1. Начальные данные

Начальные данные находятся в директории Initial. Все данные должны вводиться по одному числу в строке. В конце чисел типа real — mp должны быть поставлены запятые.

В директории содержатся несколько файлов: (Указано, где нужна запятая)

- Parameters.dat:
 - Количество тел
 - Размерность задачи (2-плоская, 3-пространственная)
 - Время интегрирования, (в годах)
 - Погрешность, с которой будут считаться значения,
 - Шаг интегрирования,
- masses.dat:
 - Массы тел, (В массах Солнца)
- mp.dat:
 - Точность (кол-во цифр, использующихся в вычислениях)
 - кол-во цифр, которые будут выводиться
- body(number).dat: number номер тела (трехзначное число, начало с 001) В этих файлах указываются начальные положения с скорости тел.
 - -X
 - -Y
 - -Z
 - $-V_x$
 - $-V_{y}$
 - $-V_z$

Примеры можно посмотреть в директории examples

2. Результаты

Результаты будут находиться в директории results.

В ней будут файлы: $X(Y,Z)_of_body_(number).dat$ и $V_x(V_y,V_z)_of_body_(number).dat$ в которых соответственно находятся координаты и скорости тел.

3. Запуск программы

Запуск: $./f_main$

Можно указать следующие ключи (В любом порядке) :

- Е вывод интеграла энергии на экран, посчитанного в начальных данных и в конце, а также относительная ошибка
- Н вычисления будут происходить с переменным шагом. По-умолчанию шаг постоянный.
- G принять гравитационную постоянную равной единице, а не $4\pi^2$ (Возможно начальные данные нужно будет задать в такой системе)

Например: ./f main E H