Project Summary

Github: https://github.com/richwellp/CS547

Project Overview

Project 22: UIUC GPA

Team Members

- Yiping Li yipingl4@illinois.edu
- Leo Yang junjiey3@illinois.edu
- Shijie Sun shijies5@illinois.edu
- Richwell Perez richwell@illinois.edu

Problem Summary

The purpose of this project is to implement deep learning concepts and techniques on a real dataset: UIUC GPA. The general questions that will require the application of deep learning is predicting the GPA/grade distribution of UIUC courses in the future. The project will provide some visualization of the data and descriptive statistics, implement linear or logistic regression, and recurrent neural networks.

License

Dataset is obtained from Professor Ulmschneider's uiuc-gpa-dataset. Project curated by Jared Canty (Summer 2022 Blackwell Program). All rights are reserved.

Milestone 1

Linear Regression

Features:

Term (one-hot)

Year

Student population per section

Subject/Department name (one-hot)

Course Number

Label:

Average GPA of each section of each class

R2 Score: 0.3108353231079505

Mean Squared Error: 0.11274402725443079

Deep Learning Model

Features:

Term (one-hot)

Year

Student population per section

Subject/Department name (one-hot)

Course Number

Course Title (one-hot)

Primary Instructor (one-hot)

Label:

Average GPA of each section of each class

```
model summary:
Model: "sequential"
Layer (type)
                       Output Shape
                                            Param #
dense (Dense)
                       (None, 256)
                                            3741184
dense 1 (Dense)
                       (None, 256)
                                            65792
dense 2 (Dense)
                       (None, 1)
Total params: 3,807,233
Trainable params: 3,807,233
Non-trainable params: 0
```

Hyperparameters

- * Train-valid-test split ratio: 0.7: 0.15: 0.15
- * Optimizer: Adam
- * Initial learning rate: 0.001
- * Activation function: ReLu
- * Loss Function: Mean squared error (MSE)
- * Epochs: 50
- * Batch size: 64

richwell

Different Optimizers

SGD

```
Testing set:
141/141 [============= ] - 1s 5ms/step - loss: 0.1560 - r_square: -1.1253e-04
1/1 [======] - 0s 60ms/step
First five testing data points:
labels: [3.90939394 3.01621359 3.73956522 3.82
                                              2.92307692]
predictions: [[3.3574088]
[3.3574088]
[3.3574088]
 [3.3574088]
 [3.3574088]]
model summary:
Model: "sequential"
                        Output Shape
 Layer (type)
                                               Param #
                        (None, 256)
 dense (Dense)
                                               3026176
 dense 1 (Dense)
                        (None, 256)
                                               65792
 dense 2 (Dense)
                        (None, 2)
                                               514
 dense_3 (Dense)
                        (None, 1)
                                               3
______
Total params: 3,092,485
Trainable params: 3,092,485
Non-trainable params: 0
```

Adagrad

```
Testing set:
141/141 [========== ] - 1s 5ms/step - loss: 0.0953 - r square: 0.3877
1/1 [======] - 0s 91ms/step
First five testing data points:
labels: [2.89134146 3.4725
                                3.7608
                                        3.42282051]
predictions: [[3.0486987]
[3.5815594]
[3.3927758]
[3.57574 ]
 [3.3431113]]
model summary:
Model: "sequential_1"
                      Output Shape
Layer (type)
                                         Param #
______
dense 4 (Dense)
                      (None, 256)
                                         3005440
dense 5 (Dense)
                      (None, 256)
                                         65792
dense 6 (Dense)
                      (None, 1)
                                         257
______
Total params: 3,071,489
Trainable params: 3,071,489
```

Non-trainable params: 0

Nadam

```
Testing set:
First five testing data points:
labels: [2.89134146 3.4725
                     3.6
                            3.7608
                                    3.42282051]
predictions: [[2.9482253]
[3.620613
[3.507869]
[3.6148648]
[3.5587149]]
model summary:
Model: "sequential 2"
Layer (type)
                   Output Shape
                                     Param #
dense 7 (Dense)
                   (None, 256)
                                     3005440
dense 8 (Dense)
                   (None, 256)
                                     65792
dense_9 (Dense)
                   (None, 1)
                                     257
______
Total params: 3,071,489
Trainable params: 3,071,489
Non-trainable params: 0
```

RMSProp

```
Testing set:
141/141 [============ ] - 1s 4ms/step - loss: 0.0790 - r_square: 0.4926
First five testing data points:
labels: [2.89134146 3.4725
                            3.6
                                     3.7608
                                               3.42282051]
predictions: [[3.0347123]
 [3.6743803]
 [3.4486861]
 [3.66894
 [3.3406034]]
model summary:
Model: "sequential 3"
 Layer (type)
                         Output Shape
                                                Param #
 dense 10 (Dense)
                         (None, 256)
                                                3005440
 dense_11 (Dense)
                         (None, 256)
                                                65792
 dense 12 (Dense)
                         (None, 1)
                                                257
Total params: 3,071,489
Trainable params: 3,071,489
Non-trainable params: 0
```

Results and Feature Importance

```
\alpha(F) = R \text{ squared}(F) \approx 0.66
> \alpha(F \setminus {'Term'}) \approx 0.66
> \alpha(F \setminus {'Year'}) \approx 0.65
> \alpha(F \setminus {\text{'Student Population'}}) \approx 0.65
> \alpha(F \setminus {'Subject'}) \approx 0.65
> \alpha(F \setminus {\text{'Course Number'}}) \approx 0.65
> \alpha(F \setminus {Course Title'}) \approx 0.59
> \alpha(F \setminus {'Primary Instructor'}) \approx 0.57
```