

ROCKET DESIGN DATA HANDBOOK

FIFTH EDITION NOVEMBER 1961

Presented with the compliments of

ROCKETS DEPARTMENT

Name Name n n 11 pr

Home

Telep

Busine

Telepho

THE BELL AGENA ROCKET ENGINE

World's most reliable rocket engine — a record achieved by the Bell Agena Rocket Engine on the U.S. Air Force's DISCOVERER and MIDAS satellite programs*. Starting with DISCOVERER I on February 28, 1959, this rocket engine has performed as required in more than 35 space flights. The Bell Agena Rocket Engine is also scheduled for use on NASA's RANGER and MARINER spacecraft.

Thrust - 16,000 pounds

Engine Specific Impulse — Highest of any operational rocket engine in this class

Propellants — Red Fuming Nitric Acid and Unsymmetrical Dimethylhydrazine

Restart Capability — Two (2) engine starts in vacuum Thrust Vector Control — Gimballed thrust chamber Installation — Four point engine mount

Engine Weight — Approximately 290 pounds
Overall Length — Approximately 7 feet

*See Space Log pp. 84-88

TABLE OF CONTENTS

IABLE OF CONTLINE	Page
Highlights in Rocketry	1
Rocket Symbols	5
Greek Alphabet	7
Rocket Relationships	8
Principles of Rocket Propulsion	8
Rocket Equations	9
Performance of Rocket Propellants	17
Liquid Bipropellant Combinations	18
Performance of Monopropellants	22
Physical Properties of Fuels	23
Physical Properties of Oxidizers	26
Rocket Heat Transfer	27
Pump Relationships	31
Ballistic and Celestial Mechanics	34
Short Range Ballistic Trajectories	36
Simplified Vertical Trajectory Equations	37
Mechanics of Conic Section Trajectories	38
Characteristic Data of the Solar System	44
Physical Properties	45
General Properties of Gases	45
Physical Properties of Gases	46
General Properties of Air	48
Composition of Air	50
ICAO Atmospheric Standard	51
Standard Atmosphere	52
Chemical Elements	59
Miscellaneous Constants	62
Physical Properties of Refractory Materials	63
Physical Properties of Metals	64

BELL AEROSYSTEMS COMPANY

Conversion Tables	68
Charts	
Thrust Coefficient, Cf, as a function of Pressure Ratio, Area Ratio, and Specific Heat Ratio for	
Optimum Expansion Conditions	13
General Theoretical Performance Curves Nozzle Separation Pressure as a Function of	14
Po/Pc	16
Typical Rocket	30
Efficiencies as Related to Specific Speed	33
Inertial Trajectories in a Central Gravity Field.	_
Range of Ballistic Trajectories over Reference	20
Sphere 100 Miles above Earth	41
Satellite Vehicle as a Function of Altitude	42
Natural Logarithm of n vs Inn	
No. 86, the ARDC Model Atmosphere, 1956	
Temperature and Speed of Sound versus	E.C.
Altitude	
Speed of Sound Versus Temperature	57
Variation of Power with Altitude for Different	50
Prime Movers	
Space Log	. 84

HIGHLIGHTS IN ROCKETRY

- 1232 A.D. Battle of Kai-fung-fu. Assaults were repulsed by "arrows of flaming fire," consisting of ordinary arrows to which were tied small packages of incendiary powder.
- 1379 Battle for Isle of Chiozza. A defending tower was set afire by a crude powder rocket, eliminating last pocket of resistance.
- William Congreve of England (later knighted)
 demonstrated powder rockets with a range of
 2000 yards.
- City of Copenhagen razed by a bombardment involving 25,000 rockets.
- Aug. 24, Battle of Bladensburg. Employment of rockets defeated and dispersed troops, leading to capture of Washington, D. C.
- Sept. Battle of Fort McHenry. Renowned primarily for its contribution to the "Star Spangled Banner."
- 1838 First patent granted (England) for life saving rocket subsequently employed by coastal rescue units.
- 1903 Konstantin Eduardovich Ziolkovsky (Russia) published first treatise on space travel advocating the use of liquid fuel rockets.

1919	Dr. Robert H. Goddard, the father of Ameri- can rocketry, wrote "A Method of Reaching Extreme Altitudes." Two years later Dr.	1938	Early model of German V-2 (A-3) attained an altitude of 40,000 feet and a range of 11 miles.
	Goddard began experiments with liquid fuel rockets.	1942- 1945	Solid propellant rockets employed by Armed Forces for artillery projectiles and aircraft
1923	Herman Oberth of Germany authored "The Rocket into Interplanetary Space." Oberth,		assist take-off (JATO) applications.
	like Dr. Goddard, favored liquid fuel rockets	1942	First flight of prototype V-2 (A-4).
	because of their greater combustion effici- ency.	April, 1942	First American military airplane to use liquid fuel rockets for assisted take-off.
March 16, 1926	Dr. Goddard launched the first vehicle to be powered by a liquid-fuel rocket engine. The vehicle traveled a distance of 184 feet in 2.5 seconds.	July 5, 1944	First American aircraft (Northrop MX-324) powered by liquid fuel rocket engine.
		Sept. 8,	First V-2 attack on city of London.
1927	Foundation in Germany of Society for Space Travel (Verein fur Raumschiffahrt).	1944 December 1944	First American liquid rocket guided missile (Private A) launched.
1928	Fritz Von Opel of Germany flew first rocket- propelled aircraft near Frankfurt (solid pro- pellant charges mounted on a glider).	Ocotober 1945	First flight of WAC Corporal attained an altitude of 43.5 miles.
1930	Foundation of American Interplanetary Society. In 1934, the name of the organization was changed to American Rocket Society.	Oct. 14, 1947	Bell Aircraft Corporation X-1, powered by a Reaction Motors, Incorporated (RMI) rocket engine, completed the first piloted supersonic flight in history.
Dec. 30,	Rocket flight conducted by Dr. Goddard at- tained an altitude of 4800 feet, a range of	Feb. 24,	"Bumper" configuration consisting of V-2, on
	13,000 feet, and a speed of 550 miles per hour.	1949	which was mounted a WAC Corporal, attained a record-breaking altitude of 250 miles.
May 31,	Rocket flight conducted by Dr. Goddard at-	D 10	Dall Aimonest Componetion V-1A simplene now-
1935	tained an altitude of 7500 feet.	Dec. 12, 1953	Bell Aircraft Corporation X-1A airplane, pow- ered by RMI rocket engine, established a new
1937	Establishment of Research Institute at Peene- munde.		unofficial world's speed record of over 1600 mph.

July 23,	Bell Aircraft Corporation X-2 airplane,
1956	powered by Curtiss-Wright rocket engine estab-
	lished a new unofficial world's speed record of
	1900 mph.

Sept.	7,	Bell	X-2 established	new	unofficial	world's
1956		altitu	de record of over	126,2	200 feet.	

- Sept. 27, Bell X-2 established new unofficial world's speed record of 2148 mph.
- Oct. 4, The U.S.S.R. launched "Sputnik I," the world's first satellite. Weighing an estimated 184 pounds, it orbited at an altitude of 170 to 580 miles.
- Nov. 3, The U.S.S.R. launched "Sputnik II," the first satellite to contain a living animal.
- Jan. 31, United States launched its first satellite, 1958 "Explorer I."
- March 17, United States launched "Vanguard I." 1958
- Aug. 4, X-15 utilizing Bell Aerosystems Company reaction controls establishes new speed record of 2196 mph.
- Aug. 12, X-15 establishes new altitude record at 136,500 feet.

SPACE LOG. See pages 84 to 86

ROCKET SYMBOLS

A _e	Nozzle exit area	in. ²
At	Throat area	in.2
A_{W}	Chamber inner surface area	in.2
C_{f}	Thrust coefficient	none
c*	Characteristic exhaust velocity	ft/sec
С	Effective exhaust velocity	ft/sec
F	Thrust	1b
g	Acceleration of gravity	ft/sec ²
h	Altitude	ft
I _{sp}	Specific impulse	sec
It	Total impulse	lb-sec
k	Ratio of specific heats Cp/Cv	none
L*	Characteristic length	in.
M	Molecular weight	lb/mol
M	Mass flow, W/g	lb-sec/ft
n	Polytropic exponent	none
Pc	Chamber pressure, absolute	lb/in.2
Pe	Exit pressure, absolute	lb/in.2
Po	Ambient absolute pressure	lb/in.2
r	Mixture ratio, Wo/Wf	none
R	Universal gas constant (1545)	ft-lb/mol-°R
T	Absolute temperature	°R
T_{c}	Combustion temperature	°R

BELL AEROSYSTEMS COMPANY

t	Time	sec
v	Velocity	ft/sec
v _e	Exhaust velocity	ft/sec
vs	Satellite velocity	ft/sec
V	Specific volume	$ft^3/1b$
v_c	Thrust chamber volume	in.3
W	Weight	1b
W_{f}	Weight of fuel	1b
Wi	Initial weight	lb
Wo	Weight of oxidizer	1b
w	Fluid flow rate	lb/sec
W _f	Fuel flow rate	lb/sec
w _f	Oxidizer flow rate	lb/sec
γ	Weight density	lb/ft ³
8	Specific gravity	none
€	Area ratio, A _e /A _t	none
η	Efficiency	none
P	Mass density	lb-sec ² /ft ⁴

GREEK ALPHABET

A	Œ	Alpha
В	β	Beta
Γ	2	Gamma
Δ	8	Delta
E	€	Epsilon
Z	ζ	Zeta
Н		Eta
	η	Theta
Θ	- 0	
I	L	Iota
K	K	Kappa
Δ	λ	Lambda
M	μ	Mu
N	ν	Nu
日	ξ	Xi
0	0	Omicron
П	- 77	Pi
P	ρ	Rho
Σ	σ	Sigma
T	τ	Tau
T	υ	Upsilon
Φ	ф	Phi
X	X	Chi
Ψ	Ψ	Psi
Ω	ω	Omega

ROCKET RELATIONSHIPS

PRINCIPLES OF ROCKET PROPULSION

The fundamental principle upon which all jet and rocket prime movers operate is based on Newton's third law, i.e., for every action there is an equal and opposite reaction. To afford a more complete understanding, consider the following illustration of a typical rocket thrust chamber.

Upon combustion of the propellants in the thrust chamber, the gases expand through the nozzle at a high velocity. The internal pressure at the nozzle end is relieved, leaving an unbalanced pressure at the other end which tends to propel the chamber or the vehicle to which it is mounted in the direction opposite to the issuing jet. Propulsion is dependent upon internal conditions alone and not the effect of the jet pushing against the surrounding air.

The propulsive force exerted by the jet is expressed

Thrust =
$$\frac{Wv_e}{g} + A_e (P_e - P_o)$$

where W represents the propellant flow rate, v_e the nozzle exhaust velocity, A_e the nozzle exit area, P_e the exit pressure, and P_o atmospheric pressure. In a perfect vacuum, P_o is equal to zero, indicating that the thrust increases with altitude.

In contrast to other forms of jet engines, the rocket does not use the oxygen in the atmosphere for the combustion process. Instead, the oxidizer is carried aloft with the fuel. Thus, the rocket is the only means of achieving travel beyond the atmosphere of the earth.

ROCKET EQUATIONS

Thrust

$$F = \frac{\dot{W}}{g} v_e + (P_e - P_o) A_e$$

Effective Exhaust Velocity

$$c = \frac{Fg}{\dot{w}} = I_{sp} g = v_e + \frac{P_e - P_o}{\dot{w}} A_e g$$

Characteristic Velocity - Frozen Composition (see page 17)

$$c^* = \frac{P_c A_t g}{\dot{w}} = \frac{I_{sp} g}{C_f} = \frac{\sqrt{gkR} \frac{T_c}{M}}{\frac{k+1}{2(k-1)}}$$

as

BELL AEROSYSTEMS COMPANY

Coefficient of Thrust - Frozen Composition

$$C_{f} = \frac{F}{P_{c}A_{t}}$$

$$= \sqrt{\frac{2k^{2}}{k-1} \left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}} \left[1 - \left(\frac{P_{e}}{P_{c}}\right)^{\frac{k-1}{k}}\right] + \frac{(P_{e}-P_{o})}{P_{c}} + \frac{A_{e}}{A_{t}} }$$

Total Impulse

$$I_t = W_p I_{sp} = F x t$$

Wp = total weight of propellants

Density Impulse

$$I_D = I_{sp} \delta_p$$

Propellant Bulk Specific Gravity

$$\delta_p = \frac{\frac{1+r}{1+r}}{\frac{\delta_f}{\delta_o}}$$

 δ_f = specific gravity of fuel, δ_o = specific gravity of oxidizer

Characteristic Length

$$L^* = \frac{V_C}{A_t}$$

Stay Time of Combustion Gases in Chamber

$$t_{c} = \frac{V_{c}}{\dot{W}} \times \frac{P_{c}}{12R(\frac{T_{c}}{M})}$$

Mach Number

Ma =
$$\frac{v}{a} = \frac{v}{\sqrt{kgR'T}}$$
 a = speed of sound, ft/sec
R' = gas constant = $\frac{R}{molecular weight}$

Mach Number as a Function of Nozzle Area

$$\frac{A_2}{A_1} = \frac{Ma_1}{Ma_2} \sqrt{\frac{1 + \frac{k-1}{2} Ma_2^2}{1 + \frac{k-1}{2} Ma_1^2}} \frac{\frac{k+1}{k-1}}{1 + \frac{k-1}{2} Ma_1^2}$$

Horsepower Equivalent to Thrust

$$HP = \frac{v(MPH)}{375} F$$

General Theoretical Thrust Chamber Performance

The plot on pages 14 and 15 is designed to estimate the performance of any propellant combination for any set of operating conditions including chamber pressure, area ratio, and altitude by knowing the performance at sea level when operating at 300 psia chamber pressure with optimum expansion. The upper ordinate is expressed as the ratio of the performance at the operating condition to that at the reference sea level value. The chart is entered at the specified altitude (lower ordinate), moving horizontally to the correct chamber pressure. Proceeding vertically, the chosen area ratio is found and the specific impulse ratio read from the upper ordinate. The product of this ratio and the reference specific impulse value will indicate the performance at the specified conditions.

The theoretical performance calculations based on shifting equilibrium for most propellant combinations falls within 1% of these curves. Maximum deviation was found to be 3%.

PERFORMANCE OF ROCKET PROPELLANTS

The specific impulse (I_{sp}) of a propellant combination is related to the energy content of the combustion gases. The general equation for specific impulse is:

$$I_{sp} = \sqrt{\frac{2J}{g}} (h_c - h_e)_s$$

where

h_c = enthalpy of combustion products before expansion, BTU/lb

he = enthalpy of combustion products after expansion, BTU/lb

J = mechanical equivalent of heat = 778 ft-lb/BTU

s = denotes expansion at constant entropy, with chemical equilibrium maintained

Calculations performed in accordance with the above equation are called "Shifting Equilibrium" (S.E.) calculations.

If it is assumed that there is no shifting equilibrium during expansion, and that the specific heat of the gas is constant, ideal gas relationships can be substituted in the above equation, and a "Frozen Composition" (F.C.) calculation can be made. The modified equation is:

$$I_{sp} = \sqrt{\frac{2R}{g}} \frac{k}{k-1} \frac{T_c}{M} \left[1 - \left(\frac{P_e}{P_c} \right) \frac{k-1}{k} \right]$$

The above relations are for a fully expanded exhaust nozzle (i.e. $P_e = P_0$).

S
Z
0
F
4
Z
00
5
0
COMBINATIONS
LANT
d
E
0
PROPELI
0
00
LIQUID
7
9

Oxidizer	Fuel	r	T.(°F)	300 +14.	sp +14.7	Sp. Gr.
				sd	sia	
Chlorine	Ammonia*	3.93	4980	240	(F.C.)	1.34
Trifluoride:	Hydrazine*	2.5	6100	258	(S.E.)	1,45
	Methyl Alcohol*	2.88	5150	230	(S.E.)	1.35
Liquid	Ammonia*	3.00	7280	311	(S.E.)	1,158
Fluorine:	Hydrazine*	2.00	7324	315	(S.E.)	1.293
	Hydrogen*	2.67	5514	364	(S.E.)	0.376
	Lithium*	2.19	2000	336	(S.E.)	0.960
	Methyl Alcohol*	2.375	7182	299	(S.E.)	1.193
90% Hydrogen	JP-4	7.75	4508	234.5	(S.E.)	1.26
1 2	uns-Dimethyl-					
	hydrazine*	4.40	4490	239.5	(S.E.)	
	Hydrazine*	2.04	4350	O	(S.E.)	1.235
Mixed Oxides of	uns-Dimethyl-					
Nitrogen (24% NO):		2.5	5642	255	(S.E.)	1.17
Nitrogen	Ammonia	2.029	4627	238	(S.E.)	1.07
Tetroxide:	Aniline*	3.87	5742	221	(F.C.)	- i
	Benzene	4.418	5598	214	(F.C.)	-
	Ethylamine*	4.096	5538	230	(F.C.)	
	Hydrazine*	1.25	5080	254.5	(S.E.)	=
	Hydrogen	11.5	5610	279	(F.C.)	0
			Î			
7	Isopropyl Alcohol	3.06	4773	224	(F.C.)	1.2
		7 1 1	5191	076	() ()	
	Turpentine		1710	047		7 . 7
	$(a \text{ pinene})^*$	4.7	5542	221	(F.C.)	_
	UDMH	2.25	5288		(S.E.)	1.1
	Xylidene*	3.00	5470	223	(F.C.)	
Nitrogen Trifluoride.	Ammonia	4 9	6128	277	(S.F.)	1.24
		0	1 0			
Liquid	Acetylene	1.23	2109	200	(F. C.)	0.83
Oxygen:	Aluminum	1 99	6000		0 4	0 775
	boronyariae	1.04	0000		(1)	0.1.0
	Ammonia	1.25	4834		(F.C.	
	Ethyl Alcohol	1.50	5297		(F.C.)	
	Ethylene	1.86	5538		(F.C.)	
	Hydrazine	0.83	5382		(F.C.)	
	Hydrazine Hydrate	1.00	4572		(F.C.)	_
		3.5	4426		(S.C.)	0
	Isopropyl Alcohol	1.85	5553		(F.C.)	o
	Lithium	1.15	13000	318		0.746
	JP-4	2.4	5737		(S.E.)	1.005
	Lithium					
	Borohydride*	1.47	8300	306	(F.C.)	1

the i.e., the propellant combination is hypergolic, spontaneously upon mixing. nrn *Denotes that t propellants bu NOTE:

Oxidizer	Fuel	\$	Tc(°F)	300 - 300 - ps	-sp 300+14.7 psia	Bulk Sp. Gr.
	Lithium Hydride* Methane Methyl Alcohol	1.34 2.33	6400 4874 5076	268 263 237	(F.C.) (F.C.)	0.98
	Methyl Amine Nitromethane n-Octane	2.06	5600 4703 5625	252 226 262	(F.C.) (S.E.)	0.986 1.13 0.962
Oxygen Difluoride:	Ammonia	2.08	6042	292 299	(S.E.) (S.E.)	1.08
Ozone:	Ammonia Hydrazine Hydrogen JP-4	1.13 0.63 3.5 2.2	5175 5418 5026 6327	267 277 375 286	(F.C.) (S.E.) (S.E.)	0.974 1.167 0.275 1.193
Perchloryl- fluoride:	Hydrazine* JP-4 uns-Dimethyl- hydrazine	3.85	5516	262 249 254.5	(S.E.) (S.E.)	1.30

RFNA (14% NO2):	Ammonia	2.20	4202	231.5	(S.E.)	
	Diethylenetriamine*	3.61	0	234	(S.E.)	1.37
	Hydrazine*	1.40	79	246	(S.E.)	1.267
	JP-4	4.65	5012	231.5	w w	00
	Turpentine					
	$(\alpha \text{ pinene})^*$	4.4	11	231	(S.E.)	1.353
	Toluene	4.1	5130	227	(S.E.)	
	uns-Dimethyl-					
	hydrazine	2.7	4920	239	(S.E.)	1.23
WFNA:	Aniline*	3.00	4942	222	(F.C.)	1.346
	Furfuryl Alcohol*	2.65	4885	210		3
	Hydrazine*	1.22	4681	246	(S.E.)	S
	Hydrogen	12.6	5360	0	(F.C.)	0.604
	JP-4	4.65	5032	230	-	N
	Methyl Alcohol	2.36	4480	219	(F.C.)	-
	Methyl-Furfuryl					
	Alcohols (50-50)*	2.52	4699		(F.C.)	1.30
	n-Octane	4.00	4744	229	(F.C.)	1.226

*Denotes that the propellant combination is hypergolic, i.e., the propellants burn spontaneously upon mixing. NOTE:

PERFORMANCE OF MONOPROPELLANTS

Name	Formula	T _C	I _{sp} 300→14.7 psia	Sp. Gr.
Ethylene Oxide	C2H4O	2114	166(F.C.)	0.887
Hydrazine	N ₂ H ₄	1125	174(S.E.)	1.0045
Nitromethane	CH ₃ NO ₂	3950	218(F.C.)	1.13
n-Propyl Nitrate	CH ₃ CH ₂ CH ₂ NO ₃	1886	179(S.E.)	0.935
90% Hydrogen Peroxide	H ₂ O ₂	1381	133(S.E.)	1.387

FUELS
OF
PROPERTIES
HYSICAL

C2H2 -119 subl. -115 subl. -115 subl. 0.15 0.54 0.62 0.68 A1(BH4)3 113 -85 0.043 0.54 NH3 C_6H_6 -28 21 0.043 0.68 C6H5 C_2H_6 176 176 42 42 404.8 174 0.05 -175 0.05 0.06 0.87 0.05 C2H5OH C2H5OH+H2O C2H5NH2 179 -176 -175 0.05 0.05 0.05 0.706 0.05 C2H4 C2H4O C2H4O C2H5NO3 -152 192 -152 0.245 2.00 0.245 0.887	Name	Formula	B. P. (°F)	F. P. (° F)	Approx. Cost \$/1b (1957)	Speci Gravit (Temp.	Specific Gravity** Temp. °F)
$H4$)3 113 -85 0.043 0.544 $^{5}NH_{2}$ 364 21 0.043 0.682 $^{5}NH_{2}$ 364 21 0.03 1.022 $^{5}C_{2}H_{4}$) ^{2}NH 404.8 -38.2 0.05 0.879 ^{5}OH 174 -175 0.06 0.790 ^{5}OH 174 -175 0.05 0.790 ^{5}OH	Acetylene	C_2H_2	-119 subl.	-115	0.15	0.62	(-119.2)
NH3 -28 -108 0.043 0.682 $C_6H_5NH_2$ 364 21 0.23 1.022 C_6H_6 176 42 0.05 0.879 C_2H_6 174 -175 0.06 0.790 C_2H_5OH 174 -175 0.06 0.790 C_2H_5OH 179 -76 0.05 0.790 C_2H_5OH 63 -114 0.05 0.706 C_2H_5OH -155 -273 0.75 0.566 C_2H_4 -155 -273 0.245 0.887 C_2H_4O 52 -168 0.245 0.887 $C_2H_5NO_3$ 192 -152 2.00 1.105	Aluminum Borohydride		113	-85		0.544	
$C_6H_5NH_2$ 364 21 0.23 1.022 C_6H_6 176 42 0.05 0.879 C_2H_6 174 -175 0.06 0.790 C_2H_5OH 174 -175 0.06 0.790 C_2H_5OH 179 -76 0.05 0.854 C_2H_5OH 63 -114 0.30 0.706 $C_2H_5NH_2$ 63 -114 0.30 0.706 C_2H_4 -155 -273 0.75 0.566 C_2H_4 -155 -168 0.245 0.887 $C_2H_5NO_3$ 192 -152 2.00 1.105	Ammonia	NH3	-28	-108	0.043	0.682	(-28)
C_6H_6 176 42 0.05 0.879 $(NH_2C_2H_4)_2NH$ 404.8 -38.2 0.415-0.43 0.954 C_2H_5OH 174 -175 0.06 0.790 C_2H_5OH + H_2O 179 -76 0.05 0.790 C_2H_5OH + H_2O 179 -76 0.05 0.706 C_2H_5OH + C_2H_4O 63 -114 0.30 0.706 C_2H_4 -155 -273 0.75 0.566 C_2H_4 O 52 -168 0.245 0.887 C_2H_5NO3 192 -152 2.00 1.105	Aniline		364	21	0.23	1.022	
$(NH_2C_2H_4)_2NH$ 404.8 -38.2 $0.415-0.43$ 0.954 C_2H_5OH 174 -175 0.06 0.790 $C_2H_5OH+H_2O$ 179 -76 0.05 0.790 $C_2H_5OH+H_2O$ 179 -76 0.05 0.790 $C_2H_5NH_2$ 63 -114 0.30 0.706 C_2H_4 -155 -273 0.75 0.566 C_2H_4O 52 -168 0.245 0.887 $C_2H_5NO_3$ 192 -152 2.00 1.105	Benzene	C ₆ H ₆	176	42	0.05	0.879	
C_2H_5OH 174 -175 0.06 0.790 $C_2H_5OH+H_2O$ 179 -76 0.05 0.854 $C_2H_5NH_2$ 63 -114 0.30 0.706 C_2H_4 -155 -273 0.75 0.566 C_2H_4O 52 -168 0.245 0.887 $C_2H_5NO_3$ 192 -152 2.00 1.105	Diethylenetriamine		404.8	-38.2	0.415 - 0.43	0.954	
$C_2H_5OH+H_2O$ 179-760.050.854 $C_2H_5NH_2$ 63-1140.300.706 C_2H_4 -155-2730.750.566 C_2H_4O 52-1680.2450.887 C_2H_4O 192-1522.001.105	Ethyl Alcohol		174	-175	0.06	0.790	
$C_2H_5NH_2$ 63-1140.300.706 C_2H_4 -155-2730.750.566 C_2H_4O 52-1680.2450.887 $C_2H_5NO_3$ 192-1522.001.105	Ethyl Alcohol 75% Water 25%		179	92-	0.02	0.854	
C2H4 -155 -273 0.75 0.566 C2H4O 52 -168 0.245 0.887 C2H5NO3 192 -152 2.00 1.105	Ethylamine		63	-114	0.30	0.706	
C ₂ H ₅ NO ₃ 52 -168 0.245 0.887 C ₂ H ₅ NO ₃ 192 -152 2.00 1.105	Ethylene	C_2H_4	-155	-273	0.75	0.566	(-152)
C2H5NO3 192 -152 2.00	Ethylene Oxide*		52	-168	0.245	0.887	(45)
	Ethyl Nitrate*		192	-152	2.00	1.105	

^{*} Can be used as a monopropellant ** At 60°F unless otherwise noted

Specific Gravity** (Temp. °F)	1.138	0.684	1.00	1.00	0.0708 (-423)	0.781	0.751-0.802	0.80-0.85	0.534	0.82	0.38 (-164)	0.796	0.769	1.13
Approx. Cost \$/lb	0.21	0.32	3.00	1.75	0.70 gas 10.00 liq.	0.10	0.017	0.03	13.00-20.00	1 1	0.15	0:02	0.31	0.25
F. P.	-26	-131	35	-63	-434	-128	-76	-40	367	1256	-296	-144	-135	-19
B. P.	340	208	236	250	-422	180	470 (90%)	550 (e.p.)	2507	ì	-258	150	20	214
Formula	C4H3OCH2OH	C7H16	N2H4	N2H4+H2O	Н2	СЗН7ОН	Hydrocarbon	Hydrocarbon	Li	Li H	CH4	СН3ОН	CH3NH2	CH3NO2
Name	Furfuryl Alcohol	Hentane	Hydrazine	68% Hydrazine	Hydrogen	Isopropyl Alcohol	JP-4 (MIL-F-5642B)	JP-5 (MIL-F-5624B)	Lithium	Lithium Hydride	-4.5	Methyl Alcohol	Methylamine	Nitromethane*

n-Octane	C8H18	257	-71	0.10	0.704
Propane	C_3H_8	-44	-310	0.004	0.585 (-48)
n-Propyl Nitrate*	C3H7NO3	230	-150	0.40	0.935
RP-1	Hydrocarbon	(30%)	-76	0.02	0.801-0.815
Toluene	C6H5CH3	231	-139	0.04	0.862
Triethylaluminum	(C2H5)3A1	367	-53	20.00	0.835
Triethylamine	N(C2H5)3	192	-175	0.47	0.728
Turpentine (a pinene)*	C10H16	309	19-	0.12	0.858
uns-Dimethylhydrazine	$N_2H_2(CH_3)_2$	146	-71	2.40-3.25	0.785
2, 3-Xylidene	(CH ₃) ₂ C ₆ H ₃ NH ₂	428	-58	0.50	0.98

^{*} Can be used as a monopropellant.

OXIDIZERS
1
9
X
0
9
PROPERTIES
2
2
0
~
7
PHYSICAL
S
7
=

Name	Formula	B. P.	F. P. (° F)	Approx. Cost \$/1b	Specific Gravity (Temp. °F	ity °F)**
nlorine Trifluoride	C1F3	52.2	-105.3	3.00	1.83	
luorine	F2	-306	-363	4.00-10.00	1.51	(-306)
ydrogen Peroxide*		288	31	1.00	1.392	
1% Hydrogen Peroxide*	H2O2+H2O	285	11.3	0.53-0.61	1.387	
Mixed Oxides of Nitrogen	76% N ₂ O ₄ 24% NO		1	0.10	1.46	(26)
itric Acid:						
WFNA (MIL-N-7254C) HNO3	HNO ₃	187	-43	0.056	1,505	
RFNA (14.0% NO ₂) (MIL-N-7254C)	HNO3+NO2+H2O	142	-65	0.055	1.558	
itrogen Tetroxide	N204	70	12	0.075	1.49	
itrogen Trifluoride	NF3	-200	-341		1.54	(-200)
xygen	02	-297	-361	0.03-0.06	1.142	(-297)
xygen difluoride	OF2	-228.6	-370.8		1.496	(-288.6)
zone	03	-169	-315		1.571	(-297)
erchloryl Fluoride	CIO3F	-52.2	-231	15.00	1.69	(-52.2)

* Can be used as a monop ** At 60°F unless otherwis

Symbols	EAT TRANSFER	D:
A		Dimensions
	Cross section area of flow passa	
$C_{\mathbf{p}}$	Specific heat at constant pressure	e BTU/lb°F
D	Diameter	ft
D_h	Hydraulic diameter of coolant pas	ssage ft
hg	Gas coefficient of heat transfer	BTU/ft2sec°F
h_L	Liquid coefficient of heat transfer	BTU/ft2sec°F
k	Thermal conductivity	BTU/ft2sec°F/ft
kg	Gas thermal conductivity	BTU/ft2sec°F/ft
kw	Wall thermal conductivity	BTU/ft2sec°F/ft
k_{L}	Liquid thermal conductivity	BTU/ft ² sec°F/ft
Pr	Prandtl number (μCp/k)	none
q	Heat transfer rate	BTU/sec
q/a	Heat transfer flux	BTU/ft2sec
Re	Reynolds number (vDγ/μ)	none
t	Wall thickness	ft
Tb	Coolant bulk temperature	°R
T_c	Combustion temperature	°R
Ti	Wall inside surface temperature	°R
To	Wall outside surface temperature	°R
Œ	Wall absorptivity	none
€	Gas emissivity	none
μ	Viscosity, absolute	lb/ft sec

Heat is transferred from the combustion gases to the chamber wall by forced convection and radiation. In a regeneratively cooled rocket, this heat is conducted through the wall and transferred by forced convection to the coolant (one of the propellants). The coolant must have sufficient heat capacity to absorb all of the incident heat without reaching its boiling point.

Heat Flux to Walls

Forced Convection

$$\left(\frac{q}{a}\right)_c = h_g \left(T_c - T_i\right)$$

where
$$h_g = 0.023 \frac{\dot{W}}{A} C_p$$
 (Re) $^{-0.2}$ (Pr) $^{-0.6}$

Radiation

$$\left(\frac{q}{a}\right)_{r} = 0.483 \ \epsilon \cdot \alpha \ \left[\left(\frac{T_{c}}{1000}\right)^{4} - \left(\frac{T_{i}}{1000}\right)^{4}\right]$$

Heat Conducted Through Walls

$$\frac{q}{a} = \left(\frac{q}{a}\right)_{c} + \left(\frac{q}{a}\right)_{r}$$

$$= \frac{k_{w}}{t} \left(T_{i} - T_{o}\right)$$

Heat Transferred to Coolant

$$\frac{q}{a} = h_L \left(T_o - T_b \right)$$

where
$$h_{L} = 0.023 \frac{k_{L}}{D_{h}}$$
. Re 0.8 Pr 0.4

Over-all Heat Transfer Coefficient

$$u = \frac{1}{\frac{1}{h_g} + \frac{t}{k_w} + \frac{1}{h_L}}$$

and

$$\left(\begin{array}{ccc} T_c & - & T_i \end{array}\right) = \left(\begin{array}{ccc} T_c & - & T_b \end{array}\right) \frac{u}{h_g}$$

Area Ratio for Typical Rocket oefficient vs. Gas Film C

PUMP RELATIONSHIPS

Symbols	tre te	Dimensions
b.hp.	Brake horsepower	hp
D	Impeller diameter	in.
f.hp.	Fluid horsepower	hp
H_{f}	Friction head	ft
Hp	Fluid static head	ft
Hsv	Suction head above vapor pressure	ft
Ht	Fluid total head	ft
H _v	Fluid velocity head	ft
H _{vp}	Fluid vapor pressure head	ft
Hz	Height of fluid surface above or below pump impeller centerline	ft
n	Rotational speed	rpm
ns	Pump specific speed	rpm √gpm ft ^{3/4}
Q	Volume flow rate	gpm 4
S	Suction specific speed	$\frac{\text{rpm }\sqrt{\text{gpm}}}{f_{+}^{3/4}}$
V	Fluid velocity	ft/sec
Y	Fluid specific weight	lb/cu ft
8	Fluid specific gravity	none
η	Over-all efficiency	percent
Φ	Over-all head rise coefficient at point of maximum efficiency	none

Pump !	Specific	Speed
--------	----------	-------

$$n_{\rm s} = n \frac{\sqrt{Q}}{H^{3/4}}$$

$$H_v = \frac{v^2}{2g}$$

$$H_t = H_p + H_v$$

$$H_{sv} = H_p + H_v = H_{vp}$$

$$S = \frac{n\sqrt{Q}}{H_{SV}^{3/4}}$$

$$\eta = \frac{f. \text{ hp.}}{b. \text{ hp.}}$$

$$1. hp. = \frac{QH \delta}{3960}$$

$$D = \frac{1840 \, \Phi \, \sqrt{H}}{n}$$

BALLISTIC AND CELESTIAL MECHANICS

Definitions

- Apogee the point in an elliptical orbit which is farthest from the center of the earth.
- Ballistic range the range on surface of the reference sphere from the cutoff point to the point of re-entry through the reference sphere.
- Conic Section Trajectory A trajectory based on a central gravity field. The trajectory may be circular, elliptical, parabolic or hyperbolic.
- Constant of Gravitation (G) The proportionality constant for the attractive force between two masses.
- Cutoff velocity the vehicle velocity at the point of thrust termination.
- Gravity field, central a force field in which the lines of force converge at the center of the mass.
- Gravity field, homogeneous a force field in which the lines of force are parallel.
- Path angle the angle (θ) from the local vertical to the tangent to the vehicle path.
- Perigee the point in an orbit which is closest to the center of the earth.
- Reference sphere a hypothetical spherical surface in space, through the cutoff point, concentric with the gravity field.
- Short Range Trajectory A trajectory (under 50 miles) based on a homogeneous gravity field.
- True anomaly The angular distance (a) of a satellite from its perigee.

Symbols		Dimensions	
a	Semi-major axis of ellipse	ft	
b	Semi-minor axis of ellipse	ft	5.
е	Eccentricity of ellipse	none	
ge	Gravity at earth surface	ft/sec ²	
g _c	Gravity at cutoff altitude	ft/sec ²	
gh	Gravity at h altitude	ft/sec ²	ię.
h _c	Cutoff altitude	ft	
h	Peak altitude	ft	
p n	Loaded vehicle weight/cutoff vehicle weight	none	
p	Parameter of a conic section	ft	-50 1
r	Radius vector	ft	
r	Radius vector to apogee	ft	
r p	Radius vector to perigee	ft	
Rc	Radius from mass center to cutoff altitude	ft	
Re	Radius of earth, mean	ft	
t	Period of revolution	seconds	. *
V	Velocity at apogee	ft/sec	
a v	Cutoff velocity	ft/sec	U (8)
v _e	Escape velocity	ft/sec	-,
vo	Initial velocity	ft/sec	D
V	Velocity at perigee	ft/sec	
vs	Satellite circular velocity	ft/sec	

X	Range	ft
α	True anomaly (angle between major axis and radius vector)	degrees
θ	Path angle with vertical	degrees
θ_{c}	Cutoff path angle with vertical	degrees
μ	Gravitational factor, gcRc2	$\rm ft^3/sec^2$
φ	Launch angle with horizontal $(90^{\circ} - \theta)$	degrees
Ψ	Initial thrust/weight ratio, F/Wi	none

SHORT RANGE BALLISTIC TRAJECTORIES

Range

$$X = \frac{v_c}{g} \sin 2 \phi$$

Maximum Altitude

$$h = \frac{v_c^2}{2g} \sin^2 \phi$$

Flight Duration

$$t = \frac{2v_c}{g} \sin \phi$$

SIMPLIFIED VERTICAL TRAJECTORY EQUATIONS

Assuming constant gravitational acceleration, constant thrust, and no drag

I_{sp} = mean effective specific impulse

$$\psi = \frac{F}{W_i}$$
 = initial thrust to weight ratio

$$n = \frac{loaded weight (W_i)}{cutoff weight (W_c)}$$

Velocity at Cutoff (end of burning time)

$$v_c = g_e I_{sp} \left(\ln n - \frac{n-1}{\psi n} \right)$$

Altitude at Cutoff

$$h_{c} = g_{e} \left(I_{sp}\right)^{2} \left(\frac{n-1}{\psi n}\right) \left[1 - \frac{\ln n}{n-1} - \frac{1}{2} \frac{n-1}{\psi n}\right]$$

Height from Cutoff to Peak Altitude

$$h_{p-c} = \frac{g_e^2}{2\overline{g}} \left(I_{sp}\right)^2 \left(\ln n - \frac{n-1}{\psi n}\right)^2$$

g = average gravity from cutoff to peak altitude

Peak Altitude

$$h_p = h_c + h_{p-c}$$

Time of Powered Flight $t = \frac{n-1}{\psi n} I_{sp}$

MECHANICS OF CONIC SECTION TRAJECTORIES

Escape Velocity, Minimum

$$v_e = R_e \sqrt{\frac{2g_e}{R_e + h}} = v_s \sqrt{2}$$

Satellite Circular Velocity

$$v_s = R_e \sqrt{\frac{g_e}{R_e + h}}$$

Variation of Gravity with Altitude

$$g_h = g_e \left(\frac{R_e}{R_e + h}\right)^2$$

Parameter of a Conic Section Trajectory

$$p = \frac{b^2}{a} = \frac{v_c^2 \sin \theta c}{g_c}$$

Eccentricity of a Conic Section Trajectory

$$e = \sqrt{\frac{a^2 - b^2}{a}} = \sqrt{1 + \frac{\left(v_c^2 - \frac{2\mu}{R_e}\right)v_c^2 R_c^2 \sin^2\theta_c}{\mu^2}}$$

Satellite Velocity in an Elliptical Orbit

$$v_a = \sqrt{\frac{\mu (1-e)}{r_a}} = \sqrt{\frac{\mu (1-e)}{a (1+e)}}$$

$$v_{p} = \sqrt{\frac{\mu (1+e)}{r_{p}}} = \sqrt{\frac{\mu (1+e)}{a (1-e)}}$$

Period of Revolution of a Circular Orbit Relative to Earth

$$t = \frac{2\pi (R_e + h)}{v_s}$$

Period of Revolution of an Elliptical Orbit

$$t = \sqrt{\frac{4\pi^2 a^3}{\mu}}$$

Range in Reference Sphere of Ballistic Trajectories in a Central Gravity Field

$$X = 2R_c \arctan \frac{v_c^2 \sin \theta_c \cos \theta_c}{R_c g_c - v_c^2 \sin^2 \theta_c}$$

Approximate Range from Cutoff to Impact in a Central Gravity Field (No Drag)

$$X' = X + h_c \tan \theta_c$$

Inertial Trajectories in a Central Gravity Field

Range of Ballistic Trajectories over Reference Sphere 100 miles above Earth

Escape Velocity and Period of Revolution of a Satellite Vehicle as a Function of Altitude

CHARACTERISTIC DATA OF THE SOLAR SYSTEM

Constant of gravitation (G) = $6.664 \times 10^{-8} \text{ cm}^3/\text{gm sec}^2$ = $3.44 \times 10^{-8} \text{ ft}^4/\text{lb sec}^4$

Planet	Diameter Miles	Acceleration Of Gravity At Surface Ft/Sec ²	Escape Velocity At Surface Ft/Sec
Mercury	3,194	10.449	13,109
Venus	7,842	28.297	33,697
Earth	7,926	32.172	36,677
Moon	2,159	5.19	7,693
Mars	4,263	12.95	16,825
Jupiter	89,229	85.27	197,700
Saturn	74,937	37.62	119,200
Uranus	33,181	33.85	72,490
Neptune	30,882	47.61	82,380
Sun	864,100	900	2,020,000

Mean radius of the earth = 3,963 statute miles

Mean radius of earth's orbit = 4.9×10^{11} feet

Weight of earth = 13.22×10^{24} lb (Avdp)

Volume of earth = $38.38 \times 10^{21} \text{ ft}^3$

Average density of earth=344 lb/ft3

1 degree of latitude at 40° = 69 statute miles

1 nautical mile = 1' of arc on the earth's surface at the equator = 6080.2 feet

PHYSICAL PROPERTIES

GENERAL PROPERTIES OF GASES

Polytropic

$$P_O V_O^n = P V^n, \quad \frac{T}{T_O} = \left(\frac{V_O}{V}\right)^{n-1} = \left(\frac{P}{P_O}\right)^{\frac{n-1}{n}}$$

Reversible Adiabatic

$$\frac{P}{P_O} = \left(\frac{V_O}{V}\right)^k, \quad \frac{T}{T_O} = \left(\frac{V_O}{V}\right)^{k-1} = \left(\frac{P}{P_O}\right)^{\frac{k-1}{k}} \qquad n = k$$

Constant Temperature

$$\frac{P}{P_0} = \frac{V_0}{V}$$

Constant Volume

$$\frac{T}{T_0} = \frac{P}{P_0}$$

Constant Pressure

$$\frac{T}{T_0} = \frac{V}{V_0}$$

Perfect Gas Law

$$PV = RT, P = \rho gRT$$

PHYSICAL PROPERTIES OF GASES

Gas	Weight of 1 cu ft at standard atmos. and 68°F	Density relative to air	Gas Constant, R'
	1b		ft/°R
Acetylene	0.06754	0.897	59.40
Air	0.07528	1.000	53.30
Ammonia	0.04420	0.587	90.77
Argon	0.1037	1.377	38.70
Carbon Dioxide	0.1142	1.516	35.13
Carbon Monoxid	e 0.07269	0.965	55.19
Helium	0.01039	0.138	386.30
Hydrogen	0.005234	0.0695	766.80
Methane	0.04163	0.553	96.37
Nitric Oxide	0.07788	1.034	51.52
Nitrogen	0.07274 =	0.966	55.16
Steam		0.623	85.81

Specific at roo tempera	om		Normal Boiling Point	Weight Density Liquef Gas	of ied	Critical Temp.	Critical Pressure
C _p BTU lb°F	C _v BTU lb°F	k	F	lb/ft	3	°F	Atmo- spheres
0.350	0.2737	1.28	-118	24.9 at	+86°F	96.8	62
0.241	0.1725	1.40	-317.6	57.4	-233	-220.3	37.2
0.523	0.4064	1.29	- 28	38.1	+ 61	270.3	111.5
0.124	0.0743	1.67	-302	87.3	-303	-187.7	48.0
0.205	0.1599	1.28	-109	48.0	+ 68	88.0	73.0
0.243	0.1721	1.41	-310	53.7	- 90	-220.33	34.53
1.250	0.754	1.67	-452	9.18	-456	-450.2	2.26
3.420	2.4350	1.40	-423	4.37	-423	-399.8	12.8
0.593	0.4692	1.26	-258	25.9	-263	-116.5	45.8
0.231	0.1648	1.40	-291	91.7	+ 60	-136.7	65
0.247	0.1761	1,40	-320	50.4	-321	-232.8	33.5
0.460	0.3600	1.28	+212	62.4	+ 39	705.2	217.72

GENERAL PROPERTIES OF AIR

Symbols

Po	Standard absolute pressure at sea level	lb/ft ²
T_0	Standard absolute temperature sea level	°R
q	Impact pressure	lb/ft2
σ	Density Ratio, P/Po	none
Y	Specific Weight	1b/ft3

Specific Weight of Air

$$\gamma = 0.07651 \left(\frac{P}{P_O}\right) \left(\frac{T_O}{T}\right) = 1.325 \left[\frac{P (in. Hg)}{T}\right]$$

Density of Air

$$\rho = 0.002378 \left(\frac{P}{P_0}\right) \left(\frac{T_0}{T}\right) = 0.041187 \left[\frac{P (in. Hg)}{T}\right]$$

Air Density Ratio

$$\sigma = \frac{\rho}{\rho_o} = \left(\frac{P}{P_o}\right) \left(\frac{T_o}{T}\right) = 17.32 \left[\frac{P \text{ (in. Hg)}}{T}\right]$$

Speed of Sound in Air

$$C_{\text{fps}} = 49.04 \sqrt{T}$$

$$C_{\text{mph}} = 33.5 \sqrt{T}$$

Specific Heat of Air

$$C_{\rm p} = 0.240 \, \mathrm{BTU/lb}^{\circ} \mathrm{F}$$

$$C_v = 0.1715 \text{ BTU/lb}^{\circ}\text{F}$$

Molecular Weight of Air

$$M = 28.966 \text{ lb/Mol}$$

Specific Gas Constant for Air

$$R' = 53.3$$

COMPOSITION OF AIR

The air of the NACA standard atmosphere is assumed to be dry and to have the following composition at all altitudes considered:

	77 3- 7-3	Molecular
Constituent Gas	Mole Percent	Weight
Nitrogen	78.09	28.016
Oxygen	20.95	32.000
Argon	0.93	39.944
Carbon Dioxide	0.03	44.010
Neon	1.8×10^{-3}	20.183
Helium	5.24×10^{-4}	4.003
Krypton	1.0×10^{-4}	83.7
Hydrogen	5.0×10^{-5}	2.016
Xenon	8.0×10^{-6}	131.3
Ozone	1.0×10^{-6}	48.000
Radon	6.0×10^{-18}	222.0

ICAO ATMOSPHERIC STANDARD	English		29.92 in. Hg 760 mm Hg 2116 lb/ft ² 10332.27 kg/m ²	59°F	518.688°R 288.16°K	0.076475 lb/ft ³ 1.2250 kg/m ³	22/ft		89.24 ft	-69.7°F
ICAO AT		Standard Values at Sea Level	Pressure	Temperature	Absolute temperature			Standard Values at Altitude	Isothermal Altitude	Isothermal Temperature

	į
0.4	
1ERE	
-	
SP	
S	
0	
MOS	
-	
AT	
0	
2	
ARD	
AN	
4	
ST	

				Pressure			Density
Altitude Feet	T'emp	T'emperature °C °F	lb in. 2	1b ft ²	in. Hg	lb sec 2 ft 4	d d
NACA Star	Standard At	Atmosphere					
0	15.0	59.0	14.69	2116.	29.92	.377 x 10	1.0000
1000	13.0	55.4	14.17	0	8	.308 x 10	0.9711
2000	11.0	51.9	13.67	1968.	27.82	2.241×10^{-3}	0.9428
3000	9.1	48.3	13.17	1897.	26.82	$.175 \times 10^{-}$	0.9151
4000	7.1	44.7	12.69	1828.	25.84	.111 x 10"	0.8881
2000	5.1	41.2	12.23	1761.	24.90	2.048 x 10 ⁻³	0.8617
0009	3.1	37.6	11,78	1696.	23.98	1.987 x 10 ⁻³	0.8359
2000	1.1	34.0	11.34	1633.	23.09	1.927×10^{-3}	0.8106
8000	- 0.8	30.5	10.92	1572.	22.22	1.868 x 10 ⁻³	0.7860
9000	- 2.8	26.9	10.51	1513.	1.3	1.811 x 10 ⁻³	0.7620
10,000	- 4.8	23.3	10.10	1455.	20.58	x 10	0.7385
11,000	- 6.8	19.8	9.722	1400.	9.7	1.701 x 10 ⁻³	0.7156
12,000	8.8	16.2	9.347	1346.	19.03	1.648 x 10 ⁻³	0.6932
13,000	-10.8	12.6	8.986	1294.	18.29	1.596 x 10 ⁻³	0.6713
14,000	-12.7	9.1	8.632	1243.	F	1.545 x 10 ⁻³	0.6500
15,000	-14.7	in in	8.292	1194.	16.89	1.496 x 10 ⁻³	0.6292
16,000	-16.7	1.9	7.965	1147.	6.2	1.447×10^{-3}	0.6090
17,000	-18.7	- 1.6	7.646	1101.	15.57	1.401 x 10 ⁻³	0.5892
18,000	-20.7	- 5.2	7.340	1057.	20	1.355×10^{-3}	0.5699
19,000	-22.6	80	7.042	1014.	14.34	1.310 x 10 ⁻³	0.5511
20.000	-24.6	-12.3	6.753	972.5	13.75	1.266 x 10 ⁻³	0.5328

-	0.4976	80	19	0.4481	432	0.4173	यं	38	(4.)	64.2	(4.)	(42)	64.7	C. J.	0.2981	CA	CM	CA	Cd	ca	-	-	-	0	0.07403
1.224 x 10 ⁻³	83 x 10	3 x 10	03 x 10	.065 x 10	10	.919 x 10	.567 x 10	225 x 10	.893 x 10	.570 x 10	.255 x 10	.950 x 10	.653 x 10	365 x 10	.086 x 10	$.061 \times 10$.759 x 10	.442 x 10	.139 x 10	.851 x 10	$.601 \times 10$.618 x 10	.845 x 10	.238 x 10	1.760×10^{-4}
-	2.6	oi	1.6	-	10.63	10.17		9.297	00	48	-	6.3	(0)	04		0	9	60	00	50	3	TT'	69		1.665
932.4	63	56.	20.	00	51.	-	87.	5	28.	00		4-1	CM	98.	74	L	52	431.2	11.	0	08.	42.	90	149.8	-
47	20	94	69	45	27	4.994	[-	56	3	16	98	80	62	45	29	28	1	66	00	72	13	68	3	04	0.8181
-15.9	19	23,	26.	30.	33,	-	40.	44	8	51.	i	58.	N	65.	-69.4	69	69	69	0,	0,	oi.	0	0	6	0
26.	28.	30.	32.	34	36.	-38.5	40.	ci	44	46.	8	50.	22	54.	5	55	55	55	55	52	(A)	55	55	55	ம்
21,000	22,000	3,0	4	மி	6	27,000	00	0	0	-	N	63	4	5	8	0	-	0	0	0	S	0	10	0	S

No. 86, the ARDC Model Atmosphere, 1956

Altitude	Tempe	erature	lb	Pressure
Feet	°C	° F	in. ²	ft 2
70,000	-56.50	-69.70	0.6505	93.67
80,000	-56.50	-69.70	0.4036	58.12
90,000	-49.56	-57.20	0.2520	36.29
100,000	-40.50	-40.89	0.1603	23.08
110,000	-31.44	-24.60	0.1038	14.95
120,000	-22.40	-8.32	6.831×10^{-2}	9.837
130,000	-13.36	7.94	4.564×10^{-2}	6.573
140,000	-4.34	24.19	3.094×10^{-2}	4.455
150,000	4.68	40.42	2.125×10^{-2}	3.060
160,000	9.50	49.10	1.476×10^{-2}	2.125
170,000	9.50	49.10	1.026×10^{-2}	1.478
180,000	4.06	39.31	7.132×10^{-3}	1.027
190,000	-7.62	18.29	4.894×10^{-3}	0.7047
200,000	-19.30	-2.74	3.300×10^{-3}	0.4752
250,000	-76.30	-105.34	3.378×10^{-4}	4.864 x 10
300,000	-76.30	-105.34	2.568×10^{-5}	3.698 x 10
350,000	-52.52	-62.53	2.649×10^{-6}	3.814 x 10-4
400,000	-16.25	2.76	4.233×10^{-7}	6.096 x 10-5
450,000	67.55	153.6	9.660×10^{-8}	1.391 x 10-5
500,000	185.3	365.6	3.385×10^{-8}	4.875 x 10-6
600,000	402.0	755.7	8.000×10^{-9}	1.152 x 10 ⁻⁶
700,000	468.5	875.4	3.854×10^{-9}	5.550 x 10-7
800,000	537.3	999.2	1.106 x 10-9	1.592 x 10-7
900,000	607.1	1125	5.092×10^{-10}	7.332×10^{-8}
,000,000	677.2	1251	2.581×10^{-10}	3.717×10^{-8}
,500,000	1025	1878	2.109×10^{-11}	3.037 x 10-9
,700,000	1162	2123	1.004×10^{-11}	1.446×10^{-9}

Density

			- V FA
in. Hg	1b sec ²	Po	Altitude Feet
1.324	1 200 - 10-4	0.05005	
	1.399×10^{-4}	0.05887	70,000
0.8218	8.683 x 10 ⁻⁵	0.03653	80,000
0.5131	5.253×10^{-5}	0.02210	90,000
0.3264	3.211×10^{-5}	0.01351	100,000
0.2113	2.001 x 10 ⁻⁵	8.420×10^{-3}	110,000
0.1391	1.270 x 10-5	5.342×10^{-3}	120,000
0.09294	8.189×10^{-6}	3.445×10^{-3}	130,000
0.06299	5.364×10^{-6}	2.256×10^{-3}	140,000
0.04326	3.564×10^{-6}	1.499×10^{-3}	150,000
0.03004	2.433×10^{-6}	1.023×10^{-3}	160,000
0.02090	1.693×10^{-6}	7.122×10^{-4}	170,000
0.01453	1.199×10^{-6}	5.046×10^{-4}	180,000
9.963×10^{-3}	8.589×10^{-7}	3.613×10^{-4}	190,000
6.718 x 10 ⁻³	6.058×10^{-7}	2.549×10^{-4}	200,000
6.877 x 10 ⁻⁴	7.996×10^{-8}	3.364×10^{-5}	250,000
5.229 x 10-5	6.065×10^{-9}	2.552×10^{-6}	300,000
5.393 x 10-6	4.957×10^{-10}	2.085×10^{-7}	350,000
8.619 x 10 ⁻⁷	6.565×10^{-11}	2.762×10^{-8}	400,000
1.967×10^{-7}	1.111×10^{-11}	4.672×10^{-9}	450,000
6.892 x 10 ⁻⁸	2.862×10^{-12}	1.204×10^{-9}	500,000
1.629 x 10 ⁻⁸	4.499×10^{-13}	1.893×10^{-10}	600,000
5.550×10^{-9}	1.277×10^{-13}	5.371×10^{-11}	700,000
2.251 x 10-9	4.443×10^{-14}	1.869 x 10-11	800,000
1.037×10^{-9}	1.794 x 10 ⁻¹⁴	7.546×10^{-12}	900,000
5.256 x 10-10	8.103×10^{-15}	3.409×10^{-12}	1,000,000
4.293 x 10-11	4.326 x 10-16	1.820×10^{-13}	1,500,000
2.044 x 10 ⁻¹¹	1.816 x 10-16	7.640×10^{-14}	1,700,000

eteritare versi issure i near, pro--- sempere

Temperature and Speed of Sound versus Altitude

Variation of Power with Altitude for Different Prime Movers

CHEMICAL ELEMENTS		Atomic	Atomic*
	Symbol	Number	Weight
Actinium	Ac	89	(227)
Aluminum	Al.	13	26.98
Americium	Am	95	(243)
Antimony	Sb	51	121.76
Argon	A	18	39.944
Arsenic	As	33	74.91
Astatine	At	85	(210)
Barium	Ba	56	137.36
Berkelium	Bk	97	(249)
Beryllium	Be	4	9.013
Bismuth	Bi	83	209.00
Boron	В	5	10.82
Bromine	Br	35	79.916
Cadmium	Cd	48	112.41
Calcium	Ca	20	40.08
Californium	Cf	98	(249)
Carbon	C	6	12.011
Cerium	Ce	58	140.13
Cesium	Cs	55	132.91
Chlorine	Cl	17	35.457
Chromium	Cr	24	52.01
Cobalt	Co	27	58.94
Columbium (see Niobium)			
Copper	Cu	29	63.54
Curium	Cm	96	(245)
Dysprosium	Dy	66	162.51
Einsteinium	E	99	(253)
Erbium	Er	68	167.27
Europium	Eu	63	152.0
Fermium	Fm	100	(255)

^{*}Atomic weights in parentheses denote the mass numbers of isotopes of longest known half-life.

		Atomic	Atomic*			Atomic	Atomic*
	Symbol	Number	Weight	The state of the s	Symbol .	Number	Weight
Fluorine	F	9	19.00	Palladium	Pd	46	106.4
Francium	Fr	87	(223)	Phosphorus	P	15	30.975
Gadolinium	Gd	64	157.26	Platinum	Pt	78	195.09
Gallium	Ga	31	69.72	Plutonium	Pu	94	(242)
Germanium	Ge	32	72.60	- Polonium	Po	84	(210)
Gold	Au	79	197.0	Potassium	K	19	39,100
Hafnium	Hf	72	178.50	Praesodymium	Pr	59	140.92
Helium	He	2	4.003	Promethium	Pm	61	(145)
Holmium	Но	67	164.94	Protactinium	Pa	91	(231)
Hydrogen	H	1	1.0080	Radium	Ra	88	226.05
Indium	In	49	114.82	Radon	Rn	86	(222)
Iodine	I	53	126.91	Rhenium	Re	75	186,22
Iridium	Ir	77	192.2	Rhodium	Rh	45	102.91
Iron	Fe	26	55.85	Rubidium	Rb	37	85.48
Krypton	Kr	36	83.80	Ruthenium	Ru	44	101.1
Lanthanum	La	57	138.92	Samarium	Sm	62	150.35
Lead	Pb	82	207.21	Scandium	Sc	21	44.96
Lithium	Li	3	6.940	Selenium	Se	34	78.96
Lutetium	Lu	71	174.99	Silicon	Si	14	28,09
Magnesium	Mg	12	24.32	Silver	Ag	47	107.880
Manganese	Mn	25	54.94	Sodium	Na	11	22.991
Mendelevium	Mv	101	(256)	Strontium	Sr	38	87.63
Mercury	Hg	80	200.61	Sulfur	S	16	32.066
Molybdenum	Mo	42	95.95	Tantalum	Ta	73	180.95
Neodynium	Nd	60	144.27	Technetium	Tc	43	(99)
Neon	Ne	10	20.183	Tellurium	Te	52	127.61
Neptunium	Np	93	(237)	Terbium	Tb	65	158.93
Nickel	Ni	28	58.71	Thallium	T 1	81	204,39
Niobium (Columbium)	Nb	41	92.91	Thorium	Th	90	232.05
Nitrogen	N	7	14.008	Thulium	Tm	69	168.94
Nobelium	No	102	(258)	Tin	Sn	50	118.70
Osmium	Os	76	190.2	*Atomic weights in pare	ntheses denote	the mass n	umbersof
Oxygen	0	8	16.0000	isotopes of longest know	wn half-life.		

±	Symbol	Atomic Number	Atomic Weight
Titanium	Ti	22	47.90
Tungsten	W	74	183.86
Uranium	U	92	238.07
Vanadium	V	23	50.95
Xenon	Xe	54	131.30
Ytterbium	Yb	70	173.04
Yttrium	Y	39	88.92
Zinc	Zn	30	65.38
Zirconium	Zr	40	91.22

MISCELLANEOUS CONSTANTS

#1	
Mechanical equivalent of heat	4.
Electronic charge	4.
Mass of electron, me	9.
Mass of proton, mp	1.
Mass of a particle, ma	6.
Mass of hydrogen atom, mH	1.
Avogadro's number, No	6.0
Planck constant, h	6.
Boltzmann constant, k	1.3
Velocity of light in vacuum, c	2.9
	4.0

4.182 joule cal⁻¹
4.80294 x 10⁻¹⁰ esu
9.1066 x 10⁻²⁸ gm
1.67248 x 10⁻²⁴ gm
6.6442 x 10⁻²⁴ gm
1.67339 x 10⁻²⁴ gm
6.0228 x 20²³ (gm mol)⁻¹
6.6254 x 10⁻²⁷ erg sec
1.38049 x 10⁻¹⁶ erg (°k)⁻¹
2.997928 x 10¹⁰ cm sec⁻¹
186,282 miles sec⁻¹

1 mil (electric definition), measure of wire diameter = 0.001 in.
1 mil (angular measure) = 360°/6400 (Army Ordnance)
1 mil (angular measure) = 1/1000 radian (Naval Ordnance)
1 Navy mil = 1.0186 Army mil
Heat equivalent of fusion of water, 79.24 cal per gram
Heat equivalent of vaporization of water, 535.9 cal per gram

e = 2.71828 $log_e 10 = 2.30258$ $\pi = 3.14159$

-	
ZIAL	
ATE	
2	
- NO	
ACI	
O	
THE REAL PROPERTY.	
PERO C	
AL	
I	n

Specific		0.27	0.19				0.132	0.40	0.168	0.187	90.0		0.34
Thermal Conductivity BTU/hr/ft2/in./°F		18	56	11.3			1.2	1080-1380	£Q.	23			600
Coefficient of Expansion/	7.0 - 12.0	8.1	4.5	6.7		. 4.	5.1	6.3	11.0	14.3	4.00		E. C.
**Apparent Specific Gravity		2.95	2.82	2.77	2,30	2.51	3.32	2.87	4.40	2.50	7.34		1.60
*True Specific Gravity	5.21	3,97	3.17			2.51	4.56	3.02	6.27	3,58	69.6	4.25	2.25
Melting or Decomposition Temp. ° F	3614	3660	3990			4440	4532	4658	4892	5072	5522	5748	6332
Material	Chromic Oxide	Alumina	Silicon Carbide	Niafrax A	Lt. Wt. Niafrax	Boron Carbide	Zircon	Beryllium Oxide	Zirconia	Magnesia	Thoria	Titanium Carbide	Graphite

* True Specific Gravity is based on a solid mass. ** Apparent Specific Gravity accounts for the voids that ex

PHYSICAL PROPERTIES OF METALS

Materials	Specific Gravity	Density 1b/in.3	Melting Point °F	Ter	Ultimate sile Strength x 103 psi	Modulus of Elasticity x 106 psi	Coefficient of Thermal Expansion (32°F - 212°F) x 10-6 in./in./°F	Thermal Conductivity (32°F - 212°F) BTU/ft2hr°F/in.
Aluminum EC-0	2.7	0.098	1195-1215			•		2 7 100
Al Alloys 1100-0	2.71	0.098	1190-1215		12	10.0	13.7	1,630
(Wrought) 3003-0	2.73	0.099	1190-1210		13	10,0	13.7	1 540
3004-0	2.72	0.098	1165-1205		16	10.0	12.9	1,540
2014-T6	2.80	0.101	950-1180		26	10.0	12.9	1,340
2024-T4	2,77	0.100	935-1180		70	10.6	12.5	1,130
5052-0	2,68	0.097	1100-1200		68	10.6	12.6	1,070 840
6061-T6	2.70	0.098	1080-1200		28	10.2	13.2	960
					45	10.0	13.0	1,070
Al Alloys (Cast)					4.9	10.0	10.0	1,010
Sand 195-T6	2.78	0.101	970-1170					
Perm. Mold 195-T6	2.78	0.101	970-1170		36	10.3	12.2	1,310
Sand 355-T6	2.66	0.096	1015-1150		40	10.3	12.2	ar and a second and
Perm. Mold 355-T6	2.66	0.096	1015-1150		35	10.3	12.2	1,310 990
Sand 356-T6	2.63	0.095	1035-1135		43	10.3	12.2	
Perm. Mold 356-T6	2.63	0.095	1035-1135		33	10.3	11.9	990
					40	10.3	11.9	1,050
Beryllium	1.85	0.066	2345					1,050
Brass Yellow (Hard)	8.47	0.306	1710		35-95	36-44	13,3	1,130
Bronze-Manganese	8,36	0.302	1645		74	14	10.5	830
Hard Temper					90	15	11.2	700
Bronze-Phosphor (5%) Hard Temper	8.86	0.320	1920		100	15	9.4	565
Bronze-Aluminum Hard	7.78	0,281	1900		105	15	9.2	490
Beryllium Copper Hard Temp	8,23	0.297	1750		190	18	9.2	650
Copper Hard Temp	8.92	0.322	1980		52	16	9.3	2,700
Muntz Metal Hard Temp	8.40	0.303	1660		80	13	10.8	870
Cupro-Nickel (70-30) Cold-Rolled	8,94	0.323	2240		80	20	8.5	200
Dowmetal C Cast & H. T.	1.82	0.066	1110		40	6.5	14	464
Gold (Pure) Hard Temp	19,32	0.698	1945		32	13	7.8	2,000
(Hot Rolled)	7.70	0.278	2750		48	29	6.7	418
(As Cast)	7.20	0,260	2150		25	13	6.7	310
(As Cast)	7.32	0.264	2250		55	25	6.6	435

Materials	Specific Gravity	Density lb/in.3	Melting Point °F
K-Monel (Wrought) Hot Rolled	8.47	0.306	2400-2460
Inconel (Wrought) Hot Rolled	8.51	0.307	2540-2600
Magnesium Wrought J-1 Alloy	1.8	0.065	950-1150
Nickel (Wrought) Hard Temp	8.89	0.321	2615-2635
Palladium Hard Temp	11.98	0.432	2830
Platinum Hard Temp	21.40	0.772	3225
Silver (Pure) Hard Temp	10.50	0.379	1760
Steel SAE 1020 Hot Rolled	7.86	0.284	2760
Type 304 Annealed	8.02	0.29	2550-2650
Type 316 Annealed	8.02	0.29	2500-2550
Type 321 & 347 Annealed	7.92	0.286	2550-2600
Type 410 Annealed Steel Alloys	7.75	0.28	2700-2790
4130 Annealed	7.85	0.283	2500-2600
4140 Annealed	7.85	0.283	2500-2600
8630 Annealed	7.84	0.283	2500-2600
Tantalum Annealed	16.6	0.60	5425
Tin Annealed	7.29	0.263	450
Titanium (Pure) Cold Rolled	4.54	0.164	
Fe, Cr, Mo Annealed	4.68	0.169	
Zinc	7.15	0.258	786

Ultimate Tensile Strength x 103 psi	Modulus of Elasticity x 10 ⁶ psi	Coefficient of Thermal Expansion (32°F - 212°F) x 10-6 in./in./°F	Thermal Conductivity (32°F = 212°F) BTU/ft ² hr °F/in.
150	26	7.8	130
100	31	6.4	104
44	6,5	14.4	553
105	30	7,2	420
47	17	6.5	490
36	24	4.9	480
43	10.5	10.6	2900
69	30	6.7	360
85	28	9.6	113
90	28	8.9	113
85	28	9,3	110
. 75	29	5.5	173
80	29	12,4	288
95 80	29 29	12.3 12.7	288
42	27	3.57	375
2.38	7.1	11.7	455
145	16	3.3	118
140	16	5.0	80-120
21	-22	13-18	780

BELL AEROSYSTEMS COMPANY

CONVERSION FACTORS

AREA		
Multiply	Ву	To Obtain
Acres	43,560 0.4047 1.562x10-3	Square feet Hectares Square miles
Square centimeters	0.1550 1.08x10-3	Square inches Square feet
Square kilometers	0.3861	Square miles
Square inches	6.4516	Square centimeters
Square feet	144 0.111	Square inches Square yards
Square yards	1296 0.8361	Square inches Square meters
Square miles	2.5900 640	Square kilometers Acres
DENSITY		
Multiply	Ву	To Obtain
Grams per cubic centimeter	62.428	Pounds per cubic foot
	0.03613	Pounds per cubic foot
Pounds per cubic		
inch	1728	Pounds per cubic foot
	27.68	Grams per cubic centimeter

ENERGY

Ву	To Obtain
777.97 2.930x10 ⁻⁴ 251.98 1054.8	Foot-pounds Kilowatt-hours Gram-calories Joules
9.4805x10-11 1.0 7.37x10-8 1.02x10-3 1x10-7 2.389x10-5	BTU's Dyna-centimeters Foot-pounds Gram-centimeters Joules Kilogram-calories
3.968x10-3 4.186	BTU's Joules
2544 1.98x10 ⁶ 641.3	BTU's Foot-pounds Kilogram-calories
9.480x10 ⁴ 0.73756 2.388x10-4 0.10179 1.0 2.778x10-4 3.725x10-7	BTU's Foot-pounds Kilogram-calories Kilogram-meters Watt-seconds Watt-hours Horsepower-hours
3.9685 3087.4 426.85	BTU's Foot-pounds Kilogram-meters
7.233 9.8066x10 ⁷	Foot-pounds Ergs
	777.97 2.930x10-4 251.98 1054.8 9.4805x10-11 1.0 7.37x10-8 1.02x10-3 1x10-7 2.389x10-5 3.968x10-3 4.186 2544 1.98x106 641.3 9.480x104 0.73756 2.388x10-4 0.10179 1.0 2.778x10-4 3.725x10-7 3.9685 3087.4 426.85 7.233

FORCE			Multiply	Ву	To Obtain
Multiply	By	To Obtain	Miles	5280 0.8684	Feet Nautical miles
Dynes	1.020×10^{-3} 2.248×10^{-6} 7.233×10^{-5}	Grams Pounds Poundals		1760 1.6093	Yards Kilometers
Grams	15.432 0.03527	Grains Ounces	Nautical miles	6080.2 1.85325	Feet Kilometers
	0.00220 980.665	Pounds Dynes	Light years	5.9×10^{12} 9.46×10^{12}	Miles Kilometers
HEAT TRANSFER C	OEFFICIENT		POWER		
Multiply	By	To Obtain	Multiply	Ву	To Obtain
$BTU/(hr)(ft^2)(^{\circ}F)$	0.0001355	$Gm cal/(sec)(cm^2)$ (°C)	BTU's per minute	12.96	Foot-pounds per
	1.929x10 ⁻⁶ 0.0005669	BTU/(sec)(in. ²) (°F) watts/cm ² °C		0.2520	second Kilogram-calories per minute
LENGTH			BTU's per second	1.414 1054.8	Horsepower Watts
Multiply	Ву	To Obtain	Horsepower	33,000	Foot-pounds per minute
Centimeters	0.2837	Inches		550	Foot-pounds per second
	1x10 ⁸ 1x10 ⁴	Angstroms Microns		76.040	Kilogram-meters per second
Meters	39.37 3.281 1.0936	Inches Feet Yards		1.0139 0.707 2545 745.2	Metric horsepower BTU's per second BTU's per hour Watts
Kilometers	0.6214	Miles Nautical miles		170.2	watts

Multiply	Ву	To Obtain	Multiply	Ву	To Obtain
Horsepower, metric	75	Kilogram-meters		1.0332	Kilograms per
	0.0000	per second			square centimeter
	0.9863	Horsepower	Centimeters of	5.3524	Inches of water
	41.83	BTU's per minute	mercury	0.4460	Feet of water
	542.5	Foot-pounds per second		0.1934	Pounds per square inch
	10.54	Kilogram-calories per minute		27,845	Pounds per square
	735.5	Watts		135.95	foot
Kilowatts	0.9483	BTU's per second		133,93	Kilograms per square meter
	737.6	Foot-pounds per	Feet of water	0.02947	Atmospheres
		second		0,4335	Pounds per square
	0.2389	Kilogram-calories			inch
		per second		62.378	Pounds per square
' -	1.3410	Horsepower			foot
	3414	BTU's per hour	Trahag of management	0 00040	A +
			Inches of mercury	0.03342	Atmospheres
PRESSURE				13.60 1.133	Inches of water
	_			0.4912	Feet of water
Multiply	Ву	To Obtain			Pounds per square inch
Atmospheres	76.0	Centimeters of mercury		70.727	Pounds per square foot
	29.921	Inches of mercury		345.32	Kilograms per
	33.93	Feet of water			square meter
	10332	Kilograms per	Eches of water	0.03609	Describe a series
	10002	square meter	enes of water	0.03609	Pounds per square inch
	14.696	Pounds per		5.1981	
		square inch		3.1901	Pounds per square foot
	2116.2	Pounds per		25,38	Kilograms per
		square foot		40,00	square meter
	1.0133	Bars			square meter

BELL AEROSYSTEMS COMPANY -

Multiply	By	To Obtain	TEMPERATURE		
Kilograms per square centimeter	0.9678 14.22	Atmospheres Pounds per square inch	°F = 9,	/9(F-32) /5 C+32 73.16°K	
Kilograms per square meter	0.00142	Pounds per square inch Pounds per square		59.688°R	
		foot			
	0.00328	Feet of water Grams per square	TELOCITY		
		centimeter	Multiply	Ву	To Obtain
Pounds per square inch	70.31	Grams per square centimeter	Feet per minute	0.01136	Miles per hour Kilometers per hour
THERMAL CONDUCTIVI	TY			0.0580	Centimeter per second
Multiply	By	To Obtain		0.01667	Feet per second
BTU/(hr)(ft ²)(°F per ft)	0.00413	Gm-cal/(sec) (cm ²) (°C per cm)	Feet per second	0.6818	Miles per hour Kilometers per hour
	12	BTU/(hr) (ft ²) (°F per in.)		30.48	Centimeters per second
	0.0173	Watts/(cm ²) (°C/cm)		0.3048 0.5921	Meters per second Knots
			Enots	1.0	Nautical miles per hour
				. 1.6889 1.1515 1.8532	Feet per second Miles per hour Kilometers per hour
				0.5148	Meters per second

	Multiply	Ву	To Obtain	Multiply	Ву	To Obtain
N	Meters per second	3.281	Feet per second	K	INEMATIC VI	
		2.237	Miles per hour Kilometers per hour	Stoke	1.0 0.155 0.001076	cm ² /sec in. ² /sec ft ² /sec
N	Miles per hour	1.467 0.4470 1.609	Feet per second Meters per second Kilometers per hour	TOLUME	density (gm/cm ³)	Poise
		0.8684	Knots	Multiply	Ву	To Obtain
C	JISCOSITY			Barrels	42 31,5	Gallons (Oil) Gallons
1	Multiply	Ву	To Obtain	Cubic centimeters	10-3 0.0610	Liters Cubic inches
F	Radians per second	57.296 0.1592 9.55	Degrees per second Revolutions per second Revolutions per	Cubic feet	28317 1728 0.03704 7.481	Cubic centimeters Cubic inches Cubic yards Gallons
4			minute		28.32	Liters
I	Poise	ABSOLUTE V	gm/cm sec	Cubic inches	16.387 0.01639 4.329x10-3	Cubic centimeters Liters Gallons
		1.0	dyne sec/cm ²		0.01732	Quarts (liquid)
	Centipoise	0.000672 0.0000209	Centipoise lb/ft sec lb sec/ft ²	Gallons, imperial	277.4 1.201 4.546	Cubic inches U.S. gallons Liters
		2.42	lb/ft hr	Gallons, U.S. (liquid)	231 0.1337	Cubic inches Cubic feet

Ву

2240

1016

1000

2205

1.102

2000

907.2

0.9072

To Obtain

Pounds (avdp)

Pounds (avdp)

Pounds (avdp)

Tons (metric)

Tons (short)

Kilograms

Kilograms

Kilograms

Multiply	Ву	To Obtain	Multiply
Gallons, U.S. (liquid)	3.785 0.8327 128	Liters Imperial gallons Fluid ounces	Tons (long) Tons (metric)
Ounces, fluid	29.57 1.805	Cubic centimeters Cubic inches	
Liters	0.2642 0.0353 1.0567 61.025	Gallons Cubic Feet Quarts Cubic inches	Tons (short)
Quarts, U.S. (liquid)	0.0334 57.749 0.9463	Cubic feet Cubic inches Liters	
WEIGHT			
Multiply	Ву	To Obtain	
Grams	15.432 0.03527 0.002205 1000 0.001 980.67	Grains Ounces (avdp) Pounds (avdp) Milligrams Kilograms Dynes	
Kilograms	2.205 35.27	Pounds (avdp) Ounces (avdp)	
Pounds (avdp)	7000 16.0 1.215 0.4536	Grains Ounces Pounds (troy) Kilograms	

FLUID LINE IDENTIFICATION COLORS

The fluid line identifications represent designations systems only. For coding lines which do not fall into these systems the contents shall be designated by lettering on a white background.

Pressure transmitter lines shall be identified by the colors as the lines from which pressure is being mitted.

Filler lines, vent lines, and drain lines from functions

Lated functional equipment shall be identified by the

Lientifications as the function lines.

		-																												
Remarks		Dog lived one week.	Discovered radiation belt.				85-91 days More radiation belt data.	n a band.	discovered second radiation belt.	Atlas ICBM. Communications test.		Cloud cover scanner. Precessing	First polar orbit.	Space radiation data.	Capsule returned but lost in Arctic.	First photos of earth from space.	Catheritic still to higher	Capsule separated but lost,	Approximately 35 hour flight time.	Magnetic & micro- metorite studies.	First photos of moon far side.	Still transmitting.		Capsule returned but lost.	Record distance radio transmission.	Cloud cover photos	Broadcast navigation signals.	Capsule ejected but lost,	Separated into 8 pieces + (dummy-manned capsule)	Missile infrared detector,
Life	92 days	162 days]	3-5 years	200-1000 years	93 days	692 days	85-91 days	mi., proved radiation a band.	covered seco	34 days		100+ yrs.	5 days	-	13 days	1+ year	47 days.	63 days	imately 35 h	30-40 yrs.	199 days	20-30 yrs	19 days	110 days	it, period 311.6 days	50-100 yrs	16(?) mo.	11 days	10 m	4 yrs
Period in min	96.17	103.7	107.9	134.1	115.87	89.7	110.27	700 mi., pro	mi.,	101.46		125.4	95,9		90.5	753.6	**	95.28	59. Approx	129.9	15 days	101.2	30	103.7	bit, period	2.88	92.6	4.60	91 (94.25)	94.4
Inclination to Equator	65°	65°	33.34	34.25	33.4	65.3	50.29	reached 70,7	reached 63,580		r orbit	32,88	87	solar orbit	8.68	46.9	0.0	0.6	moon 9/13/	6.3 6.3	polar	50.3	06	06	10 ⁶ solar o	43.3		1.03	(64.9)	6.3
Perigee Apogee in miles	142/588	140/1038	217/1199	406/2463	121/1746	105/238	163/1380	Moon probe;	Moon probe;	110/920	450-day solar		99/602	406.95-day	142/220	115/24,618	1.86/400	1311/1537	Impacted or	321/2321	24,840/	344/673	104/550	120/1056	(74.9/92.3) x	429/465	2 29/455	109/380	198/198	300/320
Weight in lbs	184		30.8	3.25	31	7000	38.4	84.4	12.95	8750	3245	20.74	1300	13.4	1610	142	Links	1700	858.4	100	614	16	1700	1700	94.8	270	265	1700	10,008 total	20.00
Launch	10/4/57	11/3/57	1/31/58	3/17/58	3/26/58	5/15/58	7/26/58	10/11/58	12/6/58	12/18/58	1/2/59	2/11/59	2/28/59	3/3/59	4/13/59	8/1/8	875878	8/10/80	9/12/59	9/18/59	10/4/59	10/13/59	*11/1/28	:*11/20/59	3/11/60	4/1/60	4/13/60	4/12/60	5/15/60	5/24/60
Name	Sputnik I	п	I	Vanguard I	Explorer III		Λ		Pioneer III	Project Score	Lunik I	Vanguard II	Discoverer I*	Pioneer IV	Discoverer II*	Explorer VI	FORESTERN W.	Discoverer VI	Lunik II	Vanguard III	Lunik III	Explorer VII	Discoverer VII*	Discoverer VIII*11/20/59	Pioneer V	Tiros I	Transit IB	Discoverer XI*	Sputnik IV	Midas II*
No.	-	2	67	4.	2	6.	7	00	6	10.	-	12.	13.	14.	15.	16.	10	2	19.	20.	21.	23	23.	24.	25.	26.	27	28.	29.	30.

No.	31. 7	32, I	33.	34. I	35.	36. (37. I	38. E	39. I	40. 1	41. S	42. I	43. I
Name	Transit IIA	Discoverer XIII*8/10/60	Echo I	Discoverer XIV*8/18/60	Sputnik V	Courier IB	Discoverer XV* 9/12/60	Explorer VIII	Discoverer XVII*11/2/60	Tiros II	Sputnik VI	Discoverer XVIII*	Discoverer XIX*
Launch	6/22/60	*8/10/60	8/12/60	*8/18/60	8/19/60	9/4/60	9/12/60	11/3/60	[*11/2/60	11/23/60	12/1/60	12/7/60	12/20/60
Weight in lbs.	265	1700	137.4	1700	10,141	200	1700	06	2100	280	10,060	2100	2100
Perigee Apogee in miles	389/620	161/436	945/1049	111/504	191/191	602/752	130/470	259/1423	/615	386.9/453.2	115/164	150/450	130/400
Inclination to Equator	polar	polar	48.6	79.65	64.9		polar	20	polar	48.53	65°	polar	polar
Period in min.	101.7	94.1	118.3	94	91	106.9		112.75	96.45	98.37	88.6	94	93
Life	50(?) yrs	97 days	1(?) yr	21(?) days	27 hrs	1(?) yr		3(?) mo	46 days		1 day		1 mo.
Remarks	Also piggy-back"Grebi"	Capsule recovered from water.	100' aluminized plastic sphere	Capsule recovered in air.	Zoo capsule recovered.	Active-repeater communications	Capsule returned but lost.	Direct sampling upper ionosphere.	Capsule recovered in air.	Infrared scanner, cloud photos.	Zoo satellite burned on re-entry.	Capsule recovered in air.	Missile-infrared detector.

-	Destroy VII	3/4/6	16,808	1907190	0.4.0	60,00	B St. Say or	
Ę		3/13/61	1411	Appe.	=	phothon 1.0	1100 A.U., per	phellion 1.0196 A.U., perillellon 0.7183 A.U.
40,	. Sputnik VIII	2/12/61		123/198		89.7	13 days	
47	. Explorer IX	2/16/61	15	438/1555	38.86	118.1		Polka dot balloon.
48,	Discoverer XX*	2/17/61	2450	176/393	80.91	83.8		No attempt to re-
49.	. Discoverer XXI*	2/18/61	2100	154/475	80.74	94.8		Infrared equipment, background radiation.
50.	. Transit IIIB/ Lofti	2/21/61		117/511	23.86	94.5	37 days	Orbit achieved, mal- function hampered quality of Transit data.
51.	Sputnik IX	3/9/61	10,340	113.9/154.5			1 day	
52	. Sputnik X	3/25/61	10,330	111/150	64.54	88.42	1 day	
53.	Explorer X	3/25/61	6-	100/112500	33.0	50.2		Optical-pumping magnetometer.
54.	Discoverer XXIII*	4/8/61	2100	183/324	82.31	65.03		Capsule ejected in wrong direction.
55	55. Vostok I	4/12/61	10,418	108, 76/187, 66	65.07	8 9.1	1 day	Yuri Gagarin, first Russian Cosmonaut.
. 56	Explorer XI	4/27/61	8	302/1113	28.80	107.9	1-3 years	Measures atmospheric absorption of stellar gamma rays.
5	Mercury- Redstone	5/5/81	2000	Suborbital Flight	ht			Cradr. Sheppard, first U.S. Astronaut.
5B	. Discoverer	6/16/61	2100	139.1/251.6	82,11	90.87	2 days	

Remarks	Three-in-one launch with Injun/Greb III.	Failed to separate but transmitting.	Systems evaluation of Agena B. Capsule recovered.	Transmitting cloud cover weather pictures.	Infrared early warning.	Capt. Grissom, second U.S. Astronaut.	Gherman Titov, second Russian Cosmonaut; 17-1/2 orbits.	Study Van Allen belts and energetic parti- cles in space.	Failed to achieve planned orbit.	Orbit achieved,	Reliability testing of Agena B.		
Life	1 year						2 days	1 year		3 days	3 months		
Period in min	103.8	103.8	92.6	100.3	161.5		98.6	1593	91.1	97.27	91.0	91.9	0.08
Inclination to Equator	67.0	67.0	82.93	47.8	91.17	ht	64.0	33.09	32.90	36.42	82.14	82.71	82.7
Perigee I Apogee I in miles	547/620	548/619	142/352	457/511	2084/2197	Suborbital Flight	110.3/115.3	183/48059	105/312.5	174.60/606.34	140/345	144/306	138/202
Weight in lbs.	175	Injun 40 Greb III 55	2100	285	3500	2000	10,430	83	675	187	2100		
Launch	6/29/61	6/29/61	7/7/61	7/12/61	7/12/61	7/21/61	8/6/61	8/15/61	8/23/61	8/25/61	8/30/61	9/12/61	9/11/61
Name	Transit IV-A	60. Injun/Greb III	61. Discoverer XXVI*	62. Tiros III	Midas III*	Mercury- Redstone	Vostok II	66. Explorer XII	67. Ranger I*	Explorer XIII*	Discoverer XXIX*	Discoverer XXX*	Discoverer
NO.	59.	.09	61.	62.	63.	64.	65.	.99	67.	68.	.69	70.	771.

1 A.A.