Manas Jha

RA1911003010643

Aim:

Applying deep learning methods to solve an application.

Problem Formulation- Solving a dataset using deep learning methods to predict stock market. **Problem Statement-** Predicting the graph of stock market using LSTM.

Algorithm used (Problem Solving)- LSTM

LSTM or Long Short Term Memory is a Recurrent Neural Network used for sequence prediction problems. Here we are doing a problem of time series data i.e. it changes with time. Hence LSTM is used for this problem.

Dataset:

	Date	Open	High	Low	Close	Volume
0	1/3/2012	325.25	332.83	324.97	663.59	7,380,500
1	1/4/2012	331.27	333.87	329.08	666.45	5,749,400
2	1/5/2012	329.83	330.75	326.89	657.21	6,590,300
3	1/6/2012	328.34	328.77	323.68	648.24	5,405,900
4	1/9/2012	322.04	322.29	309.46	620.76	11,688,800

Code:

```
#Import libraries
import os
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

```
training_set = dataset_train.iloc[:,1:2].values
print(training_set)
print(training_set.shape)
```

```
[[325.25]
[331.27]
[329.83]
...
[793.7]
[783.33]
[782.75]]
(1258, 1)
```

```
X_train = []
y_train = []
for i in range(60,1258):
    X_train.append(scaled_training_set[i-60:i, 0])
    y_train.append(scaled_training_set[i, 0])
X_train = np.array(X_train)
y_train = np.array(y_train)
```

```
print(X_train.shape)
print(y_train.shape)

(1198, 60)
(1198,)
```

```
X_train = np.reshape(X_train,(X_train.shape[0], X_train.shape[1], 1))
X_train.shape
(1198, 60, 1)
```

```
from keras.models import Sequential
from keras.layers import LSTM
from keras.layers import Dense
from keras.layers import Dropout
```

```
regressor = Sequential()

regressor.add(LSTM(units = 50, return_sequences= True, input_shape = (X_train.shape[1], 1)))
regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 50, return_sequences= True))
regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 50, return_sequences= True))
regressor.add(Dropout(0.2))

regressor.add(LSTM(units = 50))
regressor.add(Dropout(0.2))

regressor.add(Dense(units=1))
```

```
dataset_test = pd.read_csv("Google_Stock_Price_Test.csv")
actual_stock_price = dataset_test.iloc[:,1:2].values
```

```
dataset_total = pd.concat((dataset_train['Open'], dataset_test['Open']), axis = 0)
inputs = dataset_total[len(dataset_total) - len(dataset_test) - 60:].values

inputs = inputs.reshape(-1,1)
inputs = scaler.transform(inputs)

X_test = []
for i in range(60,80):
    X_test.append(inputs[i - 60:i, 0])

X_test = np.array(X_test)

X_test = np.reshape(X_test,(X_test.shape[0], X_test.shape[1], 1))
```

```
predicted_stock_price = regressor.predict(X_test)
predicted_stock_price = scaler.inverse_transform(predicted_stock_price)
```

```
plt.plot(actual_stock_price, color = 'red', label = 'Actual Google Stock Price')
plt.plot(predicted_stock_price, color = 'blue', label = 'Predicted Google Stock Price')
plt.title('Google Stock Price Prediction')
plt.xlabel('Time')
plt.ylabel('Google Stock Price')
plt.legend()
```


Result- Hence Deep Learning method- LSTM is used to predict the ups and downs of Google stocks on stock market.