TITLE OF DOCUMENT

NAME OF AUTHOR

1. The χ^2 test for uniform distribution

We briefly recall the property and usage of the χ^2 test for uniform distributions over a finite set S. Suppose M samples $y_1, \dots, y_M \in S$. We partition S into r subsets

$$S = \sqcup_{i=1}^r S_i,$$

For each $1 \le j \le r$, we compute the expected number of samples that would fall in the i-th subset: $c_j := |S_j|M/|S|$. Then we compute the actual number of samples, $t_j := |\{1 \le i \le r : y_i \in S_j\}|$. Finally, the χ^2 value is computed as

$$\chi^{2}(S, y) = \sum_{j=1}^{r} \frac{(t_{j} - c_{j})^{2}}{c_{j}}.$$

Note that degree of freedom in this test is d = r - 1. To decide whether the samples are from a uniform distribution, we can either look up a table of χ^2 values, or use an approximation rule: when df is large, the χ^2 distribution can be well-approximated by a normal distribution N(d, 2d); for example, if it turns out that $\chi^2 \notin (d - c\sqrt{2d}, d + c\sqrt{2d})$, then the confidence we have that the samples are not taken from a uniform distribution is $2\Phi(c) - 1$.

If P,Q are two probability distributions on S, then their statistical difference is defined as

$$d(P,Q) = \frac{1}{2} \sum_{t \in S} |P(t) - Q(t)|,$$

and their l_2 distance is

$$d_2(P,Q) = \left(\sum_{t \in S} |P(t) - Q(t)|^2\right)^{\frac{1}{2}}.$$

We have $d(P,Q) \leq \frac{\sqrt{|S|}}{2} d_2(P,Q)$.

2. The χ^2 Attack on $SRLWE(\mathcal{R}, \mathfrak{q})$

Let \mathcal{R} be an RLWE instance with error distribution $D_{\mathcal{R}}$ and \mathfrak{q} be a prime ideal above q. Our attack relies on the assumption that the distribution $D_{\mathcal{R}}$ (mod \mathfrak{q}) is distinguishable from the uniform distribution on the finite field $F = R/\mathfrak{q}$. More precisely, the attack loop through all q^f possibilities of $\bar{s} = s \pmod{\mathfrak{q}}$. For each guess s', it computes the values $\bar{e}' = \bar{b} - \bar{a}s' \pmod{\mathfrak{q}}$ for every sample $(a,b) \in S$. If the guess is wrong, or if the samples are taken from the uniform distribution in $(R_q)^2$ instead of an RLWE instance, the values \bar{e}' would be uniformly distributed in F and it is likely to pass the χ^2 test. On the other hand, if the guess is correct, then we expect the errors \bar{e}' to fail the χ^2 test.

Let $N=q^f$ denote the cardinality of F. Note that N is also the number of χ^2 tests we run in the attack. For the attack to be successful, we need the (N-1) tests corresponding to wrong guess of $s\pmod{\mathfrak{q}}$ to pass, and the one test corresponding to the correct guess to fail. Therefore, we need to choose the confidence interval of our χ^2 test so that it is unlikely for a set of samples coming from uniform distribution to fail the test. In practice, we choose the confidence level to be $\alpha=1-\frac{1}{10N}$. Let β denote the probability that the sample errors fails the uniform test with probability Then the probability that our algorithm will success is $p=(1-\frac{1}{10N})^{N-1}\beta$. Note that when N is large, $(1-\frac{1}{10N})^{N-1}$ is about $e^{-1/10}\approx 0.904$.

Algorithm 1 χ^2 -test attack of $SRLWE(\mathcal{R}, \mathfrak{q})$

```
Require: R = (K, q, \sigma, s) – an RLWE instance.
           R = \mathcal{O}_K – the ring of integers of K.
          n: the degree of K.
          \mathfrak{g}: a prime ideal in K above q.
          N: the cardinality of R/\mathfrak{q}.
          S: a collection of M (M = \Omega(N)) RLWE samples (a, b) \sim \mathcal{R}.
Ensure: a guess of the value s \pmod{\mathfrak{q}}, or NON-RLWE, or INSUFFIICNET-SAMPLES
 1: \alpha \leftarrow 1 - \frac{1}{10N}.
 2: \omega \leftarrow \Phi^{-1}((1+\alpha)/2)
 3: G = \emptyset
 4: for s in F do
         for a, b in S do
 5:
 6:
             E \leftarrow \emptyset.
             \bar{a}, \bar{b} \leftarrow a \pmod{\mathfrak{q}}, b \pmod{\mathfrak{q}}.
 7:
             \bar{e} \leftarrow \bar{b} - \bar{a}s.
 8:
             add e to E.
 9:
10:
         Run \chi^2 test on E and obtain the value \chi^2(E).
11:
         if |\chi^{2}(E) - B - 1| > \omega \sqrt{2B - 2} then
12:
             add s to G
13:
         end if
14:
15: end for
16: if G = \emptyset then
          return NOT RLWE
17: else if G = \{g\} then
          return g
18: else
          return INSUFFIICNET-SAMPLES
19: end if
```

The time complexity of the attack is $O(q^{2f})$.

Proposition 2.1. Assume $q \gg 1$. Let Δ denote the statistical distance between the distribution $E = D_{R,\sigma} \pmod{\mathfrak{q}}$ and the uniform distribution U on R/\mathfrak{q} . Then the above attack succeeds with probability at least

$$p=0.904(1-\Phi(\frac{\omega\sqrt{2(N-1)}-\lambda}{\sqrt{2(N-1)+4\lambda}})),$$

where Φ is the cumulative distribution function for the standard Gaussian distribution, $\omega = \Phi^{-1}(1 - \frac{1}{20N})$, and $\lambda = 4M\Delta$.

Proof. The chi-square value for uniformity on samples from E follow a noncentral chisquare distribution with the same degree of freedom and a parameter λ given by

$$\lambda = MNd_2(E, U)^2$$
.

In particular, we have $\lambda \geq 4M\Delta$. We approximate a noncentral chi-square distribution with degree of freedom k and parameter λ with a Gaussian distribution of mean $k + \lambda$ and variance $2k + 4\lambda$. The result now follows from the fact that the argument of Φ is a decreasing function of λ .

To get a sense of how the constants behave, we give a table containing some p values.

$$\begin{array}{c|c|c|c}
N & \Delta & p \\
\hline
4093 & 0.02 & 0.58
\end{array}$$