Matplotlib 라이브러리 IRIS 데이터 셋 실습해보기

학습 내용

- 그래프 레이블, 제목 등
- matplotlib 히스토그램
- matplotlib 산점도
- matplotlib 막대 그래프
- subplot 여러개의 그래프 표시하기

목차

- 01. 데이터 준비
- 02. 4개의 피처 값 확인 히스토그램
- 03. Scatter Plot (산점도) 두 변수간 상관관계 확인
- 04. 막대 그래프(bar plot)

01 데이터 준비

목차로 이동하기

```
In [1]: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl import numpy as np plt.style.use('ggplot') # R의 ggplot라이브러리와 비슷한 형태로 설정.(1.41이상) print(pd.__version__) print(sns.__version__) print(mpl.__version__) iris = sns.load_dataset("iris") iris
```

- 2.1.4
- 0.12.2
- 3.8.0

Out[1]:		sepal_length	sepal_width	petal_length	petal_width	species
	0	5.1	3.5	1.4	0.2	setosa
	1	4.9	3.0	1.4	0.2	setosa
	2	4.7	3.2	1.3	0.2	setosa
	3	4.6	3.1	1.5	0.2	setosa
	4	5.0	3.6	1.4	0.2	setosa
	•••	•••			•••	
	145	6.7	3.0	5.2	2.3	virginica
	146	6.3	2.5	5.0	1.9	virginica
	147	6.5	3.0	5.2	2.0	virginica
	148	6.2	3.4	5.4	2.3	virginica
	149	5.9	3.0	5.1	1.8	virginica

150 rows × 5 columns

02. 4개의 피처 값 확인 - 히스토그램

목차로 이동하기

```
In [2]: plt.title("IRIS Petal Width") # 제목
plt.xlabel("Width") # x 레이블
plt.ylabel("Count") # y 레이블
plt.hist(iris['petal_width'])

Out[2]: (array([41 8 1 7 8 33 6 23 9 14])
```

Out[2]: (array([41., 8., 1., 7., 8., 33., 6., 23., 9., 14.]), array([0.1 , 0.34, 0.58, 0.82, 1.06, 1.3 , 1.54, 1.78, 2.02, 2.26, 2.5]), <BarContainer object of 10 artists>)

IRIS Petal Width

그래프의 크기 설정 및 세부 설정

```
In [3]: plt.figure(figsize=(10,6))
plt.title("IRIS Petal Width", fontsize=25, y=1.01) # y : 그래프로부터 제목까지
plt.xlabel("Width", fontsize=15) # x 레이블
plt.ylabel("Count", fontsize=15) # y 레이블
plt.hist(iris['petal_width'])
```

Out[3]: (array([41., 8., 1., 7., 8., 33., 6., 23., 9., 14.]), array([0.1 , 0.34, 0.58, 0.82, 1.06, 1.3 , 1.54, 1.78, 2.02, 2.26, 2.5]), <BarContainer object of 10 artists>)

IRIS Petal Width


```
In [4]:
        iris.columns
Out[4]: Index(['sepal_length', 'sepal_width', 'petal_length', 'petal_width',
                'species'],
              dtype='object')
In [5]: fig, ax = plt.subplots(2,2, figsize=(12,8))
        ax[0][0].hist(iris['petal_width'], color='deepskyblue')
        ax[0][0].set_ylabel('Count', fontsize=15)
        ax[0][0].set_xlabel('Width', fontsize=15)
        ax[0][0].set_title("IRIS Petal Width", fontsize=14, y=1.01)
        ax[0][1].hist(iris['petal_length'], color='deepskyblue')
        ax[0][1].set_ylabel('Count', fontsize=15)
        ax[0][1].set_xlabel('Width', fontsize=15)
        ax[0][1].set_title("IRIS Petal_length", fontsize=14, y=1.01)
        ax[1][0].hist(iris['sepal_width'], color='dodgerblue')
        ax[1][0].set_ylabel('Count', fontsize=15)
        ax[1][0].set xlabel('Width', fontsize=15)
        ax[1][0].set_title("IRIS sepal_width", fontsize=14, y=1.01)
        ax[1][1].hist(iris['sepal_length'], color='dodgerblue')
        ax[1][1].set_ylabel('Count', fontsize=15)
        ax[1][1].set_xlabel('Width', fontsize=15)
        ax[1][1].set title("IRIS setal length", fontsize=14, y=1.01)
        plt.tight layout() # 서브 플롯이 겹치지 않도록 자동으로 조절해준다.
```


03. Scatter Plot (산점도) - 두 변수간 상관관계 확인

• width와 length의 관계 조사

목차로 이동하기

Out[7]: <matplotlib.collections.PathCollection at 0x24f65449d50>

실습 - petal_width와 length의 관계를 확인해 보자.

```
In [8]: fig, ax = plt.subplots( figsize=(6,6) )
ax.scatter( iris['petal_length'], iris['petal_width'], color="sandybrown")
```

Out[8]: <matplotlib.collections.PathCollection at 0x24f6575de10>

• 추가 - label과 title를 넣어보기

04. 막대 그래프

목차로 이동하기

```
In [9]: cols = list(iris.columns)[0:4]
cols

Out[9]: ['sepal_length', 'sepal_width', 'petal_length', 'petal_width']

In [10]: iris.species.unique()

Out[10]: array(['setosa', 'versicolor', 'virginica'], dtype=object)

In [11]: # virginica인 것들의 4개의 피처 평균
[ iris[ iris.species == 'virginica'][one].mean() for one in cols ]

Out[11]: [6.58799999999998, 2.974, 5.552000000000000000, 2.026000000000000]

In [12]: # setosa인 것들의 4개의 피처 평균
[ iris[ iris.species == 'setosa'][one].mean() for one in cols ]

Out[12]: [5.006, 3.428, 1.4620000000000000, 0.2459999999999999]
```

```
In [13]: # versicolor인 것들의 4개의 피처 평균
         [ iris[ iris.species == 'versicolor'][one].mean() for one in cols ]
Out[13]: [5.936, 2.7700000000000005, 4.26, 1.325999999999998]
In [14]: # setosa인 것들의 4개의 피처 평균
         setosa = [ iris[ iris.species == 'setosa'][one].mean() for one in cols ]
In [15]: plt.bar( x, setosa )
       NameError
                                                Traceback (most recent call last)
       Cell In[15], line 1
        ----> 1 plt.bar( x, setosa )
       NameError: name 'x' is not defined
 In [ ]: # setosa인 것들의 4개의 피처 평균
         setosa = [ iris[ iris.species == 'setosa'][one].mean() for one in cols ]
         # versicolor인 것들의 4개의 피처 평균
         versi = [ iris[ iris.species == 'versicolor'][one].mean() for one in cols ]
         # virginica인 것들의 4개의 피처 평균
         virgi = [ iris[ iris.species == 'virginica'][one].mean() for one in cols ]
 In [ ]: plt.figure(figsize=(15,10))
         plt.subplot(2,2,1)
         plt.bar( x, setosa )
         plt.title("setosa")
         plt.subplot(2,2,2)
         plt.bar( x, versi )
         plt.title("versicolor")
         plt.subplot(2,2,3)
         plt.bar( x, virgi )
         plt.title("virginica")
```

실습해 보기 1

• tips 데이터 셋 또는 자신이 원하는 데이터 셋을 불러와 시각화를 수행해 보자. 이 내용을 제출해 보자.

REF

- https://matplotlib.org/3.1.0/gallery/color/named_colors.html
- last update : 24/06, @by DJ, Lim