Exemple 4 : Résoudre chacune des équations suivantes.

a)
$$7a - \frac{2a}{7} \div 2 = 9a - 3$$

 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 $7a - \frac{2a}{7} \div 2 = 9a - 3$
 7

b)
$$\frac{\sqrt{2}x}{2} + \frac{x}{5} = 0 \quad (x \neq 0)$$
 $\frac{x}{4} + \frac{x}{5} = 0$
 $\frac{x}{5} = 0$
 $\frac{x}{5} = 0$

c)
$$\frac{5t}{3} - \frac{t}{2} = 4 + \frac{t}{6} + 2$$

$$\frac{10t - 3t}{6} = \frac{24 + t + 12}{6}$$

$$\frac{7t}{6} = \frac{1}{3} + \frac{1}$$

d)
$$\frac{2b}{3} + 1 = b + \frac{2}{3}$$

 $\frac{2b+3}{3} = \frac{3b+2}{3}$
 $2b+3 = -3b+2$
 $1 = b$

e)
$$\frac{2c}{5} + \frac{1}{5} = 1 - \frac{c}{5} + \frac{2}{5}$$

$$\frac{2c+1}{5} = \frac{5-c+2}{5}$$

$$2c+1 = -c+7$$

$$3c = 6$$

$$c = 2$$

f)
$$\frac{1}{2}v+7=\frac{2}{9}v+\frac{1}{6}v-4$$

$$\frac{9v+126}{18}=\frac{4v+3v-72}{18}$$

$$9v+126=7v-72$$

$$2v=-198$$

$$v=-99$$

g)
$$\frac{11m}{2} + \frac{3}{2} = \frac{13m}{4} - \frac{m}{2} - \frac{5}{2}$$

$$\frac{22m+b}{4} = \frac{13m-2m-10}{4}$$

$$\frac{4}{22m+b} = \frac{13m-2m-10}{4}$$

$$\frac{11m-10}{11m} = -\frac{16}{11}$$

h)
$$3x + \frac{x}{2} + \frac{x}{5} = 37$$

$$\frac{30 \times + 5 \times + 2x}{10} = 37$$

$$37x = 370$$

$$x = 10$$

i)
$$\frac{4r-18}{9}-3=\frac{1}{3}+\frac{5r-11}{6}$$

$$\frac{8r-36-54}{18}=\frac{6t|5r-33}{18}$$

$$8r-90=|5r-27$$

$$-63=7r$$

j)
$$\frac{5p-2}{2} - \frac{p+1}{3} = \frac{3p+5}{6}$$

 $|5p-6-2p-2| = 3p+5$
 $|3p-8| = 3p+5$
 $|0p| = |3|$
 $|p| = |3|$

k)
$$\frac{x+8}{3} - \frac{x-8}{5} = 3 + \frac{3x-13}{15}$$

 $5x+40-3x+24 = 45+3x-13$
 15
 $2x+64 = 3x+32$
 $32 = x$

1)
$$\frac{x}{3} + \frac{3(x-1)}{4} = 2 - \frac{x-3}{12}$$
 $4x+9x-9 = 24-x+3$
 12
 $13x-9 = -x+74$
 $14x = 36$
 $x = 36$
 $x = 18$

m)
$$\frac{3}{4}(x-2) + \frac{2}{3}(x-1) = 1 - \frac{3}{5}(2x+1)$$
n) $\frac{3}{4}\left(\frac{x+1}{3} - \frac{3x+2}{21}\right) = \frac{2}{3}$

$$\frac{3x-6}{4} + \frac{2x-2}{3} = 1 - \frac{6x+3}{5}$$

$$\frac{3}{4}\left(\frac{x+1}{3} - \frac{3x+2}{21}\right) = \frac{2}{3}$$

$$\frac{3x-6}{4} + \frac{2x-2}{3} = 1 - \frac{6x+3}{5}$$

$$\frac{3}{4}\left(\frac{x+1}{3} - \frac{3x+2}{21}\right) = \frac{2}{3}$$

$$\frac{3x-6}{4} + \frac{2x-2}{3} = 1 - \frac{6x+3}{5}$$

$$\frac{3x-6}{4} + \frac{2x-2}{21} = \frac{2}{3}$$

$$\frac{3x-6}{4} + \frac{2x-2}{21} = \frac{2x-2}{3}$$

$$\frac{3x-6}{4} + \frac{2x-2}{21} = \frac{2x-2}{3}$$

$$\frac{3x-6}{4} + \frac{2x-2}{21} = \frac{2x-2}{3}$$

$$\frac{3x-6}{4} + \frac{2x-2}{3} = \frac{2x-2}{3}$$

$$\frac{3x-6}{4} + \frac{2x-2}{3} = \frac{2x-2}{3}$$

$$\frac{3$$

C) Les solutions d'un système d'équations

Dès que deux relations du premier degré sont simultanément imposées à deux variables,	on obtient
un <u>système</u> de deux équations du premier degré à deux variables.	

Selon la position relative des droites dans le plan, un système d'équations du premier degré peut admettre aucune, une seule ou une infinité de solutions.

<u>Si les droites sont...</u>

parallèles distinctes (disjointes)

sécantes

parallèles confondues

alors il y a...

alors il y a...

parallèles distinctes (disjointes)

une Solution

parallèles confondues

D) Résolution d'un système d'équations

Résoudre un système d'équations du premier degré à deux variables consiste à déterminer quelles valeurs il faut donner à ces variables pour rendre toutes les équations du système VRAIES simultanément. Pour ce faire, il existe deux catégories de méthodes : la méthode graphique et les méthodes algébriques.

Méthode graphique

La méthode graphique consiste simplement à tracer dans le plan cartésien chaque équation du système. Le point d'intersection des droites a pour coordonnées les nombres qui sont la solution du système. Cette méthode est très utile lorsque la solution du système appartient à l'ensemble des entiers \mathbb{Z} , mais plus laborieuse pour des solutions puisées dans l'ensemble des rationnels \mathbb{Q} ou des réels \mathbb{R} .

Méthodes algébriques

Les diverses méthodes algébriques connues sont : la réduction, la comparaison et la substitution. Ciaprès, un bref rappel des trois méthodes. Pour être « efficace », il est important de choisir la « bonne » méthode, puis une fois la résolution complétée, de vérifier la solution obtenue... L'erreur est humaine!

**Pour résoudre un système d'équations, il faut autant d'équations qu'il y a de variables dans la situation donnée.

Chapitre 1 – Optimisation Mathématique CST5 La méthode de résolution par **RÉDUCTION** est illustrée dans l'exemple suivant :

$$(3,-2)$$

La méthode de résolution par SUBSTITUTION est illustrée dans l'exemple suivant :

La méthode de résolution par **SUBSTITUTION** est illustrée dans l'exemple suivant :
$$\begin{cases} 3x + 4y = -6 \\ 2x + y = 1 \end{cases}$$

$$3x + 4y = -6$$

$$3x + 4(-2x + 1) = -6$$

$$3x - 8x + 4 = -6$$

$$-5x = -10$$

$$x = 2$$

$$y = -3$$

$$(2, -3)$$

La méthode de résolution par COMPARAISON est illustrée dans l'exemple suivant :

$$\begin{cases}
-2x + y = 1 & (=) & y = 2x + 1 \\
3x + 2y = 9 & (=) & y = -3x + 9
\end{cases}$$

$$2x + 1 = -3x + 9$$

$$4x + 2 = -3x + 9$$

$$7x = 7$$

$$4x + 2 = -3x + 9$$

$$7x = 7$$

$$1x = 7$$

$$2x + 1 = -3x + 9$$

$$-2x + 1 =$$

Chapitre 1 - Optimisation Mathématique CST5

Exemples:

1. Résoudre graphiquement les systèmes d'équations suivants.

$$2x + y = -1$$

$$2x + \frac{2x}{3} + 2 = -1$$

$$6x + 2x = -3$$

$$8x = -9$$

$$x = -9/8$$

$$y = \frac{2x}{3} + 2$$

$$y = \frac{2x}{3} + 2$$

$$y = \frac{7}{3} + 2$$

$$y = -9 \div 3 + 2$$

$$y = -9 \div 3 + 2$$

$$y = -3 \div 8 = 5$$

$$y = -3 \div 8 = 5$$

Chapitre 1 – Optimisation Mathématique CST5 2. Résoudre <u>algébriquement</u> les systèmes d'équations suivants en utilisant la méthode qui convient le mieux.

a)
$$\begin{cases} y = 3x - 1 \\ y = \frac{x}{2} + 4 \end{cases}$$

b)
$$\begin{cases} 2x - 3y = 5 \\ y = 9 - 4x \end{cases}$$

Méthode : Comparaison

Méthode : Substitution

Méthode: Réduction

Calculs:

$$3x-1=\frac{x}{2}+4$$
 $y=3\cdot 2-$
 $6x-2=x+8$ $y=5$
 $6x-2=x+8$
 $5x=10$

$$y=3x-1$$
 $2x-3y=5$
 $y=3\cdot 2-1$ $2x-3(9-4x)=5$
 $y=6-1$ $2x-2+7+12x=5$
 $y=5$ $14x=32$
 $x=32=4$

$$+\frac{-6x-2y=4}{-11y=40}$$

 $y=\frac{40}{11}$

$$3x+y=-2$$
 $3x+-40=-2$
 $3x=-22+40$

3. En une semaine, un commis vend 40 bracelets pour un total de 282,00\$. Les bracelets unis se vendent 4,95\$ et les multicolores, 7,95\$. En prenant soin de définir les variables utilisées, traduire cette situation par un système d'équations qui permettrait de déterminer combien de bracelets unis et multicolores le commis a vendu en une semaine.

X: nb de bracelets unis y: nb de bracelets multicolores

(12,23))