Coplanar Vectors

Let's prove that if the triple scalar product of three vectors is equal to zero, then these vectors will be coplanar. Consider vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} and \overrightarrow{m} . (Note that all of these vectors have a common starting point). Given that: $\overrightarrow{m} \perp \overrightarrow{OA}$, $\overrightarrow{m} \perp \overrightarrow{OB}$, $\overrightarrow{m} \perp \overrightarrow{OC}$. To prove that these vectors will be coplanar, it would be sufficient to prove that the lines OA, OB and OC are coplanar.

Theorem 1 If three lines OA, OB and OC are perpendicular to some other line m and intersect at some point O, then these lines lie in the same plane.

Proof

Consider lines OA, OB and OC which are all perpendicular to some line m and intersect at some point O (Figure 1). Since m is perpendicular to OA and OB, then it is also perpendicular to the plane α , which is defined by these two lines. (This statement will not be proven here, just assume it to be true). This means that m is perpendicular to any line $\in \alpha$.

Let's suppose that $OC \notin \alpha$. In that case, we can draw a line m', parallel to m such that it intersects OC at some point P, which does not coincide with point O. Since $OC \notin \alpha$ and point $O \in alpha$, then point $P \notin \alpha$. This means that m' would intersect α at some other point k. Since m' is parallel to m it is also perpendicular to OC and α . This means that we would have a triangle OPK with two right angles: $\angle OKP$ and $\angle KPO$.

This is impossible, hence OA,OB and OC are coplanar.

∴ QED

Hence, \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} as described above, are coplanar.

Figure 1