Laser Physics

Books

Laser Fundamentals
 William Silfvast, Cambridge Publ.

OpticsAjoy Ghatak

Background

 Light Amplification by Stimulated Emission of Radiation (LASER)

• Einstein — 1917 — Theory of Stimulated Emission, courtesy Population Inversion

• Charles H. Townes et. al., - 1951 — MASER

Theodore Maiman — 1960 — Ruby LASER

Radiation interaction with atomic energy levels

Absorption

(Depends on energy density of radiation & no. of atoms in lower level)

(Depends on no. of atoms in excited level)

Stimulated Emission

(Depends on energy density of radiation & no. of atoms in excited state)

Laser Principle

Properties of LASER

Monochromatic

Coherence

High Intensity

Directionality

Monochromaticity

• Light of single wavelength or frequency

 Practically, there exists a beam-width; very small compared to ordinary light

• Degree of non-monochromaticity,

$$\xi = \Delta \nu / \upsilon_{o}$$
,
 $\Delta \nu = \text{bandwidth}$

Figure 2.1: Line Width diagram

Reasons for Monochromaticity

- Transition between 2 well defined energy levels
- EM wave of frequency $n = E_2-E_1$ can only be amplified, n the line width

• Laser cavity forms a resonant system — laser oscillations sustained only at resonant frequencies — Narrowing of laser line width

Reasons for Broadening

Doppler broadening
 (due to thermal motion of gas atoms – Gaussian distribution)

Natural broadening
 (due to spontaneous emission – Lorentzian distribution)

Collisional broadening
 (due to atomic collisions)

Coherence

Waves need to be in phase with each other

• Conditions:

Waves starts with same phase at same position Wavelengths must be the same

• Spatial —

Correlation between waves at different places — constant phase difference over any time 't'

Temporal –

Correlation between waves at one place at different times constant phase difference over a given time interval

LASER: One color (monochromatic) and waves in phase (coherent)

• Temporal Coherence

$$l_c = \lambda \left(\frac{\lambda}{\Delta \lambda}\right) = \frac{\lambda^2}{\Delta \lambda},$$

where
$$\lambda = (\lambda_1 + \lambda_2)/2 \& \Delta \lambda = \lambda_1 - \lambda_2$$

• Spatial Coherence

$$l_t = \frac{r\lambda}{s} = \frac{\lambda}{\theta_s}$$

Intensity

• Energy concentrated in a beam of very small cross section

• Intensity $I = P * (10/\lambda)^2$, P - power radiated by laser

Directionality

- Highly Directional
- d^2/λ , d diameter of aperture thru which light is passing
- Ordinary beam angular spread <u>1m per 1m</u>
- Laser beam angular spread <u>1mm per 1m</u>

Properties

Einstein Coefficients

- Concept of absorption and stimulated emission
- Let N_u be number of atoms in upper level 'u' and N_1 be number of atoms in lower level 'l'
- At thermal equilibrium, number of atoms are related by Boltzmann distribution function....

i.e.,
$$N_u = \exp(-E_u/kT)$$
 and $N_l = \exp(-E_l/kT)$

Hence,
$$\frac{N_u}{N_l}$$

$$= \exp\left[-\frac{\left(E_u - E_l\right)}{kT}\right] = \exp\left[-\frac{\left(\Delta E_{ul}\right)}{kT}\right] = \exp\left[-\frac{\left(h v_{ul}\right)}{kT}\right]$$

- Let A_{ul} (= $1/\tau_u$) be spontaneous transition probability between levels u and l
- Number of spontaneous transitions from u to l/unit time/volume $= N_{ij} A_{ijl}$
- Number of stimulated upward transitions from l to u/unit time/volume

$$= N_l B_{lu} u(\nu)$$

• Number of stimulated transitions from u to l/unit time/volume $= N_{ij}B_{ijl}u(\nu)$

where A and B are Einstein coefficients

• Principle of detailed balance...

$$N_u A_{ul} + N_u B_{ul} u(v) = N_l B_{lu} u(v)$$

•
$$u(v) = \frac{N_u A_{ul}}{(N_l B_{lu} - N_u B_{ul})}$$

= $\frac{A_{ul} / B_{ul}}{(N_l B_{lu} / N_u B_{ul}) - 1}$

- we know $\frac{N_u}{N_l} = \exp\left[-\frac{(h v_{ul})}{kT}\right]$
- Replacing here, we get

$$u(v) = \frac{A_{ul}/B_{ul}}{\left\{ \exp\left[\frac{\left(h v_{ul}\right)}{kT}\right]\left(\frac{B_{lu}}{B_{ul}}\right)\right\} - 1}$$

• Comparing with Planck's law of radiation,

$$u(v)dv = \frac{8\pi hv^3}{c^3 \left[\exp\left(\frac{hv}{kT}\right) - 1\right]} dv$$

$$u(v) = \frac{A_{ul}/B_{ul}}{\left(\exp\left[\frac{\left(h v_{ul}\right)}{kT}\right]\right)\left(B_{lu}/B_{ul}\right) - 1}$$

$$A_{ul}/B_{ul} = 8\pi h v^3 / c^3$$

$$B_{lu} = B_{ul}$$

Conditions for Lasing

• Population Inversion (PI)

Dotted curve – Boltzmann distribution

Population Inversion

Attenuation

Amplification

Methods of achieving Population Inversion

Active Medium
 Medium in which PI is achieved

Pumping

Solid, Liquid or Gas

Process by which atoms are raised from lower level to upper level

Methods of Pumping

- Optical Pumping
- Electrical Discharge or Direct Electron Excitation
- > Inelastic atom-atom collisions
- Direct Conversion

Optical Pumping

- For Solid State laser, ex., Ruby laser
- Light sources like Xe flash lamp

Electrical Discharge or Direct Electron Excitation

- For Gaseous lasers, eg., Argon ion laser
- Electric discharge thru gas $-e^{-}$ collide with atoms in medium, ionize and raise to higher level PI

Inelastic atom-atom collision

• Ex. He-Ne laser

Initial excitation of A atoms - Electrical discharge — A*

• A* + atom B --- B* (PI)

Direct Conversion

For Semiconductor lasers

• Current carriers are excited (not atoms)

• PI in junction region

• e⁻ - hole recombination leads to light

Pumping Scheme

• Two level

• Three level

• Four level

Two level pumping scheme

Drawbacks

• Difficult to maintain collection of atoms in excited states until they are stimulated to emit photon

• Ground state atoms undergo absorption and thus will remove photons from the beam

Three level pumping scheme

Spontaneous emission to Metastable state

- Lifetime in metastable state 10⁻⁶ to 10⁻³ s, More than excited state
- PI occurs in metastable state
- Presence of this metastable state Solves the problem of placing the atoms in excited states (drawback 1), but not removal of photons from the beam (drawback 2)
- 3 level system requires high pump powers
- Pulsed light only

Four level pumping scheme

- Solves the problem of photon loss
- Transition to metastable state (E3) on similar lines of 3 level laser
- Lasing from E3 to E2 state and E2 to E1 − Rapid decay
- Ground state atom cannot absorb at energy of lasing transition
- Require less pumping energy & continuous mode operation

Threshold Condition

- Consider a cavity made of 2 mirrors of length 'l'
- Let I₀ be the initial intensity of radiation.
- Intensity after travelling a distance 'l' through the medium will be

$$I = I_0 \exp(-\alpha L)$$

- α absorption coefficient
- This is attenuation

• For amplification, the eqn can be written as

$$I = I_0 \exp(kL)$$

where $k = -\alpha$ is defined as small signal gain coefficient

- Lets consider all possible losses
- Transmission at the mirror \rightarrow useful loss
- Absorption and scattering by the medium
- Absorption and scattering by the mirrors
- Diffraction by the mirrors
- ullet Let all losses except the useful loss be notated by γ
- Absorption eqn changes to $I = I_0 \exp(k-\gamma)L$

• Intensity of beam after travelling a distance l and reflected from mirror M1 will be

$$I = I_0 R_1 \exp [(k - \gamma) L]$$

• Intensity of beam after coming towards M2 from M1 will be

$$I = I_0 R_1 \exp \left[2(k - \gamma) L \right]$$

• Intensity of beam after completing 1 cycle will be $I = I_0 R_1 R_2 exp \left[2(k-\gamma) L \right]$

• One round trip....

• Round trip gain G = Output intensity /Input intensity

•
$$G = I / I_0 = 1$$
 (for threshold condition)
 $I_0 R_1 R_2 \exp \left[2(k-\gamma)L \right] / I_0 = 1$
 $R_1 R_2 \exp \left[2(k-\gamma)L \right] = 1$

$$\exp \left[2(k-\gamma)L\right] = 1/R_1R_2$$

$$k_{th} = \gamma + (1/2L) \ln(1/R_1R_2)$$

Principle of LASER

Multiplication of Photons

Lasers - Types

• Solid State laser

- Ruby, Nd:YAG

• Gas laser

– He-Ne, CO₂, Argon-ion

• Liquid laser

 $-\operatorname{SeOCl}_2$

• Dye laser

- Rhodamine 6G

• Semiconductor laser — GaAs, InP

He - Ne laser

- 1961
- Four level
- Active medium He : Ne = 10 : 1 (approx.) (5:1 to 20:1); Low pressure
- Various $\lambda 633$ nm, 1150 nm, 3390 nm
- Continuous Mode

He-Ne laser setup

 $1\ kV$ - Electrical discharge – $5\ to\ 100\ mA$ current

Cavity length -15 to 50 cm; O/P Power -0.5 - 100 mW

He-Ne laser setup

FIG. 2. Diagram of optical and electrical components used in the HeNe laser experiment

Energy Level Diagram

Working Process

- $e^- + He (GS) \longrightarrow He*(2^1S_0)(F_3)$
- He* + Ne (GS) ----> Ne*(3S₂)(E₆) + He(GS)
 (Equiv. E levels Resonant energy transfer occurs)
- Ne*(3S₂)(E₆) (Metastable–PI) --> Ne*(2P₄)(E₃) + 632 nm
- Ne* $(2P_4)(E_3)$ ----> Ne (GS) (De-excitation)
- 632nm photon stimulates other excited Ne*($2P_4$)(E_3) atoms leading to lasing

Stimulated Emission

Important Criteria

- Choose pressure of two gases such that PI is not quenched
- Selection of suitable end mirrors will lead to required wavelength of light
- E_2 is metastable Atoms may get excited to E_3 leading to decrease in PI Reduce the diameter of wall so that atoms get de-excited by collisions with the walls

Uses

• Reading Barcodes

Holography – 3D images

• Industrial and Scientific

Solid State Lasers

- Active Medium Solid Material (Glass or Crystal)
- Impurity atoms replace portion of solid material act as lasing centers

- Solid material decides Physical properties (Thermal conductivity, Thermal expansion, etc.,) & Impurity atoms decides Optical properties
- Pulsed and Continuous mode

• Pulsed Lasers — Xe (or Kr) flash lamps

Continuous Lasers – Halogen lamps, Mercury lamps

Nd Laser

• Neodymium (Nd³⁺) impurity atoms (Active centers) — Rare Earth element

Solid Host

- Glass
- -Yttrium Aluminum Garnet (YAG) Crystal Y₃Al₅O₁₂
- LiYF₄ (YLF) Crystal

Choice of Host

- Glass Pulsed laser (High pulse power & slow pulse repetition rate) – 60% doping – Problem of low thermal conductivity
- YAG Crystal High repetition rate pulses 1% doping- Higher thermal conductivity helps removing large amount of heat from laser

 Nd:YAG crystals – Absorption and Scattering losses are negligible

Schematic of Nd:YAG Laser

Optical Pumping

Energy Level Diagram

Various Possible Energy Levels Transitions

Operating precautions

• Efficiency 3%, But produces 30 times heat

Cooling by flowing water over the outside of optical cavity

Applications

- Material processing like Drilling, Welding, Cutting etc.
- Medical Applications Tissue evaporation
- Military Applications Range finders, Target designators
- Scientific applications
- Pump sources for Dye lasers, Ti: sapphire lasers

Gas Lasers - Advantages

 Absence of effects like crystal imperfections, thermal distortion, scattering -> More directional and Monochromatic

Operate continuously without need for cooling

Molecular Gas Laser

- Lasing in CO₂ molecule C. Patel (1964)
- High power molecular gas laser
- Generate wide range of IR frequencies
- Suitable for Communication and Radar since scattering is very less

• Electric discharge pulse thru CO₂ gas — small laser o/p

• CO₂ - Active Medium — Lasing b/n Vibrational states

• $CO_2 : N_2 : He ---- 1 : 1 : 8$ **OR** 1 : 4 : 5 at various pressures

Laser comparison

LaserType	Linear Power Density W/m	Maximum Power W	Power Efficiency percent
He – Ne	0.1	1	0.1
Argon	1 - 10	50	0.1
CO2	60 - 80	1200	15 - 20

Vibrational Modes of CO₂

Symmetric stretch and contraction

Experimental Setup – CO₂ Laser

Gold Mirrors; Zinc Selenide Windows

Operating Mechanism

• High dc voltage cause electrical discharge

• CO_2 -----> $CO + O_2$

Water Vapour added to regenerate CO₂

• N₂ excited by electron collision

•
$$N_2 + e1 - N_2 + e2$$

•
$$N_2^* + CO_2$$
 ----> $CO_2^* + N_2$

- Energy transfer thru resonant collisions
- He atoms act as a coolant and for relaxing to ground state

Energy Level Diagram

Merits and Demerits

- High Output power
- O/P power increase with increase in length of gas tube
- O/P power depends on operating temperature
- Required excitation energy is very less compared to He-Ne laser
 - Higher efficiency
- CO and O₂ contamination will affect laser action

Applications - Material Processing

Laser Welding

Laser Cutting

Laser Drilling

Laser Welding

- Joining multiple pieces of metal
- High power density (1 MW/cm²)
- Laser spot size − 0.2 to 13 mm
- Both continuous and pulsed beams
- Continuous Deep welds
- Pulsed Thin materials like razor blades

Working

- Focal spot is targeted on the work-piece surface
- Large concentration of light energy converted to thermal energy
- Surface starts melting and progress thru surface conductance
- Beam energy is maintained below vaporization temperature
- Shielding gas (Inert gas) Eliminate oxidation

Welding

Types

- Spot Welding and Seam Welding
- Spot Welding Use Low and Moderate powers
 - For thermally sensitive environment

Ex: Connection of Nickel lead to a Nickel alloy tap in transistor base, for microelectronic components

 Seam Welding – Use High powers (100's W); 2cm depth in one pass of beam

Ex: Joining tips of blades in gas turbines, connecting circalloy tips to fuel elements of nuclear reactors

Advantages

- Deep and Narrow welds can be done
- Absence of distortions in welds created

Minimal heat affected zones

- Excellent metallurgical quality
- Non-Contact and Increased travel speeds
- Welds Inaccessible regions

Welding Inaccessible Regions

Laser Cutting

- Directing the O/P of the laser on the material
- Material vaporizes, melts or burns away leaving an edge with high quality surface finish
- Laser power depends on the material being cut
 Ex: 50mm thick boards 200 W CO₂ laser 0.7mm width;
 10mm thick glass 20 kW power

Laser Cutting

Advantages

• Wide range of processed materials (paper, cloth, glass, plywood, ceramics, sheet metal etc.)

• Fine and Precise cuts

Chemical purity — No contamination

• 2D and 3D cuts

Minimal mechanical distortion

Laser Drilling

- Intense evaporation of material heated by powerful pulses of light
 Thermal removal process
- 10^{-4} to 10^{-3} s duration power densities 10^6 to 10^7 W/cm²
- Use of short pulses minimizes lateral diffusion of energy and controls size and shape of hole
- CO₂ laser Both Metallic and Non-metallic materials
- Nd:YAG Metallic only (absorbed by metals)

Laser Drilling

Advantages

• High precision and desired direction

• Large aspect ratios (l/d) possible

Hard materials drilling possible

Non-contact process

Numerical

- Consider a two level system at temperatures 400 K and 4000 K. What are the relative populations N_1/N_0 corresponding to transitions that would occur at 470 nm?
- $N_1/N_0 = \exp[-h\nu / kT]$ = $\exp[-hc / \lambda kT]$
- At T = 400 K,
- $N_1/N_0 = \exp[-hc / \lambda kT]$ = $\exp[-(6.626 \times 10^{-34} \times 3 \times 10^8)/$ $(470 \times 10^{-9} \times 1.38 \times 10^{-23} \times 400)]$ = 5.31×10^{-34}

At T = 4000 K,

$$N_1/N_0 = 4.7 \times 10^{-4} = 0.00047$$

• Determine what emission frequency width would be required to have a temporal coherence length of 20 m at a source wavelength of 532 nm.

$$l_{c} = \lambda^{2}/\Delta\lambda$$

$$\Delta\lambda = \lambda^{2}/l_{c}$$

$$= (532 \times 10^{-9})^{2}/20$$

$$= 1.41 \times 10^{-14}$$

- $c = \nu \lambda$
- $v = c/\lambda$
- $dv = [(-c/\lambda^2)] \times d\lambda$ = 15 MHz

A laser light emits light at a source wavelength of 560 nm. What would be the maximum emission bandwidth allowed of the light source if the coherence length of the laser is at least 10m.

$$\Delta \lambda = \lambda^2 / l_c = 3.14 \times 10^{-14}$$