

Summary

- 1- What is a smart card?
- 2- Standards in the smart card industry
- 3- Card life cycle
- 4- Security features

1 - What is a smart card?

A secure way of storing small amount of sensitive data

Characteristics of Microprocessor Cards

- Memory and processor on the same chip
- Unique and permanent serial number
- Secret code protection in the card
- Cryptographic capabilities

What Information needs to be in the card?

- Everything that relates to the intrinsic operation of the application
 - identification of the card holder
 - rights of the card holder
- Everything that relates to the security of the card and the application
 - Card Serial Number
 - secret codes
 - keys for cryptographic algorithms

A smart card is not a mass-storage device

Inside the Chip of a Microprocessor Card

Role of the Operating System

- The operating system transforms a physical device into a logical tool by providing these features:
 - Memory Management
 - Security Management
 - Cryptographic Functions
 - Customization

INNOVATRON AND BULL CP8 PATENTS

Types of Objects Managed by the Operating System

- Data is organized in files
 - There are different types of files: data, code, key ...
- The security is managed by the OS:
 - Secret codes control access to files
 - Keys are used for cryptographic functions

All data and security features are managed by the OS

Types of Commands Performed by the Operating System

Administrative commands

- File and directory management : create, read, write, update, ...
- Security related commands
 - Operations on secret codes and keys
- Loyalty commands (where applicable)
 - Award, Redeem...
- Payment commands (where applicable)
 - ◆ Credit, Debit, Read Balance, ...

2 - Standards in the Smart Card Industry

ISO: Document Genesis

ISO 7816 - Identification Cards - Integrated Circuits Cards With Contacts

- IS 7816-1: Physical characteristics
- IS 7816-2: Dimension & location of contacts
- IS 7816-3: Electronic signals & transmission protocols
- IS 7816-4: Interindustry commands
- IS 7816-5: Registration system for applications in IC card
- IS 7816-6: Interindustry data elements
- IS 7816-7: Interindustry commands for Structured Card Query Language (SCQL)
- IS 7816-8: Security architecture and related commands

ISO 7816-1 85 mm **Thickness** 54 mm 0.76 mm

Governs the physical characteristics of a smart card

ISO 7816-2

Governs the dimension and location of the chip contacts

ISO 7816-3

- Electrical Characteristics
 - clock frequency : [1 MHz, 5 MHz]
 - communication speed
- Transmission Protocols
 - T=0 and T=1 defined
 - T=14 reserved for proprietary protocols
- Protocol Type Selection (PTS)
 - if several protocols supported
- Answer-to-Reset

Governs the electronic signals and transmission protocols

Communication Protocols

- T=0 : asynchronous half duplex character transmission protocol
 - One Way communication any command expecting a response must send a second command to receive the response
- T=1 : asynchronous half duplex block transmission protocol
 - Two Way communication a single command may send and/or receive data
- T=2 to T=13 : Reserved for future use
- T=14 : reserved for protocols not standardized by ISO Almost all currently available cards follow T=0

Scope of ISO 7816-4

- Contents of messages
 - commands
 - responses
- Structure of files and data
- Access methods to files and data
- Security architecture defining access rights to files and data
- Methods for secure messaging

Ensures Interoperability

The Application Protocol Data Unit (APDU)

- An APDU contains either
 - a command message
 - a response message

response APDU

APDU Command

Command Format (ex: Read) without Body

Header

- ◆ CLA : indicates
 - ISO or Gemplus proprietary command
 - * Secure messaging or not
- ◆ **INS**: Instruction code (what type of command. ex.Read)
- ◆ P1, P2 : Parameters (ex. Read, where in the memory)
- Le : Expected length of data to be returned

APDU Command

Command Format (ex: Write) with Body

	Head	der			Body (if data for card)
CLA	INS	P1	P2	Lc	Data

Header

- ◆ CLA : indicates ISO or Gemplus proprietary commands
- INS: Instruction code (what type of command. ex: Write data to the card)
- ◆ P1, P2 : Parameters, ex: Write where in the memory
- Lc: Length of data sent to the card

■ Body

Data for card

APDU Response

Response Format

Body (if data for terminal)	Trailer
Data	SW1, SW2

Body

- Optional
- Holds the data returned by the card (ex: after Read)

■ Trailer

Status returned by the card

File Organization

- Card organized into files
 - MF Master File
 - *Root of the file structure
 - Contains other files
 - DF Dedicated File
 - Contains other files
 - Can be seen as a directory
 - ◆ EF Elementary File
 - Contains data

Elementary File Structures

■ ISO 7816-4 defines four different types of files:

Implementation for Files Organization

- Each file is made of
 - File descriptor containing information for
 - * file management
 - security management
 - File body
 - * DF
 - optional
 - > contains the DF name
 - * EF
 - mandatory
 - > contains data stored in the EF

ISO 7816-5

- Specifies
 - Numbering system for application identifiers
 - *To identify if a given card contains an application
 - Registration procedure for application provider identifiers
 - *AID is used to address an application in the card

Global Scheme

ISO 7816-5
Application ID

ISO 7816<u>-4</u> Command

APDU Layer

3 - Card Life Cycle

Card Life Cycle

Initialization

- Card associated with issuer
- Security features loaded

Personalization

- Application profile loaded (card belong to one given application).
- Cardholder profile loaded

Card Personalization

- Electrical personalization:
 - downloading of data (application & cardholder)
- Graphical personalization:
 - printing text or artwork on the card body

Making each card unique!

End-User Stage

The memory can be accessed according to the rules defined at personalization stage

4 - Security Features

Security Scheme

■ The smart card is not the only element involved in the security of an application

INNOVATRON AND BULL CP8 PATENTS

Security must be managed for the entire application

Definitions

- Authentication : to make sure that the card belongs to a genuine family of cards
- Identification: after authentication, to check the identity of the card (serial number, cardholder's identity, ...)
- Integrity: to ensure that the message has not been altered between the terminal and the card
- Non repudiation: to prevent the denial of previous transactions

Secret Codes

- Secret codes are used to protect
 - Access to files (read, write, update, ...)
 - ◆ Financial functions (read balance, debit, ...)
 - Administrative commands (create file, ...)
- A secret code is presented to the card and then checked by the card

Keys

- Keys are used by cryptographic algorithms
- Cryptosystems use two types of algorithms :
 - Secret key (e.g., DES, 3DES)
 - Public key (e.g., RSA, DSA)
- Keys are used for :
 - Secure messaging
 - Computing and verifying certificates/signatures

Secret Key Cryptography: from DES to 3DES

DES: Data Encryption Standard

Switching to 3DES

- Improvement in computational performance and cryptanalysis techniques
- De facto standard is now Triple DES
- Triple DES is now endorsed by NIST, replacing DES
- DES does not offer sufficient long-term security

Triple DES

GEMPLUS

Triple DES implementation (16-byte result)

- Used when a result on 16 bytes is required
- B = 3DES_16 (A, K) = BI Br

3DES in CBC Mode

3DES Limitations

- The terminal and the card must know the same key K
- Same key in every card and in every terminal :

NOT SECURE!!

Diversification Process

