Thera-Hand Life Cycle Assessment

The Life Cycle Assessment (LCA) evaluates the environmental impact of the Thera-Hand rehabilitation device across its entire life cycle. This includes material extraction, manufacturing, use, and disposal/recycling.

1. Goal and Scope Definition

Objective:

The LCA aims to assess the environmental footprint of the Thera-Hand rehabilitation device, considering its:

- Energy consumption (power supply, servos, ESP32).
- Material usage (PLA, rubber, fishing line, sensors).
- Manufacturing and transportation impact.
- End-of-life disposal/recycling feasibility.

Functional Unit:

A single Thera-Hand device is assumed to be used for 2 years before replacement.

System Boundaries:

This LCA includes:

- Raw Material Extraction Plastics, rubber, and electronics production.
- Manufacturing & Assembly 3D printing, PCB production, servo motor production.
- ✓ Transportation From manufacturing to users.
- ✓ Use Phase Power consumption during operation.
- ✓ End of Life Disposal, recycling, or potential reuse.

2. Inventory Analysis

Material Composition & Impact

Component	Material	Environmental Impact	
Frame & Housing	PLA (3D printed)	Low-carbon footprint, biodegradable under specific conditions	
Sensors	Flexible PCB, resistive materials	Electronic waste, difficult to recycle	
Actuators (Servos)	Plastic, copper wiring	High-energy manufacturing, limited recyclability	
Power Supply	Electronic components, metal	Requires responsible e-waste disposal	
Wiring & Fishing Line	Copper wiring, nylon	Small footprint, but non-biodegradable	

Energy Consumption (Use Phase)

Based on prior power consumption estimates:

Component	Power Consumption (W)	Usage per day (hours)	Annual Energy (kWh)
ESP32	1.25W	2	0.91 kWh
5 SG90 Servos	6.25W (idle) / 16.25W (peak)	1	5.93 kWh
Sensors & LED	0.15W	2	0.11 kWh
Total Estimate	≈ 7.65W - 17.65W	-	6-7 kWh/year

• Comparison: This is equivalent to a low-power LED bulb running for ~3 months.

3. Impact Assessment

Environmental Hotspots

- Manufacturing:
 - Electronics production (ESP32, sensors, servos) has the highest carbon footprint.
 - 3D printing (PLA) requires energy but has a relatively low impact compared to metals.
- Ouse Phase:
 - Low electricity consumption (~6-7 kWh/year) makes it energy-efficient.
- End-of-Life Considerations:
 - PLA parts are biodegradable in industrial composting but not in landfills.
 - Servos, wiring, and PCBs require responsible e-waste recycling.

4. Interpretation & Recommendations

Key Findings

- ✓ Low Energy Consumption: Thera-Hand is energy-efficient in use.
- Minimal Carbon Footprint for PLA: The frame is eco-friendly, but plastics must be disposed of properly.
- ▲ E-Waste Challenge: Sensors, servos, and the ESP32 must be recycled properly.
- ↑ Transportation Impact: If shipped globally, the CO₂ footprint increases.

Recommendations

- Optimize 3D Printing Material:
 - Use recycled PLA or biodegradable TPU to reduce waste.
- E-Waste Collection Plan:
 - Offer a recycling take-back program for electronics.
- Reduce Servo Impact:
 - Use low-power or energy-efficient servos if possible.
- Sustainable Packaging:

• Use biodegradable or recycled materials for packaging.

5. Conclusion

- Thera-Hand is a low-energy, partially sustainable device.
- The biggest environmental concern is e-waste disposal of sensors & servos.
- Efforts to recycle electronic components and use sustainable materials can improve its eco-friendliness.