

FATIGUE OF MATERIALS & STRUCTURES

G. Hénaff

FATIGUE OF NOTCHED COMPONENTS

Notch effect

⇒ The local stress at the notch root is higher than the gross stress

Stress concentration factor

Definition: ratio "local stress/ gross stress on the net section"

$$K_t = \frac{\sigma_{local}}{\sigma_{net}}$$

K₊:

- is defined within the framework of elasticity;
- Only depends on geometry, in particular the notch tip radius! (typically not on the constitutive law of the considered material)

Relation between K_t , K_{σ} and K_{ϵ}

Reduction in fatigue life

Notch effect on fatigue limit quantified by the K_f cœfficient :

$$K_f = \frac{\sigma_D(\text{smooth})}{\sigma_D(\text{notched})}$$

Sensitivity to notch effect:

$$q = \frac{K_f - 1}{K_t - 1}$$

- q=0: insensitive to notch effect;
- q=1: no adaptation $(K_f=K_t)$

Determination of the q coefficient

Peterson: m=1

Neuber: m=1/2

Determination of K_f or q

Application to Wöhler curves

$$K_f \sqrt{(\Delta S \times \Delta e)} = \sqrt{(\Delta \sigma \times \Delta \epsilon)}$$

The determination of K_f permits the prediction of the fatigue life of notched components on the basis of the Wöhler curve established on smooth samples.

Application to Wöhler curves

Neuber's Rule

Problem: determine the local stress/strain amplitude at the notch root from the far field loading

→ simple solution in the framework of elasticity:

$$K_t^2 = K_{\sigma} \times K_{\epsilon}$$

→ Idea: extrapolate the previous relation to the elasto-plastic domain

$$K_t^2 = K_{\sigma} \times K_{\varepsilon}$$

Still valid in the easto-plastic domain

Neuber's Rule

Graphical solution of the equation:

$$K_t^2 = K_{\sigma} \times K_{\varepsilon}$$

Extension to cyclic loading

Equivalent Deformation Energy (EDE) criterion

Strain energy density in elasticity:
$$W_{local} = K_t^2 \times W_{global}$$

Hyp.: relation always satisfied in elasticity

Neuber's rule overestimates the local stress and strain

Comparison Neuber/EDE using Ramberg-Osgood constitutive law

EDE:
$$W_{locale} = \int_{0}^{\varepsilon} \sigma(\varepsilon) d\varepsilon = \left[\sigma \times \varepsilon\right]_{0}^{\varepsilon} - \int_{0}^{\varepsilon} \varepsilon d\sigma \longrightarrow W_{locale} = \frac{\sigma^{2}}{2E} + \frac{1}{1+n} \left(\frac{\sigma}{K}\right)^{\frac{1}{n}}$$

$$\frac{\sigma^2}{2E} + \frac{\sigma}{1+n} \left(\frac{\sigma}{K}\right)^{\frac{1}{n}} = \frac{(K_t \times S)^2}{2E}$$

Neuber

$$\frac{\sigma^2}{2E} + \frac{\sigma}{2} \left[\frac{\sigma}{K} \right]^{\frac{1}{n}} = \frac{(K_t \times S)^2}{2E}$$

Application of Neuber's rule: prediction of crack initiation in a suspension triangle

