matrix. For a concrete example in \mathbb{R}^6 , if $u^*(x_1,\ldots,x_6)=x_3+2x_4+3x_5+4x_6$, we obtain the basis for the hyperplane H of equation

$$x_3 + 2x_4 + 3x_5 + 4x_6 = 0$$

given by the following matrix:

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -2 & -3 & -4 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}.$$

Problem 3. Conversely, given a hyperplane H in \mathbb{R}^n given as the span of n-1 linearly vectors (u_1, \ldots, u_{n-1}) , it is possible using determinants to find a linear form $(\lambda_1, \ldots, \lambda_n)$ that vanishes on H.

In the case n=3, we are looking for a row vector $(\lambda_1, \lambda_2, \lambda_3)$ such that if

$$u = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \quad \text{and} \quad v = \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

are two linearly independent vectors, then

$$\begin{pmatrix} u_1 & u_2 & u_2 \\ v_1 & v_2 & v_2 \end{pmatrix} \begin{pmatrix} \lambda_1 \\ \lambda_2 \\ \lambda_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix},$$

and the cross-product $u \times v$ of u and v given by

$$u \times v = \begin{pmatrix} u_2 v_3 - u_3 v_2 \\ u_3 v_1 - u_1 v_3 \\ u_1 v_2 - u_2 v_1 \end{pmatrix}$$

is a solution. In other words, the equation of the plane spanned by u and v is

$$(u_2v_3 - u_3v_2)x + (u_3v_1 - u_1v_3)y + (u_1v_2 - u_2v_1)z = 0.$$

Problem 4. Here is another example illustrating the power of Theorem 11.4. Let $E = \mathrm{M}_n(\mathbb{R})$, and consider the equations asserting that the sum of the entries in every row of a matrix $A \in \mathrm{M}_n(\mathbb{R})$ is equal to the same number. We have n-1 equations

$$\sum_{j=1}^{n} (a_{ij} - a_{i+1j}) = 0, \quad 1 \le i \le n - 1,$$