Disciplina: Modelos Estatísticos

Professora: Jéssica Assunção

Comparação de modelos

Critério de Informação de Akaike - AIC

$$AIC = -2\log L\left(\widehat{\boldsymbol{\theta}}\right) + 2\left(p\right)$$

$$AIC = -n \ln(SQ_{Res}/n) + 2p.$$

Critério de Informação Bayesiano - BIC

$$BIC = -2\log f(x_n|\boldsymbol{\theta}) + p\log n,$$

$$BIC = -n \ln(SQ_{Res}/n) + \ln(n)p.$$

MAE & MSE

MAE - Erro médio absoluto

$$\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$

MSE - Erro médio quadrático

$$\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2$$

Regressão Polinomial

Regressão Polinomial

Contornando o problema com modelos lineares! Vamos forjar novas variáveis...

	x	x^2	у
0	0.500000	0.250000	3.099345
1	0.616162	0.379655	1.198763
2	0.732323	0.536297	1.615168
3	0.848485	0.719927	1.400493
4	0.964646	0.930543	3.666293

Regressão Polinomial

Algumas Desvantagens:

- O algoritmo não aprende sobre a forma da não linearidade
- Responsabilidade atribuída ao analista
- Não performa bem com muitas variáveis
- Não performa bem quando o grau do polinômio é muito alto

Diferenças

	Linear	Logística
Reta	Reta	Curva - S
Variável Dependente	Continua	Categórica
Interpretação	ŷ	$\ln\left(\frac{p}{1+p}\right)$

$$\ln\left(\frac{p}{1+p}\right) = a + bX$$

$$\left(\frac{p}{1+p}\right) = e^{a+bX}$$

$$p = \left(\frac{e^{a+bX}}{1+e^{a+bX}}\right)$$

$$p = \left(\frac{1}{1 + e^{-a + bX}}\right)$$

$$p = \frac{1}{1 + e^{-(b_0 + b_1 x_1 + b_2 x_2 + \dots + b_n x_n)}}$$