Hardware Technologies

Dr. Vincent C. Emeakaroha 18-01-2017

vc.emeakaroha@cs.ucc.ie

Computer Components

- Classic components
 - Inputs
 - Outputs
 - Memory
 - Processor (Datapath and Control units)
- Same components for all kinds of computer
 - Desktop, server, supercomputer, embedded

Opening the Box

Microprocessor Package

Apple A5

Inside the Processor

- Datapath:
 - performs operations on data
- Control:
 - sequences datapath, memory access
- Cache memory
 - Small fast SRAM memory for immediate access to data

Hardware Operation Overview

Memory

- Volatile main memory
 - Loses instructions and data when power off
- Non-volatile secondary memory
 - Magnetic disk
 - Flash memory
 - Optical disk (CDROM, DVD)

DRAM Growth Trends

- Electronics technology continues to evolve
 - Increased capacity and performance
 - Reduced cost

Networks

- Communication, resource sharing, nonlocal access
 - Printers, remote login
- Local area network (LAN): Ethernet
- Wide area network (WAN): the Internet
- Wireless network: WiFi, Bluetooth

IC Manufacturing Technology

- Silicon:
 - Found in sand
 - Poor electricity conductor, thus the name "semiconductor"
- Add materials to transform properties:
 - Conductors
 - Insulators
 - Switch (transistors)

Manufacturing ICs

- Yield: proportion of working dies per wafer
 - In 2012: 32 nanometer is the standard

Intel Core i7 Wafer

- 300mm wafer, 280 chips, 32nm technology
- Each chip is 20.7 x 10.5 mm

Integrated Circuit Cost

Cost per die= Cost per wafer
Dies per wafer×Yield
Dies per wafer≈Wafer area/Die area

1
Yield= (1+(Defects per area×Die area/2))²

- Nonlinear relation to area and defect rate
 - Wafer cost and area are fixed
 - Defect rate determined by manufacturing process
 - Die area determined by architecture and circuit design

System Performance

- Response time
 - How long it takes to do a task
 - Also referred to as execution time
 - Personal mobile device
- Throughput
 - Total work done per unit time
 - e.g., tasks/transactions/... per hour
 - Focus of servers
- How are response time and throughput affected by
 - Replacing the processor with a faster version?
 - Adding more processors?

Relative Performance

- Define Performance = 1/Execution Time
- "X is n time faster than Y"

```
Performance<sub>x</sub>/Performance<sub>y</sub>
= Execution time<sub>y</sub> / Execution time<sub>x</sub> = n
```

- Example: time taken to run a program
 - 10s on A, 15s on B. How much faster is A thanB?
- Execution Time_B / Execution Time_A = 15s / 10s = 1.5s
 - So A is 1.5 times faster than B

Measuring Performance

- Elapsed time
 - Total time to complete a task, including all aspects
 - Processing, I/O, OS overhead, idle time
 - Determines system performance
- CPU time
 - Time spent processing a given job
 - Does not include: I/O time, other jobs' shares
 - Comprises user CPU time and system CPU time
 - Different programs are affected differently by CPU and system performance

CPU Clocking

 Operation of digital hardware governed by a constant-rate clock

- Clock period: duration of a clock cycle
 - E.g., 250ps = 0.25ns = 250x10⁻¹²s
- Clock frequency (rate): cycles per second
 - E.g., $4.0GHz = 4000MHz = 4.0x10^9Hz$

CPU Performance

CPU execution time for a program

```
CPU Time = CPU Clock Cycles × Clock Cycle Time
= \frac{\text{CPU Clock Cycles}}{\text{Clock Rate}}
```

- Performance improved by
 - Reducing number of clock cycles
 - Increasing clock rate
 - Hardware designer must often trade off clock rate against cycle count

CPU Time Example

- Computer A: 2GHz clock, 10s CPU time
- Designing Computer B
 - Aim for 6s CPU time
 - Can do faster clock, but causes 1.2 × clock cycles
- How fast must Computer B clock rate be?

$$\begin{aligned} \text{Clock Rate}_{\text{B}} &= \frac{\text{Clock Cycles}_{\text{B}}}{\text{CPU Time}_{\text{B}}} = \frac{1.2 \times \text{Clock Cycles}_{\text{A}}}{6\text{s}} \\ \text{Clock Cycles}_{\text{A}} &= \text{CPU Time}_{\text{A}} \times \text{Clock Rate}_{\text{A}} \\ &= 10\text{s} \times 2\text{GHz} = 20 \times 10^9 \\ \text{Clock Rate}_{\text{B}} &= \frac{1.2 \times 20 \times 10^9}{6\text{s}} = \frac{24 \times 10^9}{6\text{s}} = 4\text{GHz} \end{aligned}$$

Instruction Count and Cycles Per Instruction

```
Clock Cycles = Instruction Count \times Cycles per Instruction CPU Time = Instruction Count \times CPI \times Clock Cycle Time = \frac{Instruction Count \times CPI}{Clock Rate}
```

- Instruction Count for a program
 - Determined by program, ISA and compiler
- Average cycles per instruction
 - Determined by CPU hardware
 - If different instructions have different CPI
 - Average CPI affected by instruction mix

CPI Example

- Computer A: Cycle Time = 250ps, CPI = 2.0
- Computer B: Cycle Time = 500ps, CPI = 1.2
- Same ISA
- Which is faster, and by how much?

$$\begin{aligned} \text{CPU Time}_{A} &= \text{Instruction Count} \times \text{CPI}_{A} \times \text{Cycle Time}_{A} \\ &= I \times 2.0 \times 250 \text{ps} = I \times 500 \text{ps} & \text{A is faster...} \end{aligned}$$

$$\begin{aligned} \text{CPU Time}_{B} &= \text{Instruction Count} \times \text{CPI}_{B} \times \text{Cycle Time}_{B} \\ &= I \times 1.2 \times 500 \text{ps} = I \times 600 \text{ps} \end{aligned}$$

$$\begin{aligned} &= I \times 600 \text{ps} \\ &= I \times 500 \text{ps} \end{aligned}$$

$$\begin{aligned} &= I \times 600 \text{ps} \\ &= I \times 500 \text{ps} \end{aligned}$$

Performance in General

$$CPU Time = \frac{Instructions}{Program} \times \frac{Clock \ cycles}{Instruction} \times \frac{Seconds}{Clock \ cycle}$$

- Performance depends on
 - Algorithm: affects IC, possibly CPI
 - Programming language: affects IC, CPI
 - Compiler: affects IC, CPI
 - Instruction set architecture: affects IC, CPI, T_c
- Time is the only complete and reliable measure of performance