Tarea 1

Universidad de Costa Rica I Ciclo, 2024

Sede de Occidente Sección de Matemática MA-0323 Métodos Númericos

Profesores:

Jessica Jimenez Moscoso Adrian Moya Fernandez

Estudiantes:

Steven Sánchez López, B87331 Javier Acuña Mora, A60057 Juan Ignacio Orozco Zamora, C05688

1. Fórmula de Stirling para cálculo de factoriales

1.1 Contexto:

1. La fórmula de Stirling, aproxima n! de la siguiente manera:

$$n! \approx n^n \cdot e^{-n} \cdot \sqrt{2\pi \cdot n}$$

- a) Escriba un algoritmo para aproximar los valores de n! con la fórmula de Stirling.
- b) Utilice el algoritmo de la parte **a.** para aproximar n! con n = 0, 1, ..., 25. Organice los resultados de la forma:

n	n!	Aproximación de Stirling	Error Absoluto	Error Relativo

c) Analice los resultados

1.2 Librerías necesarias para trabajar.

In [1]: import math
import pandas as pd

1.3 Implementación de las funciones necesarias para calcular la fórmula de Stirling así como las funciones para calcular los errores absolutos y relativos.

La función aproximación_stirling calcula la aproximación definida en el ejercicio 1, según la premisa indicada.

La función error_absoluto() calcula el error absoluto de la aproximación.

La función error_relativo() calcula el error relativo de la aproximación.

nf es la variable para almacenar el número factorial.

Se define el rango que incluya de 0 a 25 según lo indicado en el inciso 2.

La condición de $\mathbf{x} == \mathbf{0}$ se incluye para evitar una excepción que se genera por división entre 0.

Para la condición $\mathbf{x} = \mathbf{1}$ se incluye para evitar que la definición del valor de nf, no se mantenga de manera permanente en 0 y calcule de manera correcta los subsecuentes valores factoriales.

```
In [2]: def aproximacion_stirling(n):
        return math.pow(n, n) * math.pow(math.e, -n) * math.sqrt(2 * math.pi * n)
      def error absoluto(real, aprox):
        return abs(real - aprox)
      def error_relativo(error_absoluto, real):
          return abs(error_absoluto) / abs(real)
        except ZeroDivisionError:
          return None
      def calculate_stirling(n):
        nf = 0
        data = []
        for x in range(n+1):
          if x == 0 or x == 1:
           nf = x
          nf *= x
          aprox = aproximacion_stirling(x)
          error_abs = error_absoluto(nf, aprox)
          error_rel = error_relativo(error_abs, nf)
          row = {'n': x, 'n!': nf, 'Aproximación de Stirling': aprox,
                  'Error Absoluto': error_abs,
                 'Error Relativo': error_rel}
          data.append(row)
        df = pd.DataFrame(data)
        return df
```

1.4 Input de valores para el funcionamiento de la función principal calculate_stirling() definiendo que el rango 0 < x < 25.

In [3]: df = calculate_stirling(25)
 df

Out[3]:

	n	n!	Aproximación de Stirling	Error Absoluto	Error Relativo
0	0	0	0.000000e+00	0.000000e+00	NaN
1	1	1	9.221370e-01	7.786299e-02	0.077863
2	2	2	1.919004e+00	8.099565e-02	0.040498
3	3	6	5.836210e+00	1.637904e-01	0.027298
4	4	24	2.350618e+01	4.938249e-01	0.020576
5	5	120	1.180192e+02	1.980832e+00	0.016507
6	6	720	7.100782e+02	9.921815e+00	0.013780
7	7	5040	4.980396e+03	5.960417e+01	0.011826
8	8	40320	3.990240e+04	4.176045e+02	0.010357
9	9	362880	3.595369e+05	3.343127e+03	0.009213
10	10	3628800	3.598696e+06	3.010438e+04	0.008296
11	11	39916800	3.961563e+07	3.011749e+05	0.007545
12	12	479001600	4.756875e+08	3.314114e+06	0.006919
13	13	6227020800	6.187239e+09	3.978132e+07	0.006389
14	14	87178291200	8.666100e+10	5.172895e+08	0.005934
15	15	1307674368000	1.300431e+12	7.243646e+09	0.005539
16	16	20922789888000	2.081411e+13	1.086755e+11	0.005194
17	17	355687428096000	3.539483e+14	1.739099e+12	0.004889
18	18	6402373705728000	6.372805e+15	2.956908e+13	0.004618
19	19	121645100408832000	1.211128e+17	5.323138e+14	0.004376
20	20	2432902008176640000	2.422787e+18	1.011516e+16	0.004158
21	21	51090942171709440000	5.088862e+19	2.023248e+17	0.003960
22	22	1124000727777607680000	1.119751e+21	4.249233e+18	0.003780
23	23	25852016738884976640000	2.575853e+22	9.349137e+19	0.003616
24	24	620448401733239439360000	6.182979e+23	2.150475e+21	0.003466
25	25	15511210043330985984000000	1.545959e+25	5.161521e+22	0.003328

1.5 Análisis de los resultados:

Según se identifica en los datos reflejados el algoritmo de stirling aproxima con cierta amplitud que va creciendo conforme el valor de referencia sea más alto.

Esa diferencia del crecimiento de amplitud se demuestra de manera clara en el valor absoluto que se vuelve más grande conforme se utiliza un número más alto que el anterior donde la aproximación no es tan cercana.

Caso contrario sucede con el error relativo, que conforme crece el valor de referencia la aproximación va mejorando, pero a un ritmo muy lento al contrario del escenario del error absoluto que crece de manera bastante marcada.