Zadania z Matematyki Dyskretnej – Rekurencja

- 1. Podać wzór ogólny ciągu
 - (a) $s_n = s_{n-1} + 6s_{n-2}$ dla i) $s_0 = 1$, $s_1 = 13$
 - ii) $s_0 = 2$, $s_1 = 1$
 - (b) $s_n = 3s_{n-1} 2s_{n-2}$ dla i) $s_0 = 1$, $s_1 = 1$
 - ii) $s_0 = 0$, $s_1 = 6$
 - (c) $s_n = 4s_{n-1} 4s_{n-2}$ dla i) $s_0 = 1$, $s_1 = 6$
 - ii) $s_0 = -2$, $s_1 = -8$
 - (d) $s_n = -6s_{n-1} 9s_{n-2}$ dla i) $s_0 = 3$, $s_1 = 8$
 - ii) $s_0 = 2$, $s_1 = 0$
- 2. Dane problemy rozwiązano za pomocą metody "Dziel i rządź". Niech
 - f(n) oznacza funkcję złożoności. Ułożyć równanie rekurencyjne na
 - f(n) i je rozwiązać.
 - (a) Znajdowanie danego elementu w uporządkowanym ciągu.
 - (b) Znajdowanie największego elementu w nieuporządkowanym ciągu.
 - (c) Sortowanie ciagu.
- 3. Podać wzór jawny na s_n dla $n = 2^m \quad m \in \mathbb{N}$
 - (a) $s_{2n} = 2s_n + 2 + 2n$ dla i) $s_1 = 1$, ii) $s_1 = 2$
 - (b) $s_{2n} = 2s_n + 5 3n$ dla i) $s_1 = 1$, ii) $s_1 = 2$
 - (c) $s_{2n} = 2s_n 4 + 7n$ dla i) $s_1 = 1$, ii) $s_1 = 2$
- 4. Niech n oznacza liczbę klatek ustawionych w szeregu, k liczbę lwów (lwy są nierozróżnialne), funkcja g(n,k) liczbę sposobów rozlokowania k lwów w n klatkach, w taki sposób, żeby żadne dwa nie sąsiadowały ze sobą. Znaleźć:
 - (a) g(2k-1,k)
 - (b) g(2k-1,k) dla n < 2k-1
 - (c) g(n,1)
 - (d) g(n,k)
 - (e) g(2k, k)
 - (f) Policzyć g(6,4), g(7,4), g(8,4), g(12,5)
 - (g) Czy istnieje ogólny wzór na g(n,k)?