Lecture #20 02/27/2023

De impose extra condition to extract conique solution vector x for a wide linear system:

solution vector x for a (wide) linear system:
minimize || x ||₂ }

minimize $\| \frac{x}{x} \|_2$ This problem is called the

subject t. $A \times = b$ called the "least norm problem"

This problem has a unique minimizer $x \in \mathbb{R}^n$ provided [rank(A) = m]

Claim: Solution of the least norm problem is given by the minimizer:

 $= (A^{\dagger})\underline{b}$ pseudi-invense of wide A right-inverse for Wide A Compare this with the least square solution: $\hat{Z} = A^{\dagger}b = (A^{\dagger}A)^{-1}A^{\dagger}b \quad \text{for tall } A$

Proof desiration of this claim without calculus: Let $x \in \mathbb{R}^n$ is a solution of the roise linear system; Ax = b such that $x \neq x$ least norm where $= |eas| = A^T (AA^T)^{-1} b$ $A \underline{x} = \underline{b} = A \underline{x}$ | least

A(x-x|east)=0 m_{xn} m_{xn} m_{xn}

next pg.

Them, $\|x\|_2^2 = \|x|_{\text{east}} + (x - x|_{\text{norm}})\|_2^2$ $= \| \frac{x}{x} \| \| \frac{x}{x} + \| \frac{x}{x} - \frac{x}{x} \| \| \frac{$ Cross team = C

$$2 \left(\frac{x}{x} - \frac{x}{x} \right)^{T} \frac{x}{x} = \frac{1}{x} \left(\frac{x}{x} - \frac{x}{x} \right)^{T} A^{T} \left(\frac{x}{x} \right)^{T} \frac{b}{x}$$

$$= 2 \left(\frac{x}{x} - \frac{x}{x} \right)^{T} \frac{x}{x} = \frac{1}{x} \left(\frac{x}{x} - \frac{x}{x} \right)^{T} \frac{b}{x}$$

$$= 2 \left(\frac{x}{x} - \frac{x}{x} \right)^{T} \frac{x}{x} = \frac{1}{x} \left(\frac{x}{x} \right)^{T} \frac{b}{x}$$

$$= 0$$

$$= 0$$

$$= 0$$

$$= \frac{1}{x} \left(\frac{x}{x} \right)^{T} \frac{x}{x} = \frac{1}{x} \left(\frac{x}{x} \right)^{T} \frac{x}{x} = \frac{1}{x} = \frac{1}{x$$

The Cross-term:

 $\frac{2}{\text{horm}} = A^{T}(AA^{T})^{-1}b \text{ has the}$

smallest possible 2-norm among all possible solutions of the wide linear system A = b

Computing 2 least using QR decomposition:

• Find QR decomposition of A^{T} : $A^{T} = QR$ with $Q \in \mathbb{R}^{n \times m}$ and $Q^{T}Q = I_{m \times m}$ and R \in IR , upper triungular non-singular

Then,
$$z_{least} = A^{T} (A A^{T})^{-1} b$$

norm $= Q R^{-T} b$
and $|| = || Q R^{-T} b ||_{2}$.
 $= \sqrt{b^{T} (R^{-T})^{T} Q^{T} Q R^{-T} b}$
 $= \sqrt{b^{T} R^{-1} R^{-T} b}$

= || R⁻ b||₂.

Ridge Regression/ Tikhonov regularization/ Regularized least squares:

Suppose $A \in \mathbb{R}^{m \times m}$ is wise, m < m, has full row ramk m.

Define $J_1 := ||A \times -b||_2^2$

 $J_2 := \| \times \|_2^2$

Least norm \Rightarrow minimize \mathbb{J}_2 problem in \Rightarrow $x \in \mathbb{R}^n$ prev. slikes subject to $\mathbb{J}_1 = 0$

Regularized numinize
$$\{J, + \beta J_2\}$$
, $\{J, 0\}$ regularized in parameter $\{J, + \beta J_2\}$, $\{J, 0\}$ regularization $\{J, + \beta J_2\}$, $\{J, 0\}$ and $\{J, + \beta J_2\}$, $\{J, 0\}$ regularization $\{J, 0\}$ and $\{J, 0\}$ regularization $\{J, 0\}$ and $\{J, 0\}$ regularization $\{J, 0\}$ and $\{J, 0\}$ regularization $\{$

 $= A^{T} \left(AA^{T} + \beta I \right)^{-1} b \qquad --- (x*)$ wext 13.

$$\begin{array}{lll}
\times_{\mathcal{B}} &= \left(A^{T} A_{\text{nend}}\right)^{-1} A^{T} b_{\text{nend}} & b_{\text{nend}} \\
&= \left(A^{T} A^{T} + B^{T}\right)^{-1} A^{T} b_{\text{nend}} & b_{\text{nend}} & b_{\text{nend}} \\
&= \left(A^{T} A + B^{T}\right)^{-1} A^{T} b_{\text{nend}} & ---- (*)
\end{array}$$

Summany of Solving Linear Systems

Solving linear system: A = b

mxn nx1

If det(A) \$0, then unique solution ×

Gauss Climination

Over-determined (m>n): $\min \|Ax - b\|_2^2$ 2 ∈ R"

next 14.

Underdetermined (m <n) $\gamma uin || \times ||_2$ $\times \in \mathbb{R}^n$ such that Ax = bmxn nx1 MXI

p8.

Noisy Mlasurements: either $\|A \times - \underline{b}\|_{2}^{2} + \beta \|X\|_{2}^{2}$ Solution: (ATA+BI) ATb m x 1 m & n NXI NXI mxa mx1