Premier contrôle continu - 24 octobre 2017

Durée: 1h

Exercice 1.

- a) Donnez la définition d'une tribu et d'une mesure.
- b) Justifiez que]0,1] et \mathbb{Q} appartiennent $\mathcal{B}(\mathbb{R})$, la tribu borélienne de \mathbb{R} .
- c) Soit E un ensemble. Soient $A \subset B \subset \mathcal{P}(E)$. Montrez que $\sigma(A) \subset \sigma(B)$.

Exercice 2. Soit μ une mesure sur un espace mesurable (E, \mathcal{A}) . On suppose que $\mu(E) = 1$. Montrez que

$$\mathcal{B} = \left\{ X \in \mathcal{A} \,\middle|\, \mu(X) = 0 \text{ ou } \mu(X) = 1 \right\}$$

est une tribu sur E.

Exercice 3. Soit $(\mu_i)_{i\in\mathbb{N}}$ une suite de mesures sur un espace mesurable (E, \mathcal{A}) . On se donne une suite $(a_i)_{i\in\mathbb{N}} \in \mathbb{R}_+^{\mathbb{N}}$. Pour $A \in \mathcal{A}$ on définit

$$\nu(A) = \sum_{i=0}^{+\infty} a_i \mu_i(A) .$$

- a) Montrez que ν est une mesure sur (E, \mathcal{A}) .
- b) On suppose que pour tout $i \in \mathbb{N}$, μ_i est une mesure de probabilité (c'est-à-dire que $\mu_i(E) = 1$). Montrez que ν est une mesure de probabilité si et seulement si $\sum_{i=0}^{+\infty} a_i = 1$.

Exercice 4. Une suite $(u_n)_{n\in\mathbb{N}}$ est dite périodique si il existe $k\in\mathbb{N}^*$ tel que $\forall n\in\mathbb{N},\ u_{n+k}=u_n$. Montrez que l'ensemble

$$S = \left\{ (u_n)_{n \in \mathbb{N}} \in \mathbb{N}^{\mathbb{N}} \,\middle|\, (u_n)_{n \in \mathbb{N}} \text{ est périodique } \right\}$$

(ensemble des suites à valeurs dans \mathbb{N} qui sont périodiques) est dénombrable.

