

Safety-critical control in mixed criticality embedded systems

Emil Hjelm

Presentation outline

- Background
- Research question and problem statement
- What has been done in the field?
- Demonstrator system overview
- Results
- Conclusion

Background

Today, modern cars have around 100 ECUs, this means:

- Inefficient resource usage
- Clear separation between functions

Moving towards MCS would mean:

- Efficient resource usage
 - Less power consumed
 - Less weight
 - Less volume
 - Lower production cost
- Difficult to separate functions of different criticality
- Fewer but more complex systems

Illustration of combining applications to reduce ECUs [1]

Four different Automotive Safety Integrity Levels, ASILs

Severity	Probability	Controllability		
		C1	C2	С3
S1	E1	QM	QM	QM
	E2	QM	QM	QM
	E3	QM	QM	A
	E4	QM	A	В
S2	E1	QM	QM	QM
	E2	QM	QM	A
	E3	QM	A	В
	E4	A	В	С
S3	E1	QM	QM	A
	E2	QM	A	В
	E3	A	В	С
	E4	В	С	D

^[3] Road vehicles – functional safety – part 9: Automotive safety integrity level (asil)-oriented and safety-oriented analyses. Standard, International Organization for Standardization, Geneva, CH, November 2011.

Alten MCS - Processor switching state

Processor boot sequence [4]

[4] Youssef Zaki. An embedded multi-core platform for mixed-criticality systems: Study and analysis of virtualization techniques. Master's thesis, KTH, School of Information and Communication Technology (ICT), 2016.

Alten MCS - Processor switching state

- Mode-switch takes ~2 μs
- Theoretical maximum frequency for any control algorithm f_{max} < 250 kHz

Processor boot sequence [4]

[4] Youssef Zaki. An embedded multi-core platform for mixed-criticality systems: Study and analysis of virtualization techniques. Master's thesis, KTH, School of Information and Communication Technology (ICT), 2016.

Research question

Is virtualization an efficient approach when trying to reconcile the conflicting requirements of partitioning for safety assurance and sharing for efficient resource usage when implementing a safety-critical control system?

Problem statement

Implement distance keeping control algorithm as a safety critical application on a mixed criticality system. Evaluate performance of processor

- Missed deadlines?
- Robustness of hypervisor
- CPU utilization

Schedulers

- Steve Vestal showed that neither RM nor DM was optimal when criticality levels are introduced [6]
- Sanjoy Baruah and Steve Vestal showed that EDF does not dominate FP in mixed criticality systems [7]

- [6] Steve Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution time assurance, 2007.
- [7] Sanjoy Baruah and Steve Vestal. Schedulability analysis of sporadic tasks with multiple criticality specifications, 2008.

System overview

Processor scheduling

Data aggregation

Communication

Lateral control

Longitudinal control

OS switch

GPOS

Time not to scale

OS switch execution times

- WCET: 153 clock cycles 3.06 us
- Median execution time: 86 clock cycles 1.72
- 1 kHz switching frequency:
 - RTOS CPU utilization 0.005%
 - Hypervisor overhead 0.6%
 - Increased total CPU utilization to potentially 99.4%

WCET

100% CPU utilization by RTOS and monitor at 40kHz

(Meaning 0% time for GPOS)

Median execution time

34% CPU utilization by GPOS at 40kHz if RTOS and monitor runs for median execution time

Conclusion

Is virtualization an efficient approach when trying to reconcile the conflicting requirements of partitioning for safety assurance and sharing for efficient resource usage when implementing a safety-critical control system?

Yes!

