

# agaetis Big Data & Data Science

#### Introduction au Machine Learning Régression linéaire

Léo Beaucourt pour Clermont'ech APIHour #42

#### Pourquoi la régression linéaire?

- La régression linéaire: le "Hello world!" du ML
- Résolution d'un problème de Data science: Prédiction d'un prix
- En pratique: Python, Jupyter. Packages numpy pandas et matplotlib.
- Pas de (trop) de math ...

Allez, on démarre en douceur ...

## Machine learning, qu'est ce que c'est?





- AI: Domaine d'étude ⇒ abus de langage (NN, RL)
- ML: Algorithmes/outils développés dans le cadre de la recherche sur l'IA

#### Machine Learning: Définitions

#### Arthur Samuel:

► The field of study that gives computers the ability to learn without being explicitly programmed.

#### • Tom Mitchell:

- A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.
- L'idée: Une machine apprend *seule* à réaliser une tache complexe à l'aide de processus itératifs simple.

### ML: Les principaux types d'apprentissage

#### Supervisé

- Utilise des données labélisées
- La machine apprend par l'exemple
- Prédis le résultat pour de nouveaux événements
- Problèmes de prédictions et de classification
- Regression linéaire et logistique
- Réseaux de Neurones
- Arbres de décisions

#### Non-supervisé

- Données non labélisées
- La machine apprend par elle même à identifier une structure
- Évaluation des performances compliqué.
- Problèmes de classification, réduction de dimensions
- K-means
- Analyse en Composante Principale

#### Par renforcement

- Un agent A, effectue une action Ac, l'environnement E lui renvoie une récompense.
- Récompenses à court et long terme
- Utilisé par Deepmind (alphaGo)

### À quelles problèmatiques répond le Machine Learning?

- Prédictions Prédire une valeur continue à partir de caractéristique données
- **Projections** Prédictions spécifique de séries temporelles:  $y = f(y(t-1), y(t-2), \dots)$
- Classifications Prédire la classe (discret) d'un objet en fonction de ses caractéristiques
- Segmentations Regrouper des objets par similarité dans l'espace des variables utilisé
- Compréhensions Comprendre l'importance de variables d'intérêt dans un contexte donné

#### La regression linéaire

Déterminer une relation linéaire entre input(s) (features) et output:

#### **⇒** Apprentissage Supervisé

- Prédiction d'une valeur continue (e.g. non discrète, non catégorielle)
- Applications:
  - Recherche de corrélations
  - En science, modélisation de phénomènes (physiques, biologiques, ...) après mesures
  - Dans le domaine médical: les études épidémiologique
  - Dans la finance/économie: prédictions des tendances, Capital Asset Pricing Model
  - **.**..

#### Sujet Data Science ⇒ Premier algorithme à tester!

### Un exemple: le prix d'une carte graphique

- La propriété principale d'une carte Graphique: valeur de GPU
- Jeu de données: {GPU; prix}:



#### On peut maintenant faire une prédiction

• Quel serait le prix de cartes avec 5, 10 et 14 Go de GPU?



• On pourra les vendre autour de 400, 800 et 1100 euros!

### La regression linéaire multivariables

• Le principe est le même, mais avec plusieurs variables  $x_i$  (donc plusieurs paramètres  $\theta_i$ ):

$$\hat{y} = \theta_1 x_1 + \dots + \theta_n x_n = \sum_{i=1}^n \theta_i x_i$$





### Affinons notre modèle de carte graphiques

- Plus de features: chipset, fréquence, consommation, ...
- Il va falloir explorer et nettoyer les données:
  - Gestion des données manquantes / abbérantes
  - Features engineering
  - Normaliser le dataset (pour accélérer la descente de gradient)

### Régression linéaire multivariables: Résultats

- Modèle simple:  $err \approx 100$  (biais)
- Modèle multivariable:  $err \approx 40 / 50$  (variance)



### Pour conclure sur la régression linéaire

- **Regression Linéaire:**  $\hat{y}$  est une valeur *continue* 
  - ► Valeur discrète: **Regression Logistique** (*classification*)
- Le résultat  $\hat{y}$  dépend **linéairement** des variables  $x_i$  si:

$$\hat{y} = \theta_1 x_1 + \dots + \theta_n x_n = \sum_{i=1}^n \theta_i x_i$$

- Apprentissage supervisé: y est connu pour chaque x<sub>1</sub> dans le jeu de données d'entrainement
- Facile à implémenter (encore plus avec Scikit-learn ...), rapide: bon point de départ sur un sujet



# agaetis Big Data & Data Science

Merci!
Des questions?

Léo Beaucourt

| There is a theory which states that if ever anyone discovers exactly what the Universe is for and wh<br>is here, it will instantly disappear and be replaced by something even more bizarre and inexplicable |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| here is another theory which states that this has already happened."                                                                                                                                         |
| Douglas Adam                                                                                                                                                                                                 |
|                                                                                                                                                                                                              |
|                                                                                                                                                                                                              |