# **Triple Recursion**



You are filling a matrix by following a set of rules. Given a square matrix of size  $n \times n$ , where (0,0) is its upper-left cell and (n-1,n-1) is its bottom-right cell, fill all the cells according to the following rules:

Value of a[i][j] is defined recursively as follows:

- ullet if i=0 and j=0 then a[i][j]=m
- ullet else if i=j then a[i][j]=a[i-1][j-1]+k
- ullet else if i>j then a[i][j]=a[i-1][j]-1
- ullet else, if i < j, then a[i][j] = a[i][j-1]-1

In other words, given integers m and k, the matrix is filled by putting m in the upper-left cell, and then every other cell (i,i) on the main diagonal of the matrix is filled with the value a[i-1][j-1]+k. Remaining cells of the matrix are filled according to the two other recursive rules defined above.

For example, for n=4, m=3, k=1, the matrix will be:-

```
3 2 1 0
2 4 3 2
1 3 5 4
0 2 4 6
```

The task is to print the matrix after all its cells are filled with values.

#### **Input Format**

In the first and only line of the input, there are 3 space-separated integers n, m, and k, where n is the size of the matrix and both m and k denote values used in the recursive definition in the statement.

### **Constraints**

- $4 \le n \le 100$
- $5 \le m \le 100$
- $2 \le k \le 50$

#### **Output Format**

Output the matrix with exactly n lines. In the  $i^{th}$  line, print n space-separated integers denoting the  $i^{th}$  row of the matrix with all cells filled with appropriate values.

#### Sample Input 0

5 10 7

### **Sample Output 0**

```
10 9 8 7 6
9 17 16 15 14
8 16 24 23 22
7 15 23 31 30
6 14 22 30 38
```

#### **Explanation 0**

See the color-coded illustration below for the right answer:

| 10 | 9  | 8  | 7  | 6  |
|----|----|----|----|----|
| 9  | 17 | 16 | 15 | 14 |
| 8  | 16 | 24 | 23 | 22 |
| 7  | 15 | 23 | 31 | 30 |
| 6  | 14 | 22 | 30 | 38 |

# Sample Input 1

6 5 2

# **Sample Output 1**

5 4 3 2 1 0 4 7 6 5 4 3 3 6 9 8 7 6 2 5 8 11 10 9 1 4 7 10 13 12 0 3 6 9 12 15

## **Explanation 1**

See the color-coded illustration below for the right answer for the  $\,6 \times 6\,$  matrix:

