Carlingford High School

Year 9 (5.3) Mathematics

Term 4 Exam 2018

Print your Name:	SOLUTIONS	
Circle your class:		
9MA31 (Mrs Blakeley)	9MA32 (Mr Gong)	9MA33 (Ms Bennett)

- Time allowed: 50 minutes
- Approved calculators may be used
- Show all necessary working
- Marks may be deducted for untidy setting out
- Marks for questions are indicated in brackets

TOPICS	Marks	
Right-angles trigonometry	/21	
Single variable data analysis	/19	
Indices	/27	
TOTAL	/67	%

TRIGONOMETRY

1. In the triangle below, $\cos \theta =$

- B
- C
- D
- Evaluate $\frac{12}{\cos 35^{\circ}}$
 - A
- 12.02
- (B)
- 14.65
- C -13.28
- D 0.34
- 45° 3′ is the same as:

[1]

[1]

[1]

[1]

- A
- 45.05°
- В
- 45.3°
- C 45.5°
- 45.03° D
- If $\cos \theta = 0.5$, what is the value of θ ?
 - A
- 60°
- B 30°

- C
- 1°
- D
- 53°

6. Find the length of a, correct to 2 decimal places.

$$\sin 48^\circ = \frac{9}{12}$$

$$0 = 12 \sin 48^\circ$$

$$= 8.9177...$$

$$= 8.92 (20p's)$$

[2]

(1) - decimal place

7. Find the length of a, correct to 2 [2] significant figures.

$$\tan 54^{\circ} = \frac{26}{a}$$

$$a = 26 \div \tan 54^{\circ}$$

$$= 18.8901...$$

$$= 19 \text{ m } (2 \text{ sf} \text{ s})$$

- (1) significant figures A right-angled triangle has the ratio
 - [3] $\tan \theta = \frac{5}{17}$. Find the <u>exact</u> ratio of $\sin \theta$.

$$h^2 = 5^2 + 17^2$$
 $h = \sqrt{314}$
 $= 5\sqrt{314}$
 $= 5\sqrt{314}$
either

(1) = solution

- 5. Which diagram shows P with a bearing [1] of 200° from 0?
- 9. Find the value of θ , correct to the [2] nearest minute.

$$\cos \Theta = \frac{7.2}{12.3}$$
 (1)
 $\Theta = \cos^{-1}\left(\frac{7.2}{12.3}\right)$
= 54° 10'

(1) - minute

From the top of a 200 m tall tower, the angle of depression to a car is 62°. How far is the car from the foot of the tower? Answer to the nearest metre.

 $tan 62^{\circ} = \frac{200}{x}$ x = 200 - tan 620 = 106.3418... = 106m (nearest m)

(1) - nearest m Two ships leave from the same port. 11. One ship travels on a bearing of 157° at 20 knots. The second ship travels on a bearing of 247° at 35 knots. (1 knot is a

speed of 1 nautical mile per hour).

Draw a diagram to represent the

How far apart, in nautical miles, are the ships after 8 hours? Correct to 2 decimal places.

$$x^{2} = 160^{2} + 280^{2}$$

$$x = \sqrt{104000}$$

$$= .322.490...$$

$$= .322.49 \text{ nM } (2dp's)$$
(1) - solution (not-op's)

(c) Calculate the bearing of the second ship

1. Which of the following is an example of [1] discrete quantitative data?

a person's gender

the speed of a car

shirt size

[2]

[1]

the height of a person

2. The statistic that is not affected by an [1] outlier is the:

> A mean

mode

C range

D median

3. Complete the frequency table [2] below.

Score, x	Frequency, f	fx				
4	12	48				
5	8	40				
6	7	42				
7	4	28				
	$\Sigma f = 31$	$\Sigma f x = 158$				

Calculate the mean, correct to 2 [1] decimal places.

$$\overline{z} = \frac{2fz}{zf}$$
= $\frac{158}{31}$ (1) - nat rounding
= $5.0967...$
= 5.10 (2 dps)

4. Twenty households were surveyed about how many phones, including mobile phones, they owned. The results are shown in the frequency histogram below.

- (a) What is the mode?
- [1]
- (b) Find the mean correct to 2 [1] decimal places.

$$=\frac{0\times2+1\times7+2\times8+3\times2+4x!}{2+7+8+2+1}$$

= 1.65

- (c) Find the median. (= f = 20) [1] = 2 + 2 = 2
- (d) Find the range [1] 4-0=4
- 5. (a) Complete the cumulative frequency table below. [2]

Score	Frequency	Cumulative Frequency
32	5	5
33	8	13
34	12	25
35	9	34
36	7	41

(b) Find the median. [1]

6. This back-to-back stem-and-leaf plot shows the results of a Year 9 class in a Probability exam.

			I	30	ys		Gi	rl	S					
				4	2	3					,			
9	8	7	4	3	0	4	5	7	8					
999	6	5	3	2	2	5	3	4	4	9	9			
	7	4	4	1	0	6	0	3	4	4	7	7	7	8
			4	3	2		0	1	5	5	8	8		
(27)				5	2	8	4	8	8					(27)
(21)					1	9	0	9					(21)

- (a) Find the median score for:
- [2]

- (i) boys **59**
- (ii) girls 67
- (b) The mean for the girls is 68.0. Calculate [1] the mean for the boys, correct to one decimal place.

$$\bar{z}(boys) = \frac{1575}{27}$$

= 58.3 (1dp)

(c) Who performed better on the test? Give [2] reasons.

Cirls: (1)

(1) [higher median 67759

(1) [higher mean 68.0 > 58.3

· lower range 51 < 59

optional

7. Tamara scored a mean of 74% for 5 [2] maths tests that she completed. Tamara did a sixth test and her mean test mark increased to 77%. What mark did she achieve in the last test?

$$\frac{74 \times 5 + x}{6} = 77$$

$$370 + x = 462$$

$$x = 92\%$$

(1)-solution

INDICES

- Simplify each expression: 1.
 - $9u^3v \times 6uv^2w^8 = 540^4\sqrt{3}\omega^8[1]$
 - (b) $24m^8 \div 8m = 3m^7$ [1]
 - (c) $\frac{12x^5y^4}{16x^3y^5} = \frac{3x^2}{4y} \text{ or } \frac{3}{4}x^2y^{-1}$ [1]
 - [1] (d) $(-2hj^5)^3 = -8h^3$

[1]

- (e) $\left(\frac{7k^2}{10}\right)^2 = \frac{49k^4}{100}$
- (f) $-6r^0 = -6$ [1]
- (g) $\left(\frac{8}{5}\right)^{-2} = \left(\frac{5}{8}\right)^2 = \frac{25}{14}$ [1]
- (h) $(8w)^{\frac{2}{3}} = 4\omega^{\frac{2}{3}}$ [1]
- 2. Simplify each expression, using a positive index.
 - [1] (a) $2b^{-5} = \frac{2}{1.5}$
- (1) progress) $(c^2d)^{-3} = \frac{1}{(c^2d)^3}$ [2] 8. 270×10^4 (1) simplified / positive). The distance light travels in one year is called a light year. If the speed of light is approximately 3×10^5 km/s, how far

 - 4. Write each expression using a fractional index.
 - (a) $\sqrt[7]{x} = x^{\frac{1}{7}}$ [1]
 - (b) $\sqrt[4]{(7n)^3} = (7n)^{\frac{3}{4}}$ [1]

- 5. Simplify each expression:
 - (a) $(18q^5r^8 \div 3q^2r^{-1})^2$ [2] = $(6q^3r^9)^2$ (1)-order operations = $36q^6r^{18}$ (1) solution
 - (b) $\left(\frac{64}{v^3}\right)^{-\frac{2}{3}} = \left(\frac{y^3}{64}\right)^{\frac{2}{3}}$ [2] = 4 (1)-solution
 - (c) $(27x^2)^{\frac{1}{3}} \div \frac{1}{3}(x^3)^{\frac{1}{2}}$ [3] (without a negative index)

$$= 3x^{\frac{2}{3}} \div x^{\frac{2}{3}}$$
 (1) - simplifying
$$= 9x^{-\frac{5}{6}}$$
 (1) division
$$= \frac{9}{x^{\frac{5}{6}}} = \frac{9}{6\sqrt{x^{\frac{5}{6}}}}$$
 (1) - solution positive indices

- Express 31 000 in scientific notation. 6. [1] 3.1 × 104
- Express 6×10^{-5} in decimal form: 7. [1] 0.00006
- Write each number correct to four 8. significant figures.
 - (a) 23687149 = 23690000[1] 2.369 x 107
 - (b) 0.000827036 = 0.0008270[1]
 - [2] is approximately 3×10^5 km/s, how far does light travel in a leap year? Answer in scientific notation, correct to three significant figures.

$$3\times10^{5}\times3600\times24\times366$$
 (1)-alc
= 9.49 × 10¹² km (1)-sf/sn

END OF EXAM