

VİTMO

Характеристические особенности

Выделение характерных элементов

- Парадигма Марра: «иконическое представление» -> «символическое представление».
- Этапы обработки изображений:
 - Предобработка изображения;
 - Первичная сегментация изображения;
 - Выделение геометрической структуры;
 - Определение относительной структуры и семантики сцены.
- Примеры характерных черт: «точка», «пятно», «прямая линия», «угол».

Основные характерные черты

Атрибуты характерных черт

- 1. Положение: концы отрезка, центр отрезка, вершины многоугольников.
- **2. Геометрические**: ориентация, длина, кривизна, площадь, периметр, ширина линий и др.
- **3. Радиометрические**: контраст, статистика распределения яркости, знак и величина края и др.
- **4. Текстурные**: матрица смежности, показатель однородности, энтропия, статистика градиентов текстуры и др.
- **5. Топологические**: связность, соседство, общие точки, пересечение, параллельность, перекрытие, включение.
- 6. Цветовые / многозональные: вектор атрибутов для каждого канала.
- 7. Динамические: атрибуты динамических объектов.
- **8.** Временные: функции изменения атрибутов во времени.

Критерии выбора характерных черт

- 1. Присутствие / плотность: наличие характерных черт, достаточная их плотность покрытия.
- **2.** *Редкость / уникальность*: редкость характерной черты на изображении, уникальность характерной черты в окрестности.
- **3.** *Инвариантность / устойчивость*: робастность по отношению искажениям, нечувствительность к шуму.
- **4.** Локализация: возможность точной локализации.
- **5.** *Интерпретация*: возможность быстрого распознавания.
- 6. Скорость: время выделения характерных черт из изображения.

Качество определения характерных черт ИТМО

Критерии	Качество		
характерных черт	лучше	\rightarrow	хуже
Присутствие, плотность	точки	линии	области
Редкость, уникальность	области	линии	точки
Инвариантность	точки	линии	области
Устойчивость к шуму	области	линии	точки
Локализация	точки, особенно углы и центры	линии	области
Интерпретация	соединения, замкнутые контуры и области	концевые точки отрезков, открытые контуры и области	особые точки
Скорость	точки	линии	области
Влияние разрывов	точки	линии	области
Влияние загораживания	области	линии	точки

Характерная точка

• Локальная (особая) точка p изображения I — это точка с характерной (особой) окрестностью, т.е. отличающаяся от всех других точек в

некоторой окрестности.

Особая точка

Неособая точка

Пример выделения особых точек

Детекторы углов

- Углы хорошо повторимы и различимы.
- Главное свойство угла в области вокруг него у градиента изображения два доминирующих направления.

Детектор Моравеца

- Идея: измерять изменение интенсивности пикселя I(x,y) смещением квадратного окна с центром в (x,y) на один пиксель в каждом из восьми принципиальных направлений:
 - 2 горизонтальных, 2 вертикальных и 4 диагональных.
- **Размер окна**: 3×3 , 5×5 или 9×9 пикселей.

Алгоритм детектора Моравеца

1. Для каждого направления смещения (u, v) вычисляется изменение интенсивности:

$$E_{u,v}(x,y) = \sum_{a,b} (I(x+u+a,y+v+b) - I(x+a,y+b))^2$$

- **2.** Строится карта вероятности нахождения углов в каждом пикселе посредством вычисления оценочной функции $C(x,y) = \min\{E_{u,v}(x,y)\}$.
- **3. Отсекаются пиксели** в которых значения оценочной функции ниже порогового значения.
- **4.** Удаляются повторяющиеся углы с помощью подавления немаксимумов. Все полученные ненулевые элементы карты соответствуют углам на изображении.

Модифицированный сигма-фильтр

$$h(x,y) = \mathbf{H} * f(x,y),$$

где f(x, y) – исходное изображение,

H — оператор выделения признака,

- * операция применения оператора.
- Для каждого пикселя (x, y) рассматривается маска R, размером $N \times N$:

$$m = \frac{1}{N^2} \sum_R h(x, y),$$

 $\sigma^2 = \frac{1}{N^2} \sum_R h^2(x, y) - m^2.$

• Точка (x,y) считается особой, если h(x,y) не попадает в интервал, образованный значениями m и σ :

$$m - \alpha \sigma > h(x, y) > m + \alpha \sigma$$

где α — параметр, определяющий коридор,

m – среднее, σ – СКО значений признака h(x,y)

Адаптивный радиус

• Недостаток алгоритмов: концентрация точек в текстурированных областях.

Поиск точек без адаптивного радиуса, слева — 250 точек, справа — 500

Алгоритм адаптивного радиуса

Принцип: для каждой найденной особой точки отбрасываются все соседи в окрестности и проверяется, хватает ли результирующего набора. Точки рассматриваются в порядке убывания качества.

Алгоритм:

- Пройти по всем точкам в порядке качества.
- Для каждой точки отбросить из списка всех соседей в окрестности радиуса r.
- Подсчитать количество оставшихся точек.
- Выбрать такой радиус r, при котором получим нужное количество точек.

Адаптивный радиус

• Пусть вариация яркости изображения в зависимости от сдвига (u,v) оценивается в соответствии формулой:

$$E(u,v) = \sum w(x,y) \big(I(x+u,y+v) - I(x,y) \big)^2,$$

где I(x,y) – яркость в точке (x,y),

w(x,y) — функция окна,

I(x+u,y+v) – сдвиг яркости.

• Функция окна w(x,y) может задаваться в дискретном виде или в виде функции Гаусса:

• Раскладывая разность яркостей в квадрате в ряд Тейлора второго порядка в точке (x,y) (билинейная интерполяция) для небольших сдвигов получим следующее приближение:

$$E(u, v) \approx \begin{bmatrix} u & v \end{bmatrix} \mathbf{M} \begin{bmatrix} u \\ v \end{bmatrix},$$

$$\mathbf{M} = \sum_{x,y} w(x, y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix},$$

где **M** — матрица, состоящая из взвешенных значений производной функции интенсивности.

• В геометрической интерпретации матрица **М** представляет *эллипсоид* у которого длины осей определены собственными значениями, а ориентация определена ортогональной матрицей собственных векторов.

- Если одно из собственных значений **существенно больше другого**, то в таком случае мы имеем дело с **краем**.
- Если оба собственных **значения малы**, то мы имеем **«плоскую» равномерно** яркую область.
- Если оба собственных **значения велики и сравнимы** друг с другом, что означает наличие в центре окна **угловой точки**.

• Харрисом была введена мера интенсивности угла:

$$\mathbf{R} = \det \mathbf{M} - k(\operatorname{tr} \mathbf{M})^2,$$

где
$$\det \mathbf{M} = \lambda_1 \lambda_2$$
;
 $\operatorname{tr} \mathbf{M} = \lambda_1 + \lambda_2$;

k — эмпирически подбираемый параметр со значениями порядка 0,04-0,06.

- при $\mathbf{R} > 0$ «угол»,
- при $\mathbf{R} < 0$ «край»,
- при ${f R} = 0$ «плоская» область.

Алгоритм детектора Харриса

- 1. Вычислить градиент изображения в каждом пикселе.
- 2. Вычислить матрицу М по окну вокруг каждого пикселя.
- **3. Вычислить отклик** угла **R**.
- **4. Отсечь слабые углы** по порогу **R**.
- **5. Найти локальные максимумы** функции отклика по окрестности заданного радиуса.
- **6. Выбрать** *N* **самых сильных** локальных максимумов.

Детектор Фёрстнера

исходное изображение

выделение точек поле модуля оператором Фёрстнера градиента (окно 15 x 15: $0.5 < \mathbf{R} < 0.75$)

22 / 46

Сравнение детекторов

Детектор Харриса

Детектор Фёрстнера

• Если применить геометрическое (аффинное) или фотометрическое (аффинное изменение яркости $I \to aI + b$) преобразование к изображению, то детектор должен найти тот же самый набор точек.

- 1. Инвариантность к изменению освещенности:
 - Инвариантность к сдвигу освещенности ($I \to I + b$);
 - К масштабированию освещенности ($I \to aI$).

2. Инвариантность **к вращению**:

Эллипс вращается, но его форма (собственные значения) остаются неизменными.

Пример работы детектора Харриса на исходном и повернутом изображениях

3. Инвариантность **к масштабированию**:

- Слева отмеченные точки будут краями, а справа углом.
- Необходимо определить размер окрестности особой точки в масштабированных версиях одного и того же изображения.

Различный масштаб окрестностей

- LoG Laplacian of Gaussian
- «Блобы» (blob) это каплевидные окрестности, в центре которых расположены особые точки описываемые 4 параметрами:
 - координаты центра (х,у),
 - масштаб,
 - направление.

Пример выделения блобов

• Гауссиана – это гауссова функция, которой размывают изображение.

- «Край» это «всплеск» функции,
- «Блоб» это совмещение двух всплесков.
- Величина отклика лапласиана функции Гаусса достигает максимума в центре блоба в том случае, если размер лапласиана «соответствует» размеру блоба.

- Поиск: характеристического размера блоба: свертка с лапласианом в нескольких масштабах и поиск максимального отклика.
- Отклик лапласиана затухает при увеличении масштаба.

• Для достижения инвариантность к масштабу необходимо домножить первую производную на σ , а лапласиан — на σ^2 .

$$\nabla^2 g = \sigma^2 \left(\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} \right)$$
$$L = (x^2 + y^2 - 2\sigma^2)e^{-\frac{x^2 + y^2}{2\sigma^2}}$$

• Для круга радиуса r лапласиан достигает максимума при $\sigma = r\sqrt{2}$:

36 / 46

Характеристический размер определяется как масштаб, на котором достигается максимум отклика Лапласиана:

У «хорошего блоба» – один ярко выраженный пик функции:

• Многомасштабный детектор блобов: свертка размытого изображения с помощью нормализованного фильтра Лапласа в нескольких масштабах и выбор масштаба с максимальным откликом лапласиана.

- DoG Difference of Gaussian
- Способ приближенного вычисления Лапласиана гауссианы: поиск разницы двух гауссиан с различным масштабом:

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$

Детектор Харриса-Лапласа

• Выделение углов на изображении с учетом характеристического размера: ищутся точки максимизирующие отклик угла Харриса по изображению и отклик Лапласиана по масштабу.

Детектор Харриса-Лапласа

Harris-Laplace

- FAST Features from Accelerated Test (характерные точки на основе ускоренного тестирования).
- В детекторе для каждого пикселя P изображения рассматривается окружность из 16 пикселей с центром в этой точке, которая вписана в квадрат со стороной 7 пикселей.

Рабочая окрестность пикселя при использовании FAST детектора

• Каждый окрестный пиксель $x \in \{1,2,...,16\}$ относительно центрального P может находиться в одном из трех состояний:

$$S = egin{cases} d, I_x \leq I_p - t \ (ext{темнеe}) \ s, I_p - t < I_x < I_p + t \ (ext{похожий}) \ b, I_p + t \leq I_x \ (ext{светлеe}) \end{cases}$$

где t — пороговая величина,

 I_p – интенсивность точки P.

- Точка является угловой, если для нее существуют N смежных пикселей на окружности, интенсивности которых удовлетворяют условию состояний d или b.
- Необходимо сравнить интенсивность в вертикальных и горизонтальных точках на окружности под номерами 1, 5, 9 и 13 с интенсивностью в точке I_p . Если для **трех** из этих точек выполнится условие состояния s, то проводится полный тест для всех 16 точек.
- Наименьшее значение N, при котором особые точки начинают стабильно обнаруживаться, равно 9.

Пример работы детектора FAST

ITSMOre than a UNIVERSITY

s.shavetov@itmo.ru