(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

WINTER-18 EXAMINATION

Subject Name: Data Structure using C Model Answer Subject Code:

22317

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No	Sub Q. N.	Answer	Marking Scheme
1		Attempt any FIVE of the following:	10 M
	a	Define the term algorithm.	2 M
	Ans	Algorithm is a stepwise set of instructions written to perform a specific task.	Correct definition 2M
	b	List any 4 applications of queue.	2 M
	Ans	 In computer system to maintain waiting list for single shared resources such as printer, disk, etc. It is used as buffers on MP3 players, iPod playlist, etc. Used for CPU scheduling in multiprogramming and time sharing systems. In real life, Call Center phone systems will use Queues, to hold people calling them in an order, until a service representative is free. Handling of interrupts in real-time systems. Simulation 	Any four applications-1/2 M each
	С	Describe following terms w.r.to tree: (i) Leaf node (ii) Level of node	2 M
	Ans	Example:	Description of each term 1M

	A	Level 0 Level 1						
	_	(i) Leaf node: A node without any child node is called as leaf node.						
	Nodes B and C are leaf node as shown in above example. (ii) Level of node: Position of a node in the hierarchy of a tree is called as level of node. Level of node B is 1 as shown in above example.							
d	Differentiate between stack and que	eue.(Any two points)		2 M				
Ans	Stack 1. Stack is a data structure in which insertion and deletion operations are performed at same end.	Queue 1. Queue is a data structure in which insertion and deletion operations are performed at different ends.		Any two correct differences- 1M each				
	2. In stack an element inserted last is deleted first so it is called Last In First Out list.	2. In Queue an element inserted first is deleted first so it is called First In First Out list.						
	3.In stack only one pointer is used called as stack top	3.In Queue two pointers are used called as front and rear						
	4. Example : Stack of books	4. Example : Students standing in a line at fees counter						
	5.Application:	5. Application:						
	RecursionPolish notation	 In computer system for organizing processes. In mobile device for sending receiving messages. 						

	6. Representation: Using array 6. Representation: Using array	
	top 13 A B C D Front Rear	
		2.14
е	Describe undirected graph with suitable example.	2 M
Ans	Undirected graph: A graph in which the edges do not have any direction associated with them is known as undirected graph. In undirected graph, if an edge exists between two nodes A and B then the nodes can traverse from A to B as well as from B to A. Each edge is bidirectional. Example:-	Definition- 1M, example- 1M
	In the above example, each edge is bidirectional.	
f		2 M
	In the above example, each edge is bidirectional.	llar Each term definition 1M
	In the above example, each edge is bidirectional. Define the terms: Linear data structure and non-linear data structure. Linear Data Structure: A data structure in which all data elements are stored in a particular sequence is known as linear data structure. Example: stack, queue Non-Linear data structure: A data structure in which all data elements are not stored in a particular sequence is known as nonlinear data structure.	llar Each term definition 1M
Ans	In the above example, each edge is bidirectional. Define the terms: Linear data structure and non-linear data structure. Linear Data Structure: A data structure in which all data elements are stored in a particular sequence is known as linear data structure. Example: stack, queue Non-Linear data structure: A data structure in which all data elements are not stored in a particular sequence is known as nonlinear data structure. Example: graph and tree. convert infix expression into prefix expression:	llar Each term definition 1M any 2 M Correct prefix
Ans	In the above example, each edge is bidirectional. Define the terms: Linear data structure and non-linear data structure. Linear Data Structure: A data structure in which all data elements are stored in a particular sequence is known as linear data structure. Example: stack, queue Non-Linear data structure: A data structure in which all data elements are not stored in a particular sequence is known as nonlinear data structure. Example: graph and tree. convert infix expression into prefix expression: (A+B)*(C/G)+F Infix expression Read Stack contents Prefix expression	llar Each term definition 1M any 2 M Correct

	(A+B)*(C/G)		+)	F	
)			
	(A+B)*(C/G	G	+)	GF	
	(A+B)*(C/	/	+)/	GF	
	(A+B)*(C	С	+)/	CGF	
	(A+B)*((+	/CGF	
	(A+B)*	*	+*	/CGF	
	(A+B))	+*)	/CGF	
	(A+B	В	+*)	B/CGF	
	(A +	+	+*)+	B/CGF	
	(A	A	+*)+	AB/CGF	
	((+*	+AB/CGF	
				*+AB/CGF	
				+*+AB/CGF	
2	Attempt any THR	EE of the follo	owing:		12 M
a	Describe working	of linear searc	h with example.		4 M
Ans	In linear search, sea	arch element is	compared with each	ch element from the list in a sequence	. Relevant
	Comparison starts comparison reaches			and continues till number is found or	2M, Any
				ne process of searching requires more ere n indicates number of elements in	i examble-
	Linear search on so comparison reaches	•	•	ch takes place till element is found or element.	r
	Example:- Using ar	ray representat	ion		
	Input list 10, 20, 30	, 40, 50 and Se	earch element 30, In	dex =0	
	Iteration 1				
	10 20 30	0 40 50			
	10!=30				

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

0	d	Differentiate	between general tree and binar	ry tree. (any four points)	4 M			
A	Ans	Sr.	General Tree	Binary Tree	Any four relevant			
		1	A general tree is a data structure in which each node can have infinite number of children	A Binary tree is a data structure in which each node has at most two nodes i.e. left and right	differences -1M each			
		2	In general tree, root has indegree 0 and maximum outdegree n.	In binary tree, root has indegree 0 and maximum outdegree 2.				
		3	In general tree, each node have in-degree one and maximum out-degree n .	in-degree one and maximum out-degree 2 .				
		4	Height of a general tree is the length of longest path from root to the leaf of tree. Height(T) = {max(height(child1) , height(child2) , height(child-n))+1}	<pre>Height of a binary tree is : Height(T) = { max (Height(Left Child) , Height(Right Child) + 1}</pre>				
		5	Subtree of general tree are not ordered	Subtree of binary tree is ordered .				
		6	General tree	Binary Tree				
			Root	Root				
3		Attempt any	THREE of the following:		12 M			
a	a	Write a C pr	ogram for deletion of an elemen	nt from an array.	4 M			
A	Ans	printf("F scanf("%		/\ n ");	4M for correct logic & program code			
		for (c = scanf(printf("Y scanf("%)	O; c < n; c++) "%d", &array[c]); Enter the location where you wish 6d", &position); ion >= n+1)	n to delete element\ n ");				

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

```
printf("Deletion not possible.\n");
            else
              for (c = position - 1; c < n - 1; c++)
               array[c] = array[c+1];
             printf("Resultant array:\n");
              for (c = 0; c < n - 1; c++)
               printf("%d\n", array[c]);
            return 0;
      Convert following expression into postfix form. Give stepwise procedure.
                                                                                                  4 M
b
      A+B↑C*(D/E)-F/G.
      Consider input expression as (A+B\uparrow C*(D/E)-F/G)
                                                                                                  Correct
Ans
                                                                                                  Postfix
                       Operation
                                       Postfix Expression
        Scanned
                                                                                                  Expression
        Symbol
                       stack
                                                                                                  4M
                       (
        A
                                        A
                       (+
                                        A
        +
        В
                       (+
                                        AB
                                        AB
        \uparrow
                       (+1
        \mathbf{C}
                                        ABC
                       (+1
        *
                       (+*
                                        ABC↑
                                        ABC↑
                       (+*(
                       (+*(
                                        ABC↑D
        D
                       (+*(/
                                        ABC↑D
                                       ABC↑DE
       Ε
                       (+*(/
                       (+*
                                        ABC↑DE/
                       (-
                                        ABC↑DE/*+
                                        ABC↑DE/*+F
                       (-
```


	TACITY OF THE PROPERTY OF THE	(I	SO/IEC -	27001 -	2013 Cei	rtified)					
	/	(-/		ABC	C↑DE/*	+F					
	G	(-/		ABC	C↑DE/*	+FG					
)	EMPT	Y	ABC	C↑DE/*	+FG/-		_			
								_			
	POSTFIX EX	PRESSIC	N: AB	C↑DE	/*+FG	/-					
c	Find the position below. Show e		nent 29	using	binar	y searc	h meth	od in a	an arra	y 'A' given	4 M
	A={11,5,21,3,	_	3 }								
Ans		n is given .		11,5,21	1,3,29,1	7,2,43	} is not	in sorte	ed man	ner, first we need	1M for taking sorted input
	So an array will The binary sear								e searcl	hed is $VAL = 29$.	& 1M each for every iteration
		A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	A[6]	A[7]		
		2	3	5	11	17	21	29	43		
	Iteration 1:										
	BEG = 0, END	0 = 7, MID	0 = (0 +	7)/2 =	3						
	Now, $VAL = 2$	9 and A[N	MID] = 0	A[3] =	11						
	A[3] is less th array.	ıan VAL, t	therefor	e, we i	now sea	arch foi	the va	lue in tl	he seco	nd half of the	
	So, we change	the values	of BEC	G and I	MID.						
	Iteration 2:										
	Now, BEG = N A [5] = 21	MID + 1 =	4, END	0=7, N	MID = 0	(4 + 7)/	2 =11/2	2 = 5; V	VAL = 2	29 and A [MID] =	
	A[5] is less that segment.	n VAL, th	erefore	, we no	ow sear	ch for t	he valu	ie in the	e secon	d half of the	
	So, again we c	hange the	values	of BE	G and N	MID.					
	Iteration 3:										
	Now, BEG = N A [6]=29	MID + 1 =	6, END	$0 = 7, \mathbf{N}$	MID = 0	(6 + 7)/	2 = 6 N	Jow, V	AL = 2	9 and A [MID] =	
I	1										1

d	give adjacency list and adjacency matrix for g	given graph:	4 M
	A B		
Ans	Adjacency List: (Using Linked List)		2M for Correct L
	Here, we use doubly linked list for storing hear respective adjacent node to it.	nder node list and singly linked list for storing	and 2M for Correct matrix
	PA TO	B Null B Null R	
	Adjacency List		
	Nodes	Adjacent Nodes	
	A	В	
	A B	B D,E	
	В	D,E	

 T		
	Adjacency Matrix: (Using Array)	
	A	
	B 0 0 0 1 1	
	C 1 0 0 0 1 D 0 1 0 0 0	
	D 0 1 0 0 0 E 0 0 0 1 0	
	Attempt any THREE of the following:	12 M
a	Describe working of bubble sort with example.	4 M
	algorithm in which each pair of adjacent elements is compared and the elements are swapped if they are not in order. This algorithm is not suitable for large data sets as its average and worst case complexity is of O (n²) where n is the number of items. Bubble Sort Working:	descrip & 2M f exampl
	We take an unsorted array for our example as A[]= $\{19, 2, 27, 3, 7, 5, 31\}$. Bubble sort takes $O(n^2)$ time so we're keeping it short and precise.	
	{{**Note: Pass 4 onwards optional**}}	
	Pass 1: 2,19,27,3,7,5,31	
	2,19,27,3,7,5,31	
	2,19,3,27,7,5,31	
	2,19,3,7,27,5,31	
	2,19,3,7,5,27,31	
	Pass 1 Completed	
	Pass 2: 2,19,3,7,5,27,31	
	2,3,19,7,5,27,31 2,3,7,19,5,27,31	
	۵,۵,۱,1,۷,۵,۵1	

	2,3,7,5,19,27,31	
	2,3,7,5,19,27,31	
	Pass 2 Completed	
	Pass 3: 2,3,7,5,19,27,31	
	2,3,7,5,19,27,31	
	2,3,5,7,19,27,31	
	Pass 3 Completed	
	Pass 4: 2,3,5,7,19,27,31	
	Pass 4 Completed	
	Pass 5: 2,3,5,7,19,27,31	
	Pass 5 Completed	
	Pass 6: 2,3,5,7,19,27,31	
	Pass 6 Completed	
b	Construct a binary search tree for following elements:	4 M
	30,100,90,15,2,25,36,72,78,10 show each step of construction of BST.	
Ans	Stepwise construction of Binary search tree for following elements:	4M for all
	30,100,90,15,2,25,36,72,78,10 is as follows:	correct steps

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

```
For example, the function should return 5 for linked list 1->3->1->2->1.
       Algorithm: Using Iterative Solution
       1) Initialize count as 0
       2) Initialize a node pointer, current = head.
       3) Do following while current is not NULL
          a) current = current -> next
          b) count++;
       4) Return count
       Write a program in 'C' to insert an element in a linear queue.
                                                                                                      4 M
d
       // C program to insert an element in a linear queue using array
                                                                                                      4M for
Ans
                                                                                                      correct
       #include<stdio.h>
                                                                                                      logic &
       #include<conio.h>
                                                                                                      program
       #define n 5
                                                                                                      code
       void main()
         int queue[n],ch=1,front=0,rear=0,i,j=1,x=n;
         //clrscr();
         printf("Queue using Array");
         printf("\n1.Insertion \n2.Display \n3.Exit");
         while(ch)
            printf("\nEnter the Choice:");
            scanf("%d",&ch);
            switch(ch)
            case 1:
              if(rear = = x)
                 printf("\n Queue is Full");
              else
                 printf("\n Enter no %d:",j++);
                 scanf("%d",&queue[rear++]);
              break;
            case 2:
              printf("\n Queue Elements are:\n ");
              if(front==rear)
                 printf("\n Queue is Empty");
```


MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

```
else
                 for(i=front; i<rear; i++)
                    printf("%d",queue[i]);
                    printf("\n");
                 break;
               case 3:
                 exit(0);
               default:
                 printf("Wrong Choice: please see the options");
         getch();
       Describe circular linked list with suitable diagram. Also state advantage of circular
                                                                                                        4 M
       linked list over linear linked list.
       Circular Linked List
                                                                                                        2M for
Ans
                                                                                                        description
       A circular linked list is a variation of linked list in which the last element is linked to the
                                                                                                        1M for
       first element. This forms a circular loop.
                                                                                                        diagram
                                                                                                        and 1M for
                                                                                                        any one
                                         Data
                                                              Data
                                                 Next
                    Data
                                                                                                        advantage
       A circular linked list can be either singly linked or doubly linked.
               for singly linked list, next pointer of last item points to the first item
              In doubly linked list, prev pointer of first item points to last item as well.
       We declare the structure for the circular linked list in the same way as follows:
       Struct node
       Int data:
       Struct node *next;
       Typedef struct node *Node;
       Node *start = null;
       Node *last = null;
       For example:
```

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

If stack_top is equal to -1 then	
Display output as "Stack Underflow" and return to calling function	
Otherwise	
Go to step 2	
Step 2: [delete element] stack [stack_top] = item;	
Step 3: [Decrement stack_top] Decrement stack top pointer by one.	
stack_top=stack_top -1;	
Step 4: return to calling function.	
b For given binary tree write in-order, pre-order and post-order traversal.	6 M
B C C C P R	
Ans Inorder Traversal: Q,E,F,R,D,H,B,A,I,J,K,C,L,P	2marks for
Preorder Traversal: A,B,D,E,Q,F,R,H,C,I,J,K,L,P	each traversal
Postorder Traversal: Q,R,F,E,H,D,B,K,J,I,P,L,C,A	
c Write an algorithm to insert an element at the beginning and end of linked list.	6 M
Ans Algorithm to insert an element at the beginning of linked list:	3marks for
1. Start	each algorithm
2. Create the node pointer *temp	
Struct node * temp	
3. Allocate address to temp using malloc	
temp = malloc(sizeof(struct node));	
4. Check whether temp is null, if null then	
Dignlay "Overflow"	
Display "Overflow"	

		temp-> info=data	
		temp-> next=start	
		5. Start=temp	
		6. stop	
		Algorithm to insert an element at the end of linked list:	
		1. Start	
		2. Create two node pointers *temp, *q	
		struct node * temp, *q;	
		3. q= start	
		4. Allocate address to temp using malloc	
		temp = malloc(sizeof(struct node));	
		5. Check whether temp is null, if null then	
		Display "Overflow"	
		else	
		temp-> info=data	
		temp-> next=null	
		6. While(q->next!=null)	
		q=q->next	
		7. q->next= temp	
		8. stop	
6		Attempt any TWO of the following:	12 M
	a	Describe working of selection sort method. Also sort given input list in ascending order using selection sort input list:- 55, 25, 5, 15, 35.	6 M
	Ans	Working of Selection sort: Selection Sort algorithm is used to arrange a list of elements in a particular order (Ascending or Descending). In selection sort, the first element in the list is selected and it is compared repeatedly with remaining all the elements in the list. If any element is smaller than the selected element (for ascending order), then both are swapped. Then we select the element at second position in the list and it is compared with remaining all elements in the list. If any element is smaller than the selected element, then both are swapped. This procedure is repeated till the entire list is sorted.	3marks for description, 3marks for correct solution

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

	{	
	int n;	
	clrscr();	
	<pre>printf("\nThe factorial of % is = %d",n,fact(n));</pre>	
	getch();	
	}	
	int fact(int n)	
	{	
	if(n==1)	
	return 1;	
	else	
	return(n*fact(n-1));	
	}	
c	Describe procedure to delete an element from singly linked list using diagram.	6 M
Ans	In a linear linked list, a node can be deleted from the beginning of list, from in between positions and from end of the list.	**Note: Correct
	Delete a node from the beginning:-	algorithm or program shall be considered.
	Noder Node 2 Hode 3	Any two deletions shall be considered
	Node to be deleted is node1. Create a temporary node as 'temp'. Set 'temp' node with the address of first node. Store address of node 2 in header pointer 'start' and then delete 'temp' pointer with free function. Deleting temp pointer deletes the first node from the list.	3marks each
	OR	
	Step 1: Create temporary node 'temp'.	
	Step 2: Assign address of first node to 'temp' pointer.	
	Step 3: Store address of second node (temp->next) in header pointer 'start'.	
	Step 4: Free temp.	
	Delete a node from in between position:-	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

Node to be deleted is node3. Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the previous node of node 3 and mark the next node (node3) as 'q'. Store address from node 'q' into address field of 'temp' node. Then delete 'q' pointer with free function. Deleting 'q' pointer deletes the node 3 from the list.

OR

- Step 1: Create temporary node 'temp', 'q'.
- Step 2: Assign address of first node to 'temp' pointer.
- Step 3: Traverse list up to previous node of node to be deleted.
- Step 4: Mark the node to be deleted 'q'.
- Step 5: Store address from node 'q' in address field of 'temp' node (temp->next=q->next).
- Step 6: Free q.

Delete a node from the end:-

Node to be deleted is node 3. Create a temporary node as 'temp' and 'q'. Set 'temp' node with the address of first node. Traverse the list up to the second last node and mark the last node as 'q'. Store NULL value in address field of 'temp' node and then delete 'q' pointer with free function. Deleting q pointer deletes the last node from the list.

OR

- Step 1: Create temporary node 'temp', 'q'.
- Step 2: Assign address of first node to 'temp' pointer.
- Step 3: Traverse list upto second last node.
- Step 4: Mark last node's address in node 'q'.
- Step 5: store NULL value in address field of second last node (temp->next).
- Step 6: Free q