西安电子科技大学

2018年硕士研究生招生考试初试试题

考试科目代码及名称 811 信号与系统、电路 考试时间 2017 年 12 月 24 日下午 (3 小时)

答题要求: 所有答案(填空题按照标号写)必须写在答题纸上,写在试题上一律作废,准考证号写在指定位置!

第一部分:信号与系统(总分75分)

一、填空题(共8小题,每小题4分,共32分)

解答本大题中各小题不要求写解答过程,只将算得的正确答案填写在答题纸上。 例如,一填空题: 1._., 2._., ···

1. 描述某系统的方程为 $y(t) = \frac{d}{dt}[f(t)] + 2\int_{-\infty}^{t} f(\tau)d\tau + 2$, 其中 f(t) 为激励,

y(t) 为全响应,那么该系统是_____(线性/非线性)____(时变/时不变)系统。

2. 积分
$$\int_{-\infty}^{t} (1-2x) \left[\delta \left(1 - \frac{x}{3} \right) + \delta'(x) \right] dx = \underline{\qquad}$$

图 1-3

- 4. 有限频带信号 f(t) 的最高频率为 $f_m H_Z$,若对 $f_1(t) = f(t-1)f(3t)$ 进行时域 采样,使频谱不发生混叠的奈奎斯特频率是_____。
- 5. 如图 1-5 所示,对信号 $f_1(t)$ 沿 $t=\frac{t_0}{3}$ 为轴对折得到 $f_2(t)$ 。已知 $f_1(t)$ 的傅里叶变换 $F[f_1(t)]=F(j\omega)$,求 $f_2(t)$ 的傅里叶变换 $F[f_2(t)]=$ _____。

图 1-5

- 6. 若信号 $f(t) = 3\cos(2t)$,那么它的功率谱 $P_f(\omega) =$ _____。
- 7. 如图 1-7 所示, f(t) 为有始周期方波信号,其象函数 $F(s) = ______$ 。

图 1-7

8. 已知序列 $f(k) = \frac{1}{3}(-1)^k \varepsilon(k) - \frac{2}{3}(2)^k \varepsilon(-k-1)$,其象函数 $F(z) = \underline{\hspace{1cm}}$ 。

二. 计算题 (共4小题,共43分)

解答本大题中各小题,请书写在答题纸上并写清楚关键性步骤,只有答案得 0 分,非通用符号请注明含义。

 $1.(11\ eta)$ 可以产生单边带信号的系统框图如图 2-1 所示,若输入信号 $f(t)=\frac{\sin(2t)}{2\pi t}$, $H(j\omega)=-j\,\mathrm{sgn}(\omega)$, 求输出信号 y(t) 的频谱 $Y(j\omega)$ 。

2. (10分) 描述某线性时不变系统的微分方程为

$$y''(t) + 5y'(t) + 6y(t) = 2f'(t) + 12f(t)$$
,

已知 $y(0_{-})=1$, $y'(0_{-})=3$,输入信号 $f(t)=e^{t}\varepsilon(t)$,求系统的零输入响应 $y_{zi}(t)$,零状态响应 $y_{zs}(t)$ 和全响应 y(t) 。

- 3. (11分)某线性时不变因果离散系统的框图如图 2-3 所示,
- (1) 写出系统函数H(z)及其极点;
- (2) 当 K 满足什么条件时, 系统稳定。

4.(11 分)某离散系统的信号流图如图 2-4 所示。写出以 $x_1(k)$ 、 $x_2(k)$ 、 $x_3(k)$ 为状态变量的状态方程和输出方程。

第二部分: 电路(总分75分)

- 一、填空题(每小题5分,共45分)
- 1. 电路如图 1 所示,求电流I。

- 2. 电路如图 2 所示,网络 N 发出的功率为多少。
- 3. 电路如图 3 所示, 求电压 U。

- 4. 电路图如图 4 所示,t<0时电路已经处于稳态,t=0时开关 S 打开,求初始值 $i(0_+)$ 以及 $u_L(0_+)$ 。
- 5. 如图 5 所示谐振电路中 $R=1\Omega$, $L_1=0.54H$, $L_2=0.46H$, M=0.25H , $C=50\mu F$, 则该电路的谐振角频率 ω_0 为多大。

811 信号与系统、电路 试题 共 8 页 第 5 页

- 6. 如图 6 所示电路,当 Z_L 为多大时,其吸收的功率最大。
- 7. 如图 7 所示的二端口电路,其 Z 参数矩阵为:

8. 如图 8 所示的电路,已知 $u_c(0_-)=0$,在t=0时开关闭合,开关闭合前电路已经处于稳态,求 $t\geq 0$ 时电流i 的零状态响应 $i_{z}(t)$ 。

811 信号与系统、电路 试题 共 8 页 第 6 页

9. 如图 9 所示电路,N 为不含独立源的线性网络,已知当 $U_s=12V$, $I_s=4A$ 时, U=0V; 当 $U_s=-4V$, $I_s=-1A$ 时, U=2V; 求当 $U_s=9V$, $I_s=-1A$ 时, U 的值为多大。 二、计算题

1. $(7 \, \text{分})$ 图 10 所示电路, $u_c(2_-) = 4V$, $i_L(2_-) = 1A$,当 t = 2s 时开关闭合,计算 $t \ge 2s$ 时,电流 i(t) ,以及 a 点和 b 点电压 u(t) 。

图 10

- 2. (7 分) 如图 11 电路,电源频率 f=50Hz, $R_1=X_{L1}=4\Omega$, $R_2=X_{L2}=6\Omega$, u(t) 的有效值为 $U=24\sqrt{2}V$ 。求:
- (1) 电路的等效阻抗;
- (2) 电路的有功功率与有功因数;
- (3) 若将线路的功率因数提高到 0.8, 需要并联约多大的电容?

811 信号与系统、电路 试题 共 8 页 第 7 页

3. (8 分) 图 12、图 13 所示电路, $L=125\mu H$, $r=10\Omega$,且知图 12 中 C=80pF;图 13 中 $C_1=100pF$, $C_2=400pF$ 。分别分析图 12、图 13 的并联谐振频率、品质因数、带宽以及谐振时的阻抗。

4. $(8\,

ota)$ 如图 14 所示电路,N 中不含储能元件,当t=0时开关 S 闭合,输出电压 u_0 的零状态响应为 $u_0(t)=2-e^{-\frac{t}{4}},t\geq 0$ 。如果将 2H 的电感换为 2F 的电容,求此时输出电压 $u_0(t)$ 的零状态响应。

