WHAT IS CLAIMED IS:

1	1. A flush-mount antenna system, to enable communication with a moving	
2	vehicle via a satellite, comprising:	
3	a cavity having a rectangular upper perimeter with four sides and having a	
4	depth normal to said perimeter;	
5	an array comprising a plurality of subarrays of rectangular form positioned	
6	in a rectangular arrangement having length and width edges, each such subarray including	
7	at least one waveguide having slot-type radiating elements;	
8	said array positioned within said cavity and arranged for rotation about an	
9	axis-of-rotation adjacent to an edge of the array and aligned with a side of the upper	
10	perimeter;	
11	an elevation scan actuator to mechanically tilt said array about said axis-	
12	of-rotation without removing the array from said cavity;	
13	a signal port; and	
14	a feed configuration to couple signals between the signal port and each	
15	subarray.	
1	2. A flush-mount antenna system as in claim 1, additionally comprising:	
2	an azimuth scan assembly to mechanically rotate said array to provide	
3	scanning in azimuth.	

1	3.	A flush-mount antenna system as in claim 2, wherein the azimuth scan
2	assembly is ar	ranged to mechanically rotate said cavity and the array positioned therein.
1	4.	A flush-mount antenna system as in claim 1, wherein the array comprises
2	square flat-pla	te type subarrays contiguously positioned in a rectangular array.
1	5.	A flush-mount antenna system as in claim 1, wherein each individual
2	subarray of sa	id plurality includes slotted waveguides in parallel side-by-side arrangement
3	and each wave	eguide includes at least one row of slot-type radiating elements.
1	6.	A flush-mount antenna system as in claim 1, wherein said slot-type
2	radiating elem	ents comprise crossed-slot radiating elements.
1	7.	A flush-mount antenna system as in claim 1, wherein a length edge of the
2	array is position	oned adjacent to said axis-of-rotation.
1	8.	An antenna system, to enable communication via satellite, comprising:
2		a cavity having an upper perimeter and a depth normal to said perimeter;
3		an array comprising a plurality of subarrays positioned in a two-
4	dimensional a	rrangement having an edge section and configured to provide a beam

pattern, each said subarray including at least one waveguide section having slot-type

5

6	radiating elements;
7	said array positioned within said cavity and arranged for rotation about as
8	axis-of-rotation adjacent to said edge section of the array to scan the beam pattern in
9	elevation;
10	an elevation scan actuator to mechanically tilt said array by rotation abou
11	said axis-of-rotation without removing the array from said cavity;
12	a signal port; and
13	a feed configuration to couple signals between the signal port and each
14	subarray.
1	9. An antenna system as in claim 8, additionally comprising:
2	an azimuth scan assembly to mechanically rotate said array to scan the
3	beam pattern in azimuth
1	10. An antenna system as in claim 9, wherein the azimuth scan assembly is
2	arranged to mechanically rotate said cavity and the array positioned therein.
1	11. An antenna system as in claim 8, wherein the array comprises square flat-
2	plate type subarrays contiguously positioned in a rectangular array.
1	12. An antenna system as in claim 8, wherein each individual subarray of said

2	plurality includes slotted waveguides in parallel side-by-side arrangement and each	
3	waveguide includes at least one row of slot type radiating elements.	
1	13. An antenna system as in claim 8, wherein said slot-type radiating element	
2	comprise crossed-slot radiating elements.	
1	14. An antenna system as in claim 8, wherein the upper perimeter includes a	
2	linear side portion and said axis-of-rotation is adjacent and parallel to said linear side	
3	portion and said array edge section.	
1	15. An antenna system, to enable communication via satellite, comprising:	
2	a cavity having an upper perimeter and a depth normal to said perimeter;	
3	an array comprising a plurality of subarrays positioned in a two-	
4	dimensional arrangement and configured to provide a beam pattern, each said subarray	
5	including at least one waveguide section having slot-type radiating elements;	
6	said array positioned within said cavity and arranged for rotation about an	
7	axis-of-rotation to scan the beam pattern in elevation;	
8	an elevation scan actuator to mechanically tilt said array by rotation about	
9	said axis-of-rotation without removing the array from said cavity;	
10	a signal port; and	
11	a feed configuration to couple signals between the signal port and each	

12	subarray.		
1	16. An antenna system as in claim 15, additionally comprising:		
2	an azimuth scan assembly to mechanically rotate said array to scan the		
3	beam pattern in azimuth		
1	17. An antenna system as in claim 16, wherein the azimuth scan assembly is		
2	arranged to mechanically rotate said cavity and the array positioned therein.		
1	18. An antenna system as in claim 15, wherein the array comprises square flat-		
2	plate type subarrays contiguously positioned in a rectangular array.		
1	19. An antenna system as in claim 15, wherein each individual subarray of		
2	said plurality includes slotted waveguides in parallel side-by-side arrangement and each		
3	waveguide includes at least one row of slot type radiating elements.		
1	20. An antenna system as in claim 15, wherein said slot-type radiating		

1 21. An antenna system as in claim 15, wherein the upper perimeter includes a linear side portion, the array includes a linear edge section and said axis-of-rotation is

elements comprise crossed-slot radiating elements.

2

3 adjacent and parallel to said side portion and said edge section.