ФЕДЕРАЛЬНОЕ АГЕНТСТВО СВЯЗИ

Федеральное государственное образовательное бюджетное учреждение высшего образования «Санкт-Петербургский государственный университет телекоммуникаций им. проф. М. А. Бонч-Бруевича»

	ра радиосистем и обработки сигналов лина «Цифровая обработка сигналов»	
лине	Лабораторная работа ЛР08 ЙНЫЕ ДИСКРЕТНЫЕ СИСТЕМЫ	
Выполнили:	ст. гр. <u>ИКТ3-</u> Громов А.	-83 A
Проверила:	Миколаени М Меркучева Т.	I.C

Таблица исходных данных.

Переменная	Назначение	Значение	Идентификатор
N_{6p}	Номер бригады	$N_{ m ar{o}p}$	Nb = 11
b_0	Коэффициенты	$b_{6p} = 0.5 + 0.02N$	Вектор
b_1	числителя передаточной	$b_1 = b_0(-1)^{N_{\text{\'op}}+1}(0.9822 + 0.0178N_{\text{\'op}})$	b = [0.72 0.84816 0.72]
b_2	функции	$b_2 = b_0 \notin 0.8 + 0.2(N_{\text{6p}} \mod 5) \mathring{\mathbf{u}}$	
a_0	Коэффициенты	$a_0 = 1$	Вектор
a_1	знаменателя передаточной	$a_{\text{fip}} = (-1)^{N_{\text{fip}}} (0,7778 + 0,025N)$	a = [1 -1.053 0.706]
a_2	функции	$a_{gp} = 0,64 + 0,006N$	
N_1	Длина ИХ	$N_{\text{\it fp}} = N \mod 10 + 20$	N1 = 21
N_2	Длина воздействия	$N_{gp} = N \mod 10 + 30$	N2 = 31
$f_{\mathtt{II}}$	Частота дискретизации	$f_{\rm g} = 1000 N_{\rm 6p}$	Fs = 11000

Цель работы: изучить математическое описание линейных дискретных систем и овладеть программными средствами и их моделирование и анализа в MATLAB.

ПФ:

$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{0.72 + 0.84816 z^{-1} + 0.72 z^{-2}}{1 - 1.053 z^{-1} + 0.706 z^{-2}}$$

РУ:

$$y(n) = 0.72 * x(n) + 0.84816 * x(n-1) + 0.72 * x(n-2) + 1.053 * y(n-1) - 0.706 * y(n-2)$$

ИХ:

$$h\left(n\right) = 0.72*0.8402^{n} \frac{\sin(\left(n+1\right)51.20^{0})}{\sin(51.20^{0})} + 0.0.84816*0.8402^{n-1} \frac{\sin(n*51.20^{0})}{\sin(51.20^{0})} + 0.72*0.8402^{n-2} \frac{\sin(\left(n-1\right)51.20^{0})}{\sin(51.20^{0})}$$

ВЫПОЛНЕНИЕ РАБОТЫ

П.1. ВЫЧИСЛЕНИЕ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКИ - функция іmpz

ГРАФИК ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКИ

Пояснение:

 \mathbb{Z} Аналитическая формула ИХ рекурсивного звена 2-го порядка $H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2}}{1 + a_1 z^{-1} + a_2 z^{-2}} = \frac{0.72 + 0.84816 z^{-1} + 0.72 z^{-2}}{1 - 1.053 z^{-1} + 0.706 z^{-2}}$

 \square В действительности длина UX рекурсивных ЛДС бесконечна.

П.2. ВЫЧИСЛЕНИЕ ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКИ - функция filter

ГРАФИК ИМПУЛЬСНОЙ ХАРАКТЕРИСТИКИ

Пояснение:

 \square Импульсная характеристика — реакция на цифровой единичный импульс. Поэтому в качестве воздействия поступает цифровой единичный импульс длины N_1 -1. Длина цифрового единичного импульса ограничивается UX.

П.З. ВЫЧИСЛЕНИЕ РЕАКЦИИ ПО ФОРМУЛЕ СВЕРТКИ

ГРАФИКИ ВОЗДЕЙСТВИЯ И РЕАКЦИИ, вычисленной по ФОРМУЛЕ СВЕРТКИ

Формула свертки:

$$y(n) = \sum_{m=0}^{\infty} h(n-m)x(m) = \sum_{m=0}^{\infty} h(m)x(n-m)$$

Пояснение:

- \square Длина импульса равна $int(N_2/2)$, в данном случае 16.
- \mathbb{Z} Длина реакции ограничена ($L=N_2+N_1-1$)=51.

П.4. ВЫЧИСЛЕНИЕ РЕАКЦИИ ПО РАЗНОСТНОМУ УРАВНЕНИЮ

ГРАФИК РЕАКЦИИ, вычисленной по РАЗНОСТНОМУ УРАВНЕНИЮ

Пояснение:

- y(n) = 0.72 * x(n) + 0.84816 * x(n-1) + 0.72 * x(n-2) + 1.053 * y(n-1) 0.706 * y(n-2)
- \square Длина реакции равна длине воздействия N2=31 потому, что длина реакции без ограничения бесконечна

П.5. ВЫЧИСЛЕНИЕ ПАРАМЕТРОВ ПЕРЕДАТОЧНОЙ ФУНКЦИИ В ВИДЕ ПРОИЗВЕДЕНИЯ ПРОСТЕЙШИХ МНОЖИТЕЛЕЙ

Пояснение:

🛮 Нули и полюсы в алгебраической форме и коэффициент усиления:

```
(q-нули, p- полюсы, K- коэффициент усиления) q=
-0.5890+0.8081i
-0.5890-0.8081i
p=
0.5265+0.6548i
0.5265-0.6548i
K=
0.7200
```

🛮 Нули в показательной форме:

(rq-pa)иусы комплексно сопряженных нулей, wq-aргументы комплексно сопряженных нулей)

rq = 1.0000 1.0000 wq = 2.2006 -2.2006

🛮 Полюсы в показательной форме:

(rp - радиусы комплексно сопряженных полюсов, wp - аргументы комплексно сопряженных полюсов)

rp = 0.8402 0.8402 wp = 0.8936 -0.8936

🛮 Значение аргумента полюса

 $wq=0,7 \pi$ $-0,7 \pi$ $wp=0,284\pi$ $-0,284\pi$

Передаточная функция в виде произведения простейших множителей с нулями и полюсами в показательной форме:

показательной форме. $H(z) = b_0 \cdot \prod_{k=1}^{M-1} \frac{1 - b_k z^{-1}}{1 - a_k z^{-1}} = 0,72 \cdot \prod_{1}^{2} \frac{1 - z^{-1} * 1 * e^{\pm 2,2006j}}{1 - z^{-1} * 0,8402 * e^{\pm 0.8936j}}$

П.6. ВЫЧИСЛЕНИЕ ПАРАМЕТРОВ ПЕРЕДАТОЧНОЙ ФУНКЦИИ В ВИДЕ ПРОИЗВЕДЕНИЯ МНОЖИТЕЛЕЙ ВТОРОГО ПОРЯДКА

Матрица коэффициентов (s) и коэффициента усиления (G):

Передаточная функция в виде произведения множителей 2-го порядка:

$$H(z) = \prod_{k=1}^{L} \frac{b_{0k} + \tilde{b}_{1k}z^{-1} + \tilde{b}_{2k}z^{-2}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}}$$

где b_{0k} , \tilde{b}_{1k} , \tilde{b}_{2k} , a_{1k} , a_{2k} — вещественные коэффициенты; L — количество звеньев 2-го порядка.

B MATLAB используется представление передаточной функции в эквивалентном виде, получаемом при вынесении за скобки коэффициентов b_{0k} :

$$H(z) = G \prod_{k=1}^{L} \frac{1 + b_{1k}z^{-1} + b_{2k}z^{-2}}{1 + a_{1k}z^{-1} + a_{2k}z^{-2}} = 0.72 * \frac{1 + 1.178 * z^{-1} + 1 * z^{-2}}{1 - 1.053 * z^{-1} + 0.706 * z^{-2}}$$

где $G=b_{01}\cdot b_{02}\cdot ...\cdot b_{0L}$ — коэффициент усиления, а соответствующие коэффициенты связаны соотношениями:

$$b_{1k} = \tilde{b}_{1k}/G; b_{2k} = \tilde{b}_{2k}/G;$$

П.7. ВЫЧИСЛЕНИЕ ПАРАМЕТРОВ ПЕРЕДАТОЧНОЙ ФУНКЦИИ В ВИДЕ СУММЫ ПРОСТЫХ ДРОБЕЙ

Коэффициенты разложения (r), полюсов (р) в алгебраической форме и целой части (с)

r =	p =	
-0.1499 - 1.3471i	0.5265 + 0.6548i	c = 1.0198
-0.1499 + 1.3471i	0.5265 - 0.6548i	

КОЭФФИЦИЕНТЫ РАЗЛОЖЕНИЯ (r) в ПОКАЗАТЕЛЬНОЙ ФОРМЕ

(rr – радиусы комплексно сопряженных коэффициентов разложения, wr – аргументы комплексно сопряженных коэффициентов разложения, rp - радиусы комплексно сопряженных полюсов, wp - аргументы комплексно сопряженных полюсов)

rr:	=	wr =	rp =	wp =
	1.3554	-1.6816	0.8402	0.8936
	1.3554	1.6816	0.8402	-0.8936

🛮 Значение аргумента коэффициента разложения и аргумента полюса

$$wr = -0.53527\pi$$

 0.53527π

wp=
$$0.284\pi$$
 -0.284π

Передаточная функция в виде суммы простых дробей с полюсами и коэффициентами разложения в показательной форме:

$$H(z) = \sum_{1}^{M-1} \frac{(-0.1499 \pm 1.3471i)}{1 - (0.5265 \pm 0.6548i) * z^{-1}} + 1.0198$$

П.8. ВЫВОД КАРТЫ НУЛЕЙ И ПОЛЮСОВ

КАРТЫ НУЛЕЙ И ПОЛЮСОВ

Пояснение:

- По второму критерию устойчивости данное рекурсивное звено является устойчивым (так как все полюса лежат внутри единичного круга)
- 🛮 Значения нулей и полюсов совпадают с вычисленными в пункте 5.

П.9.ВЫЧИСЛЕНИЕ АЧХ и ФЧХ В ШКАЛЕ НОРМИРОВАННЫХ ЧАСТОТ

ГРАФИКИ АЧХ и ФЧХ в шкале НОРМИРОВАННЫХ частот

Пояснение:

- \square Границы основной полосы частот [0; π].
- Вид АЧХ соответствует карте нулей и полюсов (на частоте комплексно-сопряженных нулей и полюсов мы наблюдаем минимум и максимум соответственно).
- В реакции оказались преимущественно подавлены высокие частотные составляющие.

П.10. ВЫЧИСЛЕНИЕ АЧХ и ФЧХ В ШКАЛЕ АБСОЛЮТНЫХ ЧАСТОТ

ГРАФИКИ АЧХ и ФЧХ в шкале АБСОЛЮТНЫХ частот

Пояснение:

- \mathbb{Z} Границы основной полосы частот $[0; f_{\mathbb{Z}}/2]$.

П.11. ОПИСАНИЕ СТРУКТУРЫ РЕКУРСИВНОГО ЗВЕНА

Структура ЛДС:

- 🛮 Свойства объектов dfilt:
 - **0** FilterStructure показывает структуру рекурсивного звена (прямая, прямая каноническая и т.д.).

- O Arithmetic форма представления данных (вещественный тип double).
- 0 Numerator коэффициенты числителя передаточной функции.
- 0 Denumerator коэффициенты знаменателя передаточной функции.
- O PersistentMemory начальные условия при вычислении реакции; значения false coomветствует HHV.

П.12. АНАЛИЗ ВЛИЯНИЯ НУЛЕЙ И ПОЛЮСОВ НА ВИД АЧХ

КАРТЫ НУЛЕЙ И ПОЛЮСОВ и НОРМИРОВАННОЙ АЧХ

Пояснение:

Вариант	Векторы коэффициентов передаточной функции		
	числителя	знаменателя	
1	[1 0 0]	[1 a1 a2]	
2	[1 0 0]	[1 -a1 a2]	
3	[1 0 0]	[1 a1 1.2*a2]	
4	[1 1 0]	[1 a1 a2]	

🛮 Матрица для коэффициентов а (знаменателя):

[1 -1.053 0.706]

[1 1.053 0.706]

[1 -1.053 0.8472]

[1 -1.053 0.706]

Вывод: Лабораторная работа помогла изучить математическое описание линейных дискретных систем и познакомиться с программными средствами их моделирования и анализа в программе MATLAB.