POPIS INŠTRUKCIÍ

Inštrukčný súbor CPU emulátora obsahuje 53 inštrukcií. Tieto inštrukcie môžeme rozdeliť do piatich základných skupín. Sú to:

- aritmetické a logické inštrukcie
- inštrukcie pre posun a rotáciu
- inštrukcie prenosu dát
- inštrukcie vetvenia
- špeciálne inštrukcie

1. ARITMETICKÉ A LOGICKÉ INŠTRUKCIE

ADD - Sčítanie bez Carry

Popis: Sčítanie obsahu dvoch registrov a umiestenie výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd + Rs$

Syntax: Parametre: Čítač inštrukcií: ADD Rd,Rs Rd,Rs - A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

ADC - Sčítanie s Carry

Popis: Sčítanie obsahu dvoch registrov a obsahu príznakového bitu Carry a umiestenie výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd + Rs + CY$

Syntax: Parametre: Čítač inštrukcií: ADC Rd,Rs Rd,Rs -A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

ADI – Pripočítanie konštanty

Popis: Pripočítanie konštanty k obsahu registra a uloženie výsledku do registra.

Operácia: $Rd \leftarrow Rd + K$

Syntax: Parametre: Čítač inštrukcií: ADI Rd,K $Rd-A,B,C,D; 0 \le K \le 255$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

SUB – Odčítanie bez Carry

Popis: Odčítanie obsahov dvoch registrov a uloženie výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd - Rs$

Syntax:Parametre:Čítač inštrukcií:SUB Rd,RsRd,Rs – A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY SUC- Odčítanie s Carry

Popis: Odčítanie obsahu registra Rs a Carry od obsahu registra Rd a uloženie výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd - Rs - CY$

Syntax: Parametre: Čítač inštrukcií: SBC Rd,Rs Rd,Rs -A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

SBI – Odčítanie konštanty

Popis: Odčítanie konštanty od obsahu registra a uloženie výsledku do registra.

Operácia: Rd ← Rd – K

Syntax: Parametre: Čítač inštrukcií: SBI Rd,K $Rd-A,B,C,D; 0 \le K \le 255$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

AND - Logický AND

Popis: Operácia vykoná logický AND medzi registrom Rd a registrom Rs z následným uložením výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd \bullet Rs$

Syntax: Parametre: Čítač inštrukcií: AND Rd,Rs Rd,Rs - A,B,C,D + PC \leftarrow PC + 1

Nastavenie príznakov: Z

ANI - Logický AND s konštantou

Popis: Vykoná logický AND medzi obsahom registra Rd a konštantou z následným uložením výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd \bullet K$

Syntax: Parametre: Čítač inštrukcií: ANI Rd,K $Rd-A,B,C,D; 0 \le K \le 255$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

ORR – Logický OR

Popis: Vykoná logický OR medzi obsahom registra Rd a obsahom registra Rs z následným uložením výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd \vee Rs$

Syntax: Parametre: Čítač inštrukcií: ORR Rd,Rs Rd,Rs - A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

ORI - Logický OR s konštantou

Popis: Vykoná logický OR medzi obsahom registra Rd a konštantou z následným uložením výsledku do registra Rd.

Operácia: $Rd \leftarrow Rd \lor K$

Syntax: Parametre: Čítač inštrukcií: ORI Rd,K $Rd-A,B,C,D; 0 \le K \le 255$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

XOR – Exkluzívny OR

Popis: Vykoná logickú operáciu XOR medzi obsahom registra Rd a obsahom registra Rs a uloží výsledok do registra Rd.

Operácia:

 $Rd \leftarrow Rd \oplus Rs$

Syntax: Parametre: Čítač inštrukcií: XOR Rd,Rs Rd,Rs -A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

XRI - Exkluzívny OR s konštantou

Popis: Vykoná logickú operáciu XOR medzi obsahom registra Rd a konštantou z následným uložením výsledku do registra Rd.

Operácia:

 $Rd \leftarrow Rd \oplus K$

Syntax: Parametre: Čítač inštrukcií: XRI Rd,K $Rd - A,B,C,D; 0 \le K \le 255$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

INC – Inkrement

Popis: Pripočíta jednotku k obsahu registra a výsledok umiestni do tohto registra.

Operácia: Rd ← Rd + 1

Syntax: Parametre: Čítač inštrukcií: INC Rd Rd – A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

INX – Inkrement 16-bitového registra

Popis: Pripočíta jednotku k obsahu registra a výsledok umiestni do tohto registra. *Operácia:*

 $Rd \leftarrow Rd + 1$

Syntax: Parametre: Čítač inštrukcií: INX Rd Rd - S,M $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

DEC – Dekrement

Popis: Odpočíta jednotku od obsahu registra a výsledok umiestni do tohto registra.

Operácia:

 $Rd \leftarrow Rd - 1$

Syntax: Parametre: Čítač inštrukcií: DEC Rd Rd – A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

DCX – Dekrement 16-bitového registra

Popis: Odpočíta jednotku od obsahu registra a výsledok umiestni do tohto registra.

Operácia:

 $Rd \leftarrow Rd - 1$

Syntax: Parametre: Čítač inštrukcií: DCX Rd Rd -S,M PC \leftarrow PC + 1

Nastavenie príznakov: Z,CY

CMP – Porovnanie obsahu dvoch registrov

Popis: Nedeštruktívne odčítanie obsahov dvoch registrov a nastavenie príznakov.

Operácia:

Rd - Rs

Syntax:Parametre:Čítač inštrukcií:CMP Rd,RsRd,Rs – A,B,C,D $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

CMI – Porovnanie obsahu registra a konštanty

Popis: Nedeštruktívne odčítanie konštanty od obsahu registra a nastavenie príznakov.

Operácia:

Rd - K

Syntax: Parametre: Čítač inštrukcií: CMI Rd,K $Rd-A,B,C,D; 0 \le K \le 255$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

2. INŠTRUKCIE POSUNU A ROTÁCIE

SHL – logický posun vľavo

Popis: Posunie všetky bity registra o daný počet miest doľava. Do *n* spodných bitov uloží nulu.

Operácia:

Čítač inštrukcií: Syntax: Parametre: $PC \leftarrow PC + 1$ SHL Rd,n $Rd - A,B,C,D; 1 \le n \le 8$

Nastavenie príznakov: Z

SHR – logický posun vpravo

Popis: Posunie všetky bity registra o daný počet miest doprava. Do n horných bitov uloží nulu.

Operácia:

Čítač inštrukcií: Syntax: Parametre: $Rd - A,B,C,D; 1 \le n \le 8$ SHR Rd,n $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

SCR – logický posun vpravo s Carry

Popis: Posunie všetky bity registra o daný počet miest doprava. Do n horných bitov uloží nulu. Nultý bit sa pri každom posune uloží do Carry.

Operácia:

Čítač inštrukcií: Syntax: Parametre: SCR Rd,n $Rd - A,B,C,D; 1 \le n \le 8$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

RTL – rotácia vľavo

Popis: Posunie všetky bity v registri Rd doľava o n miest. Pri každom posune uloží do nultého bitu obsah siedmeho bitu.

Operácia:

Parametre: Čítač inštrukcií: Syntax: RTL Rd,n $Rd - A,B,C,D; 1 \le n \le 8$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

RCL – rotácia vľavo s Carry

Popis: Posunie všetky bity v registri Rd doľava o n miest. Pri každom posune uloží do nultého bitu obsah siedmeho bitu. Siedmy bit sa pri každom posune ukladá do Carry.

Operácia:

Syntax: Parametre: Čítač inštrukcií: RCL Rd,n $Rd-A,B,C,D; 1 \le n \le 8$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

RTR – rotácia vpravo

Popis: Posunie všetky bity v registri Rd doprava o *n* miest. Pri každom posune uloží do siedmeho bitu obsah nultého bitu.

Syntax: Parametre: Čítač inštrukcií: RTR Rd,n $Rd-A,B,C,D; 1 \le n \le 8$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z

RCR – rotácia vpravo s Carry

Popis: Posunie všetky bity v registri Rd doprava o n miest. Pri každom posune uloží do siedmeho bitu obsah nultého bitu a do Carry sa uloží nultý bit.

Syntax: Parametre: Čítač inštrukcií: RCR Rd,n $Rd-A,B,C,D; 1 \le n \le 8$ $PC \leftarrow PC + 1$

Nastavenie príznakov: Z,CY

3. INŠTRUKCIE PRENOSU DÁT

MOV – Kopírovanie obsahu registra

Popis: Tato inštrukcia zapíše do registra Rd obsah registra Rs

Operácia: Rd ← Rs

Syntax: Parametre: Čítač inštrukcií: MOV Rd,Rs Rd,Rs - A,B,C,D $PC \leftarrow PC + 1$

MVI – Načítanie konštanty do registra

Popis: Načítanie 8-bitovej konštanty do registra

Operácia: Rd ← K

Syntax: Parametre: Čítač inštrukcií: MVI Rd,K Rd – A,B,C,D; $0 \le K \le 255$ PC \leftarrow PC + 1

MXI – Načítanie konštanty do registra

Popis: Načítanie 16-bitovej konštanty do registra

Operácia: Rd ← K

Syntax: Parametre: Čítač inštrukcií: MXI Rd,K $Rd-S,M; 0 \le K \le 65535$ $PC \leftarrow PC+1$

MVX – Kopírovanie dvoch 8-bitových registrov do 16-bitového, alebo naopak

Popis: Tato inštrukcia zapíše do 16-bitového registra obsah dvoch 8-bitových registrov, alebo

Čítač inštrukcií:

 $PC \leftarrow PC + 1$

naopak.

Syntax:Operácia:MVX S,ASP \leftarrow BAMVX M,AMP \leftarrow BAMVX C,SCD \leftarrow SPMVX C,MCD \leftarrow MP

MMR – Načítanie konštanty z pamäti programu

Popis: Načítanie konštanty z pamäti programu do registra Rd. V registri Rs je uložený index miesta v pamäti. Definovanie konštanty v pamäti programu sa uskutočňuje inštrukciou BYTE. *Operácia:*

 $Rd \leftarrow [Rs]$

Syntax:Parametre:Čítač inštrukcií:MMR Rd,RsRd,Rs – A,B,C,D $PC \leftarrow PC + 1$

LMI – Načítanie pamäte do registra s použitím adresy

Popis: Načíta 1 byte do registra z miesta v pamäti, ktoré je dané adresou.

Operácia: Rd ← [adr]

Syntax: Parametre: Čítač inštrukcií: LMI Rd,adr $Rd - A,B,C,D; 0 \le adr \le 65535$ $PC \leftarrow PC + 1$

LMR – Nepriame načítanie do registra s použitím smerníka MP

Popis: Načíta 1 byte do registra z miesta v pamäti, na ktoré ukazuje smerník MP.

Operácia: Rd ← [MP]

Syntax: Parametre: Čítač inštrukcií: LMR Rd Rd -A,B,C,D $PC \leftarrow PC + 1$

SMI – Uloženie obsahu registra do pamäte s použitím adresy

Popis: Uloží obsah registra do miesta v pamäti, ktoré je dané adresou.

Operácia: [adr] ← Rs

Syntax: Parametre: Čítač inštrukcií: SMI adr,Rs $Rs - A,B,C,D; 0 \le adr \le 65535$ $PC \leftarrow PC + 1$

SMR – Nepriame uloženie obsahu registra do pamäte s použitím smerníka MP

Popis: Uloží obsah registra do miesta v pamäti, na ktoré ukazuje smerník MP.

Operácia:

 $[MP] \leftarrow Rs$

Syntax:Parametre:Čitač inštrukcii:SMR RsRs – A,B,C,D $PC \leftarrow PC + 1$

INN – Čítanie z I/0 registra

Popis: Načíta dáta z I/O registra daného adresou do registra Rd.

Operácia:

 $Rd \leftarrow [adr]$

Syntax: Parametre: Čítač inštrukcií: INN Rd,adr Rd – A,B,C,D; $0 \le adr \le 65535$ PC \leftarrow PC + 1

OUT – Zapísanie do I/0 registra

Popis: Zapíše obsah registra Rs do I/O registra daného adresou.

 $\begin{array}{l} \textit{Operácia:} \\ [\text{adr}] \leftarrow \text{Rs} \end{array}$

Syntax:Parametre:Čítač inštrukcií:OUT adr,RsRs – A,B,C,D; $0 \le adr \le 65535$ PC \leftarrow PC + 1

PUS – Uloženie obsahu registra do zásobníka

Popis: Zapíše obsah registra Rs do zásobníka.

Operácia: [SP] ← Rs

Syntax: Parametre: Zásobník: Čítač inštrukcií: PUS Rs Rs - A, B, C, D, F $SP \leftarrow SP - 1$ $PC \leftarrow PC + 1$

Rs - M $SP \leftarrow SP - 2$

POP -Načítanie obsahu registra zo zásobníka

Popis: Načíta obsah registra Rd zo zásobníka.

Operácia: $Rd \leftarrow [SP]$

Syntax: Parametre: Zásobník: Čítač inštrukcií: POP Rd Rd -A,B,C,D,F SP \leftarrow SP + 1 PC \leftarrow PC + 1

Rd - M $SP \leftarrow SP + 2$

STR – Zápis obsahu registra do špeciálnej pamäte

Popis: Zapíše obsah registra Rs na adresu špeciálnej 256 bajtovej pamäte, ktorá je uložená

v registri Rd. *Operácia:*

 $[Rd] \leftarrow Rs$

Syntax: Parametre: Zásobník: Čítač inštrukcií: STR Rd,Rs Rd – A,B,C.D $PC \leftarrow PC + 1$

LDR – Čítanie obsahu adresy špeciálnej pamäte

Popis: Do registra Rd zapíše obsah adresy špeciálnej 256 bajtovej pamäte, ktorá je uložená v registri Rs.

Operácia: Rd ← [Rs]

Syntax: Parametre: Zásobník: Čítač inštrukcií: LDR Rd,Rs Rd – A,B,C.D $PC \leftarrow PC + 1$

4. Inštrukcie vetvenia

JMP – Bezpodmienečný skok

Popis: Vykoná skok na dané návestie v programe.

Operácia: $PC \leftarrow [nav]$

Syntax: $\check{C}ita\check{c}$ inštrukcii: JMP nav $PC \leftarrow [nav]$

JZR - Skok ak Zero = 1

Popis: Táto inštrukcia vykoná skok na dané návestie, ak je príznak Zero nastavený.

Operácia:

if Z = 1 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$

Syntax: Čítač inštrukcií:

JZR nav $PC \leftarrow [nav]$ ak Z = 1

 $PC \leftarrow PC + 1$ ak Z = 0

JNZ - Skok ak Zero = 0

Popis: Táto inštrukcia vykoná skok na dané návestie, ak je príznak Zero nulový.

Operácia:

if Z = 0 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$

Syntax: Čítač inštrukcií:

JNZ nav $PC \leftarrow [nav]$ ak Z = 0

 $PC \leftarrow PC + 1$ ak Z = 1

JCY - Skok ak Carry = 1

Popis: Táto inštrukcia vykoná skok na dané návestie, ak je príznak Carry nastavený.

Operácia:

if CY = 1 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$

Syntax: Čítač inštrukcií:

JCY nav $PC \leftarrow [nav]$ ak CY = 1

 $PC \leftarrow PC + 1$ ak CY = 0

JNC - Skok ak Carry = 0

Popis: Táto inštrukcia vykoná skok na dané návestie, ak je príznak Carry nulový.

Operácia:

if CY = 0 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$

Syntax: Čítač inštrukcií:

JNZ nav $PC \leftarrow [nav]$ ak CY = 0

 $PC \leftarrow PC + 1$ ak CY = 1

CAL – Bezpodmienečné volanie podprogramu

Popis: Volá podprogram, ktorého začiatok je daný návestím. Návratová adresa (inštrukcia po CAL) je uložená do zásobníka.

Operácia:

 $PC \leftarrow [nav]$ Zásobník:

Syntax: STACK \leftarrow PC + 1 Čítač inštrukcií: CAL nav SP \leftarrow SP - 1 PC \leftarrow [nav]

CZR – Volanie podprogramu ak Zero = 1

Popis: Táto inštrukcia zavolá podprogram daný návestím, ak je príznak Zero nastavený. Návratová adresa (inštrukcia po CZR) je uložená do zásobníka.

Operácia:

if Z = 1 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$ Syntax: Zásobník: Čítač inštrukcií: CZR nav ak Z = 1 STACK $\leftarrow PC + 1$ $PC \leftarrow [nav]$ $SP \leftarrow SP - 1$

ak Z = 0 – $PC \leftarrow PC + 1$

CNZ - Volanie podprogramu ak Zero = 0

Popis: Táto inštrukcia zavolá podprogram daný návestím, ak je príznak Zero nulový. Návratová adresa (inštrukcia po CNZ) je uložená do zásobníka.

Operácia:

if Z = 0 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$ Syntax: Zásobník: CNZ nav A ak Z = 0 A STACK $\leftarrow PC + 1$ A SP $\leftarrow SP - 1$ A ak Z = 1 A PC $\leftarrow [nav]$ A PC $\leftarrow PC + 1$

CCY – Volanie podprogramu ak Carry = 1

Popis: Táto inštrukcia zavolá podprogram daný návestím, ak je príznak Carry nastavený. Návratová adresa (inštrukcia po CCY) je uložená do zásobníka. *Operácia:*

if CY = 1 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$ Syntax: Zásobník: CCY nav AK CY = 1 AK CY = 1 AK CY = 1 AK CY = 0 AK CY = 0

CNC – Volanie podprogramu ak Carry = 0

Popis: Táto inštrukcia zavolá podprogram daný návestím, ak je príznak Carry nulový. Návratová adresa (inštrukcia po CNC) je uložená do zásobníka.

Operácia:

if CY = 0 then $PC \leftarrow [nav]$ else $PC \leftarrow PC + 1$ Syntax: Zásobník: CNC nav ARCY = 0 ARCY

RET – Návrat z podprogramu

Popis: Vykoná návrat z podprogramu. Návratová adresa je načítaná zo zásobníka. *Operácia:*

 $PC \leftarrow STACK$

Syntax: Zásobník: Čítač inštrukcií: RET SP \leftarrow SP + 1 PC \leftarrow STACK

5. ŠPECIÁLNE INŠTRUKCIE

EIT – Povolenie prerušenia

Popis: Táto inštrukcia povolí prerušenie procesora, ale až po vykonaní inštrukcie nasledujúcej po inštrukcii EIT.

Operácia:

EI \leftarrow 1

Syntax: $\check{C}ita\check{c}$ inštrukcii: EIT $PC \leftarrow PC + 1$

DIT – Zakázanie prerušenia

Popis: Táto inštrukcia zakáže prerušenie procesora.

Operácia:

 $EI \leftarrow 0$ Syntax:

Syntax: $\check{C}ita\check{c}$ inštrukcii: $PC \leftarrow PC + 1$

SCALL – Špeciálna inštrukcia pre interakciu programu s užívateľom

Popis: Táto inštrukcia umožňuje načítať do registra D klávesu stlačenú užívateľom, alebo zobraziť obsah registra D na displeji.

Operácia:

SCALL KEY: D ← klávesa
SCALL DSP: displej ← D

Syntax:Čitač inštrukcií:1. SCALL KEYPC \leftarrow PC + 12. SCALL DSPPC \leftarrow PC + 1

BYTE – Definícia konštanty v pamäti programu

Popis: Táto pseudoinštrukcia umožňuje definovať konštanty umiestnené v pamäti programu. Ich čítanie zabezpečuje inštrukcia MMR.

Syntax: Parametre: BYTE K $0 \le K \le 255$