Dimostrazione numero 1

Secondo Teorema Fondamentale del Calcolo Integrale

Definizioni necessarie

Si ricorda che è detta funzione integrale la funzione G:

$$G(x) = \int_a^x f(t)dt \qquad G: [a,b] \longmapsto \mathbb{R}$$

$$x \longmapsto G(x) = \int_a^x f(t)dt$$

Prima Forma

Enunciato

Ipotesi

Data una funzione limitata e Riemann-integrabile:

$$f:A=[a,b] \longrightarrow \mathbb{R}$$

$$t \longmapsto y=f(t)$$

Tesi

G è una funzione **continua**.

Dimostrazione

Voglio dimostrare che

$$\forall x_0 \in [a, b]$$
 $G(x_0) = \lim_{x \to x_0} G(x)$

Caso 1 - $a < x_0 < x < b$

Consideriamo quindi il limite da destra:

$$\lim_{x \to x_0^+} G(x) = \lim_{x \to x_0} \int_a^x f(t)dt =$$

$$= \lim_{x \to x_0} \left[\int_a^{x_0} + \int_{x_0}^x \right] =$$

$$= \lim_{x \to x_0} \left[G(x_0) + \int_{x_0}^x f(t)dt \right]$$

Se $\lim_{x\to x_0^+} \int_{x_0}^x f(t)dt$ fosse infinitesimo allora:

$$\lim_{x \to x_0^+} G(x) = G(x_0)$$

Passiamo quindi a dimostrare che $\lim_{x\to x_0^+} \int_{x_0}^x f(t)dt$ è infinitesimo:

$$m \leqslant f(t) \leqslant M$$
 accumulo tra $x_0 \ ed \ x$

$$m(x-x_0) \leqslant \int_{x_0}^x f(t)dt \leqslant M(x-x_0)$$

L'integrale definito è infinitesimo perché limitato tra quantità che tendono a 0.

Caso 2 - $a < x < x_0 < b$

Consideriamo quindi il limite da sinistra:

$$\lim_{x \to x_0^-} G(x) = \lim_{x \to x_0} \int_a^x f(t)dt =$$

$$= \lim_{x \to x_0^-} \left[\int_a^{x_0} f(t)dt - \int_x^{x_0} f(t)dt \right] =$$

$$= \lim_{x \to x_0^-} \left[G(x_0) - \int_x^{x_0} f(t)dt \right]$$

Se $\lim_{x\to x_0^-} \int_x^{x_0} f(t)dt$ fosse infinitesimo allora:

$$\lim_{x \to x_0^-} G(x) = G(x_0)$$

Passiamo quindi a dimostrare che $\lim_{x\to x_0^-} \int_x^{x_0} f(t)dt$ è infinitesimo:

$$m \leqslant f(t) \leqslant M$$
 accumulo tra $x \ ed \ x_0$

$$m(x_0 - x) \leqslant \int_x^{x_0} f(t)dt \leqslant M(x_0 - x)$$

L'integrale definito è infinitesimo perché limitato tra quantità che tendono a 0.

Nel Caso 1 abbiamo dimostrato che $\lim_{x\to x_0^+} G(x) = G(x_0)$ e Caso 2 che $\lim_{x\to x_0^-} G(x) = G(x_0)$ quindi abbiamo:

$$\lim_{x \to x_0^-} G(x) = G(x_0) = \lim_{x \to x_0^+} G(x) \qquad \forall x_0 \in [a, b]$$

Che dimostra la continuità di G(x). c.v.d.

Seconda Forma

Enunciato

Ipotesi

Data una funzione continua:

$$f:A=[a,b] \longrightarrow \mathbb{R}$$

$$t \longmapsto y=f(t)$$

Tesi

G è una funzione **derivabile**.

$$G \in C^1([a,b])$$
 e $G'(x) = f(x)$ $\forall x \in [a,b]$

Dimostrazione

Sia $x_0 \in (a, b)$, vogliamo dimostrare che G è derivabile in x_0

Caso 1 - h > 0

$$\frac{G(x_0+h)-G(x_0)}{h} = \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0} f(t)dt \right]$$

$$= \frac{1}{h} \int_{x_0}^{x_0+h} f(t)dt$$

$$\exists \theta \in (x_0, x_0+h) | = f(\theta) \longmapsto f(x_0)$$

$$\text{per la seconda proprietà del VMI}$$

$$con h \to 0^+$$

Dimostrando che non solo G(x) è derivabile su (a,b) data l'arbitrarietà di x_0 , ma anche che la derivata di G(x) è f(x). c.v.d.

Caso 2 - h < 0

$$\begin{split} \frac{G(x_0+h)-G(x_0)}{h} &= \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0} f(t)dt \right] \\ &= \frac{1}{h} \left[\int_a^{x_0+h} f(t)dt - \int_a^{x_0+h} f(t)dt - \int_{x_0+h}^{x_0} f(t)dt \right] \\ &= \frac{1}{-h} \int_{x_0+h}^{x_0} f(t)dt \qquad \qquad \text{VMI dif su}[x_0+h,x_0] \\ &\exists \theta \in (x_0+h,x_0)| = f(\theta) \longmapsto f(x_0) \qquad \qquad \text{per la seconda proprietà del VMI} \\ &= con \ h \to 0^- \end{split}$$

Dimostrando che non solo G(x) è derivabile su (a,b) data l'arbitrarietà di x_0 , ma anche che la derivata di G(x) è f(x). c.v.d.