Review of Probability Theory

CSE 5334 Data Mining, Spring 2020

Won Hwa Kim

Many slides borrowed from Prof. Mark Craven at UW-Madison

Frequentist interpretation: the probability of an event from a random experiment is the proportion of the time events of same kind will occur in the long run, when the experiment is repeated

Examples

- the probability my flight to Chicago will be on time
- the probability this ticket will win the lottery
- the probability it will rain tomorrow

Always a number in the interval [0,1]

- 0 means "never occurs"
- 1 means "always occurs"

Sample space

Uncertainty

- Probability theory is the study of uncertainty.

Sample Space

- a set of possible outcomes for some event

Examples

- flight to Chicago: {on time, late}
- lottery: {ticket 1 wins, ticket 2 wins,...,ticket n wins}
- weather tomorrow:

```
{rain, not rain} or
{sun, rain, snow} or
{sun, clouds, rain, snow, sleet} or...
```

Random variables

Random Variable

- A variable whose possible values are numerical outcomes of a random phenomenon.
 - E.g., flipping a coin, an outcome from a dice, Will it rain tomorrow?

Example

- X represents the outcome of my flight to Chicago
- we write the probability of my flight being on time as P(X = on-time)
- or when it's clear which variable we're referring to, we may use the shorthand P(on-time)

Notation

- uppercase letters and capitalized words denote random variables
- lowercase letters and uncapitalized words denote values
- we'll denote a particular value for a variable as follows

$$P(X = x)$$
 $P(Fever = true)$

we'll also use the shorthand form

$$P(x)$$
 for $P(X=x)$

for Boolean random variables, we'll use the shorthand

$$P(fever)$$
 for $P(Fever = true)$
 $P(\neg fever)$ for $P(Fever = false)$

Probability distribution

- if X is a random variable, the function given by P(X = x) for each x is the *probability distribution* of X
- requirements:

$$P(x) \ge 0$$
 for every x

$$\sum_{x} P(x) = 1$$

Joint distribution

- *joint probability distribution*: the function given by P(X = x, Y = y)
- read "X equals x and Y equals y"
- example

<i>x</i> , <i>y</i>	P(X=x, Y=y)	_	
sun, on-time	0.20		probability that it's sunny and my flight is on time
rain, on-time	0.20		and my might to on time
snow, on-time	0.05		
sun, late	0.10		
rain, late	0.30		
snow, late	0.15		

Marginal distribution

• The *marginal distribution* of *X* is defined by

$$P(x) = \sum_{v} P(x, y)$$

"the distribution of X ignoring other variables"

• This definition generalizes to more than two variables, e.g.

$$P(x) = \sum_{v} \sum_{z} P(x, y, z)$$

• Also known as sum rule

Marginal distribution example

joint distribution

marginal distribut	ion	for	X
--------------------	-----	-----	---

<i>x</i> , <i>y</i>	P(X=x, Y=y)	X	P(X = x)
sun, on-time	0.20	sun	0.3
rain, on-time	0.20	rain	0.5
snow, on-time	0.05	snow	0.2
sun, late	0.10		
rain, late	0.30		
snow, late	0.15		

Conditional distribution

• the *conditional distribution* of *X* given *Y* is defined as:

$$P(X = x | Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

"the distribution of X given that we know the value of Y"

Conditional distribution example

joint distribution

<i>x</i> , <i>y</i>	P(X=x, Y=y)
sun, on-time	0.20
rain, on-time	0.20
snow, on-time	0.05
sun, late	0.10
rain, late	0.30
snow, late	0.15

conditional distribution for *X* given *Y*=on-time

X	P(X = x/Y = on-time)
sun	0.20/0.45 = 0.444
rain	0.20/0.45 = 0.444
snow	0.05/0.45 = 0.111

The product rule

rearranging the definition of the conditional distribution

$$P(x \mid y) = \frac{P(x,y)}{P(y)}$$

leads to the product rule

$$P(x, y) = P(x \mid y)P(y)$$

The chain rule

 by repeated application of the product rule, a joint distribution can be expressed as

$$P(x_1, x_2, ..., x_n) = P(x_1) \prod_{i=1}^n P(x_i \mid x_1, ..., x_{i-1})$$

- permits the calculation of the joint distribution of a set of random variables using only conditional probabilities
- important idea for Bayesian networks

Independence

• two random variables, X and Y, are independent if

$$P(x,y) = P(x) \times P(y)$$
 for all x and y

equivalently

$$P(X|Y) = P(X)$$

$$P(Y|X) = P(Y)$$

two random variables, X and Y, are conditionally independent given Z if

$$P(x,y|z) = P(x|z) \times P(y|z)$$
 for all x,y and z

Independence example

joint distribution

<i>x</i> , <i>y</i>	P(X=x, Y=y)
sun, on-time	0.20
rain, on-time	0.20
snow, on-time	0.05
sun, late	0.10
rain, late	0.30
snow, late	0.15

marginal distributions

<u> </u>	P(X = x)
sun	0.3
rain	0.5
snow	0.2
<u>y</u>	P(Y=y)
on-time	0.45
late	0.55

NO.

Are *X* and *Y* independent here?

Independence example

	ioint	distrib	ution
--	-------	---------	-------

<i>x</i> , <i>y</i>	P(X=x, Y=y)	\boldsymbol{x}	P(X = x)
sun, fly-United	0.27	sun	0.3
rain, fly-United	0.45	rain	0.5
snow, fly-United	0.18	snow	0.2
sun, fly-Delta	0.03	y	P(Y = y)
rain, fly-Delta	0.05	fly-United	0.9
snow, fly-Delta	0.02	fly-Delta	0.1

marginal distributions

Are *X* and *Y* independent here? YES.

Probability of union of events

the probability of the union of two events is given by:

Bayes rule (or theorem)

recall the product rule

$$P(x,y) = P(x|y)P(y)$$
$$= P(y|x)P(x)$$

dividing both expressions on the right by P(y)

$$P(x | y) = \frac{P(y | x)P(x)}{P(y)} = \frac{P(y | x)P(x)}{\sum_{x'} P(y | x')P(x')}$$

Bayes rule example

- P(stiff-neck|meningitis) = 0.5
- $P(\text{meningitis}) = \frac{1}{50,000}$ $P(\text{stiff-neck}) = \frac{1}{20}$

$$P(\text{meningitis}|\text{stiff-neck}) = \frac{P(\text{stiff-neck}|\text{meningitis})P(\text{meningitis})}{P(\text{stiff-neck})}$$

$$=\frac{0.5\times\frac{1}{50,000}}{\frac{1}{20}}=0.0002$$

Why use Bayes rule?

- Causal knowledge such as P(stiff—neck|meningitis) is often more reliably estimated than diagnostic knowledge such as P(meningitis|stiff—neck)
- Bayes' rule lets us use causal knowledge to make diagnostic inferences

Expected values

 the expected value of a random variable that takes on numerical values is defined as:

$$E[X] = \sum_{x} x \times P(x)$$

this is the same thing as the mean

we can also talk about the expected value of a function of a random variable

$$E[g(X)] = \sum_{x} g(x) \times P(x)$$

Expected values

$$E[Shoesize] = 5 \times P(Shoesize = 5) + ... + 14 \times P(Shoesize = 14)$$

Suppose each lottery ticket costs \$1 and the winning ticket pays out \$100.
 The probability that a particular ticket is the winning ticket is 0.001.

$$E[gain(Lottery)] =$$

$$gain(winning)P(winning) + gain(losing)P(losing) =$$

$$(\$100 - \$1) \times 0.001 - \$1 \times 0.999 =$$

$$-\$0.90$$

Simple example

- Red box: 2 apples and 6 oranges
- Blue box: 3 apples and 1 orange
- Chance of selecting red / blue box: 40% / 60%
- What is the probability that we pick an apple?
 - B: random variable for box selection
 - p(B=r) = 4/10, p(B=b) = 6/10

Understanding probability

- $p(X = x_i) = \frac{c_i}{N}$
- Joint probability: $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$
- Conditional proability: $p(Y = y_i | X = x_i) = \frac{n_{ij}}{c_i}$

Sum rule

• Marginal probability: $p(X = x_i) = \sum_{j=1}^{L} p(X = x_i, Y = y_j)$

Product rule

• $p(X = x_i, Y = y_j) = \frac{n_{ij}}{N} = \frac{n_{ij}}{c_i} \frac{c_i}{N}$ = $p(X = x_i | Y = y_j) p(X = x_i)$

Bayes Theorem

• From the product rule and symmetry of joint probability,

$$p(Y|X) = \frac{P(X|Y)p(Y)}{P(X)}$$

Back to the example...

- p(B=r) = 4/10
- p(B=b) = 6/10
- p(F = a|B = r) = 1/4
- p(F = o|B = r) = 3/4
- p(F = a|B = b) = 3/4
- p(F = o|B = b) = 1/4

Rules

- $p(X = x_i) = \sum_{j=1}^{L} p(X = x_i, Y = y_j)$
- $p(X = x_i, Y = y_j) = p(X = x_i | Y = y_j) p(X = x_i)$
- $p(Y|X) = \frac{P(X|Y)p(Y)}{P(X)}$

You pick an apple

$$p(F = a) = p(F = a|B = r)p(B = r) + p(F = a|B = b)P(B = b)$$
$$= \frac{1}{4}\frac{4}{10} + \frac{3}{4}\frac{6}{10} = \frac{11}{20}$$

You pick an orange... which bag?

$$p(B = r|F = o) = \frac{p(F = o|B = r)p(B = r)}{p(F = o)}$$
$$= \frac{3}{4} \frac{4}{10} \frac{20}{9} = \frac{2}{3}$$

Expectation

$$\mathbb{E}[f] = \sum_{x} p(x) f(x)$$

Conditional Expectation

$$\mathbb{E}_x[f|y] = \sum_x p(x|y)f(x)$$

Variance

$$var[f] = \mathbb{E}[(f(x) - \mathbb{E}[f(x)])^2]$$
$$= \mathbb{E}[f(x)^2] - \mathbb{E}[f(x)]^2$$

Covariance

$$cov[x, y] = \mathbb{E}_{x,y}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])]$$
$$= \mathbb{E}_{x,y}[xy] - \mathbb{E}[x]\mathbb{E}[y]$$

Probability density

- Probability density function (PDF)

$$p(x) \ge 0$$
$$\int p(x) = 1$$

- Cumulative density function (CDF)

$$P(z) = \int_{-\infty}^{z} p(x)dx$$

Binomial distribution

 distribution over the number of successes in a fixed number n of independent trials (with same probability of success p in each)

$$P(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

• e.g. the probability of *x* heads in *n* coin flips

Gaussian Distribution

$$N(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$$

Gaussian Distribution

Gaussian Distribution

$$N(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} exp(-\frac{1}{2\sigma^2}(x-\mu)^2)$$

Properties of the Gaussian Distribution

- $N(x|\mu,\sigma^2) \ge 0$
- $\int N(x|\mu,\sigma^2)dx = 1$
- $\mathbb{E}[x] = \int N(x|\mu, \sigma^2) x dx = \mu$
- $\mathbb{E}[x^2] = \int N(x|\mu, \sigma^2) x^2 dx = \mu + \sigma^2$
- $var[x] = \sigma^2$ using that $var[f] = \mathbb{E}[f(x)^2] \mathbb{E}[f(x)]^2$

