Parciális modellek strukturális tulajdonságainak vizsgálata gráfmetrikákkal

Bohus Liliána

BSc szakdolgozat 2020. január 8.

Konzulens: Dr. Semeráth Oszkár

Kritikus rendszerek tervezése

gráf alapú modellezőeszközök

- kódgenerátorok
- korszerű IDE-k

Modellezőeszközök helyessége

Problémafelvetés: biztosítani kell a modellezőeszközök megfelelő, hibamentes működését

Célkitűzés: gráfok realisztikusságának mérése generálás során

Generált modellek realisztikussága

- Szintetikus modellek szükségesek, mert
 - IP okokból nem elérhető valós modell
 - nincs kellően nagy méretű modell
- Realisztikusság: egy szintetikus modellt nem tudunk megkülönböztetni egy valós, ember által készített modelltől (nevektől, azonosítóktól eltekintve)
 - valódi terhelési profil vizsgálatához szükséges
- Hogyan mérjük gráfok realisztikusságát?
 - o nincs a szakirodalomban elfogadott általános metrika
- Hogyan készítünk realisztikus gráfokat?
 - a konzisztens modellgenerátorok jellemzően <u>nem</u> realisztikus gráf modelleket eredményeznek

Modellek realisztikusságának vizsgálata

 realisztikusság mérésekor a modellek struktúrájára fókuszálok

fokszám = 3

- a modelleken gráfmetrikákat mérek
 - fokszámeloszlás

fokszám = 1

- hány db van az adott kimenő fokszámú csúcsokból
- típuseloszlás
 - hány db van az adott típusú csúcsokból
- arányszámokkal jellemezhető metrikákat használok

fokszám	arány
0	0/7
1	$^{2}/_{7}$
2	4/7
3	1/7

Munkám célja: gráfmetrikák alakulásának vizsgálata

- ember által készített realisztikus gráfok vizsgálata
- végigkövetve a felépülési folyamatot

- ember által készített realisztikus gráfok vizsgálata
- végigkövetve a felépülési folyamatot

információtartalom (méret) növekedése

- ember által készített realisztikus gráfok vizsgálata
- végigkövetve a felépülési folyamatot

információtartalom (méret) növekedése

a gráfok **felépülésének** különböző **fázisai** megvizsgálhatók a rendelkezésre álló konkrét gráfok **lebontásával**

- ember által készített realisztikus gráfok vizsgálata
- végigkövetve a felépülési folyamatot

információtartalom (méret) növekedése

modell lebontása (absztrakciója)

Gráfabsztrakciók sztochasztikus szimulációja

- ember által készített realisztikus gráfok vizsgálata
- végigkövetve a felépülési folyamatot

információtartalom (méret) növekedése

modell lebontása (absztrakciója)

Gráfabsztrakciós szabályok

a lebontás gráfabsztrakciós szabályok alapján történik

Gráfabsztrakciós szabályok

a lebontás gráfabsztrakciós szabályok alapján történik

Gráfabsztrakciós szabályok

a gráfabsztrakciós szabályok egy létező gráfgenerátor (Viatra Solver) finomítási műveleteinek inverzei

> csúcsba menő tartalmazási él és annak inverze

a tartalmazási élen és annak inverzén kívül nincsenek kimenő és bemenő élek removeNode(C)

 \mathbf{R}_c : tartalmazási él

 \mathbf{R}_i : az \mathbf{R}_c él inverze

parent

child/new

Semeráth, Oszkár, András Szabolcs Nagy, and Dániel Varró.

[&]quot;A graph solver for the automated generation of consistent domain-specific models." *Proceedings of the 40th International Conference on Software Engineering*. ACM, 2018.

Gráfabsztrakciós szabályok végrehajtása

- Feladat: egy adott modell lebontása és a lebontás közben a gráfmetrikák mérése
- Algoritmus:
 - minden modellre, amíg nem teljesen absztrakt:
 - 1. lépés: tüzelhető szabályok (lehetséges absztrakciók) kikeresése
 - 2. lépés: egy lehetséges absztrakció kiválasztása véletlenszerűen
 - 3. lépés: a kiválasztott absztrakciós lépés végrehajtása
 - o közben: gráfmetrikák mérése

Rendszermodellezés házi feladatok

- sakkóra Yakindu állapotgépben
 - összesen 876 db modell
 - 50 különböző lebontása
- eltérő elemszámú modellek
 3 modellhalmazra bontva
 - ~ 50 csúcs
 - ~ 75 csúcs
 - ~ 100 csúcs

különböző méretű modellhalmazok lebontása során a típuseloszlás alakulása

modellmérettől függetlenül megfigyelhető, hogy a lebontás utolsó pár százalékában a típuseloszlás ingadozik, ez a kezdeti alapstruktúra felépülésével magyarázható

különböző méretű modellhalmazok lebontása során a típuseloszlás alakulása

vannak típusok, amelyek modellmérettől függetlenül is hasonló eloszlást mutatnak, viszont vannak olyan típusok, amelyek a modellmérettől függően eltérő eloszlást mutatnak

különböző méretű modellhalmazok lebontása során a típuseloszlás alakulása

további mérések:

egy modellkészlet különböző lebontásainak összehasonlítása (eredmény: nem különböznek szignifikánsan) fokszámok alakulása a különböző méretű modellhalmazok lebontása során, parciális és kis méretű modellek metrikáinak összehasonlítása

Felhasznált technológiák

- megvalósított sztochasztikus gráfmetrika-elemző
 - Eclipse keretrendszerbe integrált plug-in projekt
 - az EMF keretrendszerhez illesztett
 - → alkalmazható más modellezési nyelvvel is
- modellek betöltése, gráfabsztrakciók szimulálása, gráfmetrikák számítása, adatok utófeldolgozása
 - Java
 - Xtend
 - Viatra Solver gráfgenerátor
- adatfeldolgozás
 - Excel
 - .CSV

Összefoglalás

- gráfmetrikák **félkész** (parciális) és **teljes** modellek mérésére
- gráfabsztrakciós szabályok definiálása és implementálása
 - az absztrakciós szabályok a Viatra Solver keretrendszerben alkalmazott finomítási szabályok inverzei
- gráfabsztrakciók szimulálása
 - 876 db modell
 - 50 különböző lebontás
- gráfmetrikák alakulásának vizsgálata a modell felépülésének különböző fázisaiban
- jövőbeli tervek:
 - o realisztikusabb modellek generálása gráfgenerátor vezérlésével
 - o szintetikus gráfok statisztikai mutatóinak vizsgálata → metrika megállapítása, amely egyértelműen megkülönböztet humán és generált modelleket

Bíráló kérdése

Amennyiben a munkát a továbbiakban szintetikus gráfok irányított generálásához használja, milyen módon méri majd a generált gráfok "jóságát"? (Ugyebár a bemutatott módszerrel való mérés, kvázi önellenőrzés nem informatív, tehát a kérdés az, hogy milyen egyéb külső megfelelőségi kritériumot tud elképzelni.)

Vizsgálat:

- 1. irányítatlan generálás
- irányított generálás végső értékek alapján
- 3. irányított generálás a generálás aktuális szakaszában várt értékek alapján
- Új metrikák vizsgálata az alábbi cikk alapján:

Gábor Szárnyas–Zsolt Kővári–Ágnes Salánki–Dániel Varró:

Towards the characterization of realistic models: Evaluation of multidisciplinary graph metrics.

In ACM/IEEE 19th International Conference on Model Driven Engineering Languages and Systems,

MODELS 2016 (konferenciaanyag). Saint Malo, France, 2016.

Összefoglalás

Gráfok épülésének folyamata

- ember által készített realisztikus gráfok vizsgálata
- végigkövetve a felépülési folyamatot

információtartalom (méret) növekedése

Gráfabsztrakciós szabályok végrehajtása

- Feladat: egy adott modell lebontása és a lebontás közben a gráfmetrikák mérése
- Algoritmus:
 - o minden modellre, amíg nem teljesen absztrakt:
 - 1. lépés: tüzelhető szabályok (lehetséges absztrakciók) kikeresése
 - 2. lépés: egy lehetséges absztrakció kiválasztása véletlenszerűen
 - 3. lépés: a kiválasztott absztrakciós lépés végrehajtása
 - o közben: gráfmetrikák mérése

Ú E GYETEM 178

14

Gráfabsztrakciós szabályok

a lebontás gráfabsztrakciós szabályok alapján történik

Mérések

különböző méretű modellhalmazok lebontása során a típuseloszlás alakulása

vannak típusok, amelyek modellmérettől függetlenül is hasonló eloszlást mutatnak, viszont vannak olyan típusok, amelyek a modellmérettől függően eltérő eloszlást mutatnak

17

