```
fun append (xs,ys) =
    if xs=[]
    then ys
    else (hd xs)::append(tl xs,ys)

fun map (f,xs) =
    case xs of
    [] => []
    | x::xs' => (f x)::(map(f,xs'))

val a = map (increment, [4,8,12,16])
val b = map (hd, [[8,6],[7,5],[3,0,9]])
```

Programming Languages Dan Grossman 2013

Introducing Lists

Lists

 Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data

In contrast, a list:

- Can have any number of elements
- But all list elements have the same type

Need ways to build lists and access the pieces...

Building Lists

• The empty list is a value:

[]

 In general, a list of values is a value; elements separated by commas:

If e1 evaluates to v and e2 evaluates to a list [v1,...,vn],
then e1::e2 evaluates to [v,...,vn]

```
e1::e2 (* pronounced "cons" *)
```

Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- null e evaluates to true if and only if e evaluates to []
- If e evaluates to [v1, v2, ..., vn] then hd e evaluates to v1
 - (raise exception if e evaluates to [])
- ' If e evaluates to [v1, v2, ..., vn] then t1 e evaluates to
 [v2, ..., vn]
 - (raise exception if e evaluates to [])
 - Notice result is a list

Type-checking list operations

Lots of new types: For any type t, the type t list describes lists where all elements have type t

- Examples: int list bool list int list list
 (int * int) list (int list * int) list
- So [] can have type t list for any type
 - SML uses type 'a list to indicate this ("quote a" or "alpha")
- For e1::e2 to type-check, we need a t such that e1 has type t and e2 has type t list. Then the result type is t list
- null : 'a list -> bool
- hd : 'a list -> 'a
- tl : 'a list -> 'a list