CS388T: ANSWER TO HOMEWORK 3

VISHVAS VASUKI

1. Question

- 1.1. **A.** Prove that a DNF formula can be switched in polynomial time to a CNF formula (with a possibly different number of variables), preserving satisfiability.
- 1.2. **B.** Prove that if $P \neq NP$, there is no polynomial time algorithm that switches a CNF formula to a DNF formula preserving satisfiability.

1.3. Solution.

Acknowledgement. I benefitted from discussions with Zifei and Alok in solving this problem.

1.4. **A.**

Theorem 1.4.1. A DNF formula can be switched in polynomial time to a CNF formula (with a possibly different number of variables), preserving satisfiability.

Proof. A DNF is a disjunction of conjunctions. A DNF is satisfiable if some conjunction is satisfiable. Any conjunction of literals is satisfiable if and only if that conjunction does not contain both a literal and its negation. Hence, there exists a linear time algorithm, DNF-SAT-ALG, to verify whether a DNF is satisfiable.

If DNF-SAT-ALG determines that the DNF is satisfiable, it can be easily modified to produce the following CNF: (x). DNF-SAT-ALG can also be modified to produce the CNF $(x \land x)$, which is unsatisfiable, if the DNF is unsatisfiable.

Hence, we have proved that every DNF formula can be switched in polynomial time to a CNF formula, preserving satisfiability, in polynomial time. \Box

1.5. **B.**

Theorem 1.5.1. If $P \neq NP$, there is no polynomial time algorithm that switches a CNF formula to a DNF formula preserving satisfiability.

Proof. We produce a proof by contradiction. Let us call the problem of switching a CNF formula to a DNF formula while preserving satisfiability CNF-SAT2DNF-SAT.

3-SAT, which is about checking the satisfiability of a CNF with atmost 3 variables in each clause, is NP Complete. We know that if $P \neq NP$, no deterministic polynomial time algorithm can solve an NP complete problem such as 3-SAT.

Suppose that CNF-SAT2DNF-SAT can be solved in polynomial time even when $P \neq NP$. As we explained in the answer to the previous subquestion, DNF-SAT can be solved in linear time. So, this assumption leads us to a way of solving 3-SAT in deterministic polynomial time! This contradicts our earlier result that there is no deterministic polynomial time algorithm to solve 3-SAT if $P \neq NP$.

Hence, discarding our assumption which led us to an absurdity, we conclude that if $P \neq NP$, there is no polynomial time algorithm for CNF-SAT2DNF-SAT.

2. Question

A boolean formula in a conjunctive normal form is said to be a Horn formula if each clause contains at most one non negated variable. Describe a polynomial time algorithm to decide whether a Boolean Horn formula is satisfiable.

2.1. Solution.

Acknowledgement. I referred to [1] in solving this problem.

Algorithm 2.1.1. Algorithm HORN for HORNSAT:

- Input: Horn formula F.
- Output: TRUE if F is satisfiable, FALSE otherwise.
- The algorithm:

Initial assignment A: Initialize all variables to FALSE.

Repeat until all clauses with a positive literal are satisfied:

Take some unsatisfied clause with a positive literal, U.

Alter the assignment A: Assign TRUE to the positive literal in U.

If the A satisfies F, return TRUE. Otherwise, return FALSE.

Theorem 2.1.2. HORN correctly solves HORNSAT.

Proof. HORN returns TRUE only if it has a satisfying assignment, A. We only need to prove that HORN returns FALSE only if F is unsatisfiable. Let A be the assignment used by HORN to decide whether F is satisfiable.

HORN starts off with an assignment where all variables are FALSE. Due to its construction, HORN assigns TRUE only to variables in F only if it is necessary to satisfy some clause in F. Thus, A has the minimum number of variables set to true for satisfying clauses in F with positive literals.

Now, consider a purely negative clause. As explained above, any assignment A' will have a greater number of variables set to true, when compared with A. So, if A cannot satisfy this clause, no other assignment, A' can.

Hence, HORN returns FALSE only if F is unsatisfiable. Thus, we have proved that HORN correctly solves HORNSAT. $\hfill\Box$

Theorem 2.1.3. HORN takes polynomial time.

Proof. Consider executing HORN on a random access machine. The initial assignment is created in linear time. The selection of an unsatisfied clause with a positive literal in F can only take linear time. The number of times we search for an unsatisfied clause with a positive literal is also polynomial. The step where we check if the assignment A satisfies the formula can also be done in polynomial time. Hence, as all steps in HORN take polynomial time, we conclude that HORN takes polynomial time.

3. Question

Prove that if there is a language L in $NP \cap coNP$, that is NP complete under polynomial time reductions, then NP = coNP.

3.1. **Solution.** Consider a language L in $NP \cap coNP$. Let L be NP complete under polynomial time reductions.

Lemma 3.1.1. If there is a language L in $NP \cap coNP$, that is NP complete under polynomial time reductions, then $NP \subset coNP$

Proof. As every language L' in NP is polynomial time reducible to L, every L' in NP also belongs to coNP. Thus, $NP \subset coNP$.

Lemma 3.1.2. If there is a language L in $NP \cap coNP$, that is NP complete under polynomial time reductions, then $coNP \subset NP$.

Proof. As L is NP complete under polynomial time reductions, L is coNP complete under polynomial time reductions. So, every language L' in coNP can be reduced to L under polynomial time reductions. But L is in NP. So, every L' in coNP is also in NP. \Box

Due to the above lemmata, the main result follows: "If there is a language L in $NP \cap coNP$, that is NP complete under polynomial time reductions, then NP=coNP."

4. Question

Show that if $P = NP \cap coNP$, there is a polynomial time algorithm for factoring. (Be sure that your argument maintains a clear distinction between decision problems and function computation problems.)

4.1. Solution.

Definition 4.1.1. FACTOR(n,m) := A decision problem which returns true if n has a factor smaller than the number m and greater than one.

Definition 4.1.2. NOFACTOR(n,m):= The complement of FACTOR(n,m).

Definition 4.1.3. FACTORING(n) := A function which returns the list of prime factors of n, if n has a factor greater than one.

Lemma 4.1.4. $FACTOR \in NP$

Proof. FACTOR is in NP as the following algorithm can be executed by a non deterministic turing machine in polynomial time.

Algorithm 4.1.5. Algorithm ALG-FACTOR for FACTOR:

- Input: n,m
- Output: TRUE if there is a prime factor p of n, such that $p \leq m$, FALSE other wise.
- Algorithm:

Generate a number $x \leq m$ by guessing one bit of x in every nondeterministic step. This can be done in O(log m) nondeterministic steps.

If x divides n, return TRUE. Otherwise return FALSE.

Lemma 4.1.6. $FACTORING \in FNP$

Proof. FACTORING is in NP as the following algorithm can be executed by a non deterministic turing machine in polynomial time.

Algorithm 4.1.7. Algorithm ALG-FACTORING for FACTORING:

- Input: n
- Output: A list of prime factors of n.
- Algorithm:

Initialize the output string, OUTPUT to an empty string.

Use binary search the list of numbers from 1 to n-1 to find the smallest prime number x which divides n. The identification of the correct range of numbers to search is identified in each step using calls to ALG-FACTOR. This can be done in $O(\log n)$ calls to the algorithm ALG-FACTOR.

If no such x is found, add n to OUTPUT, and return OUTPUT.

If x is found, add x to the string OUTPUT.

Recursively call ALG-FACTORING with the parameter n/x, and add the output of this call to the string OUTPUT.

Return the string OUTPUT.

Note that the number of recursive calls to ALG-FACTOR is O(log n). This is due to the fact that 2 being the smallest prime, with each recursive call, the parameter to ALG-FACTOR is reduced by at least a factor of 2.

Acknowledgement. The professor gave me many clues to arrive at ALG-FACTORING.

As noted in the above proof, we have the following corollary:

Corollary 4.1.8. The number of prime factors of n is $O(\log n)$.

Lemma 4.1.9. $FACTOR \in coNP$

Proof. Consider the problem NOFACTOR(n,m). It belongs to NP as the following algorithm is in NP.

Algorithm 4.1.10. Algorithm ALG-NOFACTOR for NOFACTOR:

- Input: n, m
- Output: FALSE if there is a prime factor p of n, such that $p \leq m$, TRUE otherwise.
- Algorithm:

Get the list of prime factors of n using the algorithm ALG-FACTORING. This step can be executed in $O(\log n)$ steps by a non-deterministic turing machine.

Parse the list of prime factors to find any number x less than m. If x exists, return FALSE. Otherwise, return TRUE.

Lemma 4.1.11. If $P = NP \cap coNP$, there exists a polynomial time algorithm which decides FACTOR.

Proof. From the above lemmata, we can conclude that $FACTOR \in NP \cap coNP$. If $P = NP \cap coNP$, then $FACTOR \in P$. By the definition of P, we conclude that FACTOR has a polynomial time algorithm if $P = NP \cap coNP$.

Lemma 4.1.12. If there exists a polynomial time algorithm which decides FAC-TOR, there exists a polynomial time algorithm which computes FACTORING.

Proof. Consider the algorithm ALG-FACTORING introduced in one of the lemmata above. We had stated earlier that the part of the algorithm which uses binary search to find the smallest prime factor involves $O(\log n)$ calls to ALG-FACTOR. The functioning of ALG-FACTORING will remain unaffected with any other implementation of ALG-FACTOR. If there exists a deterministic polynomial time algorithm for ALG-FACTOR, the total time taken by ALG-FACTORING will be $O(\log^2 n)$. (This can be seen by adding the time required by the various steps of ALG-FACTORING.)

Hence, we conclude that if there exists a polynomial time algorithm which decides FACTOR, there exists a polynomial time algorithm which computes FACTORING.

From the above lemmata, we have the main result:

Theorem 4.1.13. If $P = NP \cap coNP$, there is a polynomial time algorithm for factoring.

References

[1] Christos H. Papadimitriou. Computational Complexity. Addison Wesley, November 1993.