计算机组织与结构

1 计算机系统概述

任桐炜

2021年8月31日

教材对应章节

第1章 计算机系统概述

第1章 导论 第2章 计算机的演变和性能

计算机无处不在

什么改变了,什么没有变?

什么是计算机?

- 计算机是指 "通用电子数字计算机 (general-purpose electronic digital computer)"
 - 通用: 不是一种专用设备
 - 所有计算机在给予足够时间和容量存储器的条件下,都可以完成同样的计算
 - 当希望完成新的计算时,不需要对计算机重新设计
 - 电子(非机械): 采用电子元器件
 - 数字(非模拟):信息采用数字化的形式表示
- 计算机系统
 - 硬件: 处理器, 存储器, 外部设备,
 - 软件:程序,文档,.....

组织与结构

- · 组织 (Organization) : 对编程人员不可见
 - 操作单元及其相互连接
 - 包括:控制信号,存储技术,.....
 - 例如: 实现乘法是通过硬件单元还是重复加法?

- · 结构 (Architecture) : 对编程人员可见
 - 直接影响程序逻辑执行的属性
 - 包括: 指令集,表示数据类型的位数,......
 - 例如:是否有乘法指令?

计算机简史

- 第一代: 真空管 (1946-1957)
 - ENIAC (1946-1955): 第一台通用计算机,十进制,手动编程
 - Electronic Numerical Integrator And Computer
 - ABC (1937) : 世界上第一台电子计算机,不可编程
 - Atanasoff

 Berry Computer

计算机简史

• 第一代: 真空管 (1946-1957)

• EDVAC(1944-1951): 冯·诺伊曼结构

Electronic Discrete variable Automatic Computer

冯·诺伊曼 (von Neumann)

The First Draft Report on the EDVAC von Neumann (1945)

冯•诺伊曼结构

- 又称为"普林斯顿结构"
- 三个基本原则
 - 二进制
 - 存储程序
 - 5个组成部分
 - 主存储器: 地址和存储的内容
 - 算术逻辑单元 / 处理单元: 执行信息的实际处理
 - 程序控制单元 / 控制单元: 指挥信息的处理
 - 输入设备:将信息送入计算机中
 - 输出设备:将处理结果以某种形式显示在计算机外

计算机简史

- 第二代: 晶体管 (1958-1964)
 - NCR和RCA, IBM 7000: 晶体管体积更小、更便宜、发热更少, 而且能以与电子管相同的方式建造计算机
 - 采用更复杂的算术逻辑单元和控制器,使用高级编程语言,并 为计算机提供了系统软件

计算机简史

- 第三代及后续几代:集成电路(1965-现在)
 - 思想:
 - 将整个电路安装在很小的硅片上,而不是用分立元件搭成的等价电路
 - 这些晶体管可以通过金属化过程相互连接, 以形成电路
 - 规模:
 - 小 → 大 → 超大 → 巨大 ...

摩尔定律

- 摩尔定律 (Gordon Moore, 1965)
 - 单芯片上所能包含的晶体管数量每年翻一番 (1965-1969) / 1970 年起减慢为每18个月翻一番

摩尔定律

- 摩尔定律 (Gordon Moore, 1965)
 - 单芯片上所能包含的晶体管数量每年翻一番 (1965-1969) / 1970
 年起减慢为每18个月翻一番
 - 影响
 - 更小的尺寸带来更多灵活性和可能性
 - 由于单个芯片的成本几乎不变,计算机逻辑电路和存储电路 的成本显著下降
 - 减小了对电能消耗和冷却的要求
 - 集成电路上的内部连接比焊接更可靠,芯片间的连接更少

计算机发展:变与不变

• 基本功能

计算机发展:变与不变

• 运算速度

发展阶段	大致时间	技术	典型速度(每秒的操作次数)
1	1946–1957	真空管 (电子管)	40,000
2	1958–1964	晶体管	200,000
3	1965–1971	小规模和中规模 集成电路	1,000,000
4	1972–1977	大规模集成电路	10,000,000
5	1978–1991	超大规模集成电路	100,000,000
6	1991–	巨大规模集成电路	1,000,000,000

计算机性能

- 计算机的关键参数之一
 - 性能, 成本, 尺寸, 安全性, 可靠性, 能耗,
- 性能评价标准
 - CPU: 速度
 - 存储器: 速度, 容量
 - I/O: 速度, 容量
 -

计算机设计的主要目标是:提高CPU性能

- 系统时钟
 - **时钟频率** / 时钟速度(单位:Hz):计算机在单位时间内(例如1 秒钟)执行最基本操作的次数
 - 时钟周期 / 周期时间(单位: s): 执行每次最基本操作的时间
 - 时钟滴答(有时也称为"时钟周期"): CPU 中用于同步执行 最基本操作的单个电子脉冲
 - 因此,周期时间即为两个电子脉冲之间的时间

- 指令执行
 - 处理器由时钟驱动, 时钟具有固定的频率f, 或等价为固定的时钟 周期t
 - 如果用 CPI_i 来表示指定类型i所需要的周期数,用 I_i 表示在某一给 定程序中所执行的i类指令的条数
 - · 则我们可以计算整个CPI如下:

$$CPI = \frac{\sum_{i=1}^{n} (CPI_i \times I_i)}{I_c}, \ I_c = \sum_{i=1}^{n} I_i$$

执行一个给定程序的处理时间表示为:

$$T = I_c \times CPI \times t$$

 $T = I_c \times [p + [m \times k]] \times t$ 存储器周期时间和处理器周期时间之比

译码和执行指令 存储器访问次数 在处理器和存储器之间传输数据

• 每秒百万条指令 (MIPS):

$$MIPS = \frac{I_c}{T \times 10^6} = \frac{f}{CPI \times 10^6}$$

• 每秒百万条浮点操作 (MFLOPS):

$$MFLOPS = \frac{N_{floating-point op}}{T \times 10^6}$$

- 基准程序
 - 使用一系列基准程序来测量系统的性能
 - 平均结果:
 - 算数平均值: $R_A = \frac{1}{m} \sum_{i=1}^m R_i$
 - 调和平均值: $R_H = \frac{m}{\sum_{i=1}^m \frac{1}{R_i}}$

总结

- 概念
 - 计算机,组织,结构
- 计算机发展历史
 - 冯·诺伊曼结构,摩尔定律,
- 计算机发展
 - 基本功能,运算速度
- 计算机性能
 - CPU性能评价

谢谢

rentw@nju.edu.en

