

Curso 2 – CD, AM e DM

IA BIG DATA

Mineração de Dados

Parte 5
Pós-processamento
Validação de Agrupamentos

Prof. Ricardo M. Marcacini ricardo.marcacini@icmc.usp.br

Métodos para Agrupamento de Dados

- Hierárquicos: organizar dados em uma decomposição hierárquica de clusters e subclusters
- Particionais: organizar dados em uma partição de k clusters

Métodos para Agrupamento de Dados

- **Hierárquicos:** Single-Link, Complete-Link, Average-Link e Bisecting K-Means
- **Particionais:** *k-Means e k-Medoides*

Métodos para Agrupamento de Dados

Qual método e algoritmo de agrupamento escolher? Qual é o número (k) apropriado de clusters?

Quais os <u>critérios de</u> <u>avaliação</u>?

- Analisar o "mérito" e qualidade dos clusters
- Validação por inspeção visual
- Índices de validação de agrupamentos
 - Índices internos
 - Índices relativos
 - Índices externos

- Analisar o "mérito" e qualidade dos clusters
- Validação por inspeção visual
- Índices de validação de agrupamentos
 - Índices internos
 - Índices relativos
 - Índices externos

MBA IA BIG DATA

Validação por inspeção visual

Após encontrar os clusters, construir a matriz de dissimilaridades (ou similaridade) e ordená-la de acordo com os clusters. Em seguida, colorir a matriz conforme a medida de proximidade.

WIBA IA BIG DATA

Validação por inspeção visual

Observe que dados sem uma estrutura de cluster bem definida se destacam menos na inspeção visual via matriz de (dis)similaridades.

MBA IA BIG DAYA

Validação por inspeção visual

Verificar visualmente os clusters em um espaço de baixa dimensionalidade, como uma projeção bidimensional.

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix} \xrightarrow{\begin{array}{c} \text{Medida de} \\ \text{Proximidade} \\ \text{Algoritmo de} \\ \text{Agrupamento} \end{array}}$$

MBA IA BIG DAYA

Validação por inspeção visual

Verificar visualmente os clusters em um espaço de baixa dimensionalidade, como uma projeção bidimensional.

MBA IA BIG DAYA

Validação por inspeção visual

Verificar visualmente os clusters em um espaço de baixa dimensionalidade, como uma projeção bidimensional.

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ x_{21} & x_{22} & \cdots & x_{2d} \\ \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nd} \end{bmatrix} \xrightarrow{\begin{array}{c} \mathsf{Medida\ de} \\ \mathsf{Proximidade} \end{array}} \xrightarrow{\begin{array}{c} \mathsf{Resultado:} \\ \mathsf{Partição\ (Clusters)} \end{array}}$$

Projeção dos dados em duas dimensões

Ex: PCA

MBA IA BIG DAYA

Validação por inspeção visual

Verificar visualmente os clusters em um espaço de baixa dimensionalidade, como uma projeção bidimensional.

em duas dimensões Ex: PCA

MBA IA BIG DATA

- Validação por inspeção visual
 - São opções importantes para explorar os clusters
 - Evitar o uso como única forma de validação

MBA IA BIG DAYA

- Validação por inspeção visual
 - São opções importantes para explorar os clusters
 - Evitar o uso como única forma de validação

Limitações

- Subjetividade na validação
- Projeção bi-dimensionais dos dados podem perder informações relevantes

MBA IA BIG DATA

- Índices de validação de agrupamento
 - São critérios que analisam de forma <u>quantitativa e objetiva</u> a "qualidade" dos *clusters* obtidos

- Índices de validação de agrupamento
 - São critérios que analisam de forma <u>quantitativa e objetiva</u> a "qualidade" dos *clusters* obtidos
 - Índices de validade interna

Analisam a estrutura de *clusters* sem uso de informação externa

- Índices de validação de agrupamento
 - São critérios que analisam de forma <u>quantitativa e objetiva</u> a "qualidade" dos *clusters* obtidos
 - Índices de validade interna

Analisam a estrutura de *clusters* sem uso de informação externa

Índices de validade relativa

Visam comparar diferentes partições, geralmente para identificar o número apropriado de clusters (diferentes algoritmos de *clustering*)

- Índices de validação de agrupamento
 - São critérios que analisam de forma <u>quantitativa e objetiva</u> a "qualidade" dos *clusters* obtidos
 - Índices de validade interna

Analisam a estrutura de *clusters* sem uso de informação externa

Índices de validade relativa

Visam comparar diferentes partições, geralmente para identificar o número apropriado de clusters (diferentes algoritmos de *clustering*)

Índices de validade externa

Medem o quanto a estrutura de cluster representa uma estrutura de organização previamente estabelecida

- Índices de validade interna: Erro Quadrático
 - Já estudamos indiretamente essa medida
 - É utilizada pelo k-means para escolher a melhor execução após diferentes inicializações de centroides

- Índices de validade interna: Erro Quadrático
 - Já estudamos indiretamente essa medida
 - É utilizada pelo k-means para escolher a melhor execução após diferentes inicializações de centroides

$$E = \sum_{i=1}^{k} \sum_{\mathbf{x} \in \mathbf{C_i}} d^2(\mu_i, \mathbf{x})$$

Quanto menor o valor de erro *E*, melhor a solução.

- Índices de validade interna: Erro Quadrático
 - Já estudamos indiretamente essa medida
 - É utilizada pelo k-means para escolher a melhor execução após diferentes inicializações de centroides

$$E = \sum_{i=1}^{k} \sum_{\mathbf{x} \in \mathbf{C_i}} d^2(\mu_i, \mathbf{x})$$

O erro quadrático (E) naturalmente é reduzido ao aumentar o número de *clusters*

- Índices de validade interna: Erro Quadrático
 - Já estudamos indiretamente essa medida
 - É utilizada pelo k-means para escolher a melhor execução após diferentes inicializações de centroides

$$E = \sum_{i=1}^{k} \sum_{\mathbf{x} \in \mathbf{C_i}} d^2(\mu_i, \mathbf{x})$$

O erro quadrático (E) naturalmente é reduzido ao aumentar o número de *clusters*

- MBA IA BIG DATA
- Índices de validade interna: Correlação Cofenética
 - Avaliação de dendrogramas

									,								
а	b	С	d	е	f	g	h		0,5 -								
0	0,1	0,35	0,75	0,7	0,65	0,9	1										
0,1	0	0,8	0,95	0,85	0,7	0,6	0,95		1000							7	
0,35	0,8	0	0,4	0,7	1	0,8	0,75									0]
0,75	0,95	0,4	0	0,15	0,95	0,85	1	Hierarquico	0,3			-	\perp				
0,7	0,85	0,7	0,15	0	0,25	1	0,7		00				0				
0,65	0,7	1	0,95	0,25	0	0,85	1		0,2	Γ	\neg						
0,9	0,6	0,8	0,85	1	0,85	0	0,2		0.1					7		_	_
1	0,95	0,75	1	0,7	1	0,2	0		0,1							Γ,	
Matriz de Distâncias									0-	9	0 h	0 f	o d	0	C	0 a	b
												De	endro	gram	a		
	0 0,1 0,35 0,75 0,7 0,65 0,9	0 0,1 0,1 0 0,35 0,8 0,75 0,95 0,7 0,85 0,65 0,7 0,9 0,6 1 0,95	0 0,1 0,35 0,1 0 0,8 0,35 0,8 0 0,75 0,95 0,4 0,7 0,85 0,7 0,65 0,7 1 0,9 0,6 0,8 1 0,95 0,75	0 0,1 0,35 0,75 0,1 0 0,8 0,95 0,35 0,8 0 0,4 0,75 0,95 0,4 0 0,7 0,85 0,7 0,15 0,65 0,7 1 0,95 0,9 0,6 0,8 0,85 1 0,95 0,75 1	0 0,1 0,35 0,75 0,7 0,1 0 0,8 0,95 0,85 0,35 0,8 0 0,4 0,7 0,75 0,95 0,4 0 0,15 0,7 0,85 0,7 0,15 0 0,65 0,7 1 0,95 0,25 0,9 0,6 0,8 0,85 1 1 0,95 0,75 1 0,7	0 0,1 0,35 0,75 0,7 0,65 0,1 0 0,8 0,95 0,85 0,7 0,35 0,8 0 0,4 0,7 1 0,75 0,95 0,4 0 0,15 0,95 0,7 0,85 0,7 0,15 0 0,25 0,65 0,7 1 0,95 0,25 0 0,9 0,6 0,8 0,85 1 0,85 1 0,95 0,75 1 0,7 1	0 0,1 0,35 0,75 0,7 0,65 0,9 0,1 0 0,8 0,95 0,85 0,7 0,6 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,95 0,4 0 0,15 0,95 0,85 0,7 0,85 0,7 0,15 0 0,25 1 0,65 0,7 1 0,95 0,25 0 0,85 0,9 0,6 0,8 0,85 1 0,85 0 1 0,95 0,75 1 0,7 1 0,2	0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,65 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0	0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,65 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0	a b c d e f g h 0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,65 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0	0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,65 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0 Matriz de Distâncias	a b c d e f g h 0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,65 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0 Matriz de Distâncias	a b c d e f g h 0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,66 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0 Matriz de Distâncias	a b c d e f g h 0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,65 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0 Matriz de Distâncias	a b c d e f g h 0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,65 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0 Matriz de Distâncias	a b c d e f g h 0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,65 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0 Matriz de Distâncias	a b c d e f g h 0 0,1 0,35 0,75 0,7 0,65 0,9 1 0,1 0 0,8 0,95 0,85 0,7 0,6 0,95 0,35 0,8 0 0,4 0,7 1 0,8 0,75 0,75 0,95 0,4 0 0,15 0,95 0,85 1 0,7 0,85 0,7 0,15 0 0,25 1 0,7 0,65 0,7 1 0,95 0,25 0 0,85 1 0,9 0,6 0,8 0,85 1 0,85 0 0,2 1 0,95 0,75 1 0,7 1 0,2 0 Matriz de Distâncias

MIBA IA BIG DATA

• Índices de validade interna: Correlação Cofenética

Avaliação de dendrogramas

	a	b	C	d	е	f	g	h
а	0	0,1	0,35	0,75	0,7	0,65	0,9	1
b	0,1	0	0,8	0,95	0,85	0,7	0,6	0,95
C	0,35	0,8	0	0,4	0,7	1	0,8	0,75
d	0,75	0,95	0,4	0	0,15	0,95	0,85	1
е	0,7	0,85	0,7	0,15	0	0,25	1	0,7
f	0,65	0,7	1	0,95	0,25	0	0,85	1
g	0,9	0,6	0,8	0,85	1	0,85	0	0,2
h	1	0,95	0,75	1	0,7	1	0,2	0

	a	b	C	d	е	f	g	h
а	0	0,1	0,35	0,4	0,4	0,4	0,6	0,6
b	0,1	0	0,35	0,4	0,4	0,4	0,6	0,6
C	0,35	0,35	0	0,4	0,4	0,4	0,6	0,6
d	0,4	0,4	0,4	0	0,15	0,25	0,6	0,6
е	0,4	0,4	0,4	0,15	0	0,25	0,6	0,6
f	0,4	0,4	0,4	0,25	0,25	0	0,6	0,6
g	0,6	0,6	0,6	0,6	0,6	0,6	0	0,2
h	0,6	0,6	0,6	0,6	0,6	0,6	0,2	0

Cophenetic Difference

• Índices de validade interna: Correlação Cofenética

Avaliação de dendrogramas

	a	b	C	d	е	f	g	h
а	0	0,1	0,35	0,75	0,7	0,65	0,9	1
b	0,1	0	0,8	0,95	0,85	0,7	0,6	0,95
C	0,35	0,8	0	0,4	0,7	1	0,8	0,75
d	0,75	0,95	0,4	0	0,15	0,95	0,85	1
е	0,7	0,85	0,7	0,15	0	0,25	1	0,7
f	0,65	0,7	1	0,95	0,25	0	0,85	1
g	0,9	0,6	0,8	0,85	1	0,85	0	0,2
h	1	0,95	0,75	1	0,7	1	0,2	0

Matriz de Distâncias

	a	b	С	d	е	f	g	h
a	U	0,1	0,35	0,4	0,4	0,4	0,6	0,6
ь	0,1	0	0,35	0,4	0,4	0,4	0,6	0,6
C	U,35	0,35	0	0,4	0,4	0,4	0,6	0,6
d	0,4	0,4	0,4	0	0,15	0,25	0,6	0,6
е	0,4	0,4	0,4	0,15	0	0,25	0,6	0,6
f	0,4	0,4	0,4	0,25	0,25	0	0,6	0,6
g	0,6	0,6	0,6	0,6	0,6	0,6	0	0,2
h	0,6	0,6	0,6	0,6	0,6	0,6	0,2	0

Cophenetic Difference

A matriz cofenética é construída a partir do dendrograma!

- MBA IA BIG DAFA
- Índices de validade interna: Correlação Cofenética
 - Avaliação de dendrogramas

Matriz de Distâncias

	a	b	C	d	е	f	g	h
а	0	0,1	0,35	0,4	0,4	0,4	0,6	0,6
b	0,1	0	0,35	0,4	0,4	0,4	0,6	0,6
C	0,35	0,35	0	0,4	0,4	0,4	0,6	0,6
d	0,4	0,4	0,4	0	0,15	0,25	0,6	0,6
е	0,4	0,4	0,4	0,15	0	0,25	0,6	0,6
f	0,4	0,4	0,4	0,25	0,25	0	0,6	0,6
g	0,6	0,6	0,6	0,6	0,6	0,6	0	0,2
h	0,6	0,6	0,6	0,6	0,6	0,6	0,2	0

Cophenetic Difference

Calcular a correlação entre as duas matrizes! (Correlação de Pearson)

- WIBA IA BIG DATA
- Índices de validade interna: Correlação Cofenética
 - Avaliação de dendrogramas

Matriz de Distâncias

	a	b	С	d	е	f	g	h
а	0	0,1	0,35	0,4	0,4	0,4	0,6	0,6
b	0,1	0	0,35	0,4	0,4	0,4	0,6	0,6
C	0,35	0,35	0	0,4	0,4	0,4	0,6	0,6
d	0,4	0,4	0,4	0	0,15	0,25	0,6	0,6
е	0,4	0,4	0,4	0,15	0	0,25	0,6	0,6
f	0,4	0,4	0,4	0,25	0,25	0	0,6	0,6
g	0,6	0,6	0,6	0,6	0,6	0,6	0	0,2
h	0,6	0,6	0,6	0,6	0,6	0,6	0,2	0

Cophenetic Difference

Quanto mais próximo de 1, melhor a qualidade do dendrograma

- Índices de validade relativa: Silhueta
 - Avaliar a qualidade de uma partição (clusters)
 - Comparar partições obtidas por diferentes algoritmos
 - Determinar o número apropriado de clusters
 - Verificar se um objeto está bem alocado no seu cluster
 - Visualização (diagrama de silhueta)

• Índices de validade relativa: <u>Silhueta</u>

MBA IA BIG DATA

• Índices de validade relativa: <u>Silhueta</u>

1. O quão bem o objeto *i* está alocado em seu próprio *cluster*?

MBA IA BIG DATA

• Índices de validade relativa: <u>Silhueta</u>

1. O quão bem o objeto *i* está alocado em seu próprio *cluster*?

a(i) = distância média entre oobjeto i e todos os outros objetosdo seu cluster.

MBA BIG DAYA

• Índices de validade relativa: <u>Silhueta</u>

2. O quão próximo o objeto i está do seu *cluster* vizinho?

MBA IA BIG DATA

• Índices de validade relativa: <u>Silhueta</u>

2. O quão próximo o objeto i está do seu *cluster* vizinho?

b(i) = distância média entre o objeto *i* e todos os outros objetos do *cluster* vizinho.

MBA IA BIG DAYA

• Índices de validade relativa: <u>Silhueta</u>

3. Qual é o valor do índice de silhueta do objeto *i*?

• Índices de validade relativa: Silhueta

3. Qual é o valor do índice de silhueta do objeto *i*?

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

a(i) = distância média entre oobjeto i e todos os outros objetosdo seu cluster.

b(i) = distância média entre o objeto *i* e todos os outros objetos do *cluster* vizinho.

• Índices de validade relativa: Silhueta

3. Qual é o valor do índice de silhueta do objeto *i*?

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

a(i) = distância média entre oobjeto i e todos os outros objetosdo seu cluster.

b(i) = distância média entre o objeto *i* e todos os outros objetos do *cluster* vizinho.

• Índices de validade relativa: <u>Silhueta</u>

4. Calcular a silhueta de todos os objetos e computar a silhueta média

$$s(i) = rac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

• Índices de validade relativa: Silhueta

4. Calcular a silhueta de todos os objetos e computar a silhueta média

$$s(i) = \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}$$

A silhueta média S, $-1 \le S \le 1$, indica a qualidade geral do agrupamento.

MBA IA BIG DAYA

- Índices de validade relativa: Silhueta
 - Ordenar os objetos por cluster e por valor de silhueta, fornece o diagrama de silhueta.

MBA IA BIG DAYA

- Índices de validade externa
 - Comparar nossa partição com uma partição de referência
 - Exige uma rotulação prévia de uma parcela dos dados
- Uso prático?
 - Cenários e experimentos controlados

IVIBA BIG DAYA

- Índices de validade externa
 - Considere:
 - P = clusters obtidos pelo seu algoritmo
 - R = clusters de referência (e.g. anotado por humanos)

MBA IA BIG DAYA

• Índices de validade externa: <u>RAND Index</u>

Clusters obtidos pelo algoritmo (P)

Clusters de Referência (R)

MBA IA BIG DATA

• Índices de validade externa: <u>RAND Index</u>

Clusters obtidos pelo algoritmo (P)

Α	В
С	D

Clusters de Referência (R)

A = quantidade de vezes em que objetos *i* e *j* estão no mesmo cluster em P e no mesmo cluster em R

MBA IA BIG DATA

• Índices de validade externa: RAND Index

Clusters obtidos pelo algoritmo (P)

A=2	В
С	D

Clusters de Referência (R)

A = quantidade de vezes em que objetos *i* e *j* estão no mesmo cluster em P e no mesmo cluster em R

• Índices de validade externa: <u>RAND Index</u>

Clusters obtidos pelo algoritmo (P)

A=2	B=3
С	D

Clusters de Referência (R)

B = quantidade de vezes em que objetos *i* e *j* estão no mesmo cluster em P e em clusters diferentes em R

MBA IA BIG DATA

• Índices de validade externa: <u>RAND Index</u>

Clusters obtidos pelo algoritmo (P)

A=2	B=3
C=7	D=9

Clusters de Referência (R)

C = quantidade de vezes em que objetos *i* e *j* estão clusters diferentes em P e no mesmo cluster em R

• Índices de validade externa: <u>RAND Index</u>

Clusters obtidos pelo algoritmo (P)

A=2	B=3
C=7	D=9

Clusters de Referência (R)

D = quantidade de vezes em que objetos *i* e *j* estão clusters diferentes em P e em clusters diferentes em R

MBA IA BIG DATA

• Índices de validade externa: <u>RAND Index</u>

Clusters obtidos pelo algoritmo (P)

A=2	B=3
C=7	D=9

Clusters de Referência (R)

$$RAND = \frac{A+D}{A+B+C+D}$$

- Analisar o "mérito" e qualidade dos clusters
- Validação por inspeção visual
- Índices de validação de agrupamentos
 - Índices internos
 - Índices relativos
 - Índices externos

Eficiência computacional?

Rezende, S. O. (2003). Sistemas inteligentes: fundamentos e aplicações. Editora Manole Ltda.

Tan, P.N.; Steinbach, M.; Karpatne, A.; Kumar, V. (2016). *Introduction to Data Mining (2nd Edition)*. Pearson.

