Complex Analysis HW1

Neal D. Nesbitt

August 31, 2016

Problem 1. Show that

(a)

$$\operatorname{Re}(iz) = -\operatorname{Im}(z)$$

(b)

$$\operatorname{Im}(iz) = -\operatorname{Re}(z)$$

Solution 1. (a) *Proof.* Let $z \in \mathbb{C}$ such that z = x + iy for some $x, y \in \mathbb{R}$.

Then since $i^2 = -1$,

$$Re(iz) = Re(i(x+iy)) = Re(-y+ix) = -y$$

and

$$-\operatorname{Im}(z) = -\operatorname{Im}(x + iy) = -y$$

implying

$$Re(iz) = -Im(z)$$

(b) *Proof.* Let $z \in \mathbb{C}$ such that z = x + iy for some $x, y \in \mathbb{R}$.

Then since $i^2 = -1$,

$$Im(iz) = Im(i(x+iy)) = Im(-y+ix) = x$$

and

$$Re(z) = Re(x + iy) = x$$

implying

$$\operatorname{Im}(iz) = \operatorname{Re}(z)$$

Problem 2. Solve the equation $z^2 + z + 1 = 0$ for z = (x, y) by writing

$$(x,y)(x,y) + (x,y) + (1,0) = (0,0)$$

Solution 2. Let our notation be as above, and then work out z^2 , and match the real and imaginary parts to find:

$$(x,y)(x,y) + (x,y) + (1,0) = (0,0)$$

$$(x^2 - y^2, 2xy) + (x,y) + (1,0) = (0,0)$$

$$x^2 - y^2 + x + 1 = 0$$

$$x^2 + x = y^2 - 1$$

$$(2x + 1)y = 0$$

The imaginary component's equation implies that potential solutions have components x=-1/2 and y=0.

So beginning with the first possibility we plug x = -1/2 back into the real component's equation to see

$$x^{2} + x = y^{2} - 1$$

$$\frac{1}{4} - \frac{1}{2} = y^{2} - 1$$

$$\frac{-1}{4} = y^{2} - 1$$

$$\frac{3}{4} = y^{2}$$

$$y = \pm \sqrt{\frac{3}{4}} = \pm \sqrt{3}/2$$

giving the pair of complex solutions $z = \left(-1 \pm i\sqrt{3}\right)/2$.

Similarly, using y = 0 in the same equation would show

$$x^{2} + x = -1$$

$$x^{2} + x + 1 = 0$$

$$x = (-1 \pm \sqrt{1 - 4})/2$$

$$x = (-1 \pm \sqrt{-3})/2$$

$$x = (-1 \pm i\sqrt{3})/2$$

giving the same pair of solutions, but requiring the quadratic formula.

Problem 3. Reduce each of these quantities to a real number:

(a)
$$\frac{1+i2}{3-i4} + \frac{2-i}{5i}$$

(b)
$$(1-i)^4$$

Solution 3. (a) Start by multiplying the first fraction by th complex conjugate of the denominator over itself. Then simplify:

$$\begin{split} \frac{1+i2}{3-i4} + \frac{2-i}{5i} &= \frac{(1+i2)(3-i4)}{(9+16)} + \frac{1+i2}{5} \\ &= \frac{3+8+i(6-4)}{9+16} + \frac{1+i2}{5} \\ &= \frac{11+i2}{25} + \frac{1+i2}{5} \\ &= \frac{11+i2}{25} + \frac{5+i10}{25} \\ &= \frac{11+i2}{25} + \frac{5+i10}{25} \\ &= \frac{16+i12}{25} \end{split}$$

(b) Using $i^2 = -1$, we can find

$$(1-i)^4 = ((1-i)^2)^2$$

= $(-2i)^2 = \boxed{-4}$

Problem 4. Verify that $\sqrt{2}|z| \ge |\text{Re}(z)| + |\text{Im}(z)|$.

Solution 4. I we call z = x + iy, then we can see

$$(|x| - |y|)^{2} \ge 0$$

$$|x|^{2} + |y|^{2} - 2|x||y| \ge 0$$

$$|x|^{2} + |y|^{2} \ge 2|x||y|$$

$$|z|^{2} \ge 2|x||y|$$

$$2|z|^{2} \ge 2|x||y| + |x|^{2} + |y|^{2}$$

$$2|z|^{2} \ge (|x| + |y|)^{2}$$

$$\sqrt{2}|z| \ge |x| + |y| = |\operatorname{Re}(z)| + |\operatorname{Im}(z)|$$

Problem 5. In each case, sketch the set of points determined by the given condition:

- (a) |z 1 + i| = 1
- (b) $|z+i| \le 3$
- (c) |z 4i| > 4

Solution 5. (a)

Problem 6. Use properties of conjugates and moduli to show that

- (a) $\overline{z+3i} = z 3i$
- (b) $\overline{iz} = -i\overline{z}$

Solution 6. (a) $\overline{z+3i} = \overline{z} - 3i$

If we call z = x + iy, then

$$\overline{z+3i} = \overline{x+iy+3i} = \overline{x+i(y+3)} = x-i(y+3) = x-iy-3i = \overline{z}-3i$$

(b) Similarly

$$\overline{iz} = \overline{i(x+iy)} = \overline{ix-y} = -ix-y = -i(x+iy) - i\overline{z}$$

Problem 7. Sketch the set of points determined by the condition $Re(\bar{z}-i)=2$.

Solution 7. If z = x + iy, then

$$Re(\bar{z} - i) = Re(x - iy - i) = Re(x - i(y + 1)) = x = 2$$

Showing that this is the vertical line in the complex plane of all points with real part 2.

Problem 8. By factoring $z^4 - 4z^2 + 3$ into two quadratic factors and using inequality (8), Section 4, show that if z lies on the circle |z| = 2, then

$$\left|\frac{1}{z^4 - 4z^2 + 3}\right| \le \frac{1}{3}$$

Solution 8. Take z such that |z| = 2. Then $|z| = |x + iy| = \sqrt{x^2 + y^2} = 2$. So let us examine the following:

$$\left| \frac{1}{z^4 - 4z^2 + 3} \right| = \frac{1}{|z^2 - 3||z^2 - 1|}$$

Then by our given inequality, $|z^2-3|\ge \left||z|^2-3\right|$ and $|z^2-1|\ge \left||z|^2-1\right|$ which implies

$$\frac{1}{|z^2-3||z^2-1|} \leq \frac{1}{||z|^2-3|\,||z|^2-1|} = \frac{1}{|4-3|\,|4-1|} = \frac{1}{3}$$