CompositionMeasure for ZeroConcentratedDivergence

Michael Shoemate

This proof resides in "contrib" because it has not completed the vetting process.

Proves soundness of the implementation of CompositionMeasure for ZeroConcentratedDivergence in mod.rs at commit f5bb719 (outdated1).

1 Hoare Triple

Precondition

Compiler-Verified

Types matching pseudocode.

Caller-Verified

None

Pseudocode

```
class CompositionMeasure(ZeroConcentratedDivergence):
      def composability( #
          self, adaptivity: Adaptivity
      ) -> Composability:
          match adaptivity:
              case Adaptivity.FullyAdaptive:
                  return Composability. Sequential
                  return Composability.Concurrent
11
      def compose(self, d_mids: Vec[Self_Distance]) -> Self_Distance:
          d_out = 0.0
12
          for d_mid in d_mids:
              d_out = d_out.inf_add(d_mid)
14
          return d_out
```

Postcondition

Theorem 1.1. composability returns Ok(out) if the composition of a vector of privacy parameters d_mids is bounded above by self.compose(d_mids) under adaptivity adaptivity and out-composability. Otherwise returns an error.

Definition 1.2 (Definition of ZeroConcentratedDivergence). For any two distributions Y, Y' and any non-negative d, Y, Y' are d-close under the zero-concentrated divergence measure if, for every possible choice of $\alpha \in (1, \infty)$,

¹See new changes with git diff f5bb719..d7a2aa5f rust/src/combinators/sequential_composition/mod.rs

$$D_{\alpha}(Y, Y') = \frac{1}{1 - \alpha} \mathbb{E}_{x \sim Y'} \left[\ln \left(\frac{\Pr[Y = x]}{\Pr[Y' = x]} \right)^{\alpha} \right] \le d \cdot \alpha. \tag{1}$$

Lemma 1.3. 1. $\mathcal{F}(\rho_1, \rho_2, \dots; \rho) = \mathbb{I}(\sum_i \rho_i \leq \rho)$ is a valid ρ -zCDP IM-filter.

2. $\mathcal{G}(\rho_1,\ldots,\rho_k) = \sum_{i=1}^k \rho_i$ is a valid ρ -zCDP IM-privacy loss accumulator.

Proof. For any fixed choice of $\alpha > 1$, we have that $\mathcal{F}(\rho_1, \rho_2, \dots; \rho) = \mathbb{I}(\sum_i \epsilon_i / \alpha / \leq \epsilon / \alpha)$, by 1.2, which by Theorem 1.22[VW21] is a valid (α, ϵ) -RDP IM-filter.

Similarly, for any fixed choice of $\alpha > 1$, we have that $\mathcal{G}(\rho_1, \dots, \rho_k) = \sum_i \epsilon_i / \alpha \le \epsilon / \alpha$, by 1.2, which by Theorem 1.22[VW21] is a valid (α, ϵ) -RDP IM-privacy loss accumulator.

Proof. By the postcondition of InfAdd we have that $\sum_i d_{mids_i} \leq compose(d_{mids})$.

Adaptivity	Sequential	Concurrent
Non-Adaptive	Lemma 1.7[BS16]	Corollary 1[Lyu22]
Adaptive	Lemma 1.7[BS16]	Corollary 1[Lyu22]
Fully-Adaptive	Remark 4.4[FZ22]	1.3

This table is reflected in the implementation of composability on line 2.

References

[BS16] Mark Bun and Thomas Steinke. Concentrated differential privacy: Simplifications, extensions, and lower bounds, 2016.

[FZ22] Vitaly Feldman and Tijana Zrnic. Individual privacy accounting via a renyi filter, 2022.

[Lyu22] Xin Lyu. Composition theorems for interactive differential privacy, 2022.

[VW21] Salil Vadhan and Tianhao Wang. Concurrent composition of differential privacy, 2021.