Àlgebra Primer parcial

Recordeu que no podeu fer servir calculadora, ordinador, telèfono mòbil, tauleta o qualsevol altre dispositiu electrònic. Resoleu totes les qüestions sense fer servir determinants

Cognoms: Grup: Nom:

Qüestió 1 (3'5 pt) Considerem la matriu
$$A = \begin{bmatrix} 1 & 2 & 2 & 2 & 2 \\ 1 & 1 & 2 & 2 & 2 \\ 1 & 1 & 1 & 2 & 2 \end{bmatrix}$$
.

- (a) Trobeu una forma esglaonada (escalonada) de A, S, i una matriu T tal que TA = S.
- (b) Quin és el rang de la matriu A? Justifiqueu la vostra resposta.
- (c) Quina és la inversa de la matriu T?
- (d) Calculeu la forma esglaonada (escalonada) reduïda de la matriu A.
- (e) Determineu l'espai nul (o nucli) de la matriu A.
- (f) Comproveu que $\vec{x} = (1, 1, 1, 0, 0)$ és una solució del sistema lineal $A\vec{x} = (5, 4, 3)$.
- (g) Sense fer cap més càlcul, digueu quina és la solució general del sistema lineal $A\vec{x}=(5,4,3)$.

Qüestió 2 (2 pt) Discutiu, segons els valors de a i b i fent servir l'algorisme de Gauss i el teorema de Rouché, el sistema lineal

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 3 & b \\ 1 & 1 - 2a & 0 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 1 \\ a + 1 \end{bmatrix}$$

I resoleu-lo en tots els casos que tinga solució, fent servir l'algorisme de Gauss-Jordan o el de substitució regressiva.

Qüestió 3 (2 pt) (a) Trobeu una factorització LU de la matriu $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$.

- (b) Calculeu la matriu inversa de A.
- (c) Calculeu les potències A^n , $n \in \mathbb{N}$.

Qüestió 4 (2'5 pt) En tots els apartats d'aquesta qüestió, heu de justificar les vostres respostes.

- (a) Suposem que A és una matriu $m \times n$. És possible que existisquen dos vectors $m \times 1$, \vec{b} i \vec{c} , de manera que el sistema lineal $A\vec{x} = \vec{b}$ és determinat i, en canvi, el sistema $A\vec{x} = \vec{c}$ és indeterminat?
- (b) Calculeu, si és possible, els valors de a i b perquè la matriu $\mathsf{Q} = \frac{1}{3} \begin{bmatrix} -2 & 1 & a \\ 1 & -2 & b \\ -2 & -2 & 1 \end{bmatrix}$ siga ortogonal.
- (c) Sabent que A i B són matrius quadrades $n \times n$, simplifiqueu l'expressió $(\mathsf{B} + \mathsf{A})^2 \mathsf{B}^2 \mathsf{A}^2 = \mathsf{I} + \mathsf{B}\mathsf{A}$ i justifiqueu que A és invertible.
- (d) Si les matrius $n \times n$ A i B són, respectivament, simètrica i antisimètrica, podem assegurar que la matriu (A B)(A + B) és simètrica?
- (e) Si \vec{u} i \vec{v} són vectors no nuls de \mathbb{R}^n , quin és el rang de la matriu $\vec{u}\vec{v}^t$?