5. FAULT MODELING

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

1

Outline

- Defects
- Realistic faults
- Stuck-at fault model
- Fault detection
 - Path sensitization
 - Fault interaction
 - Undetectable faults
 - Redundancy
- Fault equivalence
- Fault collapsing
- Fault dominance

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

2

/

The Single Stuck-At Fault Model (SSF)

- Is technology independent
- The tests that detect SSFs also detect many physical defects
- The number of SSFs in a circuit is relatively small

Theorem: In a fanout free circuit, the detection of all SSFs in the primary inputs ⇒ detection of all SSFs

Checkpoints: Primary inputs and *fanout* branches

Theorem: A set of test vectors that detects all SSFs in all checkpoints of a combinational circuit ⇒ detection of all SSFs

TÉCNICO LISBOA

Fernando Gonçalve

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

11

The Multiple Stuck-At Fault Model (MSF)

How many faults?

assuming **n** = nbr. of possible fault locations

⇒ 2n SSFs

⇒ 3ⁿ-1 MSFs (any multiplicity)

The multiplicity until **k** is given by: $\sum_{i=1}^{k} {n \choose i} 2^i$

Example:

n = 1.000, k = 2 \Rightarrow approximately 2.000.000 double faults

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

Should we Consider the MSF Model?

- The probability that a physical defect produces a MSF is low
- Experimental results for one circuit shown that a complete set of tests for SSFs also detects more than 99.9% of double, triple and quadruple faults
- \Rightarrow so, in general MSFs are not used!

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

13

13

Fault Detection

If a test t detects a fault f, then $Z(t) \neq Z_f(t)$

For a circuit with a single output, the set of tests that detect the fault **f** are the solutions of the following equation:

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

14

Fault Detection

	Without faults	With fault f
Z ₁	<i>x</i> ₁ <i>x</i> ₂	$x_1 + x_2$
Z_2	<i>x</i> ₂ <i>x</i> ₃	$(x_1 + x_2) x_3$

All tests that detect f in Z₁

$$x_1 x_2 \oplus (x_1 + x_2) = 1 \implies x_1 \oplus x_2 = 1$$

All tests that detect f in Z₂

$$x_2 x_3 \oplus (x_1 + x_2) x_3 = 1 \implies x_1 \overline{x}_2 x_3 = 1$$

Fernando Goncalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

15

15

Line Sensitization

- A line is sensitive to a fault when the logical value is different in the presence of the fault
- A sensitive line highlights the effect of a fault
- The values in the fault-free and faulty circuits are denoted according to the following notation:

<value for fault-free circuit> / <value for faulty circuit>

Example: $0/1 \Rightarrow '0'$ in the fault-free circuit '1' in the faulty circuit

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

Disadvantages of Redundancy

- Testability
- Complexity of Automatic Test Pattern Generation (ATPG)
- Fault coverage evaluation
- Circuit area
- Propagation delays
- Power consumption 1
- Manufacturing yield

Is redundancy always disadvantageous?

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

21

21

- If all tests that detect f1 also detect f2, then we can state that f2 dominates f1
- If a fault f2 dominates f1, then f2 can be deleted from the fault list
- If two faults dominate mutually, then those faults are equivalent

 T_{f1} = {all tests that detect f1}

 T_{f2} = {all tests that detect f2}

Fernando Gonçalves

Projecto, Teste e Fiabilidade de Sistemas Electrónicos – 2019/2020

27

27

