Neural Computation

Monday Session 27 November

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* .Jakob Uszkoreit* Google Brain Google Brain Google Research Google Research nikip@google.com usz@google.com avaswani@google.com noam@google.com Aidan N. Gomez* † Llion Jones* Łukasz Kaiser* Google Research University of Toronto Google Brain llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* † illia.polosukhin@gmail.com

Sequence-to-Sequence Architecture

- Hugely influential
- Basis for ChatGPT (**G**enerative **P**re-trained **T**ransformer)
- Also for vision

Figure 1: The Transformer - model architecture.

The Transformer Output Probabilities Softmax Linear Add & Norm Feed Forward Add & Norm Add & Norm Multi-Head Feed Attention Forward $N \times$ Add & Norm $N \times$ Add & Norm Masked Multi-Head Multi-Head Attention Attention Positional Positional Encoding Encoding Input Output Embedding Embedding Inputs Outputs (shifted right)

Probability Density Estimation

One of the main aims of unsupervised approaches and Generative Modelling.

Goal of Density Estimation:

We could try to fit a probabilistic model $p_{\theta}(x)$ to the data, to learn their underlying distribution $p_{data}(x)$. How? By learning its parameters θ so that: $p_{\theta}(x) \approx p_{data}(x)$

But we cannot always do that directly. Perhaps we cannot compute $p_{data}(x)$ or $p_{\theta}(x)$. Instead, we could do PDE indirectly: Enforce samples from model to be similar to real data instead:

Both VAEs and GANs can be seen as following this approach.

Autoregressive Models

Problem:

• Model high dimensional difficult distribution

$$p_{\theta}(\mathbf{x}) = p_{\text{data}}(\mathbf{x})$$
, with $\mathbf{x} = (x_1, ..., x_n)$

Idea:

Factorise distribution

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i|x_1, ..., x_{i-1})$$
Neural network:

- Parameters θ
- Input $x_1, ..., x_{i-1}$
- Output dist. over x_i

Aäron van den Oord	Sander Dieleman	Heiga Zen [†]	
Karen Simonyan	Oriol Vinyals	Alex Graves	

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

 $\{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk\} @google.com\\ Google DeepMind, London, UK$

[†] Google, London, UK

Aäron van den Oord Sander Dieleman Heiga Zen[†]

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

 $\{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk\} @google.com\\ Google DeepMind, London, UK$

† Google, London, UK

• Predict dist. for next audio sample

Aäron van den Oord Sander Dieleman Heiga Zen[†]

Karen Simonyan Oriol Vinyals Alex Graves

Nal Kalchbrenner Andrew Senior Koray Kavukcuoglu

 $\{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk\} @ google.com Google DeepMind, London, UK$

- Predict dist. for next audio sample
- Fully conv architecture:
 - Simultaneous pred. for all timepoints

[†] Google, London, UK

Aäron van den OordSander DielemanHeiga Zen†Karen SimonyanOriol VinyalsAlex GravesNal KalchbrennerAndrew SeniorKoray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com Google DeepMind, London, UK

- Predict dist. for next audio sample
- Fully conv architecture:
 - Simultaneous pred. for all timepoints

[†] Google, London, UK

Aäron van den OordSander DielemanHeiga Zen†Karen SimonyanOriol VinyalsAlex GravesNal KalchbrennerAndrew SeniorKoray Kavukcuoglu

{avdnoord, sedielem, heigazen, simonyan, vinyals, gravesa, nalk, andrewsenior, korayk}@google.com Google DeepMind, London, UK

- † Google, London, UK
- Predict dist. for next audio sample
- Fully conv architecture:
 - Simultaneous pred. for all timepoints

Sampling from the Model

- Predict dist. for next audio sample
- Sample from distribution
- Append new sample
- Repeat

Sampling from the Model

- Predict dist. for next audio sample
- Sample from distribution
- Append new sample
- Repeat

Pixel Recurrent Neural Networks

Aäron van den Oord Nal Kalchbrenner Koray Kavukcuoglu

Google DeepMind

x_1				$ x_n $
		x_i		
				x_{n^2}

AVDNOORD@GOOGLE.COM NALK@GOOGLE.COM KORAYK@GOOGLE.COM

Pixel Recurrent Neural Networks

Aäron van den Oord Nal Kalchbrenner Koray Kavukcuoglu

Google DeepMind

Image Generation:

- Sample one pixel
- Apply network
- Repeat

AVDNOORD@GOOGLE.COM NALK@GOOGLE.COM KORAYK@GOOGLE.COM

Summary

- Interpret data as sequence
- Train neural network
 - Input: previous values $(x_1, ..., x_{i-1})$
 - Distribution of possible next values $p_{\theta}(x_i|x_1,...,x_{i-1})$
 - E.g. as histogram
 - Or Parametric dist.

• Ensure correct receptive field, e.g. special convolutions

 $p_{\theta}(\mathbf{x}) = \prod_{i} p_{\theta}(x_i|x_1, \dots, x_{i-1})$

- Sampling:
 - One sample at a time
 - Slow, involves repeated application of model

The Encoder

- Process set of tokens
- Tokens remain separate
 - (except for attention layer)
- Tokens don't have order
 - (except for positional encoding)

