CSUS College of Engineering and Computer Science Electrical & Electronic Engineering ENGR 120 Probability and Random Signals

Computer Assignment 2: The Central Limit Theorem

The Central Limit Theorem (CLT) is an extremely important result in probability theory. The essence of the CLT is that the distribution of the sum of a large number of independent random variables approaches a Gaussian. The objective of this assignment is to demonstrate (and visualize) this convergence using MATLAB. The following tasks/functions serve as a guide, however you are welcome to write your own code and approach if you wish. Submit all figures with the corresponding MATLAB code by the due date.

Task 1: Use Matlab to generate a sufficiently large matrix \mathbf{A} of size $N \times N$ with IID entries. The entries of the matrix \mathbf{A} can follow the distribution of your choice, except Gaussian.

Hint: Research these functions in Matlab to generate the random matrix entries: exprnd(), rand(), raylrnd(),..., and many more. You can use any distribution except Gaussian.

Task 2: Form a vector **a** (of size $N \times 1$) by selecting the first column of the matrix **A**, *i.e.* **a** = **A**(:,1). The entries of this vector should follow the distribution of **A**.

Task 3: Form a vector \mathbf{z} (of size $N \times 1$) by summing the columns (or rows) of the matrix \mathbf{A} , *i.e.* $\mathbf{z} = sum(\mathbf{A}')'$. The entries of this vector should follow the Gaussian distribution by the CLT.

Task 4:

Use the generated data in Tasks 2 and 3 to plot the PDF of **a** and **z**. *Hint: you may find this Matlab function helpful for this Task* histogram(.).

Use these figures as guide for Task 4. Your plots should look similar but not necessarily the same.

