Treelet Dimension Reduction of ICD-9-CM Diagnosis Codes

Dominic DiSanto, Masters Thesis

Graduate School of Public Health, Department of Biostatistics Defended on December 7th, 2020

Introduction & Background

Objectives

 Primary Objective: Transform a large number of ICD-9-CM diagnosis codes into a sparse set of features, using treelet dimension reduction, and apply this new feature space towards the prediction of clinical outcomes of in-hospital mortality, unplanned hospital re-admission, and hospital length of stay.

 Public Health Significance: The presented work leverages a large, publicly accessible database of critical care admissions and generate useful predictive models of clinical outcomes using only patient demographic and comorbidity diagnosis information.

Modern Healthcare Data

 Digitization of clinical data (such as in an electronic healthcare record) has led to large volumes of patient-level data

- Large, publicily available data sets are growing source of clinical reserach data, including both:
 - Diverse patient populations
 - Robust data elements for each respective patient

Clinical Prediction Models

 Present useful, and ideally generalizable, methods to measure patient risk of adverse, clinical outcomes

 Current prediction models of mortality, length of stay, and unplanned readmission have limited performance and utility

- Useful models not only demonstrate high prediction accuracy but ideally require "feasible" data
 - Inexpensive
 - Non-invasive
 - Standardized

Dimension Reduction

 Models that allow a number of data elements¹ to be represented by a smaller number of inputs

 Methods often use the correlation structure to represent "similar" covariates in a reduced number of inputs

 Commonly discussed in the context of high-dimensional biological data (e.g. genomic, metabilomic)

^{6/48}

Treelet

 A novel dimension reduction method proposed by Ann Lee, Boaz Nadler, and Larry Wasserman in 2008²

 Previously improved performance of regression and classification models compared to "raw" input data

 Has yet to be applied in high-dimensional patient-level comorbidity data or in fitting of clinical prediction models

Data

MIMIC-III

• A publicily available³ database of critical care admissions

 Prospective cohort study of Beth Israel Deaconess Medical Center critical care admissions from 2001 to 2012

· Contains diagnosis, lab, and demographic information from 60,000 admissions in over 45,000 patients

³: MIMIC-III, a freely accessible critical care database. Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35. Available from: http://www.nature.com/articles/sdata201635

ICD-9-CM Diagnosis Codes

· International Classification of Disease, 9th Version

· Coding system of disease and injury diagnosis used in hospital billing

Over 17,000 unique codes describing various patient diagnoses

. The presented analysis included only ICD-9-CM codes with $\geq 1\%$ prevalence in our full, analytic cohort

Outcomes

In-hospital mortality

- Unplanned hospital re-admission
 - Captured within year of hospital discharge
 - Analysis excluded patients who died post-discharge with no hospital re-admission

- Total hospital length of stay
 - Measured in days

Covariates

 Primary focus on ICD-9-CM diagnosis codes (following treelet dimension reduction)

- Models controlled for patient demographic variables
 - Age
 - Sex
 - Genotypical sex of patient (Male, Female)
 - Insurance
 - Categorized as Medicare, Medicaid, Private Insurance, or Self-Pay

Analytic Cohort

- Final analysis of mortality and hospital length of stay included 38,554 patients
 - Mortality rate of 14.49% (n=5,586)
 - Median length of stay was 7 days (range of 1-295 days)

- Hospital readmission analysis included 28,894
 - Excluding 9,660 patients who died within one-year of discharge without re-admission
 - 2,153 (7.45%) of patients experienced unplanned re-admission

Statistical Analyses

Overview

Applied treelet dimension reduction to ICD-9-CM diagnosis codes

- ' Used cross-validation of GLMs to identify values of treelet parameters K-dimensionality and $L \vert K$ -basis matrix
 - Logistic regression for in-hospital mortality, hospital-readmission
 - Negative binomial regression for hospital length of stay

• Final model fit measures were assessed on our hold-out test data-set (20% of each analytic cohort)

Treelet

- Using the covariance matrix of our input data, performs a series of rotations⁴, grouping together features of high covariance
- · For p input predictors, treelet constructs p-1 basis matrices (or $B_{L_1}, B_{L_2}, \ldots B_{L_{p-1}}$) of dimensions p imes k
- The final representation requires identifying a value for the the K parameter (for K retained inputs in the Lth basis matrix)
 - For a given K, there is an identifiable cut-off ($L^*|K$) and respective basis ($B_{L^*|K}$) using the normalized energy score proposed by Lee et al.

^{16/48}

Cross-Validation

- Models are fit to "training" sets and performance assessed on "test" sets
 - Logistic regression classification accuracy was assessed by Brier's Score $\frac{1}{N}\sum_{i=1}^N \left(\hat{p}_i-y_i\right)^2$
 - Negative binomial fit by root-mean-square error $\sqrt{rac{1}{N}\sum_{i=1}^{N}\left(\hat{y}_i-y_i
 ight)^2}$

- . The presented analyses used 5-fold cross-validation to select K and $L \mid K$ parameters for treelet models
 - Final model performance was assessed on a holdout test data set that was *not* used in cross-validation or model fitting

Overview (revisited)

Applied treelet dimension reduction to ICD-9-CM diagnosis codes

- · Used cross-validation of GLMs to identify K-dimensionality and $L \mid K$ basis matrix parameters for each outcome
 - Logistic regression for in-hospital mortality, hospital-readmission
 - Negative binomial regression for hospital length of stay

Final model fit measures were assessed on our hold-out test data-set (20% of each analytic cohort)

Results

In-Hospital Mortality

Mortality (Cross-Validation)

Mortality (Covariate Importance)

Mortality (ROC Curves)

Mortality (Predicted Probabilities)

Mortality (Summary)

- · Treelet reduction (and cross-validation) did *not* yield a sparse feature space
 - K=123 dimensions retained loadings from all 178 diagnosis codes

Model	Test AUC
Including All Treelet Features	0.858
Including 5 Most-Significant Treelet Features	0.830
Excluding Treelet Features	0.666

Unplanned Hospital Re-admission

Readmission (Cross-Validation)

Readmission (Covariate Importance)

Readmission (ROC Curves)

Readmission (Predicted Probabilities)

Readmission (Summary)

- Treelet improved performance but still presented only limited discrimination of hospital re-admission
 - While cross-validation reduced our 178 diagnosis codes covariates into K=30 variables, we again retained loadings from all codes

Model	Test AUC
Including All Treelet Features	0.661
Including 5 Most-Significant Treelet Features	0.658
Excluding Treelet Features	0.574

Hospital Length of Stay

Length of Stay (Cross-Validation)

Length of Stay (Covariate Importance)

Readmission (Performance by Included Features)

Readmission (Predicted Probabilities)

Readmission (Summary)

- · Treelet identified a reduced dimensionality and a sparse feature set
 - The retained K=46 variables from our treelet model including loadings from 107 of our 178 ICD-9-CM diagnosis codes

Model	Test RMSE
Including All Treelet Features	10.29
Including 5 Most-Significant Treelet Features	10.35
Excluding Treelet Features	11.09

Comparison to LASSO and PCA

Comparative Model Results

Model	Mortality	Re-Admission	Length of Stay
Treelet	0.858	0.661	10.29
Lasso	0.868	0.669	9.94
PCA	0.860	0.666	10.13
Charlson	0.632	0.502	13.48
Elixhauser	0.615	0.513	13.49

Implications & Conclusions

Summary

 ICD-9-CM diagnosis codes improve predictive performance of in-hospital mortality, but remain limited in their ability to predict hospital length of stay and re-admission

 Additional information (e.g. patient discharge disposition, social determinants of health, patient environment data) may be necessary to adequately predict post-discharge outcomes

 Treelet dimension reduction reduces the number of retained covariates in our models but does not outperform PCA, LASSO

Objectives (Revisited)

 Primary Objective: Transform a large number of ICD-9-CM diagnosis codes into a sparse set of features, using treelet dimension reduction, and apply this new feature space towards the prediction of clinical outcomes of in-hospital mortality, unplanned hospital re-admission, and hospital length of stay.

 Public Health Significance: The presented work leverages a large, publicly accessible database of critical care admissions and generate useful predictive models of clinical outcomes using only patient demographic and comorbidity diagnosis information.

References

- Awad, A., Bader–El–Den, M., & McNicholas, J. (2017). Patient length of stay and mortality prediction: A survey. Health Services Management Research, 30(2), 105–120. https://doi.org/10.1177/0951484817696212
- Lee, A. B., Nadler, B., & Wasserman, L. (2008). Treelets—An adaptive multi-scale basis for sparse unordered data. The Annals of Applied Statistics, 2(2), 435–471. https://doi.org/10.1214/07-AOAS137
- Harrell, F. E. (2001). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis (Updated September 4, 2020). Springer Science & Business Media.
- Hastie, T., Tibshirani, R., & Friedman, J. (2017). The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Second Edition). Springer.
- MIMIC-III, a freely accessible critical care database. Johnson AEW, Pollard TJ, Shen L, Lehman L, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, and Mark RG. Scientific Data (2016). DOI: 10.1038/sdata.2016.35. Available from: http://www.nature.com/articles/sdata201635

Supplemental Slides

Retained Diagnoses Codes

Of 178 diagnosis codes included in analyses, each method retained the following number of unique codes:

Outcome	Treelet (Optimal)	Treelet (Sparse/1- St. Dev.)	LASSO
Mortality	178	178	170
Hospital Re- admission	178	178	48
Length of Stay	178	107	178

Mortality (Model Results)

Predictor	β	95% Confidence Interval	P-Value
Intercept Term	-5.021	[-5.371, -4.671]	<0.001
Age	0.038	[0.035, 0.042]	<0.001
Sex (Male)	-0.118	[-0.198, -0.037]	0.004
Insurance			
Medicaid	0.178	[-0.140, 0.497]	0.273
Medicare	0.328	[0.029, 0.627]	0.032
Private Insurance	0.103	[-0.191, 0.397]	0.491
Self-Pay	1.174	[0.762, 1.586]	<0.001

Test Model Performance: Brier Score = 0.0917; AUC = 0.858

Readmission (Final Model Results)

Predictor	β	95% Confidence Interval	P-Value
Intercept Term	-3.137	[-3.490, 2.783]	<0.001
Age	0.002	[-0.002, 0.007]	0.455
Sex (Male)	0.039	[-0.142, 0.064]	0.281
Insurance			
Medicaid	0.484	[0.162, 0.806]	0.003
Medicare	0.310	[0.005, 0.625]	0.053
Private Insurance	0.033	[-0.336, 0.271]	0.833
Self-Pay	-0.608	[-1.278, 0.061]	0.075

Test Model Performance: Brier Score = 0.0681; AUC = 0.661

Length of Stay (Final Model Results)

Predictor	β	95% Confidence Interval	P-Value
Intercept Term	2.001	[1.942, 2.061]	<0.001
Age	-0.002	[-0.003, 0.002]	<0.001
Sex (Male)	0.053	[0.035, 0.071]	<0.001
Insurance			
Medicaid	0.114	[0.058, 0.171]	<0.001
Medicare	0.048	[-0.006, 0.101]	0.079
Private Insurance	0.039	[-0.12, 0.090]	0.133
Self-Pay	-0.318	[-0.407, -0.229]	<0.001

Test Model Performance: RMSE = 10.29