

Probabilistic Graphical Models: Problem Set 2

Svante Linusson, Liam Solus KTH Royal Institute of Technology

14 September 2023

1. (Medical diagnosis revisited) Suppose that the random variables in our medical diagnosis model from the first lesson $\mathbf{X} = [Con, M, F, H, CC, C19, S]^T$ factorizes according to the following DAG \mathcal{G} :

- (a) What is the relationship between this graph \mathcal{G} and the undirected graph from problem 1 on the first practice problem set?
- (b) Do you think this model is better or worse than our undirected graphical model for the same system of variables on practice problem set 1? Why or why not?
- (c) Suppose we were unsure if **X** was in $\mathcal{M}_F(\mathcal{G})$. What is the fewest number of CI relations we would need to check to convince ourselves that it is?
- 2. There are four DAGs on three nodes whose underlying undirected graph (i.e. **skeleton**) is a path. What are the *d*-separation statements for each of these four DAGs? What do you notice? What are the implications of what you notice for distributions Markov to anyone of these DAGs?
- 3. A DAG $\mathcal{G} = ([m], E)$ with linear extension $\pi = 12 \cdots m$ is called **perfect** if for all $i \in [m]$, the set of nodes $\operatorname{pa}_{\mathcal{G}}(i)$ form a clique in \mathcal{G} . Let $\overline{\mathcal{G}}$ denote the skeleton of \mathcal{G} . Show that $\mathcal{M}_{\operatorname{Glo}}(\mathcal{G}) = \mathcal{M}_{\operatorname{Glo}}(\overline{\mathcal{G}})$ whenever \mathcal{G} is perfect.
- 4. Consider three discrete random variables X_1, X_2, X_3 .
 - (a) Suppose that X_1 and X_2 are both binary with state space $\{0,1\}$. Show that if

$$f_{X_1,X_2}(0,0) = f_{X_1}(0)f_{X_2}(0)$$

then $X_1 \perp \!\!\! \perp X_2$.

- (b) Is it the case that for binary X_1, X_2 , and X_3 with state space $\{0, 1\}$ that $X_1 \perp X_2 \mid (X_3 = 0)$ implies $X_1 \perp X_2 \mid X_3$? Provide either a proof or a counterexample. In either case, determine the DAG with the fewest edges with respect to which the distribution(s) in your result satisfy the global Markov property.
- 5. Let $\mathcal{G}=([m],E)$ a DAG with linear extension $\pi=12\cdots m$ and consider the **linear Gaussian DAG model**

$$\mathbf{X} = A\,\mathbf{X} + E$$

for the lower triangular $m \times m$ matrix $A = [a_{i,j}]_{i,j=0}^m$ in which $a_{i,j} \neq 0$ if and only if $i \in pa_{\mathcal{G}}(j)$, and for the vector $E = [\varepsilon_1, \dots, \varepsilon_m]^T$ of independent standard normal random variables $\varepsilon_i \sim \mathcal{N}(\mathbf{0}, 1)$.

- (a) Show that **X** has a multivariate normal distribution $N(0, \Sigma')$, where $\Sigma' = (1 A)^{-1}(1 A)^{-T}$ and 1 denotes the $m \times m$ identity matrix.
- (b) Consider a linear Gaussian DAG model for the DAG $\mathcal{G}=([4],E)$ where

$$E = \{1 \to 2, 1 \to 3, 2 \to 4, 3 \to 4\}.$$

Does **X** factorize according to \mathcal{G} ?