ToDo

- Aufgabe 3: d)
- $\bullet\,$ Aufgabe 4: Scheint mir nicht genügend zu sein! Ist das echt ein lineares Problem?
- $\bullet\,$ Aufgabe 5: Konvexität zeigen, f" > 0 ?

```
In [1]:
import numpy as np
import matplotlib.pyplot as plt

def f_l(x):  # radius within which the function will be plotted
    result = - x**5
    return result

d = 3.0
    x = np.arange(-d, d, 0.01)
    y = f_l(x)
    plt.figure()
    plt.figure()
    plt.glot(x,y)
    plt.grid()
    plt.show()
```

```
In [2]: from mpl_toolkits.mplot3d import axes3d
from matplotlib import cm
imatplotlib notebook

def f_2(x):
    result = 9* x[0]**2 - 6 * x[0] * x[1]**2 + x[1]**4
    return result

d = 3.0 # radius within which the function will be plotted
X = np.arange(-d, d, 0.01)
Y = np.arange(-d, d, 0.01)

x, Y = np.meshgrid(X, Y)
z = f_2((X,Y))
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_surface(X, Y, Z, cmap=cm.Oranges_r)
Figure 1
```


Gegeben sei das Optimierungsproblem

$$P: \min f(x), \text{ s.t. } x \in M$$

mit

a)
$$f(x) = -x^5$$
, $M = (-\infty, 1)$.

b)
$$f(x) = 9x_1^2 - 6x_1x_2^2 + x_2^4$$
, $M = \mathbb{R}^2$

c)
$$f(x) = \frac{x^T A x}{\|x - b\|_2 + 1}$$
, mit $A \in \mathbb{R}^{n \times n}$ positiv definit, $b \in \mathbb{R}^n$ und $M = \mathbb{R}^n$.

Begründen Sie jeweils: ist f koerziv auf M? Ist P lösbar?

Hinweis: Nutzen Sie für Aufgabenteil c) die Äquivalenz der Normen im \mathbb{R}^n

Proof: Nach Vorlesung (Definition 1.2.37) gilt:

Gegeben seien eine (nicht notwendigerweise abgeschlossene) Menge $M \subseteq \mathbb{R}^n$ und eine Funktion $f: M \to \mathbb{R}$. Falls für alle Folgen $(x^{\nu}) \subseteq M$ mit $\lim_{\nu} \|x^{\nu}\| \to \infty$ und alle konvergenten Folgen $(x^{\nu}) \subseteq M$ mit $\lim_{\nu} x^{\nu} \notin M$ die Bedingung

$$\lim_{\nu} f(x^{\nu}) = +\infty$$

gilt, $dann\ heißt\ f\ koerziv\ auf\ M$.

a)
$$f(x) = -x^5$$
, $M = (-\infty, 1)$:

Beachte $M \subseteq \mathbb{R}$. Es gilt $\overline{M} = (-\infty, 1]$, d.h. $\partial M = \{1\}$. Für die Koerzivität sind demnach alle Folgen $(x^{\nu}) \subseteq M$ zu betrachten für die entweder

$$x^{\nu} \longrightarrow \infty$$
 oder $x^{\nu} \longrightarrow 1$

gilt. Sei nun (x^{ν}) eine Folge für die gilt $x^{\nu} \hat{A} \to 1$. Für alle $\epsilon > 0$ existiert demnach ein m, sodass:

$$||x^{\nu_m} - 1|| < \epsilon, \quad \forall \nu_m > m.$$

Daraus ergibt sich:

$$\lim_{\nu} f(x^{\nu}) = \lim_{\nu} \left(-\left(x^{\nu} \hat{\mathbf{A}}\right)^{5} \right) = -\lim_{\nu} \left(\left(x^{\nu} \hat{\mathbf{A}} - 1 + 1\right)^{5} \right)$$

$$\leq -\lim_{\nu} \left(-\left(\|x^{\nu} - 1\| + 1\right)^{5} \right)$$

$$< \lim_{\nu} \left(\epsilon + 1 \right)^{5}.$$

Da diese Ungleichung im Grenzwert für alle $\epsilon > 0$ gilt, ist f nicht koerziv.

Die Funktion f ist monoton Fallend auf M und streng monoton fallend auf (0,1), da

$$f'(x) = -5x^4 < 0$$

mit strikter Ungleichung für $x \neq 0$. Damit ist

$$\inf_{x \in M} f(x) = \lim_{x \to 1} f(x) = -1.$$

Da das Infimum aber nicht in der Menge angenommen wird (f(x) > -1) für alle $x \in M$), ist das Problem nach Definition 1.2.3 nicht lösbar.

b) $f(x) = 9x_1^2 - 6x_1x_2^2 + x_2^4$, $M = \mathbb{R}^2$:

Es gilt

$$f(x) = 9x_1^2 - 6x_1x_2^2 + x_2^4 = (3x_1 - x_2^2)^2.$$

Für jede Folge für die für alle $\nu\in\mathbb{N}$ gilt dass $\sqrt{3x_1^\nu}=x_2^\nu$ folgt:

$$f(x^{\nu}) = 0.$$

Da wir eine Menge von Folgen gefunden haben für die $||x^{\nu}|| \to \infty$ gilt, allerdings gleichzeitig $\lim_{\nu} f(x^{\nu}) = f(x^{\tilde{\nu}}) = 0$, ist die Funktion nicht koerziv.

Es gilt $f(x) = (3x_1 - x_2^2)^2 \ge 0 = \inf_{x \in M} f(x)$, wobei

$$f(x) = 0 \iff (3x_1 - x_2^2)^2 = 0 \iff x_1 = \frac{x_2^2}{3}$$

Da es $(x_1, x_2) \in M$ gibt, die die obige Bedingung erfüllen, nimmt f auf M sein Infimum an, und das Problem ist nach Definition 1.2.3. lösbar.

c) $f(x) = \frac{x^T A x}{\|x - b\|_2 + 1}$, mit $A \in \mathbb{R}^{n \times n}$ positiv definit, $b \in \mathbb{R}^n$ und $M = \mathbb{R}^n$:

Da $\mathbb{R}^{n\times n}$ unbeschränkt ist, betrachten wir lediglich eine beliebige divergente Folge (x^{ν}) . Aufgrund der positiven Definitheit von A ist $x^{T}Ax > 0$ und damit ist

$$f(x) = \frac{x^T A x}{\|x - b\|_2 + 1} > 0.$$

In der Übung wurde die Norm

$$||x||_{\tilde{A}} = \sqrt{\langle x, x \rangle_{\tilde{A}}} = \sqrt{x^T \tilde{A} x}$$

eingeführte, mit einer positiv definite, symmetrische Matrix \hat{A} . Wir können o.B.d.A. annehmen, dass die positiv definite Matrix A aus der Aufgabe auch symmetrisch ist, denn es gilt

$$x^T A x = x^T \left(\frac{A^T + A}{2} \right) x,$$

und $\frac{A^T+A}{2}$ ist symmetrisch (ansonsten ersetze A durch $\frac{A^T+A}{2}$). Damit folgt:

$$|f(x^{\nu})| = \left| \frac{(x^{\nu})^T A x^{\nu}}{\|x^{\nu} - b\|_2 + 1} \right| = \frac{\|x^{\nu}\|_A^2}{\|x^{\nu} - b\|_2 + 1}.$$

Aufgrund der Divergenz der Folge (x^{ν}) gilt für ν groß genug unter Verwendung der Dreiecksungleichung die Abschätzung

$$|f(x^{\nu})| = \frac{\|x^{\nu}\|_{A}^{2}}{\|x^{\nu} - b\|_{2} + 1} \ge \frac{\|x^{\nu}\|_{A}^{2}}{2\|x^{\nu} - b\|_{2}}$$

$$\ge \frac{\|x^{\nu}\|_{A}^{2}}{2(\|x^{\nu}\|_{2} + \|b\|_{2})}$$

$$\ge \frac{\|x^{\nu}\|_{A}^{2}}{2(\|x^{\nu}\|_{2} + \|x^{\nu}\|_{2})}$$

Durch die Äquivalenz der Normen im \mathbb{R}^n existiert nun eine Konstante c so, dass

$$|f(x^{\nu})| \ge \frac{c}{2} \cdot \frac{\|x^{\nu}\|_{A}^{2}}{2(\|x^{\nu}\|_{A} + \|x^{\nu}\|_{A})} = \frac{c}{4} \cdot \frac{\|x^{\nu}\|_{A}^{2}}{\|x^{\nu}\|_{A}} = \frac{c}{4} \cdot \|x^{\nu}\|_{A} \to \infty,$$

wobei wir im letzten Schritt wieder die Äquivalenz der Normen verwendet haben, da somit x^{ν} in allen Normen divergiert. Das heißt, für alle divergenten Folgen (x^{ν}) , ist $f(x^{\nu}) > 0$ und

$$|f(x^{\nu})| \to \infty,$$

d.h. f ist koerziv.

DaMnicht-leer und abegschlossen, fstetig und koerziv ist, ist das Problem nach Korollar 1.2.30 lösbar.

Gegeben sei das unrestringierte Optimierungsproblem

$$P: \min_{x \in \mathbb{R}^2} \exp(-\min -x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20).$$

a) Geben Sie die verallgemeinerte Epigraph-Umformulierung P_{epi} von P an (siehe Übung 1.3.9. im Skript). Begründen Sie, welche Funktionen f, g, F und G Sie für die Umformulierung verwenden.

Proof: Da es sich um ein unrestringiertes Problem handelt, ist $X=\mathbb{R}^2,\,G\equiv 0,g\equiv 0.$ Definiere

$$F: \mathbb{R} \to \mathbb{R}, x \mapsto e^{-x},$$

 $f: \mathbb{R}^2 \to \mathbb{R}, x \mapsto \min \left\{ -x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20 \right\}.$

Damit ist das unrestringierte Optimierungsproblem äquivalent zu

$$P: \min_{x \in \mathbb{R}^2} F(f(x)) \text{ s.t. } G(g(x)) \leq 0, x \in X$$

Nach Übung 1.3.9 (Verallgemeinerte Epigraph-Umformulierung) ist somit folgende Epigraph-Umformulierung äquivalent zu P:

$$P_{epi}: \min_{(x,\hat{\mathbf{A}}\alpha,\beta)\in\mathbb{R}^2\times R\times\mathbb{R}} F(\alpha) \text{ s.t. } G(\beta) \leq 0, f(x) \leq \alpha, g(x) \leq \beta, x \in X$$

$$\iff \min_{(x,\hat{\mathbf{A}}\alpha)\in\mathbb{R}^2\times R} e^{-\alpha} \text{ s.t. } \min\left\{-x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20\right\} \leq \alpha, x \in X$$

b) Formulieren Sie, aufbauend auf Aufgabenteil a), ein lineares Optimierungsproblem P_{lin} , welches die selben Optimalpunkte wie P_{epi} besitzt.

Proof: Sei

$$\tilde{F}: \mathbb{R} \to \mathbb{R}, x \mapsto e^x,$$

 $\tilde{f}: R^2 \to R, x \mapsto -\min\left\{-x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20\right\}.$

Dann ist $F(f(x)) = \tilde{F}(\tilde{f}(x))$ für alle $x \in X$. D.h. \tilde{F} , \tilde{f} beschreiben das gleiche Optimierungsproblem und es gilt

$$\tilde{f}(x) = -\min\left\{-x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20\right\}$$

$$= \max\left\{x_1 + 3, |x_2 - 4|, -(x_1 + x_2) + 20\right\}.$$

Aus der Epigraph-Formulierung bedeutet die Bedingung $\tilde{f}(x) \leq \alpha$, dass jede Komponente des Maximums kleiner gleich α sein muss, d.h. das folgende Problem besitzt die selben Optimalpunkte wie P_{eni} :

$$\tilde{P}_{epi} : \min_{(x,\hat{A}\alpha)\in\mathbb{R}^2\times R} e^{\alpha} \text{ s.t. } x \in X, \begin{cases} x_1 + 3 \le \alpha \\ x_2 - 4 \le \alpha, \ x_2 - 4 \ge -\alpha \\ -(x_1 + x_2) + 20 \le \alpha \end{cases}$$

Da die Exponentialfunktion streng monoton ist, ist jedes Minimum der Identität auf dieser Menge gleich dem Minimum der Exponentialfunktion. D.h. ein lineares Optimierungsproblem P_{lin} , welches die selben Optimalpunkte wie P_{epi} besitzt, lautet

$$P_{lin}: \min_{(x, \hat{\mathbf{A}}\alpha) \in \mathbb{R}^2 \times R} \alpha \text{ s.t. } x \in X, \begin{cases} x_1 + 3 \le \alpha \\ x_2 - 4 \le \alpha, \ x_2 - 4 \ge -\alpha \\ -(x_1 + x_2) + 20 \le \alpha \end{cases}$$

c) Zeigen Sie, mit Hilfe des verschärften Satz von Weierstraß, dass das Problem P_{lin} lösbar ist.

Proof: Das Problem P_{lin} ist auf der Menge

$$M \subseteq \left\{ (\alpha, x) = (\alpha, (x_1, x_2)) : \alpha \in \mathbb{R}, x \in \mathbb{R}^2 \right\}$$

definiert, die die folgenden Nebenbedingungen hält:

$$\begin{cases} x_1 + 3 \le \alpha \\ x_2 - 4 \le \alpha, \ x_2 - 4 \ge -\alpha \\ -(x_1 + x_2) + 20 \le \alpha \end{cases}$$

Die Funktion $f(\alpha) = \alpha$ ist als Identität stetig. Für den verschärften Satz von Weierstraß bleibt zu zeigen, dass für ein $\beta \in \mathbb{R}$ die Menge

$$\operatorname{lev}_{\leq}^{\beta}(f, M) = \{(\alpha, x) \in M | f(\alpha) = \alpha \leq \beta\}$$

nicht-leer und kompakt ist. Für $\alpha < 0$ existiert kein x_2 , sodass $x_2 - 4 \le \alpha$ und $x_2 - 4 \ge -\alpha$. Für $\alpha = 0$, ist $x_2 = 4$ und damit $\not\exists x_1 \colon x_1 + 3 \le 0$ und $-(x_1 + 4) + 20 \le 0$ Für $\alpha > 0$ ist

$$x_2 \in [4 - \alpha, 4 + \alpha],\tag{*}$$

d.h. x_2 liegt in einer nicht-leeren, abgeschlossennen Menge. Aus den Restriktionen erhalten wir außerdem

$$x_1 \in [20 - x_2 - \alpha, \alpha - 3],$$
 (**)

Diese Menge ist für $\alpha > \frac{19}{3}$ nicht leer und abgeschlossen, da für $x_2 = 4 + \alpha$:

$$20 - x_2 - \alpha < \alpha - 3 \iff 23 - (4 + \alpha) < 2\alpha \iff \alpha > \frac{19}{3}$$
.

Somit liefert ein $\beta > \frac{19}{3}$, dass $f(\alpha) = \alpha \in \left[\frac{19}{3}, \beta\right]$ beschränkt ist. Das in Kombination mit (*) bzw. (**) liefert die Beschränktheit von x_1, x_2 . Zusammengefasst ist für ein $\beta > \frac{19}{3}$

$$\left\{ (\alpha, x) \in M | f(\alpha) = \alpha \le \beta \right\}$$

nicht-leer und kompakt und der verschärfte Satz von Weierstraß garantiert die Lösbarkeit des Problems. \Box

- d) Modellieren Sie das Problem in Matlab/ Jupyter Notebook und geben Sie den globalen Minimalpunkt von P_{lin} aus.
- e) Bestimmen Sie einen globalen Optimalpunkt und den Optimalwert von P.

Proof: Die Minimalpunkte von P und P_{lin} stimmen nach Konstruktion überein (siehe 3b), also folgt aus d) für die Optimalpunkte $x^* = (\frac{10}{3}, \frac{31}{3})$. Einsetzten in das Ursprungsproblem ergibt:

$$f(x^*) = \exp(-\min\{-x_1 - 3, -|x_2 - 4|, x_1 + x_2 - 20\})$$

$$\iff \exp(-\min\{\frac{1}{3}, -\frac{19}{3}, -\frac{19}{3}\}) = \exp(\frac{19}{3}) = 563.0302$$

Gegeben seien eine (p, n)-Matrix A, sowie Vektoren $b \in \mathbb{R}^p$ und $a \in \mathbb{R}^n$. In dieser Aufgabe geht es um die Projektion von a auf die Menge

$$\hat{M} := \left\{ x \in \mathbb{R}^n \colon Ax \le b \right\}.$$

Dieses Problem tritt in ähnlicher Form in der Gemischt-Ganzzahligen Optimierung im Rahmen eines Ansatzes zur heuristischen Bestimmung von Punkten in

$$M = \left\{ x \in \mathbb{Z}^m \colon Ax \le b \right\}$$

auf (Feasibility Pump, [1]). Wählt man für die Projektion die ℓ_1 -Norm, so lässt sich das Optimierungsproblem formulieren als

$$FP: \quad \min_{x \in \mathbb{R}^n} \sum_{j=1}^n |x_j - a_j| \text{ s.t. } Ax \le b.$$

Bestimmen Sie ein äquivalentes lineares Optimierungsproblem FP_{lin} , indem Sie die verallgemeinerte Epigraph Umformulierung (vgl. Übung 1.3.9 im Skript) anwenden. Begründen Sie, welche Funktionen f, g, F und G Sie für die Umformulierung verwenden.

Proof: Wir definieren

$$f: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto x - a$$

$$F: \mathbb{R}^n \to \mathbb{R}, x \mapsto ||x||_1$$

$$g: \mathbb{R}^n \to \mathbb{R}^n, x \mapsto Ax - b$$

$$G: \mathbb{R}^n \to \mathbb{R}, x \mapsto \max\{x_1, \dots, x_n\}$$

Damit gilt für $X = \mathbb{R}^n$, dass das obiges Optimierungsproblem äquivalent dargestellt werden kann durch

$$P: \min_{x \in \mathbb{R}^n} F(f(x)) \text{ s.t. } G(g(x)) \le 0, x \in X$$

$$\iff \min_{x \in \mathbb{R}^n} \|x - a\|_1 \text{ s.t. } \max_i \{(Ax - b)_i\} \le 0, x \in \mathbb{R}^n,$$

wobei wir ausnutzen, dass $Ax \leq b \iff Ax - b \leq 0 \iff \max_i \{(Ax - b)_i\} \leq 0$. Damit sind die Voraussetzungen der verallgemeinerten Epigraph-Formulierung gegeben und die äquivalente Epigraph-Formulierung lautet:

$$P_{epi}: \min_{(x,\alpha,\beta)\in\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^l} F(\alpha) \text{ s.t. } G(\beta) \le 0, \ f(x) \le \alpha, \ g(x) \le \beta, \ x \in X$$

$$\iff \min_{(x,\alpha,\beta)\in\mathbb{R}^n\times\mathbb{R}^n\times\mathbb{R}^l} \sum_{i=1}^n |\alpha_i| \text{ s.t. } x\in X, \begin{cases} \beta_i \leq 0, \\ (x-a)_i \leq \alpha_i, \end{cases} \forall i\in\{1,\ldots,n\}$$
$$(Ax-b)_i \leq \beta_i,$$

was ein lineares Problem darstellt.

Skizzieren Sie folgende Mengen $M \subseteq \mathbb{R}^2$ und zeigen oder widerlegen Sie jeweils die Konvexität von M.

Definition 2.1.1.: Eine Menge $M \subseteq \mathbb{R}$ heißt konvex, falls folgendes gilt

$$\forall x, y \in M, \lambda \in (0,1) : (1-\lambda)x + \lambda y \in M$$

(d.h. die Verbindungsstrecke von je zwei beliebigen Punkten in M gehört komplett zu M).

a)
$$M: \left\{ x \in \mathbb{R}^2 : (x_1 - 1)^2 + (x_2 - 1)^2 \le 4 \right\}$$

Proof: Seien $x, y \in M$. Definiere für $\lambda \in (0, 1)$:

$$z := \lambda x + (1 - \lambda)y.$$

Somit gilt

$$(z_1 - 1)^2 = (\lambda x_1 + (1 - \lambda)y_1 - 1)^2 = (\lambda(x_1 - 1) + (1 - \lambda)(y_1 - 1))^2$$

$$(z_2 - 1)^2 = (\lambda x_2 + (1 - \lambda)y_2 - 1)^2 = (\lambda(x_2 - 1) + (1 - \lambda)(y_2 - 1))^2$$

Damit ist unter Verwendung von Cauchy-Schwartz

$$(z_{1}-1)^{2} + (z_{2}-1)^{2} = (\lambda(x_{1}-1) + (1-\lambda)(y_{1}-1))^{2} + (\lambda(x_{2}-1) + (1-\lambda)(y_{2}-1))^{2}$$

$$\leq 2(\lambda^{2}(x_{1}-1)^{2} + (1-\lambda)^{2}(y_{1}-1)^{2}) + 2(\lambda^{2}(x_{2}-1)^{2} + (1-\lambda)^{2}(y_{2}-1)^{2})$$

$$= 2(\lambda^{2}((x_{1}-1)^{2} + (x_{2}-1)^{2}) + (1-\lambda)^{2}((y_{1}-1)^{2} + (y_{2}-1)^{2}))$$

$$\leq 2(\lambda^{2}4 + (1-\lambda)^{2}4)$$

$$= 8(\lambda^{2} + (1-\lambda)^{2}) \stackrel{(*)}{\leq} 8\left(\left(\frac{1}{2}\right)^{2} + \left(1 - \frac{1}{2}\right)^{2}\right) = 4$$

(*): hier haben wir ausgenutzt, dass die Funktion $g(x) = x^2 + (1-x)^2$ ihr Maximum bei $\frac{1}{2}$ annimmt. Dazu die FOC:

$$g'(x) = 2x - 2(1-x) \stackrel{!}{=} 0 \iff x = \frac{1}{2}$$

und g''(x) = 2 + 2 > 0. Das heißt $z \in M$.

b)
$$M: \left\{ x \in \mathbb{R}^2: (x_1 - 1)^2 + (x_2 - 1)^2 \le 4, (x_1 - 3)^2 + (x_2 - 1)^2 \ge 1 \right\}$$

Proof: Behauptung: M ist nicht konvex, da $x,y\in M$ existieren, deren konvexe Verbindungsstrecke nicht komplett in der Menge liegt. Sei hierfür $x=(\frac{11}{4},1-\frac{\sqrt{15}}{4})$ und $y=(\frac{11}{4},1+\frac{\sqrt{15}}{4})$, dann gilt $x,y\in M$. Wähle konkret $\lambda=0,5$ und definiere $z:=(1-\lambda)x+\lambda y$. Wäre M konvex, so müsste folgen $z\in M$. Einsetzen der obigen Werte ergibt:

$$z_1 = 0, 5 * \frac{11}{4} + (1 - 0.5) \frac{11}{4} = \frac{11}{4}$$
$$z_2 = (0, 5 * (1 - \frac{\sqrt{15}}{4}) + (1 - 0.5)(1 + \frac{\sqrt{15}}{4}) = 1$$

Einsetzen der Werte in die Ungleichungen ergibt:

$$(z_1 - 1)^2 + (z_2 - 1)^2 = \frac{49}{16} \le 4$$
$$(z_1 - 3)^2 + (z_2 - 1)^2 = \frac{1}{16} \le 1$$

Aufgrund der 2. Ungleichung gilt $z \notin M$ und damit ist M nicht konvex.

c)
$$M: \left\{ x \in \mathbb{R}^2: (x_1 - 1)^2 + (x_2 - 1)^2 \le 4, (x_1 - 3)^2 + (x_2 - 1)^2 \ge 16 \right\}$$

Proof: Behauptung: Die Menge M enthält nur den Punkt (-1,1) und ist damit trivialerweise konvex. Betrachte hierfür die Randbedingungen

$$(x_2 - 1)^2 \le 4 - (x_1 - 1)^2$$
 und $(x_2 - 1)^2 \ge 16 - (x_1 - 3)^2$.

Einsetzen ineinander liefert

$$4 - (x_1 - 1)^2 \ge 16 - (x_1 - 3)^2 \iff 8 - 4x_1 \ge 12 \iff x_1 \le -1$$

Da allerdings

$$4 \ge (x_1 - 1)^2 + (x_2 - 1)^2 \ge (x_1 - 1)^2 \iff 3 \ge x_1$$

und $-1 \ge x_1$, folgt $x_1 = -1$. Daraus folgt direkt

$$0 \ge +(x_2-1)^2 \ge 0 \iff x_2=1$$

und damit die Behauptung.

