Fundamentos. Circuitos de Corriente Continua. Teoría de Circuitos

Oscar Perpiñán Lamigueiro

- ① Conceptos Fundamentales
- ② Elementos circuitales
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- **5** Teoremas

① Conceptos Fundamentales

Teoría de Circuitos

Variables

- 2 Elementos circuitales
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- **6** Teoremas

Circuito Eléctrico

Un **circuito eléctrico** es un conjunto de componentes eléctricos interconectados mediante conductores que crean un camino cerrado por el que puede circular corriente eléctrica.

Un circuito eléctrico puede incluir:

- elementos activos (generadores), que entregan potencia al circuito
- **elementos pasivos** (receptores), que consumen o almacenan la potencia que circula.

Análisis y Diseño

El **análisis** (o resolución) de un circuito eléctrico existente persigue determinar sus condiciones de funcionamiento:

- 1 Definir las ecuaciones correspondientes al circuito,
- Obtener los valores de determinadas variables importantes a partir de dichas ecuaciones.

El **diseño** (o síntesis) de un circuito eléctrico tiene como objetivo definir el circuito eléctrico, es decir, determinar los componentes necesarios y su interconexión, para obtener unas condiciones de funcionamiento.

Sistemas lineales

Todos los circuitos eléctricos que se estudian en este curso se comportan como **sistemas lineales**:

- ► f(x + y) = f(x) + f(y)La respuesta f a la suma de dos entradas x e y es igual a la suma de la respuesta individual a cada una de las entradas
- ▶ $f(k \cdot x) = k \cdot f(x)$ La respuesta a una entrada que está multiplicada por un factor de escala k es igual a multiplicar por este factor a la respuesta a la entrada.

La linealidad es una aproximación de la realidad

- Estas propiedades simplifican el tratamiento de los circuitos, y **permiten aplicar técnicas de resolución de ecuaciones lineales**.
- La linealidad es una **aproximación de la realidad** que no puede aplicarse de manera indiscriminada a cualquier componente y en cualquier condición.
- ▶ En particular, los **dispositivos electrónicos** como diodos o transistores tienen un **comportamiento** marcadamente **no lineal**, de forma que los circuitos que los contienen no pueden analizarse directamente con las técnicas que aquí se exponen sin realizar previamente aproximaciones de su funcionamiento.

Parámetros concentrados

- Los circuitos eléctricos reales ocupan espacio, las máquinas generadoras y los receptores tienen grandes dimensiones, y los cables conductores se extienden a lo largo de longitudes variopintas.
- Sin embargo, el análisis de circuitos no toma en consideración las propiedades espaciales de los circuitos ni de sus componentes, sino que los confina a elementos puntuales con un modelo de parámetros concentrados.
- ▶ Por ejemplo, un conductor real de 100 m se representará habitualmente como un conductor ideal con una resistencia en su punto medio.

Simplificación de las ecuaciones de Maxwell

- Este tratamiento es una simplificación de las ecuaciones del electromagnetismo de Maxwell
- Es aplicable únicamente cuando las dimensiones del circuito real son inferiores a la longitud de onda de la señal que circula por el circuito.
- ► Por ejemplo:
 - A la frecuencia de 50 Hz, habitual en sistemas eléctricos industriales, la longitud de onda de la señal es de 6000 km.
 - ▶ A la frecuencia de 2,6 GHz, característica de la telefonía 4G, la longitud de onda se reduce a 11,5 cm.

① Conceptos Fundamentales

Teoría de Circuitos

Variables

- 2 Elementos circuitales
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- **6** Teoremas

Tensión Eléctrica

El **potencial eléctrico en un punto**, v(t), es la energía potencial que tiene una carga unitaria en ese punto debida al campo eléctrico.

La **tensión o diferencia de potencial entre dos puntos** A y B, $u_{AB}(t)$, es el trabajo realizado por el campo eléctrico al desplazar una carga unitaria entre esos puntos.

$$u_{AB}(t) = v_A(t) - v_B(t) = \frac{dW_e}{dq}$$

La **unidad** de la tensión eléctrica es el **voltio** (V).

La trayectoria no importa

Dado que el campo eléctrico es **conservativo**, la diferencia de potencial entre A y B **no depende de la trayectoria** seguida para realizar el desplazamiento, sino únicamente del potencial existente en cada uno de los puntos.

El signo depende del sentido

Aunque la trayectoria no sea relevante para el cálculo de la tensión, siempre hay que tener en cuenta el **sentido del desplazamiento**.

Así, si el movimiento se produce desde B hasta A obtenemos el signo contrario al anterior resultado:

$$u_{BA} = v_B - v_A = -u_{AB}$$

Corriente Eléctrica

Se define la **intensidad de la corriente eléctrica** como la variación de la carga q(t) que atraviesa la sección transversal de un conductor por unidad de tiempo:

$$i(t) = \frac{dq(t)}{dt}$$

La corriente eléctrica se produce por el **movimiento de los electrones libres** que fluyen por el conductor. Sin embargo, por razones históricas, el **convenio** que se se emplea considera como sentido de la corriente el debido al **movimiento de las cargas positivas**.

La **unidad** de la corriente es el **amperio** (A).

Potencia Eléctrica

La **potencia eléctrica** es la variación del trabajo del campo eléctrico por unidad de tiempo:

$$p(t) = \frac{dW_e}{dt}$$

Esta definición genérica puede relacionarse con las anteriores variables:

$$p(t) = \frac{dW_e}{dq} \cdot \frac{dq(t)}{dt}$$
$$= v(t) \cdot i(t)$$

La **unidad** de la potencia eléctrica es el **vatio** (W).

Signo de la potencia eléctrica

Para determinar el **signo de la potencia eléctrica** hay que tener en consideración los signos de las variables de las que depende, la tensión y la corriente.

- Cuando las flechas de ambas variables tienen el mismo sentido la potencia eléctrica es positiva
- Cuando las flechas tienen sentidos opuestos la potencia eléctrica es negativa.

Receptores y Generadores

Es habitual **interpretar** este resultado en términos de potencia absorbida o potencia entregada.

- Un circuito receptor absorbe potencia y la corriente entra por el terminal de mayor potencial,
- Un circuito generador entrega potencia y la corriente sale por el terminal de mayor potencial.

Potencia y Energía

```
Energía es la capacidad para realizar un trabajo.

Unidades Wh, kWh

1 kWh = 3.6 MJ

Potencia es la cantidad de trabajo efectuado por unidad de tiempo.

Unidades W, kW
```

Rendimiento/Eficiencia

Cuadripolo (entrada/salida)

$$\eta = rac{P_{salida}}{P_{entrada}}$$

Receptor

$$\eta_m = \frac{P_{util}}{P_{absorbida}}$$

Generador

$$\eta_g = rac{P_{entregada}}{P_{producida}}$$

Cualquier máquina tiene pérdidas:

$$\eta < 1$$

Corriente Continua y Corriente Alterna

► Corriente Continua ($\frac{d}{dt} = 0$)

► Corriente Alterna ($\frac{d}{dt} \neq 0$)

- ① Conceptos Fundamentales
- 2 Elementos circuitales
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- **6** Teoremas

- ① Conceptos Fundamentales
- 2 Elementos circuitales
 - Elementos Pasivos
 - Generadores Independientes
 - Generadores Dependientes
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- 6 Teoremas

Resistencia

Ley de Ohm: una resistencia provoca una diferencia de potencial entre sus terminales directamente proporcional a su corriente: resistencia (Ohmios, $[\Omega]$)

$$u(t) = R \cdot i(t)$$

Criterio de Signos: la tensión es positiva en el terminal por el que entra la corriente (las flechas de tensión y corriente tienen el mismo sentido).

Resistividad

El valor de la resistencia depende de la **resistividad del material** (ρ), de la **sección** (S), y de la longitud (l):

$$R = \rho \cdot \frac{l}{S}$$

- La **sección** se expresa en mm².
- La **resistividad** depende del material conductor y de la temperatura ambiente:
 - Cobre a 20°C: $17,24 \text{ m}\Omega \text{ mm}^2 \text{ m}^{-1}$.

Cortocircuito y Circuito Abierto

► Cortocircuito: resistencia nula (tensión nula)

Circuito abierto: resistencia infinita (corriente nula).

Ley de Joule

Ley de Joule: una resistencia disipa energía eléctrica produciendo calor.

$$p(t) = R \cdot i^2(t)$$

Bobina o inductancia

$$\underbrace{i(t)}_{u(t)}^{L}$$

- Cuando una corriente oscilante atraviesa un conductor arrollado alrededor de un núcleo, se produce una tensión inducida que se opone a esta corriente (ley de Faraday y Lenz)
- La tensión en sus terminales es directamente proporcional al cambio de la corriente: coeficiente de autoinducción o **inductancia** (Henrios [H]).

$$u_L(t) = L \cdot \frac{di(t)}{dt}$$

Bobina o inductancia

► Almacena energía magnética.

$$E_L(t) = \int_{-\infty}^t u(\tau) \cdot i(\tau) d\tau = \frac{1}{2} \cdot L \cdot i^2(t)$$

▶ En circuitos de corriente continua es un cortocircuito.

$$\frac{di(t)}{dt} = 0 \Rightarrow U_L = 0$$

Condensador

- Un condensador está formado por dos placas metálicas separadas por una capa dieléctrica. Al aplicar tensión se produce una separación de cargas opuestas que se acumulan en cada placa.
- La carga acumulada en un instante es proporcional a la diferencia de potencial en ese instante: capacidad (Faradios [F]).

$$q(t) = C \cdot u(t)$$

► En el proceso de carga se produce una corriente eléctrica entre las dos placas.

$$i_C(t) = \frac{dq(t)}{d(t)} = C\frac{du(t)}{dt}$$

Condensador

$$|i(t)|^{C}$$
 $|u(t)|$

► Un condensador almacena energía eléctrica

$$E_c(t) = \int_{-\infty}^t u(\tau) \cdot i(\tau) d\tau = \frac{1}{2} \cdot C \cdot u^2(t)$$

▶ En un circuito de corriente continua se comporta como un circuito abierto.

$$\frac{du(t)}{dt} = 0 \Rightarrow I_c = 0$$

- Conceptos Fundamentales
- 2 Elementos circuitales
 - Elementos Pasivos
 - Generadores Independientes
 - Generadores Dependientes
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- **6** Teoremas

Generador Ideal

Un **generador de corriente ideal** impone la corriente a la salida (*la tensión depende del circuito*). Se caracteriza por su corriente de generador.

Generador Real

Los generadores reales tienen pérdidas que se modelan con una resistencia en **serie** (generador de tensión) o en **paralelo** (generador de corriente)

- Conceptos Fundamentales
- 2 Elementos circuitales
 - Elementos Pasivos
 - Generadores Independientes
 - Generadores Dependientes
- 3 Leyes de Kirchhoff
- 4 Métodos de Análisis
- **6** Teoremas

Generadores de Tensión

... de Tensión

... de Corriente

Generadores de Corriente

... de Tensión

... de Corriente

- ① Conceptos Fundamentales
- Elementos circuitales
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- **5** Teoremas

- Conceptos Fundamentales
- ② Elementos circuitales
- 3 Leyes de Kirchhoff
 - Definiciones
 - Generadores
 - Asociación de Elementos
- Métodos de Análisis
- 6 Teoremas

Nudo, rama, malla

Nudo unión de 3 o más conductores.

Rama elementos conectados entre dos nudos consecutivos.

Lazo conjunto de ramas que forman un camino cerrado.

Malla lazo que no contiene ningún otro en su interior.

Ley de Kirchhoff de las Corrientes (LKC)

- La LKC es el principio de conservación de la carga aplicado a los circuitos eléctricos.
- ▶ LKC: la suma de las corrientes que llegan a un nudo es igual a la suma de las que salen.
 - Las lineas de corriente son cerradas (o solenoidales).

$$i_1(t) - i_2(t) + i_3(t) - i_4(t) + i_5(t) = 0$$

Ley de Kirchhoff de los Voltajes (LKV)

- ► La **LKV** es el principio de conservación de la energía aplicado a los circuitos eléctricos.
- ► LKV: la suma (con signo) de las tensiones a lo largo de un camino cerrado (circuito) es cero.
 - La energía producida por un generador es consumida por los receptores del circuito para producir trabajo (mecánico, químico, etc.) o calor.

$$u_3(t) + u_4(t) - u_5(t) - u_1(t) - u_2(t) = 0$$

Balance de Tensiones

$$U_{A'A} + U_{AC} + U_{CC'} + U_{C'D'} + U_{D'D} + U_{DB} + U_{BB'} + U_{B'A'} = 0$$

$$U_{AB} = U_{AA'} + U_{A'B'} + U_{B'B}$$

 $U_{CD} = U_{CC'} + U_{C'D'} + U_{D'D}$

Balance de Tensiones

$$U_{A'A} + U_{AC} + U_{CC'} + U_{C'D'} + U_{D'D} + U_{DB} + U_{BB'} + U_{B'A'} = 0$$

$$U_{A'A} = I \cdot R_g$$
 $U_{AC} = I \cdot R_L$
 $U_{CC'} = I \cdot R_m$
 $U_{C'D'} = \epsilon_m$
 $U_{D'D} = 0 = U_{BB'}$
 $U_{DB} = I \cdot R_L$
 $U_{B'A'} = -\epsilon_g$

$$I \cdot (R_g + 2 \cdot R_L + R_m) + \epsilon_m = \epsilon_g$$

Generador y Receptor

$$U_{A'A} = I \cdot R_g$$

$$U_{AC} = I \cdot R_L$$

$$U_{CC'} = I \cdot R_m$$

$$U_{C'D'} = \epsilon_m$$

$$U_{D'D} = 0 = U_{BB'}$$

$$U_{DB} = I \cdot R_L$$

$$U_{B'A'} = -\epsilon_g$$

$$U_{AB} = U_{AA'} + U_{A'B'} + U_{B'B}$$

$$U_{AB} = \epsilon_g - I \cdot R_g$$

$$U_{CD} = U_{CC'} + U_{C'D'} + U_{D'D}$$

$$U_{CD} = \epsilon_m + I \cdot R_m$$

- Conceptos Fundamentales
- ② Elementos circuitales
- 3 Leyes de Kirchhoff

Definiciones

Generadores

Asociación de Elementos

- Métodos de Análisis
- 6 Teoremas

Ecuación del generador

Los generadores reales tienen pérdidas que se modelan con una resistencia en **serie** (generador de tensión) o en **paralelo** (generador de corriente)

$$U_{AB} = \epsilon_g - R_{\epsilon_g} \cdot I$$

$$I = I_g - \frac{U_{AB}}{R_{I_g}}$$

Equivalencia de Fuentes

- Dos fuentes son equivalentes cuando suministran el mismo valor de tensión y corriente a un circuito externo, para cualquier circuito.
- Sólo es posible establecer equivalencia entre fuentes reales.

Equivalencia de Fuentes

La salida de tensión de una fuente de tensión es:

$$U_{AB} = \epsilon_g - R_{\epsilon_g} \cdot I$$

Y de una fuente de corriente:

$$I = I_g - \frac{U_{AB}}{R_{I_g}} \rightarrow U_{AB} = R_{I_g} \cdot I_g - R_{I_g} \cdot I$$

Las fuentes son equivalentes cuando las ecuaciones coinciden para cualquier combinación (U_{AB} , I):

$$\begin{bmatrix} R_g = R_{\epsilon_g} = R_{I_g} \end{bmatrix}$$

$$\boxed{\epsilon_g = R_g \cdot I_g} \Leftrightarrow \boxed{I_g = \frac{\epsilon_g}{R_g}}$$

- Conceptos Fundamentales
- ② Elementos circuitales
- 3 Leyes de Kirchhoff

Definiciones

Generadores

Asociación de Elementos

- 4 Métodos de Análisis
- 6 Teoremas

Conexión en serie

Un conjunto de elementos están asociados en serie cuando circula la misma corriente por todos ellos.

$$u_1(t) = R_1 \cdot i(t)$$

$$u_2(t) = R_2 \cdot i(t)$$

$$u_3(t) = R_3 \cdot i(t)$$

Conexión en serie

Aplicando LKV:

$$u(t) = u_1(t) + u_2(t) + u_3(t)$$

Sacando i(t) como factor común:

$$u(t) = i(t) \cdot (R_1 + R_2 + R_3)$$

Definimos la resistencia equivalente de la conexión serie:

$$R_s = \sum_{i=1}^n R_i$$

$$u(t) = R_s \cdot i($$

Divisor de Tensión

u(t) $u_2(t) \stackrel{+}{\underset{-}{\searrow}} R_2$

De las ecuaciones anteriores tenemos:

$$i(t) = \frac{u(t)}{R_1 + R_2 + R_3}$$

 $u_3(t) = R_3 \cdot i(t)$

Por tanto, la tensión parcial $u_3(t)$ se puede expresar en función de la tensión total u(t):

$$u_3(t) = u(t) \cdot \frac{R_3}{R_1 + R_2 + R_3}$$

En general:
$$u_o(t) = u(t) \cdot \frac{R_o}{R_s}$$

Conexión en serie de inductancias

Conexión en serie de condensadores

Conexión en serie de generadores

Generadores de Tensión

▶ Pueden conectarse en serie sin restricción.

$$\epsilon_T = \sum_{i=1}^{N} \epsilon_i$$
 $R_{gT} = \sum_{i=1}^{N} R_{gi}$

Generadores de Corriente

- ▶ Ideal: todas las fuentes deben ser idénticas (valor y sentido).
- ▶ Real: sin restricción, transformación de fuentes para fuente equivalente.

Conexión en paralelo

Un conjunto de elementos están asociados en paralelo cuando están sometidos a la misma diferencia de potencial.

$$i_1(t) = u(t)/R_1$$

 $i_2(t) = u(t)/R_2$
 $i_3(t) = u(t)/R_3$

Conexión en paralelo

$\begin{array}{c|cccc} i(t) \\ + \\ u(t) \\ - \\ i_1(t) \\ i_2(t) \\ i_3(t) \end{array}$

Aplicando LKC:

$$i(t) = i_1(t) + i_2(t) + i_3(t)$$

Sacando u(t) como factor común:

$$i(t) = u(t) \cdot (\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3})$$

Definimos la resistencia equivalente de la conexión paralelo:

$$\boxed{\frac{1}{R_p} = \sum_{i=1}^{n} \frac{1}{R_i}}$$
$$u(t) = R_p \cdot i(t)$$

Dos resistencias en paralelo

En el caso concreto de **dos** resistencias en paralelo ...

$$\frac{1}{R_p} = \frac{1}{R_1} + \frac{1}{R_2}$$

... la expresión es:

$$R_p = \frac{R_1 \cdot R_2}{R_1 + R_2}$$

Conductancia

Para facilitar las operaciones es conveniente utilizar el inverso de la resistencia:

$$G = \frac{1}{R}$$

Así, en lugar de...

$$\frac{1}{R_p} = \sum_{i=1}^n \frac{1}{R_i}$$
$$u(t) = R_p \cdot i(t)$$

... podemos escribir:

$$G_p = \sum_{i=1}^n G_i$$

$$i(t) = G_p \cdot u(t)$$

Divisor de corriente

De las ecuaciones anteriores tenemos (usando conductancia):

$$u(t) = \frac{i(t)}{G_1 + G_2 + G_3}$$
$$i_3(t) = G_3 \cdot u(t)$$

en función de la corriente total i(t):

$$i_3(t) = i(t) \cdot \frac{G_3}{G_1 + G_2 + G_3}$$

Por tanto, la corriente parcial $i_3(t)$ se puede expresar

En general:

$$i_o(t) = i(t) \cdot \frac{G_o}{G_p}$$

Conexión en paralelo de inductancias

$$u(t) = L_1 \cdot \frac{di_1(t)}{dt}$$
$$u(t) = L_2 \cdot \frac{di_2(t)}{dt}$$
$$u(t) = L_3 \cdot \frac{di_3(t)}{dt}$$

$$\boxed{\frac{1}{L_p} = \sum_{i=1}^{n} \frac{1}{L_i}}$$

$$u(t) = L_p \cdot \frac{di(t)}{dt}$$

Conexión en paralelo de condensadores

$$i_1(t) = C_1 \cdot \frac{du(t)}{dt}$$
$$i_2(t) = C_2 \cdot \frac{du(t)}{dt}$$
$$i_3(t) = C_3 \cdot \frac{du(t)}{dt}$$

$$C_p = \sum_{i=1}^{n} C_i$$
$$i(t) = C_p \cdot \frac{du(t)}{dt}$$

Conexión en paralelo de generadores

Generadores de Tensión

- ► Ideal: todas las fuentes deben ser idénticas (valor y polaridad).
- ▶ Real: sin restricción, transformación de fuentes para fuente equivalente.

Generadores de Corriente

Pueden conectarse en paralelo sin restricción.

$$I_{gT} = \sum_{i=1}^{N} I_{gi}$$
 $G_{gT} = \sum_{i=1}^{N} G_{gi}$

$$R_{AB} = \frac{R_{ab} \cdot (R_{bc} + R_{ca})}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{BC} = \frac{R_{bc} \cdot (R_{ab} + R_{ca})}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{CA} = \frac{R_{ca} \cdot (R_{ab} + R_{bc})}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{AB} = \frac{R_{ab} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{ab} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{BC} = \frac{R_{bc} \cdot R_{ab}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{bc} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{CA} = \frac{R_{ca} \cdot R_{ab}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{ca} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_{AB} = R_a + R_b$$

$$R_{BC} = R_b + R_c$$

$$R_{CA} = R_c + R_a$$

$$\frac{R_{ab} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{ab} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}} = R_a + R_b$$

$$\frac{R_{ab} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{bc} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}} = R_b + R_c$$

$$\frac{R_{ab} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}} + \frac{R_{bc} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}} = R_c + R_a$$

Conversión de Triángulo a Estrella

$$R_a = \frac{R_{ab} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_b = \frac{R_{ab} \cdot R_{bc}}{R_{ab} + R_{bc} + R_{ca}}$$

$$R_c = \frac{R_{bc} \cdot R_{ca}}{R_{ab} + R_{bc} + R_{ca}}$$

Conversión de Estrella a Triángulo

$$G_{ab} = \frac{G_a \cdot G_b}{G_a + G_b + G_c}$$

$$G_{bc} = \frac{G_b \cdot G_c}{G_a + G_b + G_c}$$

$$G_{ca} = \frac{G_c \cdot G_a}{G_a + G_b + G_c}$$

- ① Conceptos Fundamentales
- ② Elementos circuitales
- 3 Leyes de Kirchhoff
- 4 Métodos de Análisis
- **6** Teoremas

- Conceptos Fundamentales
- 2 Elementos circuitales
- 3 Leyes de Kirchhoff
- 4 Métodos de Análisis Método de las mallas Método de los nudos
- 6 Teoremas

Aplicamos LKC

No son ecuaciones linealmente independientes:

$$C = A + B + D$$

Aplicamos LKV

Malla ABCA

$$I_1 \cdot R_1 - \epsilon_1 + \epsilon_2 - I_3 \cdot R_3 - I_2 \cdot R_2 = 0$$

Malla BDCB

$$-I_5 \cdot R_5 - I_4 \cdot R_4 + I_3 \cdot R_3 - \epsilon_2 = 0$$

Malla ACDA

$$I_2 \cdot R_2 + I_4 \cdot R_4 + I_6 \cdot R_6 - \epsilon_3 = 0$$

Combinamos las ecuaciones

$$-I_{1} - I_{2} + I_{6} = 0$$

$$I_{1} + I_{3} + I_{5} = 0$$

$$I_{4} - I_{5} - I_{6} = 0$$

$$I_{1} \cdot R_{1} - I_{2} \cdot R_{2} - I_{3} \cdot R_{3} = \epsilon_{1} - \epsilon_{2}$$

$$I_{3} \cdot R_{3} - I_{4} \cdot R_{4} - I_{5} \cdot R_{5} = \epsilon_{2}$$

$$I_{2} \cdot R_{2} + I_{4} \cdot R_{4} + I_{6} \cdot R_{6} = \epsilon_{3}$$

Y las expresamos en forma matricial

$$\begin{bmatrix} -1 & -1 & 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & -1 & -1 \\ R_1 & -R_2 & -R_3 & 0 & 0 & 0 \\ 0 & 0 & R_3 & -R_4 & -R_5 & 0 \\ 0 & R_2 & 0 & R_4 & 0 & R_6 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \\ I_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \epsilon_1 - \epsilon_2 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Resolver el circuito implica resolver un sistema lineal de 6 ecuaciones, en el que las incógnitas son las corrientes de cada rama.

Método de las mallas

El método de las mallas simplifica el sistema de ecuaciones necesario mediante unas corrientes *virtuales* denominadas **corrientes de malla**, aprovechando las relaciones entre corrientes de la LKC.

Relaciones entre las corrientes de rama y malla

Ramas externas:

$$I_1 = I_a$$

$$I_5 = -I_b$$

$$I_6 = I_c$$

Ramas internas:

$$I_2 = I_c - I_a$$

$$I_3 = I_b - I_a$$

$$I_4 = I_c - I_b$$

Ecuaciones de malla

$$I_a \cdot R_1 - \epsilon_1 + \epsilon_2 + (I_a - I_b) \cdot R_3 + (I_a - I_c) \cdot R_2 = 0$$

Malla BDCB

$$I_b \cdot R_5 + (I_b - I_c) \cdot R_4 + (I_b - I_a) \cdot R_3 - \epsilon_2 = 0$$

Malla ACDA

$$(I_c - I_a) \cdot R_2 + (I_c - I_b) \cdot R_4 + I_c \cdot R_6 - \epsilon_3 = 0$$

Reagrupamos corrientes en las ecuaciones

$$I_a \cdot (R_1 + R_3 + R_2) - I_b \cdot R_3 - I_c \cdot R_2 = \epsilon_1 - \epsilon_2$$

-I_a \cdot R_3 + I_b \cdot (R_5 + R_4 + R_3) - I_c \cdot R_4 = \epsilon_2
-I_a \cdot R_2 - I_b \cdot R_4 + I_c \cdot (R_2 + R_4 + R_6) = \epsilon_3

Y lo expresamos en forma matricial

$$\begin{bmatrix} (R_1 + R_3 + R_2) & -R_3 & -R_2 \\ -R_3 & (R_5 + R_4 + R_3) & -R_4 \\ -R_2 & -R_4 & (R_2 + R_4 + R_6) \end{bmatrix} \cdot \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} \epsilon_1 - \epsilon_2 \\ \epsilon_2 \\ \epsilon_3 \end{bmatrix}$$

Ecuación General

$$\begin{bmatrix} \sum R_{aa} & -\sum R_{ab} & -\sum R_{ca} \\ -\sum R_{ab} & \sum R_{bb} & -\sum R_{bc} \\ -\sum R_{ca} & -\sum R_{bc} & \sum R_{cc} \end{bmatrix} \cdot \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix} = \begin{bmatrix} \sum \epsilon_a \\ \sum \epsilon_b \\ \sum \epsilon_c \end{bmatrix}$$

- $\sum R_{aa}$ suma de las resistencias incluidas en la malla de I_a .
- $\sum R_{ab}$ suma de las resistencias incluidas en las ramas compartidas por las mallas de I_a e I_b .
 - $\sum \epsilon_a$ suma algebraica de las fuerzas electromotrices de los generadores de la malla de I_a . Su signo es positivo si contribuyen al giro de la corriente.

Procedimiento

- 1 Identificar las corrientes de rama.
- 2 Asignar un sentido a las corrientes de malla.
- 3 Relacionar corrientes de rama con corrientes de malla.
- 4 Escribir ecuación de mallas.
- **5** Resolver la ecuación, obteniendo las corrientes de malla.
- 6 Obtener las corrientes de rama con las relaciones del punto 3.

Importante: todos los generadores deben ser fuentes de tensión.

- Conceptos Fundamentales
- 2 Elementos circuitales
- 3 Leyes de Kirchhoff
- 4 Métodos de Análisis

Método de las mallas

Método de los nudos

6 Teoremas

Aplicamos LKC

Nudo A

$$I_{g1} - I_a - I_{ab} = 0$$

Nudo B

$$I_{ab} - I_{g2} - I_b = 0$$

Tensiones en las resistencias

$$V_A = I_a \cdot R_1$$

$$V_B = I_b \cdot R_3$$

$$V_{AB} = I_{ab} \cdot R_2$$

Despejamos las corrientes

$$I_a = V_A \cdot G_1$$

$$I_b = V_B \cdot G_3$$

$$I_{ab} = (V_A - V_B) \cdot G_2$$

Combinamos las ecuaciones

Nudo A

$$I_{g1} - V_A \cdot G_1 - (V_A - V_B) \cdot G_2 = 0$$

Nudo B

$$(V_A - V_B) \cdot G_2 - I_{g2} - V_B \cdot G_3 = 0$$

Reorganizamos las ecuaciones

Nudo A

$$I_{g1} = V_A \cdot (G_1 + G_2) - V_B \cdot G_2$$

Nudo B

$$-I_{g2} = -V_A \cdot G_2 + V_B \cdot (G_2 + G_3)$$

Expresión matricial

Ecuación general

$$\begin{bmatrix} \sum G_A & -\sum G_{AB} & -\sum G_{AC} \\ -\sum G_{AB} & \sum G_B & -\sum G_{BC} \\ -\sum G_{AC} & -\sum G_{BC} & \sum G_C \end{bmatrix} \cdot \begin{bmatrix} V_A \\ V_B \\ V_C \end{bmatrix} = \begin{bmatrix} \sum I_{gA} \\ \sum I_{gB} \\ \sum I_{gC} \end{bmatrix}$$

- $\sum G_A$ Suma de las conductancias conectadas al nudo A.
- $\sum G_{AB}$ Suma de las conductancias conectadas entre los nudos A y B.
- $\sum I_{gA}$ Suma algebraica de las corrientes de los generadores conectados en el nudo A. El signo es positivo si el generador inyecta corriente en el nudo.

Importante: todos los generadores deben ser fuentes de corriente.

- ① Conceptos Fundamentales
- ② Elementos circuitales
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- **5** Teoremas

- Conceptos Fundamentales
- 2 Elementos circuitales
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- **5** Teoremas
 - Circuitos Lineales
 - Teorema de Thévenin/Norton
 - Teorema de máxima transferencia de potencia

Elementos lineales

- Un circuito eléctrico es lineal si los elementos pasivos y activos que incluye son lineales.
- ▶ Un **elemento pasivo** es lineal si la relación entre la tensión entre sus terminales y la corriente que lo recorre es lineal: **resistencias**, **condensadores** y **bobinas**.
- ▶ Una **fuente dependiente** es lineal si su salida (tensión o corriente) tiene una relación lineal con la magnitud del circuito de la que depende.
- ▶ Un circuito lineal tiene dos propiedades:
 - ► Homogeneidad o proporcionalidad.
 - Aditividad o superposición.

Homogeneidad o Proporcionalidad

Sea y(t) la respuesta de un circuito lineal a una excitación x(t).

Si la excitación es multiplicada por una **constante**, $K \cdot x(t)$, la respuesta del circuito será modificada por la misma constante, $K \cdot y(t)$.

Análisis de un circuito mediante proporcionalidad

¿Qué excitación debo aplicar a un circuito para obtener una determinada respuesta?

- ► Aplicamos una excitación de valor unidad.
- ▶ Resolvemos el circuito, obteniendo la respuesta del circuito a la excitación unidad.
- Hallamos la constante de proporcionalidad entre la respuesta obtenida y la respuesta deseada.
- La excitación que se debe aplicar es esta constante de proporcionalidad (puede ser un número complejo).

Análisis de un circuito mediante proporcionalidad

¿Qué respuesta proporciona un circuito ante una determinada excitación?

- ▶ Suponemos una respuesta de valor unidad.
- Resolvemos el circuito a la inversa, obteniendo la excitación que provoca la respuesta unidad.
- ► Hallamos la constante de proporcionalidad entre la excitación obtenida y la excitación deseada.
- La respuesta que entrega el circuito es esta constante de proporcionalidad (puede ser un número complejo).

Aditividad o Superposición

La respuesta de un circuito lineal a varias fuentes de excitación actuando simultáneamente es igual a la suma de las respuestas que se tendrían cuando actuase cada una de ellas por separado

$$y(t) = \sum_{i} y_i(t)$$

Análisis de un circuito mediante superposición

Procedimiento

- 1 Se apagan todas las fuentes independientes del circuito menos una.
 - Las fuentes de tensión se sustituyen por un cortocircuito (U = 0).
 - Las fuentes de corriente se sustituyen por un circuito abierto (I = 0).
 - Las fuentes **dependientes no** se modifican.
- 2 Se analiza el circuito, obteniendo la respuesta individual a la fuente que permanece activa.
- 3 Se repite este procedimiento para cada una de las fuentes **independientes** del circuito.
- 4 La respuesta total del circuito es la suma de las respuestas individuales.

Principio de superposición y Potencia

El principio de superposición aplica a tensiones y corrientes, pero **no** a potencias. Supongamos $I = I_1 + I_2$:

$$P = R \cdot I^{2} =$$

$$= R \cdot (I_{1} + I_{2})^{2} =$$

$$= R \cdot (I_{1}^{2} + I_{2}^{2} + 2 \cdot I_{1} \cdot I_{2})$$

$$P \neq P_{1} + P_{2}$$

- Conceptos Fundamentales
- 2 Elementos circuitales
- 3 Leyes de Kirchhoff
- 4 Métodos de Análisis
- **5** Teoremas
 - Circuitos Lineales
 - Teorema de Thévenin/Norton
 - Teorema de máxima transferencia de potencia

Thévenin

Cualquier **red lineal** compuesta por elementos activos de corriente continua y pasivos puede sustituirse, desde el punto de vista de sus terminales externos AB, por una **fuente de tensión** (generador de Thévenin, ϵ_{th}) en **serie** con una resistencia (resistencia de Thévenin, R_{th}).

Norton

Cualquier **red lineal** compuesta por elementos activos de corriente continua y pasivos puede sustituirse, desde el punto de vista de sus terminales externos AB, por una **fuente de corriente** (generador de Norton, I_N) en **paralelo** con una resistencia (resistencia de Norton, R_N).

Cálculo del equivalente de Thévenin

► Circuito Abierto ($R_L \rightarrow \infty$, $U_{AB} = U_{oc}$)

$$\epsilon_{th}=U_{oc}$$

ightharpoonup Cortocircuito ($R_L = 0$, $I = I_{sc}$)

$$R_{th} = \frac{\epsilon_{th}}{I_{sc}} = \frac{U_{oc}}{I_{sc}}$$

Cálculo del equivalente de Norton

► Cortocircuito ($R_L = 0$, $I = I_{sc}$)

$$I_N = I_{sc}$$

► Circuito Abierto ($R_L \rightarrow \infty$, $U_{AB} = U_{oc}$)

$$R_N = \frac{U_{oc}}{I_N} = \frac{U_{oc}}{I_{sc}}$$

Cálculo de Thévenin/Norton

Observaciones

- Cálculo de la impedancia:
 - Si el circuito **no** contiene fuentes dependientes, se puede realizar **apagando** todos los **generadores** y obteniendo la impedancia equivalente.
 - ▶ Si el circuito contiene fuentes dependientes, es necesario conectar un generador de prueba a la salida del circuito y obtener la relación entre la tensión y corriente de este generador.
- Gracias a la equivalencia de fuentes, una vez obtenido uno de los equivalentes se puede obtener el otro mediante una transformación.

- Conceptos Fundamentales
- ② Elementos circuitales
- 3 Leyes de Kirchhoff
- Métodos de Análisis
- **6** Teoremas
 - Circuitos Lineales
 - Teorema de Thévenin/Norton
 - Teorema de máxima transferencia de potencia

Planteamiento

Sea el circuito lineal de la figura. ¿Qué resistencia R_L hay que conectar en los terminales AB para que el circuito entregue la máxima potencia disponible?

Resolvemos esta pregunta mediante el generador equivalente de Thévenin.

Ecuaciones

Calculamos la potencia en la resistencia de carga R_L :

$$I = \frac{\epsilon_{th}}{R_{th} + R_L}$$

$$P_L = I^2 \cdot R_L$$

$$P_L = \frac{\epsilon_{th}^2}{R_{th} + R_L^2} \cdot R_L$$

La condición de máximo es:

$$\frac{dP_L}{dR_L} = 0$$

Resistencia

$$P_L = \frac{\epsilon_{th}^2}{(R_{th} + R_L)^2} \cdot R_L$$

Calculamos la derivada:

$$\frac{\partial P_L}{\partial R_L} = \epsilon_{th}^2 \cdot \left[\frac{1}{(R_L + R_{th})^2} - 2 \cdot \frac{R_L}{(R_L + R_{th})^3} \right]$$
$$= \frac{\epsilon_{th}^2 \cdot (R_{th} - R_L)}{(R_L + R_{th})^3}$$

Aplicamos la condición de máximo y obtenemos la resistencia:

$$\frac{dP_L}{dR_L} = 0 \Rightarrow \boxed{R_L = R_{th}}$$

Resistencia de carga

Dado un circuito lineal de corriente continua (del que podemos calcular su equivalente de Thévenin) . . .

... la resistencia de carga que hay que conectar entre sus terminales AB para obtener la máxima potencia disponible es:

$$R_L = R_{th}$$

Máxima potencia disponible

La máxima potencia disponible en la carga es:

$$\left\{egin{aligned} R_L = R_{th} \ P_L = rac{arepsilon_{th}^2}{(R_{th} + R_L)^2} \cdot R_L \end{aligned}
ight\}
ightarrow \left\{egin{aligned} P_L = rac{arepsilon_{th}^2}{4R_{th}} \end{aligned}
ight.$$