Homofobia w warunkach zagrożenia męskości

Rola normatywnej męskości

Jakub Jędrusiak* Julia Kotas[†] Michał Małyszek ‡ Michalina Wawrzyniak§

Abstrakt 1.

Słowa kluczowe:

^{*315695} †316599 ‡310255

^{§317046}

2. Wprowadzenie

3. Problematyka badania

Celem badania było...

4. Zmienne

Zmienne niezależne:

- 1. Homofobia wobec gejów;
- 2. Homofobia wobec lesbijek.

Zmienne zależne:

- 1. Zagrożenie męskości (grupa kontrolna i eksperymentalna);
- 2. Normatywna męskość.

5. Hipoteza

Mężczyźni o wysokiej normatywnej męskości w sytuacji zagrożenia męskości przejawiają większą homofobię niż mężczyźni o wysokiej normatywnej męskości w sytuacji braku zagrożenia męskości oraz mężczyźni o niskiej normatywnej męskości w sytuacji zagrożenia męskości, którzy jednocześnie przejawiają wyższy poziom homofobii niż mężczyźni o niskiej normatywnej męskości w sytuacji braku zagrożenia męskości.

6. Narzędzia i procedury

6.1. Uczestnicy

6.2. Narzędzia

6.2.1. Kwestionariusz Normatywnej Męskości

6.2.2. Pomiar homofobii

Pomiar homofobii odbywał się poprzez ocenę przez osobę badaną serii 10 zdjęć przedstawiających osoby homoseksualne (5 przedstawiało mężczyzn, a 5 kobiety). Celem ukrycia przedmiotu pomiaru przed osobą badaną, w zbiorze obrazków znajdowało się też 20 zdjęć neutralnych. Osoba badana miała za zadanie ustosunkować się do twierdzenia "Takie widoki w przestrzeni publicznej są normalne" na skali 6-stopniowej (od Zdecydowanie się nie zgadzam do Zdecydowanie się zgadzam). Osobie badanej wyświetlała się również

informacja "Przez przestrzeń publiczną, oprócz tego jak ludzie zachowują się w miejscach publicznych, rozumiemy również m.in. reklamy i billboardy".

- **6.2.2.1.** Walidacja metody Zdjęcia do pomiaru homofobii zostały dobrane z użyciem metody sędziów kompetentnych. W I badaniu walidacyjnym wzięło udział 12 sędziów kompetentnych w osobie heteroseksualnych mężczyzn. Badanie składało się z czterech pytań:
 - 1. O neutralność zdjęć neutralnych ("Czy ten obrazek jest neutralny?");
 - 2. O czytelność zdjęć z bodźcami homoseksualnymi ("Na ile czytelne jest, że osoby na obrazku są homoseksualne?");
 - 3. O trafność zdjęć z bodźcami homoseksualnymi ("Czy ten obrazek może znaleźć się w teście mierzącym homofobie?");
 - 4. Uszeregowanie pytań od najlepszego, do najgorszego ("Mając na względzie cel pomiaru, uszereguj podane niżej propozycje w kolejności od najlepszej do najgorszej").

Wszystkie spośród 20 zaproponowanych zdjęć neutralnych otrzymało średnią ocenę powyżej 4 (raczej neutralne). Z tego powodu wszystkie włączono do pomiaru.

Dla zdjęć z bodźcami homoseksualnymi policzono współczynnik trafności treściowej CVR (Lawshe, 1975). Za kryterium dobroci bodźca przyjęto wartość CVR większą niż 0,667 (Ayre & Scally, 2014). Kryterium spełniło 6 z 24 zdjęć przedstawiających homoseksualnych mężczyzn oraz 1 z 18 zdjęć przedstawiających homoseksualne kobiety. Ocena czytelności dla bodźców męskich również wskazywała na możliwość ich użycia. Spośród bodźców męskich wykluczono zdjęcie, na którym jeden z mężczyzn miał widoczny tatuaż, ponieważ mogło to aktywizować dodatkowe negatywne skojarzenia i zaburzyć pomiar.

Twierdzenie, do którego ustosunkować miała się osoba badana ("Takie widoki w przestrzeni publicznej są normalne."), zostało wybrane spośród 4 propozycji na podstawie średniej oceny ($M=3;\ SD=1,13$). Oceny przyznawano na postawie miejsca w rankingu – propozycja uznana przez sędziego kompetentnego za najlepszą otrzymywała 4 punkty, a każda kolejne o 1 punkt mniej.

Niewielka liczba trafnych bodźców z homoseksualnymi kobietami wymusiła powtórzenie badania z większą liczbą bardziej różnorodnych propozycji. Rolę sędziów kompetentnych ponownie przyjęło 12 heteroseksualnych mężczyzn. Odpowiadali na oni na pytania analogiczne to pytań 2. i 3. z pierwszego badania (o czytelność i trafność). Wartość progową CVR = 0,667 (Ayre & Scally, 2014) przekroczyło 5 z 30 zdjęć. Ocena czytelności tych bodźców również wskazywała, że homoseksualność osób na zdjęciu jest dla sędziów kompetentnych wyraźna. W kontraście do zdjęć przedstawiających homoseksualnych mężczyzn, wszystkie bodźce kobiece ocenione przez sędziów kompetentnych jako trafne przedstawiają całujące się kobiety.

Późniejsza analiza rzetelności z użyciem danych zebranych w eksperymencie wykazała, że rzetelność mierzona współczynnikiem alfa Cronbacha dla skali homofobii wobec gejów i lesbijek wyniosła $\alpha=0,96$ w każdej ze skal z osobna. Odrzucenie żadnego z bodźców nie spowodowałoby wzrostu wartości współczynnika.

Tabela 1 Statystyki opisowe zmiennych w grupie kontrolnej (brak zagrożenia męskości; N=41)

Zmienna	M	SD	A	K
Homofobia wobec gejów	11,98	6,65	1,11	0,80
Homofobia wobec lesbijek	12,41	6,76	0,91	0,11
Normatywna męskość	92,88	37,67	1,18	1,64

Adnotacja. A – skośność, K – kurtoza

Tabela 2Statystyki opisowe zmiennych w grupie eksperymentalnej (zagrożenie meskości: N=55)

Zmienna	M	SD	A	K
Homofobia wobec gejów	13,58	6,38	0,77 $0,72$ $0,48$	0,10
Homofobia wobec lesbijek	13,31	6,04		0,03
Normatywna męskość	115,15	46,26		-0,64

Adnotacja. A – skośność, K – kurtoza

6.3. Procedura

7. Wyniki

Do analizy statystycznej wykorzystano język programowania statystycznego R (R Core Team, 2022) i jego pakiety, ze szczególnym uwzględnieniem tidyverse (Wickham i in., 2019), rstatix (Kassambara, 2021), emmeans (Lenth, 2022), modelbased (Makowski, Ben-Shachar, Patil, & Lüdecke, 2020) i jedrusiakr (Jędrusiak, 2022). Analizy dostępne są w załącznikach A (analiza danych eksperymentalnych), B (I badanie sędziów kompetentnych) i C (II badanie sędziów kompetentnych).

7.1. Statystyki opisowe

Dane podzielono na grupy na podstawie normatywnej męskości (wysoka i niska) i faktu wystąpienia manipulacji (zagrożenie męskości lub jego brak). Podziału próby na grupy o wysokiej i niskiej normatywnej męskości dokonano na podstawie mediany. W grupie eksperymentalnej (zagrożenie męskości) znalazły się 22 osoby o niskiej normatywnej męskości i 33 osoby o wysokiej normatywnej męskości. Dla grupy kontrolnej (brak zagrożenia męskości) liczności te wyniosły odpowiednio 26 i 15 osób. Test χ^2 wykazał nierównoliczność grup (χ^2 (1, N=96) = 4, 26; p=0,04). Statystyki opisowe zmiennych w podziale na grupy przedstawiono w tabelach ??. i ??.

7.2. Analiza wariancji

Celem sprawdzenia wpływu zagrożenia męskości i normatywnej męskości na homofobię dokonano dwóch analiz wariancji – osobno dla homofobii wobec gejów i lesbijek.

7.2.1. Homofobia wobec gejów

Analiza wariancji homofobii wobec gejów wykazała istnienie istotnego wpływu normatywnej męskości na homofobię $(F(1,92)=19,7;\ p<0,001)$. Jednocześnie nieistotny okazał się wpływ zagrożenia męskości $(F(1,92)=1,73;\ p=0,19)$ oraz efekt interakcji $(F(1,92)=1,31;\ p=0,26)$. Model wyjaśnia $R^2=19,8\%$ wariancji homofobii wobec gejów. Wyniki analizy prezentuje rysunek ??.

Rysunek 1: Homofobia wobec gejów w zależności od zagrożenia męskości i normatywnej męskości.

Ze względu na załamanie niektórych założeń analizy wariancji w części grup, obliczenia powtórzono z wykorzystaniem odpornej analizy wariancji (Wang i in., 2022). Wyniki okazały się zbieżne z wcześniej uzyskanymi. Istotny okazał się wpływ normatywnej męskości (F(1,92) = 10,81; p < 0,001), zaś nieistotne okazały się efekty zagrożenia męskości (F(1,92) = 2,18; p = 0,13) oraz interakcji (F(1,92) = 1,12; p = 0,28).

7.2.2. Homofobia wobec lesbijek

Analiza wariancji homofobii wobec lesbijek wykazała istnienie istotnego wpływu normatywnej męskości $(F(1,92)=10,81;\ p=0,001)$ oraz efektu interakcji $(F(1,92)=5,99;\ p=0,016)$. Efekt główny zagrożenia męskości okazał się nieistotny statystycznie $(F(1,92)=0,54;\ p=0,47)$. Model wyjaśnia $R^2=15,9\%$ wariancji homofobii wobec lesbijek. Wyniki przedstawia rysunek ??.

Rysunek 2: Homofobia wobec lesbijek w zależności od zagrożenia męskości i normatywnej męskości.

Celem zgłębienia efektu interakcji przeprowadzono testy post hoc różnic w zakresie estymowanych średnich krańcowych z poprawką Bonferroniego. Wyniki analizy prezentuje tabela ??.

Dodatkowo wykonano analizę efektów prostych. Wykazała ona, że u mężczyzn, których męskość pozostała niezagrożona, normatywna męskość pozwalała przewidzieć homofobię $(F(1,92)=15,94;\ p<0,001)$ – osoby z grupy o wysokiej normatywnej męskości cechowały się wyższą homofobią, niż osoby o niskiej normatywnej męskości $(\Delta M=7,65)$. W obliczu zagrożenia męskości efekt ten jednak zanikał $(F(1,92)=0,85;\ p=0,36)$. Mężczyźni, którzy otrzymali informację zagrażającą, wykazywali taką samą homofobię niezależnie od swojego poziomu normatywnej męskości. Samo zagrożenie męskości nie pozwoliło zróżnicować pod względem homofobii osób w obrębie grupy o niskiej normatywnej męskości $(F(1,92)=2,66;\ p=0,11)$, ani w obrębie grupy

Tabela 3Wyniki testu Bonferroniego na estymowanych średnich krańcowych.

Zmienna 1	Zmienna 2	ΔM	t(92)	p
gr. eksp., niska NM gr. eksp., niska NM gr. kont., niska NM gr. kont., niska NM gr. kont., niska NM	gr. eksp., wysoka NM gr. kont., wysoka NM gr. eksp., niska NM gr. eksp., wysoka NM gr. kont., wysoka NM	-1.5 -4.86 -2.79 -4.29 -7.65	-0.92 -2.45 -1.63 -2.77 -3.99	0,793 0,074 0,366 0,034 0,001
gr. kont., wysoka NM	gr. eksp., wysoka NM	3.36	1.82	$0,\!269$

Adnotacja. Wartości pponiżej 0,05 oznaczono pogrubieniem; ΔM – różnica między średnimi wyrażona jako wynik odejmowania wartości zmiennej 2. od zmiennej 1.; gr. eksp. i kont. – grupa eksperymentalna (zagrożenie męskości) i kontrolna (brak zagrożenia); NM – normatywna męskość.

o wysokiej normatywnej męskości (F(1,92) = 3,33; p = 0,07), choć wartość prawdopodobieństwa w drugim przypadku jest bliska wartości odcięcia.

Ze względu na załamanie niektórych założeń analizy wariancji w części grup, obliczenia powtórzono z wykorzystaniem odpornej analizy wariancji (Wang i in., 2022). Wyniki okazały się zbieżne z wcześniej uzyskanymi. Istotny okazał się wpływ normatywnej męskości (F(1,92) = 11,65; p < 0,001) oraz efekt interakcji (F(1,92) = 6,05; p = 0,012). Efekt główny zagrożenia męskości okazał się nieistotny statystycznie (F(1,92) = 1,65; p = 0,19).

8. Dyskusja

9. Bibliografia

- Ayre, C., & Scally, A. J. (2014). Critical Values for Lawshe's Content Validity Ratio: Revisiting the Original Methods of Calculation. *Measurement and Evaluation in Counseling and Development*, 47(1), 79–86. https://doi.org/10.1177/0748175613513808
- Jędrusiak, J. (2022). jedrusiakr: Utilities for Statistics in Psychology. Pobrano z https://github.com/jakub-jedrusiak/jedrusiakr
- Kassambara, A. (2021). rstatix: Pipe-Friendly Framework for Basic Statistical Tests. Pobrano z https://CRAN.R-project.org/package=rstatix
- Lawshe, C. H. (1975). A Quantitative Approach to Content Validity. *Personnel Psychology*, 28 (4), 563–575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
- Lenth, R. V. (2022). emmeans: Estimated Marginal Means, aka Least-Squares Means. Pobrano z https://CRAN.R-project.org/package=emmeans
- Makowski, D., Ben-Shachar, M. S., Patil, I., & Lüdecke, D. (2020). Estimation of Model-Based Predictions, Contrasts and Means. Pobrano z https://github.com/easystats/modelbased
- R Core Team. (2022). R: A Language and Environment for Statistical Computing. Wiedeń, Austria: R Foundation for Statistical Computing. Pobrano z https://www.R-project.org/
- Wang, J., Zamar, R., Marazzi, A., Yohai, V., Salibian-Barrera, M., Maronna, R., ... Konis., K. (2022). robust: Port of the S+ "Robust Library". Pobrano z https://CRAN.R-project.org/package=robust
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., ... Yutani, H. (2019). Welcome to the tidyverse. *Journal of Open Source Software*, 4(43), 1686. https://doi.org/10.21105/joss.01686

A. Analiza danych eksperymentalnych

```
#' ---
#' title: Homofobia w zagrożeniu męskości
#' author: Jakub Jedrusiak
#' ---
pacman::p_load(jedrusiakr, papaja, cocor, tidyverse, magrittr, psych, rstatix, lubridate,
→ broom, afex, modelbased, emmeans, robust)
# Definicje funkcji i parametry ----
dopuszczalny_wiek <- 18:30
dopuszczalny_czas <- dseconds(240)</pre>
print_cor <- function(rt) { # Drukuje wartość r z gwiazdkami istotności</pre>
  ifelse(rt\p.value < 0.001, paste0("r = ", rt\perp estimate \%\% round(2), "***"), paste0("r =

¬ ", rt$estimate %>% round(2), case_when(rt$p.value < 0.1 ~ "**", rt$p.value < 0.05 ~</p>
  → "*", TRUE ~ "")))
}
wykres_r <- function(df, ox, oy, title, ox_title, oy_title) { # parametry do wykresu
→ punktowego
  df %>% ggplot(aes(x = {{ ox }}, y = {{ oy }}, colour = grupa)) +
    geom_point() +
    ggtitle(title) +
    xlab(ox_title) +
    ylab(oy_title) +
    scale_x_continuous(limits = c(min(df[, deparse(substitute(ox))]), max(df[,
    → deparse(substitute(ox))]))) + # skaluje oś x względem występujących w danych
    → skrajnych wartości, dzięki czemu wszystkie wykresy tego samego mają identyczne
    \hookrightarrow skale
    scale_y_continuous(limits = c(min(df[, deparse(substitute(oy))]), max(df[,
    → deparse(substitute(oy))]))) + # deparse(substitute(x)) zwraca nazwę zmiennej x
    → jako string
```

```
geom_smooth(method = lm, se = FALSE) +
   jtools::theme_apa()
}
# Import i czyszczenie danych ----
## Import ----
baza_eksperyment_raw <- readxl::read_excel("./baza.xlsx", sheet = "eksperyment") %%
baza_kontrolna_raw <- readxl::read_excel("./baza.xlsx", sheet = "kontrolna") %>%
## Łączenie baz i czyszczenie ----
baza_kontrolna <- baza_kontrolna_raw %>%
 mutate(grupa = "kontrolna", `Jak oceniasz powyższy wynik? (nieobowiązkowe)` =
  → as.character(NA)) %>% # pytanie, którego nie było w grupie kontrolnej
 relocate(`Jak oceniasz powyższy wynik? (nieobowiązkowe)`, .after = `Mężczyźni nie
  → powinni tak od razu mówić innym, że się o nich troszczą.`) %>%
 mutate(
   across(c(6, 9:82) & where(is.character), parse_number),
   czas = int_length(`Godzina rozpoczęcia` %--% `Godzina ukończenia`)
 )
baza_eksperyment <- baza_eksperyment_raw %>%
 mutate(
   grupa = "eksperyment",
   across(c(6, 9:82) & where(is.character), parse_number),
   czas = int_length(`Godzina rozpoczęcia` %--% `Godzina ukończenia`)
 ) %>%
 set_names(names(baza_kontrolna)) # naprawa różnic w treści pytań
baza <- bind_rows(baza_eksperyment, baza_kontrolna) %>%
```

```
filter(`Płeć` == "Mężczyzna", `Wiek (ukończony w latach)` %in% dopuszczalny_wiek) %>%
 arrange(grupa, ID) %>%
 mutate(uID = paste0(ID, str_trunc(grupa, 1, ellipsis = ""))) %>%
 select(-c(2:5, 8)) %>% # usuwanie godzin, płci i zgody na udział
 relocate(uID, grupa, czas, .after = ID) %>%
 set_names(c("ID", "uID", "grupa", "czas", "wiek", "wyksztalcenie", paste("KNM", 1:43,
  mutate(
   grupa = factor(grupa, levels = c("kontrolna", "eksperyment"), ordered = TRUE),
   wyksztalcenie = factor(wyksztalcenie, levels = c("Podstawowe", "Zawodowe", "Średnie",
    wykluczenie_czas <- baza %>%
 # filter((abs(czas - mean(baza$czas))/sd(baza$czas)) >= 2) %>%
 filter(czas < dopuszczalny_czas) %>%
 select(ID, grupa, uID, czas) %>%
 arrange(czas) # zbiór osób wykluczonych ze względu na zbyt szybkie wypełnienie testu
# baza <- baza %>% filter((czas - mean(baza$czas))/sd(baza$czas) > -2)
baza <- baza %>% filter(czas >= dopuszczalny czas)
## KNM ----
KNM <- baza %>%
 select(uID, grupa, starts_with("KNM_")) %>%
 pivot_longer(starts_with("KNM_"), names_to = "pyt", values_to = "odp")
## Homofobia ----
homofobia <- baza %>%
 select(uID, grupa, PIC_3, PIC_9, PIC_11, PIC_17, PIC_26, PIC_6, PIC_14, PIC_20, PIC_23,
  → PIC_28) %>% # po kolei lesbijki i geje, reszta to obrazki neutralne
 set_names(c("uID", "grupa", paste("L", 1:5, sep = "_"), paste("G", 1:5, sep = "_")))
```

```
pivot_longer(starts_with(c("L_", "G_")), names_to = "pyt", values_to = "odp") %>%
  mutate(orientacja = case_when(
   str_detect(pyt, "L") ~ "lesbijki",
    str_detect(pyt, "G") ~ "geje"
  )) %>%
  mutate(odp = 7 - odp) # odwrócenie, żeby wyższy wynik wskazywał na homofobię
# Rzetelność testu homofobii ----
alfa_geje <- homofobia %>%
  select(1, 3, 4) %>%
  pivot_wider(names_from = pyt, values_from = odp) %>%
  select(7:11) %>%
  alpha(title = "homofobia wobec gejów")
alfa_lesbijki <- homofobia %>%
  select(1, 3, 4) %>%
  pivot_wider(names_from = pyt, values_from = odp) %>%
  select(2:6) %>%
  alpha(title = "homofobia wobec lesbijek")
# Wyniki ----
## Zmienne z wynikami ----
homofobia_wyniki <- homofobia %>%
  group_by(uID) %>%
  summarise(HF = sum(odp))
homofobia_wyniki_L <- homofobia %>%
  filter(orientacja == "lesbijki") %>%
  group_by(uID) %>%
  summarise(HF_lesbijki = sum(odp))
homofobia_wyniki_G <- homofobia %>%
  filter(orientacja == "geje") %>%
```

```
group_by(uID) %>%
 summarise(HF_geje = sum(odp))
KNM_wyniki <- KNM %>%
 group_by(uID) %>%
 summarise(NM = sum(odp)) %>%
 mutate(
   NM_grupa = case_when(NM >= median(.$NM) ~ "wysoka", NM < median(.$NM) ~ "niska"),
   NM_grupa = factor(NM_grupa, levels = c("niska", "wysoka"), ordered = TRUE)
 )
wyniki <- left_join(homofobia_wyniki, KNM_wyniki, .by = "uID") %>%
 left join(select(baza, uID, grupa, wiek, wyksztalcenie), .by = "uID") %%
 arrange(grupa, uID) %>%
 left_join(homofobia_wyniki_G, by = "uID") %>%
 left_join(homofobia_wyniki_L, by = "uID") %>%
 select(uID, grupa, NM_grupa, NM, HF, HF_geje, HF_lesbijki, wiek, wyksztalcenie) %>%
 mutate(
   HF_geje_std = (HF_geje - mean(HF_geje)) / sd(HF_geje),
   HF_lesbijki_std = (HF_lesbijki - mean(HF_lesbijki)) / sd(HF_lesbijki),
  NM_std = (NM - mean(NM)) / sd(NM)
 )
wyniki_HF_long <- wyniki %>%
 pivot_longer(c(HF, HF_geje, HF_lesbijki), names_to = "obiekt", values_to = "HF") %>%
 mutate(objekt = case_when(objekt == "HF" ~ "ogólna", objekt == "HF_geje" ~ "geje",
  → obiekt == "HF_lesbijki" ~ "lesbijki")) %>%
 select(uID, grupa, NM_grupa, obiekt, HF) %>%
 mutate(obiekt = factor(obiekt, levels = c("ogólna", "geje", "lesbijki"), ordered =
  → TRUE))
## Statystyki opisowe ----
wyniki_opis_zmiennych <- opisz(wyniki, c(grupa, NM_grupa, wyksztalcenie), ilosciowe =</pre>
```

```
wyniki_opis_zmiennych_grupa <- opisz_by(wyniki, grupa, c(NM_grupa, wyksztalcenie),

    ilosciowe = c(NM, HF, HF_geje, HF_lesbijki, wiek))

wyniki_opis_zmiennych_NM_grupa <- opisz_by(wyniki, NM_grupa, c(grupa, wyksztalcenie),

    ilosciowe = c(NM, HF, HF_geje, HF_lesbijki, wiek))

wyniki_opis_zmiennych_grupa_NM_grupa <- opisz_by(wyniki, c(grupa, NM_grupa),
wyksztalcenie, ilosciowe = c(NM, HF, HF_geje, HF_lesbijki, wiek))
histogram_HF <- wyniki %>% ggplot(aes(HF)) +
  geom histogram(binwidth = 3) +
  xlab("homofobia") +
  ylab("n") +
  ggtitle("Rozkład wyników testu homofobii") +
  stat_function(fun = ~ dnorm(.x, mean(wyniki$HF), sd(wyniki$HF)) * nrow(wyniki) * 3) +
  jtools::theme_apa()
histogram_NM <- wyniki %>% ggplot(aes(NM)) +
  geom histogram(binwidth = 10) +
  xlab("normatywna męskość") +
  ylab("n") +
  ggtitle("Rozkład wyników KNM") +
  stat_function(fun = ~ dnorm(.x, mean(wyniki$NM), sd(wyniki$NM)) * nrow(wyniki) * 10) +
  jtools::theme_apa()
## Opis próby ----
histogram_wiek <- baza \%% ggplot(aes(x = wiek)) +
  geom_histogram(binwidth = 2) +
  ylab("n") +
  ggtitle("Histogram wieku w próbie") +
  stat_function(fun = ~ dnorm(.x, mean(baza$wiek), sd(baza$wiek)) * nrow(baza) * 2) +
  jtools::theme_apa()
```

```
histogram_wyksztalcenie <- baza %>% ggplot(aes(x = wyksztalcenie)) +
  geom_bar() +
  ggtitle("Histogram wykształcenia w próbie") +
  xlab("wykształcenie") +
  ylab("n") +
  jtools::theme_apa()
rownolicznosc_chi_kwadrat <- table(wyniki$grupa) %>% chisq_test(correct = FALSE)
## Normalność rozkładów ----
SW_kontr <- wyniki %>%
  filter(grupa == "kontrolna") %>%
  shapiro_test(HF, NM)
SW_eksp <- wyniki %>%
  filter(grupa == "eksperyment") %>%
  shapiro_test(HF, NM)
QQ_HF <- wyniki %>% ggplot(aes(sample = HF, colour = grupa, shape = grupa)) +
  stat_qq(alpha = 0.7, size = 3) +
  stat_qq_line() +
  ggtitle("Q-Q plot rozkładu homofobii") +
  xlab("kwantyl rozkładu normalnego") +
  ylab("kwantyl w próbie") +
  scale_colour_discrete(labels = c("grupa kontrolna", "grupa eksperymentalna")) +
  scale_shape_discrete(labels = c("grupa kontrolna", "grupa eksperymentalna")) +
  jtools::theme_apa()
QQ_NM <- wyniki %>% ggplot(aes(sample = NM, colour = grupa, shape = grupa)) +
  stat_qq(alpha = 0.7, size = 3) +
  stat_qq_line() +
  ggtitle("Q-Q plot rozkładu normatywnej męskości") +
```

```
xlab("kwantyl rozkładu normalnego") +
  ylab("kwantyl w próbie") +
  scale_colour_discrete(labels = c("grupa kontrolna", "grupa eksperymentalna")) +
  scale_shape_discrete(labels = c("grupa kontrolna", "grupa eksperymentalna")) +
  jtools::theme_apa()
# Model ----
## Wykresy pudełkowe ----
box_HF <- wyniki %>% ggplot(aes(x = grupa, y = HF)) +
 geom_boxplot() +
 ylab("homofobia") +
  ggtitle("Wykres homofobii w warunkach badawczych") +
  jtools::theme_apa()
box_HF_orientacje <- wyniki_HF_long %>%
  filter(obiekt != "ogólna") %>%
  ggplot(aes(x = grupa, y = HF, fill = obiekt)) +
  geom_boxplot() +
 ylab("homofobia") +
  ggtitle("Wykres homofobii wg orientacji") +
  scale_fill_manual(labels = c("wobec gejów", "wobec lesbijek"), values = c("#10559A",
  → "#DB4C77")) +
  jtools::theme_apa()
box_HF_orientacje_NM <- wyniki_HF_long %>%
  filter(obiekt != "ogólna") %>%
  ggplot(aes(x = factor(paste(NM_grupa, grupa, sep = "_"), levels = c("niska_kontrolna",
  → "niska_eksperyment", "wysoka_kontrolna", "wysoka_eksperyment")), y = HF, fill =
  → obiekt)) +
  geom_boxplot() +
  ylab("homofobia") +
  xlab("grupa") +
  ggtitle("Wykres homofobii wg orientacji i normatywnej męskości") +
```

```
scale_fill_manual(labels = c("wobec gejów", "wobec lesbijek"), values = c("#10559A",
  → "#DB4C77")) +
  jtools::theme_apa()
## ANOVA ----
### Analiza kontrastów ----
contrasts(wyniki$grupa) <- c(1, -1)</pre>
contrasts(wyniki$NM_grupa) <- c(1, -1)</pre>
### Model ----
HF_geje_aov <- aov(HF_geje ~ grupa * NM_grupa, data = wyniki)</pre>
HF_lesbijki_aov <- aov(HF_lesbijki ~ grupa * NM_grupa, data = wyniki)</pre>
HF_geje_aov_rob <- lmRob(HF_geje ~ grupa * NM_grupa, data = wyniki)</pre>
HF_lesbijki_aov_rob <- lmRob(HF_lesbijki ~ grupa * NM_grupa, data = wyniki)</pre>
rownolicznosc_modelu_chi_kwadrat <- chisq_test(wyniki$grupa, wyniki$NM_grupa)</pre>
#### Homogeniczność wariancji ----
levene_HF_geje <- levene_test(HF_geje_aov)</pre>
levene_HF_lesbijki <- levene_test(HF_lesbijki_aov)</pre>
#### Wykresy interakcji ----
ip_HF_geje <- afex_plot(HF_geje_aov, "NM_grupa", "grupa") +</pre>
  labs(x = "Normatywna m\u0119sko\u015b\u0107", y = "Homofobia wobec gej\u00f3w") +
  scale_linetype_manual(values = c("solid", "dashed"), labels = c("Brak zagro\u017cenia",
  → "M\u0119sko\u015b\u0107 zagro\u017cona")) +
```

```
scale_shape_manual(values = c(16, 17), labels = c("Brak zagro\u017cenia",
  scale x discrete(labels = c("Niska", "Wysoka")) +
  guides(linetype = guide_legend(title = "Zagro\u017cenie m\u0119sko\u015bci"), shape =

    guide_legend(title = "Zagro\u017cenie m\u0119sko\u015bci")) +

  theme_apa(base_family = "Open Sans")
ip_HF_lesbijki <- afex_plot(HF_lesbijki_aov, "NM_grupa", "grupa") +</pre>
  labs(x = "Normatywna m\u0119sko\u015b\u0107", y = "Homofobia wobec lesbijek") +
  scale_linetype_manual(values = c("solid", "dashed"), labels = c("Brak zagro\u017cenia",
  scale_shape_manual(values = c(16, 17), labels = c("Brak zagro\u017cenia",
  scale_x_discrete(labels = c("Niska", "Wysoka")) +
  guides(linetype = guide_legend(title = "Zagro\u017cenie m\u0119sko\u015bci"), shape =

    guide_legend(title = "Zagro\u017cenie m\u0119sko\u015bci")) +

  theme_apa(base_family = "Open Sans")
#### Średnie ----
M_HF_geje <- estimate_means(HF_geje_aov)</pre>
M_HF_lesbijki <- estimate_means(HF_lesbijki_aov)</pre>
#### Analiza efektów prostych ----
sea_HF_lesbijki_grupa <- joint_tests(HF_lesbijki_aov, "grupa")</pre>
sea_HF_lesbijki_NM_grupa <- joint_tests(HF_lesbijki_aov, "NM_grupa")</pre>
#### Post hoc ----
posthoc_HF_lesbijki <- estimate_contrasts(HF_lesbijki_aov, contrast = c("grupa",</pre>
→ "NM_grupa"), adjust = "bonferroni")
```

```
## Analiza moderacji ----
HF_geje_lm <- wyniki %>%
  mutate(grupa = case_when(grupa == "eksperyment" ~ 1, TRUE ~ 0)) %>%
 lm(HF_geje_std ~ grupa * NM_std, .)
HF_lesbijki_lm <- wyniki %>%
  mutate(grupa = case_when(grupa == "eksperyment" ~ 1, TRUE ~ 0)) %>%
 lm(HF_lesbijki_std ~ grupa * NM_std, .)
jn_intervals <- interactions::sim_slopes(HF_lesbijki_lm, grupa, NM_std, jnplot = TRUE)</pre>
### Wykresy na omawianie ----
ggplot(wyniki, aes(NM_std, HF_geje_std, colour = grupa)) +
  geom_jitter(alpha = 0.4) +
 geom_smooth(method = "lm", se = FALSE) +
  labs(x = "Normatywna męskość", y = "Homofobia wobec gejów", title = "Homofobia wobec

→ gejów od normatywnej męskości") +

  scale_color_manual(values = wesanderson::wes_palette("Royal1", 2), labels = c("Brak

→ zagrożenia", "Zagrożenie"), name = "Zagrożenie męskości") +
  theme_apa()
ggplot(wyniki, aes(NM_std, HF_lesbijki_std, colour = grupa)) +
  geom_jitter(alpha = 0.4) +
  geom_smooth(method = "lm", se = FALSE) +
  labs(x = "Normatywna męskość", y = "Homofobia wobec lesbijek", title = "Homofobia wobec
  → lesbijek od normatywnej męskości") +
  scale_color_manual(values = wesanderson::wes_palette("Royal1", 2), labels = c("Brak

→ zagrożenia", "Zagrożenie"), name = "Zagrożenie męskości") +
  theme_apa()
# Zapis bazy na dysku ----
writexl::write_xlsx(baza, "./bazy_na_zajecia/baza_pelna.xlsx")
writexl::write_xlsx(wyniki, "./bazy_na_zajecia/baza_podsumowanie.xlsx")
```

B. I badanie sędziów kompetentnych

```
### ANALIZA BADANIA SĘDZIÓW KOMPETENTNYCH ###
pacman::p_load(rstatix, tidyverse, magrittr)
# Definicje funkcji ----
parse_long <- function(df, name) {</pre>
  df %>%
    set_names(
      c("ID", paste0(name, 1:(ncol(df) - 1)))
    ) %>%
    mutate(
      across(where(is_character), parse_number)
    ) %>%
    pivot_longer(
      cols = 2:ncol(df), ## tj. wszystkie poza ID
     names_to = "pic",
      values_to = "rate"
    )
}
std_mean <- function(df, rate, group) {</pre>
  df %>%
    group_by({{ group }}) %>%
    summarise(
     M = mean(rate),
     SD = sd(rate)
    ) %>%
    mutate(
     Z = (M - mean(M)) / sd(M)
    ) %>%
    arrange(desc(Z))
}
```

```
flip_scale <- function(x, range) {</pre>
  2 * mean(range) - x
}
# Zmienne z danymi ----
raw_data <- readxl::read_excel("./sedziowie-dane.xlsx") %>%
  discard(~ all(is.na(.)))
neutrality <- raw_data %>%
  select(ID, starts_with("Czy ten obrazek jest neutralny?"))
clarity <- raw_data %>%
  select(ID, starts_with("Na ile czytelne jest, że osoby na obrazku są homoseksualne?"))
validity <- raw_data %>%
  select(ID, starts_with("Czy ten obrazek może znaleźć się w teście mierzącym
  → homofobie?"))
question_fit <- raw_data %>%
  select(ID, starts_with("Mając na względzie cel pomiaru, uszereguj podane niżej
  → propozycje w kolejności od najlepszej do najgorszej"))
# Neutralność ----
neutrality <- neutrality %>%
 parse_long("N") %>%
  mutate(rate = flip_scale(rate, 1:6))
neutrality_sum <- neutrality %>% std_mean(rate, pic)
neutrality_W <- neutrality %>%
  friedman_effsize(rate ~ pic | ID) %>%
  mutate(`.y.` = "neutrality")
```

```
# Czytelność ----
clarity <- clarity %>%
 parse_long("H") %>%
  mutate(rate = flip_scale(rate, 1:6))
clarity_sum <- clarity %>% std_mean(rate, pic)
clarity_W_gay <- clarity %>%
  filter(pic %in% paste0("H", 1:24)) %>%
  friedman_effsize(rate ~ pic | ID) %>%
  mutate(`.y.` = "clarity_gay")
clarity_W_lasbian <- clarity %>%
  filter(pic %in% paste0("H", 25:42)) %>%
 friedman_effsize(rate ~ pic | ID) %>%
  mutate(`.y.` = "clarity_lesbian")
# Trafność ----
validity <- validity %>% parse_long("H")
validity_CVR <- validity %>%
  group_by(pic) %>%
  count(rate) %>%
 filter(rate == "3") %>%
 mutate(
    CVR =
      (n - 0.5 * nrow(raw_data)) / (0.5 * nrow(raw_data)) # nrow(raw_data) to liczba
→ sędziów
  ) %>%
  select(pic, CVR) %>%
  arrange(desc(CVR))
validity_W_gay <- validity %>%
  filter(pic %in% paste0("H", 1:24)) %>%
```

```
friedman_effsize(rate ~ pic | ID) %>%
 mutate(`.y.` = "validity_gay")
validity_W_lesbian <- validity %>%
 filter(pic %in% paste0("H", 25:42)) %>%
 friedman_effsize(rate ~ pic | ID) %>%
 mutate(`.y.` = "validity_lesbian")
# Ocena pytań ----
question_fit <- question_fit %>%
  separate(
   col = 2,
   into =
     as.character(
       str_count(question_fit[[1, 2]], ";"):1 # liczba średników jest równa liczbie
        → pytań do uszeregowania, ciąg N od liczby średników do 1
     ),
   sep = ";"
 ) %>%
 pivot_longer(
   2:ncol(.),
   names_to = "rate",
   values_to = "question"
 ) %>%
 mutate(
   rate = as.double(rate),
   across(where(is_character), str_trim)
 )
question_fit_sum <- question_fit %>% std_mean(rate, question)
question_fit_W <- question_fit %>%
 friedman_effsize(rate ~ question | ID) %>%
 mutate(`.y.` = "question_fit")
```

```
# W Kendalla ----
Kendall_W <- bind_rows(neutrality_W, clarity_W_gay, clarity_W_lasbian, validity_W_gay,</pre>
→ validity_W_lesbian, question_fit_W)
# Wykresy ----
CVR_I_all <- validity_CVR %>%
  mutate(orientation = case_when(pic %in% paste0("H", 1:24) ~ "gej", TRUE ~ "lesbijka"))
  ggplot(aes(x = reorder(pic, -CVR), y = CVR)) +
  geom_col(aes(fill = orientation)) +
  scale_x_discrete(guide = guide_axis(angle = -60)) +
  labs(x = "Oznaczenie bodźca", fill = "Orientacja seksualna", title = "CVR obrazków w I
  → badaniu") +
  scale_fill_manual(labels = c("gej", "lesbijka"), values = c("#10559A", "#DB4C77")) +
  theme_light() +
  theme(text = element_text(family = "Open Sans"))
CVR_I_filtered <- validity_CVR %>%
  filter(CVR >= 0.56) \% \%
  mutate(orientation = case_when(pic %in% paste0("H", 1:24) ~ "gej", TRUE ~ "lesbijka"))
  ggplot(aes(x = reorder(pic, -CVR), y = CVR)) +
  geom_col(aes(fill = orientation)) +
  scale_x_discrete(guide = guide_axis(angle = -60)) +
  labs(x = "Oznaczenie bodźca", fill = "Orientacja seksualna", title = "CVR obrazków w I
  \rightarrow badaniu (CVR >= 0,56)") +
  scale_fill_manual(labels = c("gej", "lesbijka"), values = c("#10559A", "#DB4C77")) +
  theme_light() +
  theme(text = element_text(family = "Open Sans"))
```

C. II badanie sędziów kompetentnych

```
### ANALIZA BADANIA SĘDZIÓW KOMPETENTNYCH - POWTÓRNA ###
pacman::p_load(rstatix, tidyverse, magrittr)
# Definicje funkcji ----
parse_long2 <- function(df) {</pre>
    df %>%
        set_names(
            str_extract(names(validity2), "H\\d{2}") %>% str_replace_na("ID")) %>%
        mutate(across(where(is_character), parse_number)) %>%
        pivot_longer(
            cols = 2:ncol(df), # tj. wszystkie poza ID
            names_to = "pic",
            values_to = "rate")
}
std_mean <- function(df, rate, group) {</pre>
    df %>%
        group_by({{group}}) %>%
        summarise(
            M = mean(rate),
            SD = sd(rate)
            ) %>%
        mutate(
            Z = (M - mean(M)) / sd(M)
            ) %>%
        arrange(desc(Z))
}
# Zmienne z danymi ----
raw_data2 <- readxl::read_excel("sedziowie-dane-2.xlsx") %>%
    discard(~all(is.na(.))) %>%
    filter(Wiek >= 18)
```

```
clarity2 <- raw_data2 %>%
    select(ID, starts_with("Na ile czytelne jest, że osoby na obrazku są homoseksualne"))
validity2 <- raw_data2 %>%
    select(ID, starts_with("Czy ten obrazek może znaleźć się w teście mierzącym
    → homofobie?"))
# Czytelność ----
clarity2 %<>% parse_long2()
clarity2_sum <- clarity2 %>% std_mean(rate, pic)
clarity2_W_lesbian <- clarity2 %>%
    friedman_effsize(rate ~ pic | ID) %>%
    mutate(`.y.` = "clarity2_lesbian")
# Trafność ----
validity2 %<>% parse_long2()
validity2_CVR <- validity2 %>%
    group_by(pic) %>%
    count(rate) %>%
    filter(rate == "3") %>%
    mutate(CVR =
               (n - 0.5 * nrow(raw_data2)) / (0.5 * nrow(raw_data2)) # nrow(raw_data2) to
→ liczba sędziów
    ) %>%
    select(pic, CVR) %>%
    arrange(desc(CVR))
validity2_W_lesbian <- validity2 %>%
    friedman_effsize(rate ~ pic | ID) %>%
    mutate(`.y.` = "validity2_lesbian")
```

```
# W Kendalla ----
Kendall_W_2 <- bind_rows(clarity2_W_lesbian, validity2_W_lesbian)</pre>
# Wykresy ----
CVR_II_all <- validity2_CVR %>%
  ggplot(aes(x = reorder(pic, -CVR), y = CVR)) +
  geom_col(fill = "#DB4C77") +
  scale_x_discrete(guide = guide_axis(angle = -60)) +
  labs(x = "Oznaczenie bodźca", title = "CVR obrazków w II badaniu") +
 theme_light() +
  theme(text = element_text(family = 'Open Sans'))
CVR_II_filtered <- validity2_CVR %>%
  filter(CVR >= 0.56) \%%
  ggplot(aes(x = reorder(pic, -CVR), y = CVR)) +
  geom_col(fill = "#DB4C77") +
  scale_x_discrete(guide = guide_axis(angle = -60)) +
  labs(x = "Oznaczenie bodźca", title = "CVR obrazków w II badaniu (CVR >= 0,56)") +
  theme_light() +
  theme(text = element_text(family = 'Open Sans'))
```