Chapter 5 Mixed Models for Discrete Data

5.1 Generalized Linear Mixed Models

- The previous chapter focused on the framework of Generalized Estimating Equations
 - by this can be seen as the extension of the marginal models for continuous data of Chapter 2 to the setting of categorical longitudinal responses
- In this chapter we will see the analogue of linear mixed models for categorical data

Generalized Linear Mixed Models (GLMMs)

- The intuitive idea behind GLMMs is the same as in linear mixed models, i.e.,
 - by the correlation between the repeated categorical measurements is induced by unobserved random effects
 - in other words: the categorical longitudinal measurements of a subject are correlated because all of them share the same unobserved random effect (conditional independence assumption)

Graphical representation of the conditional independence assumption

- Similarly to Chapter 4, we will focus on grouped dichotomous/binary data
 - ▷ nonetheless, the same ideas and issues also apply to other categorical responses (e.g., Poisson, ordinal data, multinomial data, etc.)
- ullet Suppose we have a binary outcome y_{ij}

$$y_{ij} = \begin{cases} 1, & \text{if subject } i \text{ has a positive response at measurement } j \\ 0, & \text{if subject } i \text{ has a negative response at measurement } j \end{cases}$$

• The generic mixed model for y_{ij} is a *Mixed-Effects Logistic Regression* and has the form:

$$\begin{cases} \log \frac{\pi_{ij}}{1 - \pi_{ij}} = x_{ij}^{\top} \beta + z_{ij}^{\top} b_i \\ b_i \sim \mathcal{N}(0, D) \end{cases}$$

where

 $\triangleright \pi_{ij} = \Pr(y_{ij} = 1)$ the probability of a positive response

 $\triangleright x_{ij}$ a vector of fixed-effects covariates, with corresponding regression coefficients β

 $\triangleright z_{ij}$ a vector of random-effects covariates, with corresponding regression coefficients b_i

- More formally, we have the following three-part specification
 - 1. Conditional on the random effects b_i , the responses y_{ij} are independent and have a Bernoulli distribution with mean $E(y_{ij} \mid b_i) = \pi_{ij}$ and variance $\text{var}(y_{ij} \mid b_i) = \pi_{ij}(1 \pi_{ij})$
 - 2. The conditional mean of y_{ij} depends upon fixed and random effects via the following expression:

$$\log \frac{\pi_{ij}}{1 - \pi_{ij}} = x_{ij}^{\mathsf{T}} \beta + z_{ij}^{\mathsf{T}} b_i$$

3. The random effects follow a multivariate normal distribution with mean zero and variance-covariance matrix D

- Notes: On the definition of GLMMs
 - \triangleright The three-part specification of GLMMs corresponds to a full specification of the distribution of the outcome y_{ij} this in contrast to the GEE approach, which is a semi-parametric method
 - ▶ The mean and correlation structures are simultaneously defined using random effects
 - \Rightarrow As we will see next, this has direct and important implications with respect to the interpretation of the parameters

5.2 Interpretation

- Example: In the AIDS dataset, a very low CD4 count (less than 150 cells/mm³) is an indicator for opportunistic infections
 - ▷ In the following analysis we dichotomize the CD4 cell counts from the AIDS dataset using this threshold
 - ▶ We fit a mixed effects logistic regression with
 - * fixed effects: time, treatment and their interaction
 - * random effects: random intercepts

• The model has the form:

$$\log \frac{\pi_{ij}}{1 - \pi_{ij}} = \beta_0 + \beta_1 \mathsf{Time}_{ij} + \beta_2 \mathsf{ddI}_i + \beta_3 \{\mathsf{Time}_{ij} \times \mathsf{ddI}_i\} + b_i, \quad b_i \sim \mathcal{N}(0, \sigma_b^2)$$

	Value	Std.Err.	z-value	p-value
β_0	6.250	0.899	6.954	< 0.001
β_1	0.149	0.044	3.392	0.001
β_2 -	-0.811	0.731	-1.109	0.267
β_3 .	-0.029	0.059	-0.494	0.622
σ_b	6.019			

- Interpretation of fixed effects
 - \triangleright At baseline for group ddC the log odds of a low CD4 cell count are on average $eta_0 = 6.25$
 - * 95% heterogeneity interval (not confidence interval): $(\beta_0 1.96\sigma_b ; \beta_0 + 1.96\sigma_b) = (-5.55; 18.05)$
 - \triangleright We translate the log odds to the probability scale: The probability of low CD4 cell count is $\exp(\beta_0)/\{1+\exp(\beta_0)\}=0.99807$
 - * 95% heterogeneity interval:

$$(1/[1 + \exp{-(\beta_0 - 1.96\sigma_b)}]; 1/[1 + \exp{-(\beta_0 + 1.96\sigma_b)}]) = (0.00389; 1)$$

• When we compare the middle point of the transformed heterogeneity interval with the transformed intercept an **important** observation is made:

$$\triangleright \exp(\beta_0)/\{1 + \exp(\beta_0)\} = 0.99807$$

 \triangleright mean of transformed interval = 0.50194

When we transform the fixed effects to the probability scale, they do not correspond to the average probability

• Let's explain this issue graphically . . .

• We did not have this problem in the case of the linear mixed model because we did not have a link function

 \triangleright or put more precisely, the link function was the identity g(x)=x

• Let's see graphically again why for linear mixed models we do <u>not</u> have the same problem . . .

- The same complications also hold for the other fixed-effects coefficients of the logistic regression model
 - \triangleright e.g., β_1 does **not** have the interpretation of the *average* odds ratio for a month increase in follow-up
- Let's see why
 - \triangleright say that we compare two patients at different follow-up times who both took ddC, Patient i at month m and Patient i' at month m+1
 - \triangleright the equation of the model for Patient i is:

$$\log \frac{\pi_{ij}}{1 - \pi_{ij}} = \beta_0 + \beta_1 \{ \text{Time}_{ij} = m \} + \frac{b_i}{b_i}$$

 \triangleright the equation of the model for Patient i' is:

$$\log \frac{\pi_{i'j}}{1 - \pi_{i'j}} = \beta_0 + \beta_1 \{ \text{Time}_{ij} = m + 1 \} + b_{i'}$$

▷ hence, the corresponding odds ratio is:

log odds ratio:
$$\log \frac{\pi_{i'j}}{1 - \pi_{i'j}} - \log \frac{\pi_{ij}}{1 - \pi_{ij}} = \beta_1 + (b_{i'} - b_i) \Rightarrow$$

odds ratio:
$$\frac{\pi_{i'j}/(1-\pi_{i'j})}{\pi_{ij}/(1-\pi_{ij})} = \exp\{\beta_1 + (b_{i'} - b_i)\} \neq \exp(\beta_1)$$

- Hence, the interpretation of β_1 is not the log odds for unit increase of Time for all subjects, but rather for subjects with the same random-effect value
- To illustrate this again graphically, we depict the relationship between time and the probability of low CD4 cell counts
 - > the grey lines depict 13 random subjects with increasing random effects
 - \triangleright the black line corresponds to the subject with $b_i = 0$ (i.e., the mean individual) \Rightarrow This line is actually $1/[1 + \exp\{-(\beta_0 + \beta_1 \text{Time}_{ij})\}]$
 - b the red line that crosses the 13 lines denotes the average longitudinal evolution of the probability of low CD4 cells counts across subjects

• To summarize:

- ➤ The fixed-effects regression coefficients are interpreted in terms of the effects of covariates on changes in an *individual's* transformed mean response, while holding the remaining covariates fixed
- \triangleright Because the components of the fixed effects β , have interpretations that depend upon holding b_i (the i-th subject's random effects) fixed, they are often referred to as *subject-specific* regression coefficients
- As a result, GLMMs are most useful when the main scientific objective is to make inferences about individuals rather than population averages
- Population averages are the targets of inference in marginal models (i.e., GEE)

Hence, contrary to the marginal and mixed effects model for continuous data (Chapters 2 & 3), the regression coefficients from marginal models for discrete data do not have the same interpretation as the corresponding coefficients from mixed effects models

• Nonetheless, for the special case of random intercepts, there is a closed form expression to obtain the marginal regression coefficients from the subject-specific ones, i.e.,

$$\beta^M = \frac{\beta^{SS}}{\sqrt{1 + 0.346\sigma_b^2}}$$

where

 $\triangleright \beta^M$ denotes the marginal coefficients

 $\triangleright \beta^{SS}$ denotes the subject-specific coefficients

 $\triangleright \sigma_b^2$ denotes the variance of the random intercepts

• Example: We continue on the previous example from the AIDS dataset (see pp.285) and we compute the corresponding marginal regression coefficients

Subject-specific					Marginal	
	Value	Std.Err.	z-value	p-value	Value	Std.Err.
β_0	6.250	0.899	6.954	0.000	1.699	0.244
β_1	0.149	0.044	3.392	0.001	0.040	0.012
β_2	-0.811	0.731	-1.109	0.267	-0.220	0.199
β_3	-0.029	0.059	-0.494	0.622	-0.008	0.016
σ_b	6.019					

- We observe considerable differences between the two sets of parameters
 - b the subject-specific odds ratio for a unit increase in time for a specific ddC patients is 0.54 (95% CI: 0.52; 0.56),
 - b whereas the corresponding marginal odds ratio averaged over all ddC patients equals 0.51 (95% CI: 0.5; 0.52)
 - ⊳ note that the lower limit of the 95% CI for the subject-specific odds ratio equals the upper limit of the 95% CI for the marginal odds ratio
 - ⇒ the confidence intervals do not overlap

- As we have previously seen, effect plots can be used to effectively communicate complex models
 - ▷ especially in GLMMs, these plots also can be used to depict the marginal average evolutions (i.e., even if the fixed effects coefficients have a subject-specific interpretation, we can still calculate the marginal means)
- Example: In the PBC dataset we are interested in the probability of having excess serum cholesterol levels
 - b we include the main effects of time, drug, age & sex
 - by the interaction effect between time and drug, and the interaction effect between age and sex

• In the following figure we depict the marginal odds ratio as a function for time, separately for each combination of randomized treatment and sex

- In the following figure we depict
 - b the marginal probabilities, and
 - > the probabilities of the median patient

as a function for time, separately for each combination of randomized treatment and sex

- The marginal probabilities are obtained using a Monte Carlo sampling procedure
 - \triangleright for each combination of follow-up time, randomized treatment and sex we generate 3000 patients with random effect values coming from the normal distribution $\mathcal{N}(0,\hat{\sigma}_b^2)$, where $\hat{\sigma}_b^2$ denotes the estimated variance of the random effects from the model
 - b for each of these 3000 patients we calculate their probability of having an abnormal serum cholesterol value
 - > we take as an estimate the mean of the 3000 probabilities

• Calculation of 95% confidence intervals for the estimated marginal probabilities is not a straightforward task

5.3 Estimation

- The estimation of GLMMs is based on the same principles as in marginal and mixed models for continuous data
 - ▷ i.e., we have a full specification of the distribution of the data (contrary to GEE), and hence we can use maximum likelihood
- Nevertheless, there is an important complication in GLMMs

The fitting of GLMMs is a computationally challenging task!

- Even though the nature of this problem is of rather computational/technical nature, we will need to discuss in more detail . . .
- What is the problem?
 - The log-likelihood expression for GLMMs has the same form as in linear mixed models (see pp.151)

$$\ell(\theta) = \sum_{i=1}^{n} \log \int p(y_i \mid b_i; \theta) p(b_i; \theta) db_i$$

where θ are the parameters of the model

• In linear mixed effects models both terms in the integrand

$$\triangleright p(y_i \mid b_i; \theta)$$

$$\triangleright p(b_i; \theta)$$

are densities of (multivariate) normal distributions, and also because y_i and b_i are linearly related

In linear mixed effects models the integral in the log-likelihood expression has a closed-form solution (i.e., we can compute it on paper)

• In GLMMs the two terms of the integrand denote densities of different distributions – e.g., in mixed effects logistic regression

 $\triangleright p(y_i \mid b_i; \theta) \Rightarrow \text{Bernoulli distribution}$

 $\triangleright p(b_i; \theta) \Rightarrow$ multivariate normal distribution

The implication is that

In GLMMs the same integral does not have a closed-form solution

- To overcome this problem two general types of solutions have been proposed in the literature
 - ightharpoonup Approximation of the integrand: this entails approximating the product inside the integral (i.e., $\{p(y_i \mid b_i; \theta)p(y_i \mid b_i; \theta)\}$) by a multivariate normal distribution for which the integral has a closed-form solution
 - * Penalized Quasi Likelihood (PQL)
 - * Laplace approximation
 - ightharpoonup Approximation of the integral: this entails approximating the whole integral (i.e., $\int p(y_i \mid b_i; \theta) p(y_i \mid b_i; \theta) db_i$) by a sum
 - * Gaussian Quadrature & adaptive Gaussian Quadrature
 - * Monte Carlo & MCMC (Bayesian approach)

From the two alternatives, methods that rely on approximation of the integral have been shown to be superior

- Though they are (much) more computationally demanding they have a parameter the controls the accuracy of the approximation:
 - in Gaussian quadrature rules is the number of quadrature points (adaptive Gaussian quadrature with 1 point is equivalent to the Laplace approximation)
 - in Monte Carlo/MCMC approaches is the number of samples

• Example: We continue on the AIDS example, but we now treat the time variable as a factor (i.e., categorical) – the model has the form:

$$\log \frac{\pi_{ij}}{1 - \pi_{ij}} = \beta_0 + \beta_1 \{ \text{Time}_{ij} = 2 \} + \beta_2 \{ \text{Time}_{ij} = 6 \} + \beta_3 \{ \text{Time}_{ij} = 12 \} + \beta_4 \{ \text{Time}_{ij} = 18 \} + b_i$$

where

$$\triangleright \pi_{ij} = \Pr(\mathtt{CD4}_{ij} < 150)$$

 \triangleright {Time_{ij} = 2} denotes the dummy variable for month 2, {Time_{ij} = 6} the dummy variable for month 6, and so on

- We have fitted this model using
 - ⊳ PQL
 - ▶ Laplace approximation (adaptive Gaussian quadrature with 1 point)
 - ▷ adaptive Gaussian quadrature with 7, 11, 15 and 21 points
- The following figure depicts the estimated fixed effect coefficient under each approximation with corresponding 95% CIs

- We observe considerable differences between
 - PQL & Laplace (approximation of the integrand), and
 - ▷ adaptive Gaussian quadrature (approximation of the integral)
- In general, PQL and Laplace will work better as the data get more 'continuous', i.e.,
 - ▷ in Bernoulli data as the number of repeated measurements increases considerably
 - ▷ in Binomial data as the number of trials increases
 - in Poisson data as the rate increases

5.4 GLMMs in R

- In R there are two main packages to fit GLMMs, namely Ime4 and MCMCgImm
 in this course we will primarily use Ime4
 - The function that fits GLMMs in Ime4 is glmer() this has similar syntax as the lmer() function that fits linear mixed models, namely
 - ▶ formula: a formula specifying the response vector, the fixed- and random-effects
 structure

 - ▶ family: a description of the error distribution and link function to be used in the model

5.4 GLMMs in R (cont'd)

R> The following code fits a mixed effects logistic regression for abnormal serum cholesterol from the PBC dataset with random intercepts and 15 quadrature points for the adaptive Gauss-Hermite rule

5.4 GLMMs in R (cont'd)

R> With **MCMCgImm** the same model can be fitted with the code

5.4 GLMMs in R (cont'd)

- R> In the first part of the code we define the prior for the variance of the random effects these options correspond to an non-informative prior that would be equivalent to standard maximum likelihood
- R> Next in MCMCglmm() we have the arguments

 - > random: a formula specifying the random-effects structure

 - > prior: the list of prior specifications
 - ▷ nitt, thin, burnin the total number of iterations, the amount of thinning and the number of burn-in iterations

5.5 Model Building

- Modeling building for GLMMs proceeds in the same manner as for linear mixed models, i.e.,
 - > we start with an elaborate specification of the fixed-effects structure that contains all the variables we wish to study, and potential nonlinear and interactions terms
 - ▷ following we build-up the random-effects structure, starting from random intercepts, next including also random slopes, quadratic slopes, etc.
 - * in each step we perform likelihood ratio tests to see whether including the additional random effect improves the fit of the model
 - ► having chosen the random-effects structure, we return to the fixed effects and check whether the specification can be simplified
 - * again we first start by testing the complex terms (i.e., interactions and nonlinear terms), and then we continue to drop explanatory variable, if required

5.5 Model Building (cont'd)

- Nevertheless, quite often, and especially for dichotomous data, extending the random-effects structure may lead to numerical/computational problems
 - > this is because dichotomous data contain the least amount of information
- Hence, for dichotomous data and when we have few to moderate number of repeated measurements per subject, we often can only fit random intercepts models

5.6 Hypothesis Testing

• ***

5.6 Hypothesis Testing (cont'd)

• ***

5.7 Review of Key Points

- GLMMs are the analogue of linear mixed models for categorical data
 - > we include random effects in the linear predictor to account for the correlations in the outcomes belonging to the same groupe/cluster

Features of GLMMs

- b these models provide a complete specification of the distribution of the grouped/longitudinal outcome − contrary to GEE, which is a semi-parametric method
- interpretation of parameters is conditional on the random effects − contrary to GEE, which provide coefficients with a marginal interpretation

5.7 Review of Key Points (cont'd)

- Features of GLMMs
 - > estimation of GLMMs is more complex, and requires careful choice of numerical algorithms
 - b they provide valid inferences under MAR − contrary to GEE, which only provide valid inferences under MCAR
- Model building and hypothesis testing works in the same way as in the previous models we have seen