Linear algebra review and basic graph theory

1. Consider the following three graphs I, II and III:

- (a) Find the incidence matrix **A** for each graph (use the numbering of nodes and edges shown in the figures).
- (b) For each graph, find all vectors in the nullspaces of \mathbf{A} and \mathbf{A}^T .
- (c) Find the degree matrix **D** for each graph.
- (d) Find the adjacency matrix **W** for each graph.
- (e) Find the Laplacian matrix **K** for each graph.
- (f) Are any of the graphs complete?
- **2.** Suppose that graphs I, II and III are the disconnected pieces of a **single** graph with 11 nodes and 14 edges.
 - (a) What is the rank of the incidence matrix ${\cal A}$ of this new single graph?
 - (b) Find all linearly independent solutions of

$$A\mathbf{x} = 0$$
.

(c) Find all linearly independent solutions of

$$\mathcal{A}^T\mathbf{w}=0.$$

3. Consider a 3-by-3 square grid with n=9 nodes and m=12 edges as shown in the figure. Let the Laplacian matrix be $\mathbf{K} = \mathbf{A}^T \mathbf{A}$.

- (a) How many of the 81 entries of K are zero?
- (b) Write down the degree matrix **D**.
- **4.** In a graph with n nodes and n edges argue that there must be a loop.
- **5.** Consider the 3-node graph

- (a) Write down the incidence matrix **A** and find the Laplacian matrix $\mathbf{K} = \mathbf{A}^T \mathbf{A}$.
- (b) Let $\omega = e^{2\pi i/3}$ be a third root of unity so that

$$\omega^{3} = 1$$
.

Now introduce the vectors

$$\mathbf{x}_n = \begin{pmatrix} 1 \\ \omega^n \\ \omega^{2n} \end{pmatrix}, \quad n \in \mathbb{Z}.$$

Show that, for n = 0, 1 and 2,

$$\mathbf{K}\mathbf{x}_n = \lambda_n \mathbf{x}_n$$

and find the values of the constants λ_0 , λ_1 and λ_2 .

(c) Why did we only consider the three possible values n = 0, 1, 2 in part (b)?

(d) The inner product (think "dot product") of two complex-valued vectors ${\bf u}$ and ${\bf v}$ is defined to be

$$\overline{\mathbf{u}}^T\mathbf{v}$$
,

where $\overline{\mathbf{u}}$ is the complex conjugate of the complex vector \mathbf{u} . Show that the vectors \mathbf{x}_n for n=0,1,2 are orthogonal with respect to this inner product (meaning that the inner product of any two vectors is zero).

6. Consider the 4-node graph

- (a) Write down the incidence matrix **A** and find the Laplacian matrix $\mathbf{K} = \mathbf{A}^T \mathbf{A}$.
- (b) Let $\omega = e^{2\pi i/4}$ be a fourth root of unity so that

$$\omega^4 = 1$$
.

Now introduce the vectors

$$\mathbf{x}_n = \begin{pmatrix} 1 \\ \omega^n \\ \omega^{2n} \\ \omega^{3n} \end{pmatrix}, \quad n \in \mathbb{Z}.$$

Show that, for n = 0, 1, 2 and 3,

$$\mathbf{K}\mathbf{x}_n = \lambda_n \mathbf{x}_n$$

and find the values of the constants λ_0 , λ_1 , λ_2 and λ_3 .

- (c) Show that the vectors \mathbf{x}_n for n = 0, 1, 2 and 3 are mutually orthogonal.
- 7. Consider the 5-node graph

- (a) Write down the incidence matrix **A** and find the Laplacian matrix $\mathbf{K} = \mathbf{A}^T \mathbf{A}$.
- (b) Let $\omega = e^{2\pi i/5}$ be a fifth root of unity so that

$$\omega^5 = 1$$
.

Now introduce the vectors

$$\mathbf{x}_n = \left(egin{array}{c} 1 \ \omega^n \ \omega^{2n} \ \omega^{3n} \ \omega^{4n} \end{array}
ight), \qquad n \in \mathbb{Z}.$$

Show that, for n = 0, 1, 2, 3 and 4,

$$\mathbf{K}_0 \mathbf{x}_n = \lambda_n \mathbf{x}_n$$

and find the values of the constants $\lambda_0, \lambda_1, \lambda_2, \lambda_3$ and λ_4 .

- (c) Show that the vectors \mathbf{x}_n for n = 0, 1, 2, 3 and 4 are mutually orthogonal.
- **8.** Consider the 6-node graph

- (a) Write down the incidence matrix A and find the Laplacian matrix $K = A^T A$.
- (b) Let $\omega = e^{2\pi i/6}$ be a sixth root of unity so that

$$\omega^6 = 1$$
.

Now introduce the vectors

$$\mathbf{x}_n = \left(egin{array}{c} 1 \ \omega^n \ \omega^{2n} \ \omega^{3n} \ \omega^{4n} \ \omega^{5n} \end{array}
ight), \qquad n \in \mathbb{Z}.$$

Show that, for n = 0, 1, 2, 3, 4 and 5,

$$\mathbf{K}\mathbf{x}_n = \lambda_n \mathbf{x}_n$$

and find the values of the constants λ_0 , λ_1 , λ_2 , λ_3 , λ_4 and λ_5 .

- (c) Show that the vectors \mathbf{x}_n for n = 0, 1, 2, 3, 4 and 5 are mutually orthogonal.
- (d) In view of questions 5–7 you might have been expecting this question to put 6 vertices equally spaced around a circle. Instead we put them along a line and added an extra edge connecting the first and last node. Does this change make any difference to the linear algebra results?
- **9.** Consider a **complete** graph with $n \ge 2$ nodes and edges between all pairs of nodes.
 - (a) Write down the general form of the Laplacian matrix $\mathbf{K} = \mathbf{A}^T \mathbf{A}$.
 - (b) Can you find n distinct non-zero vectors \mathbf{x} satisfying the relation

$$\mathbf{K}\mathbf{x} = \lambda \mathbf{x}$$

for some value of λ ? Find the corresponding values of λ .

- (c) Suppose now that one of the nodes is grounded. Find the general form of the corresponding reduced Laplacian matrix \mathbf{K}_0 .
- (d) Can you find n-1 distinct non-zero vectors \mathbf{x} satisfying the relation

$$\mathbf{K}_0 \mathbf{x} = \hat{\lambda} \mathbf{x}$$

for some value of $\hat{\lambda}$? Find the corresponding values of $\hat{\lambda}$.

(e) Unlike **K**, the reduced Laplacian matrix \mathbf{K}_0^{-1} is invertible. By directly computing \mathbf{K}_0^{-1} for small values of n=2,3,4,... and trying to spot a pattern (or indeed by any other method), can you propose a general formula for \mathbf{K}_0^{-1} for general n?