

Introduction to Deep Learning

What is a Neural Network?

Housing Price Prediction

Housing Price Prediction

Housing Price Prediction

Drawing of previous Image

Introduction to Deep Learning

Supervised Learning with Neural Networks

Supervised Learning

Input(x)	Output (y)	Application
Home features	Price	Real Estate Studel
Ad, user info	Click on ad? (0/1)	Online Advertising
Image	Object (1,,1000)	Photo tagging 3 CNN
Audio	Text transcript	Speech recognition } knn
English	Chinese	Machine translation
Image, Radar info	Position of other cars	Autonomous driving Thybrid

Neural Network examples

Standard NN

Convolutional NN

Recurrent NN

Supervised Learning

Structured Data

\\/	w .	_	
Size	#bedrooms	•••	Price (1000\$s)
2104	3		400
1600	3		330
2400	3		369
:	:		:
3000	4		540
			i l

	V		$\overline{}$
User Age	Ad Id	•••	Click
41	93242		1
80	93287		0
18	87312		1
:	:		:
27	71244		1

Unstructured Data

Audio

Image

Four scores and seven years ago...

Text

Introduction to Neural Networks

Why is Deep Learning taking off?

Scale drives deep learning progress

Scale drives deep learning progress

Introduction to Neural Networks

About this Course

Courses in this Specialization

- 1. Neural Networks and Deep Learning —
- Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
- 3. Structuring your Machine Learning project
- 4. Convolutional Neural Networks
- 5. Natural Language Processing: Building sequence models

Outline of this Course

Week 1: Introduction

Week 2: Basics of Neural Network programming

Week 3: One hidden layer Neural Networks

Week 4: Deep Neural Networks

Basics of Neural Network Programming

Binary Classification

Binary Classification

Notation

Basics of Neural Network Programming

Logistic Regression

Logistic Regression

Given X, want
$$\hat{y} = P(\hat{y} = 1/X)$$
 $\times \in \mathbb{R}^{n_X}$

Output
$$y = 5(w^T \times + b)$$

$$X_0 = 1, \quad x \in \mathbb{R}^{n_x + 1}$$

$$Y = 6 (0^{T}x)$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 =$$

Basics of Neural Network Programming

Logistic Regression cost function

Given
$$\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$$
, want $\hat{y}^{(i)} \approx y^{(i)}$.

Loss (error) function: $\int (\hat{y}, y) = \frac{1}{2}(\hat{y} - y)^2$

If $y = 1$: $\int (\hat{y}, y) = -\log \hat{y} \in \text{Wart log} \hat{y}$ loge, wat \hat{y} large.

If $y = 0$: $\int (\hat{y}, y) = -\log \hat{y} \in \text{Wart log} \hat{y}$ large $\int (\hat{y}, y) = -\frac{1}{2}(\hat{y} - y)^2 = -\frac{1}{2}(\hat{y} - y)^2$

Basics of Neural Network Programming

Gradient Descent

Gradient Descent

Recap:
$$\hat{y} = \sigma(w^T x + b)$$
, $\sigma(z) = \frac{1}{1 + e^{-z}} \leftarrow$

$$\underline{J(w,b)} = \frac{1}{m} \sum_{i=1}^{m} \mathcal{L}(\hat{y}^{(i)}, y^{(i)}) = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)})$$

Want to find w, b that minimize J(w, b)

Gradient Descent

Basics of Neural Network Programming

Derivatives

deeplearning.ai

Intuition about derivatives

Basics of Neural Network Programming

deeplearning.ai

More derivatives examples

Intuition about derivatives

6.00000....01K

$$C = 2$$

$$C = 3$$

$$C = 2$$

$$C = 3$$

$$C =$$

More derivative examples

$$f(a) = a^2$$

$$f(a) = a^3$$

$$\frac{d}{da}(a) = 3a^{2}$$
 $3x2^{3} = 12$

$$a = 2$$
 $f(a) = 4$
 $a = 2.001$ $f(a) = 4.004$

$$a = 5.001$$
 $f(r) = 8$ $c = 5$

$$Q = 2.001 \quad f(\omega) \approx 0.69365$$

$$0.0005$$

$$0.0005$$

Basics of Neural Network Programming

Computation Graph

Computation Graph

$$J(a,b,c) = 3(a+bc) = 3(5+3n^2) = 33$$
 $U = bc$
 $J = 3v$
 $0 = 3$

Basics of Neural Network Programming

Derivatives with a Computation Graph

deeplearning.ai

Computing derivatives

$$f(a) = 3a$$

$$df(w) = df$$

$$du = 3$$

$$dJ = 3$$

$$dJ = 3$$

Computing derivatives

$$a = 5$$

$$b = 3$$

$$b = 3$$

$$c = 2$$

$$du = 3$$

$$du =$$

Basics of Neural Network Programming

Logistic Regression Gradient descent

Logistic regression recap

$$\Rightarrow z = w^{T}x + b$$

$$\Rightarrow \hat{y} = a = \sigma(z)$$

$$\Rightarrow \mathcal{L}(a, y) = -(y \log(a) + (1 - y) \log(1 - a))$$

Logistic regression derivatives

Basics of Neural Network Programming

Gradient descent on m examples

deeplearning.ai

Logistic regression on m examples

$$\frac{J(\omega,b)}{S} = \frac{1}{m} \sum_{i=1}^{m} f(\alpha^{(i)}, y^{(i)})$$

$$\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)})$$

$$\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)})$$

$$\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)})$$

$$\frac{\partial}{\partial \omega_{i}} J(\omega,b) = \frac{1}{m} \sum_{i=1}^{m} \frac{\partial}{\partial \omega_{i}} f(\alpha^{(i)}, y^{(i)})$$

Logistic regression on m examples

$$J=0; dw_{1}=0; dw_{2}=0; db=0$$

$$Z^{(i)} = \omega^{T} x^{(i)} + b$$

$$Q^{(i)} = G(Z^{(i)})$$

$$J+=-[y^{(i)}(\log Q^{(i)} + (1-y^{(i)})\log(1-Q^{(i)})]$$

$$dz^{(i)} = Q^{(i)} - y^{(i)}$$

$$dw_{1} + = x^{(i)} dz^{(i)}$$

$$dw_{2} + = x^{(i)} dz^{(i)}$$

$$J'=M \in dw_{1}/=M; dw_{2}/=M; db/=M. \in dw_{1}/=M; dw_{2}/=M.$$

$$d\omega_1 = \frac{\partial J}{\partial \omega_1}$$

Vectorization

Basics of Neural Network Programming

Vectorization

deeplearning.ai

Network Programming

deeplearning.ai

More vectorization examples

Basics of Neural

Neural network programming guideline

Whenever possible, avoid explicit for-loops.

$$U = AV$$

$$U_{i} = \sum_{i} \sum_{j} A_{ij} V_{j}$$

$$U = np.zevos((n, i))$$

$$for i \dots \subseteq ACIJT_{i}J * vC_{i}J$$

$$uTiJ += ACIJT_{i}J * vC_{i}J$$

Vectors and matrix valued functions

Say you need to apply the exponential operation on every element of a matrix/vector.

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_2} \end{bmatrix}$$

$$v = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} \rightarrow u = \begin{bmatrix} e^{v_1} \\ e^{v_n} \end{bmatrix}$$

$$u = np \cdot \text{exp}(v) \leftarrow \text{or } i \text{ in range}(n) : \leftarrow$$

Logistic regression derivatives

$$J = 0, \quad dw1 = 0, \quad dw2 = 0, \quad db = 0$$

$$\Rightarrow \text{for } i = 1 \text{ to } n:$$

$$z^{(i)} = w^{T}x^{(i)} + b$$

$$a^{(i)} = \sigma(z^{(i)})$$

$$J + = -[y^{(i)}\log\hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)})]$$

$$\forall dz^{(i)} = a^{(i)}(1 - a^{(i)})$$

$$\forall dw_{1} + x_{1}^{(i)}dz^{(i)}$$

$$db + dz^{(i)}$$

$$db + dz^{(i)}$$

$$db + dz^{(i)}$$

$$dw_{1} - dw_{1}/m, \quad dw_{2} = dw_{2}/m$$

$$db = db/m$$

$$d\omega / = m$$

Basics of Neural Network Programming

Vectorizing Logistic Regression

Vectorizing Logistic Regression

$$Z^{(1)} = w^{T}x^{(1)} + b$$

$$Z^{(2)} = w^{T}x^{(2)} + b$$

$$Z^{(3)} = w^{T}x^{(3)} + b$$

$$Z^{(3)} = \sigma(z^{(3)})$$

$$Z^$$

Basics of Neural Network Programming

Vectorizing Logistic Regression's Gradient Computation

Vectorizing Logistic Regression

$$\frac{dz^{(1)} = a^{(1)} - y^{(1)}}{dz^{(2)}} = \frac{dz^{(2)} = a^{(2)} - y^{(2)}}{dz^{(2)}} = \frac{dz^{(2)} - z^{($$

$$db = \frac{1}{m} \sum_{i=1}^{m} dz^{(i)}$$

$$= \frac{1}{m} \left[\frac{1}{x^{(i)}} \sum_{i=1}^{m} dz^{(i)} \right]$$

Implementing Logistic Regression ...

J = 0,
$$dw_1 = 0$$
, $dw_2 = 0$, $db = 0$

for $i = 1$ to m :

 $z^{(i)} = w^T x^{(i)} + b$
 $a^{(i)} = \sigma(z^{(i)}) \leftarrow$
 $J += -[y^{(i)} \log a^{(i)} + (1-y^{(i)}) \log(1-a^{(i)})]$
 $dz^{(i)} = a^{(i)} - y^{(i)} \leftarrow$

$$dw_1 += x_1^{(i)} dz^{(i)} d$$

$$Z = \omega^{T} X + b$$

$$= n p \cdot dot (\omega \cdot T \cdot X) + b$$

$$A = c (Z)$$

$$dZ = A - Y$$

$$dw = m \times dZ^{T}$$

$$db = m \cdot np \cdot sun(dZ)$$

$$w := \omega - x d\omega$$

$$b := b - x db$$

Basics of Neural Network Programming

Broadcasting in Python

Broadcasting example

Calories from Carbs, Proteins, Fats in 100g of different foods:

Broadcasting example

$$\begin{bmatrix}
1 \\ 2 \\ 3 \\ 4
\end{bmatrix} + \begin{bmatrix}
100 \\ 100
\end{bmatrix} 100$$

$$\begin{bmatrix}
1 & 2 & 3 \\ 4 & 5 & 6 \\ (M, n) & (2,3)
\end{bmatrix} + \begin{bmatrix}
100 & 200 & 300 \\ 100 & 200 & 300 \\ 100 & 200 & 300 \\ (1,n) & (2,3)
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 \\ 4 & 5 & 6
\end{bmatrix} + \begin{bmatrix}
100 & 200 & 300 \\ 100 & 200 & 300 \\ (1,n) & (2,3)
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 \\ 4 & 5 & 6
\end{bmatrix} + \begin{bmatrix}
100 & 100 & 100 & 100
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6
\end{bmatrix} +
\begin{bmatrix}
100 & 60 & 60 \\
200 & 200
\end{bmatrix} =
\begin{bmatrix}
(m, 1) & 6 & 6 & 6 \\
(m, 1) & 6 & 6
\end{bmatrix}$$

General Principle

$$(M, n) \qquad + \qquad (N, n) \qquad motics \qquad + \qquad (M, n) \qquad motics \qquad + \qquad (M, n) \qquad + \qquad R \qquad = \qquad \begin{bmatrix} 101 \\ 102 \\ 1 \end{bmatrix} \qquad + \qquad 100 \qquad = \qquad \begin{bmatrix} 101 \\ 102 \\ 103 \end{bmatrix} \qquad + \qquad 100 \qquad = \qquad \begin{bmatrix} 101 \\ 102 \\ 103 \end{bmatrix}$$

$$[1 \ 23] \qquad + \qquad 100 \qquad = \qquad \begin{bmatrix} 101 \\ 102 \\ 103 \end{bmatrix}$$

Mathab/Octave: bsxfun

Basics of Neural Network Programming

A note on python/ numpy vectors

Python / numpy vectors

```
import numpy as np
a = np.random.randn(5)
a = np.random.randn((5,1))
a = np.random.randn((1,5))
assert (a.shape = (5,1))
```


One hidden layer Neural Network

Neural Networks Overview

What is a Neural Network?

One hidden layer Neural Network

One hidden layer Neural Network

Computing a Neural Network's Output

$$z = w^T x + b$$
$$a = \sigma(z)$$

$$z = w^T x + b$$
$$a = \sigma(z)$$

Neural Network Representation learning

Given input x:

$$z^{[1]} = W^{[1]} + b^{[1]}$$

$$c^{(4,1)} = \sigma(z^{[1]})$$

$$c^{(4,1)} = w^{[2]} a^{[1]} + b^{[2]}$$

$$c^{(1,1)} = w^{[2]} a^{[1]} + b^{[2]}$$

$$c^{(1,1)} = \sigma(z^{[2]})$$

$$c^{(1,1)} = \sigma(z^{[2]})$$

$$c^{(1,1)} = \sigma(z^{[2]})$$

$$c^{(1,1)} = \sigma(z^{[2]})$$

One hidden layer Neural Network

Vectorizing across multiple examples

Vectorizing across multiple examples

Vectorizing across multiple examples

for
$$i = 1$$
 to m :
$$z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}$$

$$a^{[1](i)} = \sigma(z^{[1](i)})$$

$$z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}$$

$$a^{[2](i)} = \sigma(z^{[2](i)})$$

$$x = \begin{cases} x & x & x \\ y & x$$

One hidden layer Neural Network

Explanation for vectorized implementation

Justification for vectorized implementation

Recap of vectorizing across multiple examples


```
for i = 1 to m
     \Rightarrow z^{[1](i)} = W^{[1]}x^{(i)} + b^{[1]}
     \Rightarrow a^{[1](i)} = \sigma(z^{[1](i)})
     \Rightarrow z^{[2](i)} = W^{[2]}a^{[1](i)} + b^{[2]}
    \Rightarrow a^{[2](i)} = \sigma(z^{[2](i)})
                        , A [o] x = a^{(o)} \times (i) = a^{(o)}(i)
 Z^{[1]} = W^{[1]} X + b^{[1]} \leftarrow W^{[1]} + b^{[1]}
 A^{[1]} = \sigma(Z^{[1]})
Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}
 A^{[2]} = \sigma(Z^{[2]})
```


One hidden layer Neural Network

Activation functions

Activation functions

Pros and cons of activation functions

One hidden layer Neural Network

Why do you need non-linear activation functions?

Activation function

One hidden layer Neural Network

Derivatives of activation functions

Sigmoid activation function

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

$$a = g(z) = \frac{1}{1 + e^{-z}}$$

$$a = g(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{1}{1 + e^{-$$

Tanh activation function

ReLU and Leaky ReLU

ReLU

$$g(t) = mox(0, 2)$$

$$\Rightarrow g'(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z > 0 \end{cases}$$

$$\Rightarrow g'(z) = \begin{cases} 0 & \text{if } z < 0 \\ 1 & \text{if } z > 0 \end{cases}$$

Leaky ReLU

$$g(z) = More (0.01z, z)$$

 $g'(z) = \{0.01 : t > 0.00\}$
 $f(z) = \{1 : t > 0.00\}$

One hidden layer Neural Network

Gradient descent for neural networks

Gradient descent for neural networks

Parameters:
$$(x^{ro}, n^{tor}) (n^{tor}, 1) (n^{tor}, 1)$$
 $(x^{ro}, n^{tor}) (n^{tor}, 1) (n^{tor}, 1)$
 $(x^{ro}, n^{tor}) (n^{tor}, 1)$

Formulas for computing derivatives

Formal propagation!

$$Z^{(1)} = U_{(1)}X + U_{(1)}$$

$$Z^{(1)} = Q^{(1)}(Z^{(1)}) \leftarrow$$

$$Z^{(2)} = U_{(2)}U_{(1)} + U_{(1)}$$

$$Z^{(2)} = U_{(2)}U_{(2)} + U_{(1)}$$

$$Z^{(2)} = U_{(2)}U_{(2)} + U_{(1)}U_{(2)}$$

$$Z^{(2)} = U_{(2)}U_{(2)} + U_{(2)}U_{(2)} + U_{(2)}U_{(2)}$$

$$Z^{(2)} = U_{(2)}U_{(2)} + U_{(2)}U_{(2)} + U_{(2)}U_{(2)}U_{(2)} + U_{(2)}U_{(2)}U_{(2)} + U_{(2)}U_{(2)}U_{(2)}U_{(2)} + U_{(2)}U_{(2)}U_{(2)}U_{(2)} + U_{(2)}U_{(2)}U_{(2)}U_{(2)}U_{(2)} + U_{(2)}U_$$

Back propagation:

$$\begin{aligned}
&\mathcal{Z}^{[2]} = \mathcal{A}^{[2]} - \mathcal{A}^{[1]} \\
&\mathcal{A}^{[1]} = \mathcal{A}^{[2]} + \mathcal{A}^{[1]} \\
&\mathcal{A}^{[2]} = \mathcal{A}^{[2]} + \mathcal{A}^{[1]} \\
&\mathcal{A}^{[2]} = \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} \\
&\mathcal{A}^{[2]} = \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} \\
&\mathcal{A}^{[2]} = \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} \\
&\mathcal{A}^{[2]} = \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} \\
&\mathcal{A}^{[2]} = \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} + \mathcal{A}^{[2]} \\
&\mathcal{A}^{[2]} = \mathcal{A}^{[2]} + \mathcal{A}^{[2]} +$$

One hidden layer Neural Network

Backpropagation intuition (Optional)

Computing gradients

Logistic regression

Neural network gradients $z^{[2]} = W^{[2]}x + b^{[2]}$ du = de a Tos $\left(\begin{array}{ccc} n & \zeta & \zeta & \zeta & \zeta \end{array} \right)$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$
 $dW^{[2]} = dz^{[2]}a^{[1]^T}$
 $db^{[2]} = dz^{[2]}$
 $dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$
 $dW^{[1]} = dz^{[1]}x^T$
 $db^{[1]} = dz^{[1]}$

Vectorized Implementation:

$$z^{(1)} = (U^{(1)} \times V + b^{(1)})$$

$$Z^{(1)} = g^{(1)}(Z^{(1)})$$

$$Z^{(1)} = \left[Z^{(1)}(J^{(1)}) + Z^{(1)}(J^{(1)}) \right]$$

$$Z^{(1)} = U^{(1)} \times V + b^{(1)}$$

$$Z^{(1)} = U^{(1)} \times V + b^{(1)}$$

$$Z^{(1)} = g^{(1)}(Z^{(1)})$$

Summary of gradient descent

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$db^{[1]} = dz^{[1]}$$

$$dz^{[2]} = a^{[2]} - y$$

$$dW^{[2]} = dz^{[2]}a^{[1]^T}$$

$$db^{[2]} = dz^{[2]}$$

$$dz^{[2]} = \frac{1}{m}dz^{[2]}A^{[1]^T}$$

$$dz^{[2]} = \frac{1}{m}np. sum(dz^{[2]}, axis = 1, keepdims = True)$$

$$dz^{[1]} = W^{[2]T}dz^{[2]} * g^{[1]'}(z^{[1]})$$

$$dW^{[1]} = dz^{[1]}x^T$$

$$dy^{[1]} = dz^{[1]}x^T$$

$$dy^{[1]} = \frac{1}{m}dz^{[1]}x^T$$

$$dy^{[1]} = \frac{1}{m}dz^{[1]}x^T$$

$$dy^{[1]} = \frac{1}{m}dz^{[1]}x^T$$

$$dy^{[1]} = \frac{1}{m}np. sum(dz^{[1]}, axis = 1, keepdims = True)$$

One hidden layer Neural Network

Random Initialization

What happens if you initialize weights to zero?

Random initialization

Deep Neural Networks

Deep L-layer Neural network

What is a deep neural network?

logistic regression

Deep neural network notation

4 layer NN

$$V_{C_{13}} = V^{x} = 3$$
 $V_{C_{13}} = 2$
 $V_{C_{13}} = 3$
 $V_{C_{13}} = 3$
 $V_{C_{13}} = 3$
 $V_{C_{13}} = 1$

Deep Neural Networks

Forward Propagation in a Deep Network

Forward propagation in a deep network

Deep Neural Networks

Getting your matrix dimensions right

Parameters $W^{[l]}$ and $b^{[l]}$

Vectorized implementation

Deep Neural Networks

Why deep representations?

Intuition about deep representation

Circuit theory and deep learning

Informally: There are functions you can compute with a "small" L-layer deep neural network that shallower networks require exponentially more hidden units to compute.

Deep Neural Networks

Building blocks of deep neural networks

Forward and backward functions

Forward and backward functions

Deep Neural Networks

Forward and backward propagation

Forward propagation for layer I

⇒ Input
$$a^{[l-1]} \leftarrow \bigcup_{\substack{L^{(n)}, L^{(n)}}} \bigcup_{\substack{L^{(n)}, L^{(n)}}} \bigcup_{\substack{L^{(n)}, L^{(n)}}} \bigcup_{\substack{L^{(n)}, L^{(n)}, L^{(n)}}} \bigcup_{\substack{L^{(n)}, L^{(n)}, L^{(n$$

Backward propagation for layer I

$$\rightarrow$$
 Input $da^{[l]}$

$$\rightarrow$$
 Output $da^{[l-1]}$, $dW^{[l]}$, $db^{[l]}$

$$\frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac$$

Summary

Deep Neural Networks

Parameters vs Hyperparameters

What are hyperparameters?

Parameters: $W^{[1]}$, $b^{[1]}$, $W^{[2]}$, $b^{[2]}$, $W^{[3]}$, $b^{[3]}$...

Hyperparameters: Learning rate of #hilder layer L # hedden cents n [12] choice of autivortion furtion

doster: Monatur, min-Loth (ize, regularjohns...

Applied deep learning is a very empirical process

Deep Neural Networks

What does this have to do with the brain?

Forward and backward propagation

$$Z^{[1]} = W^{[1]}X + b^{[1]}$$

$$A^{[1]} = g^{[1]}(Z^{[1]})$$

$$Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}$$

$$A^{[2]} = g^{[2]}(Z^{[2]})$$

$$\vdots$$

$$A^{[L]} = g^{[L]}(Z^{[L]}) = \hat{Y}$$

$$dZ^{[L]} = A^{[L]} - Y$$

$$dW^{[L]} = \frac{1}{m} dZ^{[L]} A^{[L]^T}$$

$$db^{[L]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[L]}, axis = 1, keepdims = True)$$

$$dZ^{[L-1]} = dW^{[L]^T} dZ^{[L]} g'^{[L]} (Z^{[L-1]})$$

$$\vdots$$

$$dZ^{[1]} = dW^{[L]^T} dZ^{[2]} g'^{[1]} (Z^{[1]})$$

$$dW^{[1]} = \frac{1}{m} dZ^{[1]} A^{[1]^T}$$

$$db^{[1]} = \frac{1}{m} np. \operatorname{sum}(dZ^{[1]}, axis = 1, keepdims = True)$$

