I(a) Proof. Let $\Gamma = \{C(X) : ||f|| \le 1 \text{ and } N_{\alpha}(f) \le 1\}$. We appeal to HW5 Problem 3. We show that Γ is compact by showing that it is closed, bounded, and equicontinous, as $\Gamma \subseteq C(X)$ and X is compact.

Closed: We show that $\Gamma' \subseteq \Gamma$. Pick any $g \in \Gamma'$. There exists a sequence of functions $(g_n) \subseteq \Gamma \setminus \{g\}$ that converges to g w.r.t. the supremum norm, and this means that $g_n \to g$ uniformly by Rudin Theorem 7.7.

We show that $g \in \Gamma$, i.e., $||g|| \le 1$ and $N_{\alpha}(g) \le 1$.

Given any $\varepsilon > 0$. We know there exists a natural N s.t. $||g - g_N|| < \varepsilon$. Also,

$$||g|| = ||g - g_N + g_N|| \le ||g - g_N|| + ||g_N|| < 1 + \varepsilon.$$

Since ε is arbitrary, $||g|| \le 1$.

Now again given any $\varepsilon > 0$. Pick any $x, y \in X$ where $x \neq y$. Then first note that d(x, y) > 0 since $x \neq y$, so $d(x, y)^{\alpha}$ is a real number greater than zero. And since $g_n \to g$ uniformly, there exists a natural N s.t., $|g_N(t) - g(t)| < \varepsilon \cdot d(x, y)^{\alpha}/2$, for all $t \in X$. Therefore,

$$\frac{|g(x) - g(y)|}{d(x,y)^{\alpha}} = \frac{|g(x) - g_N(x) + g_N(y) - g(y) + g_N(x) - g_N(y)|}{d(x,y)^{\alpha}} \\
\leq \frac{|g(x) - g_N(x)|}{d(x,y)^{\alpha}} + \frac{|g_N(y) - g(y)|}{d(x,y)^{\alpha}} + \frac{|g_N(x) - g_N(y)|}{d(x,y)^{\alpha}} \\
\leq \frac{\varepsilon \cdot d(x,y)^{\alpha}}{2d(x,y)^{\alpha}} + \frac{\varepsilon \cdot d(x,y)^{\alpha}}{2d(x,y)^{\alpha}} + 1 \\
= 1 + \varepsilon.$$

Since ε is arbitrary, $|g(x) - g(y)|/d(x,y)^{\alpha} \le 1$ for this particular pair of x and y. And since x, y is arbitrary, then 1 is a upper bound of the set A where

$$A = \left\{ \frac{|g(x) - g(y)|}{d(x, y)^{\alpha}} : x, y \in X, x \neq y \right\},\,$$

which means that

$$N_{\alpha}(g) = \sup A \le 1,$$

as the supremum must be the least upper bound.

Bounded: It's enough to show that Γ can be covered in an open neighborhood in the metric space $(\mathcal{C}(X), \|\cdot\|)$. Let $\mathbb{B}[0; 2)$ be the open ball centered at the zero function with a radius 2. We claim that

$$\mathbb{B}[0;2) \supseteq \Gamma.$$

To see this, pick any $f \in \Gamma$, then $||f|| = ||f - 0|| \le 1 < 2$. Therefore, $f \in \mathbb{B}[0; 2)$.

Equicontinous: Give any $\varepsilon > 0$. We aim to find a $\delta > 0$ s.t.

$$|f(x) - f(y)| < \varepsilon,$$

whenever $d(x,y) < \delta$, $x,y \in X$, $f \in \Gamma$. We claim that $\delta = \varepsilon^{1/\alpha}$ will work. To see this, pick any $f \in \Gamma$ and any $x,y \in X$ s.t. $d(x,y) < \delta$. Note that either x=y or $x \neq y$. If x=y, then $|f(x)-f(y)|=0<\varepsilon$. If $x\neq y$, then

$$d(x,y) < \delta = \varepsilon^{1/\alpha} \implies d(x,y)^{\alpha} < \varepsilon.$$

Also, $N_{\alpha}(f) \leq 1$ since $f \in \Gamma$. This means that

$$\frac{|f(x) - f(y)|}{d(x, y)^{\alpha}} \le N_{\alpha}(f) \le 1 \implies |f(x) - f(y)| \le d(x, y)^{\alpha} < \varepsilon.$$

This proves equicontinuity and concludes the proof of compactness of Γ .

Proof.

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$

4 Proof.

Proof.