

Distribution Families

Erlang

CumulD

Discrete

ExtValueMin

IntUniform

ExtValueMinAlt

Gamma

Theoretical and Practical significance

Geomet Histogrm

JohnsonSB

JohnsonSU

Laplace

LaplaceAlt

HyperGeo

Distributions

Discrete

Bernoulli

Binomial

Poisson

Geometric

Continuous

Uniform

Exponential

Normal

Discuss

Motivation Applications

Formulate Visualize

Examples

Properties

μ

V

σ

Python

Plot and experiment

Show Distribution

Nonnegative

Sum to 1

Blendtec

Tom Dickson

YES, IT BLENDS!

Jacob Bernoulli, 1655-1705

Theology -- mathematics

Calculus Integrals

"Euler" number

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n \qquad \mathbf{e} \to \mathbf{b}$$

Ars Conjectandi First law of large numbers

Mentored brother Johann Medicine → Math Dynasty

The simplest Distribution

Simplest

One value

5

Constant

Always same

Trivial

Simplest non-trivial

Two values

Simplest values

0 and 1

Bernoulli Coin!

Bernoulli Distribution

$$p(0) + p(1) = (1-p)+p = 1$$

X ~ B_p Bernoulli random variable, coin, experiment, trial

Who Cares About Two Values?

Binary version of complex events

Everyone!

Products: 80 good, 20 defective

Select one, good or not

~ B.8

Next child will be a boy

~ B_{.5}

Generalizes to more complex variables

Patient has one of three diseases

Repeated trials yield # successes

Many important distributions

Binomial, Geometric, Poisson, Normal

Mean

$$X \sim B_p$$

$$p(0) = 1-p$$

$$p(1) = p$$

$$EX = \sum p(x) \cdot x = (1-p) \cdot 0 + p \cdot 1 = p$$

$$X \sim B_{0.8}$$

$$EX = 0.8$$

$$EX = P(X=1)$$

Fraction of times expect to see 1

Variance

$$X \sim B_p$$

$$EX = p$$

$$0^2 = 0$$

$$1^2 = 1$$

$$X^2 = X$$

$$0^2 = 0$$
 $1^2 = 1$ $X^2 = X$ $E(X^2) = EX = p$

$$V(X) = E(X^2) - (EX)^2 = p - p^2 = p(1-p) = pq$$

Standard Deviation

$$\sigma = \sqrt{pq}$$

B_p varies most when $p = \frac{1}{2}$

various p

p	EX	V(X)	σ
0	0	0	0
1	1	0	0
1/2	1/2	1/4	1/2

Independent Trials

Much of B_p importance stems from multiple trials

Most common Independent 1

$$0 \le p \le 1$$
 $X_1, X_2, X_3 \sim B_p$ \bot

$$q \stackrel{\text{def}}{=} 1-p$$
 $P(110) = p^2q = P(101) = P(011)$

Generally

$$X_1, X_2, ..., X_n \sim B_p$$

$$x^n = x_1, x_2, ..., x_n \in \{0,1\}^n$$
 n_0 0's and n_1 1's

$$P(x_1, \dots, x_n) = p^{n_1}q^{n_0}$$
 $P(10101) = p^{n_1}q^{n_0} = p^3q^2$

Typical Samples

Distribution	Typical seq.	Description	Probability
B_0	00000000	constant 0	$1^{10} = 1$
B ₁	111111111	constant 1	$1^{10} = 1$
B _{0.8}	1110111011	80% 1's	$0.88 \cdot 0.22$
B _{0.5}	1011010010	50% 1's	0.510

Not most probable

Most probable: 1...1

Unlikely to be seen

Fair coin flip

Simplest non-constant distribution

$$B_p \quad 0 \le p \le 1$$

0 and 1
$$p(1) = p p(0) = 1-p = q$$

$$\mu = p \mid V = pq \qquad \sigma = \sqrt{pq}$$

