LG Semicon Co.,Ltd.

GM71C(S)4400C/CL

1,048,576 WORDS x 4BIT CMOS DYNAMIC RAM

Description

The GM71C(S)4400C/CL is the new generation dynamic RAM organized 1,048,576 words x 4 bit. GM71C(S)4400C/CL has realized higher density, higher performance and various functions by utilizing advanced CMOS process technology. The GM71C(S)4400C/CL offers Fast Page Mode as a high speed access Mode. Multiplexed address inputs permit the GM71C(S)4400C/CL to be packaged in a standard 300mil 20(26) pin plastic SOJ and standard 300mil 20(26) pin plastic TSOP II. The package size provides high system bit densities and is compatible with widely automated testing and equipment. System oriented features include single power supply of 5V+/-10% tolerance, direct interfacing capability with high performance logic families such as Schottky TTL.

Features

- * 1,048,576 Words x 4 Bit Organization
- * Fast Page Mode Capability
- * Single Power Supply (5V+/-10%)
- * Fast Access Time & Cycle Time

(Unit: ns)

	trac	t cac	t rc	t PC
GM71C(S)4400C/CL-60	60	15	110	40
GM71C(S)4400C/CL-70	70	20	130	45
GM71C(S)4400C/CL-80	80	20	150	50

* Low Power

Active: 605/550/495mW (MAX)

Standby: 5.5mW (CMOS level: MAX)

1.1mW (L-version)

- * RAS Only Refresh, CAS before RAS Refresh, Hidden Refresh Capability
- * All inputs and outputs TTL Compatible
- * 1024 Refresh Cycles/16ms
- * 1024 Refresh Cycles/128ms (L-version)
- * Battery Back Up Operation (L-version)

Pin Configuration

20 (26) SOJ

(Top View)

20 (26) TSOP II

(Top View)

Pin Description

Pin	Function	Pin	Function
A0-A9	Address Inputs	WE	Read/Write Enable
A0-A9	Refresh Address Inputs	ŌĒ	Output Enable
I/O1-I/O4	Data Input / Data Output	Vcc	Power (+5V)
RAS	Row Address Strobe	Vss	Ground
CAS	Column Address Strobe		

Ordering Information

Type No.	Access Time	Package
GM71C(S)4400CJ/CLJ-60 GM71C(S)4400CJ/CLJ-70 GM71C(S)4400CJ/CLJ-80	60ns 70ns 80ns	300 Mil, 20 (26) Pin Plastic SOJ
GM71C(S)4400CT/CLT-60	60ns	300 Mil, 20 (26) Pin
GM71C(S)4400CT/CLT-70	70ns	Plastic TSOP II
GM71C(S)4400CT/CLT-80	80ns	(Normal Type)
GM71C(S)4400CR/CLR-60	60ns	300 Mil, 20 (26) Pin
GM71C(S)4400CR/CLR-70	70ns	Plastic TSOP II
GM71C(S)4400CR/CLR-80	80ns	(Reverse Type)

Absolute Maximum Ratings*

Symbol	Parameter	Rating	Unit
TA	Ambient Temperature under Bias	0 ~ 70	С
Tstg	Storage Temperature (Plastic)	-55 ~ 125	С
Vin/Vout	Voltage on any Pin Relative to Vss	-1.0 ~ 7.0	V
Vcc	Voltage on Vcc Relative to Vss	-1.0 ~ 7.0	V
Іоит	Short Circuit Output Current	50	mA
PD	Power Dissipation	1.0	W

^{*}Note: Operation at or above Absolute Maximum Ratings can adversely affect device reliability.

Recommended DC Operating Conditions $(T_A = 0 \sim 70C)$

Symbol	Parameter	Min	Тур	Max	Unit
$ m V_{CC}$	Supply Voltage	4.5	5.0	5.5	V
V _{IH}	Input High Voltage	2.4	-	6.5	V
$V_{\rm IL}$	Input Low Voltage (I/O Pin)	-1.0	-	0.8	V
$V_{\rm IL}$	Input Low Voltage (Others)	-2.0	-	0.8	V

DC Electrical Characteristics ($V_{CC} = 5V + /-10\%$, $T_A = 0 \sim 70C$)

Symbol	Parameter		Min	Max	Unit	Note
Vон	Output Level Output "H" Level Voltage (Iout = -5mA)		2.4	Vcc	V	
Vol	Output "L" Level Voltage (Iout = 4.2mA)		0	0.4	V	
I cc1	Operating Current	60ns	1	110		
	Average Power Supply Operating Current (RAS, CAS, Address Cycling: trc = trc min)	70ns	-	100	mA	1, 2
	,,,,	80ns	-	90		
Icc2	Standby Current (TTL) Power Supply Standby Current (RAS, CAS= Vih, Dout = High-Z)		-	2	mA	
Icc3	RAS-Only Refresh Current	60ns	-	110		
	Average Power Supply Current RAS-Only Refresh Mode		-	100	mA	2
	$(\overline{RAS} \text{ Cycling}, \overline{CAS} = V_{IH}, t_{RC} = t_{RC} \text{ min})$	80ns	-	90		
Icc4	Fast Page Mode Current	60ns	1	110		
	Average Power Supply Current Fast Page Mode	70ns	-	100	mA	1, 3
	$(\overline{RAS} = V_{IL}, \overline{CAS}, Address Cycling: tpc = tpc min)$	80ns	-	90		
Icc5	Standby Current (CMOS)		-	1	mA	5
	Power Supply Standby Current $(\overline{RAS}, \overline{CAS} >= Vcc - 0.2V, Dout=High-Z)$		1	200	uA	4, 5
Icc6	CAS-before-RAS Refresh Current	60ns	ı	110		
	$(t_{RC} = t_{RC} min)$	70ns	1	100	mA	
		80ns	-	90		
Ісс7	Battery Back Up Current (Standby with CBR Refresh) (trc=125us, tras<=1us, WE=Vih, CAS=Vil, OE, Address and Din=Vih or Vil, Dout=High-Z)		-	300	uA	4, 5
Iccs			-	5	mA	1
I _{I(L)}	Input Leakage Current Any Input (0V<=V _{IN} <=7V)		-10	10	uA	
I _{O(L)}	Output Leakage Current (Dour is Disabled, 0V<=Vour<=7V)		-10	10	uA	

Note: 1. Icc depends on output load condition when the device is selected. Icc(max) is specified at the output open condition.

^{2.} Address can be changed once or less while $\overline{RAS} = V_{IL}$.

^{3.} Address can be changed once or less while $\overline{CAS} = V_{IH}$.

^{4.} L-version.

^{5.} V_{CC} -0.2 $V \le V_{\text{IH}} \le 6.5V$, $0V \le V_{\text{IL}} \le 0.2V$.

Capacitance ($V_{CC} = 5V + /-10\%$, $T_A = 25C$)

Symbol	Parameter	Min	Max	Unit	Note
C11	Input Capacitance (Address)	-	5	§Ü	1
C ₁₂	Input Capacitance (Clocks)	-	7	§Ü	1
CI/O	Data Input, Output Capacitance (Data-In, Out)	-	10	§Ü	1, 2

Note: 1. Capacitance measured with Boonton Meter or effective capacitance measuring method.

2. $\overline{CAS} = V_{IH}$ to disable Dout.

AC Characteristics ($V_{CC} = 5V + /-10\%$, $T_A = 0 \sim 70C$, Notes 1, 14, 15, 16)

Test Conditions

 $\begin{array}{ll} \text{Input rise and fall times: 5ns} & \text{Output load: 2 TTL gate} + C_L \ (100\$\ddot{\textbf{U}}) \\ \text{Input, output timing reference levels: 0.8V, 2.4V} & (Including scope and jig) \\ \end{array}$

Read, Write, Read-Modify-Write and Refresh Cycles (Common Parameters)

Symbol	Parameter	GM71C C/CL-6		GM71C C/CL-7	C(S)4400 0	GM71C C/CL-8	C(S)4400 0	Unit	Note
Symbol	r ar ameter	Min	Max	Min	Max	Min	Max	Onit	11016
t rc	Random Read or Write Cycle Time	110	-	130	-	150	-	ns	
t rp	RAS Precharge Time	40	-	50	-	60	-	ns	
tras	RAS Pulse Width	60	10,000	70	10,000	80	10,000	ns	
t cas	CAS Pulse Width	15	10,000	20	10,000	20	10,000	ns	
tasr	Row Address Set-up Time	0	-	0	-	0	-	ns	
t rah	Row Address Hold Time	10	-	10	-	10	-	ns	
tasc	Column Address Set-up Time	0	-	0	-	0	-	ns	
t cah	Column Address Hold Time	15	-	15	-	15	-	ns	
t rcd	RAS to CAS Delay Time	20	45	20	50	20	60	ns	8
t rad	RAS to Column Address Delay Time	15	30	15	35	15	40	ns	9
t rsh	RAS Hold Time	15	-	20	-	20	-	ns	
t csh	CAS Hold Time	60	-	70	-	80	-	ns	
t crp	CAS to RAS Precharge Time	10	-	10	-	10	-	ns	
todd	\overline{OE} to D_{IN} Delay Time	15	-	20	-	20	-	ns	
t dzo	\overline{OE} Delay Time from D_{IN}	0	-	0	-	0	-	ns	
t _{DZC}	CAS Set-up Time from D _{IN}	0	-	0	_	0	_	ns	
t T	Transition Time (Rise and Fall)	3	50	3	50	3	50	ns	7
tref	Refresh Period	-	16	-	16	-	16	ms	
	Refresh Period (L-version)	-	128	-	128	-	128	ms	

Read Cycle

Symbol	Parameter	GM71C C/CL-6		GM71C C/CL-7		GM71C C/CL-8	C(S)4400 0	Unit	Note
Symbol	1 at affecter	Min	Max	Min	Max	Min	Max	Cint	
t rac	Access Time from RAS	-	60	-	70	-	80	ns	2,3,17
tcac	Access Time from CAS	-	15	-	20	-	20	ns	3, 4, 13, 17
taa	Access Time from Address	-	30	-	35	1	40	ns	3, 5, 13, 17
toac	Access Time from OE	-	15	-	20	-	20	ns	3,17
trcs	Read Command Setup Time	0	-	0	ı	0	-	ns	
t rch	Read Command Hold Time to CAS	0	-	0	ı	0	-	ns	18
t rrh	Read Command Hold Time to RAS	0	-	0	-	0	-	ns	18
tral	Column Address to RAS Lead Time	30	-	35	1	40	-	ns	
toff1	Output Buffer Turn-off Time	0	15	0	15	0	15	ns	6
toff2	Output Buffer Turn-off Time from $\overline{\text{OE}}$	0	15	0	15	0	15	ns	6
tcdd	CAS to D _{IN} Delay Time	15	-	20	-	20	-	ns	
toep	OE Pulse width	15	-	20	1	20	-	ns	

Write Cycle

Symbol		` '		GM71C C/CL-7	. ,	GM71C(S)4400 C/CL-80		Unit	Note
Symbol	1 at attictet	Min	Max	Min	Max	Min	Max	Ome	11010
twcs	Write Command Setup Time	0	-	0	-	0	-	ns	10
twch	Write Command Hold Time	15	-	15	-	15	1	ns	
twp	Write Command Pulse Width	10	-	10	-	10	-	ns	
trwl	Write Command to RAS Lead Time	15	-	20	-	20	-	ns	
tcwl	Write Command to CAS Lead Time	15	-	20	-	20	-	ns	
tds	Data-in Setup Time	0	-	0	-	0	-	ns	11
tон	Data-in Hold Time	15	-	15	-	15	-	ns	11

Read-Modify-Write Cycle

Symbol		` '		\ /		GM71C(S)4400 C/CL-80		Unit	Note
		Min	Max	Min	Max	Min	Max	0.111	11010
trwc	Read-Modify-Write Cycle Time	150	-	180	-	200	-	ns	
trwd	RAS to WE Delay Time	80	-	95	-	105	-	ns	10
t cwd	CAS to WE Delay Time	35	-	45	-	45	-	ns	10
tawd	Column Address to WE Delay Time	50	-	60	1	65	-	ns	10
toeh	OE Hold Time from WE	15	-	20	-	20	-	ns	

Refresh Cycle

Symbol						00 GM71C(S)4400 C/CL-80		Unit	Note
Symbol		Min	Max	Min	Max	Min	Max		- 1000
t csr	CAS Set-up Time (CAS-before-RAS Refresh Cycle)	10	-	10	ı	10	1	ns	
t chr	CAS Hold Time (CAS-before-RAS Refresh Cycle)	10	-	10	-	10	1	ns	
t rpc	RAS Precharge to CAS Hold Time	10	-	10	-	10	1	ns	
t CPN	CAS Precharge Time in Normal Mode	10	-	10	-	10	-	ns	·

Fast Page Mode Cycle

Symbol				GM71C(S)4400 C/CL-70		GM71C(S)4400 C/CL-80		Unit	Note
		Min	Max	Min	Max	Min	Max		11010
t PC	Fast Page Mode Cycle Time	40	-	45	-	50	1	ns	
t CP	Fast Page Mode CAS Precharge Time	10	-	10	-	10	-	ns	
trasp	Fast Page Mode RAS Pulse Width	-	100,000	-	100,000	-	100,000	ns	12
t ACP	Access Time from CAS Precharge	-	35	-	40	-	45	ns	3,13,17
t rhcp	RAS Hold Time from CAS Precharge	35	-	40	-	45	-	ns	
t cpw	Fast Page Mode Read-Modify-Write Cycle CAS Precharge to WE Delay Time	55	-	65	-	70	-	ns	
t prwc	Fast Page Mode Read-Modify-Write Cycle Time	80	-	95	-	100	-	ns	10

Test Mode Cycle

Symbol		GM71C(S)4400 C/CL-60				GM71C(S)4400 C/CL-80		Unit	Note
		Min	Max	Min	Max	Min	Max		11010
tws	Test Mode WE Setup Time	0	-	0	-	0	-	ns	
twн	Test Mode WE Hold Time	10	-	10	-	10	-	ns	

Counter Test Cycle

Symbol						GM71C(S)4400 C/CL-80		Unit	Note	
		Min	Max	Min	Max	Min	Max		11010	
t	СРТ	CAS Precharge Time in Counter Test Cycle	40	-	40	-	40	1	ns	

Notes:

- 1. AC Measurements assume $t_T = 5$ ns.
- 2. Assumes that trcd<=trcd(max) and trad<=trad(max). If trcd or trad is greater than the maximum recommended value shown in this table, trac exceeds the value shown.
- 3. Measured with a load circuit equivalent to 2TTL loads and 100§Ü.
- 4. Assumes that trcd>=trcd(max) and trad<=trad(max).
- 5. Assumes that $trcd \le trcd(max)$ and $trad \ge trad(max)$.
- 6. toff(max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.
- 7. $V_{IH}(min)$ and $V_{IL}(max)$ are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IH} and V_{IL} .
- 8. Operation with the trcd(max) limit insures that trac(max) can be met, trcd(max) is specified as a reference point only; if trcd is greater than the specified trcd(max) limit, then access time is controlled exclusively by tcac.
- 9. Operation with the trad(max) limit insures that trac(max) can be met, trad(max) is specified as a reference point only; if trad is greater than the specified trad(max) limit, then access time is controlled exclusively by taa.

- 10. twcs, trwd, tcwd tcpw and tawd are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only; if twcs >=twcs(min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle; if trwd>=trwd(min), tcwd>=tcwd(min), tawd>=tawd(min) and tcpw>=tcpw(min), the cycle is a read-modify-write and the data output will contain data read from the selected cell; if neither of the above sets of conditions is satisfied, the condition of the data out (at access time) is indeterminate.
- 11. These parameters are referenced to \overline{CAS} leading edge in early write cycles and to \overline{WE} leading edge in delayed write or a read modify write cycle.
- 12. t_{RASP} defines \overline{RAS} pulse width in fast page mode cycles.
- 13. Access time is determined by the longer of tAA or tCAC or tACP.
- 14. An initial pause of 100us is required after power up followed by a minimum of eight initialization cycles (RAS only refresh cycle or CAS before RAS refresh cycle). If the internal refresh counter is used, a minimum of eight CAS before RAS refresh cycles is required.
- 15. In delayed write or read-modify-write cycles, \overline{OE} must disable output buffer prior to applying data to the device.
- 16. Test mode operation specified in this data sheet is 2-bit test function controlled by control address bits - CA0. This test mode operation can be performed by WE-and-CAS-before-RAS (WCBR) refresh cycle. Refresh during test mode operation will be performed by normal read cycles or by WCBR refresh cycles. When the state of two test bits accord each other, the condition of the output data is low level. In order to end this test mode operation, perform a RAS only refresh cycle or a CAS-before-RAS refresh cycle.
- 17. In a test mode read cycle, the value of trac, taa, tcac, toac and tacp is delayed for 2ns to 5ns for the specified value. These parameters should be specified in test mode cycles by adding the above value to the specified value in this data sheet.

Package Dimension

Unit: Inches (mm)

20 (26) TSOP II

0.021(0. 53) MAX

