COGI	NOMS:																	
	L [/sus [
	NOM:										DNI	/NIE:						
en m enma	ORTANTE ayúscula arcado de mbres co	s y lo m entro d	nás clara e su rec	amento cuadro	e posibl sin lleg	e. Es in ar a too	nporta car los	inte qu borde	ie no h s. Use	aya t un úr	achon nico cu	es ni bo adro ei	orrone n blan	es y qu co par	ie cada a sepa	a cará Irar lo	icter os ap	quede ellidos
Prob	olema 1.	(3,5 p	untos)															
instru supo ejecu acces	mos un ucciones ndremos itarse, m so). La pe de las ins	y datos que el lás el til enalizad	s. Llama acceso empo q ción po	amos Si a instr que tar r acces	1-MP a ruccione den en so a la N	este sis es no pa acceda MP es o	stema enaliza er a la de 120	. En es a el tie MP pa) ciclos	te prol mpo da ara acc a. Ejecu	blema e ejed eder utamo	a tendi cución a los c os en e	remos (. Todas latos (e el sister	en cue las ins en cas na S1-	enta so strucc o de o -MP u	olo el a iones f que sea n códi	acceso tarda a nec go qu	o a c n 1 c esar ue ti	latos, y ciclo en io este ene un
-	Calcula acceder			-		cción (e	en me	dia) re	ealiza e	este p	oroces	ador a	la Mi	en e	el siste	ma S	51-M	P para
b)	Calcula	el CPI d	el siste	ma S1-	MP cua	ındo ej	ecuta	el códi	go des	crito	•							
sister añad	mejorar ma le llar en 2 cicl ica de es	namos os al ti	S2-L1D empo d	. La late le ejec	encia d ución d	e acces e la ins	o de la strucci	a L1D e ión. La	es de 2 latend	ciclos cia de	s. Esto	signific so a la	ca que MP si	todo: gue si	s los ac endo c	ceso de 12	s a la .0 cio	a cache clos. La
c)	Calcula	el CPI d	el siste	ma S2-	L1D en	funció	n de la	tasa c	de fallo	os de	la L1D	(tf).						
	Calcula en la mi			-		-		podría	a sopo	rtar e	l siste	ma S2-	L1D p	ara qı	ue el co	ódigo	se e	ejecute
			• *	·	-													

Después de un largo debate entre los ingenieros, la L1D implementada en el sistema S2-L1D tiene una tasa de fallos de 0,2, tanto para lecturas como para escrituras. Todas las instrucciones tienen un consumo base de 10nJ (sin acceder a memoria). La L1D tiene un consumo de 30nJ por acceso (de escritura o lectura). Un acceso a MP (tanto a bloque como a palabra) consume 400nJ.

e) Calcula el ahorro de energía medio por instrucción del sistema S2-L1D respecto al sistema S1-MP.

e) Calcula el anorto de energia medio por mistracción del sistema 32-110 respecto al sistema 31-101.
f) Calcula la potencia disipada por el sistema S2-L1D (en Vatios) si la frecuencia es de 2GHz.
Ty Carcala la potencia disipada por el sistema 32 ELD (en vatios) si la riccacnicia es de 20112.
Debido a la aparición del ataque Rowhammer, los diseñadores quieren introducir un buffer de escrituras entre la L1D
la MP para evitar que estos ataques realicen un acceso ilícito al sistema. A este sistema le llamamos S3-BUF. El buffe
funciona como una cola FIFO, y va guardando en la cola todas las escrituras que realiza el programa. Una vez el dato s
escribe en el buffer, el procesador sigue ejecutando el código (no espera a que el dato se escriba en memoria). Cuand la memoria está libre, el buffer escribe en la MP. En el caso de realizar una lectura de MP, primero se mira si los dato
están en el buffer. Si están, se leen desde el buffer. Si no están, se accede a la MP después de haber accedido al buffe
Sólo un 10% de las lecturas que se realizan en el buffer encuentran el dato que buscaban. Cada acceso al buffer (d
lectura o escritura) consume 50nJ.
g) Calcula la energía media por instrucción en el sistema S3-BUF.
h) Calcula la latencia máxima de lectura (en ciclos) que debería tener el buffer en el sistema S3-BUF para que rendimiento sea superior a 165 MIPS.
Tendimiento sea superior a 103 Mirs.

COGNOMS:															
NOM:								[NI/N	IIE:					

Problema 2. (3,5 puntos)

Tenemos un procesador con un espacio de direccionamiento lógico de 4 Gbytes (direcciones lógicas de 32 bits). La unidad mínima de direccionamiento es un byte. La memoria virtual esta basada en traducción de direcciones mediante paginación, con paginas de 1 Mbyte. Para acelerar la traducción, el procesador tiene un TLB que genera direcciones físicas de 24 bits. El resto de la jerarquía de memoria se accede mediante direcciones físicas y está formado por una cache L1, una cache L2 y la memoria principal.

CPU	@ Lógica	TLB	@ Física	Cache	@ Física	Cache	@ Física	Memoria	
CFU	32 bits		24 bits	L1	24 bits	L2	24 bits	Principal	

La siguiente tabla resume las principales características de cada uno de los componentes de la jerarquía:

	TLB	L1	L2
Tamaño	2 entradas	8 Kbytes	64 Kbytes
Políticas de escritura		Write Through + Write NO Allocate	Copy Back + Write Allocate
Asociatividad	Totalmente asociativo	2 asociativa	Mapeo Directo
Tamaño de Bloque		32 bytes	64 bytes
Algoritmo de reemplazo	LRU	LRU	

En los siguientes apartados se asume que todos los accesos son a byte. En todas las tablas se describen los campos necesarios. Si un campo no se describe es porque ya se ha descrito en tablas anteriores. Para representar un valor en hexadecimal con un numero de bits no múltiplo de 4, asume ceros en los de más peso (101000 -> 28).

a)	Dibuja una dirección	lógica con lo	s campos	de bits	relevantes	para la	traducción	de direcciones,	indicando
	claramente el nombre	y tamaño de	cada uno d	e ellos.					

C	ciaramente el nombre y tamano de cada uno de enos.

b) **Rellena** la siguiente tabla a partir de la secuencia de referencias a memoria. Sabemos el TLB está inicialmente vacío. La tabla de la derecha muestra el contenido de las 6 primeras posiciones de la tabla de paginas.

@lógica: Dirección lógica (en hexadecimal) generada por el procesador.

L/E: El acceso es lectura (L) o escritura (E).

VPN: Virtual Page Number (página lógica) (en hexadecimal).

Desp: Desplazamiento dentro de la página (en hexadecimal).

PPN: Physical Page Number (página física) (en hexadecimal).

@física: Dirección física (en hexadecimal)A/F: Acierto de TLB (A) o fallo de TLB (F).

@lógica	L/E	VPN	Desp	PPN	@física	A/F
00000000	Е					
00201111	L					
00002222	L					
00503333	Е					
00204444	L					
00505555	Е					

VPN	PPN	Р	М
000	А	1	0
001	В	1	0
002	0	1	0
003	5	1	0
004	4	1	0
005	3	1	0

			-	de bits rel	evantes ¡	oara el ac	ceso a la ca	iche L1, ind	icando claramente e
nomb	re y tamano	de cada uno	de ellos.						
d) Rellen	a la siguient	te tabla a part	ir de la sec	uencia de	referenci	as a mem	oria dada:		
BM:	•	memoria que			ecimal).				
byte:	-	o del bloque (
TAG: CJT:	-	el acceso a cad e cache en qu				adecimal)	_		
A/F:	-	Cache L1 (A) c	-	-		auconnar,	•		
LMP:	Numero de	bytes leídos	de L2 (vací	o si no se l	ee).				
EMP:	Numero de	bytes escrito	s en L2 (va	cío si no s	e escribe).			
@física	L/E	ВМ	byte	TAG	CJT	A/F	LMP	EMP	
000000	L								
444001	E								
888002	L								
000013	L								
444014	L								
444015	E								
		ón física con l de cada uno	•	de bits rel	evantes _l	oara el ac	ceso a la ca	iche L2, ind	icando claramente e
f) Rellen	a la siguient	te tabla a part	ir de la sec	uencia de	referenci	as a mem	oria dada:		
LC:	•	ea) de cache e						ecimal).	
A/F:		Cache L2 (A) o	-	-	-	5	, = 1.2/6/6/	· · · · · · · · · · · · · · · · · · ·	
LMP:		bytes leídos							
EMP:	Numero de	bytes escrito	s en memo	oria princip	iai (vacio	si no se e	scribe).		
@física	L/E	ВМ	byte	TAG	LC	A/F	LMP	EMP	
000000	L								

		•			•		•	
@física	L/E	ВМ	byte	TAG	LC	A/F	LMP	EMP
000000	L							
000001	E							
440002	L							
008013	E							
008014	L							
448015	Е							

COGNOMS:															
NOM:								D	NI/NI	IE:					

Problema 3. (3 puntos)

Hemos adquirido un disco duro para nuestro equipo doméstico y nos proponemos analizar algunas de sus características. La siguiente tabla muestra los parámetros más relevantes de nuestra compra:

platos	12 platos/disco	
caras por plato	2 caras/plato	
pistas	100000 pistas/cara	
tamaño pista	64 sectores/pista	
tamaño sector	512 bytes/sector	
velocidad rotación (número de vueltas por minuto)	5400 r.p.m.	
coste (precio final)	24,26 euros	

	coste (precio final)	24,26 euros	
a)	Calcula la capacidad del disco si se formatea con GB (potencias de 10). Calcula también el coste		s por pista. Escribe el resultado en
b)	Calcula el tiempo de transferencia de un secto del tamaño del sector y de la densidad de la pis		

Dado el uso intensivo que damos a nuestro disco para grabación y reproducción de películas, cada vez necesitamos más capacidad de almacenamiento. En nuestra incursión en el manual descubrimos que con varios discos de características similares al que hemos comprado podemos crear nuevos sistemas de almacenamiento usando diferentes organizaciones RAID. Más concretamente, el proveedor nos propone una configuración RAID 0 con 4 discos de 300GB.

c) **Completa** la siguiente tabla, indicando para cada una de las configuraciones RAID cuántos discos necesitaríamos para mantener la misma información útil que nos propone el proveedor (en GB), así como la cantidad de información redundante que tendremos en cada configuración (en %).

Configuración	número de discos	información útil (GB)	Información redundante (%)
RAID 0 (proveedor)	4		
RAID 10			
RAID 3			
RAID 4			
RAID 5			
RAID 6			

La siguiente figura muestra una posible configuración RAID 5 de 4 discos. En cada fila se ven las diferentes tiras de datos y de paridad.

Imagina que en la configuración RAID 5 de la figura se produce una avería del disco2 y cuándo aún no se ha recuperado el disco, llega una petición de lectura de todos los datos de una determinada fila.

d) Razona si es posible realizar dicha lectura cuando es de los datos de la primera fila (fila-1). En caso afirmativo y si es necesario, indica cómo se recupera la información perdida en el disco 2. Repite tus respuestas para el caso de una lectura de la tercera fila (fila-3).
Dentro del manual del disco leemos que, cada interrupción que produce este dispositivo implica la ejecución de una
rutina de servicio, que en un procesador CISC de la familia x86 requiere la ejecución de 2000 instrucciones dinámicas de lenguaje máquina x86. Nuestro procesador, que funciona a 1 GHz, es un Intel CISC x86. Sabemos que traduce internamente las instrucciones de lenguaje máquina x86 a microoperaciones (uops). Suponed que cada instrucción de la rutina se traduce en una uop y que cada 500 instrucciones CISC se necesitan 215 uops adicionales.
e) Calcula el CPI y el tiempo de ejecución de la rutina de servicio de interrupciones para un valor de UPC (uops por ciclo) de 1,5.
Un ejemplo en el manual habla de un programa que tarda 2 horas en ejecutarse en un sistema con un solo procesador y 1 único disco. El programa está formado por una Fase de cálculo y una Fase de entrada/salida. El procesador tiene un rendimiento promedio, para este programa, de 500 MIPS. El manual dice que sólo la Fase de cálculo de este programa es totalmente paralelizable (sin necesidad de añadir ningún tipo de sincronización). Según el manual, el programa se acelera en 1,6x si en lugar de 1 disco se usa una configuración RAID 0 con 4 discos (suponed que todos los accesos son aleatorios y que son suficientes para saturar el ancho de banda de los 4 discos).
f) Calcula a cuántos MIPS se ejecutará el programa en nuestro PC con 8 procesadores, idénticos al anterior, y una configuración RAID 0 de 4 discos como la descrita en el manual.