Введение в теорию расписаний

Рассматриваются два множества:

$$M = \{M_1, M_2, ..., M_m\}$$
 — машины (станки, процессоры, бригады, ...)
 $J = \{J_1, J_2, ..., J_n\}$ — работы (задания, пакеты задач, ...)

• *Расписание* — указание, на каких машинах и в какое время должны выполняться работы.

В каждый момент времени каждая машина выполняет не более одной работы, и каждая работа выполняется на одной машине или не выполняется вовсе.

Два типа диаграмм Гантта

Одно решение, представленное на двух диаграммах

Характеристики работ

Работы состоят из операций: $J_i = \{O_{i_1}, O_{i_2}, ..., O_{i_{n_i}}\}$

Операция O_{i_j} требует p_{ij} времени и может выполняться на одной из машин множества $\mu_{ij} \subseteq \{M_1, \dots, M_m\}$.

Если $|\mu_{ij}| = 1, \forall ij$, то получаем модель с предписаниями.

Если $|\mu_{ij}| = m$, $\forall ij$, то получаем модель с параллельными машинами.

Для работы J_i известны:

 $r_i \ge 0$ — время появления первой операции O_{i_1}

 $d_i \geq 0$ — директивное время окончания последней операции $O_{i_{n_i}}$

 $w_i \ge 0$ — важность (вес, ценность) работы J_i

Классификация задач теории расписаний

Краткая запись задачи $\alpha \mid \beta \mid \gamma$

 α — характеристики машин; β — характеристики работ;

 γ — целевая функция задачи;

Варианты для β :

 $\beta_1 = pmtn$ (preemption) разрешаются прерывания;

 $\beta_2 = prec$ (precedence relations) условия предшествования на множестве работ (цепи, деревья, сети);

 $\beta_3 = r_i$ — время поступления на обслуживание

 $\beta_4 \in \{p_{ij} = 1; p_{ij} \in \{0,1\}; p_{ij} = p_{ij}(t), \ldots\}$ — уточнения для времени выполнения операций.

 $\beta_5 = d_i$ — директивные сроки окончания работ;

 $\beta_6 = p$ -batching (s-batching) — работы разбиваются на группы, и в каждой группе берется максимум (сумма) времён выполнения работ;

Характеристики машин

Поле α состоит из двух частей $\alpha = \alpha_1 \alpha_2$:

 α_1 — характеристики машин,

 α_2 — число машин.

Если $\alpha_1 \in \{\emptyset, P, Q, R\}$, то $n_i = 1 \ \forall J_i$, то есть каждая работа состоит ровно из одной операции.

 $\alpha_1 = \emptyset$ — для каждой работы задана машина для ее выполнения,

 $\alpha_1 = P$ — машины параллельны и одинаковы $p_{ij} = p_i$,

 $\alpha_1 = Q$ — машины параллельны, но различаются скоростями $p_{ij} = p_i / s_j$,

 $\alpha_1 = R$ — машины параллельны, длительности выполнения работ произвольны, но $p_{ij} = p_i / s_{ij}$.

Если $\alpha_1 \in \{G, X, J, F, O\}$, то $n_i \ge 1$, то есть у каждой работы может быть несколько операций.

- $\alpha_1 = J$ (*job shop*, *pабочий цех*) у каждой операции своя машина $|\mu_{ij}| = 1$ и линейный порядок выполнения операций $O_{i_1} \to O_{i_2} \to ... \to O_{i_{n_i}}$.
- $\alpha_1 = F$ (*flow shop*, *nomoковая линия*) машины упорядочены $M_1, M_2, ..., M_m$ и каждая работа проходит все машины в этом порядке, $n_i = m$ и $\mu_{ij} = M_i$, $\forall i$.
- $\alpha_1 = O$ (*open shop*, *omкрытая линия*) каждая работа состоит из m операций $(n_i = m)$, но $\mu_{ij} = \{ M_1, ..., M_m \}$ и на множестве операций нет условий предшествования,
- $\alpha_1 = X$ (mixed shop, смешанный цикл) смесь J и O,
- $\alpha_1 = G$ (*general case*) произвольный порядок предшествования на операциях (как в календарном планировании).

Целевые функции

Обозначим через c_i — время окончания работы J_i . Рассматриваются два типа минимизируемых целевых функций:

$$f(c) = \max_{i} f_{i}(c_{i}), \qquad f(c) = \sum_{i=1}^{n} f_{i}(c_{i}).$$

Примеры целевых функций:

$$C_{\max} = \max_{i=1,\dots,n} c_i$$
 — время окончания всех работ;

$$L_{\max} = \max_{i=1,...,n} (c_i - d_i)$$
 — запаздывание относительно директивных сроков;

$$D_{\max} = \max_{i=1,...,n} |c_i - d_i|$$
 — отклонение от директивных сроков;

$$F_{\max} = \max_{i=1,...,n} (\max\{0,d_i-c_i\})$$
 — опережение директивных сроков;

$$\sum_{i=1}^{n} w_i c_i$$
 — взвешенная сумма окончания работ.

Примеры задач теории расписаний

Пример 1. $P \mid prec, p_i = 1 \mid C_{\text{max}}$

Задача поиска расписания с минимальным временем окончания всех работ на m параллельных машинах с длительностями работ $p_i = 1$ и условиями предшествования, то есть предполагается известным ориентированный граф без циклов, вершинами которого являются работы, а дуги задают частичный порядок выполнения работ.

Если n = 7, m = 2 и условия предшествования заданы графом:

то одно из допустимых решений имеет вид

Пример 2. $1 \mid r_i, pmtn \mid L_{\text{max}}$

Задача на одной машине с возможностью прерывания работ, директивными сроками окончания работ и произвольными временами появления работы. Требуется найти расписание $\{c_i\}_{i=1}^n$, минимизирующее максимальное запаздывание, то есть

$$L_{\max} = \max_{i=1,\dots,n} (c_i - d_i) \rightarrow \min$$

Для
$$n = 4$$
 и

Одно из допустимых решений имеет вид:

$$L_{\text{max}} = \max \{3-2; 4-3; 6-4; 9-8\} = 2.$$

Пример 3. $J3 | p_{ij} = 1 | C_{\text{max}}$

Задача поиска расписания с минимальным временем окончания всех работ на трех машинах, образующих систему *job shop* — рабочий цех; длительности всех операций равны 1; у каждой работы свое множество операций; для каждой операции указана машина для ее выполнения.

При n = 5, m = 3 и матрице

	Машины						
J_1	M_1	M_3	M_2	M_1			
J_2	M_2	M_3	_	_			
J_3	M_3	M_1	_	_			
J_4	M_1	M_3	M_1	_			
J_5	M_3	M_1	M_2 $ M_1$ M_2	M_3			

Одно из допустимых решений задачи имеет вид:

Заметим, что машина M_1 обязана работать не менее 6 единиц времени (2 для J_1 , 1 для J_3 , 2 для J_4 , 1 для J_5), то есть нашли оптимум!

Пример 4. $R3 \mid d_i \mid D_{\text{max}}$

Задача поиска расписания, минимизирующего максимальное отклонение времен завершения работ от директивных сроков на трех параллельных машинах.

При n = 4, m = 3 и матрице длительностей выполнения работ p_{ij}

Одно из допустимых решений задачи имеет вид

	M_1	M_2	M_3	d_i
J_1	10	6	1	5
J_2	5	20	3	5
J_3	9	30	1	6
J_4	6	5	10	7

$$D_{\text{max}} = \max \{ |5-6|; |5-5|; |6-1|; |7-11| \} = 5$$

 J_1 J_2 J_3 J_4

Пример 5. 1 | s-batch | $\sum w_i c_i$

Задача собрать работы в группы для обработки на одной машине так, чтобы минимизировать взвешенную сумму окончания всех работ. В каждой группе время окончания работ равно времени окончания последней работы в группе. Длительность выполнения всей группы работ равна сумме длительностей работ. При переходе от одной группы к другой машина требует переналадки τ (простой.)

При
$$n = 6$$
, $m = 1$, $\tau = 1$ и

i	1	2	3	4	5	6
p_i	3	2	2	3	1	1
$\overline{w_i}$	1	2	1	1	4	4

Одно из допустимых решений при разбиении на 3 группы: $\{J_2\}$, $\{J_3, J_1, J_5\}$, $\{J_4, J_6\}$ имеет вид

$$\sum_{i=1}^{6} w_i c_i = w_2 \cdot 3 + (w_3 + w_1 + w_5) \cdot 10 + (w_4 + w_6) \cdot 15.$$

Задачи теории расписаний на одной машине

Первые публикации появились в 1955 – 1956 гг (Jackson, Smith)

Рассмотрим задачу с $r_i \equiv 0$ и минимизируемой функцией

$$f_{\max}(c_i) = \max_{i=1,...,n} f_i(c_i), f_i$$
 — монотонно возрастающая функция; прерываний

работ разрешены, то есть $1 \mid pmtn \mid f_{max}$

Теорема 1. Среди оптимальных решений найдется решение без прерывания и простоя машины.

Доказательство. Пусть в оптимальном решении работа J_{i_0} выполнялась

с прерыванием

Тогда изменим расписание, сохранив $c_{i_0} = t_4$, а работы из интервала $[t_2, t_3]$ сдвинем влево к t_1 . Так как f_i — монотонно возрастающая функция, то новое решение также будет оптимальным.

3адача $1 \mid prec \mid f_{max}$

Решение задается перестановкой $\mathcal{I} = (\mathcal{I}_1, ..., \mathcal{I}_n)$. Величина \mathcal{I}_i задает номер работы, стоящей на i-м месте в перестановке \mathcal{I} . Отношения предшествования задаются матрицей A: $a_{ij} = 1$, если работа J_i предшествует работе J_j и $a_{ij} = 0$ в противном случае.

Идея алгоритма

Пусть $N = \{1,..., n\}$ — множество всех работ и $P(N) = \sum_{i \in N} p_i$. Тогда в

оптимальном решении последней работой будет работа, которая не имеет последователей и дает $\min_{i \in N} f_i(P(N))$.

Алгоритм Лаулера

1. For
$$i := 1,..., n$$
 do $n(i) := \sum_{j=1}^{n} a_{ij}$;

2.
$$S := \{1,...,N\}; p := \sum_{i \in S} p_i;$$

- 3. For k := n, ..., 1 do
 - 3.1. Найти $j \in S$, для которого n(j) = 0 и $f_j(p) = \min_{i \in S} f_i(p)$;
 - 3.2. Положить $S \setminus \{j\}$; $\mathcal{H}_k := j$; $p := p p_j$;
 - 3.3. For i := 1,..., n do if $a_{ij} = 1$ then n(i) := n(i) - 1.

Трудоемкость алгоритма $T \approx O(n^2)$.

Теорема 2. Алгоритм Лаулера строит оптимальную перестановку \mathcal{I} .

Доказательство. Перенумеруем все работы так, чтобы $\mathcal{I}(i) = i, i = 1, ..., n$. Предположим, что \mathcal{I} не является оптимальным решением, и пусть $\sigma = (\sigma(1), \ldots, \sigma(n))$ — оптимальное решение. Найдем в нем первый номер с конца, где $j = \sigma(i) \neq i$ и $\sigma(i+1) = i+1$:

Согласно алгоритму Лаулера, работа J_i может быть поставлена сразу перед J_{i+1} , так как у нее нет последователей в блоке $(J_k, ..., J_j)$. Но $f_i(p) \leq f_j(p)$, $p = \sum_{l=1}^i p_l$. Значит, вставка i перед i+1 не увеличит целевую функцию и новое решение также является оптимальным. Действуя аналогично, мы уберем все нарушения, переходя от одного оптимального решения к другому, и в итоге получим \mathcal{I} .

3адача $1 \mid prec, pmtn, r_i \mid f_{max}$

По-прежнему $f_{\max} = \max_{i=1,...,n} f_i(c_i)$ и $f_i(x)$ — монотонно возрастающие

функции. Времена прихода работ $r_i \ge 0$ могут не быть согласованными с частичным порядком, то есть $a_{ij} = 1$ $(i \to j)$, но $r_j < r_i + p_i$. Поэтому сначала модифицируем величины r_i . Занумеруем работы так, что i < j при $(i \to j)$ и упорядочим пары $e = (i \to j)$ по возрастанию j. Если всего пар |E| штук, то алгоритм пересчета величин r_i может быть записан следующим образом.

Алгоритм Modify r_i

For
$$e := 1,..., |E|$$
 do $r_j := \max \{ r_j, r_i + p_i \};$

Разбиение на блоки

Упорядочим работы так, чтобы

$$r_1 \leq r_2 \leq \ldots \leq r_n$$
.

Этот порядок порождает допустимое расписание. Оно разбивается на блоки. Блок — это максимальное подмножество работ, которое выполняется без простоя машины:

Алгоритм построения блоков

Алгоритм Blocks $\{1, 2, ..., n\}$

- 1. i := 1, j := 1;
- 2. While $i \le n$ do

2.1.
$$t := r_i$$
; $B_j := \emptyset$;

2.2. While $(r_i \le t) \& (i \le n)$ do

2.2.1.
$$B_j := B_j \cup \{i\};$$

2.2.2.
$$t := t + p_i$$
;

2.2.3.
$$c_i := t$$
;

2.2.4.
$$i := i + 1$$
;

2.3
$$j = j+1$$
;

Трудоемкость алгоритма $T \approx O(n)$.

Параметры блоков

Для блока B_j определим: $s_j = \min_{i \in B_j} r_i$ — начало блока;

$$p(B_j) = \sum_{i \in B_j} p_i$$
 — длительность блока; $t_j = t(B_j) = s_j + p(B_j)$ — окончание блока.

Теорема 3. Для задачи 1 | *prec*, *pmtn*, r_i | f_{max} существует оптимальное расписание, в котором машина работает без простоев в интервалах [s_j , t_j], j = 1, ..., K, где K — число блоков.

Доказательство. Рассмотрим оптимальное расписание и предположим, что в интервале $[s_i, t_i]$ машина простаивает с s по t:

Рассмотрим первый такой интервал (самый левый).

Покажем, что \exists работа J_{i_0} такая, что $r_{i_0} \le s$, но $c_{i_0} > s$. Предположим, что такой работы нет. Рассмотрим множество работ T, стартующих позже s: $T = \{J_i \mid s_i > s\}$. Для них

$$r = \min\{r_i \mid i \in T\} > s,$$

так как нет работы J_{i_0} . Но тогда алгоритм Blocks должен был дать простой машины в интервале $[s,\ r]$. Получили противоречие. Значит работа J_{i_0} существует. Сдвинем ее начало в s и сократим интервал $[s,\ t]$ на p_{i_0} . Если $t-s>p_{i_0}$, то повторяем процедуру до тех пор, пока не покроем весь интервал. Но $[s,\ t]$ был первым интервалом. Аналогично поступим со вторым и т.д.

Оптимальное расписание для блока

Каждый блок можно рассматривать отдельно. Пусть $f_{\max}^*(B)$ — оптимальное решение для блока B и $f_{\max}^*(B\setminus\{j\})$ — оптимальное решение для $B\setminus\{j\}$. Так как f_i — монотонно неубывающие функции, то $f_{\max}^*(B) \geq f_{\max}^*(B\setminus\{j\})$ и

$$f_{\max}^*(B) \ge \max_{j \in B} f_{\max}^*(B \setminus \{j\}) \tag{*}$$

В блоке B одна из работ заканчивается последней. Обозначим ее через J_l . Она не имеет последователей в B и $f_l(t(B)) = \min\{f_j(t(B)) | j \in B \text{ и } j \text{ не имеет последователей в } B\}$. Очевидно, что

$$f_{\max}^*(B) \ge f_l(t(B)) \tag{**}$$

Удалим работу J_l из B и найдем оптимальное решение для этой подзадачи. Оно снова будет иметь блочную структуру. Простой машины в интервале $[s_i, t_i]$ будет соответствовать времени выполнения работы J_l и

$$f_{\max}^*(B) = \max\{f_{\max}^*(B \setminus \{J_l\}), f_l(t(B))\}.$$

В силу неравенств (*) и (**) это значение будет оптимальным. Применяя алгоритм рекурсивно, получаем оптимальное решение задачи.

Общая схема алгоритма $1 \mid prec, pmtn, r_i \mid f_{max}$

- 1. $S := \{1, ..., n\}$
- 2. $f_{\text{max}}^* := \text{Decompose}(S)$

Procedure Decompose (S)

- 1. If $S = \emptyset$ then return $-\infty$
- 2. If $S = \{i\}$ then return $f_i(r_i + p_i)$
 - else 2.1. Call Blocks (S)
 - 2.2. $f := -\infty$
 - 2.3. For all blocks *B* do
 - 2.3.1. Найти l: $f_l(t(B)) = \min\{f_j(t(B)) | j \in B \text{ и } j \text{ не имеет в } B \text{ последователей}\};$
 - 2.3.2. $h := Decompose (B \setminus \{J_l\})$
 - 2.3.3. $f := \max \{f, h, f_l(t(B))\}$
 - 2.4. return *f*

Трудоемкость алгоритма $T = O(n^2)$

Число прерываний не более (n-1), т.к. каждое прерывание дает разбиение на блоки.

Если $r_i = 0$ для всех $i \in S$, то получаем алгоритм Лаулера.

Упражнение. Разработать точный полиномиальный алгоритм для задачи $1 \mid prec, \ p_i = 1, r_i \mid f_{\text{max}}$.