SQL Structured Query Language

Karina Burnicka Viktoria Ługowska

19.04.2021

Karina Burnicka Viktoria Ługowska

Część I

Omównienie języków zapytań

Czym jest język zapytań?

Definicja

Język zapytań (ang.) query language – język stosowany do formułowania zapytań w odniesieniu do baz danych. W odpowiedzi uzyskuje się zestawienia danych, zwane raportami. Najbardziej znane języki zapytań to SQL oraz xBase

Najpopularniejszy język zapytań

SQL

Strukturalny język zapytań używany do tworzenia, modyfikowania baz danych oraz do umieszczania i pobierania danych z baz danych. Opracowany przez IBM, wydany w 1974r. Od 1986 stał się oficjalnym standardem wspieranym przez ISO.

19.04.2021

Inne języki zapytań

- Language INtegrated Query (LINQ)
- Query By Example (QBE)
- Supersyclam (ang. XML query language)
- xBase
- O POSTQUEL
- Informix-4GL
- System zarządzania relacyjną bazą danych (RDBMS)

19.04.2021

- Language INtegrated Query (LINQ)
- Query By Example (QBE)
- 3 XQuery (ang. XML query language)
- xBase
- O POSTQUEL
- Informix-4GI
- System zarządzania relacyjną bazą danych (RDBMS)

- Language INtegrated Query (LINQ)
- Query By Example (QBE)
- 3 XQuery (ang. XML query language)
- 4 xBase
- O POSTQUEL
- Informix-4GL
- System zarządzania relacyjną bazą danych (RDBMS)

- Language INtegrated Query (LINQ)
- Query By Example (QBE)
- XQuery (ang. XML query language)
- xBase
- POSTQUEL
- Informix-4GI
- System zarządzania relacyjną bazą danych (RDBMS)

- Language INtegrated Query (LINQ)
- Query By Example (QBE)
- XQuery (ang. XML query language)
- xBase
- POSTQUEL
- Informix-4GL
- System zarządzania relacyjną bazą danych (RDBMS)

- Language INtegrated Query (LINQ)
- Query By Example (QBE)
- XQuery (ang. XML query language)
- xBase
- POSTQUEL
- Informix-4GL
- System zarządzania relacyjną bazą danych (RDBMS)

- Language INtegrated Query (LINQ)
- Query By Example (QBE)
- XQuery (ang. XML query language)
- xBase
- POSTQUEL
- Informix-4GL
- System zarządzania relacyjną bazą danych (RDBMS)

Część II

Omównienie standardów ISO

Omównienie standardów ISO

Standardy ISO SQL

Structured Query Language

- SQL:86 pierwszy oficjalny standard
- SQL:89 ograniczenia integralności
- SQL:92 typy danych, operatory, tworzenie tabel tymczasowych

Structured Query Language

- SQL:86 pierwszy oficjalny standard
- SQL:89 ograniczenia integralności
- SQL:92 typy danych, operatory, tworzenie tabel tymczasowych

Structured Query Language

- SQL:86 pierwszy oficjalny standard
- SQL:89 ograniczenia integralności
- SQL:92 typy danych, operatory, tworzenie tabel tymczasowych

Structured Query Language

- SQL:99 obiektowość, typy tablicowe i strukturalne, zapytania rekurencyjne, wyrażenia regularne, osadzenie w Javie

19.04.2021

Structured Query Language

- SQL:99 obiektowość, typy tablicowe i strukturalne, zapytania rekurencyjne, wyrażenia regularne, osadzenie w Javie
- SQL:2003, SQL:2006 obsługa danych XML

19.04.2021

- SQL:99 obiektowość, typy tablicowe i strukturalne, zapytania rekurencyjne, wyrażenia regularne, osadzenie w Javie
- SQL:2003, SQL:2006 obsługa danych XML
- SQL:2008 klauzula FETCH, TRUNCATE TABLE
- SQL:2011 nowe opcjonalne elementy składniowe SQL
- SQL:2016 obsługa plików JSON, polimorficznych funkcji tabelowych
- SQL:2019 tablice wielowymiarowe SQL/MDA

- SQL:99 obiektowość, typy tablicowe i strukturalne, zapytania rekurencyjne, wyrażenia regularne, osadzenie w Javie
- SQL:2003, SQL:2006 obsługa danych XML
- SQL:2008 klauzula FETCH, TRUNCATE TABLE
- SQL:2011 nowe opcjonalne elementy składniowe SQL
- SQL:2016 obsługa plików JSON, polimorficznych funkcji tabelowych
- SQL:2019 tablice wielowymiarowe SQL/MDA

19.04.2021

Structured Query Language

- SQL:99 obiektowość, typy tablicowe i strukturalne, zapytania rekurencyjne, wyrażenia regularne, osadzenie w Javie
- SQL:2003, SQL:2006 obsługa danych XML
- SQL:2008 klauzula FETCH, TRUNCATE TABLE
- SQL:2011 nowe opcjonalne elementy składniowe SQL
- SQL:2016 obsługa plików JSON, polimorficznych funkcji tabelowych
- SQL:2019 tablice wielowymiarowe SQL/MDA

19.04.2021

Structured Query Language

- SQL:99 obiektowość, typy tablicowe i strukturalne, zapytania rekurencyjne, wyrażenia regularne, osadzenie w Javie
- SQL:2003, SQL:2006 obsługa danych XML
- SQL:2008 klauzula FETCH, TRUNCATE TABLE
- SQL:2011 nowe opcjonalne elementy składniowe SQL
- SQL:2016 obsługa plików JSON, polimorficznych funkcji tabelowych
- SQL:2019 tablice wielowymiarowe SQL/MDA

Część III

Podstawowe zasady i postaci języka SQL

Podstawowe zasady i postaci języka SQL

DDL

Język Definicji Danych – DDL (ang. Data Definition Language)

DML

Język Manipulacji Danymi – DML (ang. Data Manipulation Language)

DCL

Język Kontroli Danych - DCL (ang. Data Control Language)

DQL

Język Zapytań do Danych - DQL (ang. Data Query Language)

Język Definicji Danych - DDL

Podstawowe zasady i postaci języka SQL

CREATE

definiowanie obiektów w bazie danych

ALTER

modyfikowanie obiektów w bazie danych

DROP

usuwanie obiektów z bazy danych

Podstawowe zasady i postaci języka SQL

INSERT

wstawianie do tabeli nowych wierszy

UPDATE

modyfikowanie wierszy w tabeli

DELETE

usuwanie wierszy z tabeli

Język Kontroli Danych - DCL

Podstawowe zasady i postaci języka SQL

GRANT

przydzielenie prawa do danych

REVOKE

pozbawienie prawa do danych

DENY

bezwarunkowe pozbawienie prawa do danych

Język Zapytań do Danych - DQL

Podstawowe zasady i postaci języka SQL

SELECT

pobieranie danych z tabel

- Zapytania/Instrukcje
- Klauzule
- Identyfikatory
- Wyrazenia
- Operatory
- Predykaty

- Zapytania/Instrukcje
- Klauzule
- Identyfikatory
- Wyrażenia
- Operatory
- Predykaty

- Zapytania/Instrukcje
- Ø Klauzule
- Identyfikatory
- Wyrażenia
- Operatory
- Open Predykaty

- Zapytania/Instrukcje
- Klauzule
- Identyfikatory
- Wyrażenia
- Operatory
- Open Predykaty

- Zapytania/Instrukcje
- Klauzule
- Identyfikatory
- Wyrażenia
- Operatory
- Predykaty

- Zapytania/Instrukcje
- Klauzule
- Identyfikatory
- Wyrażenia
- Operatory
- Predykaty

Część IV

Omówienie typów danych SQL

Informacje wstępne

Rodzaj dopuszczalnych danych

Każda kolumna tabeli posiada ograniczenie co do typu wpisywanych do niej danych (zapobiega to umieszczeniu danych tekstowych w kolumnie numerycznej). Ułatwia to również poprawne sortowanie i pełni ważną rolę w optymalizacji przestrzeni zajmowanej na dysku. Dlatego bardzo ważne jest staranne dobieranie typów kolumn

Należy pamiętać!

Nie istnieją dwa identyczne SZBD

Rodzaje typów danych

Typy danych

Typy danych znacznie różnią się między poszczególnymi SZBD (systemami zarządzania bazą danych). Dochodzi nawet do tego iż typ o takiej samej nazwie ma różne znaczenia w SZBD różnych producentów. Szczegółów zawsze należy szukać w dokumentacji bazy danych.

19.04.2021

Tekstowe typy danych nadają się do przechowywania informacji takich jak : nazwy,adresy,numery telefonów i kody pocztowe można podzelić je na typy o stałej długości i o zmiennej długości

- CHAR tekst o stałej długości od 1 do 255 znaków (rozmiar musi zostać określony w trakcie definiowania tablicy)
- NCHAR specjalna postać CHAR zaprojektowana dla znaków wielobajtowych lub unicode
- NVARCHAR specjalna postać typu TEXT dla znaków wielobajtowych lub unicode
- TEXT nazywany również: VARCHAR, LONG lub MEMO, tekst o zmiennej długości

Tekstowe typy danych nadają się do przechowywania informacji takich jak : nazwy,adresy,numery telefonów i kody pocztowe można podzelić je na typy o stałej długości i o zmiennej długości

- CHAR tekst o stałej długości od 1 do 255 znaków (rozmiar musi zostać określony w trakcie definiowania tablicy)
- NCHAR specjalna postać CHAR zaprojektowana dla znaków wielobajtowych lub unicode
- NVARCHAR specjalna postać typu TEXT dla znaków wielobajtowych lub unicode
- TEXT nazywany również: VARCHAR, LONG lub MEMO, tekst o zmiennej długości

Tekstowe typy danych nadają się do przechowywania informacji takich jak : nazwy,adresy,numery telefonów i kody pocztowe można podzelić je na typy o stałej długości i o zmiennej długości

- CHAR tekst o stałej długości od 1 do 255 znaków (rozmiar musi zostać określony w trakcie definiowania tablicy)
- NCHAR specjalna postać CHAR zaprojektowana dla znaków wielobajtowych lub unicode
- NVARCHAR specjalna postać typu TEXT dla znaków wielobajtowych lub unicode
- TEXT nazywany również: VARCHAR, LONG lub MEMO, tekst o zmiennej długości

Tekstowe typy danych nadają się do przechowywania informacji takich jak : nazwy,adresy,numery telefonów i kody pocztowe można podzelić je na typy o stałej długości i o zmiennej długości

- CHAR tekst o stałej długości od 1 do 255 znaków (rozmiar musi zostać określony w trakcie definiowania tablicy)
- NCHAR specjalna postać CHAR zaprojektowana dla znaków wielobajtowych lub unicode
- NVARCHAR specjalna postać typu TEXT dla znaków wielobajtowych lub unicode
- TEXT nazywany również: VARCHAR, LONG lub MEMO, tekst o zmiennej długości

Numeryczne typy danych przechowują liczby

- BIT wartość jednobitowa (0 lub 1)
- DECIMAL/NUMERIC wartość stało- lub zmiennoprzecinkowa z różnym poziomem precyzj
- § FLOAT/ NUMBER wartość zmiennoprzecinkowa
- INT/ INTIGER czterobajtowa wartość całkowita obsługująca liczby z przedziału od 2147483648 do 2147483647
- S REAL czterobajtowa wartość zmiennoprzecinkowa
- SMALLINT dwubajtowa wartość całkowita obsługująca liczby z przedziału 32768 do 32767
- TINYINT jednobajtowa wartość całkowita obsługująca liczby z przedziału od 0 do 255

Numeryczne typy danych przechowują liczby

- BIT wartość jednobitowa (0 lub 1)
- OECIMAL/NUMERIC wartość stało- lub zmiennoprzecinkowa z różnym poziomem precyzji
- § FLOAT/ NUMBER wartość zmiennoprzecinkowa
- INT/ INTIGER czterobajtowa wartość całkowita obsługująca liczby z przedziału od 2147483648 do 2147483647
- S REAL czterobajtowa wartość zmiennoprzecinkowa
- SMALLINT dwubajtowa wartość całkowita obsługująca liczby z przedziału 32768 do 32767

Numeryczne typy danych przechowują liczby

- BIT wartość jednobitowa (0 lub 1)
- OECIMAL/NUMERIC wartość stało- lub zmiennoprzecinkowa z różnym poziomem precyzji
- 3 FLOAT/ NUMBER wartość zmiennoprzecinkowa
- INT/ INTIGER czterobajtowa wartość całkowita obsługująca liczby z przedziału od 2147483648 do 2147483647
- S REAL czterobajtowa wartość zmiennoprzecinkowa
- SMALLINT dwubajtowa wartość całkowita obsługująca liczby z przedziału 32768 do 32767
- TINYINT jednobajtowa wartość całkowita obsługująca liczby z przedziału od 0 do 255

Numeryczne typy danych przechowują liczby

- BIT wartość jednobitowa (0 lub 1)
- OECIMAL/NUMERIC wartość stało- lub zmiennoprzecinkowa z różnym poziomem precyzji
- FLOAT/ NUMBER wartość zmiennoprzecinkowa
- INT/ INTIGER czterobajtowa wartość całkowita obsługująca liczby z przedziału od 2147483648 do 2147483647
- S REAL czterobajtowa wartość zmiennoprzecinkowa
- SMALLINT dwubajtowa wartość całkowita obsługująca liczby z przedziału 32768 do 32767
- \bigcirc TINYINT jednobajtowa wartość całkowita obsługująca liczby z przedziału od 0 do 255

Numeryczne typy danych przechowują liczby

- BIT wartość jednobitowa (0 lub 1)
- DECIMAL/NUMERIC wartość stało- lub zmiennoprzecinkowa z różnym poziomem precyzji
- FLOAT/ NUMBER wartość zmiennoprzecinkowa
- INT/ INTIGER czterobajtowa wartość całkowita obsługująca liczby z przedziału od 2147483648 do 2147483647
- REAL czterobajtowa wartość zmiennoprzecinkowa
- SMALLINT dwubajtowa wartość całkowita obsługująca liczby z przedziału 32768 do 32767
- TINYINT jednobajtowa wartość całkowita obsługująca liczby z przedziału od 0 do 255

Numeryczne typy danych przechowują liczby

- BIT wartość jednobitowa (0 lub 1)
- DECIMAL/NUMERIC wartość stało- lub zmiennoprzecinkowa z różnym poziomem precyzji
- § FLOAT/ NUMBER wartość zmiennoprzecinkowa
- INT/ INTIGER czterobajtowa wartość całkowita obsługująca liczby z przedziału od 2147483648 do 2147483647
- SEAL czterobajtowa wartość zmiennoprzecinkowa
- SMALLINT dwubajtowa wartość całkowita obsługująca liczby z przedziału 32768 do 32767

Numeryczne typy danych przechowują liczby

- BIT wartość jednobitowa (0 lub 1)
- DECIMAL/NUMERIC wartość stało- lub zmiennoprzecinkowa z różnym poziomem precyzji
- 3 FLOAT/ NUMBER wartość zmiennoprzecinkowa
- INT/ INTIGER czterobajtowa wartość całkowita obsługująca liczby z przedziału od 2147483648 do 2147483647
- 5 REAL czterobajtowa wartość zmiennoprzecinkowa
- SMALLINT dwubajtowa wartość całkowita obsługująca liczby z przedziału 32768 do 32767
- lacktriangle TINYINT jednobajtowa wartość całkowita obsługująca liczby z przedziału od 0 do 255

Typy danych daty i czasu

- DATE wartość daty
- OATETIME/ TIMESTAMP wartość daty i czasu
- 3 SMALLDATETIME wartość daty i czasu z dokładnością co do minuty
- TIME wartość czasu

Typy danych daty i czasu

- DATE wartość daty
- DATETIME/ TIMESTAMP wartość daty i czasu
- 3 SMALLDATETIME wartość daty i czasu z dokładnością co do minuty
- TIME wartość czasu

Typy danych daty i czasu

- DATE wartość daty
- 2 DATETIME/ TIMESTAMP wartość daty i czasu
- 3 SMALLDATETIME wartość daty i czasu z dokładnością co do minuty
- TIME wartość czasu

19.04.2021

Typy danych daty i czasu

- DATE wartość daty
- OATETIME/ TIMESTAMP wartość daty i czasu
- 3 SMALLDATETIME wartość daty i czasu z dokładnością co do minuty
- TIME wartość czasu

Binarne typy danych

(dowolne dane takie jak grafika,multimedia czy dokumenty)są one najmniej przenośne między SZBD i nie korzysta się z nich często

- BINARY dane binarne o stałej długości od 255 lub 8000 bajtów w zależności od implementacji
- VARBINARY dane binarne o zmiennej długości od 255 do 8000 bajtów w zależności od implementacj
- 8 RAW dane binarne o stałej długości maksymalnie do 255 bajtów
- ullet LONG RAW dane binarne o zmiennej długości maksymalnie do 2GB

19.04.2021

Binarne typy danych

(dowolne dane takie jak grafika,multimedia czy dokumenty)są one najmniej przenośne między SZBD i nie korzysta się z nich często

- BINARY dane binarne o stałej długości od 255 lub 8000 bajtów w zależności od implementacji
- ullet VARBINARY dane binarne o zmiennej długości od 255 do 8000 bajtów w zależności od implementacji
- 3 RAW dane binarne o stałej długości maksymalnie do 255 bajtów
- ullet LONG RAW dane binarne o zmiennej długości maksymalnie do 2GB

19.04.2021

Binarne typy danych

(dowolne dane takie jak grafika,multimedia czy dokumenty)są one najmniej przenośne między SZBD i nie korzysta się z nich często

- BINARY dane binarne o stałej długości od 255 lub 8000 bajtów w zależności od implementacji
- $oldsymbol{0}$ VARBINARY dane binarne o zmiennej długości od 255 do 8000 bajtów w zależności od implementacji
- ullet RAW dane binarne o stałej długości maksymalnie do 255 bajtów
- ullet LONG RAW dane binarne o zmiennej długości maksymalnie do 2GB

Binarne typy danych

(dowolne dane takie jak grafika,multimedia czy dokumenty)są one najmniej przenośne między SZBD i nie korzysta się z nich często

- BINARY dane binarne o stałej długości od 255 lub 8000 bajtów w zależności od implementacji
- $oldsymbol{0}$ VARBINARY dane binarne o zmiennej długości od 255 do 8000 bajtów w zależności od implementacji
- ullet RAW dane binarne o stałej długości maksymalnie do 255 bajtów
- f 0 LONG RAW dane binarne o zmiennej długości maksymalnie do 2GB

Table: produkty

Columns:

```
prod_id char(10)
dost_id char(10)
prod_nazwa char(255)
prode_cena decimal(8,2)
prod_opis text
```

Część V

Tworzenie, usuwanie i modyfikacja schematu tabel i danych

SELECT

UPDATE

UPDATE

DELETE

DELETE

ALTER

Table: czytelnicy

Columns:

IDCzytelnika
Nazwisko urchar(200)
Imie varchar(200)
data_urodzenia date
adres varchar(50)

ALTER

Część VI

Zakładanie i usuwanie indeksów

Co to są indeksy i do czego służą?

Zapytanie	Czas (ms)	Data Output
SELECT * FROM person;	3562	10000000000
SELECT * FROM person WHERE last_name = 'Smith';	4261	100520
SELECT * FROM person WHERE first_name = 'Emma';	4066	49767
SELECT * FROM person WHERE firts_name = 'Julie' AND last_name = 'Andrews';	514	46

Co to są indeksy i do czego służą?

Zapytanie	Czas (ms)	INDEKS	
SELECT * FROM person WHERE first_name = 'Emma';	508	CREATE INDEX person_first_name_idx ON person (first_name);	
SELECT * FROM person WHERE firts_name = 'Julie' AND last_name = 'Andrews';	26	CREATE INDEX person_first_name_last_name_idx ON person (first_name, last_name);	

Zakładanie indeksów

Zakładanie unikalnych indeksów

Usuwanie indeksów

Część VII

Omówienie więzów spójności

Więzy spójności

Więzy spójn<u>ości</u>

dzięki więzom spójności nie można tak zmodyfikować danych by straciły one spójność. Są zbiorem zasad nałożonych na tabele w bazie danych

- Primary Key
- Unique
- NOT NULL
- Check
- Foreign key
- DEFAULT
- INDEX

- Primary Key
- Unique
- O NOT NULL
- Check
- Foreign key
- O DEFAULT
- INDEX

- Primary Key
- Unique
- NOT NULL
- Check
- Foreign key
- O DEFAULT
- INDEX

- Primary Key
- Unique
- NOT NULL
- Check
- Foreign key
- O DEFAULT
- INDEX

- Primary Key
- Unique
- NOT NULL
- Check
- Foreign key
- O DEFAULT
- INDEX

- Primary Key
- Unique
- NOT NULL
- Check
- Foreign key
- O DEFAULT
- INDEX

- Primary Key
- Unique
- NOT NULL
- Oheck
- Foreign key
- O DEFAULT
- INDEX

```
CREATE TABLE Pracownicy(
    ID_prac NUMERIC(7,0) PRIMARY KEY,
    pesel NUMERIC(11,0) UNIQUE NOT NULL,
    Imie VARCHAR(25) NOT NULL,
    Nazwisko VARCHAR(25) NOT NULL,
    Szef NUMERIC(7,0)
        CONSTRAINT Szef_ko_REFERENCES Pracownicy,
    Nazwa działu VARCHAR(35),
    Miejsce VARCHAR(35),
    Zarobki NUMERIC(2,8),
    Premia NUMERIC(8,2),
    CONSTRAINT Dz ko FOREIGN KEY (Nazwa działu, Miejsce)
    REFERENCES Działy (Nazwa, Miasto),
    CONSTRAINT P ck CHECK(0.1*Zarobki <= Premia AND Premia <=0.5*Zarobki)
);
```

Część VIII

Omówienie zatwierdzania zmian w bazie

Zatwierdzanie zmian w bazie

Commit

Commit – ostateczne zatwierdzenie tymczasowo dokonanych zmian. Najpopularniejszym użyciem jest zakończenie transakcji.

ROLLBACK

W czasie trwania transakcji, w przeciwieństwie do commit poleceniem służącym do anulowania niezatwierdzonych zmian jest ROLLBACK

Commit używany jest też w systemach kontroli wersji. Oznacza wtedy zatwierdzenie tymczasowo wprowadzonych zmian w kodzie źródłowym i wprowadzenie ich do systemu.

Część IX

Literatura

Literatura I

Składowanie i przetwarzanie danych temporalnych w świetle wymagań standardu języka SQL ISO https://www.researchgate.net/publication/344692829

Bazy danych - wykład ósmy Indeksy https://www.impan.pl/~kz/DB/KZ_BD_w08.pdf

SQL Server i T-SQL w mgnieniu oka Wydawnictwo Helion

http://dev.cdur.pl/Artykuly/Zakladanie-indeksu-w-SQL-Server https://jsystems.pl/blog/artykul.html?id=427

SQL Index — Indexes in SQL — Database Index https://www.youtube.com/watch?v=fsG1XaZEa78&t=65s

Dziękujemy za uwagę!

Karina Burnicka Viktoria Ługowska

