

Probabilidad II

Ejercicio hecho en clase

Curso 2013/14

I) 1) Si X es constante, entonces las variables aleatorias X e Y son independientes. V Si f y g son funciones de Borel acotadas, entonces

$$E(f(X)g(Y)) = f(X)Eg(Y) = E(f(X))E(g(Y)).$$

2) En [0,1) con la probabilidad uniforme (medida de Lebesgue) las varaibles aleatorias $\mathbf{1}_{[0,1/2)}$ y $\mathbf{1}_{[0,1/4)\cup[1/2,3/4)}$ son independientes. V

 $\mathbf{1}_{[0,1/2)}$ y $\mathbf{1}_{[0,1/4)\cup[1/2,3/4)}$ son independientes si y sólo si A:=[0,1/2) y $B:=[0,1/4)\cup[1/2,3/4)$ son independientes. Pero $P(A\cap B)=1/4=P(A)P(B)$. Alternativamente, se puede comprobar que la función de masa conjunta es igual al producto de las funciones de masa marginales.

3) Dada una martingala $\{X_n\}_{n=1}^{\infty}$, para todo t real y todo $n \geq 1$ se cumple que $P(X_{n+1} > t) = P(X_n > t)$. F

Por ejemplo, en [0,1) con la probabilidad uniforme, tomamos X(w) = w, $X_n := E(X|\mathcal{A}_n)$, t = 1/2, \mathcal{A}_1 la sigma álgebra trivial, y \mathcal{A}_2 la sigma álgebra generada por [0,1/2) y [1/2,1).

4) Dada una sucesión de eventos $\{A_n\}_{n=1}^{\infty}$, si $\sum_{n=1}^{\infty} P(A_{n+1}) < 2014$, entonces $P(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k) = 0$. V

Por Borel-Cantelli: $P(A_2) + P(A_3) + \cdots < \infty$.

5) Si $X_n \to 2$ en distribución, entonces $X_n \to 2$ en probabilidad (2 denota la función constante $2(\omega) = 2$ para todo ω)). V

Fijamos $\varepsilon>0$. Como $F_2(t)=\mathbf{1}_{[2,\infty)}$, la única discontinuidad de F_2 ocurre en 2. Por tanto $\lim_n P(X_n\leq 2+\varepsilon)=1$ y $\lim_n P(X_n\leq 2-\varepsilon)=0$, luego $\lim_n P(|X_n-2|>\varepsilon)=0$.

II) (5 puntos) Enunciar y probar el teorema de Borel-Cantelli II.

Ver los apuntes de clase.