	Utech
Name :	
Roll No.:	A Dans of Excellent
Inviailator's Signature :	

MATHEMATICS

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- Choose the correct alternatives for any ten of the following : $10 \times 1 = 10$
 - i) If A and B are any two events such that $P(A \cap B) = \frac{1}{2}$, $P(A^C \cap B^C) = \frac{1}{3}$ and P(A) = P(B) = p, then the value of p is
 - a) $\frac{7}{12}$

b) $\frac{5}{6}$

c) $\frac{1}{3}$

- d) $\frac{1}{2}$.
- ii) If the exponential distribution is given by the probability density function

$$f\left(\,x\,\right) = e^{\,-x}\;,\;0 < x < \infty,$$

then the mean of the distribution is

a) 1

b) 3

c) $\frac{1}{3}$

d) 4.

33801 [Turn over

- iii) The variance of the binomial distribution $B\left(n,p\right)$ is
 - a) np

- b) npg 🕮
- c) (n-1)p
- d) n (p-1).
- iv) The mean of a Poisson distribution with parameter μ is
 - a) μ

b) μ^2

c) $-\mu$

- d) $-\mu^2$.
- v) If A and B are any two events, then
 - a) P(A + B) = P(A) + P(B)
 - b) P(A + B) = P(A) + P(B) P(AB)
 - c) P(A + B) = P(A) + 1
 - d) P(A + B) = 1 P(B).
- vi) If A and B are any two events such that A is the subset of B, then
 - a) P(A) = P(B)
- b) $P(A) \leq P(B)$
- c) $P(A) \ge P(B)$
- d) P(A) = P(B) = 1.
- vii) The value of $\lim_{z \to \pi/2} \left(\frac{\sin z}{z} \right)$ is
 - a) $\pi/2$

b) $2/\pi$

c) π

- d) 1.
- viii) If b_{yx} , b_{xy} be the regression coefficients and r be the correlation coefficient, then $b_{yx}\times b_{xy}$ is equal to
 - a) r

b) r²

c) $\frac{1}{r}$

d) $\frac{1}{r^2}$

- 1 P (Type I Error)
- b) 1 P (Type II Error)
- c) 1 P (Type I Error) P (Type II Error)
- P (Type I Error) P (Type II Error). d)

The standard deviation of a sample mean for SRSWR is X)

a) σ^2/n

b) σ/\sqrt{n}

c) σ/n d) n.

The maximum likelihood estimate is a solution of the xi) equation

- a) $\frac{\partial L(\theta)}{\partial \theta} = 0$
- b) $\frac{\partial L(\theta)}{\partial \theta} = constant$
- c) $\frac{\partial L(\theta)}{\partial \theta} = \theta$
- d) none of these.

xii) A statistic t is said to be an unbiased estimator of a population parameter θ when

- a) $E(t) = \theta$
- b) $E(t^2) = \theta$
- c) $E(t^2) = [E(\theta)]^2$ d) $[E(t)]^2 = E(t^2)$.

xiii) The probability $P(a < x \le b)$ (where F(x) is the distribution function of the random variable x) is given by

- a) F(b) F(a) b) F(b) + F(a)
- c) F(a)-F(b) d) F(a)F(b).

(Short Answer Type Questions)

- 2. If *A* and *B* are two events such that $P(A^C \cup B^C) = 5/6$, P(A) = 1/2 and $P(B^C) = 2/3$, show that *A* and *B* are independent.
- 3. A random variable *X* has the following probability function :

$$X = -2 - 1$$
 0 1 2 3
 $P(X) = 0.1$ k 0.2 2k 0.3 3k

- i) Calculate k
- ii) Find $P(X < 2), P(X \ge 2), P(-2 < X \ge 2)$.
- 4. If the chance of being killed by flood during a year is 1/3000, use Poisson distribution to calculate probability that out of 3000 persons living in a village, at least one will die in flood in a year.
- 5. A random sample with observations 65, 71, 64, 71, 70, 69, 64, 63, 67, 68 is drawn from a normal population with standard deviation $\sqrt{7.056}$. Test the hypothesis that the population mean is 69 at 1% level of significance.

[Given :
$$P$$
 ($0 < Z < 2.58$) = 0.495].

6. If x follows a Normal Distribution with mean 12 and variance 16, find P ($x \ge 20$).

[Given :
$$\int_{-\infty}^{2} 1/\sqrt{2\pi} e^{-1/2 t^2} dt = 0.977725]$$

7. Find the maximum likelihood estimate for the parameter λ of a Poisson distribution on the basis of a sample of size n.

33801

(Long Answer Type Questions)

Answer any three of the following.

- 8. a) A random variable follows binomial distribution with mean 4 and standard deviation √2. Find the probability of assuming non-zero value of the variable.
 - b) Find the mathematical expectation of the number of the points obtained in a single throw of an unbiased die. 8
- 9. a) A bag contains 7 red and 5 white balls. 4 balls are drawn at random. What is the probability that (i) all of them are red (ii) two of them be white and two red? 7
 - b) If a random variable follows Poisson Distribution such that P(1) = P(2),

find (i) mean of the distribution

10. a) State "Central Limit Theorem".

A random variable *x* has the function e^{-x} , $x \ge 0$.

Show that Tchebycheff's inequality gives

P [|X-1| > 2] $< \frac{1}{4}$ and show that actual probability is e^{-3} .

b) If T is an unbiased estimator of A show that \sqrt{T} is

b) If T is an unbiased estimator of θ , show that \sqrt{T} is biased estimator of θ .

33801

5

[Turn over

- 11. a) A pair of dice is thrown. Find the probability of getting a sum of 7, when it is known that the digit in the first die is greater than that of the second.
 - b) The manufacturing process of an article consists of two parts x and y. The probabilities of defect in parts x and y are 10% and 15% respectively. What is the probability that the assembled product will not have any defect?
 - c) The probabilities of solving a problem by three students A, B and C are $\frac{2}{7}$, $\frac{3}{8}$ and $\frac{1}{2}$ respectively. If all of them try independently, find the probability that the problem is solved.
- 12. a) The probability density function of a continuous distribution is given by $f(x) = \frac{3}{4} x (2 x)$. Compute mean and variance of the distribution.
 - b) The mean weight of 500 male students at a certain college is 150 lbs and the standard deviation is 15 lbs.
 Assuming that the weight is normally distributed find how many students weigh
 - i) between 120 and 155 lbs
 - ii) more than 155 lbs.

[Given ϕ (2) = 0.9772; ϕ (0.33) = 0.6293] 10

33801 6

13. a) A survey of 320 families with 5 children each revealed the following distribution :

No. of boys	5	4	3	2	1	0
No. of girls	0	1	2	3	4	5
No. of families	14	56	110	88	40	12

Is the result consistent with the hypothesis that male and female births are equally probable?

[Given :
$$X^2_{\text{Tab.5}\%}$$
 = 11.07 at 5 degrees of freedom] 8

b) Intelligence tests on two groups of boys and girls gave the following results :

	Mean	SD	N
Boys	70	20	250
Girls	75	15	150

Is there any significant difference in the mean scores obtained by boys and girls?

33801 7 [Turn over