Nombre dérivé et applications

1^{re} Spécialité mathématiques Analyse - Cours et démonstrations

Introduction

Pour la suite du cours :

- ullet f est une fonction définie sur un intervalle I et on note C_f sa courbe représentative
- ullet a est un réel appartenant à I et on note A le point de C_f d'abscisse a

1. Taux de variation et nombre dérivé d'une fonction f

1. Taux de variation d'une fonction entre deux réels

Définition:

Soit f une fonction définie sur un intervalle I et a et b sont deux réels de I.

On appelle taux de variation ou taux d'accroissement de f entre a et b le nombre $\frac{f(b)-f(a)}{b-a}$.

Interprétation géométrique : Le taux de variation de f entre a et b correspond au coefficient directeur de la droite (AB) avec A(a; f(a)) et B(b; f(b)).

Interprétation cinématique : Si la fonction f représente la distance parcourue par un mobile en fonction du temps, le taux de variation de f entre a et b représente la vitesse moyenne entre les instants a et b.

2. Notion de nombre dérivé

Définition:

On considère une fonction f définie sur un intervalle I.

Soit a un réel de I et h un réel non nul tel que $a+h \in I$.

On dit que la fonction f est dérivable en a lorsque le taux de variation de f entre les réels a et a+h tend vers un nombre réel L lorsque h se rapproche de 0.

Dans ce cas, ce réel est appelé nombre dérivé de f en a et on le note f'(a). On écrit alors $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$.

Interprétation cinématique :

Lorsque f est une fonction représentant la distance parcourue par un mobile en fonction du temps :

- le quotient $\frac{f(a+h)-f(a)}{h}$ représente la vitesse moyenne entre les instants a et a+h.
- le nombre dérivé $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} = f'(a)$ représente la vitesse instantanée à l'instant t=a.

II. Tangente à une courbe en un point $oldsymbol{A}$

Sur la figure ci-contre : A(a; f(a)) et H(a + h; f(a + h)).

Le coefficient directeur de la droite (AH) est $\frac{y_H-y_A}{x_H-x_A}=\frac{f(a+h)-f(a)}{a+h-a}=\frac{f(a+h)-f(a)}{h}.$

Que se passe-t-il lorsque H se rapproche de plus en plus du point A, autrement dit lorsque h se rapproche de plus en plus de 0 ?

Si h tend vers 0, la droite (AM) se rapproche de la tangente à la courbe en A. Donc $\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ correspond au coefficient directeur de la tangente.

Définition :

Lorsque f est dérivable en a, on appelle tangente à la courbe C_f au point d'abscisse a, la droite T passant par A(a; f(a)) dont le coefficient directeur est f'(a).

Exemple : Soit f définie sur \mathbb{R} par $f(x)=x^2$ et C_f sa courbe représentative.

L'équation de la tangente à la courbe C_f au point A d'abscisse 1 est de la forme y=mx+p avec m=f'(1)=2.

L'équation devient y=2x+p. On peut remplacer x par 1 et y par $f(1)=1^2=1$.

Ainsi, $1=2\times 1+p\Leftrightarrow 1=2+p\Leftrightarrow p=-1$. L'équation de la tangente est y=2x-1.

Propriété:

Soit f une fonction dérivable en a, de courbe représentative C_f .

L'équation de la tangente à C_f au point A d'abscisse a est donné par la formule y=f'(a)(x-a)+f(a).

Démonstration :

L'équation de la tangente à la courbe C_f au point A d'abscisse a est de la forme y=mx+p avec m=f'(a). L'équation devient y=f'(a)x+p.

On peut remplacer x par a et y par f(a).

$$\mathsf{Ainsi}, f(a) = f'(a)a + p$$

$$\Leftrightarrow f(a) - f'(a)a = p$$

L'équation de la tangente est donc y = f'(a)x + f(a) - f'(a)a

$$\Leftrightarrow y = f'(a)(x - a) + f(a)$$