

Dr. Nick Feamster Professor

Software Defined Networking

In this course, you will learn about software defined networking and how it is changing the way communications networks are managed, maintained, and secured.

Wireless Data Growth

AT&T

Wireless data growth 20,000% in the past 5 years

Question: How to substantially improve wireless capacity?

Source: CISCO Visual Networking Index (VNI) Global Mobil Data Traffic Forecast 2011 to 2016

OpenRadio: Access Dataplane

OpenRadio APs built with merchant DSP & ARM silicon

- Single platform capable of LTE, 3G, WiMax, WiFi
- OpenFlow for Layer 3
- Inexpensive (\$300-500)

Exposes a match/action interface to program how a flow is forwarded, scheduled & encoded

Opening Up the Radio

Why?

- Evolving protocols
- Diverse applications
- Network growth and Diverse scenarios

How?

- Decouple functionality and HW
- Judicious split of protocols
- High-level abstractions

Evolving standards

- Major 3GPP LTE releases every 18 months
- Continuous minor updates
- Old standards don't die
 - Multi-mode basestation radios
- Can we deploy once and keep updating?

Decoupled protocol definition

Programmable dataplane substrate

OpenRadio: SDN for Wireless

- Wireless network architecture that provides software interfaces to:
 - Query wireless networks about availability, quality, speed, user location ...
 - Control granularly how individual user or application traffic is handled by the network

Problems With Wireless Networks

- Wireless networks are complex & closed
- Do not expose network state
 - Hard to know available APs, their speeds, load etc.
- Do not provide external control
 - Hard to request flow specific services from network

OpenRadio Control Interface

 Match: Identify and tag flows of individual users and/or applications

 Action: Control how packets are routed, what speeds & priorities they get, and how they are scheduled at the AP

OpenRadio: Control Plane

- Network OS that provides software abstractions to simplify development of new services:
 - Hides network heterogeneity (WiFi, 3G, LTE)
 - Hides complexity of finding network state
 - Hides complexity of controlling flow behavior

Application: Different Traffic Classes

- Can do better than one-size-fits-all radio stack
 - Unequal error protection (UEP) for video
- LTE specifies several traffic classes
 - How do I implement them?
 - Future traffic classes?
- How about a programmable infrastructure?

Application: Coordination

- Reducing cell-sizes to meet capacity demands
 - Smaller macro-cells → less users per cell
 - Picocells (open), femtocells (closed) just thrown in
 - Interference dominates, mobility is harder
- How can we make base stations coexist?
 - Dynamic scenario-specific adaptation
 - Decoupled control plane, programmable dataplane

Design goals and challenges

- Programmable wireless dataplane
 - Customize remotely after deployment

- Modularity to provide ease of programmability
 - Only modify affected components, reuse the rest
 - Hide hardware details and stitching of modules
- Built using off-the-shelf components

Other Emerging Areas

- Radio Access Networks
 - Coordination to antenna direction and power to minimize interference [SoftRAN]
- Cellular Networks
 - Placement of software functions near basestations to optimize backhaul, facilitate billing [SoftCell]
- Programmable APs [Odin]

Conclusion

- A programmable wireless data plane
 - Rich programming interface for wireless radios
 - Principled design for efficient implementation
 - Built using off-the-shelf components
- Balance of flexibility, performance and modularity