Data Science On-Ramp Course: SQL

Assignment 4: Queries in SQL

Problem: Consider the CUSTOMERS and ORDERS table as shown below,

CUSTOMERS

CustomerID	CustomerName	Address	City	<u>PostalCode</u>	Country
41	Suhas Jagadish	720 S College Mall Rd	Bloomington	47401	USA
42	Walter White	2411 E 2 nd St.	Bloomington	47401	USA
43	Jessy Pinkman	1320 S Walnut Road	Chicago	60290	USA
44	Arjun Rao	240 N Harrison St.	Bloomington	47404	USA
45	Saul Goodman	233 S Wacker Dr	Chicago	60606	USA

ORDERS

OrderID	OrderName	CustomerID	PurchaseDate	Price(in \$)
101	Earphones	41	6/25/2016	25
102	Sony PlayStation	43	5/20/2016	300
103	Nexus 5x	44	12/30/2015	429

- 1) Find the details of the customers who live in Chicago or contains the string "Mall" in their address.
- 2) Find the customer names and their corresponding order names, which were purchased in 2016.
- 3) Find the order name, purchase date and price details of customers who reside in Bloomington.
- 4) Perform LEFT JOIN on the two tables and output the results.
- 5) Perform FULL JOIN on the two tables and output the results.

Problem: Consider the below three tables,

BOAT

Bid	Bname	Color
101	Interlake	blue
102	Interlake	red
103	Clipper	green
104	Marine	red

SAILORS

Sid	Sname	Rating
22	dustin	7
29	brutus	1
31	lubber	8
32	andy	8
58	rusty	10
64	horatio	7
71	zorba	10
74	horatio	9
85	art	3
95	bob	3

RESERVES

Sid	Bid
22	101
22	102
22	103
22	104
31	102
31	103
31	104
64	101
64	102
74	103

- 1) Find the details of sailors whose name contains 'o' at the second position or whose rating is greater than 7.
- 2) Find the names of sailors who have reserved boat #103.
- 3) Find the names of sailors who have reserved a red boat AND has a rating 7.
- 4) Find the names of sailors who have reserved a red OR a green boat.
- 5) Find the names of sailors who have reserved a red AND a green boat.

<u>Problem</u>: Consider the following relation schemas:

Student(<u>Sid</u>, Sname, GPA, Major)
Instructor(<u>InstructorId</u>, Iname, Deptname)
Enroll(<u>Sid</u>, <u>Cno</u>, <u>InstructorId</u>, Grade)

Imagine the records for each of the tables and answer the below queries -

- 1) Find the names of students who are enrolled in courses offered by instructors in the "CS" department (So you need to have value in 'Deptname' as CS).
- 2) Find the names and grades of the enrolled students who have their gpa more than 3.5 OR an 'A' grade.
- 3) Find the names of the students and their majors who belong to "CS" department.
- 4) Find the ID and names of students who are taught by at least two instructors.

NOTE: I would encourage you to create all these tables in MySQL, load the corresponding records, execute the queries and output the resultant tables.