Computer Vision: Lecture 6

2023-11-16

1/26

Recap

If
$$P_1 = (I \mid \mathbf{0})$$
 and $P_2 = (A \mid \mathbf{t})$:

$$\bar{\mathbf{x}}^T \underbrace{[\mathbf{t}]_{\times} \mathbf{A}}_{:=\mathbf{F}} \mathbf{x} = 0$$

Uncalibrated Structure from Motion with 2 cameras:

- Solve for F using 8-point solver
- Extract cameras from F (Today's Lecture)
- Triangulate 3D points

Today's Lecture

Two view geometry

- Computing cameras from F
- The calibrated case: The Essential Matrix
- The 8-point algorithm (again)
- Computing the cameras from E.

3 / 26

- We assume $P_1 = (I \mid \mathbf{0})$
 - Projective ambiguity
- Can you determine $P_2 = (A \mid \mathbf{t})$ such that $F = [\mathbf{t}]_{\times} A$?
- Geometric intuition does not help...
- One choice is given by

$$P_2 = ([\mathbf{e}_2]_{\times} F \mid \mathbf{e}_2)$$

 $\mathbf{e}_2 \in \mathrm{null}(\mathbf{F}^+)$ is the 2nd epipole (image of camera 1 in camera 2)

Recall skew-symmetric matrix from last lecture

$$[\mathbf{a}]_{\mathsf{X}} := \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \qquad [\mathbf{a}]_{\mathsf{X}} + [\mathbf{a}]_{\mathsf{X}}^{\mathsf{T}} = 0$$

How can we prove that?

- We assume $P_1 = (I \mid \mathbf{0})$
 - Projective ambiguity
- Can you determine $P_2 = (A \mid \mathbf{t})$ such that $F = [\mathbf{t}]_{\times} A$?
- Geometric intuition does not help...
- One choice is given by

$$P_2 = ([\mathbf{e}_2]_{\times} F \mid \mathbf{e}_2)$$

 $\mathbf{e}_2 \in \mathrm{null}(\mathsf{F}^+)$ is the 2nd epipole (image of camera 1 in camera 2)

Recall skew-symmetric matrix from last lecture

$$[\mathbf{a}]_{\times} := \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}$$
 $[\mathbf{a}]_{\times} + [\mathbf{a}]_{\times}^{\top} = 0$

• How can we prove that?

- We assume $P_1 = (I \mid \mathbf{0})$
 - Projective ambiguity
- ullet Can you determine $\mathtt{P}_2 = (\mathtt{A} \mid \mathbf{t})$ such that $\mathtt{F} = [\mathbf{t}]_{ imes} \mathtt{A}$?
- Geometric intuition does not help...
- One choice is given by

$$\mathtt{P}_2 = \big([\mathbf{e}_2]_{\times}\mathtt{F} \mid \mathbf{e}_2\big)$$

 $\mathbf{e}_2 \in \operatorname{null}(\mathbf{F}^\top)$ is the 2nd epipole (image of camera 1 in camera 2)

• Recall skew-symmetric matrix from last lecture

$$[\mathbf{a}]_{\times} := \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \qquad [\mathbf{a}]_{\times} + [\mathbf{a}]_{\times}^{\top} = \mathbf{0}$$

• How can we prove that?

- We assume $P_1 = (I \mid \mathbf{0})$
 - Projective ambiguity
- ullet Can you determine $\mathtt{P}_2 = (\mathtt{A} \mid \mathbf{t})$ such that $\mathtt{F} = [\mathbf{t}]_{ imes} \mathtt{A}$?
- Geometric intuition does not help...
- One choice is given by

$$\mathtt{P}_2 = \big([\mathbf{e}_2]_{\times}\mathtt{F} \mid \mathbf{e}_2\big)$$

 $\mathbf{e}_2 \in \operatorname{null}(\mathbf{F}^\top)$ is the 2nd epipole (image of camera 1 in camera 2)

• Recall skew-symmetric matrix from last lecture

$$[\mathbf{a}]_{\times} := \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix} \qquad [\mathbf{a}]_{\times} + [\mathbf{a}]_{\times}^{\top} = \mathbf{0}$$

• How can we prove that?

 \bullet Claim: for given F we can choose P $_1=({\tt I}\mid {\bf 0})$ and P $_2=([{\bf e}_2]_{\times}{\tt F}\mid {\bf e}_2)$

• Let
$$\binom{\mathbf{X}}{\mu} \in \mathbb{P}^3$$
 $\mathbf{X} \in \mathbb{R}^3$

$$\begin{split} \mathbf{x} &\sim P_1 \binom{\mathbf{X}}{\mu} = (\mathbf{I} \mid \mathbf{0}) \binom{\mathbf{X}}{\mu} = \mathbf{X} \\ \bar{\mathbf{x}} &\sim P_2 \binom{\mathbf{X}}{\mu} = ([\mathbf{e}_2]_{\times} \mathbf{F} \mid \mathbf{e}_2) \binom{\mathbf{X}}{\mu} = [\mathbf{e}_2]_{\times} \mathbf{F} \mathbf{X} + \mu \mathbf{e}_2 \end{split}$$

• Now we check $\bar{\mathbf{x}}^{\mathsf{T}}\mathbf{F}\mathbf{x}$

$$\begin{split} \bar{\mathbf{x}}^{\top}\mathbf{F}\mathbf{x} &= \left([\mathbf{e}_2]_{\times}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2\right)^{\top}\mathbf{F}\mathbf{X} \\ &= \mathbf{X}^{\top}\mathbf{F}^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2^{\top}\mathbf{F}\mathbf{X} \\ &= \underbrace{\left(\mathbf{F}\mathbf{X}\right)^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X}}_{=0} + \mu\underbrace{\mathbf{e}_2^{\top}\mathbf{F}}_{=0}\mathbf{X} \end{split}$$

since $\mathbf{F}^{\top}\mathbf{e}_2 = \mathbf{0}$ and

$$(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_2]^{\top}_{\times}\mathbf{F}\mathbf{X} = -(\mathbf{F}\mathbf{X})^{\top}(\mathbf{e}_2 \times (\mathbf{F}\mathbf{X})) = 0$$

- \bullet Claim: for given F we can choose P $_1=(\mathtt{I}\mid \mathbf{0})$ and P $_2=([\mathbf{e}_2]_{\times}\mathtt{F}\mid \mathbf{e}_2)$
- ullet Let $inom{\mathbf{X}}{\mu}\in\mathbb{P}^3$ $\mathbf{X}\in\mathbb{R}^3$

$$\begin{split} \mathbf{x} &\sim \mathtt{P}_1 \binom{\mathbf{X}}{\mu} = (\mathtt{I} \mid \mathbf{0}) \binom{\mathbf{X}}{\mu} = \mathbf{X} \\ \bar{\mathbf{x}} &\sim \mathtt{P}_2 \binom{\mathbf{X}}{\mu} = ([\mathtt{e}_2]_{\times} \mathtt{F} \mid \mathtt{e}_2) \binom{\mathbf{X}}{\mu} = [\mathtt{e}_2]_{\times} \mathtt{F} \mathbf{X} + \mu \mathtt{e}_2 \\ \end{split}$$

• Now we check $\bar{\mathbf{x}}^{\mathsf{T}} \mathbf{F} \mathbf{x}$

$$\begin{split} \bar{\mathbf{x}}^{\top}\mathbf{F}\mathbf{x} &= \left([\mathbf{e}_2]_{\times}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2\right)^{\top}\mathbf{F}\mathbf{X} \\ &= \mathbf{X}^{\top}\mathbf{F}^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2^{\top}\mathbf{F}\mathbf{X} \\ &= \underbrace{\left(\mathbf{F}\mathbf{X}\right)^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X}}_{=0} + \mu\underbrace{\mathbf{e}_2^{\top}\mathbf{F}}_{=0}\mathbf{X} \end{split}$$

since $\mathbf{F}^{\top}\mathbf{e}_2 = \mathbf{0}$ and

$$(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} = -(\mathbf{F}\mathbf{X})^{\top}(\mathbf{e}_2 \times (\mathbf{F}\mathbf{X})) = 0$$

- \bullet Claim: for given F we can choose P $_1=(\mathtt{I}\mid \mathbf{0})$ and P $_2=([\mathbf{e}_2]_{\times}\mathtt{F}\mid \mathbf{e}_2)$
- Let $\binom{\mathbf{X}}{\mu} \in \mathbb{P}^3$ $\mathbf{X} \in \mathbb{R}^3$

$$\begin{split} \mathbf{x} &\sim \mathtt{P}_1 \binom{\mathbf{X}}{\mu} = (\mathtt{I} \mid \mathbf{0}) \binom{\mathbf{X}}{\mu} = \mathbf{X} \\ \bar{\mathbf{x}} &\sim \mathtt{P}_2 \binom{\mathbf{X}}{\mu} = ([\mathbf{e}_2]_{\times} \mathtt{F} \mid \mathbf{e}_2) \binom{\mathbf{X}}{\mu} = [\mathbf{e}_2]_{\times} \mathtt{F} \mathbf{X} + \mu \mathbf{e}_2 \end{split}$$

• Now we check $\bar{\mathbf{x}}^{\mathsf{T}} \mathbf{F} \mathbf{x}$

$$\begin{split} \bar{\mathbf{x}}^{\top}\mathbf{F}\mathbf{x} &= \left([\mathbf{e}_2]_{\times}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2\right)^{\top}\mathbf{F}\mathbf{X} \\ &= \mathbf{X}^{\top}\mathbf{F}^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2^{\top}\mathbf{F}\mathbf{X} \\ &= \underbrace{(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X}}_{=0} + \mu\underbrace{\mathbf{e}_2^{\top}\mathbf{F}}_{=0}\mathbf{X} \end{split}$$

since $\mathbf{F}^{\mathsf{T}}\mathbf{e}_2 = \mathbf{0}$ and

$$(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} = -(\mathbf{F}\mathbf{X})^{\top}(\mathbf{e}_2 \times (\mathbf{F}\mathbf{X})) = 0$$

- \bullet Claim: for given F we can choose P $_1=(\mathtt{I}\mid \mathbf{0})$ and P $_2=([\mathbf{e}_2]_{\times}\mathtt{F}\mid \mathbf{e}_2)$
- Let $\binom{\mathbf{X}}{\mu} \in \mathbb{P}^3$ $\mathbf{X} \in \mathbb{R}^3$

$$\begin{split} \mathbf{x} &\sim \mathtt{P}_1 \binom{\mathbf{X}}{\mu} = (\mathtt{I} \mid \mathbf{0}) \binom{\mathbf{X}}{\mu} = \mathbf{X} \\ \bar{\mathbf{x}} &\sim \mathtt{P}_2 \binom{\mathbf{X}}{\mu} = ([\mathbf{e}_2]_{\times} \mathtt{F} \mid \mathbf{e}_2) \binom{\mathbf{X}}{\mu} = [\mathbf{e}_2]_{\times} \mathtt{F} \mathbf{X} + \mu \mathbf{e}_2 \end{split}$$

• Now we check $\bar{\mathbf{x}}^{\top} \mathbf{F} \mathbf{x}$:

$$\bar{\mathbf{x}}^{\mathsf{T}}\mathbf{F}\mathbf{x} = ([\mathbf{e}_2]_{\mathsf{X}}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2)^{\mathsf{T}}\mathbf{F}\mathbf{X}$$

$$= \mathbf{X}^{\mathsf{T}}\mathbf{F}^{\mathsf{T}}[\mathbf{e}_2]_{\mathsf{X}}^{\mathsf{T}}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2^{\mathsf{T}}\mathbf{F}\mathbf{X}$$

$$= (\mathbf{F}\mathbf{X})^{\mathsf{T}}[\mathbf{e}_2]_{\mathsf{X}}^{\mathsf{T}}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2^{\mathsf{T}}\mathbf{F}\mathbf{X}$$

$$= 0$$

since $\mathbf{F}^{\top}\mathbf{e}_2 = \mathbf{0}$ and

$$(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_{2}]_{\times}^{\top}\mathbf{F}\mathbf{X} = -(\mathbf{F}\mathbf{X})^{\top}(\mathbf{e}_{2}\times(\mathbf{F}\mathbf{X})) = 0$$

- \bullet Claim: for given F we can choose P $_1=(\mathtt{I}\mid \mathbf{0})$ and P $_2=([\mathbf{e}_2]_{\times}\mathtt{F}\mid \mathbf{e}_2)$
- ullet Let $inom{\mathbf{X}}{\mu} \in \mathbb{P}^3$ $\mathbf{X} \in \mathbb{R}^3$

$$\begin{split} \mathbf{x} &\sim \mathtt{P}_1 \binom{\mathbf{X}}{\mu} = (\mathtt{I} \mid \mathbf{0}) \binom{\mathbf{X}}{\mu} = \mathbf{X} \\ \bar{\mathbf{x}} &\sim \mathtt{P}_2 \binom{\mathbf{X}}{\mu} = ([\mathbf{e}_2]_{\times} \mathtt{F} \mid \mathbf{e}_2) \binom{\mathbf{X}}{\mu} = [\mathbf{e}_2]_{\times} \mathtt{F} \mathbf{X} + \mu \mathbf{e}_2 \end{split}$$

• Now we check $\bar{\mathbf{x}}^{\top} \mathbf{F} \mathbf{x}$:

$$\begin{split} \bar{\mathbf{x}}^{\mathsf{T}}\mathbf{F}\mathbf{x} &= ([\mathbf{e}_2]_{\mathsf{X}}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2)^{\mathsf{T}}\mathbf{F}\mathbf{X} \\ &= \mathbf{X}^{\mathsf{T}}\mathbf{F}^{\mathsf{T}}[\mathbf{e}_2]_{\mathsf{X}}^{\mathsf{T}}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2^{\mathsf{T}}\mathbf{F}\mathbf{X} \\ &= \underbrace{(\mathbf{F}\mathbf{X})^{\mathsf{T}}[\mathbf{e}_2]_{\mathsf{X}}^{\mathsf{T}}\mathbf{F}\mathbf{X}} + \mu\underbrace{\mathbf{e}_2^{\mathsf{T}}\mathbf{F}\mathbf{X}}_{=0} \end{split}$$

since $\mathbf{F}^{\top}\mathbf{e}_2 = \mathbf{0}$ and

$$(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} = -(\mathbf{F}\mathbf{X})^{\top}(\mathbf{e}_2 \times (\mathbf{F}\mathbf{X})) = 0$$

- \bullet Claim: for given F we can choose P $_1=(\mathtt{I}\mid \mathbf{0})$ and P $_2=([\mathbf{e}_2]_{\times}\mathtt{F}\mid \mathbf{e}_2)$
- ullet Let $inom{\mathbf{X}}{\mu} \in \mathbb{P}^3$ $\mathbf{X} \in \mathbb{R}^3$

$$\begin{split} \mathbf{x} &\sim \mathtt{P}_1 \binom{\mathbf{X}}{\mu} = (\mathtt{I} \mid \mathbf{0}) \binom{\mathbf{X}}{\mu} = \mathbf{X} \\ \bar{\mathbf{x}} &\sim \mathtt{P}_2 \binom{\mathbf{X}}{\mu} = ([\mathbf{e}_2]_{\times} \mathtt{F} \mid \mathbf{e}_2) \binom{\mathbf{X}}{\mu} = [\mathbf{e}_2]_{\times} \mathtt{F} \mathbf{X} + \mu \mathbf{e}_2 \end{split}$$

• Now we check $\bar{\mathbf{x}}^{\top} \mathbf{F} \mathbf{x}$:

$$\begin{split} \bar{\mathbf{x}}^{\top}\mathbf{F}\mathbf{x} &= ([\mathbf{e}_2]_{\times}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2)^{\top}\mathbf{F}\mathbf{X} \\ &= \mathbf{X}^{\top}\mathbf{F}^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2^{\top}\mathbf{F}\mathbf{X} \\ &= \underbrace{(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X}}_{=0} + \mu\underbrace{\mathbf{e}_2^{\top}\mathbf{F}}_{=0}\mathbf{X} \end{split}$$

since $\mathbf{F}^{\mathsf{T}}\mathbf{e}_2 = \mathbf{0}$ and

$$(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} = -(\mathbf{F}\mathbf{X})^{\top}(\mathbf{e}_2 \times (\mathbf{F}\mathbf{X})) = 0$$

- \bullet Claim: for given F we can choose P $_1=({\tt I}\mid {\bf 0})$ and P $_2=([{\bf e}_2]_{\times}{\tt F}\mid {\bf e}_2)$
- Let $\binom{\mathbf{X}}{\mu} \in \mathbb{P}^3$ $\mathbf{X} \in \mathbb{R}^3$

$$\begin{split} \mathbf{x} &\sim \mathtt{P}_1 \binom{\mathbf{X}}{\mu} = (\mathtt{I} \mid \mathbf{0}) \binom{\mathbf{X}}{\mu} = \mathbf{X} \\ \bar{\mathbf{x}} &\sim \mathtt{P}_2 \binom{\mathbf{X}}{\mu} = ([\mathbf{e}_2]_{\times} \mathtt{F} \mid \mathbf{e}_2) \binom{\mathbf{X}}{\mu} = [\mathbf{e}_2]_{\times} \mathtt{F} \mathbf{X} + \mu \mathbf{e}_2 \end{split}$$

• Now we check $\bar{\mathbf{x}}^{\top} \mathbf{F} \mathbf{x}$:

$$\begin{split} \bar{\mathbf{x}}^{\top}\mathbf{F}\mathbf{x} &= ([\mathbf{e}_2]_{\times}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2)^{\top}\mathbf{F}\mathbf{X} \\ &= \mathbf{X}^{\top}\mathbf{F}^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} + \mu\mathbf{e}_2^{\top}\mathbf{F}\mathbf{X} \\ &= \underbrace{(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X}}_{=0} + \mu\underbrace{\mathbf{e}_2^{\top}\mathbf{F}}_{=0}\mathbf{X} \end{split}$$

since $\mathbf{F}^{ op}\mathbf{e}_2=\mathbf{0}$ and

$$(\mathbf{F}\mathbf{X})^{\top}[\mathbf{e}_2]_{\times}^{\top}\mathbf{F}\mathbf{X} = -(\mathbf{F}\mathbf{X})^{\top}(\mathbf{e}_2 \times (\mathbf{F}\mathbf{X})) = 0$$

5/26

Question

Camera center 2

What is the camera center of $P_2 = ([e_2]_{\times}F \mid e_2)$? Hint: recall that $Fe_1 = 0$.

Solution

• Camera center $\binom{\mathbf{C}_2}{\mu} \in \mathbb{P}^3$:

$$P_2\begin{pmatrix} \mathbf{C}_2 \\ \mu \end{pmatrix} = \mathbf{0} \iff [\mathbf{e}_2]_{\times} \mathbf{F} \mathbf{C}_2 + \mu \mathbf{e}_2 = \mathbf{0}$$
$$\implies \mathbf{C}_2 = \mathbf{e}_1 \wedge \mu = 0$$

• A point $\binom{e_1}{0}$ at infinity! You may get a gist that projective reconstruction may look strange

Question

Camera center 2

What is the camera center of $P_2 = ([e_2]_{\times}F \mid e_2)$? Hint: recall that $Fe_1 = 0$.

Solution:

 $\bullet \ \ \mathsf{Camera} \ \mathsf{center} \ \tbinom{\mathbf{C}_2}{\mu} \in \mathbb{P}^3 :$

$$P_2 \begin{pmatrix} \mathbf{C}_2 \\ \mu \end{pmatrix} = \mathbf{0} \iff [\mathbf{e}_2]_{\times} \mathbf{F} \mathbf{C}_2 + \mu \mathbf{e}_2 = \mathbf{0}$$
$$\implies \mathbf{C}_2 = \mathbf{e}_1 \wedge \mu = 0$$

• A point $\binom{\mathbf{e}_1}{0}$ at infinity! You may get a gist that projective reconstruction may look strange

6 / 26

General solution

For given F we can choose

$$P_1 = (I \mid \mathbf{0})$$

$$\mathtt{P}_2 = \left([\mathbf{e}_2]_ imes \mathtt{F} + \mathbf{e}_2 \mathbf{v}^ op \mid \lambda \mathbf{e}_2
ight)$$

for any $\mathbf{v} \in \mathbb{R}^3$ and $\lambda \in \mathbb{R}$.

- For given F we have a 4-parameter family of solutions P_2 even after fixing $P_1 = (\mathbf{I} \mid \mathbf{0})$
- ullet $P_1 = (I \mid oldsymbol{0})$ and $P_2 = (A \mid oldsymbol{t})$... "canonical camera pair"
- ullet We may apply a projective transformation $\mathtt{H} \in \mathbb{R}^{4 imes 4}$

$$P_1' = P_1H$$

$$P_2' = P_2H$$

Will not affect F

Relative Orientation: The Calibrated Case

Problem Formulation

Given two sets of corresponding (normalized) points $\{\mathbf{x}_i\}$ and $\{\bar{\mathbf{x}}_i\}$, compute camera matrices $P_1 = (R_1 \mid \mathbf{T}_1)$, $P_2 = (R_2 \mid \mathbf{T}_2)$ and 3D-points $\{\mathbf{X}_i\}$ such that

$$\lambda_i \mathbf{x}_i = P_1 \mathbf{X}_i$$

and

$$\bar{\lambda}_i \bar{\mathbf{x}}_i = \mathbf{P}_2 \mathbf{X}_i.$$

Relative Orientation: Problem Formulation

Simplification

If $P_1 = (R_1 \mid T_1)$, $P_2 = (R_2 \mid T_2)$, apply the (Euclidean) transformation

$$\mathtt{H} = \begin{pmatrix} \mathtt{R}_1^\top & -\mathtt{R}_1^\top \mathbf{T}_1 \\ \mathbf{0}^\top & 1 \end{pmatrix}.$$

Then

$$\mathtt{P}_1\mathtt{H} = \begin{pmatrix} \mathtt{R}_1 & \mathbf{T}_1 \end{pmatrix} \begin{pmatrix} \mathtt{R}_1^\top & -\mathtt{R}_1^\top \mathbf{T}_1 \\ \mathbf{0}^\top & 1 \end{pmatrix} = (\mathtt{I} \mid \mathbf{0})$$

Hence, we may assume that the cameras are

$$P_1 = (I \mid \mathbf{0}) \qquad \qquad P_2 = (R \mid \mathbf{T}).$$

The Essential Matrix

The Essential Matrix

The camera pair $\mathtt{P}_1 = (\mathtt{I} \mid \mathbf{0})$ and $\mathtt{P}_2 = (\mathtt{R} \mid \mathbf{T})$ has the fundamental matrix

$$\mathtt{E} = [\mathbf{T}]_{\times}\mathtt{R}$$

E is called the essential matrix.

- ullet R has 3 dof, ${f T}$ 3 dof, but the scale is arbitrary, therefore E has 5 d.o.f.
- E has det(E) = 0
- E has two nonzero equal singular values.

The Essential Matrix

The 8-point algorithm (again)

- Extract at least 8 point correspondences.
- Normalize the coordinates (multiply with K⁻¹, K inner parameters).
- Form M and solve

$$\min_{\mathbf{v}:\|\mathbf{v}\|=1}\|\mathbf{M}\mathbf{v}\|^2$$

using SVD.

- Reshape $\mathbf{v} \in \mathbb{R}^9$ to $\mathbf{E} \in \mathbb{R}^{3 \times 3}$
- Enforce constraints on E
 - Ensure that $det(\mathbf{E}) = 0$
 - E has two nonzero equal singular values
- Compute a pair of cameras from E.
- Compute the scene points (triangulation).

The Essential Matrix

Issues

Resulting E may not have det(E) = 0 and two nonzero equal singular values. Pick the closest essential matrix.

Can be solved using svd, in matlab:

```
[U,S,V] = svd(E);

s = (S(1,1)+S(2,2))/2;

S = diag([s s 0]);

E = U*S*V':
```

Note: Since the scale of the essential matrix is arbitrary we may assume that s=1. We can therefore always use S = diag([1 1 0]).

Computing the cameras from E

Goal

Find $P_2 = (R \mid \mathbf{T})$ such that $E = [\mathbf{T}]_{\times}R$.

Outline:

Ensure that E has the SVD

$$\mathtt{E} = \mathtt{U} \mathtt{\Sigma} \mathtt{V}^{ op} = \mathtt{U} \left(\begin{smallmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{smallmatrix} \right) \mathtt{V}^{ op}$$

where
$$\det(\mathtt{UV}^\top) = 1$$

- ullet Compute a factorization E=SR where S is skew symmetric and R a rotation
- \bullet Compute a ${\bf T}$ such that $[{\bf T}]_\times = \mathtt{S}$
- ullet Form the camera $\mathtt{P}_2 = (\mathtt{R} \mid \mathbf{T})$

 $\bullet \ \, \mathsf{First \ decompose} \, \, \Sigma = \underbrace{Z}_{\mathsf{skew \ sym. \ orthogonal}} \, \, \Longleftrightarrow \, \, \Sigma \mathtt{W}^\top = Z$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ w_{13} & w_{23} & w_{33} \end{pmatrix} = \begin{pmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ 0 & 0 & 0 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 & -z_3 & z_2 \\ z_3 & 0 & -z_1 \\ -z_2 & z_1 & 0 \end{pmatrix}$$

$$\Rightarrow \begin{cases} w_{11} = w_{22} = 0 \\ w_{31} = z_2 = 0 \\ w_{32} = -z_1 = 0 \\ w_{12} = z_3 = -w_{21} \end{cases} \iff \begin{pmatrix} 0 & w_{21} & 0 \\ w_{12} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -z_3 & 0 \\ z_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Two solutions $\Sigma = ZW = Z^TW^T$, where

$$\mathbf{W} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{Z} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\bullet \ \, \mathsf{First \ decompose} \, \, \Sigma = \underbrace{Z}_{\mathsf{skew \ sym. \ orthogonal}} \, \, \Longleftrightarrow \, \, \Sigma \mathtt{W}^\top = Z$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ w_{13} & w_{23} & w_{33} \end{pmatrix} = \begin{pmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ 0 & 0 & 0 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 & -z_3 & z_2 \\ z_3 & 0 & -z_1 \\ -z_2 & z_1 & 0 \end{pmatrix}$$

$$\implies \begin{cases} w_{11} = w_{22} = 0 \\ w_{31} = z_2 = 0 \\ w_{32} = -z_1 = 0 \\ w_{12} = z_3 = -w_{21} \end{cases} \iff \begin{pmatrix} 0 & w_{21} & 0 \\ w_{12} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -z_3 & 0 \\ z_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Two solutions $\Sigma = ZW = Z^TW^T$, where

$$\mathbf{W} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{Z} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 $\bullet \ \, \mathsf{First \ decompose} \, \, \Sigma = \underbrace{Z}_{\mathsf{skew \ sym. \ orthogonal}} \, \, \Longleftrightarrow \, \, \Sigma \mathtt{W}^\top = Z$

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ w_{13} & w_{23} & w_{33} \end{pmatrix} = \begin{pmatrix} w_{11} & w_{21} & w_{31} \\ w_{12} & w_{22} & w_{32} \\ 0 & 0 & 0 \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 & -z_3 & z_2 \\ z_3 & 0 & -z_1 \\ -z_2 & z_1 & 0 \end{pmatrix}$$

$$\implies \begin{cases} w_{11} = w_{22} = 0 \\ w_{31} = z_2 = 0 \\ w_{32} = -z_1 = 0 \\ w_{12} = z_3 = -w_{21} \end{cases} \iff \begin{pmatrix} 0 & w_{21} & 0 \\ w_{12} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -z_3 & 0 \\ z_3 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Two solutions $\Sigma = ZW = Z^TW^T$, where

$$\mathbf{W} = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \qquad \mathbf{Z} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Two solutions for E

$$\begin{split} E &= U\Sigma V^\top = UZWV^\top = \overbrace{UZU^\top UWV^\top}^{R_1} \\ E &= U\Sigma V^\top = UZ^\top W^\top V^\top = \underbrace{UZ^\top U^\top UW^\top V^\top}_{S_2} \underbrace{UW^\top V^\top}_{R_2} \end{split}$$

- A "twisted pair"
- ullet Ex: show that S_1 and S_2 are skew symmetric and that R_1 and R_2 are rotations

- $S_1 = -S_2$ (i.e. are the same up to scale)
- Next step: find ${f T}$ such that $[{f T}]_{ imes} = {f S}_1$
- $[\mathbf{T}]_{\times}\mathbf{T} = 0 \implies \mathbf{T} \in \text{null}(\mathbf{S}_1) = \text{null}(\mathbf{U}\mathbf{Z}\mathbf{U}^{\top})$

$$\mathbf{T} = \mathrm{U}(:,3)$$

Or read it directly from S₁

$$\mathtt{S}_1 = [\mathbf{T}]_{ imes} := \left(egin{array}{ccc} 0 & -T_3 & T_2 \ T_3 & 0 & -T_1 \ -T_2 & T_1 & 0 \end{array}
ight)$$

ullet Overall: $P_1(I \mid 0)$ and 4 possible solutions:

$$\mathtt{P}_2 = \left(\mathtt{UWV}^ op \mid \pm \mathbf{T}
ight)$$
 or $\mathtt{P}_2 = \left(\mathtt{UW}^ op \mathtt{V}^ op \mid \pm \mathbf{T}
ight)$

Christopher Zach

- $S_1 = -S_2$ (i.e. are the same up to scale)
- ullet Next step: find ${f T}$ such that $[{f T}]_ imes = {f S}_1$
- $[\mathbf{T}]_{\times}\mathbf{T} = 0 \implies \mathbf{T} \in \text{null}(\mathbf{S}_1) = \text{null}(\mathbf{U}\mathbf{Z}\mathbf{U}^{\top})$

$$\mathbf{T} = \mathrm{U}(:,3)$$

Or read it directly from S₁

$$\mathtt{S}_1 = [\mathbf{T}]_{ imes} := \left(egin{array}{ccc} 0 & -T_3 & T_2 \ T_3 & 0 & -T_1 \ -T_2 & T_1 & 0 \end{array}
ight)$$

ullet Overall: $P_1(I \mid 0)$ and 4 possible solutions:

$$P_2 = \left(\mathtt{UWV}^\top \mid \pm \mathbf{T} \right)$$
 or $P_2 = \left(\mathtt{UW}^\top \mathtt{V}^\top \mid \pm \mathbf{T} \right)$

- $S_1 = -S_2$ (i.e. are the same up to scale)
- ullet Next step: find ${f T}$ such that $[{f T}]_{ imes}={f S}_1$
- $[\mathbf{T}]_{\times}\mathbf{T} = 0 \implies \mathbf{T} \in \text{null}(\mathbf{S}_1) = \text{null}(\mathbf{U}\mathbf{Z}\mathbf{U}^{\top})$

$$\mathbf{T} = \mathtt{U}(:,3)$$

Or read it directly from S₁

$$\mathtt{S}_1 = [\mathbf{T}]_{ imes} := \left(egin{array}{ccc} 0 & -T_3 & T_2 \ T_3 & 0 & -T_1 \ -T_2 & T_1 & 0 \end{array}
ight)$$

ullet Overall: $P_1(I \mid 0)$ and 4 possible solutions:

$$P_2 = \left(\mathtt{UWV}^\top \mid \pm \mathbf{T} \right)$$
 or $P_2 = \left(\mathtt{UW}^\top \mathtt{V}^\top \mid \pm \mathbf{T} \right)$

- ullet $\mathtt{S}_1 = -\mathtt{S}_2$ (i.e. are the same up to scale)
- ullet Next step: find ${f T}$ such that $[{f T}]_{ imes}={f S}_1$
- $[\mathbf{T}]_{\times}\mathbf{T} = 0 \implies \mathbf{T} \in \text{null}(\mathbf{S}_1) = \text{null}(\mathbf{U}\mathbf{Z}\mathbf{U}^{\top})$

$$\mathbf{T} = \mathtt{U}(:,3)$$

Or read it directly from S₁

$$\mathtt{S}_1 = [\mathbf{T}]_{ imes} := \left(egin{matrix} 0 & -T_3 & T_2 \ T_3 & 0 & -T_1 \ -T_2 & T_1 & 0 \end{matrix}
ight)$$

• Overall: $P_1(I \mid 0)$ and 4 possible solutions:

$$P_2 = \left(\mathtt{UWV}^ op \mid \pm \mathbf{T} \right)$$
 or $P_2 = \left(\mathtt{UW}^ op \mathtt{V}^ op \mid \pm \mathbf{T} \right)$

- ullet $\mathtt{S}_1 = -\mathtt{S}_2$ (i.e. are the same up to scale)
- \bullet Next step: find ${\bf T}$ such that $[{\bf T}]_\times = \mathtt{S}_1$
- $[\mathbf{T}]_{\times}\mathbf{T} = 0 \implies \mathbf{T} \in \text{null}(\mathbf{S}_1) = \text{null}(\mathbf{U}\mathbf{Z}\mathbf{U}^{\top})$

$$\mathbf{T} = \mathtt{U}(:,3)$$

Or read it directly from S₁

$$\mathtt{S}_1 = [\mathbf{T}]_{ imes} := \left(egin{matrix} 0 & -T_3 & T_2 \ T_3 & 0 & -T_1 \ -T_2 & T_1 & 0 \end{matrix}
ight)$$

• Overall: $P_1(I \mid \mathbf{0})$ and 4 possible solutions:

$$\mathbf{P}_2 = \left(\mathbf{U}\mathbf{W}\mathbf{V}^\top \mid \pm \mathbf{T}\right) \qquad \qquad \mathbf{r} \qquad \qquad \mathbf{P}_2 = \left(\mathbf{U}\mathbf{W}^\top \mathbf{V}^\top \mid \pm \mathbf{T}\right)$$

The Twisted Pair: Example

$$\mathtt{P}_2 = (\mathtt{I} \mid \mathbf{T}) \text{ or } \mathtt{P}_2 = (\mathtt{R}_2 \mid \mathbf{T})$$
:

$$\mathbf{R}_2 = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\mathbf{T} = \begin{pmatrix} -1 \\ 0 \\ 0 \end{pmatrix}$$

The Twisted Pair: Example

$$\mathtt{P}_2 = (\mathtt{I} \mid \mathbf{T}) \text{ or } \mathtt{P}_2 = (\mathtt{R}_2 \mid \mathbf{T})$$
:

$$\mathbf{R}_{2} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\mathbf{T} = \begin{pmatrix} 0 \\ -1 \\ -1 \end{pmatrix}$$

Scale Ambiguity

ullet Scale is arbitrary λE is also a valid essential matrix

$$\lambda \mathtt{E} = [\lambda \mathbf{T}]_{\times} \mathtt{R}_1 = [\lambda \mathbf{T}]_{\times} \mathtt{R}_2$$

• Gives two solutions $P_1 = (I \mid \mathbf{0})$ and

$$\mathbf{P}_2 = \left(\mathbf{U}\mathbf{W}\mathbf{V}^\top \mid \lambda \mathbf{T}\right) \qquad \qquad \mathbf{Or} \qquad \qquad \mathbf{P}_2 = \left(\mathbf{U}\mathbf{W}^\top \mathbf{V}^\top \mid \lambda \mathbf{T}\right)$$

• Scales baseline between camera centers and rescales scene

Scale Ambiguity: Example

$$P_2 = (I \mid \lambda \mathbf{T})$$

$$\mathbf{T} = \begin{pmatrix} -1\\0\\0 \end{pmatrix}$$

 $\begin{aligned} & \mathsf{Green} - - \lambda > 0 \\ & \mathsf{Red} - \lambda < 0. \end{aligned}$

4 Solutions

4 possible 3D reconstructions

Conclusion: One of the 4 solutions

$$\begin{aligned} \mathtt{P}_2 &= \left(\mathtt{U} \mathtt{W} \mathtt{V}^\top \mid \mathbf{T}\right) & \mathtt{P}_2 &= \left(\mathtt{U} \mathtt{W} \mathtt{V}^\top \mid -\mathbf{T}\right) \\ \mathtt{P}_2 &= \left(\mathtt{U} \mathtt{W}^\top \mathtt{V}^\top \mid \mathbf{T}\right) & \mathtt{P}_2 &= \left(\mathtt{U} \mathtt{W}^\top \mathtt{V}^\top \mid -\mathbf{T}\right) \end{aligned}$$

has points in front of both cameras.

- "Cheirality constraint": 3D points have to lie in front of both cameras
- If not:
 - Wrong configuration
 - Noise in image points and numerical issues
 - Corresponding points are outliers, i.e. false positives

Christopher Zach Computer Vision: Lecture 6 2023-11-16

Remember homographies?

- Let $P_1 = (I \mid \mathbf{0})$, $P_2 = (R \mid \mathbf{T})$ and $\Pi = (\mathbf{n}, d)$
- \bullet Points $\mathbf{X} \in \mathbb{R}^3$ on the plane satisfy $\mathbf{n}^\top \mathbf{X} + d = 0$
- Image point ${f x}$ in camera 1: ${f X}=\lambda {f x}$
- Now X ∈ Π:

$$\lambda \mathbf{n}^{\top} \mathbf{x} + d = 0 \implies \lambda = -\frac{d}{\mathbf{n}^{\top} \mathbf{x}} \, \wedge \, \, \mathbf{X} = -\frac{d}{\mathbf{n}^{\top} \mathbf{x}} \mathbf{x}$$

Corresponding image point im camera 2:

$$P_2\binom{\mathbf{X}}{1} = R\mathbf{X} + \mathbf{T} = -R\frac{d}{\mathbf{n}^{\top}\mathbf{x}}\mathbf{x} + \mathbf{T} \sim R\mathbf{x} - \frac{\mathbf{T}\mathbf{n}^{\top}\mathbf{x}}{d} = \underbrace{\left(R - \frac{\mathbf{T}\mathbf{n}^{\top}}{d}\right)}_{=H}\mathbf{x}$$

Homography in the calibrated setup

For a canonical camera pair, $P_1 = (I \mid \mathbf{0})$ and $P_2 = (R \mid \mathbf{T})$, and 3D plane $\Pi = (\mathbf{n}, d)$ the induced homography is given by $H = R - \frac{1}{d} \mathbf{T} \mathbf{n}^{\top}$.

 Christopher Zach
 Computer Vision: Lecture 6
 2023-11-16
 24 / 26

- Let $P_1 = (I \mid \mathbf{0})$, $P_2 = (R \mid \mathbf{T})$ and $\Pi = (\mathbf{n}, d)$
- \bullet Points $\mathbf{X} \in \mathbb{R}^3$ on the plane satisfy $\mathbf{n}^\top \mathbf{X} + d = 0$
- Image point ${\bf x}$ in camera 1: ${\bf X}=\lambda {\bf x}$
- Now $\mathbf{X} \in \Pi$:

$$\lambda \mathbf{n}^{\top} \mathbf{x} + d = 0 \implies \lambda = -\frac{d}{\mathbf{n}^{\top} \mathbf{x}} \wedge \mathbf{X} = -\frac{d}{\mathbf{n}^{\top} \mathbf{x}} \mathbf{x}$$

• Corresponding image point im camera 2:

$$\mathtt{P}_2 \binom{\mathbf{X}}{1} = \mathtt{R}\mathbf{X} + \mathbf{T} = -\mathtt{R}\frac{d}{\mathbf{n}^{\top}\mathbf{x}}\mathbf{x} + \mathbf{T} \sim \mathtt{R}\mathbf{x} - \frac{\mathbf{T}\mathbf{n}^{\top}\mathbf{x}}{d} = \underbrace{\left(\mathtt{R} - \frac{\mathbf{T}\mathbf{n}^{\top}}{d}\right)}_{=\mathtt{H}}\mathbf{x}$$

Homography in the calibrated setup

For a canonical camera pair, $P_1 = (I \mid \mathbf{0})$ and $P_2 = (R \mid \mathbf{T})$, and 3D plane $\Pi = (\mathbf{n}, d)$ the induced homography is given by $H = R - \frac{1}{d}\mathbf{T}\mathbf{n}^{\top}$.

 Christopher Zach
 Computer Vision: Lecture 6
 2023-11-16
 24 / 26

- Let $P_1=({ t I}\mid { t 0})$, $P_2=({ t R}\mid { t T})$ and $\Pi=({ t n},d)$
- ullet Points $\mathbf{X} \in \mathbb{R}^3$ on the plane satisfy $\mathbf{n}^{ op} \mathbf{X} + d = 0$
- Image point ${\bf x}$ in camera 1: ${\bf X}=\lambda {\bf x}$
- Now $\mathbf{X} \in \Pi$:

$$\lambda \mathbf{n}^{\top} \mathbf{x} + d = 0 \implies \lambda = -\frac{d}{\mathbf{n}^{\top} \mathbf{x}} \wedge \mathbf{X} = -\frac{d}{\mathbf{n}^{\top} \mathbf{x}} \mathbf{x}$$

• Corresponding image point im camera 2:

$$P_2\begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix} = \mathbf{R}\mathbf{X} + \mathbf{T} = -\mathbf{R}\frac{d}{\mathbf{n}^{\top}\mathbf{x}}\mathbf{x} + \mathbf{T} \sim \mathbf{R}\mathbf{x} - \frac{\mathbf{T}\mathbf{n}^{\top}\mathbf{x}}{d} = \underbrace{\left(\mathbf{R} - \frac{\mathbf{T}\mathbf{n}^{\top}}{d}\right)}_{=\mathbf{H}}\mathbf{x}$$

Homography in the calibrated setup

For a canonical camera pair, $P_1 = (\mathbf{I} \mid \mathbf{0})$ and $P_2 = (\mathbf{R} \mid \mathbf{T})$, and 3D plane $\Pi = (\mathbf{n}, d)$ the induced homography is given by $\mathbf{H} = \mathbf{R} - \frac{1}{d}\mathbf{T}\mathbf{n}^{\top}$.

Christopher Zach Computer Vision: Lecture 6 2023-11-16

- Comparison of d.o.f.
 - Homography H has 8 d.o.f.
 - R, T and Π together have 3+(3-1)+(4-1)=8 d.o.f.
- Given R, ${f T}$ and Π there is a unique (up to scale) ${f H}={f R}-\frac{1}{d}{f T}{f n}^{ op}$
- ullet Can we extract R, ${f T}$ and Π from a given H?

Homography decomposition

A homography H estimated from *normalized* image points has two solutions for R T and Π such that $\mathbf{H} = \mathbf{R}_i - \frac{1}{d_i} \mathbf{T}_i \mathbf{n}_i^{\top}$ for i = 1, 2.

- Matlab routine will be provided
- Python
 - Convert Matlab routine, or
 - ullet num, Rs, Ts, Ns = cv2.decomposeHomographyMat(H, K) (with K = I)
- Finding out which solution is the correct one is not always straightforward
 - More at the project presentation

- Comparison of d.o.f.
 - Homography H has 8 d.o.f.
 - R, T and Π together have 3+(3-1)+(4-1)=8 d.o.f.
- Given R, ${f T}$ and Π there is a unique (up to scale) ${f H}={f R}-\frac{1}{d}{f T}{f n}^{ op}$
- ullet Can we extract R, ${f T}$ and Π from a given H?

Homography decomposition

A homography H estimated from *normalized* image points has two solutions for R, \mathbf{T} and Π such that $\mathbf{H} = \mathbf{R}_i - \frac{1}{d_i} \mathbf{T}_i \mathbf{n}_i^{\top}$ for i = 1, 2.

- Matlab routine will be provided
- Python
- Convert Matlab routine, or
 - num, Rs, Ts, Ns = cv2.decomposeHomographyMat(H, K) (with K = I)
- Finding out which solution is the correct one is not always straightforward
 - More at the project presentation

- Comparison of d.o.f.
 - Homography H has 8 d.o.f.
 - R, T and Π together have 3+(3-1)+(4-1)=8 d.o.f.
- Given R, T and Π there is a unique (up to scale) $H = R \frac{1}{d} \mathbf{T} \mathbf{n}^{\top}$
- Can we extract R, T and Π from a given H?

Homography decomposition

A homography H estimated from normalized image points has two solutions for R, \mathbf{T} and Π such that $\mathbf{H} = \mathbf{R}_i - \frac{1}{d_i} \mathbf{T}_i \mathbf{n}_i^{\top}$ for i = 1, 2.

- Matlab routine will be provided
- Python
 - Convert Matlab routine, or
 - num, Rs, Ts, Ns = cv2.decomposeHomographyMat(H, K) (with K = I)

- Comparison of d.o.f.
 - Homography H has 8 d.o.f.
 - R, T and Π together have 3+(3-1)+(4-1)=8 d.o.f.
- ullet Given R, ${f T}$ and Π there is a unique (up to scale) ${f H}={f R}-{1\over d}{f T}{f n}^{ op}$
- ullet Can we extract R, ${f T}$ and Π from a given H?

Homography decomposition

A homography H estimated from *normalized* image points has two solutions for R, \mathbf{T} and Π such that $\mathbf{H} = \mathbf{R}_i - \frac{1}{d_i} \mathbf{T}_i \mathbf{n}_i^{\top}$ for i = 1, 2.

- Matlab routine will be provided
- Python
 - Convert Matlab routine, or
 - ullet num, Rs, Ts, Ns = cv2.decomposeHomographyMat(H, K) (with K = I)
- Finding out which solution is the correct one is not always straightforward
 - More at the project presentation

To do

Lab sessions today: MTI2, MTI4, SB-D020, SB-D409

- Next time: Robust Estimation.
- Work on Assignment 2.

More reading:

• Szeliski, Section 11.3 on Two-View Structure from Motion.

Christopher Zach