1.2 Divisibility

Evan Hughes

January 2023

Definition of Divisibility

Let a and b be integers with $b \neq 0$. We say that b divides a(or that b is a divisor of a, or that b is a factor of a) if a = bc for some integer c. "b divides a" is written $b \mid a$. And "b does not divide a" is written $b \nmid a$.

Example: (from the book)

 $3 \mid 24$ because $24 = 3 \cdot 8$, but $3 \nmid 17$. Negative divisors are allowed: $-6 \mid 54$ because $54 = (-6) \cdot (-9)$, but $-6 \nmid -13$.

Note: If b divides a, then a = bc for some c. Hence -a = b(-c), so that $b \mid (-a)$. An analogous argument shows that every divisor of -a is also a divisor of a. Therefore a and -a have the same divisors.

Note: Suppose $a \neq 0$ and $b \mid a$. Then a = bc, so that |a| = |b| |c|. Consequently, $0 \leq |b| \leq |a|$. This last inequality is equivalent to $-|a| \leq b \leq |a|$. Therefore

- every divisor of the nonzero integer a is less than or equal to |a|;
- a nonzero integer has only finitely many divisors.

Greatest Common Divisor

Definition: Let a and b be integers, not both 0. The greatest common divisor (gcd) of a and b is the largest integer d that divides both a and b. In other words, d is the gcd of a and b provided that (1) $d \mid a$ and $d \mid b$;

(2) If $c \mid a$ and $c \mid b$, then $c \leq d$.

The greatest common divisor of a and b is usually denoted (a, b).

Theorem 1.2

Let a and b be integers, not both 0, and let d be their greatest common divisor. Then there exist (not necessarily unique) integers u and v such that d = au + bv.

Corollary 1.3

Let a and b be integers, not both 0, and let d be a positive integer. Then d is the greatest common divisor of a and b if and only if d satisfies these conditions:

- (i) $d \mid a \text{ and } d \mid b$;
- (ii) if $c \mid a$ and $c \mid b$, then $c \mid d$.

Theorem 1.4

If $a \mid bc$ and (a, b) = 1, then $a \mid c$.