TRIGONOMETRY TOMO 1

FEEDBACK

1. Efectúe:
$$M = \frac{3^{\circ}20'}{10'} + \frac{5^{g}60^{m}}{70^{m}}$$

Resolución:

$$M = \frac{3(60') + 20'}{10'} + \frac{5(100^m) + 60^m}{70^m}$$

$$M = \frac{200^{\prime}}{10^{\prime}} + \frac{560^{\prime\prime\prime}}{70^{\prime\prime\prime}}$$

$$M = 20 + 8$$

EQUIVALENCIAS

$$1^{\circ} = 60'$$
 $1^{g} = 100^{m}$

$$\therefore M = 28$$

2. Si se cumple que $\frac{8\pi}{5}$ rad = $(\overline{xyz})^g$, efectúe N = $(x+y)^z$.

Resolución:

Convertimos al sistema centesimal:

$$\frac{8\pi rad}{5} \times \frac{200^g}{\pi rad} = (\overline{xyz})^g$$

$$320^g = (\overline{xyz})^g$$

$$x = 3 \quad y = 2 \quad z = 0$$

Reemplazando:

$$N = (x + y)^z$$

$$N = (3+2)^0 = 5^0 = 1$$

$$\therefore N = 1$$

Los ángulos internos de un triángulo miden: 78° ; $(7y - 60)^g$ y $\frac{\pi}{6}$ rad. $78 + \frac{9(7y - 60)}{10} + 30 = 180$ Halle el valor de y.

Resolución:

Por propiedad en todo triángulo:

$$78^{\circ} + (7y - 60)^{g} + \frac{\pi}{6} \text{rad} = 180^{\circ}$$

Expresamos los ángulos en el sistema sexagesimal:

$$78^{2} + (7y - 60)^{2} \times \frac{9^{2}}{10^{2}} + \frac{\pi}{6} \text{ rad} \times \frac{180^{2}}{\pi \, rad} = 180^{2}$$

$$78 + \frac{9(7y - 60)}{10} + 30 = 180$$

$$\frac{9(7y - 60)}{10} + 108 = 180$$

$$\frac{9(7y - 60)}{10} = 72$$

$$7y - 60 = 80$$

$$\therefore \quad y = 20$$

4. Siendo S, C y R lo convencional para un mismo ángulo que cumple $\frac{S-2}{5} = \frac{C}{6}$. Determine la medida del ángulo en radianes.

Resolución:

Sabemos
$$S = 9n, C = 10n \ y \ R = \frac{\pi n}{20}$$

Reemplazando en la igualdad:

$$\frac{9n-2}{5} = \frac{10n}{6}$$

$$54n - 12 = 50n$$
$$4n = 12$$
$$n = 3$$

Piden la medida del ángulo en radianes:

$$R = \frac{\pi(3)}{20}$$

$$\therefore Rpta = \frac{3\pi}{20}rad$$

5. Reduzca P = $\frac{2\pi S - \pi C + 40R}{\pi (C - S)}$ siendo S, C y R lo convencional para un mismo ángulo .

Resolución:

Sabemos
$$S = 9n, C = 10n \ y \ R = \frac{\pi n}{20}$$

Reemplazando:

$$P = \frac{2\pi(9n) - \pi(10n) + 40(\frac{\pi n}{20})}{\pi(10n - 9n)}$$

$$P = \frac{18\pi n - 10\pi n + 2\pi n}{\pi n}$$

$$P = \frac{10\pi n}{\pi n}$$

$$\therefore P = 10$$

6. Siendo S, C y R lo convencional para un mismo ángulo. Determine la medida del ángulo $\frac{S+6}{5} = \frac{C-1}{3}$ en el sistema radial si se cumple:

$$S = 5b - 6$$
$$C = 3b + 1$$

Resolución:

Del sistema, despejamos «b» en ambas igualdades:

$$\frac{S+6}{5} = b$$
 y $\frac{C-1}{3} = b$

Igualamos:

$$\frac{S+6}{5} = \frac{C-1}{3}$$

Reemplazando:

$$\frac{9n+6}{5} = \frac{10n-1}{3}$$

$$27n + 18 = 50n - 5$$

 $23 = 23n$ $n = 1$

Piden la medida radial:

$$R = \frac{\pi(1)}{20}$$

$$R = \frac{\pi(1)}{20} \quad \therefore \quad \mathbf{Rpta} = \frac{\pi}{20} \mathbf{rad}$$

RECORDEMOS

S = 9n

C = 10n

7. Del sector circular mostrado, calcule la medida de radio OA.

Resolución:

Convertimos:
$$30^g = 30^g \times \frac{\pi \text{rad}}{200^g} = \frac{3\pi}{20} \text{rad}$$

Usamos: $L = \theta \cdot R$

$$6\pi m = \frac{3\pi}{20} \cdot R$$

R = 40 m

8. A partir del sector circular, simplifique $K = \frac{4L_1 + L_3 - L_2}{2L_2 + L_1}$.

Resolución:

Por propiedad:

$$L_1 = L$$

$$L_2 = 2L$$

$$L_3 = 3L$$

Calculamos:
$$K = \frac{4(L)+(3L)-(2L)}{2(2L)+(L)}$$

$$\Rightarrow K = \frac{5L}{5L}$$

K = 1

9. Del gráfico, calcule el área de la región sombreada.

Resolución:

Propiedad:

$$\frac{L}{16} = \frac{2}{2+6}$$

$$L = 4 u$$

Nos piden:

$$S = \frac{L.R}{2}$$

$$S = \frac{42}{2}$$

10. Del gráfico, reduzca:

$$E = \frac{S_2 + 7S_1}{S_3}$$

Resolución:

$$S_1 = S$$

$$S_2 = 3S$$

$$S_3 = 5S$$

Nos piden:

$$E = \frac{S_2 + 7S_1}{S_3}$$

$$E = \frac{3S + 7(S)}{5S}$$

$$E = \frac{108}{55}$$

