MATH 287 HOMEWORK 11

ANDREW MOORE

Exercise 1. Suppose $f: A \to B$ is surjective. Then, for any set C and functions $g_1, g_2: B \to C$, if $g_1 \circ f = g_2 \circ f$, $g_1 = g_2$.

Proof. Let $f:A\to B$ and $g_1,g_2:B\to C$ be functions. We are examining compositions between f and g_1,g_2 . From our hypothesis, we have $g_1\circ f=g_2\circ f$. From the definition of a composition, we know $g_1\circ f:A\to C$ is defined by $(g_1\circ f)(a)=c$ for all $a\in A$, and $g_2\circ f:A\to C$ is defined by $(g_2\circ f)(a)=c$ for all $a\in A$. Additionally, we know that f is surjective. This means that for

Date: December 5, 2021.

every $b \in B$, there exists some $a \in A$ such that f(a) = b. Thus, we can write

(starting assumption)
$$g_1 \circ f = g_2 \circ f$$

$$(g_1 \circ f)(a) = (g_2 \circ f)(a)$$

(definition of a composition)
$$g_1(f(a)) = g_2(f(a))$$

Thus we have shown $g_1 = g_2$. This concludes the proof.

$$g_1(b) = g_2(b)$$

$$g_1 = g_2.$$

Because for all $b \in B$, $\exists a \in A$ such that f(a) = b (surjectivity of f), and $g_1 \circ f = g_2 \circ f$, we know that the a being fed to f is the same element of A. This means the result of f(a), is the same b on both sides of the equality.

Exercise 2. a. Find and prove a formula for $2+5+8+11+\cdots+(3n-1)$.

b. Prove: for all positive odd integers $n, 5^n - n^2$ is divisible by 4.

 $\label{eq:exercise} \textit{Exercise 3. Proposition 11.25.}$

 $\it Exercise$ 4. Re-do a problem.