RSA*Conference2016

San Francisco | February 29 – March 4 | Moscone Center

CEST CONTRACTOR OF THE PARTY OF

Connect **to** Protect

SESSION ID: PDAC-T11

Domain Knowledge: How to Factor DNS into Your Privacy and Security Strategy

Allison Mankin,
Director – Next Lab
Burt Kaliski,
Chief Technology Officer

Verisign

Agenda

RS∧°Conference2016

DNS Overview and Hierarchy

Authoritative name servers

DNS Resolution Process

Registration and Provisioning Process

Registration Server (operated by Registrar)

Authoritative Name Server

Registrant

Registry EPP Server

EPP = Extensible Provisioning Protocol

Registration Data Access Process

Internet User

WHOIS Registration Data Server

RSAConference2016

Current Security and Privacy Mitigations

DNS Security and Privacy Risks

As with any information system, DNS has risk of modification or disclosure, in transit and at rest DNS industry continues to develop mitigations to these risks Important to consider risks and mitigations as part of an overall enterprise security strategy

Current Mitigations

Current DNS technical enhancements for security and privacy

DNSSEC

Registration Locks

DNSSEC Process

DNSSEC

Registration Locks

Registration Server (operated by Registrar)

Authoritative Name Server

Registrant

Registry EPP Server

Registration Locks

Registrars and registries provide complementary options to mitigate registration modifications and fraudulent transfer of domains

Name Server: L2.NSTLD.COM

Name Server: M2.NSTLD.NET

Status: clientTransferProhibited http://www.icann.org/epp#clientTransferProhibited ??

Status: serverDeleteProhibited http://www.icann.org/epp#serverDeleteProhibited ??

Status: serverTransferProhibited http://www.icann.org/epp#serverTransferProhibited ??

Status: serverUpdateProhibited http://www.icann.org/epp#serverUpdateProhibited ??

Updated Date: 19-sep-2014 Creation Date: 02-jun-1995

verisign.com WHOIS data indicating a registrar lock and a registry lock

RSA*Conference2016

Emerging Security and Privacy Mitigations

Emerging Mitigations

Emerging DNS technical enhancements that are not widely available

QNAME Minimization

DNS-over-TLS

Registration Data Privacy with RDAP

DNS Resolution Process

QNAME Minimization Process

DNS-over-TLS Process

DNS-over-TLS

20

Differentiated Access to Registration Data

Registration data currently accessed through WHOIS – RFC 3912

All have access to virtually all the information

Emerging Registration Data Access Protocol (RDAP) – RFCs 7480-7485

Will make it possible to have user identification, authentication and access control features

Will make registration data privacy possible by restricting data access to appropriately authorized users

Registration Data Privacy with RDAP

WHOIS: All clients see all data (more or less)

RDAP: What a client sees can depend on:

How Might Data Privacy with RDAP Work?

Status of Emerging Mitigations

QNAME Minimization

Approved for Experimental IETF RFC, implemented by open source recursive servers (Unbound, Knot)

DNS-over-TLS

Expected IETF approval as a standard in March, implemented in reference end-user open source (getdns) and patched in Unbound

Registration Data Privacy with RDAP

One authentication specification in development in IETF, non-production (experimental) services emerging

Summary of Current & Emerging Mitigations

Mitigations	Client to Recursive	At Recursive	Recursive to Authoritative	At Authoritative
Current				
DNSSEC		Protect	Protect	Protect
Registration Locks				Protect
Emerging				
QNAME Minimization			Protect	Protect
DNS-over-TLS	Protect			
RDAP Privacy				Protect

RS∧°Conference2016

DNS as a Security Enabler

Focus so far has been on strengthening security of DNS

DNS-based services can also strengthen security of networks and applications

Four Use Cases:

1 Web security

2 Email security

3 Network security

4 Threat intelligence

Use Case 1: Web Security

Use Case 2: Email Security

End users can discover, validate one another's keys by publishing them in DNS, enabling inter-domain email security

Mail servers can also use TLSA to validate one another's TLS certificates when encrypting inter-domain SMTP traffic

Use Case 3: Network Security

Enterprises can mitigate threats from rogue external resources by blocking DNS resolution based on threat indicators, enterprise policy

Recursive name server can be a control point for enterprise security, if enterprise also controls client configuration to select specific recursive

Use Case 4: Threat Intelligence

Enterprises can also detect threats from rogue external resources by analyzing DNS resolution patterns

Recursive name server also becomes an observation point for enterprise security

Observations can be correlated across enterprises via "passive DNS" type approaches

Status of Use Cases

Use	Case

Standards Status

Implementation and Deployment

1. Web Security

IETF Standards Track RFC (TLSA)

Early adopters only, with browser support lacking

2. Email Security

In review for IETF Experimental RFCs

Emerging use between MTAs. Minimal adoption by MUAs.

3. Network Security

Not in standards development

Emerging production offerings

4. Threat Intelligence

Not in standards development

Active production offerings

RS∧°Conference2016

Recommendations – Apply This Learning

If DNS is part of the system you're protecting ...

Next week you should:

Identify the different ways in which DNS is used within your organization

Within the next three months you should:

Consider how available and emerging mitigations can apply in your environment

Consider leveraging DNS-based services for enterprise security

For More Information

Q&A

