Problème: A. F. D. sur un tableau de six points.

On considère le tableau X suivant croisant trois variables quantitatives x^1 , x^2 et x^3 avec un ensemble $I = \{A, B, C, D, E, F\}$ de n = 6 individus.

	x^1	x^2	x^3
A	0	1	1
В	2	1	2
C	0	0	3
D	2	2	3
E	1	0	1
F	1	2	2

On désire faire l'analyse discriminante quand on considère les deux classes $I_1 = \{A, B, C\}$ et $I_2 = \{D, E, F\}$, chaque individu étant affecté de la masse 1/6.

- 1. Rappeler brièvement les principes de cette analyse.
- 2. Calculer les coordonnées des deux centres de gravité g^1 et g^2 des classes I_1 et I_2 .
- 3. Calculer la matrice variance interclasses B (i. e., la matrice variance du nuage des deux centres de gravité g^1 et g^2 affectés des masses m_1 et m_2 des deux classes).
- 4. Calculer la matrice variance intraclasses W.
- 5. Quel est l'axe factoriel discriminant non trivial? On donnera un vecteur *v* porté par cet axe en supposant que la première composante de *v* positive.
- 6. Vérifier que la matrice V^{-1} est égale à :

$$\frac{3}{22} \begin{pmatrix} 15 & -7 & -2 \\ -7 & 15 & -2 \\ -2 & -2 & 12 \end{pmatrix}.$$

7. Calculer $V^{-1}v$ et en déduire que

$$b = \sqrt{\frac{3}{22}} \begin{pmatrix} 2\\2\\-1 \end{pmatrix}$$

est le facteur (ou la combinaison linéaire) discriminant non trivial. Calculer b'Bb et en déduire la valeur propre λ associée à b.

8. Montrer que l'abscisse z (i. e., le score) de la projection d'un point de coordonnées α, β, γ sur l'axe discriminant est donnée par :

$$z = \sqrt{\frac{3}{22}} (2\alpha + 2\beta - \gamma),$$

et en déduire les coordonnées (après centrage) des projections de $A, B, C, D, E, F, g^1, g^2$ et $\frac{1}{2}(g^1+g^2)$ sur cet axe.

- 9. Calculez la variance de z et sa variance interclasses, et retrouver ainsi la valeur de λ donnée en 7). Auriez vous pu donner directement sans calcul la variance de z?
- 10. Affecter chacun des six individus de I à l'un des deux classes I_1 ou I_2 .
- 11. Donner le tableau de format 2×2 croisant l'appartenance à une classe avec l'affectation à une classe.
- 12. Déduire de 11) le taux de bien classés dans la classe I_1 , dans I_2 , ainsi que le taux global de bien classés.