1 Problem considered

For some function $u:\Omega\to\mathbb{R}$, consider the following differential equation:

$$\frac{\partial u(x,y,t)}{\partial t} = \alpha \left(\frac{\partial^2 u(x,y,t)}{\partial x^2} + \frac{\partial^2 u(x,y,t)}{\partial y^2} \right). \tag{1}$$

Equation (1) is a special case of the diffusion problem considered in the statement, with $D(x,y) = \alpha$ and f(x,y) = 0 for all x, y. We consider the following values for the problem:

- $\Omega = [0,300] \times [0,50] \times [0,50],$
- \bullet $\alpha = 2$.

Note that a physical way to interpret Equation (1) is to consider the diffusion of heat on a 2D plate of dimensions $50[m] \times 50[m]$ during 300[s]. u(t, x, y) is thus the temperature in [K] at time t[s] at the point at x[m] of the origin of the plate in one direction and y[m] of the origin in the other direction¹.

Consider that, with the same notations as in the statement, we choose somes values of Δx , Δy , then the explicit scheme is numerically stable if [1, Equations (3.5), (3.6)]:

$$yo$$
 (2)

2 Results

TODO

References

[1] K. W. Morton and D. F. Mayers. Numerical Solution of Partial Differential Equations: An Introduction. Cambridge University Press, 2 edition, 2005.

 $^{^{1}[\}mathrm{m}]$ stands for meters, [s] for seconds and [K] for Kelvin.