

Analisi numerica e applicazioni

Davide Peccioli

Classe 5^a H

Indice

1	Analisi numerica e applicazioni	1
2	Studio di funzione2.1Scelta del parametro2.2Studio di funzione	2 2 3
3	Algoritmo analisi numerica 3.1 Algoritmo di bisezione	9
4	Applicazioni analisi numerica	12
5	Problema di fisica	13
B	ibliografia	17

Analisi numerica e applicazioni

Consegna

L'analisi numerica si occupa della ricerca delle procedure di calcolo per la determinazione di soluzioni approssimate di problemi ambientati in un insieme numerico continuo.

Il candidato esponga le principali metodologie utilizzate in un ambito scelto (ricerca soluzioni di equazioni, integrazione, etc.) e, in particolare, è richiesto di:

- 1. studiare una funzione del tipo $y=x^5+kx+1$, avendo scelto un parametro $k\ (k<2)$, commentando in modo puntuale gli aspetti teorici utilizzati;
- 2. fornire indicazioni per lo sviluppo di un algoritmo che permetta di individuare gli zeri della funzione scelta;
- 3. esporre un'applicazioni matematica o fisica (es. calcolo aree, interpolazioni...).
- 4. Una forza \vec{F} nella direzione dell'asse x agisce su un oggetto in moto lungo l'asse x. Se l'intensità della forza è data da $F=10e^{-x/2,0}\,\mathrm{N}$ trovare il lavoro svolto da \vec{F} mentre l'oggetto si sposta da x=0 a $x=2,0\,\mathrm{m}$
 - (a) tracciando la curva F(x) e valutando per via grafica l'area sottesa dalla curva e
 - (b) per via analitica, calcolando l'integrale.

Studio di funzione

Si studi la funzione

$$y = f(x) = x^5 + kx + 1 \tag{1}$$

2.1 Scelta del parametro

Prima di studiare la funzione in questione è necessario assegnare al parametro k un valore reale (k < 2), tale per cui la funzione presenti uno zero doppio. Questa scelta è dettata dalle considerazioni che si possono fare proprio in merito a tale punto.

Utilizzando il **teorema fondamentale dell'algebra** [3, p. 2], posso scrivere il polinomio f(x) come:

$$f(x) = (x - \alpha) \cdot (x - \beta) \cdot (x - \gamma) \cdot (x - \delta) \cdot (x - \varepsilon)$$

dove α , β , γ , δ , ε sono le radici, reali o complesse, del polinomio.

Dal momento che si ricerca un polinomio con uno zero doppio, possiamo scrivere:

$$f(x) =$$

$$= (x - \alpha)^2 \cdot (x - \beta) \cdot (x - \gamma) \cdot (x - \delta)) =$$

$$= (x - \alpha)^2 \cdot p(x)$$

da cui

$$p(x) = \frac{f(x)}{(x - \alpha)^2}$$

Per il **teorema di Ruffini** [2, vol. 1, p. ??] posso quindi affermare che la divisione $\frac{f(x)}{(x-\alpha)^2}$ non deve avere restoⁱ. Questa sarà proprio la condizione

Un polinomio P(X) è divisibile per (x - a) se e solo se P(a) = 0.

Dal momento che per ipotesi α è radice doppia del polinomio, f(x) è divisibile doppiamente per $(x-\alpha)$

ⁱ Il teorema di Ruffini afferma che

che permetterà di trovare un valore di k adeguato. Espandendo $(x - \alpha)^2$ come $x^2 - 2\alpha x + \alpha^2$ si svolge la divisione polinomiale:

Il cui resto r(x) è

$$r(x) = (k + 5\alpha^4)x - 4\alpha^5 + 1$$

Per le condizioni esposte precedentemente

$$r(x) = 0 \quad \forall x \in \mathbb{R}$$

da cui

$$\begin{cases} k + 5\alpha^4 = 0\\ -4\alpha^5 + 1 = 0 \end{cases}$$

Le soluzioni di questo sistema sono

$$\alpha = \sqrt[5]{\frac{1}{4}}$$

$$k = -\frac{5}{2\sqrt[5]{8}}$$

La funzione da studiare diventa quindi

$$y = f(x) = x^5 - \frac{5}{2\sqrt[5]{8}} \cdot x + 1 \tag{2}$$

2.2 Studio di funzione

Campo di esistenza

Come per tutte le funzioni polinomiali, il campo di esistenza della funzione è

$$x \in \mathbb{R}$$

Limiti

$$\lim_{x \to +\infty} \left(x^5 - \frac{5}{2\sqrt[5]{8}} \cdot x + 1 \right) = +\infty$$
$$\lim_{x \to -\infty} \left(x^5 - \frac{5}{2\sqrt[5]{8}} \cdot x + 1 \right) = -\infty$$

Essendo una funzione polinomiale di quinto grado, sicuramente non presenta asintoti obliqui.

Zeri

Abbiamo definito in precedenza $f(x)=(x-\alpha)^2\cdot(x^3+2\alpha x^2+3\alpha^2 x+4\alpha^3)$, con $\alpha=\sqrt[5]{\frac{1}{4}}$. Pertanto

$$f(x) = 0 \iff (x - \alpha) = 0 \lor (x^3 + 2\alpha x^2 + 3\alpha^2 x + 4\alpha^3) = 0$$

La prima equazione:

$$x - \alpha = 0 \implies x = \alpha$$

$$x = \sqrt[5]{\frac{1}{4}}$$

La seconda è una equazione di terzo grado, la cui risoluzione è ben illustrata in Equazioni di terzo e quarto grado [4, pp. 1–4]:

$$x^{3} + 2\alpha x^{2} + 3\alpha^{2}x + 4\alpha^{3} = 0$$
$$27x^{3} + 54\alpha x^{2} + 81\alpha^{2}x + 108\alpha^{3} = 0$$

Sia $t = 3x + 2\alpha$, da cui $x = (t - 2\alpha)/3$

$$27\left(\frac{t-2\alpha}{3}\right)^3 + 54\alpha\left(\frac{t-2\alpha}{3}\right)^2 + 81\alpha^2\left(\frac{t-2\alpha}{3}\right) + 108\alpha^3 = 0$$
...

$$t^{3} + (27\alpha^{2} - 12\alpha^{2})t + 108\alpha^{3} - 54\alpha^{3} + 16\alpha^{3} = 0$$
$$t^{3} + 15\alpha^{2}t + 70\alpha^{3} = 0$$

Si cerca t nella forma t = u + v

$$(u+v)^3 + 15\alpha^2(u+v) + 70\alpha^3 = 0$$

$$u^{3} + v^{3} - 3u^{2}v + 3uv^{2} + 15\alpha^{2}(u+v) + 70\alpha^{3} =$$

$$= u^{3} + v^{3} + 3uv(u+v) + 15\alpha^{2}(u+v) + 70\alpha^{3} =$$

$$= u^{3} + v^{3} + (3uv + 15\alpha^{2})(u+v) + 70\alpha^{3} = 0$$

Siccome esistono tanti modi per scrivere t come t=u+v è possibile imporre un'ulteriore condizione. Per semplicità di calcolo, sia

$$3uv + 15\alpha^2 = 0$$

da cui

$$\begin{cases} u^3 + v^3 = -70\alpha^3 \\ 3uv = -15\alpha^2 \end{cases} \implies \begin{cases} u^3 + v^3 = -70\alpha^3 \\ 27u^3v^3 = -3375\alpha^6 \end{cases}$$

Siano $s_1 = u^3$ e $s_2 = v^3$

$$\begin{cases} s_1 + s_2 = -70\alpha^3 \\ s_1 \cdot s_2 = -125\alpha^6 \end{cases}$$

Risolvere questo sistema significa risolvere l'equazione di secondo grado

$$s^{2} + (70\alpha^{3}) s - 125\alpha^{5} = 0$$

$$s_{1,2} = -\frac{70\alpha^{3}}{2} \pm \sqrt{\frac{4900\alpha^{6}}{4} + 125\alpha^{6}}$$

$$s_{1,2} = -35\alpha^{3} \pm \sqrt{1350\alpha^{6}}$$

$$\begin{cases} s_{1} = (-35 + 15\sqrt{6})\alpha^{3} \\ s_{2} = -(35 + 15\sqrt{6})\alpha^{3} \end{cases}$$

Riprendendo le equazioni precedenti

$$t = u + v =$$

$$= \sqrt[3]{s_1} + \sqrt[3]{s_2} = \alpha \sqrt[3]{-35 + 15\sqrt{6}} - \alpha \sqrt[3]{35 + 15\sqrt{6}} =$$

$$\alpha \left[\sqrt[3]{-35 + 15\sqrt{6}} - \sqrt[3]{35 + 15\sqrt{6}} \right]$$

da cui, dato che x = t/3 - 2a/3:

$$x = \frac{\alpha}{3} \cdot \left[\sqrt[3]{-35 + 15\sqrt{6}} - \sqrt[3]{35 + 15\sqrt{6}} - 2 \right] =$$

$$= \frac{\sqrt[3]{-35 + 15\sqrt{6}} - \sqrt[3]{35 + 15\sqrt{6}} - 2}{3\sqrt[5]{4}} \approx$$

$$\approx -1,2509430053151$$

$$x \approx -1,2509430053151$$

Sia questo numero β .

Segno

$$y = (x - \alpha)^2 \cdot p(x)$$

p(x) è un polinomio di terzo grado, con un'unica intersezione con l'asse delle x (in $x=\beta$, vedasi dimostrazione precedente). Essendo una funzione continua e derivabile $\forall x \in \mathbb{R}$, è possibile affermare che tutte le immagini dei punti nell'intervallo $(-\infty; \beta)$ avranno segno concorde; allo stesso modo per le immagini dei punti nell'intervallo $(\beta; +\infty)^{\text{ii}}$.

Considerato che $(x - \alpha)^2 > 0 \,\forall x \in \mathbb{R} - \{\alpha\}$, la funzione p(x) sarà avrà segno concorde a $f(x) \,\forall x \in \mathbb{R} - \{\alpha\}$. Per $x = \alpha$, essendo $\alpha \neq \beta$ e $\alpha > \beta$, $p(\alpha)$ avrà lo stesso segno di tutti gli altri punti nell'intervallo $(\beta; +\infty)$. Pertanto:

$$\lim_{x \to -\infty} f(x) = -\infty \implies \lim_{x \to -\infty} p(x) < 0 \implies p(x) < 0 \,\forall x \in (-\infty; \,\beta)$$

$$\lim_{x \to +\infty} f(x) = +\infty \implies \lim_{x \to -\infty} p(x) > 0 \implies p(x) > 0 \,\forall x \in (\beta; +\infty)$$

È possibile ora studiare il segno della funzione y=f(x), come mostrato alla figura 2.1

$$f(x) > 0 \quad \forall x \in (\beta; \alpha) \cup (\alpha; +\infty)$$

Derivata prima

 $y' = 5x^4 - \frac{5}{2\sqrt[5]{8}}$

Il segno della derivata prima rappresenta se la funzione stia crescendo o decrescendo; quando la derivata prima si annulla la funzione avrà un **punto** stazionario.

ii Ragionando per assurdo, si ammetta che nell'intervallo $(-\infty; \beta)$ esistano due punti la cui immagine abbia segno discorde. Siano questi punti a e b. Si consideri l'intervallo [a; b]: è possibile applicare il **teorema dell'esistenza degli zeri**, che afferma che nell'intervallo considerato esiste almeno uno zero. Questo va contro l'ipotesi iniziale che β sia l'unico zero della funzione. Si ragioni allo stesso modo per l'intervallo $(\beta; +\infty)$.

$$y' = 0 \implies x^4 = \frac{1}{2\sqrt[5]{8}} \implies x = \pm \sqrt[4]{\frac{1}{2\sqrt[5]{8}}} = \pm \frac{1}{\sqrt[5]{4}}$$

Questi sono i punti stazionari della funzione. Studiando il segno della derivata sarà possibile stabilire se siano anche massimi o minimi.

$$y'>0 \implies 5x^4-\frac{5}{2\sqrt[5]{8}}>0 \implies \left(x^2\right)^2>\frac{1}{2\sqrt[5]{8}}$$

$$x^2>\sqrt{\frac{1}{2\sqrt[5]{8}}}$$

$$v$$

$$x^2<-\sqrt{\frac{1}{2\sqrt[5]{8}}} \quad \mathbf{mai}$$

$$x^2>\sqrt{\frac{1}{2\sqrt[5]{8}}} \implies x>\frac{1}{\sqrt[5]{4}} \vee x<-\frac{1}{\sqrt[5]{4}}$$

Pertanto

$$y' > 0 \quad \forall x \in \left(-\infty; -\frac{1}{\sqrt[5]{4}}\right) \cup \left(\frac{1}{\sqrt[5]{4}}; +\infty\right)$$

Come si può vedere dal grafico riportato alla figura 2.2, il punto

$$M_1\bigg(-rac{1}{\sqrt[5]{4}};\,2\bigg)$$

è punto di massimo, mentre il punto

$$M_2\left(\frac{1}{\sqrt[5]{4}};\,0\right)$$

è punto di minimo, nonché zero della funzione.

Derivata seconda

$$y'' = 20x^3$$

Lo studio del segno della derivata seconda fornisce informazioni sulla concavità di una funzione: quando la derivata seconda è positiva, la concavità della funzione è rivolta verso l'alto, quando la derivata seconda è negativa la concavità della funzione è rivolta verso il basso, e quando la derivata seconda si annulla la funzione ha un **flesso obliquo**, punto in cui la funzione cambia concavità.

$$y'' = 0 \iff x = 0$$

$$y'' > 0 \quad \forall x \in (0; +\infty)$$

$$y'' < 0 \quad \forall x \in (-\infty; 0)$$

Ora è possibile disegnare la funzione su un piano cartesiano, come mostrato nella figura $2.3\,$

Algoritmo analisi numerica

Dal mumento che la funzione è stata scelta appositamente (variando k) per avere uno zero doppio, è stato possibile ricavare entrambi gli zeri analiticamente, con precisione assoluta.

Ciò nonostante non è sempre possibile ricavare analiticamente (per radicali) gli zeri di una funzione di quinto grado. La teoria di Evariste Galois, dimostrata poi in seguito, era proprio che non potesse esistere una formula risolutiva per radicali per equazioni generali dal quinto grado in su [4, p. 12].

Ci sono diversi algoritmi che permettono di trovare "empiricamente" gli zeri delle funzioni: il risultato non sarà mai perfetto, ma solo una approssimazione, arbitrariamente buona, dello zero reale. Proprio questo è l'ambito di studio dell'analisi numerica:

l'analisi numerica è una branca della matematica che si occupa di individuare, analizzare e implementare algoritmi per la risoluzione approssimata di problemi matematici in genere, che possono scaturire da pure speculazioni, da reali esigenze di ricerca, o da simulazioni in campo tecnologico finalizzate alla progettazione di dispositivi complessiⁱ.

Iniziando con delle osservazioni di carattere generale (precedentemente dimostrate) sulla funzione si noti che y = f(x) è una funzione continua e derivabile lungo tutto il suo dominio, e che la derivata seconda della funzione è negativa nell'intervallo $(-\infty; 0)$ mentre è positiva nell'intervallo $(0; +\infty)$.

Si analizzino ora distintamente gli zeri della funzione f(x). L'obiettivo è di ricavare analiticamente i valori di α e di β , ovvero i valori tali per cui la funzione si annulli.

3.1 Algoritmo di bisezione

Per ricavare il valore di β è possibile utilizzare il metodo di bisezione, che si basa interamente sul teorema di Bolzano: l'intervallo su cui è possibile applicare l'algoritmo deve rispettare le stesse ipotesi proprio di questo teorema:

• la funzione deve essere continua nell'intervallo;

i [1] ANALISI NUMERICA. url: https://www.treccani.it/enciclopedia/analisi-numerica_%28Enciclopedia-Italiana%29/

• i due estremi dell'intervallo devono avere immagini di segno discorde.

Proprio in virtù del sovracitato **teorema di Bolzano** [2, vol. 5, p.] è assicurato che nell'intervallo prescelto vi sia almeno uno zero. Per semplicità si richiede che nell'intervallo considerato ve ne sia al più uno. Ne consegue che nell'intervallo vi sia una ed una sola radice p della funzione.

Questo algoritmo iterativo suddivide l'intervallo in due, e ad ogni passaggio individua quale metà contiene lo zero. Si veda [5, pp. 48–53] per un'analisi più approfondita.

Si inizi ponendo $a_1 = a$ e $b_1 = b$, e sia p_1 il punto medio di [a; b]

$$p_1 = \frac{a_1 + b_1}{2}$$

- Se $f(p_1) = 0$ allora $p = p_1$;
- $\bullet\,$ se $f(p_1)\neq 0$ allora avrà necessariamente lo stesso segno di uno tra $f(a_1)$ e $f(b_1)$
 - se $f(p_1)$ e $f(a_1)$ hanno lo stesso segno allora $p \in [p_1; b_1]$; siano $a_2 = p_1$ e $b_2 = b_1$;
 - se $f(p_1)$ e $f(b_1)$ hanno lo stesso segno allora $p \in [a_1; p_1]$; siano $a_2 = a_1$ e $b_2 = p_1$;

Si riapplichi lo stesso processo per l'intervallo $[a_2;b_2]$, ed in generale ad ogni generico intervallo $[a_n;b_n]$ ottenuto dall'iterazione dell'algoritmo, fino a giungere ad una condizione che soddisfi il criterio di arresto prescelto.

Calando questo algoritmo nel caso specifico, si noti ad esempio che

$$f(-2) \approx -27,701$$
$$f(0) = 1$$

L'intervallo [-2;0] permette di applicare l'algoritmo di bisezione per trovare il valore di β . Nella tabella 3.1 sono mostrate dieci iterazioni dell'algoritmo.

a_n	b_n	p_n	$f(a_n)$	$f(p_n)$	$f(b_n)$
-2	0	-1	-27,701	1,649	1
-2	-1	-1,5	-27,701	-4,119	1,649
-1,5	-1	$-1,\!25$	-4,119	0,009	1,649
-1,5	$-1,\!25$	-1,375	-4,119	-1,646	0,009
-1,375	$-1,\!25$	-1,312	-1,646	-0,730	0,009
-1,312	$-1,\!25$	-1,281	-0,730	-0,339	0,009
-1,281	$-1,\!25$	$-1,\!265$	-0,339	-0,159	0,009
-1,265	$-1,\!25$	$-1,\!257$	-0,159	-0,073	0,009
-1,257	-1,25	-1,253	-0,073	-0,031	0,009

Applicazioni analisi numerica

Problema di fisica

La situazione descritta dal problema è quella rappresentata nella figura 5.1, con

$$F(x) = 10e^{x/2} \,\mathrm{N}$$

Sia L il lavoro della forza \vec{F} per uno spostamento che vada da $x_i=0$ a $x_f=2\,\mathrm{m}$; questo lavoro, in un grafico F-x è l'area sottesa alla curva F=F(x) nell'intervallo (0; 2);

(a) è possibile approssimare quest'area con un trapezio rettangolo ABCD (come in figura 5.2):

$$\begin{split} L &= \frac{(B+b) \cdot h}{2} = \\ &= \frac{1}{2} \cdot [F(0) + F(2)](2\,\mathrm{m} - 0\,\mathrm{m}) = \\ &= [10 + 10e^{-1}]\,\mathrm{N} \cdot \mathrm{m} \approx 13,68\,\mathrm{N} \cdot \mathrm{m} \end{split}$$

(b) utilizzando la definizione di **integrale definito** (vedasi figura 5.3):

$$L = \int_{0}^{2 \,\mathrm{m}} F(x) \,\mathrm{d}x = \left[\int F(x) \,\mathrm{d}x \right]_{0}^{2 \,\mathrm{m}}$$

Figura 5.1: Una forza \vec{F} che agisce nella direzione dell'asse delle x

$$\int F(x) dx = \int 10e^{-x/2} dx =$$

$$= -20 \int e^t dt = -20e^t + k =$$

$$= -20e^{-x/2} + k$$

$$\sin t = -\frac{x}{2}$$

$$x = -2y$$

$$dx = -2 dt$$

$$L = \left[\int F(x) \, dx \right]_0^{2 \, \text{m}} =$$

$$= \left[-20e^{-x/2} \right]_0^{2 \, \text{m}} = \left[-20e^{-1} + 20 \right] \, \text{N} \cdot \text{m} =$$

$$= 20 \cdot \left(1 - \frac{1}{e} \right) \, \text{N} \cdot \text{m} \approx 12,64 \, \text{N} \cdot \text{m}$$

Il lavoro compiuto dalla forza quindi è:

$$L = 20 \cdot \left(1 - \frac{1}{e}\right) \mathbf{N} \cdot \mathbf{m} \approx 12,64 \,\mathbf{N} \cdot \mathbf{m}$$

L'errore percentuale del metodo (a) rispetto al metodo (b) è di

$$\varepsilon_{\%} = \frac{|L_{(a)} - L_{(b)}|}{L_{(b)}} \cdot 100 = 7,58 \,\%$$

Bibliografia

- [1] ANALISI NUMERICA. URL: https://www.treccani.it/enciclopedia/analisi-numerica_%28Enciclopedia-Italiana%29/.
- [2] Massimo Bergamini e Graziella Barozzi. Matematica multimediale.blu. 2014.
- [3] Richard Courant e Herbert Robbins. Che cos'è la matematica? 2000.
- [4] Equazioni di terzo e quarto grado. URL: http://www.dmf.unicatt.it/~degiova/lincei/equazioni_di_terzo_e_quarto_grado.pdf.
- [5] Richard L. Burden e J. Douglas Faires. Numerical analysis. 2012.