(Minden feladat 10 pontot ér, indoklás nélküli eredményközlést nem fogadunk el, a dolgozat idő tartama 90 perc.)

- **1.** Igazolja, hogy ha $A \subseteq B \cap C$, akkor $(A \cup B) \cap (A \cup C) = B \cap C!$ Igaz-e fordítva?
- **MO.** Tetszőleges x-re, ha $x \in (A \cup B) \cap (A \cup C)$, akkor $x \in A \cup B$ és $x \in A \cup C$. Ha $x \in A$, akkor a feltétel miatt $x \in A \subseteq B \cap C$. Ha $x \notin A$, akkor $x \in B$ és $x \in C$, így $x \in B \cap C$. A másik irányban, ha $x \in B \cap C$, akkor $x \in B$ és $x \in C$. De ekkor x a bővebb halmazokban is benne van: $x \in A \cup B$ és $x \in A \cup C$, így $x \in (A \cup B) \cap (A \cup C)$.

Valójában, mivel $(A \cup B) \cap (A \cup C) = A \cup (B \cap C)$, ezért elég ezt belátni: $A \subseteq L \iff A \cup L = L$, hiszen $L = B \cap C$ helyettesítéssel megkapható az állítás. Az előbbi pedig igaz minden A-ra és L-re: ha $x \in A \cup L$, akkor vagy $x \in L$ és kész, vagy $x \in A \subseteq L$ és kész. Az egyenlőség másik iránya triviálisan következik az unió definíciójából. Fordítva: ha $x \in A \subseteq A \cup L = L$ és kész.

- 2. Legyen \mathbf{a}, \mathbf{b} két tetszőleges térvektor! Adja meg a λ valós szám összes olyan értékét, amire $\mathbf{a} + \lambda \mathbf{b}$ és $\mathbf{a} + (1 \lambda)\mathbf{b}$
 - a) merőleges, ha $|\mathbf{a}| = |\mathbf{b}| \neq 0$ és $\mathbf{a} \perp \mathbf{b}$,
 - b) párhuzamos.

MO. a) $(\mathbf{a} + \lambda \mathbf{b})(\mathbf{a} + (1 - \lambda)\mathbf{b}) = \mathbf{a}^2 + \lambda(1 - \lambda)\mathbf{b}^2 + \mathbf{a}\mathbf{b} = \mathbf{a}^2 + \lambda(1 - \lambda)\mathbf{b}^2 = 0 \Rightarrow \lambda_{12} = 1/2 \pm (i\sqrt{3}/2)$. b) A két vektor párhuzamosságával ekvivalens, hogy vektoriális szorzatuk nulla:

$$\mathbf{0} = (\mathbf{a} + \lambda \mathbf{b}) \times (\mathbf{a} + (1 - \lambda)\mathbf{b}) = \mathbf{a} \times \mathbf{a} + (1 - \lambda)\mathbf{a} \times \mathbf{b} + \lambda \mathbf{b} \times \mathbf{a} + (1 - \lambda)\mathbf{b} \times \mathbf{b} = (1 - \lambda)\mathbf{a} \times \mathbf{b} - \lambda \mathbf{a} \times \mathbf{b} = (1 - 2\lambda)\mathbf{a} \times \mathbf{b}$$

Az első átalkításnál minden tagot minden taggal beszoroztunk figyelve arra, hogy a vektoriális szorzás tényezőinek sorrendje ne változzon, majd felhasználtuk, hogy $\mathbf{a} \times \mathbf{a} = \mathbf{b} \times \mathbf{b} = \mathbf{0}$, végül az antikommutatív tulajdonság miatt ($\mathbf{b} \times \mathbf{a} = -\mathbf{a} \times \mathbf{b}$) össze tudtuk vonni a tagokat. Innen,

$$\lambda = \begin{cases} 1/2, & \mathbf{a} \times \mathbf{b} \neq \mathbf{0} \\ \text{tetszőleges}, & \mathbf{a} \times \mathbf{b} = \mathbf{0} \end{cases}$$

- 3. Adjuk meg annak az f egyenesnek az egyenletét, amelyik merőlegesen metszi az $S_1: x+y+z=1$ és $S_2: x-y+z=1$ egyenletű síkok metszésvonalát és áthalad az P(0,1,1) ponton!
- **MO.** A metszésvonalhoz, kivonva a két egyenletet egymásból, kapjuk, hogy 2y = 0, azaz a metszésvonal egyenlete: x = t, y = 0, z = 1 t, így annak a síknak a normálvektora, amiben f van: (1,0,-1), egyenlete pedig: $S_3: x-z+1=0$. Ez utóbbinak metszete a metszésvonallal: (0,0,1), ami valójában a három sík metszéspontja is. Innen f egyenlete: f||(0,1,0) és $(0,1,1) \in f$, azaz f: x = 0, y = 1 + t, z = 0.
- 4. Oldjuk meg az alábbi egyenleteket!

a)
$$z^2 + \overline{z} = |z|^2$$
 b) $z^4 - (i-1)z^2 - i = 0$

MO. a) Algebrai alakban: z = x + iy, ahol $x, y \in \mathbf{R}$: $x^2 - y^2 + 2ixy + x - iy = x^2 + y^2 \Rightarrow -2y^2 + x + i(2xy - y) = 0$, így a két valós egyenlet: $-2y^2 + x = 0$, 2xy - y = 0. Tehát $4y^3 - y = 0$, így

 $x_1 = 0$, valamint $2y = \pm 1$, így $x = \frac{1}{2}$. A három megoldás: $z_1 = 0$, $z_{23} = \frac{1}{2} \pm \frac{1}{2}i$. b) $w = z^2$, $w^2 - (i - 1)w - i = 0 \Rightarrow w_1 = i, w_2 = -1$. $z_{12} = \pm \frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2}i$, $z_{34} = \pm i$.

b)
$$w = z^2$$
, $w^2 - (i-1)w - i = 0 \Rightarrow w_1 = i$, $w_2 = -1$. $z_{12} = \pm \frac{\sqrt{2}}{2} \pm \frac{\sqrt{2}}{2}i$, $z_{34} = \pm i$.

5. Számítsuk ki a bikasági sorral ill. a "nullához tartó szor korlátos" lemmára hivatkozva!

a)
$$\lim_{n \to \infty} \frac{n^2 + 7^n + 1}{7^{n^2} - n^2 + \sin^3 n}, \qquad b) \qquad \lim_{n \to \infty} \frac{(-2)^n}{2^n + \cos^n n}$$

MO. Jelölje $(a_{n_k}) \subseteq (a_n)$, hogy (a_{n_k}) részsorozata (a_n) -nek. a)

$$\frac{n^2 + 7^n + 1}{7^{n^2} - n^2 + \sin^3 n} = \frac{(n^2/7^{n^2}) + (1/7^{n^2-n}) + (1/7^{n^2})}{1 - (n^2/7^{n^2}) + ((\sin^3 n)/7^{n^2})} \to \frac{0 + 0 + 0}{1 - 0 + 0} = 0$$

mert $n^2/7^{n^2} \subseteq n/7^n \to 0$, $(n << 7^n)$ $1/7^{n^2-n} \subseteq 1/7^n \to 0$, $(\sin^3 n)$ korlátos.

b)

$$b_n = \frac{(-2)^n}{2^n + \cos^n n} = \frac{(-1)^n}{1 + ((\cos^n n)/2^n)}$$

 $(\cos^n n)$ korlátos, $b_{2k} \to 1$, $b_{2k+1} \to -1$, így nem tud határértéke lenni, mert ha lenne, akkor minden részsorozatának ugyanoda kéne tartania.

- Melyik igaz? a) $\sup H + \sup K = \sup(H \cup K)$ b) $\max\{\sup H, \sup K\} = \sup(H \cup K)$. 6.1.
- 6.2. Igaz-e, hogy ha z megoldása, a $iz^2 = z$ egyeletnek, akkor \overline{z} is.
- 6.3. Igaz-e, hogy ha **ab** = 0, akkor **a**, **b** legalább az egyike nullvektor?
- **MO.** 6.1. a) Hamis. Legyen $H = K = \{1\}$. Ekkor $\sup H + \sup K = 2 \neq 1 = \sup(H \cup K)$. b) Igaz. $x \in H \cup K \to x \leq \max\{\sup H, \sup K\}$. Wlog $\sup H = \max\{\sup H, \sup K\}$ valamely $\varepsilon > 0$ -ra $\sup H - \varepsilon$ olyan, hogy van $y \in [\sup H - \varepsilon, \sup H)$, amire $y \in H \subseteq H \cup K$, azaz $\sup H$ a $H \cup K$ -nak is szuprémuma.
- 6.2. Nem, mert ennek 0, -i a megoldásai és ezek nem konjugált párok.
- 6.3. Nem. $\mathbf{a} = \mathbf{i}, \mathbf{b} = \mathbf{j}$, akkor $\mathbf{i}\mathbf{j} = 0$, de $i \neq j$.

iMSc. a) Legyen $H, K \subseteq \mathbb{R}$. Igaz-e, hogy ha x izolált pontja $H \cap K$ -nak, akkor H-nak is és K-nak is. És fordítva?

- b) Van-e olyan (a_n) és (b_n) sorozat, hogy mindkettőnek pontosan két sűrűsödési helye van, de $(a_n + b_n)$ -nek pontosan négy?
- **MO.** a) Nem igaz. Legyen H = [-1, 0], K = [0, 1]. Ekkor $H \cap K = \{0\}$. Ennek 0 izolált pontja, de egyiknek sem az. Fordítva igaz. $B_{\varepsilon}(x) \cap H \cap K = \{x\}$, ha $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\}$, ahol $\varepsilon_1, \varepsilon_2$ olyanok, hogy $B_{\varepsilon_1}(x) \cap H = \{x\}, B_{\varepsilon_2}(x) \cap K = \{x\}, \text{ mert } B_{\varepsilon}(x) \cap H \cap K = B_{\varepsilon}(x) \cap B_{\varepsilon}(x) \cap H \cap K = \{x\} \cap \{x\} = \{x\}.$ b) Igen. Legyen $a_{2k} = 1$, $a_{2k+1} = 2$, $b_{4k} = b_{4k+1} = 10$, $b_{4k+2} = b_{4k+3} = 100$. Ekkor $(a_{4k} + b_{4k}) = (11)$, $(a_{4k+1} + b_{4k+1}) = (12), (a_{4k+2} + b_{4k+2}) = (101), (a_{4k+3} + b_{4k+3}) = (102).$

További:

- Igaz-e, hogy $A \subseteq B \iff (A \setminus B) \cup B = B$? Igaz-e önmagában, hogy $(A \setminus B) \cup B = B$? 1+.
- 2+.Igazolja a Thales-tételt és ennek megfordítását! Igazolja a koszinusztéltelt!

- 3+. Határozza meg annak az egyenesnek az egyenletét, amelyik merőleges mind az e: x=2-t, y=4+3t, z=1+2t, mind az f: x=-5+3t, y=3+2t, z=1+t egyenesekre és áthalad a metszéspontjukon!
- **4+.** Oldja meg a $|z|^2 \cdot \text{Re}(z) = z$ egyenletet!