

Kaonenexperimente im Wandel der Zeit

Fabian Koch **02.05.19** Fakultät Physik

Übersicht

Was sind Kaonen

Historische Kaonenexperimente

Entdeckung der Kaonen Paritätsverletzung Kaonenmischung Direkte und indirekte CP-Verletzung

F. Koch | 02.05.19

Inhalt

Was sind Kaonen

Historische Kaonenexperimente

Entdeckung der Kaonen
Paritätsverletzung
Kaonenmischung
Direkte und indirekte CP-Verletzung

Was sind Kaonen?

Figure: Übersicht über die Kaonen

Kaonen:

- \blacksquare sind die leichtesten Teilchen mit Strangeness $S=\pm 1$
- besitzen einen ganzzahligen Spin
- sind Bosonen
- verfügen über eine relativ lange Lebensdauer

	m / MeV		$\tau/10^{-10}\mathrm{s}$	
K^{\pm} K^0_S	493,677 497,614	± 0,016 ± 0,024	123,80 0,895	± 0,21 4 ± 0,0004
$K_S^0 \ K_L^0 \ \pi^\pm$	497,614 139,570 18	$\pm 0,024 \\ \pm 0,00035$	511,6 260,33	$\pm 2,1 \\ \pm 0,05$

Inhalt

Was sind Kaoner

Historische Kaonenexperimente

Entdeckung der Kaonen Paritätsverletzung Kaonenmischung Direkte und indirekte CP-Verletzung

Weltkarte

Entdeckung der Kaonen

Figure: Nebelkammeraufnahme der kosmischen Höhenstrahlung von Rochester und Butler 1947

- Entdeckung des ersten (neutralen) Kaons 1947 durch George Rochester et. al
- Höhenstrahlung wurde in Nebelkammer untersucht
- Zerfall eines neutralen Teilchens in ein positives und negatives Pion

$$K^0 \rightarrow \pi^+\pi^-$$

- Entdeckung des positiv geladenen Kaons 1949 durch Powell in Kernreaktionen
- Zerfall eines positiven Kaons in zwei positive und ein negatives Pion

$$K^+ \to \pi^+ \pi^+ \pi^-$$

Seltsam lange Lebensdauer

Figure: Der achtfache Weg von Gell-Mann und Ne'eman

- Sehr leichte Erzeugung (durch starke WW)
- Sehr langsamer Zerfall 10⁻¹⁰s (durch schwache WW)
- Gell-Mann 1953: Einführung einer neuen Teilcheneigenschaft/ Quantenzahl, der 'Strangeness'
- **Kaonen leichteste Teilchen mit S** = ± 1
- Zerfall sehr leicht möglich, wenn S durch alle Kräfte erhalten wäre
- Zerfall nur über die flavourändernde schwache WW möglich

Paritätsverletzung und der Cosmotron

Figure: Das Cosmotron am Brookhaven National Laboratory (1952-1966)

- Leistungsstärkstes Proton-Synchrotron (1952) mit Strahlenergien von 3,3 GeV
- Erstmals Produktion von schweren Teilchen der kosmischen Höhenstrahlung
- Entdeckung K_L durch Lande (1956)
- Beobachtung der Paritätsverletzung 1956 durch T.D. Lee und C.N.Yang

$$\tau^+ \to \pi^+ \pi^+ \pi^-$$

$$\theta^+ \to \pi^+ \pi^0$$

- $\blacksquare \tau^+$ und θ^+ tatsächlich K^+
- → Zerfälle verletzen die Paritätserhaltung

Long und short? Die Mischung neutraler Kaonen

■ Flavour-Eigenzustände $|K^0\rangle$, $|\overline{K^0}\rangle$ unterscheiden sich von den CP-Eigenzuständen:

$$\begin{split} & CP|K^0\rangle = |\overline{K^0}\rangle \\ & CP|\overline{K^0}\rangle = |K^0\rangle \\ \end{pmatrix} \rightarrow \begin{cases} |K_1\rangle = \frac{1}{\sqrt{2}}\left(|K^0\rangle + |\overline{K^0}\rangle\right) \\ |K_2\rangle = \frac{1}{\sqrt{2}}\left(|K^0\rangle - |\overline{K^0}\rangle\right) \end{cases} \end{split}$$

 \blacksquare Dabei ist $|K_1\rangle \approx |K_S\rangle$ und $|K_2\rangle \approx |K_L\rangle$

$$\tau(|K_L\rangle)\approx 600\times \tau(|K_S\rangle)$$

- \blacksquare $|K_S\rangle$ haben CP = +1 und $|K_L\rangle$ habe CP =-1
- Unterschied vor allem in Zerfallsmoden:

$$\begin{split} |K_S\rangle &\to \pi^+\pi^- \\ |K_L\rangle &\to \pi^+\pi^-\pi^0 \end{split}$$

CP-Verletzung

Fig. 9a. Set-up used to detect $K_2 \rightarrow \pi^+\pi^-$.

Figure: Das Cronin-Fitch-Experiment am Brookhaven National Laboratory (1964)

- Planung 1964 durch Christenson, Cronin, Fitch und Turlay am Brookhaven National Laboratory
- 17 m lange Beamline
- \rightarrow Zerfall der $|K_S\rangle$
- \blacksquare Messung des Winkels θ zwischen K_L^0 -Strahl und Teilchenimpulsen
- Bestimmung der Winkelsumme bei 'gleichzeitiger' Detektion
- Für Dreikörperzerfall mit großer Wahrscheinlichkeit ≠ 0
- Für Zweikörperzerfälle hingegen mit großer Wahrscheinlichkeit = 0

Ergebnis

FIG. 3. Angular distribution in three mass ranges for events with $\cos\theta > 0.9995$.

Tatsächlich wurd der Zerfall

$$K_L \to \pi^+\pi^-$$

gemessen.

Wie kann das sein?

- lacktriangle Konsequenz: $|K_S\rangle$ und $|K_L\rangle$ keine reinen CP- Zustände
- → Indirekte CP-Verletzung
- → Beide Zustände enthalten kleine Teile des anderen Zustands:

$$\begin{split} |K_L^0\rangle &= \frac{\epsilon\,|K_1\rangle + |K_2\rangle}{\sqrt{1+\epsilon^2}} \\ |K_S^0\rangle &= \frac{|K_1\rangle + \epsilon\,|K_2\rangle}{\sqrt{1+\epsilon^2}} \\ |\epsilon| &= (2.229 \pm 0.010) \times 10^{-3} \end{split}$$

- Neutrale Kaonenzustände oszillieren über Box-Diagramme und zerfallen
- Oder direkte CP-Verletzung über Pinguin- Diagramme
- Problem: Im Jahre 1964 noch keine Quarks oder der CKM-Mechanismus bekannt

Direkte CP- Verletzung

Figure: Pinguindiagramm des CP-verletzenden, neutralen Kaonenzerfalls

- Direkte CP-Verletzung setzt Verletzung ohne vorherige Mischung der Kaonen voraus
- Messung der partiellen Zerfallsbreiten von:

$$\begin{split} K_L^0 &\to \pi^+\pi^- \\ K_L^0 &\to \pi^0\pi^0 \\ K_S^0 &\to \pi^+\pi^- \\ K_S^0 &\to \pi^0\pi^0 \end{split}$$

- Verhältnis wird gebildet
- → Anteile der direkten und indirekten Verletzung spielen eine Rolle

Was wird denn da gemessen?

$$\begin{split} \frac{A\left(K_L \to \pi^0 \pi^0\right)}{A\left(K_S \to \pi^0 \pi^0\right)} &= \epsilon - 2\epsilon^{'} \\ \frac{A\left(K_L \to \pi^+ \pi^-\right)}{A\left(K_S \to \pi^+ \pi^-\right)} &= \epsilon + \epsilon^{'} \\ R &= \frac{A\left(K_L \to \pi^0 \pi^0\right)}{A\left(K_S \to \pi^0 \pi^0\right)} / \frac{A\left(K_L \to \pi^+ \pi^-\right)}{A\left(K_S \to \pi^+ \pi^-\right)} \\ &\approx 1 - 6\operatorname{Re}(\epsilon^{'}/\epsilon) \end{split}$$

- Vorteil: Viele systematische Fehler kürzen sich
- $lackbox{ } \epsilon^{'}=0$: keine direkte CP-Verletzung
- \bullet $\epsilon' \neq 0$: direkte CP-Verletzung
- Bis in die 90er kein eindeutiges Ergebnis durch Experimente

Theoretische Überlegungen:

 Drei Quarkfamilien (Kobayashi und Maskawa, 1973)

Experimentelle Implikationen:

- Drei Generationen messbar
- Beobachtung direkter CP-Verletzung in Mesonen-Systemen

Figure: Ergebnisse für $Re(\epsilon'/\epsilon)$

Wer war beteiligt?

KTeV am Fermil ab

- Vorläufer: E731 $\rightarrow \text{Re}(\epsilon'/\epsilon) = (7.4 \pm 5.9) \times 10^{-4}$
- Kaons at the TeVatron
- Kaon

NA48 am Cern

- Vorläufer NA31 \rightarrow Re $(\epsilon'/\epsilon) = (23.0 \pm 6.5) \times 10^{-4}$
- North Area 48
- Fixed target mit 450 GeV vom SPS
- \blacksquare Gleichzeitige Messung von $|K_L\rangle$ und $|K_S\rangle$ durch Strange-Tagging

Aufbau der NA48 Beamline

Figure: Beamline des NA48-Experiments

Aufbau des KTeV-Detektors

Figure: Detektor des KTeV-Experiments