EE-556 Formula Sheet

Some useful Mathematical formulas and identities:

$$e^{j\theta} = \cos(\theta) + j\sin(\theta) , \quad \cos(\theta) = \frac{e^{j\theta} + e^{-j\theta}}{2} , \quad \sin(\theta) = \frac{e^{j\theta} - e^{-j\theta}}{2j}$$

$$\sin(2\theta) = 2\sin(\theta)\cos(\theta) , \quad \cos(2\theta) = 2\cos^2(\theta) - 1 = 1 - 2\sin^2(\theta)$$

$$\cos(\alpha)\cos(\beta) = \frac{1}{2} \Big[\cos(\alpha - \beta) + \cos(\alpha + \beta)\Big]$$

$$\sin(\alpha)\sin(\beta) = \frac{1}{2} \Big[\cos(\alpha - \beta) - \cos(\alpha + \beta)\Big]$$

$$\sin(\alpha)\cos(\beta) = \frac{1}{2} \Big[\sin(\alpha - \beta) + \sin(\alpha + \beta)\Big]$$

$$\sin(\alpha) = \frac{\sin(\pi x)}{\pi x}$$
Geometric series:
$$\sum_{k=0}^{n} a^k = \frac{a^m - a^{n+1}}{1 - a}$$

Fourier series:

$$\begin{split} x(t) &= a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right] = \sum_{n=-\infty}^{+\infty} c_n e^{jn\omega_0 t} \;, \\ a_0 &= \frac{1}{T_0} \int_{T_0} x(t) dt \;, \qquad a_n = \frac{2}{T_0} \int_{T_0} x(t) \cos(n\omega_0 t) dt \;, \qquad b_n = \frac{2}{T_0} \int_{T_0} x(t) \sin(n\omega_0 t) dt \;, \qquad c_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-jn\omega_0 t} dt \end{split}$$

Fourier transform and inverse Fourier transform:

$$X(\omega) = \int_{-\infty}^{+\infty} x(t)e^{-j\omega t}dt , \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} X(\omega)e^{j\omega t}dt$$

Some useful Fourier transform pairs:

$$\begin{split} & 1 \leftrightarrow 2\pi\delta(\omega) \\ & u(t) \leftrightarrow \pi\delta(\omega) + \frac{1}{j\omega} \\ & \delta(t) \leftrightarrow 1 \\ & e^{j\omega_0 t} \leftrightarrow 2\pi\delta(\omega - \omega_0) \\ & \operatorname{rect}\left(\frac{t}{T}\right) = T \mathrm{sinc}\left(\frac{\omega T}{2\pi}\right) \\ & \cos(\omega_0 t) \leftrightarrow \pi\left[\delta(\omega + \omega_0) + \delta(\omega - \omega_0)\right] \\ & \sin(\omega_0 t) \leftrightarrow j\pi\left[\delta(\omega + \omega_0) - \delta(\omega - \omega_0)\right] \end{split}$$

Energy and power of discrete-time signals:

Energy:
$$E_x = \sum_{n=-\infty}^{+\infty} |x[n]|^2$$
, Power: non-periodic $P_x = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{+N} |x[n]|^2$, N-periodic: $P_x = \frac{1}{N} \sum_{n=-N} |x[n]|^2$

Discrete-time linear convolution:
$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{+\infty} x[k]h[n-k]$$

Discrete-time Fourier Transform (DTFT):
$$X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x[n]e^{-j\omega n}$$

DTFT Properties:

Symmetry relations:

Sequence	DTFT
x[n]	$X(e^{j\omega})$
x[-n]	$X(e^{-j\omega})$
$x^*[-n]$	$X^*(e^{j\omega})$
$\operatorname{Re}\{x[n]\}$	$X_{cs}(e^{j\omega}) = \frac{1}{2} \left[X(e^{j\omega}) + X^*(e^{-j\omega}) \right]$
$j\operatorname{Im}\{x[n]\}$	$X_{as}(e^{j\omega}) = \frac{1}{2} \left[X(e^{j\omega}) - X^*(e^{-j\omega}) \right]$
$x_{cs}[n]$	$X_{re}(e^{j\omega})$
$x_{as}[n]$	$jX_{im}(e^{j\omega})$

Note: Subscript "cs" and "as" mean conjugate symmetric and conjugate anti-symmetric signals, respectively.

DTFT of commonly used sequences:

Sequence	DTFT
$\delta[n]$	1
$\mu[n]$ (Unit Step Function)	$\frac{1}{1 - e^{-j\omega}} + \sum_{k = -\infty}^{+\infty} \pi \delta(\omega + 2\pi k)$
$e^{j\omega_0 n}$	$\sum_{k=-\infty}^{+\infty} 2\pi\delta(\omega - \omega_0 + 2\pi k)$
$a^n \mu[n], (a < 1)$	$\frac{1}{1 - ae^{-j\omega}}$
$(n+1)a^n\mu[n],(a <1)$	$\left(\frac{1}{1-ae^{-j\omega}}\right)^2$
$h[n] = \frac{\sin(\omega_c n)}{\pi n}, (-\infty < n < +\infty)$	$H(e^{j\omega}) = \begin{cases} 1 & 0 \le \omega \le \omega_c \\ 0 & \omega_c < \omega < \pi \end{cases}$

DTFT Theorems:

Theorem	Sequence	DTFT
	g[n]	$G(e^{j\omega})$
	h[n]	$H(e^{j\omega})$
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(e^{j\omega}) + \beta H(e^{j\omega})$
Time Reversal	g[-n]	$G(e^{-j\omega})$
Time Shifting	$g[n-n_0]$	$e^{-j\omega n_0}G(e^{j\omega})$
Frequency Shifting	$e^{j\omega_0 n}g[n]$	$G(e^{j(\omega-\omega_0)})$
Differentiation in Frequency	ng[n]	$j\frac{dG(e^{j\omega})}{d\omega}$
Convolution	g[n]*h[n]	$G(e^{j\omega})H(e^{j\omega})$
Modulation	g[n]h[n]	$\frac{1}{2\pi} \int_{-\pi}^{-\pi} G(e^{j\theta}) H(e^{j(\omega-\theta)}) d\theta$
Parseval's Identity	$\sum_{n=-\infty}^{+\infty} g[n]h^*[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} G(e^{j\omega})H^*(e^{j\omega})d\omega$	

Discrete Fourier Transform (DFT):	$X[k] = \sum_{n=0}^{N-1} x[n] e^{-j\frac{2\pi}{N}nk} ,$	$0 \le k \le N-1$
Inverse DFT:	$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{j\frac{2\pi}{N}nk}$,	$0 \le n \le N-1$
Circular Convolution:	$y_c[n] = \sum_{m=0}^{N-1} x[m] h[\langle n - m \rangle_N],$	$0 \le n \le N-1$

Symmetry properties of DFT:

Length-N Sequence	N-Point DFT
$x[n] = x_{re}[n] + jx_{im}[n]$	$X[k] = X_{re}[k] + jX_{im}[k]$
$x^*[n]$	$X^*[\langle -k \rangle_N]$
$x^*[\langle -n \rangle_N]$	$X^*[k]$
$x_{re}[n]$	$X_{cs}[k] = \frac{1}{2} \left[X[k] + X^* [\langle -k \rangle_N] \right]$
$jx_{im}[n]$	$X_{as}[k] = \frac{1}{2} \left[X[k] - X^*[\langle -k \rangle_N] \right]$
$x_{cs}[n]$	$X_{re}[k]$
$x_{as}[n]$	$jX_{im}[k]$

DFT Theorems:

Theorem	Sequence	DTFT
	g[n]	G[k]
	h[n]	H[k]
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G[k] + \beta H[k]$
Circular Time Shifting	$g[\langle n-n_0\rangle_N]$	$e^{-j\frac{2\pi}{N}kn_0}G[k]$
Circular Frequency Shifting	$e^{j\frac{2\pi}{N}nk_0}g[n]$	$G[\langle k-k_0 \rangle_N]$
Duality	G[n]	$Ng[\langle -k \rangle_N]$
N-Point Circular Convolution	$\sum_{m=0}^{N-1} g[m]h[\langle n-m\rangle_N]$	G[k]H[k]
Modulation	g[n]h[n]	$\frac{1}{N}\sum_{m=0}^{N-1}G[m]H[\langle n-m\rangle_N]$
Parseval's Identity	$\sum_{n=0}^{N-1} g[n] ^2 = \frac{1}{N} \sum_{n=0}^{N-1} G[k] ^2$	

Z-Transform: $X(z) = \sum_{n=-\infty}^{+\infty} x[n]z^{-n}$

Inverse Z-Transform: $x[n] = \frac{1}{2\pi i} \oint_C G(z) z^{n-1} dz$

Z-Transform Properties:

Property	Sequence	z-Transform	Region of Convergence
	g[n] h[n]	G(z) $H(z)$	R_{g} R_{h}
Conjugation	$g^*[n]$	$G^*(z^*)$	R_g
Time Reversal	g[-n]	G(1/z)	$1/R_g$
Linearity	$\alpha g[n] + \beta h[n]$	$\alpha G(z) + \beta H(z)$	Includes $R_g \cap R_h$
Time Shifting	$g[n-n_0]$	$z^{-n_0}G(z)$	R_g except possibly the point $z = 0$ or ∞
Multiplication by an exponential sequence	$\alpha^n g[n]$	$G(z/\alpha)$	$ \alpha R_g$
Differentiation in the z-domain	ng[n]	$-z\frac{dG(z)}{dz}$	R_g except possibly the point $z = 0$ or ∞
Convolution	g[n]*h[n]	G(z)H(z)	Includes $R_g \cap R_h$

 TABLE 5.1
 Select (Unilateral) z-Transform Pairs

No.	x[n]	X[z]
l	$\delta[n-k]$	z ^{-k}
2	u[n]	$\frac{z}{z-1}$
3	nu[n]	$\frac{z}{(z-1)^2}$
4	$n^2u[n]$	$\frac{z(z+1)}{(z-1)^3}$
5	$n^3u[n]$	$\frac{z(z^2 + 4z + 1)}{(z-1)^4}$
6	$\gamma^n u[n]$	$\frac{z}{z-y}$
7	$\gamma^{n-1}u[n-1]$	$\frac{1}{z-y}$
8	$n\gamma^n u[n]$	$\frac{\gamma z}{(z-\nu)^2}$
9	$n^2 \gamma^n u[n]$	$\frac{\gamma z(z+\gamma)}{(z-\gamma)^3}$
10	$\frac{n(n-1)(n-2)\cdots(n-m+1)}{\gamma^m m!} \gamma^n u[n]$	$\frac{z}{(z-\gamma)^{m+1}}$
l la	$ \gamma ^n \cos \beta n u[n]$	$\frac{z(z- \gamma \cos\beta)}{z^2-(2 \gamma \cos\beta)z+ \gamma ^2}$
1b	$ \gamma ^n \sin \beta n u[n]$	$\frac{z \gamma \sin\beta}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
2a	$r \gamma ^n\cos(\beta n+\theta)u[n]$	$\frac{rz[z\cos\theta - \gamma \cos(\beta - \theta)]}{z^2 - (2 \gamma \cos\beta)z + \gamma ^2}$
2b	$r \gamma ^n\cos(\beta n+\theta)u[n]$ $\gamma= \gamma e^{j\beta}$	$\frac{(0.5re^{j\theta})z}{z-v} + \frac{(0.5re^{-j\theta})z}{z-v^*}$
2e	$r \gamma ^n\cos(\beta n+\theta)u[n]$	$\frac{z(Az+B)}{z^2+2az+ \nu ^2}$
	$r = \sqrt{\frac{A^2 \gamma ^2 + B^2 - 2AaB}{ \gamma ^2 - a^2}}$	5 / 5.02 / 1// 1
	$\beta = \cos^{-1} \frac{-a}{ \gamma }$	
	$\theta = \tan^{-1} \frac{Aa - B}{A\sqrt{ \gamma ^2 - a^2}}$	