

MIT App Inventor Punya Al Reasoning Explainability

Brendan Capuzzo | Advisor: Dr. Oshani Seneviratne

Abstract

Al-powered mobile apps often fail to provide clear explanations for their decisions. MIT App Inventor Punya is an Android app development software that includes a rule-based reasoner, but it offers limited insight into its reasoning process. To foster user trust, interpretable explanations are essential for making complex AI/ML decision-making processes more transparent.

Introduction

- Al systems often make decisions without revealing their reasoning, posing challenges in critical fields like healthcare, finance, and law
- Transparency is essential for users to trust and verify decisions that impact lives
- Decisions are represented using RDF (Resource Description Framework) triples:
 - Subject: The entity (e.g., loan applicant)
 - Predicate: The relationship/attribute (e.g., credit score)
 - Object: The value/outcome (e.g., "Eligible")

Explanation Types

Explanation	Definition
Trace-based	 Shows step-by-step reasoning chain Explains "how" the system reached its conclusion Maps reasoning rules to input facts
Contextual	 Considers surrounding circumstances Includes user situation and environment Explains relevance of external factors
Contrastive	 Compares different outcomes Highlights key differences between scenarios Explains why a result occurred instead of another
Counterfactual	 Explores "what-if" scenarios Shows how changing inputs affects outcomes Identifies minimal changes needed for different results

Reasoning Architecture

Example Explanations

Base Knowledge

Model evaluates loan applications using RDF triples that represent:

Applicant attributes (credit score, monthly income, monthly debt)

Trace-Based

Conclusion: applicant1 has Loan Eligibility: Not Eligible used the following

Conclusion: applicant1 has DTI Ratio: 0.4 used the following matches:

[[DTIRule: (?applicant type Person) (?applicant monthlyDebt ?debt)

(?applicant monthlyIncome ?income) quotient(?debt ?income ?dti) ->

[[NotEligibleDTIRule: (?applicant type Person) (?applicant dtiRatio ?dti)

Contrastive

For Monthly Debt: this model has 2000.00 while alternate model has

• For Loan Eligibility: this model has Not Eligible while alternate model

• For Credit Score: this model has 680 while alternate model has 700

• For DTI Ratio: this model has 0.40 while alternate model has 0.20

greaterThan(?dti '0.349999') -> (?applicant loanEligibility 'Not Eligible')]]

Calculated metrics (DTI ratio = monthly debt/monthly income) Decision outcomes (Eligible or Not Eligible)

Input Triple: (applicant1, loanEligibility, Not Eligible)

Match: applicant1 has Type: Person

Match: applicant1 has DTI Ratio: 0.4

(?applicant dtiRatio ?dti)]]

to reach this conclusion

to reach this conclusion.

Similarities:

Differences:

1000.00

has Eligible

Match: applicant1 has Type: Person

Match: applicant1 has Monthly Debt: 2000.0

And paired them with the following rule:

And paired them with the following rule:

applicant1 has Monthly Income: 5000.0

Match: applicant1 has Monthly Income: 5000.0

1. DTI Rule: Calculates debt-to-income ratio from monthly debt and income

2. Eligibility Rules:

- If DTI ratio > 0.35: Not Eligible
- If credit score < 620: Not Eligible
- Otherwise: Eligible

Applicant1 Facts

- Monthly Income: \$5000
- Monthly Debt: \$2000
- DTI Ratio: 0.4
- Credit Score: 680
- Eligibility: Not Eligible

Contextual

Shallow Explanation:

Conclusion: applicant1 has Loan Eligibility: Not Eligible

Based on rule: [NotEligibleDTIRule: (?applicant type Person) (?applicant dtiRatio ?dti) greaterThan(?dti '0.349999' -> (?applicant loanEligibility 'Not Eligible')]

- Using the following facts:
- applicant1 has Type: Person
- applicant1 has DTI Ratio: 0.4

Simple Explanation:

applicant1 has Loan Eligibility: Not Eligible because applicant1 has Type: Person and applicant1 has DTI Ratio: 0.4.

To change the outcome for applicant1 has Loan Eligibility: Not Eligible, you could look at these examples:

Counterfactual

applicant3 has Loan Eligibility: Eligible because:

- Their applicant3 has DTI Ratio: 0.2 while yours is applicant1 has DTI Ratio: 0.4
- Their applicant3 has Monthly Debt: 1000.0 while yours is applicant1 has Monthly Debt: 2000.0

- Their applicant3 has Credit Score: 700 while yours is applicant1 has Credit Score: 680

Explanation Component

Conclusion

- Successfully implemented multiple explanation types for MIT App Inventor Punya reasoning component
- Created a framework for future expansion to more explanation types
- Demonstrated feasibility for explainer component on mobile devices

Future Work

- Integration with more complex AI models (Neural networks)
- Expand offerings for explanation types
- Optimize explanation outputs with NLP and accuracy scores
- Perform user studies on explanation effectiveness
- Deploy explanation component into MIT App Inventor Punya subproject

References

[1] S. Chari et al., "Explanation Ontology: A general-purpose, semantic representation for supporting user-centered explanations," Semantic web, pp. 1–31, May 2023, doi: https://doi.org/10.3233/sw-233282.