Normal Distribution

Mean=N x p=5.00, Sd= $\sqrt{N \times p \times (1-p)}$ =1.58

Binomial distribution can be approximated to a Normal distribution if np>5 and nq>5 (Continuity Correction required).

Normal Distribution

Poisson distribution can be approximated to a Normal distribution when $\lambda > 15$ (Continuity Correction

required).

You are playing Who Wants to Win a who was what is the probability you will get 5 or fewer correct out of 12, given that each question has only 2 possible choices? You have no lifelines.

 $X \sim B(12, 0.5)$ and we need to find P(X < 6).

$$\begin{split} P(X=0) &= {}^{12}C_0(0.5)^0(0.5)^{12-0} = 0.5^{12} \\ P(X=1) &= {}^{12}C_1(0.5)^1(0.5)^{12-1} = 12 * 0.5^{12} \\ P(X=2) &= {}^{12}C_2(0.5)^2(0.5)^{12-2} = 66 * 0.5^{12} \\ P(X=3) &= {}^{12}C_3(0.5)^3(0.5)^{12-3} = 220 * 0.5^{12} \\ P(X=4) &= {}^{12}C_4(0.5)^4(0.5)^{12-4} = 495 * 0.5^{12} \\ P(X=5) &= {}^{12}C_5(0.5)^5(0.5)^{12-5} = 792 * 0.5^{12} \\ \therefore P(X<6) &= (1+12+66+220+495+792) * 0.5^{12} \cong 0.387 \end{split}$$

 $X \sim B(12, 0.5)$ can be approximated to $X \sim N(6, 3)$. How/Why?

n = 12, p = 0.5 and q = 0.5. Since np and nq are both > 5, the Binomial distribution can be approximated to a Normal distribution, i.e., $X \sim B(n, p)$ can be approximated to $X \sim N(np, npq)$.

If we want to get P(X < 6), what is the next step to do in the Normal distribution? Calculate the z-score (or the standard-score).

$$z = \frac{x - \mu}{\sigma} = \frac{6 - 6}{\sqrt{3}} = 0$$

What do we do with the z-score? Look it up in the probability tables or R.

What is the probability corresponding to the z-score of 0?

$$P(X < 6) = 0.5$$

Z	0.00 0.01 0.02		0.02	0.03	0.04	0.05		
0.0	0.50000	0.50399	0.50798	0.51197	0.51595	0.51994		
0.1	0.53983	0.54380	0.54776	0.55172	0.55567	0.55962		
0.2	0.57926	0.58317	0.58706	0.59095	0.59483	0.59871		
0.3	0.61791	0.62172	0.62552	0.62930	0.63307	0.63683		
0.4	0.65542	0.65910	0.66276	0.66640	0.67003	0.67364		
0.5	0.69146	0.69497	0.69847	0.70194	0.70540	0.70884		
0.6	0.72575	0.72907	0.73237	0.73565	0.73891	0.74215		
0.7	0.75804	0.76115	0.76424	0.76730	0.77035	0.77337		
0.8	0.78814	0.79103	0.79389	0.79673	0.79955	0.80234		
0.9	0.81594	0.81859	0.82121	0.82381	0.82639	0.82894		
1.0	0.84134	0.84375	0.84614	0.84849	0.85083	0.85314		
1.1	0.86433	0.86650	0.86864	0.87076	0.87286	0.87493		
1.2	0.88493	0.88686	0.88877	0.89065	0.89251	0.89435		
1.3	0.90320	0.90490	0.90658	0.90824	0.90988	0.91149		
1.4	0.91924	0.92073	0.92220	0.92364	0.92507	0.92647		

So, P(X < 6) = 0.387 for $X \sim B(12, 0.5)$ and P(X < 6) = 0.5 for $X \sim N(6, 3)$. Is this a good approximation?

So, P(X < 6) = 0.387 for $X \sim B(12, 0.5)$ and P(X < 6) = 0.5 for $X \sim N(6, 3)$. Is this a good approximation?

So, P(X < 6) = 0.387 for $X \sim B(12, 0.5)$ and P(X < 6) = 0.5 for $X \sim N(6, 3)$.

$$z = \frac{5.5 - 6}{\sqrt{3}} = -0.29$$

 $P(X < 5.5) = 0.3859 \text{ for } X \sim N(6, 3)$

	0.00	0.01	0.02	0.02	0.04	0.05	0.06	0.07	0.00	0.00
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4060	0.4020	0.4000	0.4040	0.4004	0.4264	0.4704	0.4601	0.4644

Identify the right continuity correction for each discrete probability distribution.

Discrete	Continuous			
X < 3	X < 2.5			
X > 3	X > 3.5			
$X \leq 3$	X < 3.5			
$X \ge 3$	X > 2.5			
$3 \le X < 10$	2.5 < X < 9.5			
X = 0	-0.5 < X < 0.5			
$3 \le X \le 10$	2.5 < X < 10.5			
$3 < X \le 10$	3.5 < X < 10.5			
X > 0	X > 0.5			
3 < X < 10	3.5 < X < 9.5			

15.73%

 -1σ

 -2σ

 -3σ

68.27%

0σ

15.73%

2σ

3σ

 4σ

 1σ

