

Reconocimiento de Patrones

Version 2022-2

LDA, QDA, Mahalanobis

[Capítulo 4]

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar Clasificador de Bayes: x es clasificado como clase j si

$$p(\omega_j|\mathbf{x}) > p(\omega_k|\mathbf{x}) \quad k = 1, \ldots, C; k \neq j$$

Usando el teorema de Bayes:

$$p(\omega_i|\mathbf{x}) = p(\omega_i) \frac{p(\mathbf{x}|\omega_i)}{p(\mathbf{x})}$$
$$p(\mathbf{x}|\omega_j)p(\omega_j) > p(\mathbf{x}|\omega_k)p(\omega_k) \quad k = 1, \dots, C; k \neq j$$

Para distribuciones Gaussianas

$$p(\boldsymbol{x}|\omega_i) = \frac{1}{(2\pi)^{p/2}|\boldsymbol{\Sigma}_i|^{1/2}} \exp\left\{-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i)\right\}$$

Estimador de Matriz de Covarianza: $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - m)(x_i - m)^T$

Ejemplos de Σ y μ en 2D:

6.0057	-0.1020
-0.1020	1.0632

15.1951	21.8267
21.8267	37.6734

Clasificador de Bayes

$$p(\omega_j|\mathbf{x}) > p(\omega_k|\mathbf{x}) \quad k = 1, \dots, C; \ k \neq j$$

$$p(\mathbf{x}|\omega_j)p(\omega_j) > p(\mathbf{x}|\omega_k)p(\omega_k) \quad k = 1, \dots, C; \ k \neq j$$

$$\log\{p(\mathbf{x}|\omega_j)p(\omega_j)\} > \log\{p(\mathbf{x}|\omega_k)p(\omega_k)\} \quad k = 1, \dots, C; \ k \neq j$$

Para distribuciones Gaussianas:

$$p(\boldsymbol{x}|\omega_i) = \frac{1}{(2\pi)^{p/2} |\boldsymbol{\Sigma}_i|^{1/2}} \exp\left\{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\boldsymbol{x} - \boldsymbol{\mu}_i)\right\}$$

$$\log(p(\mathbf{x}|\omega_i) p(\omega_i)) = \log(p(\mathbf{x}|\omega_i)) + \log(p(\omega_i))$$

$$= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \log(|\boldsymbol{\Sigma}_i|)$$

$$-\frac{p}{2} \log(2\pi) + \log(p(\omega_i))$$

$$\log\{p(\boldsymbol{x}|\omega_j)p(\omega_j)\} > \log\{p(\boldsymbol{x}|\omega_k)p(\omega_k)\} \ k = 1, \dots, C; k \neq j$$

$$\log(p(\mathbf{x}|\omega_i) p(\omega_i)) = \log(p(\mathbf{x}|\omega_i)) + \log(p(\omega_i))$$

$$= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \log(|\boldsymbol{\Sigma}_i|)$$

$$-\frac{p}{2} \log(2\pi) + \log(p(\omega_i))$$

Este término es constante, se puede eliminar de la desigualdad.

LDA

$$\log\{p(\boldsymbol{x}|\omega_j)p(\omega_j) > \log\{p(\boldsymbol{x}|\omega_k)p(\omega_k) \mid k=1,\ldots,C; k\neq j\}$$

$$\log(p(\mathbf{x}|\omega_i) p(\omega_i)) = \log(p(\mathbf{x}|\omega_i)) + \log(p(\omega_i))$$

$$= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \log(|\boldsymbol{\Sigma}_i|)$$

$$-\frac{p}{2} \log(2\pi) + \log(p(\omega_i))$$

En LDA (Análisis Discriminante Lineal) se supone que $\Sigma_i = \Sigma$ (es constante).

 Σ se calcula a partir de datos de entrenamiento. Una buena estimación es el promedio de las matrices de covarianza individuales: $\Sigma = (\Sigma_1 + \Sigma_2)/2$

LDA

MAHALANOBIS

$$\log\{p(\boldsymbol{x}|\omega_j)p(\omega_j)\} > \log\{p(\boldsymbol{x}|\omega_k)p(\omega_k)\} \ k = 1, \dots, C; k \neq j$$

$$\log(p(\mathbf{x}|\omega_i) p(\omega_i)) = \log(p(\mathbf{x}|\omega_i)) + \log(p(\omega_i))$$

$$= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \log(|\boldsymbol{\Sigma}_i|)$$

$$-\frac{p}{2} \log(2\pi) + \log(p(\omega_i))$$

En el Clasificador Mahalanobis se asume $p(w_i) = p$ y

las matrices Σ_i son distintas.

Mahalanobis

MAHALANOBIS-0

$$\log\{p(\boldsymbol{x}|\omega_j)p(\omega_j)\} > \log\{p(\boldsymbol{x}|\omega_k)p(\omega_k)\} \ k = 1, \ldots, C; k \neq j$$

$$\log(p(\mathbf{x}|\omega_i) p(\omega_i)) = \log(p(\mathbf{x}|\omega_i)) + \log(p(\omega_i))$$

$$= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \log(|\boldsymbol{\Sigma}_i|)$$

$$-\frac{p}{2} \log(2\pi) + \log(p(\omega_i))$$

En el Clasificador Mahalanobis se asume $p(w_i) = p$.

Hay una variante de Mahalanobis en la que se supone que $\Sigma_i = \Sigma$.

Mahalanobis-0 $(\Sigma_i = \Sigma)$

(X,d) TRAINING (X_t, d_t)

QDA

 $\log\{p(\boldsymbol{x}|\omega_j)p(\omega_j)\} > \log\{p(\boldsymbol{x}|\omega_k)p(\omega_k)\} \quad k = 1, \dots, C; k \neq j$

$$\log(p(\mathbf{x}|\omega_i) p(\omega_i)) = \log(p(\mathbf{x}|\omega_i)) + \log(p(\omega_i))$$

$$= -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \log(|\boldsymbol{\Sigma}_i|)$$

$$-\frac{p}{2} \log(2\pi) + \log(p(\omega_i))$$

En QDA (Análisis Discriminante Cuadrático) se supone que Σ_i y $p(w_i)$ son diferentes.

QDA

 (X_t, d_t) TESTING

Class 0

Class 1

$$\log(p(\boldsymbol{x}|\omega_i) = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i) - \frac{1}{2}\log(|\boldsymbol{\Sigma}_i|) - \frac{p}{2}\log(2\pi) + \log(p(\omega_i))$$

LDA
$$= -\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{1}{2} \log(|\boldsymbol{\Sigma}_i|) - \frac{p}{2} \log(2\pi) + \log(p(\omega_i))$$

$$\Sigma_i = \Sigma = \text{cte}$$
 cte $p(w_i) = ct$

$$\Sigma_{\rm i} = \Sigma = {\rm cte} \qquad {\rm cte} \qquad p(w_i) = {\rm cte}$$

$${\rm Mahalanobis} = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i) - \frac{1}{2}\log(|\boldsymbol{\Sigma}_i|) - \frac{p}{2}\log(2\pi) + \log(p(\omega_i))$$

$$\mathsf{QDA} \qquad = -\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}_i^{-1}(\boldsymbol{x} - \boldsymbol{\mu}_i) - \frac{1}{2}\log(|\boldsymbol{\Sigma}_i|) - \frac{p}{2}\log(2\pi) + \log(p(\omega_i))$$