Lab 6

Big Data Spring 2018

April 2, 2018

OpenRefine

- http://openrefine.org/
- Former Google project (now open source) that does data cleanup, transformation, etc. (data wrangling)
- Spreadsheet meets database
- User can filter the rows to display using facets that define filtering criteria (for example, showing rows where a given column is not empty)
- All actions that were done on a dataset are stored in a project and can be replayed on another dataset
- Web user interface (in browser), uses a web server on your local machine

Start OpenRefine

 Download the lab6-dataset.csv file from NYU Classes (under Resources > Labs > lab6-dataset.csv

 Download OpenRefine: (http://openrefine.org/download.html)

Start OpenRefine - should open browser console

Load Data into OpenRefine

We will now load the CSV file into OpenRefine.

 Once the OpenRefine console opens in your browser, click "Choose Files" and select the lab6-dataset.csv file (wherever you saved it on your computer)

Click Next

Data Preview

You are now at the data preview page.

 Here you can set parameters and choose settings for data importing. You are shown a sample of the data.

Keep all the defaults set

Click "Create Project" in the upper right-hand corner

Checking for Duplicates

• summons_numbers must be unique - otherwise we have a functional dependency violation

Checking for Duplicates

 summons_numbers must be unique - otherwise we have a functional dependency violation

- Click drop-down arrow in the summons_number column
- Select Facet>Customized Facet>Duplicates Facet

Viewing range of values in a column

 First we will use a facet to view the different values in a given column

Select the dropdown arrow next to plate_type.

Select Facet>Text Facet

Viewing range of values in a column

First we will use a facet to view the different values in a given column

Select the dropdown arrow next to plate_type.

Select Facet>Text Facet

- A facet window appears in the left side-pane.
 - We can see that there are 26 different values
 - Each value is listed along with the number of times it occurs in the column

Changing Values and Filtering Rows

Notice that "999" is an entry.

Changing Values and Filtering Rows

Notice that "999" is an entry.

 If we wanted to change this entry (make it blank/NULL, for example), you can hover over this row in the facet window, select "edit" and change this value to whatever you want.

Changing Values and Filtering Rows

- Notice that "999" is an entry.
- If we wanted to change this entry (make it blank/NULL, for example), you can hover over this row in the facet window, select "edit" and change this value to whatever you want.
- If we want to remove all rows with 999...
 - Click the drop-down arrow in plate_type column
 - Select "Text Filter"
 - Type "999" into the box that appears in the left pane
 - In the main pane, click the drop down arrow by "All" and select Edit Rows>Remove All Matching Rows
 - Click the X to close the text filter box in the left pane

- Suppose we are interested in analyzing violations based on what county they occur in.
- We therefore might want to exclude rows that have a blank entry in the violation_county column

- Suppose we are interested in analyzing violations based on what county they occur in.
- We therefore might want to exclude rows that have a blank entry in the violation_county column
- Let's see how many entries are blank:
 - Select the drop-down arrow for this column
 - Select Facet>Customized Facet>Facet by blank

- Suppose we are interested in analyzing violations based on what county they occur in.
- We therefore might want to exclude rows that have a blank entry in the violation_county column
- Let's see how many entries are blank:
 - Select the drop-down arrow for this column
 - Select Facet>Customized Facet>Facet by blank
- There is now a facet window open in the left pane
 - We see there are 467 rows with a blank entry in violation_county

- Suppose we are interested in analyzing violations based on what county they occur in.
- We therefore might want to exclude rows that have a blank entry in the violation_county column
- Let's see how many entries are blank:
 - Select the drop-down arrow for this column
 - Select Facet>Customized Facet>Facet by blank
- There is now a facet window open in the left pane
 - We see there are 467 rows with a blank entry in violation_county
- Hover over "false" in the facet window and select the "include" text that appears.
- We have now excluded rows that have blank entries in violation_county (we see there are 99533 rows left in the table)

- Many times when data is input by humans, there are errors and inconsistencies.
- "Clustering" helps detect entries in a column that are close together (and thus represent the same value)

- Many times when data is input by humans, there are errors and inconsistencies.
- "Clustering" helps detect entries in a column that are close together (and thus represent the same value)
- Let's check for entry errors in plate_id:
 - Select the dropdown arrow in this column
 - Select Edit Cells>Cluster and Edit...

- Many times when data is input by humans, there are errors and inconsistencies.
- "Clustering" helps detect entries in a column that are close together (and thus represent the same value)
- Let's check for entry errors in plate_id:
 - Select the dropdown arrow in this column
 - Select Edit Cells>Cluster and Edit...
- We see that there are 3 instances of close entries in this column that are probably the same plate, but with human entry errors.
- To determine if these should be merged or not, you can click on "Browse this cluster" and look more closely at the data

- Many times when data is input by humans, there are errors and inconsistencies.
- "Clustering" helps detect entries in a column that are close together (and thus represent the same value)
- Let's check for entry errors in plate id:
 - Select the dropdown arrow in this column
 - Select Edit Cells>Cluster and Edit...
- We see that there are 3 instances of close entries in this column that are probably the same plate, but with human entry errors.
- To determine if these should be merged or not, you can click on "Browse this cluster" and look more closely at the data
- Select merge on all three check boxes, keep suggested values, and click "Merge Selected & Close".

- Let's try clustering on the street_name column
 - Edit Cells>Cluster and Edit...

- Let's try clustering on the street_name column
 - Edit Cells>Cluster and Edit...
- Yikes, 1439 clusters found!
- It would take a while to go through all of these
- Just by looking at the first few clusters, it is clear that we will need to make capitalization consistent and remove extraneous punctuation.
- Let's do this before we try to cluster click "Close" on the clustering window

• To make everything capitalized, click Edit cells> Common Transforms> To uppercase

 To make everything capitalized, click Edit cells> Common Transforms> To uppercase

- To filter out punctuation, we will use a regular expression. Click Edit cells>Transform...
 - In the text box, write the command value.replace(/[%@#!.;]/,")
 - Click "OK"

 To make everything capitalized, click Edit cells> Common Transforms> To uppercase

- To filter out punctuation, we will use a regular expression. Click Edit cells>Transform...
 - In the text box, write the command value.replace(/[%@#!.;]/,")
 - Click "OK"

- Make sure there is no leading or trailing whitespace. Click Edit cells> Common Transforms> trim leading and trailing whitespace
- Click Edit cells> Common Transforms> collapse consecutive whitespace

• Now let's try clustering again. Click Edit cells> Cluster and Edit...

- Now let's try clustering again. Click Edit cells> Cluster and Edit...
 - Now there are only 15 clusters we have to look at!

- Now let's try clustering again. Click Edit cells> Cluster and Edit...
 - Now there are only 15 clusters we have to look at!
- Look at the clusters that were found:
 - Sometimes it is clear that the entries should be merged
 - For example, "EAST 21 ST" and "EAST 21 ST ST" are probably the same street

- Now let's try clustering again. Click Edit cells> Cluster and Edit...
 - Now there are only 15 clusters we have to look at!
- Look at the clusters that were found:
 - Sometimes it is clear that the entries should be merged
 - For example, "EAST 21 ST" and "EAST 21 ST ST" are probably the same street
 - Sometimes it is not as clear:
 - Are "AVE ST JOHNS" and "ST JOHNS AVE" the same thing?

- Now let's try clustering again. Click Edit cells> Cluster and Edit...
 - Now there are only 15 clusters we have to look at!
- Look at the clusters that were found:
 - Sometimes it is clear that the entries should be merged
 - For example, "EAST 21 ST" and "EAST 21 ST ST" are probably the same street
 - Sometimes it is not as clear:
 - Are "AVE ST JOHNS" and "ST JOHNS AVE" the same thing?
 - Hover over this row and click "Browse this cluster"

- Now let's try clustering again. Click Edit cells> Cluster and Edit...
 - Now there are only 15 clusters we have to look at!
- Look at the clusters that were found:
 - Sometimes it is clear that the entries should be merged
 - For example, "EAST 21 ST" and "EAST 21 ST ST" are probably the same street
 - Sometimes it is not as clear:
 - Are "AVE ST JOHNS" and "ST JOHNS AVE" the same thing?
 - Hover over this row and click "Browse this cluster"
 - We can see that the county is marked and being different for these two cases, so these entries should probably not be merged.
- Determine which clusters should be merged. Merge them and close.

- Look at the vehicle_color column.
 - Just glancing at the entries, it is clear that there are many inconsistencies (e.g., "WHITE", "WHT", "WT")

- Look at the vehicle_color column.
 - Just glancing at the entries, it is clear that there are many inconsistencies (e.g., "WHITE", "WHT", "WT")

In this column, select Edit Cells>Cluster and Edit

- Look at the vehicle_color column.
 - Just glancing at the entries, it is clear that there are many inconsistencies (e.g., "WHITE", "WHT", "WT")

• In this column, select Edit Cells>Cluster and Edit

 Only 6 clusters were found. Select merge on all 6, then click "Merge Selected and Re-Cluster"

- Now it says there are no more clusters but there clearly are (e.g., "WHT" and "WHITE").
- This is because we are only using key collision as the clustering method.

- Now it says there are no more clusters but there clearly are (e.g., "WHT" and "WHITE").
- This is because we are only using key collision as the clustering method.

In the "Method" drop-down, select "nearest neighbor"

- Now it says there are no more clusters but there clearly are (e.g., "WHT" and "WHITE").
- This is because we are only using key collision as the clustering method.

• In the "Method" drop-down, select "nearest neighbor"

Hmm...it says no clusters. Try reducing block chars to 4.

More on Clustering Parameters

- Key collision methods: very fast (linear runtime) but can be either too strict or too lax with no way to fine tune allowable distance between strings
- Nearest neighbor methods provide parameters where we can tune this
 - Radius: a distance threshold any pair of strings closer than a certain value clustered together
 - Block chars: speeds up algorithm by first passing over sequence of strings to evaluate and obtains blocks in which all strings share a substring of given blocking size
 - a hybrid between key collision and nearest neighbor
- Read more about the parameters and clustering algorithms here: https://github.com/OpenRefine/OpenRefine/Wiki/Clustering-In-Depth

Back to color merging...

• Again, whether or not we merge is subjective

Back to color merging...

- Again, whether or not we merge is subjective
 - depends on what we plan to do with the data

Back to color merging...

- Again, whether or not we merge is subjective
 - depends on what we plan to do with the data
- After you resolve these merges, tweak the Radius and Block Chars parameters to adjust the clustering and try to resolve more.
- You can also close the clustering, examine the column text facet to see what else you need to merge, and do this manually in the facet window

Editing History/Undoing Changes

• In the upper left-hand corner, there is an undo/redo tab. Click it.

 Here we can see all the steps of changes we've made to the table.

You can click on a step to go back to that point!

OpenRefine Documentation

Much more functionality - only covered a small subset today

See the documentation and tutorials for more:

http://openrefine.org/documentation.html

Deliverable: due Monday, April 9, 6pm.

Complete the following three data cleaning tasks in OpenRefine using the lab6-dataset.csv dataset: (you can use the version you currently have - no need to revert changes you've made already during lab)

- 1. In the violation_time column, check if there are times that are invalid or blank (i.e., not a valid 12-hour clock time). Exclude these rows from the table.
- 2. In the registration_state column, check if there are invalid state entries. If so, exclude these rows from the table.
- 3. In the vehicle_make column, cluster similar items to make vehicle make labels consistent

Submission: In the top right of the OpenRefine console, click "Export">Comma-separated value to save your cleaned data file as a CSV file. Submit this CSV file to NYU Classes.