Mechatronics System Design EC4.404 - S2023

Lecture - 9

Nagamanikandan Govindan

Robotics Research Center, IIIT Hyderabad. nagamanikandan.g@iiit.ac.in

Recap...

Reushitr - 1 Musmetri 1 universal - 2 Cylinderias -Belical Spheri las Manaz

Degree of Freedom in Planar Mechanisms

▶ **Gruebler condition:** to investigate the DoF of any assembly

Kutzbach's modification of Gruebler's equation is

$$M = 3(N-1) - 2J_1 - J_2$$

 $J_1 = \text{no. of 1DOF joints}, J_2 = \text{no. of half joints}$

Degree of Freedom in Planar Mechanisms

Degree of Freedom (Mobility) in Spatial Mechanisms

A one-freedom joint removes 5 DOF

The Kutzbach mobility equation for spatial linkages

$$M = 6(N-1) - 5J_1 - 4J_2 - 3J_3 - 4J_4 - J_5$$

Joi	nts				A Company of the Comp
	7	g			
	Joint type	$\operatorname{dof} f$	Constraints c between two planar rigid bodies	Constraints c between two spatial rigid bodies	3
x . 3	Prismatic (P) Helical (H) Cylindrical (C) Universal (U) Spherical (S)	1 1 1 2 2 3			
	6	7-4	7 2		ı

The number of degrees of freedom f and constraints c provided by common joints.

the number of constraint equations imposed by j joints

$$DoF = K(N-1) - \sum_{i=1}^{j} (K - f_i)$$

No parameters required to specify a single link 3 or 6

$$N = \text{no. of links}$$

$$j = no. of joints$$

 $f_i =$ is the freedom of the jth joint

$$DoF = K(N - 1 - j) + \sum_{i=1}^{j} f_i$$

MECHANISMS AND STRUCTURES

If the DOF is positive, it will be a **mechanism**, and the links will have relative motion

If the DOF is exactly zero, then it will be a **structure**, and no motion is possible.

If the DOF is negative, then it is a **preloaded structure**, which means that no motion is possible and some stresses may also be present at the time of assembly.

Failure of Grubler's Equation

- Fails when
 - Special dimensions
 - Special geometry

Due to parallelogram configuration, the linkage can move. However, this is a overconstrained linkage with redundant constraint.

It may jam if there are any manufacturing errors.

Constrained Mechanism Watt's sixbar isomer

Klann walking mechanism

Watt's sixbar isomer

Klann walking mechanism

Synthesis and Analysis

Analysis

- A particular given mechanism is investigated based on the mechanism geometry plus other characteristics (i/p angular velocity, acceleration etc)
- Given the mechanism, the motion characteristics of its components will be determined.
 - Displacement analysis
 - Velocity analysis
 - Acceleration analysis

It is a process of designing a mechanism to accomplish the desired task.

Synthesis

- Creating mechanism for a given motion
 - Type Synthesis
 - Number Synthesis
 - Dimensional Synthesis

The process of drawing kinematic diagrams and determining DOF of more complex mechanisms are the first steps in both kinematic analysis and synthesis

Mechanism design

- Mechanism design involves finding a mechanism which carries out a user specified task.
- The process involves selection of joint types and link dimensions.

Example – Eight-bar Theo-Jansen linkage enables robotic walking.

Synthesis

Type Synthesis:

Given a task to be produced by a mechanism, what type of mechanism will be suitable?

- Linkages
- Gear trains
- Belt drives etc

Synthesis

Number synthesis

▶ The determination of the number and order of links and joints necessary to produce motion of a particular DOF

- Link order refers to the number of nodes per link, i.e., binary, ternary, quaternary, etc.
- exhaustive determination of all possible combinations of links that will yield any chosen DOF

Number synthesis - Example

all the possible link combinations for one DOF, including sets of up to eight links

Hypothesis: If all joints have 1 DOF, an odd number of DOF requires an even number of links and vice-versa.

Proof:

$$M = 3(N-1) - 2J$$

$$J = \frac{3}{2} (N - 1) - \frac{1}{2}$$

N must be 2,4,6,8,... links to ensure the no. of joints J to be a positive integer.

▶ Total number of links

$$N = B + T + Q + P + \cdots$$

0 0

B = no. of binary links T = no. of ternary linksQ = no. of quaternary links ...

Two link nodes are needed to make one joint

$$J = \frac{nodes}{2}$$

no. of nodes = order of links * no. of links of that order

$$J = \frac{nodes}{2} = 2B + 3T + 49$$

$$J = \frac{(2B + 3T + 4Q + 5P + 6H)}{2}$$

Substitute in Gruebler's equ.

$$\frac{(2B+3T+4Q+5P+6H...)}{2} = \frac{3}{2}(N-1) - \frac{M}{2}$$

$$2B + 3T + 4Q + 5P + 6H = 3N - 3 - M$$

$$= 35 + 3T + 3Q + 3P + 3H - 4N = 54$$

$$+ R + Q + 2P + 3H = -4$$

25

Sub
$$B = N - T - Q - P - H$$
 In

$$2B + 3T + 4Q + 5P + 6H = 3N - 3 - M$$

$$T + 2Q + 3P + 4H = N - 4$$

$$T + 2Q + 3P + 4H = N - 4$$
 $B = N - T - Q - P - H$

N must be even for odd DOF

Case 1 ; N=2 T+2Q+3P+4H=-2 B=N-T-Q-P-H Requires N=-2 links - impossible

Case 2 ;
$$N = 4$$

$$-T + 2Q + 3P + 4H = 0$$

$$B = 4 - T - Q - P - H$$

The simplest 1DoF requires N=4 binary links

$$T + 2Q + 3P + 4H = N - 4$$

 $B = N - T - Q - P - H$

• Case 3; N = 6

$$T + 2Q + 3P + 4H = 2$$
 $P = H = 0$

T may be 0,1, or 2

Q may be 0 or 1

$$If Q = 0$$
 $If Q = 1$
 $then T = 2$, $then T = 0$,
 $B = 4$ $B = 5$

$$B = 6 - T - Q - P - H$$

$$T + 2Q + 3P + 4H = N - 4$$

 $B = N - T - Q - P - H$

• Case 3; N = 6

$$T + 2Q + 3P + 4H = 2$$
 $P = H = 0$

T may be 0,1, or 2

Q may be 0 or 1

$$If Q = 0$$
 $If Q = 1$
 $then T = 2$, $then T = 0$,
 $B = 4$ $B = 5$

$$B = 6 - T - Q - P - H$$

TABLE 2-2 1-DOF Planar Mechanisms with Revolute Joints and Up to 8 Links

N	Link Sets				
IV	Binary	Ternary	Quaternary	Pentagonal	Hexagonal
4	4	0	0	0	0
6	4	2	0	0	0
6	5	0	1	0	0
8	7	0	0	0	1
8	4	4	0	0	0
8	5	2	1	0	0
8	6	0	2	0	0
8	6	1	0	1	0

ISOMERS

Like Isomers in chemistry - compounds that have the same number and type of atoms but which are interconnected differently and thus have different physical properties.

Nun	nber	of \	Val	id	Isom	iers
ITUI	1150	01	v ai	I G	13011	1012

Links Valid	
4	1
6	2
8	16
10	230

Invalid Isomers

Eightbar 1-DOF ISOMERS

(d) All the valid eightbar 1-DOF isomers