

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 February 2003 (06.02.2003)

PCT

(10) International Publication Number
WO 03/010205 A1

(51) International Patent Classification⁷: C07K 21/04,
16/00, A61K 48/00, 39/395, C12N 15/00

(21) International Application Number: PCT/US02/23786

(22) International Filing Date: 26 July 2002 (26.07.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
60/307,600 26 July 2001 (26.07.2001) US
10/201,642 24 July 2002 (24.07.2002) US

(71) Applicant (for all designated States except US): DUKE
UNIVERSITY MEDICAL CENTER [US/US]; P.O. Box
90083, Durham, NC 27708 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): RIGGINS, Gregory, J. [US/US]; 4203 Peachway Drive, Durham, NC 27705 (US). LAL, Anita [IN/US]; 1914 Washington Street, Durham, NC 27704 (US).

(74) Agent: KAGAN, Sarah, A.; Banner & Witcoff, Ltd., 11th floor, 1001 G Street, N.W., Washington, DC 20001-4597 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GII, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 03/010205 A1

(54) Title: GENES INDUCED BY HYPOXIA

(57) Abstract: Solid tumors and other conditions related to angiogenesis, including wounds, bone fracture, follicular development, ischemia, retinopathy, psoriasis, and rheumatoid arthritis are treated or detected with reagents which either detect, promote, or disrupt expression of one or more of *HOG18*, *HOG3*, *HOG8*, *PLOD2*, *CA9*, *HXB*, *IGFBP5*, *STC1*, *HFARP*, *mig-6*, and *SSR4*. Each of these genes was found to be induced by hypoxia.

GENES INDUCED BY HYPOXIA

This application claims the benefit of provisional application serial no. 60/307,600 filed July 26, 2001, the content of which is expressly incorporated herein. The U.S. Government retains certain rights to this invention due to funding by the National Institutes of Health of NCI CGAP contract #S98-146.

FIELD OF THE INVENTION

The invention is related to methods for the enhancement or inhibition of the expression of genes related to responses to hypoxia. More specifically, the invention is related to methods to increase or decrease the expression of certain genes which promote angiogenesis, the growth of tumors, wound healing, the growth and development of tissues such as bone or ovarian follicles, and inflammatory conditions such as arthritis or psoriasis.

BACKGROUND OF THE INVENTION

Cellular responses to hypoxia have important effects on the development and metastasis of tumors, angiogenesis, wound healing, recovery from ischemia, and other physiological and pathological processes. Reduced oxygen availability can trigger a variety of cellular mechanisms including angiogenesis, cell-cycle arrest, apoptosis, and glycolysis.

The molecular mechanisms by which cells adapt to hypoxia are poorly understood. An initial response to hypoxia is increased levels of hypoxia-inducible factor 1 (HIF-1) protein (Semenza GL, J Appl Physiol 88:1474-80 (2000)). This transcription factor is a key regulator of hypoxia-driven apoptosis, growth arrest, and tumor

vascularization. HIF-1 is additionally linked to oncogenesis by the Von Hippel-Lindau tumor suppressor protein (vHL), which controls HIF-1 levels by proteolysis (Maxwell PH, et al., *Nature* 399:271-5 (1999)). Vascular endothelial growth factor (VEGF) is a powerful hypoxia-induced mitogen for endothelial cell growth, which plays a critical role in the development of tumor vessels (Yancopoulos GD, et al., *Nature* 407:242-8 (2000)). Expression of the angiopoietin family of secreted proteins is also regulated by hypoxia (Krikun G, et al. *Biochem Biophys Res Commun* 275:159-63 (2000)). During angiogenesis, the angiopoietins function with VEGF and Tie2, an endothelial-specific receptor with tyrosine kinase activity. Angiopoietin-1 (ANG1) is involved in recruitment of peri-endothelial cells by emerging blood vessels and in the maintenance of cell-cell and cell matrix association in mature capillaries. Angiopoietin-2 (ANG2) behaves as an antagonist to ANG1, thus blocking the Tie2 signal. The combination of ANG2 and VEGF causes disruption of cell-cell association, which promotes the differentiation phase of angiogenesis (Audero E, et al. *Arterioscler Thromb Vasc Biol* 21:536-41(2001); Yancopoulos GD, et al., *Nature* 407:242-8 (2000)).

Inhibition of angiogenesis is thought to provide an opportunity for therapy of cancer and other conditions involving responses to hypoxia. Normal tissues maintain a balance between cellular proliferation and oxygen supply. This balance is altered in solid tumors, resulting in focal regions with reduced oxygen levels compared to surrounding normal tissue (Thrall DE, et al., *Radiother Oncol* 44:171-6 (1997)). The cells in hypoxic regions either adapt to the hypoxic stress or die. Adaptation to a low oxygen environment can have serious consequences. For example, hypoxic tumor cells have a higher resistance to radiotherapy and certain chemotherapies (Brown JM, *Cancer Res* 59:5863-70 (1999)). Hypoxia can promote a higher mutation rate (Yuan J, et al., *Cancer Res* 60:4372-6 (2000)) and select for a more metastatic and malignant phenotype (Hockel

M, et al., Cancer Res 56:4509-15 (1996); Rofstad EK, Int J Radiat Biol 2000;76:589-605 (2000)). Tumor angiogenesis may be blocked by disrupting the expression of VEGF or its receptor (Schlaepi JM, & Wood JM, Cancer Metastasis Rev 18:473-81 (1999)).

Angiogenesis can be either beneficial or problematic, depending upon the circumstances. In processes such as wound healing, bone healing, recovery from ischemia, and follicular development, angiogenesis provides beneficial increased vascularization. However, angiogenesis is problematic in disease states like retinopathy and conditions caused by inflammation such as rheumatoid arthritis and psoriasis. The ability to promote or inhibit angiogenesis provides a method for treating these disease states.

Thus, there is a need in the art for knowledge of genes whose expression is induced by hypoxia because the products of such genes modulate angiogenesis, tumor growth, and a variety of pathological conditions.

SUMMARY OF THE INVENTION

The inventors provide a series of methods for treating various diseases and conditions by employing reagents derived from genes whose expression is induced by hypoxia. In one embodiment, the invention provides a method of inhibiting angiogenesis associated with wound healing, retinopathy, ischemia, inflammation, microvasculopathy, bone healing, skin inflammation, or follicular development. An antisense polynucleotide comprising 15 or more consecutive nucleotides of the complement of a sequence selected from the group consisting of SEQ ID NO:1 (HOG3), SEQ ID NO:3 (HOG8), SEQ ID NO:5 (HOG18), SEQ ID NO:9 (CA9), SEQ ID NO:11 (HXB), SEQ ID NO:13 (IGFBP5), SEQ ID NO:15 (HFARP), SEQ ID NO:17(STC1), SEQ ID NO:19 (mig-6) and SEQ ID NO:21 (SSR4) is provided to a patient suffering from abnormalities of

wound healing, retinopathy, ischemia, inflammation, microvasculopathy, bone healing, skin inflammation, or follicular development, following which angiogenesis is inhibited in the patient.

In another embodiment, the invention provides another method of inhibiting angiogenesis associated with wound healing, retinopathy, ischemia, inflammation, microvasculopathy, bone healing, skin inflammation, or follicular development. An antibody which specifically binds to a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:10 (CA9), SEQ ID NO:12 (HXB), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:18 (STC1), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4) is administered to the patient, following which angiogenesis is inhibited in the patient.

Still another embodiment of the invention provides a method of promoting angiogenesis associated with wound healing, retinopathy, ischemia, inflammation, microvasculopathy, bone healing, skin inflammation, or follicular development. A polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:10 (CA9), SEQ ID NO:12 (HXB), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:18 (STC1), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4) is administered to a patient, and angiogenesis is promoted in the patient.

Even another embodiment of the invention provides another method of promoting angiogenesis associated with wound healing, retinopathy, ischemia, inflammation, microvasculopathy, bone healing, skin inflammation, or follicular development. A vector comprising a nucleotide sequence encoding a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (GOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:10 (CA9), SEQ ID NO:12 (HXB), SEQ ID NO:14 (IGFBP5), SEQ ID

NO:16 (HFARP), SEQ ID NO:18 (STC1), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4) and a promotor is administered to a patient. The nucleotide sequence is operably linked to the promoter and is transcribed into a sense mRNA upon transcription of the vector, whereupon angiogenesis is promoted in the patient.

In another embodiment the invention provides a method of treating a tumor. An antisense polynucleotide comprising 15 or more consecutive nucleotides of the complement of a sequence selected from the group consisting of SEQ ID NO:1 (HOG3), SEQ ID NO:3 (HOG8), SEQ ID NO:5 (HOG18), SEQ ID NO:13 (IGFBP5), SEQ ID NO:15 (HFARP), SEQ ID NO:19 (mig-6) and SEQ ID NO:21 (SSR4) is administered to the patient and tumor growth is inhibited.

Yet another embodiment of the invention provides a method of treating a tumor, in which an antibody which specifically binds to a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4) is administered to a patient. Tumor growth in the patient is inhibited.

Still another embodiment of the invention provides a method of diagnosing cancer in a subject. A polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4) is quantified in a test sample suspected of being neoplastic from the subject and in a non-neoplastic control sample. The quantity of the polypeptide in the test sample is compared with the quantity of the polypeptide in the non-neoplastic control sample. The subject is identified as having a cancer if the quantity of the protein is higher in the test sample than in the control sample.

Yet another embodiment of the invention provides a method of diagnosing cancer in a subject. An mRNA selected from the group consisting of SEQ ID NO:1 (HOG3), SEQ ID NO:3 (HOG8), SEQ ID NO:5 (HOG18), SEQ ID NO:13 (IGFBP5), SEQ ID NO:15 (HFARP), SEQ ID NO:19 (mig-6) and SEQ ID NO:21 (SSR4) is quantified in a test sample suspected of being neoplastic from the subject and in a non-neoplastic control sample. The quantity of the mRNA in the test sample is compared with the quantity of the mRNA in the non-neoplastic control sample. The subject is identified as having a cancer if the quantity of the protein is higher in the test sample than in the control sample.

Another embodiment provides a method of imaging a tumor. An antibody which specifically binds to a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:8 (PLOD2), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4) is administered to a subject or to a tissue sample from a subject. The antibody is covalently linked to a label. The label is detected and an image is formed of the distribution of the label in the subject or tissue sample.

BRIEF DESCRIPTION OF THE DRAWINGS

The application file contains at least one drawing executed in color. Copies of this patent application publication with color drawings will be provided by the Office upon request and payment of the necessary fee.

Figures 1A and 1B show the time course of expression of HOGs in 1.5% oxygen. In Fig. 1A cultured glioblastoma cells (D247-MG) were switched to 1.5% oxygen at zero hours and the levels of transcripts of the individual genes determined by real-time PCR to produce the time-course of the hypoxia response. In Fig. 1B the time course of CA9 protein expression was measured by western blot analysis of lysates from D247-MG cells

grown in atmospheric oxygen or 1.5% oxygen. Molecular weight markers are shown to the left.

Figures 2A and 2B show HOG induction by HIF-1 or hypoxia in malignant cells. In Fig. 2A D247-MG cells were transfected with *HIF-1α* and cultured at either atmospheric or 1% oxygen. Transcript levels are displayed relative to the same standard as determined by real-time PCR. Fig. 2B depicts HOG induction in malignant cell lines derived from commonly occurring cancers as determined by lowering the oxygen concentration from atmospheric to 1.5% oxygen and measuring induction by real-time PCR. The cell lines used were Normal Human Astrocytes (1); glioblastomas D263-MG (2), D392-MG (3), D502-MG (4), D566-MG (5) and U87 (6); medulloblastomas D283-Med (7), D341-Med (8), D425-Med (9), D556-Med (10), D581-Med (11) and UW228 (12); colon carcinomas SW480 (13) and HCT116 (14); non-small lung carcinoma NCI-H23 (15); and breast cancers SKBr3 (16) and MCF7 (17). Genes induced greater than 10-fold are displayed as 10-fold.

Figures 3A-3N show *in vivo* expression of *HOGs* in human solid tumors. Immunohistochemistry was used to co-localize CA9 (Fig. 3A, brown stain) and the chemical hypoxia marker, pimonidazole (Fig. B, green stain) in serial sections of an oropharyngeal squamous cell carcinoma, sccNij70. Regions staining red in B represents proliferating (IdUrd labeled) cells. A standard H & E stain of an adjacent section (Fig. 3C) was used to show necrotic cells (staining red). *In situ* hybridization for *NDRG1* transcript (Fig. 3E) shows co-localization with CA9 (Fig. 3D) and pimonidazole (Fig. 3F) in an oropharyngeal squamous cell carcinoma. Peri-necrotic staining in GBMs was observed for CA9 (Figs. 3G and 3J), *BNIP3* (Figs. 3H and 3K), *NDRG1* (Figs. 3I and 3L), *IGFBP3* (Fig. 3M) and HFARP (Fig. 3O). *IGFBP3* stains endothelial cells in addition to hypoxic regions not adjacent to vessels (Fig. 3N). Arrows point to necrotic

areas. Magnification was 10x for 3A to 3C, 3G to 3I and 3M; 25x for 3D to 3F, 3L and 3O; 50x for 3J and 3K; and 100x for 3N.

DETAILED DESCRIPTION OF THE INVENTION

The present inventors have discovered that the expression of certain genes is elevated in cells grown under hypoxic conditions. Specifically, the inventors discovered that expression of the genes *HOG18*, *HOG3*, *HOG8*, *PLOD2*, *CA9*, *HXB*, *IGFBP5*, *STC1*, *HFARP*, *mig-6*, and *SSR4* is increased under hypoxic conditions in human glioblastoma cells and several human tumors *in situ*. These and other hypoxia overexpressed genes (HOGs) can be used for the diagnosis and treatment of cancer and angiogenesis-related conditions. The practical applications of the discovery include the use of antisense polynucleotides and antibodies as antitumor agents, the use of antisense polynucleotides and antibodies to disrupt angiogenesis in pathological tissues, the use of polynucleotides or polypeptides to promote angiogenesis in wound healing or regeneration of tissues, and the use of oligonucleotide probes and antibodies as tumor markers in diagnosis and prognosis.

HOGs were identified based on Serial Analysis of Gene Expression (SAGE) (Velculescu VE, et al., Science 270:484-87 (1995)) of cells cultured under low oxygen conditions. Eleven genes (*HOG18*, *HOG3*, *HOG8*, *PLOD2*, *CA9*, *HXB*, *IGFBP5*, *STC1*, *HFARP*, *mig-6*, and *SSR4*) were identified whose expression previously was not known to be induced by hypoxia. Full-length cDNA sequences of these genes have been previously reported. The cDNA sequences for *HOG18*, *HOG3*, *HOG8*, *PLOD2*, *CA9*, *HXB*, *IGFBP5*, *STC1*, *HFARP*, *mig-6*, and *SSR4* are shown in SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21, respectively, and the corresponding encoded amino acid sequences are shown in SEQ ID NOS:2, 4, 6, 8, 10, 12, 14, 16, 18, 20, and 22. No

function has been assigned previously to HOG18 (accession number NM_019058), HOG3 (accession number NM_017606), and HOG8 (accession number BC007832). Known functional properties of the remaining eight genes are summarized below.

The angiopoietin-related gene, *HFARP*, encodes a secreted protein reported to protect endothelial cells from apoptosis (Kim et al., Biochem J 346 Pt 3:603-610 (2000)).

Transcription of *mig-6* is induced by glucocorticoids, insulin, cAMP, retinoic acid vasoactive peptides, serum mitogen, diabetic nephropathy, and stress (Lee et al., Arch Biochem Biophys 269:106-113 (1989); Kent et al., Endocrinology 134:2237-2344 (1994); Wick et al. (Exp Cell Res 219(2):527-535 (1995); Makkinje et al., J Biol Chem 275:17838-47 (2000)). Transcription of *mig-6* is regulated during the cell cycle, with peak levels around mid G1 (Varley et al., Biochem Biophys Res Commun 254:728-733 (1999)).

The delta subunit of signal sequence receptor, also referred to as SSR4 or translocon-associated protein (TRAP) delta, spans the ER membrane once and has most of its mass at the luminal side (Hartmann et al., Eur J Biochem 214(2):375-381 (1993)). The genomic and cDNA of human SSR4 has been isolated (Brenner et al., Genomics 44(1):8-14 (1997)).

CA9 is expressed in renal cell and cervical carcinomas and is being exploited for diagnostic (Uemura et al., Br J Cancer 81(4):741-746 (1999); Nogradi A, Am J Pathol 154:1-1 (1998); Vermylen et al., Eur Respir J 14(4):806-811 (1999); U.S. Patent No. 6,087,09) and therapeutic (Zavada et al, Br J Cancer 82(11):1808-1813 (2000)) U.S. Patent No. 5,387,676) purposes. *CA9* is regulated by vHL in renal cells through degradation of HIF-1 α . *CA9* is also increased by vHL mutations and shows peri-necrotic staining in various tumors (Ivanov et al., Proc Natl Acad Sci USA 95:12596-12601 (1998); Wykoff CC, et al. Cancer Res 60:7075-83 (2000)).

Hexabrachion (*HXB*) is an extracellular matrix glycoprotein which promotes endothelial cell sprouting with basic fibroblast growth factor (Schenk S, Mol Biol Cell 10:2933-43 (1999)). Expression of HXB is correlated with angiogenesis in breast cancer, gliomas, and lymphomas (Vacca A, et al., Leuk Lymphoma 22:473-81 (1996); Jallo GI, et al., Neurosurgery 41:1052-9 (1997); Tokes AM, et al., Pathol Res Pract 195:821-8 (1999)). Antibodies specific for HXB can inhibit angiogenesis (Canfield AE and Schor AM, J Cell Sci 108:797-809 (1995)) and anti-sense therapy halts vascular thickening of pulmonary arteries (Cowan KN, et al., J Clin Invest 105:21-34 (2000)). Bigner & Zalutsky (U.S. Patent No. 5,624,659) have described methods of treating brain tumors using radiolabeled monoclonal antibodies to HXB. Kimura (U.S. Patent No. 5,436,132) has demonstrated the quantitative determination of HXB by immunoassay in cerebrospinal fluid as a glioma marker.

PLOD2 is a lysyl hydroxylase which is involved in angiogenesis. Inhibitors of PLOD2 block collagen synthesis and promote the effectiveness of other compounds which inhibit angiogenesis (U.S. Patent No. 5,021,404). PLOD2 acts synergistically to inhibit angiogenesis when administered together with an angiostatic compound such as heparin or a heparin analogue (U.S. Patent No. 5,021,404). Several inhibitors of PLOD2 are known (U.S. Patent Nos. 5,328,913 and 4,797,471).

Ischemia produces an immediate decrease in expression of *IGFBP5* in neonatal rat brain (Clawson et al., Biol Signals Recept 8(4-5):281-293 (1999)). At longer times following an ischemic event, stimulation of *IGFBP5* expression has been observed (Lee, et al. J Cereb Blood Flow Metab 16(2):227-236 (1996); Clawson et al., Biol Signals Recept 8(4-5):281-293 (1999)).

IGFBP5 and stanniocalcin (*STC1*) have been used as markers for vascular endothelial cells in tumors (St. Croix B, et al. Science 289:1197-202 (2000)). STC1 is

induced during endothelial cell differentiation in an *in vitro* model (Kahn J, et al. Am J Pathol 156:1887-900 (2000)). *STC1* mRNA is found in several cancer cell lines and tumor tissues, and the use of *STC1* as a molecular marker for tumors has been suggested (Fujiwara et al., Int J Oncol 16:799-804 (2000); Miura W, et al., APMIS 108:367-372 (2000)).

Disrupting the expression of any one of *HOG3*, *HOG8*, *HOG18*, *PLOD2*, *HFARP*, *mig-6*, *CA9*, *HXB*, *SSR4*, *IGFBP5*, and *STC1* individually or in combination can be used to inhibit or treat angiogenesis-related conditions. Such conditions include retinopathy, microvasculopathy, inflammatory conditions such as rheumatoid arthritis, and skin inflammations like psoriasis. Antisense oligonucleotides or antisense polynucleotides that specifically bind to transcripts of these genes can be used to prevent their translation *in vivo*.

Oligonucleotides or polynucleotides based on the genes identified here can be delivered therapeutically to cells to inhibit angiogenesis. As defined herein, the terms “oligonucleotide” and “polynucleotide” are used interchangeably and either refers to two or more nucleotides linked covalently through phosphodiester bonds. Antisense constructs of *HOG3*, *HOG8*, *HOG18*, *PLOD2*, *HFARP*, *mig-6*, *CA9*, *HXB*, *SSR4*, *IGFBP5* or *STC1*, either alone or in combination, can be administered therapeutically to inhibit angiogenesis. Antisense constructs typically contain a promoter located 3' to and operably linked to the sequence encoding the desired antisense polynucleotide or antisense polynucleotide. Upon initiation of transcription at the promoter, an RNA molecule is transcribed which is complementary to the native mRNA molecule of the gene.

The polynucleotides of the present invention encode all or a portion of the polypeptides *HOG3*, *HOG8*, *HOG18*, *PLOD2*, *HFARP*, *mig-6*, *CA9*, *HXB*, *SSR4*,

IGFBP5 and STC1. These polynucleotides can be isolated and purified free from other nucleotide sequences by standard purification techniques, using restriction enzymes to isolate fragments comprising the coding sequences of interest. The polynucleotide molecules are preferably intron-free. Such cDNA molecules can be made *inter alia* by using reverse transcriptase with *HOG3*, *HOG8*, *HOG18*, *HFARP*, *mig-6*, *CA9*, *HXB*, *SSR4*, *IGFBP5* and *STC1* mRNA as a template. The polynucleotide molecules of the invention can also be made using the techniques of synthetic chemistry. The degeneracy of the genetic code permits alternate nucleotide sequences to be synthesized that will encode the desired amino acid sequence. All such nucleotide sequences are within the scope of the present invention. Degenerate nucleotide sequences encoding the polypeptides *HOG3*, *HOG8*, *HOG18*, *PLOD2*, *HFARP*, *mig-6*, *CA9*, *HXB*, *SSR4*, *IGFBP5* and *STC1*, as well as homologous nucleotide sequences which are at least about 50, 55, 60, 65, 70, preferably about 75, 90, 96, or 98% identical to a nucleotide sequence shown in SEQ ID NOS:1, 3, 5, 7, 9, 11, 13, 15, 17, 19, and 21 and the complements thereof also are within the scope of the present invention. Percent sequence identity between the sequences of two polynucleotides is determined using computer programs such as ALIGN which employ the FASTA algorithm, using an affine gap search with a gap open penalty of -12 and a gap extension penalty of -2. Complementary DNA (cDNA) molecules, species homologs, and variants of *HOG3*, *HOG8*, *HOG18*, *PLOD2*, *HFARP*, *mig-6*, *CA9*, *HXB*, *SSR4*, *IGFBP5* and *STC1* which encode polypeptides with comparable biological activity also are within the scope of the present invention. Polynucleotide molecules of the invention can be propagated in vectors and cell lines as is known in the art. The constructs may be on linear or circular molecules. They may be on autonomously replicating molecules or on molecules without replication sequences.

Any technique available in the art can be used to introduce genetic constructs into the cells. These include, but are not limited to, transfection with naked or encapsulated nucleic acids, cellular fusion, protoplast fusion, viral infection, and electroporation. Introduction of genetic constructs may be carried out *in vitro* or *in vivo*.

Antisense intervention in the expression of specific genes can also be achieved by the use of synthetic antisense polynucleotide sequences (*see* Lefebvre-d'Hellencourt et al, Eur Cytokine Net. 6:7 (1995); Agrawal, Tibtech, 14:376 (1996); Lev-Lehman et al, Antisense Oligomers *in vitro* and *in vivo*. In Antisense Therapeutics, A. Cohen and S. Smicsek, eds (Plenum Press, New York) (1997)). Antisense polynucleotide sequences may be short sequences of DNA, typically at least 12, 15, 17, 20, 25, 30, 35, 40, 45, or 50 nucleotides in length, but may be as small as a 7-mer (Wagner et al, Nature Biotechnology 14:840-844 (1996)), designed to complement a target mRNA of interest and form an RNA:antisense duplex. This duplex formation can prevent processing, splicing, transport or translation of the relevant mRNA. An antisense compound hybridizes specifically when binding of the compound to the target RNA molecule interferes with the normal function of the target RNA and there is little or no measurable non-specific binding of the antisense compound to non-target sequences under conditions used for assays or *in vivo* therapeutic treatment.

When employed as pharmaceuticals, the antisense polynucleotides are usually administered in the form of pharmaceutical compositions. These compounds can be administered by a variety of routes including oral, rectal, transdermal, subcutaneous, intraperitoneal, intravenous, intramuscular, and intranasal. Pharmaceutical compositions containing oligonucleotides of the invention are prepared in any manner well known in the pharmaceutical art and comprise at least one active compound. It is contemplated that the pharmaceutical composition can be administered directly into a tumor to be

treated. The compositions of the invention can be formulated so as to provide quick, sustained, or delayed release of the active ingredient after administration to the patient by employing formulations known in the art.

Another method of delivery involves delivery of the naked antisense polynucleotides across the dermal layer. The delivery of naked antisense polynucleotides is well known in the art. See, for example, Felgner et al., U.S. Pat. No. 5,580,859. It is contemplated that the antisense polynucleotides can be packaged in a lipid vesicle before delivery of the antisense polynucleotide.

An antisense polynucleotide or antisense construct is effective over a wide dosage range and is generally administered in a pharmaceutically effective amount. An effective amount is that amount which when administered alleviates the symptoms or inhibits tumor cell growth. Normal dosage amounts can vary from 0.1 to 100,000 micrograms, up to a total dose of about 1 g, depending upon the route of administration. The course of therapy may last minutes, hours, days, or up to several months or until diminution of the disease is achieved. Preferably the effective amount is from about 0.02 mg/kg body weight to about 20 mg/kg body weight. However, the amount of the antisense polynucleotide or antisense construct actually administered usually will be determined by a physician in light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound administered, the age, weight, and response of the individual patient, the severity of the patient's symptoms, and the like.

Antibodies or antigen-binding fragments that bind to any one of the polypeptides HOG3, HOG8, HOG18, PLOD2, HFARP, mig-6, CA9, HXB, SSR4, IGFBP5, or STC1 can be used individually or in combination to inhibit angiogenesis. Antibodies or

antigen-binding fragments bind specifically to these gene products preventing physiological action of the polypeptides.

Antibodies directed against the polypeptides of this invention are immunoglobulins (*e.g.*, IgG, IgA, IgM, IgD, or IgE) or portions thereof that are immunologically reactive with the polypeptide of the present invention. As used herein, the term "antibody" includes whole immunoglobulin molecules, fragments of immunoglobulin molecules, and modified or synthetic immunoglobulins. The term "antibody" also includes single-chain antibodies, which generally consist of a variable domain of a heavy chain linked to a variable domain of a light chain. The production of single-chain antibodies is well known in the art (*see, e.g.*, U.S. Pat. No. 5,359,046). An antibody of this invention may also be a humanized antibody, which refers to a molecule that has its antigen-binding regions derived from a non-human species immunoglobulin and the remainder of the antibody molecule derived mainly from a human immunoglobulin antibodies which are known in the art (*see, e.g.* U.S. Pat. Nos. 5,777,085 and 5,789,554). It can be a molecule that has multiple binding specificities, such as a bifunctional antibody. Bifunctional antibodies can be prepared by any technique known to those of skill in the art, including the production of hybrid hybridomas, disulfide exchange, chemical cross-linking, addition of peptide linkers between two monoclonal antibodies, the introduction of two sets of immunoglobulin heavy and light chains into a particular cell line, and so forth. Alternatively, peptides corresponding to specific regions of the polypeptide encoded by the target gene may be synthesized and used to create immunological reagents according to well known methods.

Antibodies directed against a polypeptide encoded by a target gene may be generated by immunization of a mammalian host, including a rat, rabbit, goat, sheep, horse, pig, or primate. Such antibodies may be polyclonal or monoclonal. Preferably

they are monoclonal. Methods to produce polyclonal and monoclonal antibodies are well known to those of skill in the art. For a review of such methods, see Harlow & Lane (1988) *Antibodies, A Laboratory Manual*; Yelton, et al., *Ann. Rev. Biochem.* 50:657-80 (1981); and Ausubel, et al., *Current Protocols in Molecular Biology*, John Wiley & Sons, (1989)). Determination of immunoreactivity with a polypeptide encoded by a target gene may be made by any of several methods well known in the art, including by immunoblot assay and ELISA. Monoclonal antibodies with affinities of 10^{-8} M^{-1} or preferably 10^{-9} to 10^{-10} M^{-1} or stronger are considered specific to a given protein and are typically made by standard procedures as described, e.g., in Harlow & Lane, 1988.

Additionally, one of skill in the art has a variety of methods available which may be used to alter the biological properties of the antibodies of this invention. Such methods include chemical alteration, addition of buffer components, or amino acid substitutions which can increase or decrease the stability or half-life, immunogenicity, toxicity, affinity, or yield of a given antibody molecule.

Angiogenesis can also be inhibited by decreasing translation of mRNA by reducing the amount of available mRNA through the use of ribozymes that are capable of cleaving mRNA expressed by *HOG3*, *HOG8*, *HOG18*, *PLOD2*, *HFARP*, *mig-6*, *CA9*, *HXB*, *SSR4*, *IGFBP5*, and *STC1*. Ribozymes can be administered directly or as a ribozyme-expressing construct. The primary sequence of the target gene can be used to design ribozymes that can target and cleave specific essential gene sequences. There are a number of different types of ribozymes. Most synthetic ribozymes are generally hammerhead, *Tetrahymena*, and hairpin ribozymes. Methods of designing and using ribozymes to cleave specific RNA species are known in the art, see Zhao, et al., *Mol Cell Neurosci* 11:92-97(1998); Lavrovsky et al. (1997); and Eckstein "Exogenous Application of Ribozymes for Inhibiting Gene Expression", in *Oligonucleotides as Therapeutic*

Agents, Ciba Foundation Symposium 209, John Wiley & Sons, Chichester, England, pp. 207-217 (1997)).

It is sometimes desirable to promote angiogenesis, for example, to aid in wound healing, bone healing, follicular development, tissue regeneration following ischemia, or other conditions in which increased blood flow to a tissue or organ is desirable.

Increased vascularization results in increased blood flow, which aids in healing and developing damaged tissues. Angiogenesis can be promoted by administering any one of the polypeptides HOG3, HOG8, HOG18, PLOD2, HFARP, CA9, HXB, mig-6, SSR4, IGFBP5, or STC1, individually or in combination. Methods of polypeptide expression, purification, and formulation are well-known in the art and any may be used without limitation.

It is also possible to increase expression of *HOG3*, *HOG8*, *HOG18*, *PLOD2*, *HFARP*, *CA9*, *HXB*, *mig-6*, *SSR4*, *IGFBP5*, or *STC1* by administering a vector comprising at least seven nucleotides that encode any part or all of one or more of the genes *HOG3*, *HOG8*, *HOG18*, *PLOD2*, *HFARP*, *CA9*, *HXB*, *mig-6*, *SSR4*, *IGFBP5*, or *STC1* operably linked to a promoter. Expression of sense mRNA molecules encoding HOG3, HOG8, HOG18, HFARP, mig-6, CA9, HXB, SSR4, IGFBP5 or STC1 polypeptides promotes angiogenesis. Methods for obtaining the polynucleotides required for this embodiment are well-known in the art.

Disrupting the expression of any one of *HOG3*, *HOG8*, *HOG18*, *PLOD2*, *HFARP*, *mig-6*, *SSR4*, and *IGFBP5* individually or in combination can be used to treat tumors. These genes are important in vascularization of tumors, because vascularization allows tumors to increase in size and to undergo metastasis. Antisense polynucleotides or oligonucleotides targeted to these genes can be used to prevent translation *in vivo*, which can prevent angiogenesis and stop or reduce tumor growth. Gene therapy to increase

expression of angiostatin, an inhibitor of angiogenesis, was recently demonstrated to inhibit the growth of tumors in mice (Matsumoto et al., *Oral Oncol* 37:369-78 (2001)), thereby establishing the feasibility of blocking tumor growth by introducing genes which inhibit angiogenesis. Production and use of antisense polynucleotides is known in the art and was discussed previously. Antibodies or antigen-binding fragments that bind to one of the polypeptides HOG3, HOG8, HOG18, HFARP, mig-6, SSR4, or IGFBP5 can also be used individually or in combination to treat tumors.

Quantifying gene expression of *HOG3*, *HOG8*, *HOG18*, *HFARP*, *mig-6*, *PLOD2*, *SSR4*, or *IGFBP5*, either singly or in combination, can be used to diagnose cancer in a subject. Expression of *HOG3*, *HOG8*, *HOG18*, *HFARP*, *mig-6*, *PLOD2*, *SSR4*, or *IGFBP5* in a test sample suspected of being cancerous can be compared to the expression of the same gene or genes in a second sample from a normal subject. Increased expression of at least one gene in the test sample relative to the normal sample identifies the test sample as potentially cancerous. Any method for observing gene expression can be used, without limitation. Common methods are quantification of expressed mRNA, e.g., by Northern blot analysis or other hybridization techniques, or quantification of expressed polypeptides by SDS-PAGE, Western blot, or immunoassay.

For gene therapy purposes, cells can be transfected *in vitro* and administered to a subject. Alternatively, cells can be directly transfected *in vivo*. Delivery of nucleic acid molecules can be accomplished by any means known in the art. Gene delivery vehicles are available for delivery of polynucleotides to a cell, a tissue, an organ, or a mammal for expression. For example, a polynucleotide or oligonucleotide of the invention can be administered either locally or systemically in a gene delivery vehicle. Gene delivery constructs can contain viral or non-viral vectors in either *in vivo* or *ex vivo* modality. Expression of the gene of interest can be driven by endogenous mammalian or

heterologous promoters. Expression of the coding sequence *in vivo* can be either constitutive or regulated. The invention includes gene delivery vehicles capable of expressing the contemplated polynucleotides. The gene delivery vehicle is preferably a viral vector and, more preferably, a retroviral, adenoviral, adeno-associated viral, herpes viral, or alphaviral vector. The viral vector can also be an astroviral, coronaviral, orthomyxoviral, papovaviral, paramyxoviral, parvoviral, picornaviral, poxviral, togaviral vector. *See generally*, Jolly, Cancer Gene Therapy 1:51-64 (1994); Kimura, Human Gene Therapy 5:845-852 (1994), Connelly, Human Gene Therapy 6:185-193 (1995), and Kaplitt, Nature Genetics 6:148-153 (1994).

Delivery of the gene therapy constructs of this invention into cells is not limited to the above mentioned viral vectors. Other delivery methods may be employed such as, for example, nucleic acid expression vectors; polycationic condensed DNA (*see* Curiel, Hum Gene Ther 3:147-154 (1992); ligand linked DNA (*see* Wu, J. Biol. Chem. 264:16985-16987 (1989)); eucaryotic cell delivery vehicles (*see* U.S. Pat. No. 6,015,686); deposition of photopolymerized hydrogel materials; hand-held gene transfer particle gun (U.S. Pat. No. 5,149,655); ionizing radiation (U.S. Pat. No. 5,206,152 and WO 92/11033); nucleic charge neutralization; or fusion with cell membranes. Additional approaches are described in Philip, Mol. Cell. Biol. 14:2411-2418 (1994) and in Woffendin, Proc. Natl. Acad. Sci. 91:1581-1585 (1994). The sequence can be inserted into a vector containing control sequences for high level expression. The vector can be incubated with synthetic gene transfer molecules including polymeric DNA-binding cations like polylysine, protamine, or albumin. A DNA-binding molecule can in turn be linked, preferably covalently, to a cell targeting ligand which binds specifically to a desired cell surface receptor expressed on a target cell. Targeting ligands include, for example, asialoorosomucoid (Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)); insulin

(Hucked, Biochem. Pharmacol. 40:253-263 (1990)); galactose (Plank, Bioconjugate Chem 3:533-539 (1992)); lactose; and transferrin. Naked DNA may also be employed. Exemplary naked DNA introduction methods are described in PCT Patent Publication No. WO 90/11092 and U.S. Pat. No. 5,580,859. Uptake efficiency may be improved using biodegradable latex beads which are efficiently transported into cells after endocytosis. The method may be improved further by treatment of the beads to increase hydrophobicity and thereby facilitate disruption of the endosome and release of the DNA into the cytoplasm. Liposomes, that can act as gene delivery vehicles are described in U.S. Pat. No. 5,422,120, PCT Patent Publication Nos. WO 95/13796, WO 94/23697, and WO 91/144445, and EP No. 524,968.

The pharmaceutical compositions of this invention may be administered using microspheres, microparticulate delivery systems, or other sustained release formulations. Sustained release formulations can be placed in, near, or otherwise in communication with affected tissues or the bloodstream.

The methods of this invention also may be accomplished using liposomes, which can optionally contain other agents to aid in targeting or administration of the compositions to the desired treatment site. Liposomes containing compositions contemplated for use with methods of the invention may be prepared by well-known methods (See, e.g. DE 3,218,121; Epstein et al. (1985) Proc. Natl. Acad. Sci. U.S.A. 82:3688-92; Hwang et al. (1980) Proc. Natl. Acad. Sci. U.S.A. 77:4030-34; U.S. Pat. Nos. 4,485,045 and 4,544,545).

Effective doses of the pharmaceutical compositions of the present invention will vary depending upon many different factors, including the form of the composition administered, the means of administration, target site, physiological state of the patient, antibody affinity, and other medicaments administered. Thus, treatment dosages will need

to be titrated to optimize safety and efficacy; such can be readily determined and are routine to the ordinarily skilled artisan. In determining the effective amount of polypeptide or polynucleotide to be administered, the physician evaluates, for example, the particular composition used, the disease state being diagnosed; the age, weight, and condition of the patient, formulation toxicities, disease progression, etc. The dose will also be determined by the existence, nature, and extent of any adverse side-effects that accompany the administration of a particular formulation. Doses ranging from about 10 ng to 1 g polypeptide per patient are typical. Doses generally range between about 0.01 and about 50 mg polypeptide per kilogram of body weight; preferably between about 0.1 and about 5 mg/kg polypeptide of body weight.

Oligonucleotide probes and antibodies can be used as tumor markers in diagnosis and prognosis of cancer. The expression product monitored may be RNA or protein. Multiple expression products, *e.g.*, 2, 3, 4, 5, 7, 10, 15, 20, 30, 50, 100, 300, 500, or 1000 or more expression products can be quantified simultaneously. Methods of monitoring gene expression are well known in the art and any may be used. For example, RNA levels can be measured by Northern blotting and other hybridization techniques, nuclease protection, microarrays, RT-PCR, and differential display. The term quantifying when used in the context of quantifying transcription levels of a gene can refer to absolute or to relative quantification. Absolute quantification may be accomplished by inclusion of known concentration(s) of one or more control target nucleic acids and referencing the hybridization intensity of unknowns with the known target nucleic acids, *e.g.*, through generation of a standard curve. Alternatively, relative quantification can be accomplished by comparison of hybridization signals between a sample derived from a test subject and a sample derived from a normal subject to determine differences in hybridization intensity and, by implication, transcription level.

One of skill in the art can readily determine differences in the amount of gene expression product from the test sample as compared to a normal subject using, e.g., Northern blots and nucleotide probes. The quantity of mRNA expressed from at least one of HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, or IGFBP5 in a test sample of a human suspected of having cancer, can be compared with the mRNA expression from at least one of HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, and IGFBP5 in a normal sample. This can be done, for example, using *in situ* hybridization in tissue section or in Northern blots containing mRNA. A higher level of mRNA expressed from a gene represented by a HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, and IGFBP5 polynucleotide in the test sample as compared to the normal sample is indicative or suggestive of cancer in the suspect human who has provided the test sample. Preferably, the increased level of mRNA expressed from a *HOG3*, *HOG8*, *HOG18*, *HFARP*, *mig-6*, *PLOD2*, *SSR4*, or *IGFBP5* gene in the test sample is at least 25%, 50%, 100%, 150%, 200%, or 250% higher than in the normal body sample.

To facilitate detection any polynucleotide or oligonucleotide of this invention can be labeled using standard methods. A wide variety of labels and conjugation techniques are known and are reported extensively in both the scientific and patent literature. For example, polynucleotides or oligonucleotides can be radiolabeled with ³²P or covalently linked to a fluorescent or biotinylated molecule. Other techniques such as high density DNA array hybridization, ribonuclease protection assay, and serial analysis of gene expression can also be used. Oligonucleotide probes specific to the nucleotides encoded by *HOG3*, *HOG8*, *HOG18*, *HFARP*, *mig-6*, *PLOD2*, *SSR4*, and *IGFBP5* can be generated using the polynucleotide sequences of *HOG3*, *HOG8*, *HOG18*, *HFARP*, *mig-6*, *PLOD2*, *SSR4*, and *IGFBP5* genes. The probes are preferably at least 12, 14, 16, 18, 20, 22, 24, or 25 nucleotides in length and can be less than 2, 1, 0.5, 0.1, or 0.05 kb in length.

The probes can be, for example, synthesized chemically, generated from longer polynucleotides using restriction enzymes, or amplified enzymatically. The probes can be labeled, for example, with a radioactive, biotinylated, or fluorescent tag. A mixture of probes can also be used. Such mixture can contain a plurality of probes which are specific to different genes identified in this invention so that the expression of one or more genes can be monitored simultaneously. Alternatively, each of a plurality of probes can be used separately.

The antibodies of the present invention can be used to detect any one of HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, and IGFBP5 in histological sections of glioma tissue as well as in other solid tumors, such as breast cancer and lung cancer. Tissue samples are preferably permeabilized with a sufficient amount of a suitable detergent to release membrane proteins into solution prior to immunological detection. One can detect antibody binding to extracts of tissue samples by any detection means known in the art, for example, radioimmunoassay, enzyme-linked immunoabsorbent assay, complement fixation, nephelometric assay, immunodiffusion, or immunoelectrophoretic assay. Alternatively, the antibodies can be used as an immunohistochemical reagents to visualize HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, and IGFBP5 polypeptides in tissue sections.

A particularly useful stain for use in enzyme-linked antibody assays employs peroxidase, hydrogen peroxide and a chromogenic substance such as aminoethyl carbazole. The peroxidase (a well known enzyme available from many sources) can be coupled to an antibody specific for one of HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, or IGFBP5 or merely complexed to it via one or more antibodies. For example, a goat anti-peroxidase antibody and a goat antibody specific for one of HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, and IGFBP5 can be complexed via an

anti-goat IgG. Such techniques are well known in the art. Other chromogenic substances and enzymes may also be used.

The antibodies of the invention can be administered to a patient or to a tissue sample from a patient for locating a tumor or imaging analysis or a tumor. For such purposes, the antibodies are typically conjugated to an imaging agent, such as ^{123}I , ^{131}I , or ^{111}In . Alternatively, ^{13}C -enriched antibodies can also be used in combination with magnetic resonance imaging. For in vitro analysis of tissue samples from a patient, a variety of imaging agents and techniques are known in the art. For example, the imaging agent can be a colored or fluorescent dye or an enzyme yielding a colored or fluorescent product. Methods of conjugation and production of isotopically enriched antibodies are routine and well known in the art. A diagnostically effective amount of antibody is one which allows the observer to distinguish between normal tissues and those containing elevated levels of HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, or IGFBP5. Determination of such amounts is within the skill of the art. Methods of imaging or detecting the bound antibodies in a patient or in a tissue sample from a patient are also known in the art. For example, the patient may be scanned for radiation emitted by the imaging agent or a tissue section stained with the labeled antibody may be observed using a microscope.

The compounds of this invention can also be utilized in radioimmuno- or radiation therapy. This process differs from the corresponding diagnostic techniques only in the quantity and type of isotope employed. The objective is the destruction of tumor cells by high-energy shortwave radiation with a minimum range. Suitable β -emitting ions are, for example, ^{46}Sc , ^{47}Sc , ^{48}Sc , ^{72}Ga , ^{73}Ga and ^{90}Y . Suitable α -emitting ions exhibiting short half-life periods are, for example, ^{211}Bi , ^{212}Bi , ^{213}Bi and ^{214}Bi . A suitable

nuclide emitting photons and electrons is ^{158}Gd which can be obtained from ^{157}Gd by neutron capture.

All references and patents cited herein are incorporated by reference in their entirety.

The following examples are provided by way of illustration and are not intended to limit the scope of the invention in any way.

EXAMPLES

Example 1. Comparison of gene expression in normal and hypoxic human glioblastoma cells

One application of the present invention involves quantitative comparison of gene expression in normal and tumor cells. RNA expression levels of *HOG3*, *HOG8*, *HOG18*, *HFARP*, *mig-6*, *PLOD2*, *SSR4*, and *IGFBP5* were compared in normal and hypoxic human glioblastoma cells.

Cells were grown using standard cell culture techniques either in equilibrium with atmospheric oxygen or using 1.5% oxygen, approximating tumor hypoxia levels. Real-time PCR from a cDNA template was performed using a thermocycler with continuous fluorescent monitoring capabilities (LightCycler™, Roche Diagnostics) and SYBR Green I (Molecular Probes, Eugene, OR) to analyze the kinetics of PCR product accumulation. PCR conditions and data analysis were reproduced as described (Loging WT, et al., Genome Res 10:1393-402 (2000)) except 0.5 μM PCR primer and 500 μM of each dNTP was used. Primers specific for a 221-bp segment of β -*actin* were used to confirm cDNA integrity and normalization of cDNA yields. Primers specific for each hypoxia-inducible gene were designed with 140- to 240-bp products (all primer sequences available upon

request). Relative expression levels were determined in duplicate by comparison to a serially diluted standard using the thermocycler software.

Measurement of transcript levels using real-time PCR and SAGE analysis showed that expression of *HOG3*, *HOG8*, *HOG18*, *HFARP*, *mig-6*, *PLOD2*, *SSR4*, and *IGFBP5* in hypoxic glioblastoma cells was increased between 2- and 12-fold as compared to cells grown under normal aerobic conditions (Table 1).

Table 1. Genes induced by hypoxia in glioblastoma cell line, D247-MG

SAGE Tag ^c	Gene Symbol ^a (Name)	Accession ^b	Fold Inc ^c SAGE	Fold Inc ^c PCR
TTTGTTAAAA	<i>HOG18</i> * (hypothetical protein FLJ20500)	NM_019058	10x	5.7x
GCCACGTTGT	<i>HOG3</i> * (hypothetical protein DKFZp434K1210)	NM_017606	9x	4.0x
TGGCTGGTGC	<i>HFARP</i> * or <i>PGAR</i> * (Hepatic fibrinogen/angiopoietin-related protein, PPAR- γ angiopoietin-related protein)	NM_016109	8x	12x
CAGCCAAATA	<i>HOG8</i> * (similar to F-box only protein 6, a receptor for ubiquitination targets)	BC007832	8x	2.1x
CTTAAGAAAA	<i>mig-6</i> * (Mitogen-inducible gene 6)	AL137274	7x	2.5x
TGTTAGAAAA	<i>PLOD2</i> (Lysine hydroxylase 2)	NM_000935	5x	4.4x
GATAGCACAG	<i>IGFBP5</i> (Insulin-like growth factor binding protein 5)	L27560	4x	4.6x
GCTCTCTATG	<i>SSR4</i> (Translocon associated protein delta)	NM_006280	3x	2.3x

^aHUGO gene symbols are provided, or marked (*) if not yet available. Genes already known to be hypoxia are referenced.

^bGenBank or RefSeq accession number corresponding to the SAGE tag.

^cFold increases (Fold Inc) are the ratio of hypoxic to normal transcript levels for SAGE and real-time PCR.

^dNot Tested.

^eSEQ ID NOS:23-30, respectively.

Example 2. Time course of gene induction by hypoxia

A time course of induction was performed on 12 hypoxia-inducible genes using real-time PCR (Fig. 1A). These genes all had a time course similar to *VEGF*, except for *CA9*, *NDRG1*, *HFARP* and *HOG18*, which were induced to a higher fold induction. Most of the genes required a 12-hour exposure prior to significant induction, implying an adaptation to chronic, rather than acute, hypoxia. Western blotting using an antibody to CA9 showed that protein levels increased with a time course similar to that of transcript levels (Fig. 1B).

Example 3. Regulation of hypoxia-induced genes by HIF-1

HOG18, HOG3, HFARP, CA9, IGFBP5 and *IGFBP3* were tested to see if these genes might be regulated by HIF-1. *VEGF*, an HIF-1 regulated gene, was used as a positive control (Ravi R, et al., *Genes Dev* 14:34-44 (2000)). Standard transient transfection was able to insert *HIF-1α* subunit gene plasmid (or a lac-Z control plasmid) into about 20% of the D247-MG cells as demonstrated by β-galactosidase staining. All of the above genes showed a reproducible increase in expression due to *HIF-1α* at both atmospheric and 1% oxygen (Fig. 2A).

Example 4. Hypoxia-induced gene expression in malignant cell lines.

HOG induction in malignant cell lines derived from commonly occurring cancers was determined by lowering the oxygen concentration from normal to 1.5% oxygen and measuring induction by real-time PCR. The 17 cell lines used were Normal Human Astrocytes (1), glioblastomas D263-MG (2), D392-MG (3), D502-MG (4), D566-MG (5) and U87 (6), medulloblastomas D283-Med (7), D341-Med (8), D425-Med (9), D556-Med (10), D581-Med (11) and UW228 (12), colon carcinomas SW480 (13) and HCT116 (14), non-small lung carcinomas NCI-H23 (15) and breast cancers SKBr3 (16) and MCF7 (17). Genes induced greater than 10-fold are displayed as 10-fold. The results are displayed in (Fig. 2B).

Example 5. In vivo studies of hypoxia-induced genes.

The *in vivo* response to hypoxic conditions in human solid tumors was examined. Pimonidazole, a bioreductive marker (Raleigh JA et al., *Cancer Res* 58:3765-8 (1998)), was used to accurately mark the hypoxic cells (Wijffels KI, et al., *Br J Cancer* 83:674-83 (2000)) of cervical or head and neck tumors. Staining of adjacent frozen sections

allowed determination of HOG expression co-localized with pimonidazole and other markers. Oropharynx carcinoma biopsies that were previously labeled with pimonidazole hydrochloride (Hypoxyprobe-1, Natural Pharmacia International Inc) and iododeoxyuridine (IdUrd), an S-phase marker, were obtained during diagnostic examination under anesthesia. Pimonidazole and IdUrd were injected intravenously, 2 h and 20 min, respectively, before biopsy as previously described (Wijffels KI et al., Br J Cancer 83:674-83 (2000)).

Immunohistochemical staining for CA9 was performed on 5-8 μ m fresh frozen tissue sections using mouse monoclonal antibodies to the target hypoxia induced protein at a dilution of 3.2 mg/ml. The slides were fixed with acetone, blocked with horse serum, and sequentially incubated at room temperature with primary antibody, biotinylated secondary antibody, and avidin-biotin horseradish peroxidase complexes. Bound antibody was detected using 3,3'-diaminobenzidine and hydrogen peroxide, counterstained with 1% hematoxylin, and permanently mounted.

For visualization of pimonidazole and IdUrd, 5 μ m sections were placed in pre-cooled acetone at 4°C for 10 min, air-dried and rehydrated with PBS. Tissue DNA was denatured in 2N HCl for 10 min. To neutralize pH, sections were rinsed in 0.1M Borax followed by rinsing in PBS. Sections were incubated for 45 min at 37°C with 1 μ g/ml anti-IdUrd and rabbit-anti-pimonidazole 1:200 in polyclonal liquid diluent. Next, sections were incubated for 90 min at room temperature in goat-anti-rabbit-ALEXAFLUOR488 (Molecular Probes, Eugene, OR) and goat-anti-mouseCy3, both 1 μ g/ml in polyclonal liquid diluent. Between incubations the sections were rinsed in PBS and finally mounted with Fluorostab.

Non-radioactive *in situ* hybridization was performed using digoxigenin-labeled antisense RNA probes. PCR was used to generate 350- to 600- bp products specific to

each HOG and these products were subcloned into a pBluescript KS- (Stratagene). After growth in *E. coli*, the plasmid was cut at a unique poly-linker site to create a linear probe. Digoxigenin-labeled RNA probes, from both the sense and antisense strands, were generated using the digoxigenin RNA labeling reagents and either T7 or T3 polymerase (Roche Diagnostics). Alternatively, the T7 promoter was incorporated into an antisense primer and the RNA probes were generated as described earlier (St. Croix B, et al., Science 289:1197-202 (2000)). Fresh frozen sections are cut to 8 μm for *in situ* hybridization and processed as previously described (St. Croix B, et al., Science 289:1197-202 (2000)).

Example 6. Diagnosis and localization of a tumor in a patient.

Monoclonal antibodies to one of HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, or IGFBP5 are coupled to ^{111}In via N-succinimidyl-3-(tri-n-butylstanyl)benzoate (*see, e.g.*, Zalutsky M and Narula A, Appl. Radiat. Isot. 38:1051 (1987)). A pharmaceutical formulation of the labeled antibody is prepared in sterile pyrogen-free phosphate-buffered saline solution and administered intravenously to the subject. The tumor is localized using a gamma ray detector sensitive to ^{111}In emissions.

Example 7. Treatment of a patient with a brain tumor.

A subject found to have increased quantities of HOG3, HOG8, HOG18, HFARP, mig-6, PLOD2, SSR4, and IGFBP5 and having a solid tumor residing in the cerebral cortex is treated using therapeutic monoclonal antibodies that bind specifically to one of these proteins. The antibody is coupled to ^{131}I via N-succinimidyl-3-(tri-n-butylstanyl)benzoate (*see, e.g.*, Zalutsky M and Narula A, Appl. Radiat. Isot. 38:1051 (1987)) to form a therapeutic monoclonal antibody. The therapeutic monoclonal

antibody is provided in a pharmaceutical formulation of sterile pyrogen-free phosphate-buffered saline solution and administered via intrathecal injection into the carotid artery.

The patient receives 300 mCi of therapeutic antibody. The antibody is administered to the subject in a series of regular, periodic administrations.

CLAIMS

We claim:

1. A method of inhibiting angiogenesis associated with wound healing, retinopathy, ischemia, inflammation, microvasculopathy, bone healing, skin inflammation, or follicular development, comprising:

providing to a subject in need thereof an antisense polynucleotide comprising 15 or more consecutive nucleotides of the complement of a sequence selected from the group consisting of SEQ ID NO:1 (HOG3), SEQ ID NO:3 (HOG8), SEQ ID NO:5 (HOG18), SEQ ID NO:9 (CA9), SEQ ID NO:11 (HXB), SEQ ID NO:13 (IGFBP5), SEQ ID NO:15 (HFARP), SEQ ID NO:17(STC1), SEQ ID NO:19 (mig-6) and SEQ ID NO:21 (SSR4), whereby angiogenesis is inhibited.

2. The method of claim 1 wherein the antisense polynucleotide is provided by administering an expression vector with expresses said antisense polynucleotide.

3. The method of claim 1 wherein the antisense polynucleotide is administered to the subject.

4. A method of inhibiting angiogenesis associated with wound healing, retinopathy, ischemia, inflammation, microvasculopathy, bone healing, skin inflammation, or follicular development, comprising:

administering to a subject in need thereof an antibody which specifically binds to a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:10 (CA9), SEQ ID NO:12 (HXB), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:18 (STC1), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4), whereby angiogenesis is inhibited.

5. The method of claim 4 wherein the antibody is a human antibody.

6. The method of claim 4 wherein the antibody is a humanized antibody.

7. The method of claim 4 wherein the antibody is a chimeric antibody.

8. The method of claim 4 wherein the antibody is an antigen-binding fragment of an antibody.

9. The method of claim 8 wherein the antigen-binding fragment is a single-chain Fv fragment.

10. A method of promoting angiogenesis associated with wound healing, retinopathy, ischemia, inflammation, microvasculopathy, bone healing, skin inflammation, or follicular development, comprising:

administering to a subject in need thereof a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:10 (CA9), SEQ ID NO:12 (HXB), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:18 (STC1), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4), whereby angiogenesis is promoted.

11. A method of promoting angiogenesis associated with wound healing, retinopathy, ischemia, inflammation, microvasculopathy, bone healing, skin inflammation, or follicular development, comprising:

administering to a subject in need thereof a vector comprising a nucleotide sequence encoding a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:10 (CA9), SEQ ID NO:12 (HXB), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:18 (STC1), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4) and a promotor, wherein the nucleotide sequence is operably linked to the promoter and is transcribed into a sense mRNA encoding said polypeptide upon transcription of the nucleotide sequence, whereby angiogenesis is promoted.

12. A method of treating a tumor, comprising:

providing to a subject in need thereof an antisense polynucleotide comprising 15 or more consecutive nucleotides of the complement of a sequence selected from the group consisting of SEQ ID NO:1 (HOG3), SEQ ID NO:3 (HOG8), SEQ ID NO:5

(HOG18), SEQ ID NO:13 (IGFBP5), SEQ ID NO:15 (HFARP), SEQ ID NO:19 (mig-6) and SEQ ID NO:21 (SSR4), whereby the growth of the tumor is diminished.

13. The method of claim 12 wherein the antisense polynucleotide is provided by administering an expression vector which expresses said antisense polynucleotide.

14. The method of claim 12 wherein the antisense polynucleotide is administered to the subject.

15. A method of treating a tumor, comprising:

administering to a subject in need thereof an antibody which specifically binds to a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4), whereby the growth of the tumor is diminished.

16. The method of claim 15 wherein the antibody is a human antibody.

17. The method of claim 15 wherein the antibody is a humanized antibody.

18. The method of claim 15 wherein the antibody is a chimeric antibody.

19. The method of claim 15 wherein the antibody is an antigen-binding fragment.

20. The method of claim 19 wherein the antigen-binding fragment is a single-chain Fv fragment.

21. The method of claim 15 wherein the antibody is covalently linked to a chemotherapeutic anti-tumor agent or a radiotherapeutic anti-tumor agent.

22. A method of diagnosing cancer in a subject, comprising:

quantifying a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:8 (PLOD2), SEQ

ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4), in a test sample suspected of being neoplastic from the subject and in a non-neoplastic control sample;

comparing the quantity of the polypeptide in a test sample suspected of being neoplastic with the quantity of the polypeptide in a non-neoplastic control sample; and

identifying the test sample as cancerous if the quantity of the polypeptide is higher in the test sample than in the control sample.

23. The method of claim 22 wherein the cancer is selected from the group consisting of breast cancer, colon cancer, and lung cancer.

24. The method of claim 22 wherein the cancer is glioblastoma.

25. The method of claim 22 wherein the step of quantifying is performed using an immunoassay.

26. The method of claim 25 wherein the step of quantifying is performed using Western blot or immunohistochemical assay.

27. A method of diagnosing cancer in a subject, comprising:
quantifying an mRNA selected from the group consisting of SEQ ID NO:1 (HOG3), SEQ ID NO:3 (HOG8), SEQ ID NO:5 (HOG18), SEQ ID NO:7 (PLOD2), SEQ ID NO:13 (IGFBP5), SEQ ID NO:15 (HFARP), SEQ ID NO:19 (mig-6) and SEQ ID NO:21 (SSR4), in a test sample suspected of being neoplastic from the subject and in a non-neoplastic control sample;

comparing the quantity of the mRNA in a test sample suspected of being neoplastic with the quantity of the mRNA in a non-neoplastic control sample; and

identifying the test sample as cancerous if the quantity of the mRNA is higher in the test sample than in the control sample.

28. The method of claim 27 wherein the step of quantifying employs a nucleic acid hybridization to a probe.

29. The method of claim 28 wherein the step of quantifying is performed using a Northern blot.
30. The method of claim 28 wherein the step of quantifying is performed using hybridization to probes in an array.
31. The method of claim 27 wherein mRNA is amplified before quantification.
32. The method of claim 27 wherein the step of quantifying is performed using RT-PCR.
33. A method of imaging a tumor comprising:
administering to a subject or to a tissue sample from a subject an antibody which specifically binds to a polypeptide selected from the group consisting of SEQ ID NO:2 (HOG3), SEQ ID NO:4 (HOG8), SEQ ID NO:6 (HOG18), SEQ ID NO:8 (PLOD2), SEQ ID NO:14 (IGFBP5), SEQ ID NO:16 (HFARP), SEQ ID NO:20 (mig-6) and SEQ ID NO:22 (SSR4), wherein the antibody is covalently linked to a label; and
detecting the label, whereby an image is formed of the distribution of the label in the subject or tissue sample.
34. The method of claim 33 wherein the label is radioactive, fluorescent, or colored.

1/3

SEQUENCE LISTING

<110> Riggins, Gregory
Lal, Anita

<120> GENES INDUCED BY HYPOXIA

<130> 000250.00012

<150> 60/307,600
<151> 2001-07-26

<160> 30

<170> FastSEO for Windows Version 4.0

<210> 1

<211> 2133

<212> DNA

<213> Homo sapiens

<400> 1

agggatttcc	ccatTTctgt	ttgctgcctg	aaagcaggat	gaggaaggcc	aaggagagt	60
cttgaccccg	tgagcgtcag	gatgaggaaa	tgacaggagg	aagacgtggg	tttgggttag	120
ttggctgtgg	cgttttggcc	cttgggttt	ctggagcctc	cagggatcta	ggggagcctg	180
ggctgcgtgc	atgtcgataa	gaaagactgt	tcttggggag	aaggagggag	gtctcgggag	240
tgttagcacca	tgccaaaccag	ccctgcgcga	agacagagt	agccacgccc	ggatggcagg	300
gcatgtttct	gttttgggtgt	ctcaactttcc	tcccagcgt	acttatttgg	ggattcctca	360
gggcctactg	gaatgtgact	gcccactgcc	cagctgcctc	gggtacaagt	cctggcccta	420
tgtcccagct	gtcaggggct	aagggaatcc	tacccagcca	cctgtcctgg	gatggagtgt	480
cagcatccac	cccttgggttgc	tcatcgaggc	cggccccc	gtcctgggtg	aagatatttg	540
ggccaccagg	gttccttgg	cccccttcacg	taggaatag	acacgtgctt	tttaatgcag	600
gacacttga	gtgttacaaa	atctgttagac	ctggcagtag	ggtcatgtg	ttgggaaggg	660
tgttagtggcc	taggttggtg	acagaaggga	cagacacttg	tgcacaggt	tctttggtga	720
tggggttttt	tttttataa	cttagtaaaa	aaaaaaaaaa	atgtatgtgg	aattctgtct	780
cttggtaaag	ctcaaagcca	ggctagcctg	aggtggcgc	ggctctct	tctgtccct	840
tcgatctct	tgagaattaa	gagctggcag	ctgctgatgg	tgttcccaa	ccccccctcac	900
ttcccaagac	aacccccagc	tcaaggctct	catggggagg	ggagggcacg	ttcttgacac	960
atgggaactt	cgctcaggag	ggctccccc	tccccc	ctcagagtt	tcactgcgcgt	1020
ctcgcttta	gaaagctgtt	tgaattcccc	ccggccccc	tttggaccgt	gtagatataa	1080
ctggatatac	ggattttct	ctttgtgcag	gcttctt	ccgttggtat	acagggcagg	1140
aaagagagga	ataaagggag	agagcagtgt	ggaaaccac	gtgggtttgc	tttgttctta	1200
ctagggttttgc	gtgcaccc	ccctgcctgc	gcttgt	ccctct	ttggcaetgg	1260
cgccctccctt	gcctccctt	caccctgtgt	gcccattcc	gtctgtcg	ttggtttottc	1320
acacgtgttc	tgttctcggt	gttgttccat	tcatgccttc	tggaggggt	agggtggctt	1380
gggaaccgac	ccagtgtatca	tgcctacttt	cttctttgt	tctccctct	tcccagccca	1440
cccgccgcgc	agactctgtat	ggaaggaagg	tgcctgtgt	ggcttttag	aaactaacgg	1500
gactgggttt	caaagcagtt	atcttggaa	actgtttatt	ccagcgtatgt	gacttttttc	1560
agaatatttc	ttagaatcat	attcagagtc	tgggggtgt	tgttggcag	ccttaaggat	1620
gttagacact	catttagtgc	ccagggagtc	cagcgaatga	cgctctgtggc	caagcgaggt	1680
ctcagggtc	aagcaaaagg	accat	gtaaaatagc	ttggattcaa	tcatgtgact	1740
tttaaaattgg	ctcagaaagc	aattttgtaa	tttcagagag	tgttttgagc	catggccacg	1800
ttgtcattgt	gagtctatag	tttgactct	tggagaacaa	tattcatttgc	gttggagaga	1860
ctgattttgt	gggagaaaatc	tgtcctgtta	ctttctggtc	atcccaggtt	ctgactttta	1920
ccagggggca	aaaaaaaaaa	aaaagcaag	agggagataa	atcccacatctq	tqaqtttqtc	1980

ttattggcgc ctttttcctc agctgtcttc caagtattat ttttactgtt aaaaaatttt	2040
ttaaaaatgt gaaatgtaat gttttacag caacaatatg aaatatattt tataaggaat	2100
aaaatgtac ctgtctgaa aaaaaaaaaaaa aaa	2133

<210> 2
<211> 129
<212> PRT
<213> Homo sapiens

<400> 2
Met Ser Ile Ser Arg Ala Val Leu Gly Glu Lys Glu Gly Gly Leu Gly
1 5 10 15
Ser Val Ala Pro Cys Gln Pro Ala Leu Arg Glu Asp Arg Val Ser His
20 25 30
Ala Arg Met Ala Gly His Val Ser Val Leu Val Ser His Phe Pro Pro
35 40 45
Ser Val Thr Tyr Leu Gly Ile Pro Gln Gly Leu Leu Glu Cys Asp Cys
50 55 60
Pro Leu Pro Ser Cys Leu Gly Tyr Lys Ser Trp Pro Tyr Val Pro Ala
65 70 75 80
Val Arg Gly Ser Gly Asn Pro Thr Gln Pro Pro Val Leu Gly Trp Ser
85 90 95
Val Ser Ile His Pro Leu Val Val Ile Glu Ala Ala Leu Pro Val Leu
100 105 110
Gly Glu Asp Ile Trp Ala Thr Arg Ala Pro Leu Ala Pro Ser Arg Arg
115 120 125
Lys

<210> 3
<211> 1768
<212> DNA
<213> Homo sapiens

<400> 3
ggcacgaggg cttggggggc ccagcgatc gtgcggggc ggccgagcgc agctacagga 60
gggtgtccag aagccacaag ccatggctgt gggaaacatc aacgagctgc cccgagaacat 120
cctgctggag ctgttcacgc acgtgcccgc cccgcagctg ctgctgaact gccgcctgg 180
ctgcagccctc tggcgggacc tcatcgacct cgtgaccctc tggaaacgca agtgccctgc 240
agagggcttc atcaactgagg actgggacca gcccgtggcc gactggaaaga tcttctactt 300
cttacggagc ctgcacagga acctctgtca caaccctgtgc gctgaagagg ggttcgagtt 360
ctggagccctg gatgtgaatg gaggcgatga gtggaaagggtg gaggatctct ctcgagacca 420
gaggaaggaa ttccccaaatg accaggttcg cagccaggcc agattgcggg tccaagtacc 480
agctgtgcgt tcagctccctg tctgtccgc acggccctct ggggacccctc cagccagacc 540
cggcgaccat ccagcagaag agcgatgcac agtggaggaa ggtctccac acattctcca 600
actaccggcc cggcgccgc tacatctgtt ttcagcacgg cggcgccgtt actcattact 660
ggggccggctg gtacggcccg agggtcacca acagcagcat caccatcgcc ccccccgtgc 720
cctgacaccc cctgagcccc catctgctga accctgactg gtaaaacaact gctgtcagaa 780
aagggtctggg cttggaaagg ggagggtggag gcccgggtgtc cccagaccc taacccttgc 840
cccttagcagc ctcttctttg tggagccctt cagtgtgggc agccctcgca tgctgggtc 900
ggggccagctc tccccgaaag gtcttgaccc gaatgtggc cggggaaagcc tgctgtgcc 960
cctttagag acggagccac tgagatgtgg gaggtgcage atgttccctt gggccctca 1020
gaaagtgcag cttggaggcc agcctggatc tgcctctcc ttccccctt gggaccattc 1080
tacctgttgtt ctttgaccctt cggagcaggc acaggcaaga caactggcaa gcttgcagct 1140
gcctgtatgg tgcaggtgca gggaggtgac catgtaaactc tgaccatct gggaaagtgg 1200
gggtgggctc atggggccctt ccctgccccctt gtcgtgtgtt cccagttttt cgctgtccct 1260

gcctgctcag aagagggtggc tttggccca	aggctcaggc cgggactgag atggacagac	1320
ccagggtggg gtggggtcca ggtcggtgt ggactgtcct cactgtcagt ggagccccag		1380
aagctagatg ggtaccagggt ggggttaggt tcccagagga ctgagggaaat cctgtacagg		1440
atgtcccagg gtatggatggg agcaggatgt ggacctgctc tgacagctgg acacatgagc		1500
cctggatgag tatggtaggg ggtttgaaga atcccctgtc cacctcccaa atccaggccc		1560
ggcccccctct gggttggaga gcattccaag ccccccccc accccctagaa ctgccattcc		1620
caagacctct gtctcccagc caaccaccc tggaaacttgc ctcttgctc gctggaaaga		1680
tagcagtgtt ctctgactt cgccctactg catgcagcca aataaaaaggt gtgccagtc		1740
aaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa		1768

<210> 4
<211> 224
<212> PRT
<213> Homo sapiens

<400> 4		
Met Ala Val Gly Asn Ile Asn Glu Leu Pro Glu Asn Ile Leu Leu Glu		
1	5	10
Leu Phe Thr His Val Pro Ala Arg Gln Leu Leu Leu Asn Cys Arg Leu		
20	25	30
Val Cys Ser Leu Trp Arg Asp Leu Ile Asp Leu Val Thr Leu Trp Lys		
35	40	45
Arg Lys Cys Leu Arg Glu Gly Phe Ile Thr Glu Asp Trp Asp Gln Pro		
50	55	60
Val Ala Asp Trp Lys Ile Phe Tyr Phe Leu Arg Ser Leu His Arg Asn		
65	70	75
Leu Leu His Asn Pro Cys Ala Glu Glu Gly Phe Glu Phe Trp Ser Leu		
85	90	95
Asp Val Asn Gly Gly Asp Glu Trp Lys Val Glu Asp Leu Ser Arg Asp		
100	105	110
Gln Arg Lys Glu Phe Pro Asn Asp Gln Val Arg Ser Gln Ala Arg Leu		
115	120	125
Arg Val Gln Val Pro Ala Val Arg Ser Ala Pro Val Val Arg Ala Arg		
130	135	140
Ala Ser Gly Asp Leu Pro Ala Arg Pro Gly Asp His Pro Ala Glu Glu		
145	150	155
Arg Cys Gln Val Glu Gly Gly Leu Pro His Ile Leu Gln Leu Pro Ala		
165	170	175
Arg Arg Pro Leu His Leu Val Ser Ala Arg Arg Arg Gly His Ser Leu		
180	185	190
Leu Gly Arg Leu Val Arg Pro Glu Gly His Gln Gln His His His		
195	200	205
Arg Ala Pro Ala Ala Leu Thr Pro Pro Glu Pro Pro Ser Ala Glu Pro		
210	215	220

<210> 5
<211> 1760
<212> DNA
<213> Homo sapiens

<400> 5		
gcagcaggcc aagggggagg tgcgagcgtg gacctggac gggctctggc ggctctcggt		60
ggttggcaca cccattcaag cggcaggacg cacttgtttt agcagttc		120
gctgaccgcg ctagctgcgg ctcttacgtt cccgcactct gagttcatca gcaaacgccc		180
tggcgtctgt cctcaccatg cttttttt ggaccgcgtt ctcgtcg tccacccctt		240
tttgccttc gtccttgccc cggccatcg gggccggc tcagcctggg		300

ggtcggcgac	ccggggaggag	gggtttgacc	gctccacgag	cctggagagc	tcggactgcg	360
agtccctgga	cagoagcaac	agtggctcg	ggccggagga	agacacggct	tacctggatg	420
gggtgtcggt	gcccacttc	gagctgctca	gtgacccctga	ggatgaacac	ttgtgtgcca	480
acctgtatca	gctgtgtcgag	gagagcctgg	cccaggcgcg	gctggggotct	cgacgcctcg	540
cgccgctgt	gatgccttagc	cagttggtaa	gccaggtggg	caaagaacta	ctgcgcctgg	600
cctacagcga	gccgtgeggc	ctgcgggggg	cgctgtgga	cgtctgctgt	gagcaggcga	660
agagctgcca	cagcgtgggc	cagctggcac	tcgacccccag	cctggtgccc	accttccagc	720
tgaccctcg	gctggcgctg	gactcaacgac	tctggcccaa	gatccagggg	ctgttttagct	780
ccgccaactc	tcccttcctc	cctggcttca	gccagtcct	gacgctgago	actggcttcc	840
gagtcatcaa	gaagaagctg	tacagctgg	aacagctgtct	cattgaggag	tgttgaactt	900
caacctgagg	ggggccgacag	tgccctccaa	gacagagacg	actgaacttt	tggggtgttag	960
actagaggca	ggagctgagg	gactgattcc	agtgggtgga	aaactgaggg	agccaccta	1020
ggtgtggaggt	ggggaaatagt	gtttcccaagg	aagcttattt	agttgtgtgc	gggtggctgt	1080
gcattgggga	cacatacccc	tcaactgtgt	agcatggAAC	aaaggcttag	ggccaaacaaa	1140
ggcttccagc	tggatgtgtg	tgttagcatgt	accttattat	ttttgttact	gacagttaac	1200
agtgggtgtg	catccagaga	gcagctgggc	tgctcccgcc	ccagccctggc	ccaggggtgaa	1260
ffaagaggca	cgtgtccctc	agagcagccg	gagggagggg	ggaggtcgga	ggtcgtggag	1320
gtggtttgc	tatottactg	gtctgaaggg	accaagtgt	tttggatgtt	gttttgtatc	1380
ttgttttct	gatoggagca	tcactactga	cctgttgtag	gcagctatct	tacagacgca	1440
tgaatgtaa	agtaggaagg	ggtgggtgtc	agggatcaact	tgggatcttt	gacacttggaa	1500
aaattacacc	tggcagctgc	gtttaagctt	tccccatcg	tgtactgcag	agttgagctg	1560
gcaggggagg	ggctgagagg	gtgggggctg	gaacccctcc	ccggggaggag	tgccatctgg	1620
gtcttccatc	tagaactgtt	tacatgaaga	taagatactc	actgttcatg	aatacacttg	1680
atgttcaagt	attaagacct	atgcaatatt	ttttactttt	ctaaaaaaca	tgtttgttaa	1740
aacaaaaaaaaa	aaaaaaaaaa					1760

<210> 6
<211> 232
<212> PRT
<213> *Homo sapiens*

<400> 6
 Met Pro Ser Leu Trp Asp Arg Phe Ser Ser Ser Ser Thr Ser Ser Ser
 1 5 10 15
 Pro Ser Ser Leu Pro Arg Thr Pro Thr Pro Asp Arg Pro Pro Arg Ser
 . 20 25 30
 Ala Trp Gly Ser Ala Thr Arg Glu Glu Gly Phe Asp Arg Ser Thr Ser
 35 40 45
 Leu Glu Ser Ser Asp Cys Glu Ser Leu Asp Ser Ser Asn Ser Gly Phe
 50 55 60
 Gly Pro Glu Glu Asp Thr Ala Tyr Leu Asp Gly Val Ser Leu Pro Asp
 65 70 75 80
 Phe Glu Leu Leu Ser Asp Pro Glu Asp Glu His Leu Cys Ala Asn Leu
 85 90 95
 Met Gln Leu Leu Gln Glu Ser Leu Ala Gln Ala Arg Leu Gly Ser Arg
 100 105 110
 Arg Pro Ala Arg Leu Leu Met Pro Ser Gln Leu Val Ser Gln Val Gly
 115 120 125
 Lys Glu Leu Leu Arg Leu Ala Tyr Ser Glu Pro Cys Gly Leu Arg Gly
 130 135 140
 Ala Leu Leu Asp Val Cys Val Glu Gln Gly Lys Ser Cys His Ser Val
 145 150 155 160
 Gly Gln Leu Ala Leu Asp Pro Ser Leu Val Pro Thr Phe Gln Leu Thr
 165 170 175
 Leu Val Leu Arg Leu Asp Ser Arg Leu Trp Pro Lys Ile Gln Gly Leu
 180 185 190

Phe	Ser	Ser	Ala	Asn	Ser	Pro	Phe	Leu	Pro	Gly	Phe	Ser	Gln	Ser	Leu
195							200				205				
Thr	Leu	Ser	Thr	Gly	Phe	Arg	Val	Ile	Lys	Lys	Lys	Leu	Tyr	Ser	Ser
210					215				220						
Glu	Gln	Leu	Leu	Ile	Glu	Glu	Cys								
225					230										

<210> 7
<211> 3503
<212> DNA
<213> Homo sapiens

<400> 7

atggggggat	gcacggtgaa	gcctcagctg	ctgctcctgg	cgctcgctct	ccacccctgg	60
aatccctgtc	tgggtgcgga	ctcgagaag	ccctcgagca	tccccacaga	taaattatta	120
gtcataactg	tagcaacaaa	agaaagtat	ggattccatc	gatttatgca	gtcagccaaa	180
tatttcaatt	atactgtgaa	ggtccttgg	caaggagaag	aatggagagg	tggtgatgg	240
attaatagta	ttggaggggg	ccagaaagt	agattaatga	aagaagtcat	ggaacactat	300
gctgatcaag	atgatctgtt	tgtcatgtt	actgaatgct	ttgatgtcat	atttgcttgt	360
ggtccagaag	aagttctaaa	aaaattccaa	aaggcaaac	acaaagtgg	cttgcagca	420
gatggaattt	tgtggccaga	taaaagacta	gcagacaagt	atccctgttgt	gcacattggg	480
aaacgcatac	tgaatttcagg	aggattatt	ggctatgctc	cataatgtcaa	ccgtatagtt	540
caacaatgg	atctccagga	taatgtatgat	gatcagctct	tttacactaa	agtttacatt	600
gatccactga	aaagggaagc	tattaacatc	acattggatc	acaaatgcaa	aattttccag	660
accttaaatg	gagctgtaga	tgaaggtttt	ttaaaatttg	aaaatggcaa	agccagagct	720
aagaatacat	tttatgaaac	attaccatgt	gcaattaatg	aaaatggacc	caccaagatt	780
ctcctgaatt	attttggaaa	ctatgtaccc	aattcatgg	cacaggataa	tggctgcact	840
ctttgtgaat	tcgatacagt	cgacttgtct	gcagtagatg	tccatccaaa	cgtatcaata	900
ggtgtttttt	ttgagcaacc	aaccctttt	ctacctcggt	ttctggacat	attgttgaca	960
ctggattacc	caaaaagaagc	acttaaactt	tttattcata	acaaagaagt	ttatcatgaa	1020
aaggacatca	aggtattttt	tgataaaagct	aagcatgaaa	tcaaaaactat	aaaaatagta	1080
ggaccagaag	aaaatctaag	tcaagcgaa	gccagaaaca	tgggaatg	ctttgcgt	1140
caggatgaaa	agtgtgatta	ttactttgt	gtggatgcag	atgttgg	gacaaatcca	1200
aggactttaa	aaattttgat	tgaacaaaac	agaaagatca	ttgctccct	tgtacttgt	1260
catggaaagc	tgtggtccaa	tttctgggg	gcatttgatc	ctgatggata	ctatgcacga	1320
tctgaagatt	atgtggat	tgttcaaggg	aatagatgt	gagttatgg	tgtcccata	1380
atggctaatt	tgtacttaat	taaaggaaag	acactccgat	cagagataa	tgaaggaaac	1440
tattttgttc	gtgataaaact	ggatccgtat	atggctctt	ccggaaatgc	tagagaaatg	1500
ggtgtatata	tgtacatttc	taatagacat	gaatttgaa	ggcttattatc	cactgctaat	1560
tacaatactt	cccattataa	caatgaccc	tggcagattt	ttgaaaatcc	tgtgactgg	1620
aaggaaaatg	atataaaaccg	tgattattca	aagattttca	ctgaaaatat	agttgaacag	1680
ccctgtccag	atgtctttt	gttccccata	tttctgaaa	aagcctgtga	tgaatttg	1740
gaagaaaatgg	aacattacgg	caaatgtct	ggggaaaaac	atcatgtat	ccgtatatct	1800
ggtgtttatg	aaaatgtccc	aactgtatgt	atccacatg	agcaagtgt	tctggagaat	1860
gtatggcttg	attttaccc	ggagttcatt	gcaccaggt	cactgtat	ctttgcaggc	1920
tattatacga	agggatttgc	actactgtat	ttttagtata	aataactcccc	tgaacgacag	1980
cgttcttcc	gtccctcatca	tgtatgtct	acatttacca	taaacattgc	acttaataac	2040
gtggagaag	actttcagg	agggtgtgc	aaatttctaa	ggtacaattt	ctctatttg	2100
tcaccacgaa	aaggctggag	tttcattgtat	cctgggagac	tcacacattt	gcatgaagga	2160
cttcctgtta	aaaatggac	aagatacatt	gcagtgtat	ttatagatcc	ctaagttatt	2220
tactttcat	tgaattgaaa	tttattttgg	gtgaatgt	ggcatgaaca	cgtcttgaa	2280
gttgtggctg	agaagatgt	aggaatattt	aaataacatc	aacagaacaa	cttcaatttg	2340
ggccaaacat	tgaaaaact	tttataaaaa	aatttgcata	tatttctaa	tgtctgtct	2400
gagcctaaa	acacagatt	aagaagaaaa	gaaagaaaaa	acttaataat	ttatttctat	2460
gcttggcgtc	ctctgagaat	aatgacaatt	tatgaatttg	tgtttcaat	tgataaaaata	2520
tttaggtaca	aataacaaga	ctaataat	tttcttattt	aaaaaaaa	tgggaaagatt	2580

tttatattatc	aaaatataga	ggaaatgtag	acaaaatgga	tataaatgaa	aattaccatg	2640
ttgtaaaacc	ttgaaaatca	gattctaact	gattgttatgc	aactaagtat	ttctgaacac	2700
ctatgcagg	catttaca	gtgttactaa	ggAACACAC	aaagaattac	acaacgttt	2760
cctcaagaaa	atggtacaaa	acacaaccga	ggAGCgtata	cagttaaaaa	cattttgtt	2820
ttgattggaa	ggcagattat	tttatattag	tatTTAAAT	caaaccctat	gtttcttca	2880
gatgaatctt	ccaaagtgta	ttatattaag	caggttattag	atTTAGAAAAA	cctttccatt	2940
tcttaaagta	ttatcaagt	tcaagatcg	caagtgtcct	taagtcaaat	aggtttttt	3000
ttgttggtgg	ttgtgcttgc	tttcctttt	tagaaagttc	tagaaatAGA	gAAAACGAAA	3060
aatttcat	tgatgagtag	tgcatttaat	tatTTTTAA	aaaactttt	aagtacttga	3120
atTTATATC	aggAAAACAA	agttgtttag	ccttgcttct	tccgTTTTC	cctttgtctc	3180
gctcccttatt	ctttttggg	gggagggtta	tttgctttt	tatcttcctg	gcataatttc	3240
cattttat	ttctgagtgt	ctatgttaac	ttccctctat	ccogcttata	aaaaaattct	3300
ccaacaaaaa	tacttggta	cttgatgtt	tatcacttct	ctaagtaagg	ttgaaaatATC	3360
cttattgttag	ctactgttt	taatgtaaag	gttAAACTTG	aaaagAAAATT	cttaatcACG	3420
gtGCCAAAAT	tcattttcta	acaccatgt	ttagAAAATT	ataaaaaata	aaataatTTT	3480
aaaaaaaaaa	aaaaaaaaaa	aaaaaa	aaaaaa	aaaaaa	aaaaaa	3503

<210> 8
<211> 737
<212> PRT
<213> Homo sapiens

<400> 8																
Met	Gly	Gly	Cys	Thr	Val	Lys	Pro	Gln	Leu	Leu	Leu	Leu	Ala	Leu	Val	
1					5				10				15			
Leu	His	Pro	Trp	Asn	Pro	Cys	Leu	Gly	Ala	Asp	Ser	Glu	Lys	Pro	Ser	
							20			25			30			
Ser	Ile	Pro	Thr	Asp	Lys	Leu	Leu	Val	Ile	Thr	Val	Ala	Thr	Lys	Glu	
							35			40			45			
Ser	Asp	Gly	Phe	His	Arg	Phe	Met	Gln	Ser	Ala	Lys	Tyr	Phe	Asn	Tyr	
							50			55			60			
Thr	Val	Lys	Val	Leu	Gly	Gln	Gly	Glu	Trp	Arg	Gly	Gly	Asp	Gly		
						65			70			75			80	
Ile	Asn	Ser	Ile	Gly	Gly	Gln	Lys	Val	Arg	Leu	Met	Lys	Glu	Val		
						85			90			95				
Met	Glu	His	Tyr	Ala	Asp	Gln	Asp	Asp	Leu	Val	Val	Met	Phe	Thr	Glu	
							100			105			110			
Cys	Phe	Asp	Val	Ile	Phe	Ala	Gly	Gly	Pro	Glu	Glu	Val	Leu	Lys	Lys	
							115			120			125			
Phe	Gln	Lys	Ala	Asn	His	Lys	Val	Val	Phe	Ala	Ala	Asp	Gly	Ile	Leu	
							130			135			140			
Trp	Pro	Asp	Lys	Arg	Leu	Ala	Asp	Lys	Tyr	Pro	Val	Val	His	Ile	Gly	
							145			150			155			160
Lys	Arg	Tyr	Leu	Asn	Ser	Gly	Gly	Phe	Ile	Gly	Tyr	Ala	Pro	Tyr	Val	
							165			170			175			
Asn	Arg	Ile	Val	Gln	Gln	Trp	Asn	Leu	Gln	Asp	Asn	Asp	Asp	Gln		
							180			185			190			
Leu	Phe	Tyr	Thr	Lys	Val	Tyr	Ile	Asp	Pro	Leu	Lys	Arg	Glu	Ala	Ile	
							195			200			205			
Asn	Ile	Thr	Leu	Asp	His	Lys	Cys	Lys	Ile	Phe	Gln	Thr	Leu	Asn	Gly	
							210			215			220			
Ala	Val	Asp	Glu	Val	Val	Leu	Lys	Phe	Glu	Asn	Gly	Lys	Ala	Arg	Ala	
							225			230			235			240
Lys	Asn	Thr	Phe	Tyr	Glu	Thr	Leu	Pro	Val	Ala	Ile	Asn	Gly	Asn	Gly	
							245			250			255			
Pro	Thr	Lys	Ile	Leu	Leu	Asn	Tyr	Phe	Gly	Asn	Tyr	Val	Pro	Asn	Ser	

260	265	270
Trp Thr Gln Asp Asn Gly Cys Thr Leu Cys Glu Phe Asp Thr Val Asp		
275	280	285
Leu Ser Ala Val Asp Val His Pro Asn Val Ser Ile Gly Val Phe Ile		
290	295	300
Glu Gln Pro Thr Pro Phe Leu Pro Arg Phe Leu Asp Ile Leu Leu Thr		
305	310	315
Leu Asp Tyr Pro Lys Glu Ala Leu Lys Leu Phe Ile His Asn Lys Glu		
325	330	335
Val Tyr His Glu Lys Asp Ile Lys Val Phe Phe Asp Lys Ala Lys His		
340	345	350
Glu Ile Lys Thr Ile Lys Ile Val Gly Pro Glu Glu Asn Leu Ser Gln		
355	360	365
Ala Glu Ala Arg Asn Met Gly Met Asp Phe Cys Arg Gln Asp Glu Lys		
370	375	380
Cys Asp Tyr Tyr Phe Ser Val Asp Ala Asp Val Val Leu Thr Asn Pro		
385	390	395
Arg Thr Leu Lys Ile Leu Ile Glu Gln Asn Arg Lys Ile Ile Ala Pro		
405	410	415
Leu Val Thr Arg His Gly Lys Leu Trp Ser Asn Phe Trp Gly Ala Leu		
420	425	430
Ser Pro Asp Gly Tyr Tyr Ala Arg Ser Glu Asp Tyr Val Asp Ile Val		
435	440	445
Gln Gly Asn Arg Val Gly Val Trp Asn Val Pro Tyr Met Ala Asn Val		
450	455	460
Tyr Leu Ile Lys Gly Lys Thr Leu Arg Ser Glu Met Asn Glu Arg Asn		
465	470	475
Tyr Phe Val Arg Asp Lys Leu Asp Pro Asp Met Ala Leu Cys Arg Asn		
485	490	495
Ala Arg Glu Met Gly Val Phe Met Tyr Ile Ser Asn Arg His Glu Phe		
500	505	510
Gly Arg Leu Leu Ser Thr Ala Asn Tyr Asn Thr Ser His Tyr Asn Asn		
515	520	525
Asp Leu Trp Gln Ile Phe Glu Asn Pro Val Asp Trp Lys Glu Lys Tyr		
530	535	540
Ile Asn Arg Asp Tyr Ser Lys Ile Phe Thr Glu Asn Ile Val Glu Gln		
545	550	555
Pro Cys Pro Asp Val Phe Trp Phe Pro Ile Phe Ser Glu Lys Ala Cys		
565	570	575
Asp Glu Leu Val Glu Glu Met Glu His Tyr Gly Lys Trp Ser Gly Gly		
580	585	590
Lys His His Asp Ser Arg Ile Ser Gly Gly Tyr Glu Asn Val Pro Thr		
595	600	605
Asp Asp Ile His Met Lys Gln Val Asp Leu Glu Asn Val Trp Leu Asp		
610	615	620
Phe Ile Arg Glu Phe Ile Ala Pro Val Thr Leu Lys Val Phe Ala Gly		
625	630	635
Tyr Tyr Thr Lys Gly Phe Ala Leu Leu Asn Phe Val Val Lys Tyr Ser		
645	650	655
Pro Glu Arg Gln Arg Ser Leu Arg Pro His His Asp Ala Ser Thr Phe		
660	665	670
Thr Ile Asn Ile Ala Leu Asn Asn Val Gly Glu Asp Phe Gln Gly Gly		
675	680	685
Gly Cys Lys Phe Leu Arg Tyr Asn Cys Ser Ile Glu Ser Pro Arg Lys		
690	695	700
Gly Trp Ser Phe Met His Pro Gly Arg Leu Thr His Leu His Glu Gly		

705	710	715	720
Leu Pro Val Lys Asn Gly Thr Arg Tyr Ile Ala Val Ser Phe Ile Asp			
725	730	735	
Pro			

<210> 9
<211> 1552
<212> DNA
<213> Homo sapiens

<400> 9

```

gcccgtagac accgtgtct gggacacccc acagtcagcc gcatggctcc cctgtgcccc
agccctggc tccctctgtt gatcccgccc cctgtccag gcctcaactgt gcaactgtcg
ctgtcaactgc tgcttctgtat gcctgtccat ccccaagaggt tgcccccggat gcaggaggat
tcccccttgg gaggaggctc ttctggggaa gatgaccac tggcggagga ggatctgccc
agtgaagagg attcacccag agaggaggat ccacccggag aggaggatct acctggagag
gaggatctac ctggagagga ggatctacat gaagttaaagc ctaaatcaga agaagagggc
tccctgaagt tagaggatct acctactgtt gaggetcttg gagatcctca agaaccaggc
aataatgccc acagggacaa agaagggat gaccagagtc attggcgcta tggaggcgac
ccggccctggc cccgggtgtc cccagccgtc gggggcccgat tccagttccc ggtggatata
cgccccccagc tcgccccctt ctgccccggc ctgcggcccc tggaaactctt gggcttccag
ctccccccgc tcccagaact gcgcctgcgc aacaatggcc acagtgtgca actgaccctg
cctccctggc tagagatggc tctgggtccc gggccgggaggt accgggtctt gcagctgcat
ctgcacttggg gggctgcagg tcgtccgggc tggagacata ctgtggaaagg ccacccgttc
cctgcccaga tccacgttgt tcacccatgc accgcctttt ccagagttga cgaggccctg
gggcggccgg gaggccctggc cgtgttggcc gcctttctgg aggagggccc ggaagaaaaac
agtgcctatg agcagttgtt gtctcgcttg gaagaaaatcg ctgaggaagg ctcaagagact
caggccccag gactggacat atctgcactc ctgcctctg acttcagccg ctacttccaa
tatgaggggt ctctgactac accgcctgtt gcccagggtt tcatctggac tgggttttaac
cagacagtga tgctgagtgca taagcagatc cacaccctctt ctgacaccctt gtggggaccc
ggtgactctc ggctacagct gaacttccga ggcacgcgcg ctttgaatgg gcgagtgtatt
gaggccctctt tccctgttgg agtggacagc agtccctggg ctgctgagcc agtccagctg
aattctgtcc tggctgttgg tgacatccca gcccctggtt tggccctctt ttttctgtc
accagegtcg cgttccttgtt gcagatgaga aggacgcaca gaagggggAAC caaaggggggt
gtgagctacc gcccagcaga ggttagccgag actggagccct agaggcttggc tcttggagaa
tgtgagaagc cagccagagg catctgaggg ggagccggta actgtccctgt cctgctcatt
atgccacttc ctttaactg ccaagaaatt ttttaataa aatatttata at

```

<210> 10
<211> 459
<212> PRT
<213> Homo sapiens

<400> 10

```

Met Ala Pro Leu Cys Pro Ser Pro Trp Leu Pro Leu Leu Ile Pro Ala
1 5 10 15
Pro Ala Pro Gly Leu Thr Val Gln Leu Leu Leu Ser Leu Leu Leu
20 25 30
Met Pro Val His Pro Gln Arg Leu Pro Arg Met Gln Glu Asp Ser Pro
35 40 45
Leu Gly Gly Gly Ser Ser Gly Glu Asp Asp Pro Leu Gly Glu Glu Asp
50 55 60
Leu Pro Ser Glu Glu Asp Ser Pro Arg Glu Glu Asp Pro Pro Gly Glu
65 70 75 80
Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro Gly Glu Glu Asp Leu Pro

```

85	90	95
Glu Val Lys Pro Lys Ser Glu Glu Gly Ser Leu Lys Leu Glu Asp		
100	105	110
Leu Pro Thr Val Glu Ala Pro Gly Asp Pro Gln Glu Pro Gln Asn Asn		
115	120	125
Ala His Arg Asp Lys Glu Gly Asp Asp Gln Ser His Trp Arg Tyr Gly		
130	135	140
Gly Asp Pro Pro Trp Pro Arg Val Ser Pro Ala Cys Ala Gly Arg Phe		
145	150	155
Gln Ser Pro Val Asp Ile Arg Pro Gln Leu Ala Ala Phe Cys Pro Ala		
165	170	175
Leu Arg Pro Leu Glu Leu Leu Gly Phe Gln Leu Pro Pro Leu Pro Glu		
180	185	190
Leu Arg Leu Arg Asn Asn Gly His Ser Val Gln Leu Thr Leu Pro Pro		
195	200	205
Gly Leu Glu Met Ala Leu Gly Pro Gly Arg Glu Tyr Arg Ala Leu Gln		
210	215	220
Leu His Leu His Trp Gly Ala Ala Gly Arg Pro Gly Ser Glu His Thr		
225	230	235
Val Glu Gly His Arg Phe Pro Ala Glu Ile His Val Val His Leu Ser		
245	250	255
Thr Ala Phe Ala Arg Val Asp Glu Ala Leu Gly Arg Pro Gly Gly Leu		
260	265	270
Ala Val Leu Ala Ala Phe Leu Glu Glu Gly Pro Glu Glu Asn Ser Ala		
275	280	285
Tyr Glu Gln Leu Leu Ser Arg Leu Glu Glu Ile Ala Glu Glu Gly Ser		
290	295	300
Glu Thr Gln Val Pro Gly Leu Asp Ile Ser Ala Leu Leu Pro Ser Asp		
305	310	315
Phe Ser Arg Tyr Phe Gln Tyr Glu Gly Ser Leu Thr Thr Pro Pro Cys		
325	330	335
Ala Gln Gly Val Ile Trp Thr Val Phe Asn Gln Thr Val Met Leu Ser		
340	345	350
Ala Lys Gln Leu His Thr Leu Ser Asp Thr Leu Trp Gly Pro Gly Asp		
355	360	365
Ser Arg Leu Gln Leu Asn Phe Arg Ala Thr Gln Pro Leu Asn Gly Arg		
370	375	380
Val Ile Glu Ala Ser Phe Pro Ala Gly Val Asp Ser Ser Pro Arg Ala		
385	390	395
Ala Glu Pro Val Gln Leu Asn Ser Cys Leu Ala Ala Gly Asp Ile Leu		
405	410	415
Ala Leu Val Phe Gly Leu Leu Phe Ala Val Thr Ser Val Ala Phe Leu		
420	425	430
Val Gln Met Arg Arg Gln His Arg Arg Gly Thr Lys Gly Gly Val Ser		
435	440	445
Tyr Arg Pro Ala Glu Val Ala Glu Thr Gly Ala		
450	455	

<210> 11
<211> 7560
<212> DNA
<213> Homo sapiens

<400> 11
accggccaca gcctgcctac tgtcacccgc ctctccccgc cgccagataca cgcccccgcc
tcctgtggca caaaggcagc gctgtgggg aactcggggg aacgcgcacg tggaaaccgc

60
120

cgcagctcca cactccaggt acttttcca aggacctagg tctctcgccc atcggaaaga	180
aaataattct ttcaagaaga tcagggacaa ctgatttgaa gtctactctg tgcttctaaa	240
tccccaaatc tgctgaaagt gaatccctag agccctagag ccccagcagc acccagccaa	300
accacacctc accatgggg ccatgactca gctgttggca ggtgttcttc ttgttccct	360
tgccctcgct accgaaggtg gggtcctcaa gaaagtcatc cggcacaaagc gacagagtgg	420
ggtaacgcc accctgccc aagagaacca gccagtggtg tttaccacacg ttacaacat	480
caagctgcca gtggatccc agtgtcggt ggatctggag tcagccagtg gggagaaaga	540
cctgcaccc ctttcagago ccagcggaaag ctttcaggag cacacagtag atggggaaaa	600
ccagattgtc ttcacacatc gcataacat cccccggcgg gcctgtggct gtggcgcagc	660
ccctgtatgtt aaggagctgc tgagcagact ggaggagctg gagaacctgg tgccttcct	720
gaggagccaa tgtactgcag gagcaggctg ctgtctccag cctgccacag gccgcttgg	780
caccaggccc ttctgttagcg gtcgggcaaa cttcagact gaaggatgtg gctgtgtcg	840
cgaacctggc tggaaaggcc ccaactgctc tgagccgaa tgcaggcggca actgtcacct	900
tcgaggccgg tgcattgtat ggcagtgcac ctgtgacgac ggcttcacgg gcgaggactg	960
cagccagctg gcttgcucca gcgactgcaaa tgaccaggc aagtgcgtga atggagtctg	1020
catctgttcc gaaggctacg cccggcgtga ctgcagccgt gaaatctgcc cagtccctg	1080
cagtgaggag cacggcacat gtgttagatgg ctgtgtgtg tgccacatcg gctttgcagg	1140
cgatgactgc aacaaggctc tgtgtctcaa caattgtctac aaccgtggac gatgcgtgg	1200
gaatgagtgc gtgtgtatgg agggtttac gggcgaagac tgcagtgago tcatctgccc	1260
caatgactgc ttgcaccggg gccgcgtcat caatggcacc tgctactgog aagaaggctt	1320
cacaggtgaa gactgcgggaa aaccacatcg cccacatgcc tgccacaccc agggccggtg	1380
tgaggagggg cagtgttat gtgtatgggg ctgtgcgggt ttggactgtca gcgagaagag	1440
gtgtctctgtc gactgtcaca atcgtgcgg ctgtgttagac gggcgggtgt agtgtgtatga	1500
tggtttcaact ggagctgact gtggggagct caagtgtccc aatggctgtca gtggccatgg	1560
ccgtctgtgc aatgggcagt gtgtgtgtga tgaggctat actggggagg actgcagcca	1620
gctacgggtgc cccaatgact gtcacagtgc gggccgctgt gtgcaggggca aatgtgtatg	1680
tgagcaaggc ttcaagggtc atgactgcag tgacatgagc tgccctaattg actgtcacca	1740
gcacggccgc tgcgtgaatg gcatgtgtgt ttgtgtatgc ggctacacag gggaaagactg	1800
ccgggatcgc caatgccccca gggactgcag caacaggggc ctctgtgtgg acggacagtg	1860
cgtctgttag gacggcttca cccgcctga ctgtgcagaa ctctcctgtc caaatgactg	1920
ccatggccag ggtcgctgtg tgaatggca gtgcgtgtgc catgaaggat ttatggcaa	1980
agactgcaag gagcaaagat gtcccagtga ctgtcatggc cagggccgt gcgtggacgg	2040
ccagtgcatac ttccacagg gctggactgt ggccagcaact cctggccctc	2100
tgactgcaac aacttaggac aatgcgtctc gggccgctgc atctgcaacg agggctacag	2160
cgggagaagac tgctcagagg tgtctccctcc caaagacctc gttgtacag aagtgcgg	2220
agagacggtc aacctggcct gggacaatga gatgcgggtc acagagtacc ttgtgtgt	2280
cacgccccacc cacgagggtg gtctggaaat gcagttccgt gtgcctggg accagacgtc	2340
caccatcatc caggagctgg agcctgggtg ggagtagcttt atccgttat ttgcacatcc	2400
ggagaacaag aagagcattc ctgtcagcgc caggggtggcc acgtacttac ctgcacatgt	2460
aggcctgaaa ttcaagtcca tcaaggagac atctgtggaa gtggagtgaaa atcctctaga	2520
cattgtttt gaaacctggg agatcatctt ccggaaatatg aataaagaag atgagggaga	2580
gatcacaaaa agcctgagga ggcggagac ctcttaccgg ccaaactggc tagctcctgg	2640
gcaagagttt gagatatctc tgacatagt gaaaaacaat acccggggcc ctggcctgaa	2700
gaggggtgacc accacacgtt tggatcccc cagccagatc gaggtgaaag atgtcacaga	2760
caccoactgccc ttgatcacct ggttcaagcc cctggctgag atcgatggca ttgagctgac	2820
ctacggcatac aaagacgtgc caggagaccg taccaccatc gatctcacag aggacgg	2880
ccagtaactcc atcgggaaacc tgaaggctga cactgagttac gaggtgtccc tcatctcccg	2940
cagaggtgac atgtcaagca acccagccaa agagacccatc acaacagggcc tcgtatgtcc	3000
caggaatctt cgacgtgttt cccagacaga taacagcatc accctggaaat ggagaatgg	3060
caaggcagct attgacatgtt acagaattaa gtatggccccc atctctggag gggaccacgc	3120
tgaggtttagt gttccaaaga gccaacaagc cacaacaaa accacactca caggtctgag	3180
gcccggaaact gaatatgggaa ttggagttc tgctgtgaag gaagacaagg agagcaatcc	3240
agggaccatc aacgcagcca caggttggaa cacggccaaag gacccatgg tttctgaaac	3300
tgcagagacc agcctgaccct tgctctggaa gacaccgtt gccaaatttgc accgctaccg	3360
cctcaattac agtctccca cagggccatgt ggtggagtg cagttccaa gaaacaccac	3420
ttcttatgtc ctgagaggccc tggaaaccagg acaggagttac aatgtccccc tgacagccga	3480

gaaaggcaga	cacaagagca	agcccgacg	tgtgaaggca	tccactgaac	aagccccctga	3540
gctggaaaac	ctcaccgtga	ctgaggttgg	ctgggatggc	ctcagactca	actggaccgc	3600
ggctgaccag	gcctatgagc	acttttatcat	tcaggtgcag	gaggccaaaca	agtgggaggc	3660
agctcggAAC	ctcaccgtgc	ctggcagcct	tcgggctgtg	gacataccgg	gcctcaaggc	3720
tgcTACGCT	tatacagtct	ccatatatgg	ggtgatccag	ggctatagaa	caccagtgtct	3780
ctctgctgag	gcctccacag	gggaaactcc	caatttggga	gaggtcgtgg	tggccgaggt	3840
gggCTGGAT	gcctcaaac	tcaactggac	tgctccagaa	ggggccatgt	agtactttt	3900
cattcaggTG	caggaggctg	acacagtaga	ggcagccccag	aacctcaccg	tcccaggagg	3960
actgaggTCC	acagacotgc	ctgggtcaaa	agcagccact	cattatacca	tcaccatccg	4020
cggggTCACT	caggacttca	gcacaaacccc	tctctctgtt	gaagtcttga	cagaggaggt	4080
tccagatATG	ggaaacactca	cagtgaccga	ggtagtctgg	gatgctctca	gactgaactg	4140
gaccacGCCA	gatggAACCT	atgaccagtt	tactattcag	gtccaggagg	ctgaccaggt	4200
ggaagaggct	cacaatctca	cggttcttgg	cagcctgcgt	tccatggaaa	tcccaggcct	4260
cagggCTGGC	actccttaca	cagtaccct	gcacggcgg	gtcaggggccc	acagcactcg	4320
accCCTTGT	gtagaggtog	tcacagagga	tctcccacag	ctggagatt	tagccgtgtc	4380
tgaggTTGC	tgggatggcc	tcagactcaa	ctggaccgc	gctgacaatg	cctatgagca	4440
cttTGTcATT	caggtgcagg	aggtcaacaa	agtgaggagca	gcccagaacc	tcacgttgc	4500
tggcAGCCTC	agggctgtgg	acatcccggg	cctcggggct	gccacgcctt	atagagtctc	4560
catCTATGGG	gtgatccggg	gctatagaac	accagtactc	tctgtgtgg	cctccacagc	4620
caaAGAACCT	gaaattggaa	acttaatgt	tctgacata	actcccggaa	gcttcaatct	4680
ctcCTGGATG	gctaccgatg	ggatottcga	gacctttacc	attgaaatta	ttgattccaa	4740
taggtTGCTG	gagactgtgg	aatataat	ctctgggtgt	gaacgaactg	cccatatctc	4800
agggCTACCC	cctagtaactg	attttattgt	ctacctctct	ggacttgctc	ccagcatccg	4860
gacAAAAACC	atcagtgc	cagccacgc	agaggccctg	cccctctgg	aaaacctaac	4920
cattCCGAC	attaatccct	acgggttcac	agtttctgg	atggcatcg	agaatgcctt	4980
tgacAGCCTT	ctagtaacgg	tggtgattc	tggaaagctg	ctggacccccc	aggaattcac	5040
actTTCAAGGA	acccagagga	agctggagct	tagaggcctc	ataactggca	ttggctatga	5100
ggttATGGTC	tctggcttca	cccaagggca	tcaaacc	cccttgaggg	ctgagattgt	5160
tacagaAGCC	gaaccggaa	ttgacaacct	tctggttca	gatgccaccc	cagacggttt	5220
ccgtCTGTCC	tggacagctg	atgaaggggt	cttcgacaa	tttgttctca	aaatcagaga	5280
tacaaaaAAAG	cagtctgagc	cactggaaat	aaccctactt	gccccggaa	gtaccaggga	5340
cttaACAGGT	ctcagagagg	ctactgaata	cgaaattgaa	ctctatggaa	taagcaaagg	5400
aaggCGATCC	cagacagtca	gtgctatagc	aacaacagcc	atgggctccc	caaaggaagt	5460
cattTTCTCA	gacatcactg	aaaattccggc	tactgtcagc	tggagggcac	ccacggccca	5520
agtggAGAGC	ttccggattt	cctatgtgcc	cattacagga	ggtacacccct	ccatggtaac	5580
tgtggACGGA	accaagactc	agaccaggct	ggtgaaactc	atacctggcg	tggagtacct	5640
tgtcAGCATC	atcgccatga	agggcttga	ggaaagtga	cctgtctcag	ggtcattcac	5700
cacagCTCTG	gatggcccat	ctggcctgtt	gacagccaa	atcactgact	cagaagccctt	5760
ggccAGGTGG	cagccagcca	ttgcaactgt	ggacagttat	gtcatctct	acacaggcga	5820
gaaagtGCCA	gaaattacac	gcacgggtgc	cgggaaacaca	gtggagatag	ctctgaccga	5880
cctcgAGCCT	gccacggaa	acacactgag	aatctttgca	gagaaaggggc	cccaagaagag	5940
ctcaACCATC	actgccaagt	tcacaacaga	cctcgattct	ccaagagact	tgactgtac	6000
tgaggTTCTG	tcggaaactg	ccctccttac	ctggcgaccc	ccccggggat	cagtccacgg	6060
ttacCTGTCTG	gtctatgaat	cagtggatgg	cacagtcaag	gaagtattt	tgggtccaga	6120
taccACCTCC	tacagcctgg	cagacctgag	cccatccacc	cactacacag	ccaagatcca	6180
ggcactCAAT	ggggccctgt	ggagcaat	gatccagacc	atotttacca	caattggact	6240
cctgtACCCC	ttccccaagg	actgctccc	agcaatgt	aatggagaca	cgacctctgg	6300
cctctACACC	atttatctga	atggtgataa	ggctcaggcg	ctggaaagtct	tctgtgacat	6360
gacCTCTGAT	gggggtggat	ggatttgtt	cctgagacgc	aaaaacggac	gcgagaactt	6420
ctacaaaaAC	tggaggcat	atgctgtgg	atttggggac	cgcagagaag	aatttggct	6480
tgggCTGGAC	aacctgaaca	aaatcacagc	ccaggggcag	tacgagotcc	gggtggacct	6540
ggggGACCAT	ggggagacag	cctttgtgt	ctatgacaag	ttcagcgtgg	gagatgccaa	6600
gactCGCTAC	aagctgaagg	tggagggta	cagtggaca	gcaggtgact	ccatggccct	6660
ccacaATGGC	agatcctct	ccaccttga	caaggacaca	gattcagcca	tcaccaactg	6720
tgctCTGTCC	tacaaagggg	cttctggta	caggaactgt	caccgtgtca	acctgatggg	6780
gagatATGGG	gacaataacc	acagtcaagg	cgtaactgg	ttccactgga	aggggcacga	6840

acactcaatc cagtttgcgtg agatgaagct gagacccaagg aacttcggaa atcttgaagg	6900
caggcgaaaa cgggcataaa ttggaggggac cactgggtga gagaggaata aggccggccca	6960
gagcgaggaa aggattttac caaacatca atacaaccag cccaaaccatc ggtccacacc	7020
tgggcatttg gtgagaatca aagctgacca tggatccctg gggccaaacgg caacagcatg	7080
ggcctcacct cctctgtgtt ttcttcttt gcaccaaaga catcagtctc caacatgttt	7140
ctgttttgtt gtttattca gcaaaaatct cccagtgaca acatcgaaat agttttttac	7200
tttccttagg tggctctggg atggagagg ggttagatgt acaggggttag ttttttttag	7260
aaccagccgt attttacatg aagctgtata attaattgtc attattttt tagcaaaga	7320
ttaaatgtgt cattgaaagc catccctttt ttacatttc atacaacaga aaccagaaaa	7380
gcaatactgt ttccattttta aggataatgtat taatattttt aatataataa tgatgtatgt	7440
gatgtatgaaa actaaggatt ttcaagaga tcttttttc caaaacattt ctggacagta	7500
cctgattgtt tttttttttt aaataaaaagc acaagtactt ttgaaaaaaaa accgaaattc	7560

<210> 12
<211> 2201
<212> PRT
<213> Homo sapiens

<400> 12
Met Gly Ala Met Thr Gln Leu Leu Ala Gly Val Phe Leu Ala Phe Leu
1 5 10 15
Ala Leu Ala Thr Glu Gly Gly Val Leu Lys Lys Val Ile Arg His Lys
20 25 30
Arg Gln Ser Gly Val Asn Ala Thr Leu Pro Glu Glu Asn Gln Pro Val
35 40 45
Val Phe Asn His Val Tyr Asn Ile Lys Leu Pro Val Gly Ser Gln Cys
50 55 60
Ser Val Asp Leu Glu Ser Ala Ser Gly Glu Lys Asp Leu Ala Pro Pro
65 70 75 80
Ser Glu Pro Ser Glu Ser Phe Gln Glu His Thr Val Asp Gly Glu Asn
85 90 95
Gln Ile Val Phe Thr His Arg Ile Asn Ile Pro Arg Arg Ala Cys Gly
100 105 110
Cys Ala Ala Ala Pro Asp Val Lys Glu Leu Leu Ser Arg Leu Glu Glu
115 120 125
Leu Glu Asn Leu Val Ser Ser Leu Arg Glu Gln Cys Thr Ala Gly Ala
130 135 140
Gly Cys Cys Leu Gln Pro Ala Thr Gly Arg Leu Asp Thr Arg Pro Phe
145 150 155 160
Cys Ser Gly Arg Gly Asn Phe Ser Thr Glu Gly Cys Gly Cys Val Cys
165 170 175
Glu Pro Gly Trp Lys Gly Pro Asn Cys Ser Glu Pro Glu Cys Pro Gly
180 185 190
Asn Cys His Leu Arg Gly Arg Cys Ile Asp Gly Gln Cys Ile Cys Asp
195 200 205
Asp Gly Phe Thr Gly Glu Asp Cys Ser Gln Leu Ala Cys Pro Ser Asp
210 215 220
Cys Asn Asp Gln Gly Lys Cys Val Asn Gly Val Cys Ile Cys Phe Glu
225 230 235 240
Gly Tyr Ala Gly Ala Asp Cys Ser Arg Glu Ile Cys Pro Val Pro Cys
245 250 255
Ser Glu Glu His Gly Thr Cys Val Asp Gly Leu Cys Val Cys His Asp
260 265 270

Gly Phe Ala Gly Asp Asp Cys Asn Lys Pro Leu Cys Leu Asn Asn Cys
 275 280 285
 Tyr Asn Arg Gly Arg Cys Val Glu Asn Glu Cys Val Cys Asp Glu Gly
 290 295 300
 Phe Thr Gly Glu Asp Cys Ser Glu Leu Ile Cys Pro Asn Asp Cys Phe
 305 310 315 320
 Asp Arg Gly Arg Cys Ile Asn Gly Thr Cys Tyr Cys Glu Glu Gly Phe
 325 330 335
 Thr Gly Glu Asp Cys Gly Lys Pro Thr Cys Pro His Ala Cys His Thr
 340 345 350
 Gln Gly Arg Cys Glu Glu Gly Gln Cys Val Cys Asp Glu Gly Phe Ala
 355 360 365
 Gly Leu Asp Cys Ser Glu Lys Arg Cys Pro Ala Asp Cys His Asn Arg
 370 375 380
 Gly Arg Cys Val Asp Gly Arg Cys Glu Cys Asp Asp Gly Phe Thr Gly
 385 390 395 400
 Ala Asp Cys Gly Glu Leu Lys Cys Pro Asn Gly Cys Ser Gly His Gly
 405 410 415
 Arg Cys Val Asn Gly Gln Cys Val Cys Asp Glu Gly Tyr Thr Gly Glu
 420 425 430
 Asp Cys Ser Gln Leu Arg Cys Pro Asn Asp Cys His Ser Arg Gly Arg
 435 440 445
 Cys Val Glu Gly Lys Cys Val Cys Glu Gln Gly Phe Lys Gly Tyr Asp
 450 455 460
 Cys Ser Asp Met Ser Cys Pro Asn Asp Cys His Gln His Gly Arg Cys
 465 470 475 480
 Val Asn Gly Met Cys Val Cys Asp Asp Gly Tyr Thr Gly Glu Asp Cys
 485 490 495
 Arg Asp Arg Gln Cys Pro Arg Asp Cys Ser Asn Arg Gly Leu Cys Val
 500 505 510
 Asp Gly Gln Cys Val Cys Glu Asp Gly Phe Thr Gly Pro Asp Cys Ala
 515 520 525
 Glu Leu Ser Cys Pro Asn Asp Cys His Gly Gln Gly Arg Cys Val Asn
 530 535 540
 Gly Gln Cys Val Cys His Glu Gly Phe Met Gly Lys Asp Cys Lys Glu
 545 550 555 560
 Gln Arg Cys Pro Ser Asp Cys His Gly Gln Gly Arg Cys Val Asp Gly
 565 570 575
 Gln Cys Ile Cys His Glu Gly Phe Thr Gly Leu Asp Cys Gly Gln His
 580 585 590
 Ser Cys Pro Ser Asp Cys Asn Asn Leu Gly Gln Cys Val Ser Gly Arg
 595 600 605
 Cys Ile Cys Asn Glu Gly Tyr Ser Gly Glu Asp Cys Ser Glu Val Ser
 610 615 620
 Pro Pro Lys Asp Leu Val Val Thr Glu Val Thr Glu Glu Thr Val Asn
 625 630 635 640
 Leu Ala Trp Asp Asn Glu Met Arg Val Thr Glu Tyr Leu Val Val Tyr
 645 650 655
 Thr Pro Thr His Glu Gly Gly Leu Glu Met Gln Phe Arg Val Pro Gly
 660 665 670
 Asp Gln Thr Ser Thr Ile Ile Gln Glu Leu Glu Pro Gly Val Glu Tyr
 675 680 685
 Phe Ile Arg Val Phe Ala Ile Leu Glu Asn Lys Lys Ser Ile Pro Val
 690 695 700
 Ser Ala Arg Val Ala Thr Tyr Leu Pro Ala Pro Glu Gly Leu Lys Phe
 705 710 715 720

Lys Ser Ile Lys Glu Thr Ser Val Glu Val Glu Trp Asp Pro Leu Asp
 725 730 735
 Ile Ala Phe Glu Thr Trp Glu Ile Ile Phe Arg Asn Met Asn Lys Glu
 740 745 750
 Asp Glu Gly Glu Ile Thr Lys Ser Leu Arg Arg Pro Glu Thr Ser Tyr
 755 760 765
 Arg Gln Thr Gly Leu Ala Pro Gly Gln Glu Tyr Glu Ile Ser Leu His
 770 775 780
 Ile Val Lys Asn Asn Thr Arg Gly Pro Gly Leu Lys Arg Val Thr Thr
 785 790 795 800
 Thr Arg Leu Asp Ala Pro Ser Gln Ile Glu Val Lys Asp Val Thr Asp
 805 810 815
 Thr Thr Ala Leu Ile Thr Trp Phe Lys Pro Leu Ala Glu Ile Asp Gly
 820 825 830
 Ile Glu Leu Thr Tyr Gly Ile Lys Asp Val Pro Gly Asp Arg Thr Thr
 835 840 845
 Ile Asp Leu Thr Glu Asp Glu Asn Gln Tyr Ser Ile Gly Asn Leu Lys
 850 855 860
 Pro Asp Thr Glu Tyr Glu Val Ser Leu Ile Ser Arg Arg Gly Asp Met
 865 870 875 880
 Ser Ser Asn Pro Ala Lys Glu Thr Phe Thr Thr Gly Leu Asp Ala Pro
 885 890 895
 Arg Asn Leu Arg Arg Val Ser Gln Thr Asp Asn Ser Ile Thr Leu Glu
 900 905 910
 Trp Arg Asn Gly Lys Ala Ala Ile Asp Ser Tyr Arg Ile Lys Tyr Ala
 915 920 925
 Pro Ile Ser Gly Gly Asp His Ala Glu Val Asp Val Pro Lys Ser Gln
 930 935 940
 Gln Ala Thr Thr Lys Thr Thr Leu Thr Gly Leu Arg Pro Gly Thr Glu
 945 950 955 960
 Tyr Gly Ile Gly Val Ser Ala Val Lys Glu Asp Lys Glu Ser Asn Pro
 965 970 975
 Ala Thr Ile Asn Ala Ala Thr Glu Leu Asp Thr Pro Lys Asp Leu Gln
 980 985 990
 Val Ser Glu Thr Ala Glu Thr Ser Leu Thr Leu Leu Trp Lys Thr Pro
 995 1000 1005
 Leu Ala Lys Phe Asp Arg Tyr Arg Leu Asn Tyr Ser Leu Pro Thr Gly
 1010 1015 1020
 Gln Trp Val Gly Val Gln Leu Pro Arg Asn Thr Thr Ser Tyr Val Leu
 1025 1030 1035 1040
 Arg Gly Leu Glu Pro Gly Gln Glu Tyr Asn Val Leu Leu Thr Ala Glu
 1045 1050 1055
 Lys Gly Arg His Lys Ser Lys Pro Ala Arg Val Lys Ala Ser Thr Glu
 1060 1065 1070
 Gln Ala Pro Glu Leu Glu Asn Leu Thr Val Thr Glu Val Gly Trp Asp
 1075 1080 1085
 Gly Leu Arg Leu Asn Trp Thr Ala Ala Asp Gln Ala Tyr Glu His Phe
 1090 1095 1100
 Ile Ile Gln Val Gln Glu Ala Asn Lys Val Glu Ala Ala Arg Asn Leu
 1105 1110 1115 1120
 Thr Val Pro Gly Ser Leu Arg Ala Val Asp Ile Pro Gly Leu Lys Ala
 1125 1130 1135
 Ala Thr Pro Tyr Thr Val Ser Ile Tyr Gly Val Ile Gln Gly Tyr Arg
 1140 1145 1150
 Thr Pro Val Leu Ser Ala Glu Ala Ser Thr Gly Glu Thr Pro Asn Leu
 1155 1160 1165

Gly Glu Val Val Val Ala Glu Val Gly Trp Asp Ala Leu Lys Leu Asn
 1170 1175 1180
 Trp Thr Ala Pro Glu Gly Ala Tyr Glu Tyr Phe Phe Ile Gln Val Gln
 1185 1190 1195 1200
 Glu Ala Asp Thr Val Glu Ala Ala Gln Asn Leu Thr Val Pro Gly Gly
 1205 1210 1215
 Leu Arg Ser Thr Asp Leu Pro Gly Leu Lys Ala Ala Thr His Tyr Thr
 1220 1225 1230
 Ile Thr Ile Arg Gly Val Thr Gln Asp Phe Ser Thr Thr Pro Leu Ser
 1235 1240 1245
 Val Glu Val Leu Thr Glu Glu Val Pro Asp Met Gly Asn Leu Thr Val
 1250 1255 1260
 Thr Glu Val Ser Trp Asp Ala Leu Arg Leu Asn Trp Thr Thr Pro Asp
 1265 1270 1275 1280
 Gly Thr Tyr Asp Gln Phe Thr Ile Gln Val Gln Glu Ala Asp Gln Val
 1285 1290 1295
 Glu Glu Ala His Asn Leu Thr Val Pro Gly Ser Leu Arg Ser Met Glu
 1300 1305 1310
 Ile Pro Gly Leu Arg Ala Gly Thr Pro Tyr Thr Val Thr Leu His Gly
 1315 1320 1325
 Glu Val Arg Gly His Ser Thr Arg Pro Leu Ala Val Glu Val Val Thr
 1330 1335 1340
 Glu Asp Leu Pro Gln Leu Gly Asp Leu Ala Val Ser Glu Val Gly Trp
 1345 1350 1355 1360
 Asp Gly Leu Arg Leu Asn Trp Thr Ala Ala Asp Asn Ala Tyr Glu His
 1365 1370 1375
 Phe Val Ile Gln Val Gln Glu Val Asn Lys Val Glu Ala Ala Gln Asn
 1380 1385 1390
 Leu Thr Leu Pro Gly Ser Leu Arg Ala Val Asp Ile Pro Gly Leu Glu
 1395 1400 1405
 Ala Ala Thr Pro Tyr Arg Val Ser Ile Tyr Gly Val Ile Arg Gly Tyr
 1410 1415 1420
 Arg Thr Pro Val Leu Ser Ala Glu Ala Ser Thr Ala Lys Glu Pro Glu
 1425 1430 1435 1440
 Ile Gly Asn Leu Asn Val Ser Asp Ile Thr Pro Glu Ser Phe Asn Leu
 1445 1450 1455
 Ser Trp Met Ala Thr Asp Gly Ile Phe Glu Thr Phe Thr Ile Glu Ile
 1460 1465 1470
 Ile Asp Ser Asn Arg Leu Leu Glu Thr Val Glu Tyr Asn Ile Ser Gly
 1475 1480 1485
 Ala Glu Arg Thr Ala His Ile Ser Gly Leu Pro Pro Ser Thr Asp Phe
 1490 1495 1500
 Ile Val Tyr Leu Ser Gly Leu Ala Pro Ser Ile Arg Thr Lys Thr Ile
 1505 1510 1515 1520
 Ser Ala Thr Ala Thr Thr Glu Ala Leu Pro Leu Leu Glu Asn Leu Thr
 1525 1530 1535
 Ile Ser Asp Ile Asn Pro Tyr Gly Phe Thr Val Ser Trp Met Ala Ser
 1540 1545 1550
 Glu Asn Ala Phe Asp Ser Phe Leu Val Thr Val Val Asp Ser Gly Lys
 1555 1560 1565
 Leu Leu Asp Pro Gln Glu Phe Thr Leu Ser Gly Thr Gln Arg Lys Leu
 1570 1575 1580
 Glu Leu Arg Gly Leu Ile Thr Gly Ile Gly Tyr Glu Val Met Val Ser
 1585 1590 1595 1600
 Gly Phe Thr Gln Gly His Gln Thr Lys Pro Leu Arg Ala Glu Ile Val
 1605 1610 1615

Thr Glu Ala Glu Pro Glu Val Asp Asn Leu Leu Val Ser Asp Ala Thr
 1620 1625 1630
 Pro Asp Gly Phe Arg Leu Ser Trp Thr Ala Asp Glu Gly Val Phe Asp
 1635 1640 1645
 Asn Phe Val Leu Lys Ile Arg Asp Thr Lys Lys Gln Ser Glu Pro Leu
 1650 1655 1660
 Glu Ile Thr Leu Leu Ala Pro Glu Arg Thr Arg Asp Leu Thr Gly Leu
 1665 1670 1675 1680
 Arg Glu Ala Thr Glu Tyr Glu Ile Glu Leu Tyr Gly Ile Ser Lys Gly
 1685 1690 1695
 Arg Arg Ser Gln Thr Val Ser Ala Ile Ala Thr Thr Ala Met Gly Ser
 1700 1705 1710
 Pro Lys Glu Val Ile Phe Ser Asp Ile Thr Glu Asn Ser Ala Thr Val
 1715 1720 1725
 Ser Trp Arg Ala Pro Thr Ala Gln Val Glu Ser Phe Arg Ile Thr Tyr
 1730 1735 1740
 Val Pro Ile Thr Gly Gly Thr Pro Ser Met Val Thr Val Asp Gly Thr
 1745 1750 1755 1760
 Lys Thr Gln Thr Arg Leu Val Lys Leu Ile Pro Gly Val Glu Tyr Leu
 1765 1770 1775
 Val Ser Ile Ile Ala Met Lys Gly Phe Glu Glu Ser Glu Pro Val Ser
 1780 1785 1790
 Gly Ser Phe Thr Thr Ala Leu Asp Gly Pro Ser Gly Leu Val Thr Ala
 1795 1800 1805
 Asn Ile Thr Asp Ser Glu Ala Leu Ala Arg Trp Gln Pro Ala Ile Ala
 1810 1815 1820
 Thr Val Asp Ser Tyr Val Ile Ser Tyr Thr Gly Glu Lys Val Pro Glu
 1825 1830 1835 1840
 Ile Thr Arg Thr Val Ser Gly Asn Thr Val Glu Tyr Ala Leu Thr Asp
 1845 1850 1855
 Leu Glu Pro Ala Thr Glu Tyr Thr Leu Arg Ile Phe Ala Glu Lys Gly
 1860 1865 1870
 Pro Gln Lys Ser Ser Thr Ile Thr Ala Lys Phe Thr Thr Asp Leu Asp
 1875 1880 1885
 Ser Pro Arg Asp Leu Thr Ala Thr Glu Val Gln Ser Glu Thr Ala Leu
 1890 1895 1900
 Leu Thr Trp Arg Pro Pro Arg Ala Ser Val Thr Gly Tyr Leu Leu Val
 1905 1910 1915 1920
 Tyr Glu Ser Val Asp Gly Thr Val Lys Glu Val Ile Val Gly Pro Asp
 1925 1930 1935
 Thr Thr Ser Tyr Ser Leu Ala Asp Leu Ser Pro Ser Thr His Tyr Thr
 1940 1945 1950
 Ala Lys Ile Gln Ala Leu Asn Gly Pro Leu Arg Ser Asn Met Ile Gln
 1955 1960 1965
 Thr Ile Phe Thr Thr Ile Gly Leu Leu Tyr Pro Phe Pro Lys Asp Cys
 1970 1975 1980
 Ser Gln Ala Met Leu Asn Gly Asp Thr Thr Ser Gly Leu Tyr Thr Ile
 1985 1990 1995 2000
 Tyr Leu Asn Gly Asp Lys Ala Gln Ala Leu Glu Val Phe Cys Asp Met
 2005 2010 2015
 Thr Ser Asp Gly Gly Trp Ile Val Phe Leu Arg Arg Lys Asn Gly
 2020 2025 2030
 Arg Glu Asn Phe Tyr Gln Asn Trp Lys Ala Tyr Ala Ala Gly Phe Gly
 2035 2040 2045
 Asp Arg Arg Glu Glu Phe Trp Leu Gly Leu Asp Asn Leu Asn Lys Ile
 2050 2055 2060

Thr Ala Gln Gly Gln Tyr Glu Leu Arg Val Asp Leu Arg Asp His Gly
 2065 2070 2075 2080
 Glu Thr Ala Phe Ala Val Tyr Asp Lys Phe Ser Val Gly Asp Ala Lys
 2085 2090 2095
 Thr Arg Tyr Lys Leu Lys Val Glu Gly Tyr Ser Gly Thr Ala Gly Asp
 2100 2105 2110
 Ser Met Ala Tyr His Asn Gly Arg Ser Phe Ser Thr Phe Asp Lys Asp
 2115 2120 2125
 Thr Asp Ser Ala Ile Thr Asn Cys Ala Leu Ser Tyr Lys Gly Ala Phe
 2130 2135 2140
 Trp Tyr Arg Asn Cys His Arg Val Asn Leu Met Gly Arg Tyr Gly Asp
 2145 2150 2155 2160
 Asn Asn His Ser Gln Gly Val Asn Trp Phe His Trp Lys Gly His Glu
 2165 2170 2175
 His Ser Ile Gln Phe Ala Glu Met Lys Leu Arg Pro Ser Asn Phe Arg
 2180 2185 2190
 Asn Leu Glu Gly Arg Arg Lys Arg Ala
 2195 2200

<210> 13

<211> 3672

<212> DNA

<213> Homo sapiens

<400> 13

acatgtgcat	atttcattcc	ccagggagac	attttttaga	aatcaataca	tgc	ccccaaata	60
ttggaaagac	ttgttctcc	acgggtacta	cagtacatgc	tgaaggcgtgc	cgtt	ttcagcc	120
ctcatttaat	tcaatttgta	agttagcgcac	gaggcctctgt	ggggggaggat	aggctgaaaa	a	180
aaaaaaagtgg	gctcgttatt	atctacagga	ctccatatacg	tcatatatacg	gcata	tataat	240
ctatgc	tttttttttt	tttctttctt	cctttctttc	aaagggttgc	attaactt	ttt	300
caaagtatgtt	cctatagggg	catttggag	cttcctcatt	ctggggaaaac	tgagaaaacc	cat	360
catattctcc	taatacaacc	cgttaatagca	tttttgcctg	ctcgaggcga	gagtttccc	cc	420
tgagcaataa	actcagctt	tttggggc	acagtaactgg	atttgacagt	gattccccac	tg	480
gtgtgttcat	ctgcacccac	cgaggccagc	agaggccagc	cctccgtgtt	gcacacagca	gt	540
cgcgcctcag	tccatccat	tttagtcttt	aaaccctcag	gaagtacacag	tctccggaca	cc	600
ccacaccaca	ttgagccaa	caggtccacg	atggatccac	ctagtcccac	cccagccctt	ca	660
ttctttcatac	tgaacagaat	gtgcattttt	ggaagectcc	ctoactctcc	atgtgttgc	tgc	720
agcaggaggg	agactgaagt	aagagatggc	agagggagat	ggtggcaaaa	aggtttagat	ttt	780
gcaggagaac	agtaagatgg	atgggtccgg	ccagagtcga	tgtggggagg	aacagagggc	ttt	840
tgaagggaga	gggggctgac	tgttccatc	tagtttggc	acaaagcgc	agaaaaggggg	ttt	900
aaaagccaat	ttagtttccc	caccatatgt	attttcatgg	atttgagagg	960	ttt	960
aaagagagga	aatggggga	atgggttgca	aatagaaaat	gagtttaatc	caggccgcag	ttt	1020
agccaggaa	ggtgatgtac	ctttaggaggg	tgcttagact	tagaagccag	ataggaagaa	ttt	1080
tcagtctaaa	ctggccatgc	tttggaaaggg	acaagactat	gtgtccgtt	gcccaccttc	ttt	1140
agccgtcaat	gagggactga	ggccacacgag	tcttcccagc	tcttcctcca	ttttggccag	ttt	1200
tccctgcatac	ctccctgggg	tggaggatgg	aaggaaagct	gggacaagca	gggaacgcac	ttt	1260
gattcaggaa	tgctgtact	cgccagccag	attccgaaac	tcccattctc	caatgacttc	ttt	1320
ctcaaccaat	gggtggcctt	gtgactgttc	ttaaggctg	aagatatacc	ggaaaggggg	ttt	1380
cttggacact	ggccaaggag	acccttcgt	gttgtggaca	cagctctt	cactcttgc	ttt	1440
tcatggcatg	acacagccga	gaccgcctcc	aacaacgaaat	ttggggctac	gaagaggaat	ttt	1500
agcgaaaaag	caaattcttt	tcaactgtat	gaaaccctat	agctatagaa	cttgggggct	ttt	1560
atctcctatg	ccccctggaca	ggacagttgg	ctggggacag	gagaagtgc	caatcttcat	ttt	1620
gagacaaaagg	ggcccgatca	aggcagccac	aaggccttga	cctgcccagt	cagcatgccc	ttt	1680
catctctctc	gacagctgtc	ccctaaaccc	aactcacgtt	tctgtatgtc	ttaggccagt	ttt	1740
atccccaaacc	tcttccacgt	cactgttctt	tccacccatt	ctcccttgc	atcttgagca	ttt	1800
gttatccaac	taggatotgc	caagtggata	ctggggtgcc	actccccctga	gaaaagactg	ttt	1860

agccaggaac	tacaagctcc	ccccacattc	ctccccagccct	ggacctaatt	cttgagaggg	1920
gctctctt	cacggactgt	gtctggactt	tgagcaggct	tctgcccctt	gcgttggatc	1980
tttgcgtcca	gccatcaggt	gggggattag	agcctgggt	aagtgcgcac	gactcttcgg	2040
gttccaaag	ttcggtcctg	cgaacccaaa	cctgtgagtc	tcttctgcat	gcaggagtt	2100
ctctggca	gctggtca	ccccagagaa	gctggggcctt	catggacaca	tggactaag	2160
cctccaaat	gggagtctg	gctgagccca	gggtggggag	atcctggaa	gggaggcact	2220
ggagaagac	ggcacctt	ccccatggc	agggtgtgag	ggaggcaggt	ttggaatgg	2280
gegagtatgg	caatctaagc	aggggtctgg	tcttcttgac	tccaggctcg	cttggccga	2340
ctgtctgtc	acccagagac	cttgactcc	gactatcca	tggctccgaa	tctaagtgtct	2400
gccactccc	atgctcacac	ccacagaagg	tcttcccata	cccttttagat	tcgtgcctca	2460
ctccaccgt	gaggaagatg	cctctgtctt	tcccacgact	gccaggagat	aggaaagccc	2520
agccaggact	gaccctctt	cctccagcct	gccctgaccc	acctggcaaa	gcagggcaca	2580
tggggaggaa	gagactggaa	ccttctttg	acagccaggc	ctagacagac	aggcctgggg	2640
acactggccc	atgaggggag	gaaggcaggc	gcacgaggtc	cagggaggcc	ctttctgtat	2700
catgccccctt	ctctccacc	ccatctcccc	accaccacct	ctgtggcctc	catggtaccc	2760
ccacaggggct	ggctccctt	agagggtggg	cctcaaccac	ctcgtcccgc	caaggcaccgg	2820
ttagtgagac	aggctgcca	cgcaaccgccc	aagccccctt	caaggtggga	cagtaccccg	2880
gaccatcca	ctcaactctg	agaggctccg	gcccagaatag	ggaacctcag	agaagagctc	2940
taaggagaag	aaacccata	gcgtcagaga	ggatatgtct	ggcttccaag	agaaaggagg	3000
ctccgttttgc	caaagtggag	gagggacgag	ggacaggggt	ttcaccagcc	agoaacctgg	3060
gccttgtact	gtctgtgtt	taaaaccac	taaaagtgcac	gaattacatt	gcactgtttc	3120
tcoacttttt	atttctctt	aggctttgt	ttctatttca	aacatacttt	cttggttttc	3180
taatggagta	tatagtttag	tcatttcaca	gactctggcc	tcctcttctg	aaatcctttt	3240
ggatggggaa	agggaaagggt	gggagggtcc	gaggggaagg	ggacccccagc	ttccctgtgc	3300
cogctcaccc	cactccacca	gtccccggc	gccagccgga	gtctcccttc	taccgcact	3360
gtcacaccgt	agcccacatg	gatagcacag	ttgtcagaca	agattccctc	agattccgag	3420
ttgctacccg	ttgtttcgt	tgttgtgtt	tttgttttc	tttttctttt	ttttttgaa	3480
gacagcaata	accacagttac	atattactgt	agttctctat	agttttacat	acattcatac	3540
cataactctg	ttctctcttc	ttttttgttt	tcaactttaa	aaacaaaaat	aaacgatgat	3600
aatcttact	ggtgaaaagg	atggaaaaat	aaatcaacaa	atgcaaccag	tttgtgagaa	3660
aaaaaaaaaa	aa					3672

<210> 14

<211> 272

<212> PRT

<213> Homo sapiens

<400> 14

Met	Val	Leu	Leu	Thr	Ala	Val	Leu	Leu	Leu	Leu	Ala	Ala	Tyr	Ala	Gly
1						5				10			15		
Pro	Ala	Gln	Ser	Leu	Gly	Ser	Phe	Val	His	Cys	Glu	Pro	Cys	Asp	Glu
							20			25			30		
Lys	Ala	Leu	Ser	Met	Cys	Pro	Pro	Ser	Pro	Leu	Gly	Cys	Glu	Leu	Val
							35			40			45		
Lys	Glu	Pro	Gly	Cys	Gly	Cys	Cys	Met	Thr	Cys	Ala	Leu	Ala	Glu	Gly
							50			55			60		
Gln	Ser	Cys	Gly	Val	Tyr	Thr	Glu	Arg	Cys	Ala	Gln	Gly	Leu	Arg	Cys
							65			70			75		80
Leu	Pro	Arg	Gln	Asp	Glu	Glu	Lys	Pro	Leu	His	Ala	Leu	Leu	His	Gly
							85			90			95		
Arg	Gly	Val	Cys	Leu	Asn	Glu	Lys	Ser	Tyr	Arg	Glu	Gln	Val	Lys	Ile
							100			105			110		
Glu	Arg	Asp	Ser	Arg	Glu	His	Glu	Glu	Pro	Thr	Thr	Ser	Glu	Met	Ala
							115			120			125		
Glu	Glu	Thr	Tyr	Ser	Pro	Lys	Ile	Phe	Arg	Pro	Lys	His	Thr	Arg	Ile
							130			135			140		

Ser Glu Leu Lys Ala Glu Ala Val Lys Lys Asp Arg Arg Lys Lys Leu
 145 150 155 160
 Thr Gln Ser Lys Phe Val Gly Gly Ala Glu Asn Thr Ala His Pro Arg
 165 170 175
 Ile Ile Ser Ala Pro Glu Met Arg Gln Glu Ser Glu Gln Gly Pro Cys
 180 185 190
 Arg Arg His Met Glu Ala Ser Leu Gln Glu Leu Lys Ala Ser Pro Arg
 195 200 205
 Met Val Pro Arg Ala Val Tyr Leu Pro Asn Cys Asp Arg Lys Gly Phe
 210 215 220
 Tyr Lys Arg Lys Gln Cys Lys Pro Ser Arg Gly Arg Lys Arg Gly Ile
 225 230 235 240
 Cys Trp Cys Val Asp Lys Tyr Gly Met Lys Leu Pro Gly Met Glu Tyr
 245 250 255
 Val Asp Gly Asp Phe Gln Cys His Thr Phe Asp Ser Ser Asn Val Glu
 260 265 270

<210> 15
 <211> 1860
 <212> DNA
 <213> Homo sapiens

<400> 15
 gcggatcctc acacgactgt gatccgattc tttccagcgg cttctgcaac caagcgggtc 60
 ttaccccccgg tcctccgcgt ctccaggctt cgcacctggaa accccaaacgt ccccgagagt 120
 ccccgaaatcc ccgcgtcccgag gctacctaag aggtatggcgt gtgcctcgac gggccggggca 180
 gccctgtatgc tctgcgcgc caccggcgtg ctactgagcgt ctcagggggg accccgtcag 240
 tccaagtgcgc cgcgcttgc gtcctgggac gagatgaatg tcctggggca cggactcctg 300
 cagctcggtcc aggggtgcgc gaaacccggaa ggcgcacccgc agtcagctga ggcgcgtggaa 360
 ggcgcgttgc ggcgcgtggc gtccggctgt cagggaaacccggc aggggtccac cgcacccccc 420
 ttagccccctg agagccgggt ggacccctgag gtccttcaca gcctgcagac acaactcaag 480
 gctcagaaca gcaggatcca gcaacttttca cacaagggtgg cccagcagca gggcacctg 540
 gagaaggcgc acctgcgaat tcagcatctg caaagccagt ttggcctcct ggaccacaag 600
 cacctagacc atgagggtggc caaggctgcgc cgaagaaaaga ggctgcccga gatggcccg 660
 ccagttgacc cggctcacaa tgtcagccgc ctgcacccggc tgccctggggat ttgccaggag 720
 ctgttccagg ttggggagag gcagagtggc ctatttgaaa tccagcctca ggggtctccg 780
 ccatttttgg tgaactgcaa gatgacccatc gatggagggt ggacagtaat tcagaggcgc 840
 caegatggct cagtgactt caaacggccc tgggaaggccata acaagggggg gttttgggat 900
 ccccaoggcg agttctggct gggctctggag aagggtgcata gcatcacccggc ggaccgcaac 960
 agccgcctgg ccgtgcagct gcccggacttgg gatggcaacccgc cggagttgtcgc 1020
 gtgcacccctgg gtggcgagggc cacggccttat agcctgcagc tcactgcacc cgtggccggc 1080
 cagctggcg ccaccaccgt cccacccgc ggcctctccg tacccttctc cacttggggac 1140
 caggatcacg acctccgcag ggacaagaac tgccccaaga gcctctctgg aggtctgggt 1200
 tttggcacct gcagccatttca caacctcaac ggccagttact tccgctccat cccacagcag 1260
 cggcagaagc ttaagaaggaa aatcttctgg aagacccgttgc gggggccgcata ctaccgcgt 1320
 caggccacca ccatgttgcgtt ccagcccatg gcagcagagg cagcccttcata ggcgcctggc 1380
 tgggcctgggtt cccaggccca cggaaagacgg tgactcttgg ctctgcccgc ggtatgtggcc 1440
 aagaccacga ctggagaaggc cccctttctg agtgcaggggg ggttgcacatc gttgcctcc 1500
 gagatcgagg ctgcaggata tgctcagact ctagaggcggtt ggaccaagggg gcatggagct 1560
 tcactccttgc ctggccagggg agttggggac tcagagggac cacttggggc cagccagact 1620
 ggcctcaatgc gcccgttcag tcacatttgcac tgacggggac cagggcttgc gttgggtcgag 1680
 agccgcctca tggtgctgggt gctgttgcgtt gtaggtcccc tggggacaca agcaggcgcc 1740
 aatggtatctt gggcgagct cacagagttc ttggaaataaa agcaacccatca gaacaaaaaaa 1800
 aaaaaaaaaaa aagcgaggact cacagagttc ttggaaataaa agcaacccatca gaacaaaaaaa 1860

<210> 16

<211> 405
<212> PRT
<213> Homo sapiens

<400> 16
Met Ser Gly Ala Pro Thr Ala Gly Ala Ala Leu Met Leu Cys Ala Ala
1 5 10 15
Thr Ala Val Leu Leu Ser Ala Gln Gly Gly Pro Val Gln Ser Lys Ser
20 25 30
Pro Arg Phe Ala Ser Trp Asp Glu Met Asn Val Leu Ala His Gly Leu
35 40 45
Leu Gln Leu Gly Gln Gly Cys Ala Asn Thr Gly Ala His Pro Gln Ser
50 55 60
Ala Glu Arg Ala Gly Ala Arg Leu Ser Ala Cys Gly Ser Ala Cys Gln
65 70 75 80
Gly Thr Glu Gly Ser Thr Asp Leu Pro Leu Ala Pro Glu Ser Arg Val
85 90 95
Asp Pro Glu Val Leu His Ser Leu Gln Thr Gln Leu Lys Ala Gln Asn
100 105 110
Ser Arg Ile Gln Gln Leu Phe His Lys Val Ala Gln Gln Arg His
115 120 125
Leu Glu Lys Gln His Leu Arg Ile Gln His Leu Gln Ser Gln Phe Gly
130 135 140
Leu Leu Asp His Lys His Leu Asp His Glu Val Ala Lys Pro Ala Arg
145 150 155 160
Arg Lys Arg Leu Pro Glu Met Ala Gln Pro Val Asp Pro Ala His Asn
165 170 175
Val Ser Arg Leu His Arg Leu Pro Arg Asp Cys Gln Glu Leu Phe Gln
180 185 190
Val Gly Glu Arg Gln Ser Gly Leu Phe Glu Ile Gln Pro Gln Gly Ser
195 200 205
Pro Pro Phe Leu Val Asn Cys Lys Met Thr Ser Asp Gly Gly Trp Thr
210 215 220
Val Ile Gln Arg Arg His Asp Gly Ser Val Asp Phe Asn Arg Pro Trp
225 230 235 240
Glu Ala Tyr Lys Ala Gly Phe Gly Asp Pro His Gly Glu Phe Trp Leu
245 250 255
Gly Leu Glu Lys Val His Ser Ile Thr Gly Asp Arg Asn Ser Arg Leu
260 265 270
Ala Val Gln Leu Arg Asp Trp Asp Gly Asn Ala Glu Leu Leu Gln Phe
275 280 285
Ser Val His Leu Gly Gly Glu Asp Thr Ala Tyr Ser Leu Gln Leu Thr
290 295 300
Ala Pro Val Ala Gly Gln Leu Gly Ala Thr Thr Val Pro Pro Ser Gly
305 310 315 320
Leu Ser Val Pro Phe Ser Thr Trp Asp Gln Asp His Asp Leu Arg Arg
325 330 335
Asp Lys Asn Cys Ala Lys Ser Leu Ser Gly Gly Trp Trp Phe Gly Thr
340 345 350
Cys Ser His Ser Asn Leu Asn Gly Gln Tyr Phe Arg Ser Ile Pro Gln
355 360 365
Gln Arg Gln Lys Leu Lys Lys Gly Ile Phe Trp Lys Thr Trp Arg Gly
370 375 380
Arg Tyr Tyr Pro Leu Gln Ala Thr Thr Met Leu Ile Gln Pro Met Ala
385 390 395 400
Ala Glu Ala Ala Ser

405

<210> 17
 <211> 3901
 <212> DNA
 <213> Homo sapiens

<400> 17

cagtttgc	aaaggccagagg	tgcaagaagc	agcgactgca	gcagcagcag	cagcagcg	60
ggggcagca	gcagcagcag	cggccggcagc	agcagcagca	gcggaggcac	cggtggcagc	120
agcagcatca	ccagcaacaa	caacaaaaaa	aaatcctcat	caaatcctca	cctaagcttt	180
cagtgtatcc	agatccacat	cttcaactcaa	gccaggagag	ggaaagagga	aaggggggca	240
ggaaaaaaa	aaaacccaaac	aacttagcgg	aaacttctca	gagaatgctc	caaaactcag	300
cagtgtttct	gggtgtggtg	atcagtgtt	ctgcaaccca	tgaggccggag	cagaatgact	360
ctgtgagccc	caggaaatcc	cgagtggcgg	ctcaaaactc	agctgaagtg	gttcgttgcc	420
tcaacagtgc	tctacaggtc	ggctgcgggg	cttttgcatt	cctggaaaac	tccacctgtg	480
acacagatgg	gatgtatgac	atctgttaat	ccttcttgc	cagcgcgtct	aaatttgaca	540
ctcaggggaaa	agcatttcgtc	aaagagagct	taaaatgcat	cgccaaacggg	gtcacctcca	600
aggtcttct	cggccattcgg	aggtgttcca	ctttccaaag	gatgttgtct	gaggtgcagg	660
aagagtgc	cagcaagctg	aatgtgtgca	gcatcgccaa	gcggaaaccct	gaagccatca	720
ctgagggtcg	ccagctgccc	aatcacttct	ccaacagata	ctataacaga	cttgcgcgaa	780
gcctgttgg	atgtgtgaa	gacacagtca	gcacaatca	agacaggctg	atggagaaaa	840
ttgggcctaa	catggccagc	ctcttccaca	tcctgcagac	agaccactgt	gcccaaacac	900
acccacgagc	tgacttcaac	aggagacgca	ccaatgagcc	gcagaagctg	aaagtccctcc	960
tcaggaaccc	ccgaggtgag	gaggactctc	cctccacat	caaacgcaca	tcccatgaga	1020
gtgcataacc	agggagaggt	tattcacaac	ctcaccaaac	tagtattcatt	ttaggggtgt	1080
tgacacacca	attttgagtg	tactgtgcct	ggtttattt	ttttaaagta	gttccttattt	1140
tctatcccc	ttaaagaaaa	ttgcattgaaa	ctaggcttct	gtaatcaata	tcccaacatt	1200
ctgcaatggc	agcattccca	ccaaacaaaat	ccatgtgatc	attctgcctc	tcctcaggag	1260
aaagtaccct	cttttaccaa	cttcctctgc	catgtcttt	cccctgcctc	cctgagacca	1320
cccccaaaaca	caaaacattc	atgttaactct	ccagccattt	taatttgaag	atgtggatcc	1380
ctttagaacg	gttgcggccag	tagagttagc	tgataaggaa	actttatTTA	aatgtcatgtc	1440
ttaaattgtc	ataaaagatgt	taaatggaaat	tcgtgtttagt	aatctgtgct	ggccatggac	1500
gaatatgaat	gtcacatttt	aatttcttgc	ctctaatttgc	ctagtgtctt	atgttcttgc	1560
tcctccaatg	tctaattttc	tttccgacac	atttaccaaa	ttgcttgagc	ctggctgtcc	1620
aaccagactt	tgagcctgca	tcttcttgc	tctaattgaaa	aacaaaaagc	taacatcttt	1680
acgtactgt	actgctcaga	gtttaaaag	tatctttaac	aattgtctt	aaaccagaga	1740
atcttaaggt	ctaaactgtgg	aatataaaata	gctaaaaact	aatgtactgt	acataaattc	1800
cagaggactc	tgcttaaaca	aagcagtata	taataacttt	attgcata	gatttagttt	1860
tgtaacttag	ctttatTTT	cttttcttgc	gaatggata	actatctc	ttccagatat	1920
ccacataaaat	gtcttttgc	gcctttttt	taactaaggg	ggtagaagta	gttttattt	1980
aacatcaaaa	cttaagatgg	gcctgtatga	gacaggaaaa	accaacaggt	ttatctgaag	2040
gaccccgagg	aagatgttta	tctcccgacc	cacctcaacc	cagaggctac	tcttgactta	2100
gacctataact	gaaagatctc	tgtcacatcc	aactggaaat	tccaggaacc	aaaaagagca	2160
tccttatggg	cttggaccac	ttacagtgt	ataaggccta	ctatacatta	ggaagtggta	2220
gttcttact	cgtccccctt	catcggtgcc	ttgtactctg	gcaaatgatg	atgggggtggg	2280
agactttcca	ttaaattcaat	caggaatgag	tcaatcagcc	tttaggtctt	tagtccgggg	2340
gacttggggc	tgagagagta	taaataaccc	ttggctgtcc	agccttaata	gacttcttt	2400
acattttgc	cctgttagcac	gctgcctgcc	aaagtagtcc	tggcagctgg	accatctcg	2460
taggatcgta	aaaaaaataga	aaaaaaagaaa	aaaaaaagaa	agaaagaggg	aaaaagagct	2520
ggtgggttgc	tcatttctgc	catgtgttt	acaagatggc	gaccacaaa	gtcaaacgac	2580
taacctatct	atgaacaaca	gtagttctc	agggtcactg	tccttgcacc	caacagtccc	2640
ttatgagcgt	cactgcccac	caaaggtcaa	tgtcaagaga	ggaagagagg	gaggaggggt	2700
aggactgcag	ggggccactcc	aaactcgctt	aggttagaaac	tattgggtct	cgactctcac	2760
taggctaaac	tcaagatttgc	accaaatacg	gtgataggga	tcctgggg	aggagagagg	2820
gcacatctcc	agaaaaatga	aaagcaatac	aactttacca	taaagcctt	aaaaccagta	2880

acgtgctgct	caaggaccaa	gagcaattgc	agcagaccca	gcagcagcag	cagcagcaca	2940
aacatttgcg	cctttgtccc	cacacagcct	ctaagcgtgc	tgacatcaga	ttgttaaggg	3000
cattttata	ctcagaactg	tcccatcccc	aggtccccaa	acttatggac	actgccttag	3060
cctcttggaa	atcaggtaga	ccatattcta	agtttagactc	ttccctcccc	tcccacactt	3120
cccaaaaaaa	ggcaaggctg	acttctctga	atcagaaaaag	ctattaagg	ttgtgtgttg	3180
tgtccatttt	gcaaacccaa	ctaagccagg	accccaatgc	gacaagtat	tcatgagtat	3240
tcctagcaaa	tttctcttt	tcttcagttc	agtagatttc	cttttttttt	ttcttttttt	3300
ttttttttt	tttttggctg	tgacctcttc	aaaccgtgg	accccccctt	ttctccccac	3360
gatgatatact	atatatgtat	ctacaataca	tatatctaca	catacagaaa	gaagcagttc	3420
tcacatgttg	ctagttttt	gcttctcttt	cccccacccct	actccctcca	atccccccct	3480
taaacttcca	aagcttcgtc	tttgttttgc	tgcagagtga	ttcgggggct	gacctagacc	3540
agtttgcattg	attcttcctt	tgtgattttgg	ttgcacttta	gacatttttg	tgccattata	3600
tttgcattat	gtatattataa	tttaaatgtat	attaggtttt	ttggctgagt	actggaataaa	3660
acagtggca	tatctggtat	atgtcattat	ttattgttaa	attacatttt	ttaagctcca	3720
tgtgcatata	aaggatatga	aacatatcat	gtaatgaca	gatgcaagtt	atttattttg	3780
cttatttttt	ataattaaag	atgccatagc	ataatatgaa	gcctttgggt	aattccttct	3840
aagataaaaaaa	taataataaa	gtgttacgtt	ttattggttt	aaaaaaaaaa	aaaaaaaaaa	3900
a						3901

<210> 18

<211> 247

<212> PRT

<213> Homo sapiens

<400> 18

Met	Leu	Gln	Asn	Ser	Ala	Val	Leu	Leu	Val	Leu	Val	Ile	Ser	Ala	Ser
1						5				10				15	
Ala	Thr	His	Glu	Ala	Glu	Gln	Asn	Asp	Ser	Val	Ser	Pro	Arg	Lys	Ser
										20	25			30	
Arg	Val	Ala	Ala	Gln	Asn	Ser	Ala	Glu	Val	Val	Arg	Cys	Leu	Asn	Ser
										35	40			45	
Ala	Leu	Gln	Val	Gly	Cys	Gly	Ala	Phe	Ala	Cys	Leu	Glu	Asn	Ser	Thr
										50	55			60	
Cys	Asp	Thr	Asp	Gly	Met	Tyr	Asp	Ile	Cys	Lys	Ser	Phe	Leu	Tyr	Ser
										65	70			75	80
Ala	Ala	Lys	Phe	Asp	Thr	Gln	Gly	Lys	Ala	Phe	Val	Lys	Glu	Ser	Leu
										85	90			95	
Lys	Cys	Ile	Ala	Asn	Gly	Val	Thr	Ser	Lys	Val	Phe	Leu	Ala	Ile	Arg
										100	105			110	
Arg	Cys	Ser	Thr	Phe	Gln	Arg	Met	Ile	Ala	Glu	Val	Gln	Glu	Glu	Cys
										115	120			125	
Tyr	Ser	Lys	Leu	Asn	Val	Cys	Ser	Ile	Ala	Lys	Arg	Asn	Pro	Glu	Ala
										130	135			140	
Ile	Thr	Glu	Val	Val	Gln	Leu	Pro	Asn	His	Phe	Ser	Asn	Arg	Tyr	Tyr
										145	150			155	160
Asn	Arg	Leu	Val	Arg	Ser	Leu	Leu	Glu	Cys	Asp	Glu	Asp	Thr	Val	Ser
										165	170			175	
Thr	Ile	Arg	Asp	Ser	Leu	Met	Glu	Lys	Ile	Gly	Pro	Asn	Met	Ala	Ser
										180	185			190	
Leu	Phe	His	Ile	Leu	Gln	Thr	Asp	His	Cys	Ala	Gln	Thr	His	Pro	Arg
										195	200			205	
Ala	Asp	Phe	Asn	Arg	Arg	Arg	Thr	Asn	Glu	Pro	Gln	Lys	Leu	Lys	Val
										210	215			220	
Leu	Leu	Arg	Asn	Leu	Arg	Gly	Glu	Glu	Asp	Ser	Pro	Ser	His	Ile	Lys
										225	230			235	240
Arg	Thr	Ser	His	Glu	Ser	Ala									

245

<210> 19
<211> 1993
<212> DNA
<213> Homo sapiens

<400> 19

gtcagcagaa	gttacttcga	gcacctata	tgatgaagac	aggcctccca	aagtaccgccc	60
aagagaac	ttgtcacccg	gtaactcg	cacaccg	ccaaaagcc	ttccgtctt	120
cctcaatggg	gtcatgcccc	cgacacagag	cttgc	ccct	gatcccaagt	180
caaagcactg	caaagacaga	acagcgaagg	atctg	ccagg	aatgtcagcag	240
cattattgaa	aatgggaaga	aggtagttc	aacacattat	tacctactac	ctgaacgacc	300
accatacctg	gacaaatatg	aaaaattttt	taggaaagca	gaagaaacaa	atggaggcgc	360
ccaaatccag	ccattacctg	ctgactcg	tatatcttca	gccacagaaa	agccagactc	420
aaaaaacaaa	atggatctgg	gtggccacgt	gaagcgtaaa	catttatcct	atgtggttc	480
tcottagacc	ttggggtcat	ggttcagcag	aggtagtata	ggagcaat	gttttcaatt	540
ttccagttt	attgaagtgc	agagaaaaat	cccttagatt	gcaaaataaa	atagttgaac	600
tctctgtctt	catgtgaaag	gtttagagca	gttgc	gagat	gctgttatgc	660
tgactttgtt	agtgttgaa	aaaagtctt	caagtctata	atttaaagat	gtgatggtgg	720
ggaggggagg	atggggaa	tttttatata	tgcatat	acataactat	atataaaactt	780
gtggtataac	catagaccat	agctcaggt	taaccaatta	gttactatcg	tagagtaata	840
tatattcaga	ataataaaact	caagctggag	aatgagtcc	tgatagactg	aaaattgagc	900
aaatggaaaga	agatacagta	ttgtttagat	cagaatcatt	aaaaatatt	tttgtttagt	960
aagtttgaag	atttctggct	ttttaggc	ttcttattt	tttgcaggc	tttgcaggc	1020
aatctttcc	atggaggggca	gggtatccat	tcttaccat	gggtgtac	cttgcaggc	1080
aaaatcatac	caaggcctca	tactccagg	tttcatgtt	cgtcttgc	agggaggggag	1140
agcagggtac	ttggcaacca	tattgtc	tttgc	tttgc	tttgc	1200
cgataataga	actagtact	atttccct	tttgc	tttgc	tttgc	1260
gtagctcatc	gtagtgcgg	ccgttatt	tttgc	tttgc	tttgc	1320
aagtattcta	ggtgccagtg	tttagatgtc	tttgc	tttgc	tttgc	1380
tgtgattgag	agttattgtt	ttgggatgt	tttgc	tttgc	tttgc	1440
gttattataa	acataacaaca	caagctggcc	tttgc	tttgc	tttgc	1500
tgggattgt	tttgc	tttgc	tttgc	tttgc	tttgc	1560
ccagaggtca	catcagcatc	tttgc	tttgc	tttgc	tttgc	1620
tagatgcagt	gagacacata	tttgc	tttgc	tttgc	tttgc	1680
tgaagagata	agcacagaag	tttgc	tttgc	tttgc	tttgc	1740
tcttaacagt	taaacaagct	tttgc	tttgc	tttgc	tttgc	1800
aagtttattta	tat	tttgc	tttgc	tttgc	tttgc	1860
ctgat	tttgc	tttgc	tttgc	tttgc	tttgc	1920
tttgc	tttgc	tttgc	tttgc	tttgc	tttgc	1980
aaaaaaa	aaa					1993

<210> 20
<211> 161
<212> PRT
<213> Homo sapiens

<400> 20

Ser	Ala	Glu	Val	Thr	Ser	Ser	Thr	Tyr	Ser	Asp	Glu	Asp	Arg	Pro	Pro
1				5					10				15		
Lys	Val	Pro	Pro	Arg	Glu	Pro	Leu	Ser	Pro	Ser	Asn	Ser	Arg	Thr	Pro
									20				25		
Ser	Pro	Lys	Ser	Leu	Pro	Ser	Tyr	Leu	Asn	Gly	Val	Met	Pro	Pro	Thr
									35				40		
Gln	Ser	Phe	Ala	Pro	Asp	Pro	Lys	Tyr	Val	Ser	Ser	Lys	Ala	Leu	Gln

50	55	60
Arg Gln Asn Ser Glu Gly Ser Ala Ser Lys Val Pro Cys Ile Leu Pro		
65	70	75
Ile Ile Glu Asn Gly Lys Lys Val Ser Ser Thr His Tyr Tyr Leu Leu		
85	90	95
Pro Glu Arg Pro Pro Tyr Leu Asp Lys Tyr Glu Lys Phe Phe Arg Glu		
100	105	110
Ala Glu Glu Thr Asn Gly Gly Ala Gln Ile Gln Pro Leu Pro Ala Asp		
115	120	125
Cys Gly Ile Ser Ser Ala Thr Glu Lys Pro Asp Ser Lys Thr Lys Met		
130	135	140
Asp Leu Gly Gly His Val Lys Arg Lys His Leu Ser Tyr Val Val Ser		
145	150	155
Pro		160

<210> 21
<211> 642
<212> DNA
<213> Homo sapiens

<400> 21
tagtgttcat gggagctcg tttctttcc tctaggcaga gaagaggcga tggccgcgat 60
ggcatcttc ggcgccttg cgctgtctt gctgtccagg ctctcccgct gctcagccga 120
ggctgtcttg gagccccaga tcacccttc ctactacacc acttctgacg ctgtcatttc 180
caactgagacc gtcttcattt tgtagatctc cctgacatgc aagaacaggg tccagaacat 240
ggctctctat gctgacgtcg gtggaaaaca attccctgtc actcgaggcc agatgtggg 300
gggttatcag gtgtccttggaa gcctggacca caagagcgcc cacgcaggca cctatgaggt 360
tagattcttc gacgaggagt cctacagccct cctcaggaag gctcagagga ataacgagga 420
catttccatc atcccgcttc tgtttacagt cagcgtggac catggggca cttggAACGG 480
gcctctgggtg tccactgagg tgctggctgc ggcgatcgcc cttgtatct actacttggc 540
cttcagtgcc aagagccaca tccaggcctg agggcggcac cccagccctg cccttgccttc 600
cttcaataaa catcacagga cctggactg cacaggaaaa aa 642

<210> 22
<211> 173
<212> PRT
<213> Homo sapiens

<400> 22
Met Ala Ala Met Ala Ser Leu Gly Ala Leu Ala Leu Leu Leu Ser 1 5 10 15
Ser Leu Ser Arg Cys Ser Ala Glu Ala Cys Leu Glu Pro Gln Ile Thr 20 25 30
Pro Ser Tyr Tyr Thr Ser Asp Ala Val Ile Ser Thr Glu Thr Val 35 40 45
Phe Ile Val Glu Ile Ser Leu Thr Cys Lys Asn Arg Val Gln Asn Met 50 55 60
Ala Leu Tyr Ala Asp Val Gly Gly Lys Gln Phe Pro Val Thr Arg Gly 65 70 75 80
Gln Asp Val Gly Arg Tyr Gln Val Ser Trp Ser Leu Asp His Lys Ser 85 90 95
Ala His Ala Gly Thr Tyr Glu Val Arg Phe Phe Asp Glu Glu Ser Tyr 100 105 110
Ser Leu Leu Arg Lys Ala Gln Arg Asn Asn Glu Asp Ile Ser Ile Ile 115 120 125

Pro Pro Leu Phe Thr Val Ser Val Asp His Arg Gly Thr Trp Asn Gly
130 135 140
Pro Trp Val Ser Thr Glu Val Leu Ala Ala Ala Ile Gly Leu Val Ile
145 150 155 160
Tyr Tyr Leu Ala Phe Ser Ala Lys Ser His Ile Gln Ala
165 170

<210> 23
<211> 10
<212> DNA
<213> Homo sapiens

<400> 23
tttggtaaaa 10

<210> 24
<211> 10
<212> DNA
<213> Homo sapiens

<400> 24
gccacgttgt 10

<210> 25
<211> 10
<212> DNA
<213> Homo sapiens

<400> 25
gtgctggtgtc 10

<210> 26
<211> 10
<212> DNA
<213> Homo sapiens

<400> 26
cagccaaata 10

<210> 27
<211> 10
<212> DNA
<213> Homo sapiens

<400> 27
cttaagaaaa 10

<210> 28
<211> 10
<212> DNA
<213> Homo sapiens

<400> 28
tgttagaaaa 10

<210> 29

<211> 10
<212> DNA
<213> Homo sapiens

<400> 29
gatagcacag

10

<210> 30
<211> 10
<212> DNA
<213> Homo sapiens

<400> 30
gctctctatg

10

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/23786

A. CLASSIFICATION OF SUBJECT MATTER

IPC(7) : C07K 21/04, 16/00; A61K 48/00, 39/395; C12N 15/00
US CL : 435/6, 7.1, 375, 377; 536, 24.5; 424/130.1; 514/2, 44

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6, 7.1, 375, 377; 536, 24.5; 424/130.1; 514/2, 44

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
WEST, MEDLINE, BIOSIS, SCISEARCH, EMBASE, CAPLUS, BIOTECHNO

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A,E	US 2002/0103353 A1 (EINAT et al.) 01 August 2002, see entire document	1-34
Y	US 6,008,322 A (KUESTNER et al.) 28 December 1999, see entire document.	1-34
A,P	US 2002/0009739 A1 (GIESE) 24 January 2002, see entire document.	1-34
Y	ROZEN et al. Inhibition of Insulin-Like Growth Factor I Receptor Signaling by the Vitamin D Analogue EB1089 in MCF-7 Breast Cancer Cells: A Role for Insulin-Like Factor Binding Proteins. International Journal of Oncology. 1999, Vol. 15, pages 589-594, see entire document.	1-34
Y	FAUST et al. Antisense Oligonucleotides Against Protein Kinase CK2-alpha Inhibit Growth of Squamous Cell Carcinoma of the Head and Neck in vitro. Head and Neck. July 2000, Vol. 22, No. 4, pages 341-346, see entire document.	1-34

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"A" document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"E" earlier application or patent published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
"O" document referring to an oral disclosure, use, exhibition or other means		
"P" document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

17 October 2002 (17.10.2002)

Date of mailing of the international search report

19 DEP 2002

Name and mailing address of the ISA/US

Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231
Facsimile No. (703)305-3230

Authorizing Officer

Sean R McGarry

Telephone No. (703) 308-0196