CSI - 3105 Design & Analysis of Algorithms Course 21

Jean-Lou De Carufel

Fall 2019

Theorem

$$\left. \begin{array}{c} \textit{L is NP-Complete} \\ \textit{L} \leq_{\textit{P}} \textit{L}' \\ \textit{L}' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad \textit{L}' \textit{ is NP-Complete}$$

Theorem

Now we can start using this theorem to prove that other problems are NP-Complete.

Theorem

Now we can start using this theorem to prove that other problems are NP-Complete.

At this moment, we know that CIRCUIT - SAT is NP-Complete.

Theorem

$$\left. egin{array}{ll} L \ \textit{is NP-Complete} \\ L \leq_P L' \\ L' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad L' \ \textit{is NP-Complete}$$

Now we can start using this theorem to prove that other problems are NP-Complete.

At this moment, we know that CIRCUIT - SAT is NP-Complete. We will prove that 3SAT is NP-Complete.

Theorem

$$\left. egin{array}{ll} L \ \textit{is NP-Complete} \\ L \leq_P L' \\ L' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad L' \ \textit{is NP-Complete}$$

Now we can start using this theorem to prove that other problems are NP-Complete.

At this moment, we know that CIRCUIT - SAT is NP-Complete. We will prove that 3SAT is NP-Complete. It is sufficient to show that

- 3SAT is in NP.
- 2 CIRCUIT SAT $\leq_{P} 3SAT$

2 / 10

Theorem

$$\left. egin{array}{ll} L \ \textit{is NP-Complete} \\ L \leq_P L' \\ L' \in \textit{NP} \end{array} \right\} \quad \Longrightarrow \quad L' \ \textit{is NP-Complete}$$

Now we can start using this theorem to prove that other problems are NP-Complete.

At this moment, we know that CIRCUIT - SAT is NP-Complete. We will prove that 3SAT is NP-Complete. It is sufficient to show that

- 3SAT is in NP.
- 2 CIRCUIT SAT $\leq_{P} 3SAT$

The first item is easy: for a given truth-assignment of the variables, we can verify in polynomial time if the Boolean formula is true.

It remains to show that $CIRCUIT - SAT \leq_P 3SAT$.

It remains to show that $CIRCUIT - SAT \leq_P 3SAT$. We need a function f such that

- f transforms any input (a Boolean circuit) B for CIRCUIT SAT and produces an input $\phi = f(B)$ (a Boolean formula) for 3SAT.

There exist truth-values for the unknown input gates such that B's output is true

$$\iff$$

There exist truth-values for the variables such that ϕ is true

 $\bullet = f(B)$ can be computed in time that is polynomial in the size of B.

Consider a Boolean circuit B.

- one variable for each gate
- describe the effect of each gate using a few clauses
- connect all clauses with \^'s

Consider a Boolean circuit B.

- one variable for each gate
- describe the effect of each gate using a few clauses
- connect all clauses with \(\Lambda\)'s

Known input gates:

Consider a Boolean circuit B.

- one variable for each gate
- describe the effect of each gate using a few clauses
- connect all clauses with \(\Lambda\)'s

Known input gates:

$$\begin{array}{ccc} x & & & \\ \hline \text{true} & & & \text{clause: } x \\ x & & & & \text{clause: } \neg x \\ \end{array}$$

Unknown input gates:

NOT-gates:

NOT-gates:

OR-gates:

AND-gates:

AND-gates:

Output-gates:

$$x$$
 clause: x

By construction,

$$B \in \mathit{Circuit} - \mathit{SAT} \iff f(B) = \phi \in 3\mathit{SAT}$$

By construction,

$$B \in \mathit{Circuit} - \mathit{SAT} \iff f(B) = \phi \in \mathit{3SAT}$$

Size of ϕ :

- number of variables in ϕ : number of gates in B.
- each clause has at most 3 literals
- number of clauses is at most 3 times the number of gates in B

By construction,

$$B \in \mathit{Circuit} - \mathit{SAT} \iff f(B) = \phi \in \mathit{3SAT}$$

Size of ϕ :

- number of variables in ϕ : number of gates in B.
- each clause has at most 3 literals
- number of clauses is at most 3 times the number of gates in B

Therefore,

size of
$$\phi = O(\text{size of } B)$$
: polynomial!

Moreover, ϕ can be computed in time that is polynomial in the size of B.

By construction,

$$B \in \mathit{Circuit} - \mathit{SAT} \iff f(B) = \phi \in \mathit{3SAT}$$

Size of ϕ :

- number of variables in ϕ : number of gates in B.
- each clause has at most 3 literals
- number of clauses is at most 3 times the number of gates in B

Therefore,

size of
$$\phi = O(\text{size of } B)$$
: polynomial!

Moreover, ϕ can be computed in time that is polynomial in the size of B.

Conclusion: 3SAT is NP-Complete!

- 3SAT is NP-Complete
- $3SAT \leq_P INDEP SET$ (refer to Course 19)
- $INDEP SET \in NP$ (exercise)

- 3SAT is NP-Complete
- $3SAT \leq_P INDEP SET$ (refer to Course 19)
- $INDEP SET \in NP$ (exercise)

Therefore *INDEP - SET* is *NP*-Complete!

- 3SAT is NP-Complete
- $3SAT <_P INDEP SET$ (refer to Course 19)
- $INDEP SET \in NP$ (exercise)

Therefore *INDEP - SET* is *NP*-Complete!

- CLIQUE ∈ NP (exercise)
- $INDEP SET \leq_P CLIQUE$ (refer to Course 17)

- 3SAT is NP-Complete
- $3SAT <_P INDEP SET$ (refer to Course 19)
- $INDEP SET \in NP$ (exercise)

Therefore *INDEP - SET* is *NP*-Complete!

- CLIQUE ∈ NP (exercise)
- $INDEP SET \leq_P CLIQUE$ (refer to Course 17)

Therefore *CLIQUE* is *NP*-Complete!

- 3SAT is NP-Complete
- $3SAT <_P INDEP SET$ (refer to Course 19)
- $INDEP SET \in NP$ (exercise)

Therefore *INDEP - SET* is *NP*-Complete!

- CLIQUE ∈ NP (exercise)
- $INDEP SET \leq_P CLIQUE$ (refer to Course 17)

Therefore *CLIQUE* is *NP*-Complete!

- VERTEX − COVER ∈ NP (exercise)
- CLIQUE <_P VERTEX − COVER (refer to Course 18)

- 3SAT is NP-Complete
- $3SAT <_P INDEP SET$ (refer to Course 19)
- $INDEP SET \in NP$ (exercise)

Therefore *INDEP - SET* is *NP*-Complete!

- CLIQUE ∈ NP (exercise)
- $INDEP SET \leq_P CLIQUE$ (refer to Course 17)

Therefore *CLIQUE* is *NP*-Complete!

- VERTEX − COVER ∈ NP (exercise)
- CLIQUE <_P VERTEX − COVER (refer to Course 18)

Therefore VERTEX – COVER is NP-Complete!

Exercise

How do we prove that $SUBSET - SUM \leq_P VERTEX - COVER$?

Exercise

How do we prove that $SUBSET - SUM \leq_P VERTEX - COVER$?

We could find a function f which satisfies the famous 3 properties...

Exercise

(Exercise 20) Is there a problem in NP that is not NP-Complete?