

DISTANCE LEARNING PROGRAMME

(Academic Session: 2015 - 2016)

LEADER TEST SERIES / JOINT PACKAGE COURSE TARGET : JEE (ADVANCED) 2016

Test Type: ALL INDIA OPEN TEST (MAJOR) Test Pattern: JEE-Advanced

TEST # 03 TEST DATE : 14 - 02 - 2016

	PAPER-1													
PART-1: PHYSICS ANSWER KEY														
SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10			
SECTION-I	A.	B,D	A,B	B,C,D	A,B,C	A,C	A,B,C,D	B,C	B,C	A,B,C	C,D			
SECTION-II	Q.1	Α	В	С	D	Q.2	Α	В	С	D				
SECTION-II	Q. I	S	R	S	T	Q.2	Т	R	S	Р				
SECTION-IV	Q.	1	2	3	4	5	6	7	8					
SECTION-IV	A.	6	1	4	6	2	6	2	6					
				9		LION								

SECTION-I

- 1. Ans. (B,D)
- 2. Ans. (A,B)
- 3. Ans. (B,C,D)

Sol.
$$\Delta V = \frac{Q}{2A \in_{0}} \times d$$

If left plate is earthed,

If right plate is earthed,

$$\Delta V = \frac{2Q}{A \in_{0}} \times d$$

$$\begin{vmatrix}
2Q & -2Q \\
+ & - \\
+ & - \\
+ & - \\
+ & - \\
+ & - \\
- & - \\
+ & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- & - \\
- &$$

4. Ans. (A,B,C)

Sol.
$$0 = -nmv + m(v_0 - v) \Rightarrow v = \frac{v_0}{n+1}$$

&
$$\mathbf{v}_{m} = \mathbf{v}_{0} - \mathbf{v} = \mathbf{v}_{0} - \frac{\mathbf{v}_{0}}{n+1} = \frac{n\mathbf{v}_{0}}{n+1}$$

$$\Delta KE = \frac{1}{2} \times nm \left(\frac{v_0}{n+1}\right)^2 + \frac{1}{2} m \left(\frac{nv_0}{n+1}\right)^2$$
$$= \frac{1}{2} mv_0^2 \frac{n}{n+1}$$

5. Ans. (A,C)

Sol.
$$E_1 = 0 & V_1 = 4V_0$$

 $E_2 = E; V_2 = 3V_0$
 $E_3 = \sqrt{2}E; V_3 = 2 V_0$
 $E_4 = E; V_4 = V_0$

- 6. Ans. (A,B, C, D)
- Sol. In all cases

$$\frac{\Delta A}{\Delta} \times 100 = 2 \frac{\Delta P}{P} \times 100$$

7. Ans. (B,C)

$$mg\left(R - R\cos\frac{\theta}{2}\right) = \frac{1}{2}mv_2^2 + \frac{1}{2} \times \frac{2}{5}mR^2 \times \frac{v_0^2}{R^2}$$

$$= \frac{7}{10} \text{mv}_{2}^{2}$$

$$v_{2} = \sqrt{\frac{10}{7} gR(1 - \cos \theta_{2})}$$

$$mg\cos\theta_2 = \frac{mv_2^2}{R} = \frac{10g}{7} (1 - \cos\theta_2)$$

$$17\cos\theta_2 = 10$$

$$\cos \theta_2 = \frac{10}{17}$$

$$\cos \theta_2 < \cos \theta_1 \Rightarrow \theta_2 > \theta_1$$

$$mg (R - R \cos \theta_1) = \frac{1}{2} mv_1^2$$
$$v_1 = \sqrt{2gR(1 - \cos \theta_1)}$$

$$mg\cos\theta_1 = \frac{mv_1^2}{R} = 2mg(1-\cos\theta_1)$$

$$\cos\theta_1 = \frac{2}{3}$$

$$\mathbf{v}_1 = \sqrt{2g\mathbf{R}\left(1 - \frac{2}{3}\right)} = \sqrt{\frac{2g\mathbf{R}}{3}}$$

$$v_2 = \sqrt{\frac{10gR}{7} \times \frac{7}{17}}$$

$$v_1 = \sqrt{\frac{2gR}{3}}$$

8. **Ans.** (**B,C**)

Sol. Here
$$N_A = N_0 e^{-\lambda t}$$

$$N_{B} = N_{0}(1 - e^{-\lambda t})$$

$$Now \frac{N_{B}}{N_{A}} = e^{\lambda t} - 1$$

If
$$t << T$$
; then

$$\frac{N_B}{N_A} = 1 + \lambda t - 1 \quad (e^x = 1 + x \text{ for small } x)$$

$$\frac{N_{_{B}}}{N_{_{A}}}=\lambda t$$

Ans. (**A,B,C**) 9.

Sol. 2.5A
$$(37 - T_1) = \frac{KA}{\ell} (T_1 - T_2) = 2.5A [T_2 - 7]$$

Solving we get

$$T_1 = 25$$
 and $T_2 = 19$

Also heat lost by body with fur coat

$$=\frac{dH}{dt} = \frac{5}{2} \times 1[37 - 25] = 30$$

Sol. It is clear that,
$$I_1 = I'_1 \& I_2 = I'_2$$

But $I_2 > I_3 \& I'_2 > I'_3$

$I_1 > I_2 \& I'_1 > I'_2$

SECTION-II

1. Ans. (A)
$$\rightarrow$$
(S); (B) \rightarrow (R); (C) \rightarrow (S); (D) \rightarrow (T)

Sol. (A)
$$\frac{\frac{4}{3}-1}{-1} = \frac{4}{3V} - \frac{1}{-2} \Rightarrow V = -\frac{8}{5}$$

We know,
$$m = \frac{\mu_1 v}{\mu_2 u} = \frac{3}{5}$$

Since
$$v = -ve \& |m| < 1$$

Hence image is virtual & diminished.

2. Ans. (A)
$$\rightarrow$$
(T); (B) \rightarrow (R); (C) \rightarrow (S); (D) \rightarrow (P)

Sol. (A)
$$U = 3gh_1 + 2gh_2$$

$$\frac{dU}{dt} = 3g\frac{dh_1}{dt} + 2g\frac{dh_2}{dt}$$

$$=-3gU+2gU=-gU=\frac{-g^2}{5}t$$

$$\frac{\mathrm{d}^2\mathrm{U}}{\mathrm{d}t^2} = \frac{-\mathrm{g}^2}{5}$$

(B)
$$U = \frac{1}{2}Li^2 = \frac{1}{2}Li_0^2 e^{-\frac{2R}{L}}$$

$$\frac{dU}{dt} = \frac{1}{2}Li_0^2 \times e^{-\frac{2R}{L}} \times \frac{-2R}{L}$$

$$\frac{d^2 U}{dt^2} = \frac{1}{2} L i_0^2 \times \frac{4R^2}{L^2} e^{-\frac{2R}{L}}$$

(C)
$$U = mgy$$

$$\frac{dU}{dt} = mg\frac{dy}{dt} = mga_y = 0$$

$$\frac{d^2U}{dt^2} = mg a_y$$

(D)
$$U = \frac{1}{2}kx^2 = \frac{1}{2}kx_0^2\cos^2\omega t$$

$$\frac{dU}{dt} = \frac{1}{2}kx_0^2 \times 2\sin\omega t\cos\omega t$$

$$= -\frac{1}{2}kx_0^2\omega\sin 2\omega t$$

at
$$t = 0$$
 $\frac{du}{dt} = 0$

$$\frac{d^2U}{dt^2} = \frac{1}{2}kx_0^2 \times 2\omega^2 \cos 2\omega t$$

at
$$t = 0$$
 $\frac{d^2u}{dt^2} = kx_0^2\omega^2$

$$\Rightarrow \frac{d^2u}{dt^2} > 0$$

SECTION-IV

1. Ans. 6

Sol.
$$x = \frac{1}{2} \times 10 \times (0.2)^2 = 0.2 \text{m}$$

$$\therefore f = \frac{D^2 - x^2}{4D} = 24 \text{cm}$$

$$\therefore \frac{f}{4} = 6 \text{cm}$$

2. Ans. 1

Sol.
$$\text{mv} \frac{d\theta}{dx} = \mu q v B$$

 $\text{m} \int dv = \mu q B \int dx$
 $\frac{0.2 \times 1.5 \times 10^{-15}}{0.3 \times 50 \times 10^{-6} \times 0.2} = x$

3. Ans. 4

Sol.
$$\pi R^2 \times \frac{\sigma^2}{2 \in_0} = 8 \times 10^8 \times 2\pi RT$$

$$\frac{R}{4 \in_0 t} \times \left(\frac{Q}{4\pi R^2}\right)^2 = 8 \times 10^8$$

$$Q = \sqrt{8 \times 10^8 \times 64\pi^2 R^3 \omega t}$$

$$= \sqrt{\pi} \times \sqrt{\frac{8 \times 10^3 \times 16 \times \frac{1}{8}}{9 \times 10^9}} \times 0.09 \times 10^{-3}$$

$$= 4\sqrt{\pi} \times 10^{-3}$$

4. Ans. 6

Sol.
$$5 = \frac{320}{3} \left[\frac{330 + v_0}{330 - 10} \right] - \frac{320}{3} \Rightarrow v_0 = 5 \text{ m/s}$$

$$\therefore t = \frac{90}{15} = 6 \text{ sec}$$

5. Ans. 2

Sol.
$$e = B\ell v = \frac{8}{10} \times 3 \times 5 = 12 \text{ Volt}$$

$$\therefore q = CE (1 - e^{-t/\tau})$$

$$\therefore 24 = 6 \times 12 (1 - e^{-t/\tau}) \Rightarrow e^{-t/\tau} = \frac{2}{3}$$

$$\therefore i = \frac{E}{R} e^{-t/\tau} = \frac{12}{4} \times \frac{2}{3} = 2$$

6. Ans. 6

Sol.
$$T_{max} - mg = \frac{mu^2}{\ell}$$

$$T_{min} + mg = \frac{mu^2}{\ell} = \frac{m}{\ell} (u^2 - 4g\ell)$$

$$T_{max} = mg + \frac{mu^2}{\ell}$$

$$T_{\min} = \frac{mu^2}{\ell} - 5mg$$

 \therefore difference = 6 mg

7. Ans. 2

Sol.
$$I_0 W_0 = IW$$

 $I_0 \times W_0 \times Q_0 = IWQ$

$$\sqrt{\frac{m\ell^2}{3}}\sqrt{\frac{mg\frac{\ell}{2}}{\frac{m\ell^2}{3}}} \times \sqrt{\frac{40}{3}}$$

$$= \sqrt{\left(mg\frac{\ell}{2} + Mg\ell\right) \times \left(\frac{m\ell^2}{3} + M\ell^2\right)} \times \theta_0$$

$$\Rightarrow \theta_0 = \frac{\sqrt{\frac{40}{3}} \times \sqrt{1.5 \times 10 \times \frac{1}{2} \times \frac{1.5 \times 1}{3}}}{\sqrt{\left(1.5 \times 10 \times \frac{1}{2} + 0.5 \times 10 \times 1\right) \left(\frac{1.5 \times 1^2}{3} + 0.5 \times 1^2\right)}}$$

$$=\frac{\sqrt{\frac{40}{3} \times \frac{15}{4}}}{\sqrt{\left(\frac{15}{2} + 5\right)(1)}} = \sqrt{\frac{50 \times 2}{25}} = 2$$

8. Ans. 6

In second case

$$V_{C} = \frac{Q_{total}}{C_{total}}$$

$$V_{C} = \frac{24CV}{4C} = 6Volt$$

PART-2: CHEMISTRY ANSWER KEY

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	Α.	A,B,C	В	A,D	A,B,C,D	A,B,C,D	A,C,D	A,B,C	A,C	A,D	A,B
SECTION-II	Q.1	Α	В	С	D	Q.2	Α	В	С	D	
		R,T	S,T	P,Q,T	P,T		P,R,T	P,R	P,Q,R,S,T	P,Q,R,S	
SECTION-IV	Q.	1	2	3	4	5	6	7	8		
	Α.	2	4	4	9	1	2	6	5		

SOLUTION

SECTION - I

- 1. Ans. (A,B,C)
 - (A) For solution Z_2 at P_1 pressure

$$X_A = 0.25$$
 $X_B = 0.75$
 $Y_A = 0.5$ $Y_B = 0.5$

(B) For solution Z_2 at P_3 pressure \rightarrow solution will not vapourise so

$$X_A = 0.4$$
; $X_B = 0.6$

(C) For sulution Z_1 at P_2 pressure \rightarrow solution will not vapourise so

$$X_A = 0.2$$
; $X_B = 0.8$

2. Ans. (B)

For a reaction to occur $\Delta G^{o} < 0$

 $2MnO + 2C \rightarrow 2Mn + 2CO$; $\Delta G = 50 \text{ kJ/mol}$ (not feasible)

$$2/3$$
 Ca₂O₃ + 2C \rightarrow 4/3 Cr + 2CO ;
 $\Delta G = -50$ kJ/mol (feasible)

- $3. \quad Ans.(A,D)$
 - (A) Fact
 - (B) Probability of finding an electron is nearly 90% in an orbital
 - (C) No of angular nodes are l
 - (D) For $1s |\Psi|^2$ is maximum at nucleus
- 4. Ans. (A, B, C, D)
- 5. Ans. (A, B, C, D)
- 6. Ans. (A, C, D)
- 7. Ans. (A,B,C)
- 8. Ans. (A,C)
- 9. Ans. (A,D)
- 10. Ans. (A, B)

SECTION - II

1. Ans (A) \rightarrow (R,T); (B) \rightarrow (S,T); (C) \rightarrow (P, Q, T); (D) \rightarrow (P, T)

(A)
$$10^{-6} = \frac{x^2}{1-x} \Rightarrow x = 10^{-3}$$
; pOH = 3; pH = 11

(B)
$$10^{-7} = \frac{x^2}{0.1 - x} \Rightarrow x = 10^{-4}$$
; pOH = 4, pH = 10

(C) BOH + HCl
$$\rightarrow$$
 BCl + H₂O
 20×0.5 $2 \times V$ 20×0.5
[BCl] = $\frac{20 \times 0.5}{20 + 5} = 0.4$

$$\frac{x^2}{0.4 - x} = 4 \times 10^{-5} \Rightarrow x = 4 \times 10^{-3}$$
$$\Rightarrow pH = 2.4$$

(D)
$$\frac{(10^{-3} + x)(x)}{0.1 - x} = \frac{10^{-14}}{5 \times 10^{-10}} \Rightarrow x = 10^{-3}$$

 $[H^+] = 10^{-3} + 10^{-3} = 2 \times 10^{-3} \Rightarrow pH = 2.7$

2. Ans. (A)
$$\rightarrow$$
 (P,R,T); (B) \rightarrow (P,R); (C) \rightarrow (P,Q,R,S,T); (D) \rightarrow (P,Q,R,S)

SECTION-IV

1. Ans. 2

$$\Lambda_{\rm m} = \frac{GJ^2}{n} = \frac{K.V}{n}$$

$$\frac{1}{100} \times \frac{400}{2} = 2Scm^2 \text{mol}^{-1}$$

- 2. Ans. 4
 - (i) It is enthalpy of hydration
 - (ii) For atomisation coefficient of NH₃ should be one
 - (iii) Products should be in gaseous ionic form

(iv)
$$\Delta H^{\circ}_{r} = 3/2 \Delta_{p-p} H^{\circ}$$

- 3. Ans. 4
- 4. Ans. 9
- 5. Ans. 1
- 6. Ans. 2
- 7. Ans. 6
- 8. Ans. 5

PART-3: MATHEMATICS

ANSWER KEY

SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	A.	A,B	A,C	A,B,D	A,C	A,B,C	A,B	A,C	A,B,C,D	A,B	A,C,D
SECTION-II	Q.1	Α	В	С	D	Q.2	Α	В	С	D	
SECTION-II	Q. I	P,S	Р	P,R	T	Q.Z	P,Q	Р	R	S,T	
SECTION-IV	Q.	1	2	3	4	5	6	7	8		
	A.	9	6	4	4	6	3	3	4	'	

SOLUTION

SECTION-I

1. Ans. (A,B)

$$I_{n} = \int_{0}^{\pi/2} x \left(\sin x + \cos x \right)^{n} dx = 2^{n/2} \int_{0}^{\pi/2} x \cos^{n} \left(x - \frac{\pi}{4} \right) dx$$

Put
$$x - \frac{\pi}{4} = t$$

$$\Rightarrow I_n = 2^{n/2} \int_{-\pi/4}^{\pi/4} \left(\frac{\pi}{4} + t \right) \cos^n t dt$$

$$\Rightarrow I_n = \pi 2^{\frac{n}{2} - 1} \int_0^{\pi/4} \left(\cos t\right)^n dt$$

$$\Rightarrow I_{n} = \pi 2^{\frac{n}{2}-1} \left\{ \left(\left(\cos t \right)^{n-1} \sin t \right)_{0}^{\pi/4} + \left(n-1 \right) \int\limits_{0}^{\pi/4} \left(\cos t \right)^{n-2} \left(1 - \cos^{2} t \right) dt \right\}$$

$$\Rightarrow \frac{nI_n - \pi/2}{I_{n-2}} = 2(n-1) \{After simplification\}$$

2. Ans. (A,C)

Let
$$g(x) = ax^2 + bx + c$$

$$\therefore [f(x)] = [g(x)] \forall x \in \mathbb{R}$$

$$\therefore -1 < f(x) - g(x) < 1 \ \forall \ x \in \mathbb{R}$$

$$\therefore -1 < (1-a)x^2 - x(1+b) + (1-c) < 1 \ \forall \ x \in R$$

$$\Rightarrow$$
 a = 1, b = -1

$$\Rightarrow$$
 [x²-x+1] = [x²-x+c] \Rightarrow [1] = [c]

Let
$$x^2 - x + 1 = I + f$$

c = 1 + f'

$$[I + f] = [I - 1 + f + c]$$

$$0 = [f + c] - 1$$

$$1 = [c + f]$$

$$1 = [1 + f' + f]$$

$$[f' + f] = 0 \ \forall \ f \in (0,1)$$

$$f' = 0$$

$$\Rightarrow$$
 c = 1

$$\Rightarrow f(x) = g(x) \ \forall \ x \in R$$

3. Ans. (A,B,D)

$$f(x) = (x-1)|x-3|-4x+12$$

$$f(x) = \begin{cases} 9 - x^2 & x < 3 \\ x^2 - 8x + 15 & x \ge 3 \end{cases}$$

$$f'(x) = \begin{cases} -2x & x < 3 \\ 2x - 8, & x > 3 \end{cases}$$

$$f'(3^{-}) = -6$$

$$f'(3^+) = -2$$

$$f'(0) = 0$$

$$f'(4) = 0$$

4. Ans. (A,C)

Obviously 'P' lies on plane y = z

To see the curve rotate y = z about x-axis to become z = 0. New co-ordinate of point corresponding to P in new plane is

$$\left(4\cos t, 4\sqrt{2}\sin t, 0\right)$$

$$\Rightarrow$$
 Locus is $\frac{x^2}{16} + \frac{y^2}{32} = 1; z = 0$

5. Ans. (A,B,C)

$$P(2^2.5^2) = 2^2.5^2 \left(1 - \frac{1}{2}\right) \left(1 - \frac{1}{5}\right) = 2.5.4$$

 \therefore no. of numbers multiple of $2 = 2.5^2$

no. of numbers multiple of $5 = 2^2.5$.

no. of numbers multiple of both = 2.5

$$\therefore$$
 P(2².5²) = 2².5² - 2.5² - 2².5+ 2.5

$$=2^25^2\left(1-\frac{1}{2}\right)\left(1-\frac{1}{5}\right)$$

similarly check other options.

6. Ans. (A,B)

E: Both die shows face 6

A₁: Both are biased

A₂: Both are fair

 A_3 : One is biased & other is fair.

$$P\left(\frac{A_1}{E}\right) = \frac{\frac{1}{6} \times \frac{1}{8} \times \frac{1}{8}}{\frac{1}{6} \times \frac{1}{8} \cdot \frac{1}{8} + \frac{1}{6} \times \frac{1}{6} \times \frac{1}{6} + \frac{4}{6} \cdot \frac{1}{6} \cdot \frac{1}{8}} = \frac{9}{73}$$

$$P\left(\frac{A_2}{E}\right) = \frac{16}{73}$$

7. Ans. (A,C)

$$P(X) = \frac{2}{3} \times \frac{3}{5} + \frac{1}{3} \times \left\{ \frac{1}{2} \times \frac{1}{5} + \frac{1}{2} \times \frac{1}{5} \right\}$$

$$=\frac{6}{15}+\frac{1}{15}=\frac{7}{15}$$

$$P\left(\frac{Y}{X}\right) = \frac{6/15}{\frac{6}{15} + \frac{1}{15}} = \frac{6}{7}$$

8. Ans. (A,B,C,D)

No. of roots common to

$$z^{n_1} = 1 \& z^{n_2} = 1 \text{ is HCF}(n_1, n_2)$$

9. Ans. (A,B)

Do yourself

10. Ans. (A,C,D)

$$I_1 = \int_{100}^{100} \left[t^3 \right] dt$$

$$2I_1 = \int_{-1}^{100} (-1) dt \{ \text{king \& odd} \}$$

$$I_1 = -100$$

SECTION - II

1. Ans. (A)
$$\rightarrow$$
(P,S); (B) \rightarrow (P); (C) \rightarrow (P,R); (D) \rightarrow (T)

In the figure; line MO is parallel to axis of parabola.

$$\Rightarrow$$
 Slope of axis $=\frac{1}{2}$. L_1 & L_2 shown in figure

are parallel to axis of parabola and image of L_1 & L_2 in corresponding tangents pass through focus.

$$L_1 \equiv x - 2y + 1 = 0$$

$$L_1' \equiv -2x + y + 1 = 0$$

$$L_2 \equiv x - 2y - 1 = 0$$

&
$$L_2' \equiv x + 2y - 1 = 0$$

$$S \equiv \left(\frac{3}{5}, \frac{1}{5}\right)$$

Now image of S lies on directrix

$$\Rightarrow$$
 S' = $\left(\frac{1}{5}, \frac{3}{5}\right)$

 \Rightarrow Equation of directrix 2x + y = 1 now check options.

2. Ans. (A)
$$\rightarrow$$
(P,Q); (B) \rightarrow (P); (C) \rightarrow (R); (D) \rightarrow (S,T)

Equation of AP
$$\Rightarrow y = -\frac{a}{b}\cot\frac{\theta}{2}(x-a)$$

Equation of A'P
$$\Rightarrow y = \frac{a}{b} \tan \frac{\theta}{2} (x + a)$$

$$\Rightarrow y^{2} = -\frac{a^{2}}{b^{2}} (x^{2} - a^{2}) \Rightarrow -\frac{y^{2}}{a^{2}} = \frac{x^{2}}{b^{2}} - \frac{a^{4}}{b^{2}}$$
$$\frac{x^{2}}{b^{2}} + \frac{y^{2}}{a^{2}} = \frac{a^{4}}{b^{2}}$$

$$x^{2} + \frac{y^{2}}{2} = 4$$
$$\frac{x^{2}}{4} + \frac{y^{2}}{8} = 1$$

Now check options.

SECTION - IV

1. Ans. 9

Area of trap OAQP = $\frac{1}{2} (40 - 18 \ln 3) \ln 3$

Req. area =
$$\frac{1}{2} (40 - 18 \ln 3) - \int_{0}^{\ln 3} (e^{2x} - 18x + 15) dx$$

= $5 \ln 3 - 4$

2. Ans. 6

$$f(\mathbf{x}) = \mathbf{x}^4 + \mathbf{p}\mathbf{x}^2 + \mathbf{q}\mathbf{x} + \mathbf{r} \begin{cases} \alpha \\ \alpha \\ \alpha \\ \beta \end{cases}$$

$$f'(x) = 4x^3 + 2px + q \begin{cases} \alpha \\ \alpha \\ \gamma \end{cases}$$

$$f''(x) = 12x^2 + 2p \begin{cases} \alpha \\ \delta \end{cases} \Rightarrow f''(x) = 0$$

$$\Rightarrow \alpha^2 = -\frac{p}{6}$$

Now

$$(1) \alpha^4 + p\alpha^2 + q\alpha + r = 0$$

$$(2) 4\alpha^3 + 2p\alpha + q = 0$$

(1) - (2)
$$\times \alpha$$

$$\Rightarrow$$
 $-3\alpha^4 - p\alpha^2 + r = 0$

$$-\frac{3p^2}{36} + \frac{p^2}{6} + r = 0$$

$$\Rightarrow$$
 p² + 12r = 0

3. Ans. 4

$$2x = u \Rightarrow I = \frac{1}{2} \int_{-8}^{16} f(u) du \Rightarrow I = \frac{8}{2} \int_{0}^{3} f(u) du = 4$$

4. Ans. 4

f(x) = 0 has 3 distinct real roots

 \Rightarrow f'(x) = 0 has at least 2 distinct real roots.

 \Rightarrow (f(x).f'(x))' = 0 has at least 4 distinct real roots.

5. Ans. 6

$$\begin{split} N &= \sum_{k=1}^{22} \frac{z^{8k} - 1}{z^{24k} - 1} = \sum_{k=1}^{22} \frac{z^{8k} - 1}{z^k - 1} = \sum_{k=1}^{22} \left(1 + z^k + z^{2k} + \dots + z^{7k} \right) \\ &= 22 + (0 - 1) \times 7 = 15 \end{split}$$

6. Ans. 3

$$(\hat{i} - \hat{j} + \hat{k}).(a\hat{i} + b\hat{j} + c\hat{k}) = 3$$

$$\cos\theta = \frac{\sqrt{3}}{2}$$

 $\sqrt{3}.2\cos\theta = 3 \ \{\because a^2 + b^2 + c^2 = 4\}$ locus of 'P' is circle with radius $A = \pi$ [A] = 3

7. Ans. 3

$$|\vec{a} - \vec{b}| = |-\vec{c}|$$

$$\Rightarrow \vec{a}^2 + \vec{b}^2 - \vec{c}^2 - 2\vec{a}.\vec{b} = 0$$

$$\vec{b}^2 + \vec{c}^2 - \vec{a}^2 - 2\vec{b}.\vec{c} = 0$$

$$\vec{c}^2 + \vec{a}^2 - \vec{b}^2 - 2\vec{a}.\vec{c} = 0$$

$$\vec{a}^2 + \vec{b}^2 + \vec{c}^2 - 2\vec{a}.\vec{b} - 2\vec{b}.\vec{c} - 2\vec{c}.\vec{a} = 0 \dots (1)$$

Also
$$\left| \vec{a} + \vec{b} - \vec{c} \right|^2 \ge 0$$

$$\vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2\vec{a}.\vec{b} - 2\vec{a}.\vec{c} - 2\vec{b}.\vec{c} \ge 0$$
(2)

(1) & (2) similarly

$$\vec{a}.\vec{b} > 0$$

$$\vec{b}.\vec{c} > 0$$

$$\vec{c} \cdot \vec{a} > 0$$

equality cannot hold as points becomes collinear.

8. Ans. 4

Let
$$|\vec{a}| = |\vec{b}| = |\vec{c}| = |\vec{d}| = x$$

Consider

$$\left(\vec{a}\times\vec{c}\right).\left(\vec{b}\times\vec{d}\right) = \left(\vec{c}.\vec{d}\right)\left(\vec{a}.\vec{b}\right) - \left(\vec{c}.\vec{b}\right)\left(\vec{a}.\vec{d}\right) = 0$$

$$\left\{ \because \vec{a}.\vec{b} = \vec{c}.\vec{d} = \vec{b}.\vec{c} = \vec{a}.\vec{d} = \frac{x^2}{2} \right\}$$

DISTANCE LEARNING PROGRAMME

(Academic Session: 2015 - 2016)

LEADER TEST SERIES / JOINT PACKAGE COURSE TARGET : JEE (ADVANCED) 2016

Test Type: ALL INDIA OPEN TEST (MAJOR) Test Pattern: JEE-Advanced

TEST # 03 TEST DATE : 14 - 02 - 2016

	PAPER-2														
PART-1: PHYSICS ANSWER KE															
	Q.	1	2	3	4	5	6	7	8	9	10				
SECTION-I	Α.	A,D	A,D	B,C	A,B,C	B,C	A,D	A,C	С	A,D	C,D				
3LOTION-I	Q.	11	12												
	A.	Α	A,D												
SECTION-IV	Q.	1	2	3	4	5	6	7	8						
SECTION-IV	A.	6	8	5	4	2	7	4	2						

SOLUTION

SECTION-I

Sol.
$$nR = \frac{1}{25} \times 10^2 = 4 \implies \frac{m}{32} = \frac{4}{25} \times 3$$

 $m = \frac{96 \times 4}{25} = 15.36 \text{gm}$
 $V = \frac{nRT}{p}$
 V_{max} at 3
 $nR = \frac{16 \times 40}{400}$
 $V_1 = \frac{1}{25} \times \frac{300}{1}$
 $V_2 = \frac{1}{25} \times \frac{400}{2}$

Sol.
$$2h = h + \frac{\omega^2 R^2}{2g}$$

$$\sqrt{\frac{2gh}{R^2}} = \omega$$

$$dK = \frac{1}{2} \times dm\omega^2 x^2$$

$$= \frac{1}{2} \rho \times 2\pi x dx \left(h + \omega^2 \frac{x^2}{2g} \right) \times \omega^2 x^2$$

$$K = \pi \rho \omega^2 \left[\frac{R^4}{2} h + \frac{\omega^2}{2g} \times \frac{R^6}{6} \right]$$

$$=\pi\rho\omega^{2}\left[\frac{R^{4}}{2}h+\frac{2gh\times R^{4}}{12g}\right]=\frac{5\pi\rho\omega^{2}R^{4}h}{6}$$

Sol.
$$\omega_1 = \sqrt{\frac{100}{1}} = 10 \text{ rad/s}$$

$$\omega_2 = \sqrt{\frac{400}{1}} = 20 \text{ rad/s}$$

$$30 \text{ t} = \pi$$

$$\text{t} = \frac{\pi}{30} \text{ sec}$$

4. Ans. (A,B,C)

Sol. (A)
$$t = 0$$

 $i_L = 0$
 $V = \frac{V}{2}$

(B)
$$t = \infty$$

 $i = \frac{2V}{3R}$ $i_2 = \frac{V}{3R} \implies V_A = \frac{V}{3}$

(C) after opening

$$i_A = \frac{V}{3R}$$

$$V_L = V_A + V_R = 2R \times \frac{V}{3R} = \frac{2V}{3}$$

$$V_A = \frac{V}{3}$$

Corporate Office : **ALLEN** CAREER INSTITUTE, "SANKALP", CP-6, Indra Vihar, Kota (Rajasthan)-324005

+91-744-5156100 dlp@allen.ac.in www.allen.ac.in

5. Ans. (B,C)

Sol.
$$P_{max}$$
 at resonance $\Rightarrow \omega = \frac{1}{\sqrt{LC}}$
 $f = \frac{1}{2\pi} \sqrt{10 \times 40 \times 10^{-6}} = \frac{25}{\pi} Hz$
 $Q_{factor} = \frac{\omega}{2\Delta\omega} = \frac{\omega L}{R} \Rightarrow \Delta\omega = \frac{R}{2L} = \frac{100}{20} = 5$
 $\Delta f = \frac{45}{2\pi}$

Sol.
$$\tau_{mg} = 0.5g \times 1\hat{i} = 5\hat{i}$$

 $= \tau_{B} = (-0.5 \times 4\hat{i}) \times \vec{B}$
Option A $\tau_{B} = -5\hat{i} + 6\hat{k}$ those \vec{B} for which $\vec{\tau}$ has $-5\hat{i}$ are useful.

7. Ans. (A,C)

Sol. (B) unstable equilibrium

(C)
$$F = \frac{GMm}{R^2} \times \cos \theta = \frac{GMmx}{R^3} \text{ so SHM.}$$

(D) F proportional to x^3

8. Ans. (C)

Sol. Pipe fixed
$$S_1 \int pdt = m_1 v$$

$$S_2 \int pdt = m_2 v_2$$

$$v_2 = \frac{m_1 v}{S_1} \times \frac{S_2}{m_2}$$

Pipe free same effect

9. Ans. (A, D)

for current to flow initially

$$80 > 100 - x$$

light x > 20V

$$1 + \frac{y - 0}{200} + \frac{y - 100}{50} = 0$$

$$\frac{y}{200} + \frac{y}{50} = 1$$

$$\Rightarrow \frac{y + 4y}{200} = 1$$

$$\Rightarrow y = 40$$

$$40 > 100 - x$$

10. Ans. (C,D)

Sol.
$$\lambda < \frac{\lambda}{h} = \frac{hC}{2.5} = \frac{1240}{5} \times 2 = 496 \text{ nm}$$

11. Ans. (A)

$$\omega^2 = \frac{GM_s}{R^3}$$

$$\frac{GM_s}{(R-x_1)^2} - \frac{GM_e}{x_1^2} = \omega^2 (R-x_1)$$

$$\Rightarrow \frac{M_s}{(R-x_1)^2} - \frac{M_e}{x_1^2} = \frac{M_s}{R^3} (R-x_1)$$

$$\therefore x_1^3 = \frac{M_e R^3}{3M_e}$$

$$\frac{GM_s}{(R+x_2)^2} + \frac{GM_e}{x_2^2} = \frac{GM_s}{R^3} (R+x_2)$$

$$\frac{M_s}{R^2} \left[\frac{3x_2}{R} \right] = \frac{M_e}{x_2^2}$$

12. Ans. (A, D)

SECTION-IV

1. Ans. 6

Sol.
$$^{14}_{7} \text{N} \rightarrow_{5}^{10} \text{B} +_{2}^{4} \text{He}$$

$$Q = (0.00307 - 0.01294 - 0.00260) \ 931$$

$$= 0.01247 \times 931$$

2. Ans. 8

Sol.

$$T_2 \sin 37 = T_1 \sin 53$$

 $3T_2 = 4T_1$

$$\ell_2 = x \cos 53^\circ = \frac{3x}{5}$$

$$\ell_1 = x \cos 37^\circ = \frac{4x}{5}$$

$$t_2 = \frac{\frac{3x}{5}}{\sqrt{\frac{T_2}{\mu}}} = 3\sqrt{3} \times 10^{-3}$$

$$\Rightarrow \frac{3x}{5} \sqrt{\frac{3\mu}{4T_1}} = \sqrt{3} \times 10^{-3}$$

$$t_1 = \frac{\frac{4x}{5}}{\sqrt{\frac{T_1}{x}}} = \frac{4}{5}x\sqrt{\frac{\mu}{T_1}} = \frac{4}{5} \times 80 \times 10^{-3}$$
$$= 8 \times 10^{-3} \text{ sec}$$

3. Ans. 5

$$\frac{2\sqrt{2}\times\sqrt{2}\times1.05}{\sqrt{3}-1} = \frac{2x}{\sqrt{3}}$$

$$\frac{2.1\sqrt{3}}{\sqrt{3}-1} = x$$

$$x = \frac{2.1}{1 - 0.577} = \frac{2.10}{0.42}$$

4. Ans. 4

Sol.
$$\frac{kQ}{r^2} - \frac{kQ^2}{4r^2} = \frac{mv^2}{r}$$

$$mv^2 = \frac{3kQ^2}{4r}$$

$$\Rightarrow E = 2 \times \frac{1}{2}mv^2 + \frac{kQ^2}{2r} - \frac{2kQ^2}{r}$$

$$= \frac{3kQ^2}{4r} + \frac{kQ^2}{2r} - \frac{2kQ^2}{r} = -\frac{3kQ^2}{4r}$$

5. Ans. 2

6. Ans. 7

Sol.
$$\frac{1}{5} = 1 - \frac{Q_L}{Q_g} \Rightarrow Q_L = \frac{4}{5}Q_g$$

 $\frac{1}{10} = 1 - \frac{Q'_L}{Q_L}$
 $Q'_L = \frac{9}{10}Q_L = \frac{36}{50}Q_g$
 $\eta = 1 - \frac{Q'_L}{Q_g} = 1 - \frac{36}{50} = \frac{14}{15}$
 $\Rightarrow 28\%$

7. Ans. 4

Sol.
$$R_{approx} = \frac{120}{2} = 60\Omega$$

 $i_x = i - i_y = 2 - \frac{120}{960} = \frac{15}{8} A$
 $\Rightarrow R = \frac{120}{\frac{15}{8}} = 64\Omega \Rightarrow \Delta R = 4\Omega$

8. Ans. 2

$$\int v dv = \frac{2\mu_0 n i^2}{m} \int_{0}^{R} \sqrt{R^2 - x^2} dx$$

$$\frac{v^2}{2} = \frac{2 \times 4\pi \times 10^{-7} \times 4000 \times i^2}{m}$$

$$\int_{0}^{R} \sqrt{R^2 - x^2} dx$$

$$x = R \sin \theta$$

$$dx = R \cos \theta d\theta$$

$$\int_{0}^{\pi/2} R^{2} \cos^{2} \theta d\theta = \frac{R^{2}}{2} \int [1 + \cos 2\theta] d\theta$$

$$=\frac{R^2}{2}\left[\frac{\pi}{2}+\frac{1}{2}(\sin\pi-\sin 0)\right]$$

$$=\frac{R^2\pi}{4}$$

$$\frac{v^2}{2} = \frac{8\pi \times 10^{-7} \times 4000 \times i^2}{0.02} \times \frac{\pi}{4} \times 2$$

$$\frac{v^2}{2} = \frac{8\pi \times 10^{-7} \times 4000 \times i^2}{4 \times 10^{-3}} \times 1^2 \times \frac{\pi}{4}$$

$$v = 2m/s$$

0 2

PART-2: CHEMISTRY ANSWER											
SECTION-I	Q.	1	2	3	4	5	6	7	8	9	10
	Α.	A,C,D	D	B,D	C,D	A,C,D	A,B,D	В	A,C,D	B,C	D
	Q.	11	12								
	Α.	A,B,D	В								
SECTION-IV	Q.	1	2	3	4	5	6	7	8		
	Α.	2	1	2	0	6	4	6	3		

SOLUTION

SECTION-I

1. Ans. (A,C,D)

(A) A real gas condense if external pressure is just greater than vapour pressure (B,C,D)

At point 'P' whole real gas is in gaseous phase

so density of gas =
$$\frac{1000}{20 \times 1000}$$
 = 0.05gm/ml

At point 'Q' whole substance is in liquid phase

so density of liquid =
$$\frac{1000}{1 \times 1000}$$
 = 1gm/ml

Note: during condensation at 300K density of gas and liquid remains constant, only amount varies.

2. Ans.(D)

In terms of edge length 'a'

$$X = \frac{\sqrt{2}}{2}a$$

$$Y = \frac{a}{2}$$

$$Z = \frac{\sqrt{3}a}{4}$$

- 3. Ans. (B, D)
- 4. Ans. (C, D)
- 5. Ans. (A,C,D)
- 6. Ans. (A,B,D)
- 7. Ans. (B)
- 8. Ans. (A,C,D)
- 9 Ans. (B, C)

If n/p ratio is smaller than required possible emission is

$$_{53}P^{135} \longrightarrow {}_{54}Q^{135} + {}_{-1}e^{0}$$

If n/p is smaller than required possible emission are

$$_{54}Q^{135} \longrightarrow _{52}R^{131} + _{2}He^{4}$$
 or

$$_{54}Q^{135} \longrightarrow _{53}R^{135} + _{+1}e^{0}$$

10. Ans.(D)

For 'Q' using steady state concept

Rate of appereance of Q = Rate of disappeareance of Q

$$K_1[P] = K_2[Q]$$

Number of nuclei of Q

=
$$\frac{k_1}{k_2}$$
 × no. of nuclei of P
= $\frac{10/60}{1000}$ × 6×10²³ = 10²⁰

For 'R'

Since rate constant is very high for second step than first step

Number of nuclei of R = Number of nuclei of P disintegrated = 6×10^{23}

- 11. Ans. (A,B,D)
- 12. Ans. (B)

SECTION-IV

1. Ans. 200 [OMR Ans. 2]

At freezing point vapour pressure of solid

= vapour pressure if liquid

$$10 - \frac{3000}{T} = 5 - \frac{2000}{T}$$
$$5 = \frac{1000}{T}$$

$$T = 200 \text{ K}$$

2. Ans.
$$(T_5 = 100)$$
 OMR ANS (1)

Let heat involved in step 5 is Q₅

$$q_{total} = -W_{total}$$

$$500 + 800 + Q_5 = 700$$

$$Q_5 = -600 \text{ J}$$

Since ΔS total = 0

$$\frac{500}{200} + \frac{800}{200} - \frac{600}{T_5} = 0$$

$$2 + 4 - 6 = 0$$
.

$$T_5 = 100 \text{ K}$$

- 3. Ans. 2
- 4. Ans. 0

Sol. FeO.Cr₂O₃ + Na₂O₂
$$\rightarrow$$
 2NaFeO₂ + 4Na₂CrO₄ + 2Na₂O

$$(A) \qquad (B)$$

$$2\text{NaFeO}_2 + \text{H}_2\text{O} \rightarrow \text{NaOH} + \text{Fe}_2\text{O}_3$$

red brown ppt.

$$Na_2CrO_4 + H_2O \rightarrow CrO_4^{-2} + 2Na^+$$

$$CrO_4^{-2} + 2H^+ \rightarrow Cr_2O_7^{2-} + H_2O$$

(orange)

- 5. Ans. 6
- 6. Ans. 4
- 7. Ans. 6
- 8. Ans. 3

PART-3: MATHEMATICS

ANSWER KEY

										7111011	
SECTION-I -	Q.	1	2	3	4	5	6	7	8	9	10
	A.	A,B,C	B,D	A,B	A,C	B,C	A,D	A,C	A,C	С	В
SECTION-I	Q.	11	12								
	A.	С	С								
SECTION-IV	Q.	1	2	3	4	5	6	7	8		
	A.	0	0	4	9	2	3	5	5		

SOLUTION

SECTION-I

1. Ans. (A,B,C)

$$\int_{0}^{1} f(xt)dt = 0 \Rightarrow \int_{0}^{x} f(t)dt = 0 \Rightarrow f(x) = 0$$

(A)
$$y = 0 & y = x^3 - 3x^2 + P$$

intersect at 3 distinct points.

$$x^3 - 3x^2 + P = 0 \implies P = 3x^2 - x^3$$

$$P \in (-4,0)$$
 $P = -3,-2,-1$

- (B) f(x) = 0 is a periodic function
- (C) for minimum area f(3) = 081 - 12 - a = 0 \Rightarrow a = 69
- (D) f(x) = 0 is even as well as odd.

2. Ans. (B,D)

For
$$k_1 > k_2$$
 $\Rightarrow k_1 \cos^2 x > k_2 \cos^2 x$
 $\Rightarrow -k_1 \cos^2 x < -k_2 \cos^2 x$
 $\Rightarrow \sqrt{1 - k_1 \cos^2 x} < \sqrt{1 - k_2 \cos^2 x}$
 $\Rightarrow \frac{1}{\sqrt{1 - k_1 \cos^2 x}} > \frac{1}{\sqrt{1 - k_2 \cos^2 x}}$

$$\therefore f(\mathbf{k}_1) > f(\mathbf{k}_2)$$

Hence f(x) is increasing function.

3. Ans. (A,B)

AB = B^T

$$\Rightarrow A = B^{T}B^{-1}$$

$$|A| = |B^{T}| \cdot |B^{-1}| = 1 \qquad ...(1)$$
Also Adj A = Adj(B^T B⁻¹)

$$= Adj(B^{-1}) Adj(B^{T})$$
AdjA = (AdjB)⁻¹ Adj(B^T)

$$\Rightarrow (AdjB)^{T} = (AdjB) AdjA$$
$$= (AdjB) B$$

$$\Rightarrow$$
 (AdjB)^T = |B|.I

$$\Rightarrow$$
 AdjB = |B|.I

$$\Rightarrow$$
 Adj(AdjA) = |AdjA| I

$$\therefore |A|^{n-2}A = |A|^{n-1}I \quad (order \ n)$$

$$\Rightarrow$$
 A = |A|I \Rightarrow A = I (By (1))

$$\therefore B = I$$

4. Ans. (A,C)

If f(x) touches x-axis at $(\sqrt{2}, 0)$ it also touches at $(-\sqrt{2}, 0)$

$$\therefore$$
 Roots are $\sqrt{2}, \sqrt{2}, -\sqrt{2}, -\sqrt{2}$

5. Ans. (B,C)

$$I(n) = \int_{0}^{\frac{1}{n}} (2016 + x) \cos^{2} x \, dx$$

$$\therefore I\left(\frac{1}{\pi}\right) = \int_{0}^{\pi} (2016 + x)\cos^{2} x dx$$

$$I\left(\frac{1}{\pi}\right) = \int_{0}^{\pi} \left(2016 + \pi - x\right) \cos^{2} x dx$$

$$\therefore 2I\left(\frac{1}{\pi}\right) = \left(\pi + 2016\right) \int_{0}^{\pi} \cos^{2} x dx$$

$$\Rightarrow I\left(\frac{1}{\pi}\right) = \frac{\left(\pi + 4032\right)\pi}{4}$$

$$\lim_{n\to\infty} nI(n) = \lim_{n\to\infty} \frac{\int\limits_0^{1/n} (x+2016)\cos^2 x dx}{1/n}$$

$$\lim_{n \to \infty} \frac{\left(\frac{1}{n} + 2016\right)\cos^2\frac{1}{n} \times \left(-\frac{1}{n^2}\right)}{\left(-1/n^2\right)} = 2016$$

6. Ans. (A,D)

$$z_1 = \omega$$
, $z_2 = \omega^2$

$$\therefore \ Z_1^n + Z_2^n = \left(e^{\frac{i2\pi}{3}}\right)^n + \left(e^{-\frac{i2\pi}{3}}\right)^n$$

$$=2\cos\left(\frac{2n\pi}{3}\right)$$

$$z_1^{2016} + z_2^{2016} = 2$$

$$z_1^{2015} + z_2^{2015} = 2\cos\left(\frac{4030\pi}{3}\right)$$

$$=2\cos\left(1343\pi + \frac{\pi}{3}\right) = 2\times\left(-\frac{1}{2}\right) = -1$$

7. Ans. (A,C)

Equation of chord of contact

$$\alpha x + \beta y = 4 \qquad ...(1)$$

Also, Equation of tangent at P(t)

is
$$tv = x + 2t^2$$

Also
$$t\beta = \alpha + 2t^2$$
 ...(2)

from (1) & (2)

$$(t\beta - 2t^2)x + \beta y = 4$$

$$\beta(tx + y) - (2t^2x + 4) = 0$$

$$\therefore$$
 tx + y = 0 & 2t²x + 4 = 0

$$t = -\frac{y}{x}$$

$$\therefore 2.\frac{y^2}{x^2} \times x + 4 = 0$$

$$y^2 + 2x = 0$$

Area bounded by S = 0 & the line 2x + 1 = 0

$$\frac{2}{3} \times \frac{1}{2} \times 2 = \frac{2}{3}$$

2x - y + 1 = 0 is a focal chord.

Hence angle is 90°.

8. Ans. (A,C)

Equation of family of planes

$$(2x-y+z-2) + \lambda(x+2y-z-3) = 0$$

It must satisfy (3, 2, 1)

$$(6-2+1-2) + \lambda(3+4-1-3) = 0$$

$$3 + 3\lambda = 0 \implies \lambda = -1$$

$$x - 3y + 2z + 1 = 0$$

Equation of acute angle bisector

$$\frac{2x-y+z-2}{\sqrt{6}} = \frac{x+2y-z-3}{\sqrt{6}}$$

$$x - 3y + 2z + 1 = 0$$

Paragraph for Question 9 to 10

Solving $y = \frac{x}{2} \& \frac{x^2}{9} + y^2 = 1$, we get.

$$x = \frac{6}{\sqrt{13}} \& y = \frac{3}{\sqrt{13}}$$

Shaded region

$$=\frac{1}{2}\times\frac{6}{\sqrt{13}}\times\frac{3}{\sqrt{13}}+\int_{6/\sqrt{3}}^{3}\sqrt{1-\frac{x^2}{9}}dx$$

$$= \frac{9}{\sqrt{13}} + \frac{1}{3} \left(\frac{x}{2} \sqrt{9 - x^2} + \frac{9}{2} \sin^{-1} \frac{x}{3} \right) \Big|_{6/\sqrt{13}}^{3}$$

$$= \frac{9}{\sqrt{13}} + \frac{1}{3} \left(\frac{9}{2} \cdot \frac{\pi}{2} - \frac{3}{\sqrt{13}} \cdot \frac{9}{\sqrt{13}} - \frac{9}{2} \sin^{-1} \frac{2}{\sqrt{13}} \right)$$

$$=\frac{3\pi}{4}-\frac{3}{2}\sin^{-1}\frac{2}{\sqrt{13}}$$

$$=\frac{3}{2}\sin^{-1}\left(\frac{3}{\sqrt{13}}\right)$$

similarly calculate the other area

as
$$\frac{3}{2}\sin^{-1}\left(\frac{1}{\sqrt{1+9m^2}}\right)$$

9. Ans. (C)

10. Ans. (B)

$$16\Delta^2 = (a+b+c) (a+b-c) (a+c-b) (b+c-a)$$

Now, b = 2c & a = 3, we get

$$16\Delta^2 = (3c + 3)(3 + c)(3 - c)(3c - 3)$$

$$= 9(9 - c^2) (c^2 - 1)$$

Using $A.M \ge G.M$, we get

$$(9-c^2)+(c^2-1)\geq 2((9-c^2)(c^2-1))^{1/2}$$

: Maximum value will be attained

for
$$9 - c^2 = c^2 - 1$$

$$c = \sqrt{5}$$

$$16\Delta^2 = 9.4.4$$

$$\therefore$$
 $D_{max} = 3$

- 11. Ans. (C)
- 12. Ans. (C)

SECTION - IV

1. Ans. 0

$$\Rightarrow$$
 6 - 4\alpha - 4\alpha + 4 = -2

$$\Rightarrow \alpha = \frac{3}{2}$$

Also
$$\frac{3.(12-2\beta)}{6} - (\beta+2) = -2$$

$$12 - 2\beta - 2\beta - 4 = -4$$

$$4\beta = 12 \implies \beta = 3$$

$$\therefore$$
 Slope of BC = 0

2. Ans. 0

$$(1 + x^2 + x^4 + \dots + x^{100} - x (1 + x^2 + \dots + x^{98}))$$

$$(1+x^2+....+x^{100}-x(1+x^2+....+x^{98}))$$

$$= (1 + x^2 + x^4 + + x^{100})^2 - x^2(1 + x^2 + + x^{98})$$

which implies there is no term having odd power of x.

3. Ans. 4

Using sine law in ΔBDE

$$\frac{BE}{\cos\frac{\theta}{2}} = \frac{BD}{\sin\left(\frac{3\theta}{2}\right)} \qquad \dots (1)$$

Also sine law in ΔBDC

$$\frac{BC}{\cos\frac{\theta}{2}} = \frac{BD}{\sin\frac{\theta}{2}} \qquad \dots (2)$$

Dividing we get

$$\frac{BE}{BC} = \frac{\sin\frac{\theta}{2}}{\sin\frac{3\theta}{2}} = EF$$

$$\therefore \lim_{\theta \to 0} EF = \frac{1}{3} \qquad \therefore p + q = 4$$

4. Ans. 9

Using Baye's theorem

$$\frac{\frac{2}{6} \times 1}{\frac{3}{6} \times 0 + \frac{1}{6} \times \frac{1}{2} + \frac{2}{6} \times 1}$$

$$=\frac{4}{5}$$

$$\therefore a + b = 9.$$

5. Ans. 2

We have to calculate

$$\left(\frac{a^2+1}{a}\right)\left(\frac{b^2+1}{b}\right)\left(\frac{c^2+1}{c}\right)$$

Now
$$x^3 - 2x^2 + 3x - 4 = 0$$

$$\begin{cases} a \\ b \\ c \end{cases}$$

$$\therefore$$
 abc = 4

Also
$$x^3 - 2x^2 + 3x - 4 = (x - a)(x - b)(x - c)$$

Put x = i & -i and multiply, we get

$$(a^2 + 1)(b^2 + 1)(c^2 + 1) = 8$$

$$\therefore \frac{(a^2+1)(b^2+1)(c^2+1)}{abc} = 2$$

6. Ans. 3

$$V_{DABC} = \frac{1}{6} = \frac{1}{3} \times \text{(area of base)} \times \text{height}$$

Also
$$\frac{1}{6} \le \frac{1}{3} \times \frac{1}{2} \times AC \times BC \times \sin 45^{\circ} \times AD$$

$$\therefore \left(\frac{AC}{\sqrt{2}}\right).BC.AD \ge 1$$

Now,
$$\frac{AC}{\sqrt{2}} + BC + AD \ge 3.\sqrt[3]{\frac{AC}{\sqrt{2}}.BC.AD}$$

(using A.M.- G.M.)

$$\therefore \frac{AC}{\sqrt{2}}.BC.AD \le 1$$

:. Equality must hold

$$\frac{AC}{\sqrt{2}} = BC = AD = 1$$

:. AD must be perpendicular

$$\therefore CD^2 = AD^2 + AC^2 = 3$$

7. Ans. 5

Given
$$|z| = 1$$
 & $|a + z + \frac{1}{z}| = 1$

 \therefore 'a' moves on a circle with centre $\left(-z - \frac{1}{z}\right)$ and radius 1.

$$-z - \frac{1}{z}$$
 can take any value in the interval [-

2,2], so the set S consists of the locus of unit circles centered at a point on the line segment with end points at -2 & 2 on the argand plane. Therefore, the area S is the area of two semi circles and area of rectangle which is $\pi + 8$.

8. Ans. 5

$$S = \frac{1}{2^0 + \sqrt{2^{2015}}} + \frac{1}{2^1 + \sqrt{2^{2015}}} + \dots + \frac{1}{2^{2015} + \sqrt{2^{2015}}}$$

$$S = \frac{1}{2^{2015} + \sqrt{2^{2015}}} + \frac{1}{2^{2014} + \sqrt{2^{2015}}} + \dots + \frac{1}{2^0 + \sqrt{2^{2015}}}$$

$$2S = \frac{1}{\sqrt{2^{2015}}} + \frac{1}{\sqrt{2^{2015}}} + \dots 2016 \text{ times}$$

$$\therefore$$
 S = $\frac{2016}{\sqrt{2^{2017}}}$

$$\therefore$$
 k = 5