Отчёт по лабораторной работе №8 Иванов Анатолий Павлович

Цель работы:

Требуется запрограммировать модифицированный метод Эйлера. Программа должна работать для произвольной размерности системы уравнений.

Функция правой части системы и начальное условие подаются на вход программе. Вычисления должны производиться с пошаговым контролем точности по правилу Рунге. Если на текущем шаге точность не достигается, то шаг уменьшается в 2 раза, если достигнутая погрешность меньше заданной в 64 раза, то шаг увеличивается в 2 раза.

Входные данные:

На вход подаются несколько строк, в которых:

начало промежутка t_0

конец промежутка Т

начальный шаг h 0

максимальное число вызовов функции правой части N_x

желаемая точность ерѕ

число уравнений

следующие n+3 строк определяют функцию правой части на Python

последняя строка содержит п чисел - начальное условие

```
t0 = 1.5

T = 2.5

h0 = 0.1

N_x = 10000

eps = 0.0001

n = 3

eps_count = [0.001, 0.0001, 0.000001, 0.0000001]
```

Рисунок 1. "Входные данные"

Выходные данные

Программа печатает в консоль следующие столбцы, одна строчка соответствует одному шагу интегрирования:

- 1. значение t
- 2. значение шага h
- 3. оценка Рунге R
- 4. истраченое число вычислений правой части N
- 5. значения функций решений

Алгоритм

```
while t < T and kounter[0] < N_x:
    v_First = euler_Modf(t,v,h)
    v_Second = euler_Modf(t,v,h/2)
    v_Second = euler_Modf(t + h/2, v_Second, h/2)

R = np.linalg.norm(v_First - v_Second) / (pow(2,2) - 1)

if R > eps:
    h /= 2

elif R < (eps / 64):
    h *= 2

else:
    v = v_First
    t += h
    steps.append(h)
    solutions.append(v.copy())
    coord.append(t)</pre>
```

Рисунок 2. "Алгоритм"

Результат работы программы:

Eps = 0.001

1.500000	0.100000 0	0	1.00	0000	1.000	0000	2.000	0000	
1.600000	0.100000 8.45154e-0)5	6	0.962	820	1.061	1398	2.210309	
1.700000	0.100000 9.33737e-0)5	12	0.927	7221	1.12	5613	2.442690)
1.800000	0.100000 1.03174e-0)4	18	0.893	3145	1.19	2637	2.699459)
1.900000	0.100000 1.14015e-0)4	24	0.860)540	1.26	2439	2.983178	3
2.000000	0.100000 1.26009e-0)4	30	0.829	9352	1.33	4956	3.296678	3
2.100000	0.100000 1.39277e-0)4	36	0.799	9532	1.41	0090	3.643086	5
2.200000	0.100000 1.53956e-0)4	42	0.771	1031	1.48	7698	4.025858	3
2.300000	0.100000 1.70196e-0)4	48	0.743	3801	1.56	7592	4.448812	2
2.400000	0.100000 1.88162e-0)4	54	0.717	7797	1.64	9522	4.916167	7
2.500000	0.100000 2.08039e-0)4	60	0.692	2976	1.73	3175	5.432587	7