Privilege Learning *

$A. B. \Gamma$ рабовой¹, B. B. Стрижов²

Аннотация: Ключевые слова: смесь экспертов; байесовский выбор модели; априорное распределение.

 \mathbf{DOI} : 00.00000/00000000000000

1 Введение

2 Постановка задачи

Пусть задано множество объектов Ω и пространство целевых переменных \mathbb{Y} :

$$\Omega$$
, $|\Omega| = N$,

где N — число объектов, множество $\mathbb{Y} = \{1, \cdots, K\}$ для задачи классификации, где K число классов, множество $\mathbb{Y} = \mathbb{R}$ для задачи регрессии. Для множества Ω задано отображение в некоторое признаковое пространство \mathbb{R}^n :

$$\varphi: \mathbf{\Omega} \to \mathbb{R}^n,$$

где n размерность признакового пространства. Обозначим $\varphi(\Omega) = \mathbf{X}$. Пусть для некоторых объектов $\Omega^* \subset \Omega$ задана привилегированная информация:

$$\varphi^*: \mathbf{\Omega}^* \to \mathbb{R}^{n^*}, \quad |\mathbf{\Omega}^*| = N^*,$$

где $N^* \leq N$ — число объектов с привилегированной информацией, n^* — число признаков в пространстве привилегированной информации. Обозначим $\varphi^*(\mathbf{\Omega}^*) = \mathbf{X}^*$.

Множество индексов объектов для которых известна привилегированная информация обозначим \mathcal{I} :

 $\mathcal{I} = \{1 \leq i \leq N |$ для i-го объекта задана привилегированная информация $\}.$

^{*}Работа выполнена при поддержке РФФИ и правительства РФ.

¹афиляция автора

²афиляция автора

Пусть на множестве привилегированных признаков задана некоторая функция (или эксперт) $\mathbf{f}(\mathbf{x}^*)$:

$$\mathbf{f}: \mathbb{R}^{n^*} \to \mathbb{Y}^*$$
,

где $\mathbb{Y}^* = \mathbb{Y}$ для задачи регрессии и \mathbb{Y}^* является единичным симплексом в пространстве размерности K (содержит вектора вероятностей каждого класса). Обозначим ответы модели $\mathbf{f}(\mathbf{x}_i) = s_i$. Получим вектор ответом \mathbf{s} модели учителя \mathbf{f} .

Требуется построить модель $\mathbf{g}(\mathbf{x})$ над множеством исходных признаков:

$$\mathbf{g}: \mathbb{R}^n \to \mathbb{Y}$$
.

2.1 Без привилегированной информации

Пусть **g** выбирается из некоторого семейства:

$$\mathcal{G} = \{\mathbf{g}|\mathbf{g}: \mathbb{R}^n \to \mathbb{Y}.\}$$

Для поиска $\hat{\mathbf{g}}$ воспользуемся методом максимального правдоподобия:

$$p(\mathbf{y}|\mathbf{X},\mathbf{g}) = \prod_{i=1}^{N} p(y_i|\mathbf{x}_i,\mathbf{g}).$$
 (2.1)

В качестве $\hat{\mathbf{g}}$ выберем то, которое максимизирует правдоподобие модели (2.1):

$$\hat{\mathbf{g}} = \arg \max_{\mathbf{g} \in \mathcal{G}} \prod_{i=1}^{N} p(y_i | \mathbf{x}_i, \mathbf{g}). \tag{2.2}$$

2.2 С учетом привилегированной информации

Рассмотрим следующую вероятностную постановку, в которой должны быть выполнены следующие ограничения:

- 1. $\forall \omega \in \mathbf{\Omega}^*$ элементы $y(\omega)$ и $s(\omega)$ являются зависимыми величинами,
- 2. Если $|\Omega^*| = 0$ то решение должно соответствовать решению (2.2)
- 3. Рассмотрим параметр $\lambda \in [0,1]$ как уровень доверия к ответам модели \mathbf{f} . Будем рассматривать его как вероятность того, что на этапе обучения модель \mathbf{g} выбирает ответ модели \mathbf{f} как более верный чем метка y.

Рассмотрим совместное правдоподобие:

$$p(\mathbf{y}, \mathbf{s} | \mathbf{X}, \mathbf{g}, \mathcal{I}, \lambda) = \prod_{i \notin \mathcal{I}} p(y_i | \mathbf{X}, \mathbf{g}) \prod_{i \in \mathcal{I}} p(y_i, s_i | \mathbf{X}, \mathbf{g}, \lambda).$$

Расписав $p(y_i, s_i | \mathbf{X}, \mathbf{g}, \lambda)$, получаем:

$$p(\mathbf{y}, \mathbf{s} | \mathbf{X}, \mathbf{g}, \mathcal{I}, \lambda) = \prod_{i \notin \mathcal{I}} p(y_i | \mathbf{X}, \mathbf{g}) \prod_{i \in \mathcal{I}} p^{1-\lambda}(y_i | s_i, \mathbf{X}, \mathbf{g}) \prod_{i \in \mathcal{I}} p^{\lambda}(s_i | \mathbf{X}, \mathbf{g}).$$

Пусть y_i и s_i независимы, тогда получаем совместное правдоподобие:

$$p(\mathbf{y}, \mathbf{s} | \mathbf{X}, \mathbf{g}, \mathcal{I}, \lambda) = \prod_{i \in \mathcal{I}} p(y_i | \mathbf{X}, \mathbf{g}) \prod_{i \in \mathcal{I}} p^{1-\lambda}(y_i | \mathbf{X}, \mathbf{g}) \prod_{i \in \mathcal{I}} p^{\lambda}(s_i | \mathbf{X}, \mathbf{g}).$$
(2.3)

Используя (2.3) получаем следующую оптимизационную задачу для поиска $\hat{\mathbf{g}}$

$$\hat{\mathbf{g}} = \arg \max_{\mathbf{g} \in \mathcal{G}} \prod_{i \notin \mathcal{I}} p(y_i | \mathbf{X}, \mathbf{g}) \prod_{i \in \mathcal{I}} p^{1-\lambda}(y_i | \mathbf{X}, \mathbf{g}) \prod_{i \in \mathcal{I}} p^{\lambda}(s_i | \mathbf{X}, \mathbf{g}).$$
(2.4)

2.3 Случай регрессии

Рассмотрим следующие распределения:

$$p(y_i|\mathbf{x}_i, \mathbf{g}) = N(y_i|\mathbf{g}(\mathbf{x}), \boldsymbol{\Sigma}),$$

$$p(s_i|\mathbf{x}_i, \mathbf{g}) = N(s_i|\mathbf{g}(\mathbf{x}), \boldsymbol{\Sigma}),$$
(2.5)

где $\Sigma = I$. Подставляя (2.5) в (2.4) и прологарифмировав, получим:

$$\hat{\mathbf{g}} = \arg\min_{\mathbf{g} \in \mathcal{G}} \sum_{i \notin \mathcal{T}} (y_i - \mathbf{g}(\mathbf{x}))^2 + (1 - \lambda) \sum_{i \in \mathcal{I}} (y_i - \mathbf{g}(\mathbf{x}))^2 + \lambda \sum_{i \in \mathcal{I}} (s_i - \mathbf{g}(\mathbf{x}))^2.$$

Список литературы

- [1] Vladimir Vapnik, Rauf Izmailov Learning Using Privileged Information: Similarity Control and Knowledge Transfer // Journal of Machine Learning Research. 2015. No 16. pp. 2023–2049.
- [2] David Lopez-Paz, Leon Bottou, Bernhard Scholkopf, Vladimir Vapnik UNIFYING DISTILLATION AND PRIVILEGED INFORMATION // Published as a conference paper at ICLR. 2016.