

1. That we need flexibility to change the number of lanes and areas we are monitoring. ==> Increase or Decrease the number of Zones 1, 2, 3, ... and A, B, ... 2. For the Pedestrian travel in the crosswalk: Speed is speed_pedestrian,
Distance is distance_pedestrian, Time required to decide is time_decided, Time required to walk is time_walked, ==> Time walked is time_walked = (distance_pedestrian)/(speed_pedestrian) 3. For the Vehicle (which includes scooter, bicycles, motorbike, and others that can injure a human on the road):
Speed is speed_vehicle, Time required by vehicle ==> (time_vehicle) = (time_decided) + (time_walked), Distance is distance_vehicle ==> the range being monitored = (speed_vehicle) * (time_vehicle) (a) Light source mounted on a 3.5 meter tall pole (b) Zone 1 is the first that the vehicle reaches as it travels downstream towards the crosswalk c) Zone 2 is closer to the crosswalk as the vehicle travels downstream (d) Zones 1A and 1B: Occupancy ==> "ON" = Vehicle is inside Zone, Occupancy ==> "OFF" = Vehicle is not inside Zone
(e) Zones 2A and 2B: Occupancy ==> "ON" = Vehicle is inside Zone, Occupancy ==> "OFF" = Vehicle is not inside Zone
(f) Zone Crosswalk: Occupancy ==> "ON" = Pedestrian is inside Zone, Occupancy ==> "OFF" = Pedestrian is not inside Zone Yielding speed is the speed that vehicles attain when rolling/stopping (yielding) for pedestrians to cross, which is close to, or preferrably at zero