Segundo Trabajo Práctico

Ejercicio (7). Sea V un espacio vectorial de dimensión n y $\mathcal{B} = \{v_1, \ldots, v_n\}$ una base de V.

- (a) Probar que cualquier subconjunto no vacío de \mathcal{B} es LI.
- (b) Para cada $k \in \mathbb{N}$ con $0 \le k \le n$, dar un subespacio vectorial de V de dimensión k.

Solución.

(a) Dado que $\mathcal{B} = \{v_1, \dots, v_n\}$ es base de V, en particular \mathcal{B} es un conjunto linealmente independiente.

Sea S un subconjunto no vacío de \mathcal{B} : Digamos que S tiene $k \geq 1$ vectores. Entonces:

$$S = \{v_{i_1}, \dots, v_{i_k}\},\$$

con $1 \le i_1 < i_2 < \cdots < i_k \le n$. Supongamos que c_{i_1}, \ldots, c_{i_k} , son escalares tales que

$$c_{i_1}v_{i_1} + \dots + c_{i_k}v_{i_k} = 0.$$

Definiendo $c_j = 0$, para todo $1 \le j \le n$ tal que $j \notin \{i_1, \ldots, i_k\}$, se obtiene:

$$c_1v_1 + \dots + c_nv_n = c_{i_1}v_{i_1} + \dots + c_{i_k}v_{i_k} = 0.$$

Como el conjunto $\{v_1, \ldots, v_n\}$ es LI, entonces todos los escalares en esta combinación lineal deben ser 0. En particular:

$$c_{i_1} = \dots = c_{i_k} = 0.$$

Esto prueba que el subconjunto $S = \{v_{i_1}, \dots, v_{i_k}\}$ es LI, como se quería demostrar.

(b) Sea $0 \le k \le n$. Definamos $W_0 = \{0\}$ y para cada $1 \le k \le n$,

$$W_k = \langle v_1, \dots, v_k \rangle \subseteq V.$$

Entonces W_k es un subespacio de V (el generado por los vectores v_1, \ldots, v_k).

Se tiene que dim $W_0 = 0$. Afirmamos que para todo $1 \le k \le n$, el conjunto $\mathcal{B}_k = \{v_1, \dots, v_k\}$ es una base de W_k .

En efecto, \mathcal{B}_k genera W_k por definicin de W_k . Además como $\mathcal{B}_k \subseteq \mathcal{B}$ entonces \mathcal{B}_k es LI, por la parte (a).

Como \mathcal{B}_k es base de W_k y \mathcal{B}_k tiene k elementos, entonces dim $W_k = k$ como se pedía.