MEMORIA CACHÉ

Ninguna tecnología es óptima para satisfacer las necesidades de un computador

Jerarquía de subsistemas de memoria

Características de los sistemas de memoria

Secuencial: *unidades de datos (registros) – secuencia lineal específica* ej.: unidades de cinta. Mecanismo R/WR.

Método de acceso

Directo: mecanismo R/WR se posiciona directamente en la vecindad del bloque o registro y luego prosigue de forma secuencial. ej.: unidades de disco

Aleatorio: cada posición de memoria tiene un único mecanismo de direccionamiento cableado

Asociativo: tipo aleatorio. Permite comparar simultáneamente, para todas las palabras, un patrón de bits. Una palabra es recuperada en función de su contenido en lugar de su dirección. Ej.: memoria caché

Prestaciones

Tiempo de acceso: tiempo necesario para completar una operación de RD/WR

Tiempo de ciclo: *Tiempo de acceso + tiempo adicional.*Depende de las características del bus

Velocidad de transferencia: velocidad de transferencia de datos a, o desde, una unidad de memoria

Para memorias de acceso aleatorio = tiempo de ciclo

Para otras memorias $T_N = T_A + \frac{N}{R}$

 T_N es el tiempo medio de RD/WR de N bits

 T_A es el tiempo de acceso medio

N es el número de bits

R es la velocidad de transferencia en bits por segundo

Organización ———— RAM: estructura física en bits para formar palabras

JERARQUÍA DE MEMORIA

En el espectro de las tecnologías se cumplen las siguientes relaciones

A menor tiempo de acceso, mayor costo por bit
 A mayor capacidad, menor costo por bit
 A mayor capacidad, mayor tiempo de acceso

Disminuye el costo por bit

Aumenta la capacidad

Aumenta el tiempo de acceso

Disminuye la frecuencia de acceso a la memoria por parte del procesador

Principio de localidad de las referencias

Base de la mejora de las prestaciones de un sistema con varios niveles de memoria

Excepto por las instrucciones de bifurcación o llamadas, un programa se ejecuta en forma secuencial

Un programa queda confinado en una ventana estrecha de nivel de anidamiento de procedimientos

La mayoría de las construcciones iterativas consta de un número pequeño de instrucciones

Las referencias sucesivas a estructura de datos serán a unidades de datos próximos entre si

El programa se ejecuta por Clusters

PRINCIPOS BÁSICOS DE LA MEMORIA CACHÉ

ELEMENTOS DE DISEÑO DE UNA CACHÉ

Tamaño de la Caché

la prestación de la Caché es muy sensible al tipo de tarea.

Es imposible predecir el tamaño óptimo

Suficientemente pequeño para que el costo medio por bit se aproxime al de la memoria principal Suficientemente grande para que el tiempo de acceso medio total se aproxime al de la Caché sola

Función de correspondencia

Memoria principal organizada en bytes con bus de direcciones de 24 bits : $2^{24} = 16 MBytes$

Memoria Caché de 64KBytes

Tamaño de bloque de la memoria principal = tamaño de línea de la Caché = 4bytes

La cantidad de bloques de la memoria principal es 16MBytes / 4Bytes = 4MBloques = 2^{22} Bloques

La cantidad de líneas de la memoria Caché es 64KBytes / 4Bytes = 16Klíneas = 2^{14} Líneas

Correspondencia directa

A cada bloque de la memoria principal le corresponde solo una línea posible de caché

Dirección de memoria de 24 bits

Longitud de las direcciones: s + w bits

Número de unidades direccionables: 2^{s+w} bytes

Tamaño de bloque = tamaño de línea: 2^w bytes

Número de bloques en la memoria principal: $\frac{2^{s+w}}{2^w} = 2^s$

Número de líneas en la caché: $2^r = m$

Tamaño de la etiqueta: s - r bits

Inconveniente

 $a \ 2^{s-r}$ bloques de la memoria principal le corresponde la misma línea de la caché

Memoria principal de 16 MB

Correspondencia asociativa

Cada bloque de la memoria principal puede cargarse en cualquier línea de la memoria caché

	S	W
	Etiqueta	Palabra
Dirección de memoria principal =	22	2

Longitud de las direcciones: s + w bits

Número de unidades direccionables: 2^{s+w} bytes

Tamaño de bloque = tamaño de línea: 2^w bytes

Número de bloques en la memoria principal: $\frac{2^{s+w}}{2^w} = 2^s$

Número de líneas en la caché: indeterminado

Tamaño de la etiqueta: s bits

Memoria principal de 16 MBytes

Correspondencia asociativa por conjuntos

La caché se divide en *v* conjuntos de *k* líneas (vías) cada uno

Longitud de las direcciones: s + w bits

Número de unidades direccionables: 2^{s+w} bytes

Número de conjuntos: $v = 2^d$

Tamaño de la etiqueta: *s - d bits*

Tamaño de bloque = tamaño de línea: 2^w bytes

Número de líneas en el conjunto: k

Número de líneas en la caché: $k \cdot v = k \ 2^d$

Caso típico: k = 2

Aumenta significativamente el número de aciertos

Memoria principal de 16 Mbytes

Algoritmos de sustitución

Correspondencia directa: Hay una sola posible línea para cada bloque particular. No hay elección posible Thrashing

Para las técnicas asociativas:

Utilizado menos recientemente (LRU):

Sustituye el bloque que ha permanecido mas tiempo en la caché sin ser referenciado

Primero en entrar, primero en salir (FIFO)

Se sustituye el bloque que ha permanecido mas tiempo en la caché

Utilizado menos frecuentemente (LFU)

Sustituye el bloque menos referenciado

Aleatorio

Se sustituye una línea al azar

Política de escritura

Contenido de la memoria principal = Contenido de la memoria caché

Escritura inmediata: La escritura se hace tanto en cache como en memoria principal

Coherencia de caché

Varios procesadores con su propia caché —— Monitorear el tráfico con memoria principal

Incremento sustancial del tráfico con memoria principal ——— Cuello de botella

Post escritura

Minimiza las escrituras

Se realizan solo en caché

Reemplazo una línea que fue modificada ——— Actualiza el bloque correspondiente de la memoria principal

Porciones de memoria no válida

Los accesos de los módulos de E/S deben hacerse a través de la caché

Varios procesadores con su propia caché —— Coherencia de caché

Vigilancia bus con escritura inmediata

Transparencia hardware

Memoria excluida de caché

Tamaño de línea

Principio de localidad —— Aumento del tamaño de bloque —— Aumento de aciertos

Bloques mas grandes disminuye el número de bloques que caben en la caché

Bloque mas grande —— Palabra adicional mas lejana —— Disminuye la probabilidad a corto plazo

Número de cachés

Caches multinivel Niveles de caché L1, L2 y L3 incluidas en el chip del procesador

Competición por la cache