离散考前练习

- 1. Solve the recurrence relation $a_n=a_{n-1}+a_{n-2}$ with $a_0=a_1=1$ using generating function.
- 2. Determine the number of the terms in the expansion of

$$(x_1+x_1+\cdots+x_{10})^{20}$$
.

- 3、将 m 个无区别的球,放入 n 个有区别的盒子,在允许有空盒和不允许有空盒两种情况下分别讨论可能的放法数。
- 4、求 n 元集合到 m 元集合单射、满射、双射的个数。
- 5、用容斥原理求 1~n 中与 n 互素的元素个数。

6、 $\langle G, * \rangle$ 是个群, $x \in G$,定义 G 中的运算 " Δ "为 $a\Delta b = a * x * b$,对 $\forall a, b \in G$,证名 $\langle G, \Delta \rangle$ 也是群。

证明: 1) $\forall a, b \in G$, $a\Delta b = a * x * b \in G$, 运算是封闭的。

- 2) ∀a, b, c∈G, (aΔb) Δc= (a*x*b) *x*c=a*x* (b*x*c) =aΔ (bΔc), 运算是可结合的。
 - 3) \forall a∈G,设E为Λ的单位元,则aΛE=a*x*E=a,得E=x⁻¹,存在单位元。
 - 4) $\forall a \in G$, $a\Delta x^{-1}*a^{-1}*x^{-1}=a*x*x^{-1}*a^{-1}*x^{-1}=x^{-1}=E$,

 $x^{-1}*a^{-1}*x^{-1}\Delta$ $a=x^{-1}*a^{-1}*x^{-1}*$ x* $a=x^{-1}=E$, a 的逆元为 $x^{-1}*a^{-1}*x^{-1}$,每个元素都有存在。所以G, Δ >也是个群

- 7、设〈G,*〉是有限交换群, a, b∈G, |a|=m, |b|=n, m, n 是整数, 且 GCD (m, n) =1 即 m, n 互素, 证明: |ab|=mn
- 证明: 设 | ab | =k, 因为 (ab) ^{mm} = (ab) (ab) ··· (ab) = (a^m) ⁿ (bⁿ) ^m = e, 所以 k | mn, e = ((ab) ^k) ^m = (a^{km}) (b^{km}) = b^{km}, 所以 n | km, 由于 GCD (m, n) = 1, 所以 n | k 同理可求, 所以 m | k. 所以有 mn | k, mn = k, | ab | = mn
- 8、设〈S,+,•〉是环,1 是其乘法幺元,在 S 上定义运算 \Box 和 \Box : $a \oplus b = a + b + 1$, $a \odot b = a + b + a \bullet b$.
 - (1) 证明⟨*S*, ⊕, **⊙**⟩是一个环。
 - (2) 给出 $\langle S, \oplus, \odot \rangle$ 的关于运算 \oplus 和 \odot 的单位元。
- 证明: (1) 对任意 a、b、 $c \in S$,
 - 则($a \oplus b$) $\oplus c = a \oplus b + c + 1 = a + b + c + 1 + 1$, $a \oplus (b \oplus c) = a + b \oplus c + 1 = a + b + c + 1 + 1$,于是($a \oplus b$) $\oplus c = a \oplus (b \oplus c)$,即⊕满足结合律。

 $a\oplus b=a+b+1=b+a+1=b\oplus a$, 所以 \oplus 是可交换的。

$$a \oplus (-1) = a + (-1) + 1 = a = (-1) \oplus a$$
.

所以-1 是 ⊕ 单位元。

$$a \oplus (-1-1-a) = a + (-1-1-a) + 1 = -1 = (-1-1-a) \oplus a$$

所以-1-1-a是 a的逆元。

综上可知, $\langle S$, ⊕〉是一个交换群。

 $(2) (a \odot b) \odot c = a \odot b + c + (a \odot b) \cdot c = a + b + a \cdot b + c + (a + b + a \cdot b) \cdot c$ $= a + b + a \cdot b + c + a \cdot c + b \cdot c + a \cdot b \cdot c$

$$a \odot (b \odot c) = a + b \odot c + a \cdot (b \odot c)$$

$$= a + b + c + b \cdot c + a \cdot (b + c + b \cdot c)$$

$$= a + b + c + b \cdot c + a \cdot b + a \cdot c + a \cdot b \cdot c$$

所以 $(a \odot b) \odot c = a \odot (b \odot c)$, 即 \odot 满足结合律。

$$\nabla a \odot 0 = a + 0 + a \cdot 0 = a$$

$$0 \odot a = 0 + a + 0 \cdot a = a$$

0 是 ⊙ 单位元

因而⟨S, ⊙⟩是有幺元的半群。

$$a \odot (b \oplus c) = a + b \oplus c + a \bullet (b \oplus c)$$

$$=a+b+c+1+a \cdot (b+c+1) = 2a+b+c+a \cdot b+a \cdot c+1$$

$$(a \odot b) \oplus (a \odot c) = a \odot b + a \odot c + 1 = a + b + a \cdot b + a + c + a \cdot c + 1$$

= $2a + b + c + a \cdot b + a \cdot c + 1$

$$a \odot (b \oplus c) = (a \odot b) \oplus (a \odot c)$$
,

所以 ⊙ 对 ⊕ 满足分配律。

从而<**S**, \oplus , \bigcirc >是一个环。

9、设 G 是一个群, e 是 G 的单位元, H 是 G 的子群. 如下定义关系 R:

 $\forall a_1, a_2 \in G, \langle a_1, a_2 \rangle \in R \Leftrightarrow a_1 e a_2^{-1} \in H.$ 证明 R 是 G 上的等价关系.

证明: 对于任意的 $a \in G$, \therefore $aea^{-1}=e \in H$, \therefore <a,a> \in R,故 R 是自反的。 对于任意的 a,b \in G,若<a,b> \in R,

- \therefore aeb⁻¹ \in H, \therefore (aeb⁻¹)⁻¹=(ab⁻¹)⁻¹⁼ba⁻¹ \in H,
- ∴ $\langle b,a\rangle \in R$,故 R 是对称的。

对于任意的 a,b,c∈G, 若<a,b> ∈ R, <b,c> ∈ R, ∴ aeb⁻¹∈H 且 bec⁻¹∈H,

∴ (aeb⁻¹) (bec⁻¹)=ac⁻¹∈H, ∴ <a,c> ∈ R, 故 R 是传递的

10、〈G, *〉是个群, u∈G, 定义 G 中的运算 "△" 为 a△b=a*u⁻¹*b, 对任意 a, b∈G, 求证: 〈G, △〉也是群。

证明: 1) $\forall a,b \in G$, $a\Delta b = a^*u^{-1}*b \in G$, 运算是封闭的。

- 2) $\forall a.b.c \in G$, $(a\Delta b) \Delta c = (a*u^{-1}*b) *u^{-1}*c = a*u^{-1}* (b*u^{-1}*c) = a\Delta (b\Delta c)$, 运算是可结合的。
- 3) ∀a∈G,设 E 为∆的单位元,则 a∆E=a*u-1*E=a,得 E=u,存在单位元。
- 4)∀a∈G, aΔx=a*u⁻¹*x=E, x=u*a⁻¹*u,则 xΔa=u*a⁻¹*u*u⁻¹*a=u=E,每个元素都有逆元。 所以<G. Δ>也是个群

11、证明有限群中阶(周期)大于2的元素的个数必定是偶数。

证明 x 与其逆元 x-1 的周期相同,又当 x 的周期大于 2 时,x $\neq x$ -1。定义映射 f: x $\rightarrow x$ -1,是 群中的双射函数,所以阶大于 2 的元素成对出现(x 与其逆元 x-1 是一对),故其个数必定是偶数。

12、 证明 n 阶循环群的子群的个数恰为 n 的正因子数。

证明: 对 n 的每一正因子 d, 令 $k = \frac{n}{d}$, $b = a^k$, $H = \{e, b, b^2, \dots, b^{d-1}\}$.

因为|a|=n, 所以 b^d=(a^k) ^d=a^{kd}=aⁿ=e 且|b|=d。

从而 H 中的元素是两两不同的,易证 H≤G。

故|H|=d。所以是G的一个d阶子群。

设 H_1 是 G 的任一 d 阶子群。则由定理 5.4.4 知, H_1 = (a^m) ,其中 a^m 是 H_1 中 a 的最小正幂,且 $|H|=\frac{n}{m}$ 。因为|H|=d,所以 $m=\frac{n}{d}=k$,即 $H=H_1$ 。从而 H 是 G 的惟一 d 阶子群。

13、证明:对于剩余环〈Zn, +n, ×n〉, n 是素数当且仅当 Zn 中无零因子。

证明: (1) ←

设 \mathbf{Z}_n 中无零因子,往证 n 是素数。假设 n 不是素数,则存在整数 n_1 , n_2 ,使 $n=n_1n_2$ $1 < n_1 \le n_2 < n$

因此 $[n_1] \neq [0]$, $[n_2] \neq [0]$, 但 $[n_1] \times_n [n_2] = [0]$. 即 $[n_1]$, $[n_2]$ 是 \mathbf{Z}_n 的一对零因子,矛盾。所以,n 是素数。

 $(2) \Rightarrow$

设 n 是素数,若〈 \mathbf{Z}_n , $+_n$, \times_n 〉中有零因子 [i], $[j] \in \mathbf{Z}_n$, 使得 [i], $[j] \neq$ [0], $[i] \times_n [j] = [0]$, 则 [ij] = [0], 因而 $n \mid ij$. 由于 n 是素数,故 $n \mid i$ 或 $n \mid j$. 即 [i] = [0] 或 [j] = [0],矛盾。所以,〈 (\mathbf{Z}_n) , $(+_n)$, $(+_n)$ 中无零因子。

14、假设 $\langle X, * \rangle$ 是一个代数系统,*是 X 上的二元运算。如果*运算是可结合的,并且对任意的 x, y \in X,当 x*y=y*x 时,有 x=y。证明 X 中每个元素都是幂等元。

证明:对任意的元素 x∈X,由于*运算可结合,所以有 (x*x)*x=x*(x*x) 由题设条件可知 x*x=x 由 x 的任意性则每个元素都是等幂元。

15、假设〈X, ⊕, ⊗〉是一个代数系统,⊕和⊗分别是 X 上的二元运算。若对任意的 $x, y \in X$,有 $x \oplus y = x$ 。证明:⊗对于⊕是可分配的。

证明:对任意的 $x,y,z \in X$,

 $x\otimes(y\oplus z)=x\otimes y$

 $= (x \otimes y) \oplus (x \otimes z)$

 $\overline{\mathbb{m}}$ $(y \oplus z) \otimes x = y \otimes x$

证毕。

16、假设<X,*>和<Y, ⊗>是两个代数系统,*和⊗分别是 X 和 Y 上的二元运算,并且满足结合律和交换律。f1 和 f2 都是代数系统 X 到 Y 的同态映射。令: $h:X\to Y$,对任意的 $x\in X$,h(x)=f1(x) ⊗f2(x)。证明 h 是代数系统 X 到 Y 的同态映射

证明:由h的定义可知h是X到Y的函数

对任意的 x,y∈X

 $h(x*y)=f1(x*y) \otimes f2(x*y)$

 $=(f1(x)\otimes f1(y))\otimes (f2(x)\otimes f2(y))$

由于运算⊗满足结合律和交换律,

所以上式= $(f1(x)\otimes f2(x))\otimes (f1(y)\otimes f2(y))=h(x)\otimes h(y)$

h 对于运算保持。

所以 h 是代数系统 X 到 Y 的同态映射。

证毕

17、假设 $\langle G, * \rangle$ 是一个群,|G|=2n。证明 G 中至少有一个周期为 2 的元素。

证明:因为群<G,*>中的元素互逆,即元素 a 的逆元是 a',a'的逆元是 a。因而 G 中逆元不等于自身的元素必为偶数个(包括零个)。

但是 G 包含偶数个元素,因此 G 的逆元等于自身的元素个数也必为偶数个,而 G 的单位元 e 的逆元是其本身,所以 G 中至少还有另一个元素 a 其逆元是它本身,即 $a^{-1}=a$ 。

从而 a²=a*a=a*a⁻¹=e, 并且 e≠a。

即 a 是一个周期为 2 的元素

所以至少存在一个周期为2的元素。

18、已知 G={1,2,3,4,5,6}, ×₇为模 7 乘法, 试说明〈G, ×₇〉是否构成群? 是否为循环群? 若是, 生成元是什么? 它是否有子群? 若有, 子群是什么?

解:列出运算表如下:

×7	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

由运算表和模 7 乘法的性质可知< G_{\times_7} 是群。是循环群,生成元是 3,5。它有子群,子群是: $<G_{\times_7}$, $<{1},\times_7>$, $<{1,6},\times_7>$, $<{1,2,4},\times_7>$

19、假设 f, g 是群 $\langle X, * \rangle$ 到群 $\langle Y, \otimes \rangle$ 的同态映射。证明 $\langle H, * \rangle$ 是群 $\langle X, * \rangle$ 的子群,其中 $H=\{x \mid x \in X, H \in \{x \mid x \in X\}\}$ 。

证明:由 H 的定义可知 $H\subseteq X$ 。假设 e_x 是群< X,*>的单位元, e_y 是 $< Y,\otimes>$ 的单位元 由 f,g 是群< X,*>到群 $< Y,\otimes>$ 的同态映射可知 $f(e_x)=e_y=g(e_x)$ 从而 $e_x\in H$,故 H 非空。对于任意的 $a,b\in H$,则有 f(a)=g(a),f(b)=g(b)

由 f,g 是群<X,*>到群<Y, \otimes >的同态映射可知 f(b-1)=(f(b))-1=(g(b))-1=g(b-1) 因此 f(a*b-1)=f(a) \otimes f(b-1)=g(a) \otimes g(b-1)=g(a*b-1) 所以 a*b-1 \in H

因此<H,*>是群<X,*>的子群。

证毕。

20、假设<X,*>是一个代数系统,*是 X 上的二元运算。对任意的 x,y,z,w∈X, 有 x*x=x, 并且(x*y)*(z*w)=(x*z)*(y*w)。证明: x*(y*z)=(x*y)*(x*z)

证明: 对任意的 $x,y,z \in X$ 有 x*x=x 所以 x*(y*z)=(x*x)*(y*z)=(x*y)*(x*z) (由已知条件)证毕。

21、假设 $S=\{a,b,c\}$, $X=<\{\emptyset,S\},\cap,\cup,\sim>$, $Y=<\{\{a,b\},S\},\cap,\cup,\sim>$ 。二元运算符 \cap,\cup 和一元运算符 \sim 分别是集合的交、并、补运算。问 X 和 Y 是否同构?为什么?

答: X 和 Y 不同构。因为 $Y=<\{\{a,b\},S\},\cap,\cup,\sim>$ 不是代数系统,补运算~关于集合 $\{\{a,b\},S\}$ 不封闭。如果存在 X 和 Y 同构,则 X 是代数系统,Y 一定是代数系统。由上可知产生矛盾。

22、假设 $\langle G, * \rangle$ 是一个群。证明对于任意的 $a, b \in G$,存在唯一的 $x \in G$,使得 a*x=b。

证明: 由于<G,*>是一个群,所以对于任意元素 a,b∈G,逆元 a'∈G 存在,并且 x=a'*b∈G,使得 a*x=a*(a'*b)=(a*a')*b=b 假若还存在另一个元素 c∈G,使得 a*c=b 则 c=e*c=(a'*a)*c=a'*(a*c)=a'*b=x 所以 x 唯一。 证毕。

23、设 $\langle S, * \rangle$ 是一个含幺半群,e 是单位元。证明若任意的 $x \in S$,有 x * x = e,则 $\langle S, * \rangle$ 是阿贝尔群。

证明: 对于任意的 $x \in S$,有 x*x=e,因此 $x^{-1}=x$,所以< S, *>是群。对任意的 $x,y \in S$ $x*y=x^{-1}*y^{-1}=(y*x)^{-1}=y*x$ 所以< S, *>是阿贝尔群

24、已知 G={0,1,2,3,4,5},+6为模 6 加法,试说明〈G,+6〉是否构成

群?是否为循环群?若是,生成元是什么?它是否有子群?若有,子

群是什么?

证毕。

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

解:由运算表和模 6 加法的性质可知<G, $+_6>$ 是群。是循环群,生成元是 1,5。它有子群,子群是:<G, $+_6>$,<{0,3}, $+_6>$,<{0,2,4}, $+_6>$

25、假设<G,*>是群,C={a | a∈G, 并且对 $\forall x \in G, a*x = x*a$ },证明<C,*>是<G,*>的子群。

证明: (1) 因为<G,*>是群,所以存在单位元 e。

对 \forall x∈G,有 e*x = x*e = x 所以 e ∈C,即 C 是非空的。 又由 C 的定义可知: C⊂G。

(2) 对∀a, b∈C, 有 a*x = x*a 和 b*x = x*b 而 (a*b)*x = a*(b*x) = a*(x*b) = (a*x)*b = (x*a)*b = x*(a*b) 所以 a*b ∈C 又对∀a∈C, 有 a*x = x*a 又有 $a^{-1}*a*x = a^{-1}*x*a$ 所以 $x = a^{-1}*x*a$ 而 $x*a^{-1} = a^{-1}*x*a*a^{-1} = a^{-1}*x$ 所以 $a^{-1} \in C$