$12n_{0312} \ (K12n_{0312})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -5.27353 \times 10^{50} u^{39} + 5.95554 \times 10^{50} u^{38} + \dots + 5.81254 \times 10^{51} b + 4.59993 \times 10^{51}, \\ &-7.75948 \times 10^{50} u^{39} - 3.86755 \times 10^{51} u^{38} + \dots + 5.81254 \times 10^{51} a - 9.39756 \times 10^{51}, \ u^{40} - 2u^{39} + \dots + 7u + 1 \\ I_2^u &= \langle 2u^{14} - u^{13} + 8u^{12} - 5u^{11} + 19u^{10} - 13u^9 + 27u^8 - 16u^7 + 28u^6 - 9u^5 + 20u^4 + u^3 + 10u^2 + b + 2u + 2, \\ &- u^{15} - 2u^{14} + \dots + a - 2, \ u^{16} - u^{15} + \dots - u + 1 \rangle \end{split}$$

* 2 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 56 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -5.27 \times 10^{50} u^{39} + 5.96 \times 10^{50} u^{38} + \dots + 5.81 \times 10^{51} b + 4.60 \times 10^{51}, \ 7.76 \times 10^{50} u^{39} - 3.87 \times 10^{51} u^{38} + \dots + 5.81 \times 10^{51} a - 9.40 \times 10^{51}, \ u^{40} - 2u^{39} + \dots + 7u + 1 \rangle$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.133496u^{39} + 0.665380u^{38} + \dots + 15.0043u + 1.61677 \\ 0.0907267u^{39} - 0.102460u^{38} + \dots + 0.430261u - 0.791380 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.224885u^{39} + 0.863520u^{38} + \dots + 12.9927u + 1.29738 \\ -0.000662998u^{39} + 0.0956792u^{38} + \dots - 1.58129u - 1.11078 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.133496u^{39} + 0.665380u^{38} + \dots + 15.0043u + 1.61677 \\ -0.100609u^{39} + 0.340183u^{38} + \dots + 22.22497u - 1.18977 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1.39954u^{39} - 3.02014u^{38} + \dots + 26.1706u + 4.28089 \\ 0.281992u^{39} - 0.623894u^{38} + \dots + 2.36583u + 0.204479 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0433203u^{39} + 0.378199u^{38} + \dots + 15.8786u + 2.05202 \\ 0.483864u^{39} - 1.27646u^{38} + \dots - 0.426089u - 1.03092 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.08778u^{39} + 5.36211u^{38} + \dots - 10.8586u - 2.03985 \\ -0.147373u^{39} + 0.395336u^{38} + \dots - 2.10105u - 0.958378 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4.30999u^{39} 10.1429u^{38} + \cdots + 42.2706u + 1.05077$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{40} + 6u^{39} + \dots + 23u + 1$
c_2, c_6	$u^{40} - 2u^{39} + \dots + 7u + 1$
c_3	$u^{40} + 5u^{39} + \dots + 5688833u + 456713$
c_4, c_{10}	$u^{40} + 13u^{38} + \dots - 4u + 7$
c_5,c_8	$u^{40} + u^{39} + \dots + 4497u + 361$
c_7	$u^{40} + 3u^{39} + \dots - 4u + 1$
<i>C</i> 9	$u^{40} - 5u^{39} + \dots - 361724u + 608312$
c_{11}	$u^{40} - 26u^{39} + \dots - 362u + 49$
c_{12}	$u^{40} - u^{39} + \dots - 3750504u + 772753$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{40} + 66y^{39} + \dots - 193y + 1$
c_2, c_6	$y^{40} + 6y^{39} + \dots + 23y + 1$
<i>C</i> ₃	$y^{40} + 123y^{39} + \dots + 6314489480935y + 208586764369$
c_4, c_{10}	$y^{40} + 26y^{39} + \dots + 362y + 49$
c_5,c_8	$y^{40} - 59y^{39} + \dots + 134503y + 130321$
c_7	$y^{40} - y^{39} + \dots + 8y + 1$
<i>c</i> 9	$y^{40} + 53y^{39} + \dots + 1499383242864y + 370043489344$
c_{11}	$y^{40} - 18y^{39} + \dots - 40394y + 2401$
c_{12}	$y^{40} + 77y^{39} + \dots - 906264208390y + 597147199009$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.262608 + 0.958166I		
a = -0.189880 + 0.941685I	-0.43866 + 2.24384I	-3.81906 - 5.12194I
b = 0.00591 + 1.77956I		
u = 0.262608 - 0.958166I		
a = -0.189880 - 0.941685I	-0.43866 - 2.24384I	-3.81906 + 5.12194I
b = 0.00591 - 1.77956I		
u = 0.926209 + 0.156398I		
a = 0.217139 + 0.674278I	2.50089 + 2.28563I	2.12764 - 2.97233I
b = 0.392314 - 0.960986I		
u = 0.926209 - 0.156398I		
a = 0.217139 - 0.674278I	2.50089 - 2.28563I	2.12764 + 2.97233I
b = 0.392314 + 0.960986I		
u = -0.415141 + 0.823170I		
a = -0.510209 - 1.251400I	4.59855 + 0.55508I	3.65213 + 0.54524I
b = 0.404330 - 0.813064I		
u = -0.415141 - 0.823170I		
a = -0.510209 + 1.251400I	4.59855 - 0.55508I	3.65213 - 0.54524I
b = 0.404330 + 0.813064I		
u = -0.709121 + 0.812210I		
a = 0.656724 + 0.475234I	4.83926 - 5.18733I	5.25176 + 6.54277I
b = 0.73014 + 1.50996I		
u = -0.709121 - 0.812210I		
a = 0.656724 - 0.475234I	4.83926 + 5.18733I	5.25176 - 6.54277I
b = 0.73014 - 1.50996I		
u = 0.319846 + 1.045980I		
a = 0.260908 + 0.248366I	-1.70481 + 5.48650I	-4.87092 - 6.70893I
b = -0.336124 - 0.552993I		
u = 0.319846 - 1.045980I		
a = 0.260908 - 0.248366I	-1.70481 - 5.48650I	-4.87092 + 6.70893I
b = -0.336124 + 0.552993I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.751933 + 0.494508I		
a = 1.392250 + 0.221845I	1.51098 + 1.78901I	0.82025 - 3.56687I
b = 0.514073 - 0.795694I		
u = 0.751933 - 0.494508I		
a = 1.392250 - 0.221845I	1.51098 - 1.78901I	0.82025 + 3.56687I
b = 0.514073 + 0.795694I		
u = -0.297122 + 0.826943I		
a = -0.493050 + 0.530886I	-2.88688 - 1.42829I	-8.07911 - 0.82991I
b = -0.409100 - 0.824445I		
u = -0.297122 - 0.826943I		
a = -0.493050 - 0.530886I	-2.88688 + 1.42829I	-8.07911 + 0.82991I
b = -0.409100 + 0.824445I		
u = 0.294371 + 0.826929I		
a = 0.378431 + 0.565801I	-0.24576 + 1.84711I	-2.38841 - 3.47069I
b = 0.768928 + 0.890271I		
u = 0.294371 - 0.826929I		
a = 0.378431 - 0.565801I	-0.24576 - 1.84711I	-2.38841 + 3.47069I
b = 0.768928 - 0.890271I		
u = -1.054610 + 0.435101I		
a = -1.58864 + 0.59883I	4.29616 - 5.85650I	5.18701 + 8.29672I
b = -0.25725 - 1.66736I		
u = -1.054610 - 0.435101I		
a = -1.58864 - 0.59883I	4.29616 + 5.85650I	5.18701 - 8.29672I
b = -0.25725 + 1.66736I		
u = 0.454261 + 1.183960I		
a = 0.032608 + 0.790796I	-0.78848 + 2.37152I	-2.00000 + 0.I
b = 0.87425 + 1.29247I		
u = 0.454261 - 1.183960I		
a = 0.032608 - 0.790796I	-0.78848 - 2.37152I	-2.00000 + 0.I
b = 0.87425 - 1.29247I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.12042 + 0.91969I		
a = -1.129020 + 0.673147I	16.0958 + 2.3517I	0
b = -0.30929 + 1.59265I		
u = 1.12042 - 0.91969I		
a = -1.129020 - 0.673147I	16.0958 - 2.3517I	0
b = -0.30929 - 1.59265I		
u = -1.04883 + 1.00662I		
a = -0.943173 - 0.988165I	11.50030 + 0.22277I	0
b = 0.16566 - 1.65850I		
u = -1.04883 - 1.00662I		
a = -0.943173 + 0.988165I	11.50030 - 0.22277I	0
b = 0.16566 + 1.65850I		
u = -1.01766 + 1.04986I		
a = 1.113840 + 0.762342I	11.34810 - 7.79886I	0
b = 0.69672 + 2.05244I		
u = -1.01766 - 1.04986I		
a = 1.113840 - 0.762342I	11.34810 + 7.79886I	0
b = 0.69672 - 2.05244I		
u = -0.407119 + 0.328791I		
a = 1.96312 + 0.79373I	1.42527 - 5.22858I	-1.53718 + 8.98097I
b = 1.54195 - 0.43951I		
u = -0.407119 - 0.328791I		
a = 1.96312 - 0.79373I	1.42527 + 5.22858I	-1.53718 - 8.98097I
b = 1.54195 + 0.43951I		
u = -0.87350 + 1.19690I		
a = -0.196741 + 0.749309I	0.46508 - 3.72342I	0
b = -2.00712 + 0.06148I		
u = -0.87350 - 1.19690I		
a = -0.196741 - 0.749309I	0.46508 + 3.72342I	0
b = -2.00712 - 0.06148I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.96551 + 1.14045I		
a = 0.808271 - 0.969514I	15.3328 + 5.2849I	0
b = 0.22694 - 1.92160I		
u = 0.96551 - 1.14045I		
a = 0.808271 + 0.969514I	15.3328 - 5.2849I	0
b = 0.22694 + 1.92160I		
u = -0.455563 + 0.075943I		
a = -3.41002 + 0.16418I	4.54784 + 1.17562I	6.58243 - 1.22324I
b = -0.022227 - 0.704888I		
u = -0.455563 - 0.075943I		
a = -3.41002 - 0.16418I	4.54784 - 1.17562I	6.58243 + 1.22324I
b = -0.022227 + 0.704888I		
u = 1.03222 + 1.17188I		
a = -1.053170 + 0.792325I	15.1921 + 13.6048I	0
b = -0.64032 + 2.51487I		
u = 1.03222 - 1.17188I		
a = -1.053170 - 0.792325I	15.1921 - 13.6048I	0
b = -0.64032 - 2.51487I		
u = 1.22561 + 0.99201I		
a = 1.019900 - 0.871315I	15.9053 - 5.4238I	0
b = -0.68980 - 1.82950I		
u = 1.22561 - 0.99201I		
a = 1.019900 + 0.871315I	15.9053 + 5.4238I	0
b = -0.68980 + 1.82950I		
u = -0.074323 + 0.230026I		
a = -0.32928 + 2.47850I	-1.50780 - 0.09249I	-7.98485 - 1.09942I
b = -1.149970 - 0.375487I		
u = -0.074323 - 0.230026I		
a = -0.32928 - 2.47850I	-1.50780 + 0.09249I	-7.98485 + 1.09942I
b = -1.149970 + 0.375487I		

$$II. \\ I_2^u = \langle 2u^{14} - u^{13} + \dots + b + 2, \ u^{15} - 2u^{14} + \dots + a - 2, \ u^{16} - u^{15} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{4} + u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{15} + 2u^{14} + \dots - 7u + 2 \\ -2u^{14} + u^{13} + \dots - 2u - 2 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{14} - 4u^{12} + \dots - 3u - 1 \\ u^{15} - 5u^{14} + \dots + 2u - 5 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{15} + 2u^{14} + \dots - 7u + 2 \\ -3u^{14} + 2u^{13} + \dots - 15u^{2} - 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2u^{15} - 5u^{14} + \dots + 11u - 5 \\ -2u^{15} + 4u^{14} + \dots - 3u + 4 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{15} + 4u^{13} + \dots + u + 5 \\ u^{14} + 4u^{12} + \dots + 13u^{2} + 4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 6u^{15} - 4u^{14} + \dots + 8u + 4 \\ 5u^{15} - 7u^{14} + \dots + 11u - 5 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$-14u^{15} + 22u^{14} - 69u^{13} + 102u^{12} - 195u^{11} + 266u^{10} - 354u^9 + 393u^8 - 428u^7 + 384u^6 - 338u^5 + 239u^4 - 155u^3 + 106u^2 - 38u + 19$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{16} - 9u^{15} + \dots - 11u + 1$
c_2	$u^{16} - u^{15} + \dots - u + 1$
c_3	$u^{16} - 2u^{15} + \dots + u + 1$
c_4	$u^{16} + u^{15} + \dots + 3u^2 + 1$
<i>C</i> ₅	$u^{16} - 6u^{14} + \dots + u + 1$
	$u^{16} + u^{15} + \dots + u + 1$
	$u^{16} + 2u^{15} + \dots + 2u + 1$
<i>C</i> ₈	$u^{16} - 6u^{14} + \dots - u + 1$
<i>c</i> ₉	$u^{16} + 4u^{15} + \dots + 6u + 1$
c_{10}	$u^{16} - u^{15} + \dots + 3u^2 + 1$
c_{11}	$u^{16} - 9u^{15} + \dots - 6u + 1$
c_{12}	$u^{16} - 2u^{15} + \dots - 2u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{16} + 5y^{15} + \dots - 5y + 1$
c_2, c_6	$y^{16} + 9y^{15} + \dots + 11y + 1$
c_3	$y^{16} - 2y^{15} + \dots + 23y + 1$
c_4, c_{10}	$y^{16} + 9y^{15} + \dots + 6y + 1$
c_5,c_8	$y^{16} - 12y^{15} + \dots - 17y + 1$
c_7	$y^{16} - 6y^{15} + \dots - 12y + 1$
<i>C</i> 9	$y^{16} + 4y^{15} + \dots - 2y + 1$
c_{11}	$y^{16} + y^{15} + \dots + 2y + 1$
c_{12}	$y^{16} - 12y^{15} + \dots - 6y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.929391 + 0.578619I		
a = 1.120080 + 0.128738I	3.21916 + 5.01414I	0.26989 - 5.16816I
b = 0.91178 - 1.33839I		
u = 0.929391 - 0.578619I		
a = 1.120080 - 0.128738I	3.21916 - 5.01414I	0.26989 + 5.16816I
b = 0.91178 + 1.33839I		
u = -0.451615 + 1.007870I		
a = 0.338249 + 0.437888I	-2.35639 - 2.66812I	-6.05034 + 3.60958I
b = 0.231634 - 0.176676I		
u = -0.451615 - 1.007870I		
a = 0.338249 - 0.437888I	-2.35639 + 2.66812I	-6.05034 - 3.60958I
b = 0.231634 + 0.176676I		
u = 0.396309 + 1.073370I		
a = -0.565280 + 0.711972I	-0.63819 + 7.12816I	-3.20870 - 8.22524I
b = -1.052300 + 0.412205I		
u = 0.396309 - 1.073370I		
a = -0.565280 - 0.711972I	-0.63819 - 7.12816I	-3.20870 + 8.22524I
b = -1.052300 - 0.412205I		
u = -0.462450 + 0.682292I		
a = -0.332664 - 0.550280I	-1.24504 - 1.12270I	-5.33111 + 3.33125I
b = -0.85241 - 1.25415I		
u = -0.462450 - 0.682292I		
a = -0.332664 + 0.550280I	-1.24504 + 1.12270I	-5.33111 - 3.33125I
b = -0.85241 + 1.25415I		
u = 0.255308 + 0.671839I		
a = -0.033499 - 1.285680I	0.99305 - 4.20394I	-1.88003 + 3.39974I
b = 0.94036 - 1.49852I		
u = 0.255308 - 0.671839I		
a = -0.033499 + 1.285680I	0.99305 + 4.20394I	-1.88003 - 3.39974I
b = 0.94036 + 1.49852I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.485789 + 1.201540I		
a = -0.150894 + 1.067090I	0.487588 + 0.633074I	-0.204988 - 0.217129I
b = 0.29348 + 1.84901I		
u = 0.485789 - 1.201540I		
a = -0.150894 - 1.067090I	0.487588 - 0.633074I	-0.204988 + 0.217129I
b = 0.29348 - 1.84901I		
u = 0.030701 + 0.695739I		
a = -0.07548 - 2.07079I	3.73407 + 1.39379I	-4.07877 - 4.94416I
b = 0.336792 - 0.535431I		
u = 0.030701 - 0.695739I		
a = -0.07548 + 2.07079I	3.73407 - 1.39379I	-4.07877 + 4.94416I
b = 0.336792 + 0.535431I		
u = -0.683433 + 1.166390I		
a = -0.300514 + 0.906230I	-0.90438 - 3.31503I	-5.01594 + 7.05179I
b = -1.80932 + 0.74833I		
u = -0.683433 - 1.166390I		
a = -0.300514 - 0.906230I	-0.90438 + 3.31503I	-5.01594 - 7.05179I
b = -1.80932 - 0.74833I		

III. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ \left (u^{16} - 9u^{15} + \dots - 11u + 1)(u^{40} + 6u^{39} + \dots + 23u + 1) \right $
c_2	$ (u^{16} - u^{15} + \dots - u + 1)(u^{40} - 2u^{39} + \dots + 7u + 1) $
<i>c</i> ₃	$ (u^{16} - 2u^{15} + \dots + u + 1)(u^{40} + 5u^{39} + \dots + 5688833u + 456713) $
<i>C</i> ₄	$(u^{16} + u^{15} + \dots + 3u^2 + 1)(u^{40} + 13u^{38} + \dots - 4u + 7)$
<i>C</i> ₅	$(u^{16} - 6u^{14} + \dots + u + 1)(u^{40} + u^{39} + \dots + 4497u + 361)$
<i>c</i> ₆	$(u^{16} + u^{15} + \dots + u + 1)(u^{40} - 2u^{39} + \dots + 7u + 1)$
C ₇	$(u^{16} + 2u^{15} + \dots + 2u + 1)(u^{40} + 3u^{39} + \dots - 4u + 1)$
<i>c</i> ₈	$(u^{16} - 6u^{14} + \dots - u + 1)(u^{40} + u^{39} + \dots + 4497u + 361)$
<i>c</i> ₉	$(u^{16} + 4u^{15} + \dots + 6u + 1)(u^{40} - 5u^{39} + \dots - 361724u + 608312)$
c_{10}	$(u^{16} - u^{15} + \dots + 3u^2 + 1)(u^{40} + 13u^{38} + \dots - 4u + 7)$
c_{11}	$(u^{16} - 9u^{15} + \dots - 6u + 1)(u^{40} - 26u^{39} + \dots - 362u + 49)$
c_{12}	$(u^{16} - 2u^{15} + \dots - 2u + 1)(u^{40} - u^{39} + \dots - 3750504u + 772753)$ 16

IV. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{16} + 5y^{15} + \dots - 5y + 1)(y^{40} + 66y^{39} + \dots - 193y + 1)$
c_2, c_6	$(y^{16} + 9y^{15} + \dots + 11y + 1)(y^{40} + 6y^{39} + \dots + 23y + 1)$
c_3	$(y^{16} - 2y^{15} + \dots + 23y + 1)$ $\cdot (y^{40} + 123y^{39} + \dots + 6314489480935y + 208586764369)$
c_4, c_{10}	$(y^{16} + 9y^{15} + \dots + 6y + 1)(y^{40} + 26y^{39} + \dots + 362y + 49)$
c_5, c_8	$(y^{16} - 12y^{15} + \dots - 17y + 1)(y^{40} - 59y^{39} + \dots + 134503y + 130321)$
c_7	$(y^{16} - 6y^{15} + \dots - 12y + 1)(y^{40} - y^{39} + \dots + 8y + 1)$
<i>C</i> 9	$(y^{16} + 4y^{15} + \dots - 2y + 1)$ $\cdot (y^{40} + 53y^{39} + \dots + 1499383242864y + 370043489344)$
c_{11}	$(y^{16} + y^{15} + \dots + 2y + 1)(y^{40} - 18y^{39} + \dots - 40394y + 2401)$
c_{12}	$(y^{16} - 12y^{15} + \dots - 6y + 1)$ $\cdot (y^{40} + 77y^{39} + \dots - 906264208390y + 597147199009)$