Presentación Final

Teoria de Señales

Alumno: Vietto Herrera, Santiago

Profesor: Marcelo Olivero

Clave: 1802890

Año: 2020

DNI:

Serie de Fourier en Tiempo Continuo

Respuesta de Sistemas lit continuos en el tiempo a exponenciales complejas

- Dado x(t) = est
- Realizo la convolucion $y(t) = \int_{-\infty}^{\infty} h(\lambda)x(t-\lambda)d\lambda = y$ reemplazamos el x de la integral por la exponencial compleja.
- Luego de despejes obtenemos la "Funcion de transferencia en funcion de numeros complejos":

$$H(s) = \int_{-\infty}^{\infty} h(\lambda) e^{-s\lambda} d\lambda$$

• Entonces $y(t) = H(S) e^{St}$

Polinomios y coeficientes

- Tenemos: $x(t) = a_1 e^{s1t} + a_2 e^{s2t} + a_3 e^{s3t}$
- Entonces dada las exitaciones individuales:

$$a_1 e^{s1t} \rightarrow a_1 H(S_1) e^{s1t}$$

 $a_2 e^{s2t} \rightarrow a_2 H(S_2) e^{s2t}$
 $a_3 e^{s3t} \rightarrow a_3 H(S_3) e^{s3t}$

- La respuesta de x(t) viene dada por: $y(t) = a_1 H(S_1) e^{s1t} + a_2 H(S_2) e^{s2t} + a_3 H(S_3) e^{s3t}$
- Y para los coeficientes: $\sum_{k} a_{k}e^{skt} \rightarrow \sum_{k} a_{k}H(sk)e^{skt}$
- Valores de S: $S = J2\pi f$ ó $S = J2\pi K fo$ con $K = 0, \pm 1, \pm 2...$

Combinaciones de exponenciales complejas relacionadas armonicamente

Tenienedo en cuenta lo explicado anteriormente denotamos:

$$\emptyset_k(t) = e^{j2\pi k fot} \operatorname{con} K = 0, \pm 1, \pm 2...$$

- Cualquier señal circular puede ser representada por esta misma, donde:
- -2π es el numero de giros
- f_o es la frecuencia de osilacion
- Por lo tanto surge $X(t) = \sum_{k} a_k e^{j2\pi k f_0 t}$
- Donde: El término para k = 0 es la componente de contínua, y los términos para k = 1 y k = -1 son las componentes fundamentales o primeras armónicas.

Determinacion de la representacion en Serie de Fourier de una señal periodica

- Repasando los coeficientes de la exponencial:
- j: numero imaginario
- 2π: giro completo de un seno o coceno
- k: Indica con cual armonica se trabaja
- fo: frecuencia fundamental
- t: tiempo
- Buscamos a continuación la expresión de los valores a_k correspondientes
- Multiplicamos ambos terminos de la sumatoria de los coeficientes por la exponencial compleja $e^{-j2\pi nfot}$, y obtenemos:

$$x(t)e^{-j2\pi nfot} = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi(k-n)fot}$$

• Integramos ambos terminos sobre un intervalo de longitud To:

$$\int_{T_0} x(t)e^{-j2\pi nfot} dt = \int_{T_0} \left[\sum_{k=-\infty}^{\infty} a_k e^{j2\pi(k-n)fot} \right] dt$$

$$\int_{T_0} x(t)e^{-j2\pi nfot} dt = \sum_{k=-\infty}^{\infty} a_k \left[\int_{T_0} e^{j2\pi(k-n)fot} dt \right]$$

Tomamos:

$$\int_{t_0} e^{j2\pi(k-n)fot} dt = \begin{cases} T_o & \text{si } k = n \\ 0 & \text{si } k \neq n \end{cases}$$

Llegando a la conclucion de que:

$$\int x(t)e^{-j2\pi nfot}dt = a_n T_0$$

• Por distribucion: $a_0 = \frac{1}{To} \int_{To} x(t) dt$

- Donde los coeficientes a_k determinan la amplitud y fase de las diferentes componentes armónicas.
- El coeficiente a_0 : componente de continua de x (t).
- Gracias a toda este desarrollo matematico concluimos en 2 ecuaciones

Ecuacion de Analisis

$$a_k = \frac{1}{T_O} \int_{T_O} x(t) e^{-j2\pi k fot} dt$$

- Ecuación que permite dada la señal encontrar los coeficientes.

Ecuacion de Sintesis

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k fot}$$

- Expresion de la serie propiamente dicha.

(s) On the single of the singl

(a) Onda sinusoidal

(b) Onda cuadrada

Grafico señales periodicas:

Convergencia de las Series de Fourier

- Coeficientes de fourier: son la mejor aproximacion que puedo hacer en una funcion continua.
- Se quiere que la serie sea convergente, para tener coeficientes mas pequeños y gracias a eso una mejor aproximacion.
- No todas las señales circulares y repetitivas pueden ser aproximadas por serie de fourier, existe una restriccion. Esta se conoce como las condiciones de Dirichlet.

Condiciones de Dirichlet

Primer condicion:

- X(t) debe ser integrable en cualquier periodo.
- Aquella señal que no cumpla con esta condicion, por lo general son aquellas que al integrar dan infinito.
- Ejemplo: X(t)= 1/t para 0<t<1

Segunda condicion:

- x(t) debe tener un numero finito de maximos y minimos durante cualquier periodo.
- Es decir, las señales que no cumplen con esta condicion son aquellas que poseen infinitos maximos y minimos.
- Ejemplo: $P(t) = \operatorname{sen} \frac{2\pi}{t}$ con $0 < t \le 1$ y To = 1

Tercer condicion:

- x(t) debe tener un numero finito de discontinuidades finitas en un intervalo dinito de tiempo.
- No cumplen con esta aquellas señales con infinitas discontinuidades de saltos finitos. Siempre me quedo con la mitad del periodo.

- Ejemplo:

$$x(t) = \begin{cases} 1, & 0 \le t < 1/2 \\ \frac{1}{2}, & 1/2 \le t < 1/4 \\ \frac{1}{4}, & 1/4 \le t < 1/8 \\ \frac{1}{8}, & 1/8 \le t < 1/16 \\ \frac{1}{16}, & 1/16 \le t < 1/32 \\ etc... \end{cases}$$

Fenómeno de Gibbs

Propiedades de la Serie de Fourier

PROPIEDADES DE LA SERIE CONTINUA DE FOURIER

Propiedad	Señal Periódica	Coeficientes de la serie	Diferenciación	$\underline{dx(t)}$	jkω ₀ a _k
		$\mathbf{a_k}$ $\mathbf{b_k}$	Integración	$\int_{-\infty} x(\tau) d\tau (\text{de valor finito y periódica}$ $\text{solo si} \ a_0 = 0)$	$\frac{1}{\mathrm{jk}\omega_0}a_k$
Obtención de coeficientes	$x(t)\Big _{T} = \sum_{k=-\infty}^{\infty} a_{k} e^{Jk\omega_{0}t}$	$a_k = \frac{1}{T} \int_{\Gamma} x(t) e^{-jk\omega_0 t} dt$			$\begin{cases} \mathbf{a}_k = \mathbf{a}_{-k}^* \\ \mathbf{R}_e[\mathbf{a}_k] = \mathbf{R}_e[\mathbf{a}_{-k}] \\ \mathbf{I}_m[\mathbf{a}_k] = -\mathbf{I}_m[\mathbf{a}_{-k}] \end{cases}$
	x(t) Señal par	$a_k = \frac{2}{T} \int_0^{T/2} x(t) \cos(k\omega_0 t) dt$	Simetría conjugada para señales reales.	x(t) Señal real	$ \mathbf{a}_{k} = \mathbf{a}_{-k} $
	x(t) Señal impar	$a_k = -\frac{2j}{T} \int_0^{T/2} x(t) sen(k\omega_0 t) dt$	Señal real y par	x(t) real y par	$\left[\left(\phi[a_k] = -\phi[a_{-k}] \right] \right]$ $a_k \text{ real } y \text{ par}$
Linealidad	Ax(t)+By(t)	Aa_k+Bb_k	Señal real e impar	x(t) real e impar Relación de Parseval para señales perio	a _k imaginaria e impar
Desplazamiento en el tiempo	$x(t-t_0)$	$a_k e^{-jk\omega_0t_0}$]	$P_{m}[x(t)] = \frac{1}{T} \int_{\Gamma} x(t) ^{2} dt = \sum_{k=1}^{\infty} a_{k} ^{2}$	
Desplazamiento en frecuencia	$x(t)e^{jM\omega_0t}$	a_{k-M}		T JT 1 k=-∞	
Conjugación	x*(t)	a*_k			
Inversión de tiempo	x(- t)	a_{-k}			
Escalamiento en el tiempo	$x(\alpha t)$, $\alpha > 0$ (Periódica de periodo T/α)	a _k			
Convolución periódica	$\int_{\Gamma} x(\tau) y(t-\tau) d\tau$	Ta_kb_k			
Multiplicación	x(t)y(t)	$\sum_{p=-\infty}^{\infty} a_p b_{k-p}$			

Transformada de Fourier en Tiempo Continuo

- Anlisis secuencial de las señales.
- Podemos encontrar la transformada de x(t) si cumple con las condiciones de dirichlet.
- Explica la distribucion de energia o potencia en funcion de fecuencia.
- Se logra una formula para mapear espectro y frecuencia.
- Podemos tener una funcion de variable real a valores complejos.

Ecuacion de Anlisis

Ejemplo 1:

Ejemplo 2:

Transformadas:

Antitransformada:

Espectro

Wave spectrum

UNITED

STATES FREQUENCY

THE RADIO SPECTRUM

Propiedades de la Transformada de Fourier

TRANSFORMADA DE FOURIER EN TIEMPO CONTINUO PROPIEDADES

TRANSFORMADA DE FOURIER EN TIEMPO CONTINUO PROPIEDADES						
Propiedad	Señal	Transformada de Fourier	Integración	$\int_{-\infty}^{\infty} x(\tau) d\tau$	$\frac{1}{1}X(\omega) + \pi X(0)\delta(\omega)$	
500	x(t) y(t)	X(ω) Y(ω)		±-00	$\int_{0}^{\infty} X(\omega) = X^{*}(-\omega)$	
Ecuaciones	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	Simetría conjugada para señales reales	x(t) Señal real	$R_{e}[X(\omega)] = R_{e}[X(-\omega)]$ $\{I_{m}[X(\omega)] = -I_{m}[X(-\omega)]$	
	x(t) Par	$X(\omega) = 2 \int_0^\infty x(t) \cos\omega t dt$		3,000	$ X(\omega) = X(-\omega) $	
	x(t) Impar	$X(\omega) = -2j \int_0^\infty x(t) \operatorname{sen}\omega t dt$			$[\phi[X(\omega)] = -\phi[X(-\omega)]$	
Linealidad	a x(t) + b y(t)	$a X(\omega) + b Y(\omega)$	Simetría para señales reales y	x(t) Señal real y par	$ X(\omega) = R_e[X(\omega)] $	
Desplazamiento en el tiempo	x(t-t ₀)	$X(\omega)e^{-j\omega t_0}$	pares	A(t) Senai real y pai	$X(\omega) = R_e[X(\omega)] \begin{vmatrix} X(\omega) = R_e[X(\omega)] \\ \varphi[X(\omega)] = \begin{cases} 0 \\ \pm \pi \end{vmatrix}$	
Desplazamiento en frecuencia	$x(t)e^{j\omega_0t}$	X(ω-ω ₀)	Simetría para señales reales y	() 0 - 1 1 .		
Conjugación	x*(t)	Χ*(-ω)	pares	1	$X(\omega) = j I_{m}[X(\omega)] \begin{vmatrix} X(\omega) - I_{m}[X(\omega)] \\ \varphi[X(\omega)] - \pm \frac{\pi}{2} \end{vmatrix}$	
Inversión de tiempo	x(-t)	Χ(-ω)				
Escalado de tiempo y frecuencia	x(at)	$\frac{1}{ a }X\!\!\left(\frac{\omega}{a}\right)$	Descomposición par e impar de señales reales	$x_{p}(t) = Par\{x(t)\} [x(t) \text{ real}]$ $x_{1}(t) = Imp\{x(t)\} [x(t) \text{ real}]$	$Re{X(\omega)}$ $jIm{X(\omega)}$	
Convolución	x(t)*y(t)	Χ(ω) Υ(ω)	$ \begin{array}{ccc} f(t) & \leftrightarrow & G(\omega) \\ G(t) & \leftrightarrow & 2\pi \ f(-\omega) \end{array} \right\} DUALIDAD $			
Multiplicación	x(t) y(t)	$\frac{1}{2\pi}[X(\omega)*Y(\omega)]$				
Diferenciación en el tiempo	$\frac{d x(t)}{dt}$	jω X(ω)	Relación de Parseval para señales no periódicas	$E[x(t)] = \int_{-\infty}^{\infty} x(t) ^2 dt$	$t = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) ^2 d\omega$	