

Double Exponental Smoother
- For alone with a trend
- be for slope of line It for level of line

				Mile of the				
							7 40/201	4
29/09/14		Forecastin	u					
Ċ			itial Smoothing	Almatha				
	110)	trend	1 10 10	rugar				
		ieabnality						
	Trying	b fra	line continually	bo lut	point & pred	Jur next	pinh	
					ALL LAN		40	
								1110
	t	9.	Lt	b	Ft= Lba +b	k-1	yt-Fo	-
	1	3	1003 1000		700 M 3			-
	12	4	4	1	4		10710	01
	15 - 5	2	3.5.	0-85	5		3	-
2	4		-		4-35		4 4	-
	6		1 4	-	5.2		34	-
1			b. = 12-4,					
	04=	: 0.5	8=0.1					
2	1 -	A - 211	(1-x)(1,+b,)	(7.5/u)	+ 0 < (3+4) -	477 100		
-	1 -2 -	Days	1)+ (1-8)5,	0.1 (4-3)	+ (1-0-1) -	1		
	b2 =	B (2 - 2	- 3+1 = 2		11.01.0			
	12 =	-7 +107 - 11-41	1=0	and all the same				
300× 0	94-1	, ,						
1000		11 - 11 -	utics aller		A Abrah 165			8
3	F3 = L	1 102 -	ok) (12+bc) C	2 10 2 11 00	-1(411) - 2.5		2.0	
-	L3 = 1	07 y3 + 11-	0x)(12+bc)	0 . (254)	x (1-01/6)	1).85		100
Die of	p3 =	B(L3-4)	+ (1-B)bz	0.1(2.2-4)	* (10.10)			
	F9 =	9x-Fx =	2-5 = -1					
4	Fu =	L3 + b3 =	4.34.					
- harry 1	4 = 1	x y + (1-1	5 1 (13+3) 0-	۲			thahal	The Real Property lies
			201 3 N 302 603					
1	3 . 45	1 2 bi.	1+4				- 14	
		1 =	In + h.	bn Fr	L3 + 2b, =	3.5 + 2	(085) = 5.5	
		3+33, =		0.07) = (5.65			
	-6 = -	3,37						
			The second second			100011	100000000000000000000000000000000000000	

holtwinly (beer) holtwalk addity forms

(beliefable gumm- Frise for ses)

(bow or plate = queller mark file name > now what it is about.

Notice of data

(pot data tsdisplay (beer) in a Trend? Seasonal component? noise? ACF PACE

(b) select algorithm from ses, DES SHW, SHIKE

(c) lokarsse aid pin alg with built 156. Used to compute Errens!

Half win	ited addition	,			
	22 B=		6=0.9		
	P				
Morth	Production horr.	Lt	bt	ST	F
1	164			5.75	
2	148			-10-25	-
3	152			-6.25	-
4	144			-1425	
5	155			-3-25	
6	125			-33.25	
7	1 53			18:25 -5.25	
8	143			rphy -12:25	
9	134			-20.15	
10	190			31.77	
11	192	-0		33.77	
12	192		-0-65	33.75 -1.6075	
13	147	149.425	-3.1025	7.8011	
14.	133				
In.	165				
		1 . (0-)/	100.25 -045)	= 149.425	
M Lis =	0 .5 (147 - 5.7	151+ (0.51)	(10025 -00)	1(-0.65) = -3.	1025
13	0.3 (188 25 1	49.425-158.251	+ (1-00)	1.	6075
S13 =	0.9(147-	149.421) +	7-		
Fis =	138-25 +	(-0.65) + 5 + (-3.1075)	13	2	

119/4	Forecostmy
6	- Si Octobrill
	Sealand Holl Wingers
	Francisco La + by + Sa
	Ferra Le + be + 50 ox B ox 8
	Church of heart storing of history " - (2) (3)
	filled wille at f+1 E 6+1 = Ye11 - Fe+1
	"prediction" for y = 1
9	Pick 8 B or min SSE \(\hat{\chi}\) (\(\frac{1}{2}\) Fe\)
	Linear Regression
	$y_i = a + bx_i + E_i$ $\forall i = 1 \dots n$ 1 err or note.
	respect varions. Explanding var
	E_i 3 follow $\sim N(0, 0^{-1})$
	E; 3 10112 ~ 10 (0, 0°)
	$\frac{1}{(E)} = \frac{1}{\sum_{i=1}^{n} \sigma} \cdot \exp \left(\frac{-E^2}{2\sigma^2} \right)$
	1 (E 1 = 1/20 0
	A 1. 40.10.
V	Aren 10=0 dirax dultrabutum
	2 tim
0	reduct next volt dompiely = 0 + b time, + Ec
	beer = fot B, I une + B; Feb+ + + Biz Armart + Et.
	Jon + = To otherwise
	Jon + = (a otherwise

to joining > beer = Bo + Bi + EL 6-001 = BOR - BO + P17 + EL { (x, y) } i = 1. . Best (a, b)? Choose o, b that maximile the likelihad $P\left(\mathcal{E}_{i}, \mathcal{E}_{2} - \mathcal{E}_{n}\right) = \prod_{i=1}^{n} p(\mathcal{E}_{i})$ $\frac{1}{2\pi} \sigma \exp\left(-\frac{\mathcal{E}_{i}^{2}}{2\sigma \mathcal{E}_{i}}\right)$ $\hat{\sigma}_{i}\hat{b} = arg max \hat{Z} Loy (\sqrt{2\pi}\sigma) - \frac{\epsilon_{i}^{2}}{2\sigma^{2}} - argmax - \hat{Z} \epsilon_{i}^{2}$ = arymin 2 Ei2

= 11 7112 $= \|\vec{\xi}\|^2 = |\vec{g} - \vec{\chi} \cdot \vec{Q}|^2 |\vec{g} - \vec{\chi} \cdot \vec{Q}|^2$ $= y^{3} y^{3} - y^{3} x \theta - (x \theta)^{7} y^{7} + (x \theta)^{7} (x \theta)$ $+ y^{7} x^{7} y^{7}$ 1 (y+x)+0 = (y+x)T x xTy - xTX & + (xTx 170)
= 2 xTY & y = a +bx + & 2 y = a' +b' 2 + E 2 y = a" +b" x + c" = + c | port syur best model (1)2 a + by, + &2
ys a + by, + &s Use port com

yn a + byn. + &n

Auto regressive model AR 1 Ye = $9s + 9.9e^{-1} + Ee$ Ye as applicating weakle AR 2 Ye = $9s + 9.9e^{-1} + 8.9e^{-2} + Ee$ log difference 2 order P Ar(1) Lear Squary ellowed of provides $0 = (x^{7}x)^{-1}x^{7}y^{7}$ Time Send: $y_{1} = 14$, $y_{2} = 1$, $y_{3} = 6$, $y_{4} = 7$ $y_{5} = 12$ Model: $9e = 6e + 9.9e^{-1} + Ee$ $3 = 9e + 9.14 + Ee$ $6 = 9e + 9.5e + Ee$ $12 = 9e + 9.5e + Ee$ $13 = 9e + 9.5e + Ee$ $14 = 16e$ AR(1) $16e^{2} = 16e$ $16e$ AR(1) $16e^{2} = 16e$ AR(1) $16e^{2} = 16e$ AR(2) $16e^{2} = 16e$ AR(3) $16e^{2} = 16e$ $16e^{2} = 16e$ AR(4) $16e^{2} = 16e$ AR(5) $16e^{2} = 16e$ AR(6) $16e^{2} = 16e$ AR(7) $16e^{2} = 16e$ AR(8) $16e^{2} = 16e$ AR(8) $16e^{2} = 16e$ AR(9) $16e^{2} = 16e$ AR(1) $16e^{2} = 16e$ AR(2) $16e^{2} = 16e$ AR(3) $16e^{2} = 16e$ AR(4) $16e^{2} = 16e$ AR(5) $16e^{2} = 16e$ AR(7) $16e^{2} = 16e$ AR(8) $16e^{2} = 16e$ AR(8) $16e^{2} = 16e$ AR(9) $16e^{2} = 16e$ AR(1) $16e^{2} = 16e$ AR(1) $16e^{2} = 16e$ AR(2) $16e^{2} = 16e$ AR(3) $16e^{2} = 16e$ AR(4) $16e^{2} = 16e$ AR(5) $16e^{2} = 16e$ AR(6) $16e^{2} = 16e$ AR(7) $16e^{2} = 16e$ AR(8) $16e^{2} = 16e$ AR(8) $16e^{2} = 16e$ AR(9) $16e^{2} = 16e$ AR(9) $16e^{2} = 16e$ AR(9) $16e^{2} = 16e$ AR(1) $16e^{2} = 16e$ AR(2) $16e^{2} = 16e$ AR(3) $16e^{2} = 16e$ AR(4) $16e^{2} = 16e$ AR(4) $16e^{2} = 16e$ AR(5) $16e^{2} = 16e$ AR(6) $16e^{2} = 16e$ AR(7) $16e^{2} = 16e$ AR(8) $16e^{2} = 16e$	
$y_{E} = \varphi_{0} + \varphi_{1} y_{E-1} + \varepsilon_{0} y_{E-1} \text{ os appliantly with the } y_{E-1} + \varepsilon_{0} y_{E} \text{ of them } = 2 \text{ order } p$ $Ar(1)$ $y_{E} = \varphi_{0} + \varphi_{1} y_{E+1} + \varphi_{2} y_{E+2} + \cdots + \varphi_{p} y_{E+1} + \varepsilon_{0} \text{order } p$ $Ar(1) \cdot LeoN Squard eltimold of promisers$ $\theta = (x^{T}x)^{T} x^{T}y^{T}$ $fine Send : y_{1} = \mu_{1}, y_{2} = S_{1}, y_{3} = G_{1}, y_{4} = 7 y_{5} = 12$ $Modul : y_{E} = \varphi_{0} + \varphi_{1} y_{1} + \varepsilon_{1}$ $3 = \varphi_{0} + \varphi_{1} y_{1} + \varepsilon_{2}$ $6 - \varphi_{0} + \varphi_{1} y_{1} + \varepsilon_{2}$ $4 = \varphi_{0} + \varphi_{1} y_{1} + \varepsilon_{2}$ $1 = \varphi_{0} + \varphi_{1} y_{2} + \varepsilon_{2} y_{2} + \varepsilon_{3} y_{2} + \varepsilon_{2} y_{3} + \varepsilon_{2} y_{3}$ $1 = \varphi_{0} + \varphi_{1} y_{1} + \varepsilon_{2} y_{2} + \varepsilon_{3} y_{3} + $	
AR 2 $y_{E} = q_{0} + q_{1}y_{E1} + q_{2}y_{E2} + E_{0} log differm = 2 color = 2$ Ar(1) $y_{E} = q_{0} + q_{1}y_{E1} + q_{2}y_{E2} + \cdots + q_{p}y_{E+1} + E_{0} color = p$ Ar(1): Leon Squar eliminal of provider $\theta = (x^{T}x^{T})^{T}x^{T}y^{T}$ Time Serid: $y_{1} = 14$, $y_{2} = 1$, $y_{3} = 6$, $y_{4} = 7$ $y_{5} = 12$ Model: $y_{E} = q_{0} + q_{1}y_{E1} + E_{0}$ $y_{E} = q_{E} + q_{E} + q_{E}$ $y_{E} = q_{E} + q_{E} + q_{E}$ $y_{E} = q_{E} + q_{E} + q_{E}$ $y_{E} = q$	
$y_{t} := q_{0} + q_{1}y_{t+1} + q_{2}y_{t+2} + \dots + q_{p}y_{t+r} + \varepsilon_{0} \text{order } p$ $Ar(1): \text{ Least Squard eltimodel of parameter}$ $0 := (x^{7}x)^{-1} x^{7}y^{7}$ $1700 \text{ Senid: } y_{1} = 14, \ y_{2} = 3, \ y_{3} = 6, \ y_{4} = 7, \ y_{5} = 12$ $18000000000000000000000000000000000000$	
Action Qt = 90 + 9.941 + 9.941 + + 4.944 + 26 order p Ar(1): Lear Square Elimold of promoted $ \theta = (x^{7}x)^{-1} x^{7}y^{7} $ Time Send: $y_{1} = 14, y_{2} = 3, y_{5} = 6, y_{4} = 7, y_{5} = 12 Model: y_{6} = 90 + 9.14 + 62 \theta = 90 + 9.3 + 6 \theta =$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Ar(1): Least Squery Eltimold of promotes $ a = (x^{7}x)^{-1}x^{7}y^{7} $ Time Series: $y_{1} = 14$, $y_{2} = 3$, $y_{3} = 6$, $y_{4} = 7$, $y_{5} = 12$ Model: $y_{6} = 0$, $y_{6} + 0$	
Time Send: $y_1 = 14$, $y_2 = 3$, $y_3 = 6$, $y_4 = 7$ $y_5 = 12$ Model: $y_1 = q_0 + q_1 y_1 + \epsilon_1$ $3 = q_0 + q_1 y_1 + \epsilon_2$ $6 = q_0 + q_1 + \epsilon_2$ $6 = q_0 + q_1 + \epsilon_3$ $12 = q_0 + q_1 + \epsilon_4$ $12 = q_0 + q_1 + \epsilon_4$ $13 = q_0 + q_1 + \epsilon_4$ $14 = q_0 + q_1 + \epsilon_2$ $15 = q_0 + q_1 + \epsilon_2$ $16 = q_0 + q_1 + \epsilon_2$ $17 = q_0 + q_1 + \epsilon_2$ $18 = q_0 + q_1 + \epsilon_2$ $19 = q_0 + q_1 + q_2 + q_2$ $19 = q_0 + q_1 + q_2 + q_2$ $19 = q_0 + q_1 + q_2 + q_2$ $19 = q_0 + q_1 + q_2 + q_2$ $19 = q_0 + q_1 + q_2 + q_2$ $19 = q_0 + q_1 + q_2 + q$	
Model: $9_{t} = 9_{0} + 9_{1}9_{t+1} + \varepsilon_{1}$ $3 = 9_{0} + 9_{1}19_{1} + \varepsilon_{2}$ $6 = 9_{0} + 9_{1}S_{1} + \varepsilon_{1}$ $7 = 9_{0} + 9_{1}S_{1} + \varepsilon_{2}$ $12 = 9_{0} + 9_{1}S_{1} + \varepsilon_{2}$ $12 = 9_{0} + 9_{1}S_{1} + \varepsilon_{2}$ $12 = 9_{0} + 9_{1}S_{1} + \varepsilon_{2}$ $13 = 9_{0} + 9_{1}S_{1} + \varepsilon_{2}$ $12 = 9_{0} + 9_{1}S_{1} + \varepsilon_{2}$ $13 =$	
$3 = \varphi_{0} + \varphi_{1} 4 + \xi_{2}$ $6 = \varphi_{0} + \varphi_{1} 5 + \xi_{3}$ $7 = \varphi_{0} + \varphi_{1} 6 + \xi_{4}$ $12 = \varphi_{0} + \varphi_{1} 7 + \xi_{5}$ $1 = \varphi_{0} 1 $	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \frac{7}{12} = \frac{4}{9}, \frac{6}{7} + \frac{5}{4} $ $ \frac{12}{12} = \frac{1}{90} + \frac{1}{9}, \frac{1}{7} + \frac{5}{4} $ $ \frac{1}{13} = \frac{1}{13} = \frac{1}{12} $ $ \frac{3}{13} = \frac{1}{12} = \frac{1}{12} $ $ \frac{3}{13} = \frac{1}{12} = \frac{1}{12} $ $ \frac{3}{12} = \frac{1}{12} = \frac{1}{12} $ $ \frac{3}{12} = \frac{1}{12} = \frac{1}{12} $ $ \frac{3}{12} = \frac{1}{12} = \frac{1}{12} $ $ \frac{1}{12} = \frac{1}{12} $ $\frac{1}{12} = \frac{1}{12} $ $\frac{1}{12} = \frac{1}{12} $ $\frac{1}{12} = \frac$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\frac{\partial^{2}}{\partial x^{2}} = \frac{1}{4-2} \left(\frac{\xi_{2}^{2} + \xi_{3}^{2} + \xi_{4}^{2} + \xi_{4}^{2}}{1 + \xi_{4}^{2} + \xi_{5}^{2}} \right)$ $\frac{1}{4-2} \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{1}{4-2} + \frac$	
$\frac{\partial^{2}}{\partial x^{2}} = \frac{1}{4-2} \left(\frac{\xi_{2}^{2} + \xi_{3}^{2} + \xi_{4}^{2} + \xi_{4}^{2}}{1 + \xi_{4}^{2} + \xi_{5}^{2}} \right)$ $\frac{1}{4-2} \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{1}{4-2} + \frac$	
$\frac{\partial^{2}}{\partial x^{2}} = \frac{1}{4-2} \left(\frac{\xi_{2}^{2} + \xi_{3}^{2} + \xi_{4}^{2} + \xi_{4}^{2}}{1 + \xi_{4}^{2} + \xi_{5}^{2}} \right)$ $\frac{1}{4-2} \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{1}{4-2} + \frac$	
$\frac{\partial^{2}}{\partial x^{2}} = \frac{1}{4-2} \left(\frac{\xi_{2}^{2} + \xi_{3}^{2} + \xi_{4}^{2} + \xi_{4}^{2}}{1 + \xi_{4}^{2} + \xi_{5}^{2}} \right)$ $\frac{1}{4-2} \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{1}{4-2} + \frac$	
$AR(1) \partial^2 = \frac{1}{(n-1)-2} \sum_{i=2}^n E_i^2$ $(n-1) eqnS$	
$AR(1) \partial^2 = \frac{1}{(n-1)-2} \sum_{i=2}^n E_i^2$ $(n-1) eqnS$	
$AR(1) \partial^2 = \frac{1}{(n-1)-2} \sum_{i=2}^n E_i^2$ $(n-1) eqnS$	
(n-1) eqn)	
(n-1) eqn)	
AR(2) (n-2)egrs do di de 3 parameter)	
TK (10-114) 40, 41, 41 Spain	
22 \$ \xi^2	

17/16	
6	View of Situation Information on other people - why trey went it. How will other departments rupe 2 4 5 3 7 6 1 9 8 0 Av(3).
5	$ y_{t} = \phi_{0} + \phi_{1}y_{t+1} + \phi_{y_{t+2}} + \phi_{y_{t+3}} $ $ 3 = \phi_{0} + \phi_{1}s + \phi_{2}u_{1} + \phi_{3}u_{2} $ $ 7 = \phi_{0} + \phi_{1}s + \phi_{2}s + \phi_{3}u_{1} + \varepsilon_{5}s $ $ 6 = \phi_{0} + \phi_{1}s + \phi_{2}s + \phi_{3}s + \varepsilon_{5}s $ $ 1 = \phi_{0} + \phi_{1}s + \phi_{2}s + \phi_{3}s + \varepsilon_{5}s $ $ 1 = \phi_{0} + \phi_{1}s + \phi_{2}s + \phi_{3}s + \varepsilon_{5}s $ $ 1 = \phi_{0} + \phi_{1}s + \phi_{2}s + \phi_{3}s + \varepsilon_{5}s $ $ 1 = \phi_{0} + \phi_{1}s + \phi_{2}s + \delta_{3}s + \varepsilon_{5}s $ $ 1 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \varepsilon_{5}s $ $ 2 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \varepsilon_{5}s $ $ 3 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \varepsilon_{5}s $ $ 3 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \varepsilon_{5}s $ $ 4 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \varepsilon_{5}s $ $ 5 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \delta_{5}s + \varepsilon_{5}s $ $ 6 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \delta_{5}s + \varepsilon_{5}s $ $ 7 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \delta_{5}s $ $ 9 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \delta_{5}s $ $ 9 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \delta_{5}s $ $ 9 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \delta_{5}s $ $ 9 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s + \delta_{5}s $ $ 9 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s $ $ 9 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s $ $ 9 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s $ $ 9 = \phi_{0} + \phi_{1}s + \delta_{2}s + \delta_{3}s $ $ 9 = \phi_{0} + \phi_{1}s + \delta_{2}s $ $ 9 = \phi_{0} + \phi_{1}s $ $ 9 = \phi_{0} + \phi_{1}s $ $ 9 = \phi_{0} + \phi_{1}s $ $ 9 = \phi_{0} $
•	$X = \begin{cases} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$
1	Ch = (x'x) · x'g

greater by allog and copy the model for its most sectionary Grad mike by genz ge + Ear

31/10/14	Forecosting
•	Badishither operation - computed log of times.
-36	By = yt-2 By = yt-2
	The last test and the last tes
	AR(1) $y_t = \varphi_{0} + \varphi_{0} + \varepsilon_{t}$ $y_t = \varphi_{0} + \varphi_{0} + \varepsilon_{t}$ $(1 - \varphi_{0}) y_t = \varphi_{0} + \varepsilon_{t}$
>	MA(1) $y_t = \varphi_0 - \varphi_1 \mathcal{E}_{t+1} + \varepsilon_t$ $B \varepsilon_t$ $y_t = \varphi_0 + (1 - \varphi_1 B) \varepsilon_t$
	ARMA(1,1) (1-4B)yt = (+ (1-4B)EL Combined constant
	$MA(z)$ y = $\phi_0 + (1 - \theta_1 IB - \phi_2 IB^2) \mathcal{E}_{t}$
	To distant you sittence stope = (1-1B) you
	d=2 dilantion of of 2 y== y== y== (1-B)y== (1-B
(ARIMA i - integraled differentiable

ARIMA \rightarrow (P, 0, 9) (1-B)^dyt -trend removal consur from ϕ_0 (1-0,6 - $\phi_2 b^2$ - ... - $\phi_p B^p$) (1-B)^dyt = (1- $\phi_1 b^2 - \phi_2 b^2 - \phi_3 b^2$) Et trend removal

		3			DAUD WEIBERNI 12300644	
1	λΛ			T 17	10.10	F . 4
	Month Wo.	Production	Level L6	Trend by	Second SE 1.036	torat te
	1	164			0.935	-
	2	148			0.961	-
	3	152		-	0.910	-
	4	144	-	-	0.979	-
	5				0-790	-
	6	125	- /1-11/15	-	0.967	
		153			0.935	_
	8	148	The same	-	0.872	_
9	-	138		-	1.201	-
	[0	192	_	-	1-213	-
	11	192	158.25	- 0.6	1-213	-
	12	194	1/8.01	0.0	-	
	12	147	149.7	-3.01	0.987	163.33
	13	14+	1777	, , ,		163.30
	14.	133	144.5	-3.69	0.92	Varstnew 137.2
	14	137	1			
	16 1716	117	155.24	0.65	arga 1.04	135.21
	15	163	100			135.21
	100		2,370	1		141.85
	16					

```
DAVID WETTBERTHT
 Initialise: Ls = 1 5 5 4: 4: 0=05, $=0.9
   bs = 1 / ys+1 + ys+2-y2+ ... + y2-y
      Si = 4/45 i=1.5.
Compute for t75
Level 2t = 0x 4/st-s + (1-0x) (4+1 +6+1)
Trend bt = $ |Lt - Lt-1) + (1-8/6+1
Seasonol , St = 9 4/2 + (1-7)56-5
 Forecast = Ft+1 = (Lt+be) St+1-5
 Si= 91/12 = 164/18828 = 1.036
Sz= 42/42 = 148/15825 - 0.935
Sz= 44/12=17/15825 = 0.961
Su= 45/12=144/158-21 = 0.910
Ss = 45/m = 10 / 1582) = 0.979
56 = \frac{96}{\ln} = \frac{125}{158.25} = 0.790
56 = \frac{96}{\ln} = \frac{173}{158.25} = 0.790
57 = \frac{94}{\ln} = \frac{173}{158.25} = 0.935
59 = \frac{94}{\ln} = \frac{138}{158.25} = 0.872
Sio = 910/612 = 190/15820 = 1.201
S_{11} = \frac{9a/42}{5n} = \frac{192}{15825} = \frac{1 \cdot 213}{1 \cdot 213}
F_{13} = \frac{(L_{12} + b_{12})}{(L_{12} + b_{12})} = \frac{(158 \cdot 25 + (-0.6))(1 \cdot 036)}{(1.036)} = \frac{163.3264}{163.3264}
 LB = 04 913/513-12 + (1-05) (L12 + b12)
0.5 (147/1.036) + (1-05)(158.25 + (-0.65)) = 149.73
 bt = B (L13-L12)+ (1-B)b12
       0-3 (149.7-158.25) + (0.7) (-065) =-3.01
 Si3 = 3 4/3 + (1-4)5, = 0.4 (1477) + 0.1 (1.036) = 0.987
```

Fig = (L13+b13) Sin-n = (149.7+(-301)) 0.937 = 137.2 Li4= 0x 914 + (1-05)(Lis+bis) = 0.5 (133/0935)+0.5(149.7+(-3.01)) = 144.5. bi4 = B(Li4-Lis)+(1-8613 = 0.3(144.5-1497)+(0.7)(-3.01) = -3.49 SH= 9 20 + (1-4)82 = 0.9 (133/1447)+0.1(0.435) = 0.92 Fig= (Lim+bin) S3 = (144.5+(-369))(0961) = 135.21 Lis= or 915 + (1-0x)(Liu + bin)= 0.5(163/0.461)+0.5(1445+ (-3.69)) = 155.24 bis = B 1415-L14) + (1-18) bin = 0.3 (155-24-144.5)+ 0.7 (-3.69) = 0.65 Sis = 3 45 + (1-3)5, = 0.4(163/15-24) +0.1(0.961) = orac 1.04 Fig = (415+by) /4 = (155-24+065) 0410 = 141.85

14/11/14 Forecasting ye = a (yr-0 -0 EL-2) + 86 yt+2 = 0, 8+3 + 8+2 yt = 0, yt - q2 (yt - 2 - 0 2 e - 3) + El
= 9 9 e - 0 - 2 yt - 2 - 9, 3 E e - 3 + El

401 ARM K=2 Yt = 00 + 0, 4 - 7 + 0, 4 - 1 + Et 1 4 2 01 pact of K=2 2 cmue brow by diffing 1 = 3 don't go lay and 3

= 2 (nla(Jiro) + 2012 = [2] All = nlay (21002) + \(\frac{2}{2}\)\(\frac{2}2\)\(\frac{2}{2}\)\(\frac{2}{2}\)\(\frac{2}2\)\(\frac{2}2\)\(\fra Find play All or Bil are minused. Stall to Some meditie while time pdg 1 (big) will reduce & EEi2 but (2m) will invoke and (mlogn) 1 Show: -2 Loy(L) = n(1+loy(2r)) + nly(s²) Λ52 ≃ ₹ ξ;2 2 212 = ns = 52 = N² - 2/4/1 = n/4/21007 + 35/2 = 52 = nlag(2r) + nlag(or2) + n = n(1+ly(2m)) + nly(02) = n(1+ly(2m)) + nly(02) DED

	2
21/11/14	Forecastny,
-0-	ARMA (pdg)
	AKIMA (1,1)
10,172	(1-0.4B) (1-B)4+= 0.1+(1-0.9B)E6
	(1-0.4B) (1-B) yt= 0.1 + (1-0.9B) Et arci) MA(1) different et
	differely d=1
	xt=(1-18)yt = yt-yt-1
195	(1-0.46) RE = 04 + (1-098) EE
	2
	Time 9t Xt Xt Et 9t
	1 9.5 $x_1 = 9_1 = 9_0$ - $x_1 = 9_$
	2 3.7 $9_79_1 = 4.2$ $9_79_2 = 4.2$ $9_7 = 9.5$ 9.7
	4361 61 / 1-89 4/ = C+ 1:10EL
	7-1 6 1 12-1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	a gratie of gratefic and the star of the same
	Acres 1977 Property and the second se
-	- Xt - 0.4 Xt-1 = 0.1 fet -0.9 Et-1
	Xt = 101+04X6-1-0.986-1 +8+
	Je = The + year you 0+95
0.00	
	13 = 0.1 + 0.4 (u.2) - 0.4(u) =-2
	$\xi_3 = -5 - (-2) = -3$
	93= 83+42 = -2+137=117
	Yu = 44.43 = 161-87 = 7.4
0	3 - 04124 (-5) - 0.4(-3)
	Eus No 1/2 = 7.4-08 = 6.6
	9u = Pu +43 = 0.8 +8.7 = q.5

24/11/14	Forecasiny
	Printed Country
	ARIMA (p. dig) complexity m= ptg
	SARIMA (podis) (P, O, O)s m-pro+ P+Q
	s ARIMA (p=0, d=9, g=0) (P=1, D=0, D=0) s=4
	(1) (1-B,B40) (1)(1)yt = c + (1)(1)Et
	(-B1B4)46 = C + Et
9	y ₆ = β, y ₆ + c + ε _t
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Bi=1 hor
	SAKIMA (p=0,d=0,q=0) (P=0, D=1, Q=0)s=u
	(1)(1) (1) (1-B4) 4/ = C + A)(1)E6
	9t= C + 9t-4 + El
	AR 9 = C+ Bytuth 9 = C+ Oyer + Oyer + Bytu + Oyer + Et
	ACF MF Cab
9	The state of the s
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	1 1 1 1 1 1 1 1 1 1 7 3 1 1 1 1 1 1 1 1
	5 25 33 Mayor Sprars, 25 = 0, 350 ,450
	Murry Avery
	Spile of S on Act small volve olumine
	Every's walk on PACF "
	POQ 43

