Reconhecimento de Padrões Teoria da Decisão e Funções Discriminantes

Prof. George von Borries Departamento de Estatística Universidade de Brasília

1 - 2024

Objetivo

Encontrar funções que melhor separem grupos ou populações.

Fonte: James, Witten, Hastie, Tibshirani, 2017.

As funções discriminantes podem ser lineares ou não lineares.

Fonte: Hastie, Tibshirani e Friedman, 2009.

E em alguns casos os discriminantes podem ser mais elaborados.

Fonte: Hastie, Tibshirani e Friedman, 2009.

Elementos de Teoria da Decisão

• Seja Ω o espaço amostral formado pelas classes ω_1 e ω_2 tal que $\Omega=\omega_1\cup\omega_2.$

- Esta ideia pode ser generalizada para C classes $\omega_1, \ldots, \omega_c$ com probabilidades (a priori) $p(\omega_1), \ldots, p(\omega_c)$ conhecidas.
- Seja $\mathbf{x} = [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_p]$ formado por p características (features) e ω_j : a classe j que pode ser descrita por $f_j(\mathbf{x}) = p(\mathbf{x}|\omega_j)$, i.e., a função de densidade condicionada a classe ω_j .

Regra de Decisão de Bayes para Erro Mínimo

- Na ausência de informação, classificamos um objeto na classe ω_j de maior probabilidade, i.e., se $p(\omega_j) > p(\omega_k)$ para todo $k \neq j$ em $\{1, \ldots, c\}$.
- Na presença de informação x, alocamos x a classe ω_j se $p(\omega_j|\mathbf{x}) > p(\omega_k|\mathbf{x})$ para qualquer $k \neq j$ em $\{1, \dots, c\}$.
- As probabilidades a posteriori $p(\omega_j|\mathbf{x})$ podem ser expressas em função de $p(\omega_j)$ e densidades condicionais as classes ω_j , $j \in \{1, \ldots, c\}$, através do Teorema de Bayes, i.e.

$$p(\omega_j|\mathbf{x}) = \frac{p(\mathbf{x}|\omega_j)p(\omega_j)}{p(\mathbf{x})}$$

em que
$$p(\mathbf{x}) = \sum_{i=1}^{c} p(\mathbf{x}|\omega_i)p(\omega_i)$$
.

• A Regra de Bayes para Erro Mínimo aloca x a classe ω_j se

$$p(\mathbf{x}|\omega_j)p(\omega_j) > p(\mathbf{x}|\omega_k)p(\omega_k)$$

para todo $k \neq j$ em $\{1, \ldots, c\}$.

Note que a mesma regra pode ser escrita como

$$rac{\mathrm{p}(\omega_j|\mathbf{x})}{\mathrm{p}(\omega_k|\mathbf{x})}>1,$$

para todo $k \neq j$ em $\{1, \ldots, c\}$.

Ou também

$$rac{p(\mathsf{x}|\omega_j)}{p(\mathsf{x}|\omega_k)} > rac{p(\omega_k)}{p(\omega_j)}$$

para todo $k \neq j$ em $\{1, \ldots, c\}$.

Para duas classes,

$$\ell_r(\mathbf{x}) = \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \frac{p(\omega_2)}{p(\omega_1)}$$

implica em $\mathbf{x} \in \omega_1$.

Exemplo:

Duas populações com densidades

$$f_1(\mathbf{x}) \sim \mathrm{N}(0,1) \ e \ f_2(\mathbf{x}) \sim 0.6 \mathrm{N}(1,1) + 0.4 \mathrm{N}(-1,2).$$

Assumindo $p(\omega_1)=p(\omega_2)$, classificamos como $f_1(\mathbf{x})$ toda observação no intervalo A e como $f_2(\mathbf{x})$ toda observação nos intervalos B.

A regra de decisão

$$p(\mathbf{x}|\omega_j)p(\omega_j) > p(\mathbf{x}|\omega_k)p(\omega_k)$$

para todo $k \neq j$ em $\{1, \ldots, c\}$, minimiza o erro de alocação. Note que

$$p(ext{erro}) = \sum_{i=1}^{c} p(ext{erro}|\omega_i) p(\omega_i) \quad ext{e} \quad p(ext{erro}|\omega_i) = \int_{\bar{\Omega}_i} p(\mathbf{x}|\omega_i) d\mathbf{x}.$$

Assim,

$$\rho(\text{erro}) = \sum_{i=1}^{c} \int_{\bar{\Omega}_{i}} p(\mathbf{x}|\omega_{i}) p(\omega_{i}) d\mathbf{x} = \sum_{i=1}^{c} p(\omega_{i}) \left(1 - \int_{\Omega_{i}} p(\mathbf{x}|\omega_{i}) d\mathbf{x}\right) \\
= 1 - \sum_{i=1}^{c} p(\omega_{i}) \int_{\Omega_{i}} p(\mathbf{x}|\omega_{i}) d\mathbf{x} \tag{1}$$

Minimizar (1) é o mesmo que maximizar $\sum_{i=1}^c p(\omega_i) \int_{\Omega_i} p(\mathbf{x}|\omega_i) d\mathbf{x}$, i.e, a probabilidade de uma classificação correta. O erro de Bayes é então

$$oxed{e_{_{\mathrm{B}}} = 1 - \int \max_{i} [p(\omega_{i})p(\mathbf{x}|\omega_{i})]d\mathbf{x}}$$

2 Regra de Decisão de Bayes quando existe incerteza

- Em regiões próximas de limites de decisão existe incerteza sobre a classe ω_i que um objeto deve ser alocado. Neste caso, é possível adiar uma decisão de forma a reduzir o erro de alocação.
- Considere R a região de rejeição (incerteza sobre classificação ou não decisão) e A a região de aceitação (ou classificação). Definindo t como ponto limite (threshold),

$$R = \left\{ \mathbf{x} \mid 1 - \max_i p(\omega_i | \mathbf{x}) > t
ight\} \quad ext{e} \quad A = \left\{ \mathbf{x} \mid 1 - \max_i p(\omega_i | \mathbf{x}) \leq t
ight\}$$

- Considerando c como o número de classes, pode-se mostrar que se $1-t \leq \frac{1}{c}$ ou $t \geq \frac{c-1}{c}$, a região R será vazia. (\checkmark)
- A probabilidade de classificação correta, c(t), é uma função do limiar t,

$$c(t) = \int_{A} \max_{i} [p(\omega_{i})p(\mathbf{x}|\omega_{i})]d\mathbf{x}$$

e a probabilidade de rejeitar (incerteza) será

$$r(t) = \int_{R} p(\mathbf{x}) d\mathbf{x}.$$

• Assim, a taxa de erro será e(t) = 1 - c(t) - r(t).

3 Regra de Decisão de Bayes para Risco Mínimo

 Em vez de minimizar a probabilidade de cometer um erro, podemos considerar a minimização do risco. Neste caso existe um custo associado ao erro de classificação.

Exemplo:

Considere um sensor que faz um automóvel reduzir a velocidade e até parar quando identifica um obstáculo a frente.

Caso 1: Automóvel circulando em vias de baixa velocidade.

O custo do erro de identificação de um obstáculo (quando não existe) é menor que o custo de erro de não identificação do obstáculo.

Caso 2: Automóvel circulando em vias de alta velocidade.

O custo do erro de identificação de um obstáculo (quando não existe) é maior que o custo de erro de não identificação do obstáculo.

- Seja λ_{ij} = custo de alocar um padrão x a ω_i quando x ∈ ω_j.
 λ_{ij} pode ser um valor monetário, tempo, avaliação de qualidade, etc.
 Geralmente é atribuído de forma subjetiva por um especialista.
- ullet O **risco condicional** de alocar um padrão ${f x}$ a ω_i é definido por

$$r_c^i(\mathbf{x}) = \sum_{j=1}^c \lambda_{ji} p(\omega_j | \mathbf{x}).$$

• O risco médio na região Ω_i é

$$r_m^i = \int_{\Omega_i} r_c^i(\mathbf{x}) p(\mathbf{x}) d\mathbf{x} = \int_{\Omega_i} \sum_{j=1}^c \lambda_{ij} p(\omega_j | \mathbf{x}) p(\mathbf{x}) d\mathbf{x},$$

• e o risco total ou custo esperado será

$$r_t = \sum_{i=1}^c r_m^i = \sum_{i=1}^c \int_{\Omega_i} \sum_{j=1}^c \lambda_{ji} p(\omega_j | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$

O risco total

$$r_t = \sum_{i=1}^{c} r_m^i = \sum_{i=1}^{c} \int_{\Omega_i} \sum_{j=1}^{c} \lambda_{ji} p(\omega_j | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$

é minimizado se a região Ω_i é escolhida de tal forma que

$$\sum_{j=1}^c \lambda_{ji}
ho(\omega_j | \mathbf{x})
ho(\mathbf{x}) \leq \sum_{j=1}^c \lambda_{jk}
ho(\omega_j | \mathbf{x})
ho(\mathbf{x}) \quad k = 1, \dots, c$$

tal que $\mathbf{x} \in \Omega_i$.

A Regra de decisão de Bayes para risco mínimo será

$$r^* = \int_{\mathbf{x}} \min_{i=1,...,c} \lambda_{ji} p(\omega_j | \mathbf{x}) p(\mathbf{x}) d\mathbf{x}.$$

• No caso de custos iguais, em que $\lambda_{ij}=1$ se $i\neq j$ e $\lambda_{ij}=0$ se i=j, a regra de decisão será alocar ${\bf x}$ a classe ω_i se

$$\sum_{j=1}^{c} \rho(\omega_{j}|\mathbf{x}) \rho(\mathbf{x}) - \rho(\omega_{i}|\mathbf{x}) \rho(\mathbf{x}) \leq \sum_{j=1}^{c} \rho(\omega_{j}|\mathbf{x}) \rho(\mathbf{x}) - \rho(\omega_{k}|\mathbf{x}) \rho(\mathbf{x})$$

para todo $k \in \{1, \ldots, c\}$, i.e.,

$$p(\mathbf{x}|\omega_i)p(\omega_i) > p(\mathbf{x}|\omega_k)p(\omega_k)$$
 $k = 1, ..., c$.

Regra de Decisão de Neyman-Pearson

- Considere uma classe de interesse ω_1 e outra classe ω_2 . Dois erros podem ser cometidos: $\epsilon_1 = \int_{\Omega_2} p(\mathbf{x}|\omega_1) d\mathbf{x} = \text{probabilidade de erro do Tipo I}$ $\epsilon_2 = \int_{\Omega_2} p(\mathbf{x}|\omega_2) d\mathbf{x} = \text{probabilidade de erro do Tipo II}$
- A regra de decisão de Neyman-Pearson deseja minimizar o erro ϵ_1 sujeito a ϵ_2 fixo (= ϵ_0).
- Em algumas áreas, chamamos de ω_1 a classe com evento positivo e ω_2 a classe com evento negativo. Neste caso ϵ_1 é taxa de falsos negativos (FNR) e ϵ_2 a taxa de falsos positvos (FPR).

Exemplo: Detecção de Sinais em Radar

Detecção de sinal ω_1 na presença de ruído ω_2 .

 $\epsilon_1 = \text{sinal disponivel mas identificado como ruído (} \textit{missed detection} \text{)}.$

 ϵ_2 = ruído é identificado como sinal (*false alarm*).

Procura-se minimizar

$$r = \int_{\Omega_2} p(\mathbf{x}|\omega_1) d\mathbf{x} + \lambda \left\{ \int_{\Omega_1} p(\mathbf{x}|\omega_2) d\mathbf{x} - \epsilon_0
ight\}$$

em que λ é o multiplicador de Lagrange e ϵ_0 a a taxa especificada de falsos alarmes.

r pode ser escrito como

$$r = (1 - \lambda \epsilon_0) + \int_{\Omega_1} \left\{ \lambda p(\mathbf{x}|\omega_2) d\mathbf{x} - p(\mathbf{x}|\omega_1) d\mathbf{x}
ight\}$$

minimizado se escolhermos Ω_1 tal que o integrando seja negativo, i.e.,

$$\lambda p(\mathbf{x}|\omega_2)d\mathbf{x} - p(\mathbf{x}|\omega_1) < 0,$$

sendo assim $\mathbf{x} \in \Omega_1$.

ullet r será minimizado se escolhermos Ω_1 tal que o integrando seja negativo, i.e.,

$$\lambda p(\mathbf{x}|\omega_2)d\mathbf{x} - p(\mathbf{x}|\omega_1) < 0,$$

sendo assim $\mathbf{x} \in \Omega_1$.

• Em termos de razão de verossimilhança,

$$\frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)} > \lambda$$

quando $\mathbf{x} \in \Omega_1$.

- λ é escolhido em termos da taxa especificada ϵ_0 de falsos alarmes (erro do Tipo II). Geralmente λ é obtido numericamente.
- A performance da regra de decisão pode ser resumida pela Curva ROC ou Curva Característica de Operação (Receiver Operating Characteristic).

- Curva ROC (Receiver Operating Characteristic): é um gráfico da sensibilidade em função de (1 Especificidade) para diferentes valores de λ^1 .
- Sensibilidade (Se): Taxa de Verdadeiros Positivos (TPR), i.e., a probabilidade de um teste ser positivo, dado que o evento de interesse ocorre.

 TPR indicando se o teste é sensível para a detecção do sinal (evento de interesse).

 $1-\mathrm{TPR}=\mathrm{FPR}$ (Taxa de Falsos Positivos) é a taxa de sinais não detectados.

Especificidade (Es): é a Taxa de Verdadeiros Negativos (TNR), i.e., a probabilidade do teste ser negativo, dado que o evento de interesse não ocorre.

TNR indicando se o teste é específico para o sinal em questão.

 $1-\mathrm{TNR}=\mathrm{FNR}$ (Taxa de Falsos Negativos) é a taxa de falsos alarmes.

¹ Esta curva resume o poder preditivo do teste e foi desenvolvida na 2ª Guerra Mundial para detecção de sinais.

Considere a seguinte tabela de contingência 2×2 para identificação de um sinal (avião detectado) ou ruído (interferência de uma ave).

	Classe		
	ω_1 (Ex. Sinal)	ω_2 (Ex. Ruído)	
Classificação	$egin{aligned} n_{TP} &= n(\hat{\omega}_1 \omega_1) \ \\ n_{FN} &= n(\hat{\omega}_2 \omega_1) \end{aligned}$		
	n_1	n_0	

sendo a classe de interesse (no caso sinal) considerada como evento positivo, temos n_{TP} e n_{FP} : número de verdadeiros e falsos positivos e n_{FN} e n_{TN} : número de falsos e verdadeiros negativos.

Assim,

$$\begin{array}{lll} & {\sf Sensibilidade} & = & n_{\sf TP}/n_1 = p(\hat{\omega}_1 \mid \omega_1) = p(\hat{{\sf Y}} = 1 \mid {\sf Y} = 1); \\ & {\sf Especificidade} & = & n_{\sf TN}/n_0 = p(\hat{\omega}_2 \mid \omega_2) = p(\hat{{\sf Y}} = 0 \mid {\sf Y} = 0); \\ 1 - {\sf Especificidade} & = & 1 - n_{\sf TN}/n_0 = n_{\sf FP}/n_0 = p(\hat{\omega}_1 \mid \omega_2) = p(\hat{{\sf Y}} = 1 | {\sf Y} = 0). \end{array}$$

A discriminação perfeita implica modelo com $n_{\rm TP}=n_1$ e $n_{\rm TN}=n_0$, i.e., Se = Es = 1.

Seja $0 \le \lambda \le 1$, um ponto de corte tal que:

- $\hat{\pi}_i > \lambda \Rightarrow$ predizer resposta como sinal (ω_1) ou
- $\hat{\pi}_i \leq \lambda \Rightarrow$ predizer resposta como ruído (ω_2) ,

para $i = 1, \ldots, n$.

Etapas da obtenção da curva ROC: considerando valores de $\lambda \in (0,1)^2$,

- 1. Realizar a alocação para cada x_i ;
- 2. Obter $\hat{\pi}_i$, i = 1, ..., n;
- 3. Comparar $\hat{\pi}_i$ com λ e classificar a observação como sinal ou ruído.
- 4. Montar a tabela de classificação de acordo com os valores reais e preditos para $i=1,\ldots,n.$
- 5. Obter Se, Es e 1 Es.
- 6. Construir a curva ROC plotando os valores em (5.) para cada λ .

 $^{^2}$ Note que: $\lambda=0$ significa classificar todos os eventos como ω_1 e $\lambda=1$ significa classificar todos os eventos como ruído.

Casos extremos (para qualquer modelo):

• Sensibilidade e (1 - Especificidade) tem foco nos casos previstos, i.e.,

$$p(\hat{\omega}_1 \mid \omega_1) = Se$$

 $p(\hat{\omega}_1 \mid \omega_2) = 1 - p(\hat{\omega}_2 \mid \omega_2) = 1 - Es$

- Uma boa discriminação implica em Se > 1 Es.
- A curva ROC considera Se e (1-Es) para diferentes valores de λ

Modelo com discriminação perfeita:

• Modelo sem poder de discriminação:

Pergunta 1: É possível obter a seguinte curva ROC?

Pergunta 1: É possível obter a seguinte curva ROC?

Sim. Neste caso, $p(\hat{\omega}_2 \mid \omega_2) > p(\hat{\omega}_1 \mid \omega_1)$, i.e., ruído é melhor identificado que sinal. Um resultado que não é de muita utilidade.

Pergunta 2: É possível obter a seguinte curva ROC?

Pergunta 2: É possível obter a seguinte curva ROC?

Apesar de ser um resultado possível, não é um resultado razoável. Isto porque, neste caso, todas as observações seriam previstas como ruídos. Não precisamos de um modelo de classificação para esta situação!

AUC (Area Under Curve):

 Na comparação de modelos podemos utilizar a área abaixo da curva ROC (AUC) como medida de qualidade.

Referência:

- Artigo: von Borries G. e Quadros, A.V.C. (2022) ROC App: An Application to Understand ROC Curves. Brazilian Journal of Biometrics. ISSN: 2764-5290.
 Aplicativo para auxiliar a compreensão da Curva ROC.
 - Artigo:
 - https://biometria.ufla.br/index.php/BBJ/article/view/566/339
 - Aplicativo Shiny:
 - https://gfvonborries.shinyapps.io/roc_app/
 - Código R:
 - https://github.com/GvBorries/ROCApp

Funções Discriminantes

- Classificação através de funções densidade: a teoria da decisão via regra de Bayes exige conhecimento da densidade $p(\mathbf{x}|\omega_i)$ através de
 - Estimação paramétrica de densidades. Exemplo: estimação dos parâmetros da distribuição normal (suposição) em cada uma das classes, através dos dados observados.
 - Estimação não paramétrica de densidades. Exemplo: estimação de densidade via núcleos (kernel density estimation).
- Classificação através de funções discriminantes: neste caso são feitas suposições sobre a função discriminante. Uma função discrimininante é uma função do padrão de x que resulta na regra de classificação.

Exemplo:

Função discriminante h(x) tal que

$$h(\mathbf{x}) > k \Rightarrow x \in \omega_1$$
 e

$$h(\mathbf{x}) < k \Rightarrow x \in \omega_2$$
.

 $h(\mathbf{x}) = k \Rightarrow$ padrão designado por sorteio, no caso de duas classes.

 Asim como no caso da regra de decisão de Bayes para erro mínimo, uma função discriminante ótima para duas classes implica

$$h(\mathbf{x}) = \frac{p(\mathbf{x}|\omega_1)}{p(\mathbf{x}|\omega_2)}$$

com $k = p(\omega_2)/p(\omega_1)$.

 As funções discriminantes não são únicas, i.e., se f é uma função monótona,

$$g(\mathbf{x}) = f(h(\mathbf{x})) > k' \Rightarrow x \in \omega_1$$
 e $g(\mathbf{x}) = f(h(\mathbf{x})) < k' \Rightarrow x \in \omega_2$.

• Para c classes, o padrão é alocado a classe com maior discriminante, i.e.,

$$g_i(\mathbf{x}) > g_j(\mathbf{x}) \Rightarrow \mathbf{x} \in \omega_i \quad j = 1, \ldots, c, j \neq i.$$

 A diferença básica para a teoria da decisão é que concentramos na forma da função discriminante e não na imposição de uma distribuição (mas que pode ocorrer mesmo assim).

Exemplo:

Não assume uma distribuição específica:

Função Discriminante de Fisher para g > 2 populações.

Assume populações normais:

Discriminante Linear para duas populações $N_p(\mu, \Sigma)$.

Função Discriminante Linear

• Seja $\mathbf{x} = \{x_1, \dots, x_p\}^\mathsf{T}$. Uma função discriminante linear tem forma

$$g(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \mathbf{x} + w_0 = \sum_{i=1}^{p} w_i x_i + w_0.$$

- Discriminante linear com vetor de pesos \mathbf{w} e limite (threshold) w_0 .
- Representa a equação de um hiperplano com vetor unitário na direção de w e distância da origem igual a |w₀|/||w||, perpendicular ao hiperplano.
- O valor da função discriminante para o padrão x é uma medida da distância de x perpendicular ao hiperplano.

Exemplo: Discriminante Linear para duas Populações $\mathrm{N}_p(\mu, \mathbf{\Sigma})$

$$f_i(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^\mathsf{T} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i)\right\} \quad i = 1, 2.$$

Então

$$\frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = \frac{\exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_1)^\mathsf{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_1)\right\}}{\exp\left\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_2)^\mathsf{T} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}_2)\right\}}$$

e

$$\ell(\mathbf{x}) = \ln \frac{f_1(\mathbf{x})}{f_2(\mathbf{x})} = \overbrace{(\mu_1 - \mu_2)^\mathsf{T} \mathbf{\Sigma}^{-1} \mathbf{x}}^{\mathsf{Disc. Linear de Fisher}} - \frac{1}{2} (\mu_1 - \mu_2)^\mathsf{T} \mathbf{\Sigma}^{-1} (\mu_1 + \mu_2)$$
$$= \mathbf{w}^\mathsf{T} \mathbf{x} + w_0.$$

 \Rightarrow Se $\ell(\mathbf{x}) > 0$ alocar \mathbf{x} a π_1 .

Exemplo: Classificador de Distância Mínima

Suponha um grupo de pontos (prototype points) $\mathbf{p}_1, \dots, \mathbf{p}_c$ representantes das classses $\omega_1, \dots, \omega_c$.

Para cada ponto, a distância Euclideana é $|\mathbf{x} - \mathbf{p}_i|^2 = \mathbf{x}^\mathsf{T} \mathbf{x} - 2\mathbf{x}^\mathsf{T} \mathbf{p}_i + \mathbf{p}_i^\mathsf{T} \mathbf{p}_i$.

A distância mínima de classificação é obtida pelo maior $\mathbf{x}^{\mathsf{T}}\mathbf{p}_{i} - \frac{1}{2}\mathbf{p}_{i}^{\mathsf{T}}\mathbf{p}_{i} = \mathbf{w}_{i}^{\mathsf{T}}\mathbf{x} + w_{i0}$ (função discriminante linear).

Nota: \mathbf{p}_i pode ser a média da classe i.

2 Função Discriminante Linear em Partes (piecewise)

• Muitas vezes não é possível separar as classes com uma função linear.

- Suponha que existem n_i prototypes na classe ω_i , $\mathbf{p}_i^1, \ldots, \mathbf{p}_i^{n_i}$, $i = 1, \ldots, c$.
- A função discriminante da classe ω_i será

$$g_i(\mathbf{x}) = \max_{j=1,\ldots,n_i} g_i^j(\mathbf{x}) = \max_{j=1,\ldots,n_i} \left\{ \mathbf{x}^\mathsf{T} \mathbf{p}_i^j - \frac{1}{2} \mathbf{p}_i^{j\mathsf{T}} \mathbf{p}_i^j \right\} \quad j = 1,\ldots,n_i; \quad i = 1,\ldots,c.$$

- O padrão \mathbf{x} é alocado a classe com maior $g_i(\mathbf{x})$.
- Este método divide o espaço em $\sum_{i=1}^{c} n_i$ regiões que são conhecidas como "mosaico" (tesselation) de Dirichelet.
- A regra de decisão do vizinho mais próximo é um caso particular em que cada padrão no grupo de treinamento é considerado um vetor *prototypes*.

Solution Função Discriminante Linear Generalizada (phi machine)

• Função discriminante da forma

$$g(\mathbf{x}) = \mathbf{w}^{\mathsf{T}} \phi + w_0$$

sendo $\phi = (\phi_1(\mathbf{x}), \dots, \phi_D(\mathbf{x}))^\mathsf{T}$ uma função vertorial de \mathbf{x} .

• Isto define a função generalizada, que é função de transformações de transformaões das variáveis originais. Se, por exemplo, $\phi_i(\mathbf{x}) = x_i$ e D = p, então a função se reduz a função linear discriminante.

Exemplo: Classificador de Distância Mínima

Exemplo de transformação não linear que permite a discriminação linear. No caso, $\phi_1(\mathbf{x}) = x_1^2$ e $\phi_2(\mathbf{x}) = x_2$.

Table 1.1 Discriminant functions, ϕ .

Discriminant function	Mathematical form, $\phi_i(x)$	
Linear	$\phi_i(\mathbf{x}) = x_i, i = 1, \dots, p$	
Quadratic	$\phi_i(\mathbf{x}) = x_{k_1}^{l_1} x_{k_2}^{l_2}, i = 1, \dots, (p+1)(p+2)/2 - 1$	
	$l_1, l_2 = 0 \text{ or } 1; k_1, k_2 = 1, \dots, p$	
	l_1 , l_2 not both zero	
vth order polynomial	$\phi_i(\mathbf{x}) = x_{k_1}^{l_1} \dots x_{k_v}^{l_v}, i = 1, \dots, \binom{p+v}{v} - 1$	
	$l_1, \ldots, l_{\nu} = 0 \text{ or } 1; k_1, \ldots, k_{\nu} = 1, \ldots, p$	
	l_i not all zero	
Radial basis function	$\phi_i(x) = \phi(x - v_i)$	
	for centre v_i and function ϕ	
Multilayer perceptron	$\phi_i(\mathbf{x}) = f(\mathbf{x}^T \mathbf{v}_i + \mathbf{v}_{i0})$	
	for direction v_i and offset v_{i0} . f is the logistic	
	function, $f(z) = 1/(1 + \exp(-z))$	

(Webb e Copsey, 2011)

