Введение

Проблема ускорения сходимости бесконечных кратных рядов и интегралов с помощью методов экстраполяции в последнее время вызывает значительный интерес. Первая работа по ускорению сходимости кратных рядов была опубликована Чизхолмом [1]. В этой работе Чизхолм определил диагональные аппроксиманты Паде для двойных рядов вида f(x,y) =

$$\sum\nolimits_{i=0}^{\infty}\sum\nolimits_{j=0}^{\infty}c_{ij}x^{i}y^{j}.$$
 Рассматриваемые в [1] «диагональные»

аппроксиманты имеют вид
$$[n \ / \ n]_f(x,y) = \sum_{i=0}^n \sum_{j=0}^n u_{ij} x^i y^j \ /$$

$$\sum\nolimits_{i=0}^{n}\sum\nolimits_{j=0}^{n}v_{ij}x^{i}y^{j}.$$
 Недиагональные аппроксиманты $[m\,/\,n]_{f}(x,y)$ были

позднее определены Грейвсом-Моррисом, Хьюзом Джонсом и Мейкинсоном. Диагональные аппроксиманты из [1] были обобщены на степенные ряды от N переменных Чизхолмом и Макьюэном, а недиагональные аппроксиманты из были обобщены на N переменных Хьюзом Джонсом. Аппроксиманты Паде общего порядка для кратных степенных рядов были определены Левиным [2] и далее развиты Кайтом.

Общее обсуждение ускорения сходимости бесконечных двойных рядов и интегралов было представлено в работе Левина [3]. Статья Грайфа и Левина [4] объединяет общую идею из [3] с подходом, основанным на D-преобразовании для одномерных бесконечных интегралов и d-преобразовании для одномерных бесконечных рядов, предложенных Левиным и Сиди. Ранее, Сиди уже предложил подход, в котором d-преобразование используется последовательно для суммирования кратных рядов. Тот же подход может быть применен для вычисления кратных интегралов с бесконечными пределами.

Рассмотрим некоторые детали подхода, основанного на асимптотических разложениях и обобщенном процессе экстраполяции Ричардсона, которые приводят к D- и d-преобразованиям

$D^{(m)}$ -трансформация для одномерных бесконечных интегралов

Обсудим D-преобразование для интегралов с бесконечными пределами. Начнем с определения двух классов функций, которые мы обозначаем $A^{(\gamma)}$ и $B^{(m)}$.

Определение [5]: функция $\alpha(x)$ принадлежит множеству $A^{(y)}$, если она бесконечно дифференцируема для всех $x \ge ax \ge a$ и имеет асимптотическое разложение типа Пуанкаре вида:

$$\alpha(x) \sim \sum_{i=0}^{\infty} \alpha_i x^{\gamma-i}, \qquad x \to \infty,$$
 (1)

а её производные имеют асимптотические разложения, полученные формальным почленным дифференцированием разложения (1).

Если, кроме того, $\alpha_0 \neq 0$ в (1), то говорят, что $\alpha(x)$ строго принадлежит $A^{(\gamma)}$. Здесь γ в общем случае комплексное.

Определение [5]: функция f(x), бесконечно дифференцируемая на (a, ∞) , принадлежит множеству $B^{(m)}$, если она удовлетворяет линейному однородному обыкновенному дифференциальному уравнению (ОДУ) порядка m:

$$f(x) = \sum_{k=1}^{m} p_k(x) f^{(k)}(x), \qquad (2)$$

где $p_k \in A^{(k)}$, k = 1, ..., m.

Следующая теорема, приведенная в [6], является основой для D-преобразования.

Теорема: пусть f(x) — функция из $B^{(m)}$, интегрируемая на бесконечности. Предположим также, что:

$$\lim_{x \to \infty} p_k^{(j-1)}(x) f^{(k-j)}(x) = 0, \qquad k = j, j+1, ..., m, \qquad j = 1, 2, ..., m.$$
 (3)

и что

$$\sum_{k=1}^{m} l(l-1) \dots (l-k+1) \bar{p}_k \neq 1, l = \pm 1, 2, 3, \dots,$$
(4)

где

$$\bar{p}_k = \lim_{x \to \infty} x^{-k} p_k(x), \qquad k = 1, \dots, m.$$
 (5)

Определим:

$$I|f| = \int_{a}^{\infty} f(t) dt, \qquad F(x) = \int_{a}^{x} f(t) dt. \tag{6}$$

Тогда:

$$F(x) = I|f| + \sum_{k=0}^{m-1} x^{\rho_k} f^{(k)}(x) g_k(x), \qquad (7)$$

где $\rho_k \le k+1$ – целые числа, а $g_k \in A^{(k)}$, $k=0,1,\dots,m-1$.

Если, кроме того, $p_k \in A^{(i_k)}$ строго для некоторых чисел $i_k \leq k, k = 1, ..., m$, то:

$$\rho_k \le \overline{\rho_k} \equiv \max(i_{k+1}, i_{k+2} - 1, \dots, i_m - m + k + 1) \le k + 1,$$

$$k = 0, 1, \dots, m - 1.$$
(8)

Равенство в (8) достигается, когда целые числа, среди которых берется максимум, различны.

Наконец, поскольку $g_k(x) \in A^{(0)}$, они имеют асимптотическое разложение вида:

$$g_k(x) \sim \sum_{i=0}^{\infty} g_{ki} x^{-i} \text{ при } x \to \infty.$$
 (9)

Важно:

- 1) если $\rho_k \in A^{(i_k)}$ с $i_k < k$, то $\overline{\rho_k} = 0$, и условие невырожденности выполняется автоматически;
- 2) всегда $\rho_{m-1} = i_m$;
- 3) для m=1 выполняется точное равенство $\rho_0=i_1$;
- 4) в большинстве примеров равенство $\rho_k = \overline{\rho_k}$ выполняется для всех k;
- 5) параметры ρ_k и функции $g_k(x)$ зависят только от $p_k(x)$ в ОДУ и одинаковы для всех решений f(x), удовлетворяющих условиям теоремы.

Аналогия с GREP [5]:

- 1) $F(x) \leftrightarrow A(y)$;
- $2) \ x^{-1} \longleftrightarrow y;$
- 3) $x^{\rho_{k-1}} f^{(k-1)}(x) \leftrightarrow \phi_k(y)$;
- 4) $r_k = 1 \ \forall k;$

5)
$$I|f| \leftrightarrow A$$
.

Определение [5]: выберем возрастающую последовательность $\{x_l\} \subset (a, \infty)$, стремящуюся к бесконечности. Пусть $n = (n_1, ..., n_m)$ – вектор неотрицательных целых чисел. Тогда приближение $D_n^{(m,j)}$ к I|f| определяется системой уравнений:

$$F(x_l) = D_n^{(m,j)} + \sum_{k=1}^m x_l^k f^{(k-1)}(x_l) \sum_{i=0}^{n_k-1} \frac{\overline{\beta k_i}}{x_l^i}, \quad j \le l \le j+N,$$

$$N = \sum_{k=1}^{m} n_k. \tag{10}$$

Здесь β_{ki} представляют собой дополнительные (N) вспомогательные неизвестные. В формуле (10) принято, что $\sum_{i=0}^{-1} c_i \equiv 0$, поэтому $D_{(0,\dots,0)}^{(mj)} = F(x_j) \ \forall j$. Этот обобщённый процесс экстраполяции Ричардсона (GREP), генерирующий $D_n^{(mj)}$, мы будем называть $D^{(m)}$ -преобразованием или просто D-преобразованием.

Данное определение D-преобразования было дано в [25] и отличается от оригинального определения из [13] тем, что мы заменили ρ_k их известными верхними границами k+1. Поскольку это не требует знания точных значений ρ_k , метод становится более удобным для пользователя. Однако если нам известны точные значения $\overline{\rho_k}$ или их верхние границы, следует использовать их и заменить $x_l^k f^{(k-1)}(x_l)$ в (10) на $x_l^{\overline{\rho_{k-1}}} f^{(k-1)}(x_l)$, так как это снижает вычислительные затраты при заданном уровне точности. В некоторых важных случаях, связанных с интегральными преобразованиями, значения $\overline{\rho_k}$ могут быть легко определены.

Для применения $D^{(m)}$ -преобразования необходимо определить значение m. Это можно сделать одним из двух способов:

- 1) методом проб и ошибок начать тест с m=1, и увеличивать m до достижения удовлетворительного ускорения сходимости;
- 2) математической оценкой использовать эмпирические правила: если $u \in B^{(r)}$, $v \in B^{(s)}$, то:
 - a) $uv \in B^{(m)}, m \le rs;$
 - b) $u + v \in B^{(m)}, m \le r + s$.

Если f(x) и/или некоторые её производные бесконечное число раз обращаются в ноль на бесконечности, можно соответствующим образом выбрать точки x_l , чтобы исключить некоторые члены $x^{\rho_k}f^{(k)}(x)g_k(x)$ из (7). Это сокращает вычислительные затраты и повышает численную устойчивость. Данный подход был предложен в работах Сиди. Полученные методы обозначаются как \overline{D} -преобразования. Альтернативный подход - mW-преобразование является одним из наиболее эффективных методов для вычисления осциллирующих бесконечных интегралов.

 $d^{(m)}$ -преобразование для одномерных бесконечных рядов

Рассмотрим $d^{(m)}$ -преобразование, предложенное в работе [6], для ускорения сходимости бесконечных рядов. Начнём с определения класса функций $A_0^{(\gamma)}$.

Определение [5]: функция $\alpha(x)$, определённая для всех $x \ge a$ при котором $a \ge 0$, принадлежит множеству $A_0^{(\gamma)}$, если она имеет асимптотическое разложение Пуанкаре вида:

$$\alpha(x) \sim \sum_{i=0}^{\infty} \alpha_i x^{\gamma-i}, \qquad x \to \infty.$$
 (11)

Если, кроме того, $\alpha_0 \neq 0$ в (11), то говорят, что $\alpha(x)$ строго принадлежит $A_0^{(\gamma)}$. Здесь γ может быть комплексным.

Отметим также, что от функций $A_0^{(\gamma)}$ не требуется дифференцируемости, поэтому $A_0^{(\gamma)} \supset A^{(\gamma)}$.

Определим семейство последовательностей $b^{(m)}$, которое является аналогом $B^{(m)}$.

Определение [5]: Последовательность $\{a_n\}$ принадлежит множеству $b^{(m)}$, если она удовлетворяет линейному однородному разностному уравнению порядка m вида:

$$a_n = \sum_{k=1}^m p_k(n) \Delta^k a_n, \qquad (12)$$

где
$$p_k \in A_0^{(k)}$$
, $k=1,\ldots,m$. Здесь $\Delta^0 a_n=a_n$, $\Delta^1 a_n=\Delta a_n=a_{n+1}-a_n$, и $\Delta^k a_n=\Delta(\Delta^{k-1}a_n)$, $k=2,3,\ldots$

Следующая теорема, приведённая в [6], является дискретным аналогом теоремы (3).

Пусть последовательность $\{a_n\}$ принадлежит $b^{(m)}$, и пусть ряд $\sum_{k=1}^{\infty} a_k$ сходится. Предположим также, что:

$$\lim_{n \to \infty} \left(\Delta^{j-1} p_k(n) \right) \left(\Delta^{k-j} a_n \right) = 0, \qquad k = j, j+1, \dots, m, \qquad j = 1, 2, \dots, m, \quad (13)$$

и что:

$$\sum_{k=1}^{m} l(l-1) \dots (l-k+1) \bar{p}_k \neq 1, \qquad l = \pm 1, 2, 3, \dots,$$
 (14)

где

$$\bar{p}_k = \lim_{n \to \infty} n^{-k} p_k(n), \qquad k = 1, ..., m.$$
 (15)

Определим:

$$S({a_k}) = \sum_{k=1}^{\infty} a_k, \qquad A_n = \sum_{k=1}^{n} a_k, \qquad n = 1, 2, \dots$$
 (16)

Тогда:

$$A_{n-1} = S(\{a_k\}) + \sum_{k=0}^{m-1} n^{\rho_k} (\Delta^k a_n) g_k(n), \qquad (17)$$

где $\rho_k \leq k+1$ – целые числа, а функции $g_k \in A_0^{(0)}$, $k=0,1,\dots,m-1$. Более того, если $\rho_k \in A_0^{(i_k)}$ строго для некоторых целых $i_k \leq k, k=1,\dots,m$, то:

$$\rho_k \le \overline{\rho_k} \equiv \max(i_{k+1}, i_{k+2} - 1, \dots, i_m - m + k + 1) \le k + 1,$$

$$k = 0, 1, \dots, m - 1.$$
(18)

Равенство в (18) достигается, когда целые числа, среди которых берется максимум, различны.

Наконец, поскольку $g_k(n) \in A_0^{(0)}$, они имеют асимптотическое разложение вида:

$$g_k(n) \sim \sum_{i=0}^{\infty} g_{ki} n^{-i}$$
 при $n \to \infty$. (19)

Важно:

- 1) из (15) следует, что если $\overline{p_k} \neq 0$, тогда и только тогда, когда $p_k \in A_0^{(k)}$ строго; таким образом, если $p_k \in A_0^{(i_k)}$ при $i_k < k$, то $\overline{p_k} = 0$, это означает, что при $i_k < k$ для всех k = 1, ..., m условие (14) выполняется автоматически;
- 2) из (18) следует, что $\rho_{m-1} = i_m$ всегда;

- 3) аналогично, для m=1 имеем $\rho_0=i_1$ точно;
- 4) для многих примеров, которые мы рассматривали, равенство в (18) выполняется для всех k = 1, ..., m;
- 5) целые числа ρ_k и функции $g_k(n)$ в (17) зависят только от $p_k(n)$ в разностном уравнении (12); таким образом, они одинаковы для всех решений a_n , уравнения (12), удовлетворяющих (13), для которых ряд $\sum_{k=1}^{\infty} a_k$ сходится;
- 6) из (13) и (18) также следует, что $\lim_{n \to \infty} n^{\overline{p_k}} \Delta^k a_n = 0$, $k = 0, 1, \dots, m-1$.

Аналогия с GREP [5]:

- 1) $A_{n-1} \leftrightarrow A(y)$;
- $2) n^{-1} \longleftrightarrow y;$
- 3) $n^{\rho_{k-1}} \Delta^{k-1} a_n \longleftrightarrow \phi_k(y);$
- 4) $r_k = 1 \ \forall k, k = 1, ..., m;$
- 5) $S(\{a_k\}) \leftrightarrow A$.

Проводя аналогию, видим, что A(y) принадлежит $F^{(m)}$. Переменная y здесь дискретна и принимает значения 1,1/2,1/3,...

Исследования [5] показывают, что требование $\{a_k\} \in b^{(m)}$ является наиболее важным среди условий теоремы (13). Остальные условия, а именно (13)-(15) обычно выполняются автоматически. Поэтому для проверки принадлежности $A(y) \equiv A_{n-1}$ (где $y = n^{-1}$) множеству $F^{(m)}$ достаточно убедиться, что $\{a_k\} \in b^{(m)}$.

Хотя теорема (13) сформулирована для последовательностей $\{a_n\} \in b^{(m)}$, для которых ряд $\sum_{k=1}^{\infty} a_k$ сходится, соотношение (17)-(19) может выполняться и для расходящихся рядов, если их антипредел $S(\{a_k\})$ определён в некотором смысле суммируемости.

Заменив каждое ρ_k в (17) его верхней оценкой k+1, добавив a_n к обеим частям (17) и применив формулировку определения GREP, мы можем определить d-преобразование.

Определение [5]: выберем последовательность целых чисел $\{R_l\}_{l=0}^{\infty}$, где $1 \leq R_0 < R_1 < R_2 < \cdots$. Пусть $n \equiv (n_1, \dots, n_m)$ — неотрицательные целые числа. Тогда приближение $d_n^{(m,j)}$ к $S(\{a_k\})$ определяется системой линейных уравнений:

$$A_{R_{l}} = d_{n}^{(m,j)} + \sum_{k=1}^{m} R_{l}^{k} (\Delta^{k-1} a_{R_{l}}) \sum_{i=0}^{n_{k}-1} \frac{\overline{\beta k_{l}}}{R_{l}^{i}}, \quad j \leq l \leq j+N,$$

$$N = \sum_{k=1}^{m} n_k. \tag{20}$$

Здесь $\overline{\beta k_i}$ представляют собой дополнительные неизвестные. В формуле (20) принято, что $\sum_{i=0}^{-1} c_i \equiv 0$, поэтому $d_{[0,\dots,0]}^{(mj)} = A_j \ \forall j$. Этот процесс обобщённой экстраполяции Ричардсона (GREP), генерирующий $d_n^{(m,j)}$, называется $d^{(m)}$ -преобразованием или просто d-преобразованием (для краткости).

Это определение d-преобразования было дано в [8] и отличается от исходного определения в [13] заменой ρ_k на их верхние оценки k+1. Такой подход более удобен для пользователя, поскольку не требует знания точных значений ρ_k . Если же эти значения известны, их следует использовать для повышения точностей вычислений.

Для применения $d^{(m)}$ -преобразования необходимо определить значение m. Это можно сделать одним из двух способов:

- 1) методом проб и ошибок начать тест с m=1, и увеличивать m до достижения удовлетворительного ускорения сходимости;
- 2) математической оценкой использовать эмпирические правила: если $\{u_n\} \in b^{(r)}$, $\{v_n\} \in b^{(s)}$, то:
 - a) $\{u_n v_n\} \in b^{(m)}, m \le rs;$
 - b) $\{u_n + v_n\} \in b^{(m)}, m \le r + s$.

Последовательные преобразования для многомерных интегралов и рядов

Вычисление многомерных интегралов и рядов может быть выполнено с помощью последовательного применения *D*- и *d*-преобразований при определённых условиях. Такой подход был впервые предложен в работе [15] для двойных бесконечных рядов, где он также был теоретически обоснован и проиллюстрирован на примерах. Кратко опишем данный метод.

Чтобы упростить изложение для дальнейшего использования, введём некоторые обозначения:

$$y = (y_1, ..., y_s), \qquad 0 = (0, ..., 0), \qquad 1 = (1, ..., 1),$$

$$u \ge v \iff u_j \ge v_j, \qquad j = 1, ..., s,$$

$$\mathbb{Z}_0^s = \{t | t \ge 0\}, \qquad \mathbb{R}_x^s = \{t | t \ge x\},$$

$$\mathbb{Z}^s = \{i = (i_1, ..., i_s)\}, \qquad i_j \in \mathbb{Z}, \qquad \mathbb{Z}_0^s = \{i \in \mathbb{Z}^s | i \ge 0\},$$

$$\mathbb{Z}_r^s = \{i \in \mathbb{Z}_0^s | i \ge r\}, \qquad \mathbb{Z}_+^s = \mathbb{Z}_1^s.$$

Последовательное D-преобразование для s-мерных интегралов. Рассмотрим s-мерный интеграл $I[f] = \int_{\mathbb{R}^{s}_{0}} f(t) \, dt$, где $t = (t_{1}, ..., t_{s})$ и обозначено $dt = \Pi^{s}_{j=1} \, dt_{j}$, и определим:

$$\begin{split} H_1(t_1,\dots,t_s) &= f(t) = f(t_1,\dots,t_s), \\ H_{k+1}(t_{k+1},\dots,t_s) &= \int_0^\infty H_k(t_k,\dots,t_s) \, dt_k, \qquad k=1,\dots,s-1. \end{split}$$

Тогда $I[f] \int_0^\infty H_s(t_s) \, dt_s$. Предположим теперь, что для каждого k и фиксированных t_{k+1}, \ldots, t_s функция $H_k(t_k, \ldots, t_s)$ как функция t_k принадлежит классу $B^{(m_k)}$ для некоторого целого m_k . (Это предположение, по-видимому, выполняется, когда f(t) как функция переменной t_k — при фиксированных остальных переменных — принадлежит классу $B^{(m_k)}$.) Это означает, что мы можем вычислить $H_{k+1}(t_{k+1}, \ldots, t_s)$, применяя $D^{(m_k)}$ -преобразование к интегралу $\int_0^\infty H_k(t_k, \ldots, t_s) \, dt_k$. Таким образом, вычисление I[f] завершается применением $D^{(m_s)}$ -преобразования к интегралу $\int_0^\infty H_s(t_s) \, dt_s$.

Очень легко увидеть, что это предположение автоматически выполняется, когда $f(x) = \prod_{j=1}^s f_j(x_j)$, где $f_j \in B^{(m_j)}$ для некоторых целых

чисел m_j . Это служит мотивацией для последовательного применения D-преобразования.

В качестве примера рассмотрим функцию $f(x,y)=e^{-ax}u(y)$ / (x+g(y)), где a — константа с $\Re a>0$, $u(y)\in B^{(q)}$, $g(y)\in A^{(r)}$ для некоторого положительного целого r, причем g(y)>0 для всех достаточно больших y. (Например, q=2 для $u(y)=\cos by$ или $u(y)=J_v(by)$.) Вопервых, f(x,y) принадлежит $B^{(1)}$ как функция x (при фиксированном y) и $B^{(q)}$ как функция y (при фиксированном x). Используя соотношение $1/c=\int_0^\infty e^{-c\xi}\,d\xi$ для $\Re c>0$, можно показать, что:

$$H_2(y) = \int_0^\infty f(x, y) dx = u(y) \int_0^\infty \frac{e^{-\xi g(y)}}{(a + \xi)} d\xi.$$

Применяя лемму Ватсона (см. [14]) к этому интегралу, получаем, что $H_2(y)$ имеет асимптотическое разложение вида:

$$H_2(y) \sim u(y) \sum_{i=0}^{\infty} \alpha_i [g(y)]^{-i-1} \sim u(y) \sum_{i=0}^{\infty} \delta_i y^{-i-r}, \quad y \to \infty.$$

Это означает, что $H_2(y) \in B^{(q)}$.

Последовательное d-преобразование для s-мерных рядов. Последовательное применение d-преобразования для вычисления s-мерных бесконечных рядов аналогично использованию D-преобразования для s-мерных интегралов. Рассмотрим s-мерный бесконечный ряд $S(\{a_i\}) = \Sigma_{i \in \mathbb{Z}_+^s} a_i$ и определим:

$$L_1(i_1, \dots, i_s) = a_i = a_{i_1, \dots, i_1},$$

$$L_{k+1}(i_{k+1}, \dots, i_s) = \sum_{i_k=1}^{\infty} L_k(i_k, \dots, i_s), \qquad k = 1, \dots, s-1.$$

Таким образом, $S(\{a_i\}) = \sum_{i_s=1}^{\infty} L_s(i_s)$. Предположим, что для каждого k и фиксированных i_{k+1}, \dots, i_s , применяя последовательность $\{L_k(i_k, \dots, i_s)\}_{i_{k=1}}^{\infty}$ принадлежит классу $b^{(m_k)}$ для некоторого целого m_k . (Это предположение, по-видимому, выполняется, когда $\{a_i\}_{i_{k=1}}^{\infty} \in b^{(m_k)}$ для каждого k и фиксированных i_{k+1}, \dots, i_s .

Следовательно, мы можем вычислить $L_{k+1}(i_{k+1},...,i_s)$, применяя $d^{(m_k)}$ -преобразование к ряду $\sum_{i_k=1}^{\infty} L_k(i_k,...,i_s)$, а вычисление $S(\{a_i\})$ завершается применением $d^{(m_s)}$ -преобразования к ряду $\sum_{i_s=1}^{\infty} L_s(i_s)$.

Мотивация для этого подхода к суммированию s-мерных рядов заключается в том, что данное предположение автоматически выполняется, когда $a_i = \Pi_{j=1}^s a_{i_j}^{(j)}$, где $\left\{a_{i_j}^{(j)}\right\}_{j=1}^\infty \in b^{(m_j)}$ для некоторых целых чисел m_j .

Рассмотрим пример двойного ряда $\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} a_{j,k}$, где $a_{j,k} = x^j u_k$ /

 $(j+g(k)), |x|<1, \{uk\}\in b^{(q)}, g(k)\in A_0^{(r)}$ для некоторого положительного целого r, и g(k)>0 для всех достаточно больших k. (Например, q=2 для $u_k=\cos k\theta$ или $n_k=P_k(y)$ - k-го многочлена Лежандра.) Вопервых, $\{a_{j,k}\}_{j=1}^{\infty}\in b^{(1)}$ при фиксированном k, а $\{a_{j,k}\}_{k=1}^{\infty}\in b^{(q)}$ при фиксированном j. Используя соотношение $1/c=\int_0^\infty e^{-c\xi}\,d\xi$ для $\Re c>0$, можно показать, что:

$$L_2(k) = \sum_{j=1}^{\infty} a_{j,k} = x u_k \int_0^{\infty} \frac{e^{-\xi g(y)}}{(a+\xi)} d\xi.$$

Применяя лемму Ватсона к этому интегралу, можно увидеть, что $L_2(k)$ имеет асимптотическое разложение:

$$L_2(k) \sim u_k \sum_{i=0}^{\infty} \alpha_i [g(k)]^{-i-1} \sim u_k \sum_{i=0}^{\infty} \delta_i k^{-i-r}, \qquad k \to \infty.$$

Это означает, что $\{L_2(k)\} \in b^{(q)}$.

Факториальное d^(m)-преобразование

Путем перезаписи асимптотических разложений функций $g_k(n)$ из (19) в других формах, мы получаем другие варианты d-преобразования [11]. Например, произвольный асимптотический ряд $\sum_{i=0}^{\infty} \frac{\gamma_k}{n^i}$ при $n \to \infty$ можно также представить в виде $\sum_{i=0}^{\infty} \frac{\hat{\gamma}_i}{(n)_i}$ при $n \to \infty$, где $(n)_0 = 1$ и $(n)_i =$

 $\prod_{k=0}^{i-1}(n+s),\ i\geq 1.$ Здесь $\hat{\gamma}_i=\gamma_i$ для $0\leq i\leq 2,$ $\hat{\gamma}_3=\gamma_2+\gamma_3,$ и так далее. Для каждого i коэффициент $\hat{\gamma}_i$ однозначно определяется значениями $\gamma_0,\gamma_1,\ldots,\gamma_i.$

Если теперь переписать асимптотические

разложения $\sum_{i=0}^{\infty} \frac{g_{ki}}{(n)_i}$ при $n \to \infty$ в форме $\sum_{i=0}^{\infty} \frac{\hat{g}_{ki}}{(n)_i}$ при $n \to \infty n \to \infty$ и продолжить аналогичным образом, можно определить факториальное $d^{(m)}$ -преобразование для бесконечных рядов с помощью линейных уравнений:

$$A_{R_{l}} = d_{n}^{(m,j)} + + \sum_{k=1}^{m} R_{l}^{k} (\Delta^{k-1} a_{R_{l}}) \sum_{i=0}^{n_{k}-1} \frac{\overline{\beta k_{l}}}{(R_{l} + \alpha)_{i}}, \quad j \leq l \leq j + N,$$

$$N = \sum_{k=1}^{m} n_{k}. \quad (21)$$

и для бесконечных последовательностей с помощью линейных уравнений:

$$A_{R_{l}} = d_{n}^{(m,j)} + \sum_{k=1}^{m} \left[R_{l}^{k} (\Delta^{k} A_{R_{l}-1}) \sum_{i=0}^{n_{k}-1} \frac{\overline{\beta_{ki}}}{(R_{l} + \beta)_{i}} \right], j \leq l \leq j + N;$$

$$N = \sum_{k=1}^{m} n_{k}.$$
(22)

Частные случаи d⁽¹⁾-трансформации

 $d^{(l)}$ -трансформация [11]. Заменим R_i^k в (21) на $R_l^{p_k}$ и для упрощения положим $\alpha=0$. При m=1 эти уравнения принимают вид:

$$A_{R_l} = d_n^{(1,j)} + \omega_{R_l} \sum_{i=0}^{n-1} \frac{\overline{\beta_i}}{R_l^i}, \qquad j \le l \le j+n; \ \omega_r = r^{\rho} a_r, \tag{23}$$

где n — натуральное число, а ρ обозначает ρ_1 . Эти уравнения можно решить относительно $d_n^{(1,j)}$ (для произвольных R_l) очень просто и эффективно с помощью W-алгоритма из [12] следующим образом:

$$\begin{split} M_0^{(j)} &= \frac{A_{R_j}}{\omega_{R_j}}, \qquad N_0^{(j)} = \frac{1}{\omega_{R_j}}, \qquad j \geq 0, \qquad \omega_r = r^\rho a_r, \\ M_n^{(j)} &= \frac{M_{n-1}^{(j+1)} - M_{n-1}^{(j)}}{R_{j+n}^{-1} - R_j^{-1}}, \qquad N_n^{(j)} = \frac{N_{n-1}^{(j+1)} - N_{n-1}^{(j)}}{R_{j+n}^{-1} - R_j^{-1}}, \qquad j \geq 0, \qquad n \geq 1. \\ d_n^{(1,j)} &= \frac{M_n^{(j)}}{N_n^{(j)}}, \qquad j, n \geq 0. \end{split}$$

Два важных метода экстраполяции - \mathcal{L} —преобразование Левина и \mathcal{S} преобразование Сиди. Эти методы являются нелинейными и предназначены
для ускорения сходимости последовательностей, которые могут быть
представлены в виде асимптотических рядов. Они особенно полезны для
последовательностей, которые сходятся медленно или расходятся.

 \mathcal{L} – *трансформация Левина*. Это преобразование основано на идее устранения главных членов асимптотического разложения последовательности, чтобы улучшить точность оценки её предела. Если выбрать $R_l = l + 1$ в (21), то получим [11]:

$$A_r = d_n^{(1,j)} + \omega_r \sum_{j=0}^{n-1} \frac{\bar{\beta}_j}{r^i}, \quad J \le r \le J+n, \quad \omega_r = r^{\rho} a_r, \quad J = j+1.$$
 (24)

Полученное $d^{(l)}$ -преобразование совпадает с известными t- и u- преобразованиями Левина, где ρ =0 и ρ =1 соответственно. Обозначим $d_n^{(1,j)}$ в (24) как $\mathcal{L}_n^{(j)}$. Тогда $\mathcal{L}_n^{(j)}$ имеет следующий явный вид, приведённый в [10]:

$$\mathcal{L}_{n}^{(j)} = \frac{\Delta^{n} \left(J^{n-1} \frac{A_{J}}{\omega_{J}} \right)}{\Delta^{n} \left(J^{n-1} \frac{1}{\omega_{J}} \right)} = \frac{\sum_{i=0}^{n} \frac{(-1)^{i} \binom{n}{i} (J+i)^{n-1} A_{J+i}}{\omega_{J+i}}}{\sum_{i=0}^{n} \frac{(-1)^{i} \binom{n}{i} (J+i)^{n-1}}{\omega_{J+i}}}; \quad J = j+1. \quad (25)$$

Сравнительное исследование Смита и Форда [14], [15] показало, что преобразования Левина исключительно эффективны для суммирования широкого класса бесконечных рядов $\sum_{k=1}^{\infty} a_k$, где $\{a_n\}_{n=1}^{\infty} \in b^{(1)}$.

Левин рассмотрел три различных варианта выбора ω_m и определил три различных преобразования последовательностей:

- 1) $\omega_m = a_m$ (*t*-преобразование);
- 2) $\omega_m = ma_m$ (*u*-преобразование);
- 3) $\omega_m = a_m a_{m+1}/(a_{m+1} a_m)$ (*v*-преобразование).

Левин в своей статье [10], а также Смит и Форд в [14] и [15] (где они представили исчерпывающее сравнительное исследование методов ускорения) пришли к выводу, что u- и v-преобразования эффективны для всех трёх типов последовательностей, тогда как t-преобразование эффективно только для линейных и факториальных последовательностей. [На самом деле, все три преобразования являются наилучшими методами ускорения сходимости для знакопеременных рядов $\Sigma_{k=1}^{\infty}(-1)^k|a\mathbb{Z}|$ с $\{a\mathbb{Z}\}\in b^{(1)}$.]

Алгебраические свойства [11]:

1) Если положить $\omega_m = ma_m$ (*u*-преобразование) в (25), то можно заметить, что:

$$\mathcal{L}_{n}^{(j)} = \frac{\Delta^{n} \left(J^{n-2} \frac{A_{J}}{\omega_{J}} \right)}{\Delta^{n} \left(J^{n-2} \frac{1}{\omega_{J}} \right)} = \frac{\Delta^{n} \left(J^{n-2} \frac{A_{J}}{\Delta A_{J}} \right)}{\Delta^{n} \left(J^{n-2} \frac{1}{\Delta A_{J}} \right)}; \qquad J = j+1, \tag{26}$$

где второе равенство выполняется при $n \geq 2$. Из (26) видно, что $\mathcal{L}_2^{(j)} = W_j(\{A_s\})$, где $\{W_j(\{A_s\})\}$ — последовательность, полученная с помощью преобразования Лубкина.

2) Следующая теорема касается ядра u-преобразования, а также, как частный случай, ядра преобразования Лубкина.

Теорема: пусть $\mathcal{L}_n^{(j)}$ получено с помощью u-преобразования на последовательности $\{A_m\}$. Тогда $\mathcal{L}_n^{(j)}=A$ для всех j=0,1,..., и фиксированного n, если и только если A_m имеет вид:

$$A_m = A + C \prod_{k=2}^{n} \frac{P(k) + 1}{P(k)'}, \qquad P(k) = \sum_{i=0}^{n-1} \beta_i k^{1-i}, \qquad (27)$$

где $C \neq 0, \beta_0 \neq 1, P(k) \neq 0, -1$ для всех k = 2, 3

3) Смит и Форд [14] показали, что семейство последовательностей частичных сумм ряда Эйлера содержится в ядре u-преобразования. Теорема: пусть $A_m = \sum_{k=1}^m k^\mu z^k$, где $m=1,2,...,\mu$ — неотрицательное целое число, а $z \neq 1$, пусть $\mathcal{L}_n^{(j)}$ — результат применения u-преобразования к последовательности $\{A_m\}$. Если $n \geq \mu + 2$, то для всех j выполняется равенство $\mathcal{L}_n^{(j)} = A$, где $A = \left(z \frac{d}{dz}\right)^\mu \frac{1}{1-z}$.

Для вычисления преобразований $\mathcal{L}_n^{(j)}$ можно использовать несколько подходов:

- 1) Прямое применение формулы (25);
- 2) Поскольку \mathcal{L} -преобразование является GREP⁽¹⁾, для его вычисления удобно использовать W-алгоритм, для этого необходимо задать: $t_l = (l+1)^{-1}$, $\alpha(t_l) = A_{l+1}$, $\varphi(t_l) = \omega_{l+1}$, где l=0,1,...
- 3) Рекуррентный алгоритм HURRY, включающий следующие шаги:
 - а) инициализация (для j = 0,1,...):

$$P_0^{(j)} = \frac{A_J}{\omega_J}, \ Q_0^{(j)} = \frac{1}{\omega_J}, \ J = j + 1.$$

- b) рекуррентное вычисление (для $j=0,1,\dots$ и $n=1,2,\dots$): $U_n^{(j)}=U_{n-1}^{(j+1)}-\frac{J}{J+n}\Big(\frac{J+n-1}{J+n}\Big)^{n-2}U_{n-1}^{(j)},$ где $U_n^{(j)}$ обозначает $P_0^{(j)},$ либо $Q_n^{(j)}.$
- с) финальное вычисление:

$$\mathcal{L}_n^{(j)} = \frac{P_n^{(j)}}{Q_n^{(j)}}$$
, при этом $P_n^{(j)} = \frac{\Delta^n \left(J^{n-1}A_J/\omega_J\right)}{(J+n)^{n-1}}$, $Q_n^{(j)} = \frac{\Delta^n \left(J^{n-1}/\omega_J\right)}{(J+n)^{n-1}}$,

такая нормализация предотвращает чрезмерный рост значений $P_n^{(j)}$ и $Q_n^{(j)}$ при увеличении n.

4) Модификация Венигера. Венигер предложил расширение \mathcal{L} -преобразования, заменив r^i в (24) на $(r+\alpha)^i$ для некоторого

фиксированного α . Это приводит к замене множителей J^{n-1} и $(J+i)^{n-1}$ в числителе и знаменателе (25) на $(J+\alpha)^{n-1}$ и $(J+\alpha+i)^{n-1}$ соответственно. Влияние параметра α на точность аппроксимаций требует дополнительного исследования.

 \mathcal{S} –трансформация $Cu\partial u$. Если положить m=1 и $R_l=l+1$, а также заменить R_l^k на R_l^{0k} , то уравнения в (21) принимают вид:

$$A_r = d_n^{(1,j)} + \omega_r \sum_{i=0}^{n-1} \frac{\bar{\beta}_j}{(r)_i}, \quad J \le r \le J + n, \quad \omega_r = r^{\rho} a_r, \quad J = j + 1.$$
 (28)

Полученное факториальное $d^{(1)}$ -преобразование является S-преобразованием Сиди. Обозначим $d_n^{(1,j)}$ в (28) как $S_n^{(j)}$. Тогда $S_n^{(j)}$ имеет следующую известную явную формулу, приведённую в [16]:

$$S_{n}^{(j)} = \frac{\Delta^{n}\left((J)_{n-1}\frac{A_{J}}{\omega_{J}}\right)}{\Delta^{n}\left((J)_{n-1}\frac{1}{\omega_{J}}\right)} = \frac{\sum_{i=0}^{n} \frac{(-1)^{i}\binom{n}{i}(J+i)_{n-1}A_{J+i}}{\omega_{J+i}}}{\sum_{i=0}^{n} \frac{(-1)^{i}\binom{n}{i}(J+i)_{n-1}}{\omega_{J+i}}}; \quad J = j+1. (29)$$

S–преобразование впервые было использовано для суммирования бесконечных степенных рядов. Сравнительное исследование Гротендорста [17] показало, что этот метод является одним из наиболее эффективных для суммирования широкого класса всюду расходящихся степенных рядов.

Выбор весов ω_m и сравнение с \mathcal{L} -преобразованием. Параметры ω_m в \mathcal{S} -преобразовании выбираются аналогично \mathcal{L} -преобразованию. Получающиеся преобразования последовательностей обладают схожими с t-, u- и v-преобразованиями численными свойствами, за исключением их меньшей эффективности для логарифмических последовательностей. Для последовательностей из классов линейных и факториальных \mathcal{S} - преобразование демонстрирует высокую эффективность по сравнению с \mathcal{L} -преобразованием. Однако для знакопеременных рядов

вида $\sum_{k=1}^{\infty} (-1)^k c_k$, $c_k > 0$ \mathcal{L} -преобразование остаётся оптимальным выбором.

Алгоритмы вычисления $S_n^{(j)}$:

- 1) Прямое использование формулы (29);
- 2) Рекуррентный алгоритм Венигера [11], состоит из следующих шагов:
 - а) инициализация (для j = 0,1,...):

$$P_0^{(j)} = \frac{A_J}{\omega_J}, \ Q_0^{(j)} = \frac{1}{\omega_J}, \ J = j + 1;$$

- b) рекуррентное вычисление (для $j=0,1,\dots$ и $n=1,2,\dots$): $U_n^{(j)}=U_{n-1}^{(j+1)}-\frac{(j+n-1)(j+n)}{(j+2n-2)(j+2n-1)}U_{n-1}^{(j)},$ где $U_n^{(j)}$ обозначает $P_n^{(j)},$ либо $Q_n^{(j)};$
- с) финальное вычисление:

$$S_n^{(j)} = \frac{P_n^{(j)}}{Q_n^{(j)}}.$$

5) Модификация Венигера. Венигер предложил расширение \mathcal{L} -преобразования, заменив r^i в (24) на $(r+\alpha)^i$ для некоторого фиксированного α . Это приводит к замене множителей J^{n-1} и $(J+i)^{n-1}$ в числителе и знаменателе (25) на $(J+\alpha)^{n-1}$ и $(J+\alpha+i)^{n-1}$ соответственно. Влияние параметра α на точность аппроксимаций требует дополнительного исследования.

Н-трансформация

Метод, называемый H-преобразованием, был предложен Хомейером [18] для ускорения сходимости рядов Фурье по синусам и косинусам. Рассмотрим это преобразование, так как оно является частным случаем $GREP^{(2)}$ и вариантом $d^{(2)}$ -преобразования.

Пусть дан ряд Фурье:

$$F(x) \coloneqq \sum_{k=0}^{\infty} (b_k \cos kx + c_k \sin kx),$$

а его частичные суммы имеют вид:

$$S_n = \sum_{k=0}^{n} (b_k \cos kx + c_k \sin kx), \qquad n = 0,1,...$$

Тогда приближение $H_n^{(j)}$ к сумме этого ряда определяется через линейную систему:

$$S_{l} = H_{n}^{(j)} + r_{l} \left[\cos lx \sum_{i=0}^{n-1} \frac{\overline{\beta}_{l}}{(l+\delta)^{i}} + \sin lx \sum_{i=0}^{n-1} \frac{\overline{\gamma}_{l}}{(l+\delta)^{i}} \right], \qquad j \le l \le j+2n, (30)$$

где

$$r_n = (n+1)M(b_n, c_n), \qquad M(p,q) = \begin{cases} p, & \text{если } |p| > |q| \\ q & \text{в ином случае} \end{cases}$$
 (31)

а δ - некоторая фиксированная константа. Здесь $\overline{\beta}_l$ и $\overline{\gamma}_l$ — дополнительные вспомогательные неизвестные. Хомейер предложил эффективный рекуррентный алгоритм для реализации H-преобразования, отличающийся высокой экономичностью.

Однако у этого преобразования есть два недостатка [11]:

1) Ограниченное применение: класс ряд рядов Фурье, для которых метод работает успешно, довольно узок. Это видно при сравнении уравнений (30) с определяющими уравнениями для $d_{(n.n)}^{(2,j)}$:

$$S_{R_l} = d_{(n.n)}^{(2,j)} + a_{R_l} \sum_{i=0}^{n-1} \frac{\overline{\beta_i}}{R_l^i} + \Delta a_{R_l} \sum_{i=0}^{n-1} \frac{\overline{\gamma_i}}{R_l^i}, \quad j \le l \le j+2n,$$
 (32)

где $a_n = b_n \cos nx + c_n \sin nx$, при специальном выборе R_l , а именно $R_l = l + 1$. Таким образом, $d_{(n,n)}^{(2,l)}$ и $H_n^{(j)}$ используют практически одинаковое количество членов ряда F(x).

Уравнения в (30) сразу же показывают, что H-преобразование может быть эффективным, когда

$$S_n \sim S + r_n \left[\cos nx \sum_{i=0}^{\infty} \frac{\beta_i}{n^i} + \sin nx \sum_{i=0}^{\infty} \frac{\gamma_i}{n^i} \right], \quad n \to \infty,$$

то есть, когда S_n связана с функцией $A(y) \in F^{(2)}$. Такая ситуация возможна только тогда, когда $\{b_n\}$ и $\{c_n\}$ оба принадлежат классу $b^{(l)}$. Учитывая это, становится ясно, что, если хотя бы одна из последовательностей $\{b_n\}$ или $\{c_n\}$ $\}$ (или обе) принадлежат классу $b^{(s)}$ при s > 1, H-преобразование перестаёт быть эффективным. В отличие от этого, $d^{(m)}$ -преобразование при подходящем значении m > 2 остаётся эффективным, как упоминалось ранее.

В качестве примера рассмотрим ряд косинусов $F(x) \coloneqq \sum_{k=0}^{\infty} b_k \cos kx$, где $b_n = P_n(t)$ — полиномы Лежандра. Поскольку $\{b_n\} \in b^{(2)}$, получаем, что $\{b_n cosnx\} \in b^{(4)}$. В этом случае:

- 1) $d^{(4)}$ -преобразование может быть применено напрямую к F(x);
- 2) $d^{(2)}$ -преобразование с использованием комплексного подхода также применимо и требует примерно вдвое меньше вычислений по сравнению с прямым методом;
- 3) *Н*-преобразование неэффективно.
- 2) Из определения r_n очевидно, что предполагается доступность b_n и c_n . В таком случае, как объяснялось ранее, $d^{(1)}$ -преобразование с $R_l = l + 1$ (которое является ничем иным, как преобразованием Левина) в сочетании с комплексным подходом обеспечивает требуемую точность при примерно вдвое меньших вычислительных затратах по сравнению с H-преобразованием, когда последнее применимо. Разумеется, лучшая устойчивость и точность достигаются при использовании $d^{(1)}$ -преобразования с APS вблизи точек сингулярности.

Заключение

Полученные преобразования могут быть применены к широкому классу последовательностей, включая, среди прочего, линейные и общие линейные последовательности, где обычно применяется эпсилон-алгоритм. Они были созданы на основе строгого анализа асимптотических разложений хвостов бесконечных рядов. В некоторых частных случаях приближения, полученные с помощью $d^{(m)}$ -преобразования, совпадают с теми, которые даёт преобразование Шенкса.

Частные случаи $d^{(1)}$ -трансформации - \mathcal{L} -преобразование Левина и \mathcal{S} -преобразование Сиди обладают схожими с t-, u- и v-преобразованиями численными свойствами, за исключением их меньшей эффективности для логарифмических последовательностей. \mathcal{S} -преобразование будет более эффективно по сравнению с \mathcal{L} -преобразованием для последовательностей из классов линейных и факториальных. А для знакопеременных рядов — наоборот, фаворитом будет \mathcal{L} -преобразование.

Список литературы

- 1. Rational approximants defined from double power series // Math. Comp. // J. S. R. Chisholm. 1973. P. 941-848.
- 2. General Rational approximants in N variables // Approx. Theory // D. Levin. 1976. P. 1-8.
- 3. On accelerating the convergence of infinite double series and integrals // Math. Comp. // D. Levin. 1980. P. 1331-1980.
- 4. The $d_{(2)}$ -transformation for infinite double series and the $D_{(2)}$ -transformation for infinite double integrals. // Math. Comp. -1998. -P. 695-714.
- 5. Extrapolation Methods for infinite multiple series and integrals // Journal of Computational Methods in Sciences and Engineering vol. 1. // D. Levin, A. Sidi 2001. P. 167-184.
- 6. Two new classes of nonlinear transformations for accelerating the convergence of infinite integrals and series // Appl. Math. Comp. // D. Levin, A. Sidi 1975. P. 175-215.
- 7. Further convergence and stability results for the generalized Richardson extrapolation process GREP⁽¹⁾ with and application to the D⁽¹⁾-transformation for infinite integrals // Comp. Appl. Math. // A. Sidi. 1999. P. 153-167.
- 8. An algorithm for a generalization of the Richardson extrapolation process // SIAM J. Numer. Anal. // W. F. Ford and A. Sidi. 1987. P. 1212-1232.
- 9. Exponential function approximation to Laplace transform inversion and development of non-linear methods for accelerating the convergence of infinite integrals and series // PhD thesis, Tel Aviv University // I. M. Longman. 1977.
- 10. Development of non-linear transformations for improving convergence of sequences // Math. Comp. // D. Levin. 1975. P. 371-388, 1331-1345.
- 11. Practical Extrapolation Methods: Theory and Applications // Cambridge University Press // A. Sidi 2003. P. 121-157, 238-250, 253-261, 363-371.
- 12. An algorithm for a special case of a generalization of the Richardson extrapolation process // Numer. Math. // A. Sidi. 1982. P. 223-233.
- 13. Acceleration of linear and logarithmic convergence // SIAM J. Numer. Anal. // D. A. Smith, W. F. Ford. 1979. P. 223-240.

- 14. Numerical comparisons of nonlinear convergence accelerators // Math. Comp. // D. A. Smith, W. F. Ford. 1982. P. 481-499.
- 15. A new method for deriving Pade approximants for some hypergeometric functions // J. Comp. Appl. Math. // A. Sidi. 1981. P. 37-40.
- 16. A Maple package for transforming sequences and functions // Comput. Phys. Comm. // J. Grotendorst. 1991. P. 325-342.
- 17. A Levin-type algorithm for accelerating the convergence of Fourier series // Numer. Algorithms // H. H. H. Homeier. 1992. P. 245-254.