MC558 — Análise de Algoritmos II

Cid C. de Souza Orlando Lee

31 de maio de 2023

Créditos

A maior parte do conteúdo deste conjunto de slides foi inteiramente baseado em um conjunto de slides preparado pelo Prof. Cid Carvalho de Souza.

Apenas modifiquei um pouco a apresentação e introduzi alguns outros exemplos que pareciam mais adequado para esta instância da disciplina.

Orlando Lee Novembro de 2016

Contas superior e inferior de um problema

Seja P um problema e suponha que n é um parâmetro que denota o tamanho de uma instância de P.

- Dizemos que P tem cota superior O(g(n)) se existe algum algoritmo que resolve P com complexidade O(g(n)).
- Por exemplo, se P é o problema de ordenação, então o InsertionSort fornece uma cota superior de $O(n^2)$.
 - Melhor ainda, o MergeSort fornece uma cota superior de $O(n \log n)$.
- O interesse é encontrar a melhor/menor cota superior de um problema. Ou seja, o melhor algoritmo que resolve o problema.

Contas superior e inferior de um problema

Seja P um problema e suponha que n é um parâmetro que denota o tamanho de uma instância de P.

- Dizemos que P tem cota inferior $\Omega(f(n))$ se **qualquer algoritmo** que resolve P tem complexidade $\Omega(f(n))$.
- Por exemplo, o problema de ordenação tem cota inferior $\Omega(n \log n)$.
- Qualquer problema P tem uma cota inferior trivial $\Omega(n)$, onde n é o tamanho da entrada de P. (**Por quê?**)
- O interesse é encontrar a melhor/maior cota inferior de um problema.

Contas superior e inferior de um problema

Seja P um problema e suponha que n é um parâmetro que denota o tamanho de uma instância de P.

- Um algoritmo é ótimo para um problema P se sua complexidade coincide com uma cota inferior de P.
- Em outras palavras, temos uma cota superior que coincide com uma cota inferior.
- Por exemplo, o problema da ordenação tem cota inferior $\Omega(n \lg n)$ e existe algoritmo de ordenação de complexidade $O(n \lg n)$ (heapsort e mergesort).
- Não se conhece muitos problemas para os quais as cotas superior e inferior coincidem.

Reduções

Esquema básico de uma redução de Turing:

Problema A:

• Instância: I_A

• Solução: S_A

Problema B:

• Instância: I_B

Solução: S_B

Definição. Uma redução do problema A ao problema B é um par de transformações τ_I , τ_S tal que para toda instância I_A de A:

- τ_I transforma I_A em uma instância I_B de B, **e**
- τ_S transforma uma solução S_B de I_B em uma solução S_A de I_A .

Reduções

Esquema básico de uma redução de Turing:

Quando usar reduções?

- **Situação 1:** quero encontrar um algoritmo para resolver o problema *A* e conheço um **algoritmo** que resolve *B*, ou seja, determinar uma **cota superior** para o problema *A*;
- **Situação 2:** quero determinar uma **cota inferior** para o problema *B* e conheço uma **cota inferior** para o problema *A*.

Exemplo

Problema A: dados uma matriz M de posto completo e um vetor b, encontrar uma solução do sistema linear Mx = b.

Problema B: dados uma matriz quadrada simétrica P (isto é, $p_{ij} = p_{ji}$) e um vetor d, encontrar uma solução do sistema linear Px = d.

Suponha que temos um programa que resolve B e queremos saber como resolver A.

Podemos fazer uma redução de A para B.

- τ_I : compute a matriz $P = M^T M$ e o vetor $d = M^T b$.
- Álgebra Linear: Um vetor x é solução de Mx = b se e somente se, x é solução de $M^TMx = M^Tb$, ou seja, Px = d.
- τ_S : é a função identidade.

Exemplo

- Um vetor x é solução de Mx = b se e somente se é solução de $M^T Mx = M^T b$, ou seja, Px = d.
- A redução mostra como resolver o problema A, compondo a redução com o algoritmo que resolve o problema B.
- Conclusão: resolver sistemas lineares da forma Px = b quando P é simétrica é pelo menos tão difícil quanto resolver um sistema linear Mx = b em que M é uma matriz qualquer de posto completo.

Reduções

Definição: Um problema A é redutível a um problema B em tempo f(n) se existe uma redução como esquematizada abaixo:

$$\begin{array}{cccc}
A & & & & & B \\
I_A & & & & & & & I_B \\
S_A & & & & & & & & & S_B
\end{array}$$

onde $n = |I_A|$ e, τ_I e τ_S custam O(f(n)).

Notação: $A \propto_{f(n)} B$.

Reduções

Definição: Um problema A é redutível a um problema B em tempo f(n) se existe uma redução como esquematizada abaixo:

onde $n = |I_A|$ e, τ_I e τ_S custam O(f(n)).

Se f(n) for um polinômio então dizemos que (τ_I, τ_S) é uma redução polinomial de A a B e que A é polinomialmente redutível a B.

• Conhecendo um algoritmo π_B que resolve B, temos imediatamente um algoritmo π_A que resolve qualquer instância de A:

$$\pi_A = \tau_I \circ \pi_B \circ \tau_S$$
.

• a complexidade de π_A é a soma das complexidades de τ_I , π_B e τ_S e deve ser expressa em função do tamanho de $n = |I_A|$. Isto fornece uma cota superior para A.

- Se π_B tem complexidade O(g(n)) (cota superior de B) e $g(n) \in \Omega(f(n))$ então O(g(n)) também é uma cota superior de A.
 - ► Se $g(n) \notin \Omega(f(n))$, a cota superior ainda vale? Não necessariamente.

- Se $\Omega(h(n))$ é uma cota inferior para o problema A e $f(n) \in o(h(n))$, então $\Omega(h(n))$ também é cota inferior para o problema B.
 - ▶ Por que temos a restrição de que $f(n) \in o(h(n))$?
 - ▶ Lembre-se que o(h(n)) e $\Omega(h(n))$ são disjuntos.

- Em uma redução não é necessário explicar como resolver o problema B, apenas como τ_I e τ_S funcionam
- a complexidade da **redução** é a soma das complexidades de τ_I e τ_S (ou equivalentemente, a maior das duas).

Reduções polinomiais

- Nesta disciplina estamos interessados em algoritmos polinomiais para resolver problemas.
- Escrevemos $A \propto_{\text{poli}} B$ se existe uma redução de custo polinomial de A para B e dizemos que A é polinomialmente redutível a B.
- Neste caso, dizemos que B é pelo menos tão difícil quanto A.
- Motivação: se B pode ser resolvido por um algoritmo polinomial, então A também pode. Equivalentemente, se A não pode ser resolvido em tempo polinomial, então B também não pode.
- Esta noção é muito importante no estudo da Teoria da Complexidade quando estudamos a aparente inexistência de algoritmos polinomiais para uma grande classe de problemas, os chamados problemas NP-difíceis/NP-completos.

Exemplos de reduções

Problema do casamento cíclico de strings (CSM)

Entrada: alfabeto Σ e strings sobre Σ de tamanho n:

$$A = a_0 a_1 \dots a_{n-1}$$
 e $B = b_0 b_1 \dots b_{n-1}$.

Objetivo: decidir se *B* é um deslocamento cíclico de *A*.

Ou seja, existe $k \in \{0, 1, \dots, n-1\}$ tal que $a_{(i+k) \mod n} = b_i$ para todo $i = 0, 1, \dots, n-1$?

Exemplo: para A = acgtact e B = gtactac (n = 7) temos k = 2.

Como se resolve o CSM?

Exemplos de reduções

Problema do casamento de strings (SM)

Entrada: alfabeto Σ e strings sobre Σ :

$$A = a_0 a_1 \dots a_{n-1} \in B = b_0 b_1 \dots b_{m-1}, \text{com } m \leq n.$$

Objetivo: encontrar a primeira ocorrência de B em A ou concluir que B não é subcadeia de A.

Ou seja, determinar o menor índice $k \in \{0,1,\ldots,n-1\}$ tal que $a_{(i+k) \mod n} = b_i$ para todo $i=0,1,\ldots,m-1$ ou devolver k=-1.

Exemplo: para A = acgttaccgtacccg e B = tac (n = 15 e m = 3) temos k = 4.

Observação: o problema SM pode ser resolvido em tempo O(n+m) pelo algoritmo KMP de Knuth, Morris and Pratt (1977).

$\mathsf{CSM} \propto \mathsf{SM}$

Redução: CSM \propto_n SM

- Instância de CSM: $I_{CSM} = (A, B, n)$.
- τ_I constrói a instância de SM:

$$I_{SM} = (A', 2n, B, n)$$
, onde $A' = A||A$.

Portanto, τ_I custa O(n).

• Se k é a solução de SM para I_{SM} , então k também é a solução de I_{CSM} . Logo, τ_S custa O(1) e a redução custa O(n).

Exemplo:

- $I_{CSM} = (acgtact, gtactac, 7)$
- $I_{SM} = (acgtactacgtact, 14, gtactac, 7)$
- $S_{SM} = S_{CSM} = \{k = 2\}$

Exemplos de reduções

Problema da existência de triângulo (PET)

Entrada: grafo conexo simples G = (V, E) com n = |V| e m = |E| na forma de matriz de adjacência.

Objetivo: decidir se *G* contém um triângulo.

Exemplo:

Observações sobre o PET

- Há um algoritmo trivial de complexidade $O(n^3)$: verificar todas as triplas de vértices.
- Existe um algoritmo O(mn) que é muito bom para grafos esparsos. (Exercício)
- Seja A = A(G) a matriz de adjacência de G.
- Se $A^2=A imes A$, então $a_{ij}^2=\sum_{k=1}^n a_{ik}a_{kj}$. Então

$$a_{ij}^2 > 0 \Leftrightarrow \exists k \in \{1, \dots, n\} \text{ tal que } a_{ik} = a_{kj} = 1.$$

• Portanto, (i,j,k) corresponde a um triângulo se, e somente se, $a_{ij}^2 > 0$ e $a_{ij} = 1$.

Exemplos de reduções

Problema da Multiplicação de Matrizes Quadradas (MMQ)

Entrada: matrizes quadradas (de inteiros) $A \in B$ de ordem n.

Objetivo: calcular o produto $P = A \times B$.

Observações:

- há um algoritmo óbvio de complexidade $O(n^3)$;
- MMQ pode ser resolvido em tempo $O(n^{\log 7 = 2.807})$ pelo algoritmo de Strassen (1969) ou em tempo $O(n^{2.376})$ pelo algoritmo de Coppersmith e Winograd (1990).

PET ∝ MMQ

Redução: PET \propto_{n^2} MMQ

- Instância de PET: $I_{PET} = A(G)$.
- τ_I constrói a instância de MMQ:

$$I_{MMQ} = (A, A, n)$$
, onde $A = A(G)$.

Portanto, τ_I custa $O(n^2)$.

• Se $S_{MMQ} = P$ é a solução de MMQ para I_{MMQ} , então a solução de I_{PET} é obtida pelo algoritmo abaixo:

para
$$i=1$$
 até n faça para $j=1$ até n faça se $p_{ij}>0\,$ e $a_{ij}=1$ então devolva SIM devolva NÃO

Logo, τ_S custa $O(n^2)$.

PET ∝ MMQ

$$P = A(G) \times A(G)$$

	1	2	3	4	5
1	0	1	1	0	0
2	1	0	0	1	1
3	1	0	0	1	0
4	0	1	1	0	1
5	0 1 1 0 0	1	0	1	0

Exemplos de reduções

Multiplicação de Matrizes Simétricas (MMS)

Entrada: matrizes simétricas (de inteiros) A e B de ordem n.

Objetivo: calcular o produto $P = A \times B$.

Observações:

- MMS é um caso particular de MMQ: a redução MMS \propto_{n^2} MMQ é imediata;
 - Portanto, MMQ é pelo menos tão difícil quanto MMS.
- Será que MMS é pelo menos tão difícil quanto MMQ?
 Menos óbvio.

MMQ ∝ MMS

Redução: MMQ \propto_{n^2} MMS

- Instância de MMQ: $I_{MMQ} = (A, B, n)$.
- τ_I constrói a instância de MMS: $I_{MMS} = (A', B', 2n)$ onde

$$A' = \begin{bmatrix} 0 & A \\ A^T & 0 \end{bmatrix} \quad e \quad B' = \begin{bmatrix} 0 & B^T \\ B & 0 \end{bmatrix}$$

Portanto, τ_I custa $O(n^2)$.

• A solução de MMS é:

$$P' = A'B' = \begin{bmatrix} AB & 0 \\ 0 & A^TB^T \end{bmatrix}$$

$\mathsf{MMQ} \propto \mathsf{MMS}$

• A função τ_S pode ser implementada pelo algoritmo abaixo:

para
$$i=1$$
 até n faça
para $j=1$ até n faça
 $p_{ij} \leftarrow p'_{ij} \qquad riangleright copia AB para $P$$

Logo, τ_S custa $O(n^2)$.

- Por esta redução, se MMQ tem cota inferior em $\Omega(h(n))$, então MMS também tem cota inferior em $\Omega(h(n))$.
- Note que $h(n) \in \Omega(n^2)$. (Por quê?)

Uma cota inferior trivial para qualquer problema é o tamanho da entrada.

Você está entendendo mesmo?

Suponha que um problema A pode ser reduzido a um problema B.

$$\begin{array}{cccc}
A & & & B \\
I_A & & & & & & I_B \\
S_A & & & & & & & & & & S_B
\end{array}$$

Suponha que $n = |I_A|$, $\tau_I, \tau_S \in O(n^2)$ e $|I_B| = O(n^2)$. Suponha também que uma instância de B com tamanho m pode ser resolvida em tempo $O(m \log m)$.

- A pode ser resolvido em tempo $O(n \log n)$? Não sei... Talvez?
- A pode ser resolvido em tempo $O(n^2 \log n)$? Sim!

Você está entendendo mesmo?

Suponha que um problema A pode ser reduzido a um problema B.

Agora suponha que $n = |I_A|$, $\tau_I, \tau_S \in O(n^2)$ e $|I_B| = O(n \log n)$.

- Se A tem cota inferior $\Omega(n^{1.7})$ então B também tem? Não sei... Talvez?
- Se A tem cota inferior $\Omega(n^2 \log n)$ então B também tem? Sim!

Observação. Note que a cota inferior de B está em função de $n=|I_A|$. Para obter a cota inferior correspondente de B em função de $|I_B|$, basta escrever n em função de $|I_B|$.

Erros comuns ao usar reduções

- Usar a redução na ordem inversa: em vez de fazer a redução $A \propto B$, prova-se que $B \propto A$ e conclui-se (erroneamente) que B é pelo menos tão difícil quanto A.
- Dada a redução $A \propto B$, achar que toda instância de B tem que ser mapeada em alguma instância de A. O mapeamento τ_I é injetor (não necessariamente bijetor).
- Usar o algoritmo produzido por uma redução sem se preocupar com a existência de outro mais eficiente. A redução de $A \propto B$ não é necessariamente o modo mais eficiente de resolver A.

Princípio da Chaleira

- Este princípio é uma espécie de anedota que satiriza o processo de pensamento que ocorre quando se trabalha com reduções.
- Nimrod tem uma receita antiga para fazer o melhor chá do Universo: ele pega uma chaleira vazia, enche-a de água, aquece-a até a água começar a ferver, desliga o fogo, acrescenta as folhas de chá, mexe levemente por 7 segundos, espera 42 segundos e pronto!
- Um dia caiu uma chuva fortíssima e Nimrod notou que a chaleira tinha 70% de água. O que ele deve fazer para preparar seu chá?
- Jogue fora toda a água e reduza ao problema anterior(!!).

Reduções

Definição: Um problema A é redutível a um problema B em tempo f(n) se existe uma redução como esquematizada abaixo:

onde $n = |I_A|$ e, τ_I e τ_S custam O(f(n)).

Notação: $A \propto_{f(n)} B$.

• Se $\Omega(h(n))$ é uma cota inferior para o problema A e $f(n) \in o(h(n))$, então $\Omega(h(n))$ também é cota inferior para o problema B.

- Veremos algumas reduções que nos permitem obter cotas inferiores para vários problemas.
- Sejam A e B dois problemas. Suponha que A tem cota inferior $\Omega(h(n))$.
- Se $A \propto_{f(n)} B$ e $f(n) \in o(h(n))$, então B também tem cota inferior $\Omega(h(n))$.
- Atenção! Resultados sobre cota inferior dependem do modelo de computação adotado.
 - Por exemplo, o Problema da Ordenação tem cota inferior $\Omega(n \log n)$ no modelo de árvores binárias de decisão.

Problema da Ordenação (ORD)

Entrada: sequência de elementos comparáveis de comprimento *n*

$$X=(x_1,x_2,\ldots,x_n).$$

Objetivo: encontrar uma **permutação ordenada** de *X*.

Observações:

- ORD tem cota inferior $\Omega(n \lg n)$ no modelo mais geral de **árvore** algébrica de decisão.
- Informalmente, neste modelo em cada nó é feita uma computação de um polinômio de n variáveis. Há 3 possíveis resultados > 0, = 0 ou < 0 (a árvore é ternária).
- Todos os resultados de cotas inferiores que veremos s\u00e3o para este modelo.

Problema da Unicidade de Elementos (UE)

Entrada: sequência de elementos comparáveis de comprimento *n*

$$X=(x_1,x_2,\ldots,x_n).$$

Objetivo: decidir se todos os elementos de *X* são **distintos**.

Observações:

- no modelo de árvore algébrica de decisão, UE tem cota inferior $\Omega(n | g | n)$.
- o problema pode ser resolvido em tempo $O(n \lg n)$. (Como?)

Envoltória convexa

Problema da Envoltória Convexa (EC)

Entrada: conjunto $\{(x_1, y_1), \dots, (x_n, y_n)\}$ de *n* pontos no plano.

Objetivo: encontrar o **menor polígono convexo** que contém os *n* pontos.

Observações:

- a saída é a ordem cíclica anti-horária dos vértices do polígono;
- problema clássico de Geometria Computacional: pode ser resolvido em tempo $O(n \lg n)$ usando a estratégia de divisão-e-conquista.

ORD \propto_n EC

Redução: ORD \propto_n EC

- Instância de ORD: $I_{ORD} = (x_1, x_2 \dots, x_n)$.
- τ_I constrói a instância de EC:

$$I_{EC} = \{(x_1, x_1^2), (x_2, x_2^2), \dots, (x_n, x_n^2)\}.$$

Claramente τ_I custa O(n).

ORD \propto_n EC

- A solução de I_{EC} é uma ordem cíclica de pontos.
- τ_S determina o ponto que tem **menor abcissa** e lista os próximos pontos seguindo a ordem cíclica anti-horária.

Claramente, τ_S custa O(n).

• Segue que $\Omega(n \lg n)$ é uma cota inferior para EC.

Par Mais Próximo Em Duas Dimensões

Problema do Par Mais Próximo (PMP)

Entrada: coleção $\{(x_1, y_1), \dots, (x_n, y_n)\}$ de *n* pontos no plano.

Objetivo: encontrar um par de pontos que estejam a menor distância.

Observação:

• problema clássico em Geometria Computacional: pode ser resolvido em tempo $O(n \lg n)$.

$UE \propto_n PMP$

Redução: UE \propto_n PMP

- Instância de UE: $I_{UE} = (x_1, x_2, ..., x_n)$.
- τ_I constrói a instância de PMP:

$$I_{PMP} = \{(x_1,0),(x_2,0),\ldots,(x_n,0)\}.$$

Claramente, τ_I custa O(n).

$UE \propto_n PMP$

- A solução de I_{PMP} é um par de pontos $(x_i, 0), (x_j, 0)$.
- τ_S verifica se a **distância** entre os dois pontos é **zero**.

Se SIM então a resposta de I_{UE} é NÃO. Caso contrário, a resposta de I_{UE} é SIM.

Claramente, τ_S custa O(1).

• Logo, $\Omega(n \lg n)$ é uma cota inferior para PMP.

3-SOMA

Problema da 3-Soma (3SUM)

Entrada: sequência $X = (x_1, x_2, \dots, x_n)$ de reais.

Objetivo: determinar se existem índices distintos i, j e k tais que:

$$x_i + x_j + x_k = 0.$$

Exemplo: X = (0.75, -0.4, 1, -1, 0.25, -0.7) solução i = 1, j = 4 e k = 5.

Observações:

- o problema pode ser resolvido em tempo $O(n^2)$ (Como?)
- por muito tempo acreditou-se que $\Omega(n^2)$ fosse uma cota inferior para 3SUM, mas ninguém sabia provar isto! A única cota inferior conhecida era o trivial $\Omega(n)$.

Colinearidade

Problema da Colinearidade (COL)

Entrada: conjunto $S := \{(x_1, y_1), \dots, (x_n, y_n)\}$ de *n* pontos no plano.

Objetivo: determinar se **três pontos distintos** de *S* são **colineares**.

Observação:

- o problema pode ser resolvido em tempo $O(n^2)$
- acredita-se que $\Omega(n^2)$ é uma cota inferior para COL, mas ninguém sabe provar isto!

Redução: 3SUM \propto_n COL

- Instância de 3SUM: $I_{3SUM} = (x_1, x_2, ..., x_n)$.
- τ_I constrói a instância de COL:

$$I_{COL} = \{(x_i, x_i^3) : i = 1, 2, ..., n\}.$$

Exemplo: X = (0.75, -0.4, 1, -1, 0.25, -0.7)

Claramente, τ_I custa O(n).

- A solução de I_{COL} (se houver) é uma tripla de pontos colineares distintos $(x_i, x_i^3), (x_j, x_j^3), (x_k, x_k^3)$.
- neste caso, τ_S devolve x_i, x_i, x_k , senão devolve NÃO EXISTE.
- Vetores e geometria: três pontos $(x_i, x_i^3), (x_j, x_j^3), (x_k, x_k^3)$ são colineares se, e somente se, $x_i + x_j + x_k = 0$.

Exemplo: X = (0.75, -0.4, 1, -1, 0.25, -0.7)

• Logo, τ_S custa O(1),

Exemplo: X = (0.75, -0.4, 1, -1, 0.25, -0.7)

- Como a redução descrita é **linear**, se $\Omega(h(n))$ é uma cota inferior de 3SUM, então $\Omega(h(n))$ também é uma cota inferior de COL.
 - Entretanto, a única cota inferior conhecida é o trivial $\Omega(n)$.
- Surpreendentemente Grønlund e Pettie (2014) mostraram que 3SUM pode ser resolvido em tempo $O(n^2/(\log n/\log\log n)^{2/3})$.
 - Originalmente, conjecturava-se que $\Omega(n^2)$ era uma cota inferior para 3SUM. Sabe-se agora que isto não é verdade.
- **Problema em aberto:** existe uma constante $\epsilon > 0$ tal que 3SUM tem cota inferior $\Omega(n^{2-\epsilon})$?

Exercício

O Problema 3SUM' consiste em dados uma sequência $X = (x_1, x_2, \dots, x_n)$ de reais e um real b, determinar se existem três índices distintos i, j e k tais que $x_i + x_j + x_k = b$.

- **1** Mostre que 3SUM \propto_n 3SUM'.
- ② Mostre que 3SUM' \propto_n 3SUM.
- Suponha que o Professor Sabit Udo provou uma cota inferior $\Omega(n^{1.9})$ para 3SUM'.

Quais das afirmações abaixo podemos concluir que são verdadeiras a partir deste fato?

- Não existe algoritmo $O(n^{1.5})$ para 3SUM'.
- **1** Não existe algoritmo $O(n^{1.5})$ para 3SUM.
- **©** Existe um algoritmo $O(n^{1.9})$ para 3SUM'.
- **1** Existe um algoritmo $O(n^{1.9})$ para 3SUM.
- 3SUM e 3SUM' têm a mesma cota superior e inferior.

Exercício

Prof. Sabin Ada afirma que desenvolveu uma estrutura de dados (chamada 2Good2BTru) que armazena um conjunto *S* de números reais e é capaz de realizar as seguintes operações:

- inicializar S como vazio em tempo O(1),
- inserir um número real x em S em tempo O(1) e
- remover (e devolver) o menor elemento de S em tempo O(1).

O que você acha?