FIFO 数据解析模块验证计划

1. 概述

本验证计划针对 FIFO 数据解析模块 (fifo_data_resolu), 验证其将 140 位输入数据解析为 128 位格雷码、8 位通道有效信号和 16 位数据计数的功能正确性。测试平台通过实时比对 DUT 与参考模型输出来确保功能一致性。

2. 验证目标

- · 验证数据解析的正确性(140位→128位格雷码)
- · 验证通道有效信号 (vld_ch) 生成逻辑
- · 验证数据计数 (data_count) 计算逻辑
- · 验证边界条件处理能力
- · 验证模块对随机输入的鲁棒性

3. 测试用例

测试用例名称	描述	输入数据	关键检查点	预期结果
固定模式测试 1	固定数据 A5 模式 + 长度 8	{128' hA5A5, 8' hFF, 4' d8}	格雷码转换、有效 通道、数据计数	DUT 与参考模型输出一致
固定模式测试 2	固定数据 5A 模式 + 长度 4	{128' h5A5A, 8' hAA, 4' d4}	长度处理、有效通 道映射	DUT 与参考模型输出一致
长度遍历测试	长度值 0-15 遍 历测试	{random128, random8, i[3:0]} (i=0-15)	各长度值下的数据 计数	计数与长度值 匹配
全零输入测试	输入全零 数据	140' d0	格雷码输出、有效 通道	输出全零

4.	输入数	汝据结构

测试用例名称	描述	输入数据	关键检查点	预期结果
全一输入测试	输入全一 数据	140' hFFFF	格雷码转换、数据 计数	正确转换全1 数据
中间字节位测试	中间字节 位遍历	data[11:4] = (1< <i) (i="0-7)</th"><th>有效通道信号</th><th>通道位正确映 射</th></i)>	有效通道信号	通道位正确映 射
中间字节全通	中间字节 全 FF	data[11:4]=8'hF	F有效通道信号	所有通道有效
随机数据测试	50 次随 机输入	{\$random, \$random, \$random}	所有输出一致性	DUT 与参考模型一致
快速变化测试	高速输入 变化	20 次随机输入 (#1 延时)	输出稳定性	无错误响应
混合数据测试	5555/ AAAA 模 式	{128' h5555, random8, 4' d8}	特定模式转换	正确转换交替 模式

4. 输入数据结构

140 位输入分解:

[139:12] : 128 位原始数据 [11:4] : 8 位通道/控制信息

[3:0] : 4 位数据长度

5. 输出信号说明

信号	位宽	描述
data_gray vld_ch	128 位 8 位	格雷码转换后的数据 通道有效信号(每比特代表一个通道)
data_count	16 位	有效数据计数

6. 检查机制

- · 实时比对: 输入变化后 10ns 检查所有输出
- · 三重检查:
 - 1. vld_ch 通道有效信号
 - 2. data_count 数据计数
 - 3. data_gray 格雷码数据
- · 错误处理: 检测到差异立即终止测试并打印:
 - 当前仿真时间
 - 错误信号类型
 - DUT 输出值
 - 参考模型输出值
 - 当前输入数据

7. 测试数据生成策略

数据类型	生成方式	测试重点
固定模式	预定义模式 (A5,5A,55,AA)	基础转换逻辑
边界值	全 0/全 1 输入	边界处理能力
长度变化	0-15 遍历	长度适应能力
通道控制	位遍历 (1«i)	通道映射关系
随机数据	\$random 函数	鲁棒性测试

8. 通过标准

- · 所有测试用例执行完毕
- · 无任何 ERROR 信息打印
- · 最终显示" All tests passed successfully! "消息
- · 波形文件完整记录所有测试场景

9. 风险分析

风险点	缓解措施
长度字段超范围	已包含 0-15 全范围测试
格雷码转换错误	多模式数据验证 (全 0, 全 1, 交替模式)
通道映射错误	位遍历测试覆盖所有通道
时序问题	包含高速变化测试 (#1 延时)
复位状态未测试	建议增加复位机制测试

10. 交付物

- 1. 验证报告(包含通过率统计)
- 2. 覆盖率报告