Q1:

(1-1): By F=ma, the acceleration of the object is $\frac{5.0}{2.0}=2.5~m/s^2$.

Therefore, the speed of the object after 3.0 s is $3 \cdot 2.5 = \boxed{7.5} m/s$.

- (1-2): By $v^2 u^2 = 2as$, we have $v = \sqrt{2 \cdot 2.5 \cdot 5} = \boxed{5} m/s$.
- (2): The force exerted on the ground= $mg F \sin \theta$.

Therefore, the reaction pair, the normal reaction= $mg - F \sin \theta$.

Then
$$f_{max} = \mu N = \left[\mu'(mg - F \sin \theta) \right]$$

Q2:

(1): Set the GPE as 0 on the ground. Then, by the conservation of energy:

KE+GPE=KE+GPE, we have

$$0 + mgh_1 = \frac{1}{2}mv^2 + 0$$

$$v = \boxed{\sqrt{2gh_1}}$$

(2): As the vertical displacement from A to C is h_1-h_2 , we have

$$W = Fs = \boxed{mg(h_1 - h_2)}.$$

(3): By $s = vt + \frac{1}{2}at^2$, as the initial vertical speed is 0, we have $h_2 = \frac{1}{2}gt^2$, i.e.

$$t = \boxed{\frac{2h_2}{g}}.$$

Q3:

(1): By the conservation of energy, $\frac{1}{2}mv^2=mgh,$ i.e. $v=\sqrt{2gh},$ we have $v\propto \sqrt{h}.$

Therefore, $e = \frac{v'}{v} = \sqrt{\frac{h'}{h}} = \sqrt{0.64} = \boxed{0.8}$.

(2): After rebounded, the speed of the ball when it reaches 0.10 m is $0.8 \cdot 2.8 = 2.24 \ m/s$.

Therefore, by the conservation of energy, $\frac{1}{2}m(2.24)^2=mg(h-0.10)$, i.e. $h\approx \boxed{0.32}$ m.

Q4:

(1): By the provided information, $V_{relative} = \frac{8.0}{2.0} = 4 \ m/s$.

As $V_{relative} = V + V_{ship}$, we have $V = \boxed{1} m/s$.

(2):
$$\lambda = V_{relative} \cdot T = \boxed{2} m$$

(3): By
$$v = f\lambda$$
, $f = \frac{v}{\lambda} = \boxed{0.5} Hz$.

Q5:

(1):

$$\frac{p_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\frac{0.5 \times 10^5 \cdot 1.0 \times 10^{-3}}{75} = \frac{1.1 \times 10^5 \cdot 1.0 \times 10^{-3}}{T_2}$$

$$T_2 = \boxed{165} K$$

- (2): The work done on the gas is equal to the area under the graph, we have $W=0.50\times 10^5\cdot (2.2-1.0)\times 10^{-3}=\boxed{60}\ J.$
- (3): By $U = \frac{3}{2}pV$, we have $\Delta U = \frac{3}{2}(p_AV_A p_CV_C) = \boxed{-90} J$.

Q6:

(1): The electric fields due to q_B and q_D cancelled each other and that due to q_C added to that due to q_A .

Therefore, the direction of the resultant electric field is $|\vec{OC}|$

- (2): As from the deduction in (1), $E = \frac{kq_A}{\sqrt{0.2^2 + 0.15^2}^2} \frac{kq_C}{\sqrt{0.2^2 + 0.15^2}^2} \approx \boxed{1.4 \times 10^4} N/C.$
- (3): The electric potential due to each charge is $\frac{kq}{\sqrt{0.2^2+0.15^2}}=3.6\times 10^{10}q~V.$ Therefore, the resultant electric potential is

 $3.6 \times 10^{10} (q_A + q_B + q_C + q_D) = \boxed{5040} V.$

Q7:

(1): By Ohm's law,
$$V = IR$$
, $I_1 = I = \frac{24}{R_1 + R_3} = \boxed{0.8} A$.

(2):
$$P = IV = 0.8 \times 24 = \boxed{19.2} W$$
.

$$\begin{cases} I_1 = I_2 + I_3 \\ I_1R_1 + I_3R_3 = 24 \\ -I_3R_3 + I_2R_2 = 6 \end{cases}$$
 Solving, we have $I_3 = \boxed{0.4} A$.

$$I_1R_1 + I_3R_3 = 24$$

$$-I_3R_3 + I_2R_2 = 6$$