Neutrino Torques

Ue-Li Pen, Haoran Yu, Xin Wang

December 2, 2021

Observables

- CMB, gravitational lensing: 2-D projection,
- galaxies: 3-D biased displacement field
- Monge-Ampére equation/solution
- ideally measure 2 fields, infer 2 fields: CDM, neutrinos (HDM)

Movie

Galaxy Spins

- most galaxies are rotating disks of stars and gas
- readily identifyable spin axis
- dust lanes, trailing spiral arms, HI velocity (rotation) field

Observable

(M51, from Wikipedia)

Angular momentum

- 1st order effect from misalignment of moment of inertia and tidal tensor
- **b** torque: $\tau \equiv \int \rho \mathbf{r} \times \nabla \phi$
- ► Taylor expand: $\tau_i = \epsilon_{ijk} \int \rho x^j x^l \partial_l \partial_k \phi \equiv \epsilon_{ijk} I_{il} T_{lk}$
- ▶ Tensor form $\tau = *I \cdot T$
- ▶ first realized by S. White (1984), see also LP00

3-D: E-mode

Figures/nonlinear.png

Lagrangian coordinates

Figures/delta_reco_raw.pdf

Coordinate freedom

potential deformation
$$x^{i} = \xi^{\mu} \delta_{\mu}^{i} + \frac{\partial \phi}{\partial \xi^{\mu}} \delta^{i\mu}$$

dreibein $e_{\mu}^{i} \equiv \partial x^{i} / \partial \xi^{\mu}$
volume element $\sqrt{g} \equiv \det |e_{\mu}^{i}|$
mass coordinate $\rho \sqrt{g} = \text{Const.}$
 $\partial_{\mu} (\rho \sqrt{g} e_{i}^{\mu} \delta^{i\nu} \partial_{\nu} \dot{\phi}) = \langle \rho \rangle - \rho \sqrt{g}$ (1)

Solve Monge-Ampére eqn (1) using multigrid (Pen 1995): unique bijective mass coordinate. See also Tully/Peebles, Mohayaee+, Goldberg, Schmidtfull, Wang+, Seljak, Zaldarriaga, Hada/Eisenstein, Shi/Brikin/Li+, Jasche+, Sarpa+

Multigrid solution

 $\verb|Figures/map0512-0128_i1500_xz222.pdf|\\$

Redshift space

Zhu et al 1610.09638

 $\verb|Figures/map0512-0128_i0900_xz222_rsd3.pdf|\\$

Low noise limit

Figures/rk.pdf

Halos

s/halocc.pdf

Predicting Neutrino Torques

- $I_c \sim T_c$: both describe particle displacement
- Neutrino tidal torque is predictable observable from displacement potential

Size estimate

- $|j_{\nu}/j_c| \sim 10^{-4} (f_{\nu}/0.003) [\sqrt{P(k_{\rm FS})/P(k_{\rm vir})}/0.03]$
- agrees with simulation measurement
- ▶ need $n > 10^8$ galaxy spins
- accessible in next generation 21cm surveys

Future 21cm Surveys

- expand on HSHS (Peterson et al 2006), CHIME
- ▶ build on economy of scale, map 10¹¹ galaxies

More cosmological applications

- map initial (linear) tidal field
- BAO, standard ruler (Alcock-Paczynski effect)
- modified gravity, time evolving neutrino mass

Conclusions

- galaxy spins: new probe of initial conditions
- predictable from observable displacement field using non-linear reconstruction
- computationally straightforward, mass coordinate similar to Lagrangian
- already observable, scalable to much larger surveys
- parity odd field, less likely to be contaminated
- enables measurement of 2 cosmic scalar fields: potential beat cosmic variance limits, etc