Notes of J.E. Marsden's – Foundations of Mechanics

Regoon Wang, ChemE@UNSW wang.regoon@gmail.com

October 1, 2013

Contents

Ι	\mathbf{Pr}	reliminaries
1	Diff 1.1 1.2 1.3 1.4 1.5 1.6 1.7	Topology
2	Calc 2.1 2.2 2.3 2.4 2.5 2.6 2.7	culus on ManifoldsVector Fields as Dynamical SystemsVector Fields as Differential OperatorsExterior AlgebraCartan's Calculus of Differential FormsOrientable ManifoldsIntegration on ManifoldsSome Riemannian Geometry
II 3		nalytical Dynamics niltonian and Lagrangian Systems
3	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8	Symplectic Algebra
4	4.1	miltonian Systems with Symmetry Lie Groups and Group Actions

9		e Two-Body Problem Models for Two Bodies	2 0
0			
IJ	√ (Celestial Mechanics	19
	8.8	Experimental Mechanics	18
	8.7	The General Pathology	18
	8.6	A Zoo of stable Bifurcations	18
	8.5	Structural Stability	18
	8.4	Generic Properties	18
	8.3	Stability of Orbits	18
	8.2	Orbit Cylinders	18
-	8.1	Critical Elements	18
8	Har	miltonian Dynamics	18
	7.8	Experimental Dynamics	17
	7.7	A Zoo of Stable Bifurcations	17
	7.6	Bifurcations of Generic Arcs	17
	7.5	Absolute Stability and Axiom A	17
	7.4	Structural Stability	17
	7.3	Generic Properties	17
	7.2	Stable Manifolds	17
-	7.1	Critical Elements	17
7	Diff	ferentiable Dynamics	16
	6.3	Stability	15
	6.2	Recurrence	15
	6.1	Limit and Minimal Sets	15
6		pological Dynamics	15
11	. 4	An Outline of Quantative Dynamics	17
ΙΙ	т.	An Outline of Qualitative Dynamics	14
	5.6	Introduction to Nonlinear Oscillations	13
	$5.4 \\ 5.5$	Introduction to Infinite-Dimensional Hamiltonian Systems	13
	5.3 5.4	Lagrangian Submanifolds	13 13
	5.2	Canonical Transformations and Hamilton-Jacobi Theory	13
	5.1	Time-Dependent Systems	13
5		milton-Jacobi Theory and Mathematical Physics	13
	4.6	The Topology of the Rigid Body	12
	4.5	The Topology of Simple Mechanical Systems	12
	4.4	Hamiltonian Systems on Lie Groups and the Rigid Body	12
	4.3	Reduction of Phase Space with Symmetry	12

	9.2	Elliptic Orbits and Kepler Elements	20
	9.3	The Delaunay Variables	20
	9.4	Lagrange Brackets of Kepler Elements	20
	9.5	Whittaker's Method	20
	9.6	Poincare Variables	20
	9.7	Summary of Models	20
	9.8	Topology of the Two-Body Problem	20
10	The	Three-Body Problem	21
	10.1	Models for Three Bodies	21
	10.2	Critical Points in the Restricted Three-Body Problem	21
	10.3	Closed Orbits in the Restricted Three-Body Problem	21
	10.4	Topology of the Plannar n-Body Problem	21

Part I Preliminaries

Differential Theory

1.1 Topology

Exercises

1.2 Finite-Dimensional Banach Sapce

Exercises

1.3 Local Differential Calculus

Exercises

1.4 Manifolds and Mappings

Exercises

1.5 Vector Bundles

Exercises

1.6 The Tangent Bundle

Exercises

1.7 Tensors

Calculus on Manifolds

	2.1	Vector	Fields	as	Dynamical	Systems
--	-----	--------	--------	----	-----------	---------

Exercises

2.2 Vector Fields as Differential Operators

Exercises

2.3 Exterior Algebra

Exercises

2.4 Cartan's Calculus of Differential Forms

Exercises

2.5 Orientable Manifolds

Exercises

2.6 Integration on Manifolds

Exercises

2.7 Some Riemannian Geometry

Part II Analytical Dynamics

Hamiltonian and Lagrangian Systems

3.1 Symplectic Algebra

Exercises

3.2 Symplectic Geometry

Exercises

3.3 Hamiltonian Vector Fields and Poisson Brackets

Exercises

3.4 Integral Invariants, Energy Surfaces, and Stability

Exercises

3.5 Lagrangian Systems

Exercises

3.6 The Legendre Transformation

Exercises

3.7 Mechanics on Riemannian Manifolds

Exercises

3.8 Variational Principles₁in Mechanics

Hamiltonian Systems with Symmetry

4.1 Lie Groups and Group Actions

Exercises

4.2 The Momentum Mapping

Exercises

4.3 Reduction of Phase Space with Symmetry

Exercises

4.4 Hamiltonian Systems on Lie Groups and the Rigid Body

Exercises

4.5 The Topology of Simple Mechanical Systems

Exercises

4.6 The Topology of the Rigid Body

Hamilton-Jacobi Theory and Mathematical Physics

5.1 Time-Dependent Systems

Exercises

5.2 Canonical Transformations and Hamilton-Jacobi Theory

Exercises

5.3 Lagrangian Submanifolds

Exercises

5.4 Quantization

Exercises

5.5 Introduction to Infinite-Dimensional Hamiltonian Systems

Exercises

5.6 Introduction to Nonlinear Oscillations

Part III An Outline of Qualitative Dynamics

Topological Dynamics

6.1 Limit and Minimal Sets

Exercises

6.2 Recurrence

Exercises

6.3 Stability

Differentiable Dynamics

7.1	Critical	Elements
1 · L	Cilulai	Tiements

Exercises

7.2 Stable Manifolds

Exercises

7.3 Generic Properties

Exercises

7.4 Structural Stability

Exercises

7.5 Absolute Stability and Axiom A

Exercises

7.6 Bifurcations of Generic Arcs

- 7.7 A Zoo of Stable Bifurcations
- 7.8 Experimental Dynamics

Hamiltonian Dynamics

- 8.1 Critical Elements
- 8.2 Orbit Cylinders

Exercises

8.3 Stability of Orbits

Exercises

8.4 Generic Properties

- 8.5 Structural Stability
- 8.6 A Zoo of stable Bifurcations
- 8.7 The General Pathology
- 8.8 Experimental Mechanics

Part IV Celestial Mechanics

The Two-Body Problem

$^{\circ}$	N / T 1 _ 1	C	M	D - 11
9.1	Models	m	I WO	Bodies

Exercises

- 9.2 Elliptic Orbits and Kepler Elements
- 9.3 The Delaunay Variables
- 9.4 Lagrange Brackets of Kepler Elements
- 9.5 Whittaker's Method
- 9.6 Poincare Variables

Exercises

9.7 Summary of Models

Exercises

9.8 Topology of the Two-Body Problem

The Three-Body Problem

10.1 Models for Three Bodies

Exercises

10.2 Critical Points in the Restricted Three-Body Problem

Exercises

10.3 Closed Orbits in the Restricted Three-Body Problem

Exercises

10.4 Topology of the Plannar n-Body Problem

Appendix

General Theory by Kolmogorov