Name: Matrikel-Nr.:

Datum: 29.12.2014 Bearbeitungsdauer: 120 min Ersteller: Beck

Hilfsmittel: keine Formelsammlung, Taschenrechner

Nur Ergebnisse mit Rechenweg bzw. Begründung zählen!!!

Punkteverteilung:

Aufgabe	1				2				3				4				5		Gesamt
	а	b	С	d	а	b	С	[d]	а	b	С	d	а	b	С	d	а	b	Gesami
Punkte	2	4	6	4	4	6	3	5	6	4	6	4	5	8	4	6	4	4	80(85)
Punkte erreicht																			

1) Gegeben ist folgende Differentialgleichung:

$$y'y = \frac{y^2}{x} + x$$

- a) Bringen Sie die DGL auf die Form $y' = \dots$
- b) Skizzieren Sie an den im Diagramm gegebenen Punkten das Richtungsfeld.

- c) Bestimmen Sie mit Hilfe von Substitution die allgemeine Lösung der DGL.
- d) Geben Sie die spezielle Lösung für y(1) = -2 an.

2) Gegeben ist folgende Differentialgleichung:

$$y' + ysin(x) = 2sin(x)$$

- a) Geben Sie die allgemeine Lösung der homogenen DGL an.
- b) Berechnen Sie durch Variation der Konstanten die allgemeine Lösung der inhomogenen DGL.
- c) Berechnen Sie die spezielle Lösung der inhomogenen DGL für y(0) = 0.
- d) **Zusatzaufgabe:** Hier können Sie nur gewinnen! Skizzieren Sie die Funktion aus Aufgabe c) im Bereich $x \in [0, 4\pi]$ in das unten vorgezeichnete Koordinatensystem.

3) Gegeben ist folgende Differentialgleichung:

$$y'' + 4y' + 3y = 3x^2 + 2x + 6$$

- a) Geben Sie das charakteristische Polynom der DGL an und berechnen Sie seine Nullstellen.
- b) Geben Sie die allgemeine Lösung der homogenen DGL an.
- c) Berechnen Sie die allgemeine Lösung der inhomomgenen DGL.
- d) Gegeben sei nun folgende DGL:

$$y'' + 4y' + by = 0$$

Wie groß muss b mindestens sein, damit die DGL eine gedämpfte, periodische Lösung besitzt?

4) Gegeben ist folgendes lineares Gleichungssystem:

$$\frac{1}{2}x_1 + \frac{3}{2}x_2 = -5$$

$$\frac{3}{2}x_1 + \frac{1}{2}x_2 = 1$$

- a) Geben Sie die Koeffizientenmatrix M des Gleichungssystems an. Berechnen Sie die Determinante von M Bestimmen Sie den Rang von M Was folgt daraus für die Lösbarkeit des Gleichungssystems?
- b) Bestimmen Sie die inverse Matrix M^{-1} . Lösen Sie das obige Gleichungssystem mit Hilfe von M^{-1} .
- c) Bestimmen Sie die Eigenwerte von M.
- d) Bestimmen Sie zu jedem Eigenwert aus Aufgabe c) einen Eigenvektor der Länge 1. (Falls Sie c) nicht lösen konnten, rechnen Sie mit den Eigenwerten $\lambda_1=2$ und $\lambda_2=-1$.)

5) Gegeben ist folgendes Scilab-Programm:

```
clear;
function dydx=f(x,y);
   dydx=2*x;
endfunction;

y0=-2;
x0=0;
x=0:0.1:2;
y=ode(y0,x0,x,f)
plot2d(x,y)
```

- a) Geben Sie die allgemeine Lösung der DGL an, die Scilab hier löst.
- b) Skizzieren Sie in das unten stehende Diagramm das Kurvenstück, das Scilab hier berechnet.

