Pade Deriled

50X1-HUM

50X1-HUM

Wickelkondensatoren TESLA

Wickelkondensatoren TESLA

Jede Kette ist so stark wie ihr schwachstes Glied, und die Qualität eines jeden Rundfunkempfängers, Messapparates, Verstariaeze Seeden und Fernschapparates entspricht der Qualität des letzten und der einen unwichtigsten Bestandteiles, da bei dessen Versagen der zuem Messen betriebsunfähig wird. Diese Tatsache macht die zuwer Seed geweren der Entwicklung neuer Typen und bei der Labrik itten verstie. Wickelkondensatoren gehören ohne Zweifel zu den wiertigte allen Schwachstromgeräten haufig verwendeten Bestandteilen Rundfunkempflänger mittlerer Type und 20 besche Seeden mehr Wickelkondensatoren eingebaut, werzuss die Wickelkondensatoren eingebaut, werzusselber der Wickelkondensatoren eingebaut, werzusselber der Wickelkondensatoren eingebaut.

kleinen Bestandteiles für den einwandfreien Betrieben in deutlich ersichtlich ist. Radi reparaturwerkstatten, kan ein dass Wickelkondensatoren sehr häufig die Ursache beide triebetzung der Apparate sind. Da diese Umstande den Konstendung der Apparate sind. Da diese Umstande den Konstendung und Mitarbeitern der Entwicklungsabteilung des Unternessen für gut bekannt sind, wird der Entwicklung sowie der Urzachen Bestandteiles besondere Autmerksamkeit gewichnet WICKELKONDENSATOREN TESLA werden Linderel aus der schiedenen Ausführungen erzeugt und stehen den Konstruktende für alle Verwendungszwecke in reicher Auswahl zur Vertugung. Des gebie angeführten Angaben werden Sie bestimmt davon überzeugen

Wickelkondensatoren TESLA in Isolierrohr mit Drahtanschlüssen

Beschreibung

Diese Type von Wickelkondensatoren besteht im wesentlichen aus zwei Metallfolien, die durch ein aus Spezialpapier bestehendes Dielektrikum isoliert sind. Die Folien werden samt Papierband in Rollen aufgewickelt, im Vakuum getrocknet und mit Spezialwachs oder Ol imprägniert. Die mit der äusseren Folie verbundene Seite ist durch einen längeren Drahtanschluss öder durch einen auf dem Isolierröhrehen aufgedruckten Ringstreifen gekennzeichnet (1). Diese Seite wird bei der Montage mit dem Chassis verbunden. Die äussere Folienwicklung bildet dann für das Kondensatorinuere eine elektrische Abschirmung. Der Wickel wird in ein Isolierröhr eingelegt und mit Vergussmasse verschlossen (2). Sodann werden die Drahtanschlüsse stark verzinnt (3).

Technische Angaben

Nennwert-Toleranz:

normal $\cdots 20^{9}_{-0}$ eingeengt: $\pm 10^{9}_{-0}$ (von 0.1 $\mu\mathrm{F}$ aufwärts) Betriebstemperaturbereich: $-20^{9}\,\mathrm{C}$ bis $\pm 50^{9}\,\mathrm{C}$ Lagertemperaturbereich: $-20^{9}\,\mathrm{C}$ bis $\pm 40^{9}\,\mathrm{C}$ Verlustwinkel: $\mathrm{tg}\,\theta$ max. 0.01 bei 800 Hz.

Zugfestigkeit der Drahtauschlüsse: 2 kg in Achsenrichtung.

Isolationswiderstand: das Produkt aus Isolationswiderstand in MOhm und der Kapazitat in «E hoträgt mindestens 200; bei kleineren Kapazitatswerten mindestens 5000 MOhm.

Sämtliche Kondensatoren werden mit unterdinckter Selbstinduktivität erzeugt.

Form BetrSpanning V		TC 101	****		TC 103 600	TC 105 1080	14 106	
Bezeichnung	Kapazität		Dur Nur die	chmesser D angeführten	Länge L.i Werte sind			
100 100 250 400 640	100 pF 160 pF 250 pF 400 pF 640 pF				7 .30	7 30 7 30 7 30 7 30 9 30		
1 K 1 K 6 2 K 5 4 K 6 K 4	1000 pF 1600 pF 2500 pF 4000 pF 6400 pF			7 30 7 30	7 30 7 30 7 30 9 30 9 30	9 36 11 30 11 30 12 15 12 15	11 / 11 / 11 / 11 / 11 / 11 / 11 / 11	
10 K 16 K 25 K 40 K 64 K	10000 pF 16000 pF 25000 pF 40000 pF 64000 pF	11 - 30 11 - 30	$\begin{array}{c} 7 + 30 \\ 9 + 30 \\ 11 + 30 \\ 12 + 35 \\ 12 + 35 \end{array}$	9 30 9 30 11 30 12 35 14 35	11 30 12 35 14 35 16 35 14 55	12 35 11 35 18 35 14 35 18 35	8 # 1 # 1	
M 1 M 16 M 25 M 4 M 64	$\begin{array}{c} 0.1 & \mu \mathrm{F} \\ 0.16 & \mu \mathrm{F} \\ 0.25 & \mu \mathrm{F} \\ 0.4 & \mu \mathrm{F} \\ 0.64 & \mu \mathrm{F} \\ 1 & \mu \mathrm{F} \end{array}$	$ \begin{array}{r} 14 + 35 \\ 14 + 35 \\ 14 + 55 \\ 18 + 55 \\ 22 + 55 \\ 22 + 55 \end{array} $	$ \begin{array}{r} 14 & 35 \\ 16 & 35 \\ 18 & 55 \\ 18 & 55 \\ 22 & 55 \\ 26 & 55 \end{array} $	18 55 18 55 18 55 22 55 26 55	10 55 22 55 26 55	22 - 55 26 - 55		

In der Tabelle sind nur die Gleichstrom-Betriebsspannungen angeführt. Für Wechselstrom gilt folgende Tabelle:

Gleich-pannung	١.	14563	250	1000	6,4112	\$ 617 313	100
Wechselspannung	١	60	100	Ím	250	1.44	
Prüf-Gleichspannung	Y.	480	750	1200	1::00	perce	1

Abmessungen und Gewichte

Durchmesser mm	7	9	11	12	11	10	134	1.1	13	2.2	÷
	30	30	30	15	35	35	.15	5.5	15	11	
Gewicht in g	4.5	9 -1					1				

Für jene Apparate, die voraussichtlich unter schwierigen Betriebsbedingungen arbeiten werden oder für Apparate, die für diese Bedingungen direkt könstruiert sind, werden von Radioangemenren derartige Ausführungsformen von Wickelkondernsatoren verlangt, die unter allen Betriebsbedingungen zuverlässig arbeiten. Wir können mit Genugtuung feststellen, dass die Konstrukture des Unternehmens TESLA alle vorgelegten technischen Probleme einvendifrei gelost haben. Lin Beweiss datur ist die folgende Neuentwicklung, durch die das umfangreiche Sortiment bereichert wurde:

Vollkommen Tropenfeste Wickelkondensatoren TESLA PACOTROP

Beschreibung

Bei dieser Type handelt es sich um Folienkondensatoren mit Papierdielektrikum, die in einem Metallrohr eingebaut (1) und mit einer Glasperle (2) abgeschlossen sind, durch die einer der Drahtanschlüsse hindurchgeführt ist. Der zweite Pol ist mit dem Gehäuseboden verlötet (3). Um die Lötarheit bei der Montage zu erleichtern, sind die Kondensatorenausehlüsse stark verzinnt. Die Gehäuseberfläche ist durch eine korrosionsbeständige Schicht geschützt.

Vorzüge

Tänge Lebensdauer, geringe Induktivität, verlässlicher Betrieb bei grossen Temperaturs und Luftfeuchtigkeitsschwankungen. Widerstandsfähigkeit gegen äussere Einflüsse. Erschütterungsfestigkeit und geringe Abmessungen können als Hauptvorteile dieser Ausführung der Wickelkondensatoren TESLA hervorgehoben werden.

Technische Angaben

Temperaturbereich: nort bis 150 t.; Relative Fenchtigkeit; bis 98 %.; Isolationswiderstand ber 2000t; 1000 Median bes niedrigen Kapazitaten 25000 Medias Verlustfakten; tgø max, 0,01 ber 300 Hz Prüfspannung; 1 Minute 300 %, der Betriebergseit nung

 $Kennziffern,\ Hauptabmessungen,\ Kapazitätsbereiche \ und\ Toleranzen;$

Kennziffer		*	FC 120			Tt.	122				10-12	. 1	
Betriebssp	annung V		160			100				1000			
Überlastba	irkeit V		200			50	ю.				1050		
Betriebssp	annung V ~		100			25	.0				1400		
Kapazität	Toleranz	D	1.	a	Aus- führung	Ð	1.	d	Nu fulrang	1)	1	,	Vig.
pF 1000 1600 2500 4000 6400	20 %,					5 5 5 5	26 26 26 26 26 26	1.5 1.5 1.5 1.5	\	; + + ; + + ; + + ; + +	27. 27. 27. 27.	2.3	*: *: *:
pF 10000 16000 25000 40000 64000	20 % (; 10 %)	5 	26 26 26 26 26 26	1,3 1,3 1,3 2,3 2,5	\ \ \ \	; } } } } }	26 26 26 26 35	1.3 1.5 2.3 2.3 2.3	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	113	26 43 43 43 43 43		
#F 9.1 9.16 9.25 9.4	20 % 10 % 5 %	10 12 15	35 35 35 35	2,5 2,5 2,5 2,5	\ \ \ \	12 13 18	35. 35 35	2.5 2.5 2.5))	18	:5		

Elektrolyt-Kondensatoren TESLA

Eine mehr als dreissigjährige Tradition und Erfahrungen bei der Erzeugung von Elektrolyt-Kondensatoren in der Tschechoslowakei gaben den Konstrukteuren und dem ganzen Fabrikationsapparat TESLA die Möglichkeit, mit allen Problemen, die die stürmische Entwicklung der Elektronik-Industrie in den letzten Jahren mit sich brachte, fertig zu werden, und diese Tatsache sieherte den Elektrolyt-Kondensatoren TESLA einen der besten Plätze auf dem Weltmarkte. Die langjährige, gewissenhafte Arbeit, sowohl in der Ent-

wicklung als auch in der Herstellung, brachte den Radiofachleuten zahlreiche verschiedene Ausführungen von Elektrolyt-Kondensatoren TESLA, die ihnen eine reiche Auswahl für sämtliche Verwendungszwecke bietet.

Die vorhandene Möglichkeit verschiedener Befestigungsart im Apparatechassis, der einwandfreie Betrieb unter beliebigen Betrieb-bedingungen, geringe Abmessungen und eine umfangreiche Auswahl verschiedener Spannungen und Kapazitäten, bieten Radiofachleuten die Garantie, dass alle auftretenden Schwierigkeiten bei der Arbeit mit Elektrolyt-Kondensatoren überwunden werden können.

Beringe Abmessungen, lange Lebensdauer, gute elektrische Eigenschaften.

Technische Angaben

Nennwert-Toleranz:

 $-20~\%_0,~+50~\%$ bis 100/110 V $-10~\%_0,~+50~\%$ von 160/175 V Verlustwinkel: tg θ max. 15 % bei 20°C und 50 Hz.

Reststrom max.: 0.15 , C , V , 10^{-3} \pm 0.1 (mA) Kapazität C in $\mu {\rm F}$ und Spannung in V bei 20°C

Festigkeit der Drahtanschlüsse: 2 kg Zugspannung in Achsenrichtung.

Betriebstemperatur:

-20 bis +60°C für Typen bis 250/275 V.

0 bis +60°C für die übrigen Typen.

Lagertemperatur: $-20~{\rm bis}~\pm40\%$. Der Pluspol wird entweder durch farbigen 1-olierschlauch oder durch Aufdruck auf dem 1-olierrohr gekennzeichnet.

FORM Betriebs-Spitzenspannung V Abmessung (Durchmesser) mm		TC 500	TC 501	TC 502 100-110 D	
		12/15	30:35		
		Ď	D		
Bezeichnung	Kapazität µF			and the second s	
10 M	10	14	11	. 14	
25 M	25	14	18	18	
50 M	50	18	22	22	
G 1	100	22	22	26	
G 25	250	22	26		
G 5	500	26			

FORM Betriebs-Spitzenspannung V =-			TC 510- 160/175	TC 511 250/275		TC 512	TC 513 450-500	
· -		100,173	. 250/215	-	350-385			
Abmesst	ing (l	Durchmesser) mm	D	D.		D	D	
Bezeichnur	ng -	Kapazität µF				**************************************	Streetship	
4 M		4.	14	14		14	.11	
8 M		8	14	18	Î	18	18	
16 M		16	18	22	1 .	26	26	
32 M	* .	32	22	26	1			
50 M		50	26		1			

	(FE	WICHIE		
Rohrdurch- messer	14	18	22	26
Gewicht g	9.5	16,0	23.5	37,0

ORIGINAL

Niedervolt-Elektrolytkondensatoren TESLA

in Blechgehäusen

Verwendung

Beschreibung

Technische Angaben

Nennwert-Toleranz:

-20 % bis +50 %.

Verlustwinkel: $tg \theta$ max. 15 % bei 20°C und 50 Hz.

Reststrom max.: 0,15 , C , V , 10-3 \pm 0,1 (mA) \pm Kapazität C in $\mu {\rm F}$ und Spannung

Bereich der Betriebstemperatur: -20°C bis +60°C.

Lagertemperatur: -20°C bis $+40^{\circ}\text{C}$.

FORM Betriebs-Spitzenspannung V				
		TC 503 12/15	TC 504 30/35	TC 505 100,110
Abmessu	ingen nim	L × C	L > C	1. · C
Bezeichnung	Kapazität µF			
G 25	250			32 - 30
G 5	500		32 . 30	32 - 30
1 G	1000	32×30	62 > 30	62 60
2 C 5	2500	62×30	92×30	
5 G	5000	62 × 60	92×60	

GEWICHTE UND ABMESSUNGEN

. de	. c	e	ı	Gewicht g
32	30	39	48	140
62	30	69	78	270
62	60	69	78	520
92	. 30	99	108	420
92	60	99	108	810

Elektrolyt-Konnen sarorén TESLA un Aluminiumbechern

mit zentraler Befestigungsschraube

O

Versending

Eschröfe kondengatoren in Abnatatunbechern werden zur Fleicher gescherz der Ströme in Abnatemetigeräten für Schreiben und Abnatemetigeräten köndensatzer und der Schreiben und der Schreiben der Schreiben der in ihrer Her-

Califord Heart ang de Zentralschraube (1).

of other disclations Unterlage (4)

POOR

Beschreibung

Der Kondensator wird von zwei Aluminiumfolien gebildet, deren eine mit einer das Dielektrikum bildenden Oxydschicht bedeckt ist. Zwischen den Folien befindet sich eine mit Elektrolyt getränkte Papierschicht. Der daraus hergestellte Wickel wird in einem Aluminiumbecher eingeschlossen. Die mit dem Pluspol in Verbindung stehende verzinnte Lötöse (5) wird durch eine Bakelitschraube mit Schraubenmutter herausgeführt. Der Minuspol ist direkt mit dem Metallbecher verbunden. Bei Doppelkapazitäten ist der positive Pol der grösseren Kapazität mit 4- bezeichnet. Der Aluminiumbecher ist mit Gummidichtung versehen.

Technische Anguben

Toleranz der Nennkapazität: ~ 10 his ≈ 50 $^o_{\rm b}.$ Max. Verlustwinkel:

tg θ max. 15 % bei 20℃ und 50 Hz.

Reststrom: max. 0.15 , C , V , 10^{-3} = 0.1 (mA). Kapazität in ρ F und Spannung in Volt.

Bereich der Betriebstemperatur:

für Typen bis 250 275 V für die übrigen Typen		70°C.
Bereich der Lagertemperatur:	20%. bis	55°C.

FORM Betriebs-Spitzenspannung V		TC 515 160/175	TC 517 250 275	TC 519 350-385	, TH, 52 350-50
		$\mathbf{D} \times \mathbf{I}$.	D . 1.	D L	D L
Bezeichnung	Kapazität μF	·			
8 M	8			25 55	25 5
16 M	16		25 35	25 55	21.5
32 M	32	25 - 53	25 - 55	25 - 65	25 44
50 M	.50	25 - 55	25 - 65	23 - 80	35 8
8 8 M	8-8			25 55	27 5
16 8 · M	16 8		25 55	25 55	25 - 6
16 16 M	16-16		25 - 55	25 65	2.5
32.32 M	32 - 32	25 × 65	25 - 89	35 80	25 -
50.50 M	50 - 50	25 - 80	35 - 80		

LOTOSE

0 d d
24 185 25

ISOR	STEEN	SINT	UDI	100

WA 353 65	•	145
_ WA 353 06	e	18.5
	SCHOOL STREET	Constitution of the Consti

Diese Kondensatorentype wird in einer niedrigen Spezielausführung hergestellt, welche für jene Apparate bestimmt ist, in denen wegen Raumnangel die normalen hohen Typen nicht verwendet werden können.

In dieser niedrigen Ausführung werden folgende Typen hergestellt:

ABMESSUNGEN-	1	CENTIONS	STABLET	

25 1				
Durchmesser	25	25	25	
Länge	55	65	2.43	9
Gewicht z	3.5	541		

Au-führung form	Kapazitat µF	Betriebs Spitzenspannung V	Alemes- surgen ram	Gewic)
WK 705 05	32	150 500	25 55	3.5
WK 705 66	16 16	450, 500 \	23 55	3.5
WK 795 07	32 32	256 275 V	25 55	
WK 705 08	32 - 32	380 420 \$	35 80	3.5
WK 785 09	32	380/420 V		190
WK 705 10	50		25 65	-543
M W 103 IA	>+)	320 120 V	25 . 55	2.5

Dichte Elektrolytkondensatoren TESLA in Aluminiumbechern

Diese Elektrylytkondensatoren werden im allgemeinen in Glittingskrusen zur Unterdrückung der Wechselström-Kompprente von gleichgerichteten Strömen verwendet. Sie eigen sich auch als Blockkondensatoren in Niederfrequenzsinfen and überall dort, wo es auf lange Lebensdauer und Rieme Abmessungen ankommt, und wo bedeutende Schwankungen der Temperatur zu erwarten sind.

Beschreibung

Diese Kondensaturen bestehen aus zwei Aluminiumfolien, von denen eine geärst und mit einer Oxydechicht verschen ist die dies Dielektrikum derstellt Zwischen den Folien befindet sich une mit Bicktrolyt getränkte Papierschicht. Die kladirikh entstandenen Straten worden aufgewickelt und latitische in Alummannibechen verschlossen. Die verzinnfra 18thersprach mit dem Prapel, die negativen Folien mit ten Alummannibecher verbunden.

deringe Abmessungen bei hohen Kapazitäten, einfache Montage, luftdicht abgeschlossenes Metallgehäuse. Widerstandsfähigkeit bei Temperaturschwankungen und verlässlicher Betrieb, auch bei starkem Frost, sind die Grundeigenschaften der "M" Ausführung dieser Elektrolyt-Kondensatoren Type TESLA.

Technische Angaben

Nennwert-Toleranz: -20% bis +50%.

Verlustfaktor tg θ max. 15 % bei 26°C und 50 Hz. Reststrom: 0.15 , C × V μ A event. 100 μ A (der grüssere Wert gilt), gemessen bei 20°C, bei Betriebsspannung.

Zulässige relative Feuchtigkeit: bis 98 %.

Zulässige Minimal-Betriebstemperatur: normale Ausführung:

20°C für Kondensatoren bis 250 V Betriebs-

spannung 10% für Köndensatoren bis 350 V Betriebsspannung

spannung $-0^{\rm o}{\rm C}$ für Kondensatoren bis 450 V Betriebsspannung

Spezialausführung "M":

#40°C für Kondensatoren bis 350 V Betriebs-

spannung —10°C für Kondensatoren bis 450 V Betriebsspannung.

Zulässige Höchsttemperatur: > 70°C.

Zulässiger Bereich der Lagertemperatur: --- 60°C bis | 55°C.

Zugfestigkeit der Lötösen 2 kg

Diese Kondensatoren werden in drei verschiedenen Ausführungen gemäss den unten angeführten Massbildern hergestellt (A. B. C).

TYPE Betriebs- Spitzenspannung V Ausführung Bezeichnung µF	12	526 /15 B L	12	530 . /15 C L	30	527 /35 B L	30	531 /35 II L	100	532 /110 :: 1.	160		250 A.	,275 B	250		350	535 385 C L	150 A.	500	10 (50 D	5,01 (
4 M	16 16 25 30	30 50 50 50	16 20 25 25	50 30 50 50 50	16 16 16 20 30	30 30 30 50 50	16 16 2225	50 50 50 50	16 16 20 25	50 50 50	16 16 16 16 20 25 25 25 25 25 25 25 25	30 30 30 50 50 50 50 50 50 50	16 20 25 35	50 50 50 50	16	30 30 50 50 50 50 50 50 50 70 70	16	50 50 50 70 70	20 25 30	50 50 50 50	25	14 14 14 14 14 14 14 14 14 14 14 14 14 1

Kondensatoren mit Dirchmesser 35 min werden nur in Ausführung A. u. C. die übrigen Durchmesser in allen drei Ausführungen herzestellt.

ABMESSI NGEN

Dichte Elektrolyikondensatoren TESLA für niedrige

Temperaturen in Isolierstoffgehäusen

Diese Kondensatoren werden enalog wie die früher angeführten Typen verwindet, und zwar zur Glättung von Niedervolt- und Heckwohlgeschrichtern. Die Technologie der Fabrikation und die Austhrungsform ist den allerschwersten Betriebsverhält-nsatütznigepaset.

Kundensatur besteht aus einem Wickel, der in einem schrechlieben beleichteffgehäuse luftdicht verschlossen ist Die Wickel enthalten zwei Aluminiumfolien, von denen die mit suer Orydschicht, verschen ist Zwischen den Folien inder auf eine Abchaft suurfähige Papierschicht, die mit in für tiele Betriehtemperaturen geeigneten Elektrobyt als zut. Die Anschlüse hestehen aus verzinnten Lötösen, durch Japppen luisdundsgefährt und mit dem eigentlichen und fijt verhunden sind. (2) Zur Ermöglichung der hen schause sind zu dem Gehäuse Laschen angebracht, vonsan sind zu dem Gehäuse Laschen angebracht, vonsan sind zu dem Gehäuse Laschen angebracht, vonsan sind zu dem Gehäuse Laschen (3). Die stütt dem Gehäuse sind zu dem Gehäuse darstellen (3).

Lange Lebensdauer, vorzügliche elektrische Eigenschaften, Betriebsfähigkeit auch bei —40°C, resp. — 60°C, sowie bei hoher Feuchtigkeit und niedrigem Druck. Geringe Abmessungen, vollkommene Erschütterung-festigkeit.

Technische Angaben

Nennwert-Toleranz: -20 % bis +50 %.

Verlustwinkel: Max. 15 % bei 20% und 50 Hz.

Reststrom: 0,15 C. V. 10-3 +0.1 (mA) — C ist die Kapazität in µF, V die Spannung in Volt.

Betriebstemperatur: -40%C, resp. ~60%C bis ~70%C (laut Tabelle).

Lagertemperatur: -60%C bis +55%C.

FO	RM	TC 590	TC 581	TC 591	TC 582	TC 592	TG 583	TC 584	TC 585	T'C 595	TC 586	TC 596	TC 597
Betriebs	-Spitzen-	6/8	12	/15	30	/35	100/110	160/175	250	,275	356	/385	450-500
spanu	ng V ==	10	60	40	60	40	60	- 60	60	40	60	40	- 10
Betriebsten	iperatur ⁰ C	bis	bis	bis	bis	bis.	bis	bis	bis	bis	bis	bis	bis
		+70	+60	+70	+60	. 4-70	-+ 60		60	÷70	÷60	+70	70
Bezeichnung	Kapazität μF				-	Abme	ssungen	$\mathbf{D} \times \mathbf{L}_i$					TOTAL PROPERTY.
4 M	4		***	****		***						16×50	16×50
5 M	5	_	274.0		A1770		16×30		16×50		25 < 50		
8 M	. 8		****		***	*				1.00		20×50	20×50
10 M	10				16×30	16 × 30	16 - 50		20 < 50	16×50	30×50		
16 M	16		-									25×50	25 - 50
25 M	25		16×30		16×50	16×30		25×50	35×50	20×50			
32 M	32				-							30×50	30 - 50
50 M	50		16×50	16×30	20×50	16×50	35 ≤ 50		\$ 1.00 m	25×50			
Gl	100		20 × 50	16 × 50	25 × 50	20×50				35 - 50			
G 25	250		30 × 50	25×50	,	30×50				****			
G 5	500	-		30×50									
1 G	1000	35 × 50	-				-			-			

Technische Angaben

Toleranz: bei den Typen bis zu einer Spannung von 100/110 V = 20 % +56 %. bei den Typen bis zu einer Spannung von 160/175 V = 10 % +50 %. Verlustwinkel: tg θ max. 15 % bei 20°C und 50 Hz. Reststrom: 0.15 C . V . 10-3 + 0.1 (mA) — Kapazität C in μ F, Spannung in V

Zulässige Temperaturen:

Betriebstemperaturen	Ausfül normal	Ausführung dicht				
	normai	arent				
bis 350/385 V	0°C bis ± 60°C	40°C bis 70°C				
bis 450/500 V	0°C bis + 60°C	=10°C his +-70°C				
Lagertemperaturen						
sämtliche Arten	0°C bis +40°C	- 60°C bis → 55°C				

Maximaler Kapazitätsverlust bei der Minusgrenze der Betriebstemperatur 50 $^{\rm o}_{\ o}$. Relative Feuchtigkeit: bei normaler Ausführung 80 %, bei luftdichter Ausführung 98 %.

Auf Grund dieser kurzen Beschreibung einiger Haupttypen der Elektrolytkondensatoren, die das Unternehmen TESLA erzeugt, können Sie einen Überblick von dem Umfang des erzeugten Sortimentes and seiner vielseitigen Verwendungsmöglichkeit gewinnen. Die verschiedenartigen Ausführungen der Elektrolytkondensatoren TESLA bieten den Technikern die Möglichkeit, eine solche Type zu wählen, die auf Grund ihrer Montageart, ihrer elektrischen Eigenschaften und ihrer Anpassungsfähigkeit an die Betriebsbedingungen imstande ist, jedes Problem zu lösen, das bei der Fabrikation entstehen könnte.

Betriebs Ausführ Ösen Grösse	FORM -Spitzenspar ung	nung V ==	TC 556 12/15 gewöhn ohne	12/15	TC 552 12/15 gewöhnl, seitlich	TC 553 12/15 dicht seitlich	30/35 gewöhnl ohne	30/35 dicht ohne	TC 556 30/35 gewöhnl, seitlich	TC 557 30/35 dicht seitlich	TG 558 200/110 gcwöhnl. ohne	TC 559 100-110 dicht ohne	TC 560 100 110 gewöhnl, seitlich	TC 561 100.110 dicht seitlich
			. 					cinheitlich ~	15 > 50 - 25	nun -				
Bezeichn 10 50 G 1 G 25	М	Kapazität μF 10 50 100 250						erzeug	ter Wert			· · · · · · · · · · · · · · · · · · ·		2
G 5 50/50) G 1/1 G 25/2	1	500 5050 (00100 250250			\(\frac{1}{2} \)		×	X			- '		* * * * * * * * * * * * * * * * * * * *	, X
Kondensı	ator wird nic	ht geliefert	1.	1	į.		1	1.						2
F (Betriebs-S spannung Ausführun Ösen Grösse	V 12	1 -1	360;165 16 dicht ge	C 564 TC 5 09/175 160/1 wolml. dich	75 250/275 t gewöhnl.	250/275	250/275 2: gewöhnl. c	G 569 TC 55 50/275 350/33 light gewöh sitlich ohne sh 45 - 50	85 350 385 ml. dieht	1	350/385 450 dicht gew	574 TC 57 /500 450 50 bhnl. dicho	00 450/500 gewöhnl.	dicht
Bezeichnung	μF							rzeugter Weri	ı	-				<u> </u>
10 M 32 M 50 M G I 16 16 M 32 32 M 50 50 M	10 32 50 100 16 16 32 32 50 50						The second secon	The second secon						

POOR ORIGINAL

Kondensator wird nicht zeliefert

POOR ORIGINAL

Span-nung V A 6.3 0.9 6.3 0.9 6.3 1.2 6.3 1.2 6.3 1.2 6.3 1.9 6.3 1.35 6.3 0.45 6.3 0.6 Aussen-widerst. Leistun; k:: W 7 4.5 7 4.5 3.5 8 5 50 6 125 10 69 Span Strom v stA

250 36 250 72 415 2 × 42

750 40 600 2 × 82 250 15 25 9,5 Stewergitter Spannung v
--6 --6 --7 --19 --42 --37 --2 --8 50 50 25 50 25 50 25 50 9000 9000 15000 7000 7000 4000 10000 EL 3 EL 11 EL 12 EL 12 spez EL 51 4654 6F24 6CC1 dir. 4 1.1 500 300 .. 4 1.1 500 300 .. 4 2.2 500 300 .. 4 2.2 500 ind. 6.3 0.6 430 60 P10 UY1n 100 60 T2 1Y32 100 120 P10 6Y50 200 70 H30 DCG 41000 AZ 11 AZ 4 Einweg-Gleichrichter ind. 6.3 1,65 1200 220 5 2 AZ 12 Einweg-Gleichrichter .. 6.3 2,66 800 240 T 30 6Z31

DATEN DER TESLA-ELEKTRONENRÖHREN

				Heizur			Anade	Schire	ngitter			Innen	Aussen-		
Туре	Aquivalent	Verwendungsart	Art	Span-	Strom	Span-	Strom	Span- nung	Strom	Steuergitter Spannung	Sreilheit	wider- stand	wider stand	Leistung	Socket
				. •	^	٧.	mA ·	v	mA.	٧.	pA/V	k!/	. ku	w	Nr.
12F31	12BA6	Pentode, regelbar	ind.	12.6	0.15	250	11	100	4.2	-1 -20					
12H31	12BE6	Pentagrid		12.6	0.15	250	. 3	100			4400		1500		H 13
62L31	(50B5) (4)	Strahlpentode	**	62	0.075	200	- 55	200	7.1	-1.5:-30					H 17
UBL 21		Doppeldiode	••	55	0.1	200	. 55	200	9,5	-15	8000	25	3,5	4.5	H 18
		NF-Pentode	••	,,,	0,1	200	35	200	9,5	—13	8000	25	3,5	4.8	U 1
UCH 2	1	Triode-Hexode		20	0.1	200	2,5	100	3	-2	680	1000			U 2
6,3 u.	4 Volt Wech	selstrom-Röhre	n:										1		
6CC41	. (12AX7) (4)	Doppeltriode		6,3	0.3	250	2.3				2000				
6L41	(5763)	Strahlpentode		6.3	0.75	300	50	250		-1,5					N1
6L43	(6AG7)	Strahlpentode		6.3	0.65	300	30	150	15	-125	7000			12	N 2
6L50	(6BG6)	Strahlpentode		6.3	1	400	70	250	10	-3	11000	90	10	. 3	N 2
EBL 21	(0000)	Doppeldiode	**	6.3	0.8	250	36			25				20	S 1
		NF-Pentode		0,3	0,8	250	36	240	4,5	6	9000	50	. 7	4.5	U1
ECH 2		Triode-Hexode		6.3	0.3	250	3	100	6.2	-2 -24.5	750	1400			Ul
EF 22		Pentode, regelbar		6.3	0.2	250	. 6	100	1.7	-2 .5-56	2200	1200			U 3
EM 11		Abstimmanzeige-		6.3	0.2	250				0/16	2200	1200	1000		Ti
		röhre				200				. 0,10			1000		11 %
ABL 1		Diode-NF-Pentode		4	2.4	250	36	250	4	6	9500	60	7	4.5	P 2.
AD 1		Endtriode	**	4	0.95	250	60	,		45	6000	67	2	4.2	P 1
AF 3		Pentode, regelbar		4	0.65	250	3	100	2.6	-3 -55	1800	. "	-	7,2	P 3
AF 7		Pentode.		4	0.65	250	- 1	100	1,1	-2	2100	2000			P3
		nicht regelbar			0,03	130	•	100	1,01	-2 .	2100	2000			P 3
AL 4		Endpentode		4	1.75	250	36	250	5	6	9500	50		4.5	1
EBL 1		Doppeldiode		6.3	0.8	250	36	240	4.5	°	9000	50	. 7	4.3	P 4
		Endpentode		0.5	0.0	140		240	4,3	-•	7000	30	,	4.5	P 2
ECH 3		Triode-Hexode		6.3	0.2	250	3	100	. 3	-2 -23	650	1300			
ECH 4		Triode-Hexode		6.3	0.35	250	3	100	6.2						P 5
EF 6		Pentode.	••	6.3	0.33	250	3	100		-2	750	1400			P 6
•		nicht regelbar		0,3	0.2	230	,	100	8,0	-2	1800	2500			P 3
EF 9		Pentode, regelbar		6,3	0.2	250	6	100	1.7	-2.5 -49	2200	1250			Р3

TESLA

Rectifying valves

	Cath	o d e		A n	o d e		Ri	Electrodes	Maximum	Maximum
1ype	V' (V)	If (A)	Va (kV)	la (m A)	Wa (W)	le (A)	2	connected to the base	height H (mm)	diameter
RAPERA	12	3,5	3	0,7		0,002		F, A	103	45
RA - 1/2 A	6.0	4,1 = 5,3	1.5	320	34		1/0	F	215	52
<i>H</i> Δ = 0, Δ	12,5	.2 26	10	350		1,2	760 1100		550	182
RA / YA	. 13.6 = 26.6	t : 76	15	2000	60 ×	7	100		880	120
RA YA	1.0 26,6	110 125	20	7000	200 ::	20	75		1155	178

Mercury vapour rectifying valves and thyratrons.

_	Cath	o d e		Αn	o d e		Electrodes	Maximum	Maximum
Туре	Vf (V)	If (A)	Va (k\)	la (A)	lap (A)	Vi (kV)	connected to the base	height H (mm)	diameter (mm)
UA 1.A	4,0	9 13	8	1	5	9	F	295	65
UAIA	5.0	12,5 - 14,5	11		15	12	F	375	71
UC 16 XF	5,0	29 35	17	46	80	20	F, G	530	153
	i i						1	İ	

Oscillator
Modulator
A F. Amplifier
R F. Amplifier
Power Amplifier
Industrial Oscillator
Voltage Control Suitable as:

(Va - 2000 V: Ia = 1 A)
 (Va - 2000 V: Vq - 450 V)
 (Va - 1200 V: Ia - 50 mA)
 (Va - 1200 V: Ia - 50 mA)
 The same tube of slightly different dimensions is marked: RD 5 XG
 The same tube with a different radiator is marked: RD 12 XB

COK 32482 1 - 562 - SCT (4 - 54

ELEKTRONENRÖHREN

TESLA

DATEN DER TESLA-ELEKTRONENRÖHREN

_					Herzu			no že	Sehire	ngetter							
Гуре	Aq,	deer	Verwendungstre	A.,	Span		Spani	Str: m	Spar.	Strom	Steuergieter Spannung	Steilheit	Aider stand	Aussen wider- stand	Lenning	Socket	
									•	mA	v	A V		***	~	Nr	
		tter	erohren:														
1AF33	155	(1)	Diode-Pentode	dır.	1.4	0.025	67.5	1.6	67.5								
1F33	1T4	(1)	NF-Detektor		1.4	0.025	90	3.5	67.5	0.4	0	500	600	1000		H 2	
			Pentode			0.023	,,	3.3	67.5	1.4	Ġ	750	500	400		H 1	
1H33	185	(1)	HF-Verstarker		1.4	0.025	90	1.37	67.5	3.2	0	300					
			Pentagrid						57,5	3.2	0	300	600			H 3	
			Oszillator- u. Mischr.														
11.33	154	(1)	Pentode														
		1.17	NF-Verstarker	**	1.4	0.050	90	7,5	67.5	1,5	7	1400	100	8	0.23	H 4	
3L31	3A4	(1)	Pentode		1.4	0,1									0.23	п.	
			NF- u. HF-Verst.	**	2.8	0.050	135	14.8	90	2.6	- 7.5	1900					
3L35	(3A4)	(1)	Pentode		1.4	0.050				2.0	- 7.3	1900	90	8	0.6	H 5	
		(2)	NF- u. HF-Verst.		2.8	0.050	135	14.8	90	2.6	7.5	1900	90	8			
1 A F 3 4	(155)	(4)	Diode-Pentode		1.2	0.030	67.5	1,6	67.5					-	0.6	H SA	
1634			NF-Detektor			0,030	07.5	1.0	67.5	0.4	0	500	600	1000		H 2	
11:34	(1T4)	(4)	Pentode		1,2	0.030	90	3.5	67.5	1.4	0	750	500				
1H34	404		HF-Verstarker						0,,5			/50	500	400		H 1	
17134	(1R5)	(4)	Pentagrid		1.2	0,030	90	1.37	67.5	3.2	0	300	600				
1L34	(154)	(4)	Oszill u. Mischr. Pentode							-,-	•	300	600			H 3	
	(134)	(*)	NF-Verstarker	**	1,2	0.060	90	7.5	67,5	4.5	-7	1400	100	8	0.23	H 4	
2L 32			Strahlpentode												0.23	н 4	
			NF- u HF-Verst.	. **	1,2	0.12											
2L33	(3A4)	(4)			2,4	0.060	90	9.5	90	2,2	-4,5	1500	100	8	0.12	H S _B	
		,	NF. v. HF-Verst		1.2	0.120										>6	
2L34			Pentode		2.4	0.060	135	14.8	90	2.6	7.5	1900	90	8	0.6	H 6	
			NF-Verstarker	••	1,2	0.060	90	7.4	17.5		_						
21.35			Pentode		2.4	0.030	,0	7.9	67.5	1.4	7	1400	100	8	0.23	H 7	
			NF- u. HF-Verst.		1,2	0,120	135	14.8	90	2.6	2.5						
					2.4	0.060		,0	,v	4.0	-7.5	1900	90	8	0.6	H 8	

tes.

Ca'g (pF)	Cg/c (pF)	Ca c (pF)	Suitable as	Electrodes connected to the base	Maximum height H (mm)	Maximum diameter (mm)	
8,0	9,0	3,5	1, 3, 5	F, G, A	163	65	
11	7,5	5,5	1, 5	F	200	50	
15,6	18,2	2,3	1, 5	_	300	125	
6,5	6,0	1,5	1, 3, 5, 6	F	272	75	
8,3	16,4	0,75	5		445	182	
11,0	17.6	1,3	1, 5	_	550	102	
7,3	9,4	2,1	1, 2, 3, 5		275	125	
10,0	9,8	1,1.	1, 2, 3		320	165	
11,0	17,0	1,3	2, 3		550	182	
11,0	17,0	2,0	2, 3		550	182	
15,9	32,2	1,6	5	F I	440	180	
14,6	26,4	13,8	3	F	400	105	
14,6	26,4	13,8	3	F	455	180	
	12	1,0	1, 3, 4		195	92	
18,5	23,5	3,0	1, 3, 4, 5		292	205	
29,5	26,6	1,5	1, 5		700	215	
25,5	26,8	2,6	3, 4		700	215	
21,5	29,6	2,3	3, 5, 6		790	206	
40	58	2	1, 3, 5		485	170	
45	65	7	5, 6		1090	209	
27	23	1,3	5		630	115	
18,5	23,5	3,0	1, 3, 4, 5		295	110	
29,5	26,6	1,5	1, 5	-	700	115	
29,5	28,6	1,5	1, 5		700	115	
25,5	26,8	2,6	3		700	115	
21,5	29,6	2,3	1, 3, 5		790	155	
40	58	2	1, 3, 5	-	485	170	
45	65	. 7	1, 5		1150	273	
45	65	7	1, 5		1090		
40	50	8	3, 4		1120	273	
51	101	6,6	5		1120	273	
55	106	6	5		1120	273 254	

Ci (pF)	Co (pF)	Ca/g, (pF)	Suitable as	Electrodes connected to the base	Maximum height H (mm)	Maximum diameter (mm)	
11	9	0,15	1, 5, 7	F, G, G	154	91	
			3, 5	F, G, G,	267	150	
	10	0,01	1, 5	F, G, G,	265	65	

ELEKTROSENRÖHREN DATEN DER TESLA-ELEKTRONENRÖHREN Art nung V A V mA 6.3 V Miniaturrohren für Wechselstrom:
6831 (6ALS) (2) Dependiode ... d. 3 0.3 Detektor ... d. 6.3 0.4 Detektor ... d. 6.3 0.45 Detektor 150 2×9 I_{max} 2 x 54 mA 2 × 0,3 H 11 250 1600 H 12 ., 6,3 0,175 180 120 2,2 -2 4600 H 14 120 --2 H 15 ., 6.3 0,175 120 3500 H 16 6,3 0,45 300 150 2.5 -2 300 150 2.5 -2 1000 H 16 9000 475 H 17 ., 6.3 0,45 250 4100 52 H 18 45 250 4,5 -12,5 .. 6.3 0.4 150 .. 6,3 0,45 200 H 19 H 20 Allstrom-Rohr H 10 H 12 .. 12,6 0,15 150 9 .. 12,6 0,15 250 1,2 13B31 12BC32 (12AV6)

Erklärungen:
(1) Schwacher Heizstrom
(2) Andere Sockelschaltung
(4) Andere Heizspannung Äquivalente in Klammern sind indire-Sockelschaltungen : 1 0 0 0 (2) ė

〇 刀

Technical	.1 . 4

TESLA High power transmitting tubes and rectifying val

RI RI RI RI RI	RD 25 A RD 60 A RD 150 A RD 200 B RD 500 A RD 750 A	Vf (V) 4,0 10,0 12,5 10,8 17,0 18.5	If (A) 1,75 - 2,2 1,7 - 2,0 2,8 - 3,2 4,0 - 4,4	Va (kV) 0,6 1,5 2,5	0,17 0,2	Wa (W)	le (A)	9,5	Ri (k Ω)	(mA V)	f max (Mc s;
RI RI RI RI	RD 60 A RD 150 A RD 200 B RD 500 A RD 750 A	10.0 12,5 10,8 17,0	1,7 — 2,0 2,8 — 3,2 4,0 — 4,4	1,5 2,5	0,2			9,5	1.265	7.5	
cooled RI RI	RD 150 A RD 200 B RD 500 A RD 750 A	12,5 10,8 17,0	2,8 — 3,2 4,0 — 4,4	2,5							
cooled RI	RD 200 B RD 500 A RD 750 A	10,8 17,0	4,0 — 4,4	and the second second second second second second	0.0			25.0	5.0	5,0	25
	RD 500 A RD 750 A	17,0		0.0	0.2	150	0,8	14 18	4.5 - 6,0		50
	RD 750 A			3,5	0,275	200	2,0	20 24	5,0		20
		10 5	. 10,0 - 13.0	5,0	0,2	500	0.8	35 - 45	15 18	-	60 .
	'D 200 A	10,5	21.0 - 26,0	10,5	0,4	750	2.0	60 - 100		-	2
ا ي ي		12,5	5,25 - 5,75	3,0	0,1	200	0,275	8 - 12	20 7 — 11		2
1 1 g 2 1	D 400 A	13,5	12,6 - 14,4	4,0	0,15	400	0.75	23 - 30			20
~ - 1	D 600 A	16,0	8,5 9,5	10,0		600	0.36	11 - 15	11 — 17 5 — 7		2:0
	D 800 A	17,0	8,7 — 9,7	5,0	The second second second second	800	0,6	7 - 9	2,8 - 3,8		
	N 1 XA	15 8 — 17,0	19 24	10,0	0,4	1000	2,3	31 - 39	10.5 — 15.3		30
	D 1 XA	17,6 — 20,0	22 - 27	6,0		1100	2,2	6,0 - 7,5	10,5 = 13,5		90
ZD 1 XB		17,6 20,0	22 - 27	6,0	******	1200	2.2	6.0 - 7.5			
	D 2 XF	12,0	45 55	5,0	1	2000	5.0	20 - 24	3.5 - 4.5	9 1)	
	D 5 XF 4)	11,0	115 — 135	8,5	2	5000	9.3	19 21	2.0 - 2.5	10	150
a a	D 8 XA	18,5 — 20,6	66 — 74	12,0	2	8000	11.0	33 - 44	4,4 - 6	,,,	190
8 2	D 8 XA	15 9 19,6	68 — 77	12,0		8000	7.0	5.4 — 7.0			3
	D 12 XA 5)	18,0 — 20,0	94 — 102,0	15,0	2,5	12000	13.2	40 50	4.5 - 5.2		20
•	D 20 XF	19,5	220 — 240	15	5	20000	30	34 38	4,3 - 3,2	15	30
	D 50 XA	30,0 — 33,0	210 - 240	20	10	50000	50	44 — 52	2.0 — 2,5		25
	D 5 YA	18 — 20	44 — 56	10	1	5000	5.5	34 - 43	6.0 - 8.5		3
,	D 5 YF	11,0	115 - 135	8,5	2	5000	9,3	19 — 21	2.0 - 2.5	10	100
1	D 12 YA	18.5 — 20,6	66 — 74	15	2	12000	11	33 – 44	4.4 6	''	termina.
	D 12 YE	18,5 — 20,6	66 — 74	12	2	12000	11	33 — 44	4.4 6		3 30
¥ 1	D 12 YA	15,9 — 19,6	68 — 77	12	1,5	12000	7	5.4 — 7			
, e RD	D 18 YA	18,0 - 20,0	94 — 104	15	2,5	18000	13.2	40 — 50	4,5 - 5,2		20
	D 20 YF	19,5	220 240	15	5	20000	30,0	34 — 38		15	36
B RD	D 75 YA	30,0 — 33	220 — 250	20	10	75000	50,0	44 52	2.0 2.5	-13	2
0 1	O 75 YB	30 — 33	220 250	20	10	75000	50,0	14 — 52	2,0 - 2.5		3
	75 YA	28 — 30,5	210 240	20	1	75000	35,0	9.5 — 10.5		20	
-	D 150 YA	31,5 — 34,0	440 — 470	20	20	150000	100,0	40 - 48	0,6 - 1,2	~	!
₹ RD	150 YB	31,5 — 54,0	440 — 470	20	20	150000	100,0	40 - 48	0.8 - 1.2		3 24

Tetrodes and pentodes

							letrodes and pentodes						
Typo	Cathode		Anode			Grids							
Туре	Vf (V)	If (A)	Va la (kV) (mA)	Wa (W)	le (A)	Wg. (W)	Vg. (V)	lg. (mA)	Wg. (W)	(mA,V)	μ	f max. (Mc s)	
RE 1000 F RE 1000 F RL 65 A	5 7,5 10,0	12,5 — 15,5 23 — 29 1,66 — 2,05	4 350 6 700 1,5 125	400 1000 65	2,5 5	15 25	600 1000 400	20	40 70 15	4,5 2) 10 1,5 3)	7,2	150 150 15	

POOR ORIGINA

Sanitized Copy Approved for Release 2010/08/18 : CIA-RDP81-01043R000700220007-9

POOR PORIGINAL

Sanitized Copy Approved for Pologoe 2010/09/19 : CIA PDP91 01043P000700220007 0