TP2 Heart Disease #Santé (partie 1)

Prédiction des patients atteints de maladie cardiovasculaire

Objectif : appréhender et développer toutes les étapes permettant l'utilisation d'une méthode d'apprentissage automatique supervisée

- Exploration de données
- Découper le jeu de données en une partie pour l'apprentissage et l'autre pour le test
- Évaluation et comparaison des différents algorithmes sur les modèles fournis
- Matrice de confusion
- Courbe ROC

Méthodes:

- · Arbre de décision
- · Forêts aléatoires

In [1]:

```
import numpy as np
import pandas as pd
```

In [2]:

```
df = pd.read_csv("../input/heart.csv")
```

In [3]:

```
#Afficher les 10 premières lignes
df.head(10)
```

Out[3]:

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang	oldpeak	slope	ca	thal	target
0	63	1	3	145	233	1	0	150	0	2.3	0	0	1	1
1	37	1	2	130	250	0	1	187	0	3.5	0	0	2	1
2	41	0	1	130	204	0	0	172	0	1.4	2	0	2	1
3	56	1	1	120	236	0	1	178	0	8.0	2	0	2	1
4	57	0	0	120	354	0	1	163	1	0.6	2	0	2	1
5	57	1	0	140	192	0	1	148	0	0.4	1	0	1	1
6	56	0	1	140	294	0	0	153	0	1.3	1	0	2	1
7	44	1	1	120	263	0	1	173	0	0.0	2	0	3	1
8	52	1	2	172	199	1	1	162	0	0.5	2	0	3	1
9	57	1	2	150	168	0	1	174	0	1.6	2	0	2	1
4														

trestbps, chol, thalach, oldpeak, ca)

1 variable cible catégorielle à 2 modalités

- age
- sex (1 = male, 0 = female)
- cp : chest pain type (Value 0: typical angina, Value 1: atypical angina, Value 2: non-anginal pain, Value 3: asymptomatic)
- trestbps: tension artérielle au repos (resting blood pressure) (mm Hg on admission to the hospital)
- chol : serum cholestoral measurement in mg/dl
- fbs : fasting blood sugar (> 120 mg/dl, 1 = true; 0 = false)
- restecg : resting electrocardiographic results (0 = normal, 1 = having ST-T wave abnormality, 2 = showing probable or definite left ventricular hypertrophy by Estes' criteria)
- thalach : fréquence cardiague maximale atteinte
- exang : exercise induced angina (1 = yes; 0 = no)
- oldpeak: ST depression induced by exercise relative to rest ('ST' relates to positions on the ECG (ElectroCardioGram) plot. See more https://litfl.com/st-segment-ecg-library/))
- slope : the slope of the peak exercise ST segment (Value 1: upsloping, Value 2: flat, Value 3: downsloping)
- ca : number of major vessels (0-3) colored by flourosopy
- thal: A blood disorder called thalassemia (3 = normal; 6 = fixed defect; 7 = reversable defect)
- target : Heart disease (0 = no, 1 = yes)

Diagnosis: The diagnosis of heart disease is done on a combination of clinical signs and test results. The types of tests run will be chosen on the basis of what the physician thinks is going on <u>1</u> (https://www.mayoclinic.org/diseases-conditions/heart-disease/diagnosis-treatment/drc-20353124), ranging from electrocardiograms and cardiac computerized tomography (CT) scans, to blood tests and exercise stress tests <u>2</u> (https://www.heartfoundation.org.au/your-heart/living-with-heart-disease/medical-tests).

Looking at information of heart disease risk factors led me to the following: high cholesterol, high blood pressure, diabetes, weight, family history and smoking 3 (https://www.bhf.org.uk/informationsupport/risk-factors). According to another source 4 (https://www.heart.org/en/health-topics/heart-attack/understand-your-risks-to-prevent-a-heart-attack), the major factors that can't be changed are: increasing age, male gender and heredity. Note that thalassemia, one of the variables in this dataset, is heredity. Major factors that can be modified are: Smoking, high cholesterol, high blood pressure, physical inactivity, and being overweight and having diabetes. Other factors include stress, alcohol and poor diet/nutrition.

I can see no reference to the 'number of major vessels', but given that the definition of heart disease is "...what happens when your heart's blood supply is blocked or interrupted by a build-up of fatty substances in the coronary arteries", it seems logical the *more* major vessels is a good thing, and therefore will reduce the probability of heart disease.

In [4]:

In [5]:

```
#Types des variables
df.dtypes
```

Out[5]:

age int64 int64 sex chest_pain_type int64 resting_blood_pressure int64 cholesterol int64 fasting_blood_sugar int64 int64 rest ecg max_heart_rate_achieved int64 exercise_induced_angina int64 st depression float64 st_slope int64 num_major_vessels int64 thalassemia int64 target int64 dtype: object

In [6]:

```
#Définir les types appropriés : les variables numériques discrètes deviennent de type object
df['sex'] = df['sex'].astype('object')
df['chest_pain_type'] = df['chest_pain_type'].astype('object')
df['fasting_blood_sugar'] = df['fasting_blood_sugar'].astype('object')
df['rest_ecg'] = df['rest_ecg'].astype('object')
df['exercise_induced_angina'] = df['exercise_induced_angina'].astype('object')
df['st_slope'] = df['st_slope'].astype('object')
df['thalassemia'] = df['thalassemia'].astype('object')
```

In [7]:

```
#Vérification des nouveaux types
df.dtypes
```

Out[7]:

age	int64
sex	object
<pre>chest_pain_type</pre>	object
resting_blood_pressure	int64
cholesterol	int64
fasting_blood_sugar	object
rest_ecg	object
<pre>max_heart_rate_achieved</pre>	int64
<pre>exercise_induced_angina</pre>	object
st_depression	float64
st_slope	object
num_major_vessels	int64
thalassemia	object
target	int64
dtype: object	

Note : target ne doit pas passer en objet sinon message d'erreur dans l'arbre de décision

Exploration des données

In [8]:

df.describe()

Out[8]:

	age	resting_blood_pressure	cholesterol	max_heart_rate_achieved	st_depression
count	303.000000	303.000000	303.000000	303.000000	303.000000
mean	54.366337	131.623762	246.264026	149.646865	1.039604
std	9.082101	17.538143	51.830751	22.905161	1.161075
min	29.000000	94.000000	126.000000	71.000000	0.000000
25%	47.500000	120.000000	211.000000	133.500000	0.000000
50%	55.000000	130.000000	240.000000	153.000000	0.800000
75%	61.000000	140.000000	274.500000	166.000000	1.600000
max	77.000000	200.000000	564.000000	202.000000	6.200000
4					•

In [9]:

#Analyse des moyennes des variables discrétisé par la variable cible target (deux modalité df.groupby('target').mean()
#Ello cons offectuée uniquement cun les variables quantitatives

#Elle sera effectuée uniquement sur les variables quantitatives

Out[9]:

age resting_blood_pressure cholesterol max_heart_rate_achieved st_depression

target					
0	56.601449	134.398551	251.086957	139.101449	1.585507
1	52.496970	129.303030	242.230303	158.466667	0.583030
4					•

Analyse univariable de la variable cible

In [10]:

#Nombre d'individus discrétisés par la variable cible df.target.value_counts()

Out[10]:

1 165 0 138

Name: target, dtype: int64

Dans notre jeu de données, il y a plus de patients atteints de maladie cardiovasculaire (165) que de patients non atteints (138).

In [11]:

```
import matplotlib.pyplot as plt
import seaborn as sns #for plotting
```

In [12]:

```
#Variable cible
sns.countplot(x="target", data=df)
plt.title('Distribution des patients non atteint et atteint de maladie cardiovasculaire')
plt.xlabel("Cible")
```

Out[12]:

Text(0.5, 0, 'Cible')

Distribution des patients non atteint et atteint de maladie cardiovasculaire

Analyse univariable du sexe

In [13]:

```
sns.countplot(x='sex', data=df)
plt.xlabel("Sexe (0 = Femme, 1 = Homme)")
plt.title("Distribution des patients par leur sexe")
```

Out[13]:

Text(0.5, 1.0, 'Distribution des patients par leur sexe')

In [14]:

```
#Tableau croisé
pd.crosstab(df["sex"], df["target"])
```

Out[14]:

target	0	1	
sex			
0	24	72	
1	114	93	

In [15]:

```
pd.crosstab(df.sex,df.target).plot(kind="bar",figsize=(15,6))
plt.title('Distibution des patients en fonction du sexe et discrétisé par la variable cible
plt.xlabel('Sexe (0 = Femme, 1 = Homme)')
plt.xticks(rotation=0)
plt.legend(["Sain", "Malade"])
plt.ylabel('Freq')
plt.show()
```


In [16]:

```
#Exemple de double condition
df_femme_pain0 = df [(df["sex"] == 0) & (df['chest_pain_type']==0)]
```

In [17]:

```
df_femme_pain0.head(10)
```

Out[17]:

	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blood_sugar	rest_
4	57	0	0	120	354	0	
43	53	0	0	130	264	0	
49	53	0	0	138	234	0	
59	57	0	0	128	303	0	
65	35	0	0	138	183	0	
69	62	0	0	124	209	0	
84	42	0	0	102	265	0	
89	58	0	0	100	248	0	
96	62	0	0	140	394	0	
107	45	0	0	138	236	0	
4							•

In [18]:

```
pd.crosstab(df.thalassemia, df.target).plot(kind="bar",figsize=(15,6))
plt.title('Distibution des patients en fonction du type de thalassemie et discrétisé par la
plt.xlabel('Thalassemie')
plt.xticks(rotation=0)
plt.legend(["Sain", "Malade"])
plt.ylabel('Freq')
plt.show()
```


Analyse univariable de l'âge

In [19]:

```
pd.crosstab(df.age,df.target).plot(kind="bar",figsize=(20,6))
plt.title('Distibution des patients en fonction de l âge et discrétisé par la variable cibl
plt.xlabel('Age')
plt.ylabel('Freq')
plt.show()
#plt.savefig('heartDiseaseAndAges.png')
```


Analyse univariable de la tension artérielle au repos

In [20]:

```
#Variable resting_blood_pressure
bx = plt.boxplot(df['resting_blood_pressure'])
plt.ylabel('Tension artérielle au repos [mm Hg]')
plt.title('Distribution de la tension artérielle au repos')
```

Out[20]:

Text(0.5, 1.0, 'Distribution de la tension artérielle au repos')

Il y a quelques patients qui ont une tension artérielle au repos "abérrante".

Est-ce que ces tensions anormalement très élevé auraient un impact sur la variable cible ?

In [21]:

```
#Récupérer les outliers
seuil = bx['whiskers'][1]._yorig[1]
outliers = df[df["resting_blood_pressure"]> seuil]
print(len(outliers))

#Figure
sns.countplot(x='target', data=outliers)
plt.title('Distribution des outliers de la tension artérielle au repos')
```

Out[21]:

Text(0.5, 1.0, 'Distribution des outliers de la tension artérielle au repos')

Nous analysons plus particulièrement ces 9 outliers, il s'avère que 6 sont des patients sains et 3 sont des patients atteints de maladie cardiovasculaire.

In [22]:

```
#Figure distribution des tension artérielles au repos discrétisé par variable cible
plt.figure(figsize=(10,5))
plt.subplot(1,2,1)
plt.boxplot(df[df['target']==0]['resting_blood_pressure'])
plt.ylim([90,210])
plt.ylabel('Tension artérielle au repos [mm Hg]')
plt.title('Patients sains')

plt.subplot(1,2,2)
plt.boxplot(df[df['target']==1]['resting_blood_pressure'])
plt.ylim([90,210])
plt.ylim([90,210])
plt.ylabel('Tension artérielle au repos [mm Hg]')
plt.title('Patients malades')
```

Out[22]:

Text(0.5, 1.0, 'Patients malades')

In [23]:

```
#Equivalent
df.groupby('target').boxplot(column='resting_blood_pressure', figsize=(15,6))
```

Out[23]:

```
0 AxesSubplot(0.1,0.15;0.363636x0.75)
1 AxesSubplot(0.536364,0.15;0.363636x0.75)
dtype: object
```


resting_blood_pressure

Analyse bivariable : age et fréquence cardiaque maximale atteinte

In [24]:

100

```
plt.scatter(x=df.age[df.target==1], y=df.max_heart_rate_achieved[(df.target==1)], c="red")
plt.scatter(x=df.age[df.target==0], y=df.max_heart_rate_achieved[(df.target==0)])
plt.legend(["Malade", "Sain"])
plt.xlabel("Age")
plt.ylabel("Fréquence cardiaque maximale atteinte")
plt.show()
```


In [25]:

```
pd.crosstab(df.chest_pain_type,df.target).plot(kind="bar",figsize=(15,6))
plt.title('Distribution des patients discrétisés par le type de douleur thoracique')
plt.xlabel('Chest Pain Type')
plt.xticks(rotation = 0)
plt.ylabel('Fréquence des patients malades ou non')
plt.show()
```


In [26]:

```
pd.crosstab(df.fasting_blood_sugar, df.target).plot(kind="bar",figsize=(15,6))
plt.title('Distribution des patients discrétisés par la glycémie à jeun')
plt.xlabel('Glycémie à jeun - (Fasting Blood Sugar > 120 mg/dl) (1 = true; 0 = false)')
plt.xticks(rotation = 0)
plt.legend(["Sain", "Malade"])
plt.ylabel('Fréquence des patients malades ou non')
plt.show()
```


Out[27]:

							•
	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blood_sugar	re
0	63	1	3	145	233	1	
1	37	1	2	130	250	0	
2	41	0	1	130	204	0	
3	56	1	1	120	236	0	
4	57	0	0	120	354	0	
5	57	1	0	140	192	0	
6	56	0	1	140	294	0	
7	44	1	1	120	263	0	
8	52	1	2	172	199	1	
9	57	1	2	150	168	0	
10	54	1	0	140	239	0	
11	48	0	2	130	275	0	
12	49	1	1	130	266	0	
13	64	1	3	110	211	0	
14	58	0	3	150	283	1	
15	50	0	2	120	219	0	
16	58	0	2	120	340	0	
17	66	0	3	150	226	0	
18	43	1	0	150	247	0	
19	69	0	3	140	239	0	
20	59	1	0	135	234	0	
21	44	1	2	130	233	0	
22	42	1	0	140	226	0	
23	61	1	2	150	243	1	
24	40	1	3	140	199	0	
25	71	0	1	160	302	0	
26	59	1	2	150	212	1	
27	51	1	2	110	175	0	
28	65	0	2	140	417	1	
29	53	1	2	130	197	1	
273	58	1	0	100	234	0	
274	47	1	0	110	275	0	
275	52	1	0	125	212	0	

	age	sex	chest_pain_type	resting_blood_pressure	cholesterol	fasting_blood_sugar	re
276	58	1	0	146	218	0	
277	57	1	1	124	261	0	
278	58	0	1	136	319	1	
279	61	1	0	138	166	0	
280	42	1	0	136	315	0	
281	52	1	0	128	204	1	
282	59	1	2	126	218	1	
283	40	1	0	152	223	0	
284	61	1	0	140	207	0	
285	46	1	0	140	311	0	
286	59	1	3	134	204	0	
287	57	1	1	154	232	0	
288	57	1	0	110	335	0	
289	55	0	0	128	205	0	
290	61	1	0	148	203	0	
291	58	1	0	114	318	0	
292	58	0	0	170	225	1	
293	67	1	2	152	212	0	
294	44	1	0	120	169	0	
295	63	1	0	140	187	0	
296	63	0	0	124	197	0	
297	59	1	0	164	176	1	
298	57	0	0	140	241	0	
299	45	1	3	110	264	0	
300	68	1	0	144	193	1	
301	57	1	0	130	131	0	
302	57	0	1	130	236	0	
303 r	UM6 A	: 14 ^	olumns				
JUJ 1	OVV5 ^	140	Ojullilis	_			V

In [28]:

#Boites à moustaches
df.boxplot()

Out[28]:

<matplotlib.axes._subplots.AxesSubplot at 0x13d8b36e860>

