University of Aizu

Master's Research Plan Presentation

Dynamic Quantization & Pruning in Spiking Neuron Networks

Yassine Khedher m5281019 July 24th 2024

- 1. Motivation & Background
- 2. Research Goal
- 3. Approach/Method
- 4. Schedule

- 1. Motivation & Background
- 2. Research Goal
- 3. Approach/Method
- 4. Schedule

Need for new Architectures

→ Neuromorphic Computing

- Inspired by the human brain's structure and function
- Offers new ways to achieve high efficiency and performance

Neuromorphic Computing

Why Neuromorphic Computing?

- Suitable for applications requiring low power and real-time processing
- Aims to create hardware and algorithms that mimic neural processes

Advantages

- Highly efficient in terms of power consumption
- Event-driven computing
- Potential for robust and scalable AI applications

Figure: Differences between Conventional and Neuromorphic Computing

Spiking Neuron Networks (SNNs)

What are SNNs?

- More biologically realistic compared to traditional neural networks
- Use discrete spikes to represent and process information

Advantages:

- Efficient in terms of power and data processing
- Capable of learning temporal patterns and sequences
- Better suited for real-time and low-power applications

Figure: Flow of data in a Spiking Neuron Network

Related Works

Model compression techniques

Table: State-of-the-art of model compression techniques in SNNs

Ref.	Technique	Accuracy	Energy Consumption	Limitations	Dataset
[2]	Knowledge Distillation	74.42 %	3,3x improvement	Relies on a well-trained teacher network	MNIST
[3]	Static Pruning	97.57 %	3.1x improvement	Iso-accuracy maintained only up to 80% sparsity	DVS Gestures
[3]	Static Quantization	87.85%	2.4x energy improvement	Acc. loss at low bit- widths	DVS Gestures
[3]	Joint Quantization & Pruning	-	10x improvement in energy- delay product (EDP)	May result in accuracy loss	DVS Gestures
[4]	STDP Pruning & Weight Quantization	MNIST: 90.1% Caltech-101: 91.6%	MNIST: 3.1x improvement Caltech-101: 2.2x improvement	Accuracy sensitive to pruning threshold and number of quantization	MNIST Caltech-101 subset

Existing Gaps and Limitations:

- Limited integration of dynamic quantization & pruning with SNNs.
- Lack of comprehensive frameworks addressing both efficiency and resource constraints.

- 1. Motivation & Background
- 2. Research Goal
- 3. Approach/Method
- 4. Schedule

Challenges in SNNs

Reducing the energy consumption:

- Increasing the power efficiency can reduce the accuracy
- → Tradeoff between accuracy and energy consumption
- → How to reduce energy consumption without significantly affecting the accuracy?

Figure: Relation between Accuracy, Power consumption and Number of bits in SNN

Goals

Objective:

 Develop and evaluate methods for Dynamic Quantization and Pruning in Spiking Neuron Networks (SNNs).

Goals:

- Implement Dynamic Quantization & Pruning in order to:
 - → Optimize Energy Consumption
 - → Improve Computational Efficiency
 - → Maintain or Enhance Accuracy
 - → Develop a Comprehensive Evaluation Framework
 - → Contribute to the Field of Neuromorphic Computing

- 1. Motivation & Background
- 2. Research Goal
- 3. Approach/Method
- 4. Schedule

Dynamic Quantization

Definition:

• Dynamic quantization involves adjusting the precision of weights and activations in neural networks during runtime to reduce computational load and energy consumption.

Dynamic Pruning

Definition:

• Involves selectively deactivating neurons and synapses during runtime based on their activity levels, thus reducing the network's complexity and energy consumption.

Approach

Overview:

 Developing and integrating dynamic quantization and pruning techniques into Spiking Neuron Networks (SNNs) to optimize their performance.

Steps:

- 1. Motivation & Background
- 2. Research Goal
- 3. Approach/Method
- 4. Schedule

Schedule

References

- [1] HENNESSY, D. A. P. J. L. Computer Architecture, Sixth Edition: A Quantitative Approach. 6. ed. [S.I.]: Morgan Kaufmann, 2017. (The Morgan Kaufmann Series in Computer Architecture and Design).
- [2] S. Takuya, R. Zhang and Y. Nakashima, "Training Low-Latency Spiking Neural Network through Knowledge Distillation," 2021 IEEE Symposium in Low-Power and High-Speed Chips (COOL CHIPS), Tokyo, Japan, 2021, pp. 1-3, doi: 10.1109/COOLCHIPS52128.2021.9410323.
- [3] C. J. Schaefer, P. Taheri, M. Horeni and S. Joshi, "The Hardware Impact of Quantization and Pruning for Weights in Spiking Neural Networks," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 5, pp. 1789-1793, May 2023, doi: 10.1109/TCSII.2023.3260701.
- [4] Rathi, Nitin & Panda, Priyadarshini & Roy, Kaushik. (2017). STDP Based Pruning of Connections and Weight Quantization in Spiking Neural Networks for Energy Efficient Recognition. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. PP. 10.1109/TCAD.2018.2819366.

Thank you for your attention!