Chlamydia Infections in Men:

What We Know & Don't

Armed Forces Epidemiology Board
Meeting
San Diego, CA
Nov 30-Dec 1, 2004

Charlotte A. Gaydos, MS, MPH, DrPH Associate Professor Johns Hopkins University Baltimore, Maryland

Outline

- Background
- Objectives
- Chlamydia studies of males in the military
- militaryChlamydia studies of males from civilian sites
- Cost-effectiveness studies of male screening
- screening
 •What we don't know about screening
 men for chlamydia

Background

 Male chlamydia infections are common but recommendations are limited to testing clinic patients who present w/ symptoms

√35.5% (142/398) chlamydia positive at Ft. Bragg

- No screening recommendations for
- Screening formblamydia infection in males
 - **✓ Limited resources**
 - ✓ Information needed to guide programs

Background

- Male chlamydia infections have been associated with increased risk of epididymitis
- Associated with infertility (Greendale et al, AJPH 83:996-1001, 1993)
- IgG Ab in male partner of infertile couple correlated w/ reduced likelihood of achieving pregnancy (Idahl et al. Human Reproduction 19:1121-26, 2004

Background

- Why consider screening men for chlamydia infection?
 - Treat asymptomatic infection
- •Reduce transmission to female partners Reduce the burden of chlamydia infection and sequelae in men
- Reduce burden of chlamydia infection and sequelae in women

Objectives

Audience will be able to:

- Summarize prevalence of chlamydia in males in the military
- Summarize the prevalence of chlamydia in males in civilian studies
- Identify gaps in the knowledge of chlamydia infections in males

Chlamydia in asymptomatic males in the military

- •Brodine et al. 1998: 2 male military settings
 - marines and navy
 - **3.4%** (618) West Pacific shipboard CT positive
- Cééil²ét á4.060 (Qkipayack ներթյաննար May-June Nogassociation with age or race
 - New Army recruits reporting for basic training
 - √ 5.3% (2,245 males) CT positive
 - **✓** Associated with chlamydia infection:
- · Sutton et lack 2000: Co hege produce (1252)

2 EO/ CT-Wasftrichamanac infaction

Chlamydia in asymptomatic males in the military

Arcari et al. 2004: Ft. Jackson, NC, July 999-2000

New Army recruits for basic training 4.7% (3,911 males) CT positive

Associated with chlamydia infection:

Age < 20 years

Age 20-24 years

Black race

Hispanic ethnicity

Multiple sexual partners

Prevalence of Chlamydia Infection by Demographics: Male Army

Male Chlamydia Prevalence In Military Recruits: 4.9%

Chlamydia studies of males from civilian sites

LaMontagne et al. 2003: 43,094 patient reported asymptomatic men from STD clinics 1997-1999

prevalence 10.3%

23.5% had signs of urethritis on Gram St.

76.5% had no signs CDC funded study of asymptomatic and symptomatic men (15-44 yr) in 4 cities across the U.S. (N = 23,509)

Male Ct Screening Project

- Demonstration project: men ages 15-44 screened for Ct infection
 - Baltimore
 - Denver
 - San Francisco
 - Seattle
- Longitudinal Study: men with Ct infection recruited for a study of repeat infection
 - Baltimore
 - Denver
 - San Francisco

Prevalence of Chlamydia in Baltimore, Denver, SF,

Seattle

City	No. positive/	Prevalence (% positive)	Rank*
Baltimore	363/3,129	(12)	3
Denver	345/3,516	(10)	8
SF	832/16,097	(5)	35
Seattle	8/765	(1)	59
Total	1,548/23,507	(7)	

Low rank indicates highest rate of reported Ct.

^{*}From 2002 CDC Surveillance Report: Rank among 63 cities with population >200,000.

group BALTIMORE, DENVER, SF, SEATTLE

Age, in years

venue/city BALTIMORE, DENVER, SF,

Prevalence

Repeat Infection by City/Venue (over all 12%)

City/Venue		Repeat Infection n (%)	
Baltimore/Adolescent Clinics	18	5	(28)
Baltimore/School Clinics	40	2	(5)
Denver/Adolescent Clinics	32	9	(28)
Denver/STD Clinic	67	5	(7)
San Francisco/STD Clinic	57	7	(12)

Net Program Cost Equivalence

Prevalence in	Prevalence in Men		
Women	PID cost=\$3071	PID cost=\$1303	
1.0%	2.0%	6.0%	
2.0%	3.5%	10.0%	
3.0%	5.0%	13.0%	
4.0%	6.5%	15.5%	
5.0%	8.0%	18.5%	
6.0%	9.5%	> 20.0%	

Cost effectiveness of male screening for Ct infection

- Screening men can benefit women by:
 - reducing the number of infectious men
 - leading to the treatment of asymptomatic women through PN
- Screening men can be cost-effective:
 - if the prevalence among unscreened women who can potentially be screened is lower than the prevalence among men who can be screened, all else equal

What we know

- Ct Infection is common among males, and varies by venue and city
- Young age, specific venues/cities are associated with higher prevalence of male Ct infection
- Repeat infection is similar to that in females (12%)
- The acceptability by providers and participants is high
- Male screening for Ct infection can be cost-effective in certain circumstances

What we need to know

- Prevalence of male Ct by venue/city
- Coverage of females, prevalence of female Ct by venue/city
- Tests available/costs
- Program costs for new screening or expansion of screening
- Risk characteristics of population

Best use of a dollar?

 Many variables that influence the best use of a dollar to prevent infertility

When to consider screening males for Ct

- Urine based NAATS available
- Program startup/maintenance costs not prohibitive
 - Existing program>new program (no new staff, support/structure/lab pick-up in place)
- Support for male screening in venue
- Adequate coverage of females screened in appropriate age groups
- Venues where high prevalence ~~>?5-7%
- Venues where many symptomatic men evaluated

Summary

- Prevalence of chlamydia in asymptomatic males is approximately
 5% in military studies
 Many variations in prevalence for chlamydia in civilian studies
- *Women should be screened before *Screening men could prevent reinfection in women as well as sequelae in women *Many cost and logistic factors will affect the decision to screen