Teoria dos Números

Notas de aula da disciplina TE: Técnicas de Construção de Algoritmos

Fabiano de Souza Oliveira (fabiano.oliveira@ime.uerj.br)

Paulo Eustáquio Duarte Pinto (pauloedp@ime.uerj.br)

agosto/2020

Teoria dos Números: estudo de propriedades e algoritmos dos números inteiros, especialmente quanto à fatoração e divisibilidade.

Algoritmos básicos

Tabela de Números Primos/Fatoração

MDC - MMC - MDC Estendido

Aritmética Modular

Soma/Multiplicação modulares

Divisão modular

Equações modulares

Potenciação modular

Testes de Primalidade

Criptografia RSA

Fatoração de inteiros

Teorema Fundamental da Aritmética:

Dado um inteiro $n \ge 2$, existe um único modo de escrevê-lo na forma: $n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$

Obs: O teorema não é verdadeiro para números complexos!!

Teste de primalidade, fatoração, divisores de inteiros

- a) n ≤ 10000 Força Bruta
- b) 10000 < n ≤ 10⁷ Crivo de Erastótenes
- c) 10^7 < n ≤ 10^{15} Crivo de Erastótenes + Tabela de Primos
- d) 10^{15} < n Métodos Especiais
- e) Algoritmo AKS

I.a) Teste de primalidade para números pequenos (até 10.000)

Dado n, testa a divisibilidade por todos os números de 2 a Sqrt(n).

```
função ÉPrimo(n):

para i ← 2 até 「√(n)] faça

se n mod i = 0 então

retornar Falso

retornar Verdadeiro
```

I.b) Fatoração de números pequenos (até 10.000)

Dado n, testa a divisibilidade por todos os números de 2 a $\lceil J(n) \rceil$ e guarda os fatores no vetor F e a respectiva quantidade em nf.

```
Fatora(n, ref F[], ref nf):

nf ← 0

para i ← 2 até 「√(n)] faça

enquanto n mod i = 0 faça

nf ← nf+1

F[nf] ← i

n ← n/i

se n > 1 então

nf ← nf+1

F[nf] ← n
```

I.c) Divisores de números pequenos (até 10.000)

Dado n, testa a divisibilidade por todos os números de 2 a $\lceil \sqrt{n} \rceil$, guardando os divisores no vetor D e respectiva quantidade em nd.

```
Divisores(n, ref D[], ref nd):

nd ← 0

para i ← 1 até [√(n)] faça

se n mod i = 0 então

nd ← nd+1; D[nd] ← i

nd ← nd+1; D[nd] ← n/i

se D[nd] = D[nd-1] então

nd ← nd-1
```

Crivo de Erastótenes

Serve para testar primalidade e fatorar números de 2 a n.

Usa um vetor de tamanho n-1 e marca, para cada elemento, o menor fator primo encontrado.

	2	3	4	5	6	7	8	9	10	••	15	16	••	25	••	77	• •	121	• •	143	144
2	2	3	2	5	2	7	2	9	2	••	15	2	••	25	••	77	• •	121	• •	143	2
3	2	3	2	5	2	7	2	3	2	••	3	2	••	25	••	77	• •	121	••	143	2
5	2	3	2	5	2	7	2	3	2	••	3	2	••	5	••	77	• •	121	••	143	2
7	2	3	2	5	2	7	2	3	2	••	3	2	••	5	••	7	••	121	••	143	2
11	2	3	2	5	2	7	2	3	2	••	3	2		5		7		11		11	2

Crivo de Erastótenes - Algoritmo de Geração:

Guarda, para cada número, seu menor fator.

```
GeraCrivo(n, ref C[]):
     para i \leftarrow 1 até n faça
        C[i] \leftarrow i
     † ← 2
     para i ← 1 até n/2 faça
         C[t] \leftarrow 2; t \leftarrow t+2
     para i \leftarrow 3 até \lceil J(n) \rceil faça
         se C[i] = i então
              t \leftarrow i^*i
              d \leftarrow i+i
              enquanto (t ≤ n) faça
                   se (C[t] = t) então
                        C[t] \leftarrow i
                   † ← †+d
```

II.a) Teste de primalidade para números até 10.000.000 com Crivo

```
ÉPrimo(n, C):

//C é o resultado da geração do Crivo até n
se C[n] = n então
retornar Verdadeiro
senão
retornar Falso
```

II.b) Fatoração de números até 10.000.000 com Crivo

nf = número de fatores; F = vetor de fatores.

```
Fatora(n, C, ref F[], ref nf):
    //C é o resultado da geração do Crivo até n
    nf \leftarrow 0
    enquanto n ≠ 1 faça
        nf \leftarrow nf + 1
        F[nf] \leftarrow C[n]
        n \leftarrow n/C[n]
                     Exemplo: fatoração de 468 = 2.2.3.3.13
                   13
                            39
                                          117
                                                         234
                                                                        468
                                                          2
                  13
                             3
                                                                         2
```

II.c) Divisores de números até 10.000.000 com Crivo

$$n = 468 = 2.2.3.3.13$$

i	1	2	3	4	5
F	2	2	3	3	13
k	2	4	3	9	13

78 156 117 234 468

1												
1	2											
1	2	4										
1	2	4	3	6	12							
4	2	4	2		12	4.0	2/					

II.c) Divisores de números até 10.000.000 com Crivo

Guarda nd divisores no vetor D. Usa sentinela 1 na pos. 0; Para n, a quantidade de primos é aproximadamente 0,1n.

```
Divisores(n, F, nf, ref D[], ref nd):
    //(F, nf) é o resultado da geração de fatores de n
    F[0], nd, D[1] \leftarrow 1, 1, 1
    para i \leftarrow 1 até nf faça
         se F[i] = F[i-1] então
             k \leftarrow k*F[i]
         senão
             k \leftarrow F[i]
             nda \leftarrow nd
         para j ← 1 até nda faça
             nd \leftarrow nd+1
             D[nd] \leftarrow k*D[i]
```

Crivo de Erastótenes - Tabela de Primos:

Guarda, no vetor P, os números primos até n, e a respectiva quantidade em np.

```
GeraPrimos(n, C, ref P[], ref np):

//C é o resultado da geração do Crivo até n

np ← 0

para i ← 2 até n faça

se C[i] = i então

np ← np+1

P[np] ← i
```

III.a) Teste de primalidade para números entre 10^7 e 10^{15} usando Tabela de Primos

Testa primalidade de $10^7 \le n \le 10^{15}$

```
ÉPrimo(n, P, np):

//(P, np) é o resultado da geração de primos até 「√(n)]

para i ← 1 até np faça

se n mod P[i] = 0 então

se n ≠ P[i] então

retornar Falso

retornar Verdadeiro

retornar Verdadeiro
```

III.b) Fatoração de números entre 10⁷ e 10¹⁵ usando Tabela de Primos

```
Fatora 10^7 \le n \le 10^{15}
```

```
Fatora(n, P, np, ref F[], ref nf):
    //(P, np) é o resultado da geração de primos até \Gamma J(n)1
    nf \leftarrow 0
    para i ← 1 até np faça
         enquanto n mod P[i] = O faça
             nf \leftarrow nf+1
             F[nf] \leftarrow P[i]
             n \leftarrow n/P[i]
         se n = 1 então
             sair-para
    se n ≠ 1 então
        nf \leftarrow nf+1
         F[nf] \leftarrow n
```

III.c) Divisores de números entre 10⁷ e 10¹⁵ usando Tabela de Primos.

Algoritmo idêntico ao do caso de números até 10.000.000

```
Divisores(n, F, nf, ref D[], ref nd):
    /(F, nf) é o resultado da geração de fatores de n
    F[0], nd, D[1] \leftarrow 1, 1, 1
    para i ← 1 até nf faça
        se F[i] = F[i-1] então
             k \leftarrow k*F[i]
        senão
             nda \leftarrow nd
             k \leftarrow F[i]
        para j ← 1 até nda faça
             nd \leftarrow nd+1
             D[nd] \leftarrow k*D[j]
```

Teorema: Existem infinitos números primos.

Número de números primos np(n) (Gauss):
$$\lim_{n\to\infty} np(n)/\ln n = 1$$

Conjectura de Goldbach:

Todo número par ≥ 4 é a soma de 2 primos

Teorema de Lagrange:

Todo número pode ser escrito como a soma de, no máximo, 4 quadrados.

Números de Mersenne: $M(n) = 2^n - 1$

Questão: M(n) é primo quando n é primo?

R: Não. É primo p/ n = 2, 3, 5, 7, 13, 17, 19, 31, 61, 89

$$F(n) = 2^{2^n} + 1$$

Números de Fermat: F(n) = 2²ⁿ + 1

Questão: F(n) é primo?

R: Não. É primo p/ n = 0, 1, 2, 3, 4. Não é primo para n entre 5 e 32. Não são conhecidos outros primos de Fermat.

Seja
$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$
 (fatoração por primos)

A quantidade qd(n) de divisores de n é dada por:

$$qd(n) = (e_1 + 1)(e_2 + 1) \dots (e_k + 1)$$

Ex:
$$70 = 2.5.7$$

$$\Rightarrow$$
 qd(70) = (1+1).(1+1).(1+1)=2.2.2 = 8

Os divisores são: 1, 2, 5, 7, 10, 14, 35, 70

Seja
$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$
 (fatoração por primos)

A função Totiente de Euler indica a quantidade de números relativamente primos a n e é dada por:

$$qrp(n) = (p_1^{e1} - p_1^{e1-1}) \dots (p_k^{ek} - p_k^{ek-1})$$

Ex:
$$70 = 2^{1}.5^{1}.7^{1}$$

 $qrp(70) = (2^{1}-2^{0}).(5^{1}-5^{0}).(7^{1}-7^{0}). = (2-1)(5-1)(7-1) = 24$

Números relativamente primos a 70:

1, 3, 9, 11, 13, 17, 19, 23, 27, 29, 31, 33, 37, 39, 41, 43, 47, 51, 53, 57, 59, 61, 67, 69

Seja
$$n = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$$
 (fatoração por primos)

A soma dos divisores sd(n) de n é dada por:

$$sd(n) = ((p_1^{e^{1+1}}-1)/(p_1-1))*...*((p_k^{e^{k+1}}-1)/(p_k-1))$$

Ex:
$$70 = 2^1.5^1.7^1$$

$$sd(70) = ((2^2-1)/(2-1)).((5^2-1)/(5-1)).((7^2-1)/(7-1)) =$$

= (3/1).(24/4).(48/6) = 3.6.8 = 144

Soma dos divisores de 70: 1+2+5+7+10+14+35+70 = 144

Fatoração de inteiros

Exercícios:

- a) Calcular a quantidade de divisores de 36 ou 50.
- b) Calcular a quantidade de números relativamente primos a 36 ou 50.

Máximo Divisor Comum MDC(a,b) - Algoritmo de Euclides

```
inteiro MDC (a, b):

enquanto (b \neq 0):

f \leftarrow a \mod b

a \leftarrow b

b \leftarrow f

retornar a;
```

a	Ь
99	78
	21
	15
15	6
6	3
3	0

Mínimo Múltiplo Comum

MMC(a,b) - Baseado em MDC

MMC(a,b) = a*b/(MDC(a,b))

inteiro MMC (a, b): $d \leftarrow MDC(a, b)$ $m \leftarrow (a*b)/d$ retornar m

a	b
99	78
d	3
m	99*78/3 = <mark>2574</mark>

Máximo Divisor Comum

MDCE(a,b,x,y) - Algoritmo de Euclides Estendido

Objetivo: dados a e b, encontrar d = MDC(a, b) e também x e y, tais que a.x + b.y = d

Exemplo:

$$MDCE(8,6,x,y) = 2$$
 e $x = 1$, $y = -1$, pois

$$MDC(8, 6) = 2$$
 e 8.1 + 6.(-1) = 2

MDCE(a,b) - Algoritmo Estendido Objetivo: dados a e b, encontrar d = MDC(a, b) e também x e y, tais que a.x + b.y = d

Exemplo: Calcular MDCE para 99 e 78.

a	b	d	×	У	Equação
99	78	3	-11	14	99.(-11)+78.14 = 3
78	21	3	3	-11	78.3+21.(-11) = 3
21	15	3	-2	3	21.(-2)+15.3 = 3
15	6	3	1	-2	15.1 + 6.(-2) = 3
6	3	3	0	1	6.0 + 3.1 = 3
3	0	3	1	0	3.1 + 0.0 = 3

MDCE(a,b) - Algoritmo de Euclides Estendido (Versão não recursiva)

```
(inteiro, inteiro, inteiro) MDCE (a, b):
    t \leftarrow 0; x \leftarrow 1; y \leftarrow 0;
    enquanto (b \neq 0):
         † ← †+1
         Pa[t] \leftarrow a; \quad Pb[t] \leftarrow b;
         f \leftarrow a \mod b: a \leftarrow b:
                                                 b ← f:
     para i \leftarrow t..1 incl.:
         f \leftarrow y
         y \leftarrow x-[Pa[i]/Pb[i]]*y
         x \leftarrow f
    retornar (a, x, y)
```

MDCE(a,b) - Algoritmo Estendido Objetivo: dados a e b, encontrar d = MDC(a, b) e também x e y, tais que a.x + b.y = d

Exemplo: Calcular MDCE para 99 e 78.

a	b	d	×	У	Equação
99	78	3	-11	14	99.(-11)+78.14 = 3
78	21	3	3	-11	78.3+21.(-11) = 3
21	15	3	-2	3	21.(-2)+15.3 = 3
15	6	3	1	-2	15.1 + 6.(-2) = 3
6	3	3	0	1	6.0 + 3.1 = 3
3	0	3	1	0	3.1 + 0.0 = 3

MDCE(a,b) - Algoritmo de Euclides Estendido (Versão recursiva)

```
(inteiro, inteiro, inteiro) MDCE (a, b):
    se (b = 0):
        retornar (a, 1, 0)
    senão:
        (d', x', y') ← MDCE(b, a mod b)
        (d, x, y) ← (d', y', x' - [a/b] * y')
        #escrever (a, b, d, x, y);
    retornar (d, x, y)
```

MDCE(a,b) - Algoritmo de Euclides Estendido

P: Porque funciona?

R: Porque temos uma propriedade invariante.

Sejam os parâmetros de duas chamadas recursivas sucessivas: (a_1, b_1, x_1, y_1) e (a_2, b_2, x_2, y_2) , com $a_2 = b_1$, $b_2 = a_1 \mod b_1$, $x_1 = y_2$, $y_1 = x_2 - [a_1/b_1].y_2$ $a_1 \mod b_1 = (a_1 - [a_1/b_1].b_1)$

Se tivermos $a_2x_2 + b_2y_2 = d$, então $b_1x_2 + (a_1 \mod b_1)y_2 = d$ e

$$a_1x_1 + b_1y_1 = a_1y_2 + b_1(x_2 - [a_1/b_1].y_2) = b_1x_2 + (a_1 - [a_1/b_1].b_1)y_2 = b_1x_2 + (a_1 \text{ mod } b_1)y_2 = d$$

MDCE(a,b) - Algoritmo Estendido Objetivo: dados a e b, encontrar d = MDC(a, b) e também x e y, tais que a.x + b.y = d

Exercício: Calcular MDCE para 1104 e 828.

MDCE(a,b,x,y) - Algoritmo Estendido - Aplicações

a) soluções inteiras para equações

Ex: Problema (10090) - Marbles

dadas 43 bolinhas e dois tipos de caixas, com custos e capacidades (1, 3) e (3, 4), qual a maneira mais barata de guardar as bolinhas?

Solução: temos que encontrar x e y tal que 3x + 4y = 43 e x + 3y seja mínimo

b) ferramenta da aritmética modular

MDCE(a,b) - Algoritmo Estendido

Exemplo: Quais as soluções inteiras para 99x + 78y = 30.

Outras soluções:

99(-110 + a) + 78(140+b) = 30.

Devemos ter:

 $99a+78b = 0 \Rightarrow 99a = -78b \Rightarrow a = -26b/33$.

Portanto para qualquer b múltiplo de 33 temos uma solução distinta.

Aritmética modular

Está relacionada a fenômenos cíclicos. Por exemplo a aritmética das horas é modular: 13 + 18 = 7.

Relações de equivalência: Relações em um conjunto onde valem as propriedades reflexiva, simétrica e transitiva. O conjunto é particionado em classes de equivalência.

Aritmética modular

Congruência: Relação definida em Z. Dizemos que a e b são congruentes módulo n quando n divide (a-b), o que é a mesma coisa que dizer que a mod n = b mod n.

Uma congruência em Z é uma relação de equivalência em Z e, portanto, particiona Z em classes de equivalência.

Notação:
$$a \equiv b \mod n$$

$$Z_n = \{0, 1, \dots n-1\}$$

$$\underline{a} = \{a + kn: k \in Z\}$$

Aritmética modular - Operações +, - e *

Teorema: Se a ≡ b mod n então:

1.
$$a + c \equiv b + c \mod n \circ u \pmod{(a+c)} = (b + c)$$

2.
$$a - c \equiv b - c \mod n$$
 ou $(a-c) = (b - c)$

3.
$$ac \equiv bc \mod n$$
 ou $ac = bc$

```
Aritmética modular - Operações +, - e *
Exemplos:
Como 16 \equiv 3 mod 13, temos
  16 + 11 \equiv 3 + 11 \mod 13 \equiv 1 \mod 13.
  16 - 11 \equiv 3 - 11 \mod 13 \equiv -8 \mod 13
                  = 5 mod 13.
  16.11 \equiv 3.11 \mod 13 \equiv 33 \mod 13
                  7 mod 13.
  (16 + 11) \mod 13 =
  (16 \mod 13 + 11 \mod 13) \mod 13 =
  (3 + 11) \mod 13 = 14 \mod 13 =
  1 mod 13
```

Exemplo de uso computacional da Aritmética modular

```
Problema: Dado p = d_{1000}d_{999}...d_1d_0 (1001 dígitos),
         p é divisível por n = 13?
Solução:
   p pode ser escrito como
   p = (...(d_{1000}).10+d_{999}).10+...+d_1).10+d_0)
   o que sugere o seguinte algoritmo:
   q \leftarrow 0;
   Para i decrescendo de 1000 a 0:
      q \leftarrow (q*10+ d_i) \mod n;
   Fp;
   Se (q = 0) Então Escrever "n divide p"
                      Escrever "n não divide p";
   Senão
```

Problemas computacionais da Aritmética modular

Problema 1: As operações (a+c) mod b ou (a*c) mod b podem apresentar overflow!

Solução: Se houver perigo de overflow, usar:

```
((a mod b)+(c mod b)) mod b ou
((a mod b)*(c mod b)) mod b
```

Exemplo: (802507*354197) mod 7 retorna 5,

((802507 mod 7)*(354197 mod 7) mod 7) retorna 2, quando os números são representados em 32 bits;

Problemas computacionais da Aritmética modular

Problema 2: A operação a mod b pode retornar valores negativos!

```
Solução: Quando a puder ser negativo, usar
((a mod b)+b) mod b
```

Exemplo:

-5 mod 7 retorna -5,

((-5 mod 7)+7) mod 7 retorna 2;

Testes de Primalidade para grandes números -Pequeno Teorema de Fermat

```
Teorema: Seja p primo e a inteiro. Então:
a<sup>p</sup> ≡ a mod p, ou: a<sup>p-1</sup> ≡ 1 mod p.
```

Exemplos:

```
3^2 = 9 \equiv 1 \mod 2;

3^{2-1} = 3 \equiv 1 \mod 2;

(-7)^5 = -16807 \equiv -7 \mod 5

(-7)^{5-1} = 2401 \equiv 1 \mod 5
```

Testes de Primalidade para grandes números -Pequeno Teorema de Fermat

Outros exemplos:

```
26^{11} = 3670344486987776 =
= 333667680635252*11+4 \equiv 4 \mod 11
26^{11-1} = 141167095653376 =
= 12833372332125*11+1 \equiv 1 \mod 11
```

```
2^{5432974} \mod 13 = 2^{452747*12 + 10} \mod 13 =
(2^{452747*12} \mod 13.2^{10} \mod 13) \mod 13
= 2^{10} \mod 13 = 1024 \mod 13 = 10
```

Testes de Primalidade para grandes números

Primeiro teste: dado n, usar uma ou mais bases e verificar o pequeno teorema de Fermat. O teste é conclusivo para números compostos mas pode falhar para números primos.

Exemplos:

P: 343 é primo?

R: Não, pois $2^{343} \equiv 324 \mod 343$

P: 341 é primo?

R: Não, pois $3^{341} \equiv 168 \mod 341$

P: 3523721 é primo?

R: Não, pois $2^{3523720} \equiv 1926315 \mod 3523721$

Testes de Primalidade - Números de Carmichael

Números de Charmichael são números n onde o teste de Fermat é inconclusivo para todas as bases b, 1 < b < (n-1), na 1a versão do Teorema.

Exemplos:

```
    P: 341 é primo?
    R: Não, pois 2<sup>341</sup> ≡ 2 mod 341, mas 3<sup>341</sup> ≡ 168 mod 341,
```

P: 561 é primo?

R: Não sei, pois a⁵⁶¹ ≡ a mod 561, para 1 < a < 561.(Não é primo pois 561 = 3.187) 561 é o menor número de Carmichael!

Outros números: 1105, 1729, 2465, 2821, 6601, 8911.

Potenciação modular - Versão não recursiva

Para calcular $a^b \mod n$, onde b e n são inteiros positivos, a idéia é usar a representação binária de $b < b_k, b_{k-1}, \dots b_1, b_0 > e$ usar multiplicação e soma modulares.

```
Exemplo: calcular 36 mod 7
      6_{10} = 110_2 = (((1).2+1).2+0)_{10}
3^1 \mod 7 = 3
      3^2 \mod 7 = 2
             2.3^1 \mod 7 = 6
             6^2 \mod 7 = 1
             1.3^{\circ} \mod 7 = 1
        3^6 \mod 7 = 729 \mod 7 =
               =(104.7 + 1) \mod 7 = 1
```

Potenciação modular - Versão não recursiva

Para calcular $a^b \mod n$, onde $b \in n$ são inteiros positivos, a idéia é usar a representação binária de $b \nmid b_k, b_{k-1}, \dots b_1, b_0 > e$ usar multiplicação.

```
inteiro Potencia Modular (a, b, n):
   d \leftarrow 1
   c ← 0
   para i \leftarrow k..0 incl.:
       d \leftarrow (d * d) \mod n
       c ← 2*c
       se (b_i = 1):
           d \leftarrow (d * a) \mod n
           c \leftarrow c+1
   retornar d:
```

Aritmética modular - Potenciação modular

Exemplo:
$$a = 5$$
, $b = 230 = \langle 11100110 \rangle$, $n = 337$;

i	7	6	5	4	3	2	1	0
b _i	1	1	1	0	0	1	1	0
С	1	3	7	14	28	57	115	230
d	5	125	278	111	189	332	125	123

Potenciação modular - Versão recursiva

```
Recorrência: Seja Pm(a, b, n) = a^b mod n.
   Pm(a,b,n) = Pm(a, b/2,n)^2 \mod n, b>1, par
   Pm(a,b,n) = (a.Pm(a,|b/2|,n)^2)mod n , b>1, impar
   Pm(a.0.n) = 1:
inteiro PotenciaModular(a, b, n);
  se (b = 0):
     retornar 1
  senão:
     x \leftarrow PotenciaModular(a, |b/2|, n)
     se (b é par):
        retornar (x * x) mod n
     senão:
        retornar (a * x * x) mod n
```

Aritmética modular - Potenciação modular

Exercício: Calcular 3411 mod 24

Criptografia RSA - é um sistema de chave pública baseado na Aritmética modular.

Para entender o método é necessário se entender, primeiro, a divisão modular e os inversos modulares., que são baseadas no Algoritmo de Euclides Estendido.

- A operação é estendida mesmo quando p/q não é inteiro. Só pode ser feita quando MDC(q, n) = 1.
- Neste caso, dado q, existe a classe inversa de q, q', tal que $q \cdot q' = 1$.
- ⇒ O problema é transformado em multiplicação modular.

Exemplo:

```
Como MDC(3, 32) = 1, podemos verificar que a classe inversa de 3 é 11, pois (3.11+32.(-1) = 1)
```

 $(3.11 = 33 \equiv 1 \pmod{32}).$

O inverso modular é calculado usando-se o MDC estendido, pois $a.a' \equiv 1 \mod n$ equivale a achar x = y + y + y + y + z = 1, onde x = a'

Exemplo:
Para achar $3'$ em Z_{32} ,
aplicamos o MCDE a
(3, 32) e obtemos:
3.11 + 32.(-1) = 1
$Logo, \mathbf{3'} = 11$

a	b	×	V
			y
	32	11	-1
32	3	-1	11
3	2	1	-1
2	1	0	1
1	0	1	0

Dado <mark>Z_n, nem todos seus elementos têm inverso modular.</mark>

Chamamos U_n o conjunto das classes que têm inverso. $U_n = \{ \underline{a} \in Z_n \mid MDC(a, n) = 1 \}$.

Se n é primo, $U_n = Z_n \setminus \underline{0}$.

Exemplos:
$$U_4 = \{1, 3\},\$$
 $U_7 = \{1, 2, 3, 4, 5, 6\},\$
 $U_8 = \{1, 3, 5, 7\},\$

Criptografia RSA - é um sistema de chave pública baseado na Aritmética modular.

Resumo do método:

- a) Selecionar primos p, q e calcular n = p.q e t = (p-1)(q-1).
- b) Selecionar f pequeno, relativamente primo a t.
- c) Calcular g = inv. modular de f relativo a t.
- d) Chave pública é o par (f, n), secreta, (g, n).
- e) A codificação da mensagem M é C = M^f mod n.
- f) A decodificação é M = C⁹ mod n.

Criptografia RSA - Exemplo com núm pequenos.

- a) Sejam p = 31, q = 43, \Rightarrow n = 1333, t = 1260.
- b) Podemos fazer f = 11, relativ. primo a 1260.
- c) O inverso modular de 11, relativamente a 1260 é g = -229, que mudamos para g = 1260-229 = 1031.
- d) Chave pública: (11, 1333), secreta: (1031, 1333).
- e) Codificação de 1241: 1241¹¹ mod 1333 = 652.
- f) Decodificação de 652: 652¹⁰³¹ mod 1333 = 1241.

Criptografia RSA - Porque funciona?

- a) Seja 0 ≤ b < n. Devemos ter be.d mod n = b.
- b) Mas e.d = 1 + k.t, pois e é o inv. modular de e.
- c) Mas $b^{k,\dagger} \equiv 1 \mod n$. (Teorema de Euler).
- d) Portanto $b^{e.d} \equiv b \mod n$.
- e) Como $0 \le b < n \Rightarrow b^{e,d} \mod n = b$.

Criptografia RSA - Qual a segurança?

- a) A segurança do método é a DIFICULDADE de fatoração de n. Não são conhecidos métodos eficientes de fatoração.
- b) Suponhamos que se possa obter t facilmente a partir da chave pública (n e e).
- c) Então temos: t = (p-1)(q-1) = n (p+q) + 1. ⇒ podemos calcular p+q.
- d) Como $(p-q)^2 = (p+q)^2 4n$, podemos calcular p-q, e, como consequência, p e q.
- b) Logo, a dificuldade de obter t é, no mínimo, igual à de fatorar n.

Teoria dos Números

FIM.