Wirkstoffkombinationen mit insektiziden und akariziden Eigenschaften

Die vorliegende Erfindung betrifft neue Wirkstoffkombinationen, die aus bekannten cyclischen Ketoenole einerseits und weiteren bekannten insektiziden Wirkstoffen andererseits bestehen und sehr gut zur Bekämpfung von tierischen Schädlingen wie Insekten und unerwünschte Akariden geeignet sind.

Es ist bereits bekannt, dass bestimmte cyclische Ketoenole fungizide, insektizide umd akarizide Eigenschaften besitzen (EP-A 0 528 156, EP-A 0 647 637, WO 95/26 345, WO 96/20196, WO 96/25395, WO 96/35664, WO 97/01535, WO 97/02243, WO 97/36868, WO 98/05638, WO 98/25928, WO 99/16748, WO 99/43649, WO 99/48869, WO 99/55673, WO 01/23354 und WO 01/74770). Die Wirksamkeit dieser Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

Es ist auch bekannt, dass Mischungen aus Phthalsäurediamiden und weiteren bioaktiven Verbindungen eine insektizide und/oder akarizide Wirkung aufweisen (WO 02/087334). Die Wirkung dieser Mischungen ist nicht immer optimal.

Weiterhin ist schon bekannt, dass zahlreiche Heterocyclen, Organozinn-Verbindungen, Benzoylharnstoffe und Pyrethroide insektizide und akarizide Eigenschaften besitzen (vgl. WO 93/22297, WO 93/10083, DE-A 26 41 343, EP-A 0 347 488, EP-A 0 210 487, US 3,264,177 und EP-A 0 234 045). Allerdings ist die Wirkung dieser Stoffe nicht immer befriedigend.

Es wurde nun gefunden, dass Wirkstoffkombinationen aus Verbindungen der Formel (I) (Gruppe 1)

$$A^{3} \xrightarrow{G^{1}} X \xrightarrow{Z_{m}} Y \qquad (I)$$

25 in welcher

10

- X für C₁-C₆-Alkyl, Brom, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,
- Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,
- Z für C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy steht,
- m für eine Zahl von 0-3 steht,
- 30 A³ für Wasserstoff oder jeweils gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈-alkyl, Cycloalkyl mit 3-8 Ringatomen,

THIS PAGE BLANK (USPTO)

das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl-, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkoxy, Nitro substituiertes Phenyl oder Phenyl-C₁-C₆-alkyl steht,

A⁴ für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy-C₁-C₄-alkyl steht

5 oder worin

10

20

25

A³ und A⁴ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio oder gegebenenfalls substituiertes Phenyl substituierten oder gegebenenfalls benzokondensierten 3- bis 8-gliedrigen Ring bilden,

G1 für Wasserstoff (a) oder für die Gruppen

steht, in welchen

für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Alkylthio-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂C₈-alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff- und/oder
Schwefelatome unterbrochen sein kann, steht,
für gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-

Halogenalkyl, C₁-C₆-Halogenalkoxy-substituiertes Phenyl steht; für gegebenenfalls durch Halogen-, C₁-C₆-Alkyl, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkyl-, C₁-C₆-Halogenalkoxy-substituiertes Phenyl-C₁-C₆-alkyl steht,

für jeweils gegebenenfalls durch Halogen und/oder C_1 - C_6 -Alkyl substituiertes Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl steht,

für gegebenenfalls durch Halogen und/oder C1-C6-Alkyl-substituiertes Phenoxy-C1-C6-alkyl steht,

R²¹ für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl oder C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht, für jeweils gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, für jeweils gegebenenfalls durch C₁-C₄-Alkyl, Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder Benzyl steht,

10

R²³ und R²⁴ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-Alkylamino, C₁-C₈-Alkylthio, C₂-C₅-Alkenylthio, C₂-C₅-Alkinylthio, C₃-C₇-Cycloalkylthio, für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkylthio, C₁-C₄-Alkyl, C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

R²⁵ und R²⁶ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, C₃-C₈-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, für gegebenenfalls durch Halogen, C₁-C₆-Halogenalkyl, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder C₁-C₆-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen 5- bis 6-gliedrigen Ring stehen, der gegebenenfalls durch C₁-C₆-Alkyl substituiert sein kann,

15 oder einer akarizid wirksamen Verbindung (Gruppe 2), bevorzugt

(2-1) dem Phenylhydrazin-Derivat der Formel (bekannt aus WO 93/10083)

und/oder

(2-2) dem Makrolid mit dem Common Name Abamectin (bekannt aus DE-A 27 17 040)

20 und/oder

(2-3) dem Naphthalindion-Derivat der Formel (bekannt aus DE-A 26 41 343)

$$\begin{array}{c} O - CO - CH_3 \\ \hline \\ C_{12}H_{25} \end{array} \qquad \text{(Acequinocyl)}$$

und/oder

(2-4) dem Pyrrol-Derivat der Formel (bekannt aus EP-A 0 347 488)

$$F_3C$$
 CH_2
 CH_2
 CH_5
 CH_5

und/oder

(2-5) dem Thioharnstoff-Derivat der Formel (bekannt aus EP-A 0 210 487)

$$\begin{array}{c} \text{CH(CH}_3)_2 \\ \\ \text{NH-C-NH-C(CH}_3)_3 \\ \\ \text{CH(CH}_3)_2 \end{array} \qquad \text{(Diafenthiuron)}$$

(Etoxazole)

und/oder

(2-6) dem Oxazolin-Derivat der Formel (bekannt aus WO 93/22297)

und/oder

5

(2-7) einem Organozinn-Derivat der Formel

in welcher

R für
$$-N = N$$
 steht (2-7-a = Azocyclotin),

10

bekannt aus The Pesticide Manual, 9. Ausgabe, S. 48, oder

R für -OH steht (2-7-b = Cyhexatin), bekannt aus US 3,264,177

und/oder

15 (2-8) dem Pyrazol-Derivat der Formel (bekannt aus EP-A 0 289 879)

$$H_5C_2$$
 C_1
 C_2
 C_3
 C_4
 C_5
 C_4
 C_5
 C_5
 C_4
 C_5
 C_6
 C_7
 C

und/oder

(2-9) dem Pyrazol-Derivat der Formel (bekannt aus EP-A 0 234 045)

(Fenpyroximate)

und/oder

(2-10) dem Pyridazinon-Derivat der Formel (bekant aus EP-A 0 134 439)

$$(CH_3)_3C-N$$
 $S-CH_2$
 $C(CH_3)_3$
(Pyridaben)

und/oder

5 (2-11) dem Benzoylharnstoff der Formel (bekannt aus EP-A 0 161 019)

(Flufenoxuron)

und/oder

(2-12) dem Pyrethroid der Formel (bekannt aus EP-A 0 049 977)

10 und/oder

(2-13) dem Tetrazin-Derivat der Formel (bekannt aus EP-A 0 005 912)

und/oder

(2-14) dem Organozinn-Derivat der Formel (bekannt aus DE-A 21 15 666)

und/oder

15

(Fenbutatin-oxide)

(2-15) dem Sulfensäureamid der Formel (bekannt aus The Pesticide Manual, 11. Ausgabe, 1997, Seite 1208)

$$H_3C$$
 CH_3 CH_3

20 und/oder

(2-16) den Pyrimidylphenolethern der Formel (bekannt aus WO 94/02470, EP-A 0 883 991)

in welcher

R für Fluor steht (2-16-a = 4-[(4-Chlor- α,α,α -trifluor-3-tolyl)oxy]-6-[(α,α,α -4-tetra-fluor-3-tolyl)oxy]-pyrimidin)

R für Nitro steht (2-16-b = 4-[(4-Chlor- α , α , α -trifluor-3-tolyl)oxy]-6-[(α , α , α -trifluor-4-nitro-3-tolyl)oxy]-pyrimidin)

R für Brom steht (2-16- = 4-[(4-Chlor- α , α , α -trifluor-3-tolyl)oxy]-6-[(α , α , α -trifluor-4-brom-3-tolyl)oxy]-pyrimidin

10 und/oder

5

(2-17) dem Makrolid der Formel (bekannt aus EP-A 0 375 316)

$$(H_3C)_2N \xrightarrow{O} O \xrightarrow{17} CH_3 \xrightarrow{OCH_3} OCH_3$$

$$H_5C_2 \xrightarrow{O} OH_3$$

$$H_6C_2 \xrightarrow{O} OCH_3$$

$$H_7 \xrightarrow{O} OCH_3$$

$$OCH_3 \xrightarrow{O} OCH_3$$

(Spinosad)

ein Gemisch aus bevorzugt

85 % Spinosyn A (R = H)

15 % Spinosyn B (R = CH₃)

und/oder

15

(2-18) Ivermectin (bekannt aus EP-A 0 001 689)

und/oder

(2-19) Milbemectin (bekannt aus The Pesticide Manual, 11. Ausgabe, 1997, S. 846)

20 und/oder

(2-20) Endosulfan (bekannt aus DE-A 10 15 797)

und/oder

(2-21) Fenazaquin (bekannt aus EP-A 0 326 329)

· und/oder

(2-22) Pyrimidifen (bekannt aus EP-A 0 196 524)

$$\mathsf{H_5C_2} \bigvee_{\mathsf{N} \smile \mathsf{N}}^{\mathsf{Cl}} \bigvee_{\mathsf{N}}^{\mathsf{H}} \bigvee_{\mathsf{O}}^{\mathsf{OC}_2\mathsf{H}_5} \mathsf{CH_3}$$

5 und/oder

(2-23) Triarathen (bekannt aus DE-A 27 24 494)

und/oder

(2-24) Tetradifon (bekannt aus US 2,812,281)

10

und/oder

(2-25) Propargit (bekannt aus US 3,272,854)

und/oder

15 (2-26) Hexythiazox (bekannt aus DE-A 30 37 105)

und/oder

(2-27) Bromopropylat (bekannt aus US 3,784,696)

und/oder

(2-28) Dicofol (bekannt aus US 2,812,280)

$$CI - CI - CCI_3$$

und/oder

5

(2-29) Chinomethionat (bekannt aus DE-A 11 00 372)

10 und mindestens einem Wirkstoff aus der Gruppe der Anthranilsäureamide der Formel (II) synergistisch wirksam sind und sehr gute insektizide und akarizide Eigenschaften besitzen.

Überraschenderweise ist die insektizide und/oder akarizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen höher als die Summe der Wirkungen der einzelnen Wirkstoffe. Es liegt also ein nicht vorhersehbarer, echter synergistischer Effekt vor und nicht nur eine Wirkungsergänzung.

Die erfindungsgemäßen Wirkstoffkombinationen enthalten neben mindestens einem Wirkstoff der Formel (I) oder einem Wirkstoffe der Gruppe 2 (Verbindungen (2-1) bis (2-29)) mindestens einen Wirkstoff der Formel (II).

20

15

Bevorzugt sind Wirkstoffkombinationen enthaltend Verbindungen der Formel (I), in welcher

- X für C₁-C₄-Alkyl, Brom, C₁-C₄-Alkoxy oder C₁-C₃-Halogenalkyl steht,
- Y für Wasserstoff, C₁-C₄-Alkyl, Fluor, Chlor, Brom, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl steht,
- Z für C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy steht,
- 25 m für eine Zahl von 0-2 steht.
 - A³ für Wasserstoff oder jeweils gegebenenfalls einfach bis dreifach durch Fluor substituiertes geradkettiges oder verzweigtes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, Cycloalkyl mit 3-8 Ringatomen, das gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder für gegebenenfalls einfach bis zweifach durch Fluor, Chlor,

Brom, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl-, C₁-C₂-Alkoxy-, C₁-C₂-Halogenalkoxy, Nitro substituiertes Phenyl oder Benzyl steht,

- A⁴ für Wasserstoff, C₁-C₂-Alkyl oder C₁-C₂-Alkoxy-C₁-C₂-alkyl steht oder worin
- A³ und A⁴ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls einfach bis zweifach durch Fluor, Chlor, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder C₁-C₂-Alkylthio substituierten 3- bis 7-gliedrigen Ring bilden,
- 10 G¹ für Wasserstoff (a) oder für die Gruppen

$$-\text{CO}-R^{20} \quad -\text{CO}_{\overline{2}}-R^{21} \quad -\text{SO}_{\overline{2}}-R^{22} \quad -\underset{0}{\overset{P}{\mid 1}} \underset{R^{24}}{\overset{R^{23}}{\mid 2}} \quad \underset{N}{\overset{O}{\downarrow}} \underset{R^{26}}{\overset{R^{25}}{\mid 1}}$$
(b) (c) (d) (e) (f)

steht, in welchen

15

20

25

R²⁰ für jeweils gegebenenfalls einfach bis fünffach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl oder Cycloalkyl mit 3-6 Ringatomen, das durch Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenaloxy-substituiertes Phenyl steht,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl-, C₁-C₄-Halogenalkoxy-substituiertes Benzyl steht, für jeweils gegebenenfalls einfach bis zweifach durch Chlor, Brom und/oder C₁-C₄-Alkyl substituiertes Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl steht,

R²¹ für jeweils gegebenenfalls einfach bis fünffach Fluor oder Chlor durch substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

30 R²² für gegebenenfalls einfach bis fünffach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, für jeweils gegebenenfalls einfach bis zweifach durch C₁-C₄-Alkyl, Fluor,

Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder Benzyl steht,

- R²³ und R²⁴ unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄)-Alkylamino, C₁-C₄-Alkylthio, C₂-C₄-Alkenylthio, C₃-C₆-Cycloalkylthio, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, C₁-C₂-Alkylthio, C₁-C₂-Halogenalkylthio, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen.
- 10 R²⁵ und R²⁶ unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₂-Halogenalkyl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen 5- bis 6-gliedrigen Ring stehen, der gegebenenfalls durch C₁-C₂-Alkyl substituiert sein kann,

und mindestens einen Wirkstoff der Formel (II).

20 Für die in den bevorzugten Bereichen mit Halogen benannten Resten steht Halogen bevorzugt für Chlor und Fluor.

Besonders bevorzugt sind Wirkstoffkombinationen enthaltend Verbindungen der Formel (I), in welcher

- 25 X für C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Trifluormethyl steht,
 - Y für Wasserstoff, C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,
 - Z für C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy steht,
 - m für 0 oder 1 steht.
- A³ und A⁴ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten gegebenenfalls einfach durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituierten 5- bis 6-gliedrigen Ring bilden,
 - G1 für Wasserstoff (a) oder für die Gruppen

$$--CO-R^{20}$$
 $--CO_2-R^{21}$ steht, in welchen (b) (c)

20

25

30

- R²⁰ für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, oder Cycloalkyl mit 3-6 Ringatomen, das durch 1 bis 2 Sauerstoffatome unterbrochen sein kann, steht, für gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl steht;
- R²¹ für C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl, C₁-C₄-Alkoxy-C₂-C₄-alkyl, steht,
 für jeweils gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl,
 C₁-C₄-Alkoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht,
- 10 und mindestens einen Wirkstoff der Formel (II).

Ganz besonders bevorzugt sind Wirkstoffkombinationen enthaltend Verbindungen der Formel (I), in welcher

- X für Methyl, Ethyl, Methoxy, Ethoxy oder Trifluormethyl steht,
- 15 Y für Wasserstoff, Methyl, Ethyl, Chlor, Brom, Methoxy oder Trifluormethyl steht,
 - Z für Methyl, Ethyl, Chlor, Brom oder Methoxy steht,
 - m für 0 oder 1 steht,
 - A³ und A⁴ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten gegebenenfalls einfach durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Propoxy, Butoxy oder Isobutoxy substituierten 5- bis 6-gliedrigen Ring bilden,
 - G1 für Wasserstoff (a) oder für die Gruppen

$$--CO-R^{20} \qquad --CO_{\overline{2}}-R^{21}$$
steht, in welchen
(b) (c)

R²⁰ für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₁-C₃-Alkoxy-C₁-C₂-alkyl, oder Cycloalkyl mit 3-6 Ringatomen, das durch 1 bis 2 Sauerstoffatome unterbrochen sein kann, steht, für gegebenenfalls einfach durch Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl steht;

R²¹ für C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₁-C₄-Alkoxy-C₂-C₃-alkyl, steht, für jeweils gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, Methyl, Methoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht,

und mindestens einen Wirkstoff der Formel (II).

10

15

25

und mindestens einen Wirkstoff der Formel (II).

Insbesondere bevorzugt sind Wirkstoffkombinationen enthaltend die Verbindung der Formel (I-2)

und mindestens einen Wirkstoff der Formel (II).

Die Verbindungen der Formel (I) können, auch in Abhängigkeit von der Art der Substituenten, als geometrische und/oder optische Isomere oder Isomerengemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenenfalls in üblicher Art und Weise getrennt werden können. Sowohl die reinen Isomeren als auch die Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (I) gesprochen, obwohl sowohl die reinen Verbindungen als gegebenenfalls auch Gemische mit unterschiedlichen Anteilen an isomeren Verbindungen gemeint sind.

Insbesondere bevorzugt sind Wirkstoffkombinationen enthaltend eine Verbindung ausgewählt aus den Verbindungen (2-1) bis (2-29) der Gruppe 2 und mindestens einen Wirkstoff der Formel (II).

Hervorgehoben sind Wirkstoffkombinationen enthaltend eine der Verbindungen (2-2) Abamectin, (2-5) Diafenthiuron, (2-17) Spinosad und (2-20) Endosulfan und mindestens einen Wirkstoff der Formel (II).

Bei den Anthranilsäurediamiden der Formel (II) handelt es sich ebenfalls um bekannte Verbindungen, die aus folgenden Publikationen bekannt sind oder von diesen umfasst werden: WO 01/70671, WO 03/015518, WO 03/015519, WO 03/016284, WO 03/016282, WO 03/016283, WO 03/024222, WO 03/062226.

Auf die in diesen Publikationen beschriebenen generischen Formeln und Definitionen sowie auf die darin beschriebenen einzelnen Verbindungen wird hiermit ausdrücklich Bezug genommen.

Die Anthranilsäurediamide lassen sich unter der Formel (II) zusammenfassen:

5 in welcher

10

A¹ und A² unabhängig voneinander für Sauerstoff oder Schwefel stehen,

X1 für N oder CR10 steht.

R¹ für Wasserstoff oder für jeweils gegebenenfalls ein- oder mehrfach substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder C₃-C₆-Cycloalkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus R⁶, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₂-C₄-Alkoxycarbonyl, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₃-C₆-Cycloalkylamino, (C₁-C₄-Alkyl)C₃-C₆-cycloalkylamino oder R¹¹,

flir Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₃-C₆-Cycloalkylamino, C₂-C₆-Alkoxycarbonyl oder C₂-C₆-Alkylcarbonyl steht,

für Wasserstoff, R¹¹ oder für jeweils gegebenenfalls ein- oder mehrfach substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus R⁶, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkylsulfonyl, C₂-C₆-Alkoxy, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylsulfonyl, C₂-C₆-Alkoxycarbonyl, C₂-C₆-Alkylcarbonyl, C₃-C₆-Trialkylsilyl, R¹¹, Phenyl, Phenoxy oder einem 5- oder 6-gliedrigen heteroaromatischen Ring, wobei jeder Phenyl-, Phenoxy- und 5- oder 6-gliedrige heteroaromatische Ring gegebenenfalls substituiert sein kann und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder einem oder mehreren Resten R¹², oder

R² und R³ miteinander verbunden sein können und den Ring M bilden,

Ř⁴ für Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₆-Haloalkyl, C₂-C₆-Haloalkenyl, C₂-C₆-Haloalkinyl, C₃-C₆-Halocycloalkyl, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄

25

. 35

sulfonyl, C₁-C₄-Haloalkylthio, C₁-C₄-Haloalkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₆-Dialkylamino, C₃-C₆-Cycloalkylamino, C₃-C₆-Trialkylsilyl steht oder für jeweils gegebenenfalls ein- oder mehrfach substituiertes Phenyl, Benzyl oder Phenoxy steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₃-C₆-Cyclalkyl, C₁-C₄-Haloalkyl, C₂-C₄-Haloalkinyl, C₂-C₄-Haloalkinyl, C₃-C₆-Cyclalkyl, Halogen, Cyano, Nitro, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylamino, C₂-C₆-Dialkylamino, C₃-C₆-Cycloalkylamino, C₃-C₆-Cycloalkylamino, C₃-C₆-Alkylamino, C₃-C₆-Alkylamino, C₃-C₆-Alkylaminocarbonyl, C₃-C₆-Alkylaminocarbonyl, C₃-C₆-Alkylaminocarbonyl, C₃-C₆-Trialkylsilyl,

- R⁵ und R⁸ jeweils unabhängig voneinander für Wasserstoff, Halogen oder für jeweils gegebenenfalls substituiertes C₁-C₄-Alkyl, C₁-C₄-Haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl stehen, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder aus R¹², C₁-C₁₀-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₄-Alkoxy oder C₁-C₄-Alkythio, wobei jeder Substituent durch einen oder mehrere Substituenten unabhängig voneinander ausgewählt aus G, J, R⁶, Halogen, Cyano, Nitro, Amino, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Haloalkylthio, C₁-C₄-Haloalkylsulfinyl, C₁-C₄-Haloalkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₆-Dialkylamino, C₃-C₆-Trialkylsilyl, Phenyl oder Phenoxy substituiert sein kann, wobei jeder Phenyl- oder Phenoxyring gegebenenfalls substituiert sein kann und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder einem oder mehreren Resten R¹²,
 - G jeweils unabhängig voneinander für einen 5- oder 6-gliedrigen nicht-aromatischen carbocyclischen oder heterocyclischen Ring steht, der gegebenenfalls ein oder zwei Ringglieder aus der Gruppe C(=O), SO oder S(=O)₂ enthalten und gegebenenfalls durch ein bis vier Substituenten unabhängig voneinander ausgewählt aus C₁-C₂-Alkyl, Halogen, Cyano, Nitro oder C₁-C₂-Alkoxy substituiert sein kann, oder unabhängig voneinander für C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₇-Cycloalkyl, (Cyano)C₃-C₇-cycloalkyl, (C₁-C₄-Alkyl)C₃-C₆-cycloalkyl, (C₃-C₆-Cycloalkyl) steht, wobei jedes Cycloalkyl, (Alkyl)cycloalkyl und (Cycloalkyl)-alkyl gegebenenfalls durch ein oder mehrere Halogenatome substituiert sein kann,
- jeweils unabhängig voneinander für einen gegebenenfalls substituierten 5- oder 6-gliedrigen heteroaromatischen Ring steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder einem oder mehreren Resten R¹²,
 - unabhängig voneinander für -C(=E¹)R¹9, -LC(=E¹)R¹9, -C(=E¹)LR¹9, -LC(=E¹)LR¹9, -C(=E¹)LR¹9, -C(=E¹)LR¹9, -OP(=Q)(OR¹9)₂, -SO₂LR¹8 oder -LSO₂LR¹9 steht, wobei jedes E¹ unabhängig voneinander für O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, N-S=O, N-CN oder N-NO₂ steht,

- R⁷ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Haloalkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfinyl, C₁-C₄-Haloalkylsulfinyl, C₁-C₄-Haloalkylsulfinyl, C₁-C₄-Haloalkylsulfonyl steht,
- R⁹ für C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Halogenalkylsulfinyl oder Halogen steht,
- R¹⁰ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Haloalkyl, Halogen, Cyano oder C₁-C₄-Haloalkoxy steht,
- jeweils unabhängig voneinander für jeweils gegebenenfalls ein- bis dreifach substituiertes C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfenyl, C₁-C₆-Haloalkythio, C₁-C₆-Haloalkylsulfenyl, Phenylthio oder Phenylsulfenyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus der Liste W, -S(O)_nN(R¹⁶)₂, -C(=O)R¹³, -L(C=O)R¹⁴, -S(C=O)LR¹⁴, -C(=O)LR¹³, -S(O)_nNR¹³C(=O)R¹³, -S(O)_nNR¹³C(=O)LR¹⁴ oder -S(O)_nNR¹³S(O)₂LR¹⁴,
- L jeweils unabhängig voneinander für O, NR¹⁸ oder S steht,
- jeweils unabhängig voneinander für -B(OR¹⁷)₂, Amino, SH, Thiocyanato, C₃-C₈-Trialkylsilyloxy, C₁-C₄-Alkyldisulfide, -SF₅, -C(=E¹)R¹⁹, -LC(=E¹)R¹⁹, -C(=E¹)LR¹⁹, -LC(=E¹)LR¹⁹, -OP(=Q)(OR¹⁹)₂, -SO₂LR¹⁹ oder -LSO₂LR¹⁹ steht,
- 15 Q für O oder S steht,

20

- peweils unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls ein- oder mehrfach substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder C₃-C₆-Cycloalkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus R⁶, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₃-C₆-Cycloalkylamino oder (C₁-C₄-Alkyl)C₃-C₆-cycloalkylamino,
- R¹⁴ jeweils unabhängig voneinander für jeweils gegebenenfalls ein- oder mehrfach substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₂-C₂₀-Alkinyl oder C₃-C₆-Cycloalkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus R⁶, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₃-C₆-Cycloalkylamino oder (C₁-C₄-Alkyl)C₃-C₆-cycloalkylamino oder für gegebenenfalls substituiertes Phenyl, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder einem oder mehreren Resten R¹²,
- pieweils unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls ein- oder mehrfach substituiertes C₁-C₆-Haloalkyl oder C₁-C₆-Alkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylsthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Haloalkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₂-C₆-Alkoxycarbonyl, C₂-C₆-Alkylcarbonyl, C₃-C₆-Trialkylsilyl oder gegebenenfalls substituentes Phenyl, wobei die Substituenten unabhängig voneinander ausgewählt sein

- können aus ein bis drei Resten W oder einem oder mehreren Resten R¹², oder N(R¹⁵)₂ für einen Cyclus steht, der den Ring M bildet,
- R¹⁶ für C₁-C₁₂-Alkyl oder C₁-C₁₂-Haloalkyl steht, oder N(R¹⁶)₂ für einen Cyclus steht, der den Ring M bildet,
- jeweils unabhängig voneinander für Wasserstoff oder C₁-C₅-Alkyl steht, oder B(OR¹⁷)₂ für einen Ring steht, worin die beiden Sauerstoffatome über eine Kette mit zwei bis drei Kohlenstoffatomen verbunden sind, die gegebenenfalls durch einen oder zwei Substituenten unabhängig voneinander ausgewählt aus Methyl oder C₂-C₅-Alkoxycarbonyl substituiert sind,
 - R¹⁸ jeweils unabhängig voneinander für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Haloalkyl steht, oder N(R¹³)(R¹⁸) für einen Cyclus steht, der den Ring M bildet,
- R¹⁹ jeweils unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls ein- oder mehrfach substituiertes C₁-C₆-Alkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Haloalkylthio, C₁-C₄-Haloalkylsulfonyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Bloalkylsulfonyl, C₂-C₆-Dialkylamino, CO₂H, C₂-C₆-Alkoxycarbonyl, C₂-C₆-Alkylcarbonyl, C₃-C₆-Trialkylsilyl oder gegebenenfalls substituiertes Phenyl, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W, C₁-C₆-Haloalkyl, C₃-C₆-Cycloalkyl oder jeweils gegebenenfalls ein- bis dreifach durch W substituiertes Phenyl oder Pyridyl,
- 20 M jeweils für einen gegebenenfalls ein- bis vierfach substituierten Ring steht, der zusätzlich zu dem Stickstoffatom, mit dem das Substituentenpaar R¹³ und R¹⁸, (R¹⁵)₂ oder (R¹⁶)₂ verbunden ist, zwei bis sechs Kohlenstoffatome und gegebenenfalls zusätzlich ein weiteres Atom Stickstoff, Schwefel oder Sauerstoff enthält und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus C₁-C₂-Alkyl, Halogen, Cyano, Nitro oder C₁-C₂-Alkoxy,
- 25 W jeweils unabhängig voneinander für C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₄-Haloalkyl, C₂-C₄-Haloalkenyl, C₂-C₄-Haloalkinyl, C₃-C₆-Halocycloalkyl, Halogen, Cyano, Nitro, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₆-Dialkylamino, C₃-C₆-Cycloalkylamino, (C₁-C₄-Alkyl)C₃-C₆-cycloalkylamino, C₂-C₄-Alkylcarbonyl, C₂-C₆-Alkoxycarbonyl, CO₂H,
 30 C₂-C₆-Alkylaminocarbonyl, C₃-C₈-Dialkylaminocarbonyl oder C₃-C₆-Trialkylsilyl steht,
 - n jeweils unabhängig voneinander für 0 oder 1 steht,
 - p jeweils unabhängig voneinander für 0, 1 oder 2 steht.

Für den Fall, dass (a) R⁵ für Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl, C₂-C₆-Haloalkenyl, C₂-C₆-Haloalkinyl, C₁-C₄-Haloalkoxy, C₁-C₄-Haloalkylthio oder Halogen steht und (b) R⁸ für Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl, C₂-C₆-Haloalkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Haloalkoxy, C₂-C₅-Haloalkoxy, C₄-C₄-Haloalkoxy, C₅-C₆-Haloalkoxy, C₅-C₆-Haloalkoxy, C₅-C₆-Haloalkoxy, C₆-C₆-Haloalkoxy, C₆-C₆-Haloalkoxy, C₇-C₆-Haloalkoxy, C₈-C₆-Haloalkoxy, C₈-C₈-Haloalkoxy, C

10

15

alkylthio, Halogen, C₂-C₄-Alkylcarbonyl, C₂-C₆-Alkoxycarbonyl, C₂-C₆-Alkylaminocarbonyl oder C₃-C₈ Dialkylaminocarbonyl steht, dann ist (c) mindestens ein Substituent ausgewählt aus R⁶, R¹¹ und R¹² vorhanden und (d), wenn R¹² nicht vorhanden ist, mindestens ein R⁶ oder R¹¹ unterschiedlich zu C₂-C₆-Alkylaminocarbonyl und C₃-C₈-Dialkylaminocarbonyl.

Die Verbindungen gemäß der allgemeinen Formel (II) umfassen N-Oxide und Salze.

Die Verbindungen der Formel (II) können, auch in Abhängigkeit von der Art der Substituenten, als geometrische und/oder optische Isomere oder Isomerengemische, in unterschiedlicher Zusammensetzung vorliegen, die gegebenenfalls in tiblicher Art und Weise getrennt werden können. Sowohl die reinen Isomeren als auch die Isomerengemische, deren Herstellung und Verwendung sowie diese enthaltende Mittel sind Gegenstand der vorliegenden Erfindung. Im Folgenden wird der Einfachheit halber jedoch stets von Verbindungen der Formel (II) gesprochen, obwohl sowohl die reinen Verbindungen als gegebenenfalls auch Gemische mit unterschiedlichen Anteilen an isomeren Verbindungen gemeint sind.

Bevorzugt sind Wirkstoffkombinationen enthaltend Verbindungen der Formel (II-1)

in welcher

20 R² für Wasserstoff oder C₁-C₆-Alkyl steht,

R³ für C₁-C₆-Alkyl steht, das gegebenenfalls mit einem R⁶ substituiert ist,

R⁴ für C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Halogen steht,

R⁵ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Halogen steht,

R⁶ für -C(=E²)R¹⁹, -LC(=E²)R¹⁹, -C(=E²)LR¹⁹ oder -LC(=E²)LR¹⁹ steht, wobei jedes E² unabhängig voneinander für O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, und jedes L unabhängig voneinander für O oder NR¹⁸ steht,

R⁷ für C₁-C₄-Haloalkyl oder Halogen steht,

R⁹ für C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy, S(O)_pC₁-C₂-Halogenalkyl oder Halogen steht,

jeweils unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls substituiertes C₁-C₆-Haloalkyl oder C₁-C₆-Alkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio,

 C_1 - C_4 -Alkylsulfinyl, C_1 - C_4 -Alkylsulfonyl, C_1 - C_4 -Haloalkylsulfinyl oder C_1 - C_4 -Haloalkylsulfonyl,

- R¹⁸ jeweils für Wasserstoff oder C₁-C₄-Alkyl steht,
- R¹⁹ jeweils unabhängig voneinander für Wasserstoff oder C₁-C₆-Alkyl steht,
- 5 p unabhängig voneinander für 0, 1, 2 steht.

In den als bevorzugt genannten Restedefinitionen steht Halogen für Fluor, Chlor, Brom und Iod, insbesondere für Fluor, Chlor und Brom.

- 10 Besonders bevorzugt sind Wirkstoffkombinationen enthalten Verbindungen der Formel (II-1), in welcher
 - R² für Wasserstoff oder Methyl steht,
 - R³ für C₁-C₄-Alkyl (insbesondere Methyl, Ethyl, n-, iso-Propyl, n-, iso-, sec-, tert-Butyl) steht,
 - R⁴ für Methyl, Trifluormethyl, Trifluormethoxy, Fluor, Chlor, Brom oder Iod steht,
- 15 R⁵ für Wasserstoff, Fluor, Chlor, Brom, Iod, Trifluormethyl oder Trifluormethoxy steht,
 - R⁷ für Chlor oder Brom steht,
 - R9 für Trifluormethyl, Chlor, Brom, Difluormethoxy oder Trifluorethoxy steht.

Ganz besonders bevorzugt sind Wirkstoffkombinationen enthaltend folgende Verbindungen der 20 Formel (II-1):

Beispiel-Nr.	R ²	R³	\mathbb{R}^4	\mathbb{R}^5	\mathbb{R}^7	R ⁹	Fp. (°C)
П-1-1	H	Me	Me	C1	Cl	CF ₃	185-186
II-1-2	H	Me	Me	Cl	Cl	OCH ₂ CF ₃	207-208
II-1-3	H	Me	Me	Cl	Cl	Cl	225-226
II-1-4	. H	Me	Me	Cl	CI	Br	162-164
II-1-5	H	Me	Cl	Cl	Cl	CF ₃	155-157
II-1-6	H	Me	Cl	C1	Cl	OCH ₂ CF ₃	192-195
П-1-7	H	Me	Cl	Cl	Cl	Cl	205-206
II-1-8	H	Me	Cl	Cl	CI.	\mathbf{Br}	245-246
П-1-9	H	i-Pr	Me	Cl	Cl	CF ₃	195-196
П-1-10	H	i-Pr	Me	Cl	Cl	OCH ₂ CF ₃	217-218
П-1-11	H	i-Pr	Me	Cl	Cl	Cl	173-175
II-1-12	H	i-Pr	Me	Cl	Cl	Br	159-161

Beispiel-Nr.	\mathbb{R}^2	R³	R ⁴	R ⁵	R ⁷	R ⁹	Fp. (°C)
II-1-13	H	i-Pr	Cl	CI.	Cl	CF ₃	200-201
II-1-14	H	i-Pr	Cl	C1	. Cl	OCH ₂ CF ₃	232-235
II-1-15	H	i-Pr	Cl	Cl	Cl	Cl	197-199
П-1-16	H	i-Pr	Cl	Cl	Ci	Br	188-190
II-1-17	H	Et	Me	Cl	Cl	CF ₃	163-164
II-1-18	H	Et	Me	Cl	Cl	OCH ₂ CF ₃	205-207
II-1-19	H	Et	Me	Cl	C1	Cl	199-200
II-1-20	H	Et	Me	C1	· Cl	Br	194-195
П-1-21	н	Et	Cl	Cl	Cl	CF ₃	201-202
II-1-22	\mathbf{H}	Et	CI	Cl	Cl	Cl	206-208
II-1-23	H	Et	Cl	CI	Cl	Br	214-215
JI-1-24	\mathbf{H}	t-Bu	Me	Cl	Cl	CF ₃	223-225
. 'П-1-25	H	t-Bu	Me	Cl	Cl	Cl	163-165
П-1-26	\mathbf{H}	t-Bu	Me	Cl	Cl	Br	159-161
П-1-27	H	t-Bu	Cl	Cl	Cl	CF ₃	170-172
П-1-28	H	t-Bu	Cl	Cl	CI	Cl	172-173
II-1-29	H	t-Bu	Cl	Cl	Cl	\mathbf{Br}	179-180
II-1-30	Ħ	Me	Me	\mathbf{Br}	Cl	CF ₃	222-223
Ц-1-31	H	Et	Me	Br	Cl	CF ₃	192-193
П-1-32	H	i-Pr	Me	\mathbf{Br}	Ci	CF ₃	197-198
II-1-33	\mathbf{H}	t-Bu	Me	\mathbf{Br}	Cl	CF ₃	247-248
II-1-34	H	Me	Me	Br	Cl	Cl	140-141
II-1-35	H	Et	Me	Br	Cl	Cl	192-194
II-1-36	H	i-Pr	Me	Br	Cl	Cl	152-153
II-1-37	H	t-Bu	Me	\mathbf{Br}	Cl	Cl	224-225
П-1-38	\mathbf{H} .	Me	Me	\mathbf{Br}	Cl	Br	147-149
II-1-39	H	Et	Me	Br	Cl	Br	194-196
II-1-40	\mathbf{H}	i-Pr	Me	Br	Cl	Br	185-187
II-1-41	H	t-Bu	Me	Br	Cl	Br	215-221
II-1-42	H	Me	Me	I	Cl	CF₃	199-200
II-1-43	\mathbf{H}	Et	Me	1	Cl	CF₃	199-200
II-1-44	H	i-Pr	Me	Ι	Cl	CF₃	188-189
. II-1-45	H	t-Bu	Me	1	Cl	CF₃	242-243
II-1-46	H	Me	Me	I	Cl	Cl	233-234
II-1-47	H	Et	Me	I	Cl	Cl	196-197
II-1-48	H	i-Pr	Me	Ι	Cl	Cl	189-190
II-1-49	H	t-Bu	Me	, I	Cl	Cl	228-229
II-1-50	H	Me	Me	1	Cl	Br	229-230
·II-1-51	H	iPr	Me	I	Cl	Br	191-192
II-1-52	H	Me	Br	Br	CI	CF ₃	162-163
II-1-53	H	Et	Br	Br	Cl	CF ₃	188-189
П-1-54	H	i-Pr	Br	Br	Cl	CF ₃	192-193
II-1-55	Ħ	t-Bu	Br	Br	CI	CF ₃	246-247
II-1-56	H	Me	Br	Br	Cl	Cl	188-190
II-1-57	H	Bt	Br	\mathbf{Br}	Cl	Cl	192-194
П-1-58	\mathbf{H}	i-Pr	Br	Br	C1	Cl	197-199

Beispiel-Nr.	R²	R³	R ⁴	R ⁵	R ⁷	R ⁹	Fp. (°C)
II-1-59	H	t-Bu	Br	Br	Cl	Cl	210-212
П-1-60	H	Me	Br	\mathbf{Br}	Cl	\mathbf{Br}	166-168
II-1-61	H	Et	Br	Br	Cl	Br	196-197
II-1-62	H	i-Pr	Br	Br	Cl	Br .	162-163
II-1-63	H	t-Bu	Br	Br	Cl	Br	194-196
II-1-64	H	t-Bu	Cl	Br	Cl	CF ₃	143-145
II-1-65	Me	Me	\mathbf{Br}	Br	C1	C1	153-155
II-1-66	Me	Me	Me	Br	Cl	CF ₃	207-208
II-1-67	. Me	Me	Cl	· Cl	Cl	C1	231-232
П-1-68	Me	Me	Br	Br	Cl	\mathbf{Br}	189-190
II-1-69	Me ·	Me	Cl	Cl	Cl	Br	216-218
П-1-70	Me	Me	Cl	Cl	Cl	CF ₃	225-227
П-1-71	Me	Me	Br	Br	Cl	CF ₃	228-229
П-1-72	H	i-Pr	Me	H	Cl	CF ₃	237-239

Insbesondere bevorzugt sind Wirkstoffkombinationen enthaltend eine Verbindung der folgenden Formeln

Hervorgehoben sind folgende im Einzelnen genannten Wirkstoffkombinationen (2-er-Mischungen) enthaltend eine Verbindung der Formel (I) (Gruppe 1) <u>oder</u> einer akarizid wirksamen Verbindung der Gruppe 2 <u>und</u> einer Verbindung der Formel (II-1):

Nr.	Wirkstoffkombination enthaltend	Nr.	Wirkstoffkombination enthaltend
1a)	(I-1) und (II-1-1)	28a)	(I-1) und (II-1-39)
1b).	(I-2) und (II-1-1)	28b)	(I-2) und (II-1-39)
1c)	(2-2) Abamectin und (II-1-1)	28c)	(2-2) Abamectin und (II-1-39)
1d)	(2-5) Diafenthiuron und (II-1-1)	28d)	(2-5) Diafenthiuron und (II-1-39)
1e) .	(2-17) Spinosad und (II-1-1)	28e)	(2-17) Spinosad und (II-1-39)
1f)	(2-20) Endosulfan und (II-1-1)	28f)	(2-20) Endosulfan und (II-1-39)
2a)	(I-1) und (II-1-2)	29a)	(I-1) und (II-1-40)
2b)	(I-2) und (II-1-2)	29b)	(I-2) und (II-1-40)
2c)	(2-2) Abamectin und (II-1-2)	29c)	(2-2) Abamectin und (II-1-40)
2d)	(2-5) Diafenthiuron und (II-1-2)	29đ)	(2-5) Diafenthiuron und (II-1-40)
2e)	(2-17) Spinosad und (II-1-2)	29e)	(2-17) Spinosad und (II-1-40)
2f)	(2-20) Endosulfan und (II-1-2)	29f)	(2-20). Endosulfan und (II-1-40)
3a)	(I-1) und (II-1-3)	30a)	(I-1) und (II-1-42)
3b)	(I-2) und (II-1-3)	30ъ)	(I-2) und (II-1-42)
3c)	(2-2) Abamectin und (II-1-3)	30c)	(2-2) Abamectin und (II-1-42)
3d)	(2-5) Diafenthiuron und (II-1-3)	30d)	(2-5) Diafenthiuron und (II-1-42)
3e)	(2-17) Spinosad und (II-1-3)	30e)	(2-17) Spinosad und (II-1-42)
3f)	(2-20) Endosulfan und (II-1-3)	30f)	(2-20) Endosulfan und (II-1-42)
4a)	(I-1) und (II-1-4)	31a)	(I-1) und (II-1-43)
4b)	(I-2) und (II-1-4)	31b)	(I-2) und (II-1-43)
4c)	(2-2) Abamectin und (II-1-4)	31c)	(2-2) Abamectin und (II-1-43)
4d)	(2-5) Diafenthiuron und (II-1-4)	31d)	(2-5) Diafenthiuron und (II-1-43)
4e)	(2-17) Spinosad und (II-1-4)	31e)	(2-17) Spinosad und (II-1-43)
4f)	(2-20) Endosulfan und (II-1-4)	31f)	(2-20) Endosulfan und (II-1-43)
5a)	(I-1) und (II-1-5)	32a)	(I-1) und (II-1-44)
5b)	(I-2) und (II-1-5)	32b)	(I-2) und (II-1-44)
5c)	(2-2) Abamectin und (II-1-5)	32c)	(2-2) Abamectin und (II-1-44)
5d)	(2-5) Diafenthiuron und (II-1-5)	32d)	(2-5) Diafenthiuron und (II-1-44)
5e)	(2-17) Spinosad und (II-1-5)	32e)	(2-17) Spinosad und (II-1-44)
5f)	(2-20) Endosulfan und (II-1-5)	32f)	(2-20) Endosulfan und (II-1-44)
ба)	(I-1) und (II-1-6)	33a)	(I-1) und (II-1-50)
6b)	(I-2) und (II-1-6)	33Ъ)	(I-2) und (II-1-50)
6c)	(2-2) Abamectin und (II-1-6)	33c)	(2-2) Abamectin und (II-1-50)
6d)	(2-5) Diafenthiuron und (II-1-6)	33d)	(2-5) Diafenthiuron und (II-1-50)
6e)	(2-17) Spinosad und (II-1-6)	33e)	(2-17) Spinosad und (II-1-50)
6f)	(2-20) Endosulfan und (II-1-6)	33f)	(2-20) Endosulfan und (II-1-50)
7a)	(I-1) und (II-1-7)	34a)	(I-1) und (II-1-51)
7b)	(I-2) und (II-1-7)	34b)	(I-2) und (II-1-51)
7c)	(2-2) Abamectin und (II-1-7)	34c)	(2-2) Abamectin und (II-1-51)
7d)	(2-5) Diafenthiuron und (II-1-7)	34d)	(2-5) Diafenthiuron und (II-1-51)

Nr.	Wirkstoffkombination enthaltend	Nr.	Wirkstoffkombination enthaltend
7e)	(2-17) Spinosad und (II-1-7)	34e)	(2-17) Spinosad und (II-1-51)
7 f)	(2-20) Endosulfan und (II-1-7)	34f)	(2-20) Endosulfan und (II-1-51)
8a)	(I-1) und (II-1-8)	35a)	(I-1) und (II-1-52)
8ъ)	(I-2) und (II-1-8)	3 <i>5</i> b)	(I-2) und (II-1-52)
8c)	(2-2) Abamectin und (II-1-8)	35c)	(2-2) Abamectin und (II-1-52)
(b 8	(2-5) Diafenthiuron und (II-1-8)	35d)	(2-5) Diafenthiuron und (II-1-52)
8e)	(2-17) Spinosad und (II-1-8)	35e) ·	(2-17) Spinosad und (II-1-52)
8f)	(2-20) Endosulfan und (II-1-8)	35f)	(2-20) Endosulfan und (II-1-52)
9a)	(I-1) und (II-1-9)	36a)	(I-1) und (II-1-53)
9b)	(I-2) und (II-1-9)	36ь)	(I-2) und (II-1-53)
9c)	(2-2) Abamectin und (II-1-9)	36c)	(2-2) Abamectin und (II-1-53)
·9d)	(2-5) Diafenthiuron und (II-1-9)	36d)	(2-5) Diafenthiuron und (II-1-53)
9e)	(2-17) Spinosad und (II-1-9)	36e)	(2-17) Spinosad und (II-1-53)
9f)	(2-20) Endosulfan und (II-1-9)	36f)	(2-20) Endosulfan und (II-1-53)
10a)	(I-1) und (II-1-11)	37a)	(I-1) und (II-1-54)
10b)	(I-2) und (II-1-11)	37b)	(I-2) und (II-1-54)
10c)	(2-2) Abamectin und (II-1-11)	37c)	(2-2) Abamectin und (II-1-54)
10d)	(2-5) Diafenthiuron und (II-1-11)	37d)	(2-5) Diafenthiuron und (II-1-54)
10e)	(2-17) Spinosad und (II-1-11)	37e)	(2-17) Spinosad und (II-1-54)
10f)	(2-20) Endosulfan und (II-1-11)	37f)	(2-20) Endosulfan und (II-1-54)
11a)	(I-1) und (II-1-12)	38a)	(I-1) und (II-1-55)
11b)	(I-2) und (II-1-12)	38b)	(I-2) und (II-1-55)
11c)	(2-2) Abamectin und (II-1-12)	38c)	(2-2) Abamectin und (II-1-55)
11d)	(2-5) Diafenthiuron und (II-1-12)	38d)	(2-5) Diafenthiuron und (II-1-55)
11e)	(2-17) Spinosad und (II-1-12)	38e)	(2-17) Spinosad und (II-1-55)
11f)	(2-20) Endosulfan und (II-1-12)	38f)	(2-20) Endosulfan und (II-1-55)
12a)	(I-1) und (II-1-13)	39a)	(I-1) und (II-1-56)
12b)	(I-2) und (II-1-13)	39b)	(I-2) und (II-1-56)
12c)	(2-2) Abamectin und (II-1-13)	39c)	(2-2) Abamectin und (II-1-56)
12d)	(2-5) Diafenthiuron und (II-1-13)	39d)	(2-5) Diafenthiuron und (II-1-56)
12e)	(2-17) Spinosad und (II-1-13)	39e)	(2-17) Spinosad und (II-1-56)
12f)	(2-20) Endosulfan und (II-1-13)	39f)	(2-20) Endosulfan und (II-1-56)
13a)	(I-1) und (II-1-15)	40a)	(I-1) und (II-1-57)
13b)	(I-2) und (II-1-15)	40b)	(I-2) und (II-1-57)
13c)	(2-2) Abamectin und (II-1-15)	40c)	(2-2) Abamectin und (II-1-57)
13d)	(2-5) Diafenthiuron und (II-1-15)	40d)	(2-5) Diafenthiuron und (II-1-57)
13e)	(2-17) Spinosad und (II-1-15)	40e)	(2-17) Spinosad und (II-1-57)
13f)	(2-20) Endosulfan und (II-1-15)	40f)	(2-20) Endosulfan und (II-1-57)
14a)	(I-1) und (II-1-16)	41a) .	(I-1) und (II-1-58)
14b)	(I-2) und (II-1-16)	41b)	(I-2) und (II-1-58)
14c)	(2-2) Abamectin und (II-1-16)	41c)	(2-2) Abamectin und (II-1-58)
14d)	(2-5) Diafenthiuron und (II-1-16)	41d)	(2-5) Diafenthiuron und (II-1-58)
14e)	(2-17) Spinosad und (II-1-16)	41e)	(2-17) Spinosad und (II-1-58)
14f)	(2-20) Endosulfan und (II-1-16)	41f)	(2-20) Endosulfan und (II-1-58)
15a)	(I-1) und (II-1-19)	42a)	(I-1) und (II-1-60)
15b)	(I-2) und (II-1-19)	42b)	(I-2) und (II-1-60)

Nr.	Wirkstoffkombination enthaltend	Nr.	Wirkstoffkombination enthaltend
15c)	(2-2) Abamectin und (II-1-19)	42c)	(2-2) Abamectin und (II-1-60)
15d)	(2-5) Diafenthiuron und (II-1-19)	42d)	(2-5) Diafenthiuron und (II-1-60)
15e)	(2-17) Spinosad und (II-1-19)	42e)	(2-17) Spinosad und (II-1-60)
15f)	(2-20) Endosulfan und (II-1-19)	42f)	(2-20) Endosulfan und (II-1-60)
16a).	(I-1) und (II-1-21)	43a)	(I-1) und (II-1-61)
16b)	(I-2) und (II-1-21)	43b)	(I-2) und (II-1-61)
16c)	(2-2) Abarnectin und (II-1-21)	43c)	(2-2) Abamectin und (II-1-61)
16d)	(2-5) Diafenthiuron und (II-1-21)	43d)	(2-5) Diafenthiuron und (II-1-61)
16e)	(2-17) Spinosad und (II-1-21)	43e)	(2-17) Spinosad und (II-1-61)
16f)	(2-20) Endosulfan und (II-1-21)	43f)	(2-20) Endosulfan und (II-1-61)
17a)	(I-1) und (II-1-22)	44a)	(I-1) und (II-1-62)
17b)	(I-2) und (II-1-22)	44b)	(I-2) und (II-1-62)
17c)	(2-2) Abamectin und (II-1-22)	44c)	(2-2) Abamectin und (II-1-62)
17d)	(2-5) Diafenthiuron und (II-1-22)	44d)	(2-5) Diafenthiuron und (II-1-62)
17e)	(2-17) Spinosad und (II-1-22)	44e)	(2-17) Spinosad und (II-1-62)
17f)	(2-20) Endosulfan und (İl-1-22)	44f)	(2-20) Endosulfan und (II-1-62)
18a)	(I-1) und (II-1-23)	45a)	(I-1) und (II-1-64)
18b)	(I-2) und (II-1-23)	45b)	(I-2) und (II-1-64)
18c)	(2-2) Abamectin und (II-1-23)	45c)	(2-2) Abamectin und (II-1-64)
18d)	(2-5) Diafenthiuron und (II-1-23)	45d)	(2-5) Diafenthiuron und (II-1-64)
18e)	(2-17) Spinosad und (II-1-23)	45e)	(2-17) Spinosad und (II-1-64)
18f)	(2-20) Endosulfan und (II-1-23)	45f)	(2-20) Endosulfan und (II-1-64)
19a)	(I-1) und (II-1-24)	46a)	(I-1) und (II-1-65)
19b)	(I-2) und (II-1-24)	46b)	(I-2) und (II-1-65)
19c)	(2-2) Abamectin und (II-1-24)	46c)	(2-2) Abamectin und (II-1-65)
19d)	(2-5) Diafenthiuron und (II-1-24)	46d)	(2-5) Diafenthiuron und (II-1-65)
19e)	(2-17) Spinosad und (II-1-24)	46e)	(2-17) Spinosad und (II-1-65)
19f)	(2-20) Endosulfan und (II-1-24)	46f)	(2-20) Endosulfan und (II-1-65)
20a)	(I-1) und (II-1-26)	47a)	(I-1) und (II-1-66)
20b)	(I-2) und (II-1-26)	47b)	(I-2) und (II-1-66)
20c)	(2-2) Abamectin und (II-1-26)	47c)	(2-2) Abamectin und (II-1-66)
20d)	(2-5) Diafenthiuron und (II-1-26)	47đ)	(2-5) Diafenthiuron und (II-1-66)
20e)	(2-17) Spinosad und (II-1-26)	47e)	(2-17) Spinosad und (II-1-66)
20f)	(2-20) Endosulfan und (II-1-26)	47f)	(2-20) Endosulfan und (II-1-66)
21a)	(I-1) und (II-1-27)	48a)	(I-1) und (II-1-67)
21b)	(I-2) und (II-1-27)	48b)	(I-2) und (II-1-67)
21c)	(2-2) Abamectin und (II-1-27)	48c)	(2-2) Abamectin und (II-1-67)
21d)	(2-5) Diafenthiuron und (II-1-27)	48d)	(2-5) Diafenthiuron und (II-1-67)
21e)	(2-17) Spinosad und (II-1-27)	48e)	(2-17) Spinosad und (II-1-67)
21f)	(2-20) Endosulfan und (II-1-27)	48f)	(2-20) Endosulfan und (II-1-67)
22a)	(I-1) und (II-1-29)	49a)	(I-1) und (II-1-68)
22b)	(I-2) und (II-1-29)	496)	(I-2) und (II-1-68)
22c)	(2-2) Abamectin und (II-1-29)	49c)	(2-2) Abamectin und (II-1-68)
22d)	(2-5) Diafenthiuron und (II-1-29)	49đ)	(2-5) Diafenthiuron und (II-1-68)
22e)	(2-17) Spinosad und (II-1-29)	49e)	(2-17) Spinosad und (II-1-68)
22f)	(2-20) Endosulfan und (II-1-29)	49f)	(2-20) Endosulfan und (II-1-68)

Nr.	Wirkstoffkombination enthaltend	Nr.	Wirkstoffkombination enthaltend
23a)	(I-1) und (II-1-30)	50a)	(I-1) und (II-1-69)
23b)	(I-2) und (II-1-30)	50b)	(I-2) und (II-1-69)
23c)	(2-2) Abamectin und (II-1-30)	50c)	(2-2) Abamectin und (II-1-69)
23d)	(2-5) Diafenthiuron und (II-1-30)	50d)	(2-5) Diafenthiuron und (II-1-69)
23e)	(2-17) Spinosad und (II-1-30)	50e)	(2-17) Spinosad und (II-1-69)
23f)	(2-20) Endosulfan und (II-1-30)	50f)	(2-20) Endosulfan und (II-1-69)
24a)	(I-1) und (II-1-31)	51a)	(I-1) und (II-1-70)
24a) 24b)	(I-2) und (II-1-31)	51b)	(I-2) und (II-1-70)
24c)	(2-2) Abamectin und (II-1-31)	51c)	(2-2) Abamectin und (II-1-70)
24d)	(2-5) Diafenthiuron und (II-1-31)	51d)	(2-5) Diafenthiuron und (II-1-70)
24u) 24e)	(2-17) Spinosad und (II-1-31)	51e)	(2-17) Spinosad und (II-1-70)
24f)	(2-20) Endosulfan und (II-1-31)	51f)	(2-20) Endosulfan und (II-1-70)
241) 25a)	(I-1) und (II-1-32)	52a)	(I-1) und (II-1-71)
25b)	(I-2) und (II-1-32)	52b)	(I-2) und (II-1-71)
25c)	(2-2) Abamectin und (II-1-32)	52c)	(2-2) Abamectin und (II-1-71)
25d)	(2-5) Diafenthiuron und (II-1-32)	52d)	(2-5) Diafenthiuron und (II-1-71)
25u) 25e)	(2-17) Spinosad und (II-1-32)	52d)	(2-17) Spinosad und (II-1-71)
25f)	(2-20) Endosulfan und (II-1-32)	52f)	(2-20) Endosulfan und (II-1-71)
-	(I-1) und (II-1-33)	53a)	(I-1) und (II-1-72)
26a)	(I-2) und (II-1-33)	53b)	(I-2) und (II-1-72)
26b)	(2-2) Abamectin und (II-1-33)	53c)	(2-2) Abamectin und (II-1-72)
26c) 26d)	(2-5) Diafenthiuron und (II-1-33)	53d)	(2-5) Diafenthiuron und (II-1-72)
26e)	(2-17) Spinosad und (II-1-33)	53e)	(2-17) Spinosad und (II-1-72)
26f)	(2-20) Endosulfan und (II-1-33)	53£)	(2-20) Endosulfan und (II-1-72)
•	· · · ·	331)	(2-20) Endosulian und (H-1-72)
27a)	(I-1) und (II-1-38)]	
27b)	(I-2) und (II-1-38)	İ	
27c)	(2-2) Abamectin und (II-1-38)	Ī	
27d)	(2-5) Diafenthiuron und (II-1-38)	1	
27e)	(2-17) Spinosad und (II-1-38)	l	
27f)	(2-20) Endosulfan und (II-1-38)	J	χ.

Die oben aufgeführten allgemeinen oder in Vorzugsbereichen aufgeführten Restedefinitionen bzw. Erläuterungen können jedoch auch untereinander, also zwischen den jeweiligen Bereichen und Vorzugsbereichen beliebig kombiniert werden. Sie gelten für die Endprodukte sowie für die Vor- und Zwischenprodukte entsprechend.

Erfindungsgemäß bevorzugt werden Wirkstoffkombinationen, die Verbindungen der Formel (I) oder eine Verbindung der Gruppe 2 sowie mindestens eine Verbindung der Formel (II) enthalten, in welchen die einzelnen Reste eine Kombination der vorstehend als bevorzugt (vorzugsweise) aufgeführten Bedeutungen haben.

Erfindungsgemäß besonders bevorzugt werden Wirkstoffkombinationen, die Verbindungen der Formel (I) oder eine Verbindung der Gruppe 2 sowie mindestens eine Verbindung der Formel (II) enthalten, in welchen die einzelnen Reste eine Kombination der vorstehend als besonders bevorzugt aufgeführten Bedeutungen haben.

5

Erfindungsgemäß ganz besonders bevorzugt werden Wirkstoffkombinationen, die Verbindungen der Formel (I) oder eine Verbindung der Gruppe 2 sowie mindestens eine Verbindung der Formel (II) enthalten, in welchen die einzelnen Reste eine Kombination der vorstehend als ganz besonders bevorzugt aufgeführten Bedeutungen haben.

10

35

Gesättigte oder ungesättigte Kohlenwasserstoffreste wie Alkyl oder Alkenyl können, auch in Verbindung mit Heteroatomen, wie z.B. in Alkoxy, soweit möglich, jeweils geradkettig oder verzweigt sein.

Gegebenenfalls substituierte Reste können einfach oder mehrfach substituiert sein, wobei bei Mehrfachsubstitutionen die Substituenten gleich oder verschieden sein können.

Die Wirkstoffkombinationen können darüber hinaus auch weitere fungizid, akarizid oder insektizid wirksame Zumischpartner enthalten.

Wenn die Wirkstoffe in den erfindungsgemäßen Wirkstoffkombinationen in bestimmten Gewichtsverhältnissen vorhanden sind, zeigt sich der synergistische Effekt besonders deutlich. Jedoch können die Gewichtsverhältnisse der Wirkstoffe in den Wirkstoffkombinationen in einem relativ großen Bereich variiert werden. Im Allgemeinen enthalten die erfindungsgemäßen Kombinationen Wirkstoffe der Formel (I) oder eine Verbindung der Gruppe 2 und den Mischpartner der Formel (II) in den angegebenen bevorzugten und besonders bevorzugten Mischungsverhältnissen:

Das bevorzugte Mischungsverhältnis beträgt 500:1 bis 1:50.

Das besonders bevorzugte Mischungsverhältnis beträgt 25:1 bis 1:10.

Die Mischungsverhältnisse basieren auf Gewichtsverhältnissen. Das Verhältnis ist zu verstehen als Wirkstoff der Formel (I): Mischpartner der Formel (II) bzw. als Verhältnis einer Verbindung der Gruppe 2: Mischpartner der Formel (II).

Die erfindungsgemäßen Wirkstoffkombinationen eignen sich zur Bekämpfung von tierischen Schädlingen, vorzugsweise Arthropoden und Nematoden, insbesondere Insekten und Spinnentieren, die in der Landwirtschaft, der Tiergesundheit, in Forsten, im Vorrats- und Materialschutz sowie auf

dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie gegen alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:

Aus der Ordnung der Isopoda z.B. Oniscus asellus, Armadillidium vulgare, Porcellio scaber.

Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus.

Aus der Ordnung der Chilopoda z.B. Geophilus carpophagus, Scutigera spp..

Aus der Ordnung der Symphyla z.B. Scutigerella immaculata.

Aus der Ordnung der Thysanura z.B. Lepisma saccharina.

Aus der Ordnung der Collembola z.B. Onychiurus armatus.

10 Aus der Ordnung der Orthoptera z.B. Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus spp., Schistocerca gregaria.

Aus der Ordnung der Blattaria z.B. Blatta orientalis, Periplaneta americana, Leucophaea maderae, Blattella germanica.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

15 Aus der Ordnung der Isoptera z.B. Reticulitermes spp..

Aus der Ordnung der Phthiraptera z.B. Pediculus humanus corporis, Haematopinus spp., Linognathus spp., Trichodectes spp., Damalinia spp..

Aus der Ordnung der Thysanoptera z.B. Hercinothrips femoralis, Thrips tabaci, Thrips palmi, Frankliniella accidentalis.

20 Aus der Ordnung der Heteroptera z.B. Eurygaster spp., Dysdercus intermedius, Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp.

Aus der Ordnung der Homoptera z.B. Aleurodes brassicae, Bemisia tabaci, Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Aphis fabae, Aphis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Phylloxera vastatrix, Pemphigus spp., Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelis bilobatus, Nephotettix cincticeps, Lecanium comi, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens,

Aus der Ordnung der Lepidoptera z.B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella xylostella, Malacosoma neustria,

- Buproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Mamestra brassicae, Panolis flammea, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehniella, Galleria mellonella, Tineola bisselliella, Tinea pellionella, Hofmannophila pseudospretella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella,
- 35 Homona magnanima, Tortrix viridana, Cnaphalocerus spp., Oulema oryzae.

Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp.

10

30

35

Aus der Ordnung der Coleoptera z.B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylliodes chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonomus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica, Lissorhoptrus oryzophilus.

Aus der Ordnung der Hymenoptera z.B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp.

Aus der Ordnung der Diptera z.B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Famia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hyppobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata,

15 Dacus oleae, Tipula paludosa, Hylemyia spp., Liriomyza spp..

Aus der Ordnung der Siphonaptera z.B. Xenopsylla cheopis, Ceratophyllus spp..

Aus der Klasse der Arachnida z.B. Scorpio maurus, Latrodectus mactans, Acarus siro, Argas spp., Ornithodoros spp., Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp., Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes, spp., Tarsonemus, spp., Psychia, practices, Parachus, spp., Tarsonemus, spp., Psychia, practices, Parachus, spp., Tarsonemus, spp., Psychia, practices, Parachus, spp., Tarsonemus, spp., Psychia, practices, psychiatric spp., Tarsonemus, spp., Psychiatric spp., Psychia

 Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa, Panonychus spp., Tetranychus spp., Hemitarsonemus spp., Brevipalpus spp..

Zu den pflanzenparasitären Nematoden gehören z.B. Pratylenchus spp., Radopholus similis,
 Ditylenchus dipsaci, Tylenchulus semipenetrans, Heterodera spp., Globodera spp., Meloidogyne spp.,
 Aphelenchoides spp., Longidorus spp., Xiphinema spp., Trichodorus spp., Bursaphelenchus spp..

Die Wirkstoffkombinationen können in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Spritzpulver, Suspensionen, Pulver, Stäubemittel, Pasten, lösliche Pulver, Granulate, Suspensions-Emulsions-Konzentrate, Wirkstoff-imprägnierte Natur- und synthetische Stoffe sowie Feinstverkapselungen in polymeren Stoffen.

Diese Formulierungen werden in bekannter Weise hergestellt, z.B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln.

Im Falle der Benutzung von Wasser als Streckmittel können z.B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage: Aromaten, wie Xylol, Toluol, oder Alkylnaphthaline, chlorierte Aromaten und chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, aliphatische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z.B. Erdölfraktionen, mineralische und pflanzliche Öle, Alkohole, wie Butanol oder Głykol sowie deren Ether und Ester, Ketone wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungsmittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser.

10 Als feste Trägerstoffe kommen in Frage:

15

20

25

30

z.B. Ammoniumsalze und natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diatomeenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminiumoxid und Silikate, als feste Trägerstoffe für Granulate kommen in Frage: z.B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Maiskolben und Tabakstengeln; als Emulgier- und/oder schaumerzeugende Mittel kommen in Frage: z.B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure-Ester, Polyoxyethylen-Fettalkohol-Ether, z.B. Alkylaryl-polyglykolether, Alkylsulfonate, Alkylsulfonate sowie Einweißhydrolysate; als Dispergiermittel kommen in Frage: z.B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulvrige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholipide, wie Kephaline und Lecithine und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z.B. Eisenoxid, Titanoxid, Ferrocyanblau und organische Farbstoffe, wie Alizarin-, Azo- und Metallphthalocyaninfarbstoffe und Spurennährstoffe wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffkombinationen können in handelstiblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Bakteriziden, Akariziden, Nematiziden,

15

25

35

Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, chlorierte Kohlenwasserstoffe, Phenylhamstoffe, durch Mikroorganismen hergestellte Stoffe u.a.

Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

Die erfindungsgemäßen Wirkstoffkombinationen können ferner beim Einsatz als Insektizide in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit Synergisten vorliegen. Synergisten sind Verbindungen, durch die die Wirkung der Wirkstoffe gesteigert wird, ohne daß der zugesetzte Synergist selbst aktiv wirksam sein muss.

Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann in weiten Bereichen variieren. Die Wirkstoffkonzentration der Anwendungsformen kann von 0,0000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,0001 und 1 Gew.-% liegen.

Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise.

Bei der Anwendung gegen Hygiene- und Vorratsschädlinge zeichnen sich die Wirk-20 stoffkombinationen durch eine hervorragende Residualwirkung auf Holz und Ton sowie durch eine gute Alkalistabilität auf gekälkten Unterlagen aus.

Die erfindungsgemäßen Wirkstoffkombinationen wirken nicht nur gegen Pflanzen-, Hygiene- und Vorratsschädlinge, sondern auch auf dem veterinärmedizinischen Sektor gegen tierische Parasiten (Ektoparasiten) wie Schildzecken, Lederzecken, Räudemilben, Laufmilben, Fliegen (stechend und leckend), parasitierende Fliegenlarven, Läuse, Haarlinge, Federlinge und Flöhe. Zu diesen Parasiten gehören:

Aus der Ordnung der Anoplurida z.B. Haematopinus spp., Linognathus spp., Pediculus spp., Phtirus spp., Solenopotes spp..

Aus der Ordnung der Mallophagida und den Unterordnungen Amblycerina sowie Ischnocerina z.B. Trimenopon spp., Menopon spp., Trinoton spp., Bovicola spp., Werneckiella spp., Lepikentron spp., Damalina spp., Trichodectes spp., Felicola spp..

Aus der Ordnung Diptera und den Unterordnungen Nematocerina sowie Brachycerina z.B. Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp.,

Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Lucilia spp., Chrysomyia spp., Wohlfahrtia spp., Sarcophaga spp., Oestrus spp., Hypoderma spp., Gasterophilus spp., Hippobosca spp., Lipoptena spp., Melophagus spp..

Aus der Ordnung der Siphonapterida z.B. Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp.,

Aus der Ordnung der Heteropterida z.B. Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..

Aus der Ordnung der Blattarida z.B. Blatta orientalis, Periplaneta americana, Blattela germanica, Supella spp..

Aus der Unterklasse der Acaria (Acarida) und den Ordnungen der Meta- sowie Mesostigmata z.B. Argas spp., Ornithodorus spp., Otobius spp., Ixodes spp., Amblyomma spp., Boophilus spp., Dermacentor spp., Haemophysalis spp., Hyalomma spp., Rhipicephalus spp., Dermanyssus spp., Raillietia spp., Pneumonyssus spp., Sternostoma spp., Varroa spp..

Aus der Ordnung der Actinedida (Prostigmata) und Acaridida (Astigmata) z.B. Acarapis spp., Cheyletiella spp., Ornithocheyletia spp., Myobia spp., Psorergates spp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp., Pterolichus spp., Psoroptes spp., Chorioptes spp., Otodectes spp., Sarcoptes spp., Notoedres spp., Knemidocoptes spp., Cytodites spp., Laminosioptes spp..

Die erfindungsgemäßen Wirkstoffkombinationen eignen sich auch zur Bekämpfung von Arthropoden, die landwirtschaftliche Nutztiere, wie z.B. Rinder, Schafe, Ziegen, Pferde, Schweine, Esel, Kamele, Büffel, Kaninchen, Hühner, Puten, Enten, Gänse, Bienen, sonstige Haustiere wie z.B. Hunde, Katzen, Stubenvögel, Aquarienfische sowie sogenannte Versuchstiere, wie z.B. Hamster, Meerschweinchen, Ratten und Mäuse befallen. Durch die Bekämpfung dieser Arthropoden sollen Todesfälle und Leistungsminderungen (bei Fleisch, Milch, Wolle, Häuten, Eiern, Honig usw.) vermindert werden, so daß durch den Einsatz der erfindungsgemäßen Wirkstoffkombinationen eine wirtschaftlichere und einfachere Tierhaltung möglich ist.

Die Anwendung der erfindungsgemäßen Wirkstoffkombinationen geschieht im Veterinärsektor in bekannter Weise durch enterale Verabreichung in Form von beispielsweise Tabletten, Kapseln,
Tränken, Drenchen, Granulaten, Pasten, Boli, des feed-through-Verfahrens, von Zäpfchen, durch
parenterale Verabreichung, wie zum Beispiel durch Injektionen (intramuskulär, subcutan, intravenös,
intraperitonal u.a.), Implantate, durch nasale Applikation, durch dermale Anwendung in Form
beispielsweise des Tauchens oder Badens (Dippen), Sprühens (Spray), Aufgießens (Pour-on und
Spot-on), des Waschens, des Einpuderns sowie mit Hilfe von wirkstoffhaltigen Formkörpern, wie

Halsbändern, Ohrmarken, Schwanzmarken, Gliedmaßenbändern, Halftern, Markierungsvorrichtungen usw.

Bei der Anwendung für Vieh, Geflügel, Haustiere etc. kann man die Wirkstoffkombinationen als Formulierungen (beispielsweise Pulver, Emulsionen, fließfähige Mittel), die die Wirkstoffe in einer Menge von 1 bis 80 Gew.-% enthalten, direkt oder nach 100 bis 10 000-facher Verdünnung anwenden oder sie als chemisches Bad verwenden.

Außerdem wurde gefunden, daß die erfindungsgemäßen Wirkstoffkombinationen eine hohe insektizide Wirkung gegen Insekten zeigen, die technische Materialien zerstören.

Beispielhaft und vorzugsweise - ohne jedoch zu limitieren - seien die folgenden Insekten genannt: Käfer wie Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium rufovillosum, Ptilinus pecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthes rugicollis, Xyleborus spec. Tryptodendron spec. Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec. Dinoderus minutus.

Hautflügler wie Sirex juvencus, Urocerus gigas, Urocerus gigas taignus, Urocerus augur.

Termiten wie Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes, Reticulitermes santonensis, Reticulitermes lucifugus, Mastotermes darwiniensis, Zootermopsis nevadensis, Coptotermes formosanus.

Borstenschwänze wie Lepisma saccharina.

Unter technischen Materialien sind im vorliegenden Zusammenhang nicht-lebende Materialien zu verstehen, wie vorzugsweise Kunststoffe, Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Holzverarbeitungsprodukte und Anstrichmittel.

Ganz besonders bevorzugt handelt es sich bei dem vor Insektenbefall zu schützenden Material um Holz und Holzverarbeitungsprodukte.

30

35

15

20

Unter Holz und Holzverarbeitungsprodukten, welche durch das erfindungsgemäße Mittel bzw. dieses enthaltende Mischungen geschützt werden kann, ist beispielhaft zu verstehen:

Bauholz, Holzbalken, Eisenbahnschwellen, Brückenteile, Bootsstege, Holzfahrzeuge, Kisten, Paletten, Container, Telefonmasten, Holzverkleidungen, Holzfenster und -türen, Sperrholz, Spanplatten, Tischlerarbeiten oder Holzprodukte, die ganz allgemein beim Hausbau oder in der Bautischlerei Verwendung finden.

Die Wirkstoffkombinationen können als solche, in Form von Konzentraten oder allgemein üblichen Formulierungen wie Pulver, Granulate, Lösungen, Suspensionen, Emulsionen oder Pasten angewendet werden.

- 5 Die genannten Formulierungen k\u00f6nnen in an sich bekannter Weise hergestellt werden, z.B. durch Vermischen der Wirkstoffe mit mindestens einem L\u00f6sungs- bzw. Verd\u00fcnnungsmittel, Emulgator, Dispergier- und/oder Binde- oder Fixiermittels, Wasser-Repellent, gegebenenfalls Sikkative und UV-Stabilisatoren und gegebenenfalls Farbstoffen und Pigmenten sowie weiteren Verarbeitungshilfsmitteln.
- Die zum Schutz von Holz und Holzwerkstoffen verwendeten insektiziden Mittel oder Konzentrate enthalten den erfindungsgemäßen Wirkstoff in einer Konzentration von 0,0001 bis 95 Gew.-%, insbesondere 0,001 bis 60 Gew.-%.
- Die Menge der eingesetzten Mittel bzw. Konzentrate ist von der Art und dem Vorkommen der Insekten und von dem Medium abhängig. Die optimale Einsatzmenge kann bei der Anwendung jeweils durch Testreihen ermittelt werden. Im allgemeinen ist es jedoch ausreichend 0,0001 bis 20 Gew.-%, vorzugsweise 0,001 bis 10 Gew.-%, des Wirkstoffs, bezogen auf das zu schützende Material, einzusetzen.
- Als Lösungs- und/oder Verdünnungsmittel dient ein organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein öliges oder ölartiges schwer flüchtiges organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder ein polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch und/oder Wasser und gegebenenfalls einen Emulgator und/oder Netzmittel.

25

Als organisch-chemische Lösungsmittel werden vorzugsweise ölige oder ölartige Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, eingesetzt. Als derartige schwerffüchtige, wasserunlösliche, ölige und ölartige Lösungsmittel werden entsprechende Mineralöle oder deren Aromatenfraktionen oder mineralölhaltige Lösungsmittelgemische, vorzugsweise Testbenzin, Petroleum und/oder Alkylbenzol verwendet.

Vorteilhaft gelangen Mineralöle mit einem Siedebereich von 170 bis 220°C, Testbenzin mit einem Siedebereich von 170 bis 220°C, Spindelöl mit einem Siedebereich von 250 bis 350°C, Petroleum bzw. Aromaten vom Siedebereich von 160 bis 280°C, Terpentinöl und dgl. zum Einsatz.

In einer bevorzugten Ausführungsform werden flüssige aliphatische Kohlenwasserstoffe mit einem Siedebereich von 180 bis 210°C oder hochsiedende Gemische von aromatischen und aliphatischen Kohlenwasserstoffen mit einem Siedebereich von 180 bis 220°C und/oder Spindeöl und/oder Monochlornaphthalin, vorzugsweise α-Monochlornaphthalin, verwendet.

5

10

15

20

25

30

35

Die organischen schwerflüchtigen öligen oder ölartigen Lösungsmittel mit einer Verdunstungszahl über 35 und einem Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, können teilweise durch leicht oder mittelflüchtige organisch-chemische Lösungsmittel ersetzt werden, mit der Maßgabe, daß das Lösungsmittelgemisch ebenfalls eine Verdunstungszahl über 35 und einen Flammpunkt oberhalb 30°C, vorzugsweise oberhalb 45°C, aufweist und daß das Gemisch in diesem Lösungsmittelgemisch löslich oder emulgierbar ist.

Nach einer bevorzugten Ausführungsform wird ein Teil des organisch-chemischen Lösungsmittel oder Lösungsmittelgemisches oder ein aliphatisches polares organisch-chemisches Lösungsmittel oder Lösungsmittelgemisch ersetzt. Vorzugsweise gelangen Hydroxyl- und/oder Ester- und/oder Ethergruppen enthaltende aliphatische organisch-chemische Lösungsmittel wie beispielsweise Glycolether, Ester oder dgl. zur Anwendung.

Als organisch-chemische Bindemittel werden im Rahmen der vorliegenden Erfindung die an sieh bekannten wasserverditnnbaren und/oder in den eingesetzten organisch-chemischen Lösungsmitteln löslichen oder dispergier- bzw. emulgierbaren Kunstharze und/oder bindende trocknende Öle, insbesondere Bindemittel bestehend aus oder enthaltend ein Acrylatharz, ein Vinylharz, z.B. Polyvinylacetat, Polyesterharz, Polykondensations- oder Polyadditionsharz, Polyurethanharz, Alkydharz bzw. modifiziertes Alkydharz, Phenolharz, Kohlenwasserstoffharz wie Inden-Cumaronharz, Siliconharz, trocknende pflanzliche und/oder trocknende Öle und/oder physikalisch trocknende Bindemittel auf der Basis eines Natur- und/oder Kunstharzes verwendet.

Das als Bindemittel verwendete Kunstharz kann in Form einer Emulsion, Dispersion oder Lösung, eingesetzt werden. Als Bindemittel können auch Bitumen oder bituminöse Substanzen bis zu 10 Gew.-%, verwendet werden. Zusätzlich können an sich bekannte Farbstoffe, Pigmente, wasserabweisende Mittel, Geruchskorrigentien und Inhibitoren bzw. Korrosionsschutzmittel und dgl. eingesetzt werden.

Bevorzugt ist gemäß der Erfindung als organisch-chemische Bindemittel mindestens ein Alkydharz bzw. modifiziertes Alkydharz und/oder ein trocknendes pflanzliches Öl im Mittel oder im Konzentrat enthalten. Bevorzugt werden gemäß der Erfindung Alkydharze mit einem Ölgehalt von mehr als 45 Gew.-%, vorzugsweise 50 bis 68 Gew.-%, verwendet.

Das erwähnte Bindemittel kann ganz oder teilweise durch ein Fixierungsmittel(gemisch) oder ein Weichmacher(gemisch) ersetzt werden. Diese Zusätze sollen einer Verflüchtigung der Wirkstoffe sowie einer Kristallisation bzw. Ausfällem vorbeugen. Vorzugsweise ersetzen sie 0,01 bis 30 % des Bindemittels (bezogen auf 100 % des eingesetzten Bindemittels).

Die Weichmacher stammen aus den chemischen Klassen der Phthalsäureester wie Dibutyl-, Dioctyloder Benzylbutylphthalat, Phosphorsäureester wie Tributylphosphat, Adipinsäureester wie Di-(2ethylhexyl)-adipat, Stearate wie Butylstearat oder Amylstearat, Oleate wie Butyloleat, Glycerinether
oder höhermolekulare Glykolether, Glycerinester sowie p-Toluolsulfonsäureester.

Fixierungsmittel basieren chemisch auf Polyvinylalkylethern wie z.B. Polyvinylmethylether oder Ketonen wie Benzophenon, Ethylenbenzophenon.

Als Lösungs- bzw. Verdünnungsmittel kommt insbesondere auch Wasser in Frage, gegebenenfalls in Mischung mit einem oder mehreren der oben genannten organisch-chemischen Lösungs- bzw. Verdünnungsmittel, Emulgatoren und Dispergatoren.

20

30

5

Ein besonders effektiver Holzschutz wird durch großtechnische Imprägnierverfahren, z.B. Vakuum, Doppelvakuum oder Druckverfahren, erzielt.

Zugleich können die erfindungsgemäßen Wirkstoffkombinationen zum Schutz vor Bewuchs von Gegenständen, insbesondere von Schiffskörpern, Sieben, Netzen, Bauwerken, Kaianlagen und Signalanlagen, welche mit See- oder Brackwasser in Verbindung kommen, eingesetzt werden.

Bewuchs durch sessile Oligochaeten, wie Kalkröhrenwürmer sowie durch Muscheln und Arten der Gruppe Ledamorpha (Entenmuscheln), wie verschiedene Lepas- und Scalpellum-Arten, oder durch Arten der Gruppe Balanomorpha (Seepocken), wie Balanus- oder Pollicipes-Species, erhöht den Reibungswiderstand von Schiffen und führt in der Folge durch erhöhten Energieverbrauch und darüber hinaus durch häufige Trockendockaufenthalte zu einer deutlichen Steigerung der Betriebskosten.

Neben dem Bewuchs durch Algen, beispielsweise Ectocarpus sp. und Ceramium sp., kommt insbesondere dem Bewuchs durch sessile Entomostraken-Gruppen, welche unter dem Namen Cirripedia (Rankenflußkrebse) zusammengefaßt werden, besondere Bedeutung zu.

10

20

25

. 30

Es wurde nun überraschenderweise gefunden, daß die erfindungsgemäßen Wirkstoffkombinationen eine hervorragende Antifouling (Antibewuchs)-Wirkung aufweisen.

Durch Einsatz der erfindungsgemäßen Wirkstoffkombinationen kann auf den Einsatz von Schwermetallen wie z.B. in Bis(trialkylzinn)-sulfiden, Tri-n-butylzinnlaurat, Tri-n-butylzinnchlorid, Kupfer(I)-oxid, Triethylzinnchlorid, Tri-n-butyl(2-phenyl-4-chlorphenoxy)-zinn, Tributylzinnoxid, Molybdändisulfid, Antimonoxid, polymerem Butyltitanat, Phenyl-(bispyridin)-wismutchlorid, Tri-n-butylzinnfluorid, Manganethylenbisthiocarbamat, Zinkdimethyldithiocarbamat, Zinkethylenbisthiocarbamat, Zink- und Kupfersalze von 2-Pyridinthiol-1-oxid, Bisdimethyldithiocarbamoylzinkethylenbisthiocarbamat, Zinkoxid, Kupfer(I)-ethylen-bisdithiocarbamat, Kupferthiocyanat, Kupfernaphthenat und Tributylzinnhalogeniden verzichtet werden oder die Konzentration dieser Verbindungen entscheidend reduziert werden.

Die anwendungsfertigen Antifoulingfarben können gegebenenfalls noch andere Wirkstoffe, vorzugsweise Algizide, Fungizide, Herbizide, Molluskizide bzw. andere Antifouling-Wirkstoffe enthalten.

Als Kombinationspartner für die erfindungsgemäßen Antifouling-Mittel eignen sich vorzugsweise: Algizide wie 2-tert.-Butylamino-4-cyclopropylamino-6-methylthio-1,3,5-triazin, Dichlorophen, Diuron, Endothal, Fentinacetat, Isoproturon, Methabenzthiazuron, Oxyfluorfen, Quinoclamine und Terbutryn; Fungizide wie Benzo[b]thiophencarbonsäurecyclohexylamid-S,S-dioxid, Dichlofluanid, Fluorfolpet, 3-Iod-2-propinyl-butylcarbamat, Tolylfluanid und Azole wie Azaconazole, Cyproconazole, Epoxyconazole, Hexaconazole, Metconazole, Propiconazole und Tebuconazole;

Molluskizide wie Fentinacetat, Metaldehyd, Methiocarb, Niclosamid, Thiodicarb und Trimethacarb; oder herkömmliche Antifouling-Wirkstoffe wie 4,5-Dichlor-2-octyl-4-isothiazolin-3-on, Diiodmethylparatrylsulfon, 2-(N,N-Dimethylthiocarbamoylthio)-5-nitrothiazyl, Kalium-, Kupfer-, Natrium-und Zinksalze von 2-Pyridinthiol-1-oxid, Pyridin-triphenylboran, Tetrabutyldistannoxan, 2,3,5,6-Tetrachlor-4-(methylsulfonyl)-pyridin, 2,4,5,6-Tetrachloroisophthalonitril, Tetramethylthiuramdisulfid und 2,4,6-Trichlorphenylmaleinimid.

Die verwendeten Antifouling-Mittel enthalten die erfindungsgemäßen Wirkstoffkombinationen in einer Konzentration von 0,001 bis 50 Gew.-%, insbesondere von 0,01 bis 20 Gew.-%.

Die erfindungsgemäßen Antifouling-Mittel enthalten desweiteren die tiblichen Bestandteile wie z.B.

in Ungerer, Chem. Ind. 1985, 37, 730-732 und Williams, Antifouling Marine Coatings, Noyes, Park Ridge, 1973 beschrieben.

Antifouling-Anstrichmittel enthalten neben den algiziden, fungiziden, molluskiziden und erfindungsgemäßen insektiziden Wirkstoffen insbesondere Bindemittel.

Beispiele für anerkannte Bindemittel sind Polyvinylchlorid in einem Lösungsmittelsystem, chlorierter Kautschuk in einem Lösungsmittelsystem, Acrylharze in einem Lösungsmittelsystem insbesondere in einem wäßrigen System, Vinylchlorid/Vinylacetat-Copolymersysteme in Form wäßriger Dispersionen oder in Form von organischen Lösungsmittelsystemen, Butadien/Styrol/Acrylnitril-Kautschuke, trocknende Öle, wie Leinsamenöl, Harzester oder modifizierte Hartharze in Kombination mit Teer oder Bitumina, Asphalt sowie Epoxyverbindungen, geringe Mengen Chlorkautschuk, chloriertes Polypropylen und Vinylharze.

Gegebenenfalls enthalten Anstrichmittel auch anorganische Pigmente, organische Pigmente oder Farbstoffe, welche vorzugsweise in Seewasser unlöslich sind. Ferner können Anstrichmittel Materialien, wie Kolophonium enthalten, um eine gesteuerte Freisetzung der Wirkstoffe zu ermöglichen. Die Anstriche können ferner Weichmacher, die rheologischen Eigenschaften beeinflussende Modifizierungsmittel sowie andere herkömmliche Bestandteile enthalten. Auch in Self-Polishing-Antifouling-Systemen können die erfindungsgemäßen Verbindungen oder die oben genannten Mischungen eingearbeitet werden.

- 20 Die Wirkstoffkombinationen eignen sich auch zur Bekämpfung von tierischen Schädlingen, insbesondere von Insekten, Spinnentieren und Milben, die in geschlossenen Räumen, wie beispielsweise Wohnungen, Fabrikhallen, Büros, Fahrzeugkabinen u.ä. vorkommen. Sie können zur Bekämpfung dieser Schädlinge in Haushaltsinsektizid-Produkten verwendet werden. Sie sind gegen sensible und resistente Arten sowie gegen alle Entwicklungsstadien wirksam. Zu diesen Schädlingen gehören:
- 25 Aus der Ordnung der Scorpionidea z.B. Buthus occitanus.
 - Aus der Ordnung der Acarina z.B. Argas persicus, Argas reflexus, Bryobia ssp., Dermanyssus gallinae, Glyciphagus domesticus, Ornithodorus moubat, Rhipicephalus sanguineus, Trombicula alfreddugesi, Neutrombicula autumnalis, Dermatophagoides pteronissimus, Dermatophagoides forinae.
- 30 Aus der Ordnung der Araneae z.B. Aviculariidae, Araneidae.
 - Aus der Ordnung der Opiliones z.B. Pseudoscorpiones chelifer, Pseudoscorpiones cheiridium, Opiliones phalangium.
 - Aus der Ordnung der Isopoda z.B. Oniscus asellus, Porcellio scaber.
 - Aus der Ordnung der Diplopoda z.B. Blaniulus guttulatus, Polydesmus spp..
- 35 Aus der Ordnung der Chilopoda z.B. Geophilus spp..

30

Aus der Ordnung der Zygentoma z.B. Ctenolepisma spp., Lepisma saccharina, Lepismodes inquilinus.

Aus der Ordnung der Blattaria z.B. Blatta orientalies, Blattella germanica, Blattella asahinai, Leucophaea maderae, Panchlora spp., Parcoblatta spp., Periplaneta australasiae, Periplaneta americana, Periplaneta brunnea, Periplaneta fuliginosa, Supella longipalpa.

Aus der Ordnung der Saltatoria z.B. Acheta domesticus.

Aus der Ordnung der Dermaptera z.B. Forficula auricularia.

Aus der Ordnung der Isoptera z.B. Kalotermes spp., Reticulitermes spp.

Aus der Ordnung der Psocoptera z.B. Lepinatus spp., Liposcelis spp.

Aus der Ordnung der Coleptera z.B. Anthrenus spp., Attagenus spp., Dermestes spp., Latheticus oryzae, Necrobia spp., Ptinus spp., Rhizopertha dominica, Sitophilus granarius, Sitophilus oryzae, Sitophilus zeamais, Stegobium paniceum.

Aus der Ordnung der Diptera z.B. Aedes aegypti, Aedes albopictus, Aedes taeniorhynchus, Anopheles spp., Calliphora erythrocephala, Chrysozona pluvialis, Culex quinquefasciatus, Culex

pipiens, Culex tarsalis, Drosophila spp., Fannia canicularis, Musca domestica, Phlebotomus spp., Sarcophaga carnaria, Simulium spp., Stomoxys calcitrans, Tipula paludosa.

Aus der Ordnung der Lepidoptera z.B. Achroia grisella, Galleria mellonella, Plodia interpunctella, Tinea cloacella, Tinea pellionella, Tineola bisselliella.

Aus der Ordnung der Siphonaptera z.B. Ctenocephalides canis, Ctenocephalides felis, Pulex irritans, Tunga penetrans, Xenopsylla cheopis.

Aus der Ordnung der Hymenoptera z.B. Camponotus herculeanus, Lasius fuliginosus, Lasius niger, Lasius umbratus, Monomorium pharaonis, Paravespula spp., Tetramorium caespitum.

Aus der Ordnung der Anoplura z.B. Pediculus humanus capitis, Pediculus humanus corporis, Phthirus pubis.

25 Aus der Ordnung der Heteroptera z.B. Cimex hemipterus, Cimex lectularius, Rhodinus prolixus, Triatoma infestans.

Die Anwendung erfolgt in Aerosolen, drucklosen Sprühmitteln, z.B. Pump- und Zerstäubersprays, Nebelautomaten, Foggern, Schäumen, Gelen, Verdampferprodukten mit Verdampferplättchen aus Cellulose oder Kunststoff, Flüssigverdampfern, Gel- und Membranverdampfern, propellergetriebenen Verdampfern, energielosen bzw. passiven Verdampfungssystemen, Mottenpapieren, Mottensäckehen und Mottengelen, als Granulate oder Stäube, in Streuködern oder Köderstationen.

Erfindungsgemäß können alle Planzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen

zen können Pflanzen sein, die durch konventionelle Züchtungs- und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Spross, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft, Blätter, Nadeln, Stängel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generatives Vermehrungsmaterial, beispielsweise Stecklinge, Knollen, Rhiozome, Ableger und Samen.

10

15

20

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z.B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungsmaterial, insbesondere bei Samen, weiterhin durch ein- oder mehrschichtiges Umhüllen.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff "Teile" bzw. "Teile von Pflanzen" oder "Pflanzenteile" wurde oben erläutert.

25

30

35

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachstumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erweiterungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasserbzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lager-

10

15

20

25

30

35

fähigkeit und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentechnologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser- bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Tabak, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle, Tabak und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervorgehoben die erhöhte Abwehr der Pflanzen gegen Insekten, Spinnentiere, Nematoden und Schnecken durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z.B. durch die Gene CryIA(a), CryIA(b), CryIA(c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im Folgenden "Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Glyphosate oder Phosphinotricin (z.B. "PAT"-Gen). Die jeweils die gewünschten Eigenschaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für "Bt Pflanzen" seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD® (z.B. Mais, Baumwolle, Soja), KnockOut® (z.B. Mais), StarLink® (z.B. Mais), Bollgard® (Baumwolle), Nucotn® (Baumwolle) und NewLeaf® (Kartoffel) vertrieben werden. Als Beispiele für Herbizid-tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready® (Toleranz gegen Glyphosate z.B. Mais, Baumwolle, Soja), Liberty Link® (Toleranz gegen Phosphinotricin, z.B. Raps), IMI® (Toleranz

gegen Imidazolinone) und STS® (Toleranz gegen Sulfonylharnstoffe z.B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield® vertriebenen Sorten (z.B. Mais) erwähnt. Selbstverständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den erfindungsgemäßen Wirkstoffmischungen behandelt werden. Die bei den Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Mischungen.

Die gute insektizide und akarizide Wirkung der erfindungsgemäßen Wirkstoffkombinationen geht aus den nachfolgenden Beispielen hervor. Während die einzelnen Wirkstoffe in der Wirkung Schwächen aufweisen, zeigen die Kombinationen eine Wirkung, die über eine einfache Wirkungssummierung hinausgeht.

Ein synergistischer Effekt liegt bei Insektiziden und Akariziden immer dann vor, wenn die Wirkung der Wirkstoffkombinationen größer ist als die Summe der Wirkungen der einzeln applizierten Wirkstoffe.

20

10

15

Die zu erwartende Wirkung für eine gegebene Kombination zweier Wirkstoffe kann nach S.R. Colby, Weeds <u>15</u> (1967), 20-22) wie folgt berechnet werden:

Wenn

- 25 X den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes A in einer Aufwandmenge von m g/ha oder in einer Konzentration von m ppm bedeutet.
 - Y den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz des Wirkstoffes B in einer Aufwandmenge von n g/ha oder in einer Konzentration von n ppm bedeutet und
 - E den Abtötungsgrad, ausgedrückt in % der unbehandelten Kontrolle, beim Einsatz der Wirkstoffe A und B in Aufwandmengen von m und n g/ha oder in einer Konzentration von m und n ppm bedeutet.

dann ist

$$E=X+Y-\frac{X\cdot Y}{100}$$

Ist der tatsächliche insektizide Abtötungsgrad größer als berechnet, so ist die Kombination in ihrer Abtötung überadditiv, d.h. es liegt ein synergistischer Effekt vor. In diesem Fall muß der tatsächlich beobachtete Abtötungsgrad größer sein als der aus der oben angeführten Formel errechnete Wert für den erwarteten Abtötungsgrad (E).

5

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Tiere abgetötet wurden; 0 % bedeutet, dass keine Tiere abgetötet wurden.

<u>Anwendungsbeispiele</u>

Beispiel A

Aphis gossypii - Test

5 Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

2 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewinschte Konzentration.

- Baumwollblätter (Gossypium hirsutum), die stark von der Baumwollblattlaus (Aphis gossypii) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt. Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Seite 44).
- Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

Tabelle A
Pflanzenschädigende Insekten
Aphis gossypii – Test

Wirkstoffe	Wirkstoffkonzentration in ppm		ngsgrad nach 1 ^d
·		gef.*	ber.**
H ₃ C H CI CI CF ₃ (II-1-9)	4	10	
$CH(CH_3)_2$ $CH(CH_3)_2$ $CH(CH_3)_2$ $CH(CH_3)_2$ $(2-5) Diafenthiuron$	20	15	
(II-1-9) + (2-5) Diafenthiuron (1:5)	4+20	55	23,5

* gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Beispiel B

Heliothis armigera - Test

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

Emulgator:

10

15

2 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Kohlblätter (*Brassica oleracea*) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt und mit Raupen des Baumwollkapselwurms (*Heliothis armigera*) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Raupen abgetötet wurden; 0 % bedeutet, dass keine Raupen abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Seite 44).

Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

Tabelle B 1
Pflanzenschädigende Insekten
Heliothis armigera – Test

	migera – rest		
Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötungsgrad in % nach 6 ^d	
		gef.*	ber.**
H_3C H_3C H_3C O	0,0064 ,	30	
(2-2) Abamectin	0,16	50	
(II-1-9) + (2-2) Abamectin (1:25)	0,0064 + 0,16	90	65

* gef. = gefundene Wirkung

^{**} ber. = nach der Colby-Formel berechnete Wirkung

Tabelle B 2 Pflanzenschädigende Insekten Heliothis armigera – Test

Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötu in % 1	Abtötungsgrad in % nach 3 ^d	
·		gef.*	ber.**	
H ₃ C H ₃ C CI N N CF ₃ (II-1-9)	0,0064	10		
(H ₃ C) ₂ N O O O O O O O O O O O O O O O O O O O	0,032	0		
(II-1-9) + (2-17) Spinosad (1:5)	0,0064 + 0,032	35	10	

gef. = gefundene Wirking ber. = nach der Colby-Formel berechnete Wirking

Beispiel C

Myzus persicae - Test

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

5 Emulgator:

15

2 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea), die stark von der Grünen Pfirsichblattlaus (Myzus persicae) befallen sind, werden durch Tauchen in die Wirkstoffzubereitung der gewünschten Konzentration behandelt. Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Blattläuse abgetötet wurden; 0 % bedeutet, dass keine Blattläuse abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Seite 44).

Bei diesem Test zeigt z. B. die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

Tabelle C
Pflanzenschädigende Insekten
Myzus persicae – Test

Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötungsgrad in % nach 6 ^d	
		gef.*	ber.**
H ₃ C H CI CF ₃ (II-1-9)	4	25	
CI CI CI (2-20) Endosulfan	20	15	
(II-1-9) + (2-20) Endosulfan (1 : 5)	4+20	70	36,25

* gef. = gefundene Wirkung

^{**} ber. = nach der Colby-Formel berechnete Wirkung

Beispiel D

Phaedon cochleariae-Larven - Test

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

5 Emulgator:

2 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Kohlblätter (Brassica oleracea) werden durch Tauchen in die Wirkstoffzubereitung der gewünschten
 Konzentration behandelt und mit Larven des Meerrettichblattkäfers (Phaedon cochleariae) besetzt, solange die Blätter noch feucht sind.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Käferlarven abgetötet wurden; 0 % bedeutet, dass keine Käferlarven abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Seite 44).

Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

Tabelle D 1
Pflanzenschädigende Insekten
Phaedon cochleariae-Larven – Test

Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötungsgrad in % nach 4 ^d	
		gef.*	ber.**
H ₃ C O N CI CI CF ₃ (II-1-9)	0,16	0	
CH ₃ CH ₃ CH ₃ CH ₃ (I-2)	100	0	·
(II-1-9) + (I-2) (1 : 625)	0,16 + 100	30	0

gef. = gefundene Wirkung

** ber. = nach der Colby-Formel berechnete Wirkung

Tabelle D 2 Pflanzenschädigende Insekten Phaedon cochleariae-Larven – Test

Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötungsgrad in % nach 4 ^d	
		gef.*	ber.**
H ₃ C O N CI CF ₃ (II-1-9)	0,16	5	
$\begin{array}{c} O \\ C - CH_{\overline{2}} - C(CH_3)_3 \\ H_3C \\ O \\ H_3C \end{array}$ $(I-1)$	100	45	
(II-1-9) + (I-1) (1 : 625)	0,16 + 100	85	47,75

gef. = gefundene Wirkung ber. = nach der Colby-Formel berechnete Wirkung

Beispiel E

Tetranychus urticae - Test (OP-resistent, Tauchapplikation)

Lösungsmittel:

7 Gewichtsteile Dimethylformamid

5 Emulgator:

10

2 Gewichtsteile Alkylarylpolyglykolether

Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichtsteil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und verdünnt das Konzentrat mit emulgatorhaltigem Wasser auf die gewünschte Konzentration.

Buschbohnen (*Phaseolus vulgaris*), die stark mit der Gemeinen Spinnmilbe (*Tetranychus urticae*) infiziert sind, werden in eine Wirkstoffzubereitung der gewilnschten Konzentration getaucht.

Nach der gewünschten Zeit wird die Abtötung in % bestimmt. Dabei bedeutet 100 %, dass alle Spinnmilben abgetötet wurden; 0 % bedeutet, dass keine Spinnmilben abgetötet wurden. Die ermittelten Abtötungswerte verrechnet man nach der Colby-Formel (siehe Seite 44).

Bei diesem Test zeigte die folgende Wirkstoffkombination gemäß vorliegender Anmeldung eine synergistisch verstärkte Wirksamkeit im Vergleich zu den einzeln angewendeten Wirkstoffen:

Tabelle E 1
Pflanzenschädigende Milben
Tetranychus urticae – Test (OP-resistent, Tauchapplikation)

Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötu in % r	ngsgrad nach 7 ^d
		gef.*	ber.**
H ₃ C H ₃ C CI CI CF ₃ (II-1-9)	100	0	
CH ₃ CH ₃ CH ₃ CH ₃ (I-2)	0,8	0	
(II-1-9) + (I-2) (125 : 1)	100 + 0,8	20	0

gef. = gefundene Wirkung

^{**} ber. = nach der Colby-Formel berechnete Wirkung

Tabelle E 2 Pflanzenschädigende Milben Tetranychus urticae – Test (OP-resistent, Tauchapplikation)

Wirkstoffe	Wirkstoffkonzentration in ppm	Abtötungsgrad in % nach 7 ^d	
·		gef.*	ber.**
H ₃ C O N CI CI H ₃ C O CF ₃ (II-1-9)	100	0	
$\begin{array}{c} O \\ II \\ C - CH_{2} - C(CH_{3})_{3} \\ H_{3}C \\ O \\ H_{3}C \end{array}$ CH_{3} $(I-1)$	0,8	65	
(II-1-9) + (I-1) (1 : 625)	0,16 + 100	95	65

gef. = gefundene Wirkung ber. = nach der Colby-Formel berechnete Wirkung

Patentansprüche

 Mittel enthaltend eine synergistisch wirksame Wirkstoffkombination aus Verbindungen der Formel (I) (Gruppe 1)

$$A^{\frac{3}{4}} \xrightarrow{G^{\frac{1}{4}}} Y \qquad (1)$$

in welcher

5

10

15

20

25

X für C₁-C₆-Alkyl, Brom, C₁-C₆-Alkoxy oder C₁-C₃-Halogenalkyl steht,

Y für Wasserstoff, C₁-C₆-Alkyl, Halogen, C₁-C₆-Alkoxy, C₁-C₃-Halogenalkyl steht,

Z für C1-C6-Alkyl, Halogen, C1-C6-Alkoxy steht,

m für eine Zahl von 0-3 steht,

A³ für Wasserstoff oder jeweils gegebenenfalls durch Halogen substituiertes geradkettiges oder verzweigtes C₁-C₁₂-Alkyl, C₂-C₈-Alkenyl, C₂-C₈-Alkinyl, C₁-C₁₀-Alkoxy-C₁-C₈-alkyl, C₁-C₈-Polyalkoxy-C₂-C₈-alkyl, C₁-C₁₀-Alkylthio-C₂-C₈-alkyl, Cycloalkyl mit 3-8 Ringatomen, das durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder jeweils gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy-, C₁-C₆-Halogenalkoxy, Nitro substituiertes Phenyl oder Phenyl-C₁-C₆-alkyl steht,

A⁴ für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Alkoxy-C₁-C₄-alkyl steht oder worin

A³ und A⁴ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio oder gegebenenfalls substituiertes Phenyl substituierten oder gegebenenfalls benzokondensierten 3- bis 8-gliedrigen Ring bilden,

G1 für Wasserstoff (a) oder für die Gruppen

$$-CO-R^{20} -CO_{2}-R^{21} -SO_{\overline{2}}R^{22} - \bigcap_{0}^{R^{23}} \bigcap_{R^{24}}^{O} \bigcap_{N \in \mathbb{R}^{28}}^{R^{25}}$$
(b) (c) (d) (e) (f)

steht, in welchen

Ŗ ²⁰	für jeweils gegebenenfalls durch Halogen substituiertes C1-C20-Alkyl, C2
	C ₂₀ -Alkenyl, C ₁ -C ₈ -Alkoxy-C ₁ -C ₈ -alkyl, C ₁ -C ₈ -Alkylthio-C ₁ -C ₈ -alkyl, C ₁ -
	C ₈ -Polyalkoxy-C ₂ -C ₈ -alkyl oder Cycloalkyl mit 3-8 Ringatomen, das durch
	Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht,
	für gegebenenfalls durch Halogen, Nitro, C1-C6-Alkyl, C1-C6-Alkoxy, C1-
	C ₆ -Halogenalkyl, C ₁ -C ₆ -Halogenalkoxy-substituiertes Phenyl steht;
	für gegebenenfalls durch Halogen-, C ₁ -C ₆ -Alkyl, C ₁ -C ₆ -Alkoxy-, C ₁ -C ₆ -Ha-
	logenalkyl-, C1-C6-Halogenalkoxy-substituiertes Phenyl-C1-C6-alkyl steht,
•	für jeweils gegebenenfalls durch Halogen und/oder C1-C6-Alkyl substituier-
	tes Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl steht,
	für gegebenenfalls durch Halogen und/oder C1-C6-Alkyl-substituiertes
	Phenoxy-C ₁ -C ₆ -alkyl steht,

R²¹ für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₈-Alkoxy-C₂-C₈-alkyl oder C₁-C₈-Polyalkoxy-C₂-C₈-alkyl steht,
für jeweils gegebenenfalls durch Halogen, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₆-Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

R²² für gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, für jeweils gegebenenfalls durch C₁-C₄-Alkyl, Halogen, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder Benzyl steht,

R²³ und R²⁴ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₈-Alkyl, C₁-C₈-Alkoxy, C₁-C₈-Alkylamino, Di-(C₁-C₈)-Alkylamino, C₁-C₈-Alkylthio, C₂-C₅-Alkenylthio, C₂-C₅-Alkinylthio, C₃-C₇-Cycloalkylthio, für jeweils gegebenenfalls durch Halogen, Nitro, Cyano, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

R²⁵ und R²⁶ unabhängig voneinander für jeweils gegebenenfalls durch Halogen substituiertes C₁-C₁₀-Alkyl, C₁-C₁₀-Alkoxy, C₃-C₈-Alkenyl, C₁-C₈-Alkoxy-C₁-C₈-alkyl, für gegebenenfalls durch Halogen, C₁-C₆-Halogenalkyl, C₁-C₆-Alkoxy substituiertes Phenyl, für gegebenenfalls durch Halogen, C₁-C₆-Alkyl, C₁-C₆-Halogenalkyl oder C₁-C₆-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff oder

5

10

15

20

25

Schwefel unterbrochenen 5- bis 6-gliedrigen Ring stehen, der gegebenenfalls durch C₁-C₆-Alkyl substituiert sein kann,

oder einer akarizid wirksamen Verbindung (Gruppe 2), bevorzugt

(2-1) dem Phenylhydrazin-Derivat der Formel

(Bifenazate)

und/oder

(2-2) dem Makrolid mit dem Common Name Abamectin und/oder

(2-3) dem Naphthalindion-Derivat der Formel

(Acequinocyl)

und/oder

(2-4) dem Pyrrol-Derivat der Formel

(Chlorfenapyr)

15 und/oder

(2-5) dem Thioharnstoff-Derivat der Formel

(Diafenthiuron)

und/oder

(2-6) dem Oxazolin-Derivat der Formel

20

10

(Etoxazole)

und/oder

(2-7) einem Organozinn-Derivat der Formel

in welcher

R für
$$N = 1$$
 steht (2-7-a = Azocyclotin),

oder

R für -OH steht (2-7-b = Cyhexatin),

und/oder

(2-8) dem Pyrazol-Derivat der Formel

· und/oder

5

10

15

(2-9) dem Pyrazol-Derivat der Formel

$$H_3C$$
 $CH \equiv N - O - CH_2$
 CH_3
 CH_3
 CH_3
 CH_3

(Fenpyroximate)

(Tebufenpyrad)

und/oder

(2-10) dem Pyridazinon-Derivat der Formel

$$(CH_3)_3C-N$$
 $S-CH_2$ $C(CH_3)_3$

(Pyridaben)

und/oder

(2-11) dem Benzoylharnstoff der Formel

(Flufenoxuron)

20

und/oder

(2-12) dem Pyrethroid der Formel

(Bifenthrin)

und/oder

(2-13) dem Tetrazin-Derivat der Formel

und/oder

5

(2-14) dem Organozinn-Derivat der Formel

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

(Fenbutatin-oxide)

14.

und/oder

10 (2-15) dem Sulfensäureamid der Formel

$$\begin{array}{c} \text{CH}_3\\ \text{H}_3\text{C} \longrightarrow \begin{array}{c} \text{CH}_3\\ \text{CH}_3\\ \text{S-CCl}_2\text{F} \end{array} \qquad \text{(Tolylfluanid)} \end{array}$$

und/oder

(2-16) den Pyrimidylphenolethern der Formel

$$CI$$
 CF_3
 O
 O
 CF_3

in welcher

- R für Fluor steht (2-16-a = 4-[(4-Chlor- α , α , α -trifluor-3-tolyl)oxy]-6-[(α , α , α -4-tetrafluor-3-tolyl)oxy]-pyrimidin)
- R für Nitro steht (2-16-b = 4-[(4-Chlor- α , α , α -trifluor-3-tolyl)oxy]-6-[(α , α , α -trifluor-4-nitro-3-tolyl)oxy]-pyrimidin)
- R fllr Brom steht (2-16- = 4-[(4-Chlor- α , α , α -trifluor-3-tolyl)oxy]-6-[(α , α , α -trifluor-4-brom-3-tolyl)oxy]-pyrimidin

und/oder

(2-17) dem Makrolid der Formel

(Spinosad)

ein Gemisch aus bevorzugt

85 % Spinosyn A (R = H)

15 % Spinosyn B (R = CH₃)

und/oder

(2-18) Ivermectin

und/oder

(2-19) Milbemectin

10 und/oder

5

(2-20) Endosulfan

und/oder

(2-21) Fenazaquin

und/oder

15

(2-22) Pyrimidifen

$$H_{5}C_{2} \bigvee_{N \bigvee_{i} N}^{Cl} \bigvee_{i}^{H} \bigcup_{CH_{3}}^{OC_{2}H_{5}}$$

und/oder

20 (2-23) Triarathen

und/oder

(2-24) Tetradifon

5 und/oder

(2-25) Propargit

und/oder

(2-26) Hexythiazox

10

und/oder

(2-27) Bromopropylat

$$Br \longrightarrow C \longrightarrow C \longrightarrow Br$$
 $O=C-OCH(CH_3)_2$

und/oder

15 (2-28) Dicofol

und/oder

(2-29) Chinomethionat

und mindestens einem Wirkstoff aus der Gruppe der Anthranilsäureamide der Formel (II).

- 5 2. Mittel gemäß Anspruch 1 enthaltend mindestens eine Verbindung der Formel (I), in welcher
 - X für C₁-C₄-Alkyl, Brom, C₁-C₄-Alkoxy oder C₁-C₃-Halogenalkyl steht,
 - Y für Wasserstoff, C₁-C₄-Alkyl, Fluor, Chlor, Brom, C₁-C₄-Alkoxy, C₁-C₃-Halogenalkyl steht,
 - Z für C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy steht,
- m für eine Zahl von 0-2 steht,
 - A³ für Wasserstoff oder jeweils gegebenenfalls einfach bis dreifach durch Fluor substituiertes geradkettiges oder verzweigtes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, Cycloalkyl mit 3-8 Ringatomen, das gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochen sein kann oder für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl-, C₁-C₂-Alkoxy-, C₁-C₂-Halogenalkoxy, Nitro substituiertes Phenyl oder Benzyl steht,
 - A⁴ für Wasserstoff, C₁-C₂-Alkyl oder C₁-C₂-Alkoxy-C₁-C₂-alkyl steht oder worin
 - A³ und A⁴ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten oder ungesättigten, gegebenenfalls durch Sauerstoff und/oder Schwefel unterbrochenen und gegebenenfalls einfach bis zweifach durch Fluor, Chlor, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder C₁-C₂-Alkylthio substituierten 3- bis 7-gliedrigen Ring bilden,
 - G¹ für Wasserstoff (a) oder für die Gruppen

$$-CO-R^{20} -CO_{2}-R^{21} -SO_{2}-R^{22} - P_{0} R^{23} + N_{0} R^{25}$$
(b) (c) (d) (e) (f)

steht, in welchen

R²⁰ für jeweils gegebenenfalls einfach bis fünffach durch Fluor oder Chlor substituiertes C₁-C₁₆-Alkyl, C₂-C₁₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₄-alkyl, C₁-C₄-Alkylthio-C₁-C₄-alkyl oder Cycloalkyl mit 3-6 Ringatomen, das durch Sauerstoff- und/oder Schwefelatome unterbrochen sein kann, steht, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C₁-

25

30

20

C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, C₁-C₄-Halogenaloxy-substituiertes Phenyl steht,

für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl-, C₁-C₄-Halogenalkoxy-substituiertes Benzyl steht,

für jeweils gegebenenfalls einfach bis zweifach durch Chlor, Brom und/oder C₁-C₄-Alkyl substituiertes Pyridyl, Pyrimidyl, Thiazolyl oder Pyrazolyl steht,

R²¹ für jeweils gegebenenfalls einfach bis fünffach Fluor oder Chlor durch substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₁-C₆-Alkoxy-C₂-C₆-alkyl, C₁-C₆-Polyalkoxy-C₂-C₆-alkyl steht,

für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₁-C₄-Halogenalkyl-substituiertes Phenyl oder Benzyl steht,

R²² für gegebenenfalls einfach bis fünffach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, für jeweils gegebenenfalls einfach bis zweifach durch C₁-C₄-Alkyl, Fluor, Chlor, Brom, C₁-C₄-Halogenalkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkoxy, Nitro oder Cyano substituiertes Phenyl oder Benzyl steht,

R²³ und R²⁴ unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, Di-(C₁-C₄)-Alkylamino, C₁-C₄-Alkylthio, C₂-C₄-Alkenylthio, C₃-C₆-Cycloalkylthio, für jeweils gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, Nitro, Cyano, C₁-C₂-Alkoxy, C₁-C₂-Halogenalkoxy, C₁-C₂-Alkylthio, C₁-C₂-Halogenalkylthio, C₁-C₂-Alkyl, C₁-C₂-Halogenalkyl substituiertes Phenyl, Phenoxy oder Phenylthio stehen,

R²⁵ und R²⁶ unabhängig voneinander für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₆-Alkyl, C₁-C₆-Alkoxy, C₃-C₆-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, für gegebenenfalls einfach bis zweifach durch Fluor, Chlor, Brom, C₁-C₂-Halogenalkyl, C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituiertes Benzyl steht oder zusammen für einen gegebenenfalls durch Sauerstoff oder Schwefel unterbrochenen 5- bis 6-gliedrigen Ring stehen, der gegebenenfalls durch C₁-C₂-Alkyl substituiert sein kann,

und mindestens einem Anthranilsäureamid der Formel (II).

10

5

15

20

25

10

15

20

- Mittel gemäß Anspruch 1 oder 2 enthaltend mindestens eine Verbindung der Formel (I), in welcher
 - X für C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Trifluormethyl steht,
 - Y für Wasserstoff, C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy, C₁-C₂-Halogenalkyl steht,
 - Z für C₁-C₄-Alkyl, Chlor, Brom, C₁-C₄-Alkoxy steht,
 - m für 0 oder 1 steht,
 - A³ und A⁴ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten gegebenenfalls einfach durch C₁-C₄-Alkyl oder C₁-C₄-Alkoxy substituierten 5- bis 6- gliedrigen Ring bilden,
 - G1 für Wasserstoff (a) oder für die Gruppen

steht:

$$--$$
CO-R²⁰ $--$ CO₂-R²¹ steht, in welchen (b) (c)

- R²⁰ für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl, C₁-C₄-Alkoxy-C₁-C₂-alkyl, oder Cycloalkyl mit 3-6 Ringatomen, das durch 1 bis 2 Sauerstoffatome unterbrochen sein kann, steht, für gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl
- R²¹ für C₁-C₁₂-Alkyl, C₂-C₁₂-Alkenyl, C₁-C₄-Alkoxy-C₂-C₄-alkyl, steht, für jeweils gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, C₁-C₄-Alkyl, C₁-C₄-Alkoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht, und mindestens ein Anthranilsäureamid der Formel (II).
- 4. Mittel gemäß Anspruch 1, 2 oder 3 enthaltend mindestens eine Verbindung der Formel (I), in welcher
 - X für Methyl, Ethyl, Methoxy, Ethoxy oder Trifluormethyl steht,
 - Y für Wasserstoff, Methyl, Ethyl, Chlor, Brom, Methoxy oder Trifluormethyl steht,
 - Z für Methyl, Ethyl, Chlor, Brom oder Methoxy steht,
- 30 m für 0 oder 1 steht,
 - A³ und A⁴ gemeinsam mit dem Kohlenstoffatom, an das sie gebunden sind einen gesättigten gegebenenfalls einfach durch Methyl, Ethyl, Propyl, Methoxy, Ethoxy, Propoxy, Butoxy oder Isobutoxy substituierten 5- bis 6-gliedrigen Ring bilden,

5 ·

10

15

G1 für Wasserstoff (a) oder für die Gruppen

steht, in welchen

(b) (c)

R²⁰ für jeweils gegebenenfalls einfach bis dreifach durch Fluor oder Chlor substituiertes C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₁-C₃-Alkoxy-C₁-C₂-alkyl, oder Cycloalkyl mit 3-6 Ringatomen, das durch 1 bis 2 Sauerstoffatome unterbrochen sein kann, steht,

für gegebenenfalls einfach durch Fluor, Chlor, Brom, Methyl, Methoxy, Trifluormethyl oder Trifluormethoxy substituiertes Phenyl steht;

R²¹ für C₁-C₈-Alkyl, C₂-C₈-Alkenyl, C₁-C₄-Alkoxy-C₂-C₃-alkyl, steht, für jeweils gegebenenfalls einfach durch Fluor, Chlor, Brom, Nitro, Methyl, Methoxy oder Trifluormethyl substituiertes Phenyl oder Benzyl steht, und mindestens ein Anthranilsäureamid der Formel (II).

5. Mittel gemäß Anspruch 1, 2, 3 oder 4 enthaltend die Verbindung der Formel (I-1)

und/oder die Verbindung der Formel (I-2)

und mindestens ein Anthranilsäureamid der Formel (II).

20 6. Mittel gemäß Anspruch 1, 2, 3, 4 oder 5 enthaltend mindestens ein Anthranilsäureamid der Formel (II)

in welcher

5

10

15

20

25

A¹ und A² unabhängig voneinander für Sauerstoff oder Schwefel stehen,

X¹ für N oder CR¹⁰ steht.

R¹ für Wasserstoff oder für jeweils gegebenenfalls ein- oder mehrfach substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder C₃-C₆-Cycloalkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus R⁶, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₂-C₄-Alkoxycarbonyl, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₃-C₆-Cycloalkylamino, (C₁-C₄-Alkyl)C₃-C₆-cycloalkylamino oder R¹¹,

R² für Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₄-Alkoxy, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₃-C₆-Cycloalkylamino, C₂-C₆-Alkoxycarbonyl oder C₂-C₆-Alkylcarbonyl steht,

für Wasserstoff, R¹¹ oder für jeweils gegebenenfalls ein- oder mehrfach substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus R⁶, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₂-C₆-Alkoxycarbonyl, C₂-C₆-Alkylcarbonyl, C₃-C₆-Trialkylsilyl, R¹¹, Phenyl, Phenoxy oder einem 5- oder 6-gliedrigen heteroaromatischen Ring, wobei jeder Phenyl-, Phenoxy- und 5- oder 6-gliedrige heteroaromatische Ring gegebenenfalls substituiert sein kann und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder einem oder mehreren Resten R¹², oder

R² und R³ miteinander verbunden sein können und den Ring M bilden,

ftir Wasserstoff, C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₆-Haloalkyl, C₂-C₆-Haloalkenyl, C₂-C₆-Haloalkinyl, C₃-C₆-Halocycloalkyl, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Haloalkylthio, C₁-C₄-Haloalkylsulfinyl, C₁-C₄-Haloalkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino,

C₃-C₆-Cycloalkylamino, C₃-C₆-Trialkylsilyl steht oder für jeweils gegebenenfalls einoder mehrfach substituiertes Phenyl, Benzyl oder Phenoxy steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₃-C₆-Cyclalkyl, C₁-C₄-Haloalkyl, C₂-C₄-Haloalkenyl, C₂-C₄-Haloalkinyl, C₃-C₆-Halocycloalkyl, Halogen, Cyano, Nitro, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₆-Cycloalkylamino, C₃-C₆-(Alkyl)cycloalkylamino, C₂-C₄-Alkylcarbonyl, C₂-C₆-Alkoxycarbonyl, C₂-C₆-Alkylaminocarbonyl, C₃-C₆-Dialkylaminocarbonyl oder C₃-C₆-Trialkylsilyl.

R⁵ umd R⁸ jeweils unabhängig voneinander für Wasserstoff, Halogen oder für jeweils gegebenenfalls substituiertes C₁-C₄-Alkyl, C₁-C₄-Haloalkyl, R¹², G, J, -OJ, -OG, -S(O)_p-J, -S(O)_p-G, -S(O)_p-phenyl stehen, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder aus R¹², C₁-C₁₀-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₁-C₄-Alkoxy oder C₁-C₄-Alkythio, wobei jeder Substituent durch einen oder mehrere Substituenten unabhängig voneinander ausgewählt aus G, J, R⁶, Halogen, Cyano, Nitro, Amino, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₆-Trialkylsulfinyl, Phenyl oder Phenoxy substituiert sein kann, wobei jeder Phenyl- oder Phenoxyring gegebenenfalls substituiert sein kann und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder einem oder mehreren Resten R¹²,

jeweils unabhängig voneinander für einen 5- oder 6-gliedrigen nicht-aromatischen carbocyclischen oder heterocyclischen Ring steht, der gegebenenfalls ein oder zwei Ringglieder aus der Gruppe C(=O), SO oder S(=O)₂ enthalten und gegebenenfalls durch ein bis vier Substituenten unabhängig voneinander ausgewählt aus C₁-C₂-Alkyl, Halogen, Cyano, Nitro oder C₁-C₂-Alkoxy substituiert sein kann, oder unabhängig voneinander für C₂-C₆-Alkenyl, C₂-C₆-Alkinyl, C₃-C₇-Cycloalkyl, (Cyano)C₃-C₇-cycloalkyl, (C₁-C₄-Alkyl)C₃-C₆-cycloalkyl, (C₃-C₆-Cycloalkyl)C₁-C₄-alkyl steht, wobei jedes Cycloalkyl, (Alkyl)cycloalkyl und (Cycloalkyl)alkyl gegebenenfalls durch ein oder mehrere Halogenatome substituiert sein kann,

jeweils unabhängig voneinander für einen gegebenenfalls substituierten 5- oder 6gliedrigen heteroaromatischen Ring steht, wobei die Substituenten unabhängig
voneinander ausgewählt sein können aus ein bis drei Resten W oder einem oder
mehreren Resten R¹²,

10

5

15

20

25

G

J

30

·5

10

15

20

25

30

- unabhängig voneinander für -C(=E¹)R¹⁹, -LC(=E¹)R¹⁹, -C(=E¹)LR¹⁹, -LC(=E¹)LR¹⁹, -C(=E¹)LR¹⁹, -C(=E¹)LR¹
- R⁷ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Haloalkyl, Halogen, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Haloalkylsulfonyl steht,
- R^9 für C_1 - C_4 -Halogenalkyl, C_1 - C_4 -Halogenalkoxy, C_1 - C_4 -Halogenalkylsulfinyl oder Halogen steht,
- R¹⁰ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₄-Haloalkyl, Halogen, Cyano oder C₁-C₄-Haloalkoxy steht,
- jeweils unabhängig voneinander für jeweils gegebenenfalls ein- bis dreifach substituiertes C₁-C₆-Alkylthio, C₁-C₆-Alkylsulfenyl, C₁-C₆-Haloalkythio, C₁-C₆-Haloalkylsulfenyl, Phenylthio oder Phenylsulfenyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus der Liste W, -S(O)_nN(R¹⁶)₂, -C(=O)R¹³, -L(C=O)R¹⁴, -S(C=O)LR¹⁴, -C(=O)LR¹³, -S(O)_nNR¹³C(=O)R¹³, -S(O)_nNR¹³C(=O)LR¹⁴ oder -S(O)_nNR¹³S(O)₂LR¹⁴,
- L jeweils unabhängig voneinander für O, NR¹⁸ oder S steht,
- jeweils unabhängig voneinander für -B(OR¹⁷)₂, Amino, SH, Thiocyanato, C₃-C₈-Trialkylsilyloxy, C₁-C₄-Alkyldisulfide, -SF₅, -C(=E¹)R¹⁹, -LC(=E¹)R¹⁹, -C(=E¹)LR¹⁹, -LC(=E¹)LR¹⁹, -OP(=Q)(OR¹⁹)₂, -SO₂LR¹⁹ oder -LSO₂LR¹⁹ steht,
- Q für O oder S steht.
- R¹³ jeweils unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls einoder mehrfach substituiertes C₁-C₆-Alkyl, C₂-C₆-Alkenyl, C₂-C₆-Alkinyl oder C₃-C₆-Cycloalkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus R⁶, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₃-C₆-Cycloalkylamino oder (C₁-C₄-Alkyl)C₃-C₆-cycloalkylamino,
- jeweils unabhängig voneinander für jeweils gegebenenfalls ein- oder mehrfach substituiertes C₁-C₂₀-Alkyl, C₂-C₂₀-Alkenyl, C₂-C₂₀-Alkinyl oder C₃-C₆-Cycloalkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus R⁶, Halogen, Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₃-C₆-Cycloalkylamino oder (C₁-C₄-Alkyl)C₃-C₆-cycloalkylamino oder für gegebenenfalls substituiertes Phenyl, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder einem oder mehreren Resten R¹².

10

15

20

- jeweils unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls einoder mehrfach substituiertes C₁-C₆-Haloalkyl oder C₁-C₆-Alkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Haloalkylthio, C₁-C₄-Haloalkylsulfinyl, C₁-C₄-Haloalkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₆-Alkoxycarbonyl, C₂-C₆-Alkylcarbonyl, C₃-C₆-Trialkylsilyl oder gegebenenfalls substituiertes Phenyl, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W oder einem oder mehreren Resten R¹², oder N(R¹⁵)₂ für einen Cyclus steht, der den Ring M bildet,
- R¹⁶ für C₁-C₁₂-Alkyl oder C₁-C₁₂-Haloalkyl steht, oder N(R¹⁶)₂ für einen Cyclus steht, der den Ring M bildet,
- pieweils unabhängig voneinander für Wasserstoff oder C₁-C₄-Alkyl steht, oder B(OR¹⁷)₂ für einen Ring steht, worin die beiden Sauerstoffatome über eine Kette mit zwei bis drei Kohlenstoffatomen verbunden sind, die gegebenenfalls durch einen oder zwei Substituenten unabhängig voneinander ausgewählt aus Methyl oder C₂-C₆-Alkoxycarbonyl substituiert sind,
- R¹⁸ jeweils unabhängig voneinander für Wasserstoff, C₁-C₆-Alkyl oder C₁-C₆-Haloalkyl steht, oder N(R¹³)(R¹⁸) für einen Cyclus steht, der den Ring M bildet,
- jeweils unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls einoder mehrfach substituiertes C₁-C₆-Alkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, Nitro, Hydroxy, C₁-C₄-Alkoxy, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₆-Dialkylamino, CO₂H, C₂-C₆-Alkoxycarbonyl, C₂-C₆-Alkylcarbonyl, C₃-C₆-Trialkylsilyl oder gegebenenfalls substituiertes Phenyl, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus ein bis drei Resten W, C₁-C₆-Haloalkyl, C₃-C₆-Cycloalkyl oder jeweils gegebenenfalls ein- bis dreifach durch W substituiertes Phenyl oder Pyridyl,
- M jeweils für einen gegebenenfalls ein- bis vierfach substituierten Ring steht, der zusätzlich zu dem Stickstoffatom, mit dem das Substituentenpaar R¹³ und R¹⁸, (R¹⁵)₂ oder (R¹⁶)₂ verbunden ist, zwei bis sechs Kohlenstoffatome und gegebenenfalls zusätzlich ein weiteres Atom Stickstoff, Schwefel oder Sauerstoff enthält und wobei die Substituenten unabhängig voneinander ausgewählt sein können aus C₁-C₂-Alkyl, Halogen, Cyano, Nitro oder C₁-C₂-Alkoxy,

- W jeweils unabhängig voneinander für C₁-C₄-Alkyl, C₂-C₄-Alkenyl, C₂-C₄-Alkinyl, C₃-C₆-Cycloalkyl, C₁-C₄-Haloalkyl, C₂-C₄-Haloalkenyl, C₂-C₄-Haloalkinyl, C₃-C₆-Halocycloalkyl, Halogen, Cyano, Nitro, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylthio, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Alkylamino, C₂-C₈-Dialkylamino, C₃-C₆-Cycloalkylamino, (C₁-C₄-Alkyl)C₃-C₆-cycloalkylamino, C₂-C₄-Alkylcarbonyl, C₂-C₆-Alkoxycarbonyl, C₂-C₆-Alkylaminocarbonyl, C₃-C₈-Dialkylaminocarbonyl oder C₃-C₆-Trialkylsilyl steht,
- n jeweils unabhängig voneinander für 0 oder 1 steht,
- p jeweils unabhängig voneinander für 0, 1 oder 2 steht.

15

25

30

5

wobei für den Fall, dass (a) R⁵ für Wasserstoff, C₁-C₆-Alkyl, C₁-C₆-Haloalkyl, C₂-C₆-Haloalkinyl, C₁-C₄-Haloalkinyl, C₁-C₄-Haloalkinyl, C₁-C₆-Haloalkinyl, C₂-C₆-Haloalkinyl, C₂-C₆-Haloalkinyl, C₂-C₆-Haloalkinyl, C₁-C₄-Haloalkinyl, C₁-C₄-Haloalkinyl, C₁-C₄-Haloalkinyl, C₁-C₄-Haloalkinyl, C₁-C₄-Alkylaminocarbonyl, C₂-C₆-Alkylaminocarbonyl oder C₃-C₈ Dialkylaminocarbonyl steht, (c) mindestens ein Substituent ausgewählt aus R⁶, R¹¹ und R¹² vorhanden ist und (d), wenn R¹² nicht vorhanden ist, mindestens ein R⁶ oder R¹¹ unterschiedlich zu C₂-C₆-Alkylaminocarbonyl, C₂-C₆-Alkylaminocarbonyl und C₃-C₈-Dialkylaminocarbonyl ist.

7. Mittel gemäß Anspruch 1, 2, 3, 4, 5 oder 6 enthaltend ein Anthranilsäureamid der Formel (II-1)

$$\mathbb{R}^{5}$$
 \mathbb{R}^{4}
 \mathbb{R}^{9}
 \mathbb{R}^{9}
 \mathbb{R}^{9}
 \mathbb{R}^{1}
 \mathbb{R}^{9}
 \mathbb{R}^{9}

in welcher

R² für Wasserstoff oder C₁-C₆-Alkyl steht,

R³ für C₁-C₆-Alkyl steht, das gegebenenfalls mit einem R⁶ substituiert ist,

R⁴ für C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Halogen steht,

R⁵ für Wasserstoff, C₁-C₄-Alkyl, C₁-C₂-Halogenalkyl, C₁-C₂-Halogenalkoxy oder Halogen steht,

R⁶ für -C(=E²)R¹⁹, -LC(=E²)R¹⁹, -C(=E²)LR¹⁹ oder -LC(=E²)LR¹⁹ steht, wobei jedes E² unabhängig voneinander für O, S, N-R¹⁵, N-OR¹⁵, N-N(R¹⁵)₂, und jedes L unabhängig voneinander für O oder NR¹⁸ steht,

R⁷ für C₁-C₄-Haloalkyl oder Halogen steht,

- R^9 für C_1 - C_2 -Halogenalkyl, C_1 - C_2 -Halogenalkoxy, $S(O)_pC_1$ - C_2 -Halogenalkyl oder Halogen steht,
- R¹⁵ jeweils unabhängig voneinander für Wasserstoff oder für jeweils gegebenenfalls substituiertes C₁-C₆-Haloalkyl oder C₁-C₆-Alkyl steht, wobei die Substituenten unabhängig voneinander ausgewählt sein können aus Cyano, C₁-C₄-Alkoxy, C₁-C₄-Haloalkoxy, C₁-C₄-Alkylsulfinyl, C₁-C₄-Alkylsulfonyl, C₁-C₄-Haloalkylsulfinyl oder C₁-C₄-Haloalkylsulfonyl,
- R¹⁸ jeweils für Wasserstoff oder C₁-C₄-Alkyl steht,
- R¹⁹ jeweils unabhängig voneinander für Wasserstoff oder C₁-C₆-Alkyl steht,
- 10 p unabhängig voneinander für 0, 1, 2 steht.
 - 8. Mittel gemäß Anspruch 1, 2, 3, 4, 5, 6 oder 7 enthaltend Verbindungen der Formel (I) (Gruppe 1) oder mindestens eine akarizid wirksame Verbindung (Gruppe 2) und mindestens ein Anthranilsäureamid der Formel (II) im Verhältnis von 500:1 bis 1:50.
 - Verwendung einer synergistisch wirksamen Mischung, wie in den Ansprüchen 1, 2, 3, 4, 5 6
 oder 7 definiert, zur Bekämpfung von tierischen Schädlingen.
- Verfahren zur Herstellung von Schädlingsbekämpfungsmitteln, dadurch gekennzeichnet, dass man eine synergistisch wirksame Mischung, wie in den Ansprüchen 1, 2, 3, 4, 5 6 oder 7 definiert, mit Streckmitteln und/oder oberflächenaktiven Substanzen vermischt.

THIS PAGE BLANK (USPTO)