Generative Adversarial Networks

Lecture 6

18-789

Recap

- VAEs maximize ELBO, a lower bound of the log-likelihood
 - $\mathbb{E}_{z \sim q_{\phi}(z|x)}[\log p_{\theta}(x|z)] KL(q_{\phi}(z|x) \parallel p(z))$
- Maximizing Gaussian $\log p_{\theta}(x|z)$ = Minimizing MSE/L2 loss
- Assume Gaussian $q_{\phi}(z|x)$ and p(z) so we can compute their KL analytically
- Reparameterization trick to enable gradient backpropagation
- Autoencoder perspective, beta-VAE and VQVAE

How do VAEs perform?

Why are output images from VAEs blurry?

- Assume our dataset only has two samples: $\{x_0, x_1\}$.
- With optimized reconstruction loss, what would the decoder output if we sample from the origin?

Why are output images from VAEs blurry?

• The optimal decoder output given latent z' is a weighted combination of samples in the training set $\{x_i\}$:

$$\mu_{\theta}(z') = \sum_{i} w_{i} x_{i}$$

where
$$w_i = \frac{q(z'|x_i)}{\sum_i q(z'|x_i)}$$

The average of many images is blurry

Average face of European parliament

Why are output images from VAEs blurry?

• The optimal decoder output given latent z' is a weighted combination of samples in the training set $\{x_i\}$:

$$\mu_{\theta}(z') = \sum_{i} w_{i} x_{i}$$

where
$$w_i = \frac{q(z'|x_i)}{\sum_i q(z'|x_i)}$$

- Another answer: VAE outputs are blurry because of Gaussian assumptions
 - Gaussian likelihood -> The optimal decoder output is a weighted average of training samples.
 - Gaussian posterior + prior -> There is always overlap between posterior distributions, so weights are never one-hot.

VAE: The Curse of Blurriness

• Blurriness is a fundamental problem of VAEs that can't be easily solved by scaling up

256x256

1024x1024

Very Deep (72 layers) + Hierarchical Latent Space

Non-Gaussian Decoder?

•
$$\min_{\theta,\phi} - \mathbb{E}_{z \sim q_{\phi}(z|x)} [\log p_{\theta}(x|z)] + KL(q_{\phi}(z|x) \parallel p(z))$$

PixelCNN

- Can we use an autoregressive decoder (e.g. PixelCNN)?
- Posterior Collapse!
 - Encoder ignores x ($q_{\phi}(z|x) \equiv p(z)$ regardless of x)
 - Decoder ignores z ($p_{\theta}(x|z) \equiv p_{\theta}(x)$ regardless of z)
- Degenerate to an autoregressive model...

The Evolution of GANs

2020

GANs are still widely used today, especially when combined with Diffusion

Generative Adversarial Networks

Latent Variable Models

Recap: Variational Autoencoders

- 1. How to model the joint distribution of high-dimensional data?
 - $p_{\theta}(x) = \int_{z} p(z)p_{\theta}(x|z)dz$, where z is lower-dimensional
 - p(z) and $p_{\theta}(x|z)$ are simple independent Gaussian distributions
 - p(z) = N(0, I)
 - $p(x|z) = N(\mu_{\theta}(z), \sigma I)$
- 2. How to optimize your model?

Maximizing ELBO (lower bound of likelihood) + Reparameterization

Had to make Gaussian assumptions so that ELBO is tractable to compute As a result: sample quality not good (blurry)

- 1. How to model the joint distribution of high-dimensional data?
 - $p_{\theta}(x) = \int_{z} p(z)p_{\theta}(x|z)dz$, where z is lower-dimensional
 - p(z) and $p_{\theta}(x|z)$ are simple independent Gaussian distributions
 - p(z) = N(0, I)
 - $p(x|z) = N(\mu_{\theta}(z), \sigma)$
- 2. How to optimize your model?

- 1. How to model the joint distribution of high-dimensional data?
 - $p_{\theta}(x) = \int_{z} p(z)p_{\theta}(x|z)dz$, where z is lower-dimensional
 - p(z) and $p_{\theta}(x|z)$ are simple independent Gaussian distributions
 - p(z) = N(0, I)
 - $p(x|z) = N(\mu_{\theta}(z), \sigma), \sigma \to 0 \Longrightarrow x = \mu_{\theta}(z)$
- 2. How to optimize your model?

- 1. How to model the joint distribution of high-dimensional data?
 - (Implicit) $p_{\theta}(x)$: $x = G_{\theta}(z)$, $z \sim p(z)$, where z is lower-dimensional
 - p(z) = N(0, I) is an independent Gaussian (or any simple distribution that is easy to sample from)
- 2. How to optimize your model?

- 1. How to model the joint distribution of high-dimensional data?
 - (Implicit) $p_{\theta}(x)$: $x = G_{\theta}(z)$, $z \sim p(z)$, where z is lower-dimensional
 - p(z) = N(0, I) is an independent Gaussian (or any simple distribution that is easy to sample from)
- 2. How to optimize your model?

Intuition

GAN Objective

Inner optimization:

Generated sample

$$\min_{G} \max_{D} E_{x \sim p(x)} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]$$
Maximize discriminator
Minimize discriminator

Maximize discriminator output for real data

Minimize discriminator output for generated data

Training discriminator with binary classification loss

GAN Objective

In practice, we update G/D alternatingly!

Outer optimization:

Generated sample

$$\min_{G} \max_{D} E_{x \sim p(x)} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]$$

Maximize discriminator output for generated data

Generator tries to fool the discriminator!

Discriminator estimates the density ratio

For a fixed generator G (with parameter θ), the optimal discriminator is

$$D^*(x) = \frac{p(x)}{p(x) + p_{\theta}(x)}$$

where p(x) and $p_{\theta}(x)$ are data and model distribution.

$$\min_{G} \max_{D} E_{x \sim p(x)} [\log D(x)] + E_{z \sim p(z)} [\log (1 - D(G(z)))]$$

Generator can learn true data distribution

The global optimum of the GAN objective is achieved if and only if $p_{\theta}(x) = p(x)$

$$\mathcal{L}(G) = E_{x \sim p(x)} [\log D^{*}(x)] + E_{x \sim p_{\theta}(x)} [\log (1 - D^{*}(G(z)))]$$

$$= E_{x \sim p(x)} \left[\log \frac{p(x)}{p(x) + p_{\theta}(x)} \right] + E_{x \sim p_{\theta}(x)} \left[\log (1 - \frac{p(x)}{p(x) + p_{\theta}(x)}) \right] + \log(4) - \log(4)$$

$$= E_{x \sim p(x)} \left[\log \frac{2p(x)}{p(x) + p_{\theta}(x)} \right] + E_{x \sim p_{\theta}(x)} \left[\log \frac{2p_{\theta}(x)}{p(x) + p_{\theta}(x)} \right] - \log(4)$$

$$= KL \left(p(x) || \frac{p(x) + p_{\theta}(x)}{2} \right) + KL \left(p_{\theta}(x) || \frac{p(x) + p_{\theta}(x)}{2} \right) - \log(4)$$

Jensen-Shannon divergence: $2JSD(p(x)|p_{\theta}(x))$

How do GANs perform?

GANs can perform really well when it works.

StyleGAN, Karras et al., 2019

Failure scenario: Mode Collapse

Manifold hypothesis

• High-dimensional data sets in the real world (e.g., images) actually lie along low-dimensional manifolds.

A hypothesis on the cause of mode collapse

•
$$JSD(p|p_{\theta}) = \frac{1}{2}KL\left(p(x)||\frac{p(x)+p_{\theta}(x)}{2}\right) + \frac{1}{2}KL\left(p_{\theta}(x)||\frac{p(x)+p_{\theta}(x)}{2}\right)$$

- If p and p_{θ} have completely different supports:
 - $JSD(p|p_{\theta}) = \log 4$
 - No matter what our parameters are!
 - There's no gradient!

- Claim: GAN training is unstable because it's optimizing JSD
- Solution: Let's optimize another distance

What's the "minimum work" we need to move distribution P to Q?

Transport plan:

• Wasserstein distance: for $\Pi(p,p_{\theta})$ defined as all possible joint probability distributions between p and p_{θ}

$$W(p, p_{\theta}) = \inf_{\gamma \in \Pi(p, p_{\theta})} E_{(x, y) \sim \gamma} [||x - y||]$$

Why Wasserstein might be better than JSD?

Estimating the Wasserstein Distance

$$W(p, p_{\theta}) = \inf_{\gamma \in \Pi(p, p_{\theta})} E_{(x, y) \sim \gamma} [||x - y||]$$

Kantorovich-Rubinstein duality:

$$= \sup_{\|f\|_{L} \le 1} E_{x \sim p}[f(x)] - E_{x \sim p_{\theta}}[f(x)]$$

• $||f||_L \le 1 : f$ is 1-Lipschitz

$$\frac{|f(x) - f(y)|}{|x - y|} \le 1, \forall x, y$$

Bounded gradient!

Wasserstein GAN in practice

- Use the discriminator as "f": $\max_{||D||_{L} \le 1} E_{x \sim p}[D(x)] E_{x \sim p_{\theta}}[D(x)]$
- Removed log compared with the original objective
- Use weight clipping to ensure Lipschitz condition

Despite the nice theory...

Stack Overflow

https://stackoverflow.com > questions > training-stabilit...

Training stability of Wasserstein GANs

The problem is that GANs not having a unified objective functions ... **wGAN** could be faster due to having morestable training procedures ...

2 answers · Top answer: You can check Inception Score and Frechet Inception Distance for now. And a...

The loss of my WGAN slumps to the negative infinity within just ... Apr 21, 2023

WGAN-GP Large Oscillating Loss - tensorflow - Stack Overflow Dec 30, 2019

WGAN loss diverges - Stack Overflow Mar 27, 2020

GANs are optimizing [...] divergence. Or do they?

- Theoretically, the generator is optimizing some divergence (JSD/Wasserstein distance) if we train the discriminator to optimal.
- In practice, we are *never* going to train the discriminator to optimal.
 - Impractical
 - Overfitting
- In practice, GANs can work well in situations where the divergence minimization view predicts they would fail.
- It's more helpful to think the discriminator as some learned "neural network divergence" rather than a fixed mathematical divergence.

Culprit of GAN Training Instability

- Real Distribution
- Generator Distribution
- Discriminator Output

- Real Samples
- Fake Samples

In practice

Culprit of GAN Training Instability

- Real Distribution
- Generator Distribution
- Discriminator Output

- Real Samples
- Fake Samples
- Discriminator Output

NOOO! A GAN is optimizing Jensen-Shannon Divergence/Wasserstein Distance/f-divergence

Next: Student Presentation Improving the Stability of Training GANs

- "Improved Training of Wasserstein GANs", Gulrajani et al., NeurIPS 2017
- "Spectral Normalization for Generative Adversarial Networks", Miyato et al., ICLR 2018
- "Training Generative Adversarial Networks with Limited Data", Karras et al., NeurIPS 2020

Presentation Hint:

Understand the previous few slides and put each paper into that context

Application: Conditional GANs

Class-conditioned Image Generation

Brock et al., "Large Scale GAN Training for High Fidelity Natural Image Synthesis", ICLR 2019

Application: Conditional GANs

Image-to-Image Translation

Isola et al., "Image-to-Image Translation with Conditional Adversarial Nets", CVPR 2017

Application: Conditional GANs

Text-to-Image Generation

Huang et al., "Multimodal Conditional Image Synthesis with Product-of-Experts GANs", ECCV 2022

How to Condition your GANs

• It's simple! Just give your conditioning signals to both generator and discriminator as inputs.

How to Condition your GANs

- It's simple! Just give your conditioning signals to both generator and discriminator as inputs.
- Why does it work?

5 Minute Quiz

• On Canvas

• Passcode: donkey

