Esercizi di Algebra Lineare

19 luglio 2020

INDICE

1	SOT	TOSPAZI VETTORIALI 3	
	1.1	Teoremi e definizioni utili 3	
	1.2	Verifica 3	
2	FOR	MA PARAMETRICA E CARTESIANA 8	
	2.1	Definizioni 8	
	2.2	Passare dalla forma cartesiana alla forma parametri-	
		ca 8	
	2.3	Passare dalla forma parametrica alla forma cartesia-	
		na 10	
3	DET	DETERMINARE BASI DI SOTTOSPAZI 12	
	3.1	Teoremi e definizioni utili 12	
	3.2	Trovare una base tramite mosse di colonna 13	
	3.3	Trovare una base tramite estrazione e mosse di riga 14	

In questo capitolo vogliamo scoprire come verificare se un dato sottoinsieme di uno spazio vettoriale e' un sottospazio vettoriale.

1.1 TEOREMI E DEFINIZIONI UTILI

Definizione 1.1.1 (Sottospazio vettoriale)

Sia V uno spazio vettoriale, $A \subseteq V$. Allora si dice che A e' un sottospazio vettoriale di V (o semplicemente sottospazio) se

$$\mathbf{o}_{V} \in \mathsf{A}$$
 (1)

$$(v+w) \in A$$
 $\forall v, w \in A$ (2)

$$(v + w) \in A$$
 $\forall v, w \in A$ (2)
 $(kv) \in A$ $\forall k \in \mathbb{R}, v \in A$ (3)

1.2 VERIFICA

Esempio 1.2.1. Sia $S \subseteq \mathbb{R}^3$ tale che

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x - 2y + 3z = 0 \right\}.$$

Per verificare se S e' un sottospazio di \mathbb{R}^3 e' sufficiente verificare che S rispetti le tre condizioni di sopra:

 $(0 \in S)$ Verifichiamo che il vettore $\mathbf{o}_{\mathbb{R}^3} = (0,0,0)$ appartenga ad S, ovvero soddisfi la condizione x - 2y + 3z = 0:

$$0 - 2 \cdot 0 + 3 \cdot 0 = 0 + 0 + 0 = 0$$

La condizione quindi e' verificata e $0_V \in S$.

 $(v + w \in S)$ Verifichiamo che se

$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \quad w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

appartengono ad S, cioe'

$$v_1 - 2v_2 + 3v_3 = 0$$
, $w_1 - 2w_2 + 3w_3 = 0$

allora il vettore $\boldsymbol{v} + \boldsymbol{w} = (v_1 + w_1, v_2 + w_2, v_3 + w_3)$ appartiene ad S, ovvero soddisfa la condizione x - 2y + 3z = 0.

$$(v_1 + w_1) - 2(v_2 + w_2) + 3(v_3 + w_3)$$

$$= v_1 + w_1 - 2v_2 - 2w_2 + 3v_3 + 3w_3$$

$$= (v_1 - 2v_2 + 3v_3) + (w_1 - 2w_2 + 3w_3)$$

dunque per l'ipotesi che $v \in S$ e $w \in S$

$$= 0 + 0$$

= 0.

Dunque $v + w \in S$.

 $(kv \in S)$ Verifichiamo che se

$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

appartiene ad S, cioe'

$$v_1 - 2v_2 + 3v_3 = 0$$

allora per ogni $k \in \mathbb{R}$ il vettore $kv = (kv_1, kv_2, kv_3)$ appartiene ad S, ovvero soddisfa la condizione x - 2y + 3z = 0.

$$(kv_1) - 2(kv_2) + 3(kv_3) = kv_1 - 2kv_2 + 3kv_3$$

= $k(v_1 - 2v_2 + 3v_3)$

dunque per l'ipotesi che $v \in S$

$$= k \cdot 0$$
$$= 0.$$

Dunque k $v \in S$.

Concludiamo che S e' un sottospazio di \mathbb{R}^3 .

Esempio 1.2.2. Sia $S \subseteq \mathbb{R}^3$ tale che

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x - 2y + 3z = 4 \right\}.$$

Per verificare se S e' un sottospazio di \mathbb{R}^3 e' sufficiente verificare che S rispetti le tre condizioni di sopra:

 $(0 \in S)$ Verifichiamo che il vettore $\mathbf{o}_{\mathbb{R}}^3 = (0,0,0)$ appartenga ad S, ovvero soddisfi la condizione x - 2y + 3z = 4:

$$0 - 2 \cdot 0 + 3 \cdot 0 = 0 + 0 + 0 = 0 \neq 4$$

La condizione quindi non e' verificata.

Possiamo subito concludere che S non e' un sottospazio di \mathbb{R}^3 .

Esempio 1.2.3. Sia $S \subseteq \mathbb{R}^3$ tale che

$$S = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x^2 - y^2 = 0 \right\}.$$

Per verificare se S e' un sottospazio di \mathbb{R}^3 e' sufficiente verificare che S rispetti le tre condizioni di sopra:

 $(0 \in S)$ Verifichiamo che il vettore $\mathbf{o}_{\mathbb{R}}^3 = (0,0,0)$ appartenga ad S, ovvero soddisfi la condizione $x^2-y^2=0$:

$$0^2 - 0y^2 = 0 + 0 = 0$$

La condizione quindi e' verificata e $0_V \in S$.

 $(v+w \in S)$ Verifichiamo che se

$$v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}, \quad w = \begin{pmatrix} w_1 \\ w_2 \\ w_3 \end{pmatrix}$$

appartengono ad S, cioe'

$$v_1^2 - v_2^2 = 0$$
, $w_1^2 - w_2^2 = 0$

allora il vettore $v + w = (v_1 + w_1, v_2 + w_2, v_3 + w_3)$ appartiene ad S, ovvero soddisfa la condizione $x^2 - y^2 = 0$.

$$(v_1 + w_1)^2 - (v_2 + w_2)^2$$

$$= v_1^2 + w_1^2 + 2v_1w_1 - v_2^2 - w_2^2 - 2v_2w_2$$

$$= (v_1^2 - v_2^2) + (w_1^2 - w_2^2) + 2v_1w_1 - 2v_2w_2$$

dunque per l'ipotesi che $v \in S$ e $w \in S$

$$= 0 + 0 + 2v_1w_1 - 2v_2w_2$$

= $2v_1w_1 - 2v_2w_2$.

Ma nessuno ci assicura che questa somma sia uguale a 0 (ad esempio basta scegliere v = (1, -1, 0) e w = (1, 1, 0)), dunque la condizione non e' sempre rispettata.

Concludiamo che S non e' un sottospazio di \mathbb{R}^3 .

Еѕемріо 1.2.4. Sia $V = \mathcal{M}_{2\times 2}(\mathbb{R})$ e sia $A \subseteq V$ tale che

$$A = \left\{ \, M \in \mathfrak{M}_{2 \times 2}(\mathbb{R}) \, : \, M = M^T \, \right\}.$$

Vedere se questo e' un sottospazio sembra piu' difficile degli esercizi precedenti. Tuttavia, possiamo cercare di rendere la definizione di A piu' esplicita in modo da capire meglio quale sia la condizione di appartenenza al sottospazio.

Notiamo che tutta la definizione di A si basa su una matrice generica $M \in \mathcal{M}_{2\times 2}(\mathbb{R})$. Rendiamo piu' esplicita questa definizione, scrivendo

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

con $a, b, c, d \in \mathbb{R}$ generici.

A questo punto ricordando la definizione di matrice trasposta (ovvero una matrice ottenuta trasformando le righe in colonne) possiamo scrivere la condizione di appartenenza al sottospazio A come

$$M = M^{\mathsf{T}} \iff \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$$

Dunque la matrice M appartiene ad A se e solo se b = c (ovvero la seconda e la terza coordinata sono uguali), cioe'

$$A = \left\{ \left. \begin{pmatrix} \alpha & b \\ c & d \end{pmatrix} \in \mathfrak{M}_{2 \times 2}(\mathbb{R}) \, : \, b = c \, \right\}.$$

A questo punto possiamo verificare se A e' effettivamente un sottospazio di $\mathfrak{M}_{2\times 2}(\mathbb{R}).$

 $(0 \in A)$ Verifichiamo che il vettore $\mathbf{o}_V = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ appartenga ad A, ovvero soddisfi la condizione $\mathbf{b} = \mathbf{c}$. La condizione e' ovviamente verificata e dunque $0_V \in A$.

 $(v + w \in A)$ Verifichiamo che se

$$M_1 = \begin{pmatrix} p & q \\ r & s \end{pmatrix}, \quad M_2 = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$

appartengono ad A, cioe'

$$q = r$$
, $y = z$

allora la matrice

$$M_1 + M_2 = \begin{pmatrix} p + x & q + y \\ r + z & s + t \end{pmatrix}$$

appartiene ad A, ovvero soddisfa la condizione b = c.

$$(q+y) \stackrel{?}{=} (r+z)$$

Per l'ipotesi che $M_1 \in A$ e $M_2 \in A$ sappiamo che q = r e y = z:

$$\iff$$
 r + z = r + z

che e' ovvia. Dunque $M_1 + M_2 \in A$.

 $(kv \in A)$ Verifichiamo che se

$$M = \begin{pmatrix} x & y \\ z & t \end{pmatrix}$$

appartiene ad A, cioe'

$$y = z$$

allora per ogni $k \in \mathbb{R}$ la matrice

$$kM = \begin{pmatrix} kx & ky \\ kz & kt \end{pmatrix}$$

appartiene ad A, ovvero soddisfi la condizione ky = kz.

Ma per ipotesi y = z, dunque moltiplicando entrambi i membri per k otteniamo ky = kz, che e' quello che stavamo cercando di dimostrare.

Dunque $kM \in A$.

Segue quindi che A e' un sottospazio di $\mathcal{M}_{2\times 2}(\mathbb{R})$. Tale sottospazio si chiama *spazio delle matrici simmetriche*.

ESERCIZIO 1.2.5. Dire se i seguenti sottoinsiemi sono sottospazi oppure no.

1. $V \subseteq \mathbb{R}^4$ tale che

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^4 : 3x - 2y + z + t = 0 \right\}$$

2. $V \subseteq \mathbb{R}^3$ tale che

$$V = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : \begin{cases} 3x - 2y + z = 0 \\ -x + y + 4z = 2 \end{cases} \right\}$$

3. $V \subseteq \mathbb{R}^3$ tale che

$$V = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}$$

4. $V \subseteq \mathbb{R}[x]^{\leq 3}$ tale che

$$V = \{ p(x) \in \mathbb{R}[x]^{\leq 3} : p(2) = 0 \}$$

5. $V \subseteq \mathbb{R}[x]^{\leq 3}$ tale che

$$V = \left\{ p(x) \in \mathbb{R}[x]^{\leqslant 3} : p(2) = -1 \right\}$$

6. $V \subseteq \mathcal{M}_{2\times 2}(\mathbb{R})$ tale che

$$V = \{ M \in M_{2 \times 2}(\mathbb{R}) : AM - MA = O_2 \}$$

dove A e O_2 sono due matrici 2×2 tali che

$$A = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \qquad O_2 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.$$

2.1 DEFINIZIONI

Definizione 2.1.1 (Forma parametrica e cartesiana)

Sia V uno spazio vettoriale e sia A un sottospazio di V. Allora si dice che A e' espresso in forma parametrica se e' scritto come

$$A = \operatorname{span}\{v_1, v_2, \dots, v_n\}$$

 $\operatorname{con} v_1, \ldots, v_n \in A.$

Invece si dice che A e' espresso in forma cartesiana se e' scritto come

 $A = \{ v \in V : v \text{ rispetta qualche condizione } \}.$

Ad esempio se A e' un sottospazio di \mathbb{R}^3 allora

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}; \begin{pmatrix} 1 \\ 0 \\ -10 \end{pmatrix} \right\}$$

e' espresso in forma parametrica, mentre

$$A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x - 2y + 3 = 0 \right\}$$

e' espresso in forma cartesiana.

2.2 PASSARE DALLA FORMA CARTESIANA ALLA FORMA PARAMETRICA

Esempio 2.2.1. Sia $A \subseteq R^3$ tale che

$$A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : \begin{cases} 3x - 2y + z = 0 \\ -x + y + 4z = 0 \end{cases} \right\}.$$

Per scriverlo in forma parametrica dobbiamo risolvere il sistema e sostituire le informazioni ricavate nell'espressione per il vettore.

Risolviamo il sistema:

$$\begin{pmatrix} 3 & -2 & 1 \\ -1 & 1 & 4 \end{pmatrix} \xrightarrow{\text{scambio}} \begin{pmatrix} 1 & -1 & -4 \\ 3 & -2 & 1 \end{pmatrix}$$

$$\xrightarrow{R_2 - 3R_1} \begin{pmatrix} 1 & -1 & -4 \\ 0 & 1 & 13 \end{pmatrix} \xrightarrow{R_1 + R_2} \begin{pmatrix} 1 & 0 & 9 \\ 0 & 1 & 13 \end{pmatrix}$$

Dunque la soluzione al sistema e' x=-9z, y=-13z con $z\in\mathbb{R}$ libera. Sostituiamolo nell'espressione per (x,y,z):

$$A = \left\{ \begin{pmatrix} -9z \\ -13z \\ z \end{pmatrix} \in \mathbb{R}^3 : z \in \mathbb{R} \right\}$$
$$= \left\{ z \begin{pmatrix} -9 \\ -13 \\ 1 \end{pmatrix} \in \mathbb{R}^3 : z \in \mathbb{R} \right\}$$
$$= \operatorname{span} \left\{ \begin{pmatrix} -9 \\ -13 \\ 1 \end{pmatrix} \right\}$$

che e' la forma parametrica del sottospazio A.

ESERCIZIO 2.2.2. Dato A in forma cartesiana, scriverlo in forma parametrica.

(1) A sottospazio di \mathbb{R}^4 tale che

$$A = \left\{ \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \in \mathbb{R}^4 : \begin{cases} 4x - 2y + 2z - 6t = 0 \\ -x + 3y + 4z + 2t = 0 \end{cases} \right\}$$

(2) A sottospazio di \mathbb{R}^3 tale che

$$A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : \left\{ \begin{matrix} x + y - 2z = 0 \\ -x + 9z = 0 \end{matrix} \right\}$$

(3) A sottospazio di $\mathbb{R}[x]^{\leq 2}$ tale che

$$A = \left\{ p(x) \in \mathbb{R}[x]^{\leqslant 2} : p(1) = 0 \right\}$$

(4) A sottospazio di $\mathcal{M}_{2\times 2}(\mathbb{R})$ tale che

$$A = \left\{\,M \in \mathfrak{M}_{2 \times 2}(\mathbb{R}) \,:\, M = M^T\,\right\}$$

HINT: se la condizione non e' totalmente esplicita (accade spesso quando si hanno spazi diversi da \mathbb{R}^n) basta esplicitarla.

Ad esempio, se lo spazio e' $\mathbb{R}[x]^{\leqslant 2}$, invece di scrivere la condizione in termini di un polinomio generico p(x) basta esplicitare il polinomio scrivendolo per esteso (in questo caso scriviamo $p(x) = a + bx + cx^2$ lasciando libere $a, b, c \in \mathbb{R}$) e poi riscrivere la condizione in termini delle nuove variabili a, b, c.

A questo punto e' anche facile fare l'isomorfismo con $\mathbb{R}^{\text{quello che ti pare}}$ per risolvere l'esercizio come se fosse con i vettori colonna.

2.3 PASSARE DALLA FORMA PARAMETRICA ALLA FORMA CARTE-SIANA

Еѕемріо 2.3.1. Sia A sottospazio di \mathbb{R}^3 tale che

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right\}.$$

Per definizione di span, sappiamo che

$$A = \left\{ a \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + b \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} : a, b \in \mathbb{R} \right\}.$$

Dunque un vettore generico (x, y, z) e' in A se e solo se

$$\exists \alpha, b \in \mathbb{R} \text{ tali che } \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \alpha \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + b \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \alpha - b \\ 2\alpha \\ 3\alpha + b \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ b \end{pmatrix}.$$

Dunque la condizione per cui $(x, y, z) \in A$ dipende dalla *risolubilita*' del sistema

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & -1 \\ 2 & 0 \\ 3 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}.$$

Proviamo a risolverlo e imponiamo che non vi siano equazioni impossibili.

$$\begin{pmatrix} 1 & -1 & x \\ 2 & 0 & y \\ 3 & 1 & z \end{pmatrix} \xrightarrow{R_2 - 2R_1} \begin{pmatrix} 1 & -1 & x \\ 0 & 2 & y - 2x \\ 0 & 4 & z - 3x \end{pmatrix} \xrightarrow{R_3 - 2R_2} \begin{pmatrix} 1 & -1 & x \\ 0 & 2 & y - 2x \\ 0 & 0 & z - 3x - 2(y - 2x) \end{pmatrix}.$$

Dunque il sistema ha soluzione se e solo se

$$z - 3x - 2(y - 2x) = 0$$

ovvero se e solo se

$$x - 2y + z = 0$$

che e' la condizione che cercavamo.

Di conseguenza, il sottospazio A in forma cartesiana e' dato da

$$A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x - 2y + z = 0 \right\}.$$

ESERCIZIO 2.3.2. Dato A in forma parametrica, scriverlo in forma cartesiana.

(1) A sottospazio di \mathbb{R}^3 tale che

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ -3 \end{pmatrix} \right\}$$

(2) A sottospazio di \mathbb{R}^4 tale che

$$A = \operatorname{span} \left\{ \begin{pmatrix} 2 \\ 1 \\ 1 \\ 2 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$

(3) A sottospazio di \mathbb{R}^2 tale che

$$A = span \left\{ \begin{pmatrix} 1 \\ 2 \end{pmatrix}; \begin{pmatrix} 0 \\ -1 \end{pmatrix} \right\}$$

(4) A sottospazio di \mathbb{R}^4 tale che

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \\ -3 \end{pmatrix}; \begin{pmatrix} 0 \\ 1 \\ -3 \\ 2 \end{pmatrix}; \begin{pmatrix} 3 \\ -1 \\ 2 \\ 1 \end{pmatrix} \right\}$$

Dati sottospazi di uno spazio vettoriale V, scritti in forma parametrica o cartesiana, vorremmo riuscire a ricavare una base del sottospazio.

3.1 TEOREMI E DEFINIZIONI UTILI

Definizione 3.1.1 (Base di uno spazio vettoriale)

Sia V uno spazio vettoriale, $v_1, \ldots, v_n \in V$. Allora si dice che $\mathbb{B} = \langle v_1, \ldots, v_n \rangle$ e' una base di V se

- i vettori v_1, \ldots, v_n generano V;
- ullet i vettori v_1,\ldots,v_n sono linearmente indipendenti.

Le basi canoniche degli spazi vettoriali piu' comuni sono:

BASE CANONICA DI Rⁿ

La base canonica di \mathbb{R}^n e'

$$\left\langle \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{pmatrix} \right\rangle.$$

Base canonica di $\mathfrak{M}_{n \times m}(\mathbb{R})$

La base canonica di $\mathfrak{M}_{2\times 2}(\mathbb{R})$ e'

$$\left\langle \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \right\rangle.$$

Ragionamento analogo per le $n \times m$. Lo spazio delle matrici $n \times m$ e' isomorfo a \mathbb{R}^{nm} .

BASE CANONICA DELLO SPAZIO DEI POLINOMI

La base canonica di $\mathbb{R}[x]^{\leqslant n}$ e'

$$\langle 1, x, x^2, \dots, x^{n-1}, x^n \rangle$$
.

Lo spazio dei polinomi di grado minore o uguale a n e' isomorfo a \mathbb{R}^{n+1} .

3.1.2. Proposizione.

(Mosse di colonna per ottenere uno span di vettori indipendenti)

Sia V un sottospazio di \mathbb{R}^n tale che $v_1, \ldots, v_m \in \mathbb{R}^n$ siano suoi generatori, ovvero

$$V = \operatorname{span}\{v_1, \ldots, v_m\}.$$

Consideriamo la matrice A formata dai vettori v_i messi in colonna e riduciamola a scalini per colonna. Siano c_1, \ldots, c_k le colonne non nulle della matrice A ridotta a scalini. Allora

- (i) c_1, \ldots, c_k sono indipendenti;
- (ii) lo span di c_1, \ldots, c_k e' uguale allo span di v_1, \ldots, v_n ovvero $\langle c_1, \ldots, c_k \rangle$ e' una base di V.

(-1) ..., ...,

3.1.3. Proposizione.

(ESTRAZIONE DI UNA BASE TRAMITE MOSSE DI RIGA)

Sia V un sottospazio di \mathbb{R}^n tale che $v_1, \ldots, v_m \in \mathbb{R}^n$ siano suoi generatori, ovvero

$$V = \operatorname{span}\{v_1, \ldots, v_m\}.$$

Allora possiamo porre i vettori come colonne di una matrice e ridurla a scalini per riga. Alla fine del procedimento i vettori che originariamente erano nelle colonne con i pivot sono indipendenti e generano V, dunque formano una base di V.

3.2 TROVARE UNA BASE TRAMITE MOSSE DI COLONNA

Cerchiamo di sfruttare la proposizione 3.1.2 per trovare una base di sottospazi vettoriali.

Esempio 3.2.1. Sia $A \subseteq \mathbb{R}^3$ tale che

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}; \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}; \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}; \begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix} \right\}$$

Per trovare una base di A tramite mosse di colonna mettiamo i vettori come colonne di una matrice e riduciamola a scalini per colonna.

$$\begin{pmatrix} 1 & 3 & -1 & 4 \\ -2 & -1 & 2 & -3 \\ 0 & 4 & -1 & 0 \end{pmatrix} \xrightarrow{C_2 - 3C_1, C_3 + C_1} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 5 & 0 & 5 \\ 0 & 4 & -1 & 0 \end{pmatrix} \xrightarrow{C_4 - C_2}$$

$$\xrightarrow{C_4 - C_2} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 5 & 0 & 0 \\ 0 & 4 & -1 & -4 \end{pmatrix} \xrightarrow{C_4 + 4C_3} \begin{pmatrix} 1 & 0 & 0 & 0 \\ -2 & 5 & 0 & 0 \\ 0 & 4 & -1 & 0 \end{pmatrix}$$

Dunque per la proposizione 3.1.2 i vettori (1, -2, 0), (0, 5, 4), (0, 0, -1) sono indipendenti e generano V, ovvero

$$\operatorname{span}\left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}; \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}; \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}; \begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix} \right\} = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 5 \\ 4 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} \right\}$$

dunque $\mathcal{B} = \langle (1, -2, 0); (0, 5, 4); (0, 0, -1) \rangle$ e' una base di V.

Esercizio 3.2.2. Dati uno spazio vettoriale V e un sottospazio A, trovare una base di A.

1. Sia $V = \mathbb{R}^4$ e A sottospazio di V dato da

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ -6 \\ 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 3 \\ 1 \end{pmatrix} \right\}.$$

2. Sia $V = \mathbb{R}^3$ e A sottospazio di V dato da

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix} \right\}.$$

3. Sia $V = \mathbb{R}^3$ e A sottospazio di V dato da

$$A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x - 3y + 2z = 0 \right\}.$$

4. Sia $V = \mathbb{R}[x]^{\leqslant 2}$ e A sottospazio di V dato da

$$A = \{ p(x) \in V : p(3) = 0 \}.$$

5. Sia $V = \mathcal{M}_{2 \times 2}(\mathbb{R})$ e A sottospazio di V dato da

$$A = \left\{ M \in V : M + M^T = O_2 \right\}$$

dove O_2 e' la matrice 2×2 con zero in tutte le posizioni, mentre M^T e' la matrice trasposta di M (quella ottenuta trasformando le righe in colonne).

HINT: se il sottospazio e' in forma cartesiana, va prima portato in forma parametrica per fare i calcoli con gli span.

Hint: come nel capitolo precedente, se la condizione non e' totalmente esplicita (accade spesso quando si hanno spazi diversi da \mathbb{R}^n) basta esplicitarla.

Ad esempio, se lo spazio e' $\mathbb{R}[x]^{\leq 2}$, invece di scrivere la condizione in termini di un polinomio generico p(x) basta esplicitare il polinomio scrivendolo per esteso (in questo caso scriviamo $p(x) = a + bx + cx^2$ lasciando libere $a, b, c \in \mathbb{R}$) e poi riscrivere la condizione in termini delle nuove variabili a, b, c.

A questo punto e' anche facile fare l'isomorfismo con $\mathbb{R}^{\text{quello che ti pare}}$ per risolvere l'esercizio come se fosse con i vettori colonna.

3.3 TROVARE UNA BASE TRAMITE ESTRAZIONE E MOSSE DI RIGA

Cerchiamo di sfruttare la proposizione 3.1.3 per trovare una base di sottospazi vettoriali.

Еѕемріо 3.3.1. Sia $A \subseteq \mathbb{R}^3$ tale che

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}; \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}; \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}; \begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix} \right\}$$

Per trovare una base di A tramite mosse di riga mettiamo i vettori come colonne di una matrice e riduciamola a scalini per riga.

$$\begin{pmatrix} 1 & 3 & -1 & 4 \\ -2 & -1 & 2 & -3 \\ 0 & 4 & -1 & 0 \end{pmatrix} \xrightarrow{R_2 + 2R_1} \begin{pmatrix} 1 & 3 & -1 & 4 \\ 0 & 5 & 0 & 5 \\ 0 & 4 & -1 & 0 \end{pmatrix} \xrightarrow{R_2 \times \frac{1}{5}}$$

$$\begin{pmatrix} 1 & 3 & -1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 4 & -1 & 0 \end{pmatrix} \xrightarrow{R_3 - 4R_2} \begin{pmatrix} 1 & 3 & -1 & 4 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & -4 \end{pmatrix}$$

I pivot di questa matrice sono nelle colonne 1, 2 e 3, dunque per la proposizione 3.1.3 i vettori (1, -2, 0), (3, -1, 4), (-1, 2, -1) sono indipendenti e generano V, ovvero

$$\operatorname{span}\left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}; \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}; \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix}; \begin{pmatrix} 4 \\ -3 \\ 0 \end{pmatrix} \right\} = \operatorname{span}\left\{ \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ -1 \end{pmatrix} \right\}$$

dunque $\mathcal{B} = \langle (1, -2, 0); (3, -1, 4); (-1, 2, -1) \rangle$ e' una base di V.

Nota bene: i due procedimenti (per colonna e per riga) danno quasi sempre due basi diverse, ma ugualmente valide.

Esercizio 3.3.2. Dati uno spazio vettoriale V e un sottospazio A, estrarre una base di A.

1. Sia $V = \mathbb{R}^4$ e A sottospazio di V dato da

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -1 \\ -6 \\ 5 \\ 1 \end{pmatrix}, \begin{pmatrix} 4 \\ 2 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 2 \\ 3 \\ 1 \end{pmatrix} \right\}.$$

2. Sia $V = \mathbb{R}^3$ e A sottospazio di V dato da

$$A = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 2 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 7 \end{pmatrix}, \begin{pmatrix} 2 \\ 5 \\ 1 \end{pmatrix} \right\}.$$

3. Sia $V = \mathbb{R}^3$ e A sottospazio di V dato da

$$A = \left\{ \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3 : x - 3y + 2z = 0 \right\}.$$

4. Sia $V = \mathbb{R}[x]^{\leq 2}$ e A sottospazio di V dato da

$$A = \{ p(x) \in V : p(3) = 0 \}.$$

5. Sia $V = \mathcal{M}_{2\times 2}(\mathbb{R})$ e A sottospazio di V dato da

$$A = \{ M \in V : M + M^T = O_2 \}$$

dove O_2 e' la matrice 2×2 con zero in tutte le posizioni, mentre M^T e' la matrice trasposta di M (quella ottenuta trasformando le righe in colonne).

HINT: valgono gli stessi hint della sezione predecente.