Definiciones Maquinas de Turing

 $Palindromos \ M = (q_0 \, q_1 \, q_2 \, q_3 \, q_4 \, q_5 \, q_6 \, q_7 \, q_8 \, q_9 \, q_{10} \, q_{11} \text{,} (a,b,c) \text{,} (a,b,c,\epsilon) \text{,} \delta \text{, } q_0 \, \text{,} \epsilon \text{, } q_{11)}$

	A	В	С	3
\mathbf{q}_0	q ₁ εR	q ₅ εR	q ₈ εR	q ₁₁ ε R
q_1	q2 a R	$q_2 b R$	$q_2 c R$	q ₁₁ ε R
\mathbf{q}_2	q2 a R	$q_2 b R$	q ₂ c R	q ₃ ε L
\mathbf{q}_3	q ₄ εL			
q_4	q ₄ a L	$q_4 b L$	q ₄ c L	q ₀ εR
\mathbf{q}_{5}	q ₆ a R	q ₆ b R	q ₆ c R	q ₁₁ ε R
\mathbf{q}_{6}	q ₆ a R	q ₆ b R	q ₆ c R	q ₇ εL
\mathbf{q}_7		q ₄ εL		
\mathbf{q}_8	q ₉ a R	q ₉ b R	q ₉ c R	q ₁₁ ε R
\mathbf{q}_{9}	q ₉ a R	q ₉ b R	q ₉ c R	q ₁₀ ε L
\mathbf{q}_{10}			q ₄ εL	
\mathbf{q}_{11}	Aceptación	Aceptación	Aceptación	aceptación

Copia de Patrones $M = (q_0 q_1 q_2 q_3 q_4 q_5 q_6 q_7 q_8 q_9 q_{10} q_{11} q_{12} q_{13} q_{14} q_{15} q_{16} q_{17}, (a,b,c), (a,b,c,\epsilon,X,Y), \delta, q_0,\epsilon, q_{17})$

	A	В	С	ε ε	Y	X
\mathbf{q}_0	q ₁ a R	$q_1 b R$	$q_1 c R$			
\mathbf{q}_1	q1 a R	$q_1 b R$	$q_1 c R$	q ₂ Y L		
\mathbf{q}_2	q2 a L	$q_2 b L$	$\mathbf{q}_2 \mathbf{c} \mathbf{L}$	q₃ε R		
\mathbf{q}_3	q ₄ a R	q ₄ b R	q ₄ c R			
\mathbf{q}_4	q ₅ X R	$q_6 X R$	$q_7 X R$		q ₁₁ Y L	
\mathbf{q}_{5}	q5 a R	$q_5 b R$	$\mathbf{q}_5\mathbf{c}\mathbf{R}$	q ₈ a L	q ₅ Y R	
\mathbf{q}_{6}	q ₆ a R	$q_6 b R$	$\mathbf{q}_6\mathbf{c}\mathbf{R}$	q_9 b L	q ₆ Y R	
\mathbf{q}_7	q7aR	$q_7 b R$	$q_7 c R$	q ₁₀ c L	q ₇ Y R	
\mathbf{q}_8	q ₈ a L	q ₈ b L	q ₈ c L		q ₈ Y L	q ₄ a R
\mathbf{q}_9	q ₉ a L	$q_9 b L$	$\mathbf{q}_9\mathbf{c}\mathbf{L}$		$q_9 Y L$	q ₄ b R
q_{10}	q ₁₀ a L	q ₁₀ b L	q ₁₀ c L		q ₁₀ Y L	q ₄ c R
q_{11}	q ₁₁ a L	$q_{11} b L$	q ₁₁ c L	q ₁₂ ε R		
q_{12}	q ₁₃ a R	$q_{14} b R$	q ₁₅ c R			
\mathbf{q}_{13}	q ₁₃ a R	$q_{13} b R$	q ₁₃ c R		q ₁₆ a R	
q_{14}	q ₁₄ a R	q ₁₄ b R	q ₁₄ c R		q ₁₆ b R	
${\bf q}_{15}$	q ₁₅ a R	q ₁₅ b R	q ₁₅ c R		q ₁₆ c R	
\mathbf{q}_{16}	q ₁₆ a R	q ₁₆ b R	q ₁₆ c R	q ₁₇ ε R		
q ₁₇	Aceptación	Aceptación	Aceptación	Aceptación	Aceptación	Aceptación

Multiplicación
M=(q₀ q₁ q₂ q₃ q₄ q₅ q₆ q₇

 $M = (q_0 q_1 q_2 q_3 q_4 q_5 q_6 q_7 q_8 q_9 q_{10} q_{11} q_{12} q_{13} q_{14} q_{15} q_{16}, (1), (1, \epsilon), \delta, q_0, \epsilon, (q_{16} q_{13} q_{14}))$

	1	3
q_0	q ₂ εR	q ₁ εR
\mathbf{q}_1	q ₂ εR	q ₁₄ ε R
\mathbf{q}_2	q ₂ 1 R	q₃ε R
\mathbf{q}_3	q ₄ εR	q ₁₅ ε L
q_4	q ₄ 1 R	q ₅ εR
\mathbf{q}_{5}	q ₅ 1 R	q ₆ 1 L
\mathbf{q}_{6}	q ₆ 1 L	q ₇ εL
\mathbf{q}_7	q ₈ 1 L	q ₉ 1 L
\mathbf{q}_8	q ₈ 1 L	q ₃ 1 R
\mathbf{q}_{9}	q ₉ 1 L	q ₁₀ ε L
\mathbf{q}_{10}	q ₁₁ 1 L	q ₁₂ ε R
\mathbf{q}_{11}	q ₁₁ 1 L	q ₀ εR
\mathbf{q}_{12}	q ₁₃ ε R	q ₁₂ ε R
\mathbf{q}_{13}	q ₁₃ ε R	
\mathbf{q}_{14}	q ₁₄ ε R	
\mathbf{q}_{15}	q ₁₅ ε L	q ₁₆ ε L
\mathbf{q}_{16}	q ₁₆ ε L	

Suma $M = (q_0 q_1 q_2 q_3 q_4,(1),(1,\epsilon),\delta, q_0,\epsilon, q_4)$

(1° 1° 1° 1° ()/() // (1° / 1° / 1° / 1° / 1° / 1° / 1° /				
	1	ε		
\mathbf{q}_0	q ₁ 1 R	q ₀ ε R		
\mathbf{q}_1	q ₁ 1 R	q ₂ 1 R		
\mathbf{q}_2	q ₂ 1 R	q ₃ εL		
\mathbf{q}_3	q ₄ εL	q ₃ ε L		
q_4	q ₄ 1 L	$q_4\epsilon$		

Resta M= $(q_0 q_1 q_2 q_3 q_4 q_5 q_6 q_7, (0,1), (1,0,\epsilon), \delta, q_0, \epsilon, q_7)$

	1	0	3
\mathbf{q}_0	q ₀ 1 R	q ₀ 0 R	$q_1 \epsilon R$
\mathbf{q}_1	q ₁ 1 R	q1 0 R	q ₂ εL
\mathbf{q}_2	q ₃ 0 L	$q_2 0 L$	q ₄ εR
\mathbf{q}_3	q ₃ 1 L	q ₃ 0 L	q ₇ εL
${f q}_4$	q ₄ 1 R	$q_4 0 R$	q ₅ εL
\mathbf{q}_{5}	q ₅ 1 L	q5εL	q ₆ εL
\mathbf{q}_{6}	q ₆ 1 L	q ₆ εL	q ₆ εR
\mathbf{q}_7	q ₀ 0 R	q ₇ 0 L	q ₇ εR

