

Sardar Patel Institute of Technology, Mumbai

Department of Electronics and Telecommunication Engineering

T.E. Sem-V (2018-2019)

ETL54-Statistical Computational Laboratory

Lab-6: Analysis of Various Classifiers and to detect computer network intrusion

Name: Manish Dsilva Roll No.15

UID 2017120013

Objective: To detect computer network intrusion using machine learning techniques.

Outcomes:

- 1) T load dataset in R or Python
- 2)To process and prepare data
- 3)Build a model for intrusion detection.
- 4) Use machine learning algorithms to detect intrusion.
- 5) Calculate accuracy and confusion matrix and prediction time.
- to be completed by each Batch on their respective Lab daySystem Requirements:

Meta-Data for the Database Used:

This database(KDD Cup 1999 Data) contains a standard set of data to be audited, which includes a wide variety of intrusions simulated in a military network environment.

Attacks fall into four main categories:

DOS | denial-of-service | syn flood |

R2L | unauthorized access from a remote machine | guessing password |

U2R | unauthorized access to local superuser privileges | "buffer overflow" attacks |

probing | surveillance and other probing | port scanning

Analysis:

We have taken 1% of the original (around 50,000 train and 40,000 test)(Certain Models i.e SVM were taking more than 30mins while doing for 10%)

Algorithm	Time to	Time to	Accuracy	Precision	Recall	F1-score
	main	Fieuici				
LDA	0.64s	0.0378s	95.63%	0.99	0.96	0.97
Naïve-	0.33s	0.67s	86.88%	0.99	0.87	0.91
Bayes						
SVM	68.75s	14.54s	98.75%	0.98	0.99	0.99
Random	0.436s	0.0371s	99.76%	1	1	1
Forest						
k-NN	7.91s	27.59s	99.63%	1	1	1

Conclusion:

- •The lesser the time taken to train the model the better it is for the user and hence we can say that the model is computationally less expensive.
- •Often the model is trained once at the server and we need to predict multiple times this means time to predict is also very crucial in choosing a model
- •Accuracy, Precision, Recall are 3 more parameters which tells us how our model has performed on unseen data
- •For the above Problem we observe that Random Forest has performed better than other algorithms on most parameters. It is an example of ensemble learning.
- •Scikit-Learn has provided us a user-friendly environment for using all the above classification algorithms. As a result to change between algorithms we didn't have to change more than 2 lines