	V_x	h [m]	N_{dof}	τ [s]	$ E_{h,S_n} $	$\ _1 = eoc_{S_n,1}$	$ E_{h,S_n} _2$	$eoc_{S_n,2}$				
ooks & Cor	30 60 .20	$9.43 \cdot 10^{-2}$ $4.71 \cdot 10^{-2}$ $2.36 \cdot 10^{-2}$ $1.18 \cdot 10^{-2}$ $5.89 \cdot 10^{-3}$	960 3720 14640 58080 231360	253.16 90.50 31.90 10.62 3.57	$8.75 \cdot 10$ $4.97 \cdot 10$ $2.76 \cdot 10$	$egin{array}{cccc} 0.80 & 0.82 & \ 0.30 & 0.85 & \ 0.30 & 0.85 & \ 0.30 & 0.85 & \ \end{array}$	$3.26 \cdot 10^{-2}$ $2.08 \cdot 10^{-2}$ $1.35 \cdot 10^{-2}$ $8.93 \cdot 10^{-3}$ $5.79 \cdot 10^{-3}$	0.65 0.62 0.60				
n Genuchte	30	$9.43 \cdot 10^{-2} 4.71 \cdot 10^{-2} 2.36 \cdot 10^{-2} 1.18 \cdot 10^{-2} 5.89 \cdot 10^{-3}$	960 3720 14640 58080 231360	317.00 80.00 19.96 5.02 1.26	$7.88 \cdot 10$ $4.31 \cdot 10$ $2.34 \cdot 10$	$egin{array}{cccc} 0.84 & 0.87 \ 0^{-3} & 0.88 \ 0^{-3} & 0.88 \end{array}$	$2.17 \cdot 10^{-2}$ $1.24 \cdot 10^{-2}$ $6.83 \cdot 10^{-3}$ $3.72 \cdot 10^{-3}$ $2.06 \cdot 10^{-3}$	0.81 0.86 0.88				
		Brooks & Corey						van Genuchten				
N_x		15	30	2	60	120	240	15	30	60	120	240
$h [m]$ N_{dof}		$9.43 \cdot 10^{-2}$ 960	$4.71 \cdot 1$ 3720		$36 \cdot 10^{-2}$ 14640	$1.18 \cdot 10^{-2}$ 58080	$5.89 \cdot 10^{-3} \\ 231360$	$9.43 \cdot 10^{-2}$ 960	$4.71 \cdot 10^{-2}$ 3720	$2.36 \cdot 10^{-2}$ 14640	$1.18 \cdot 10^{-2}$ 58080	$5.89 \cdot 10^{-3}$ 231360
$ E_{h,S} $	$\tau[\mathbf{s}]$ $S_n \parallel_1$	$253.16 \\ 1.52 \cdot 10^{-2}$	$8.75 \cdot 1$	0^{-3} 4.		$10.62 \\ 2.76 \cdot 10^{-3}$	$3.57 \\ 1.51 \cdot 10^{-3}$		$80.00 \\ 7.88 \cdot 10^{-3}$	$19.96 \\ 4.31 \cdot 10^{-3}$	$5.02 \\ 2.34 \cdot 10^{-3}$	$1.26 \\ 1.29 \cdot 10^{-3}$
$ E_{h,S} $	$ S_n _1$ $ S_n _2$ $ S_n _2$	$3.26\cdot10^{-2}$	0.80 0. 2.08 · 1 0.65 0.	0^{-2} 1.	$35 \cdot 10^{-2}$	$85 0.87 \\ 8.93 \cdot 10^{-3} \\ 60 0.63$	$5.79 \cdot 10^{-3}$	0.84 $2.17 \cdot 10^{-2}$ 0.81	$1.24\cdot10^{-2}$	6.83 · 10 ⁻³ 6.86 00885	$3.72 \cdot 10^{-3}$	$2.06 \cdot 10^{-3}$