

Exemples de construction de table LL(1)

novembre 2018

1 Exemple du cours

$$S \to AB \mid Da$$

$$A \to aAb \mid \varepsilon$$

$$B \to bB \mid \varepsilon$$

$$D \to dD \mid e$$

1.1 ε -productions

Variables : $\{A, B\} \cup \{S\} \cup \emptyset = \{A, B, S\}$ Régles : $\{S \to AB, A \to \varepsilon, B \to \varepsilon\}$

1.2 Ensembles Premier

$$Premier(S) = Premier(AB) \cup Premier(Da)$$

$$Premier(A) = Premier(aAb) \qquad = \{a\}$$

$$Premier(B) = Premier(bB) \qquad = \{b\}$$

$$Premier(D) = Premier(dD) \cup Premier(e) \qquad = \{d, e\}$$

$$Premier(AB) = Premier(A) \cup Premier(B) \qquad = \{a, b\} \ car \ A \stackrel{*}{\to} \varepsilon$$

$$Premier(Da) = Premier(D) \qquad = \{d, e\} \ car \ \neg (D \stackrel{*}{\to} \varepsilon)$$

$$Premier(S) = Premier(AB) \cup Premier(Da) \qquad = \{a, b, d, e\}$$

1.3 Constitution de la table, phase 1

Pour toute règle $V \to w$ et toute lettre $x \in Premier(w)$, ajouter la règle $V \to w$ dans la case T[V, x]. Résultat :

	S	A	В	D
a	$S \to AB$	$A \rightarrow aAb$		
b	$S \to AB$		$B \to bB$	
d	$S \to Da$			$D \to dD$
е	$S \to Da$			$D \rightarrow e$
#				

Remarque : à cette étape, aucune case ne contient strictement plus d'une règle, on peut donc passer au calcul des « Suivant ».

1.4 Ensembles Suivant

Pour chaque variable, on fait intervenir toutes les règles où cette variable apparait en partie droite.

$$Suivant(A) = Premier(B) \cup Suivant(S) \cup \{b\}$$

$$note : B \xrightarrow{*} \varepsilon$$

$$Suivant(B) = Suivant(S)$$

$$Suivant(D) = Premier(a) = \{a\}$$

$$Suivant(S) = \{\#\}$$

$$Suivant(A) = \{b\} \cup \{\#\} \cup \{b\} = \{b, \#\}$$

1.5 Constitution de la table, phase 2

Pour toute règle ε - productive $V \to w$ et toute lettre $x \in Suivant(V)$, ajouter la règle $V \to w$ dans la case T[V,x].

	S	A	В	D
a	$S \to AB$	$A \rightarrow aAb$		
b	$S \to AB$	$A \to \varepsilon$	$B \to bB$	
d	$S \to Da$			$D \to dD$
е	$S \to Da$			$D \rightarrow e$
#	$S \to AB$	$A \to \varepsilon$	$B \to \varepsilon$	

2 Exemple 2

$$S \rightarrow AB \mid BA$$

$$A \rightarrow XAX \mid a$$

$$B \rightarrow XBX \mid b$$

$$X \rightarrow a \mid b$$

2.1 ε -productions

Aucune.

2.2 Ensembles Premier

$$\begin{aligned} & Premier(X) = \{a,b\} \\ & Premier(A) = Premier(X) \cup \{a\} = \{a,b\} \\ & Premier(B) = Premier(X) \cup \{b\} = \{a,b\} \\ & Premier(AB) = Premier(A) = \{a,b\} \\ & Premier(BA) = Premier(B) = \{a,b\} \\ & Premier(S) = Premier(AB) \cup Premier(BA) = \{a,b\} \end{aligned}$$

2.3 Constitution de la table, phase 1

On constate **par exemple** que la case T[A,a] contient deux règles $:A \to XAX$ et $A \to a$. La grammaire n'est donc pas LL(1). Il est inutile de poursuivre.

(NB : idem pour la T[B,b]. Également pour T[S,a] et T[S,b] qui contiennent chacune les deux règles $S \to AB$ et $S \to BA$)

3 Exemple 2 bis

$$S \to AB \mid BA$$

$$A \to XAX \mid a$$

$$B \to YBY \mid b$$

$$X \to cX \mid e$$

$$Y \to dY \mid f$$

3.1 ε -productions

Aucune.

3.2 Ensembles Premier

$$\begin{aligned} & Premier(cX) = \{c\} \\ & Premier(dY) = \{d\} \\ & Premier(X) = Premier(cX) \cup \{e\} = \{c,e\} \\ & Premier(Y) = Premier(dY) \cup \{f\} = \{d,f\} \\ & Premier(XAX) = Premier(X) = \{c,e\} \\ & Premier(YBY) = Premier(Y) = \{d,f\} \\ & Premier(A) = Premier(XAX) \cup \{a\} = \{a,c,e\} \\ & Premier(B) = Premier(YBY) \cup \{b\} = \{b,d,f\} \\ & Premier(AB) = Premier(A) = \{a,c,e\} \\ & Premier(BA) = Premier(B) = \{b,d,f\} \\ & Premier(S) = Premier(AB) \cup Premier(BA) = \{a,b,c,d,e,f\} \end{aligned}$$

3.3 Constitution de la table, phase 1

	S	A	В	X	Y
a	$S \to AB$	$A \rightarrow a$			
b	$S \to BA$		$B \rightarrow b$		
С	$S \to AB$	$A \to XAX$		$X \to cX$	
d	$S \to BA$		$B \to YBY$		$Y \to dY$
e	$S \to AB$	$A \to XAX$		$X \to e$	
f	$S \to BA$		$B \to YBY$		$Y \to f$
#					

3.4 Constitution de la table, phase 2

La grammaire ne comportant aucune règle ε -productive, la phase 2 est inutile (elle n'ajouterait aucune nouvelle règle).

La grammaire est LL(1)

4 Exemple 3

$$E \to E + T \mid T$$
 NB : Les signes $T \to T * F \mid F$ $\{+, *, (,), a\}$ sont les $F \to (E) \mid a$ symboles terminaux.

Cette grammaire est récursive gauche, elle n'est donc pas LL(1). On peut trouver une grammaire équivalente non récursive gauche, selon l'algorithme vu en cours et examiner si celle-ci est LL(1)

$$E \to TE'$$

$$E' \to +TE' \mid \varepsilon$$

$$T \to FT'$$

$$T' \to *FT' \mid \varepsilon$$

$$F \to (E) \mid a$$

4.1 ε -productions

Variables : $\{E', T'\}$

arrables. $\{E, I, I\}$

Règles : $\{E' \to \varepsilon, T' \to \varepsilon\}$

4.2 Ensembles Premier

$$Premier((E)) = \{(\}$$

$$Premier(F) = \{(,a\}$$

$$Premier(T) = Premier(F) = \{(,a\}$$

$$Premier(T') = \{*\}$$

$$Premier(E) = Premier(T) = \{(,a\}$$

$$Premier(E') = \{+\}$$

4.3 Constitution de la table, phase 1

Pour toute règle $V \to w$ et toute lettre $x \in Premier(w)$, ajouter la règle $V \to w$ dans la case T[V, x]. Résultat :

	E	E'	Τ	Τ'	F
a	$E \to TE'$		$T \to FT'$		$F \rightarrow a$
($E \to TE'$		$T \to FT'$		$F \to (E)$
)					
+		$E \rightarrow +TE'$			
*			-	$T' \to *FT'$	
#					

4.4 Ensembles Suivant

Pour chaque variable, on fait intervenir toutes les règles où cette variable apparait en partie droite.

$$Suivant(E) = \{\#,\}$$

$$Suivant(E') = Suivant(E)$$

$$Suivant(T) = Premier(E') \cup Suivant(E) = \{+, \#,\}$$

$$Suivant(T') = Suivant(T)$$

$$Suivant(F) = Premier(T') \cup Suivant(T) = \{*, +, \#,\}$$

4.5 Constitution de la table, phase 2

	E	E'	T	T'	F
a	$E \to TE'$		$T \to FT'$		$F \rightarrow a$
($E \to TE'$		$T \to FT'$		$F \to (E)$
)		$E' \to \varepsilon$		$T' \to \varepsilon$	
+		$E \to +TE'$		$T' \to \varepsilon$	
*				$T' \to *FT'$	
#		$E' \to \varepsilon$		$T' \to \varepsilon$	

La grammaire transformée est LL(1).

5 Exemple 4

$$S \to XY$$

$$X \to aX \mid \varepsilon$$

$$Y \to ab$$

5.1 ε -productions

Variables : $\{X\}$ Règles : $\{X \to \varepsilon\}$

5.2 Ensembles Premier

$$Premier(X) = \{a\}$$

 $Premier(Y) = \{a\}$
 $Premier(S) = Premier(X) \cup Premier(Y) = \{a\}$

5.3 Constitution de la table, phase 1

Pour toute règle $V \to w$ et toute lettre $x \in Premier(w)$, ajouter la règle $V \to w$ dans la case T[V,x]. Résultat :

	S	X	Y
a	$S \to XY$	$X \to aX$	$Y \rightarrow ab$
b			
#			

5.4 Ensembles Suivant

Pour chaque variable, on fait intervenir toutes les règles où cette variable apparait en partie droite.

$$Suivant(S) = \{\#\}$$

 $Suivant(Y) = Suivant(S) = \{\#\}$
 $Suivant(X) = Premier(Y) = \{a\}$

5.5 Constitution de la table, phase 2

	S	X	Y
a	$S \to XY$	$X \to aX$	$Y \rightarrow ab$
		$X \to \varepsilon$	
b			
#			

La grammaire n'est pas LL(1).