Stochastic Dynamical Models - Cheatsheet

Noé Debrois

November 26, 2024

Contents

1	About Exponential Distribution		2
	1.1	Basic information:	
	1.2	Minimum of independent-exponentially-distributed random variables:	
	1.3	Sum of i.i.d-exponentially-distributed random variables:	

1 About Exponential Distribution

1.1 Basic information:

Let $X \sim Exp(\lambda), \lambda > 0$,

- PDF : $f_X(x) = \lambda e^{-\lambda x} 1_{[0,+\infty[}(x) ;$
- CDF: $F_X(x) = P(X \le x) = (1 e^{-\lambda x}) 1_{[0, +\infty[}(x);$
- $E[X] = 1/\lambda$ and $Var(X) = 1/\lambda^2$;

1.2 Minimum of independent-exponentially-distributed random variables:

Let $X_1,...,X_n$ independent random variables such that : $\forall i \in \{1,...,n\}, X_i \sim Exp(\lambda_i)$. Then :

$$min(X_1,...,X_n) \sim Exp(\lambda_1 + ... + \lambda_n)$$

1.3 Sum of i.i.d-exponentially-distributed random variables:

Let $X_1, ..., X_n$ i.i.d $\sim Exp(\lambda), \lambda > 0$. Then:

$$X_1 + \ldots + X_n \sim \Gamma(n, \lambda).$$

Where $X \sim \Gamma(n, \lambda), n, \lambda > 0$ means :

PDF:
$$f_X(x) = \frac{\lambda}{\Gamma(n)} e^{-\lambda x} (\lambda x)^{n-1} 1_{]0,+\infty[}(x).$$

Where $\forall n \geq 1, \Gamma(n) = (n-1)!$.