# Consumption Heterogeneity: Micro Drivers and Macro Implications

Edmund Crawley & Andreas Kuchler

August 6, 2018

#### Overview

#### What will this paper do?

- 1 Create a new method to estimate heterogeneity in consumption responses to permanent and transitory shocks to income
  - Clear negative relation between MPC and liquid wealth
- 2 Application: Redistribution Channel of Monetary Policy (Auclert (2017))
  - We find a transitory 1% interest rate rise decreases consumption by 0.24% through the interest rate exposure channel
  - This channel is likely far larger than the intertemporal substitution channel (1-4x as large)

# How Are Consumption Responses Typically Measured?

#### Three methods:

- 1 (Natural) Experiments stimulus checks, lotteries etc
  - Few true experiments, especially for permanent shocks
  - Data limitations
- 2 Ask people
  - Unclear how to interpret
- 3 Use covariance structure of income and consumption
  - Empirical methods (until now!) have been flawed

We develop a robust method based on 3

# Evidence on Magnitude of Consumption Response

|                                                                                                       | Consumption Measure |            |         |        |                                           |
|-------------------------------------------------------------------------------------------------------|---------------------|------------|---------|--------|-------------------------------------------|
| Permanent Shocks                                                                                      | Nondurables         | Total PCE  | Horizon | Method | Event/Sample                              |
| Blundell, Pistaferri, and Preston (2008)*                                                             | 0.65                |            | ~       | 1      | Estimation Sample: 1980-92                |
| Gelman, Gorodnichenko, Kariv, Koustas, Shapiro,<br>Silverman, and Tadelis (2016)<br>Transitory Shocks |                     | 1.0        | ~       | 3      | Gasoline Price Shock                      |
| Agarwal and Qian (2014)                                                                               |                     | 0.90       | 10m     | 1      | Growth Dividend Program<br>Singapore 2011 |
| Blundell, Pistaferri, and Preston (2008)*                                                             | 0.05                |            |         | 3      | Estimation Sample: 1980-92                |
| Browning and Collado (2001)                                                                           |                     | $\sim 0$   |         | 1      | Spanish ECPF Data, 1985-95                |
| Coronado, Lupton, and Sheiner (2005)                                                                  |                     | 0.36       | 1y      | 1      | 2003 Tax Cut                              |
| Fuster, Kaplan, and Zafar (2018)                                                                      |                     | 0.08-0.31  | 3m      | 2      | NY Fed Survey Cons. Expectations          |
| Gelman (2016)                                                                                         |                     | 0.13       | 3m      | 1      | Tax refunds 2013-2016                     |
| Hausman (2012)                                                                                        |                     | 0.6-0.75   | 1y      | 1      | 1936 Veterans' Bonus                      |
| Hsieh (2003)*                                                                                         | $\sim 0$            | 0.6-0.75   |         | 1      | CEX, 1980-2001                            |
| Jappelli and Pistaferri (2014)                                                                        | 0.48                |            |         | 2      | Italy, 2010                               |
| Johnson, Parker, and Souleles (2009)                                                                  | $\sim 0.25$         |            | 3m      | 1      | 2003 Child Tax Credit                     |
| Lusardi (1996)*                                                                                       | 0.2-0.5             |            |         | 3      | Estimation Sample: 1980-87                |
| Parker (1999)                                                                                         | 0.2                 |            | 3m      | 1      | Estimation Sample: 1980-93                |
| Parker, Souleles, Johnson, and McClelland (2013)                                                      | 0.12-0.30           | 0.50-0.90  | 3m      | 1      | 2008 Economic Stimulus                    |
| Sahm, Shapiro, and Slemrod (2010)                                                                     |                     | $\sim 1/3$ | 1y      | 1      | 2008 Economic Stimulus                    |
| Shapiro and Slemrod (2009)                                                                            |                     | $\sim 1/3$ | 1y      | 1      | 2008 Economic Stimulus                    |
| Souleles (1999)                                                                                       | 0.045-0.09          | 0.34-0.64  | 3m      | 1      | Estimation Sample: 1980-91                |
| Souleles (2002)                                                                                       | 0.6-0.9             |            | 1у      | 1      | The Reagan Tax Cuts<br>of the Early 1980s |

 $<sup>^*</sup>$  Elasticity. Methods: 1) Natural Experiment 2) Survey question 3) Covariance restrictions Rough consensus on (3 month) transitory MPC  $\sim 30\%$ 

# Evidence on Distribution of Consumption Response

Most studies do not have enough power to say anything about how their MPC estimates vary in the population

#### Exceptions:

- Jappelli and Pistaferri (2014) Italian Survey Data
- Fagereng, Holm, and Natvik (2016) Norway Lottery Data
- Gelman (2016) Financial App Data
- Fuster, Kaplan, and Zafar (2018) NY Fed Survey

Liquid assets and income are key predictors of transitory MPC

# Application: Auclert (2017)

Auclert (2017) identifies three ways in which **heterogeneity** affect monetary policy
Each is potentially measurable in panel data
But...

# Application: Auclert (2017)

Auclert (2017) identifies three ways in which **heterogeneity** affect monetary policy

Each is potentially measurable in panel data But...



He doesn't have the right data or methods to be able to do this



### Results Preview



#### Results Preview



#### **Monetary Policy Application**

A 1% increase in R decreases consumption by 0.24% due to heterogeneity in interest rate exposure

This channel is 1 to 4x larger than intertemporal substitution

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

#### Regressing Consumption Growth on Income Growth



$$\Delta^{N}c = \beta^{N}\Delta^{N}v + \varepsilon$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

#### Regressing Consumption Growth on Income Growth



$$\Delta^{N}c = \beta^{N}\Delta^{N}v + \varepsilon$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases





$$\Delta^N c = \beta^N \Delta^N y + \varepsilon$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases



$$\Delta^{N}c = \beta^{N}\Delta^{N}y + \varepsilon$$

Exploit increasing importance of permanent shocks as the time over which growth is measured increases

#### Regressing Consumption Growth on Income Growth



$$\Delta^N c = \beta^N \Delta^N y + \varepsilon$$

### 1) Time Aggregation Problem (Crawley 2018)



#### 1) Time Aggregation Problem (Crawley 2018)



#### 1) Time Aggregation Problem (Crawley 2018)



#### PIH Example:

- MPC out of Permanent Shocks = 1
- MPC out of Transitory Shocks = 0
- Variances approx. equal

BPP method estimates MPC out of transitory shocks to be -0.6

- 2) BPP assume consumption is a random walk
  - High transitory MPCs are incompatible with consumption following a random walk

We follow the spirit of Carroll & Samwick (1997):

Permanent income follows a random walk

$$p_t = p_{t-1} + \zeta_t$$

Total income includes a transitory component

$$y_t = p_t + \varepsilon_t$$

Growth over N years is:

$$\Delta^{N} y_{T} = (\zeta_{T-N+1} + \dots + \zeta_{T}) + \varepsilon_{T} - \varepsilon_{T-N}$$
$$\operatorname{Var}(\Delta^{N} y_{T}) = N \operatorname{Var}(\zeta) + 2 \operatorname{Var}(\varepsilon)$$

We follow the spirit of Carroll & Samwick (1997):

• If transitory income follows an MA(2) process:

$$y_t = p_t + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

$$\implies \operatorname{Var}(\Delta^N y_T) = N \underbrace{\operatorname{Var}(\zeta)}_{\mathsf{Perm var}} + 2 \underbrace{(1 + \theta_1^2 + \theta_2^2) \operatorname{Var}(\varepsilon)}_{\mathsf{"Total" trans var}} \text{ if } N \ge 3$$

Carroll & Samwick use N = 3, 4, 5 to identify permanent shock variance and "total" transitory shock variance

We follow the spirit of Carroll & Samwick (1997):

• If transitory income follows an MA(2) process:

$$y_t = \rho_t + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2}$$

$$\implies \operatorname{Var}(\Delta^N y_T) = N \underbrace{\operatorname{Var}(\zeta)}_{\mathsf{Perm var}} + 2 \underbrace{(1 + \theta_1^2 + \theta_2^2) \operatorname{Var}(\varepsilon)}_{\mathsf{"Total" trans var}} \text{ if } N \ge 3$$

Carroll & Samwick use N = 3, 4, 5 to identify permanent shock variance and "total" transitory shock variance

- 1 How does time aggregation affect this identification?
- 2 What might the equivalent of "robust to MA(2) transitory shocks" be in continuous time?

Carroll & Samwick in Continuous Time with Aggregation

- To begin assume no persistence in the transitory shock
- p<sub>t</sub> and q<sub>t</sub> are independent martingale processes with independent increments

$$Var(p_t - p_{t-1}) = \sigma_p^2$$
$$Var(q_t - q_{t-1}) = \sigma_q^2$$

 Instantaneous income is equal to the flow of permanent income plus the transitory income component

$$dy_t = p_t dt + dq_t$$

Carroll & Samwick in Continuous Time with Aggregation

- To begin assume no persistence in the transitory shock
- p<sub>t</sub> and q<sub>t</sub> are independent martingale processes with independent increments

$$Var(p_t - p_{t-1}) = \sigma_p^2$$
$$Var(q_t - q_{t-1}) = \sigma_q^2$$

 Instantaneous income is equal to the flow of permanent income plus the transitory income component

$$dy_t = p_t dt + dq_t$$

We observe  $\bar{y}_T$ , total income over year T:

$$\bar{y}_T = \int_{T-1}^T p_t dt + q_T - q_{T-1}$$

$$\implies \operatorname{Var}(\Delta^N \bar{y}_T) = (N - \frac{1}{3})\sigma_p + 2\sigma_q$$

Allow a generic persistence in transitory shock

• Following shock, transitory income flow decays as:

$$f(t)$$
 where  $f(t) = 0$  if  $t > 2$ 



$$\implies \operatorname{Var}(\Delta^N \bar{y}_T) = (N - \frac{1}{3})\sigma_p^2 + 2\sigma_{\tilde{q}}^2 \text{ for } N \ge 3$$

where  $\tilde{q_T} = \int_{\tau-1}^{T} \int_{t-2}^{t} f(t-s) dq_s dt$  is the time aggregated transitory component of income



#### Assumptions on Consumption

- $\bullet$  Permanent: Consumption permanently moves by fraction  $\phi$  of the income shock
- Transitory: Allow for generic impulse response g(t) where g(t) = 0 for t > 2



This is a key difference between what we assume and BPP

#### Assumptions on Consumption

- $\bullet$  Permanent: Consumption permanently moves by fraction  $\phi$  of the income shock
- Transitory: Allow for generic impulse response g(t) where g(t) = 0 for t > 2



This is a key difference between what we assume and BPP

Consumption flow is given by:

$$\begin{split} c_t &= \phi p_t + \int_{t-2}^t g(t-s) dq_s \\ \implies &\operatorname{Cov}(\Delta^N \bar{c_T}, \Delta^N \bar{y_T}) = \phi (N - \frac{1}{3}) \sigma_p^2 + 2\psi \sigma_{\tilde{q}}^2 \end{split}$$

where  $\psi = \frac{\operatorname{Cov}(\tilde{c},\tilde{q})}{\operatorname{Var}(\tilde{q})}$ , the regression coefficient of 'transitory' consumption on transitory income

Consumption flow is given by:

$$c_t = \phi p_t + \int_{t-2}^t g(t-s) dq_s$$

$$\implies \operatorname{Cov}(\Delta^N \bar{c_T}, \Delta^N \bar{y_T}) = \phi(N - \frac{1}{3}) \sigma_p^2 + 2\psi \sigma_{\tilde{q}}^2$$

where  $\psi = \frac{\operatorname{Cov}(\tilde{c},\tilde{q})}{\operatorname{Var}(\tilde{q})}$ , the regression coefficient of 'transitory' consumption on transitory income

- $\phi$ : MPX out of permanent income shocks
- $\psi$ : MPX out of transitory income shocks

#### **Full Identification**

We use GMM on the equations:

$$\operatorname{Var}(\Delta^{N} \bar{y_{T}}) = (N - \frac{1}{3})\sigma_{p}^{2} + 2\sigma_{\tilde{q}}^{2}$$
$$\operatorname{Cov}(\Delta^{N} \bar{c_{T}}, \Delta^{N} \bar{y_{T}}) = \phi(N - \frac{1}{3})\sigma_{p}^{2} + 2\psi\sigma_{\tilde{q}}^{2}$$

with N = 3, 4, 5 (total of six equations) to identify the four unknowns:

- $\sigma_p^2$ : Permanent shock variance
- $\sigma_{\tilde{q}}^2$ : (Time aggregated) transitory shock variance
- ullet  $\phi$ : MPX out of permanent income shocks
- $\psi$ : MPX out of transitory income shocks

### Threats to Identification

|                                 | Direction of bias |          |  |  |
|---------------------------------|-------------------|----------|--|--|
|                                 | Perm MPX          | Tran MPX |  |  |
|                                 |                   |          |  |  |
| Endogenous Income Shocks        | Neutral           | +ve      |  |  |
| Persistent Consumption Response | +ve               | -ve      |  |  |
| Income Measurement Error        | Neutral           | +ve      |  |  |
| Permanent Shocks are AR(1)      | Neutral           | +ve      |  |  |
| Non-linear MPX                  | ?                 | ?        |  |  |

Direction of Risc

#### Data

- Starting point: Register based micro data for all Danish households made available by Statistics Denmark
- Really good income data
  - We use after-tax income for the household head, based on third-party reported tax data
- We divide through by permanent income (mean income over all observed years) and take the residual after controlling for age, education, marital status etc. (along with interactions of these)
- Expenditure data imputed from income and wealth
  - Deposit and brokerage accounts all third party reported
  - Less accurate than income data



# Imputing Expenditure

We use the identity

$$C_t \equiv Y_t - S_t = Y_t - P_t - \Delta NW$$

- Works well for households with simple financial lives
- Main issue: Capital gains and losses
  - Exclude households where methodology will not work well (eg Business owners)
  - Exclude housing wealth and years with housing transactions
  - Capital gains for stocks based on a diversified index
- Noisy, but perhaps better than surveys (Kuchler et al. 2018)
- Huge sample size advantage: sample covers 23.3 million observations over 2004-2015 (approx 1.9 million per year)

# Shock Variance by Age



The assumption of constant variance works reasonably well from mid-30's to retirement



# MPX by Age



- $\phi \approx$  0.8, declines towards retirement
- $\psi \approx$  0.5, constant

# MPX by Liquid Wealth

#### Permanent and Transitory Variance by Liquid Wealth Quantile



#### MPX by Liquid Wealth Quantile



#### Model vs Data

#### How does a standard model compare with the data?





We calculate the sufficient statistics from Auclert (2017)

Here we will focus on the *Interest Rate Exposure* channel:

lf

- 1 Households that *owe* a lot of floating rate debt have *high* MPCs
- 2 Households that own a lot of floating rate debt have low MPCs

Then lowering interest rates will on average *increase* consumption through redistribution

We calculate the sufficient statistics from Auclert (2017)

Here we will focus on the *Interest Rate Exposure* channel:

lf

- 1 Households that *owe* a lot of floating rate debt have *high* MPCs
- 2 Households that own a lot of floating rate debt have low MPCs

Then lowering interest rates will on average *increase* consumption through redistribution

Do we know if 1 and 2 hold? How can we measure the size of this effect?



Define *Unhedged Interest Rate Exposure* for household *i* as the total savings the household will invest at this year's interest rate:

$$URE_i = Y_i - C_i + A_i - L_i$$

#### Where

- $Y_i$  = Total after tax income
- $C_i$  = Total Expenditure, including interest payments
- $A_i$  = Maturing assets
- $L_i$  = Maturing liabilities

Following a change in the interest rate dR, the size of the Interest Rate Exposure channel on household i's expenditure is:

$$dc_i = MPC_i URE_i \frac{dR}{R} \tag{1}$$

In aggregate, the size of this channel is given by:

$$\frac{dC}{C} = \mathbb{E}_{I} \left( MPC_{i} \frac{URE_{i}}{\mathbb{E}_{I}(c_{i})} \right) \frac{dR}{R}$$

Define sufficient statistic:

$$\mathcal{E}_{R} = \mathbb{E}_{I} \left( MPC_{i} \frac{URE_{i}}{\mathbb{E}_{I}(c_{i})} \right)$$

 $\implies$  Need to know the distribution of  $MPC_i$  with  $URE_i$ 

We can do that!

#### MPX by URE Quantile



Total URE sums to zero - this is not true for our household sample

#### • -338bn Kr

| Group                       | Total URE (bn Kr) | MPC              | $\mathcal{E}_R$ component |
|-----------------------------|-------------------|------------------|---------------------------|
| Our sample (head age 35-55) | -338              | See Distribution | -0.42                     |
| Head < 30                   | -38               | 0.5              | -0.02                     |
| Head > 55                   | -10               | 0.2              | 0.00                      |
| Pension Funds               | 143               | 0.1              | 0.02                      |
| Government                  | -120              | 0                | 0.00                      |
| Non-financial Corporate     | -66               | 0.1              | -0.01                     |
| Financial Sector            | 380               | 0.1              | 0.05                      |
| Rest of World               | 45                | 0                | 0.00                      |
| Total                       | 0                 |                  | -0.40                     |

The Five Transmission Channels:

$$\frac{dC}{C} = \left(\mathcal{M} + \gamma \mathcal{E}_{Y}\right) \frac{dY}{Y} - \mathcal{E}_{P} \frac{dP}{P} + \left(\mathcal{E}_{R} - \sigma S\right) \frac{dR}{R}$$

We calculate

- $\mathcal{E}_R \approx -0.24$
- $S \approx 0.6$ , 1-consumption-weighted MPC
- $\bullet$   $\sigma$  in the range of 0.1 to 0.5

 $\implies$  the intertemporal substitution channel,  $\sigma S \approx 0.06 - 0.3$ , is potentially much smaller than the interest rate exposure channel

Our expenditure measure include ALL expenditure

- Household goods (electronics, kitchen equipment, etc)
- Cars
- Home improvements (roof repair, extensions)

Durables make up 10.05% of total expenditure in Denmark

Our expenditure measure include ALL expenditure

- Household goods (electronics, kitchen equipment, etc)
- Cars
- Home improvements (roof repair, extensions)

Durables make up 10.05% of total expenditure in Denmark

But theory suggests durable expenditures should not be proportional to permanent income changes

• This may bias our results

Suppose households *instantaneously* upgrade their durable goods and then pay a constant flow of depreciation:

$$dc_t = \phi p_t dt + \phi_d dp_t + \psi dq_t$$

- $\bullet$   $\phi$  can be interpreted as the MPC to permanent shocks, where consumption includes non-durables and the service  $\mathit{flow}$  from durable goods
- $\phi_d$  is the proportion of the (annual) permanent shock that is spent instantaneously on durables
- $\bullet$   $\,\psi$  is the MPX out of transitory income, exactly as before

Suppose households *instantaneously* upgrade their durable goods and then pay a constant flow of depreciation:

$$dc_t = \phi p_t dt + \phi_d dp_t + \psi dq_t$$

- $\phi$  can be interpreted as the MPC to permanent shocks, where consumption includes non-durables and the service flow from durable goods
- $\bullet$   $\phi_d$  is the proportion of the (annual) permanent shock that is spent instantaneously on durables
- $\bullet \ \psi$  is the MPX out of transitory income, exactly as before

Then our estimates of  $\phi$  and  $\psi$  are unbiased. We have no way of estimating  $\phi_{\textit{d}}$ 

If households act with some delay things are different. Suppose they wait 1 year  $\,$ 

$$dc_t = \phi p_t dt + \phi_d dp_{t-1} + \psi dq_t$$

- $\mathbb{E}(\hat{\phi}) = \phi$  Permanent MPC is unbiased
- $\mathbb{E}(\hat{\psi}) = \psi + \frac{\sigma_p^2}{2\sigma_p^2} \phi_d$  Transitory MPX is upward biased



We have data on value of household cars

• Construct expenditure excluding car purchases and sales

$$C_T^{\mathsf{nocar}} = C_T - \Delta \mathsf{CarValue}$$

• Construct proxy for non durable consumption (Cars  $\approx$  42.1% durable expenditure)

$$C_T^{\text{nondurable}} = C_T - \frac{1}{0.421} \Delta \text{CarValue}$$

#### MPX by Liquid Wealth Quantile



#### MPX by Liquid Wealth Quantile



#### MPX by Liquid Wealth Quantile



### Conclusion

- We have designed a new method to estimate consumption responses to income shocks
- It appears to work well, both in theory and practice
- We can use it to show that heterogeneity plays a key role in monetary policy transmission

Thank you!