

TRƯỜNG ĐẠI HỌC CÔNG NGHỆ THÔNG TIN

KHOA KỸ THUẬT MÁY TÍNH

IT012 – TỔ CHỨC VÀ CẦU TRÚC MÁY TÍNH II

CHƯƠNG 9 HIỆU SUẤT MÁY TÍNH

TRƯƠNG VĂN CƯƠNG

Thành phố Hồ Chí Minh, tháng 09 năm 2022

Nội dung

- Các tiêu chí đánh giá hiệu suất.
- Các kỹ thuật nâng cao hiệu suất.
- Bài tập.

Nội dung

- Các tiêu chí đánh giá hiệu suất.
- Các kỹ thuật nâng cao hiệu suất.
- Bài tập.

- 1. Thời gian thực thi và Hiệu suất
- 2. Clock
- 3. CPI

- 1. Thời gian thực thi và Hiệu suất
- 2. Clock
- 3. CPI

Thời gian thực thi và Hiệu suất

Thời gian thực thi: Tổng thời gian để hoàn thành một tác vụ nào đó Truy cập ổ đĩa, bộ nhớ, I/O, OS, v.v...

Hiệu suất: Số lượng tác vụ hoàn thành trong một đơn vị thời gian

$$Hiệu suất = \frac{1}{Thời gian thực thi}$$

Thời gian thực thi và Hiệu suất

Máy tính X có hiệu suất cao hơn máy tính Y nghĩa là gì?

Hiệu suất $_{ m X}$	>	Hiệu suất $_{ m Y}$
1		1
Thời gian thực thi _X		Thời gian thực thiy
Thời gian thực thi χ	<	Thời gian thực thiy

Thời gian thực thi và Hiệu suất

- Máy tính A cần 10s để hoàn thành chương trình P. Máy tính B cần 15s để hoàn thành chương trình P.
 - Máy tính nào có hiệu suất cao hơn?
 - Nhanh hơn bao nhiêu lần?

- 1. Thời gian thực thi và Hiệu suất
- 2. Clock
- 3. CPI

- 1. Thời gian thực thi và Hiệu suất
- 2. Clock
- 3. CPI

Clock

- Máy tính cần một clock để xác định khi nào một thao tác được thực hiện trong phần cứng.
 - Khối tạo ra các khoảng thời gian định thời cho máy tính làm việc này được gọi là khối tạo clock.
- Hai khái niệm liên quan đến clock:
 - > Chu kỳ (Clock cycle)
 - > Tần số (Clock rate hoặc clock frequency)

· Chu kỳ clock và tần số clock

Chu kỳ clock = 0.5 x 10⁻⁹ giấy

(Clock cycle time/clock cycle/ cycle time)

Tần số clock (Clock rate) =
$$\frac{1}{\text{Chu kỳ clock}} = \frac{1}{0.5 \times 10^{-9}} = 2 \times 10^{9} \text{ Hz} = 2 \text{ GHz}$$

Clock

Thời gian thực thi = Tổng số chu kỳ clock * Chu kỳ clock

Thời gian thực thi =
$$\frac{\text{Tổng số chu kỳ clock}}{\text{Tần số clock}}$$

Tăng hiệu suất bằng cách giảm chu kỳ clock (tăng tần số clock)

Clock

- Máy tính A chạy ở tần số 2 Ghz cần 10s để hoàn thành chương trình P. Máy tính B chỉ cần 6s để hoàn thành chương trình P nhưng tổng số chu kỳ cần để hoàn thành chương trình P nhiều gấp 1.2 lần so với máy tính A.
 - Máy tính B chạy ở tần số bao nhiêu?

- 1. Thời gian thực thi và Hiệu suất
- 2. Clock
- 3. CPI

- 1. Thời gian thực thi và Hiệu suất
- 2. Clock
- 3. CPI

Tổng số chu kỳ clock = Tổng số lệnh * CPI

Thời gian thực thi = Tổng số lệnh * CPI * Chu kỳ clock

Thời gian thực thi =
$$\frac{\text{Tổng số lệnh} * \text{CPI}}{\text{Tần số clock}}$$

- Máy tính A: Chu kỳ clock = 250ps, CPI = 2.0
- Máy tính B: Chu kỳ clock = 500ps, CPI = 1.2
- Cả 2 máy tính đều có cùng ISA. Máy tính nào nhanh hơn và nhanh hơn bao nhiêu lần?

• Mỗi tập lệnh có nhiều nhóm lệnh khác nhau

Chu kỳ clock =
$$\sum_{i=1}^{n} (CPI_{i} * Số lệnh trong nhóm_{i})$$

$$CPI = \frac{\text{chu kỳ clock}}{\text{Tổng số lệnh}} = \sum_{i=1}^{n} \left(CPI_{i} * \frac{\text{Số lệnh trong nhóm}_{i}}{\text{Tổng số lệnh}} \right)$$

- Có 2 cách biên dịch chương trình bằng cách sử dụng các nhóm lệnh A, B, C như bảng dưới.
 - Cách biên dịch nào tạo ra tổng số lệnh nhỏ hơn?
 - ➤ Cách biên dịch nào tạo ra chương trình chạy nhanh hơn? CPI là bao nhiêu?

Nhóm lệnh	A	В	C
CPI cho mỗi nhóm	1	2	3
Số lệnh cho cách 1	2	1	2
Số lệnh cho cách 2	4	1	1

Nội dung

- Các tiêu chí đánh giá hiệu suất.
- Các kỹ thuật nâng cao hiệu suất.
- Bài tập.

Nội dung

- Các tiêu chí đánh giá hiệu suất.
- Các kỹ thuật nâng cao hiệu suất.
- Bài tập.

Các kỹ thuật nâng cao hiệu suất.

- Các thành phần của hiệu suất:
 - Thời gian thực thi
 - Tổng số lệnh
 - Tần số
 - CPI

Các kỹ thuật nâng cao hiệu suất.

Yếu tố phần cứng/phần mềm	Tác động vào gì?
Thuật toán	Tổng số lệnh, và có thể cả CPI
Ngôn ngữ lập trình	Tổng số lệnh, CPI
Trình biên dịch	Tổng số lệnh, CPI
Kiến trúc tập lệnh	Tổng số lệnh, tần số, CPI

Các kỹ thuật nâng cao hiệu suất.

- Giảm thời gian thực thi
 - Tăng tần số clock (Bị giới hạn bởi phần cứng)
 - Pipeline: Thực thi đồng thời **nhiều lệnh** bằng cách chia chu kỳ thực thi lệnh thành các stage. Tại một thời điểm, một lệnh chỉ được thực thi một stage
 - Tiên đoán: Dự đoán việc nhảy (các lệnh nhảy) có xảy ra hay không
 - Multicore: Thực thi đồng thời nhiều chương trình bằng cách tăng số lượng bộ xử lý
 - Multithread: Thực thi đồng thời nhiều tác vụ bằng cách tăng số lượng đơn vị xử lý
 - Phân cấp bộ nhớ: Sử dụng các bộ nhớ nhanh cho việc thao tác với dữ liệu, sử dụng các bộ nhớ chậm cho việc lưu trữ dữ liệu, ...