

Типы и структура СУБД

Роман Гордиенко

Backend Developer, Factory5

План занятия

- 1. Базы Данных
- 2. Системы управления БД
- 3. САР-теорема
- 4. <u>РАСЕLС-теорема</u>
- 5. Транзакции
- 6. ACID
- 7. <u>BASE</u>
- 8. NoSOL
- 9. MongoDB
- 10. Redis
- 11. Memcached
- 12. Итоги
- 13. Домашнее задание

Базы Данных

Базы Данных

Имеется множество определений термина "База данных" (БД). Нет "идеального" описания термина.

Ключевые моменты в каждом описании термина "БД":

- БД хранится и обрабатывается вычислительной системой
- Данные в БД логически структурированы
- БД включает схему или метаданные, описывающие её структуру

Первый момент является строгим, остальные допускают различные трактовки.

Система управления базой данных (СУБД) - это ПО, предназначенное для:

- •определения,
- •обработки,
- •извлечения,
- •управления

данными в базе данных.

СУБД обычно управляет самими данными, форматом данных, именами полей, структурой записи и структурой файлов.

Также определяет правила для проверки и управления этими данными.

СУБД можно разделить на следующие категории:

- Реляционные
- •Объектно-ориентированные
- NoSQL
 - Иерархические
 - Графовые
 - Сетевые
 - Документо-ориентированные
 - Ключ-значение
 - Column-oriented

Реляционные

В системах управления реляционными базами данных (СУБД) отношения между данными являются реляционными, и данные хранятся в виде таблиц.

Каждый столбец таблицы представляет атрибут, а каждая строка в таблице представляет собой запись.

Каждое поле в таблице представляет собой значение данных.

Используют SQL для взаимодействия с данными.

OrderItem			F	Product	
order_id	product_id	quantity	id	name	
100	55	2	55	Iphone 5	
100	56	1	56	Ipad 3	

Объектно-ориентированные

Предоставляют полнофункциональные возможности программирования баз данных, сохраняя при этом совместимость с ООП языком.

Добавляет функциональность базы данных в ООП ЯП.

NoSQL

Базы данных NoSQL не используют SQL в качестве основного языка доступа к данным.

NoSQL не имеет предопределенных схем, что делает её идеальным кандидатом для быстро меняющихся сред разработки.

NoSQL позволяет разработчикам вносить изменения «на лету», не затрагивая приложения.

Иерархические

В иерархической модели данные организованы в древовидную структуру.

Данные хранятся в виде набора полей, где каждое поле содержит только одно значение.

Записи связаны друг с другом через связи в отношениях родитель-потомок.

В иерархической модели базы данных каждая дочерняя запись имеет только одного родителя.

Родитель может иметь несколько детей.

Графовые

NoSQL БД, которая используют структуру графов для семантических запросов.

Данные хранятся в виде узлов, ребер и свойств.

Узел представляет собой объект.

Ребро представляет собой отношение, которое соединяет узлы.

Свойства - это дополнительная информация, добавляемая к узлам.

Сетевые

Сетевые СУБД используют сетевую структуру для создания отношений между объектами.

Сетевые базы данных - имеют иерархическую структуру, но в отличие от иерархических баз данных, где у одного узла может быть только один родительский узел, сетевой узел может иметь отношения с несколькими объектами.

Сетевая база данных больше похожа на "паутину".

Документо-ориентированные

Является NoSQL БД, в которой данные хранятся в виде документов.

Каждый документ представляет данные в виде ключ-значение, связь с другими документами и мета-полями.

Ключ-значение

База данных на основе пар «ключ-значение» хранит данные как совокупность пар «ключ-значение», в которых ключ служит уникальным идентификатором.

Как ключи, так и значения могут представлять собой что угодно: от простых до сложных составных объектов.

Key	Value		
K1	AAA,BBB,CCC		
K2	AAA,BBB		
K3	AAA,DDD		
K4	AAA,2,01/01/2015		
K5	3,ZZZ,5623		

Column-oriented

В таких системах данные хранятся в виде матрицы, строки и столбцы которой используются как ключи.

Типичным применением этого типа СУБД является веб-индексирование, а также задачи, связанные с большими данными, с пониженными требованиями к согласованности.

Каждая строка имеет свой набор столбцов.

row key	columns			
jbellis	name	email	address	state
	jonathan	jb@ds.com	123 main	TX
dhutch	name	email	address	state
	daria	dh@ds.com	45 2 nd St.	CA
egilmore	name	email		
	eric	eg@ds.com		

САР-теорема (теорема Брюера) - утверждение о том, что в любой реализации распределённых вычислений возможно обеспечить не более двух из трёх следующих свойств:

- **согласованность данных (англ. consistency)** во всех вычислительных узлах в один момент времени данные не противоречат друг другу;
- **доступность (англ. availability)** любой запрос к распределённой системе завершается корректным откликом, однако без гарантии, что ответы всех узлов системы совпадают;
- устойчивость к разделению (англ. partition tolerance) расщепление распределённой системы на несколько изолированных секций не приводит к некорректности отклика от каждой из секций.

Недостатки:

- Условность понятий САР
 - Например, система может отвечать в течении часа если ответ корректный, в рамках САР теоремы, это доступная система.
- В основном, все системы СР и АР

 Сетевые взаимодействия допускают обрывы связи и потери пакетов вследствие этих накладных расходов нельзя гарантировать СА.
- Множество систем удовлетворяют только Р
 В Master-Slave системе при потере Master теряется САР. В асинхронной Master-Slave системе запрос данных может производится раньше синхронизации всех Slave.
- Сложность применения к NoSQL

PACELC-теорема

PACELC-теорема

Расширение САР-теоремы.

Добавляет понятие Latency - время, за которое клиент получит ответ и которое регулируется каким-либо уровнем согласованности.

При расчете, сводится к виду:

PACELC-теорема

Транзакции

Транзакции

Транзакция - это набор последовательных операций над БД, представляющих логическую единицу.

Транзакция применяется полностью или не применяется совсем.

Пример:

Необходимо перевести с банковского счёта номер 1 на счёт номер 2 сумму в 10 рублей.

Этого можно достичь, приведённой последовательностью действий (транзакцией):

- 1. Прочесть баланс на счету номер 1.
- 2. Уменьшить баланс на 10 рублей.
- 3. Сохранить новый баланс счёта номер 1.
- 4. Прочесть баланс на счету номер 2.
- 5. Увеличить баланс на 10 рублей.
- 6. Сохранить новый баланс счёта номер 2.

ACID

ACID

ACID - требования к СУБД, в обеспечение надежности и предсказуемости ее работы.

- **A atomicity (атомарность)** никакая транзакция не будет зафисирована в БД частично.
- **C consistency (согласованность)** каждая успешная транзакция фиксирует только допустимые результаты.
- I isolation (изоляция) параллельные транзакции не искажают результат друг друга.
- **D** durability (стойкость) гарантия применения успешных транзакций, независимо от низкоуровневых проблем.

ACID позволяет проектировать высоконадежные системы.

BASE

BASE

BASE - принцип, противопоставляющий себя ACID.

- BA basically availability (базовая доступность) деградация части узлов ведет к деградации части сессий, исключая полную деградацию системы. Система отвечает на любой запрос, но в ответе могут быть неверные данные.
- **S soft state (неустойчивое состояние)** уменьшение времени хранения сессий и фиксация обновлений только критичных операций.
- **E** eventually consistent (конечная согласованность) изменение состояния в конечном итоге применится на все системы.

BASE позволяет проектировать высокопроизводительные системы.

NoSQL

NoSQL

NoSQL - огромное семейство БД, полный список всех систем можно прочитать на сайте: hostingdata.co.uk/nosql-database/

Общие характеристики NoSQL систем:

- No SQL Не используется SQL (в классическом виде).
- Schemaless Данные не структурированы.
- Aggregates Данные представлены в виде аггрегатов.
- BASE Слабые ACID свойства, уклон в сторону BASE для производительности.
- Share nothing NoSQL распределенные системы, без совместно используемых ресурсов.

Relational model

NoSQL

Aggregate model 1

Aggregate model 2

```
// Order document
"id": 100.
"customer id": 1000,
"date": 01.05.2012,
"order items": [
       "product id": 55,
       "product name": lphone5,
       "quantity": 2
       "product_id": 56,
       "product_name": lpad3
       "quantity": 1
// Payment document
"order id": 100,
"sum": 1000,
"date": 03.05.2012
// Product document here
```

MongoDB

MongoDB

MongoDB - одна из популярных документо-ориентированных СУБД. Является классическим примером NoSQL.

MongoDB поддерживает:

- ad-hoc запросы
- Индексирование
- Горизонтальное масштабирование и шардинг
- MapReduce
- Транзакции, ACID/BASE

По PACELC теореме MongoDB соответствует PA/EC.

MongoDB

MongoDB подходит для следующих применений:

- хранение и регистрация событий;
- системы управления документами и контентом;
- электронная коммерция;
- игры;
- данные мониторинга, датчиков;
- мобильные приложения;
- хранилище операционных данных веб-страниц (например, хранение комментариев, рейтингов, профилей пользователей, сеансы пользователей).

Redis

Redis

Redis - это СУБД вида "ключ-значение".

Основные характеристики системы:

- Может использоваться как БД, так и как кэш-система или брокер сообщений.
- Все данные хранятся в оперативной памяти.
- Данным можно присваивать Time-To-Live.
- Имеется встроенная система Pub/Sub.
- Поддерживает Master-Slave репликацию.

Важно! "Из коробки" не имеет механизма консенсуса. При отказе ведущей реплики - необходимо вручную выбрать новую ведущую реплику.

Redis

Redis Sentinel - система управления узлами Redis, осуществляющая:

- мониторинг работоспособности ведущих и ведомых узлов;
- алертинг о произошедших отклонениях в работе;
- автоматический выбор нового ведущего узла, в случае отказа текущего;
- механизм нотификации клиентов и узлов о перевыборе ведущего узла.

Redis Sentinel входит в состав Redis начиная с версии 2.6.

Sentinel рекомендуется использовать в режиме кластера для обеспечния его отказоустойчивости.

Memcached

Memcached

Memcached - это СУБД вида "ключ-значение".

Основные характеристики системы:

- используется как распределенный кэш;
- все данные хранятся в оперативной памяти;
- данным можно присваивать Time-To-Live;
- поддерживает Master-Slave репликацию.

Обладает меньшей функциональностью, по сравнению с Redis, но имеет более простое API и механизмы взаимодействия.

Итоги

Итоги

В данной лекции мы:

- рассмотрели какие бывают СУБД;
- научились определять тип СУБД по CAP/PACELC теоремам;
- ознакомились с понятием транзакций;
- узнали что такое ACID/BASE принципы;
- рассмотрели популярные NoSQL решения и их характеристики.

Домашнее задание

Давайте посмотрим ваше домашнее задание.

- Вопросы по домашней работе задавайте в чате мессенджера
 Slack.
- Задачи можно сдавать по частям.
- Зачёт по домашней работе проставляется после того, как приняты все задачи.

Задавайте вопросы и пишите отзыв о лекции!

Роман Гордиенко

