

과목	인공지능응용프로그래밍
교수	강환수 교수님
학과	컴퓨터정보공학과
학번	20170657
이름	김세진

Αl

인공지능 (artificial Intelligence, AI)은 인간의 학습능력, 추론능력, 지각능력, 자연언어의 이해 능력 등을 컴퓨터 프로그램으로 실현한 기술이다. 하나의 인프라 기술이기도 하다.

앨런 튜링 - 1950년, 논문 을 발표 (튜링 테스트) 생각하는 기계의 구현 가능성에 대한 내용

1950년 앨런 튜링에 의해 개발된 튜링 테스트는 인간의 것과 동등하거나 구별할 수 없는 지능적인 행동을 보여주는 기계의 능력에 대한 테스트다.

인공지능(Artificial Intelligence)의 처음 사용은 1956년 다트머스대 학술대회이며 세계 최초의 AI 프로그램인 논리 연산기(Logic Theorist)를 발표했다.

머신러닝

머신 러닝(Machine Learning)은 경험을 통해 자동으로 개선하는 컴퓨터 알고리즘의 연구이다.[1] 인공지능의 한 분야로 간주된다. 컴퓨터가 학습할 수 있도록 하는 알고리즘과 기술을 개발하는 분야이다. 가령, 기계 학습을 통해서 수신한 이메일이 스팸인지 아닌지를 구분할 수 있도록 훈련할 수 있다.

스스로 데이터를 반복적으로 학습하여 기술을 터득하는 방식 성능을 향상시키거나 최적의 해답을 찾기 위한 학습 지능 방법이다.

- 명시적으로 프로그래밍(explicit programming)을 하지 않아도 컴퓨터가 학습을 할 수 있도록 해주는 인공지능의 한 형태
- 더 많은 데이터가 유입되면, 컴퓨터는 더 많이 학습을 하고, 시간이 흐르면서 더 스마트 해져서 작업을 수행하는 능력과 정확도가 향상

텐서플로(TensorFlow)란?

- 구글(Google)에서 만든 라이브러리
- 연구 및 프로덕션용 오픈소스 딥러닝 라이브러리
- 딥러닝 프로그램을 쉽게 구현할 수 있도록 다양한 기능을 제공
- 데스크톱, 모바일, 웹, 클라우드 개발용 API를 제공
- Python, Java, Go 등 다양한 언어를 지원

졸업작품 프로젝트 (텐서플로우 활용) 음성인식 -> 분류 기능

Numpy, tensorflow, librosa, flask 등 라이브러리 활용

```
import numpy as np
import tensorflow as tf
import librosa
fromflask import Flask, request
import os
old_v = tf.compat.v1.logging.set_verbosity
tf.logging.set_verbosity(tf.compat.v1.logging.ERROR)
def extract_feature(file_name):
  X, sample_rate = librosa.load(file_name)
  stft = np.abs(librosa.stft(X))
  mfccs = np.mean(librosa.feature.mfcc(y=X, sr=sample_rate,
n_mfcc=40).T,axis=0)
  chroma = np.mean(librosa.feature.chroma_stft(S=stft,
sr=sample_rate).T,axis=0)
  mel = np.mean(librosa.feature.melspectrogram(X,
sr=sample_rate).T,axis=0)
  contrast = np.mean(librosa.feature.spectral_contrast(S=stft,
sr=sample_rate).T,axis=0)
  tonnetz =
np.mean(librosa.feature.tonnetz(y=librosa.effects.harmonic(X),
sr=sample_rate).T,axis=0)
  return mfccs,chroma,mel,contrast,tonnetz
n \, dim = 193
n_classes = 10
n_hidden_units_one = 300
n_hidden_units_tw o = 200
n_hidden_units_three = 100
sd = 1 / np.sqrt(n_dim)
X = tf.placeholder(tf.float32,[None,n_dim])
Y = tf.placeholder(tf.float32,[None,n_classes])
W_1 = tf.Variable(tf.random_normal([n_dim, n_hidden_units_one],
mean=0, stddev=sd), name="w 1")
b_1 = tf.Variable(tf.random_normal([n_hidden_units_one], mean=0,
stddev=sd), name="b1")
h_1 = tf.nn.sigmoid(tf.matmul(X, W_1) + b_1)
W 2 = tf. Variable(tf.random normal([n hidden units one,
n_hidden_units_tw o], mean=0, stddev=sd), name="w 2")
b_2 = tf.Variable(tf.random_normal([n_hidden_units_two], mean=0,
stddev=sd), name="b2")
h_2 = tf.nn.tanh(tf.matmul(h_1, W_2) + b_2)
W_3 = tf.Variable(tf.random_normal([n_hidden_units_two,
n_hidden_units_three], mean=0, stddev=sd), name="w 3")
b 3 = tf. Variable(tf.random normal([n hidden units three], mean=0,
stddev=sd), name="b3")
h_3 = tf.nn.sigmoid(tf.matmul(h_2, W_3) + b_3)
W = tf.Variable(tf.random_normal([n_hidden_units_three, n_classes],
mean=0, stddev=sd), name="w")
b = tf.Variable(tf.random_normal([n_classes], mean = 0, stddev=sd),
name="b")
z = tf.matmul(h_3, W) + b
y_sigmoid = tf.nn.sigmoid(z)
y_{-} = tf.nn.softmax(z)
```

init = tf.initialize_all_variables()

```
saver = tf.train.Saver()
sess = tf.Session()
sess.run(init)
saver.restore(sess, 'C:/Users/hiloo/Desktop/test/model.ckpt')
app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = './upload'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024
@app.route('/upload', methods=['POST'])
def upload_file():
if 'file' not in request.files:
     return"
  file = request.files['file']
if file.filename == ":
     return"
audio_file = os.path.join(app.config['UPLOAD_FOLDER'], file.filename)
  file.save(audio_file)
mfccs, chroma, mel, contrast,tonnetz = extract_feature(audio_file)
  x data = np.hstack([mfccs,chroma,mel,contrast,tonnetz])
  y_hat, sigmoid = sess.run([y_, y_sigmoid], feed_dict={X:
x_data.reshape(1,-1)})
  index = np.argmax(y_hat)
  print(sigmoid)
return '%d' % (index)
if __name__ == '__main__':
      app.run()
```


수험표

제27회 데이터분석 준전문가(ADsP)

수험번호 0272068 성명 김세진

생년월일980823 - *******시험일자2020년 11월 22일

시험시작시간 10:00 (09:30까지 입실, 시험시작 후 입실 불가)

시험장소 서울 동작구 대방동1길 46 서울공업고등학교

발표예정일 2020.12.22(화)

교과목 응용

교과목에서 배운 내용을 토대로 ADSP 시험 준비

2020 DMU LINC+ 사회맞춤형 팀 프로젝트 경진대회 장려상 수상 (청각장애인을 위한 스마트 안경 BF 글래스)