Find Neighbor Polygons in a Layer

QGIS Tutorials and Tips

Author
Ujaval Gandhi
http://google.com/+UjavalGandhi

Translations by
Christina Dimitriadou
Paliogiannis Konstantinos
Tom Karagkounis

Βρε τε Γειτονικ Πολ γωνα σε να Επ πεδο

Υπωρχουν κωποιες περιπτώσεις χρώσης ώπου θώλετε να βρεώτε ώλα τα γειτονικώ πολώγωνα καθένως απώ τα πολώγωνα σε ώνα έπωπεδο . Με ώνα μικρώ σενώριο Python, μποροώμε να το πετώχουμε αυτώ και πολώ περισσώτερο στο QGIS. Εδώ εώναι ώνα παρώδειγμα σεναρώου, που μπορεώτε να χρησιμοποιώσετε, για να βρεώτε ώλα τα πολώγωνα που μοιρώζονται τα ώριώ τους, με κώθε ώνα απώ τα πολώγωνα σε ώνα έπωπεδο και έπωσης μπορεώτε να προσθώσετε τα ονώματώ τους στον πώνακα ιδιοτώτων . Ως πρώσθετο πλεονώκτημα, έπωσης το σενώριο συνοψώζει μώχρι ώνα χαρακτηριστικώ της επίλογώς σας απώ ώλα τα γειτονικώ πολώγωνα .

Επισκ πηση του πργου

Για να αποδετάθει, πτό λειτουργεί το σεντρίο, θα χρησιμοποίτσουμε τνα επίπεδο των πολυγίνων της χτράς και να βρεθοίν οι χτρές που μοιρτίζονται τα στίνορα. Θτίλουμε επίσης να υπολογίστε ο συνολικτί πληθυσμίς των γειτίνων της χτράς.

Αποκτωστε τα δεδομωνα

Θα χρησιμοποι∎σουμε τα Admin 0 - X■ρες dataset from Natural Earth.

Κατεβ \blacksquare στε το Admin 0 - χ \blacksquare ρες shapefile ...

Πηγ Δεδομ νων [NATURALEARTH]

Αποκτ■στε το script

Κατεβωστε το: λωψη: `neighbors.py script< /static/find_neighbor_polygons/script/neighbors.py > και να το αποθηκεωσετε στο δωσκο σας.

Διαδικασ α

1. Τοποθετ■στε το ne_10m_admin_0_countries layer πηγα■νοντας στο Layer ■ Add Vector Layer.

2. Το σενώριο χρησιμοποιεώ 2 πεδώα για να εκτελώσει την ενώργεια. Ενα πεδώο ώνομα και ώνα πεδώο που θώλετε να συνοψώσω . Χρησιμοποιώστε το : guilabel : ` εργαλεώο Identify`, κώνετε κλικ σε οποιοδώποτε στοιχεώο και εξετώστε τα χαρακτηριστικώ. Στην περώπτωση αυτώ, το πεδώο ώνομα εώναι NAME και θώλουμε να συνοψώσουμε τις εκτιμώσεις για τον πληθυσμώ απώ το **POP_EST ** πεδώο .

3. Μετ \blacksquare βαση σε: menuselection: *Plugins --> Python Console*.

4. Στο παρ $\blacksquare θ$ υρο Python Console , κ \blacksquare ντε κλικ στο κουμ $\pi \blacksquare$ Show Editor.

5. Στον πωνακα: guilabel: Editor, κωντε κλικ στο κουμπω Open file και αναζητωστε στο script neighbors. py που ωχετε κατεβωσει και κωντε κλικ στο Open.

6. Ψταν φορτωθε το script, μπορε να θωλετε να αλλωξετε το _NAME_FIELD και _SUM_FIELD για να ταιριώζει με τα χαρακτηριστικώ απώ το δικώ σας επώπεδο. Εών εργώζεστε με το επώπεδο ne_10m_admin_0_countries , μπορεώτε να αφώσετε αυτώπως εώναι. Κώντε κλικ στο κουμπκώ: guilabel: `Save` στον πώνακα: guilabel: `Editor`, αν ώχετε κώνει οποιεσδώποτε αλλαγώς. Τώρα κώντε κλικ στο κουμπώ: guilabel: Run script, για να εκτελώσει το script.

7. Μ■λις το script τερματιστε■, κ■ντε δεξ■ κλικ στο επ■πεδο `` ne_10m_admin_0_countries`` και επιλ■ξτε: guilabel : *Open Attribute Table*.

8. Θα παρατηρωσετε 2 νωα χαρακτηριστικώ που ονομωζονται `` NEIGHBORS`` και `` SUM``. Αυτώ προστωθηκαν απώ το script.

		E E) [2]					
	ION	REGION_WB	NAME_LEN	LONG_LEN	ABBREV_LEN	TINY	HOMEPART	NEIGHBORS	SUM
)		Latin America &	5.00	5.00	5.00	4.00	-99.00	NULL	0
	sia	South Asia	11.00	11.00	4.00	-99.00	1.00	Iran,Turkmenista	1621125240
2	a	Sub-Saharan Africa	6.00	6.00	4.00	-99.00	1.00	Namibia,Zambia,	86676756
3		Latin America &	8.00	8.00	4.00	-99.00	-99.00	NULL	0
4	ırope	Europe & Central	7.00	7.00	4.00	-99.00	1.00	Macedonia,Greec	15281164
5	ırope	Europe & Central	5.00	13.00	5.00	5.00	-99.00	NULL	0
6	ırope	Europe & Central	7.00	7.00	4.00	5.00	1.00	France,Spain	104582794
7	ia	Middle East & No	20.00	20.00	6.00	-99.00	1.00	Saudi Arabia,Oman	32104718
В	ica	Latin America &	9.00	9.00	4.00	-99.00	1.00	Bolivia,Paraguay,	235606259
9	ia	Europe & Central	7.00	7.00	4.00	-99.00	1.00	Georgia, Turkey, I	156089287
10		East Asia & Pacific	14.00	14.00	9.00	3.00	-99.00	NULL	0
11		Antarctica	10.00	10.00	4.00	-99.00	1.00	NULL	0
12	d Ne	East Asia & Pacific	23.00	27.00	7.00	-99.00	-99.00	NULL	0
13	(ope	Sub-Saharan Africa	22.00	35.00	10.00	2.00	-99.00	NULL	0
14		Latin America &	17.00	19.00	6.00	4.00	1.00	NULL	0
15	d Ne	East Asia & Pacific	9.00	9.00	4.00	-99.00	1.00	NULL	0
16	rope	Europe & Central	7.00	7.00	5.00	-99.00	1.00	Italy,Hungary,Slo	175681436
17	ia	Europe & Central	10.00	10.00	4.00	-99.00	1.00	Georgia, Turkey, R	290858866
18	ica	Sub-Saharan Africa	7.00	7.00	4.00	-99.00	1.00	Rwanda, Tanzani	120214356
19	rope	Europe & Central	7.00	7.00	5.00	-99.00	1.00	France,Netherla	163595324
20	rica	Sub-Saharan Africa	5.00	5.00	5.00	-99.00	1.00	Nigeria,Niger,Bur	186301451
21	rica	Sub-Saharan Africa	12.00	12.00	4.00	-99.00	1.00	Mali,Niger,Ghana	87234511
22	sia	South Asia	10.00	10.00	5.00	-99.00	1.00	India,Myanmar	1214216958
4	-		***************************************		***************************************				:::::i

Παρακωτω εωναι το πλωρες script για την αναφορω. Μπορεωτε να το τροποποιωσετε ωστε να ταιριωζει στις ανωγκες σας.

```
# Copyright 2014 Ujaval Gandhi
#This program is free software; you can redistribute it and/or
#modify it under the terms of the GNU General Public License
#as published by the Free Software Foundation; either version 2
#of the License, or (at your option) any later version.
#This program is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#You should have received a copy of the GNU General Public License
#along with this program; if not, write to the Free Software
#Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
from qgis.utils import iface
from PyQt4.QtCore import QVariant
# Replace the values below with values from your layer.
# For example, if your identifier field is called 'XYZ', then change the line
# below to _NAME_FIELD = 'XYZ'
NAME FIELD = 'NAME'
# Replace the value below with the field name that you want to sum up.
# For example, if the # field that you want to sum up is called 'VALUES', then
# change the line below to _SUM_FIELD = 'VALUES'
```

```
_SUM_FIELD = 'POP_EST'
# Names of the new fields to be added to the layer
_NEW_NEIGHBORS_FIELD = 'NEIGHBORS'
_NEW_SUM_FIELD = 'SUM'
layer = iface.activeLayer()
# Create 2 new fields in the layer that will hold the list of neighbors and sum
# of the chosen field.
layer.startEditing()
layer.dataProvider().addAttributes(
        [QgsField(_NEW_NEIGHBORS_FIELD, QVariant.String),
         QgsField(_NEW_SUM_FIELD, QVariant.Int)])
layer.updateFields()
# Create a dictionary of all features
feature_dict = {f.id(): f for f in layer.getFeatures()}
# Build a spatial index
index = QgsSpatialIndex()
for f in feature_dict.values():
    index.insertFeature(f)
# Loop through all features and find features that touch each feature
for f in feature_dict.values():
   print 'Working on %s' % f[_NAME_FIELD]
    geom = f.geometry()
    # Find all features that intersect the bounding box of the current feature.
    # We use spatial index to find the features intersecting the bounding box
    # of the current feature. This will narrow down the features that we need
    # to check neighboring features.
    intersecting_ids = index.intersects(geom.boundingBox())
    # Initalize neighbors list and sum
   neighbors = []
    neighbors_sum = 0
    for intersecting_id in intersecting_ids:
        # Look up the feature from the dictionary
        intersecting_f = feature_dict[intersecting_id]
        # For our purpose we consider a feature as 'neighbor' if it touches or
        # intersects a feature. We use the 'disjoint' predicate to satisfy
        # these conditions. So if a feature is not disjoint, it is a neighbor.
        if (f != intersecting_f and
            not intersecting_f.geometry().disjoint(geom)):
            neighbors.append(intersecting_f[_NAME_FIELD])
            neighbors_sum += intersecting_f[_SUM_FIELD]
    f[_NEW_NEIGHBORS_FIELD] = ','.join(neighbors)
    f[_NEW_SUM_FIELD] = neighbors_sum
    # Update the layer with new attribute values.
    layer.updateFeature(f)
layer.commitChanges()
print 'Processing complete.'
```