NCR CAMPUS, MODINAGAR

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Analog and Digital Electronics Laboratory (18CSS201J)

: Experiment No. 3 : Square/Rectangular Waveform **Title of Experiment**

Generator

Name of the candidate : ANANYA GUYPTA

Register Number : RA1911003030265

Branch-Section : CSE-I

Experiment No. 3: Square/Rectangular Waveform Generator

Aim: Design and implement using simulator a Square/rectangular waveform generator (Op-Amp relaxation oscillator).

Apparatus Require:

LM 741/OP27 or its equivalent Capacitor $-0.1 \mu F$ Resistors – $10K\Omega$ (2), $1K\Omega$ (2) AD Kit Bread Board.

Theory:

The non-sinusoidal waveform generators are also called relaxation oscillators. The opamp relaxation oscillator shown in figure is a square wave generator. In general, square waves are

relatively easy to produce.

The comparator uses positive feedback that increases the gain of the amplifier. In a comparator circuit this offer two advantages. First, the high gain causes the op-amp's output to switch very quickly from one state to another and vice-versa. Second, the use of positive feedback gives the circuit hysteresis. In the op-amp square-wave generator circuit given in figure, the output voltage v_{out} is shunted to ground by two Zener diodes Z_1 and Z_2 connected back-to-back and is limited to either Vz_2 or $-Vz_1$. A fraction of the output is fedback to the non-inverting (+) input terminal. Combination of IL and C acting as a low-pass R-C circuit is used to integrate the output voltage v_{out} and the capacitor voltage v_c is applied to the inverting input terminal in place of external signal.

The differential input voltage is given as $V_{in} = V_c - \beta V_{out}$

When v_{in} is positive, $v_{out} = -V_{z1}$ and when v_{in} is negative $v_{out} = +V_z$ 2. Consider an instant of time when $v_{in} < 0$. At this instant $v_{out} = +V_z$ 2, and the voltage at the non-inverting (+) input terminal is β V_z 2, the capacitor C charges exponentially towards V_z 2, with a time constant R_f C.

The output voltage remains constant at $V_{z\,2}$ until v_c equal $\beta V_{z\,2}$.

When it happens, comparator output reverses to $-V_{z\,1}$. Now v_c changes exponentially towards $-V_{z\,1}$ with the same time constant and again the output makes a transition from $-V_{z\,1}$ to $+V_{z\,2}$, when v_c equals $-\beta V_{z\,1}$

Let
$$V_{z1} = V_{z2}$$

The time period, T, of the output square wave is determined using the charging and discharging phenomena of the capacitor C. The voltage across the capacitor, v_c when it is charging from $-\beta V_z$ to $+V_z$ is given by

$$V_c = [1-(1+\beta)]e-T/2\tau$$

Where $\tau = R_f C$

The waveforms of the capacitor voltage v_c and output voltage v_{out} (or v_z) are shown in figure. When t = t/2

$$V_c = +\beta \ V_{z \text{ or}} + \beta \ V_{out}$$

Therefore $\beta \ V_z = V_z \left[1 - (1+\beta)e^{-T/2\tau}\right]$

Or
$$e-T/2\tau = 1 - \beta/1 + \beta$$

Or
$$T = 2\tau \log_e 1 + \beta/1 - \beta = 2R_f C \log_e [1 + (2R_3/R_2)]$$

The frequency, f = 1/T, of the square-wave is independent of output voltage V_{out} . This circuit is also known as free-running or astable multivibrator because it has two

quasi-stable states. The output remains in one state for time T_1 and then makes an abrupt transition to the second state and remains in that state for time T_2 . The cycle repeats itself after time $T = (T_1 + T_2)$ where T is the time period of the square-wave.

The op-amp square-wave generator is useful in the frequency range of about 10 Hz -10 kHz. At higher frequencies, the op-amp's slew rate limits the slope of the output square wave. The symmetry of the output waveform depends on the matching of two Zener diodes Z_1 and Z_2 . The

unsymmetrical square-wave (T_1 not equal to t_2) can be had by using different constants for charging the capacitor C to $+V_{out}$ and $-V_{out}$

Circuit Diagram:

Procedure:

- 1. Expression for the frequency of oscillation,
 - $f = 1/(2RClog_e(1+\beta/1-\beta))$, where $\beta = (R_3/R_3+R_2)$.
- 2. Choose any frequency between 1 kHz and 5 kHz and select the values of R₁, R₂, R, and C.
- 3. Connect the circuit as per the circuit diagram and give the supply volt age.
- 4. Observe the frequency of operation of the circuit and compare with the theoretical values.
- 5. Change the R and C values to change the frequency and oscillation and verify with the theoretical values.
- 6. Trace the output waveform for inverting and non-inverting inputs.

Graphs:

