2019-04-12 LECTURE

COLTON GRAINGER

There's an announcement for the reading course in homotopy theory, which will probably will start with the "homotopy category" and fibrations.

topic	when
pairings	today
Poincaré duality	soon

PAIRINGS

We have a sign convention 1 for the maps of cohomological degree p:

$$\text{Hom}(A_*, B_*)^p = \{f_i : A_i \to B_{i-p}\}.$$

That is, if f has cohomological degree p, then the chain map looks like

$$A_{i+1} \longrightarrow B_{i+1-p}$$

$$\downarrow$$

$$A_{i} \longrightarrow B_{i-p}$$

$$\downarrow$$

$$A_{i-1} \longrightarrow B_{i-1-p}$$

Claim. Hom $(A_*, B_*)^p$ is a chain complex with differential

$$(\delta f)(a) = \partial (f(a)) - (-1)^{\deg f} f(\partial(a)).$$

Why? Consider the (chain map) element $f \in \text{Hom}(A_*, B_*)$. Then f is a cocycle if and only if f has cohomological degree 0.

Corollary. Consider the chain complex concentrated at degree 0:

$$G_* = \{0 \text{ not in degree } 0 \text{ else } G \}.$$

With our sign conventions, the degree of each (chain map) element $f \in \text{Hom}(A_p, G)$ is $(-1)^{\deg f+1}$. Therefore (by the previous claim)

$$\operatorname{Hom}(A_*,G)$$
 is a chain complex with differential $\delta f=(-1)^{\deg f+1}f\partial$.

Keep in mind that the resolution $F_*(G) \to G$ (for G a finitely generated abelian group) induces a chain map.

$$0 \longrightarrow F_1 \longrightarrow F_0 \longrightarrow 0.$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow 0 \longrightarrow G \longrightarrow 0$$

Date: 2019-04-12.

1

¹This is also (homologically) $\operatorname{Hom}(A_*, B_*)_{-p}$.

Cross products. Let Λ be a commutative unital ring. Define

$$\times : \Delta^p(X;\Lambda) \otimes \Delta^q(Y;\Lambda) \to \Delta^{p+q}(X \times Y;\Lambda)$$

such that for (the cochains) $f: \Delta_p(X) \to \Lambda$ and $g: \Delta_q(X) \to \Lambda$ we have

$$f \otimes g \colon \Delta_p(X) \otimes \Delta_q(Y) \to \Lambda \otimes \Lambda.$$

But we can also map

$$\Lambda \otimes \Lambda \xrightarrow{m} \Lambda$$

so that $\sigma \otimes \tau \mapsto f(\sigma) \otimes g(\tau) \mapsto f(\sigma)g(\tau)$.

Recall from the Eilenberg-Zilber theorem (which is only hard for singular chain complexes generated on spaces), there's a map $\Theta \colon \Delta_*(X \times Y) \to \Delta_*(X) \otimes \Delta_*(Y)$ for which we have the chain homotopies $\Theta \circ \times \sim$ id and $\times \circ \theta \sim$ id. Define

$$f\times g=f\otimes g\circ\Theta.$$

Yu asked how

$$\Theta \colon \Delta_p(X \times Y; \Lambda) \to (\Delta_*(x) \otimes \Delta_*(Y))_p$$

could be well defined.

- Fix $f: \Delta_p(X) \to \Lambda$,
- then extend to all of $\Delta_*(X)$ by varying p.
- TODO

Lemma. $\delta(f \times g) = \delta f \times g + (-1)^{\deg f} f \times \delta g$.

Proof. TODO (via acyclic models.)

Theorem. There's a natural product

$$\times : H^p(X;\Lambda) \otimes H^q(Y;\Lambda) \to H^{p+q}(X \times Y;\Lambda)$$

such that

$$f \otimes g \mapsto f \times g$$
.

Proof sketch.

$$\Delta_*(X \times Y) \xrightarrow{\Theta} \Delta_*(X) \otimes \Delta_*(Y) \xrightarrow{f \otimes g} \Lambda$$
.

Cup products. Define $1 \in H^0(X; \mathbf{Z})$ to be the class² of $\epsilon : \Delta_0(X) \to \mathbf{Z}$.

From the product

$$X \times Y \xrightarrow{\pi_X} X$$

we have the induced map on $H^*(X) \to H^*(X \times Y)$ taking α under π_X^* to $\alpha \times 1$ (similarly $\beta \mapsto 1 \times \beta$).

In particular, consider the "slice map"

$$\Delta_p(X) \otimes \Delta_0(X) \xrightarrow{\quad \times \quad} \Delta_p(X \times Y) \xrightarrow{\quad \pi_{X \Delta} \quad} \Delta_p(X)$$

$$\tau \otimes y \longmapsto (\tau \times y)(x) = (\tau(z), y) \longmapsto \tau$$

TODO Once extended linearly, we have a map on chains, therefore an induced map.

²What?

How can we compare $\alpha \times \beta \in H^*(X \times Y; \Lambda)$ to $\beta \times \alpha \in H^*(Y \times X; \Lambda)$? There's a twist map $T: X \times Y \to Y \times X$ taking $(\alpha, \beta) \mapsto (\beta, \alpha)$, which induces a map on cohomology

$$H^*(X \times Y; \Lambda) \underset{T^*}{\longleftarrow} H^*(Y \times X; \Lambda)$$
.

Note. From this, one shows that the cup product is anti-commutative.

To finally define the cup product, we need the diagonal map $d: X \to X \times X$ such that d(x) = (x, x). The induced map d^* back on cohomology along with the map from the tensor product into the product (given by Eilenberg-Zilber) allow one to string together (this magic of topological spaces):

$$H^*(X;\Lambda)\otimes H^*(X;\Lambda)\xrightarrow{\times} H^*(X\times X;\Lambda)\xrightarrow{d^*} H^*(X;\Lambda)\;.$$

$$\alpha \otimes \beta \vdash \longrightarrow \alpha$$
"cup" β