Ih3119: HW0 and HW1

Step 3: Test File Import

Replace the UNI in the steps with your UNI.

```
In [17]: import lh3119_HW0

In [18]: lh3119_HW0.t1()

Out[18]: 'lh3119 says Hello World'
```

The text above should look like my example, but with you UNI.

Note: Any time you change the underlying Python file, you must restart the kernel using the menu. You must then re-import and rerun any cells.

Step 4: Install PyMYSQL and iPython-SQL

- You run the commands below in an Anaconda terminal window.
- Install pymysql in your Anaconda environment.
- Install iPython-SQL in your Anaconda environment.
- · Restart the notebook Kernel.
- The following cell should execute.

```
In [21]: import pymysql
    pymysql.__version__
Out[21]: '1.0.2'
```

• In the cell below, replace dbuser:dbuserdbuser with your MySQL user ID and password.

The following is a simple test. You should get similar results, but your might be slightly

different.

```
In [23]:
           %sql show tables from information_schema
           * mysql+pymysql://root:***@localhost
          79 rows affected.
Out[23]:
                    Tables_in_information_schema
             ADMINISTRABLE_ROLE_AUTHORIZATIONS
                              APPLICABLE_ROLES
                               CHARACTER_SETS
                            CHECK_CONSTRAINTS
          COLLATION_CHARACTER_SET_APPLICABILITY
                                    COLLATIONS
                             COLUMN_PRIVILEGES
                             COLUMN_STATISTICS
                                      COLUMNS
                           COLUMNS_EXTENSIONS
                                 ENABLED_ROLES
                                       ENGINES
                                        EVENTS
                                          FILES
                           INNODB_BUFFER_PAGE
                       INNODB_BUFFER_PAGE_LRU
                     INNODB_BUFFER_POOL_STATS
                        INNODB_CACHED_INDEXES
                                   INNODB_CMP
                          INNODB_CMP_PER_INDEX
                   INNODB_CMP_PER_INDEX_RESET
                             INNODB_CMP_RESET
                               INNODB_CMPMEM
                         INNODB_CMPMEM_RESET
                              INNODB_COLUMNS
                              INNODB_DATAFILES
                                 INNODB_FIELDS
                                INNODB_FOREIGN
                          INNODB_FOREIGN_COLS
                       INNODB_FT_BEING_DELETED
```

Tables_in_information_schema

INNODB_FT_CONFIG

INNODB_FT_DEFAULT_STOPWORD

INNODB_FT_DELETED

INNODB_FT_INDEX_CACHE

INNODB_FT_INDEX_TABLE

INNODB_INDEXES

INNODB_METRICS

INNODB_SESSION_TEMP_TABLESPACES

INNODB_TABLES

INNODB_TABLESPACES

INNODB_TABLESPACES_BRIEF

INNODB_TABLESTATS

INNODB_TEMP_TABLE_INFO

INNODB_TRX

INNODB_VIRTUAL

KEY_COLUMN_USAGE

KEYWORDS

OPTIMIZER_TRACE

PARAMETERS

PARTITIONS

PLUGINS

PROCESSLIST

PROFILING

REFERENTIAL_CONSTRAINTS

RESOURCE_GROUPS

ROLE_COLUMN_GRANTS

ROLE_ROUTINE_GRANTS

ROLE_TABLE_GRANTS

ROUTINES

SCHEMA_PRIVILEGES

SCHEMATA

SCHEMATA_EXTENSIONS

ST_GEOMETRY_COLUMNS

ST_SPATIAL_REFERENCE_SYSTEMS

ST_UNITS_OF_MEASURE

Tables_in_information_schema

STATISTICS

TABLE_CONSTRAINTS

TABLE_CONSTRAINTS_EXTENSIONS

TABLE_PRIVILEGES

TABLES

TABLES_EXTENSIONS

TABLESPACES

TABLESPACES EXTENSIONS

TRIGGERS

USER_ATTRIBUTES

USER_PRIVILEGES

VIEW_ROUTINE_USAGE

VIEW_TABLE_USAGE

VIEWS

Step 5: Load Sample Data

- In the directory where you cloned the project, there is a sub-folder db_book.
- Start DataGrip.
- In DataGrip, choose File->New DataSource->MySQL.
 - Accept the default name for the data source.
 - Set the MySQL user ID and password.
 - You may see a message stating that you need to install database drives. Install the drivers.
- Select the newly created data source. The name will Run SQL Script . Navigate to and choose the file DDL_drop.sql .
- Do the same for smallRelationsInsertFile.sql.
- You will see an icon/text on the side bar labelled db_book. It may be greyed-out. Right click on the entry and choose New query console. You may see a message Current schema not introspected and Introspect schema on the far right. Click on Introspect schema.
- Enter select * from course in the query console window. Click on the little green arrow to run the query.

• Take a screen show of your DataGrip window and save the screen show into the folder of the form dff9_src using your UNI. Remember the name of the file.

 Set your file name in the cell below replacing the example and run the cell. You should see your screenshot below. Yours will look a little different from mine. As long as yours shows the query result, you are fine.

```
file_name = 'queryresult.png'
print("\n")
from IPython.display import Image
Image(filename=file_name)
```

Step 6: Very %sql

• Execute the cell below. Your answer will be similar to mine but may not match exactly.

```
In [25]:
            %sql select * from db_book.course
            * mysql+pymysql://root:***@localhost
           13 rows affected.
Out[25]: course_id
                                          title dept_name credits
             BIO-101
                                Intro. to Biology
                                                   Biology
                                                                 4
             BIO-301
                                      Genetics
                                                   Biology
            BIO-399
                          Computational Biology
                                                   Biology
                                                                 3
              CS-101
                      Intro. to Computer Science
                                                 Comp. Sci.
                                                                 4
```

course_id	title	dept_name	credits
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	4

Step 7: Pandas, CSV and SQL

• Run the cell below.

```
import pandas
pandas.__version__
```

- Out[26]: '1.3.4'
 - Install SQLAlchemy using an Anaconda prompt.
 - Restart the notebook kernel and rerun all cells. Then run the cell below.

```
In [27]: from sqlalchemy import create_engine
```

- Go into DataGrip. Select your local database, e.g. @localhost .
- Open a query console and execute create database lahmansdb. Then execute the cell below.

```
In [28]:  %sql show tables from lahmansdb;

* mysql+pymysql://root:***@localhost
1 rows affected.

Out[28]:  Tables_in_lahmansdb

people
```

- There is a folder data in the project you cloned. There is a file in the folder People.csv.
- Execute the following code cell. If you are on Windows, you may have to change the path to the file and may have to replace / with \\ in paths.

You should see a result similar to mine below.

```
In [29]:
          df = pandas.read_csv('../../data/People.csv')
          df
```

Out[29]:		playerID	birthYear	birthMonth	birthDay	birthCountry	birthState	birthCity	deathYear
	0	aardsda01	1981.0	12.0	27.0	USA	СО	Denver	NaN
	1	aaronha01	1934.0	2.0	5.0	USA	AL	Mobile	2021.0
	2	aaronto01	1939.0	8.0	5.0	USA	AL	Mobile	1984.0
	3	aasedo01	1954.0	9.0	8.0	USA	CA	Orange	NaN
	4	abadan01	1972.0	8.0	25.0	USA	FL	Palm Beach	NaN
	•••								
	20353	zupofr01	1939.0	8.0	29.0	USA	CA	San Francisco	2005.0
	20354	zuvelpa01	1958.0	10.0	31.0	USA	CA	San Mateo	NaN
	20355	zuverge01	1924.0	8.0	20.0	USA	МІ	Holland	2014.0
	20356	zwilldu01	1888.0	11.0	2.0	USA	МО	St. Louis	1978.0
	20357	zychto01	1990.0	8.0	7.0	USA	IL	Monee	NaN

20358 rows × 24 columns

• We will now save the data to MySQL. Run the cells below. You will have to change dbuser:dbuserdbuser to your MySQL user ID and password.

```
In [30]:
          engine = create_engine("mysql+pymysql://root:dvuserdvuser@localhost")
In [31]:
          df.to_sql('people', con=engine, index=False, if_exists='replace', schema='lahman
```

• Test that you wrote the information to the databases.

```
In [32]:
          %sql select * from lahmansdb.people where nameLast='Williams' and bats='L'
          * mysql+pymysql://root:***@localhost
```

¹⁹ rows affected.

Out[32]: playerID birthYear birthMonth birthDay birthCountry birthState birthCity deathYear death williar01 1877.0 8.0 24.0 USA Somerville 1941.0 willibi01 1938.0 6.0 15.0 USA ΑL Whistler None willibi02 1932.0 6.0 13.0 USA SC Newberry 2013.0 willicy01 1887.0 12.0 21.0 USA IN Wadena 1974.0 willida05 2.0 1958.0 28.0 USA NY Brooklyn None willida07 1979.0 3.0 12.0 USA Anchorage None willide01 1896.0 12.0 13.0 USA OR Portland 1929.0 willigu02 1888.0 5.0 7.0 USA NE Omaha 1964.0 williju02 1995.0 8.0 20.0 USA LA Houma None Grants willike01 1890.0 28.0 USA OR 1959.0 6.0 **Pass** willile03 1905.0 12.0 2.0 USA 1984.0 GΑ Macon willima02 1953.0 7.0 28.0 USA NY Elmira None willima07 1991.0 8.0 21.0 USA RΙ Pawtucket None willimi02 17.0 USA 1964.0 11.0 Santa Ana None willini01 1993.0 9.0 8.0 USA TX Galveston None willira01 1975.0 9.0 18.0 USA Harlingen None TX Santa williri02 1893.0 12.0 18.0 USA CA 1966.0 Cruz willist01 1892.0 1.0 1979.0 31.0 USA MT Cascade 30.0 willite01 1918.0 8.0 USA CA San Diego 2002.0

Step 7: Done

• You are done.

```
In [33]: file_name = 'lh3119_pycharm.png'
    print("\n")
    from IPython.display import Image
    Image(filename=file_name)
```

```
file_name = 'lh3119_health.png'
print("\n")
from IPython.display import Image
Image(filename=file_name)
```


{"status": "healthy", "time": "2022-01-25 20:19:06.902813"}

```
In []:

In []:
```

In []: