ORF 522 Linear Optimization

Lecture 1

The Resource Allocation Problem

The Linear Programming Problem

oblem.

with aluminum framing hung wood-framed window.

m frame production. me production. duction and assembly.

es of 200 units.

	Hrs/batch		Hrs avail
	Door	Window	
Plant 1	1	0	4
Plant 2	0	2	12
Plant 3	3	2	18
Profit/batch	\$3,000	\$5,000	

oblem

ing Problem:

maximize
$$3x_1 + 5x_2$$

subject to $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18$
 $x_1, x_2 \ge 0$.

oblem

tion:

oblem

1 >= 0;

```
2 >= 0;
ofit: 3 * Batches1 + 5 * Batches2;

P1_Hrs_Avail: Batches1 <= 4;
P2_Hrs_Avail: 2*Batches2 <= 12;
P3_Hrs_Avail: 3*Batches1 + 2*Batches2 <= 18;

ches1, Batches2, profit;

optimal solution found.
s, objective 36
2
6</pre>
```

source Allocation Problem

ces; # Was plants in window prod

```
ties := Door Window;

1 :=
     4
    12
    18

_profit :=
    3
    5

e: Prod1 Prod2 :=
    1    0
    0    2
    3    2
```

ces := Plant1 Plant2 Plant3;

```
l window2.mod;
  window2.dat;
e;
  optimal solution found.
ns, objective 36
lay amt, profit;
```

maximize
$$c_1x_1 + c_2x_2 + \cdots + c_nx_n$$

subject to $a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n \leq b_1$
 $a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n \leq b_2$
 \vdots
 $a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n \leq b_m$
 $x_1, x_2, \dots x_n \geq 0$.

