#### Departamento de Ingeniería de Sistemas y Computación Estructuras de Datos y Algoritmos ISIS-1225

# ANÁLISIS DEL RETO

Juan Jose Cediel Borrero, 202212212, jj.cediel@uniandes.eedu.co.

Juan David Rojas Cañizales, 202120434, jd.rojasc12@uniandes.edu.co.

Juan Estaban Alvarez Garcia, 202212030, je.alvarezg1@uniandes.edu.co.

Nota: Para todas las pruebas realizadas se utilizó la misma máquina, siendo esta la que contaba con mejor hardware de los miembros del equipo.

| 9 2.5GHz |
|----------|
|          |
|          |
|          |

Las únicas librerías usadas fueron datetime, prettytable, csv, time y la librería del curso.

### Requerimiento 1

#### Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | Año inicial del periodo (con formato AAAA).                        |  |
|----------------------|--------------------------------------------------------------------|--|
|                      | Año final del periodo (con formato AAAA).                          |  |
| Salidas              | El número total de películas presentes en el periodo y la          |  |
|                      | información de las tres primeras y tres últimas películas de dicha |  |
|                      | lista.                                                             |  |
| Implementado (Sí/No) | Sí. Juan Esteban Álvarez                                           |  |

#### Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                                   | Complejidad |
|---------------------------------------------------------|-------------|
| Paso 1) Validar los inputs del usuario                  | O(1)        |
| Paso 2) Inicializar TAD que retornará la información al | O(1)        |
| usuario                                                 |             |
| Paso 3) Recorrer linealmente todos los videos del       | O(N)        |
| catálogo y añadir al TAD los videos que cumplen la      |             |
| condición.                                              |             |
| TOTAL                                                   | O(N)        |

#### Pruebas Realizadas (Prueba con "0000-2020")

| Muestra | Tiempo (s) |
|---------|------------|
| small   | 0,33       |
| 5 pct   | 1,28       |
| 10 pct  | 2,54       |
| 20 pct  | 4,98       |
| 30 pct  | 7,51       |
| 50 pct  | 13,81      |
| 80 pct  | 25,97      |
| large   | 33,66      |

### Graficas



| Req | Input  | Muestra | Output          | Tiempo<br>(ms) |
|-----|--------|---------|-----------------|----------------|
| 1   | 0-2020 | small   | 133 peliculas   | 0,33           |
| 1   | 0-2020 | 5 pct   | 716 peliculas   | 1,28           |
| 1   | 0-2020 | 10 pct  | 1439 peliculas  | 2,54           |
| 1   | 0-2020 | 20 pct  | 2938 peliculas  | 4,98           |
| 1   | 0-2020 | 30 pct  | 4450 peliculas  | 7,51           |
| 1   | 0-2020 | 50 pct  | 7458 peliculas  | 13,81          |
| 1   | 0-2020 | 80 pct  | 11898 peliculas | 25,97          |
| 1   | 0-2020 | large   | 14884 peliculas | 33,66          |

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el analisis de complejidad.

Teóricamente la implementación tiene un orden lineal O(N), y experimentalmente la gráfica se mantiene cerca de la línea de tendencia sin dispersarse mucho, lo que coincide con la gráfica lineal esperada teóricamente.

### Requerimiento 2

#### Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | Fecha inicial del periodo (con formato "%B %d, %Y").               |  |
|----------------------|--------------------------------------------------------------------|--|
|                      | Fecha final del periodo (con formato "%B %d, %Y").                 |  |
| Salidas              | El número total de programas de TV presentes en el periodo y la    |  |
|                      | información de los tres primeros y tres últimos programas de dicha |  |
|                      | lista.                                                             |  |
| Implementado (Sí/No) | Sí. Juan Esteban Álvarez                                           |  |

#### Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                                   | Complejidad |
|---------------------------------------------------------|-------------|
| Paso 1) Validar los inputs del usuario                  | O(1)        |
| Paso 2) Inicializar TAD que retornará la información al | O(1)        |
| usuario                                                 |             |
| Paso 3) Recorrer linealmente todos los videos del       | O(N)        |
| catálogo y añadir al TAD los videos que cumplen la      |             |
| condición.                                              |             |
| TOTAL                                                   | O(N)        |

#### Pruebas Realizadas (Prueba con "September 17, 2010 - September 17, 2020")

| Muestra | Tiempo (s) |
|---------|------------|
| small   | 0,41       |
| 5 pct   | 0,92       |
| 10 pct  | 1,62       |
| 20 pct  | 3,03       |
| 30 pct  | 4,37       |
| 50 pct  | 7,37       |
| 80 pct  | 12,12      |
| large   | 17,04      |

#### **Graficas**



|     |                                         |         |               | Tiempo |
|-----|-----------------------------------------|---------|---------------|--------|
| Req | Input                                   | Muestra | Output        | (ms)   |
| 2   | September 17, 2010 - September 17, 2020 | small   | 41 TV_shows   | 0,41   |
| 2   | September 17, 2010 - September 17, 2020 | 5 pct   | 177 TV_shows  | 0,92   |
| 2   | September 17, 2010 - September 17, 2020 | 10 pct  | 337 TV_shows  | 1,62   |
| 2   | September 17, 2010 - September 17, 2020 | 20 pct  | 639 TV_shows  | 3,03   |
| 2   | September 17, 2010 - September 17, 2020 | 30 pct  | 944 TV_shows  | 4,37   |
| 2   | September 17, 2010 - September 17, 2020 | 50 pct  | 1568 TV_shows | 7,37   |
| 2   | September 17, 2010 - September 17, 2020 | 80 pct  | 2510 TV_shows | 12,12  |
| 2   | September 17, 2010 - September 17, 2020 | large   | 3169 TV_shows | 17,04  |

#### **Análisis**

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el analisis de complejidad.

Teóricamente la implementación tiene un orden lineal O(N), y experimentalmente la gráfica se mantiene cerca de la línea de tendencia sin dispersarse mucho, lo que coincide con la gráfica lineal esperada teóricamente.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | Nombre del actor a buscar                                                                                                                                                                           |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salidas              | Cantidad de películas y cantidad de programas en donde participo el actor, además de los datos plataforma, titulo, directos, actores, duración, país y géneros de las primeras tres y ultimas tres. |
| Implementado (Sí/No) | Sí. Juan David Rojas Cañizales                                                                                                                                                                      |

### Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                                 | Complejidad |
|-------------------------------------------------------|-------------|
| Llamado view -> controller                            | O(1)        |
| Llamada controller -> model                           | O(1)        |
| Iteracion sobre actores de cada video                 | O(n*m)      |
| If el actor buscados esta en los actores del video    | O(1)        |
| If type es Movie o Tv_Show                            | O(1)        |
| Agregar el actual video a la ultima pos de los videos | O(1)        |
| del actor                                             |             |
| TOTAL                                                 | O(n*m)      |

#### Pruebas Realizadas (Prueba con "Chris Evans")

| Muestra | Tiempo (s) |
|---------|------------|
| small   | 0,69       |
| 5 pct   | 2,62       |
| 10 pct  | 5,08       |
| 20 pct  | 10,25      |
| 30 pct  | 16,65      |
| 50 pct  | 32,41      |
| 80 pct  | 53,61      |
| large   | 65,81      |

#### **Graficas**



| Req | Input       | Muestra | Output                | Tiempo (ms) |
|-----|-------------|---------|-----------------------|-------------|
| 3   | Chris Evans | small   | 1 Movie / 0 TV_shows  | 0,69        |
| 3   | Chris Evans | 5 pct   | 1 Movie / 0 TV_shows  | 2,62        |
| 3   | Chris Evans | 10 pct  | 2 Movie / 0 TV_shows  | 5,08        |
| 3   | Chris Evans | 20 pct  | 4 Movie / 0 TV_shows  | 10,25       |
| 3   | Chris Evans | 30 pct  | 7 Movie / 0 TV_shows  | 16,65       |
| 3   | Chris Evans | 50 pct  | 12 Movie / 0 TV_shows | 32,41       |
| 3   | Chris Evans | 80 pct  | 17 Movie / 0 TV_shows | 53,61       |
| 3   | Chris Evans | large   | 20 Movie / 0 TV_shows | 65,81       |

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el analisis de complejidad.

Se evidencia que la ejecución para encontrar los videos en que los participo un actor tiene un crecimiento O(n\*m) donde n es la cantidad de videos y m es la cantidad de actores que participan en cada video, sabiendo que n es mucho más grande que m. La gráfica muestra un crecimiento teórico lineal y el crecimiento real da muestra de ello.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | Géneros                                                                |  |
|----------------------|------------------------------------------------------------------------|--|
| Salidas              | El número total de películas de ese género.                            |  |
|                      | El número total de programas de ese género.                            |  |
|                      | Los tres primeros y tres últimos registros de la lista filtrada por la |  |
|                      | categoría ingresada por parámetro.                                     |  |
| Implementado (Sí/No) | Sí. Juan Jose Cediel                                                   |  |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                                                                                          | Complejidad |
|----------------------------------------------------------------------------------------------------------------|-------------|
| Paso 1: Validar los inputs del usuario                                                                         | O(1)        |
| Paso 2 : Inicializar TAD que retornará la información al                                                       | O(1)        |
| Paso 3: Recorrer linealmente todos los videos del                                                              | O(N)        |
| catálogo y añadir al TAD los videos que cumplen la condición.                                                  |             |
| Paso 4: Extraer por cada video del catalogo su categoría y verificar si es igual a la ingresada por parámetro. | O(C)        |
| TOTAL                                                                                                          | O (N * C)   |

#### Pruebas Realizadas (Prueba con Drama)

| Entrada | Tiempo (s) |
|---------|------------|
| small   | 0,52       |
| 5 pct   | 2,22       |
| 10 pct  | 4,37       |
| 20 pct  | 8,91       |
| 30 pct  | 14,25      |
| 50 pct  | 31,56      |
| 80 pct  | 48,72      |
| large   | 54,56      |

#### Graficas



| Req | Input           | Datos procesados | Tiempo (ms) |
|-----|-----------------|------------------|-------------|
| 4   | Drama           | small            | 0,52        |
| 4   | Drama           | 5 pct            | 2,22        |
| 4   | Drama           | 10 pct           | 4,37        |
| 4   | Drama           | 20 pct           | 8,91        |
| 4   | Drama           | 30 pct           | 14,25       |
| 4   | Drama           | 50 pct           | 31,56       |
| 4   | Drama           | 80 pct           | 48,72       |
| 4   | Drama Spielberg | large            | 54,56       |

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el análisis de complejidad.

Teóricamente la implementación tiene un orden lineal O(N), y experimentalmente la gráfica se mantiene cerca de la línea de tendencia sin dispersarse mucho, lo que coincide con la gráfica lineal esperada teóricamente.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | Fecha inicial del periodo (con formato "%B %d, %Y").               |  |
|----------------------|--------------------------------------------------------------------|--|
|                      | Fecha final del periodo (con formato "%B %d, %Y").                 |  |
| Salidas              | El número total de programas de TV presentes en el periodo y la    |  |
|                      | información de los tres primeros y tres últimos programas de dicha |  |
|                      | lista.                                                             |  |
| Implementado (Sí/No) | Sí. Juan Esteban Álvarez                                           |  |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                                   | Complejidad |
|---------------------------------------------------------|-------------|
| Paso 1) Validar los inputs del usuario                  | O(1)        |
| Paso 2) Inicializar TAD que retornará la información al | O(1)        |
| usuario                                                 |             |
| Paso 3) Recorrer linealmente todos los videos del       | O(N)        |
| catálogo y añadir al TAD los videos que cumplen la      |             |
| condición.                                              |             |
| TOTAL                                                   | O(N)        |

### Pruebas Realizadas (Prueba con "United States")

| Muestra | Tiempo (s) |
|---------|------------|
| small   | 0,25       |
| 5 pct   | 0,81       |
| 10 pct  | 1,48       |
| 20 pct  | 2,82       |
| 30 pct  | 4,16       |
| 50 pct  | 6,89       |
| 80 pct  | 11,44      |
| large   | 14,89      |

#### Graficas



|     |               |         |                            | Tiempo |
|-----|---------------|---------|----------------------------|--------|
| Req | Input         | Muestra | Output                     | (ms)   |
| 5   | United States | small   | 30 Movie / 18 TV_shows     | 0,25   |
| 5   | United States | 5 pct   | 168 Movie / 74 TV_shows    | 0,81   |
| 5   | United States | 10 pct  | 337 Movie / 180 TV_shows   | 1,48   |
| 5   | United States | 20 pct  | 686 Movie / 334 TV_shows   | 2,82   |
| 5   | United States | 30 pct  | 1027 Movie / 502 TV_shows  | 4,16   |
| 5   | United States | 50 pct  | 1730 Movie / 822 TV_shows  | 6,89   |
| 5   | United States | 80 pct  | 2742 Movie / 1265 TV_shows | 11,44  |
| 5   | United States | large   | 3390 Movie / 1607 TV_shows | 14,89  |

#### **Análisis**

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el analisis de complejidad.

Teóricamente la implementación tiene un orden lineal O(N), y experimentalmente la gráfica se mantiene cerca de la línea de tendencia sin dispersarse mucho, lo que coincide con la gráfica lineal esperada teóricamente.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | Director                                                                                                                                                                                                       |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salidas              | En tablas: El número total de películas y programas dirigidos por ese director. El número total de películas y programas por cada género (listed_in). El número total de películas y programas por plataforma. |
| Implementado (Sí/No) | Sí. Juan Jose Cediel                                                                                                                                                                                           |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

| Pasos                                                   | Complejidad  |
|---------------------------------------------------------|--------------|
| Paso 1: Validar los inputs del usuario                  | O(1)         |
| Paso 2: Inicializar TAD que retornará la información al | O(1)         |
| usuario                                                 |              |
| Paso 3: Recorrer linealmente todos los videos del       | O(N)         |
| catálogo y añadir al TAD los videos que cumplen la      |              |
| condición.                                              |              |
| Paso 3.1: Recorrer linealmente las categorías del       | O(C)         |
| video y añadirlas a aux géneros.                        |              |
| Paso 4: Agregar como una lista las categorías en        | O(L)         |
| dataDirector                                            |              |
| TOTAL                                                   | O(N*C)+ O(L) |

#### **Pruebas Realizadas (Prueba Steven Spielberg)**

| Entrada | Tiempo (ms) |
|---------|-------------|
| small   | 0,21        |
| 5 pct   | 0,69        |
| 10 pct  | 1,11        |
| 20 pct  | 2,19        |
| 30 pct  | 3,21        |
| 50 pct  | 5,22        |
| 80 pct  | 8,27        |
| large   | 10,73       |

#### **Graficas**



| Req | Input            | Datos procesados | Tiempo (ms) |
|-----|------------------|------------------|-------------|
| 6   | Steven Spielberg | small            | 0,21        |
| 6   | Steven Spielberg | 5 pct            | 0,69        |
| 6   | Steven Spielberg | 10 pct           | 1,11        |
| 6   | Steven Spielberg | 20 pct           | 2,19        |
| 6   | Steven Spielberg | 30 pct           | 3,21        |
| 6   | Steven Spielberg | 50 pct           | 5,22        |
| 6   | Steven Spielberg | 80 pct           | 8,27        |
| 6   | Steven Spielberg | large            | 10,73       |

#### **Análisis**

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el análisis de complejidad.

Teóricamente la implementación tiene un orden lineal O(N), y experimentalmente la gráfica se mantiene cerca de la línea de tendencia sin dispersarse mucho, lo que coincide con la gráfica lineal esperada teóricamente.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | Entero que representa el top de géneros a listar                                                                                                                                                             |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salidas              | Rank, géneros, total de videos, cantidad de movies, cantidad de tv shows, cantidad de videos en Amazon Prime, cantidad de videos en Disney Plus, cantidad de videos en Hulu y cantidad de videos en Netflix. |
| Implementado (Sí/No) | Sí. Juan David Rojas Cañizales                                                                                                                                                                               |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

#### **Carga Inicial**

| Pasos                                        | Complejidad Absoluta   | Complejidad Acumulada |
|----------------------------------------------|------------------------|-----------------------|
| Iteracion sobre los videos                   | O(n)                   |                       |
| Iteracion sobre las categorias de cada       | O(m)                   | O(n*m)                |
| video                                        |                        |                       |
| Iteracion con isPresent para saber si la     | O(z)                   | O(n*m*z)              |
| categoria ya esta en la lista categorias del |                        |                       |
| catalog                                      |                        |                       |
| Si la categoria no se encuentra se inserta   | O(1)                   |                       |
| en la ultima posicion                        |                        |                       |
| Operación GetElement sobre la lista de       | O(1)                   |                       |
| categorias del catalog                       |                        |                       |
| If type es Movie o Tv_Show                   | O(1)                   |                       |
| If la Plataforma del video es                | O(1) -> O(4)           |                       |
| Amazon_Prime, Disney_Plus, Hulu y Netflix    |                        |                       |
| Merge sort sobre la lista categorías del     | O(n*log(n))            |                       |
| catalog para organizarla de mayor numero     |                        |                       |
| de videos por categoría a menor numero       |                        |                       |
| de videos por categoría.                     |                        |                       |
| TOTAL                                        | O(n*m*z) + O(n*log(n)) |                       |

#### Ejecución por Usuario

| Pasos                                             | Complejidad |
|---------------------------------------------------|-------------|
| Llamado view -> controller                        | O(1)        |
| Llamada controller -> model                       | O(1)        |
| Sublist de la lista con categorias organizadas de | O(n)        |
| categoria con mayor numero de videos al menor     |             |
| numero de videos                                  |             |
| TOTAL                                             | O(n)        |

#### Pruebas Realizadas de Carga Inicial

| Muestra | Tiempo (ms) |
|---------|-------------|
| small   | 41,3        |
| 5 pct   | 172,07      |
| 10 pct  | 315,59      |
| 20 pct  | 442,32      |
| 30 pct  | 713,44      |
| 50 pct  | 1054,55     |
| 80 pct  | 1743,35     |
| large   | 2245,1      |

#### Pruebas Realizadas (Prueba con "100")

| Muestra | Tiempo (s) |
|---------|------------|
| small   | 0,05       |
| 5 pct   | 0,06       |
| 10 pct  | 0,05       |
| 20 pct  | 0,06       |
| 30 pct  | 0,06       |
| 50 pct  | 0,06       |
| 80 pct  | 0,07       |
| large   | 0,07       |

#### Graficas

**Grafica Carga Inicial** 



| Req | Muestra | Tiempo (ms) |
|-----|---------|-------------|
| 7   | small   | 41,3        |
| 7   | 5 pct   | 172,07      |
| 7   | 10 pct  | 315,59      |
| 7   | 20 pct  | 442,32      |
| 7   | 30 pct  | 713,44      |
| 7   | 50 pct  | 1054,55     |
| 7   | 80 pct  | 1743,35     |
| 7   | large   | 2245,1      |

#### **Grafica Ejecucion Por Usuario**



| Req | Input | Muestra | Output               | Tiempo (ms) |
|-----|-------|---------|----------------------|-------------|
| 7   | 100   | small   | Top 100 / Categorias | 0,05        |
| 7   | 100   | 5 pct   | Top 100 / Categorias | 0,06        |
| 7   | 100   | 10 pct  | Top 100 / Categorias | 0,05        |
| 7   | 100   | 20 pct  | Top 100 / Categorias | 0,06        |
| 7   | 100   | 30 pct  | Top 100 / Categorias | 0,06        |
| 7   | 100   | 50 pct  | Top 100 / Categorias | 0,06        |
| 7   | 100   | 80 pct  | Top 100 / Categorias | 0,07        |
| 7   | 100   | large   | Top 100 / Categorias | 0,07        |

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el analisis de complejidad.

Se evidencia que el orden de crecimiento para el obtener el ranking de categorías organizado desde la categoría con mayor cantidad de videos a la con menor cantidad de videos, tiene un crecimiento de  $O(n^*m^*z)$  donde n es la cantidad de videos, m es la cantidad de categorías que tiene cada video y z es la cantidad de categorías ya inicializadas en la lista categorías del catalog. Sumado al orden de crecimiento  $O(n^*log(n))$  que se da al realizar un merge sort sobre la lista categorías del catalog que nos permite ordenar de mayor a menor las categorías. En la implementación se prefiero este camino dado que podemos garantizar que m < z < n por lo que no se llega hasta un orden de crecimiento cuadrático y se mantienen los tiempos de ejecución bajos. Para la implementación de ejecución por usuario se ejecuta la función sublist, que en el peor de los casos es O(n). Para ambos casos se demuestra un comportamiento real muy conforme al comportamiento teórico.

# Descripción

Breve descripción de como abordaron la implementación del requerimiento

| Entrada              | Entero que representa el top de actores a listar                                                                                                                                                                                                                                              |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Salidas              | Rank, nombre, cantidad de videos en Amazon Prime, cantidad de videos en Disney Plus, cantidad de videos en Hulu, cantidad de videos en Netflix, cantidad de movies, cantidad de tv shows, nombre de los directores con los que ha trabajado y nombre de los actores con los que ha trabajado. |
| Implementado (Sí/No) | Sí. Juan David Rojas Cañizales                                                                                                                                                                                                                                                                |

# Análisis de complejidad

Análisis de complejidad de cada uno de los pasos del algoritmo

#### **Carga Inicial**

| Pasos                                       | Complejidad Absoluta     | Complejidad Acumulada |
|---------------------------------------------|--------------------------|-----------------------|
| Iteracion sobre los videos                  | O(n)                     |                       |
| Iteracion sobre los actores de cada video   | O(m)                     | O(n*m)                |
| If el actor esta o no registrado en un dict | O(1)                     |                       |
| If type es Movie o Tv_Show                  | O(1)                     |                       |
| If la Plataforma del video es               | O(1) -> O(4)             |                       |
| Amazon_Prime, Disney_Plus, Hulu y Netflix   |                          |                       |
| Agregar el actual video a la ultima pos de  | O(1)                     |                       |
| los videos del actor                        |                          |                       |
| Iteracion sobre los actores registrados en  | O(x)                     |                       |
| el dict                                     | X cant de actores        |                       |
| Iteracion sobre cada video por cada actor   | O(y)                     | O(x*y)                |
|                                             | Y cant videos en los que |                       |
|                                             | actuo el actor           |                       |
| isPresent sobre cada director de cada video | O(z)                     | O(x*y*z)              |
| en la lista de directores que tiene cada    | Z cant de directores que |                       |
| actor                                       | trabajaron con ese actor |                       |
| If existe o no el director en la lista de   | O(1)                     |                       |
| directores del actor                        |                          |                       |
| Si el director ya existía solo se busca     | O(1)                     |                       |
| entonces se hace un getElement sobre        |                          |                       |
| ARRAY_LIST                                  |                          |                       |
| isPresent sobre cada miembro del cast de    | O(d)                     | O(x*y*z*d)            |
| cada video en la lista de compañeros que    | d cant de actores que    |                       |
| tiene cada actor                            | trabajaron con el actor  |                       |
| If existe o no el actor en la lista de      | O(1)                     |                       |
| compañeros del actor                        |                          |                       |

| Si el compañero ya existía solo se busca    | O(1)                   |                      |
|---------------------------------------------|------------------------|----------------------|
| entonces se hace un getElement sobre        |                        |                      |
| ARRAY_LIST                                  |                        |                      |
| Merge sort sobre la lista de directores del | O(z*logz)              | O(x*y*z*d*(z*logz))  |
| actor                                       |                        |                      |
| Merge sort sobre la lista de compañeros     | O(d*logd)              | O(x*y*z*d*(z*logz) * |
| del actor                                   |                        | (d*logd))            |
| Iteracion por cada actor del dict para      | O(x)                   | O(x*y*z*d*(z*logz) * |
| insertarlo en un lista de tipo ARRAY_LIST   | X cant de actores      | (d*logd)*x)          |
| Merge sort sobre la lista actores del       | O(x*logx)              | O(x*y*z*d*(z*logz) * |
| catalog                                     | X cant de actores      | (d*logd)*x*(x*logx)  |
| TOTAL                                       | O(x*y*z*d*(z*logz) *   |                      |
|                                             | (d*logd)*x*(x*logx)) + |                      |
|                                             | O(n*m)                 |                      |

#### Ejecución por Usuario

| Pasos                                                 | Complejidad |
|-------------------------------------------------------|-------------|
| Llamado view -> controller                            | O(1)        |
| Llamada controller -> model                           | O(1)        |
| Sublist de la lista con actores organizados por mayor | O(n)        |
| numero de actuaciones al menor numero de              |             |
| actuaciones                                           |             |

#### Pruebas Realizadas de Carga Inicial

| Entrada | Tiempo (s) |
|---------|------------|
| small   | 265,97     |
| 5 pct   | 1778,34    |
| 10 pct  | 4330,54    |
| 20 pct  | 7820,18    |
| 30 pct  | 12981,43   |
| 50 pct  | 24628,67   |
| 80 pct  | 47403,95   |
| large   | 66051,14   |

#### Pruebas Realizadas (Prueba con "100")

| Entrada | Tiempo (s) |
|---------|------------|
| small   | 0,05       |
| 5 pct   | 0,06       |
| 10 pct  | 0,05       |
| 20 pct  | 0,08       |
| 30 pct  | 0,06       |
| 50 pct  | 0,08       |
| 80 pct  | 0,06       |

| large | 0,06 |
|-------|------|
| 16.00 | 0,00 |

#### Graficas

#### **Grafica Carga Inicial**



| Req | Muestra | Tiempo (ms) |
|-----|---------|-------------|
| 7   | small   | 265,97      |
| 7   | 5 pct   | 1778,34     |
| 7   | 10 pct  | 4330,54     |
| 7   | 20 pct  | 7820,18     |
| 7   | 30 pct  | 12981,43    |
| 7   | 50 pct  | 24628,67    |
| 7   | 80 pct  | 47403,95    |
| 7   | large   | 66051,14    |

**Grafica Ejecución Por Usuario** 



| Req | Input | Muestra | Output            | Tiempo<br>(ms) |
|-----|-------|---------|-------------------|----------------|
| 8   | 100   | small   | Top 100 / Actores | 0,05           |
| 8   | 100   | 5 pct   | Top 100 / Actores | 0,06           |
| 8   | 100   | 10 pct  | Top 100 / Actores | 0,05           |
| 8   | 100   | 20 pct  | Top 100 / Actores | 0,08           |
| 8   | 100   | 30 pct  | Top 100 / Actores | 0,06           |
| 8   | 100   | 50 pct  | Top 100 / Actores | 0,08           |
| 8   | 100   | 80 pct  | Top 100 / Actores | 0,06           |
| 8   | 100   | large   | Top 100 / Actores | 0,06           |

Análisis de resultados de la implementación, tener cuenta las pruebas realizadas y el analisis de complejidad.

Se evidencia que el orden de crecimiento para el obtener el ranking de actores organizado desde el actor con mayor cantidad de videos al con menor cantidad de videos, tiene un crecimiento de O(n\*m) donde n es la cantidad de videos, m es la cantidad de actores que tiene cada video. Sumado al orden de crecimiento O(x\*y\*z\*d\*(z\*log(z))\*(d\*log(d))\*x\*(x\*log(x)) donde x es la cantidad de actores que fueron obtenidos en la primer iteración (O(n\*m)) y es la cantidad de videos en los que participo cada actor, z es la cantidad de directores con los que trabajo cada actor, d es la cantidad de actores que trabajaron con ese actor, z\*log(z) es el orden de crecimiento del merge sort aplicado a la lista de directores del actor, d\*log(d) es el orden de crecimiento del merge sort aplicado a la lista de actores para poder ha trabajado el actor y por ultimo x\*logx es el merge sort aplicado a la lista de actores para poder ordenarlos de mayor a menor. Esta implementación, si bien parece complicada busca de forma

eficiente generar ciclor for lineales, es decir sabemos que antemano que x,y,z,d son variables que distan mucho de valor, donde x es la de mayor valor por mucha diferencia, esto nos permite reducir al mínimo las expresiones con exponente que elevan los tiempos de ejecución. Para la ejecución por usuario se ejecuta la función sublist, que en el peor de los casos es O(n) donde n es la cantidad de actores registrados. Para ambos casos se demuestra un comportamiento real muy conforme al comportamiento teórico.