0. Modelo de demanda dependiente del precio

Se modela la demanda del producto q en la tienda l durante el periodo t como una variable aleatoria normal, cuya media depende del precio de venta:

$$s_{qlt} \sim \mathcal{N}(\mu_{qlt}(p_{qlt}), \sigma_{qlt}^2)$$

donde la media está dada por:

$$\mu_{qlt}(p_{qlt}) = \gamma_{qlt} \cdot \rho_{qlt} \cdot e^{-\alpha_{qlt} \cdot p_{qlt}}$$

Descripción de parámetros

- γ_{qlt} : Factor de estacionalidad para el producto q, tienda l, periodo t.
- ρ_{qlt} : Demanda base del producto q en la tienda l en el periodo t.
- α_{alt} : Coeficiente de sensibilidad al precio (elasticidad).
- p_{qlt} : Precio de venta del producto q en la tienda l durante el periodo t.
- σ_{qlt}^2 : Varianza de la demanda estimada para el producto q en la tienda l en el periodo t.

1 Conjuntos, Parámetros y Variables

Table 1: Conjuntos

Símbolo	Descripción
\overline{q}	Conjunto de productos: $\{1, \dots, Q\}$
l	Conjunto de tiendas: $\{1, \ldots, L\}$
t	Conjunto de períodos de tiempo: $\{1,\ldots,T\}$

Table 2: Parámetros de la función de demanda

Símbolo	Descripción
μ_{qlt}	Valor esperado de la demanda para el producto q en tienda l en el período t
σ_{qlt}^2	Varianza de la demanda para el producto q en tienda l en el período t

Table 3: Parámetros del modelo

Símbolo	Descripción
s_{qlt}	Demanda del producto q en tienda l en el período t
c_q	Costo unitario del producto q
K_q	Costo fijo por emitir una orden del producto q
dl_{qlt}	Penalización por unidad de demanda insatisfecha
w_{ql}	Valor residual por unidad en inventario al final del horizonte
$rac{w_{ql}}{ar{h}_q}$	Costo de mantener inventario por unidad y período
IF_l	Capacidad máxima de almacenamiento en la tienda l
$pmin_{ql}$	Precio mínimo permitido para el producto q en tienda l
$pmax_{ql}$	Precio máximo permitido para el producto q en tienda l
$Transp_{vw}$	Diferencia máxima de precios permitida entre tiendas v y w
$ au_{ql}$	Porcentaje de la demanda insatisfecha que se considera perdida

Table 4: Variables de decisión				
Símbolo	Descripción			
$\overline{o_{qlt}}$	Cantidad a ordenar del producto q en tienda l al inicio del período t			
p_{qlt}	Precio del producto q en tienda l durante el período t			

Table 5: Variables auxiliares					
Símbolo	Descripción				
$\overline{I_{qlt}}$	Inventario disponible del producto q en tienda l al inicio del período t				
y_{qlt}	Variable binaria: vale 1 si se realiza una orden en el período $t,0$ en caso contrario				

2 Modelo de optimización

Función objetivo:

$$\max_{o,p} Ben(o,p)$$

Sujeto a:

$$0 \leq I_{ql(t-1)} + o_{qlt} \leq IF_{l} \qquad \forall q, l, t \qquad (1)$$

$$-Transp_{vw} \leq p_{qvt} - p_{qwt} \leq Transp_{vw} \qquad \forall q, t, v, w, v \neq w \qquad (2)$$

$$pmin_{ql} \leq p_{qlt} \leq pmax_{ql} \qquad \forall q, l, t \qquad (3)$$

$$o_{qlt} \leq I_{qlt} - I_{ql(t-1)} + \int_{-\infty}^{I_{ql(t-1)} + o_{qlt}} s_{qlt} f_{qlt}(s \mid p_{qlt}) ds \qquad \forall q, l, t \qquad (4)$$

$$+ \tau_{ql} \int_{I_{ql(t-1)} + o_{qlt}}^{+\infty} s_{qlt} f_{qlt}(s \mid p_{qlt}) ds \qquad \forall q, l, t \qquad (5)$$

$$o_{qlt} \leq My_{ql(t-1)} \qquad \forall q, l, t \qquad (5)$$

$$p_{qlt}, o_{qlt}, I_{qlt} \geq 0 \qquad \forall q, l, t \qquad (6)$$

Beneficio esperado:

$$Ben(o, p) = \sum_{q} \sum_{l} \sum_{t=1}^{T-1} \left(\int_{-\infty}^{I_{ql(t-1)} + o_{qlt}} s f_{qlt}(s \mid p_{qlt}) ds \right)$$

$$\cdot (p_{qlt} - c_q \cdot o_{qlt} - K_q \cdot y_{qlt})$$

$$- I_{qlt} \cdot \bar{h}q - \tau ql \cdot dl_{qlt}$$

$$\cdot \int_{+\infty}^{I_{ql(t-1)} + o_{qlt}} s f_{qlt}(s \mid p_{qlt}) ds \right)$$

$$+ \sum_{q} \sum_{l} \left(\int_{-\infty}^{I_{ql(T-1)} + o_{qlT}} s f_{qlT}(s \mid p_{qlT}) ds \right)$$

$$\cdot (p_{qlT} - c_q \cdot o_{qlT} - K_q \cdot y_{qlT})$$

$$+ I_{qlT} \cdot w_{ql} - \tau_{ql} \cdot dl_{qlt}$$

$$\cdot \int_{+\infty}^{I_{ql(T-1)} + o_{qlT}} s f_{qlT}(s \mid p_{qlT}) ds \right)$$

2.1. Función Objetivo (SAA)

Sets:

 \bullet H: Largo del horizonte rodante

• $i \in \{1, ..., N\}$: Índice de escenarios SAA

Parámetros:

• $\mu_{qlt}(p_{qlt})$: Demanda esperada (función del precio)

 $\bullet \ \sigma_{qlt} \text{: Desviación estándar de la demanda}$

• $z_{0.95} \approx 1.645$: Cuantil de la normal estándar para 95%

Maximizar la utilidad esperada:

$$\begin{split} \max_{p,o} \quad \frac{1}{N} \sum_{i=1}^{N} \sum_{t'=t}^{t+H} \sum_{q} \sum_{l} \left[\min(s_{qlt'}^{(i)}, I_{ql(t'-1)} + o_{qlt'}) \cdot p_{qlt'} \right. \\ \left. - c_{q} \cdot o_{qlt'} K_{q} \cdot y_{qlt'} \bar{h} q \cdot Iqlt' \right. \\ \left. - dl_{qlt'} \cdot \max\left(s_{qlt'}^{(i)} - I_{ql(t'-1)} - o_{qlt'}, 0\right) \right] \end{split}$$

donde $s_{qlt'}^{(i)} \sim \mathcal{N}(\mu_{qlt'}(p_{qlt'}), \sigma_{qlt'}^2)$

2.2. Restricciones

(1) Capacidad de inventario:	$0 \le I_{ql(t'-1)} + o_{qlt'} \le IF_l$	$\forall q, l, t' \in [t, t + H]$	(1)
(2) Rango de precios:	$pmin_{ql} \le p_{qlt'} \le pmax_{ql}$	$\forall q, l, t' \in [t, t+H]$	(2)
(3) Arbitraje entre tiendas:	$ p_{qvt'} - p_{qwt'} \le Transp_{vw}$	$\forall q, v \neq w, t' \in [t, t +$	H]
			(3)
(4) Activación binaria:	$o_{qlt'} \le M \cdot y_{qlt'}$	$\forall q, l, t' \in [t, t+H]$	(4)
(5) No negatividad:	$p_{qlt'}, o_{qlt'}, I_{qlt'} \ge 0$	$\forall q, l, t' \in [t, t+H]$	(5)
(6) Restricción probabilística 95%:	$I_{ql(t'-1)} + o_{qlt'} \ge \mu_{qlt'}(p_{qlt'}) + z_{0.95} \cdot \sigma_{qlt'}$	$\forall q, l, t' \in [t, t + H]$	(6)

3 Algoritmo

Algorithm 1 Optimización de precios con iteración y SAA

```
0: Inicializar:
0: for cada semana tdo 0: Establecer p_t^{(0)} \leftarrow precio histórico promedio del producto
0: Establecer criterio de parada: \epsilon y M (máximo de iteraciones)
0: while no convergencia y k < M do
        Paso 1: Generar demandas simuladas
0:
        for cada semana t do
0:
           Generar N muestras D_t^{(i)} \sim \mathcal{D}(p_t^{(k)})
0:
0:
        Paso 2: Resolver Modelo Propuesto con SAA
0:
       Calcular U^{(k)} = \frac{1}{N} \sum_{i=1}^{N} \sum_{t=1}^{4} U_t(p_t^{(k)}, D_t^{(i)})
Paso 3: Optimización por coordenadas
0:
          Buscar nuevo precio p_t^{(k+1)} \in \text{vecindad de } p_t^{(k)}

Mantener fijos los precios p_j^{(k+1)} = p_j^{(k)} para j \neq t

Evaluar utilidad U_t^{(k+1)} usando muestras para p_t^{(k+1)}

if U^{(k+1)} > U^{(k)} then
        \mathbf{for} \ \mathrm{cada} \ \mathrm{semana} \ t \ \mathbf{do}
0:
0:
0:
0:
0:
               Aceptar nuevo precio p_t^{(k+1)}
0:
0:
               Revertir: p_t^{(k+1)} \leftarrow p_t^{(k)}
0:
           end if
0:
        end for
0:
        if |U^{(k+1)} - U^{(k)}| < \epsilon then
0:
           Terminar iteración
0:
        end if
0:
        k \leftarrow k + 1
0: end while=0
```

4. Política de Ejecución

En cada periodo t:

- 1. Simular N escenarios de demanda futura para los próximos H periodos.
- 2. Resolver el modelo determinístico con restricciones anteriores.
- 3. Ejecutar sólo p_{qlt} , o_{qlt} .
- 4. Avanzar a t+1 y repetir.