EGMO Solutions

Kempu33334

July 2025

Contents

1	Fun	dementals of Number Theory
	1.1	Divisibility
	1.2	Divisibility Properties
	1.3	Euclid's Division Lemma
	1.4	Primes
	1.5	Looking at Numbers as Multisets
	1.6	GCD and LCM

1 Fundamentals of Number Theory

1.1 Divisibility

No problems.

1.2 Divisibility Properties

Problem 1.2.1

Show that if n > 1 is an integer, $n \nmid 2n^2 + 3n + 1$.

Assume there exists such an n. Then, subtracting n(2n+3) from the RHS of the condition, we find that $n \nmid 1$, so n = 1 or -1, which is a contradiction. \square

Problem 1.2.2

Let a > b be natural numbers. Show that $a \nmid 2a + b$.

Assume for the sake of contradiction there exists a > b where $a \mid 2a + b$. Then, $a \mid b$, implying that $a \leq b$, which is a contradiction. \square

Problem 1.2.3

For 2 fixed integers x, y, prove that

$$x-y \mid x^n-y^n$$

for any non-negative integer n.

Clearly, the statement is equivalent to $x^n - y^n \pmod{x - y} \equiv 0$. However, we can write that

$$x^n - y^n \equiv (x - (x - y))^n - y^n \equiv 0 \pmod{x - y}$$

as required. \square

1.3 Euclid's Division Lemma

No problems.

1.4 Primes

Problem 1.4.1

Find all positive integers n for which 3n-4, 4n-5, and 5n-3 are all prime numbers.

In order for 5n-3 to be prime, we must have n even or n=1. Hence, make the transformation n=2n'. Then, $3n-4\mapsto 6n'-4$, which can never be prime other than when n=2. Trying both n=1 and n=2, we find that only $n=\boxed{2}$ works. \square

Problem 1.4.2

If p < q are two consecutive odd prime numbers, show that p + q has at least 3 prime factors (not necessarily distinct).

Clearly, it cannot have zero or one prime factor. If it has two prime factors, then we can express

$$p + q = rs$$

for some primes r and s. However, we know that one of these has to be 2, hence WLOG assume it is r. Then,

$$\frac{p+q}{2} = s$$

which implies that there exists a prime between p and q, which contradicts the fact that they are consecutive, as required. \square

1.5 Looking at Numbers as Multisets

No problems.

1.6 GCD and LCM

Problem 1.6.1

Prove that gcd(a, b) = a if and only if $a \mid b$.

We start with the if direction. Clearly, if $a=2^{a_1}3^{a_2}\dots$ and $b=2^{b_1}3^{b_2}\dots$, then the divisibility condition implies $a_i \leq b_i$ for all $i \geq 1$. Hence,

$$\min(a_i, b - i) = a_i$$

which proves the claim.

For the only if direction, we know that $\min(a_i, b_i) = a_i$ for any $i \geq 1$, implying that $a_i \leq b_i$, which proves the desired result. \square