

MITx 6.86x

Machine Learning with Python-From Linear Models to Deep Learning

Progress Discussion Dates Resources Course

A Course / Unit 4. Unsupervised Learning (2 weeks) / Lecture 15. Generative Mo

6. MLE for Multinomial Distribution

☐ Bookmark this page

Exercises due Apr 19, 2023 08:59 -03 Completed

Maximum Likelihood Estimate

Video

♣ Download video file

Transcripts

- ▲ Download SubRip (.srt) file
- **▲** Download Text (.txt) file

Deriving MLE for a General Multinomial Model: Likelihood

1/1 point (graded)

In the following problems, we will derive the maximum likelihood estimates for a multing than 2 parameters. We will employ the method of lagrange multipliers for the optimizat

Let the document D be a sequence of words $w_1, ..., w_n$ from a collection W consisting of we assume that w_i 's are independent, and that the probability of a word w is given by the denote by $\theta = \{\theta_w\}_{w \in W}$.

Let $P(D | \theta)$ be the probability of D being generated by the simple model described above

Find $P(D | \theta)$.

$$\bigcap P(D | \theta) = \sum_{w \in W} \theta_w^{\text{count}(w)}$$

1/1 point (graded)

What are the constraints on the parameters θ_w in the model described in the previous properties of the previous properties are the constraints on the parameters θ_w in the model described in the previous properties are the constraints on the parameters θ_w in the model described in the previous properties are the constraints on the parameters θ_w in the model described in the previous properties are the constraints on the parameters θ_w in the model described in the previous properties are the constraints of the parameters θ_w in the model described in the previous properties are the constraints of the parameters θ_w in the model described in the previous properties are the constraints of the previous properties are the constraints of the constraints of the properties are the constraints of the properties are the constraints of the constraint

$$\theta_{w} \ge 0, \ \Sigma_{w \in W} \theta_{w} = 1$$

$$\theta_{w} \ge 0, \ \Sigma_{w \in W} \theta_{w} < 1$$

$$\theta_w \ge 0, \ \Sigma_{w \in W} \theta_w < 1$$

$$\theta_w < 0, \ \Sigma_{w \in W} \theta_w > -1$$

$$\theta_w \ge 0, \ \Sigma_{w \in W} \theta_w \ge 1$$

Submit

You have used 1 of 2 attempts

Stationary Points of the Lagrange Function

2/2 points (graded)

The maximum likelihood estimate of θ is the value of θ that maximizes the likelihood fur

$$P(D | \theta) = \prod_{w \in W} (\theta_w)^{\text{count}(w)}.$$

Maximizing $P(D \mid \theta)$ is equivalent to maximizing $\log P(D \mid \theta)$, so we take the natural logarith equation above to bring down the exponents:

$$\log P(D \mid \theta) = \sum_{w \in W} \operatorname{count}(w) \log \theta_w.$$

Recall that θ is subject to the following constraint:

$$\sum_{w \in W} \theta_w = 1.$$

To maximize $\log P(D \mid \theta)$ subject to the contraint $\sum_{w \in W} \theta_w = 1$, we use the Lagrange mult

Method of Lagrange Multipliers

Solve for θ_w from the above equation. Choose the right answer for θ_w from options below

$$\theta_w = \frac{-\lambda}{\operatorname{count}(w)}$$

$$\theta_w = \lambda \operatorname{count}(w)$$

$$\theta_w = -\lambda \operatorname{count}(w)$$

$$\theta_w = \frac{-\operatorname{count}(w)}{\lambda}$$

Now, apply the constraint that $\sum \theta_{ij} = 1$ to the answer above to obtain λ .

Previous

W

Next >

λ =

edX

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

Sitemap

Cookie Policy

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>