# ARKode: A library of high order implicit/explicit methods for multi-rate problems

Daniel R. Reynolds<sup>†</sup>, Carol S. Woodward\*, David J. Gardner<sup>†</sup> and Alan C. Hindmarsh\*

reynolds@smu.edu

 $^\dagger Department \ of \ Mathematics, \ Southern \ Methodist \ University \\ ^* Center for \ Applied \ Scientific \ Computing, \ Lawrence \ Livermore \ National \ Laboratory$ 

SIAM Conference on Parallel Processing for Scientific Computing February 21, 2014









Outline

- Motivation
- ARKode Methods
- Example Results
- Conclusions









- Motivation
- 2 ARKode Methods
- 3 Example Results
- 4 Conclusions







# Multiphysics Problems

"Multiphysics problems" typically involve a variety of interacting processes:

- System of components coupled in the bulk [cosmology, combustion]
- System of components coupled across interfaces [climate, tokamak fusion]

Typical difficulties in simulating multiphysics problems include:

- Multi-rate processes, but too close to analytically reformulate.
- Optimal solvers may exist for some pieces, but not for the whole.
- Mixing of stiff/nonstiff processes, challenging standard standard solvers.

Many codes utilize lowest-order time step splittings, but may suffer from:

- ullet Low accuracy typically  $\mathcal{O}(\Delta t)$ -accurate; symmetrization/extrapolation may improve this but at significant cost [Ropp, Shadid,& Ober 2005].
- Poor/unknown stability even when each part utilizes a 'stable' step size, the combined problem may admit unstable modes [Estep et al., 2007].









# Increased Implicit Accuracy & Stability

Current production IVP libraries focus on linear multistep methods:

- Single implicit solve per step; high order comes through reusing old steps.
- Linearly stable up to  $\mathcal{O}(\Delta t^2)$ , but stability region shrinks rapidly for higher order, with little utility over  $\mathcal{O}(\Delta t^5)$ .
- Adaptivity is based on similarity between predictor (explicit) & corrector (implicit); primarily valid in regimes where both methods useful, i.e. questionable for stiff problems.

#### Runge-Kutta methods:

- No Dahlquist barrier A-stability possible even at high order. B-stability provable for many methods.
- Adaptivity based on embedded methods, allow implicit/stable solves for both solution & embedding ⇒ applicable across a wider problem set.
- Benefits come at the price of multiple implicit solves per step, or a single but larger implicit solve per step.









# Single-Step Evolution for Space-Time Adaptivity

While temporally adaptive, traditional IVP libraries limit spatial adaptivity:

- Assume the solution  $y \in \mathbb{R}^N$ , with N fixed throughout solve.
- Essential for linear multistep methods since step history generates order.
- Spatial adaptivity possible, but requires costly projection of step history and internal data structures onto new spatial domain.

#### Runge-Kutta methods:

- Since high order is obtained via stages within step, no history is required.
- Only need  $y \in \mathbb{R}^{N_k}$ , with  $N_k$  fixed within (but variable between) steps.
- Spatial adaptivity between steps easily incorporated, assuming solver data structures support vector resizing.









# Outline

- Motivation
- 2 ARKode Methods
- 3 Example Results
- 4 Conclusions







ARKode employs an additive Runge-Kutta formulation, supporting up to two split components: explicit and implicit,

$$M\dot{y} = f_E(t, y) + f_I(t, y), \quad t \in [t_0, T], \quad y(0) = y_0,$$

- M=M(t) is any nonsingular linear operator (mass matrix, typically M=I),
- ullet  $f_E(t,y)$  contains the explicit physics,
- ullet  $f_I(t,y)$  contains the implicit physics.

We combine two s-stage methods (ERK + DIRK). Denoting  $t_{n,j} = t_n + c_j \Delta t$ ,

$$Mz_i = My_n + \Delta t \sum_{j=1}^{i-1} A_{i,j}^E f_E(t_{n,j}, z_j) + \Delta t \sum_{j=1}^{i} A_{i,j}^I f_I(t_{n,j}, z_j), \quad i = 1, \dots, s,$$

$$My_{n+1} = My_n + \Delta t \sum_{j=1}^{s} b_j \left( f_E(t_{n,j}, z_j) + f_I(t_{n,j}, z_j) \right)$$
 [solution]

$$M\tilde{y}_{n+1} = My_n + \Delta t \sum_{j=1}^s \tilde{b}_j \left( f_E(t_{n,j}, z_j) + f_I(t_{n,j}, z_j) \right)$$
 [embedding]







### **ARK Coefficients**

Allows two Butcher tables that define the method:

- ullet  $\left\{c_i
  ight\}_{i=1\ldots,s}$  are the shared *stage times* for the two tables
- ullet  $\{b_i\}_{i=1,\dots,s}$  are the shared *solution coefficients* for the two tables
- ullet  $\left\{ ilde{b}_i 
  ight\}_{i=1,\dots,s}$  are the shared <code>embedding</code> coefficients for the two tables
- ullet  $ig\{a_{i,j}^Eig\}_{i=1,\dots,s,j=1,\dots,i-1}$  are the explicit method coefficients
- $\bullet \ \left\{a_{i,j}^{I}\right\}_{i=1,...,s,j=1,...,i}$  are the diagonally-implicit method coefficients

#### Notes:

- Explicit method:  $a_{i,j}^I = 0$  and all physics in  $f_E(t,y)$ .
- Implicit method:  $a_{i,j}^E = 0$  and all physics in  $f_I(t,y)$ .
- ImEx method: coefficients are derived in unison to satisfy coupling between components (unlike arbitrary splittings).









### Solution Algorithm – Stage Solutions, $z_i$ , i = 1, ..., s

ullet ERK stages: The stage is computed explicitly as a linear combination of previous stage right-hand sides, followed by a simple linear solve (if M 
eq I)

$$Mz_i = My_n + h \sum_{j=1}^{i-1} A_{i,j}^E f_E(t_{n,j}, z_j)$$

DIRK stages: The stage is computed as the solution of a nonlinearly implicit
equation, with right-hand side like an ERK method,

$$Mz_i - hA_{i,i}^I f_I(t_{n,i}, z_i) = My_n + h \sum_{j=1}^{i-1} A_{i,j}^I f_I(t_{n,j}, z_j)$$

 ARK stages: The stage is computed like a DIRK, but the right-hand side contains explicit components,

$$Mz_i - hA_{i,i}^I f_I(t_{n,i}, z_i) = My_n + h \sum_{j=1}^{i-1} \left( A_{i,j}^E f_E(t_{n,j}, z_j) + A_{i,j}^I f_I(t_{n,j}, z_j) \right)$$







# Solution Algorithm – Solution & Error Estimate

Once all stages,  $z_i$ , i = 1, ..., s, have been computed, we finish the step:

• Solution: just a linear combination of the stage right-hand sides, followed by a simple linear solve (if  $M \neq I$ ):

$$My_{n+1} = My_n + h \sum_{j=1}^{s} b_j \left( f_{E,j} + f_{I,j} \right)$$

• Local Error Estimate: the embedding is like  $y_{n+1}$  but with coefficients  $\tilde{b}_j$ , so we compute the local temporal error estimate T by computing/solving:

$$MT = h \sum_{j=1}^{s} (b_j - \tilde{b}_j) \left( f_{E,j} + f_{I,j} \right)$$

• Scalar Error Estimate: to determine step success/failure, we ensure that the scalar error estimate satisfies (where  $y_n \in \mathbb{R}^{N_k}$ ):

$$||T||_{WRMS} := \left(\frac{1}{N_k} \sum_{i=1}^{N_k} \left(\frac{T_i}{r_{\mathsf{tol}} |y_{n,i}| + a_{\mathsf{tol}}}\right)^2\right)^{1/2} \leq 1.$$







# Implicit Solver – with multiple solves per step, efficiency is paramount

#### Nonlinear:

- Modified Newton (serial, dense linear algebra) Newton method that reuses Jacobian between multiple stages/steps for increased efficiency.
- Inexact Newton linear solver tolerances are modified at each step to achieve superlinear convergence with minimal linear solver work.
- Andersen-accelerated fixed-point (see Carol Woodward's talk, MS 6) fixed point solver with GMRES-like subspace acceleration.
- Nonlinear tolerances adjusted by solver to attain requested solution accuracy without oversolves.

#### Linear:

- Direct full and band solvers from SUNDIALS or LAPACK; KLU & SuperLU coming soon.
- Krylov GMRES, FGMRES, BiCGStab, TFQMR or PCG.
- User-supplied right/left preconditioning supported.
- Newton and mass-matrix solvers can be mix-and-matched.









# Efficiency Enhancements

Additional options that may increase efficiency:

- *Implicit predictors* supports simple/safe predictors, through quadratic Hermite predictors. Also allows user-supplied predictors.
- Advanced temporal adaptivity controllers supports modern control-theoretic algorithms for maximizing step sizes while reducing error/convergence failures. Also supports user-supplied controllers.
- Explicit stability control supports user-supplied routines that provide maximally stable explicit step, to minimize error failures.
- Data structure resize capability for problems with changing  $N_k$ , data structures may be resized without requiring destruction/reinitialization.
- All internal solver parameters are fully documented and modifiable by the user to tune for a particular problem.









# ARKode, the newest member of SUNDIALS

As a part of the FASTMath SciDAC Institute, ARKode is being integrated as a new component solver within SUNDIALS.

- Similar user interface as CVODE, albeit with separate user-specified  $f_E(t,y)$  and  $f_I(t,y)$ , and potentially user-supplied M or My routines.
- Data structure agnostic as long as the basic vector kernels are supplied, problem-specific data structures are allowed. Will even call a user-supplied vector "resize" function to expand/contract the data structure.
- High-order accurate dense output, allowing efficient interpolation of results between integration steps.
- Parameters optimized for iterative solvers and large-scale parallelism.
- Exhaustive suite of example and regression test problems.
- Main site: http://faculty.smu.edu/reynolds/arkode
   Repository: http://bitbucket.org/drreynolds/arkode\_pub









# Outline

- 1 Motivation
- 2 ARKode Methods
- 3 Example Results
- 4 Conclusions







# ParaDiS – Parallel Dislocation Dynamics Simulator

#### Modeling material strain hardening:

- A dislocation is a line defect in the regular crystal lattice structure.
- Plasticity is caused by multiple dislocation lines forming in response to an applied stress/strain.
- ParaDiS simulates the motion. multiplication, and interactions of discrete dislocation lines
- Attempts to connect dislocation physics with material strength, to understand how material strength changes under applied load.

Growth factor calculations in an explosively driven Rayleigh-Taylor instability:



[Park et al., PRL, 104, 135504 (2010)]



[Barton et al., J. App. Phys., 109, 073501 (2011)]









 Discretize dislocation lines as segments terminated by nodes



- Force calculations utilize local and FMM methods
- MPI + OpenMP parallelization
- Fully adaptive data structure, with topology changes at every step







#### Algorithm flow:

Nodal force calculation:

$$f_i^{\rm tot}(t,r) = f_i^{\rm self}(r) + f_i^{\rm seg}(r) + f_i^{\rm ext}(t,r)$$

• Nodal velocity calculation (material-dependent  $M_{ij}$ ):

$$v_i(t,r) = \frac{dr_i}{dt} = M_{ij} f_j(t,r)$$

Time integration:

$$r_i(t + \Delta t) = r_i(t) + \int_t^{t+\Delta t} v_i(t, r) dt$$

Topology changes (insert/merge nodes):







#### ParaDiS Results - Frank-Read Source

#### Simple test problem:

- Single initial dislocation
- Constant strain bends/reconnects, creating two concentric dislocations



- Strain rate 1 s<sup>-1</sup>; Final time 50  $\mu$ s
- Comparison between:
  - Native Trapezoid solver: basic fixed-point (2,3 iters)
  - KINSOL Trapezoid solver: AA (2-4 iters)
  - DIRK,  $\mathcal{O}(\Delta t^3) \to \mathcal{O}(\Delta t^5)$ : NK and AA (4 iters each)

| Method         | Steps | % Speedup |
|----------------|-------|-----------|
| Trap FP I2     | 6284  | 0.0       |
| Trap FP I3     | 4990  | 20.0      |
| Trap AA I2 V1  | 6447  | -4.9      |
| Trap AA I3 V2  | 2316  | 61.7      |
| Trap AA I4 V3  | 2017  | 66.3      |
| DIRK3 NK 14    | 242   | 93.0      |
| DIRK4 NK 14    | 213   | 95.3      |
| DIRK5 NK 14    | 212   | 92.1      |
| DIRK3 AA I4 V3 | 127   | 97.5      |
| DIRK4 AA I4 V3 | 194   | 95.6      |
| DIRK5 AA I4 V3 | 128   | 96.9      |
| -              |       |           |

[Graphic: http://classes.geology.illinois.edu/07fallclass/geo411/ductile/ductile.html]









# ParaDiS Results - Target Test Problem

#### "Real" problem, mid-simulation:

- Body-centered-cubic crystal structure,  $\Omega = 4.25 \ \mu \text{m}^3$
- Strain rate 10<sup>2</sup> s<sup>-1</sup>
- 3.3  $\mu$ s < t < 6.25  $\mu$ s
- $\sim 2850$  initial nodes.  $\sim 5000$  final
- MPI test runs with 16 cores
- Comparison between:
  - Native Trapezoid solver: basic fixed-point (2 iters)
  - KINSOL Trapezoid solver: AA (2-6 iters)
  - DIRK  $\mathcal{O}(\Delta t^3)$  solver: AA (2-6 iters),  $\varepsilon_n = 1$
- Larger tests ( $\sim 250$ k cores) ongoing

| FASTMATH | 4 |
|----------|---|

| Method         | Steps | % Speedup |
|----------------|-------|-----------|
| Trap FP I2     | 9137  | 0.0       |
| Trap AA I4 V3  | 3262  | 42.9      |
| Trap AA I5 V4  | 2987  | 45.0      |
| Trap AA I6 V5  | 2032  | 55.1      |
| Trap AA I7 V6  | 1981  | 53.5      |
| DIRK3 AA I4 V3 | 323   | 65.1      |
| DIRK3 AA I5 V4 | 297   | 66.9      |
| DIRK3 AA I6 V5 | 303   | 64.9      |
| DIRK3 AA I7 V6 | 311   | 63.0      |
| DIRK5 AA I4 V3 | 280   | 51.2      |
| DIRK5 AA I5 V4 | 241   | 53.9      |
| DIRK5 AA I6 V5 | 246   | 50.5      |
| DIRK5 AA I7 V6 | 274   | 45.0      |
|                |       |           |





Lawrence Livermore **National Laboratory** 

- Motivation
- ARKode Methods
- Example Results
- Conclusions







#### Conclusions

ARK methods allow accurate/stable methods for a variety of problems:

- No Dahlquist barrier high accuracy & stability simultaneously possible
- Allows adaptive ERK, DIRK or fully-coupled ImEx methods
- Embeddings allow robust error estimation and timestep adaptivity
- Single-step methods play well with spatial adaptivity
- ImEx allows "convenient" preconditioners that treat only stiff components

### The ARKode library:

- Flexible solver infrastructure, with a variety of nonlinear/linear solvers
- Support for non-identity mass matrices (FEM)
- Allows on-the-fly vector resizing
- Freely-available, included in the upcoming SUNDIALS release









#### Collaborators/Students:

- Carol S. Woodward [LLNL]
- Alan C. Hindmarsh [LLNL]
- David J. Gardner [SMU, PhD]





#### Current Grant/Computing Support:

- DOE SciDAC & INCITE Programs
- LLNL Computation
- SMU Center for Scientific Computation





#### Software:

- ARKode http://faculty.smu.edu/reynolds/arkode
- SUNDIALS https://computation.llnl.gov/casc/sundials

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, Lawrence Livermore National Security, LLC.









#### Outline

Extra Slides







# First-Order Splittings

Denote  $S_i(h, u(t_n))$  as a solver for the component  $\partial_t u = f_i(t, u)$  over a time step  $t_n \to t_n + h \equiv t_{n+1}$ , with initial condition  $u(t_n)$ .

To evolve  $u(t_n) \to u(t_{n+1})$ , we can use different solvers at the same h,

$$\hat{u} = S_1(h, u(t_n)),$$
  
$$u(t_{n+1}) = S_2(h, \hat{u}),$$

or we may subcycle time steps for individual components,

$$\hat{u}_{j+1} = S_1\left(\frac{h}{m}, \hat{u}_j\right), \ j = 0, \dots, m, \quad \hat{u}_0 = u(t_n), u(t_{n+1}) = S_2(h, \hat{u}_m),$$

Unless the  $S_i$  commute [i.e.  $S_1(h, S_2(h, u)) = S_2(h, S_1(h, u))$ ] or the splitting is symmetric, these methods are at best O(h) accurate (no matter the accuracy of the individual solvers).







# Fractional Step (Strang) Splitting [Strang 1968]

"Strang splitting" attempts to achieve a higher-order method using these separate component solvers, through manually symmetrizing the operator:

$$\hat{u}_1 = S_1\left(\frac{h}{2}, u(t_n)\right),$$

$$\hat{u}_2 = S_2\left(h, \hat{u}_1\right),$$

$$u(t_{n+1}) = S_1\left(\frac{h}{2}, \hat{u}_2\right).$$

This approach is  $O(h^2)$  as long as each  $S_i$  is  $O(h^2)$ .

#### However:

- This asymptotic accuracy may not be achieved until h is very small, since error terms are dominated by inter-process interactions [Ropp, Shadid,& Ober 2005].
- Numerical stability isn't guaranteed even if h is stable for each component [Estep et al., 2007].









# Operator-Splitting Issues – Accuracy [Ropp, Shadid, & Ober 2005]

Coupled systems can admit destabilizing modes not present in either component, due to *numerical resonance instabilities* [Grubmüller 1991].

Brusselator Example (Reaction-Diffusion):

$$\partial_t T = \frac{1}{40} \nabla^2 T + 0.6 - 3T + T^2 C,$$
  
$$\partial_t C = \frac{1}{40} \nabla^2 C + 2T - T^2 C,$$

Three solvers:

- (a) Basic split: D (trap.) then R (subcycled BDF).
- (b) Strang:  $\frac{h}{2}R$ , hD,  $\frac{h}{2}R$ ,
- (c) Fully implicit trapezoidal rule,

#### Results:

- (a) is stable but inaccurate for all tests;
- (b) unusable until h is "small enough".









# Operator Splitting Issues – Accuracy [Estep 2007]

Consider  $\Omega = \Omega_1 \cup \Omega_2$  where the subdomains share a boundary  $\Gamma = \partial \Omega_1 \cap \partial \Omega_2$ :

$$\partial_t u_1 = \nabla^2 u_1, \ x \in \Omega_1, \qquad \partial_t u_2 = \frac{1}{2} \nabla^2 u_2, \ x \in \Omega_2,$$
 $u_1 = u_2, \qquad \nabla u_1 \cdot n = \nabla u_2 \cdot n, \qquad \text{for } x \in \Gamma.$ 

Solved using one Gauss-Seidel iteration:  $S_1$  on  $\Omega_1$ , then  $S_2$  on  $\Omega_2$  (both trapezoidal). Errors from not iterating to convergence, and from error transfer between subdomains.

Using adjoints, they measured these errors separately:



- Error from incomplete iteration decreased with time.
- Transfer error accumulated and became dominant with time.
- While each  $S_i$  was  $O(h^2)$ , the coupled method was only O(h).









# Operator-Splitting Issues – Stability [Estep et al., 2007]

Second Reaction-Diffusion Example (split subcycling; exact solvers):

$$\partial_t u = -\lambda u + \frac{u^2}{u^2}, \quad u(0) = u_0, \quad t > 0.$$

Phase 1 (R): 
$$\partial_t u_r = u_r^2$$
,  $u_r(t_n) = u_n$ ,  $t \in [t_n, t_{n+1}]$ ,

Phase 2 (D): 
$$\partial_t u_d = -\lambda u_d$$
,  $u_d(t_n) = u_r(t_{n+1})$ ,  $t \in [t_n, t_{n+1}]$ .

$$\text{True solution,} \quad u(t) = \frac{u_0 e^{-\lambda t}}{1 + \frac{u_0}{\lambda} \left(e^{-\lambda t} - 1\right)}, \quad \text{is well-defined } \forall t \text{ if } \lambda > u_0.$$

Split solution, 
$$u(t_{n+1})=\frac{u(t_n)e^{-\lambda h}}{1-u(t_n)h},$$
 can blow up in finite time.

Results using 50 time steps, with varying amounts of subcycling.







