Lab 4A: Traffic Light Controller

1. Objective

The objective of this lab is to design and implement a traffic light controller for a four-way intersection. The controller should manage traffic signals for both North-South and East-West directions, handle pedestrian crossing requests, and provide an emergency override mechanism. A timer module is used to enforce correct timing of signal phases.

2. Specification

The traffic light controller must satisfy the following requirements:

Intersection Control

- North-South (NS) and East-West (EW) traffic lights.
- Normal cycle: Green (30s) → Yellow (5s) → Red.

Emergency Override

- During emergency, all lights should turn red with flashing.
- Normal operation resumes when emergency is cleared.

Pedestrian Crossing

- Pedestrian request triggers a dedicated crossing state.
- Vehicles see red lights, and pedestrian walk signal is active for 10s.

Startup Condition

Controller begins in a flashing red state before normal operation starts.

Clock Input

System runs on a 1 Hz clock (1-second resolution).

Students design a timer for time delays.

3. Design Methodology

1. FSM State Design

- o The controller was modeled as a Finite State Machine (FSM).
- States were defined for each light phase, pedestrian crossing, and emergency mode.
- Transition conditions were carefully derived based on timer values and input signals.

2. States Used

- STARTUP_FLASH: Initial blinking red lights.
- NS_GREEN_EW_RED: NS traffic green, EW red.
- NS_YELLOW_EW_RED: NS yellow, EW red.
- NS_RED_EW_GREEN: NS red, EW green.
- NS_RED_EW_YELLOW: NS red, EW yellow.
- o **PEDESTRIAN CROSSING**: Both NS and EW red, pedestrian walk enabled.
- **EMERGENCY_ALL_RED**: Emergency mode, all red flashing.

3. Timer Design

- A 6-bit timer was implemented to count seconds (0–63 range).
- Timer resets at the beginning of each state to ensure accurate phase timing.

4. Pedestrian Request Handling

- o A **pedestrian latch** captures button presses even if the FSM is busy.
- Pedestrian crossing is served after the current green/yellow cycle finishes.

5. Emergency Handling

- Immediate transition to EMERGENCY_ALL_RED upon emergency signal.
- Lights flash red until the emergency signal is cleared.
- o On clearing, controller restarts from the startup flash state.

4. State Diagram

The state diagram was designed to include all operational modes:

- Normal Cycle:
 - NS_GREEN_EW_RED → NS_YELLOW_EW_RED → NS_RED_EW_GREEN → NS_RED_EW_YELLOW → NS_GREEN_EW_RED
- Pedestrian Handling:
 - During a yellow phase, if a pedestrian request is latched, transition goes to PEDESTRIAN_CROSSING before resuming the next normal cycle.
- Emergency Handling:
 - Any state transitions immediately to EMERGENCY_ALL_RED when emergency input is high.
- Startup:
 - System begins with STARTUP_FLASH for 5s, then transitions to normal operation.

5. Simulation Scenarios

The design was verified through a testbench that simulated different traffic and pedestrian events. Key scenarios include:

1. Startup Behavior

- Controller begins with flashing red for 5 seconds.
- Then transitions to normal operation with NS green.

2. Normal Operation

- NS green for $30s \rightarrow NS$ yellow for $5s \rightarrow EW$ green for $30s \rightarrow EW$ yellow for 5s.
- This cycle repeats continuously.

3. Pedestrian Crossing

- o A pedestrian request during NS or EW yellow is latched.
- After yellow, FSM transitions to PEDESTRIAN_CROSSING for 10s.
- Then it returns to the correct traffic state to maintain fairness.

4. Emergency Mode

- When emergency is triggered, FSM immediately transitions to EMERGENCY ALL RED.
- o Lights flash red until emergency is cleared.
- After clearing, system restarts with startup flash and resumes normal operation.

6. Results

- The FSM correctly managed all signal transitions with accurate timing.
- Pedestrian requests were served without disrupting the traffic fairness cycle.
- Emergency override worked immediately and reliably.
- The startup flash ensured safety before normal operation began.

7. Conclusion

In this lab, a traffic light controller was successfully designed and verified. The system effectively handled normal traffic flow, pedestrian requests, and emergency overrides. The modular design with a separate timer and FSM approach made the system robust and easy to understand.

This project demonstrates how digital design techniques can be applied to real-world control systems like traffic management.