R foundations Handout

Paula Andrea Martinez

2018-02-19

Getting started

Start out by installing R and then RStudio¹

 $^{\rm 1}\,{\rm See}$ installation instructions in stallation.md

Remember

- R is case sensitive
- No spaces in names
- Be ready to learn a new language

Hands-on Training

- This is a hands-on training:)
- It is interactive, which means your interaction and awareness will improve your learning
- Questions are always welcome
- Let's start with short introductions

Starting with programming

Learn things that last longer - pick your battles - Learn the fundamentals 2

² "Learning to code is a never ending journey with a set of challenges and delights unique to each person"

This workshop aim

On the workshop, we aim to go from gaining new knowledge to comprehension of the foundations of ${\bf R}.^3$

 3 Key levels of learning

What is R and Rstudio

R is a powerful programming language for data analysis, statistics, visualisation and more. RStudio is the program that interacts between you and the R language. R and RStudio are two freely available software with a huge community of users and developers.⁴

⁴ resources

What are we going to learn?

At the end of this session you will be able to:

• Create a project for data analysis

- Execute basic operations in R
- Find an R style guide
- Practice using the help from R in RStudio
- Describe differences between R data types and R data structures
- Read tabular data into R
- Select subsets of your data
- Describe how to diagnose programming problems and to look up answers from the web or forums
- Recall how to install packages

Rstudio interaction

Our analysis should be located in a findable and accessible location. Getting used to a reusable project structure is good practice for our project data management.

Please create a folder called **RProjects** under the **Documents** folder

Exercise 1 - New Rstudio Project (4 min)

- RStudio menu (top left corner): click File menu button,
- Then New Project
- Click New Directory
- Click New Project
- In Directory name type the name of your project, e.g. Rfoundation (Browse and select a folder where to locate your project, e.i. the **RProjects** folder)
- Lastly, click the Create Project button

Panes or panels

There are four main panels on RStudio. We will soon work on these panels, but first be shortly introduced.

- 1. The upper-left panel is the editor where we interact with code and scripts.
- 2. The panel in the upper-right, where it says Environment is empty will show you the variables that you are currently working with.
- 3. The lower-left panel is called the console, which runs the R code. It only saves the code temporarily so it is mostly used as testing ground.
- 4. The panel in the bottom-right will display files, plots, packages, help and more.

⁵ FYI: Projects make managing multiple directories straightforward

 7 [The .R extension is important for R

to recognise your script]

Exercise 2 - Folder structure (3 min)

Create two folders in your project

- scripts
- data

In RStudio, you can use the fourth panel, click Files then New Folder.

When in doubt of naming conventions check 6 .

⁶ a style guide

Exercise 3 - New R script (2 min)

- RStudio menu (top left corner): click File, then New File, then R script. Did you see the shortcut? You can also create a new script with Ctrl+Shift+N, for mac users replace Ctrl for command. There is another button close by, maybe you already found it
- Save your script. You can click on the save icon or Ctrl+S. Select the **scripts** folder and type a name like **learning.R**. ⁷
- Now, check with your neighbour if they have finished too, maybe they need more time, or maybe you can help out

Exercise 4 - Add comments to your new R script file (3 min)

Comments start with a hash # and follows with a single space

- # Description:
- # Author:
- # Date:

To add a section

Starting with calculations -----

From now on, I will recommend you to add a new section for each exercise, and comments on every line.

R syntax

Tip: To have a readable code, use spaces around all symbols and after commas.

To get the hang of R, we start using it as a calculator. Type 2 + 2directly into the console panel and press enter. You should see this:

2 + 2

[1] 4

Exercise 5 - Try any other calculation (2 min)

- In your new script try a new calculation, and add comments
- To run code from a script you need to click Ctrl+Enter or click the button **Run** (green right direction arrow)

R variables or objects

R can calculate, but we would also like to save these results. We can store one or multiple values in variables to access them later.

- Syntax: variableName <- value
- Notice the symbol <- its called assignment operator
- Values can be fixed, calculated or a result of a transformation

When in doubt of naming conventions and style check⁸. Let's create a few variables together

Creating a few variables -----

⁸ a style guide

```
# text should be inside double quotes
today <- "Monday"
# numbers can be small, long or with decimals
howManyPeople <- 21
# Sometimes we need to save yes or no answers,
# write TRUE or FALSE in upper case
```

Exercise 6 - Naming and syntax (4 min)

Now, stop for a sec and have a look at the style guide⁹ again and discuss with your neighbour. If you are keen and there is time, feel free to change the values of the variables we just created.

⁹ style guide

Functions

myAnswer <- TRUE

Figure 1: A simple function

 10 The help panel will show you the Documentation with examples at the

How to get help

To use functions we first need to learn how they work. There are three ways to find help using RStudio¹⁰

- 1. ?functionName
- 2. help(functionName)
- 3. Press F1 or command F1 on the functionName

From now on, I will encourage you to use the help for any new function you encounter.

Exercise 7 - Using the help on RStudio to find your variables (1 min)

- What does 1s stand for?
- test ls() on your script
- How many variables do you have in your environment?

R data types

We had created these three variables with specific R data types

- numeric
- logical
- character

Exercise 8 - Check the R data type of your variables using class (2)

• Articulate a description of each R data type

Data structures

- vector
- matrix
- data.frame

Figure 2: Structure graph

Example of a numeric vector

We use the function c() to combine values and create vectors

```
track <- c(10, 2, 5.3, 6, -25, 14) # numeric vector
track
```

Exercise 9 - Create a vector (3 min)

You can create either a vector of characters or a vector of logicals

- If you create a vector of characters use quotes "" for each value
- If you create a vector of logicals use TRUE and FALSE as values

These is how the results should look

```
## [1] "one"
               "two"
                       "three"
## [1]
      TRUE TRUE FALSE
```

Exercise 10 - Discuss with your neighbour (2 min)

- Did an error come up? Could you fix it?
- Did you use the help?
- Did you google up for hints?

Exercise 11 - Other structures (4 min)

Use the help to find out more about

- factor
- list
- Can you find an example of your own data where you can use one of these structures?

Import files

Let's introduce some data to R.

First, make sure you have a data folder!

Remember R is case sensitive

```
download.file(url = "http://tiny.cc/csvexample",
               destfile = "data/example.csv")
mydata <- read.csv(file = "data/example.csv")</pre>
```

Exercise 12 - Importing data into R (4 min)

- Use the code above to import data into R.¹¹
- It is recommended that you always use the help to find out more about the new functions before using them.¹²
- checkout the function str with your new variable

Exercise 13 - Let's discuss

- what have you learned from the new functions?
- what kind of data did you read into R?
- is str useful?

let's now create a plot plot(x = mydata\$M_At1, y = mydata\$M_At2)

Install packages

Most R packages can be installed like this: install.packages("packageName")

After installing, you need to load it using library(packageName).

You will need to load a package for each new R session.

Then, go to the fourth panel and select the packages tab, after loading a package it should be checked.

You can also check sessionInfo()

Exercise 14 - Install the ggplot2 package for graphics (3 min)

• Use what you have learned to install the ggplot2 package. After that, if you are keen you can install the tidyverse package.

library(ggplot2)

```
ggplot(data = mydata,
       mapping = aes(x = M_At1, y = M_At2)) +
  geom_point()
```

 11 You can either read the example.csv file or copy another csv file to your data folder ¹² You can also read other kinds of

files using read.table or use functions from packages like readr

Exercise 15 - how to find help on the web (7 min)

- Your task is now to create a new ggplot with colours. It can be any kind of ggplot and you can use any colour
- You need to google is out, you can work in pairs

This is the start of your own R self-learning path

Now look at your script, look how good you are doing, and you can keep going.

Resources

There are plenty of R resources, these are only a few.

Feedback

To finish up please send your anonymous feedback through this link before leaving http://tiny.cc/elixir_feedback

Close project

File close project (save your data if you want), then you can close RStudio.

Open source

This handout was written in Rmarkdown and uses the open-source style Tufte. It has been published in Github pages and also as a PDF handout.

All of the information of my courses can be found on my Github repo R for Data Analysis. These resources are freely available under the Creative Commons - Attribution Licence. You may re-use and adapt the material in any way you wish, without asking permission, provided you cite the original source. That is a link back to the website R for Data Analysis and my ORCID 0000-0002-8990-1985.

I acknowledge this publication is resulting from support of Elixir-Belgium for my role as data science and bioinformatics trainer.

Last update: 2018-02-14