Estimation ponctuelle

Statistique mathématique M2 santé publique, université Paris-Sud

10 novembre 2017

- 1. Notion de statistique
- 2. Statistique libre
- 3. Exhaustivité
 - Exhaustivité
 - Caractérisation de l'exhaustivité
- 4. Exhaustityité minimale
 - Caractérisation de l'exhaustivité minimale
- 5. Complétude
 - ▶ Relation entre libre et exhaustive
 - ▶ Relation entre *Complète* et *exhaustive minimale*

Modèle statistique et problème d'inférence

Rappelons que nous avons

- ▶ Collection de v.a (un vecteur aléatoire) $X = (X_1, ..., X_n)$
- ▶ $X \sim F_{\theta} \in \mathcal{F}$, souvent on fera appel à $f(x; \theta)$ au lieu de F_{θ} .
- lacksquare une famille paramétrique $heta\in\Theta\subseteq\mathbb{R}^d$

Modèle statistique et problème d'inférence

Rappelons que nous avons

- ▶ Collection de v.a (un vecteur aléatoire) $X = (X_1, ..., X_n)$
- ▶ $X \sim F_{\theta} \in \mathcal{F}$, souvent on fera appel à $f(x; \theta)$ au lieu de F_{θ} .
- lacksquare une famille paramétrique $heta \in \Theta \subseteq \mathbb{R}^d$

Le problème de l'estimation ponctuelle

- Supposons que F est complètement définie par son paramètre θ inconnu
- ▶ Soit $(x_1, ..., x_n)$ des réalisations de $X \sim F_\theta$
- Estimer la valeur de θ qui a généré les réalisations (x_1, \dots, x_n)

Modèle statistique et problème d'inférence

Rappelons que nous avons

- ▶ Collection de v.a (un vecteur aléatoire) $X = (X_1, ..., X_n)$
- ▶ $X \sim F_{\theta} \in \mathcal{F}$, souvent on fera appel à $f(x; \theta)$ au lieu de F_{θ} .
- lacksquare une famille paramétrique $heta \in \Theta \subseteq \mathbb{R}^d$

Le problème de l'estimation ponctuelle

- Supposons que F est complètement définie par son paramètre θ inconnu
- ▶ Soit $(x_1, ..., x_n)$ des réalisations de $X \sim F_\theta$
- ▶ Estimer la valeur de θ qui a *généré* les réalisations (x_1, \ldots, x_n)

L'information qu'on possède : c'est (x_1, \ldots, x_n) et $\mathcal F$

- ► Ce qu'on peut construire n'est rien d'autre qu'une fonction des données $g(x_1,...,x_n)$
- Nous allons étudier les propriétés de telles fonctions et la perte d'information qu'on subit (une fonction de (x_1, \ldots, x_n) apporte au plus la même information que l'échantillon entier. Souvent on subit une perte d'information)

Notion de statistique

Définition d'une statistique

Soit X un échantillon (des v.a iid) issu de F_{θ} . une **statistique** est une fonction (ou application) **mesurable** T qui envoie X dans \mathbb{R}^d et ne dépend pas de θ .

- ▶ Intuitivement, toute fonction de l'échantillon est une statistique.
- ► Toute statistique est elle même une v.a avec sa propre loi.

Notion de statistique

Définition d'une statistique

Soit X un échantillon (des v.a iid) issu de F_{θ} . une **statistique** est une fonction (ou application) **mesurable** T qui envoie X dans \mathbb{R}^d et ne dépend pas de θ .

- ▶ Intuitivement, toute fonction de l'échantillon est une statistique.
- ► Toute statistique est elle même une v.a avec sa propre loi.

Exemple

- ▶ $T(X) = n^{-1} \sum_{i=1}^{n} X_i$ est une statistique (rappelons que la taille de l'échantillon n est connue).
- ▶ $T(X) = (X_{(1)}, \dots, X_{(n)})$ où $X_{(1)} \le X_{(2)} \le \dots \le X_{(n)}$ sont les statistiques d'ordre de X. Puisque T dépend seulement des valeurs de X, T est une statistique.
- ▶ Soit T(X) = c, où c est une constante. Alors T est une statistique.

- Parmi les exemples précédents, certaines statistiques sont plus informatives que d'autres au vu de la vraie valeur de θ .
- ▶ Une question naturelle : Quelles sont les *bonnes* statistiques et les *mauvaises* statistiques.

Statistique libre

Une statistique T est dite **libre** (pour θ) si sa loi de probabilité ne dépend pas *fonctionnellement* de θ .

 \leadsto Donc une statistique libre a la même loi $\forall \theta \in \Theta$.

- Parmi les exemples précédents, certaines statistiques sont plus informatives que d'autres au vu de la vraie valeur de θ .
- ▶ Une question naturelle : Quelles sont les *bonnes* statistiques et les *mauvaises* statistiques.

Statistique libre

Une statistique T est dite **libre** (pour θ) si sa loi de probabilité ne dépend pas *fonctionnellement* de θ .

 \rightsquigarrow Donc une statistique libre a la même loi $\forall \theta \in \Theta$.

Exemple

Supposons que $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{N}(\mu, \sigma^2)$ (où μ est inconnu et σ^2 est connu). Soit $\mathcal{T}(X_1, \ldots, X_n) = X_1 - X_2$.

- Parmi les exemples précédents, certaines statistiques sont plus informatives que d'autres au vu de la vraie valeur de θ .
- ▶ Une question naturelle : Quelles sont les *bonnes* statistiques et les *mauvaises* statistiques.

Statistique libre

Une statistique T est dite **libre** (pour θ) si sa loi de probabilité ne dépend pas *fonctionnellement* de θ .

 \rightsquigarrow Donc une statistique libre a la même loi $\forall \theta \in \Theta$.

Exemple

Supposons que $X_1,\ldots,X_n\stackrel{\text{iid}}{\sim}\mathcal{N}\big(\mu,\sigma^2\big)$ (où μ est inconnu et σ^2 est connu). Soit $T\big(X_1,\ldots,X_n\big)=X_1-X_2$. La loi de T est normale de moyenne 0 et de variance $2\sigma^2$. On déduit que T est une statistique libre pour le paramètre inconnu μ . Si μ et σ^2 sont inconnus, T n'est pas libre pour le paramètre vectoriel $\theta=\big(\mu,\sigma^2\big)$.

- ▶ Si T est libre pour θ alors T ne contient pas d'information sur θ .
- Pour contenir une information utile sur θ , la loi de T doit dépendre explicitement de θ .
- ▶ Intuitivement, la *quantité* d'information apportée par T sur θ est proportionnelle à la **dépendance** de la loi de T de θ .

- ▶ Si T est libre pour θ alors T ne contient pas d'information sur θ .
- Pour contenir une information utile sur θ , la loi de T doit dépendre explicitement de θ .
- ▶ Intuitivement, la *quantité* d'information apportée par T sur θ est proportionnelle à la **dépendance** de la loi de T de θ .

Exemple

Soit $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{U}[0, \theta]$, $S = \min(X_1, \ldots, X_n)$ et $T = \max(X_1, \ldots, X_n)$.

$$f_S(x,\theta) = \frac{n}{\theta} \left(1 - \frac{x}{\theta} \right)^{n-1}, \text{ où } 0 \le x \le \theta$$

$$f_T(x,\theta) = \frac{n}{\theta} \left(\frac{x}{\theta}\right)^{n-1}, \text{ où } 0 \le x \le \theta$$

- ▶ Aucune des deux statistiques S et T n'est libre pour θ .
- ▶ Quand $n \to +\infty$ f_S se concentre autour de 0.
- Quand $n \to +\infty$ f_T se concentre autour de θ .
- ▶ On déduit que T apporte plus d'information sur θ que S.

- $ightharpoonup X = (X_1, \ldots, X_n) \stackrel{\mathsf{iid}}{\sim} F_{\theta}$ et T(X) une statistique.
- ▶ On définit les ensembles de niveaux de T

$$A_t = \{x \in \mathbb{R}^n : T(x) = t\}.$$

(Ensemble des échantillons qui mènent à la même valeur t de T).

- ightharpoonup T est constante quand on se restreint à A_t .
- ▶ Toutes les réalisations de X qui appartiennent au même ensemble de niveau sont équivalentes vis à vis de T.
- ► Toutes les inférences sont les mêmes à l'intérieur du même ensemble de niveau A_t.
- $lackbox{ Regardons la loi de X dans l'ensemble de niveau A_t c'est à dire $f_{X\mid T=t}$$

- (1) Si $f_{X|T=t}$ dépend de θ alors : perte d'information.
- (2) Si l'expression de $f_{X|T=t}$ ne dépend pas de θ
 - X ne contient pas d'information sur θ dans l'ensemble A_t .
 - ▶ Autrement dit : X est libre pour θ dans A_t .

- (1) Si $f_{X|T=t}$ dépend de θ alors : perte d'information.
- (2) Si l'expression de $f_{X|T=t}$ ne dépend pas de θ
 - X ne contient pas d'information sur θ dans l'ensemble A_t .
 - ▶ Autrement dit : X est libre pour θ dans A_t .

Interprétation de la deuxième situation

Si cela est vrai pour tout $t \in \operatorname{Image}(T)$ alors T(X) contient la même quantité d'information sur θ que ce que peut contenir X.

- ▶ Il n'y pas de différence entre l'observation de $X = (X_1, ..., X_n)$ entier et T(X).
- ▶ La connaissance de la valeur de X en plus de T(X) n'apporte aucune information supplémentaire sur X.

- (1) Si $f_{X|T=t}$ dépend de θ alors : perte d'information.
- (2) Si l'expression de $f_{X|T=t}$ ne dépend pas de θ
 - X ne contient pas d'information sur θ dans l'ensemble A_t .
 - ▶ Autrement dit : X est libre pour θ dans A_t .

Interprétation de la deuxième situation

Si cela est vrai pour tout $t \in \operatorname{Image}(T)$ alors T(X) contient la même quantité d'information sur θ que ce que peut contenir X.

- ▶ Il n'y pas de différence entre l'observation de $X = (X_1, ..., X_n)$ entier et T(X).
- ▶ La connaissance de la valeur de X en plus de T(X) n'apporte aucune information supplémentaire sur X.

Statistique exhaustive

Une statistique T=T(X) est dite **exhaustive** pour le paramètre θ si pour tout ensemble (**Borelien**) B, la probabilité $\mathbb{P}[X \in B \mid T(X) = t]$ ne dépend pas de θ .

Exemple

Soit
$$X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathsf{Bernoulli}(\theta)$$
 et $T(X) = \sum_{i=1}^n X_i$. Soit $x \in \{0,1\}^n$,

$$\mathbb{P}[X = x \mid T = t] = \frac{\mathbb{P}[X = x, T = t]}{\mathbb{P}[T = t]}$$

$$= \frac{\mathbb{P}[X = x]}{\mathbb{P}[T = t]} \chi \left\{ \sum_{i=1}^{n} x_i = t \right\}$$

$$= \frac{\theta^t (1 - \theta)^{n - t}}{C_n^t \theta^t (1 - \theta)^{n - t}} = \frac{1}{C_n^t}.$$

- ightharpoonup T est exhaustive pour θ .
- ▶ Les positions des 1 dans les *n* réalisations de Bernoulli importent peu : 0011101 vs 1000111 vs 1010101.

- La définition précédente est difficile à vérifier notamment dans le cas continu.
- Cette définition ne permet pas d'identifier facilement les statistiques exhaustives.

- La définition précédente est difficile à vérifier notamment dans le cas continu.
- Cette définition ne permet pas d'identifier facilement les statistiques exhaustives.

Théorème de factorisation de Fisher-Neyman

Supposons que l'échantillon $X=(X_1,\ldots,X_n)$ a une densité jointe $f(x;\theta),\theta\in\Theta$. Une statistique T=T(X) est exhaustive pour θ si et seulement si

$$f(x;\theta) = g(T(x),\theta)h(x).$$

Exemple: loi uniforme

Soit $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{U}[0, \theta]$ où $f(x; \theta) = \frac{1}{\theta} \chi \{ x \in [0, \theta] \}$. Montrons que $X_{(n)}$ est exhaustive pour θ .

Exemple: loi uniforme

Soit $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \mathcal{U}[0, \theta]$ où $f(x; \theta) = \frac{1}{\theta} \chi \{ x \in [0, \theta] \}$. Montrons que $X_{(n)}$ est exhaustive pour θ .

$$f(x_1, \dots, x_n; \theta) = \frac{1}{\theta^n} \chi \Big\{ x \in [0, \theta]^n \Big\}$$

$$= \frac{\chi \Big\{ \max \big[x_1, \dots, x_n \big] \le \theta \Big\} \chi \Big\{ \min \big[x_1, \dots, x_n \big] \ge 0 \Big\}}{\theta^n}$$

$$= g \Big(\max \big[x_1, \dots, x_n \big]; \theta \Big) h(x_1, \dots, x_n)$$

On déduit que la statistique $T(X) = X_{(n)} = \max [x_1, \dots, x_n]$ est exhaustive pour θ .

Exemple: famille exponentielle

Soit $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x; \theta)$ où $f(x; \theta)$ est une densité associée à une loi issue de la famille exponentielle avec un certain nombre k de paramètres.

$$f(x;\theta) = \exp\left[\sum_{i=1}^k c_i(\theta)T_i(x) - d(\theta) + S(x)\right]\chi\left\{x \in A\right\}.$$

On chosit $h(x) = \exp[S(x)]\chi\{x \in A\}$, on déduit de théorème factorisation que la statistique

$$T = (T_1(X), \ldots, T_k(X))$$

est exhaustive pour θ .

Preuve du théorème de Neyman-Fisher - cas discret

Supposons que T est exhaustive. Ainsi

Preuve du théorème de Neyman-Fisher - cas discret

Supposons que T est exhaustive. Ainsi

$$f(x;\theta) = \mathbb{P}[X = x] = \sum_{t} \mathbb{P}[X = x, T = t]$$
$$= \mathbb{P}[X = x, T = T(x)] = \mathbb{P}[T = T(x)] \mathbb{P}[X = x \mid T = T(x)].$$

Comme T est exhaustive, $\mathbb{P}[X = x \mid T = T(x)]$ est indépendante de θ et donc $f(x; \theta) = g(T(x); \theta)h(x)$.

Preuve du théorème de Neyman-Fisher - cas discret

Supposons que T est exhaustive. Ainsi

$$f(x;\theta) = \mathbb{P}[X = x] = \sum_{t} \mathbb{P}[X = x, T = t]$$
$$= \mathbb{P}[X = x, T = T(x)] = \mathbb{P}[T = T(x)] \mathbb{P}[X = x \mid T = T(x)].$$

Comme T est exhaustive, $\mathbb{P}\big[X=x\mid T=T(x)\big]$ est indépendante de θ et donc $f(x;\theta)=g\big(T(x);\theta\big)h(x)$.

Maintenant, supposons que $f(x; \theta) = g(T(x); \theta) h(x)$. Alors si T(x) = t,

$$\mathbb{P}[X = x \mid T = t] = \frac{\mathbb{P}[X = x, T = t]}{\mathbb{P}[T = t]} = \frac{\mathbb{P}[X = x]}{\mathbb{P}[T = t]} \chi \{T(x) = t\}$$
$$= \frac{g(T(x); \theta) h(x) \chi \{T(x) = t\}}{\sum_{y: T(y) = t} g(T(y); \theta) h(y)} = \frac{h(x) \chi \{T(x) = t\}}{\sum_{y: T(y) = t} h(y)}.$$

Statistique exhaustive minimale

- Quand une statistique exhaustive apporte-t-elle de l'information importante seulement?
- ▶ Peut-on renoncer à de l'information ? laquelle ? combien ?

Statistique exhaustive minimale

- Quand une statistique exhaustive apporte-t-elle de l'information importante seulement?
- ▶ Peut-on renoncer à de l'information ? laquelle ? combien ?

Définition d'une statistique exhaustive minimale

Une statistique T=T(X) est dite **exhaustive minimale** pour un paramètre θ si pour toute autre statistique S exhaustive pour θ , il existe une fonction $g(\cdot)$ où

$$T(X) = g(S(X)).$$

Statistique exhaustive minimale

- Quand une statistique exhaustive apporte-t-elle de l'information importante seulement?
- ▶ Peut-on renoncer à de l'information? laquelle? combien?

Définition d'une statistique exhaustive minimale

Une statistique T=T(X) est dite **exhaustive minimale** pour un paramètre θ si pour toute autre statistique S exhaustive pour θ , il existe une fonction $g(\cdot)$ où

$$T(X) = g(S(X)).$$

Proposition

Si T et S sont des statistiques exhaustives minimales pour un paramètre θ , alors il existe des fonctions injectives g et h telles que S = g(T) et T = h(S).

Exhaustive minimale : caractérisation

Théorème

Soit $X = (X_1, \dots, X_n)$ un échantillon de densité jointe (ou fonction de masse) $f(x; \theta)$ et T = T(X) une statistique. Si

 $\frac{f(x;\theta)}{f(y;\theta)}$ est indépendant de $\theta \Leftrightarrow T(x) = T(y)$, alors T est exhaustive minimale pour θ .

Exhaustive minimale : caractérisation

Théorème

Soit $X=(X_1,\ldots,X_n)$ un échantillon de densité jointe (ou fonction de masse) $f(x;\theta)$ et T=T(X) une statistique. Si $\frac{f(x;\theta)}{f(y;\theta)}$ est indépendant de $\theta\Leftrightarrow T(x)=T(y)$, alors T est exhaustive minimale pour θ .

Preuve (conditions ⇒ exhaustivité)

Soit $\mathcal{T}=\{T(y):y\in\mathbb{R}^n\}$ l'image de \mathbb{R}^n par T et soit A_t un ensemble de niveau de T. Pour tout t, on choisit un représentant $y_t\in A_t$. Notons que pour tout x, $y_{\mathcal{T}(x)}$ est dans le même ensemble de niveau que x, donc $f(x;\theta)/f(y_{\mathcal{T}(x)};\theta)$ ne dépend pas de θ par hypothèse. On pose $g(t,\theta)=f(y_t;\theta)$ et notons

$$f(x;\theta) = \frac{f(y_{T(x)};\theta)f(y;\theta)}{f(y_{T(x)};\theta)} = g(T(x);\theta)h(x),$$

on obtient ainsi l'exhaustivité par le théorème de factorisation.

Exhaustive minimale : caractérisation

Preuve (conditions ⇒ minimalité)

Soit T' une autre statistique exhaustive. Par le théorème de factorisation : $\exists g', h'$ telles que $f(x; \theta) = g'(T'(x); \theta)h'(x)$. Soit x et y tels que T(x) = T(y). Alors

$$\frac{f(x;\theta)}{f(y;\theta)} = \frac{g'(T'(x);\theta)h'(x)}{g'(T'(y);\theta)h'(y)} = \frac{h'(x)}{h'(y)}.$$

Puisque ce rapport ne dépend pas de θ , nous avons par hypothèse T(x) = T(y). Ainsi T est une fonction de T'; donc elle est minimale par un choix arbitraire de T'.

Exhaustive minimale: exemple

Retour au modèle de Bernoulli

Soit $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$. Soit x et $y \in \{0, 1\}^n$ deux réalisations possibles. Montrons que $T(x) = \sum_{i=1}^n x_i$ est exhaustive minimale.

Exhaustive minimale: exemple

Retour au modèle de Bernoulli

Soit $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta)$. Soit x et $y \in \{0,1\}^n$ deux réalisations possibles. Montrons que $T(x) = \sum_{i=1}^n x_i$ est exhaustive minimale. Nous avons

$$\frac{f(x;\theta)}{f(x;\theta)} = \frac{\theta^{\sum x_i} (1-\theta)^{n-\sum x_i}}{\theta^{\sum y_i} (1-\theta)^{n-\sum y_i}}$$

qui est constant si et seulement si $T(x) = \sum x_i = \sum y_i = T(y)$ et donc T est exhaustive minimale.

- lacktriangle Statistique libre ightarrow ne contient pas d'information sur heta
- ► Statistique exhaustive minimale → contient toute l'information pertinente et un peu d'information non-pertinente.
- Ces deux aspects sont-ils indépendants?

- lacktriangle Statistique libre ightarrow ne contient pas d'information sur heta
- ► Statistique exhaustive minimale → contient toute l'information pertinente et un peu d'information non-pertinente.
- Ces deux aspects sont-ils indépendants?

Définition d'une statistique complète

Soit $\{g(t;\theta):\theta\in\Theta\}$ une famille de densités (ou fonctions de masse) pour T(X). La statistique T est dite *complète* si pour toute fonction mesurable h, nous avons

$$\int h(t)g(t;\theta)dt = 0 \quad \forall \theta \in \Theta \Longrightarrow \mathbb{P}\Big[h\big(T\big) = 0\Big] = 1 \quad \forall \theta \in \Theta$$

Exemple

Soit $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta), \quad \theta \in (0, 1), \text{ et } T = \sum_{i=1}^n X_i.$ Vérifions que T est complète.

Exemple

Soit $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} \text{Bernoulli}(\theta), \quad \theta \in (0,1), \text{ et } T = \sum_{i=1}^n X_i.$ Vérifions que T est complète. Soit h une fonction arbitraire.

$$\mathbb{E}\big[h(T)\big] = \sum_{t=0}^n h(t)C_t^n \theta^t (1-\theta)^{n-t} = (1-\theta)^n \sum_{t=0}^n h(t)C_t^n \left(\frac{\theta}{1-\theta}\right)^t$$

Puisque $\theta \in (0,1)$, le rapport $\theta / (1-\theta)$ varie dans $(0,\infty)$. Ainsi, supposons que $\mathbb{E} \big[h(T) \big] = 0$ pour tout $\theta \in (0,1)$, nous avons

$$P(x) = \sum_{t=0}^{n} h(t) C_t^n x^t = 0 \quad x > 0,$$

i.e le polynôme P(x) est uniformément nul sur l'ensemble des nombres réels positifs. Donc les coefficients du polynôme sont nuls et donc $h(t)=0, t=1,\ldots,n$. On déduit $\mathbb{P}\big[h(T)=0\big]=1 \forall \theta \in (0,\infty)$.

La complétude est-elle pertinente pour la réduction des données?

Proposition

Si T est complète, alors h(T) est libre pour θ si et seulement si h(T)=c presque sûrement.

Preuve

Soit h(T) une statistique libre. Sa loi ne dépend pas de θ

▶ La complétude est-elle pertinente pour la réduction des données ?

Proposition

Si T est complète, alors h(T) est libre pour θ si et seulement si h(T) = c presque sûrement.

Preuve

Soit h(T) une statistique libre. Sa loi ne dépend pas de θ Ainsi $\mathbb{E}\big[h(T)\big]=c$, pour une certaine constante c et donc $\mathbb{E}\big[h(T)-c\big]=0$. La complétude de T implique que $\mathbb{P}\big[h(T)=c\big]=1$.

- ▶ Autrement dit : Il n'y a que les fonctions triviales (= constante) de T qui sont des statistiques libres.
- ▶ Une statistique complète ne contient pas d'information libre
- Une statistique exhaustive contient toute l'information pertinente alors qu'une statistique complète est épurée de toute information non-pertinente.

Théorème de Basu

Une statistique exhaustive complète est **indépendante** de toute statistique libre.

Théorème de Basu

Une statistique exhaustive complète est **indépendante** de toute statistique libre.

Preuve

On va s'intéresser au cas discret seulement. On pose $\mathcal T$ une statistique exhaustive complète et $\mathcal S$ libre. Il suffit de montrer que

$$\mathbb{P}\big[S(X) = s \mid T(X) = t\big] = \mathbb{P}\big[S(X) = s\big]$$

On définit $h(t) = \mathbb{P}[S(X) = s \mid T(X) = t] - \mathbb{P}[S(X) = s]$. On remarque que

- ▶ $\mathbb{P}[S(X) = s]$ ne dépend pas de θ (libre)
- ▶ $\mathbb{P}[S(X) = s \mid T(X) = t] = \mathbb{P}[X \in \{x : S(x) = s\} \mid T = t]$ ne dépend pas de θ (à cause de exhaustivité).

Et h ne dépend pas de θ .

preuve (suite)

$$\mathbb{E}h(T) = \sum_{t} (\mathbb{P}[S(X) = s \mid T(X) = t] - \mathbb{P}[S(X) = s])\mathbb{P}[T(X) = t]$$

$$= \sum_{t} \mathbb{P}[S(X) = s \mid T(X) = t]\mathbb{P}[T(X) = t]$$

$$- \mathbb{P}[S(X) = s] \sum_{t} \mathbb{P}[T(X) = t]$$

$$= \mathbb{P}[S(X) = s] - \mathbb{P}[S(X) = s] = 0.$$

Or T est complète, donc h(t) = 0 pour tout t.

Le théorème de Basu est utile pour déduire l'indépendance entre deux statistiques.

- On n'en a pas besoin de calculer la loi jointe
- ▶ Besoin de montrer la complétude (souvent difficile)
- On va voir des modèles où il est facile de vérifier la complétude

Complétude et exhaustivité minimale

Théorème de Lehmann-Scheffé

Soit X de densité $f(x; \theta)$. Si T(X) est exhaustive et complète pour θ alors T est exhaustive minimale.

Complétude et exhaustivité minimale

Théorème de Lehmann-Scheffé

Soit X de densité $f(x; \theta)$. Si T(X) est exhaustive et complète pour θ alors T est exhaustive minimale.

Théorème

Si une statistique exhaustive minimale existe, alors toute statistique complète est aussi exhaustive minimale.