K. J. SOMAIYA COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS ENGINEERING ELECTRONIC CIRCUITS

Cascode Amplifier

12th July, 2020

Numerical 1:

Consider cascode circuit as shown in figure 1, let $\beta=100$, $V_{BE(ON)}=0.7V$ and $V_A=\infty$ for each transistor. Given: $V_{CC}=9V$ and $R_L=10k\Omega$ Find DC parameters, A_{V1} , A_{V2} , Z_i and Z_o

Figure 1: Circuit diagram

Solution: Circuit shown in figure 1 is a CE-CB cascode amplifier.

DC Analysis: All capacitors are open circuited and DC equivalent circuit is shown in figure 2:

Figure 2: DC equivalent circuit

For stage 1:

Figure 3: Stage 1 DC equivalent circuit

$$V_{B1} = \frac{R_3}{R_1 + R_2 + R_3} \times V_{CC}$$

$$\therefore V_{B1} = \frac{14k\Omega}{51k\Omega + 25k\Omega + 14k\Omega} \times \Omega$$

$$\therefore V_{B1} = 1.4V$$

$$V_{BE1} = 0.7V \qquad ...(given)$$

$$\therefore V_{BE1} = V_{B1} - V_{E1}$$

$$\therefore V_{E1} = V_{B1} - V_{BE1} = 1.4 - 0.7$$

$$\therefore V_{E1} = 0.7V$$

Also,
$$I_{E1} = \frac{V_{E1}}{R_E}$$

$$\therefore I_{E1} = \frac{0.7}{0.7k\Omega} = 1 \text{mA}$$

$$\therefore I_{B1} = I_{B2} = \frac{I_{E1}}{(1+\beta)}$$

$$\therefore I_{B1} = I_{B2} = 9.9 \mu A$$

Assuming I_{B1} , I_{B2} very small and $I_{E1} \approx I_{E2} \approx I_{C1} \approx I_{C2}$

$$\therefore I_{E1} = I_{E2} = I_{C2} = I_{C1} = 1mA$$

For Stage 2:

Figure 4: Stage 2 DC equivalent circuit

$$V_{B2} = \frac{R_2 + R_3}{R_1 + R_2 + R_3} \times V_{CC}$$

$$\therefore V_{B2} = \frac{25k\Omega + 14k\Omega}{51k\Omega + 25k\Omega + 14k\Omega} \times 9$$

$$\therefore V_{B2} = 3.9V$$

$$V_{BE2} = 0.7V$$
 ...(given)

$$V_{BE2} = V_{B2} - V_{E2}$$

$$\therefore V_{E2} = V_{B2} - V_{BE2} = 3.9 - 0.7$$

$$V_{E2} = 3.2V$$

Applying KCL to C-E loop of stage 2:

$$V_{C2} = V_{CC} - I_{C2}R_C$$

$$\therefore V_{C2} = 9 - (1mA)(3.3k\Omega)$$

$$V_{C2} = 5.7V$$

Small signal parameters:

$$r_{\pi} = \frac{\beta V_T}{I_{CQ}}$$
 ...(assuming $r_{\pi 1} = r_{\pi 2} = r_{\pi}$)

$$r_{\pi} = \frac{100 \times 26 mV}{1 mA}$$

$$r_{\pi} = 2.6k\Omega$$

$$g_m = \frac{I_{CQ}}{V_T}$$
 ...(assuming $g_{m1} = g_{m2} = g_m$)

$$g_m = \frac{1}{26} = 38.4615 \text{ mA/V}$$

Small signal equivalent circuit is shown in figure 5:

Figure 5: Small signal equivalent circuit

All capacitors are short-circuited.

For Stage 1:
$$A_{V1} = \frac{V_{o1}}{V_s}$$

Here,
$$V_a = V_{in}$$

Here,
$$V_s = V_{in}$$

$$V_{o1} = -g_{m1}V_{\pi 1} \frac{r_{\pi 2}}{(1+\beta)}$$

 $(1 + \beta)$ is due to resistance reflection rule which states that resistance looking into the base is $(1 + \beta)$ times the total emitter resistance.

$$\therefore A_{V1} = \frac{-g_{m1}V_{\pi 1}r_{\pi 2}}{V_{\pi 1}(1+\beta)} = \frac{-g_{m1}r_{\pi 2}}{(1+\beta)} \quad \dots (\because V_{in} = V_{\pi 1})$$

$$A_{V1} = -38.4615 mA \times \frac{2.6k\Omega}{101}$$

$$A_{V1} = -0.9901 \approx 1$$

For stage 2:
$$A_{V2} = \frac{V_{out}}{V_s}$$

$$V_{out} = -g_{m2}V_{\pi 2}(R_C \parallel R_L)$$

$$V_{o1} = -V_{\pi 2}$$

$$\therefore A_{V2} = \frac{-g_{m2}V_{\pi 2}(R_C \parallel R_L)}{-V_{\pi 2}} = g_{m2}(R_C \parallel R_L)$$

 $A_{V2} = (38.4615 \times 10^{-3})(3.3k\Omega \parallel 10k\Omega) = (38.4615 \times 10^{-3})(2.4812k\Omega)$

$$A_{V2} = 95.4308$$

$$\therefore$$
 Overall gain = $A_{Vt} = A_{V1} \times A_{V2}$

$$A_{Vt} = (-1)(95.4308)$$

$$\therefore \mathbf{A_{Vt}} = -95.4308$$

$$A_{Vt}$$
 (in dB) = $20\log_{10}(95.4308) = 39.5938$

Input impedance:

$$Z_i = R_2 \parallel R_3 \parallel r_{\pi 1} = 25k\Omega \parallel 14k\Omega \parallel 2.6k\Omega$$

$$\therefore \mathbf{Z_i} = 2.0160 k\Omega$$

Output Impdeance:

$$Z_o = R_C \parallel R_L = 3.3k\Omega \parallel 10k\Omega$$

$$\therefore \mathbf{Z}_o = 2.4812 \mathrm{k}\Omega$$

Output Voltage = $V_{in} \times A_{Vt}$

$$V_{out} = (10mV)(-95.4308)$$

 $\therefore V_{out} = -0.9543V$

SIMULATED RESULTS:

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 6: Circuit Schematic: Results

Input and output waveforms for each stage are shown below:

Figure 7: Input and output waveform for Stage 1

Figure 8: Input and output waveform for Stage 2

Comparsion between theoretical and simulated values:

Parameter	Theoretical value	Simulated value
V_{B1}	1.4V	1.2493V
V_{C1}	3.2V	2.9046V
V_{E1}	0.7V	0.5415V
I_{C1}	$1 \mathrm{mA}$	$0.7660 { m mA}$
I_{B1}	$9.9\mu A$	$7.6596 \mu A$
I_{E1}	1mA	$0.7660~\mathrm{mA}$
V_{B2}	3.9V	3.67164V
V_{C2}	5.7V	6.4975V
V_{E2}	3.2V	2.9046V
I_{C2}	1mA	$0.7660 \mathrm{mA}$
I_{B2}	$9.9\mu A$	$7.5837\mu A$
I_{E2}	$1 \mathrm{mA}$	$0.7660~\mathrm{mA}$
Voltage gain of stage 1: A_{V1}	-1	-0.996
Voltage gain of stage 2: A_{V2}	95.4308	72.075
Overall gain: A_{Vt} in dB	39.5938	37.1557
Input impedance of Stage 1	$2.0160~\mathrm{k}\Omega$	_
Output impedance of Stage 2	$2.4812~\mathrm{k}\Omega$	_
Output voltage	-0.9543V	-0.7207V

Table 1: Numerical 1

Numerical 2:

Consider CS-CG cascode amplifier as shown in figure 9. Let $k_{n1}=k_{n2}=0.8mA/V^2$ & $V_{TN1}=V_{TN2}=0.8V$; Determine:

- a. DC parameters of the circuits i.e. $V_{G1},\,V_{S1},\,V_{D1},\,V_{GS1},\,I_{D1},\,V_{G2},\,V_{S2},\,V_{D2},\,V_{GS2}$ & I_{D2}
- b. Calculate input impedance of the circuit.
- c. Calculate output impedance of the circuit.
- d. Calculate voltage gain of the two stage circuit.

Figure 9: Circuit diagram

Solution: Circuit shown in figure 9 is a CS-CG cascade amplifier.

a. DC Analysis:

All capacitors are open circuited and DC equivalent circuit is shown in figure 10:

Figure 10: DC equivalent circuit

For stage 1:

Figure 11: Stage 1 DC equivalent circuit

$$V_{G1} = \frac{R_3}{R_1 + R_2 + R_3} \times V_{DD} = \frac{15k\Omega \times 18}{120k\Omega + 39k\Omega + 15k\Omega}$$

$$\therefore V_{G1} = 1.5517V$$

For Stage 2:

Figure 12: Stage 2 DC equivalent circuit

$$V_{G2} = \frac{R_2 + R_3}{R_1 + R_2 + R_3} \times V_{DD} = \frac{89k\Omega + 15k\Omega}{120k\Omega + 39k\Omega + 15k\Omega} \times 18$$

$$\therefore V_{G2} = 5.5862V$$

$$V_{GS1} = V_{G1} - V_{S1}$$

$$V_{S1} = R_S I_{D1} = (1.2k\Omega)I_{D1}$$

$$V_{GS1} = 1.5517 - (1.2k\Omega)I_{D1}$$

$$\therefore I_{D1} = \frac{1.5517 - V_{GS1}}{1.2k\Omega} \qquad \dots (1)$$

Assuming MOSFET in saturation, $I_{D1} = k_{n1}(V_{GS1} - V_{TN1})^2$

$$k_{n1} = k_{n2} = k_n$$
, $V_{TN1} = V_{TN2} = V_{TN}$ and $V_{GS1} = V_{GS2} = V_{GS}$

$$I_{D1} = (0.8 \times 10^{-3} [V_{GS} - 0.8]^2)$$

$$\therefore \frac{1.5517 - V_{GS}}{1.2k\Omega} = (0.8 \times 10^{-3})[V_{GS} - 0.8]^2$$

$$1.5517 - V_{GS} = 0.96[V_{GS}^2 + 0.64 - 1.6V_{GS}]$$

$$1.5517 - V_{GS} = 0.96V_{GS}^2 + 0.6144 - 1.536V_{GS}$$

$$\therefore 0.96V_{GS}^2 - 0.586V_{GS} - 0.9373 = 0$$

$$V_{GS} = 1.3060V, -0.7464V$$

Since $V_{GS} > V_{TN}$

$$\therefore V_{GS} = 1.3060V$$

Using (1),
$$I_{D1} = \frac{1.5517 - 1.3060}{1.2k\Omega}$$

$$\therefore I_{D1} = 0.20475 mA$$

$$\therefore I_{D1} \approx I_{D2} = 0.20475 mA$$

$$V_{S1} = I_D(R_S) = (0.20475mA)(1.2k\Omega)$$

$$\therefore V_{S1} = 0.2457V$$

Also,
$$V_{D2} = V_{DD} - I_{D2}R_D = 18 - (0.20475mA)(3.9k\Omega)$$

$$\therefore V_{D2} = 17.2015V$$

$$V_{GS2} = V_{G2} - V_{S2}$$

$$\therefore V_{S2} = V_{G2} - V_{GS2}$$

$$V_{S2} = 5.5862 - 1.3060$$

$V_{\mathbf{S2}} = 4.2802V$

$$\mathrm{Also},\,\mathbf{V_{S2}}=\mathbf{V_{D1}}=4.2802\mathbf{V}$$

$$\therefore V_{DS1} = V_{D1} - V_{S1} = 4.2802 - 0.2457$$

$$\therefore V_{DS1} = 4.0345V$$

$$\therefore V_{DS2} = V_{D2} - V_{S2} = 17.2015 - 4.0802$$

$$\therefore \mathbf{V_{DS2}} = \mathbf{12.9213V}$$

Small signal parameters:

$$g_{m1} = g_{m2} = g_m$$

$$g_m = 2k_n[V_{GS} - V_{TN}]$$

$$g_m = 2(0.8 \times 10^{-3})[1.3060 - 0.8]$$

$$g_m = 1.6 \times 10^{-3} [1.3060 - 0.8]$$

$$\therefore g_m = 0.8096 mA/V$$

Small signal equivalent circuit is shown in figure 13:

Figure 13: Small signal equivalent circuit

b. Input Impedance:

$$Z_i = R_G = R_2 \parallel R_3$$

$$Z_i=10.833 k\Omega$$

c. Output Impedance:

$$Z_o = R_o = 3.9 \mathrm{k}\Omega$$

d. Voltage gain for stage 1,
$$A_{V1} = \frac{V_1}{V_s}$$

$$\therefore V_1 = -V_{gs2}$$

Also,
$$V_s = V_{gs1}$$

Also,
$$V_s = V_{gs1}$$

$$\therefore A_{V1} = \frac{-V_{gs2}}{V_{gs2}} = -1 \qquad \dots (\because V_{gs1} = V_{gs2})$$

$$\therefore \mathbf{A_{V1}} = -1$$

$$A_{V1} = -1$$

 \therefore $\mathbf{A_{V1}} = -1$ Voltage gain for stage 2, $A_{V2} = \frac{V_{out}}{V_1}$

$$\therefore V_{out} = -g_{m2}R_DV_{gs2}$$

$$\therefore V_1 = V_{gs2}$$

$$\therefore A_{V2} = \frac{-g_{m2}V_{gs2}R_D}{-V_{qs2}}$$

$$A_{V2} = g_{m2}R_D$$

$$A_{V2} = (0.8069 \times 10^{-3})(3.9k\Omega)$$

$$\therefore \mathbf{A_{V2}} = 3.1574$$

Overall gain, $A_{Vt} = A_{V1} \times A_{V2}$

$$A_{Vt} = (-1) \times 3.1574$$

$$\therefore \mathbf{A_{Vt}} = -3.1574$$

$$A_{Vt}$$
 (in dB) = $20\log_{10}(3.1574) = 9.9866$

Output voltage, $V_o = V_{in} \times A_{Vt}$

$$V_o = (10mV)(-3.1574)$$

$$V_o = -31.574V$$

Negative sign indicates that the output voltage is 180° out of phase with respect to input voltage.

SIMULATED RESULTS:

Above circuit was simulated in LTspice and results obtained are as follows:

Figure 14: Circuit Schematic: Results

Input and output waveforms for each stage are shown below:

Figure 15: Input and output waveform for Stage 1

Figure 16: Input and output waveform for Stage 2

Comparsion between theoretical and simulated values:

Parameter	Theoretical value	Simulated value
V_{G1}	1.5517V	1.5517V
V_{D1}	4.2802V	4.2802V
V_{S1}	0.2457V	0.2458V
I_{D1}	0.2048 mA	0.2048 mA
V_{G2}	5.5862V	5.5862V
V_{D2}	17.2015V	17.2015V
V_{S2}	4.2802V	4.2802V
I_{D2}	0.2048 mA	0.2048 mA
Voltage gain of stage 1: A_{V1}	-1	-0.9916
Voltage gain of stage 2: A_{V2}	3.1574	3.1510
Overall gain: A_{Vt} in dB	9.9866	9.9690
Input impedance of Stage 1	$10.833~\mathrm{k}\Omega$	_
Output impedance of Stage 2	$3.9 \mathrm{k} \ \mathrm{k}\Omega$	
Output voltage	-31.574mV	-31.5100mV

Table 2: Numerical 2