CS4246 / CS5446

Tutorial Week 12

Muhammad Rizki Maulana

rizki@u.nus.edu

First

ment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

Husband and wife would like to go on a date-night out and there are only two venues for entertain-

	Ballet	Concert
Ballet		
Concert		

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

Husband (H)

		. ,		
		Ballet	Concert	
Husband (H)	Ballet		H=0, W=0	
Husba	Concert	H=0, W=0		

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

		Ballet	Concert
lusband (H)	Ballet	H=1, W=2	H=0, W=0
Husba	Concert	H=0, W=0	

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

		Ballet	Concert
Husband (H)	Ballet	H=1, W=2	H=0, W=0
Husba	Concert	H=0, W=0	H=2, W=1

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

	Ballet	Concert
Ballet	H=1, W=2	H=0, W=0
Concert	H=0, W=0	H=2, W=1

Husband (H)

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

a) Argue that both the strategy profiles $\langle Ballet, Ballet \rangle$ and $\langle Concert, Concert \rangle$ are Nash equilibria.

Vife (W)

		Ballet	Concert
Husband (H)	Ballet	H=1, W=2	H=0, W=0
Husba	Concert	H=0, W=0	H=2, W=1

a) Argue that both the strategy profiles $\langle Ballet, Ballet \rangle$ and $\langle Concert, Concert \rangle$ are Nash equilibria.

Switch makes the value worse

		Ballet	Concert
,	Ballet	H=1, W=2	H=0, W=0
Ideblaid	Concert	H=0, W=0	H=2, W=1

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

a) Argue that both the strategy profiles $\langle Ballet, Ballet \rangle$ and $\langle Concert, Concert \rangle$ are Nash equilibria.

Switch makes the value **worse**

		Ballet	Concert	
Husband (H)	Ballet	H=1, W=2	H=0, W=0	
Husba	Concert	H=0, W=0	H=2, W=1	

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

(b) Find a Nash equilibrium where both players play mixed strategies.

		Ballet	Concert
(п) пиврапи	Ballet	H=1, W=2	H=0, W=0
	Concert	H=0, W=0	H=2, W=1

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

(b) Find a Nash equilibrium where both players play mixed strategies.

Wife (V	V)
---------	----

		- (/	
		Ballet	Concert
lusband (H)	Ballet	H=1, W=2	H=0, W=0
Husba	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

Wife (W)

		Ballet	Concert
	Ballet	H=1, W=2	H=0, W=0
านรอส	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

Assume H: p ballet, (1-p) concert. Find p that makes W indifference

H=concert

Wife (W)

		Ballet	Concert
(L) niii	Ballet	H=1, W=2	H=0, W=0
านรมสาเน	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

Assume H: p ballet, (1-p) concert. Find p that makes W indifference

$$p * U_{W=ballet, H=ballet} + (1-p) * U_{W=ballet, H=concert} = p * U_{W=concert, H=ballet} + (1-p) * U_{W=$$

H=concert

Wife (W)
---------	---

			(**)
		Ballet	Concert
	Ballet	H=1, W=2	H=0, W=0
กนรมสกับ	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

$$p * U_{W=ballet, H=ballet} + (1-p) * U_{W=ballet, H=concert} = p * U_{W=concert, H=ballet} + (1-p) * U_{W=$$

Vife	(W)

- ()			
		Ballet	Concert
	Ballet	H=1, W=2	H=0, W=0
านรถส	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

$$p * U_{\text{W=ballet, H=ballet}} + (1-p) * U_{\text{W=ballet, H=concert}} = p * U_{\text{W=concert, H=ballet}} + (1-p) * U_{\text{W=con$$

Wife	(W)

	- ()		
		Ballet	Concert
ниspand (н)	Ballet	H=1, W=2	H=0, W=0
	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

$$p * U_{W=ballet, H=ballet} + (1-p) * U_{W=ballet, H=concert} = p * U_{W=concert, H=ballet} + (1-p) * U_{W=$$

Vife (W)

		Ballet	Concert	
Husband (H)	Ballet	H=1, W=2	H=0, W=0	
Husba	Concert	H=0, W=0	H=2, W=1	

(b) Find a Nash equilibrium where both players play mixed strategies.

		- ()	
		Ballet	Concert
na (H)	Ballet	H=1, W=2	H=0, W=0
Husband	Concert	H=0, W=0	H=2, W=1

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

(b) Find a Nash equilibrium where both players play mixed strategies.

Wife	(W)	
	\ · ·	

		- ()	
		Ballet	Concert
Husband (H)	Ballet	H=1, W=2	H=0, W=0
Husba	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

$$E[H=ballet] = E[H=concert]$$

Wife (W)

		Ballet	Concert
	Ballet	H=1, W=2	H=0, W=0
กนรมสแน	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

Assume W: q ballet, (1-q) concert. Find q that makes H indifference

$$E[H=ballet] = E[H=concert]$$

$$q * U_{H=ballet,W=ballet} + (1-q) * U_{H=ballet,W=concert} = q * U_{H=concert,W=ballet} + (1-q) *$$

W=concert

Wife (W)	
----------	--

		()	
		Ballet	Concert
	Ballet	H=1, W=2	H=0, W=0
กนรมสกับ	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

Assume W: q ballet, (1-q) concert. Find q that makes H indifference

$$E[H=ballet] = E[H=concert]$$

$$q * U_{H=ballet, W=ballet} + (1-q) * U_{H=ballet, W=concert} = q * U_{H=concert, W=ballet} + (1-q) * U_{H=$$

W=concert

$$q * 1 + (1-q) * 0$$

Vife (W))
----------	---

		Ballet	Concert
	Ballet	H=1, W=2	H=0, W=0
านรมสแน	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

$$E[H=ballet] = E[H=concert]$$

$$q * U_{H=ballet,W=ballet} + (1-q) * U_{H=ballet,W=concert} = q * U_{H=concert,W=ballet} + (1-q) *$$

$$q^*$$
 1 + $(1-q)^*$ 0 = q^* 0 + $(1-q)^*$ 2

Vife	(W)

		()	
		Ballet	Concert
	Ballet	H=1, W=2	H=0, W=0
Husband	Concert	H=0, W=0	H=2, W=1

(b) Find a Nash equilibrium where both players play mixed strategies.

$$E[H=ballet] = E[H=concert]$$

$$q * U_{H=ballet,W=ballet} + (1-q) * U_{H=ballet, W=concert} = q * U_{H=concert, W=ballet} + (1-q) * U_{H=c$$

	Ballet	Concert
Ballet	H=1, W=2	H=0, W=0
Concert	H=0, W=0	H=2, W=1

Husband (H)

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

c) Compute the expected utility of all three equilibria for the husband. Do the same for the wife.

Vife	(W)
	` '

		Ballet	
Husband (H)	Ballet	H=1, W=2	
Husba			

c) Compute the expected utility of all three equilibria for the husband. Do the same for the wife.

		vviie (vv)	
			Concert
usband (H)			
nsba	Concert		H=2, W=1

Mifo (M)

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

c) Compute the expected utility of all three equilibria for the husband. Do the same for the wife.

		Ballet	Concert
Husband (H)	Ballet	H=1, W=2	H=0, W=0
Husba	Concert	H=0, W=0	H=2, W=1

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

c) Compute the expected utility of all three equilibria for the husband. Do the same for the wife.

		Wife (W)	
		Ballet	Concert
Husband (H)	Ballet	H=1, W=2	H=0, W=0
Husba	Concert	H=0, W=0	H=2, W=1

c) Compute the expected utility of all three equilibria for the husband. Do the same for the wife.

Wife (W)

	Ballet	Concert
Ballet	H=1, W=2	H=0, W=0
Concert	H=0, W=0	H=2, W=1

Husband (H)

Wife (W)

			,
		Ballet	Concert
na (H)	Ballet	H=1, W=2	H=0, W=0
Huspand	Concert	H=0, W=0	H=2, W=1

H=0, W=0

Ballet

Concert

Husband (H)

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

c) Compute the expected utility of all three equilibria for the husband. Do the same for the wife.

Wife (W)

pq p(1-q) H=1, W=2 H=0, W=0 (1-p)q (1-p)(1-q)

H=2, W=1

W	ife	(W)	
V V	110	(v v <i>)</i>	

		Ballet	Concert
	Ballet	H=1, W=2	H=0, W=0
III	Concert	H=0, W=0	H=2, W=1

c) Compute the expected utility of all three equilibria for the husband. Do the same for the wife.

Wife (W)

	Ballet	Concert
Ballet	pq H=1, W=2	p(1-q) H=0, W=0
Concert	(1-p)q H=0, W=0	(1-p)(1-q) H=2, W=1

H: p ballet, (1-p) concert W: q ballet, (1-q) concert

$$E[H] = pq * 1 + p(1-q) * 0 + (1-p)q * 0 + (1-p)(1-q) * 2 = \frac{2}{3}$$

Husband (H)

W	ife	(W)
V V	ше	(V V	,

		Ballet	Concert
Husband (H)	Ballet	H=1, W=2	H=0, W=0
	Concert	H=0, W=0	H=2, W=1

c) Compute the expected utility of all three equilibria for the husband. Do the same for the wife.

Wife (W)

	Ballet	Concert
Ballet	pq H=1, W=2	p(1-q) H=0, W=0
Concert	(1-p)q H=0, W=0	(1-p)(1-q) H=2, W=1

Husband (H)

$$E[H] = pq * 1 + p(1-q) * 0 + (1-p)q * 0 + (1-p)(1-q) * 2 = \frac{2}{3}$$

$$E[W] = pq * 2 + p(1-q) * 0 + (1-p)q * 0 + (1-p)(1-q) * 1 = \frac{2}{3}$$

W	ife	(W)	
V V	110	(v v <i>)</i>	

		Ballet	Concert
ниspand (н)	Ballet	H=1, W=2	H=0, W=0
	Concert	H=0, W=0	H=2, W=1

c) Compute the expected utility of all three equilibria for the husband. Do the same for the wife.

Wife (W)

	Ballet	Concert
Ballet	pq H=1, W=2	p(1-q) H=0, W=0
Concert	(1-p)q H=0, W=0	(1-p)(1-q) H=2, W=1

Husband (H)

$$E[H] = pq * 1 + p(1-q) * 0 + (1-p)q * 0 + (1-p)(1-q) * 2 = \frac{2}{3}$$

$$E[W] = pq * 2 + p(1-q) * 0 + (1-p)q * 0 + (1-p)(1-q) * 1 = \frac{2}{3}$$

		Ballet	Concert
Husband (H)	Ballet	H=1, W=2	H=0, W=0
	Concert	H=0, W=0	H=2, W=1

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

(d) Compute the utility of both players going to their preferred activity, and the expected utility of for both players when they both select each activity randomly with equal probability.

		Ballet	Concert
Husband (H)	Ballet		
	Concert	H=0, W=0	

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

(d) Compute the utility of both players going to their <u>preferred activity</u>, and the expected utility of for both players when they both select each activity randomly with equal probability.

Wife (W)

(H) pu	Ballet
Husband	Concert

Husband (H)

		Ballet	Concert
	Ballet	H=1, W=2	H=0, W=0
10000	Concert	H=0, W=0	H=2, W=1

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

(d) Compute the utility of both players going to their preferred activity, and the expected utility of for both players when they both select each activity randomly with equal probability.

Recall answer from (c)

Ballet Concert **Ballet** p(1-q)pq H=1, W=2 H=0, W=0 Concert (1-p)q (1-p)(1-q)H=0. W=0 H=2. W=1 H: p ballet, (1-p) concert W: q ballet, (1-q) concert

$$E[H] = pq * 1 + p(1-q) * 0 + (1-p)q * 0 + (1-p)(1-q) * 2 = \frac{2}{3}$$

$$E[W] = pq * 2 + p(1-q) * 0 + (1-p)q * 0 + (1-p)(1-q) * 1 = \frac{2}{3}$$

Wife	(W)
* * 11 C	\ V V /

		Ballet	Concert
nd (H)	Ballet	H=1, W=2	H=0, W=0
Husband	Concert	H=0, W=0	H=2, W=1

Husband and wife would like to go on a date-night out and there are only two venues for entertainment that night: a Ballet and a K-pop Concert. The wife wants to see the Ballet while the husband wants to see the Concert. But both of them prefer being together than being alone. Out of love for each other, they do not explicitly tell each other their own preferences (Bad idea!). The payoff matrix is shown below where the husband is the row player and the wife is the column player. Please work out the Nash equilibria for them.

Random: $p = q = \frac{1}{2}$

(d) Compute the utility of both players going to their preferred activity, and the expected utility of for both players when they both select each activity randomly with equal probability.

probability.

Husband (H)

Wife	(W)	١
	,	•

	Ballet	Concert
Ballet	pq H=1, W=2	p(1-q) H=0, W=0
Concert	(1-p)q H=0, W=0	(1-p)(1-q) H=2, W=1

H: p ballet, (1-p) concert W: q ballet, (1-q) concert

$$E[H] = pq * 1 + p(1-q) * 0 + (1-p)q * 0 + (1-p)(1-q) * 2 = \frac{3}{4}$$

$$E[W] = pq * 2 + p(1-q) * 0 + (1-p)q * 0 + (1-p)(1-q) * 1 = \frac{3}{4}$$

Second

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3	
s_1	1	6	0	
s_2	2	0	3	_
s_3	3	2	4	

Payoff for the row player

Want to maximize $\begin{vmatrix} t_1 & t_2 & t_3 \\ s_1 & 1 & 6 & 0 \\ s_2 & 2 & 0 & 3 \\ s_3 & 3 & 2 & 4 \\ \end{vmatrix}$

Payoff for the row player

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

(b) Find the minmax strategy for the column player against the row player and the minmax value for the row player.

Question

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

$$\forall s \ \forall t \min_{t'} \ u(s, t') \le u(s, t)$$

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

$$\forall s \ \forall t \min_{\underline{t'}} \ u(s, t') \le u(s, t)$$

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

$$\forall s \ \forall t \min_{t'} \ u(s, t') \le u(s, t)$$

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

$$\Rightarrow \ \forall t \ \max_{s'} \min_t u(s', t') \le \max_s u(s, t)$$

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

$$\forall s \ \forall t \min_{t'} \ u(s, t') \le u(s, t)$$

\Rightarrow	$\forall t \max_{s'} \min_{t} u(s', t')$	$\leq \max_{s} u(s,t)$
---------------	--	------------------------

	t_1	t_2	t_3	
s_1	1	6	0	
s_2	2	0	3	
s_3	3	2	4	

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

$$\forall s \ \forall t \min_{t'} \ u(s,t') \leq u(s,t)$$

$$\Rightarrow \forall t \max_{s'} \min_{t} u(s', t') \le \max_{s} u(s, t)$$

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

$$\Rightarrow \max_{s'} \min_{t'} u(s', t') \le \min_{t} \max_{s} u(s, t)$$

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

In this question, we assume that only pure strategies are considered.

$$\forall s \ \forall t \min_{t'} \ u(s, t') \le u(s, t)$$

$$\Rightarrow \forall t \max_{s'} \min_{t} u(s', t') \leq \max_{s} u(s, t)$$

$$\Rightarrow \max_{s'} \min_{t'} u(s', t') \le \min_{t} \max_{s} u(s, t)$$

	t_1	t_2	t_3	
31	1	6	0	
s_2	2	0	3	
s_3	3	2	4	

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

	t_1	t_2	t_3
s_1	1	6	0
s_2	2	0	3
s_3	3	2	4

Any Questions?

Contact the tutors:

- Rizki: <u>rizki@u.nus.edu</u>
- Abhinit: dcsabh@nus.edu.sq
- Evangelos: <u>esigalas@u.nus.edu</u>