Комплексные числа и многочлены

Теорема 1. Любой неконстантный многочлен над $\mathbb{C}[x]$ имеет хотябы один корень.

Упражнение 1. Докажите, что любой многочлен над $\mathbb{C}[x]$ степени n имеет ровно n корней с учётом кратности. Иными словами любой многочлен над $f \in \mathbb{C}[x]$ можно представить следующим образом (причём представление единственное и уникальное):

$$f(x) = a(x - z_1)^{a_1} \dots (x - z_k)^{a^k}, a_1 + \dots + a_k = n.$$

Упражнение 2. Найдите все неприводимые над а) $\mathbb{C}[x]$; б) $\mathbb{R}[x]$. Новый взгляд на старые задачи.

- **1.** При каких натуральных n выполнено $x^{2n} + x^n + 1 \ \ x^2 + x + 1$?
- **2.** Найдите все многочлены из $f(x) \in \mathbb{R}[x]$ такие, что f(x-1) = f(x).
- **3.** Найдите нод многочленов а) $(x^m 1, x^n 1)$, б) $(x^m + 1, x^n + 1)$.
- **4.** Найдите все целые x такие, что число $x^4 + 4$ простое.
- **5.** Докажите, что многочлен P(z) представляет собой чётную функцию от $z \in \mathbb{C}$ тогда и только тогда, когда существует многочлен Q(z), такой что P(z) = Q(-z)Q(z).
- **6.** Существует ли многочлен P(x), степени 1000 такой, что $P(x^2+x+1)$ делится на P(x).
- **7.** Найдите все ненулевые многочлены P(x), удовлетворяющие тождеству

$$P(x^2) = (P(x))^2.$$

Указание: посмотрите на корни, могут ли они быть все вещественные? какие модули могут быть у корней?

8. Многочлен с действительными коэффициентами принимает неотрицательные значения во всех действительных точках тогда и только тогда, когда он представим в виде суммы квадратов двух других многочленов с действительными коэффициентами.

Указание: разложите многочлен на неприводимые множители

- **9.** Найдите, чему равны следующие суммы: а) $C_n^0 + C_n^1 + \ldots + C_n^n$, б) $C_n^0 + C_n^2 + C_n^4 + \ldots$, в) $C_n^0 + C_4 + C_n^8 + \ldots$, г) $C_n^0 + C_3 + C_n^6 + \ldots$
- **10.** Какие преобразования комплексной плоскости задают следующие отображения: а) $z :\to az$, где a вещественное;
- б) $z : \to az$, где a комплексное число, по модулю равное 1;
- в) $z:\to a(z-z_0)+z_0$, где a комплексное число, по модулю равное 1, а z_0 произвольное комплексное число;