

BUNDESREPUBLIK **DEUTSCHLAND**

ffenlegungsschri DE 195 35 021 A 1

(51) Int. Cl.6: H 04 B 7/26 H 04 B 7/155 H 04 Q 7/20

PATENTAMT

Aktenzeichen: 195 35 021.9 Anmeldetag: Offenlegungstag:

21. 9.95

10. 7.97

71)	Anmelder:
-----	-----------

Arnold, Jörg, Dr., 69117 Heidelberg, DE

(72) Erfinder: gleich Anmelder

(54) Mobilfunkendgerät/Mobilfunkrelais

Ein Mobilfunkendgerät, das gleichzeitig Funkrelais ist und über eine funkaufkommenabhängige Steuerung von Relaisfunktionen verfügt, so daß in der Anwendung ein vollkommen selbstorganisierendes Telekommunikationsnetz ohne die bisher notwendigen festen Telekommunikationseinrichtungen und das gesamte Funknetzmanagement in den bisher verwirklichten Mobilfunknetzen ermöglicht wird.

Beschrei

Die Erfindung betrifft ein Mobilfunkgerät bestehend aus Endteilnehmerschnittstelle und Funkrelais durch dessen Betrieb bei einer ausreichenden Flächenverteilung ein vollkommen selbstorganisierendes Telekommunikationsnetz ermöglicht wird, das auf sämtliche bisher üblichen und notwendigen festen Telekommunikationseinrichtungen und das gesamte Funknetzmanagement in den bisher verwirklichten Mobilfunknetzen ver- 10 sind folgend beschrieben:

Bisher sind keine solchen Kombinationseinheiten bekannt. Die bisher bekannten Mobilfunkendgeräte sind bisher konzipiert für den Einsatz in Mobilfunknetzsystemen wie GSM u. A.

Dies sind Festnetze und werden aus einzelnen stationären reichweiten- und frequenzdistingten Funknetzzellen gebildet, in denen sich der Netzteilnehmer vorübergehend aufhält und mit seinem Mobilendgerät über die feste Funkbasisstation der Zelle in Funkkontakt treten kann. Bisherige Mobilendgeräte sind gleichzeitig keine Funkrelais und kommen nicht ohne die festen Funkinstallationen der festen Basisstationen aus.

Bei der Bewegung des Teilnehmers über Zellengrenzen hinweg muß der Teilnehmer lokalisiert und verfolgt 25 werden, um ihn zur Aufrechterhaltung eines bestehenden Funkkontaktes an die nächste Basisstation der neu betretenen Funknetzzelle übergeben zu können. Im Einzelnen müssen komplizierte Verwaltungsprozesse (Funkmanagement) wie "Roaming", "Location Update", 30 "Handover", "Vergebührung" und "Interworking" durchgeführt werden, für die die bisherigen Mobilfunkendgeräte speziell ausgelegt sein müssen.

In einem Mobilfunknetz das kein Festnetz ist und kein koordinierendes Netzmanagement verfügt, kann ein Zielteilnehmer nur durch eine flächendeckende Funklawine lokalisiert werden (Verteilnetz). Da prinzipiell jeder Netzteilnehmer als Quellenteilnehmer einen Zielteilnehmer ansprechen kann und wegen der einzi- 40 gen Übermittlungsmöglichkeit des Verteilnetzes über die mobilen Netzteilnehmer als Übertrager selbst, muß eine Vorkehrung gegen eine kapazitätsmäßige Überlastung eines solchen Funknetzes getroffen werden. Es werden zur Erzeugung von Funkverbindungen immer 45 wesentlich weniger Übermittler gebraucht als Netzteilnehmer vorhanden sind. Eine Kapazitätserhaltung bzw. Kapazitätserweiterung kann automatisch durch die Selbstkontraktion des Netzwerkes erreicht werden, inkommen entweder desaktiviert werden, oder durch eine Zuordnung zu gekoppelten inaktiven Unternetzen reduziert werden. Solche Unternetze sind räumlich unterscheidbare, sendeleistungsdifferenzierte und funkfrequenzdifferenzierte Unternetze.

Hierzu stehen die vier folgenden Mechanismen a)-d) zur Verfügung, die zur optimalen Kapazitätserweiterung bzw. Kapazitätsstabilisieung des Netzwerkes intelligent aufeinander abgestimmt werden können:

- a) Reichweitenkontraktion,
- b) Übermittlerdichtereduktion,
- c) Sendeleistungsdifferenzierung,
- d) Frequenzdifferenzierung

Der Erfindung liegt die Aufgabe zu Grunde, durch die Anwendung ein Mobilfunknetz ohne feste Telekommunikationseinrichtungen und ohne eine übergeordnete

Netzverwaltung ; zmanagement) zu ermöglichen, und die Übertragt. skapazität des Mobilfunknetzes zu stabilisieren.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, 5 daß die zur Verwendung kommenden Mobilendgeräte gleichzeitig als Mobilfunkrelais ausgebildet sind und über bestimmte Eigenschaften in ihrem Relaisverhalten verfügen, um kollektiv die oben genannten Kontraktionsmechanismen zu erzeugen. Diese Eigenschaften

a) Reichweitenkontraktion

Das Mobilfunkendgerät registriert wie oft (Übertra-15 gungsrepititionszahl) ein empfangenes und weiterzuübertragendes Funksignal bereits von vorhergehenden Übermittlern übertragen wurde. Je höher die Zahl (Funkaufkommen) der verschiedenen je Zeiteinheit beim Mobilendgerät ankommenden weiterzuleitenden 20 nicht direkt adressierten Funksignale ist, um so mehr reduziert das Mobilendgerät die Weiterleitung dieser Funksignale von entfernteren Sendern, also von solchen Funksignalen mit höheren Übertragungsrepititionszahlen. Dadurch wird insgesamt die Reichweite des Netzwerkes um den Quellenteilnehmer herum reduziert und das Netz wird im Grenzfall kollektiv auf den Nahbereich (Kontraktionsbereich) kontrahiert, in dem die Zahl der aktiven Teilnehmer im Kapazitätsbereich dieses lokalen Netzwerkbereiches liegen.

b) Übermittlerdichtereduktion

Je höher die zeitliche Funkrufdichte beim Mobilendgerät wird, um so länger setzt es eine interne Totzeit, in daher über keine festen Funkinstallationen und über 35 der es nicht als Funkrelais für nicht direkt adressierte Funksignale tätig werden kann. Dadurch wird die Zahl der aktiven Übermittler in einem lokal überbelegten Netzbereich sowohl im Fern- oder Nahbereich um den Quellenteilnehmer im zeitlichen Mittel reduziert und das Funkaufkommen in dieser Umgebung wird kollektiv wieder in den Kapazitätsbereich geführt. Die minimal mögliche Übermittlerreduktion liegt bei noch einem aktiven Übermittler im Nahbereich um den Zielteilnehmer.

c) Reichweitenexpansion, Sendeleistungssteuerung, Sendeleistungsdifferenzierte Unternetze

Je höher das zeitliche Funkaufkommen bei dem Modem die Übermittler in Abhängigkeit vom Funkrufauf- 50 bilendgerät wird, um so höher setzt es seine Sendeleistung bzw. um so niedriger setzt es seine interne Empfangsleistungsschwelle, über der es keine zu übertragenden Signale weiterleitet. Dadurch wird die Zahl der aktivierbaren Ubertrager im Nahbereich um den Quellent-55 eilnehmer reduziert und das Funkaufkommen wird kollektiv in diesem Bereich wieder in den Kapazitätsbereich geführt. Dieser Mechanismus unterstützt Fernfunkverbindungen. Um hierdurch nicht die Unterdrükkung eines ausschließlichen Nahfunkverkehres zu ver-60 ursachen, kann das Mobilendgerät eine Prioritätssteuerung für Nahfunkverbindungen bzw. Fernfunkverbindungen anwenden. Dazu kann entweder die Übertragungsrepititionszahl des weiterzuleitenden Funksignals ausgewertet werden oder die Prioritätssteuerung kann 65 mittels der Sendeleistung des Quellenteilnehmers, der dieses Signal ursprünglich abgesetzt hat, erfolgen.

Wenn nach dem ersten Funkaufruf eines Zielteilnehmers durch den Quellteilnehmer kein Funkkontakt auf3

geschaltet werden kann, so bestellige he hohe Wahrscheinlichkeit, daß sich der Zielteilnehmer nicht im lokalen Kontraktionsbereich um den Quellteilnehmer befindet. Dann wird das Mobilendgerät bei einem erneuten Funkaufruf des Quellenteilnehmer an diesen Zielteilnehmer die Sendeleistung erhöhen, wodurch er nach Übermittlung den Fernbereich bzw. Kontraktionsbereich um den Zielteilnehmer erreichen kann. Bei diesem Verfahren kommt dem Nahbereich um den Quellteilnehmer vorrangige Priorität zu, da er vor dem Fernbereich zuerst abgefragt wird.

Es sind noch weitere differenziertere z. B. mehrstufige Prioritätsverfahren mit z. B. der Weitergabe einer Prioritätseinstufungsinformation möglich. Wird die Prioritätsinformation bzw. die erhöhte Sendeleistung 15 permanent von den Übermittlern weitergegeben und befolgt, so entsteht ein sendeleistungsdifferenziertes Unternetz, das z. B. als Fernverbindungsnetz vom Nahverbindungsnetz getrennt werden kann.

d) Frequenzdifferenzierte Unternetze

Eine Erweiterung der Kapazitätsgrenze des Funknetzes wird durch eine Aufteilung des Funknetzes in Signalträgerfrequenzdifferenzierte Unternetze erreicht. 25 Hierzu werden mehrere bis viele distingt unterscheidbare Funkfrequenzkanäle zur Verfügung gestellt. Das Mobilendgerät jedes Übermittlers springt in seiner Empfangsbereitschaft z. B. stochastisch oder nach bestimmten Zeitfunktionen zwischen unterschiedlichen Funkfrequenzkanälen hin und her. Als Sendekanal wählt das Mobilendgerät denjenige Funkfrequenzkanal, der dem Zielteilnehmer zugeordnet ist. Die Übermittlung findet über die Übermittler statt, die sich gerade auf dem Empfangskanal bzw. Sendekanal der weiteren Übermittler 35 befinden. Diese bilden jetzt frequenzdifferenzierte parallele Unternetze.

Technische Realisierung, konstruktive Ausführung

Die oben genannten Aufgaben und Anforderungen der Vorrichtung (Mobilfunkendgeräte/Mobilfunkrelais) kann im Rahmen der existenten elektronischen Digitaltechnik dargestellt werden. Dabei kann auf technische Verfahren wie:

Vollständige Digitalisierung im Rahmen von CMI-Pulscodemodulation mit Informationskompression und Fehlerunterdrückung durch Spreiztechnik (Bit-Interleaving, Slot-Interleaving), DTX/DRX Sprachverarbeitungsverfahren und Codier/Decodierverfahren (Fullrate, Half Rate Codierung) mit Fehlervorwärtskorrektur und Comfort Noise Generierung und Speech Frame Substitution, Übertragungsverfahren im Gigaherzfrequenzbereich wie Frequenzduplexübertragung im Rahmen von Frequency Multiple Access mit Frequency Hopping 55 (Code Division Multiple Access) und Pulsübertragungsverfahren (Time Division Multiple Access) und Viterbi-Entzerrung und Echokompensation zurückgegriffen werden, die in der aktuellen Mobilfunkendgerätetechnik bereits realisiert sind.

Die beschriebene Vorrichtung kann konstruktiv in einem gemeinsamen Gehäuse untergebracht sein. Die Vorrichtung besteht dann aus einer Einheit und enthält die Endteilnehmerschnittstelle und die Relaiseinrichtung gemeinsam oder sie kann in zwei Einheiten getrennt und deshalb in zwei getrennten Gehäusen untergebracht sein. Der Teil der Vorrichtung der die Endteilnehmerschnitt stelle darstellt ist dann aber mindestens

mobil auszuführen, so der vom Anwender mitgeführt werden kann. Der andere getrennte Teil der Vorrichtung enthält dann die Relaiseinrichtung. Er kann z. B. fest in z. B. Fahrzeugen installiert werden. Beide Einheisten der Vorrichtung sind durch eine feste elektrische Verbindung oder durch eine Funkverbindung miteinander verbunden.

Vorteile

Durch die beschriebene Erfindung wird ein vollkommen selbstorganisierendes Telekommunikationsnetz ermöglicht, das auf sämtliche bisher notwendigen festen Telekommunikationseinrichtungen und das gesamte Funknetzmanagement in den bisher verwirklichten Mobilfunknetzen verzichten kann. Dadurch müssen für den Funkverkehr keine Dienste in Anspruch genommen werden. Dieses Telekommunikationsnetz kann deshalb für den Teilnehmer kostenfrei bzw. gebührenfrei betrie-20 ben werden. Ein solches Telekommunikationsnetz ist hochinteressant für Entwicklungsländer, Industrieschwellenländer, und schwächere Industrieländer, die zur Entwicklung ihrer Wirtschaft auf ein leistungsfähiges Telekommunikationssystem angewiesen sind, aber die hohen notwendigen infrastrukturellen Investitionen in ein modernes herkömmliches Telekommunikationssystem in der nächsten Zukunft nicht aufbringen kön-

Patentansprüche

1. Eine mobile Vorrichtung zum Empfangen und Senden von digitalen Funksignalen, dadurch gekennzeichnet, daß sie gleichzeitig Funktionseinheit Endteilnehmerschnitt stelle und Funktionseinheit Funkübertragungsrelais für weiterzuleitende Mobilfunksignale ist.

3

報の存録

. 4. .

- 2. Vorrichtung nach Anspruch 1 dadurch gekennzeichnet, daß die Funktionseinheiten in getrennten Gehäusen oder in einem gemeinsamen Gehäuse untergebracht sein können.
- 3. Vorrichtung nach Anspruch 1,2 dadurch gekennzeichnet, daß die Funktionseinheiten über feste elektrische Verbindungen oder selbst wieder über Funkverbindungen direkt zusammengeschlossen sind.
- 4. Vorrichtung nach Anspruch 1 bis 3 dadurch gekennzeichnet, daß mindestens eine Einheit davon mobil ist
- 5. Vorrichtung nach Anspruch 1 bis 4 dadurch gekennzeichnet, daß sie über sendeaufkommenabhängige unterschiedliche bestimmte Relaisfunktionen verfügt.
- 6. Vorrichtung nach 1 bis 5 dadurch gekennzeichnet, daß sie die relaismäßige Weiterleitung von Funksignalen um so mehr reduziert, je höher das zeitliche Aufkommen des Funkempfanges im Relaisbetrieb der Vorrichtung ist.
- 7. Vorrichtung nach 1 bis 5 dadurch gekennzeichnet, daß sie eine interne Totzeit, in der sie bestimmte Funksignale nicht weiterleitet, um so länger setzt, je höher das zeitliche Aufkommen des Funkempfanges im Relaisbetrieb der Vorrichtung ist.
- 8. Vorrichtung nach 1 bis 5 dadurch gekennzeichnet, daß sie ihre Sendeleistung zur Weiterleitung von bestimmten Funksignalen um so mehr erhöht, je höher das zeitliche Aufkommen des Funkempfanges im Relaisbetrieb der Vorrichtung ist.

6

9. Vorrichtung nach 1 bis 8 dadurch gekennzeichnet, daß sie eine Anweisung an die weiteren Übermittler zur Weiterleitung und Ausführung (Prioritätsanweisung) herausgibt, deren Sendeleistung in einem bestimmten Maß zu steigern, falls 5 die Vorrichtung einen versuchten Aufbau eines bestimmten Funkkontaktes nicht erreicht hat.

5

10. Vorrichtung nach 1 bis 5 dadurch gekennzeichnet, daß sie ihre interne Empfangsleistungsschwelle über der Sie keine Funksignale annimmt, um so 10 niedriger setzt, je höher das zeitliche Aufkommen des Funkempfanges im Relaisbetrieb der Einrich-

tung ist.

11. Vorrichtung nach 1 bis 5 dadurch gekennzeichnet, daß sie ihre Empfangs- und Funkbereitschaft 15 für bestimmte Funksignale im Relaisbetrieb auf bestimmten nach einer bestimmten Zeitfunktion gewählten Funkfrequenzen bzw. Funkkanälen erzeugt.

20

25

30

35

40

45

50

55

60

65