i 10 meldon 9 a) Show w=f(x,y) zodostoes $\frac{\partial w}{\partial w} = \frac{\partial w}{\partial w} \cos(\theta) - \frac{\partial w}{\partial \theta} \sin(\theta)$ 3m = 3n 2m(0) + 30 cos(0) where x = 1008(0), y = 18in(0). Solubor (= 40m² (//x) Dr = 2 (x24y2)2 (2x) 3x = 1+(1/x) 3x (1/x) $\frac{1}{x^2+y^2}$ 84 = = (x+45)y (x4) 39 = 1+ (1/x)2 3y (x) = 1xtyz, = X x2+y2 o Ustrag the chart rule:

3x = 30 0x + 3x 0x 0x

3x = 30 0x + 3x 0x = 30 (X5+23) + OL (1X5+25) = 30 (- L21 N(0)) + 3M (L02(0)) = 3W COS(B) - 3W SIN(B) = gr gh 20 gh gr 1 gm 30 $=\frac{g_L}{g_M}\left(\frac{\Lambda x_1 \Lambda x_2}{A}\right) + \frac{60}{9M}\left(\frac{\chi_1 \Lambda x_2}{\chi}\right)$ = 13m (L2M10)) + 3m (L08(0)) = 3w sin(0) + 3w cos(0) (There is a 2nd view of doing this which (P) Show $\left(\frac{\partial X}{\partial m}\right)_{5} + \left(\frac{\partial A}{\partial m}\right)_{5} = \left(\frac{\partial L}{\partial m}\right)_{5} + \frac{L_{5}}{L_{5}}\left(\frac{\partial O}{\partial m}\right)_{5}^{\circ}$ robulos $(\frac{\partial x}{\partial m})^2 + (\frac{\partial x}{\partial m})^2 = (\frac{\partial x}{\partial m}\cos(\theta) - \frac{\partial \theta}{\partial m}\sin(\theta))^2 + (\frac{\partial x}{\partial m}\sin(\theta) + \frac{\partial \theta}{\partial m}\cos(\theta))^2$ $= \left(\frac{3L}{9m}\right)^2 + \frac{L^2}{1} \left(\frac{90}{9m}\right)^2 \parallel$

Problem 02" a) S(tx,ty) = (tx)3-3(tx)(ty)2+ (ty)3 = 13x3-3t3xy2+23x3 = £3(x3-3x2y2+y3) = +3 f(x,y). altx, ty) = teg(x,y) (P)afglex, ty) = afteg(x,y) $\frac{\partial g}{\partial x} \left[tx, ty \right] \frac{\partial f}{\partial t} \left[tx \right] + \frac{\partial g}{\partial t} \left[tx, ty \right] \frac{\partial f}{\partial t} \left[ty \right] = dt d - lg(x, y)$ =) $\frac{\partial g}{\partial x}[tx,ty]x + \frac{\partial g}{\partial y}(tx,ty)y = dt^{d-1}g(x,y)$ =) plug in t=1, $\frac{2}{3}(x^{1}x^{2}) \times + \frac{2}{3}(x^{1}x^{2}) = q^{2}(x^{1}x^{2}) = q^{2}(x^{1}x^{2}) = q^{2}(x^{1}x^{2})$

Jon med t	o Show of	be norn	rol Je	Zok	
				the points intersection intersection rormal rect orthogonal. 142+22-8 g(x,y,2)	10 270,
		2	1 (X +1)	(2) =0	
7g(x,y,z)=	- (2x,2y, - (-2x,-2y	(22) (22),	0		
ne reeds to					
y of or	g inferse	, vok			
7g(X14,2),	7h(x,y,z) (2x,2y,22) n (-2×	,-24,2	2)	
	-4x2-4y2-				
= = = = = = = = = = = = = = = = = = = =		stuce (X, y, Z)	Salsly the hyperbolod.	