

UNIVERSIDAD AUSTRAL DE CHILE FACULTAD DE CIENCIAS DE LA INGENIERÍA CENTRO DE DOCENCIA DE CIENCIAS BÁSICAS PARA INGENIERÍA

BAIN 036 ÁLGEBRA LINEAL PARA INGENIERÍA Guía de Eiercicios Nº 4

- Determine cuáles de las funciones siguientes son transformaciones lineales : 1.-

- a) $F: \mathbb{R}^2 \to \mathbb{R}^2$, F(x, y) = (2x y, x) b) $F: \mathbb{R}^3 \to \mathbb{R}^2$, F(x, y, z) = (z, 3x 4y) c) $F: \mathbb{R}^3 \to \mathbb{R}^2$, F(x, y, z) = (2x + 1, y + z) d) $F: M_2(\mathbb{R}) \to \mathbb{R}^2$, $F\left(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\right) = (a + d, b + c)$
- e) $F: P_3(\mathbb{R}) \to \mathbb{R}$, $F(at^3 + bt^2 + ct + d) = ad bc$
- Determine Ker(T) e Im(T) para las transformaciones lineales siguientes:
 - a) $T: \mathbb{R}^4 \to \mathbb{R}^2$, T(x, y, z, w) = (2x y + z, y + 3z w)
 - b) $T: M_2(\mathbb{R}) \to P_2(\mathbb{R}), T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = (a+b-2c)x^2 + (-b+3c)x + (a+c)$
- Sean $x_1 = (1,1,-1)$, $x_2 = (1,0,1)$, $x_3 = (2,1,-1)$, $x_1(1,0,1,0)$, $x_2(0,1,1,0)$, $x_3 = (1,0,0,1)$ y $x_4(1,1,1,0)$. 3.- $\{x_1, x_2, x_3\}$ es base de IR^3 y $\{x_1, x_2, x_3, x_4\}$ en base de \mathbb{R}^4 . Definamos $T: \mathbb{R}^3 \to \mathbb{R}^4$ transformación lineal por: $T(x_1) = x_1' - x_4'$, $T(x_2) = x_1' + x_2' + x_3'$, $T(x_3) = x_1' + 2x_2' + 2x_3' + x_4'$.

 - a) Halle T(x,y,z), para $(x,y,z) \in \mathbb{R}^3$. b) Determine $\operatorname{Ker}(T)$ y $\operatorname{Im}(T)$ y nulidad y rango de T.
- a) Sea $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x 3y 2z, y 4z, z). Pruebe que T es un isomorfismo y halle T^{-1} . 4.-
 - Halle una aplicación lineal $F: \mathbb{R}^3 \to \mathbb{R}^3$, cuya imagen sea : $\langle (1,2,3), (4,5,6) \rangle$.
 - Halle una aplicación lineal $F: \mathbb{R}^4 \to \mathbb{R}^3 / \text{Ker} F = \langle (1,2,3,4), (0,1,1,1) \rangle$.
 - Sea $T_u: V \to V$ la traslación en el vector u, o sea : T(v) = v + u. ¿Para qué valores de u, T_u es lineal?.
- 5.-Pruebe que:
 - Si T_1 , T_2 : $V \rightarrow V$ son lineales, entonces $T_1 \circ T_2$ es lineal.
 - Si $A \in M_{mxn}(\mathbb{R})$, entonces $T : \mathbb{R}^n \to \mathbb{R}^m$, T(X) = AX es transformación lineal. b) ¿Cuál es el Kernel de T?.
 - Si $F: V \to V$ es transformación lineal y biyectiva (o sea isomorfismo) entonces, F^{-1} también es lineal y
 - Si $T: U \rightarrow V$ es transformación lineal, y $k \in K, k \neq 0$, entonces : T y kT tienen el mismo Kernel d) e Imagen.
- Considere las bases de \mathbb{R}^3 , $E = \{e_1 = (1, -1.1), e_2 = (1, 0, 1), e_3 = (0, 1, 1)\}$ y $F = \{f_1 = (2, -1, 2), f_2 = (1, 1, 2), f_3 = (1, 0, 2)\}.$
 - a) Halle P, matriz cambio de base de E a F, y Q, matriz cambio de base de F a E.
 - b) Compruebe que : $Q = P^{-1}$.
 - c) Sea $x = e_1 + 2e_2 e_3$. Exprese x como combinación lineal de los elementos de la base F, usando la parte a).
- 7.- Considere las bases de $P_1(\mathbb{R})$: $\beta_1 = \{p_1 = 1, p_2 = x\}, \ \beta_2 = \{q_1 = 1 + 2x, q_2 = 2 + 3x\}.$
 - Halle matrices de cambio de base de β_1 a β_2 (A) y de β_2 a β_1 (B).
 - Pruebe que : $A[f]_{\beta_1} = [f]_{\beta_2}$, para todo $f \in P_1(\mathbb{R})$.
 - Pruebe que : $B[f]_{\beta_1} = [f]_{\beta_1}$, para todo $f \in P_1(\mathbb{R})$.
 - d) Sea $T: P_1(\mathbb{R}) \to P_1(\mathbb{R})$, T(a+bx) = (2a-3b)+(a+b)x, operador lineal. Pruebe que : $[T]_{\beta_0} = B \cdot [T]_{\beta_0} \cdot A$

8.- Sean $V = \langle (1,0,1), (1,-2,1) \rangle$ y $W = \langle (1,0,1,-1), (0,1,-1,0) \rangle$.

Sea $T: V \to W$ cuya matriz en las bases dadas de V y W es $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$.

- a) Describa explícitamente la aplicación T.
- b) Pruebe que $\{2,-2,2\},(0,2,0)\}$ y $\{(2,1,1,-2),(-1,2,-3,1)\}$ son bases de V y W respectivamente.
- c) Halle la matriz de *T* en las bases dadas en b).
- **9.-** a) Sea $F: \mathbb{R}^n \to \mathbb{R}^n$, F(x) = cx, $c \in \mathbb{R}$ fijo. ¿Cuál es la matriz asociada a F en la base canónica?
 - b) Sea $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Halle T_{β} , donde β es la base canónica de $M_2(\mathbb{R})$, para las transformaciones:
 - T(A) = MA T(A) = AM T(A) = MA AM
- 10.- Para las siguientes transformaciones lineales, halle valores propios, el espacio propio de cada uno y una base.
 - a) $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x, y) = (3x + 3y, x + 5y)
 - b) $T: \mathbb{R}^3 \to \mathbb{R}^3$, T(x, y, z) = (x y, 2x + 3y + 2z, x + y + 2z)
- 11.- Sea $A = \begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix} \in M_2(\mathbb{R})$.

Muestre que A no tiene valores propios y por tanto no es diagonalizable.

- 12.- Sean $A = \begin{bmatrix} -1 & 4 & -2 \\ 0 & 3 & -2 \\ 0 & 4 & -3 \end{bmatrix}$ $y B = \begin{bmatrix} 0 & 5 & -3 \\ 1 & 0 & 1 \\ 2 & -4 & 4 \end{bmatrix}$
 - a) Halle valores propios y espacio propio para cada una.
 - b) Determine si son diagonalizables o no.
- **13.-** Demuestre que :
 - a) Los valores propios de una matriz triangular son los elementos de su diagonal.
 - b) Una matriz y su traspuesta tienen los mismos valores propios.
 - c) Si λ es valor propio de A y X es vector propio de A asociado a λ , entonces $A^2X = \lambda^2 X$. ¿se puede concluir que todos los valores propios de A^2 , son los cuadrados de los valores propios de A?
 - d) $T: V \to V$ invertible, λ valor propio de $T \Rightarrow \lambda^{-1}$ es valor propio de T^{-1} .
 - e) x vector propio de T_1 y T_2 , operadores lineales en V(K) espacio vectorial $\Rightarrow x$ es vector propio de $k_1T_1 + k_2T_2$, $\forall k_1, k_2 \in K$.
- **14.-** a) Para $A \in M_n(\mathbb{R})$, definitions $e^A = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$ (Exponencial de la matriz A).

Pruebe que:

- Si $D = \operatorname{diag}(d_1, d_2, ..., d_n)$ es matriz diagonal entonces : $e^D = \operatorname{diag}(e^{d_1}, e^{d_2}, ..., e^{d_n})$
- Si $A = PDP^{-1}$ entonces: $e^A = Pe^DP^{-1}$.
- b) Considere ahora $A = \begin{bmatrix} 10 & 3 & -9 \\ -12 & -2 & 12 \\ 6 & 3 & -5 \end{bmatrix}$. Calcule e^A . Para ello:
 - Pruebe que A es diagonalizable.
 - Halle P tal que : $P^{-1}AP = D$, D diagonal (o sea : $A = PDP^{-1}$).
 - Use parte a) para calcular e^A .
- **15.-** Sea $A = \begin{bmatrix} -3 & -3 & 2 \\ -2 & 2 & 2 \\ -6 & -3 & 5 \end{bmatrix}$, Halle polinomio característico de A. A partir de él halle valores propios de A. verifique

que la suma de los valores propios de A es igual a la traza de A y que el producto de ellos es el determinante de A.