t-rage

Hajee Mohammad Danesh Science and Technology University, Dinajpur

Department of Computer Science and Engineering

B. Sc. in Computer Science and Engineering

Semester Final Examination 2017 (Jul-Dec) .

Level 4 Semester II, Course Code: CSE 457, Credit: 3.0

Course Title: VLSI Design

Time: 03 Hours

Total Marks: 90

[N.B. The figure in the right margin indicates the marks allocated for respective question. Split answer of any question will not be accepted.]

SECTION-A

(Answer any three from the following questions.)

l.	(a)	Describe VLSI IC family. Briefly explain the other IC families with an example for each.	2+3
	(b)	Explain the speed/performance scenario of nMOS, CMOS, GaAs, BiCMOS, and ECL technologies.	5
	(c)	Define bipolar transistor technology. Explain different types of MOSFET briefly.	2+3
2.	(a)	What is MOS and why it is important in VLSI?	1+2
	(b)	State the guidelines to design a VLSI system. Discuss different types of symbols used in stick diagram.	2+3
	(c)	What is fabrication in context of transistor technology? Briefly discuss about nMOS fabrication.	1+6
3.	(a)	Explain pass transistor and switch logic for VLSI design.	1+2
	(b)	Compare between unipolar and bipolar transistor technology.	5
	(c)	Derive the drain to source current I_{ds} versus voltage V_{ds} relationship equations for the non-saturated region as well as the saturated region.	7
4.	(a)	Define analog and digital IC.	3
	(b)	Deduce the pull-down ratio Zp.u./Zp.d. for an inverter driven by another nMOS inverter.	5
	(c)	Shortly describe the operational procedure of a multiplexer and design it through	7

<u>SECTION-B</u> (Answer any three from the following questions.)

1.	(a)	Explain CMOS stick diagram design style with an example.	5
	(b)	What is transmission gate? Discuss regularity factor of a VLSI design with an example.	2+3
	(c)	Draw the basic circuit of BiCMOS inverter and describe its operating principle.	3+2
2.	(a)	Mention the necessities of transistors in VLSI design. Write short note on Lambda based design rules for stick diagram.	2+3
	(b)	Discuss the operational procedure of a typical parity generator and draw its stick diagram.	2+3
	(c)	Define a full adder. Draw its stick diagram using multiplexer based switch logic.	2+3
3.	(a)	Show and briefly illustrate the stick diagram (outline) of a 4-bit adder.	_
	(b)		5
		Discuss the bus arbitration logic for <i>n</i> -line bus in favor of VLSI design.	5
	(c)	Explain the subsystems of a typical ALU.	5
4.	(a)	How can a 4-bit adder be used for implementing the logical operations of a 4-bit ALU? Explain with proper Boolean expressions.	5
	(b)	Discuss the operational procedure of a 2-input AND gate and design it through logic diagram, transistor circuit diagram and stick diagram.	5
	(c)	Draw and discuss the stick diagram (outline) of a 4-bit ALU.	5