S

International Islamic University Chittagong

Department of Computer Science & Engineering

Lab Assignment -3

CSE 4746 Numerical Methods Lab

1. The following values of f(x) are given.

$$x$$
 1 2 3 4 5 $y = f(x)$ 1 8 27 64 125

Write a program to find the first derivative and the second derivative of the function tabulated above at the point x = 1.

2. The following values of f(x) are given.

$$x$$
 1 2 3 4 5 $y = f(x)$ 1 8 27 64 125

Write a program to find the first derivative and the second derivative of the function tabulated above at the point x = 1.5.

- 3. Write a program to calculate the approximate area under the curve $y = \int_0^5 \log_{10} x \, dx$ by using trapezoidal rule.
- 4. Write a program to calculate the approximate area under the curve $y = \int^{\pi/2} e^{\sin x} dx$ by using Simpson's 1/3 rule
- 5. Write a program to calculate the approximate area under the curve $y = \int_{-1}^{1} x / (1+x^2)$ by using Simpson's 3/8 rule.
- 6. Write a program to find the determinant of a 3X3 matrix.
- 7. Write a program to solve the following system of linear equations by using Matrix inversion method.

$$x + y + z = 1$$

 $x + 2y + 3z = 6$
 $x + 3y + 4z = 6$

8. Write a program to solve the following system of linear equations by using Cramer's Rule:

$$27x + 6y - z = 85$$

 $6x + 15y + 2z = 72$
 $x + y + 54z = 110$

9. Write a program to solve the following system of linear equations by using Gaussian Elimination method.

$$2x + y + z = 10$$

 $x + 4y + 9z = 16$
 $3x + 2y + 3z = 18$

10. Write a program to solve the following system of linear equations by using Gauss-Jordan Elimination method.

$$x + 2y + z = 8$$

 $2x + 3y + 4z = 20$
 $4x + 3y + 2z = 16$

11. Write a program to solve the following system of linear equations by using Jacobi's method.

$$83x + 11y - 4z = 95$$

 $3x + 8y + 29z = 71$
 $7x + 52y + 13z = 104$

12. Write a program to solve the following system of linear equations by using Gauss-Seidel method.

$$10x_1 + x_2 + x_3 = 12$$

 $2x_1 + 10x_2 + x_3 = 13$
 $2x_1 + 2x_2 + 10x_3 = 14$