MACHINE LEARNING (CS-5710) ASSIGNMENT - 5

Name: Neeraj Kumar Kajuluri

Student ID: 700742091

Git hub Link :- https://github.com/NeerajKumarKajuluri/ML-Assignment-5.git

Video Link: -

https://drive.google.com/file/d/1rZgJMQwfSwbUIIO8kpWv6wnmN9RSXCTe/view?usp=sharing

1. Principal Component Analysis

- a. Apply PCA on CC dataset.
- b. Apply k-means algorithm on the PCA result and report your observation if the s ilhouette score has improved or not?
- c. Perform Scaling+ PCA+K-Means and report performance.


```
In [253]: ▶ # Apply k-means algorithm on the PCA result and report your observation if the silhouette score has improved or not?
                   nclusters = 4
km = KMeans(n_clusters=nclusters)
km.fit(finaldf)
     Out[253]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=4, n_init=10, n_jobs=None, precompute_distances='auto',
                            random_state=None, tol=0.0001, verbose=0)
y_cluster_kmeans) = inhetic(\lambda) score = metrics.silhouette_score(finaldf, y_cluster_kmeans) print('Silhoutte score for just PCA:',score)
                   Silhoutte score for just PCA: 0.504781047022562
In [255]: ▶ #Reload the dataset again
                  X = cc_dataset.iloc[:,1:]
                  imputer = SimpleImputer(missing_values=np.nan, strategy='mean') imputer = imputer.fit(X)
                 X = imputer.transform(X)
                 print(X)
X=pd.DataFrame(X)
                  [[4.09007490e+01 8.18182000e-01 9.54000000e+01 ... 1.39509787e+02
                    0.00000000e+00 1.20000000e+01]
                   [3.20246742e+03 9.09091000e-01 0.00000000e+00 ... 1.07234022e+03
                   2.22222000e-01 1.20000000e+01]
[2.49514886e+03 1.00000000e+00 7.73170000e+02 ... 6.27284787e+02
                    0.00000000e+00 1.20000000e+01]
                   [2.33986730e+01 8.33333000e-01 1.44400000e+02 ... 8.24183690e+01
                    2.50000000e-01 6.00000000e+00]
                   1.34575640e+01 8.33333000e-01 0.0000000e+00 ... 5.57556280e+01 2.50000000e-01 6.00000000e+00] [3.72708075e+02 6.66667000e-01 1.09325000e+03 ... 8.82889560e+01 0.00000000e+00 6.00000000e+00]]
```

```
In [256]: ▶ #Apply scaling on the dataset
                   scaler = StandardScaler()
                   scaler.fit(X)
                   x_scaler = scaler.transform(X)
                    #Apply PCA with k value as 2 again
                   pca = PCA(2)
                   x_pca = pca.fit_transform(x_scaler)
df2 = pd.DataFrame(data=x_pca)
finaldf = pd.concat([df2,cc_dataset[['TENURE']]],axis=1)
                   print(finaldf)
                          -1.682221 -1.076448
                         -1.138295 2.506477
0.969681 -0.383525
                                                             12
                         -0.873628 0.043166
                         -1.599434 -0.688578
                    8945 -0.359630 -2.016142
                   8946 -0.564369 -1.639120
8947 -0.926204 -1.810782
                   8948 -2.336551 -0.657962
                   8949 -0.556421 -0.400473
                    [8950 rows x 3 columns]
In [257]: ► #Apply k-means on the scaled PCA output
                   km = KMeans(n_clusters=nclusters)
km.fit(finaldf)
    Out[257]: KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300, n_clusters=4, n_init=10, n_jobs=None, precompute_distances='auto', random_state=None, tol=0.0001, verbose=0)
In [258]: N
y_cluster_kmeans = km.predict(finaldf)
score = metrics.silhouette_score(finaldf, y_cluster_kmeans)
print('Silhoutte score for scaled=pca=keans:',score)
                    Silhoutte score for scaled=pca=keans: 0.4378874170287716
               #Observation:
               The score is reduced after performing the PCa, so this data need not to be undergone with PCA.
```

2. Use pd_speech_features.csv

- a. Perform Scaling
- b. Apply PCA (k=3)
- c. Use SVM to report performance.

		ch_df=po ch_df.ho		sv('data	asets/pd	_speech_fe	eatures.csv')				
Out[269]:	i	d gender	PPE	DFA	RPDE	numPulses	numPeriodsPulses	meanPeriodPulses	stdDevPeriodPulses	locPctJitter	tqwt_kurtosisValue_dec
	0) 1	0.85247	0.71826	0.57227	240	239	0.008064	0.000087	0.00218	1.5
	1) 1	0.76686	0.69481	0.53966	234	233	0.008258	0.000073	0.00195	1.5
	2) 1	0.85083	0.67604	0.58982	232	231	0.008340	0.000060	0.00176	1.9
	3	1 0	0.41121	0.79672	0.59257	178	177	0.010858	0.000183	0.00419	3.7
	4	1 0	0.32790	0.79782	0.53028	236	235	0.008162	0.002669	0.00535	6.1

```
In [272]: ► #Apply scaling on the dataset
                x =speech_df.iloc[:,1:]
                scaler = StandardScaler()
                scaler.fit(x)
                speech_x_scaler = scaler.transform(x)
                #Apply PCA with value 3
                pca = PCA(3)
                speech_x_pca = pca.fit_transform(speech_x_scaler)
speech_df2 = pd.DataFrame(data=speech_x_pca)
                speech_finaldf = pd.concat([speech_df2,speech_df[['class']]],axis=1)
print(speech_finaldf)
                    -10.052430 1.476819 -6.828359
                     -10.641066 1.590408 -6.811675
                     -13.520081 -1.243924 -6.794537
                      -9.142525 8.848870 15.300289
                                                                1
                      -6.758090 4.624220 15.645673
                .. ... ... 751 22.377449 6.470194
                                                1.439479
                 752 13.503270 1.450496
                                                9.344896
                      8.328507 2.392509
                                              -0.911248
                754
                      4.074595 5.417625 -0.847067
4.052810 6.076461 -2.022293
                [756 rows x 4 columns]
In [273]: ► #Apply SVM classifier
                 clf = SVC(kernel='linear')
x =speech_finaldf.iloc[:,:-1]
y =speech_finaldf.iloc[:,-1]
                 X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.33, random_state=42)
clf.fit(X_train, y_train)
y_pred=clf.predict(X_test)
                 accuracy_score(y_test, y_pred)
print("SVM accuracy =", accuracy_score(y_test, y_pred))
                 SVM accuracy = 0.768
In [274]: ▶ #Classification report for the above classifier
                 print(classification_report(y_test, y_pred))
                                 precision recall f1-score support
                                       0.82
                                                  0.20
                                                              0.33
                                                0.98
                                       0.76
                                                              0.86
                                                              0.77
                                                                           250
                     accuracy
                                               0.59
0.77
                                                              0.59
                                                                           250
                     macro avg
                 weighted avg
                                       0.78
                                                              0.71
                                                                           250
```

Question 3

Apply Linear Discriminant Analysis (LDA) on Iris.csv dataset to reduce dimensionality of data to k=2

In [276]: ▶	#LO	#Load the IRIS dataset												
	<pre>iris_df = pd.read_csv("datasets/iris.csv") iris_df.head()</pre>													
Out[276]:		ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species							
	0	1	5.1	3.5	1.4	0.2	Iris-setosa							
	1	2	4.9	3.0	1.4	0.2	Iris-setosa							
	2	3	4.7	3.2	1.3	0.2	Iris-setosa							
	3	4	4.6	3.1	1.5	0.2	Iris-setosa							
	4	5	5.0	3.6	1.4	0.2	Iris-setosa							

```
In [281]: ▶ #apply the standard scaling
                stdsc = StandardScaler()
                X_train_std = stdsc.fit_transform(iris_df.iloc[:,:-1].values)
                #Label encoding the species column
class_le = LabelEncoder()
                y = class_le.fit_transform(iris_df['Species'].values)
                #Applying LDA on the Datset
                lda = LinearDiscriminantAnalysis(n components=2)
                X_train_lda = lda.fit_transform(X_train_std,y)
                data=pd.DataFrame(X_train_lda)
                data['class']=y
data.columns=["LD1","LD2","class"]
                data.head()
    Out[281]:
                         LD1
                                   LD2 class
                 0 -10.036763 -0.451330
                 1 -9.172930 -1.477234
                 2 -9.480989 -0.979693
                 3 -8.818119 -1.408602
                    -9.960200 -0.112546
In [284]: M markers = ['s', 'x', 'o']
colors = ['y', 'b', 'g']
sns.lmplot(x="LD1", y="LD2", data=data, hue='class', markers=markers, fit_reg=False, legend=False)
                plt.legend()
                plt.show()
                 LD2
```

Question 4

Briefly identify the difference between PCA and LDA.

Answer: PCA performs better in case where number of samples per class is less. Whereas LDA works better with large dataset having multiple classes; class separability is an important factor while reducing dimensionality. PCA finds directions of maximum variance regardless of class labels while LDA finds directions of maximum class separability.