Events in tail σ -algebra

李孜睿 518030910424

April 12, 2020

 X_1, X_2, \cdots are random variables. Define

$$\mathcal{T}_n \doteq \sigma(X_{n+1}, X_{n+2}, \cdots), \mathcal{T} \doteq \bigcup_n \mathcal{T}_n.$$

 σ -algebra \mathcal{T} is called the tail σ -algebra of sequence $(X_n : n \in \mathbb{N})$.

 \mathcal{T} contains many important events, such as:

$$F_1 \doteq (\lim X_k \text{ exists}) \doteq \{\omega : \lim_k X_k(\omega) \text{ exists}\}.$$
 (1)

$$F_2 \doteq \left(\sum X_k \text{ converges}\right).$$
 (2)

$$F_3 \doteq \left(\lim \frac{X_1 + X_2 + \dots + X_k}{k} \text{ exists}\right). \tag{3}$$

Prove F_1, F_2 and $F_3 \in \mathcal{T}$.

Proof: For an arbitrary $n \in \mathbb{N}$, $\mathcal{T}_n \doteq \sigma(X_{n+1}, X_{n+2}, \cdots)$.

As X_{n+1}, X_{n+2}, \cdots are all \mathcal{T}_n -measurable, $\{\omega : \lim_{k \to \infty \land k > n} X_k(\omega) \text{ exists}\} \in \mathcal{T}_n$.

In other words, $\{\omega : \lim_{k\to\infty} X_k(\omega) \text{ exists}\} \in \mathcal{T}_n$.

Thus $\{\omega : \lim_{k \to \infty} X_k(\omega) \text{ exists}\} \in \bigcap_n \mathcal{T}_n = \mathcal{T} \text{ and } F_1 \in \mathcal{T} \text{ follows.}$

Also, for an arbitrary $n \in \mathbb{N}$, define

$$A_n \doteq \{\omega : \sum_{k>n} X_k(\omega) \text{ converges}\}.$$

Define $S_{n+1} = X_{n+1}$ and $S_{n+k} = S_{n+k-1} + X_{n+k}$ for k > 1.

Notice that $A_n = \{\omega : \lim_{k>n} S_k(\omega) \text{ exists}\}\$

 X_{n+1}, X_{n+2}, \cdots are \mathcal{T}_n -measurable $\Rightarrow S_{n+1}, S_{n+2}, \cdots$ are \mathcal{T}_n -measurable.

 $\Rightarrow \{\omega : \lim_{k>n} S_k(\omega) \text{ exists}\} \in \mathcal{T}_n \Rightarrow A_n \in \mathcal{T}_n.$

Now look back at A_n , we find that $A_0 = A_n$ because the sum from X_1 to X_n are finite. So $A_0 = A_n \in \mathcal{T}_n \Rightarrow A_0 \in \bigcap \mathcal{T}_n = \mathcal{T}$, and $F_2 = A_0 \in \mathcal{T}$ follows. Again, for a fixed $n \in \mathbb{N}$, define

$$B_n \doteq \{\omega : \lim_{k>n} \frac{X_{n+1}(\omega) + X_{n+2}(\omega) + \dots + X_k(\omega)}{k} \text{ exists}\}.$$

As
$$\frac{X_{n+1}}{n+1}$$
, $\frac{X_{n+1}+X_{n+2}}{n+2}$, \cdots are \mathcal{T}_n -measurable, $B_n \in \mathcal{T}_n$.

$$\omega \in B_0 \Leftrightarrow \lim_{k>0} \frac{X_1(\omega) + X_2(\omega) + \dots + X_k(\omega)}{k}$$
 exists

As
$$\frac{X_{n+1}}{n+1}$$
, $\frac{X_{n+1}+X_{n+2}}{n+2}$, \cdots are \mathcal{T}_n -measurable, $B_n \in \mathcal{T}_n$.

 $\omega \in B_0 \Leftrightarrow \lim_{k>0} \frac{X_1(\omega)+X_2(\omega)+\cdots+X_k(\omega)}{k}$ exists

 $\Leftrightarrow \lim_{k>0} \frac{X_1(\omega)+X_2(\omega)+\cdots+X_k(\omega)}{k} - \lim_{k>0} \frac{X_1(\omega)+X_2(\omega)+\cdots+X_n(\omega)}{k}$ exists

 $\Leftrightarrow \lim_{k>0} \frac{X_{n+1}(\omega)+X_{n+2}(\omega)+\cdots+X_k(\omega)}{k}$ exists $\Leftrightarrow w \in B_n$.

$$\Leftrightarrow \lim_{k>0} \frac{X_{n+1}(\omega) + X_{n+2}(\omega) + \dots + X_k(\omega)}{k} \text{ exists } \Leftrightarrow w \in B_n.$$

So
$$B_0 = B_n \in \mathcal{T}_n \Rightarrow B_0 \in \bigcap \mathcal{T}_n = \mathcal{T}$$
, and $F_3 = B_0 \in \mathcal{T}$ follows.