CS251: Homework #1

Due on October 8, 2019 at 2:00pm $Steven\ Libby\ Section\ A$

Austen Nelson

Problem 1

last week we showed that nand \odot is a universal operator. That is, we can write all operators in terms of nand. Show that \rightarrow is a universal operator by writing \neg , \land , and \lor with only \rightarrow .

- $A \rightarrow \bot = \neg A$
- $(A \to \bot) \to B = A \land B$
- $(A \to B) \to B = A \lor B$

Problem 2

Convert the following to CNF

Part One

 $(c \wedge a) \vee (b \wedge c)$ $(c \vee b) \wedge (a \vee b) \wedge (a \vee c)$

Part Two

 $(a \land \neg a) \lor (b \land \neg b)$

Part Three

 $a \to (b \equiv c)$

Part Four

 $(a \to b) \land (b \to c)$

Part Five

 $\neg(a \lor b)$

Part Six

 $(a \equiv b) \equiv c$

Problem 3

Prove the following:

Part One

 $a \vee b \vdash b \vee a :$

$$\underbrace{ A \lor B \qquad \frac{[A]}{B \lor A} \lor I2}_{B \lor A} \xrightarrow{B} \underbrace{ IB \qquad \frac{[B]}{B \lor A} \lor I1}_{B \lor A} \xrightarrow{B} \underbrace{ A} \underbrace{ A \lor B}$$

Part Two

 $(a \lor b), \neg b \vdash a$:

$$\underbrace{ \begin{bmatrix} A \\ A \\ A \end{bmatrix} \begin{bmatrix} A \\ A \end{bmatrix}}_{A \rightarrow A} \rightarrow I \qquad \underbrace{ \begin{bmatrix} B \\ A \\ B \end{bmatrix} \underbrace{ \begin{bmatrix} A \\ A \\ A \end{bmatrix}}_{A} \bot E }_{B \rightarrow A} \rightarrow I$$

Part Three

 $\neg a \lor \neg b \vdash \neg (a \land b)$:

Part Four

DL1: $\neg(\neg a \lor \neg b) \vdash a$

Part Five

 $\neg (a \land b) \vdash \neg a \lor \neg b$:

(Hint: you can use the previous problem, and a theorem from class.

$$\frac{\neg(\neg a \lor \neg b)}{a} DL1 \quad \frac{\neg(\neg a \lor \neg b)}{b} DL2 \quad \frac{\neg \neg a}{a} \neg \neg E$$