1														1	18 (8)			
1	Hydrogen 1.008 1 -1 1s1	2		-	1	Sym							13 (3)	14 (4)	15 (5)	16 (6)	17 (7) (halogens)	Helium 4.002 602 0 1s ²
2	Lithium 6.94 1 [He]2s1	Beryllium 9.012 183 2 (-1) [He]2s²	Hydrogen 1.008 1 –1 1s1			Name Atomic weight (amu, g/mol) Oxidation states (with rare states in brackets) Electron configuration (anomalous configurations in black)								Carbon 12.011 4 3 2 1 -1 -2 -3 -4 [He]2s² 2p²	7 Nitrogen 14.007 5 3 -3 (4 2 1 -1 -2) [He] 2s² 2p³	Oxygen 15.999 -2 (2 1 -1) [He]2s ² 2p ⁴	F Fluorine 18.998 403 -1 [He]2s² 2p⁵	Neon 20.1797 0 [He]2s² 2p6
3	Na Sodium 22.989 769 1 (-1) [Ne]3s1	Mg Magnesium 24.305 2 (-1) [Ne]3s ²	Alkali metals	Alkaline earth metals	Transition metals	Lanthanides	Actinides	Post-transition metals	Metalloids	Reactive nonmetals	Noble gases	Chemical properties unknown	Aluminium 26.981 538 3 (2 1 -1 -2) [Ne]3s² 3p¹	Silicon 28.085 4 - 4 (3 2 1 -1 -2 -3) [Ne]3s² 3p²	Phosphorus 30.973 762 5 3 -3 (4 2 1 -1 -2) [Ne]3s² 3p³	S Sulfur 32.06 6 4 2 -2 (5 3 1 -1) [Ne]3s ² 3p ⁴	Chlorine 35.45 7 5 3 1 -1 (6 4 2) [Ne]3s ² 3p ⁵	Ar Argon 39.95 0 [Ne]3s ² 3p ⁶
4	Potassium 39.0983 1 (-1) [Ar]4s1	Calcium 40.078 2 (-1) [Ar]4s²	SC Scandium 44.955 907 3 (2 1) [Ar]4s ² 3d ¹	Titanium 47.867 4 (3 2 1 -1 -2) [Ar]4s² 3d²	V Vanadium 50.9415 5 (4 3 2 1 –1 -3) [Ar]4s² 3d³	Chromium 51.9961 6 3 (5 4 2 1 -1 -2 -4) [Ar]3d ⁵ 4s ¹	Mn Manganese 54.938 043 7 4 2 (6 5 3 1 -1 -2 -3) [Ar]4s² 3d⁵	Fe Iron 55.845 6 3 2 (5 4 1 -1 -2 -4) [Ar]4s² 3d6	Cobalt 58.933 194 3 2 (5 4 1 -1 -3) [Ar]4s² 3d²	Nickel 58.6934 2 (4 3 1 -1 -2) [Ar]4s² 3d8	CU Copper 63.546 2 (4 3 1 -2) [Ar]4s1 3d10	Zn Zinc 65.38 2 (1 -2) [Ar]4s² 3d¹⁰	Gallium 69.723 3 (2 1 -1 -2 -4 -5) [Ar]4s² 3d¹⁰ 4p¹	Germanium 72.630 4 2 -4 (3 1 -1 -2 -3) [Ar]4s² 3d¹⁰ 4p²	AS Arsenic 74.921 595 5 3 -3 (4 2 1 -1 -2) [Ar]4s² 3d¹⁰ 4p³	Selenium 78.971 6 4 2 -2 (5 3 1 -1) [Ar]4s ² 3d ¹⁰ 4p ⁴	Bromine 79.904 7 5 3 1 -1 (4) [Ar]4s ² 3d ¹⁰ 4p ⁵	Krypton 83.798 0 (2) [Ar]4s ² 3d ¹⁰ 4p ⁶
5	Rb Rubidium 85.4678 1 (-1) [Kr]5s1	38 Strontium 87.62 2 (-1) [Kr]5s ²	Yttrium 88.905 838 3 (2 1) [Kr]5s² 4d¹	Zr Zirconium 91.224 4 (3 2 1 -2) [Kr]5s² 4d²	Niobium 92.906 37 5 (4 3 2 1 -1 -3) [Kr]5s¹ 4d⁴	MO Molybdenum 95.95 6 4 (5 3 2 1 -1 -2 -4) [Kr]5s¹ 4d⁵	TC Technetium [97] 7 4 (6 5 3 2 1 -1 -3) [Kr]5s² 4d⁵	Ruthenium 101.07 4 3 2 (8 7 6 5 1 -2 -4) [Kr]5s¹ 4d7	Rhodium 102.905 49 3 (5 4 2 1 -1 -3) [Kr]5s¹ 4d8	Pd Palladium 106.42 4 2 (6 5 3 1) [Kr]4d10	Ag Silver 107.8682 1 (4 3 2 -1 -2) [Kr]5s¹ 4d¹0	Cd Cadmium 112.414 2 (1 -2) [Kr]5s² 4d¹0	In Indium 114.818 3 (2 1 -1 -2 -5) [Kr]5s² 4d¹⁰ 5p¹	50 Sn Tin 118.710 4 2 -4 (3 1 -1 -2 -3) [Kr]5s² 4d¹° 5p²	51 Sb Antimony 121.760 5 3 -3 (4 2 1 -1 -2) [Kr]5s² 4d¹º 5p³	Te Tellurium 127.60 6 4 2 -2 (5 3 1 -1) [Kr]5s² 4d¹⁰ 5p⁴	J Iodine 126.904 47 7 5 3 1 -1 (6 4) [Kr]5s² 4d¹º 5p⁵	Xe Xenon 131.293 0 (8 6 4 2) [Kr]5s² 4d¹º 5p6
6	Caesium 132.905 452 1 (-1) [Xe]6s1	56 Barium 137.327 2 (-1) [Xe]6s²	6*	72 Hafnium 178.486 4 (3 2 1 -2) [Xe]6s² 4f¹⁴ 5d²	73 Tantalum 180.947 88 5 (4 3 2 1 -1 -3) [Xe]6s² 4f¹⁴ 5d³	74 W Tungsten 183.84 6 4 (5 3 2 1 -1 -2 -4) [Xe]6s² 4f¹⁴ 5d⁴	75 Re Rhenium 186.207 4 (7 6 5 3 2 1 -1 -3) [Xe]6s² 4f¹⁴ 5d⁵	OS Osmium 190.23 4 (8 7 6 5 3 2 1 -1 -2 -4) [Xe]6s² 4f¹⁴ 5d⁶	77 Iridium 192.217 4 3 (9 8 7 6 5 2 1 -1 -3) [Xe]6s² 4f¹⁴ 5d²	Platinum 195.084 4 2 (6 5 3 1 -1 -2 -3) [Xe]6s¹ 4f¹⁴ 5d°	79 Gold 196.966 570 3 (5 2 1 -1 -2 -3) [Xe]6s¹ 4f¹⁴ 5d¹⁰	80 Hg Mercury 200.592 2 1 (-2) [Xe]6s² 4f¹⁴ 5d¹⁰	Thallium 204.38 3 1 (2 -1 -2 -5) [Xe]6s² 4f¹4 5d¹0			PO Polonium [209] 4 2 -2 (6 5) [Xe]6s ² 4f ¹⁴ 5d ¹⁰ 6p ⁴	At Astatine [210] 1 -1 (7 5 3)	Radon [222] 0 (6 2) [Xe]6s² 4f¹⁴ 5d¹⁰ 6p6
7	87 Francium [223] 1 [Rn]7s ¹	Radium [226] 2 [Rn]7s²	7*	104 Rf Rutherfordium [267] 4 [Rn]7s ² 5f ¹⁴ 6d ²	Db Dubnium [270] 5 [Rn]7s² 5f¹⁴ 6d³	106 Sg Seaborgium [269] 6 [Rn]7s² 5f¹⁴ 6d⁴	107 Bh Bohrium [270] 7 [Rn]7s ² 5f ¹⁴ 6d ⁵	Hs Hassium [270] 8	Mt Meitnerium [278]	DS Darmstadtium [281]	Rg Roentgenium [281]	Cn Copernicium [285] 2	Nh Nihonium [286]	6p² 114 Flerovium [289]	MC Moscovium [289]	LV Livermorium [293]	TS Tennessine [293]	Og Oganesson [294]
		6*	57 Lanthanum 138.905 47 3 (2 1) [Xe]6s ² 5d ¹	Cerium 140.116 4 3 (2) [Xe]6s² 4f¹ 5d¹	Pr Praseodymium 140.907 66 3 (4 2) [Xe]6s² 4f³	Neodymium 144.242 3 (4 2) [Xe]6s² 4f4	Pm Promethium [145] 3 (2) [Xe]6s² 4f5	5m Samarium 150.36 3 (2) [Xe]6s ² 4f ⁶	Europium 151.964 3 2 [Xe]6s ² 4f ⁷	Gd Gadolinium 157.25 3 (2 1) [Xe]6s ² 4f ⁷ 5d ¹	Tb Terbium 158.925 354 3 (4 2 1) [Xe]6s ² 4f ⁹	Dy Dysprosium 162.500 3 (4 2) [Xe]6s ² 4f ¹⁰	HO Holmium 164.930 329 3 (2) [Xe]6s² 4f¹¹	Erbium 167.259 3 (2) [Xe]6s ² 4f ¹²	Tm Thulium 168.934 219 3 (2) [Xe]6s ² 4f ¹³	Yb Ytterbium 173.05 3 (2) [Xe]6s² 4f¹4	Lutetium 174.9668 3 (2) [Xe]6s ² 4f ¹⁴ 5d ¹	
	A) C 7*	AC Actinium [227] 3 (2) [Rn]7s² 6d¹	Th Thorium 232.0377 4 (3 2 1) [Rn]7s² 6d²	Pa Protactinium 231.035 88 5 (4 3 2) [Rn]7s ² 5f ² 6d ¹	Uranium 238.028 91 6 4 (5 3 2 1) [Rn]7s ² 5f ³ 6d ¹	Np Neptunium [237] 5 (7 6 4 3 2) [Rn]7s² 5f⁴ 6d¹	Pu Plutonium [244] 4 (8 7 6 5 3 2 1) [Rn]7s ² 5f ⁶	Am Americium [243] 3 (8 7 6 5 4 2) [Rn]7s² 5f7	Cm Curium [247] 3 (6 4 2) [Rn]7s ² 5f ⁷ 6d ¹	BK Berkelium [247] 3 (4 2) [Rn]7s² 5f9	Cf Californium [251] 3 (4 2) [Rn]7s ² 5f ¹⁰	ES Einsteinium [252] 3 (4 2) [Rn]7s² 5f¹¹	Fm Fermium [257] 3 (2) [Rn]7s ² 5f ¹²	Md Mendelevium [258] 3 (2) [Rn]7s ² 5f ¹³	NO Nobelium [259] 2 (3) [Rn]7s ² 5f ¹⁴	Lawrencium [262] 3 [Rn]7s² 5f¹⁴ 6p¹	

Sources:

Initial data, and electron configurations: https://pubchem.ncbi.nlm.nih.gov/rest/pug/periodictable/XML/?response_type=display (archive: https://web.archive.org/web/20220523153627/https://pubchem.ncbi.nlm.nih.gov/rest/pug/periodictable/XML/?response_type=display)

Corrected atomic masses: https://iupac.qmul.ac.uk/AtWt/ (archive: https://iupac.qmul.ac.uk/ (archive: https://iupac.qmul.ac.uk/ (archive: https://iupac.qmul.ac.uk/</

More detailed oxidation states: https://www.compoundchem.com/2015/11/17/oxidation-states/ (archive:

https://web.archive.org/web/20220523153614/https://www.compoundchem.com/2015/11/17/oxidation-states/) i.e. https://io.wp.com/www.compoundchem.com/wp-content/uploads/2015/11/The-Periodic-Table-Of-Oxidation-States-2016.png?ssl=1 (archive: https://web.archive.org/web/20220523153619/https://io.wp.com/www.compoundchem.com/wp-content/uploads/2015/11/The-Periodic-Table-Of-Oxidation-States-2016.png?ssl=1)

Electron configuration exceptions: https://en.wikipedia.org/wiki/Electron configuration (archive: https://en.wikipedia.org/w/index.php?title=Electron configuration&oldid=1084879392).

Nickel electron configuration: https://en.wikipedia.org/wiki/Nickel#Electron configuration dispute (archive: https://en.wikipedia.org/wiki/Nickel#Electron configuration dispute (archive: https://en.wikipedia.org/wiki/Nickel#Electron configuration dispute (archive: https://en.wiki/Nickel#Electron dispute (archive: https://en.wiki/Nickel#Electron dispute (archive: <a href=

Lawrencium electron configuration: https://en.wikipedia.org/wiki/Lawrencium (archive: https://en.wikipedia.org/wiki/Lawrencium (archive: https://en.wikipedia.org/w/index.php?title=Lawrencium&oldid=1083399220)

There were also several manual changes from these sources (mostly for the synthetic elements at the end) based on quick google searches, Wikipedia pages for individual elements, etc.