System Design Day 12: Video Stream Sytem

Video Streaming System Design – Definition & Example

Definition

A video streaming system is a distributed platform that delivers video content to users in real time over the internet without requiring a full download. It uses adaptive bitrate streaming, content delivery networks (CDNs), and media encoding pipelines to ensure smooth playback across devices and network conditions, while enforcing digital rights management (DRM) and providing scalability for millions of concurrent viewers.

1. Requirements

Functional:

- User authentication & subscription validation.
- Browsing/search of content library.
- Adaptive streaming based on bandwidth.
- Resume-watch & multi-device sync.
- DRM for licensed content.

Non-Functional:

- Low startup latency (<2 seconds).
- High throughput for global audiences.
- 99.99% availability.
- Scalability & fault tolerance across data centers.

2. High-Level Architecture

Example: Netflix / Amazon Prime

- 1. Client Devices Smart TVs, mobiles, browsers.
- 2. **API Gateway** Routes requests to backend microservices.
- 3. **User Services** Authentication, profiles, subscription checks.
- 4. **Content Catalog Service** Metadata, recommendations, search.
- 5. **CDN** Stores and delivers video chunks close to the user.
 - Netflix → Open Connect (custom CDN).
 - Amazon Prime → AWS CloudFront.
- 6. Storage & Transcoding Pipelines -
 - Raw media stored in S3/Blob Storage.
 - Transcoded into multiple bitrates/resolutions for adaptive streaming.
- 7. **DRM Services** Widevine, FairPlay, PlayReady.
- 8. **Streaming Protocols** HLS (HTTP Live Streaming) / MPEG-DASH.
- 9. **Monitoring & Analytics** Playback quality, network metrics, A/B tests.

Flow Example (Netflix Movie Playback)

User selects a movie \rightarrow API Gateway verifies subscription \rightarrow Returns playback token + nearest CDN URL \rightarrow Client streams via HLS from local CDN node \rightarrow Adaptive bitrate adjusts dynamically to network conditions.

3. Key Trade-offs

Design Choice	Pros	Cons
Custom CDN (Netflix) vs 3rd-Party CDN (Amazon Prime)	Optimized routing, full control, reduced long-term cost	High upfront & maintenance cost
Adaptive Bitrate Streaming (ABR)	Smooth playback on varying bandwidth	More storage needed for multiple versions

Design Choice	Pros	Cons
Pre-fetching / Edge Caching	Reduces startup delay	Higher storage costs on edge nodes
Microservices Architecture	Independent scaling, fault isolation	Inter-service latency, operational complexity
DRM Enforcement	Protects intellectual property	Adds encryption/decryption overhead
Global Content Replication	Low latency worldwide	High replication cost

4. Example in Numbers

- Netflix: 270+ million subscribers, 100B+ hours streamed yearly.
- Open Connect appliances in 100+ countries.
- Bitrate switching within ~200ms for smooth playback.