Verkehrsschilderkennung

Alina Göttig, Leon Budimovic & Alexander-Robert Keller

Inhalt

- Potentielle Schilder herausfiltern:
 - Mit dem cv2.SimpleBlobDetektor
 - Mit der Contour und cv2.fitEllipse
- Klassifizierung der potentiellen Schilder:
 - Matching mithilfe des Spektrums
 - Mit Template Matching
 - Kombination

Bild einlesen

Kantendetektionsversuche

Bild

1. Gradient

2. Canny

Gradient

Canny-Kantendetektion

Versuch 1:

Final:

Sigma: 3.0

Canny-Kantendetektion

Canny-Kantendetektion

Erkennung von Formen mit dem

OpenCV SimpleBlobDetector

p = cv2.SimpleBlobDetector_Params()

d = cv2.SimpleBlobDetector_create(p)

liefert Koordinaten & Durchmesser
blobs = d.detect(image)

SimpleBlobDetector Codebeispiel

```
params = cv2.SimpleBlobDetector_Params()
params.filterByColor = False
params.filterByArea = True
params.minArea = minArea #20000 #1000
params.maxArea = 100000000
params.filterByCircularity = True
params.minCircularity = minCircularity
params.maxCircularity = maxCircularity
params.filterByConvexity = True
params.minConvexity = 0.7
params.filterByInertia = True
#params.minInertiaRatio = 0.8
params.minInertiaRatio = 0.3
params.minThreshold = 1
params.maxThreshold = 255
detector = cv2.SimpleBlobDetector_create(params)
keypoints = detector.detect(img)
```


Erkennung von Kreisen/Ellipsen

Gradient Canny

Mehrfache Erkennung

Mehrfache Erkennung (Gradient)

Mehrfache Erkennung (Canny)

Blobs aus dem Hintergrund ausschneiden

Erkannte Blobs in eigene Images

Vergleich

Bild

1. Gradient

2. Canny

Schwierigkeit: Falsche Detektion

Schwierigkeit: Verzerrung

Canny

Dilate

Erode

Invert

find Contours and fit Ellipse

Perspective Transform

Perspective Transform

Perspective Transform

Matching mithilfe des Spektrums

Vergleich durch Thresholding

50er-Schild

30er-Schild

Schwierigkeiten

80er-Schild 30er-Schild

Matching per Template Matching

cv2.TM_CCOEFF_NORMED

Matching mit Maske

Matching Ergebnisse

Images —

Templates

0.77	0.21	0.72	0.66
0.83	0.18	0.77	0.76
0.74	0.18	0.67	0.89

Rotations Problem

Matching Ergebnisse

30er	No	80er	50er