Algorithmique et recherche opérationnelle

INFO-F310

Projet : CPLEX LP

26 avril 2020

Nom : BAKKALI Yahya

Matricule: 000445166

Université Libre de Bruxelles (ULB)

Table des matières

1	Introduction	2
2	Modèle	2
3	Fichier CPLEX LP généré	3
4	Log de GLPK obtenu	9
5	Conclusion	16

1 Introduction

Pour ce projet, il est demandé d'écrire un script python qui, à partir d'un fichier d'instance indiquant un ensemble de panneaux de longueur variable à découper dans des planches de longueur fixe, génère une instance de programme linéaire en langage CPLEX LP qui détermine un plan de découpe de panneaux qui minimise le nombre de planches utilisées.

$\mathbf{2}$ Modèle

Indices:

$$M = \{1, ..., m\}$$
 planches

$$N = \{1, ..., n\}$$
 panneaux

Constantes:

 $l_i = \text{longueur du panneau } i$

L =longueur des planches j

Variables de décision :

 $x_{i,j} \in \{0,1\}$ telle que

$$x_{i,j} = \begin{cases} 1 \text{ si une planche j est prise pour une découpe du panneau i} \\ 0 \text{ sinon} \end{cases}$$

 $m_i \in \{0,1\}$ telle que

$$m_j = \begin{cases} 1 \text{ si une planche j est prise pour une découpe} \\ 0 \text{ sinon} \end{cases}$$

Formulation 1 Formulation linéaire

min
$$\sum_{j \in M} m_j$$
 (1)
s.t. $\sum_{j \in M} x_{i,j} = 1$ $\forall i \in N$

s.t.
$$\sum_{j \in M} x_{i,j} = 1 \qquad \forall i \in N$$

$$\sum_{i \in N} l_i x_{i,j} \le L m_j \qquad \forall j \in M$$
 (3)

$$\sum_{i \in N} l_i x_{i,j} \le L m_j \qquad \forall j \in M \tag{3}$$

$$x_{i,j} \in \{0,1\} \quad \forall i \in \mathbb{N}, \quad \forall j \in M$$
 (4)

$$m_j \in \{0, 1\} \qquad \forall j \in M \tag{5}$$

Les contraintes (2) assurent que chaque planche a été correctement découpée. D'autre part, (3) assurent que la somme des longueurs d'un ensemble de panneaux découpés à partir d'une planche ne peut pas dépasser la longueur de cette dernière. Finalement, les contraintes (4) impliquent que la somme des longueurs des panneaux découpés doit être inférieure ou égale à la somme totale des longueurs des planches utilisées.

3 Fichier CPLEX LP généré

```
Minimize
                                                                                         obj: m + 1 + m + 2 + m + 3 + m + 4 + m + 5 + m + 6 + m + 7 + m + 8
Subject To
                                                                                          x = 5 + 1(0.75) - 0.75 \times 6 + 1(0.75) - 0.75 \times 7 + 1(0.75) - 0.75 \times 8 + 1(0.75) - 0.75 \times 9 + 10.75 \times 9 + 1
                                                                                                                                                0.75 \; x\_10\_1 (0.75) \, - \, 0.22 \; x\_11\_1 (0.22) \, - \, 0.22 \; x\_12\_1 (0.22) \, - \, 0.22 \; x\_13\_1 (0.22
                                                                                                                                              x = 14 = 1(0.22) = 0.22 = 15 = 1(0.22) = 0.22 = 16 = 1(0.22) = 0.22 = 17 = 1(0.22) = 0.22
                                                                                                                                                x 22 1(0.22) >= 0
                                                                                         	ext{x} 	ext{ 5} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ } 6 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 7} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 8} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ x} 	ext{ 9} 	ext{ } 2(0.75) - 0.75 	ext{ 0} 	ext{ 0} 	ext{ 0} 	ext{ } 2(0.75) - 0.75 	ext{ 0} 	ext{ 0} 	ext{ } 2(0.75) - 0.75 	ext{ 0} 	ext{ 
                                                                                                                                                0.75 \times 10 \quad 2(0.75) - 0.22 \times 11 \quad 2(0.22) - 0.22 \times 12 \quad 2(0.22) - 0.22 \times 13 \quad 2(0.22) 
                                                                                                                                                 x 14 2(0.22) - 0.22 x 15 2(0.22) - 0.22 x 16 2(0.22) - 0.22 x 17 2(0.22) - 0.22 
                                                                                                                                                 x = 18 - 2(0.22) - 0.22 \times 19 - 2(0.22) - 0.22 \times 20 - 2(0.22) - 0.22 \times 21 - 2(0.22) - 0.22 
                                                                                                                                                x 22 2(0.22) >= 0
                                                                                         c_1_3: 4.0 \ m_3 - 1.5 \ x_1_3(1.5) - 1.5 \ x_2_3(1.5) - 1.5 \ x_3_3(1.5) - 1.5 \ x_4_3(1.5) - 0.75
                                                                                                                                                 x = 5 - 3(0.75) - 0.75 \times 6 - 3(0.75) - 0.75 \times 7 - 3(0.75) - 0.75 \times 8 - 3(0.75) - 0.75 \times 9 
                                                                                                                                              0.75 \times 10 \ 3(0.75) - 0.22 \times 11 \ 3(0.22) - 0.22 \times 12 \ 3(0.22) - 0.22 \times 13 \ 3(0.22) - 0.22 \times 10 \ 3(0.22) 
                                                                                                                                                x_22_3(0.22) >= 0
                                                                                          x\_5\_4(0.75) - 0.75 \ x\_6\_4(0.75) - 0.75 \ x\_7\_4(0.75) - 0.75 \ x \ 8 \ 4(0.75) - 0.75 \ x \ 9 \ 4(0.75) - 0.75 \ x \ 9
                                                                                                                                                0.75 \times 10 \quad 4(0.75) - 0.22 \times 11 \quad 4(0.22) - 0.22 \times 12 \quad 4(0.22) - 0.22 \times 13 \quad 4(0.22) 
                                                                                                                                                 x 14 4(0.22) - 0.22 x 15 4(0.22) - 0.22 x 16 4(0.22) - 0.22 x 17 4(0.22) - 0.22 
                                                                                                                                                 x  18  4(0.22) - 0.22  x  19  4(0.22) - 0.22  x  20  4(0.22) - 0.22  x  21  4(0.22) - 0.22  
                                                                                                                                                x 22 4(0.22) >= 0
                                                                                         c 1 5: 4.0 \text{ m} 5 - 1.5 \text{ x} 1 5(1.5) - 1.5 \text{ x} 2 5(1.5) - 1.5 \text{ x} 3 5(1.5) - 1.5 \text{ x} 4 5(1.5) - 0.75
                                                                                                                                                 x 5 5(0.75) - 0.75 x 6 5(0.75) - 0.75 x 7 5(0.75) - 0.75 x 8 5(0.75) - 0.75 x 9 5(0.75
                                                                                                                                                0.75 \times 10 \quad 5(0.75) - 0.22 \times 11 \quad 5(0.22) - 0.22 \times 12 \quad 5(0.22) - 0.22 \times 13 \quad 5(0.22) 
                                                                                                                                                {\tt x\_14\_5(0.22)-0.22\ x\_15\_5(0.22)-0.22\ x\_16\_5(0.22)-0.22\ x\_17\_5(0.22)-0.22}
                                                                                                                                                x = 18 = 5(0.22) - 0.22 = 19 = 5(0.22) - 0.22 = 20 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0.22 = 21 = 5(0.22) - 0
                                                                                                                                                x 22 5(0.22) >= 0
```

```
c 1 6: 4.0 \text{ m} 6 - 1.5 \text{ x} 1 6(1.5) - 1.5 \text{ x} 2 6(1.5) - 1.5 \text{ x} 3 6(1.5) - 1.5 \text{ x} 4 6(1.5) - 0.75
                                x = 5 - 6(0.75) - 0.75 \times 6 - 6(0.75) - 0.75 \times 7 - 6(0.75) - 0.75 \times 8 - 6(0.75) - 0.75 \times 9 - 6(0.75) -
                                0.75 \times 10 \quad 6(0.75) - 0.22 \times 11 \quad 6(0.22) - 0.22 \times 12 \quad 6(0.22) - 0.22 \times 13 \quad 6(0.22) 
                                x 22 6(0.22) >= 0
c 1 7: 4.0 \text{ m} 7 - 1.5 \text{ x} 1 7(1.5) - 1.5 \text{ x} 2 7(1.5) - 1.5 \text{ x} 3 7(1.5) - 1.5 \text{ x} 4 7(1.5) - 0.75
                                \times 5 7(0.75) - 0.75 \times 6 7(0.75) - 0.75 \times 7 7(0.75) - 0.75 \times 8 7(0.75) - 0.75 \times 9 7(0.75) -
                                0.75 \times 10 \quad 7(0.75) - 0.22 \times 11 \quad 7(0.22) - 0.22 \times 12 \quad 7(0.22) - 0.22 \times 13 \quad 7(0.22) 
                                {\tt x\_14\_7(0.22)} - 0.22 \; {\tt x\_15\_7(0.22)} - 0.22 \; {\tt x\_16\_7(0.22)} - 0.22 \; {\tt x\_17\_7(0.22)} - 0.22 \; {\tt x\_17\_7(0.22)} - 0.22 \; {\tt x\_16\_7(0.22)} - 0.22 \; {\tt x\_16\_7(0.22)}
                                x 18 7(0.22) - 0.22 x 19 7(0.22) - 0.22 x 20 7(0.22) - 0.22 x 21 7(0.22) - 0.22
                                x 22 7(0.22) >= 0
c 1 8: 4.0 \text{ m} 8 - 1.5 \text{ x} 1 8(1.5) - 1.5 \text{ x} 2 8(1.5) - 1.5 \text{ x} 3 8(1.5) - 1.5 \text{ x} 4 8(1.5) - 0.75
                                  x_5_8(0.75) - 0.75 x_6_8(0.75) - 0.75 x_7_8(0.75) - 0.75 x_8_8_8(0.75) - 0.75 x_9_8(0.75) - 0.75 x_9_8(0.75)
                               0.75 \times 10 \quad 8 \\ (0.75) \\ -0.22 \times 11 \quad 8 \\ (0.22) \\ -0.22 \times 12 \quad 8 \\ (0.22) \\ -0.22 \times 13 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ -0.22 \\ \times 10 \quad 8 \\ (0.22) \\ \times 10 \quad 8 \\ (0
                                x = 18 - 8(0.22) - 0.22 \times 19 - 8(0.22) - 0.22 \times 20 - 8(0.22) - 0.22 \times 21 - 8(0.22) - 0.22
                                x 22 8(0.22) >= 0
x 1 7(1.5) + x 1 8(1.5) = 1
x 2 7(1.5) + x 2 8(1.5) = 1
x \ 3 \ 7(1.5) + x \ 3 \ 8(1.5) = 1
c 2 4: x 4 1(1.5) + x 4 2(1.5) + x 4 3(1.5) + x 4 4(1.5) + x 4 5(1.5) + x 4 6(1.5) +
                                x_4_7(1.5) + x_4_8(1.5) = 1
x \ 5 \ 7(0.75) + x \ 5 \ 8(0.75) = 1
x_6_7(0.75) + x_6_8(0.75) = 1
x 7 7(0.75) + x 7 8(0.75) = 1
 x 8 7(0.75) + x 8 8(0.75) = 1
c\_2\_9 \colon x\_9\_1 (0.75) \, + \, x\_9\_2 (0.75) \, + \, x\_9\_3 (0.75) \, + \, x\_9\_4 (0.75) \, + \, x\_9\_5 (0.75) \, + \, x\_9\_6 (0.75) \, + \, x\_9
                                  x 9 7(0.75) + x 9 8(0.75) = 1
c 2 10: x 10 1(0.75) + x 10 2(0.75) + x 10 3(0.75) + x 10 4(0.75) + x 10 5(0.75) + x
                                x 10 6(0.75) + x 10 7(0.75) + x 10 8(0.75) = 1
c\_2\_11: x\_11\_1(0.22) + x\_11\_2(0.22) + x\_11\_3(0.22) + x\_11\_4(0.22) + x\_11\_5(0.22) + x\_11\_5(0.22
                                  x 11 6(0.22) + x 11 7(0.22) + x 11 8(0.22) = 1
{\tt c\_2\_12: x\_12\_1(0.22) + x\_12\_2(0.22) + x\_12\_3(0.22) + x\_12\_4(0.22) + x\_12\_5(0.22) + x\_12\_5(0
                                x 12 6(0.22) + x 12 7(0.22) + x 12 8(0.22) = 1
```

```
x = 13 - 6(0.22) + x - 13 - 7(0.22) + x - 13 - 8(0.22) = 1
   x 14 6(0.22) + x 14 7(0.22) + x 14 8(0.22) = 1
   x = 15 - 6(0.22) + x - 15 - 7(0.22) + x - 15 - 8(0.22) = 1
   x 16 6(0.22) + x 16 7(0.22) + x 16 8(0.22) = 1
   x_17_6(0.22) + x_17_7(0.22) + x_17_8(0.22) = 1
   x 18 6(0.22) + x 18 7(0.22) + x 18 8(0.22) = 1
   x_19_6(0.22) + x_19_7(0.22) + x_19_8(0.22) = 1
   x 20 6(0.22) + x 20 7(0.22) + x 20 8(0.22) = 1
   x 21 6(0.22) + x 21 7(0.22) + x 21 8(0.22) = 1
   x 22 6(0.22) + x 22 7(0.22) + x 22 8(0.22) = 1
BINARY
   m = 1
   m = 2
   m - 3
   m - 4
   m_{-}5
   m 6
   m - 7
   m - 8
   x_1_{1}(1.5)
   x 1 2(1.5)
   x 1 3(1.5)
   x 1 4(1.5)
   x 1 5(1.5)
   x 1 6(1.5)
   x_1_{7}(1.5)
   x 1 8(1.5)
   x 2 1(1.5)
   x 2 2(1.5)
   x 2 3(1.5)
   x_2_4(1.5)
   x 2 5(1.5)
   x 2 6(1.5)
```

- $x_2_{7}(1.5)$
- $x_2_8(1.5)$
- $x_3_1(1.5)$
- $x_3_2(1.5)$
- x_3_3(1.5)
- $x_3_4(1.5)$
- $x_3_{5}(1.5)$
- x_3_6(1.5)
- x_3_7(1.5)
- 11_0_1(110)
- $x_3_8(1.5)$
- $\mathtt{x}_4_1(1.5)$
- $x_4_2(1.5)$
- $x_4_3(1.5)$
- $x_4_4(1.5)$
- $x_4_5(1.5)$
- $x_4_6(1.5)$
- $x_4_7(1.5)$
- $x_4_8(1.5)$
- $x_5_1(0.75)$
- $x_5_2(0.75)$
- $x_5_3(0.75)$
- x_0_0(0.10)
- $x_5_4(0.75)$
- $x_5_5(0.75)$
- $x_5_6(0.75)$
- x_5_7(0.75)
- $x_5_{8}(0.75)$
- $x_6_1(0.75)$
- $x_6_2(0.75)$
- $x_6_3(0.75)$
- $x_6_4(0.75)$ $x_6_5(0.75)$
- x_6_6(0.75)
- x_6_7(0.75)
- $x_{6} = 8(0.75)$
- x_7_1(0.75)
- $x_7_2(0.75)$
- x_7_3(0.75)
- x_7_4(0.75)
- $x_7_5(0.75)$
- x_7_6(0.75)
- $x_7_7(0.75)$
- x_7_8(0.75)
- x_8_1(0.75)

- $x_8_2(0.75)$
- $x_8_3(0.75)$
- $x_8_4(0.75)$
- $x_8_5(0.75)$
- $x_8_6(0.75)$
- $x_8_7(0.75)$
- $x_8_8(0.75)$
- $x_9_1(0.75)$
- $x_9_2(0.75)$
- $x_9_3(0.75)$
- $x_9_4(0.75)$
- $x_9_5(0.75)$
- $x_9_6(0.75)$
- $x_9_7(0.75)$
- $x_9_8(0.75)$
- $x_10_1(0.75)$
- $x_10_2(0.75)$
- $x_10_3(0.75)$
- $x_10_4 (0.75)$
- $x_10_5(0.75)$
- x_10_6(0.75)
- $x_10_7(0.75)$
- $x_10_8(0.75)$
- $x_11_1(0.22)$ $x_11_2(0.22)$
- $x_11_3(0.22)$
- $x_11_4(0.22)$
- $x_11_5(0.22)$
- $x_11_6(0.22)$
- $x_11_7(0.22)$
- $x_11_8(0.22)$
- $x_12_1(0.22)$
- $x_12_2(0.22)$
- $x_12_3(0.22)$
- $x_12_4(0.22)$
- $x_12_5(0.22)$
- $x_12_6(0.22)$
- $x_12_7(0.22)$
- $x_12_8(0.22)$
- $x_13_1(0.22)$
- $x_13_2(0.22)$ $x_13_3(0.22)$
- $x_13_4(0.22)$

- $x_13_5(0.22)$
- $x_13_6(0.22)$
- $x_13_7(0.22)$
- $x_13_8(0.22)$
- $x_14_1(0.22)$
- $x_14_2(0.22)$
- $x_14_3(0.22)$
- $x_14_4(0.22)$
- $x_14_5(0.22)$
- $x_14_6(0.22)$
- $x_14_7(0.22)$
- $x_14_8(0.22)$
- $x_15_1(0.22)$
- $x_15_2(0.22)$
- $x_15_3(0.22)$
- $x_15_4(0.22)$
- $x_15_5(0.22)$
- $x_15_6(0.22)$
- $x_15_7(0.22)$
- $x_15_8(0.22)$
- x_16_1(0.22)
- $x_16_2(0.22)$
- $x_16_3(0.22)$
- $x_16_4(0.22)$
- $x_16_5(0.22)$
- $x_16_6(0.22)$
- $x_16_7(0.22)$
- $x_16_8(0.22)$ $x_17_1(0.22)$
- $x_17_2(0.22)$ $x_17_3(0.22)$
- $x_17_4(0.22)$
- x_17_5(0.22)
- $x_17_6(0.22)$
- $x_17_7(0.22)$
- $x_17_8(0.22)$
- x_18_1(0.22)
- $x_182(0.22)$
- $x_18_3(0.22)$
- $x_18_4(0.22)$
- $x_18_5(0.22)$
- $x_18_6(0.22)$
- $x_18_7(0.22)$

```
x_18_8(0.22)
      x_19_1(0.22)
      x_19_2(0.22)
      x_19_3(0.22)
      x_19_4(0.22)
      x_19_5(0.22)
      x_19_6(0.22)
      x_19_7(0.22)
      x_19_8(0.22)
      x_20_1(0.22)
      x_20_2(0.22)
      x_20_3(0.22)
      x_20_4(0.22)
      x_20_5(0.22)
      x_20_6(0.22)
      x_20_7(0.22)
      x_20_8(0.22)
      x_21_1(0.22)
      x\_21\_2 (0.22)
      x_21_3(0.22)
      x_21_4(0.22)
      x_21_5(0.22)
      x_21_6(0.22)
      x_21_7(0.22)
      x_21_8(0.22)
      x_22_1(0.22)
      x_22_2(0.22)
      x_22_3(0.22)
      x_22_4(0.22)
      x_22_5(0.22)
      x_22_6(0.22)
      x_22_7(0.22)
      x_22_8(0.22)
END
```

4 Log de GLPK obtenu

Problem:

Rows: 30

Columns: 184 (184 integer, 184 binary)

Non-zeros: 360

Status: INTEGER OPTIMAL
Objective: obj = 4 (MINimum)

No. Row name	Activity	Lower bound	Upper bound
1 c_1_1	0	0	
2 c_1_2	0.21	0	
3 c_1_3	1.75	0	
4 c_1_4	0	0	
5 c_1_5	0	0	
6 c_1_6	0	0	
7 c_1_7	0.78	0	
8 c_1_8	0.12	0	
9 c_2_1	1	1	=
10 c_2_2	1	1	=
11 c_2_3	1	1	=
12 c_2_4	1	1	=
13 c_2_5	1	1	=
14 c_2_6	1	1	=
15 c_2_7	1	1	=
16 c_2_8	1	1	=
17 c_2_9	1	1	=
18 c_2_10	1	1	=
19 c_2_11	1	1	=
20 c_2_12	1	1	=
21 c_2_13	1	1	=
22 c_2_14	1	1	=
23 c_2_15	1	1	=
24 c_2_16	1	1	=
25 c_2_17	1	1	=
26 c_2_18	1	1	=
27 c_2_19	1	1	=
28 c_2_20	1	1	=
29 c_2_21	1	1	=

	No. Column na	ame	Activity	Lower bound	Upper bound
1	m_1	*	0	0	1
2	m_2	*	1	0	1
3	m_3	*	1	0	1
4	m_4	*	0	0	1
5	m_5	*	0	0	1
6	m_6	*	0	0	1
7	m_7	*	1	0	1
8	m_8	*	1	0	1
9	x_1_1(1.5)	*	0	0	1
10	x_2_1(1.5)	*	0	0	1
11	x_3_1(1.5)	*	0	0	1
12	x_4_1(1.5)	*	0	0	1
13	x_5_1(0.75)	*	0	0	1
14	$x_{6_1(0.75)}$	*	0	0	1
15	$x_7_1(0.75)$	*	0	0	1
16	x_8_1(0.75)	*	0	0	1
17	x_9_1(0.75)	*	0	0	1
18	x_10_1(0.75)	*	0	0	1
19	x_11_1(0.22)	*	0	0	1
20	x_12_1(0.22)	*	0	0	1
21	x_13_1(0.22)	*	0	0	1
22	x_14_1(0.22)	*	0	0	1
23	x_15_1(0.22)	*	0	0	1
24	x_16_1(0.22)	*	0	0	1
25	x_17_1(0.22)	*	0	0	1
26	x_18_1(0.22)	*	0	0	1
27	x_19_1(0.22)	*	0	0	1
28	x_20_1(0.22)	*	0	0	1
29	x_21_1(0.22)	*	0	0	1
30	x_22_1(0.22)	*	0	0	1

31 x ₁ 2(1.5)	*	0	0	1
32 x ₂ 2(1.5)	*	0	0	1
33 x_3_2(1.5)	*	0	0	1
34 x_4_2(1.5)	*	0	0	1
35 x_5_2(0.75)	*	0	0	1
36 x_6_2(0.75)	*	1	0	1
37 x_7_2(0.75)	*	1	0	1
38 x_8_2(0.75)	*	0	0	1
39 x_9_2(0.75)	*	0	0	1
40 x_10_2(0.75) *	1	0	1
41 x_11_2(0.22) *	1	0	1
42 x_12_2(0.22) *	1	0	1
43 x_13_2(0.22) *	1	0	1
44 x_14_2(0.22) *	1	0	1
45 x_15_2(0.22) *	1	0	1
46 x_16_2(0.22) *	1	0	1
47 x_17_2(0.22) *	1	0	1
48 x_18_2(0.22) *	0	0	1
49 x_19_2(0.22) *	0	0	1
50 x_20_2(0.22) *	0	0	1
51 x_21_2(0.22) *	0	0	1
52 x_22_2(0.22) *	0	0	1
53 x ₁ 3(1.5)	*	0	0	1
54 x ₂ 3(1.5)	*	0	0	1
55 x_3_3(1.5)	*	0	0	1
56 x ₄ 3(1.5)	*	0	0	1
57 x_5_3(0.75)	*	1	0	1
58 x_6_3(0.75)	*	0	0	1
59 x_7_3(0.75)	*	0	0	1
60 x_8_3(0.75)	*	1	0	1
61 x_9_3(0.75)	*	1	0	1
62 x_10_3(0.75) *	0	0	1
63 x_11_3(0.22) *	0	0	1
64 x_12_3(0.22) *	0	0	1

65 x ₁₃ 3(0.22)	*	0	0	1
66 x ₁₄ 3(0.22)	*	0	0	1
67 x ₁₅ 3(0.22)	*	0	0	1
68 x ₁₆ 3(0.22)	*	0	0	1
69 x ₁ 7 ₃ (0.22)	*	0	0	1
70 x ₁₈ 3(0.22)	*	0	0	1
71 x_19_3(0.22)	*	0	0	1
72 x_20_3(0.22)	*	0	0	1
73 x_21_3(0.22)	*	0	0	1
74 x_22_3(0.22)	*	0	0	1
75 x ₁ 4(1.5)	*	0	0	1
76 x ₂ 4(1.5)	*	0	0	1
77 x_3_4(1.5)	*	0	0	1
78 x ₄ 4(1.5)	*	0	0	1
79 x_5_4(0.75)	*	0	0	1
80 x _{6_4} (0.75)	*	0	0	1
81 x_7_4(0.75)	*	0	0	1
82 x_8_4(0.75)	*	0	0	1
83 x_9_4(0.75)	*	0	0	1
84 x ₁₀ 4(0.75)	*	0	0	1
85 x ₁₁ _4(0.22)	*	0	0	1
86 x ₁₂ 4(0.22)	*	0	0	1
87 x ₁ 3 ₄ (0.22)	*	0	0	1
88 x ₁₄ 4(0.22)	*	0	0	1
89 x ₁₅ 4(0.22)	*	0	0	1
90 x ₁₆ 4(0.22)	*	0	0	1
91 x ₁ 7 ₄ (0.22)	*	0	0	1
92 x ₁₈ 4(0.22)	*	0	0	1
93 x ₁ 9 ₄ (0.22)	*	0	0	1
94 x_20_4(0.22)	*	0	0	1
95 x ₂₁ _4(0.22)	*	0	0	1
96 x_22_4(0.22)	*	0	0	1
97 x_1_5(1.5)	*	0	0	1
98 x ₂ 5(1.5)	*	0	0	1

99 x_3_5(1.5) *		0	0	1
100 x_4_5(1.5)	*	0	0	1
101 x_5_5(0.75)	*	0	0	1
102 x_6_5(0.75)	*	0	0	1
103 x_7_5(0.75)	*	0	0	1
104 x_8_5(0.75)	*	0	0	1
105 x_9_5(0.75)	*	0	0	1
106 x_10_5(0.75)	*	0	0	1
107 x_11_5(0.22)	*	0	0	1
108 x_12_5(0.22)	*	0	0	1
109 x_13_5(0.22)	*	0	0	1
110 x_14_5(0.22)	*	0	0	1
111 x_15_5(0.22)	*	0	0	1
112 x_16_5(0.22)	*	0	0	1
113 x_17_5(0.22)	*	0	0	1
114 x_18_5(0.22)	*	0	0	1
115 x_19_5(0.22)	*	0	0	1
116 x ₂₀ 5(0.22)	*	0	0	1
117 x_21_5(0.22)	*	0	0	1
118 x ₂₂ 5(0.22)	*	0	0	1
119 x_1_6(1.5)	*	0	0	1
120 x_2_6(1.5)	*	0	0	1
121 x_3_6(1.5)	*	0	0	1
122 x_4_6(1.5)	*	0	0	1
123 x_5_6(0.75)	*	0	0	1
124 x_6_6(0.75)	*	0	0	1
125 x_7_6(0.75)	*	0	0	1
126 x_8_6(0.75)	*	0	0	1
127 x_9_6(0.75)	*	0	0	1
128 x_10_6(0.75)	*	0	0	1
129 x_11_6(0.22)	*	0	0	1
130 x_12_6(0.22)	*	0	0	1
131 x_13_6(0.22)	*	0	0	1
132 x_14_6(0.22)	*	0	0	1

133 x	15_6(0.22)	*	0	0	1
134 x	x_16_6(0.22)	*	0	0	1
135 х	17_6(0.22)	*	0	0	1
136 x	x_18_6(0.22)	*	0	0	1
137 х	19_6(0.22)	*	0	0	1
138 x	20_6(0.22)	*	0	0	1
139 x	21_6(0.22)	*	0	0	1
140 x	22_6(0.22)	*	0	0	1
141 x	x_1_7(1.5)	*	0	0	1
142 x	(2_7(1.5)	*	0	0	1
143 x	x_3_7(1.5)	*	1	0	1
144 x	(4_7(1.5)	*	1	0	1
145 x	c_5_7(0.75)	*	0	0	1
146 x	c_6_7(0.75)	*	0	0	1
147 x	c_7_7(0.75)	*	0	0	1
148 x	c_8_7(0.75)	*	0	0	1
149 x	c_9_7(0.75)	*	0	0	1
150 х	x_10_7(0.75)	*	0	0	1
151 x	x_11_7(0.22)	*	0	0	1
152 x	x_12_7(0.22)	*	0	0	1
153 х	x_13_7(0.22)	*	0	0	1
154 x	x_14_7(0.22)	*	0	0	1
155 х	15_7(0.22)	*	0	0	1
156 x	x_16_7(0.22)	*	0	0	1
157 x	2_17_7(0.22)	*	0	0	1
158 x	x_18_7(0.22)	*	0	0	1
159 x	2_19_7(0.22)	*	0	0	1
160 x	20_7(0.22)	*	0	0	1
161 x	21_7(0.22)	*	0	0	1
162 x	22_7(0.22)	*	1	0	1
163 x	c_1_8(1.5)	*	1	0	1
164 x	2_8(1.5)	*	1	0	1
165 x	2_3_8(1.5)	*	0	0	1
166 x	c_4_8(1.5)	*	0	0	1

167 x_5_8(0.75)	*	0	0	1
168 x_6_8(0.75)	*	0	0	1
169 x_7_8(0.75)	*	0	0	1
170 x_8_8(0.75)	*	0	0	1
171 x_9_8(0.75)	*	0	0	1
172 x_10_8(0.75)	*	0	0	1
173 x_11_8(0.22)	*	0	0	1
174 x_12_8(0.22)	*	0	0	1
175 x_13_8(0.22)	*	0	0	1
176 x_14_8(0.22)	*	0	0	1
177 x_15_8(0.22)	*	0	0	1
178 x_16_8(0.22)	*	0	0	1
179 x_17_8(0.22)	*	0	0	1
180 x_18_8(0.22)	*	1	0	1
181 x_19_8(0.22)	*	1	0	1
182 x_20_8(0.22)	*	1	0	1
183 x_21_8(0.22)	*	1	0	1
184 x_22_8(0.22)	*	0	0	1

Integer feasibility conditions:

```
KKT.PE: max.abs.err = 8.88e-16 on row 2
max.rel.err = 9.87e-17 on row 2
High quality
```

```
KKT.PB: max.abs.err = 0.00e+00 on row 0
max.rel.err = 0.00e+00 on row 0
High quality
```

End of output

5 Conclusion