Section 2.7 – Rational Functions

Rational Function

A rational function is a function f that is a quotient of two polynomials, that is,

$$f(x) = \frac{g(x)}{h(x)}$$

Where g(x) and h(x) are polynomials. The domain of f consists of all real numbers *except* the zeros of the denominator h(x).

The Domain of a Rational Function

Example

$$f(x) = \frac{1}{x-3}$$

Find the domain and graph f.

Solution

$$x-3=0 \implies \boxed{x=3}$$

Thus the domain is: $\{x | x \neq 3\}$ or $(-\infty, 3) \cup (3, \infty)$

Function	Domain	
$f\left(x\right) = \frac{1}{x}$	$\left\{ x \middle x \neq 0 \right\}$	$(-\infty, 0) \cup (0, \infty)$
$f\left(x\right) = \frac{1}{x^2}$	$\left\{x \middle x \neq 0\right\}$	$(-\infty, 0) \cup (0, \infty)$
$f(x) = \frac{x-3}{x^2 + x - 2}$	$\left\{x \middle x \neq -2 \text{ and } x \neq 1\right\}$	$(-\infty, -2) \cup (-2, 1) \cup (1, \infty)$
$f(x) = \frac{2x+5}{2x-6} = \frac{2x+5}{2(x-3)}$	$\left\{x \middle x \neq 3\right\}$	$(-\infty, 3) \cup (3, \infty)$

64

Asymptotes

Vertical Asymptote (VA) - Think Domain

The line x = a is a **vertical asymptote** for the graph of a function f if

$$f(x) \rightarrow \infty$$
 or $f(x) \rightarrow -\infty$

As x approaches a from either the left or the right

Example

Find the vertical asymptote of $f(x) = \frac{1}{x-2}$, and sketch the graph.

Solution

VA:
$$x = 2$$

$$f(x) \to \infty$$
 as $x \to 2^+$

$$f(x) \to -\infty$$
 as $x \to 2^-$

Horizontal Asymptote (HA)

The line y = c is a **horizontal asymptote** for the graph of a function f if

$$f(x) \rightarrow c$$
 as $x \rightarrow -\infty$ or $x \rightarrow -\infty$

Let
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0} = \frac{a_n x^n}{b_m x^m}$$
 be a rational function.

1. If the degree of numerator is less than of denominator $(n < m) \Rightarrow y = 0$

$$y = \frac{2x+1}{4x^2+5}$$
 $\Rightarrow y = 0$

2. If the degree of numerator is equal of denominator $(n = m) \Rightarrow y = \frac{a_n}{b_m}$

$$y = \frac{2x^2 + 1}{4x^2 + 5}$$
 $\Rightarrow \lfloor y = \frac{2}{4} = \frac{1}{2} \rfloor$

3. If the degree of numerator is greater than of denominator $(n > m) \Rightarrow$ No horizontal asymptote

$$y = \frac{2x^3 + 1}{4x^2 + 5} \implies No \ HA$$

Example

Determine the horizontal asymptote of $f(x) = \frac{-7x^4 - 10x^2 + 1}{11x^4 + x - 2}$.

Solution

$$f(x) = \frac{-7x^4 - 10x^2 + 1}{11x^4 + x - 2} \to \frac{-7x^4}{11x^4} = -\frac{7}{11}$$

Therefore, the horizontal asymptote (*HA*) is: $y = -\frac{7}{11}$

Example

Find the vertical and the horizontal asymptote for the graph of f , if it exists

- a) $f(x) = \frac{3x-1}{x^2 x 6}$
- $f(x) = \frac{5x^2 + 1}{3x^2 4}$
- c) $f(x) = \frac{2x^4 3x^2 + 5}{x^2 + 1}$

Solution

a) $f(x) = \frac{3x-1}{x^2-x-6}$

$$x^2 - x - 6 = 0 \rightarrow x = -2, 3$$

$$VA: x = -2, x = 3$$

HA:
$$y = 0$$

b) $f(x) = \frac{5x^2 + 1}{3x^2 - 4}$

$$3x^2 - 4 = 0 \rightarrow 3x^2 = 4 \rightarrow x^2 = \frac{4}{3} \rightarrow x = \pm \frac{2}{\sqrt{3}}$$

VA:
$$x = -\frac{2}{\sqrt{3}}$$
, $x = \frac{2}{\sqrt{3}}$

HA:
$$y = \frac{5}{3}$$

c) $f(x) = \frac{2x^4 - 3x^2 + 5}{x^2 + 1}$

$$x^2 + 1 = 0 \rightarrow x^2 = -1$$

VA: *n/a*

HA: n/a

Slant or Oblique Asymptotes

When the degree of the numerator is one greater than the degree of the numerator, the graph has a slant or oblique asymptote and it is a line y = ax + b, $a \ne 0$. To find the slant asymptote, divide the fraction using long division. The quotient (not remainder) is the slant asymptote.

$$y = \frac{3x^{2} - 1}{x + 2}$$

$$x + 2\sqrt{3x^{2} + 0x - 1}$$

$$\frac{3x^{2} + 6x}{-6x - 1}$$

$$\frac{-6x - 12}{R} = 11$$

$$y = \frac{3x^{2} - 1}{x + 2} = 3x - 6 + \frac{11}{x + 2}$$

The *oblique asymptote* is the line y = 3x - 6

Example

Find all the asymptotes of $f(x) = \frac{2x^2 - 3x - 1}{x - 2}$

Solution

$$\frac{2x+1}{x-2} = \frac{2x^2 + 4x}{2x^2 - 3x - 1}$$

$$\frac{-2x^2 + 4x}{x-1}$$

$$\frac{-x+2}{1}$$

$$f(x) = \frac{2x^2 - 3x - 1}{x-2} = (2x+1) + \frac{1}{x-2}$$

The *oblique asymptote* is the line y = 2x + 1

VA:: x = 2

Graph That Has a *Hole*

Example

Sketch the graph of g if $g(x) = \frac{(3x+4)(x-1)}{(2x-5)(x-1)}$

Solution

$$g(x) = \frac{(3x+4)(x-1)}{(2x-5)(x-1)} = \frac{3x+4}{2x-5} = f(x)$$

VA:
$$x = \frac{5}{2}$$

HA:
$$y = \frac{3}{2}$$

The only different between the graphs that g has a **hole** at $x = 1 \rightarrow f(1) = -\frac{7}{3}$

x	y
-4	.6
1.3	0
0	8
4	5.3
6	3.1

Exercises Section 2.7 – Rational Functions

(1-21) Determine all asymptotes of the function

$$1. \qquad y = \frac{3x}{1-x}$$

8.
$$y = \frac{x-3}{x^2-9}$$

15.
$$f(x) = \frac{3-x}{(x-4)(x+6)}$$

2.
$$y = \frac{x^2}{x^2 + 9}$$

9.
$$y = \frac{6}{\sqrt{x^2 - 4x}}$$

16.
$$f(x) = \frac{x^3}{2x^3 - x^2 - 3x}$$

$$3. y = \frac{x-2}{x^2 - 4x + 3}$$

10.
$$y = \frac{5x - 1}{1 - 3x}$$

17.
$$f(x) = \frac{3x^2 + 5}{4x^2 - 3}$$

4.
$$y = \frac{3}{x-5}$$

11.
$$f(x) = \frac{2x - 11}{x^2 + 2x - 8}$$

18.
$$f(x) = \frac{x+6}{x^3+2x^2}$$

$$5. y = \frac{x^3 - 1}{x^2 + 1}$$

12.
$$f(x) = \frac{x^2 - 4x}{x^3 - x}$$

19.
$$f(x) = \frac{x^2 + 4x - 1}{x + 3}$$

6.
$$y = \frac{3x^2 - 27}{(x+3)(2x+1)}$$

13.
$$f(x) = \frac{x-2}{x^3 - 5x}$$

20.
$$f(x) = \frac{x^2 - 6x}{x - 5}$$

$$7. y = \frac{x^3 + 3x^2 - 2}{x^2 - 4}$$

14.
$$f(x) = \frac{4x}{x^2 + 10x}$$

21.
$$f(x) = \frac{x^3 - x^2 + x - 4}{x^2 + 2x - 1}$$

(22 – 53) Determine all asymptotes (if any) (*Vertical Asymptote, Horizontal Asymptote*; *Hole*; *Oblique Asymptote*) and sketch the graph of

22.
$$f(x) = \frac{-3x}{x+2}$$

29.
$$f(x) = \frac{x-1}{1-x^2}$$

36.
$$f(x) = \frac{1}{x-3}$$

23.
$$f(x) = \frac{x+1}{x^2 + 2x - 3}$$

30.
$$f(x) = \frac{x^2 + x - 2}{x + 2}$$

37.
$$f(x) = \frac{-2}{x+3}$$

24.
$$f(x) = \frac{2x^2 - 2x - 4}{x^2 + x - 12}$$

31.
$$f(x) = \frac{x^3 - 2x^2 - 4x + 8}{x - 2}$$

38.
$$f(x) = \frac{x}{x+2}$$

39. $f(x) = \frac{x-5}{x+4}$

25.
$$f(x) = \frac{-2x^2 + 10x - 12}{x^2 + x}$$

32.
$$f(x) = \frac{2x^2 - 3x - 1}{x - 2}$$

40.
$$f(x) = \frac{2x^2 - 2}{x^2 - 0}$$

26.
$$f(x) = \frac{x^2 - x - 6}{x + 1}$$

33.
$$f(x) = \frac{2x+3}{3x^2+7x-6}$$

41.
$$f(x) = \frac{x^2 - 3}{x^2 + 4}$$

27.
$$f(x) = \frac{x^3 + 1}{x - 2}$$

34.
$$f(x) = \frac{x^2 - 1}{x^2 + x - 6}$$

42.
$$f(x) = \frac{x^2 + 4}{x^2 - 3}$$

28. $f(x) = \frac{2x^2 + x - 6}{x^2 + 3x + 2}$

43.
$$f(x) = \frac{x^2}{x^2 - 6x + 9}$$

47.
$$f(x) = \frac{x-3}{x^2 - 3x + 2}$$
 51. $f(x) = \frac{x^2 - 2x}{x-2}$

51.
$$f(x) = \frac{x^2 - 2x}{x - 2}$$

44.
$$f(x) = \frac{x^2 + x + 4}{x^2 + 2x - 1}$$

48.
$$f(x) = \frac{x^2 + 2}{x^2 + 3x + 2}$$
 52. $f(x) = \frac{x^2 - 3x}{x + 3}$

52.
$$f(x) = \frac{x^2 - 3x}{x + 3}$$

45.
$$f(x) = \frac{2x^2 + 14}{x^2 - 6x + 5}$$

49.
$$f(x) = \frac{x-2}{x^2 - 3x + 2}$$

49.
$$f(x) = \frac{x-2}{x^2 - 3x + 2}$$
 53. $f(x) = \frac{x^3 + 3x^2 - 4x + 6}{x + 2}$

46.
$$f(x) = \frac{x^2 - 4x - 5}{2x + 5}$$

50.
$$f(x) = \frac{x^2 + x}{x + 1}$$

(54 - 59)Find an equation of a rational function f that satisfies the given conditions

54.
$$\begin{cases} vertical \ asymptote: \ x = 4 \\ horizontal \ asymptote: \ y = -1 \\ x - intercept: \ 3 \end{cases}$$

57.
$$\begin{cases} vertical \ asymptote: \ x = -2, \ x = 0 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ 2, \quad f(3) = 1 \end{cases}$$

55.
$$\begin{cases} vertical \ asymptote: \ x = -4, x = 5 \\ horizontal \ asymptote: \ y = \frac{3}{2} \\ x - intercept: \ -2 \end{cases}$$

58.
$$\begin{cases} vertical \ asymptote: \ x = -3, \ x = 1 \\ horizontal \ asymptote: \ y = 0 \\ x - intercept: \ -1, \ f(0) = -2 \\ hole \ at \ x = 2 \end{cases}$$

56. $\begin{cases} vertical \ asymptote: \ x = 5 \\ horizontal \ asymptote: \ y = -1 \\ x - intercept: \ 2 \end{cases}$

59.
$$\begin{cases} vertical \ asymptote: \ x = -1, \ x = 3 \\ horizontal \ asymptote: \ y = 2 \\ x - intercept: \ -2, \ 1 \\ hole: \ x = 0 \end{cases}$$