

iNEMO inertial module: always-on 3D accelerometer and 3D gyroscope

Features

- Power consumption: 0.55 mA in combo high-performance mode
- "Always-on" experience with low power consumption for both accelerometer and gyroscope
- · Smart FIFO up to 9 kbyte
- · Android compliant
- $\pm 2/\pm 4/\pm 8/\pm 16$ g full scale
- ±125/±250/±500/±1000/±2000 dps full scale
- Analog supply voltage: 1.71 V to 3.6 V
- Independent IO supply (1.62 V)
- Compact footprint: 2.5 mm x 3 mm x 0.83 mm
- SPI / I²C & MIPI I3CSM serial interface with main processor data synchronization
- · Auxiliary SPI for OIS data output for gyroscope and accelerometer
- OIS configurable from Aux SPI, primary interface (SPI / I²C & MIPI I3CSM)
- Advanced pedometer, step detector and step counter
- Significant Motion Detection, Tilt detection
- Standard interrupts: free-fall, wakeup, 6D/4D orientation, click and double-click
- Programmable finite state machine: accelerometer, gyroscope and external sensors
- Machine Learning Core
- S4S data synchronization
- Embedded temperature sensor
- ECOPACK®, RoHS and "Green" compliant

Product status link

LSM6DSOX

Product summary						
Order code	LSM6DSOX LSM6DSOXT					
Temperature range [°C]	-40 to +85					
Package	LGA-14L (2.5 x 3.0 x 0.83 mm)					
Packing	Tray Tape & Ree					

,

Applications

- Motion tracking and gesture detection
- Sensor hub
- · Indoor navigation
- IoT and connected devices
- Smart power saving for handheld devices
- EIS and OIS for camera applications
- Vibration monitoring and compensation

Description

The LSM6DSOX is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope boosting performance at 0.55 mA in high-performance mode and enabling always-on low-power features for an optimal motion experience for the consumer.

The LSM6DSOX supports main OS requirements, offering real, virtual and batch sensors with 9 kbytes for dynamic data batching. ST's family of MEMS sensor modules leverages the robust and mature manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes,

while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSOX has a full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16~g$ and an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000$ dps.

The LSM6DSOX fully supports EIS and OIS applications as the module includes a dedicated configurable signal processing path for OIS and auxiliary SPI, configurable for both the gyroscope and accelerometer. The LSM6DSOX OIS can be configured from the Auxiliary SPI and primary interface (SPI / I²C & MIPI I3CSM).

High robustness to mechanical shock makes the LSM6DSOX the preferred choice of system designers for the creation and manufacturing of reliable products. The LSM6DSOX is available in a plastic land grid array (LGA) package.

DS12814 - Rev 3 page 2/199

1 Overview

The LSM6DSOX is a system-in-package featuring a high-performance 3-axis digital accelerometer and 3-axis digital gyroscope.

The LSM6DSOX delivers best-in-class motion sensing that can detect orientation and gestures in order to empower application developers and consumers with features and capabilities that are more sophisticated than simply orienting their devices to portrait and landscape mode.

The event-detection interrupts enable efficient and reliable motion tracking and contextual awareness, implementing hardware recognition of free-fall events, 6D orientation, click and double-click sensing, activity or inactivity, stationary/motion detection and wakeup events.

The LSM6DSOX supports main OS requirements, offering real, virtual and batch mode sensors. In addition, the LSM6DSOX can efficiently run the sensor-related features specified in Android, saving power and enabling faster reaction time. In particular, the LSM6DSOX has been designed to implement hardware features such as significant motion detection, stationary/motion detection, tilt, pedometer functions, timestamping and to support the data acquisition of an external magnetometer.

The LSM6DSOX offers hardware flexibility to connect the pins with different mode connections to external sensors to expand functionalities such as adding a sensor hub, auxiliary SPI, etc.

Up to 9 kbytes of FIFO with compression and dynamic allocation of significant data (i.e. external sensors, timestamp, etc.) allows overall power saving of the system.

Like the entire portfolio of MEMS sensor modules, the LSM6DSOX leverages the robust and mature in-house manufacturing processes already used for the production of micromachined accelerometers and gyroscopes. The various sensing elements are manufactured using specialized micromachining processes, while the IC interfaces are developed using CMOS technology that allows the design of a dedicated circuit which is trimmed to better match the characteristics of the sensing element.

The LSM6DSOX is available in a small plastic land grid array (LGA) package of $2.5 \times 3.0 \times 0.83$ mm to address ultra-compact solutions.

DS12814 - Rev 3 page 3/199

2 Embedded low-power features

The LSM6DSOX has been designed to be fully compliant with Android, featuring the following on-chip functions:

- 9 kbytes data buffering, data can be compressed two or three times
 - 100% efficiency with flexible configurations and partitioning
 - Possibility to store timestamp
- Event-detection interrupts (fully configurable)
 - Free-fall
 - Wakeup
 - 6D orientation
 - Click and double-click sensing
 - Activity/Inactivity recognition
 - Stationary/Motion detection
- Specific IP blocks with negligible power consumption and high-performance
 - Pedometer functions: step detector and step counters
 - Til
 - Significant Motion Detection
 - Finite State Machine (FSM) for accelerometer, gyroscope, and external sensors
 - Machine Learning Core (MLC)
- Sensor hub
 - Up to 6 total sensors: 2 internal (accelerometer and gyroscope) and 4 external sensors
- S4S data rate synchronization with external trigger for reduced sensor access and enhanced fusion

2.1 Tilt detection

The tilt function helps to detect activity change and has been implemented in hardware using only the accelerometer to achieve targets of both ultra-low power consumption and robustness during the short duration of dynamic accelerations.

The tilt function is based on a trigger of an event each time the device's tilt changes and can be used with different scenarios, for example:

- Triggers when phone is in a front pants pocket and the user goes from sitting to standing or standing to sitting;
- Doesn't trigger when phone is in a front pants pocket and the user is walking, running or going upstairs.

2.2 Significant Motion Detection

The Significant Motion Detection (SMD) function generates an interrupt when a 'significant motion', that could be due to a change in user location, is detected. In the LSM6DSOX device this function has been implemented in hardware using only the accelerometer.

SMD functionality can be used in location-based applications in order to receive a notification indicating when the user is changing location.

DS12814 - Rev 3 page 4/199

2.3 Finite State Machine

The LSM6DSOX can be configured to generate interrupt signals activated by user-defined motion patterns. To do this, up to 16 embedded finite state machines can be programmed independently for motion detection such as glance gestures, absolute wrist tilt, shake and double-shake detection.

Definition of Finite State Machine

A state machine is a mathematical abstraction used to design logic connections. It is a behavioral model composed of a finite number of states and transitions between states, similar to a flow chart in which one can inspect the way logic runs when certain conditions are met. The state machine begins with a start state, goes to different states through transitions dependent on the inputs, and can finally end in a specific state (called stop state). The current state is determined by the past states of the system. The following figure shows a generic state machine.

Figure 1. Generic state machine

Finite State Machine in the LSM6DSOX

The LSM6DSOX works as a combo accelerometer-gyroscope sensor, generating acceleration and angular rate output data. It is also possible to connect an external sensor (magnetometer) by using the Sensor Hub feature (Mode 2). These data can be used as input of up to 16 programs in the embedded Finite State Machine (Figure 2. State machine in the **LSM6DSOX**).

All 16 finite state machines are independent: each one has its dedicated memory area and it is independently executed. An interrupt is generated when the end state is reached or when some specific command is performed.

Figure 2. State machine in the LSM6DSOX

DS12814 - Rev 3 page 5/199

2.4 Machine Learning Core

The LSM6DSOX embeds a dedicated core for machine learning processing that provides system flexibility, allowing some algorithms run in the application processor to be moved to the MEMS sensor with the advantage of consistent reduction in power consumption.

Machine Learning Core logic allows identifying if a data pattern (for example motion, pressure, temperature, magnetic data, etc.) matches a user-defined set of classes. Typical examples of applications could be activity detection like running, walking, driving, etc.

The LSM6DSOX Machine Learning Core works on data patterns coming from the accelerometer and gyro sensors, but it is also possible to connect and process external sensor data (like magnetometer) by using the Sensor Hub feature (Mode 2).

The input data can be filtered using a dedicated configurable computation block containing filters and features computed in a fixed time window defined by the user.

Machine learning processing is based on logical processing composed of a series of configurable nodes characterized by "if-then-else" conditions where the "feature" values are evaluated against defined thresholds.

Figure 3. Machine Learning Core in the LSM6DSOX

The LSM6DSOX can be configured to run up to 8 flows simultaneously and independently and every flow can generate up to 16 results. The total number of nodes can be up to 256.

The results of the machine learning processing are available in dedicated output registers readable from the application processor at any time.

The LSM6DSOX Machine Learning Core can be configured to generate an interrupt when a change in the result occurs.

DS12814 - Rev 3 page 6/199

3 Pin description

Figure 4. Pin connections

Direction of detectable angular rate (top view)

DS12814 - Rev 3 page 7/199

3.1 Pin connections

The LSM6DSOX offers flexibility to connect the pins in order to have four different mode connections and functionalities. In detail:

- Mode 1: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available;
- Mode 2: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface and I²C interface master for external sensor connections are available;
- Mode 3: I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface for external sensor connections is available for the gyroscope ONLY;
- **Mode 4:** I²C / MIPI I3CSM slave interface or SPI (3- and 4-wire) serial interface is available for the application processor interface while an auxiliary SPI (3- and 4-wire) serial interface for external sensor connections is available for the accelerometer and gyroscope.

Mode 1 Mode 2 Mode 3 Mode 4 **HOST HOST HOST HOST** I²C / I²C / I²C / I²C / MIPI I3CSM / MIPI I3CSM/ MIPI I3CSM/ MIPI I3CSM SPI (3/4-w) SPI (3/4-w) SPI (3/4-w) SPI (3/4-w) LSM6DSOX LSM6DSOX LSM6DSOX LSM6DSOX Master I2C Aux SPI (3/4-w) Aux SPI (3/4-w) For XL and For gyro data only gyro data Camera Camera External module module sensors

Figure 5. LSM6DSOX connection modes

In the following table each mode is described for the pin connections and function.

Table 1. Pin description

Pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function
	SDO/SA0	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)
'	3D0/3A0	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)
2	SDx	Connect to VDDIO or GND	I ² C serial data master (MSDA)	Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)
3	SCx	Connect to VDDIO or GND	I ² C serial clock master (MSCL)	Auxiliary SPI 3/4-wire interface serial port clock (SPC_Aux)

DS12814 - Rev 3 page 8/199

Pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function					
4	INT1		Programmable interrupt in I ² C and SI	grammable interrupt in I ² C and SPI					
5	VDDIO ⁽¹⁾		Power supply for I/O pins						
6	GND		0 V supply						
7	GND		0 V supply						
8	VDD ⁽¹⁾		Power supply						
9	INT2	Programmable interrupt 2 (INT2) / Data enable (DEN)	Programmable interrupt 2 (INT2) / Data enable (DEN) / I ² C master external synchronization	Programmable interrupt 2 (INT2) / Data enable (DEN)					
10	OCS_Aux	Leave unconnected ⁽²⁾	signal (MDRDY) Leave unconnected ⁽²⁾	Auxiliary SPI 3/4-wire interface enable					
11	SDO_Aux	Connect to VDD_IO or leave unconnected ⁽²⁾	Connect to VDD_IO or leave unconnected ⁽²⁾	Auxiliary SPI 3-wire interface: leave unconnected ⁽²⁾ Auxiliary SPI 4-wire interface: serial data output (SDO_Aux)					
12	CS	I ² C / MIPI I3C SM / SPI mode selection (1: SPI idle mode / I ² C / MIPI I3C SM communication enabled; 0: SPI communication mode / I ² C / MIPI I3C SM disabled)	I ² C / MIPI I3C SM / SPI mode selection (1: SPI idle mode / I ² C / MIPI I3C SM communication enabled; 0: SPI communication mode / I ² C / MIPI I3C SM disabled)	I ² C / MIPI I3C SM / SPI mode selection (1: SPI idle mode / I ² C / MIPI I3C SM communication enabled; 0: SPI communication mode / I ² C / MIPI I3C SM disabled)					
13	SCL	I ² C / MIPI I3C SM serial clock (SCL) SPI serial port clock (SPC)	I ² C / MIPI I3C SM serial clock (SCL) SPI serial port clock (SPC)	I ² C / MIPI I3C SM serial clock (SCL) SPI serial port clock (SPC)					
14	SDA	I ² C / MIPI I3C SM serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	I ² C / MIPI I3C SM serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)	I ² C / MIPI I3C SM serial data (SDA) SPI serial data input (SDI) 3-wire interface serial data output (SDO)					

^{1.} Recommended 100 nF filter capacitor.

DS12814 - Rev 3 page 9/199

^{2.} Leave pin electrically unconnected and soldered to PCB.

4 Module specifications

4.1 Mechanical characteristics

0 Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 2. Mechanical characteristics

Symbol	Parameter	Test conditions	Min.	Typ. ⁽¹⁾	Max.	Unit	
				±2			
I A EQ	Linear analysis was a sure and a sure			±4		g	
LA_FS	Linear acceleration measurement range			±8			
				±16			
				±125			
				±250			
G_FS	Angular rate measurement range			±500		dps	
				±1000			
				±2000			
		FS = ±2 <i>g</i>		0.061			
LA_So	Linear acceleration sensitivity ⁽²⁾	FS = ±4 <i>g</i>		0.122		m <i>g</i> /LSB	
LA_00	Elifedi acceleration serisitivity	FS = ±8 <i>g</i>		0.244		IIIg/LSB	
		FS = ±16 <i>g</i>		0.488			
	Angular rate sensitivity ⁽²⁾	$FS = \pm 125 \text{ dps}$		4.375			
		$FS = \pm 250 \text{ dps}$		8.75			
G_So		$FS = \pm 500 \text{ dps}$		17.50		mdps/LSB	
		$FS = \pm 1000 \text{ dps}$		35			
		FS = ±2000 dps		70			
G_So%	Sensitivity tolerance ⁽³⁾	at component level		±1		%	
LA_SoDr	Linear acceleration sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85°		±0.01		%/°C	
G_SoDr	Angular rate sensitivity change vs. temperature ⁽⁴⁾	from -40° to +85°		±0.007		%/°C	
LA_TyOff	Linear acceleration zero-g level offset accuracy ⁽⁵⁾			±20		m <i>g</i>	
G_TyOff	Angular rate zero-rate level ⁽⁵⁾			±1		dps	
LA_OffDr	Linear acceleration zero-g level change vs. temperature ⁽⁴⁾			±0.1		m <i>g</i> /°C	
G_OffDr	Angular rate typical zero-rate level change vs. temperature ⁽⁴⁾			±0.010		dps/°C	
Rn	Rate noise density in high-performance mode ⁽⁶⁾			3.8		mdps/√Hz	
RnRMS	Gyroscope RMS noise in normal/low-power mode ⁽⁷⁾			75		mdps	
		FS = ±2 g		70			
۸۵	Application using density in high marks may be at 4-(8)	FS = ±4 <i>g</i>		75			
An	Acceleration noise density in high-performance mode ⁽⁸⁾	FS = ±8 <i>g</i>		80		μ <i>g</i> /√Hz	
		FS = ±16 <i>g</i>		110		-	

DS12814 - Rev 3 page 10/199

Symbol	Parameter	Test conditions	Min.	Typ.(1)	Max.	Unit
		FS = ±2 g		1.8		
	(0) (40)	FS = ±4 <i>g</i>		2.0		
RMS	Acceleration RMS noise in normal/low-power mode ⁽⁹⁾ (10)	FS = ±8 <i>g</i>		2.4		mg(RMS)
		FS = ±16 g		3.0		
	Acceleration RMS noise in ultra-low-power mode ⁽⁹⁾⁽¹⁰⁾	FS = ±2 g		5.5		
				1.6(11)		
				12.5		
				26		
				52		
				104		
LA_ODR	Linear acceleration output data rate			208		
				416		
				833		
				1666		
				3332		
				6664		Hz
				12.5		
				26		
				52		
				104		
G_ODR	Angular rate output data rate			208		
_				416		
				833		
				1666		
				3332		
				6664		
	Linear acceleration self-test output change ⁽¹²⁾⁽¹³⁾ (14)		50		1700	m <i>g</i>
Vst	Angular rate self-test output change(15)(16)	FS = 250 dps	20		80	dps
	3-	FS = 2000 dps	150		700	dps
Тор	Operating temperature range		-40		+85	°C

- 1. Typical specifications are not guaranteed.
- 2. Sensitivity values after factory calibration test and trimming.
- 3. Subject to change.
- 4. Measurements are performed in a uniform temperature setup and they are based on characterization data in a limited number of samples. Not measured during final test for production.
- 5. Values after factory calibration test and trimming.
- 6. Gyroscope rate noise density in high-performance mode is independent of the ODR and FS setting.
- 7. Gyroscope RMS noise in normal/low-power mode is independent of the ODR and FS setting.
- 8. Accelerometer noise density in high-performance mode is independent of the ODR.
- 9. Accelerometer RMS noise in normal/low-power/ultra-low-power mode is independent of the ODR.
- 10. Noise RMS related to BW = ODR/2.
- 11. This ODR is available when the accelerometer is in low-power mode.
- 12. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in a dedicated register for all axes.

DS12814 - Rev 3 page 11/199

- 13. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ±2 g full scale.
- 14. Accelerometer self-test limits are full-scale independent.
- 15. The sign of the angular rate self-test output change is defined by the STx_G bits in a dedicated register for all axes
- 16. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of: OUTPUT[LSb] (self-test enabled) OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.

DS12814 - Rev 3 page 12/199

4.2 Electrical characteristics

@ Vdd = 1.8 V, T = 25 °C, unless otherwise noted.

Table 3. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Typ.(1)	Max.	Unit
Vdd	Supply voltage		1.71	1.8	3.6	V
Vdd_IO	Power supply for I/O		1.62		3.6	V
IddHP	Gyroscope and accelerometer current consumption in high-performance mode			0.55		mA
LA_lddHP	Accelerometer current consumption in high-performance mode			170		μA
I A Iddl D	Accelerometer current agreementies in law power mode	ODR = 50 Hz		26		
LA_lddLP	Accelerometer current consumption in low-power mode	ODR = 1.6 Hz		4.5		μA
LA IddULP	Accelerometer current consumption in ultra-low-power mode	ODR = 50 Hz		9.5		
LA_IddOLP		ODR = 1.6 Hz		4.4		μA
IddPD	Gyroscope and accelerometer current consumption during power-down			3		μA
Ton	Turn-on time			35		ms
V _{IH}	Digital high-level input voltage		0.7 * VDD_IO			V
V _{IL}	Digital low-level input voltage				0.3 * VDD_IO	V
V _{OH}	High-level output voltage	I _{OH} = 4 mA ⁽²⁾	VDD_IO - 0.2			V
V _{OL}	Low-level output voltage	I _{OL} = 4 mA ⁽²⁾			0.2	V
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed.

4.3 Temperature sensor characteristics

0 Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 4. Temperature sensor characteristics

Symbol	Parameter	Test condition	Min.	Typ. ⁽¹⁾	Max.	Unit
TODR ⁽²⁾	Temperature refresh rate			52		Hz
Toff	Temperature offset ⁽³⁾		-15		+15	°C
TSen	Temperature sensitivity			256		LSB/°C
TST	Temperature stabilization time ⁽⁴⁾				500	μs
T_ADC_res	Temperature ADC resolution			16		bit
Тор	Operating temperature range		-40		+85	°C

^{1.} Typical specifications are not guaranteed

DS12814 - Rev 3 page 13/199

^{2. 4} mA is the maximum driving capability, i.e. the maximum DC current that can be sourced/sunk by the digital pin in order to guarantee the correct digital output voltage levels V_{OH} and V_{OL} .

^{2.} When the accelerometer is in low-power mode or ultra-low-power mode and the gyroscope part is turned off, the TODR value is equal to the accelerometer ODR.

^{3.} The output of the temperature sensor is 0 LSB (typ.) at 25 °C.

^{4.} Time from power ON to valid data based on characterization data.

4.4 Communication interface characteristics

4.4.1 SPI - serial peripheral interface

Subject to general operating conditions for Vdd and Top.

Table 5. SPI slave timing values (in mode 3)

Symbol	Parameter	Value ⁽¹⁾		Unit
Зушьог	r ai ailletei	Min	Max	Oilit
t _{c(SPC)}	SPI clock cycle	100		ns
f _{c(SPC)}	SPI clock frequency		10	MHz
t _{su(CS)}	CS setup time	5		
t _{h(CS)}	CS hold time	20		
t _{su(SI)}	SDI input setup time	5		
t _{h(SI)}	SDI input hold time	15		ns
t _{v(SO)}	SDO valid output time		50	
t _{h(SO)}	SDO output hold time	5		
t _{dis(SO)}	SDO output disable time		50	

Values are guaranteed at 10 MHz clock frequency for SPI with both 4 and 3 wires, based on characterization results, not tested in production

CS $t_{\text{su(CS)}} \qquad t_{\text{c(SPC)}}$ SPC $t_{\text{su(SI)}} \qquad t_{\text{h(SI)}}$ LSB IN $t_{\text{v(SO)}} \qquad t_{\text{h(SO)}}$ SDO MSB OUT LSB OUT

Figure 6. SPI slave timing diagram (in mode 3)

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO for both input and output ports.

DS12814 - Rev 3 page 14/199

4.4.2 I²C - inter-IC control interface

Subject to general operating conditions for Vdd and Top.

Table 6. I²C slave timing values

Symbol	Parameter	I ² C standard mode ⁽¹⁾		I ² C fast mode ⁽¹⁾		Unit
Gymbol		Min	Max	Min	Max	Oilit
f _(SCL)	SCL clock frequency	0	100	0	400	kHz
t _{w(SCLL)}	SCL clock low time	4.7		1.3		
t _{w(SCLH)}	SCL clock high time	4.0		0.6		μs
t _{su(SDA)}	SDA setup time	250		100		ns
t _{h(SDA)}	SDA data hold time	0	3.45	0	0.9	μs
t _{h(ST)}	START condition hold time	4		0.6		
t _{su(SR)}	Repeated START condition setup time	4.7		0.6		
t _{su(SP)}	STOP condition setup time	4		0.6		μs
t _{w(SP:SR)}	Bus free time between STOP and START condition	4.7		1.3		

^{1.} Data based on standard I²C protocol requirement, not tested in production.

 $t_{\text{h(ST)}}$

 $t_{\text{w}(\text{SCLL})}$

START

START

START

START

START

START

START

START

Figure 7. I²C slave timing diagram

Note: Measurement points are done at 0.2·Vdd_IO and 0.8·Vdd_IO for both ports.

 $t_{\text{w(SCLH)}} \\$

DS12814 - Rev 3 page 15/199

4.5 Absolute maximum ratings

Stresses above those listed as "Absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Table 7. Absolute maximum ratings

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4.8	V
T _{STG}	Storage temperature range	-40 to +125	°C
Sg	Acceleration g for 0.2 ms	20,000	g
ESD	Electrostatic discharge protection (HBM)	2	kV
Vin	Input voltage on any control pin (including CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	-0.3 to Vdd_IO +0.3	V

Note: Supply voltage on any pin should never exceed 4.8 V.

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

DS12814 - Rev 3 page 16/199

4.6 Terminology

4.6.1 Sensitivity

Linear acceleration sensitivity can be determined, for example, by applying 1 g acceleration to the device. Because the sensor can measure DC accelerations, this can be done easily by pointing the selected axis towards the ground, noting the output value, rotating the sensor 180 degrees (pointing towards the sky) and noting the output value again. By doing so, ±1 g acceleration is applied to the sensor. Subtracting the larger output value from the smaller one, and dividing the result by 2, leads to the actual sensitivity of the sensor. This value changes very little over temperature and over time. The sensitivity tolerance describes the range of sensitivities of a large number of sensors (see Table 2).

An angular rate gyroscope is a device that produces a positive-going digital output for counterclockwise rotation around the axis considered. Sensitivity describes the gain of the sensor and can be determined by applying a defined angular velocity to it. This value changes very little over temperature and time (see Table 2).

4.6.2 Zero-q and zero-rate level

Linear acceleration zero-g level offset (TyOff) describes the deviation of an actual output signal from the ideal output signal if no acceleration is present. A sensor in a steady state on a horizontal surface will measure 0 g on both the X-axis and Y-axis, whereas the Z-axis will measure 1 g. Ideally, the output is in the middle of the dynamic range of the sensor (content of OUT registers 00h, data expressed as 2's complement number). A deviation from the ideal value in this case is called zero-g offset.

Offset is to some extent a result of stress to MEMS sensor and therefore the offset can slightly change after mounting the sensor onto a printed circuit board or exposing it to extensive mechanical stress. Offset changes little over temperature, see "Linear acceleration zero-g level change vs. temperature" in Table 2. The zero-g level tolerance (TyOff) describes the standard deviation of the range of zero-g levels of a group of sensors.

Zero-rate level describes the actual output signal if there is no angular rate present. The zero-rate level of precise MEMS sensors is, to some extent, a result of stress to the sensor and therefore the zero-rate level can slightly change after mounting the sensor onto a printed circuit board or after exposing it to extensive mechanical stress. This value changes very little over temperature and time (see Table 2).

DS12814 - Rev 3 page 17/199

5 Digital interfaces

5.1 I²C/SPI interface

The registers embedded inside the LSM6DSOX may be accessed through both the I²C and SPI serial interfaces. The latter may be SW configured to operate either in 3-wire or 4-wire interface mode. The device is compatible with SPI modes 0 and 3.

The serial interfaces are mapped onto the same pins. To select/exploit the I²C interface, the CS line must be tied high (i.e connected to Vdd_IO).

Pin description Pin name SPI enable CS I²C/SPI mode selection (1: SPI idle mode / I²C communication enabled; 0: SPI communication mode / I2C disabled) I2C Serial Clock (SCL) SCL/SPC SPI Serial Port Clock (SPC) I2C Serial Data (SDA) SDA/SDI/SDO SPI Serial Data Input (SDI) 3-wire Interface Serial Data Output (SDO) SPI Serial Data Output (SDO) SDO/SA0 I2C less significant bit of the device address

Table 8. Serial interface pin description

5.1.1 I²C serial interface

The LSM6DSOX I²C is a bus slave. The I²C is employed to write the data to the registers, whose content can also be read back.

The relevant I²C terminology is provided in the table below.

Table 9. I²C terminology

Term	Description
Transmitter	The device which sends data to the bus
Receiver	The device which receives data from the bus
Master	The device which initiates a transfer, generates clock signals and terminates a transfer
Slave	The device addressed by the master

There are two signals associated with the I²C bus: the serial clock line (SCL) and the Serial DAta line (SDA). The latter is a bidirectional line used for sending and receiving the data to/from the interface. Both the lines must be connected to Vdd_IO through external pull-up resistors. When the bus is free, both the lines are high.

The I²C interface is implemented with fast mode (400 kHz) I²C standards as well as with the standard mode. In order to disable the I²C block, (I2C disable) = 1 must be written in CTRL4 C (13h).

DS12814 - Rev 3 page 18/199

5.1.2 I²C operation

The transaction on the bus is started through a START (ST) signal. A START condition is defined as a HIGH to LOW transition on the data line while the SCL line is held HIGH. After this has been transmitted by the master, the bus is considered busy. The next byte of data transmitted after the start condition contains the address of the slave in the first 7 bits and the eighth bit tells whether the master is receiving data from the slave or transmitting data to the slave. When an address is sent, each device in the system compares the first seven bits after a start condition with its address. If they match, the device considers itself addressed by the master.

The Slave ADdress (SAD) associated to the LSM6DSOX is 110101xb. The SDO/SA0 pin can be used to modify the less significant bit of the device address. If the SDO/SA0 pin is connected to the supply voltage, LSb is '1' (address 1101011b); else if the SDO/SA0 pin is connected to ground, the LSb value is '0' (address 1101010b). This solution permits to connect and address two different inertial modules to the same I²C bus.

Data transfer with acknowledge is mandatory. The transmitter must release the SDA line during the acknowledge pulse. The receiver must then pull the data line LOW so that it remains stable low during the HIGH period of the acknowledge clock pulse. A receiver which has been addressed is obliged to generate an acknowledge after each byte of data received.

The I²C embedded inside the LSM6DSOX behaves like a slave device and the following protocol must be adhered to. After the start condition (ST) a slave address is sent, once a slave acknowledge (SAK) has been returned, an 8-bit sub-address (SUB) is transmitted. The increment of the address is configured by the CTRL3_C (12h) (IF INC).

The slave address is completed with a Read/Write bit. If the bit is '1' (Read), a repeated START (SR) condition must be issued after the two sub-address bytes; if the bit is '0' (Write) the master will transmit to the slave with direction unchanged. Table 10 explains how the SAD+Read/Write bit pattern is composed, listing all the possible configurations.

Table 10. SAD+Read/Write patterns

Command	SAD[6:1]	SAD[0] = SA0	R/W	SAD+R/W
Read	110101	0	1	11010101 (D5h)
Write	110101	0	0	11010100 (D4h)
Read	110101	1	1	11010111 (D7h)
Write	110101	1	0	11010110 (D6h)

Table 11. Transfer when master is writing one byte to slave

Master	ST	SAD + W		SUB		DATA		SP	
Slave			SAK		SAK		SAK		

Table 12. Transfer when master is writing multiple bytes to slave

Master	ST	SAD + W		SUB		DATA		DATA		SP
Slave			SAK		SAK		SAK		SAK	

Table 13. Transfer when master is receiving (reading) one byte of data from slave

Master	ST	SAD + W		SUB		SR	SAD + R			NMAK	SP
Slave			SAK		SAK			SAK	DATA		

Table 14. Transfer when master is receiving (reading) multiple bytes of data from slave

Master	ST	SAD+W		SUB		SR	SAD+R			MAK		MAK		NMAK	SP
Slave			SAK		SAK			SAK	DATA		DATA		DATA		

DS12814 - Rev 3 page 19/199

Data are transmitted in byte format (DATA). Each data transfer contains 8 bits. The number of bytes transferred per transfer is unlimited. Data is transferred with the Most Significant bit (MSb) first. If a receiver can't receive another complete byte of data until it has performed some other function, it can hold the clock line, SCL LOW to force the transmitter into a wait state. Data transfer only continues when the receiver is ready for another byte and releases the data line. If a slave receiver doesn't acknowledge the slave address (i.e. it is not able to receive because it is performing some real-time function) the data line must be left HIGH by the slave. The master can then abort the transfer. A LOW to HIGH transition on the SDA line while the SCL line is HIGH is defined as a STOP condition. Each data transfer must be terminated by the generation of a STOP (SP) condition.

In the presented communication format MAK is Master acknowledge and NMAK is No Master Acknowledge.

5.1.3 SPI bus interface

The LSM6DSOX SPI is a bus slave. The SPI allows writing and reading the registers of the device. The serial interface communicates to the application using 4 wires: **CS**, **SPC**, **SDI** and **SDO**.

Figure 8. Read and write protocol (in mode 3)

CS is the serial port enable and it is controlled by the SPI master. It goes low at the start of the transmission and goes back high at the end. **SPC** is the serial port clock and it is controlled by the SPI master. It is stopped high when **CS** is high (no transmission). **SDI** and **SDO** are, respectively, the serial port data input and output. Those lines are driven at the falling edge of **SPC** and should be captured at the rising edge of **SPC**.

Both the read register and write register commands are completed in 16 clock pulses or in multiples of 8 in case of multiple read/write bytes. Bit duration is the time between two falling edges of **SPC**. The first bit (bit 0) starts at the first falling edge of **SPC** after the falling edge of **CS** while the last bit (bit 15, bit 23, ...) starts at the last falling edge of SPC just before the rising edge of **CS**.

bit 0: $R\overline{W}$ bit. When 0, the data DI(7:0) is written into the device. When 1, the data DO(7:0) from the device is read. In latter case, the chip will drive **SDO** at the start of bit 8.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written into the device (MSb first).

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

In multiple read/write commands further blocks of 8 clock periods will be added. When the CTRL3_C (12h) (IF_INC) bit is '0', the address used to read/write data remains the same for every block. When the CTRL3_C (12h) (IF_INC) bit is '1', the address used to read/write data is increased at every block.

The function and the behavior of SDI and SDO remain unchanged.

DS12814 - Rev 3 page 20/199

5.1.3.1 SPI read

Figure 9. SPI read protocol (in mode 3)

The SPI Read command is performed with 16 clock pulses. A multiple byte read command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that will be read from the device (MSb first).

bit 16-...: data DO(...-8). Further data in multiple byte reads.

Figure 10. Multiple byte SPI read protocol (2-byte example) (in mode 3)

DS12814 - Rev 3 page 21/199

5.1.3.2 SPI write

Figure 11. SPI write protocol (in mode 3)

The SPI Write command is performed with 16 clock pulses. A multiple byte write command is performed by adding blocks of 8 clock pulses to the previous one.

bit 0: WRITE bit. The value is 0.

bit 1 -7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DI(7:0) (write mode). This is the data that is written inside the device (MSb first).

bit 16-...: data DI(...-8). Further data in multiple byte writes.

Figure 12. Multiple byte SPI write protocol (2-byte example) (in mode 3)

5.1.3.3 SPI read in 3-wire mode

A 3-wire mode is entered by setting the CTRL3_C (12h) (SIM) bit equal to '1' (SPI serial interface mode selection).

Figure 13. SPI read protocol in 3-wire mode (in mode 3)

The SPI read command is performed with 16 clock pulses:

bit 0: READ bit. The value is 1.

bit 1-7: address AD(6:0). This is the address field of the indexed register.

bit 8-15: data DO(7:0) (read mode). This is the data that is read from the device (MSb first).

A multiple read command is also available in 3-wire mode.

DS12814 - Rev 3 page 22/199

5.2 MIPI I3CSM interface

5.2.1 MIPI I3CSM slave interface

The LSM6DSOX interface includes an MIPI I3CSMSDR only slave interface (compliant with release 1.0 of the specification) with MIPI I3CSM SDR embedded features:

- CCC command
- Direct CCC communication (SET and GET)
- · Broadcast CCC communication
- · Private communications
- · Private read and write for single byte
- · Multiple read and write
- In-Band Interrupt request

Error Detection and Recovery Methods (S0-S6)

Refer to Section 5.3 I²C/I3C coexistence in LSM6DSOX for details concerning the choice of the interface when powering up the device.

5.2.2 MIPI I3CSM CCC supported commands

The list of MIPI I3CSM CCC commands supported by the device is detailed in the following table.

Table 15. MIPI I3CSM CCC commands

Command	Command code	Default	Description
ENTDAA	0x07		DAA procedure
SETDASA	0x87		Assign Dynamic Address using Static Address 0x6B/0x6A depending on SDO pin
ENEC	0x80 / 0x00		Slave activity control (direct and broadcast)
DISEC	0x81/ 0x01		Slave activity control (direct and broadcast)
ENTAS0	0x82 / 0x02		Enter activity state (direct and broadcast)
ENTAS1	0x83 / 0x03		Enter activity state (direct and broadcast)
ENTAS2	0x84 / 0x04		Enter activity state (direct and broadcast)
ENTAS3	0x85 / 0x05		Enter activity state (direct and broadcast)
SETXTIME	0x98 / 0x28		Timing information exchange
GETXTIME	0x99	0x07 0x00 0x05 0x92	Timing information exchange
RSTDAA	0x86 / 0x06		Reset the assigned dynamic address (direct and broadcast)
SETMWL	0x89 / 0x08		Define maximum write length during private write (direct and broadcast)
SETMRL	0x8A / 0x09		Define maximum read length during private read (direct and broadcast)
SETNEWDA	0x88		Change dynamic address
GETMWL	0x8B	0x00 0x08 (2 byte)	Get maximum write length during private write

DS12814 - Rev 3 page 23/199

Command	Command code	Default	Description	
		0x00		
GETMRL	0x8C	0x10	Get maximum read length during private read	
GETWIRL	UXOC	0x09	Get maximum read length duning private read	
		(3 byte)		
		0x02		
		80x0		
GETPID	0x8D	0x00	Device ID register	
GLIFID	0.00	0x6C	Device in register	
		0x10		
		0x0B		
GETBCR	0x8E	0x07	Pue characteristics register	
GETBUR	UXOE	(1 byte)	Bus characteristics register	
GETDCR	0x8F	0x44 default	MIPI I3C SM Device Characteristic Register	
		0x00		
GETSTATUS	0x90	0x00	Status register	
		(2 byte)		
		0x00		
GETMXDS	0x94	0x20	Return max data speed	
		(2 byte)		

DS12814 - Rev 3 page 24/199

5.3 I²C/I3C coexistence in LSM6DSOX

In the LSM6DSOX, the SDA and SCL lines are common to both I²C and I3C. The I²C bus requires anti-spike filters on the SDA and SCL pins that are not compatible with I3C timing.

The device can be connected to both I²C and I3C or only to the I3C bus depending on the connection of the INT1 pin when the device is powered up:

- INT1 pin floating (internal pull-down): I2C/I3C both active, see Figure 14
- INT1 pin connected to VDD_IO: only I3C active, see Figure 15

Figure 14. I²C and I3C both active (INT1 pin not connected)

1. Address assignment (DAA or ENTDA) must be performed with I²C Fast Mode Plus Timing. When the slave is addressed, the I²C slave is disabled and the timing is compatible with I3C specifications.

INT1 pin connected to VDD_IO

→ Only I3C active

Dynamic
Address
Assignment (1)

I3C private R/W with and without 7Eh
CCC commands
Slave event management
Error detection and recovery

Figure 15. Only I3C active (INT1 pin connected to VDD_IO)

1. When the slave is I3C only, the I²C slave is always disabled. The address can be assigned using I3C SDR timing.

DS12814 - Rev 3 page 25/199

5.4 Master I²C interface

If the LSM6DSOX is configured in Mode 2, a master I²C line is available. The master serial interface is mapped in the following dedicated pins.

Table 16. Master I²C pin details

Pin name	Pin description
MSCL	I ² C serial clock master
MSDA	I ² C serial data master
MDRDY	I ² C master external synchronization signal

5.5 Auxiliary SPI interface

If the LSM6DSOX is configured in Mode 3 or Mode 4, the auxiliary SPI is available. The auxiliary SPI interface is mapped to the following dedicated pins.

Table 17. Auxiliary SPI pin details

Pin name	Pin description
OCS_Aux	Auxiliary SPI 3/4-wire enable
SDx	Auxiliary SPI 3/4-wire data input (SDI_Aux) and SPI 3-wire data output (SDO_Aux)
SCx	Auxiliary SPI 3/4-wire interface serial port clock
SDO_Aux	Auxiliary SPI 4-wire data output (SDO_Aux)

When the LSM6DSOX is configured in Mode 3 or Mode 4, the auxiliary SPI can be connected to a camera module for OIS/EIS support.

DS12814 - Rev 3 page 26/199

6 Functionality

6.1 Operating modes

In the LSM6DSOX, the accelerometer and the gyroscope can be turned on/off independently of each other and are allowed to have different ODRs and power modes.

The LSM6DSOX has three operating modes available:

- only accelerometer active and gyroscope in power-down
- only gyroscope active and accelerometer in power-down
- · both accelerometer and gyroscope sensors active with independent ODR

The accelerometer is activated from power-down by writing ODR_XL[3:0] in CTRL1_XL (10h) while the gyroscope is activated from power-down by writing ODR_G[3:0] in CTRL2_G (11h). For combo-mode the ODRs are totally independent.

6.2 Accelerometer power modes

In the LSM6DSOX, the accelerometer can be configured in five different operating modes: power-down, ultra-low-power, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the XL_HM_MODE bit in CTRL6_C (15h). If XL_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the XL_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (1.6, 12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz

6.2.1 Accelerometer ultra-low-power mode

The LSM6DSOX can be configured in ultra-low-power (ULP) mode by setting the XL_ULP_EN bit to 1 in CTRL5_C (14h) register. This mode can be used in accelerometer-only mode (gyroscope sensor must be configured in power-down mode) and for ODR_XL values between 1.6 Hz and 208 Hz.

When ULP mode is intended to be used, the bit XL HM MODE must be set to 0.

When ULP mode is switched ON/OFF, the accelerometer must be configured in power-down condition.

ULP mode cannot be used in Mode 3 or Mode 4 connection modes.

The embedded functions based on accelerometer data (free-fall, 6D/4D, tap, double tap, wake-up, activity/ inactivity, stationary/motion, step counter, step detection, significant motion, tilt) and the FIFO batching functionality are still supported when ULP mode is enabled.

6.3 Gyroscope power modes

In the LSM6DSOX, the gyroscope can be configured in four different operating modes: power-down, low-power, normal mode and high-performance mode. The operating mode selected depends on the value of the G_HM_MODE bit in CTRL7_G (16h). If G_HM_MODE is set to '0', high-performance mode is valid for all ODRs (from 12.5 Hz up to 6.66 kHz).

To enable the low-power and normal mode, the G_HM_MODE bit has to be set to '1'. Low-power mode is available for lower ODRs (12.5, 26, 52 Hz) while normal mode is available for ODRs equal to 104 and 208 Hz.

DS12814 - Rev 3 page 27/199

6.4 Block diagram of filters

Figure 16. Block diagram of filters

6.4.1 Block diagrams of the accelerometer filters

In the LSM6DSOX, the filtering chain for the accelerometer part is composed of the following:

- Analog filter (anti-aliasing)
- Digital filter (LPF1)
- · Composite filter

Details of the block diagram appear in the following figure.

Figure 17. Accelerometer UI chain

DS12814 - Rev 3 page 28/199

Figure 18. Accelerometer composite filter

The cutoff value of the LPF1 output is ODR/2 when the accelerometer is in high-performance mode. This 1. value is equal to 700 Hz when the accelerometer is in low-power or normal mode.

Note:

Advanced functions include pedometer, step detector and step counter, significant motion detection, and tilt functions.

The accelerometer filtering chain when Mode 4 is enabled is illustrated in the following figure.

DS12814 - Rev 3 page 29/199

Figure 19. Accelerometer chain with Mode 4 enabled

Note:

Mode 4 is enabled when Mode4_EN = 1 and OIS_EN_SPI2 = 1 in UI_CTRL1_OIS (70h) / SPI2_CTRL1_OIS (70h).

The configuration of the accelerometer UI chain is not affected by enabling Mode 4.

Accelerometer output values are available in the following registers with ODR at 6.66 kHz:

- UI_OUTX_L_A_OIS (50h) and UI_OUTX_H_A_OIS (51h) through UI_OUTZ_L_A_OIS (54h) and UI_OUTZ_H_A_OIS (55h)
- SPI2_OUTX_L_A_OIS (28h) and SPI2_OUTX_H_A_OIS (29h) through SPI2_OUTZ_L_A_OIS (2Ch) and SPI2_OUTZ_H_A_OIS (2Dh)

Accelerometer full-scale management between the UI chain and OIS chain depends on the setting of the XL_FS_MODE bit in register CTRL8_XL (17h).

DS12814 - Rev 3 page 30/199

6.4.2 Block diagrams of the gyroscope filters

In the LSM6DSOX, the gyroscope filtering chain depends on the mode configuration:

 Mode 1 (for User Interface (UI) and Electronic Image Stabilization (EIS) functionality through primary interface) and Mode 2

Figure 20. Gyroscope digital chain - Mode 1 (UI/EIS) and Mode 2

In this configuration, the gyroscope ODR is selectable from 12.5 Hz up to 6.66 kHz. A low-pass filter (LPF1) is available if the auxiliary SPI is disabled, for more details about the filter characteristics see Table 67. Gyroscope LPF1 bandwidth selection.

The digital LPF2 filter cannot be configured by the user and its cutoff frequency depends on the selected gyroscope ODR, as indicated in the following table.

LPF2 cutoff [Hz] Gyroscope ODR [Hz] 12.5 4.2 26 8.3 52 16.6 104 33.0 208 66.8 417 135.9 833 295.5 1667 1108.1 3333 1320.7 6667 1441.8

Table 18. Gyroscope LPF2 bandwidth selection

Note: Data can be acquired from the output registers and FIFO over the primary I²C/I³C/SPI interface.

DS12814 - Rev 3 page 31/199

Mode 3 / Mode 4 (for OIS and EIS functionality)

Figure 21. Gyroscope digital chain - Mode 3 / Mode 4 (OIS/EIS)

- 1. When Mode 3/4 is enabled, the LPF1 filter is not available in the gyroscope UI chain.
- 2. It is recommended to avoid using the LPF1 filter in Mode1/2 when Mode3/4 is intended to be used.
- 3. HP_EN_OIS can be used to select the HPF on the OIS path only if the HPF is not used in the UI chain. If both the HP_EN_G bit and HP_EN_OIS bit are set to 1, the HP filter is applied to the UI chain only.

Note: When S4S is enabled in the UI chain, the HPF is not available in the OIS chain.

The auxiliary interface needs to be enabled in UI_CTRL1_OIS (70h) / SPI2_CTRL1_OIS (70h). In Mode 3/4 configuration, there are two paths:

- the chain for User Interface (UI) where the ODR is selectable from 12.5 Hz up to 6.66 kHz
- the chain for OIS/EIS where the ODR is at 6.66 kHz and the LPF1 is available. The LPF1 configuration depends on the setting of the FTYPE_[1;0] _OIS bit in register UI_CTRL2_OIS (71h) / SPI2_CTRL2_OIS (71h); for more details about the filter characteristics see Table 182. Gyroscope OIS chain digital LPF1 filter bandwidth selection. Gyroscope output values are in registers 22h to 27h if read from the Auxi_SPI or in registers 4Ah to 4Fh if read from the primary interface with the selected full scale (FS[1:0]_G_OIS bit in UI_CTRL1_OIS (70h) / SPI2_CTRL1_OIS (70h)).

DS12814 - Rev 3 page 32/199

6.5 OIS

This paragraph describes OIS functionality. There is a dedicated gyroscope and accelerometer DSP for OIS. Other features can be configured:

- Self-test on OIS side
- · DEN on OIS side

6.5.1 Enabling OIS functionality and connection schemes

There are three different ways in order to enable and configure OIS functionality:

- · Auxiliary SPI full control: Enabling and configuration done from Auxiliary SPI
- Enabling primary interface: Enable from primary interface, configuration from Auxiliary SPI
- Primary interface full control: Enabling and configuration done from primary interface

The configurations that allow selecting these three different options are done using the OIS_CTRL_FROM_UI bit in FUNC_CFG_ACCESS (01h) and the OIS_ON_EN bit in CTRL7_G (16h) as described in the following table.

OIS_CTRL_ FROM_UI	OIS_ON_EN	OIS configuration option
0	0	Auxiliary SPI full control
0	1	Enabling primary interface
1	×	Primary interface full control

Table 19. OIS configurations

6.5.1.1 Auxiliary SPI full control

This is the default condition of the device. The camera module is completely independent from the application processor as shown in Figure 22.

The Auxiliary SPI can configure OIS functionality through SPI2_INT_OIS (6Fh), SPI2_CTRL1_OIS (70h), SPI2_CTRL2_OIS (71h), SPI2_CTRL3_OIS (72h).

Reading from the Auxiliary SPI is enabled only when the OIS_EN_SPI2 bit in the SPI2_CTRL1_OIS (70h) register is set to '1'. This bit also turns on the gyroscope OIS chain.

The Primary Interface can access the OIS control registers (UI_INT_OIS (6Fh), UI_CTRL1_OIS (70h), UI_CTRL2_OIS (71h), UI_CTRL3_OIS (72h)) in read mode.

Note:

If accelerometer Ultra-Low-Power Mode is intended to be used on the Primary chain, it is recommended to use the Primary IF enabling option instead, in order to make sure that the device is set in Power-Down (from ULP mode) before enabling the OIS chain.

DS12814 - Rev 3 page 33/199

Camera Module Image Image Sensor Sensor Actuator Actuator OIS Driver OIS Driver ΑP AP SPI Aux 6x UI/OIS UI/OIS (b) (a)

Figure 22. Auxiliary SPI full control (a) and enabling primary interface (b)

6.5.1.2 Enabling primary interface

This option allows the application processor to enable/disable the OIS functionality from the primary interface. An example of this option is shown in Figure 22.

In order to enable/disable the OIS chain from the primary interface, the OIS ON EN bit in the CTRL7 G (16h) register must be set to '1' from the primary interface.

Then, enabling OIS functionalities and reading from the Auxiliary SPI can be done from the primary interface by setting the OIS ON bit in CTRL7 G (16h) to '1'. This bit also turns on the gyroscope OIS chain.

The configuration of the OIS functionalities must be implemented from the Auxiliary SPI through the SPI2_INT_OIS (6Fh), SPI2_CTRL1_OIS (70h), SPI2_CTRL2_OIS (71h), and SPI2_CTRL3_OIS (72h) registers. The camera module can verify that the AP has enabled the LSM6DSOX OIS chain by reading the SPI2 WHO AM I (0Fh) register. The bit OIS EN SPI2 is kept under reset.

If the accelerometer Ultra-Low-Power Mode is active when activation of the OIS is required, the device must be

The Primary Interface can access the OIS control registers (UI INT OIS (6Fh), UI CTRL1 OIS (70h),

UI_CTRL2_OIS (71h), UI_CTRL3_OIS (72h)) in read mode.

The OIS_ON_EN bit is reset from the SW RESET procedure.

set in Power-Down mode before enabling the OIS chain.

6.5.1.3 Primary interface full control

Note:

This option allows the application processor to configure all OIS functionalities from the primary interface. This option allows using embedded OIS data for both the main and front camera, connecting them to the application processor (eventually adding a context hub) as shown in Figure 23: the AP can also do some processing on the data before sending them to the cameras.

In order to place the device in this mode, the OIS CTRL FROM UI bit in the FUNC CFG ACCESS (01h) register must be set to '1' from the primary interface.

DS12814 - Rev 3 page 34/199

Figure 23. OIS Primary interface full control

Then, the AP can configure OIS functionalities through UI_INT_OIS (6Fh), UI_CTRL1_OIS (70h), UI_CTRL2_OIS (71h), UI_CTRL3_OIS (72h).

The OIS EN SPI2 bit in the UI CTRL1 OIS (70h) register enables the gyroscope OIS chain.

Reading from the Auxiliary SPI can be enabled by setting the SPI2_READ_EN bit in the UI_INT_OIS (6Fh) register to '1' in order to directly read OIS data (as shown in Figure 23 (b)). The Auxiliary SPI can access the SPI2_INT_OIS (6Fh), SPI2_CTRL1_OIS (70h), SPI2_CTRL2_OIS (71h), and SPI2_CTRL3_OIS (72h) registers in read-only mode.

Note:

If the accelerometer Ultra-Low-Power Mode is active when activation of the OIS is required, the device must be set in Power-Down mode before enabling the OIS chain.

The OIS_CTRL_FROM_UI bit is reset from the SW RESET procedure.

S4S is not available in the primary interface full control mode.

DS12814 - Rev 3 page 35/199

6.6 FIFO

The presence of a FIFO allows consistent power saving for the system since the host processor does not need continuously poll data from the sensor, but It can wake up only when needed and burst the significant data out from the FIFO.

The LSM6DSOX embeds 3 kbytes of data in FIFO to store the following data:

- Gyroscope
- Accelerometer
- External sensors (up to 4)
- Step counter
- Timestamp
- Temperature

Writing data in the FIFO can be configured to be triggered by the:

- Accelerometer / gyroscope data-ready signal
- Sensor hub data-ready signal
- Step detection signal

The applications have maximum flexibility in choosing the rate of batching for physical sensors with FIFO-dedicated configurations: accelerometer, gyroscope and temperature sensor batching rates can be selected by the user. External sensor writing in FIFO can be triggered by the accelerometer data-ready signal or by an external sensor interrupt. The step counter can be stored in FIFO with associated timestamp each time a step is detected. It is possible to select decimation for timestamp batching in FIFO with a factor of 1, 8, or 32.

The reconstruction of a FIFO stream is a simple task thanks to the FIFO_DATA_OUT_TAG byte that allows recognizing the meaning of a word in FIFO.

FIFO allows correct reconstruction of the timestamp information for each sensor stored in FIFO. If a change in the ODR or BDR (Batching Data Rate) configuration is performed, the application can correctly reconstruct the timestamp and know exactly when the change was applied without disabling FIFO batching. FIFO stores information of the new configuration and timestamp in which the change was applied in the device.

Finally, FIFO embeds a compression algorithm that the user can enable in order to have up to 9 kbyte data stored in FIFO and take advantage of interface communication length for FIFO flushing and communication power consumption.

The programmable FIFO watermark threshold can be set in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h) using the WTM[8:0] bits. To monitor the FIFO status, dedicated registers (FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh)) can be read to detect FIFO overrun events, FIFO full status, FIFO empty status, FIFO watermark status and the number of unread samples stored in the FIFO. To generate dedicated interrupts on the INT1 and INT2 pins of these status events, the configuration can be set in INT1_CTRL (0Dh) and INT2_CTRL (0Eh).

The FIFO buffer can be configured according to six different modes:

- Bypass mode
- FIFO mode
- · Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode
- Bypass-to-FIFO mode

Each mode is selected by the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 (0Ah) register.

6.6.1 Bypass mode

In Bypass mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 000), the FIFO is not operational and it remains empty. Bypass mode is also used to reset the FIFO when in FIFO mode.

6.6.2 FIFO mode

In FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 001) data from the output channels are stored in the FIFO until it is full.

DS12814 - Rev 3 page 36/199

To reset FIFO content, Bypass mode should be selected by writing FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0]) to '000'. After this reset command, it is possible to restart FIFO mode by writing FIFO_CTRL4 (0Ah) (FIFO MODE [2:0]) to '001'.

The FIFO buffer memorizes up to 9 kbytes of data (with compression enabled) but the depth of the FIFO can be resized by setting the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h). If the STOP_ON_WTM bit in FIFO_CTRL2 (08h) is set to '1', FIFO depth is limited up to the WTM [8:0] bits in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h).

6.6.3 Continuous mode

Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 110) provides a continuous FIFO update: as new data arrives, the older data is discarded.

A FIFO threshold flag FIFO_STATUS2 (3Bh)(FIFO_WTM_IA) is asserted when the number of unread samples in FIFO is greater than or equal to FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h)(WTM [8:0]).

It is possible to route the FIFO_WTM_IA flag to FIFO_CTRL2 (08h) to the INT1 pin by writing in register INT1_CTRL (0Dh)(INT1_FIFO_TH) = '1' or to the INT2 pin by writing in register INT2_CTRL (0Eh) (INT2_FIFO_TH) = '1'.

A full-flag interrupt can be enabled, INT1_CTRL (0Dh)(INT1_FIFO_FULL) = '1' or INT2_CTRL (0Eh) (INT2_FIFO_FULL) = '1', in order to indicate FIFO saturation and eventually read its content all at once.

If an overrun occurs, at least one of the oldest samples in FIFO has been overwritten and the FIFO_OVR_IA flag in FIFO_STATUS2 (3Bh) is asserted.

In order to empty the FIFO before it is full, it is also possible to pull from FIFO the number of unread samples available inFIFO STATUS1 (3Ah) and FIFO STATUS2 (3Bh)(DIFF FIFO [9:0]).

6.6.4 Continuous-to-FIFO mode

In Continuous-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = 011), FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- Double tap
- Wake-up
- Free-fall
- D6D

When the selected trigger bit is equal to '1', FIFO operates in FIFO mode.

When the selected trigger bit is equal to '0', FIFO operates in Continuous mode.

6.6.5 Bypass-to-Continuous mode

In Bypass-to-Continuous mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '100'), data measurement storage inside FIFO operates in Continuous mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode).

FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

- Single tap
- · Double tap
- Wake-up
- Free-fall
- D6D

6.6.6 Bypass-to-FIFO mode

In Bypass-to-FIFO mode (FIFO_CTRL4 (0Ah)(FIFO_MODE_[2:0] = '111'), data measurement storage inside FIFO operates in FIFO mode when selected triggers are equal to '1', otherwise FIFO content is reset (Bypass mode). FIFO behavior changes according to the trigger event detected in one of the following interrupt events:

Single tap

- Double tap
- Wake-up
- Free-fall
- D6D

DS12814 - Rev 3 page 37/199

6.6.7 FIFO reading procedure

The data stored in FIFO are accessible from dedicated registers and each FIFO word is composed of 7 bytes: one tag byte (FIFO_DATA_OUT_TAG (78h), in order to identify the sensor, and 6 bytes of fixed data (FIFO_DATA_OUT_registers from (79h) to (7Eh)).

The DIFF_FIFO_[9:0] field in the FIFO_STATUS1 (3Ah) and FIFO_STATUS2 (3Bh) registers contains the number of words (1 byte TAG + 6 bytes DATA) collected in FIFO.

In addition, it is possible to configure a counter of the batch events of accelerometer or gyroscope sensors. The flag COUNTER_BDR_IA in FIFO_STATUS2 (3Bh) alerts that the counter reaches a selectable threshold (CNT_BDR_TH_[10:0] field in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch)). This allows triggering the reading of FIFO with the desired latency of one single sensor. The sensor is selectable using the TRIG_COUNTER_BDR bit in COUNTER_BDR_REG1 (0Bh). As for the other FIFO status events, the flag COUNTER_BDR_IA can be routed on the INT1 or INT2 pins by asserting the corresponding bits (INT1 CNT BDR of INT1 CTRL (0Dh) and INT2 CNT BDR of INT2 CTRL (0Eh)).

In order to maximize the amount of accelerometer and gyroscope data in FIFO, the user can enable the compression algorithm by setting to 1 both the FIFO_COMPR_EN bit in EMB_FUNC_EN_B (05h) (embedded functions registers bank) and the FIFO_COMPR_RT_EN bit in FIFO_CTRL2 (08h). When compression is enabled, it is also possible to force writing non-compressed data at a selectable rate using the UNCOPTR_RATE_[1:0] field in FIFO_CTRL2 (08h).

Meta information about accelerometer and gyroscope sensor configuration changes can be managed by enabling the ODR_CHG_EN bit in FIFO_CTRL2 (08h).

DS12814 - Rev 3 page 38/199

7 Application hints

7.1 LSM6DSOX electrical connections in Mode 1

Figure 24. LSM6DSOX electrical connections in Mode 1

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C/MIPI I3CSM interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C/MIPI I3CSM interface.

DS12814 - Rev 3 page 39/199

7.2 LSM6DSOX electrical connections in Mode 2

Figure 25. LSM6DSOX electrical connections in Mode 2

1. Leave pin electrically unconnected and soldered to PCB.

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device and the measured acceleration/angular rate data is selectable and accessible through the SPI/I²C/MIPI I3CSM primary interface.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C/MIPI I3CSM primary interface.

DS12814 - Rev 3 page 40/199

7.3 LSM6DSOX electrical connections in Mode 3 and Mode 4

Figure 26. LSM6DSOX electrical connections in Mode 3 and Mode 4 (auxiliary 3/4-wire SPI)

1. Leave pin electrically unconnected and soldered to PCB.

Note:

When Mode 3 and 4 are used, the pull-up on pins 10 and 11 can be disabled (refer to Table 20. Internal pin status). To avoid leakage current, it is recommended to not leave the SPI lines floating (also when the OIS system is off).

The device core is supplied through the Vdd line. Power supply decoupling capacitors (C1, C2 = 100 nF ceramic) should be placed as near as possible to the supply pin of the device (common design practice).

The functionality of the device is selectable and accessible through the SPI/I²C/I³C primary interface.

Measured acceleration/angular rate data is selectable and accessible through the SPI/I²C/MIPI I3CSM primary interface and auxiliary SPI.

The functions, the threshold and the timing of the two interrupt pins for each sensor can be completely programmed by the user through the SPI/I²C/MIPI I3CSM interface.

DS12814 - Rev 3 page 41/199

Table 20. Internal pin status

pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2	Pin status Mode 3/4 ⁽¹⁾
	SDO	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)	SPI 4-wire interface serial data output (SDO)			
1		I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	I ² C least significant bit of the device address (SA0)	Default: input without pull-up.	Default: input without pull-up.	Default: Input without pull-up.
'	SA0	MIPI I3C SM least significant bit of the static address (SA0)	` ′	MIPI I3C SM least significant bit of the static address (SA0)	Pull-up is enabled if bit SDO_PU_EN = 1 in reg 02h.	Pull-up is enabled if bit SDO_PU_EN = 1 in reg 02h.	Pull-up is enabled if bit SDO_PU_EN = 1 in reg 02h.
2	SDx	Connect to VDDIO or GND	l ² C serial data master (MSDA)	Auxiliary SPI 3/4-wire interface serial data input (SDI) and SPI 3-wire serial data output (SDO)	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Default: input without pull-up. Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).
					Default: input without pull-up.	Default: input without pull-up.	Default: input without pull-up.
3	SCx	Connect to VDDIO or GND	l²C serial clock master (MSCL)	Auxiliary SPI 3/4-wire interface serial port clock (SPC_Aux)	Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up).	Pull-up is enabled if bit SHUB_PU_EN = 1 in reg 14h in sensor hub registers (see Note to enable pull-up)
4	INT1	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Programmable interrupt 1 / If device is used as MIPI I3C SM pure slave, this pin must be set to '1'.	Default: input with pull-down ⁽²⁾	Default: input with pull-down ⁽²⁾	Default: input with pull-down ⁽²⁾
5	VDDIO	Power supply for I/O pins	Power supply for I/O pins	Power supply for I/O pins			
6	GND	0 V supply	0 V supply	0 V supply			
7	GND	0 V supply	0 V supply	0 V supply			
8	VDD	Power supply	Power supply	Power supply			
9	INT2	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Programmable interrupt 2 (INT2) / Data enabled (DEN) / I ² C master external synchronization signal (MDRDY)	Programmable interrupt 2 (INT2) / Data enabled (DEN)	Default: output forced to ground	Default: output forced to ground	Default: output forced to ground
10	OCS_Aux	Leave unconnected	Leave unconnected	Auxiliary SPI 3/4-wire interface enabled	Default: input with pull-up. Pull-up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input with pull-up. Pull-up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input without pull-up (regardless of the value of bit OIS_PU_DIS in reg 02h.)
11	SDO_Aux	Connect to VDDIO or leave unconnected	Connect to VDDIO or leave unconnected	Auxiliary SPI 3-wire interface: leave unconnected / Auxiliary SPI 4-wire interface: serial data output (SDO_Aux)	Default: input with pull-up. Pull-up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input with pull-up. Pull-up is disabled if bit OIS_PU_DIS = 1 in reg 02h.	Default: input without pull-up. Pull-up is enabled if bit SIM_OIS = 1 (Aux_SPI 3-wire) in reg 70h and bit OIS_PU_DIS = 0 in reg 02h.
12	CS	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	I ² C/SPI mode selection (1:SPI idle mode / I ² C communication enabled; 0: SPI communication mode / I ² C disabled)	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h and I3C_disable = 1 in reg 18h.	Default: input with pull-up. Pull-up is disabled if bit I2C_disable = 1 in reg 13h and I3C_disable = 1 in reg 18h.	Default: input with pull-up. Pull-up is disabled if bit 12C_disable = 1 in reg 13h and 13C_disable = 1 in reg 18h.

X	

pin#	Name	Mode 1 function	Mode 2 function	Mode 3 / Mode 4 function	Pin status Mode 1	Pin status Mode 2	Pin status Mode 3/4 ⁽¹⁾
13	SCL	I ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)	I ² C/MIPI I3C SM serial clock (SCL) / SPI serial port clock (SPC)		Default: input without pull-up	Default: input without pull-up	Default: input without pull-up
14	SDA	I ² C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	I ² C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	I ² C/MIPI I3C SM serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	Default: input without pull-up	Default: input without pull-up	Default:input without pull-up

- 1. Mode 3 is enabled when the OIS_EN_SPI2 bit in the UI_CTRL1_OIS (70h) / SPI2_CTRL1_OIS (70h) registers is set to 1. Mode 4 is enabled when both the OIS EN SPI2 bit and the Mode4 EN bit in the UI_CTRL1_OIS (70h) / SPI2_CTRL1_OIS (70h) registers are set to 1.
- 2. INT1 must be set to '0' or left unconnected during power-on if the I²C/SPI interfaces are used.

Internal pull-up value is from 30 k Ω to 50 k Ω , depending on VDDIO.

Note: The procedure to enable the pull-up on pins 2 and 3 is as follows:

- 1. From the primary I²C/I³C/SPI interface: write 40h in register at address 01h (enable access to the sensor hub registers)
- 2. From the primary I²C/I³C/SPI interface: write 08h in register at address 14h (enable the pull-up on pins 2 and 3)
- 3. From the primary I²C/I³C/SPI interface: write 00h in register at address 01h (disable access to the sensor hub registers)

8 Register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

All these registers are accessible from the primary SPI/I²C/MIPI I3CSM interface only.

Table 21. Registers address map

Nama	T	Regis	ter address	Default	Comment
Name	Туре	Hex	Binary	- Default	Comment
FUNC_CFG_ACCESS	RW	01	00000001	00000000	
PIN_CTRL	RW	02	00000010	00111111	
RESERVED	-	03	00000011		
S4S_TPH_L	RW	04	00000100	00000000	
S4S_TPH_H	RW	05	00000101	00000000	
S4S_RR	RW	06	00000110	00000000	
FIFO_CTRL1	RW	07	00000111	00000000	
FIFO_CTRL2	RW	08	00001000	00000000	
FIFO_CTRL3	RW	09	00001001	00000000	
FIFO_CTRL4	RW	0A	00001010	00000000	
COUNTER_BDR_REG1	RW	0B	00001011	00000000	
COUNTER_BDR_REG2	RW	0C	00001100	00000000	
INT1_CTRL	RW	0D	00001101	00000000	
INT2_CTRL	RW	0E	00001110	00000000	
WHO_AM_I	R	0F	00001111	01101100	R (SPI2)
CTRL1_XL	RW	10	00010000	00000000	R (SPI2)
CTRL2_G	RW	11	00010001	00000000	R (SPI2)
CTRL3_C	RW	12	00010010	00000100	R (SPI2)
CTRL4_C	RW	13	00010011	00000000	R (SPI2)
CTRL5_C	RW	14	00010100	00000000	R (SPI2)
CTRL6_C	RW	15	00010101	00000000	R (SPI2)
CTRL7_G	RW	16	00010110	00000000	R (SPI2)
CTRL8_XL	RW	17	0001 0111	00000000	R (SPI2)
CTRL9_XL	RW	18	00011000	11100000	R (SPI2)
CTRL10_C	RW	19	00011001	00000000	R (SPI2)
ALL_INT_SRC	R	1A	00011010	output	
WAKE_UP_SRC	R	1B	00011011	output	
TAP_SRC	R	1C	00011100	output	
D6D_SRC	R	1D	00011101	output	
STATUS_REG	R	1E	00011110	output	
RESERVED	-	1F	00011111		
OUT_TEMP_L	R	20	00100000	output	

DS12814 - Rev 3 page 44/199

Name	Type	Regis	ter address	- Default	Commont
Name	Туре	Hex	Binary	Delault	Comment
OUT_TEMP_H	R	21	00100001	output	
OUTX_L_G	R	22	00100010	output	
OUTX_H_G	R	23	00100011	output	
OUTY_L_G	R	24	00100100	output	
OUTY_H_G	R	25	00100101	output	
OUTZ_L_G	R	26	00100110	output	
OUTZ_H_G	R	27	00100111	output	
OUTX_L_A	R	28	00101000	output	
OUTX_H_A	R	29	00101001	output	
OUTY_L_A	R	2A	00101010	output	
OUTY_H_A	R	2B	00101011	output	
OUTZ_L_A	R	2C	00101100	output	
OUTZ_H_A	R	2D	00101101	output	
RESERVED	-	2E-34			
EMB_FUNC_STATUS_MAINPAGE	R	35	00110101	output	
FSM_STATUS_A_MAINPAGE	R	36	00110110	output	
FSM_STATUS_B_MAINPAGE	R	37	00110111	output	
MLC_STATUS_MAINPAGE	R	38	00111000	output	
STATUS_MASTER_MAINPAGE	R	39	00111001	output	
FIFO_STATUS1	R	3A	00111010	output	
FIFO_STATUS2	R	3B	00111011	output	
RESERVED	-	3C-3F			
TIMESTAMP0	R	40	01000000	output	R (SPI2)
TIMESTAMP1	R	41	01000001	output	R (SPI2)
TIMESTAMP2	R	42	01000010	output	R (SPI2)
TIMESTAMP3	R	43	01000011	output	R (SPI2)
RESERVED	-	44-48			
UI_STATUS_REG_OIS	R	49	01001001	output	
UI_OUTX_L_G_OIS	R	4A	01001010	output	
UI_OUTX_H_G_OIS	R	4B	01001011	output	
UI_OUTY_L_G_OIS	R	4C	01001100	output	
UI_OUTY_H_G_OIS	R	4D	01001101	output	
UI_OUTZ_L_G_OIS	R	4E	01001110	output	
UI_OUTZ_H_G_OIS	R	4F	01001111	output	
UI_OUTX_L_A_OIS	R	50	01010000	output	
UI_OUTX_H_A_OIS	R	51	01010001	output	
UI_OUTY_L_A_OIS	R	52	01010010	output	
UI_OUTY_H_A_OIS	R	53	01010011	output	
UI_OUTZ_L_A_OIS	R	54	01010100	output	

DS12814 - Rev 3 page 45/199

		Regis	ter address		
Name	Туре	Hex	Binary	Default	Comment
UI_OUTZ_H_A_OIS	R	55	01010101	output	
TAP_CFG0	RW	56	01010110	00000000	
TAP_CFG1	RW	57	01010111	00000000	
TAP_CFG2	RW	58	01011000	00000000	
TAP_THS_6D	RW	59	01011001	00000000	
INT_DUR2	RW	5A	01011010	00000000	
WAKE_UP_THS	RW	5B	01011011	00000000	
WAKE_UP_DUR	RW	5C	01011100	00000000	
FREE_FALL	RW	5D	01011101	00000000	
MD1_CFG	RW	5E	01011110	00000000	
MD2_CFG	RW	5F	01011111	00000000	
S4S_ST_CMD_CODE	RW	60	01100000	00000000	
S4S_DT_REG	RW	61	01100001	00000000	
I3C_BUS_AVB	RW	62	01100010	00000000	
INTERNAL_FREQ_FINE	R	63	01100011	output	
RESERVED	-	64-6E			
UI_INT_OIS	R (SPI2 full control mode) RW (Primary IF full control mode)	6F	01101111	00000000	
UI_CTRL1_OIS	R (SPI2 full control mode) RW (Primary IF full control mode)	70	01110000	00000000	
UI_CTRL2_OIS	R (SPI2 full control mode) RW (Primary IF full control mode)	71	01110001	00000000	
UI_CTRL3_OIS	R (SPI2 full control mode) RW (Primary IF full control mode)	72	01110010	00000000	
X_OFS_USR	RW	73	01110011	00000000	
Y_OFS_USR	RW	74	01110100	00000000	
Z_OFS_USR	RW	75	01110101	00000000	
RESERVED	-	76-77			
FIFO_DATA_OUT_TAG	R	78	01111000	output	
FIFO_DATA_OUT_X_L	R	79	01111001	output	
FIFO_DATA_OUT_X_H	R	7A	01111010	output	
FIFO_DATA_OUT_Y_L	R	7B	01111011	output	
FIFO_DATA_OUT_Y_H	R	7C	01111100	output	
FIFO_DATA_OUT_Z_L	R	7D	01111101	output	
FIFO_DATA_OUT_X_H	R	7E	01111110	output	

DS12814 - Rev 3 page 46/199

9 Register description

The device contains a set of registers which are used to control its behavior and to retrieve linear acceleration, angular rate and temperature data. The register addresses, made up of 7 bits, are used to identify them and to write the data through the serial interface.

9.1 FUNC_CFG_ACCESS (01h)

Enable embedded functions register (r/w)

Table 22. FUNC_CFG_ACCESS register

FUNC_CFG_	SHUB_REG	0 ⁽¹⁾	0(1)	0 ⁽¹⁾	0(1)	0 ⁽¹⁾	OIS_CTRL
ACCESS	_ACCESS						_FROM_UI

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 23. FUNC_CFG_ACCESS register description

FUNC_CFG_ACCESS	Enable access to the embedded functions configuration registers. (1) Default value: 0
SHUB_REG_ACCESS	Enable access to the sensor hub (I ² C master) registers. (2) Default value: 0
	Enable the full control from the Primary Interface of OIS configurations.
OIS_CTRL_FROM_UI	Default value: 0
	(0: OIS chain full control from Primary Interface disabled;
	1: OIS chain full control from Primary Interface enabled)

Details concerning the embedded functions configuration registers are available in Section 12 Embedded functions register mapping and Section 13 Embedded functions register description.

DS12814 - Rev 3 page 47/199

^{2.} Details concerning the sensor hub registers are available in Section 16 Sensor hub register mapping and Section 17 Sensor hub register description.

9.2 PIN_CTRL (02h)

SDO, OCS_AUX, SDO_AUX pins pull-up enable/disable register (r/w)

Table 24. PIN_CTRL register

OIS_ PU_DIS	SDO_ PU_EN	1	1	1	1	1	1	
----------------	---------------	---	---	---	---	---	---	--

Table 25. PIN_CTRL register description

	Disable pull-up on both OCS_Aux and SDO_Aux pins. Default value: 0
OIS_PU_DIS	(0: OCS_Aux and SDO_Aux pins with pull-up;
	1: OCS_Aux and SDO_Aux pins pull-up disconnected)
SDO DIL EN	Enable pull-up on SDO pin
SDO_PU_EN	(0: SDO pin pull-up disconnected (default); 1: SDO pin with pull-up)

9.3 S4S_TPH_L (04h)

Sensor synchronization time frame register (r/w)

Table 26. S4S_TPH_L register

TPH_H_ SEL	TPH_L_6	TPH_L_5	TPH_L_4	TPH_L_3	TPH_L_2	TPH_L_1	TPH_L_0	
---------------	---------	---------	---------	---------	---------	---------	---------	--

Table 27. S4S_TPH_L register description

TPH_H_SEL Chooses if the TPH formula must be taken into account (see equation below).			
TDI I (6:01	S4S time frame expressed in number of samples as described in the equation below.		
TPH_L_[6:0]	If TPH_H_SEL=0 and TPH_L_[6:0] = d0, S4S is disabled.		

When TPH_H_SEL = 0: TPH [#Samples] = 2 x TPHL When TPH_H_SEL = 1: TPH [#Samples] = 2 x (TPH_L + 256 x TPH_H)

DS12814 - Rev 3 page 48/199

9.4 S4S_TPH_H (05h)

Sensor synchronization time frame register (r/w)

Table 28. S4S_TPH_H register

		TPH_H_7	TPH_H_6	TPH_H_5	TPH_H_4	TPH_H_3	TPH_H_2	TPH_H_1	TPH_H_0
--	--	---------	---------	---------	---------	---------	---------	---------	---------

Table 29. S4S_TPH_H register description

TDU U [7:0]	S4S time frame expressed in number of samples. Only if the TPH_H_SEL bit in S4S_TPH_L (04h) is high, is the value of this register taken into account as described in the equation in S4S_TPH_L (04h)
1PH_H_[7.0]	the value of this register taken into account as described in the equation in S4S_TPH_L (04h)

9.5 S4S_RR (06h)

Sensor synchronization resolution ratio register (r/w)

Table 30. S4S_RR register

0	0	0	0	0	0	RR_1	RR_0

Table 31. S4S_RR register description

	(00: S4S, DT resolution 2 ¹¹ ;
RR [1:0]	01: S4S, DT resolution 2 ¹² ;
KK_[1.0]	10: S4S, DT resolution 2 ¹³ ;
	11: S4S, DT resolution 2 ¹⁴)

9.6 FIFO_CTRL1 (07h)

FIFO control register 1 (r/w)

Table 32. FIFO_CTRL1 register

WTM7	WTM6	WTM5	WTM4	WTM3	WTM2	WTM1	WTM0

Table 33. FIFO_CTRL1 register description

		FIFO watermark threshold, in conjunction with WTM8 in FIFO_CTRL2 (08h)	
1	WTM[7:0]	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO	
		Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.	

DS12814 - Rev 3 page 49/199

9.7 FIFO_CTRL2 (08h)

FIFO control register 2 (r/w)

Table 34. FIFO_CTRL2 register

STOP_ON COMPR_RT_ 0 EN	ODRCHG _EN	0	UNCOPTR _RATE_1	UNCOPTR _RATE_0	WTM8
------------------------	---------------	---	--------------------	--------------------	------

Table 35. FIFO_CTRL2 register description

	Sensing chain FIFO stop values memorization at threshold level
STOP_ON_WTM	(0: FIFO depth is not limited (default);
	1: FIFO depth is limited to threshold level, defined in FIFO_CTRL1 (07h) and FIFO_CTRL2 (08h))
FIFO_COMPR_RT_EN(1)	Enables/Disables compression algorithm runtime
ODRCHG_EN	Enables ODR CHANGE virtual sensor to be batched in FIFO
	This field configures the compression algorithm to write non-compressed data at each rate.
	(0: Non-compressed data writing is not forced;
UNCOPTR_RATE_[1:0]	1: Non-compressed data every 8 batch data rate;
	2: Non-compressed data every 16 batch data rate;
	3: Non-compressed data every 32 batch data rate)
	FIFO watermark threshold, in conjunction with WTM_FIFO[7:0] in FIFO_CTRL1 (07h)
WTM8	1 LSB = 1 sensor (6 bytes) + TAG (1 byte) written in FIFO
	Watermark flag rises when the number of bytes written in the FIFO is greater than or equal to the threshold level.

^{1.} This bit is effective if the FIFO_COMPR_EN bit of EMB_FUNC_EN_B (05h) is set to 1.

DS12814 - Rev 3 page 50/199

9.8 FIFO_CTRL3 (09h)

FIFO control register 3 (r/w)

Table 36. FIFO_CTRL3 register

BDR_GY_3	BDR_GY_2	BDR_GY_1	BDR_GY_0	BDR_XL_3	BDR_XL_2	BDR_XL_1	BDR_XL_0
----------	----------	----------	----------	----------	----------	----------	----------

Table 37. FIFO_CTRL3 register description

```
Selects Batching Data Rate (writing frequency in FIFO) for gyroscope data.
                     (0000: Gyro not batched in FIFO (default);
                     0001: 12.5 Hz;
                     0010: 26 Hz;
                     0011: 52 Hz;
                     0100: 104 Hz;
                     0101: 208 Hz;
BDR_GY_[3:0]
                     0110: 417 Hz;
                     0111: 833 Hz;
                     1000: 1667 Hz;
                     1001: 3333 Hz;
                     1010: 6667 Hz;
                     1011: 6.5 Hz;
                     1100-1111: not allowed)
                     Selects Batching Data Rate (writing frequency in FIFO) for accelerometer data.
                     (0000: Accelerometer not batched in FIFO (default);
                     0001: 12.5 Hz;
                     0010: 26 Hz;
                     0011: 52 Hz;
                     0100: 104 Hz;
                     0101: 208 Hz;
BDR_XL_[3:0]
                     0110: 417 Hz;
                     0111: 833 Hz;
                     1000: 1667 Hz;
                     1001: 3333 Hz;
                     1010: 6667 Hz;
                     1011: 1.6 Hz;
                     1100-1111: not allowed)
```

DS12814 - Rev 3 page 51/199

9.9 FIFO_CTRL4 (0Ah)

FIFO control register 4 (r/w)

Table 38. FIFO_CTRL4 register

DEC_TS_	DEC_TS_	ODR_T_	ODR_T_	0	FIFO_	FIFO_	FIFO_
BATCH 1	BATCH 0	BATCH 1	BATCH 0		MODE2	MODE1	MODE0
DATCH_T	DATCH_0	BATCH_T	BATCH_0		MODEZ	MODE	MODEO

Table 39. FIFO_CTRL4 register description

	Selects decimation for timestamp batching in FIFO. Writing rate will be the maximum rate between XL and GYRO BDR divided by decimation decoder.
	(00: Timestamp not batched in FIFO (default);
DEC_TS_BATCH_[1:0]	01: Decimation 1: max(BDR_XL[Hz],BDR_GY[Hz]) [Hz];
	10: Decimation 8: max(BDR_XL[Hz],BDR_GY[Hz])/8 [Hz];
	11: Decimation 32: max(BDR_XL[Hz],BDR_GY[Hz])/32 [Hz])
	Selects batching data rate (writing frequency in FIFO) for temperature data
	(00: Temperature not batched in FIFO (default);
ODR_T_BATCH_[1:0]	01: 1.6 Hz;
	10: 12.5 Hz;
	11: 52 Hz)
	FIFO mode selection
	(000: Bypass mode: FIFO disabled;
	001: FIFO mode: stops collecting data when FIFO is full;
	010: Reserved;
FIFO_MODE[2:0]	011: Continuous-to-FIFO mode: Continuous mode until trigger is deasserted, then FIFO mode;
	100: Bypass-to-Continuous mode: Bypass mode until trigger is deasserted, then Continuous mode;
	101: Reserved;
	110: Continuous mode: if the FIFO is full, the new sample overwrites the older one;
	111: Bypass-to-FIFO mode: Bypass mode until trigger is deasserted, then FIFO mode.)

DS12814 - Rev 3 page 52/199

9.10 COUNTER_BDR_REG1 (0Bh)

Counter batch data rate register 1 (r/w)

Table 40. COUNTER_BDR_REG1 register

dat	taready_ pulsed	RST_COUNT ER_BDR	TRIG_COUN TER_BDR	0	0	CNT_ BDR_TH_10	CNT_ BDR_TH_9	CNT_ BDR_TH_8	
-----	--------------------	---------------------	----------------------	---	---	-------------------	------------------	------------------	--

Table 41. COUNTER_BDR_REG1 register description

	Enables pulsed data-ready mode
dataready_pulsed	(0: Data-ready latched mode (returns to 0 only after an interface reading) (default);
	1: Data-ready pulsed mode (the data ready pulses are 75 µs long)
RST COUNTER BDR	Resets the internal counter of batching events for a single sensor.
K31_COUNTER_BDR	This bit is automatically reset to zero if it was set to '1'.
	Selects the trigger for the internal counter of batching events between XL and gyro.
TRIG_COUNTER_BDR	(0: XL batching event;
	1: GYRO batching event)
CNT_BDR_TH_[10:8]	In conjunction with CNT_BDR_TH_[7:0] in COUNTER_BDR_REG2 (0Ch), sets the threshold for the internal counter of batching events. When this counter reaches the threshold, the counter is reset and the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to '1'.

9.11 COUNTER_BDR_REG2 (0Ch)

Counter batch data rate register 2 (r/w)

Table 42. COUNTER_BDR_REG2 register

| CNT_ |
|----------|----------|----------|----------|----------|----------|----------|----------|
| BDR_TH_7 | BDR_TH_6 | BDR_TH_5 | BDR_TH_4 | BDR_TH_3 | BDR_TH_2 | BDR_TH_1 | BDR_TH_0 |

Table 43. COUNTER_BDR_REG2 register description

	In conjunction with CNT_BDR_TH_[10:8] in COUNTER_BDR_REG1 (0Bh), sets the threshold for the	
CNT_BDR_TH_[7:0]	internal counter of batching events. When this counter reaches the threshold, the counter is reset and	
	the COUNTER_BDR_IA flag in FIFO_STATUS2 (3Bh) is set to '1'.	

DS12814 - Rev 3 page 53/199

9.12 INT1_CTRL (0Dh)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried out on INT1 when the MIPI I3CSM dynamic address is not assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI (In-Band Interrupt) when the MIPI I3CSM interface is used. The output of the pin will be the OR combination of the signals selected here and in MD1_CFG (5Eh).

Table 44. INT1_CTRL register

DEN_DRDY	INT_1	INT1_	INT1_	INT1_	INT1_	INT1_	INT1_
flag	CNT BDR	FIFO FULL	FIFO OVR	FIFO_TH	BOOT	DRDY G	DRDY_XL
_nag	OITI_BBIT	1 11 O_1 OLL	1110_0111	1110_111	ВООТ	BIND1_0	

Table 45. INT1_CTRL register description

DEN_DRDY_flag	Sends DEN_DRDY (DEN stamped on Sensor Data flag) to INT1 pin
INT1_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT1
INT1 FIFO FULL	Enables FIFO full flag interrupt on INT1 pin. It can be also used to
INTI_FIFO_FOLL	trigger an IBI when the MIPI I3C SM interface is used.
INT1_FIFO_OVR	Enables FIFO overrun interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_FIFO_TH	Enables FIFO threshold interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.
INT1_BOOT	Enables boot status on INT1 pin
INT1 DRDY G	Enables gyroscope data-ready interrupt on INT1 pin. It can be also used to
INTI_DRDT_G	trigger an IBI when the MIPI I3C SM interface is used.
INT1_DRDY_XL	Enables accelerometer data-ready interrupt on INT1 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used.

DS12814 - Rev 3 page 54/199

9.13 INT2_CTRL (0Eh)

INT2 pin control register (r/w)

Each bit in this register enables a signal to be carried out on INT2 when the MIPI I3CSM dynamic address in not assigned (I²C or SPI is used). Some bits can be also used to trigger an IBI when the I³C interface is used. The output of the pin will be the OR combination of the signals selected here and in MD2_CFG (5Fh).

Table 46. INT2_CTRL register

0	INT2_	INT2_	INT2_	INT2_	INT2_	INT2_	INT2_
0	CNT_BDR	FIFO_FULL	FIFO_OVR	FIFO_TH	DRDY_TEMP	DRDY_G	DRDY_XL

Table 47. INT2_CTRL register description

INT2_CNT_BDR	Enables COUNTER_BDR_IA interrupt on INT2
INT2_FIFO_FULL	Enables FIFO full flag interrupt on INT2 pin
INT2_FIFO_OVR	Enables FIFO overrun interrupt on INT2 pin
INT_FIFO_TH	Enables FIFO threshold interrupt on INT2 pin
INT2_DRDY_TEMP	Enables temperature sensor data-ready interrupt on INT2 pin. It can be also used to trigger an IBI when the MIPI I3C SM interface is used and INT2_ON_INT1 = '1' in CTRL4_C (13h).
INT2_DRDY_G	Gyroscope data-ready interrupt on INT2 pin
INT2_DRDY_XL	Accelerometer data-ready interrupt on INT2 pin

9.14 WHO_AM_I (0Fh)

WHO_AM_I register (r). This is a read-only register. Its value is fixed at 6Ch.

Table 48. WhoAmI register

0 1	1	0	1	1	0	0
-----	---	---	---	---	---	---

DS12814 - Rev 3 page 55/199

9.15 CTRL1_XL (10h)

Accelerometer control register 1 (r/w)

Table 49. CTRL1_XL register

ODR_XL3 ODR_XL	ODR_XL1	ODR_XL0	FS1_XL	FS0_XL	LPF2_XL_EN	0
----------------	---------	---------	--------	--------	------------	---

Table 50. CTRL1_XL register description

ODR_XL[3:0]	Accelerometer ODR selection (see Table 51)			
FS[1:0]_XL	Accelerometer full-scale selection (see Table 52)			
	Accelerometer high-resolution selection			
LPF2_XL_EN	(0: output from first stage digital filtering selected (default);			
	1: output from LPF2 second filtering stage selected)			

Table 51. Accelerometer ODR register setting

ODR_XL3	ODR_XL2	ODR_XL1	ODR_XL0	ODR selection [Hz] when XL_HM_MODE = 1 in CTRL6_C (15h)	ODR selection [Hz] when XL_HM_MODE = 0 in CTRL6_C (15h)
0	0	0	0	Power-down	Power-down
1	0	1	1	1.6 Hz (low power only)	12.5 Hz (high performance)
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance)	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance)	6.66 kHz (high performance)
1	1	х	х	Not allowed	Not allowed

Table 52. Accelerometer full-scale selection

FS[1:0]_XL	XL_FS_MODE = '0' in CTRL8_XL (17h)	XL_FS_MODE = '1' in CTRL8_XL (17h)
00 (default)	2 g	2 g
01	16 <i>g</i>	2 g
10	4 g	4 g
11	8 g	8 g

DS12814 - Rev 3 page 56/199

9.16 CTRL2_G (11h)

Gyroscope control register 2 (r/w)

Table 53. CTRL2_G register

(DDR_G3	ODR_G2	ODR_G1	ODR_G0	FS1_G	FS0_G	FS_125	0
---	--------	--------	--------	--------	-------	-------	--------	---

Table 54. CTRL2_G register description

ODR_G[3:0]	Gyroscope output data rate selection. Default value: 0000 (Refer to Table 55)
FS[1:0]_G	Gyroscope UI chain full-scale selection (00: 250 dps; 01: 500 dps; 10: 1000 dps; 11: 2000 dps)
FS_125	Selects gyro UI chain full-scale 125 dps (0: FS selected through bits FS[1:0]_G; 1: FS set to 125 dps)

Table 55. Gyroscope ODR configuration setting

ODR_G3	ODR_G2	ODR_G1	ODR_G0	ODR [Hz] when G_HM_MODE = 1 in CTRL7_G (16h)	ODR [Hz] when G_HM_MODE = 0 in CTRL7_G (16h)
0	0	0	0	Power down	Power down
0	0	0	1	12.5 Hz (low power)	12.5 Hz (high performance)
0	0	1	0	26 Hz (low power)	26 Hz (high performance)
0	0	1	1	52 Hz (low power)	52 Hz (high performance)
0	1	0	0	104 Hz (normal mode)	104 Hz (high performance)
0	1	0	1	208 Hz (normal mode)	208 Hz (high performance)
0	1	1	0	416 Hz (high performance)	416 Hz (high performance)
0	1	1	1	833 Hz (high performance)	833 Hz (high performance)
1	0	0	0	1.66 kHz (high performance)	1.66 kHz (high performance)
1	0	0	1	3.33 kHz (high performance	3.33 kHz (high performance)
1	0	1	0	6.66 kHz (high performance	6.66 kHz (high performance)
1	0	1	1	Not available	Not available

DS12814 - Rev 3 page 57/199

9.17 CTRL3_C (12h)

Control register 3 (r/w)

Table 56. CTRL3_C register

BOOT BDU H_LACTIVE PP_OD SIM IF_INC 0	SW_RESET
---------------------------------------	----------

Table 57. CTRL3_C register description

	Reboots memory content. Default value: 0
BOOT	(0: normal mode; 1: reboot memory content)
	This bit is automatically cleared.
	Block Data Update. Default value: 0
BDU	(0: continuous update;
	1: output registers are not updated until MSB and LSB have been read)
H LACTIVE	Interrupt activation level. Default value: 0
II_LACTIVE	(0: interrupt output pins active high; 1: interrupt output pins active low)
PP OD	Push-pull/open-drain selection on INT1 and INT2 pins. Default value: 0
FF_OD	(0: push-pull mode; 1: open-drain mode)
SIM	SPI Serial Interface Mode selection. Default value: 0
SIIVI	(0: 4-wire interface; 1: 3-wire interface)
IF_INC	Register address automatically incremented during a multiple byte access with a serial interface (I ² C or SPI). Default value: 1
	(0: disabled; 1: enabled)
	Software reset. Default value: 0
SW_RESET	(0: normal mode; 1: reset device)
	This bit is automatically cleared.

DS12814 - Rev 3 page 58/199

9.18 CTRL4_C (13h)

Control register 4 (r/w)

Table 58. CTRL4_C register

0	SLEEP_G	INT2_on _INT1	0	DRDY_ MASK	I2C_disable	LPF1_ SEL_G	0
---	---------	------------------	---	---------------	-------------	----------------	---

Table 59. CTRL4_C register description

SLEEP_G	Enables gyroscope Sleep mode. Default value:0 (0: disabled; 1: enabled)
INT2_on_INT1	All interrupt signals available on INT1 pin enable. Default value: 0 (0: interrupt signals divided between INT1 and INT2 pins; 1: all interrupt signals in logic or on INT1 pin)
DRDY_MASK	Enables data available (0: disabled; 1: mask DRDY on pin (both XL & Gyro) until filter settling ends (XL and Gyro independently masked).
I2C_disable	Disables I ² C interface. Default value: 0 (0: SPI, I ² C and MIPI I3C SM interfaces enabled (default); 1: I ² C interface disabled)
LPF1_SEL_G	Enables gyroscope digital LPF1 if auxiliary SPI is disabled; the bandwidth can be selected through FTYPE [2:0] in CTRL6_C (15h). (0: disabled; 1: enabled)

DS12814 - Rev 3 page 59/199

9.19 CTRL5_C (14h)

Control register 5 (r/w)

Table 60. CTRL5_C register

XL_ULP_EN	ROUNDING1	ROUNDING0	ROUNDING_ STATUS	ST1_G	ST0_G	ST1_XL	ST0_XL	
-----------	-----------	-----------	---------------------	-------	-------	--------	--------	--

Table 61. CTRL5_C register description

XL_ULP_EN	Accelerometer ultra-low-power mode enable. Default value: 0 ⁽¹⁾ (0: Ultra-low-power mode disabled; 1: Ultra-low-power mode enabled)
	Circular burst-mode (rounding) read from the output registers. Default value: 00
	(00: no rounding;
ROUNDING[1:0]	01: accelerometer only;
	10: gyroscope only;
	11: gyroscope + accelerometer)
ROUNDING_	Source register rounding function in ALL_INT_SRC (1Ah), WAKE_UP_SRC (1Bh), TAP_SRC (1Ch), D6D_SRC (1Dh), STATUS_REG (1Eh) and EMB_FUNC_STATUS_MAINPAGE (35h), FSM_STATUS_A_MAINPAGE (36h), FSM_STATUS_B_MAINPAGE (37h), MLC_STATUS_MAINPAGE (38h), STATUS_MASTER_MAINPAGE (39h), FIFO_STATUS1 (3Ah), FIFO_STATUS2 (3Bh).
STATUS	Default value: 0
	(0: Rounding disabled; 1: Rounding enabled)
ST[1:0] G	Angular rate sensor self-test enable. Default value: 00
31[1.0]_G	(00: Self-test disabled; Other: refer to Table 62)
CT[1:0] VI	Linear acceleration sensor self-test enable. Default value: 00
ST[1:0]_XL	(00: Self-test disabled; Other: refer to Table 63)

Further details about the accelerometer ultra-low-power mode are provided in Section 6.2.1 Accelerometer ultra-low-power mode.

Table 62. Angular rate sensor self-test mode selection

ST1_G	ST0_G	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Not allowed
1	1	Negative sign self-test

Table 63. Linear acceleration sensor self-test mode selection

ST1_XL	ST0_XL	Self-test mode
0	0	Normal mode
0	1	Positive sign self-test
1	0	Negative sign self-test
1	1	Not allowed

DS12814 - Rev 3 page 60/199

9.20 CTRL6_C (15h)

Control register 6 (r/w)

Table 64. CTRL6_C register

TRIG_EN	LVL1_EN	LVL2_EN	XL_HM_ MODE	USR_ OFF_W	FTYPE_2	FTYPE_1	FTYPE_0	
---------	---------	---------	----------------	---------------	---------	---------	---------	--

Table 65. CTRL6_C register description

TRIG_EN	DEN data edge-sensitive trigger enable. Refer to Table 66.
LVL1_EN	DEN data level-sensitive trigger enable. Refer to Table 66.
LVL2_EN	DEN level-sensitive latched enable. Refer to Table 66.
XL_HM_MODE	High-performance operating mode disable for accelerometer. Default value: 0 (0: high-performance operating mode enabled; 1: high-performance operating mode disabled)
USR_OFF_W	Weight of XL user offset bits of registers X_OFS_USR (73h), Y_OFS_USR (74h), Z_OFS_USR (75h) $0 = 2^{-10} \text{ g/LSB}$ $1 = 2^{-6} \text{ g/LSB}$
FTYPE[2:0]	Gyroscope low-pass filter (LPF1) bandwidth selection Table 66 shows the selectable bandwidth values (available if auxiliary SPI is disabled).

Table 66. Trigger mode selection

TRIG_EN, LVL1_EN, LVL2_EN	Trigger mode
100	Edge-sensitive trigger mode is selected
010	Level-sensitive trigger mode is selected
011	Level-sensitive latched mode is selected
110	Level-sensitive FIFO enable mode is selected

Table 67. Gyroscope LPF1 bandwidth selection

FTYPE [2:0]	12.5 Hz	26 Hz	52 Hz	104 Hz	208 Hz	416 Hz	833 Hz	1.67 kHz	3.33 kHz	6.67 kHz
000	4.2	8.3	16.6	33.0	67.0	136.6	239.2	304.2	328.5	335.5
001	4.2	8.3	16.6	33.0	67.0	130.5	192.4	220.7	229.6	232.0
010	4.2	8.3	16.6	33.0	67.0	120.3	154.2	166.6	170.1	171.1
011	4.2	8.3	16.6	33.0	67.0	137.1	281.8	453.2	559.2	609.0
100	4.2	8.3	16.7	33.0	62.4	86.7	96.6	99.6	NA	NA
101	4.2	8.3	16.8	31.0	43.2	48.0	49.4	49.8	NA	NA
110	4.1	7.8	13.4	19.0	23.1	24.6	25.0	25.1	NA	NA
111	3.9	6.7	9.7	11.5	12.2	12.4	12.5	12.5	NA	NA

DS12814 - Rev 3 page 61/199

9.21 CTRL7_G (16h)

Control register 7 (r/w)

Table 68. CTRL7_G register

G_HM_ MODE	HP_EN_G	HPM1_G	HPM0_G	0 ⁽¹⁾	OIS_ON_EN	USR_OFF _ON_OUT	OIS_ON	
---------------	---------	--------	--------	------------------	-----------	--------------------	--------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 69. CTRL7_G register description

	Disables high-performance operating mode for gyroscope. Default: 0
G_HM_MODE	(0: high-performance operating mode enabled;
	1: high-performance operating mode disabled)
UD EN C	Enables gyroscope digital high-pass filter. The filter is enabled only if the gyro is in HP mode. Default value: 0
HP_EN_G	(0: HPF disabled; 1: HPF enabled)
	Gyroscope digital HP filter cutoff selection. Default: 00
	(00: 16 mHz;
HPM_G[1:0]	01: 65 mHz;
	10: 260 mHz;
	11: 1.04 Hz)
	Selects how to enable and disable the OIS chain, after first configuration and enabling through SPI2.
OIS_ON_EN ⁽¹⁾	(0: OIS chain is enabled/disabled with SPI2 interface;
	1: OIS chain is enabled/disabled with primary interface)
USR OFF	Enables accelerometer user offset correction block; it's valid for the low-pass path - see Figure 18. Accelerometer composite filter. Default value: 0
ON_OUT	(0: accelerometer user offset correction block bypassed;
	1: accelerometer user offset correction block enabled)
OIC ON(1)	Enables/disables the OIS chain from primary interface when the OIS_ON_EN bit is '1'.
OIS_ON ⁽¹⁾	(0: OIS disabled; 1: OIS enabled)

^{1.} First, enabling OIS and OIS configurations must be done through SPI2, with OIS_ON_EN and OIS_ON set to '0'.

DS12814 - Rev 3 page 62/199

9.22 CTRL8_XL (17h)

Control register 8 (r/w)

Table 70. CTRL8_XL register

HPCF_	HPCF_	HPCF_	HP_REF_	FASTSETTL_	HP_SLOPE_	XL_	LOW_PASS_
XL_2	XL_1	XL_0	MODE_XL	MODE_XL	XL_EN	FS_MODE	ON_6D

Table 71. CTRL8_XL register description

HPCF_XL_[2:0]	Accelerometer LPF2 and HP filter configuration and cutoff setting. Refer to Table 72.
HP_REF_MODE_XL	Enables accelerometer high-pass filter reference mode (valid for high-pass path - HP_SLOPE_XL_EN bit must be '1'). Default value: 0 ⁽¹⁾
	(0: disabled, 1: enabled)
FASTSETTL_ MODE XL	Enables accelerometer LPF2 and HPF fast-settling mode. The filter sets the second samples after writing this bit. Active only during device exit from power- down mode. Default value: 0
WODL_XL	(0: disabled, 1: enabled)
HP_SLOPE_XL_EN	Accelerometer slope filter / high-pass filter selection. Refer to Figure 27.
	Accelerometer full-scale management between UI chain and OIS chain
XL_FS_MODE	(0: Old full-scale mode. When XL UI is on, the full scale is the same between UI/OIS and is chosen by the UI CTRL registers; when XL UI is in PD, the OIS can choose the FS.
	1: New full-scale mode. Full scales are independent between the UI/OIS chain but both bound to $\pm 8~g$.)
	LPF2 on 6D function selection. Refer to Figure 27. Default value: 0
LOW_PASS_ON_6D	(0: ODR/2 low-pass filtered data sent to 6D interrupt function;
	1: LPF2 output data sent to 6D interrupt function)

^{1.} When enabled, the first output data have to be discarded.

Table 72. Accelerometer bandwidth configurations

Filter type	HP_SLOPE_ XL_EN	LPF2_XL_EN	HPCF_XL_[2:0]	Bandwidth										
		0	-	ODR/2										
		1	1	1	000	ODR/4								
					1		001	ODR/10						
						010	ODR/20							
Low pass	0					4	4	1	1	1	1	1	011	ODR/45
			100	ODR/100										
			110	ODR/400										
			111	ODR/800										

DS12814 - Rev 3 page 63/199

Filter type	HP_SLOPE_ XL_EN	LPF2_XL_EN	HPCF_XL_[2:0]	Bandwidth								
			000	SLOPE (ODR/4)								
	High pass 1	-	001	ODR/10								
			010	ODR/20								
Lligh noon											011	ODR/45
High pass			100	ODR/100								
				101	ODR/200							
			110	ODR/400								
			111	ODR/800								

Figure 27. Accelerometer block diagram

DS12814 - Rev 3 page 64/199

9.23 CTRL9_XL (18h)

Control register 9 (r/w)

Table 73. CTRL9_XL register

DEN_X DEN_Y DEN_Z DEN_XL_G DEN_XL_EN DEN_LH I3C_disable

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 74. CTRL9_XL register description

DEN_X	DEN value stored in LSB of X-axis. Default value: 1 (0: DEN not stored in X-axis LSB; 1: DEN stored in X-axis LSB)
DEN_Y	DEN value stored in LSB of Y-axis. Default value: 1
DEN_Z	(0: DEN not stored in Y-axis LSB; 1: DEN stored in Y-axis LSB) DEN value stored in LSB of Z-axis. Default value: 1
	(0: DEN not stored in Z-axis LSB; 1: DEN stored in Z-axis LSB) DEN stamping sensor selection. Default value: 0
DEN_XL_G	(0: DEN pin info stamped in the gyroscope axis selected by bits [7:5]; 1: DEN pin info stamped in the accelerometer axis selected by bits [7:5])
DEN XL EN	Extends DEN functionality to accelerometer sensor. Default value: 0
	(0: disabled; 1: enabled) DEN active level configuration. Default value: 0
DEN_LH	(0: active low; 1: active high)
I3C_disable	Disables MIPI I3C SM communication protocol ⁽¹⁾ (0: SPI, I ² C, MIPI I3C SM interfaces enabled (default);
	1: MIPI I3C SM interface disabled)

^{1.} It is recommended to set this bit to '1' during the initial device configuration phase, when the I3C interface is not used.

9.24 CTRL10_C (19h)

Control register 10 (r/w)

Table 75. CTRL10_C register

0	0	TIMESTAMP _EN	0	0	0	0	0
---	---	------------------	---	---	---	---	---

Table 76. CTRL10_C register description

	Enables timestamp counter. Default value: 0
TIMESTAMP EN	(0: disabled; 1: enabled)
	The counter is readable in TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h).

DS12814 - Rev 3 page 65/199

9.25 ALL_INT_SRC (1Ah)

Source register for all interrupts (r)

Table 77. ALL_INT_SRC register

TIMESTAMP 0 SLEEP_ CHANGE_IA D6D_I	DOUBLE_ SINGLE_ WU_IA FF_IA
------------------------------------	-----------------------------

Table 78. ALL_INT_SRC register description

TIMESTAMP_ENDCOUNT	Alerts timestamp overflow within 6.4 ms
SLEEP_CHANGE_IA	Detects change event in activity/inactivity status. Default value: 0
SLEEP_CHANGE_IA	(0: change status not detected; 1: change status detected)
D6D IA	Interrupt active for change in position of portrait, landscape, face-up, face-down. Default value: 0
DOD_IA	(0: change in position not detected; 1: change in position detected)
DOUBLE TAP	Double-tap event status. Default value: 0
DOUBLE_TAP	(0:event not detected, 1: event detected)
SINGLE TAP	Single-tap event status. Default value:0
SINGLL_IAF	(0: event not detected, 1: event detected)
WU IA	Wake-up event status. Default value: 0
WO_IA	(0: event not detected, 1: event detected)
FF IA	Free-fall event status. Default value: 0
T _ IA	(0: event not detected, 1: event detected)

DS12814 - Rev 3 page 66/199

9.26 WAKE_UP_SRC (1Bh)

Wake-up interrupt source register (r)

Table 79. WAKE_UP_SRC register

0	SLEEP_ CHANGE_IA	FF_IA	SLEEP_ STATE	WU_IA	X_WU	Y_WU	Z_WU	
---	---------------------	-------	-----------------	-------	------	------	------	--

Table 80. WAKE_UP_SRC register description

SLEEP CHANGE IA	Detects change event in activity/inactivity status. Default value: 0
OLLEI _OHANOL_IA	(0: change status not detected; 1: change status detected)
FF IA	Free-fall event detection status. Default: 0
	(0: free-fall event not detected; 1: free-fall event detected)
SLEEP STATE	Sleep status bit. Default value: 0
SEELI _STATE	(0: Activity status; 1: Inactivity status)
WU IA	Wakeup event detection status. Default value: 0
WO_IA	(0: wakeup event not detected; 1: wakeup event detected.)
X WU	Wakeup event detection status on X-axis. Default value: 0
X_W0	(0: wakeup event on X-axis not detected; 1: wakeup event on X-axis detected)
Y WU	Wakeup event detection status on Y-axis. Default value: 0
1_00	(0: wakeup event on Y-axis not detected; 1: wakeup event on Y-axis detected)
Z WU	Wakeup event detection status on Z-axis. Default value: 0
2_****	(0: wakeup event on Z-axis not detected; 1: wakeup event on Z-axis detected)

DS12814 - Rev 3 page 67/199

9.27 TAP_SRC (1Ch)

Tap source register (r).

Table 81. TAP_SRC register

0	TAP_IA	SINGLE_ TAP	DOUBLE_ _TAP	TAP_SIGN	X_TAP	Y_TAP	Z_TAP
---	--------	----------------	-----------------	----------	-------	-------	-------

Table 82. TAP_SRC register description

TAP_IA	Tap event detection status. Default: 0
	(0: tap event not detected; 1: tap event detected)
SINGLE_TAP	Single-tap event status. Default value: 0
OINGEL_IAI	(0: single tap event not detected; 1: single tap event detected)
DOUBLE TAP	Double-tap event detection status. Default value: 0
DOUBLE_TAP	(0: double-tap event not detected; 1: double-tap event detected.)
	Sign of acceleration detected by tap event. Default: 0
TAP_SIGN	(0: positive sign of acceleration detected by tap event;
	1: negative sign of acceleration detected by tap event)
X_TAP	Tap event detection status on X-axis. Default value: 0
X_IAF	(0: tap event on X-axis not detected; 1: tap event on X-axis detected)
V TAD	Tap event detection status on Y-axis. Default value: 0
Y_TAP	(0: tap event on Y-axis not detected; 1: tap event on Y-axis detected)
7 TAD	Tap event detection status on Z-axis. Default value: 0
Z_TAP	(0: tap event on Z-axis not detected; 1: tap event on Z-axis detected)

DS12814 - Rev 3 page 68/199

9.28 D6D_SRC (1Dh)

Portrait, landscape, face-up and face-down source register (r)

Table 83. D6D_SRC register

DEN DRDY	D6D IA	/ 7H	7I	∣ YH	∣ YI	∣ XH	XL
22.1_2.12.	202					,	/ 1=

Table 84. D6D_SRC register description

DEN_DRDY	DEN data-ready signal. It is set high when data output is related to the data coming from a DEN active condition. ⁽¹⁾			
D6D_IA	Interrupt active for change position portrait, landscape, face-up, face-down. Default value: 0 (0: change position not detected; 1: change position detected)			
Z-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)				
ZL	Z-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)			
ΥH	Y-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over-threshold) detected)			
YL	Y-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)			
XH	X-axis high event (over threshold). Default value: 0 (0: event not detected; 1: event (over threshold) detected)			
XL	X-axis low event (under threshold). Default value: 0 (0: event not detected; 1: event (under threshold) detected)			

The DEN data-ready signal can be latched or pulsed depending on the value of the dataready_pulsed bit of the COUNTER_BDR_REG1 (0Bh) register.

9.29 STATUS_REG (1Eh)

The STATUS_REG register is read by the primary interface SPI/I²C & MIPI I3CSM (r).

Table 85. STATUS_REG register

0 0	0 0	0	TDA	GDA	XLDA
-----	-----	---	-----	-----	------

Table 86. STATUS_REG register description

	Temperature new data available. Default: 0
TDA	(0: no set of data is available at temperature sensor output;
	1: a new set of data is available at temperature sensor output)
	Gyroscope new data available. Default value: 0
GDA	(0: no set of data available at gyroscope output;
	1: a new set of data is available at gyroscope output)
	Accelerometer new data available. Default value: 0
XLDA	(0: no set of data available at accelerometer output;
	1: a new set of data is available at accelerometer output)

DS12814 - Rev 3 page 69/199

9.30 OUT_TEMP_L (20h), OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 87. OUT_TEMP_L register

Temp7 Temp6 Temp5 Tem	np4 Temp3 Temp2	2 Temp1 Temp0
-----------------------	-----------------	---------------

Table 88. OUT_TEMP_H register

Temp15 Temp14 Temp13 Temp12 Temp11 Temp10 Temp9 Temp1

Table 89. OUT_TEMP register description

	Temp[15:0]	Temperature sensor output data	
Temp[15:0]	The value is expressed as two's complement sign extended on the MSB.		

9.31 OUTX_L_G (22h) and OUTX_H_G (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full scale and ODR settings (CTRL2_G (11h)) of gyro user interface.

Table 90. OUTX_L_G register

	D7	D6	D5	D4	D3	D2	D1	D0
--	----	----	----	----	----	----	----	----

Table 91. OUTX_H_G register

D15	D14	D13	D12	D11	D10	D9	D8
-----	-----	-----	-----	-----	-----	----	----

Table 92. OUTX_H_G register description

D[15:0]	Gyro UI chain pitch axis (X) angular rate output value
D[13.0]	Gyro of chair pitch axis (X) angular rate output value

DS12814 - Rev 3 page 70/199

9.32 OUTY_L_G (24h) and OUTY_H_G (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

Table 93. OUTY_L_G register

	D7	D6	D5	D4	D3	D2	D1	D0	
--	----	----	----	----	----	----	----	----	--

Table 94. OUTY_H_G register

D15 D14 D13 D12 [11 D10 D9 D8
-------------------	--------------

Table 95. OUTY_H_G register description

	D[15:0]	Gyro UI chain roll axis (Y) angular rate output value	
--	---------	---	--

9.33 OUTZ_L_G (26h) and OUTZ_H_G (27h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full scale and ODR settings (CTRL2_G (11h)) of the gyro user interface.

Table 96. OUTZ_L_G register

		D7	D6	D5	D4	D3	D2	D1	D0
--	--	----	----	----	----	----	----	----	----

Table 97. OUTZ_H_G register

D15	D14	D13	D12	D11	D10	D9	D8
D 10	דוט	D10	D12	D11	D10	D5	D0

Table 98. OUTZ_H_G register description

|--|

DS12814 - Rev 3 page 71/199

9.34 OUTX_L_A (28h) and OUTX_H_A (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer user interface.

Table 99. OUTX_L_A register

	D7	D6	D5	D4	D3	D2	D1	D0	
--	----	----	----	----	----	----	----	----	--

Table 100. OUTX_H_A register

D15 D14 D13 D12 D11 D10 D9 D8	D15	D14	D13	D12	D11	D10	D9	D8
-------------------------------	-----	-----	-----	-----	-----	-----	----	----

Table 101. OUTX_H_A register description

D[15:0] Accelerometer UI chain X-axis linear acceleration output value

9.35 OUTY_L_A (2Ah) and OUTY_H_A (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer user interface.

Table 102. OUTY_L_A register

D7	D6	D5	D4	D3	D2	D1	D0

Table 103. OUTY_H_A register

D15	D14	D13	D12	D11	D10	D9	D8
D 10	דוט	D10	D12	D11	D10	D5	D0

Table 104. OUTY_H_A register description

Accelerometer UI chain Y-axis linear acceleration output value
--

DS12814 - Rev 3 page 72/199

9.36 OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the full-scale and ODR settings (CTRL1_XL (10h)) of the accelerometer user interface.

Table 105. OUTZ_L_A register

	D7	D6	D5	D4	D3	D2	D1	D0
--	----	----	----	----	----	----	----	----

Table 106. OUTZ_H_A register

D15 D14 D13	D12 D1	1 D10	D9	D8
-------------	--------	-------	----	----

Table 107. OUTZ_H_A register description

D[15:0] Accelerometer UI chain Z-axis linear acceleration output value

9.37 EMB_FUNC_STATUS_MAINPAGE (35h)

Embedded function status register (r).

Table 108. EMB_FUNC_STATUS_MAINPAGE register

IS_FSM_LC	0	IS_ SIGMOT	IS_TILT	IS_ STEP_DET	0	0	0
-----------	---	---------------	---------	-----------------	---	---	---

Table 109. EMB_FUNC_STATUS_MAINPAGE register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event.
IS_I SIVI_EC	(1: interrupt detected; 0: no interrupt)
IS SIGMOT	Interrupt status bit for significant motion detection
15_51GWO1	(1: interrupt detected; 0: no interrupt)
IS TILT	Interrupt status bit for tilt detection
IS_TILI	(1: interrupt detected; 0: no interrupt)
IS STEP DET	Interrupt status bit for step detection
IS_STEF_DET	(1: interrupt detected; 0: no interrupt)

DS12814 - Rev 3 page 73/199

9.38 FSM_STATUS_A_MAINPAGE (36h)

Finite State Machine status register (r).

Table 110. FSM_STATUS_A_MAINPAGE register

IS_FSM8 IS_FSM7 IS_FSM6 IS_FSM5 IS_FSM4 IS_	FSM3 IS_FSM2 IS_FSM1
---	----------------------

Table 111. FSM_STATUS_A_MAINPAGE register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event.
13_1 3100	(1: interrupt detected; 0: no interrupt)
IS ESM7	Interrupt status bit for FSM7 interrupt event.
IS_FSM7	(1: interrupt detected; 0: no interrupt)
IS FSM6	Interrupt status bit for FSM6 interrupt event.
13_F31010	(1: interrupt detected; 0: no interrupt)
IS ESME	Interrupt status bit for FSM5 interrupt event.
IS_FSM5	(1: interrupt detected; 0: no interrupt)
IS FSM4	Interrupt status bit for FSM4 interrupt event.
13_1 31014	(1: interrupt detected; 0: no interrupt)
IS FSM3	Interrupt status bit for FSM3 interrupt event.
10_1 31013	(1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event.
10_1 31112	(1: interrupt detected; 0: no interrupt)
IS FSM1	Interrupt status bit for FSM1 interrupt event.
10_1 31011	(1: interrupt detected; 0: no interrupt)

DS12814 - Rev 3 page 74/199

9.39 FSM_STATUS_B_MAINPAGE (37h)

Finite State Machine status register (r).

Table 112. FSM_STATUS_B_MAINPAGE register

IS FSM16	IS FSM15	IS FSM14	IS FSM13	IS FSM12	IS FSM11	IS FSM10	IS FSM9

Table 113. FSM_STATUS_B_MAINPAGE register description

IS FSM16	Interrupt status bit for FSM16 interrupt event.
13_1 SW 10	(1: interrupt detected; 0: no interrupt)
IS FSM15	Interrupt status bit for FSM15 interrupt event.
13_1 31113	(1: interrupt detected; 0: no interrupt)
IS FSM14	Interrupt status bit for FSM14 interrupt event.
13_1 3W14	(1: interrupt detected; 0: no interrupt)
IS FSM13	Interrupt status bit for FSM13 interrupt event.
13_F3W13	(1: interrupt detected; 0: no interrupt)
IS FSM12	Interrupt status bit for FSM12 interrupt event.
13_1 3W12	(1: interrupt detected; 0: no interrupt)
IS FSM11	Interrupt status bit for FSM11 interrupt event.
10_1 OW11	(1: interrupt detected; 0: no interrupt)
IS FSM10	Interrupt status bit for FSM10 interrupt event.
10_1 01010	(1: interrupt detected; 0: no interrupt)
IS FSM9	Interrupt status bit for FSM9 interrupt event.
IO_I GIVIB	(1: interrupt detected; 0: no interrupt)

DS12814 - Rev 3 page 75/199

9.40 MLC_STATUS_MAINPAGE (38h)

Machine Learning Core status register (r).

Table 114. MLC_STATUS _MAINPAGE register

IS MLC8	IS MLC7	IS MLC6	IS MLC5	IS MLC4	IS MLC3	IS MLC2	IS MLC1
IO_IVILOO	IS_IVILUI	IO_IVILOU	IS_IVILUS	IS_IVILO4	IS_IVILUS	IS_IVILUZ	IS_IVILO I

Table 115. MLC_STATUS_MAINPAGE register description

IS_MLC8	Interrupt status bit for MLC8 interrupt event.
10_INIE00	(1: interrupt detected; 0: no interrupt)
IS MLC7	Interrupt status bit for MLC7 interrupt event.
IS_MLC7	(1: interrupt detected; 0: no interrupt)
IC MI CC	Interrupt status bit for MLC6 interrupt event.
IS_MLC6	(1: interrupt detected; 0: no interrupt)
IC MLCE	Interrupt status bit for MLC5 interrupt event.
IS_MLC5	(1: interrupt detected; 0: no interrupt)
IS MLC4	Interrupt status bit for MLC4 interrupt event.
IS_MLC4	(1: interrupt detected; 0: no interrupt)
IS MLC3	Interrupt status bit for MLC3 interrupt event.
IS_IVILOS	(1: interrupt detected; 0: no interrupt)
IS MLC2	Interrupt status bit for MLC2 interrupt event.
IS_IVILO2	(1: interrupt detected; 0: no interrupt)
IS MLC1	Interrupt status bit for MLC1 interrupt event.
IS_MLC1	(1: interrupt detected; 0: no interrupt)

9.41 STATUS_MASTER_MAINPAGE (39h)

Sensor hub source register (r).

Table 116. STATUS_MASTER_MAINPAGE register

WR_ONCE_	SLAVE3_	SLAVE2_	SLAVE1_	SLAVE0_	0	0	SENS_HUB	
DONE	NACK	NACK	NACK	NACK	0	0	_ENDOP	

Table 117. STATUS_MASTER_MAINPAGE register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

DS12814 - Rev 3 page 76/199

9.42 FIFO_STATUS1 (3Ah)

FIFO status register 1 (r)

Table 118. FIFO_STATUS1 register

| DIFF_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FIFO_7 | FIFO_6 | FIFO_5 | FIFO_4 | FIFO_3 | FIFO_2 | FIFO_1 | FIFO_0 |

Table 119. FIFO_STATUS1 register description

	DIEE EIEO (7:0)	Number of unread sensor data (TAG + 6 bytes) stored in FIFO
DIFF_FIFO_[7:0]	DIFF_FIFO_[7.0]	In conjunction with DIFF_FIFO[9:8] in FIFO_STATUS2 (3Bh).

9.43 FIFO_STATUS2 (3Bh)

FIFO status register 2 (r)

Table 120. FIFO_STATUS2 register

FIFO_	FIFO_	FIFO_	COUNTER_	FIFO_OVR_	O ⁽¹⁾	DIFF_	DIFF_
WTM_IA	OVR_IA	FULL_IA	BDR_IA	LATCHED	0(1)	FIFO_9	FIFO_8

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 121. FIFO_STATUS2 register description

	FIFO watermark status. Default value: 0
FIFO WTM IA	(0: FIFO filling is lower than WTM;
THO_WINI_IA	1: FIFO filling is equal to or greater than WTM)
	Watermark is set through bits WTM[8:0] in FIFO_CTRL2 (08h) and FIFO_CTRL1 (07h).
FIFO OVR IA	FIFO overrun status. Default value: 0
FIFO_OVK_IA	(0: FIFO is not completely filled; 1: FIFO is completely filled)
EIEO EIIII IA	Smart FIFO full status. Default value: 0
FIFO_FULL_IA	(0: FIFO is not full; 1: FIFO will be full at the next ODR)
COUNTER_BDR_IA	Counter BDR reaches the CNT_BDR_TH_[10:0] threshold set in COUNTER_BDR_REG1 (0Bh) and COUNTER_BDR_REG2 (0Ch). Default value: 0
	This bit is reset when these registers are read.
EIEO OVB LATCHED	Latched FIFO overrun status. Default value: 0
FIFO_OVR_LATCHED	This bit is reset when this register is read.
DIEE EIEO (0:01	Number of unread sensor data (TAG + 6 bytes) stored in FIFO. Default value: 00
DIFF_FIFO_[9:8]	In conjunction with DIFF_FIFO[7:0] in FIFO_STATUS1 (3Ah)

DS12814 - Rev 3 page 77/199

9.44 TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)

Timestamp first data output register (r). The value is expressed as a 32-bit word and the bit resolution is 25 μs.

Table 122. TIMESTAMP output registers

D31	D30	D29	D28	D27	D26	D25	D24
D23	D22	D21	D20	D19	D18	D17	D16
DZ3	DZZ	DZT	D20	וט	סוט	ווט	D16
D15	D14	D13	D12	D11	D10	D9	D8
_		_	_				
D7	D6	D5	D4	D3	D2	D1	D0

Table 123. TIMESTAMP output register description

D[31:0]	Timestamp output registers: 1LSB = 25 µs

9.45 UI_STATUS_REG_OIS (49h)

OIS status register (r).

Table 124. UI_STATUS_REG_OIS register

	0	0	0	0	0	GYRO_ SETTLING	GDA	XLDA	
--	---	---	---	---	---	-------------------	-----	------	--

Table 125. UI_STATUS_REG_OIS register description

GYRO_SETTLING	High when the gyroscope output is in the settling phase
GDA	Gyroscope data available (reset when one of the high parts of the output data is read)
XLDA	Accelerometer data available (reset when one of the high parts of the output data is read)

DS12814 - Rev 3 page 78/199

9.46 UI_OUTX_L_G_OIS (4Ah) and UI_OUTX_H_G_OIS (4Bh)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the gyroscope full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 126. UI_OUTX_L_G_OIS register

	D7	D6	D5	D4	D3	D2	D1	D0	
--	----	----	----	----	----	----	----	----	--

Table 127. UI_OUTX_H_G_OIS register

D15 D14 D13 D12 D11 D10 D9 D8	D15	D14	D13	D12	D11	D10	D9	D8
-------------------------------	-----	-----	-----	-----	-----	-----	----	----

Table 128. UI_OUTX_H_G_OIS register description

D[15:0] Gyro OIS chain pitch axis (X) angular rate output value

9.47 UI_OUTY_L_G_OIS (4Ch) and UI_OUTY_H_G_OIS (4Dh)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the gyroscope full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 129. UI_OUTY_L_G_OIS register

D7 D6 D5 D4 D3 D2 D1 D0	D7	D6	D5	D4	D3	D2	D1	D0
---------------------------------------	----	----	----	----	----	----	----	----

Table 130. UI_OUTY_H_G_OIS register

D15	D14	D13	D12	D11	D10	D9	D8

Table 131. UI_OUTY_H_G_OIS description

	D[15:0]	Gyro OIS chain roll axis (Y) angular rate output value
--	---------	--

DS12814 - Rev 3 page 79/199

9.48 UI_OUTZ_L_G_OIS (4Eh) and UI_OUTZ_H_G_OIS (4Fh)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the gyroscope full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 132. UI_OUTZ_L_G_OIS register

	D7	D6	D5	D4	D3	D2	D1	D0	ı
--	----	----	----	----	----	----	----	----	---

Table 133. UI_OUTZ_H_G_OIS register

D15 D14 D13 D12 [11 D10 D9 D8
-------------------	--------------

Table 134. UI_OUTZ_H_G_OIS register description

D[15:0] Gyro OIS chain yaw axis (Z) angular rate output value

9.49 UI_OUTX_L_A_OIS (50h) and UI_OUTX_H_A_OIS (51h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the accelerometer full scale and ODR (6.66 kHz) settings of the OIS accelerometer.

Table 135. UI_OUTX_L_A_OIS register

		D7	D6	D5	D4	D3	D2	D1	D0
--	--	----	----	----	----	----	----	----	----

Table 136. UI_OUTX_H_A_OIS register

D15	D14	D13	D12	D11	D10	D9	D8
D13	D 14	D13	D12		D10	Da	_ D0

Table 137. UI_OUTX_H_A_OIS register description

D[15:0] Accele	elerometer OIS chain X-axis linear acceleration output value
----------------	--

DS12814 - Rev 3 page 80/199

9.50 UI_OUTY_L_A_OIS (52h) and UI_OUTY_H_A_OIS (53h)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the accelerometer full scale and ODR (6.66 kHz) settings of the OIS accelerometer.

Table 138. UI_OUTY_L_A_OIS register

	D7	D6	D5	D4	D3	D2	D1	D0	ı
--	----	----	----	----	----	----	----	----	---

Table 139. UI_OUTY_H_A_OIS register

D15 D14 D13 D12 D11 D10 D9 D8	D15	D14	D13	D12	D11	D10	D9	D8
-------------------------------	-----	-----	-----	-----	-----	-----	----	----

Table 140. UI_OUTY_H_A_OIS register description

D[15:0] Accelerometer OIS chain Y-axis linear acceleration output value

9.51 UI OUTZ L A OIS (54h) and UI OUTZ H A OIS (55h)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the accelerometer full scale and ODR (6.66 kHz) settings of the OIS accelerometer.

Table 141. UI_OUTZ_L_A_OIS register

		D7	D6	D5	D4	D3	D2	D1	D0
--	--	----	----	----	----	----	----	----	----

Table 142. UI_OUTZ_H_A_OIS register

D15	D14	D13	D12	D11	D10	D9	D8
D13	D 14	D13	D12		D10	Da	_ D0

Table 143. UI_OUTZ_H_A_OIS register description

D[15:0] Accelerometer OIS chain Z-axis linear acceleration output value

DS12814 - Rev 3 page 81/199

9.52 TAP_CFG0 (56h)

Activity/inactivity functions, configuration of filtering, and tap recognition functions (r/w).

Table 144. TAP_CFG0 register

0	INT_CLR_ ON_READ	SLEEP_ STATUS_ ON_INT	SLOPE_ FDS	TAP_X_EN	TAP_Y_EN	TAP_Z_EN	LIR
---	---------------------	-----------------------------	---------------	----------	----------	----------	-----

Table 145. TAP_CFG0 register description

INT_CLR_ON_READ	This bit allows immediately clearing the latched interrupts of an event detection upon the read of the corresponding status register. It must be set to 1 together with LIR. Default value: 0 (0: latched interrupt signal cleared at the end of the ODR period; 1: latched interrupt signal immediately cleared)
SLEEP_STATUS_ON_INT	Activity/inactivity interrupt mode configuration. If INT1_SLEEP_CHANGE or INT2_SLEEP_CHANGE bits are enabled, drives the sleep status or sleep change on the INT pins. Default value: 0 (0: sleep change notification on INT pins; 1: sleep status reported on INT pins)
SLOPE_FDS	HPF or SLOPE filter selection on wake-up and Activity/Inactivity functions. Default value: 0 (0: SLOPE filter applied; 1: HPF applied)
TAP_X_EN	Enable X direction in tap recognition. Default value: 0 (0: X direction disabled; 1: X direction enabled)
TAP_Y_EN	Enable Y direction in tap recognition. Default value: 0 (0: Y direction disabled; 1: Y direction enabled)
TAP_Z_EN	Enable Z direction in tap recognition. Default value: 0 (0: Z direction disabled; 1: Z direction enabled)
LIR	Latched Interrupt. Default value: 0 (0: interrupt request not latched; 1: interrupt request latched)

DS12814 - Rev 3 page 82/199

9.53 TAP_CFG1 (57h)

Tap configuration register (r/w)

Table 146. TAP_CFG1 register

TAP_	TAP_	TAP_	TAP_	TAP_	TAP_	TAP_	TAP_
PRIORITY_2	PRIORITY_1	PRIORITY_0	THS_X_4	THS_X_3	THS_X_2	THS_X_1	THS_X_0

Table 147. TAP_CFG1 register description

TAP_PRIORITY_[2:0]	Selection of axis priority for TAP detection (see Table 148)
TAP_THS_X [4:0]	X-axis tap recognition threshold. Default value: 0
IAI _1110_A_[4.0]	1 LSB = FS_XL / (2 ⁵)

Table 148. TAP priority decoding

TAP_PRIORITY_[2:0]	Max. priority	Mid. priority	Min. priority
000	X	Υ	Z
001	Υ	X	Z
010	X	Z	Y
011	Z	Y	X
100	X	Y	Z
101	Y	Z	X
110	Z	X	Y
111	Z	Y	X

9.54 TAP_CFG2 (58h)

Enables interrupt and inactivity functions, and tap recognition functions (r/w).

Table 149. TAP_CFG2 register

Table 150. TAP_CFG2 register description

INTERRUPTS ENABLE	Enable basic interrupts (6D/4D, free-fall, wake-up, tap, inactivity). Default value: 0					
INTERROPTS_ENABLE	(0: interrupt disabled; 1: interrupt enabled)					
	Enable activity/inactivity (sleep) function. Default value: 00					
	(00: stationary/motion-only interrupts generated, XL and gyro do not change;					
INACT_EN[1:0]	01: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro does not change;					
	10: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to sleep mode;					
	11: sets accelerometer ODR to 12.5 Hz (low-power mode), gyro to power-down mode)					
TAD THE V (4.0)	Y-axis tap recognition threshold. Default value: 0					
TAP_THS_Y_[4:0]	1 LSB = FS_XL / (2 ⁵)					

DS12814 - Rev 3 page 83/199

9.55 TAP_THS_6D (59h)

Portrait/landscape position and tap function threshold register (r/w).

Table 151. TAP_THS_6D register

D4D_EN SIXD_THS1 SIXD_THS0	TAP_ THS_Z_4	TAP_ THS_Z_3	TAP_ THS_Z_2	TAP_ THS_Z_1	TAP_ THS_Z_0	
----------------------------	-----------------	-----------------	-----------------	-----------------	-----------------	--

Table 152. TAP_THS_6D register description

	4D orientation detection enable. Z-axis position detection is disabled.
D4D_EN	Default value: 0
	(0: enabled; 1: disabled)
CIVID THEMAN	Threshold for 4D/6D function. Default value: 00
SIXD_THS[1:0]	For details, refer to Table 153.
TAD THE 7 (4:0)	Z-axis recognition threshold. Default value: 0
TAP_THS_Z_[4:0]	1 LSB = FS_XL / (2 ⁵)

Table 153. Threshold for D4D/D6D function

SIXD_THS[1:0]	Threshold value
00	80 degrees
01	70 degrees
10	60 degrees
11	50 degrees

DS12814 - Rev 3 page 84/199

9.56 INT_DUR2 (5Ah)

Tap recognition function setting register (r/w).

Table 154. INT_DUR2 register

DUR3 DUR2	DUR1	DUR0	QUIET1	QUIET0	SHOCK1	SHOCK0
-----------	------	------	--------	--------	--------	--------

Table 155. INT_DUR2 register description

	Duration of maximum time gap for double tap recognition. Default: 0000
DUR[3:0]	When double tap recognition is enabled, this register expresses the maximum time between two consecutive detected taps to determine a double tap event. The default value of these bits is 0000b which corresponds to 16*ODR_XL time. If the DUR[3:0] bits are set to a different value, 1LSB corresponds to 32*ODR_XL time.
	Expected quiet time after a tap detection. Default value: 00
QUIET[1:0]	Quiet time is the time after the first detected tap in which there must not be any overthreshold event. The default value of these bits is 00b which corresponds to 2*ODR_XL time. If the QUIET[1:0] bits are set to a different value, 1LSB corresponds to 4*ODR_XL time.
	Maximum duration of overthreshold event. Default value: 00
SHOCK[1:0]	Maximum duration is the maximum time of an overthreshold signal detection to be recognized as a tap event. The default value of these bits is 00b which corresponds to 4*ODR_XL time. If the SHOCK[1:0] bits are set to a different value, 1LSB corresponds to 8*ODR_XL time.

9.57 WAKE_UP_THS (5Bh)

Single/double-tap selection and wake-up configuration (r/w)

Table 156. WAKE_UP_THS register

	SINGLE_ DOUBLE_TAP	USR_OFF _ON_WU	WK_THS5	WK_THS4	WK_THS3	WK_THS2	WK_THS1	WK_THS0	
--	-----------------------	-------------------	---------	---------	---------	---------	---------	---------	--

Table 157. WAKE_UP_THS register description

	Single/double-tap event enable. Default value: 0					
SINGLE_DOUBLE_TAP	(0: only single-tap event enabled;					
	1: both single and double-tap events enabled)					
USR_OFF_ON_WU	Drives the low-pass filtered data with user offset correction (instead of high-pass filtered data) to the wakeup function.					
WK_THS[5:0]	Threshold for wakeup: 1 LSB weight depends on WAKE_THS_W in WAKE_UP_DUR (5Ch). Default value: 000000					

DS12814 - Rev 3 page 85/199

9.58 WAKE_UP_DUR (5Ch)

Free-fall, wakeup and sleep mode functions duration setting register (r/w)

Table 158. WAKE_UP_DUR register

	FF	F_DUR5	WAKE_DUR1	WAKE_DUR0	WAKE_THS_W	SLEEP_DUR3	SLEEP_DUR2	SLEEP_DUR1	SLEEP_DUR0
--	----	--------	-----------	-----------	------------	------------	------------	------------	------------

Table 159. WAKE_UP_DUR register description

	Free fall duration event. Default: 0						
FF_DUR5	For the complete configuration of the free-fall duration, refer to FF_DUR[4:0] in the FREE_FALL (5Dh) configuration.						
	1 LSB = 1 ODR_time						
WAKE DUR[1:0]	Wake up duration event. Default: 00						
WARL_DOR[1.0]	1LSB = 1 ODR_time						
	Weight of 1 LSB of wakeup threshold. Default: 0						
WAKE_THS_W	(0: 1 LSB = FS_XL / (2 ⁶);						
	1: 1 LSB = FS_XL / (2 ⁸))						
SLEEP DUR[3:0]	Duration to go in sleep mode. Default value: 0000 (this corresponds to 16 ODR)						
SELET _DOR[3.0]	1 LSB = 512 ODR						

DS12814 - Rev 3 page 86/199

9.59 FREE_FALL (5Dh)

Free-fall function duration setting register (r/w).

Table 160. FREE_FALL register

FF DUR4	FF DUR3	FF DUR2	FF DUR1	FF DUR0	FF THS2	FF THS1	FF THS0
_	_	_	_	_	_	_	_

Table 161. FREE_FALL register description

FF_DU	R[4:0]	Free-fall duration event. Default: 0 For the complete configuration of the free fall duration, refer to FF_DUR5 in the WAKE_UP_DUR (5Ch) configuration.
FF_THS[2:0]	Free fall threshold setting. Default: 000	
	S[2.0]	For details refer to Table 162.

Table 162. Threshold for free-fall function

FF_THS[2:0]	Threshold value
000	156 mg
001	219 mg
010	250 mg
011	312 mg
100	344 mg
101	406 mg
110	469 mg
111	500 mg

DS12814 - Rev 3 page 87/199

9.60 MD1_CFG (5Eh)

Functions routing on INT1 register (r/w)

Table 163. MD1_CFG register

INT1_	INT1_			INT1_			
SLEEP_	SINGLE_	INT1_WU	INT1_FF	DOUBLE_	INT1_6D	INT1_ EMB_FUNC	INT1_ SHUB
CHANGE	TAP			TAP			

Table 164. MD1_CFG register description

	Routing of activity/inactivity recognition event on INT1. Default: 0
INT1_SLEEP_CHANGE(1)	(0: routing of activity/inactivity event on INT1 disabled;
	1: routing of activity/inactivity event on INT1 enabled)
	Routing of single-tap recognition event on INT1. Default: 0
INT1_SINGLE_TAP	(0: routing of single-tap event on INT1 disabled;
	1: routing of single-tap event on INT1 enabled)
	Routing of wakeup event on INT1. Default value: 0
INT1_WU	(0: routing of wakeup event on INT1 disabled;
	1: routing of wakeup event on INT1 enabled)
	Routing of free-fall event on INT1. Default value: 0
INT1_FF	(0: routing of free-fall event on INT1 disabled;
	1: routing of free-fall event on INT1 enabled)
	Routing of tap event on INT1. Default value: 0
INT1_DOUBLE_TAP	(0: routing of double-tap event on INT1 disabled;
	1: routing of double-tap event on INT1 enabled)
	Routing of 6D event on INT1. Default value: 0
INT1_6D	(0: routing of 6D event on INT1 disabled;
	1: routing of 6D event on INT1 enabled)
	Routing of embedded functions event on INT1. Default value: 0
INT1_EMB_FUNC	(0: routing of embedded functions event on INT1 disabled;
	1: routing embedded functions event on INT1 enabled)
	Routing of sensor hub communication concluded event on INT1. Default value: 0
INT1_SHUB	(0: routing of sensor hub communication concluded event on INT1 disabled;
	1: routing of sensor hub communication concluded event on INT1 enabled)

^{1.} Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0 (56h) register.

DS12814 - Rev 3 page 88/199

9.61 MD2_CFG (5Fh)

Functions routing on INT2 register (r/w)

Table 165. MD2_CFG register

INT2_	INT2_			INT2_			
SLEEP_	SINGLE_	INT2_WU	INT2_FF	DOUBLE_	INT2_6D	INT2_ EMB_FUNC	INT2_ TIMESTAMP
CHANGE	TAP			TAP			

Table 166. MD2_CFG register description

Routing of activity/inactivity recognition event on INT2. Default: 0						
(0: routing of activity/inactivity event on INT2 disabled;						
1: routing of activity/inactivity event on INT2 enabled)						
Single-tap recognition routing on INT2. Default: 0						
(0: routing of single-tap event on INT2 disabled;						
1: routing of single-tap event on INT2 enabled)						
Routing of wakeup event on INT2. Default value: 0						
(0: routing of wakeup event on INT2 disabled;						
1: routing of wake-up event on INT2 enabled)						
Routing of free-fall event on INT2. Default value: 0						
(0: routing of free-fall event on INT2 disabled;						
1: routing of free-fall event on INT2 enabled)						
Routing of tap event on INT2. Default value: 0						
(0: routing of double-tap event on INT2 disabled;						
1: routing of double-tap event on INT2 enabled)						
Routing of 6D event on INT2. Default value: 0						
(0: routing of 6D event on INT2 disabled;						
1: routing of 6D event on INT2 enabled)						
Routing of embedded functions event on INT2. Default value: 0						
(0: routing of embedded functions event on INT2 disabled;						
1: routing embedded functions event on INT2 enabled)						
Enables routing on INT2 pin of the alert for timestamp overflow within 6.4 ms.						

Activity/Inactivity interrupt mode (sleep change or sleep status) depends on the SLEEP_STATUS_ON_INT bit in TAP_CFG0
(56h) register.

DS12814 - Rev 3 page 89/199

9.62 S4S_ST_CMD_CODE (60h)

S4S Master command register (r/w)

Table 167. S4S_ST_CMD_CODE register

| ST_CMD_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| CODE7 | CODE6 | CODE5 | CODE4 | CODE3 | CODE2 | CODE1 | CODE0 |

Table 168. S4S_ST_CMD_CODE register description

9.63 S4S_DT_REG (61h)

S4S DT register (r/w)

Table 169. S4S_DT_REG register

DT7	DT6	DT5	DT4	DT3	DT2	DT1	DT0

Table 170. S4S_DT_REG register description

r S4S. Default value: 0

9.64 I3C_BUS_AVB (62h)

I3C_BUS_AVB register (r/w)

Table 171. I3C_BUS_AVB register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	I3C_Bus_ Avb_Sel1	I3C_Bus_ Avb_Sel0	0 ⁽¹⁾	0 ⁽¹⁾	PD_DIS_ INT1
------------------	------------------	------------------	----------------------	----------------------	------------------	------------------	-----------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 172. I3C_BUS_AVB register description

	This bit allows disabling the INT1 pull-down.
PD_DIS_INT1	(0: Pull-down on INT1 enabled (pull-down is effectively connected only when no interrupts are routed to the INT1 pin or when I3C dynamic address is assigned);
	1: Pull-down on INT1 disabled (pull-down not connected)
	These bits are used to select the bus available time when I3C IBI is used.
	Default value: 00
I3C Bus Avb Sel[1:0]	(00: bus available time equal to 50 μsec (default);
ISO_DUS_AVD_Sel[1.0]	01: bus available time equal to 2 µsec;
	10: bus available time equal to 1 msec;
	11: bus available time equal to 25 msec)

DS12814 - Rev 3 page 90/199

9.65 INTERNAL_FREQ_FINE (63h)

Internal frequency register (r)

Table 173. INTERNAL_FREQ_FINE register

| FREQ_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FINE7 | FINE6 | FINE5 | FINE4 | FINE3 | FINE2 | FINE1 | FINE0 |

Table 174. INTERNAL_FREQ_FINE register description

FREQ_FINE[7:0]	Difference in percentage of the effective ODR (and Timestamp Rate) with respect to the typical. Step: 0.15%. 8-bit format, 2's complement.
	Step. 0.13 %. 6-bit format, 2's complement.

9.66 **UI_INT_OIS** (6Fh)

OIS interrupt configuration register and accelerometer self-test enable setting. The primary interface can write this register when the OIS_CTRL_FROM_UI bit in the FUNC_CFG_ACCESS (01h) register is equal to 1 (Primary IF Full control mode); this register is read-only when the OIS_CTRL_FROM_UI bit is equal to 0 (SPI2 Full control mode) and shows the content of the SPI2_INT_OIS (6Fh) register.

Table 175. UI_INT_OIS register

INT2_ DRDY_OIS LVL2_OIS	DEN_LH_OIS 0	SPI2_ READ_EN	0	0	0	
----------------------------	--------------	------------------	---	---	---	--

Table 176. UI_INT_OIS register description

INT2_DRDY_OIS	Enables OIS chain DRDY on INT2 pin. This setting has priority over all other INT2 settings.
LVL2_OIS	Enables level-sensitive latched mode on the OIS chain. Default value: 0
	Indicates polarity of DEN signal on OIS chain
DEN_LH_OIS	(0: DEN pin is active-low;
	1: DEN pin is active-high)
SPI2 READ EN	In Primary IF full control mode, enables Auxiliary SPI for reading OIS data in registers SPI2_OUTX_L_G_OIS (22h) and SPI2_OUTX_H_G_OIS (23h) through SPI2_OUTZ_L_A_OIS (2Ch) and SPI2_OUTZ_H_A_OIS (2Dh). Default value: 0
	(0: OIS data reading from Auxiliary SPI disabled;
	1: OIS data reading from Auxiliary SPI enabled)

DS12814 - Rev 3 page 91/199

9.67 UI_CTRL1_OIS (70h)

OIS configuration register. The primary interface can write this register when the OIS_CTRL_FROM_UI bit in the FUNC_CFG_ACCESS (01h) register is equal to 1 (Primary IF Full control mode); this register is read-only when the OIS_CTRL_FROM_UI bit is equal to 0 (SPI2 Full control mode) and shows the content of the SPI2_CTRL1_OIS (70h) register.

Table 177. UI_CTRL1_OIS register

0	LVL1 OIS	SIM OIS	Mode4 EN	FS1 G OIS	FS0_G_OIS	FS_125_OIS	OIS EN SPI2
	_	_	_				

Table 178. UI_CTRL1_OIS register description

LVL1_OIS	Enables level-sensitive trigger mode on OIS chain. Default value: 0
	SPI2 3- or 4-wire interface. Default value: 0
SIM_OIS	(0: 4-wire SPI2;
	1: 3-wire SPI2)
Mode4_EN	Enables accelerometer OIS chain. When the OIS_CTRL_FROM_UI bit in the FUNC_CFG_ACCESS (01h) register is equal to 1 (Primary IF Full control mode enabled), the accelerometer OIS outputs are available through the primary interface in registers UI_OUTX_L_A_OIS (50h) and UI_OUTX_H_A_OIS (51h) through UI_OUTZ_L_A_OIS (54h) and UI_OUTZ_H_A_OIS (55h) and UI_STATUS_REG_OIS (49h).
	Note: OIS_EN_SPI2 must be enabled (i.e. set to '1') to enable also the XL OIS chain.
	Selects gyroscope OIS chain full-scale
	(00: 250 dps;
FS[1:0]_G_OIS	01: 500 dps;
	10: 1000 dps;
	11: 2000 dps)
	Selects gyroscope OIS chain full-scale 125 dps
FS_125_OIS	(0: FS selected through bits FS[1:0]_OIS_G;
	1: 125 dps)
	Enables OIS chain data processing for gyro in Mode 3 and Mode 4 (mode4_en = 1) and accelerometer data in and Mode 4 (mode4_en = 1).
OIS_EN_SPI2	When the OIS_CTRL_FROM_UI bit in FUNC_CFG_ACCESS (01h) register is equal to 1 (Primary IF Full control mode enabled), the gyroscope OIS outputs are available through the primary interface in registers UI_OUTX_L_G_OIS (4Ah) and UI_OUTX_H_G_OIS (4Bh) through UI_OUTZ_L_G_OIS (4Eh) and UI_OUTZ_H_G_OIS (4Fh)and UI_STATUS_REG_OIS (49h), and LPF1 is dedicated to this chain.

DEN mode selection can be done using the LVL1_OIS bit of register UI_CTRL1_OIS (70h) and the LVL2_OIS bit of register UI_INT_OIS (6Fh).

DEN mode on the OIS path is active in the gyroscope only.

Table 179. DEN mode selection

LVL1_OIS, LVL2_OIS	DEN mode
10	Level-sensitive trigger mode is selected
11	Level-sensitive latched mode is selected

DS12814 - Rev 3 page 92/199

9.68 UI_CTRL2_OIS (71h)

OIS configuration register. The primary interface can write this register when the OIS_CTRL_FROM_UI bit in the FUNC_CFG_ACCESS (01h) register is equal to 1 (Primary IF Full control mode); this register is read-only when the OIS_CTRL_FROM_UI bit is equal to 0 (SPI2 Full control mode) and shows the content of the SPI2_CTRL2_OIS (71h) register.

Table 180. UI_CTRL2_OIS register

	HPM1_OIS	HPM0_OIS	0	FTYPE_1_OIS	FTYPE_0_OIS	HP_EN_OIS
--	----------	----------	---	-------------	-------------	-----------

Table 181. UI_CTRL2_OIS register description

	Selects gyroscope OIS chain digital high-pass filter cutoff. Default value: 00
	(00: 16 mHz;
HPM[1:0]_OIS	01: 65 mHz;
	10: 260 mHz;
	11: 1.04 Hz)
FTYPE_[1:0]_OIS	Selects gyroscope digital LPF1 filter bandwidth. Table 182 shows cutoff and phase values obtained with all configurations.
HP_EN_OIS	Enables gyroscope OIS chain digital high-pass filter.

Table 182. Gyroscope OIS chain digital LPF1 filter bandwidth selection

FTYPE_[1:0]_OIS	Cutoff [Hz]	Phase @ 20 Hz [°]
00	335.5	-6.69
01	232.0	-8.78
10	171.1	-11.18
11	609.0	-4.91

DS12814 - Rev 3 page 93/199

9.69 UI_CTRL3_OIS (72h)

OIS configuration register. The primary interface can write this register when the OIS_CTRL_FROM_UI bit in the FUNC_CFG_ACCESS (01h) register is equal to 1 (Primary IF Full control mode); this register is read-only when the OIS_CTRL_FROM_UI bit is equal to 0 (SPI2 Full control mode) and shows the content of the SPI2_CTRL3_OIS (72h) register.

Table 183. UI_CTRL3_OIS register

FS1_XL_OIS	FS0_XL_OIS	FILTER_XL_ CONF_OIS_2	FILTER_XL_ CONF_OIS_1	FILTER_XL_ CONF_OIS_0	0	0	ST_OIS_ CLAMPDIS	
------------	------------	--------------------------	--------------------------	--------------------------	---	---	---------------------	--

Table 184. UI_CTRL3_OIS register description

FS[1:0]_XL_OIS	Selects accelerometer OIS channel full-scale. See Table 185.	
FILTER_XL_CONF_OIS_[2:0]	Selects accelerometer OIS channel bandwidth. See Table 186.	
	Disables OIS chain clamp	
ST_OIS_CLAMPDIS	(0: All OIS chain outputs = 8000h during self-test;	
	1: OIS chain self-test outputs as shown in Table 187.	

Table 185. Accelerometer OIS channel full-scale selection

FS[1:0]_XL_OIS	XL_FS_MODE = '0'	XL_FS_MODE = '1'	
	XL UI ON	XL UI PD	-
00 (default)	Full-scale selected from user interface	2 g	2 g
01		16 <i>g</i>	2 g
10		4 g	4 g
11		8 g	8 g

Note: The XL_FS_MODE bit is in CTRL8_XL (17h).

Note: When the accelerometer full-scale value is selected only from the UI side it is readable also from the OIS side.

Table 186. Accelerometer OIS channel bandwidth and phase

FILTER_XL_CONF_OIS[2:0]	Typ. overall bandwidth [Hz]	Typ. overall phase [°]
000	289	-5.72 @ 20 Hz
001	258	-6.80 @ 20 Hz
010	120	-13.2 @ 20 Hz
011	65.1	-21.5 @ 20 Hz
100	33.2	-19.1 @ 10 Hz
101	16.6	-33.5 @ 10 Hz
110	8.30	-26.7 @ 4 Hz
111	4.14	-26.2 @ 2 Hz

DS12814 - Rev 3 page 94/199

Table 187. Self-test nominal output variation

Full scale	Ouput variation [dps]
2000	400
1000	200
500	100
250	50
125	25

DS12814 - Rev 3 page 95/199

9.70 X_OFS_USR (73h)

Accelerometer X-axis user offset correction (r/w). The offset value set in the X_OFS_USR offset register is internally subtracted from the acceleration value measured on the X-axis.

Table 188. X_OFS_USR register

| X_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 189. X_OFS_USR register description

X_OFS_USR_[7:0] Accelerometer X-axis user offset correction expressed in two's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127 127].	l
---	---

9.71 Y_OFS_USR (74h)

Accelerometer Y-axis user offset correction (r/w). The offset value set in the Y_OFS_USR offset register is internally subtracted from the acceleration value measured on the Y-axis.

Table 190. Y_OFS_USR register

| Y_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 191. Y_OFS_USR register description

Y_OFS_USR_[7:0]	Accelerometer Y-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range
	[-127, +127].

9.72 Z OFS USR (75h)

Accelerometer Z-axis user offset correction (r/w). The offset value set in the Z_OFS_USR offset register is internally subtracted from the acceleration value measured on the Z-axis.

Table 192. Z_OFS_USR register

| Z_OFS_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| USR_7 | USR_6 | USR_5 | USR_4 | USR_3 | USR_2 | USR_1 | USR_0 |

Table 193. Z_OFS_USR register description

7 OFS USD [7:0]	Accelerometer Z-axis user offset calibration expressed in 2's complement, weight depends on USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].	
Z_UF3_U3K_[1.0]	USR_OFF_W in CTRL6_C (15h). The value must be in the range [-127, +127].	

DS12814 - Rev 3 page 96/199

9.73 FIFO_DATA_OUT_TAG (78h)

FIFO tag register (r)

Table 194. FIFO_DATA_OUT_TAG register

	TAG_ SENSOR_4	TAG_ SENSOR_3	TAG_ SENSOR_2	TAG_ SENSOR_1	TAG_ SENSOR_0	TAG_CNT_1	TAG_CNT_0	TAG_ PARITY	
--	------------------	------------------	------------------	------------------	------------------	-----------	-----------	----------------	--

Table 195. FIFO_DATA_OUT_TAG register description

TAG_SENSOR_[4:0]	FIFO tag. Identifies the sensor in:
	FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah), FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch), and FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)
	For details, refer to Table 196
TAG_CNT_[1:0]	2-bit counter which identifies sensor time slot
TAG_PARITY	Parity check of TAG content

Table 196. FIFO tag

TAG_SENSOR_[4:0]	Sensor name				
0x01	Gyroscope NC				
0x02	Accelerometer NC				
0x03	Temperature				
0x04	Timestamp				
0x05	CFG_Change				
0x06	Accelerometer NC_T_2				
0x07	Accelerometer NC_T_1				
0x08	Accelerometer 2xC				
0x09	Accelerometer 3xC				
0x0A	Gyroscope NC_T_2				
0x0B	Gyroscope NC_T_1				
0x0C	Gyroscope 2xC				
0x0D	Gyroscope 3xC				
0x0E	Sensor Hub Slave 0				
0x0F	Sensor Hub Slave 1				
0x10	Sensor Hub Slave 2				
0x11	Sensor Hub Slave 3				
0x12	Step Counter				
0x19	Sensor Hub Nack				

DS12814 - Rev 3 page 97/199

9.74 FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)

FIFO data output X (r)

Table 197. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 198. FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description

D[15:0] FIFO X-axis output

9.75 FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch)

FIFO data output Y (r)

Table 199. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 200. FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description

D[15:0] FIFO Y-axis output

9.76 FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)

FIFO data output Z (r)

Table 201. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers

D15	D14	D13	D12	D11	D10	D9	D8
D7	D6	D5	D4	D3	D2	D1	D0

Table 202. FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description

D[15:0] FIFO Z-axis output

DS12814 - Rev 3 page 98/199

10 SPI2 register mapping

The table given below provides a list of the 8/16-bit registers embedded in the device and the corresponding addresses.

All these registers are accessible from Auxiliary SPI interface only.

Table 203. SPI2 register address map

Name	T	Regis	ster address	- Default	C
Name	Туре	Hex	Binary	Detault	Comment
SPI2_WHO_AM_I	R	0F	00001111	output	
SPI2_STATUS_REG_OIS	R	1E	00011110	output	
SPI2_OUT_TEMP_L	R	20	00100000	output	
SPI2_OUT_TEMP_H	R	21	00100001	output	
SPI2_OUTX_L_G_OIS	R	22	00100010	output	
SPI2_OUTX_H_G_OIS	R	23	00100011	output	
SPI2_OUTY_L_G_OIS	R	24	00100100	output	
SPI2_OUTY_H_G_OIS	R	25	00100101	output	
SPI2_OUTZ_L_G_OIS	R	26	00100110	output	
SPI2_OUTZ_H_G_OIS	R	27	00100111	output	
SPI2_OUTX_L_A_OIS	R	28	00101000	output	
SPI2_OUTX_H_A_OIS	R	29	00101001	output	
SPI2_OUTY_L_A_OIS	R	2A	00101010	output	
SPI2_OUTY_H_A_OIS	R	2B	00101011	output	
SPI2_OUTZ_L_A_OIS	R	2C	00101100	output	
SPI2_OUTZ_H_A_OIS	R	2D	00101101	output	
SPI2_INT_OIS	RW (SPI2 full control mode)	6F	01101111	00000000	
3F12_IN1_0I3	R (Primary IF full control mode	OF	01101111	0000000	
SPI2_CTRL1_OIS	RW (SPI2 full control mode)	70	01110000	00000000	
01 12_011C1_010	R (Primary IF full control mode	70	01110000	0000000	
SPI2_CTRL2_OIS	RW (SPI2 full control mode)	71	01110001	00000000	
0.12_01112_010	R (Primary IF full control mode		01110001	0000000	
SPI2_CTRL3_OIS	RW (SPI2 full control mode)	72	01110010	00000000	
	R (Primary IF full control mode				

DS12814 - Rev 3 page 99/199

11 SPI2 register description

11.1 SPI2_WHO_AM_I (0Fh)

WHO_AM_I register (r). This is a read-only register. Its value is fixed at 6Ch.

Table 204. SPI2_WhoAmI register

_			_			_	_
0	1	1	0	1	1	0	0

11.2 SPI2_STATUS_REG_OIS (1Eh)

The SPI2_STATUS_REG_OIS register is read by the Auxiliary SPI (r).

Table 205. SPI_STATUS_REG_OIS register

0	0	0	0	0	GYRO_ SETTLING	GDA	XLDA
---	---	---	---	---	-------------------	-----	------

Table 206. SPI_STATUS_REG_OIS description

GYRO_SETTLING	High when the gyroscope output is in the settling phase
GDA	Gyroscope data available (reset when one of the high parts of the output data is read)
XLDA	Accelerometer data available (reset when one of the high parts of the output data is read)

11.3 SPI2_OUT_TEMP_L (20h) and SPI2_OUT_TEMP_H (21h)

Temperature data output register (r). L and H registers together express a 16-bit word in two's complement.

Table 207. SPI2_OUT_TEMP_L register

Temp7 Temp6	Temp5	Temp4	Temp3	Temp2	Temp1	Temp0
-------------	-------	-------	-------	-------	-------	-------

Table 208. SPI2_OUT_TEMP_H register

Ter	np15	Temp14	Temp13	Temp12	Temp11	Temp10	Temp9	Temp8	
-----	------	--------	--------	--------	--------	--------	-------	-------	--

Table 209. SPI2_OUT_TEMP register description

Temp[15:0]	Temperature sensor output data
Temp[15.0]	The value is expressed as two's complement sign extended on the MSB.

DS12814 - Rev 3 page 100/199

11.4 SPI2_OUTX_L_G_OIS (22h) and SPI2_OUTX_H_G_OIS (23h)

Angular rate sensor pitch axis (X) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the gyroscope full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 210. SPI2_OUTX_L_G_OIS register

	D7	D6	D5	D4	D3	D2	D1	D0	
--	----	----	----	----	----	----	----	----	--

Table 211. SPI2_OUTX_H_G_OIS register

D15	D14	D13	D12	D11	D10	D9	D8
-----	-----	-----	-----	-----	-----	----	----

Table 212. SPI2_OUTX_H_G_OIS register description

D[15:0] Gyro OIS chain pitch axis (X) angular rate output value

11.5 SPI2_OUTY_L_G_OIS (24h) and SPI2_OUTY_H_G_OIS (25h)

Angular rate sensor roll axis (Y) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the gyroscope full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 213. SPI2_OUTY_L_G_OIS register

		D7	D6	D5	D4	D3	D2	D1	D0
--	--	----	----	----	----	----	----	----	----

Table 214. SPI2_OUTY_H_G_OIS register

D15	D14	D13	D12	D11	D10	D9	D8
D 10	דוט	D10	D12	D11	D10	D5	D0

Table 215. SPI2_OUTY_H_G_OIS register description

D[15:0] Gyro OIS chain roll axis (Y) angular rate output value

DS12814 - Rev 3 page 101/199

11.6 SPI2_OUTZ_L_G_OIS (26h) and SPI2_OUTZ_H_G_OIS (27h)

Angular rate sensor yaw axis (Z) angular rate output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the gyroscope full scale and ODR (6.66 kHz) settings of the OIS gyro.

Table 216. SPI2_OUTZ_L_G_OIS register

D7 D6	D5	D4	D3	D2	D1	D0
-------	----	----	----	----	----	----

Table 217. SPI2_OUTZ_H_G_OIS register

D15 D14 D13	D12 D1	1 D10	D9	D8
-------------	--------	-------	----	----

Table 218. SPI2_OUTZ_H_G_OIS register description

D[15:0] Gyro OIS chain yaw axis (Z) angular rate output value

11.7 SPI2_OUTX_L_A_OIS (28h) and SPI2_OUTX_H_A_OIS (29h)

Linear acceleration sensor X-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the accelerometer full scale and ODR (6.66 kHz) settings of the OIS accelerometer.

Table 219. SPI2_OUTX_L_A_OIS register

D7	D6	D5	D4	D3	D2	D1	D0

Table 220. SPI2_OUTX_H_A_OIS register

D15	D14	D13	D12	D11	D10	D9	D8
D10	דוט	D10	D12	D11	D10	D5	D0

Table 221. SPI2_OUTX_H_A_OIS register description

D[15:0] Accelerometer UI chain X-axis linear acceleration output value
--

DS12814 - Rev 3 page 102/199

11.8 SPI2_OUTY_L_A_OIS (2Ah) and SPI2_OUTY_H_A_OIS (2Bh)

Linear acceleration sensor Y-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the accelerometer full scale and ODR (6.66 kHz) settings of the OIS accelerometer.

Table 222. SPI2_OUTY_L_A_OIS register

	D7	D6	D5	D4	D3	D2	D1	D0	
--	----	----	----	----	----	----	----	----	--

Table 223. SPI2_OUTY_H_A_OIS register

D15 D14 D13 D12 D11 D10 D9 D8	D15	D14	D13	D12	D11	D10	D9	D8
-------------------------------	-----	-----	-----	-----	-----	-----	----	----

Table 224. SPI2_OUTY_H_A_OIS register description

D[15:0] Accelerometer UI chain Y-axis linear acceleration output value

11.9 SPI2_OUTZ_L_A_OIS (2Ch) and SPI2_OUTZ_H_A_OIS (2Dh)

Linear acceleration sensor Z-axis output register (r). The value is expressed as a 16-bit word in two's complement.

Data are according to the accelerometer full scale and ODR (6.66 kHz) settings of the OIS accelerometer.

Table 225. SPI2_OUTZ_L_A_OIS register

D7 D6 D5 D4 D3 D2 D1 D0	D7	D6	D5	D4	D3	D2	D1	D0
-------------------------	----	----	----	----	----	----	----	----

Table 226. SPI2_OUTZ_H_A_OIS register

D15	D14	D13	D12	D11	D10	D9	D8
D10	דוט	D10	D12	D11	D10	D5	D0

Table 227. SPI2_OUTZ_H_A_OIS register description

D[15:0] Accelerometer UI chain Z-axis linear acceleration output value

DS12814 - Rev 3 page 103/199

11.10 SPI2_INT_OIS (6Fh)

OIS interrupt configuration register and accelerometer self-test enable setting. The auxiliary SPI interface can write this register when the OIS_CTRL_FROM_UI bit in the FUNC_CFG_ACCESS (01h) register is equal to 0 (SPI2 Full control mode); this register is read-only when the OIS_CTRL_FROM_UI bit is equal to 1 (Primary IF Full control mode) and shows the content of the UI_INT_OIS (6Fh) register.

Table 228. SPI_INT_OIS register

INT2_ DRDY_OIS	LVL2_OIS	DEN_LH_OIS	-	-	0	ST1_XL_OIS	ST0_XL_OIS	
-------------------	----------	------------	---	---	---	------------	------------	--

Table 229. SPI_INT_OIS register description

INT2_DRDY_OIS	Enables OIS chain DRDY on INT2 pin. This setting has priority over all other INT2 settings.
LVL2_OIS	Enables level-sensitive latched mode on the OIS chain. Default value: 0
	Indicates polarity of DEN signal on OIS chain
DEN_LH_OIS	(0: DEN pin is active-low;
	1: DEN pin is active-high)
	Selects accelerometer self-test – effective only if XL OIS chain is enabled. Default value: 00
	(00: Normal mode;
ST[1:0]_XL_OIS	01: Positive sign self-test;
	10: Negative sign self-test;
	11: not allowed)

DS12814 - Rev 3 page 104/199

11.11 SPI2_CTRL1_OIS (70h)

OIS configuration register. The auxiliary SPI interface can write this register when the OIS_CTRL_FROM_UI bit in the FUNC_CFG_ACCESS (01h) register is equal to 0 (SPI2 Full control mode); this register is read-only when the OIS_CTRL_FROM_UI bit is equal to 1 (Primary IF Full control mode) and shows the content of the UI_INT_OIS (6Fh) register.

Table 230. SPI_CTRL1_OIS register

0	LVL1_OIS	SIM_OIS	Mode4_EN	FS1_G_OIS	FS0_G_OIS	FS_125_OIS	OIS_EN_SPI2
---	----------	---------	----------	-----------	-----------	------------	-------------

Table 231. SPI_CTRL1_OIS register description

LVL1_OIS	Enables level-sensitive trigger mode on the OIS chain. Default value: 0
	SPI2 3- or 4-wire interface. Default value: 0
SIM_OIS	(0: 4-wire SPI2;
	1: 3-wire SPI2)
Mode4_EN	Enables accelerometer OIS chain. OIS outputs are available through SPI2 in registers SPI2_OUTX_L_A_OIS (28h) and SPI2_OUTX_H_A_OIS (29h) through SPI2_OUTZ_L_A_OIS (2Ch) and SPI2_OUTZ_H_A_OIS (2Dh) and SPI2_STATUS_REG_OIS (1Eh).
	Note: OIS_EN_SPI2 must be enabled (i.e. set to '1') to enable also the XL OIS chain.
	Selects gyroscope OIS chain full-scale
	(00: 250 dps;
FS[1:0]_G_OIS	01: 500 dps;
	10: 1000 dps;
	11: 2000 dps)
	Selects gyroscope OIS chain full-scale 125 dps
FS_125_OIS	(0: FS selected through bits FS[1:0]_OIS_G;
	1: 125 dps)
	Enables OIS chain data processing for gyro in Mode 3 and Mode 4 (mode4_en = 1) and accelerometer data in and Mode 4 (mode4_en = 1).
OIS_EN_SPI2	When the OIS chain is enabled, the OIS outputs are available through the SPI2 in registers SPI2_OUTX_L_G_OIS (22h) and SPI2_OUTX_H_G_OIS (23h) through SPI2_OUTZ_L_G_OIS (26h) and SPI2_OUTZ_H_G_OIS (27h) and STATUS_REG (1Eh) and SPI2_STATUS_REG_OIS (1Eh), and LPF1 is dedicated to this chain.

DEN mode selection can be done using the LVL1_OIS bit of register UI_CTRL1_OIS (70h) and the LVL2_OIS bit of register UI_INT_OIS (6Fh).

DEN mode on the OIS path is active in the gyroscope only.

Table 232. DEN mode selection

LVL1_OIS, LVL2_OIS	DEN mode
10	Level-sensitive trigger mode is selected
11	Level-sensitive latched mode is selected

DS12814 - Rev 3 page 105/199

11.12 SPI2_CTRL2_OIS (71h)

OIS configuration register. The auxiliary SPI interface can write this register when the OIS_CTRL_FROM_UI bit in the FUNC_CFG_ACCESS (01h) register is equal to 0 (SPI2 Full control mode); this register is read-only when the OIS_CTRL_FROM_UI bit is equal to 1 (Primary IF Full control mode) and shows the content of the UI_INT_OIS (6Fh) register.

Table 233. SPI_CTRL2_OIS register

-	-	HPM1_OIS	HPM0_OIS	0	FTYPE_1_OIS	FTYPE_0_OIS	HP_EN_OIS
---	---	----------	----------	---	-------------	-------------	-----------

Table 234. SPI_CTRL2_OIS register description

	Selects gyroscope OIS chain digital high-pass filter cutoff. Default value: 00
	(00: 16 mHz;
HPM[1:0]_OIS	01: 65 mHz;
	10: 260 mHz;
	11: 1.04 Hz)
FTYPE_[1:0]_OIS	Selects gyroscope digital LPF1 filter bandwidth. Table 182 shows cutoff and phase values obtained with all configurations.
HP_EN_OIS	Enables gyroscope OIS chain digital high-pass filter

Table 235. Gyroscope OIS chain digital LPF1 filter bandwidth selection

FTYPE_[1:0]_OIS	Cutoff [Hz]	Phase @ 20 Hz [°]
00	351.39	-6.88
01	236.63	-8.97
10	172.70	-11.37
11	937.91	-5.10

DS12814 - Rev 3 page 106/199

11.13 SPI2_CTRL3_OIS (72h)

OIS configuration register. The auxiliary SPI interface can write this register when the OIS_CTRL_FROM_UI bit in the FUNC_CFG_ACCESS (01h) register is equal to 0 (SPI2 Full control mode); this register is read-only when the OIS_CTRL_FROM_UI bit is equal to 1 (Primary IF Full control mode) and shows the content of the UI_INT_OIS (6Fh) register.

Table 236. SPI2_CTRL3_OIS register

FS1_XL_OIS	FS0_XL_OIS	FILTER_ XL_CONF_OIS_2	FILTER_ XL_CONF_OIS_1	FILTER_ XL_CONF_OIS_0	ST1_OIS	ST0_OIS	ST_OIS_ CLAMPDIS	
------------	------------	--------------------------	--------------------------	--------------------------	---------	---------	---------------------	--

Table 237. SPI2_CTRL3_OIS register description

FS[1:0]_XL_OIS	Selects accelerometer OIS channel full-scale. See Table 185.
FILTER_XL_CONF_OIS_[2:0]	Selects accelerometer OIS channel bandwidth. See Table 186.
	Selects gyroscope OIS chain self-test. Default value: 00
	Table 187 lists the output variation when the self-test is enabled and ST_OIS_CLAMPDIS = '1'.
ST[1:0]_OIS	(00: Normal mode;
	01: Positive sign self-test;
	10: Normal mode;
	11: Negative sign self-test)
	Disables OIS chain clamp
ST_OIS_CLAMPDIS	(0: All OIS chain outputs = 8000h during self-test;
	1: OIS chain self-test outputs as shown in Table 187.

Table 238. Accelerometer OIS channel full-scale selection

FS[1:0]_XL_OIS	XL_FS_M	XL_FS_MODE = '1'	
	XL UI ON	XL UI PD	-
00 (default)	Full-scale selected from user interface	2 g	2 g
01		16 <i>g</i>	2 g
10		4 g	4 g
11		8 g	8 g

Note: XL_FS_MODE bit is in CTRL8_XL (17h).

When the accelerometer full-scale value is selected only from the UI side, it is readable also from the OIS side.

DS12814 - Rev 3 page 107/199

12 Embedded functions register mapping

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when FUNC_CFG_EN is set to '1' in FUNC_CFG_ACCESS (01h).

Table 239. Register address map - embedded functions

Name	Torres	Register address		D 6 11	
Name	Туре	Hex	Binary	Default	Comment
PAGE_SEL	r/w	02	00000010	0000001	
EMB_FUNC_EN_A	r/w	04	00000100	00000000	
EMB_FUNC_EN_B	r/w	05	00000101	00000000	
PAGE_ADDRESS	r/w	08	00001000	00000000	
PAGE_VALUE	r/w	09	00001001	00000000	
EMB_FUNC_INT1	r/w	0A	00001010	00000000	
FSM_INT1_A	r/w	0B	00001011	00000000	
FSM_INT1_B	r/w	0C	00001100	00000000	
MLC_INT1	r/w	0D	00001101	00000000	
EMB_FUNC_INT2	r/w	0E	00001110	00000000	
FSM_INT2_A	r/w	0F	00001111	00000000	
FSM_INT2_B	r/w	10	00010000	00000000	
MLC_INT2	r/w	11	00010001	00000000	
EMB_FUNC_STATUS	r	12	00010010	output	
FSM_STATUS_A	r	13	00010011	output	
FSM_STATUS_B	r	14	00010100	output	
MLC_STATUS	r	15	00010101	output	
PAGE_RW	r/w	17	00010111	00000000	
RESERVED	-	18-43	00011000		
EMB_FUNC_FIFO_CFG	r/w	44	01000100	00000000	
FSM_ENABLE_A	r/w	46	01000110	00000000	
FSM_ENABLE_B	r/w	47	01000111	00000000	
FSM_LONG_COUNTER_L	r/w	48	01001000	00000000	
FSM_LONG_COUNTER_H	r/w	49	01001001	00000000	
FSM_LONG_COUNTER_CLEAR	r/w	4A	01001010	00000000	
FSM_OUTS1	r	4C	01001100	output	
FSM_OUTS2	r	4D	01001101	output	
FSM_OUTS3	r	4E	01001110	output	
FSM_OUTS4	r	4F	01001111	output	
FSM_OUTS5	r	50	01010000	output	
FSM_OUTS6	r	51	01010001	output	
FSM_OUTS7	r	52	01010010	output	

DS12814 - Rev 3 page 108/199

News	.	Regis	ster address	Defeeds	0
Name	Type	Hex	Binary	Default	Comment
FSM_OUTS8	r	53	01010011	output	
FSM_OUTS9	r	54	01010100	output	
FSM_OUTS10	r	55	01010101	output	
FSM_OUTS11	r	56	01010110	output	
FSM_OUTS12	r	57	01010111	output	
FSM_OUTS13	r	58	01011000	output	
FSM_OUTS14	r	59	01011001	output	
FSM_OUTS15	r	5A	01011010	output	
FSM_OUTS16	r	5B	01011011	output	
RESERVED	-	5E	01011110		
EMB_FUNC_ODR_CFG_B	r/w	5F	01011111	01001011	
EMB_FUNC_ODR_CFG_C	r/w	60	01100000	00010101	
STEP_COUNTER_L	r	62	01100010	output	
STEP_COUNTER_H	r	63	01100011	output	
EMB_FUNC_SRC	r/w	64	01100100	output	
EMB_FUNC_INIT_A	r/w	66	01100110	00000000	
EMB_FUNC_INIT_B	r/w	67	01100111	00000000	
MLC0_SRC	r	70	01110000	output	
MLC1_SRC	r	71	01110001	output	
MLC2_SRC	r	72	01110010	output	
MLC3_SRC	r	73	01110011	output	
MLC4_SRC	r	74	01110100	output	
MLC5_SRC	r	75	01110101	output	
MLC6_SRC	r	76	01110110	output	
MLC7_SRC	r	77	01110111	output	

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS12814 - Rev 3 page 109/199

13 Embedded functions register description

13.1 PAGE_SEL (02h)

Enable advanced features dedicated page (r/w)

Table 240. PAGE_SEL register

PAGE_SEL3	PAGE_SEL2	PAGE_SEL1	PAGE_SEL0	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	1 ⁽²⁾
-----------	-----------	-----------	-----------	------------------	------------------	------------------	-------------------------

- 1. This bit must be set to '0' for the correct operation of the device.
- 2. This bit must be set to '1' for the correct operation of the device.

Table 241. PAGE_SEL register description

	Select the advanced features dedicated page	
PAGE_SEL[3:0]	Default value: 0000	

13.2 EMB_FUNC_EN_A (04h)

Embedded functions enable register (r/w)

Table 242. EMB_FUNC_EN_A register

0(1)	0 ⁽¹⁾	SIGN_ MOTION_EN	TILT_EN	PEDO_EN	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
------	------------------	--------------------	---------	---------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 243. EMB_FUNC_EN_A register description

	Enable significant motion detection function. Default value: 0					
SIGN_MOTION_EN	(0: significant motion detection function disabled;					
	1: significant motion detection function enabled)					
	Enable tilt calculation. Default value: 0					
TILT_EN	(0: tilt algorithm disabled;					
	1: tilt algorithm enabled)					
	Enable pedometer algorithm. Default value: 0					
PEDO_EN	(0: pedometer algorithm disabled;					
	1: pedometer algorithm enabled)					

DS12814 - Rev 3 page 110/199

13.3 EMB_FUNC_EN_B (05h)

Embedded functions enable register (r/w)

Table 244. EMB_FUNC_EN_B register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	MLC_EN	FIFO_ COMPR_EN	0 ⁽¹⁾	0 ⁽¹⁾	FSM_EN
------------------	------------------	------------------	--------	-------------------	------------------	------------------	--------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 245. EMB_FUNC_EN_B register description

MLC_EN	Enable Machine Learning Core feature. Default value: 0 (0: Machine Learning Core feature disabled; 1: Machine Learning Core feature enabled)
FIFO_COMPR_EN ⁽¹⁾	Enable FIFO compression feature. Default value: 0 (0: FIFO compression feature disabled; 1: FIFO compression feature enabled)
FSM_EN	Enable Finite State Machine (FSM) feature. Default value: 0 (0: FSM feature disabled; 1: FSM feature enabled)

^{1.} This bit is effective if the FIFO_COMPR_RT_EN bit of FIFO_CTRL2 (08h) is set to 1.

13.4 PAGE_ADDRESS (08h)

Page address register (r/w)

Table 246. PAGE_ADDRESS register

| PAGE_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| ADDR7 | ADDR6 | ADDR5 | ADDR4 | ADDR3 | ADDR2 | ADDR1 | ADDR0 |

Table 247. PAGE_ADDRESS register description

	After setting the bit PAGE_WRITE / PAGE_READ in register PAGE_RW (17h), this register is used to set
PAGE_ADDR[7:0]	the address of the register to be written/read in the advanced features page selected through the bits
	PAGE_SEL[3:0] in register PAGE_SEL (02h).

DS12814 - Rev 3 page 111/199

13.5 PAGE_VALUE (09h)

Page value register (r/w)

Table 248. PAGE_VALUE register

VALUEZ VALUED VALUES VALUES VALUES VALUES VALUEZ VALUEL VALUED		PAGE_ VALUE7	PAGE_ VALUE6	PAGE_ VALUE5	PAGE_ VALUE4	PAGE_ VALUE3	PAGE_ VALUE2	PAGE_ VALUE1	PAGE_ VALUE0
--	--	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------

Table 249. PAGE_VALUE register description

PAGE_VALUE[7:0]	These bits are used to write (if the bit PAGE_WRITE = 1 in register PAGE_RW (17h)) or read (if the bit PAGE_READ = 1 in register PAGE_RW (17h)) the data at the address PAGE_ADDR[7:0] of the selected
	advanced features page.

13.6 EMB_FUNC_INT1 (0Ah)

INT1 pin control register (r/w)

Each bit in this register enables a signal to be carried through INT1. The pin's output will supply the OR combination of the selected signals.

Table 250. EMB_FUNC_INT1 register

	INT1_ FSM_LC	0 ⁽¹⁾	INT1_ SIG_MOT	INT1_TILT	INT1_STEP _DETECTOR	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	
--	-----------------	------------------	------------------	-----------	------------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

EMB_FUNC_INT1 register description

INT1_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_TILT ⁽¹⁾	Routing of tilt event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_STEP_DETECTOR ⁽¹⁾	Routing of pedometer step recognition event on INT1. Default value: 0 (0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

DS12814 - Rev 3 page 112/199

13.7 FSM_INT1_A (0Bh)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT1. The pin's output will supply the OR combination of the selected signals.

Table 251. FSM_INT1_A register

INT1 FSM8 INT1 FSM7 INT1 FSM6 INT1 FSM5 INT1 FSM4 INT1 FSM3 INT1 FSM2 INT1 FSM1

Table 252. FSM_INT1_A register description

INT1 FSM8 ⁽¹⁾	Routing of FSM8 interrupt event on INT1. Default value: 0
INTI_I SMO	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA FONZ(1)	Routing of FSM7 interrupt event on INT1. Default value: 0
INT1_FSM7 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM6 ⁽¹⁾	Routing of FSM6 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA FONE(1)	Routing of FSM5 interrupt event on INT1. Default value: 0
INT1_FSM5 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA FOMA(1)	Routing of FSM4 interrupt event on INT1. Default value: 0
INT1_FSM4 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT4 FCM2(1)	Routing of FSM3 interrupt event on INT1. Default value: 0
INT1_FSM3 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT4 FCMO(1)	Routing of FSM2 interrupt event on INT1. Default value: 0
INT1_FSM2 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT4 ECM4(1)	Routing of FSM1 interrupt event on INT1. Default value: 0
INT1_FSM1 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

DS12814 - Rev 3 page 113/199

13.8 FSM_INT1_B (0Ch)

INT1 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT1. The pin's output will supply the OR combination of the selected signals.

Table 253. FSM_INT1_B register

| INT1_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| FSM16 | FSM15 | FSM14 | FSM13 | FSM12 | FSM11 | FSM10 | FSM9 |

Table 254. FSM_INT1_B register description

INITA FOMAC(1)	Routing of FSM16 interrupt event on INT1. Default value: 0
INT1_FSM16 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INIT4 FOM4E(1)	Routing of FSM15 interrupt event on INT1. Default value: 0
INT1_FSM15 ⁽¹⁾	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM14 ⁽¹⁾	Routing of FSM14 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_FSM13 ⁽¹⁾	Routing of FSM13 interrupt event on INT1. Default value: 0
	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM12 ⁽¹⁾	Routing of FSM12 interrupt event on INT1. Default value: 0
INTI_FSWIIZ	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM11 ⁽¹⁾	Routing of FSM11 interrupt event on INT1. Default value: 0
INTI_I SWITE	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM10 ⁽¹⁾	Routing of FSM10 interrupt event on INT1. Default value: 0
INTI_I SWITO	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 FSM9 ⁽¹⁾	Routing of FSM9 interrupt event on INT1. Default value: 0
IIVI I_I OMB	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

^{1.} This bit is effective if the INT1_EMB_FUNC bit of MD1_CFG (5Eh) is set to 1.

DS12814 - Rev 3 page 114/199

13.9 MLC_INT1 (0Dh)

Each bit in this register enables a signal to be carried through INT1. The pin's output will supply the OR combination of the selected signals.

Table 255. MLC_INT1 register

INT1_MLC8	INT1_MLC7	INT1_MLC6	INT1_MLC5	INT1_MLC4	INT1_MLC3	INT1_MLC2	INT1_MLC1
-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

Table 256. MLC_INT1 register description

INITA MI CO	Routing of MLC8 interrupt event on INT1. Default value: 0
INT1_MLC8	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INITA MI C7	Routing of MLC7 interrupt event on INT1. Default value: 0
INT1_MLC7	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_MLC6	Routing of MLC6 interrupt event on INT1. Default value: 0
INTI_MEGO	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_MLC5	Routing of MLC5 interrupt event on INT1. Default value: 0
INTI_MEGS	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 MLC4	Routing of MLC4 interrupt event on INT1. Default value: 0
INTI_MEG4	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 MLC3	Routing of MLC3 interrupt event on INT1. Default value: 0
INTI_MEGS	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1 MLC2	Routing of MLC2 interrupt event on INT1. Default value: 0
INTI_MEGZ	(0: routing on INT1 disabled; 1: routing on INT1 enabled)
INT1_MLC1	Routing of MLC1 interrupt event on INT1. Default value: 0
INTI_WEGT	(0: routing on INT1 disabled; 1: routing on INT1 enabled)

DS12814 - Rev 3 page 115/199

13.10 EMB_FUNC_INT2 (0Eh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pin's output will supply the OR combination of the selected signals.

Table 257. EMB_FUNC_INT2 register

INT2_ FSM_LC	0 ⁽¹⁾	INT2_ SIG_MOT	INT2_TILT	INT2_STEP _DETECTOR	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾
-----------------	------------------	------------------	-----------	------------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 258. EMB_FUNC_INT2 register description

INT2_FSM_LC ⁽¹⁾	Routing of FSM long counter timeout interrupt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_SIG_MOT ⁽¹⁾	Routing of significant motion event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_TILT ⁽¹⁾	Routing of tilt event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_STEP_DETECTOR ⁽¹⁾	Routing of pedometer step recognition event on INT2. Default value: 0 (0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

DS12814 - Rev 3 page 116/199

13.11 FSM_INT2_A (0Fh)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pin's output will supply the OR combination of the selected signals.

Table 259. FSM_INT2_A register

INT2 FSM8	INT2 FSM7	INT2 FSM6	INT2 FSM5	INT2 FSM4	INT2 FSM3	INT2 FSM2	INT2 FSM1
	_					_	_

Table 260. FSM_INT2_A register description

INT2 FSM8 ⁽¹⁾	Routing of FSM8 interrupt event on INT2. Default value: 0
INTZ_I SIVIO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM7 ⁽¹⁾	Routing of FSM7 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_FSM6 ⁽¹⁾	Routing of FSM6 interrupt event on INT2. Default value: 0
	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO FONE(1)	Routing of FSM5 interrupt event on INT2. Default value: 0
INT2_FSM5 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 FSM4 ⁽¹⁾	Routing of FSM4 interrupt event on INT2. Default value: 0
IN12_F3W4**	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO ECMO(1)	Routing of FSM3 interrupt event on INT2. Default value: 0
INT2_FSM3 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO ECMO(1)	Routing of FSM2 interrupt event on INT2. Default value: 0
INT2_FSM2 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 FSM1 ⁽¹⁾	Routing of FSM1 interrupt event on INT2. Default value: 0
INTZ_I SIVITO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

DS12814 - Rev 3 page 117/199

13.12 FSM_INT2_B (10h)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pin's output will supply the OR combination of the selected signals.

Table 261. FSM_INT2_B register

INT2_FSM16	INT2_FSM15	INT2_FSM14	INT2_FSM13	INT2_FSM12	INT2_FSM11	INT2_FSM10	INT2_FSM9
------------	------------	------------	------------	------------	------------	------------	-----------

Table 262. FSM_INT2_B register description

INT2 FSM16 ⁽¹⁾	Routing of FSM16 interrupt event on INT2. Default value: 0
INTZ_FSWITO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO FORME(1)	Routing of FSM15 interrupt event on INT2. Default value: 0
INT2_FSM15 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO FORMA 4(1)	Routing of FSM14 interrupt event on INT2. Default value: 0
INT2_FSM14 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO FOM42(1)	Routing of FSM13 interrupt event on INT2. Default value: 0
INT2_FSM13 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INIT2 FCM42(1)	Routing of FSM12 interrupt event on INT2. Default value: 0
INT2_FSM12 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INIT2 FCM44(1)	Routing of FSM11 interrupt event on INT2. Default value: 0
INT2_FSM11 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INIT2 ESM40(1)	Routing of FSM10 interrupt event on INT2. Default value: 0
INT2_FSM10 ⁽¹⁾	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 FSM9 ⁽¹⁾	Routing of FSM9 interrupt event on INT2. Default value: 0
INTZ_I SIVI9	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

^{1.} This bit is effective if the INT2_EMB_FUNC bit of MD2_CFG (5Fh) is set to 1.

DS12814 - Rev 3 page 118/199

13.13 MLC_INT2 (11h)

INT2 pin control register (r/w).

Each bit in this register enables a signal to be carried through INT2. The pin's output will supply the OR combination of the selected signals.

Table 263. MLC_INT2 register

INT2 MLC8	INT2 MLC7	INT2 MLC6	INT2 MLC5	INT2 MLC4	INT2 MLC3	INT2 MLC2	INT2 MLC1

Table 264. MLC_INT2 register description

INT2_MLC8	Routing of MLC8 interrupt event on INT2. Default value: 0
INTZ_WEGO	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MLC7	Routing of MLC7 interrupt event on INT2. Default value: 0
INT2_MLC7	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MLC6	Routing of MLC6 interrupt event on INT2. Default value: 0
INT2_MLC6	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MLC5	Routing of MLC5 interrupt event on INT2. Default value: 0
INT2_MLC5	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INITO MI CA	Routing of MLC4 interrupt event on INT2. Default value: 0
INT2_MLC4	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2 MLC3	Routing of MLC3 interrupt event on INT2. Default value: 0
INTZ_IVILOS	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_MLC2	Routing of MLC2 interrupt event on INT2. Default value: 0
INTZ_IVILOZ	(0: routing on INT2 disabled; 1: routing on INT2 enabled)
INT2_MLC1	Routing of MLC1 interrupt event on INT2. Default value: 0
INTZ_WEOT	(0: routing on INT2 disabled; 1: routing on INT2 enabled)

DS12814 - Rev 3 page 119/199

13.14 EMB_FUNC_STATUS (12h)

Embedded function status register (r).

Table 265. EMB_FUNC_STATUS register

IS FSM LC	0	IS SIGMOT	IS TILT	IS STEP DET	0	0	0
I			_				

Table 266. EMB_FUNC_STATUS register description

IS_FSM_LC	Interrupt status bit for FSM long counter timeout interrupt event. (1: interrupt detected; 0: no interrupt)			
IS_SIGMOT Interrupt status bit for significant motion detection (1: interrupt detected; 0: no interrupt)				
IS_TILT	Interrupt status bit for tilt detection (1: interrupt detected; 0: no interrupt)			
IS_STEP_DET	Interrupt status bit for step detection (1: interrupt detected; 0: no interrupt)			

DS12814 - Rev 3 page 120/199

13.15 FSM_STATUS_A (13h)

Finite State Machine status register (r).

Table 267. FSM_STATUS_A register

IS_FSM8	IS_FSM3 IS_FSM2 IS_FSM1
---------	-------------------------

Table 268. FSM_STATUS_A register description

IS_FSM8	Interrupt status bit for FSM8 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM7	Interrupt status bit for FSM7 interrupt event.
IS FSM6	(1: interrupt detected; 0: no interrupt) Interrupt status bit for FSM6 interrupt event.
IC FOME	(1: interrupt detected; 0: no interrupt) Interrupt status bit for FSM5 interrupt event.
IS_FSM5	(1: interrupt detected; 0: no interrupt) Interrupt status bit for FSM4 interrupt event.
IS_FSM4	(1: interrupt detected; 0: no interrupt)
IS_FSM3	Interrupt status bit for FSM3 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM2	Interrupt status bit for FSM2 interrupt event. (1: interrupt detected; 0: no interrupt)
IS_FSM1	Interrupt status bit for FSM1 interrupt event. (1: interrupt detected; 0: no interrupt)
	1

DS12814 - Rev 3 page 121/199

13.16 FSM_STATUS_B (14h)

Finite State Machine status register (r).

Table 269. FSM_STATUS_B register

IS_FSM16 IS_FSM15 IS	S_FSM14 IS_FSM13 I	IS_FSM12 IS_FSM11	IS_FSM10 IS_FSM9
----------------------	--------------------	-------------------	------------------

Table 270. FSM_STATUS_B register description

IS_FSM16	Interrupt status bit for FSM16 interrupt event.
	(1: interrupt detected; 0: no interrupt)
IS FSM15	Interrupt status bit for FSM15 interrupt event.
13_1 31/13	(1: interrupt detected; 0: no interrupt)
IS_FSM14	Interrupt status bit for FSM14 interrupt event.
13_1 31/14	(1: interrupt detected; 0: no interrupt)
IC ECM12	Interrupt status bit for FSM13 interrupt event.
IS_FSM13	(1: interrupt detected; 0: no interrupt)
IS FSM12	Interrupt status bit for FSM12 interrupt event.
13_F3W12	(1: interrupt detected; 0: no interrupt)
IS FSM11	Interrupt status bit for FSM11 interrupt event.
13_1 31/11	(1: interrupt detected; 0: no interrupt)
IS FSM10	Interrupt status bit for FSM10 interrupt event.
13_1 31/10	(1: interrupt detected; 0: no interrupt)
IS ESMO	Interrupt status bit for FSM9 interrupt event.
IS_FSM9	(1: interrupt detected; 0: no interrupt)

DS12814 - Rev 3 page 122/199

13.17 MLC_STATUS (15h)

Machine Learning Core status register (r).

Table 271. MLC_STATUS register

IS_MLC	IS_MLC7	IS_MLC6	IS_MLC5	IS_MLC4	IS_MLC3	IS_MLC	IS_MLC1
--------	---------	---------	---------	---------	---------	--------	---------

Table 272. MLC_STATUS register description

IS_MLC8 (1: interrupt detected; 0: no interrupt) IS_MLC7 Interrupt status bit for MLC7 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC6 Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC5 Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC4 Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC2 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC1 interrupt event. (1: interrupt status bit for MLC1 interrupt event.		
(1: interrupt detected; 0: no interrupt) IN_MLC7 Interrupt status bit for MLC7 interrupt event. (1: interrupt detected; 0: no interrupt) IN_MLC6 Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt) IN_MLC5 Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt) IN_MLC4 Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt) IN_MLC3 Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt) IN_MLC3 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) IN_MLC2 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) IN_MLC3 Interrupt status bit for MLC1 interrupt event. (1: interrupt status bit for MLC2 interrupt event.	IS MLC8	Interrupt status bit for MLC8 interrupt event.
IS_MLC6 (1: interrupt detected; 0: no interrupt) IS_MLC6 Interrupt status bit for MLC6 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC5 Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC4 Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC2 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) INTERRUPT Status bit for MLC1 interrupt event.	10_ME00	(1: interrupt detected; 0: no interrupt)
(1: interrupt detected; 0: no interrupt) INTERPORT STATES	IS MLC7	Interrupt status bit for MLC7 interrupt event.
IS_MLC5 (1: interrupt detected; 0: no interrupt) IS_MLC5 Interrupt status bit for MLC5 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC4 Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC1 interrupt event.	IS_IVILO7	(1: interrupt detected; 0: no interrupt)
Interrupt detected; 0: no interrupt) Interrupt status bit for MLC5 interrupt event.	IS MLC6	Interrupt status bit for MLC6 interrupt event.
IS_MLC5 (1: interrupt detected; 0: no interrupt) IS_MLC4 Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC2 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC1 interrupt event. (1: interrupt status bit for MLC1 interrupt event.	IS_IVILCO	(1: interrupt detected; 0: no interrupt)
(1: interrupt detected; 0: no interrupt) IS_MLC4 Interrupt status bit for MLC4 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC2 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC1 interrupt event.	10 14 05	Interrupt status bit for MLC5 interrupt event.
IS_MLC3 (1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC2 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC1 interrupt event.	IS_IVILC5	(1: interrupt detected; 0: no interrupt)
(1: interrupt detected; 0: no interrupt) IS_MLC3 Interrupt status bit for MLC3 interrupt event. (1: interrupt detected; 0: no interrupt) IS_MLC2 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC1 interrupt event.	IS MLC4	Interrupt status bit for MLC4 interrupt event.
IS_MLC3 (1: interrupt detected; 0: no interrupt) IS_MLC2 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC1 interrupt event.	13_IVILC4	(1: interrupt detected; 0: no interrupt)
(1: interrupt detected; 0: no interrupt) IS_MLC2 Interrupt status bit for MLC2 interrupt event. (1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC1 interrupt event.	IS MLC3	Interrupt status bit for MLC3 interrupt event.
IS_MLC2 (1: interrupt detected; 0: no interrupt) IS_MLC1 Interrupt status bit for MLC1 interrupt event.	IS_IVILCS	(1: interrupt detected; 0: no interrupt)
(1: interrupt detected; 0: no interrupt) Interrupt status bit for MLC1 interrupt event.	IS MI C2	Interrupt status bit for MLC2 interrupt event.
IS MLC1	IS_IVILG2	(1: interrupt detected; 0: no interrupt)
13_IVILO I (1: interrunt detected: 0: no interrunt)	IS MI C1	Interrupt status bit for MLC1 interrupt event.
(1. interrupt detected, 0. no interrupt)	IS_IVILUI	(1: interrupt detected; 0: no interrupt)

DS12814 - Rev 3 page 123/199

13.18 PAGE_RW (17h)

Enable read and write mode of advanced features dedicated page (r/w)

Table 273. PAGE_RW register

EMB_ FUNC_LIR	PAGE_ WRITE	PAGE_ READ	0 ⁽¹⁾				
------------------	----------------	---------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 274. PAGE_RW register description

EMB_FUNC_LIR	Latched Interrupt mode for Embedded Functions. Default value: 0 (0: Embedded Functions interrupt request not latched; 1: Embedded Functions interrupt request latched)
PAGE_WRITE	Enable writes to the selected advanced features dedicated page. (1) Default value: 0 (1: enable; 0: disable)
PAGE_READ	Enable reads from the selected advanced features dedicated page. (1) Default value: 0 (1: enable; 0: disable)

^{1.} Page selected by PAGE_SEL[3:0] in PAGE_SEL (02h) register.

13.19 EMB_FUNC_FIFO_CFG (44h)

Embedded functions batching configuration register (r/w).

Table 275. EMB_FUNC_FIFO_CFG register

0(1)	PEDO_ FIFO_EN	0 ⁽¹⁾					
------	------------------	------------------	------------------	------------------	------------------	------------------	------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 276. EMB_FUNC_FIFO_CFG register description

PEDO_FIFO_EN	Enable FIFO batching of step counter values. Default value: 0

DS12814 - Rev 3 page 124/199

13.20 FSM_ENABLE_A (46h)

FSM enable register (r/w).

Table 277. FSM_ENABLE_A register

FSM8_EN FSM7_EN FSM6_EN FSM5_EN FSM4_EN FSM3_EN FSM2_EN FSM2_EN FSM5_EN FSM5_E	FSM8_EN	FSM7_EN	FSM6_EN	FSM5_EN	FSM4_EN	FSM3_EN	FSM2_EN	FSM1_EN
--	---------	---------	---------	---------	---------	---------	---------	---------

Table 278. FSM_ENABLE_A register description

FSM8_EN	FSM8 enable. Default value: 0 (0: FSM8 disabled; 1: FSM8 enabled)
FSM7_EN	FSM7 enable. Default value: 0 (0: FSM7 disabled; 1: FSM7 enabled)
FSM6_EN	FSM6 enable. Default value: 0 (0: FSM6 disabled; 1: FSM6 enabled)
FSM5_EN	FSM5 enable. Default value: 0 (0: FSM5 disabled; 1: FSM5 enabled)
FSM4_EN	FSM4 enable. Default value: 0 (0: FSM4 disabled; 1: FSM4 enabled)
FSM3_EN	FSM3 enable. Default value: 0 (0: FSM3 disabled; 1: FSM3 enabled)
FSM2_EN	FSM2 enable. Default value: 0 (0: FSM2 disabled; 1: FSM2 enabled)
FSM1_EN	FSM1 enable. Default value: 0 (0: FSM1 disabled; 1: FSM1 enabled)

13.21 FSM_ENABLE_B (47h)

FSM enable register (r/w).

Table 279. FSM_ENABLE_B register

		FSM16_EN	FSM15_EN	FSM14_EN	FSM13_EN	FSM12_EN	FSM11_EN	FSM10_EN	FSM9_EN
--	--	----------	----------	----------	----------	----------	----------	----------	---------

Table 280. FSM_ENABLE_B register description

FSM16 EN	FSM16 enable. Default value: 0 (0: FSM16 disabled; 1: FSM16 enabled)
T SWITO_LIV	1 SW10 Grabie. Default value. 0 (0.1 SW10 disabled, 1.1 SW10 Grabied)
FSM15_EN	FSM15 enable. Default value: 0 (0: FSM15 disabled; 1: FSM15 enabled)
FSM14_EN	FSM14 enable. Default value: 0 (0: FSM14 disabled; 1: FSM14 enabled)
FSM13_EN	FSM13 enable. Default value: 0 (0: FSM13 disabled; 1: FSM13 enabled)
FSM12_EN	FSM12 enable. Default value: 0 (0: FSM12 disabled; 1: FSM12 enabled)
FSM11_EN	FSM11 enable. Default value: 0 (0: FSM11 disabled; 1: FSM11 enabled)
FSM10_EN	FSM10 enable. Default value: 0 (0: FSM10 disabled; 1: FSM10 enabled)
FSM9_EN	FSM9 enable. Default value: 0 (0: FSM9 disabled; 1: FSM9 enabled)

DS12814 - Rev 3 page 125/199

13.22 FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)

FSM long counter status register (r/w).

Long counter value is an unsigned integer value (16-bit format); this value can be reset using the LC_CLEAR bit in the FSM_LONG_COUNTER_CLEAR (4Ah) register.

Table 281. FSM_LONG_COUNTER_L register

FSM_LC_7 FSM_LC_	FSM_LC_5	FSM_LC_4	FSM_LC_3	FSM_LC_2	FSM_LC_1	FSM_LC_0
------------------	----------	----------	----------	----------	----------	----------

Table 282. FSM_LONG_COUNTER_L register description

FSM LC [7:0]	Long counter current value (LSbyte). Default value: 00000000
. oo_[o]	zong obantor barront raido (zob) toji zonadit raidor bobbobb

Table 283. FSM_LONG_COUNTER_H register

FSM LC 15	FSM LC 14	FSM LC 13	FSM LC 12	FSM LC 11	FSM LC 10	FSM LC 9	FSM LC 8

Table 284. FSM_LONG_COUNTER_H register description

FSM_LC_[15:8] Long counter current value (MSbyte). Default value: 00000000
--

13.23 FSM_LONG_COUNTER_CLEAR (4Ah)

FSM long counter reset register (r/w).

Table 285. FSM_LONG_COUNTER_CLEAR register

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 286. FSM_LONG_COUNTER_CLEAR register description

FSM_LC_CLEARED	This read-only bit is automatically set to 1 when the long counter reset is done. Default value: 0
FSM_LC_CLEAR	Clear FSM long counter value. Default value: 0

DS12814 - Rev 3 page 126/199

13.24 FSM_OUTS1 (4Ch)

FSM1 output register (r).

Table 287. FSM_OUTS1 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 288. FSM_OUTS1 register description

P_X	FSM1 output: positive event detected on the X-axis.
_^	(0: event not detected; 1: event detected)
N X	FSM1 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM1 output: positive event detected on the Y-axis.
' _ '	(0: event not detected; 1: event detected)
N_Y	FSM1 output: negative event detected on the Y-axis.
IN_I	(0: event not detected; 1: event detected)
P_Z	FSM1 output: positive event detected on the Z-axis.
\ \ _Z	(0: event not detected; 1: event detected)
N_Z	FSM1 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM1 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected
N_V	FSM1 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 127/199

13.25 FSM_OUTS2 (4Dh)

FSM2 output register (r).

Table 289. FSM_OUTS2 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 290. FSM_OUTS2 register description

P_X	FSM2 output: positive event detected on the X-axis.
_^	(0: event not detected; 1: event detected)
N X	FSM2 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM2 output: positive event detected on the Y-axis.
F_1	(0: event not detected; 1: event detected)
N. V	FSM2 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
D 7	FSM2 output: positive event detected on the Z-axis.
P_Z	(0: event not detected; 1: event detected)
N_Z	FSM2 output: negative event detected on the Z-axis.
IN_Z	(0: event not detected; 1: event detected)
P_V	FSM2 output: positive event detected on the vector.
_ v	(0: event not detected; 1: event detected
N_V	FSM2 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 128/199

13.26 FSM_OUTS3 (4Eh)

FSM3 output register (r).

Table 291. FSM_OUTS3 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 292. FSM_OUTS3 register description

P_X	FSM3 output: positive event detected on the X-axis.
r_^	(0: event not detected; 1: event detected)
N X	FSM3 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM3 output: positive event detected on the Y-axis.
F_ 1	(0: event not detected; 1: event detected)
N. V	FSM3 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
D 7	FSM3 output: positive event detected on the Z-axis.
P_Z	(0: event not detected; 1: event detected)
N_Z	FSM3 output: negative event detected on the Z-axis.
IN_Z	(0: event not detected; 1: event detected)
P_V	FSM3 output: positive event detected on the vector.
_ v	(0: event not detected; 1: event detected
N_V	FSM3 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 129/199

13.27 FSM_OUTS4 (4Fh)

FSM4 output register (r).

Table 293. FSM_OUTS4 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 294. FSM_OUTS4 register description

P_X	FSM4 output: positive event detected on the X-axis.
_^	(0: event not detected; 1: event detected)
N X	FSM4 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM4 output: positive event detected on the Y-axis.
' _ '	(0: event not detected; 1: event detected)
N_Y	FSM4 output: negative event detected on the Y-axis.
IN_1	(0: event not detected; 1: event detected)
P_Z	FSM4 output: positive event detected on the Z-axis.
	(0: event not detected; 1: event detected)
N_Z	FSM4 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM4 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected
N_V	FSM4 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 130/199

13.28 FSM_OUTS5 (50h)

FSM5 output register (r).

Table 295. FSM_OUTS5 register

РΧ	NΧ	PΥ	NY	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 296. FSM_OUTS5 register description

P_X	FSM5 output: positive event detected on the X-axis.
_^	(0: event not detected; 1: event detected)
N X	FSM5 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM5 output: positive event detected on the Y-axis.
- I	(0: event not detected; 1: event detected)
N V	FSM5 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
P_Z	FSM5 output: positive event detected on the Z-axis.
\ \ _Z	(0: event not detected; 1: event detected)
N_Z	FSM5 output: negative event detected on the Z-axis.
IN_Z	(0: event not detected; 1: event detected)
P_V	FSM5 output: positive event detected on the vector.
_ v	(0: event not detected; 1: event detected
N_V	FSM5 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 131/199

13.29 FSM_OUTS6 (51h)

FSM6 output register (r).

Table 297. FSM_OUTS6 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 298. FSM_OUTS6 register description

D V	FSM6 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
N_X	FSM6 output: negative event detected on the X-axis.
IN_A	(0: event not detected; 1: event detected)
P_Y	FSM6 output: positive event detected on the Y-axis.
- I	(0: event not detected; 1: event detected)
NI V	FSM6 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
D 7	FSM6 output: positive event detected on the Z-axis.
P_Z	(0: event not detected; 1: event detected)
N_Z	FSM6 output: negative event detected on the Z-axis.
IN_Z	(0: event not detected; 1: event detected)
P_V	FSM6 output: positive event detected on the vector.
' _ v	(0: event not detected; 1: event detected
NL V/	FSM6 output: negative event detected on the vector.
N_V	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 132/199

13.30 FSM_OUTS7 (52h)

FSM7 output register (r).

Table 299. FSM_OUTS7 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 300. FSM_OUTS7 register description

D V	FSM7 output: positive event detected on the X-axis.
P_X	(0: event not detected; 1: event detected)
N_X	FSM7 output: negative event detected on the X-axis.
IN_A	(0: event not detected; 1: event detected)
P_Y	FSM7 output: positive event detected on the Y-axis.
r_'	(0: event not detected; 1: event detected)
N. V	FSM7 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
D 7	FSM7 output: positive event detected on the Z-axis.
P_Z	(0: event not detected; 1: event detected)
N_Z	FSM7 output: negative event detected on the Z-axis.
IN_Z	(0: event not detected; 1: event detected)
P_V	FSM7 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected
N. V	FSM7 output: negative event detected on the vector.
N_V	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 133/199

13.31 FSM_OUTS8 (53h)

FSM8 output register (r).

Table 301. FSM_OUTS8 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 302. FSM_OUTS8 register description

P_X	FSM8 output: positive event detected on the X-axis.
r_^	(0: event not detected; 1: event detected)
N X	FSM8 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM8 output: positive event detected on the Y-axis.
F_ 1	(0: event not detected; 1: event detected)
N. V	FSM8 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
D 7	FSM8 output: positive event detected on the Z-axis.
P_Z	(0: event not detected; 1: event detected)
N_Z	FSM8 output: negative event detected on the Z-axis.
IN_Z	(0: event not detected; 1: event detected)
P_V	FSM8 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected
N_V	FSM8 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 134/199

13.32 FSM_OUTS9 (54h)

FSM9 output register (r).

Table 303. FSM_OUTS9 register

РΧ	NΧ	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 304. FSM_OUTS9 register description

P_X	FSM9 output: positive event detected on the X-axis.
_^	(0: event not detected; 1: event detected)
N X	FSM9 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM9 output: positive event detected on the Y-axis.
- '	(0: event not detected; 1: event detected)
N. V	FSM9 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
D 7	FSM9 output: positive event detected on the Z-axis.
P_Z	(0: event not detected; 1: event detected)
N_Z	FSM9 output: negative event detected on the Z-axis.
IN_Z	(0: event not detected; 1: event detected)
P_V	FSM9 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected
N_V	FSM9 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 135/199

13.33 FSM_OUTS10 (55h)

FSM10 output register (r).

Table 305. FSM_OUTS10 register

РΧ	NΧ	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 306. FSM_OUTS10 register description

P_X	FSM10 output: positive event detected on the X-axis.
	(0: event not detected; 1: event detected)
N_X	FSM10 output: negative event detected on the X-axis.
IN_A	(0: event not detected; 1: event detected)
P_Y	FSM10 output: positive event detected on the Y-axis.
'-'	(0: event not detected; 1: event detected)
NI V	FSM10 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
P_Z	FSM10 output: positive event detected on the Z-axis.
	(0: event not detected; 1: event detected)
N_Z	FSM10 output: negative event detected on the Z-axis.
IV_Z	(0: event not detected; 1: event detected)
P_V	FSM10 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected
N_V	FSM10 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 136/199

13.34 FSM_OUTS11 (56h)

FSM11 output register (r).

Table 307. FSM_OUTS11 register

РΧ	NΧ	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 308. FSM_OUTS11 register description

P_X	FSM11 output: positive event detected on the X-axis.
\ _X	(0: event not detected; 1: event detected)
N_X	FSM11 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM11 output: positive event detected on the Y-axis.
'-'	(0: event not detected; 1: event detected)
N_Y	FSM11 output: negative event detected on the Y-axis.
IN_I	(0: event not detected; 1: event detected)
P_Z	FSM11 output: positive event detected on the Z-axis.
	(0: event not detected; 1: event detected)
N_Z	FSM11 output: negative event detected on the Z-axis.
14_2	(0: event not detected; 1: event detected)
P_V	FSM11 output: positive event detected on the vector.
	(0: event not detected; 1: event detected
N_V	FSM11 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 137/199

13.35 FSM_OUTS12 (57h)

FSM12 output register (r).

Table 309. FSM_OUTS12 register

РΧ	NΧ	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 310. FSM_OUTS12 register description

P_X	FSM12 output: positive event detected on the X-axis.
	(0: event not detected; 1: event detected)
N_X	FSM12 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM12 output: positive event detected on the Y-axis.
'-'	(0: event not detected; 1: event detected)
N_Y	FSM12 output: negative event detected on the Y-axis.
IN_1	(0: event not detected; 1: event detected)
P_Z	FSM12 output: positive event detected on the Z-axis.
1 _2	(0: event not detected; 1: event detected)
N_Z	FSM12 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM12 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected
N_V	FSM12 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 138/199

13.36 FSM_OUTS13 (58h)

FSM13 output register (r).

Table 311. FSM_OUTS13 register

РΧ	N_X	PΥ	N_Y	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 312. FSM_OUTS13 register description

P_X	FSM13 output: positive event detected on the X-axis.
	(0: event not detected; 1: event detected)
N_X	FSM13 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM13 output: positive event detected on the Y-axis.
'-'	(0: event not detected; 1: event detected)
N_Y	FSM13 output: negative event detected on the Y-axis.
IN_1	(0: event not detected; 1: event detected)
P_Z	FSM13 output: positive event detected on the Z-axis.
1 _2	(0: event not detected; 1: event detected)
N_Z	FSM13 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM13 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected
N_V	FSM13 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 139/199

13.37 FSM_OUTS14 (59h)

FSM14 output register (r).

Table 313. FSM_OUTS14 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 314. FSM_OUTS14 register description

P_X FSM14 output: positive event detected on the X-axis. (0: event not detected; 1: event detected) N_X FSM14 output: negative event detected on the X-axis. (0: event not detected; 1: event detected) P_Y FSM14 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected) N_Y FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected) P_Z FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected) N_Z FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected) P_V FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) P_V FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected P_V FSM14 output: negative event detected on the vector. (0: event not detected; 1: event detected)		
FSM14 output: negative event detected on the X-axis. (0: event not detected; 1: event detected) P_Y FSM14 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected) N_Y FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected FSM14 output: negative event detected FSM14 output: negative event detected	P_X	, .
N_X (0: event not detected; 1: event detected) P_Y FSM14 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected) N_Y FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected) N_Z FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected FSM14 output: negative event detected		(U: event not detected; 1: event detected)
(0: event not detected; 1: event detected) P_Y FSM14 output: positive event detected on the Y-axis. (0: event not detected; 1: event detected) N_Y FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected) FSM14 output: positive event detected FSM14 output: negative event detected FSM14 output: negative event detected FSM14 output: negative event detected	N X	FSM14 output: negative event detected on the X-axis.
P_Y (0: event not detected; 1: event detected) N_Y FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: negative event detected) FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected FSM14 output: negative event detected on the vector.	N_X	(0: event not detected; 1: event detected)
(0: event not detected; 1: event detected) FSM14 output: negative event detected on the Y-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected) FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected FSM14 output: negative event detected on the vector.	D V	FSM14 output: positive event detected on the Y-axis.
N_Y (0: event not detected; 1: event detected) P_Z FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected FSM14 output: negative event detected on the vector.	'-'	(0: event not detected; 1: event detected)
(0: event not detected; 1: event detected) FSM14 output: positive event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected FSM14 output: negative event detected on the vector.	N V	FSM14 output: negative event detected on the Y-axis.
P_Z (0: event not detected; 1: event detected) N_Z FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected FSM14 output: negative event detected on the vector.	IN_1	(0: event not detected; 1: event detected)
(0: event not detected; 1: event detected) P_V FSM14 output: negative event detected on the Z-axis. (0: event not detected; 1: event detected) FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected FSM14 output: negative event detected on the vector.	D 7	FSM14 output: positive event detected on the Z-axis.
N_Z (0: event not detected; 1: event detected) P_V FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected on the vector.	' _ ²	(0: event not detected; 1: event detected)
(0: event not detected; 1: event detected) P_V FSM14 output: positive event detected on the vector. (0: event not detected; 1: event detected FSM14 output: negative event detected on the vector.	N 7	FSM14 output: negative event detected on the Z-axis.
P_V (0: event not detected; 1: event detected FSM14 output: negative event detected on the vector.	111_2	(0: event not detected; 1: event detected)
(0: event not detected; 1: event detected FSM14 output: negative event detected on the vector.	P V	FSM14 output: positive event detected on the vector.
$N_{\perp}V$	' _ v	(0: event not detected; 1: event detected
(0: event not detected; 1: event detected)	N V	FSM14 output: negative event detected on the vector.
		(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 140/199

13.38 FSM_OUTS15 (5Ah)

FSM15 output register (r).

Table 315. FSM_OUTS15 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 316. FSM_OUTS15 register description

P_X	FSM15 output: positive event detected on the X-axis.
	(0: event not detected; 1: event detected)
N_X	FSM15 output: negative event detected on the X-axis.
IN_X	(0: event not detected; 1: event detected)
P_Y	FSM15 output: positive event detected on the Y-axis.
'-'	(0: event not detected; 1: event detected)
N_Y	FSM15 output: negative event detected on the Y-axis.
IN_1	(0: event not detected; 1: event detected)
P_Z	FSM15 output: positive event detected on the Z-axis.
1 _2	(0: event not detected; 1: event detected)
N_Z	FSM15 output: negative event detected on the Z-axis.
11_2	(0: event not detected; 1: event detected)
P_V	FSM15 output: positive event detected on the vector.
' _ '	(0: event not detected; 1: event detected
N_V	FSM15 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 141/199

13.39 FSM_OUTS16 (5Bh)

FSM16 output register (r).

Table 317. FSM_OUTS16 register

РΧ	N X	PΥ	ΝΥ	PΖ	ΝZ	PV	ΝV
_	_	_	_	_	_	_	_

Table 318. FSM_OUTS16 register description

P_X	FSM16 output: positive event detected on the X-axis.
	(0: event not detected; 1: event detected)
N_X	FSM16 output: negative event detected on the X-axis.
N_X	(0: event not detected; 1: event detected)
P_Y	FSM16 output: positive event detected on the Y-axis.
- I	(0: event not detected; 1: event detected)
NI V	FSM16 output: negative event detected on the Y-axis.
N_Y	(0: event not detected; 1: event detected)
P_Z	FSM16 output: positive event detected on the Z-axis.
	(0: event not detected; 1: event detected)
N_Z	FSM16 output: negative event detected on the Z-axis.
IN_Z	(0: event not detected; 1: event detected)
P_V	FSM16 output: positive event detected on the vector.
' _v	(0: event not detected; 1: event detected
N_V	FSM16 output: negative event detected on the vector.
	(0: event not detected; 1: event detected)

DS12814 - Rev 3 page 142/199

13.40 EMB_FUNC_ODR_CFG_B (5Fh)

Finite State Machine output data rate configuration register (r/w).

Table 319. EMB_FUNC_ODR_CFG_B register

	0 ⁽¹⁾	1(2)	0 ⁽¹⁾	FSM_ODR1	FSM_ODR0	0(1)	1 ⁽²⁾	1 ⁽²⁾
--	------------------	------	------------------	----------	----------	------	------------------	------------------

- 1. This bit must be set to '0' for the correct operation of the device.
- 2. This bit must be set to '1' for the correct operation of the device.

Table 320. EMB_FUNC_ODR_CFG_B register description

	Finite State Machine ODR configuration:
	(00: 12.5 Hz;
FSM_ODR[1:0]	01: 26 Hz (default);
	10: 52 Hz;
	11: 104 Hz)

13.41 EMB_FUNC_ODR_CFG_C (60h)

Machine Learning Core output data rate configuration register (r/w).

Table 321. EMB_FUNC_ODR_CFG_C register

0 ⁽¹⁾	0 ⁽¹⁾	MLC_ODR1	MLC_ODR0	0 ⁽¹⁾	1 ⁽²⁾	0 ⁽¹⁾	1 ⁽²⁾
------------------	------------------	----------	----------	------------------	-------------------------	------------------	-------------------------

- 1. This bit must be set to '0' for the correct operation of the device.
- 2. This bit must be set to '1' for the correct operation of the device.

Table 322. EMB_FUNC_ODR_CFG_C register description

	Machine Learning Core ODR configuration:
	(00: 12.5 Hz;
MLC_ODR[1:0]	01: 26 Hz (default);
	10: 52 Hz;
	11: 104 Hz)

DS12814 - Rev 3 page 143/199

13.42 STEP_COUNTER_L (62h) and STEP_COUNTER_H (63h)

Step counter output register (r).

Table 323. STEP_COUNTER_L register

STEP 7	STEP 6	STEP 5	STEP 4	STEP 3	STEP 2	STEP 1	STEP 0
0121_/	0121_0	0121_0	0121_4	0121_0	0121_2	0121_1	0121_0

Table 324. STEP_COUNTER_L register description

STEP [7:0] Step counter output (LSbyte)	
---	--

Table 325. STEP_COUNTER_H register

STEP_15 STEP_14 STEP_13 STEP_12 STEP_11 STEP_10 STEP_9 STE
--

Table 326. STEP_COUNTER_H register description

STEP [15:8]	Step counter output (MSbyte)
0.5.	otop oddition odtpat (mobyto)

13.43 EMB_FUNC_SRC (64h)

Embedded function source register (r/w)

Table 327. EMB_FUNC_SRC register

PEDO RST_S	ĒP 0	STEP_ DETECTED	STEP_COUNT _DELTA_IA	STEP_ OVERFLOW	STEPCOUNTER _BIT_SET	0	0	
---------------	------	-------------------	-------------------------	-------------------	-------------------------	---	---	--

Table 328. EMB_FUNC_SRC register description

PEDO RST STEP	Reset pedometer step counter. Read/write bit.				
FEDO_K31_31EF	(0: disabled; 1: enabled)				
STED DETECTED	Step detector event detection status. Read-only bit.				
STEP_DETECTED	(0: step detection event not detected; 1: step detection event detected)				
	Pedometer step recognition on delta time status. Read-only bit.				
STEP_COUNT_DELTA_IA	(0: no step recognized during delta time;				
	1: at least one step recognized during delta time)				
STED OVEDELOW	Step counter overflow status. Read-only bit.				
STEP_OVERFLOW	(0: step counter value < 2 ¹⁶ ; 1: step counter value reached 2 ¹⁶)				
STEPCOUNTER_BIT_SET	This bit is equal to 1 when the step count is increased. If a timer period is programmed in PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h) embedded advanced features (page 1) registers, this bit is kept to 0.				
	Read-only bit.				

DS12814 - Rev 3 page 144/199

13.44 EMB_FUNC_INIT_A (66h)

Embedded functions initialization register (r/w)

Table 329. EMB_FUNC_INIT_A register

0 ⁽¹⁾	0 ⁽¹⁾	SIG_MOT _INIT	TILT_INIT	STEP_DET _INIT	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	
------------------	------------------	------------------	-----------	-------------------	------------------	------------------	------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 330. EMB_FUNC_INIT_A register description

SIG_MOT_INIT	Significant Motion Detection algorithm initialization request. Default value: 0
TILT_INIT	Tilt algorithm initialization request. Default value: 0
STEP_DET_INIT	Pedometer Step Counter/Detector algorithm initialization request. Default value: 0

13.45 EMB_FUNC_INIT_B (67h)

Embedded functions initialization register (r/w)

Table 331. EMB_FUNC_INIT_B register

	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	MLC_INIT	FIFO_ COMPR_INIT	0 ⁽¹⁾	0 ⁽¹⁾	FSM_INIT	
--	------------------	------------------	------------------	----------	---------------------	------------------	------------------	----------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 332. EMB_FUNC_INIT_B register description

MLC_INIT	Machine Learning Core initialization request. Default value: 0		
FIFO_COMPR_INIT	FIFO compression feature initialization request. Default value: 0		
FSM_INIT	FSM initialization request. Default value: 0		

13.46 MLC0_SRC (70h)

Machine Learning Core source register (r)

Table 333. MLC0_SRC register

| MLC0_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 334. MLC0_SRC register description

MLC0_SRC_[7:0]	Output value of MLC0 decision tree

DS12814 - Rev 3 page 145/199

13.47 MLC1_SRC (71h)

Machine Learning Core source register (r)

Table 335. MLC1_SRC register

MLC1_	MLC1_	MLC1_	MLC1_	MLC1_	MLCS1_	MLC1_	MLC1_
SRC_7	SRC_6	SRC_5	SRC_4	SRC_3	SRC_2	SRC_1	SRC_0

Table 336. MLC1_SRC register description

MLC1 SRC [7:0]	Output value of MLC1 decision tree

13.48 MLC2_SRC (72h)

Machine Learning Core source register (r)

Table 337. MLC2_SRC register

| MLC2_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 338. MLC2_SRC register description

MLC2_SRC_[7:0]	Output value of MLC2 decision tree	

13.49 MLC3_SRC (73h)

Machine Learning Core source register (r)

Table 339. MLC3_SRC register

| MLC3_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 340. MLC3_SRC register description

DS12814 - Rev 3 page 146/199

13.50 MLC4_SRC (74h)

Machine Learning Core source register (r)

Table 341. MLC4_SRC register

| MLC4_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 342. MLC4_SRC register description

MLC4 SRC [7:0]	Output value of MLC4 decision tree

13.51 MLC5_SRC (75h)

Machine Learning Core source register (r)

Table 343. MLC5_SRC register

| MLC5_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 344. MLC5_SRC register description

M	ILC5_SRC_[7:0]	Output value of MLC5 decision tree	

13.52 MLC6_SRC (76h)

Machine Learning Core source register (r)

Table 345. MLC6_SRC register

| MLC6_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 346. MLC6_SRC register description

|--|

13.53 MLC7_SRC (77h)

Machine Learning Core source register (r)

Table 347. MLC7_SRC register

| MLC7_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SRC_7 | SRC_6 | SRC_5 | SRC_4 | SRC_3 | SRC_2 | SRC_1 | SRC_0 |

Table 348. MLC7_SRC register description

MLC7_SRC_[7:0]	Output value of MLC7 decision tree

DS12814 - Rev 3 page 147/199

14 Embedded advanced features pages

The table given below provides a list of the registers for the embedded advanced features page 0. These registers are accessible when PAGE_SEL[3:0] are set to 0000 in PAGE_SEL (02h).

Table 349. Register address map - embedded advanced features page 0

Nome	Torre	Reg	ister address	Default	
Name	Туре	Hex	Binary	Default	Comment
MAG_SENSITIVITY_L	r/w	ВА	10111010	00100100	
MAG_SENSITIVITY_H	r/w	BB	10111011	00010110	
MAG_OFFX_L	r/w	C0	11000000	00000000	
MAG_OFFX_H	r/w	C1	11000001	00000000	
MAG_OFFY_L	r/w	C2	11000010	00000000	
MAG_OFFY_H	r/w	C3	11000011	00000000	
MAG_OFFZ_L	r/w	C4	11000100	00000000	
MAG_OFFZ_H	r/w	C5	11000101	00000000	
MAG_SI_XX_L	r/w	C6	11000110	00000000	
MAG_SI_XX_H	r/w	C7	11000111	00111100	
MAG_SI_XY_L	r/w	C8	11001000	00000000	
MAG_SI_XY_H	r/w	C9	11001001	00000000	
MAG_SI_XZ_L	r/w	CA	11001010	00000000	
MAG_SI_XZ_H	r/w	СВ	11001011	00000000	
MAG_SI_YY_L	r/w	СС	11001100	00000000	
MAG_SI_YY_H	r/w	CD	11001101	00111100	
MAG_SI_YZ_L	r/w	CE	11001110	00000000	
MAG_SI_YZ_H	r/w	CF	11001111	00000000	
MAG_SI_ZZ_L	r/w	D0	11010000	00000000	
MAG_SI_ZZ_H	r/w	D1	11010001	00111100	
MAG_CFG_A	r/w	D4	11010100	00000101	
MAG_CFG_B	r/w	D5	11010101	0000010	

The following table provides a list of the registers for the embedded advanced features page 1. These registers are accessible when PAGE_SEL[3:0] are set to 0001 in PAGE_SEL (02h).

Table 350. Register address map - embedded advanced features page 1

Name	Type Regis		ister address	Default	Comment
Name	Type	Hex	Binary	Delault	Comment
FSM_LC_TIMEOUT_L	r/w	7A	01111010	00000000	
FSM_LC_TIMEOUT_H	r/w	7B	01111011	00000000	
FSM_PROGRAMS	r/w	7C	01111100	00000000	

DS12814 - Rev 3 page 148/199

Name	Type	Reg	ister address	Default	Commont
Name	Туре	Hex	Binary	Delault	Comment
FSM_START_ADD_L	r/w	7E	01111110	00000000	
FSM_START_ADD_H	r/w	7F	01111111	00000000	
PEDO_CMD_REG	r/w	83	10000011	00000000	
PEDO_DEB_STEPS_CONF	r/w	84	10000100	00001010	
PEDO_SC_DELTAT_L	r/w	D0	11010000	00000000	
PEDO_SC_DELTAT_H	r/w	D1	11010001	00000000	
MLC_MAG_SENSITIVITY_L	r/w	E8	11101000	0000000	
MLC_MAG_SENSITIVITY_H	r/w	E9	11101001	00111100	

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

Write procedure example: write value 06h register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

1.	Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)	// Enable access to embedded functions registers
2.	Write bit PAGE_WRITE = 1 in PAGE_RW (17h) register	// Select write operation mode
3.	Write 0001 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)	// Select page 1
4.	Write 84h in PAGE_ADDR register (08h)	// Set address
5.	Write 06h in PAGE_DATA register (09h)	// Set value to be written
6.	Write bit PAGE_WRITE = 0 in PAGE_RW (17h) register	// Write operation disabled
7.	Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)	// Disable access to embedded functions registers

Read procedure example: read value of register at address 84h (PEDO_DEB_STEPS_CONF) in Page 1

1.	Write bit FUNC_CFG_EN = 1 in FUNC_CFG_ACCESS (01h)	// Enable access to embedded functions registers
2.	Write bit PAGE_READ = 1 in PAGE_RW (17h) register	// Select read operation mode
3.	Write 0001 in PAGE_SEL[3:0] field of register PAGE_SEL (02h)	// Select page 1
4.	Write 84h in PAGE_ADDR register (08h)	// Set address
5.	Read value of PAGE_DATA register (09h)	// Get register value
6.	Write bit PAGE_READ = 0 in PAGE_RW (17h) register	// Read operation disabled
7.	Write bit FUNC_CFG_EN = 0 in FUNC_CFG_ACCESS (01h)	// Disable access to embedded functions registers

Note:

Steps 1 and 2 of both procedures are intended to be performed at the beginning of the procedure. Steps 6 and 7 of both procedures are intended to be performed at the end of the procedure. If the procedure involves multiple operations, only steps 3, 4 and 5 must be repeated for each operation. If, in particular, the multiple operations involve consecutive registers, only step 5 can be performed.

DS12814 - Rev 3 page 149/199

15 Embedded advanced features register description

15.1 Page 0 - Embedded advanced features registers

15.1.1 MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)

External magnetometer sensitivity value register for the Finite State Machine (r/w).

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Default value of MAG_SENS[15:0] is 0x1624, corresponding to 0.0015 gauss/LSB.

Table 351. MAG_SENSITIVITY_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| SENS_7 | SENS_6 | SENS_5 | SENS_4 | SENS_3 | SENS_2 | SENS_1 | SENS_0 |

Table 352. MAG_SENSITIVITY_L register description

MAG_SENS_[7:0]	External magnetometer sensitivity (LSbyte). Default value: 00100100	
----------------	---	--

Table 353. MAG_SENSITIVITY_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
SENS_15	SENS_14	SENS_13	SENS_12	SENS_11	SENS_10	SENS_9	SENS_8

Table 354. MAG_SENSITIVITY_H register description

DS12814 - Rev 3 page 150/199

15.1.2 MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)

Offset for X-axis hard-iron compensation register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 355. MAG_OFFX_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OFFX_7 | OFFX_6 | OFFX_5 | OFFX_4 | OFFX_3 | OFFX_2 | OFFX_1 | OFFX_0 |

Table 356. MAG_OFFX_L register description

MAG_OFFX_[7:0] Offset for X-axis hard-iron compensation (LSbyte). Default value: 00000000	
---	--

Table 357. MAG_OFFX_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
OFFX_15	OFFX_14	OFFX_13	OFFX_12	OFFX_11	OFFX_10	OFFX_9	OFFX_8

Table 358. MAG_OFFX_H register description

MAG_OFFX_[15:8]	Offset for X-axis hard-iron compensation (MSbyte). Default value: 00000000
-----------------	--

15.1.3 MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)

Offset for Y-axis hard-iron compensation register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 359. MAG_OFFY_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OFFY_7 | OFFY_6 | OFFY_5 | OFFY_4 | OFFY_3 | OFFY_2 | OFFY_1 | OFFY_0 |

Table 360. MAG_OFFY_L register description

MAG_OFFY_[7:0] Offset for Y-axis hard-iron compensation (LSbyte). Default value: 00000000	MAG_OFFY_[7:0]
---	----------------

Table 361. MAG_OFFY_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
OFFY_15	OFFY_14	OFFY_13	OFFY_12	OFFY_11	OFFY_10	OFFY_9	OFFY_8

Table 362. MAG_OFFY_H register description

DS12814 - Rev 3 page 151/199

15.1.4 MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)

Offset for Z-axis hard-iron compensation register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 363. MAG_OFFZ_L register

| MAG_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| OFFZ_7 | OFFZ_6 | OFFZ_5 | OFFZ_4 | OFFZ_3 | OFFZ_2 | OFFZ_1 | OFFZ_0 |

Table 364. MAG_OFFZ_L register description

MAG_OFFZ_[7:0] Offset for Z-axis hard-iron compensation (LSbyte), Default value: 00000000	OFFZ [7:0]	Offset for Z-axis hard-iron compensation (LSbyte). Default value: 00000000
---	------------	--

Table 365. MAG_OFFZ_H register

MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_	MAG_
OFFZ_15	OFFZ_14	OFFZ_13	OFFZ_12	OFFZ_11	OFFZ_10	OFFZ_9	OFFZ_8

Table 366. MAG_OFFZ_H register description

MAG_OFFZ_[15:8]	Offset for Z-axis hard-iron compensation (MSbyte). Default value: 00000000
-----------------	--

15.1.5 MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 367. MAG_SI_XX_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XX_7 | XX_6 | XX_5 | XX_4 | XX_3 | XX_2 | XX_1 | XX_0 |

Table 368. MAG_SI_XX_L register description

MAG_SI_XX_[7:0] Soft-iron	correction row1 col1 coefficient (LSbyte). Default value: 00000000
---------------------------	--

Table 369. MAG_SI_XX_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XX_15 | XX_14 | XX_13 | XX_12 | XX_11 | XX_10 | XX_9 | XX_8 |

Table 370. MAG_SI_XX_H register description

MAG_SI_XX_[15:8] Soft-iron correction row1 col1 coefficient	ient (MSbyte). Default value: 00111100
---	--

DS12814 - Rev 3 page 152/199

15.1.6 MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 371. MAG_SI_XY_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XY_7 | XY_6 | XY_5 | XY_4 | XY_3 | XY_2 | XY_1 | XY_0 |

Table 372. MAG_SI_XY_L register description

MAG_SI_XY_[7:0] Soft-iron correction row1 col2 (and row2 col1) coefficient (LSbyte). Default value: 00000000

Table 373. MAG_SI_XY_H register

MAG_SI_								
XY_15	XY_14	XY_13	XY_12	XY_11	XY_10	XY_9	XY_8	

Table 374. MAG_SI_XY_H register description

MAG_SI_XY_[15:8] Soft-iron correction row1 col2 (and row2 col1) coefficient (MSbyte). Default value: 00000000

15.1.7 MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 375. MAG_SI_XZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XZ_7 | XZ_6 | XZ_5 | XZ_4 | XZ_3 | XZ_2 | XZ_1 | XZ_0 |

Table 376. MAG_SI_XZ_L register description

MAG_SI_XZ_[7:0] Soft-iron correction row1 col3 (and row3 col1) coefficient (LSbyte). Default value: 00000000

Table 377. MAG_SI_XZ_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| XZ_15 | XZ_14 | XZ_13 | XZ_12 | XZ_11 | XZ_10 | XZ_9 | XZ_8 |

Table 378. MAG_SI_XZ_H register description

MAG_SI_XZ_[15:8] Soft-iron correction row1 col3 (and row3 col1) coefficient (MSbyte). Default value: 00000000

DS12814 - Rev 3 page 153/199

15.1.8 MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 379. MAG_SI_YY_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YY_7 | YY_6 | YY_5 | YY_4 | YY_3 | YY_2 | YY_1 | YY_0 |

Table 380. MAG_SI_YY_L register description

MAG SI YY [7:0] Soft-iron correction row2 col	coefficient (LSbyte). Default value: 00000000
---	---

Table 381. MAG_SI_YY_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YY_15 | YY_14 | YY_13 | YY_12 | YY_11 | YY_10 | YY_9 | YY_8 |

Table 382. MAG_SI_YY_H register description

MAG_SI_YY_[15:8]	Soft-iron correction row2 col2 coefficient (MSbyte). Default value: 00111100
------------------	--

15.1.9 MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 383. MAG_SI_YZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| YZ_7 | YZ_6 | YZ_5 | YZ_4 | YZ_3 | YZ_2 | YZ_1 | YZ_0 |

Table 384. MAG_SI_YZ_L register description

MAC SI VZ [7:0]	1	Soft-iron correction row2 col3 (and row3 col2) coefficient (LSbyte).
MAG_SI_YZ_[7:0]	J	Default value: 00000000

Table 385. MAG_SI_YZ_H register

MAG_SI_								
YZ_15	YZ_14	YZ_13	YZ_12	YZ_11	YZ_10	YZ_9	YZ_8	

Table 386. MAG_SI_YZ_H register description

MAG SI YZ [15:8]	Soft-iron correction row2 col3 (and row3 col2) coefficient (MSbyte).
WAG_31_12_[13.0]	Default value: 00000000

DS12814 - Rev 3 page 154/199

15.1.10 MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)

Soft-iron (3x3 symmetric) matrix correction register (r/w).

The value is expressed as half-precision floating-point format: SEEEEEFFFFFFFF

(S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits).

Table 387. MAG_SI_ZZ_L register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ZZ_7 | ZZ_6 | ZZ_5 | ZZ_4 | ZZ_3 | ZZ_2 | ZZ_1 | ZZ_0 |

Table 388. MAG_SI_ZZ_L register description

MAG_SI_ZZ_[7:0] Soft-iron correction row3 col3 coefficient (LSbyte). Default value: 00000000	MAG SI ZZ [7:0]	Soft-iron correction row3 col3 coefficient (LSbyte). Default value: 00000000
--	-----------------	--

Table 389. MAG_SI_ZZ_H register

| MAG_SI_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ZZ_15 | ZZ_14 | ZZ_13 | ZZ_12 | ZZ_11 | ZZ_10 | ZZ_9 | ZZ_8 |

Table 390. MAG_SI_ZZ_H register description

MAG_SI_ZZ_[15:8]	Soft-iron correction row3 col3 coefficient (MSbyte). Default value: 00111100	
------------------	--	--

DS12814 - Rev 3 page 155/199

15.1.11 MAG_CFG_A (D4h)

External magnetometer coordinates (Z and Y axes) rotation register (r/w).

Table 391. MAG_CFG_A register

0 ⁽¹⁾	MAG_Y_ AXIS2	MAG_Y_ AXIS1	MAG_Y_ AXIS0	0 ⁽¹⁾	MAG_Z_ AXIS2	MAG_Z_ AXIS1	MAG_Z_ AXIS0	
------------------	-----------------	-----------------	-----------------	------------------	-----------------	-----------------	-----------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 392. MAG_CFG_A description

	Magnetometer Y-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: Y = Y; (default)
	001: Y = -Y;
MAC V AVISION	010: Y = X;
MAG_Y_AXIS[2:0]	011: Y = -X;
	100: Y = -Z;
	101: Y = Z;
	Others: Y = Y)
	Magnetometer Z-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: Z = Y;
	001: Z = -Y;
MAC 7 AVISIS:01	010: Z = X;
MAG_Z_AXIS[2:0]	011: Z = -X;
	100: Z = -Z;
	101: Z = Z; (default)
	Others: Z = Y)

15.1.12 MAG_CFG_B (D5h)

External magnetometer coordinates (X-axis) rotation register (r/w).

Table 393. MAG_CFG_B register

0 ⁽¹⁾	MAG_X_ AXIS2	MAG_X_ AXIS1	MAG_X_ AXIS0				
------------------	------------------	------------------	------------------	------------------	-----------------	-----------------	-----------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 394. MAG_CFG_B description

	Magnetometer X-axis coordinates rotation (to be aligned to accelerometer/gyroscope axes orientation)
	(000: X = Y;
	001: X = -Y;
MAC V AVIOLO.	010: X = X; (default)
MAG_X_AXIS[2:0]	011: X = -X;
	100: X = -Z;
	101: X = Z;
	Others: X = Y)

DS12814 - Rev 3 page 156/199

15.2 Page1 - Embedded advanced features registers

15.2.1 FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)

FSM long counter timeout register (r/w).

The long counter timeout value is an unsigned integer value (16-bit format). When the long counter value reached this value, the FSM generates an interrupt.

Table 395. FSM_LC_TIMEOUT_L register

FSM_LC_ TIMEOUT7	FSM_LC_ TIMEOUT6	FSM_LC_ TIMEOUT5	FSM_LC_ TIMEOUT4	FSM_LC_ TIMEOUT3	FSM_LC_ TIMEOUT2	FSM_LC_ TIMEOUT1	FSM_LC_ TIMEOUT0	
THIVILOUTY	THINLOUTO	TIMECOTO	TIIVILOOTT	THINLOUTS	TIMEOUTZ	TIIVILOOTT	THVILOUTO	

Table 396. FSM_LC_TIMEOUT_L register description

FSM_LC_TIMEOUT[7:0]	FSM long counter timeout value (LSbyte). Default value: 00000000
---------------------	--

Table 397. FSM_LC_TIMEOUT_H register

FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_	FSM_LC_
TIMEOUT15	TIMEOUT14	TIMEOUT13	TIMEOUT12	TIMEOUT11	TIMEOUT10	TIMEOUT9	TIMEOUT8

Table 398. FSM_LC_TIMEOUT_H register description

FSM_LC_TIMEOUT[15:8]	FSM long counter timeout value (MSbyte). Default value: 00000000
----------------------	--

15.2.2 FSM_PROGRAMS (7Ch)

FSM number of programs register (r/w).

Table 399. FSM_PROGRAMS register

		FSM_N_ PROG7	FSM_N_ PROG6	FSM_N_ PROG5	FSM_N_ PROG4	FSM_N_ PROG3	FSM_N_ PROG2	FSM_N_ PROG1	FSM_N_ PROG0
--	--	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------	-----------------

Table 400. FSM_PROGRAMS register description

FSM N PROG[7:0]	Number of FSM programs; must be less than or equal to 16.
	Default value: 00000000

DS12814 - Rev 3 page 157/199

15.2.3 FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)

FSM start address register (r/w). First available address is 0x033C.

Table 401. FSM_START_ADD_L register

| FSM_ |
|--------|--------|--------|--------|--------|--------|--------|--------|
| START7 | START6 | START5 | START4 | START3 | START2 | START1 | START0 |

Table 402. FSM_START_ADD_L register description

FSM_START[7:0]	FSM start address value (LSbyte). Default value: 00000000
----------------	---

Table 403. FSM_START_ADD_H register

FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_	FSM_
START15	START14	START13	START12	START11	START10	START9	START8

Table 404. FSM_START_ADD_H register description

FSM_START[15:8]	FSM start address value (MSbyte). Default value: 00000000
-----------------	---

15.2.4 PEDO_CMD_REG (83h)

Pedometer configuration register (r/w)

Table 405. PEDO_CMD_REG register

	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	CARRY_ COUNT_EN	FP_ REJECTION_EN	0 ⁽¹⁾	AD_ DET_EN	
--	------------------	------------------	------------------	------------------	--------------------	---------------------	------------------	---------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 406. PEDO_CMD_REG register description

CARRY_COUNT_EN	Set when user wants to generate interrupt only on count overflow event.
FP_REJECTION_EN	Enables the false-positive rejection feature
AD_DET_EN	Enables the advanced detection feature.

15.2.5 PEDO_DEB_STEPS_CONF (84h)

Pedometer debounce configuration register (r/w)

Table 407. PEDO_DEB_STEPS_CONF register

| DEB_ |
|-------|-------|-------|-------|-------|-------|-------|-------|
| STEP7 | STEP6 | STEP5 | STEP4 | STEP3 | STEP2 | STEP1 | STEP0 |

Table 408. PEDO_DEB_STEPS_CONF register description

		Debounce threshold. Minimum number of steps to increment the step counter (debounce). Default value: 00001010
_	==	Depounce threshold. Minimum number of steps to increment the step counter (depounce). Detault value:
$\perp \nu$	EB STEPI7:01	
_	[]	00001010

DS12814 - Rev 3 page 158/199

15.2.6 PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h)

Time period register for step detection on delta time (r/w)

Table 409. PEDO_SC_DELTAT_L register

PD SC 7	PD SC 6	PD SC 5	PD SC 4	PD SC 3	PD SC 2	PD SC 1	PD SC 0
1 0_00_1	1 0000	1 0000	1 2_00_1	1 5_00_0	1 0 00_0	1 000_1	1 5_00_0

Table 410. PEDO_SC_DELTAT_H register

	PD_SC_15	PD_SC_14	PD_SC_13	PD_SC_12	PD_SC_11	PD_SC_10	PD_SC_9	PD_SC_8
--	----------	----------	----------	----------	----------	----------	---------	---------

Table 411. PEDO_SC_DELTAT_H/L register description

	PD_SC_[15:0]	Time period value (1LSB = 6.4 ms)
- 1	;	,

15.2.7 MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h)

External magnetometer sensitivity value register for the Machine Learning Core (r/w).

This register corresponds to the LSB-to-gauss conversion value of the external magnetometer sensor. The register value is expressed as half-precision floating-point format: SEEEEEFFFFFFFFFFFFFF (S: 1 sign bit; E: 5 exponent bits; F: 10 fraction bits). Default value of MLC_MAG_S_[15:0] is 0x3C00, corresponding to 1 gauss/LSB.

Table 412. MLC_MAG_SENSITIVITY_L register

| MLC_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| MAG_S_7 | MAG_S_6 | MAG_S_5 | MAG_S_4 | MAG_S_3 | MAG_S_2 | MAG_S_1 | MAG_S_0 |

Table 413. MLC_ MAG_SENSITIVITY_L register description

MLC_MAG_S_[7:0]	External magnetometer sensitivity (LSbyte). Default value: 00000000
-----------------	---

Table 414. MLC MAG SENSITIVITY H register

MLC_	MLC_	MLC_	MLC_	MLC_	MLC_	MLC_	MLC_
MAG_S_15	MAG_S_14	MAG_S_13	MAG_S_12	MAG_S_11	MAG_S_10	MAG_S_9	MAG_S_8

Table 415. MLC_MAG_SENSITIVITY_H register description

MLC MAG S [15:8]	External magnetometer sensitivity (MSbyte). Default value: 00111100	
MILC MAG S 113.01	External magnetometer sensitivity (iviopyte). Default value, 00 f f f 100	

DS12814 - Rev 3 page 159/199

16 Sensor hub register mapping

The table given below provides a list of the registers for the sensor hub functions available in the device and the corresponding addresses. The sensor hub registers are accessible when bit SHUB_REG_ACCESS is set to '1' in FUNC_CFG_ACCESS (01h).

Table 416. Register address map - sensor hub registers

Nome	Ŧ	Register address		Defects.	Commont	
Name	Туре	Hex Binary		- Default	Comment	
SENSOR_HUB_1	r	02	0000010	output		
SENSOR_HUB_2	r	03	00000011	output		
SENSOR_HUB_3	r	04	00000100	output		
SENSOR_HUB_4	r	05	00000101	output		
SENSOR_HUB_5	r	06	00000110	output		
SENSOR_HUB_6	r	07	00000111	output		
SENSOR_HUB_7	r	08	00001000	output		
SENSOR_HUB_8	r	09	00001001	output		
SENSOR_HUB_9	r	0A	00001010	output		
SENSOR_HUB_10	r	0B	00001011	output		
SENSOR_HUB_11	r	0C	00001100	output		
SENSOR_HUB_12	r	0D	00001101	output		
SENSOR_HUB_13	r	0E	00001110	output		
SENSOR_HUB_14	r	0F	00001111	output		
SENSOR_HUB_15	r	10	00010000	output		
SENSOR_HUB_16	r	11	00010001	output		
SENSOR_HUB_17	r	12	00010010	output		
SENSOR_HUB_18	r	13	00010011	output		
MASTER_CONFIG	rw	14	00010100	00000000		
SLV0_ADD	rw	15	00010101	00000000		
SLV0_SUBADD	rw	16	00010110	00000000		
SLV0_CONFIG	rw	17	0001 0111	00000000		
SLV1_ADD	rw	18	00011000	00000000		
SLV1_SUBADD	rw	19	00011001	00000000		
SLV1_CONFIG	rw	1A	00011010	00000000		
SLV2_ADD	rw	1B	00011011	00000000		
SLV2_SUBADD	rw	1C	00011100	00000000		
SLV2_CONFIG	rw	1D	00011101	00000000		
SLV3_ADD	rw	1E	00011110	00000000		
SLV3_SUBADD	rw	1F	00011111	00000000		
SLV3_CONFIG	rw	20	00100000	00000000		
DATAWRITE_SLV0	rw	21	00100001	00000000		
STATUS_MASTER	r	22	00100010	output		

DS12814 - Rev 3 page 160/199

Registers marked as Reserved must not be changed. Writing to those registers may cause permanent damage to the device.

The content of the registers that are loaded at boot should not be changed. They contain the factory calibration values. Their content is automatically restored when the device is powered up.

DS12814 - Rev 3 page 161/199

17 Sensor hub register description

17.1 SENSOR_HUB_1 (02h)

Sensor hub output register (r)

First byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 417. SENSOR_HUB_1 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub1_7 | Hub1_6 | Hub1_5 | Hub1_4 | Hub1_3 | Hub1_2 | Hub1_1 | Hub1_0 |

Table 418. SENSOR_HUB_1 register description

SensorHub1[7:0]	First byte associated to external sensors	
-----------------	---	--

17.2 SENSOR_HUB_2 (03h)

Sensor hub output register (r)

Second byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 419. SENSOR_HUB_2 register

Sensor								
Hub2_7	Hub2_6	Hub2_5	Hub2_4	Hub2_3	Hub2_2	Hub2_1	Hub2_0	

Table 420. SENSOR_HUB_2 register description

SensorHub2[7:0]	Second byte associated to external sensors
Senson lubz[1.0]	Second byte associated to external sensors

17.3 SENSOR_HUB_3 (04h)

Sensor hub output register (r)

Third byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 421. SENSOR_HUB_3 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub3_7 | Hub3_6 | Hub3_5 | Hub3_4 | Hub3_3 | Hub3_2 | Hub3_1 | Hub3_0 |

Table 422. SENSOR_HUB_3 register description

SensorHub3[7:0]	Third byte associated to external sensors
	· · · · · · · · · · · · · · · · · · ·

DS12814 - Rev 3 page 162/199

17.4 SENSOR_HUB_4 (05h)

Sensor hub output register (r)

Fourth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 423. SENSOR_HUB_4 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub4_7 | Hub4_6 | Hub4_5 | Hub4_4 | Hub4_3 | Hub4_2 | Hub4_1 | Hub4_0 |

Table 424. SENSOR_HUB_4 register description

SensorHub4[7:0]	Fourth byte associated to external sensors
-----------------	--

17.5 SENSOR_HUB_5 (06h)

Sensor hub output register (r)

Fifth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 425. SENSOR HUB 5 register

Sensor								
Hub5_7	Hub5_6	Hub5_5	Hub5_4	Hub5_3	Hub5_2	Hub5_1	Hub5_0	

Table 426. SENSOR_HUB_5 register description

SensorHub5[7:0]	Fifth byte associated to external sensors
-----------------	---

17.6 SENSOR_HUB_6 (07h)

Sensor hub output register (r)

Sixth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 427. SENSOR_HUB_6 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub6_7 | Hub6_6 | Hub6_5 | Hub6_4 | Hub6_3 | Hub6_2 | Hub6_1 | Hub6_0 |

Table 428. SENSOR_HUB_6 register description

SensorHub6[7:0] Sixth byte associated to external sensors	
---	--

DS12814 - Rev 3 page 163/199

17.7 SENSOR_HUB_7 (08h)

Sensor hub output register (r)

Seventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 429. SENSOR_HUB_7 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub7_7 | Hub7_6 | Hub7_5 | Hub7_4 | Hub7_3 | Hub7_2 | Hub7_1 | Hub7_0 |

Table 430. SENSOR_HUB_7 register description

SensorHub7[7:0] Seventh byte associated to external sensors	SensorHub7[7:0]	Seventh byte associated to external sensors
---	-----------------	---

17.8 SENSOR_HUB_8 (09h)

Sensor hub output register (r)

Eighth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 431. SENSOR HUB 8 register

Sensor								
Hub8_7	Hub8_6	Hub8_5	Hub8_4	Hub8_3	Hub8_2	Hub8_1	Hub8_0	

Table 432. SENSOR_HUB_8 register description

SensorHub8[7:0]	Eighth byte associated to external sensors
-----------------	--

17.9 SENSOR_HUB_9 (0Ah)

Sensor hub output register (r)

Ninth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 433. SENSOR_HUB_9 register

| Sensor |
|--------|--------|--------|--------|--------|--------|--------|--------|
| Hub9_7 | Hub9_6 | Hub9_5 | Hub9_4 | Hub9_3 | Hub9_2 | Hub9_1 | Hub9_0 |

Table 434. SENSOR_HUB_9 register description

	SensorHub9[7:0]	Ninth byte associated to external sensors	
--	-----------------	---	--

DS12814 - Rev 3 page 164/199

17.10 SENSOR_HUB_10 (0Bh)

Sensor hub output register (r)

Tenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 435. SENSOR_HUB_10 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub10_7 | Hub10_6 | Hub10_5 | Hub10_4 | Hub10_3 | Hub10_2 | Hub10_1 | Hub10_0 |

Table 436. SENSOR_HUB_10 register description

SensorHub10[7:0]	Tenth byte associated to external sensors
------------------	---

17.11 SENSOR_HUB_11 (0Ch)

Sensor hub output register (r)

Eleventh byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 437. SENSOR HUB 11 register

Sensor								
Hub11_7	Hub11_6	Hub11_5	Hub11_4	Hub11_3	Hub11_2	Hub11_1	Hub11_0	

Table 438. SENSOR_HUB_11 register description

SensorHub11[7:0]	Eleventh byte associated to external sensors
------------------	--

17.12 SENSOR_HUB_12 (0Dh)

Sensor hub output register (r)

Twelfth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 439. SENSOR_HUB_12 register

Sensor Hub12 7	Sensor Hub12 6	Sensor Hub12 5	Sensor Hub12 4	Sensor Hub12 3	Sensor Hub12 2	Sensor Hub12 1	Sensor Hub12 0	
110012_1	110012_0	110012_5	110012_4	110012_3	110012_2	110012_1	110012_0	

Table 440. SENSOR_HUB_12 register description

byte associated to external sensors	SensorHub12[7:0]
-------------------------------------	------------------

DS12814 - Rev 3 page 165/199

17.13 SENSOR_HUB_13 (0Eh)

Sensor hub output register (r)

Thirteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 441. SENSOR_HUB_13 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub13_7 | Hub13_6 | Hub13_5 | Hub13_4 | Hub13_3 | Hub13_2 | Hub13_1 | Hub13_0 |

Table 442. SENSOR_HUB_13 register description

SensorHub13[7:0] Thirteenth byte associated to external sensors	
---	--

17.14 SENSOR_HUB_14 (0Fh)

Sensor hub output register (r)

Fourteenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 443. SENSOR HUB 14 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub14_7 | Hub14_6 | Hub14_5 | Hub14_4 | Hub14_3 | Hub14_2 | Hub14_1 | Hub14_0 |

Table 444. SENSOR_HUB_14 register description

SensorHub14[7:0]	Fourteenth byte associated to external sensors
------------------	--

17.15 SENSOR_HUB_15 (10h)

Sensor hub output register (r)

Fifteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 445. SENSOR_HUB_15 register

Sensor Hub15 7	Sensor Hub15 6	Sensor Hub15 5	Sensor Hub15 4	Sensor Hub15 3	Sensor	Sensor Hub15 1	Sensor Hub15 0	
Hub 15_1	Hub 15_0	Hub15_5	Hub 15_4	Hub 15_3	Hub15_2		Hub 15_0	

Table 446. SENSOR_HUB_15 register description

ensorHub15[7:0]

DS12814 - Rev 3 page 166/199

17.16 SENSOR_HUB_16 (11h)

Sensor hub output register (r)

Sixteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx_CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 447. SENSOR_HUB_16 register

| Sensor |
|---------|---------|---------|---------|---------|---------|---------|---------|
| Hub16_7 | Hub16_6 | Hub16_5 | Hub16_4 | Hub16_3 | Hub16_2 | Hub16_1 | Hub16_0 |

Table 448. SENSOR_HUB_16 register description

|--|--|--|--|

17.17 SENSOR_HUB_17 (12h)

Sensor hub output register (r)

Seventeenth byte associated to external sensors. The content of the register is consistent with the $SLAVEx_CONFIG$ number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 449. SENSOR_HUB_17 register

Sensor								
Hub17_7	Hub17_6	Hub17_5	Hub17_4	Hub17_3	Hub17_2	Hub17_1	Hub17_0	

Table 450. SENSOR_HUB_17 register description

SensorHub17[7:0]	Seventeenth byte associated to external sensors
------------------	---

17.18 SENSOR_HUB_18 (13h)

Sensor hub output register (r)

Eighteenth byte associated to external sensors. The content of the register is consistent with the SLAVEx CONFIG number of read operation configurations (for external sensors from x = 0 to x = 3).

Table 451. SENSOR_HUB_17 register

Sensor								
Hub18_7	Hub18_6	Hub18_5	Hub18_4	Hub18_3	Hub18_2	Hub18_1	Hub18_0	

Table 452. SENSOR_HUB_17 register description

orHub18[7:0] Eighteenth byte associated to external sensors	
---	--

DS12814 - Rev 3 page 167/199

17.19 MASTER_CONFIG (14h)

Master configuration register (r/w)

Table 453. MASTER_CONFIG register

RST_MASTE _REGS	R WRITE_ ONCE	START_ CONFIG	PASS_ THROUGH_ MODE	SHUB_ PU_EN	MASTER_ON	AUX_ SENS_ON1	AUX_ SENS_ON0	
--------------------	------------------	------------------	---------------------------	----------------	-----------	------------------	------------------	--

Table 454. MASTER_CONFIG register description

RST_MASTER_REGS	Reset Master logic and output registers. Must be set to '1' and then set it to '0'. Default value: 0
	Slave 0 write operation is performed only at the first sensor hub cycle.
WRITE ONCE	Default value: 0
WITE_ONGE	(0: write operation for each sensor hub cycle;
	1: write operation only for the first sensor hub cycle)
	Sensor hub trigger signal selection. Default value: 0
START_CONFIG	(0: sensor hub trigger signal is the accelerometer/gyro data-ready;
	1: sensor hub trigger signal external from INT2 pin)
	I ² C interface pass-through. Default value: 0
PASS_THROUGH_MODE	(0: pass-through disabled;
	1: pass-through enabled, main I ² C line is short-circuited with the auxiliary line)
	Master I ² C pull-up enable. Default value: 0
SHUB_PU_EN	(0: internal pull-up on auxiliary I ² C line disabled;
	1: internal pull-up on auxiliary I ² C line enabled)
MASTER_ON	Sensor hub I ² C master enable. Default: 0
WASTER_ON	(0: master I ² C of sensor hub disabled; 1: master I ² C of sensor hub enabled)
	Number of external sensors to be read by the sensor hub.
	(00: one sensor (default);
AUX_SENS_ON[1:0]	01: two sensors;
	10: three sensors;
	11: four sensors)

DS12814 - Rev 3 page 168/199

17.20 SLV0_ADD (15h)

I²C slave address of the first external sensor (Sensor 1) register (r/w).

Table 455. SLV0_ADD register

slave0_add6	slave0_add5	slave0_add4	slave0_add3	slave0_add2	slave0_add1	slave0_add0	rw_0
-------------	-------------	-------------	-------------	-------------	-------------	-------------	------

Table 456. SLV_ADD register description

slave0_add[6:0] I ² C slave address of Sensor1 that can be read by the sensor hub. Default value: 0000000	
rw_0	Read/write operation on Sensor 1. Default value: 0 (0: write operation; 1: read operation)

17.21 SLV0_SUBADD (16h)

Address of register on the first external sensor (Sensor 1) register (r/w).

Table 457. SLV0_SUBADD register

slave0_reg7	slave0 reg6	slave0 reg5	slave0 reg4	slave0 reg3	slave0 reg2	slave0 reg1	slave0 reg0
							_ 0

Table 458. SLV0_SUBADD register description

slave0_reg[7:0] Address of register on Sensor1 that has to be read/written according to the rw_0 bit value in SLV0_ADD (15h). Default value: 00000000

17.22 SLAVE0_CONFIG (17h)

First external sensor (Sensor1) configuration and sensor hub settings register (r/w).

Table 459. SLAVE0_CONFIG register

SHUB_ ODR_1	SHUB_ ODR_0	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_EXT_ SENS_0_EN	Slave0_ numop2	Slave0_ numop1	Slave0_ numop0
----------------	----------------	------------------	------------------	-------------------------	-------------------	-------------------	-------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 460. SLAVE0_CONFIG register description

	Rate at which the master communicates. Default value: 00
	(00: 104 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 104 Hz);
SHUB_ODR_[1:0]	01: 52 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 52 Hz);
	10: 26 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 26 Hz);
	11: 12.5 Hz (or at the maximum ODR between the accelerometer and gyro if it is less than 12.5 Hz)
BATCH_EXT_SENS_0_EN	Enable FIFO batching data of first slave. Default value: 0
Slave0_numop[2:0]	Number of read operations on Sensor 1. Default value: 000

DS12814 - Rev 3 page 169/199

17.23 SLV1_ADD (18h)

I²C slave address of the second external sensor (Sensor 2) register (r/w).

Table 461. SLV1_ADD register

Slave1_add6 Slav	ve1_add5 Slave1_add4	Slave1_add3 S	Slave1_add2 Sla	ave1_add1 SI	lave1_add0 r	_1
------------------	----------------------	---------------	-----------------	--------------	--------------	----

Table 462. SLV1_ADD register description

Slave1 add[6:0]	I ² C slave address of Sensor 2 that can be read by the sensor hub.
Slave1_add[6:0]	Default value: 0000000
. 1	Read operation on Sensor 2 enable. Default value: 0
1_1	(0: read operation disabled; 1: read operation enabled)

17.24 SLV1_SUBADD (19h)

Address of register on the second external sensor (Sensor 2) register (r/w).

Table 463. SLV1_SUBADD register

Table 464. SLV1_SUBADD register description

Slave1_reg[7:0] Address of register on Sensor 2 that has to be read/written according to the r_1 bit value in SLV1_ADD (18h).

17.25 SLAVE1 CONFIG (1Ah)

Second external sensor (Sensor 2) configuration register (r/w).

Table 465. SLAVE1_CONFIG register

0(1)	0(1)	0(1)	0(1)	BATCH_EXT_	Slave1_	Slave1_	Slave1_	
00	.,	0(1)	0(.)	0(.)	SENS_1_EN	numop2	numop1	numop0

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 466. SLAVE1_CONFIG register description

BATCH_EXT_SENS_1_EN	Enable FIFO batching data of second slave. Default value: 0
Slave1_numop[2:0]	Number of read operations on Sensor 2. Default value: 000

DS12814 - Rev 3 page 170/199

17.26 SLV2_ADD (1Bh)

I²C slave address of the third external sensor (Sensor 3) register (r/w).

Table 467. SLV2_ADD register

Slave2	2_add6 Slave	2_add5 Slave2_ad	ld4 Slave2_add3	Slave2_add2	Slave2_add1	Slave2_add0	r_2
--------	--------------	------------------	-----------------	-------------	-------------	-------------	-----

Table 468. SLV2_ADD register description

Slave2_add[6:0]	I ² C slave address of Sensor 3 that can be read by the sensor hub.
r 2	Read operation on Sensor 3 enable. Default value: 0
r_2	(0: read operation disabled; 1: read operation enabled)

17.27 SLV2_SUBADD (1Ch)

Address of register on the third external sensor (Sensor 3) register (r/w).

Table 469. SLV2_SUBADD register

	Slave2_reg7	Slave2_reg6	Slave2_reg5	Slave2_reg4	Slave2_reg3	Slave2_reg2	Slave2_reg1	Slave2_reg0	
--	-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	--

Table 470. SLV2_SUBADD register description

Slave2_reg[7:0] Address of register on Sensor 3 that has to be read/written according to the r_2 bit value in SLV2_ADD (1Bh).

17.28 SLAVE2_CONFIG (1Dh)

Third external sensor (Sensor 3) configuration register (r/w).

Table 471. SLAVE2_CONFIG register

0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	0 ⁽¹⁾	BATCH_EXT_ SENS_2_EN	Slave2_ numop2	Slave2_ numop1	Slave2_ numop0
------------------	------------------	------------------	------------------	-------------------------	-------------------	-------------------	-------------------

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 472. SLAVE2_CONFIG register description

BATCH_EXT_SENS_2_EN	Enable FIFO batching data of third slave. Default value: 0
Slave2_numop[2:0]	Number of read operations on Sensor 3. Default value: 000

DS12814 - Rev 3 page 171/199

17.29 SLV3_ADD (1Eh)

I²C slave address of the fourth external sensor (Sensor 4) register (r/w).

Table 473. SLV3_ADD register

Table 474. SLV3_ADD register description

Slave3_add[6:0]	I ² C slave address of Sensor 4 that can be read by the sensor hub.
r 2	Read operation on Sensor 4 enable. Default value: 0
r_3	(0: read operation disabled; 1: read operation enabled)

17.30 SLV3_SUBADD (1Fh)

Address of register on the fourth external sensor (Sensor 4) register (r/w).

Table 475. SLV3_SUBADD register

Slave3_reg7	Slave3_reg6	Slave3_reg5	Slave3_reg4	Slave3_reg3	Slave3_reg2	Slave3_reg1	Slave3_reg0	
-------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------	--

Table 476. SLV3_SUBADD register description

Slave3_reg[7:0] Address of register on Sensor 4 that has to be read according to the r_3 bit value in SLV3_ADD (1Eh).

17.31 SLAVE3_CONFIG (20h)

Fourth external sensor (Sensor 4) configuration register (r/w).

Table 477. SLAVE3_CONFIG register

O ⁽¹⁾	0 ⁽¹⁾	0(1)	0(1)	BATCH_EXT _SENS_3_EN	Slave3_ numop2	Slave3_ numop1	Slave3_ numop0	
------------------	------------------	------	------	-------------------------	-------------------	-------------------	-------------------	--

^{1.} This bit must be set to '0' for the correct operation of the device.

Table 478. SLAVE3_CONFIG register description

BATCH_EXT_SENS_3_EN	Enable FIFO batching data of fourth slave. Default value: 0
Slave3_numop[2:0]	Number of read operations on Sensor 4. Default value: 000

DS12814 - Rev 3 page 172/199

17.32 DATAWRITE_SLV0 (21h)

Data to be written into the slave device register (r/w).

Table 479. DATAWRITE_SLV0 register

| Slave0_ |
|---------|---------|---------|---------|---------|---------|---------|---------|
| dataw7 | dataw6 | dataw5 | dataw4 | dataw3 | dataw2 | dataw1 | dataw0 |

Table 480. DATAWRITE_SLV0 register description

Slave0 dataw[7:0]	Data to be written into the slave 0 device according to the rw_0 bit in register SLV0_ADD (15h).	
Slaveo_dataw[7.0]	Default value: 00000000	

17.33 STATUS_MASTER (22h)

Sensor hub source register (r).

Table 481. STATUS_MASTER register

WR_ONCE	SLAVE3_	SLAVE2_	SLAVE1_	SLAVE0_	0		SENS_HUB
_DONE	NACK _	NACK	NACK	NACK	0	U	_ENDOP

Table 482. STATUS_MASTER register description

WR_ONCE_DONE	When the bit WRITE_ONCE in MASTER_CONFIG (14h) is configured as 1, this bit is set to 1 when the write operation on slave 0 has been performed and completed. Default value: 0
SLAVE3_NACK	This bit is set to 1 if Not acknowledge occurs on slave 3 communication. Default value: 0
SLAVE2_NACK	This bit is set to 1 if Not acknowledge occurs on slave 2 communication. Default value: 0
SLAVE1_NACK	This bit is set to 1 if Not acknowledge occurs on slave 1 communication. Default value: 0
SLAVE0_NACK	This bit is set to 1 if Not acknowledge occurs on slave 0 communication. Default value: 0
	Sensor hub communication status. Default value: 0
SENS_HUB_ENDOP	(0: sensor hub communication not concluded;
	1: sensor hub communication concluded)

DS12814 - Rev 3 page 173/199

18 Soldering information

The LGA package is compliant with the ECOPACK[®], RoHS and "Green" standard. It is qualified for soldering heat resistance according to JEDEC J-STD-020. Land pattern and soldering recommendations are available at www.st.com/mems.

DS12814 - Rev 3 page 174/199

19 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

19.1 LGA-14L package information

Figure 28. LGA-14L 2.5x3x0.86 mm package outline and mechanical data

Dimensions are in millimeter unless otherwise specified General tolerance is +/-0.1mm unless otherwise specified

OUTER DIMENSIONS

ITEM	DIMENSION [mm]	TOLERANCE [mm]
Length [L]	2.50	±0.1
Width [W]	3.00	±0.1
Height [H]	0.86	MAX

DM00249496 1

DS12814 - Rev 3 page 175/199

19.2 LGA-14 packing information

P2 2.00<u>±</u>0.05(I) Po 4.00±0.10(II) E1 1.75<u>±</u>0.10 Ø 1.50 0.00 0.30±0.05 D1 Ø1.50 MIN. R0.20 TYP. Ao SECTION Y-Y SECTION X-X Measured from centreline of sprocket ho to centreline of spocket. Curnulative tolerance of 10 sprocket holes is ± 0.20 Measured from centreline of sprocket hole to centreline of spocket. Other material available. (1) +/- 0.05 Ao Во 3.30 +/- 0.05 (11) Ko 1.00 +/- 0.10 (111) 5.50 +/- 0.05 +/- 0.10 8.00 (IV) Forming format : Press form - 17-B Required length: 170 meter / 22B3 reel ALL DIMENSIONS IN MILLIMETRES UNLESS OTHERWISE STATED.

Figure 29. Carrier tape information for LGA-14 package

Figure 30. LGA-14 package orientation in carrier tape

DS12814 - Rev 3 page 176/199

A 40mm min.
Access hole at slot location

Tape slot in core for tape start 2.5mm min. width

Figure 31. Reel information for carrier tape of LGA-14 package

Table 483. Reel dimensions for carrier tape of LGA-14 package

Reel dimensions (mm)	
A (max)	330
B (min)	1.5
С	13 ±0.25
D (min)	20.2
N (min)	60
G	12.4 +2/-0
T (max)	18.4

DS12814 - Rev 3 page 177/199

Revision history

Table 484. Document revision history

Date	Revision	Changes	
30-Oct-2018	1	Initial release	
12-Dec-2018	2	First public release	
	3	Added product label indicating ST's commitment to sustainable technology	
		Added Section 2.4 Machine Learning Core	
25-Jan-2019		Updated footnotes in Table 4. Temperature sensor characteristics	
25-Jan-2019		Added registers concerning Machine Learning Core	
		Updated EMB_FUNC_ODR_CFG_B (5Fh)	
		Updated EMB_FUNC_ODR_CFG_C (60h)	

DS12814 - Rev 3 page 178/199

Contents

1	Ove	rview		3
2	Emb	edded	low-power features	4
	2.1	Tilt det	tection	4
	2.2	Signific	cant Motion Detection	4
	2.3	Finite S	State Machine	5
	2.4	Machir	ne Learning Core	5
3	Pin (descrip	tion	7
	3.1	Pin co	nnections	8
4	Mod	ule spe	cifications	10
	4.1	Mecha	anical characteristics	10
	4.2	Electric	cal characteristics	13
	4.3	Tempe	erature sensor characteristics	13
	4.4	Comm	nunication interface characteristics	14
		4.4.1	SPI - serial peripheral interface	14
		4.4.2	I ² C - inter-IC control interface	15
	4.5	Absolu	ıte maximum ratings	16
	4.6	Termin	nology	17
		4.6.1	Sensitivity	17
		4.6.2	Zero-g and zero-rate level	17
5	Digi	tal inter	faces	18
	5.1	I ² C/SP	PI interface	18
		5.1.1	I ² C serial interface	18
		5.1.2	I ² C operation	18
		5.1.3	SPI bus interface	20
	5.2	MIPI I3	3CSM interface	22
		5.2.1	MIPI I3CSM slave interface	23
		5.2.2	MIPI I3CSM CCC supported commands	23
	5.3	I ² C/I3C	C coexistence in LSM6DSOX	25
	5.4	Master	r I ² C interface	26

	5.5	Auxiliary SPI interface	26
6	Fund	ctionality	27
	6.1	Operating modes	27
	6.2	Accelerometer power modes	27
		6.2.1 Accelerometer ultra-low-power mode	27
	6.3	Gyroscope power modes	27
	6.4	Block diagram of filters	27
		6.4.1 Block diagrams of the accelerometer filters	28
		6.4.2 Block diagrams of the gyroscope filters	31
	6.5	OIS	33
		6.5.1 Enabling OIS functionality and connection schemes	33
	6.6	FIFO	36
		6.6.1 Bypass mode	36
		6.6.2 FIFO mode	36
		6.6.3 Continuous mode	37
		6.6.4 Continuous-to-FIFO mode	37
		6.6.5 Bypass-to-Continuous mode	37
		6.6.6 Bypass-to-FIFO mode	37
		6.6.7 FIFO reading procedure	38
7	Appl	lication hints	39
	7.1	LSM6DSOX electrical connections in Mode 1	39
	7.2	LSM6DSOX electrical connections in Mode 2	39
	7.3	LSM6DSOX electrical connections in Mode 3 and Mode 4	40
8	Regi	ister mapping	44
9	Regi	ister description	47
	9.1	FUNC_CFG_ACCESS (01h)	47
	9.2	PIN_CTRL (02h)	48
	9.3	S4S_TPH_L (04h)	48
	9.4	S4S_TPH_H (05h)	49
	9.5	S4S_RR (06h)	49
	9.6	FIFO_CTRL1 (07h)	49

9.7	FIFO_CTRL2 (08h)	. 50
9.8	FIFO_CTRL3 (09h)	. 51
9.9	FIFO_CTRL4 (0Ah).	. 52
9.10	COUNTER_BDR_REG1 (0Bh)	. 53
9.11	COUNTER_BDR_REG2 (0Ch)	. 53
9.12	INT1_CTRL (0Dh)	. 54
9.13	INT2_CTRL (0Eh)	. 55
9.14	WHO_AM_I (0Fh)	. 55
9.15	CTRL1_XL (10h)	. 56
9.16	CTRL2_G (11h)	. 57
9.17	CTRL3_C (12h)	. 58
9.18	CTRL4_C (13h)	. 59
9.19	CTRL5_C (14h)	. 60
9.20	CTRL6_C (15h)	. 60
9.21	CTRL7_G (16h)	.61
9.22	CTRL8_XL (17h)	. 63
9.23	CTRL9_XL (18h)	. 65
9.24	CTRL10_C (19h)	. 65
9.25	ALL_INT_SRC (1Ah)	. 66
9.26	WAKE_UP_SRC (1Bh)	. 67
9.27	TAP_SRC (1Ch)	. 68
9.28	D6D_SRC (1Dh)	. 69
9.29	STATUS_REG (1Eh)	. 69
9.30	OUT_TEMP_L (20h), OUT_TEMP_H (21h)	.70
9.31	OUTX_L_G (22h) and OUTX_H_G (23h)	.70
9.32	OUTY_L_G (24h) and OUTY_H_G (25h)	.71
9.33	OUTZ_L_G (26h) and OUTZ_H_G (27h)	.71
9.34	OUTX_L_A (28h) and OUTX_H_A (29h)	.72
9.35	OUTY_L_A (2Ah) and OUTY_H_A (2Bh)	.72
9.36	OUTZ_L_A (2Ch) and OUTZ_H_A (2Dh)	.73

9.37	EMB_FUNC_STATUS_MAINPAGE (35h)	73
9.38	FSM_STATUS_A_MAINPAGE (36h)	74
9.39	FSM_STATUS_B_MAINPAGE (37h)	75
9.40	MLC_STATUS_MAINPAGE (38h)	76
9.41	STATUS_MASTER_MAINPAGE (39h)	76
9.42	FIFO_STATUS1 (3Ah)	76
9.43	FIFO_STATUS2 (3Bh)	77
9.44	TIMESTAMP0 (40h), TIMESTAMP1 (41h), TIMESTAMP2 (42h), and TIMESTAMP3 (43h)	3h) 78
9.45	UI_STATUS_REG_OIS (49h)	78
9.46	UI_OUTX_L_G_OIS (4Ah) and UI_OUTX_H_G_OIS (4Bh)	79
9.47	UI_OUTY_L_G_OIS (4Ch) and UI_OUTY_H_G_OIS (4Dh)	79
9.48	UI_OUTZ_L_G_OIS (4Eh) and UI_OUTZ_H_G_OIS (4Fh)	80
9.49	UI_OUTX_L_A_OIS (50h) and UI_OUTX_H_A_OIS (51h)	80
9.50	UI_OUTY_L_A_OIS (52h) and UI_OUTY_H_A_OIS (53h)	81
9.51	UI_OUTZ_L_A_OIS (54h) and UI_OUTZ_H_A_OIS (55h)	81
9.52	TAP_CFG0 (56h)	82
9.53	TAP_CFG1 (57h)	83
9.54	TAP_CFG2 (58h)	83
9.55	TAP_THS_6D (59h)	83
9.56	INT_DUR2 (5Ah)	85
9.57	WAKE_UP_THS (5Bh)	85
9.58	WAKE_UP_DUR (5Ch)	
9.59	FREE_FALL (5Dh)	87
9.60	MD1_CFG (5Eh)	88
9.61	MD2_CFG (5Fh)	89
9.62	S4S_ST_CMD_CODE (60h)	90
9.63	S4S_DT_REG (61h)	90
9.64	I3C_BUS_AVB (62h)	90
9.65	INTERNAL_FREQ_FINE (63h)	91
9.66	UI_INT_OIS (6Fh)	91

	9.67	UI_CTRL1_OIS (70h)	92
	9.68	UI_CTRL2_OIS (71h)	93
	9.69	UI_CTRL3_OIS (72h)	94
	9.70	X_OFS_USR (73h)	96
	9.71	Y_OFS_USR (74h)	96
	9.72	Z_OFS_USR (75h)	96
	9.73	FIFO_DATA_OUT_TAG (78h)	97
	9.74	FIFO_DATA_OUT_X_L (79h) and FIFO_DATA_OUT_X_H (7Ah)	98
	9.75	FIFO_DATA_OUT_Y_L (7Bh) and FIFO_DATA_OUT_Y_H (7Ch)	98
	9.76	FIFO_DATA_OUT_Z_L (7Dh) and FIFO_DATA_OUT_Z_H (7Eh)	98
10	SPI2	register mapping	99
11	SPI2	register description	100
	11.1	SPI2_WHO_AM_I (0Fh)	100
	11.2	SPI2_STATUS_REG_OIS (1Eh)	100
	11.3	SPI2_OUT_TEMP_L (20h) and SPI2_OUT_TEMP_H (21h)	100
	11.4	SPI2_OUTX_L_G_OIS (22h) and SPI2_OUTX_H_G_OIS (23h)	101
	11.5	SPI2_OUTY_L_G_OIS (24h) and SPI2_OUTY_H_G_OIS (25h)	101
	11.6	SPI2_OUTZ_L_G_OIS (26h) and SPI2_OUTZ_H_G_OIS (27h)	102
	11.7	SPI2_OUTX_L_A_OIS (28h) and SPI2_OUTX_H_A_OIS (29h)	102
	11.8	SPI2_OUTY_L_A_OIS (2Ah) and SPI2_OUTY_H_A_OIS (2Bh)	103
	11.9	SPI2_OUTZ_L_A_OIS (2Ch) and SPI2_OUTZ_H_A_OIS (2Dh)	103
	11.10	SPI2_INT_OIS (6Fh)	104
	11.11	SPI2_CTRL1_OIS (70h)	105
	11.12	SPI2_CTRL2_OIS (71h)	106
	11.13	SPI2_CTRL3_OIS (72h)	107
12	Emb	edded functions register mapping	108
13	Emb	edded functions register description	110
	13.1	PAGE_SEL (02h)	110
	13.2	EMB_FUNC_EN_A (04h)	110
	13.3	EMB_FUNC_EN_B (05h)	111

13.4	PAGE_ADDRESS (08h)	111
13.5	PAGE_VALUE (09h)	112
13.6	EMB_FUNC_INT1 (0Ah)	112
13.7	FSM_INT1_A (0Bh)	113
13.8	FSM_INT1_B (0Ch)	114
13.9	MLC_INT1 (0Dh)	115
13.10	EMB_FUNC_INT2 (0Eh)	116
13.11	FSM_INT2_A (0Fh)	117
13.12	FSM_INT2_B (10h)	118
13.13	MLC_INT2 (11h)	119
13.14	EMB_FUNC_STATUS (12h)	120
13.15	FSM_STATUS_A (13h)	121
13.16	FSM_STATUS_B (14h)	122
13.17	MLC_STATUS (15h)	123
13.18	PAGE_RW (17h)	124
13.19	EMB_FUNC_FIFO_CFG (44h)	124
13.20	FSM_ENABLE_A (46h)	125
13.21	FSM_ENABLE_B (47h)	125
13.22	FSM_LONG_COUNTER_L (48h) and FSM_LONG_COUNTER_H (49h)	126
13.23	FSM_LONG_COUNTER_CLEAR (4Ah)	126
13.24	FSM_OUTS1 (4Ch)	127
	FSM_OUTS2 (4Dh)	
13.26	FSM_OUTS3 (4Eh)	129
13.27	FSM_OUTS4 (4Fh)	130
13.28	FSM_OUTS5 (50h)	131
13.29	FSM_OUTS6 (51h)	132
13.30	FSM_OUTS7 (52h)	133
13.31	FSM_OUTS8 (53h)	134
13.32	FSM_OUTS9 (54h)	135
13.33	FSM_OUTS10 (55h)	136

13.34	FSM_O	UTS11 (56h)	.137
13.35	FSM_O	UTS12 (57h)	. 138
13.36	FSM_O	UTS13 (58h)	. 139
13.37	FSM_O	UTS14 (59h)	. 140
13.38	FSM_O	UTS15 (5Ah)	.141
13.39	FSM_O	UTS16 (5Bh)	.142
13.40	EMB_F	UNC_ODR_CFG_B (5Fh)	. 143
13.41	EMB_F	UNC_ODR_CFG_C (60h)	. 143
13.42	STEP_0	COUNTER_L (62h) and STEP_COUNTER_H (63h)	. 144
13.43	EMB_F	UNC_SRC (64h)	. 144
13.44	EMB_F	UNC_INIT_A (66h)	. 145
13.45	EMB_F	UNC_INIT_B (67h)	. 145
13.46	MLC0_	SRC (70h)	. 145
13.47	MLC1_S	SRC (71h)	. 146
13.48	MLC2_S	SRC (72h)	. 146
13.49	MLC3_	SRC (73h)	. 146
13.50	MLC4_S	SRC (74h)	. 147
13.51	MLC5_	SRC (75h)	. 147
13.52	MLC6_	SRC (76h)	. 147
13.53	MLC7_S	SRC (77h)	. 147
Embe	edded a	dvanced features pages	148
Embe	edded a	dvanced features register description	150
15.1	Page 0	- Embedded advanced features registers	. 150
	15.1.1	MAG_SENSITIVITY_L (BAh) and MAG_SENSITIVITY_H (BBh)	. 150
	15.1.2	MAG_OFFX_L (C0h) and MAG_OFFX_H (C1h)	. 151
	15.1.3	MAG_OFFY_L (C2h) and MAG_OFFY_H (C3h)	. 151
	15.1.4	MAG_OFFZ_L (C4h) and MAG_OFFZ_H (C5h)	. 152
	15.1.5	MAG_SI_XX_L (C6h) and MAG_SI_XX_H (C7h)	. 152
	15.1.6	MAG_SI_XY_L (C8h) and MAG_SI_XY_H (C9h)	. 153
	15.1.7	MAG_SI_XZ_L (CAh) and MAG_SI_XZ_H (CBh)	. 153
	15.1.8	MAG_SI_YY_L (CCh) and MAG_SI_YY_H (CDh)	. 154

14

15

		15.1.9	MAG_SI_YZ_L (CEh) and MAG_SI_YZ_H (CFh)	. 154
		15.1.10	MAG_SI_ZZ_L (D0h) and MAG_SI_ZZ_H (D1h)	. 155
		15.1.11	MAG_CFG_A (D4h)	. 156
		15.1.12	MAG_CFG_B (D5h)	. 156
	15.2	Page1 -	- Embedded advanced features registers	. 156
		15.2.1	FSM_LC_TIMEOUT_L (7Ah) and FSM_LC_TIMEOUT_H (7Bh)	. 157
		15.2.2	FSM_PROGRAMS (7Ch)	. 157
		15.2.3	FSM_START_ADD_L (7Eh) and FSM_START_ADD_H (7Fh)	. 158
		15.2.4	PEDO_CMD_REG (83h)	. 158
		15.2.5	PEDO_DEB_STEPS_CONF (84h)	. 158
		15.2.6	PEDO_SC_DELTAT_L (D0h) and PEDO_SC_DELTAT_H (D1h)	. 158
		15.2.7	MLC_MAG_SENSITIVITY_L (E8h) and MLC_MAG_SENSITIVITY_H (E9h)	. 159
16	Sens	or hub ı	register mapping	160
17	Sens	or hub ı	register description	162
	17.1	SENSO	PR_HUB_1 (02h)	.162
	17.2	SENSO	PR_HUB_2 (03h)	. 162
	17.3	SENSO	PR_HUB_3 (04h)	. 162
	17.4	SENSO	PR_HUB_4 (05h)	. 163
	17.5	SENSO	PR_HUB_5 (06h)	. 163
	17.6	SENSO	PR_HUB_6 (07h)	. 163
	17.7	SENSO	PR_HUB_7 (08h)	. 164
	17.8	SENSO	PR_HUB_8 (09h)	. 164
	17.9	SENSO	PR_HUB_9 (0Ah)	.164
	17.10	SENSO	PR_HUB_10 (0Bh)	. 165
			PR_HUB_11 (0Ch)	
			PR_HUB_12 (0Dh)	
			PR_HUB_13 (0Eh)	
			 PR_HUB_14 (0Fh)	
			PR_HUB_15 (10h)	
			DR_HUB_16 (11h)	
			PR_HUB_17 (12h)	
	17.17	OLINOU	N_1100_17 (1211)	. 107

	17.18	SENSOR_HUB_18 (13h)	. 167
	17.19	MASTER_CONFIG (14h)	. 168
	17.20	SLV0_ADD (15h)	. 169
	17.21	SLV0_SUBADD (16h)	. 169
	17.22	SLAVE0_CONFIG (17h)	. 169
	17.23	SLV1_ADD (18h)	. 170
	17.24	SLV1_SUBADD (19h)	. 170
	17.25	SLAVE1_CONFIG (1Ah)	. 170
	17.26	SLV2_ADD (1Bh)	.171
	17.27	SLV2_SUBADD (1Ch)	.171
	17.28	SLAVE2_CONFIG (1Dh)	. 171
	17.29	SLV3_ADD (1Eh)	.172
	17.30	SLV3_SUBADD (1Fh)	.172
	17.31	SLAVE3_CONFIG (20h)	.172
	17.32	DATAWRITE_SLV0 (21h)	. 173
	17.33	STATUS_MASTER (22h)	. 173
18	Solde	ering information	174
19	Packa	age information	175
	19.1	LGA-14L package information	. 175
	19.2	LGA-14 packing information	. 175
Revi	sion h	istory	178
Con	tents .		179
List	of tab	les	188
List	of figu	ıres	198

List of tables

Table 1.	Pin description	. 8
Table 2.	Mechanical characteristics	. 10
Table 3.	Electrical characteristics	
Table 4.	Temperature sensor characteristics	. 13
Table 5.	SPI slave timing values (in mode 3)	
Table 6.	I ² C slave timing values	
Table 7.	Absolute maximum ratings	
Table 8.	Serial interface pin description	
Table 9.	I ² C terminology	
Table 10.	SAD+Read/Write patterns	. 19
Table 11.	Transfer when master is writing one byte to slave	. 19
Table 12.	Transfer when master is writing multiple bytes to slave	. 19
Table 13.	Transfer when master is receiving (reading) one byte of data from slave	. 19
Table 14.	Transfer when master is receiving (reading) multiple bytes of data from slave	. 19
Table 15.	MIPI I3CSM CCC commands	. 23
Table 16.	Master I ² C pin details	26
Table 17.	Auxiliary SPI pin details	
Table 18.	Gyroscope LPF2 bandwidth selection	
Table 19.	OIS configurations	
Table 20.	Internal pin status	
Table 21.	Registers address map	
Table 22.	FUNC CFG ACCESS register	
Table 23.	FUNC_CFG_ACCESS register description	
Table 24.	PIN_CTRL register.	
Table 25.	PIN_CTRL register description	
Table 26.	S4S_TPH_L register	
Table 27.	S4S_TPH_L register description	
Table 28.	S4S_TPH_H register	
Table 29.	S4S_TPH_H register description	
Table 30.	S4S_RR register	
Table 31.	S4S_RR register description	
Table 32.	FIFO_CTRL1 register	
Table 33.	FIFO_CTRL1 register description.	
Table 34.	FIFO_CTRL2 register	
Table 35.	FIFO CTRL2 register description.	
Table 36.	FIFO CTRL3 register	
Table 37.	FIFO CTRL3 register description.	
Table 38.	FIFO CTRL4 register	
Table 39.	FIFO CTRL4 register description.	
Table 40.	COUNTER_BDR_REG1 register	
Table 41.	COUNTER_BDR_REG1 register description	
Table 42.	COUNTER BDR REG2 register	
Table 43.	COUNTER BDR REG2 register description	
Table 44.	INT1 CTRL register	
Table 45.	INT1 CTRL register description	
Table 46.	INT2_CTRL register	
Table 47.	INT2_CTRL register description	
Table 48.	WhoAmI register	
Table 49.	CTRL1_XL register	
Table 50.	CTRL1 XL register description	
Table 51.	Accelerometer ODR register setting	

Table 52.	Accelerometer full-scale selection	56
Table 53.	CTRL2_G register	57
Table 54.	CTRL2_G register description	57
Table 55.	Gyroscope ODR configuration setting	57
Table 56.	CTRL3_C register	58
Table 57.	CTRL3_C register description	58
Table 58.	CTRL4_C register	59
Table 59.	CTRL4_C register description	59
Table 60.	CTRL5_C register	60
Table 61.	CTRL5_C register description	60
Table 62.	Angular rate sensor self-test mode selection	60
Table 63.	Linear acceleration sensor self-test mode selection	60
Table 64.	CTRL6_C register	61
Table 65.	CTRL6_C register description	61
Table 66.	Trigger mode selection	61
Table 67.	Gyroscope LPF1 bandwidth selection	61
Table 68.	CTRL7_G register	62
Table 69.	CTRL7_G register description	62
Table 70.	CTRL8_XL register	63
Table 71.	CTRL8_XL register description	63
Table 72.	Accelerometer bandwidth configurations	63
Table 73.	CTRL9_XL register	65
Table 74.	CTRL9_XL register description	65
Table 75.	CTRL10_C register	65
Table 76.	CTRL10_C register description	65
Table 77.	ALL_INT_SRC register	
Table 78.	ALL_INT_SRC register description	66
	WAKE_UP_SRC register	
Table 80.	WAKE_UP_SRC register description	
Table 81.	TAP_SRC register	68
Table 82.	TAP_SRC register description	68
Table 83.	D6D_SRC register	69
Table 84.	D6D_SRC register description	69
Table 85.	STATUS_REG register	69
Table 86.	STATUS_REG register description	69
Table 87.	OUT_TEMP_L register	70
Table 88.	OUT_TEMP_H register	70
Table 89.	OUT_TEMP register description	70
Table 90.	OUTX_L_G register	70
Table 91.	OUTX_H_G register	70
Table 92.	OUTX_H_G register description	70
Table 93.	OUTY_L_G register	71
Table 94.	OUTY_H_G register	71
Table 95.	OUTY_H_G register description.	71
Table 96.	OUTZ_L_G register	71
Table 97.	OUTZ_H_G register	71
Table 98.	OUTZ_H_G register description	71
Table 99.	OUTX_L_A register	72
Table 100.	OUTX_H_A register	72
Table 101.	OUTX_H_A register description	72
Table 102.	OUTY_L_A register	72
Table 103.	OUTY_H_A register	72
	OUTY_H_A register description	
Table 105.	OUTZ_L_A register	73

	OUTZ_H_A register	
	OUTZ_H_A register description	
	EMB_FUNC_STATUS_MAINPAGE register	
Table 109.	EMB_FUNC_STATUS_MAINPAGE register description	73
	FSM_STATUS_A_MAINPAGE register	
Table 111.	FSM_STATUS_A_MAINPAGE register description	74
Table 112.	FSM_STATUS_B_MAINPAGE register	75
Table 113.	FSM_STATUS_B_MAINPAGE register description	75
Table 114.	MLC_STATUS _MAINPAGE register	76
Table 115.	MLC_STATUS_MAINPAGE register description	76
	STATUS_MASTER_MAINPAGE register	
	STATUS_MASTER_MAINPAGE register description	
	FIFO_STATUS1 register	
	FIFO_STATUS1 register description	
	FIFO_STATUS2 register	
	FIFO_STATUS2 register description	
	TIMESTAMP output registers	
	TIMESTAMP output register description	
	UI_STATUS_REG_OIS register	
	UI STATUS REG OIS register description	
	UI_OUTX_L_G_OIS register	
	UI_OUTX_H_G_OIS register.	
	UI_OUTX_H_G_OIS register description.	
	UI_OUTY_L_G_OIS register	
	UI_OUTY_H_G_OIS register.	
	UI_OUTY_H_G_OIS description	
	UI_OUTZ_L_G_OIS register	
	UI_OUTZ_H_G_OIS register	
	UI_OUTZ_H_G_OIS register description	
	UI_OUTX_L_A_OIS register	
	UI_OUTX_H_A_OIS register	
	UI_OUTX_H_A_OIS register description	
	UI_OUTY_L_A_OIS register	
	UI_OUTY_H_A_OIS register	
	UI_OUTY_H_A_OIS register description	
	UI_OUTZ_L_A_OIS register	
	UI_OUTZ_H_A_OIS register	
	UI_OUTZ_H_A_OIS register description	
	TAP_CFG0 register	
	TAP_CFG0 register description	
	TAP_CFG1 register	
	TAP_CFG1 register description	
	TAP priority decoding	
	TAP_CFG2 register	
	TAP_CFG2 register description	
Table 151.	TAP_THS_6D register	84
	TAP_THS_6D register description	
Table 153.	Threshold for D4D/D6D function	84
	INT_DUR2 register	
	INT_DUR2 register description	
Table 156.	WAKE_UP_THS register	85
Table 157.	WAKE_UP_THS register description	85
Table 158.	WAKE_UP_DUR register	86
Table 159.	WAKE_UP_DUR register description	86

	FREE_FALL register	
	FREE_FALL register description	
	Threshold for free-fall function	
	MD1_CFG register	
	MD1_CFG register description	
	MD2_CFG register	
	MD2_CFG register description	
	S4S_ST_CMD_CODE register	
	S4S_ST_CMD_CODE register description	
	S4S_DT_REG register	
	S4S_DT_REG register description	
	I3C_BUS_AVB register	
	I3C_BUS_AVB register description.	
	INTERNAL_FREQ_FINE register	
	INTERNAL_FREQ_FINE register description	
	UI_INT_OIS register	
	UI_INT_OIS register description.	
	UI_CTRL1_OIS register	
	UI_CTRL1_OIS register description	
	DEN mode selection.	
	UI_CTRL2_OIS register	
	UI_CTRL2_OIS register description	
	Gyroscope OIS chain digital LPF1 filter bandwidth selection	
	UI_CTRL3_OIS register	
	UI_CTRL3_OIS register description	
	Accelerometer OIS channel full-scale selection	
	Accelerometer OIS channel bandwidth and phase	
	Self-test nominal output variation	
	X_OFS_USR register	
	X_OFS_USR register description	
	Y_OFS_USR register	
	Y_OFS_USR register description	
	Z_OFS_USR register	
	Z_OFS_USR register description	
	FIFO_DATA_OUT_TAG register.	
	FIFO_DATA_OUT_TAG register description	
	FIFO tag	
	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L registers	
	FIFO_DATA_OUT_X_H and FIFO_DATA_OUT_X_L register description	
	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L registers	
	FIFO_DATA_OUT_Y_H and FIFO_DATA_OUT_Y_L register description	
	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L registers	
	FIFO_DATA_OUT_Z_H and FIFO_DATA_OUT_Z_L register description	
	SPI2 register address map	
	SPI2_WhoAmI register	
	SPI_STATUS_REG_OIS register	
	SPI_STATUS_REG_OIS description	
	SPI2_OUT_TEMP_L register	
	SPI2_OUT_TEMP_H register	
	SPI2_OUT_TEMP register description	
	SPI2_OUTX_L_G_OIS register	
	SPI2_OUTX_H_G_OIS register	
	SPI2_OUTX_H_G_OIS register description	
Table 213.	SPI2_OUTY_L_G_OIS register	U1

Table 214.	SPI2_OUTY_H_G_OIS register	101
Table 215.	SPI2_OUTY_H_G_OIS register description	101
	SPI2_OUTZ_L_G_OIS register	
	SPI2_OUTZ_H_G_OIS register	
	SPI2_OUTZ_H_G_OIS register description	
	SPI2_OUTX_L_A_OIS register	
	SPI2_OUTX_H_A_OIS register	
	SPI2_OUTX_H_A_OIS register description	
	SPI2_OUTY_L_A_OIS register	
	SPI2_OUTY_H_A_OIS register	
	SPI2_OUTY_H_A_OIS register description	
	SPI2_OUTZ_L_A_OIS register	
	SPI2_OUTZ_H_A_OIS register	
	SPI2_OUTZ_H_A_OIS register description	
	SPI_INT_OIS register	
	SPI_INT_OIS register description.	
	SPI_CTRL1_OIS register	
	SPI_CTRL1_OIS register description	
	DEN mode selection.	
	SPI_CTRL2_OIS register	
	SPI_CTRL2_OIS register description	
	Gyroscope OIS chain digital LPF1 filter bandwidth selection	
	SPI2_CTRL3_OIS register	
	SPI2_CTRL3_OIS register description	
	Accelerometer OIS channel full-scale selection	
	Register address map - embedded functions	
	PAGE_SEL register	
	PAGE_SEL register description	
	EMB_FUNC_EN_A register	
	EMB_FUNC_EN_A register description	
	EMB_FUNC_EN_B register	
	EMB_FUNC_EN_B register description	
	PAGE_ADDRESS register	
	PAGE_ADDRESS register description	
	PAGE_VALUE register	
	PAGE_VALUE register description	
	EMB_FUNC_INT1 register	
	FSM_INT1_A register	
	FSM_INT1_A register description	
	FSM_INT1_B register	
	FSM_INT1_B register description	
	MLC_INT1 register.	
	MLC_INT1 register description	
	EMB_FUNC_INT2 register	
	EMB_FUNC_INT2 register description	
	FSM_INT2_A register.	
	FSM_INT2_A register description	
	FSM_INT2_B register.	
	FSM_INT2_B register description	
	MLC_INT2 register.	
	MLC_INT2 register description	
	EMB_FUNC_STATUS register EMB_FUNC_STATUS register description	
Table 20/.	FSM_STATUS_A register	121

Table 268.	FSM_STATUS_A register description	121
Table 269.	FSM_STATUS_B register	122
Table 270.	FSM_STATUS_B register description	122
Table 271.	MLC_STATUS register	123
Table 272.	MLC_STATUS register description	123
Table 273.	PAGE_RW register	124
Table 274.	PAGE_RW register description	124
Table 275.	EMB_FUNC_FIFO_CFG register	124
Table 276.	EMB_FUNC_FIFO_CFG register description	124
	FSM_ENABLE_A register	
	FSM_ENABLE_A register description	
	FSM_ENABLE_B register	
	FSM_ENABLE_B register description	
	FSM_LONG_COUNTER_L register	
	FSM_LONG_COUNTER_L register description	
	FSM_LONG_COUNTER_H register	
	FSM LONG COUNTER H register description.	
	FSM_LONG_COUNTER_CLEAR register.	
	FSM_LONG_COUNTER_CLEAR register description.	
	FSM_OUTS1 register	
	FSM OUTS1 register description.	
	FSM_OUTS2 register	
	FSM_OUTS2 register description.	
	FSM_OUTS3 register	
	FSM_OUTS4 register	
	FSM_OUTS4 register	
	FSM_OUTS4 register description	
	FSM_OUTS5 register	
	FSM_OUTS5 register description	
	FSM_OUTS6 register	
	FSM_OUTS6 register description	
	FSM_OUTS7 register	
	FSM_OUTS7 register description	
	FSM_OUTS8 register	
	FSM_OUTS8 register description.	
	FSM_OUTS9 register	
	FSM_OUTS9 register description.	
	FSM_OUTS10 register	
	FSM_OUTS10 register description	
	FSM_OUTS11 register	
	FSM_OUTS11 register description	
	FSM_OUTS12 register	
	FSM_OUTS12 register description	
	FSM_OUTS13 register	
	FSM_OUTS13 register description	
Table 313.	FSM_OUTS14 register	140
	FSM_OUTS14 register description	
Table 315.	FSM_OUTS15 register	141
Table 316.	FSM_OUTS15 register description	141
Table 317.	FSM_OUTS16 register	142
Table 318.	FSM_OUTS16 register description	142
Table 319.	EMB_FUNC_ODR_CFG_B register	143
	EMB_FUNC_ODR_CFG_B register description	
	EMB_FUNC_ODR_CFG_C register	

2. EMB_FUNC_ODR_CFG_C register description	
3. STEP_COUNTER_L register	
5. STEP_COUNTER_H register	144
6. STEP_COUNTER_H register description	144
7. EMB_FUNC_SRC register	144
8. EMB_FUNC_SRC register description	144
9. EMB_FUNC_INIT_A register	145
0. EMB_FUNC_INIT_A register description	145
<u>0. IVILO7 SRC TEUISTEL UESCHDHOH</u>	14/
9. Register address map - embedded advanced features page 0	148
9. Register address map - embedded advanced features page 0	148 148
9. Register address map - embedded advanced features page 0	148 148 150
9. Register address map - embedded advanced features page 0	148 148 150 150
9. Register address map - embedded advanced features page 0	148 148 150 150
9. Register address map - embedded advanced features page 0 . 1. Register address map - embedded advanced features page 1 . 1. MAG_SENSITIVITY_L register . 2. MAG_SENSITIVITY_L register description . 3. MAG_SENSITIVITY_H register . 4. MAG_SENSITIVITY_H register description .	148 148 150 150 150
9. Register address map - embedded advanced features page 0. 0. Register address map - embedded advanced features page 1. 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register	148 148 150 150 150 150
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description	148 148 150 150 150 150 151 151
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register.	148 148 150 150 150 151 151 151
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register. 8. MAG_OFFX_H register description	148 148 150 150 150 151 151 151
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register description 8. MAG_OFFX_H register description 9. MAG_OFFY_L register	148 148 150 150 150 151 151 151 151
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register 8. MAG_OFFX_H register description 9. MAG_OFFY_L register 0. MAG_OFFY_L register description	148 148 150 150 150 151 151 151 151 151
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register 8. MAG_OFFX_H register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_H register	148 148 150 150 150 151 151 151 151 151
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register 8. MAG_OFFX_H register description 9. MAG_OFFY_L register 0. MAG_OFFY_L register description 1. MAG_OFFY_H register 2. MAG_OFFY_H register description	148 148 150 150 150 151 151 151 151 151 151 151
9. Register address map - embedded advanced features page 0. 1. Register address map - embedded advanced features page 1. 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register description 9. MAG_OFFY_L register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_H register description 2. MAG_OFFY_H register description 3. MAG_OFFY_L register description 3. MAG_OFFZ_L register	148 150 150 150 151 151 151 151 151 151 151
9. Register address map - embedded advanced features page 0 1. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register 8. MAG_OFFX_H register description 9. MAG_OFFY_L register 10. MAG_OFFY_L register description 11. MAG_OFFY_H register 22. MAG_OFFY_H register description 33. MAG_OFFY_L register description 34. MAG_OFFZ_L register 45. MAG_OFFZ_L register 46. MAG_OFFZ_L register	148 150 150 150 151 151 151 151 151 151 152 152
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register description 6. MAG_OFFX_L register description 7. MAG_OFFX_H register description 9. MAG_OFFY_H register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_H register description 1. MAG_OFFY_H register description 1. MAG_OFFY_L register description 2. MAG_OFFY_L register description 3. MAG_OFFY_L register description	148 150 150 150 151 151 151 151 151 151 152 152 152
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register description 6. MAG_OFFX_L register description 7. MAG_OFFX_H register description 9. MAG_OFFX_H register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_H register description 3. MAG_OFFY_L register description 4. MAG_OFFY_L register description 5. MAG_OFFY_L register description 6. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 8. MAG_OFFZ_L register description 9. MAG_OFFZ_L register description	148 150 150 150 151 151 151 151 151 151 152 152 152 152
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register description 6. MAG_OFFX_L register description 7. MAG_OFFX_H register description 9. MAG_OFFX_H register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_H register description 3. MAG_OFFY_H register description 3. MAG_OFFY_H register description 5. MAG_OFFZ_L register description 6. MAG_OFFZ_L register description 7. MAG_OFFZ_H register description 7. MAG_OFFZ_H register description 7. MAG_OFFZ_H register description 7. MAG_SI_XX_L register	148 150 150 150 151 151 151 151 151 151 152 152 152 152
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register description 6. MAG_OFFX_L register description 7. MAG_OFFX_H register description 9. MAG_OFFX_H register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 2. MAG_OFFY_L register description 3. MAG_OFFY_L register description 5. MAG_OFFZ_L register description 6. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 8. MAG_OFFZ_L register description 9. MAG_OFFZ_L register description	148 150 150 150 151 151 151 151 151 151 152 152 152 152
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register description 9. MAG_OFFX_H register description 9. MAG_OFFY_L register 1. MAG_OFFY_L register description 1. MAG_OFFY_H register description 1. MAG_OFFY_H register description 1. MAG_OFFY_H register 2. MAG_OFFY_H register description 3. MAG_OFFZ_L register 4. MAG_OFFZ_L register description 5. MAG_OFFZ_H register description 6. MAG_OFFZ_H register description 7. MAG_OFFZ_H register description 8. MAG_OFFZ_H register description 9. MAG_SI_XX_L register description	148 150 150 150 151 151 151 151 151 151 152 152 152 152
9. Register address map - embedded advanced features page 0. 1. Register address map - embedded advanced features page 1. 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register description 6. MAG_OFFX_L register description 7. MAG_OFFX_H register 8. MAG_OFFX_H register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_H register description 3. MAG_OFFY_L register description 4. MAG_OFFZ_L register description 5. MAG_OFFZ_L register description 6. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 8. MAG_OFFZ_L register description 9. MAG_OFFZ_L register description 9. MAG_SI_XX_L register description 9. MAG_SI_XX_L register description 9. MAG_SI_XX_L register description 9. MAG_SI_XX_H register 10. MAG_SI_XX_H register description	148 150 150 150 151 151 151 151 151 151 152 152 152 152
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register description 6. MAG_OFFX_L register description 7. MAG_OFFX_H register description 9. MAG_OFFX_H register description 9. MAG_OFFY_L register description 1. MAG_OFFZ_L register description 1. MAG_OFFZ_L register description 1. MAG_OFFZ_L register description 1. MAG_OFFZ_L register description 1. MAG_SI_XX_L register description	148 150 150 150 151 151 151 151 151 151 152 152 152 152
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register description 5. MAG_SENSITIVITY_H register description 6. MAG_OFFX_L register description 7. MAG_OFFX_L register description 9. MAG_OFFX_H register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_L register description 2. MAG_OFFY_L register description 3. MAG_OFFY_L register description 3. MAG_OFFY_L register description 5. MAG_OFFY_L register description 6. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 7. MAG_SI_XX_L register description 9. MAG_SI_XX_L register description 9. MAG_SI_XX_L register description 1. MAG_SI_XX_L register description 1. MAG_SI_XX_L register description 1. MAG_SI_XY_L register description	148 150 150 150 151 151 151 151 151 151 152 152 152 152
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register 4. MAG_SENSITIVITY_H register description 5. MAG_OFFX_L register 6. MAG_OFFX_L register description 7. MAG_OFFX_H register description 9. MAG_OFFY_L register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_L register description 2. MAG_OFFY_H register description 3. MAG_OFFY_L register description 3. MAG_OFFY_L register description 5. MAG_OFFY_L register description 6. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 7. MAG_OFFZ_H register description 9. MAG_OFFZ_H register description 9. MAG_OFFZ_H register description 1. MAG_SI_XX_L register description 1. MAG_SI_XX_L register description 1. MAG_SI_XX_L register description 1. MAG_SI_XY_L register description	148 150 150 150 151 151 151 151 151 151 152 152 152 152
9. Register address map - embedded advanced features page 0 0. Register address map - embedded advanced features page 1 1. MAG_SENSITIVITY_L register 2. MAG_SENSITIVITY_L register description 3. MAG_SENSITIVITY_H register description 5. MAG_SENSITIVITY_H register description 6. MAG_OFFX_L register description 7. MAG_OFFX_L register description 9. MAG_OFFX_H register description 9. MAG_OFFY_L register description 1. MAG_OFFY_L register description 1. MAG_OFFY_L register description 2. MAG_OFFY_L register description 3. MAG_OFFY_L register description 3. MAG_OFFY_L register description 5. MAG_OFFY_L register description 6. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 7. MAG_OFFZ_L register description 7. MAG_SI_XX_L register description 9. MAG_SI_XX_L register description 9. MAG_SI_XX_L register description 1. MAG_SI_XX_L register description 1. MAG_SI_XX_L register description 1. MAG_SI_XY_L register description	148 148 150 150 151 151 151 151 151 151 152 152 152 152
22223333333111111	23. STEP_COUNTER_L register description. 24. STEP_COUNTER_L register description. 25. STEP_COUNTER_H register 26. STEP_COUNTER_H register description. 27. EMB_FUNC_SRC register description. 28. EMB_FUNC_SRC register description. 29. EMB_FUNC_INIT_A register. 30. EMB_FUNC_INIT_B register description. 31. EMB_FUNC_INIT_B register description. 32. EMB_FUNC_INIT_B register description. 33. MLCO_SRC register. 34. MLCO_SRC register description. 35. MLC1_SRC register description. 36. MLC1_SRC register description. 37. MLC2_SRC register description. 38. MLC2_SRC register description. 49. MLC3_SRC register description. 40. MLC3_SRC register description. 41. MLC4_SRC register description. 42. MLC4_SRC register description. 43. MLC5_SRC register description. 44. MLC5_SRC register description. 45. MLC5_SRC register description. 46. MLC6_SRC register description. 47. MLC7_SRC register description. 48. MLC7_SRC register description. 49. MLC6_SRC register description. 40. MLC5_SRC register description. 41. MLC6_SRC register description. 42. MLC6_SRC register description. 43. MLC6_SRC register description. 44. MLC7_SRC register description. 45. MLC7_SRC register description. 46. MLC6_SRC register description. 47. MLC7_SRC register description.

Table 376.	MAG_SI_XZ_L register description	153
Table 377.	MAG_SI_XZ_H register	153
Table 378.	MAG_SI_XZ_H register description	153
Table 379.	MAG_SI_YY_L register	154
Table 380.	MAG_SI_YY_L register description	154
Table 381.	MAG_SI_YY_H register	154
Table 382.	MAG_SI_YY_H register description	154
Table 383.	MAG_SI_YZ_L register	154
	MAG_SI_YZ_L register description	
	MAG_SI_YZ_H register	
	MAG_SI_YZ_H register description	
	MAG_SI_ZZ_L register	
	MAG_SI_ZZ_L register description	
	MAG_SI_ZZ_H register	
	MAG_SI_ZZ_H register description	
	MAG_CFG_A register	
	MAG_CFG_A description	
	MAG_CFG_B register	
	MAG_CFG_B description	
	FSM_LC_TIMEOUT_L register	
	FSM_LC_TIMEOUT_L register description	
	FSM_LC_TIMEOUT_H register	
	FSM_LC_TIMEOUT_H register description	
	FSM_PROGRAMS register	
	FSM_PROGRAMS register description.	
	FSM_START_ADD_L register	
	FSM_START_ADD_L register description	
	FSM_START_ADD_H register	
	FSM_START_ADD_H register description.	
	PEDO_CMD_REG register	
	PEDO_DEB_STEPS_CONF register	
	PEDO_DEB_STEPS_CONF register description	
	PEDO_SC_DELTAT_L register	
	PEDO_SC_DELTAT_H register	
	PEDO_SC_DELTAT_H/L register description	
	MLC_MAG_SENSITIVITY_L register	
	MLC_MAG_SENSITIVITY_L register description	
	MLC_MAG_SENSITIVITY_H register	
	MLC_MAG_SENSITIVITY_H register description	
	Register address map - sensor hub registers	
	SENSOR_HUB_1 register	
	SENSOR_HUB_1 register description	
	SENSOR_HUB_2 register	
	SENSOR_HUB_2 register description	
	SENSOR_HUB_3 register	
	SENSOR_HUB_3 register description	
	SENSOR_HUB_4 register	
	SENSOR_HUB_4 register description	
	SENSOR_HUB_5 register	
	SENSOR_HUB_5 register description	
	SENSOR_HUB_6 register	
	SENSOR_HUB_6 register description	
Table 429.	SENSOR_HUB_7 register	164

Table 430.	SENSOR_HUB_7 register description	164
Table 431.	SENSOR_HUB_8 register	164
Table 432.	SENSOR_HUB_8 register description	164
Table 433.	SENSOR_HUB_9 register	164
Table 434.	SENSOR_HUB_9 register description	164
Table 435.	SENSOR_HUB_10 register	165
Table 436.	SENSOR_HUB_10 register description	165
Table 437.	SENSOR_HUB_11 register	165
	SENSOR_HUB_11 register description	
Table 439.	SENSOR_HUB_12 register	165
Table 440.	SENSOR_HUB_12 register description	165
Table 441.	SENSOR_HUB_13 register	166
Table 442.	SENSOR_HUB_13 register description	166
	SENSOR_HUB_14 register	
	SENSOR_HUB_14 register description	
	SENSOR_HUB_15 register	
	SENSOR_HUB_15 register description	
	SENSOR_HUB_16 register	
	SENSOR_HUB_16 register description	
	SENSOR_HUB_17 register	
	SENSOR_HUB_17 register description	
Table 451.	SENSOR_HUB_17 register	167
Table 452.	SENSOR_HUB_17 register description	167
	MASTER_CONFIG register	
Table 454.	MASTER_CONFIG register description	168
	SLV0_ADD register	
	SLV_ADD register description	
Table 457.	SLV0_SUBADD register	169
Table 458.	SLV0_SUBADD register description	169
Table 459.	SLAVE0_CONFIG register	169
	SLAVEO_CONFIG register description	
Table 461.	SLV1_ADD register	170
Table 462.	SLV1_ADD register description	170
Table 463.	SLV1_SUBADD register	170
Table 464.	SLV1_SUBADD register description	170
Table 465.	SLAVE1_CONFIG register	170
Table 466.	SLAVE1_CONFIG register description	170
Table 467.	SLV2_ADD register	171
Table 468.	SLV2_ADD register description	171
Table 469.	SLV2_SUBADD register	171
Table 470.	SLV2_SUBADD register description	171
Table 471.	SLAVE2_CONFIG register	171
Table 472.	SLAVE2_CONFIG register description	171
Table 473.	SLV3_ADD register	172
Table 474.	SLV3_ADD register description	172
Table 475.	SLV3_SUBADD register	172
Table 476.	SLV3_SUBADD register description	172
Table 477.	SLAVE3_CONFIG register	172
Table 478.	SLAVE3_CONFIG register description	172
Table 479.	DATAWRITE_SLV0 register	173
Table 480.	DATAWRITE_SLV0 register description	173
	STATUS_MASTER register	
Table 482.	STATUS_MASTER register description	173
Table 483	Reel dimensions for carrier tape of LGA-14 package	177

List of tables

Table 484. Doo	cument revision history.	 	

DS12814 - Rev 3 page 197/199

List of figures

Figure 1.	Generic state machine	. 5
Figure 2.	State machine in the LSM6DSOX	. 5
Figure 3.	Machine Learning Core in the LSM6DSOX	. 6
Figure 4.	Pin connections	
Figure 5.	LSM6DSOX connection modes	. 8
Figure 6.	SPI slave timing diagram (in mode 3)	14
Figure 7.	I ² C slave timing diagram	15
Figure 8.	Read and write protocol (in mode 3)	20
Figure 9.	SPI read protocol (in mode 3)	21
Figure 10.	Multiple byte SPI read protocol (2-byte example) (in mode 3)	21
Figure 11.	SPI write protocol (in mode 3)	
Figure 12.	Multiple byte SPI write protocol (2-byte example) (in mode 3)	22
Figure 13.	SPI read protocol in 3-wire mode (in mode 3)	22
Figure 14.	I ² C and I3C both active (INT1 pin not connected)	25
Figure 15.	Only I3C active (INT1 pin connected to VDD_IO)	25
Figure 16.	Block diagram of filters	
Figure 17.	Accelerometer UI chain	28
Figure 18.	Accelerometer composite filter	29
Figure 19.	Accelerometer chain with Mode 4 enabled	30
Figure 20.	Gyroscope digital chain - Mode 1 (UI/EIS) and Mode 2	31
Figure 21.	Gyroscope digital chain - Mode 3 / Mode 4 (OIS/EIS)	32
Figure 22.	Auxiliary SPI full control (a) and enabling primary interface (b)	
Figure 23.	OIS Primary interface full control	
Figure 24.	LSM6DSOX electrical connections in Mode 1	39
Figure 25.	LSM6DSOX electrical connections in Mode 2	40
Figure 26.	LSM6DSOX electrical connections in Mode 3 and Mode 4 (auxiliary 3/4-wire SPI)	41
Figure 27.	Accelerometer block diagram	64
Figure 28.	LGA-14L 2.5x3x0.86 mm package outline and mechanical data	175
Figure 29.	Carrier tape information for LGA-14 package	
Figure 30.	LGA-14 package orientation in carrier tape	176
Figure 31.	Reel information for carrier tape of LGA-14 package	177

DS12814 - Rev 3 page 198/199

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2019 STMicroelectronics - All rights reserved

DS12814 - Rev 3 page 199/199