TD1: lecture dans les tables

Attention:

Dans le cours et dans toutes les feuilles de TD, on fera l'abus de notation suivant où $\mathcal L$ désigne une loi de probabilité

$$P(a \le \mathcal{L} \le b)$$

à la place de la notation rigoureuse : soit X une variable aléatoire de loi \mathcal{L} ,

$$P(a \le X \le b)$$
.

1 Lecture dans la table de la loi normale/gaussienne

Exercice 1. Donner les valeurs suivantes

- 1. $P(\mathcal{N}(0,1) \le 1.32)$
- 3. $P(\mathcal{N}(0,1) \leq 0.1)$
- 5. $P(\mathcal{N}(0,1) \le 1.19)$

Exercice 2. Donner les valeurs suivantes

- 1. $P(\mathcal{N}(0,1) \le -1.32)$
- 3. $P(\mathcal{N}(0,1) \le -0.57)$
- 5. $P(\mathcal{N}(0,1) \le -2.65)$

Exercice 3. Donner les valeurs suivantes

- 1. $P(1.32 \le \mathcal{N}(0,1) \le 2.08)$
- 3. $P(-0.57 \le \mathcal{N}(0,1) \le -0.1)$
- 5. $P(-2.35 \le \mathcal{N}(0,1) \le 1.67)$

- 2. $P(\mathcal{N}(0,1) \le 2.08)$
- 4. $P(\mathcal{N}(0,1) \leq 2)$
- 6. $P(\mathcal{N}(0,1) \leq 3.4)$
 - 2. $P(\mathcal{N}(0,1) \le -1.42)$
 - 4. $P(\mathcal{N}(0,1) \le -1)$
 - 6. $P(\mathcal{N}(0,1) < -3.3)$
 - 2. $P(-1.42 \le \mathcal{N}(0,1) \le 1.32)$
 - 4. $P(-1.28 \le \mathcal{N}(0,1) \le 1.28)$
 - 6. $P(-4 \le \mathcal{N}(0,1) \le 4)$

2 Lecture inverse de la table de la loi normale

Exercice 4. Trouver la valeur de z telle que

- 1. $P(\mathcal{N}(0,1) \le z) = 0.7764$
- 3. $P(\mathcal{N}(0,1) \le z) = 0.8810$
- 5. $P(\mathcal{N}(0,1) \le z) = 0.995$

2. $P(\mathcal{N}(0,1) \le z) = 0.9904$

- 4. $P(\mathcal{N}(0,1) \le z) = 0.98$
- 6. $P(\mathcal{N}(0,1) \le z) = 0.975$

Exercice 5. Trouver la valeur de z telle que

- 1. $P(\mathcal{N}(0,1) \le z) = 0.2236$
- 3. $P(\mathcal{N}(0,1) \le z) = 0.25$

2. $P(\mathcal{N}(0,1) \le z) = 0.01$

4. $P(\mathcal{N}(0,1) < z) = 0.002$

Exercice 6. Trouver la valeur de z telle que

- 1. $P(-z \le \mathcal{N}(0,1) \le z) = 0.8$
- 3. $P(-z \le \mathcal{N}(0,1) \le z) = 0.75$
- 2. $P(-z \le \mathcal{N}(0,1) \le z) = 0.95$
- 4. $P(-z \le \mathcal{N}(0,1) \le z) = 0.99$

3 Lecture dans la table de la loi de Student

Rappel : $\mathcal{T}(n)$ désigne la loi de Student à n degrés de liberté. Remarque : si $n \geq 30$, on considère $\mathcal{T}(n) = \mathcal{T}(\infty) = \mathcal{N}(0,1)$.

Exercice 7. Trouver la valeur de z telle que

1.
$$P(-z \le \mathcal{T}(8) \le z) = 0.8$$

3.
$$P(-z \le T(1) \le z) = 0.8$$

5.
$$P(-z \le \mathcal{T}(76) \le z) = 0.5$$

2.
$$P(-z \le \mathcal{T}(13) \le z) = 0.95$$

4.
$$P(-z \le \mathcal{T}(25) \le z) = 0.99$$

6.
$$P(-z \le \mathcal{N}(0,1) \le z) = 0.99$$

Exercice 8. Trouver la valeur de z telle que

1.
$$P(\mathcal{T}(5) \le z) = 0.9$$

3.
$$P(z \le \mathcal{T}(20)) = 0.9$$

5.
$$P(\mathcal{T}(28) \le z) = 0.8$$

2.
$$P(\mathcal{T}(13) \le z) = 0.95$$

4.
$$P(z \le \mathcal{T}(11)) = 0.99$$

6.
$$P(z \le \mathcal{T}(28)) = 0.8$$

Lecture dans la table de la loi du χ^2 $\mathbf{4}$

Rappel : $\chi^2(n)$ désigne la loi du χ^2 à n degrés de liberté.

Exercice 9. Trouver la valeur de z telle que

1.
$$P(\chi^2(5) \le z) = 0.9$$

1.
$$P(\chi^2(5) \le z) = 0.9$$

3.
$$P(\chi^2(20) \le z) = 0.99$$

5. $P(\chi^2(3) \le z) = 0.95$

2.
$$P(\chi^2(13) \le z) = 0.95$$

4.
$$P(\chi^2(11) \le z) = 0.9$$

6.
$$P(\chi^2(2) \le z) = 0.99$$