AE2ADS: Algorithms Data Structures and Efficiency

Lecturer: Heshan Du

Email: <u>Heshan.Du@nottingham.edu.cn</u>

University of Nottingham Ningbo China

Big-Oh

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is O(g(n)), if there exist a real constant c>0 and an integer constant $n_0\geq 1$ such that for every $n\geq n_0$,

$$f(n) \le cg(n).$$

Prove that:

- $n^2 + 1$ is $O(n^2)$
- $(n-3)^2$ is $O(n^2)$

Given that f(n) = n + 3, if n is even; $f(n) = n^2 + 5$, if n is odd, state the Big-Oh behaviour of f(n), and prove it.

Big-Omega

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is $\Omega(g(n))$, if there exist a real constant c>0 and an integer constant $n_0\geq 1$ such that for every $n\geq n_0$,

$$f(n) \ge cg(n)$$
.

Big-Theta

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is $\Theta(g(n))$, if there are real constants c'>0, c''>0, and an integer constant $n_0\geq 1$ such that for every $n\geq n_0$, $c'g(n)\leq f(n)\leq c''g(n)$.

Little-Oh

Let f(n) and g(n) be functions mapping positive integers to positive real numbers.

We say that f(n) is o(g(n)), if for every real constant c > 0, there exists an integer constant $n_0 \ge 1$ such that for every $n \ge n_0$, f(n) < cg(n).

- Prove or disprove that:
 - 1. 5 is $\Omega(1)$
 - 2. 2n+1 is $\Omega(n)$
 - 3.5 is o(1)
 - **4.** 5 is o(n)
 - 5. $n^2 5n$ is $\Theta(n^2)$
 - 6. n^2 is $\Omega(n)$
 - 7. 1 is $o(\log n)$
 - 8. $n \log n$ is $o(n^2)$

Given $f(n) = n^2$ if n is even, f(n) = n if n is odd. Find the big-Oh and big-Omega behaviors of f(n).

More Exercises

M. T. Goodrich, R. Tamassia and M. H. Goldwasser, Data Structures and Algorithms in Java, 6th Edition, 2014.

Chapter 4. Analysis Tools