## **Assignment 5: Classification**

## **Q1 Classification**

This assignment needs train.csv and test.csv. train.csv is for training and test.csv is for test. Both of them have samples in the following format:

| label | text                                           |  |
|-------|------------------------------------------------|--|
| 2     | I must admit that I'm addicted to "Version 2.0 |  |
| 1     | I think it's such a shame that an enormous tal |  |
| 2     | The Sunsout No Room at The Inn Puzzle has oddl |  |
|       |                                                |  |

Write a function **classify** to conduct a classification experiement as follows:

- 1. Take the training and testing file names (strings) as inputs, e.g. classify(training\_file, testing\_file).
- 2. Classify text samples in the training file using Multinomial Naive Bayes model as follows:
  - a. First apply grid search with 5-fold cross validation to find the best values for parameters min\_df, stop\_words, and alpha of Naive Bayes model that are used the modeling pipeline. Use f1-macro as the scoring metric to select the best parameter values. Potential values for these parameters are:

min\_df' : [1,2,3]

stop\_words' : [None,"english"]

alpha: [0.5,1,2]

- b. Using the best parameter values, train a Multinomial Naive Bayes classifier with all samples in the training file
- 3. Test the classifier created in Step 2.b using the test file. Report the testing performance as:
  - Precision, recall, and f1-score of each label
  - Treat label 2 as the positive class, plot precision-recall curve and ROC curve, and calculate AUC.
- 4. Your function "classify" has no return. However, when this function is called, the best parameter values from grid search is printed and the testing performance from Step 3 is printed.

## Q2. How many samples are enough? Show the impact of sample size on classifier performance

This question will use train\_large.csv dataset.

Write a function "impact\_of\_sample\_size" as follows:

- Take the full file name path string for a dataset inputs, e.g. impact\_of\_sample\_size(dataset\_file).
- Starting with 800 samples from the dataset, in each round you build a classifier with 400 more samples. i.e. in round 1, you use samples from 0:800, and in round 2, you use samples from 0:1200, ..., until you use all samples.
- In each round, do the following:
  - 1. create tf-idf matrix using TfidfVectorizer with stop words removed
  - 2. train a classifier using multinomial Naive Bayes model with 5-fold cross validation
  - 3. train a classifier using linear support vector machine model with 5-fold cross validation
  - 4. for each classifier, collect the following average metrics across 5 folds:
    - average F1 macro
    - average AUC: treat label 2 as the positive class, and set "roc\_auc" along with
       "f1 macro" as metrics
- Plot a line chart (two lines, one for each classifier) show the relationship between sample size and F1-score. Similarly, plot another line chart to show the relationship between sample size and AUC
- Write your analysis in a separate pdf file (not in code) on the following: (1 point)
  - How does the sample size affect each classifier's performance?
  - How many samples do you think would be needed for each model for good performance?
  - How is performance of SVM classifier compared with Naïve Bayes classifier, as the sample size increases?
- There is no return for this function, but the charts should be plotted.

## Q3 (Bonus): Predict duplicate questions by classification

You have tired to predict duplicate questions using the dataset 'quora\_duplicate\_question\_500.csv' by similarity. This time, try to use a classification model to predict if a question pair  $(q_1, q_2)$  are indeed duplicate.

| q1                                             | q2                                            | is_duplicate |
|------------------------------------------------|-----------------------------------------------|--------------|
| How do you take a screenshot on a Mac laptop?  | How do I take a screenshot on my MacBook Pro? | 1            |
| Is the US election rigged?                     | Was the US election rigged?                   | 1            |
| How scary is it to drive on the road to Hana g | Do I need a four-wheel-drive car to drive all | 0            |
|                                                |                                               |              |

In your Assignment 4, with cosine similarity, the AUC is about 74%. In this assignment, define a function **classify\_duplicate** to achieve the following:

- Take the full name of the dataset file (i.e. 'quora\_duplicate\_question\_500.csv') as the input
- do feature engineering to extract a number of good features. A few possible options for feature engineering can be:
  - Unigram, bigram, trigram etc.
  - Keep or remove stop words
  - Different metrics, e.g. cosine similarity, BM25 score (<a href="https://en.wikipedia.org/wiki/Okapi">https://en.wikipedia.org/wiki/Okapi</a> BM25 (<a href="https://en.wikipedia.org/wiki/Okapi">https://en.wikipedia.org/wiki/Okapi</a> BM25)), etc.
- build a classification model (e.g. SVM) using these features to predict if a pair questions are duplicate or not.
- Your target is to improve the average AUC of the positive class through 5-fold cross validation by at least 1%, reaching 75% or higher.
- return the average AUC

```
In [231]: import pandas as pd
import nltk
....

In [238]: # Q1
def classify(train_file, test_file):
    # ADD YOUR CODE HERE
```

```
def impact of sample size(train file):
              # Add YOUR CODE HERE
In [240]:
          #Q3
          def classify duplicate(filename):
              auc = None
              # ADD YOUR CODE HERE
              return auc
          if __name__ == "__main__":
In [242]:
              # Question 1
              # Test Q1
              classify("../../dataset/amazon review 500.csv",\
                   "../../dataset/sent test.csv")
              # Test Q2
              impact_of_sample_size("../../dataset/sent_train_large.csv")
              # Test 03
              result = classify duplicate("../../dataset/quora duplicate questio
          n 500.csv")
              print("Q3: ", result)
          clf alpha: 2
          tfidf__min_df: 1
          tfidf__stop_words: None
          best f1 macro: 0.7134380001639543
                        precision recall f1-score support
                     1
                             0.74
                                       0.76
                                                 0.75
                                                             99
                     2
                             0.76
                                       0.74
                                                 0.75
                                                            102
             micro avg
                             0.75
                                       0.75
                                                 0.75
                                                            201
                                                 0.75
             macro avg
                             0.75
                                       0.75
                                                            201
          weighted avg
                            0.75
                                       0.75
                                                0.75
                                                            201
          0.835016835016835
```

In [239]: # *Q2* 









Q3: 0.760092681967682

In [ ]: