15CSE302 Database Management Systems Lecture 22 Canonical Cover

B.Tech /III Year CSE/V Semester

LTPC 2023

DBMS Team
Dr G Jeyakumar
Bindu K R
Dr Priyanka Kumar
R. Manjusha
Department of CSE
Amrita School of Engineering

Slides Courtesy: Carlos Alvarado, San Jose State University

Syllabus

Brief Recap of Previous Lecture

- Closure of FD
- Closure of Attributes

Today we'll discuss

Canonical Cover

Canonical Cover

- \blacksquare Suppose that we have a set of functional dependencies F on a relation schema.
- Whenever a user performs an update on the relation, the database system must ensure that the update does not violate any functional dependencies; that is, all the functional dependencies in Fare satisfied in the new database state.
- If an update violates any functional dependencies in the set F, the system must roll back the update.
- We can reduce the effort spent in checking for violations by testing a simplified set of functional dependencies that has the same closure as the given set.
- This simplified set is termed the **Canonica Cover**

To define canonical cover we must first define extraneous attributes.

An attribute of a functional dependency in F is extraneous if we can remove it without changing **F**⁺

Removing an attribute from the left side of a functional dependency could make it a stronger constraint.

For example

- if we have AB \rightarrow C and remove B, we get the possibly stronger result A \rightarrow C.
- It may be stronger because $A \rightarrow C$ logically implies $AB \rightarrow C$, but $AB \rightarrow C$ does not, on its own, logically imply $A \rightarrow C$

But, depending on what our set F of functional dependencies happens to be, we may be able to remove B from $AB \rightarrow C$ safely.

For example, suppose that

$$F = \{AB \rightarrow C, A \rightarrow D, D \rightarrow C\}$$

Then we can show that F logically implies $A \rightarrow C$, making extraneous in $AB \rightarrow C$.

An attribute of a functional dependency in F is extraneous if we can remove it without changing F +

Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.

Remove from the left side:

Attribute A is **extraneous** in α if

- $\mathbf{A} \in \alpha$ and
- F logically implies $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$.

Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.

Remove from the right side:

- \blacksquare Attribute A is extraneous in β if
 - \blacksquare A $\in \beta$ and
 - The set of functional dependencies

$$(F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\}$$
 logically implies F.

Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one

Testing an Extraneous Attribute

Let R be a relation schema and let F be a set of functional dependencies that hold on R.

Consider an attribute in the functional dependency $\alpha \rightarrow \beta$.

- **To test if attribute** $A \in \beta$ is extraneous in β
 - Consider the set:

$$F' = (F - \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta - A)\},\$$

- \circ check that α^+ contains A;
 - if it does, A is extraneous in β

Testing an Extraneous Attribute

To test if attribute A $\in \alpha$ is extraneous in α

- Let $\gamma = \alpha \{A\}$.
- \circ Check if $\gamma \to \beta$ can be inferred from \mathcal{F}
 - Compute γ^* using the dependencies in F
 - If γ^{+} includes all attributes in β then , \boldsymbol{A} is extraneous in α

Testing an Extraneous Attribute

- Let $F = \{AB \rightarrow CD, A \rightarrow E, E \rightarrow C\}$
- To check if C is extraneous in AB \rightarrow CD, we:
 - Compute the attribute closure of AB under F' = {AB \rightarrow D, A \rightarrow E, E \rightarrow C}
 - The closure is ABCDE, which includes CD
 - **■** This implies that C is extraneous

Canonical Cover

A canonical cover for F is a set of dependencies \boldsymbol{F}_{c} such that

- \blacksquare F logically implies all dependencies in F_c , and
- \mathbf{E} \mathbf{F}_{c} logically implies all dependencies in \mathbf{F} , and
- \blacksquare No functional dependency in F_c contains an extraneous attribute, and
- Each left side of functional dependency in F_c is unique. That is, there are no two dependencies in F_c
 - \circ $\alpha 1 \rightarrow \beta 1$ and $\alpha 2 \rightarrow \beta 2$ such that
 - \circ α 1 = α 2

Canonical Cover

 \blacksquare To compute a canonical cover for F.

repeat

Use the union rule to replace any dependencies in F of the form

$$\alpha_1 \rightarrow \beta_1$$
 and $\alpha_1 \rightarrow \beta_2$ with $\alpha_1 \rightarrow \beta_1 \beta_2$

Find a functional dependency $\alpha \to \beta$ in F_c with an extraneous attribute either in α or in β

/* Note: test for extraneous attributes done using F_c not F^* /

If an extraneous attribute is found, delete it from $\alpha \rightarrow \beta$

until (F_c not change)

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied

Compute Canonical Cover

- F = $\{A, B, C\}$ F = $\{A \rightarrow BC \mid B \rightarrow C \mid A \rightarrow B \mid AB \rightarrow C\}$
- \blacksquare Combine A \rightarrow BC and A \rightarrow B into A \rightarrow BC

Compute Canonical Cover

- \blacksquare A is extraneous in AB \rightarrow C
 - \circ Check if the result of deleting A from AB \rightarrow C is implied by the other dependencies
 - \blacksquare Yes: in fact, $B \rightarrow C$ is already present!
 - \circ Set is now $\{A \rightarrow BC, B \rightarrow C\}$

Compute Canonical Cover

- \blacksquare C is extraneous in A \rightarrow BC
 - \circ Check if A \rightarrow C is logically implied by A \rightarrow B and the other dependencies
 - Yes: using transitivity on $A \rightarrow B$ and $B \rightarrow C$.
 - Can use attribute closure of A in more complex cases
- The canonical cover is: $A \rightarrow B$ $B \rightarrow C$

Example 2 : Compute Canonical Cover

Consider another set F of functional dependencies:

$$F=\{A \rightarrow BC , CD \rightarrow E , B \rightarrow D, E \rightarrow A\}$$

Example 2 : Compute Canonical Cover

Consider another set F of functional dependencies:

$$F=\{A \rightarrow BC , CD \rightarrow E , B \rightarrow D, E \rightarrow A\}$$

- The left side of each functional dependency in F is unique.
- None of the attributes in the left or right side of any functional dependency is extraneous (Checked by applying definition of extraneous attributes on every functional dependency).
- \blacksquare Hence, the canonical cover F_c is equal to F.

Example 3 : Compute Canonical Cover

Compute the minimal cover

```
R = (A, B, C,D,E,F,G)
FD = {ABC \rightarrow DE BD \rightarrow DE E \rightarrow CF EG \rightarrow F }
```

Example 3 : Compute Canonical Cover

```
\blacksquare R = (A, B, C,D,E,F,G)
      FD = \{ABC \rightarrow DE \mid BD \rightarrow DE \mid E \rightarrow CF \mid EG \rightarrow F \}
                                                                              The minimal cover is
                                                                              = \{ABC \rightarrow D, BD \rightarrow E, E \rightarrow C, E \rightarrow F\}
ABC \rightarrow D
ABC \rightarrow E
BD \rightarrow D
                                //reflexive
 BD \rightarrow E
 \mathbf{E} \to \mathbf{C}
E \rightarrow F
 EG \rightarrow F //Augmentation
```

Example 3 : Compute Canonical Cover

$$F = \{A, B, C, E\}$$

$$F = \{A \rightarrow BC \quad B \rightarrow CE \quad A \rightarrow E\}$$

Iteration 1

- \blacksquare F = {A \rightarrow BCE B \rightarrow CE}
- **Check for extraneous attributes**
- No \blacksquare B extraneous A \rightarrow BCE
- Yes \blacksquare C extraneous A \rightarrow BCE
- No \blacksquare E extraneous A \rightarrow BE
 - $A \rightarrow B$ A->CE A->E
- \blacksquare E extraneous B \rightarrow CE No
- C extraneous $B \rightarrow CE$ No

Iteration 2

- $\boxed{ F = \{A \rightarrow B \mid B \rightarrow CE\} }$
- **Check for Extraneous Attributes**
- \blacksquare C extraneous $B \rightarrow CE$
- \blacksquare E extraneous B \rightarrow CE No

No

Boyce and Codd Normal Form (BCNF)

For a table to satisfy the **Boyce-Codd Normal Form**, it should satisfy the following **two conditions**:

- It should be in the **Third Normal Form**.
- for any dependency $A \rightarrow B$, A should be a **super key**.

In simple words, it means, that for a dependency $A \rightarrow B$ A cannot be a **non-prime attribute**, if B is a **prime attribute**.

Boyce and Codd Normal Form (BCNF)

- **Boyce and Codd Normal Form** is a higher version of the Third Normal form.
- This form deals with certain type of anomaly that is not handled by 3NF.
- A 3NF table which does not have multiple overlapping candidate keys is said to be in BCNF.

Goals of Normalisation

- **Let** R be a relation scheme with a set F of functional dependencies.
- **Decide** whether a relation scheme R is in "good" form.
- In the case that a relation scheme R is not in "good" form, need to decompose it into a set of relation scheme $\{R_1, R_2, ..., R_n\}$ such that:
 - > Each relation scheme is in good form
 - > The decomposition is a lossless decomposition
 - > Preferably, the decomposition should be dependency preserving.

Consider the following relationship: R (A,B,C,D)

and following dependencies:

A -> BCD

BC -> AD

D -> B

Above relationship is already in 3rd NF. Keys are A and BC.

Hence, in the functional dependency, A -> BCD, A is the super key. in second relation, BC -> AD, BC is also a key. but in, D -> B, D is not a key.

Hence we can break our relationship R into two relationships R1 and R2.

Breaking, table into two tables, one with A, D and C while the other with D and B.

R1(A,B,C,D,E)**R2(B,F)** CANDIDATE KEY IS B $A \rightarrow BCDE$ $BC \rightarrow ADE$ $D \rightarrow E$ **R1** 2NF R2(A,B,C,D)R3(D,E)

Normalisation

- - Steps
- > 1NF
- Removing repeating groups
- > 2NF
- Remove partial dependencies
- > 3NF
- Remove transitive dependencies
- > BCNF
- Remove non-candidate key dependencies

Project Code	Project Title	Project Manager	Project Budget	Employee No.	Employee Name	Department No.	Department Name	Hourly Rate
PC010	Pensions System	M Phillips	24500	S10001	A Smith	L004	IT	22.00
PC010	Pensions System	M Phillips	24500	S10030	L Jones	L023	Pensions	18.50
PC010	Pensions System	M Phillips	24500	S21010	P Lewis	L004	IT	21.00
PC045	Salaries System	H Martin	17400	S10010	B Jones	L004	IT	21.75
PC045	Salaries System	H Martin	17400	S10001	A Smith	L004	IT	18.00
PC045	Salaries System	H Martin	17400	S31002	T Gilbert	L028 Database		25.50
PC045	Salaries System	H Martin	17400	S13210	W Richards	L008 Salary		17.00
PC064	HR System	KLewis	12250	S31002	T Gilbert	T Gilbert L028 Database		23.25
PC064	HR System	KLewis	12250	S21010	P Lewis	Lewis L004 IT		17.50
PC064	HR System	K Lewis	12250	S10034	B James	L009	HR	16.50

1NF Tables: Repeating Attributes Removed

Project Code	Employee No.	Employee Name	Department No.	Department Name	Hourly Rate
PC010	S10001	A Smith	L004	IT	22.00
PC010	S10030	L Jones	L023	Pensions	18.50
PC010	S21010	P Lewis	L004	IT	21.00
PC045	S10010	B Jones	L004	IT	21.75
PC045	S10001	A Smith	L004	IT	18.00
PC045	S31002	T Gilbert	L028	Database	25.50
PC045	S13210	W Richards	L008	Salary	17.00
PC064	S31002	T Gilbert	L028	Database	23.25
PC064	S21010	P Lewis	L004	IT	17.50
PC064	S10034	B James	L009	HR	16.50

٠.				
	Project Code	Project Title	Project Manager	Project Budget
	PC010	Pensions System	M Phillips	24500
	PC045	Salaries System	H Martin	17400
	PC064	HR System	K Lewis	12250

2NF Tables: Partial Key Dependencies Removed

		•	ct Title ions System	Project Manager M Phillips		Project Budget 24500		
PC045 S		Salar	ies System	H Martin	H Martin		17400	
PC064		HR S	ystem	K Lewis		12250		
<u>Project</u> <u>Code</u>	Employee No.	Hourly Rate	Employee No.	Employee Name	Department No.	Department Name		
		22.00	S10001	A Smith	L004	π		
		18.50	S10030	L Jones	L023	Pensions		
		21.00	S21010	P Lewis	L004	ІТ		
		21.75	S10010	B Jones	L004	п		
		18.00	S31002	T Gilbert	L028	Database		
		25.50	S13210	W Richards	L008	Salary		
		17.00	S10034	B James	L009	HR		
		23.25	Amrita Schoo	ol of Engineering	a. Coimbatore	September 2020	33	
				2. C. 2. g c 3 i i i g	,, commoatoro	000000000000000000000000000000000000000		

References

- Hillyer Mike, MySQL AB. <u>An Introduction to Database Normalization</u>, http://dev.mysql.com/tech-resources/articles/intro-to-normalization.html, accessed October 17, 2006.
- Microsoft. <u>Description of the database normalization basics</u>, http://support.microsoft.com/kb/283878, accessed October 17, 2006.
- Wikipedia. <u>Database Normalization.</u>
 http://en.wikipedia.org/wiki/Database_normalization.html, accessed October 17, 2006.
 https://www.db-book.com/db6/index.html
- https://www.youtube.com/watch?v=mfVCesoMaGA&list=PLroEs25KGvwzmvlxYHRhoGTz9w8 LeXek0&index=22

Summary

- Normalization basics
- Anomalies

Next Lecture

Functional dependency

Thank You

Happy to answer any questions!!!