# Support Vector Classification and Regression Models

**Predictive Analytics** 

Jesús Calderón

#### **Learning Objectives**

By the end of this week, students will be able to:

- Describe and explain Support Vector Machine models.
- Discuss the advantages and limitations of these approaches.

# Support Vector Machines

## Nonlinear Transforamtions of the Feature Space

- Linear models are limited in the decision boundaries that they can produce.
- Support Vector Machines (SVM) use linear models to implement nonlinear boundaries by transforming the feature space into a new space using nonlinear functions.
- A linear model in the transformed space can represent nonlinear decision boundaries in the original space.

• For example, say we have two features,  $a_1$  and  $a_2$ . We can create a new feature x:

$$x = w_1 a_1^3 + w_2 a_1^2 a_2 + w_3 a_1 a_2^2 + w_4 a_2^3$$

- This transformation may be promising given that polynomials of sufficiently high degree can approximate arbitrary decision boundaries to any required accuracy.
- The learning problem would now also require for us to estimate  $w_1, ..., w_2$ .

#### **Support Vector Machines**

- If we simply transformed the input space as in the example and tried to apply a linear model, we would face to issues:
  - Computational complexity: with 10 attributes in the original data set, if we wanted to include all products with five factors, the learning algorithm would need to learn 2000 coefficients.
  - Overfitting: if the number of coefficients is large, the resulting model will overfit the training data.
- SVM try to address both problems, computational complexity and overfitting, by finding the maximum margin hyperplane.

- The maximum margin hyperplane is the one that gives the greatest separation between the classes.
- The convex hull of a set of points is the tightest enclosing convex polygon: it is the "outline" of all the points.
- Among all hyperplanes that could separate classes, the maximum margin hyperplane is the one that is as far as possible from both convex hulls.
- It is also the perpendicular bisector of the shortest line connecting the hulls.

### Maximum Margin Hyperplane and Support Vectors



Maximum Margin Hyperplane (Witten et al, 2017)

- The instances closest to the maximum margin hyperplane (the ones closest to it) are called support vectors.
- There is always at least one support vector, but many times there are more.
- One can always reconstruct the maximum margin hyperplane based soleely on the support vectors, therefore, we do not need any of the other observations once the support vectors are determined.

#### **Pros and Cons of SVM**

- Overfitting is reduced.
- The maximum margin hyperplane is relatively stable: it does not change when the inputs change.

- Computational complexity is addressed by observing that many operations that would be required in the transformed space can actually be computed in the original space.
- Other nonlinear transformations are:
  - Radia Basis Function (RBF)
  - Sigmoid Function

#### References

#### References

- James, G., D. Witten, T. Hastie, and R. Tibshirani. *An Introduction to Statistical Learning with Applications in R.* United States: Springer, 2017.
- Witten, F., E. Frank, M. Hall, C. Pal. *Data Mining: Practical Machine Learning Tools and Techniques*. United States: Morgan Kaufmann, 2017. 4th Edition.