# PCF8574T I<sup>2</sup>C 并行口扩展电路

## 1. 特性

- · 操作电压 2.5~6.0V
- · 低备用电流 (≤10 μ A)
- · I2C 并行口扩展电路
- 开漏中断输出
- I<sup>2</sup>C 总线 实现 8 位远程 I/O 口
- · 与大多数 MCU 兼容
- · 口输出锁存,具有大电流驱动能力,可直接驱动 LED
- 通过 3 个硬件地址引脚可寻址 8 个器件 (PCF8574A 可多达 16 个)
- · DIP16, SO16 或 SSOP20 形式封装

### 2. 概述

PCF8574 是 CMOS 电路。它通过两条双向总线( $I^2$ C)可使大多数 MCU 实现远程 I/O 口扩展。该器件包含一个 8 位准双向口和一个  $I^2$ C 总线接口。PCF8574 电流消耗很低,且口输出锁存具有大电流驱动能力,可直接驱动 LED。它还带有一条中断接线(INT)可与 MCU 的中断逻辑相连。通过 INT 发送中断信号,远端 I/O 口不必经过  $I^2$ C 总线通信就可通知 MCU 是否有数据从端口输入。这意味着 PCF8574可以作为一个单被控器。

PCF8574 和 PCF8574A 的唯一区别仅在于器件地址不相同。

## 3. 订单信息

|                       |      | 封装       |  |  |  |
|-----------------------|------|----------|--|--|--|
| 至亏                    | 名称   | 描述       |  |  |  |
| PCF8574T<br>PCF8574AT | S016 | 塑料小型表面封装 |  |  |  |

## 4. 功能框图



## 5. 管脚描述

| 标号              | 管脚   | 描述          |  |  |  |
|-----------------|------|-------------|--|--|--|
| 你亏              | S016 | 田匹          |  |  |  |
| A0              | 1    | 地址输入0       |  |  |  |
| A1              | 2    | 地址输入1       |  |  |  |
| A2              | 3    | 地址输入2       |  |  |  |
| P0              | 4    | 准双向 I/O 口 0 |  |  |  |
| P1              | 5    | 准双向 I/O 口 1 |  |  |  |
| P2              | 6    | 准双向 I/O 口 2 |  |  |  |
| P3              | 7    | 准双向 I/O 口 3 |  |  |  |
| V <sub>SS</sub> | 8    | 地           |  |  |  |
| P4              | 9    | 准双向 I/O 口 4 |  |  |  |
| P5              | 10   | 准双向 I/O 口 5 |  |  |  |
| P6              | 11   | 准双向 I/O 口 6 |  |  |  |
| P7              | 12   | 准双向 I/O 口 7 |  |  |  |
| INT             | 13   | 中断输入(低电平有效) |  |  |  |
| SCL             | 14   | 串行时钟线       |  |  |  |
| SDA             | 15   | 串行数据线       |  |  |  |
| $V_{DD}$        | 16   | 电源          |  |  |  |

### 管脚配置(S016)



## 6. I2C 总线特性

 $I^2C$  总线用于不同的 IC 或模块之间的双线通信。两条线其中之一为串行数据线(SDA),另一条为串行时钟线(SCL)。当与器件的输出级相连时,这两条线都必须接上拉电阻。数据的传送只有在总线空闲时才能进行。

### 位传送

在每个时钟脉冲出现时,总线传送一个数据位。在时钟信号高电平期间,SDA线上的数据位应保持稳定,如果此时改变SDA线数据则被认为是总线的控制信号(见图1)。

### 起始和停止信号

当总线空闲时,数据和时钟线保持高电平。SCL 线为高电平时,SDA 线电平由高至低的变化定义为总线的起始信号(S); SCL 线为高电平时,SDA 线电平由低至高的变化定义为总线的停止信号(S)(见图 2)。

### 系统配置

产生信息的器件称为'发送器',接收信息的器件称为'接收器'。控制信息的器件称为'主控器', 而由主控器控制的器件称为'被控器'(见图 3)。



#### 应答

在起动和停止信号之间所传送的数据数量不受限制。每个 8 位字节之后跟随一个应答位。应答位的时钟脉冲由主控器产生。被控接收器在接收到每一个字节数据之后必须发送一个应答信号;而主控器在接收到被控发送器发送的数据后,也必须发送一个应答信号。在出现与应答位对应的时钟脉冲时,产生应答位的器件将拉低 SDA 线,这样在应答位对应的时钟脉冲高电平期间,SDA 保持低电平状态。建立和保持时间必须纳入考虑。

当主控器作为接收器时,它必须在被控器发送完最后一个字节数据后产生非应答信号,此时发送器 必须将数据线释放为高电平,以使主控器能够产生一个停止信号。



图 4 1°C 总线上的应答

## 7. 功能描述



图 5 1/0 口的简化结构图

## 寻址

PCF8574 的每个 I/O 口都可单独用作输入或输出。输入通过读模式将数据传送到 MCU (见图 8),输出通过写模式将数据发送到端口 (见图 7)。



- (a) PCF8574.
- (b) PCF8574A.

图 6 PCF8574 和 PCF8574A 的从地址



图 7 写模式 (输出)



图 8 读模式 (输入)

## 中断 (见图 9, 10)

PCF8574 提供一个可以连接到 MCU 对应输入端的开漏输出口 (INT)。这样可使 PCF8574 能够启动系统中另外一处的动作。在输入模式中,口输入信号的上升或下降沿产生中断。在时间  $t_{iv}$ 之后 INT 有效。

当口数据变为初始值或产生中断端口的数据写入/读出时,中断电路复位并重新激活。在下列条件下发生复位:

- · 读模式中, SCL 信号上升沿之后的应答位
- · 写模式中, SCL 信号从高到低的跳变之后的应答位
- 应答时钟脉冲期间的中断复位可能会导致中断的丢失

中断复位后 I/O 口的每个变化都会被检测,并在下一个时钟上升沿作为 INT 发送。对另一个器件的读写不影响中断电路。





图 10 I/0 口 P5 的输入变化产生中断

## 准双向 I/0 口(见图 11)

准双向 I/0 口可用作输入和输出而不需要通过控制寄存器定义数据的方向。上电时 I/0 口为高电平。该模式中只有 Vin 提供的电流有效。在大负载输出时提供额外的强上拉以使电平迅速上升。当输出写为高电平时打开强上拉,在 SCL 的下降沿关闭。I/0 口用作输入之前应当为高电平。



图 11 P3 从低变为高再变为低时的瞬时上拉电流

## 极限参数

| 标号               | 参数        | 最小值                  | 最大值                  | 单位 |
|------------------|-----------|----------------------|----------------------|----|
| $V_{DD}$         | 电源电压      | -0.5                 | +7.0                 | V  |
| $V_{I}$          | 输入电压      | V <sub>SS</sub> -0.5 | V <sub>DD</sub> +0.5 | V  |
| II               | DC 输入电流   | -                    | ±20                  | mA |
| Io               | DC 输出电流   | -                    | ±25                  | mA |
| $I_{DD}$         | 电源电流      |                      | ±100                 | mA |
| $I_{SS}$         | 电源电流      |                      | ±100                 | mA |
| P <sub>tot</sub> | 总功率损耗     |                      | 400                  | mW |
| Po               | 每个输出的功率损耗 |                      | 100                  | mW |
| $T_{stg}$        | 储存温度      | -60                  | 150                  | °C |
| T <sub>amb</sub> | 工作环境温度    | -40                  | +85                  | °C |

## DC 电气特性

 $V_{DD}=2.5\sim6.0V; V_{SS}=0V; T_{amb}=-40\sim85^{\circ}C$ 

| 标号               | 参数                 | 条件                                                                                                                | 最小值                  | 典型值                | 最大值                  | 单位  |
|------------------|--------------------|-------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|----------------------|-----|
| 电源               |                    |                                                                                                                   |                      |                    |                      |     |
| $V_{DD}$         | 电源电压               |                                                                                                                   | 2.5                  | 25 <del>-2</del> 5 | 6.0                  | V   |
| $I_{DD}$         | 电源电流               | 工作模式; V <sub>DD</sub> =6V;<br>无负载; V <sub>I</sub> = V <sub>DD</sub> 或 V <sub>SS</sub><br>f <sub>SCL</sub> =100KHz | , <del>-</del>       | 40                 | 100                  | ∞A  |
| I <sub>stb</sub> | 备用电流               | 备用模式; V <sub>DD</sub> =6V;<br>无负载; V <sub>I</sub> = V <sub>DD</sub> 或 V <sub>SS</sub>                             | [n]                  | 2.5                | 10                   | ∞A  |
| $V_{POR}$        | 上电复位电压             | V <sub>DD</sub> =6V;无负载;<br>V <sub>I</sub> = V <sub>DD</sub> 或 V <sub>SS</sub> ; 注 1                              | -                    | 1.3                | 2.4                  | V   |
| 输入 SC            | L: 输入/输出 SDA       |                                                                                                                   | 100                  | 101                | <u> </u>             | 100 |
| $V_{IL}$         | 低电平输入电压            |                                                                                                                   | -0.5                 | _                  | +0.3 V <sub>DD</sub> | V   |
| $ m V_{IH}$      | 高电平输入电压            |                                                                                                                   | $0.7\mathrm{V_{DD}}$ | 8                  | V <sub>DD</sub> +0.5 | V   |
| $I_{OL}$         | 低电平输出电流            | V <sub>OL</sub> =0.4V                                                                                             | 3                    |                    | 35-45                | mA  |
| $I_L$            | 漏电流                | V <sub>I</sub> =V <sub>DD</sub> 或 V <sub>SS</sub>                                                                 | -1                   | _                  | +1                   | ∞A  |
| Ci               | 输入电容               | $V_I = V_{SS}$                                                                                                    | _                    | 18 <u>-3</u> 9     | 7                    | pF  |
| 1/0 □            |                    |                                                                                                                   | - <del>1</del> 21    |                    |                      |     |
| $V_{\rm IL}$     | 低电平输入电压            |                                                                                                                   | -0.5                 | -                  | +0.3V <sub>DD</sub>  | V   |
| $ m V_{IH}$      | 高电平输入电压            |                                                                                                                   | $0.7\mathrm{V_{DD}}$ | (3 <u>—2</u> )     | V <sub>DD</sub> +0.5 | V   |
| $I_{IHL}$        | 通过保护二极管的最<br>大允许电流 | $V_I \geqslant V_{DD}$ 或 $V_I \leqslant V_{SS}$                                                                   | -                    | -                  | ±400                 | ∞A  |
| $I_{OL}$         | 低电平输出电流            | $V_{OL} = 1V; V_{DD} = 5V$                                                                                        | 10                   | 25                 | (% <u></u> )         | mA  |

| 标号                | 参数                             | 条件                                                | 最小值                  | 典型值               | 最大值                  | 单位  |
|-------------------|--------------------------------|---------------------------------------------------|----------------------|-------------------|----------------------|-----|
| $I_{OH}$          | 高电平输出电流                        | $V_{OH} = V_{SS}$                                 | 30                   | S                 | 300                  | ∞A  |
| $I_{OHt}$         | 瞬时上拉电流                         | 应答时高电平(见图13)                                      | -                    | -1                | -                    | mA  |
|                   |                                | $V_{OH}=V_{SS}$ ; $V_{DD}=2.5V$                   |                      |                   |                      |     |
| $C_{i}$           | 输入电容                           |                                                   | ·                    | _                 | 10                   | pF  |
| Co                | 输出电容                           |                                                   | -                    |                   | 10                   | pF  |
| 端口时序              | 序: C <sub>L</sub> ≤100pF(见图 9, | 10)                                               | 300                  | 70                | *                    |     |
| t <sub>pv</sub>   | 输出数据有效时间                       |                                                   | _                    | _                 | 4                    | ∞s  |
| t <sub>su</sub>   | 输入数据建立时间                       |                                                   | 0                    | -                 | (a <u>—</u> )        | ∞s  |
| t <sub>h</sub>    | 输入数据保持时间                       |                                                   | 4                    | -                 | <u> </u>             | ∞s  |
| 中断INI             | (见图 12)                        |                                                   | 10                   | 700               | Say.                 | **  |
| $I_{OL}$          | 低电平输出电流                        | V <sub>OL</sub> =0.4V                             | 1.6                  | _                 | _                    | mA  |
| $I_L$             | 漏电流                            | V <sub>I</sub> =V <sub>DD</sub> 或 V <sub>SS</sub> | -1                   | _                 | +1                   | ∞A  |
| 时序; C             | ≤100pF                         |                                                   | **                   | 20                | 24                   | 12  |
| t <sub>iv</sub>   | 输入数据有效时间                       |                                                   | _                    |                   | 4                    | ∞s  |
| t <sub>ir</sub>   | 复位延迟时间                         |                                                   | -                    | _                 | 4                    | ∞s  |
| 选择输入              | AO~A2                          |                                                   |                      | 200               | 100                  | 100 |
| $V_{\rm IL}$      | 低电平输入电压                        |                                                   | -0.5                 | (s) <del></del>   | +0.3V <sub>DD</sub>  | V   |
| $V_{\mathrm{IH}}$ | 高电平输入电压                        |                                                   | $0.7\mathrm{V_{DD}}$ | (s) <del></del> 2 | V <sub>DD</sub> +0.5 | V   |
| $I_{LI}$          | 输入漏电流                          | V <sub>DD</sub> 或 V <sub>DD</sub> 脚               | -250                 | 30 <del></del>    | +250                 | nA  |

注 1: 上电复位电路复位 I<sup>2</sup>C 总线逻辑,并将所有 I/O 口都置位为 1。

# I<sup>2</sup>C 总线时序特性

| 标号                   | 参数             | 最小值            | 典型值     | 最大值  | 单位   |
|----------------------|----------------|----------------|---------|------|------|
| I <sup>2</sup> C 总线即 | 寸序(见图 12;)     | No constant of |         | -20  |      |
| $f_{SCL}$            | SCL 时钟频率       |                | _       | 100  | kHz  |
| $t_{SW}$             | 总线容许的尖峰信号宽度    | ) — I          | _       | 100  | ns   |
| t <sub>BUF</sub>     | 总线空闲时间         | 4. 7           |         | _    | σs   |
| t <sub>SU;STA</sub>  | 起始信号的建立时间      | 4.7            | _       | -    | œs   |
| t <sub>HD;STA</sub>  | 起始信号的保持时间      | 4. 0           | _       | _    | ∞s   |
| $t_{\rm LOW}$        | SCL 低电平时间      | 4. 7           | _       | _    | ∞s   |
| t <sub>HIGH</sub>    | SCL 高电平时间      | 4. 0           | _       | _    | ocs. |
| t <sub>r</sub>       | SCL 和 SDA 上升时间 | _              | _       | 1. 0 | ∞s   |
| $t_f$                | SCL 和 SDA 下降时间 |                | -       | 0. 3 | ocs. |
| t <sub>SU;DAT</sub>  | 数据建立时间         | 250            | _       | _    | ∞s   |
| t <sub>HD;DAT</sub>  | 数据保持时间         | 0              | _       | _    | ∞s   |
| $t_{VD;DAT}$         | SCL 低电平到数据输出有效 |                | <u></u> | 3. 4 | σs   |
| t <sub>SU;STO</sub>  | 停止信号建立时间       | 4.0            | -       | _    | ∞s   |

| PROTOCOL | START<br>CONDITION<br>(S) | BIT 7<br>MSB<br>(A7) | BIT 6<br>(A6) | BIT 0<br>LS <u>B</u><br>(R/W) | ACKNOWLEDGE<br>(A) | STOP<br>CONDITION<br>(P) |  |
|----------|---------------------------|----------------------|---------------|-------------------------------|--------------------|--------------------------|--|
|----------|---------------------------|----------------------|---------------|-------------------------------|--------------------|--------------------------|--|



图 12 I2C 总线时序



# S016: 塑料小型表面封装; 16 脚; 本体宽 7.5mm











#### DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT   | A<br>max. | Α1             | A <sub>2</sub> | A <sub>3</sub> | bp             | С              | D (1)        | E <sup>(1)</sup> | е     | HE             | L     | Lp             | Q              | v    | w    | у     | z <sup>(1)</sup> | θ  |
|--------|-----------|----------------|----------------|----------------|----------------|----------------|--------------|------------------|-------|----------------|-------|----------------|----------------|------|------|-------|------------------|----|
| mm     | 2.65      | 0.30<br>0.10   | 2.45<br>2.25   | 0.25           | 0.49<br>0.36   | 0.32<br>0.23   | 10.5<br>10.1 | 7.6<br>7.4       | 1.27  | 10.65<br>10.00 | 1.4   | 1.1<br>0.4     | 1.1<br>1.0     | 0.25 | 0.25 | 0.1   | 0.9<br>0.4       | 8° |
| inches | 0.10      | 0.012<br>0.004 | 0.096<br>0.089 | 0.01           | 0.019<br>0.014 | 0.013<br>0.009 | 0.41<br>0.40 | 0.30<br>0.29     | 0.050 | 0.419<br>0.394 | 0.055 | 0.043<br>0.016 | 0.043<br>0.039 | 0.01 | 0.01 | 0.004 | 0.035<br>0.016   | 0° |

### Note

<sup>1.</sup> Plastic or metal protrusions of 0.15 mm maximum per side are not included.

| OUTLINE     |        | REFERE   | EUROPEAN | ISSUE DATE |                                 |  |
|-------------|--------|----------|----------|------------|---------------------------------|--|
| VERSION IEC | IEC    | JEDEC    | EIAJ     | PROJECTION | ISSUE DATE                      |  |
| SOT162-1    | 075E03 | MS-013AA |          | •          | <del>95-01-24</del><br>97-05-22 |  |