"El no camina en barrios suburbanos el es un hombre decente él nunca toca la gente con las manos el es tan independiente....." Charly García

Cuarta Reunión Espacios Vectoriales. Curso 1.

Suma e Intersección de subespacios

Vamos a empezar por ver qué pasa si realizamos con subespacios las operaciones más elementales entre conjuntos que son la intersección y la unión.

Recordemos, por las dudas: Si A y B son dos conjuntos cualesquiera:

- $A \cap B = \{x/x \in A \text{ y } x \in B\}$
- $A \cup B = \{x/x \in A \text{ o } x \in B\}$

¿Qué pasa cuando los conjuntos son subespacios?

¿Obtenemos otro subespacio al calcular el conjunto que resulta de intersecar dos subespacios o de unir dos subespacios?

Para ejemplificar, miremos el caso particular de buscar en \mathbb{R}^3 la intersección de dos planos que pasan por el origen.

En \mathbb{R}^3 , la intersección de dos planos, que contienen al origen, es una recta que pasa por el origen.

Observaciones:

a. Si S_1 , $S_2 \subset \mathbb{V}$ son subespacios de $\mathbb{V} \Rightarrow S_1 \cap S_2$ es un subespacio de \mathbb{V} .(Sólo tenemos que demostrar que se cumplen las tres condiciones.)

Como S_1 y S_2 son subespacios $0_\mathbb{V} \in S_1$ y $0_\mathbb{V} \in S_2 \Rightarrow 0_\mathbb{V} \in S_1 \cap S_2$. \checkmark

Si u_1 y $u_2 \in S_1 \cap S_2$ esto quiere decir que:

 $u_1, u_2 \in S_1 \Rightarrow u_1 + u_2 \in S_1$, porque S_1 es subespacio.

 $u_1,\ u_2\in S_2\Rightarrow u_1+u_2\in S_2$, porque S_2 es subespacio.

Por lo tanto $u_1 + u_2 \in S_1 \cap S_2$. \checkmark

Por último, si $u\in S_1\cap S_2$ y $\lambda^-\in \mathbb{K}\Rightarrow \lambda u\in S_1$ y $\lambda u\in S_2$ (¿por qué?)

Luego $\lambda u \in S_1 \cap S_2 \checkmark$

Demostramos que:

Si $S_1, S_2 \subset \mathbb{V}$ son subespacios de $\mathbb{V} \Rightarrow S_1 \cap S_2$ es un subespacio.

b. Si $T \subset \mathbb{V}$ es un subespacio de \mathbb{V} tal que $T \subset S_1$ y $T \subset S_2$, entonces $T \subset S_1 \cap S_2$. A veces se dice que $S_1 \cap S_2$ es el subespacio **"más grande"** incluido a la vez en S_1 y S_2 , pues cualquier otro que contenga elementos que están en S_1 y en S_2 , está incluido en la intersección.

La demostración es inmediata, pues si $T \subseteq S_1$ y $T \subseteq S_2$, si $x \in T \Rightarrow x \in S_1$ y $x \in S_2 \Rightarrow x \in S_1 \cap S_2$, en tonces $T \subset S_1 \cap S_2$.

Veamos ahora que pasa con la unión de subespacios. Otra vez miremos un caso muy sencillo: la unión de dos rectas que contienen al origen en \mathbb{R}^2 .

La única condición necesaria para probar que un conjunto es un subespacio que no se cumple siempre, es la de ser **cerrado** para la suma.

Por eso se define la suma de subespacios:

Definición: Si S_1 y S_2 son subespacios de un espacio vectorial \mathbb{V} , se llama **suma** de S_1 y S_2 al conjunto:

$$S_1 + S_2 = \{ v \in V / v = s_1 + s_2, \text{ con } s_1 \in S_1 \text{ y } s_2 \in S_2 \}$$

Observaciones:

a. $S_1 + S_2$ es un subespacio. Tenemos que probar que se cumplen las tres condiciones que caracterizan a un subespacio.

En inmediato que
$$0_{\mathbb{V}} = \underbrace{0_{\mathbb{V}}}_{\in S_1} + \underbrace{0_{\mathbb{V}}}_{\in S_2}, \in S_1 + S_2. \checkmark \text{Si } u_1 \in S_1 + S_2 \text{ y } u_2 \in S_1 + S_2 \text{ tenemos que } 0_{\mathbb{V}}$$

chequear si $u_1 + u_2 \in S_1 + S_2$. Pero si $u_1 \in S_1 + S_2 \Rightarrow$ existen $s_1 \in S_1$ y $s_2 \in S_2$, $u_1 = s_1 + s_2$ y lo mismo sucede con $u_2 \in S_1 + S_2$, existen t_1 y t_2 , tal que $u_2 = t_1 + t_2$. Luego:

$$u_1 + u_2 = (s_1 + s_2) + (t_1 + t_2)$$

$$= \underbrace{(s_1 + t_1)}_{\in S_1 \text{ pues es subespacio}} + \underbrace{(s_2 + t_2)}_{\in S_2 \text{ pues es subespacio}} \in S_1 + S_2.\checkmark$$

Tarea para el hogar demostrar la tercera condición.

- b. Si $S_1 = \text{gen}\{v_1 \dots v_k\}$ y $S_2 = \text{gen}\{w_1, \dots, w_m\} \Rightarrow S_1 + S_2 = \text{gen}\{v_1, \dots v_k, w_1, \dots, w_m\}$ Pues $v \in S_1 + S_2 \iff v = s_1 + s_2$, pero como $S_1 = \text{gen}\{v_1 \dots v_k\}$ y $S_2 = \text{gen}\{w_1, \dots, w_m\}$, $s_1 = \alpha_1 v_1 + \dots + \alpha_k v_k$ y $s_2 = \beta_1 w_1 + \dots + \beta_m w_m$; $\text{con}\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_m \in \mathbb{K}$. Entonces $v = s_1 + s_2 = \underbrace{\alpha_1 v_1 + \dots + \alpha_k v_k + \beta_1 w_1 + \dots + \beta_m w_m}_{\text{comb. lineal de } v_1, \dots v_k, w_1, \dots, w_m}$
 - To to que $O_1 + O_2 = gen(v_1, \ldots, v_k, w_1, \ldots, w_m)$.
- c. $(S_1 \cup S_2) \subset (S_1 + S_2)$. Es directo, queda como tarea.
- d. Todo subespacio que contiene a $S_1 \cup S_2$ incluye también a $S_1 + S_2$.

Sea $x \in S_1 + S_2$ y sea T un subespacio que contiene a $S_1 \cup S_2$, como $x \in S_1 + S_2 \rightarrow x = s_1 + s_2$ con $s_1 \in S_1$ y $s_2 \in S_2$, como T contiene a $S_1 \cup S_2 s_1 \in T$ y $s_2 \in T$,

 $x \in S_1 + S_2 \rightarrow x = s_1 + s_2$ con $s_1 \in S_1$ y $s_2 \in S_2$, como T contiene a $S_1 \cup S_2 s_1 \in T$ y $s_2 \in T$, como además Tes subespacio $\Rightarrow s_1 + s_2 = x \in T$.

Demostramos que $\forall x \in S_1 + S_2 \Rightarrow x \in T$, por lo tanto queda demostrado que $S_1 + S_2 \subset T$. \checkmark

Se dice que $S_1 + S_2$ es el **"menor**" subespacio que incluye a $S_1 \cup S_2$, pues cualquier otro subespacio que contenga a la unión forzosamente contiene a $S_1 + S_2$.

Ejemplo simple:

Dados los subespacios de \mathbb{R}^4 , $S_1 = \{x \in \mathbb{R}^4 / x_1 - x_2 + x_4 = 0, x_2 + x_3 = 0\}$ y $S_2 = \text{gen}\{[1 \ 0 \ 1 \ 0]^T, \ [0 \ 0 \ 1 \ 1]^T\}$ encontrar $S_1 \cap S_2$ y $S_1 + S_2$.

Resolución:

Empecemos por buscar los puntos en común de S_1 y S_2 :

Si
$$x \in S_2 \Rightarrow x = \alpha[1 \ 0 \ 1 \ 0]^T + \beta[0 \ 0 \ 1 \ 1]^T$$
, con $\alpha, \beta \in \mathbb{R}$.

Si además está en S_1 , tiene que cumplir sus ecuaciones. Entonces buscamos $\alpha, \beta \in \mathbb{R}$ tal que $\mathbf{x} = [\alpha \ \mathbf{0} \ \alpha + \beta \ \beta]^T \in S_1 \Leftrightarrow \alpha - \mathbf{0} + \beta = \mathbf{0} \ \mathbf{y} \ \mathbf{0} + (\alpha + \beta) = \mathbf{0} \Leftrightarrow \beta = -\alpha$.

Por lo tanto $x \in S_1 \cap S_2 \Leftrightarrow x = [\alpha \ 0 \ 0 \ -\alpha]^T = \alpha[1 \ 0 \ 0 \ -1]^T$.

Entonces $S_1 \cap S_2 = \text{gen}\{[1 \ 0 \ 0 \ -1]^T\} \text{ y dim}(S_1 \cap S_2) = 1.$

Calculemos ahora S_1+S_2 , según lo que vimos en la observación **b.** basta con construir un conjunto generador formado por los generadores de S_1 y S_2 .

De la definición de S_1 , despejando de la primera ecuación obtenemos: $x_1 = x_2 - x_4$.

Y de la segunda ecuación: $x_3 = -x_2 \ x \in S_1 \ \text{si} \ x = [x_2 - x_4 \ x_2 \ -x_2 \ x_4]^T \ \text{con} \ x_2, \ x_4 \in \mathbb{R}.$

$$x \in S_1 \Leftrightarrow x = x_2[1 \ 1 \ -1 \ 0]^T + x_4[-1 \ 0 \ 0 \ 1]^T$$

Por lo que $S_1 = \text{gen}\{[1 \ 1 \ -1 \ 0]^T, [-1 \ 0 \ 0 \ 1]^T\}$

Este conjunto es l.i, por lo que además sabemos que $\dim(S_1)=2$.

Como ya encontramos $S_1 \cap S_2$, podemos encontrar una base de S_1 que contenga una base de $S_1 \cap S_2$, por ejemplo: $B_{S_1} = \{[1 \ 1 \ -1 \ 0]^T, [1 \ 0 \ 0 \ -1]^T\}.$

Busquemos ahora una base de S_2 que contenga una base $S_1 \cap S_2$, por ejemplo:

$$B_{S_2} = \{ [1 \ 0 \ 0 \ -1]^T, \ [0 \ 0 \ 1 \ 1]^T \}.$$

Teniendo estas bases de S_1 y S_2 , resulta evidente que al formar el conjunto de generadores de $S_1 + S_2$, no vamos a repetir el generador de la intersección de los subespacios. Entonces obtenemos :

$$S_1 + S_2 = \text{gen}\{[1 \ 1 \ -1 \ 0]^T, [1 \ 0 \ 0 \ -1]^T, [0 \ 0 \ 1 \ 1]^T\}.$$

Obviamente $dim(S_1 + S_2) = 3$.

Se cumple que :

$$\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2) - \dim(S_1 \cap S_2)$$

Esta última igualdad se cumple para todo par de subespacios finitos.

Teorema: Dados S_1 y S_2 subespacios de dimensión finita, entones: $\dim(S_1 + S_2) = \dim(S_1) + \dim(S_2) - \dim(S_1 \cap S_2)$

Demostración:

Si $\dim(S_1) = n$, $\dim(S_2) = m$ y $\dim(S_1 \cap S_2) = k$, $k \ge 0$, vamos a demostrar que $\dim(S_1 + S_2) = n + m - k$.

La forma de demostrarlo será una generalización de la resolución del ejemplo.

Supongamos primero $k \geq 1$, entonces existe una base $B_{S_1 \cap S_2} = \{v_1, \dots, v_k\}$, podemos extender esa base a una base de S_1 , $B_{S_1} = \{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ y también a una base de S_2 , $B_{S_2} = \{v_1, \dots, v_k, w_{k+1}, \dots, w_m\}$

Por lo visto sabemos que
$$S+T=\text{gen}\{\underbrace{v_1,\ldots,v_k,v_{k+1},\ldots,v_n}_{\text{n elementos}},\underbrace{w_{k+1},\ldots,w_m}_{m-k \text{ elementos}}\}$$

Sólo tenemos que ver que este sistema de generadores es l.i. Igualamos una combinación lineal a $0_{\mathbb{V}}$:

$$\lambda_1 \mathbf{v}_1 + \cdots + \lambda_k \mathbf{v}_k + \lambda_{k+1} \mathbf{v}_{k+1} + \cdots + \lambda_n \mathbf{v}_n + \beta_1 \mathbf{w}_{k+1} + \cdots + \beta_{m-k} \mathbf{w}_m = \mathbf{0}_{\mathbb{V}}$$
(1)

$$\underbrace{\lambda_1 v_1 + \dots + \lambda_k v_k + \lambda_{k+1} v_{k+1} + \dots + \lambda_n v_n}_{\in S_1} = \underbrace{-\beta_1 w_{k+1} - \dots - \beta_{m-k} w_m}_{\in S_2}$$

Entonces:
$$-\beta_1 w_{k+1} - \cdots - \beta_{m-k} w_m \in S_1 \cap S_2 \Rightarrow$$

$$\Rightarrow -\beta_1 \mathbf{w}_{k+1} - \cdots - \beta_{m-k} \mathbf{w}_m = \gamma_1 \mathbf{v}_1 + \cdots + \gamma_k \mathbf{v}_k$$

$$\mathbf{0}_{\mathbb{V}} = \gamma_1 \mathbf{v}_1 + \dots + \gamma_k \mathbf{v}_k + \beta_1 \mathbf{w}_{k+1} + \dots + \beta_{m-k} \mathbf{w}_m$$

Como $\{v_1,\ldots,v_k,w_{k+1},\ldots,w_m\}$ es un conjunto l.i. pues es una base de S_2 concluimos que todos los escalares son nulos, en particular: $\beta_1=\beta_2=\cdots=\beta_{m-k}=0$.

Reemplazamos en (1).

Y obtenemos:

$$\lambda_1 v_1 + \cdots + \lambda_k v_k + \lambda_{k+1} v_{k+1} + \cdots + \lambda_n v_n = 0$$

Y de aquí, como $\{v_1,\ldots,v_n\}$ es un conj. l.i. obtenemos que $\lambda_1=\cdots=\lambda_n=0$

Como los escalares $\beta_1, \ldots, \beta_{m-k}, \lambda_1, \ldots, \lambda_n$ vienen de la combinación lineal (1), concluimos que $\{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n, w_{k+1}, \ldots, w_m - k\}$ es l.i.

Entonces podemos afirmar que :

$$\dim(S_1 + S_2) = n + m - k = \dim(S_1) + \dim(S_2) - \dim(S_1 \cap S_2)$$

Queda como tarea para el hogar, verificar la fórmula cuando la intersección es el subespacio nulo, en ese caso no existe base de la intersección y directamente trabahjamos con las bases de cada subespacio.

Suma directa de subespacios.

Por definición, cada elemento del subespacio $S_1 + S_2$, puede expresarse en la forma $v = s_1 + s_2$, con $s_1 \in S_1$ y $s_2 \in S_2$, pero esa descomposición no siempre es única.

En el ejemplo que vimos, si tomamos:

$$v = \begin{bmatrix} 2 & 1 & 0 & 0 \end{bmatrix}^T = \underbrace{\begin{bmatrix} 1 & 1 & -1 & 0 \end{bmatrix}^T + \begin{bmatrix} 1 & 0 & 0 & -1 \end{bmatrix}^T}_{\in S_1} + \underbrace{\begin{bmatrix} 0 & 0 & 1 & 1 \end{bmatrix}}_{\in S_2}$$

$$v = [2 \ 1 \ 0 \ 0]^T = \underbrace{[1 \ 1 - 1 \ 0]^T}_{\in S_1} + \underbrace{[1 \ 0 \ 1 \ 0]^T}_{\in S_2}$$

Cuando cada $v \in S_1 + S_2$ puede descomponerse en forma única como suma de un elemento de S_1 y un elemento de S_2 , se dice que la suma es **directa**.

Definición: Se dice que la suma de S_1 y S_2 es **directa**, o que S_1 y S_2 están en suma directa si, para cada $v \in S_1 + S_2$ existen únicos $s_1 \in S_1$ y $s_2 \in S_2$ tal que $v = s_1 + s_2$. Cuando la suma es directa, se nota: $S_1 \oplus S_2$

Observación:

 S_1 y S_2 están en suma directa si y sólo si $S_1 \cap S_2 = \{0_{\mathbb{V}}\}$

 \Rightarrow) Supongamos que S_1 y S_2 están en suma directa y sea $v \in S_1 \cap S_2$.

$$v \in \mathcal{S}_1 \Rightarrow v = \underbrace{v}_{\in \mathcal{S}_1} + \underbrace{0_v}_{\in \mathcal{S}_2}, v \in \mathcal{S}_2 \Rightarrow v = \underbrace{0_v}_{\in \mathcal{S}_1} + \underbrace{v}_{\in \mathcal{S}_2}.$$

Pero si S_1 y S_2 están en suma directa la descomposición es única, por lo tanto

 $v=0_{\mathbb{V}}\Rightarrow S_{1}\cap S_{2}=\{0_{\mathbb{V}}\}.$

 \Leftarrow) Ahora supongamos que $S_1 \cap S_2 = \{0_{\mathbb{V}}\}$ y sea $v \in S_1 + S_2$ tal que $v = s_1 + s_2$ y $v = t_1 + t_2$ con $s_1, t_1 \in S_1$ y $s_2, t_2 \in S_2$.

 $+ t_2 \cos s_1, t_1 \in S_1 \text{ y } s_2, t_2 \in S_2.$ Entonces: $v = s_1 + s_2 = t_1 + t_2 \Rightarrow \underbrace{s_1 - t_1}_{\in S_1} = \underbrace{t_2 - s_2}_{\in S_2}$

 $S_1\cap S_2=\{0_\mathbb{V}\}\Rightarrow s_1-t_1=0_\mathbb{V}=t_2-s_2, s_1=t_1$ y $s_2=t_2$. Demostramos que si $S_1\cap S_2=\{0_\mathbb{V}\}\Rightarrow S_1$ y S_2 están en suma directa. \checkmark

- ▶ También se puede probar que si B_1 es base de S_1 y B_2 es base de S_2 , la suma $S_1 + S_2$ es directa si y sólo si $B = B_1 \cup B_2$ es l.i.
- ▶ Si $\mathbb V$ es un espacio vectorial de dimensión finita y S es un subespacio de $\mathbb V$, existe un subespacio W tal que : $S \oplus W = \mathbb V$

Si $S = \mathbb{V}$ o $S = \{0_{\mathbb{V}}\} \Rightarrow W = \{0_{\mathbb{V}}\}$ y $W = \mathbb{V}$ respectivamente.

Si $1 \le \dim S = k \le n-1$, existe una base $B_S = \{v_1, \ldots, v_k\}$

Sabemos que esta base puede extenderse a una base de \mathbb{V} , o sea, existen v_{k+1}, \ldots, v_n tales que $B = \{v_1, \ldots, v_k, v_{k+1}, \ldots, v_n\}$ es una base de \mathbb{V} .

Entonces si consideramos $W = \text{gen}\{v_{k+1}, \dots, v_n\}$, se cumple que $S \oplus W = \mathbb{V}$.

De esta demostración es evidente que el subespacio W cumple $S \oplus W = \mathbb{V}$ no es único, para cualquier subespacio no trivial de \mathbb{V} .

Definición: Dado un subespacio $S \subset \mathbb{V}, \mathbb{K}$ espacio vectorial, se dice que W es un suplemento de S si $S \oplus W = \mathbb{V}$

Ejemplos:

1. En \mathbb{R}^2 , $S = \{x \in \mathbb{R}^2/2x_1 - x_2 = 0\}$, encuentre W_1 y W_2 , subespacios suplementos de S. Resolución:

Es inmediato que los subespacios que buscamos, son subespacios de dimensión 1. Pues, si están en suma directa con S, como la dimensión de S es 1, debe cumplirse que cada uno de ellos tenga dimensión 1, pues

$$\dim(S + W_i) = \dim(S) + \dim(W_i) = 1 + \dim(W_i) = 2 \Rightarrow \dim(W_i) = 1, i = 1, 2.$$

Entonces, para definir cada uno de estos subespacios sólo necesitamos elegir para cada uno de ellos un vector en \mathbb{R}^2 l.i. con los vectors de S. Basta entonces con encontrar vectores de \mathbb{R}^2 que no estén en el subespacio S, o sea que no cumplan su ecuación. Por ejemplo: $v_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ y

 $v_2 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ son dos de los infinitos vectores que cumplen ser l.i. con cualquier vector de S.

Entonces **elijo** definir $W_1 = \operatorname{gen} \left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$ y $W_2 = \operatorname{gen} \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} \right\}$

2. En
$$\mathbb{R}^4$$
, dados los subespacios $S_1 = \operatorname{gen} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 1 \\ 1 \\ 1 \end{bmatrix} \right\}$ y $S_2 = \operatorname{gen} \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix} \right\}$, ¿existe un subespacio $T \subset \mathbb{R}^4$, tal que $S_1 \oplus T = \mathbb{R}^4 = S_2 \oplus T$?

Resolución:

Si existe T, empecemos por ver cuál tendría que ser la dimensión de este subespacio.

Como
$$dim(S_1) = dim(S_2) = 2 \Rightarrow dim(T) = 2$$

Necesito entonces encontrar dos generadores I.i. para definir el subespacio T. Como quiero que sea un suplemento de S_1 y S_2 , en definitiva necesito encontrar dos vectores de \mathbb{R}^4 que sean a la vez I.i con los generadores de S_1 y con los generadores de S_2

Empecemos por ver si estos dos subespacios dados, S_1 y S_2 están en suma directa o, por el contrario, $\dim(S_1 \cap S_2) > 0$.

$$S_1+S_2=\operatorname{gen}\left\{egin{bmatrix}1\\1\\0\\1\end{bmatrix},egin{bmatrix}2\\1\\1\\1\end{bmatrix},egin{bmatrix}1\\1\\1\\1\end{bmatrix},egin{bmatrix}1\\2\\2\\1\end{bmatrix}
ight\}$$

Estos generadores son l.i. podés "chequearlo" triangulando los cuatro vectores puestos como filas de una matriz o calculando el determinante de la matriz de 4×4 y viendo que es no nulo.

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 1 \end{pmatrix} \xrightarrow{F_2 - 2F_1/F_3 - F_1} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \xrightarrow{F_4 + F_2} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & -1 \end{pmatrix} \xrightarrow{F_4'' - 3F_3} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$$

Los vectores que generan S_1+S_2 son l.i. y, por lo tanto, sabemos que $\dim(S_1+S_2)=4\Rightarrow S_1\cap S_2=\{0_{\mathbb{R}^4}\}$

Entonces tenemos que encontrar un subespacio generado por dos vectores de \mathbb{R}^4 que resulten l.i. con los generadores de S_1 por un lado y l.i. con los generadores de S_2 . Buscamos v_1 , v_2 de manera tal que se cumpla:

2.1
$$\left\{ \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\1\\1\\1 \end{bmatrix}, v_1, v_2 \right\}$$
 l.i: $\begin{pmatrix} 1 & 1 & 0 & 1\\2 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1\\0 & -1 & 1 & -1 \end{pmatrix}$ (a)

2.2
$$\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2\\1 \end{bmatrix}, v_1, v_2 \right\}$$
 l.i: $\begin{pmatrix} 1 & 1 & 1 & 1\\1 & 2 & 2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1\\0 & 1 & 1 & 0 \end{pmatrix}$ (b)

"Mirando fijo"(a) y (b), vemos que si a las dos matrices les agregamos los vectores e_3 y e_4 obtenemos matrices de rango 4, entonces, por ejemplo, elegimos el subespacio

$$\mathcal{T} = \mathbf{gen} \left\{ egin{bmatrix} 0 \ 0 \ 1 \ 0 \end{bmatrix}, egin{bmatrix} 0 \ 0 \ 0 \ 1 \end{bmatrix}
ight\}$$

3. En R^4 el mismo problema, hallar $T \subset \mathbb{R}^4$, tal que $S_1 \oplus T = \mathbb{R}^4 = S_2 \oplus T$ pero ahora S_1 y S_2 son subespacios que NO están en suma directa:

$$S_1 = \text{gen} \left\{ \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \ \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix} \right\} \text{y } S_2 = \text{gen} \left\{ \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix}, \ \begin{bmatrix} 1 \\ 0 \\ -2 \\ 2 \end{bmatrix} \right\}$$

Veamos si están en suma directa o no:

$$S_1+S_2=$$
 gen $\left\{egin{bmatrix}1\\1\\0\\1\end{bmatrix},egin{bmatrix}2\\2\\1\\1\end{bmatrix},egin{bmatrix}1\\2\\1\\1\end{bmatrix},egin{bmatrix}1\\0\\-2\\2\end{bmatrix}
ight\}$

$$\begin{pmatrix} 1 & 1 & 0 & 1 \\ 2 & 2 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 0 & -2 & 2 \end{pmatrix} \xrightarrow{F_2 - 2F_1/F_3 - F_1} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & -1 & -2 & 1 \end{pmatrix} \xrightarrow{F_4 + F_3} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 1 \end{pmatrix} \xrightarrow{F_4'' + F_2} \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Entonces:

$$S_1 + S_2 = \text{gen} \left\{ \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-2\\2 \end{bmatrix} \right\} = \text{gen} \left\{ \begin{bmatrix} 1\\1\\0\\1\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\1\\0 \end{bmatrix} \right\}$$

Averiguamos que $\dim(S_1+S_2)=3\Rightarrow \dim(S_1\cap S_2)=1$. Busquemos la intersección de estos subespacios: Debo encontrar un vector que cumpla:

$$X = \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix}$$

$$X = \gamma \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 0 \\ -2 \\ 2 \end{bmatrix}$$

$$(4)$$

Igualando:

$$X = \alpha \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix} = \gamma \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 1 \\ 0 \\ -2 \\ 2 \end{bmatrix}$$
$$\alpha \begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix} + \beta \begin{bmatrix} 2 \\ 2 \\ 1 \\ 1 \end{bmatrix} - \gamma \begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 \\ 0 \\ -2 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

Resolviendo el sistema obtenemos:

$$\gamma = \lambda, \ \beta = -\lambda, \ \alpha = 4\lambda$$

Reemplazando en (3) o en (4), obtenemos:

$$X = \lambda \begin{bmatrix} 2\\2\\-1\\3 \end{bmatrix}$$

Entonces ahora podemos construir una base para cada subespacio que contenga a este generador de la intersección:

$$S_1 = \operatorname{gen} \left\{ egin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \ egin{bmatrix} 2 \\ 2 \\ -1 \\ 3 \end{bmatrix}
ight\} \mathbf{y} \ S_2 = \operatorname{gen} \left\{ egin{bmatrix} 2 \\ 2 \\ -1 \\ 3 \end{bmatrix}, \ egin{bmatrix} 1 \\ 0 \\ -2 \\ 2 \end{bmatrix}
ight\}$$

Y ahora podemos actuar como en el item anterior:

Buscamos v_1 , v_2 de manera tal que se cumpla:

1.
$$\left\{ \begin{bmatrix} 1\\1\\0\\1 \end{bmatrix}, \begin{bmatrix} 2\\2\\-1\\3 \end{bmatrix}, v_1, v_2 \right\} \text{l.i:} \begin{pmatrix} 1 & 1 & 0 & 1\\2 & 2 & -1 & 3 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 0 & 1\\0 & 0 & -1 & 1 \end{pmatrix} \textbf{(a)}$$

2.
$$\left\{ \begin{bmatrix} 1\\0\\-2\\2 \end{bmatrix}, \begin{bmatrix} 2\\2\\-1\\3 \end{bmatrix}, v_1, v_2 \right\} \text{l.i:} \begin{pmatrix} 1&0&-2&2\\0&2&3&-1 \end{pmatrix} \rightarrow \begin{pmatrix} 1&1&1&1\\0&1&1&0 \end{pmatrix} \textbf{(b)}$$

Entonces, por ejemplo, los vectores e_2 y e_4 pueden ser agregados en las dos matrices y obtener matrices de rango 4 y elegimos:

$$T = \operatorname{gen} \left\{ \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\} \checkmark$$