(V, <, >) inner product space.

- · Defin

· || v|| = \(\sum_{\cup} \) norm (triangle inequality)

VIU (=) (V,U)=0
 VIU (=) (V,U)=0

" Jan

· Candy - Schwatz.

| LU, n> | E ||U||| n||

· Pythagorean identy

(6.23) Defin. A list of vertor
$$[e_1, ..., e_n]$$
 is called orthonormal if $|e_1| = 1 \iff \langle e_i, e_i \rangle = 1$ $|e_1| = 1 \iff \langle e_i, e_j \rangle = 1$ $|e_1| = 1 \iff \langle e_i$

Why is orthonormal basis in partant?

$$V = \{u_1, \dots, u_n\}$$
 is a basis

 $V = \{u_1, \dots, u_n\} \in \mathbb{R}^n \text{ or } \mathbb{C}^n\}$
 $V = \{u_1, \dots, u_n\} \in \mathbb{R}^n \text{ or } \mathbb{C}^n\}$

IF V is an inner product space w/ <...>

DN IF", we have the standard inner product of product (IF", .)

M preserves inner product iff (V1,..., V2) is an orthonormal basis.

$$V = a_1 U_1 + \cdots + a_n U_n \qquad | \qquad \qquad |$$

$$N = b_1 U_1 + \cdots + b_n U_n \qquad | \qquad \qquad |$$

$$\begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$| \langle U, u \rangle = a_1 \overline{b_1} + \cdots + a_n \overline{b_n}$$

$$| | V | | = \int |a_1|^2 + \cdots + |a_n|^2$$

$$(C) = (a_1 \cup i + \dots + a_n \cup i + b_n \cup i + b_n \cup i)$$

$$= \sum_{i \neq j} a_i b_j < \cup_{i \neq j} > 0$$

(U,,-., Un) orthonormal basis

$$= \sum_{j=1}^{n} a_{j} \overline{b}_{j} \langle u_{j}, u_{j} \rangle = \sum_{j=1}^{n} a_{j} \overline{b}_{j}$$

$$w = u - cv \qquad w \perp v$$

$$|v| = L \qquad (a,v) = \frac{\langle u,v \rangle}{|v|} = \frac{\langle u,v \rangle}{\langle v,v \rangle}$$

$$|v| = 1 \qquad (c = \langle u,v \rangle)$$

$$e_{2} = \frac{V_{2} - \langle V_{2}, e_{1} \rangle \cdot e_{1}}{\|V_{2} - \langle V_{2}, e_{1} \rangle \cdot e_{1}\|} A Num$$

•
$$e_{3} = \frac{U_{3} - \langle V_{3}, e_{1} \rangle e_{1} - \langle U_{3}, e_{2} \rangle e_{2}}{\|U_{3} - \langle V_{3}, e_{1} \rangle e_{1} - \langle U_{3}, e_{2} \rangle e_{2}}\|$$

span (U1, U2, U2) = span (e1, e2, e1)

span (e., ez, v3)

< U3 , e, > e, + < U3, ew e2

Ω,

[6C] <.,.> makes /u concrete.

u is a subspace of V

V/u = { v+U (v∈V) ≈ U !

(6.45) If u is a subset of V, then

the orthogonal complement of U, denoted by

U

U

CU, u>=> for U u GUS

(6.47) 17 U is a subspace of V, then $U \oplus U' = V$

16.42). (Riesz - Representation Thm)

Let
$$\psi \in L(V, |F) = V^{\dagger}$$
, $\exists ! u \in V$ such that

 $\psi = \langle \cdot, u \rangle$

If
$$le_i, \dots, e_n$$
 is an orthonormal basis of V .

Let $u = \overline{a_1}e_1 + \dots + \overline{a_n}e_n$ where $a_i = \ell(e_i)$

Claim. $\ell = \langle \cdot, u \rangle$
 $\langle e_i, u \rangle = \langle e_i, \overline{a_1}e_1 + \dots + \overline{a_n}e_n \rangle = \overline{a_i} \langle e_i, e_i \rangle = a_i = \ell(e_i)$

Revist. [6]

Chap?

A 7 = A

A is symmetric A has n

real eigenvalues

(7.29).

(Real spectral 7hm)