Paradigmas de Solução de Problemas

Divisão e Conquista - Transformada Rápida de Fourier

Prof. Edson Alves - UnB/FGA 2020

Sumário

- 1. Transformada Rápida de Fourier
- 2. Referências

Transformada Rápida de Fourier

DFT em $O(N \log N)$

- A divisão e conquista pode ser aplicada no cálculo da DFT para reduzir sua complexidade assintótica
- Na etapa de divisão o sinal é dividido em duas partes de tamanhos aproximadamente iguais
- A conquista acontece quando o sinal tem uma única amostra: neste caso a transformada discreta coincide com a própria amostra
- A fusão permite o cálculo da DFT do sinal a partir das DFTs das duas partes
- ullet Se a fusão for feita em O(N), a recorrência se torna

$$f(N) = 2f(N/2) + (N)$$

- O Teorema Mestre nos diz que a complexidade da transformada passa a ser $O(N\log N)$
- Esta versão da DFT é denominada Fast Fourier Transform (FFT)

Decomposição do sinal FFT

- Considere o sinal $(a_k) = a_0, a_1, \dots, a_{N-1}$
- Assuma, sem perda de generalidade, que ${\cal N}=2^t$, para algum t natural
- \bullet Se N não for uma potência de dois, basta adicionar um número suficiente de amostras $a_i=0$ ao sinal até que N se torne uma potência de dois
- A etapa de divisão, também denominada decomposição do sinal, o sinal é separado em duas partes de tamanho N/2: as amostras cujos índices são pares (e_k) e as amostras cujos índices são ímpares (o_k)
- Assim,

$$(e_k) = a_0, a_2, a_4, \dots, a_{N-2}$$

е

$$(o_k) = a_1, a_3, a_5, \dots, a_{N-1}$$

Visualização da decomposição do sinal

Decomposição × ordenação

- Gerando a decomposição por meio da alocação de novos dois subvetores com as cópias dos elementos de índices pares e ímpares permite uma implementação top-down da FFT
- Para uma implementação bottom-up, é preciso entender o padrão subjacente que surge desta decomposição
- \bullet De fato, os elementos que ocupam as folhas nas árvores de decomposição tem índices que correspondem à ordenação dos números $\{0,1,2,\ldots,N-1\}$ usando como critério a inversão de sua representação binária
- \bullet Assim, por meio de um comparador customizado o este ordenação pode ser feita com complexidade $O(N\log N)$, o que não modifica a complexidade da FFT como um todo

Visualização da ordenação por padrão binário invertido

Índice	Padrão invertido	Padrão original
0	000	000
4	001	100
2	010	010
6	011	110
1	001	100
5	101	101
3	110	011
7	111	111
_		

Implementação da ordenação por padrão binário

```
1 #include <bits/stdc++.h>
3 using namespace std;
5 int reversed(int x, int bits)
6 {
     int res = 0;
7
8
     for (int i = 0; i < bits; ++i)
9
10
         res <<= 1;
          res |= (x \& 1);
12
         x >>= 1;
13
14
15
      return res;
16
17 }
18
```

Implementação da ordenação por padrão binário

```
19 template<typename T> vector<T> sortByBits(const vector<T>& xs)
20 {
      int N = (int) xs.size(). bits = 1:
      while ((1 << bits) != N)
          ++bits;
24
      vector<int> is(N);
26
      iota(is.begin(), is.end(), 0);
28
      sort(is.begin(), is.end(), [&bits](int x, int y) {
          return reversed(x, bits) < reversed(y, bits);</pre>
30
      });
      vector<T> ans(N);
34
      for (int i = 0; i < N; ++i)
35
          ans[i] = xs[is[i]]:
36
      return ans;
3.8
39 }
```

Referências

Referências

- 1. CHEEVER, Erick. The Fourier Series, acesso em 12/08/2020.
- 2. CP Algorithms. Fast Fourier Transform, acesso em 13/08/2020.
- SMITH, Steven W. The Scientist and Engineer's Guide to Digital Signal Processing, acesso em 17/08/2020.
- 4. Standford. Lecture 11 The Fourier Transform, acesso em 13/08/2020.
- 5. Wikipédia. Discrete Fourier Transform, acesso em 13/08/2020.
- 6. Wolfram. Fourier Series, acesso em 12/08/2020.
- 7. Wolfram. Fourier Transform, acesso em 13/08/2020.