LÓGICA PARA COMPUTAÇÃO

Dedução Natural -Continuação

Disjunção

□ Eliminação

$$\begin{array}{ccc}
\phi \lor \psi \\
\phi \to \chi \\
\psi \to \chi \\
\chi
\end{array}$$
 $E \lor$

□ Introdução

$$\frac{\phi}{\phi \vee \psi}$$
 $I_1 \vee$

$$\frac{\psi}{\phi \vee \psi}$$
 $I_2 \vee$

Disjunção - Eliminação e Introdução

□ Provar que o argumento é válido:

$$S \vee P$$
, $R \wedge (S \rightarrow Q)$, $P \rightarrow Q \vdash P \vee Q$

Disjunção - Eliminação e Introdução

□ Provar que o argumento é válido:

$$S \vee P$$
, $R \wedge (S \rightarrow Q)$, $P \rightarrow Q \vdash P \vee Q$

□ Prova:

1. $S \vee P$

- P
- 2. $R \wedge (S \rightarrow Q)$ P
- 3. $P \rightarrow Q$

- Р
- 4. $S \rightarrow Q$
- $2 E_2 \wedge$

5. Q

1,3,4 E∨

6. P ∨ Q

5 I₂∨

$$\frac{\phi}{\phi \vee \psi}$$
 $I_1 \vee$

$$\frac{\psi}{\phi \vee \psi}$$
 $I_2 \vee$

Bicondicional

□ Eliminação

$$\frac{\phi \leftrightarrow \psi}{\phi \to \psi} E_1 \Longleftrightarrow$$

$$\frac{\phi \leftrightarrow \psi}{\psi \to \phi} \quad E_2 \leftrightarrow$$

Introdução

$$\frac{\phi \to \psi}{\psi \to \phi} \qquad I \Leftrightarrow$$

Bicondicional - Eliminação e Introdução

□ Provar que o argumento é válido:

$$P \leftrightarrow (S \lor Q), S \vdash P$$

Bicondicional - Eliminação e Introdução

Provar que a forma de argumento é válido:

$$P \leftrightarrow (S \vee Q), S \vdash P$$

□ Prova:

1.
$$P \leftrightarrow (S \lor Q) P$$

- 3. $(S \lor Q) \rightarrow P \quad 1 E_2 \leftrightarrow$
- 4. $S \vee Q$ $2 I_1 \vee$

3,4 MP

$$\frac{\phi \to \psi}{\psi \to \phi} \quad f \Leftrightarrow$$

$$\frac{\phi \leftrightarrow \psi}{\phi \to \psi} \quad E_1 \leftrightarrow$$

$$\frac{\phi \leftrightarrow \psi}{\psi \to \phi} \quad E_2 \leftrightarrow$$

Exercícios

 Prove que as seguintes formas de argumento são válidas:

$$\square$$
 P, $\sim\sim$ (P \rightarrow Q) \vdash Q \vee \sim Q

$$\square$$
 P, $\sim\sim$ (P \rightarrow Q) \vdash (R \land S) \lor Q

$$\square$$
 (P \vee Q) \wedge (P \vee R), P \rightarrow S, Q \rightarrow S, P \rightarrow T, R \rightarrow T \vdash S \wedge T

$$\square$$
 P \vee P, P \rightarrow (Q \wedge R) \vdash R

$$\square$$
 P \rightarrow Q, (P \rightarrow Q) \rightarrow (Q \rightarrow P) \vdash P \leftrightarrow Q

$$\square P \leftrightarrow Q \vdash Q \leftrightarrow P$$

