2 May 2023

10.7 Quiz: The tangent function

CCSS.HSG.SRT.C.8

You must write an equation before solving it. Figures are not necessarily drawn to scale.

1. Given right $\triangle ABC$ with AC = 10, $m \angle A = 40^{\circ}$. Find the value of BC = x.

2. The right $\triangle ABC$ has a height of BC=17 and $\text{m}\angle A=58^{\circ}$. Find the length of its base AC=x.

3. The lengths of the legs of right $\triangle ABC$ are AC=50 and BC=25. Find $\mathbf{m} \angle A=x$.

Mastery topic: Algebraic solution

Use your calculator and solve each equation for x, rounding to the nearest tenth.

4.
$$\tan 75^{\circ} = \frac{x}{15}$$

$$5. \tan 26^\circ = \frac{4}{x}$$

6.
$$x = \tan^{-1}(\frac{2}{3.5})$$

$$7. \tan x^{\circ} = \frac{17}{9}$$

8. Graph and label $\triangle ABC$ with A(0,0), B(3,6), and C(3,0). Calculate each value:

(a) AC =

(b) BC =

(c) Express first as a radical, then approximate with a decimal rounded to two decimal places.

AB =

(d) Use a protractor to measure $m \angle BAC = \theta$ in degrees.

(e) The tangent of an angle is the ratio of the side lengths *opposite* over *adjacent* to the angle. Write down the value as a fraction.

 $\tan \theta =$

(f) Find $m\angle BAC=\theta$ in degrees with a calculator's inverse tangent function. $\theta=\tan^{-1}(\frac{opp}{adj})$

(g) Convert θ to radians. (180° = π radians)

Mastery topic: Calculator use

9. Express the result to the nearest thousandth.

(a)
$$\tan 22^{\circ} =$$

(c)
$$\tan 15^{\circ} =$$

(b)
$$\tan 81^{\circ} =$$

(d)
$$\tan 65^{\circ} =$$

10. Round each value to the nearest degree.

(a)
$$\tan^{-1}(2) =$$

(c)
$$\tan^{-1}(1) =$$

(b)
$$\tan^{-1}(0.5) =$$

(d)
$$\tan^{-1}(\frac{1}{\sqrt{3}}) =$$

Mastery topic: Modeling. Do Not Solve

11. Given right $\triangle JKL$ with $\overline{JK} \perp \overline{KL}$, JK = 11, $m \angle J = 18^{\circ}$. (mark the diagram)

Let x be the length of the side opposite $\angle J$, x = KL. Write an equation expressing $\tan \angle J$ as a ratio of *opposite* over *adjacent*.

