Ingeniería de Sistemas (INCOSE) - IDS1

Definiciones Fundamentales

· Sistema:

Arreglo de **partes/elementos** que, en conjunto, exhiben un **comportamiento o significado** ausente en sus componentes individuales.

• **Emergencia:** Propiedad clave que surge de interacciones entre partes.

Tipos:

- **Físico:** Compuesto de materia/energía (ej: máquina, organismo).
- Conceptual: Basado en información (ej: software, modelo matemático).

• Sistema Ingenieril (Engineered System):

Diseñado para **interactuar con un entorno operativo**, cumplir objetivos bajo restricciones.

Componentes:

Personas, productos (hardware/software), servicios, información, procesos, elementos naturales.

Ingeniería de Sistemas (SE):

Enfoque transdisciplinario e integrador para:

- Realizar, usar y retirar sistemas.
- Equilibrar necesidades técnicas, comerciales y sociales.
- Reducir riesgos (costos, retrasos, consecuencias no deseadas).

2. Tipos de Sistemas

Tipo	Características	Ejemplos
Natural	Existe sin intervención humana.	Ecosistemas, células.

Artificial	Creado por humanos.	Edificios, software.
Híbrido	Combina natural y artificial.	Cultivos transgénicos.
Socio-Técnico	Integra personas y tecnología.	Redes sociales, hospitales.
Abierto	Intercambia materia/energía/información con entorno.	Ciudades, organismos.
Cerrado	Aislado teóricamente (ej: universo termodinámico).	Sistemas ideales en laboratorio.
Complejo	Relaciones no lineales y comportamientos emergentes.	Clima, mercados financieros.
Viable	Se adapta y mantiene equilibrio en entornos cambiantes.	Empresas resilientes, organismos.
Anticipatorio	Usa modelos internos para predecir y adaptarse.	Vehículos autónomos.

3. Componentes de un Sistema Ingenieril

- **Físicos:** Hardware, infraestructura, recursos naturales.
- Conceptuales: Software, documentación, procesos.
- Humanos: Roles, organizaciones, usuarios.
- **Servicios:** Funcionalidades para satisfacer necesidades (ej: cloud computing).

4. Principios de la Ingeniería de Sistemas

- Transdisciplinariedad: Combina disciplinas (ej: ingeniería + sociología).
- · Ciclo de Vida:
 - 1. Planificación: Definir objetivos y requisitos.
 - 2. **Diseño:** Crear arquitecturas y modelos.
 - 3. Implementación: Construir y verificar.
 - 4. Operación: Monitorear y mantener.
 - 5. Retiro: Desmantelar o reciclar.

Gestión de Riesgos:

Identificar amenazas (fallas técnicas, cambios en requisitos).

Mitigar con modelos predictivos y pruebas.

Modelado:

• Herramientas: UML, BPMN, C4 Model.

C4 Model:

- Nivel 1 (Contexto): Interacciones externas.
- Nivel 2 (Contenedores): Aplicaciones y bases de datos.
- Nivel 3 (Componentes): Módulos internos.
- Nivel 4 (Código): Detalles técnicos.

5. Sistemas Complejos y Desafíos

Características:

- No linealidad: Pequeños cambios → Grandes impactos (ej: efecto mariposa).
- Emergencia: Comportamientos impredecibles (ej: inteligencia colectiva en colonias de hormigas).
- Adaptabilidad: Evolución ante cambios (ej: algoritmos de aprendizaje automático).

• Enfoques de Gestión:

- Simulación: Modelar escenarios virtuales.
- Arquitecturas modulares: Componentes intercambiables.
- Retroalimentación continua: Ajustes basados en datos.

6. Ejemplos y Conceptos Clave

• Sistemas Anticipatorios:

 Predicen cambios mediante modelos internos (ej: vehículos autónomos evitan obstáculos).

• Economía Circular:

Sistemas híbridos donde residuos son recursos (ej: reciclaje industrial).

• Entropía:

 Tendencia al desorden en sistemas cerrados (ej: software legacy difícil de mantener).

Homeostasis:

 Equilibrio interno en sistemas viables (ej: termostatos regulan temperatura).

7. Respuestas a Preguntas Clave

1. ¿Qué define a un sistema según INCOSE?

Un arreglo de partes con propiedades emergentes ausentes en sus componentes individuales.

2. ¿Qué es un sistema anticipatorio?

Sistema que usa modelos internos para adaptarse a cambios futuros (ej: IA predictiva).

3. Elementos de un sistema ingenieril:

Personas, productos, servicios, información, procesos, elementos naturales.

4. Enfoque de la Ingeniería de Sistemas:

Transdisciplinario, gestión de riesgos, ciclo de vida completo.

5. Diferencia sistema físico vs. conceptual:

- **Físico:** Materia/energía, comportamiento observable.
- Conceptual: Información, significado dependiente de soporte físico.

Referencia: INCOSE-TP-2020-002-06 | *Systems Engineering and System Definitions*.