This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

(19) Japanese Patent Office (JP)

(12) Official Gazette for Unexamined Patents (A)

(11) Kokai Patent No. 62[1987]-178013

(43) Kokai Publication Date: August 5, 1987

(51) Int. Cl.⁴:

Identification Symbols:

Patent Office File Nos:

H 03 K 17/693

101

A-7190-5J

19/00

Z-8326-5J

Number of Inventions: 1

Request for Examination: Not Requested

(Total of 13 Pages)

(54) Semiconductor Device

(21) Patent Application No. 61[1986]-17929

(22) Filing Date: January 31, 1986

(72) Inventórs:

Goro Kitsukawa

Hitachi, Ltd., Central Research Laboratory, 280, Higashi

Koigakubo 1 chome, Kokubutera-shi

Takaichi Hori

Hitachi, Ltd., Central Research Laboratory, 280, Higashi

Koigakubo 1 chome, Kokubudtera-shi

Yoshishige Kawajiri

Hitachi, Ltd., Central Research Laboratory, 280, Higashi

Koigakubo 1 chome, Kokubudtera-shi

Takao Watanabe

Hitachi, Ltd., Central Research Laboratory, 280, Higashi

Koigakubo 1 chome, Kokubudtera-shi

(71) Applicant:

Hitachi, Ltd.

6, Kanda Surugadai 4 chome, Chiyoda-ku, Tokyo-to

(74) Agent:

Katsuo Ogawa, Patent Attorney, and one other

Specification

Title of the Invention

Semiconductor Device

Scope of Patent Claim

- 1. A semiconductor device, characterized in that it is made from a circuit that comprises input, which is controlled by a pre-stage circuit, and at least one insulated-gate field-effect transistor, at least one reference voltage of the reference voltages of said circuit is set higher than the reference voltage of the pre-stage circuit, there is a first switch means between said reference voltage and the input of said circuit and there is a second switch means between the output of the pre-stage circuit and the input of said circuit, the high potential of the input of said circuit is supplied by turning on said first switch and turning off said second switch, and the low potential of the input of said circuit is supplied from the pre-stage circuit, which has been connected to said second switch, by turningoff said first switch and turning on said second switch.
- 2. The semiconductor device according to claim 1, further characterized in that said semiconductor circuit comprises at least one bipolar transistor.

Detailed Description of the Invention

[Industrial Field of Use]

The present invention pertains to a semiconductor device and in particular, relates to a semiconductor circuit that is ideal for obtaining a strong drive performance and a high output amplitude.

[Prior Art]

The semiconductor device in Japanese Kokai Patent No. 59[1984]-25423 is a conventional circuit that uses bipolar transistors and MOS transistors.

Figure 30 is the circuit diagram of the above-mentioned semiconductor device. Actuation and problem points of this circuit are described below:

The combined circuit of a CMOS (complementary MOS) inverter consisting of a p channel MOS transistor 4 and an n channel MOS transistor 5 and bipolar transistor 7 and the combined circuit of an n MOS transistor 6 and a bipolar transistor 8 are connected vertically. In the description that follows, the power source voltage Vcc is a positive value and the power source voltage Vss is 0 V. When the voltage of input terminal 1 is 0 V, p channel MOS transistor 4 is turned on, current flows to the base of bipolar transistor 7, and this bipolar transistor 7 is turned on. On the other hand, because 1 is at 0 V and 6 is on, bipolar transistor 8 is not turned on, with its base voltage being 0 V. As a result, current flows to output terminal 2 and its voltage rises. The voltage of output terminal 2 eventually becomes Vcc - VBE, which is the value obtained by subtracting the voltage between the base and emitter of transistor 7, VBE. from the voltage Vcc of a positive power source. On the other hand, when input 1 is at a high potential, 4 and 7_are OFF, 8 turns on because base current is supplied through 6, and the output drops to a low potential. By means of the technology

discussed below, current is always passed by bipolar transistors when output rises and falls, and therefore, while drive performance increases and high-speed actuation can be expected, there are the following problems: That is, by means of the conventional circuit in Figure 30, the voltage of output terminal 2 does not rise to voltage Vcc of a positive power source. Moreover, the voltage on the high potential side of input terminal 1 goes from Vcc to Vss with all of the transistors being turned on simultaneously. In order to prevent so-called through-type current, [the voltage] must be high at Vcc - I VT4P I. Here, VT4P is the threshold voltage of p MOS transistor 4. Therefore, when, for instance, the front step of this circuit is actuated at low amplitude in order to reduce power consumption, Vcc in Figure 30 inevitably drops and the voltage of output terminal 2 remains low.

It is not possible to raise the output voltage sufficiently with the above-mentioned type of conventional circuit. When the output voltage is low, the actuation of the next step of the circuit is delayed and when the LSI is viewed as a whole, high-speed bipolar transistors cannot be utilized to their fullest extent. This problem will become increasingly obvious in the future when device refinement and reduced power source voltage become necessary. Consequently, there is a need for a circuit that uses strong drive performance of bipolar transistors and outputs a sufficiently high output level. Moreover, this problem also occurs with conventional CMOS circuits without using bipolar transistors.

[Object of the Invention] _

The object of the present invention is to improve on these conventional problems and present a semiconductor device with which it is possible to obtain sufficiently high output level, even with input signals of a low amplitude.

[Summary of the Invention]

In order to accomplish the above-mentioned object, the semiconductor device of the present invention is made from a circuit that has input that is controlled by a pre-stage circuit, and at least one insulated-gate field-effect transistor. This circuit has one or more reference voltages and at least one of the above-mentioned reference voltages is set higher than the reference voltage of the pre-stage circuit that controls the above-mentioned circuit. Moreover, a switch means is set up in between this reference voltage and the input of this circuit. Thus, both the input voltage and an independent high output voltage can be obtained.

[Examples of the Invention]

The present invention will now be described in detail using examples.

Figure 1 is an example of the concept of the present invention. =

C is the input terminal from the front-step circuit, and D is the output—terminal. High-amplitude output D is obtained from low-amplitude input C by means of this circuit. B₁, B₂, and B₃ are alternating current or pulse high-voltage application terminals. Of these, B₁ supplies high voltage to node F through switch 12, B₂ supplies high voltage to node p MOS 13, and B₃ supplies high voltage to the collector of the bipolar transistors. These terminals B₁, B₂ and B₃ can be separate, but two of them or all of them may also be connected. A is the

control terminal of switch means 11. The output voltage is raised by bipolar transistor 15 and the output voltage is lowered by circuit block 16. 13 and 14 are the p MOS and n MOS transistors for controlling transistor 15. The number of inputs can be freely modified by increasing or decreasing the number of switches 11 of Figure 1. The high-voltage side of input C of a low amplitude or control input A is abbreviated V_A and the high-voltage side of the direct current or pulse applied to terminals B₁, B₂, and B₃ is abbreviated V_H in the drawings and the examples that follow. The voltage of these terminals is not necessarily exactly V_A or V_H, but V_A will serve as the low-voltage system and V_H will serve as the high-voltage system in order to simplify the explanation.

The actuation in Figure 1 is described below. First, C is brought to a low potential with switch 11 ON and 12 OFF, F is brought to a low potential and 13 turns on and 14 turns off. As a result, base potential G of 15 becomes V_H and _ the output voltage is raised quickly to the high potential $V_H - V_{BE}$ by bipolar transistor 15. V_{BE} here is the voltage between the base and emitter. Next, when input C is brought to a high potential, the potential of F rises through switch 11 to become $V_A - V_{T11n}$. V_{T11n} here is the threshold voltage of the n MOS comprising switch 11. As a result, 14 turns on, 15 turns off, and 16 turns on and the output potential of D drops. Input C switches to a high potential and switch 12 is turned on at almost the same time to bring the potential of F to V_H , which is higher than $V_A - V_{T11n}$. Thus, the through current, which passes through 13 and 14, can be prevented. When the potential of F is higher than C and A, switch 11 automatically turns off and the potential of F rises independent of the input.

Means 16, which lowers the output potential, can be made from one n MOS transistor as shown in the same figure, but when a bipolar and MOS combined circuit is used for this part as shown in Figures 2 and 3, the output voltage can be raised at a faster speed. Furthermore, when n MOS 16, which is shown in Figure 1, and any one of [the circuits] shown in Figures 2 and 3 are connected in parallel, the output potential can be lowered at a fast speed to 0 V.

An example of the structure of the pre-stage circuit connected to input C in Figure 1 is shown in Figures 4, 5, 6, and 7. Figure 7 is a bipolar-CMOS combined gate circuit. These all have three input NAND functions. The reference voltage is low at V_A and therefore, the output voltage is also V_A or is lower than V_A . In Figures 4 and 5, C has already been pre-charged to a high potential at p and \bar{p} , and C is discharged when I_1 , I_2 , and I_3 are all of high potential. There are no special pre-charge signals in Figures 6 and 7, but one or all of I_1 , I_2 and I_3 has already been brought to a low potential and C has been pre-charged to a high potential. When the circuit in Figure 5 or 7 is used for the pre-stage circuit in Figure 1, switch 11 can be omitted. The reason is that an n MOS or bipolar transistor is connected to the output in Figure 5 and Figure 7 and the problem of latch-up, etc., is prevented, even if C is raised to a high voltage of V_A or higher by actuation of the last-step circuit.

Next, a more specific example of the concept of the present invention in Figure 1 is shown in Figure 8. This example is one wherein switch 12 in Figure 1 is made from a p MOS and this source is connected to the source of p MOS 13 to serve as terminal B₁.

Next, the actuation of this circuit will be described using the voltage waveform graphs in Figures 9 and 10. Figure 9 is the case where the terminal of gate A of n MOS 11 is always at the high potential V_A. The high-potential side of input C is also brought to V_A. When C becomes a high potential with E in a highpotential state, the potential of F becomes the potential V_A - V_{T11n} through n MOS 11. Next, when E becomes a low potential, 12 (p MOS) turns on and the potential of F becomes V_H. As a result, 13 (p MOS) turns off, 14 (n MOS) turns on, bipolar transistor 15 turns off, and 16 (n MOS) turns on, and output D is brought to a low potential. Furthermore, when F rises to the high potential V_H, the potentials of A and C are V_A and therefore, 11 is off and the potential at point C-remains at V_A. On the other hand, when C is brought to a low potential with E in a high-potential state, 11 turns on and F and C both are brought to a low potential. As a result, 13 turns on, 14 turns off, node G becomes V_H, and output D is charged at a fast speed to a high potential. The high potential of this output is V_H - V_{BE}. Furthermore, by means of this circuit, when the period t_{CE} from when C is brought to a high potential V_A, as shown by the wave line in Figure 5, until E is bought to a low potential is long, the high potential of F is limited to V_A - V_{T11n} for a while, and therefore, through current flows to 13 and 14 and there is a time when D is held at an insufficiently low potential. Consequently, curtailing the time of t_{CE} is undesirable by systems with which A is usually at a high potential. Therefore, when C is brought to a high potential, E should be simultaneously switched to a low potential. The above-mentioned problem can be completely eliminated in this way. Figure 10 is another example wherein the above-

mentioned through current is not allowed to flow. It is a system with which A is pulse driven in the circuit in Figure 8. Control terminal A is brought to a low potential before E is switched to a low potential at times t₁ and t₃ and the potential of C at this time can be any [potential]. When E is brought to a low potential, F is brought to the high potential V_H, but n MOS 11 remains off because A is at a low potential. As a result, output D is brought to a low potential, as previously described. Next, E returns to a high potential, and when A is brought to a high potential at time t₂ with input C in a low-potential state, F is brought to a low potential. As a result, output D is charged to the high potential V_H - V_{BE}. On the other hand, if input C is at a high potential as at time t₄, 11 remains off and output D remains at 0 V. Moreover, then even if switch 12 is turned on at t₅, F stays at V_H and output D stays at 0 V. Thus, by means of the system in Figure 10, the potential of F is brought to the high potential V_H by switch 12 only, and therefore, the period in which the potential becomes V_A - V_{T11n} shown by the wave line in Figure 5 does not exist. It is possible to obtain high-amplitude output D from the low input of low-amplitude signals C and A by actuation of this circuit.

Furthermore, although switch 12 is made from a p MOS in Figure 8, it can also be made from an n MOS, as shown in the example in Figure 11. However, in this case, the polarity of the control signal E must be the opposite of that in Figures 9 and 10, and furthermore, in this case it is necessary to bring the potential of E to $V_H + V_{T12n}$ or higher in order to bring F to the high potential V_H . V_{T12n} here is the threshold voltage of 12 (n MOS).

The above-mentioned is a system with which A (switch 11) and E (switch 12) are synchronized. That is, switch 11 is always turned off before 12 is turned on and 12 is always turned off before 11 is turned on. Next, a system with which E is replaced by G will be discussed.

The example in Figure 12 is one where switch 12 is made from a p MOS and it is controlled by the output G of the next-step CMOS. The control signal E in Figures 8 and 11 has been omitted. Actuation of the circuit in Figure 12 will be explained using the voltage waveform graph in Figure 13. First, when input C is brought to the low potential of 0 V with control input A of switch 11 in a state of high potential V_A , switch 11 is turned on and therefore, F is brought to 0 V, switch 13 turns on, and 14 turns on. Thus, the potential of G is brought to V_H and bipolar transistor 15 turns on and 16 turns off. Output D is raised at a fast speed by the bipolar transistor and the output potential eventually becomes V_H - V_{BE}. The potential of G is V_H and therefore, switch 12 (p MOS) changes from ON to OFF. Next, when input C is brought to a high potential, the potential of F rises to the potential of V_A - V_{T11n} through 11 (n MOS). As a result, 14 is turned on and 13 almost turns off. The potential of G drops and 12 is turned on. Therefore, the potential of F rises further and the potential of G drops further until eventually, F is brought to V_H and G is brought to $0\ V_{\cdot}$. When the potential of F rises from V_A -V_{T11n} to V_H, switch 11 automatically turns off and the potential of input C remains constant. Thus, positive regression is applied by 12, 13, and 14.

Furthermore, although the control input A of switch 11 is always at a high potential in Figure 13, when a pulse voltage is applied to A, output D can be

changed in accordance with input C, as described above, when A is at a high potential, while output D can be held constant at the previous high potential or low potential, regardless of the change in input C, when A is at a low potential.

By means of the above-mentioned example, excess pulse signals are not needed from the outside and output D of a high voltage can be obtained from input C of a low voltage.

By means of the examples in Figures 8, 11 and 12 discussed thus far, switch 12 is made from an MOS transistor, but Figure 14 is an example of switch 12 made from a diode (bipolar or MOS diode) rather than an MOS transistor. Figure 15 is the voltage waveform graph. Figure 15 shows the case where the n MOS gate of switch 11 has been brought to the standard high voltage V_A. This corresponds to the electrical waveform graphs in Figures 9 and 13. Of course, switch 11 can be actuated as in Figure 10 by applying a pulse to its gate. Immediately after input C has been brought to the high potential V_A, signals that increase to potential V_H + V_{BE} are applied to the anode side B₁ of diode 12 in Figure 15 and point F is charged to V_H through diode 12. Moreover, output D is brought to 0 V. When B₁ returns to 0 V, 12 receives a reverse bias and turns off. Then when input C is brought to a low potential, the potential of F becomes 0 V through 11 and output D is charged up to V_H + V_{BE}. If input C remains at the high potential V_A when the potential of point F is V_H, output D will remain at 0 V without neglecting point F. By means of the above-mentioned example as well, the same high voltage output as with the previous examples can be obtained.

This may be a typo for "discharging"—Trans. Note.

Furthermore, the example in Figure 16 is a combination of using the system in Figure 8 whereby switch 12 is controlled by control signal E and the system in Figure 12. 12-1 (p MOS) in this figure is the switch that sets F to the high potential V_H using control signal E from the outside, and 12-2 is the switch that sets F to the high voltage V_H using output G of the CMOS inverter made from 14 and 15 as the control signals. The actuation of this circuit is the same as the actuation of the circuit in Figure 8, but when compared to the circuit in Figure 8, there is an advantage in that there is both stable and high-speed actuation of the circuit as a result of adjusting the gate width of the p MOS of 12-1 and 12-2. That is, when switches 11 and 12-1 are OFF, 12-2 turns on and point F is not brought to a floating state. Therefore, noise rarely penetrates point F from the outside and point F can be stably maintained at a high potential and output D can be stably maintained at a low potential. Moreover, point F is charged from a low potential to a high potential by turning 12-1 on, and therefore, if the gate width of 12-1 is increased, point F can be raised at a fast speed and output D can be lowered at a fast speed. On the other hand, if the gate width of 12-2 is small, point F can be lowered at a fast speed and output D can be raised at a fast speed. Thus, the raising and lowering of output D can both be performed at a fast speed.

Furthermore, the examples given above have all been cases of one input

(C) and one output (D), but when there are multiple inputs, [the device] can be

made by multiple parallel connections of switches 11 in accordance with the

number of inputs. Figure 17 shows one example where Figure 12 has been

changed to accommodate three inputs. In Figure 17, the three inputs (C_1 , C_2 , C_3) and switches A_1 , A_2 and A_3 , which control these [inputs] are applied to each switch 11-1, 11-2, and 11-3. By means of this circuit, all of inputs C_1 through C_3 of the switches whose signal A_i (i = 1, 2, 3) is brought to high voltage V_A are kept inside [the circuit], and the corresponding output is obtained from the output terminal. When A_1 , A_2 and A_3 are all at low potential, the potentials of outputs D, E_1 and E_2 are maintained as before, so that a constant voltage can be continuously maintained, regardless of changes in C_1 , C_2 , or C_3 .

Since the rise in the output is performed at a fast speed in each of the above-mentioned examples, a bipolar transistor was used for the output, but depending on the case, it is also possible to omit the bipolar transistor and obtain the output from point G of each example. In this case, a bipolar transistor is not used, and therefore, the device is inferior in terms of fast speed, but an output of a high amplitude can be obtained from an input of a low amplitude. Next, the structure of these [devices] will be discussed, and Figures 17 and 18 are examples of this. Figure 17 corresponds to Figure 1 and Figure 18 corresponds to Figure 8. Bipolar transistor 15 for output charging and n MOS transistor 16 for discharging in Figures 1 and 8 have been omitted. The actuation of the circuit and the voltage waveform are the same as previously discussed. However, while the rise in output is delayed because there is no bipolar transistor, there is an advantage in that the potential V_H of B_2 is obtained intact as output, that is, without the voltage drop of output V_{BE} , through p MOS transistor 13. As in the examples given thus far, terminals B₁ and B₂ in Figures 17 and 18 can be

separate, or the same voltage V_H can be supplied by connecting [the terminals] as shown by the wave line.

The present invention can be used for a variety of purposes, but it is particularly ideal as the word driver for semiconductor memory devices, including static memories (SRAMs), dynamic memories (DRAMs), and read only memories ROMs) that use MOS memory cells. This is because in order to realize high-speed semiconductor memory devices, it is necessary to drive the word line that is to be selected at high speed and high amplitude, to increase the signal voltage, and as a result, to increase the S/N ratio, and further, increase the storage voltage, and improve resistance to soft error. The details of the above-mentioned are set forth in "High density one-device dynamic MOS memory cells," IEEE PROC., vol. 130, Pt. I., No. 3, JUNE 1983, pp. 127-135.

Figure 20 is a block diagram of a semiconductor memory (DRAM, SRAM, ROM) and shows the memory cell array and peripheral circuit group.

i Number of word lines WL and j number of data lines DL are set up intersecting one another in memory cell array MCA, and memory cells MC are placed at N number of the points of intersection between the word lines and the data lines. Each address input X₀ through X_n and Y₀ through Y_n is applied to address buffer circuits ABX and ABY, and this output is transmitted to decoder driver circuits XD and YD. Of these decoder driver circuits XD and YD, the word lines are driven by circuit XD and the write-read circuit RC is driven by circuit YD so that the writing of information on the memory cell MC that has been selected from memory cell array MCA, or the reading of information from this memory cell

MC is performed. CC is the write-read control circuit, and this circuit CC controls the above-mentioned address buffer circuits ABX and ABY, decoder drive circuits XD and YD, write-read circuit RC, and output circuit OC by chip selector signals CS, write actuation control signals WE, and input signals DI. Output circuit OC is the circuit for externally outputting the information that has been read by write-read circuit RC. Furthermore, a static MOS memory cell is shown in Figure 20 and a dynamic MOS memory cell is shown in Figure 21 as examples of memory cell MC. Moreover, although omitted from the figures, a read-only MOS memory cell is also used. The circuit structure of the peripheral circuit group varies with the type of memory cell, but a high-speed, high-amplitude driving of the word line is an essential condition for the rapid and stable actuation of any of these memory cells.

Examples in which the present invention is used for the semiconductor memory cell (memory hereafter) word driver are given below.

Figure 23 is one example of a decoder and word driver. DEC is the decoder circuit, WD0, WD1, WD2, and WD3 are word drivers. The circuit shown in the example in Figure 8 is used as the word driver. By means of this circuit, four word drivers use the output C of one decoder circuit. Switches 11-1, 11-2, 11-3, and 11-4 made from n MOSs are placed between the decoder and the word drivers and these are controlled by signals AT₀, AT₁, AT₂ and AT₃. P₁ and P₂ are pre-charge signals of each decoder and word line and charge point C to V_A and points F₀, F₁, F₂ and F₃ to V_H when the memory is on stand-by or during the pre-charge period. AX₁, AX₂, and AX₃, and AT₀, AT₁, AT₂, and AT₃ are the

outputs of the address buffer circuit or the pre-decoder circuit. C is in a selective state at a low potential when AX_1 , AX_2 and AX_3 are all at a high potential. Furthermore, when one of [the signals] AT₀, AT₁, AT₂ or AT_[3] is at a high potential, the output of the word driver connected to this [output] is charged to a selective state at high potential. Next, the actuation in Figure 23 will be explained using the voltage waveform graph in Figure 24. CS in Figure 23 corresponds to the CS in Figure 19 and is the basic input signal that controls the timing of the memory chip. The input voltage of a TTL interface is assumed here. A high potential indicates that [the memory] is on stand-by or that it is in the precharge period, and the memory is in the state of actuation during the period of low potential. First, the "top 1" of the cycle in Figure 24 will be explained. When CS is high, P₁ and P₂ are 0 V and C is charged to the high potential V_A while F₀, F₁, F₂, and F₃ are charged to the high potential V_H by p MOS 30 and 12. Word lines W_0 , W_1 , W_2 and W_3 are all at low potential of 0 V at this time. When \overline{CS} is brought to a low potential and the memory is in an actuated state, P₁ is brought to the high potential V_A and P₂ is brought to the high potential V_H, and pMOS 30 and 12 are both OFF. When AX₁, AX₂ and AX₃ are all at thehigh potential V_A at this time, C becomes 0 V. Furthermore, when only AT₀ is at the high potential V_A and the others, AT_1 , AT_2 , and AT_3 are at a low potential, only F_0 is at 0 V and F_1 , F₂, and F₃ remain at the high potential V_H. As a result, W₀ is charged to the high potential V_H - V_{BE} and W₁, W₂, and W₃ remain at the low potential of 0 V. Once reading and re-writing of the memory is completed, all AX and AT signals are brought to a low potential in accordance with the \overline{CS} input, and further, P₁

and P_2 are brought to a low potential and C, F_0 , F_1 , F_2 , and F_3 are once again charged to a high potential. As a result, the selected word line W_0 also returns to 0 V. By means of the next cycle "top 2", the address input is changed and it is assumed that some or all of signals AX_1 , AX_2 , and AX_3 remain at a low potential. At this time, even if decoder output C remains as is at V_A , for instance, if AT_0 is brought to V_A , F_0 is not discharged and therefore, output W_0 remains at 0 V. CS input is at a high potential in a state of stand-by t_{ST} and therefore, P_1 and P_2 remain at a low potential and AX and AT also remain at a low potential. All word output is held at a low potential at this time. Decoder circuit DEC in Figure 23 is the same three input NAND circuits as in Figure 4, but the circuits in Figures 5, 6 and 7 can also be used. Moreover, the number of inputs of the decoder can be a number other than three, and the number of word drivers that use the output of one decoder can easily be a number other than four.

Figure 25 shows the circuit in Figure 16 used for the word driver. This decoder and word driver are controlled in the same way as in Figure 24, but this word driver can realize both stable actuation and high speed as described in Figure 16. That is, when P_2 is at a high potential and decoder output C is at a high potential, or when P_2 is at a high potential and switches 11-1 through 11-4 are OFF, the potential of F_0 through F_3 can be stably maintained at V_H by actuation of switch 12-2. Consequently, noise is rarely induced at points F_0 through F_3 of the other word drivers, even when a certain word switches from low potential to high potential, and the words that have not been selected can be

stably maintained at a low potential. Moreover, the gate width of 12-1 and 12-2 can be adjusted for the high-speed response of points F_0 through F_3 .

Furthermore, Figure 26 shows the case where the example in Figure 18 is used for the word driver of the example in Figure 23. A bipolar transistor is not necessary and therefore, production cost can be reduced. The circuit actuation is almost the same as in Figure 23 and therefore, its description has been omitted.

Now, an example of using the present invention in the word driver of a memory is shown in Figures 22 through 26. It is necessary to switch from lowamplitude input to high-amplitude output at high speed not only at the word driver of the memory, but throughout the input-output circuit of the memory and other integrated circuits in general. Figure 27 shows the case where signals are obtained from the low-amplitude circuit system 45, which is actuated at reference voltage VA, and high-amplitude output D is obtained using the conversion circuit of the present invention. References 41 through 44 indicate the inverters, which constitute system 45, or the logic-circuits. VA is supplied to their power source terminal J. High voltage V_H is applied to B as the reference voltage of 46 and, when necessary, the direct current of the pulse voltage of voltage VA is applied to A. A, B, C, and D correspond to the same references A, B, C and D in the figures of the above-mentioned examples. This type of circuit structure is widely present, for instance, in components in which there is conversion from an ECL low-amplitude input to the high-amplitude MOS level, and components in wich

there is conversion from the low-amplitude signals of the sense amp of the memory to the high-amplitude output of a TTL, etc.

However, by means of the structure in Figures 1 through 27, two positive power sources, a power source that supplies voltage V_A and a power source that supplies voltage V_H, are necessary. These power sources, of course, can supply electricity separately from outside the chip, but it is also possible for only one to supply electricity from outside the chip and generate, while the other generates and supplies electricity inside the chip based on [this electricity from outside the chip] as the reference, or for both sources to generate electricity inside the chip based on another power source as the reference. Consequently, it is also possible that of the above-mentioned examples, by means of one in which two positive power sources are necessary and one is an outside positive power source, for instance, the higher of two voltages is supplied directly from the outside power source, while the lower [voltage] is supplied by reducing the voltage of the outside positive power source further using a voltage limiter circuit, as shown in Patent Applications No. 56-[1981]-168,698 and No. 57[1982]-220,083. Moreover, depending on the case, it is also possible to supply the lower voltage from two required power sources from an outside positive power source and to raise the voltage of the outside positive power source using a booster circuit and then to supply this higher voltage.

Figure 28 is an example of the booster circuit used in the present invention.

By means of this circuit, voltage V_A is supplied from the outside positive power source to generate the high voltage V_H. The circuit in Figure 28 is one in which so-called charge-pump booster circuits CP₁ and CP₂ have been arranged in parallel. The actuation theory of the charge-pump booster circuit is well-known and will not be described here. Here, Zener diode 192 is for leaking of current when the voltage of terminal 194 becomes too much higher than the desired level V_H and for preventing the potential from rising further. However, it can be omitted when it is not necessary. Moreover, it is also possible to successively connect multiple MOS diode circuits, wherein the gate and drain of a conventional diode or MOS transistor have been connected, and use this in place of Zener dio

特開昭62-178013 (11)

第1頁の続き
②発 明 者 河 原 尊 之 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中/ 央研究所内
②発 明 者 伊 藤 清 男 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中 央研究所内

⑲ 日本国特許庁(JP)

① 特許出願公開

⑩ 公 開 特 許 公 報 (A)

昭62-178013

(5)Int Cl.⁴

識別記号

庁内整理番号

❸公開 昭和62年(1987)8月5日

H 03 K 17/693 19/00

101

A-7190-5J Z-8326-5J

審査請求 未請求 発明の数 1 (全13頁)

母発明の名称 半導体装置

②特 願 昭61-17929

②出 願 昭61(1986)1月31日

⑫発 明 者 橘 川

五 郎

国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中

央研究所内

⑩発 明 者 堀

陵 -

国分寺市東恋ヶ窪1丁目280番地 株式会社日立製作所中

央研究所内

の発明者 川 尻

良 樹

国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中

央研究所内

勿発 明 者 渡 部

隆 夫

国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中

央研究所内

⑪出 願 人 株式

株式会社日立製作所

東京都千代田区神田駿河台4丁目6番地

⑩代 理 人

弁理士 小川 勝男

外1名

最終頁に続く

明知一有

発明の名称 半導体装置

特許請求の範囲

- 2. 上記半導体回路に少なくとも1個のバイポーラトランジスタを含むことを特徴とする特許請求の範囲第1項記載の半導体数級。

発明の詳細な説明

[発明の利用分野]

本発明は半導体装置に係り、特に高い駆動能力 と大きな出力扱幅を得るのに好選な、半導体回路 に関するものである。

(発明の背景)

世来、バイポーラトランジスタとM O S トランジスタを用いた回路として、特開昭59-25423号公報に示された半導体装置がある。

第30図は上記半導体装配の回路図である。以下、この回路の動作並びに問題点を説明する。

PチャネルM O S トランジスタ 4 と N チャネル M O S トランジスタ 5 からなるC MOS (相補形 M O S) インパータとパイポーラトランジスタ 7 の組合せ回路と、 n MOS トランジスタ 6 とパイポーラトランジスタ 8 の組合せ回路を 縦続に 接続したものである。以下、電源電圧 V ccを 正の値、電源電圧 V ccを でして説明を行う。 入力 始子 1 の電圧が 0 Vの時、 P チャンネル M O S トランジスタ 4 がオンし、パイポーラトランジスタ 7 のベースに 電流が流れ、このバイポーラトランジスタ

7はオンする。一方パイポーラトランジスタBは、 1が0 Vで、かつ6がオンのためベースの母圧は 0 Vとなり、オンしない。この結果、出力端子 2 へ電流が流れ、その電圧が上昇する。出力端子2 の電圧は最終的には正電源の電圧V゚゚゚からバイポ ーラトランジスタ7のベース・エミツタ間電圧 VBEを登し引いた値 Vcc - VBEになる。一方、入 カ1が高電位の場合は、4,7はオフ、8は6を 介してベース電流が供給されるためオンとなり、 出力2は低電位に降下する。以下述べた技術によ れば、出力の立ち上り、立ち下り時には常にバイ ポーラトランジスタにより電流が流れるため、駆 動能力が大きくなり、高速動作が期待できる反面、 次のような不都合を生じる。すなわち、第30図 に示す従来回路では、出力端子2の電圧は正電源 の電圧 Vccまでは上昇しない。また、入力端子1 の高電位側の電圧を、すべてのトランジスタが同 時にオンしてVccからVssに洗れる、いわゆる貫 通電流を防ぐためにVcc ー IVT4P I 以上と高く する必要があることである。ここで V tepは p MOS

トランジスタ 4 のしきい低電圧である。 このためこの回路の前段を例えば低電力化のために低級幅動作をさせると、 第 3 0 図の V ccも下げざるを得ず、出力端子 2 の電圧はますます下がつてしまう。

以上のように従来回路では、出力電圧を十分高くとることができない。出力電圧が低いと、、次段回路の動作が遅くなり、LSI全体としてみた場合、パイポーラトランジスタの高速性を十分が微矩できない。この問題は、将来、デバイスが微知化され、電源電圧を低くする必要が生じた時におすます 顕著となる。したがつてバイポーラトランジスタを用いない、一般のCMOS回路においても同様に生じる。

〔発明の目的〕

本発明の目的は、この様な従来の問題点を改善し、低振幅の入力信号に対しても、十分高い出力 既圧を得ることが可能な半導体装置を提供することにある。

〔発明の概要〕

上記目的を達成するため、本発明の半導体装置では、前段回路により制御される入力をもち、かつ少なくとも1個の絶縁ゲート形電界効果トランジスタを含む回路で存成され、該回路は1個人とのお準電圧を持ち、上記基準電圧のうち少ととも1個を、上記回路を制御する前段回路の共りととではよりも高く設定すると共に、該基準電圧とはできる様にするものである。

「發明の事施例)

以下、本発明を実施例を用いて詳細に説明する。 第1 図は本発明の概念を示す実施例である。

Cは前段回路からの入力端子であり、Dは出力端子である。本回路により低振幅入力Cから高振幅出力Dを得る。Bi, Bi, Bi は直流又はパルスの高電圧印加端子である。このうちBi はスインチ12を通してノードドに高電圧を供給し、またBiはpMOS13のソースに高電圧を供給し、また

Baはパイポーラトランジスタのコレクタに高電 圧を供給する蛸子である。これらB1, B2, B8 は分離しても良いが、このうちの2個あるいは全 部を接続しても良い。Aはスイツチ手段11の制 御場子である。 パイポーラトランジスタ 15で出 力電圧を立ち上げ、回路プロック16で出力を立 ち下げる。13、14は15を制御するための p MOS. n MOSトランジスタである。第1回のスイ ツチ11の数を増減することにより、入力数を自 由に変更できる。本図および後述の実施例では低 抵幅の入力Cあるいは制御入力Aの高電圧側を VA、また蜗子B1, B2, Ba に印加する直流又は パルスの高電圧側を V H と記す。これらの端子の 程圧は必ずしも V A あるいは V H に完全に一致す る必要はないが、説明を単純にするための低電圧 系をVA, 高電圧系をVHとする。

以下第1回の動作を説明する。まずスイシチ 11がオン、12がオフの状態で、Cが低電位になると、Fは低電位になり13がオン、14がオフになる。この結果15のペース電位GはVHと

なり、パイポーラトランジスタ15により出力は 高速に高電位Vx-Vsg に上昇する。ここでVsg は15のペース・エミツタ間電圧である。次に入 力 C が高電位になると、 F の電位はスイツチ11 を通して上昇しVA-VTILa となる。ここで Vrus はスイツチ11を構成する n NOSの関値型 圧である。この結果、14がオン、15はオフ、 また16がオンとなりDの出力電位を立ち下げる。 入力Cの高電位への切換りとほぼ同時にスイツチ 12をオンさせ、Fの単位をVA-VTilm より高 いV# にする。これにより13,14を通じて流 れる貫通電流を防止することができる。Fは低位 がC、Aより高くなると自動的にスインチ11は オフとなりFの単位は入力と独立に上昇する。出 力能位を立ち下げる手段16は同図に示す様な1 個の n MOS トランジスタで構成しても良いが、こ の部分に第2回、第3回に示す柳な、パイポーラ とMOSの複合回路を用いれば、出力の立ち上げ をさらに高速に行うことができる。さらに、第1 図の16の様なn MOSと第2図、第3図のどちら

次に第1図の本発明の概念をより具体化した実施例を第8図に示す。この実施例は第1図に対しスイッチ12をpMOS で形成し、そのソースをpMOS 13のソースと接続し端子B1 としたものである。

次にこの回路の動作を第9関、第10図の電圧 波形図を用いて説明する。第9図は n MOS 11の ゲートAの端子が常に高電位 V A の場合である。 入力 C の高電位になると n MOS 11を通して下の 電位は V A ー V Tiin の低位となる。 次いでE が低 電位になると、12(p MOS)がオンし下の電は V H となる。 この結果13(p MOS)がオフュ 1 4 (n MOS)がオンとなり、出力 D は低電 オフ、16(n KOS)がオンとなり、出するの時 なおドが高電位 V H に上昇する時の ななられてあるので、11はオフである。 C の電位は V A のままである。 ー方、 E が高電位 の状態でC が低電位になる。この結果13がオンと の状態でC が低電位になる。この結果13がオン か一方を並列接続すれば出力電位を高速に、かつ 0 Vにまで立ち下げることができる。

第1回の入力 C に接続される前段回路の構成例 を第4回、第5回、第6回、第7回に示す。第7 図はバイポーラーCHOS複合ゲート回路である。こ れらはいずれも3入力NAND機能を持つ。基準配圧 がVAと低いので、出力電圧CもVAあるいはVA より低くなる。第4図,第5図ではp,pであら かじめ、Cを高電位にプリチヤージしておき、 .I1, I2, Is が全て高電位の時Cを放電する。 第6回、第7回では専用のプリチャージ信号はな いが、あらかじめ I 1, I 2, I a の 1 個あるいは 全部を低電位にしておき、Cを高電位にプリチャ ージしておく。 第1因の前段回路に第5回あるい は第7回の回路を用いれば、スイツチ11を省略 することができる。なぜなら第5回,第7回では 出力には n MOS 、 またはパイポーラト ランジスタ が接続されており、後段回路の動作によりCが Va 以上の高い電圧に昇圧されてもラッチアップ 等の問題を生じないからである。

14がオフしノードGがVн となり、出力Dが高 選に高電位に充電される。この出力の高電位は Vn-Vag である。なおこの回路では第5回の波 線に示す様にCが高電位VA になつてから、Eが 低電位になるまでの期間 toeが長いとFの高電位 $tV_A - V_{T11n}$ にしばらくとどまるので、13, 14に貫通電流が流れ、Dが不十分な低電位にと どまる期間が存在する。したがつてAが常時高電 位の方式では、tcgの時間を短かくすることが望 ましい。そのためにはCが高健位になると同時に Eを低位位に切換えればよい。これにより上記問 題は完全に解決できる。第10回は上記貫通電流 が流れないようにした他の実施例であり、第8図 の回路において、Aをパルス駆動する方式である。 時刻ti,taでEが低電位に切換る以前に側御端 子Aを低電位にしておく。この時Cの電位はどち らでも良い。Eが低電位になるとFは高電位Vn となるが、 n NOS 11はAが低電位のネオフの虫 まである。この結果出力Dは前述したと同様に低

電位となる。次にEが高電位に戻り、入力Cが低

電位の状態の時刻 t 2 で A が高電位になると下が低電位となり、その結果出力 D は高電位 V H ー V a E に充電される・逆に時刻 t 4 の様に入力 C が高電位なら 1 1 はオフ したままであり出力 D は O V のままである・またこの後 t a でスイッチ 1 2をオンさせても下は V H のまま・出力 D は で とするため 第 5 図の 被線の様に V A ー V T L 1 a の 電位となる 期間は存在しない。この 画の 動作により、 C と A の低級 幅信 号入力から高級 幅出力 D を 得ることができる。

なお第8回ではスイツチ12を p MOS で標成したが、これを第11回の実施例に示す様に n MOS で構成することもできる。但しこの時には制御信号Eの極性を第9回、第10回と比べ反転させる必要がある。さらにこの場合は F の高電位を V n とするには E の高電位を V n + V T 12 n 以上とする必要がある。ここで V T 12 n は 1 2 (n MOS) の関値電圧である。

を介して V A - V T 1 1 1 a の電位まで立ち上がる。この結果 1 4 がオン 1 3 がほとんどオフとなり、 G の電位が低下し、 1 2 をオンさせる。このため F の電位はさらに上昇し、 G の電位はさらに下降し、 最終的に F は V H , G は 0 V になる。 F の電位が V A - V T 1 1 は 自動的にオフになるので、 入力 C の電位は一定である。この様に 1 2 , 1 3 , 1 4 で正帰還をかけている。

なお第13図ではスイツチ11の制御入力Aは常に高電位としたが、Aにパルス電圧を印加すれば、Aが高電位の時、上述の様に入力Cに応じて出力Dを変化させ、またAが低電位の時は入力Cの変化に依らず出力Dを、以前の高電位又は低電位の一定状態に保つことができる。

以上述べた実施例によれば、外部から余分なパルス信号を必要とせず、低電圧の入力Cから高電圧の出力Dを得ることが可能となる。

これまで述べてきた第8回,第11回,第121 図の実施例ではスイツチ12をMOSトランジス 以上はA (スインチ11)とE (スインチ)12 を同期させる方式、すなわち12をオンする前に 必ずスイツチ11をオフにしておき、また11が オンする前に必ず12をオフにしておく方式であ る。次にEをGと共通にする方式について述べる。

第12図の実施例はスインチ12を P NOS で構成し、その制御を次段CNOSの出力 G で行い、第8図と第11図での制御信号 E を省略したものの電子を第13図の回路の動作を第13図の電圧 波形図を用いて説明する。まずスインチ11の制御入力 A が高電位 V A の状態で、入力で が低電位 V F も O V になり、スインチ11はオンして いるのが V H になり、スインチ13がオン、14がオフとなる。こうして、Gの電位が V H になり、バイポーラトランジスタ15がオン、16がオフになる。出力 D はバイポーラトランジスタ15がオン、16がオフになる。出力 D はバイポーラトランジスタには V H C を S C の電位 W H であるので、ストーンチ12 (P NOS)はオンからオフに変わる。次に入力 C が高電位になると、F の電位は11 (n NOS)

タで構成してきたが、さらにスイツチ1 2を MOSをトランジスタでなくダイオード (パイポ ーラあるいはMOSダイオード)で構成したのが 第14回の実施例である。第15回はその電圧波 形図である。第15図はスイツチ11の n MOS のゲートを常時高低位V^とするもので、前述し た第9回。第13回の電気波形図に対応するもの である。もちろんスイツチ11のゲート にパルス を印加して第10図と同様な動作をさせることも できる。第15回でダイオード12のア ノード係 B」には入力Cが高電位VAになった直後、Vn + VBEの低位まで立ち上る信号を与え、ダイオード 12を通してF点をVn に充健する。かくして出 カDをOVにする。B」がOVに及ると、12は 逆パイアスとなりオフとなる。その後入力Cが低 電位になると、Fの電位は11を通して OVにな り、出力DはVn + Vagまで充電される。 F点の **電位がVェ の時、入力Cが高電位Vェ の ままであ** ると、F点は放配されず出力Dは0Vのままであ る。以上に述べた実施例においても、既に述べた

実施例と同様に高電圧出力を得ることができる。

さらに前述した第8図の様にスイッチ12を制 御信号Eで制御する方式と、 第12図の方式を併 用したのが第16回の実施例である。この図で 12-1 (p MOS)は外部からの制御信号Eを用い TPを高電位VH に設定するスイッチ、また12 - 2 は 1 4 , 1 5 で構成されるCMOSインバータの 出力Gを制御信号に用いることにより、Fを高電 位 Vн に設定するスイツチである。この回路の動 作は第8図の回路動作と等しいが、第8図の回路 に比べ、12-1と12-2のp NOS のゲート幅 を闘整することにより、回路動作の安定化と高速 化を両立させることができる利点がある。すなわ ちスイツチ11,12-1がオフの時には12-2 がオンとなり、F点をフローテイング状態にし ないので、外部からF点に雑音が入りにくく、安 定にF点を高電位に、出力Dを低低位に保持する ことができる。またF点を低電位から高電位に充 促する時は12-1をオンさせることにより行う ので、12-1のゲート幅を大きくとればF点を

来る.

以上に記した実施例はいずれも出力の立ち上げ を高速に行うため、出力にバイポーラトランジス タを用いてきたが、場合によつてはバイポーラト ランジスタを削除して、各実施例の日点から出力 を取り出すこともできる。この場合パイポーラト ランジスタを用いていないため高速性では劣るが、 低揺幅入力から高揺幅の出力を得ることが出来る。 次にそれらの構成について述べる。第17回,第 18図はこれらの実施例である。このうち第17 図は第1図に、第18図は第8図に各々対応し、 いずれも第1回。第8回での出力充電用バイポー ラトランジスタ15と放電用 n MOS トランジスタ 16を省略したものである。 回路の動作や電圧波 形も既に述べてある通りである。但しパイポーラ トランジスタがないため出力の立ち上がりが遅く なる反面、Bz の電位 Vn が p MOS トランジスタ 13を通してそのまますなわち出力 VBEの電圧降 下なしに出力に得られる利点がある。第17回。 第18回で、B1、B2の婚子は分離しても良いが

高速に立上げ、出力 D を高速に立下げることができる。一方 1 2 - 2 のゲート 観を小さくとれば F 点を高速に立下げ、出力 D を高速に立上げることができる。この様にして出力 D の立上り、立下りを共に高速化することができる。

なお以上に述べてきた実施例はいずれも1入力の場合であるが、多入力の場合であるが、多入力の場合にもスインチ11を入力数に応じて多数並列に接続することにより構成できる。この1例を第12回を3入力に変形した実施例を第17回では3入力(C1, C2, Ca)とこれを制御する個号A1, A2, Aa を各レンチ11-1, 11-2, 11-3に印かる。なりチ11-1, 11-2, 11-3に印かでは、個号A1(i=1, 2, 3)ではることでは、ののでは、のの状態を保持し続ける。またA1, A2, A3 がすべて取りられる。またA1, A2, A3 がすべて低電位の時は、C1, C2, C3 の状態を保持し続けることな

放線の様に接続し同一電圧 V n を供給しても良い のは、これまでの実施例と同じである。

本発明には種々の用途が考えられるが、特にMOSメモリセルを用いたスタテイツク形メモリ (SRAM) , ダイナミツク形メモリ (DRAM) あるいはリードオンリメモリ (ROM) 等の半導体記憶設置のワードドライバに用いると好適である。なぜなら高速の半導体記憶装置を実現するためには、選択すべきワード線を高速かつ高級幅に駆励し、信号電圧を大きくしてS/Nを高め、さらには登積電圧を大きくしてソフトエラー耐性を高めることが必要なためである。以上の事情については、ITOH, R.and SUNAMI, H. 「ハイデンシテイ・ワンデバイス・ダイナミツクス・メモリセルズ」、High density one - device dynamic MOS memory cells', IEBEPROC., vo 2 . 130, Pt. I. Ma3, JUNE 1983., pp127~135 に詳細がある。

第20図は半導体記憶製図の(DRAM, SRAM, ROM)のブロンク図であり、メモリセルアレー と周辺図路群が示されている。

このメモリセルアレーMCAには、1本のワー ド線WLとう本のデータ線DLが交換配列され、 ワード線とデータ線の交点のうちN個にメモリセ ルMC が配置されている。アドレスパツフア回路 ABX, ABYには各々アドレス入力Xo~Xa, Yo~Y。が印加され、その出力が、デコーダ・ ドライバ回路 X D、 Y D に伝達される。これらの デコーダ・ドライバ回路 X D, Y D のうち回路 XDによりワード線が、回路YDにより書き込み ・読み出し回路RCがそれぞれ駆動され、メモリ セルアレーMCA内の遊択されたメモリセルMC への情報の書き込み、あるいは眩メモリセルMC からの情報の読み出しを行う。CCは書き込み・ 読み出し制御回路で、この回路CCは、チップセ レクト信号CS、書き込み動作制御信号WE、入 力借号DIによつて前記アドレスパッフア回路 ABX, ABY, デコーダ・ドライバ回路XD, YD、書き込み・説み出し回路RC、出力回路 OCを制御する。出力回路OCは、 書き込み・読 み出し回路RCにより読み出された情報を外部へ

出力するための回路である。なおメモリセルMCの一例としてスタテイツク形MOSメモリセルを第20図に、またダイナミック形MOSメモリセルを第21図に示す。また図では省略するがリードオンリ形MOSメモリセルを用いることもある。これらメモリセルの形式に応じて、周辺回路群の回路構成は異つたものとなるが、ワード線を高速かつ高振幅に駆動することが、いずれのメモリセルについても高速化、動作安定化の必要条件である。

以後、本発明を半導体記憶装置(以下メモリと略す)ワードドライバに適用した実施例を述べる。第23回はデコーダ・ワードドライバの1実施例である。DECはデコータ回路、WDO、WD1、WD2、WD3のワードドライバである。ワードドライバには第8回の実施例回路を用いている。この回路は1ケのデコーダ回路の出力Cを、4個のワードドライバで共用している。デコーダとワードドライバの間にnMOSによるスイツチ11-1、11-2、11-3、11-4を設け、

これらを信号ATo, AT1, AT2, AT3で制御 している。 Pı, Pzは各々デコーダとワードドラ イバのプリチヤージ信号で、メモリ特機時あるい はプリチヤージ期間にはC点をVA、Fo、F1. F2. F8 点をVHに充電しておく。AX1. AX2. AXs, SLUATO, AT1, AT2, AT8 UP ドレスパッフア回路あるいはプリデコーダ回路の 出力であり、AX1、AX2、AXa が全て高電位 の時、Cは低低位の選択状態になる。さらに、 ATo, AT1, AT2, AT のうち1本が高電位 になると、それに接続されるワードドライバ出力 を高電位の選択状態に充電する。次に第23図の 動作を第24國の電圧波形図を用いて説明する。 第23回のCSは第19回のCSに対応するもの でメモリチップのタイミング制御を行う基本入力 信号である。ここではTTLインターフエースの 入力電圧を想定している。高電位の時は待機時あ るいはプリチャージ期間を表わし、低電位の期間 にメモリが動作状態になるものとする。まず第 24図のサイクルのtopl について説明する。 TSが高低位時にP1、P2 はOVでpMOS30,

12によりCを高電位VA, Fo, F1, F1, F8 · を高電位 V H に充電しておく。この時ワード線 Wo, W1, W2, Ws は全て低電位 O V である。 CSが 低電位になりメモリが動作状態になると、Pェが 高電位 VA, Pzが高電位 VHとなり、pMOS3O, 12は共にオフとなる。この時AX1, AX2, A X a が全て高電位 V A になると、C が O V になり、 さらにATo のみが高電位Va, その他のATi, AT2, ATsが低電位の時は、FoのみがOV, F1, F2, F8は高電位VHのままである。この結 果Wo が高電位 VH-VBEに充電され、W1、W1, Waは低低位OVのままである。メモリの説出し、 再書込みの終了後、CS入力に応じてすべての AX, ATが低電位となり、さらにP1, P2が低. 電位となり、再びC, Fo, F1, F2, F8を高電 位に充電する。この結果、通択ワード線Wοも OVに戻る。次のサイクルtop 2 では、アドレス 入力が変化してAX1, AX2, AX8 の一部また は全部が低電位のままと仮定する。この時デコー ダ出力 C が V A のままでたとえば A T o が V Aにな

つても、Fo 放電されないので、出力Wo は O V のままである。特機状態 t st では C S 入力が高電位なので P 1、P 2は低電位、A X 、A T は低電位のままである。この時全ワード出力は低電位を保つ。第23図のデコーダ回路 D E C は 第4図と等しい 3 入力 N A N D 回路であるが、 第5回、 第6図、 第7回の 様な 回路を用いることもできる。またデコーダの入力数を3入力以外とすることや1 デコーダの出力を4個以外のワードドライバに共用することも容易に可能である。

第25図はワードドライバに第16図の回路を用いたものである。このデコーダ、ワードドライバの制御は第24回と同様にして行えるが、第16図のところで述べた様にこのワードドライバは動作の安定化と高速化を両立させることができる。すなわち P2 が高電位で、かつデコーダ出力 C が高電位の時、あるいは P2 が高電位でかつスインチ 11-1~11-4がオフの時、スイナチ 12-2の動作により Fo~Fs の電位を安定に VH に保持することができる。したがつてある

るインバータ、あるいは論理回路を示し、これらの電源帽子JにはVAを供給する。46の基準電圧としてBには高電圧VHを、また必要ならAには電圧VAの直流またはパルス電圧を印加する。A、B、C、Dは前述の実施例図のA、B、C、Dに対応する。この様な回路構成は、たとえば、Dに対応する。この様な回路構成は、たとえば、Cとしの低級幅入力から高級幅のMOSレベルプの低級幅信号からTTLの高級幅出力に変換するの低級幅信号からTTLの高級幅出力に変換するの分等、広く存在する。

ところで、第1図~第27図の構成では、電圧 VAを供給する電源と電圧VIIを供給する電源の 2つの正電源を必要とする。これらの電源をチャップ外部から別々に供給することは勿論可能である。 が、いずれか一方のみを外部から供給し、他の電源であるは された。 はいずれもチップ内部で発生して供給した り、あるいはいずれもチップ内部である。したを 数準にして発生することも可能である。したを ない。 ないで、前述の実施例のうち、2つの正電源を必要と するものを1つの外部正電源のもとで、例えば2 ードが低電位から高電位に切換る時にも、他のワードドライバのFo~Fs点には難音が誘起されにくく、非選択のワードを安定に低電位に保持することができる。また12-1,12-2のゲート額を開発し、Fo~Fs点の応答を高速化することもできる。

さらに第26図は、第23図の実施例に対し、 ワードドライバ第18図の実施例を用いたもので ある。バイポーラトランジスタを必要としないた め、製造コストを下げることができる。回路助作 は第23図とほとんど等しいので説明を省略する。

つの電圧のうち、高い方は外部正電源より直接供給し、低い方は、外部正電源の電圧を特顧昭56-168698号、特顧昭57-220083号明知書などに示されているような電圧リミンタ回路により低くして供給することも可能である。また、場合によっては、必要とする2電源のうち、低い方は外部正電源の電圧を昇圧する回路によつて高くして供給してもよい。

第28図は、本発明に用いる昇圧回路の一次施 例図である。

この回路では、電圧 V A は外部正位 級より供給して、高電圧 V H を発生させる。第28図の回路は、基本的にはいわゆるチャージポンプ型の昇圧回路の上でものである。チャージポンプ型の昇圧回路の動作原理は、よく知られているのでここでは省略する。ここで、ツエナーダイオード192は、端子194の電圧が所望のレベル V H より上がり過ぎた場合に電流レークさせ、それ以上の電位上昇を防止するためのものであるが、必要のない場合は除去してもよい。

またツエナーダイオード192の替りに、通常のダイオードやMOSトランジスタのゲートとドレインを接続したMOSダイオード回路を順方向に複数個接続したものを用いてもよい。また、CP1、CP2として、MOS容量とMOSトランジスタで構成したダイオードを3段接続した例を示したが、一般的に段数をn、MOSトランジスタのしきい電圧をVT、 øsi~øsa、øti~øtaのパルス短幅をVa とすると、得られる電圧は約(n+1)(Va-Vt)となり、必要とするVHの値に応じてnの値を選べばよい。

この回路を第22図~第26図に適用した場合、第28図の端子194より供給しなくてはならない電流は、ワード線が選択されるときに大きくなる。したがつて、半導体メモリのアクテイブな期間には、大きな供給電流を得るためにCP1とCP2の両方を動作させ、スタンバイの期間には、CP1のみを動作させることも可能である。これによつて、低い消費電力で大きな出力電流を得ることができる。

194の電位が低下することがある。その場合には、端子194がコレクタに接続されたパイポーラトランジスタの飽和を防止するため、端子194の容量を大きくして、電位の低下を小さくする必要がある。そのためには、VHを供給するためのパイポーラトランジスタのコレクタを、全て端子194に接続することによつて、パイポーラトランジスタのコレクタ容量により端子194の寄生容量を増加させることもできる。また、ここでは、中siと中saおよび中tiと中taはそれぞれ別信号として示したが、場合によっては同一信号で駆励することもできる。

〔発明の効果〕

以上説明したように、本発明によれば、MOSトランジスタを含む回路において、動作の基準となる電圧を、上記回路を制御する前段回路が基準として動作する電圧とは異なる値にするので、所望の大きな出力電圧を得ることができる。

図面の簡単な説明

第1図は本発明の基本構成を示す第1の実施例

第29回は、第28回のCP1, CP2へ印加するパルスの電圧放形の一例図である。

図においては、tst ・すなわちスタンバイの脚間にはCP1のみが動作し、top ・すなわちアクティブな知間にはCP1とCP2の両方が動作する例を示している。CP2の超動時刻を可知させるには、例えば、チップを記していると同期させるには、例れば、チップを記しているがである。CAS信号を利用してCP2を活性化してもよいことは勿論である。

なお、ここではチャージポンプ回路を 2 つ用いた例を示したが、必要に応じて 1 個にしたり、あるいはさらに多くの回路を用いてもよい ことは勿論である。また、ワード線の電位の立ち上げを非常に高速に行うと、一時的に、第 2 8 図 の 嫡子

國、第2國,第3國は出力放電回路、第4國,第 5回, 第6回, 第7回は前段回路の構成例、第8 図は第2の実施例図、第9回と第10回は第8回 の乱圧波形図、第11回は第3の実施例図、第 12回は第4の実施例図、第13回は第12回の - 健圧波形図、第14回は第5の実施例図、第15 図は第14図の電圧波形図、第16図は第6の実 施例図、第17回は第12回を多入力へ適用した 第7の実施例図、第18回は第8回の実施例図、 第19図は第9の実施例図、第20図は半導体記 憶装度のプロツク図、第21図はスタテイツク形 MOSメモリセルの回路図、第22図はダイナミ ツク形MOSメモリセル回路図、第23図はメモ リのデコーダ、ワードドライバへの本発明の適用 実施例図、第24図は第23図の電気波形図、第 25回はデコーダ,ワードドライバへの第2の遊 用实施例図、第26図はデコーダ。ワードドライ パへの第3の適用実施例図、第27回は本発明の 一般的な応用例を示す図、第28回は直流高電圧 を発生する回路図、第29回は第28回の各部の

特開昭62-178013(9)

電圧波形図、第30図はバイポーラCMOS複合形従来回路である。

C, C1, C2…低级幅入力、D…高级幅出力、A, A1, A2 … 制御入力、E … 制御入力、B . B1. B2. Ba···高锟圧印加端子、VA···低锟圧、VH··· 高電圧、Vcc…正側電源電圧、Vss…負側電源電 圧またはOV、Xo~Xo…Xアドレス、Yo~Yo \cdots Y γ F V J J M C A \cdots J T J T J V J J J J J …メモリセル、DL, DL…データ線、WL, Wo, Wi, Wz, Wa…ワード線、ABX, ABY …アドレスパツフア回路、 X D , Y D … デコーダ, ドライパ回路、RC… 書込み・読出し回路、CC … 制御回路、OC… 出力回路、DO… メモリ読出 し出力、 CS …チップセレクト信号、 WE … 客込 み制御信号、DI… 書込み入力、DEC… デコー ダ、P1…デコーダプリチヤージ信号、P2…ワ --ドドライバプリチャージ信号、A X 1, A X 2, A. X 』 … アドレスパツフア出力あるいはプリデコ ーダ出力、ATo, AT1, AT2, AT8…第2の アドレスパツフア出力またはプリデコータ出力、

C P I , C P I … チヤージポンプ回路、 φ S I , φ S 2 , φ S 3 … C P 1 活性化パルス、 φ T I , φ T 2 , φ T 3 … C P 2 活性化パルス。

代理人 弁理士 小川勝男

特開昭 62-178013 (11)

第 21 图

第1頁の続き

②発 明 者 河 原 尊 之 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内

②発 明 者 伊 藤 清 男 国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内