- расход сырья каждого вида;
- выход сырья (итог);
- какао-массу (масло какао + тертое какао) в процентах;
- определить вид шоколада, зависящей от какао-массы, если какао-масса больше 50%, то вид шоколада «Горький», иначе шоколад «Молочный», и вывести «Белый», если меньше 32% (расчет выполнять с использованием функции ЕСЛИ);
- б) построить диаграмму по расходу сырья каждого вида для производства шоколада A, B, C.

4 Лабораторная работа «Знакомство с MathCAD, вычисление выражений»

Цель работы: Освоить основные приемы работы с математическим пакетом MathCAD. Ознакомиться с основными панелями инструментов. Ознакомиться с основными правилами ввода данных и оформления математических выражений, а также получения итогового результата.

4.1 Технология работы

Рассмотрим примеры решения задач с помощью математического пакета MathCAD.

Пример 1

Вычислить значение выражения $y = tg^2 \left(\frac{\sqrt[3]{\ln|x-a|}}{x+a} \right)$ в заданной точке a=1,3 и

х=5,25, сопровождая каждый шаг текстовыми комментариями.

Технология работы:

1) Установим крестообразный курсор в место ввода текстового комментария и, придерживаясь, правил ввода текста, введем комментарии для реализации алгоритмов линейных структур, а именно «ввод данных», «вычисление значения выра-

жения» и «полученный результат».

- 2) Установим курсор справа от текстового комментария «ввод данных» и введем с клавиатуры а:=1.3, задав тем самым объект формула. Аналогично зададим следующий блок, в котором х:=5.25. Причем, второй формульный блок можно размещать как справа от первого, так и ниже его, потому как они не являются зависимыми друг от друга.
- 3) Установим курсор справа от текстового комментария «вычисление значения выражения» и при этом он должен быть расположен ниже, чем блоки, в которых мы осуществляли присваивание, затем начнем ввод выражения, используя шаблоны, расположенные на панели инструментов *Калькулятор*.
- 4) Установим курсор справа от текстового комментария «полученный результат» и введем у= (рисунок 26).

Ввод данных:
$$a:=1.3$$
 $x:=5.25$
Вычисление значения выражения:
$$y:=\left[\tan\left[\frac{\sqrt[3]{(\ln(|x-a|))}}{x+a}\right]\right]^2$$
 Полученный результат: $y=0.029$

Рисунок 26 - Пример вычисления значения выражения

Задание 2

Ранжированные переменные в Mathcad представляют собой дискретный аргумент, содержащий набор фиксированных значений, изменяющихся от начального до конечного значения с определённым шагом.

Ранжированные переменные являются разновидностью векторов и предназначены главным образом, для создания циклов или итерационных вычислений.

Определить функцию $f(x) = x \sin \sqrt{|x|}$; вычислить значение функции: для аргумента x=1; на отрезке [1,5] с шагом 1; на отрезке [0, 4π] с шагом 0.2.

Технология работы:

- 1. Определим функцию $f(x) = x \sin \sqrt{|x|}$
- 2. Введем с клавиатуры f(1)=.
- 3. Для формирования вектора значений [1;5]: введем с клавиатуры: **х: 1;5** (при нажатии должен появиться знак присваивания его так же можно выбрать на панели подсчета должен появиться знак диапазона, его так же можно выбрать на панели матрицы ...
- 4. Выведем на экран таблицу значений аргумента и функции, для этого набираем x=, f(x)= (рисунок 27).
- 5. Также как и в пункте 2 для формирования вектора значений $[0, 4\pi]$ введем с клавиатуры: x: 0,0.2; 4π .
- 6. Выведем на экран таблицу значений аргумента и функции, для этого набираем x=, f(x)= (рисунок 28).

Рисунок 27 – Табулирование функции при изменении аргумента с шагом 1

ормируем вектор значений	й x с шагом 0,2 $x := 0,0.24 \cdot \pi$
Выводим значения аргумента	Выводим значения функции
x =	f(x) =
0	0
0.2	0.086
0.4	0.236
0.6	0.42
0.8	0.624
1	0.841
1.2	1.067
1.4	1.296
1.6	1.526
1.8	1.753
2	1.976
2.2	2.192
2.4	2.399
2.6	2.598
2.8	2.785

Рисунок 28 – Табулирование функции при изменении аргумента с шагом 0,2

4.2 Задания лабораторной работы

Задание

Вычислите значение выражения z=f(x,y), (a, b, x, y - задать самостоятельно). Выполните задание согласно индивидуальному варианту (таблица 12).

Таблица 12 – Индивидуальные варианты

№B	Варианты заданий				
1	$z = \ln\left(\frac{a + \sqrt{ \sin(y - x) }}{b}\right)$	3 9	$z = \sin\left(e^{\left x \cdot y + a\right } - y\right)$		

Продолжение таблицы 12

1	2	3	4
2	$z = \cos\left(x - e^{\left b - x \cdot y\right }\right)$	10	$z = \frac{a \cdot x^4 - x \cdot y}{\sqrt{a+b}}$
3	$z = \ln \left a + \sqrt{ y - x } \right $	11	$z = \frac{\ln \left \frac{a - x}{y} \right }{e^x}$
4	$z = \sqrt{ x - y \cdot \ln(e^x + a)}$	12	$z = \sqrt[3]{x - e^{y} \cdot \sin x}$
5	$z = \lg(tg x \cdot y - a)$	13	$z = \left(y + \ln\left \frac{x}{y} - a\right \right)^{1/2}$
6	$z = \frac{a \cdot x^2 + x \cdot y + b}{\sqrt{a+b}}$	14	$z = \left(a + \ln\left \frac{x}{y} - x\right \right)^{1/3}$
7	$z = \frac{\lg a \cdot x - y }{e^{-(x+y)}}$	15	$z = ctg^{2}\left(y - \sqrt{\cos(x+y) - e^{x}}\right)$
8	$z = \sqrt[3]{y - e^x \cdot \cos(x)}$	16	$z = \frac{\sqrt{e^{a \cdot x}}}{\sqrt[3]{x \cdot \sqrt{y}}}$

5 Лабораторная работа «Построение графиков функций в MathCAD»

Цель работы: Освоить построение двумерных и трехмерных графиков функций, научиться представлять значения функции для заданного диапазона значений аргументов в табличном виде.