2010年8月

2

- (1) 0 < t < 1 を固定して、関数 $y = x^{t-1}e^{-x}$ (x > 0) のグラフの概形を描け、
- (2) 0 < t < 1 のとき, 広義積分 $\int_0^1 x^{t-1} e^{-x} dx$ は収束することを示せ.
- (3) t > 0 のとき, 広義積分 $\int_{1}^{\infty} x^{t-1} e^{-x} dx$ は収束することを示せ.
- (4) (2),(3) より,各 t > 0 に対して

$$f(t) = \int_0^\infty x^{t-1} e^{-x} dx$$

が定義できる. このとき, t > 0 に対して, f(t+1) = tf(t) が成り立つことを示し, f(5) を求めよ.

| 実行列
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & a & b \\ 2 & b & c \end{pmatrix}$$
で定まる \mathbb{R}^3 から \mathbb{R}^3 への線形写像

$$f(\boldsymbol{x}) = A\boldsymbol{x}$$
 $(\boldsymbol{x} \in \mathbb{R}^3)$

を考える. $x, y \in \mathbb{R}^3$ が直交するなら, f(x), f(y) も必ず直交するとする. さらに a < 0 とする. このとき, 次の問いに答えよ.

- (1) (a,b,c) を求めよ.
- (2) 行列 A を対角化せよ. 対角化するための直交行列も 1 つ求めよ.

$$J^2 = -I$$

を満たすものを考える.ここで, J^2 は合成写像 $J\circ J$,I は V の恒等写像を表す.このとき,次の問いに答えよ.

- (1) 線形写像 $J: V \to V$ は同型写像であることを示せ.
- (2) **0** でない任意のベクトル $v_1 \in V$ に対して、ベクトル $v_1, J(v_1)$ は 1 次独立であることを示せ、また、ベクトルの組 $\{v_1, J(v_1)\}$ によって生成される V の部分空間を V_1 とおくとき、 V_1 は J 不変部分空間、すなわち

$$J(V_1) \subset V_1$$

を満たすことを示せ、ただし、0はVの零ベクトルである。

(3) (2) で定めた V_1 に対して、 V_1 に属さない任意のベクトル $v_2 \in V$ を とる。ベクトルの組 $\{v_2, J(v_2)\}$ によって生成される V の J 不変部分空間を V_2 とおく。このとき、

$$V_1 \cap V_2 = \{\mathbf{0}\}$$

であることを示せ.

- (4) (2) および (3) によって定められる V の基底 $\{v_1, J(v_1), v_2, J(v_2)\}$ に 関する J の表現行列 A を求めよ.
- 正の整数 n に対して, $X_n = \{1, 2, ..., n\}$ とおく. E を X_n の異なる 2 つの要素からなる集合の族とする. X_n の 3 つの要素からなる集合 $\{x, y, z\}$ が 存在して, $\{x, y\} \in E$, $\{y, z\} \in E$, $\{x, z\} \in E$ をみたすとき, E は三角形をもつという. 三角形をもたないような E の要素の個数の最大値を e_n で表す. 例えば, $e_3 = 2$ である. このとき, 次の問いに答えよ.
 - (1) e_4 を求めよ.
 - (2) $e_5 > 6$ が成り立つことを示せ.

- (3) $n \ge 5$ のとき $e_n \le e_{n-2} + n 1$ が成り立つことを示せ.
- 表が出る確率が p (0) であるコインを投げる試行を繰り返す. <math>n 回目の試行において, 表が出れば $Z_n = 1$, 裏が出れば $Z_n = 0$ とおいて確率変数列 Z_1, Z_2, \ldots を定め,

$$X_n = Z_1 + Z_2 + \dots + Z_n$$
 $(n = 1, 2, \dots)$

とおく. 次に, 自然数 $k \ge 1$ に対して,

$$T_k = \inf\{n \ge 1 \mid X_n \ge k\}$$

とおく. 以下の問いに答えよ.

- (1) n = 1, 2, ... に対して確率 $P(T_2 = n)$ を求めよ.
- (2) T_2 の平均値 $\mathbf{E}[T_2]$ を求めよ.
- (3) k, m, n を $k \ge 3$, n < m を満たす自然数とするとき, 条件付き確率 $P(T_k = m | T_2 = n)$ を二項係数を用いて表せ.
- 7 i を虚数単位とし、複素平面上の有理型関数 f を $f(z) = \frac{e^{iz}}{(z^2+1)^2}$ により定める。以下の問いに答えよ。
 - (1) r>0 に対して, $|f(re^{i\theta})|$ の $0 \le \theta \le \pi$ における最大値を M(r) と するとき, $\lim_{r\to +\infty} r^2 M(r) = 0$ であることを示せ.
 - (2) 上半平面 Im z > 0 における f(z) の極およびその点での留数をすべて求めよ.
 - (3) 定積分 $I = \int_0^\infty \frac{\cos x}{(x^2+1)^2} dx$ の値を求めよ.

 $oxed{8}$ $[-\pi,\pi]$ 上の実数値連続関数を成分にもつ 2 次の正方行列全体からなる集合を V とする. すなわち

$$\begin{array}{rcl} V &=& \left\{A(\theta) = \left(\begin{array}{cc} a_{11}(\theta) & a_{12}(\theta) \\ a_{21}(\theta) & a_{22}(\theta) \end{array} \right) \\ & \\ & a_{ij} \ (i,j=1,2) \ \text{は} \left[-\pi,\pi \right] 上の実数値連続関数 \right\} \end{array}$$

このとき,次の問いに答えよ.

(1) $A(\theta)$, $B(\theta) \in V$ に対して

$$(A,B) = \frac{1}{2} \int_{-\pi}^{\pi} \operatorname{tr}(A(\theta)^{t} B(\theta)) d\theta$$

とおくとき、これが実ベクトル空間 V における内積となることを示せ、ただし、 $A(\theta)^t$ は $A(\theta)$ の転置行列を、 $\operatorname{tr}(A(\theta))$ は $A(\theta)$ のトレースを表す。

(2) 非負の整数 n に対して

$$O_n(\theta) = \frac{1}{\sqrt{2\pi}} \begin{pmatrix} \cos(n\theta) & -\sin(n\theta) \\ \sin(n\theta) & \cos(n\theta) \end{pmatrix}$$

とおく.このとき,任意の非負の整数 m, n に対して $(O_m, O_n) = \delta_{mn}$ であることを示せ.ここで, δ_{mn} はクロネッカーのデルタの記号である.

(3) $A(\theta) \in V$ を固定し, (n+1) 個の実数 a_0, a_1, \ldots, a_n に対して

$$Q(a_0, a_1, \dots, a_n) = (A - \sum_{k=0}^n a_k O_k, A - \sum_{k=0}^n a_k O_k)$$

と定める. $Q(a_0, a_1, \ldots, a_n)$ が最小となるのは、各 $k = 0, 1, \ldots, n$ に対して $a_k = (A, O_k)$ となるときであることを示せ.

(X,d) を距離空間とし, $C\subset X$ を空でない閉集合とする. 関数 $f:X\to\mathbb{R}$ を次で定義する.

$$f(x) = \inf\{d(x,y) \mid y \in C\} \quad (x \in X)$$

このとき、次の問いに答えよ.

- (1) f は連続であることを示せ.
- (2) f(x) = 0 と $x \in C$ は同値であることを示せ.
- 10 K を体, U を K 上の有限次元ベクトル空間とし, V_1, V_2, V_3 を U の部分空間とする.
 - (1) U の部分空間 V が和集合 $V_1 \cup V_2$ に含まれるとき, $V \subset V_1$ または $V \subset V_2$ となることを示せ.
 - (2) K を実数体とする. U の部分空間 V が和集合 $V_1 \cup V_2 \cup V_3$ に含まれるとき, $V \subset V_1$ または $V \subset V_2$ または $V \subset V_3$ となることを示せ.
 - (3) $[U \text{ の部分空間 } V \text{ が } V_1 \cup V_2 \cup V_3 \text{ に含まれるとき}, V \subset V_1 \text{ または } V \subset V_2 \text{ または } V \subset V_3 \text{ となる }]$ という命題は、すべての体 K とすべての有限次元ベクトル空間 V_j (j=1,2,3) に対して成り立つか、成り立つときはその証明を、成り立たないときは反例 (体 K と部分空間 V,V_1,V_2,V_3 の例) をあげよ.