

Anticancer drugs

László Drimba M.D.

University of Debrecen

Department of Pharmacology and Pharmacotherapy

Anticancer drugs

- cancer
 - □ malignant neoplasm, malignant tumor
 - □ uncontrolled proliferation
 - escaped from the mechanism normally regulating the cell growth
 - □ dedifferentiation and loss of function
 - □ benignant or malignant features
 - invasiveness
 - metastasis
 - □ genesis of cancer
 - procarcinogen factors
 - transformation of proto-oncogenes→oncogenes
 - inactivation of tumor-suppressor genes
- anti cancer therapy
 - □ difficult task
 - □ selective toxicity?
 - structural, functional features of human cells (unlike bacterias)
 - m.o.a:
 - □ damage DNA or DNA synthesis→inducing apoptosis

General purposes of anticancer therapy

- kill/remove malignant cells
 - □ cytotoxic drugs
 - chemotherapeutic agents
 - targeted cytotoxic agents (AB linked to toxins or radioactive agents)
 - □ surgery
 - □irradiation

Anticancer drugs

- Resistance to anticancer drugs
 - □ temporary resistance
 - pharmakokinetic resistance
 - □ isolated organs, (CNS)
 - □ no penetration of anticancer drugs
 - cell kinetic resistance
 - □ cell cycle (phase)
 - permanent resistance
 - primary
 - □ solid tumors' "ab ovo" resistance
 - secundaer (acquired)
 - □ decreased influx of anticancer drugs
 - doxorubicine, vinblastin
 - □ altered metabolizing pathways
 - antimetabolites
 - □ increased protecting factors (gluthatione)
 - □ receptor down regulation
 - □ rapid repair of drug induced lesions
 - alkylating agents

Drugs used in cancer chemotherapy

- Cytotoxic drugs
 - □ alkylating agents
 - form covalent bonds with DNA and impede replication
 - □ antimetabolites
 - block metabolic pathways in DNA synthesis
 - □ cytotoxic antibiotics
 - substances of microbal origin, that intercalate into the cell DNA
 - plant derivatives
 - affect microtubule function
- Hormones
 - drugs, that suppress hormone secretion or antagonise hormone action
- Miscellaneous agents
- Supportive therapy

Drug action based on cell cycle

- Phase specific agents
 - □ M phase
 - vinca alkaloids
 - □ S phase
 - cytarabine, methotrexate, 5-FU

- Cycle specific agents
 - □ acting all stages of the cycle
 - alkylating agents, dactinomycin, cisplatin
- Cycle non-specific agents
 - bleomycin, nitros-ureas

Anticancer drugs

- Adverse effects
 - □ bone marrow toxicity myelosuppression!
 - □ impaired wound healing
 - □ loss of hair (alopecia)
 - □ damage to GIT epithelium
 - □ depression of growth (children)
 - □ sterility/infertility
 - □ teratogenicity

Alkylating agents

- mechanism of action:
 - □ form covalent bonds with DNA (nucleofilic subst.)
 - carbonium ion (C atom with 6e⁻) highly reactive
 - e⁻ donors –DNA (amine-, hydroxyl-, sulfhydril group)
 - □ bifunctional
 - two alkylating groups
 - action
 - interchain cross linking defective replication!
 - intrastrand linking, chain breakage/termination
 - □ mainly in S phase, G₂ phase (triggering apoptosis)
- unwanted effects:
 - □ myelosuppression
 - □ infertility (men)
 - □ incr. risk of non-lymphocytic leukaemia

Alkylating agents

Nitrogen mustards

□ chlorambucil

•	originated from "mustard gas" (Ist WW)	Cl- dissociation
	bis-chlorethyl-amine derivatives	
	□ intramolecular cyclisation→ethylene imn ion!!!→REACTIVITY!	nonium→ reactive carbonium
cyc	clophosphamide	
•	inactive→metabolized in the liver→active! (ale	dophosphamide)
•	non enzymatic transformation	
	□ acrolein – haemorrhagic cystitis	
	increase fluid intake!!!	
	sulfhydril donors (mesna, N-ACC)	
	□ phosphoramide mustard – cytotoxic effect	t
•	• appl.: iv., im., p.o.	
•	pronounced effect on lympocytes (immunsuppression)	ressant)
	□ lymphomes, leukaemia	
•	a.e.:	
	□ nausea, vomiting	
	 bone marrow depression 	
estr	ramustine	
•	combination of chlormethine and oestrogen	
•	cytotoxic and hormonal action	
•	appl.: prostata cancer	

Alkylating agents

- Nitrosureas
 - □ lomustine, carmustine
 - lipid soluble
 - cross the blood-brain barrier
 - appl.: tumors in CNS (brain, meninges)
 - adv. eff.:
 - □ bone marrow depression (3-6 weeks)
 - □ acustic damage
 - □ alopecia
- Busulfan
 - selective effect on bone marrow (granulocytes, platelets, red cells)
 - □ no effect on lymphoid tissue, GIT
 - □ applied in CGL

Platinum compounds

Alkylating agents

- □ cisplatin
 - water soluble
 - planar coordination of central Pl surrounded by Cl⁻ and NH₂ → reactive complex (Cl⁻ dissociates)
 - cross linking between N7 O6 guanine
 - appl.: solid tumors
 - □ testis, ovary
 - slow intravenous injection, infusion
 - **a.e.**:
 - nephrotoxicity
 - hydration
 - □ nausea, vomiting
 - ondansetron, tropisetron
 - □ tinnitus, hearing loss
- carboplatin
 - derivative of cisplatin
 - decreased adverse effect profile
 - myelotoxic
- Dacarbazine derivatives
 - prodrug, activated in the liver
 - □ temezolimide (carmustin)
 - clinical use: malignant glioma

Antimetabolites

cerebellar disturbances

		block or subvert pathways of DNA synthesis
•	Fola	te antagonists • folate (FH4) are essential in purin nucleotides synth. (DNA synthesis)!
		methotrexate
		structure
		□ pteridine ring-PABA-glutamic acid – (resembl. to folate)
		 inhibitis DHFR (no FH₂, FH₄) – cofactor of thymidylate synthase (dUMP→dTMP) – DNA synthesis
		adm.: orally, iv., i.m.,
		 low lipid solubility – no pass to CNS – intrathecal administration (lumbar punction)
		adverse effects
		□ bone marrow depression
		□ damage the epithelium of GIT
		 nephrotoxicity
		 AD: Leucovorin (synthetic folate analogue)
		clinical use: AML
	Pyri	midine analogues
		Fluorouracil (5-FU)
		 structural analogue of uracil
		converted to FdUMP (fraudulent nucleotide)
		 interaction with thymidilate synthase → no dTMP / incorporation into the DNA
		 parenteral application (breast cancer, colorectal cancer)
		adverse effects:
		☐ GIT epithelium damage

M

Antimetabolites

- Cytarabine
 - cytosin arabinoside (citidine+carbohydrate)
 - transformed to CATP (cytosin arabinozide triphosphate)
 - inhibits DNA polymerase applied at lymphomas
 - adverse effects:
 - □ bone marrow depression
 - □ nausea, vomitting
- Gemcitabine
 - new analogue of cytarabine
 - decreased adverse effect profile
 - combination with cisplatin (solid tumors)
- Purine analogues
 - Fludarabine
 - triphosphate form inhibits DNA polymerase
 - Pentostatin
 - inhibits adenosine desaminase
 - adenosine ≠ inosine
 - Azathioprim
 - 6-MP (6-mercaptopurine) → 6TG (fraudulent nucleotide) structural analogue of guanin
 - inhibits HGPRT
 - □ inhibiting purin synthesis
 - □ chain terminator (fraudulent nucleotide)
 - eliminated by xanthin oxydase
 - □ allopurinol reduced th. dose (when coapplied)
 - clinical use: leukaemia, lymphoma

M

Cytotoxic antibiotics

- Anthracyclines
 - Doxorubicine
 - cytotoxic actions
 - □ direct binding on DNA
 - inhibits AMP kinase p53 suppression apoptosis
 - intercalation inhibits replication
 - intravenous infusion
 - myeloid leukemias
 - **a.e.**:
 - cardiac damage
 - free radicals↑
 - dysrythmias
 - Dactinomycin
 - intercalating between guanosine-cytosine pairs
 - blocking DNA dependent RNA synthesis
 - □ Bleomycin
 - glycopeptide AB derivative
 - effects
 - □ produces free radicals DNA damage (chain fragmentation)
 - □ intercalates into the DNA chain termination
 - M phase, G2 phase, G0 phase
 - clinical use
 - □ germline cancer
 - a.e.: pulmonary fibrosis

Cytotoxic antibiotics

- □ Mitomycin
 - similar function, like alkylating agents (cross-linking of DNA)
 - binding to O6 of guanine
 - a.e.:
 - □ myelosuppression
- ☐ Hydroxycarbamide
 - hydroxyurea urea analogue
 - inhibits ribonucleotide reductase
 - ribonucleotides / desoxyribonucleotide
 - clinical use: leukaemia

Plant derivatives

	Vinca alkaloides					
	vincris	tin, vinblastine, vindesine, vinorelbine				
		derived from Madagascar periwinkle				
		binding to tubulin, inhibits microtubule polimerisation → arresting M phase				
		inhibits phagocytosis, axonal transport (
		used in breast cancer, testicular cancer, NHL				
	Taxanes					
	paclita	xel, docetaxel				
		derived from the bark of the "Pacific yew" tree				
		microtubules stabilising effect in polimerized state ("freezing")				
		appl.: i.v. infusion (paclitaxel), p.o. (docetaxel)				
		clinical use.:				
		breast cancer				
		ovary cancer (paclitaxel+carboplatin)				
		a.e.:				
		neurotoxicity				
		bone marrow suppression				
	Podophyllotoxins					
	etoposide					
		derived from "mandrake root"				
		inhibiting mitochondrial action, nucleoside transport				
		inhibits DNA topoisomerase II				
		a.e.:				
		nausea, vomitting				
		hair loss				
	Campotechins					
	irinotecan, topotecan					
		binding and inhibiting topoisomerase I, interkaleting into DNA (DNA damage)				
		a.e.:				
		diarrhea				
		bone marrow depression				

Hormones/hormone antagonists

□ some tumors/neoplasms = hormone dependent/sensitive tissue	
glucocorticoids	
□ prednisolone, dexamethasone	
 inhibitory effect on lymphocyte proliferation 	
 combination with cytotoxic drugs 	
clinical use	
□ leukaemia, lymphoma	
$\Box \downarrow ICP $ (supportive therapy)	
oestrogenes	
□ ethyniloestradiol, diethylstilbestrol	
clinical use:	
palliative treatment in androgen dependent prostatic tumors	
used facilitating mammary cancer cell proliferation (stage changing) + cancer chemotherapy drug	er
progestogenes	
□ megestrol, medroxyprogesterone	
clinical use	
□ endometrial neoplasm	
□ renal tumors	
gonadotrophin releasing hormone (GnRH) analogues	
□ gosereline, busereline, triptoreline	
 inhibiting gonadotrophin and LH release 	
clinical use	
□ breast cancer, prostata tumor	

Hormones/hormone antagonists

Miscellaneous agents

B 4	r 1	1 1		1 1.	
N/I	000	on a	lantı	bodies	2
1 V I				I // // I I (//	7

- □ rituximab, alemtuzumab
 - monoclonal antibody
 - binding to CD20 R of lymphocytes activating complements
 - clinical use:
 - □ lymphoma, combination therapy
 - a.e.:
 - □ hypotension, cytokin release reaction
- □ trastuzumab (Herceptin)
 - monoclonal antibody
 - binds to HER2 (human epidermal growth factor receptor 2)
 - □ inducing cell cycle inhibitors p21, p27
 - clinical use
 - □ breast cancer (HER2 overexpression)
- ☐ Gemtuzumab + Ozogamycin

Miscellaneous agents

- imatinib mesylate
 - □ breaktrough in targeted chemotherapy
 - □ small molecule
 - inhibitor of kinases
 - □ receptor tyr-kinase
 - □ Bcr/Abl kinase (CML)
 - □ applied in leukaemia, GIT tumors
 - □ p.o.
 - □ PPB-high
 - □ a.e.:
 - fatigue, GIT symptoms, headache
- biological response modifiers
 - enhance the host's response
 - □ IFN- α -solid tumors, lymphomas
 - □ aldesleukin recombinant IL-2 renal tumors
 - □ tretionin form of Vitamin-A leukaemia

Supportive therapy

- □ analgetic drugs
 - maior analgetics
 - □ fentanyl (TTS), morphine
- □ antiemetic drugs
 - 5HT₃R antagonists
 - □ ondansetron, granisetron
 - \blacksquare D₂R antagonist
 - □ metoclopramide
- □ myeloprotection (GM-CSF)
 - molgramostim, sargamostim, pegfilgastrim
- steroids
 - oradexon
 - □ ICP↓
- □ hyperhydration, diuresis↑
- □ antidepressants, anxiolytics
 - SSRI, BDZ
- special antidotes
 - mesna, N-ACC, Leucovorin

New targets in cancer therapy

- inactivate components of oncogene signaling pathway
 - □ inhibitors of growth-factor receptors (Tyr-kinase receptors)
 - Tyr kinase inhibitors
 - □ inhibitors of anti-apoptotic factors
 - □ stimulating pro-apoptotic factors
 - □ inhibitor of adaptive proteins (Ras)
- restore function of tumore suppressor genes
 - gene therapy
- COX-inhibitors
 - □ selective COX-2 inhibitors (celecoxib)
 - prophylactic in mammary cancer
 - colon tumor
- p53 supplementation
 - □ p53 gene insertion
 - □ ONYX-015