Contents

Homework 1 (Due: Sep 21)
 Homework 2 (Due: Oct 5)
 3

1. Homework 1 (Due: Sep 21)

Problem 1.1. Let \mathcal{L} be a positive-definite linear functional with monic OPS $\{P_n(x)\}_{n\geq 0}$. Prove the following extremal property: for any monic real polynomial $\pi(x) \neq P_n(x)$ of degree n,

$$\mathcal{L}(P_n(x)^2) < \mathcal{L}(\pi(x)^2).$$

Solution. Let $\pi(x) = \sum_{k=0}^{n} a_k P_k(x)$. Since both $\pi(x)$ and $P_n(x)$ are monic, we have $a_n = 1$ [3 points]. Then

$$\mathcal{L}(\pi(x)^2) = \sum_{k=0}^n a_k^2 \mathcal{L}(P_k(x)^2) \quad [4 \text{ points}]$$

$$\geq a_n^2 \mathcal{L}(P_n(x)^2) = \mathcal{L}(P_n(x)^2) \quad [3 \text{ points}].$$

Problem 1.2. Let \mathcal{L} be a linear functional such that $\Delta_n \neq 0$ for all $n \geq 0$. Prove that if $\pi(x)$ is a polynomial such that $\mathcal{L}(x^k\pi(x)) = 0$ for all $k \geq 0$, then $\pi(x) = 0$.

Solution. Since $\Delta_n \neq 0$, there is a monic OPS $\{P_n(x)\}_{n\geq 0}$ for \mathcal{L} [3 points]. Let $\pi(x) = \sum_{k=0}^n a_k P_k(x)$. Since $\mathcal{L}(x^k \pi(x)) = 0$ for all $k \geq 0$, we have $\mathcal{L}(p(x)\pi(x)) = 0$ for any polynomial p(x) [3 points]. Then, for each $0 \leq k \leq n$, we have $0 = \mathcal{L}(P_k(x)\pi(x)) = a_k \mathcal{L}(P_k(x)^2)$ [2 points]. Since $\mathcal{L}(P_k(x)^2) \neq 0$, we get $a_k = 0$ for all $0 \leq k \leq n$ [2 points]. Hence $\pi(x) = 0$.

A common mistake: It is not true in general that $\mathcal{L}(x^k P_n(x)) = 0$ for $k \neq n$. We can only say that $\mathcal{L}(x^k P_n(x)) = 0$ for k < n.

Problem 1.3. The Tchebyshev polynomials of the second kind $U_n(x)$ are defined by

$$U_n(x) = \frac{\sin(n+1)\theta}{\sin \theta}, \quad x = \cos \theta, \quad n \ge 0.$$

- (1) Prove that $U_n(x)$ is a polynomial of degree n.
- (2) Prove that

$$U_{n+1}(x) = 2xU_n(x) - U_{n-1}(x), \qquad n > 0,$$

where $U_{-1}(x) = 0$ and $U_0(x) = 1$.

(3) Prove that

$$\int_{-1}^{1} U_m(x)U_n(x)(1-x^2)^{1/2}dx = \frac{\pi}{2}\delta_{m,n}.$$

(4) Find the 3-term recurrence for the normalized Tchebyshev polynomials of the second kind. More precisely, find the numbers b_n and λ_n such that

$$\hat{U}_{n+1}(x) = (x - b_n)\hat{U}_n(x) - \lambda_n \hat{U}_{n-1}(x), \qquad n \ge 0,$$

where $\hat{U}_n(x)$ is the monic polynomial that is a scalar multiple of $U_n(x)$.

Solution. (1) This follows from (2) [2 points].

(2) By the addition rule for the sine function,

$$\sin(n+1)\theta = \sin n\theta \cos \theta + \cos n\theta \sin \theta,$$

$$\sin(n-1)\theta = \sin n\theta \cos \theta - \cos n\theta \sin \theta.$$

Adding the two equations and dividing both sides by $\sin \theta$, we get

$$U_n(x) + U_{n-2}(x) = 2xU_{n-1}(x), \qquad n > 1 \quad [2 \text{ points}].$$

This is equivalent to the recurrence in the problem.

(3) By the change of variables $x = \cos \theta$, $0 \le \theta \le \pi$, with $dx = -\sin \theta d\theta = -\sqrt{1-x^2}d\theta$.

$$\int_{-1}^{1} U_m(x)U_n(x)(1-x^2)^{1/2}dx$$

$$= \int_{0}^{\pi} \sin(m+1)\theta \sin(n+1)\theta d\theta \quad [2 \text{ points}]$$

$$= \frac{1}{2} \int_{0}^{\pi} (\cos(m-n)\theta + \cos(m+n)\theta) d\theta \quad [2 \text{ points}]$$

$$= \frac{\pi}{2} \delta_{m,n}.$$

(4) Since $\deg U_n(x) = 2^n$ for all $n \ge 0$, we have $\hat{U}_n(x) = 2^{-n}U_n(x)$. Dividing both sides of the recurrence in (2) by 2^{n+1} , we obtain $b_n = 0$ and $\lambda_n = 1/4$ [2 points].

Problem 1.4. Let $\{P_n(x)\}_{n\geq 0}$ be the monic OPS for a linear functional \mathcal{L} with three-term recurrence

$$P_{n+1}(x) = (x - b_n)P_n(x) - \lambda_n P_{n-1}(x), \qquad n \ge 0.$$

(1) Prove that

$$P_n(x) = \begin{vmatrix} x - b_0 & 1 & & 0 \\ \lambda_1 & x - b_1 & \ddots & & \\ & \ddots & \ddots & 1 \\ 0 & & \lambda_{n-1} & x - b_{n-1} \end{vmatrix}.$$

(2) Prove that

$$P_n(x) = \begin{vmatrix} x - b_0 & \sqrt{\lambda_1} & & 0 \\ \sqrt{\lambda_1} & x - b_1 & \ddots & \\ & \ddots & \ddots & \sqrt{\lambda_{n-1}} \\ 0 & & \sqrt{\lambda_{n-1}} & x - b_{n-1} \end{vmatrix}.$$

(3) Using (2) prove that if $b_n \in \mathbb{R}$ and $\lambda_n > 0$ for all, then $P_n(x)$ has real roots only.

Solution. (1) Let $Q_n(x)$ be the determinant on the right-hand side. Expanding the determinant along the last row, we obtain the recursion

$$Q_n(x) = (x - b_{n-1})Q_{n-1}(x) - \lambda_{n-1}Q_{n-2}(x)$$
 [2 points].

Since $P_n(x)$ and $Q_n(x)$ satisfy the same recurrence with with the initial conditions $Q_0(x) = 1$ and $Q_1(x) = x - b_0$, we obtain that $Q_n(x) = P_n(x)$.

(2) Let $A_n = (\alpha_{i,j})$ be the matrix in (1) and let B_n be the matrix in (2). Then it suffices to find an invertible diagonal matrix $D = \text{diag}(d_i)$ such that $B_n = DA_nD^{-1}$ [3 points]. To do this, observe that $DA_nD^{-1} = (d_i\alpha_{i,j}d_j^{-1})$. Since B_n and DA_nD^{-1} are tri-diagonal matrices, we have $B_n = DA_nD^{-1}$ if and only if the following hold:

$$\beta_{i,i} = d_i \alpha_{i,i} d_i^{-1},$$

(1.2)
$$\beta_{i,i+1} = d_i \alpha_{i,i+1} d_{i+1}^{-1},$$

(1.3)
$$\beta_{i+1,i} = d_{i+1}\alpha_{i+1,i}d_i^{-1}.$$

Since $\alpha_{i,i+1} = 1$ and $\beta_{i,i+1} = \sqrt{\lambda_{i+1}}$, (1.2) is equivalent to $d_{i+1} = d_i/\sqrt{\lambda_{i+1}}$. Indeed, if we set $d_0 = 1$ and $d_{i+1} = d_i/\sqrt{\lambda_{i+1}}$, then all three conditions above hold [3 points].

Note: Alternatively, it can be proved directly that the right-hand side of the equation satisfies the same recurrence as $P_n(x)$.

(3) Since the zeros of $P_n(x)$ are the eigenvalues of a real symmetric matrix, they are real [2 points].

2. Homework 2 (Due: Oct 5)

Problem 2.1. Let *id* be the identity permutation.

- (1) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^2 = id$.
- (2) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^3 = id$.
- (3) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^4 = id$.
- (4) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^5 = id$.
- (5) Find the number of permutations $\pi \in \mathfrak{S}_6$ such that $\pi^6 = id$.

Solution. We have $\pi^k = id$ if and only if every cycle of π is of length divisible by k. For example, if $\pi^6 = id$, then the decreasing sequence of the lengths of cycles of π must be (6), (3,3), (3,2,1), (3,1,1,1), (2,2,2), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1). The number of such permutations is 5!, $\binom{6}{3} \frac{1}{2} 2^2$, $\binom{6}{3} \binom{2}{3} \cdot 2$, $\binom{6}{3} \cdot 2$, $\binom{6}{3} \cdot 2$, $\binom{6}{3} \cdot 2$, $\binom{6}{3} \cdot 3$, $\binom{6}{4} \cdot 3$, $\binom{6}{2} \cdot 3$, $\binom{6}{2} \cdot 3$, respectively. In this way we get the answers as follows.

- (1) 76 [2 points]
- (2) 81 [2 points]
- (3) 256 [2 points]
- (4) 145 [2 points]
- (5) 396 [2 points]

Problem 2.2. Let c_1, \ldots, c_n be a sequence of nonnegative integers such that $\sum_{i=1}^n ic_i = n$. Show that the number of permutations $\pi \in \mathfrak{S}_n$ with c_i cycles of length i for all $i = 1, \ldots, n$ is

$$\frac{n!}{\prod_{i=1}^n i^{c_i} c_i!}.$$

Solution. Let X be the set of such permutations. We construct a map $\phi : \mathfrak{S}_n \to X$ as follows. Given $\sigma = \sigma_1 \cdots \sigma_n \in \mathfrak{S}_n$, let $\phi(\sigma)$ be the permutation whose cycle notation is obtained from the word $\sigma_1 \cdots \sigma_n$ by placing parentheses so that the first c_1 cycles are of length 1, the next c_2 cycles are of length 2, and so on [3 points]. By the construction, this gives a map $\phi : \mathfrak{S}_n \to X$.

For any $\pi \in X$, there are $c_i!$ ways to arrange its c_i cycles and i ways to cyclically shift each each of these cycles. Therefore, there are $\prod_{i=1}^n i^{c_i} c_i!$ permutations $\sigma \in \mathfrak{S}_n$ whose image under ϕ is π [4 points]. This shows that $|X| = |\mathfrak{S}_n| / \prod_{i=1}^n i^{c_i} c_i!$ as desired [3 points].

Problem 2.3. For $\pi \in \mathfrak{S}_n$, let $\ell(\pi)$ be the smallest number of simple transpositions whose product is π . Prove that $\ell(\pi) = \text{inv}(\pi)$.

Solution. Suppose that $\pi = s_1 \cdots s_r$ for some simple transpositions s_i 's. Since multipling a simple transposition increases or decreases the number of inversions by 1, we have $r \geq \text{inv}(\pi)$ [3 points]. Hence $\ell(\pi) \geq \text{inv}(\pi)$ [2 points].

On the other hand, we can find an expression $\pi = s_1 \cdots s_r$ with $r = \text{inv}(\pi)$ by sorting $\pi = \pi_1 \cdots \pi_n$ [3 points] because multiplying the simple transposition (i, i+1) to the right of $\pi = \pi_1 \cdots \pi_n$ gives

$$\pi(i, i+1) = \pi_1 \cdots \pi_{i-1} \pi_{i+1} \pi_i \pi_{i+1} \cdots \pi_n.$$

This implies $\ell(\pi) \leq \text{inv}(\pi)$ [2 points]. Thus, $\ell(\pi) = \text{inv}(\pi)$.

Problem 2.4. Prove that

$$\sum_{\pi \in \mathfrak{S}_n} q^{\mathrm{inv}(\pi)} = (1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1}).$$

Proof. We proceed by induction on n. If n=1, it is true. Let $n\geq 2$ and suppose the statement holds for n-1. Every $\pi\in\mathfrak{S}_n$ is obtained from $\sigma\in\mathfrak{S}_{n-1}$ by inserting n after j integers from the beginning for some $0\leq j\leq n-1$ [3 points]. This construction gives $\operatorname{inv}(\pi)=\operatorname{inv}(\sigma)+j$ [3 points]. Thus

$$\sum_{\pi \in \mathfrak{S}_n} q^{\text{inv}(\pi)} = \sum_{\sigma \in \mathfrak{S}_{n-1}} \sum_{j=0}^{n-1} q^{\text{inv}(\sigma)+j} = \sum_{\sigma \in \mathfrak{S}_{n-1}} q^{\text{inv}(\sigma)} (1 + q + \dots + q^{n-1}) \quad [2 \text{ points}]$$

$$= (1+q)(1+q+q^2) \dots (1+q+\dots+q^{n-1}) \quad [2 \text{ points}].$$

Thus the statement is also true for n and we are done.