4015] = 1.4015$$
 $b_4 = 1/3 [2-0(1.4015)+(-0.3985)-4(-1.3983)] = 1/3[7.1948] = 2.3983$
 $c_4 = 1/-5 [3-(1.4015)-(2.3983)-2(-1.3983)] = 1/-5[1.9969] = -0.3994$
 $d_4 = 1/5 [0-(1.4015)-2(2.3983)+2(-0.3994)] = 1/5[-6.9968] = -1.3994$

9th Approximation

$$a_4 = 1/1 [4-(2.3983)-3(-0.3994)+(-1.3994)] = 1/1[1.4005] = 1.4005$$
 $b_4 = 1/3 [2-0(1.4005)+(-0.3994)-4(-1.3994)] = 1/3[7.1981] = 2.3994$
 $c_4 = 1/-5 [3-(1.4005)-(2.3994)-2(-1.3994)] = 1/-5[1.9989] = -0.3998$
 $d_4 = 1/5 [0-(1.4005)-2(2.3994)+2(-0.3998)] = 1/5[-6.9988] = -1.3998$

10th Approximation

$$\begin{array}{lll} a_4 = 1/1 \ [4 - (2.3994) - 3(-0.3998) + (-1.3998)] & = 1/1 [1.4002] & = 1.4002 \\ b_4 = 1/3 \ [2 - 0(1.4002) + (-0.3998) - 4(-1.3998)] & = 1/3 [7.1992] & = 2.3997 \\ c_4 = 1/-5 \ [3 - (1.4002) - (2.3997) - 2(-1.3998)] & = 1/-5 [1.9995] & = -0.3999 \\ d_4 = 1/5 \ [0 - (1.4002) - 2(2.3997) + 2(-0.3999)] & = 1/5 [-6.9995] & = -1.3999 \end{array}$$

Solution by Gauss Seidel Method.

$$a = 1.4002$$
 $\cong 1.4$
 $b = 2.3997$ $\cong 2.4$
 $c = -0.3999$ $\cong -0.4$
 $d = -1.3999$ $\cong -1.4$

Iterations are tabulated as below

Iteration	a	b	c	d
1	4	0.6667	0.3333	-0.9333
2	1.4	2.0222	-0.2889	-1.2044
3	1.64	2.1763	-0.3185	-1.3259
4	1.4533	2.3284	-0.374	-1.3716
5	1.422	2.3708	-0.3901	-1.3888
6	1.4106	2.3883	-0.3957	-1.3957
7	1.4031	2.3958	-0.3985	-1.3983
8	1.4015	2.3983	-0.3994	-1.3994
9	1.4005	2.3994	-0.3998	-1.3998
10	1.4002	2.3997	-0.3999	-1.3999

Result:

The solution of system of linear equation using Gauss Seidel Method is

$$a = 1.4$$
; $b = 2.4$; $c = -0.4$; $d = 1.4$

Coding:

```
clc; clear all;
 funcprot(0);
 deff('a=f1(b,c,d)','a=(4-b-3*c+d)/1')
 deff('b=f2(a,c,d)','b=(2+c-4*d)/3')
 \underline{\text{deff}}(\text{'c=f3(a,b,d)','c=(3-a-b-2*d)/(-5)'})
 deff('d=f4(a,b,c)','d=(0-a-2*b+2*c)/(5)')
 n=10
 a0=0;b0=0;c0=0;d0=0;
 printf("Number of iterations : %g\n\n",n)
 for i=1:n
                        a0=f1(b0,c0,d0);
                      b0=f2(a0,c0,d0);
                      c0=f3(a0,b0,d0);
                      d0=f4(a0,b0,c0);
                      printf(\lambda(i)) = \%g \setminus (b(i)) =
end
```

```
Scilab 6.1.1 Console
File Edit Control Applications ?
Number of iterations: 10
       a(1) = 4
                      b(1) = 0.666667 c(1) = 0.333333 d(1) = -0.933333
        a(2) = 1.4
                       b(2) = 2.02222
                                       c(2)=-0.288889 d(2)=-1.20444
       a(3) = 1.64
                       b(3) = 2.1763
                                       c(3) = -0.318519 d(3) = -1.32593
       a(4) = 1.45333
                       b(4) = 2.3284
                                       c(4) = -0.374025 d(4) = -1.37163
       a(5) = 1.42204
                       b(5) = 2.37084
                                       c(5) = -0.390077 d(5) = -1.38877
       a(6) = 1.41062
                       b(6) = 2.38834
                                       c(6)=-0.395718 d(6)=-1.39575
        a(7) = 1.40307
                       b(7) = 2.39576
                                       c(7) = -0.398534 d(7) = -1.39833
                       b(8)= 2.39826
        a(8) = 1.40152
                                      c(8)=-0.399376 d(8)=-1.39936
       a(9) = 1.40051 b(9) = 2.39935
                                       c(9)=-0.399771 d(9)=-1.39975
        a(10) = 1.40021 b(10) = 2.39974 c(10) =-0.39991 d(10) =-1.3999
```

MODULE

NEWTON'S GREGORY FORWARD METHOD

Objective:

To find the solution for the given data by Interpolation using Newton's Gregory Forward Method

Input:

The Database of Milk Production (million tones) in Every Year

Year	Milk Production
1990	54
1991	56
1992	58
1993	61
1994	64
1995	66
1996	69
1997	72
1998	75
1999	78
2000	81

Link:

 $https://data.gov.in/sites/default/files/datafile/Animal_Husbandary_TABLE1_2012-13.csv$

Procedure/Methodology:

Newton's Forward Difference Table

X	Y	Δy	Δ^2 y	Δ^3 y	Δ^4 y	Δ^5 y	Δ^6 y	Δ^7 y	Δ^8 y	Δ^9 y	Δ^10 y
1990	54 <	*									
1991	56	2 _2	0 _	A 1							
1992	58		1	1	-2 _						
		3		-1		2 _					
1993	61		0		0		1				
		3		-1		3		-10_			
1994	64		-1		3		-9		2 9		
		2		2		-6		19		-63	A
1995	66		1		-3		10		-34		118
		3		-1		4		-15		55	
1996	69		0		1		-5		21		
		3		0		-1		6			
1997	72	_	0	_	0	_	1				
		3	_	0	_	0					
1998	75	_	0		0						
		3		0							
1999	78		0								
2000	0.1	3									
2000	81										

The value of x at you want to find the f(x): x = 1991.5

$$U = \frac{X - X0}{h}$$

$$= \frac{1991.5 - 1990}{1} = 1.5$$

Where

$$h = X_1 - X_0 = 1991-1990 = 1$$

Newton's Forward Difference Interpolation Formula:

$$Y(x) = Y_0 + \frac{u}{1!} \Delta Y_0 + \frac{u(u-1)}{2!} \Delta Y_0^2 + \frac{u(u-1)(u-2)}{3!} \Delta Y_0^3 + \cdots$$

 $Y\ (1991.5) = 54 + 3 + 0 - 0.0625 - 0.0469 - 0.0234 + 0.0068 + 0.0439 + 0.0876 + 0.1375 + 0.1931$

$$Y(1991.5) = 57.3362$$

Result:

The solution of Newton's Gregory Forward Interpolation Method Y(1991.5) = 57.3362

Coding:

```
clc; clear all;
funcprot(0);
x=[1990:2000]
y=[54 56 58 61 64 66 69 72 75 78 81]
xg = \underline{input} ("Enter the x value to find f(x):")
n=length(x)
h=x(2)-x(1)
u=(xg-x(1))/h
disp('Forward difference table:')
disp(x)
disp(y)
for i=1:n-1
  disp(\underline{diff}(y,i))
end
yg=y(1)
p=u
for i=1:n-1
  d = \underline{diff}(y,i)
  yg=yg+p*d(1)
  p=p*((u-i)/(i+1))
disp('Value of f(1991.5):', yg)
```

```
Scilab 6.1.1 Console
File Edit Control Applications ?
Scilab 6.1.1 Console
Enter the x value to find f(x):1991.5
  "Forward difference table:"
          1991.
                 1992.
                         1993.
                                1994.
                                               1996.
                                                     1997.
                                                             1998.
                                                                     1999.
                                                                            2000.
                                        1995.
        56.
                   61.
                              66.
                                         72.
                                               75.
                                                    78.
             58.
                         64.
                                    69.
                         з.
                              3.
                                   3.
                         ο.
               4. -1.
          10. -5.
       19. -15.
  29. -34.
            21.
  -63.
       55.
  "Value of f(1991.5):"
  57.336159
```

NEWTON'S GREGORY BACKWARD METHOD

Objective:

To find the solution for the given data by Interpolation using Newton's Gregory Backward Method

Input:

The Database of Milk Production (million tons) in Every Year

Year	Milk Production
1990	54
1991	56
1992	58
1993	61
1994	64
1995	66
1996	69
1997	72
1998	75
1999	78
2000	81

Link:

 $https://data.gov.in/sites/default/files/datafile/Animal_Husbandary_TABLE1_2012-13.csv$

Procedure/Methodology:

Newton's Backward Difference Table

X	Y	Δy	Δ^2 y	Δ^3 y	Δ^4 y	Δ^5 y	Δ^6 y	Δ^7 y	Δ^8 y	Δ^9 y	Δ^10 y
1990	54										
		2									
1991	56		0								
		2		1	_						
1992	58	2	1		-2	2					
1002	<i>C</i> 1	3	0	-1	0	2	1				
1993	61	3	0	-1	0	3	1	-10			
1994	64	3	-1	-1	3	3	-9	-10	29		
1774	04	2	-1	2	3	-6	-)	19	2)	-63	
1995	66	_	1	_	-3	Ü	10	17	-34	02	— 118
		3		-1		4		-15		→ 55	
1996	69		0		1		-5	_	→ 21		
		3		0		-1		→ 6			
1997	72		0		0		7 1				
		3	_	0		v 0					
1998	75	2	0		V 0						
1000	70	3		• 0							
1999	78	_ 3 _	v 0								
2000	81	→ 3									

The value of x at you want to find the f(x): x = 1998.5

$$U = \frac{X - X0}{h}$$

$$= \frac{1998.5 - 2000}{1} = -1.5$$

Where

$$h = X_1 - X_0 = 1991-1990 = 1$$

Newton's Forward Difference Interpolation Formula:

$$Y(x) = Yo + \frac{u}{1!} \nabla Yo + \frac{u(u+1)}{2!} \nabla Y^2o + \frac{u(u+1)(u+2)}{3!} \nabla Y^3o + \cdots$$

$$Y(1998.5) = 81-4.5+0+0+0+0+0.0068+0.0264+0.0634+0.12+0.1931$$

$$Y(1998.5) = 76.9098$$

Result:

The solution of Newton's Gregory Backward Interpolation Method Y (1998.5) = 76.9098

Output:

```
clc; clear all;
funcprot(0);
x=[1990:2000]
y=[54 56 58 61 64 66 69 72 75 78 81]
xg = \underline{input}("Enter the x value to find f(x):")
n=length(x)
h=x(2)-x(1)
u=(xg-x(n))/h
disp('Backward difference table:')
disp(x)
disp(y)
for i=1:n-1
  disp(\underline{diff}(y,i))
end
yg=y(n)
p=u
for i=1:n-1
  d = \underline{diff}(y,i)
  yg=yg+p*d(n-i)
  p=p*((u+i)/(i+1))
disp('Value of f(x):', yg)
```

Coding:

```
File Edit Control Applications ?

    □ | ¾ □ □ | ▷ | □ | □ | □ | ※ | ● ●
Enter the x value to find f(x):1998.5
 "Backward difference table:"
         1991.
                1992.
                        1993.
                              1994.
                                      1995.
                                             1996. 1997. 1998. 1999. 2000.
                 61.
                       64.
                             66. 69. 72. 75. 78. 81.
                        3.
          3. -3.
                   1. 0.
      3. -6. 4. -1. 0.
          10. -5. 1.
  29. -34.
 -63.
       55.
  118.
 "Value of f(x):"
  76.909767
```

NEWTON'S DIVIDED DIFFERENCE METHOD

Objective:

To find the solution for the given data by Interpolation using Newton's Divided Difference Method

Input:

The Database of Milk Production (million tons) in Every Year

Year	Milk Production
1990	54
1991	56
1993	61
1994	64
1997	72
1999	78
2000	81
2002	86
2003	88
2006	103
2009	116

Link:

 $https://data.gov.in/sites/default/files/datafile/Animal_Husbandary_TABLE1_2012-13.csv$

Procedure/Methodology:

Newton's Divided Difference Table

X	Y	1st order	2nd order	3rd order	4th order	5th order	6th order	7th order
1990	54							
		2						
1991	56		0.1667					
		2.5		0				
1993	61		0.1667		-0.006			
		3		-0.0417		0.0016		
1994	64		-0.0833		0.0083		-0.0003	
		2.6667		0.025		-0.0015		0
1997	72		0.0667		-0.0052		0.0002	
		3		-0.0111		0.0003		0
1999	78		0		-0.0028		0	
		3		-0.0333		0.0009		0
2000	81		-0.1667		0.0056		0	
		2.5		0		0.0018		0
2002	86		-0.1667		0.0218		-0.0006	
		2		0.1528		-0.0052		
2003	88		0.75		-0.0306			
		5		-0.123				
2006	103		-0.1111					
		4.3333	15					
2009	116							

The value of x at you want to find the f(x):x=1995

Newton's divided difference interpolation formula is

$$f(x) = y0 + (x-x0) f[x0,x1] + (x-x0)(x-x1) f[x0,x1,x2] + (x-x0)(x-x1)(x-x2) f[x0,x1,x2,x3] + \dots$$

$$Y(1995) = 54+10+3.334+0-0.24-0.128-0.096+0$$

$$Y(1995) = 66.87$$

Result:

The solution of Newton's Divided Difference Interpolation Method Y (1995) = 66.87

Coding:

```
clc; clear all;
n = \underline{input}('Enter n for n+1 nodes,n:');
x = zeros(1,n+1);
y = zeros(n+1,n+1);
for i = 0:n
printf('Enter x(%d) and f(x(%d))) on separate lines: h', h', h', h', h', h'
x(i+1) = \underline{input}(' ');
y(i+1,1) = \underline{input}(' ');
end
x0 = input('Now enter a point at which to evaluate the polynomial, x = ')
n = size(x,1);
if(n==1)
n = size(x,2);
end
for i = 1:n
D(i,1) = y(i);
end
for i = 2:n
for j = 2:i
D(i,j)=(D(i,j-1)-D(i-1,j-1))/(x(i)-x(i-j+1));
end
end
fx0 = D(n,n);
for i = n-1:-1:1
fx0 = fx0*(x0-x(i)) + D(i,i);
printf('Newtons iterated value: %.4f \n', fx0)
```

```
Scilab 6.1.1 Console
File Edit Control Applications ?
Enter n for n+1 nodes,n:10
Enter x(0) and f(x(0)) on separate lines:
54
Enter x(1) and f(x(1)) on separate lines:
1991
 56
Enter x(2) and f(x(2)) on separate lines:
Enter x(3) and f(x(3)) on separate lines:
1994
Enter x(4) and f(x(4)) on separate lines:
Enter x(5) and f(x(5)) on separate lines:
1999
78
Enter x(6) and f(x(6)) on separate lines:
81
Enter x(7) and f(x(7)) on separate lines:
2002
86
Enter x(8) and f(x(8)) on separate lines:
2003
88
Enter x(9) and f(x(9)) on separate lines:
2006
103
Enter x(10) and f(x(10)) on separate lines:
2009
116
Now enter a point at which to evaluate the polynomial, x = 1995
Newtons iterated value: 66.7200
```

LAGRANGE'S INTERPOLATION METHOD

Objective:

To find the solution for the given data by Lagrange's Interpolation Method

Input:

The Database of Milk Production (million tons) in Every Year

Year	Milk Production
1990	54
1991	56
1993	61
1994	64
1997	72
1999	78
2000	81
2002	86
2003	88
2006	103
2009	116

Link:

 $https://data.gov.in/sites/default/files/datafile/Animal_Husbandary_TABLE1_2012-13.csv$

Procedure/Methodology:

The value of table for x and y

X	1990	1991	1993	1994	1997	1999	2000	2002	2003	2006	2009
y	54	56	61	64	72	78	81	86	88	103	116

The value of x at you want to find f(x): x = 1995

Lagrange's Interpolation formula is f(x)

$$\frac{(x-x_1)(x-x_2)(x-x_3)...(x-x_{11})}{(x_0-x_1)(x_0-x_2)(x_0-x_3)...(x_0-x_{11})} + \frac{(x-x_0)(x-x_2)(x-x_3)...(x-x_{11})}{(x_1-x_1)(x_1-x_2)(x_1-x_3)....(x_1-x_{11})}....$$

$$+ \frac{(x-x_1)(x-x_2)(x-x_3)....(x-x_{10})}{(x_{11}-x_1)(x_{11}-x_2)(x_{11}-x_3)....(x_{11}-x_{10})}$$

$$Y(1995) = (-0.0077) \times 54 + 0.0373 \times 56 + (-0.3656) \times 61 + 0.9858 \times 64 + 0.7042 \times 72 + (-0.9506) \times 78 + 0.7511 \times 81 + (-0.2469) \times 86 + 0.0948 \times 88 + (-0.0025) \times 103 + 0.0001 \times 116$$

Result:

The solution of Lagrange's Interpolation Method Y (1995) = 66.72

```
clc; clear all;
funcprot(0);
X=[1990 1991 1993 1994 1997 1999 2000 2002 2003 2006 2009]
Y=[54 56 61 64 72 78 81 86 88 103 116]
x = \underline{input} ("Enter the x value to find f(x):")
n=length(X);
L=0;
for i=1:n
  N=1;D=1;
  for j=1:n
     if(i==i)
       continue;
     else
       N=N*(x-X(j));
       D=D*(X(i)-X(j));
     end
  end
  L=L+(N/D)*Y(i);
printf("f(\% f) = \% f",x,L);
```

```
Scilab 6.1.1 Console

File Edit Control Applications ?

Scilab 6.1.1 Console

Enter the x value to find f(x):1995

f(1995.000000) = 66.719984

-->
```

MODULE

3

NEWTON'S FORWARD METHOD

Objective:

To find the solution for the given data by Interpolation using Newton's Forward Method

Input:

The Database of Milk Production (million tones) in Every Year

Year	Milk Production
1990	54
1991	56
1992	58
1993	61
1994	64
1995	66
1996	69
1997	72
1998	75
1999	78
2000	81

Link:

 $https://data.gov.in/sites/default/files/datafile/Animal_Husbandary_TABLE1_2012-13.csv$

Procedure/Methodology:

Newton's Forward Difference Table

X	Y	Δy	$\Delta^2 y$	Δ^3 y	Δ^4 y	Δ^5 y	Δ^6 y	$\Delta^7 y$	$\Delta^8 y$	$\Delta^9 y$	Δ ¹⁰ y
1990	54 <	1									
1991	56	2 \ 2	0 _	1							
1992	58	2	1	1	-2 _						
		3		-1		2 _					
1993	61		0		0		1 _	•			
		3		-1	_	3		-10			
1994	64	2	-1	2	3		-9	10	29_	A 60	
1005		2	1	2	2	-6	10	19	2.4	-63	110
1995	66	3	1	-1	-3	4	10	-15	-34	55	118
1996	69	3	0	-1	1	4	-5	-13	21	33	
1770	0)	3	O	0	1	-1	3	6	21		
1997	72		0		0		1				
		3		0		0					
1998	75		0		0						
		3		0							
1999	78		0								
		3									
2000	81										

The value of x at you want to find the f(x): x = 1991.5

$$t = \frac{X - X0}{h}$$

$$= \frac{1991.5 - 1990}{1} = 1.5$$

Where

$$h = X_1 - X_0 = 1991-1990 = 1$$

Newton's Forward Difference Interpolation Formula:

$$\left(\frac{dy}{dx}\right)_{X=X_0} = \frac{1}{h} \left(\Delta Y_0 + \frac{2t-1}{2!} \Delta^2 Y_0 + \frac{3t^2 - 6t + 2}{3!} \Delta^3 Y_0 + \frac{4t^3 - 18t^2 + 22t - 6}{4!} \Delta^4 Y_0 \right)$$

$$\frac{dy}{dx}\Big|_{X=1991.5} = \frac{1}{1} \left(2 + \frac{2}{2} \times 0 + \frac{-0.25}{6} \times 1 + \frac{0}{24} \times -2 \right)$$

$$\left(\frac{dy}{dx}\right)_{X=1991.5} = 1.9583$$

$$\left(\frac{d^2 y}{dx^2}\right)_{X=Xo} = \frac{1}{h^2} \Delta^2 Yo + (t-1)\Delta^3 Yo + \frac{12t^2 - 36t + 22}{24} \Delta^4 Yo$$

$$\left(\frac{d^2 y}{dx^2}\right)_{X=1991.5} = \frac{1}{1} \left(0 + 0.5 \times 1 + \frac{5}{24} \times - 2\right)$$

$$\left(\frac{d^2 y}{dx^2}\right)_{X=1991.5} = 0.9167$$

Result:

The solution of Newton's Forward Method is f'(1991.5), Velocity = 1.9583 and f''(1991.5), Acceleration = 0.9167

Coding:

```
clc;
clear all;
x=[1990:2000];
y=[54,56,58,61,64,66,69,72,75,78,81];
n=length(x);
xg=1991.5;
h=x(2)-x(1);
p = (xg - x(1)/h);
d=\% nan*ones(n,6);
d(:,1)=y';
for j=2:6
            for i=1:n-j+1
                       d(i,j)=d(i+1,j-1)-d(i,j-1);
           end
end
mprintf("%5s %6s %9s %8s %8s %7s",'x','y','dy','d2y','d3y','d4y','d5y')
disp([x',d])
dy = (1/h) * [(d(1,2) + ((2*p-1)/2)*d(1,3) + ((3*p^2 - 6*p+2)/6)*d(1,4) + ((4*p^3 - 18*p^2 + 22*p-1)/2)*d(1,3) + ((3*p^2 - 6*p+2)/6)*d(1,4) + ((4*p^3 - 18*p^2 + 22*p-1)/2)*d(1,3) + ((3*p^2 - 6*p+2)/6)*d(1,4) + ((4*p^3 - 18*p^2 - 6*p+2)/6)*d(1,4) + ((4*p^3 - 18*p^3 - 18*p^
6)/24)*d(1,5)
d2y = (1/h^2) * [(d(1,3) + (p-1)*d(1,4) + (12*p^2 - 36*p + 22)/24*d(1,5))]
printf("\n Velocity
  is % 4f n'',dy;
printf("\n Acceleration is \%4f \n\n",d2y);
```


NEWTON'S BACKWARD METHOD

Objective:

To find the solution for the given data by Interpolation using Newton's Backward Method

Input:

The Database of Milk Production (million tons) in Every Year

Year	Milk Production
1990	54
1991	56
1992	58
1993	61
1994	64
1995	66
1996	69
1997	72
1998	75
1999	78
2000	81

Link:

 $https://data.gov.in/sites/default/files/datafile/Animal_Husbandary_TABLE1_2012-13.csv$

Procedure/Methodology:

Newton's Backward Difference Table

X	Y	Δy	Δ^2 y	Δ^3 y	Δ^4 y	Δ^5 y	Δ^6 y	Δ^7 y	Δ^8 y	Δ^9 y	Δ^10 y
1990	54										
		2									
1991	56		0								
		2		1	_						
1992	58	2	1	1	-2	2					
1002	<i>c</i> 1	3	0	-1	0	2	1				
1993	61	3	0	-1	Ü	3	1	-10			
1994	64	3	-1	-1	3	3	-9	-10	29		
1771	01	2	1	2	3	-6		19	2)	-63	
1995	66	_	1	_	-3	O	10		-34	32	_ 118
		3		-1		4		-15		→ 55	
1996	69		0		1		-5		→ 21	,	
		3		0		-1		→ 6			
1997	72		0		0		→ 1				
1000		3		0	. /	~ 0					
1998	75	2	0		~ 0						
1999	78	3		• 0							
1999	/8	_ 3 -	v 0								
2000	81	* 3									

The value of x at you want to find the f(x): x = 1998.5

$$t = \frac{X - X0}{h}$$

$$= \frac{1998.5 - 2000}{1} = -1.5$$

Where

$$h = X_1 - X_0 = 1991-1990 = 1$$

Newton's Backward Difference Interpolation Formula:

$$\left(\frac{dy}{dx}\right)_{X=Xn} = \frac{1}{h} \left(\nabla Y n + \frac{2t+1}{2!} \nabla^2 Y o + \frac{3t^2+6t+2}{3!} \nabla^3 Y o + \frac{4t^3+18t^2+22t+6}{4!} \nabla^4 Y o \right)$$

$$\left(\frac{dy}{dx}\right)_{X=1998.5} = \frac{1}{1} \left(3 + \frac{-2}{2} \times 0 + \frac{-0.25}{6} \times 1 + \frac{0}{24} \times 0\right)$$

$$\left(\frac{dy}{dx}\right)_{X=1998.5} = 3$$

$$\left(\frac{d^2y}{dx^2}\right)_{X=Xn} = \frac{1}{h^2} \left(\nabla^2 Y n + (t+1)\nabla^3 Y o + \frac{12t^2 + 36t + 22}{24}\nabla^4 Y o\right)
\left(\frac{d^2y}{dx^2}\right)_{X=1998.5} = \frac{1}{1} \left(0 + (-0.5)x + 0 + \frac{-5}{24}x + 0\right)
\left(\frac{d^2y}{dx^2}\right)_{X=1998.5} = 0$$

Result:

The solution of Newton's Forward Method is f '(1998.5), Velocity = 3 and f "(1991.5), Acceleration =0

Coding:

```
clc;
clear all;
x=[1990:2000];
y=[54,56,58,61,64,66,69,72,75,78,81];
n=length(x);
xg=1998.5;
h=x(2)-x(1);
p=(xg-x(n))/h;
d=\%nan*ones(n,6);
d(:,1)=y';
for j=2:6
            for i=1:n-j+1
                       d(i,j)=d(i+1,j-1)-d(i,j-1);
            end
end
mprintf("%5s %6s %9s %8s %8s %8s %7s",'x','y','dy','d2y','d3y','d4y','d5y')
disp([x',d])
dy = (1/h) * [(d(19) + ((2*p+1)/2)*d(28) + ((3*p^2 + 6*p+2)/6)*d(37) + ((4*p^3 + 18*p^2 + 22*p+6)/2)*d(37) + ((4*p^3 + 18*p^2 + 22*p^2 + 22
24)*d(46))]
d2y=(1/h^2)*[(d(28)+(p-1)*d(39)+(12*p^2+36*p+22)/24*d(46))]
printf("\n Velocity is % 4f \n\n",dy);
printf("\n Acceleration is \%4f \n\n",d2y);
```


TRAPEZOIDAL METHOD

Objective:

To integrate the given function using Trapezoidal Method.

Input:

$$\int_{-2}^{5} \sqrt{x^2 + 1} \, \mathrm{d}x$$

Link:

https://viva differences.com/difference-between-trapezoidal-rule-and-simpsons-rule-in-surveying/

Procedure/Methodology:

$$f(x) = \sqrt{x^2 + 1}$$
Where, $a = -2$, $b = 5$ and $n = 6$

$$h = \frac{b - a}{n} = 1.1667$$

The value of table for x and y

X	-2	-0.8333	0.3333	1.5	2.6667	3.8333	5
y	2.2361	1.3017	1.0541	1.8028	2.848	3.9616	5.099

Using Trapezoidal Rule,

$$\int y \, dx = h/2 [y0 + y6 + 2 (y1 + y2 + y3 + y4 + y5)]$$

$$\int y \, dx = 1.1667 / 2 [2.2361 + 5.099 + 2 \times (1.3017 + 1.0541 + 1.8028 + 2.848 + 3.9616)]$$

$$\int y \, dx = 1.1667 / 2 [2.2361 + 5.099 + 2 \times (10.9682)]$$

$$\int y \, dx = 17.075$$

Result:

The Solution for the given function by integration using Trapezoidal Rule is 17.075

Coding:

```
clc; clear all;
deff("y=f(x)","y=(x^2+1)^(1/2)")
a=input("Enter Lower Limit: ")
b=input("Enter upper Limit: ")
n=input("Enter No of sub intervals:")
h=(b-a)/n;
sum1=0;
for i=1:n-1
    x=a+i*h;
    sum1=sum1+f(x);
end
I=(h/2)*(f(a)+f(b)+2*sum1);
//disp(I);
printf("Trapezoidal Rule is %f",I)
```


SIMPSON'S $\frac{1}{3}$ th METHOD

Objective:

To integrate the given function using Simpon's $\frac{1}{3}$ th Method.

Input:

$$\int_{-2}^{5} \sqrt{x^2 + 1} \, dx$$

Link:

https://viva differences.com/difference-between-trapezoidal-rule-and-simpsons-rule-in-surveying/

Procedure/Methodology:

$$f(x) = \sqrt{x^2 + 1}$$

Where, $a = -2$, $b = 5$ and $n = 6$
 $h = \frac{b-a}{n} = 1.1667$

The value of table for x and y

X	-2	-0.8333	0.3333	1.5	2.6667	3.8333	5
y	2.2361	1.3017	1.0541	1.8028	2.848	3.9616	5.099

Using Simpsons 1/3 th Rule

$$\int y \, dx = h / 3[(y0 + y6) + 4 (y1 + y3 + y5) + 2 (y2 + y4)]$$

$$\int y \, dx = 1.1667 / 3[(2.2361 + 5.099) + 4 \times (1.3017 + 1.8028 + 3.9616) + 2 \times (1.0541 + 2.848)]$$

$$\int y \, dx = 1.1667 / 3[(2.2361 + 5.099) + 4 \times (7.0661) + 2 \times (3.9021)]$$

$$\int y \, dx = 16.8792$$

Result:

The Solution for the given function by integration using Simpon's $^{1}/_{3}$ th Rule is 16.8792

Coding:

```
clc;clear all;
deff("y=f(x)","y=(x^2+1)^(1/2)")
a=input("Enter Lower Limit : ")
b=input("Enter Upper Limit:")
n=input("Enter No of Sub Intervals: ")
h=(b-a)/n;
sum1=0;
for i=1:n-1
  x=a+i*h;
  if modulo(i,2)==0
    sum1=sum1+2*f(x);
  else
    sum1=sum1+4*f(x)
  end
end
I=(h/3)*(f(a)+f(b)+sum1);
//disp(I);
printf("Simpson 1/3th Rule is %f",I)
```


SIMPSON'S $^{3}/_{8}$ thMETHOD

Objective:

To integrate the given function using Simpon's $\frac{3}{8}$ th Method.

Input:

$$\int_{-2}^{5} \sqrt{x^2 + 1} \, dx$$

Link:

https://viva differences.com/difference-between-trapezoidal-rule-and-simpsons-rule-in-surveying/

Procedure/Methodology:

$$f(x) = \sqrt{x^2 + 1}$$
Where, $a = -2$, $b = 5$ and $n = 6$

$$h = \frac{b-a}{n} = 1.1667$$

The value of table for x and y

X	-2	-0.8333	0.3333	1.5	2.6667	3.8333	5
y	2.2361	1.3017	1.0541	1.8028	2.848	3.9616	5.099

Using Simpsons 3/8 th Rule

$$\int y \, dx = 3h / 8 [(y0 + y6) + 2 (y3) + 3 (y1 + y2 + y4 + y5)]$$

$$\int y \; dx = 3 \times 1.1667 \; / \; 8 [(2.2361 + 5.099) + 2 \times (1.8028) + 3 \times (1.3017 + 1.0541 + 2.848 + 3.9616)]$$

$$\int y \, dx = 3 \times 1.1667 / 8[(2.2361 + 5.099) + 2 \times (1.8028) + 3 \times (9.1654)]$$

$$\int y \, dx = 16.8161$$

Result:

The Solution for the given function by integration using Simpon's $\frac{3}{8}$ th Rule is 16.8161

Coding:

```
clc; clear all;
deff("y=f(x)", 'y=(x^2+1)^(1/2)')
a=input("Enter Lower Limit: ")
b=input("Enter upper Limit: ")
n=input("Enter No. of sub intervals: ")
h=(b-a)/n;
sum1=0;
for i=1:n-1
  x=a+i*h;
  if modulo(i,3)==0
     sum1=sum1+2*f(x);
  else
     sum1=sum1+3*f(x)
    end
end
I=(3*h/8)*(f(a)+f(b)+sum1);
//disp(I);
printf("Simpson"s 3/8 th Rule is %f",I)
```

```
Scilab 6.1.1 Console

File Edit Control Applications ?

Scilab 6.1.1 Console

Enter Lower Limit: -2

Enter upper Limit: 5

Enter No. of sub intervals: 6

Simpson's 3/8 th Rule is 16.816148

-->
```

MODULE

TAYLOR'S METHOD

Objective:

To find the solution for the given equation using Taylor Series Method.

Input:

$$y' = x^3 + 9x^2 - 10x + 2$$

Where y(x) = 0, with step length =1. To find Xn = 4

Link:

https://tutorial.math.lamar.edu/ProblemsNS/CalcII/TaylorSeries.aspx

Procedure/Methodology:

Given,
$$y' = x^3 + 9x^2 - 10x + 2$$
;
 $y(0) = 0, h=1, y(3) = ?$

Here
$$x_0 = 0$$
; $y_0 = 0$; $h = 1$; $x_n = 3$

Taylor's Series Formula:

$$y_n = y_{n-1} + hy'_{n-1} + \frac{h^2}{2!}y''_{n-1} + \frac{h^3}{3!}y'''_{n-1} + \cdots$$

Differentiating successively, we get Derivative steps

$$Y' = x^{3} + 9x^{2} - 10x + 2$$

$$Y'' = 3x^{2} + 18x - 10$$

$$Y''' = 6x + 18$$

$$Y'''' = 6$$

Taking (X_0, Y_0)

$$Y'_0 = x_0^3 + 9x_0^2 - 10x_0 + 2$$
 = 2
 $Y''_0 = 3x_0^2 + 18x_0 - 10$ = -10
 $Y'''_0 = 6x_0 + 18$ = 18
 $Y''''_0 = 6$ = 6

Putting the Values in Taylor series,

$$y_1 = y_0 + hy_0' + \frac{h^2}{2!}y_0'' + \frac{h^3}{3!}y_0''' + \frac{h^4}{4!}y_0''''$$

= 0 + 1(2) + 0.5(-10) + (-0.1667) (18) + (0.0417)(6)

$$= 0 + 2 - 5 + 3 - 0.25$$
$$= 0.25$$

$$Y(1) = 0.25$$

Taking (X_1, Y_1)

$$Y_1' = x_1^3 + 9x_1^2 - 10x_1 + 2$$
 = 2
 $Y_1'' = 3x_1^2 + 18x_1 - 10$ = 11
 $Y_1''' = 6x_1 + 18$ = 24
 $Y_1'''' = 6$ = 6

Putting the Values in Taylor series,

$$y_2 = y_1 + hy_1' + \frac{h^2}{2!}y_1'' + \frac{h^3}{3!}y_1''' + \frac{h^4}{4!}y_1''''$$

$$= 0.25 + 1(2) + 0.5(11) + (-0.1667)(24) + (0.0417)(6)$$

$$= 0.25 + 2 + 5.5 + 4 + 0.25$$

$$= 12$$

$$Y(2) = 12$$

Taking (X_2, Y_2)

$$Y'_2 = x_2^3 + 9x_2^2 - 10x_2 + 2$$
 = 26
 $Y''_2 = 3x_2^2 + 18x_2 - 10$ = 38
 $Y'''_2 = 6x_2 + 18$ = 30
 $Y''''_3 = 6$ = 6

Putting the Values in Taylor series,

$$y_3 = y_2 + hy_2' + \frac{h^2}{2!}y_2'' + \frac{h^3}{3!}y_2''' + \frac{h^4}{4!}y_2''''$$

$$= 12 + 1(26) + 0.5(38) + (-0.1667)(30) + (0.0417)(6)$$

$$= 12 + 26 + 19 + 5 + 0.25$$

$$= 12$$

$$Y(2) = 62.25$$

Result:

The Solution of Y(3) is 62.25 by using Taylor Series Method

Coding:

```
clc; clear all;
deff("z=f(x,y)","z=x^3+9*x^2-10*x+2")
deff("z1=f1(x,y)","z1=3*x^2+18*x-10")
deff("z2=f2(x,y)","z2=6*x+18")
deff("z3=f3(x,y)","z3=6")
x0=input("Enter the value of x0:")
y0=input("Enter the value of y0: ")
h=input("Enter value of h: ")
xn=input("Enter Final value of xn: ")
N=(xn-x0)/h
for i=1:N
y1=y0+h*f(x0,y0)+((h^2)/2)*f1(x0,y0)+((h^3)/6)*f2(x0,y0)+((h^4)/24)*f3(x0,y0)
x0=x0+h
disp([x0 y1])
y0=y1
end
halt(".")
```

```
Scilab 6.1.1 Console

File Edit Control Applications ?

Scilab 6.1.1 Console

Enter the value of x0:0

Enter the value of y0: 1

Enter value of h: 1

Enter Final value of xn: 3

1. 1.25

2. 13.

3. 63.25
.-->
```

EULER METHOD

Objective:

To find the solution for the given equation using Euler Method.

Input:

$$y' = x^3 + 9x^2 - 10x + 2$$

Where y(x) = 0, with step length = 1. To find Xn = 4

Link:

https://tutorial.math.lamar.edu/ProblemsNS/CalcII/TaylorSeries.aspx

Procedure/Methodology:

Given,
$$y' = x^3 + 9x^2 - 10x + 2$$
;
 $y(0) = 0, h=1, y(3) = ?$

Here
$$x_0 = 0$$
; $y_0 = 0$; $h = 1$; $x_n = 3$

Euler Formula:

$$y_n = y_{n-1} + h f(x_{n-1}, y_{n-1})$$

Taking (X_0, Y_0)

$$y_1 = y_0 + h f(x_0, y_0)$$

= 0 + 1 f (0, 0)
= 0 + 1(2)
 $y_1 = 2$

Taking (X_1, Y_1)

$$y_2 = y_1 + h f(x_1, y_1)$$

= 2 + 1 f (1, 2)
= 2 + 1(2)

$$y_2 = 4$$

```
Taking (X_2, Y_2)

y_3 = y_2 + h f(x_2, y_2)

= 4 + 1 f(2, 4)

= 4 + 1(26)

y_3 = 30
```

Result:

The Solution of Y(3) is 30 by using Euler Method

Coding:

```
clc; clear all;
function ydot = \underline{f}(x, y)
   ydot = x^3 + 9 x^2 - 10 x + 2
endfunction
x0=input("Enter initial value of x0: ")
y0=input("Enter the value of y0: ")
h=input("Enter value of h: ")
xn=input("Enter Final value of xn: ")
N=(xn-x0)/h
function [x, y] = \underline{\text{euler}}(f, x0, y0, h, N)
   \mathbf{x} = zeros(\mathbf{N} + 1, 1)
   y=zeros(N+1,1)
   x(1)=x0
   y(1)=y0
   for j=1:N
       \mathbf{x}(j+1)=\mathbf{x}(j)+\mathbf{h}
       \mathbf{y}(\mathbf{j}+1)=\mathbf{y}(\mathbf{j})+\mathbf{h}*\underline{\mathbf{f}}(\mathbf{x}(\mathbf{j}),\mathbf{y}(\mathbf{j}))
   end
endfunction
```


IMPROVED EULER METHOD

Objective:

To find the solution for the given equation using Improved Euler Method.

Input:

$$y' = x^3 + 9x^2 - 10x + 2$$

Where y(x) = 0, with step length =1. To find Xn = 4

Link:

https://tutorial.math.lamar.edu/ProblemsNS/CalcII/TaylorSeries.aspx

Procedure/Methodology:

Given,
$$y' = x^3 + 9x^2 - 10x + 2$$
;
 $y(0) = 0, h=1, y(3) = ?$

Here
$$x_0 = 0$$
; $y_0 = 0$; $h = 1$; $x_n = 3$

Improved Euler Formula:

$$y_{n+1} = y_n + \frac{1}{2}h \left[f(x_n, y_n) + f(x_n + h, y_n + h(x_n, y_n) \right]$$

Taking (X_0, Y_0)

$$f(x_0, y_0)$$

= $f(0,0) = 2$

$$f(x_0 + h, y_0 + h(x_0, y_0))$$

= $f(1.2) = 2$

$$y_1 = y_0 + \frac{1}{2}h [f(x_0, y_0) + f(x_0 + h, y_0 + h(x_0, y_0))]$$

= 0 + 0.5 [2 + f(1,2)]

$$= 0.5 [2 + 2]$$

$$y_1 = 2$$

Taking (X_1, Y_1)

$$f(x_1, y_1)$$

= $f(1,2) = 2$

$$f(x_1 + h, y_1 + h(x_1, y_1))$$

$$= f(2, 4) = 26$$

$$y_2 = y_1 + \frac{1}{2}h [f(x_1, y_1) + f(x_1 + h, y_1 + h(x_1, y_1))$$

$$= 2 + 0.5 [2 + 26]$$

$$y_2 = 16$$

$$Taking (X_2, Y_2)$$

$$= f(2, 16) = 26$$

$$f(x_1 + h, y_1 + h(x_1, y_1))$$

$$= f(3, 42) = 80$$

$$y_3 = y_2 + \frac{1}{2}h [f(x_2, y_2) + f(x_2 + h, y_2 + h(x_2, y_2))$$

$$= 16 + 0.5 [26 + 80]$$

$$y_3 = 69$$

Result:

The Solution of Y(3) is 69 by using Improved Euler Method

Coding:

```
clc; clear all; \underline{\text{deff}}(\text{'g=f(x,y)','g=x^3+9*x^2-10*x+2'}) x0 = \underline{\text{input}}(\text{"Enter initial value of x0: "}) y0 = \underline{\text{input}}(\text{"Enter the value of y0: "}) h = \underline{\text{input}}(\text{"Enter value of h: "}) xn = \underline{\text{input}}(\text{"Enter Final value of xn: "}) N=(xn-x0)/h \text{for i=1:N} y1 = y0 + (h/2)*(f(x0,y0) + f(x0+h,y0+h*f(x0,y0))) x0 = x0 + h \text{disp}([x0 \ y1]) y0 = y1 \text{end}
```


MODIFIED EULER METHOD

Objective:

To find the solution for the given equation using Modified Euler Method.

Input:

$$y' = x^3 + 9x^2 - 10x + 2$$

Where y(x) = 0, with step length =1. To find Xn = 4

Link:

https://tutorial.math.lamar.edu/ProblemsNS/CalcII/TaylorSeries.aspx

Procedure/Methodology:

Given,
$$y' = x^3 + 9x^2 - 10x + 2$$
;
 $y(0) = 0, h=1, y(3) = ?$

Here
$$x_0 = 0$$
; $y_0 = 0$; $h = 1$; $x_n = 3$

Modified Euler Formula:

$$y_{n+1} = y_n + h f \left(x_n + \frac{h}{2}, y_n + \frac{h}{2} f(x_n, y_n) \right)$$

Taking (X_0, Y_0)

$$x_0 + \frac{h}{2}$$

$$= 0 + 0.5 = 0.5$$

$$y_0 + \frac{h}{2} f(x_0, y_0)$$

$$= 0 + 0.5 (2) = 1$$

$$f(x_0 + \frac{h}{2}, y_0 + \frac{h}{2}f(x_0, y_0))$$

= $f(0.5.1) = -0.625$

$$y_1 = y_0 + h f \left(x_0 + \frac{h}{2}, y_0 + \frac{h}{2} f(x_0, y_0) \right)$$

$$= 0 + 1 (-0.625)$$

$$y_1 = -0.625$$

Taking
$$(X_1, Y_1)$$

 $x_1 + \frac{h}{2}$
 $= 1 + 0.5 = 1.5$
 $y_1 + \frac{h}{2} f(x_1, y_1)$
 $= -0.625 + 0.5 (1) = 0.375$
 $f(x_1 + \frac{h}{2}, y_1 + \frac{h}{2} f(x_1, y_1))$
 $= f(1.5, 0.375) = 10.625$
 $y_2 = y_1 + h f\left(x_1 + \frac{h}{2}, y_1 + \frac{h}{2} f(x_1, y_1)\right)$
 $= -0.625 + 1 (10.625)$
 $y_2 = 10$
Taking (X_2, Y_2)
 $x_2 + \frac{h}{2}$
 $= 2 + 0.5 = 2.5$
 $y_2 + \frac{h}{2} f(x_2, y_2)$
 $= 10 + 0.5 (26) = 23$
 $f(x_2 + \frac{h}{2}, y_2 + \frac{h}{2} f(x_2, y_2))$
 $= f(2.5, 23) = 48.875$
 $y_3 = y_2 + h f\left(x_2 + \frac{h}{2}, y_2 + \frac{h}{2} f(x_2, y_2)\right)$
 $= 10 + 1 (48.875)$
 $y_3 = 58.875$

Result:

The Solution of Y(3) is 58.875 by using Modified Euler Method

Coding:

```
clc; clear all; \frac{\text{deff}(\text{'g=f(x,y)','g=x^3+9*x^2-10*x+2'})}{\text{x0} = \frac{\text{input}(\text{"Enter initial value of x0: "})}{\text{y0} = \frac{\text{input}(\text{"Enter the value of y0: "})}{\text{h} = \frac{\text{input}(\text{"Enter value of h: "})}}{\text{xn} = \frac{\text{input}(\text{"Enter Final value of xn: "})}}{\text{N=(xn-x0)/h}} for i=1:N y1 = y0 + h*\underline{f}(x0 + (h/2), y0 + (h/2)*\underline{f}(x0, y0)) x0 = x0 + h disp([x0 y1]) y0 = y1 end
```

```
Scilab 6.1.1 Console

File Edit Control Applications?

Scilab 6.1.1 Console

Enter initial value of x0: 0

Enter the value of y0: 0

Enter value of h: 1

Enter Final value of xn: 3

1. -0.625

2. 10.

3. 58.875

-->
```

RUNGE KUTTA METHOD – 2^{nd} ORDER

Objective:

To find the solution for the given equation using Runge Kutta Method of Second Order.

Input:

$$y' = x^3 + 9x^2 - 10x + 2$$

Where y(x) = 0, with step length =1. To find Xn = 4

Link:

https://tutorial.math.lamar.edu/ProblemsNS/CalcII/TaylorSeries.aspx

Procedure/Methodology:

Given,
$$y' = x^3 + 9x^2 - 10x + 2$$
;

$$y(0) = 0, h=1, y(3) = ?$$

Here
$$x_0 = 0$$
; $y_0 = 0$; $h = 1$; $x_n = 3$

RK Formula (2nd Order):

$$k_1 = hf(x_n, y_n)$$

$$k_2 = hf(x_n + h, y_n + k_1)$$

$$y_{n+1} = y_n + \frac{k_1 + k_2}{2}$$

Taking (X_0, Y_0)

$$k_1 = hf(x_0, y_0)$$

$$= 1 f (0,0) = 1(2) = 2$$

$$k_2 = hf(x_0 + h, y_0 + k_1)$$

$$= 1 f (1, 2) = 1(2) = 2$$

$$y_1 = y_0 + \frac{k_1 + k_2}{2}$$

$$= 0 + 2$$

$$y_1 = 2$$

Taking
$$(X_1, Y_1)$$

 $k_1 = hf(x_1, y_1)$
 $= 1 \text{ f } (1,2) = 1(2) = 2$
 $k_2 = hf(x_1 + h, y_1 + k_1)$
 $= 1 \text{ f } (2,4) = 1(26) = 26$
 $y_2 = y_1 + \frac{k_1 + k_2}{2}$
 $= 2 + 14$
 $y_2 = 16$
Taking (X_2, Y_2)
 $k_1 = hf(x_1, y_1)$
 $= 1 \text{ f } (2,16) = 1(26) = 26$
 $k_2 = hf(x_2 + h, y_2 + k_1)$
 $= 1 \text{ f } (3,42) = 1(80) = 80$
 $y_3 = y_2 + \frac{k_1 + k_2}{2}$
 $= 16 + 53$
 $y_2 = 69$

Result:

The Solution of Y(3) is 69 by using Runge Kutta Method of Second Order

Coding:

```
clc;
clear all;
\underline{deff}('z=f(x,y)','z=x^3+9*x^2-10*x+2')
x0=<u>input("Enter Initial Value of x0:")</u>
y0 = \overline{\text{input}} ("Enter the value of y0:")
h=<u>input("Enter the value oh h:")</u>
xn=input("Enter Final Value of xn:")
n=(xn-x0)/h
for i=1:n
  k1=h*f(x0,y0)
  k2=h*f(x0+h,y0+k1)
  y1=y0+0.5*(k1+k2)
  x0=x0+h
  disp([x0 y1])
  y0=y1
end
```

```
Scilab 6.1.1 Console

File Edit Control Applications?

Scilab 6.1.1 Console

Enter Initial Value of x0:0

Enter the value of y0:0

Enter the value oh h:1

Enter Final Value of xn:3

1. 2.
2. 16.
3. 69.
```

RUNGE KUTTA METHOD – 3 rd ORDER

Objective:

To find the solution for the given equation using Runge Kutta Method of Third Order.

Input:

$$v' = x^3 + 9x^2 - 10x + 2$$

Where y(x) = 0, with step length =1. To find Xn = 4

Link:

https://tutorial.math.lamar.edu/ProblemsNS/CalcII/TaylorSeries.aspx

Procedure/Methodology:

Given,
$$y' = x^3 + 9x^2 - 10x + 2$$
;

$$y(0) = 0, h=1, y(3) = ?$$

Here
$$x_0 = 0$$
; $y_0 = 0$; $h = 1$; $x_n = 3$

RK Formula (3rd Order):

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf(x_{n} + h, y_{n} + 2k_{2} - k_{1})$$

$$y_{n+1} = y_{n} + \frac{1}{6} (k_{1} + 4k_{2} + k_{3})$$

Taking (X_0, Y_0)

$$k_1 = hf(x_0, y_0)$$

$$= 1 \text{ f } (0,0) = 1(2) = 2$$

$$k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$$

$$= 1 \text{ f } (0.5, 1) = 1(-0.625) = -0.625$$

$$k_3 = hf(x_n + h, y_n + 2k_2 - k_1)$$

= 1 f (1, -3.25) = 1(2) = 2

$$y_{1} = y_{0} + \frac{1}{6} (k_{1} + 4k_{2} + k_{3})$$

$$= 0 + 1/6 (2 + 4(-0.625) + 2)$$

$$y_{1} = 0.25$$

$$Taking (X_{1}, Y_{1})$$

$$k_{1} = hf(x_{1}, y_{1})$$

$$= 1 f (1, 0.25) = 1(2) = 2$$

$$k_{2} = hf \left(x_{0} + \frac{h}{2}, y_{0} + \frac{k_{1}}{2}\right)$$

$$= 1 f (1.5, 1.25) = 1(10.625) = 10.625$$

$$k_{3} = hf(x_{1} + h, y_{1} + 2k_{2} - k_{1})$$

$$= 1 f (2, 19.5) = 1(26) = 26$$

$$y_{2} = y_{1} + \frac{1}{6} (k_{1} + 4k_{2} + k_{3})$$

$$= 0.25 + 1/6 (2 + 4(10.625) + 26)$$

$$y_{2} = 12$$

$$Taking (X_{2}, Y_{2})$$

$$= 1 f (2, 12) = 1(26) = 26$$

$$k_{2} = hf \left(x_{2} + \frac{h}{2}, y_{2} + \frac{k_{1}}{2}\right)$$

$$= 1 f (2.5, 25) = 1(48.875) = 48.875$$

$$k_{3} = hf(x_{1} + h, y_{1} + 2k_{2} - k_{1})$$

$$= 1 f (3, 83.75) = 1(80) = 80$$

$$y_{3} = y_{2} + \frac{1}{6} (k_{1} + 4k_{2} + k_{3})$$

$$= 12 + 1/6 (26 + 4(48.875) + 80)$$

$$y_{3} = 62.25$$

Result:

The Solution of Y(3) is 62.25 by using Runge Kutta Method of Third Order

Coding:

```
clc;
clear all;
deff('z=f(x,y)','z=x^3+9*x^2-10*x+2')
x0=<u>input("Enter Initial Value of x0:")</u>
y0=<u>input("Enter the value of y0:")</u>
h=<u>input("Enter the value oh h:")</u>
xn=<u>input("Enter Final Value of xn:")</u>
n=(xn-x0)/h
for i=1:n
  k1=h*f(x0,y0)
  k2=h*f(x0+(h/2),y0+(k1/2))
  k3=h*f(x0+h,y0+2*k2-k1)
  y1=y0+(1/6)*(k1+4*k2+k3)
  x0=x0+h
  disp([x0 y1])
  y0=y1
end
halt()
```

```
Scilab 6.1.1 Console

File Edit Control Applications ?

Scilab 6.1.1 Console

Enter Initial Value of x0:0

Enter the value of y0:0

Enter the value oh h:1

Enter Final Value of xn:3

1. 0.25

2. 12.

3. 62.25

halt

-->
```

Exercise: 21 Date:

RUNGE KUTTA METHOD – 4 rd ORDER

Objective:

To find the solution for the given equation using Runge Kutta Method of Fourth Order.

Input:

$$y' = x^3 + 9x^2 - 10x + 2$$

Where y(x) = 0, with step length =1. To find Xn = 4

Link:

https://tutorial.math.lamar.edu/ProblemsNS/CalcII/TaylorSeries.aspx

Procedure/Methodology:

Given,
$$y' = x^3 + 9x^2 - 10x + 2$$
;
 $y(0) = 0, h=1, y(3) = ?$

Here
$$x_0 = 0$$
; $y_0 = 0$; $h = 1$; $x_n = 3$

RK Formula (3rd Order):

$$k_{1} = hf(x_{n}, y_{n})$$

$$k_{2} = hf\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{1}}{2}\right)$$

$$k_{3} = hf\left(x_{n} + \frac{h}{2}, y_{n} + \frac{k_{2}}{2}\right)$$

$$k_{4} = hf(x_{n} + h, y_{n} + k_{3})$$

$$y_{n+1} = y_{n} + \frac{1}{6}(k_{1} + 2k_{2} + 2k_{3} + k_{4})$$

Taking (X_0, Y_0)

$$k_1 = hf(x_0, y_0)$$

$$= 1 \text{ f } (0,0) = 1(2) = 2$$

$$k_2 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_1}{2}\right)$$

$$= 1 \text{ f } (0.5, 1) = 1(-0.625) = -0.625$$

$$k_3 = hf\left(x_0 + \frac{h}{2}, y_0 + \frac{k_2}{2}\right)$$

$$= 1 f (0.5, -0.3125) = 1(-0.625) = -0.625$$

$$k_4 = hf(x_0 + h, y_0 + k_3)$$

$$= 1 f (1, -0.625) = 1(2) = 2$$

$$y_1 = y_0 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 0 + 1/6 (2 + 2(-0.625) + 2(-0.625) + 2)$$

$$y_1 = 0.25$$
Taking (X_1, Y_1)

$$= 1 f (1, 0.25) = 1(2) = 2$$

$$k_2 = hf \left(x_1 + \frac{h}{2}, y_1 + \frac{k_1}{2}\right)$$

$$= 1 f (1.5, 1.25) = 1(10.625) = 10.625$$

$$k_3 = hf \left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right)$$

$$= 1 f (1.5, 5.5625) = 1(10.625) = 10.625$$

$$k_4 = hf(x_1 + h, y_1 + k_3)$$

$$= 1 f (2, 10.625) = 1(26) = 26$$

$$y_2 = y_1 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 0.25 + 1/6 (2 + 2(10.625) + 2(10.625) + 26)$$

$$y_2 = 26$$
Taking (X_2, Y_2)

$$= 1 f (2, 12) = 1(26) = 26$$

$$k_2 = hf \left(x_2 + \frac{h}{2}, y_2 + \frac{k_1}{2}\right)$$

$$= 1 f (2.5, 25) = 1(48.875) = 48.875$$

$$k_3 = hf \left(x_1 + \frac{h}{2}, y_1 + \frac{k_2}{2}\right)$$

$$= 1 f (2.5, 36.4375) = 1(48.875) = 48.875$$

$$k_4 = hf(x_0 + h, y_0 + k_3)$$

$$= 1 f (3,60.875) = 1(80) = 80$$

$$y_3 = y_2 + \frac{1}{6} (k_1 + 2k_2 + 2k_3 + k_4)$$

$$= 26 + 1/6 (26 + 2(48.875) + 2(48.875) + 80)$$

$$y_3 = 62.25$$

Result:

The Solution of Y(3) is 62.25 by using Runge Kutta Method of Fourth Order

Coding:

```
clc;
clear all;
deff('z=f(x,y)','z=x^3+9*x^2-10*x+2')
x0=<u>input</u>("Enter Initial Value of x0:")
y0=<u>input("Enter the value of y0:")</u>
h=input("Enter the value of h:")
xn=<u>input("Enter Final Value of xn:")</u>
n=(xn-x0)/h
for i=1:n
  k1=h*f(x0,y0)
  k2=h*f(x0+(h/2),y0+(k1/2))
  k3=h*f(x0+h,y0+(k2/2))
  k4=h*f(x0+h,y0+k3)
  y1=y0+(1/6)*(k1+2*k2+2*k3+k4)
  x0=x0+h
  disp([x0 y1])
  yo=y1
end
```


ADAMS BASH FORTH PREDICTOR CORRECTOR METHOD

Objective:

To find the solution for the given equation using Adams Bash forth Predictor Corrector Method

Input:

$$y' = x^2 + \frac{Y}{2}$$
; To find X = 1.4

X	1.0	1.1	1.2	1.3
Y	2.0	2.2156	2.4649	2.7514

Link:

Procedure/Methodology:

Adams Bash Forth Predictor Formula:

$$y_{n+1,P} = y_n + \frac{h}{24} [55y'_n - 59y'_{n-1} + 37y'_{n-2} - 9y'_{n-3}]$$

Adams Bash Forth Corrector Formula:

$$y_{n+1,C} = y_n + \frac{h}{24} [9y'_{n+1} + 19y'_n - 5y'_{n-1} - y'_{n-2}]$$

Given,
$$y' = x^2 + \frac{Y}{2}$$

When x = 1; y = 2

$$Y_0' = 1^2 + \frac{2}{2}$$
 =2

When x = 1.1; y = 2.2156

$$Y_1' = (1.1)^2 + \frac{2.2156}{2} = 2.3178$$

When x = 1.2; y = 2.4649

$$Y_2' = (1.2)^2 + \frac{2.4649}{2} = 2.6724$$

When
$$x = 1$$
; $y = 2$

$$Y_3' = (1.3)^2 + \frac{2.7514}{2} = 3.0657$$

Putting n = 3 in Adams Bash Forth Predictor Formula:

$$y_{1.4,P} = y_3 + \frac{h}{24} [55y_3' - 59y_2' + 37y_1' - 9y_0']$$

$$y_{1.4,P} = 2.7514 + 0.1/24 [55(3.0657) - 59(2.6724) + 37(2.3178) - 9(2)]$$

$$y_{1.4,P} = 2.7514 + 0.1/24 [78.6976]$$

$$y_{1.4,P} = 3.0793$$

When x = 1.4; y = 3.0793

$$Y_4' = (1.4)^2 + \frac{3.0793}{2} = 3.4997$$

Putting n = 3 in Adams Bash Forth Corrector Formula:

$$y_{1.4,C} = y_3 + \frac{h}{24} [9y_4' + 19y_3' - 5y_2' - y_1']$$

$$y_{1.4,C} = 2.7514 + 0.1/24 [9(3.4997) 19(3.0657) - 5(2.6724 + 12(2.3178))]$$

$$y_{1.4,C} = 2.7514 + 0.1/24 [78.7007]$$

$$y_{1.4,C} = 3.0793$$

Result:

The Solution of Y(1.4) is 3.0793 by using Adams Bash Forth Predictor and Corrector Method.

Coding:

```
//Adam's Method
clc; clear all;
disp("Adams Bashforth Predictor Corrector Method")
deff('g=f(x,y)','g=x^2+(y/2)')
x0=1; y0=2; xn=1.3; xf=1.4;
h=0.1;
N=(xn-x0)/h
function [x, y]=Adam(f, x0, y0, h, N)
x = zeros(N+1, 1)
y = zeros(N+1, 1)
x(1) = x0
y(1) = y0
for i=1:N
k1=h*f(x(i),y(i))
k2=h*f(x(i)+(h/2),y(i)+(k1/2))
```

```
k3=h*f(x(i)+(h/2),y(i)+(k2/2))
     k4=h*f(x(i)+h,y(i)+k3)
     y(i+1)=y(i)+(1/6)*(k1+2*k2+2*k3+k4)
     \mathbf{x}(\mathbf{i}+1) = \mathbf{x}(\mathbf{i}) + \mathbf{h}
  end
  yo = f(x(1), y(1))
  y1=f(x(2),y(2))
  y2=f(x(3),y(3))
  y3=f(x(4),y(4))
  p=y(4)+(h/24)*(55*y3-59*y2+37*y1-9*y0)
  printf("Predicted Value is %f",p)
  y4=\mathbf{f}(xf,p)
  printf("\nAt x= 0.4 and y = %f then y4 = %f",p,y4)
  c=y(4)+(h/24)*(9*y4+19*y3-5*y2+y1)
  printf("\nCorrector Value is %f",c)
  printf("\n\nBy Help of Using Runge-Kutta 4th Order\n")
  printf("\n\tx and y values\n")
endfunction
```

```
Scilab 6.1.0 Console
File Edit Control Applications ?
😰 🔓 | 🐰 🖫 📵 | 🌭 | 🖴 | 🖴 | 📽 😥
Scilab 6.1.0 Consol
  "Adams Bashforth Predictor Corrector Method"
--> [x, y]=Adam(f, x0, y0, h, N)
Predicted Value is 3.079274
At x = 0.4 and y = 3.079274 then y4 = 3.499637
Corrector Value is 3.079277
By Help of Using Runge-Kutta 4th Order
         x and y values
 x =
   1.
   1.1
   1.2
   1.3
 y =
   2.
   2.2155907
   2.4647857
   2.7513587
```

Date:

MILNE PREDICTOR CORRECTOR METHOD

Objective:

To find the solution for the given equation using Milne Predictor Corrector Method

Input:

$$y' = x^2 + \frac{Y}{2}$$
; To find X = 1.4

X	1.0	1.1	1.2	1.3
Y	2.0	2.2156	2.4649	2.7514

Link:

Procedure/Methodology:

Milne Predictor Formula:

$$y_{n+1,P} = y_{n-3} + \frac{4h}{24} [2y'_n - y'_{n-1} + 2y'_{n-2}]$$

Milne Forth Corrector Formula:

$$y_{n+1,C} = y_{n-1} + \frac{h}{3} [y'_{n-1} + 4y'_n + y'_{n+1}]$$

Given,
$$y' = x^2 + \frac{Y}{2}$$

When x = 1; y = 2

$$Y_0' = 1^2 + \frac{2}{2}$$
 =2

When x = 1.1; y = 2.2156

$$Y_1' = (1.1)^2 + \frac{2.2156}{2} = 2.3178$$

When x = 1.2; y = 2.4649

$$Y_2' = (1.2)^2 + \frac{2.4649}{2} = 2.6724$$

When x = 1; y = 2

$$Y_3' = (1.3)^2 + \frac{2.7514}{2} = 3.0657$$

Putting n = 3 in Adams Bash Forth Predictor Formula:

$$y_{1.4,P} = y_0 + \frac{4h}{24} [2y_1' - y_2' + 2y_3']$$

$$y_{1.4,P} = 2 + 4(0.1)/24 [2(2.3178) - 2.6724 + 2(3.0657)]$$

$$y_{1.4,P} = 2.7514 + 0.4/24 [8.0946]$$

$$y_{1.4,P} = 3.0793$$

When x = 1.4; y = 3.0793

$$Y_4' = (1.4)^2 + \frac{3.0793}{2} = 3.4997$$

Putting n = 3 in Adams Bash Forth Corrector Formula:

$$y_{1.4,C} = y_3 + \frac{h}{3} [y_2' + 4y_3' + y_4']$$

$$y_{1.4,C} = 24649 + 0.1/3 [2.6724 + 4(3.0657) + 3.4996]$$

$$y_{1.4,C} = 2.4649 + 0.1/3 [18.4349]$$

$$y_{1.4,C} = 3.0793$$

Result:

The Solution of Y(1.4) is 3.0793 by using Adams Bash Forth Predictor and Corrector Method.

Coding:

```
//Milne's Method
clc; clear all;
disp("Milne"s Predictor Corrector Method")
deff('g=f(x,y)', 'g=x^2+(y/2)')
x0=1; y0=2; xn=1.3; xf=1.4;
h=0.1;
N=(xn-x0)/h
function [x, y]=Milne(f, x0, y0, h, N)
   \mathbf{x} = \operatorname{zeros}(\mathbf{N}+1, 1)
   y = zeros(N+1,1)
   x(1) = x0
   \mathbf{y}(1) = \mathbf{y0}
   for i=1:N
      k1=\mathbf{h}*\mathbf{f}(\mathbf{x}(i),\mathbf{y}(i))
      k2=h*f(x(i)+(h/2),y(i)+(k1/2))
      k3=h*f(x(i)+(h/2),y(i)+(k2/2))
```

```
k4=h*f(x(i)+h,y(i)+k3)
     y(i+1)=y(i)+(1/6)*(k1+2*k2+2*k3+k4)
     \mathbf{x}(i+1) = \mathbf{x}(i) + \mathbf{h}
  end
  y1=f(x(2),y(2))
  y2=f(x(3),y(3))
  y3=f(x(4),y(4))
  p=y(1)+(4*h/3)*(2*y1-y2+2*y3)
  printf("Predicted Value is %f",p)
  y4=\mathbf{f}(xf,p)
  printf("\nAt x= 0.4 and y = %f then y4 = %f",p,y4)
  c=y(3)+(h/3)*(y2+4*y3+y4)
  printf("\nCorrector Value is %f",c)
  printf("\n\nBy Help of Using Runge-Kutta 4th Order\n")
  printf("\n\tx and y values\n")
endfunction
```

```
Scilab 6.1.0 Console
File Edit Control Applications ?
😰 🔓 | 🐰 🖫 📵 | 🌭 | 🖴 | 🖴 | 📽 😥
  "Milne's Predictor Corrector Method"
--> [x, y]=Milne(f, x0, y0, h, N)
Predicted Value is 3.079274
At x = 0.4 and y = 3.079274 then y4 = 3.499637
Corrector Value is 3.079277
By Help of Using Runge-Kutta 4th Order
        x and y values
 x =
   1.
   1.1
   1.2
   1.3
 y =
   2.
   2.2155907
   2.4647857
   2.7513587
-->
```

MODULE

LEIBMANN'S METHOD

Objective:

To find the solution for the given Partial Differential Equation using Liebman's Method.

Input:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

Boundary Value:

0, 1000, 2000, 1000, 0, 500, 1000, 500, 0, 1000, 2000, 1000, 0, 500, 1000, 500.

Procedure/Methodology:

Solve the Elliptic equation $u_{xx} + u_{yy} = 0$ for the following square mesh with boundary value as shown in figure.

Solution:

Let $u_1, u_2, u_3, ..., u_9$ be the value of u at the interior mesh – points sine the boundary value of u are symmetrical about x-axis

 $u_1 = u_7, u_3 = u_9, u_8 = u_2$

Also, Symmetrical about y – axis

 $u_1=u_3,\,u_4=u_6,\,u_9=u_7$

Now, find the value u_1 , u_2 , u_4 , u_5

Figure 26.1: Boundary value with 16 square mesh

Initial Iteration:

$$u_5^{(0)} = \frac{1}{4} [1000 + 1000 + 2000 + 2000] = 1500 (SFPF)$$
 $u_1^{(0)} = \frac{1}{4} [0 + 1500 + 2000 + 1000] = 1125 (DFPF)$
 $u_2^{(0)} = \frac{1}{4} [1125 + 1125 + 1500 + 1000] = 1188 (SFPF)$
 $u_4^{(0)} = \frac{1}{4} [2000 + 1500 + 1125 + 1125] = 1438 (SFPF)$

By Standard Five Point Formula

$$u_1^{(n+1)} = \frac{1}{4} [1000 + u_2^{(n)} + 500 + u_4^{(n)}]$$

$$u_2^{(n+1)} = \frac{1}{4} [u_1^{(n+1)} + u_1^{(n)} + 1000 + u_5^{(n)}]$$

$$u_4^{(n+1)} = \frac{1}{4} [2000 + u_5^{(n)} + u_1^{(n+1)} + u_1^{(n)}]$$

$$u_5^{(n+1)} = \frac{1}{4} [u_1^{(n+1)} + u_4^{(n)} + u_2^{(n+1)} + u_2^{(n)}]$$

Iteration 1:

$$u_1^{(1)} = \frac{1}{4} [1000 + 1188 + 500 + 1438] = 1032$$

$$u_2^{(1)} = \frac{1}{4} [1032 + 1125 + 1000 + 1500] = 1164$$

$$u_4^{(1)} = \frac{1}{4} [2000 + 1500 + 1032 + 1125] = 1414$$

$$u_5^{(1)} = \frac{1}{4} [1414 + 1438 + 1164 + 1188] = 1301$$

Iteration 2:

$$u_1^{(2)} = \frac{1}{4} [1000 + 1164 + 500 + 1414] = 1020$$

$$u_2^{(2)} = \frac{1}{4} [1020 + 1032 + 1000 + 1301] = 1088$$

$$u_4^{(2)} = \frac{1}{4} [2000 + 1301 + 10201032] = 1338$$

$$u_5^{(2)} = \frac{1}{4} [1338 + 1414 + 1088 + 1164] = 1251$$

Iteration	u_1	\mathbf{u}_2	u ₄	u ₅
3	982	1063	1313	1201
4	969	1038	1288	1176
5	957	1026	1276	1157
6	951	1016	1266	1146
7	946	1011	1260	1138
8	943	1007	1257	1134
9	941	1005	1255	1131
10	940	1003	1253	1129
11	939	1002	1252	1128
12	939	101	1251	1126

Coding:

```
clc;
clear all;
printf("Leibmann"s Method")
b = [0,1000,2000,1000,0,500,1000,500,0,1000,2000,1000,0,500,1000,500];
a=1/4;
printf("\nSymmetrical Problem")
printf("\nInitial Value (Iteration)")
u5=a*(b(3)+b(11)+b(7)+b(15))
u1=a*(b(1)+u5+b(3)+b(15))
u2=a*(2*u1+u5+b(15))
u4=a*(b(3)+u5+2*u1)
printf("\nDiagonal - Five Point Formul")
disp(u1, 'u1(0)')
printf("\nStandard - Five Point Formul")
disp(u2, 'u2(0)')
disp(u4, 'u4(0)')
disp(u5, 'u5(0)')
for i=1:11
  u11=a*(b(2)+u2+b(16)+u4)
  u21=a*(u11+u1+u5+b(15))
  u41=a*(b(3)+u5+u1+u11)
  u51=a*(u21+u2+u41+u4)
  u1=u11;u2=u21;u4=u41;u5=u51;
  printf(\tu1(\%i)=\%\ g\tu2(\%i)=\%\ g\tu4(\%i)=\%\ g\tu5(\%i)=\%\ g\tu5(\%i)=\%\ g\tu1,\tu2,\ti,u2,\ti,u4,\ti,u5)
end
printf('Solution of converges Laplace''s Equation to \n\t%g,%g,%g and %g',u1,u2,u4,u4)
```


POISSON'S METHOD

Objective:

To find the solution for the given Partial Differential Equation using Poisson's Method.

Input:

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 8x^2y^2$$

Boundary Value:

$$u(x, y) = 0$$

Procedure/Methodology:

Solve the Elliptic equation $u_{xx} + u_{yy} = 8x^2 y^2$ for the following square mesh with u(x, y) = 0 on the boundaries dividing the square into 16 sub – squares of length 1 unit (show in figure below)

Solution:

$$u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j-1} - 4 u_{i,j} = 8i^2 j^2$$

Here Boundary values are symmetrical about x-axis and y-axis

$$u_1 = u_3 = u_7 = u_9$$
 and

$$u_2=u_4=u_6=u_8$$

Now, find the value u₁, u₂, and u₅

Figure 27.1: Boundary value with 16 square mesh

At
$$u_3(i = 1, j=1)$$

$$u_{0,1} + u_{2,1} + u_{1,0} + u_{1,0} - 4u_{1,1} = 8$$

 $u_2 + 0 + 0 + u_2 - 4u_3 = 8$
 $2 u_2 - 4 u_1 = 8$ -----(1)

At $u_5(i = 0, j = 0)$

$$u_{-1,0} + u_{1,0} + u_{0,1} + u_{0,-1} - 4u_{0,0} = 0$$

 $u_4 + u_6 + u_8 + u_2 - 4u_5 = 0$
 $u_2 = u_5$ -----(2)

At $u_2(i = 0, j=1)$

$$u_{-1,1} + u_{1,1} + u_{0,2} + u_{0,0} - 4u_{0,1} = 0$$

 $u_1 + u_1 + 0 + u_5 - 4u_2 = 0$
 $2u_2 + u_5 = 4u_2$ -----(3)

From equation (2) and (3)

(2) x 2
$$\Rightarrow$$
 4u - 6u₂ = 0
(1) x 1 \Rightarrow -4u₁ + 2u₂ = 0
-4 u₂ = 8
u₂ = -2

Substitution in equation (1), We get

$$u_1 = -3$$

$$u_1 = u_3 = u_7 = u_9 = -3$$

$$u_2 = u_4 = u_6 = u_8 = u_5 = -2$$

Coding:

```
clc;
clear all;
disp("Poisson "s Equation Method")
deff("z=f(x,y)","z=8*x^2*y^2");
b = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
disp("At(1,1)")
printf("\t\n2*f2-4*f1=8\n")
disp("At(0,0)")
printf("\t\nf2-f5=0\n")
disp("At (0,1)")
printf("\t\n2*f1+f5-4f2=0\n")
A = [-4,2,0;0,1,-1;2,-4,1]
B = [8,0,0]
C = inv(A)*B';
mprintf(\n The Solution is \n f1 =%d \n f2 =%0f \n f3 = %0f \n',C(1),C(2),C(3))
printf('\t n f1=f3=f7=f9=\%d\n',C(1))
printf('\t\n f2=f4=f6=f8=\%0f = f5\n',C(3))
```

```
Scilab 6.1.1 Console
File Edit Control Applications ?
Scilab 6.1.1 Console
 "Poisson 's Equation Method"
  "At (1,1)"
2*f2-4*f1=8
  "At (0,0)"
f2-f5=0
  "At (0,1)"
2*f1+f5-4f2=0
The Solution is
fl =-3
f2 =-2.000000
f3 = -2.000000
f1=f3=f7=f9=-3
f2=f4=f6=f8=-2.0000000 = f5
-->
```

BENDER - SCHMIDT METHOD

Objective:

To find the solution for the given Partial Differential Equation using Bender - Schmidt Method.

Input:

$$\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$$

Boundary Conditions:

$$u(0, t) = u(4, t) = 0$$

$$u(x, 0) = x(4-x)$$

Procedure/Methodology:

Solve $u_{xx}=2\ u_t$ under conditions $u\ (0,\ t)=u(4,\ t)=0$ and $u\ (x,\ 0)=x(4-x)$ taking h=1 find the value up to t=5

Solution:

$$u_{xx} = 2u_t$$

$$\alpha = 2, h = 1$$

$$k = \frac{\alpha h^2}{2} = 1$$

$$\lambda = \frac{k}{\alpha h^2} = \frac{1}{2(1)^2}$$

$$\lambda = \frac{1}{2}$$

General Formula

$$\begin{split} &u_{(i,j+1)} = \frac{1}{2} \left[u_{(i+1), j} + u_{(i-1,j)} \right] \\ &u \; (x, \, 0) = x \; (4-x) \end{split}$$

$$u(1, 0) = 1(4-1) = 3$$

$$u(2,0) = 2(4-2) = 4$$

$$u(3,0) = 3(4-3) = 3$$

For
$$j = 0$$

$$\begin{array}{l} u_{i,1} = \frac{1}{2} \left[u_{i+1,0} + u_{i-1,0} \right] \\ u_{1,1} = \frac{1}{2} \left[u_{2,0} + u_{0,0} \right] &= 2 \end{array}$$

$$u_{2,1} = \frac{1}{2} [u_{3,0} + u_{1,0}] = 3$$

$$u_{3,1} = \frac{1}{2} \left[u_{4,0} + u_{2,0} \right] \quad = 2$$

$$\begin{split} For \ j &= 1 \\ u_{i,2} &= \frac{1}{2} \left[u_{i+1,1} + u_{i-1,1} \right] \\ u_{1,2} &= \frac{1}{2} \left[u_{2,1} + u_{0,1} \right] &= 1.5 \\ u_{2,2} &= \frac{1}{2} \left[u_{3,1} + u_{1,1} \right] &= 2 \\ u_{3,2} &= \frac{1}{2} \left[u_{4,1} + u_{2,1} \right] &= 1.5 \end{split}$$

$$\begin{split} For \ j &= 2 \\ u_{i,3} &= \frac{1}{2} \left[u_{i+1,2} + u_{i-1,2} \right] \\ u_{1,3} &= \frac{1}{2} \left[u_{2,2} + u_{0,2} \right] &= 1 \\ u_{2,3} &= \frac{1}{2} \left[u_{3,2} + u_{1,2} \right] &= 1.5 \\ u_{3,3} &= \frac{1}{2} \left[u_{4,2} + u_{2,2} \right] &= 1 \end{split}$$

$$\begin{split} For \ j &= 3 \\ u_{i,4} &= \frac{1}{2} \left[u_{i+1,4} + u_{i-1,4} \right] \\ u_{1,4} &= \frac{1}{2} \left[u_{2,4} + u_{0,4} \right] &= 0.75 \\ u_{2,4} &= \frac{1}{2} \left[u_{3,4} + u_{1,4} \right] &= 1 \\ u_{3,4} &= \frac{1}{2} \left[u_{4,4} + u_{2,4} \right] &= 0.75 \end{split}$$

$$\begin{split} For \ j &= 4 \\ u_{i,5} &= \frac{1}{2} \left[u_{i+1,5} + u_{i-1,5} \right] \\ u_{1,5} &= \frac{1}{2} \left[u_{2,5} + u_{0,5} \right] &= 0.5 \\ u_{2,5} &= \frac{1}{2} \left[u_{3,5} + u_{1,5} \right] &= 0.75 \\ u_{3,5} &= \frac{1}{2} \left[u_{4,5} + u_{2,5} \right] &= 0.5 \end{split}$$

j\i	0	1	2	3	4
0	0	3	4	3	0
1	0	2	3	2	0
2	0	1.5	2	1.5	0
3	0	1	1.5	1	0
4	0	0.75	1	0.75	0
5	0	0.5	0.75	0.5	0

Coding:

```
clc:
clear all;
\underline{\text{deff}}('y=f(x)','y=4*x-x^2')
u=[f(0) f(1) f(2) f(3) f(4)];
b=0
printf('u01=%0.2f\t u02=%0.2f\t u03=%0.2f\t \n',f(1),f(2),f(3))
u11=(u(1)+u(3))/2;
u12=(u(2)+u(4))/2;
u13=(u(3)+u(5))/2;
printf('u11=\%0.2f\t u12=\%0.2f\t u13=\%0.2f\t \n',u11,u12,u13)
u21=(u(1)+u12)/2;
u22=(u11+u13)/2;
u23=(u12+0)/2;
printf('u21=%0.2f\t u22=%0.2f\t u23=%0.2f\t \n',u21,u22,u23)
u31=(u(1)+u22)/2;
u32=(u21+u23)/2;
u33=(u22-u(1))/2;
printf('u31=\%0.2f\t u32=\%0.2f\t u33=\%0.2f\t \n',u31,u32,u33)
u41=(u(1)+u32)/2;
u42=(u33+u33)/2;
u43=(u32+u(1))/2;
printf('u41=\%0.2f\t u42=\%0.2f\t u43=\%0.2f\t \n',u41,u42,u43)
u51=(u(1)+u42)/2;
u52=(u43+u43)/2;
u53=(u42+u(1))/2;
printf('u51=\%0.2f\t u52=\%0.2f\t u53=\%0.2f\t \n',u51,u52,u53)
```


CRANK - NICHOLSON METHOD

Objective:

To find the solution for the given Partial Differential Equation using Crank – Nicholson Method.

Input:

$$\frac{\partial^2 u}{\partial x^2} = \frac{\partial u}{\partial t}$$

Boundary Conditions:

$$u(0, t) = u(1, t) = 0$$

$$u(x, 0) = 100(x - x^2)$$

Procedure/Methodology:

Solve $u_{xx}=u_t$ under conditions $u\left(0,\,t\right)=u(1,\,t)=0$ and $u\left(x,\,0\right)=100(x-x^2)$ taking h =0.25 for one time step

Solution:

$$\begin{array}{l} a=1 \;,\, h=0.25 \\ k=ah^2 \;=\; 1(0.25)^2 = 0.0625 \\ u\;(x,\,0) \;\;=\; 100\;(\;x-x^2) \\ u\;(0.25,\,0) \;=\; 100(\;0.25-0.25^2) \\ u\;(0.5,\,0) \;=\; 100(\;0.5-0.5^2) \\ u\;(0.75,\,0) \;=\; 100(\;0.75-0.75^2) \\ =\; 18.75 \end{array}$$

General Formula

$$u_{(i,j+1)} = \frac{1}{4} \left[u_{(i+1,j+1)} + u_{(i-1,j+1)} + u_{(i-1,j)} + u_{(i+1,j)} \right]$$

For (i=1, j=0)
$$u_{1,0} = \frac{1}{4} \left[u_{2,1} + u_{0,1} + u_{0,0} + u_{2,0} \right]$$

$$u_1 = \frac{1}{4} \left[u_2 + 0 + 0 + 25 \right]$$

$$4u_1 - u_2 = 25$$
 -----(1)

For (i=2, j=0)
$$u_{2,1} = \frac{1}{4} [u_{3,1} + u_{1,1} + u_{1,0} + u_{3,0}]$$

$$u_2 = \frac{1}{4} [18.75 + 18.75 + u_2 + u_2]$$

$$4u_1 - u_2 - u_3 = 37.5$$
 -----(2)

For (i=3, j=0)
$$u_{3,1} = \frac{1}{4} [u_{4,1} + u_{2,1} + u_{2,0} + u_{4,0}]$$

$$u_3 = \frac{1}{4} [u_2 + 0 + 0 + 25]$$

$$4u_1 - u_2 = 25$$
 -----(3)

Solving equations (1), (2) and (3)

$$A = \begin{pmatrix} 4 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{pmatrix}; X = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix}; B = \begin{pmatrix} 25 \\ 37.5 \\ 25 \end{pmatrix}$$

$$A^{-1} = 1/56 \begin{pmatrix} 15 & 4 & 1 \\ 4 & 16 & 4 \\ 1 & 4 & 15 \end{pmatrix}$$

$$X = A^{-1} B$$

We Get,
$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} = \frac{1}{56} \begin{bmatrix} 15 & 4 & 1 \\ 4 & 16 & 4 \\ 1 & 4 & 15 \end{bmatrix} \times \begin{bmatrix} 25 \\ 37.5 \\ 25 \end{bmatrix}$$

$$\begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = \begin{pmatrix} 9.8214 \\ 14.2857 \\ 9.8214 \end{pmatrix}$$

$$u_1 = 9.8214; u_2 = 14.2857; u_3 = 9.8214$$

j∖i	0	0.25	0.5	0.75	1
0	0	18.75	25	18.75	0
Jan-16	0	9.8214	14.2857	9.8214	0

Coding:

```
clc;clear all; \underline{\text{deff}}('y = f(x,t)', 'y = 100*(x-x^2)'); u = [f(0,0) \ f(0.25,0) \ f(0.5,0) \ f(0.75,0) \ f(1,0)]; disp("At \ (i=1,j=0)") printf("\t\n4*u1-u2=25\n") disp("At \ (i=2,j=0)") printf("\t\n-u1+4*u2-u3=37.5\n") disp("At \ (i=3,j=0)") printf("\t\n-u2+4u3=25\n") A = [4-1 \ 0;-1 \ 4-1;0 \ -1 \ 4]; C = [25;37.5;25]; X = A^{-1}C; printf(\n\nu10=\%f\t u20=\%f\t u30=\%f\t\n\n',u(2),u(3),u(4)) printf(\n\nu11=\%f\t u21=\%f\t u31=\%f\t\n\n',X(1,1),X(2,1),X(3,1))
```

```
Scilab 6.1.1 Console
File Edit Control Applications ?
Scilab 6.1.1 Console
Warning : redefining function: f
                                                    . Use funcprot(0) to avoid this message
 "At (i=1, j=0)"
4*u1-u2=25
 "At (i=2,j=0)"
-u1+4*u2-u3=37.5
 "At (i=3,j=0)"
-u2+4u3=25
ul0=18.750000
               u20=25.000000 u30=18.750000
               u21=14.285714 u31=9.821429
ull=9.821429
```

EXPLICIT SCHEME METHOD

Objective:

To find the solution for the given Partial Differential Equation using Explicit Scheme Method.

Input:

$$\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$$

Boundary Conditions:

$$u(0, t) = u(4, t) = 0$$

$$u(x, 0) = x(4-x)$$

Procedure/Methodology:

Solve the wave equation $u_{tt}=4u_{xx}$ under conditions u(0,t)=u(4,t)=0 and u(x,0)=x(4-x) taking h=1.

Solution:

Standard form of wave equation in $u_{tt} = c^2 u_{xx}$

$$c^2 = 4 \rightarrow c = \pm 2$$

Step length in x, h = 1

Step length in t, $k = h/c = \frac{1}{2} = 0.5$

By Boundary Condition

At
$$x = 0,1,2,3,4 = i$$

At $t = 1,0.5,1,1.5,2 = i$

$$u(o, t) = u(4, t) = 0$$

$$u(x,0) = x(4-x)$$

$$u(1,0) = 1(4-1) = 3$$

$$u(2,0) = 2(4-2) = 4$$

$$u(3,0) = 3(4-3) = 3$$

For
$$j=0$$

$$\begin{aligned} u_{i,1} &= \frac{1}{2} \left[\ u_{i+1} \,, _0 + u_{i-1,0} \right] r \\ u_{1,1} &= \frac{1}{2} \left[u_{2,0} + u_{0,0} \right] = 2 \\ u_{2,1} &= \frac{1}{2} \left[u_{3,0} + u_{1,0} \right] = 3 \\ u_{3,1} &= \frac{1}{2} \left[u_{4,0} + u_{2,0} \right] = 2 \end{aligned}$$

General Formula

$$u_{(i,j+1)} = u_{(i+1,j)} + u_{(i\text{-}1,j)} \text{ - } u_{(i,j\text{-}1)}$$

For
$$j = 1$$

$$\begin{split} u_{i,2} &= u_{(i+1,1)} + u_{(i-1,1)} - u_{(i,0)} \\ u_{1,2} &= u_{(2,1)} + u_{(0,1)} - u_{(1,0)} &= 0 \\ u_{2,2} &= u_{(3,1)} + u_{(1,1)} - u_{(2,0)} &= 0 \\ u_{3,2} &= u_{(4,1)} + u_{(2,1)} - u_{(3,0)} &= 0 \end{split}$$

For
$$j = 2$$

$$\begin{array}{ll} u_{i,3} = u_{(i+1,2)} + u_{(i-1,2)} - u_{(i,1)} \\ u_{1,3} = u_{(2,2)} + u_{(0,2)} - u_{(1,1)} & = -2 \\ u_{2,3} = u_{(3,2)} + u_{(1,2)} - u_{(2,1)} & = -3 \\ u_{3,3} = u_{(4,2)} + u_{(2,2)} - u_{(3,1)} & = -2 \end{array}$$

For
$$j = 3$$

$$\begin{split} u_{i,4} &= u_{(i+1,3)} + u_{(i-1,3)} - u_{(i,1)} \\ u_{1,4} &= u_{(2,3)} + u_{(0,3)} - u_{(1,2)} &= 0 \\ u_{2,4} &= u_{(3,3)} + u_{(1,3)} - u_{(2,2)} &= 0 \\ u_{3,4} &= u_{(4,3)} + u_{(2,3)} - u_{(3,2)} &= 0 \end{split}$$

j\i	0	1	2	3	4
0	0	3	4	3	0
0.5	0	2	3	2	0
1	0	0	0	0	0
1.5	0	-2	-3	-2	0
2	0	-3	-4	-3	0

Coding:

clc;

clear all;

```
\underline{\text{deff}}('y=f(x)','y=4*x-x^2')
u=[f(0) f(1) f(2) f(3) f(4)];
printf('u01=%0.2f\t u02=%0.2f\t u03=%0.2f\t \n',f(1),f(2),f(3))
u11=(u(1)+u(3))/2;
u12=(u(2)+u(4))/2;
u13=(u(3)+u(5))/2;
printf('u11=\%0.2f\t u12=\%0.2f\t u13=\%0.2f\t \n',u11,u12,u13)
u21=b+u12-u(2);
u22=u11+u13-u(3);
u23=u12+b-u(4);
printf('u21=%0.2f\t u22=%0.2f\t u23=%0.2f\t \n',u21,u22,u23)
u31=b+u22-u11;
u32=u21+u21-u12;
u33=b+u22-u13;
printf('u31=\%0.2f\t u32=\%0.2f\t u33=\%0.2f\t \n',u31,u32,u33)
u41=b+u32-u21;
u42=u33+u31-u22:
u43=b+u32-u23;
printf('u41=\%0.2f\t u42=\%0.2f\t u43=\%0.2f\t \n',u41,u42,u43)
```

