Lesson 3 Analog Input

TOPICS

A. Grounding Issues

B. Sampling Considerations

C. Single Sample Acquisition

D. DAQ Device Architectures

E. Finite Buffered Acquisition

F. Continuous Buffered

Acquisition

G. Triggering

A. Grounding Issues

- To get correct analog input measurements, you must properly ground your system
- How the signal is grounded affects how you should ground the instrumentation amplifier on the DAQ device
- Steps to proper grounding of your system:
 - 1. Determine how your signal is grounded
 - 2. Choose a grounding mode for your Measurement System

Signal Source Categories

Grounded Signal Source

- Signal is referenced to a system ground
 - Earth ground
 - Building ground
- Examples:
 - Power supplies
 - Signal Generators
 - Anything that plugs into a grounded, electrical wall socket

Grounded wall socket

ni.com/training

Floating Signal Source

- Signal is NOT referenced to a system ground
 - Earth ground
 - Building ground
- Examples:
 - Batteries
 - Thermocouples
 - Transformers
 - Isolation Amplifiers

ni.com/training

Measurement System

- Three modes of grounding for your Measurement System
 - Differential
 - Referenced Single-Ended (RSE)
 - Non-Referenced Single-Ended (NRSE)
- Mode you choose will depend on how your signal is grounded

Differential Mode

- Two channels used for each signal
 - ACH 0 is paired with ACH 8, ACH 1 is paired with ACH 9, and so on.
- Rejects common-mode voltage and common-mode noise

Referenced Single-Ended (RSE) Mode

- Measurement made with respect to system ground
- One channel used for each signal
- Does not reject common mode voltage

Non-Referenced Single-Ended (NRSE) Mode

- Variation on RSE
- One channel used for each signal
- Measurement made with respect to AISENSE not system ground
- AISENSE is floating
- Does not reject common mode voltage

ACH8	34	68	ACH0
ACH1	33	67	AIGND
AIGND	32	66	ACH9
ACH10	31	65	ACH2
ACH3	30	64	AIGND
AIGND	29	63	ACH11
ACH4	28	62	AISENSE
ACH4 AIGND	28 27	62 61	AISENSE ACH12
AIGND	27	61	ACH12
AIGND ACH13	27 26	61 60	ACH12 ACH5
AIGND ACH13 ACH6	27 26 25	61 60 59	ACH12 ACH5 AIGND

Choosing Your Measurement System

Options for Grounded Signal Sources

Better

- + Rejects common-mode voltage
- Cuts channel count in half

Not Recommended

 Voltage difference (Vg) between the two grounds makes a ground loop that could damage the device

Good

- + Allows use of entire channel count
- Does not reject common-mode voltage

Bias Resistors

- Needed with floating signal source and floating measurement system (Differential or NRSE)
- Bias resistors provide a return path to ground for instrumentation amplifier bias currents
- Recommended value is between 10 k Ω and 100 k Ω

Options for Floating Signal Sources

Best

- + Rejects common-mode voltage
- Cuts channel count in half
- Needs bias resistors

Better

- + Allows use of entire channel count
- + Do not need bias resistors
- Does not reject common-mode voltage

Good

- + Allows use of entire channel count
- Needs bias resistors
- Does not reject common-mode voltage

Signal Source Connections Overview

Exercise 3-1: Differential, RSE, and NRSE

To learn how to choose a grounding mode for a measurement system and how to connect signals properly to that measurement system.

GOAL

Exercise 3-1: Differential, RSE, and NRSE

- What are the pros and cons of choosing RSE for the floating signal source?
- What are the pros and cons of choosing differential for the floating signal source?

DISCUSSION

Sampling Signals

- Individual samples are represented by: $x[i] = x(i\Delta t)$, for i = 0, 1, 2, ...
- If N samples are obtained from signal x(t):

$$X = \{x[0], x[1], x[2], ...x[N-1]\}$$

 The sequence X = {x[i]} is indexed on i and does not contain sampling rate information

B. Sampling Considerations

- Actual analog input signal is continuous with respect to time
- Sampled signal is series of discrete samples acquired at a specified sampling rate
- The faster we sample, the more our sampled signal will look like our actual signal
- If not sampled fast enough, a problem known as aliasing will occur

Aliasing

- Sample rate how often an A/D conversion takes place
- Alias misrepresentation of a signal

Nyquist Theorem

You must sample at greater than 2 times the maximum frequency component of your signal to accurately represent the FREQUENCY of your signal.

NOTE: You must sample between 5–10 times greater than the maximum frequency component of your signal to accurately represent the SHAPE of your signal.

Nyquist Frequency

- Half the sampling frequency
- You will only get a proper representation of signals that are equal to or less than your Nyquist Frequency
- Signals above Nyquist Frequency will alias according to the following formula:

Alias frequency = |(closest integer multiple of sampling frequency - signal frequency)|

Nyquist Example

Aliasing Example

Alias frequency =

Signals before acquisition

|(closest integer multiple of sampling frequency - signal frequency)|

Signals after acquisition

NATIONAL INSTRUMENTS

ni.com/training

Preventing Aliasing

Oversampling

- + Increases your Nyquist Frequency
- ADC may not go that fastLow Pass Filtering
- + Eliminates most frequencies above cutoff of filter
- Transition region still allows some frequencies to alias

Best Solution

Both oversampling and low pass filtering

Real-World Filter

Exercise 3-2: Sampling Rate and Aliasing

To demonstrate aliasing and the effects of sampling rate on an input signal.

GOAL

Exercise 3-2: Sampling Rate and Aliasing

• If the analog output signal is set to 5000 Hz, what should the analog input sampling rate be in order to correctly detect the analog output frequency?

DISCUSSION

DAOmx Read Function

1. Select Settings

2. Verify Settings

C. Single Sample Software-Timed Acquisition

- DAQmx Read VI
 - Acquires one sample each iteration
- Wait Until Next ms Multiple function
 - Determines rate of acquisition using software timing

Exercise 3-3: Voltmeter VI

To acquire an analog signal using a DAQ device.

GOAL

Exercise 3-3: Voltmeter VI

 What determines the rate at which this VI acquires samples?

DISCUSSION

D. DAQ Device Architectures

One amplifier and Channel 0 ADC for ALL channels ADC MUX Cost effective Used on M Series and Channel n some X Series devices Multiplexed Sampling Architecture One amplifier and Channel 0 AMP ADC A/D Converter for **EACH** channel More expensive Channel n — AMP Used on most S Series and cDAQ devices and Simultaneous Sampling Architecture some X Series devices

Sampling Terminology

- Sample
 - A single measurement from a single channel
- Sample Rate
 - Samples per Channel per Second
- Sample Clock
 - Clock that controls time interval between samples
 - During each cycle of the sample clock, one sample for each channel is acquired

Al Convert Clock

- Al Convert Clock
 - Clock that directly causes analog-to-digital conversions
 - Interchannel delay

Sample Clock

Multiplexed Sampling

- Uses both Sample Clock and Al Convert Clock
 - Gives the effect of simultaneous sampling for less money
- By default, NI-DAQmx chooses the fastest AI Convert Clock rate possible that allows for adequate settling time
 - Can manually set Al Convert Clock rate using property node

MUX

Two Channel Example

- Samples per Channel per Second = 1 sample/chan/sec
- Sample Clock Timebase Divisor = 1/Samples per Channel per Second = 1sec/chan/sample
- Sample duration = (# of channels 1) * Al Convert Clock = 5 μs

Simultaneous Sampling

- Used when time relationship between signals is important
- Available on all S-Series devices and some X-Series devices
- Only uses a sample clock to synchronize the taking of samples

Buffered Analog Input

- Buffer temporary storage in computer memory for acquired or generated data
- Data transfer mechanism transfers samples from your device into the buffer where they await your call to the DAQmx Read VI to copy them to your application
 - Finite transfer
 - Continuous transfer

Data Transfer for an Input Operation

Finite Buffered Acquisition Theory

Bucket Theory

Think of your PC buffer as a bucket that is filling up with water

- Buffer size = size of the bucket
- Sample rate controls how fast water flows into the bucket
- When the bucket is full you pull it into the application
- The PC buffer is actually the allocated memory in the RAM

E. Finite Buffered Acquisition

- Perform a hardware-timed, finite buffered acquisition
- Highly recommended for many applications
- Set the sample mode to Finite Samples

Finite Buffered Acquisition

- Samples per Channel sets number of finite samples to acquire
 - NI-DAQmx automatically determines necessary buffer size
- Rate sets rate of acquisition
- DAQmx Read VI waits for task to acquire all requested samples, then reads those samples
 - Set timeout to -1 for DAQmx Read VI to wait indefinitely

Exercise 3-4: Finite Acquisition with Analysis

To acquire an array of data using a finite buffered configuration.

GOAL

Exercise 3-4: Finite Acquisition with Analysis

 What determines the rate at which this VI acquires samples?

DISCUSSION

Continuous Buffered Acquisition Flowchart

Continuous Acquisition Theory

With a continuous acquisition you need to make sure you drain your bucket as fast as you fill it

- Buffer size = size of the bucket
- Sample rate controls how fast water flows into the FIFO
- When the FIFO or RAM overflow you lose data
- Number of Samples to Read for DAQmx Read VI controls how fast you drain the RAM
- Available Samples per Channel is the amount of water still in the RAM

Continuous Buffered Acquisition

- Perform a hardware-timed, continuous buffered acquisition
- Set the sample mode to Continuous Samples

Continuous Buffered Acquisition

- Rate sets rate of acquisition
 - NI-DAQmx automatically determines buffer size based on rate
- Rate sets rate of acquisition
- Samples to Read determines the number of samples to read each iteration of the While Loop

Configuring the Number of Samples to Read for Continuous Acquisition

- Rate sets rate of acquisition (sampling rate)
 - NI-DAQmx automatically determines buffer size based on rate

Sample Rate	Buffer Size
No rate specified	10 kS
0-100 S/s	1 kS
100-10,000 S/s	10 kS
10,000-1,000,000 S/s	100 kS
> 1,000,000 S/s	1 MS

You can manually set the buffer size using the DAQmx Configure Input
Buffer VI

ni.com/training

Possible Errors of Data Transfer

Data Loss with Continuous Acquisition

Overflow Error

- Indicates that NI-DAQmx was unable to retrieve data from the FIFO fast enough
- Consequence:
 - The data in the FIFO will be overwritten
- How to avoid an overflow error:
 - Decrease the Samples per Channel per Second rate
 - Purchase a device with a larger FIFO
 - Purchase a faster computer with a faster bus

Data Loss with Continuous Acquisition

Overwrite Error

- Indicates that you are not reading data from the PC buffer fast enough
- Consequence:
 - Your unread data will be overwritten by newer data
- How to avoid an overwrite error:
 - Increase the buffer size with the DAQmx Timing VI
 - Increase the Number of Samples per Channel to read with DAQmx Read VI
 - Decrease the Samples per Channel per Second acquisition rate with the DAQmx Timing VI
 - Don't do any extra processing in your loop with the DAQmx Read VI

Exercise 3-5: Continuous Acquisition and Logging

To continuously acquire data from a DAQ device and log this data to a file.

GOAL

Exercise 3-5: Continuous Acquisition and Logging

 What will happen if you add too many processing functions inside the While Loop?

DISCUSSION

G. Triggering – DAQmx Actions and Causes

Action – when a DAQ device does something

- Generating waveform output
- Acquiring data

Each action needs a cause or stimulus – a trigger

Trigger is named after the action it causes and the way it was produced

- Action caused: Start, Reference, Pause, Advance (Switch devices)
- Production method: Analog or Digital

Trigger Actions – Start Triggering

- Valid for input or output operations
- Valid for finite or continuous operations
- Example Input 5 samples on start trigger:

Trigger Actions – Reference Triggering

- Acquisition starts as soon as software is started

Post-trigger

data

- Typically only for finite input operations
- Post-trigger Data =
 Size of Buffer Pre-trigger Data

Trigger Actions – Pause Triggering

- Allows you to pause an acquisition/generation
- Operation stops when trigger signal is low and resumes when trigger signal is high

Trigger Types – Digital Edge Triggering

- Accepts TTL/CMOS compatible signals
 - -0 to 0.8V = logic low
 - -2 to 5V = logic high
- Trigger on rising or falling edge of signal

Trigger Types – Analog Edge Triggering

Edge – Trigger off signal level and slope (rising or falling)

Trigger Types – Analog Edge Triggering

Hysteresis – adds a window above or below the trigger level to reduce false triggering due to noise or jitter

Slope = Rising, Level = 2.7, Hysteresis = -1 Slope = Falling, Level = 1.7, Hysteresis = 1

Trigger Types – Analog Triggering Support

Not all DAQ devices support analog triggering

- Most M Series and X Series devices support analog triggering
- Some C Series Modules support analog triggering

Check ni.com to see if your device supports analog triggering

Triggering Analog Input

Begin data acquisition based on:

- Digital Edge (rising or falling)
- Digital Pattern (digital pattern of 0's and 1's)
- Analog Edge (slope and level)
- Analog Window (specify upper and lower window limits)

Exercise 3-6: Triggered Continuous Acquisition

Write a VI to trigger analog input on a digital edge.

GOAL

Exercise 3-6: Triggered Continuous Acquisition

 How would you change the VI if you also needed to acquire 100 samples of pre-trigger data?

DISCUSSION

Summary—Quiz

- 1. Which of the following grounding modes should you not use with a grounded signal source?
 - a) Differential
 - b) Referenced single-ended
 - c) Non-referenced single-ended

Summary—Quiz Answer

- 1. Which of the following grounding modes should you not use with a grounded signal source?
 - a) Differential
 - b) Referenced single-ended
 - c) Non-referenced single-ended

Summary—Quiz

- 2. The Nyquist Theorem helps to determine the sampling rate. What problem does this help with?
 - a) Spying
 - b) Noise
 - c) Aliasing
 - d) Isolation

Summary—Quiz Answer

- 2. The Nyquist Theorem helps to determine the sampling rate. What problem does this help with?
 - a) Spying
 - b) Noise
 - c) Aliasing
 - d) Isolation

Summary—Quiz

- 3. Which of the following operations can the DAQmx Read VI be used for?
 - a) Single-point
 - b) Multi-sample
 - c) Multi-channel
 - d) All of the above

Summary—Quiz Answer

- 3. Which of the following operations can the DAQmx Read VI be used for?
 - a) Single-point
 - b) Multi-sample
 - c) Multi-channel
 - d) All of the above

Summary—Quiz

- 4. Software-timed, single-point reads are good for getting information on the shape of a waveform
 - a) True
 - b) False

Summary—Quiz Answer

- 4. Software-timed, single-point reads are good for getting information on the shape of a waveform
 - a) True
 - b) False

Summary—Quiz

- 5. Buffered acquisitions require the use of a clock signal.
 - a) True
 - b) False

Summary—Quiz Answer

- 5. Buffered acquisitions require the use of a clock signal.
 - a) True
 - b) False

