CIS 678 Machine Learning

Introduction to Neural Networks (cont.)

Popular Neural Network (NN) Architectures

- Feed Forward NNs
- Convolutional NNs
- Sequence models
 - o LSTM
 - Transformers
- Generative Al
 - GANs
 - VAEs
- Graph Neural Networks

Activation functions

Feed forward NNs

Name +	Plot	Function, $g(x)$ $\qquad \qquad \qquad$
Identity		x
Binary step		$\left\{egin{array}{ll} 0 & ext{if } x < 0 \ 1 & ext{if } x \geq 0 \end{array} ight.$
Logistic, sigmoid, or soft step		$\sigma(x) \doteq rac{1}{1+e^{-x}}$
Hyperbolic tangent (tanh)		$ anh(x) \doteq rac{e^x - e^{-x}}{e^x + e^{-x}}$
Soboleva modified hyperbolic tangent (smht)	5	$\mathrm{smht}(x) \doteq rac{e^{ax} - e^{-bx}}{e^{cx} + e^{-dx}}$
Rectified linear unit (ReLU) ^[8]		$egin{aligned} (x)^+ &\doteq egin{cases} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \ &= ext{max}(0,x) = x 1_{x > 0} \end{aligned}$
Gaussian Error Linear Unit (GELU) ^[2]		$rac{1}{2}x\left(1+\mathrm{erf}\left(rac{x}{\sqrt{2}} ight) ight) \ =x\Phi(x)$
Softplus ^[9]		$\ln(1+e^x)$
Exponential linear unit (ELU) ^[10]		$\begin{cases} \alpha \left(e^x - 1 \right) & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$

Convolutional NNs

Examples:

- Alexnet
- VGG
- ResNet
- GoogLeNet
- -

$$(fst g)(t):=\int_{-\infty}^{\infty}f(au)g(t- au)\,d au.$$

The convolutional layer

Recurrent Neural Networks

Examples:

- LSTMs
- GRU

Transformers

Examples:

- Encoder decoder pair
- GPT
- BERT

BERT

Encoder

GPT

Decoder

<u>ref</u>

Graph Neural Network

Examples:

- Graph Convolutional NN

Unsupervised learning (nonlinear)

- Auto Encoders
- Restricted Boltzmann Machines (RBMs)

Generative Al

Examples:

- Generative Adversarial Networks (GANs)
- Variational Autoencoders (VAEs)

Generative Al

Examples:

- Generative Adversarial Networks (G
- Variational Autoencoders (VAEs)

QA