CLAIMS

What is claimed is:

2

4

6

8

10

2

6

1. A method for reproduction as part of a computer-implemented optimization process based on a genetic model, comprising the steps of:

- (a) generating a set of mating combinations, each mating combination comprising a first chromosome and a second chromosome selected from a set of chromosomes, each chromosome comprising at least one gene;
 - (b) assigning a composite score to each mating combination; and
- (c) selecting a particular mating combination using a biased random value, the biased random value favoring mating combinations having a favorable composite score, the first and second chromosomes of the particular mating combination comprising first and second parents, respectively.
- 2. The method of claim 1, wherein assigning a composite score to each mating combination comprises computing the product of a first score associated with the first chromosome and a second score associated with the second chromosome.
 - 3. The method of claim 1, wherein step (c) comprises:
- sorting the mating combinations from most favorable to least favorable according to their associated composite scores, each sorted mating
- 4 combination having an associated index;

generating a random value distributed uniformly between zero and one;

		raising the random value to a predetermined power greater than one to
8		produce the biased random value;
		multiplying the number of mating combinations by the biased random
10		value to compute a selection index; and
		selecting as the particular mating combination the mating combination
12		whose index corresponds to the selection index.
	4.	The method of claim 1, further comprising:
2		preventing the particular mating combination from being selected more
		than once.
	5.	The method of claim 1, further comprising:
2		duplicating one of the first parent and the second parent to produce a
		child chromosome; and
4		mutating a gene in the child chromosome.
	6.	The method of claim 5, wherein the gene to be mutated is selected randomly and
2		mutating the gene in the child chromosome comprises randomly modifying the
		gene in the child chromosome

- 7. The method of claim 1, further comprising:
- 2 mating the first parent with the second parent to produce a child chromosome for a first predetermined fraction of children produced; and
- 4 mutating a copy of the first parent to produce a child chromosome for a second predetermined fraction of children produced.

4

6

8

10

12

14

16

18

- 8. The method of claim 1, wherein each gene represents a characteristic of an
 instance in an integrated circuit, the characteristic comprising one of size and threshold voltage.
 - 9. A method for reproduction as part of a computer-implemented optimization process based on a genetic model, comprising the steps of:

generating a set of mating combinations, each mating combination comprising a first chromosome and a second chromosome selected from a set of chromosomes, each chromosome comprising at least one gene;

assigning a composite score to each mating combination;
sorting the mating combinations from most favorable to least favorable
according to their associated composite scores, each sorted mating
combination having an associated index;

generating a random value distributed uniformly between zero and one;

raising the random value to a predetermined power greater than one to produce a biased random value;

multiplying the number of mating combinations by the biased random value to compute a selection index; and

selecting the first and second chromosomes of the mating combination whose index corresponds to the selection index as first and second parents, respectively.

10. The method of claim 9, further comprising:

2

- preventing the mating combination whose index corresponds to the selection index from being selected more than once.
 - 11. The method of claim 9, further comprising:
- duplicating one of the first parent and the second parent to produce a child chromosome; and
- 4 mutating a gene in the child chromosome.
 - 12. The method of claim 11, wherein the gene to be mutated is selected randomly and mutating the gene in the child chromosome comprises randomly modifying the gene in the child chromosome.
 - 13. The method of claim 9, further comprising:
- 2 mating the first parent with the second parent to produce a child chromosome for a first predetermined fraction of children produced; and
 4 mutating a copy of the first parent to produce a child chromosome for a second predetermined fraction of children produced.
 - 14. The method of claim 9, wherein each gene represents a characteristic of an instance in an integrated circuit, the characteristic comprising one of size and threshold voltage.
- 15. A method for reproduction as part of a computer-implemented process based on a
 genetic model for optimizing the power consumption and timing of an integrated
 circuit comprising a plurality of instances, the method comprising:

4	providing a set of chromosomes, each chromosome comprising a
	plurality of genes representing a set of design choices for the instances in the
6	integrated circuit, each instance being mapped to a first gene representing the
	size of that instance and a second gene representing the threshold voltage of
8	that instance;
	simulating for each chromosome the power consumption and timing
10	performance of an integrated circuit corresponding to the set of design choices
	specified by the genes in that chromosome;
12	assigning a score to each chromosome according to its simulated
	power consumption and timing performance;
14	generating a set of mating combinations, each mating combination
	comprising a first chromosome and a second chromosome selected from the
16	set of chromosomes;
	assigning a composite score to each mating combination, the
18	composite score comprising the product of the score associated with the first
	chromosome and the score associated with the second chromosome;
20	sorting the mating combinations from most favorable to least favorable
	according to their associated composite scores, each sorted mating
22	combination having an associated index;
	generating a random value distributed uniformly between zero and
24	one;
	raising the random value to a predetermined power greater than one to
26	produce a biased random value;
	multiplying the number of mating combinations by the biased random

value to compute a selection index; and

28

selecting the first and second chromosomes of the mating combination

whose index corresponds to the selection index as first and second parents,
respectively.

16. The method of claim 15, further comprising:

preventing the mating combination whose index corresponds to the selection index from being selected more than once.

17. The method of claim 15, further comprising:

- duplicating one of the first parent and the second parent to produce a child chromosome; and
- 4 mutating a gene in the child chromosome.
 - 18. The method of claim 17, wherein the gene to be mutated is selected randomly and mutating the gene in the child chromosome comprises randomly modifying the gene in the child chromosome.

19. The method of claim 15, further comprising:

2

- 2 mating the first parent with the second parent to produce a child chromosome for a first predetermined fraction of children produced; and
 4 mutating a copy of the first parent to produce a child chromosome for a second predetermined fraction of children produced.
 - 20. A system programmed to perform the following method:

2	(a) providing a set of chromosomes, each chromosome comprising at
	least one gene;
4	(b) generating a set of mating combinations, each mating combination
	comprising a first chromosome and a second chromosome selected from the
6	set of chromosomes;
	(c) assigning a composite score to each mating combination; and
8	(d) selecting a particular mating combination using a biased random
	value, the biased random value favoring mating combinations having a
10	favorable composite score, the first and second chromosomes of the particular
	mating combination comprising first and second parents, respectively.
	21. The system of claim 20, wherein step (d) of the method comprises:
2	sorting the mating combinations from most favorable to least favorable
	according to their associated composite scores, each sorted mating
4	combination having an associated index;
	generating a random value distributed uniformly between zero and
6	one;
	raising the random value to a predetermined power greater than one to
8	produce a biased random value;
	multiplying the number of mating combinations by the biased random
10	value to compute a selection index; and

whose index corresponds to the selection index.

12

selecting as the particular mating combination the mating combination

- 22. The system of claim 20, wherein the method comprises the following additional
- 2 steps:

duplicating one of the first parent and the second parent to produce a

4 child chromosome; and

mutating a gene in the child chromosome.

6

23. The system of claim 20, wherein the method comprises the following additionalsteps:

mating the first parent with the second parent to produce a child

chromosome for a first predetermined fraction of children produced; and

mutating a copy of the first parent to produce a child chromosome for a

second predetermined fraction of children produced.

- 24. A system for performing reproduction as part of a computer-implemented optimization process based on a genetic model, comprising:
- means for providing a set of chromosomes, each chromosome

 comprising at least one gene;
 - means for generating a set of mating combinations, each mating combination comprising a first chromosome and a second chromosome selected from the set of chromosomes;
- means for assigning a composite score to each mating combination;
- means for selecting randomly a particular mating combination such
 that mating combinations having a favorable composite score are favored, the
 first and second chromosomes of the particular mating combination
 comprising first and second parents, respectively.
- 25. The system of claim 24, wherein the means for selecting randomly a particular
 mating combination such that mating combinations having a favorable composite
 score are favored further comprises:

4	means for sorting the mating combinations from most favorable to
	least favorable according to their associated composite scores, each sorted
6	mating combination having an associated index;
	means for generating a random value distributed uniformly between
8	zero and one;
	means for raising the random value to a predetermined power greater
10	than one to produce a biased random value;
	means for multiplying the number of mating combinations by the
12	biased random value to compute a selection index; and
	means for selecting as the particular mating combination the mating
14	combination whose index corresponds to the selection index.
	26. The system of claim 24, further comprising:
2	means for duplicating one of the first parent and the second parent to
	produce a child chromosome; and
4	means for mutating a gene in the child chromosome.
	27. The system of claim 24, further comprising:
2	means for mating the first parent with the second parent to produce a

means for mating the first parent with the second parent to produce a child chromosome for a first predetermined fraction of children produced; and means for mutating a copy of the first parent to produce a child

chromosome for a second predetermined fraction of children produced.

6

8

10

12

14

2

4

6

8

10

	28. A computer-readable storage medium containing program code to perform
2	reproduction as part of an optimization process based on a genetic model, the
	computer-readable storage medium comprising:

a first code segment configured to generate a set of mating combinations, each mating combination comprising a first chromosome and a second chromosome selected from a set of chromosomes, each chromosome comprising at least one gene;

a second code segment configured to assign a composite score to each mating combination; and

a third code segment configured to select a particular mating combination using a biased random value, the biased random value favoring mating combinations having a favorable composite score, the first and second chromosomes of the particular mating combination comprising first and second parents, respectively.

29. The computer-readable storage medium of claim 28, wherein the third code segment comprises instructions causing the computer to

sort the mating combinations from most favorable to least favorable according to their associated composite scores, each sorted mating combination having an associated index;

generate a random value distributed uniformly between zero and one; raise the random value to a predetermined power greater than one to produce a biased random value;

multiply the number of mating combinations by the biased random value to compute a selection index; and

select as the particular mating combination the mating combination whose index corresponds to the selection index.

- 30. The computer-readable storage medium of claim 28, further comprising:
- a fourth code segment configured to duplicate the first parent to produce a child chromosome; and
- a fifth code segment configured to mutate a gene in the child chromosome.
 - 31. The computer-readable storage medium of claim 28, further comprising:
- a fourth code segment configured to mate the first parent with the second parent to produce a child chromosome for a first predetermined
- 4 fraction of children produced; and

6

a fifth code segment configured to mutate a copy of the first parent to produce a child chromosome for a second predetermined fraction of children produced.