Claims

The following is a complete listing of the claims, and replaces all earlier versions and listings.

- 1-20. (Cancelled)
- $21. \qquad (Previously \ Presented) \ A \ polyhydroxyalkanoate comprising \ a$ $monomer \ unit \ of \ 3-hydroxy-\omega-[(phenylmethyl)oxy] alkanoic \ acid \ expressed \ by \ chemical \\ formula \ (1):$

$$\begin{array}{c}
\left\{\begin{array}{c}
O - CH - CH_{2} \\
CGH_{2}\right\} \\
CH_{2} \\
CH_{2}
\end{array} \times = 1-8$$

wherein \boldsymbol{x} can be one or more integers within the range shown in the chemical formula.

22. (Withdrawn) The polyhydroxyalkanoate according to claim 21, comprising at least one unit expressed by chemical formula selected from the group consisting of chemical formulas (2) and (3):

wherein y and z can be one or more integers within the range shown in the chemical formulas, while being independent from the monomer unit expressed by chemical formula (1).

23. (Withdrawn) The polyhydroxyalkanoate according to claim 21, comprising simultaneously, in at least a molecule thereof, the monomer of 3-hydroxy-to-[(phenylmethyl)oxy]alkanoic acid expressed by chemical formula (1) and a unit expressed by chemical formula (4):

wherein m can be one or more integers within the range shown in the chemical formula, and R comprises a residue having either a phenyl structure or a thienyl

structure, or a 3-hydroxy- ω -cyclohexylalkanoic acid unit expressed by chemical formula (5):

$$\begin{array}{c|c}
\hline
O - CH - CH_2 - C - \\
\hline
(CH_2)k \\
k = 0.8
\end{array}$$

wherein R_1 is H, CN, NO_2 , halogen, CH_3 , C_2H_5 , C_3H_7 , CF_3 , C_2F_5 and C_3F_7 , and k can be one or more integers within the range shown in the chemical formula, wherein R in chemical formula (4), i.e. a residue having either a phenyl structure or a thienyl structure, is at least one group selected from the group consisting of residues

wherein R_2 is H, halogen, CN, NO_2 , CH_3 , C_2H_5 , C_3H_7 , $CH=CH_2$, $COOR_3$ (wherein R_3 represents any one selected from the group consisting of H, Na and K), CF_3 , C_2F_5 and C_3F_7 , and in a case where there exist a plurality of units, R_2 may be different for each unit:

wherein R_4 is selected from the group consisting of H, halogen, CN, NO_2 , CH_3 , C_2H_5 , C_3H_7 , SCH_3 , CF_3 , C_2F_5 and C_3F_7 , and in a case where there exist a plurality of units, R_4 may be different for each unit;

wherein R_3 is selected from the group consisting of H, halogen, CN, NO₂, CH₃, C₂H₅, C₃H₇, CF₃, C₂F₅ and C₃F₇, and in a case where there exist a plurality of units, R_5 may be different for each unit;

wherein R₆ is selected from the group consisting of H, halogen, CN, NO₂, COOR₇, SO₂R₈ (wherein R₇ represents any one selected from the group consisting of H, Na, K, CH₃ and C₂H₅, and R₈ represents any one selected from the group consisting of OH, ONa, OK, halogen, OCH₃ and OC₂H₅), CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH, and (CH₃)₃-C, and in a case where there exist a plurality of units, R₆ may be different for each unit;

$$R_9$$
 CH_2 $-S$ (12)

wherein R₉ represents a substituent group on the aromatic ring, R₉ is selected from the group consisting of H, halogen, CN, NO₂, COOR₁₀, SO₂R₁₁ (wherein

 R_{10} represents any one selected from the group consisting of H, Na, K, CH₃ and C_2H_5 , and R_{11} represents any one selected from the group consisting of OH, ONa, OK, halogen, OCH₃ and OC₂H₅), CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH and (CH₃)₃-C, and in a case where there exist a plurality of units, R_9 may be different for each unit;

wherein R₁₂ is selected from the group consisting of H, halogen, CN, NO₂,
COOR₁₃, SO₂R₁₄ (wherein R₁₃ represents any one selected from the group consisting of H,
Na, K, CH₃ and C₂H₅, and R₁₄ represents any one selected from the group consisting of
OH, ONa, OK, halogen, OCH₃ and OC₂H₅), CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH and (CH₃)₃-C,

and in a case where there exist a plurality of units, R₁₂ may be different for each unit; and

wherein R₁₅ is selected from the group consisting of H, halogen, CN, NO₂, COOR₁₆, SO₂R₁₇ (wherein R₁₆ represents any one selected from the group consisting of H, Na, K, CH₃ and C₂H₅, and R₁₇ represents any one selected from the group consisting of OH, ONa, OK, halogen, OCH₃ and OC₂H₅), CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH and (CH₃)₃-C, and in a case where there exist a plurality of units, R₁₅ may be different for each unit.

- 24. (Previously Presented) The polyhydroxyalkanoate according to claim 21, wherein a number average molecular weight is within the range between 1000 and 1000000.
- 25. (Withdrawn) A method for producing a polyhydroxyalkanoate comprising, in a molecule thereof, a monomer unit of 3-hydroxy- ω -[(phenylmethyl)oxy]alkanoic acid unit expressed by chemical formula (1):

$$\begin{cases}
O - CH - CH_2 - C \\
C(CH_2)x \\
CH_2 \\
CH_2
\end{cases}$$

$$x = 1-8$$
(1)

wherein x can be one or more integers within the range shown in the chemical formula, which comprises allowing a microorganism with an ability to produce a polyhydroxyalkanoate comprising in a molecule thereof the monomer unit of 3-hydroxy-ω-[(phenylmethyl)oxy]alkanoic acid expressed by chemical formula (1) to biosynthesize the polyhydroxyalkanoate from ω-[(phenylmethyl)oxy]alkanoic acid expressed by chemical formula (19):

$$CH_2-O-(CH_2)_x-CH_2-CH_2-COOH$$

 $X = 1-8$ (19)

wherein x can be one or more integers within the range shown in the chemical formula as a raw material under a condition which comprises the ω -[(phenylmethyl)oxy]alkanoic acid expressed by chemical formula (19).

26. (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 25, wherein the polyhydroxyalkanoate comprises at least one unit expressed by the following chemical formulas (2) and (3):

wherein y and z can be one or more integers within the range shown in the chemical formulas, while being independent from the unit expressed by chemical formula (1).

27. (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 25, wherein the ω-[(phenylmethyl)oxy]alkanoic acid expressed by said chemical formula (19) is 4-[(phenylmethyl)oxy]butyric acid expressed by chemical formula (23):

or 5-[(phenylmethyl)oxy]valeric acid expressed by chemical formula (24):

28. (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 25, comprising allowing the microorganism with an ability to produce a polyhydroxyalkanoate comprising simultaneously, in at least a molecule thereof, the monomer unit of 3-hydroxy-ω-[(phenylmethyl)oxy]alkanoic acid expressed by chemical formula (1) and

a 3-hydroxy-alkanoic acid unit expressed by chemical formula (22):

wherein m can be one or more integers within the range shown in the chemical formula, and R_{18} comprises a residue having either a phenyl structure or a thienyl structure, or 3-hydroxy- ω -cyclohexylalkanoic acid unit expressed by chemical formula (5):

wherein R₁ is selected from the group consisting of H, CN, NO₂, halogen, CH₃, C₂H₅, C₃H₇, CF₃, C₂F₅ and C₃F₇, and k can be one or more integers within the range shown in the chemical formula,

from ω-[(phenylmethyl)oxy]alkanoic acid expressed by chemical formula (19), and a alkanoic acid expressed by chemical formula (20):

$$R_{16}$$
—(CH₂)q—CH₂—CH₂—C-OH
q = 1-8 (20)

wherein q can be one or more integers within the range shown in the chemical formula, and R_{16} comprises a residue having either a phenyl structure or a thienyl structure, or ω -cyclohexylalkanoic acid expressed by chemical formula (21):

$$R_{17}$$
 (CH₂)r—CH₂—CH₂—C-OH
r = 0-8 (21)

wherein R_{17} is selected from the group consisting of H, CN, NO_2 , halogen, $CH_3, C_2H_5, C_3H_7, CF_3, C_2F_5$ and C_3F_7 , and r can be one or more integers within the range shown in the chemical formula as raw materials to biosynthesize the polyhydroxyalkanoate

under a condition which comprise ω -[(phenylmethyl)oxy]alkanoic acid expressed by chemical formula (19), and alkanoic acid expressed by chemical formula (20) or ω -cyclohexylalkanoic acid expressed by chemical formula (21), wherein R₁₆ in chemical

formula (20) and R_{18} in chemical formula (22), i.e. residues having either a phenyl structure or a thienyl structure, are at least one group selected from the group consisting of residues

wherein R_{19} is selected from the group consisting of H, halogen, CN, NO₂, CH₃, C₂H₅, C₃H₇, CH=CH₂, CF₃, C₂F₅ and C₃F₇, and in a case where there exist a plurality of units, R_{19} may be different for each unit;

wherein R_4 is selected from the group consisting of H, halogen, CN, NO_2 , CH_3 , C_2H_5 , C_3H_7 , SCH_3 , C_2F_5 and C_3F_7 , and in a case where there exist a plurality of units, R_4 may be different for each unit;

wherein R_5 is selected from the group consisting of H, halogen, CN, NO₂, CH₃, C₂H₅, C₃H₇, CF₃, C₂F₅ and C₃F₇, and in a case where there exist a plurality of units, R_5 may be different for each unit;

$$R_6$$
 s s

wherein R₆ is selected from the group consisting of H, halogen, CN, NO₂, COOR₇, SO₂R₈ (wherein R₇ represents any one selected from the group consisting of H, Na, K, CH₃ and C₂H₅, and R₈ represents any one selected from the group consisting of OH, ONa, OK, halogen, OCH₃ and OC₂H₅), CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH and (CH₃)₃-C, and in a case where there exist a plurality of units, R₆ may be different for each unit:

$$R_9$$
 CH₂ -S - (12)

wherein R₀ is selected from the group consisting of H, halogen, CN, NO₂, COOR₁₀, SO₂R₁₁ (wherein R₁₀ represents any one selected from the group consisting of H, Na, K, CH₃ and C₂H₅, and R₁₁ represents any one selected from the group consisting of OH, ONa, OK, halogen, OCH₃ and OC₂H₅), CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH and (CH₃)₃-C, and in a case where there exist a plurality of units, R₀ may be different for each unit;

wherein R₁₂ is selected from the group consisting of H, halogen, CN, NO₂, COOR₁₃, SO₂R₁₄ (wherein R₁₃ represents any one selected from the group consisting of H, Na, K, CH₃ and C₂H₅, and R₁₄ represents any one selected from the group consisting of OH, ONa, OK, halogen, OCH₃ and OC₂H₅), CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH and (CH₃)₃-C, and in a case where there exist a plurality of units, R₁₂ may be different for each unit; and

wherein R₁₅ is selected from the group consisting of H, halogen, CN, NO₂, COOR₁₆, SO₂R₁₇ (wherein R₁₆ represents any one selected from the group consisting of H, Na, K, CH₃ and C₂H₅, and R₁₇ represents any one selected from the group consisting of OH, ONa, OK, halogen, OCH₃ and OC₂H₅), CH₃, C₂H₅, C₃H₇, (CH₃)₂-CH and (CH₃)₃-C, and in a case where there exist a plurality of units, R₁₅ may be different for each unit.

- 29. (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 25, wherein said condition is that said microorganisms is cultured in a medium containing ω -[(phenylmethyl)oxy]alkanoic acid expressed by chemical formula (19).
- 30. (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 28, wherein said condition is that said microorganism is cultured in a medium containing the ω -[(phenylmethyl)oxy]alkanoic acid expressed by chemical formula (19) and the alkanoic acid expressed by chemical formula (20) or the ω -cyclohexylalkanoic acid expressed by chemical formula (21).
- 31. (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 29, wherein said medium contains at least one selected from the group consisting of peptides, yeast extract, organic acids or salts thereof, amino acids or salts thereof, saccharides and straight-chain alkanoic acids, which is saturated or unsaturated fatty acid having 4 to 12 carbon atoms or salts thereof.
- 32. (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 31, wherein the peptide is polypeptone; the organic acids or salts thereof are one or more compounds selected from the group consisting of pyruvic acid, oxaloacetic

acid, citric acid, isocitric acid, ketoglutaric acid, succinic acid, fumaric acid, malic acid, lactic acid, and salts thereof; the amino acids or salts thereof are one or more compounds selected from the group consisting of glutamic acid, aspartic acid, and salts thereof; and the saccharides are one or more compounds selected from the group consisting of glyceroaldehyde, erythrose, arabinose, xylose, glucose, galactose, mannose, fructose, glycerol, erythritol, xylitol, gluconic acid, glucuronic acid and galacturonic acid, maltose, sucrose and lactose

- (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 29, wherein said culture of microorganisms comprises two or more culturing steps.
- (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 33, wherein said culture is a fed-batch culture.
- 35. (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 29, comprising a step of recovering a polyhydroxyalkanoate comprising 3-hydroxy-ω-[(phenylmethyl)oxy]alkanoic acid unit expressed by chemical formula (1) generated by the microorganism from the cells of the microorganism.
 - 36. (Withdrawn) The method for producing a polyhydroxyalkanoate

according to claim 25, wherein said microorganism belongs to Pseudomonas species.

37. (Withdrawn) The method for producing a polyhydroxyalkanoate according to claim 36, wherein said microorganism is one or more strains selected from the group consisting of *Pseudomonas cichorii* YN2 (FERM BP-7375), *Pseudomonas cichorii* H45 (FERM BP-7374) and *Pseudomonas jessenii* P161 (FERM BP-7376).