Voorbereiding oefeningen les 10

Leen Van Houdt Sander Mergan Seppe Duwé Willem Melis Wouter Duyols Xavier Dejager

April 25, 2016

1 Oefening 0.5

Met een tegenvoorbeeld kunnen we aantonen dat de bewering niet waar is. We stellen dat x = 0 en z = 0. Er geldt dat xy = 0 en xz = 0. Hieruit volgt dat xy = xz. We weten echter dat $y \neq z$. De bewering geldt dus enkel als x = 1.

We kunnen de bewering dus aanvullen met "gegeven dat x=1", en dit kan bewezen worden door x te vervangen door 1: $xy=xz\Rightarrow 1.y=1.z\Rightarrow y=z$ maar dit is uiteraard triviaal.

Ook kunnen we de bewering omdraaien: "in de Booleaanse algebra volgt uit y=z dat xy=xz", en dit kan bewezen worden door y te vervangen door z in de $2^{\rm e}$ vergelijking maar ook dit bewijs is triviaal.

2 Oefening 4.30

Deel 1 Met de exhaustieve methode (alle gevallen nagaan in de waarheidstabel) vinden we volgende oplossing:

N	X	y	\mathbf{z}	t	$ \mathbf{v} $
0	0		0	0	1
1	0	0	0	1	0
2	0	0	1	0	0
3	0	0	1	1	$\mid 1 \mid$
4	0	1	0	0	0
5	0	1	0	1	$\mid 1 \mid$
6	0	1	1	0	1
7	0	1	1	1	0
8	1	0	0	0	0
0 1 2 3 4 5 6 7 8 9 10	1	0	0	1	$\mid 1 \mid$
10	1	0	1	0	1
11	1	0	1	1	0
12	1	1	0	0	1
13	0 0 0 0 0 0 0 0 1 1 1 1 1 1 1	0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1	0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 0 1 1	0 1 0 1 0 1 0 1 0 1 0 1 0 1	1 0 0 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1
14 15	1	1	1	0	$\mid 0 \mid$
15	1	1	1	1	1

De minterm
normaalvorm wordt gevonden door te kijken naar de kolommen waar f=1
is:

 $v = \bar{x}\bar{y}\bar{z}\bar{t} + \bar{x}\bar{y}zt + \bar{x}y\bar{z}t + \bar{x}yz\bar{t} + x\bar{y}z\bar{t} + x\bar{y}z\bar{t} + xyz\bar{t}$ De maxtermnormaalvorm wordt gevonden door te kijken naar de kolommen waar f = 0 is:

$$v = (x + y + z + \bar{t})(x + y + \bar{z} + t)(x + \bar{y} + z + t)(x + \bar{y} + \bar{z} + \bar{t})(\bar{x} + y + z + t)(\bar{x} + y + \bar{z} + t)(\bar{x} + \bar{y} + z + \bar{t})(\bar{x} + \bar{y} + \bar{z} + t)$$

De maxtermnormaalvorm bijvoorbeeld kan gerealiseerd worden met volgend poortennetwerk:

Insert picture of network here ...

Deel 2 Gevraagd is de vergelijking v = 1 op te lossen met de systematische methode. v = 1 als $\bar{v} = 0$.

 \bar{v} kan makkelijk bekomen worden door de negatie van de maxtermnormaalvorm te nemen en deze vervolgens te vereenvoudigen met de wet van de Morgan:

$$\bar{v} = \neg((x+y+z+\bar{t})(x+y+\bar{z}+t)(x+\bar{y}+z+t)(x+\bar{y}+\bar{z}+\bar{t})(\bar{x}+y+z+t)($$

 $\Leftrightarrow \bar{x}\bar{y}\bar{z}t + \bar{x}\bar{y}z\bar{t} + \bar{x}y\bar{z}\bar{t} + \bar{x}yzt + x\bar{y}\bar{z}\bar{t} + x\bar{y}zt + xy\bar{z}t + xyz\bar{t} = 0$ We beschouwen enkel x als veranderlijke en herschrijven de vergelijking:

$$x(\bar{y}\bar{z}\bar{t} + \bar{y}zt + y\bar{z}t + yz\bar{t}) + \bar{x}(\bar{y}\bar{z}t + \bar{y}z\bar{t} + y\bar{z}\bar{t} + yzt) = 0$$

Met behulp van de wet van De Morgan kunnen we aantonen dat:

$$\neg(\bar{y}\bar{z}\bar{t} + \bar{y}zt + y\bar{z}t + yz\bar{t}) = (\bar{y}\bar{z}t + \bar{y}z\bar{t} + y\bar{z}\bar{t} + yzt)$$

Stel voor de leesbaarheid $q=(\bar{y}\bar{z}\bar{t}+\bar{y}zt+y\bar{z}t+yz\bar{t})$, dan volgt dat $\bar{q}=\bar{y}\bar{z}t+\bar{y}z\bar{t}+yz\bar{t}+yzt$

De vergelijking wordt dan:

$$xq + \bar{x}\bar{q} = 0$$

De oplossing voor x is:

$$x = \bar{q} + \bar{q}\lambda = \bar{q}(1+\lambda) = \bar{q} = \bar{y}\bar{z}t + \bar{y}z\bar{t} + y\bar{z}\bar{t} + yzt = \bar{y}(\bar{z}t + z\bar{t}) + y(\bar{z}\bar{t} + zt)$$

De voorwaarde voor oplosbaarheid is:

$$q.\bar{q} = 0$$

3 Oefening 4.41

1

2

3