Calculus

Looking at functions in detail

Yordan Darakchiev

Technical Trainer iordan93@gmail.com

sli.do #MathForDevs

Table of Contents

- Limits
- Derivatives
- Integrals
- Calculus in many dimensions
- Gradient descent

Limits Approaching places

Limit

- Natural definition
 - Given a function f(x), "nudge" the input around a given value a
 - As a result, the function value changes
 - Limit of f(x) at the point x = a: what f approaches as x approaches a
- Notation: $\lim_{x \to a} f(x) = L$
- Mathematical definition
 - Gives us a nice way to define "approaching a value"
 - For any positive δ and ε
 - $\quad \blacksquare \text{ If } 0<|x-a|<\delta$
 - Then $|f(x) L| < \varepsilon$
 - Also called "epsilon-delta" definition
 - What are these numbers? Arbitrary, they only need to be positive
 - It's very useful to make them really small

Limits in Python

- To find the limit of a function at a point, just apply the definition
 - Generate several values of x around a
 - Don't forget to include positive and negative "nudges"
 - Print the function values at those points

```
def get_limit(f, a):
  epsilon = np.array([
    10 ** p
    for p in np.arange(0, -11, -1, dtype = float)])
  x = np.append(a - epsilon, (a + epsilon)[::-1])
  y = f(x)
  return y
print(get_limit(lambda x: x ** 2, 3))
print(get_limit(lambda x: x ** 2 + 3 * x, 2))
print(get_limit(lambda x: np.sin(x), 0))
```

More Limits

- Some functions don't have a value at certain points
 - But they are defined "around" these points
 - The limit exists even though the function value doesn't

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1$$

- Some limits can be infinite: $\lim_{x\to\infty} x^2 = \infty$
- Some functions "jump"
 - The limits "from the left" and "from the right" are different
 - Therefore, the limit is not defined
 - We say the function is not continuous at that point
 - Example:
 - In this case, f(0) = 0 but the limit does not exist

$$f(x) = \begin{cases} -1, x < 0 \\ 0, x = 0 \\ 1, x > 0 \end{cases}$$
$$\lim_{x \to 0^{-}} f(x) = -1; \lim_{x \to 0^{+}} f(x) = 1$$

DerivativesSlope and velocity

Calculus Motivation

- Say you want to compute the area of a circle
 - It is πR^2 but why?
 - Remember how you can divide a shape into simpler shapes and sum their areas to get the total area
- r

- One way: cut it like cake: see <u>this video</u>
- Another way: concentric rings
- If you "cut" and "straighten" each ring, you'll get a trapezoid
 - If your ring is very, very thin; it will actually be close to a rectangle
 - Example:

- Set the difference to be very, very, veeeeeeery small: $r_3 r_2 \rightarrow 0$
- ... and you get calculus :)
- Even in this simple example, there are the notions about derivatives and integrals; even the fundamental theorem of calculus

Derivatives and Velocity

- We all know that $v = \frac{s}{t}$
 - But that's mostly useless
 - Travelling is not done at a uniform velocity, it's not a fixed number but a function of time: v = v(t)
- Instantaneous velocity: $v(t_0) = v(t)|_{t=t_0}$
- Computing instantaneous velocity from travelled distance
 - Say, $s(t) = t^2$; say we start at t = 0s and finish at t = 5s
 - Final distance: $s(5) = 5^2 = 25m$
 - Average speed: $\frac{25}{5} = 5 \frac{m}{s}$
 - But we cover different distances for the same time
 - From $0 \le t \le 1$: s(1) s(0) = 1 0 = 1m
 - From $3 \le t \le 4$: s(4) s(3) = 16 9 = 7m
 - From $4 \le t \le 5$: s(5) s(4) = 25 16 = 9m
 - And neither of these is even close to the average speed

Derivatives and Velocity (2)

- Let's calculate the instantaneous velocity
 - Fix time at t=3
 - But... how can we move if time is fixed?
- Let's apply our previous idea
 - Nudge time a tiny bit and see how the distance changes

•
$$t = 3.01$$
: $v \approx \frac{s(3.01) - s(3)}{3.01 - 3} = \frac{3.01^2 - 3^2}{0.01} = 6.01 \frac{m}{s}$

■
$$t = 3,00001$$
: $v \approx \frac{s(3,00001) - s(3)}{3,00001 - 3} = \frac{3,00001^2 - 3^2}{0,00001} = 6,00001 \frac{m}{s}$

• More generally, if we nudge time from $t=t_0$ to $t=t_0+\Delta t$, we'll get an approximation of the instantaneous velocity:

$$v \approx \frac{s(t + \Delta t) - s(t)}{t + \Delta t - t} = \frac{s(t + \Delta t) - s(t)}{\Delta t}$$

- This approximation will get increasingly more accurate as Δt becomes smaller
- Smaller $\Delta t \Rightarrow$ better approximation of v

Derivatives and Velocity (3)

- How does the velocity behave as $\Delta t \rightarrow 0$?
 - Note that we **cannot** set $\Delta t = 0$, this will freeze time
 - Math notation: if $\Delta t \rightarrow 0$, we write it as dt

$$v(t) = \lim_{dt \to 0} \frac{s(t+dt) - s(t)}{dt}$$

- We now have a nice definition of velocity
 - But what does it mean mathematically?
 - Velocity = rate of change of travelled distance over time
 - The rate of change of a function f(x) as its argument x changes, is called the **first derivative** of f(x) with respect to x
 - Math notation: f'(x) or $\frac{df}{dx}$
 - Note that $\frac{df}{dx}$ is only notation, it is not equal to $\frac{f}{x}$
 - Definition: $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$

Geometric Interpretation

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

- Look at the chord *PQ* and the triangle *PRQ*
- As $h \rightarrow 0$, Q approaches P
 - The chord becomes the same as the tangent line at point P
 - The angle $\alpha = \beta$: slope of the tangent line

$$\tan(\alpha) = \lim_{h \to 0} \frac{\Delta f}{h} = f'(x)$$

- Geometrically, the derivative at a given point is equal to the slope of the tangent line to the function at this point
- This is what calculus is all about
 - Zooming in really close until everything appears as a straight line

Calculating Derivatives

- Note that we have two definitions
 - Derivative of f(x) at a fixed point x (e.g. x = 5): this is a number
 - Derivative of f(x) at any point: this is another function
- Calculate the derivative of $3x^2 + 5x 8$ at x = 3
 - We're doing a numerical approximation
 - We can't work with infinitesimally small h but we can get away with something quite small

```
def calculate_derivative(f, a, h = 1e-7):
    return (f(a + h) - f(a)) / h

print(calculate_derivative(lambda x: 3 * x**2 + 5 * x - 8, 3))
# 23.00000026878024
```

- We can also do this analytically
 - A fancy term for "with pen and paper"

Calculating Derivatives Analytically

• Let's take a relatively simple function like $f(x) = x^2$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$
$$= \lim_{h \to 0} \frac{x^2 + 2hx + h^2 - x^2}{h} = \lim_{h \to 0} \frac{2hx + h^2}{h}$$

- We're looking for approximation and h is small, so let's ignore h^2
 - Ignoring higher-order terms is completely valid (and is done often)

$$\Rightarrow f'(x) = \lim_{h \to 0} \frac{2hx}{h} = 2x$$

- Note that the derivative does not depend on the tiny shift h
- We can do this for every function
 - We have precomputed <u>tables of derivatives</u>

Properties of Derivatives

- The derivative of a constant (f(x) = c) is 0
- Derivatives are linear
 - $\bullet (f \pm g)' = f' \pm g'$
 - $\bullet (\lambda f)' = \lambda f'$
- Product rule
 - (f.g)' = f'.g + f.g'
- Derivative of a function composition
 - Also called chain rule
 - f(g(x))' = f'(g(x)).g'(x)
 - Looks better in the other notation: $\frac{df}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$
- We can prove these using the geometric intuition or the definition
 - This is left as an exercise for the reader :)

Higher-Order Derivatives

- The second derivative of a function is the first derivative of its first derivative
 - Interpretation: "rate of change of the rate of change"
 - ... a.k.a. acceleration
 - Notation: $f''(x) = (f'(x))', \frac{d^2f}{dx^2} = \frac{d}{dx}(\frac{df}{dx})$
- This can be applied arbitrary many times
 - E.g. rate of change of acceleration: third derivative
 - a.k.a. "jerk"... don't ask me why
 - Third, fourth, etc. derivatives; n-th derivative notation: $f^{(n)}(x)$
 - E.g. $f^{(6)}(x)$

Function Extrema

- Even if we don't know the function, its derivatives give us useful information
- Consider the drawn function
 - The smallest value of f(x) is called a **global minimum**
 - Conversely, largest value: global maximum

- These are collectively called extrema (plural of extremum)
- Smallest / largest value of f(x) in a tiny range: local min / max
- More formally, we say f(x) has a maximum at, say, x = 5 if the function value f(5) is bigger than the function values immediately to the left and right
 - The complete definition involves limits
 - The points x of min / max (e.g. x = 5) are called **critical points**

Function Extrema (2)

- Notice how the tangent line behaves
 - At max / min, f' = 0
 - Around max / min, f' changes its sign

- If f'(x) < 0, the function decreases
- Therefore, if *f* behaves like this
 - Increasing; stop; decreasing ⇒ local maximum
 - Decreasing; stop; increasing ⇒ local minimum
- The second derivative gives us more information about whether the function is "concave up" or "concave down"
 - More specifically, its sign
 - These are sometimes called convex and concave functions

Integrals

Areas and accumulation

Area under a Function

- Look back to the motivating example
- How can we find the area *S* "under" a curve given by a function?
 - What is the shaded area (S < 0 if f < 0)?
- Approach: approximate and zoom in
- Divide the x-axis into equal intervals Δx
- Approximate the area with trapezoids

$$S = \sum_{i} S_{i}$$

• If the intervals in x are really small, the trapezoids will look like rectangles

$$S_i = f(x_i)\Delta x$$

■ Smaller $\Delta x \Rightarrow$ better approximation

Integral of a Function

- At the limit, $\Delta x \rightarrow 0$, so we write dx
- The sum is denoted differently: $\int_a^b f(x)dx = \lim_{\Delta x \to 0} \sum_{x=a}^b f(x_i) \Delta x$
 - This is called the **definite integral** of f(x)
 - **Note:** don't forget the *dx* after the function!
- Indefinite integral: the same, without the end points
 - Like derivatives, the definite integral is a number
 - The indefinite integral is a function of x
- Calculating integrals
 - Analytically very difficult (unlike derivatives)
 - Numerically apply the trapezoidal rule
 - Use a small number dx, like before

Fundamental Theorem of Calculus

Putting it all together

Antiderivatives

- The antiderivative F(x) of a function f(x) is such a function that F'(x) = f(x)
 - It's also called the primitive function of f(x)
 - Note that since the derivative of a constant is zero, there are many antiderivatives: (F(x) + C)' = f(x)
 - Therefore, we can know the antiderivative only up to an arbitrary additive constant
- If we do definite integrals, the + C does not apply we know the area exactly
- If we do indefinite integrals, we must always add the constant

Fundamental Theorem of Calculus

- The indefinite integral of a function is related to its antiderivative and can be reversed via differentiation
- The definite integral of a function can be computed using one of its infinitely many antiderivatives
- Simply, differentiation and integration are inverse functions
- Proof: Khan Academy
- Intuition
 - The sum of infinitesimal changes in a quantity over time adds up to the net change in quantity
 - Think about distance and velocity again

$$s = v(t)\Delta t \to s = \sum \frac{\Delta s}{\Delta t} \Delta t$$
$$\Delta t \to 0: \ s = \int \frac{ds}{dt} dt$$

Calculus in Many Dimensions

Same thing, a little different notation

Generalizations

- The notions of derivatives and integrals generalize to more dimensions
 - Derivatives: take the derivative w.r.t. one variable, treat the other variables as "parameters"
 - → partial derivatives

$$\frac{\partial f(x,y)}{\partial (x)} = g(y)$$

- Yet more confusing notation: ∂ is the same as d, it's just used for many dimensions
- Integrals: 1D intervals [a; b]
 can become curves or planes
 - Apply the same "zooming in" technique

$$\iint_{\mathbb{R}} f(x,y) dx dy$$
, R: 2D-region

Gradient Descent

- Optimization method
 - Used for finding local extrema
- Gradient: grad(f) or ∇f
 - A combination of vector and derivative: $grad(f(x,y)) = \begin{bmatrix} \partial x \\ \frac{\partial f}{\partial y} \end{bmatrix}$
 - A vector whose components are the partial derivatives w.r.t. every variable
 - Shows where the steepest rise in slope is
- If we follow the gradient, we'll arrive at a maximum
 - Conversely, negative gradient takes us to a minimum
- Iterative procedure
 - Continue to apply until close enough
- Not guaranteed to find global extrema
 - May get "stuck" in a local extremum

Example: Gradient Descent

- Find a local minimum of the function $f(x) = x^4 3x^3 + 2$
 - Start at x = 6

```
x \text{ old} = 0
x new = 6
step size = 0.01
precision = 0.00001
def df(x):
  # f'(x^4 - 3x^3 + 2) = 4x^3 - 9x^2
  y = 4 * x ** 3 - 9 * x ** 2
  return y
while abs(x new - x old) > precision:
 x old = x new
 x_new += -step_size * df(x_old)
print("The local minimum occurs at ", x new)
```

Summary

- Limits
- Derivatives
- Integrals
- Calculus in many dimensions
- Gradient descent

Questions?