Summary Sheet: MATH 3NA3 - Numerical Linear Algebra

Floating Point (FP) Number Systems

: Base P: Precision FP system definition: L: Exponent min U: Exponent max

$$x = \pm (d_0.d_1d_2...d_{P-1}) \times \beta^E, \qquad E \in [L, U]$$

$$x = \pm \left(\sum_{i=0}^{P-1} \frac{d_i}{\beta^i}\right) \beta^E, \qquad d_i \in [0, \beta - 1]$$

Absolute rounding error = $|fl(x) - x| \le |x|\epsilon_{mach}$ RRE (Relative representation error) = $\frac{|fl(x)-x|}{|x|}$

$$\max RRE(\mathbf{x}) = \begin{cases} \epsilon_{mach} & \text{if round up/down} \\ \frac{\epsilon_{mach}}{2} & \text{if round to nearest} \end{cases} \leq \epsilon_{mach}$$

$$fl(x) = x(1+\delta), \delta = \frac{fl(x)-x}{x}, |\delta| \le \epsilon_{mach}$$

Min value representable $> 0 = \beta^L$

Max value representable =
$$\beta^{U+1}(1-\beta^{-P})$$

$$|\mathbb{F}| = 2(\beta - 1)(\beta^{P-1})(U - L + 1) + 1$$

Properties of FP systems:

- 1. Finite: \exists overflow and underflow
- 2. Discrete: \exists gaps btwn nums $\in \mathbb{F}$
- 3. Non-Uniform: Nums $\in \mathbb{F} \neg (\text{evenly distributed})$

Floating Point Operations

$$x \otimes y := fl(x \star y) = (x \star y)(1 + \delta) \qquad |\delta| < \epsilon$$
Fundamental Axiom: $\frac{|x \otimes y - (x \star y)|}{|x \star y|} \le \epsilon = \frac{1}{2} \epsilon_{mach}$
Cancellation Error: subtract similar sized nums

General Algebra

$$\overline{\sum_{i=1}^{n} i = \frac{n(n+1)}{2}}$$
eigvals of $A^{T'}A \in \mathbb{R}^{n \times n} = [\sigma_1 \dots \sigma_n]^2$ from A 's SVD
$$\bullet a^2 - b^2 = (a-b)(a+b)$$

• Singular matrix:= not invertible

SPD:

- A SPD iff $A^T = A \& \text{ (strict diag. dom } \Leftrightarrow \lambda_{min} > 0)$
- A SPD iff B^TAB is SPD for nonsingular B
- if A SPD, principle submatrices SPD

Gershgorin's thm:

• any eigenvalue of A is in at least one of the closed disks $D(a_{ii}, R_{ii}, R_{ii} = \sum_{j \neq i} |A_{ij}|)$

Diagonal dominance: properties:

- 1. If A strict diag dom, A invertible
- 2. $A^T = A$, if A strict diag dom, and $A_{ii} > 0$, then A SPD.

pf of 1 by contradiction: sps non-invertible, then \exists row of 0's, that row's diag not greater than sum of others, so contradiction.

Matrix Norms & SVD

Matrix Norm Properties:

- 1. $||A|| \ge 0, ||A|| = 0$ iff A = 0
- 2. $||cA|| = |c| \times ||A||$
- 3. $||A + B|| \le ||A|| + ||B||$

$$||A||_{p} = \max_{\substack{||\vec{x}||_{p}=1}} ||A\vec{x}||_{p} = \max_{\vec{x}\neq 0} \frac{||A\vec{x}||_{p}}{||\vec{x}||_{p}}$$

$$||A||_{1} = \max_{1 \le j \le n} \sum_{i=1}^{m} |a_{ij}| \text{ (max abs col sum)}$$

$$||A||_1 = \max_{1 \le i \le n} \sum_{i=1}^m |a_{ij}| \text{ (max abs col sum)}$$

$$||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |a_{ij}| \text{ (max abs row sum)}$$

$$||A||_2 = \sqrt{\lambda_{max}(A^T A)} = \sigma_{max}(A) ||AA^T||_2 = ||A^T A||_2 = \lambda_{max}(A^T A) = \sigma_{max}(A)^2$$

Induced Matrix Norm Properties:

- 1. $||A\vec{x}|| \le ||A|| \times ||\vec{x}||$
- 2. $||AB|| \le ||A|| \times ||B||$
- 3. $||Q_1AQ_2||_2 = ||A||_2$
- 4. $||Q||_2 = 1$
- 5. $||A^T||_2 = ||A||_2$
- 6. ||I|| = 1

Vector Norms: $||\vec{x}||_p = (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$ 1. $||\vec{x}|| \ge 0, ||\vec{x}|| = 0$ iff $\vec{x} = 0$

- 2. $||\vec{x} + \vec{y}|| \le ||\vec{x}|| + ||\vec{y}||$
- 3. $||\alpha \vec{x}|| = |\alpha| \times ||\vec{x}||$
- $||\cdot||_a$, $||\cdot||_b$ equiv. iff $\exists c$'s s.t. $c_1||\vec{x}||_b \leq ||\vec{x}||_b \leq c_2||\vec{x}||_b$, meaning can exchange in p-norm applications
 - $\bullet ||\vec{x}||_{\infty} = \max_{1 \le j \le n} |x_j|$
 - $\bullet ||\vec{x}||_2 \le ||\vec{x}||_1 \le \sqrt{n} ||\vec{x}||_2$
 - $\bullet ||\vec{x}||_{\infty} \le ||\vec{x}||_{1} \le n||\vec{x}||_{\infty}$

SVD:

 $\bullet A = U\Sigma V^T \Leftrightarrow A^{-1} = V\Sigma^{-1}U^T$

A symm. pos. definite \Rightarrow diagonalization = SVD

- Singular values of $AA^T = A^TA = \sigma_1^2, \dots, \sigma_n^2$
- $\bullet \det(A) = \prod_{i=1}^n \sigma_i$

MATLAB

Command	Purpose
realmax/realmin	return max/min float
eps	return ϵ_{mach}
$\operatorname{norm}(\vec{x}, p), \operatorname{norm}(A, p)$	$ \vec{x} _p$, $ A _p$
cond(A, p)	$\kappa_p(A)$
pinv(A)	pseudo-inv A

Error, Sensitivity & Big O

input/output perturbation: $x + \delta x$, $f + \delta f$ Absolute Condition Number: $\hat{\kappa} = ||f'(x)||$ Relative Condition Number: $\kappa = \frac{||f'(x)||||x||}{||x|-x||}$

Absolute Error: $||\tilde{f}(x) - f(x)||$, f := num mthdoutpt

Relative Error: $\frac{||\tilde{f}(x) - f(x)||}{||f(x)||}$ Algo accurrate iff $\frac{||\tilde{f}(x) - f(x)||}{||f(x)||} = O(\epsilon_{mach})$

Backward Error: $|\tilde{x} - x|$

- Attribute output err to Δ inp
- $f(x) = f(\tilde{x})$, solve for \tilde{x}
- rel fwd err $< \kappa$ rel back err

Solutions of Linear Equations 1

Condition Number: $\kappa_p(A) = ||A||_p ||A^{-1}||_P$

- 1. $\kappa_p(A) \geq 1$
- 2. $\kappa_p(I) = 1$
- 3. $\kappa_p(\alpha A) = \kappa_p(A) \forall \text{ scalars } \alpha$
- $\kappa_2(A) = \frac{\sigma_{max}}{\sigma_{min}}$

Condition Number of solving $A\vec{x} = \vec{b}$:

Math: $f(A, \vec{b}) = \vec{x} \Leftrightarrow A\vec{x} = \vec{b}$

Compute: $\tilde{f}(A, \vec{b}) = \tilde{\vec{x}} = \vec{x} + \delta \vec{x} \Leftrightarrow (A + \delta A) = \vec{b} + \delta \vec{b}$

- Relative Error: $\frac{||\delta\vec{x}||}{||\vec{x}||}$
- Relative Backward Error: $\frac{||\delta b||}{||\vec{b}||}$, $\frac{||\delta A||}{||A||}$
- Algo Backward Stable iff $\frac{||\delta\vec{b}||}{||\vec{b}||}, \frac{||\delta A||}{||A||} = O(\epsilon_{mach})$

Residual Properties: $\vec{r} = \vec{b} - \tilde{\vec{x}}$

- 1. $\frac{||\delta \vec{x}||}{\vec{x}} \le \kappa(A) \frac{\vec{r}}{\vec{b}}$
- 2. $\frac{||\delta A||}{A} \geq \frac{\vec{r}}{A\tilde{x}}$
- Problem: $A\vec{x} = \vec{b}$
- Computation: $(A + \delta A)\tilde{\vec{x}} = \vec{b}(1 + \delta)$
- \bullet $\vec{x} = \vec{x} + \delta \vec{x}$

Solutions of Linear Equations 2: LU

LU factorization: $A_{n \times n} = LU$ Steps:

- 1. Initialize L as identity matrix.
- 2. Initialize U as zero matrix.
- 3. For each column j:
 - a. Set elements of U in row i up to j.
 - b. Set elements of L from row j + 1 to n.

Pivoting:

With partial pivoting: PA = LU.

P - Permutation matrix.

$$M_k = \begin{bmatrix} 1 & \dots & 0 & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \vdots & \dots & 0 \\ 0 & \dots & -m_{k+1} & 1 & & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & -m_n & 0 & \dots & 1 \end{bmatrix}$$

- $\bullet \ L_k = M_k^{-1} = I + \vec{m_k} \vec{e_k}$
- $U = M_{n-1}M_{m-2} \dots M_2 M_1 A$ $L = M_1^{-1} M_2^{-1} \dots M_{m-2}^{-1} M_{n-1}^{-1}$
- LU factorization not backw stable, PLU is.
- LU factorization $O(\frac{2}{2}n^3)$ flops

Cholesky: $A = LL^T$ (unique, for SPD A)

$$l_{jj} = \sqrt{a_{jj} - \sum_{k=1}^{j-1} l_{jk}^2}$$
 diag elements

 $l_{ij} = \frac{aij - \sum_{k=1}^{j-1} l_{ik} l_j}{l_{ij}}$ other elements

• Cholesky factorization $O(\frac{1}{3}n^3)$ flops

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} L = \begin{bmatrix} \sqrt{a} & 0 \\ \frac{b}{\sqrt{a}} & \sqrt{c - \left(\frac{b}{\sqrt{a}}\right)^2} \end{bmatrix}$$

Iterative Methods

A = M - N, M nonsingular

$$\vec{x}^{(k+1)} = M^{-1}N\vec{x}^{(k)} + M^{-1}\vec{b} = G\vec{x}^{(k)} + \vec{c}$$

Terminate when $||\vec{r}^k|| = ||\vec{b} - A\vec{x}^{(k)}|| < \text{tol}$

Properties of $\rho(A)$:

- 1. $\rho(A) < ||A||_k \forall k$
- 2. Spectral radius $\rho(A) = \max |\lambda(A)|$
- 3. $\lim_{n \to \infty} A_{n \times n}^n = 0$ iff $\rho(A) < 1$
- 4. Iterative mthd converges iff $\rho(G) < 1$
- Iter mthd converges iff $||G||_a < 1$ for some a

Jacobi Mthd: A = D + L + U(D = M, L + U = -N)

- each iter $O(2kn^2)$, good for large, sparse A
- D := Diag entries of A
- D :=Strictly lower diagonal entries of A
- D :=Strictly upper diagonal entries of A
- $\bullet \vec{x} = D^{-1}(-(L+U)\vec{x} + \vec{b})$
- $\bullet \vec{x}^{(k+1)} = D^{-1}(-(L+U)\vec{x}^{(k)} + \vec{b})$
- $\bullet G_i = D^{-1}(L+U)$

Gauss-Seidel Mthd: L + D = M, -U = N

- $\bullet \vec{x}^{(k+1)} = D^{-1}(\vec{b} L\vec{x}^{(k+1)} U\vec{x}^{(k)})$
- $\bullet \vec{x}^{(k+1)} = (L+D)^{-1}(\vec{b} U\vec{x}^{(k)})$
- $\bullet \ G_{gs} = -(L+D)^{-1}U$
- $\bullet \ \vec{c}_{as} = (L+D)^{-1}\vec{b}$

SOR Mthd: (equivalent to GS mthd for $\omega = 1$

$$G_{sor} = (D + \omega L)^{-1} ((1 - \omega)D - \omega U)\vec{x}^{(k)} + \omega (D + \omega L)^{-1}\vec{b}$$

- $G_{sor} = (D + \omega L)^{-1}((1 \omega)D \omega U)$
- if SOR converges, then $0 < \omega < 2$

Convergence:

- Convergence rate $\rho(G) = \gamma = \lim_{k \to \infty} \frac{||\vec{x}^{(k+1)} \vec{x}^{(*)}||}{||\vec{x}^{(k)} \vec{x}^{(*)}||^q}$
- $\bullet \lim_{k \to \infty} \vec{x}^{(k)} = \vec{x}^{(*)}$
- $q=1, 0<\gamma<1$ linear convergence
- each iter gain $-\log_{10}(\gamma)$ correct digits
- smaller $\gamma \Rightarrow$ faster convergence
- A strict diag. dom. \Rightarrow Jacobi & G-S convrg (1)
- A SPD \Rightarrow SOR converges iff $0 < \omega < 2$

pf of (1)J (G-S) same idea - end of soln's lin eqns: by contr. sps. G_J has $|\lambda| \ge 1 \Rightarrow \det(\lambda I - G_J) = 0$

- Tridiagonal A: $\omega_{opt} = \frac{2}{1 + \sqrt{1 \rho(G_j)^2}}$
- $\bullet \ \rho(G_{sor\omega opt}) = \frac{1 \sqrt{1 \rho(G_J)^2}}{1 + \sqrt{1 + \rho(G_J)^2}}$

Least Squares

Goal: find argmin $||\vec{b} - A\vec{x}||_2$ $\vec{x} \in \mathbb{R}^n$

Solution set:
$$\chi_{ls} = \{\vec{x} \in \mathbb{R}^n : \vec{x} = \underset{\vec{x} \in \mathbb{R}^n}{\operatorname{argmin}} ||\vec{b} - A\vec{x}||_2\}$$

$$\chi_{ls} = \vec{x}_{ls} + \text{null}(A^T A) = \vec{x}_{ls} + \text{null}(A)$$

Theorems:

- $\vec{x} \in \gamma_{ls} \Leftrightarrow A^T A \vec{x} = A^T \vec{b}$ (normal equations)
- \exists unique solution if rank(A) = n

Pseudo-Inverse:

- $A^{\dagger} = V \Sigma^{\dagger} U^T$, $\sigma_i^{\dagger} = \frac{1}{\sigma_i}$ if $\sigma_i \neq 0$, else 0
- $\bullet \ \vec{x}_{ls} = A^{\dagger} \vec{b}$

QR factorization:
$$A = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R \\ 0 \end{bmatrix} = Q_1 R$$

- $A \in \mathbb{R}^{m \times n}, m \geq n \Rightarrow A$ has QR factorization
- $Q_{m \times m} = \begin{bmatrix} Q_{1\mathbb{R}m \times n} & Q_{2\mathbb{R}m \times m-n} \end{bmatrix}$ orthogonal
- $R_{m \times n} = \begin{bmatrix} \hat{R} \\ 0 \end{bmatrix}$, $\hat{R}_{n \times n}$ upper triangular
- $\bullet \ \vec{x}_{ls} = R^{-1} Q_1^T \vec{b}$
- $\bullet ||\vec{b} \vec{x}_{ls}|| = ||Q_2^T \vec{b}||_2$

Householder Transformation:

idea: $H_n \dots H_2 H_1 A = R$ (upper triangular), $H_{m \times m}$

- $H\vec{x}$ is reflection of \vec{x} in plane orthog to \vec{v}
- \bullet H is orthogonal
- $H = I 2\vec{v}\vec{v}^T \frac{1}{\vec{v}^T\vec{v}}, ||\vec{v}||_2 = 1$
- $\bullet \ H = H_1^T H_2^T \dots H_n^T$
- $\bullet \ Q = H_1 H_2 \dots H_n$