Задача А. Очередь

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Реализуйте работу очереди. Для каждой операции изъятия элемента выведите ее результат.

На вход программе подаются строки, содержащие команды. Каждая строка содержит одну команду. Команда — это либо "+ N", либо "-". Команда "+ N" означает добавление в очередь числа N, по модулю не превышающего 10^9 . Команда "-" означает изъятие элемента из очереди.

Формат входных данных

В первой строке содержится количество команд — M ($1 \le M \le 10^6$). В последующих строках содержатся команды, по одной в каждой строке.

Формат выходных данных

Выведите числа, которые удаляются из очереди, по одному в каждой строке. Гарантируется, что изъятий из пустой очереди не производится.

Пример

1
10
10

Задача В. Скобки

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

Рассмотрим последовательность, состоящую из круглых, квадратных и фигурных скобок. Программа дожна определить, является ли данная скобочная последовательность правильной.

Пустая последовательность явлется правильной. Если A — правильная, то последовательности (A), [A], $\{A\}$ — правильные. Если A и B — правильные последовательности, то последовательность AB — правильная.

Формат входных данных

В единственной строке входного файла записано подряд N скобок (1 $\leq N \leq 255$).

Формат выходных данных

В выходной файл вывести «YES», если данная последовательность является правильной, и «NO» в противном случае.

Пример

brackets.in	brackets.out
([])	YES
(({1})	NO

Задача С. Списки по классам

Ограничение по времени: 2 секунды Ограничение по памяти: 64 Мб

Формат входных данных

В каждой строке сначала записан номер класса (число, равное 9, 10 или 11), затем (через пробел) — фамилия ученика. Общее количество учеников не превышает 1000.

Формат выходных данных

Необходимо вывести список школьников по классам: сначала всех учеников 9 класса, затем — 10, затем — 11. Внутри одного класса порядок вывода фамилий должен быть таким же, как на входе.

Примеры

list.in	list.out
9 Иванов	9 Иванов
10 Петров	9 Григорьев
11 Сидоров	9 Сергеев
9 Григорьев	10 Петров
9 Сергеев	10 Яковлев
10 Яковлев	11 Сидоров

Задача D. Постфиксная запись

Ограничение по времени: 2 секунды Ограничение по памяти: 64 мегабайта

В постфиксной записи (или обратной польской записи) операция записывается после двух операндов. Например, сумма двух чисел A и B записывается как A B +. Запись B C + D * обозначает привычое нам (B+C)*D, а запись A B C + D * + означает A + (B+C)*D. Достоинство постфиксной записи в том, что она не требует скобок и дополнительных соглашений о приоритете операторов для своего чтения.

Дано выражение в обратной польской записи. Определите его значение.

Формат входных данных

В единственной строке записано выражение в постфиксной записи, содержащее однозначные числа и операции +, -, *. Строка содержит не более 100 чисел и операций.

Формат выходных данных

Необходимо вывести значение записанного выражения. Гарантируется, что результат выражения, а также результаты всех промежуточных вычислений по модулю меньше 2^{31} .

Пример

postfix.in	postfix.out
8 9 + 1 7 - *	-102

Задача Е. Парикмахерская

Ограничение по времени: 2 секунды Ограничение по памяти: 64 Мб

В парикмахерской работает один мастер. Он тратит на одного клиента ровно 20 минут, а затем сразу переходит к следующему, если в очереди кто-то есть, либо ожидает, когда придет следующий клиент.

Даны времена прихода клиентов в парикмахерскую (в том порядке, в котором они приходили).

Так же у каждого клиента есть характеристика, назоваемая *степенью нетерпения*. Она показывает сколько человек может максимально находится в очереди перед клиентом, чтобы он дождался своей очереди и не ушел раньше. Если в момент прихода клиента в очереди находится больше людей, чем степень его нетерпения, то он решает не ждать своей очереди и уходит. Клиент, который обслуживается в данный момент так же считается находящимся в очереди.

Требуется для каждого клиента указать время его выхода из парикмахерской.

Формат входных данных

В первой строке вводится натуральное число N, не превышающее 100- количество клиентов.

В следующих N строках вводятся времена прихода клиентов — по два числа, обозначающие часы и минуты (часы — от 0 до 23, минуты — от 0 до 59) и степень его нетерпения (неотрицательное целое число не большее 100) — максимальное количество человек, которое он готов ждать впереди себя в очереди. Времена указаны в порядке возрастания. Гарантируется, что всех клиентов успеют обслужить до полуночи.

Если для каких-то клиентов время окончания обслуживания одного клиента и время прихода другого совпадают, то можно считать, что в начале заканчивается обслуживание первого клиента, а потом приходит второй клиент. Если в какое-то время в парикмахерскую пришли несколько человек, то будет считать что они принимают решения в том порядке, в котором они даны во входном файле.

Формат выходных данных

В выходной файл выведите N пар чисел: времена выхода из парикмахерской 1-го, 2-го, ..., N-го клиента (часы и минуты). Если на момент прихода клиента человек в очереди больше, чем степень его нетерпения, то можно считать, что время его ухода равно времени прихода.

Примеры

saloon.in	saloon.out
3	10 20
10 0 0	10 40
10 1 1	10 2
10 2 1	
5	1 20
1 0 100	2 20
2 0 0	2 1
2 1 0	2 40
2 2 3	2 3
2 3 0	