Simplified AES

Simplified AES

- Simplified AES Structure
- Uses Modular Polynomial Arithmetic GF(2⁴)

$$m(x) = x^4 + x + 1$$

- Plaintext Block Size 16 Bit (2 Bytes)
- Variable Key Size 16 Bit (2 Bytes)
- Number of Rounds 1 Round
- Round Key Size 16 Bit (2 Bytes)

Simplified AES Structure

Simplified AES Structure

S-AES Encryption $A_{k_{2}} \circ SR \circ NS \circ A_{k_{1}} \circ MC \circ SR \circ NS \circ A_{k_{0}}$

S-AES Decryption $A_{k_0} \circ INS \circ ISR \circ IMC \circ A_{k_1} \circ INS \circ ISR \circ A_{k_2}$

Simplified AES Date Representation

$b_0b_1b_2b_3$	b ₈ b ₉ b ₁₀ b ₁₁	
b4b5b6b7	$b_{12}b_{13}b_{14}b_{15}$	

Bit representation

(a) State matrix

$S_{0,0}$	$S_{0,1}$
$S_{1,0}$	$S_{1,1}$

Nibble representation

Bit representation

(b) Key

Simplified AES Round

Simplified AES Round Operations

- Nibble Substitution
- Shift Rows
- Mix Columns
- Add Round Key

Simplified AES Round Operations

$$= \begin{array}{c|c} s'_{0,0} & s'_{0,1} \\ \hline s'_{1,0} & s'_{1,1} \end{array}$$

Add	
key	

Simplified AES - S-Box

		j				
		00	01	10	11	
	00	9	4	A	В	
i	01	D	1	8	5	
	10	6	2	0	3	
	11	С	Е	F	7	

(a) S-Box

		j				
		00	01	10	11	
i	00	Α	5	9	В	
	01	1	7	8	F	
	10	6	0	2	3	
	11	С	4	D	Е	

(b) Inverse S-Box

Simplified AES - Mix Columns

Uses Modular Polynomial Arithmetic GF(2⁴)

$$m(x) = x^4 + x + 1$$

$$\begin{bmatrix} 1 & 4 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} S_{0,0} & S_{0,1} \\ S_{1,0} & S_{1,1} \end{bmatrix} = \begin{bmatrix} S'_{0,0} & S'_{0,1} \\ S'_{1,0} & S'_{1,1} \end{bmatrix}$$

Forward Mix Columns

$$\begin{bmatrix} 9 & 2 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} S_{0,0} & S_{0,1} \\ S_{1,0} & S_{1,1} \end{bmatrix} = \begin{bmatrix} S'_{0,0} & S'_{0,1} \\ S'_{1,0} & S'_{1,1} \end{bmatrix}$$

Inverse Mix Columns

w g N_0 N_1 N_1 N_0 N'_0 x^{i+2} w

Simplified AES – Key Expansion

(a) Overall algorithm

 w_4

 w_5

 w_2

 w_3

 w_0

 w_1

(b) Function g

Simplified AES – Key Expansion

$$w_0 = [k_0 k_1 k_2 k_3 k_4 k_5 k_6 k_7]$$
 and $w_1 = [k_8 k_9 k_{10} k_{11} k_{12} k_{13} k_{14} k_{15}]$
 $w_2 = w_0 \oplus g(w_1) = w_0 \oplus RCON(1) \oplus SubNib(RotNib(w_1))$
 $w_3 = w_1 \oplus w_2$
 $w_4 = w_2 \oplus g(w_3) = w_2 \oplus RCON(2) \oplus SubNib(RotNib(w_3))$
 $w_5 = w_3 \oplus w_4$

$$RCON(i) = [RC[i] \ 0]$$

 $RC[1] = x^3 \mod m(x) = 1000$
 $RC[2] = 2 \cdot RC[1] = x + 1 = 0011$