My topology exercises

Evgeny Markin

2023

Contents

Ι	Ge	neral T	op	ol	οę	SУ																				
1	Set	Theory	and Logic																							
	1.1	Fundam	nen	tal	(o:	nce	ep	ts																	
		1.1.1																								
		1.1.2																								
		1.1.3																								
		1.1.4																								
		1.1.5																								
		1.1.6																								
		1.1.7																								
		1.1.8																								
		1.1.9																								
		1.1.10																								
	1 2	Function	ne																							

Preface

Those are my solutions for the James Munkres' "Topology", 2nd edition.

Part I General Topology

Chapter 1

Set Theory and Logic

1.1 Fundamental Concepts

1.1.1

Check distributive and DML laws GOTO set theory book

1.1.2

Determine which of the following are true.

- (a) impl
- (b) impl
- (c) true
- (d) rimpl
- (e) \subseteq , true if $B \subseteq A$.
- (f) \supseteq ; A (B A) = A.
- (g) true
- (h) ⊇
- (i) true
- (j) true
- (k) false
- (1) true
- $(m) \mathrel{\text{-}} \subseteq$
- (n) true
- (o) true
- (p) true
- $(q) \supseteq$

1.1.3

(a) Write a contrapositive and converse of the following statement: "If x < 0, then $x^2 - x > 0$ " and determine which ones are true

Contrapositive:

$$x^2 - x < 0 \Rightarrow x > 0$$

Converse

$$x^2 - x > 0 \Rightarrow x < 0$$

Contrapositive is correct, converse is incorrect $(2^2 - 2 > 0)$

(b) Do the same for the statement $x > 0 \Rightarrow x^2 - x > 0$

Contrapositive:

$$x^2 - x \le 0 \Rightarrow x \le 0$$

Converse

$$x^2 - x > 0 \Rightarrow x > 0$$

Contrapositive is false $(1^2 - 1 = 0)$; Converse is also false $((-2)^2 - (-2) = 6)$.

1.1.4

Let A and B be the sets of real numbers. Write the negation of each of the following statements:

$$(\exists a \in A)(a^2 \notin B)$$

$$(\forall a \in A)(a^2 \notin B)$$

$$(\exists a \in A)(a^2 \in B)$$

$$(\forall a)(a \notin A \Rightarrow a^2 \notin B)$$

1.1.5

Let A be a nonempty collection of sets. Determine the truths of each of the following and their converses

$$x\in\bigcup A \Leftrightarrow (\exists B\in A)(x\in B)$$

$$x \in \bigcup A \Leftarrow (\forall B \in A)(x \in B)$$

$$x\in\bigcap A\!\Rightarrow\! (\exists B\in A)(x\in B)$$

$$x\in\bigcap A \Leftrightarrow (\forall B\in A)(x\in B)$$

1.1.6

Skip

1.1.7

skip

1.1.8

GOTO set theory book

1.1.9

Formulate DML for arbitrary unions and intersections

$$A \setminus \bigcap (B) = \bigcup (A \setminus B)$$

$$A \setminus \bigcup (B) = \bigcap (A \setminus B)$$

For the proof goto set theory or real analisys book

1.1.10

(a, b, d) are true

1.2 Functions