习 题 课

- **例**1 设 A, B, C 是三个任意集合,则
 - (1) 若 $A \in B, B \in C, M \in C$ 可能吗? $A \in C$ 常真吗?举例说明;
 - (2) 若 $A \subset B$,则 $A \in B$ 可能吗?证明你的断言。
 - 解: (1) 举例说明如下: $A = \{a\}, B = \{\{a\}\}, C = \{\{a\}, \{\{a\}\}\}\}$, 则有 $A \in B, B \in C, A \in C$ 。

但 $A \in C$ 不常为真。若 $A = \{a\}, B = \{\{a\}\}, C = \{\{\{a\}\}\}\}$,则有 $A \in B, B \in C, (\exists A \notin C)$

- (2) 若 $A = \{a\}, B = \{a, \{a\}\}$, 则有 $A \in B, A \subseteq B$ 。
- 例 2 设 A,B,C 是任意三个集合:
 - (1) 若 $A \cup B = A \cup C$, 则有B = C吗?
 - (2) 若 $A \cap B = A \cap C$,则有B = C吗?
 - (3) 若 $A \cup B = A \cup C \perp A \cap B = A \cap C$,则有B = C吗?

解: (1)、(2) 不成立, (3) 成立。

反例如下自己举。

- (3) 由集合相等的定义来证明:
- **例 3** 设 A,B 为任意集合,证明
 - (1) $A \subseteq B \Rightarrow P(A) \subseteq P(B) \Rightarrow A \subseteq B$
 - (2) $P(A) = P(B) \Leftrightarrow A = B$
- 证: (1) $\forall x \in P(A)$, 有 $x \subseteq A$, 而 $A \subseteq B$, 故 $x \subseteq B$, 即 $x \in P(B)$ 。所以 $P(A) \subseteq P(B)$ 。

反之, $\forall x \in A$,则 $\{x\} \subseteq A$,即 $\{x\} \in P(A)$,又 $P(A) \supseteq P(B)$,所以 $\{x\} \in P(B)$,即 $\{x\} \subseteq B$,所以 $\{x \in B\}$,即 $\{x \in B\}$ 。

(2)
$$P(A) = P(B) \Leftrightarrow (P(A) \subseteq P(B)) \land (P(B) \subseteq P(A))$$

 $\Leftrightarrow A \subseteq B \land B \subseteq A \Leftrightarrow A = B \circ$

例 4 设A.B是两个任意集合,证明:

(1) $2^{A} \cup 2^{B} \subseteq 2^{A \cup B}$; (2) $2^{A} \cap 2^{B} = 2^{A \cap B}$; (3) 举例说明 $2^{A} \cup 2^{B} \neq 2^{A \cup B}$ 。 其中 2^{A} 表示集合 A 的幂集。

 $i E: (1) i E 2^A \cup 2^B \subseteq 2^{A \cup B}$

 $\forall x \in 2^A \cup 2^B$, $f(x) \in 2^A \text{ if } x \in 2^B$.

若 $x \in 2^A$,则 $x \subseteq A$,而 $A \subseteq A \cup B$,故 $x \subseteq A \cup B$,因此 $x \in 2^{A \cup B}$ 。

同理, 若 $x \in 2^B$, 也有 $x \in 2^{A \cup B}$ 。

因此 $2^A \cup 2^B \subset 2^{A \cup B}$ 。

(2) if $2^A \cap 2^B = 2^{A \cap B}$.

$$\Leftrightarrow x \subset A \cap B \Leftrightarrow x \in 2^{A \cap B}$$
.

所以 $2^A \cap 2^B = 2^{A \cap B}$ 。

(3) 下面举例说明 $2^A \cup 2^B \neq 2^{A \cup B}$ 。

设
$$A = \{1\}, B = \{2\}, \quad \text{则 } 2^A = \{\emptyset, \{1\}\}, 2^B = \{\emptyset, \{2\}\} \ .$$

$$2^{A} \cup 2^{B} = \{\emptyset, \{1\}, \{2\}\}, \quad \overrightarrow{\text{mi}} A \cup B = \{1, 2\}, 2^{A \cup B} = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\},$$

所以 $2^A \cup 2^B \neq 2^{A \cup B}$ 。

例 5 (多项选择)设集合 A 是以空集 \varnothing 为唯一元素的集合,集合 $B=2^{2^a}$,则下列各式那个正确?

(1) $\emptyset \in B$; (2) $\emptyset \subseteq B$; (3) $\{\emptyset\} \subseteq B$; (4) $\{\{\emptyset\}, \{\{\emptyset\}\}\}\} \subseteq B$; (5) $\{\emptyset, \{\{\emptyset\}\}\}\} \in B$ 。**解:** 选(1), (2), (3), (4)。

例6设A,B是任意集合,则

- (1) 若 $A \setminus B = B$,则A,B有何关系?
- (2) $A \setminus B = B \setminus A$,则 A 与 B 又有何关系。

证: (1) 由 $A \setminus B = B$,则可得出 $A = B = \phi$ 。

- (2) 由 $A \setminus B = B \setminus A$,可导出A = B。(决不是 $A = B = \phi$)
- 例7(1)举例说明,结合律不适用于集合的差运算之中。
 - (2) 证明: 对任意集合 A, B, C, 有 【2】 【23】 ,即 (A\ B\ C _A\(B, C) 。
 - **解**: (1) 若 $A = \{1,2,3\}, B = C = \{2\}, 则(A \setminus B) \setminus C \subseteq A \setminus (B \setminus C)$ 。
- (2) 证明: $\forall x \in (A \setminus B) \setminus C$,有 $x \in (A \setminus B)$, $x \notin C$,即 $x \in A$ 但 $x \notin B$, $x \notin C$,

从而 $x \notin B \setminus C$, 于是 $x \in A \setminus (B \setminus C)$, 即 $(A \setminus B) \setminus C \subseteq A \setminus (B \setminus C)$ 。

例 8 设 A,B,C 是集合, 求下列各式成立的充分必要条件

- (1) $(A \setminus B) \bigcup (A \setminus C) = A$; (2) $(A \setminus B) \bigcup (A \setminus C) = \phi$;
- (3) $(A \setminus B) \cap (A \setminus C) = \phi$; (4)_o $(A \setminus B) \Delta (A \setminus C) = \phi$

解: (1) $A \cap B \cap C = \phi$ 。

- (2) $(A \setminus B) \bigcup (A \setminus C) = \phi \Rightarrow A \setminus (B \cap C) = \phi \Leftrightarrow A \subseteq (B \cap C)$.
- (3) $A \subset B \cup C$
- (4) $A B = A C_{\circ}$

例 9 设 *A*, *B* 是集合,证明:

(1) $A = \phi \Leftrightarrow B = A\Delta B$; (2) $(A \setminus B) \cup B = (A \cup B) \setminus B \Leftrightarrow B = \emptyset$.

证: (1) ⇒显然。

 \leftarrow 反证法: 假设 $A \neq \phi$,则 $\exists x_0 \in A$,若 $x_0 \in B$,则 $x_0 \in E$,但 $x_0 \notin A$,矛盾。

(2) 两边同时 交上 B, 即得 $B = \emptyset$ 。

例 11 设 A,B,C 是任意三个集合,则

$$(A \cap B) \cup C = A \cap (B \cup C) \Leftrightarrow C \subseteq A$$

证: ⇒两边同并上 A 有:

 $A \cup ((A \cap B) \cup C) = A \cup [A \cap (B \cup C)] = A, \quad [A \cup (A \cap B)] \cup C = A \cup C = A;$ $\Rightarrow C \subseteq A$

 $\forall S, T, W \in 2^V$ 有 $S \subset T \subset W$ 当且仅且 $S \Delta T \subset S \Delta W$ 且 $S \subset W$ 。

证: \Rightarrow 因为 $S \subseteq T \subseteq W$, 故 $S\Delta T = T \setminus S \subseteq W \setminus S \subseteq S\Delta W$ 。

⇔先证 $S \subseteq T$ 。设 $x \in S$,则

若 $x \notin T$,则 $x \in S \setminus T \subseteq S \Delta T \subseteq S \Delta W = W \setminus S$,故 $x \in W \perp x \notin S$,矛盾。 所以 $x \in T$,即 $S \subset T$ 。

其次,证明 $T \subset W$ 。设 $x \in T$,则有两种情况:

若 $x \notin S$ 。则 $x \in T \setminus S \subseteq S\Delta T \subseteq S\Delta W = W \setminus S$,故 $x \in W$ 。

若 $x \in S$ 。由 $S \subseteq W$,知 $x \in W$ 。

总之, $\forall x \in T$, 有 $x \in W$, 故 $T \subset W$ 。

习 题 课

例 $1(P_{16}^3)$ 设 A,B,C 是三个任意集合,证明: $A\Delta(B\Delta C) = (A\Delta B)\Delta C$ 。

证: 两边展开 = $(A \cap B^c \cap C^c) \cup (A \cap B \cap C) \cup (B \cap C^c \cap A^c) \cup (C \cap B^c \cap A^c)$ 故结论成立。

 $\mathbf{M} \mathbf{2}(P_{20}^2)$ 设 A,B,C 为任意集合,化简

 $(A \cap B \cap C) \cup (A^c \cap B \cap C) \cup (A \cap B^c \cap C) \cup (A \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c)$

 $(A \cap B \cap C) \cup (A^c \cap B \cap C) \cup (A \cap B^c \cap C) \cup (A \cap B \cap C^c) \cup (A^c \cap B^c \cap C) \cup (A \cap B^c \cap C^c) \cup (A^c \cap B \cap C^c)$

答案: $A \cup B \cup C$ 。

例 $3(P_{20}^4)$ 设 M_1, M_2, \cdots 和 N_1, N_2, \cdots 是集合 S 的子集的两个序列,对 $i \neq j$, $i, j = 1, 2, \cdots$,有 $N_i \cap N_j = \phi$ 。令 $Q_1 = M_1, Q_n = M_n \cap (\bigcup_{k=1}^{n-1} M_k)^C, n = 2, 3, \cdots$ 。试证: $N_n \Delta Q_n \subseteq \bigcup_{k=1}^n (N_i \Delta M_i)$ 。

证: $\forall x \in N_n \Delta Q_n = (N_n \setminus Q_n) \bigcup (Q_n \setminus N_n)$,则

当
$$n=1$$
时, $x \in N_1 \Delta Q_1 = N_1 \Delta M_1 \subseteq \bigcup_{i=1}^n (N_i \Delta M_i)$,故 $N_n \Delta Q_n \subseteq \bigcup_{i=1}^n (N_i \Delta M_i)$;

当 $n \ge 2$ 时 , 设 $x \in N_n$ Δ $Q \in N_n$ Q ($Q \setminus$, 有 $x \in (N_n, Q_n, Q_n)$ 或 $x \in (Q_n \setminus N_n)$ 。 则

1. 若 $x \in (N_n \setminus Q_n)$,则 $x \in N_n$,但 $x \notin Q_n = M_n \cap (\bigcup_{i=1}^{n-1} M_i)^c$,即 $x \notin M_n$ 或 $x \in \bigcup_{i=1}^{n-1} M_i$,因此有 $x \notin M_n$ 或 $x \in M_i$ ($i \le n-1$)。于是

- (1) 若 $x \in N_n$ 且 $x \notin M_n$, 有 $x \in N_n \setminus M_n \subseteq N_n \Delta M_n \subseteq \bigcup_{i=1}^n (N_i \Delta M_i)$;
- (2) 若 $x \in N_n$ 且 $x \in M_i$ ($i \le n-1$),由 $N_i \cap N_j = \emptyset$ ($i \ne j$),有 $x \notin N_i$ 且 $x \in M_i$ ($i \le n-1$),于是 $x \in M_i \setminus N_i \subseteq M_i \Delta N_i \subseteq \bigcup_{i=1}^n (N_i \Delta M_i)$ 。
- 2. 若 $x \in Q_n \setminus N_n$,则 $x \in Q_n = M_n \cap (\bigcup_{i=1}^{n-1} M_k)^c$,即 $x \in M_n$ 但 $x \notin N_n$ 。于是 $x \in M_n \setminus N_n \subseteq M_n \Delta N_n \subseteq \bigcup_{i=1}^n (N_i \Delta M_i) \circ$

综上可得: $N_n \Delta Q_n \subseteq \bigcup_{i=1}^n (N_i \Delta M_i)$ 。

例 $4(P_{25}^2)$ 设 A,B 为集合,证明: $A\times B=B\times A$ 充要条件是下列三个条件至少一个成立: (1) $A=\emptyset$; (2) $B=\emptyset$; (3) A=B。

- 1. 若 $A \times B = B \times A = \emptyset$,则 $A = \emptyset$ 或 $B = \emptyset$ 。
- 2. 若 $A \times B = B \times A \neq \emptyset$,则 $\forall x \in A, y \in B$,有 $(x, y) \in A \times B = B \times B$ 。于是

 $x \in B, y \in A$,因此 $A \subset B \perp B \subset A$,故A = B。

例 $6(P_{33}^4)$ 马大哈写 n 封信,n 个信封,把 n 封信放入到 n 个信封中,求全部装错的概率是多少? $(n \land h, n)$ 顶帽子,全部戴错的概率是多少?)

解: n 封信放入到 n 个信封中的全部排列共有: $|S_n| = n!$;

令 A 表示所有信都装错的集合,即

$$A = \{i_1, i_2, \dots, i_n \mid i_1 \neq 1, i_2 \neq 2, \dots, i_n \neq n\}$$

令 A_i 表示第i个信封恰好装对的集合,则 A_i ^C ⊆A 。所以全部装错的集合为:

$$A = A_1^C \cap A_2^C \cap \cdots \cap A_n^C \circ$$

于是, 易得

$$|A_i| = (n-1)!, |A_i \cap A_j| = (n-2)!, i \neq j$$

对于
$$1 \le i_1 < i_2 < \dots < i_k \le n$$
,有 $\left| A_{i_1} \cap A_{i_2} \cap \dots \cap A_{i_k} \right| = (n-k)!$ 。又

$$|A| = |A_1^C \cap A_2^C \cap \dots \cap A_n^C| = |S_n| - \left| \bigcup_{i=1}^n A_i \right| = n! - \sum_{i=1}^n |A_i| + \sum_{1 \le i < j \le n} |A_i \cap A_j|$$

$$-\dots + (-1)^n \left| \bigcap_{i=1}^n A_i \right| = n! - C_n^1 (n-1)! + C_n^2 (n-2)! - \dots + (-1)^n C_n^n (0)!$$

$$= n! (1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}), \quad \text{ix}$$

$$P = \frac{|A|}{|S|} = \frac{|A|}{n!} = \left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots + (-1)^n \frac{1}{n!}\right) \approx e^{-1} = 0.3679$$

〔答案: 0.3679, 当 n≥10 时, 概率都近似等于 0.3679)。

例7(P_{33}^5)毕业舞会上,小伙子与姑娘跳舞,已知每个小伙子至少与一个姑娘跳过舞,但未能与所有姑娘跳过。同样地,每个姑娘也至少与一个小伙子跳舞,但也未能与所有的小伙子跳过舞。证明:在所有参加舞会的小伙与姑娘中,必可找到两个小伙子和两个姑娘,这两个小伙子中的每一个只与这两个姑娘中的一个跳过舞,而这两个姑娘中的每一个也只与这两个小伙中的一个跳过舞。

证: 设 $F = \{f_1, f_2, \dots, f_n\}$ 是小伙的集合, $G = \{g_1, g_2, \dots, g_m\}$ 是姑娘的集合。

与 f_1 跳舞的姑娘的集合用 G_f 表示;

与 f_2 跳舞的姑娘的集合用 G_{f_2} 表示;

: : :

与 f_n 跳舞的姑娘的集合用 G_{f_n} 表示;

于是,由题意: $G_{f_1} \cup G_{f_2} \cup \cdots \cup G_{f_n} = G \coprod G_{f_i} \neq \emptyset \coprod G_{f_i} \neq G$, $i=1,2,3,\cdots,n$ 。

若存在 G_{f_i} , G_{f_i} ($i \neq j$),使得 $G_{f_i} \not\subseteq G_{f_i}$ 且 $G_{f_i} \not\subseteq G_{f_i}$,则结论成立。

反证法: 假设不存在 G_{f_i} 和 G_{f_i} 满足 $G_{f_i} \not\subset G_{f_i}$ 且 $G_{f_i} \not\subset G_{f_i}$ 。于是

 $\forall i, j (i \neq j), G_{f_i}$ 与 G_{f_i} 应满足: $G_{f_i} \subseteq G_{f_i}$ 或 $G_{f_i} \subseteq G_{f_i}$ 必有一个成立。

因此把 G_{f_1} , G_{f_2} ,…, G_{f_n} 重新排列有: $G_{f_{i1}} \subseteq G_{f_{i2}} \subseteq \cdots \subseteq G_{f_m}$ 。从而 f_m 与所有的姑娘都跳过舞,矛盾。

因此假设不成立, 本题得证。

例8甲每5秒放一个爆竹,乙每6秒放一个,丙每7秒放一个,每人都放21个爆竹,共能听见多少声响。

解: 设 $A = \{0,5,10,15,\cdots,100\}, B = \{0,6,12,18,\cdots,120\}, C = \{0,7,14,21,\cdots,140\},$ 则能听见多少声响相当于并集的个数,即

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

$$= 21 \times 3 - \left(\left[\frac{100}{5 \times 6} \right] + 1 \right) - \left(\left[\frac{100}{5 \times 7} \right] + 1 \right) - \left(\left[\frac{120}{6 \times 7} \right] + 1 \right) + \left(\left[\frac{100}{5 \times 6 \times 7} \right] + 1 \right) = 54$$

$$0, 30, 60, 90 \quad 0, 35, 70 \quad 0, 42, 84 \quad 0$$