Examenul de bacalaureat național 2020 Proba E. c)

Matematică M_st-nat

Test 18

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- **5p 1.** Arătați că diferența numerelor $5 + 2\sqrt{3}$ și $(1 + \sqrt{3})^2$ este număr întreg.
- **5p** 2. Se consideră funcțiile $f: \mathbb{R} \to \mathbb{R}$, f(x) = 2x + 1 și $g: \mathbb{R} \to \mathbb{R}$, $g(x) = 2x^2 + 2x$. Determinați numerele reale m, pentru care f(m) = g(m).
- **5p** 3. Rezolvați în mulțimea numerelor reale ecuația $\sqrt{x^2 + 5x + 1} = \sqrt{2x + 5}$.
- **5p 4.** Calculați probabilitatea ca, alegând un număr a din mulțimea $A = \{-2, -1, 1, 2, 3\}$, acesta să verifice inegalitatea $|a+1| \ge 2$.
- **5.** Se consideră A, B, C și D patru puncte coplanare, M mijlocul segmentului AD și N mijlocul segmentului BC. Arătați că $2\overrightarrow{MN} = \overrightarrow{AB} + \overrightarrow{DC}$.
- **5p 6.** Triunghiul *ABC* este înscris într-un cerc de rază 1. Arătați că $4\sin A \cdot \sin B = AC \cdot BC$.

SUBIECTUL al II-lea (30 de puncte)

- **1.** Se consideră matricea $A(a,b) = \begin{pmatrix} a+1 & a-1 \\ b & b-2 \end{pmatrix}$, unde a și b sunt numere reale.
- **5p** a) Arătați că $\det(A(2,3)) = 0$.
- **5p** b) Demonstrați că, dacă $a \in \mathbb{Q}$ și $b \in \mathbb{R} \setminus \mathbb{Q}$, atunci matricea A(a,b) este inversabilă.
- **5p** c) Determinați matricea $X \in \mathcal{M}_2(\mathbb{R})$ pentru care $A(-1,\sqrt{2}) \cdot X = A(0,0)$.
 - 2. Pe mulțimea numerelor întregi se definește legea de compoziție asociativă $x \circ y = 5xy + x + y$.
- **5p a**) Arătați că $1 \circ 4 = 25$.
- **5p b**) Demonstrați că e = 0 este elementul neutru al legii de compoziție " \circ ".
- **5p** c) Determinați elementele simetrizabile în raport cu legea de compoziție "o".

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{x^3}{x^2 + 1}$.
- **5p** a) Arătați că $f'(x) = \frac{x^2(x^2+3)}{(x^2+1)^2}, x \in \mathbb{R}$.
- **5p b**) Se consideră dreapta d, asimptota spre $+\infty$ la graficul lui f. Determinați abscisele punctelor situate pe graficul funcției f, în care tangenta la grafic este paralelă cu dreapta d.
- **5p** c) Demonstrați că funcția f este convexă pe $[0, \sqrt{3}]$.
 - **2.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = e^x \cos x$.
- **5p** a) Arătați că $\int_{0}^{\pi} \frac{f(x)}{e^{x}} dx = 0.$

5p b) Calculați
$$\int_{0}^{\frac{\pi}{2}} f(x) dx$$
.

5p c) Arătați că $\int_{0}^{\frac{\pi}{2}} f\left(x + \frac{\pi}{2}\right) dx = -e^{\frac{\pi}{2}} \ln 2$.