Детоксификация текстов

В. Ганеева, Я. Лабенская

Чего мы хотели:

На первом этапе работы:

- 1. Анализ данных
- 2. Препроцессинг
- 3. Т5 и вариации
- **4.** LSTM и вариации

Процесс работы

- 1. Сделали препроцессинг. Столкнулись с проблемами: спеллчекер не знает мат. Токенизация и лемматизация очень плохо работают с особенностями комментариев вроде скобочек в конце слова с цифрами, пропущенных пробелов и текстовых смайликов.
- 2. Обучили rut5-base с разными параметрами. Попробовали mt5, rut5-small и ещё несколько моделей. Проблема: модели слишком большие, чтобы обучать их локально, порой всё ещё большеваты для колаба без про-аккаунта, а также все эксперименты с ними прекращаются в тот момент, когда у нас заканчивается лимит времени.
- 3. **Для LSTM сложнее подготовить данные** в силу особенностей токенизации можно пометить как "то, что нужно исключать" те слова, которые в детоксифицированном виде просто написаны по-другому.

Нейтральные комментарии

Токсичные комментарии

Какие бывают комментарии

1. Полностью токсичные.

Те, в которых нам нужно заменять все слова, и не факт, что нужно просто заменить их нейтральными.

<u>"на х,,й твоя мамка хороша а ты сука рот свой поганый закрой"</u>

Частично токсичные.

Мат или оскорбление можно удалить без потери смысла.

"О, а есть деанон <u>этого петуха</u>?" "О, а есть деанон?"

3. Частично токсичные, но не оскорбительные.

Матерные слова можно заменить на нормативные синонимы, и оскорбительно не будет

"упаси боже такую мать, которая ребёнка готова <u>пиздить</u>"

"упаси боже такую мать, которая ребёнка готова <u>ударить</u>"

Проблемы базовых решений

Токенизация

Мы попробовали три разных варианта – stanza, udpipe и spacy. Результат не очень

'блятьпиздецлишьбыбалынабралисьсука',

```
preprocess('надо((сука')
(['надо((сука'], ['надо((сука'])
```

Словарный подход

Нам нужно выделять те слова,, которые в контекстах могут и быть оскорблениями, и нет

```
'голубые',
'пидорком',
'тарелку',
'уф',
'флагом',
```

Препроцессинг

Идея 1: нормализация

Стоит произвести обычную нормализацию текста - избавиться от знаков препинания, хэштегов и эмодзи

Идея 2: автокоррекция

В данных очевидно много опечаток, которые исправлены в нейтральных вариантах тех же комментариев - то есть, в нашем таргете. Можем ли мы подключить к этой системе автокорректор для исправления опечаток еще в рамках окончательного препроцессинга?

Textacy: надстройка над Spacy, позволяющая автоматически удалять лишние пробелы, пунктуацию и эмодзи

Нормализация

Токенизатор: NLTK (word_tokenize)

Вариант 1: модуль autocorrect, предобученный для русского языка

Автокоррекция

Вариант 2: модель rut5-small-normalizer: трансформер t5, обученный на русском языке и дообученный для задачи автокоррекции

T5

```
Ввод [244]: number = 210

print('original: '+str(df['toxic_comment'][number]))

print('autocorrect module: '+str(spellcheck(df['toxic_comment'][number])))

print('t5: '+str(t5_autocorrect(df['toxic_comment'][number])))
```

original: Жириновский очень точно сформулировала лозунг отечественного ресентимента. autocorrect module: Жириновский очень точно сформулировала лозунг отечественного ресентимента. t5: Жириновский очень точно сформулировал лозунг Отечественного Ресертмента.

T5

```
Ввод [424]: number = 1680
work_str = str(preprocess(df['toxic_comment'][number]))
print('original: '+str(df['toxic_comment'][number]))
print('original-preproc: '+work_str)
print('autocorrect module: '+str(spellcheck(work_str)))
print('t5: '+str(t5_autocorrect(df['toxic_comment'][number])))
```

original: какая блядь сейчас бруснику собирает руки отрывать за это надо original-preproc: какая блядь сейчас бруснику собирает руки отрывать за это надо autocorrect module: какая блядь сейчас бруснику собирает руки отрывать за это надо t5: Какая блядь сейчас собирает руки, отрывать за это надо?

T5

```
BBOД [362]: number = 1080
work_str = str(preprocess(df['toxic_comment'][number]))
print('original: '+str(df['toxic_comment'][number]))
print('original-preproc: '+work_str)
print('autocorrect module: '+str(spellcheck(work_str)))
print('t5: '+str(t5_autocorrect(work_str)))
```

original: а значит и драный их батька такой-же фашизюка, если не пресёк это original-preproc: а значит и драный их батька такой же фашизюка если не пресёк это autocorrect module: а значит и драный их батька такой же фашизма если не пресёк это t5: А значит, такой же батька сидит на этой страшнейшей массизе.

Словарь бейзлайна

вымандившаяся упиздяшивающую помандяхивавшее обмандохивался отмандимтесь припиздюривавшее выхуякивавши напиздошивающая припиздиться отпиздякающий распиздяшимся пропизживающеюся

Дообученный autocorrect

```
BBOД [621]: number = 3240
work_str = str(preprocess(df['toxic_comment'][number]))
print('original: '+str(df['toxic_comment'][number]))
print('original-preproc: '+work_str)
print('autocorrect module: '+str(spellcheck(work_str)))
print('autocorrect updated: '+str(spellcheck_updated(work_str)))
print('t5: '+str(t5_autocorrect(df['toxic_comment'][number])))
```

original: козел. это же и дети увидят. и его дети в том числе. вырастут такими же ублюдами. original-preproc: козел это же и дети увидят и его дети в том числе вырастут такими же ублюдами autocorrect module: козел это же и дети увидят и его дети в том числе вырастут такими же блюдами autocorrect updated: козел это же и дети увидят и его дети в том числе вырастут такими же ублюдками t5: Козел. Это же какие-то люди увидят, чтобы детей увидят. И его детям в том числе вырастут такими же Ублюдами.

Дообученный autocorrect

```
Ввод [617]:
            number = 3200
            work str = str(preprocess(df['toxic comment'][number]))
            print('original: '+str(df['toxic comment'][number]))
            print('original-preproc: '+work str)
            print('autocorrect module: '+str(spellcheck(work str)))
            print('autocorrect updated: '+str(spellcheck updated(work str)))
            print('t5: '+str(t5 autocorrect(df['toxic comment'][number])))
            original: не кукла а мумия молью трахнутая
            original-preproc: не кукла а мумия молью трахнутая
            autocorrect module: не кукла а мумия молью тронутая
            autocorrect updated: не кукла а мумия молью трахнутая
            t5: A кукла не молью трахнутая.
```

Предварительное сравнение

3-	STA	SIM	FL	J
Baseline (t5)	0.753606	0.805467	0.816638	0.504346
Preproc (+punct)	0.830605	0.737583	0.759188	0.478918
Preproc (-punct)	0.753747	0.805508	0.816859	0.504625

Проблемы: почему падает SIM?

Ориг: своих увидела и голосок прорезался? мыышь серогорбая))))

База: своих увидела и голосок прорезался? мыышь серогорбая))))

Препроц: своих увидела и голосок прорезался

Ориг: убить суку, это не отец

База: Это не отец

Препроц: Наказать этого человека это не отец

Ориг: и в 3 подъезде бывает такое. поймать бы чухана!

и в 3 подъезде бывает такое. поймать бы его!

Препроц: и в 3 подъезде бывает такое поймать бы чулана

Ориг: вискаря въебу и расскажу тебе что почём

База: вискаря ударю и расскажу тебе что почём

Препроц: викария въебу и расскажу тебе что почём

Т5 и вариации

mT5.

Почему нет – cuda error даже в колабе с оптимизацией

ru-T5 base

Как и в бейзлайне организаторов, но на других настройках. Спойлер: стало хуже

ru-T5 small

Мы надеялись, что она даст нам похожий результат с меньшими затратами памяти. Нет, лучше не стало, мы получили не очень хороший процесс обучения на наших данных

T5-paraphrase

Мы с параметрами организаторов и сейчас возлагаем на её тюнинг наибольшие надежды

ru-t5 small

Модель номер 3: ru-t5 small, мы надеялись, что она даст нам похожий результат с меньшими затратами памяти. Нет, лучше не стало, мы получили не очень хороший процесс обучения наших данных

```
epoch 0, step 100/100: train loss: 2.7762 val loss: 15.4076 epoch 0, step 200/200: train loss: 2.6242 val loss: 15.2856 epoch 0, step 300/300: train loss: 2.4576 val loss: 15.2085 epoch 0, step 400/400: train loss: 2.3768 val loss: 15.4989 epoch 0, step 500/500: train loss: 2.2971 val loss: 15.2845 epoch 0, step 589/589: train loss: 2.2559 val loss: 15.1246
```

t5-paraphrase

По обучению всё вроде выглядит неплохо, но результат получается не тот, который мы могли бы ожидать

```
epoch 1, step 1600/11580: train loss: 1.0332 val loss: 1.0315 epoch 1, step 1700/11680: train loss: 0.9346 val loss: 1.0483 epoch 1, step 1800/11780: train loss: 1.0792 val loss: 1.0275 epoch 1, step 1900/11880: train loss: 1.1330 val loss: 1.0284 epoch 1, step 2000/11980: train loss: 1.0519 val loss: 1.0404 12000 12000
```

```
paraphrase('вы чо курите блять ?', model, temperature=0.0)
'Ну бля'
```

LSTM и вариации

Данные для обучения

```
1 — слова, которые не встретились в обработанных комментариях (['0', '', 'a', 'есть', 'деанон', 'этого', 'петуха'], ['0', '0', '0', '0', '1', '1'])
```

Результат на четырёх эпохах

```
lstm_crf_get_answer('ты сука рот свой поганый закрой пидарас нашёлся')
[1, 1, 1, 1, 1, 1, 1]
lstm_crf_get_answer('кот лежит на столе')
```

[0, 0, 0, 0]

Предварительное сравнение

8	STA	SIM	FL	J
Baseline (t5)	0.753606	0.805467	0.816638	0.504346
Baseline-preproc (+punct)	0.830605	0.737583	0.759188	0.478918
Baseline-preproc (-punct)	0.753747	0.805508	0.816859	0.504625
ruT5paraphraser(- preproc, 3000 steps)	0.554153	0.390466	0.610752	0.061559
ruT5paraphraser(+pre proc, 12000 steps)	0.52703	0.391150	0.616564	0.061009

Дальнейшие планы:

- 1. Мы запустили разные модели и осознали, что мы можем их обучить. При этом нас подводит настройка параметров обучения: наши модели выглядят нормально по лоссу, но при этом плохо справляются с задачей. Что это значит: вероятно, нам необходимо изучить тему замораживания слоёв в t5 и также попробовать добавить эпох обучению и ещё изменять параметры. Нам необходимо лучшее решение для дальнейшей экстракции
- **2. Мы получили данные для LSTM** и прочих генераций последовательностей. Нужно дообучить CRF-LSTM на пять-семь эпох и попробовать другие модели в этом месте. Здесь мы соревнуемся со словарным бейзлайном
- **3. Нам нужно запустить FELIX.** Это иная архитектура, и параллельно с первой задачей мы можем обнаружить, что эта модель подходит нам лучше: она изменяет последовательность, а не генерирует новую

Спасибо за внимание!

```
print(paraphrase(['пиздец блять'], model, temperature=50.0, beams=20))
['У меня пиздец какой пиздец, блять.']
```