Given an integer, we need to find the super digit of the integer.

- If x has only 1 digit, then its super digit is x.
 Otherwise, the super digit of x is equal to the super digit of the sum of the digits of x.

For example, the super digit of 9875 will be calculated as:

```
    super_digit(9875)
    9+8+7+5 = 29

    super_digit(29)
    2 + 9 = 11

    super_digit(11)
    1 + 1 = 2

    super_digit(2)
    = 2
```

Example

```
n='9875'
```

k=4

The number $\it p$ is created by concatenating the string $\it n$ $\it k$ times so the initial $\it p=9875987598759875$.

```
superDigit(p) = superDigit(9875987598759875)
9+8+7+5+9+8+7+5+9+8+7+5+9+8+7+5 = 116

superDigit(p) = superDigit(116)
1+1+6 = 8
superDigit(p) = superDigit(8)
```

All of the digits of p sum to 116. The digits of 116 sum to 8.8 is only one digit, so it is the super digit.

Function Description

Complete the function superDigit in the editor below. It must return the calculated super digit as an integer.

superDigit has the following parameter(s):

- string n: a string representation of an integer
- $\mathit{int}\ \mathit{k}$: the times to concatenate n to make p

int: the super digit of n repeated k times

Input Format

The first line contains two space separated integers, n and k.

Constraints

2.

For example, if X=13 and N=2, we have to find all combinations of unique squares adding up to 13. The only solution is 2^2+3^2 .

Function Description

Complete the powerSum function in the editor below. It should return an integer that represents the number of possible combinations.

powerSum has the following parameter(s):

- X: the integer to sum to
- N: the integer power to raise numbers to

Input Format

The first line contains an integer X.

The second line contains an integer N.

Constraints

- $1 \le X \le 1000$ $2 \le N \le 10$

Output Format

Output a single integer, the number of possible combinations caclulated.