Carnegie Mellon University

On the value of modeling dependencies in weak supervision

Salva Rühling Cachay¹, Benedikt Boecking², Artur Dubrawski²

¹Technical University of Darmstadt

²Carnegie Mellon University

1. Motivation

- Modern ML requires large amounts of labeled data
- Data labeling is expensive, both in terms of time & cost.
 - → Promising alternative: *data programming*.

Encode domain knowledge into *labeling functions* (*LFs*) that noisily label subsets of the data

- LFs are denoised by a label model, producing probabilistic labels used to train an end classifier.
- LFs often have statistical dependencies (Fig. 1).
- Specifying the correct dependencies is hard!
- What happens if we misspecify the generative model?

2. Contributions

- *Theoretically bound* the generalization risk under model misspecification.
- *Empirically* show that the error can be quite substantial, even when the *dependency structure appears sensible*.

3. Experiments & Results

- We select a) 135 LFs for an IMDB review dataset, and b) 85 LFs for a biography classification task. Model proxies for the unknown true dependencies.
- Modeling more than a few *seemingly sensible* dependencies (as in Table 1) *deteriorates* downstream test *performance* by up to 4 AUC points in a), 8 AUC points in b)

def labeling_function1 (text_sample):

return POSITIVE if "recommend" in text_sample else ABSTAIN def labeling function2(text_sample):

return NEGATIVE if "wouldn't recommend" in text_sample else ABSTAIN

Fig 1.: Example LFs for a sentiment classification task. Potential dependency: LF2 *fixes* the less precise vote of LF1 when both label. Should we model it?

4. Discussion & Future Work

Does the observed loss in performance occur due to a) the true model having few dependencies; or b) the more complex model with dependencies being too sample inefficient?

Generalization risk $\leq \gamma + ||\Delta accuracy_params||_1 + ||dependency_params||_1$

of a misspecified label model

LF labeling accuracy parameter estimation error w.r.t. to the true model

Parameter excess from incorrectly modeled dependencies

OR Magnitude of the true dependencies that weren't modeled

5. Conclusions

Modeling dependencies can boost performance.

But seemingly sensible dependencies between labeling functions often have *marginal* or even *negative* effects on the downstream classifier.

Thus, ignoring dependencies is often a reasonable baseline for practitioners.

Table 1: Strongest and weakest dependencies (IMDB LFs)

LFj	LF _k	value	type
worth	not worth	219	negated
special	not special	8	negated
original	bad	327	priority
recommend	terrible	53	priority
recommend	highly recommend	226	reinforcing
bad	absolutely horrible	7	reinforcing

6. Acknowledgments

