Welcome! Let's calculate derivatives.

Math 1910: Calculus for Engineers

TA: David Mehrle*

25 August 2016

Last Time	Today	Upcoming
Nothing	Introductions	HW Due 1 Sep.
	Derivatives Review	Quiz on 1 Sep.

Administrative

- All course information can be found on https://blackboard.cornell.edu/
- Section is review, practice problems, homework questions, etc.
- Occasionally there will be workshops with engineering applications
- Homework is due on Thursdays and graded for completion.
- Quizzes every Thursday with questions straight from homework.

Derivatives Review

• Given a function *f* , the **derivative** of *f* at the point *a* is defined by

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

- The line tangent to (a, f(a)) is y f(a) = f'(a)(x a).
 - (cf)' = cf' if c is a constant.
 - (f+g)' = f' + g'
 Product rule:

Product rule:
$$\frac{(fg)' = f'g + fg'}{\text{with "early"}}$$

• Quotient rule:
$$\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$$
.

• Chain rule:

$$(f(g(x)))' = f'(g(x))g'(x).$$

^{*}rhymes with "early"

- **Implicit differentiation** is used to compute $\frac{dy}{dx}$ when the variables x and y are related by an equation, such as $x^3 y^3 = 4$.
- The first derivative test: If f is differentiable and c is a critical point, then the type of critical point can be found in the table.

Sign Change	Type of Critical Point
From + to -	Local max
From - to +	Local min

• A function f is **concave up** on (a, b) if f' is increasing, and **concave down** if f is decreasing. A **point of inflection** is a point (c, f(c)) where the concavity changes. We can use the first derivative test on f' to find the inflection points.

Problems

- (1) Compute $\frac{dy}{dx}$.

 - (a) $15x^2 14x$ (b) $\frac{1-x^2}{(x^2+1)^2}$
 - (c) $(x^4 9x)^6$
 - $(d) \ \frac{\frac{1}{2\sqrt{x}} + 1}{2\sqrt{x + \sqrt{x}}}$
 - (e) $\sec^2(x)$

(g)
$$-\frac{\cot(x)\csc(x)(2\cos(2x) - 1)}{2\sqrt{\csc(x) + 1}}$$

- (h) Use implicit differentiation. $\frac{dy}{dx} = \frac{4 3x^2}{3y^2}$ when $y \neq 0$.
- (i) Use implicit differentiation. $\frac{dy}{dx} = \frac{4x + y^2}{1 2xy}$
- (j) Use implicit differentiation. $\frac{dy}{dx} = \frac{\cos(x+y)}{1-\cos(x+y)}$

2

- (2) The points are $\left(-\frac{1}{3}, \frac{89}{27}\right)$, (3, 7).
- (3) Find the critical points of f and determine if they are minima or
 - (a) maximum at $x = \frac{2}{3}$ and minimum at x = 2

- (b) maximum at $x = \frac{-4}{5}$; minimum at x = 0(c) maximum at $x = \frac{2}{5}$
- (4) Find the points of inflection of the function f

 - (a) at $x = \frac{4}{3}$ (b) at $x = \frac{(2n+1)\pi}{2}$ for all integers n(c) at $x = \pm \frac{2}{\sqrt{3}}$
- (5) Whenever $a \ge 0$.