

Today's Plan

- Today's Problem
- Dynamic Linear Panel Data Models
- Arellano Bond
- Sargan Test
- Robust Standard Errors (coding tips)
- Your time to shine!

Do firm profits exhibit state dependence?

Consider a model of firm profits:

$$\pi_{it} = c_i + \rho \pi_{it-1} + \mathbf{x}_{it} \boldsymbol{\beta} + u_{it}$$
 (1)

- For policy intervention a relevant question is whether differences in firm performance (as measured by profits) are due to firm fixed effects or due to state dependence
- Why do we care whether correlations in profits over time are due to c_i or ρ ≠ 0?
- Today we will look to answer the question whether *conditional* on c_i last period profits help predict current profits i.e. $\rho \neq 0$

Dynamic Panel Data Model

• Including the lagged dependent variable, y_{it-1} , as a regressor

$$y_{it} = c_i + \rho y_{it-1} + x_{it}\beta + u_{it}$$
 (2)

- Can we use FE/FD or POLS to estimate ρ ?
- FE/FD require strict exogeneity whilst POLS requires no confounding time-invariant heterogeneity
- Both fail as $y_{it-1} = c_i + \rho y_{it-2} + x_{it-1}\beta + u_{it-1}$ means that

$$E(y_{it-1}u_{it-1}) = \sigma_u^2 \neq 0$$
 (3)

$$E(y_{it-1}c_i) = E((c_i + \rho y_{it-2} + \mathbf{x}_{it-1}\boldsymbol{\beta} + u_{it-1})c_i)$$

= $E(c_i^2 + \rho c_i^2 + \dots + \rho^J c_i^2) \neq 0$ (4)

• FE, FD and POLS on (2) will be **inconsistent**, what to do?

FD-IV AR(1) Model

• Let's lose \mathbf{x}_{it} for a moment and consider the FD AR(1) Model

$$\Delta y_{it} = \rho \Delta y_{it-1} + \Delta u_{it} \tag{5}$$

- We've just seen that $E(y_{it-1}u_{it-1}) = \sigma_u^2 \neq 0$ which implies that $E(\Delta y_{it-1} \Delta u_{it-1}) \neq 0$. FD removes c_i but still isn't consistent
- **Solution**: Use instrumental variable (IV) to instrument Δy_{it-1}
- Requirements for z_{it} to be a valid IV for x_{it} :

Exogeneity:
$$E(\mathbf{z}_{it}u_{it}) = 0$$
 (6)

Relevance:
$$E(\mathbf{z}_{it}\mathbf{x}_{it}) \neq 0$$
 (7)

• In this context $\mathbf{x}_{it} = y_{it-1}$ is the endogenous variable we'd like to instrument. What are some contender IVs, \mathbf{z}_{it} ? What exogeneity assumption can we make that might help find IVs in this setting?

Sequential Exogeneity

 If we assume that the idiosyncratic error is uncorrelated with all past realisations of the dependent variable:

Sequential Exogeneity:
$$E(y_{is}u_{it}) = 0 \quad \forall \quad s < t$$
 (8)

then we can use $\mathbf{z}_{it} = (y_{it-2}, y_{it-3}, \dots, y_{i0})$ as IVs for y_{it-1}

 NB the instrument matrix **z**_{it} becomes larger the later the period we consider due to more lags becoming available. **z**_{it} is telescoping

Two Stage Least Squares (2SLS)

- Given the considerations above, a consistent estimator of ρ is provided by the 2SLS estimator
- The resulting estimator is the 2SLS estimator of ρ :

$$\rho_{2SLS} = (\hat{X}'\hat{X})^{-1}\hat{X}'y \tag{9}$$

where $\hat{X} = Z'(Z'Z)^{-1}Z'X$. In this case $X = y_{it-1}, y = y_{it}$ and $Z = (y_{it-2}, y_{it-3}, \dots, y_{i0}).$

- Steps: 1) obtain IVs \mathbf{z}_{it} for y_{it-1} , 2) first stage: get predicted values \hat{y}_{it-1} , 3) 2nd stage regress y_{it} on \hat{y}_{it-1}
- How do we handle re-introducing x_{it} ? We can instrument them in a similar fashion to y_{it-1} (i.e. using lags, depending on what we assume about $E(x_{it}u_{is})$

Arellano Bond

- Under sequential exogeneity 2SLS is consistent but inefficient
- To address this inefficiency, Arellano and Bond proposed the GMM estimator which uses an optimal weighting matrix, W:

$$\rho_{GMM} = (\hat{X}' \frac{ZWZ'}{\hat{X}})^{-1} \hat{X}' \frac{ZWZ'}{Y}$$
 (10)

- W puts greater weight on observations with more variation to increase precision of the estimation
- Optimal weighting matrix would be $W = S^{-1} = [E(Z'uu'Z)]^{-1}$ but in reality we start off with $W = (Z'Z)^{-1}$ (i.e. 2SLS), obtain residuals \hat{u} , and use these to update $\hat{W} = Z'\hat{u}\hat{u}'Z$
- AB's GMM estimator is 2SLS with a feasible weighting matrix, \hat{W} , which is updated at each step

Arellano Bond, a few notes of caution

- Doesn't work if $\rho = 1$ since then first differences are simply white noise and cannot be predicted using past levels
- Weak instruments and instrument proliferation: risk having too many poor IVs essentially no longer purging the regressors off their endogeneity
- Also relies on no serial correlation in the error terms (bonus: can you see why?)
- Even with those caveats this estimator is **hugely** popular has 37,319 citations (v unusual for a method paper) - and is widely used for both growth and labour market applications

Sargan Test: Overidentifying Restrictions

- Due to the telescoping nature of the instrument matrix we have more IVs than strictly needed for identification
- This allows us to test these "over-identifying restrictions" under the null that all of our IVs are valid
- That is, we can test whether $E(\mathbf{Z}u) = 0$ holds
- Sargan Test Statistic

$$\mathbf{J} := \hat{\mathbf{u}}' \mathbf{Z} \mathbf{W} \mathbf{Z}' \hat{\mathbf{u}} \sim \chi_M^2$$

where M = r - K is the number of overidentifying restrictions, r is the number of IVs and K is the number of regressors

 Note! This is not a test of a subset of IVs, the null hypothesis should be rejected if any one of the IVs is correlated with the errors

Robust Standard Errors

Robust standard errors for OLS:

$$\widehat{\textit{Avar}}(\hat{\boldsymbol{\beta}}_{\textit{OLS}}) = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\Omega\mathbf{X}(\mathbf{X}'\mathbf{X})^{-1} \tag{11}$$

where $\Omega = diag(\hat{u}_i)^2$

• Panel robust standard errors for FE:

$$\widehat{Avar}(\hat{\boldsymbol{\beta}}_{FE}) = (\ddot{\mathbf{X}}'\ddot{\mathbf{X}})^{-1} \left(\sum_{i}^{N} \ddot{\mathbf{X}}_{i}' \hat{\mathbf{u}}_{i} \hat{\mathbf{u}}_{i}' \ddot{\mathbf{X}}_{i} \right) (\ddot{\mathbf{X}}'\ddot{\mathbf{X}})^{-1}$$
(12)

- **Looping** over cross-sectional units, $i \in N$, is useful when computing these. You can loop using for i in range(N):
- Make sure you are **pulling out the correct portion** of the dataset for each i i.e. the first T elements for i=0 if the data, y, is stacked into an $NT \times 1$ vector, slice function is useful for this

Your time to shine!

- Have a look at the toolbox LinearDynamic_ante.py and fill in missing pieces
- Solve the problem set and use functions from the toolboxes LinearDynamic_ante.py and gmm_ante.py where necessary