1 Digital vs. Analog

1.1 Analog

- Die reale Welt ist analog (z.B. Sinnesorgane)
- Die Analoge Verarbeitung stellt das Ergebnis einer Berechnung praktisch sofort zur Verfügung.
- Analoge Systeme sind anfällig auf externe Störsignale.
- Analoge Systeme sind extrem aufwändig und erfordern viel Fachwissen.

1.2 Unterschied Analog zu Digital

1.3 Digital

- Einfacher automatisierbarer Entwurf und Test mit Hilfe von CAD möglich.
- Digitale Schaltungen werden als integrierte Schaltungen mit Transistoren hergestellt uns sind somit reproduzierbar.
- Digitale Systeme sind bis zu einem gewissen Grad weitgehend immun gegen Störsignale.

1.3.1 Integration

Trend zu höherer Integration. Digitaler Anteil wächst und die Analoge "Schale" bleibt bestehen.

1.4 Von Analog zu Digital

Abtasttheorem:

Amplitudenauflösung:

Quantisierungsfehler:

Nyquist-Shannon besagt, dass ein Signal mit f_{max} mit mindestens einer Frequenz von $2*f_{max}$ abgetastet werden muss um das Ursprungssignal wieder herzustellen.

Die Anzahl abzählbarer Amplitudenwerte (Quantisierungsstufen) bestimmt die Auflösung eines AD-Wandlers. Diese wird in der Regel in Bits angegeben. Je kleiner der Bereich aufgeteilt ist, desto kleiner ist der Abstand Δ zwischen zwei benachbarten Amplitudenwerten.

Bei linearer Quantisierung ist der der Quantisierungsfehler (Quantisierungsrauschen) maximal $\frac{\Delta}{2}$

2 Zahlendarstellungen und Codes

2.1 Zahlensysteme

2.1.1 Zahlensysteme ohne festen Stellenwert

• Römisches Zahlensystem (keine Null, kein fester Stellenwert, schlechte Unterscheidung)

2.1.2 Zahlensysteme mit festem Stellenwert

- Babylon (Basis B = 60)
- Maya (Basis B = 20)
- Dezimal (Basis B = 10)
- Binär (Basis B = 2)
- Octal (Basis B = 8)
- Hexadezimal (Basis B = 16)

Die Wertigkeit des Symbols hängt von seiner Position innerhalb der Symbolkette ab:

z: Wert der Zahl (im Dezimalsystem) a: Nennwert der Ziffer B: Basis des Zahlensystems n: Stellenanzahl Bsp:
$$4156.78 = 4*10^3 + 1*10^2 + 5*10^1 + 6*10^0 + 7*10^{-1} + 8*10^{-2}$$

Auch gebrochene Zahlen können nach dem gleichen Muster binär dargestellt werden. Wichtig ist, dass das Komma immer an einer festen Stelle steht (Festkommadarstellung). Definiert ist, dass eine Binärzahl 8 Ziffern (n) vor dem Komma und 4 Ziffern (m) nach dem Komma besitzt. Eine gebrochene Binärzahl sieht dann so aus:

$$z_2 = a_{n-1}a_{n-2}\dots a_1a_0.a_{-1}a_{-2}\dots a_{-m+1}a_{-m}$$

Der gesuchte Zahlenwert im Dezimalsystem wird dann folgendermassen berechnet:

$$z_{10} = a_{n-1} * B^{n-1} + a_{n-2} * B^{n-2} + \dots + a_0 * B^0 + a_{-1} * B^{-1} + a_{-2} * B^{-2} + \dots + a_{-m+1} * B^{-m+1} + a_{-m} * B^{-m}$$

2.2 Gebräuchliche polyadische Zahlensysteme

System	Basis	Stellenwerte	Ziffern	Beispiel
Binär	2	$\dots 2^2 2^1 2^0 \dots$	0, 1	$110_{(2)} = 6_{(10)}$
Oktal	8	$\dots 8^2 8^1 8^0 \dots$	0, 1, 2, 3, 4, 5, 6, 7	$273_{(8)} = 187_{(10)}$
Dezimal	10	$\dots 10^2 10^1 10^0 \dots$	0, 1, 2, 3, 4, 5, 6, 7, 8, 9	$192_{(10)} = 192_{(10)}$
Hexadezimal	16	$\dots 16^2 16^1 16^0 \dots$	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F	$2AFF_{(16)} = 11007_{(10)}$

.3 Begriffe im Zusammenhang mit dem binären Zahlensystem

- Bit (b): Binary Digit: Kleinsmögliche Speichereinheit in der Digitaltechnik. Kann zwei mögliche Zustände annehmen: 0 und 1
- Byte (B): Einheit von 8 Bits. Auch genannt Oktett: 1 Oktett = 1 Byte = 8 Bit. Byte ist die Standartbezeichnung von Speicherkapazitäten und Datenmengen.
- Nibble: Binärzahlen in Gruppen von 4 Bits
- MSB: Most Significant Bit. Bit mit höchster Wertigkeit, steht ganz links im binären Wort
 LSB: Least Significant Bit. Bit mit tiefster Wertigkeit, steht ganz rechts im binären Wort

2.4 Umwandlung von Dezimalzahlen

Beispiel für die Umwandlung der Zahl 109.78125₍₁₀₎:

Dezimal zu Binär					Dezimal zu Oktal							Dezimal zu Hexadeximal								
109	:	2	=	54	Rest:	1	109	:	8	=	13	Rest:	5	109	:	16	=	6	Rest:	D
54	:	2	=	27	Rest:	0	13	:	8	=	1	Rest:	5	6	:	16	=	0	Rest:	6
27	:	2	=	13	Rest:	1	1	:	8	=	0	Rest:	1							
13	:	2	=	6	Rest:	1														
6	:	2	=	3	Rest:	0														
3	:	2	=	1	Rest:	1														
1	:	2	=	0	Rest:	1														
0.78125	*	2	=	0.5625	+	1	0.78125	*	8	=	0.25	+	6	0.78125	*	16	=	0.5	+	С
0.5625	*	2	=	0.125	+	1	0.25	*	8	=	0	+	2	0.5	*	16	=	0	+	8
0.125	*	2	=	0.25	+	0														
0.25	*	2	=	0.5	+	0														
0.5	*	2	=	0	+	1														
$109_{(10)} = 1101101.11001_{(2)}$					$109_{(10)} = 155.62_{(8)}$						$109_{(10)} = 6D.C8_{(16)}$									