Esercitazione di Laboratorio: Amplificatori operazionali con retroazione

Coa Giulio Licastro Dario Montano Alessandra 3 gennaio 2020

1 Scopo dell'esperienza

Gli scopi di questa esercitazione sono:

- Analizzare il comportamento e misurare i parametri di amplificatori reazionati.
- Verificare alcune deviazioni rispetto al comportamento previsto con i modelli ideali.

2 Strumentazione utilizzata

La strumentazione usata durante l'esercitazione è:

Strumento	Marca e Modello	Caratteristiche
Oscilloscopio	Rigol DS1054Z	4 canali,
		$B = 50 \mathrm{MHz},$
		$f_{\rm c} = 1 {\rm G} \frac{{\rm Sa}}{{\rm s}},$
		$R_{\rm i} = 1 { m M} \tilde{\Omega},$
		$C_{\rm i}$ = 13 pF,
		12 Mbps di profondità di memoria
Generatore di segnali	Rigol DG1022	2 canali,
		$f_{\rm uscita} = 20 {\rm MHz},$
		$Z_{ m uscita}$ = 50Ω
Alimentatore in DC	Rigol DP832	3 canali
Scheda premontata	A3	
Cavi coassiali		Capacità dell'ordine dei $80 \div 100 \mathrm{p} \frac{\mathrm{F}}{\mathrm{m}}$
Connettori		- m

3 Premesse teoriche

3.1 Incertezza sulla misura dell'oscilloscopio

La misura del valore di un segnale tramite l'oscilloscopio (sia esso l'ampiezza, la frequenza, il periodo, etc.) presenta un'incertezza che dipende, principalmente, da due fattori:

- l'incertezza strumentale introdotta dall'oscilloscopio (ricavabile dal manuale).
- l'incertezza di lettura dovuta all'errore del posizionamento dei cursori.

Quest'ultima incertezza deriva dal fatto che il segnale visualizzato non ha uno spessore nullo sullo schermo.

3.2 Amplificatore

Un amplificatore è un doppio bipolo unidirezionale caratterizzato dalla seguente relazione

$$y(t) = A \cdot x(t)$$

Dove A è detto guadagno dell'amplifiatore.

(b) Circuito equivalente ad un amplificatore.

In base al tipo di segnale in ingresso e in uscita, possiamo distinguere quattro tipi di amplifiatori:

- Amplificatore di Tensione.
- Amplificatore di Transconduttanza.
- Amplificatore di Transresistenza.
- Amplificatore di Corrente.

3.2.1 Amplificatore operazionale

L'amplificatore operazionale è un amplificatore differenziale, ovvero amplifica la differenza delle tensioni ai suoi capi, che presenta un'amplificazione $A_{\rm d}$ idealmente infinita.

$$A_{\rm d} = \frac{v_{\rm out}}{v_{\rm d}} =$$
$$= \frac{v_{\rm out}}{v^+ - v^-}$$

Figura 2: Amplificatore operazionale.

3.2.2 Amplificatore differenziale

L'amplificatore differenziale è un amplificatore che fornisce, in uscita, un segnale proporzionale alla differenza rispetto ai segnali in ingresso; esso caratterizzato dalle seguenti relazioni

$$R_{\mathrm{in,v^{+}}} = R_{\mathrm{a}} + R_{\mathrm{b}}$$

$$R_{\mathrm{in,v^{-}}} = R_{\mathrm{b}}^{'}$$

$$R_{\mathrm{out}} = 0$$

$$\begin{split} \frac{R_{\rm a}^{'}}{R_{\rm b}^{'}} &= \frac{R_{\rm a}}{R_{\rm b}} \cdot (1 + \epsilon) \\ v_{\rm out} &= A_{\rm diff} \cdot v_{\rm d} - A_{\rm cm} \cdot v_{\rm cm} = \\ &= \left(\frac{R_{\rm a}}{R_{\rm b}} - \frac{R_{\rm a}}{R_{\rm a} + R_{\rm b}} \cdot \frac{\epsilon}{2}\right) \cdot v_{\rm d} - \frac{R_{\rm a}}{R_{\rm a} + R_{\rm b}} \cdot \epsilon \cdot v_{\rm cm} = \\ &\approx \frac{R_{\rm a}}{R_{\rm b}} \cdot v_{\rm d} - \frac{R_{\rm a}}{R_{\rm a} + R_{\rm b}} \cdot \epsilon \cdot v_{\rm cm} \\ &\qquad \qquad \text{CMRR} = \frac{A_{\rm diff}}{A_{\rm cm}} \approx \frac{1}{\epsilon} \cdot (1 + A_{\rm diff}) \end{split}$$

Dove CMRR è il Common-Mode Rejection Ratio, $A_{\rm diff}$ è l'amplificazione differenziale e $A_{\rm cm}$ è l'amplificazione di modo comune.

Figura 3: Amplificatore differenziale.

4 Esperienza in laboratorio

4.1 Amplificatore non invertente

Abbiamo realizzato il circuito richiesto, collegando il modulo A3-1:

- Il generatore di segnali al connettore coassiale J3.
- L'alimentatore duale viene connesso, in modalità tracking, al morsetto nomeMorsetto.
- L'oscilloscopio, tramite due cavi coassiali BNC-coccodrillo, all'ingresso e all'uscita del circuito, rispettivamente gli ancoraggi J4 e J7 (massa) e J2 e J8 (massa).

E posizionando gli interruttori seguendo la seguente tabella

Interruttore	Posizione	Note
S1	1	aperto
S2	2	chiuso
S4	2	chiuso
S5	1	aperto
S6	1	aperto

Abbiamo impostato $V_{\rm pp}=1\,{\rm V}$ e $f=2\,{\rm kHz},$ in seguito abbiamo misurato con l'oscilloscopio $V_{\rm i}$ e $V_{\rm u}.$

4.2 Amplificatore invertente

.

4.3 Amplificatore differenziale

.

4.4 Amplificatore AC/DC

.

5 Risultati

5.1 Amplificatore non invertente

Dai calcoli abbiamo ricavato che

$$A_{v} = \frac{A_{d}}{1 + \beta \cdot A_{d}} =$$

$$= \frac{A_{d}}{1 + \frac{R_{2}}{R_{1} + R_{2}} \cdot A_{d}} =$$

$$= \frac{200k}{1 + \frac{12k}{100k + 12k} \cdot 200k} =$$

$$= 9.33$$

$$\begin{split} R_{\rm in} &= \left(R_{\rm id} + R_1 \parallel R_2 \right) \cdot \left(1 + A_{\rm d} \cdot \frac{R_2 \parallel R_{\rm id}}{R_2 \parallel R_{\rm id} + R_1} \right) = \\ &= \left(1M + 100k \parallel 12k \right) \cdot \left(1 + 200k \cdot \frac{12k \parallel 1M}{12k \parallel 1M + 100k} \right) = \\ &= 21.4 \, \mathrm{G}\Omega \end{split}$$

$$R_{\text{out}} = \frac{R_{\text{o}}}{1 + \beta \cdot A_{\text{d}}} \parallel (R_1 + R_2) =$$

$$= \frac{R_{\text{o}}}{1 + \frac{R_2}{R_1 + R_2} \cdot A_{\text{d}}} \parallel (R_1 + R_2) =$$

$$= \frac{100}{1 + \frac{12k}{100k + 12k} \cdot 200k} \parallel (100k + 12k) =$$

$$= 4.67 \,\text{m}\Omega$$

$\mathbf{S3}$	S7	$V_{\rm i}$ [V]	$V_{\rm u}$ [V]	$A_{ m v}$
1	1	1.08	9.80	9.07
1	2	1.08	9.80	9.07
2	1	1.08	10.0	9.26
2	2	1.08	10.0	9.26

Sfruttando il partitore di tensione formatosi all'ingresso dell'amplifiatore quando la resistenza R_3 è inserita, possiamo scrivere

$$\begin{split} w &= \frac{v_{\text{out}, R_3}}{v_{\text{out}}} = \\ &= \frac{A_{\text{v}} \cdot V_{\text{i}, R_3}}{A_{\text{v}} \cdot V_{\text{i}}} = \\ &= \frac{V_{\text{i}, R_3}}{V_{\text{i}}} = \\ &= \frac{v_{\text{s}} \cdot \frac{R_{\text{i}}}{R_3 + R_{\text{i}}}}{v_{\text{s}}} = \\ &= \frac{R_{\text{i}}}{R_3 + R_{\text{i}}} = \\ &= 0.98 \end{split}$$

Da cui

$$R_{\rm i} = w \cdot R_3 \cdot \frac{1}{1 - w} =$$

$$= 0.98 \cdot 4.7k \cdot \frac{1}{1 - 0.98} =$$

$$= 230 \text{ k}\Omega$$

Il valore ottenuto non rientra nel range dato dal costruttore $(10\pm0.5\,\mathrm{k}\Omega)$ a causa dei vari contributi d'incertezza dati dagli strumenti.

Dato che le due tensioni misurate sono uguali, deduciamo che il valore di $R_{\rm u}$ è trascurabile e, quindi, essa è assimilabile ad un cortocircuito.

5.2 Amplificatore invertente

.

5.3 Amplificatore differenziale

S 8	S9	S10	S11	$V_{\rm i}$ [V]	$V_{\rm u}$ [V]	$A_{ m v}$
2	1	1	1	1.66	1.64	0.99
1	2	1	1	1.66	1.40	0.84
1	1	2	1	1.64	4.36	2.66
1	1	1	2	1.64	7.32	4.46

5.4 Amplificatore AC/DC

.