19. Distributions.

(a) Choose any compact set $K \subset \mathbb{R}$. Since it is bounded, there exists R > 0 with $K \subseteq [-R, R]$. Now choose any test function $\phi \in C_0^{\infty}(\mathbb{R})$ with compact support in K. Since it is continuous, $\sup_{x \in K} |\phi(x)|$ is finite. Prove the following inequality

$$\left| \int_{-\infty}^{\infty} |x| \phi(x) \, \mathrm{d}x \right| \le R^2 \sup_{x \in K} |\phi(x)|$$

(2 points)

(b) Show directly from Definition 2.6 that the distribution associated to the absolute value function

$$A: C_0^{\infty}(\mathbb{R}) \to \mathbb{R}, \ \phi \mapsto \int_{-\infty}^{\infty} |x| \phi(x) \ \mathrm{d}x$$

is in fact a distribution on \mathbb{R} .

(1 point)

(c) Calculate and describe the first and second derivatives of A as a distribution.

(3 points)

(d) Consider the circle $C = \{x^2 + y^2 = 1\} \subset \mathbb{R}^2$. Show that

$$G(\varphi) := \int_C \varphi \ d\sigma$$

defines a distribution in $\mathcal{D}'(\mathbb{R}^2)$. Note that the $d\sigma$ indicates this is an integration over the submanifold C. Does there exist a locally integrable function $g: \mathbb{R}^2 \to \mathbb{R}$ with

$$G(\varphi) = \int_{\mathbb{R}^2} g \, \varphi \, \, \mathrm{d}x$$

for all $\varphi \in C_0^{\infty}(\mathbb{R})$? (Hint. Use Lemma 2.9)

(2 Points + 2 Bonus Points)

Solution.

(a)

$$\begin{split} \left| \int_{-\infty}^{\infty} |x| \phi(x) \; \mathrm{d}x \right| &\leq \int_{-\infty}^{\infty} |x| |\phi(x)| \; \mathrm{d}x \\ &= \int_{K} |x| |\phi(x)| \; \mathrm{d}x \quad \text{ since } \phi \text{ is zero outside of } K \\ &\leq \int_{[-R,R]} |x| |\phi(x)| \; \mathrm{d}x \quad \text{ since the integrand is positive and } K \subset [-R,R] \\ &\leq \int_{[-R,R]} R \sup_{x \in K} |\phi(x)| \; \mathrm{d}x \\ &= R^2 \sup_{x \in K} |\phi(x)|. \end{split}$$

This is a very common idea for integrals of test functions. Because their support is compact, it has finite area. And because the functions are continuous, they obtain a maximum. These two factors then bound the integral of the test function.

(b) For the reason we just articulated, test functions are always L^1 . Therefore the integral is well-defined and finite. The integral is a linear operator. So the only property we need to show is that A is continuous with respect to the semi-norms. Choose any compact set K. Let ϕ be a test function supported on K. Then by part (a)

$$|A(\phi)| = \left| \int_{-\infty}^{\infty} |x| \phi(x) \, dx \right| \le 2R^2 \, \|\phi\|_{K,0}.$$

Thus the required inequality holds with $M=1, \alpha_1=0,$ and $C_1=2R^2$.

(c) In one sense, calculating the derivatives are easy, they are just $\partial_x A(\phi) = -A(\partial_x \phi)$ and $\partial_x^2 A(\phi) = -\partial_x A(\partial_x \phi) = A(\partial_x^2 \phi)$. But this does not give us an insight into their behaviour. However

$$\partial_x A(\phi) = -A(\partial_x \phi) = -\int_{-\infty}^{\infty} |x| \phi' \, dx = \int_{-\infty}^{0} x \phi' \, dx - \int_{0}^{\infty} x \phi' \, dx$$
$$= \left[x \phi \right]_{-\infty}^{0} - \int_{-\infty}^{0} \phi \, dx - \left[x \phi \right]_{0}^{\infty} + \int_{0}^{\infty} \phi \, dx$$
$$= \int_{-\infty}^{\infty} \left(-\chi_{[-\infty,0]} + \chi_{[0,\infty]} \right) \phi \, dx.$$

Thus we see it's distribution is associated to the function $-\chi_{[-\infty,0]} + \chi_{[0,\infty]}$.

$$\partial_x^2 A(\phi) = -\partial_x A(\partial_x \phi) = \int_{-\infty}^{\infty} \left(-\chi_{[-\infty,0]} + \chi_{[0,\infty]} \right) \phi' \, \mathrm{d}x$$
$$= -\int_{-\infty}^{0} \phi' \, \mathrm{d}x + \int_{0}^{\infty} \phi' \, \mathrm{d}x$$
$$= -\left[\phi \right]_{-\infty}^{0} + \left[\phi \right]_{0}^{\infty} = -2\phi(0).$$

The delta distribution (also know as the Dirac distribution) is defined as $\delta(\phi) = \phi(0)$. This calculation shows us that $\partial_x^2 A = -2\delta$. This distribution is not associated to an L^1_{loc} function.

(d) G is linear in φ , so that's okay. We should check the continuity. But this is using the same general idea as (a) and (b): Choose any compact set K and test function supported in K. Then there is a ball B(0,R) that contains K. Then

$$|G(\varphi)| \le \int_{C \cap B(0,R)} \sup_{x \in K} |\phi(x)| \, d\sigma \le 2\pi \sup_{x \in K} |\phi(x)|.$$

The constant 2π follows since this is the maximum length of the circle C inside the ball B(0,R).

There does not exist such a function g. Suppose for contradiction that it did exist, that $G(\varphi) = F_g(\varphi)$. For every point $y \notin C$ consider a small ball B(y,r) that is disjoint from C. We will now apply Lemma 2.9 to this ball, $\Omega = B(y,r)$. For any test function $\varphi \in C_0^{\infty}(B(y,r))$ we know that it is zero on C because C and the ball are disjoint:

$$G(\varphi) = \int_C 0 \ d\sigma = 0$$

It follows from the lemma that g = 0 on B(y, r) or more generally g(y) = 0 for $y \notin C$. But C is a null-set in \mathbb{R}^2 , so we can say that $g \equiv 0$ as an L^1_{loc} function. This is a contradiction because G is not zero.

20. An induced distribution.

Let $F \in \mathcal{D}'(\mathbb{R}^n \times \mathbb{R}^m)$ and $\psi \in C_0^{\infty}(\mathbb{R}^m)$. Define

$$G: C_0^{\infty}(\mathbb{R}^n) \to \mathbb{R},$$

$$\varphi \mapsto F(\varphi \times \psi).$$

Show that G is a Distribution on $C_0^{\infty}(\mathbb{R}^n)$, i.e. $G \in D'(\mathbb{R}^n)$. (3 points)

Solution. For $\psi \in C_0^{\infty}(\mathbb{R}^m)$ and $\varphi \in C_0^{\infty}(\mathbb{R}^n)$, note that $\psi \varphi$ is again a smooth function, and its support it contain in the Cartesian product of the supports of ψ and φ . So we can indeed apply F to the product. As to continuity of G, let $L = \sup \psi \subset \mathbb{R}^m$ and choose a compact set $K \subset \mathbb{R}^n$. For any function $\varphi \in C_0^{\infty}(K)$, the norm estimate for F gives

$$|G(\varphi)| = |F(\varphi\psi)| \le C_1 \|\varphi\psi\|_{K \times L, \alpha_1} + \dots + C_M \|\varphi\psi\|_{K \times L, \alpha_M}.$$

We can also decompose the norms like so

$$\|\varphi\psi\|_{K\times L,\alpha} = \sup_{(x,y)\in K\times L} |\partial^{\alpha}(\varphi(x)\psi(y))|$$

$$= \sup_{(x,y)\in K\times L} |\partial^{\alpha'}\varphi(x)\partial^{\alpha''}\psi(y))|$$

$$\leq \sup_{x\in K} |\partial^{\alpha'}\varphi(x)| \sup_{y\in L} |\partial^{\alpha''}\psi(y))|$$

$$= \|\varphi\|_{K,\alpha'} \|\psi\|_{L,\alpha''},$$

where $\alpha = (\alpha', \alpha'') \in \mathbb{N}_0^{n+m} = \mathbb{N}_0^n \times \mathbb{N}_0^m$ is a decomposition of the multiindex. In this situation, the norms of ψ are fixed constants, so this is a linear combination of the norms of ϕ on K. Substitution of these estimates into the prior bound of $|G(\varphi)|$ gives a bound of the required form.

21. The Crucial Kernel.

When a the partial derivative of a function is zero, it is constant in that direction. In this question we investigate what it means when a distribution has a derivative that is zero. Let $F \in D'(\mathbb{R}^n \times \mathbb{R})$ and let (x,t) with $x \in \mathbb{R}^n$ and $t \in \mathbb{R}$ denote the elements in $\mathbb{R}^n \times \mathbb{R}$.

We want to show that: $\partial_t F = 0$ if and only if there is a distribution $G \in D'(\mathbb{R}^n)$ such that

$$F(\varphi) = G\bigg(\int_{\mathbb{R}} \varphi(-,t)dt\bigg).$$

From a certain point of view then, F does not depend on the t coordinate. In order to show the statement prove the following steps. First, define

$$\mathcal{I}: \mathcal{D}(\mathbb{R}^n \times \mathbb{R}) \to \mathcal{D}(\mathbb{R}^n),$$
$$\varphi \mapsto \left(x \mapsto \int_{-\infty}^{\infty} \varphi(x, t) \, dt\right).$$

- (a) (Optional) Show, that \mathcal{I} is continuous and linear.
- (b) Show that a function $\varphi \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R})$ belongs to the kernel of \mathcal{I} if and only if it is the *t*-derivative of another such function. (3 points)
- (c) Show that for $F \in \mathcal{D}'(\mathbb{R}^n \times \mathbb{R})$, $\partial_t F = 0$ if and only if $F \equiv 0$ on the kernel of \mathcal{I} .

 (2 points)
- (d) Finally show the statement by showing that $\partial_t F = 0$ if and only if there exists a $G \in \mathcal{D}'(\mathbb{R}^n)$ with $F(\varphi) = G(\mathcal{I}(\varphi))$. (2 points)

Solution.

(a) Linearity follows from linearity of the integral, but perhaps it is good to establish notations:

$$\mathcal{I}(a\varphi + b\psi)(x) = a \int_{-\infty}^{\infty} \varphi(x,t) \, dt + b \int_{-\infty}^{\infty} \psi(x,t) \, dt = a\mathcal{I}(\varphi)(x) + b\mathcal{I}(\psi)(x).$$

The function $\mathcal{I}(\varphi)$ is also smooth, because we may pass derivatives through the integral sign.

The question of continuity depends on which norms are being used, and is more subtle. Recall that a linear function is continuous if and only if it is a bounded operator. This explains Definition 2.6. It is enough therefore to bound $\mathcal{I}(\varphi)$ with respect to all of the seminorms on $\mathcal{D}(\mathbb{R}^n)$. Fix any compact sets $K \subset \mathbb{R}^n$ and $L \subseteq \mathbb{R}^n \times \mathbb{R}$, and choose $\varphi \in C_0^{\infty}(L)$.

$$\|\mathcal{I}(\varphi)\|_{K,\alpha} = \sup_{x \in K} \left| \partial^{\alpha} \int_{-\infty}^{\infty} \varphi(x,t) \, dt \right| \le \sup_{x \in K} \int_{-\infty}^{\infty} |\partial^{\alpha} \varphi(x,t)| \, dt.$$

Now, we don't need to integrate from $-\infty$ to ∞ because φ has compact support. By projecting L to \mathbb{R} , we see that there is a bound $T \in \mathbb{R}$ such that if |t| > T then $\varphi(x,t) = 0$ for all $x \in \mathbb{R}^n$.

$$\sup_{x \in K} \int_{-\infty}^{\infty} |\partial^{\alpha} \varphi(x,t)| \ \mathrm{d}t = \sup_{x \in K} \int_{-T}^{T} |\partial^{\alpha} \varphi(x,t)| \ \mathrm{d}t \leq 2T \sup_{x \in K} \sup_{t \in [-T,T]} |\partial^{\alpha} \varphi(x,t)| \leq 2T \|\varphi\|_{L,\alpha}.$$

This shows that \mathcal{I} is a bounded linear operator and therefore is continuous.

(b) Firstly, what does it mean for φ to be in the kernel of \mathcal{I} ? It means for all $x \in \mathbb{R}^n$

$$\int_{-\infty}^{\infty} \varphi(x,t) \, \mathrm{d}t = 0.$$

Suppose then that φ is in the kernel of \mathcal{I} . We must show that there exists $\psi \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R})$ such that $\varphi = \partial_t \psi$. Define

$$\psi(x,t) = \int_{-\infty}^{t} \varphi(x,t) \, \mathrm{d}t.$$

This is a smooth function and its derivative is φ , so it remains to show that it has compact support. As we saw in the previous part, there exists a bound T such that for all |t| > T the function $\varphi(x,t) = 0$ for any $x \in \mathbb{R}^n$. Thus $\psi(x,t) = 0$ for t < -T and $\psi(x,t)$ is a constant for t > T. However, the assumption that φ is in the kernel of \mathcal{I} tells us that this constant is zero. Thus ψ also has compact support.

Conversely, take any $\psi \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R})$. Note that

$$\int_{-\infty}^{\infty} \partial_t \psi \, dt = \psi \Big|_{t=-\infty}^{t=\infty} = 0,$$

so that $\partial_t \psi$ is in the kernel of \mathcal{I} .

(c) F is a distribution and $\partial_t F$ means the distributional derivative, ie $\partial_t F(\varphi) = -F(\partial_t \varphi)$. Suppose that $\partial_t F = 0$ and that φ is in the kernel of \mathcal{I} . From part (b), we know that $\varphi = \partial_t \psi$ for some $\psi \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R})$. Therefore we apply $\partial_t F$ to ψ to conclude

$$0 = \partial_t F(\psi) = -F(\varphi).$$

This shows that F vanishes on the kernel of \mathcal{I} .

In the other direction, suppose that F vanishes on the kernel of \mathcal{I} and take any $\psi \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R})$. Again by part (b), we know that $\partial_t \psi$ is in the kernel of \mathcal{I} . Therefore

$$\partial_t F(\psi) = -F(\partial_t \psi) = 0.$$

(d) Before we address F, note that \mathcal{I} is surjective. Explicitly, if $\omega : \mathbb{R} \to \mathbb{R}$ is a function with compact support and $\int_{\mathbb{R}} \omega(t) dt = 1$, and g is any function in $\mathcal{D}(\mathbb{R}^n)$ then $\mathcal{I}(g(x)\omega(t)) = g$. Therefore, as topological vector spaces, $\mathcal{D}(\mathbb{R}^n \times \mathbb{R})/\ker \mathcal{I}$ and $\mathcal{D}(\mathbb{R}^n)$ are isomorphic. If $\partial_t F = 0$, from the part (c) we know that F vanishes on $\ker \mathcal{I}$ and so this isomorphism induces a well defined map $G \in \mathcal{D}'(\mathbb{R}^n)$ such that $F(\varphi) = G(\mathcal{I}(\varphi))$. The reverse is immediate: if $F(\varphi) = G(\mathcal{I}(\varphi))$ then F vanishes on the kernel of \mathcal{I} and so must have $\partial_t F = 0$.

22. You can now write "Transport-Distribution Expert" on your résumé.

In this exercise we show that there is a one-to-one correspondence between distributions solving the linear transport equation and distributions describing the corresponding initial values g.

(a) Show that for any distribution $F \in \mathcal{D}'(\mathbb{R}^n \times \mathbb{R})$ which solves the transport equation $(\partial_t + b\nabla)F = 0$, the following distribution solves the equation $\partial_t \tilde{F} = 0$:

$$\tilde{F} \in \mathcal{D}'(\mathbb{R}^n \times \mathbb{R})$$
 with $\tilde{F}(\phi) = F(\tilde{\phi})$ and $\tilde{\phi}(y,t) = \phi(y-bt,t)$ for all $(y,t) \in \mathbb{R}^n \times \mathbb{R}$.

(2 points)

(b) Show that for any mollifier $(\lambda_{\epsilon})_{\epsilon>0}$ on \mathbb{R} and any $\phi \in C_0^{\infty}(\mathbb{R}^n)$ the functions

$$\phi \times \lambda_{\epsilon} : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}$$
 with $(x,t) \mapsto \phi(x)\lambda_{\epsilon}(t)$

belong to
$$C_0^{\infty}(\mathbb{R}^n \times \mathbb{R})$$
. (1 point)

- (c) Recall \mathcal{I} from the *The Crucial Kernel*. Let $\tilde{F} \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R})$ solve the equation $\partial_t \tilde{F} = 0$. We have already proved that there exists a distribution $G \in \mathcal{D}(\mathbb{R}^n)$, such that $\tilde{F}(\phi) = G(\mathcal{I}(\phi))$. Argue therefore that $\tilde{F}(\phi \times \lambda_{\epsilon})$ does not depend on $\epsilon > 0$.
- (d) Show that for any $G \in \mathcal{D}(\mathbb{R}^n)$ the following $F \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R})$ solves $(\partial_t + b\nabla)F = 0$:

$$F: C_0^{\infty}(\mathbb{R}^n \times \mathbb{R}) \to \mathbb{R}, \qquad \phi \mapsto G\left(\int_{\mathbb{R}} T_{-tb}\phi(\cdot, t) dt\right),$$

where T_{-tb} is a translation operator.

(3 points)

(e) Show that $G \to F$ is bijective onto $\{F \in \mathcal{D}(\mathbb{R}^n \times \mathbb{R}) \mid (\partial_t + b\nabla)F = 0\}$. (2 bonus points)

Solution.

(a) The core of this question is how does the chain rule of differentiation look for distributions? The order of operations is a a little subtle, so to be clear let us write the translation operator $T(\phi) = \phi(y - bt, t)$ explicitly. In other words, $\tilde{F}(\phi) = F(T\phi)$. First observe that T commutes with the spatial derivatives:

$$\partial_k \tilde{\phi} = \partial_k (T\phi) = \partial_k (\phi(x - bt, t)) = T(\partial_k \phi).$$

On the other hand, T does not commute with the time derivative. By the chain rule,

$$\partial_t \tilde{\phi} = \partial_t (T\phi) = T(\tilde{\nabla}\phi) \cdot \partial_t T = \begin{pmatrix} T(\nabla\phi) \\ T(\partial_t \phi) \end{pmatrix} \cdot \begin{pmatrix} -b \\ 1 \end{pmatrix} = -b \cdot T(\nabla\phi) + T(\partial_t \phi),$$

where $\tilde{\nabla}$ is the gradient with respect to $\mathbb{R}^n \times \mathbb{R}$ and ∇ is the gradient with respect to \mathbb{R}^n . Together this says that

$$T(\partial_t \phi) = \partial_t (T\phi) + b \cdot T(\nabla \phi) = \partial_t (T\phi) + b \cdot \nabla (T\phi).$$

Now we are in a position where we can address the question. In the following we use the definition of the derivative of a distribution and the definition of \tilde{F} and pay close attention to the order of operators:

$$\partial_t \tilde{F}(\phi) = -\tilde{F}(\partial_t \phi) = -F(T(\partial_t \phi)) = -F(\partial_t (T\phi) + b \cdot \nabla (T\phi))$$
$$= -F(\partial_t (T\phi)) - F(b \cdot \nabla (T\phi)) = \partial_t F(T\phi) + b \cdot \nabla F(T\phi)$$
$$= (\partial_t + b \cdot \nabla) F(T\phi) = 0.$$

- (b) The product of two smooth functions is smooth. So it only remains to show that the product has compact support. Let K is the support of ϕ and the support of λ_{ϵ} is I. If $(x,t) \notin K \times I$ then either $\phi(x) = 0$ or $\lambda_{\epsilon}(t) = 0$ (or both). In both cases the product is zero. This shows that the support of the product is contained in $K \times I$, which is a bounded set, and thus the support of the product must be compact.
- (c) We compute

$$\mathcal{I}(\phi \times \lambda_{\epsilon})(x) = \int_{-\infty}^{\infty} \phi(x)\lambda_{\epsilon}(t) dt = \phi(x) \int_{-\infty}^{\infty} \lambda_{\epsilon}(t) dt = \phi(x),$$

because the integral of a mollifier is always 1. In other words, $\mathcal{I}(\phi \times \lambda_{\epsilon}) = \phi$. As explained the question, the condition that $\partial_t \tilde{F} = 0$ means that it is of the form $\tilde{F}(\psi) = G(\mathcal{I}(\psi))$ for some distribution G. Therefore $\tilde{F}(\phi \times \lambda_{\epsilon}) = G(\mathcal{I}(\phi \times \lambda_{\epsilon})) = G(\phi)$ is independent of ϵ .

(d) Again, the order of operators in this question is somewhat subtle. Let us introduce a translation $S(\phi) = \phi(x + bt, t)$. This is similar to T from part (a), in fact they are inverses, and we have that S commutes with ∇ but

$$S(\partial_t \phi) = \partial_t (S\phi) - b \cdot S(\nabla \phi).$$

One could also write the integral part of this formula using the operator \mathcal{I} , but we don't have to interchange its position, so we will leave it as an integral so as not to be more abstract than necessary. Perhaps it would be a good exercise to rewrite the following proof using \mathcal{I} .

In this notation we have that

$$F(\phi) := G\left(x \mapsto \int_{\mathbb{R}} S\phi \, \mathrm{d}t\right).$$

Let us compute the t-derivative of this F: for any test function ϕ ,

$$\partial_t F(\phi) = -F(\partial_t \phi) = -G\left(x \mapsto \int_{\mathbb{R}} S(\partial_t \phi) \, \mathrm{d}t\right)$$

$$= -G\left(x \mapsto \int_{\mathbb{R}} \partial_t (S\phi) - b \cdot S(\nabla \phi) \, \mathrm{d}t\right)$$

$$= -G\left(x \mapsto 0 - \int_{\mathbb{R}} b \cdot S(\nabla \phi) \, \mathrm{d}t\right)$$

$$= \sum_{k=1}^n b_k G\left(x \mapsto \int_{\mathbb{R}} S(\partial_k \phi) \, \mathrm{d}t\right)$$

$$= \sum_{k=1}^n b_k F(\partial_k \phi) = -b \cdot \nabla F(\phi).$$

This shows that it solves the transport equation.

(e) Part (d) shows that the mapping $G \mapsto F$ is well-defined. Suppose then that we had a solution F of the transport equation. Part (a) shows there is an associated distribution \tilde{F} with the property that $\partial_t \tilde{F} = 0$. Using part (c) we have $\tilde{F}(\phi) = G(\mathcal{I}(\phi))$ for some $G \in \mathcal{D}'(\mathbb{R}^n)$. This gives a mapping $F \mapsto G$.

It remains to show that these mappings are inverse to one another, but observe

$$F(\phi) = F(TS\phi) = \tilde{F}(S\phi) = G(\mathcal{I}(S\phi)),$$

which crucially relies on T and S being inverse translations. The mapping is therefore bijective.