ASSIGNMENT-I (2023) **MATH 104**

- 1. Define polar, Cylindrical and spherical coordinates of a point in space. Establish the relation among Cartesian, cylindrical and spherical coordinates in three dimensional coordinates.
- 2. Replace the following Cartesian equations by equivalent polar equations.

(a)
$$y = -5$$
 (b) $\frac{x^2}{4} + \frac{y^2}{4} = 1$ (c) $(x-1)^2 + (y-2)^2 = 9$ (d) $xy = 4$

- 3. (a) Find the rectangular coordinates for $(2, \pi/2, \pi/3)$ and $(2, 2\pi/3, 1)$.
 - (b) Find the spherical coordinates for $(0, 2\sqrt{3}, -2)$ and the cylindrical coordinates for (3, -3, -7).
 - (c) Find the equation in spherical coordinate system.
 - (i) $x^2 + y^2 + z^2 = 1$.
 - (ii) $z = \sqrt{x^2 + y^2}$.
 - (d) Find the equation in cylindrical polar coordinates for $x^2 + (y-3)^2 = 9$.
 - (e) Find the Cartesian and cylindrical coordinate equations for the equation $\phi = 5\pi/6, \ 0 \le \rho \le 2$ with proper ranges for z in Cartesian and r in cylindrical coordinates.
- 4. Find the pair of polar coordinates that label the same point.
 - (a) (3,0) (b) (-3,0)
- (c) $(2, 2\pi/3)$ (d) $(-3, \pi)$ (e) $(-3, 2\pi)$

- (f) $(-2, -\pi/3)$.
- 5. How is the idea of symmetry of a polar curve $r = f(\theta)$ helpful to sketch the graph of the curve? Write the conditions when the curves $r = f(\theta)$ is symmetric about x-axis, and y-axis. Check the symmetry, sketch the graph of the curve $r = \sin 2\theta$, and find the area covered by the curve.
- 6. Sketch the graph of the following equations:
 - (a) $r = -2\sin\theta$
- (b) $r = 2\cos\theta$
- (c) $r = 1 \cos \theta$ (d) $r = -1 + \sin \theta$

- (e) $r = 5 5\sin\theta$ (f) $r = 12 + \cos\theta$ (g) $r = 2 + \cos\theta$ (h) $r = 32 + \cos\theta$

- (i) $r = 2\cos 2\theta$
- (i) $r = \sin 4\theta$
- (k) $r^2 = 4\sin 2\theta$.
- 7. Find the areas of the following regions:
 - (a) Inside the lemniscate $r^2 = 4 \sin 2\theta$.
 - (b) Inside one leaf of the four leaved rose $r = \cos 2\theta$.
 - (c) Inside the limacon $r = 4 + 2\cos\theta$.
 - (d) Inside the cardiod $r = 2(1 + \cos \theta)$.
 - (e) Inside the circle r = 1 and outside the cardiod $r = 1 \cos \theta$.
 - (f) The inner loop of the limacon $r = 12 + 24\cos\theta$.
 - (g) Shared by the circle r=2 and cardiod $r=2-2\cos\theta$.
 - (h) Inside the circle $r = 4\cos\theta$ and to the right of the vertical line $r = \sec\theta$.
 - (i) Shared by the circles $r = 2a\cos\theta$ and $r = 2a\sin\theta$.
- (a) Find the polar equation of the line passing through $P_0(2, \pi/3)$.
 - (b) Find the Cartesian equation of the polar line $r\cos(\theta 2\pi/3) = 1$.