```
#IMPORT THE LIBRARIES
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from imblearn.over_sampling import SMOTE
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout

data= pd.read_csv('/content/framingham.csv')

data.head()
```

→		male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	hea
	0	1	39	4.0	0	0.0	0.0	0	0	0	195.0	106.0	70.0	26.97	
	1	0	46	2.0	0	0.0	0.0	0	0	0	250.0	121.0	81.0	28.73	
	2	1	48	1.0	1	20.0	0.0	0	0	0	245.0	127.5	80.0	25.34	
	3	0	61	3.0	1	30.0	0.0	0	1	0	225.0	150.0	95.0	28.58	
	4	0	46	3.0	1	23.0	0.0	0	0	0	285.0	130.0	84.0	23.10	

Next steps: Generate code with data View recommended plots New interactive sheet

data.info()

```
</pr
    RangeIndex: 4240 entries, 0 to 4239
    Data columns (total 16 columns):
                         Non-Null Count Dtype
         Column
     0
         male
                         4240 non-null
                                        int64
                         4240 non-null
                                        int64
     1
         age
     2
         education
                         4135 non-null
                                         float64
     3
         currentSmoker
                         4240 non-null
                                        int64
                                        float64
     4
         cigsPerDay
                         4211 non-null
         BPMeds
                         4187 non-null
                                        float64
         prevalentStroke 4240 non-null
                                        int64
         prevalentHyp
                         4240 non-null
                                         int64
                         4240 non-null
                                        int64
         diabetes
         totChol
                         4190 non-null
                                         float64
                         4240 non-null
     10
        sysBP
                                         float64
         diaBP
                         4240 non-null
                                         float64
     11
         BMI
                         4221 non-null
                                         float64
     12
     13 heartRate
                         4239 non-null
                                        float64
     14
         glucose
                         3852 non-null
                                         float64
     15 TenYearCHD
                         4240 non-null
                                        int64
    dtypes: float64(9), int64(7)
    memory usage: 530.1 KB
plt.figure(figsize=(6,4))
cols = ["green", "purple"]
sns.countplot(x=data["TenYearCHD"], palette=cols)
plt.title("Class Distribution before SMOTE")
plt.xlabel("Heart Disease (0 = No, 1 = Yes)")
plt.ylabel("Count")
plt.show()
#Data is imbalance
```

<ipython-input-6-055a941ef299>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le sns.countplot(x=data["TenYearCHD"], palette=cols)

data.shape

→ (4240, 16)

data.fillna(data.median(), inplace=True) # Replaces missing values with column medians

data.shape

→ (4240, 16)

x = data.drop(columns=["TenYearCHD"])

y = data["TenYearCHD"]

X.head()

₹		male	age	education	currentSmoker	cigsPerDay	BPMeds	prevalentStroke	prevalentHyp	diabetes	totChol	sysBP	diaBP	BMI	hea
	0	1	39	4.0	0	0.0	0.0	0	0	0	195.0	106.0	70.0	26.97	
	1	0	46	2.0	0	0.0	0.0	0	0	0	250.0	121.0	81.0	28.73	
	2	1	48	1.0	1	20.0	0.0	0	0	0	245.0	127.5	80.0	25.34	
	3	0	61	3.0	1	30.0	0.0	0	1	0	225.0	150.0	95.0	28.58	
	4	0	46	3.0	1	23.0	0.0	0	0	0	285.0	130.0	84.0	23.10	
	4														•

y.head()

0 0 1 0 2 0 3 1
2 0
3 1
4 0
da

Standardize features

scaler = StandardScaler()

 $x_scaled = scaler.fit_transform(x)$

 $\mbox{\tt\#}$ Apply SMOTE to balance dataset

smote = SMOTE(random_state=42)

```
x_resampled, y_resampled = smote.fit_resample(x_scaled, y)
# Visualize class distribution after SMOTE
plt.figure(figsize=(6,4))
sns.countplot(x=y_resampled, palette=["green", "purple"])
plt.title("Class Distribution After SMOTE")
plt.xlabel("Heart Disease (0 = No, 1 = Yes)")
plt.ylabel("Count")
plt.show()
```

→ <ipython-input-14-98d785fc8211>:3: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `le

plt.figure(figsize=(10, 6)) data.hist(figsize=(12, 10), bins=20, edgecolor='black') plt.suptitle("Feature Distributions", fontsize=16) plt.show()

→ <Figure size 1000x600 with 0 Axes>

Feature Distributions


```
# Correlation heatmap
plt.figure(figsize=(10, 8))
sns.heatmap(data.corr(), annot=True, cmap="coolwarm", fmt=".2f", linewidths=0.5)
plt.title("Feature Correlation Heatmap")
plt.show()
```



```
# Split into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(x_resampled, y_resampled, test_size=0.2, random_state=42)
model = Sequential([
   Dense(32, activation="relu", input_shape=(X_train.shape[1],)),
   Dropout(0.2),
    Dense(16, activation="relu"),
   Dropout(0.2),
    Dense(1, activation="sigmoid") # Output layer for binary classification
1)
\rightarrow
    /usr/local/lib/python3.11/dist-packages/keras/src/layers/core/dense.py:87: UserWarning: Do not pass an `input_shape`/`input_dim` aræ
       super().__init__(activity_regularizer=activity_regularizer, **kwargs)
# Compile model using ADAM optimizer
model.compile(optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"])
# Train the model
history = model.fit(X_train, y_train, epochs=50, batch_size=32, validation_data=(X_test, y_test), verbose=1)
```

Epocn 31/50	1s 3ms/step - accuracy: 0.7121 - loss: 0.5629 - val accuracy: 0.7116 - val loss: 0.5580
Epoch 32/50	13 3m3/3ccp accuracy. 0.7121 1033. 0.3025 var_accuracy. 0.7110 var_1033. 0.3300
180/180	1s 4ms/step - accuracy: 0.6998 - loss: 0.5691 - val_accuracy: 0.7116 - val_loss: 0.5562
Epoch 33/50	
180/180	————— 1s 5ms/step - accuracy: 0.7059 - loss: 0.5555 - val_accuracy: 0.7081 - val_loss: 0.5558
Epoch 34/50	
180/180 ————————————————————————————————————	1s 3ms/step - accuracy: 0.7253 - loss: 0.5512 - val_accuracy: 0.7192 - val_loss: 0.5548
180/180	1s 3ms/step - accuracy: 0.7105 - loss: 0.5611 - val accuracy: 0.7151 - val loss: 0.5521
Epoch 36/50	25 3m3,3ccp decardey. 0.7153 1055. 0.3011 Val_decardey. 0.7151 Val_1055. 0.3321
180/180	1s 3ms/step - accuracy: 0.7178 - loss: 0.5636 - val_accuracy: 0.7151 - val_loss: 0.5524
Epoch 37/50	
180/180	————— 1s 3ms/step - accuracy: 0.7258 - loss: 0.5539 - val_accuracy: 0.7151 - val_loss: 0.5534
Epoch 38/50	
180/180 ————————————————————————————————————	1s 3ms/step - accuracy: 0.7171 - loss: 0.5498 - val_accuracy: 0.7186 - val_loss: 0.5522
180/180 	1s 3ms/step - accuracy: 0.7306 - loss: 0.5397 - val accuracy: 0.7192 - val loss: 0.5500
Epoch 40/50	25 sins/seep decardey. 0.7500 1055. 0.5557 val_decardey. 0.752 val_total
180/180	1s 3ms/step - accuracy: 0.7174 - loss: 0.5499 - val_accuracy: 0.7269 - val_loss: 0.5496
Epoch 41/50	
180/180	————— 1s 3ms/step - accuracy: 0.7225 - loss: 0.5415 - val_accuracy: 0.7213 - val_loss: 0.5521
Epoch 42/50	4. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.
180/180 ————————————————————————————————————	1s 3ms/step - accuracy: 0.7331 - loss: 0.5380 - val_accuracy: 0.7241 - val_loss: 0.5508
180/180	1s 3ms/step - accuracy: 0.7309 - loss: 0.5433 - val accuracy: 0.7206 - val loss: 0.5511
Epoch 44/50	
180/180	1s 3ms/step - accuracy: 0.7407 - loss: 0.5359 - val_accuracy: 0.7206 - val_loss: 0.5479
Enach AE/EA	