

Balancing Smart Grid's Performance Enhancement and Resilience to Cyber Threat

Rezoan A. Shuvro, Pankaz Das, and Majeed M. Hayat

Department of Electrical and Computer Engineering,

Marquette University, Milwaukee, WI, USA

Outline

Motivation for this work Contributions of this work Methodology Results **Conclusions and Extensions**

Interdependencies in smart grids

How the interdependencies among these layers affect the reliability and resiliency of the smart grid?

Benefit and curse of information

Interplay between electric grid and communication/control networks plays pivotal role in the reliability of smart grids.

attack

Increased interdependency gives more information, and hence reliability through informed control.

However, too much interdependence can lead to

- Vulnerability to cyber threat.
- Higher infrastructure cost.
- Decreased robustness due to strong dependence on information.

Fundamental question: balance the tradeoff between grid's performance enhancement and robustness.

Background: our works

Contributions of this paper

- Developing a comprehensive 3-layer (power grid, communication, and human response) Markov chain based analytical cascading-failure model.
- The model finds the distribution of blackout size for a given initial condition of the grid.
- The model finds the optimal level of interdependence, i.e., the trade-off between wellinformed control and vulnerability to attacks, that minimizes the probability of massive cascading failures in power grids.

Reduced state space for the power-grid variables Week

Main ideas of the *stochastic abstract-state evolution (SASE)* approach [1]:

Simplify the state space of the complex power system (equivalence classes)
 Aggregate state variables: S_i = (F_i, C_i^{max}, I_i)

F: number of failed lines
C^{max}: maximum capacity of failed lines
I: cascade-stability of the power grid

• Capturing the effects of the omitted variables through the transition probabilities for *I* and their parametric dependence on physical attributes and **operating characteristics** of the system.

Dynamics of the reduced states is represented by a Markov chain.

Power grid and human operators' interdependency Week

- Idea: number and maximum capacity of failed transmission lines increases the human-error probability in decision making.
- Standardized Plant Analysis Risk-Human (SPAR-H) reliability analysis method was used to calculate human-error probability (HEP) through performance shaping factors (PSFs).
- Mapping between (F, C^{max}) and operator response level, H, is established while considering human-error probability, HEP, and the distribution of the PSFs [1].

Distribution of the PSFs were calculated empirically.

Power grid, human operators and communication network interdependencies

- Powerapability itation piletere intitoe tipolical diagnine periconited by each olapical darheavily and the invariated the anabiditivation interconnections
- * To capture this phenomenon we introduced a substitute the grid for decision making. Vulnerability of the network tors have minimum information of the grid for decision making.
- High power-communication interdependency increases operators' control over the grid.

Constructing the Markov chain

Resilience Week

- 1. Develop a cascading-failure simulator (we used **MATPOWER**), run cascading failure simulations and observe pattern.
- 2. From the human error model and power grid failure observations, calculate the **mapping** between **power grid states** and the associated **human error level**.
- 3. Update the **probability of cascade stop** from the observations using equations (4-13) from the paper.
- 4. Dynamics of **power-communication interconnectivity** and **cyber threat** are captured using equations (1-2) from the paper.
- 5. Calculate the **probability of cascade-continue** at the associated capacity levels.
- 6. Construct the **Markov chain** transition matrix using the state-transition rules (discussed next).

State transition probabilities

• State transition probabilities capture benefits and added vulnerabilities resulting from information.

Results

- Once the Markov chain is constructed using the datadriven approach, we can use it analytically for that power grid topology.
- Next, we show the capabilities of Markov chain based cascading failure model.

Cascade stop probability

• Lower initial values of cascade-stop probability indicates higher probability of a cascade (for k = 0.1, 0.9) and vice versa (for k = 0.5).

Distribution of the blackout size

For k = 0.1 and k = 0.9, blackout size distribution shows a **heavy tail**, which indicates a power law distribution as compared to an exponential distribution for k = 0.5.

Distribution of the blackout size

- Distribution of the blackout size for nominal and extreme HEP and k=0.5.
- Average number of transmission-line failures for nominal and extreme HEPs are 24 and 32 lines, respectively.

Optimal power-communication interconnectivity

 Model finds optimal power-communication interconnectivity of enhancing the resilience of the grid against cyber threat.

Conclusions

- A comprehensive 3-layer (power grid, communication, and human response) Markov chain based analytical cascading failure model was developed.
- Role of **human operator response** and **cyber threat** on the resilience of the grid was captured.
- This work allows to calculate the **blackout size distribution** analytically.
- Model finds **optimal power-communication interconnectivity** of enhancing the resilience of the grid against cyber threat

Extensions

• We are working on devising **optimal policies** to mitigate cascading failures dynamic load shedding.

Thank you for your time.

Questions?

