HIH-
$$\Gamma$$
(1) maximize $y_1 + y_2$
(D) $S_1 + y_2 \leq 12$
 $y_1 + 2y_2 \leq 9$
 $y_1 + 2y_2 \leq 9$
 $y_1 \leq 5$
 $y_2 \leq 4$

目的関数を
$$y_1+y_2=K$$
となくと、 $y_2=-\frac{1}{2}y_1+\frac{K}{2}$ (0< $t\le 1$) 大を固定 $t=$ 時、 K の最大化はこの直線の t 刀片の最大化である。 $x_1 > 0 \rightarrow 1$

とすると、

①
$$(-\frac{1}{4})$$
<-3 ort $(4, 32)$ =(40)

②
$$(-\frac{1}{4}) = -3$$
 のとき、 (y_*, y_*) は $(4,0)$ と $(3,3)$ の線分上の点

$$3-3<(-\frac{1}{4})\leq-1$$
 ore $(4,*,*,*)=(3,3)$

以上をまとめると、(りも含め

$$(y_1^*, y_2^*) = \begin{cases} (4,0) & \text{if } (0 \le \pm < \frac{1}{3}) \\ (y_1, 12 - 3y_1) & (4 \le 4) & \text{if } \pm \frac{1}{3} \\ (3,3) & \text{if } \frac{1}{3} < \pm \le 1 \end{cases}$$

$$(4)$$
、 $\forall_{t} \in [0,1]$ に対して、(D) の制約 $y_{1}^{*} \leq 5$, $y_{2}^{*} \leq 4$ は 達成されないので、 $\chi_{3}^{*} = \chi_{4}^{*} = 0$

①
$$0 \le \pm < \frac{1}{3}$$
 or \pm $y_1^* + 2y_2^* \neq 9$ $\pm y$ $\chi_2^* = 0$ $y_1^* \neq 0 \neq y$ $\chi_1^* = \frac{1}{3}$

3
$$\frac{1}{3}$$
 < ± 10 < ± 2 < ± 2

以上をまとめると、

$$\begin{cases} \left(\frac{1}{3},0,0,0\right) & \left(0 \le \frac{1}{3} \le \frac{1}{3}\right) \\ \left(\frac{2-\frac{1}{5}}{5},\frac{3+1}{5},0,0\right) & \left(\frac{1}{3} \le \frac{1}{3} \le 1\right) \end{cases}$$