Mini curso de Probabilidade e Estatística

Por tutor Mestre Omar Barroso Khodr

Aula 5

- Distribuições de variáveis aleatórias discretas
- Distribuição Binomial
- Distribuição de Poisson
- Aplicações em problemas reais

Exemplo Intuitivo

- Exemplo: lances livres (basquetebol).
- Stephen Curry, um lendário jogador da NBA é amplamente conhecido pelas suas habilidades notórias de arremessar a bola.
- Suponha, que de acordo com as estatísticas da NBA, Curry costuma acertar 90% dos lances livres.
- Nesse caso, vamos supor que Curry fará 3 lances livres, lembrando que cada arremesso é um evento independente.

Fonte: Golden State Warriors/NBA

Exemplo Intuitivo

- Exemplo: lances livres (basquetebol).
- Probabilidade de sucesso = p = 0.9
- Probabilidade de falha = q = 1-0.9 = 0.1.
- Desta maneira, como cada evento é independente e são três arremessos livres a probabilidade de Curry converter os lances livres é:
- p x p x q ou $0.9 \times 0.9 \times 0.1 = 0.081$
- Ou seja, P(S,F,S).

Fonte: Golden State Warriors/NBA

Curiosidade: Estatísticas Stephen Curry

Year ◆	Team +	GP ÷	GS ÷	MPG ÷	FG% ÷	3P% ÷	FT% ÷	RPG +	APG ÷	SPG ÷	BPG ÷	PPG ÷
2009–10	Golden State	80	77	36.2	.462	.437	.885	4.5	5.9	1.9	.2	17.5
2010–11	Golden State	74	74	33.6	.480	.442	.934*	3.9	5.8	1.5	.3	18.6
2011–12	Golden State	26	23	28.1	.490	.455	.809	3.4	5.3	1.5	.3	14.7
2012–13	Golden State	78	78	38.2	.451	.453	.900	4.0	6.9	1.6	.2	22.9
2013–14	Golden State	78	78	36.5	.471	.424	.885	4.3	8.5	1.6	.2	24.0
2014–15 [†]	Golden State	80	80	32.7	.487	.443	.914*	4.3	7.7	2.0	.2	23.8
2015–16	Golden State	79	79	34.2	.504	.454	.908*	5.4	6.7	2.1*	.2	30.1*
2016–17†	Golden State	79	79	33.4	.468	.411	.898	4.5	6.6	1.8	.2	25.3
2017–18 [†]	Golden State	51	51	32.0	.495	.423	.921*	5.1	6.1	1.6	.2	26.4
2018–19	Golden State	69	69	33.8	.472	.437	.916	5.3	5.2	1.3	.4	27.3
2019–20	Golden State	5	5	27.9	.402	.245	1.000 ^[g]	5.2	6.6	1.0	.4	20.8
2020–21	Golden State	63	63	34.2	.482	.421	.916	5.5	5.8	1.2	.1	32.0*
2021–22†	Golden State	64	64	34.5	.437	.380	.923	5.2	6.3	1.3	.4	25.5
2022–23	Golden State	56	56	34.7	.493	.427	.915	6.1	6.3	.9	.4	29.4
2023–24	Golden State	74	74	32.7	.450	.408	.923	4.5	5.1	.7	.4	26.4
2024–25	Golden State	70	70	32.2	.448	.397	.933*	4.4	6.0	1.1	.4	24.5
Career		1,026	1,020	34.1	.471	.423	.911 [‡]	4.7	6.4	1.5	.3	24.7
All-Star		10	9	26.5	.424	.393	1.000	6.0	5.6	1.4	.3	21.6

Fonte: NBA/Wikipedia

Exemplo Intuitivo

 No exemplo anterior estávamos considerando combinações de tentativas de arremessos livres!

Combinações

- No caso, na distribuição binomial estamos considerando combinações!
- Desta maneira,

$$_{n}\mathrm{C}_{k}=rac{n!}{(n-k)!\cdot k!}$$

- N = número de tentativas
- K = maneiras que podemos organizar
- Por exemplo, use a fórmula de combinação para verificar se essas 3 maneiras de arremessar lances livres representam todas as maneiras que podemos fazer 2 em 3 tentativas...

•
$$\frac{n!}{(n-k)! \cdot k!} = \frac{3!}{(3-2)! \cdot 2!} = \frac{3 \cdot 2 \cdot 1}{(1)! \cdot 2 \cdot 1} = 3$$

Combinações

• Desta maneira,
$${}_{n}\mathrm{C}_{k} = \frac{n!}{(n-k)! \cdot k!}$$

•
$$\frac{n!}{(n-k)! \cdot k!} = \frac{3!}{(3-2)! \cdot 2!} = \frac{3 \cdot 2 \cdot 1}{(1)! \cdot 2 \cdot 1} = 3$$

- Portanto, há 3 maneiras de organizar 2 acertos em 3 tentativas.
- Acerto, Acerto, Erro
- Acerto, Erro, Acerto
- Erro, Acerto, Acerto

- Frequentemente, estamos interessados no resultado de ensaios de Bernoulli independentes e repetidos, ou seja, o número de sucessos em experimentos repetidos.
- 1. independente o resultado de um ensaio não afeta o resultado de outro ensaio.
- 2. repetido as condições são as mesmas para cada ensaio, ou seja, p e q permanecem constantes entre os ensaios.

- Você faz um exame de aprovação/reprovação. Ou você é aprovado (resultando em X=1) ou reprovado (resultando em X=0).
- Você joga uma moeda. O resultado é cara ou coroa.
- Uma animal nasce. O gênero pode ser masculino ou feminino.

- Nos experimentos, o fato de seus resultados poderem ser classificados como **sucesso** ou **falha**.
- Em um de dois eventos [discretos], por exemplo, uma moeda pode dar cara ou coroa; a probabilidade de uma pessoa pode morrer ou não morrer; e, uma pessoa pode estar empregada ou desempregada.
- Esses resultados são frequentemente rotulados como "sucesso" ou "fracasso" em nossas análises.
- Observe que não existe uma conotação de categórica aqui.
- Ou seja, em uma análise não rotulamos "sucesso" ou "fracasso" como uma qualificação de certo ou errado. Apenas listamos friamente como um fato matemático.

- A notação de eventos de "sucesso" ou "falha" é demonstrada dessa maneira:
- p = probabilidade de sucesso = 1;
- q = probabilidade de falha = 1 p \equiv 0.
- Nesse caso, em alguns caso também podemos denominar a probabilidade neste formato.
- $P_X(x) = \begin{cases} 1; para \ x = 1 \ (sucesso) \\ 0; \ caso \ contrário \ (c.c.) \end{cases}$
- Note, que as regras do CDF e PMF são aplicadas aqui. Ou seja, p + q = 1.

• A distribuição binomial modela o número de sucessos em um número fixo de ensaios independentes de Bernoulli.

Depende de:

- n = número de tentativas
- p = probabilidade de sucesso em cada tentativa
- Desta maneira, denominamos a variável aleatória X como o número de experimentos de sucesso.
- $X \sim Binomial(n, p)$

• Formula:

$$P_{\chi} = \binom{n}{k} p^k (1-p)^{n-k}$$

$$\binom{n}{k} = \binom{n!}{(n-k)! \cdot k!}$$

- $\binom{n}{k}$: o número de combinações
- p^k : a probabilidade de sucesso ocorrer k vezes
- $(1-p)^{n-k}$: a probabilidade de falha ocorrer n-k vezes

Exemplo: Distribuição Bernoulli

- Suponha que estamos tentando denominar 3 ensaios [experimentos] de uma competição nacional de LOL[online] que vale vagas para o campeonato mundial.
- Suponha que no ranking dos melhores jogadores, o jogador *Bob_360* tem a probabilidade de sucesso em cada jogo de p = 0.6. Qual seria a probabilidade de *Bob_360* em ganhar exatamente 2 de 3 jogos?
- Primeiramente, definimos os parâmetros:
- n = 3 (número de ensaios)
- p = 0.6 (probabilidade de sucesso)
- k = 2 (número de sucessos para descobrir)

Exemplo: Distribuição Bernoulli

- Suponha que no ranking dos melhores jogadores, o jogador Bob_360 tem a probabilidade de sucesso em cada jogo de p = 0.6. Qual seria a probabilidade de Bob_360 em ganhar exatamente 2 de 3 jogos?
- Primeiramente, definimos os parâmetros:
- n = 3 (número de ensaios)
- p = 0.6 (probabilidade de sucesso)
- k = 2 (número de sucessos para descobrir)
- $P(X = 2) = {3 \choose 2} \cdot (0.6)^2 \cdot (0.4)^1 = 3.0.36 \cdot 0.4 = 0.432$
- Portanto, a probabilidade de Bob_360 obter exatamente 2 vitórias em 3 jogos é de 0,432.

- A distribuição de Poisson é usada para modelar o número de vezes que um evento ocorre em um intervalo fixo de tempo ou espaço [amostral], se:
- Os eventos ocorrem independentemente.
- Os eventos ocorrem a uma taxa média constante.
- Dois eventos não podem ocorrer exatamente no mesmo instante.
- Os eventos devem ser aleatórios e independentes.

Fonte: Wikipedia/calc shop

- Esse tipo de modelagem, nos ajuda a responder questões do tipo:
- Quantos clientes visitarão uma loja em uma hora?
- Quantos e-mails receberei por dia?
- Quantos carros param em um semáforo cada vez que ele se torna vermelho?
- Quantas ações da B3 são compradas nos primeiros 10 minutos após um anúncio matinal de leilões de SWAPs cambiais pelo Banco Central do Brasil?

Fonte: Wikipedia/calc shop

• Formula:

•
$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

- X: variável aleatória (número de eventos)
- k: número específico de eventos (e.g.; 0,1,2,3...)
- λ : número médio de eventos em um intervalo (em alguns casos podemos considerar a variância também)
- $e \sim 2,718$: número de Euler
- **Lembrando:** é utilizada para distribuições discreta (dados de contagem); e, assumimos que λ é constante.

•
$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

- Suponha que, em **média 4 papéis** [*penny stocks*] são comprados a cada 30 segundos pelo índice *Russel 3000*. Qual é a probabilidade de que exatamente **2 compras** sejam feitas nos próximos 30 segundos?
- Assim,
- $\lambda = 4$
- k = 2

•
$$P(X = 2) = \frac{e^{-4} \cdot 4^2}{2!} = \frac{\frac{1}{e^4} \cdot 16}{2!} = \frac{0,0183 \cdot 16}{2} = \frac{0,2928}{2} = 0,1464$$

•
$$P(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

- Suponha que, em **média** 4 papéis [penny stocks] são comprados a cada 30 segundos pelo índice Russel 3000. Qual é a probabilidade de que exatamente 2 compras sejam feitas nos próximos 30 segundos?
- Assim,
- $\lambda = 4$
- k = 2

•
$$P(X = 2) = \frac{e^{-4}.4^2}{2!} = \frac{\frac{1}{e^4}.16}{2.1} = \frac{0,0183.16}{2} = \frac{0,2928}{2} = 0,1464$$

• Dessa maneira, a probabilidade de exatamente 2 compras seja feitas a cada 30 segundos é de 14,64%.

Bibliografia

- BUSSAB, W. O.; MORETTIN, P. A. Estatística Básica. Saraiva, 2017.
- LARSON, R.; FARBER, B. Estatística Aplicada. Pearson, 2016.
- **Pishro-Nik; H.** Introduction to Probability, Statistics, and Random Processes. Kappa Research, 2014.
- TRIOLA, M. F. Introdução à Estatística. Pearson, 2018.