		The total control of the total	
			_
			•
			.
			1
•			

and the proper

CALL NO

2 N 5 44 Cless 1 1 3

5243-54 SEE

W

* 4 "

RESEARCHES

ON THE

EVOLUTION OF THE STELLAR SYSTEMS

VOLUME I

On the Universality of the Law of Gravitation and on the Orbits and General Characteristics of Binary Stars

BY

T. J. SEE, A.M., PH.D., (BERLIN)

ASTRONOMER AT THE LOWELL OBSERVATORY IN CHARGE OF A SURVEY OF THE SOUTHERN HEAVENS FOR THE DISCOVERY AND MEASUREMENT OF NEW DOUBLE STARS AND NEBULAE,

FELLOW OF THE ROYAL ASTRONOMICAL SOCIETY, MITGLIED DER

ASTRONOMISCHEN GESELLSCHAFT, ETC, ETC

1896
THE NICHOLS PRESS — THOS P NICHOLS
PUBLISHERS
LYNN, MASS, U S A

R FRIEDLANDER & SOHN, BERLIN

1 t

DEDICATED

TO

DR. BENJAMIN APTHORP GOULD,

THE ARGELANDER OF THE SOUTHERN HEAVENS,

In Testimony of a High Appreciation of Life-long Services Consecrated to the Advancement of

AMERICAN SCIENCE.

,				
			•	
	y.			
	· f			
,				
		قاس		

CONTENTS.

INTI	RODUCTION,	pages 1–9
	CHAPTER I	
и иО	THE DEVELOPMENT OF DOUBLE-STAR ASTRONOMY, AND ON THE MATHEMATICAL THEO	RIES OF
§1	Historical Sketch of Double-Star Astronomy from Herschel to Burnham,	11–15
§ 2	Laplace's Demonstration of the Law of Gravitation in the Planetary System,	15–18
§ 3	Investigation of the Law of Attraction in the Stellar Systems, .	18–21
§4	Analytical Solution of Bertrand's Problem Based on that Developed by Darboux, Solution of Halphen,	21–29
§ 5	Theory of the Determination, by Means of a Single Spectroscopic Observation, of the Absolute Dimensions, Paralluxes and Masses of Stellar Systems whose Orbits are Known from Micrometrical Measurement,	3036
§6	Rigorous Method for Testing the Universality of the Law of Gravitation,	36-38
§ 7	On the Theoretical Possibility of Determining the Distances of Star-Clusters and of the Milky Way, and of Investigating the Structure of the Heavens by Actual Measurement,	38-41
§8	Historical Sketch of the Different Methods for Determining Orbits of Double Stars,	41–44
§ 9	Kowalsky's Method,	45-49
	Modification Proposed by Glasenapp,	49-50
§ 10	Graphical Method of Klinkerfues,	50-55
	Graphical Method of Finding the Apparent Orbit of a Double Star,	56-58
§ 11	Formulae for the Improvement of Elements,	5 8–60
§ 12	A General Method for Facilitating the Solution of Kepler's Equation by Mechanical Means.	60-64

CONTENTS

CHAPTER II

On the Orbits of Forty Binary Stars

	Introductory Remarks,	pages 65–66
	Abbreviations of the Names of Observers,	66–67
1	$\Sigma 3062$,	67–71
2	η Cassropeae = $\Sigma 60$,	72–77
3	γ Andromedae $BC = O\Sigma 38$,	77–80
4	α Canis Majoris = Sirius = A G C 1,	81-86
5	9 Argûs (9 Puppis) = β 101,	86-88
6	$\zeta \ Cancri \ AB = \Sigma 1196,$	88-94
7	Σ 3121,	94-97
8	ω Leonis = $\Sigma 1356$,	97-102
9	φ Ursae Majoris = $O\Sigma 208$,	102-105
10	ξ Ursae Majoris = Σ 1523,	105-111
11	$O\Sigma 234$,	112–114
12	$O\Sigma 235$,	114-117
13	$\gamma \ Centaur i = II_2 5370,$	117-120
14	$\gamma Virginis = \Sigma 1670,$	120-129
15	42 Comae Berenices = 21728 ,	130-134
16	$O\Sigma$ 269,	134-136
17	25 Canum Venaticoi um = $\Sigma 1768$,	137–140
18	α Centauri,	140-149
19	$O\Sigma 285,$	149-151
20	$\xi \textit{Boots} = \Sigma 1888,$	152–157
21	η Coronae Borealis = Σ 1937,	157–163
22	$\mu^2 Bootis = \Sigma 1938,$	163-168
23	$O\Sigma$ 298,	168–171
24	γ Coronae Borealis = $\Sigma 1967$,	171–175
25	ξ Scorpu = Σ 1998,	176–180
26	σ Coronae Borealis = $\Sigma 2032$,	180–185
2 7	$\zeta Herculis = \Sigma 2084,$	186–192
28	$\beta 416 = Lac 7215,$	192–194
2 9	$oldsymbol{\Sigma}2173,$	194 _198
3 0	μ^1 Herculis $BC = AC$ 7,	198–202
31	$ au$ Ophruch $t = \Sigma 2262$,	202–206
32	70 Ophruch $i = \Sigma 2272$,	207-221
33	99 $Hercalles - AC$ 15	221 222

CONTENTS	V11
----------	-----

34	ζ Sagıttarıı,	pages 224–226
35	γ Coronae Australis = H_2 5084,	226-229
36	$\beta Delphini = \beta 151$	229-232
37	$4 Aquaru = \Sigma 2729,$	232-234
38	$\delta Equuler AB = O\Sigma 535,$	235–237
39	$\kappa Pegasi = \beta 989,$	237-240
4 0	85 $Pegasi = \beta 733$,	240-242
	CHAPTER III	

RESULTS OF RESEARCHES ON THE ORBITS OF FORTY BINARY STARS, WITH GENERAL CONSIDERATIONS RESPECTING THE STELLAR SYSTEMS

§1	Elements of the Orbits of Forty Binary Stars,	243-245
$\S 2$	Relative Velocity of the Companion in the Line of Sight for the Epoch 1896 50,	246-247
§З	Investigation of a Possible Relation of the Orbit-Planes of Binary Systems to the	
	Plane of the Milky Way,	247-249
§ 4	High Eccentricities a Fundamental Law of Nature,	249-253
§ 5	Relative Masses of the Components in Stellar Systems,	253-256
§ 6	Exceptional Character of the Planetary System	257258

"L'un des phénomènes les plus remarquables du système du monde est celui de tous les mouvements de rotation et de révolution des planètes et des satellites dans le sens de la rotation du soleil et à peu près dans le plan de son équateur. Un phénomène aussi remarquable n'est point l'effet du hazard, il indique une cause générale qui a déterminé tous ces mouvements * * *

"Un autre phénomène également remarquable du système solaire est le peu d'excentricité des orbes des planètes et des satellites, tandis que ceux des comètes sont très allongés * * *

"Quelle est cette cause primitive? J'exposerai sur cela, dans la note qui termine cet ouvrage (Système du Monde) une hypothèse, qui me paraît résulter avec une quande vraisemblance des phénomènes précédents, mais que je présente avec la défiance que doit inspirer tout ce qui n'est point un résultat de l'observation ou de calcul"

LAPLACE

INTRODUCTION.

ONE hundred years ago LAPLACE published an outline of the nebular hypothesis, which has since been confirmed and developed by the labors of His physical explanation of the evolution of the planets and satellites, under the gradual operation of the laws of nature, was the logical outcome of his profound study of the mechanism of our system, and rested mainly on the common direction of motion and the small eccentricities and mutual inclinations of the orbits. From the concurrence of such remarkable phenomena in a great number of bodies the author of the Mécanique Céleste was led to conceive that at a remote epoch in the past, the matter now constituting the planets and satellites was expanded into a vast rotating fiery nebula, which slowly contracted with the radiation of its heat into surrounding space. Accordmg to the mechanical principle of the conservation of areas, the contraction accelerated the rotation and thereby increased the oblateness; when the centrifugal force at the equator became equal to the force of gravity the particles ceased to fall towards the centre, and the nebula shed successive rings or zones of vapor from its equatorial periphery The condensation of the several rings thus abandoned by the contracting mass eventually gave rise to the bodies of the planetary system.

LAPLACE observed that the comets, unlike the planets and satellites, have every degree of inclination and very high eccentricities, and hence he concluded that they were originally foreign to the solar system; accordingly, in the nebular hypothesis, the comets are regarded as small nebulae which have been drawn to the sun in its secular motion among the fixed stars.

The above hypothesis, based on sound dynamical principles and worked out in detail by the philosophic judgement and imaginative genius of Laplace, has merited and received the attention of subsequent natural philosophers. Owing to the brief duration of human history compared to the immense ages required for appreciable cosmogonic changes, probably the evolution of the heavenly bodies can never be observed, but must be inferred from a compara-

tive study of existing phenomena; and hence the sublime discovery of the essential process involved in the formation of the planetary system would necessarily mark an epoch in the history of science. The boldness and profound physical insight with which Laplace attacked this problem have justly ranked his effort among the greatest achievements of the human intellect. The germ of the general theory of evolution, which has so powerfully influenced the thought of the nineteenth century, may be traced to the recondite speculations of this great geometer.

The strikingly analogous cosmogonic views advanced by Kant in the Naturgeschichte und Theorie des Himmels preceded those of Laplace by fortyone years, and hence some priority is claimed for the great metaphysician of Konigsberg, but since the real vitality of the nebular hypothesis springs from Laplace, whose scientific eminence gave it authority commensurate with the development of Physical Astronomy in the eighteenth century, this great cosmogonic speculation is justly dated from the publication of the Système du Monde in 1796.

SIR WILLIAM HERSCHEL'S observations on the different types of stars and nebulae led him to consider them of different ages, and to compare the heavenly bodies in such various stages of development to the mixture of growth and decay presented by the trees of an aged forest. The combination of Herschel's studies on actual phenomena of the heavens with LAPLACE'S dynamical speculations relative to the solar system gave the nebular hypothesis both an observational and a theoretical basis, and hence it soon became an integral part of scientific Sir John Herschel's survey of the entire heavens supplied new philosophy. and important observations relative to the appearances of the stars and nebulae, and confirmed the general validity of the nebular hypothesis. When, however, Lord Rosse's great Reflector resolved certain clusters previously classed as nebulae, the question naturally arose whether with sufficient power all nebulae might not be resolved into discrete stars Fortunately, the invention of the Spectroscope about 1860, and Huggins's application of it to the heavenly bodies, showed that many of the nebulae are masses of glowing gas gradually condensing into stars, and, so far as possible, realized the postulates laid down by Laplace Joule's discovery of the mechanical equivalent of heat and Helmholtz's application of the resulting laws of thermodynamics to the heat of the sun, established the contraction of the solar nebula, while the subsequent researches of LANE, NEWCOMB, KELVIN and DARWIN have shown the theoretical possibility of most of the development outlined in the Système du Monde.

Notwithstanding the general confirmation of the essential parts of Laplace's speculation, some doubt still remains whether the planets and satellites separated as rings or as lumpy masses, and whether rings of anything like regularity could ever condense into single bodies. The most recent investigations of this question indicate that instead of separating as rings or zones which afterwards condensed, the planets and satellites, like the double stars, assumed originally the form of lumpy or globular masses

In the time of LAPLACE it was supposed that the figures of equilibrium of rotating masses of fluid, whose particles attract one another according to the Newtonian law, are of necessity surfaces of revolution about the axis of rotation, and therefore that a separation could take place only in the form of But the investigations of JACOBI showed that a homogeneous mass of fluid in the form of an ellipsoid of three unequal axes rotating about its shortest axis could be maintained in equilibrium by the pressure and attraction of its parts, the figure of such a mass is no longer one of revolution, although it is still symmetrical with respect to the axis of rotation. Poincaré's recent investigation of the stability of the equilibrium of the Jacobian ellipsoid showed that when the oblateness has become about two-fifths the equilibrium in this form becomes unstable, and another figure is developed; the body assumes the form of a pear or an hour-glass with two unequal bulbs, and finally breaks up into two comparable, though unequal, masses. from an entirely different point of view, DARWIN made an independent and almost simultaneous investigation of the form assumed by the mass after the Jacobian ellipsoid becomes unstable. Taking two separate masses of fluid revolving as a rigid system in such close proximity that the tidal distortions of figure cause them to coalesce, he determined the resulting figure of equilibrium, and found a dumb-bell form corresponding very closely to the Λ pioid discovered Though both of these investigations relate to homogeneous by Poincaré. masses, and therefore are not strictly applicable to the cases which arise in nature, yet they agree entirely in proving the existence of unsymmetrical forms of equilibrium; and a comparison of these figures with the drawings of double nebulae made by Sir John Herschel leaves no doubt that the process of separation into unequal but comparable masses indicated by these recondite mathematical researches is abundantly illustrated in the evolution of double stars from double nebulae. If this process has played such a prominent part in the genesis of the stellar systems, it is highly probable that the planets and satellites originated in a similar manner, notwithstanding the abnormally rapid increase in density towards the centres of the solar nebula implied by the separation of such inconsiderable masses.

When NEWTON established the law of universal gravitation he also discovered the true cause of the tides of the sea, and outlined some of the principal phenomena which follow from the perturbing action of the sun and moon upon the waters which cover the terrestrial spheroid After the lapse of more than a century LAPLACE attacked this problem from the dynamical point of view, and developed his celebrated analytical theory of oceanic tides, which has been generally adopted in the subsequent researches of astronomers. About two centuries after Newton established the cause of the tides, Darwin was led to consider not only the tides in the mass of fluid spread over the earth's surface, but also those which arise in the body of the globe, owing to its imperfect rigidity He inquired whether the earth's mass might not be a fluid of great viscosity, and proceeded to develop the theory of bodily tides, and to discuss the bearing of these researches on the cosmogonic history of the earth and moon When the investigation was subsequently extended to other parts of our system, it was found that while Laplace's hypothesis as a whole remained unshaken, some appreciable modifications were rendered necessary, especially in the case of the earth and moon, where the relatively large mass-ratio of the component bodies sensibly increased the efficiency of tidal friction. It seemed clear that in the development of the lunar-terrestrial system, the action of tidal friction had been of paramount importance, but that elsewhere the effects had been much less considerable, owing chiefly to the small masses of the attendant bodies

When we reflect that the planetary system is made up of a great number of very small bodies revolving in almost circular orbits about large central masses, and is therefore different from all other known systems in the heavens, although other systems like it may exist unobserved, it is remarkable that previous investigators have almost invariably approached the problems of Cosmogony from the point of view of the planets and satellites, and that no considerable attempt has been made to inquire into the development of the great number of systems observed among the fixed stars The short period of time which has elapsed since the explorations of the Telescope have inade known the general state of the heavens, with the impossibility of observing any considerable changes, except in the case of double stars, may perhaps account for the natural tendency to focus all effort upon the development of the planets and satellites But the peculiar character of our system, compared to other known systems in space, ienders this procedure incapable of giving us any general law of nature It is only from a study of the systems of the universe at large that we may hope to throw light upon the general problems of Cosmogony, among these systems the binary stars are eminently suited for such an investigation

In the present work we propose to investigate the evolution of the stellar systems. The problem is difficult and the observations are incomplete, and hence in this arduous undertaking we may beg the indulgence of astronomers for such imperfections as the discussion of the subject will necessarily exhibit. The present volume is devoted mainly to the facts as made known by the labors of double-star observers since the time of Sir William Herschel, the more theoretical inquiry into the Secular Effects of Tidal Friction and the Processes of Cosmogony is reserved for subsequent treatment

It would seem that the micrometrical measures discussed in this work establish for the first time, on a secure observational basis, the general shape of the real orbits of double stars. It follows from the results here brought to light that the most probable eccentricity among double stars is over 0.45, and since this mean value is deduced from the consideration of forty orbits, which future observations will not alter materially, we see that such high eccentricities are characteristic of the stellar systems. In the solar system the mean eccentricity for the great planets and their satellites does not surpass 0.0389, and hence we see that the average eccentricity among double stars is about twelve times that found in our own system. The great number of binary stars and the practical certainty that the properties deduced from forty of the best orbits now available will be confirmed by the stellar systems in general, justifies us in raising this remarkable induction, relative to the eccentricities, to the dignity of a fundamental law of nature. The binary stars are therefore distinguished from the planets and satellites by two striking characteristics.

- I The orbits are highly eccentric
- 2. The stars of a system are comparable, and frequently almost equal, in mass

The first of these remarkable properties is traced mainly to the condition stated in the second, high eccentricities probably did not belong to these systems originally, but have been *developed* by the secular action of tidal friction, which is a physical cause affecting all cosmical systems.

In developing the theory of gravitation mathematicians have very generally assumed that the attracting masses are rigid solids, and hence it has been easy to overlook the fact that nearly all the bodies of the visible universe are really fluid. The stars and nebulae are self-luminous masses of a gaseous, liquid or

semi-solid nature, and hence it is apparent that in such systems enormous bodily tides will necessarily arise from the mutual gravitation of the particles are cosmic phenomena as universal as gravitation itself; and since tidal friction will operate in every system of fluid bodies which is endowed with a relative motion of its parts, we see that the general agency of bodily tides gives rise to most important secular changes in the figures and motions of the heavenly The tidal alterations of figure, which modify the attraction on neighboring bodies bodies, will become especially marked in the case of double stars and double nebulae, where two large fluid masses in comparative proximity are subjected to then mutual gravitation, and hence if the bodies of such a system be rotating as well as revolving the secular working of tidal friction becomes an agency of great and indeed of paramount importance. The general theory of all the secular changes which follow from the double tidal action arising in a binary system remains to be developed, but meanwhile the work of DARWIN in connection with the extension which I have given his researches, makes known some of the more important effects

From our previous investigations it seems exceedingly probable that the great eccentricities now observed among double stars have arisen from the action of tidal friction during immense ages, that the elongation of the real orbits, so unmistakably indicated by the apparent ellipses described by the stars, is the visible trace of a physical cause which has been working for millions of years. It appears that the orbits were originally nearly circular, and that under the working of the tides in the bodies of the stars they have been gradually expanded and rendered more and more eccentric.

Some simple considerations will enable us to see how these general results arise from the secular action of tidal friction. Suppose the two stars of a system to be spheroidal fluid masses of small viscosity, and let us assume, conformably to the motions observed in the solar system and to those which would result from the division of a double nebula, that the two bodies are rotating about axes nearly perpendicular to the plane of orbital motion, and in the same direction as the revolution about the common centre of gravity, also let the angular velocity of rotation considerably surpass that of orbital revolution. Then, as the fluid is viscous, the tides raised in either mass by the attraction of the other will lag, and hence the major axes of the tidal ellipsoids will point in advance of the tide-raising bodies, and the tidal elevations will exercise on them tangential disturbing forces which tend to accelerate the instantaneous velocities and thereby increase the mean distance. The reaction of the revolving bodies upon the tidal protuberances will retail the axial rotations; for the

moment of momentum of the whole system is constant, and the moment of momentum of axial rotation lost by the stars must be just equal to the gain in moment of momentum of orbital motion. Thus the rotations of the stars are diminished, while the mean distance is correspondingly increased.

But the tangential disturbing force is found to vary inversely as the seventh power of the distance, and hence when the orbit is eccentric the accelerating force at penastron is very much greater than at apastron. The result is that at penastron the disturbing force increases the apastron distance by an abnormally large amount, while at apastron it increases the penastron distance by a very small amount. Thus while the ellipse is being gradually expanded, the apastron is driven away so rapidly compared to the slight recession of the penastron that the orbit grows more and more eccentric. When the axial rotations are sufficiently reduced by the transfer of axial to orbital moment of momentum this change of the system will finally cease, under conditions different from those mentioned above the eccentricity and major axis may decrease, and various other changes take place

The causes here briefly sketched appear to be sufficient to account for the development of double stars, and the tidal theory might therefore be regarded as satisfactory, yet if the explanation be deemed incomplete it is easy to adduce considerations which exclude other conceivable hypotheses. Let us imagine the x-axis to represent the region of eccentricity, and divide this line into convenient parts, making the intervals, say, 01, then we may erect ordinates denoting the number of orbits falling in a given region, and thus illustrate the distribution of orbits as regards the eccentricity. The irregular line which results from connecting the points determined by a finite number of orbits would become a smooth curve if the number were indefinitely increased. In case of the double stars we obtain what is essentially a probability curve with the maximum near 0.45; the slope on either side appears to be somewhat gradual, but the curve vanishes at zero and unity

If we make a similar representation for the orbits of comets, we shall find a very high maximum at the eccentricity unity; in this case both slopes are extraordinarily steep, though perhaps the curve descends with less rapidity on the side towards the origin, on account of the considerable number of periodic comets which have been gradually accumulated by the perturbing action of the planets. The corresponding curve for the planets and satellites has a high maximum near 0 0389, and while both slopes are steep, that on the side from the origin is the more gradual by virtue of the somewhat unusual eccentricities of Hyperion, the Moon and Mercury

If we inquire into the physical meaning of these illustrations, it is easy to see that the distribution of the cometary orbits about the parabolic eccentricity indicates, as LAPLACE first pointed out, that the comets have been drawn to our system from the regions of the fixed stars. The curve for the planets and satellites proves merely that the eccentricities were originally small, and that, under the minimized effects of tidal friction resulting from such inconsiderable masses, they have never been much increased The curve for the orbits of double stars is of such a nature that we cannot, as in the case of comets, assign to these systems a fortuitous origin, for in this event the eccentricities would surpass, equal or approximate unity, and the periods of revolution, if finite, would be of immense duration, nor could any cause be assigned for the reduction of the eccentricity and period if it be admitted that anything which might properly be called a system could arise from the approach of separate stars other hand the stellar orbits have no close analogy with those of the planets and satellites, for they are densest in the region of mean elliptic eccentricity, and thus almost equally removed from the two extremes presented in the solar They were therefore of this mean form originally, or have been made so by a cause which has left a distinct impress upon the nature of the systems The secular alteration in the figure of equilibrium of a greatly expanded mass like a double nebula would of necessity be very gradual, and hence it follows that the mass cut off under the increased centufugal force incident to slowly accelerated rotation would begin to revolve in an orbit of comparatively small Indeed, were the initial eccentricity considerable the two nebulae would come into grazing collision at periastron, and in consequence of the resistance encountered the system would rapidly degenerate into a single mass When at length the bodies are separated, each mass will contract and gain correspondingly in velocity of axial rotation, and tidal friction will begin expandmg and elongating the orbit, nothing but this secular process would be adequate to develop the mean eccentricities observed in the immensity of space tidal friction be sufficient to account for the elongation of the real orbits of double stars, we shall be justified in concluding that it is the true cause of the phenomenon Accordingly, it does not seem probable that the conclusions reached in the Inaugural Dissertation which I presented to the Faculty of the University of Berlin will be materially altered, but some of the many problems connected with the general theory of tides still need additional elucidation If we shall be able to explain the origin and development of double stars, the abundance of such systems will raise a presumption that the agencies and processes involved are more or less general throughout the universe, and no inconsiderable light

will be thrown upon the laws of Cosmogony. By extending our researches to the various classes of nebulae and clusters, additional knowledge will be gained, and in the course of time it will be possible to approach the general problem of cosmical evolution.

For more than two centures Celestial Mechanics has been occupied with the confirmation of the Newtonian law, and with the development of theories for the precise determination of the figures and motions of the heavenly bodies. In the writings of Newton and Laplace the attracting masses are essentially solid spheroids covered by a fluid in equilibrium. The theories of the orbital motions and perturbations of the planets, and of the figures and rotations of these bodies about their centres of gravity, are treated mainly from the point of view of rigid dynamics, and little account is taken of the fact that so far as known the heavenly bodies are masses of viscous fluid. The work of Darwin on the precession of a viscous spheroid and on the secular effects of bodily tidal friction marks an epoch in the history of Celestial Mechanics, which will eventually become a science of the equilibrium and motion of fluids, and must take account of not only the attractions due to undisturbed figures, but also the forces arising from tidal deformation, with the resulting secular changes in the motions of the heavenly bodies.

Physical Astronomy has been devoted heretofore to first approximations under the law of universal gravitation, in particular, to the development of methods for tracing the exact paths of the heavenly bodies through past and future centuries; the theories thus developed are applicable to all periods of recorded history and are justly considered the most imposing monuments yet reared by the human intellect. But the ultimate aim of Astronomy is not only to explain and to predict phenomena which the course of time will make known to observers, but also to determine the secular effects of cumulative causes, and, by approaching the primitive condition of the universe, to discover the origin and to trace the evolutionary history of the stars. As the slow processes of cosmical development are forever withheld from the direct vision of the astronomer, and can be discovered only by the investigation of the continued effects of laws and causes now at work in the heavens, the solution of this sublime problem will be an achievement not unworthy of the human mind

Hawley House, 5326 Washington Ave, Chicago, May 6, 1896

CHAPTER I.

On the Development of Double-Star Astronomy, and on the Mathematical Theories of the Motions of Binary Stars.

§ 1 Historical Sketch of Double-Star Astronomy from Herschel to Burnham.

The suggestive relation of certain prominent stars, in contrast with the irregular manner in which the multitude are strewn over the surface of the celestral sphere, presented to the minds of the ancients the appearance of arrangement or classification, the more or less obvious constellations thus invented for bright and widely-separated objects were of various sizes, and frequently of an arbitrary character The condensation of the stars into natural groups, such as the Pleiades, Coma Berenices, and the clouds in the Milky Way, must have attracted early attention, but no one attempted a philosophical inquiry into the cause of such arrangement until Mitchell took up the question in 1767, and showed from the theory of probability that a real physical connection was strongly indicated Further considerations of a similar character led him to predict in advance of observation that compound stars would be found nevolving about their common centres of gravity LAMBERT had surmised the existence of possible stellar systems in 1761, and Giordano Bruno, Cassini, and Maupertuis had advanced even earlier conjectures of the same The argument for physical connection of closely associated stars, based on the theory of probability, has since been greatly extended by WILLIAM STRUVE, and a practical verification of theory is furnished by the evidence of orbital motion in about 500 out of the 5000 interesting double stars catalogued by modern observers

The designation double-star ($\delta\iota\pi\lambda\circ\hat{\nu}s$) was first employed by Ptolemy in describing the appearance of ν Sagittarii. The first object of the kind ever discovered with the Telescope was probably ζ Ursae Majoris, which appeared double to Riccioli about the middle of the seventeenth century. The quadruple system θ Orionis was detected by Huyghens in 1656, and the wide pair γ Arietis by Hooke some eight years later. While observing a comet at Pondicherry, India, in December, 1689, Father Richaud separated the com-

ponents of a Centauri, and thus seemed the first record of a star, which has proved to be binary. The duplicity of γ Virginis was accidentally discovered by Bradley and Pound in 1718, and subsequently re-discovered by Cassini and Messier, while observing occultations, with a view of finding evidence of an atmosphere surrounding the moon

a Geminorum was resolved in 1719, 61 Cygni in 1753, and β Cygni in 1755, but although these spotadic discoveries had been made, no systematic search for double stars was attempted until 1777, when Christian Mayer, of Mannheim, began to collect a list of these remarkable objects. Having reached the conclusion that faint stars near larger ones are essentially revolving planets, he searched the heavens attentively with an eight-feet mural circle, by Bird, and discovered in all some seventy-two pairs, including γ Andromedue, ζ Cancre, a Herculis, ϵ Lyrae and β Cygni. Unfortunately, the wide objects within the reach of such a telescope seldom have any appreciable relative motion, and hence the stars discovered by Mayer give very little evidence of the physical connection which he expected

The real history of double-star discovery and measurement, dates from the explorations begun by Sir William Herschel in 1779 This indefatigable observer sought to grapple with the unsolved problem of stellar parallax, which had engaged the attention of astronomers since the time of Copernicus Rejecting the methods recommended by GALILEO, FLAMSTEED and BRADLEY, he proposed one of his own, depending on the measurement of position-angles of two stars of unequal magnitudes from opposite sides of the earth's orbit HERSCHEL supposed the double stars to be mere groups of perspective, and hence he hoped to detect the relative parallax due to the orbital motion of the He resolved to examine every star in the heavens with the utmost attention under a very high power, the superiority of his telescope gave him an advantage over previous observers, and moreover, his improved optical appliances were supplemented by great energy and boundless enthusiasm During the interval from 1779 to 1784 he made an extensive catalogue of double stars, some of which he hoped would ultimately prove to be suitable for measurement of parallax In 1782 he communicated to the Royal Society a catalogue of 269 double stars, 227 of which were new, and followed it three years later by a second catalogue containing 434 such objects. For the next fifteen years the attention of the great observer was devoted to, among other things, the measurement of these pairs, with a view of finding those best adapted to parallax determination Slight changes were observed from the first, but in most cases the shifting of the relative positions of the objects was attributed

either to the proper motions of the stars, or to the secular motion of the sun The motions were so slow that it took the observations of many years to prove conclusively that certain double stars are moving in regular This unexpected and astonishing result was finally announced by Herschel in 1802, and demonstrated during the following year by his elaborate memoirs on binary stars These investigations supplied the first satisfactory evidence that some of the double stars constitute genuine stellar systems Herschel's celebrated papers maintained by the action of universal gravitation dealt with the motions of such objects as \(\xi Ursae Majoris, 70 Ophiuchi, \(\gamma Virginis, \) a Geminorum, η Coronae Borealis, ξ Bootis, η Cassiopeae, ζ Herculis, μ² Bootis; and in some cases assigned rough estimates of the periods of revolution. The interest in an announcement which opened up fields of inquiry of the widest scope, was fully commensurate with the inherent importance of the discovery, and yet, notwithstanding the splendor of the achievement, double stars were little observed during the first twenty years of this century

SIR JOHN HERSCHEL began some preliminary work on double stars in 1816, and was soon joined by SIR JAMES SOUTH. During the next ten years these two observers published several series of observations made either conjointly or separately, and when SIR JOHN HERSCHEL made his survey of the Southern Hemisphere, over 2000 pairs were discovered and roughly measured. The conscientious records which he has left us in the *Results* of his observations at the Cape of Good Hope, as well as the catalogues since published, and his elegant researches on the orbits of double stars, ensure to him a distinguished place among those astronomers who have labored to advance our knowledge of binary systems

The systematic survey of the part of the heavens between the north pole and fifteen degrees south declination, executed by William Struve between the years 1824 and 1836, will long remain the most important contribution to double-star Astronomy ever made by one man. The instrument used was the Dorpat 99-inch refractor by Fraunhoffer, the results furnished the material of the Mensurae Micrometricae which includes careful observations of 3112 double and multiple stars, besides records of his previous work with smaller instruments. The labors of William Struve abolished Herschel's cumbersome method of referring position-angles to the quadrants, and reduced double-star Astronomy to a scientific basis by reckning the angle continuously from 0° to 360°. Out of this extensive work grew other reforms, such as the superior classification and arrangement of the results, and in this way Struve laid the foundations of the subsequent development of the science.

Among the other observers who contributed to this branch of Astronomy prior to 1850, we may mention especially Madler, Bessel, and Dawes. The measures of Dawes take high rank for quality and serve as an example of what may be done by private observers with limited appliances. Other deceased observers especially deserving of mention for important contributions to the records of double-star Astronomy are Seccili, Kaiser, Knott, Englemann, Jedrzejewicz, and, above all, Baron Dembowski

Though the last-mentioned observer worked privately and with a small instrument, his measures are more extensive and perhaps more accurate than those of any other observer either living or dead. Covering the period from 1854 to 1878, the work included measures of all the pairs in the Mensurae Micrometricae accessible to his 7-inch glass, besides numerous observations of pairs more recently discovered by himself, Otto Struve, Burnham and Alvan Clark. The twenty thousand precise measures executed by this great astronomer were collected after his death, edited by Otto Struve and Schiaparelli, and published in two large quarto volumes by the Academia der Lyncer of Rome

Beginning prior to 1840 and extending over the next fifty years, the double-star work of the illustrious Otto Struve furnishes by far the longest and most homogeneous set of observations yet made by any astronomer. Besides records of the numerous stars discovered by himself and by his father, Otto Struve's work includes reliable data for the most important stars discovered by other previous and contemporary observers. Many of his own stars are close and have proved to be comparatively rapid, and hence will soon yield satisfactory orbits.

Among living observers the names of Otto Struve, Hall, Dunér, Schiaparelli, Tarrant, Bigourdan, Maw, Glasenapp, Tebbutt, Stone, Comstock, Knorre, Seabroke, Doberck, Perrotin, Hough, and Burnham will be familial to the leader. Each has contributed important material for the study of the stellar systems, but the work of Struve, Hall, Schiaparelli, and Burnham is especially important to the computer, as covering a long series of years and thus supplying homogeneous material for the determination of the orbits of revolving binaries.

Prior to 1870 it had been generally held by such authorities as Dawes that the subject of double stars was practically exhausted by the discoveries of the Herschiels and the systematic surveys of the Struves. As the latter had swept over all the brighter stars in the northern heavens, including about 140,000 objects, we may refer with a certain pleasure to the epoch-making discoveries since made by Burnham, who has detected nearly 1300 important pairs which had escaped all previous observers. Burnham's stars are either very close or

the companion is very faint, and their high importance lies in their rapid orbital motion. This characteristic of Burnham's stars has already enabled us to deduce a number of most interesting orbits. It is probable that during the next half century his stars will yield more good orbits than all the other stars previously discovered put together. When we remember that the aim of the observer is to determine the paths of the stars with a view of throwing light upon the character of the stellar systems, it is clear that the measurement of these close objects, which will yield a large number of orbits within a reasonable time, is the most pressing duty of the observer of the future. Many distinguished observers have devoted their attention to the sidereal studies begun by the Herschels and developed by the Struves, but none have labored more devotedly or achieved more splendid discoveries than the illustrious Burnham.

§2 Laplace's Demonstration of the Law of Gravitation in the Planetary System

Suppose we denote by X and Y the forces which act on a planet, resolved along the coordinate axes, and directed towards the origin at the centre of the sun; let the plane of the orbit be taken as the plane of xy. Then we have, as the equations of motion,

$$\frac{d^2x}{dt^2} + X = 0 , \frac{d^2y}{dt^2} + Y = 0 (1)$$

If we multiply the first equation by -y, and the second by x, and add the results, we find

$$\frac{d(xdy - ydx)}{dt^2} + xY - yX = 0 (2)$$

But $\frac{dy-ydx}{dt}$ is the double areal velocity, and by Kepler's law the areas described by the radius-vector of the planet are proportional to the time. Therefore we have

$$xY - yX = 0, (3)$$

or the forces X and Y are related as the coordinates x and y; which indicates that the attractive force is directed to the origin of coordinates. Therefore we conclude that the force which retains the planets in their orbits is directed to the centre of the sun

We may now investigate the law of this force at different distances. On multiplying the first of (1) by dx, and the second by dy, adding and integrating, we have

$$\frac{dx^2 + dy^2}{dt^2} + 2\int (Xdx + Ydy) = 0$$
 (4)

If we denote the double areal velocity by c, we shall have

$$dt = \frac{i \, dy - y \, dx}{t},$$

and hence the last equation gives

$$\frac{e^2(dx'+dy^2)}{(xdy-ydx)^2} + 2/(Xdx+Ydy) = 0$$
(5)

In polar coordinates,

$$t = t \cos r$$
, $y = t \sin r$, $t = \sqrt{t^2 + y}$,

and we find

$$dx^2 + dy^2 = r^2 dx^2 + dx^2$$
, $x dy - y dx = r^2 dx$

If we now denote by F the central force which acts on the planet, we shall have

$$X - F \cos v$$
, $Y = F \sin v$, $F = \sqrt{X^2 + Y^2}$

Hence we get

$$Xdx + Ydy = F\cos v \left(\cos v dx + i\sin v dx\right) + F\sin v \left(\sin v dx + i\cos v dx\right) - Fdv$$

Therefore

$$\frac{\epsilon' \left(r' dv^2 + \epsilon h r' \right)}{r' dv^2} + 2 \int F dr = 0, \tag{6}$$

and we find

$$dv = \frac{cdr}{(\sqrt{-c'-2r^2/Fdr})} \tag{7}$$

If the force F were a known function of r, we might find v by the process of quadrature. But since the force is unknown, although the species of curve it causes the planets to describe is known, we may differentiate equation (6), and obtain

$$F = \frac{\epsilon'}{\epsilon^3} - \frac{\epsilon^2}{2} \frac{d \left\{ \frac{dr^2}{\tilde{r}^4 d\tilde{v}^2} \right\}}{dr}$$
(8)

KEPLER found from observation that the planets and comets respectively move in ellipses and parabolas, which are conic sections. The polar equation of a conic may be written

$$\frac{1}{r} = \frac{1 + e \cos(v - \omega)}{u(1 - e^2)},$$
 (9)

whence we find

$$\frac{dr}{r^2dr} = \frac{e \sin(v-\omega)}{a(1-r^2)},$$

or
$$\frac{dr^2}{r^4 dv^2} = \frac{e^2 - e^2 \cos^2(r - \omega)}{\omega^2 (1 - e^2)^2}$$
 (10)

If we reduce the second member by (9),

$$e \cos(v-\omega) = -1 + \frac{\alpha(1-e^2)}{r}$$

we shall easily find

$$\frac{dr^2}{r^4 dv^2} = \frac{2}{\alpha r (1 - e^2)} - \frac{1}{r^2} - \frac{1}{\alpha^2 (1 - e^2)},$$

and hence we get

$$\frac{d\left\{\frac{dr^{2}}{r^{4}dv^{2}}\right\}}{dr} = -\frac{2}{ar^{2}(1-e^{2})} + \frac{2}{r^{3}}$$
(11)

Thus equation (8) becomes

$$F = \frac{c^2}{a(1-e^2)} \frac{1}{r^2} \tag{12}$$

Therefore we conclude that the force which causes the planets and comets to move in conic sections about the sun varies inversely as the square of the distance from the sun's centre. Such is the demonstration by which Laplace was led to the law of universal gravitation; it rests solely on phenomena, and is independent of any hypothesis. The original demonstration by Newton was based on geometrical methods, and is given in the *Principla*, Lib. I, Sec. III, Prop XI.

The laws of Kepler made use of in these demonstrations are taken as fundamental facts discovered from observation, but planetary observations in the time of Kepler were not sufficiently exact to ensure entire rigor in these laws, and besides no account was taken of the mutual gravitation of the planets. Hence it will be seen that the accuracy of the laws of Kepler, even in the time of Newton, could be maintained only within given limits

It is never possible to realize the conditions of undisturbed motion assumed by Kepler, and hence the problem presented to astronomers can be solved only by successive approximations. Assuming that the facts embodied in Kepler's laws are strictly true, Newton's reasoning shows that the law of gravitation is mathematically exact; if on the other hand we assume the accuracy of the law of Newton, we are led directly to the laws of Kepler as phenomena which would arise under the operation of gravitation. The laws of Kepler are sensibly correct, and on the admissible supposition that they are entirely rigorous,* astronomers have applied the law of gravitation to the disturbed motions of the planets, with a view of explaining observed inequalities, and of discovering from theory other perturbations which have been subse-

^{*}The third law is here supposed to be corrected for the planetary masses neglected by Kepler

quently verified by observation. This development of the planetary theories has occupied the attention of astronomers for over two centuries, and in every case where doubt has arisen the accuracy of the Newtonian law has been verified.

The large of possible maccuracy has been gradually narrowed, until at present the data of Astronomy show that if the law of nature departs at all from that given by Newton, the deviation must be extremely slight. Indeed, the law of gravitation, taken in connection with its simplicity, is so thoroughly established as to authorize the belief that it is rigorously the law of nature. Its brilliant confirmation and extension since the time of Newton, especially by Laplace, leaves but few, and generally insignificant, motions yet unexplained, and since we know that the slightest deviation from the law of inverse squares would become very perceptible in the motions of the perihelia of the orbits of the planets and the periplaneta of the orbits of the satellites, and no such outstanding phenomena have been disclosed by observation, except in the case of the perihelion of the orbit of Mercury, which may be explained in a different manner, it is hardly possible to doubt that the few anomalous phenomena yet remaining will finally be explained in perfect accord with the law of Newton

The strongest proof of the rigor of this law is to be found in the fact that it accounts for both the regular and the inegular motions of the heavenly bodies, and in the hands of LAPLACE and his successors has become a means of discovery as real as observation itself

A law which explains satisfactorily the figures, the secular variations, and the delicate long-period inequalities of the planets, and above all the numerous perturbations to which the moon is subjected, certainly has a strong claim to be regarded as a fundamental law of nature, and is incontestibly the sublimest discovery yet achieved in any science

§ 3 Investigation of the Law of Attraction in the Stellar Systems

The labors of Newton and Laplace on the mechanism of the solar system established the law of gravitation with all the rigor which modern observations could demand, but neither of these two great geometers attempted to apply this law to other systems existing in space. The close of the career of Laplace, just a century after that of Newton, marks an epoch in the verification of the Newtonian law, since in this year Savary devised the first method for determining the orbits of double stars, he justly based his theory on the principle

of gravitation which the author of the Mécanique Céleste had recently tested with such thoroughness for the regions about the sun traversed by the planets and comets The method developed by Savary has been improved and rendered more practical by the labors of subsequent geometers, and consequently at the present time there is no considerable body of phenomena which appear to be irreconcilable with the law of Newton Indeed, when proper allowance is made for the large but inevitable errors of our micrometrical measures, all modern observations of binary stars may be explained either by the theory of two bodies revolving under the law of gravitation, or by the action of unseen bodies perturbing the regular elliptical motion. This accordance of observation with theory, while it increases enormously the probability of the Newtonian law, does not furnish an independent criterion, and therefore it is desirable to ascertam the most general form of the expressions which will cause a particle to describe a come, so that we may determine whether any other law can explain the phenomena In the case of double stars, micrometrical measures enable us to study only the apparent orbits, which are projections of the real orbits upon the plane tangent to the celestral sphere The apparent orbits are ellipses, and therefore we may conclude that the real orbits are also comes of the same species. When the orbit is projected the centre of the real ellipse will fall upon the centre of the apparent ellipse, but the positions of the projected foci are not determinate unless the position of the real ellipse is known Astronomers are accustomed to assume that Newtoman gravitation is the attractive force, and as this requires that the principal star shall be in the focus of the real ellipse, it then becomes easy to deduce the corresponding node, inclination and other elements. It is observed that the principal star is not in the centre of the ellipse, and therefore we infer that the force does not vary directly as the distance But since the areas swept over by the radius vector are proportional to the times, we may conclude that the force is central, and since the appaient motion of 42 Comæ Beremees is rectilinear, it is clear that the orbit is a plane curve, or conic section. As other forces besides gravitation could cause a particle to describe a come, Bertrand proposed the following problem to the Paris Academy of Sciences "Knowing that a material particle under the action of a central force always describes a conic, it is required to find the expression of this force."*

Before presenting the solutions developed by Darboux and Halphen, we shall give an exposition of the geometrical method by which Newton treated the same problem

In the Scholium to Proposition XVII, Liber I, of the Principia, Newton

^{*} Comptes Rendus, April 9, 1887

derived the general expression for the force which will cause a particle to describe a come section, the centre of force occupying any internal point. The demonstration given by Newton depends upon several preceding propositions, a more direct but similar solution of the same problem has been published by Professor Glassier in the *Monthly Notices*, Vol. XXXIX

This investigation is as follows. Let C be the centre of the ellipse, P any point occupied by the particle, Q the point occupied by the particle at the next instant, PZ the tangent at P, PG the diameter through P, CD the semi-conjugate diameter to PG, O the centre of attraction, QS a right line parallel

to OP, OZ and CY perpendiculars on the tangent from O and C, PF the perpendicular on CD from P, QT the perpendicular from Q on OP, Qr and OM perpendiculars on PF from Q and O, r the intersection of Qr with OP, r the intersection of OM with OP, and R the required force tending to O.

Then we shall have

$$R = \frac{2h^2}{OP^2} \frac{QS}{Q\bar{F}^2},\tag{1}$$

where h denotes the areal velocity

By the similar triangles QTx and PMO,

$$\frac{QT}{Qx} = \frac{PM}{OP} \tag{2}$$

By come sections,

$$\frac{\overline{Qv^2}}{Pv Gv} = \frac{\overline{C}D^2}{CP^2} \tag{3}$$

And from the figure,

$$\frac{Pv}{QS} = \frac{Pv}{Px} = \frac{P\iota}{OP} = \frac{CP}{PF} - \frac{PM}{OP}$$
 (1)

Therefore by (3) and (4) we find

$$\frac{\overline{Qv^2}}{QS \ Gv} = \frac{\overline{CD}^2}{CP \ PF} \quad \frac{PM}{OP}$$
 (5)

In the limit Qx = Qv, and hence (2), (3) and (5) give

$$\frac{Q\overline{T}^2}{QS} = \frac{2C\overline{D}^2}{PF} \quad \binom{PM}{QP}^3 \tag{6}$$

Substituting in (1), we obtain

$$R = \frac{h^2}{OP^2} \frac{PF}{CD^2} \left(\frac{OP}{PM}\right)^3 = \frac{h^2}{a^2h^2} \left(\frac{PF}{PM}\right)^3 OP = \frac{\hbar^2}{a^2b^2} \left(\frac{CY}{OZ}\right)^3 OP, \tag{7}$$

which is the required law of force.

§ 4 Analytical Solution of Bertrand's Problem Based on that Developed by Darboux; Solution of Halphen

The equations of acceleration are,

$$\frac{d^2x}{dt^2} = -R\frac{x}{r} = -R\cos\theta \qquad , \qquad \frac{d^2y}{dt^2} = -R\frac{y}{r} = -k\sin\theta , \qquad (1)$$

where R is the attractive force, at unit distance. Multiplying the first by -y and the second by x, and adding, we get

$$x \frac{d^2 y}{dt^2} - y \frac{d^2 x}{dt^2} = 0 (2)$$

On integrating we obtain

$$x\frac{dy}{dt} - y\frac{dx}{dt} = h ag{3}$$

In polar coordinates this equation becomes

$$r^2 \frac{d\theta}{dt} = h = \text{double areal velocity}$$
, (1)

Let us now put $u = \frac{1}{i}$, and then

$$a = \frac{\cos \theta}{u} , \frac{dx}{dt} = -\frac{u \sin \theta + \cos \theta \frac{du}{d\theta}}{u^2} \frac{d\theta}{dt}$$
 (5)

By equation (4) this becomes

$$\frac{dx}{dt} = -h\left(u\sin\theta + \cos\theta \frac{du}{d\bar{\theta}}\right),\tag{6}$$

and
$$\frac{d^2 x}{dt^2} = -h^2 u^2 \left(u \cos \theta + \cos \theta \frac{d^2 u}{d\theta^2} \right)$$
 (7)

From (7) and (1) we get

$$R = \frac{h^2}{r^2} \left(u + \frac{d^2 u}{d\theta^2} \right), \tag{8}$$

where the centre of force is at the origin

This equation is perfectly general for the determination of R when the equation of the path is known. To get the central force, R, which will cause a particle to describe any given path, we find the value of $\binom{u+\frac{d^2u}{d\theta^2}}{d\theta^2}$ for that path, and multiply it by $\frac{h^2}{r^2}$. Therefore, to find the law of R, when the path is a come section, we have the general equation,

$$ax^{2} + 2bxy + cy^{2} + 2dx + 2fy = q$$
 (1)

Putting $r = \frac{1}{u}$, and transforming to polar coordinates, we have

$$\frac{a\cos^2\theta}{u^2} + \frac{2b\sin\theta\cos\theta}{u^2} + \frac{c\sin^2\theta}{u^2} + \frac{2d\cos\theta}{u} + \frac{2f\sin\theta}{u} \qquad q.$$

from which we obtain

$$u = \frac{f \sin \theta + d \cos \theta}{g} + \frac{1}{g} \sqrt{(f^2 + \iota g) \sin^2 \theta + 2(f d + b g) \sin \theta \cos \theta + (d^2 + \iota \iota g) \cos' \theta}$$
 (10)

This equation reduces to the form

$$u = A \sin \theta + B \cos \theta + \sqrt{C \sin 2\theta + D \cos 2\theta + H}, \qquad (11)$$

where

$$A = \frac{f}{g}, \quad B = \frac{d}{g}, \quad C = \frac{fd + bg}{g^2}, \quad D = \frac{d^2 + ag - f^2 - \epsilon g}{2g^2}, \quad H = \frac{d^2 + ag + f^2 + \epsilon g}{2g^2}.$$

From (11) we derive

$$\frac{d^2 u}{d\theta^2} = \frac{-1 \sin \theta - B \cos \theta - C^2 - D^2 - (C \sin 2\theta + D \cos 2\theta)^2 - 2H(C \sin 2\theta + D \cos 2\theta)}{(C \sin 2\theta + D \cos 2\theta + H)^{3/2}}$$
(12)

Therefore by (8) we get

$$R = \frac{h^2}{r^2} \frac{(H^2 - C^2 - D^2)}{(C \sin 2\theta + D \cos 2\theta + H)^{\gamma/2}}$$
 (13)

This is the general expression for R whatever be the constants a, b, c, d, f and g

Since by (11) we have

$$u - A \sin \theta - B \cos \theta = \sqrt{C \sin 2\theta + D \cos 2\theta + H}$$

we may write (13)

$$R = \frac{h^2}{r^2} \frac{(H^2 - C^2 - D^2)}{\left(\frac{1}{r} - A \sin \theta - B \cos \theta\right)^2},$$
(14)

which is another general expression for R

When the come is an ellipse with the origin at the centre, equation (9) takes the form $ax^2 + cy^2 = ac$, and from (13) or (14) we find after reduction

$$R = \frac{h^2 r}{ac} \tag{15}$$

The force varies directly as r, which is the well-known law

When the centre of force is on the x-axis between the centre and one of four at a distance m from the centre, equation (9) becomes

$$ax^2 + 2amx + cy^2 = a(c - m^2)$$

and we find from (13)

$$R = \frac{h^2}{r^2} \frac{(a\epsilon)^{1/2}}{\left[(a - c + m^2)\cos^2\theta + \epsilon - m^2\right]^{3/2}}$$
 (16)

Since $a - c + m^2$ is always negative, the force at unit distance is a maximum in the direction of the apsides and is a minimum when $\theta = \frac{\pi}{2}$ We have from (14), in this case,

$$R = \frac{h^2 c^2 r}{a \left(c - m^2 - m \alpha \right)^8} \tag{17}$$

This expression can readily be transformed into (16)

When the origin is at one of the foci (13) or (11) gives

$$R = \frac{h^2}{r^2} \frac{e^{1/r}}{a^r},\tag{18}$$

which is the Newtonian law

This is also deducible from (16) by putting m' = e - a

When the centre of force is on the x-axis between one of the foci and the nearest apse, at a distance u from the centre, we obtain from (13)

$$R = \frac{h^2}{r^2 \left[(u^2 + i^2)^2 \cos^2 \theta + \epsilon - n^2 \right]},$$
 (19)

Since $a - c + n^2$ is always positive, the force at unit distance is a maximum when $\theta = \frac{\pi}{2}$, and a minimum at the apsides. From (11) it is easy to obtain

$$R = h^2 \frac{\epsilon^2}{a} \frac{\epsilon}{(\epsilon - n^2 - n \, \epsilon)^3} \,, \tag{20}$$

which may be transformed into (19).

When the centre of force is on the minor axis at a distance k from the centre, equation (13) gives

$$R = \frac{h^2}{r^2 \left[(a - \epsilon - \lambda^2) \cos^2 \theta + \epsilon \right]^4}$$
 (21)

Since $a = c = k^2$ is always negative the force at unit distance is a maximum when $\theta = 0$, and a minimum when $\theta = \frac{\pi}{2}$. In this case we obtain from (11)

$$R = \frac{a^2}{(a-k^2-ku)^3}$$
 (22)

When the centre of force is within the ellipse, at a distance p from the y-axis, and q from the x-axis, we get from (13)

$$R = \frac{\hbar^2}{r'} \left[\frac{(ar)^{1/\epsilon}}{2pq \sin \theta \cos \theta + (a - r - q^2 + p') \cos^2 \theta + \epsilon - p'} \right] , \qquad (23)$$

which becomes (19) when q = 0, and (21) when $\rho = 0$. We also obtain from (14)

$$R = \frac{h^2 a^2 e^2 r}{(aa - ap^2 - cq^2 - cqy - apa)^3},$$
 (21)

which becomes (20) when q = 0, and (22) when p = 0.

The foregoing values of R are real and positive, and represent all the laws consistent with the observed motions of binary stars

It may be interesting to note that when the centre of force is at one of the apsides of at one end of the minor axis, our general formulae (13) and (14) give indeterminate results. In this case we take the equation of the ellipse with the origin at the end of one of the axes, and calculate R by (8) When the centre of force is at the apse, we obtain after reduction

$$R = \frac{h^2}{L} \frac{\sqrt{\bar{\iota}}}{u \cos^3 \theta} \tag{25}$$

When the centre of force is at the end of the minor axis, we find

$$R = \frac{\hbar^2}{r^2} \frac{\sqrt{a}}{e \sin^3 \theta} \tag{26}$$

In both of these cases the origin is taken in the positive direction from the centre of the ellipse, if the other ends of the axes be chosen the signs of (25) and (26) will be reversed

When c = a in (25) or (26) the conic becomes a circle, and the expression reduces to the well-known law

$$R = \frac{8h^2a^{6/2}}{r^5} \tag{27}$$

The expression for the force at external points may be derived in a manner entirely similar to that for points within

Solution of Halphen*

Let m be the mass of the central body, and R an unknown function of x and y. Then we have the equations

$$m \frac{d^2x}{dt^2} = -R \frac{x}{r}$$
 , $m \frac{d^2y}{dt^2} = -R \frac{y}{r}$ (28)

R is to be determined by the condition that the orbit of the particle is a conic section. Let

$$\frac{dx}{dt} = x' \quad , \quad \frac{dy}{dt} = y' \quad , \quad R = -mur \,, \tag{29}$$

where u is an unknown function of x and y

^{*} TISSERAND'S Mécanique Celeste, Tome I, Cap I, where the original solution has been somewhat modified

From (28) and (29) we obtain

$$\frac{dx'}{dt} = ux \quad , \quad \frac{dy'}{dt} = uy \tag{30}$$

By this equation we have

$$\frac{d}{dt}F(x,y,x',y') = x'\frac{\partial F}{\partial x} + y'\frac{\partial F}{\partial y} + u\left(x\frac{\partial F}{\partial x'} + y\frac{\partial F}{\partial y'}\right)$$
(31)

We now proceed to find the differential equation which is common to all comes. The general equation of a come has the form,

$$Ax^{2} + 2Bxy + Cy^{2} + 2Fx + 2Gy + H = 0, (32)$$

in which there are five arbitrary constants. Taking x as the independent variable and differentiating five times in succession we have, in Lagrange's notation,

We now have to eliminate the five constants in (32) and (33). We notice that the last three equations of (33) are homogeneous, containing only the three constants C, B and G, and we can eliminate them by equating to zero the determinant

$$\Delta = \begin{vmatrix} yy''' + 3y'y'' & xy''' + 3y'' & y''' \\ yy^{v} + 4y'y''' + 3y''^{2} & xy^{v} + 4y''' & y^{v} \\ yy^{v} + 5y'y^{v} + 10y''y''' & xy^{v} + 5y^{v} & y^{v} \end{vmatrix}$$
(31)

By elementary principles of Determinants equation (34) reduces to

$$\Delta = \begin{bmatrix} 0 & 3i'' & i''' \\ 3i'' & 4i''' & i^{N} \\ 10i''' & 5i'^{N} & i^{N} \end{bmatrix}$$
(35)

Expanding (35) and returning to the differential notation, we have

$$9\left(\frac{d^{2}y}{dx^{2}}\right)^{2}\frac{d^{5}y}{dx^{5}} - 45\frac{d^{2}y}{dx^{2}}\frac{d^{3}y}{dx^{3}}\frac{d^{4}y}{dx^{4}} + 40\left(\frac{d^{3}y}{d^{3}y}\right)^{8} = 0$$
(36)

This is the general differential equation of a conic section We now calculate $\frac{d^2y}{dx^2}$ $\frac{d^5y}{dx^5}$ from the relations expressed in (29), (30) and (31) We have

$$\frac{dy}{dx} = \frac{y'}{x'},$$

therefore

 $u'\frac{d^2y}{du^2} = \frac{u'uy - y'uu}{a'^2},$

or

$$v'^{3} \frac{d^{2}y}{dJ^{2}} = (\iota'y - y'\iota)u \tag{37}$$

Since the force is central, by the law of areas, (x'y - y'x) is constant. Therefore we derive

$$x^{15} \frac{d^{3}y}{dx^{3}} = (x^{i}y - y^{i}x) \left(x^{i} \frac{du}{dt} - 3u^{2}x \right)$$

$$x^{17} \frac{d^{4}y}{dx^{4}} = (x^{i}y - y^{i}x) \left(x^{12} \frac{d^{2}u}{dt^{2}} - 10uxx^{i} \frac{du}{dt} - 3u^{2}x^{12} + 15u^{8}x^{2} \right)$$

$$x^{19} \frac{d^{5}y}{dx^{5}} = (x^{i}y - y^{i}x) \left[x^{13} \frac{d^{3}u}{dt^{3}} - 15uxx^{12} \frac{d^{2}u}{dt^{2}} - 10xx^{12} \left(\frac{du}{dt} \right)^{2} + \frac{du}{dt} \left(105u^{2}x^{2}x^{i} - 16ux^{13} \right) + 45u^{3}x^{3}x^{2} - 105u^{4}x^{3} \right]$$

$$(38)$$

Substituting these values in (36) and reducing, we obtain

$$9u^{2}\frac{d^{3}u}{dt^{3}} - 45\frac{du}{dt}\frac{d^{2}u}{dt^{2}} + 40\left(\frac{du}{dt}\right)^{3} = 9u^{3}\frac{du}{dt}$$

$$(39)$$

Putting $u = w^{-w_2}$, in which w is a function of x and y, (39) reduces to

$$\frac{d^8w}{dt^8} = w^{-8/2} \frac{dw}{dt} \tag{40}$$

When we remember that

$$\frac{dv'}{dt} = vw^{-3/2} \text{ and } \frac{dy'}{dt} = yw^{-3/2},$$

and that w is a function of x and y, we get

$$\frac{dw}{dt} = v' \frac{\partial w}{\partial x} + y' \frac{\partial w}{\partial y}$$

$$\frac{d^3w}{dt^3} = x'^{18} \frac{\partial^8w}{\partial x^8} + 3x'^{2}y' \frac{\partial^8w}{\partial x^{2}\partial y} + 3x'y'^{2} \frac{\partial^3w}{\partial x^{2}\partial y^{2}} + y'^{3} \frac{\partial^3w}{\partial y^{3}}$$

$$+ w^{-3/2} \left(x' \frac{\partial w}{\partial x} + y' \frac{\partial w}{\partial y} \right) + 3w^{-3/2} \left(x'y + y'x \right) \frac{\partial^2w}{\partial x \partial y}$$

$$+ 3w^{-3/2} \left(xx' \frac{\partial^2w}{\partial x^2} + yy' \frac{\partial^2w}{\partial y^2} \right)$$

$$- \frac{3}{4} w^{-5/2} \left(x \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} \right) \left(x' \frac{\partial w}{\partial x} + y' \frac{\partial w}{\partial y} \right)$$
(41)

Substituting these values in (40), we obtain

$$0 = i^{13} \frac{\partial^{3} w}{\partial x^{3}} + 3i^{12} y^{l} \frac{\partial^{3} w}{\partial x^{2} \partial y} + 3i^{l} y^{l^{2}} \frac{\partial^{3} w}{\partial x \partial y^{2}} + y^{l^{3}} \frac{\partial^{3} w}{\partial y^{3}}$$

$$+ \frac{3}{2} i^{l} w^{-5/2} \left[2w \left(i \frac{\partial^{2} w}{\partial x^{2}} + y \frac{\partial^{2} w}{\partial x \partial y} \right) - \frac{\partial u}{\partial i} \left(i \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} \right) \right]$$

$$+ \frac{3}{2} y^{l} w^{-5/2} \left[2w \left(y \frac{\partial^{2} w}{\partial y^{2}} + x \frac{\partial^{2} w}{\partial x \partial y} \right) - \frac{\partial u}{\partial y} \left(i \frac{\partial w}{\partial x} + y \frac{\partial w}{\partial y} \right) \right]$$

$$(42)$$

This equation holds true whatever be the value of t, and hence when t = 0, in which case x, y, x', y' may be any four quantities mutually independent of one another. Then (42) gives the following equations

$$\frac{\partial^3 w}{\partial x^3} = 0 , \quad \frac{\partial^3 w}{\partial x^2 \partial y} = 0 , \quad \frac{\partial^3 w}{\partial x \partial y^2} = 0 , \quad \frac{\partial^3 w}{\partial y^3} = 0$$
 (43)

$$2w\left(x\frac{\partial^{2}w}{\partial x^{2}} + y\frac{\partial^{2}w}{\partial x\partial y}\right) - \frac{\partial w}{\partial x}\left(x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y}\right) = 0$$

$$2w\left(y\frac{\partial^{2}w}{\partial y^{2}} + x\frac{\partial^{2}w}{\partial x\partial y}\right) - \frac{\partial w}{\partial y}\left(x\frac{\partial w}{\partial x} + y\frac{\partial w}{\partial y}\right) = 0$$

$$(14)$$

We obtain from (43), when we denote the arbitrary constants by a, b, ϵ , f, g, h, $w = a \iota^2 + 2b \iota y + \epsilon y^2 + 2f \iota + 2g y + h \tag{15}$

Forming the differentials and substituting in (44), we obtain

$$\begin{cases} (hf - aq) \, i \, y + (ef - bq) \, y^2 + (f^2 - ah) \, i + (fq - bh) \, y = 0 \\ (bq - ef) \, a \, y + (aq - bf) \, a^2 + (fq - bh) \, i + (q^2 - eh) \, y = 0 \end{cases}$$

$$\begin{cases} (46)$$

Since these equations hold true for all values of x and y, we find

$$ay - bf = 0 \quad , \quad by - cf = 0 \tag{47}$$

$$f^2 - ah = 0$$
 , $g^2 - ch = 0$, $fg - bh = 0$ (48)

From (48) we have

$$fh(ag - bf) = 0 \quad , \quad gh(bg - cf) = 0 \tag{49}$$

Then, if none of the quantities f, g, h vanishes, (47) follows from (48), and it is sufficient to verify the latter

We may write (45) in the form

$$w = \frac{1}{h} \left[(fx + gy + h)^2 - (f^2 - ah) a^2 - (g^2 - ch) y^2 - 2(fy - bh) xy \right], \tag{50}$$

which, in consequence of (48), becomes

$$w = \frac{(fr + gy + h)^2}{h} \tag{51}$$

Therefore, since $u = w^{-3/2}$, we have by (29)

$$R_1 = m h^{3/2} \frac{r}{(f \iota + g g + h)^3}, \tag{52}$$

which is an expression for the force sought. When h = 0, (48) leads to f = 0 and g = 0. In this case we have

$$w = ar^2 + 2bry + cy^2, (53)$$

from which we get

$$R_2 = m \frac{i}{(\bar{a}\,\bar{i}^2 + 2b\,i\,y + \epsilon\,y^2)^{3/2}} \tag{54}$$

This is another expression for the force, whatever be the constants a, b and c. When f = 0, (47) and (48) give ay = by = ah = bh = 0, $y^2 = ch$, from which a = b

In this case we get from (50)

$$w = \frac{(qy+h)^2}{h}, (55)$$

which gives the same result as (52), when f = 0

Thus there are two laws of force, and only two, which answer the question, but the forces R_1 and R_2 contain both the radius vector r, and the polar angle

$$\theta = \tan^{-1} \frac{y}{x}$$

If the forces depend upon r alone, as is natural to suppose, we should have in R_1 , f = g = 0; and in R_2 , a = c and b = 0 Then we find

$$R_1 = mr$$
 , $R_2 = \frac{m}{r^2}$ (56)

The first of these laws is excluded by observation, the second is the law of Newtonian gravitation.

§ 5 Theory of the Determination, by Means of a Single Spectroscopic Observation, of the Absolute Dimensions, Parallaxes and Masses of Stellar Systems whose Orbits are Known from Micrometrical Measurement*

Recent researches on the orbits of double stars have led me to develop the suggestion, first thrown out by Fox Talbot in 1871† and since somewhat varied by others,‡ for determining the absolute dimensions, parallaxes and masses of stellar systems by spectroscopic observation of the relative motion of the companion in the line of sight. A simple and general theory of this motion may be derived from the application of the hodograph of the ellipse, and hence we shall now investigate the nature of this curve

Let x, y be the coordinates of a point in the ellipse, x' y' those of the corresponding point in the hodograph, then we shall have

$$x' = \frac{\mathrm{d}x}{\mathrm{d}t}$$
 , $y' = \frac{\mathrm{d}y}{\mathrm{d}t}$ (1)

Suppose M to be attracting the mass in the focus of the ellipse, and let r and θ be the polar coordinates of the particle moving in the orbit, and we have

$$\frac{\mathrm{d}^2 \nu}{\mathrm{d}t^2} = -\frac{Mr}{r^3} = -\frac{M}{r^2} \cos\theta \quad , \quad \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -\frac{My}{r^3} = -\frac{M}{r^2} \sin\theta \tag{2}$$

By the principle of the conservation of areas resulting from central forces, we have the equation

$$r^2 \frac{\mathrm{d}\theta}{\mathrm{d}t} = \text{double areal velocity} = C$$
,

 \mathbf{or}

$$r^2 = C \frac{\mathrm{d}t}{\mathrm{d}\theta},$$

and hence

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = -\frac{M}{C}\cos\theta \,\frac{\mathrm{d}\theta}{\mathrm{d}t} \quad , \quad \frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = -\frac{M}{C}\sin\theta \,\frac{\mathrm{d}\theta}{\mathrm{d}t} \tag{3}$$

If we integrate we obtain

$$\frac{\mathrm{d}a}{\mathrm{d}t} + a = -\frac{M}{C}\sin\theta \quad , \quad \frac{\mathrm{d}y}{\mathrm{d}t} + b = +\frac{M}{C}\cos\theta \,, \tag{4}$$

^{*}Astronomische Nachrichten, No 3314

[†] Report of British Association, 1871, Part II p 34, CLERKE's "System of the Stars," p 201, and "History of Astronomy during the 19th Century," third edition, p 467

[‡]Rambaur, M N, March, 1890, Wilsing, A N, 3198, also a paper on the determination of orbits from spectroscopic observation of the velocity-components in the line of sight, by Lehman-Fii hús, A N, 3242

where a and b are the arbitrary constants of integration. But since

$$\sin\theta = \frac{y}{2}$$
 , $\cos\theta = \frac{y}{2}$,

we find

$$\frac{\mathrm{d}x}{\mathrm{d}t} + a = -\frac{M}{C}\frac{y}{r} \quad , \quad \frac{\mathrm{d}y}{\mathrm{d}t} + b = +\frac{M}{C}\frac{i}{r} \tag{5}$$

By means of equation (1) we have

$$x' + a = -\frac{M}{C} \frac{y}{r}$$
 , $y' + b = +\frac{M}{C} \frac{i}{i}$,

and on squaring and adding we obtain

$$(a'+a)^2 + (y'+b)^2 = \frac{M^2}{C^2}, (6)$$

which shows that the hodograph of the ellipse is a circle of radius $\frac{M}{C}$

The following geometrical proof will render the application somewhat more intelligible

In the figure let PpA be the ellipse described by the particle p, PA being the major axis, and F and F' the two foci. Let pT be the tangent to the ellipse at p, and let the perpendicular from the focus upon the tangent be denoted by FQ. Then by definition the radius vector of the point in the hodograph is parallel to the tangent pT and proportional to the velocity at

the point p It is well known from the law of the conservation of areas that this velocity is always inversely as the perpendicular FQ, or directly proportional to the length of F'Q'. But the locus of Q or Q' is known to be the auxiliary circle described upon the major axis as a diameter. Therefore we see that the hodograph is of the same form as the locus of Q', but since the point p' in the hodograph is on a radius vector parallel to pT, its situation relative to the focus F will always be 90° in advance of Q

The shape and situation of the hodograph relative to the ellipse is shown in the figure. Thus, when p is in periastron the point of the hodograph is in the direction perpendicular to the major axis, and at a distance proportional to F'Q', which is then equal to F'P, and similarly for other points of the orbit. For the sake of clearness we have made the hodograph in the figure of the same size as the auxiliary circle of the ellipse, but if the radius vector in the hodograph is to represent the velocity in the ellipse the scale of the hodograph ought in reality to be greatly reduced

If the orbit of a double star is given we may at once construct the form of the hodograph, the position relative to the ellipse being the same as in the preceding figure. Moreover if the velocity of the companion about the central star is known in absolute units for any point of the orbit, we may determine the velocity for any other point by means of the hodograph. For the magnitude of the velocity will be the length of the radius vector of the hodograph which is parallel to the tangent of the orbit at the point in question, and can easily be computed or measured graphically directly from the diagram

When the elements of a binary are known, we may determine the component of the velocity in the line of sight as follows. Suppose ρ to be the radius vector of the point in the hodograph, and ω to be the angle made by the radius vector ρ with the ascending node, and therefore identical with the angle made by the tangent to the orbit with the line of nodes, and let i be the inclination of the plane of the orbit to the plane tangent to the celestial sphere. Then we evidently have, as the component towards the earth,

$$\kappa = \rho \sin \omega \sin \iota \tag{7}$$

The angle \imath is an element of the star's orbit and is known, the angle ω can be computed from the theory of the ellipse, or can be determined directly from the diagram; and when ρ is known in absolute units the component in the line of sight is perfectly determined.

We shall now show how to compute ω and ρ for any given orbit. The

radius vector of the star r and the true anomaly v must be computed by the usual process, and then we find the radius vector with respect to the other focus

$$r' = 2a - r,$$

and we have the angle γ by means of the equation

$$\sin \gamma = \frac{\tau \sin \nu}{\tau'} \tag{8}$$

The angle ψ between the radu vectores drawn to the two foci is evidently equal to $v - \gamma$, and hence

$$\frac{\psi}{2} = \frac{v - \gamma}{2} \tag{9}$$

It is also easy to see that φ , the angle made by the tangent with the latus rectum of the ellipse, is given by

$$\varphi = r - \frac{1}{2}\psi \tag{10}$$

When the value of g is determined, it is clear that

$$\omega = \lambda + 90^{\circ} + \varphi = v + \lambda + 90^{\circ} - \frac{1}{2}\psi, \qquad (11)$$

so that we easily find the angle of the radius vector ρ from the ascending node

We may compute the length of this radius vector in the hodograph in the following manner. Let the radius of the circle be denoted by a, its value being

supposed known in absolute units, the linear eccentricity will be αe , and we shall have

$$\alpha^2 = \rho^2 + \alpha^2 e^2 - 2\rho \alpha e \cos \varphi ,$$

on solving for ρ we find

$$\rho = \alpha \left[e \cos \varphi + \sqrt{1 - e^2 \sin^2 \varphi} \right] \tag{12}$$

Thus when α , the radius of the hodograph, is known in absolute units, we are enabled by means of (11) and (12) to predict the motion in the line of sight for any instant whatever

Now suppose we determine the relative motion of the companion in the line of sight by means of a modern Spectrograph such as that at Potsdam, this will give us results freed from the effect of the proper motion of the system in space, as well as the secular motion of the sun and the orbital motion of the earth. Then by equation (7) we have

$$\rho = \frac{\kappa}{\sin \omega \sin \nu},\tag{1.3}$$

in which κ is furnished by spectroscopic measurement, and ω and \imath are found from the orbit deduced from micrometrical measures.

A single observation therefore gives us the absolute velocity in the orbit, and this fixes the scale of the hodograph. For since we have

$$\rho = \alpha \left[e \cos \varphi + \sqrt{1 - e^2 \sin^2 \varphi} \right],$$

and e and φ are known, we may determine the radius of the hodograph by

$$\alpha = \frac{\rho}{\left[e\cos\varphi + \sqrt{1 - e^2\sin^2\varphi}\right]} \tag{14}$$

Having determined κ by observation, we get the absolute value of ρ by (13) and of α by (14), and we may then predict the value of κ in absolute units for any time whatever. In practice it will be desirable to measure the motion in the line of sight when the function κ is a maximum, in order that an error in κ may have a minimum effect upon the radius of the hodograph

When α is thus determined in absolute units, the problem arises to find the absolute dimensions of the system, the masses of the stars, and their distance from the earth. Suppose we choose two epochs separated by a convenient interval of time, say a year or a fractional part of a year, when the companion is near apastron, and the velocity changes slowly. We shall denote the radii vectores by r_1 and r_2 , and the interval of time by t_2-t_1 . The length of the included elliptic arc can be expressed rigorously only by means of an elliptic

integral, but as the evaluation of this integral would be inconvenient in practice and for a short are unnecessarily exact, we shall determine the length of the arc by mechanical quadrature. Thus we have

arc =
$$\int_{t_1}^{t_2} \rho \, dt = \overline{\rho} (t_2 - t_1)$$
,

where $\overline{\rho}$ is the average velocity of the interval, easily deduced from the hodograph. If the interval is short compared to the time of revolution, so that the arc may be put equal to its sine, we shall have approximately

$$\frac{r_1 + r_2}{2} \sin (r_2 - r_1) = \overline{\rho} (t_2 - t_1) ,$$

or

$$i_1 + i_2 = \frac{2\bar{\rho} (t_2 - t_1)}{\sin(v_1 - v_1)}$$

Now v_2 and v_1 are known true anomalies, and r_1 and r_2 are given in units of the major axis by the polar equation

$$\frac{r}{a} = \frac{(1-e^2)}{1+e\cos u}$$

Hence, with r_1 and r_2 thus expressed numerically, we find

$$a = \frac{2\overline{\rho}(t_2 - t_1)}{(r_1 + r_2) \sin(v_2 - v_1)} \tag{15}$$

Here the interval t_2-t_1 must be expressed in the same units as $\bar{\rho}$, preferably in kilometres per second. The length of the major semi-axis of the orbit is thus found in kilometres, and the absolute dimensions of the system are determined.

The parallax of the system is equal to the major semi-axis of the orbit in seconds of are divided by the major semi-axis in astronomical units; or the distance of the system from the earth is equal to the major semi-axis in astronomical units divided by the sine of the angle subtended by the major semi-axis in seconds of arc; thus

$$\Delta = \frac{a}{\sin a''} \tag{16}$$

If $M_1 + M_2$ denote the combined mass of the system, M + m the combined mass of the sun and earth, a the major semi-axis of the orbit of the companion, and P the period of revolution, R the distance of the earth from the sun, and

T the length of the sidereal year, we have, by the well known extension of Kepler's law

$$M_1 + M_2 = \frac{a^3}{R^8} \frac{T^2}{P^2} (M + m)$$
 (17)

If as usual we put M+m=1, R=1, and T=1, and express a and P in these units, we find

$$M_1 + M_2 = \frac{a^8}{P^2}, (18)$$

where the mass of the system will be expressed in units of the combined mass of the sun and earth. The mass of the system is thus determined absolutely

In conclusion it seems proper to add that this investigation was stimulated by an elegant proof of Mr. F R Moulton, that the aberrational orbit of a fixed star is the hodograph of the ellipse in which the earth moves, and therefore a circle. The idea brought out in Mr Moulton's proof caused me to revert to the motion of binaries in the line of sight, and hence no small part of the credit is due to him for the interesting application of Sir W. R Hamilton's hodograph given above

§ 6 Rigorous Method for Testing the Universality of the Law of Gravitation*

It remains to consider how we may use the foregoing results to test the law of Newton. It is evident that the law of gravitation can be tested by comparing the observed with the theoretical motion of the companion in the line of sight. We may choose a system whose orbit is accurately known and whose stars are suitable for exact spectroscopic measurement of the component κ ; we then determine from one or more observations at a suitable epoch the absolute dimensions of the orbit, as explained in the preceding theory, and predict the motion in the line of sight for other parts of the orbit, perhaps for a whole revolution. If we then determine by spectroscopic measurement the value of the component κ independent of any theory, and find that the theoretical results are confirmed by actual observations, we may consider the result a direct observational proof that the force which retains the companion in its orbit is Newtonian gravitation

For we know from micrometrical measures that the areas described by the radius vector of the companion are proportional to the time, and therefore that

^{*}Astronomische Nachrichten No 3314

the force is central, and the observations of 42 Comae Berenuces, whose motion happens to be in the plane of vision, indicate that the orbit is a plane curve. The motion being in a plane and the force being central, we must be able to show that the principal star is in the focus of the real ellipse. This can be done if we can show by spectroscopic observations that the inclination and node resulting from the theory of gravitation account perfectly for the motion in the line of sight.

We therefore assume the law of gravitation in deriving the elements of the orbit and in predicting the motion in the line of sight, as heretofore explained; spectroscopic observation will enable us to test the results of theory experimentally. If the theoretical results are confirmed by observation throughout a revolution — thus showing that the node and inclination are identical with those resulting from the theory of gravitation — we may regard the observations as giving a direct and incontestible proof of the validity of the law of Newton in the stellar systems

If we desire to ascertain whether any other inclination and node — in other words, any other law of force — could give rise at every point of the orbit to a relative motion in the line of sight identical with that resulting from the law of gravitation, we may proceed as follows. Suppose that some other inclination and node and orbital velocity be possible; they will differ by unknown quantities from those values resulting from the theory of gravitation, and we shall have the relation

$$\rho \sin \iota \sin \omega = \rho' \sin (\iota + \gamma) \sin (\omega + \delta)$$

By expanding and reducing we find

$$\rho \; = \; \rho' \; \{\cos\gamma \; \cos\delta + \cos\gamma \; \cot\omega \; \sin\delta + \sin\gamma \; \cot\iota \; \cos\delta + \sin\gamma \; \sin\delta \; \cot\iota \; \cot\omega \}$$

But we observe that ω is a variable angle depending on the position of the body in the oibit; and since $\omega=0$, or $\omega=\pi$ would render the cotangent infinite, and ρ is known to be finite for every point, (the two bodies never come into contact but are always separated by a certain distance), it follows that those terms depending on cot ω must vanish, or $\delta=0$, and the line of nodes becomes the same as that resulting from the theory of gravitation. Our expression thus takes the form

$$\rho = \rho'(\cos \gamma + \sin \gamma \cot i) = \rho' K,$$

where K is a constant

Therefore, if the inclination differs by γ from the value given by the theory of gravitation, it will follow that the velocity at every point of the real orbit

must be multiplied by a constant factor. But since no alteration of the inclination can change the radius vector at the line of nodes, it follows that at these points the orbital velocities would necessarily be the same however the inclination might vary. And since we have seen that the line of nodes is identical with that given by the theory of gravitation, we conclude that the velocities in the orbits could not differ throughout by a constant ratio. Hence it is evident that $\cos \gamma + \sin \gamma \cot \iota = 1$, or $\gamma = 0$, and the inclination is identical with that resulting from the theory of gravitation. It follows therefore that no other conceivable law of attraction could produce the same relative motion in the line of sight as the law of inverse squares. Consequently if observation shall give for every point a relative motion in the line of sight which accords with theory, we may confidently conclude that Newtonian gravitation is the force which retains the stars in their orbits.

§ 7. On the Theoretical Possibility of Determining the Distances of Star-Clusters and of the Milky Way, and of Investigating the Structure of the Heavens by Actual Measurement*

The practical problem of measuring the parallaxes of the fixed stars is one of the greatest of modern Astronomy, and has been solved heretofore very imperfectly. The quantity to be deduced is so very small that accidental and systematic errors often wholly obscure the element desired, and render the probable errors of most of our parallaxes painfully large compared to the minute quantities sought. Moreover, the method of relative parallax, which is the only one in general use, aside from its theoretical inaccuracy, is encumbered with many practical difficulties, the chief of which is in finding suitable comparison stars; and hence not a few astronomers have practically abandoned hope of determining the distances of the fixed stars with any considerable degree of None have felt these difficulties more keenly than those astronomers who have attempted investigations requiring exact knowledge of the masses and dimensions of the stellar systems. At the present time the only parallaxes of binaries which lay claim to any considerable precision are those of a Centauri (0" 75), a Canis Majoris (0" 38), 70 Ophiuchi (0" 162), and η Cassiopeur To this list we might perhaps add a few spectroscopic binaries whose parallaxes have been investigated, but even then the number of systems

^{*}Astronomische Nachrichten, No 3323

would remain very small, and altogether insufficient to support any sound generalization respecting the masses and dimensions of binary stars as a class.

If we consider single, instead of double stars, it will be evident that while a much larger number have been measured for parallax, and in a good many cases reliable values have been derived, yet in the majority of instances the divergence of results obtained by different observers, may fairly be taken to indicate that our knowledge of stellar parallax is still very limited; and owing to the small dimensions of the earth's orbit, very little hope has been entertained of material improvement in time to come.

The method which we have developed in section 5 is full of promise for the case of binary stars. This method is theoretically applicable to any pair where the components have an angular separation of 0"1, and a single application of the spectrograph at a suitable epoch gives us the absolute dimensions, mass and parallax of the system

As 0"1 is about the present limit of exact micrometrical or heliometrical measurement, and as this angle would correspond to the parallax of a fixed star at the distance of 36 light-years (eight times the distance of a Centauri) we see that all smaller parallaxes determined by methods heretofore in use must necessarily remain very uncertain. On the other hand the spectroscopic method will apply satisfactorily to much more distant systems—to pairs which have an angular separation of 0"1, and where an observer by the ordinary method would find that our sun had a parallax of this amount. This is equivalent to using the major semi-axis of the stellar orbit for a base line instead of the mean distance of the earth from the sun; and thus the parallaxes deduced by the spectroscopic method might be as much smaller than 0".1 as the major axis of the stellar orbit is larger than that of the earth, provided of course that the combined mass of the stars is great enough to give a relative motion of the companion in the line of sight which can be measured with the desired precision.

Thus, by the usual method the parallax of a Centauri would be just measurable at the distance of 36 light-years, and would amount to 0"1, and as the major semi-axis of the orbit would there subtend an angle of 2"2, the spectroscopic method could be applied at 22 times that distance, or when the system is removed from us by about 800 light-years. Of course we can never hope to measure the distance of a system so remote by the ordinary method, since at the distance of 800 light-years the parallax would amount to only 0".0045 If the mass and dimensions of the system be larger than those of a Centauri, the spectroscopic method would enable us to measure a parallax correspondingly

smaller. While at present little is known of the magnitude of binary systems, it seems probable that in some cases at least the masses and dimensions will much surpass those of a Centauri. It is therefore probable that it will occasionally be possible to determine the distances of systems removed from us by several thousand light-years

The present state of Astronomy does not permit us to make a confident assertion with regard to the distances of the clusters or of the Milky Way, but it seems exceedingly probable that both are very remote. In each of these species of stellar aggregation there exists a considerable but unknown number of binary stars which can be detected with our present optical means Burnham has searched for double stars in several of the great northern clusters, such as Praesepe, the Plerades and the great clusters in Perseus, Hercules, &c (Publications of Lick Obs, vol II pp 211-216), and discovered a number of pans which promise to be physically connected He observes that interesting stars are apparently more frequent in wide clusters like the Pleiades, Praesepe, and the great cluster in Perseus, than in the more compact clusters like that Yet he has discovered an important pair in this dense globular in Hercules cluster, and Sir John Herschel has likewise detected double stars of special interest in several of the great clusters of the southern hemisphere. It is not to be doubted that many more such objects will be detected when the clusters generally are critically examined under the powers of our great modern refractors

When the orbits of these binaries have been found by exact micrometrical measurement, the spectroscopic method will eventually afford the means for determining their immense distances, not by probable assumptions but by exact computation. It is evident therefore that if we are ever to determine the distances of clusters from the earth—and no sound ideas of the nature of these masses of stars can be formed until such determination is made—we must first search the clusters critically for binary stars, and determine their orbits by micrometrical measurement. If, when the orbit is known, it shall appear that the binary has the same proper motion as the adjacent stars of the group, there will be a strong presumption that the system forms a part of the cluster. If the pair be also of about the same magnitude as its neighbors, and of the same color and spectral type, we may conclude with practical certainty that the binary is intimately connected with the mass of stars in which it is projected

Determination of the parallax of the binary will therefore give the distance of the cluster from the earth, and supply all desired information as to the dimensions of the cluster, the brilliancy of its stars, their mutual distances, &c. If in like manner any group of stars in the Milky Way could be carefully

searched for binary systems, and some intimate connection of a pair with neighboring stars shown to exist, a determination of its orbit and an application of the spectroscopic method would lead to a knowledge of the distance of that part of the Milky Way By extending the same process to all parts of the Galaxy it will be possible in the course of time to ascertain the nature of that immense aggregation of stars, and throw light upon the construction of the heavens. While the spectroscopic method applies only to binary stars, it is evident that their great abundance and universal distribution in space will some day give a means for determining with precision and certainty the actual structure of the sidereal universe.

We must not expect that the immense possibilities here outlined will be practically realized at once, or even in the near future, yet giant refractors like the 40-inch Yerkes Telescope will give such power for separating close double stars and for supplying a great amount of light for the spectroscopic study of faint objects, that an application of these ideas may not be found impossible in the course of the coming century. If there be spectroscopic or photographic difficulties, the progress of spectroscopic Astronomy during the last thirty years justifies the belief that such obstacles will not continue to be insurmountable. The great philosophic interest attaching to the foregoing method for investigating the structure of the visible universe by exact spectroscopic measurement, instead of by the doubtful processes of gauging employed by Herschel and Struve, appears to be a sufficient justification for considering what is at present only a theoretical possibility. The history of Astronomy shows that it is not always the theories that can be realized in a decade or even in a century which in the long run exercise the most important influence on the development of science.

§ 8. Historical Sketch of the Different Methods for Determining Orbits of Double Stars

It is assumed that the law of gravitation governs the motions of double stars, and therefore that the orbits are ellipses with the principal stars in the foci. From the nature of come sections the centre of the real ellipse will be projected into the centre of the apparent ellipse. But in general the foci of the real ellipse will not fall upon the foci of the apparent ellipse. If, however, a line be drawn from the centre of the apparent ellipse to the principal star and prolonged in either direction until it intersects the curve, the result will define the projection of the real major axis. The diameter of the

ellipse conjugate to this line will be the projection of the minor axis. Thus It is easy to fix the positions of the real major and minor axes as seen in the apparent orbit. Since all parts of the major axis are shortened in the same ratio, the eccentricity of the real orbit may be deduced from the apparent orbit, by dividing the distance from the centre to the principal star by the major semi-axis as seen in projection. The end of this axis which is nearest the principal star will be the periastron, that faithest away, the apastron, the dates corresponding to the passage of the companion through these points will give the epochs of periastron and apastron passage respectively. It is evident that only one diameter of the real ellipse will suffer no shortening, owing to projection, and this is the diameter parallel to the line of nodes. If from points on the apparent ellipse perpendiculars be drawn to this diameter, and then increased in the ratio of cosi to 1, we shall get points of the real orbit whose projections give points on the apparent orbit.

The observations of a double star are expressed in polar coordinates, ρ and θ , which give the angular separation of the components in seconds of the aic of a great circle, and the position-angle of the companion with respect to The companion is thus referred to the principal star regarded as fixed, and hence the observations give the means of finding only the relative orbit of one star about the other. The absolute orbit of either star about the centre of gravity of the system has a form similar to that of the relative orbit, but the linear dimensions are reduced in the ratio of M_2 or M_1 to $M_1 + M_2$, where M_1 and M_2 are the masses of the stars. The absolute orbits of the stars have the same shape, but are reversed in relative position The centre of gravity of a pair of stars can be determined only by the criterion that the centre of gravity of a system moves uniformly in a right line, and as most of the systems have too little motion to define this point with any considerable degree of precision, owing to the imperfect state of our absolute positions as determined by the meridian circle, it is in general impossible to define the absolute orbits or relative masses of the stars With few exceptions, therefore, astronomers have contented themselves heretofore with determining the relative orbit of one body about the other

The first method for determining the orbit of a double star was proposed by Savary in 1827 (Connaissance des Temps, 1830) This method is closely analogous to those used for planets and comets, in so far as it rests on the treatment of four complete observations for the definition of the seven elements. The problem is solved by elaborate geometrical constructions, such as characterize work in pure mathematics rather than the practical processes which must

be invoked by the working computer Savary's principal equation is based on the difference between the sector and triangle, the area derived from the time being equated with an expression involving the products of the semi-axes and eccentric angles of the apparent ellipse. The method is thus ill adapted to the determination of an orbit from such positions as are furnished by the measures of double stars.

Encke recast the method of Savary, from the point of view of a practical computer, and deduced formulae similar to those used by astronomers in their work on planets and comets. Rejecting the equations depending on conjugate diameters, so much employed by the French geometer, he based his formulae on recognized astronomical processes and developed tables to facilitate their application. As Savary had applied his method to ξ Ursae Majoris, Encke was led to illustrate his computations on the equally well-known system of 70 Ophiuchi (Berliner Astronomisches Jahrbuch, 1832).

SIR JOHN HERSCHEL took up the problem about 1830, and sought to improve the processes by a graphical method which enabled him to make use of all the observational material, and to eliminate the grosser errors of the individual observations. He was convinced that in order to obtain orbits of a satisfactory character, it would be necessary to correct the angles by an interpolating curve, one axis representing the time, the other the angle, and that the distances must be rejected altogether, except for the determination of the major axis. He proceeds by successive approximations to deduce normal places for the angles, and by gradual improvement of his graphical results renders them consistent with an ellipse, and finally obtains a satisfactory apparent orbit. The elements are then deduced by formulae not very different from those employed by Savary. The method is illustrated by applications to \(\gamma Virginis, a Geminorum, \sigma Coronae Borealis, \xi Ursae Majoris, and 70 Ophinchi (Memoirs, Royal Astronomical Society, Vol. V)

While the process of interpolation invented by Herschel has been extensively employed, and in some cases is very useful, I am satisfied that in general it is better to plot the observations directly and to make a trial ellipse the interpolating curve. This enables us to use both angles and distances and secures all the advantage of judgement which Herschel considered so essential. It often happens that the length of the radius vector changes with extreme rapidity, and as the areas are constant this will imply very great and unequal changes in the angular motion; when the angular velocity of the radius vector is so variable in different parts of the apparent ellipse the course of the interpolating curve becomes altogether uncertain. Under these conditions it is much

better to use the observations directly. It is also recognized that modern measures of distance should be allowed an equal or nearly equal weight in the determination of orbits

After Savary, Encke and Herschel had given such an impetus to the study of sidereal systems, the work was carried forward by Madler and Villarceau, both of whom published a number of orbits with some improvements in the processes of computation.

KLINKERFUES took up the subject about 1856, and in the course of work on several orbits developed very elegant formulae and more practical methods than any which had been used before. His analytical method is marked by rigor and generality, but in the present state of double-star Astronomy is not so practicable as the graphical method treated in section 10

THIELE, some years later, devised an elegant graphical method which has many good points, and is much admired by those who are inclined to determine all the elements geometrically. It will be found in the Astronomische Nachrichten, Band LII*

Among the more recent investigations those of Professor Kowalsky are remarkable for their extreme elegance and great generality. This method, depending on the general equation of a conic, is all that can be desired from a mathematical point of view, and as simplified by Glasenapp has been extensively used by several computers. The original exposition of the method will be found in the *Proceedings of the Imperial University of Kasan* for 1873, the valuable modification introduced by Glasenapp is given in the *Monthly Notices*, Vol XLIX, p. 278

Other recent investigations which are worthy of special notice include those of Seeliger (Inaugural Dissertation of Schore, Munich, 1889), and of Zwiers (Astronomische Nachrichten, No. 3336)

It is singular that nearly all the methods given above have been developed from the point of view of analysis rather than of practical Astronomy. Burn-ham has recently rendered double-star Astronomy a conspicuous service by reviving the method of representing observations first employed by William Struve (Mensurae Micrometricae, last plate). This consists in plotting the points as determined by the micrometer, and in finding from the places thus laid down the apparent ellipse which best satisfies the observations. We have used a modification of this method throughout the present work, and have discussed it in connection with the graphical method of Klinkerfues, which supplies the process for deriving the elements from the apparent orbit.

^{*}It is also explained by Professor Hall in The Astronomical Journal, No 324

§ 9. Kowalsky's Method.

We shall now give an exposition of the elegant method of Kowalsky, which seems likely to be the one that will ultimately be adopted by astronomers. The general equation of the ellipse with the origin at any point, here taken at the principal star, is

$$F = ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0,$$
 (1)

which may be reduced to the form .

$$Ax^2 + 2Hry + By^2 + 2Gx + 2Fy + 1 = 0 (2)$$

This equation contains five unknown constants, and hence five values of x and y will enable us to determine the constants of the ellipse. Each observation gives one equation by means of the relations

$$a_0 = \rho_0 \cos \theta_0$$
 , $y_0 = \rho_0 \sin \theta_0$,

where the x-axis is directed to the north-point. And hence five observations at different epochs will give a determination of the apparent orbit. In practice it is found that a larger number of observations is desirable, and if the observations are sufficiently good, the best results will generally be obtained by a least-square adjustment of the residuals.

When the apparent ellipse is determined, the problem arises to express the elements of the real orbit in terms of the constants which fix the apparent orbit

It is evident that projection does not alter the diameter coinciding with the line of nodes, and this enables us to pass from the apparent to the real orbit. The real orbit is evidently the curve determined by the intersection of the orbit-plane with the elliptical cylinder whose right section is the apparent orbit. In the apparent orbit the axis of x is directed to the north-point, but in passing to the real orbit we shall direct the new axis of x to the ascending node, while the new axis of y will be taken in the plane of the real orbit, and the origin retained at the principal star. Calling the new system of coordinates x', y', z', it is evident that we shall have

$$\begin{array}{lll}
\iota &= \iota' \cos \Omega - y' \sin \Omega \cos \iota + z' \sin \Omega \sin \iota \\
y &= \iota' \sin \Omega + y' \cos \Omega \cos \iota - z' \cos \Omega \sin \iota \\
z &= + y' \sin \iota + z' \cos \iota
\end{array}$$
(3)

If we put z'=0, we shall have the coordinates of a point in the plane of the real orbit. Thus our expressions are simplified, and become equations for turning the axis of x through the angle x, and that of y through the angle x. If we put

$$u = u' \cos \Omega - y' \sin \Omega \cos u \quad , \quad y = u' \sin \Omega + y' \cos \Omega \cos u ,$$

in (2), we shall obtain the equation of the intersection of the plane x'y' with the elliptical cylinder, which is the equation of the real ellipse. Thus we have, on omitting the accents,

$$A (\tau \cos \Omega - y \sin \Omega \cos \iota)^{2} + 2H(\tau \cos \Omega - y \sin \Omega \cos \iota) (\tau \sin \Omega + y \cos \Omega \cos \iota) + B (\tau \sin \Omega + y \cos \Omega \cos \iota)^{2} + 2G (\tau \cos \Omega - y \sin \Omega \cos \iota) + 2F(\iota \sin \Omega + y \cos \Omega \cos \iota) + 1 = 0$$
(4)

The equation of the real ellipse referred to its centre is

$$\frac{a^2}{a^2} + \frac{y^2}{h^2} = 1 \tag{5}$$

If we shift the origin to the focus, we must increase x by ae, and the equation becomes

$$\frac{(\iota + ae)^2}{a^2} + \frac{y^2}{h^2} - 1 = 0, \tag{6}$$

when referred to the principal star.

Now suppose λ to be the angle from the node to the periastron, measured in the plane of the real orbit, then if we turn the axis of x back to the line of nodes, the new coordinates are

$$x\cos\lambda + y\sin\lambda$$
, $-x\sin\lambda + y\cos\lambda$

By means of these values of x and y, equation (6) becomes

$$\frac{(\imath \cos \lambda + y \sin \lambda + ae)^2}{a^2} + \frac{(-\imath \sin \lambda + y \cos \lambda)^2}{b^2} - 1 = 0, \tag{7}$$

the origin is taken at the focus and the axis of x is directed to the node

Now this equation is necessarily identical with (4), which also represents the true ellipse referred to the same axes. Hence, when multiplied by a constant factor ϵ the coefficients of the variables must equal the corresponding ones in the equation deduced from the apparent orbit, so that (7) and (4) give

$$\epsilon \left(\frac{\cos^2 \lambda}{a^2} + \frac{\sin^2 \lambda}{b^2} \right) = A \cos^2 \Omega + B \sin^2 \Omega + H \sin 2 \Omega$$
 (8)

$$\epsilon \left(\frac{\sin^2 \lambda}{\sigma^2} + \frac{\cos^2 \lambda}{b^2} \right) = (A \sin^2 \Omega + B \cos^2 \Omega - H \sin 2 \Omega) \cos^2 \iota \tag{9}$$

$$\epsilon \left(\frac{1}{a^2} - \frac{1}{b^2} \right) \sin 2\lambda = (-A \sin 2\Omega + B \sin 2\Omega + 2H \cos 2\Omega) \cos \iota \tag{10}$$

$$\epsilon \frac{e \cos \lambda}{a} = G \cos \Omega + F \sin \Omega \tag{11}$$

$$\epsilon \frac{e \sin \lambda}{a} = (-G \sin \Omega + F \cos \Omega) \cos i \tag{12}$$

$$\epsilon \left(e^2 - 1 \right) = +1 \tag{13}$$

This last equation gives

$$\epsilon = -\frac{1}{1-e^2}$$
 and $\frac{\epsilon e}{a} = -\frac{e}{a}$

Also, since

$$\frac{\epsilon^2 e^2}{a^2} = \frac{e^2}{\mu^2} = \epsilon \left(-\frac{1}{1-e^2} \right) \frac{e^2}{a^2} = \epsilon \left(\frac{1}{1-e^2} \right) \frac{b^2 - a^2}{a^4} = \epsilon \frac{b^2 - a^2}{b^2 a^2} = \epsilon \left(\frac{1}{a^2} - \frac{1}{b^2} \right),$$

we have

$$\frac{e^2}{p^2} = \epsilon \left(\frac{1}{a^2} - \frac{1}{b^2} \right)$$

Now (11) and (12) give

$$e \sin \lambda = -p (F \cos \Omega - G \sin \Omega) \cos \iota$$
; $e \cos \lambda = -p (F \sin \Omega + G \cos \Omega)$

Multiplying (11) by (12) and reducing, we find

$$\frac{e^2}{\mu^2}\sin 2\lambda = (F^2\sin 2\Omega - G^2\sin 2\Omega + 2FG\cos 2\Omega)\cos i$$

From (10) we have

$$\frac{e^2}{p^2}\sin 2\lambda = (-A\sin 2\Omega + B\sin 2\Omega + 2H\cos 2\Omega)\cos i,$$

and hence

$$(F^{2}-G'+A-B)\sin 2\Omega + 2(FG-H)\cos 2\Omega = 0$$
 (14)

If we subtract (9) from (8), we get

$$\frac{e^2}{\mu^2}\cos 2\lambda = \epsilon \left(\frac{\cos^2 \lambda - \sin^2 \lambda}{a^2} - \frac{\cos^2 \lambda - \sin^2 \lambda}{b^2}\right),\,$$

and the difference of the squares of $e\cos\lambda$ and $e\sin\lambda$ gives another value of $\frac{e^2}{p^2}\cos2\lambda$ Equating these two values of $\frac{e^2}{p^2}\cos2\lambda$, and solving for $\cos^2\imath$, we find

$$\cos^{2} \iota = \frac{(F^{2} - B) \sin^{2} \Omega + (G^{2} - A) \cos^{2} \Omega + (FG - II) \sin^{2} \Omega}{(F^{2} - B) \cos^{2} \Omega + (G^{2} - A) \sin^{2} \Omega - (FG - H) \sin^{2} \Omega}$$
(15)

The forms of the numerator and denominator show that if we put $\cos^2 \iota = \frac{P}{Q}$, and hence $\tan^2 \iota = \frac{Q-P}{P} = \frac{Q+P}{P} - 2$, we shall get

$$\tan^2 \iota = \frac{F^2 + G^2 - (A+B)}{P} - 2$$

The first member of (9) gives

$$\epsilon \left(\frac{\sin^2 \lambda}{a^2} + \frac{\cos^2 \lambda}{b^2} \right) = \frac{e^2}{\nu^2} \sin^2 \lambda - \frac{1}{\nu^2},$$

and therefore we obtain

$$\frac{e^2}{\nu^2}\sin^2\lambda - \frac{1}{\nu^2} = (A\sin^2\Omega + B\cos^2\Omega - H\sin 2\Omega)\cos^2\nu$$

By squaring (12) we find

$$\frac{e^2}{p^2}\sin^2\lambda \ = \ (F^2\cos^2\Omega + G^2\sin^2\Omega - FG\,\sin2\Omega)\,\cos^2\iota$$

Therefore we have

$$\frac{1}{n^2} = [(F^2 - B)\cos^2\Omega + (G^2 - A)\sin^2\Omega - (FG - H)\sin^2\Omega]\cos^2\iota$$
 (16)

Comparing this with (15), we find $\frac{1}{p^2} = P$, and hence

$$\frac{2}{\nu^2} + \frac{\tan^2 \imath}{\nu^2} = F^2 + G^2 - (A+B) \tag{17}$$

Now since

$$\frac{1}{p^2} = P = (F^2 - B) \sin^2 \Omega + (G^2 - A) \cos^2 \Omega + (FG - H) \sin 2\Omega,$$

we easily find

$$\frac{2}{p^2} = F^2 + G^2 - (A+B) - (F^2 - B)\cos 2\Omega + (G^2 - A)\cos 2\Omega + 2(FG - H)\sin 2\Omega$$
 (18)

Hence (17) gives

$$\frac{\tan^2 i}{p^2} = (F^2 - G^2 + A - B)\cos 2\Omega - 2(FG - H)\sin 2\Omega$$
 (19)

If we multiply this equation by $\sin 2\Omega$, and (14) by $\cos 2\Omega$, and subtract the last result from the first, we get

$$\frac{\tan^2 \iota}{p^2} \sin 2\Omega = -2 (FG - H)$$

If we use $\cos 2\Omega$ and $\sin 2\Omega$, and add the products, we have

$$\frac{\tan^2 \iota}{p^2}\cos 2\Omega = F^2 - G^2 + A - B$$

Therefore we finally obtain the following set of equations:

$$\frac{\tan^{2} \iota}{p^{2}} \sin 2\Omega = -2 (FG - H),$$

$$\frac{\tan^{2} \iota}{p^{2}} \cos 2\Omega = F^{2} - G^{2} + A - B,$$

$$\frac{2}{p^{2}} + \frac{\tan^{2} \iota}{p^{2}} = F^{2} + G^{2} - (A + B),$$

$$e \sin \lambda = -p (F \cos \Omega - G \sin \Omega) \cos \iota,$$

$$e \cos \lambda = -p (F \sin \Omega + G \cos \Omega),$$

$$a = \frac{p}{1 - e^{2}}$$
(20)

These formulae enable us to find $\Omega, \iota, p, \lambda, r, a$; we may then find v at any epoch by the formula

$$\tan (v + \lambda) = \frac{\tan (\theta - \Omega)}{\cos t}$$
, and E by $\tan \frac{1}{2}E = \sqrt{\frac{1-e}{1+e}} \tan \frac{1}{2}e$

We find M by Kepler's equation

$$M = E - e'' \sin E.$$

And since $M_2 - M_1 = n (t_2 - t_1)$, we see that

$$n = \frac{M_2 - M_1}{t_2 - t_1},$$

and

$$P = \frac{360^{\circ} (t_2 - t_1)}{M_2 - M_1} \quad , \quad T = \frac{nt - M}{n}$$
 (21)

PROFESSOR GLASENAPP has proposed a simple method for cases in which good drawings of the apparent orbits have been made, but it is not desired to adjust the results by the method of Least Squares, owing to the uncertainty of the data furnished by observation. In the present state of double-star Astronomy this method is very practicable, and can be advantageously employed in the determination of orbits

In the equation (2)

$$Ax^2 + 2Hxy + By^2 + 2Gx + 2Fy + 1 = 0,$$

we put y = 0, and then find the roots of

$$Ax^2 + 2Gx + 1 = 0 (22)$$

This may be written

$$x^2 + \frac{2G}{A}x + \frac{1}{A} = 0$$
, or $(x-x_1)(x-x_2) = x^2 - (x_1+x_2)x + x_1x_2 = 0$,

where x_1 and x_2 are the roots of the equation, or the abscissae of the points of the orbit on the x-axis.

Hence, by the theory of equations, we have

$$A = \frac{1}{\alpha_1 \alpha_2}$$

Also

$$\frac{2\,G}{A} \; = \; -\left(x_{1} + x_{2} \right) \; , \quad \text{or} \quad G \; = \; - \; \frac{A \left(x_{1} + x_{2} \right)}{2} \; = \; - \; \frac{\left(x_{1} + x_{2} \right)}{2 x_{1} x_{2}} \; . \label{eq:Gaussian_Gaussian_Gaussian}$$

In like manner, putting x = 0, we find

$$By^2 + 2Fy + 1 = 0$$
, or $B = \frac{1}{y_1y_2}$, $F = -\frac{y_1 + y_2}{2y_1y_2}$

Hence when the coordinates of the intersections of the orbit with the axes of x and y are known directly from the apparent orbit, we have the four constants A, B, F, G

And the other constant is given by

$$H = -\frac{Ax^2 + By^2 + 2Gx + 2Fy + 1}{2iy}$$

In finding H we must take a point (x, y) such that the product x y has a large value. It may be desirable to take the mean of several values of H

When all the constants A, B, F, G, H, have been derived, we find the elements by equations (20) and (21)

§ 10 Graphical Method of Klinkerfues

Suppose α and β to denote the lengths of the real major and minor semi-axes when projected on the plane tangent to the celestial sphere, and Λ and B to be then position-angles. Then we readily find

$$\alpha^{2} \cos^{2}(A-\Omega) + \alpha^{2} \sin^{2}(A-\Omega) \sec^{2} \iota = \alpha^{2}$$

$$\beta^{2} \cos^{2}(B-\Omega) + \beta^{2} \sin^{2}(B-\Omega) \sec^{2} \iota = b^{2}$$

$$(1)$$

But it is evident that the sum of these equations is the square of the chord between the vertices of the major and minor axes, and the square of the same chord is given by

$$\{\alpha\cos(A-\Omega)-\beta\cos(B-\Omega)\}^2+\{\alpha\sin(A-\Omega)-\beta\sin(B-\Omega)\}^2\sec^2\iota=a^2+b^2$$

Therefore we have

$$\cos(A-\Omega)\cos(B-\Omega) + \sin(A-\Omega)\sin(B-\Omega)\sec^2\iota = 0, \tag{2}$$

and hence

$$\cos^2 i = \tan (A - \Omega) \tan (\Omega - B)$$
 (3)

This equation determines the inclination when the node is known, as the angles A and B are taken directly from the apparent orbit

If we divide the second of equations (1) by the first, we get

$$\frac{b^2\alpha^2}{\alpha^2\beta^2} = \frac{\cos^2\left(B-\Omega\right) + \sin^2\left(B-\Omega\right)\,\sec^2\iota}{\cos^2\left(A-\Omega\right) + \sin^2\left(A-\Omega\right)\,\sec^2\iota}\,,$$

and on substituting for sec21 its value, we find

$$\frac{b^2 \alpha^2}{a^2 \beta^2} = -\frac{\sin 2 (B - \Omega)}{\sin 2 (A - \Omega)} \tag{4}$$

In this equation α and β are given directly by the apparent orbit, and as e is known, we have also the ratio $\frac{b^2}{a^2} = 1 - e^2$ Therefore the only unknown quantity is 2Ω , which we may determine in the following manner. Since the left member of (4) is the square of a real quantity, the right member must be essentially positive, and we may put

$$\tan \zeta = \frac{b\alpha}{a\beta} = \sqrt{\frac{\sin 2 (B - \Omega)}{\sin 2 (A - \Omega)}},$$
 (5)

and since

$$\sec 2\zeta = \frac{\sin 2 (A-\Omega) + \sin 2 (B-\Omega)}{\sin 2 (A-\Omega) - \sin 2 (B-\Omega)} = \tan (A+B-2\Omega) \cot (A-B),$$

we get

$$\tan(A+B-2\Omega) = \sec 2\zeta \tan(A-B) \tag{6}$$

The angle ζ is known from its tangent, and hence we easily find Ω

In (3) it is to be observed that $\cos^2 i$ is necessarily positive and smaller than unity, and hence we have to choose between two values of Ω differing by 180°. As it is thus impossible to distinguish between the ascending and descending node, we may arbitrarily take the ascending node between 0° and 180°, and find i by means of (3)

$$\cos^2 \iota = \tan (A - \Omega) \tan (\Omega - B)$$

The angular distance from the node to the periastron is denoted by $\pi - \Omega = \lambda$, and is given by the equation

$$\tan (A - \Omega) = \cos i \tan \lambda,$$

or by using (3) we obtain*

$$\tan^2 \lambda = \frac{\tan(A - \Omega)}{\tan(\Omega - B)} \tag{7}$$

If u denote the argument of the latitude, we have

$$u = v + \lambda = v + \pi - \Omega$$
, and $\tan u = \sec i \tan (\theta - \Omega)$,

where θ is the observed position-angle at the given epoch. The latitude l is given by $\sin l = \sin i \sin u$

From the apparent radius vector ρ , we may find the corresponding true radius vector by $r_{ij} = \rho_{ij} \sec l_{ij}$

The major semi-axis is then found by the polar equation

$$a = \frac{i \left(1 + e \cos v\right)}{1 - e^2} \tag{8}$$

If we take the apastron as the point in question, l will be given by

$$\sin l = \sin i \sin \lambda$$
,

and since ρ is taken directly from the diagram of the apparent orbit, we easily find τ . Then, since $v=180^{\circ}$, we have

$$a = \frac{\rho \sec l}{1 + e} \tag{9}$$

To find the time of revolution we take two observations which are widely separated in time, and find the intervening change in the mean anomaly, of we may find from the diagram the part of the area swept over during this interval compared to the whole area of the apparent ellipse If θ_1 and θ_2 be the two angles of position, and u_1 and u_2 the corresponding arguments of the latitude, we shall have

$$\tan u_1 = \sec i \tan (\theta_1 - \Omega) ,$$

$$\tan u_2 = \sec i \tan (\theta_2 - \Omega) ,$$

and then

$$v_1 = u_1 - \lambda \qquad , \qquad v_2 = u_2 - \lambda \; ,$$

whence the mean anomalies are easily found. Instead of computing the change of the mean anomaly, it is generally preferable to measure up the area swept

^{*} $A-\Omega$ and λ must be in the same of in opposite quadrants. Throughout this work λ is taken in the direction of the motion

over by the radius vector during the interval, and determine the period by the law of areas

Suppose that t_1 and t_2 be the dates of two widely-separated observations, then the double area swept over by the radius vector will be

$$\int_{t_1}^{t_2} \rho^2 \, \frac{d\theta}{dt}$$

Putting a', b' for the major and minor semi-axes of the apparent ellipse, it is evident that the time of revolution will be given by

$$P = \frac{2\pi a'b'(t_2 - t_1)}{\int_{t_1}^{t_2} \frac{d\theta}{dt}}$$
(10)

In case the period is computed from the change in the mean anomalies, we have

$$n = \frac{M_2 - M_1}{t_2 - t_1} \quad , \quad P = \frac{360^{\circ}}{n} \tag{11}$$

The periastion passage is given by $T = t_1 - \frac{M_1}{n}$, or it may be found from the principle of areas, in the same manner as the period. Thus, since the double areal velocity is known, we simply determine the double area included between a given radius vector and the periastion, and ascertain the intervening time. This interval is to be added to or subtracted from the time of observation, according as the date chosen is before or after the epoch of periastron passage.

To find the node by graphical construction we draw from the centre of the ellipse lines whose position-angles are 2A and 2B; then, parallels to these at distances related as $a^2\beta^2$ to b^2a^2 . Connect the intersection of the parallel lines with the centre, and this will give a line whose position-angle is 2Ω . This construction is easily deduced from (4), and in practice will be found extremely exact. The graphical method is highly practicable, and in the present state of double-star Astronomy is the one which should generally be preferred. The possible maccuracies of the method are greatly inferior to the uncertainty still attaching to the best orbits. The principal difficulty experienced by computers consists in the finding of a satisfactory apparent orbit.

The apparent orbit of 20 Perser = β 524 is shown above. We find by the figure r = 0.7.38,

To obtain the apparent orbit it is best to make use of both angles and distances. If the precession has a sensible effect upon the position angles, it is desirable to refer the observations to a common epoch by applying the formula

$$\Delta\theta = n \sin\alpha \sec\delta (t - t_0) \tag{12}$$

where n = 20''.04987, and t_0 is the date of observation, t the epoch adopted. We then combine the individual measures of the best observers into suitable annual means, and plot the resulting positions on a convenient scale. The approximate normal places thus defined are subject to two conditions.

- (1) That the areas swept over by the radius vector shall be proportional to the times,
- (2) That the apparent ellipse which satisfies the law of areas shall conform also to the observed distances.

The ellipse which satisfies these conditions must be found by trial. Fine planimeter measurement renders the approximation comparatively rapid, and when a satisfactory ellipse has been obtained we derive the elements and compare the computed with the observed places

We first determine e, then compute the ratio $\frac{b^2\alpha^2}{a^2\beta^2}$, and find the node by graphical construction, it is then easy to find i, λ , P, T, and a, as explained in the foregoing method. If further refinement of the elements be desired, recourse must be had to differential formulae.

It is to be remarked, however, that the assumption of constant areal velocity is equivalent to postulating the absence of unseen bodies or other disturbing influences, and as this is not yet fully established, the orbits which best represent the angular motion are not necessarily correct, as may be seen in the case of 70 Ophiuchi If it is necessary to violate the distances in a conspicuous manner in order to preserve the law of the areas, the result must be looked upon with suspicion In the present state of double-star Astronomy most of our orbits must be regarded as tentative, but when they shall finally be improved there is no doubt that, if the motion is really undisturbed, both angles and distances will be well represented.

If it is desired to compute ρ and θ from the elements, we may employ the formulae

$$\tan \left(\theta - \Omega\right) \; = \; \tan \left(\lambda + v\right) \, \cos \imath \qquad , \qquad \rho \; = \; a \, \left(1 - e \, \cos E\right) \, \frac{\cos \left(\lambda + v\right)}{\cos \left(\theta - \Omega\right)} \, .$$

The element λ is counted from the node between 0° and 180°, in the direction of the motion, in case of retrograde motion the formula for θ becomes

$$\tan (\Omega - \theta) = \tan (\lambda + v) \cos \iota$$

Graphical Method of Finding the Apparent Orbit of a Double Star

It is frequently desirable to project the apparent orbit of a double star from the elements, this interesting and useful result may be effected in a

very simple manner. In order to make the process more intelligible we shall apply it to a particular case, and for this purpose we select the orbit of 9 $Argûs = \beta 101$

The elements required for this purpose are the following.

Eccentricity, $e=0.700\pm0.02$ Major semi-axis, $\alpha=0''.6549$ Node, $\Omega=95^{\circ}.5$ Inclination, $\iota=77^{\circ}.72$ Node to perastron, $\lambda=75^{\circ}.28$

We lay down on suitable drawing paper two lines which intersect each other at right angles, and thus mark the four quadrants of position-angle. The intersection of these lines will be the centre of the real orbit and also the centre of the apparent orbit. The line of nodes is then drawn through the centre, having a position-angle of 95° 5. In like manner we lay down the line whose position-angle is $\Omega + \lambda = 170^{\circ}$ 78, and this will be the major axis of the real ellipse.

We now adopt a convenient scale, which will give a length on the drawing paper of 10 or 12 inches for the major axis

With close stars 0"1 may represent one or two inches of the scale, so that the work can be done with the highest degree of accuracy. From the centre the length of the major semi-axis (0".6549) is laid down on the line just drawn, and the distance of the foci of the ellipse from the centre will be ae (0".6549 × 0.70) The ellipse is then drawn in the usual manner.

We now lay off points on the line of nodes at equal distances from the centre of the ellipse, and through these points draw lines aa', bb', cc', dd' etc, perpendicular to the line of nodes. The lengths of these lines on either side are found in seconds of arc by the scale used, and then multiplied by the cosine of the inclination ($\cos 77^{\circ} 72 = 0.214$), the resulting values are marked on the corresponding lines at a', b', c', d', e', f', etc, on both sides of the line of nodes.

The points thus determined will lie on the arc of the true ellipse as seen from the Earth, and when we pass the curve through them, we have the apparent orbit of the double star.

To find the position of the star in the apparent ellipse, we multiply the distance of the focus of the real ellipse from the line of nodes by the cosine of the inclination, and thus find the point s', which will be the position of the central star in the projected orbit. A line Os'P', drawn from the centre through this point to intersect the arc of the apparent ellipse, gives the position-angle of the real major axis, and the position of the real periastron

Having thus obtained the position of the central star in the apparent orbit, it only remains to draw through the principal star lines parallel to those inter-

secting at the centre and marking the four quadrants, which may now be crased In the figure the lines which mark the four quadrants are somewhat heavier than the rest, so that they are easily recognized.

Thus a very simple process of projection enables us to trace the outline of the apparent orbit of any star when the required elements are given, and from the observed positions it is possible to see at a glance whether the apparent orbit represents the observations satisfactorily. It only remains to add that in the case of retrograde motion, the angle λ (which should always be counted in the direction of motion, while the ascending node should be taken between 0° and 180°) must for purposes of graphical representation be taken as negative, and the position-angle of the major axis of the real ellipse becomes $\Omega = \lambda$, whereas for direct motion the angle is $\Omega + \lambda$, as in the case of $\Omega = \Lambda$

§ 11. Formulae for the Improvement of Elements

The foregoing graphical method, when judiciously applied, will give elements having all the accuracy which can be desired in the present state of double-star Astronomy. But as some improvement of a very refined character will ultimately be possible, we shall present the differential formulae which may be employed to effect these slight variations of the elements.

The formulae for finding the position-angle heta from the elements are

$$M = n (t - T) = E - e'' \sin E,$$

$$\tan \frac{1}{2} v = \sqrt{\frac{1 + e}{1 - e}} \tan \frac{1}{2} E,$$

$$\tan (v + \lambda) \cos \iota = \tan (\theta - \Omega)$$

Since θ is a function of the six elements, Ω , i, λ , e, T, n, we have

$$d\theta \; = \; \frac{\partial F(\theta)}{\partial \Omega} \; d\Omega \; + \frac{\partial F(\theta)}{\partial \lambda} \; d\iota + \frac{\partial F(\theta)}{\partial \lambda} \; d\lambda \; + \frac{\partial F(\theta)}{\partial \rho} d\varrho \; + \frac{\partial F(\theta)}{\partial T} \; dT \; + \frac{\partial F(\theta)}{\partial n} \; dn$$

When the variations of the elements are finite, but small, we have the approximate formula,

$$\theta_{\circ} - \theta_{\circ} = \Delta\theta = A\Delta\Omega + B\Delta i + C\Delta\lambda + D\Delta e + G\Delta T + II\Delta n$$
,

where A, B, C, D, G and H, denote the partial differential coefficients From the equations which enable us to compute θ we obtain these coefficients by partial differentiation with respect to the several elements. Thus we find

$$A = +1,$$

$$B = -\cos^{2}(\theta - \Omega) \tan(v + \lambda) \sin \iota,$$

$$C = \sec^{2}(v + \lambda) \cos^{2}(\theta - \Omega) \cos \iota,$$

$$D = \left(\frac{2 \tan \frac{1}{2} E}{(1 - e) \sqrt{1 - e^{2}}} + \sqrt{\frac{1 + e}{1 - e}} \frac{\sec^{2} \frac{1}{2} E \sin E}{1 - e \cos E}\right) \cos^{2} \frac{1}{2} v C,$$

$$G = -\sqrt{\frac{1 + e}{1 - e}} \frac{\sec^{2} \frac{1}{2} E \cos^{2} \frac{1}{2} v C}{1 - e \cos E},$$

$$H = \frac{(t - T)}{v} G$$

The formulae usually employed by astronomers for effecting the differential corrections of the elements thus take the form

$$A_1\varDelta\Omega+B_1\varDelta\iota+C_1\varDelta\lambda+D_1\varDelta e+G_1\varDelta T+II_1\varDelta n-\varDelta\theta_1=0$$
 , $A_2\varDelta\Omega+B_2\varDelta\iota+C_2\varDelta\lambda+D_2\varDelta e+G_2\varDelta T+II_2\varDelta n-\varDelta\theta_2=0$,

$$A_{\nu}\Delta\Omega + B_{\nu}\Delta\iota + C_{\nu}\Delta\lambda + D_{\nu}\Delta e + G_{\nu}\Delta T + H_{\nu}\Delta n - 1\theta_{\nu} = 0$$

There are six quantities to be deduced from this system of equations, a solution by the method of Least Squares will generally ensure the best results. In the above form of the equations it is tacitly assumed that the residuals in angle represent absolute displacements of the companion in space, regardless of its distance from the central star, which is evidently inexact. The importance of a given error in angle increases in proportion to the length of the radius vector, and as the distance of the companion is generally very unequal in different parts of the apparent orbit, the formulae should be so modified as to render the absolute displacements of the observed positions a minimum. This improvement can be effected as follows. We shall assume that the major axis can be best determined from the apparent orbit, which serves as an interpolating curve analogous to that recommended by Sir John Herschell, and hence this element need not be regarded as variable. It is, therefore, required to compute the slight variations for the other six elements.

Let us suppose that the value of ρ corresponding to the position-angle θ_o is ρ_a , this value may be computed or measured graphically from the diagram. Let the corrected angle and distance be θ_o and ρ_o respectively. Then it is easy to see that the displacement of a point on the apparent orbit due to the correction of the elements will be given by

$$\Delta s = \sqrt{\left(\frac{\rho_a + \rho_c}{2}\right)^2 (\theta_o - \theta_o)^2 + (\rho_a - \rho_o)^2}$$

In case the length of the radius vector in the apparent orbit is practically constant, the last term of the radical becomes insensible, and the displacement in space at a given distance is proportional to the displacement in angle But as many of the orbits are very eccentric and highly inclined, and the radius vector therefore changes rapidly, the best result can be obtained only by the use of the complete residuals expressed above. In computing these values numerically we may express $(\rho_a - \rho_c)$ in degrees by the formula $2\binom{\rho_a-\rho_c}{\rho_s+\rho_c}$ 57°3, and since $(\theta_o-\theta_c)$ is already given in degrees, we must express the coefficient as an abstract number in units of the major semi-axis, in order to give the displacements in angle weight proportional to the length of the radius vector

Since the second term of the resulting expression under the radical sign

$$I\theta^{\circ} = \sqrt{\left[\binom{\rho_{o} + \rho_{o}}{2u}(\theta_{o} - \theta_{o})^{\circ}\right]^{2} + \left[\frac{2(\rho_{o} - \rho_{c})}{(\rho_{o} + \rho_{o})} \quad 57^{\circ} 3\right]^{2}}$$

will often be very small, it will frequently be sufficient to use the first term only, or in other words, to assign the residuals in angle weights proportional to the lengths of the radii vectores

This method of improving the elements will be found very much shorter than that involved in the process of correcting both angles and distances by separate differential formulae, and will lead to the same results without loss of accuracy

§ 12. A General Method for Facilitating the Solution of Kepler's Equation by Mechanical Means*

The standard works on planetary motion, such as Gauss' Theoria Motus, Oppolzer's Bahnbestimmung, and Watson's Theoretical Astronomy, give methods for solving Kepler's Equation which are very satisfactory when the eccentricity of the orbit is small, and also when this element is large, as in the case of most of the periodic comets. When the eccentricity is small, an expansion in series, usually by Lagrange's Theorem, enables us to find the eccentric anomaly with the desired facility. The series frequently employed has the form

$$E_0 = M + e'' \operatorname{sm} M + e'' \binom{e}{2} \operatorname{sm} 2M +$$

^{*}Monthly Notices, June, 1805, also Note in Monthly Notices for December, 1805

To the approximate value E_0 , obtained from a few terms of this series, we apply a correction resulting from the expansion by Taylor's Theorem.

$$E = E_0 + \frac{dE_0}{dM_0} dM_0 +$$

The equation of Kepler gives

$$\frac{dM_0}{dE_0} = 1 - e \cos E_0,$$

and since

$$dM_0 = M - M_0,$$

we find two terms of the series to be

$$E = E_0 + \frac{M - M_0}{1 - e \cos E_0}$$

Successive applications of this formula will readily yield the true value of the eccentric anomaly. But when the eccentricity is considerable the expansion in series fails to converge with the desired rapidity. On the other hand, when the orbits differ but little from parabolas, the solution can readily be found by means of special tables, such as those given by Gauss, Watson and Oppolizer.

It is very remarkable that among the many solutions of Kepler's Equation discovered by mathematicians there is not one, so far as I am aware, which has come into general use among astronomers that is applicable to ellipses of all possible eccentricities.

The method to which I desire to direct attention is a modification of the graphical method originally invented by J. J. Waterston (Monthly Notices, 1849–50, p 169), and subsequently rediscovered by Dubois (Astronomische Nachrichten, no 1404) The method was afterwards discussed by Klinkerfues in his Theoretische Astronomie, p 17, but so far as I am aware* it never came into practical use until employed in the investigations embodied in this work

Suppose we construct, on a convenient scale, a semi-circumference of the curve of sines, $y = \sin x$ In practice it is desirable to use millimetre paper, and a convenient scale is obtained by taking one degree of the arc as five millimetres, so that the scale may easily be read to 0°.1 The origin of the arc is taken at the origin of coordinates, and as the scale along the axis of abscissae extends from 0° to 180°, it will have a length of 90 centimetres.

In the figure let OM represent the mean anomaly, and suppose from M

^{*}Monthly Notices, December, 1895

we draw a right line making an angle Ψ with the axis of abscissae, the angle Ψ being defined by the equation

$$\tan \Psi = \frac{1}{e}$$

Let the abscissa of the point C, determined by the intersection of the right line MC with the sine curve, be denoted by E. Then we evidently have

$$OE - ME = OM$$

Thus, denoting the arc OE by E, and observing that $e \sin \Psi = \cos \Psi$, we find that $e \sin \Psi = ME$, the radius in the case of $\sin \Psi$ being such that $\sin \Psi$ is always equal to $\sin E$

Hence we get

$$OE - ME = OM$$
,

or

$$E - e \sin E = M,$$

which is the Equation of Kepler.

Therefore we conclude that if for an orbit of given eccentricity we construct a triangle CME (in practice this may be made of cardboard) and apply the vertex M of the triangle to the successive mean anomalies, the base coinciding with the x-axis, the intersection of the hypothenuse with the curve of sines will give at once abscissae which are the corresponding eccentric anomalies. Any actual diagram such as we have described will be subject to slight inaccuracies of construction, owing to the transcendental nature of the sines, and hence we cannot obtain solutions of absolute precision. But it is entirely possible to get approximate solutions exact to 0°1, and this work can be done with the greatest rapidity. It is merely necessary to slide the base of the

triangle along the x-axis, placing the vertex M at the points corresponding to the different values of the mean anomaly, and reading off the corresponding eccentric anomalies.

This triangle device is rendered possible by virtue of the fact that ψ is constant in $\tan \Psi = \frac{1}{e}$, and we may observe that in case of elliptic orbits the angle F can vary only from 45° in the case of a parabola to 90° in the case of a This method is therefore directly applicable to ellipses of every possible eccentricity, and the accuracy of the solution is always substantially the same In the case of parabolic motion, however, the method fails, since when $\Psi = 45^{\circ}$ the hypothenuse MC is tangent to the sine curve at the origin the hypothenuse MC intersects the curve $y = \sin x$, and the intersection will be well defined except when e approaches unity and M is very small. In such cases it is best to use the Special Tables or the Theory of Parabolic Motion Solutions exact to 0°1 are often sufficient in the present state of double-star observation, and we readily see how great is the practical value of this method in comparing a long series of observations with a given set of elements. One hundred approximate solutions of Kepler's Equation, accurate to 0° 1, may be obtained by this method in less than half an hour; while if e lies between 035 and 0.85 probably a skilled computer could not obtain the same results by the ordinary method in less than a day. Thus the time and labor required for this work is much diminished, and it is clear that the chances of large error are correspondingly reduced.

If a curve of sines were engraved on a metallic plate it would be an easy matter to devise a movable protractor which could be set at any angle, such a piece of apparatus would serve for every possible elliptic orbit, and would Considering the immense labor devolving upon last for an indefinite time astronomers in the computation of the motion of the heavenly bodies, it would seem that such a labor-saving device might be advantageously employed in the offices of the astronomical ephemerides However, as several astronomers have prepared tables for facilitating the solution of Kepler's Equation in the case of orbits which are not very eccentric, such an apparatus would be useful chiefly in work on the more eccentric asteroids, the double stars, and the periodic In dealing with the motions of these bodies the labor saved would be very considerable, and we might hope that the apparatus here suggested would come into actual use But in case this instrument of precision could not be successfully manufactured, owing to its limited commercial use, it is easy for a working astronomer to construct a curve of sines on millimetre paper

This can be mounted on a suitable wooden board, and a triangle of cardboard will give the solutions of Kepler's Equation for any given orbit

Thus, while the graphical method, originally proposed by Waterston, afterwards independently discovered by Dubois, and subsequently discussed by Klinkerfues, was suggested many years ago, it does not appear that it has vet come into general use, and therefore it deserves the careful attention of It is worthy of remark that a method of such great practical astronomers importance should rest in comparative oblivion during half a century, at a time when astronomers were constantly working on the motions of periodic comets and double stars, but it is probable that neither Waterston nor Dubois recognized the great generality and high value of the method in practical work Since writing the paper which I communicated to the Royal Astronomical Society in June, 1895, I have had occasion to make great use of the method in revising the orbits of double stars, and have found it not only the easiest and most rapid process yet invented, but one altogether so satisfactory that we may predict its universal adoption by astronomers The simplicity and generality of the method and the rapidity and accuracy with which solutions can be obtained, invite the inference that in the nature of the case the method is probably ultimate, and is not likely to be improved upon in any future age

While this method is of special importance in dealing with the motions of double stars, owing to the wide range of their eccentricities, it will evidently be almost, if not quite, equally important in the case of periodic comets and the asteroids. But in dealing with comets and planets, where we desire very exact solutions of Kepler's Equation, it will be necessary to correct the approximate values by the formula

$$\Delta E_0 = \frac{M - M_0}{1 - e \cos E_0},$$

where M_0 , E_0 are the approximate values of the mean and eccentric anomalies A second correction will ensure all the accuracy desirable in planetary and cometary ephemerides *

^{*}Among the other means for solving Kepler's Equation we mention especially the tables of Λ signal (Englemann, Leipzig), Doberck, A N, Bd 189, and a graphical method by Mr II C Plummer, Monthly Notices, March, 1896

CHAPTER II.

ON THE ORBITS OF FORTY BINARY STARS.

Introductory Remarks

The present chapter is occupied with detailed researches on the motions of the forty stars whose orbits can be best determined at this epoch. The material presented for each star has been collected from all available sources and is very complete. It is highly improbable that any important records have been overlooked, and since we have drawn the material almost wholly from original sources, future investigators will have little need to repeat the labor involved in collecting observations of these stars prior to 1895.

In some cases we have not used all of the available measures, either because the observations appeared to be defective, or because good observations were obtained too late to be incorporated in the discussions, which were not changed unless the elements adopted were found to be inconsistent with the new material. In the main, our choice of observations has been guided by the assumption that it is possible to find an orbit which is consistent with undisturbed elliptical motion. The observations have justified a violation of this principle only in the case of 70 Ophiuchi, which presented anomalies too large to be attributed to errors of observation. If the course of time should show that other stars also are perturbed, it will become apparent that we have not always made the best choice of the material now available.

In the determination of these orbits a number of distinguished astronomers have contributed their observations in advance of publication. They have not only sent manuscript copies of valuable measures, but have offered their work with a generosity which merits my most grateful acknowledgement. Among those to whom we return thanks are: M. G. BIGOURDAN, National Observatory, Paris, Profs. G. C. Comstock and A. S. Flint, Washburn Observatory, Madison; Prof. S. De Glasenapp, Director of the Observatory, Imperial University, St. Petersburg; Prof. G. W. Hough, Director of the Dearborn Observatory, Evanston, Ill; Prof. V. Knorre, Royal Observatory, Berlin; T. Lewis, Esq., Royal Observatory, Greenwich, M. W. Maw, Esq., Private

Observatory, London, Prof G. V Schiaparelli, Director of the Royal Observatory, Milan, Prof W Schur, Director of the Royal Observatory, Gottingen, John Tebbutt, Esq., Private Observatory, Windsor, N S Wales, Dr. H. C Wilson, Goodsell Observatory, Northfield, Minn

I have also had the constant cooperation of Professors Burnham and Barnard, who have made valuable suggestions in addition to contributing important observations, some of which were secured expressly for this work. In the investigation of the individual orbits my friends Mr. Geo K Lawton, Mr. Eric Doolittle, and Mr. F. R. Moulton have at different times rendered valuable assistance in the execution of a large part of the computations. Without such assistance, uniformly characterized by both zeal and enthusiasm, it would have been impossible to have completed the determination of so many orbits in so short a time. To these gentlemen I acknowledge my deep and lasting obligations. Besides aiding me in the preparation of Chapter I, Mr. Moulton has assisted in arranging the manuscript for the printer, and in reading the proofs, and thus not only expedited the work but also ensured greater accuracy than otherwise would have been possible

While no effort has been spared to ensure exactness in the computations and in the drawings, it can scarcely be hoped that in dealing with so great a mass of material all errors have been avoided. There is reason, however, to believe that such errors as may exist in the work will have no appreciable effect upon the final results

A number of the orbits embodied in this Chapter have been published in the Astronomical Journal, the Astronomische Nachrichten, and the Monthly Notices of the Royal Astronomical Society, references to these sources will be found in the appropriate places

Abbreviations of the Names of Observers

\mathbf{A} C	= Alvan Clark	Biw = Brunnow	Dui = Duiham Observers
AGC	= Alvan G Clark	Cal = Callandreau	Ek = Encke
Adh	= Adolph	Cin = Cincinnati Observers	El = Ellery
$\mathbf{A}\mathbf{u}$	= Auwers	Col = Collins	En = Englemann
β	= Burnham	Com = Comstock	Fer = Ferrarr
Bar	= Bainaid	Cop = Copeland	Fl = Flammanon
Be	= Bessel	Da = Dawes	Fli = Flint
${ m Bh}$	= Biuhns	Dav = Davidson	Flt = Fletcher
Big	= Bigouidan	Dem = Dembowski	Fo = Foerster
Во	= Bond	Dk = Dobeick	Fi = Fianz
Во	= Borgen	Du = Dunei	Ga = Galle

 Σ 3062.

	= Gıacomellı	Ma = Main	Sec = Secchi
Gl	= Gledhill	Mä = Mädlei	See = T J J See
Glas	= Glasenapp	Mac = Maclear	Sel = Sellors
Go	= Goldeny	Maw = M W Maw	Sh = Schur
$\mathrm{H_{\scriptscriptstyle 1}}$	= W Herschel	$M_1 = M_1$ lle1	Sl = Selander
${ m H_2}$	= J F W Herschel	Mit = Mitchell	Sm = Smith
\mathbf{H}_{1}	= Hind	Ml = Moulton	So = South
$\mathbf{H}\mathbf{l}$	= Hall	New = Newcomb	$S_1 = Searle$
\mathbf{Ho}	= Hough	No = Nobile	St = O Stone
Hol	= Holden	Per = Pence	T = Tebbutt
$\mathbf{H}\mathtt{v}$	= Harvard Observers	Per = Perrotin	Tai = Tailant
Ja	= Jacob	Pet = Peters	Tj = Tietjen
Jed	= Jedrzejewicz	Ph = Philpot	Vo = Vogel
Jo	= Jones	Pl = Plummer	Wdo = Waldo
Ka	= Kaisei	Po = Powell	Wh = Wichman
Kn	= Knott	P ₁ = Pritchett	Ws = J M Wilson
Knr	= Knone	Rad = Radeliffe Observers	H C W = H C Wilson
Ku	= Kustnei	Rus = Russell	W & S = Wilson & Seabroke
Ley	= Leyton Observers	Σ = W Struve	Well = Wellmann
Lin	= Lindstedt	$H\Sigma = H$ Struve	Winn = Winnecke
Lov	= Lovett	$O\Sigma = O$ Struve	Wlk = Winlock
L_{s}	= Lewis	Sch = Schiaparelli	$W_1 = W_1 $ ottesley
$\mathbf{L}\mathfrak{u}$	= Luther	Scl = Schlüter	Y = Young
$\mathbf{L}\mathbf{v}$	= Leavenworth	Sea = Seabroke	_

x 3062.

 $\alpha = 0^h \; 1^m \;\; , \;\; \delta = +57^\circ \; 53'$ 6 9, yellowish $\; , \;\; 7 \; 5, \; bluish \; white$

Discovered by Sir William Herschel August 25, 1782

Observations

t	θ_{o}	ρο	\boldsymbol{n}	Observers	t	θ_o	ρ_o	n	Observers
$1782\ 65$	$319^{\circ}4$	<u>"</u>	1	Herschel	1842 80	$207^{\circ}3$	$0^{''}87$	1	Madler
$1783\ 05$	319 1		1	Heischel	1843 58	2087	0 92	3	Madler
1823 81	36 7	$1.25\pm$	1	Struve	1843 80	210 0	0 94	1	Dawes
1831 71	85 7	0 82	2	Struve	1844 49	2137	085	5	Mädler
1833 71	108 6	0 56	3	Struve	1846 42	2203	0 97	2	O Struve
1835 66	132 6	0 41	5	Struve	1847 53	2251	1 12	5	Mädler
100001				.	1848 22	$229 \ 7$	1 14	2	O Struve
1836 61	146 4	0 47	5	Struve	1848 87	$228 \ 8$	1 16	1	Dawes
$1840\ 32$	1865	0 65	4	O Struve	1849 19	$232\ 5$	1 09	3	O Struve
1840 78	1869	08±	3-2	Dawes	1850 04	233 9	1 17	3	O Struve
1841 58	1936	0.89	7	Mädlei	1850 71	$232\ 3$	1 31	3	\mathbf{Madler}
1841 86	1934	0 95	2	Dawes	1850 93	$235\;2$		1	Dawes

t	$ heta_o$	ρ,	n	Observers	t	$ heta_{ullet}$	ρ_o	n	Observers
1851 16	$235^{\circ}7$	$1^{''}35$	2	O Struve	1871 57	$283{}^{\circ}\!8$	$1^{''}\!\!39$	7	Dembowski
1851 18	236 9	116	8	\mathbf{M} adlei	1871 60	2840	16	1	Gledhill
1851 75	$234\ 5$	127	2	Madler	1070.00	005 5	- 1-	0	D 1
1050 10	000.4	1.00	0	0. 04	1872 63	285 7	1 47	6	Dembowski
1852 49	2 38 4	1 23	3	O Struve	1872 80	2863	1 45	1	W & S
1854 11	$243\ 5$	1 48	4	O Struve	1873 63	$287\ 6$	145	9	Dembowski
$1854\ 32$	$244 \ 3$	128	3	Dawes	1873 80	297.8	0 91	1	Leyton Obs'
185499	249 9	${f Sep}$	6	Dembowski	1873 82	287~8	145	1	W & S
1855 05	$242\ 7$	1 38	3	O Struve	1873 84	2880	155	2	Gledhill
1855 80	$249 \ 4$	13	8	Dembowski	1874 64	2898	1 40	6	Dembowski
185591	2479	1 33	3	Morton	1874 72	2991	1 08	1	Leyton Obs
1856 57	245 5	1 41	1	Winnecke	1874 86	291 2	1 37	1	W & S
1856 62	250 6	12	4	Dembowski	1874 91	2911	1 35	$\overline{2}$	Gledhill
1856 66	247.8	140	$\overset{1}{2}$	O Struve					
1856 80	248 8	1 43	1	Madlei	1875 67	292 2	1 47	6	Dembowskı
					1875 69	$292\ 9$	1 49	5	Dunéi
1857 37	$250\ 4$ $253\ 4$	$egin{array}{ccc} {f 1} \ {f 50} \ {f 1} \ {f 25} \end{array}$	$\frac{3}{3}$	O Struve	1876 74	$293\ 3$	1 61	1	O Struve
$1857\ 60$ $1857\ 71$	$\begin{array}{c} 253 \ 4 \\ 252 \ 2 \end{array}$	$egin{array}{c} 12 \ 12 \end{array}$	ა 4	Secchi Dembowski	1876 67	$294\ 5$	146	5	Dembowskı
					1876 87	$294\ 5$	1 60	3-2	Doberck
185854	2524	12	2	Dembowskı	1876 93	298 8?	1 44	1	W & S
185916	$255 \ 3$	146	3	O Struve	1876 99	$294\ 5$	146	5 - 4	Plummeı
186179	2652	1 21	2	Madlei	1877 61	295 8	1 46	4	Dembowskı
1862 18	$261 \ 7$	1 54	2	O Struve	1877 74	$297\ 3$	1 49	4	Doberck
1862 79	$263 \ 6$	1 46	11	Dembowski	1878 60	299 1	1 51	4	Dembowski
186283	2661	1 29	2	\mathbf{Madlei}	1878 90	302 3	1 39	5	Doberck
1863 80	266 0	1 43	9	Dembowski	1879 45	301 9	1 50	8	77.11
1863 86	$265 \ 6$	1 40	1	Dawes	1879 77	301.9 303.2	130 133	5	Hall Doberck
1864 73	268 7	1 40	7	Dembowskı					
					1880 60	304 5	1 50	6	Buinham
1865 70	271 2	1 35	6	Dembowski	1880 88	304 3	1 55	4	$\mathbf{Dobe}_{\mathbf{l}}\mathbf{ck}$
1865 71 1865 71	2699 2719	$\frac{143}{114}$	3 2 <u>–</u> 3	Knott	1881 14	301 0	1 44	3-2	Jedi zejewicz
				Leyton Obs	1881 60	307 8	1 60	3	Buinham
1866 20	270 4	1 47	2	O Struve	1881 81	306 5	197	2-1	Bigouidan
1866 64	270 3	1 46	3	Leyton Obs	1881 83	$305\ 5$	140	4	Hall
1866 72	275 5	1 13	3	Harvard	1882 11	304 9	1 29	7	Jedi zejewicz
1866 74	273 4	1 44	5	Dembowski	1882 70	$312\ 3$	$\frac{1}{62}$	i	O Struve
1866 97	270 0	1 34	1	Secchi	1882 82	308 1	$\begin{array}{c} 1\ 52 \\ \end{array}$	4-3	Doberck
1867 74	$275\ 2$	1 41	7	Dembowski	1883 60	309 8	1 69		
1868 67	2775	1 38	4	Dembowski	1883 94	312 8	1 44	9 3	Englemann Hall
186875	$268\ 3$	1 66	3-1	Leyton Obs					
1868 98	$276\ 5$	159	2	O Struve	1884 47	311 7	126	2	Seabroke
1869 75	279 9	1 48	6	Dembowskı	1885 80	316 1	1 46	5	\mathbf{Hall}
1870 18	279 2	1 48	2	O Struve	1886 20	315 2	1 43	3-2	Seabroke
1870 44	281 0	15	1	Gledhill	1886 92	314 6	1 46	5	Hall
1870 64	280 6	1 63	_	Leyton Obs	1887 06	315 5	1 36	6–3	Schiaparelli
1870 67	282 2	1 43	7	Dembowski	1887 10	310 7	1 50	3	Tarrant
					1	•	-	-	

 $\Sigma 3062$

$oldsymbol{t}$	θ_o	ρ,	n	Observers	t	θ_o	ρ_o	n	Observers
1888 09	317 7	${f 1}^{''}{f 4}{f 0}$	1	Schiaparelli	1892 94	$323\degree 7$	$1^{''}62$	1	Jones
1888 94	3194	1 36	4	Hall^-	1892 99	$328 \ 5$	1 47	2	Schiaparelli
1888 96	3195	1 46	6	Schiaparelli					-
1889 57	321 1	145	3	Burnham	1893 83	$327 \ 8$	1.58	2	Comstock
1889 86	323 0	1 45	4	Hall	1893 96	330 9	145	2	Schraparelli
1889 94	$320 \ 5$	1 38	1	Seabroke	1894 28	330 6	1 70	3-2	Bigourdan
189076	321.8	1 61	1	Bigouidan	1894 64	331 99	186	1	Glasenapp
189079	3252	1 34	5	Hall					
1890~93	$323\ 5$	1.52	1	Schiaparelli	1895 10	$151\ 2$	1 58	1	Davidson
1001.40	000.4			-	1895 14	$330\ 3$	1 61	7-6	Bigoui dan
1891 48	3224	$15\pm$	1	See	1895 15	327.4	1 16	3	Hough
1891 95	$327\ 3$	1 47	2	Schiaparelli	1895 18	331 9	146	2-1	Comstock
189271	$329 \ 1$	1 47	3	Comstock	1895 73	$334\ 3$	1 53	4	See
$1892\ 86$	3256	1 52	2	$\operatorname{Collins}$	189574	$334\ 5$	1 40	2	Moulton

When Herschel discovered this pair he measured the angle and repeated his observation the following year, without finding any sensible change.* Beginning with 1823, Struve followed the star for ten years; and from the measures thus secured he discovered that the system is a binary in rapid orbital motion. Since Struve's time the star has been carefully measured by many of the best observers, so that there is abundant material upon which to base an orbit which seems likely to be substantially correct.

Having collected all the published observations of \$\Sigma 3062\$ from original sources, I have formed for each year a mean position which is the arithmetical mean of the mean results obtained severally by the best observers. In accordance with the experience of Struve, Otto Struve, Dembowski, and Burniam these yearly means may be held to furnish the most trustworthy basis for the elements of an orbit. The following is a table of the orbits hitherto published for this star.

P	T	e	а	ß	ı	λ	$oldsymbol{\Lambda}$ uthority	Source	
146 83	1834 01	0.57536	0.9982		38 6	42 2	Müdler, 1847	Doip Obs IX, 180 Die Fixst-Syst	
$ \begin{array}{c cccc} 105 & 64 \\ 112 & 644 \\ 104 & 115 \end{array} $	1835 196		$1446 \\ 1310 \\ 127$	$476 \\ 322 \\ 386$	$463 \\ 2997 \\ 322$	$97\ 52$		Mel Acad St Petersbg, A N 1636 [1867,p 128 A N 2156	
	1834 88 1835 508		$egin{array}{c} 127 \ 1270 \end{array}$	$\begin{array}{c} 38.6 \\ 39.15 \end{array}$			Doberck, 1877 Doberck, 1879		

By the method of KLINKERFUES we find the following elements.

	•
P = 10461 years	$\Omega = 47^{\circ} 15$
T = 183626	$i = 43^{\circ} 85$
e = 0.450	$\lambda = 90^{\circ} 90$
a = 1'' 3712	$n = +3^{\circ} 441355$

^{*} Astronomische Nachrichten, 3292

70 Σ 3062

Apparent orbit.

Length of major axis = 2'' 526Length of minor axis = 1'' 984Angle of major axis $= 45^{\circ} 7$ Angle of periastron $= 138^{\circ} 4$ Distance of star from centre = 0'' 446

It will be seen that these elements are very similar to those derived by von Fuss in 1867. The following comparison of the computed and observed places shows that the above elements are highly satisfactory, and that the true elements of this remarkable binary will hardly differ sensibly from the values here obtained.

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θ •	θ _o	ρ_o	ρς	θοθο	ρ _ο —ρ _ο	n	Observors
1782 65	319 4	315 7		1 44	$+3^{\circ}7$		2	Herschel
1823 81	36 7	453	$125\pm$	1 16	-86	+0 09	1	Struve
1831 71	85 7	85 1	0 82	072	+06	+010	2	Struve
1833 73	108 6	105 3	0 56	0 61	+33	-0.05	3	Struve
1835 66	132 6	130 5	0 41	0 55	+21	-014	5	Struve
1836 61	146 4	1438	0 47	0 55	+26	-0 08	5	Struve
1840 55	186 7	188 8	0 72	071	-21	+0 01	7-6	$O\Sigma 4$, Dawes 3 2
1841 72	193 5	197 6	0 92	0 79	-41	+0 13	9	Madler 7, Dawes 2
1842 80	207 3	2047	0.87	0 86	+26	+0 01	1	Madler
1843 69	209 3	209 5	0 93	0 91	-0.2	+0.02	4	Madler 3, Dawes 1
1844 49	213 7	213 6	0 85	0.96	+01	-0 11	5	Madler
1846 42	220 3	222 2	0 97	1 07	-19	-0.10	2	O Struve
1847 53	225 1	2261	1 12	1 11	-10	+0 01	5	Madler
1848 54	$229\ 2$	2297	1 15	1 16	-0.5	-0 01	3	$O\Sigma 2$, Dawes 1
1849 19	$232\ 5$	231 9	1 09	1 18	+06	-0.09	3	O Struve
1850 56	233 8	236 1	1 24	1 23	-23	+0.01	7-6	$O\Sigma$ 3, Madler 3, Dawes 1-0
1851 36	235 7	238 3	1 26	1 25	-26	+0.01	12	$O\Sigma$ 2, Madler 8, Madler 2
1852 49	2384	241 6	1 23	1 29	-32	-0.06	3	O Struve
1854 47	245 9	246 7	1 38	1 33	-08	+0.05	13-7	$O\Sigma 4$, Dawes 3, Dembowski 6-0
1855 58	246 6	249 4	1 34	1 35	-28	-0.01	14	$O\Sigma 3$, Dembowski 8, Mo 3
1856 69	249 1	251 5	1 31	1 37	-24	0 06	7	Dembowski 4, O\(\Sigma\)2, Madlei 1
1857 56	251 6	254 0	1 32	1 38	-24	-0.06	10	$O\Sigma 3$, Seabroke 3, Dembowski
1858 54	252 4	256 3	12	1 39	-39	-0.19	2	Dembowskı
1859 16	255 3	257 3	1 46	140	-20	+0.06	3	O Struve
1861 79	2652	263 4	1 21	1 42	+18	-0.21	2	Madler
1862 60	263 8	265 2	1 43	1 43	-14	0 00	15	$O\Sigma 2$, Dembowski 11, Madlei 2
1863 83	265 8	267 7	1 41	1 43	-19	-0.02	10	Dembowski 9, Dawes 1
1864 73	268 7	269 7	1 40	1 43	-10	-0.03	7	Dembowskı
1865 70	270 5	2718	1 39	1 44	-13	-0.05	9	Dembowski 6, Knott 3
1866 60	271 3	273 6	142	1 44	-23	-0.02	8	$O\Sigma 2$, Dembowski 5, Sea 1
1867 74	275 2	276 1	1 41	1 44	-09	-0.03	7	Dembowskı
1868 82	277 0	278 2	1 48	1 44	-12	+0.04	6	Dembowski 4 , $O\Sigma 2$
1869 75	279 9	280 6	1 48	1 44	-07	+0.04	6	Dembowski
1870 43	280 8	281 5	1 47	1 44	-07	+0.03	10	$O\Sigma 2$, Gledhill 1, Dembowski 7
1871 58	283 9	283 8	1 49	1 45	+01	+0.04	8	Dembowski 7, Gledhill 1
1872 71	286 0	286 1	1 46	1 44	-0.1	+0.02	7	Dembowski 6, W & S 1
1873 76	287 8	288 3	1 48	1 44	-0.5	+0.04	12	Dembowski 9, W & S 1, Gl 2
1874 80	290 7	290 4	1 37	1 44	+03	-0.07	9	Dembowski 6, W & S 1, Gl 2
1875 68	292 5	292 2	1 48	1 44	+03	+0.04	11	Dembowski 6, Dunéi 5

t	θο	θο	$ ho_o$	ρι	$\theta_o - \theta_c$	ρορο	n	Observers
1876 84	294 5	294 6	1 51	1 14	_0°1	+0"07	13–11	Dembowski 5, Dk 3-2, Pl 5-4
1877 68	$296\ 5$	2962	1 48	1 44	+03	+0.04	8	Dembowski 4, Dobeick 4
1878 75	$300 \ 7$	2984	145	1 44	+23	+001	9	Dembowski 4, Dobeick 5
1879 61	$302\ 5$	$300 \ 2$	1 41	1 44	+23	-0.03	13	Hall 8, Doberck 5
1880 74	304 4	$302\ 5$	1.52	1 43	+19	+0.09	10	β6, Doberck 4
1881 59	$305\ 2$	$304\ 3$	1 60	1 43	+09	+0.17	12-10	Jed 3-2, β3, Big 2-1, Hall 1
1882 46	306.5	306 1	1 41	1 43	+04	-0.02	11-10	Jed 7, Doberck 4-3
1883 77	311 3	307 7	1 56	1 43	+36	+0.13	12	Englemann 9, Hall 3
1884 47	311 7	$310\ 2$	126	1 43	+15	-0.17	2	Seabroke
1885 80	316 1	$312 \ 9$	1 45	1 43	+32	± 0.02	5	Hall
1886 56	314 9	$314\ 4$	1 44	1 43	+0.5	+0.01	8-7	Seabroke 3-2, Hall 5
1887 08	313 1	3154	1 43	1 43	-23	0 00	9-6	Schiaparelli 6-3, Tarrant 3
1888 66	318 9	317 5	1 41	1 43	+14	-0.02	11	Sch 1, Hall 4, Sch 6
1889 79	$321\ 5$	$320 \ 9$	1 43	1 44	+06	-0.01	8	β3, Hall 4, Seabroke 1
1890 86	$324\ 3$	$323 \ 1$	1 43	1 44	+12	-0.01	6	Hall 5, Schiaparelli 1
1891 71	324 9	323.8	1 48	1 44	+11	+0.04	3	Sec 1, Schiaparelli 2
1892 89	$326 \ 7$	$327\ 2$	1.52	1 44	-0.5	± 0.08	8	Com 3, Col 2, Jo 1, Seh 2
1893 90	329.3	$329\ 2$	1 51	1 14	+01	+0.07	4	Comstock 2, Schiapai elli 2
1891 16	331.3	330.3	1 70	1 45	+10	± 0.35	1-2	Glasenapp 1-0, Bigourdan 3-2
1895 30	332 3	332.1	1 44	1 45	+02	-0 01	16-14	Big 7-6, Ho 0-3, Com 2-1, See 4

Ephemeris											
t	θ_{c}	$ ho_c$	t	θ_c	$ ho_{c}$						
189650	3318	1 45	1902 50	$346\mathrm{\overset{\circ}{8}}$	1 46						
$1897\ 50$	336 8	1 45	1903 50	348 8	1 46						
$1898\ 50$	338 8	145	1904.50	*350 8	1.46						
$1899\ 50$	3408	145	1905 50	3528	1 46						
1900 50	$342 \ 8$	1.46	1906 50	354 8	1.46						
1901 50	344 8	1 46									

It will be seen that there are occasional systematic errors both in the angles and in the distances, and in some cases these deviations appear to be rather more extensive than we should expect in the work of the best observers; but the star has some peculiar difficulties, especially as regards the distance, and on the whole the measures are fairly accordant for so close an object

This star deserves the careful attention of observers, as the next 20 years will give the material which will make the orbit exact to a very high degree. It may be pointed out that the system has a considerable proper motion in space, in $\alpha + 0^{\prime\prime} 346$, in $\delta + 0^{\prime\prime} .020$, and therefore the chances are that it has a sensible parallax. If the parallax could be determined it would give us the absolute dimensions of the system and the combined mass of the components — two elements of the highest interest in the study of the stellar systems.

η CASSIOPEAE = Σ 60.

 $\alpha = 0^{h}~42^{m}~0$, $\delta = +57^{\circ}~18'$ 4, yellow , 7, purple

Discovered by Sir William Herschel, August 17, 1779

OBSERVATIONS

t	θ_o	ρ_o	n	Observers	t	θ_o	$ ho_o$	n	Observers
1779 81	70°±	11 09	1	Heischel	1850 19	1068	7"96	15–14	Madlei
1780 52		11 46	1	Heischel	1850 61	$105 \ 5$	8 32	2	${f Johnson}$
		11 40			185072	1065	8 01	6-7	Madler
$1782\ 45$	62 1		1	Herschel	1850 84	$105\ 6$	8 16	5	Jacob
1803 11	708	_	1	Heischel	1851 45	1066	8 17	7-6	Fletcher
1814 10	785	9 70	1	Bessel	1851 76 1851 84	1077 1080	$\begin{array}{c} 7.72 \\ 8.04 \end{array}$	$\frac{3}{3}$	Madler
1820 16	81 1	10 68	5	Struve	1851 89	106 9	$\begin{array}{c} 8 \ 12 \end{array}$	ა 4	O Stiuve Miller
1827 21	85 6	10 2	1	Struve	1851 89	106 4	8 04	3	Jacob
1830 75	86 2	10 07	5	Bessel	1852 61	108 5	7 65	7–8	Madler
					1853 39	108 4	7 57	5	Madler
1831 75	88 7	9 69	1	Herschel	1853 51	$109\;2$	7 98	7	Jacob
$1832\ 05$	87 6	978	5	Struve	1853 90	110 1	7.52	3	Madlei
$1832\ 87$	88 7	974	2	Dawes	1853 92	109 4	-	6	Powell
183476	89 6	9 80	1	Bessel	1854 00	1096	7 91	1	Dawes
$1835\ 26$	91 2	9 52	3	Struve	1854 56	1120	7 97	4	O Struve
					1854 80	1106	7 60	2	Madlei
1836 46	911	10 83	2_1	Madler	1854 91	111 9	7 80	7	Dembowski
1836 74	92 1	9 39	4	Struve	1854 94	$111 \ 5$	_	6	Powell
1840 14	958	8 98	37-29 Obs	Kaiser	1854 95	11 0 0	8 12	2	Morton
1841 34	981	9 21	3	O Struve	1855 24	110 9	7 95	3	Winnecke
1841 57	98 3	9 50	4	Madleı	1855 52	111 0	7 60	4-3	Madler
1841 80	957	933	1	Dawes	1855 79	110 2	7 89	$\frac{1-5}{2}$	Secchi
1842 41	98 3	876	2-1	Madler	1855 93	1125	7 63	9_4	Powell
1842 65	96 4	9 09	7	Schluter	1855 94	113 2	7 57	4	Dembowski
1843 07	98 4	8 97	3	Schluter	1855 96	1124	7 80	3	Morton
$1844 \ 56$	100 1	8 48	6–5	Madlei	1856 07	112 4	7 57	4	Jacob
1845 44	101 1	8 44	8	Madler	1856 51	112 9	722	2-1	Madler
1845 86	97 2	8 85	1	Jacob	1856 55	117 3	8 34	3	Luther
*					1856 86	1146	7 33	4	Dembowski
1846 41	100 5	8 89	2	Jacob					
1846 66	1025	8 57		\mathbf{Madler}	1857 06	1129	7 49	3	Jacob
184672	101 5	8 71	2	Jacob	1857 22	114 1	7 57	2	O Struve
1847 34	1027	8 28	6-7	Madler	1857 23	114 5	7 09	5	Madleı
1847 40	101 8	8 48		O Struve	1857 87	1158	7 14	4	Dembowskı
1848 12	102 5	8 60		Jacob	1858 06	1151	742	3	Jacob
1849 66	1050	8 26	4	O Struve	1858 19 1858 62	1159	7 12	4	Madler
1	2000	0 40	**	OBILLIA	1009 02	115 8	7 24	3	Dembowskı

t	θ_o	ρ,	n	Observers	t	θ_o	$ ho_o$	n	Observers
$1859\ 27$	1157	6"96	2-1	Madlei	1872 01	°	6"0±	1	Seabı oke
185972	1166	702	6-4	Powell	1872 18	1408	594	2	0 Struve
1859 94	1170	7 08	2	Morton	1872 50	1405	602	7	Duner
1860 68	119 8	7 17	2	O Struve	1872 63	139 1	5 97	6	Dembowski
$1860\ 97$	$118 \ 3$	699	7-6	Powell	1872 65	137 8	610	4	Knott
1861 58	1198	7 37	5	Americana	1872 77	1440	594	1	Main
1861 70	1179	7 08	5 5	Auwers Madler	1872 86	1244	6.32	_	Leyton Obs
1861 82	118.2	6 44	6	Main					•
1861 95	120 6	67	3–2	Powell	1873 06	1423	_	1	W & S
1901 90		0 1	<i>0-</i> ∠	Towell	1873 53	1446	5 68	3	O Struve
186271	$120 \ 6$	685	8	$\mathbf{M}\mathbf{adle}1$	1873 66	$140 \ 7$	597	7	Dembowski
$1862\ 86$	$121\ 3$	7 00	12	Dembowski	1873 68	1437	6 03	2	Gledhill
186288	1204	715		Leyton Obs	1873 83	144 7	633	1	W & S
1863 80	1234	687	9	Dembowski	1873 86	$141 \ 2$	566	1	Leyton Obs
	123 1	6 65			1873 98	143 6	_	6	\mathbf{N} obile
1864 00	$\frac{1251}{1250}$	6 76	4–3	Powell	1874 22	144 9	5 82	1	Dunér
1864 80	€ (+ئد)	676	9	Dembowskı	1874 63	143 1	5 83	7	Dembowski Dembowski
1865.59	1255	6.52	6	Englemann	1874 90	146 0	5 8	1	W & S
1865.62	1264	6.67	8	Dembowski	1014 90	1400	90	T	W (C)
186569	1257	675	3	$\mathbf{K}_{\mathbf{nott}}$	1875 15	1486	558	2	O Struve
186576	123 9	643	2-1	Leyton Obs	1875 51	1467	577	10	Dunér
1866 22	132 6	6 44	2	O Struve	1875 66	1465	5 67	7	Dembowski
1866 63	$1320 \\ 1247$	6 38	3		1875 78	1461	5.78	1	Main
1866 65	$\frac{1247}{1239}$	6 66	1	Leyton Obs Searle	1875 94	1477	_	2	Doberck
1866 72	128.5 128.5	6 58	7	Dembowski		- 100	2 20	_	· ·
1866.84	126.0 126.0	0 00	1	Winlock	1876 61	1493	5 59	7	Dembowski
1866.86	$\begin{array}{c} 1200 \\ 1277 \end{array}$	- 6 79	4	Secchi	1876 79	1491	5 48	6	Plummer
					1876 86	149.3	472	1	Leyton Obs
1867 15	1301	6 55	1	Searle	1877 19	1528	5 44	1	O Struve
1867 65	130 0	6 31	1	Mam	1877 69	$151\ 5$	548	6	Dembowski
1867 74	130 1	6 48	7	Dembowski	1877 76	$150\;4$	5 77	5	$\mathbf{Doberck}$
1868.37	1318	6.38	5	Dunéi	1878 19	154 6	5 25	2	O Struve
186853	132.9	643	3	O Struve	1878 58	1537	5 4 2	5	Dembowski
$1868\ 67$	$132 \ 1$	6.33	4	$\mathbf{Dembowski}$	1878 83	153 9	5 51	1	Goldney
1868 90	$124\ 3$	621	1	${f Leyton~Obs}$	1878 90	155 1	5 28	5	Doberck
1869 67	1324	612	1	Mam					
1869 72	124.8	6 58	1	Leyton Obs	1879 20	154.7	516	2	O Struve
1869 75	134 0	6 20	6	Dembowski	1879 01	156 8	5 35	7	Hall
1869 93	1352	6 16	4	Dunér	1879 80	$158 \ 3$	521	3	Doberck
1870 07	133 4	6 39	5-4	Powell	1879 96	1619	560	5	Franz
1870 18	$\begin{array}{c} 1364 \\ 1362 \end{array}$	628	2	O Struve	1880 14	1599	532	7	Jedrzejewicz
		6 16	• 7	Dembowski	1880 60	1611	5 26	5	Doberck
1870 67 1870 72	$\begin{array}{c} 1353 \\ 1358 \end{array}$	6 09	3	Gledhill					
					1881 10	1641	532	2-1	Doberck
1871 10	137 4	5 90	2–1	Powell	1881 14	1628	510	3_2	Jedrzejewicz
1871 65	137 6	6 08	6	Dembowski	1881 16	1620	526	3	O Struve
1871 70	138 0	6 03	2	Gledhill	1881 72	1614	518	$\frac{2}{4}$	Pritchett
187193	14 0 9	_	1	W & S	1881 90	163 1	5 30	4	Hall

$oldsymbol{t}$	θ_o	$ ho_o$	n	Observers		θ_{o}	ρ_o	n	Observers
$1882\ 15$	$165^{\circ}5$	$5^{''}\!08$	3	$\operatorname{Jed}_{1}z$ e $_{\operatorname{Jewicz}}$	1890 79	$188^{\circ}4$	$5^{''}\!07$	5	Hall
188270	1668	5 28	1	O Struve	1891 48	191 7	5 02	5-4	See
$1882\ 76$	1663	5 11	6-5	$\operatorname{Dobelck}$	1891 74	1918	479	4-3	Maw
$1882\ 87$	$165\ 7$	$5\ 15$	6	Englemann	100111	. ,			
$1883\ 94$	$168 \ 8$	$5\ 12$	3	\mathbf{Hall}	1892 77	1941	492	3	$\operatorname{Comstoc} \mathbf{k}$
$1885\ 23$	$172 \ 8$	527	1	Seabroke	1892 85	$197\ 3$	4 90	2	$\operatorname{Collins}$
$1885\ 81$	$173\ 4$	5 06	5	Hall	1892 95	197 4	475	1	Jones
$1886\ 07$	$176\ 3$	492	5	Englemann	1893 84	1960	4 88	1	Comstock
$1886\ 20$	1766	478	3-2	Seabroke	1893 97	$198 \ 2$	512	1	Lovett
1,88695	$175\ 3$	4 99 .	5	\mathbf{Hall}			-		
1886 97.	1786	4 71	7	Tarrant	1894 05	$201\ 6$	4 89	1	Comstock
1887 35	180 6	4 6	1	\mathbf{Smith}	1894 1	$200\;2$	4 96	1	Maw
$1888 \ 48$	$181\ 3$	4 69	2	Seabroke	1895 16	2048	4 97	3	Hough
$1888\ 54$	183 9	483	5	Maw	1895 17	203 8	5 01	3	Comstock
1888 97	1832	4.88	4	Hall	1895 29	$203\ 4$	4 84	3	See
1889 10	185 9	4 64	3	Seabroke	1895 73	$204\ 3$	4 78	$^{\circ}_{2}$	See
1889 86	1854	4 98	4	Hall	1895 73	2059	4 74	$\overline{2}$	Moulton

At the date of discovery SIR WILLIAM HERSCHEL found the distance* of the component to be 11".09, and estimated the angle at 70° At the epoch 1780 52 he found the distance 11"46, but made no measure of the angle of position until 1782 45, when it proved to be 62°07 HERSCHEL observed the angle to be 70°8, in 1803, but made no measure of the distance The earliest observation of both angle and distance is a rough measure by Bessel, in 1814; and although his angle is nearly correct, it is evident from the subsequent work of Struve that the distance is much too small. Since the time of Struve η Cassiopeae has been followed by nearly all of the best observers, so that we have good material upon which to base an investigation of the orbit.

Although the observations of η Cassiopeae do not suffice to fix all the elements so well as might be desired, yet it appears that the range of uncertainty is comparatively unimportant, except in the case of the periodic time, which may possibly differ several years from the value here derived. Some of the orbits found for η Cassiopeae by previous computers are indicated in the following Table of Elements.

P	,e	αΩ	8	λ	Authority	Source
181 1896 0 176.37 1924 78 222.435 1909.24 195.235 1901.25 167.4 1904.0 203.1 1908.9 190.50 1906.12	0.6268 10 0.5763 9 0.6244 8 0.622 8 0.500 8	0'335 25.55 0 68 50.80 9 83 39.95 8 639 33.33 8 702 41.02 8 45 47.1 3 2047 43.0			Dunér Doberck	M N, vol XXI, p 66 Mes Micro, p 166 A N 2091 A N 2111 M N, vol XLII, p 359 M N, vol LV, p 20 A J 343

[&]quot;Astronomical Journal, 343; and Astronomical Journal, 355

N,

We find the following elements for this celebrated binary

```
P = 195 \ 76 \ \text{years} Q = 46^{\circ} \ 1

T = 1907 \ 84 i = 45^{\circ} \ 95

e = 05142 \lambda = 217^{\circ} \ 87

a = 8'' \ 2128 n = +1^{\circ} \ 83899
```

Apparent orbit

Length of major axis	_	15" 80
Length of minor axis	=	10" 24
Angle of major axis	=	55° 8
Angle of penastron	=	254° 5
Distance of star from centie	=	3" 80

The table of computed and observed places shows that these elements are highly satisfactory. But the rapid orbital motion near periastron will make it possible to effect a slight improvement in about ten years

The parallax of the system recently determined by DR HERMANN S DAVIS of Columbia College seems to be entitled to great weight; and yet the value is so large that with these elements the mass is only 0 166 that of the sun. The distance of the system is 464540 times the distance of the earth from the sun, and the semi-major axis of the orbit is 1854 astronomical units. This mass is very small for the size of the system, and if the parallax of 0".43 be confirmed, say, by Heliometer measures, our ideas of the nature of the stellar systems will have to be considerably modified. The parallax of 0".154 found by Otto Struve in 1856, from measures with the micrometer, gives a distance for the system of 1339400 astronomical units. The semi major axis comes out 53 33 times the distance of the earth from the sun, and the combined mass proves to be 3 96

The companion is at present near the line of nodes, and its relative motion in the line of sight is near its maximum value. The brightness and width of this pair is such as to justify an application of the spectroscopic method for determining parallax developed in § 5, Chapter I

In this connection we may point out the great importance of the determination of the parallaxes of double rather than of single stars. The parallaxes of single stars are of comparatively little interest, since they give us only the distance and hence the velocity perpendicular to the line of vision, and the radiation compared to that of the sun. On the other hand, the parallaxes of double stars whose orbits are known give us, besides these data, the absolute dimensions of the orbits and the combined masses of the components—two elements of the highest importance in the study of the systems of the universe η Cassiopeae is remarkable for the great angular distance of the components,

and for the rapid proper motion of the system. Both of these circumstances support the belief that the star is comparatively near to us in space, and render it certain that the parallax is sensible

In 1881 Mr. Ludwig Struve discussed the relative motion of the components about the common center of gravity of the system, and from his investigation it follows that $\frac{M_3}{M_1} = 0.268$, or the masses of the two stars, according to Otto Struve's parallax, are respectively 2.90 and 1.06 times the combined mass of the sun and earth. The companion is therefore more massive than the sun and moves in an ellipse nearly twice the size of the orbit of Neptune, but the eccentricity is so large that in periastron the companion would come considerably within the orbit of the outer planet, while at apastron it would recede to more than three times that distance

COMPALISON OF COMPUTED WITH OBSERVED PRACES

ı ————								·
t	θο	θι	$ ho_o$	ρ,	$\theta \omega - \theta \omega$	$\rho_o - \rho_c$	n	Observers
1779 81	70±	57°2	11 09	11 3 3	+128±	-0"21		II
1780 52	_	57.6		11 36	11201	+010	1 1	Herschel Herschel
1782 45	621	58 7	_	11 42	+ 31	1010	1	
1803 11	708	70 3		11 11	+ 05	_	1	Herschel
1814 10	78 5	767	970	11 00	+18	-1.30	1 1	Hersehel Bessel
1820 16	81 1	80.5		10 67	+ 06	+0.01	5	Strive
1827 21	856	85 1	10.2	10 21	+ 02	-0.01	1	Strive
1830 75	86.2	87 9	10 07	991	-17	+0.13	5	Bossel
1831 75	88 7	88.6	9 69	987	+ 01	-0.18	í	Herschel
1832 46	88 1	89 1	9.76	9.82	-10	-0.06	7	
1835 26	91 2	91.1	9 52	9 58	-0.2	-0.00	3	25, Dawes 2 Strive
1836 74	92.1	92 6	9 39	944	-05	-0.05	i	Strave
1841 57	97.4	96.9	9.35	9 02	+ 05	+0.33	8	
1842 41	983	97.8	876	8 91	+ 05	-0.15	2-1	O2 3, Madler 1, Dawes 1 Madler
1844 56	1001	99 7	8 48	873	+ 04	-0.25	6-5	Madler
1815 65	99 2	100 7	8 64	8 62	- 15	+0.02	9	Madler 8, Jacob 1
1846 60	101 5	101 7	872	8 51	-0.2	+0.21	16	Madler 12, Jacob 1
1847 37	1023	102 5	8 38	8 44	-02	-0.06	11-12	Madler 6 7, $O \geq 5$
1848 12	1025	1034	8 60	8 37	- 09	+0 23	2-1	Jacob
1849 66	1050	1050	8 26	8 25	± 00	+0.01	4	O Struve
1850 87	1064	106 4	8 04	8 12	± 00	-0.08	26	Madler 21, Jacob 5
1851 80	1078	107 5	7 88	8 00	+ 03	-0 12	6	Madler 3, O2 3
1852 61	108 5	108 5	7 65	7 91	± 00	-0.25	7–8	Madler
1853 68	1093	1098	7 69	7 81	- 05	-0.12	21-15	Ma 8, Ja 7, Po 6 0
1854 76	1115	111 2	7 79	7 69	+ 03	+0.10	13	$O \succeq 4$, Ma 2, Dem 7 [Mo 3]
1855 81	111 9	1125	770	7 59	- 06	+0.11	22-16	Ma 4-3, Sec 2, Po 9 1, Dem 1,
1856 45	1134	113 8	7 37	7 48	- 04	-0.11	10-9	Ja 4, Ma 2-1, Dem 1
1857 34	1141	1148	732	7 40	- 07	-0.08	11	Ja 3, O2 2, Ma 5, Dem 1
1858 29	1156	116 4	7 26	7 30	- 08	-0.04	10	Ja 3, Ma 1, Dem 3
1859 60	1164	118 3	702	7 14	- 19	-0.12	10-7	Ma 2-1, Po 6-1, Mo 2
1860 68	1198	1194	7 17	7 09	+ 04	+0.08	2	O Struve
1861 82	1192	121 4	6 89	6 95	- 22	-0.06	8-7	Maller 5, Powell 3-2
1862 78	120 9	122 9	6 92	6 87	- 20	+0.05	20	Madler 8, Dembowski 12
1863 80	123 4	124 7	6 87	6 75	- 13	± 0.12	9	Dembowski
<u> </u>	<u> </u>			l				

t	θ ο	θ_{i}	ρο	ρι	θοθι	ρ _ο ρ _c	າເ	Observers
1864 40	124 1	125 8	6,70	6 68	- 1 ₇	+0"02	13–12	Powell 4-3, Dembowski 9
1865 63	125 9	127 8	6 65	6 57	-19	+0.08	17	En 6, Dem 8, Kn 3
1866 60	129 6	$\frac{1210}{2294}$	6 61	6 49	$+ \tilde{0} \tilde{2}$	+0.12	13	O≥ 2, Dem 7, Sec 1
1867 44	130 3	131 2	651	6 39	_ 09	± 0.12	8	Scarle 1, Dembowski 7
1868 52	$\begin{array}{c} \textbf{130.3} \\ \textbf{132.3} \end{array}$	132 9	6 37	6 31	_ 06	+0.06	12	Du 5, ÔΣ 3, Dem 4
1869 84	134 6	135 6	6 18	6 17	- 1 0	+0.01	10	Dembowski 6, Dunei 4
1870 41	135 2	136 6	623	6 13	_ 14	± 0.10	17-16	Po 5-4, O≥ 2, Dem 7, Gl 3
1871 48	137 3	138 6	6 00	6 05	_ 13	-0.05	10-9	Po 2-1, Dem 6, Gl 2
1872 49	139 5	1407	6 01	5 96	_ 12	+0.05	19	O≥ 2, Du 7, Dem 6, Ku 1
1873 62	143 3	143 3	6 00	5 86	± 00	+011	19-13	\mid W &S 2 $\!=$ 1,0 $\!\sim$ 3,Dem 7,Gl 2.
1874 58	144 7	$145 \ 5$	582	5 79	_ 08	十() ()3	9	Du 1, Dem 7, W&S 1 [No 6 0
1875 54	147 4	147 6	5 67	572	_ 02	-0.05	21-19	O2 2, Du 10, Dem 7, Dk 2-0
1876 70	$149 \ 2$	$150 \ 2$	553	564	_ 10	-0.11	13	Dembowski 7, Plummer 6
1877 73	151 0	$152\ 6$	562	5 57	- 1 6	± 0.05	11	Dembowski 6, Doberck 5
1878 77	154 2	155 1	5 40	$5\ 51$	_ 09	-0.11	11	Dem 5, Gold 1, Dk 5
1879 59	15 9 0	157 4	5 39	544	+ 16	-0.05	15	Hall 7, Doberck 3, Franz 5
1880 37	160 5	159.2	5 29	5 41	+ 13	-0.12	12	Jedizejewicz7, Dobeick5
1881 46	1628	$162 \ 1$	522	5 37	+ 07	-0.15	11-9	Dk 1, Jed 3-2, Pr 2, III 1
1882 59	1658	1653	5 11	5 30	+ 05	-0.19	15-14	Jed 3, Dk 6-5, En 6
1883 94	168 8	168 9	5.12	5 2 1	- 01	-0.12	3	Hall
1885 52	173 1	1728	5 16	5 17	+0.3	-0.01	6	Seabroke 1 , Hall 5
1886 55	1767	174 9	4 85	512	+ 18	-0.27	20-19	En 5, Sca 3-2, III 5, Tai 7
1887 35	180 6	178 4	4 6	5 08	+ 22	-0.28	1	Smith
1888 66	1828	182 1	4 80	5 03	+ 07	-0.23	11	Seabroke 2, Maw 5, Hall 1
1889 48	185 6	1816	4 81	5 00	+ 10	-0.19	7	Seabroke 3, Hall I
1890 79	188 4	188 5	5 07	4 95	- 01	+0.12	5	Hall
1891 61	1917	1912	4 90	4 92	+ 0.5	-0.02	9-7	See 5-1, Maw 1-3
1892 86	1963	1950	4 82	4 87	+ 13	-0.05	6	Com 3, Col 2, Jo 1
1893 90	197 1	198 5	5 00	1 84	- 14	+016	2	Comstock 1, Lovett 1
1894 07	200 9	199 0	4 92	4 83	+19	+0.09	2	Comstock 1, Maw 1
1895 29	203 4	202 9	4 84	4 79	+ 05	+0.05	3	See

Ерньмькія

t	θ_c	ρι	, t	θ_c	ρ_{ι}
1896 50	$207^{\circ}6$	$oldsymbol{4}^{''}\!73$	1899 50	$217^{\circ}2$	4 55
1897 50	210 1	4 68	1900 50	$221 \ 1$	4 16
1898 50	213.7	4.62			

γ ANDROMEDAE BC = $o \Sigma$ 38.

 $\alpha = 1^h~57^m~8$, $\delta = +41^\circ~51'$ 55, bluish , 7, bluish

Discovered by Otto Strave in 1842

OBSFLVATIONS

t	θ_o	ρ_o	n	Observers	t	θ_o	ρ_o	\boldsymbol{n}	Obseivers
1813 00	1197	0"45±	2	Dawes	1846 64	111 [°] 3	0"43	73	Mitchel
1843 19	1198	0.35	2-1	Madler	1847 13	117 9	0.52	5	O Struve
$1843\ 55$	125.5	0.48	.3	O Struve	1847 82	111 3	06±	4	Dawes
1845 15	116.9	0.39	1	Madlei	181969	114 9	0.47	4	O Struve

t	θ_o	ρ_o	n	Observers	t	$ heta_o$	$ ho_o$	n	Obscivers
1851 19	116 6	()"4()	4	Madlei	1869 81	107 0	()"();3	}	O Struye
1852 21	114 5	0 48	2	Madlei	1869 95	105 6	05±	1.3	Dembowski
1852 78	111 3	05±	$\overset{-}{2}$	Jacob	1871 01	110 6	0.63	15	Dunei
185323	11 6 0	0.47	3	Madler	1872 83	101.5	0.63	4 4)	
185379	1085	() 55±	4	Dawes	1872 92	91.8		1-2	Brunnow
185394	1068	$0.4 \pm$	4	Jacob			()5±	2-1	W & S
1854 75	112 0	0 61	1	Dawes	187.3 17	105 1	0.63	5	O Strave
185502	$119 \ 4$		1	Madler	1874 00	109 3	0.53	1	Newcomb
1855 09	1098	0.40	1	Secchi	187153	96.3	0.51	2	Gledhill
1856 12	116 7	05±	1	Jacob	1876 79	105 7		1	W & 8
185620	1165	0.45	1	Madlei	1877 05	101.1	0.18	6	Schiapuelli
185621	121.7	0.41	2	Winnecke	1877 71	103.9	-	1	Doberck
1856 84	1130	0 67	3	() Struve	1877 94	102 1	0.81	1	Seabroke
1856 90	1097	0.47	3	Secchi	1				
1857 23	$115 \ 4$	0 45	3–1	Madlei	1878 21	101 0	0.36	8	Hall
					1878 65	102 1	0.13	2	Burnham
1858 06	114 0		2	Jacob	1880 06	107.9	0.36	1	Burnham
1858 22	1154		2	Madlei	1880 11	106.7	_	3	Seabroke
1858 99	1089	0.45	3	Secchi	1880 12	911		8	Jedrzejewicz
185981	108 7	0 53	1	Dan es	1882 05	1010	0.19	6 1	Bigourdan
$1862\ 55$	1152	0.50	4-2	Madler	1883 15	93 1	0.29	~	
186327	108.5	$0.45\pm$	0	7). 1 1	1883 16	106 7	(۱د ۱۰	7	Englem mn
1863.86	107.7	0.59	8 1	Dembowski	1883 87	103 1	0.10	1	Seabroke
1863 99	107 6	0 61	_	Dawes			0.10	2	Periotan
			_	Romberg	1884 18	1133		:3	Seabroke
1865 67	107 1	0.59	4	Knott	188165	117 6	0.35	1	Periotin
186568	106 9	0 60	1	Dawes	1886 83	101 0	0.29	1	
1865 76	1063	0.58	$2\!-\!1$	Leyton ()bs				1	Newcomb
1866 21	110 0	0.70	3	() Struve	1889 51	98 2	0 09	1	Burnham
186674	132.3		1	Winlock	1891 72	312 6	0.05主	.;	Burnham
1866 74	107.2		1	Searle	1000 50				
186674	100 4		1	Winlock	1893 79	1218	0.11	}	Barnard
186685	$104\ 2$	0 64	1	Leyton Obs	1894 56	121 6	0 15	3	Barnard
1867 79	1043	$0.5 \pm$	1	Newcomb	1895 63	1185	0.18	3	Barnard
1868 82	102 0				189572	121.2	0.29	:3	See
TOOO 05	102 ()	() (,9	6–5	Brunnow	1895 72	1153	elongated	1	Moulton

Since Otto Struve's discovery of this extraordinary binary in 1842 the companion has described nearly an entire revolution, but as the orbit is very eccentric and highly inclined nearly all the observations lie in the narrow region included between position-angle 120° and 100° Only in recent years has it been possible for observers to prove the reality of orbital motion, some ten years ago the object was found to be getting more and more difficult, and

hence it became clear that the distance was diminishing. In 1886 Newcomb found the distance 0"29 and the angle 101°; in small telescopes the star When Burnham examined the object in 1889 he found it appeared single exceedingly difficult even with the 36-inch refractor of the Lick Observatory, and during 1890 the companion was wholly invisible When the star was examined in 1891 it was found that the companion had changed to the opposite quadrant, the angle being 312°6 and the distance so excessively small that it was estimated at 0"05±. Barnard's examination of the object in 1893 gave the key The companion had swept rapidly round to 121°8, thus passto the situation. ing over about 320° of position angle since the measure in 1889 at once undertook an investigation of the orbit, and obtained a very satisfactory His paper, in the Monthly Notices for December, 1893, contains set of elements an illustration of the apparent orbit, and a complete list of measures down to We have added the measures made since that date, and derived a set of elements very similar to that found by BURNHAM His elements are:

```
P = 54 \text{ 8 years} \Omega = 113^{\circ} 5

T = 1892 \text{ 1} i = 78^{\circ} 9

e = 0 875 \lambda = 200^{\circ} 8

a = 0'' 37
```

We find the following elements of γ Andromedae:

```
P \stackrel{.}{=} 540 \text{ years} Q = 113^{\circ} 4

T = 1892 1 i = 77^{\circ} 85

e = 0 857 \lambda = 200^{\circ} 1

a = 0'' 3705 n = -6^{\circ} 6667
```

Apparent orbit:

```
Length of major axis = 0'' 706

Length of minor axis = 0'' 084

Angle of major axis = 109^{\circ} 9

Angle of penastron = 289^{\circ} 0

Distance of star from centre = 0'' 298
```

The table of computed and observed places shows a good agreement for an object of this difficulty. The residuals are easily within the limits of the errors of observation. The orbit is remarkable for its great eccentricity and high inclination. Both of these elements are well defined, and the values given above will never be materially altered. Thus the error in the eccentricity can hardly surpass ± 0.02 , while a variation of one year in the period is to be regarded as improbable. In regard to the shape of the real orbit, γ Andromedae takes its place between γ Virginis and γ Centauri. These three remarkable systems are also similar as regards the relative brightness of their components,

which in each case are nearly equal. Since the companion of γ Andromedae is now within the reach of ordinary telescopes the accompanying ephemeris will be useful to astronomers

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θ_o	θ_c	ρ_o	ρς	θ_o — θ_c	ρορο	n	Observers
1843 25	121 6	116 6	0 43	0"34	+ 5°0	+0"09	7-6	Dawes 2, Madlet 2-1, OS 3
1845 15	1169	115 1	0 39	041	+ 18	-0.02	4	Madler
1846 64	1113	114 3	0 43	0.45	_ 10	-0.02	7-3	Mitchell
1847 47	1146	113 9	0.56	048	+ 07	+0.08	9	0≥ 5, Dawes 4
1849 69	1149	113 0	0.47	0.53	+ 19	-0.06	4	$O\Sigma$
1851 19	1166	112 5	0 40	0.56	+ 41	-0.16	4	Madler .
1852 49	1129	112 1	0 49	0.58	+ 08	-009	4	Madler 2, Jacob 2
1853 65	$110 \ 4$	111 8	0 47±	0.59	_ 14	-0.12	11	Madler 3, Dawes 4, Jacob 4
1854 75	1120	111 5	0 61	060	+ 05	+0.01	1	Dawes
1855 05	1146	111 4	$04 \pm $	0 61	+ 32	-0.21	2-1	Madler 1-0, Secchi 1
1856 18	1183	111 1	0 45	0.62	+ 72	-0.17	4	Jacob 1, Madler 1, Winn 2
1856 99	1127	110 9	0 53	0.63	+ 18	-010	9-7	OA 3, Secchi 3, Madler 3-1
1858 42	1128	110 6	045	0 64	+ 12	-0.19	7–3	Jacob 2-0, Madler 2-0, Secch 13
1859 81	108 7	110 2	0 53	0.65	_ 15	-0.12	1	Dawes
1862 55	1152	109 6	0 50	0.66	+56	-0.16	4-2	Madler
1863 71	1079	109 3	0 55	0.65	- 14	-010	9	Dem 8, Dawes 1, Romberg
1865 70	1068	108 9	0 59	0 64	_ 21	-0.05	7-6	Knott 4, Dawes 1, Leyton 2-1
1866 21	1100	108 7	0 70	0 64	+ 13	+0.06	3	02.
1867 79	1043	108 3	05 ±	0.63	- 40	-0.13	1	Newcomb
1868 82	1020	108 1	0.69	0.62	- 61	+0.07	6-5	Brunnow
1869 90	1060	1078	0 57	0 61	- 18	-0 04	16	ON 3, Dembowski 13
1871 01	1106	107 5	0 63	0 60	+ 31	+0.03	15	Dunéi
1872 83	101 5	107 0	0 63	0 58	- 55	+0.05	4 -2	Brunnow
1873 17	1054	106 9	0 63	0.57	-15	+0.06	5	$O\Sigma$
1874 26	1028	106 5	0 52	0 55	- 37	-0.03	3	Newcomb 1, Gledhill 2
1876 79	1057	105 6	~ .	0.51	+ 01	_	1-0	Wilson and Seabroke
1877 05	1041	105 5	0 48±	0.50	- 14	-0.02	6	Schraparelli
1878 43	1016	104 9	0 40	0 47	- 33	-0.07	10	Hall 8, $\beta 2$
1880.10	1029	104 1	0 36	0.43	-12	-0 07	11-1	$\beta 1$, Seabroke 2-0, Jed 8-0
1882 05	1040	102 9	0 49	0.38	+ 11	+011	6-1	Bigourdan -
1883 39	100 9	101 9	0 35	0 34	- 10	+0 01	10-9	Englemann 7, Sea 1-0, Per 2
1884 41	1154	100 9	0 35	0.30	+145	+0.05	4	Seabroke 3, Penrotin 1
1886 83	101 0	968	0 29	0 19	+ 42	+0.10	1	Newcomb
	$\begin{array}{c c} 982 \\ 3126 \end{array}$	797	0 09	0 07	+185	+0.02	1	Burham
1891 72 1893 79		300 5	0 05±	0 05	+121	±000	3	Burnham
1894 56	1218 1216	125 6	0 14	0 11	- 38	+0 03	3	Barnard 3
1895 63	118 5	121 4	0 15	0 16	+ 02	-0.01	3	Barnard
1895 72	118 2	1186	$\begin{array}{c c}0\ 18\\0\ 29\end{array}$	$\begin{array}{c} 0.23 \\ 0.24 \end{array}$	- 03	-0.05	5	Barnard
100012	1102	1100	0 29	0 24	- 04	+0.05	4-3	See 3, Moulton 1-0

EPHEMERIS

t	heta c	$ ho_c$	$ \hspace{.05cm} t$	$oldsymbol{ heta}_c$	ρ_c
189670	$117^{\circ}2$	$0^{''}\!\!30$	1899 70	$114^{\circ}70$	$0^{''}\!\!42$
189770	$116\ 2$	0.35	1900 70	114 4	0 44
189870	1155	0.39			

a CANIS MAJORIS = SIRIUS = Λ .G.C. 1.

 $\alpha=6^{h}~40^{rn}~4~$, $~\delta=-16^{o}~34'$ 1, white , 10, yellow

Discovered by Alvan G Clark, January 31, 1862

OBSERVATIONS

	4	_		Ohnamana	4	0	•		Observers
t	θ_o	ρ,	n	Observers	t	θ_o	P 0	n	
186208	$85\pm$	10 ±	1	AlvanClark	$1868\ 02$	732	10 25	2	Searle
186219	8 4 6	10 07	3	Bond	1868 04	721		1	Peirce
$1862\ 20$	85 0	10 09	5	Rutherfurd	1868 23	703	$11\ 25$	7	Vogel
$1862\ 23$	84.5	$10\;42$	2	Chacomac	1868 24	69 6	11 35	5	Bruhns
$1862\ 28$	83 8	$(4\ 92)$	1	Lassell	1868 26	71 7	10 95	5	Englemann
186315	88 4	7 63	1	Secchi	1869 10	74 7	10 26	7-4	Brünnow
186321	82.5	10 15	2	O Struve	1869 15	736	11 23	3	Vogel
186321	81 3	951	6	Ruther furd	1869 20	68 7	11 17	1	Dunéi
1863 23	84 9	10 00	1	Dawes	1869 20	68 6	11 07	2	Winlock
186327	82 8		1	Bond	1869 23	69 4	10 93	1	Perrce
1864 14	794	10 60	3	Marth					
1864 18	80 1	9 60	1-3	Lassell	1870 1 3	681	11.16	12-4	Peirce
$1864\ 22$	78 6	1070	4-2	Bond	1870 17	65 9	11.06	7–5	Winlock
$1864\ 22$	748	10 92	6-3	O. Struve	1870 24	65.1	$12\ 06$	5	\mathbf{V} ogel
1864 23	84 9		1	Dawes	40-440	25.0	40.55	•	C1
186424	797	10 08	1	Winnecke	1871 16	65 9	10 75	3	Secchi
			•	T 0.7/C+	1871 20	70 3	11 19	2-1	Peirce Dunér
1865 10	768		3	Lass & Mar	1871 23	641	11 11	2	
1865 21	77 6	10 59	2	O Struve Secchi	1871 25	60 1	12 10	4 –3	Pechüle
1865 22	75 5	9 59	8		1872 18	598	11.05	2	Dunér
1865 23	77 8	10 77	5-4	Foerster	1872 21	66 6	10.69	3	Borgen
1865 25	76 9	-	3	Tietjen Bond	1872 24	624	11.50	1	Newcomb
1865 26	76 0	<u> </u>	-		1872 24	64 3	11.46	6	Hall
186526	76 9	(90)	1	Englemann	1872 26	613		3	Skinner
1866 07	772	1043	2-1	$\mathbf{K}_{\mathbf{n}}$ ott					
186621		10.74	1	Bruhns	1873 20	658	11 12	1	Hall
$1866\ 21$	752	1093	3	O Struve	1873 22	60 8	10 57	1-4	Dunér
$1866\ 22$	73 9	10 97	2-1	${f Tretjen}$	1873 23	700	9 80	1	Börgen
$1866\ 23$	74.1	11 29	3-1	Foerster	1873 23	663	10 42	1	Bruhns
$1866\ 23$	74.0	10 21	2-3	\mathbf{Hall}	1873 93	650	11 29	1	W & S
186623	74.9	10 57	3	Newcomb	1874 16	59 0	11 46	7	Newcomb
$1866\;25$	78 3	$10\ 34$	1	\mathbf{Tuttle}	1874 19	58 7	10 99	2–1	Holden
$1866\ 26$	74.7	$10 \ 09$	3	Eastmann	1874 23	58 0	11 10	2	Hall
186629	713	10 11	3	\mathbf{Secchi}	1014 25	<i>3</i> 0 0	IL IV	2	TEMAL
1867 02	74.2	11 15	7-6	Winlock	1874 83	57.5		1	Burton
1867 10	738	10 66	6-5	Searle	1875 19	57.1	10 73	4	Dunér
1867 22	721	10 98	1	O Struve	1875.21	56 6	11.4 1	2	Newcomb
1867.24	723		2	Foerster	1875 21	559	11 89	5–4	Holden
1867.27	74 9	9.92	2–1	Eastmann	1875 28	56 4	11 08	4	\mathbf{Hall}

1876 03	t	θ_o	ρ _o	\boldsymbol{n}	Observers	t	θ_o	ρ _o	\boldsymbol{n}	Observers
1876 09 54 9 11 82 6 Holden 1882 13 42 4 976 4-3 Bigourdan 1876 14 550 11 55 4 Russell 1882 18 42 2 995 6 Frisby 1876 22 55 2 11 19 6 Hall 1882 23 42 5 967 7 Hall 1877 16 52 8 11 19 4-3 Cmemnati 1882 54 44 0 6 Englemann 1877 16 52 8 11 35 4 Holden 1883 10 30 0 94 1 1 Young 1877 97 52 4 10 83 8 Burnham 1883 10 30 0 94 1 1 Young 1878 15 510 10 71 9 Cmemnati 1883 14 41 3 4 Wilson 1878 15 510 10 71 9 Cmemnati 1883 14 41 3 4 Wilson 1878 25 52 2 1 14 <td< td=""><td>1876 03</td><td>57[°]8</td><td><math display="block">11^{''}12</math></td><td>1</td><td>Watson</td><td>1881 99</td><td>43 6</td><td>$9^{''}38$</td><td>11</td><td>Buinham</td></td<>	1876 03	57 [°] 8	$11^{''}12$	1	Watson	1881 99	43 6	$9^{''}38$	11	Buinham
1876 14 55 0 11 55	1876 05	546	$11 \ 45$	1	Peters	188213	43 1	9 30	9	Hough
1876 22 55 2 11 19 6 Hall 1882 23 42 5 9 67 7 Hall 1877 11 52 8 11 19 4-3 Cmemnath 1882 54 44 0 6 Englemann 1877 16 52 8 11 35 4 Holden 1883 10 40 1 9 05 10 Bunham 1877 26 53 4 10 95 5 Hall 1883 10 39 0 9 41 1 Young 1878 70 52 4 10 83 8 Bunham 1883 14 41 3 4 Wilson 1878 15 51 0 10 71 9 Cincinnati 1883 14 41 3 4 Wilson 1878 19 54 4 11 24 5 Pritchett 1883 19 39 9 9 10 2-1 Bigouidan 1878 22 53 2 11 4 Eastmann 1883 21 39 1 9 26 6 Hall 1879 05 50 7 10 44	1876 09	549	$11 \ 82$	6	Holden	1882 13	424	9.76	4-3	Bigourdan
1876 22 55 2 11 19 6 Hall 1882 23 42 5 9 67 7 Hall 1877 16 52 8 11 35 4 Holden 1883 10 40 1 9 05 10 Bunham 1877 26 53 4 10 95 5 Hall 1883 10 39 0 9 41 1 Young 1877 97 52 4 10 83 8 Bunham 1883 12 39 7 9 02 11 Hough 1878 17 50 5 11 07 4 Holden 1883 14 41 3 — 4 Wilson 1878 15 51 0 10 71 9 Cincunnati 1883 14 41 3 — 4 Wilson 1878 19 54 4 11 24 5 Pritchett 1883 19 39 9 9 10 2-1 Bigouidan 1878 22 53 2 11 4 — Eastmann 1883 17 39 1 926 6 Hall 1879 05 50 7 10 44 10<	1876 14	55 0	11 55	4	Russell	1882 18	$42 \ 2$	9 95	6	Frisby
1877 16	187622	552	11 19	6	Hall	1882 23	$42\ 5$	9 67	7	Hall
1877 26				4-3	Cincinnati	1882 54	44 0		6	Englemann
1877 26 53 4 10 95 5 Hall 1883 10 39 0 9 41 1 Young 1877 97 52 4 10 83 8 Buinham 1883 12 39 7 9 02 11 Hough 1878 15 51 0 10 71 9 Cinemnati 1883 17 41 4 9 75 7 Fisby 1878 19 54 4 11 24 5 Pitchett 1883 19 39 9 9 10 2-1 Bigouldan 1878 22 53 2 11 4 - Eastmann 1883 21 39 1 9 26 6 Hall 1878 70 50 0 10 61 20-14 Cinemnati 1884 17 35 3 8 79 3-1 Bigouldan 1879 12 47 8 11 35 5 Holden 1884 18 36 7 8 51 11 Hough 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 20 50 1 10 55	1877 16		$11\ 35$			188310	40 1	9.05	10	Burnham
1877 97 52 4 10 83 8 Buinham 1883 12 39 7 9 02 11 Hough 1878 07 50 5 11 07 4 Holden 1883 14 41 3 — 4 Wilson 1878 15 51 0 10 71 9 Cinemnati 1883 17 41 4 9 75 7 Fisby 1878 19 54 4 11 24 5 Pritchett 1883 19 39 9 9 10 2-1 Bigourdan 1878 22 53 2 11 4 — Eastmann 1883 21 39 1 9 26 6 Hall 1878 24 51 7 10 76 5 Hall 1884 05 36 0 9 67 6 Pentotin 1878 70 50 0 10 61 20-14 Cinemnati 1884 17 35 3 8 79 3-1 Bigourdan 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 15 46 5 10 2	$1877\ 26$	534	$10 \ 95$	5	\mathbf{Hall}					
1878 07 50 5 11 07 4 Holden 1883 14 41 3 — 4 Wilson 1878 15 51 0 10 71 9 Cinemnati 1883 17 41 4 9 75 7 Flisby 1878 19 54 4 11 24 5 Pritchett 1883 19 39 9 9 10 2-1 Bigour dan 1878 22 53 2 11 4 — Eastmann 1883 21 39 1 9 26 6 Hall 1878 70 50 0 10 61 20-14 Cinemnati 1884 17 35 3 8 79 3-1 Bigour dan 1879 12 47 8 11 35 5 Holden 1884 18 36 7 8 51 11 Hough 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 20 50 1 10 55 6 Hall 1884 27 36 3 8 70 5 Young 1880 10 47 1 10 48	1977 07	E9 4	10.00	Q	Ruinham	t .				
1878 15 51 0 10 71 9 Cincinnati 1883 17 41 4 9 75 7 Flisby 1878 19 54 4 11 24 5 Pritchett 1883 19 39 9 9 10 2-1 Bigourdan 1878 22 53 2 11 4 - Eastmann 1883 21 39 1 9 26 6 Hall 1878 70 50 0 10 61 20-14 Cincinnati 1884 17 35 3 8 79 3-1 Bigourdan 1879 12 47 8 11 35 5 Holden 1884 18 36 7 8 51 11 Hough 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 20 50 1 10 55 6 Hall 1884 27 36 3 8 70 5 Young 1880 00 48 8 10 55 1 Russell 1885 11 34 1 8 09 8 Young 1880 17 49 6 98										•
1878 19 54 4 11 24 5 Pritchett 1883 19 39 9 9 10 2-1 Bigoundan 1878 22 53 2 11 4 — Eastmann 1883 21 39 1 9 26 6 Hall 1878 70 50 0 10 61 20-14 Cincinnati 1884 17 35 3 8 79 3-1 Bigoundan 1879 05 50 7 10 44 10 Buinham 1884 18 36 7 8 51 11 Hough 1879 12 47 8 11 35 5 Holden 1884 19 36 4 8 39 10 Burnham 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 20 50 1 10 55 6 Hall 1884 27 36 3 8 70 5 Young 1879 75 46 5 10 29 1 Cincinnati 1885 11 34 1 8 09 8 Young 1880 10 47 1 10 48 4 Holden 1885 27 34 7 8 06 8 Hall <										
1878 22 53 2 11 4 — Eastmann 1883 21 39 1 9 26 6 Hall 1878 24 51 7 10 76 5 Hall 1884 05 36 0 9 67 6 Pentotm 1879 05 50 7 10 44 10 Bunham 1884 18 36 7 8 51 11 Hough 1879 12 47 8 11 35 5 Holden 1884 19 36 4 8 39 10 Bunham 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 75 46 5 10 29 1 Cimennati 1884 27 36 3 8 70 5 Young 1880 00 48 8 10 55 1 Russell 1885 21 34 1 8 09 8 Young 1880 11 48 3 10 00 11 Burnham 1885 27 34 7 8 06 8 Hall 1880 12 49 6 98 7 <td< td=""><td></td><td></td><td></td><td></td><td>•</td><td>1</td><td></td><td></td><td></td><td>U</td></td<>					•	1				U
1878 24 51 7 10 76 5 Hall 1884 05 36 0 9 67 6 Penotin 1878 70 50 0 10 61 20-14 Cmennati 1884 17 35 3 8 79 3-1 Bigoundan 1879 05 50 7 10 44 10 Bunham 1884 18 36 7 8 51 11 Hough 1879 12 47 8 11 35 5 Holden 1884 19 36 4 8 39 10 Burnham 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 20 50 1 10 55 6 Hall 1884 27 36 3 8 70 5 Young 1879 75 46 5 10 29 1 Cmennati 1885 11 34 1 8 09 8 Young 1880 00 48 8 10 55 1 Russell 1885 20 32 7 7 96 10 Hough 1880 17 49 6 987				_		1				• •
1878 70 50 0 10 61 20-14 Cmeinnati 1884 05 36 0 9 67 6 Pentotin 1879 05 50 7 10 44 10 Bunham 1884 17 35 3 8 79 3-1 Bigourdan 1879 12 47 8 11 35 5 Holden 1884 19 36 4 8 39 10 Burnham 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 20 50 1 10 55 6 Hall 1884 27 36 3 8 70 5 Young 1879 75 46 5 10 29 1 Cmeinnati 1884 27 36 3 8 70 5 Young 1880 00 48 8 10 55 1 Russell 1885 11 34 1 8 09 8 Young 1880 11 48 3 10 00 11 Burnham 1885 27 34 7 8 06 8 Hall 1880 12 51 1 —						1000 21	00 1	<i>3 20</i>	U	7 75017
1878 70 50 0 10 61 20-14 Cmemnati 1884 17 35 3 8 79 3-1 Bigour dan 1879 05 50 7 10 44 10 Bumham 1884 18 36 7 8 51 11 Hough 1879 12 47 8 11 35 5 Holden 1884 19 36 4 8 39 10 Bumham 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 75 46 5 10 29 1 Cincinnati 1884 27 36 3 8 70 5 Young 1880 00 48 8 10 55 1 Russell 1885 11 34 1 8 09 8 Young 1880 10 47 1 10 48 4 Holden 1885 27 34 7 8 06 8 Hall 1880 17 49 6 9 87 3 Hough 1886 05 29 8 7 59 4 Young 1880 22 51 1 —	1010 44	01 1	10 10	J	iiaii	1884 05	36 0	9 67	6	Penotin
1879 05 50 7 10 44 10 Buinham 1884 18 36 7 8 51 11 Hough 1879 12 47 8 11 35 5 Holden 1884 19 36 4 8 39 10 Buinham 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 20 50 1 10 55 6 Hall 1884 27 36 3 8 70 5 Young 1879 75 46 5 10 29 1 Cincimnati 1884 27 36 3 8 70 5 Young 1880 00 48 8 10 55 1 Russell 1885 20 32 7 7 96 10 Hough 1880 10 47 1 10 48 4 Holden 1885 27 34 7 8 06 8 Hall 1880 17 49 6 98 7 3 Hough 1886 05 29 8 7 59 4 Young 1880 22 51 1 1 </td <td>1878 70</td> <td>50 0</td> <td>1061</td> <td></td> <td>•</td> <td></td> <td></td> <td></td> <td></td> <td>Bigouidan</td>	1878 70	50 0	1061		•					Bigouidan
1879 12 47 8 11 35 5 Holden 1884 19 36 4 8 39 10 Burnham 1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 20 50 1 10 55 6 Hall 1884 27 36 3 8 70 5 Young 1879 75 46 5 10 29 1 Cmeimati 1884 27 36 3 8 70 5 Young 1880 00 48 8 10 55 1 Russell 1885 20 32 7 7 96 10 Hough 1880 10 47 1 10 48 4 Holden 1885 27 34 7 8 06 8 Hall 1880 11 48 3 10 00 11 Burnham 1886 05 29 8 7 59 4 Young 1880 17 49 6 9 87 3 Hough 1886 05 29 8 7 59 4 Young 1880 22 51 1 — 1	187905	50 7	1044	10		ł				
1879 15 50 3 10 78 5 Pritchett 1884 23 37 7 8 81 8 Hall 1879 20 50 1 10 55 6 Hall 1884 27 36 3 8 70 5 Young 1879 75 46 5 10 29 1 Cincinnati 1885 11 34 1 8 09 8 Young 1880 00 48 8 10 55 1 Russell 1885 20 32 7 7 96 10 Hough 1880 10 47 1 10 48 4 Holden 1885 27 34 7 8 06 8 Hall 1880 17 49 6 9 87 3 Hough 1886 05 29 8 7 59 4 Young 1880 18 46 7 9 92 6-4 Bigourdan 1886 14 28 7 7 21 12 Hough 1880 22 51 1 — 1 Smith 1886 22 30 6 7 39 6 Hall 1880 28 48 6 10 38 2	1879 12	478	$11\ 35$	5	Holden					**
1879 20 50 1 10 55 6 Hall 1884 27 36 3 8 70 5 Young 1879 75 46 5 10 29 1 Cincinnati 1885 11 34 1 8 09 8 Young 1880 00 48 8 10 55 1 Russell 1885 20 32 7 7 96 10 Hough 1880 10 47 1 10 48 4 Holden 1885 27 34 7 8 06 8 Hall 1880 11 48 3 10 00 11 Burnham 1886 05 29 8 7 59 4 Young 1880 18 46 7 9 92 6-4 Bigourdan 1886 14 28 7 7 21 12 Hough 1880 22 51 1 — 1 Snith 1886 22 30 6 7 39 6 Hall 1880 28 48 6 10 38 2 Frisby 1887 14 25 4 7 08 4 Young 1881 12 43 3 10 83 2 <td>187915</td> <td>50 3</td> <td>1078</td> <td>5</td> <td>Pritchett</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	187915	50 3	1078	5	Pritchett	1				
1879 75 46 5 10 29 1 Cincinnati 1885 11 34 1 8 09 8 Young 1880 00 48 8 10 55 1 Russell 1885 20 32 7 7 96 10 Hough 1880 10 47 1 10 48 4 Holden 1885 27 34 7 8 06 8 Hall 1880 11 48 3 10 00 11 Burnham 1886 05 29 8 7 59 4 Young 1880 18 46 7 9 92 6-4 Bigourdan 1886 14 28 7 7 21 12 Hough 1880 22 51 1 — 1 Smith 1886 22 30 6 7 39 6 Hall 1880 28 48 6 10 38 2 Frisby 1887 14 25 4 7 08 4 Young 1881 07 46 3 9 77 8 Burnham 1887 19 23 7 6 78 7 Holden 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall <	$1879\ 20$	5 0 1	1055	6	Hall	l .				
1880 00 48 8 10 55 1 Russell 1885 11 34 1 8 09 8 Young 1880 10 47 1 10 48 4 Holden 1885 20 32 7 7 96 10 Hough 1880 11 48 3 10 00 11 Burnham 1885 27 34 7 8 06 8 Hall 1880 17 49 6 987 3 Hough 1886 05 29 8 7 59 4 Young 1880 18 46 7 992 6-4 Bigourdan 1886 14 28 7 7 21 12 Hough 1880 22 51 1 — 1 Smith 1886 22 30 6 7 39 6 Hall 1880 28 48 6 10 38 2 Firsby 1887 14 25 4 7 08 4 Young 1881 10 46 3 9 77 8 Burnham 1887 19 23 7 6 78 7 Hough 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 1	40=0=5	40 5	40.00		~ .		000	0.0		
1880 10 47 1 10 48 4 Holden 1885 20 32 7 7 96 10 Hough 1880 11 48 3 10 00 11 Burnham 1885 27 34 7 8 06 8 Hall 1880 17 49 6 987 3 Hough 1886 05 29 8 7 59 4 Young 1880 18 46 7 992 6-4 Bigourdan 1886 14 28 7 7 21 12 Hough 1880 22 51 1 — 1 Smith 1886 22 30 6 7 39 6 Hall 1880 28 48 6 10 38 2 Frisby 1887 14 25 4 7 08 4 Young 1881 07 46 3 9 77 8 Burnham 1887 19 23 7 6 78 7 Hough 1881 12 43 3 10 83 2 Holden 1887 23 24 2 6 51 4 Hall 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 18<						1885 11	34 1	8 09	8	Young
1880 10 47 1 10 48 4 Holden 1885 27 34 7 8 06 8 Hall 1880 17 49 6 9 87 3 Hough 1886 05 29 8 7 59 4 Young 1880 18 46 7 9 92 6-4 Bigouidan 1886 14 28 7 7 21 12 Hough 1880 22 51 1 — 1 Smith 1886 22 30 6 7 39 6 Hall 1880 25 47 8 10 30 8 Hall 1887 14 25 4 7 08 4 Young 1881 07 46 3 9 77 8 Burnham 1887 19 23 7 6 78 7 Hough 1881 12 43 3 10 83 2 Holden 1887 23 24 2 6 51 4 Hall 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 18 46 5 9 81 7 Young 1889 97 13 9 5 27 5 Burnham 1881 26 <td></td> <td></td> <td></td> <td></td> <td></td> <td>1885 20</td> <td>327</td> <td>7.96</td> <td>10</td> <td>Hough</td>						1885 20	327	7.96	10	Hough
1880 17 49 6 9 87 3 Hough 1886 05 29 8 7 59 4 Young 1880 18 46 7 9 92 6-4 Bigourdan 1886 14 28 7 7 21 12 Hough 1880 22 51 1 — 1 Smith 1886 22 30 6 7 39 6 Hall 1880 25 47 8 10 30 8 Hall 1887 14 25 4 7 08 4 Young 1881 07 46 3 9 77 8 Burnham 1887 19 23 7 6 78 7 Hough 1881 12 43 3 10 83 2 Holden 1887 23 24 2 6 51 4 Hall 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 18 46 5 9 81 7 Young 1889 97 13 9 5 27 5 Burnham 1881 26 45 3 9 60 5 Hough 1889 97 13 9 5 27 5 Burnham						1885 27	347	8 0 6	8	
1880 18 46 7 9 92 6-4 Bigouidan 1886 14 28 7 7 21 12 Holling 1880 22 51 1 — 1 Smith 1886 22 30 6 7 39 6 Hall 1880 28 48 6 10 38 2 Flisby 1887 14 25 4 7 08 4 Young 1881 07 46 3 9 77 8 Burnham 1887 19 23 7 6 78 7 Hough 1881 12 43 3 10 83 2 Holden 1887 23 24 2 6 51 4 Hall 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 18 46 5 9 81 7 Young 1889 97 13 9 5 27 5 Burnham 1881 26 45 3 9 60 5 Hough 1889 97 13 9 5 27 5 Burnham										
1880 22 51 1 — 1 Smith 1886 22 30 6 7 39 6 Hall 1880 25 47 8 10 30 8 Hall 1886 22 30 6 7 39 6 Hall 1880 28 48 6 10 38 2 Frisby 1887 14 25 4 7 08 4 Young 1881 07 46 3 9 77 8 Burnham 1887 19 23 7 6 78 7 Hough 1881 12 43 3 10 83 2 Holden 1887 23 24 2 6 51 4 Hall 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 18 46 5 9 81 7 Young 1889 97 13 9 5 27 5 Burnham 1881 26 45 3 9 60 5 Hough 1889 97 13 9 5 27 5 Burnham						1886 05	29 8	7 59	4	Young
1880 25 47 8 10 30 8 Hall 1880 28 48 6 10 38 2 Frisby 1887 14 25 4 7 08 4 Young 1881 07 46 3 9 77 8 Burnham 1887 19 23 7 6 78 7 Hough 1881 12 43 3 10 83 2 Holden 1887 23 24 2 6 51 4 Hall 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 17 46 9 10 11 6 Frisby 1889 97 13 9 5 27 5 Burnham 1881 26 45 3 9 60 5 Hough 1889 97 13 9 5 27 5 Burnham			9 92		~	1886 14	28.7	7.21	12	
1880 28 48 6 10 38 2 Flisby 1887 14 25 4 7 08 4 Young 1881 07 46 3 9 77 8 Burnham 1887 19 23 7 6 78 7 Hough 1881 12 43 3 10 83 2 Holden 1887 23 24 2 6 51 4 Hall 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 17 46 9 10 11 6 Frisby 1889 97 13 9 5 27 5 Burnham 1881 26 45 3 9 60 5 Hough 1889 97 13 9 5 27 5 Burnham						1886 22	30 6	7.39	6	Hall
1881 07										
1881 07 46 5 9 77 8 Burnham 1887 23 24 2 6 51 4 Hall 1881 12 43 3 10 83 2 Holden 1887 23 24 2 6 51 4 Hall 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 17 46 9 10 11 6 Frisby 1889 97 13 9 5 27 5 Burnham 1881 26 45 3 9 60 5 Hough 1889 97 13 9 5 27 5 Burnham	1880 28	48 6	10 38	2	Firsby	•				
1881 12 43 3 10 83 2 Holden 1887 23 24 2 6 51 4 Hall 1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 17 46 9 10 11 6 Frisby 1889 97 13 9 5 27 5 Burnham 1881 26 45 3 9 60 5 Hough 1889 97 13 9 5 27 5 Burnham	1881 07	463	977	8	Rumham	1				
1881 14 44 3 10 62 5-3 Bigourdan 1888 24 23 3 5 78 5 Hall 1881 17 46 9 10 11 6 Frisby 1881 18 46 5 9 81 7 Young 1889 97 13 9 5 27 5 Burnham 1881 26 45 3 9 60 5 Hough						1887 23	$24 \ 2$	651	4	Hall
1881 17 46 9 10 11 6 Frisby 1881 18 46 5 9 81 7 Young 1889 97 13 9 5 27 5 Burnham 1881 26 45 3 9 60 5 Hough								u = 0	_	~~ 11
1881 18					•	1888 24	23 3	578	5	Hall
1881 26 45 3 9 60 5 Hough					•	1000.07	190	K 07	H	T
· · · · · · · · · · · · · · · · · · ·						1009.91	19 A	041	Ð	umuna
	1881 26	453	10 00	6	Hall	1890 27	359 7	4 19	3	Buinhain

The discovery of the companion of Sirius is one of the justly celebrated events of modern Astronomy. It extended to the regions of the fixed stars the principle of theoretical prediction which has proved so admirable in the solar system, and which in the hands of Leverrier and Adams had led to the discovery of Neptune. Bessel had occasion to make a careful examination of the proper motions of a considerable number of stars, including Sirius and Procyon. The two dog stars, instead of moving uniformly on the arcs of

great circles, seemed to trace out irregular sinuous paths across the sky, and a further study of these anomalies convinced Bessel that the two stars were perturbed by invisible bodies. In 1844 he wrote, in a letter to Humboldt "I adhere to the conviction that *Procyon* and *Surius* form real binary systems, consisting of a visible and an invisible star. There is no reason to suppose luminosity an essential quality of cosmical bodies. The visibility of countless stars is no argument against the invisibility of countless others."

In 1857 the suggestion of Bessel was taken up by Peters, who made an investigation of the observed inequalities, and found the following elements for the orbit described by *Surius* about the common centre of gravity of the system:

Periastron passage = 1791 431 Mean yearly motion = 7° 1865 Period = 50 01 years Eccentricity = 0 7994

In 1861 the question was again examined by Safford, who transmitted to Brunnow an investigation which assigned to the companion a position-angle of 83°.8 for the epoch 1862 1. A short time afterwards, on Jan. 31, 1862, Mr Alvan G. Clark was trying the new 18-inch object glass of the Dearborn telescope, and on pointing the instrument on Sirius exclaimed: "Why, father it has a companion!" And sure enough the faint but massive disturbing body announced by Bessel was seen within a few degrees of the place assigned by the theoretical astronomers. It now became a matter of great interest to ascertain from the motion of the new companion whether it was really the disturbing body, a few years showed that it had sensibly the required motion, and left no doubt of the identity of the two objects. In 1864 Auwers undertook a new determination of the elements based on all the observations, and found:

 Peniastron passage
 = 1793 890

 Mean annual motion
 = 7° 28475

 Period
 = 49 418 years

 Eccentricity
 = 0 6010

A definitive determination afterwards published gave the following results:

P = 49 399 years $\Omega = 61^{\circ} 96$ T = 1843 275 $\iota = 47^{\circ} 14$ e = 0 6148 $\lambda = 18^{\circ} 91$ a = 2'' 331

When the micrometrical measures began to accumulate, various computers made new investigations of the orbit. The following table of elements is very

The last set credited to DR AUWERS were based on all the obseromplete ations up to 1892

P	T	e	a	ຜ	r	λ	Authority	Source
49 6 58 47 51 22 49 46 57 02 49 399 51 97 51 101	1891 8 1896 47 1890 55 1893 18 1894 17 1844 216 1893 5 1893 759	0 58 0 4055 0 945 0 7512 0 538 0 6292 0 568 0 6131	8 41 8 58 - 8 31 8 50 7 568 8 31 7 77	42 4 50 0 188 10 2 40 75 37 51 40 3 37 06	57 1 55 4 - 53 51 43 42 43 50 8 44 6	216 3 - 48 58 39 94 135 4 223 61	Goie, 1889 Mann Mann Howard Auwers, 1892 Burnham,1893	Dearborn Report M N, XLIX, no 8 A J 235 A N 3084 Pub Lick Obs II, p 239 A N 3336

During 1890 the distance of the companion became so small that it was ost in the rays of the large star, even when viewed with the 36-inch refractor of the Lick Observatory As it was evident that no further observations could be made until the object emerged on the other side, BURNHAM collected all the neasures with great care and embodied them in his important paper in the Monthly Notices for April, 1891

The orbit which we have given in this work is very similar to that found by Burnham, except that the eccentricity is higher and more nearly in accord with the value of this element found by Auwers The orbit is based wholly on the micrometrical measures, and the data used in deriving the mean places nave been very carefully selected

We find the following elements of the orbit of Sirius

P = 5220 years $\Omega = 34^{\circ}3$ T = 189350 $i = 46^{\circ}77$ e = 0.620 $\lambda = 131^{\circ}03$ $a = 8'' \, 0316$ $n = -6^{\circ} 89655$

Apparent orbit

Length of major axis = 14'' 63Length of minor axis = 9'' 50Angle of major axis $= 50^{\circ} 7$ Angle of periastron $= 252^{\circ} 4$ Distance of star from centre = 4" 16

EPHEMERIS

t	$oldsymbol{ heta}_{oldsymbol{\circ}}$	$ ho_{c}$	t	θ c	ρ_{σ}
1896 20	$193^{\circ}9$	$4^{''}\!\!12$	1000.00	1 500	,",
	190 9	4 14	1899 20	$158 \ 9$	4.97
$1897\ 20$	$180 \ 8$	4 44	1900 20	1495	525
1898.20	169.0	472			

	'	1 2
		n I
		,
$m_{ m tot} = 0$. The second contribution is the second contribution of $m_{ m tot} = 0$.		I
		- f - A
	,	r
the decimal of the second of t		8.
Control of the Contro		1 1 1
		7 g fi
		F 7 17 18
to the first of the second of	,	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		7 1/4
		n ¹ r r r r r
		ig g ig g
		1 NT
		1 + 15 + 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		ر چور کرونه الانهاد الراب الراب ا
		1
		* 1 Pr 7
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		ै में हर •
		, (1)
		1 1
		, t _{rif} , 4'
		الإيراد المراجع المراج المراجع المراجع
	ę.	
	i i i i i i i i i i i i i i i i i i i	
		والمراجع المراجع

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t 6	$\theta_o \mid \theta_c$	1 ' -	ρς		ρ _ο ρ _c	n	Observers
1862 21 8 1863 21 8 1864 20 7 1865 22 7 1866 22 7 1867 14 7 1868 16 7 1869 19 7 1870 18 6 1871 21 6 1872 23 6 1873 36 6	4 7 84 1 2 9 81 6 9 9 7 9 4 4 4 7 5 6 2 8 7 3 6 1 4 7 1 6 0 1 6 8 8 7 0 6 7 6 5 1 6 5 1 2 9 6 3 1 0 8 6 1 0	10 19 90 10 36 110 35 110 68 110 90 111 128 111 17 10 85	978 1003 1025 1048 1067 1083 1097 1109 1120 1127 11.31	+06 +13 +05 -03 -06 -02 +04 +12 ±00 -02 -02	$\begin{array}{c} - \\ +0.41 \\ -0.13 \\ +0.11 \\ -0.13 \\ -0.15 \\ -0.07 \\ +0.01 \\ +0.22 \\ +0.01 \\ -0.14 \\ -0.47 \end{array}$	10 10-9 16-12 22-15 21-20 9-13 20-19 7 19-14 11-9 15-13	Bond 2, Rutherfurd 5, Chacornac 2 OE 2, Rutherfurd 6, Dawes 1, Bond 1-0 Mar 3, Las 1-3, Bond 4-2, OE 6-3, Da 1-0, Winn 1 Las 3-0, OE 2, Sec 8, Fo 5-4, Tj 3, Bd —, En 1-0 Kn 2-1, Brh 1, OE 3, Tj 2-1, Fo 3-1, Hl 2-3, N 3, Wk 0-6, Sr 6-5, OE 1, Fo 2-0 [Tut 0-1, East 3, Sec 2 Searle 2, Peirce 1-0, Vl 7, Bruhns 5, Englemann 5 Vl 3, Dunér 1, Winnecke 2, Peirce 1 Peirce 12-4, Winnecke 7-5, Vl 0-5 Secchi 3, Peirce 2-1, Dunér 2, Pech 4-8 Dunér 3, Borgen 3, N 1, Hall 6, Doberck 3-0 Hall 0-1, Dunér 1-4, Bruhns 0-1, W & S 0-1
1875 34 1876 11 1877 18 1878 14 1879 04 1880 15 1881 17 1882 20 1883 15 1884 18 1885 19 1886 14 1887 19 24 1888 53 17	$egin{array}{c} 6\ 3\ 57\ 3 \\ 4\ 9\ 55\ 7 \\ 3\ 0\ 53\ 7 \\ 1\ 4\ 51\ 8 \\ 9\ 6\ 50\ 0 \\ 7\ 9\ 47\ 5 \\ 4\ 45\ 2 \\ 2\ 9\ 42\ 7 \\ 0\ 1\ 39\ 8 \\ 4\ 3\ 7\ 2 \\ 3\ 3\ 9\ 7\ 30\ 44\ 4\ 25\ 5 \\ 7\ 9\ 17\ 7 \\ 2\ 7\ 13\ 6 \\ \end{array}$	11 28 11 43 11 16 11 00 10 75 10 22 10 11 9 60 9 32 8 81 8 04 7 40 6 79 5 53 5 26	11 22 11 14 11 02 10 84 10 68 10 39 10 08 9 72 9 23 8 80 8 24 7 63 6 85 5 75 5 24	$ \begin{array}{r} -10 \\ -08 \\ -07 \\ -04 \\ +02 \\ +03 \\ -07 \\ -11 \\ +02 \\ -09 \\ \end{array} $	+0 06 +0 29 +0 14 +0 16 +0 07 -0 17	16-14 17-18 13-12 26-31 46-40 36-34 39-37 43-36	N 7, Holden 2-1, Hall 2 Bur 1-0, Dunér 4, N 2, Holden 5-4, Hall 4 Watson 0-1, Peters 1, Holden 6, Rus 4, Hall 6 Cin 4-3, Holden 4, Hall 5 β 8, Holden 4, Cin 9, Pr 0-5, East 0-1, Hall 5 Cin 20-14, β 10, Holden 5, Pritchett 5, Hall 6 Cin 1, Rus 1, Hol 4, β 11, Πο 3, Big 6-4, Π1 8, Frs 2 β 8, Holden 2, Big 5-3, Frs 6, Y 7, Hough 5, Hall 6 β 11, Hough 9, Big 4-3, Frs 6, Hall 7, Englemann 6 β 10, Y.1, Hough 11, Ws 4-0, Frs 7, Big 2-1, Hl 6 Perrotin 6, Big 3-1, Hough 11, β 10, Hall 8; Young 5 Young 8, Hough 10, Hall 8 Young 4, Hough 12, Hall 6 Young 4, Hough 7, Hall 4 Hall 3, β. 1-2 Burnham • Burnham

The comparison of the computed with the observed places shows an extremely satisfactory agreement, and we are led to believe that the elements given above will prove to be near the truth. The differences between these elements and those found by Auwers are not greater than might be expected from the material used in the two cases Adopting the foregoing elements and GILL's parallax of 0" 38, we find the mass of the system to be 3.473 times that of the sun and earth; the major semi-axis comes out 21.136 astronomical units. Thus the system of Sirrus is a magnificent one, having 3 47 times the mass of the planetary system, and slightly larger dimensions than the orbit of The masses, according to Auwers, are in the ratio 1:2.119; the planet *Uranus* or, in units of the sun's mass, 1.113 and 2.360 respectively. The future observation of this star is a matter of the highest interest. There is some reason to suppose that Sirius is very much expanded, more nearly resembling a nebula than the sun; if this inference be true, the action of the companion will raise enormous bodily tides in the mass of Sirius Since the height of the tides varies inversely as the cube of the distance, it will follow that the tidal elevation at periastron will be about 80 times higher than at apastron. There would thus arise a periodic disturbance in the mass of Sirius depending on the revolution of the companion. It seems probable that high tides would increase the radiation of Sirius, and hence if it were possible to make photometric measures of absolute accuracy, or of such a character that the brightness could be compared at intervals of 25 years, it might some day be possible to detect the alteration in brightness arising from the tidal action of the companion.

The excessive faintness of this massive body is an extraordinary anomaly which is not easily explained. From the shape of the orbit, however, we may believe that the system has been formed by the usual process, and for some reason the companion has rapidly become obscure. As the companion is apparently still self-luminous, its darkness is not so conspicuous as the excessive brilliancy of *Sirius*. The change in the color of *Sirius* since ancient times is even more remarkable.

$9 \text{ ARGUS} = \beta 101.$

Discovered by Burnham with his celebrated six-inch Clark Refractor, March 11, 1873

				OBSERV	ATIONS				
t	θ_o	ρ,	\boldsymbol{n}	Observers	t	θ_o	ρ_o	n	Observers
1873 19	double	"	1	Burnham	1891 06	$91\overset{\circ}{5}$	$0^{''}\!34$	4	β & Sch
1875 24	289 7	0 58	2	Dembowskı	1892 05	98 7	0 22	3	Burnham
1878 50	302 2	0 45	4	St & β	1893 94	282 1	0 44	3	Barnard
1879 68	306 2	0 38	2	Hall	1894 18	282 0	0.42	3	Barnard
$1882\ 21$	3197	0.35	4	Schiaparelli	1894 25	2866	0 35	3	Comstock
1883 11	$336\ 2$	0 30	1	Burnham	1894 85	287 3	0 63	5–4	Barnard
1889 08	76 4	0 34	4	Burnham	1895 21	$285\ 2$	042	2	Comstock
			-	Durmum	1895 25	$285\ 4$	0.59	5	Barnard
$1890\ 22$	83 8	0.34	6	Bunham	1895 30	$283 \ 8$	0 58	3	See

The first investigation of the orbit was made by Glasenapp and published in the *Monthly Notices* for June, 1892. His elements are

$$P = 40 54 \text{ years}$$
 $\Omega = 116^{\circ} 7$
 $T = 1844 02$ $i = 59^{\circ} 2$
 $e = 0 090$ $\lambda = 251^{\circ}.3$
 $a = 0'' 45$ $n = +8^{\circ} 880$

Burnham revised this orbit, in May, 1893, and by relying on the distances as well as the angles, arrived at an apparent ellipse of very different character, from which we derived the following elements (Astronomy and Astrophysics, June, 1893)

```
P = 23\,377 \text{ years} \Omega = 95^{\circ}\,75

T = 1892\,706 i = 76^{\circ}\,87

e = 0\,68 \lambda = 73^{\circ}\,92

a = 0''\,612 n = +15^{\circ}\,3998
```

It did not take long to decide which set of elements was to be preferred.* BARNARD examined the star with the 36-inch refractor of the Lick Observatory in December, 1893, and found that since 1892.05 the radius vector of the companion had swept over about 180°, so that the small star was in the fourth quadrant I took occasion recently, while measuring double stars with the 26-inch refractor of the Leander McCormick Observatory of the University of Virginia, to measure 9 Argûs on three good nights. The observations confirm those of Barnard, and show that Burnham's apparent orbit is not far from the truth. With the new measures, it seemed worth while to re-investigate the orbit; accordingly, from a consideration of all the observations, I find the following elements of 9 Argûs

```
P = 22\,00 \text{ years} \Omega = 95^{\circ}5

T = 1892\,30 \iota = 77^{\circ}72

e = 0\,70 \lambda = 75^{\circ}28

\alpha = 0''\,6549 n = +16^{\circ}.3636
```

Apparent orbit:

Length of major axis = 0'' 941Length of minor axis = 0'' 267Angle of major axis $= 99^{\circ} 2$ Angle of periastron $= 134^{\circ} 5$ Distance of star from centre = 0'' 152

It is confidently believed that these elements will prove to be nearly correct, in spite of the small number of observations upon which they are based.

Comparison of the Computed with Observed Places

t	θο	θ_c	ρο	ρ¢	$\theta_o - \theta_c$	ρορο	n	Observers
1875 24 1878 50 1879 68 1882 21 1883 11 1889 08 1890 22 1891 06 1892 05 1893 94 1895 30	289 7 302 2 306 2 319 7 336 2 76 4 83 8 91 5 98 7 282 1 283 8	291 7 302 5 305 4 324 5 335 7 73 6 82 8 90 1 107 0 276 8 283 6	0"58 0 45 0 38 0 35 0 30 0 34 0 34 0 22 0 44 0 58	0"58 0 47 0 44 0 31 0 26 0 33 0 36 0 34 0 16 0 42 0 57	-20 -03 +08 -48 +05 +28 +10 +14 -83 +53 +02	0"00 -0 02 -0 06 +0 04 +0 01 -0 02 0 00 +0 06 +0 02 +0 01	2 4 2 4 1 4 6 4 3 3 3	Dembowski Cincinnati and Burnham Hall Schiaparelli Burnham Burnham Burnham Burnham Burnham and Schiaparelli Burnham Barnard See

^{*}Astronomische Nachrichten, 3297

It will be seen that the residuals are very small for such a close and difficult star, and it is evident that future observations will not change the present orbit materially, although it is desirable to secure additional exact measures which will improve the elements as much as possible. If adequate attention is given to this object, its orbit will soon be one of the best in the heavens. A short ephemeris is

t	$oldsymbol{ heta_o}$	$ ho_{\mathfrak o}$	t	θο	Po
1896 3	285 8	0"59	1899 3	$295^{\circ}2$	0"55
1897 3	288 8	0 60	1900 3	2990	0 51
1898 3	291 9	0 59			

As the eccentricity of the orbit is well determined by the rapid motion of the companion round the periastron, the established conspicuous magnitude of this element must be regarded as the most remarkable phenomenon of the system.

For the next few years the star will be relatively easy, and double-star observers should give it particular attention

ζ CANCRI AB = Σ 1196.

 $a = 8^{h} 6^{m} 2$, $\delta = +17^{\circ} 58'$ 55, yellow , 62, yellow

Discovered by Sir William Herschel, November 21, 1781

OBSERVATIONS Observers Observers O. Po n eo. n ρ_o 288 1781 90 363 5 Herschel 1835 30 1 1 Madler 1835 31 2021 14 3 Struve 109 1825 27 57.8 South 1835 60 157 3 Madler 1826 22 57 6 1 14 3 Struve 1836 27 3 **154** 1 20 Struve 2 1828 80 38 4 1.04 Struve 1836 31 151 5 Madler 1836.68 161 31 8 4 Dawes 1831 16 1 34 5 - 3Herschel 1831 28 298 1 05 6 Struve 1840 15 61 124 35-23 obs Kaiser 1831 30 308 109 3 Dawes 1840 20 44 1 19 8 Dawes 279 1832128 Herschel 1840 29 75 100 7 O Struve 183212270 7 Dawes 1841.16 09 183219 1 32 118 5 Dawes 313 5 Bessel 1841 31 18322827 5 10 1 05 6-4Madler 115 4 Struve 1833 13 263 9 Herschel 1842 22 3563 6 118 Dawes 1833 21 262 1 19 9 Dawes 1842 26 3589 107 6 Madler 1833 27 221 1 15 3 Struve 1842 29 3593129 4 O Struve

t	θ ο	ρ _o	n	Observers	t	θ_o	ρ_o	n	Observers
1843 18	355 0	$\mathbf{1^{''}12}$	8	Dawes	1856 07	$304^{\circ}2$	$1^{''}\pm$	7	Dembowskı
1843 19	356 9	1 06	4	Madler	1856 21	3063	1 21	4-3	Jacob
1843 30	3543	1 17	3	O Struve	1856 23	$309 \ 4$	1 16	2	Morton
		4.40		0 0	1856 25	3072	0 77	2	Secchi
1844 28	350 3	1 16	4	O Struve	1856 28	$307 \ 5$	1 00	2	Madle1
1844 39	354 4	1 02	10	\mathbf{M} adler	1856 31	307 3	1 01	10-7	Wnnecke
1845 25	350 4	1 05	13	Madler	1856 93	$296\ 5$	1 03	3	Dembowskı
1845 31	347 9	0 97	3	O Struve	1			_	
1845 83	349 4	12	1	Jacob	1857 27	298 4	0 98	3	O Struve
1049 00	049 4	1 2		9 4000	1857 29	304 5	0 96	3-2	Madler
$1846\ 27$	347 5	102	16	Madler	1857 29	303 9	0 78	6	Secchi
1846 29	344 8	0 95	3	O Struve	1857 90	2997	1 14	3-1	Jacob
1846 29	344 4		1	Jacob	1858 18	294 2	1±	7	Dembowskı
					1858 20	297 6	1 05	3	Madler
1847 18	344 6	1 09	4	Madler	1858 28	295 5	0 98	1	O Struve
$1847\ 33$	$342\ 2$	0 96	5	O Struve	1000 20	2300	0 50	-	O Deravo
1848 13	338 5	1 05	1	Dawes	1859 27	294 9	0 98	8	\mathbf{Madler}
1848 24	338 1	1 06	6	Dawes	1859 30	$286 \ 5$	0.91	2	O Struve
1848 25	342 8	10	1	W C Bond	100000	000.0			D 11.
1848 28	340 0	1 03	7-6	Madler	1860 26	282 9		_	Dollen
1848 30	337 7	0 91	5	O Struve	1860 26	283 3		_	Wagner
1040 00	001 1	0.01	O	ONLATO	1860 26	281 0	0 70	1	Dawes
1849 29	334.2	1 11	5	Dawes	1860 26	284 8		_	Schiaparelli
$1849\ 32$	$336 \ 1$	0 80	4	O Struve	1860 27	281 3	0 81	2	O Struve Döllen
408000	000.0	0.04		O. 04	1860 28	279 9	_	_	
1850 29	332 9	0 94	3	O Struve	1860 28	282 0		-	Wagner
1850 71	330 0	1.03	1	Mådler	1860 28	283 4	_	-	Schiaparelli Winnecke
1851.18	333 5	11±	3	Fletcher	1860 28	285 0	 1 02	- 5-4	Madler
1851 21	329 0	1 05	9	Madler	1860 30	286 0	1 02	0-±	Madier
1851 28	327 2	102	3	O Struve	1861 14	$282\ 8$	_	5	Powell
1851 25	327 9	1 01	7	Dawes	1861 26	$282\ 2$	0 97	2	\mathbf{Madler}
					1861 27	$275\ 3$	0 87	3	O Struve
1852 16	329 0	10±	3	Fletcher	1000 91	267 5	0 74	2	O Struve
1852 23	324 4	106	3	Dawes	1862 31	$\begin{array}{c} 201.5 \\ 274.4 \end{array}$	0 97	4	Madler
$1852\ 25$	326 9	1.06	6	Madler	1862.32	2144			madici
$1852\ 32$	$321 \ 7$	0.289	2	O Struve	1863 13	263.1	0.74	15	Dembowskı
1853.20	322 0	122	3	Jacob	1863 25	$267\ 3$	0 95	-	Leyton Obs
185324	$323 \ 5$	1 06	8-7	Mådler	1863 25	262.5	0 67	1	Dawes
1853 30	3198	0 97	2	O Struve	1863 30?	$268 \ 1$	0 70	1	Knott
1854 20	315 3	0 98	3	Dawes	1864 15	2 55 0	0 55	10	Dembowski .
1854 27	318 6	1 08	10-9	Madler	1864 29	$253\ 2$	0 71	2	Dawes
1854 29	$\begin{array}{c} 3100 \\ 3202 \end{array}$	$\begin{array}{c} 1\ 03 \\ 1\ 02 \end{array}$	10-3	Morton	1864 31		± 060	1	Englemann
1854 37	321 9	102	12	Powell	1864 30	$253\ 3$	0 72	2	O Struve
					1865 21	2457	0 50	12	Dembowskı
1855 10	308 6	1±	7	Dembowski	1865 30	243 4	0 63	3-2	Dawes
1855 19	312 4	1 07	3	Secchi	1865 33	245 1 245 3	0 64	2	Secchi
1855 26	310 6	1 06	4	Madler	1865 36	241 4	0 61	3	Knott
1855.31		0 91	3	O Struve	1865 30	244 0	0 86	4	Englemann
1855 31	305 9	1 04	7-6	Winnecke	1 1000 00	2220	3 00	-	

$oldsymbol{t}$	θ	Po	n	Observers	į t	θ_o	Ρο	n	Observers
1866 19	$238\overset{\circ}{4}$	$0^{''}\!52$	9	Dembowskı	1877 17	$108^{\circ}7$	$0^{''}\!68$	7	Dembowski
1866 27	237 8	0 70	1	O Struve	1877 23	107 9	0.79	7	Schiaparelli
1866 28	234 6	0 40	2	Secchi	1877 23	1103	0 81	3–6	Plummei
1866 31	233 3	0.78	4	Knott	1877 24	1081	0 87	3-2	Doberck
1866 37	231 5	0.72	1	Leyton Obs	1877 27	108 0	0.72	3	O Struve
1866 94	228 3	0 66	1	Knott	1877 32	107 3	0 74	1	Pritchett
1867 08	$229 \ 7$	0.59	3–1	Harvard	1878 16	104 1	1 01	1–2	Doberck
$1867\ 22$	$224 \ 4$	obl	9	Dembowskı	1878 18	100 3	0 66	6	Dembowskı
1868 20	210 9	0 5	7	Dembowskı	1878 26	100 8	07	7	Jedizejewicz
1868 28	214 7	0.72	$^{\cdot}_{2}$	O Struve	1878 29	99 1	0 76	3	O Struve
					1878 32	$102\ 3$	0 81	3	Hall
$1869\ 26$	$197\ 6$	0.64	1	Pence	1879 27	$93 \ 1$	0 87	6	Schiaparelli
$1869\ 32$	$198\ 4$	0.62	2	O Struve	1879 29	918	0.74	3	O Struve
$1869\ 37$	$203\ 6$	0 48	4	$\mathbf{Dun} \epsilon \mathbf{r}$	1880 21	85 2	0 61	5	Hall
1870 08	188 1	0 64	5–2	Harvaid	1880 22	89 8	0 89 ±	6	Jedi zejewiez
1870 15	187 3	05	9	Dembowski	1880 24	88 9	0 00 1	2	Doberck
1870 28	186 3	0 66	4	O Struve	1880 29	85 2	0 73	6	Burnham
1870 30	188 3	0 43	3_4	Dunér					
1870 56	181 0	0 2	2	Gledhill	1881 24	81 1	$0.91 \pm$	4	Jedrzejewicz
					1881 24	84 9	0 84	5	Doberck
1871 15	1755		7	Dembowskı	1881 28	86 8	0 88	3	O Struve
1871 26	1751	02	2	Gledhill	1881 30	79 0	0 71	3	Hall
1871 29	178 2	0 55	3	Dunéi	1881 30	80 2	0 92	6	Schiaparelli
1871 30	169 4	~~	_	Schainhorst	1881 31	73 7	0 77	2	Pritchett
1871 31	171 3	0 59	3	O Struve	1882 09	75 7	0.74	1	Bigoui dan
$1872 \ 11$	1667	06	2	$\mathbf{K}_{\mathbf{nott}}$	1882 20	73.3	0 79	4	Hall
$1872\ 21$	$167\ 5$	0 70	3	Wilson	1882 22	762	1 05	6	Englemann
1872 23	$162 \ 8$	Contatto	7	Dembowski	1882 25	$75\ 1$	0 98	6	Schiaparelli
$1872\ 31$	1630	0 58	3	O Struve	1882 26	750	$0.94 \pm$	4	Jedrzejewicz
$1872 \ 33$	1 63 3	0 69	2	Dunér	1883 24	72~4	1 05	6	Englemann
1873 19	150 2	0 5	10	Dembowskı	1883 29	69 3	1 00	6	Schiapaielli
$1873\ 22$	150 9	05±	4	W & S	1883 31	66 4	0 82	4	Hall
$1873 \ 28$	152 0	0 61	3	O Struve					
1873 63	1493	0 55	2	Gledhill	1884 19	62 7	1 06	3	Penotin
1874 09	141 6	0 74	7	Dembowski	1884 22	61 9		8	Bigouidan
1874 13	140 1	0 45 ±	2	Gledhill	1884 25	63 9	0 98	7	Schiaparelli
1874 18	*141 3		3-2	W & S	1884 26	60 6	0 98	3	O Struve
1874 28	144 5		3	O Struve	1884 27	64 5	0 88	5	Hall
1874 29	1428		$^{0}_{2}$	Dunér	1884 28	67 0	0 94	4	Englemann
-					1884 38	64 4		3	Sea & Smith
1875 14	130 1		8	Dembowski	1885 27	59 0	1.25	2	Seabroke
1875 26	128 9		6	Schiaparelli	1885 29	58 0	104	5	Schiaparelli
1875 28	132 4		3	O Struve	1885 29	• 59 4	105	4	Englemann
1875 29	133 3		2	W & S	1886 08	57 2	1 09	4	Tarrant
1875 33	129 5		5	Dunér	1886 24	51 4	106	2–1	Sea & Smith
1876 14	1194		6	Dembowski	1886 28	55 O	1 03	4	Hall
187626	1207		6	$\mathbf{Doberck}$	1886 29	51 2	0 98	3	Jedrzejewicz
1876 29	119 4	5 066	2	O Struve	1886 30	56 3	1 08	5	Englemann
					-			-	

t	θ o	ρο	\boldsymbol{n}	Observers	t	θ_o	ρ_o	n	Observers
1887 24	$50^{\circ}4$	0"89	4	Hall	1891 22	$35^{\circ}7$	$1^{''}04$	5	Hall
1887 26	484	0 97	11	Schiaparelli	1891 24	34 1	1 14	3	Bigourdan
1887 35	460	1 21	4-1	Sea & Smith	1892 24	31 6	1 09	3	Maw
$1888\ 25$	465	1 03	4	Hall	1892 25	31 3	1 26	2-3	Knorre
1888 26	492		3	\mathbf{Smith}	1892 26	30 1	1 11	11	Schiaparelli,
$1888\ 27$	437	104	9	Schiaparelli	1892 28	$30 \ 4$	1 10	6	Bigourdan
1888 33	458	1 09	2	O Struve	1892 89	287	0 99	3	Jones
1888 36	41 4	1.13	1	Maw	1893 20	27 2	0 98	2	Comstock
$1889\ 17$	420	1 2 0	4	Sea &Hodges	1893 22	264	1.07	3	Maw
1889 19	403	1 05	3	Leavenworth	1893 24	276	112	13	Schiaparelli
1889 21 1889 21 1889 23 1889 28 1889 29	40 7 43 4 43 6 43 7 40 9	1 08 0 99 1 23 1 07	12 2 5 2 3	Schiaparelli Glasenapp Hall O Struve Maw	1894 15 1894 16 1894 23 1894 24 1894 24	26 0 23 8 22 9 23 5 25 0	1 47 1 24 0 93 1 08 1 05	1 3 3 13 4	Ebell H C Wilson Comstock Schiaparelli Maw
1890 23	372	11 1	9-7	Schiaparelli	1894 39	23 2	139	5-4	$\operatorname{Bigourdan}$
1890 26 1890 28	36 4 36 9	0 95 0 99	$egin{array}{c} 2 \ 4 \end{array}$	Comstock Hall	1895 23 1895 23	$21\ 9$ $20\ 9$	1 22 1 01	$\frac{2}{3}$	Lewis Comstock
1891 05	$32\ 3$	1 04	5-4	\mathbf{Flint}	1895 27	17 1	109	1	$\mathbf{Davidson}$
1891 21	34 3	1 14	9-10	Schiaparelli	1895 28	228	1 13	4	See

The closer components of this ternary (or quarternary) system have been found to revolve rapidly in a period of about sixty years, while the remote component moves much more slowly, and probably will complete its orbit in six or seven centuries Both stars move retrograde, and the system thus made up is one of great interest to the physical astronomer. From the time of WILLIAM STRUVE the observations are both abundant and exact, and hence the orbit of the close pair can now be determined with a high degree of pre-We shall treat only of the close binary, neglecting the remote companion and the dark body which Professor Seeliger supposes to attend it. It is evident that the third component will exercise a considerable disturbing influence upon the close pair, but Professor Seeliger has shown that this influence is probably obscured by the large errors incident to the measurement of a system which is never much wider than one second of arc. Assuming that the motion will be sensibly undisturbed, we shall deduce the orbit of the closer pair by the same process which is employed in the case of other binaries. The motion of this system has been investigated by numerous computers; the following list of orbits is fairly complete:

 				1			4 17	Source
P	T	e	α	${\mathfrak L}$	ı	λ	Authority	
58 91 58 27 42 501 58 94 58 23 60 45 62 4 59 486 60 3	1853 37 1816 687 1805 67 1815 53 1872 44 1869 9 1869 3	0 2346 0 444 0 4743 0 256 0 3023 0 365 0 353 0 3318 0 391	1"292 0 892 1 013 1 030 0 908 0 908 0 908 0 886 0 853	33 67 10 52 18 4 150 3 107 5 109 0 358 05 81 55	63 3 24 01 65 65 48 6 36 24 23 5 20 7 18 52 15 53 11 13	133 01 227 15 141 9 171 78 85 3 199 0 188 55 109 73	Madler, 1848 Villarceau1849 Winnecke 1855 Plummer, 1871 Flam, 1873 O Stiuve, 1874 Dobetck, 1880 Seeliger, 1881	M N XXXI, p 195 Catal d ét doub p 19 C R LXXIX, p 1467

An examination of all the measures led to the mean places given in the accompanying table; from these we find the following elements

$$P = 60 \text{ 0 years}$$
 $\Omega = 88^{\circ} 7$
 $T = 1870 40$ $i = 7^{\circ} 4$
 $e = 0 340$ $\lambda = 264^{\circ} 0$
 $a = 0'' 8579$ $n = -6^{\circ} 000$

Apparent orbit.

Length of major axis = 1'' 701Length of minor axis = 1'' 632Angle of major axis $= 8^{\circ} 8$ Angle of periastron $= 184^{\circ} 9$ Distance of star from centre = 0'' 290

The comparison of the computed with the observed places shows a good agreement, and indicates that no radical change in the above elements is to be expected. The period is perhaps uncertain by half a year, while the eccentricity can hardly be varied by more than ± 0.03 . The motion extends over more than one revolution, and is well represented by the above elements in all parts of the orbit. The apparent ellipse is remarkable for its circularity, and the small inclination renders the motion almost the same in the apparent as in the real orbit. The general interest thus attaching to this system is greatly enhanced by problems arising from the perturbations of the third star and its theoretical companion.

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θο	ρο	ρς	θο-θο	ρορc	n	Observers
1781 90 1825 27 1826 22 1828 80 1831 29 1832 23 1833 24	57 8 57 6 38 4 30 3 3 29 4	59 0 55 0 44 1	$ \begin{array}{c} 1 & 09 \\ 1 & 14 \\ 1 & 04 \\ 1 & 07 \\ 1 & 23 \\ \end{array} $	0 98 1 03 1 07 3 1 09	$ \begin{array}{r} -12 \\ +26 \\ -57 \\ -46 \\ -15 \end{array} $	$ \begin{array}{r} +0.16 \\ +0.01 \\ \pm0.00 \\ +0.14 \end{array} $	1 - 3 2 9 9 12	Herschel South Struve Struve Struve 6, Dawes 3 Bessel 5, Struve 4 Dawes 9, Struve 3


```
Observers
                     \rho_o
                               \theta \circ - \theta \circ
                                       \rho_o - \rho_c
          θο
               21 5 1 14 1 12
                               +0.1
                                       +0^{''}02
                                                7 - 3
                                                      Madler 1, ∑ 3, Madler 3
         21 6
1835 40
                                       +0.07
                                                      Σ 3, Madler 5-0, Dawes 4-0
               17 4 1 20 1 13
                               -19
                                               12-3
1836 42
         15 5
                                       -0.05
                               +0.8
                                                      Dawes 8, O\Sigma 7
                 5 2 1 09 1 14
                                                 15
           6.0
184024
                 2 1 1 11 1 14
                                       -0.03
                                               11-9
                                                      Dawes 5, Madler 6-4
                               -12
           0 9
184123
1842\ 25|358\ 2|358\ 8|1\ 18|1\ 14
                                       +0.04
                                                      Dawes 6, Madler 6, OE 4
                               -0.7
                                                 16
                                                      Dawes 8, Madler 4, OE 3
                                       -0.01
1843 22 355 4 355 8 1 12 1 13
                               -04
                                                 15
                                                      OΣ 4, Madler 10
                               +0.2
                                       -0.03
1844 33 352 4 352 2 1 09 1 12
                                                 14
1845 57 348 6 348 1 1 08 1 12
                               +0.5
                                       -0.04
                                                      OΣ 3, Jacob 1
                                                 4
                                                      OΣ 3, Jacob 1-0
                                       -0.16
|1846.29|344|6|345|7|0|95|1|11
                                                4-3
                                -11
                               +03
1847 31 342 6 342 3 0 99 1 10
                                       -0.11
                                                 7
                                                      Madler 2, OE 5
                                               20-19 Dawes 1, Dawes 6, Bond 1, Madler 7-6, O∑ 5
1848.24 339 4 339 2 1 01 1 09
                               +0.2
                                       -0.08
                                                      Dawes 5, O\Sigma 4
                                       -0.12
                                -0.2
                                                 9
|1849 31|335 1|335 3|0 95|1 07
1850 50|331.4|330 9|0 98|1 06
                               +0.5
                                       -0.08
                                                 4
                                                      OE 3, Madler 1
1851 23 329 4 328 3 1 04 1 04
1852 24 325.5 323 7 1 00 1 02
                                                      Fletcher 3, Madler 9, OE 3, Dawes 7
                                       \pm 0.00
                               +11
                                                 22
                               +18
                                       -0.02
                                                      Fletcher 3, Dawes 3, Madler 6, OE 2
                                                 14
1853 25 321 8 320 3 1 01 1 00
                                       +0.01
                                                      Jacob 3-10, Madler 8-7, O\Sigma 2
                               +15
                                               13-9
                                                      Dawes 3, Madler 10-0, Mo 1, Powell 12-0
1854 28|319 0|316 0|1 00|0 98
                                       +0.02
                                               26-4
                               +30
                                                      Dem 7, Secchi 3-0, Madler 4-0, OE 3, Winnecke 7-6
                                       +0.02
                                               24-17
                                -22
1855 23 309 6 311 8 0 98 0 96
                                                      Dem 7, Ja 4-0, Mo 2-0, Sec 2, Ma 2, Wmn 10-7
                                       +0.03
                                               30-21
1856 33 305 5 306 6 0 96 0 93
                                -11
1857 44 301 6 301 0 0 91 0 90 1858 22 295 8 296 7 0 99 0 88 1859 28 290 7 290 9 0 95 0 85
                                                       OΣ 3, Madler 3-2, Secchi 6, Jacob 3-1
                                                                                                  Dem 3
                               +06
                                       +0.01
                                               15-17
                                       +0.11
                                                      Dem 7, Madler 3-0, OE 1
                                -0.9
                                               11-8
                                -0.2
                                       +0.10
                                                 10
                                                       Madler 8, OE 2
1860 28 282 8 284 6 0 76 0 82
                                                       Dawes 1, OE 2, Madler 5-0
                                        -0.06
                                                 8-3
                                -18
                                                10-3
6-2
1861 22 280 1 278 6 0 87 0 79
                                +15
                                        +0.08
                                                       Powell 5-0, Madler 2, OE 3
                                                       OΣ 2, Madler 4
1862 31 270 9 270 9 0 86 0 75
                                        +0.11
                                \pm 0.0
                                        _0 02
                                                       Dembowski 15, Dawes 1, Knott 1
                                +12
                                                 17
1863 23 264 6 263 4 0 70 0 72
                                                       Dembowski 10, Dawes 2, Englemann 1, O\Sigma 2
1864 21 253 8 255 0 0 66 0 69
                                        -0.03
                                -12
                                                 14
                                                24-19 Dembowski 12, Dawes 3-2, Secchi 2, Knott 3, En 4
1865 30 244 0 245 2 0 60 0 65
                                        -0.05
                                 -12
                                                18-13 Dem 9, O∑ 1, Secchi 2, Knott 4-0, Ley 1-0, Knott 1
                                +01
                                        +0.01
1866 39 233 9 233 8 0 63 0 62
                                                       Harvard 3-1; Dembowski 9-0
1867 15 224 4 225 3 0.59 0 61
                                        -0.02
                                                 9–1
                                -09
                                                       Dembowski 7, OE 2-0
|1868|24|212|8|212|4|0.61|0|58|
                                +04
                                        +0.03
                                                 9-7
                                                       Peirce 1-0, OE 2, Dunér 4
 1869 32|199 9|199.1|0 58|0.57|
                                        +0.01
                                                 7-6
                                +0.8
                                                       Harvard 5-2, Dembowski 9, OΣ 4, Dunér 8-4, Gl 2
                                                23-21
 1870 27 | 186.2 | 186 7 | 0 56 | 0 56 |
                                        \pm 0.00
                                -05
                                                       Dembowski 7, Gledhill 2-0, Dunér 3, O\Sigma 3
                                        +0.01
 1871 25 175 0 173 7 0 57 0 56
                                +13
                                                15-6
                                                       Knott 2, Wilson, 3, Dembowski 7-0, O\Sigma 3, Dunér 2
                                +33
 1872 24 | 164 6 | 161 3 | 0 64 | 0 58 |
                                        +0.06
                                                17-10
 1873 33 150 6 147 8 0 54 0 59
1874 19 142 1 138 1 0 61 0 62
                                +28
                                        -0.05
                                                       Dembowski 10, W & S 4, OE 3, Gledhill 2
                                                  19
                                                |17-16| Dembowski 7, Gledhill 2, W & S 3-2, O\Sigma 3, Dunér 2
                                        _0 01
                                +30
                                                       Dembowski 8, Sch 6, OE 3, W & S 2, Duner 5
 1875 26 130 8 126 5 0 68 0 65
                                        +0.03
                                                 24
                                +43
                                                       Dembowski 5, Doberck 6-0, O\Sigma, 2
                                        +0.01
                                                13-7
                                +24
 1876 23 119 8 117 4 0 69 0 68
                                                       Dem 7, Sch 7, Plummer 3-6, Dk 3-2, OE 8, Pr 1
                                -02
                                        +0.02
                                                |24-26|
 1877 24 108 4 108 6 0 74 0 72
                                          -0.01 |20-19| Doberck 1-0, Dembowski 6, Jed 7, O\Sigma 3, Hall 3
 1878 24 | 101 3 | 100 4 | 0 73 | 0 74
                                +0.9
                92 7 0 81 0 78
                                        +0.03
                                                   9
                                                       Schiaparelli 6, OE 3
                                 -0.3
           924
 187928
                                                       Hall 5, Jedrzejewicz 6, Doberck 2-0, \beta 6
                                        _0 06 | 19-17
           87 3 86 4 0 75 0 81
                                +09
 1880 24
                                                        Jed 4, Doberck 5, O2 3, Hall 3, Sch 6, Pritchett 2
                                                  23
                                        \pm 0.00
           80 9 79 9 0 84 0.84
 1881 28
                                +10
                                                        Bigourdan 1, Hall 4, Englemann 6, Sch 6, Jed 4
                                        +0.03
                                                  21
           75 1 74 4 0 90 0 87
                                +0.7
 1882 20
                                                        Englemann 6, Schiaparelli 6, Hall 4
                                +05
           69 3 68 8 0 96 0 90
                                        +0.06
                                                  16
 1883 28
                                                33-22 Per 3, Big 8-0, Sch 7, OE 3, Hl 5, En 4, S & S 3-0
                                        +0.04
 188426
           63 6
                 63 8 0 97 0 93
                                 -0.2
                                                        Seabroke 2, Schiaparelli 5, Englemann 4
                                +17
                                         +0.16
                                                  11
                 59 2 1 11 0 95
 1885\,28
           58 8
                                                18-17 Tarrant 4, S & S 2-1, Hall 4, Jed 3, Englemann 5
           54 2
                                 -06
                                        +0.07
                 54 8 1 05 0 98
 188624
                                         +0.02
                                                19-16 Hall 4, Schiaparelli 11, S & S 4-1
 1887 28
           48 3
                 50 2 1 02 1 00
                                -19
                                                |19-16| Hall 4, Smith 3-0, Schiaparelli 9, OE 2, Maw 1
                                 -11
                                         +0.05
                 46 4 1 07 1 02
 188829
           45 3
                                         +006 31-29 Sea 4, Leav 3, HI 5, OE 2, Maw 3, Sch 12, Gl 2-0
                 42 5 1 10 1 04
                                 -04
           42 1
 188922
                                         _0 04 |16-14| Schiaparelli 9-7, Comstock 2, Hall 4
           36 8
                 38 5 1 02 1 06
                                 -17
 1890 26
                                                        Flint 5-4, Schiaparelli 9-10, Hall 5, Bigourdan 8
                                                  22
                                         +0.02
                 35 2 1 09 1 07
                                 -11
  1891 18
           34 1
                                         +0 02 25-26 Maw 3, Knott 2-3, Schiaparelli 11, Bigourdan 6, Jo 3
           30 4 30 9 1 11 1 09
                                 -0.5
 1892.38
                                                        Comstock 2, Maw 3, Schiaparelli 13
                                         -0.04
                                                  18
           27 1 - 27 1 1 06 1 10 24 0 24 6 1 16 1 11
                                 \pm 0.0
 |1893|22|
                                                        Eb 1, H C W 3, Com 3, Sch 13, Maw 4, Big 5-4
                                         +0.05 | 29-28
                                 -0.6
  1894.23
                                                        Lewis 2, Comstock 3, Davidson 1, See 4
                                         -0.01
                                                  10
  1895 25 20 7 21 3 1 11 1 12
```

A more critical investigation of these problems will commend itself to the attention of astronomers; the best results will depend upon the reduction of exact observations by the refined methods of analysis. In the present state of micrometrical measurement, a very refined treatment is seriously embarrassed by the errors of observation, but the methods of physical Astronomy ought eventually to enable us to improve the theory of the motion of the system, which is here taken as undisturbed

The following is a short ephemeris for the use of observers.

$oldsymbol{t}$	θ_c	$ ho_c$	t	$ heta_\iota$	ρι
$1896\ 25$	18 [°] 0	$1^{''}13$	1899 25	$\overset{\circ}{8}_4$	1 13
$1897\ 25$	148	1 13	1900 25	53	1 14
$1898\ 25$	11.6	1 13			

∑3121.

 $\alpha=9^h~12^m~1$, $\delta=+29^\circ~0'$ 7 2, white , 7 5, yellowish

Discovered by William Strave in 1831

Observations										
t	θ_o	ρο	\boldsymbol{n}		t	θ_o	ρ_o	21		
1832 31	20 0	0 85	3	Struve	1868 30	27°6	0"81	2	O Struve	
1840 31	$246 \ 5$	$0.40\pm$	3–1	O Struve	1869 31	26 1	0 88	1	O Struve	
1844 28	$193\ 5$	0 33	2–1	O Struve	1870 33	206 9	0 65	2	Dunéi	
1846.29	27 6	0 55	1	O Struve	1870 44	210 4	$0.5 \pm$	1	Gledhill	
1847 34	214 2	0 54	1	O Struve	1871 20	212 7	$0.5 \pm$	1	Gledhill	
1848.25	33 0	0 53	1	O Struve	1871 27	208 2	0.75	3	Dunéi	
				OBLIVE	1871 30	35 3	0 79	2	O Struve	
1849.32	4 3 3	0 48	1	O Struve	1871 44	211 0	0 57	5	${f Dembowski}$	
1850.30	228 6	0 42	1	O Struve	1872 09	$209\ 3$	0 68	1	Dunéi	
1851.26	59 7	0 33	1	O Struve	1872 31	36 4	0 68	1	O Struve	
1861.29	Double ve	ana la Mi	3. 4		1873 69	$214\ 2$	obl	8	Dembowsk ₁	
1861.30	8 9			O Struve	1873 70	$214\ 5$	$0.5 \pm$	1	Gledhill	
		0 67	1	O Struve	1874 24	220	<03	2		
1863 11	194 8	07	1	Dembowski	1874 28	467	0 53	$\frac{z}{2}$	Dunér O Struve	
1864.30	13 0	0 71	1	O Struve	1875 20	225	0 2 ±	1	0 10 02 00 10	
1865.77	206 8	0 80	2	Fn alom	1875 29	250 1	obl	1.	Dunér	
				Englemann	1875 29	65 2	0.30	•	O Struve	
1867.65	201 3	0 70	5	Dembowsk ₁	1875 31	251 9	ovale	$egin{array}{c} 4 \\ 2 \end{array}$	Schiaparelli Dembowski	

t	θο	ρ_o	n	İ	\boldsymbol{t}	θ_o	Po	n	
1877 25	$183^{\circ}0$	" oblong	1	O Stiuve	$1885\ 30$	2158	0"4±	3	Schiaparelli
1878 21	185 2	$0.25 \pm$	1	Burnham	1886 33	$221\ 2$	0 27	4	Englemann
1879 21	193 0	0 40	2	Burnham	$1887\ 27$	250 4	$0.22\pm$	9	Schiaparelli
1879 33	186 8	0 43	1	O Struve	$1888\ 27$	$286\ 3$	$0.22\pm$	7	Schiaparelli
1879 57	200 4	0 43	5	Schiaparelli	1889 30	132 3	0 23±	7	Schiaparelli
1880 26	200 3	0 35	3	Hall	1890 29	152 9	$0.27 \pm$	4	Schiaparelli
1880 31	1998	0 50	1	Burnham	1891 26	163 3	0 35	4	Hall
1881 29	1980	0 61	1	O Struve	$1891\ 32$	1667	$0.33 \pm$	2	Schiaparelli
1881 34	205 3	0 46	2	Schiaparelli	1892 26	1753	$0.41 \pm$	7	Schiaparelli
$1882\ 25$	1948	0 31	4	Englemann	1893 25	182 3	0 47	7–2	Schiaparelli
$1882\ 31$	2058	0.45	4	Schiaparelli	1893 25	185 9	0 44	1	Comstock
1882 34	$205 \ 2$	0 53	1	O Struve	1894 18	185 9	0 49	1	Wilson
$1883\ 22$	$221\ 2$	0 39	6	Englemann	1894 21	$186\ 6$	0 58	3	Bigourdan
$1883\ 28$	2138	0.52	3	Schiaparelli	1894 24	$183 \ 3$	0.45	3	Comstock
1883 31	2157	0.45	3	Hall	1894 25	$186\ 3$	$0.48 \pm$	5	Schiaparelli
$1884\ 27$	218 9	0.42	1	O Struve	1895 23	$190 \ 5$	0 65	3	Lewis
$1884 \ 39$	$222\ 7$	0 38	4	Schiaparelli	1895 26	88	0 50	3	Comstock
1884 61	$225\ 6$	0 30	4	Englemann	1895 31	126	0 55	2	See

WILLIAM STRUVE rated the magnitudes of the components of this pair at 7.5 and 78* respectively. Recent observations with the 26-inch refractor of the Leander McCormick Observatory of the University of Virginia convince the writer that the brightness of the components has been over-estimated by at least a whole magnitude. The star is close and very faint, and the natural difficulty of the object will doubtless account for the rather large discordances in some of the observations.

As $\Sigma 3121$ has been observed for many years, and the pair revolves with great rapidity, several orbits have been determined by previous investigators. The following is believed to be a complete list of the elements hitherto published:

P	T	е	a	រះ	ı	λ	Authority	Source
39 18 40 62 37 03 34 642	1850 0 1850 0 1842 78 1878 52	0 3471 0 3725 0 26 0 3086	$egin{array}{c} 0.00000000000000000000000000000000000$	19 94 23 5 16 0 24 85	52 4 54 11 74 25 75 43	141 6 149 5	Fritsche, 1866 Doberck, 1877	St Pétersbourg, t X A N 2156 A N 2808

^{*}Astronomical Journal, 349

96 Σ3121.

From an investigation of all the observations, I find the following elements

 $P = 34\ 00\ {
m years}$ $\Omega = 28^{\circ}\ 25$ $T = 1878\ 30$ $\iota = 75^{\circ}\ 00$ $e = 0\ 330$ $\lambda = 127^{\circ}\ 52$ $a = 0''\ 6692$ $n = +10^{\circ}\ 5883$

Apparent orbit

Length of major axis = 1'' 318Length of minor axis = 0'' 349Angle of major axis $= 27^{\circ} 4$ Angle of periastron $= 189^{\circ} 6$ Distance of star from center = 0'' 142

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θ_c	ρο	ρι	θ_o — θ_c	ρ _ο —ρ _c	n	Observers
1832 31	20°0	22 3	0 85	0"79	°3	+0"08	3	W Struve
1840 31	66 5	47 3	$0.40 \pm$	0 35	+192	+0.05	3–1	O Struve
1844 28	193 5	1898	0 33	0 29	+ 37	+0.04	2-1	O Struve
1846 29	207 6	$205 \ 2$	0 55	0 48	+ 24	+0.07	1	O Struve
1847 34	214 2	210 1	0 54	0.52	+ 41	+0.02	1	O Struve
1848 25	213 0	214.1	0 53	0.52	_ 11	+0.01	1	O Struve
1849 32	$223\ 3$	2188	0 48	0 50	+ 55	-0.02	1	() Struve
1850 30	$228 \ 6$	223 9	0 42	0.45	+ 47	-0.03	1	O Struve
1851 26	239 7	230 1	0 33	0.39	+ 96	-0 06	1	O Struve
1861 26	8 9	99	0 67	0 58	_ 10	+0.09	1	O Struve
1863 11	148	14 6	07	0 66	+ 02	+0.04	1	Dembowski
1864 30	130	18 1	0 71	0.73	_ 51	_0 02	1	O Struve
1865 77	26 8	21 3	0.80	0.78	+55	+0.02	2	Englemann
1867 65	21 3	24 8	0 70	0.79	-35	-0 09	5	Dembowski
1868 30	27 6	26 2	0.81	0.79	+ 14	+0.02	2	O Struve
1869 31	26.1	28 2	0.88	076	_ 21	+0.12	1	O Struve
1870 38	28 6	30 6	0 57	0.71	_ 20	-0.14	3	Dunéi, 2, Gledhill 1
1871 30	31 8	32 8	0 65	0.65	_ 10	0 00	11	Gl 1, Du 3, Ox 2, Dem 5
1872 20	36 4	35 6	0 68	0 58	+ 08	+0.10	1-2	$O\Sigma$ 1, Dunéi 0-1
1873 70	34 3	428	05±	0.42	— 85	+0 08	9-1	Dembowski 8-0, Gledhill 1
1874 28	46 7	46 7	0 53	0 36	0.0	+0.17	2	O Struve
1875 27	63 0	63 0	0 25	0 22	0.0	+0 03	8-5	Du 1, OΣ 1, Sch 4, Dem 2
1878 21	185 2	188 4	0 25	0 28	- 32	0 03	1	Buinham
1879 57	200 4	200 2	0 43	0 41	+ 02	+0.02	5	Schiaparelli
1880 28	200 0	2051	0 43	0 48	- 51	-0.05	4	Hall 3, Burnham 1
1881 34	205 3	2101	0 46	0 52	- 48	-0 06	2	Schiaparelli
1882 28	2058	214 1	0 45	0 52	- 83	-0 07	4	Schiaparelli
1883 27	2212	218 3	0 45	0 50	+ 29	-0.05	6-12	En 6, Sch 0-3, Hall 0-3
1884 39	2227	224 5	0 38	0 44	_ 18	-0.06	4	Schiaparelli
1885 30	2158	230 5	04±	0 39	-147	+0 01	3	Schiaparelli
1886 33	$221\ 2$	239 9	0 27	0 32	_177	-0.05	4	Englemann
1887 27	250 4	$252\ 5$	0 22	0 27	_ 21	-0.05	9	Schiaparelli
1888 27	286 3	272 6	0 22 ±		+137	0 00	7	Schiaparelli
1889 30	312 3	2997	$0.23 \pm$		+126	+0.02	7	Schiaparelli
1890 29		323 5	$0.27 \pm$		+ 84	+0 03	4	Schiaparelli
1891 29		3408	0 34	0 30	+ 42	+0 04	6	Hall 4, Schiaparelli 2
1892 26		3540	0 41 ±		+ 13	+0.04	7	Schiaparelli
1893 25		359 7	0 47	0 43	+26	+0 04	7-2	Schiaparelli
$1894\ 22$		50	0 48	0 50	+ 02	-0.02	9	Wilson 1, Comstock 3, Sch 5
1895 29		98	0 53	0 58	+ 09	-0.05	5	See 2, Comstock 3

Some of the observations are vitiated by sensible systematic errors, so that occasionally our best observers differ by so much as 12°; and in succeeding years the angles are made to retrograde where they ought to be steadily advancing. Under these circumstances the residuals may be considered small, and the elements very satisfactory for so close and difficult a star. In following this star, observers should take every precaution against systematic error, since the orbit is highly inclined, and a small error in angle greatly affects the distance. Good observations are essential for any further improvement of the elements.

		Ерни	EMERIS		
t	θ_c	ρ,	t	θ_c	ρ_c
1896 30	13 5	0 64	1899 30	207	0 77
1897 30	162	0 69	1900 30	227	0.79
1898 30	18 5	074			

Since the companion is now approaching its maximum distance, the star will be relatively easy for a number of years

ω LEONIS = Σ1356.

 $\alpha = 9^{h} 28^{m} 1$, $\delta = +9^{\circ} 80'$ 6, yellow , 7, yellow

Discovered by Sir William Herschel, February 8, 1782

OBSERVATIONS Observers θ_o t Observers nθο ρ_o n1 1841 18 178286 1109 Herschel 35451 Dawes 1841 35 1940 0.3 Madler 1 2 Herschel 1803 09 1309 1842 21 2498 elong? 1 Madler 1825 21 1539 0 97 5 Struve 1842 31 30230.3O Struve 4 1830 24 Herschel 1842 33 1 Madler 1465 wedge-shaped 1 einfach 3 1832250 51 3 1634 Struve 1843 30 einfach, rund Madler Struve 1843 30 18332917280 45 3 3168 0.37 2 O Struve 1835 33 1783 $0.3 \pm$ 3-1 Struve 1844 29 3209 0.48 3 O Struve 1844 32 3370 0.32Madler 4 1836 28 3587 $0.35 \pm$ 3-2Struve 1845 31 3211 0 44 3 O Struve 3 O Struve 1836 28 3598 1836 30 1718 1 Madler 1846 28 3269 0.35 Mädler 11 1846 30 322.9 0 45 2 O Struve 247 5 2 O Struve 1840.29 0.3 255Dollen 1847 28 1840 29 3370 037 3 Mädler 1840 31 2503 W Struve 1847 33 3288 0 53 2 O Struve

t	$ heta_o$	ρο	n	Observers	t	θ .	ρο	\boldsymbol{n}	Observers
1848 32	$332^{\circ}1$	$0^{''}\!\!43$	4	O Struve	1870 24	$44^{\circ}4$	$0^{''}25\pm$	5–1	Pence
1848 35	346 8	0 38	1	Madleı	1870 28	53 6	0 58	2	O Struve
1849 32	331 8	0 43	3	O Struve	1870 30	37 9	0 27 ±	2	Dunéi
1850 63	335 8	0 49	3	O Strave	1871 16	52 6	cuneo	3	Dembowskı
1000 00	999 0	0 49	,,	O Strave	1871 30	56.7	0 57	3	O Struve
$1851\ 23$	342 6	0 35	9	Madler	1871 31	427	03±	1	Dunéi
$1852\ 30$	35 0 0	0 47	4	Madlei	1872 18	66 3	0 48	2	Wilson
$1852\ 66$	339 1	0 46	3	O Struve	1872 31	58 8	0 52	2	O Struve
1853 18	34 3 3	$0.45 \pm$	2	Jacob	1873 23	56 2		2	w & s
$1853\ 27$	34 6 3	0 35	7-6	\mathbf{M} adler	1873 29	57 O	04±	1	Gledhill
$1853\ 96$	35 0 0	$04\pm$	2	Jacob	1873 58	62 0	contatto	5	Dembowski
105/09	346 2	0 55	2	Dawes	1873 96	63 6	0 59	3	O Stiuve
1854 23 1854 28	348 3	0 53	10	Madler					
					1875 25	646	0.46	5	Dembowski
$1855\ 27$	obl ?		2	Madler	1875 26	627	049	7	Schiaparelli
$1855\ 32$	348 7	0 47	2	O Struve	1875 31	668	043	5	Dunéi
185534	62	_	1	Winnecke	1875 32	$66 \ 4$	0 59	3	O Struve
185620	obl?		1	Mädleı	1876 16	69 4	0 44	2	Dembowski
$1856\ 42$	10	0 36	10–7	Secchi	1876 24	527		3	Doberck
1857 28	3581	0 52	1	O Struve	1876 27	735	$0.55\pm$	2	W & S
1857 31	obl?	_	1	Madler	1876 29	$65\ 6$	0 57	2	O Struve
1857 54	43	$0.43 \pm$	3	Jacob		77.0	Λ 00	4	Consland
1858 28	1629	· _	1	Madle1	1877 21 1877 21	$\begin{array}{c} 77\ 2 \\ 71\ 2 \end{array}$	$0.88 \\ 0.54$	1 5–1	Copeland Plummei
1000 20	102				1877 21	73 0	0 54	3-1	Doberck
$1859\ 25$	16 7	0 35	4-3	\mathbf{M} adler	I				
$1859\ 30$	67	0 60	2	O Struve	1877 27 1877 28	70 7 71 6	$egin{array}{c} 0 \ 47 \ 0 \ 54 \end{array}$	$egin{array}{c} 7 \ 2 \end{array}$	Schiaparelli O Struve
1860 28	9 2	_	-	Winnecke			0 41	$\frac{z}{2}$	
1860 28	10 2	0 62	2	O Struve	1877 36	76 6	0 41	Z	Dembowskı
1860 33	191	0 25	1	Madler	1878 11	70 3	0 63	2	Buinhain
					1878 26	80 3	050	1	$\mathbf{Doberck}$
1861 28	11 9	0 56	2	O Struve	1878 28	74.7	0 44	5	Dembowskı
$1862\ 32$	18 6	elong	2	\mathbf{Madler}	1878 63	77 7	0 60	3	O Struve
1864 30	29 2	0 52	1	O Struve	1878 95	744	0 41	6	Hall
1864 89	24	cuneo	4	Dembowski	1879 31	76 6	0 55	7	Schiaparelli
1865 67	23 0	0 50	8	Englemann	1879 78	798	0 51	4	Buinhain
1866 30	32 9	0 3	1	Secchi	101010	130	0.01	•	Duilliam
1867 08	109 4	elong	1	Winlock	1880 23	797	_	1	Bigouidan
1867 08	1257	elong	1	Searle	1880 26	952	obl	4	${f Jedrzejewicz}$
1867 32		elong	1	Winlock	1880 26	81 3	0 46	6	Hall
1867 87		eisrund	1	Vogel	1881 10	81 0	0 61	2	Prograden
	420	al	4	-	1881 24	82 3	0 50	∠ 5–2	Bigouidan Doberck
1868 21	156	elong	1	Peirce	1881 26	98 7		2	Jedizejewicz
1868 63	44 3	0 55	3	O Struve	1881 28	83 7	0 68	$\frac{2}{2}$	O Struve
1869 13	317 2	elong	1	Peirce	1881 31	84 3		4	Hall
1869 26			1	Pence	1881 33	84 4		5	Schiaparelli

t	θ.	ρ,	\boldsymbol{n}	Observers	t	θ_o	$ ho_o$	n	Observers
$1882 \ 12$	$77^{\circ}3$	<u>"</u>	1	Doberck	1888 21	$97^{\circ}4$	0 68	3	Tariant
188212	80 5	_	1	Copeland	1888 26	$91\ 6$	_	3	\mathbf{Smith}
1882 23	80 0	0 56	7	Englemann	1888 27	985	0.68	6	Schiaparelli
$1882\ 27$	83 3	0 66	3	Doberck	1888 29	983	0 66	5	Hall
$1882\ 30$	84 1	049	4	\mathbf{Hall}	1888 33	94.9	0 87	2	O Struve
$1882\ 34$	867	0 61	2	O Struve	1888 57	95.8	071	7	$\mathbf{L}\mathbf{v}$
$1882\ 36$	90 0	0 55	4	Schiaparelli	1889 19	94 1	0.70	1	Hodges
1883 24	85 8	0 62	6	Englemann	1889 29	99 8	0 67	5	Hall
1883 31	90 5	0.62 0.65	6	-	1889 32	100 2	0 65	9	Schiapaielli
1883 34	90 9	0.62	3	Schiaparelli Hall	1009 52	100 2	0 00	_	-
1883 34	90 9		ъ	пап	1890 27	1018	0 68	2	Comstock
1884 18	90.6	055	2	Perrotin	1890 31	$101\ 2$	0.64	4	Hall
$1884\ 23$	91 4	0 66	4	Englemann	1890 31	1016	0 68	4	Schiaparelli
$1884\ 26$	87 6	0 71	2	O Struve	1891 21	102 1	0 76	2	Bigourdan
1884 30	$91\ 3$	0 58	5	Schiaparelli	1891 28	102 1 101 2	075	5	Hall
$1884\ 32$	933	0.55	4	Hall	1891 31	103 9	0 66	5	Schiaparelli
$1884\ 34$	90.6	_	10	Bigouidan	1091 91	100 9	0 00		Bemaparem
$1884\ 39$	859	$10\pm$	3-2	Sea & Sm	1892 25	$102 \ 4$	0.77	3	Maw
1885 27	90 6	0 72	3	Englemann	1892 26	1049	072	7	Schiaparelli
1885 17	93 3	0 12	1	Doberck	1892 27	$104 \ 5$	0.87	' 5	Lv & Col
1885 31	93.7	0 58	4	Schiaparelli	1893 25	101 5	0 61	1	Comstock
1885 31	93 9	0.69	2	Tariant	1893 28	105 7	0 70	9	Schiaparelli
1885 35	88 9	1 00 ±	1	Smith					_
1885 72	90 9	0 70	$\overset{1}{2}$	Perrotin	1894 22 .	104 5	1 30	1	Bigourdan
					1894 23	106 5	0 67	3	Comstock
$1886\ 24$	901	1 19	2-1	Sea & Sm	1894.25	$103\ 3$	0 74	2	H C Wilson
$1886\ 32$	$92\ 2$	0 73	6	Englemann	1894 25	106 7	0 75	8	Schiaparellı
1887 26	95 0	0 62	9	Schiaparelli	1894 88	$287 \ 4$	0.94	3	Barnard
1887 30	956	0 53	4	Hall	1895 24	1061	0 67	3	Comstock
$1887\ 37$	94 0	_	1	Smith	1895 28	1 06 1	0.83	2	See

At the time of discovery Sir William Herschel estimated the position-angle * to be between 95° and 100°, but later in the year found by measurement that the angle was 110°.9. The pair was soon found to be in slow orbital motion, and in 1804 Herschel concluded that since 1782 the change in angle had amounted to +19° 59′, and that the distance had sensibly increased. When the star was thus recognized as binary, it naturally claimed the attention of the principal double-star observers, and accordingly since the time of Struve, a long list of measures has been secured But while the closeness of the companion in most parts of the apparent ellipse has made the pair a classic test-object for the dividing power of small telescopes, it has, on the other hand, rendered micrometrical measurement extremely difficult, and some of the observations are therefore far from satisfactory. In spite of the fact that the measures

^{*} Astronomische Nachrichten, 3311

are sometimes difficult to reconcile, the angles and distances of the best observers, when properly combined, in conjunction with the important principle of the preservation of areas, enable us to fix the apparent ellipse with a relatively high degree of precision, and the resulting elements are found to be incapable of any large variation. The orbit is based chiefly upon the observations of Herschel, Struve, O Struve, Dawes, Dembowski, Burniam, Hall, Schiaparelli, and the measures which the writer recently secured at the McCormick Observatory in Virginia. The elements of ω Leones are.

```
P = 116 \ 20 \ \text{years} \Omega = 146^{\circ} \ 70

T = 1842 \ 10 \iota = 63^{\circ} \ 47

e = 0537 \lambda = 124^{\circ} \ 22

\alpha = 0'' \ 88241 n = +3^{\circ} \ 0981
```

Apparent orbit.

Length of major axis = 1'' 576Length of minor axis = 0'' 738Angle of major axis $= 141^{\circ} 1$ Angle of periastron $= 293^{\circ} 4$ Distance of star from centre = 0'' 317

Several astronomers have previously investigated the orbit of this star; the following table gives the elements hitherto published

P	T	е	а	Ω	* 1	λ	Authority	Source
82 533 117 577 133 35 227 77 142 41 136 4 107 62 110 82 114 55 115 30 115 87	1849 76 1843 408 1846 44 1841 40 1843 39 1844 2 1842 77 1841 81 1841 57 1841 99 1842 16	0 6434 0 6256 0 3605 0 7225 0 6286 0 62 0 5028 0 536 0 5510 0 5379 0 533	0"857 0 8505 0 703 1 307 1 092 1 05 - 0 890 0 85 0 864 0 8753	135 2 150 83 111 85 169 2 162 22 160 5 151 57 148 77 149 25 147 1 145 9	57 23 60 22 54 42 52 4 65 37 64 08	217 37 84 17 107 15 113 4 122 9 121 07 122 3 122 9	Madler, 1846 Klinkerf 1856 Klinkerf 1858 Klinkerf 1858 Klinkerfues Doberck, 1876 Doberck, 1876 Doberck Hall, 1892	A N 990 A N 1127 Theor Astron p 395 A N 2078

COMPARISON OF COMPUTED WITH ()BSERVED PLACES

t	θο	θο	$ ho_o$	ρ。	θοθο	ρορο	n	Observers
1782 86 1803 09 1825 21 1832 25 1833 29 1835 33 1836 28 1840 29 1841 26 1842 31	110 9 130 9 153 9 163 4 172 8 178 3 176 8 247 5 274,2 302 3	112 1 130 3 150 4 164 9 168 8 179 9 187 8 263 8 281 6 295 8	0 97 0 51 0 45 0 3± 0 35 0 3 0 3	0 89 1 08 0 81 0 52 0 47 0 35 0 30 0 21 0 24 0 28	- 12 + 06 + 35 - 15 + 40 - 16 -110 - 163 - 74 + 65	$ \begin{array}{r} -\\ +0.16\\ -0.01\\ -0.02\\ -0.05\\ +0.05\\ +0.09 \end{array} $	1 2 5 3 3-1 7-2 2 2-1 4	Herschel Herschel Struve Struve Struve Struve Struve 2. 3-2, O\Sigma 3-0, Madler 1 () O Struve Dawes 1-0, Madler 1 O. Struve

t	θο	0 0	ρο	ρζ	θοθα	ρορι	n	Observers
1843 30	316 ⁸	305 2	0 37	0 33	+116	+0"04	2	O Struve
1844 31	320 9	312 3	0 48	0 38	+ 86	+0.10	$\tilde{3}$	O Strave
1845 31	$\begin{array}{c} 3203 \\ 3211 \end{array}$	317 9	0 44	0.33	$ + \begin{array}{c} 3 & 0 \\ 3 & 2 \end{array} $	+0.02	3	O Struve
1846 30	$\frac{3211}{3229}$	322 6	0 45	$045 \\ 045$	+ 03	0 00	2	() Strave
1847 31	3288	326 8	0 53	0 48	$ + \begin{array}{c} + & 0 & 0 \\ + & 2 & 0 \end{array} $	+0.05	2	O Strave
1848 32	3321	330 5	0 43	0 50	$ + \tilde{1} \frac{1}{6} $	-007	4	() Strive
1849 32	3318	334 0	0 43	0 52	$\begin{bmatrix} 1 & 1 & 0 \\ - & 2 & 2 \end{bmatrix}$	-0.09	3	() Strave
1850 63	3358	338 2	049	0 53	$\begin{bmatrix} - & 2 & 2 \\ - & 2 & 4 \end{bmatrix}$	-001	3	O Struve
1851 23	3426	3401	0.35	0.53	$ -\frac{24}{25} $	-0.18	9	Madler
1852 48	344 5	344 1	0 46	0.54	+ 04	-0.08	7	Madler 4, O Struve 3
1853 47	3465	347 0	0 45	0.54	- 05	-0.09	11-10	Jacob 2, Madler 7-6, Jacob 2
1854 25	3472	349 4	0 54	0.54	$\begin{bmatrix} - & 0 & 0 \\ - & 2 & 2 \end{bmatrix}$	0 00	12	Dawes 2, Madler 10
1855 32	348 7	353 1	0 47	0.53	$\begin{bmatrix} - & 2 & 7 \\ - & 4 & 4 \end{bmatrix}$	-006	2	O Strave
1856 42	10	356 3	036	0.53	+ 47	-0.07	10-7	Secchi
1857 41	$\frac{24}{24}$	359 5	0 47	0.52	$+\frac{1}{2}$ 9	-0.05	4	O Struve 1, Jacob 3
1859 27	$1\overline{1}$	56	0.60	0 51	$ + \tilde{6} 1 $	+0.09	6-5	Madler 4-3, O Strave 2
1860 30	14 6	92	0 62	0.50	+ 54	+0.12	3	O Strave 2, Madler 1
1861 28	11 9	$12\overset{7}{8}$	0.56	0 50	- 09	+0.06	$\frac{5}{2}$	() Struve
1864 59	24 0	$\frac{12}{25} \frac{0}{0}$	0.52	0.48	_ 10	+001	4-1	() Strave 1, Dembowski 1-0
1865 67	23 0	28 1	0.50	0.48	-51	+0.02	8	Englemann
1866 30	32 9	31 7	0.30	0.48	+12	-0.18	1	Secchi
1868 63	44.3	407	0.55	0.48	+ 36	+0.07	3	() Strave
1870 28	473	17 1	0.68	() 49	+ 02	+0.18	9-5	Pence 5-1, O Stauve 2, Dunéi 2
1871 30	497	510	0.57	0 49	$-1\bar{3}$	+0.08	7-4	Dembowski 3-0, ON 3, Du 1
1872 31	588	547	0.52	0.50	+ 41	+0.02	2	() Struve
1873 62	60 3	59 2	0.52	0.51	+ 11	+0 01	11-4	W & S 2-0, Gl 1, Dem-5-0,
1875 27	647	619	0.46	0 52	$-0\overline{2}$	-0 06	17	Dem 5, Sch 7; Du 5 [OX 3]
1876 21	714	67 7	0 49	0 53	+ 37	-0 04	4.	Dem 2, W. & S 2 [Cop 0-1]
1877 25	72 9	713	0 56	0 55	+ 16	+0.01	17-12	Pl 5-1, Dk. 3-1, Sch 7, Dem. 2,
1878 40	74 9	748	0 63	0.56	+ 0.1	+0 07	14	β 2; Dk 1; Dem 5; Hall 6
1879 54	78 2	777	0 53	0 58	+ 05	-0.05	11	Schiaparelli 7, Burnham 4
1880 24	80 2	797	0 46	0 59	+ 05	-0.13	7-6	Bigourdan 1-0, Hall 6
1881 24	83 0	82 1	0 54	0 60	+ 09	-0.06	16-13	Big 2, Dk 5-2, Hl 4, Sch 5
1882 29	84 4	84 7	0 56	0 62	_ 03	-0.06	18	En 7, Dk 3, Hl 4, Sch 4
1883 30	89 2	87 1	0 63	0.63	+ 21	0 00	15	En 6, Sch 6, Hl 3 [Big 10-0]
1884 27	914	89 2	0 58	0 65	+ 22	-0.07	25-15	Per 2, En 4, Sch 5, Hall 4,
1885 37	929	909	0 66	0 66	+ 20	0 00	9-8	Dk 1-0, Sch 4, Tai 2, Pei 2
1886 32	92 2	93 3	0.73	0 68	- 11	+0.05	6	Englemann
1887 31	94 9	952	0 57	0 70	- 03	-0.13	14-13	Sch 9, Hall 4; Smith 1-0
1888 25	98 1	96 9	0 67	0 72	+ 12	-0.05	14	Tariant 3, Sch 6, Hall 5
1889 30	100 0	98 6	0 66	0 73	+ 14	-0.07	14	Hall 5, Schiaparelli 9
1890 30	101 5	100 3	0 67	0 75	+ 12	-0.08	10	Hall 4, Comstock 2, Sch 4
1891 27	102 4	101 8	0 72	0 77	+ 06	-0.05	12	Hall 5, Bigourdan 2, Sch 5
1892 26	1039	103 3	0 79	0 79	+ 06	0 00	15	Maw 3, Sch 7, Lv & Col 5
1893 26	103 6	104 8	074	0 80	-12	-0 06	10	Comstock 1-0, Schraparelli 9-5
1894 36	105 6	106 3	0.81	0 82	- 07	-0.01	17–13	Big 1-0, Com 3-0, H C W 2,
1895 28	1061	107 5	0.83	0 84	- 14	-0 01	2	See

The elements given above confirm the substantial accuracy of the orbit found by Hall, and represent the observations as a whole remarkably well. The changes which future observations will introduce are likely to be very small.

The following is an ephemeius for the next five years:

EPHEMERIS

t	$ heta_c$	$ ho_c$	t	θ_c	ρ_c
$1896\ 28$	$108^{\circ}7$	$0^{''}85$	1899 28	$11\overset{\circ}{2}4$	0 90
1897 28	1100	0 87	1900 28	113 5	0.91
1898 28	$111\ 2$	0.88			001

It is to be noted that the distance is steadily increasing, and that for many years the pair will be relatively easy. A number of observers of late years have sensibly underestimated the distance. Owing to the closeness of ω Leonis and its slow orbital motion, one would naturally think that this brilliant system probably has a small mass, and is comparatively near us in space, for if the mass be large, the slow motion of so close a system would indicate that it is very remote, and the resulting brightness of the components would be very great. The eccentricity of this orbit is so well determined that the value given above can hardly be in error by so much as 0.01, and a correction of half this amount does not seem probable.

φ URSAE MAJORIS = $\varphi \Sigma 208$.

 $\alpha=9^{\rm h}~45^{\rm m}~3$, $\delta=+54^{\rm o}~33^{\prime}$ 5 5, yellowish , 5 5, yellowish

Discovered by Otto Struve in 1842

OBSERVATIONS

t	θ_o	$ ho_o$	\boldsymbol{n}	Observers	t	θ_o	ρ_o	\boldsymbol{n}	Observers
1842 30	4 2	$0^{''}42$	1	Mädler	1852 39	$16^{\circ}1$	$0^{''}\!32$	2	O Struve
$1842\ 35$	8 5	0.52	2	O Struve	1852 40	209 8	0 25	4	Mädler
1843 37	5 6	0 48	3	Mädler	1853 40	10.7	0.04		
$1843\ 47$	188 5	0 39	1	O Struve	1000 40	167	0 34	3	O Struve
1844 26	186 6	0 51	1	O Struve	1854 28	25~9	$04\pm$	1	Dawes
				O Strave	1854 37	$23 \ 3$	0.42	1	O Struve
1846 01	193 8	0.45	3-2	\mathbf{M} adler	1857 34	30 6	0 3	1	\mathbf{Secchi}
1846 37	9 2	0.42	1	O Struve	1858 41	36 1	0 40	3	O Struve
1847 41	1968	0 30	2	Mädler	1859 37	43 9	0 33	1	Winnecke
1847 41	121	0.36	1	O Struve	1859 39	37 6	0 35	2	O Struve
1848 40	104	0 35	2	O Struve			0.00	-	O Bulave
4040.00			_	Obudve	1861 40	55 0	0 44	1	Winnecke
1850 39	15 0	0 33	2	O Struve	1861 41	485	0 37	2	O Struve
1851 39	207 2	0 31	4	$\mathbf{M}\ddot{\mathbf{a}}\mathbf{d}\mathbf{ler}$	1862 39	46 8	0 38	1	O Struve
1851 40	13 7	0 33	2	O Struve	1864 43	48 5	0 27	1	O Struve

$oldsymbol{t}$	θ_o	$ ho_o$	n	Observers	t	θ_o	ρ_o	n	Observers
$1866\ 27$	46 5	<0"4	1	Englemann	1882 19	139°()	<0"2	3	Englemann
$1866\ 42$	$48 \ 2$	0.24	1	O Struve	1882 34	3420^{9}		1	O Struve
1869 40	45 0	oblong	2	Dunéi	1887 43	218 9	0 23	4	Schiaparelli
$1870 \ 42$	81 5	oblong	2	Dunéi	1888 43	2203	euneifoime	1	O Struve
1872 41	77 7	0 23	2	O Struve	1889 39	214 0	ent elong	1	O Struve
1873 44	87 5		1	Lindemann	1892 13	$250 \ 8$	0.24	3	Burnham
187345	96 6	oblong	3	O Struve	$1892\ 31$	60 4	029	1	Bigom dan
187347	954	_	1	H Bluhns	1892 58	single		1	Comstock
1875 47	115 1	oblong	2	O Struve	1893 36	339 55	0 30	1	Schiaparelli
$1876\ 42$	54 0	elongated?	1	O Struve	1894 25	10und		1	Comstock
1877 43	single	-	1	O Struve	1894 40	82.7		3	Bigoui dan
1879 44	single	-	1	O Struve	189573	276~2	0 29	3	See

Although this close and rapid binary was discovered by Otto Struve, the first observation was secured by Madler, whose measures supplement Struve's work in a very happy manner, and enable us to fix the original position of the companion with much precision. For a long time these two astronomers alone followed the motion of the system, but in later years it has received occasional attention from several other observers. The stars are nearly equal in magnitude, and hence a few of the recorded angles require a correction of 180°. The arc already described amounts to about 270°, and as this covers the most critical parts of the orbit, most of the elements are defined with the desired precision. The chief difficulty encountered by observers lies in the closeness of the components, which places them beyond the reach of small, and even of moderate-sized, telescopes. The pair is, however, gradually widening out, and in a few years will be much more accessible to measurement.

The following elements of this star have been published by previous computers.

	P	$m{T}$	е	a	Ω	r	λ	Authority	Source
1	15 4 91 9	1877 12 1885 4	0 788 0 4 5	0″54 0′29	105 3 165 7		$72\overset{\circ}{1}$ $19\ 0$	Casey, 1882 Glas, 1892	A N 2417 A N 3119

Using all the available measures, we find the following elements

P = 970 years	$\Omega = 160^{\circ}3$
T = 18840	$\iota = 30^{\circ} 5$
e=0440	$\lambda = 15^{\circ} 9$
a = 0'' 3443	$n = +3^{\circ}7114$

Apparent orbit:

```
Length of major axis = 0'' 69

Length of minor axis = 0'' 5.3

Angle of major axis = 167^{\circ} 6

Angle of periastron = 174^{\circ} 1

Distance of star from centre = 0'' 149
```

It will be seen that this orbit is essentially similar to that found by GLASENAPP. The table of computed and observed places shows so satisfactory an agreement for this close and difficult object that we may regard these elements as substantially correct, and confidently conclude that such alterations as future observations may render necessary will be of minor importance

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θε	ρο	ρο	θοθ «	ρορο	n	Observers
1842 32	63	40	0″47	0"48	+ 2.3	-0″01	3	Mädler 1, O Struve 2
1843 42	70	57	0 43	0 47	+ 13	004	4	Mädler 3, O Struve 1
1844 26	66	70	0 51	0 47	_ 04	+0.04	1	O Struve
1846 19	115	101	044	0 46	+ 14	-0 02	4-3	Madler 3-2; O Struve 1
1847 41	144	120	0 33	0 45	+24	-0.12	3	Madler 2, Ó Struve 1
1848 40	104	138	0 35	0.45	_ 34	-0.10	2	O Struve
1850 39	150	17~2	0 33	0 43	_ 22	-0.10	2	O Struve
1851 40	204	191	0 32	0.43	+ 13	-0.11	6	Madler 4, O Struve 2
1852 40	229	20 9	0 29	0.42	+ 20	-0.13	6	O Struve 2, Madler 4
1853 40	167	229	0 34	0 41	_ 62	-0.07	3	O Struve
*1854 32	24 6	24.7	0 41	0 41	_ 01	± 0.00	$\frac{2}{1}$	Dawes 1, O Struve 1
1857 34	30 6	31 3	0 30	0 38	_ 07	-0 08		Secchi
1858 41	36 1	$33\ 9$	0 40	0 37	+ 22	+0.03	3	O Struve
1859 38	408	362	0 34	0 36	+ 46	-0.02	3	Winnecke 1, O Struve 2
1861 40	485	418	0 40	0 34	+ 67	+0.06	2-3	Winnecke 0-1, O Struve 2
1862 39	468	446	0 38	0 33	+ 22	+0.05	1	O Struve
1864.43	485	51 2	0 27	0 31	_ 27	-0 04	1	O Struve
1866 34	47.4	618	0 32	0.29	-14.4	+003	2	Englemann 1, O Struve 1
1869 40	450	700	oblong	0 27	-250		2	Dunér
1870 42	81 5	75 6	oblong	0 26	+ 5.9	-	2	Dunér
1872 41	77 7	86 4	0 23	0 24	- 87	-001	2	O Struve
1873 46	96 0	92 4	oblong	0 24	+ 36		4	O Struve 3, H Bruhns 1
1875.47	1151	105 1	oblong	0 22	+100		2	O Struve
1877.43	single	118 9	single	0 21	<u> </u>		1	O Struve
1879 44	single	134 7	single	0 21	l —		1	O Struve
1882.26	150 5	1496	0 20	0 20	+ 09	±000	4_3	Englemann 3, O Struve 1-0
1887 43	218 9	206 6	0 23	0 19	+123	0 04	4	Schiaparelli
1888 43	220 3	216 1	cune	0 19	+ 42	_	1	O Struve
1889 39	214 0	225 2	elong	0 19	-112		1	O Struve
1892 13	250 8	248 3	0 21	0 21	+ 25	± 0.00	3-2	Burnham
1893 36	249 6	257 1	0 30	0 22	- 75	+0 08	1	Schiaparelli
1894 40	262 7	264 0		0.23	- 13		3_0	Bigourdan
1895 73	276 2	271 6	0 25	0 25	+ 46	±000	3-1	See

Some changes will doubtless be required in all the elements, but the two elements of chief interest, the period and the eccentricity, will hardly be varied

by more than five years, and ± 0.03 respectively. It is desirable to have the theory of this system carefully confirmed, and observers with good telescopes will find it worthy of regular attention. The motion is still tolerably rapid, but is gradually slowing up, as will be seen in the following ephemeris.

t	θ_c	ρ_c	$oldsymbol{t}$	θ_c	ρ _c
1896 40	2752	$0^{''}\!\!26$	1899 40	2888	$0^{''}29$
1897 40	$280 \ 1$	0.27	1900 40	292.7	0.30
1898 40	$284\ 6$	0 28			

ξ URSAE MAJORIS = Σ 1523.

 $\alpha = 11^{h}~12^{m}~0~,~\delta = +32^{o}~6'$ 4, yellow , 5, yellowish

Discovered by Sir William Herschel, May 2, 1780

OBSERVATIONS

$oldsymbol{t}$	θ_o	ρ_o	\boldsymbol{n}	Observers	ļ t	θο	ρο	n	Observers
1781 97	$143^{\circ}8$	$^{''}_4\pm$	_	Heischel	1833 14	189°9	$2^{''}06$	8-2	Herschel
1802 09	97 5		_	Herschel	1833 23	189 8	1 98	4	Dawes
					1833.38	$188\ 2$	1 69	5	Struve
1804 09	92 6	p	_	Herschel	1834 44	184 1	1 87	2	Struve
1819 10	284 5		2	Struve	1834 50	$182\ 5$	217	4-1	Mädler
1820 13	276 3		3	Struve	1835 27	1764	1 93	1	\mathbf{Madler}
1821 78	264 7	1 92	3	Struve	1835 41	180 2	1 76	5	Struve
			3	Suruve	1835 56	175 8		4	\mathbf{M} adler
$1825\ 22$	$244\ 5$	244	6-4	South	1836 28	$171 \ 4$	1.92	1	Dawes
1826 20	238 7	1 77	3	Struve	1836 28	172 7	1 94	7–2	Madler
1007 07	228 3	1 771	4	04	1836 44	$171\ 2$	1 97	4	Struve
1827 27	228 3	1 71	4	Struve	1837 47	$165 \ 3$	193	3	Struve
$1828\ 37$	224.0	2 01	2	${f Herschel}$	1838 43	160 4	2 26	9	Struve
1829 02	2190	2 00	1	Herschel				5	
$1829\ 35$	213 6	1 67	7	Struve	1839 47	157 9	1 89	Please	Galle
1830 18	211 4		10 ±	Heischel	1840 25	$152\ 2$		40 31 Obs	Kaiser
1830 98	200 9	2 23	10±	Herschel	1840 29	1 50 8	244	6-4	Dawes
					1840 40	$153\ 6$	2 28	6	O Struve
1831 08	201 5	1 86	5	Bessel	1840 44		229	-	W Struve
1831 23	201 1	1 93	6-4	Herschel	1841 21	148.0	240	4-3	Dawes
1831 34	201 9	1 98	17-4	Dawes	1841 29	$150 \ 2$	244	7-6	Mädler
1831 44	203 8	1 71	5	Struve	1841 40	1475	223	6	O Struve
$1832\ 16$	$198\ 2$		5	Herschel	1842 24	1470	2 41	4	Madler
$1832\ 27$	1967	1 76	10-8	Dawes *	1842 27	1448	244	4	Dawes
1832 41	$195 \ 9$	175	5	Struve	1842 40	147 5	234	4	O Struve

t	θ_o	ρo	n	Observers	t	$ heta_o$	Po	n	Observers
$1843\ 28$	$142^{\circ}2$	$2^{''}48$	7	Dawes	1854 35	$11\overset{\circ}{0}3$	$2^{''}\!90$	15	Madler
$1843\ 38$	1437	237	1	$\mathbf{M}_{\mathbf{a}}$ dlei	1854 36	115 9	2 96	3	Dawes
$1843 \ 48$	14 1 9	271	9	Schluter	1854 37	$115\ 6$	3 46	1	Luther
1044.04	-1.10.4	0.48		0 8:	1854 38	115 9	2 90	$\overline{4}$	O Struve
1844 34	140 4	2 45	3	O Struve	1854 51	116 6	3 06	5	Dembowski
1844 34	141 0	2 60	11–10	Madler	1055.00	1100			
1844 36	141 0	2 47	-	Liapunow	1855 09	1166		12	Powell
1844 36	144.5	265		Dollen	1855 15	1156	3 23	7	Dembowskı
1845 46	138 1	251	2	O Struve	1855 29	114 3	2 96	1	Secchi
1845 82	1358	3 11	$\frac{1}{2}$	Jacob	1855 33 1855 44	1141	2 98	1	Winnecke
	2000	011	_	0 4000	1855 44	1157	2 87	2	Madler
1846 37	137 2	2.56	4	O Struve		1152	2 85	3	O Struve
1847 30	131 6	2 58	1	Dawes	1856 05	114 2	_	6	Powell
1847 38	132 0	271	10	Madler	1856 18	111 9	3 12	3	Jacob
1847 41	133 2	2 61	3	O Struve	1856 26	113 9	3 13	4	Secchi
					1856 33	114 1	2 99	3	Winnecke
1848 13	129 5	2 70	1	Dawes	1856 34	112 3	3 15	7	Dembowski
1848 19	129 3	2 94	3	Dawes	1856 42	1127	2 98	13	Madler
1848 31	129 7	271	4	Madler	1856 82	110 9	2 99	2	Jacob
1848 41	130 0	2 66	5	O Struve	1857 36	1097	3 11	2	Secchi
1848 45	129 1	290	2	W C Bond	1857 43	109 6	274	8	Madler
1849 30	1266	3 01	5	Dawes	1857 46	110 2	297	3	O Struve
1849 37	$127\ 6$	278	4	O Struve	1858 00	108 1	2 90	4	Jacob
1850 01	127 0	2 65	1	Johnson	1858 20	108 1	$\frac{285}{285}$	$\hat{f 2}$	Morton
1850 30	$124\ 2$	3 37	${f 2}$	Jacob	1858 20	108 1	3 10	6	Dembowski
1850 39	124 1	2 68	4	O Struve	1858 39	108 9	297	3	O Struve
1850 85	124 6	285	$\hat{2}$	Madler	1858 43	108 8	2 96	5	Madler
1851 19	123 1	2 83	6–5	Fletcher	1859 39	106 1	2 94	6-3	Madlei
1851 27	123 3	$\frac{2}{2}\frac{93}{93}$	6	Madler	1859 57	104 9	284	5	O Struve
1851 31	122 9	2 98	$\overset{\circ}{2}$	Dawes					
1851 41.	1230	280	5	O Struve	1860 08	105 2	2 84	2	Morton
1851 79	$122 \ 1$	2 91	9	Madler	1860 16	1041	2 99	6–5	Powell
					1860 32	105 2	2 88	2-1	Dawes
1852 13	1223	2 90	7	Miller	1860 36	1028		-	Oblomievsky
1852 20	1198	2 92	6	Fletcher	1860 36	103 6		-	Schiaparelli
1852 29	120 9	3 01	1	Jacob	1860 36	103 9	_	_	Wagner
1852 34	1208	273	6	Madler	1860 39	104 1	3 15	2	\mathbf{Madlei}
1852 36	118 2	285	2	\mathbf{Morton}	1861 14	100 6	3 09	6-2	Powell
1852 38	120 0		1	Dawes	1861 40	101 1	2 70	4	O Struve
1852 40	$120 \ 6$	276	4	O Struve	1861 42	100 8	2 83	8	Madler
1853 19	1188	3 01	4	\mathbf{M} iller	1861 76	100 4	3 04	5	Auwers
1853 20	1195	3 01	2	Jacob	1862 36	100 1	2 95	4	
$1853\ 20$	1192		6	Powell	1862 39	993	262		Madler
$1853\ 23$	1189	298	6	Fletcher	1862 42	1002	$\frac{2}{3}\frac{62}{20}$	4	Oblama amalam
$1853\ 40$	1190	288	4	O Struve				-	Oblomievsky
$1853 \ 45$	1188	294	13	Madler	1863 20	89 5	2 61	2	Main
185412	1170	9.1			4.863 23	96 6	2 55	19	Dembowskı
, 1004 IZ	$117\ 2$	31	10–1	\mathbf{Powell}	1863 46	957	$2\ 55$	2	O Struve

t	θ_o	ρ,	n	Observers	t	θο	ρ,	n	Obscivers
$1864 \ 31$	$94\ 0$	$2^{''}\!\!29$	9	Dembowskı	$1873\ 28$	$2^{2}2$	0″9	2-1	W & S
1864 38	$92 \ 9$	240	3	Secchi	$1873\ 33$	3589	0 98	10	Dembowskı
$1864\ 42$	$94\ 2$	233	3	O Struve	$1873\ 42$	3584	0 88	1	Dunéi
$1864\ 46$	92.8	244	1	Englemann	$1873 \ 43$	3584	0.96	5	O Struve
$1864\ 50$	939	$2\ 42$	1	Dawes	187378	347 1	0.83	3	Gledhill
1865 12	91 4	$2\ 44$	19	Englemann	1874 13	338 4	1 00	3	Gledhill
1865 30	901	2 17	10	Dembowski	1874 20	3362	0.92	2-1	W & S
1865 51	89.9	253	4	Secchi	1874 21	337 0	148	1	Ferrari
					1874 26	335 5	1 40	$\overset{1}{2}$	Leyton Obs
$1866\ 25$	92.8	272	4 –3	Leyton Obs	1874 35	333 6	1 02	6	Dembowski
$1866\ 30$	865	226	3	Secchi	1874 41	338 1	1 02	3	O Struve
1866 30	868	2~05	10	Dembowskı	1874 45	335 1	0 96	4-5	Dunér
$1866\ 39$	867	2 09	5	Kaiser					
$1866 \ 40$	854	212	3	O Struve	$1875\ 27$	$317\ 6$	1 09	8	Dembowski
$1866\ 45$	87 8	2 08	5	Kaisei	1875 31	$317 \ 5$	1 31	7	Schiaparelli
1866 49	81 1		2	Guldén	$1875\ 34$	$317 \ 2$	1 28	4-3	W & S
$1866 \ 49$	83 6		2	Abbe	$1875 \ 45$	3158	1 10	4	O Struve
186649	870		2	Foss	$1875\ 45$	$316 \ 4$	112	14	Dunér
1867 21	75 5	2 89	1	Winlock	1875 99	311 7		1	Doberck
1867 23	$82\ 2$	200	1	Leyton Obs	1876 27	3063	1 75	13-2	Doberck
1867 31	82 2	<u> </u>	8	Dembowski	1876 30	3048	124	7	Dembowski
1867 47	81 0	1 91	3	O Struve	1876 34	334.5	1 65	1	Leyton
1001 41	01.0	1 91	2	O Struve	1876 36	30 5 5	1 45	3	W & S
$1868 \ 14$	808	1 76	1	Searle	1876 42	303 5	1 35	3	O Struve
$1868\ 23$	$79\ 1$	249	2	Leyton Obs	1876.46	301 2	$\begin{array}{c} 1 \ 53 \\ 1 \ 52 \end{array}$	5-4	Plummer
1868 30	<i>77</i> 1	1~72	8	Dembowski				0~±	
1868 39	77 1	1 77	1	Main	1877 20	297 0	1 57	7–6	Plummer
$1868\ 42$	726	1 63	4	O Struve	$1877\ 26$	294.9	142	6	$\mathbf{Dembowsk}_{\mathbf{l}}$
1869 40	68 6	1 34	11	Dunér	$1877\ 26$	$294\ 2$	176	10-9	$\mathbf{Doberck}$
1869 42	69 9		_	Kıügeı	1877 34	$293\ 0$	1.52	8	Schiaparelli
1870 18	59 2	132	4	O Struve	1877 40	$294\ 6$	$1\ 52$	3	W & S
	59 2 57 3	$\frac{1}{32}$	9	Dembowski	1877 43	$291\ 6$	1 45	2	O Struve
1870 24	57.2	135	$oldsymbol{2}$	Gledhill	1877	$291\ 5$	1 35	1	Pritchett
1870 33	70.8	T 99			1877 41	2945	$2\ 10$	2-1	Hall
1870 35	538	1 20	9	Leyton Obs Dunér	1878 20		2 01	4	Doberck
1870.43					1878 32	2868	1 66	6	Dembowski
$1871 \ 22$	477	1.20	8	Dembowskı	1878 36	2863	1 50	3	O Struve
1871 31	477	12	2	Gledhill					
1871 39	662		-	Leyton Obs	$1879\ 27$	$284\ 2$	1 82	3	Hall
1871 40	457	1 12	2	O Struve	1879 33	$280\ 3$	179	7	Schiaparelli
1871 47	4 0 0	1 02	11–10	Dunér	1879 41	2785	174	2	O Struve
1871 48	43 9	11	1	Wilson	1880 13	2782	2 07	6	Franz
$1872\ 05$	30 7	1 05	2	Gledhill	1880 27	276 2	180	6	Hall
$1872\ 26$	$23 \ 2$	1 09	7–6	W & S	1880.28	274 9	205	5	Doberck
$1872\ 33$	193	1 07	6	\mathbf{K} nott	1880.28	$\frac{2743}{2730}$	$\frac{2}{1}90$	$egin{matrix} oldsymbol{3} \ oldsymbol{2} \ \end{array}$	Bigourdan
$1872\ 35$	68 0	1 28	1-2	Leyton Obs	1880 48	$272\ 0$	182	3	Jedrzejewicz
$1872 \ 41$	178	0 97	10	Dembowskı	1000 40	<i></i>	- O-	Ü	o ourzoje w 102
1872 46	166	0.94	14	Dunér •	1881 23	$270\ 3$	184	4	Doberck
1872 48	154	0 98	8	Feriari	1881 31	2680	1 80	2-1	Bigourdan

man de la

如推科

$oldsymbol{t}$	θ_o	ρ,	n	Observers	j t	θ_o	ρ_o	n	Observers
1881 34	$269^{\circ}2$	$1^{''}84$	7	Hall	1889 37	$216^{\circ}9$	1 81	3	Maw
$1881\ 35$	2697	1 66	4-3	Bunham	1889 39	218 5	164	2	O Struve
1881 36	268 9	1 92	6	Schiaparelli	1889 40	$217\ 4$	1 68	5	Tamant
$1882\ 25$	$263\;5$	1 99	6	Hall	1890 27	210 0	1 64	6	Hall
$1882\ 25$	$259\ 4$	2~00	4-3	Doberck	1890 36	$209 \ 7$	1 61	7	Schiaparelli
$1882\ 25$	$262 \ 1$	1 99	4	Englemann	1890 40	209 1	1 96	3	Maw
$1882\ 39$	$261\ 1$	193	9	Schiaparelli	1890 42	$313\ 3$	154	1	Hayn
$1882\ 42$	260 4	172	3	O Struve	1890 45	$209 \ 4$	1 87	2	Knome
$1883\ 32$	$257 \ 8$	200	6	Englemann	1891 13	202 6	178	1	Bigouidan
$1883\ 38$	$257\ 1$	1 88	11	Schiaparelli	1891 15	$202 \ 1$	163	1	\mathbf{Flint}
$1883 \ 40$	$258\ 2$	195	6	\mathbf{Hall}	1891 30	$200 \ 6$	159	6	Hall
1883 41	$258 \ 1$	1 88	3	$\mathbf{Jedizejewicz}$	1891 31	$204\ 1$	192	1	Knome
1884 28	$249\ 2$	1 69	3-4	Penotin	1891 41	1998	1 60	10	Schiaparelli
1884 32	249.2	1 89	7	Hall	1891 47	1999	174	3	Maw
$1884\ 35$	$247\ 6$		14	Bigouidan	1892 32	196 9	1 75	4	Maw
1884 38	$249\ 3$	182	11	Schiaparelli	1892 35	195 1	1 57	11–10	Schiaparelli
1884 41	2496	192	4	Englemann	1892 36	194 1	178	1	Bigourdan
1884 44	$249 \ 2$	1.56	1	O Struve	1892 39	197 4	170	6	Knone
1885 35	2447	1 80	5	Hall	1892 45	$196\ 6$	1 60	2	Leavenworth
1885 36	$\begin{array}{c} 244 \ 7 \\ 245 \ 2 \end{array}$	$\frac{1}{2}$ $\frac{30}{12}$	$\frac{5}{4}$	Englemann	1892 46	$197\ 5$	1 57	4	Comstock
1885 39	$\begin{array}{c} 245\ 2 \\ 245\ 4 \end{array}$	$\frac{2}{1}$	± 10	Schiaparelli	1002.07	100 0	0.05	0	T7
1885 41	$\begin{array}{c} 2434 \\ 2434 \end{array}$	187	3	Tarrant	1893 27	188 0	205	2	Knorre
1009 41	740 4	101	ð	Tallallo	1893 33	187 3	172	$rac{4}{7}$	Maw
$1886\ 37$	$237\ 3$	1 63	5	Hall	1893 36	186 4	1 65		Schiaparelli
$1886\ 37$	$237\ 4$	2~06	8	Englemann	1893 37	186 1	175	1	Dav Photog
1886 45	$237\ 0$	1 80	3	$\operatorname{Jedizejewicz}$	1894 22	1832	1 79	3	Comstock
1887 04	$226 \ 9$		1	Glasenapp	1894 30	181 1	200	1	Ebell
1887 35	230 3	1 61	5	Hall	1894 32	$182\ 8$	1 79	1	H C Wilson
1887 36	230 9	1 65	12	Schiaparelli	1894 34	183 6	184	2	Knome
				-	1894 35	1830	1 87	3	Maw
1888 28	$222\ 2$	1 68	6	Hall	1894 47	181 7	1 78	8	Bigouidan
1888 29	2227	1 63	4	Schiaparelli	1894 56	1846	177	1	\mathbf{G} lasenapp
1888 43	226 2	1 61	1	O Struve	1 1895 30	176 5	1 93	3	(Years to all
1888 51	$222 \ 7$	2 20	4	Maw	1895 31	176 0	193 178	ა 1	Comstock Day Photog
1889 28	218 1	2 09	2-1	Glasenapp	1895 32	176 0	1 98	1	Lewis
1889 29	216 5	1 68	5	Hall	1895 33	176 6	1 95	3	Sec
1889 36	215 9	1 61	9	Schiaparelli	1895 46	175 9	179	3 4	
2000 00	~	T 01	J	~ouralian em	1 7099 #0	T10 0	T (A)	4	Schwarzschild

This celebrated system was first measured by Herschel in 1781 A 1cpetution of the measures in 1802 and 1804 showed* that the smaller star had a rapid relative motion (*Phil. Trans.* 1804, p 363), and indeed gave indications for the first time that the motion of certain double stars is of an orbital nature ξ Ursae Majoris thus enjoys the unique distinction of having first aroused interest in observational proof of the universality of the Newtonian law. This

^{*}Astronomische Nachrichten, 3323

star also led Savary in 1827 to derive a method for finding the orbit of a double star on gravitational principles, and the first orbit ever computed appeared in the Connaissance des Temps for 1830. When Savary's method for finding double-star orbits had been successfully applied to \(\xi\) Ursae Majoris, the subject was taken up by Encke and Herschel, who published methods of superior elegance and of greater practical utility, with the result that numerous orbits were soon computed.

The rapid orbital motion of ξ Ursae Majoris insured it ample attention, and accordingly since the time of Sir John Herschel and Struve, measures have been secured annually by the best observers. The number of orbits computed for this star is very large, the following list is fairly complete:

P	T	e	а	Ω	ı	λ	Authority	Source •
58 2625 60 72 60 4596 61.464	1817 25 1816 73 1816 95 1816 44	0 4164 0 3777 0 40368 0 4135	3 ["] 857 3 278 2 290 2 417	95 37 97 78 95 0 98 87	59 67 56 1 52 27 54 93	134 37 129 68 130 8	Herschel, 1832 Madler, 1836 Madler, 1843	
61 30 61 175 61 576 63 14	1817 102 1816 66 1816 86 1816 32	$04037 \\ 04116 \\ 04315 \\ 0.3929$	2 295 2 82 2 439 2 454	96 35 96 1 95 83 97 3	53 87	129.47	Villarceau1849 Bieen, 1862	Mem R A S XVI,p 322 A N. 680 M N XXII, p 158
59 88 60 679 60 63	1816 405 1815 008 1875 50	0 3786 0 3830 0 371	2 591 2 587 2 535 2 549	103 6 100 7 101 0 101 5	53 1 56 33 55 0 56 9	135 3 127.15 216 0 234 3	Ball, 1872 Knott, 1873	Proc R I.A, June, 1872 M.N XXXIII, p 101 Cat des Ét Doub p 65 Meas Micr., p. 196
60 79 60 80 60 50	1875.29 1875.26 1814.8	0 3952 0 4159 0 410	2 549 2 580 2,55	100 22	56 67 122 9		Pritchard, 1878	

It will be seen that among the more recent orbits there is no wide range of values, and yet the elements are by no means identical. The different results depend upon the observations used and the method of computation employed.

From an investigation of all the observations, I am led to the following elements:

$$P = 60\ 00\ \text{years}$$
 $\Omega = 100^{\circ}\ 8$
 $T = 1875\ 22$ $\iota = 55^{\circ}\ 92$
 $e = 0\ 397$ $\lambda = 126^{\circ}\ 33$
 $\alpha = 2''\ 508$ $n = -6^{\circ}\ 0000$

Apparent orbit:

SHA PROPERTY

Length of major axis	=	4″ 76
Length of minor axis	=	2" 70
Angle of major axis	=	104° 6
Angle of penastron	=	$318°\ 0$
Distance of star from centre		0" 75

The following table of computed and observed places shows that these elements are extremely satisfactory

COMPARISON OF COMPUTED WITH OBSERVED PLACES

	1							
t	θο	θε	ρο	ρο	θοθα	ρ _ο ρ _c	n	Observers
1781 97	143 8	1484	1"+	$2^{''}34$	$-\overset{\circ}{4}\overset{\circ}{6}$	+1 66±	1	Herschel
1802 09	97 5	99 0		2 70	-15			Herschel
1804 09	92 6	93.3		247	-07		1	Herschel
1819 10	284 5	282 1	_	1 69	+24		2	Struve
1820 13					+23		3	Struve
1821 78	264 7	264 5	1 92	1 84	+02	+0.08	3	Struve
1823 29	258 4	255 8	2 81	1 83	+26	+0.98	58-20	Herschel and South
1825 2					±00	+0.66	7-4	South
1826 20					+03	+0.02	3	Struve
1827 2					-33	-0.01	4	Struve
1828 3					-0.3	+0.32	2	Herschel
1829 3					-41	± 0.00	7	Struve
1830 5					-32	+0.56	10±	Herschel
1831 2					-21	+0.17	2714	Bessel 5, Dawes 17-4, W Struve 5
1832 3						+0.07	15-13	Dawes 10-8, W Struve 5
1833 3	0 189 (191 (1 83	1 72	-20	+0.11	9	Dawes 4, W Struve 5
1834 4	7 183	3 183 7	7 1 87	1 78	-04	+0 09	6-2	W Struve 2, Madler 4-0
1835 3						+0.02	6	Madler 1, W Struve 5
1836 3	3 171	7 173 :	1 1 94	l 1 89	_14	+0.05		Dawes 1, Madler 7-2, W Struve 4
1837 4	7 165	3 167	2 1 93	3 1 97	-19	-0 04	3	Struve
1838 4	3 160	4 162 '	7 2 26	2 05	-23	+0 21	9	Struve
1839 4	7 157	9 157 4	4 1 89	2 14	+0.5	-0.25		Galle
1840 3	4 152	2 154	5 2 36	2 2 20	-23			Dawes 6-4, O Struve 6
1841	0 148	6 150	2 2 36	2 2 9	-16	+0 07		Dawes 4-3, Madler 7-6, O Struve 6
1842 3	0 146	4 147	3 2 40	$\frac{12}{2}$	-0.9	+0 03	l.	Madler 4, Dawes 4, O Struve 4
1843 3	3 143	0 143	9 2 42	2 4 5	-0.9	-0.03		Dawes 7, Madler 4
1844 3	4 140	7140	7 2 52	2 54	±00	-0 02 -0 16		O Struve 3, Mudler 11-10
1845 7	41136	9136	628	12 65	+0.3	+016		O Struve 2, Jacob 2
1846 3	137	2 134	92 50	0 2 68	+23	-013		O Struve
1847 3	00 132	3 132	00 79	20 00	±00	$\begin{bmatrix} -0.13 \\ -0.04 \end{bmatrix}$	1	Dawes 1, Madler 10, O Struve 3 Dawes 1, Dawes 3, Madler 4, O Struve 5, Bond 2
1848 3	29 107	1 1 1 97	00 00	0 2 0 2	$\begin{vmatrix} -0.5 \\ -0.2 \end{vmatrix}$	+0.02		Dawes 5 O Struve 4
1849 3 1850 8	3 127	2124	0 2 0	8901	-0.5	+0.02	1 -	Jacob 2, O Struve 4, Madler 2
1851 3							ì	I
1852								Miller 7, Flt 6, Jacob 1, Ma 6, Mo 2, Da 1-0, O2 4
1853 2						-0 06		
	34 116					-0 05		
	33 115							Dembowski 7, Sec 1, Madler 2, O Struve 3
	15 112					+0 05		Jacob 3, Sec 4, Dembowski 7, Madler 13, Jacob 2
	12 109					-0 06		Sec 2, Madler 8, O Struve 3
	4 108					-0 01		Jacob 4, Morton 2, Dembowski 6, O Struve 3, Ma 5
1859	18 105	5 105	4 2 8	7 2 91	$+\tilde{0}\tilde{1}$	-0 04	1 .	Madler 6-3, O Struve 5
	24 104							Morton 2, Powell 6-5, Dawes 2-1, Madler 2
1861	32 100	8 101	028	7 2 77	-0.2	+010	18-14	Powell 6-2, O Struve 4, Madler 8
1862		7 98	2 2 7	$8 \bar{2} 67$	+15			Madler 4, O Struve 4,
1863				5256				Dembowski 19, O Struve 2
1864		7 92	2 2 3	6 2 42	+15			Dembowski 9, Sec 3, O Struve 3, Dawes 1
1865		5 89	0 2 3	7 2 27	+15		33	Englemann 19, Dembowski 10, Sec 4
1866				4 2 18				Sec 3, Dembowski 10, O Struve 3
1867				1 1 89				Dembowski 8, O Struve 2
1868		8 75	$0^{ }17$	0 1 73	3 +18			Searle 1, Dembowski 8, O Struve 4
1869				4 1 4		_0 11	. 11	Dunér

t	θο	θο	ρο	ρς	θο-θο	ρο—ρο	n	Observers
1870 19	56 9	57°0	1 32	1 27	-0.1	$+0^{''}05$	24	O Struve 4, Dembowski 9, Gledhill 3, Dunci 9
1871 35			1 13		+47	+0 08		
1872 36					+09	+0.09	47-46	Gl 2, W & S 7-6, Kn 6, Dem 10, Du 14, Fer 8
1873 36					+38	+0.03	18-17	W & S 2-1, Dembowski 10, Dunei 1, O Struve 5
1874 29					+19	+0.01		Gl 3, W & S 2-1, Fer 1-0, Dem 6, O\(\Sigma\) 3, Du 4-5
1875 47					+17		34-32	
1876 35	304 3	303 5	1 34	1 33	+08		28-10	
1877 31	204 7	294 0	1 52	1 39		+0.13		
1878 32					+03	+0.04	6	Dembowski
1879 30	282 2	279 3	1 80	1 73	+29	+0 07	10	Hall 3, Schiaparelli 7
1880 31					+17	+0.03		Franz 6-0, Hall 6, Doberck 5-0, Bigourdan 2, Jed 3
1881 32							23-21	Doberck 4, Bigourdan 2-1, Hall 7, \$4-3, Sch 6
1882 28	261 5	261 7	1 97	1 84	-0.2	+0.13	23-19	Hall 6, Dobeick 4-0, Englemann 4, Schiaparelli 9
1883 38	257 8	255 3	1 90	1 82	+25	+0 08		Englemann 6-0, Schiaparelli 11, Hall 6, Jedizejewicz 3
1884 35					+01	+0.03		
1885 38					+10	+0.03		Hall 5, Schiaparelli 10, Tariant 3
1886 39					+01	-0.03		Hall 5, Englemann 8-0, Jedrzejewicz 3
1887 35					-0.9	-0.09	17	Hall 5, Schiaparelli 12
1888 36						-0.04	14-10	Hall 6, Schiaparelli 4, Maw 4-0
1889 32						+002		Glasenapp 2-0, Hall 5, Schnaparelli 9, Maw 3
1890 37	209 5	210 7	177	$\frac{1}{1} \frac{67}{67}$	$-\tilde{1}\tilde{2}$	+010	18	Hall 0, Schiaparelli 7, Maw 3, Knorre 2
1891 30	201 5	204 3	$1\overline{1}$	1 68	$-\bar{2}\bar{8}$	+003	22	Big 1, Flint 1, Hall 6, Knoire 1, Sch 10, Maw 3
1692 39	196 3	197 3	1 66	1 69	-10	-0.03	28 - 17	Maw 4, Sch 11-10, Big 1, Knone 6, Lv 2, Com 4
1893 33	188 0	191 (171	1 72	-30	-0.01		Knorre 2-0, Maw 4, Schiaparelli 7, Davidson 1
1894 38	182 9	184 3	3 1 81	1 77	-14	+004	17	Com 3, II C W 1, Knorre 2, Maw 3, Big 8, Glas 1
1895 32						+007	5	Davidson 1, Lewis 1, Sec 8

Future observations are likely to produce only very slight alterations in the above values. Thus the period is not likely to be in error by more than one-tenth of a year, and the error in the eccentricity can hardly surpass ± 0.005 Indeed the orbit ξ Ursae Majoris is practically all that can be desired in the present state of double-star measurement. In order to effect any further improvement of the orbit, astronomers will need to take every precaution against systematic errors, and rough measures by inexperienced observers are unlikely to prove to be of any considerable value.

We remark, however, that continued observation of this star is desirable, because the micrometrical measures of skilled observers will be valuable in throwing light upon the question of the existence of dark bodies or other disturbing influences, and in proving with all possible experimental accuracy that the force which retains the companion in its orbit is directed exactly towards the central star

ξ Ursae Majoris, like *ζ Herculis*, has a large proper motion in space, and this circumstance in connection with the brilliancy of the components, conduces to the belief that the system is comparatively near the earth. Measurement for parallax has never been attempted, but if suitable comparison stars could be found, effort in this direction would be likely to prove successful

 $0\Sigma 234.$

 $o\Sigma 234$.

 $\alpha = 11^{h}~25^{m}~4~,~\delta = +41^{\circ}~50'$ 7, yellowish , 78, yellowish

Discovered by Otto Struve in 1843

OBSERVATIONS

t	θ_o	Po	n	Observers	t	θ_o	$ ho_o$	\boldsymbol{n}	Observers
$1843\ 29$	$182^{\circ}5$	$0^{''}\!42$	1	O Struve	1870 46	281 8	cert obl	1	O Struve
1843 33	$179\;6$	0.25	_	\mathbf{Madler}	1877 26	127 3	0 25	2	Dembowskı
1844 31	$172 \ 7$	0 46	1	O Struve	1877 32	cuneifori	ne sous 34	9° 1	O Struve
1845 42	194 6	0 30	2	\mathbf{Madler}	1878 28	168 4	0 27	2–1	Buinham
1846 37	177 2	0 40	1	O Struve	1880 37	178 4	0 18	1	Burnham
1847 40	187 2	0 25	1	\mathbf{Madler}	1882	130	<03	3	Englemann
1847 41	183 7	0 38	1	O Struve	1883	350	<0.25	3	Englemann
1848 25	187 9	0 40	1	O Struve					•
1850 31	$195\ 2$	0 33	1	O Struve	1884 10	20	0 28	1	Englemann
1851 36	200 4	03	1	\mathbf{Madler}	1887 42	231 2	0 18	_ 6	Schiaparelli
1851 42	$199\ 3$	0 30	2	O Struve	1889 39	cuneifor	me sous 9	8° 1	O Struve
1852 46	196	0 27	1	O Struve	1891 23	104 2	0 14	3	Burnham
1853 41	201 3	0 33	1	O Struve					
1858.36	cert elor	ng in 244°	· 1	O Struve	1892 28 1892 39	114 2 107 0	$\begin{array}{c} 018 \\ 024 \end{array}$	$\begin{array}{c} 3 \\ 21 \end{array}$	Buinham
		024	1	O Struve	1892 40	293 6	$\begin{array}{c} 0.24 \\ 0.22 \end{array}$	2-1 1	Bıgourdan Schiaparelli
1859 40	233			•					-
1861 26	2550	0 28	2-1	O Struve	1894 29	123 2	0 22 ±	2	Comstock
1862 39	260	oblong	1	O Struve	1894 84	121 7	0 21	3	Barnard
1866 20	single		1	Dembowskı	1895 20	$122 \ 2$	$0.30 \pm$	1	Comstock
1866 49	oblong	ın 283°	1	O Struve	1895 75	125 1	0 36	1	See

Since the discovery of this pair by Otto Struve, the companion has described an arc of 305°. The object is always close and difficult, and hence the measures are by no means so good as could be desired, yet when account is taken of both angles and distances, there is reason to believe that elements based on the observations now available will never be greatly changed. Mr Gore is the only computer who has previously investigated the orbit of this pair; using the measures prior to 1886, he found the following elements.

P = 6345 years	$\Omega = 124^{\circ}2$
T = 1881 15	$i = 47^{\circ} 35$
e = 03629	$\lambda = 71^{\circ} 97$
a = 0'' 339	•

05 234. 113

We find the following orbit of $O\Sigma 234$:

P = 770 years $\Omega = 157^{\circ} 5$ T = 1880 10 $\iota = 50^{\circ} 6$ $\iota = 0 302$ $\iota = 206^{\circ} 6$ $\iota = 0'' 3467$ $\iota = 44^{\circ} 6754$

 ${f Apparent~orbit}$

Length of major axis = 0'' 695Length of minor axis = 0'' 437Angle of major axis $= 158^{\circ} 0$ Angle of periastron $= 355^{\circ} 2$ Distance of star from center = 0'' 098

The accompanying table shows that these elements are very satisfactory; the period is perhaps uncertain by five years, and the eccentricity by perhaps Larger variations in these elements are not to be anticipated probably worth noting that Burnham's distance in 1891 is sensibly smaller than the computed distance, although the angle agrees perfectly. By this we are not to infer that he under-measured the distance with the great Refractor of the Lick Observatory, but that all small distances with a great Telescope appear diminished in comparison with their magnitude in a small instrument—a phenomenon due mainly to the diminution of the spurious discs under the superior separating power of great Telescopes. The computer must therefore take account of the inequality of the distances due to the different power of the Telescopes employed; but as most of the observations of $O\Sigma 234$ were made with instruments of about 15-inch aperture, I preferred to make the scale of the major axis such, that on the whole the computed would agree with the observed distances

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θε	ρο	ρς	θο—θ с	ρορο	n	Observers
1843 31	181 0	178 1	0"42	0 41	$+2^{\circ}9$	+0"01	2–1	OΣ1, Mädler 1-0
1844 31	1727	180 1	0 46	0 41	- 74	+0 05	1	O Stiuve
1845 42	194 6	$182\ 3$	0.30	0.40	+123	010	2	Mädler
1846 37	1772	184 2	0 40	0.39	— 70	+001	1	O Struve
1847 40	1854	186 6	0 38	0 38	_ 12	±000	2-1	Mädler 1-0, ΟΣ.1
1848 25	187 9	188 5	0 40	0.38	- 06	+002	1	O Struve
1850 31	1952	193 7	0 33	0 36	+ 15	-0.03	1	O Struve
1851 39	1998	$196\ 6$	0 30	0.35	+32	-005	3	Madler 1, OS 2
1852 46	196	1993	0 27	0 34	- 33	_0 07	1	O Struve
1853 41	201 3	202.7	0 33	0.33	14	± 0.00	1	O Struve
1858 36	244	2221	cert elong	0 27	+219	_	1	Q. Struve
1859 40	233	227 0	0 24	0.26	+ 60	-0 02	1	O Struve
1861 26	255 0	237 0	0 28	0.25	+180	+0 03	2-1	O Struve
1862 39	260	243 8	oblong	0.24	+162	_	1	O Struve
1866 49	283	271 3	oblong	0 24	+117	. –	1	O Struve
	<u> </u>	<u> </u>			<u> </u>	<u> </u>	<u> </u>	

The observation of this star which I made at Madison, is discordant in angle (AJ 359), and hence I am led to think that an error of 30° occurred in reading the circle, the unreduced reading was 94°.3, whereas it doubtless should read 64°3. As the angle was estimated at 130°, this correction is amply justified.

If good observations can be secured for the next decade, this orbit can be rendered very exact. The following ephemeris will be useful to observers:

$oldsymbol{t}$	heta。	$ ho_c$	t	$oldsymbol{ heta_o}$	ρ_{c}
1896 40	$127^{\circ}0$	$0^{''}\!\!31$	1899 40	$136\ 8$	0"36
1897 40	130 4	0.33	1900 40	139.5	0.37
1898 40	1337	0.34			

os 235.

 $\alpha = 11^{h}~26^{m}~7~,~\delta = +61^{\circ}~38'$ 6, yellowish ~,~7~8,~yellowish

Discovered by Otto Strave in 1843

OBSERVATIONS

t	θο	ρ_o	n	Observers	t	θ_{o}	Po	n	Observers
1844 33	$289^{\circ}3$	$0^{''}67$	1	O Struve	1852 46	3295	0"57	1	O Strave
1845 47	2967	0 54	1	O Struve	1853 41	333 5	0.51	1	O Strave
1846 42	306 8	0 57	1	O Struve	1855 47	345 6	0 51	1	O Strave
1847 45	315 8	0 53	1	O Struve	1856 55	350 3	0 52	1	() Struve
1849 47	320 8	0 49	1	O Struve	1857 51	350 4	0 55	1	O Struve
1850 31	316 5	0 56	1	O Struve	1858 44	358 7	0 75	1	O Struve
1851 42	328 0	0 54	2	O Struve	1859 41	358 7	0 62	1	O Strave

$oldsymbol{t}$	θ_o	ρ_o	\boldsymbol{n}	Observers	t	θ o	Po	n	Observers
1861 42	$13^{\circ}3$	$0^{''}65$	2	O Struve	1879 44	55°5	$1^{''}07$	3	Hall
1862 38	20 3	0 76	1	O Struve	1882 59	648	1 26	6	Englemann
1864 43	$25 \ 3$	0 80	1	O Struve	1887 43	73 0	0 93	5_3	Schiaparelli
1866 49	33 3	0 83	1	O Struve	1888 43	69 4	1 12	1	O Struve
1867 45		separated	1	Dembowskı	1888 69	72~6	1 32	4	Tarrant
		_		,	1889 35	76 9	1 07	5	Hall
1868 13	310	0 84	1	Dembowskı	1889 39	67.3	0 90	1	O Struve
1870 18	42~6	0 9	1	Dembowskı	1891 29	81 7	1 04	1	Bigoui dan
1870 46	37 4	0 98	1	O Struve	1892 12	84 3	0 97	3	Burnham
1872 40	42 0	0 8	1	Dembowskı	1892 44	88 1	1 03	1	Bigourdan
1872 60	431	1 00	1	O Struve	1892 45	85 4	0 80	$\hat{2}$	Lv
1876 63	51 0	• 0 95	1	O Struve	1892 54	84 2	0 94	3-2	Comstock
1877 26	55 5	1 07	2	Dembowski	1893 37	902	0 92	1.	${f Comstock}$
1077 20	F 4 17	1.04	1	O Struve	1893 41	86.6	0.85	6-9	Bigourdan
1877 32	54 7	1 04	1	O Sullive	1894 24	90 1	0.75	3	$\operatorname{Comstock}$
$1878\ 35$	58 1	1 18	4	Dembowskı	1895 27	93 9	0.79	3	Comstock
1879 44	$58\ 2$	0 76	1	O Struve	1895 74	97.3	0.81	2	See

For a number of years after the discovery of this pair, Otto Struve alone noted the position of the companion, but as his measures soon established the rapid motion of the system, Dembowski, Hall, Schiaparelli, and other subsequent observers have contributed to the material now available for the investigation of the orbit.

The observations are not very numerous, but for an object of this difficulty, they are comparatively good

The arc described by the companion since 1844 is only 166°, and yet the motion around the apastron of the apparent orbit defines the elements with considerable precision Doberok is the only astronomer who has previously investigated the motion of this pair; his elements are as follows:—

P	T	e	* a	ស	ı	λ	Authority	Source
94 4 94 406	1839 1 1839 10	0 500 0 5870	0 ["] 98 1 066	99 [°] 6 96 28	$5\overset{\circ}{4}5$ $60\ 22$		Doberck,1879 Doberck,1879	

A careful study of all the observations leads to the following elements:

$$P = 80 \text{ 0 years}$$
 $\Omega = 81^{\circ} 7$
 $T = 1834 30$ $\iota = 49^{\circ} 32$
 $e = 0 324$ $\lambda = 137^{\circ} 78$
 $\alpha = 0'' 8690$ $n = +4^{\circ} 5$

Apparent orbit

Length of major axis = 1'' 682Length of minor axis = 1'' 02Angle of major axis $= 72^{\circ} 8$ Angle of periastron $= 231^{\circ} 1$ Distance of star from centre = 0'' 242

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θο	ρο	ρς	$\theta_o - \theta_c$	ρο—ρο	n	Observers
1844 33	289°3	288 6	0 67	0 60	+ 0 7	+0"07	1	O Struve
1845 47	296 7	293 5	0 54	0 59	+ 32	-0.05	1	() Struve
1846 42	306 8	298 1	0 57	0 58	+ 87	_0 01	1	() Struve
1847 45	3158	303 7	0 53	0 57	+121	-0 04	1	O Struve
1849 47	320 8	314 9	0 49	0 56	+ 59	-0.07	1	O Struve
1850 31	316 5	318 7	0 56	0 56	_ 22	± 0.00	1	O Struve
1851 42	328 0	3247	0 54	0 56	+ 33	-0.02	2	() Struve
1852 46	329 5	330 2	0 57	0 56	_ 07	+0.01	1	() Struve
1853 41	333 5	335 5	0 54	0 57	— 2 0	-0.03	1	O Struve
1855 47	346 6	3463	0 51	0 59	+ 03	_0 08	1	O Stauve
1856 55	350 3	351 8	0 52	0 60	_ 15	-0 08	1	O Struve
1857 51	350 4	356 6	0 55	0 61	- 62	-0 06	1	O Struve
1858 44	358 7	10	0 75	0 63	- 23	+0.12	1	O Struve
1859 41	358 7	5 5	0 62	0 65	- 68	_0 03	1	O Struve
1861 42	133	13 7	0 65	0 69	- 04	_0 04	2	() Struve
1862 38	20 3	17 5	0 76	0 71	+ 28	+0.05	1	() Struve
1864 43	25 3	24 8	0 80	.0 76	+ 05	+0.04	1	O Struve
1866 49	33 3	30 8	0 83	0.81	+ 25	+0.02	1	O Struve
1867 45	401	34~2	separated	0 84	+ 59	_	1	Dembowski
1868 13	31 0	36 0	0 84	0.86	— 50	-0.02	1	Dembowski
1870 32	40 0	4 0 4	0 94	0 90	- 04	+001	2	Dembowski 1, O Struve 1
1872 50	426	47 1	0 90	0.96	– 4 5	-0 06	2	Dembowski 1, O Struve 1
1876 63	51 0	55 9	0 95	102	- 49	-0 07	1	() Struve
1877 29	55 1	57 3	1 05	1 03	_ 22	+0.02	3	Dembowski 2, O Struve 1
1878 35	58 1	59 3	1 18	1 04	- 12	+014	4	Dembowski
1879 44	58 2	61 5	1 07	1 05	- 33	+0.02	1-3	O Struve 1, Hall 0-3
1882 59	648	67 3	1 26	1 05	_ 25	+0 21	6	Englemann
1887 43	72 5	76 1	0 93	1 02	- 36	-0 09	4	Schiaparelli
1888 56	726	78 4	1 22	1 00	- 58	+0.22	4-5	O≥ 0-1, Tanant 4
1889 37	76 9	798	1 07	0 98	_ 29	+0 09	5	IIall
1891 29	817	83 6	1 04	0 94	- 19	+0.10	1	Bigouidan
1892 39	85 5	85 9	0 94	0 92	- 04	+0.02	9-8	β 3, Big 1, Lv 2, Com 3 2
1893 39		88 2	0.89	0 89	+ 02	±0 00	7-10	Comstock 1, Bigourdan 6 9
1894 24	901	90 1	0 75	0 87	± 00	-0.12	3	Comstock
1895 50	93 9	933	0 80	0 83	+ 06	-0 03	3	† Comstock

A comparison of the computed with the observed places shows a very satisfactory agreement, and we cannot doubt that the elements given above will be found to approximate the truth. The period remains uncertain by perhaps five years, and the eccentricity may be varied by ± 0.05 , but larger alterations in these elements are not to be expected. The motion of this pair will be accelerated in approaching periastron, and hence for a good many years will

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	•		
	T.		1 of
		•	· · · · · · · · · · · · · · · · · · ·
		LOV	

deserve the regular attention of observers. If good measures can be secured during the next twenty years, the elements can be determined with great accuracy. The following is a short ephemens:—

$oldsymbol{t}$	θc	Fo	t	θο	$ ho_{\mathfrak{o}}$
1896 50	95 9	0"80	1899 50	105 3	0"69
1897 50	98.9	0.76	1900 50	109.0	0.66
1898 50	102 0	0.73			

γ CENTAURI = H₂ 5370.

 $a = 12^{h} 30^{n}$, $\delta = -48^{\circ} 25'$ 4, yellowish , 4, yellowish

Discovered by Sir John Herschel, March 1, 1835

OBSERVATIONS

I By Sir John Herschel:

			М 16	ASURES WITH	THE EQUATORIAL*
t	θυ	ρ_{u}	n.	Observers	Itomarks
1835.257	3518	<1′	1	Herschel	Extremely close and very difficult, at least as close as $\gamma Viryinis$, 278 barely elongates it.
1835.260	360 3		1	Herschel	Certainly double, but far too difficult for this telescope. Distinctly elongated, but the measures of no dependence.
1835.320	351.3	0.67	1	Herschel	Far too difficult for satisfactory measures, yet I must believe these to be somewhere about the truth.
1835.353	346.8		1	Herschel	A better set of measures than hitherto got with the equatorial, but it is too difficult for this object-glass.
1835.367	349.6		1	Herschel	Certainly seen double, a e elongated with parallel fringes.
1836 145	355.3	*****	1	Herschel	Excessively close and difficult, but the power No 4
1836 156	362.0	Street, riving	1.	Herschel	will act to-night, though not quite so well as I could wish. Field strongly illuminated
1836,192	355 4	-	1	Herschel	Tolerably elongated with No. 4 Brandishes, dances,
1836 493	317 1		1	Herschel	and spreads, yet occasionally an elongated centre caught
1837.140	361.9	1	1	Herschel	
			OBSE	RVATIONS WIT	II THE REFLECTOR
1835 1 66		-			γ Centauri, a stat 4 ^m , which I am very much inclined to believe close double, but could not verify it owing to bad definition. Tried 320, but it will not bear that power
1835 250	340 8	0 67	1	Herschel	180 with triangular aperture shows it elongated, 320 fauly double and almost divided Pos. with 320=338° 3, with 480 (which shows a black division) = 343°.8 Both stars of 4th magnitude
1836 382	310 ±	agentage later	1	Heischel	Seen decidedly elongated with 320 and diminished aperture, but so violently agitated and ill defined that no measure could be got. That set down may err 20°
1837.074	310 ±	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1	Herschel	(y Centauri). [Pos estim. from diag] Seen decidedly elongated in a position as per diagram, with 820 and triangular aperture, but all attempt at a measure confounded by constant boiling and working of the star.

^{*}Astronomische Nachrichten, 3339.

Π	By ot	heı ob	sei vei	s					
$oldsymbol{t}$	θ_o	ρ_o	\boldsymbol{n}	Observers	l t	θ_o	ρ_o	n	Observers
185620	20 6	$0^{''}7\pm$	3	Jacob	1887 58	359 1	1.76	2 1	Tebbutt
1857 97	13 7	111	5	Jacob	1887 53	358 5	1 75	6	Pollock
1000.00	400		40.1.	7)11	1888 17	359 5	1 87	1-6	Tebbutt
1860 68	128		TOODS	Powell	1889 32	359.1	1 7.3	1	Pollock
$1870\ 23$	69	$15\pm$	6	Powell	1890 36	12	1 81	1	Sellors
1871 38	38	1 18	1	Russell	1890 36	359 ()	181	2 1	Tebbut t
1873 36	4 2	2 29	1	Russell	1891 10	357 0	1 33	1	Sellors
107100	1.0	4.4	1	Russell	1892 32	357 3	1 21	5	Sellors
$1874\ 26$	16	1 61	1	Russen	1892 18	358.7	1 66	7 8	Tebbutt
1876 63	8 5	1 30	-	Ellery	1893 36	356 7	1 10	3	Sellors
1880 44	13	1 39	1	Russell	1891 40	356 6	121	3	Sellors
$1882\ 22$	21		1	Tebbutt	1895 33	356 4	1 75	11 7	Tebbut t

In the course of the three years following the discovery, Herschel secured several micrometrical measures with his seven-inch equatorial, but it appears that the records he has left us in his sweeps with the 20-feet reflector are much nearer the truth as regards the position-angle of the stars at that epoch. It is singular that his measures with the equatorial give angles almost identical with that of the pair at the present time (356° 4), while his estimates made under the superior power of the reflector give the angle as 340° \pm . A careful study of all of his observations of γ Centauri (Results of Observations at the Cape of Good Hope, pp. 211, 256, 269), and of the other measures by subsequent astronomers leaves no doubt that his estimates with the reflector are essentially correct, while for some reason the measures taken with the equatorial are vitated by systematic errors which render them worthless. In the above list of measures I have inserted Herschel 's notes, with a view of throwing light upon this interpretation of his observations.

Contrary to the opinion of Herschel, it is now evident that the motion of γ Centauri is retrograde; and hence we perceive that the radius vector has swept over nearly an entire revolution since 1835. The recent measures of Tebbutt, to whom we are so much indebted for observations of this star, prove beyond doubt that the distance of the components in angle 350° must be at least 1"48; and hence it could easily have been divided by Herschel with his seven-inch equatorial. He says, however, that the object was "extremely close and very difficult, at least as close as γ Virginis;" and since it is known that γ Virginis, to which Herschel gave regular attention, was less than 0".7,

	t y
	· ·
	\$\frac{1}{1} \\ \frac{1}{1} \\ \frac{1} \\ \frac{1} \\ \frac{1}{1} \\ \frac{1}{1} \\ \frac{1}
	1
	3 , 1
	we i district the state of the
	,

we may conclude that the distance of γ Centauri did not surpass 1"0. If this be the approximate distance at the epoch 1835 25 we see that the angle must have been substantially what Herschel estimated with the reflector, and we are thus enabled to reconcile his measures with those of later observers. His estimate of $340^{\circ}\pm$ for the angle is based on three nights' work and can hardly be in error by more than two degrees. If we adopt the position thus indicated

and make use of the measures secured since 1856, we shall obtain an orbit which is near the truth, and the resulting elements will never be greatly changed. Mr. Gore is the only computer who has previously investigated the orbit of this binary, using Herschiel's equatorial measures, and relying mainly on the angles, he found:

```
P = 61 88 \text{ years} \Omega = 177^{\circ} 95

T = 1840 84 \iota = 84^{\circ} 1

\iota = 0 6316 \lambda = 46^{\circ} 81

\iota = 1'' 50
```

Making use of the mean places given in the following table, and basing our work on both angles and distances, we are led to the following elements of γ Centauri:

```
P = 880 \text{ years} \Omega = 4°6

T = 18480 \iota = 62°15

\epsilon = 0800 \lambda = 194°3

\alpha = 1"0232 n = -4°0911
```

Apparent orbit

```
Length of major axis = 2'' 10

Length of minor axis = 0'' 58

Angle of major axis = 0^{\circ} 1

Angle of perfastron = 177^{\circ} 8

Distance of star from centre = 0'' 794
```

The period here found may be uncertain by perhaps three years, and the eccentricity by ± 0.03 , but larger variations in these important elements are not to be expected. The orbit of γ Centauri is remarkable for its considerable inclination and high eccentricity, which renders the pair very difficult in the periastron part of the apparent ellipse. Binaries with equal components are very frequent among double stars, and are types of systems which possess a peculiar interest when studied in respect to their evolution.

It is clear that γ Centauri will move rather slowly for a good many years, but it deserves the regular attention of southern observers. The following is a short ephemens

$oldsymbol{t}$	$ heta_{c}$	ρ_o	t	θ_{ι}	ρ_c
	0	_"	1000.10		"
$1896 \ 40$	3560	1 75	1899 40	$354 \ 8$	0.71
1897 40	355 6	174	1900 40	354.4	1 70
1898 40	$355\ 2$	172			

COMPARISON OF THE COMPUTED WITH OBSERVED PLACES

t	θο	θ_c	ρο	$ ho_c$	θοθς	ρορς	n	()l)servers
1835 25 1856 20	340 ±	338 ² 2 19 7	1 00 0 7 ±	0 ^{''} 88 0 77	+18 +09	$+0^{''}12 \\ -0.07$	3-1 3	Herschel Jacob
1857 97	$20\ 6\ 13\ 7$	167	1 11	0 91	-30	+0.20	5	Jacob
1860 68 1870 23	$\begin{array}{c c} 128 \\ 69 \end{array}$	$\begin{array}{c} 134 \\ 65 \end{array}$	- 15±	$110 \\ 154$	-06 + 04	-0.04	10 6	Powell Powell
1872 37 1874 26	40 16	$\begin{array}{c} 5\ 6 \\ 4\ 7 \end{array}$	$173 \\ 161$	$159 \\ 164$	$-16 \\ -31$	+0.14 -0.03	$egin{array}{c} 2 \ 1 \end{array}$	Russell Russell
1876 63	85	3 7	1 30	1 69	+48	-0 39	_	Ellery
1880 44 1882 22	$\begin{array}{c c} 1 \ 3 \\ 2 \ 1 \end{array}$	$\begin{array}{c c}22\\14\end{array}$	1 39	1 75 1 77	$-09 \\ +07$	$\begin{vmatrix} -0.36 \\ - \end{vmatrix}$	1 1	Russell Tebbutt
1887 55 1888 47	358 8 359 5	359 5 359 1	$\begin{array}{c c} 176 \\ 187 \end{array}$	180 180	-0.7 + 0.4	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8-7 4-6	Tebbutt 2-1, Pollock 6 Tebbutt
1889 32 1890 36	359 1	358 8	1 73	1 80	+03	-0 07	4	Pollock
1891 40	360 1 357 0	358 4 358 0	$\begin{array}{c} 182 \\ 133 \end{array}$	$\begin{array}{ c c c c } 180 \\ 179 \end{array}$	$ \begin{array}{c} +17 \\ -10 \end{array}$	+0.02 -0.46	$egin{array}{c} 2 \ 1 \end{array}$	Sellors 1, Tebbutt 1 Sellors
1892 48 1895 33	$\begin{vmatrix} 3587\\3564 \end{vmatrix}$	$\begin{vmatrix} 357 & 6 \\ 356 & 4 \end{vmatrix}$	$\frac{1}{1}\frac{66}{75}$	$\begin{array}{c} 179 \\ 177 \end{array}$	+11 00	-0.13 -0.02	7–8 11–7	Tebbutt Tebbutt

$\gamma \text{ VIRGINIS} = 21670.$

 $\alpha = 12^{h} 36^{m} 6$, $\delta = -0^{\circ} 51'$ 3, yellow , 3.2, yellow

Discovered by Bradley and Pound, March 15, 1718

OBSERVATIONS

t	θ_o	ρ_o	n	Obscivers	t	θ o	ρ_o	n	Observers
1718 20	3308		2	B & P	1819 40		$3^{''}56$		Strave
$1720\ 31$	3190	7 49*	1	Cassini	1820 28	284 9	276	5	Strave
$1756\ 20$	$324\ 4$	6 50	-	T Mayeı	1822 02	282 8	-	2	Strave
$1777~\pm$	$310 \pm$	98	-	C Mayer	1822 25	283 4	379	2	II & S
1780 0		$570\pm$	_	Herschel	1823 19		3 30		Λ mıçı
1781 89	3107			Herschel	1823 32	281 6	2 95	1-3	Struve
1803 37	300 2		0 -1		1825 32	2769	3 26	4	South
1000 01	300 2		8008	Herschel	1825 32	277 9	2 37	G	Struve

^{*}Computed from Lunar occultation — of no value

t	θο	ρο	n	Obsei vers	l t	θ_o	ρ _o	n	Observers
$1828\ 35$	$270^{\circ}5$		1	Herschel	1839 31	$34^{\circ}6$	$1^{''}\!26$	2-1	Dawes
1828 38	$271\ 5$	$2\ 07$	1	Struve	1839 35	35 5	1 30	5	Galle
$1829\ 22$	$267\ 7$	179	2	Herschel	1840 26	279	1 30	37-24	Kaisei
$1829 \ 39$	$268\ 3$	1 78	5	Struve	1840 38	25.5	1 24	11-7	Dawes
1830 31	262 1	0.00	<i>C</i> 1	TT h -1	1840 45	$26 \ 4$	1 31	5	O Struve
1830,59	262.1	$egin{array}{c} 2\ 22 \ 1\ 59 \end{array}$	6-4	Herschel					
1000,00	202 2	1 99	1	Bessel	1841 19	20 9	1 42	2	Challis
1831 30	$258\ 4$	199	6-2	Dawes	1841 34	200	1 58	7-5	1)awes
$1831\ 32$	$257 \ 2$	174	10-6	Herschel	1841 35	20 1	1 73	12-11	Mädlei
1831 36	260 9	1 49	5	Struve	1841 41	$22 \ 4$	1 63	4	O Struve
$1832\ 27$	$250 \ 2$	1 21	18-1	Herschel	1842 21	166	1 58	7-5	Mädler
$1832\ 30$	2499	1 33	9-4	Dawes	1842 34	174	1 67		Mam
$1832\ 33$		194	_	Coopei	1842 35	176	1.83	-	Any
$1832\ 52$	$253 \ 5$	1.26	4	Struve	1842 35	122	1.85	2	Challis
					1842 38	14 9	1 73	9-5	Dawes
1833 20	241 8	1 41	12–3	Herschel	1842 41	17 1	1.86	4	O Strave
1833 24	64 9	1 14	1	Bessel	1842 82	145	176	-	Kaiser
1833 35	236 4		1	Mädler	1842 88	147	181	6-1	Mädlei
1833 36	$240\ 1$	1 14	8_2	Dawes	1843 30	07	2.05	1	Challis
$1833\ 37$	$245 \ 5$	105	7	Struve	1843 35	120	177	7	Mädler
$1834\ 29$	$227 \ 3$		8	Dawes	1843 39	136	2 08	_	Main
$1834\ 34$	2148		1	Mädler	1843 40	12 2	1 83	10-5	Dawes
$1834\ 37$	$223 \ 1$	1 51	8-1	Herschel	1843 48	114	2.45	-	Encke
$1834\ 38$	231 6	0 91	5	Struve					20110110
$1834\ 54$	2149		6	Herschel	1844 33	90	263	1	Challis
1834 84	2136		1	Struve	1844 34	29	220		Richardson
1835 11	201 5		8	Heischel	1844 36	8 9	206	8-7	Mädler
1835 38	195 5	0 51	9	Struve	1844 38	86	227	-	Encke
1835 39	1952	0 57	1	Senff	1845 28	8 9	241	_	Encke
183542	1971	_	1	O Struve	1845 37	70	7 41		Mädler
					1845 46	45	$\frac{-}{2}$	$\frac{-}{2}$	O Struve
$1836\ 28$	$169\ 5$		2	Dawes			2 20	-	
1836 41	151 6	0.26	3	Struve	1846 28	5 0			Π and
1836 41	158 7	_	2	O Struve	1846 32	$2 \ 2$	291	2	Jacob
1836 41	1538	• -	1	Sabler	1846 39	63	225	-	Main
1836 59	113 9			Encke	1846 39	29	235	2	O Struve
$1836\ 59$	117 5	-	-	Mädler	1846 49	41	1 83	1	Mitchell
1837 41	78 3	0 58	1	\mathbf{M} adler	1846 90	38	245	2	Dawes
$1837 \ 41$	779	0.58	6	O Struve	1847 07	19	262	_	Hind
$1837 \ 41$	78.5	0 67	1	Encke	1847 35	25	2 40	8	Dawes
$1837 \ 41$	77 9		1	Argelander	1847 41	130	2.37	~	Main
1838 08	57 5	0 67	1	Herschel	1847 42	25	240	3	O Struve
1838 32	534		1	Dawes	1847 56	25	309	1	Mitchell
1838 36		$\begin{array}{c} \\ 124 \end{array}$	_	Lamont	1847.94	$359 \ 9$	288	2-1	Jacob
1838 40	51 9	0 86	_	Struve	1848 34	360 8	2 71	7-6	Mädler
1838 43	51 1	0 80	_	O Struve	1848 37	360 6	262	9	Dawes
1838 43	49 2	0 83	3 ±	Ga & Mä	1848 43	359 1	255	3	O Struve
	-						_ 00	U	- WOLLEY O

t	θο	ρο	n	Observers	j t	θ_{o}	ρο	n	Observers
1848 45	36() 4	2 (60)	2	WC&GPB	1855 18	$351\ 6$	$3^{''}\!\!30$	4	() Struve
1848 45	360 6	280	1	Mitchell	1855 19	351 3	3 51	4	Dembowski
1848 48	360 5	260	2-3	Main	1855 30	3534	-	4	Powell
1040 40	500 5	200	2-0	11141111	1855 39	353 5	3 45	_	Mam
1849 37	3590	285	5-4	Dawes	1855 40	352 6	3 37	1	Secchi
1849 41	3529	264	2^{-}	O Struve	1855 45	354 1	3 42	$\frac{1}{2}$	Madler
1849 45	3598	30	$oldsymbol{2}$	W C &G P B	1855 46	$351\ 2$	3 31	4-3	Dawes
1849 50	357 0	292	3	Main	1855 53	353 3	3 51 3 51	4-3	
1049 90	551 0	2 72	J						Morton
$1850\ 23$	3597	285	8	${f Johnson}$	1856 10	350 5	3 45	4	Jacob
$1850\ 30$	3580	290	2	Jacob	1856 29	349 0	3 5 1	-	Mam
$1850\ 30$	357 5	290	3	Hartnup	1856 38	351 7	3 55	6	Secchi
$1850\ 36$	3567	295	6-3	Fletcher	1856 39	$350\ 5$	3.56	5	Dembowski
1850 39	$355 \ 2$	274	4	O Struve	1856 39	$351\ 7$	359	6	Mädlei
$1850\ 42$	$359 \ 1$		1	Mådlei	1856 43	$172\ 1$	331	4	$\mathbf{W}_{1\mathbf{n}\mathbf{n}\mathbf{e}e\mathbf{k}\mathbf{e}}$
1850 48	359 7	294	4	Main	1856 96	$353\ 0$	364	_	Carpenter
			_		1856 97	351 6	3 66	3	Morton
$1851\ 17$	$356 \ 8$	292	4	${f Philpot}$	1057.07		4 50		Cl., 1.
$1851\ 19$	357 7	312	2	Jacob	1857 07	040.4	4 50	_	Schmidt
$1851\ 28$	3579	299	4.	Madler	1857 09	348 4	3 76	6	Dembowski
1851 36	$356\ 3$	304	3	Main	1857 35	350 1	3 59	7	Dawes
1851 40	3560	305	6	Fletcher	1857 39	350 8	3 74	7	Secchi
1851 40	356 5	299	5	Dawes	1857 40	$352 \ 9$	3 58	6±	Baxendell
1851 42	353 0	288	3	O Struve	1857 41	351 6	354	_	Fletcher
1851 47	355 9	304	3–1	Millei	1857 42	$350 \ 2$	359	9-8	Madler
1851 98	3564	3 30	4–3	Madler	1857 42	349 9	356	6	Dawes
1001 00	000 1	0.00	. 0	1/20/1101	1857 44	$350 \ 2$	363	2	O Struve
$1852\ 24$	355 5	312	3	Jacob	1857 96	$350 \ 7$	3 50	5	Jacob
$1852\ 26$	3555	312	6-3	Mılleı	1858 34	$348\ 5$	380	6	Dembowski
$1852\ 32$	$355 \ 3$	302	2	Dawes	1858 37	3499	4 01	2	Madler
185242	3554	315	5	Fletcher	1858 39	350 0	357	_	Fletcher
$1852\ 43$	$354\ 6$	317	2	Madler	1858 40	$352\ 0$	3 62	3	Secchi
$1852\ 43$	3530	3 00	3	O Struve	1858 44	349 3	3 67	2	O Struve
$1852\ 45$	356 9	305	_	Fearnley	1858 45	348 8	3 68	8	Dawes
$1852\ 47$	3597	320	3	Main	1858 47	348 0	3 85	_	Carpenter
					1858 48	3507	3 40	3	Morton
$1853\ 24$	$353\ 2$	312	2	Jacob	1				
$1853\ 24$	3544	_	7	Powell	1859 15	350 7	3 95	4	Morton
$1853\ 27$	$354\ 9$	310	7-5	\mathbf{M}_{1} ller	1859 37	349 2	3 88	9–8	Mädler
$1853\ 32$	$354\ 6$	318	6	Fletcher	1859 38	347 9	376	3	O Struve
1853 36	$354 \ 1$	306	3-2	Dawes	1859 39	350 0	4 18	-	Wakelm
$1853\ 38$	3574	3 30	2	Mam	1859 44	$349\ 5$	391	3	Secchi
$1853\ 39$	$354\ 2$	325	6	Madler	1859 46	$348\ 2$	377	5	Dawes
$1853 \ 40$	3520	313	4	O Struve	1860 24	347 9	395	1	Auwers
1853 91	353 0	3 06	2	Jacob	1860 30	358 0	2 90	_	Jacob
			-	· -	1860 35	345 9	3 90	1	Mädler
1854 39	352 0	345	8	\mathbf{Madler}	1860 36	350 2		1	Schiaparelli
1854 39	3527	3 21	8	Dawes	1860 36	347 1		1	Wagner
1854 40	3521	340	3	Morton	1860 36	347 3		1	
1854 47	353 6	323	<i>3</i> 7				4.05		Oblomievsky
TOOR A!	อยอ ย	<i>3 43</i>	7	Dembowski	1860 44	$349\ 3$	405	2	$\mathbf{K}_{\mathbf{nott}}$

t	θ_o	ρ_o	n	Observers	, t	θ_o	ρ_o	n	Observers
$1861\ 15$	$347^{\circ}0$	$3^{''}\!93$	4	O Struve	1869 22	$344^{\circ}9$	$4^{''}77$		Brunnow
1861 19	$357 \ 7$	312	_	Jacob	1869 22	340 9	527	2	Leyton Obs
$1861\ 28$	347.8	399	4	Maın	1869 49	$339 \ 8$	474	3	Mam
$1861\ 31$	$346 \ 1$	393	5	Powell	1869 98	$341 \ 8$	4 43	17	\mathbf{Duner}
1861 36	$348\ 5$	412	7	Auwers	1070.00	0.40.0	4	0	C(1 11 11
1861 41	347.8	4 11	3	Mädler	1870 33	342 6	4 65	2	Gledhill
				_	1870 38	340 6	476	6	Main
1862 03	346 5	3 95	5–3	Dawes	1870 39 1870 72	338 6	4.00		Leyton Obs
1862 33	345 3	3 90	3-2	Powell	1	3420	4 63	11	Dembowski
1862 38	345 5	4 39	3	Mädler	1870 77	343 4	4 45	3	O Struve
1862 38	349 3	4 31	1	Auwers	1871 21	3398	5 31	1	Peirce
1862 38	346 6	4 00	_	Main	1871 35	340 9	4 54	5	Main
1862 40	346 9	3 97	$\frac{2}{1}$	O Struve	1871 38	343 1	4 76	-	Leyton Obs
$1862\ 42$	347 6	362	1	Oblomievsky	1871 38	3398	4 49	3	Knott
$1863\ 25$	$346 \ 7$	4 06	3	Main	1871 38	3397	5 35	2	W & S
$1863\ 27$	345.1	4 34	-	Bamberg	1871 53	3418	477	3	Gledhill
1863 46	347.3	3 90	f 2	O Struve					
1863 63	345 6	4 08	$^{2}_{-6}$	Dembowski	1872 12	341 1	4 59	17	Dunéi
1000 00	010 0	100	2-0	DOIIDO WARI	1872 30	339 7	4 4	1	Gledhill
$1864\ 40$	$345\ 7$	427	2	Maın	1872 34	3422	5 59	3	W & S
1864 41	$345 \ 5$	4 28	2	Secchi	1872 37	338 6	4 80	_	Leyton Obs
186442	$345\ 1$	4 06	3	O Struve	1872 40	341 5	4 82	1	Knott
186444	$345 \ 4$	4 10	4	Dawes	1872 41	340 0	4 64	3	O Struve
186444	3454	427	2	Knott	1872 41	340 3	4 78	3	Main .
$1864 \ 48$	348 3	4 03	3	Englemann	1872 86	340 8	4 59	10	Dembowskı
1005 45	0454	4.00	J	779 3	1873 40	340 2	4 83	5	Main
1865 45	345 4	4 02	5	Englemann	1873 41	3397	4 65	2	Gledhill
1865 36	345 2	4 28	4	Main	1873 43	3408	4.55	3	O Struve
186537 186542	 344 0	4 18	4	Kaiser	1873 46	340 5	496	3	Lindstedt
1865 45	344.0 344.3	437 434	7-6	Dawes					
$1865\ 74$	344.3 344.3	4 18	$\frac{3}{26}$	Knott	1874 27	340 5	5 08	2	Gledhill
1009 14	944 9	4 10	20	Dembowskı	1874 30	3418	5 00	1	W & S
1866 31	$344 \ 3$	4 39	3	Secchi	1874 32	339 3	5 39	1	Leyton Obs
$1866\ 33$	$342 \ 8$	452	3-4	Leyton Obs	1874 33	338 5	5 23	6	Mam
186637		5 00	1	Winlock	1874 41	340 4	487	3	O Struve
$1866\ 38$	344 6	4 21	6	Kaiser	1875 14	339 1	4 66	14	Dunér
$1866\ 42$	344 0	4 29	2	O Struve	1875 22	338 5	4 86	4	Gledhill
$1866\ 45$	$345 \ 2$	4 35	2	Main	1875 29	339 8	5 09	6	Mam
$1866 \ 46$	345 9	4 01	-	Kaiser	1875 30	340 0	4 97	1	Seabroke
1007.04	040.0	¥ 00	_	~	1875 32	339 2	4 80	11	Dembowski
1867 24	342 9	5 28	1	Leyton Obs	1875 41	339 6	4 86	13	Schiaparelli
1867 29	344 3	4 50	5	Harvard	1875 44	339 9	4 87	2	O Struve
1867 38	341 4	4 40	6	Main					
1867 80	$343\ 2$	4 30	12	Dembowski	1876 24	338 7	5 34	5	Doberck
1868 17	344 3	4 58	2	Searle	1876 27	338 7	4 78	13	Gledhill
1868 23	341 0	521	$\frac{z}{2}$		1876 36	3400		1	Leyton Obs
1868 42	341 0 341 0	463	∠ 7–6	Leyton Obs Main	1876 38	339 8	5 30	4	Cincinnati
1868 44	343.2	4 30	2	O Struve	1876 40	339 7	4 64	1	Waldo
7000 11	U=U,#	1 00	4	O Buuve	1876 41	340 2	514	4*	\mathbf{Hall}

t	θ_o	$ ho_o$	n	Observers	t	θ_o	ρ_o	n	Observers
$1876 \ 42$	$339\degree7$	$4^{''}95$	3	O Struve	1883 07	335 6	$5^{''}\!22$	7-5	Englemann
$1876 \ 45$	3390	4.84	4	Schiaparelli	1883 36	336.8	545	5	Hall
$1876\ 48$	$338\ 2$	518	5	Mam	1883 41	335 6	523	8	Schiaparelli
1877 07	338 5		2	Gledhill	1884 33	335 2	5 65	5-3	H C Wilson
$1877\ 24$	340 ()	465	5-4	Plummeı	1884 37	336 1	542	5 5	Hall
$1877\ 28$	$335 \ 8$	504	_	\mathbf{Knott}	1884 38	335 7	5 43	3 3	Perrotin
$1877\ 30$	338 1	519	8-7	Cincinnati	1881 40	შ პ 7 0	5 53	9 2	
1877 40	$339\ 5$	4 91	6	Jeduzejewicz	1884 89	336 1	5 33	ئہ 4	Seabroke
1877 41	337 9	491	14	Schiaparelli	188140	335 6	5.02 5.19	4 ()	Englemann
187743	$338 \ 4$	496	_	Flammanion	1884 44	336 5	519		Schraparelli
1877 43	338 9	4 97	2	O Struve	1004 44	ออบ อ	ئدن ن	1	() Struve
1877 83	338 1	4 97	8	Dembowski	1885 25	334 4	5 30	1	Cop & Lohse
1878 26	340 1	5 01	2	W & S	1885 32	333 7	535	2	II C Wilson
1878 37	337 1	5 06	3-5	Goldney	1885 38	336 8	5 35	3	Tarrant
1878 37	337 5	5 03	1	O Struve	1885 44	3352	530	16	Schraparelli
1879 0	336 3	5 07	1	Pritchett	1886 28	335 0	5 08	2	Q1
1879 12	337 3	5 20	20	Cincinnati	l .			$\frac{z}{2}$	Glasenapp
1879 13	337 5	4 97	10	Schiaparelli	1886 30	336 4	5 38		II C Wilson
1879 35	338 6	5 00	1	Gledhill	1886 36	334 9	5 57	4	IIall
1879 37	338 3	520	3	Hall	1887 26	335 7	5 63	2	Glasenapp
1879 38	338 3	504	$\frac{3}{2}$	Sea & Smith	1887 35	334 8	5 58	4	Hall
1879 44	340 0	5 09	1	O Struve	1887 38	335 5	5 65	$rac{4}{2}$	Tebbutt
1010 44	340 0			O Butave	1887 41	$334\ 2$	542	7	
$1880\ 19$	3367	5 30	1	Buiton	1001 41	994 Z	0 4±	•	Schiaparelli
$1880\ 25$	$337 \ 4$	5 35	6	RadcliffeObs	1888 27	333 5	5 93	2	Glasenapp
$1880\ 26$	$336\ 5$	5 67	3-2	Tiss & Big	1888 33	334 6	5 50	5	Hall
1880 30	$338 \ 2$	527	5	\mathbf{Hall}	1888 35	334.2	5 33	$\frac{\circ}{2}$	Schiaparelli
$1880\ 30$	$337\ 5$	536	2	$\operatorname{Burnham}$	1888 40	335 1	5 29	$\frac{-}{2}$	Maw
$1880\ 31$	$337\ 3$	490	-	Gledhill	1888 43	333 3	5 53	1	() Struve
$1880\ 32$	3369	5 13	6	Cincinnati	1888 48	334 8	574	$\overset{-}{2}$	Tebbutt
$1880\ 37$	338 1	495	3	\mathbf{Dobe}	1888 91	333 8	5 50	9	Leavenworth
$1880 \ 40$	$337\ 5$	4 89	2	Seabloke	200002	000 0	0 00	ŭ	22000 / 011 // (/1 011
1880 40	337 1	574	2	${f Tebbutt}$	1889 27	$333\ 5$	5 93	2	Glasenapp
$1880 \ 45$	3379	524	3	${f J}$ edizejewicz	1889 31	3334	572	3	Burnham
1880 66	3379	522	6	$\mathbf{F}_{1}\mathbf{a}\mathbf{n}z$	1889 39	$333 \ 1$	551	2	() Struve
188070	3384	532	2	Pritchett	1889 43	$333\ 0$	554	5	Hall
1881 24	336 3	5 40		Gledhill	1889 44	333 8	541	3	Schiaparelli
$1881\ 24$	337 1	502	4	Doberck	1000 96	333 3	5 10	4	(llagamann
1881 30	336 1	557	3	E J Stone	1890 36		5 59	3	Glasenapp Hall
$1881\ 35$	3377	5 33	4	Hall	1890 43	332 8			
1881 39	3368	520	9	Schiaparelli	1890 43	333 2	5 53	8	Schiaparelli
$1881 \ 42$	3387	528	2	Hough	1890 44	336 0	6 13	1	Hayes
1881 44	$336\;2$	523	14–13	Bigourdan	1891 15	330 4	5 75	1	Flint
1882 28	335 0	5 13	3	H C Wilson	1891 32	332 0	5 78	$\overset{\mathbf{-}}{2}$	Wellmann
1882 28	337 4	5 36	5-4	Doberck	1891 32	332 9	5 69	11	Knone
1882 34	335 8	5 50	2	Sea &Hodges	1891 39	333 1	5 64	3	Hall
1882 41	336 6	523	10	Schiaparelli	1891 42	332 6	5 51	7-6	Schraparelli
TOOM AT	0000	0 20	. .0	Comaharem	. 1001 72	0020	0 01	0	~ ozrzw]rem Ozrz

t	$ heta_o$	ρ_o	n	Observers	l t	θ_o	$ ho_o$	\boldsymbol{n}	Observers
1891 44	331 0	$5^{''}64$	1	Bigouidan	1893 42	$331^{\circ}9$	$5^{''}\!\!47$	6	Schiaparelli
$1891 \ 44$	$332\ 5$	5 70	3	See	1893 43	333 1	566	1	Comstock
1892 40	332 6	5 55	6	Schiaparelli	1893 46	331 7	5 64	4	Bigoui dan
1892 43	332 2	5 67	2	Leavenworth	1894 40	$332 \ 1$	5 50	2	${f Comstock}$
1892 49	333 6	5 55	3	Comstock	1894 42	$332\ 2$	562	2	Schiaparelli
1892 51	332 3	5 56	$\mathbf{\hat{z}}$	Tebbutt	1894 47	$328 \ 9$	571	6	Bigoui dan
$1892\ 52$	331 8	5 61	` 3	Bigouidan	1895 30	331 1	5 84	5-4	See
$1892\ 96$	332.1	5 83	2	Jones	1895 43	3320	565	3	Comstock

The observations of this celebrated system date back almost to the beginning of double-star Astronomy. The only double star previously recognized which has proved to be binary is a Centauri † It was resolved into its components in December, 1689, by Father Richard, at Pondicherry, India. On putting one eye to the telescope, and looking at the heavens with the other, Bradley found the two components of γ Virginis to be approximately in line with the naked-eye stars a and δ Virginis; this allineation gives a positionangle of 330°8 at the epoch 1718 20. Such an observation has of course some historical interest, but is worthy of little consideration in the discussion of a modern double-star orbit. Neither can any confidence be placed in the position for 1720, which was calculated from a lunar occultation observed by Cassini while searching for evidence of an atmosphere surrounding the Moon

The observation which results from the Catalogue of Tobias Mayer would be entitled to more weight were it not for the uncertainty of double-star positions deduced from differences of right ascension and declination.

Therefore in the present discussion of the orbit I have relied principally upon observations since the time of William Struve, but have not entirely ignored the measures of Sir William Herschel, which appear to be as good as could be expected from the means at his disposal After an examination of all the observations, it appeared advisable to base the orbit mainly upon the work of the great standard observers. This sifting of the observational material is rendered the more necessary by virtue of the great number and miscellaneous character of the observers who have occupied themselves with an easy! and celebrated star like $\gamma Virginis$ It is probable that more orbits have been computed for this star than for any other binary in the heavens, but as all of these are defective, according to trustworthy recent observations, a new determination of the elements based upon the best measures now available, would seem to be desirable In dealing with an orbit which has long occupied the

[†] Astronomical Journal, 352

[‡] Some of the observations here omitted are good, but in working with the graphical method I have not thought it necessary to use all of the super-abundant material

£.,

Adams, we could hardly hope for material improvement over the results already obtained, were not the investigation rendered more complete by recent observations, and by the use of the observed distances, which have generally been rejected, but which here acquire a high importance owing to the slow angular motion. The nature of the motion of γ Virginis is such that some of the elements, especially the periastron passage and the eccentricity, are determined with great precision; but the period has been underestimated by nearly all recent investigators, and will still remain slightly uncertain, perhaps to the extent of one year

ELEMENTS DERIVED FROM PREVIOUS INVESTIGATIONS

P	T	е	а	Ω	ı	λ	Authority	y	Source
513 28	1834 01	0 8872	11 830	87 [°] 83	68°0	290°0	Herschel, 1	831	Mem RAS vol V p 193
628 90	1834 63	0 8335	12 09	974	67 03				Mem RAS, vol VI p 152
145 409	1836 313	0 8681	3 402	60 63	24 65	78 37			Dorpat Obs , 1841 p 174
157 562	1836 103	0 8680	3 638	58 38	35 6	94 0			A N 363
143 44	1836 29	0 8590	l —	706	23 1	319 38			'Spec Hartw,' p 845
141 297	1836 228	0 8566		78 47	25 23				Mem RAS, vol XVI,
133 5	1836 30	0 8525	3 499	69 67	24 6	2493		846	
169 445	1836 279	0 8806	l —	62 15	25 42	79 07		847	Die Fixs -Syst II p 240
182 12	1836 43	0 8795		5 55	$23 \ 6$				'Results,' p 297 [p 67]
183 137	1836 385	0 8860	4 336	287	30 65	290 5			Mem RAS, vol XVIII,
171 54	1836 40	0 8804		2057	27 38	300 2	Hind, 1	851	MN, vol XI, p 136
174 137	1836 34	0 8796		34 75	$25 \ 45$	284 9	Adams, 1	851	
184 53	1836 40	0.8794		1912	27.6	295 2	Fletcher, 1	853	MN, vol XIII, p 258
148 2	$1836\ 2$	0.8725	3 617	41 67	31 95	269 3	Smyth, 1	860	'Cycle,' p 356
177 7	1836 50	0 8878	4 226	$35\ 62$	$37\ 33$	$281\ 7$	Smyth, 1	860	'Cycle' cont, p 451
185 0	1836 68	0 896	3 97	356	35 1	2837	Thiele 1	.866	AN, vol XVIII
						long per			
1750	1836 45	0 8715	3 385		0.0	= 3200	Fl, 1	.874	'Catalogue,' p 72
180 54	1836 47	0 8978	4 09	4582	37 0	93 98	Doberck, 1	.881	Copernicus, vol I, p 143
179 65	1836 45	0 8904	3 94	460	33 95	93 92	Doberck, 1	.881	Copein, vol I, p 143 ['93]
192 07	1836 51	0 895	4 144	54 9	34 12	274 23	See, 1	.893	Astron & Astro -Phys , Dec

From an investigation of the long list of observations, including the very careful measures recently secured with the 26-inch refractor of the Leander McCormick Observatory of the University of Virginia, we find the following elements of γ Virginia.

$$P = 194 \text{ 0 years}$$
 $\Omega = 50^{\circ} \text{ 4}$
 $T = 1836 53$ $i = 31^{\circ} \text{ 0}$
 $e = 0 8974$ $\lambda = 270^{\circ} \text{ 0}$
 $\alpha = 3'' 989$ $n = -1^{\circ} 8557$

Apparent orbit

Length of major axis	_	6" 824
Tiong of or major axis		
Length of minor axis	=	3" 530
Angle of major axis	=	140°4
Angle of penastion		140°4
Distance of star from centre	_	3" 062

 γ Virginis= $\sum 1670$.

The accompanying table of computed and observed places shows that these are perhaps the most exact elements yet determined for any star. For although all the measures have not been used in forming the mean observations on which the orbit is based, yet those measures which have been employed have been so combined as fairly to represent the best material for each year. Accordingly, the residuals are uniformly small, except just before periastron passage, when the object was extremely difficult, and, as no variation of the elements will materially improve the representation of the observations in this part of the orbit without a corresponding damage elsewhere, we infer that the differences are due mainly to systematic errors in Struve's measures

COMPARISON OF COMPUTED WITH OBSERVED PLACES

y								··· ··································
t	θο	θ_c	ρ_o	$ ho_c$	θ_o — θ_c	ρ_o — ρ_c	n	Óbservers
1718 20	330°8	326°2		$6^{''}\!27$	+ 4 6		2	Bradley and Pound
1720 31	319 0	3250	7 49	634	- 60	+115	1	Cassini
1756 20	$324 \ 4$	318 7	6 50	6 46	+ 57	+0.04	-	Tobias Mayei
1781 89	310 7	308 1	5 70	5 67	+ 26	+0.03	1	Herschel
1803 37	300 2	2996		4 60	+ 06	_	8 obs	Herschel
1819 40		286 9	3 56	3 16		+0.40	1+	Struve
1820 28	284 9	284 9	276	$2\ 97$	0 0	-0.21	5	Struve
$1822\ 25$	283 4	283 4	3 79	285	0 0	-0.06	2	Herschel and South
1823 32	281 6	281 8	295	270	- 02	+0.25	1,3	Struve
$1825\ 32$	277 9	278 2	2 37	243	- 03	-0.06	6	Struve
1828 38	271 5	271 4	2 07	201	+ 01	+0.06	1	Struve
1829 30	268 0	268 8	1 78	1 86	- 0.8	-0.08	7	H 2, Σ 5
1830 59	262,2	264 1	1 59	1 63	- 1.9	-0.04	7	Bessel
1831.36	260.9	2608	1 49	1 50	+ 0.1	-0 01	5	Struve
1832 52	253 5	253 8	1 26	1 26	- 03	0 00	4	Struve
1833 36	240 1	247 2	114	1 09	- 71	+0.05	8, 2	Dawes
1833 37	$245\ 5$	247 1	1 05	1 08	- 16	-0.03	7	Struve
1834 38	231 6	235 0	0 91	0.84	- 34	+0.07	5	Struve
1834 84	213 6	2265		0.72	-129	_	1	Struve
1835 38	195 5	212 2	0 51	0 58	-167	-0.07	9	Struve
1835 39	195 2	212 0	0 57	0 57	-168	0.00	1 1	Senff
1835 42	197 1	211 3		0 56	-142		1	O Struve
1836.41	151 6	150 2	0 26	0 36	+ 14	-010	3	Struve
1836 41	158 7	150 2	 _	0 36	+ 85		2	O Struve
1836 41	1538	150 2		0 36	+ 36		1	Sabler
1837 41	77 9	78 2	0 58	0 52	- 03	+0.06	6	O Struve
1837 41	78 5	78 2	0 67	0 52	+ 03	+0.15	1	Encke
1838 08	57 5	58 0	0.67	0 70	- 05	-0.03	1	Herschel
1838 40	51 9	508	0.86	0.78	+ 11	+008	_	Struve
1838 43	51 1	50 0	0 80	0 79	+ 11	+001	_	O Struve
1838 43	49 2	50 0	0 83	0 79	- 08	+0.04	3±	Galle and Mädler
1839 33	35 5	37 3	1 26	1 01	- 18	+0.25	5,1	Galle 5-0, Dawes 0-1
1840 36	26 3	28 1	1 28	1 23	- 18	+005	16,12±	Kaiser $1\pm$, Dawes $11-7$, $O\Sigma$ 5
1841 41	224	22 0	1 63	1 44	+ 04	+019	4	O Struve
1842 21	16 6	17 7	1 58	1 60	- 11	-0 02	7,5	Mädler
1842 41	171	161	173	1 67	+ 10	+006	4,5	$O\Sigma$ 4-0, Dawes 0-5
1843 37	121	13 7	1 80	1 78	- 16	+002	17, 12	Madler 7, Dawes 10-5
1844 36	8 9	101	2 06	1 97	_ 12	+0 09	8,7	Madler
1845 46	4 5	7 2	2 23	2 15	- 27	+0 08	1 2	O Struve
1846 59	3 6	4 6	2 21	2 31	- 10	-010	5	OE 2, Dawes 2, Mitchell 1

							,	
t	θ_o	θε	ρο	ρς	θοθι	ρορι	n	Observers
1847 38	$2^{\circ}5$	30	2 40	2"42	_ 0°5	-0"02	11	Dawes 8, $O\Sigma$ 3
1848 34		13	2 71	2 55	_ 05			Madler
1848 40	1		2 57	2 56	- 13	+0 01	12	Dawes 9, 02 3
1849 37			2 84	2 67	-05	+0.17		Dawes
1850 40			274	2 80	+ 01	-0.06		Jacob 2-0, O≥ 4, Madler 1 0,
1851 28 1851 40			2 99	2 90	+ 11	+0.09		Madler [Madler 1.0]
1852 38		356 4 355 4	2 99 3 06	2 95 3 01	$\begin{vmatrix} + & 0.2 \\ - & 0.8 \end{vmatrix}$	+0.04		Dawes David O O
1853 30		354 3	3 21	3 13	-0.7	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		Dawes 2, Müdler 2, O\(\Delta\) 3
1853 56		354 0	3 15	3 16	- 09	-0 01	12	Jacob 2, Dawes 3 2 Madler 6, OA 4, Jacob 2
1854 43		353 0	3 22	3 26	+ 02	-0.04	15	Dawes 8, Dembowski 7
1855 18	351 4	352 3	3 40	3 33	- 09	+007	8	O≥ 3, Dembowski i
1855 67		351 8	3 40	3 40	+ 10	0 00	10,9	Senff 1, Madler 3, Dawes 4 3,
1856 39		351 3	3 56	3 44	- 08	+012	5	Dembowski Morton 3
1857 28	1	350 2	370	3 56	- 11	+014	20	Dembowski 6, Dawes 7, Senfl 7
1857 56 1858 36		350 1	3 57	3 57	+ 01	0 00	22,21	Ma 9 8, Da 6, O2, Ja 5
1858 44		349 3	3 80	3 65	-01	+0.15	8,6	Dembowski 6, Madler 2 ()
1859 36	349 1	349 3	3 59	3 66	+0.5	-0.07	16	Senff 3, O2 2, Da 8, Mo 3
1860 40	347 6	347 6	3 97	$\begin{array}{ c c c }\hline 372\\ 384\\ \end{array}$	+ 05	+011	24, 23	7.5. 77
1861 23		347 1	3 93	3 90	- 05	+0.13	3	Madler 1, Knott 2 [Dawes 5]
1861 38	348 1	347 0	4 11	3 91	+ 11	+0.03 +0.20	9 3+	OΣ 4, Powell 5
1862 28	346 0	346 3	4 01	3 99	- 03	+0.02	13, 10	Madler 3, Auwers -
1863 54		345 5	3 99	4 06	+ 09	-0 07	28	Da 5-3, Po 3-2, Ma 3, O2 2 OE 2, Dembowski 26
1864 43		344 9	4 18	4 14	+ 04	+0 04	11	Senff 2, O. 3, Da 4, Kn. 2
1865 54	1	344 2	4 36	4 22	0.0	+014	36, 35	Da 7-6, Kn 3, Dom 26
1866 36	3441	343 7	4 34	4 28	+ 04	+0.06	5	Senff 3, OY 2
1867 80 1868 43	$\begin{vmatrix} 343 \ 342 \ 2 \end{vmatrix}$	$342.8 \\ 342.4$	4 30	4 40	+ 04	-0.10	12	Dembowski
1869 98	341 8	341 6	$\begin{array}{c c} 4 & 47 \\ 4 & 43 \end{array}$	$\begin{array}{c} 4\ 45 \\ 4\ 53 \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	+0 02	9	O Strave 2, Main 7
1870 74	342 7	341 2	4 54	4 60	+0.5	-010	17	Dunéi Danie
1871 43	$340 \ 5$	340 9	4 87	4 65	- 04	$\begin{vmatrix} -0.06 \\ +0.22 \end{vmatrix}$	14 8	Dembowski 11, ON 3
$1872 \ 12$	341 1	340 5	4 59	4 68	+ 06	-0.09	17	Kn 3, Gled 3, W & S 2 Dunéi
1872 63	340 4	340 0	4 61	471	+ 04	-013	13	O≥ 3, Dembowski 10
1873 43	340 3	339 9	4 77	4 76	+ 04	+0 01	13	Gled 2. O2 3. Ma 5 7an 2
1874 64	340 4	3393	4 97	4 84	+ 11	+013	5	Gledhill 2, OE'3
1875 18 1875 36	338 8 339 4	339 0 338 9	4 76	4 88	-02	-0.12	18	Dunéi 14, Gledhill 4
1876 34	339 1	338 5	$\begin{bmatrix} 4 & 83 \\ 5 & 02 \end{bmatrix}$	4 89	+ 05	-0.06	25	Dembowski 11, Schiaparelli 13
1877 62	338 0	337 9	4 94	4 95 5 01	$\begin{array}{c} + & 0.6 \\ + & 0.1 \end{array}$	+0.07	26	Gled 13, III 4, Sch 4, Dk 5
1878 37	337 1	337 6	5 06	5 06	$\begin{array}{c c} + & 0.1 \\ - & 0.5 \end{array}$	-0.07	22	Schraparelli 14, Dembowski 8
$1879\ 25$	337 9	337 2	5 08	5 12	$\frac{-0.0}{+0.7}$	0.00 -0.04	3, 5	Goldney
1880 30	337 5	3368	5 36	5 17	+ 07	+0.19	$\frac{13}{2}$	Schiaparelli 10, Hall 3 Burnham
1881 44	3362	336 3	5 28	5 22	- 01	+0.06	14, 17	Hall 0 4 Drawn Last 4 40
1882 41	336,6	335 9	5 23	5 28	+ 01	-0.05	10	Hall 0-4, Bigourdan 14-13 Schiaparelli
1883 28	335 6	335 6	5 30	5 31	0.0	-0 01	20, 18	En 7-5, Hall 0 5; Sch 8
1884 38 1885 35	3358	335 1	5 34	5 38	+ 07	-0 04	17	Hall 5, Per 3, Sch 9
1886 36	334 1 334 9	334 8	5 32	5 40	- 07	-0.08	19	Cop 1, H C W 2, Sch 16
1887 38	334 5	334 4 334 0	5 45	5 45	+ 05	0.00	4,6	Hall 4, HCW 0-2
1888 32	3341	333 6	5 50 5 58	5 50 5 55	+ 05	0 00	11	Schiaparelli 7; Hall 4
1889 40	333 4	333 3	5 56	5 60	$\begin{array}{c c} + 05 \\ + 01 \end{array}$	+0.03	9	Glas 2, Hall 5, Sch 2
1890 43	3328	332 9	** ***	5 64	- 01	-0.04 -0.05	11	Burnham 3, Hall 5, Sch 3
1891 44	332 5	332 6		5 67	-01	+0.03	$\frac{3}{3}$	Hall See Lones
1892 56	332 3	332 2	5 64	571	+ 01	-0 07	16	
1893 44 1894 33	332 2			5 75	+ 03	-0.10	11,5	Sch 6, Lv 2, Com 3, Big 3, Sch 6, Com 1, Big 4
1895 30	331 1 331 1			579	- 05	-0 08	10, 6	Com 2-0, Sch 2-0, Big 6
	201 1	331 3	5 84	5 83	- 02	+0 01	5, 4	See

It will be seen that in this orbit the line of nodes coincides with the minor axis of the real ellipse, which is also the minor axis of its projection; and owing to the small inclination the apparent ellipse is only slightly less eccentric than the real ellipse, so that the foci of the two ellipses very nearly coincide. This renders the motion of the radius vector in the apparent orbit very nearly the same as in the real orbit, and makes y Virginis an object of peculiar interest from the point of view of the study of the law of attraction in the stellar systems. From direct observation we are enabled to say that if there is any deviation from the Keplerian law of areas, it must be extremely slight. Therefore the force is certainly central, and the probabilities are overwhelming that the principal star, which is so near the focus of the apparent orbit, occupies the focus of the real orbit, or that the law of attraction is Newtonian gravitation. Other researches in double-star Astronomy increase the probability of the law of gravitation, and leave no adequate ground for doubt as to its absolute uni-Yet a prolonged study of the motion of y Virginis will eventually give a very precise criterion for the rigor of this law, as well as throw light upon the question of the existence of disturbing bodies in binary systems.

The orbit of γ Virginis is very remarkable for its high eccentricity, which surpasses that of any other known stellar orbit. This characteristic of γ Virginis, which Sir John Herschel recognized when he declared the eccentricity to be "physically speaking, the most important of all the elements" (Results at Cape of Good Hope, p. 294), seems to preclude the permanent existence of a third body in the system; for if a companion to either of the components existed, its motion would be affected by an equation of enormous magnitude, analogous to the annual equation in the moon's motion, and at the time of periastron passage would probably soon cause the body to come into collision with one of the stars, or be driven off in an orbit analogous to a hyperbola.

Thus, although the above orbit is exact to a very high degree, the system will still deserve the occasional attention of astronomers.

Since the angular motion for many years to come will be extremely slow, observations of distance will be more valuable than angular measures in effecting a further improvement of the elements.

Discovered by William Strieve in 1827

OBSERVATIONS

t $ heta_o$ $ ho_o$ n Observers $ $ t $ heta_o$ $ ho$	o n Observers
1827 83 189 5 obl 2-1 Struve 1853 09 194 2 0	$^{\prime\prime}62$ 4 Dawes
1069 40 1910 V 04 0 DILLIVO 1	61 14-12 Mädler
1853 40 190 8 0	57 3 O Struve
1834 43 228 3 obl 1 Strave 1854 38 194 1 0	60 1 O Struve
1854 39 193 6 0	61 8-7 Mädler
	55 5 Dawes
1836 41 10 2 0 30 3 Strave 1855 38 198 7 0	55 2-1 Mädler
1837 40 11 0 0 39 6 Struve 1855 44 189 1 0	62 2 O Struve
1838 41 11 5 0 36 3 Struve 1856 40 192 7 0	52 5-4 Mädler
	78 3 Winnecke
1840 45 15 7 0 55 3 O Struve 1856 96 192 5 0	47 6 Secchi
	50 3-1 Mädler
	44 2 O Struve
	$4\pm$ 6 Mädler
	38 2 O Strave
1042 40 10 9 0 02 6 0 0 0 00 000	2± 3 Madler
1842 53 single — — Dawes 1859 37 single —	O Struve
1843.45 single — — Dawes	2 ± 1 Dawes
1861 37 10 7 -	– 2 Mädler
1001 40 102 0	50 – Winnecke
	43 2 O Strive
7070 70 00 0 001 0 0 0 0 0 0 0 0 0 0 0 0	neo 7 Dembowski
1847 42 195 5 0 20 1 O Struve 1862 40 11 6 0	_ 2 Madler
100240 110 0	54 2 O. Stinive - Oblomievsky
2020 12 2021 021 07 O BULLIVE	•
	5 ± 1 Dawes
1850 39 191 4 0.48 3 O Struve	55 1 O Struve
1850 99 193 3 0 40 1 Madler 1864 42 10 9 0	3 ± 2 Secchi
	51 3 O. Struve 45 1 Dawes
1851 27 191 3 0 35 1 Mädler 1864 43 13 4 0 1851 42 187 0 0 49 4 O Struve	45 1 Dawes
1851 96 194 5 0 45 3-2 Madle 1865 53 13 9 0	$25\pm$ 2 Secchi
1852 A2 101 A A A A A B NAGAL.	neo 5 Dembowski
1852 43 190 9 0 56 3 O Struve 1865 59 13 7 0	54 6 Englemann
	.40 3 O Struve

t	θ_o	ρ,	n	Observers	† t	θ_o	ρ _o	n	Observers
$1867 \ 32$	$2\overset{\circ}{1}\overset{\circ}{4}$		1	Winlock	1881 25	$192\overset{\circ}{2}$	0 70	2	Bigouidan
$1867\ 32$	$24\ 7$		1	Searle	1881 25	190 9	0 60	4-3	Doberck
1867 47	130	0.36	2	O Struve	1881 37	1930	0 64	4	Burnham
186777	148	cuneo	2	Dembowski	1881 38	1916	06±	5	Schiaparelli
1000 11	450	0.04	0	0 0	1881 39	192 6	0 53	4	Hall
1868 44	15 8	0 21	2	O Struve	1881 41	1935	05±	7-0	Penry
186924	116		1	Leyton Obs	1882 35	194 4	1 00	4–2	Seabroke
1869 40	19?	obl	3	Dunér	1882 38	191 9	0.54	4-2 4	Hall
1869 47	15?	obl ?	1	O Struve	1882 42	191 9 191 4	06±	6	Schiaparelli
1070 44	1 -			0.84	1882 46	184 6	0.51	1	O Struve
1870 44	single	-1-1	_	O Struve	1882 93	192 1	0 56	7	
1870 45	16	obl	4	Dunér					Englemann
1871 40	$194\ 6$	obl	3	Dembowskı	1883 42	$193 \ 2$	0 50	4	Hall
1871 43	single		_	O Struve	1883 42	191 1	05±	8	Schi a parelli
1872 42	200	obl	4	O Struve	1883 48	$193 \ 4$	0 55	5-4	\mathbf{K} üstner
187242 187252	$\frac{200}{200}$	opl	$egin{array}{c} 1 \\ 2 \end{array}$		1883 51	$191\ 5$	0 53	2	Perrotin
		opt		Dunér	1884 39	1958	03±	4	Schiaparelli
$1873\ 36$	single		1	J M Wilson	1884 40	189 7	0 36	3	Hall
$1873 \ 46$	1890	0 20	2	O Struve					
187374	$200 \ 5$	obl	3	Dembowskı	1885 41	single		1	Perrotin
1874 41	189 2	0 30	2	O Struve	1885 42	single		4	Schiaparelli
1875 30	192 5	05±	1		1885 49	102	0 35	1	Hall
1875 43	$\begin{array}{c} 192.5 \\ 192.2 \end{array}$			Seabroke	1886.42	100	027	3	Hall
1875 43	192 Z 190 4	0.4 ± 0.51	10	Schiaparelli	1886 51	158	0.26	6	Schiaparelli
			5	Dembowski	1887 42	131	0 38	9	Schiaparellı
1875 46	189 7	0 39	3	O Struve	1887 44	13.6	0 42	. 4	Hall
1875 53	191 5	0 32	7–6	Dunér	1888 27	120			
1876 36	186 4	$0.5 \pm$	1	W Smith	1888 40		0 48	3	Schiaparelli
$1876\ 38$	191.2	0 58	4.	Dembowskı	ł	138	0 45	3	Hall
1876 40	1934	0 40	4	\mathbf{Hall}	1888 43	87	0.42	1	O Struve
$1876 \ 42$	188 0	0 50	3	O Struve	1889 08	10 5	0.56	1	Leavenwoth
$1876 \ 45$	$193 \ 1$	$0.5 \pm$	4	Schiaparelli	1889 39	118	0 61	1	O Struve
1877 41	190 4	0 52	9-5	Schiaparelli	1889 41	109	0 49	5	Schiaparelli
1877 45	191 4	0 51	5	Dembowskı	1890 33	93	0 70	4	Burnham
1877 46	186 0	0 47	3	O Struve	1890 43	105	0 51	12	Schiaparelli
1878 37	191 3	0 65	1	O Struve	1891 44	11 4		_	
1878 38	191 3 193 7	obl	3	Jedrzejewicz	1891.44	11 4 10 7	$051 \\ 049$	3	Hall
1878 38	189 6	0 51	4	Hall				9	Schiaparelli
1878 43	1908	0 57	3	Dembowski	1892 37	117	0 47	2–1	Leavenworth
					1892 40	10.7	0 42	6	Schiaparelli
1879 37	$192 \ 1$	0 68	2	${f Burnham}$	1892 44	117	0 40	8-6	Bigourdan
$1879 \ 42$	193 2	0 51	4	Hall	1893 45	102	0.32	5	Schiaparellı
$1879 \ 42$	191 4	0 6±	5	Schiaparelli	1894 33	01	0.25	3	Comstock
1879 44	190 9	0 65	1	O Struve	1894 45	16 6		1-0	Bigourdan
1880 36	1917	0 52	4	Hall	1894 46	10 38	0 22	4-5	Schiaparelli
1880 41	1943	obl	4	Jedrzejewicz	1895 29	139	0 14	3	See
				U				-	

Since the date of discovery this remarkable star has described almost three revolutions. From the first it was given particular attention by WILLIAM and

Otto Struve, and the peculiar and unique character of the system has fully justified the care with which it has been measured. The only previous investigation* of the orbit is that made by Otto Struve and Dublago in 1874 (Monthly Notices 1874-5, p. 367). O Struve's elements are as follows:

$$P = 2571 \text{ years}$$
 $\Omega = 11^{\circ} 0$
 $T = 186992$ $\iota = 90^{\circ}$
 $e = 0480$ $\lambda = 99^{\circ} 18$
 $a = 0'' 657$

Some three years ago Burnham placed at my disposal a list of measures which was nearly complete, I have since added to it such as were omitted, and besides made new observations during 1895. When scrutinized under the fine definition of the 26-inch Clark Refractor of the University of Virginia the pair proved to be excessively close, and with a power of 1300 could only be elongated. The object has now become single in all existing telescopes and can not again be separated until about 1899.

The method followed in the present investigation of the orbit is not very different from that employed by Otto Struve, except that the results are based upon the measures of all reliable observers and are rendered more complete by the observations made since 1874. The list of measures is complete to the occultation of 1896.

It will be seen from an examination of the observations that the motion is to all appearances exactly in the plane of vision, and hence with the exception of the node and inclination, the elements are based wholly on the distances. O. Struve's elements are very good, and it would therefore be sufficient to apply differential corrections to his values, but as I had independently discovered a graphical method similar to that employed by him, it seemed of interest to make use of it in deriving approximate values directly from the phenomena With the elements approximately determined, the observations furnished 52 equations of condition, which were solved for the five unknowns, the weights assigned being proportional to the number of nights. An application of the corrections resulting from the Least Square adjustment gave the following values of the elements

```
P = 25556 \text{ years} Q = 11^{\circ} 9

T = 188569 i = 90^{\circ}

e = 0461 \lambda = 280^{\circ} 5

a = 0'' 6416 n = \pm 14^{\circ} 0867
```

^{*}Monthly Notices, June, 1896

Graphical Illustration of the Motion of 42 Comae Berenices = $\sum_{i=1}^{n} |728_i|$

	•	
,		,

Apparent orbit

Length of major axis	= 1'' 147
Length of minor axis	= 0'' 00
Angle of major axis	= 11° 9
Angle of penastron	$= 11^{\circ} 9$
Distance of star from centre	= 0'' 054

The apparent motion is shown in the accompanying diagram, to which is added a figure of the real orbit. A graphical illustration of the motion, obtained by taking the x-axis to represent the time, while the ordinates represent the distances, was employed in finding the approximate values of the elements, the curve here traced represents the motion according to the elements as corrected. This orbit of 42 Comae Berenices is one of the most exact of double-star orbits, and will never require any but very slight modifications. The period can hardly be in error by more than 0.1 year, while a variation of ± 0.01 in the eccentricity is very improbable.

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t								
	θ.	θο	ρο	$ ho_c$	$\theta_o - \theta_c$	ρορο	n	Observers
	189°5	191 °9	obl	0"63	$-\overset{\circ}{2}_4$	+0"01	2-1	Struve
1829 40	1916	1919	0 64		- 03		3	Struve
	170 7?	191 9	obl		-212		1	Struve
	228 3	191 9	obl		+36 4		ī	Struve
1835 39	$\begin{array}{c c} 11.2 \\ 10.2 \end{array}$	11 9			_ 07		4	Struve
1836.41	102	119	0 30	0.42	_ 17	-0.12	3	Struve
1837 40	110	11 9	0 39	0 50	_ 09	-0.11	6	Struve
1838 41	115	119	0 36	0 51	- 04	-0.15	3	Struve
1839 42	122	119	0.59	0 50	+ 03	+0.09	_	Galle
1840 60	171	119	048	0 44	+ 52	+0.04	6	O Struve 3, Dawes 3
1841 40	146	11 9	0 40	0 38	+ 27	+0.02	14_7	O Struve 2, Madler 12-5
$1842\;43$	147	119	0.32	0 30	+ 28	± 0.02	7-3	O Struve 3, Madler 4-0
1843 36		single					2	Madler 1, Dawes—
	189 5	191 9			- 24		2	Mådler
1845 47		single						O Struve
1846 40	66 89	1919	obl?	_	+549		3	O Struve
	1955	191 9	0 20	0 18	+ 36	+0 02	1	O Struve
	192 7	191 9	0.27	0 27	+ 08	±0 00	3	O Struve
	188 6	1919	0 42	0 36	- 33	+006	3	O Struve
	192,3	1919	044	0 45	+ 04	-0 01	4	O Struve 3, Madler 1
	190 9	191 9	0 47	0 51	- 10	-0.04	8-6	Madler 1-0, O∑ 4, Madler 3-2
	1910	1919	0 55	0 56	- 09	-0 01	9–8	Mädler 6-5, O Struve 3
	1930	191 9	0 60	0 60	+ 11	±000	21-16	Dawes 4, Madler 14-12, OE 3
	193 5	191 9	0 60	0 62	+ 16	-0.02	14-13	$O\Sigma$ 1, Mädler 8–7, Dawes 5
	193 9	191 9	0 59	0 61	+ 20	-0.02	4-3	O Struve 2, Mädler 2-1
	1924	1919	0 57	0 57	+ 05	±000	14-13	Mädler 5-4; Winn 3, Secchi 6
	1930	191 9	0 47	0 51	+ 11	-0.04	5-3	Mädler 3–1, O Struve 2
	1924	191 9	0 39.	0 35	+ 05	+004	8	Mädler 6, O Struve 2
	2158	1919	02±	0 14	+239	+006	8	Mädler
1860 34	3.57	11 9	02±	0 12	- 84	+0 08	i	Dawes
1861 40	131	119	0 43	0 34	+ 12	+0 09	4-2	Madler 2-0, O Struve 2
1862 34	124	119	0 54	0 46	+ 05	+0 08	11-2	Dem 7-0, Madler 2-0, OX 2

t	θο	θι	ρο	ρι	$\theta_o - \theta_\iota$	ρ _ο —ρ _ι	n	Observers
1863 35	10 2	11 [°] 9	0 53	$0.5\overset{''}{2}$	_ °7	+0"01	2	Dawes 1, O Struve 1
1864 42	$\frac{10.7}{12.3}$	11 9	0 48	0 51	+ 04	-0.03	6-4	Secchi 2-0, OS 3, Dawes 1
1865 56	$\tilde{1}\tilde{2}$	11 9	0 44	0 47	+ 05	-0.03	13-8	Secchi 2, Dem 5-0, En 6
1866 64	8 5	11 9	0 40	0 41	_ 34	-0.01	3	O Struve
1867 62	13 9	11 9	0 36	0 33	+ 20	+0.03	4-2	O Struve 2, Dembowski 2-0
1868 44	158	119	0 21	0 25	+ 39	-0.04	2	O Struve
1869 37	152	11 9	obl ?	_			5	Ley 1, Duner 3, O Struve 1
1870 45	160	11 9	obl			_	4	Dunér
1871 41	194 6	1919	obl				3-0	Dembowski
1872 47	200 0	1919	obl	_			3	O Struve 1, Duner 2
1873 60	1947	191 9	0 20	0 23	+ 28	-0.03	5-2	Dembowski 3-0, () Strave 2
1874 41	189 2	1919	0.30	0 30	_ 27	± 0.00	2	O Struve Du 7-6
1875 42	1913	1919	0 43	0 40	_ 06	+0.03	26-25	Sea 1, Sch 10, Dem 5, 02 3,
1876 40	190 4	1919	0 50	0 47	_ 15	+0.03	16	Sm 1, Dem 4, Hall 4, ()고 3,
1877 43	1909	1919	0 52	0 53	_ 10	-0.01	17-13	Sch 9-5, Dem 5, O2 3 [Sch 1
1878 40	191 4	1919	0 58	0 58	_ 05	± 0.00	11-8	Jed 3-0, Hl 4, Dem 3, 0≥ 1
1879 40	1919	1919	0 61	0 61	± 00	±0 00	12	β 2, Hall 4, Sch 5, O 1
1880 38	1930	1919	0 52	0 62	+ 11	-0.10	8	Hall 4, Jed 4 [Perry 7-0]
1881 34	$192\ 3$	1919	0 59	0 61	-04	-0.02	26-18	Big 2, Dk 4-3, β4, Sch 5, III 4
1882 52	190 9	1919	0 56	0 54	_ 10	+0.02	22–18	Sea 4-0, Hl 4, Sch 6, OE 1, En 7
1883 46	$192\ 3$	191 9	0 52	0 43	+ 04	+0 09	19-18	Hl 4, Sch 8, Ku 5-4, Per 2
1884 40	1927	1919	0 33	0 26	+ 08	+0.07	7	Schiaparelli 4, Hall 3
1886 46	129	119	0 27	0 25	+ 10	+0.02	9	Hall 3, Schiaparelli 6
1887 43	13 3	11 9	0 40	0 41	+ 14	0 01	13	Schiaparelli 9, Hall 4
1888 33	11 5	11 9	0 47	0 49	-04	-0.02	7-6	Schiaparelli 3, Hall 3, OY 1-0
1889 25	111	119	0 55	0 52	- 08	+0 03	7	Leavenworth 1, Sch 5, OS 1
1890 38	99	11 9	0 60	0 51	_ 20	+0.09	16	β 4, Schiaparelli 12
1891 44	11 0	11 9	0 50	0 45	- 09	+0 05	12	Hall 3, Schiaparelli 9
1892 40	11 4	119	0 43	0 39	- 05	+004	16–13	Lv 2-1, Sch 6, Bigourdan 8-6
1893 45	102	119	0 32	0 31	_ 17	+0 01	5	Schiaparelli
1894 41	90	119	0 23	0 22	_ 29	+0.01	8	Com 3, Big 1-0, Sch 4-5
1895 29	13 9	11 9	0 14	0 14	+ 20	±0 00	3	See

ος 269.

 $\alpha=13^{h}~28^{m}~3~$, $~\delta=+35^{\circ}~46'$ 7 3, yellowish , 7 7, yellowish

Discovered by Otto Strave in 1844

Obstrvations

t	θο ρο	n	Observers	$ \hspace{.1cm} t \hspace{.1cm} heta_o$	ρ_o	n	Observers
1844 31	218 0 0 33	1	O Struve	1855 47 223°6	$0^{''}27$	1	() Struve
1846 38	231 1 0 39	3	O Struve	1861 26 242 8	0 33	1	O Struve
1847 30 1847 41	$222\ 7 \qquad 0\ 25 \\ 215\ 1 \qquad 0\ 18$	1 1	Madler Madler	1865 50 45 ol	olonga	1	Dembowskı
1849 47	218 0° oblong	1	O Struve	1868 26 semplice		1	Dembowskı
1851 30	222 4 0 20	1	Madler	1872 47 257 1 o	blong	1	O Struve
1851 39	2289.033	1	O Struve	1877 26 oblonga m	180°?	1	Dembowskı

 o_{Σ} 269.

t	θ o	ρ_o	n	Observers	į t	θ_o	ρ,	n	Observers
1883 41	$6\overset{\circ}{1}\overset{\circ}{4}$	$0^{''}\!22$	4	Englemann	1891 49	28 9	0"19	2	Schiaparelli
$1885\ 42$	195	elong	2	Penotin	1892 40	215 0	0 21	2	Burnham
$1889\ 52$	207 7	0 22	3	Schiaparelli	1894 40	210 5	0 30 ±	1	Comstock
1890 41	26 3	0.22	1	Schiaparelli	1895 41	219 0	0 225	2	Schiapaielli
1891 26	$213 \ 4$	0.22	3	Burnham	1895 74	2354	0 44	1	See

Since the epoch of discovery in 1844 the companion has described an entire revolution, but the discordance of the observations renders it difficult to define the exact character of the orbit. The measures are frequently very inconsistent, and the most careful selections are necessary in forming the mean places. During the past few years the system has received merited attention from Burnham and Schiaparelli, their measures make known the nature of the motion and enable us to fix the elements with considerable precision. Burnham was the first to give a proper interpretation of the earlier observations (Observatory, July, 1891), and to find a satisfactory apparent ellipse. Gore afterwards attempted an investigation of the orbit based on the angles only; he found the following elements

$$P = 47.70 \text{ years}$$
 $\Omega = 51^{\circ} 93$
 $T = 1883.12$ $\iota = 82^{\circ} 81$
 $\iota = 0.0575$ $\lambda = 43^{\circ} 51$
 $\iota = 0'' 58$

The exclusive use of angles in deriving the orbits of close and difficult double stars has frequently led to erroneous results, because when the distance is very small it is even more reliable than the angle. The use of distances becomes not only important but also necessary when the orbit is highly inclined, and the companion therefore has an angular motion which is small compared to the errors of observation, as is the case with $0\Sigma 269$. Accordingly in dealing with the orbit of this star we have given rather more attention to the distances than to the discordant and frequently retrograding angles. Using certain selected measures of the best observers we find the elements of $0\Sigma 269$ to be as follows:

$$P = 48 \text{ 8 years}$$
 $\Omega = 46^{\circ} 2$
 $T = 1882 80$ $\iota = 71^{\circ} 3$
 $e = 0 361$ $\lambda = 32^{\circ} 63$
 $a = 0'' 3248$ $n = +7^{\circ} 3771$

Apparent orbit.

Length of major axis = 0'' 64Length of minor axis = 0'' 20Angle of major axis $= 47^{\circ} 7$ Angle of periastron $= 57^{\circ} 8$ Distance of star from centre = 0'' 102

The period here found is undoubtedly very nearly correct, but the otli elements are subject to greater uncertainty However, the observation Englemann in 1883 and Dembowski's estimate in 1877, establish the essent nature of the periastron end of the appaient ellipse, and assure us that large correction of our apparent orbit will ever be required The eccentiac is not likely to be altered by more than ±005, nor can the node and inclin tion suffer changes which are proportionately larger Thus it appears that 1 orbit is very satisfactory for the scant material now available, and while lat corrections are not to be anticipated, it will be desirable to improve upon the elements when more good measures are secured The ephemeris shows tl the star will be comparatively easy for a good many years, and it will the fore commend itself to the regular attention of observers

$oldsymbol{t}$	$ heta_c$	$ ho_c$	t	$ heta_c$	ρ_c
	٥	<i>II</i>			"
1896 40	$222 \ 4$	0 37	1899 40	226 9	0.41
1897 40	224 0	0 39	1900 40	$228 \ 2$	0 11
1898 40	$225 \ 5$	0.40			

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θ.	θο	ρ,	ρο	θοθο	ρορο	n	Observers
1844 31 1846 39 1851 34 1861 26 1872 47 1877 26 1883 41 1889 52 1890 41 1891 26 1891 49	218 0 223 8 228 9 242 8 257 1 0 0° 61 4 207 7 206 3 213 4 208 9	215 6 219 9 227 9 243 0 298 6 28 0 62 8 199 5 205 4 209 5 210 4	0 33 0 39 0 33 0 33 0 blong oblonga 0 22 0 22 0 22 0 22 0 22 0 20	0 30 0 35 0 41 0 34 0 12 0 19 0 16 0 17 0 21 0 24 0 24	$ \begin{array}{r} + 24 \\ + 39 \\ + 10 \\ - 20 \\ - 415 \\ - 280 \\ - 140 \\ + 82 \\ + 09 \\ + 39 \\ - 15 \end{array} $	+0 03 +0 04 -0 08 -0 01 - - +0 06 +0 05 +0 01 -0 02 -0 04	1 1 1 1 1 1 4 3 1 3 2–1	O Struve O Struve O Struve O Struve O Struve Dembowski Englemann Schraparelli Schraparelli Burnham Schraparelli
1892 40 1895 07 1895 41	$\begin{array}{ c c c } 215 & 0 \\ 222 & 9 \\ 219 & 0 \\ \end{array}$	$\begin{array}{c c} 213 & 6 \\ 220 & 0 \\ 220 & 7 \end{array}$	0 21 0 37 0 23	$\begin{array}{c} 0.28 \\ 0.35 \\ 0.35 \end{array}$	$\begin{array}{c c} + 14 \\ + 29 \\ - 17 \end{array}$	$ \begin{array}{r} -0.07 \\ +0.02 \\ -0.12 \end{array} $	$egin{array}{c} 2 \\ 2 \\ 2 \end{array}$	Burnham Comstock 1, See 1 Schiaparelli

' e de la companya de

The state of the s		

25 CANUM VENATICORUM = $\Sigma 1768$.

 $\alpha = 13^{h}~33^{m}~,~\delta = +36^{\circ}~48'$ 5, white ~,~85,~blue

Discovered by William Struve in 1827

OBSERVATIONS

$oldsymbol{t}$	θ_{o}	ρ_o	n	Observers	t	θ_{o}	ρ_o	\boldsymbol{n}	Observers
1829 89	$79^{\circ}6$	$1^{''}05$	5	Struve	1872 38	10und		1	w & s
1833 12	72~4	1 09	5	Struve	1872 47	58 °		1	O Struve
				Suruve	1875 36	single	-	1	Hall
$1836\ 50$	71.8	1 07	3	Struve	1875 48	167 1	0 63	1	O Struve
1841 17	72~6	1 01	4	O Struve	1875 49	round		1	Dunér
1841 37	708	1 00	4–3	Mädlei					
					1876 42	doubtful		1	Hall
$1842\ 35$	67 7	0 99	3–1	Dawes	1876 45	161 4	04±	4	Schiaparelli
$1843\ 35$	70.2	102	2	Dawes	1877 37	154.5	$04\pm$	10	Schiaparelli
$1843\ 52$	70 5	071	3	Madler	1877 54	$154\ 7$	0.60	1	O Struve
1846 80	67 8	0.72	3	O Struve	1878 41	1518	0 75	4	Dembowski
1847 71	55 3	0 40	1	Mädlei	1879 43	155 7	05±	5	Schiaparelli
1010 55					1879 49	157 5	0 51	5	Hall
1849 77	65 6	0 65	3	O Struve					
$1851\ 28$	56 5	0 39	6-4	Mädleı	1880 37 1880 46	1575	0 35 0 60	$egin{matrix} 2 \ 2 \end{matrix}$	Hall Burnham
1852.32	45.0	0.3±	4	Mädler			0 00	Z	Buinnam
1214 8	4				1881 24	27.6		1	Doberck
1853 32	36 2	$0.35 \pm$	1	Mädler	1881 32	151 6	049	1	$\operatorname{Bigourdan}$
1854 43	362	$0.35 \pm$	3	Dawes	1881 40	1534	$0.60 \pm$	5	Schiapaielli
185478	46 2	$0.35 \pm$	2	Mädler	1881 40	157 4	0 53	3	Hall
1050 10	25 7	-1-1		Secchi	1881 43	155 9	0 41	3	Burnham
1856 49	25 7	oblonga	-	Seconi	1882 27	16 0	-	1	Doberck
$1858\ 65$	267	$0.2\pm$	2	$\mathbf{M}\mathbf{\ddot{a}dler}$	1882 33	1493	0.75	5	Englemann
1859 41	single		1	O Struve	1882 43	$152\ 7$	0.45	3	Hall
	_				1882 45	1513	$0.7 \pm$	8	Schiaparelli
18 60 36	10–15	$015\pm$	1	Dawes	1883 42	147 0	0 59	1	Hall
$1861\ 26$	sıngle	_	1	O Struve	1883 43	151 4	0.80	6	Englemann
1861 58	445		1	Mädlei	1883 46	149 0	07±	5	Schiaparelli
$1862\ 39$	single		1	O Struve	1883 51	149 2	0 53	$\mathbf{\hat{2}}$	Peirotin
$1862\ 95$	180 ?	-	1	Dembowskı	1884 33	1438		2	Bigourdan
1863 15	315 ?		1	Dembowskı	1884 42	1455	0 63	3	Hall
1865 44		1ound	1	Dawes					
		Touna			1885 32 1885 37	1482	08±	$\frac{9}{3}$	Schiaparelli
1868 13	127 ?		1	Dembowskı	1885 54	$149\ 1$ $149\ 6$	$089 \\ 077$	3 3	Perrotin Tarrant
1869 40	178 ?		1	Dunér	i		011		
1870 43	186	01±	1	Dunéi	1886 38	143 1	0.70	1	Penotin
1871 45	47 ?		1	Dunér	1886 45 1886 51	1452	0.78	4.	Hall
TOLT #0	** i '		7	Daner	1 TOOD DT	1467	0 78	4	Schiaparelli

t	θ_o	ρο	n	Observers	t	$ heta_o$	ρο	n	Observers
1887 41	$145\overset{\circ}{8}$	$0^{''}67$	4	$_{ m Hall}$	1892 17	$137^{\circ}5$	0"98	3	Burnham
$1887 \ 46$	$142 \ 7$	0.72	9	Schiaparelli	1892 64	140 0	0 95	3-2	$\operatorname{Comstock}$
1888 44	1458	0 73	3	Hall	1893 50	138 4	0 81	2	Schiaparelli
1888 54	142 9	0 76	5	Schiaparelli	1893 58	138 9	0 89	1	Comstock
1889 48	140 5	0 84	5-4	Schiaparelli	1894 47	1381	0 86	1	Schiaparelli
1000 10	197.0	0.01		Sahranar alla	1895 11	1326	1 35	3	Barnard
1890 42	137 9	0 81	4	Schiaparelli	1895 20	1345	1 11	4-5	Barnard
1891 48	141 4	080	4	Schiaparelli	1895 28	$136 \ 4$	1 06	3-4	See
1891 51	1436	0 93	3	Maw	1895 52	$137 \ 4$	0 90	2	Comstock

The observations of this remarkable system prior to 1840 gave evidence of a slow retrograde motion, and accordingly it received the attention of Otto Struve, Madler, Dawes, and subsequent observers. Up to this time the radius vector has swept over 308° of position-angle, while the distance has diminished from 1"13 to 0"23 and again increased to about its former value. The data furnished by observation do not suffice to fix the elements of the orbit with great accuracy, but we believe that it is now possible to get a fair approximation to the motion, and that the resulting elements will not be sensibly improved for a great many years

When the measures of this star are examined it is found that they are far from satisfactory, and therefore we must not expect an agreement such as could be obtained for easier objects, where the components are wider or more nearly equal in magnitude. Some of the recorded measures are so inconsistent that the mean places must be formed with care, and even then the representation of the motion is not entirely satisfactory The smaller distances have been under-measured, as is clear from the fact that a star of this difficulty could not be seen with small telescopes (such as those used between 1860 and 1875), unless separated by something like 0"3 Under these cucumstances it seemed proper to increase the measured distances near periastron, in order that when plotted on the diagram of the appaient ellipse they might not convey to the reader an erroneous impression. In the table of computed and observed places, however, we have retained the original values, and it will be seen that the differences are not at all considerable. Doberck is the only astronomer who has previously computed an orbit for this pair; using measures up to 1880 he found

$$P = 119 9 \text{ years}$$
 $\Omega = 42^{\circ} 4$
 $T = 1863 0$ $\iota = 33^{\circ} 3$
 $e = 0.72$ $\lambda = 245^{\circ} 0$
 $\alpha = 0'' 81$

and the state of

A careful investigation of all the observations leads to the following elements of 25 Canum Venaticorum.

```
P = 1840 \text{ years} \Omega = 123^{\circ} 0

T = 18660 \iota = 33^{\circ} 5

e = 0752 \lambda = 201^{\circ} 0

a = 1'' 1307 n = -1^{\circ} 9565
```

Apparent orbit

Length of major axis = 1'' 91Length of minor axis = 1'' 08Angle of major axis $= 108^{\circ} 9$ Angle of periastron $= 285^{\circ} 4$ Distance of star from centre = 0'' 714

This orbit is remarkably eccentric, and so far as known is surpassed in this respect by four stars only — γ Virginis (0.9), γ Andromedae (0.85), γ Centauri (0.80) and 99 Herculis (0.78). Whatever changes may hereafter be required in these results, it is certain that the eccentricity will remain conspicuous, and will not be varied sensibly from the value here obtained. The period, however, remains uncertain by perhaps 25 years, so that the motion of the system is not so well determined as could be desired. An ephemeris is appended for the use of observers

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	00	ρο	ρς	θοθο	ρορε	n	Observers
1827 28	$82^{\circ}4$	79 7	1 13	1 15	$+$ $2^{\circ}7$	$-0^{''}02$	1	Struve
1830 54	78 9	77 1	110	1 09	+ 18	+001	4-3	Struve
1833 12	724	74.8	106	104	_ 22	+0.02	5-4	Struve
1836 50	71 1	715	1 05	0 96	- 04	+0.09	2	Struve
1841 37	708	656	1 00	0 85	+ 52	+0.15	4-3	Mädler
1842 35	67 7	$64\ 2$	0 99	0 83	+ 34	0 06	3–1	Dawes
1846 80	678	567	0 72	071	+111	+001	3	O Struve
1848 74	60 5	$52\ 6$	0 53	0 66	+ 39	-013	4	Madler 1, O Struve 3
1851 28	56 5	4 7 3	0 39	0 60	+92	-0.21	6-4	Madler
1852 82	406	$40 \ 1$	0 35±	0 54	+ 05	-019	5-1	Madler
1854 43	362	35~2	$0.35 \pm$	0 50	+ 10	-0.15	3	Dawes
1857 57	262	198	02 ±	0 41	+64	-020	3-2	Secchi 1-0, Madler 2
1860 36	15 ±	3569	015±	0 33	+181	018	1	Dawes
1862 95	0 ?	$330 \ 4$		0.28	+296		1	Dembowskı
1863 15	315 ?	$328 \ 4$	oblonga		-13 4		1	Dembowski
1868 76	242 5	$236\ 5$		024	+60		2	Dembowski 1, Dunér 1
1870 94	2065	$205\ 2$	elong	029	-248		2	Dunér
1872 47	238 ?	1901	_	0.35	+48?		$egin{array}{c} 2 \ 1 \end{array}$	O Struve
1875 48	167 1	1713	0 63	0 47	- 42	+016	1	O Struve
1876 45	161 4	167 2	$05 \pm$		- 58	-0 01	4–1	Schiaparelli
1877 45	154 6	163 6	0 60	0 55	- 90	+0 05	11-1	Schiaparelli 10-0, O Struve 1
1878 41	1518	160 6	0 75	0 58	- 88	+017	4	Dembowski
1879 46	156 6	157 7	0 60	0 62	- 59	-0.02	10-1	Schiaparelli 5-1, Hall 5-0
1880 41	1563	155 2	0 60	0 66	- 02	-006-	4-2	Burnĥam 2, Hall 2-0

t	θ_o	θ_c	ρο	ρ_c	$\theta_o - \theta_c$	ρ _ο —ρ _c	n	Observers
1881 40 1882 39 1883 45 1884 42 1885 41 1886 48 1887 46 1888 49 1889 48 1890 42 1891 50 1892 17 1893 54 1894 47 1895 20 1895 28	150 3 1 149 1 1 145 5 1 149 0 1 146 0 1 142 7 1 144 3 1 140 5 1 137 9 1 142 5 1 137 5 1 138 6 1 138 1 1 133 9 1	153 3 151 0 149 0 147 4 115 8 144 2 143 0 141 5 140 7 139 3 138 1 137 5 136 1 135 4 134 7 134 6	0 60 0 72 0 75 0 66 0 82 0 78 0 73 0 75 0 84 0 84 0 87 0 97 0 92 0 86 1 11 1 06	0 69 0 73 0 76 0 80 0 82 0 86 0 88 0 92 0 94 1 00 1 02 1 05 1 07 1 09	+ 01 - 07 + 019 + 19 + 18 + 138 + 202 - 144 + 25 + 27 + 18	$\begin{array}{c} -0^{''}09 \\ -0\ 01 \\ -0\ 02 \\ -0\ 14 \\ \pm 0\ 00 \\ -0\ 08 \\ -0\ 15 \\ -0\ 17 \\ -0\ 10 \\ -0\ 13 \\ -0\ 05 \\ -0\ 13 \\ -0\ 05 \\ -0\ 0\ 13 \\ -0\ 0\ 05 \\ -0\ 0\ 13 \\ -0\ 0\ 05 \\ -0\ 0\ 03 \\ \end{array}$	5 13 14-11 3-1 15 8 13-9 8 5-4 4-3 7 6-5 3 1 7-5 3-4	Schiaparelli Englemann 5, Schiaparelli 8 Hl 1-0, En 6, Sch 5, Per 2-0 Hall Sch 9, Periotin 3, Tariant 3 Hall 4, Schiaparelli 4 Schiaparelli 9 Hall 3, Schiaparelli 5 Schiaparelli Schiaparelli Schiaparelli Schiaparelli 4, Maw 3 Buinham 3 Schiaparelli 2, Comstock 1 Schiaparelli Bainard See

t	θ_c	ρο	$oldsymbol{t}$	θ_{c}	ρ_c
1000 50	1040	- " -	4000 80		, "
1896 50	$134\ 0$	1 11	$1899\ 50$	$131\ 6$	117
$1897\ 50$	133 2	1 13	$1900\ 50$	1309	119
1898 50	1324	1 15			

a CENTAURI.

 $\alpha=14^h~32^m~6$, $\delta=-60^\circ~25^\prime$ 1, orange yellow , 2, orange yellow

Discovered by Father Richard at Pondicherry, India, December, 1689

	Observations										
t	θ_o	ρ_o	\boldsymbol{n}	Obseivers	t	θ_o	ρο	\boldsymbol{n}	Observers		
1 690 0			1	Richaud	1834 33	$217\ 33$	17 ["] 83	1	Herschelf		
1709 5	_	_	1	Feuillee	1834 45	218 78	17 50	2	Herschel		
1752 20	218 73	20 51	_	Lacaille	1835 08	218 80	$17 \ 33$	1	Heischel		
4704 F					1835 89	$219 \ 59$	1702	11–1	Herschel		
1761 5	***************************************	156	1	Maskelyne	1836 61	220 26	16 76	1	Herschel		
$1822\ 00$	2096	2875	_	Fallows*	1007.00	000 ()					
1824 00	215 41	$22\ 45$	35+	Busbane	1837 22	$220 \ 65$	1 6 39	4	Heischel		
			00 1	Dilabane	1840 00	$223\ 2$	1474	-	Maclear		
1826 01	21318	$22\ 45$	-	Dunlop	1016 01	000.4	1000		~ .		
1830 01	215 03	19 95		Johnson	1846 21	232 4	10 96	3	Jacob		
		2,00		0 OIIIIDOII	1846 80	$234\ 3$	9 56	4	Jacob		
1831 00	$215\ 97$	$22\ 56$	-	Taylor*	1847 09	$235 \ 7$	9 33	2–3	Jacob		
183216	216 35	19 85	_	Johnson and Tuylor*	1847 36	234 5	9 31	3	Jacob		
1833 0	217 45	18 67	7±	Henderson	1848 00	237 93	8 05	13–12	Jacob		

^{*}Taken on the authority of SIR JOHN HERSCHEL

[†]Herschel's means have been formed anew

t	θ_{o}	ρ _o n	Observers	l t	θ_o	ρο	n	Observers
1849 63	$244\overset{\circ}{5}$	6"23 –	\mathbf{Jacob}	1854 63	28344		3	Powell
1849 94	$245\ 25$	696 1	Maclear	1854 66	$282\ 81$	4 43	5	Maclear
1849 97	$245\ 42$	7 04 3-	2 Maclear	1854 93	$285 \ 88$	3 96	5-4	\mathbf{M} aclear
1850 10	246 63	7 01 1	Maclear	1854 96	$288\ 02$		2	Powell
1850 17	24575	7 08 6	Maclear	1855 06	$289\ 32$		10	Powell
1850 20	$245\ 85$	6.84 3	Macleai	1855 23	$290 \ 19$	4 38	3	Maclear
1850 31	247 07	675 4	Maclear	1855 29	$292\ 60$		5	Powell
1850 37	$247\ 52$	652 7	Jacob	1855 33	$293 \ 8$	4 11	10	Powell
1850 38	24574	7 12 1	Maclear	1855 36	291 96	4 38	4	Maclear
1850 41	2420	7 78 15	Gilliss	1855 54	29473		5	Powell
1850 61	248 84	6 58 3	Maclear			0.00 4	4 0	70 .11
1850 64	2491	6 20 7	Jacob	1856 02	301 02	3 99 1		Powell ,
1850 92	250 27	5 88 6	Jacob	1856 02	302 13		7–6	Maclear
1850 94	251 84	6 02 3	Maclear	1856 10	303 06	3 88	18	Jacob
				1856 38	306 92	4 05	1	Maclear
1851 02	251 05	5 88 8	Jacob	1856 51	309 84	3 93 10		Jacob
1851 08	$252\ 50$	6 12 3		1856 91	311 26	4 21	4	Mann
$1851\ 20$	$252 \ 13$	5 94 10-		1856 94	311 88		11	G Maclear
1851 33	$253 \ 92$	6 02 5		1856 95	310 78	4 05	6	Mann
$1851\ 56$	$254\ 42$	5 88 3		1856 96	31577	3 96 1	0-9	Jacob
185170	256 38	5 27 8		1857 15	318 19	4 02	15	Jacob
1851 94	$256\ 58$	5 80 3		1857.39	320 60		2-1	Maclear
1851 94	$258\ 2$	5 11 9-		1857 86	326 48	4 14	14	Jacob
1851.99	$258\ 85$	5 08 8-	7 Jacob					
1852 25	259.02	5 72 3	Maclear	1858.17	330 51	4.39	5	Jacob
1852 27	261 07	5 03 7		1858.23	339 42	5 09	3	Maclear
1852 38	261 88	4 94 6	Jacob	1859 34	339 71	518 1	5-12	Powell
1852 43	261 67	5 27 5	Maclear	1859 43	343 44	5 10	5	Mann
1852 53	$264\ 16$	500 4	\mathbf{Jacob}	1859 52	341 8	4 92	4	Powell
1852 56	2628	5 03 -	$\mathbf{Maclear}$	1859 97	346 08	5 00	3	Mann
1852 58	$262\ 89$	5 18 7-	9 Maclear	1000.05	046 55		-	C Maril
185273	$262\ 45$	4 95 5-	2 Maclear	1860 05	346 55	 F 0F 1	1	G Maclear
185279	$263\ 31$	4	Maclear	1860 09	345 4	5 65 1		Powell
1853 05	267 67	4 55 -	Jacob	1860 18	349 34	5 52	4_1	Maclear
1853 13	266 54	484 4-		1860 35	348 87		3	Maclear
1853 15	$268\ 33$	4 59 -	~ .	1860 48	348 7	5 68	1	Powell
1853 34	26872	4 87 5		1861 05	351 08	6 07 1	0-9	Powell
185354 185350	271 03	468 6		1861 09	$353 \ 65$	6 09	3	$\mathbf{Maclear}$
1853 58	$271\ 03$ $272\ 17$	4 57 2-		1861 31	$353 \ 03$	621	7	\mathbf{Powell}
1853 58	270 10	101 2-	Powell	1861 58	$354\ 26$	632	5-3	\mathbf{Powell}
	275 19	4 44 4-		1862 0	0 0	100	_	Ellery*
1853 92				1862 20	357 84	6 80	7	Powell
1854 00	276 63	4 21 -		1862 47	00		<u>.</u>	Ellery†
1854 03	276 85	_ 7		1862 56	1 38	7 55	3	Maclear
185424	278 98	4 62 4						
1854 25	279 06	4 16 2		1863 03	14		6-4	Powell
1854 26	279 62	4	Powell	1863 75	52	8 5	_	Ellery

^{*}Apparently a rough "guess"
† From transit observations

t	θ_o	ρ_o	n	Observers	t	θ_o	ρ_o	n	Observers
1864 11	5°7	7 85	7–5	Powell	1878 16	11698	$1^{''}\!77$	1	Russell
186472		81	_	Ellery	1878 22	119 82	1 95	3	Russell
4005 50	4=0	005		•	1878 28	$127\ 37$	1 77	1	Russell
1865 56	17 3	9 95	1	Ellery*	1878 38	139 10	$2 \ 40$	_	Maxwell Hall
1866 06	11 1	93	3	Powell					
				****	1879 25	$174 \ 40$	3 41		Ellery
1868 17		92	_	Ellery	1879 47	17355	341	2	Haigiave
1868 18		96	_	Ellery	1880 18	183 9	$5\ 22$	4	Tebbutt
1868 38	13 59	10 29	2	Mann	1880 39	185 2	5 56	3	Tebbutt
1868 51	21 8	11 02	5	Ellery*	1880 45	184 98	552	1	Russell
1869 13	17 97	10 4	2	Powell	1000 19	101 00	002	-	20053011
					1881 28	18988	5 07	1	Hargrave
1870 1	20 45	10 24		Powell	1881 54	190 13	7.52	1	Haigiave
1870 61	218	10 09	5-4	Powell	1881 65	$193 \ 15$	794	2	${f Tebbutt}$
1870 65	-	10 2	_	Ellery			• • • •		a
1870 65	24 7	10 45	3	Ellery*	1882 00	194 44	8 23	18	Gıll
1870 75	$22 \ 53$	10 46	4	$\mathbf{Russell}$	1882 22	194 6	8 70	1	Tebbutt
1871 05	23 01	9 89	11	Powell	1882 50	195~82	9 12	52	Elkın
1871 31	23 7	98	7	Powell	1884 19	199 0	11 96	_	Russell
1871 48	$22\ 91$	10 22	${f 2}$	Russell	1884 43	199 5	12 32	_	Russell†
1871 51	242	9 41	1	Ellery	1884 53	199 80	12 93	6	Tebbutt
10.101		0 11	-	222023					
$1872\ 47$	$25\ 31$	9 73	2	Russell	1885 56	2008	14 05	4_3	${f Tebbutt}$
$1872\ 55$	$24\ 1$	$10\ 36$	1	Ellery	1000.07	000 =	14.00		70 - 171
107010		0.0		7711	1886 27	$202\ 5$ $200\ 4$	14 89	5	Pollock
1873 16		83	_	Ellery	1886 38	200 4	14 74	1 1	Russell
1873 33	28 1	9 50	1	$\mathbf{Russell}$	1886 52 1886 55	201 2	15 19 14 87	4	Russell
1874 15	30 5	8 0	_	Ellery	I .	$201\ 03$ $202\ 42$			Pollock†
1874 47	30 0	7 97	2	Russell	1886 56 1886 58	202 43	15 13 15 18	10 3	Pollock
1874 85	34 17		_	Lindsay	1886 60	201 41			Russell
20.200	0.2.			zinasay	1000 00	201 41	15 16	4	${f Tebbutt}$
$1875\ 02$	$34\ 21$	6.82	_	Seeliger	1887 39	$202\ 3$	16 06	3-5	Tebbutt
1875 94	39 3	668	1	Ellery*	1887 43	202 08	15 83	6-5	Pollock
1050 11	40.07	4.05	•		1887 60	202 35	16 28	3–2	Tebbutt
1876 41	46 97	4 35	2	Russell	1887 72	20216	16 18	2	Tebbutt
1876 61	51 05	4 15	2	Ellery	1887 74	203 0	15 73	4	Pollock
1876 90	64 3	4 94	1	Ellery	1				
1876 94	51 2	45	1	Ellery	1888 30	$203 \ 4$	$16 \ 87$	3	${f Tebbutt}$
1877 14	64 4	3 30	_	Manusall TT-11	1888 63	$202 \ 93$	$17 \ 12$	1	${f Tebbutt}$
1877 25	69 1	3 13	5	Maxwell Hall Ellery	1889 45	$204 \ 5$	17 91	3	Pollock
1877 52	7277	2 60	2-1	Russell					I OHOCK
1877 56	77 25	2 11	3	Russell	1890 41	$205 \ 2$	18 58	2	${f Tebbutt}$
1877 57	80 50	$\frac{2}{13}$	2–3	Gill	1890 47	204 75	18~66	4 –3	Sellors
1877 59	81 74	1 90	3	Russell	1890 60	$205 \ 05$	$19\ 06$	3-2	Sellors
1877 63	81 49	1 94	3_1	Gıll	1890 74	$204 \ 6$	18 69	1–3	${f Tebbutt}$
1877 82	97 12	1 85	2-3	Gill	1001 40	005.00	1015	2 4	Calles -
1877 89	101 12	162	2-3 2	Gill	1891 43 1891 56	205 62	19 15	5-4	Sellors Mahlantt
				GIII	TOST 90	207 17	19 25	4–2	Tebbutt

^{*} From transit observations

[†] From $\Delta \alpha$ and $\Delta \delta$

$oldsymbol{t}$	θ_o	ρ_o	n	Observers	į t	θο	ρ_o	n	Observers
1891 57	$205^{\circ}3$	$19^{''}24$	2	Sellors	1893 21	20675	$20^{''}22$	2-1	W H Pickering
1891 64	$206\ 4$	$19\ 35$	3-6	${f Tebbutt}$	1893 34	$206 \ 4$	$19 \ 92$	8	Sellors
4000.00	000.45	40 20	•	C-11 6 TT1*	1893 42	20673	$20 \ 32$	6-4	Tebbutt
$1892\ 30$	$206\ 45$	1952	2	Gill & Finlay*	1893 49	$206\ 5$	$20\ 24$	8	Sellois
$1892 \ 40$	$205\ 46$	1973	5-4	${f Sellors}$	1893 50	206 75	20 53	4–2	Tebbutt
189245	$205\ 53$	1975	7-4	${f Tebbutt}$	1090 00	200 10	20 00	T-2	LODDUU
$1892\ 58$	205 83	1973	8-5	${f Tebbutt}$	1894 47	$207\ 2$	20.58	6	Sellors
189276	206 9	1996	1	W H Pickering	1894 78	208 0	20.72	19–11	Tebbutt
1893 21	206 9	20 04	1	A E Douglass	1895 55	207 8	20 97	16–10	Tebbutt

In attempting to investigate the orbit of a Centauri it seems desirable to review briefly the work already done on this celebrated system.

The record left us by RICHAUD does not throw much light upon the nature of the orbit, but is of considerable historical interest

"Regardant à l'occasion de la Comète plusieurs fois les pieds du Centaure avec une lunette d'environ douze pieds, je remarquai que le pied le plus oriental et le plus brillant etoit une double étoile aussi bien que le pied de la croisade; avec celte difference que dans la croisade, une étoile paraît avec la lunette notablement eloignée de l'autre; au lieu qu' au pied du Centaure, les deux étoiles paraissent même avec la lunette presque se toucher; quoique cependant on les distingue aisement."†

The next record of a Centauri was made by FATHER FEUILLÉE, who observed at Lima, Peru, July 4, 1709; in his Journal des Observations, &c., Paris, 1714, tome I, p. 425, we find the following account:

"Sur les deux heures du matin, en attendant que je pusse observer l'émersion du premier satellite de Jupiter, que des nuages me cachèrent, j'observai avec une lunette de 18 pieds l'étoile de la premier grandeur qui est au pied boréal du devant du Centaure, je trouvai cette étoile composée de deux, dont l'une est de la troisième grandeur et l'autre de la quatrième. Celle de la quatrième grandeur est la plus occidentale, et leur distance est égale au diamètre de cette étoile"

From this rather indefinite observation Powell infers that the distance of the components in 1709 was about 10", and attaches considerable importance to the remark that the companion was "the more westerly" (la plus occidentale) Unfortunately the language is rather ambiguous, and we can not tell whether Feuillée meant that the companion was really to the west of the central star, or whether it merely appeared to the west in the inverted field of view. As

^{*} By photography

[†] Publications of the Royal Academy of Sciences, Paris, 1692, or Monthly Notices, 1884-5, p 18

a Centauri was low in the southwest when the observation was made, it is also possible that the remark may have arisen, as Mr Roberts has observed, from the position of the heavens at that instant rather than the position-angle of the companion. In any case it follows from the orbit here deduced that the position-angle was 24°3, and the distance 10″.07

The third observation of a Centauri was made by Lacaille at the Cape of Good Hope in 1752. While determining the positions of southern stars he observed the components of a Centauri, and from the resulting Δa and $\Delta \delta$ we find the values of ρ and θ given in the list of measures. The observations of Lacaille were first printed in the Cælum Australe Stelliferum, which was published at Paris in 1763, and reprinted in 1847 by the British Association for the Advancement of Science, under the auspices of a Committee composed of Herschel, Henderson and Bailly. Lacaille's observations appear to be as good as could be expected from the instruments and methods employed.

In 1761 a Centauri was observed on one night by Maskelyne while at the island of St Helena, by means of a rough divided-object-glass microineter he found a distance of 15" 6

The observations made early in the present century by Fallows, Brisbane, Dunlop, Johnson, Taylor and Henderson, rest on measures of Δa and $\Delta \delta$ The observation of Fallows was made with a small and defective Altitude and Azimuth Instrument, and is entirely enoneous For a long time this measure was very misleading to computers, as it indicated an eccentricity of about ()96 The results of Brisbane, Dunlop, Johnson, Taylor and Henderson are likewise unworthy of any high degree of confidence The first observations of conspicuous worth are the micrometrical measures made by Sir John Herschel at the Cape of Good Hope The measures of Herschel taken in conjunction with others recently made expressly for the purpose have enabled us to determine the orbit of a Centauri with a degree of precision which appears extraordinary when we consider the character of the observations It will be found on inspecting the list of measures that many of them are vitiated by sensible errors of observation, which are partly systematic and partly accidental must remember, however, in judging of the value of results that a Centauri is a very bright star, so that the images are unusually large, and hence if the telescope is not practically perfect, and the atmospheric conditions favorable, we could hardly expect that the measures will be very accordant. It is also to be remembered that the southern observers are not specialists in double-star work, and hence we can not expect results such as could be obtained by the skill of a Burnham or a Struve Nevertheless, the measures of a Centuur taken as a whole, will enable us to obtain one of the best orbits yet deduced for any binary, and we may gratefully acknowledge our deep obligation to the southern observers, who amid many difficulties have measured this star with care and assiduity

In the list of measures given above will be found all the records which are of any value. The observations of T. Maclear, G. Maclear and W. Mann, which were made about the middle of the century, are taken from Dr. Elkin's Inaugural Dissertation, in which they were first printed; the number of nights was kindly supplied by Dr. Elkin in a private letter. Most of the other measures are taken from the Memoirs and Monthly Notices of the Royal Astronomical Society. In this connection I take occasion to acknowledge my special obligations to Messrs. Tebbutt, Pickering, Douglass, Russell, Sellors, Gill and Finlay for securing sets of measures expressly for this investigation, also to thank Herr Hans Ludendorff of the Royal Observatory, Berlin, for confirming from original sources the measures of Lacaille, Brisbane, Dunlor and Johnson.

Most of the orbits determined before 1875 have now only historical interest, and among those more recently determined only three are approximately correct; namely, those of Roberts (A.N., 3175), See (M.N., Dec., 1893), and Doberck (A.N., 3330). The following table of the elements found by previous computers is essentially complete:

P	T	е	а	v	r	λ	Author	ıty	Source
77 0	1851 50	0 950	$oldsymbol{15}^{''} 5$	86 12	47°77			1848	Mem RAS, XVII, p 88
790	1863 25	0 818					Jacob		AN, XLIV, p 43
80 94	1859 42	0.7752	$13\ 57$	167	62 9	26 03	Hind,	1851	
753	1858 012	0 966	30	177 83	77.83	_	Powell,	1854	Mem RAS, XXIV, 93
82 59	1857 012	0 969	3176	26	773	27 65	Powell,	1854	Mem RAS, XXIV, 93
77 81	1871 345	0.7033	$20\ 575$	$22\ 35$	80 95	58 43	Copeland.	1869	•
76 25	1874 2	0 63944	20 13	243	81 22				MN, XXX, 192
85 042	1874 85	0 6673	21797	218	82,3	59.53	Hind,		MN, XXXVII, 97
88 536	1875 12	0 5332	1845	25 23	79.4	45 97	Doberck,	1877	AN, 8330
77 42	1875 97	0.5260	1750	25 78	7953	54 83	Elkın,	1880	Dissertation, p 8
76 222	1875 951	0 5158	$17\ 33$	25 51	79.25	54 98	Downing,		M N, XLIV, 289
87 438	1875 45	0 544	1889	25 83	7978	48 98			M N , XLVI, 337
80 34	1875 74	0.526	17 20	25 22	7953	525	Gill		Mem RAS, XLVIII, 15
81 185	1875 715	0.52865	17 71	25 1	79 36	52 02	Roberts,	1893	AN, 8175
81 07	1875 62	0 520	17 705	$25 \ 45$	7974	51 56	See,		M N, Dec 1893
79 123	187602	0 51184	18 45	25 42	79 23			1895	AN, 3330
83 565	1875 57	0 52252	18 165	25 9	79 32	49 42	Doberck,	1895	A N , 8380

After careful study of all the observations we have formed mean places and reduced them for precession to 1900.0. These places are given in the

146 a CENTAURI.

accompanying table, which also contains the comparison resulting from the elements found below.

COMPARISON OF COMPUTED WITH OBSTRVED PLACES

t	θ_o	θ_c	ρο	ρ_c	θ_o — θ_c	ρορο	n	Obset vet s
1 000 00		~~~				 ,		T 1
1690 00		258 94		6 67	_		1	Richaud
1709 50	017.04	23 86		9 94	1 0 00	1015	1	Feuillée
		$217\ 21$					-	Lacaille
		211 17					257	Fallows
1824 0 1826 01		21221					1 1	Bushane
1830 01							-	Dunlop Johnson
		21501 21577				+328	-	
1832 16							_	Taylor Johnson and Taylor
		217 03					7±	Henderson
1834 33	216.87	217 92	17 83	17 68	_1 05	+0.15	1	Heischel
1834 45	218 32	217 99	17 50	17 67	+0.33	-0.17	$\frac{1}{2}$	Heischel
1835 08								Herschel
1835 89								Heischel
1836 61								Herschel
1837 22								Heischel
1840 0								Maclear
1846 21								Jacob
1846 80								Jacob
1847 09	235 33	235 21	. 9 33	8 90	+0.12	+0.43	2-3	Jacob
1847 36	234 13	235 87	9 31	876	-174	+0.55	3	Jacob
1848 00			8 05	8 35	-0 23	-0.30	13-12	Jacob
1849 63				7 12	+0.18	-0.89	-	Jacob
1849 95						+0.17		Maclear
1850 20						+0.35		Maclear
1850 38						+0.36		Jacob 1, Maclear 7
1850 41						+0.34		Gilliss
1850 62						+0 07		Maclean 3, Jacob 7
1850 93						-0.15		Jacob 7-6, Maclean 3
1851 10						-0 06		
1851 44						+0.20		Maclear 5, Maclear 3
1851 87						±0 00		Jacob 8, Maclear 3
1851 95 1852 33	700 TO	201 15	5 09			-0 39 -0 04		
1852 64						+0.02		Maclear 3, Jacob 7, Jacob 6, Maclear 5
1853 27						-0.06		
1853 75						-0.06		Powell –, Maclear 4–3 $\lceil Mann 2-1 \rceil$
1854 16								Jacob -, Po 7-0, Mac 4, Ja 2, Po 4-0
1854 79						+0.03		Powell 3-0, Mac 5, Mac 5-4, Po 2-0
1855 25				4 20	+0.36	+0.09	32_17	Po 10-0, Mac 3, Po 5-0, Po 10, Mac 4
1856 13								
1856 51	309 84	307 72	3 93	410	+212	-0.17	10-9	Jacob
1856 94								Mann 4, G Mac 11-0, Mann 6, Ja 10-9
1857 27			7 4 24					Jacob 15, Maclear 2-1
1857 86						-0.28		Jacob
1858 17						-0 11		Jacob
1859 33	340 6	339 49	5 12			+0 06		
1859 52		341 38	4 92			-0 23		Powell
1859 97	345 8	344 89	5 00	5 40	+0.91	. 0 40	3	Mann
1860 27				5 5 6	+1.08	+0.06	26-15	G Mac 1, Po 17-13, Mac 4-1, Mac 3-0,
1861 07				6 05	+0.13	+0 03	13-12	Powell 10-9, Maclear 3 [Po 1
1861 44				6 25	-0.77	+0.01	12-10	Powell 7, Powell 5-3
1862 41	$ 359\ 47$	358 15	717	7 10	$ +1\ 22$	+0.07	10	Powell 7, Ellery -, Maclear 3

	t
	-
C_{0}	
17 年 年 - 17 A - 森石 - 寛大 - 17 - 17 - 17 - 17 - 17 - 17 - 17 - 1	
	, ,
	, '' () , '' () , '' ()
	() () () () () () () () () () () () () (
	1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1

1863 03	t	θ_o	θ_c	ρο	Pc	θ_o — θ_c	$\rho_o-\rho_c$	n	Observers
1803 75	1969 09				794	1 50	0"14	G 4	Powell
1864 11								1	
1864 72									
1865 66 17 66 10 14 9 95 8 75 + 7 92 + 1 20 1 *	_	_							
1866 06		17.06						1 •	
1868 58 13 87 15 70 10 29 10 08 -2 33 -0 21 2									
1869 13 17 75 18 45 04 10 40 -0 70 20 00 2 1870 1 20 24 20 42 10 24 10 30 -0 18 -0 06 13 - 12 20 well 1870 61 21 59 21 47 10 09 10 28 + 0 12 -0 19 5 - 4 1870 65 24 5 21 55 10 32 10 28 + 0 15 -0 06 13 - 12 1870 61 21 59 21 47 10 09 10 28 + 0 12 -0 19 5 - 4 1870 65 24 5 21 55 10 32 10 28 - 0 05 +0 05 3 - 5 Ellery Rowell 1871 18 23 15 22 47 9 841 018 40 41 -0 34 18 1871 18 23 15 22 47 9 841 018 40 41 -0 34 18 1871 18 23 15 22 47 10 04 9 60 -0 56 -0 44 3 1872 51 24 51 25 07 10 04 9 60 -0 56 -0 44 3 1873 25 27 91 23 34 8 90 8 90 -0 43 20 00 1 - 3 Ellery Russell 2, Ellery 1874 31 30 07 31 00 7 98 7 60 -0 39 +0 38 3 - 4 Ellery -0 8 2 1875 92 34 04 34 45 682 650 -0 41 +0 32 -1 Ellery -0 8 2 1876 92 57 09 55 86 472 300 +1 23 +1 72 2 Ellery 1877 14 64 4 64 64 65 0 33 0 260 +2 90 +0 70 -0 2 Ellery 1877 52 72 61 77 41 260 210 -4 80 +0 50 2 -1 Ellery Russell 1877 59 81 58 81 37 1.90 198 +0.21 -0 88 2 -0 8					10 08	-233	+0.21		
1869 13 1775 18 45 10 41 04 0 -070 60 01 1870 1 20 24 20 42 10 24 10 30 -018 -0 06 13 -12	1868 51		16 09	11 02	10 13	+549	+0.89		
1870 61 24 5 21 510 32 10 28 8 - 0 15 - 0 16 5 3 - 5	1869 13	17 75	1845	104	10 40	-0 70	± 0.00		
1870 65									
1870 76									
1871 18								1 1	
1871 49									
1872 51									Powell 11, Powell 7
1873 25									Russell 2, Ellery 1
1874 31 30 07 31 00 7 98 7 60 -0 93 +0 38 3-4± Ellery - Russell 2 1876 94 39 13 40 50 6 68 4 86 -1 37 +1 82 1 1876 61 50 89 50 99 4 15 3 56 +0 80 +0 59 2 1877 14 64 4 61 50 3 30 2 60 +2 90 +0 70 - Maxwell Hall 1877 55 77 09 75 55 54 47 2 300 +1 23 +1 72 2 Ellery 1877 14 64 4 61 50 3 30 2 60 +2 90 +0 70 - Maxwell Hall 1877 55 77 09 77 0 2 11 2 01 -1 61 +0 10 3 Russell 1877 57 70 9 70 2 11 2 01 -1 61 +0 10 3 Russell 1877 58 81 58 137 1.90 1 98 +0.21 -0 08 3 Russell 1877 89 100 97 101 15 162 1 70 -0 18 -0 88 2 19 67 12 75 1 195 168 -7 84 +0 27 3 Russell 1878 28 139 75 132 2 49 3 177 17 -3 89 +0 06 1 1878 28 138 51 38 134 135 35 2 2 40 178 +0 05 2 -1 Russell 1880 38 138 84 75 5 52 5 53 -2 21 -0 01 1881 28 189 75 1917 2 5 07 711 -1 97 -2 04 1881 28 199 69 199 65 12 391 2 33 2 3 -0 16 -0 06 -1 1882 25 195 82 196 83 194 49 194 48 1									Russell Z, Ellery 1
1875 02 34 04 34 45 6 82 6 50 -0 41 +0 32 -1									
1875 94								1 1	
1876 41									
1876 61 50 89 50 09 4 15 3 56 4 08 4 0 59 2 Ellery					3 98	± 0.87	+0.37		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
1877 14 64 61 50 3 30 2 60 +2 90 +0 70 -0 Maxwell Hall 1877 25 68 94 69 95 3 13 2 45 -1 01 +0 68 5 Ellery 1877 56 77 60 79 79 70 2 21 2 20 -1 61 +0 10 3 Russell Russell Russell Russell Russell Russell 1877 57 80 34 80 21 2 13 2 00 +0 13 +0 13 2 3 Gall Russell Ru									Ellery
1877 25									
1877 52		(
1877 56				2 60	210	-4 80	+0.50		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1877 56	77 09	79 70	2 11	2 01	-1 61	+010	3	
1877 63									
1877 82									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
1878 22 119 67 127 51 1 95 1 68 -7 84 +0 27 3 Russell Ru									
1878 28 127 12 131 01	1070 10	110 67	122 39						
1878 38 138 95 138 22 2 40 1 78 +0 73 +0 62 -	1070 22	107 10	121 01			2 00	T 0 27		
1879 25 174 25 172 21 3 41 3 12 +1 96 +0 29 -									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
1880 39	1880 18	183 76	184 97	5 22					
1880 46									
1881 28 189 75 191 72 5 07 7 11 -1 97 -2 04 1 Hargrave 1881 54 190 00 192 77 7 52 7 64 -2 77 -0 12 1 Hargrave 1881 65 193 02 193 18 7 94 7 82 -0 16 +0 12 2 Tebbutt 1882 00 194 44 194 33 8 23 8.45 +0 11 -0 22 18 Gill 1882 20 194 48 194 87 8 70 8 80 -0 39 -0 10 1 Tebbutt 1882 50 195 82 196 03 9 12 9 29 -0 21 -0 17 52 Elkm 1884 19 198 89 199 37 11 96 12 04 -0 48 -0 08 - Russell 1884 43 199 39 199 55 12 32 12 38 -0 16 -0 06 - Russell 1885 56 200 7 200 82 14 05 13 84 -0 12 +0 21 4-3 Tebbutt 1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 <td>1880 46</td> <td>184 84</td> <td>187 05</td> <td>5 52</td> <td>5 53</td> <td>_2 21</td> <td>-0.01</td> <td></td> <td></td>	1880 46	184 84	187 05	5 52	5 53	_2 21	-0.01		
1881 54 190 00 192 77 7 52 7 64 -2 77 -0 12 1 Hargrave Tebbutt 1882 00 194 44 194 33 8 23 8.45 +0 11 -0 22 18 Gill 1882 22 194 48 194 87 8 70 8 80 -0 39 -0 10 1 Tebbutt 1882 50 195 82 196 03 9 12 9 29 -0 21 -0 17 52 Elkin Russell 1884 43 199 39 199 55 12 32 12 38 -0 16 -0 06 - Russell 1884 53 199 69 199 65 12 93 12 53 +0 04 +0 40 6 1885 56 200 7 200 82 14 05 13 84 -0 12 +0 21 4-3 Tebbutt 1886 27 202 4 201 60 14 89 14 73 +0 80 +0 16 5 Follock 1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 1 Russell 1886 59 201 46 202 91 15 17 15 07 -1 45 +0 10 7 Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1881 28	189 75	191 72	5 07	7 11	-197	-204	1	Hargrave
1881 65 193 02 193 18 7 94 7 82 -0 16 +0 12 2 Tebbutt Gill 1882 22 194 48 194 87 8 70 8 80 -0 39 -0 10 1 Tebbutt 1882 50 195 82 196 03 9 12 9 29 -0 21 -0 17 52 Elkin Russell 1884 43 199 39 199 55 12 32 12 38 -0 16 -0 06 - Russell 1884 53 199 69 199 65 12 93 12 53 +0 04 +0 40 6 1885 56 200 7 200 82 14 05 13 84 -0 12 +0 21 4-3 1886 27 202 4 201 60 14 89 14 73 +0 80 +0 16 5 1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 1 1886 54 201 46 201 85 15 06 15 01 -0 39 +0 05 15 1886 59 201 46 202 91 15 17 15 07 -1 45 +0 10 7 Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202 30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1881 54	190 00	192 77	7 52	7 64	-277	-0.12	1 1	Hargrave
1882 22 194 48 194 87 8 70 8 80 -0 39 -0 10 1 1882 50 195 82 196 03 9 12 9 29 -0 21 -0 17 52 1884 19 198 89 199 37 11 96 12 04 -0 48 -0 08 - Russell 1884 43 199 39 199 55 12 32 12 38 -0 16 -0 06 - Russell 1884 53 199 69 199 65 12 93 12 53 +0 04 +0 40 6 1885 56 200 7 200 82 14 05 13 84 -0 12 +0 21 4-3 Tebbutt 1886 27 202 4 201 60 14 89 14 73 +0 80 +0 16 5 Follock 1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 1 Russell 1886 54 201 46 201 85 15 06 15 01 -0 39 +0 05 15 Russell 1, Pollock 4, Pollock 10 1886 59 201 46 202 91 15 17 15 07 -1 45 +0 10 7 Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1881 65	193 02	193 18	7 94	7 82	-0.16	+0.12	2	Tebbutt
1882 50 195 82 196 03 9 12 9 29 -0 21 -0 17 52 Elkin Russell 1884 43 199 39 199 55 12 32 12 38 -0 16 -0 06 -0 1884 53 199 69 199 65 12 93 12 53 +0 04 +0 40 6 1885 56 200 7 200 82 14 05 13 84 -0 12 +0 21 4-3 1886 27 202 4 201 60 14 89 14 73 +0 80 +0 16 5 1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 1 1886 54 201 46 201 85 15 06 15 01 -0 39 +0 05 15 1886 59 201 46 202 91 15 17 15 07 -1 45 +0 10 7 Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1882 00	194 44	194 33	8 23	8.45	+0.11	-0.22		
1884 19 198 89 199 37 11 96 12 04 -0 48 -0 08 -	1882 22	194 48	194 87	870	8 80	-0.39	-0.10		
1884 43 199 39 199 55 12 32 12 38 -0 16 -0 06 -0 06 1884 53 199 69 199 65 12 93 12 53 +0 04 +0 40 6 1885 56 200 7 200 82 14 05 13 84 -0 12 +0 21 4-3 1886 27 202 4 201 60 14 89 14 73 +0 80 +0 16 5 Follock 1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 1 Russell Russell Russell Russell 1886 54 201 46 201 85 15 06 15 01 -0 39 +0 05 15 Russell Russell Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1882 50	195 82	196 03	912	929	-0.21	-0.17		
1884 53 199 69 199 65 12 93 12 53 +0 04 +0 40 6 1885 56 200 7 200 82 14 05 13 84 -0 12 +0 21 4-3 1886 27 202 4 201 60 14 89 14 73 +0 80 +0 16 5 Pollock 1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 1 1886 54 201 46 201 85 15 06 15 01 -0 39 +0 05 15 1886 59 201 46 202 91 15 17 15 07 -1 45 +0 10 7 Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1884 19	TAS 88	199 37	TT 96	12 04	-0 48	-0.08		
1885 56 200 7 200 82 14 05 13 84 -0 12 +0 21 4-3 Tebbutt Pollock 1886 27 202 4 201 60 14 89 14 73 +0 80 +0 16 5 Pollock 1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 1 Russell Russell Russell 1886 54 201 46 201 85 15 06 15 01 -0 39 +0 05 15 Russell Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1004 43	100 go	100 GE 139 99	12 32	12 38	-0 16	-0 06	-	
1886 27 202 4 201 60 14 89 14 73 + 0 80 + 0 16 5 Pollock 1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 1 Russell Russell 1886 54 201 46 201 85 15 06 15 01 -0 39 + 0 05 15 Russell Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1882 20	799 08	300 60 199 00	14 05	1204	TU 04	一丁 0 40	\ \ ⁰ ,	
1886 38 200 3 201 70 14 74 14 78 -1 40 -0 04 1 Russell 1886 54 201 46 201 85 15 06 15 01 -0 39 +0 05 15 Russell 1, Pollock 4, Pollock 10 1886 59 201 46 202 91 15 17 15 07 -1 45 +0 10 7 Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4									
1886 54 201 46 201 85 15 06 15 01 -0 39 +0 05 15 Russell 1, Pollock 4, Pollock 10 1886 59 201 46 202 91 15 17 15 07 -1 45 +0 10 7 Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 -0 54 -0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 -0 57 -0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1886 38	200 3	201 70	14 71	14 70	1 40	-0 V1	0 1	
1886 59 201 46 202 91 15 17 15 07 1 45 +0 10 7 Russell 3, Tebbutt 4 1887 41 202 1 202 64 15 95 15 96 0 54 0 01 9-10 Tebbutt 3-5, Pollock 6-5 1887 69 202.30 202 87 16 09 16 24 0 57 0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4									
$ 1887 \ 41 \ 202 \ 1 \ 202 \ 64 \ 15 \ 95 \ 15 \ 96 \ -0 \ 54 \ -0 \ 01 \ $ 9-10 Tebbutt 3-5, Pollock 6-5 1887 \ 69 \ 202.30 \ 202 \ 87 \ 16 \ 09 \ 16 \ 24 \ -0 \ 57 \ -0 \ 14 \ 9-8 \ Tebbutt 3-2, Tebbutt 2, Pollock 4	1886 59	201 46	202 91	15 17	15 07	_1 45	+010	7	Russell 3. Tehbutt 4
1887 69 202.30 202 87 16 09 16 24 0 57 0 14 9-8 Tebbutt 3-2, Tebbutt 2, Pollock 4	1887 41	202 1	202 64	15 95	15 96	_0 54	-0.01	9_10	Tebbutt 3-5. Pollock 6-5
									Tebbutt 3-2, Tebbutt 2. Pollock 4
The state of the s									Tebbutt

+24.

t	$\boldsymbol{ heta_o}$	θ_{ι}	ρο	ρ_c	θ_o — θ_c	ρορι	n	Observers
1893 25 1893 47 1894 62	202 85 204 43 204 93 204 53 206 01 206 45 205 47 205 87 206 66 207 6	203 62 204 22 204 89 205 05 205 52 205 97 206 04 206 18 206 50 206 59 207 21	17 12 17 91 18 77 18 69 19 25 19 52 19 74 19 84 20 06 20 36 20 65	17 14 17 81 18 64 18 85 19 28 19 73 19 83 19 93 20 21 20 30 20 81	-0 77 +0 21 +0 04 -0 42 +0 49 +0 48 -0 57 -0 31 +0 20 +0 07 +0 39	-0"02 +0 10 +0 13 -0 16 -0 03 -0 18 -0 09 -0 09 -0 16 +0 06 -0 16	1 3 9-7 1-3 14 2 12-8 9-6 11-10 18-14 25-17	Tebbutt Pollock Tebbutt 2, Sellors 4-3, Sellors 3-2 Tebbutt Sel 5-4, T 4-2, Sel 2, T 3-6 Gill and Finlay Sellors 5-4, Tebbutt 7-4 Tebbutt 8-5, Pickering 1 Douglass 1, Pickering 2-1, Sellors 8 Tebbutt 6-4, Sellors 8, Tebbutt 4-2 Sellors 6, Tebbutt 19-11 Tebbutt

In dealing with this orbit it seems probable that the graphical method will be superior to any process involving a least-square adjustment, because of the undoubted existence of sensible systematic errors in the observations. An adjustment based on both angles and distances will eventually be desirable, but before this definitive determination can be made with advantage, it will be necessary to have an additional revolution. In the present state of the observations it is wholly useless to apply corrections of a very minute character Basing the work upon all the best observations we find the following elements of a Centauri:

```
P = 811 years
                                               \Omega = 25^{\circ}15
                                                i = 79^{\circ}30
                         T = 187570
                                                \lambda = 52^{\circ} 00
                         e = 0.528
                         a = 17''70
                                                n = +4^{\circ}438954
Apparent orbit
                        Length of major axis
                                                       = 32'' 18
                                                       = 6'' 16
                        Length of minor axis
                                                       = 27^{\circ} 25
                        Angle of major axis
                        Angle of penastion
                                                       = 38^{\circ} 65
                        Distance of star from centre = 5" 90
```

If we adopt the parallax of GILL and ELKIN (0"75), we find that the major semi-axis of the orbit is 236 astronomical units. It follows that the combined mass of the components is 200 times the mass of the sun and earth

Thus we see that the companion of a Centauri moves in an orbit with a major axis which is about a mean between those of Uranus and Neptune But owing to the eccentricity of the orbit the distance at periastron (112) only slightly surpasses that of Saturn from the sun, while at apastron it extends considerably beyond Neptune (36.0)

According to preliminary researches of Stone in 1875, it was found that the masses of the two components are sensibly equal. Mr A. W ROBERTS has

*O*Σ'285. 149

recently made a very careful determination of this mass-latio, and finds (AN, 3313) that the masses of a^2 and a^1 (the companion) are as 51 $49 \pm {}_{5}^{1}$ 0 of the amount A very similar result was obtained by Dr. Elkin in his *Inaugural Dissertation*, and hence we may conclude that in this case the relative masses are known with almost the desired precision

Mr. Roberts has also made a careful discussion of the parallax of a Centauri from the meridian observations of 1879–81 and obtained (A N, 3324) results which confirm the work of Gill and Elkin with the heliometer Using both right ascensions and declinations Mr Roberts finds

$$\pi = \pm 0'' 71 \pm 0'' 05$$

Our knowledge of this system is therefore far more accurate than that of any other system in the heavens, and it does not seem possible that the results here obtained will ever be sensibly altered. But as some refinement is still possible this glorious object will always ment the attention of observers.

o∑285.

 $a = 14^{h} 41^{m} 7$, $\delta = +42^{\circ} 48'$ 75, yellowish , 76, whitish

Discovered by Otto Struve in 1845

OBSERVATIONS

$oldsymbol{t}$	θ_o	ρ_o	n	Observers	t	θ_o	ρo	\boldsymbol{n}	Observers
1845 80	$7\overset{\circ}{2}2$	0 61	3	O Struve	1887 60	$202^{\circ}2$	$0^{''}24$	4	Schiaparelli
1847 96	72.2	0.42	3	\mathbf{M} ädler	1888 61	187 5	0 22	3	Schiaparelli
185271	58 4	0 49	5	\mathbf{M} ädler	1889 52	1932	022	1	Schiaparelli
$1855 \ 84$	53 9	0 51	3	O Struve	1891 30	1687	0 24	3	Burnham
1857 50	65 5	0 40	1	Secchi	1891 49	$159 \ 2$	0 20	1	Schiaparelli
1865 53	36 0		1–0	Dembowskı	1892 30	$162\ 2$	0 24	3–2	Burnham
1876 40	350 0	03±	1	Burnham	1893 46	156 0	024	1	Burnham
10,0 40	000 0	001	-	3)(111110111	1893 51	$158 \ 8$		1–0	Bıgourdan
1881 50		doubtful	1	Burnham	1894 47	136 8		1-0	Bigourdan
1883 84	$258 \ 3$	022	5	Englemann	1895 32	147.3	0 30	3	See
$1885 \ 40$	225 0	elong	1	Perrotin	1895 56	$143\ 2$	0 35	1	${\bf Schiaparelli}$

* j.

 $0\Sigma 285$.

This close double star was measured by Otto Struve several times during the few years following its discovery * The other early measures were by Madler and Secchi, while in later years the pair has been measured only by Englemann, Schiaparelli, Burnham and the writer. Thus, only a small number of observations are available for the determination of an orbit, but it happens that these are distributed so as to give a fairly good set of elements.

The star has always been a difficult object, and hence the measures are necessarily less accurate than in case of easier pairs Burnham was the first to attempt an investigation of the orbit (Sidereal Messenger, June, 1891) His apparent ellipse and the resulting elements are not very different from those found in this paper. Mr. Gore has since attempted an orbit by a very different process, and obtained results of a wholly different character (Monthly Notices, April, 1893). These two sets of elements are.

Gore	BURNHAM
P = 11857 years	621
T = 1881 93	18853
e = 0.58	0.429
a = 0'' 46	0″ 387
$\Omega = 107^{\circ} 0$	54° 3
$i = 45^{\circ} 7$	44° 3
$\lambda = 161^{\circ} 4$	180° 0

Using all the measures, and basing the work on both angles and distances, I find the following elements of $0\Sigma 285$:

P = 7667 years	$\Omega = 62^{\circ} 2$
T = 188253	$i = 41^{\circ} 95$
e = 0.470	$\lambda = 162^{\circ} 23$
a = 0'' 3975	$n = -4^{\circ} 6953$

Apparent orbit:

```
Length of major axis = 0'' 788

Length of minor axis = 0'' 522

Angle of major axis = 67^{\circ} 1

Angle of periastron = 255^{\circ} 3

Distance of star from center = 0'' 182
```

The following table of computed and observed places shows that the measures are represented as well as could be expected in the case of an object of this difficulty.

^{*}Astronomical Journal, 356

*0\(\Sigma\)*285

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θο	ρο	ρε	$\theta_o - \theta_c$	ρορε	n	Observers
1845 80 1847 96 1852 71 1855 84 1857 50 1865 53 1876 40	72 2 72 2 58 4 53 9 65 5 36 0 350 0	73 2 70 0 62 9 58 0 55 1 38 4 357 4	ρο 0 61 0 42 0 49 0 51 0 40 0 3 ±	ρς 0 57 0 57 0 56 0 54 0 52 0 42 0 24	$ \begin{array}{c cccc} \theta_0 & \theta_0 \\ & 10 \\ & 22 \\ & 45 \\ & 41 \\ & 104 \\ & 24 \\ & 74 \end{array} $	$ \begin{array}{r} \rho_0 - \rho_c \\ \hline +0.04 \\ -0.15 \\ -0.07 \\ -0.03 \\ -0.12 \\ \hline +0.06 \\ \end{array} $	3 3 5 3 1 1	O Struve Mädler Mädler O Struve Seechi Dembowski Burnham
1881 50 1883 84 1887 60 1891 30 1892 30 1893 46 1895 32	258 3 202 2 168 7 162 2 156 0 147 3	267 6 241 0 203 6 170 1 162 0 153 2 142 0	0 22 0 24 0 24 0 24 0 24 0 24 0 30	0 20 0 21 0 22 0 24 0 25 0 26 0 28	$ \begin{array}{r} -14 \\ -14 \\ -14 \\ +02 \\ +28 \\ +53 \end{array} $	$ \begin{array}{r} $	1 5 4 3 3–2 1 3	Buinham Englemann Schiapaielli Buinham Burnham Burnhain See

The only large residual is that of Englemann, whose small telescope would necessarily render his observations subject to considerable uncertainty. Indeed, he gives the angle as 78°3, but I have assumed that he really saw the companion, and have therefore changed the angle by 180°. The estimate of 36° for the position-angle in 1865.53 is very hearly correct, and leaves no doubt that the elongation observed by Dembowski was real.

When I measured the object recently with the 26-inch refractor of the Leander McCormick Observatory in Virginia, the stars were not separated, except on one night, and hence the difficulty of the pair will doubtless account for the error in angle. The star is slowly separating, and ought to be observed annually. The following is an ephemeris for the next five years

t	θ_c	ρ_c	$oldsymbol{t}$	θ_c	ρ_c
	0	"		0	<i>II</i>
$1896 \ 40$	$135\ 6$	0 30	1 899 4 0	$122\ 3$	0.35
1897 40	130 7	0.32	1 900 4 0	118 4	0 36
1898 40	126 5	0 33			

The comparatively long period of this close star may probably be construed to mean that the system is very remote from the *Earth*, otherwise the mass would be excessively small. The eccentricity of the orbit is fairly well defined, and is near the mean value of this element among double stars.

$\xi BOOTIS = \Sigma 1888.$

 $a = 14^{h} \ 46^{m} \ 8$, $\delta = +19^{\circ} \ 31'$ 4 5, yellow , 6 5, purple

Discovered by Sir William Herschel, April 19, 1780

OBSERVATIONS

t	θ_o	ρ,	\boldsymbol{n}	Observers	t t	θ o	ρ_o	n	Observers
178069	$24^{\circ}1$	$3^{''}23$	1	Herschel	1841 06	$325^{\circ}1$	$7^{''}03$	5	O Struve
1791 39	${f nf}$		1	Herschel	1841 42	3234	727	3	Dawes
					1841 43	$324\ 7$	7 10	4	Maidler
1792 30	355 7	***************************************	1	Herschel	1841 65	322 1	672		\mathbf{K} aisei
$1795\ 32$	354 9	-	1	Heischel	1842 30	$322\ 7$	7 03	2	Dawes
$1802\ 25$	$352\ 9$		1	Herschel	1842 40	3234	6 88	3–1	Mädler
$1804\ 25$	35 3 9	6 ±	1	Herschel	1843 33 1843 35	$\begin{array}{c} 322\ 7 \\ 322\ 4 \end{array}$	6 70 6 81	1	Dawes
1821 20	$342 \ 4$	9 25	1	H and So	1843 58	323 8	691	7-5 7	Mädlei Schlütei
1822 69					1843 68	322 2	6 64	<u>.</u>	Kaiser
	335 8	7 54		Struve					
1823 30		667	_	Amici	1844 36	321 6	6 90	3	Mädler
$1823\ 34$	3402	842	1	H and So	1845 36	320 9	6 81	8-6	Madler
$1825\ 37$	337 0	778	4	South	1845 37	$322\ 3$	612	_	\mathbf{H} \mathbf{n} \mathbf{d}
1828 54	336 0	718	2	Herschel	1845 40	318 6	6 76	28	\mathbf{Morton}
					1846 29	$320 \ 4$	6 69	5	Madler
1829 46	$334\ 2$	722	4	Struve	1846 46	$319\ 2$	675	20	Morton
$1830\ 29$	333 7	7 62	5-4	Herschel	1847 37	3194	6 68	6	Madler
1831 40	$331\ 2$	7 30	5	Bessel	1847 44	318 8	680	2	Dawes
1832 40	331 1	7 14	2		1847 63	317 7	6 48	-	$\mathbf{Mitchell}$
				Struve	1847 82	3194	6 53	3	O Struve
1833 23	330 7	754	2	$\mathbf{Herschel}$	1848 28	3180	6 63	5-4	Madleı
1834 44	$330\;4$	7 54	3	Dawes	1848 50	317 9	6 71	2	Dawes
1835 43	329 0	7 07	5	Struve	1850 77	3165	656	1	Madlei
$1835\ 45$	$330 \ 4$	7 63	3-2	Madler	1851 11	3174	6 56	5	Fletcher
1836 37	329 1	7 52	1	Madler	1851 49	3161	621	5	Madlei
1836 49	$\begin{array}{c} 3231 \\ 3282 \end{array}$	7 09	4	Struve	1852 30	3166	6 51	32	Millei
					1852 56	3153	622	15-13	Madler
1837 31	3270	6 79		Encke	1853 44	314 4	6 31	8-7	Mädler
$1838\ 22$	3267	6 97	_	\mathbf{Madler}	1853 54	313 4	6 23	3	O Struve
183847	$327 \ 1$	685	2	Struve					
183854	$326 \ 5$	726	-	Galle	1854 46	312 0	6 26	3	Dawes
1000 41	995.0	7 O7		~ "	1854 48	3124	6 07	5_4	Mädler
1839 41	325 8	7 07	-	Galle	1854 75	311 7	5 99	8	Dembowskı
1840 26	3251	6 70		s Kaiser	1855 38	311 7	6 07	2	Madler
184 0 4 3	324 1	716	3	Dawes	$1855\ 42$	310 5	6 00	3	Secchi

ŧ	<i>θ.</i> ,	ρ_o	71	Observers	t	θ_{i}	ρ_o	72	Observers
1856 39	312 1	5 89	1 3	Madler	1870 38	293.0	ธ์.41	2	Maan
1856 15	3108	5 95	8	Dembowski	$1870 \ 16$	295.8	4 66		Leyton Obs
1856 15	311.9	6.76	2	Luther	1870.56	294.4	4.95	1	Dunér
1856 55	311.7	6.00	3	Winnecke	1071 98	ono u	1.00	o	Marta
1856 88	3100	6.02	12	Seechi	1871 35	292.8	4 93	2 4	Main
					1871 19	293.5	4.73		Dunér
1857 10	311 2	5.76	5	Madler	1871 82	290 9	4 75	9	Dembowski
1857.42	310 0	5.90	1	Dawes	$1873 \ 19$	286.7	4.62	4	O. Strave
1857.56	308.9	5.90	2	Dembowski	1873.39	286.0	4 93	1	Main
1858.36	308,2	5 76	5	Dembowski	$1873 \ 43$	287.0	4.84	1	Lindstedt
1858.38	307.8	5.93	12	Morton	1873.48	286.6	471	1	Leyton Obs.
1858.54	309.9	5.65	7	Madler	1873.91	287.8	4.62	8	Dembowski
1000.04	e)(i);ii	+3,13+3		141 (04 14.1.	1001.00				
1859,39	309.4	5 57	3	Müdler	1874.22	289 2	5.0		Gledhill
					1874.36	283.9	4.92	4	Main
1861 29	305 0	5 52	35	Powell	1874 43	287.3	4.71	2-1	Leyton Obs.
1861 50	307 1	5.79	10 9	Madler	187141	288.4	4.72	5	W. & S.
1861.57	305.0	5.78	5	O Strave	1875 31	286.5	1.76	4	Main
1862.15	303 1	5 93	6	Anwers	1875.18	283 9	4 13	i	O Stanve
1862.33	305.9	5.68	1	Main	1875 36	285 1	1.60	•	Glodhill
1862 17	3011	5 59	-1	O Strave	1875 38	286.3	******	_	Nobile
1862 51	202.0	** ***	•	Auwers	1875 10	284.3	4.41	5	Schiaparelli
1862 51	302.2			Winnocke	1875.51	286.6	4.45	4	Duner
1862.65	306.1	5.27	2	Muller	1875.90	284.7	4.43	8	Dembowski
			-				*****	•	DOM: OUT BELL
1863 15	303.0	5.59	14	Dembowski	1876.34	284.8	4.31	5	Doberck
1863 15 1863.28			14					5 8	Doberck Hall
	303.0	5.59	14	Dem bowski	1876.34	284.8	4.31	5	Doberck
1863.28	303.0 302.4	5.59 5.79	14	Dembowski Leyton Obs.	1876.34 1876.43	284.8 283.4	4.31 4.64	5 3 1	Doberck Hall O. Struve
1863.28 1863.56	303.0 302.4 302. 0	5.59 5.79 5.87	14 - 5	Dembowski Leyton Obs. O. Struve	1876.34 1876.43 1876.58	284.8 283.4 282.0	4.31 4.64 4.19 4.70	8 1 3	Doberck Hall O. Strave Doberck
1863.28 1863.56 1864.46 1864.87	303.0 302.4 302.0 303.4 301.6	5.59 5.79 5.87 5.32 5.44	14 - 5 1	Dembowski Leyton Obs. O. Struve Englemann Dembowski	1876.34 1876.43 1876.58 1877.24 1877.45	284.8 283.4 282.0 282.9 283.0	4.31 4.64 4.19 4.70 4.35	5 3 1 3 5	Doberck Hall O. Struve Doberck Jedrzejewicz
1863.38 1863.56 1864.46 1864.87	303.0 302.4 302.0 303.4 301.6	5.59 5.79 5.87 5.32 5.44 5.61	14 - 5 1 16 3	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann	1876.34 1876.43 1876.58 1877.24 1877.45 1877.45	284.8 283.4 282.0 282.0 283.0 280.7	4.81 4.64 4.19 4.70 4.35 4.23	8 1 3	Doberck Hall O. Struve Doberck Jedrzejewicz Schiaparelli
1863.28 1863.56 1864.46 1864.87	303.0 302.4 302.0 303.4 301.6	5.59 5.79 5.87 5.32 5.44	14 - 5 1	Dembowski Leyton Obs. O. Struve Englemann Dembowski	1876.34 1876.43 1876.58 1877.24 1877.45	284.8 283.4 282.0 282.9 283.0	4.81 4.64 4.19 4.70 4.35 4.23 4.21	5 3 1 3 5	Doberek Hall O. Struve Doberek Jedrzejewicz Schiaparelli O. Struve
1863.38 1863.56 1864.46 1864.87 1865.33 1865.77	303.0 302.4 302.0 303.4 301.6 301.6 300.8	5.59 5.79 5.67 5.32 5.44 5.61 5.41	14 - 5 1 16 3	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Secch	1876.34 1876.43 1876.58 1877.24 1877.45 1877.45	284.8 283.4 282.0 282.0 283.0 280.7 279.4	4.81 4.64 4.19 4.70 4.35 4.23	8 1 3 5 5	Doberck Hall O. Struve Doberck Jedrzejewicz Schiaparelli
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77	303.0 302.4 302.0 303.4 301.6 301.6 300.8	5.59 5.79 5.67 5.32 5.41 5.61 5.41	14 -5 1 16 3 1	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Secchi Leyton Obs.	1876.34 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.93	284.8 283.4 282.0 282.0 283.0 280.7 279.4 280.9	4.31 4.64 4.19 4.70 4.35 4.23 4.21 4.26	5 3 5 5 1 8	Doberek Hall O. Struve Doberek Jedrzejewicz Schiaparelli O. Struve Dembowski
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.30 1866.44	303.0 302.4 302.9 303.4 301.6 301.6 300.8 298.5 299.6	5.59 5.79 5.67 5.32 5.41 5.61 5.11 5.59 5.20	14 -5 1 16 3 1	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Secch Leyton Obs. Kaiser	1876.34 1876.43 1876.58 1877.24 1877.45 1877.45	284.8 283.4 282.0 282.0 283.0 280.7 279.4	4.81 4.64 4.19 4.70 4.35 4.23 4.21	8 1 3 5 5	Doberck Hall O. Struve Doberck Jedrzejewicz Schiaparelli O. Struve Dembowski Goldney
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43	303.0 302.4 302.0 303.4 301.6 300.8 298.5 299.6 299.8	5.59 5.79 5.87 5.32 5.44 5.61 5.41 5.59 5.20 5.24	14 -5 1 16 3 1 2 4 -2-1	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Secch Leyton Obs. Kaiser Englemann	1876.34 1876.43 1876.58 1877.24 1877.45 1877.45 1877.54 1877.93	284.8 283.4 282.0 282.0 283.0 280.7 279.4 280.9	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26	5 3 1 3 5 1 8	Doberck Hall O. Struve Doberck Jedrzejewicz Schiaparelli O. Struve Dembowski Goldney Hall
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.8	5.59 5.79 5.67 5.32 5.41 5.61 5.41 5.59 5.20 5.24 5.81	14 -5 1 16 3 1 2 4 - 2-1 3-2	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Secch Leyton Obs. Kaiser Englemann Searle	1876.34 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.93	284.8 283.4 282.0 282.0 282.0 283.0 280.7 279.4 280.9 281.3 277.4	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13	8 1 3 5 5 1 8 4 2 3	Doberek Hall O. Struve Doberek Jedrzejewicz Schiaparelli O. Struve Dembowski Goldney Hall Doberek
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43 1866.50	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 298.0 299.2	5.59 5.79 5.67 5.32 5.44 5.61 5.41 5.59 5.20 5.24 5.81 6.27	14 - 5 1 16 3 1 2 4 - 2-1 3-2 3-2	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Seech Leyton Obs. Kanser Englemann Searle Winlock	1876.94 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.93 1878.40 1878.42 1878.45	284.8 283.4 282.0 282.0 283.0 280.7 279.4 280.9 281.3 277.4 281 2 278.8	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01	8 1 3 5 5 1 8 4 2 3 5	Doberek Hall O. Struve Doberek Jedrzejewicz Schiaparelli O. Struve Dembowski Goldney Hall Doberek Schiaparelli
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.8	5.59 5.79 5.67 5.32 5.41 5.61 5.41 5.59 5.20 5.24 5.81	14 -5 1 16 3 1 2 4 - 2-1 3-2	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Secch Leyton Obs. Kaiser Englemann Searle	1876.94 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.93 1878.40 1878.45 1878.45 1878.52	284.8 283.4 282.0 282.0 283.0 280.7 279.4 280.9 281.3 277.4 281.2 278.8 279.4	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01 4.13	8 1 3 5 5 1 8 4 2 3 5	Doberek Hall O. Struve Doberek Jedrzojewicz Schiaparelli O. Struve Dembowski Goldney Hall Doberek Schiaparelli O. Struve
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43 1866.50 1866.50	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.0	5.59 5.79 5.67 5.32 5.41 5.61 5.41 5.59 5.20 5.24 5.81 6.27 5.30	14 - 5 1 16 3 1 2 4 - 2-1 3-2 3-2 11	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Seech Leyton Obs. Kanser Englemann Searle Winlock Dembowski	1876.94 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.93 1878.40 1878.42 1878.45 1878.52 1878.54	284.8 283.4 282.0 282.0 283.0 280.7 279.4 280.9 281.3 277.4 281 2 278.8 279.4 277.6	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01 4.13	5 3 5 5 1 8 4 2 3 5 1 6	Doberek Hall O. Struve Doberek Jedrzejewicz Schiaparelli O. Struve Dembowski Goldney Hall Doberek Schiaparelli O. Struve
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43 1866.50 1866.50	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.0 299.2 299.0	5.59 5.79 5.67 5.32 5.41 5.61 5.41 5.59 5.20 5.24 5.81 6.27 5.30	14 - 5 1 16 3 1 2 4 - 2-1 3-2 3-2 11	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Seech Leyton Obs. Kaiser Englemann Searle Winlock Dembowski	1876.94 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.93 1878.40 1878.45 1878.45 1878.52	284.8 283.4 282.0 282.0 283.0 280.7 279.4 280.9 281.3 277.4 281.2 278.8 279.4	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01 4.13	8 1 3 5 5 1 8 4 2 3 5	Doberek Hall O. Struve Doberek Jedrzojewicz Schiaparelli O. Struve Dembowski Goldney Hall Doberek Schiaparelli O. Struve
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43 1866.50 1866.50	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.0	5.59 5.79 5.67 5.32 5.41 5.61 5.41 5.59 5.20 5.24 5.81 6.27 5.30	14 - 5 1 16 3 1 2 4 - 2-1 3-2 3-2 11	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Seech Leyton Obs. Kanser Englemann Searle Winlock Dembowski	1876.94 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.93 1878.40 1878.42 1878.45 1878.52 1878.54 1879.51 1879.52	284.8 283.4 282.0 282.0 283.0 280.7 279.4 280.9 281.3 277.4 281 2 278.8 279.4 277.6 275.7	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01 4.13	8 1 3 5 5 1 8 4 2 3 5 1 6 5	Doberek Hall O. Struve Doberek Jedrzejewicz Schiaparelli O. Struve Dembowski Goldney Hall Doberek Schiaparelli O. Struve
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43 1866.50 1866.50	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.0 299.2 299.0	5.59 5.79 5.67 5.32 5.41 5.61 5.41 5.59 5.20 5.24 5.81 6.27 5.30	14 - 5 1 16 3 1 2 4 - 2-1 3-2 3-2 11	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Seech Leyton Obs. Kaiser Englemann Searle Winlock Dembowski	1876.34 1876.48 1876.58 1877.24 1877.45 1877.45 1877.51 1877.51 1877.93 1878.40 1878.42 1878.45 1878.52 1878.54 1879.51 1879.52 1880.16	284.8 283.4 282.0 282.0 282.0 283.0 280.7 279.4 280.9 -281.3 277.4 281.2 278.8 270.4 277.6 275.7	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01 4.13 4.10 4.18	5 3 5 5 1 8 4 2 3 5 1 6 5 5	Doberck Hall O. Struve Doberck Jedrzejewicz Schiaparelli O. Struve Dembowski Goldney Hall Doberck Schiaparelli O. Struve Schiaparelli Hall Franz
1863.28 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43 1866.50 1866.50 1866.50	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.0 209.2 209.0 208.1 206.7	5.59 5.79 5.67 5.32 5.44 5.61 5.41 5.59 5.20 5.24 5.81 6.27 5.30 5.64 5.43	14 - 5 1 16 3 1 2 4 - 2-1 3-2 3-2 11 1	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Seech Leyton Obs. Kaiser Englemann Searle Winlock Dembowski Winlock Searle	1876.34 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.51 1877.93 1878.40 1878.42 1878.45 1878.52 1878.54 1879.51 1879.52 1880.16 1880.48	284.8 283.4 282.0 282.0 282.0 283.0 280.7 279.4 280.9 281.3 277.4 281.2 278.8 279.4 277.6 275.7 278.8 276.0	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01 4.13 4.10 4.18 4.28 4.19	5 3 5 5 1 8 4 2 3 5 1 6 5 3	Doberck Hall O. Struve Doberck Jedrzejewicz Schiaparelh O. Struve Dembowski Goldney Hall Doberck Schiaparelli O. Struve Schiaparelli Hall Franz Jedrzejewicz
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43 1866.50 1866.50 1866.50 1866.50	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.0 209.2 209.0 208.1 206.7 204.7	5.59 5.79 5.67 5.32 5.44 5.61 5.41 5.59 5.20 5.24 5.81 6.27 5.30 5.64 5.43 5.33	14 -5 1 16 3 1 2 4 - 2-1 3-2 3-2 11 1 2	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Seech Leyton Obs. Kanser Englemann Searle Winlock Dembowski Winlock Searle Main O. Struve	1876.34 1876.48 1876.58 1877.24 1877.45 1877.45 1877.51 1877.51 1877.93 1878.40 1878.42 1878.45 1878.52 1878.54 1879.51 1879.52 1880.16	284.8 283.4 282.0 282.0 282.0 283.0 280.7 279.4 280.9 -281.3 277.4 281.2 278.8 270.4 277.6 275.7	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01 4.13 4.10 4.18	5 3 5 5 1 8 4 2 3 5 1 6 5 5	Doberck Hall O. Struve Doberck Jedrzejewicz Schiaparelli O. Struve Dembowski Goldney Hall Doberck Schiaparelli O. Struve Schiaparelli Hall Franz
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43 1866.50 1866.50 1866.50 1866.50 1867.12 1868.10 1869.09 1869.47	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.0 209.2 299.0 208.1 206.7 294.7 295.4 295.6	5.59 5.79 5.67 5.32 5.41 5.61 5.41 5.59 5.20 5.24 5.81 6.27 5.30 5.64 5.43 5.09 5.07	14 - 5 1 16 3 1 2 4 - 2-1 3-2 3-2 11 1 2	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Seecht Leyton Obs. Kanser Englemann Searle Winlock Dembowski Winlock Searle Main O. Struve Dunér	1876.34 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.51 1877.93 1878.40 1878.42 1878.45 1878.52 1878.54 1879.51 1879.52 1880.16 1880.48	284.8 283.4 282.0 282.0 282.0 283.0 280.7 279.4 280.9 281.3 277.4 281.2 278.8 279.4 277.6 275.7 278.8 276.0	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01 4.13 4.10 4.18 4.28 4.19	5 3 5 5 1 8 4 2 3 5 1 6 5 3	Doberck Hall O. Struve Doberck Jedrzejewicz Schiaparelh O. Struve Dembowski Goldney Hall Doberck Schiaparelli O. Struve Schiaparelli Hall Franz Jedrzejewicz
1863.38 1863.56 1864.46 1861.87 1865.33 1865.77 1866.39 1866.44 1866.43 1866.50 1866.50 1866.50 1866.50	303.0 302.4 302.0 303.4 301.6 301.6 300.8 298.5 299.6 299.8 299.0 209.2 209.0 208.1 206.7 204.7	5.59 5.79 5.67 5.32 5.44 5.61 5.41 5.59 5.20 5.24 5.81 6.27 5.30 5.64 5.43 5.33	14 -5 1 16 3 1 2 4 - 2-1 3-2 3-2 11 1 2	Dembowski Leyton Obs. O. Struve Englemann Dembowski Englemann Seech Leyton Obs. Kanser Englemann Searle Winlock Dembowski Winlock Searle Main O. Struve	1876.34 1876.43 1876.58 1877.24 1877.45 1877.45 1877.51 1877.51 1877.93 1878.40 1878.42 1878.45 1878.52 1878.54 1879.51 1879.52 1880.16 1880.48 1880.51	284.8 283.4 282.0 282.0 282.0 280.7 270.4 280.9 281.3 277.4 281.2 278.8 270.4 277.6 275.7 278.8 276.0 276.3	4.81 4.64 4.19 4.70 4.35 4.23 4.21 4.26 4.62 4.32 4.13 4.01 4.13 4.10 4.18 4.28 4.19 3.97	5 3 5 5 1 8 4 2 3 5 1 6 5 3 3	Doberck Hall O. Struve Doberck Jedrzejewicz Schiaparelh O. Struve Dembowski Goldney Hall Doberck Schiaparelli O. Struve Schiaparelli Hall Franz Jedrzejewicz Schiaparelli

With 1

t	θ_o	$ ho_o$	n	Observers	t	θ_o	ρ_o	n	Observers
$1882\ 33$	$267^{\circ}6$	$4^{''}\!73$	1	Glasenapp	1887 43	$25\r{6}$ 0	$3^{''}54$	3	Hall
188242	2704	399	3	Hall	1887 50	2570	3 31	12	Schiaparelli
$1882\ 50$	2714	3 86	7	Schiapaielli	1888 25	250 2	3 51	1	Glasenapp
1000.40	0.07 1	0.00	0	TT 11	1888 42	$250\ 2$	340	3	Hall
1883 43	267 1	3 90	3	Hall	1888 54	2550	3 15	$^{\circ}_{2}$	O Struve
1883 47	268 1	372	9	Schiapaielli	1888 62	253 9	3 51	$\frac{2}{2}$	Maw
1883 50	269 4	372	3	Jedi zejewicz	1000 02	2000	001	-	212011
1883 52	267 6	4 14	3	Seabroke	1889 31	$250\;5$	383	2	Glasenapp
1883 57	$268 \ 1$	379	4	Perrotin	1889 48	2491	3 40	3	\mathbf{Hall}
1884 42	2628	4 30	2	Glasenapp	1889 61	2499	3 31	3	Maw
$1884 \ 45$	$266\ 6$	365	6	Englemann	1890 41	$246\ 2$	3 15	3	Maw
$1884\ 45$	266 1	371	2	Perrotin	1890 43	$246\ 3$	3 21	3	Hall
1884 49	$266 \ 3$	3 38	9	Schiaparelli	1890 53	$244 \ 4$	347	2	Hayn
1884 50	$266\ 2$	356	1	O Struve	100111	0.44.0	0.00		•
					1891 44	241 0	3 26	5-4	Sec
$1885\ 37$	$264\ 3$	344	3	Tairant	1891 45	242 4	3 18	3	Hall
$1885\ 37$	$261 \ 4$	368	3	Hall	1891 48	$243\ 4$	3 18	4	\mathbf{M} aw
1885 44	$262 \ 9$	351	4	$\mathbf{Perrotin}$	1892 32	240 0	3 08	3	Leavenworth
1885 44	$262 \ 1$	355	5	deBall	1892 41	$239 \ 4$	3 11	3	\mathbf{Maw}
$1885 \ 48$	2631	3 61	12	Schiaparelli	1892 49	238 3	2 91	3	Comstock
$1885\ 55$	$263 \ 1$	3 61	7	$\mathbf{Englemann}$	1000 47	0050	0.00	0	
1885 64	$263\ 6$	3 63	4	$\mathbf{Jedizejewicz}$	1893 47	235 8	2 96	3	Maw
1886 40	259 6	3 56	3	Penotin	1894 53	231 2	290	3	$\mathbf{M}\mathbf{a}\mathbf{w}$
1886 43	$259\ 3$	3 59	3	Hall	1895 49	$226 \ 4$	288	3	Comstock
1886 51	$260\ 2$	349	7	Schiaparelli	1895 70	223 8	257	4	See
1886 60	$259\ 4$	332	6	Englemann	1895 73	$224\ 4$	265	2	Moulton

The stars of this system are somewhat unequal in magnitude, and are moreover distinguished by very striking colors. The principal star is yellow, while the companion is reddish purple; and hence the appearance of the system, so far as it depends on contrast in color and inequality of the components, is very similar to those of 70 Ophruchi and η Cassiopeae.* The early observations of Herschel established the physical connection of the stars, and since the time of Struve the measures are both sufficiently numerous and sufficiently exact to give the position of the companion with the desired precision. In spite of the fact that since 1780 an arc of only about 170° has been described, we are enabled by the favorable shape of this arc to make a very satisfactory determination of the elements. The companion is now approaching periastron, and in the course of a few years the motion will become very rapid. For the next fifteen years this system will deserve special attention from observers, as the part of the apparent ellipse swept over by the companion during this interval

^{*} Astronomische Nachrichten, 3334

will be the most critical, and measures secured near periastron will enable us to render the orbit exact to a very high degree.

The following table gives the elements of this interesting system published by previous computers:

P	T	e	а	δ	ı	λ	Authority	Source
117 14 160 695 168 91 140 64 127 97 127 35	1779 958 1761 71 1779 75 1767 76 1770 44 1770 69	0 59374 0 454 0 7822 0 641 0 6781 0 7081	12 56 5 591 9 95 5 425 4 813 4 86	0 0 172 7 11 4 11 6 12 02 26 37		101 0 315 2 96 4 124 15 130 9 117 77	Mädler Hind, 1872	

From an investigation of all the observations we are led to the following elements of ξ Bootis:

$$P = 128 \text{ 0 years}$$
 $\Omega = 10^{\circ} \text{ 5}$
 $T = 1903 \text{ 90}$ $\iota = 52^{\circ} 28$
 $e = 0.721$ $\lambda = 239^{\circ} 25$
 $a = 5'' 5578$ $n = -2^{\circ} 8125$

Apparent orbit:

Length of major axis = 9''.07Length of minor axis = 5''.76Angle of major axis $= 167^{\circ}.7$ Angle of periastron $= 144^{\circ}.7$ Distance of star from centre = 2''.94

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θο	ρο	ρο	θ_o — θ_c	ρ _ο —ρ _c	n	Observers
1780 69	$2\mathring{1}$	35 3	3 23	2 18	$-11^{\circ}2$	+1"05	1	Herschel
1792 30	3557	22		524	-65		1	Herschel
1795 32	354 9	358 5	_	571	- 36		1	Herschel
1802 25	352 9	351 9	_	6 48	+ 10		1	Herschel
1804 25	353 9	350 1	$6\pm$	6 66	+ 38	-0 66	1	Herschel
1821 20	342 4	337 8	9.25	7 33	+ 46	+192	1	Herschel and South
1822 69	335 8	336 8	7 54	7 34	_ 10	+0 20	_	Struve
1823 32	340 2	336 4	7 55	7 35	+ 38	+0 20	$12\pm$	Herschel and So 1, Amici $0.2\pm$
1825 37	337 0	3351	778	7 35	+ 19	+0.43	4	South
1828 54	336 0	332 9	718	7 33	+31	-0.15	2	Herschel
1829 46	334 2	332 2	722	7 31	+ 20	-0.09	4	Struve
1830 29	333 7	331 6	762	7 30	+ 21	+0.32	5-4	Herschel
1831 40	$331\ 2$	330 9	7 30	7 29	+ 03	+0.01	5	Bessel
1832 40	331 1	330 2	714	7 27	+ 09	-0.13	2	Struve
1833 23	330 7	329 7	7 54	7 25	+ 10	+0.29	2	Herschel
1834 44	330 4	328 8	7 54	7 22	+ 16	+0.32	2 2 3 5	Dawes
1835 43	329 0	328 0	7 07	7 19	+ 10	-0.12		Struve
1836 49	328 2	$327\ 2$	7 09	7 16	+ 10	-0.07	4	Struve
1837 31	327 0	326 6	6 79	7 13	+ 04	-0.34	_	Encke
1838 41	326 8	325 8	7 03	7 09*	+ 10	-0 06	2+	Mädler $-$; Σ 2, Galle $-$
1839.41	325 8	325 2	7 07	7 06	+ 06	+0 01	-	Galle
1840 34	324 1	324 4	6 93	7 02	_ 03	0 09	3-6±	Kaiser 34-25 obs, Dawes 3

t	Δ	<u> </u>			0 0			01
	θο	θι	<u> </u>	- ρ _c	$\frac{\theta_o - \theta_c}{}$	<u> </u>	n	Observers
1841 39	3231	3236	7 03	6 97	- 05	+0.06	7-12+	OΣ 0-5, Da 3, Ma 4, Ka -
$\mid 1842\ 35 \mid$	323 0	$322 \ 8$	695	6 93	+ 02	+0.02	53	Dawes 2, Madler 3-1
1843 48	3228	$322 \ 0$	677	6 88	+ 08	-0.11	$15-13 \pm$	Ma 7-5, Da 1, Schl 7, Ka -
1844 36	321 6	$321\ 3$	6 90	683	+ 03	+0.07	3	Madlei
1845 38	320 6	$320 \ 4$	6 56	678	+ 02	-0.22		$Ma = H_1 = Mo 28 obs$
1846 37	3198	3196	6 72	6 73	+02	-0.01	8±	Madler 5, Morton 20 obs
1847 56	318 8	3186	6 62	6 67	+ 02	-0.05	11+	Ma 6, Da 2, Mit $-$, $O\Sigma$ 3
1848 39	318 0	3179	6 67	6 62	+ 01	+0.05	7-6	Madler 5-4, Dawes 2
1850 77	316 5	3159	6 56	6 48	+ 06	+008	1	Madler
1851 30	316 7	3154	6 44	6 44	+13	0 00	10	Fletcher 5, Madler 5
1852 43	3160	314 4	6 37	6 37	+ 16	0 00	18-16±	Miller 32 obs , Ma 15–13
1853 49	313 9	313 4	6 27	6 31	+ 05	-0.04	11-10	Madler 8–7, O∑ 3
1854 56	3120	312 3 311 6	611	6 23	- 03	-0.12	16–15	Dawes 3, Madler 5-4, Dem 8
1855 40 1856 56	311 1	310 4	6 03	618	$\begin{array}{c} -05 \\ +09 \end{array}$	-0.15	5	Madler 2, Secchi 3
1857 46	311 3 310 0	309 5	$\begin{array}{c c} 6 \ 12 \\ 5 \ 85 \end{array}$	$\begin{array}{c} 6\ 09 \\ 6\ 03 \end{array}$	+05	+0.03 -0.18	29–28	Ma 4-3, Dem 8, Wini 3, Lu 2,
1858 43	308 6	308 5	5 78	5 96	+01	-0.18	24	Ma 5. Da 1, Dem 2 [Sec 12]
1859 39	309 4	307 5	5 57	5 90	+19	-0.13	3	Dem 5, Morton 12, Mädler 7 Mädler
1861 45	3057	305 2	5 70	574	+05	-0.04	18-17±	Po 35 obs , Ma 10-9 , O. 5
1862 40	304 9	3041	5 62	5 66	+ 08	-0.04	13	Au 6, Main 1, O.S. 4, Ma 2
1863 33	302 5	303 0	5 68	5 59	- 05	+0.09	19+	Dem 14, Leyton obs —, Oユ 5
1864 67	302 5	301 4	5 38	5 47	+ 11	-0 09	17	Englemann 1, Dembowski 16
1865 55	301 2	300 3	5 51	5 41	+ 09	+010	7	Englemann 3, Secchi 4
1866 52	299 0	299 1	5 57	5 33	- 01	+0.24	21-20+	Ley 2-4, Ka -, En 2-1, Sr 3-2,
1867 36	297 5	297 9	5 54	5 25	- 04	+0.29	3	Wlk 1, Sr 2 [Wlk 3-2, Dem 11
1868 40	294 7	296 5	5 33	5 17	- 18	+016	1	Main
1869 43	295 5	295 0	5 23	5 08	+05	+0.15	13	$O\Sigma 4$, Du 5, Ma 3, Ley 1
1870 47	294 4	293 5	5 01	4 98	+ 09	+0 03	3+	Madler, Leyton —, Dunér 1
1871 55	2924	291 9	4 80	4 89	+ 05	-0.09	15	Ma 2, Du 4, Dem 9 [Dem 8]
1873 48 1874 36	2864	$\begin{array}{ c c c } 2887 \\ 2871 \end{array}$	4 74	4 71	- 23	+0.03	15	$O\Sigma 4$, Ma 1, Ley 1, Lin 1,
1875 45	$\begin{vmatrix} 2865 \\ 2854 \end{vmatrix}$	285 1	4 51	$\begin{array}{ c c c } 4 & 63 \\ 4 & 53 \end{array}$	$ \begin{array}{c} -06 \\ +03 \end{array} $	$+0.21 \\ -0.02$	$\begin{vmatrix} 11-10+\\22+ \end{vmatrix}$	Gl —, Ma 4, Ley 2–1, W & S 5
1876 45	283 4	283 3	4 38	4 45	+0.3	-0.02 -0.07	9	$Ma 4$, $O\Sigma 1$, $Gl -$, $No -$, $Sch 5$, $Dk 5$, $Hl 3$, $O\Sigma 1$ $[Du 4$, $Dem 8]$
1877 52	281 4	281 2	4 39	4 34	$+\overset{\circ}{0}\overset{\circ}{2}$	+0.05	22	Dk 3, Jed 5, Sch 5, O2 1, Dem 8
1878 46	2796	279 4	4 24	4 26	$+\overset{\circ}{0}\overset{\circ}{2}$	-0.02	15	ا دار (Go 4, Hl 2, Dk 3, Sch 5, نام ال
1879 52	2767	277 1	4 14	4 16	- 04	-0.02	11	Schiaparelli 6, Hall 5
1880 38	277 0	2753	4 15	4 09	+ 17	+0.06	11	Franz 5, Jed 3, Sch 3
1881 50	271 9	2728	3 98	4 00	- 09	-0.02	9	Hall 3, Sch 3, Sea 3
1882 46	270 9	270 4	3 93	3 90	+ 05	+0.03	10	Hall 3, Schiaparelli 7
1883 50	268 1	268 1	3 85	3 82	0.0	+0.03	22	Hl 3, Sch 9, Jed 3, Sea 3, Per 4
1884 47	266 3	265 2	3 65	3 72	+ 11	-0.09	18	En 6, Per 2, Sch 9, OS 1
1885 47	262 9	262 6	3 58	3 64	+ 03	-0.06	38	Tar 3, Hl 3, Per 4, Sch 12, deBall 5,
1886 48	259 6	259 5	3 49	3 57	+ 01	-0.08	19	Per 3, Ill 3, Sch 7, En 6 [En 7, Jed 4]
1887 47	256 5	256 6	3 43	3 46	- 01	-0.03	15	Hall 3, Schiaparelli 12
1888 46	253 0	253 6	3 39	3 37	- 06	+0.02	8	Glas 1, Hl 3, $O\Sigma$ 2, Maw 2
1889 45 1890 46	249 8 245 6	2504 2470	3 35	3 29	- 06	+0 06	8_6	Glas 2-0, Hall 3, Maw 3
1891 46	242 3	243 3	3 21	3 21 3 13	-14 -10	+0.07	8	Maw 3, Hall 3, Hayn 2
1892 41	239 2	239 5	3 03	3 04	$\begin{vmatrix} -10 \\ -03 \end{vmatrix}$	+0.08 -0.01	12_11	See 5-4, Hall 3, Maw 4 Lv 3, Maw 3, Com 3
1893 47	235 8	235 6	2 96	296	+0.0	0 00	3	Maw
1894 54	231 2	230 8	2 90	2 86	+ 04	+0.04	3	Maw
1895 59	225 1	225 7	272	$\frac{2}{2}$ $\frac{3}{7}$	- 06	-0.03	7	Comstock 3, See 4
					<u> </u>			1

The table of computed and observed places shows that the set of elements given above is extremely satisfactory, and we may confidently conclude that the general nature of the orbit here obtained will never be materially changed.

It is possible that the period may be varied by so much as one year, and that the eccentricity is uncertain to the extent of about ± 0.02 ; larger alterations in these quantities are not to be expected, and the values of the other elements are correspondingly well determined

The system of \(\xi\) Boots is chiefly remarkable for the great eccentricity of the orbit, and for the wide angular separation of the components. The great length of the major-axis and the comparatively short periodic time would support the belief that the system is not very far from the earth, and this view of relative proximity is rendered the more probable by the brightness of the components. But while these considerations tend to render it probable that the parallax is sensible, such a view is not supported by the small proper motion of the system in space, which is only 0"161 per year. We might, therefore, infer that the system is perhaps very remote from the earth, and hence of enormous dimensions, or comparatively near us, with the proper motion mainly in the line of sight. In any case the parallax of this system is particularly worthy of investigation, and it might be determined either by the ordinary process of direct measurement, or by the spectroscopic method (A.N., 3314, or \§5, Ch I), which here seems likely to be entirely practicable.

The following is an ephemeris for the companion for the next ten years:

t	θ_{o}	$ ho_{\sigma}$	t	θ,	p,
1896 50	$\boldsymbol{221°2}$	$2^{''}\!65$	1902 50	173.3	1.55
1897 50	216 2	253	1903 50	154.7	1.25
1898 50	210 1	$2\ 40$	1904 50	125.5	1.03
1899 50	$203 \ 4$	225	1905 50	90.1	1.05
1900 50	$195 \ 7$	206	1906 50	63.2	1.33
1901 50	186 1	1 83			

 $\alpha = 15^h~19^m~1$, $\delta = +30\,^\circ~39'$ 55, yellowish , 6, yellowish

Discovered by Sir William Herschel, September 9, 1781.

OBSERVATIONS											
Observers	n	Po	θ o	t t	Observers	\boldsymbol{n}	ρ_o	θ_o	$oldsymbol{t}$		
Struve	4	1.07	35 [°] 3	1826 77	Herschel	1	<u>"</u>	$30^{\circ}7$	1781 69		
Struve	2	0.96	43 2	1829 55	Heischel	1	_	1797	1 802 69		
Herschel	8	***************************************	44.5	1830 30	H & So	2–1	1 58	25 9	$1823\ 27$		

t	θ_o	ρο	n	Observers	t	θο	Po	\boldsymbol{n}	Observers
1831 34	508		2	Dawes	1849 44	$21\overset{\circ}{8}3$	$0^{''}69$	2–1	Dawes
1831 47	527	102	10-1	Herschel	1849 65	220 3	0 60	3	O Struve
1831 63	50 6	0 88	3	Stiuve			• • • •	Ū	
					1850 50	$221\ 2$	0.46	1	W Struve
$1832\ 50$	<i>57</i> 1	0 69	9-2	Herschel	$1850\ 52$	2308	049	3	O Struve
$1832\ 55$	567		1	Dawes	1850 56	$235\ 0$	$0.7 \pm$	2	Fletcher
183276	56 9	0.79	3	Struve	1850 69	228 8	0.42	3	Madler
1833 27	61 9	0 72	8–2	Herschel					
		0 12			1851 31	$236 \ 8$	0 35	3-2	Madleı
1833 39	63 5		3	Dawes	1851 42	$238 \ 1$	0 55	2	Dawes
1834 84	69 1	070	1	Struve	1851 56	2418	0.48	10	O Struve
1005 11	~~~	0.54	_	~.	1851 83	234 8	0.31	7-5	Madlei
1835 41	75 7	074	5	Struve	1050 50	0504	۸ ۲ .	•	~
1836 49	988 (Schatzur	ng) 1	Madler	1852 52	250 1	05±	2	Dawes
$1836\ 52$	88 8	0 56	6	Struve	1852 62	261 2	0 43	6	O Struve
					1852 67	241 1	0 30	13–11	\mathbf{M} adleı
1839 59	1198	$05\pm$	2	Dawes	1853 20	257 9	0.4-	0	T 1.
183982	$132 \ 1$	0.76	2	O Struve	1		04±	2	Jacob
$1839\ 82$	$126 \ 9$	0 59	3	W Struve	1853 37	267 8	0 27	5	Madleı
1040 50	1070	A P4	J	0. %	1853 56	280 9	0 32	5	O Struve
1840 52	137 2	0 51	5	O Struve	1853 64	273 3	0 44 ±	4	Dawes
184 0 62	135 9	0 50 ±	2	Dawes	1853 79	270 4	0 3	1	Mädler
$1841 \ 42$	1504	0.48	5	Madleı	1854 04	$285\ 3$	$0.5\pm$	3	Jacob
$1841\ 50$	1497	0.52	5	O Struve	1854 42	301 5	047	3	Dawes
$1841 \ 65$	149 4	049	6-1	Dawes	1854 66	$313\ 2$	0 33	4	O Struve
404000					1854 74	317 1	0.26	4_3	Madler
1842 26	157 6	0 55	5	Madlei					
1842 58	1 56 6	$0.5 \pm$	2	Dawes	1855 39	$325\ 6$	$0.32 \pm$	2	Secchi
$1842\ 60$	159 1	0 57	2	O Struve	1855 50	324 9	0.45	10-6	Winnecke
1843 37	166 9	0 57	C	36.11.	1855 51	3225	$0.45 \pm$	1-3	Dawes
1843 63	171 6		6	Madlei	1855 62	$330\ 2$	040	4	O Struve
1049 09	1110	0 60	7	Madleı	1855 77	$330\ 2$		2	Mädlei
1844 38	174 0	0 57	3	Madlei	104004				
			· ·	21202202	1856 35	336 8	0 51	9-6	$\mathbf{W}_{ ext{innecke}}$
$1845 \ 46$	$179 \ 3$	0 58	6	O Struve	1856 37	341 7	0.45	1_3	\mathbf{Dawes}
$1845\ 50$	186 1	0.59	19	\mathbf{Madlei}	1856 39	327.7	$0.5 \pm$	2	Jacob
1845 64	$188\ 3$	0 60	1	W Struve	1856 51	341 6	0 55	8-4	Winnecke
404004					1856 59	3444	0.47	7	Secchi
1846 61	1957	0 61	3	O Struve	1856 62	$342\ 6$	0.47	3	O Struve
18 4 6 50	194 0	0 56	14-13	\mathbf{M} adler	405-00	0.50		_	
1847 07	100.0		•	TT 7	1857 38	347 2	0 47	2	Madler
	196 6		3	Hind	1857 45	$350 \ 8$	0 60	2	Dawes
1847 24	199 0	0 69	11	Madlei	1857 48	351 0	0 58	7	\mathbf{Secchi}
1847 64	204 0	0 56	5	O Struve	1857 62	3518	0 65	4	O Struve
1847 71	204 6	0 62	5	Mädler	1857 95	355 8	0 G±	3	Jacob
$1848\ 29$	$205 \ 7$	0 62	3	\mathbf{Madlor}	1858 48	356 5	0 79	1	Winnecke
$1848\ 34$	$204\ 4$	0.65	2	Dawes	1858 51	359 2	0 53	3	Secchi
1848 47	$207 \ 4$	0 69	1	Dawes	1858 52	11	cuneo	10	Dembowski
$1848 \ 62$	$208 \ 7$	08±	2	W C Bond	1858 54	359 6	0 76	5	O Struve
184872	209 8	0 57	2	O Struve	1858 61	6 2	0 69	6	Madler
					-555 52	Ų <u>2</u>	0 00	J	TITUMICI

1859 39	$oldsymbol{t}$	θ_o	$ ho_o$	\boldsymbol{n}	Observers	t	θ_o	$ ho_o$	n	Observers
1859 48	1859 39	5 0	$0^{''}70$	4	Mädler	1870 38	$43^{\circ}6$	$1^{''}\!04$	8	Dembowski
1859 61					Secchi	1870 38	47.2	0 98	4-1	Pence
1869 62						1870 44	44 6	11	2	Gledhill
1860 35						1870 46			_	
1860 35	2000 0-			_		1			1	•
1861 58	1860 35	84	0 87	2	Dawes	1			7	
1861 58				_		1				
1862 54										
1862 54	$1861\ 58$	165	0.94	6	Mädler	1				
1862 56 16 9 0 71 11 Dembowski 1871 54 4 5 7 1 00 5 Knott 1862 58 22 8 0 99 3 Madler 1871 56 47 6 1 42 2 Seabroke 1862 76 22 5 0 91 2 O Struve 1871 57 46 4 0 95 1 Gledhill 1863 43 20 8 0 81 13 Dembowski 1872 29 47 8 1 29 — Leyton Obs 1863 54 23 6 1 10 4 O Struve 1872 43 51 3 103 9 Dembowski 1863 59 23 3 0 83 2 Seechi 1872 49 51 0 101 1 W & S 1864 44 24 2 0 74 10 Dembowski 1872 59 55 4 0 91 5 O Struve 1864 46 28 3 1 09 2 Englemann 1873 40 57 1 111 3 W & S 1865 15 30 1 1 13 5 Englemann 1873 44 56 1 104 8 Dembowski 1865 41 27 4 103 9 Dembowski	1969 54	16.1	1 97	2.0	Winnestra	l				
1862 58 22 8 0 99 3 Madler 1871 56 47 6 1 42 2 Seabroke 1862 76 22 5 0 91 2 O Struve 1871 57 46 4 0 95 1 Gledhill 1863 43 20 8 0 81 13 Dembowski 1872 43 51 3 1 03 9 Dembowski 1863 54 23 6 1 10 4 O Struve 1872 43 51 3 1 03 9 Dembowski 1863 59 23 3 0 83 2 Seechi 1872 48 51 7 0 92 7 Feriam 1864 44 24 2 0 74 10 Dembowski 1872 59 55 4 0 91 5 O Struve 1865 15 30 1 1 13 5 Englemann 1873 44 56 1 1 04 8 Dembowski 1865 35 29 7 1 14 3 O Struve 1873 47 56 0 — 1 Leyton Obs 1865 15 30 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td></td<>						1				
1862 76 22 5 0 91 2 O Struve 1871 57 46 4 0 95 1 Gledhill 1863 43 20 8 0 81 13 Dembowski 1872 29 47 8 1 29 — Leyton Obs 1863 54 23 6 1 10 4 O Struve 1872 43 51 3 1 03 9 Dembowski 1863 59 23 3 0 83 2 Secchi 1872 49 51 0 1 01 1 W & S 1864 44 24 2 0 74 10 Dembowski 1872 55 51 2 0 84 7 Dunéi 1864 46 28 3 1 09 2 Englemann 1873 40 571 1 11 3 W & S 1865 15 30 1 1 13 5 Englemann 1873 44 561 1 04 8 Dembowski 1865 35 29 7 1 14 3 0 Struve 1873 44 560 — 1 Leyton Obs 1865 41 27 4 1 03<						1				
1863 43						I .				
1863 54 23 6 1 10 4 O Struve 1872 43 51 3 1 03 9 Dembowski 1863 56 19 7 1 07 — Leyton Obs 1872 48 51 7 0 92 7 Feniari 1863 59 23 3 0 83 2 Secchi 1872 49 51 0 1 01 1 W & S 1864 44 24 2 0 74 10 Dembowski 1872 59 55 4 0 91 5 O Struve 1864 46 28 3 1 09 2 Englemann 1873 40 57 1 1 11 3 W & S 1865 15 30 1 1 13 5 Englemann 1873 44 56 1 1 04 8 Dembowski 1865 35 29 7 1 14 3 O Struve 1873 53 58 0 — 1 Leyton Obs 1865 44 27 3 1 07 3 Dawes 1873 53 58 0 — 1 Layton Obs 1865 52 30 1 1 59 </td <td>1002 10</td> <td>22 0</td> <td>0 91</td> <td>4</td> <td>O Strave</td> <td>1871 57</td> <td>46 4</td> <td>0.95</td> <td>1</td> <td>\mathbf{G}ledhill</td>	1002 10	22 0	0 91	4	O Strave	1871 57	46 4	0.95	1	\mathbf{G} ledhill
1863 54 23 6 1 10 4 O Stiuve 1872 43 51 3 1 03 9 Dembowski 1863 56 19 7 1 07 — Leyton Obs 1872 48 51 7 0 92 7 Feilam 1863 59 23 3 0 83 2 Secchi 1872 49 51 0 1 01 1 W & S 1864 44 24 2 0 74 10 Dembowski 1872 59 55 4 0 91 5 O Stiuve 1864 46 28 3 1 09 2 Englemann 1873 40 57 1 1 11 3 W & S 1865 15 30 1 1 13 5 Englemann 1873 44 56 1 1 04 8 Dembowski 1865 44 27 4 1 03 9 Dembowski 1873 53 58 0 — 1 Leyton Obs 1865 50 26.3 0 79 2 Secchi 1873 53 53 9 — 1-0 Romberg 1866 52 30 1 1.59 </td <td>1863 43</td> <td>20 8</td> <td>0 81</td> <td>13</td> <td>Dembowski</td> <td>1872 29</td> <td>478</td> <td>129</td> <td>-</td> <td>Leyton Obs</td>	1863 43	20 8	0 81	13	Dembowski	1872 29	478	129	-	Leyton Obs
1863 56 19 7 1 07 — Leyton Obs 1872 48 51 7 0 92 7 Fenam 1863 59 23 3 0 83 2 Secchn 1872 49 51 0 1 01 1 W & S 1864 44 24 2 0 74 10 Dembowski 1872 59 55 4 0 91 5 O Struve 1864 46 28 3 1 09 2 Englemann 1873 40 57 1 1 11 3 W & S 1865 15 30 1 1 13 5 Englemann 1873 44 56 1 1 04 8 Dembowski 1865 35 29 7 1 14 3 O Struve 1873 47 56 0 — 1 Leyton Obs 1865 41 27 4 1 03 9 Dembowski 1873 53 58 0 — 1 Lindemann 1865 50 26.3 0 79 2 Secchi 1873 53 53 9 — 1-0 Romberg 1866 52 30 1 1.59									9	
1863 59 23 3 0 83 2 Secchi 1872 49 51 0 1 01 1 W & S 1864 44 24 2 0 74 10 Dembowski 1872 58 51 2 0 84 7 Dunéi 1864 46 28 3 1 09 2 Englemann 1873 40 57 1 1 11 3 W & S 1865 15 30 1 1 13 5 Englemann 1873 44 56 1 1 04 8 Dembowski 1865 35 29 7 1 14 3 O Struve 1873 47 56 0 — 1 Leyton Obs 1865 41 27 4 1 03 9 Dembowski 1873 53 58 0 — 1 Lindemann 1865 50 26.3 0 79 2 Secchi 1873 53 59 0 — 3-0 Möller 1865 52 30 1 1 59 1 Leyton Obs 1873 53 50 3 — 1-0 Romberg 1866 38 32 3 1 40									7	
1864 44					•	1			1	W & S
1864 44 24 2 0 74 10 Dembowski 1872 59 55 4 0 91 5 O Struve 1864 46 28 3 1 09 2 Englemann 1873 40 57 1 1 111 3 W & S 1865 15 30 1 1 13 5 Englemann 1873 44 56 1 1 04 8 Dembowski 1865 35 29 7 1 14 3 O Struve 1873 47 56 0 — 1 Leyton Obs 1865 44 27 3 1 07 3 Dawes 1873 53 58 0 — 1 Lindemann 1865 50 26.3 0 79 2 Secchi 1873 53 53 9 — 1-0 Romberg 1866 52 30 1 1 59 1 Leyton Obs 1873 53 57 4 — 1-0 Schwarz 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1 12						1				
1864 46 28 3 1 09 2 Englemann 1873 40 57 1 1 111 3 W & S 1865 15 30 1 1 13 5 Englemann 1873 44 56 1 1 04 8 Dembowski 1865 35 29 7 1 14 3 O Struve 1873 47 56 0 — 1 Leyton Obs 1865 41 27 4 1 03 9 Dembowski 1873 53 58 0 — 1 Layton Obs 1865 50 26.3 0 79 2 Secchi 1873 53 59 0 — 3-0 Möller 1865 52 30 1 1 59 1 Leyton Obs 1873 53 53 9 — 1-0 Romberg 1866 38 32 3 1 40 2 Leyton Obs 1873 53 50 3 — 1-0 Schwarz 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1					$\mathbf{Dembowski}$	1				O Struve
1865 15 30 1 1 1 13 5 Englemann 1873 44 56 1 1 04 8 Dembowski 1865 35 29 7 1 14 3 O Struve 1873 47 56 0 — 1 Leyton Obs 1865 41 27 4 1 03 9 Dembowski 1873 53 58 0 — 1 Lindemann 1865 44 27 3 1 07 3 Dawes 1873 53 59 0 — 3-0 Möller 1865 50 26.3 0 79 2 Secchi 1873 53 53 9 — 1-0 Romberg 1866 38 32 3 1 40 2 Leyton Obs 1873 53 50 3 — 1-0 Schwarz 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1 12 3 Secchi 1873 54 54 1 1 00 5-3 Gledhill 1866 61 31 4 1 47 4-3 Haivard 1873 72 55 0 1 08 2 Dunér <td>$1864 \ 46$</td> <td>$28\ 3$</td> <td>109</td> <td>2</td> <td>$\mathbf{E}\mathbf{n}\mathbf{g}\mathbf{l}\mathbf{e}\mathbf{m}\mathbf{a}\mathbf{n}\mathbf{n}$</td> <td></td> <td></td> <td></td> <td></td> <td></td>	$1864 \ 46$	$28\ 3$	109	2	$\mathbf{E}\mathbf{n}\mathbf{g}\mathbf{l}\mathbf{e}\mathbf{m}\mathbf{a}\mathbf{n}\mathbf{n}$					
1865 35 29 7 1 14 3 O Struve 1873 47 56 0 — 1 Leyton Obs 1865 41 27 4 1 03 9 Dembowski 1873 53 58 0 — 1 Lindemann 1865 44 27 3 1 07 3 Dawes 1873 53 59 0 — 3-0 Möller 1865 50 26.3 0 79 2 Secchi 1873 53 53 9 — 1-0 Romberg 1866 52 30 1 1 59 1 Leyton Obs 1873 53 57 4 — 1-0 Schwarz 1866 38 32 3 1 40 2 Leyton Obs 1873 54 54 1 1 00 5-3 Gledhill 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1 12 3 Secchi 1873 54 57 4 0 81 4 O Struve 1866 61 31 4 1 47 <td>100515</td> <td>00 1</td> <td>1 10</td> <td>ب</td> <td>770</td> <td></td> <td></td> <td></td> <td></td> <td></td>	100515	00 1	1 10	ب	770					
1865 41 27 4 1 03 9 Dembowski 1873 53 58 0 — 1 Lindemann 1865 44 27 3 1 07 3 Dawes 1873 53 59 0 — 3-0 Möller 1865 50 26.3 0 79 2 Secchi 1873 53 53 9 — 1-0 Romberg 1865 52 30 1 1 59 1 Leyton Obs 1873 53 57 4 — 1-0 Schwarz 1866 38 32 3 1 40 2 Leyton Obs 1873 54 54 1 1 00 5-3 Gledhill 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1 12 3 Secchi 1873 54 57 4 0 81 4 O Struve 1866 61 31 4 1 47 4-3 Haivard 1873 72 55 0 1 08 2 Dunér 1867 34 35 9 1 07 <td></td>										
1865 44 27 3 1 07 3 Dawes 1873 53 59 0 — 3-0 Möller 1865.50 26.3 0 79 2 Secchi 1873 53 53 9 — 1-0 Romberg 1865 52 30 1 1 59 1 Leyton Obs 1873 53 57 4 — 1-0 Schwarz 1866 38 32 3 1 40 2 Leyton Obs 1873 54 54 1 1 00 5-3 Gledhill 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1 12 3 Secchi 1873 54 57 4 0 81 4 O Struve 1866 61 31 4 1 47 4-3 Haivard 1873 54 57 4 0 81 4 O Struve 1867 34 35 5 1 13 4 O Struve 1874 39 58 6 0 99 3 Gledhill 1867 40 35 6 1 19 3-2 Harvaid 1874 42 59 5 0 98 8 Dembowski										•
1865.50 26.3 0 79 2 Secchi 1873 53 53 9 — 1-0 Romberg 1865.52 30 1 1.59 1 Leyton Obs 1873 53 57 4 — 1-0 Schwarz 1866 38 32 3 1 40 2 Leyton Obs 1873 54 54 1 1 00 5-3 Gledhill 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1 12 3 Secchi 1873 54 57 4 0 81 4 O Struve 1866 61 31 4 1 47 4-3 Harvard 1873 72 55 0 1 08 2 Dunér 1867 66 35 5 1 13 4 O Struve 1874 42 59 5 0 98 8 Dembowski 1867 40 35 6 1 19 3-2 Harvard 1874 43 61 2 0 62 2-1 Leyton Obs 1867 50 33 2 1.04 7 Dembowski 1874 46 58 2 0 93 2-1 W & S </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>į ·</td> <td></td> <td></td> <td></td> <td></td>						į ·				
1865 52 30 1 1 59 1 Leyton Obs 1873 53 57 4 — 1-0 Schwarz 1866 38 32 3 1 40 2 Leyton Obs 1873 53 50 3 — 1-0 Wagner 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1 12 3 Secchi 1873 54 57 4 0 81 4 O Struve 1866 61 31 4 1 47 4-3 Hai vard 1873 54 57 4 0 81 4 O Struve 1867 66 35 5 1 13 4 O Struve 1873 72 55 0 1 08 2 Dunér 1867 40 35 6 1 19 3-2 Harvaid 1874 42 59 5 0 98 8 Dembowski 1867 47 32 6 1 24 2 O Struve 1874 43 61 2 0 62 2-1 Leyton Obs 1867 52 31 5 — 1 Leyton Obs 1875 37 60 7 — 1 Leyton Obs <td></td>										
1866 38 32 3 1 40 2 Leyton Obs 1873 53 50 3 — 1-0 Wagner 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1 12 3 Secchi 1873 54 57 4 0 81 4 O Struve 1866 61 31 4 1 47 4-3 Harvard 1873 72 55 0 1 08 2 Dunér 1867.34 35 9 1 07 3 Knott 1874 42 59 5 0 98 8 Dembowski 1867 40 35 6 1 19 3-2 Harvard 1874 43 61 2 0 62 2-1 Leyton Obs 1867 50 33 2 1.04 7 Dembowski 1874 46 58 2 0 93 2-1 W & S 1867 62 30 8 0 96 1 Winnecke 1875 41 66 7 0 86 8 Dembowski						I .				
1866 38 32 3 1 40 2 Leyton Obs 1873 54 54 1 1 00 5-3 Gledhill 1866 44 30 1 1 04 9 Dembowski 1873 54 54 1 1 00 5-3 Gledhill 1866 54 33 1 1 12 3 Secchi 1873 54 57 4 0 81 4 O Struve 1866 61 31 4 1 47 4-3 Harvard 1873 72 55 0 1 08 2 Dunér 1867 66 35 5 1 13 4 O Struve 1874 39 58 6 0 99 3 Gledhill 1867 34 35 9 1 07 3 Knott 1874 42 59 5 0 98 8 Dembowski 1867 40 35 6 1 19 3-2 Harvard 1874 43 61 2 0 62 2-1 Leyton Obs 1867 50 33 2 1.04 7 Dembowski 1874 46 58 2 0 93 2-1 W & S 1867 62 30 8 0 96 1 Winnecke 1875 37 60 7 - 1 Leyton Obs </td <td>1865 52</td> <td>30 1</td> <td>1,59</td> <td>1</td> <td>Leyton Obs</td> <td></td> <td></td> <td></td> <td></td> <td></td>	1865 52	30 1	1,59	1	Leyton Obs					
1866 44 30 1 1 04 9 Dembowski 1873 54 63 1 — 1-0 Brunnow 1866 54 33 1 1 12 3 Secchi 1873 54 63 1 — 1-0 Brunnow 1866 61 31 4 1 47 4-3 Haivard 1873 72 55 0 1 08 2 Dunér 1867 66 35 5 1 13 4 O Struve 1874 39 58 6 0 99 3 Gledhill 1867 34 35 9 1 07 3 Knott 1874 42 59 5 0 98 8 Dembowski 1867 40 35 6 1 19 3-2 Harvaid 1874 43 61 2 0 62 2-1 Leyton Obs 1867 50 33 2 1.04 7 Dembowski 1874 46 58 2 0 93 2-1 W & S 1867 62 30 8 0 96 1 Winnecke 1875 37 60 7 — 1 Leyton Obs 1867 60 20 2 1 12 1 1 Dembowski 1875 41 66 7 0 86 8 De	1866 38	32 3	1 40	2	Leyton Obs					
1866 54 33 1 1 12 3 Secchi 1866 61 31 4 1 47 4—3 Haivard 1866 66 35 5 1 13 4 O Struve 1867 34 35 9 1 07 3 Knott 1867 40 35 6 1 19 3—2 Harvard 1867 47 32 6 1 24 2 O Struve 1867 50 33 2 1.04 7 Dembowski 1867 52 31 5 — 1 Leyton Obs 1867 62 30 8 0 96 1 Winnecke 1873 54 57 4 0 81 4 O Struve 1873 54 57 4 0 81 4 O Struve 1873 72 55 0 1 08 2 Dunér 1874 39 58 6 0 99 3 Gledhill 1874 42 59 5 0 98 8 Dembowski 1874 43 61 2 0 62 2—1 Leyton Obs 1874 46 58 2 0 93 2—1 W & S 1875 37 60 7 — 1 Leyton Obs 1875 37 60 7 — 1 Leyton Obs 1875 37 60 7 — 1 Leyton Obs 1875 41 66 7 0 86 8 Dembowski								1 00		
1866 61 31 4 1 47 4-3 Halvard 1873 72 55 0 1 08 2 Dunér 1866 66 35 5 1 13 4 O Struve 1874 39 58 6 0 99 3 Gledhill 1867.34 35 9 1 07 3 Knott 1874 42 59 5 0 98 8 Dembowski 1867 40 35 6 1 19 3-2 Harvald 1874 43 61 2 0 62 2-1 Leyton Obs 1867 47 32 6 1 24 2 O Struve 1874 46 58 2 0 93 2-1 W & S 1867 50 33 2 1.04 7 Dembowski 1874 61 64 7 0 83 4 O Struve 1867 62 30 8 0 96 1 Winnecke 1875 37 60 7 — 1 Leyton Obs 1867 60 20 2 1 12 1 1 Dembowski						1				
1866 66 35 5 1 13 4 O Struve 1874 39 58 6 0 99 3 Gledhill 1867.34 35 9 1 07 3 Knott 1874 42 59 5 0 98 8 Dembowski 1867 40 35 6 1 19 3-2 Harvaid 1874 43 61 2 0 62 2-1 Leyton Obs 1867 47 32 6 1 24 2 O Struve 1874 46 58 2 0 93 2-1 W & S 1867 50 33 2 1.04 7 Dembowski 1874 61 64 7 0 83 4 O Struve 1867 62 30 8 0 96 1 Winnecke 1875 37 60 7 — 1 Leyton Obs 1867 60 20 3 1 10 1 New York 1875 41 66 7 0 86 8 Dembowski										
1867.34 35 9 1 07 3 Knott 1874 39 58 6 0 99 3 Gledhill 1867.34 35 9 1 07 3 Knott 1874 42 59 5 0 98 8 Dembowski 1867.40 35 6 1 19 3-2 Harvaid 1874 43 61 2 0 62 2-1 Leyton Obs 1867.47 32 6 1 24 2 O Struve 1874 46 58 2 0 93 2-1 W & S 1867.50 33 2 1.04 7 Dembowski 1874 61 64 7 0 83 4 O Struve 1867.52 31 5 - 1 Leyton Obs 1875 37 60 7 - 1 Leyton Obs 1867.60 30 8 0 96 1 Winnecke 1875 41 66 7 0 86 8 Dembowski						1873 72	55 0	1 08	2	Dunér
1867.34 35 9 1 07 3 Knott 1874 42 59 5 0 98 8 Dembowski 1867 40 35 6 1 19 3-2 Harvaid 1874 43 61 2 0 62 2-1 Leyton Obs 1867 47 32 6 1 24 2 O Struve 1874 46 58 2 0 93 2-1 W & S 1867 50 33 2 1.04 7 Dembowski 1874 61 64 7 0 83 4 O Struve 1867 52 31 5 - 1 Leyton Obs 1875 37 60 7 - 1 Leyton Obs 1867 62 30 8 0 96 1 Winnecke 1875 41 66 7 0 86 8 Dembowski	1000 00	000	1 10	~	O BUILLYO	1874 39	58 6	0 99	3	Gledhill
1867 40 35 6 1 19 3-2 Harvaid 1874 43 61 2 0 62 2-1 Leyton Obs 1867 47 32 6 1 24 2 O Struve 1874 46 58 2 0 93 2-1 W & S 1867 50 33 2 1.04 7 Dembowski 1874 61 64 7 0 83 4 O Struve 1867 52 31 5 - 1 Leyton Obs 1875 37 60 7 - 1 Leyton Obs 1867 62 30 8 0 96 1 Winnecke 1875 41 66 7 0 86 8 Dembowski	1867.34	35 9	1 07	3	Knott	1874 42	59 5	0 98	8	
1867 47 32 6 1 24 2 O Struve 1874 46 58 2 0 93 2-1 W & S 1867 50 33 2 1.04 7 Dembowski 1874 61 64 7 0 83 4 O Struve 1867 52 31 5 - 1 Leyton Obs 1875 37 60 7 - 1 Leyton Obs 1867 62 30 8 0 96 1 Winnecke 1875 41 66 7 0 86 8 Dembowski	1867 40	35 6	1 19	3-2		1874 43	612	0.62		
1867 50 33 2 1.04 7 Dembowski 1874 61 64 7 0 83 4 O Struve 1867 52 31 5 — 1 Leyton Obs 1875 37 60 7 — 1 Leyton Obs 1867 62 30 8 0 96 1 Winnecke 1875 41 66 7 0 86 8 Dembowski 1867 60 20 2 1 12 1 Dembowski	1867 47	32 6	124	2		1874 46	582		2-1	
1867 52 31 5 — 1 Leyton Obs 1867 62 30 8 0 96 1 Winnecke 1875 37 60 7 — 1 Leyton Obs 1867 60 20 2 112 1 Depter						1874 61				
1867 62 30 8 0 96 1 Winnecke 1875 41 66 7 0 86 8 Dembowski							GO 7			
1967 60 90 9 1 1 9 1 Domes					-			0.00		•
1 1010 42 NO 1 11 MI & SONIONOVALIN										
						•				-
1868.39 36.0 1.05 7 Demborgalzi	$1868\ 39$	360	105	7	Dembowski					
1868 55 41 3 1 05 5 O. Struve 1875 55 68 7 0 70 11 Dunér	$1868\ 55$	413	105	5	O. Struve	1010 00	08 7	070	TT	Duner
1868 61 36 0 — 2 Zollner 1876 38 70 3 0 79 8-2 Doberck	1868 61	36 0		2	Zollner	1876 38	703	0.79	8-2	Doberck
1868 65 37 0 1 15 4 Dunér 1876 44 70 5 0 77 4 Hall	$1868 \ 65$	37 0	115		Dunér	1876 44	70 5	0 77	4	Hall
1868 80 35 8 0 88 1 Peirce 1876 45 70 3 0 83 1 Leyton Obs	1868 80					1876 45	703			
1876 46 74 8 0 84 9 Dembowski						1876 46	748			•
1869 53 40 1 1 03 9 Dunér 1876 51 72.3 0 79 5 Schiaparelli			103		Dunér	1876 51	72.3			
1869 61 44 7 — 1 Leyton Obs 1876 61 73 6 0 66 4 O Struve	1869 61	44 7	_	1	Leyton Obs	1876 61	736	0 66		-

t	θ_o	ρ _o	n	Observers	t	θο	ρ_o	n	Observers
$1877 \ 25$	777	$0^{''}78$	1	Copeland	$1885\ 26$	°	0 57	1	Copeland
1877 30	820	0 69	4-2	Dobeick	1885 41	1701	0 65	4	Hall
$1877\ 36$	703		6	W & S	1885 51	1716	$0.57 \pm$	10	Schiaparelli
$1877 \ 42$	796	0 75	5	Schiaparelli	1885 53	1707	0 70	5–1	Sea & Smith
1877 48	81 1	0 78	9	Dembowski	1885 58	170 0	0 61	7	Englemann
1877 53	719	10±	1	Plummer				•	
1877 56	77 9	0 58	4	O Stiuve	1886 46	1770	0.70	5	Hall
					1886 49	1808	0.72	4	Penotin
1878 41	908	0.62	1	Buinhain	1886 51	1786	0 63	3	Tanant
1878 45	93 3	0 62	3	Doberck	1886 51	181 3	$0.80 \pm$	3-1	Smith
1878 50	91 0	0 60	8	Dembowski	1886 52	1788	0 66	11	Schiaparelli
1878 53	88 3	0 75	9	Schiaparelli	1886 64	1791	0 57	8	Englemann
1878 59	87 6	0 57	4	O Struve				_	
1878 80	84 4	0 67	1	Pritchett	1887 43	1866	0 82	1	Hough
10.000	011	001	-	1 110011600	1887 51	185 6	0 60	15	Schiaparelli
187952	$102 \ 4$	0 62	7	Schiaparelli	1887 63	186 0	0 72	3	Tanant
1879 54	98 7	0 48	4	Hall	100.00	1000	0.2	0	Lairairo
	• • •		_		1888 45	1957	0 62	5	Hall
$1880 \ 45$	111 9		2	Bigourdan	1888 53	199 0		1	Copeland
1880 50	1167	0.52	3-2	Doberck	1888 55	1948	0 60	14	Schiaparelli
1880 53	1156	0 50	6	Schiaparelli	1888 63	1939	0 74	3	O Struve
1880 59	1142	oblong	5	Jedizejewicz					
1880 62	1143	0 46	5	Buinham	1889 42	182 0		1	Hodges
1880 70	1149	0 76	2	Copeland	1889 50	$202\ 3$	0 63	4	Hall
				-	1889 52	200 8	0 64	6	Schiaparelli
$1881\ 26$	$121 \ 3$		2	Doberck	1889 58	202 1	0.72	1	O Struve
1881 4 0	124 9	0 46	4	\mathbf{H} all	1890 43	oblong		1	01
1881 50	1269	$0.61 \pm$	4	Schiaparelli	1890 45	210 1	 0 64	6	Glasenapp
1881 64	125 8	0 48	1	O Struve	1890 67	208 2	0 04		Hall
1000.00	4040			.	1090 01	200 4	_	1	Bıgoui dan
1882 30	1348	0 55	3–2	Doberck	1891 48	2184	0 61	3	Hall
1882 45	138 4	0 51	4	Hall	1891 50	213 5	$0.67 \pm$	1	See
1882 50	1354	0 59	8	Schiaparelli	1891 52	2168	0 57	8	Schiaparelli
1882 55	1417	0 50	2	O Struve	1891 54	222 0	0 75	3	Maw
1882 61	1532	0 56	6–4	Englemann			0.0	Ŭ	1114
1883 4 8	1472	0 69	10	Schiaparelli	1892 44	2261	0.69	1	H C Wilson
1883 51	1525	0 57	_	Hall	1892 45	$230 \ 1$	0.72	2	Leavenworth
1883 51	153 2	0 51	6 7		1892 50	$230\ 2$	0.57	11	Bigoui dan
1883 56	156 0	0 61	7	Englemann Perrotin	1892 57	2295	0 57	6	Schiaparelli
1883 59	151 6	0 58	3		1892 65	$229 \ 8$	0 48	3	Comstock
1883 64	150 5	055 05±	5 6–5	O Struve	1000.10	a			
1000 04	1000	0.0 ±	0–0	Jedrzejewicz	1893 48	244 7	0 63	1	Maw
1884 43	1594		6	Bigoui dan	1893 48	$243 \ 2$	0 51	7	Schiaparelli
1884 48	1601	0 57	3	Hall	1893 50	$242 \ 8$	0 50	3	Leavenworth
188452	1631	0 64	6	Penotin	1893 52	$245\ 6$	0 49	7-6	$\operatorname{Bigouidan}$
$1884\ 52$	1620	$0.54 \pm$	6	Schiaparelli	1004.40	0004	0.44		
1884 54	161 7	0 67	1	Pritchett	1894 48	262 1	0 44	6	Schiaparelli
1884 58	158 0	0 58	3	O Struve	1894 49	261 4	0 44	1	Bıgourdan
1884 64	1656	0 58	5 5	Englemann	1005 00	00 × 0	0.45	0	0
1884 66	1724		3	-	1895 30	2850	0 45	3	See
700±00	114		v	Seabroke	1895 51	$285 \ 9$	$0.30 \pm$	3	$\operatorname{Comstock}$

This beautiful pair proved to be one of the first objects which gave distinct evidence of orbital motion, and the binary character of the system was fully recognized by Herschel in 1803. Since the time of Struve the measures are both numerous and satisfactory. The pair is always rather close, but as the components are nearly equal in magnitude, it is generally easy to separate. Numerous orbits have been published by previous computers; the following table of elements is fairly complete

P	T	e	а	v	ı	λ	Authority	Source
44 242	1806 20	0 26034	0 8325	220°6	$3\overset{\circ}{7}4$			Mem RAS, VI, 156
43 246	1850 23	0.3376	1 0879	24 3	$71 \ 13$	261 35	Mädler, 1842	Doip Obs, IX, 195
43 310	1815 20	0 3537	11912	22.6	715	$263\ 17$	Mädler, 1842	
42 500	1807 21	0 289	09024	20 1	$59\ 47$		Madler, 1847	Fixt Syp, I, p 243
42 501	1805 666	0 4743	10125	10 52	$65\ 65$	$227\ 17$	Villarceau1842	
66 257	1780 124	0.4695	1 1108	4 42	$58\ 05$	194 62	Villai ceau 1852	
67 309	1779 338	0 4043	12015	9 87	59.32	185 0	Villarceau1852	AN,868
43 115	1850 329	0.2865	0 9567	$22\ 3$	60 67	21548	Winnecke	Ť
41 58	1850 26	0.2625	0.827	267	<i>5</i> 8 0	2114	Wijkandei	
41 576	$1850\ 26$	0.2625	0 827	26 7	58 0	2156	Dunér, 1871	AN, 1868
40 17	1849 9	0 287	0 985	$22 \ 2$	60 4	224 1	Flamma'n 1874	Cat ét Doub, p 88
41 562	1850 792	0 2667	0 892	2572	59 68	218 6	Doberck, 1880	AN,2338
41 6	1892 3	0 33	0 86	26 9	55 0			Proc Am Assoc, 1894

Making use of all the measures up to 1895, we find the following elements of η Coronae Borealis*:

$$P = 41 60 \text{ years}$$
 $\Omega = 27^{\circ} 10$
 $T = 1892 50$ $\iota = 58^{\circ} 50$
 $e = 0 267$ $\lambda = 217^{\circ} 57$
 $\alpha = 0'' 9165$ $n = +8^{\circ} 653846$

Apparent orbit:

```
Length of major axis = 1'' 804

Length of minor axis = 0'' 934

Angle of major axis = 28^{\circ} 7

Angle of periastron = 229^{\circ} 0

Distance of star from center = 0'' 209
```

The accompanying table shows that the motion is well represented, and that the present elements will finally undergo but slight corrections.

^{*}Astronomische Nachrichten, 3361

Comparison of Computed with Observed Places

t	θο	θ_c	ρο	ρε	θ_o — θ_o	ρ _ο ρ _c	n	Observers
1781 69	20.7	97.4		1 00			1	
1781 69 1802 69	1707	17/ 8	_	V 83	±10		1 1	Heischel Heischel
1823 27	25 9	27 3	1 58	1 08	-14	+050	2_1	Heischel and South
1826 77					-26		4	Struve
1829 55					-38		$\bar{2}$	Struve
1831 48					-31		15-4	Dawes 2-0, Heischel 10-1, Σ 3
1832 60					-26		13-5	Heischel 9-2, Dawes 1-0, ≥ 3
1833 33					-07		11-2	Herschel 8-2, Dawes 3-0
1834 84			0 70	0 73	-34	-0 03	1	Struve
1835 41	75 7	76 6	0 74	0 70	-09	+0.04	5	Struve
1836 52							6	Struve
1839 70							4	Dawes 2, $O\Sigma$ 2
1840 57							7	0Σ 5, Dawes 2
1841 52							_	Madler 5, $O\Sigma$ 5, Dawes 6-1
1842 48 1843 50							$\frac{9}{13}$	Madler 5, Dawes 2, O≥ 2
1844 38						-0.02 -0.07	3	Madler 6, Mädler 7
1845 46							6	O Struve
1846 61							3	O Strave
1847 42	201 0	200 0	0 63	0 71	+10	-0.08		Hind 3-0, Madler 11, $O\Sigma$ 5, Madler 5
1848 49								Madler 3, Dawes 2, Dawes 1, Bond 2, $O\Sigma$
1849 54	2193	2160	0 64	0 66	+33	-0.02		Dawes 2-1, $O\Sigma$ 3
1850 59	231 5	225 6	0 54	0 60	+59	_006		$O\Sigma$ 3, Fletcher 2, Madler 3
1851 53	237 8	235 9	0 42	0 53	+19	-0.11		Madler 3-2, Dawes 2, $O\Sigma$ 10, Madler 7-5
1852 60	250 8	253 5	0 41	0 44	-27	-0 03	21-19	Dawes 2, $O\Sigma$ 6, Madler 13-11
1853 51	270 3	272 9	0 35	0 40	-26	-0.05	17	Jacob 2, Madler 5, $O\Sigma$ 5, Dawes 4, Madler 1
1854 46	304 3	296 5	0 39	0 38	+78	+0.01	14–13	Jacob 3, Dawes 3, $O\Sigma$ 4, Madler 4-3
1855 56	326 6	$321\ 6$	0 43	0 43	+50	± 0.00	19-13	Sec 2-0, Winn 10-6, Da 1-3, $O\Sigma 4$, Ma 2-0
1856 47	3391	337 7	0 49	0 50	+14	-0.01	30-25	Winn 9-6, Da 1-3, Ja 2, Winn 84, Sec 7, $O \geq 3$
1857 57	351 3	350 6	0 61	0 61	+07	$ \pm 0.00 $	18–16	Madler 2-0, Dawes 2, Secchi 7, $O\Sigma$ 4, Jacob 3
1858 54	13	359 0	0 73	0 70	+23	+0 03	24-11	Secchi 3-0, Dembowski 10-0, OS 5, Madler 6
1859 52		101	074	0 79	-04	-0.05		Madler 4, Secchi 4-0, $O\Sigma$ 4, Dawes 3
1860 35	161	101	0.00	0 86	-17	+0.01	2	Dawes
1861 58 1862 61						-0.02	9	$O\Sigma$ 3, Madler 6
1863 53		22 0	001	1 00	$-01 \\ -11$	-0.13 -0.09	19-16	Winn 3-0, Dembowski 11, Madler 3, OE 2
1864 45	26.3	25 9	0 90	1 04	+04	-0.09	19 + 12	Dem 13, $O\Sigma$ 4, Leyton Obs —, Secchi 2
1865 40		28 9	1 12	1 00	-04	+0.03	23	Dembowski 10, Englemann 2
1866 52			$\frac{1}{1}\frac{1}{23}$	1 10	+01	+0.03	22_21	En 5, $O \ge 3$, Dem 9, Da 3, Sec 2, Ley 1 Leyton Obs 2, Dem 9, Sec 3, Hv 4-3, $O \ge 4$
1867 50						±000		Kn 3, Hv 3-2, $O\Sigma$ 2, Dem 7, Ley 1-0, Du 1,
1868 59	37 5	38 6	$1\overline{03}$	1 09	-11	-0 06		Dem 7, OE 5, Dunéi 4, Pence 1 Winn 1
1869 57	40 7	41 6	1 03	1 06	-0.9	-0 03		Dunér 9, Leyton Obs 1-0
1870 45	45 1	44 6	1 07	1 04	+0.5	+0 03	25-22	Dem 8, Pei 4-1, Gl 2, Ley $-$, Kn 1, Du 7, $O\Sigma$ 3
1871 51	47 1	48 3	1 06	1 00	-12	+0.06	25	Ley —, Dem 8, Du 9, Kn 9, Sea 2, Gl 1
1872 47		52 0	1 00	0 96	-0.8	+0.04	29 +	Ley $-$, Dem 9, Fei 7, W & S 1, Du 7, $O\Sigma$ 5
1873 52		56 4	1 01	0 90	-0.5	+011	22–20	W & S 3, Dem 8, Ley -, Gl 5-3, O\(\mathcal{L}\) 4, Du 2
1874 47		61 0	0 89	0 85	-0.5	+0.03		Ley 2-1, Gl 3, Dem 8, W & S 2-1, $O\Sigma$ 4
1875 44			0 82	0 79	+10	+0 03	23	Dembowski 8, Schiaparelli 4, Dunéi 11
1876 45		726	0 80	0.73	-0.7	+0 07		Dk 8-2, Hl 4, Ley 1, Dem 9, Sch 5, $O\Sigma$ 4
1877 41	772		0 80	0.68		+0.12	30–22	Cop 1, Dk 4-2, W & S 6-0, Sch 5, Dem 9, Pl 1,
1878 55	100 =	897	U 54	0 61		+0.03	26	β 1, Dk 3, Dem 8, Sch 9, $O\Sigma$ 4, Pi 1 [$O\Sigma$ 4]
1879 53 1880 56	114 %	110 E	0 00	V 5 4		-0.02	11	Schiaparelli 7, Hall 4
1881 44	1247	122 0	0 54	0 04 0 59	TZU	±000		Big 2-0, Dk 3-2, Sch 6, Jed 5, β 5, Cop 2
1882 49	140 7	137 8	0 24	0 K8	100 T00	-0.02	11_9	Doberek 2-0, Hall 4, Schiaparelli 4, $O\Sigma$ 1
1883 55	151 8	150 9	0.58	0.55	+00	+0.03	39_38	Doberck 3-2, Hall 4, Sch 8, OΣ 2, En 6-4 Sch 10, H16, En 7, Par 7, OΣ 3, Jed 6-5 (Sec. 3, 0)
1884 54	163 5	162.5	0 60	0 58	+10	+0.02	33_24	Sch 10, H1 6, En 7, Per 7, $O\Sigma$ 3, Jed 6-5 [Sea 3-0] Big 6-0, Hl 3, Per 6, Sch 6, Pi 1, $O\Sigma$ 3, En 5,
			3 30	3 30		1 0 02	JU-24	115 0-0, 1110, 1 or 0, 1 or 0, 1 1 1 1, 0 2 0, 111 0,

w		

W Struve

t	θο	θ_c	ρο	ρ_c	θ_o — θ_c	$\rho_o-\rho_c$	n	Observers			
1885 46 1886 52 1887 51 1888 54 1889 53 1890 53 1891 51 1892 50 1893 49 1894 49	170 6 179 3 186 1 195 8 201 7 209 1 217 6 229 1 244 1	181 1 189 0 196 5 203 7 211 4 219 1 229 1 241 8	0 68 0 71 0 65 0 66 0 64 0 65 0 61 0 53	0 66 0 69 0 71 0 71 0 69 0 64 0 58 0 50	$\begin{array}{r} -18 \\ -29 \\ -07 \\ -20 \\ -23 \\ -15 \\ \pm 00 \\ +23 \end{array}$	+0 02 +0 02 -0 06 -0 05 +0 01 +0 03 +0 03	34–32 19 23–22 11 7–6 15 23 18–17	Cop 0-1, Hl 4, Sch 10, Sea & Sm 5-1, En 7 Hall 5, Per 4, Tar 3, Sm 3-1, Sch 11, En 8 Hough 1. Schiaparelli 15, Tarrant 3 Hall 5, Copeland 1-0, Schiaparelli 14, $O\Sigma$ 3 Hall, Schiaparelli 6, $O\Sigma$ 1 Hall 6, Bigourdan 1-0 Hall 3, See 1, Schiaparelli 8, Maw 3 H C W 1, Lv. 2, Big 11, Sch 6, Com 3 Maw 1, Schiaparelli 7, Lv 3, Big 7-6 Schiaparelli 6, Bigourdan 1			
1895 51								See 0-3, Comstock 3			

The uncertainty in the period does not surpass 0.1 year, and an alteration of the eccentricity amounting to ± 0.01 is not probable. It seems, however, that there are occasional systematic errors in the angles, and hence careful measurement should be continued. It will not be many years before a definitive determination of the elements of this interesting binary can be advantageously undertaken. The following is a short ephemens for the use of observers

t	$ heta_{ extsf{o}}$	Pa	t	$oldsymbol{ heta}_{oldsymbol{o}}$	ρ_{σ}
1896 50	$306^{\circ}9$	0"39	1899 50	353 [°] 8	0 64
1897 50	327.7	0 45	1900 50	16	0 73
1898 50	342 9	0 54			

$\mu^2 BOOTIS = \Sigma 1938.$

 $a = 15^{h} 20^{m} 7$, $\delta = +37^{\circ} 43'$ 65, white , 8, white

Discovered by Sir William Herschel, September 10, 1781

OBSERVATIONS

ŧ	00	ρ,	\boldsymbol{n}	Observers	τ	θ_o	ρo	n	Observers	
1782 68	$357^{\circ}2$		1	Herschel	1833 02	$319^{\circ}3$	1 ″00	3–1	Herschel	
1802 86	346 2		-	Herschel	1833 39	3198	1 15	1	Dawes	
1002 00	0.0.			220200102	1833 85	3197	1 19	3	Struve	
$1822\ 21$	$330 \ 7$		2	Struve	4005 55	010.0	1 10	0	Q+	
1000 41	000.7	105	0	TT 0-0-	1835 55	318 6	1 10	3	Struve	
$1823 \ 41$	3337	1 65	3	H & So	1835 65	$309\ 1$		1	\mathbf{M} adler	
$1825\ 46$	333 53	143	5	South	1000 15	9101		2	Mädler	
					1836 45	310 1		_		
182677	$327\ 0$	1 38	2	Struve	1836 65	315 1	1 06	3	Struve	
1829 73	324 0	124	2	Struve	1007.07	0140	401	4	D	
1020 10	02 4 0	7 # T	~	Surce	1837 37	314 9	$10\pm$	1	Dawes	
1830 24	324 1	0 85	2	Herschel	1837 70	315 0	0 9	-	Struve	

Herschel

3217

1 14

1831 36

1839 83

3104

t	θ_o	ρο	n	Observers	1	t	θο	ρ,	n	Observers
1840 39	$306^{\circ}0$	0"83	3	Dawes		1857 38	$239^{\circ}2$	0 35	2	\mathbf{M} adle ι
1840 46	313 8	0 98	3	O Struve		1857 52	$231 \ 7$	0 55	1	Secchi
						1857 65	237 9	0 58	3	O Struve
1841 47	308 7	0.82	2	Madleı	•					
1841 66	3032	0 86	63	Dawes		1858 56	$225 \ 9$	0 45	1	Secchi
1842 23	3038	0 85	3	O Struve		1858 56	$228\ 3$	0 57	3	O Struve
1842 40	305 2	0.72	3	Madler		$1858\ 57$	$236\ 0$	0.32	4	Madleı
1842 40	300 9	0 85 ±	3	Dawes		1859 39	$226\ 4$	0.42	3–2	Madleı
1842 40	304 9	0.78	$\frac{3}{2}$	Madler	- 1	1000 00	220 -	0 42	0-2	Madiei
1042 00	90 4 9	0.10	4	Maulei	l	$1860\ 95$	211 3	0 58	3	O Struve
184357	$301\ 5$	0 76	10	\mathbf{M} adle1		1001 50	01 5 1	0.40		7.47 - 37
1044 90	299 2	0 71	2	Madler		1861 58	215 1	0.42	2	Madler
1844 39	299 4	0 11	4	Madier		1862 56	202 9	0 3?	3	Dembowski
1845 54	$295 \ 8$	0.64	10	Madleı	İ	1862 63	217 7	04±	1	Madler
101010	001.0	0.04	10 11	7k/fs 21		1002 00	21	0 1 1	-	11200101
1846 40	2918	0 64	12–11	Madler		$1863\ 38$	1958	0 55	12	$\mathbf{Dem}\mathbf{bowski}$
1846 68	287 1	0 57	4	O Struve		1863 63	1958	0 75	_	Leyton Obs
1847 08	2813		2	$\mathbf{H}_{\mathtt{ind}}$						
1847 30	$286\ 5$	$0.65 \pm$	4	Dawes		18 64 41	1930	0 51	4	$\mathbf{K}_{\mathbf{nott}}$
1847 38	288 1	0 55	15-13	Madler		1864 48	189.5	cuneo	5	${f Dembowski}$
						1865 45	184 8	0 53	10	Dembowski
$1848\ 37$	282~4	0.42	${f 2}$	\mathbf{Madler}		1865 46	190 1	0 48 ±	3	Dawes
$1848\ 52$	$280\ 0$	0.65	4	Dawes		ľ			3 1	
$1848\ 52$	$282 \ 9$	0 56	3-4	$^{\mathbf{W}}_{\mathbf{P}}^{\mathbf{C}}$ Bond		1865 72	197 9	0 57	1 5	Leyton Obs
101011	0740	0.00		D		1865 78	187 5	0 57	Э	Englemann
1849 44	$276\ 2$	0 68	2	Dawes		1866 40	$179 \ 2$	0 60	3	O Struve
1850 46	$272 \ 7$	0 53	2	O Struve		1866 41	196 4	0 85	3-2	Leyton Obs
1850 69	2767	0 40	3–2	Madler		1866 48	181 2	0 50	7	Dembowski
1000 00	2,0.	0 10	ŭ -	2,20,020		1866 54	180 3	ın cont	1	Secchi
$1851\ 28$	$264 \ 9$	0.32	3	Madler		200002	2000		_	.0 000111
$1851 \ 42$	2666	0.52	$oldsymbol{2}$	Dawes		1867 48	1758	0 60	6	$\mathbf{Dembowski}$
1851 48	$262 \ 7$	0 44	3	O Struve			4-10	٥ ٢٥	_	~ , ,
1851 77	$263 \ 4$	0.31	4	\mathbf{M} adle1		1868 38	$174\ 2$	0 53	5	Dembowskı
			_	_		1869 49	171 1	0 53	6	Dunér
$1852\ 52$	$262\ 2$	$0.55 \pm$		Dawes		1869 54	167 5	0 54	$^{0}_{2}$	O Struve
$1852\ 60$	261 3	0 41	10	Madler		1003.04	101 0	001	2	OBILLYO
$1852\ 65$	$268\ 2$	0 49	3	O Struve		1870 39	1658	0.62	7	$\mathbf{Dembowski}$
1853 23	265 1	$0.45 \pm$	2	Jacob		1870 44	164 0		1	Gledhill
1853 34	256 2	0 33	4	Madler		1870 52	$163 \ 9$	0 59	4	Dunéi
1853.54 1853.71	254 6	0 55 0 5 ±	1	Dawes		1870 65	1708	_	_	Leyton Obs
	254 6 256 6	0.31	$\overset{1}{2}$	Madler						•
1853 77	200 0	0 40	L	Madier		1871 43	$161\ 2$	0 61	7	$\mathbf{Dembowski}$
1854 05	2537	$0.5 \pm$	2	Jacob		1871 54	160 8	0 67	5	Dunér
1854 41	249 3	0 47	3	Dawes		1871 57	167 9	076	1	Seabioke
1854 70	247 2	0 44	4	\mathbf{Madler}		1871 65	$158 \ 4$	$0.5\pm$	1	Gledhill
						1070.00	107 2			T a
1855 11	247 2	0 53	4	O Struve		1872 29	167 5	0.05 :	_	Leyton Obs
185552	$256 \ 9$	0.42	2	\mathbf{Madler}		1872 35	163 4	0.35±	2	W & S
4024.40	004 5	A 42	_	01		1872 44	154 1	0 65	8	Dembowski
1856 42	236 5	0 45	1	Secchi		1872 46	152 0	06±	4	Knott
1856 57	$242 \ 1$	0 59	2	O Struve		1872 52	158 0	0 55	2	Dunér

$oldsymbol{t}$	θ_o	ρο	n	Observers	t	θ.	٥	n	Observers
1873 09	$158\overset{\circ}{2}$	$0{}^{''}\!63$	4	O Struve	1883 50	115°0	0″70	2	\mathbf{Hall}
$1873\ 34$	151 0	$0.52 \pm$	3-2	W & S	1883 57	117 5	0 76	6	Englemann
1873 41	151 0	0 67	7	Dembowskı	1883 59	1129	0 75	2	Perrotin
187348	1558		1	Leyton Obs	1883 63	110 2	0 64	1	O Struve
$1873 \ 47$	$152\ 3$	$0.48 \pm$	2	Gledhill					
107100	450 5	0 50		~	1884 48	113 8	0 69	3	Hall
1874 22	150 7	0 58	2	Gledhill	1884 51	$112 \ 3$	$0.74 \pm$	4	Schiaparelli
1874 44	149 1	07	1	W & S	1884.62	$110 \ 2$	0 86	2	O Struve
1874 44	147 8	0 81	6	Dembowski	1884 67	1199		4	Seabroke
1874 54	155 4		1	Leyton Obs	1885 40	1108	0 75	2	Perrotin
1875 41	141 9	0 69	8	Dembowski	1885 49	1058	100±	3_1	Smith
1875 47	143 3	$0.64 \pm$	4	Schiaparelli	1885 49	110 1	079	3	Tarrant
$1875\ 52$	146 7	0 80	1	Dunér	1885 49	111 3	0 71	4	Hall
					1885 50	109 4	0 89	4	Schiaparelli
1876 35	143 6		2	Dobeick	1885 63	116 9	0 85	7-6	Englemann
1876 44	145 4	0 73	4	Hall	1885 70	1106.	07±	6	Jedrzejewicz
1876 46	$138\ 2$	0 70	8	Dembowski	1000.0	1100,	0.1	U	o earzeje wicz
1877 24	138 5	0.75	5	Schiaparelli	1886 49	$106 \ 7$		2	\mathbf{Smith}
1877 38	131 6	0 56	4-2	Doberck	1886 51	$107\ 3$	0 65	3	Hall
$1877 \ 42$	136 9	0 71	7	Dembowski	1886 51	1060	0.72	2	Perrotin
1877 49	$145 \ 3$	073	4	W & S	1886 54	107 7	0 74	2	Schiaparelli
$1877 \ 62$	143 0	0 67	1	O Struve	1886 78	106~2	$0.7 \pm$	5	Jedrzejewicz
1878 41	136 2	0 68	1	Burnham	1887 44	105 4	0 70	4.	Hall
1878 49	137.6	0 62	4	Doberck	1887 55	99 0		1	Smith
1878.52	132 0	0 62	6	Dembowski	1887 56	103 0	074	6	Schiaparelli
1878.53	132 7	$0.63 \pm$	5	Schiaparelli				_	
1878 58	137 7	0 63	1	O Struve	1888.45	100 0	0 60	4	\mathbf{Hall}
					1888 59	101 5	0 75	5–3	Schiaparelli
1879 51	128 6	0 79	4	Schiaparelli	1888 91	$103 \ 1$	0 73	2	Tarrant
1879 54	133 3	0 73	4	Hall	1888 69	101 6	0 87	1	O Struve
1880 18	1287	0 78	5	$\operatorname{Burnham}$	1889 35	978	0 73	3	Maw
1880 40	$129\ 6$	0.64	1	Hall	1889 42	962	1 00	1	Hodges
1880 50	130 1	0 70	4	Doberck	1889 52	98 7	0 84	3	Schiaparelli
1880 53	126.7	0.79	4	Schiaparelli					
1880 65	$122\ 6$	$07 \pm$	4	Jedrzejewicz	1890 50	107 8	(0.85)	2	Glasenapp
1881 26	126 9	removement	4	Doberck	1891 49	95 4	$0.80 \pm$	2	Schiaparelli
1881 38	126 0	0 63	4	Burnham	1891 53	94 7	$0.74\pm$	2	See
1881 50	$121\ 6$	0 78	4	Schiaparelli	1000.40	00.0			
1881 50	$123 \ 7$	0 62	6-4	Bigourdan	1892 42	92 6	0 82	1	Collins
1881 50	121 9	0 62	3	Hall	1892 58	89 1	0 74	4	Comstock
1881 63	122.4	072	1	O Struve	1893 47	88 0	0 98	4	Bigourdan
1882 32	125 0	0 75	2–1	Doberck	1893 49	88 6	0 77	2	Maw
1882 43	121 7	0 64	3	Hall	1894 48	85 6	1 19	1	Callandreau
1882 52	$120 \ 4$	0 79	4	Schiaparelli	1894 50	86 0	1 05	5	
1882 53	121 9	077	4	Englemann	1894 59	85 4	0 75	1	Bigourdan H C Wilson
1882 55	116 9	0 64	1	O Struve	1				
					1895 31	83 5	0 84	3	See
1883.47 *	1143	0 87	4	Schiaparelli	1895 52	83 9	0 64	3	Comstock

When the observations of 1782 were compared with those of 1802, the physical character of the system was fairly indicated * Since the time of Struve it has been carefully followed by the best observers, and accordingly the material now available for an orbit is highly satisfactory. The companion is only slightly smaller than the principal star, and is therefore never very difficult to measure. In all parts of the orbit the pair is sufficiently wide to be seen with a six-inch telescope, but as the minimum distance of 0"49 in angle 230° was passed in 1858, it is not surprising that the observers on either side of this epoch, with few exceptions, have made their observed distances too small. Thus, although the measures of different observers are not infrequently affected by systematic errors of sensible magnitude, yet by combining the best measures into mean positions for each year, we obtain a set of places which give an orbit that seems likely to be very near the truth

Some of the elements hitherto published are as follows

P	T	e	а	ಬ	ı	λ	Authority	Source
146 649 182 6 314 34 200 4 198 93 290 07 280 29 266 0	1851 57 1866 0 1860 88 1865 2 1865 5 1863 51 1860 51 1862 55	0 8529 0 491 0 5641 0 51 0 4957 0 6174 0 5974 0 5668	1 320 1 165 1 761 — 1 500 1 47 1 057	94 7 166 1 163 2 172 0 169 0 183 0 173 7 166 7	49 4 47 5 41 9 45 0 46 4 44 4 39 9 35 2	87 1 23 0 54 4 20 1 23 6 17 7 20 0 40 9	Wilson, 1872	M N ,vol XXXII,p 250 Handb D S , p 313 Handb D S , p 313 A N , 2026

From an investigation of all the observations which appear to be reliable, we find the following elements of μ^2 Bootis:

$$P = 219 \ 42 \ \text{years}$$
 $\Omega = 163^{\circ} \ 8$
 $T = 1865 \ 30$ $i = 43^{\circ} \ 9$
 $e = 0537$ $\lambda = 329^{\circ} \ 75$
 $\alpha = 1'' \ 2679$ $n = -1^{\circ} \ 6407$

Apparent orbit:

```
Length of major axis = 2'' 656

Length of minor axis = 1'' 480

Angle of major axis = 173^{\circ} 5

Angle of periastron = 186^{\circ} 7

Distance of star from centre = 0'' 638
```

An examination of the computed and observed places, given in the following table, seems to justify the conclusion that the elements found above will

^{*}Astronomische Nachrichten, 3309

	•	
	,	

not be materially changed by future investigation. Thus, the period will hardly be varied by so much as ten years, while the resulting alterations in the eccentricity, inclination and other elements will be relatively inconsiderable.

TABLE OF COMPUTED AND OBSERVED PLACES

	1		 .					I
t	θο	θ_c	ρ_o	ρ_c	$\theta_o - \theta_c$	ρ_o — ρ_c	n	Observers
	~~~							TT 1 1
1782 68	357 2	353 9		1 83	+33		1	Herschel
1802 86	346 2	343 6	_	1 68	+26	_	- 0	Herschel
1822 21	330 7	330 8		1 38	-0.1		2	Struve
1823 41	333 7	329 0	1 65	1 33	+47	+0.32	3	Herschel and South
1825 46	333 5	326 2	1 43	1 26	+63	+0.17	5	South
1826 77	327 0	325 9	1 38	1 25	+11	+0.13	2	Struve
1829 73	324 0	$323 \ 4$	1 24	1 20	-09	+0.04	2	Struve
1830 24	324 1	322 <b>1</b>	0 85	1 17	+20	-0.32	2	Heischel
1831 36	3217	$320 \ 9$	1 14	1 14	+08	0 00	1	Herschel
1833 42	3196	318 1	1 11	1 09	+15	+0.02	7–5	Herschel 3–1, Dawes 1, $\Sigma$ 3
1835 55	318 6	315 1	1 10	1 03	+35	+0.07	3	Struve
1836 65	315 1	313 4	1 06	1 00	+17	+0.06	3	Struve
1837 53	3150	311 8	0 95	0.97	+32	-0.02	_	Dawes 1, $\Sigma$ —
184042	309 9	3067	0 91	0 89	+32	+0.02	6	Dawes 3, $O\Sigma$ 3
1841 66	303 2	304 1	0 86	0 85	-09	+0.01	6-3	Dawes
184232	302 4	3026	0 85	0.83	-02	+0.02	6	$O\Sigma$ 3, Dawes 3
1843 57	301 5	$299 \ 5$	0 76	0.80	+20	-0 04	10	Madler
1844 39	299.2	297 3	071	0 77	+19	-0 06	2	Mädler
1846 68	287 1	2913	0 57	071	-32	-014	4	O Struve
1847 34	287.3	288 4	0 60	0 68	-11	-0 08	19-17	Dawes 4; Mädler 15-13
1848 47	281 7	2843	0 54	0 65	-26	-0.11	9-10	Madler 2, Dawes 4, Bond 3-4
1849 44	276 2	280 5	0.68	0 63	-43	+0.05	2	Dawes
1850 57	2747	275 6	0 47	0 60	-09	-013	5-4	$O\Sigma$ 2, Mädler 3–2
1851,49	263.9	271.2	0 40	0 58	<b>—73</b>	-018	12	Madler 7, Dawes 2, $O\Sigma$ 3
1852 55	268.2	2658	0 49	0 55	+24	-0 06	3	O Struve
1853 50	260 9	2601	0 42	0.53	+08	-011	4	Jacob 2, Madler 2
1854 39	250 1	2555	0 47	0.52	-54	-0.05	9	Jacob 2, Dawes 3, Mädler 4
1855 11	$247\ 2$	2508	0 53	0 51	-26	+0.02	4	O Struve
1856 49	239 3	241 1	0 52	049	-18	+0 03	3	Secchi 1, $O\Sigma$ 2
1857 52	236 3	2350	0 49	0 49	+13	0 00	6	Mädler 2, Secchi 1, $O\Sigma$ 3
1858 56	230 1	228 0	0 45	0 49	+21	<b>-004</b>	8	Secchi 1, O\(\Sigma\) 3, Madler 4
1859 39	2264	2237	0 42	0 49	+27	-0 07	3-2	Madler
1860 95	211 3	212 4	0 58	0 50	_11	+0 08	3	O Struve
1861 58	215 1	207 9	0 42	0 50	-72	-0 08	2	Madler
1862 56	202 9	2022	0 32	0 52	+07	-0.20	3	Dembowski
1863 38	1958	1973	0 55	0 53	+15	+0.02	12	Dembowskı
1864 44	191 2	191 2	0 51	0 54	0.0	-0 03	9	Knott 4, Dembowski 5
1865 56	187 5	184 7	0.53	0 56	+28	0 03	18	Dem 10, Dawes 3, Englemann 5
1866 47	180 2	181 4	0 55	0 57	-12	-0 02	11	$O\Sigma$ . 3, Dembowski 7, Secchi 1
1867 48	1758	1759	0 60	0 59	-01	+001	6	Dembowski
1868 38	174 2	1718	0 53	0 60	+24	_0 07	5	Dembowski
1869 51	1693	166 7	0 54	0 61	+26	_0 07	8	Dunér $6$ , $O\Sigma$ $2$
1870 45	164 6	1627	0 60	0 62	+19	-0.02	12-11	Dem 7, Gledhill 1-0, Dunér 4
1871 54	160 1	158 4	0 59	0 63	+17	-004	13	Dem 7, Dunér 5, Gledhill 1
1872 44	156 9	1548	0 54	0 65	-18	-011	16	W & S', Dem 8, Kn 4, Du 2
1873 38	153 1	151 5	0 57	0 65	+16	-0 08	16-15	$O\Sigma.4$ , W &S 3-2, Dem 7, Gl 2
1874 37	149 2	147 6	0 69	0 66	+16	+0 03	9	Gledhill 2; W & S 1, Dem 6
1875 46	144 0	143 5	071	0 67	+05	+004	13	Dem 8, Schiaparelli 4, Dunér 1
1876 46	138 2	139 4	0 70	0 68	<b>—12</b>	+002	8	Dembowskı
1877 38	137 6	136 5	0 67	0 68	+11	-0 01	20-18	Sch 5, Dk 4-2, Dem 7, W & S 4
1878 49	134 6	132 7	0 64	0 69	+19	-0.05	16	β 1, Dk 4; Dem 6, Sch 5

16S οΣ 298.

t	θο	θς	ρο	ρς	$\theta_{\sigma}$ — $\theta_{c}$	ρορο	n	Observers
1879 52 1880 44 1881 43 1882 45 1883 53 1884 49	131 0 127 7 123 8 121 3 114 9 113 0	129 3 126 3 122 8 119 6 116 2 113 1	0 76 0 72 0 66 0 74 0 77 0 72	0 69 0 70 0 70 0 71 0 72 0 72	+17 +14 +10 +17 -13 -01	$+0.07 \\ +0.02 \\ -0.04 \\ +0.03 \\ +0.05 \\ 0.00$	8 17 21–15 13–12 14 7	Schiaparelli 4, Hall 4 β 5, Hl 1, Dk 4, Sch 4, Jed 4 Dk 4-0, β 4, Sch 4, Big 6-4, Hl 4 Dk 0-1, Hall 3, Sch 4, En 4 Sch 4, Hall 2, En 6, Per 2 Hall 3, Schiaparelli 4
1885 52 1886 58 1887 50 1888 65 1889 43 1891 51 1892 50 1893 48 1894 54 1895 31	110 4 106 5 104 2 101 5 97 6 95 0 90 9 88 3 85 7 83 5	110 0 107 3 104 2 101 0 98 7 93 2 90 6 88 2 85 6 83 8	$egin{array}{c} 0.77 \\ 0.70 \\ 0.72 \\ 0.69 \\ 0.86 \\ 0.77 \\ 0.78 \\ 0.87 \\ 0.88 \\ 0.84 \\ \end{array}$	0 73 0 74 0 75 0 76 0 77 0 79 0 80 0 81 0 82 0 84	$     \begin{array}{r}       +04 \\       -08 \\       00 \\       +05 \\       -11 \\       +18 \\       +03 \\       +01 \\       +01 \\       -03     \end{array} $	$\begin{array}{c} +0.04 \\ -0.03 \\ -0.07 \\ +0.09 \\ -0.02 \\ -0.02 \\ +0.06 \\ +0.06 \\ 0.00 \end{array}$	19 12 10 11-9 7 4 5-4 6 6	Pei 2, Tai 3, Hl 4, Sch 4, Jed 6 Hall 3, Pei 2, Sch 2, Jed 5 Hall 4, Schiaparelli 6 Hall 4, Schiaparelli 5-3, Tairant 2 Maw 3, Hodges 1, Schiaparelli 3 Schiaparelli 2, See 2 Collins 1, Comstock 4-3 Bigourdan 4, Maw 2 Bigourdan 5, H C Wilson 1 See

# The following is a short ephemeris:

t	$\theta_c$	$\rho_c$	$oldsymbol{t}$	$\theta_c$	$\rho_c$
1006 50	0101	0,05	1000 50	7,4°C	,"
$1896\ 50$	81 1	0 85	$1899\ 50$	<b>74</b> 8	0.89
$1897\ 50$	789	0 86	$1900\ 50$	72~6	0.90
1898 50	76.9	0 87			

# o≥ 298.

 $\alpha = 15^h~32^m~4$  ,  $\delta = +40^\circ~9'$  7, yellowish , 74, yellowish

Discovered by Otto Struve in 1845

### Observations

t	$\theta_o$	Po	$\boldsymbol{n}$	Observers	l t	$\theta_o$	$\rho_o$	n	Observers
1845 50	180°5	$oldsymbol{1}^{''}\!25$	2	O Struve	1865 53	$210^{\circ}2$	$1^{''}\!0$	1	Dembowskı
1846 28	1865	1 41	2	$\mathbf{M}$ ädler	1866 29	207 0	0 8	1	Dembowskı
1847 32	189 6	1 51	2–1	Madler	1867 61	209 5	0 99	1	Dembowskı
1848 46	183 9	111	1	O Struve	1868 52	325	0 84	1	O Struve
1848 68	1858	1 23	1	Dawes	1869 46	214 1	0 61	3	Dunér
1851 75	191 8	<b>1 4</b> 0	2	Madle1	1870 26	225 8	separation doubtful	1	Dembowskı
1856 58	1931	1 21	1	O Struve	1871 63	226 6	contatto?	1	Dembowskı
1857 68	1968	124	1	O Struve	1872 58	235 8	0 58	1	O Struve
1859 62	1974	1 13	1	O Struve	1875 52	84 2	0 53	1	O Struve
1861 44	135	1 16	1	O Struve	1875 65	$265\ 5$	0 37	2	Dembowski

 $O\Sigma$  298. 169

t	00	Po	$\boldsymbol{n}$	Observers	į t	$\theta_o$	$\rho_o$	$\boldsymbol{n}$	Observers
1876 47	280°8	0"3 cu	ieo 3	Dembowskı	1887 50	$142^{\circ}0$	0 39	3	Hall
1877 53	295 9	0 3	5	Dembowskı	1887 56	143 0	0 33	6	Schiaparelli
1878 33	130 8	0 27	2	Burnham	1888 54	339 4	0 65	1 5	O Struve
1879 46	335 0	0 26	4	Hall	1888 59	153 4	0.42	5	Schiaparelli
1879 49	327 8	0 33	4	Schiaparelli	1889 52	158 1	0 55	3	${\bf Schiaparelli}$
1881.41	1754	0 35	3	Hall	1891 48	167 3	0 68	3	Hall
1882 47	75	0 33	4	Schiaparelli	1891 49	347 5	0 63	1	Schiapaielli
$1882\ 52$	3595	0 30	<b>4</b> –3	${f Englemann}$	1000.40	1000	0.00	4	Collins
$1882\ 55$	<b>358</b> 0	0.32	1	O Struve	1892 42	1699 $1693$	0 82	${1 \atop 2}$	<del>-</del>
1883 52	22 4	0 31	6	Schiaparelli	1892 47		0.88	4	Bigourdan Comstock
1883 65	36 7	0 17	3	Englemann	1892 59	168 9	0 64	4	Comstock
1009 00	50 1	011	O	Engromann	1893 43	351 5	0 91	1	Bigouidan
1884 44	490	0 30	<b>2</b>	Perrotin	1893 71	173 6	0 64	1	Comstock
$1884\ 51$	57.3	0 31	5	$\operatorname{Schiapaielli}$					
1885 65	60 9	0 27	7_4	Englemann	1895 54	$173 \ 1$	0.85	3	Comstock
1000 00	00 9	0 21	1-4	migremann	1895 56	$174\ 2$	0.82	1	Schiaparelli
$1886\ 67$	1337	0.29	<b>2</b>	Schiaparelli	1895 74	$179\ 4$	0.95	<b>2</b>	See
1886 68	1049	0.29	7	Englemann	1895 74	177~2	105	1	Moulton

Since the discovery of this binary in 1845, the companion has described substantially an entire revolution. The period is therefore fixed with sufficient precision; indeed, the numerous and satisfactory measures of this pair secured during the last fifty years define the other elements in a manner almost equally satisfactory. The shape of the apparent orbit is such that the pair is never excessively difficult, and yet measurement near periastron, where the distance reduces to 0"22, requires a good telescope. The components are of nearly equal brightness, and hence a number of the measures as recorded requires a correction of 180°

The following orbits of this pair have been published by previous computers:

P	T	е	a	ಬ	i	λ	Authority	Source
68 802 70 26 56 653 51 0	1812 96 1882 22 1882 857 1883 0	0 5836		$\begin{array}{c c} 12\ 29 \\ 2\ 13 \end{array}$	50 63	346 15 21 9	Dolgorukow,1883 Celo11a, 1888	AN, 2280 AN, 2531 AN, 2843 Unpublished

An investigation based on all the best observations leads to the following elements of  $O\Sigma$  298.

Market To M

$$P = 52 \text{ 0 years}$$
  $\Omega = 1^{\circ} 9$   
 $T = 1883 \text{ 0}$   $i = 60^{\circ} 9$   
 $e = 0581$   $\lambda = 26^{\circ} 1$   
 $a = 0'' 7989$   $n = +6^{\circ} 9231$ 

170 *ο*Σ 298

## Apparent orbit

Length of major axis = 1'' 546Length of minor axis = 0'' 656Angle of major axis  $= 186^{\circ} 9$ Angle of periastron  $= 15^{\circ} 3$ Distance of star from centre = 0'' 427

## COMPARISON OF COMPUTED WITH OBSERVED PLACES

	COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF COMPANISON OF CO												
t	θ.	θο	ρο	ρι	θοθε	ρορο	n	Observers					
1045 50	180°5	180 5	1 25	1 07	± 00	+0″18	2	O Struve					
1845 50		181 6	1 41	1 09	+ 49	+0.32	2	Madler					
1846 28	186 5	183 1	1 51	1 12	+65	+039	2-1	Madler					
1847 32	189 6	184 8	117	1 16	+ 01	+001	$\mathbf{\tilde{2}}^{-}$	O Struve 1, Dawes 1					
1848 57	184 9	188 8	140	1 19	+30	+0.21	$ar{2}$	Madler					
1851 75	1918		1 21	1 20	+ 29	+001	ī	O Struve					
1856 58	1931	190 2	121 $124$	1 15	+ 06	+0 09	ī	O Struve					
1857 68	1968	196 2	1 13	1 11	_ 15	+0.02	ĩ	O Struve					
1859 62	197 4	1989	113 $116$	1 06	-81	+0.10	ĩ	O Struve					
1861 44	193 5	2016		0 90	+ 11	+0.10	ī	Dembowski					
1865 53	210 2	209 1	10	0 90	-38	-0.07	ī	Dembowski					
1866 29	207 0	2108	0.8	0 80	-36	+0.19	î	Dembowski					
1867 61	209 5	214 2	0 99		-14 4	+0.09	ī	O Struve					
1868 52	202 5	2169	0.84	0 75	-59	-010	3	Dunér					
1869 46	214 1	220 0	0 61	0.71	-39   +31	-010	1	Dembowski					
1870 26	225 8	2227		0 67	1		î	Dembowski					
1871 63	226 6	229 6	0.50	0 58	$\begin{vmatrix} -30 \\ +05 \end{vmatrix}$		1	O Struve					
1872 58	235 8	235 3	0 58	0 53	+ 15	+0 08	3	O Struve 1, Dembowski 2					
1875 57	264 7	263 2	0 45	0 37	+ 15	-0.04	3	Dembowski					
1876 47	280 8	275 9	0.3	0 34	+31	-0.04	5	Dembowski					
1877 53	295 9	2928	0.3	0 33		$\begin{bmatrix} -0.03 \\ -0.06 \end{bmatrix}$	2	Burnham					
1878 33	310 8	306 4	0 27	0.33	+ 44		8	Hall 4, Schiaparelli 4					
1879 47	331 4	325 0	0 29	0 34	+ 64		3	Hall					
1881 41	355 4	352 1	0 35	0 36	+ 33		4	Schiaparelli					
1882 47	7 5	66	0 33	0 34	+ 09			Schiaparelli					
1883 57	22 4	26 7	0 31	0 28	- 43		6	Perrotin 2, Schiaparelli 5					
1884 47	53 1	53 7	0 31	0 22	- 06		7-4	Englemann					
1885 65	60 9	102 4	0 27	0 22	-41 5		2	Schiaparelli					
1886 68	133 7		0 29	0 29	+ 31			Hall 3, Schiaparelli 6					
1887 53			0 36	0 38	-16		9	O Struve 0-1, Schraparelli 5					
1888 56	153 4		0 53	0 48	- 02		5-6						
1889 52	158 1		0 55	0 56	- 10		3	Schiaparelli Hall 3, Schiaparelli 1					
1891 49			0 65	074	-04		4	Galling 1 Bigonidan 2 Com 4					
1892 49	169 4		0 78	0 81	- 06		7	Collins 1, Bigourdan 2, Com 4					
1893 62	172 5	173 4		0 88			2	Bigourdan 1, Comstock 1					
1895 55	173 7			0 99			4	Comstock 3, Schiaparelli 1					
1895 74		177 6	1 00	1 00	+ 07	$\pm 0.00$	3	See 2, Moulton 1					

The table of computed and observed places shows that these elements are extremely satisfactory. Future observations are not likely to vary the period given above by more than one year, while an error of  $\pm 0.02$  in the eccentricity is highly improbable. In spite of the accuracy of the present elements some improvement will ultimately be desirable, and hence astronomers should continue to give this interesting system regular attention. The star will be easy



*

for a number of years, and observers with small telescopes will find it an important object for measurement.

The following is a short ephemeris.

t	$\theta_{c}$	$\rho_c$	$oldsymbol{t}$	$ heta_c$	$\rho_c$
	•	<i>n</i>		٥	"
$1896\ 50$	$178 \ 9$	103	$1899\ 50$	1833	1 13
1897 50	180 5	1 07	$1900 \ 50$	$184\ 7$	1 15
1898 50	182.0	1 10			

## $\gamma$ CORONAE BOREALIS = $\Sigma$ 1967.

Discovered by William Struve in 1826

#### OBSERVATIONS

t	$\theta_o$	ρο	$\boldsymbol{n}$	Observers	l t	θ.	ρ _o	n	Observers
1826 75	110°0	$0^{''}72$	<b>2</b>	Struve	1848 39	2970	$0^{''}\!\!39$	4	Mädler
1828 98	1107	0 54	3	Struve	1848 49	292 8	0 <b>4</b> ±	3	w c Bond
1832 21	102 7	04±	3	Struve	1849 63	289 4	0 50	3	O Struve
1833.34	1058	04±	2	Struve	1850 69	289 9	0.53	3	Madler
1835 46	sımplex		3	Struve	1851 33 1851 50	$2925 \\ 2876$	03± 048	1 4	Mädler O Struve
1836 52	338 ?	obl ?	4	Struve	1852 07	285 1	0 57 ±	4.	Dawes
1840 51	252 cu	neifoim	e 1	W Struve	1852 58	$296\ 4$	0 46	7–6	Madler
184078	255 cu	neifoim	e 4	O Struve	1853 01	287 9	0 46	5	O. Struve
1841 50	332 3	0 18	10-4	Mädler	1853 20	294 3	05	2	Jacob
1842 49	314 3	0 20	4–1	Mädler	1853 32	284 5	0 40	4–3	Mådler 
1842 80	272 0	0 47	2	Mädler	1854 40 1854 76	$\begin{array}{c} 284\ 3 \\ 291\ 1 \end{array}$	0 69 0 4 ±	$egin{array}{c} 2 \ 1 \end{array}$	Dawes Mädler
1843 30	292 5	0 41	3	O Struve	1855 50	semplice		_	Secchi
1843 45	288 9	06±	1	Dawes	1855 73	$29\overline{2}$ 4		1	$\mathbf{M}\mathbf{a}\mathbf{d}\mathbf{l}\mathbf{e}\mathbf{r}$
1843 48	$276\;6$	0 39	9-2	Mådler	1856 37	$295\ 4$	0 67	3	Winnecke
1844 37	286 2 ?		1	Madler	1856 59	288 9	0 45	8–7	Secchi
1845 37	292 1	0 45	9	$\mathbf{Madler}$	1856 62	283 8	0.47	6	O Struve
1845 61	296 0	0 44	5	O Struve	1857 39	$286\ 5$	0 32	$oldsymbol{2}$	Mädler
1845 57	$292\ 7$	0 43	9-8	$\mathbf{Madler}$	1857 52	281 0	05±°	1	Dawes
4010 20	0040	0.45		7V.E v. 31	1857 52	289 3	0.36	5	Secchi
1846 56	$294\ 2$	0 45	11	Mädler	1858 51	281 0	cuneo	3	Dembowskı
1847 29	292 6	044	5	O Struve	1858 57	$284\ 1$	0 33	4–3	$\mathbf{Madler}$
1847 43	$295 \ 1$	0.36	<b>11–</b> 9	$\mathbf{Madler}$	1858 97	284.7	0 46	5	O Struve

t	$\theta_o$	ρo	n	Observers	t	$\theta_o$	ρο	n	Observers
1859 36	$282\degree 6$	$0^{''}\!\!45\pm$	1	Dawes	$1883\ 53$	$142\overset{\circ}{6}$	$0^{''}16 \pm$	3	Perrotin
1859 38	290 4	obl	3	Madleı	1883 57	$129 \ 1$	0 41	5	Schiaparelli
	00==	0.40		O Struve	1883 60°	$149\ 3$	0 58	1	O Struve
1861 59	2877	0 42	3	O Struve	$1883\ 64$	1469	$0\ 20$	8	Englemann
$1862\ 56$	2929	cuneo	3	$\mathbf{Dembowski}$	1884 52	125 cu	neifoime	2	Perrotin
$1862\ 91$	227 ?	loubtful	1	Madleı	1884 53	305 6	0 34	1	Penotin
1863 25	semplice		1	Dembowski	1884 53	1324	0 34	6	Schiaparelli
1863 64	290 5	0 41	3	O Struve	1884 61	166 8	0.28	6	Englemann
					1885 48	ıound		1	Smith
1865 6	semplice		4	Secchi	1885 54	134 3	0 35	3	Schiapaielli
$1865\ 26$	semplice		1	Dembowskı	1885 63	164 6	0 38	10 <u>-</u> 6	Englemann
$1865\ 50$		<b>&lt;</b> 0 5	1	Englemann	1000 00	104 0		10-0	<u> </u>
186553	emfach		1	Englemann	1886 51	$129 \ 1$	0 38	6	Schiaparelli
1866 30	$201\ 2$	-	4	Harvard	1886 69	159 9 ?	0 93 °	8	Englemann
1866 61	$205\ 3$		1	Winlock	1887 51	126 6	0 38	13	Schiaparelli
1866 62	2860	0 43	2	O Struve	1887 55	round		1	Smith
1867 75	sımple		10	Dunér				- 40 48	o 1 11
1001 10	-				1888 55	124 3	0 40	16–15	Schiaparelli
$1868\ 02$	260 2	0 36	<b>2</b>	O Struve	1888 61	$132\ 0$	0 85	<b>2</b>	O Struve
186872	252 c	uneiforme	-	O Struve	1889 42	$109\ 2$		1	Hodges
1869 36	280 4	_	1	Leyton Obs	1889 52	$122\ 4$	0 41	4	Schiaparelli
$1872\ 45$	190°	_	1	W & S	1890 68	$124\ 1$	0 51	1	Bigourdan
	4050		4	w & s	1891 50	<b>12</b> 0 0	05±	1	See
1873 38	195 °		1	17 W B	1891 51	122 5	0.42	4	Schiaparelli
1874	simple	_	_	O Struve	1891 51	$125\ 6$	0 36	4	Hall
1874 56	166 9	_	1	Leyton Obs	1891 58	1188	0.51	1	Bigourdan
				-	1892 44	122 3	083±	1	H C Wilson
1875 40	single	_	1	Hall	1892 44	121 1	0 69	1	Bigouidan
1875 41	165 4		1	Leyton Obs	1892 60	122 8	0 47	7	Schiaparelli
$1876\ 32$	sımple		1	Flammation	1892 72	121 9	0 40	3	Comstock
1876	single		1	Dobeick				0	0-1
1876 45	single	-	1	$\mathbf{Hall}$	1893 49	120 0	0 52	2	Schiaparelli
1876 81	sımple	_	_	Schiaparelli	1893 50	118 4	0 65	2	Bıgourdan
	_		_	2 2.	1894 48	1197	0.53	2	Schiaparelli
1877 54	163 3	0 44	2	O Struve	1894 60	$121\ 3$	0 60	5-4	Barnaıd
1878 60	150 7	0 56	<b>2</b>	O Struve	1895 30	1148	0 67	3	See
4050 50	1		2	Hall	1895 55	117 1	0 43	3	Comstock
1879 56	single		<i>z</i> 5	Han Burnham	1895 61	123 7	0 64	4	Barnard
1879 81	single	_	Ð	Durmam	1090 01	1001		_	

The components of this remarkable system are of the 4th and 7th magnitudes, and of yellow and bluish colors respectively, so that the object is generally very difficult Struve happened to discover* the companion near the time of its maximum elongation, when the polar coordinates were  $\theta = 111^{\circ}$ 0,

^{*} Astronomical Journal, 376

 $\rho = 0^{\circ}$  72. Measures in 1828, 1831 and 1833, showed that both angles and distances were steadily decreasing, and in 1835 the star appeared single under the best seeing. The companion was not again recognized with certainty until 1842, although STRUVE, O. STRUVE and MADLER searched for it repeatedly during the intervening period, and occasionally suspected an elongation discordance in the angles of the supposed elongations justify the belief that the phenomena observed were probably nothing more than points of diffraction fringes, or some other kind of spurious images. Madler's observation of 332° 3 and 0".18 at the epoch 1841 50 may be genuine, although at this time the star The binary character of the pair was early must have been excessively close recognized by STRUVE, who pointed out the particular interest attaching to the system on account of its high inclination. Y Coronae Borealis has since been measured by many of the best observers, and yet the stars are so unequal and so close that the errors of observation assume formidable proportions, and render a satisfactory determination of the elements very difficult inclination of the orbit throws nearly all the position-angles into small regions of about 10° on either side, and while the retrograde motion ought to make all angles steadily decrease, we are sometimes confounded by an appearance of direct motion (as from 1859 to 1863) which proves the existence of sensible systematic errors, probably due to the placing of the micrometer wires parallel to the edges of unequal images.

It is equally confusing to find that instead of a steady increase and decrease in the distance, nearly all of the distances are in the immediate neighborhood of 0".4, such measures are of course misleading, as the companion cannot be standing still at a constant angle and distance. While, therefore, it is clear that the elements can not lay claim to such accuracy as could be desired, it will yet appear that they are good and even excellent for observations which are so badly vitiated by accidental and systematic errors

It is obvious that in case of a system whose orbit plane lies nearly in the line of vision, the angles will be practically useless unless measured with the greatest accuracy, yet, in this instance, even when the pair is fairly wide, we frequently find the angles of individual observers differing by so much as 10°, and when the stars are close the uncertainty in angle will amount to at least twice this quantity. On account of such conspicuous errors in angle we have based the present orbit largely upon the distances.

DOBERCK and CELORIA are the only astronomers who have previously attempted an orbit for this pair.

P	T	e	а	Ω	ı	λ	Authority	Source
95 50	1843 7	0 387	0"75	111 0	83 0	239 0	Doberck, 1877	
95 5	1843 70	0 350	0 70	110 4	85 2	233 5	Doberck, 1877	
85 276	1840 508	0 3483	0 631	113 47	81 67	250 7	Celoria, 1889	

From an investigation of the best observations we find the following elements.

$$P = 730 \text{ years}$$
  $\Omega = 110^{\circ} 7$   
 $T = 18410$   $\iota = 82^{\circ} 63$   
 $e = 0.482$   $\lambda = 97^{\circ} 95$   
 $a = 0'' 7357$   $n = -4^{\circ} 9315$ 

### Apparent orbit

Length of major axis = 1'' 30Length of minor axis = 0'' 175Angle of major axis  $= 111^{\circ} 3$ Angle of periastron  $= 329^{\circ} 6$ Distance of star from centre = 0'' 068

The accompanying table shows the agreement of the above elements with the mean places.

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θε	ρο	ρς	θοθο	ρορσ	n	Observers
1826 75	111°0	114 5	0 72	0 70	$-\overset{\circ}{35}$	+0"02	2	Struve
1828 98	1107	113 5	0 54	0 69	-28	-0.15	3	Struve
1831 68	1093	111 2	04±	0 63	-19	$-0.23 \pm$	ĭ	Struve
1833 34	1058	1100	04±	0 57	-42	$-0.17 \pm$	$\tilde{2}$	Struve
1835 46	simplex	107 4		0 44	_		$\bar{3}$	Struve
1836 52	oblong?			0 37		_	4	Struve
1840 78	75	951	cune	016	<b>_201</b>		$\tilde{4}$	O Struve
1841 50	332 3	3148	0 18	010	+175	+0 08	10-4	Madler
1842 64	300 4	301 9	0 33	0 21	- 15	+0.12	6–3	Madler
1843 30	2925	$298\ 6$	041	0 28	<b>- 61</b>	+0.13	3	O Struve
1844 37	286 29	$295\ 5$		0 37	- 93		i	Madler
1845 61	2960	293 1	0 44	0 45	+ 29	-0 01	1 5	O Struve
1847 36	2938	290 8	0 40	0 54	+ 30	-0 14	16-14	O Struve 5, Madler 11-9
1848 44	294 9	2897	04	0 57	+ 52	-017	7	Ma 4, W C & G P Bond 3
1849 63	289 9	$288\ 6$	0 50	0 58	+ 13	-0 08	3	O Struve
1850 69	289 9	287.7	0 53	0 59	+ 22	-0.06	3	Madler
1851 50	287 6	2870	0 48	0 60	+ 06	-0.12	4	O Struve
1852 07	285 1	$286\ 5$	0 57 ±	0 60	- 14	$-0.03 \pm$	4	Dawes
1853 17	286 2	$285\ 6$	0 45	0 59	+ 06	-0 14	9-10	$O\Sigma$ 5, Ja 0-2, Ma 4-3
1854 40	284 3	$284\ 4$	0 69	0 58	_ 01	+0.11	2	Dawes
1855 73	292 4	$283\ 3$		0 56	+ 91		1	Madler
1856 62	283 8	$282 \ 4$	0 57	0 54	+ 14	+0.03	6–9	O Struve
1857 52	281 0	$281 \ 4$	0 50	0.52	-04	-0 02	1	Dawes
1858 97	284 7	$279 \ 8$	0 46	0 48	+39	-0 02	5	O Struve
1859 36	282 6	$279 \ 4$	0 45	0 47	+32	-0 02	5 1 3	Dawes
1861 59	287 7	$276\ 2$	0 42	0 41	+11 5	+0.01	3	O Struve
1862 73	260 0	2740	cuneo	0.38	-140		4	Dembowski, Mädler 1
1863 64	290 5	272 3	041	0 35	+180	+0.06	3	O Struve



10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to 10 to



t	θ.	θο	ρ,	ρ,	θοθο	ρ	n	Observers
1865 50	280°	267°7	<0"5	0″30	$+12^{\circ}3$	+0"2-	1	Englemann
1866 62	286 0	260 0	0 43	0 24	+260	+0.19	2	O Štruve
1868 02	$260\ 2$	257 9	0 36	0 22	+ 23	+0.14	$\begin{array}{c c} 2 \\ 2 \end{array}$	O Struve
1872 91	192 5	209 0		0 13	-165		$egin{array}{c} 2 \ 1 \end{array}$	Wilson & Seabioke
1874 56	166 9	184 8	l —	014	-179		1	Leyton Observers
1875 41	165 4	1753	<u> </u>	014	- 99		1	Leyton Observers
1877 54	1633	156 3	0 44	018	+ 70	+0.26	2	O Struve
1878 60	150 7	1470	0 56	0 22	+ 37	+0.34	2 5	O Struve
1883 57	129 1	130 3	0 41	0 36	_ 12	+0.05	5	Schiaparelli
1884.53	127 6	128 0	0 33	041	<b>- 04</b>	-0 08	9–13	Per 3-1, Sch 6, En 0-6
1885 54	134 3	1268	0 35	0 43	+75	-0 08	3	Schiaparelli
1886 51	1291	$125 \ 3$	0 38	046	+ 38	-0.08	6	Schiaparelli
1887 51	126 6	124 2	0 38	048	+ 24	-0 10	13	Schiaparelli
1888 55	124 3	123 0	0 40	0.52	+ 13	-0.12	16-15	Schiaparelli
1889 50	1198	122 0	0 41	0 54	- 22	-0.13	5-4	Hodges 1-0, Schiaparelli 4
1890 68	124 1	121 1	0 51	0 57	+ 30	-0.06	1	Bigourdan
1891 52	1217	$120\ 2$	0 45	0 59	+ 15	-0.14	10	See 1, Sch 4, Hill 4, Big 1
1892 55	<b>122</b> 0	1194	0 60	0 62	+ 26	-0.02	12	H C Wilson 1; Sch 7, Com 3
1893 50	118 4	118 7	0 58	0 64	- 03	-0.06	2-4	Bigourdan 2, Schiaparelli 0-2
1894 54	120 4	117 9	0 57	0 66	+25	-0.09	6	Schiaparelli 2, Barnard 4
1895 42	116 0	117 3	0 69	0 67	- 13	+0 02	6-3	See 3, Comstock 3-0

The following is a short ephemeris.

$oldsymbol{t}$	$\theta c$	$\rho_c$	$oldsymbol{t}$	$\theta_c$	$\rho_c$
1896 50	$116^{\circ}6$	$0^{''}69$	1899 50	$115^{\circ}3$	$0^{''}70$
1897 50	<b>116</b> 0	0 69	1900 50	114 1	0 70
1898 50	1153	0 70	*		

According to this orbit previous investigators have materially overestimated the period. While the time of revolution must at present remain slightly uncertain, it does not seem at all probable that this element can surpass 75 years. It follows, therefore, that  $\gamma$  Coronae Borealis belongs to the class of unequal binaries with moderately short periods. The inclination and line of nodes here obtained will probably be nearly correct, while the eccentricity is not likely to be varied by so much as  $\pm 0.05$ .

Recent distances have been appreciably undermeasured by several observers; the separation of the components is now about 0".68, and will not change sensibly for several years.  $\gamma$  Coronae Borealis needs further observation, and astronomers should continue to give it regular attention; but owing to the peculiar shape of the apparent orbit great care must be exercised to avoid systematic errors, if the measures are to be of much value in effecting a further improvement of the elements.

# $\xi$ SCORPII = $\Sigma$ 1998.

 $\alpha = 15^{h} \; 58^{m} \; 9 \quad , \quad \delta = -11^{\circ} \; 5'$  5, yellow , 52, yellow

# Discovered by Sir William Herschel, September 9, 1781

#### OBSERVATIONS

				OBSERV	ATIONS				
t	$\theta$ _o	$\rho_o$	$\boldsymbol{n}$	Observers	$oldsymbol{t}$	$\theta_o$	$\rho_o$	$\boldsymbol{n}$	Observers
1782 36	188°0	<u>"</u>	1	Heischel	1846 17	$2\overset{\circ}{3}2$	1 00	3–1	Jacob
1005 47	355 3	1 15	3	Struve	1846 47	$24\ 1$	0 97	9–8	${f Mitchell}$
1825 47		1 10			1847 58	260	1 71	1	Mitchell
1828 48	10	_	1	Herschel					
1830 25	14	1 46	4-3	Herschel	1848 54 1848 54	$\begin{array}{c} 30\ 6 \\ 27\ 2 \end{array}$	1 19 0 84	$egin{array}{c} 3 \\ 1 \end{array}$	Dawes Mitchell
1831 38	9 4	1 32	2–1	Herschel			0.04		
1831 48	3 <del>4</del> 3 5	1 21	1	Struve	1853 53	463	_	1	Dawes
					1855 36	482		4	Dembowskı
$1832\ 52$	48	$1\ 24$	1	Struve	1855 53	53 1	0.46	3	Secchi
1833 37	50	1 19	1	Struve	1856 20	65 5	0 63	3	Jacob
$1833\ 39$	62	1 15	1	Dawes	1856 41	58 <b>1</b>	<del></del>	4	Dembowski
1834 45	8 3	1 24	2–1	Herschel	1856 49	703	0 36	10-8	Secchi
1834 45	67	124	1	Struve	1856 58	698	0 47	1	O Struve
1834 50	71	1 17	4	Dawes	1856 55	59 G		$oldsymbol{\hat{2}}$	Winnecke
1834 51	146		3	Madlei					
	•				1857 68	81 4	0 50	1	Jacob
$1835\ 39$	106	1 58	<b>5–1</b>	Herschel	1858 13	794	0 40	1	Jacob
$1835 \ 48$	<b>11</b> 0	_	4	Mädleı	1858 22	1168	0 30	1	Jacob
1836 49	9 5	1 02	1	Dawes	1862 56	137 9		3	Dembowskı
1836 50	110		3	Mädler	Ì				
1837 33	11 4		1	Herschel	1863 44	$142 \ 1$	_	9	Dembowskı
1001 00			-	Trorbonor	1864 45	1478	0 21	4	Secchi
1839 61	167	128	2	Dawes	1864 51	1509		10	Dembowskı
1840 56	186	1 19	3	Dawes	1865 44	151 4		10	Dembowskı
1840 57	172	0 96	1	O Struve	1865 51	155 5	0 35	7	Secchi
	167	1 28	4-3	$\mathbf{Madler}$	1865 55	166 9	0 49	7	Englemann
1841 48 1841 57	208	0.84	<del>4-</del> 3 1	O Struve			0 53	8–3	Dembowski
1841 58	190	120	3–2	Dawes	1866 46 1866 52	1566	0 40	8–3 2–1	Secchi
1841 61	177	1 30	2-1	Kaiser					
					1867 45	1607	0 83	7-4	Dembowski
$1842\ 42$	204	1 05	4-2	$\mathbf{Madler}$	1868 40	1650	0 90	7-4	Dembowski
$1842\ 46$	21 6		2	Dawes	1868 48	1665	0 99	1	Knott
$1842\ 53$	21 0	_	1	Kaiser	1869 51	1725	0 83	6	Dunér
1843 40	23 5	1 09	2	Dawes	1869 52	168 2	0 88	5	Dembowski
1843 40	238	1 16	6-4	$\mathbf{Madler}$				1	Gledhill
1843 62	20 8	1 20	11–1	Kaiser	1870 21	168 2	0 89	1 75	Dembowski
	00.77	1.00			1870 39	169 8	0 89	2	Dembowski Dunér
<b>1844 40</b>	$23\ 7$	182	3	$\mathbf{Madler}$	1870 54	1733	U 00	<b>∠</b> i	Duner

$oldsymbol{t}$	$\theta_o$	$\rho_o$	$\boldsymbol{n}$	Observers	t	$\theta_o$	$\rho_o$	n	Observers
1871 41	$173\overset{\circ}{1}$	$f 1 {}^{''}\!\!06$	7-5	Dembowskı	1882 27	$193^{\circ}6$	1 19	1	Doberck
1871 49	1740	1 00	1	Gledhill	1882 43	1967	1 44	1	Englemann
1871 60	1748	0 88	5	Dunér	1882 46	$192\ 7$	112	3	Hall
	177 3	0 95	1	W & S	1882 54	1918	1 31	5	Schiaparelli
1872 45	176 9	1 12	1	Knott	1882 59	192 1	1 35	3	Frisby
1872 46									v
1872 46	173 8	1 12	8-5	Dembowskı	1883 45	191 0	1 33	4	Fusby
1872 50	1758	1 10	2	Ferrari	1883 51	193 9	1 38	2	Hall
$1872\ 53$	177 4	0 96	3	Dunér	1883 49	$195\ 3$		1	Küstner
$1873\ 36$	$180 \ 4$	1 04	1	W & S	1883 49	$195\ 5$	1 20	3	Englemann
1873 36	1768	1 19	5-3	Dembowskı	$1883\ 52$	$191\ 5$	1 16	3	$\operatorname{Perrotin}$
1873 68	1765	1 10	1	Gledhill	1883 55	$193\ 5$	1 24	12	Schiaparelli
1874 44	183 1	1 19	1	W & S	1884 38	$195 \ 8$	1 34	4-3	H C Wilson
$1874 \ 49$	1787	1 05	5	$\mathbf{Dembowski}$	1884 44	$195\ 6$	1 46	3	Englemann
$1875 \ 44$	$180 \ 5$	<b>1 1</b> 0	5	Dembowskı	1884 50	$194\ 6$	128	5	Hall
187551	1820	1 18	5	Schiaparelli	1884 53	195  1	127	3	$\mathbf{Perrotin}$
187551	1800	1 33	1	W & S	1884 54	$195\ 6$	1 41	1	H S Pı
187556	$180 \ 9$	0 96	4	Dunéi	1884 54	195 0	1 26	9	Schiaparelli
$187\overset{\bullet}{6} 44$	$185\ 6$	1 04	1	Howe	1885 53	196.2	1 34	8	Schiaparelli
1876 45	1818	1 21	6	Dembowski	1885 57	198 1	1 38	5	Englemann
$1876\ 52$	183 9	1 14	3	Hall	1886 35	197 4	1 19	1	H.C Wilson
$1876\ 52$	1836	1 18	4	Schiaparelli	1886 46	197 5	1 24	2	Perrotin
187654	$182\ 5$	$100 \pm$	1	Plummer	1886 49	198.6	1.54	2–1	Smith
1876 61	1865		3	Doberck	1886.51	198.1	1.29	3,	Tarrant
187743	$179 \ 5$	0 97	2-1	$\mathbf{Doberck}$	1886 56	198.0	1 07	3	Hall
1877 43	183 3	1 20	5	Dembowski	1886 63	198 9	1 07	7	Englemann
1877.43	184 1	1 61	1	${f Upton}$	1886 55	198 9 197 2	1 19	3	-
$1877 \ 46$	184 9	1 27	1	W & S					Schiaparelli
$1877 \ 47$	1870	1 12	4–1	Howe	1887 54	1996	1 16	9	Schiaparelli
$1877\ 55$	1840	$1\ 25$	9	Schiaparelli	1888 50	$200 \ 4$	124	<b>2</b>	$\mathbf{L}\mathbf{v}$
$1877\ 55$	$182\ 5$	127	3	${f Jedrzejewicz}$	1888 56	200 6	0 96	2	Hall
$1878 \ 46$	$186\ 2$	122	5-4	Dembowskı	1888 57	201 9	1 14	7	Schiaparelli
$1878\ 54$	$186 \ 1$	1 31	6	Schiaparelli	1889 43	197 5	1 20	2	Hodges
187941	189.2	1~22	5	Howe	1890 39	205 2		2	-
$1879 \ 42$	1867	1 44	3	Stone					Glasenapp
$1879 \ 47$	187 6	1 45	3	${f Egbert}$	1891 46	200 6	127	<b>2</b>	$\operatorname{Collins}$
187954	1898	1 07	3	$\mathbf{Hall}$	1891 48	$208\ 7$	287	1	See
187956	1868	129	7	Schiaparelli	1892 53	208 0	1 23	3	Maw
187958	$185\ 6$	1 47	2	C W Pr	1892 58	206 5	0 82	4	Comstock
187960	188 8	1 16	3	Burnham	}				
187967	$194\ 5$	0 70	3–1	Sea & Smith	1893 46	211 1	101	2	Burnham
1880 36	188 8	$1\;12$	2	Egbert	1893 49	209 5	1 10	1	Schiaparelli
1880 40	1897	1 17	4–2	Doberck	1893 51	210 9	0 89	2	Lv
1880 52	1857	1 13	1	Frisby	1893 60	209 7	1 07	5	Bigourdan
1880 54	189 0	1 24	6	Schiaparelli	1894.59	$207 \ 5$	10±	2-1	Glasenapp
1880 87	189 6	1 10	3	H S Pr.	1895 31	2103	1 04	3	See
1881 24	191 3	1 03	1	Doberck	1895 41	213 9	0 91	2	Schiaparelli
1881 40	1908	1 21	2-1	Bigourdan	1895 53	$213\ 4$	0 81	3	Comstock
700T #A	T90 Q	1.41	<i>2</i> /−1	Digourdan	1099.99	210 E	A OT	υ	CILIDUOUK.

This bright star has been observed with considerable regularity since the time of Struve, and much material is now available for the investigation of its orbit. But while the measures are numerous, the considerable southern declination of the object renders them rather difficult, especially for European observers, and hence there is reason to suppose that the results are not free from systematic errors. In the investigation of the orbit we have adopted the usual method, depending on both angles and distances, and, as in case of \(\zeta\) Cancri, have neglected the influence of the third star. This procedure has been adopted by Dr. Schorr in his Dissertation on the motion of this system, and is fully justified by the rough and somewhat unsatisfactory state of the measures, which will not yet permit any very fine *determination of the elements. Several computers have previously worked on the motion of this system; the following list of orbits is believed to be fairly complete.

P	T	e	a	Ω	ı	λ	Authority		Source
49 048 95 90	1832 611 1860 59 1859 62 1862 32	 0 0768 0 122		1127 $1225$		78 57	Doberck,	1877	AN, 1199 AN, 2121 Dissertation, Munich

We find the following elements

$$P = 1040 \text{ years}$$
  $\Omega = 9^{\circ} 5$   
 $T = 186460$   $\iota = 70^{\circ} 3$   
 $e = 0.131$   $\lambda = 111^{\circ} 6$   
 $\alpha = 1'' 3612$   $n = +3^{\circ} 4616$ 

Apparent orbit:

Length of major axis = 2'' 696Length of minor axis = 0'' 884Angle of major axis  $\cdot = 9^{\circ} 6$ Angle of periastron  $= 150^{\circ} 2$ Distance of star from centre = 0'' 085

The table of computed and observed places shows a very satisfactory agreement, and we may conclude that no very considerable alteration is likely to be made in these elements. But the orbit is so nearly circular and so highly inclined that the definition of  $\lambda$  is not very exact, and in case of this element a larger alteration may be found necessary, when the material shall be sufficient for a definitive determination.

The small eccentricity of this orbit is rather remarkable. Among known binaries there are very few which have such circular orbits,  $\delta$  Equuler,  $\Sigma$  2173 and  $\mu$  Herculis being the principal objects of this kind, and as most of these orbits are highly inclined, there is still some uncertainty attaching to the eccentricity. It will be necessary to have more exact observations of these stars in





critical parts of their orbits before this element can be defined with the desired precision

COMPARISON OF COMPUTED WITH OBSERVED PLACES

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
1782 36   188 0   197 2       -9 2     1   Herschel   1825 47   355 3   357 2   1 15   1 28   -1 9   -0 13   3   Struve   1830 25   1 4   2 7   1 46   1 39   -1 3   +0 07   4-3   Heischel	
1825 47 355 3 357 2 1 15   1 28 -1 9 -0 13   3   Struve   1830 25   1 4   2 7 1 46   1 39 -1 3 +0 07   4-3   Heischel	
1830 25  14 27   146   139   -13   +007   4-3   Heischel	
1831 48   35   40   121   140   -05   -019   1	
1832 52 4 8 5 2 1 24 1 41 -0 4 -0 17 1 Struve	
1833 38 56 61 17 141 -05 -024 2 Struve 1, Dawes 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1835 39 10 6 8 3 1 58 1 42 +2 3 +0 16 5-1 Herschel	*
1836 50 10 3 9 7 1 02 1 40 +0 6 -0 38 4-1 Dawes 1, Madler 3-0	
1839 61 16 7 13 0 28 1 35 + 3 7 - 0 07 2 Dawes	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
1841 56 18 5 15 7 1 15 1 29 +2 8 $-0.14$ 10-7 Mädler 4-3, $O\Sigma$ 1, Dawes 3-2,	Kaiser 2-1
1842 42 20 4 16 1 105 1 28 + 43 - 0 23 4-2 Madler 4-2	
1843 47 22 7 18 0 1 15 1 22 + 4 7 -0 07 19-7 Dawes 2, Mädler 6-4, Kaiser 11	_1 •
1845 36 23 7 20 7 1 40 1 14 + 30 + 0 26 15-12 Madler 3, Jacob 3-1, Mitchell 9	
1847 58 26 0 24 7 1 71 1 02 +1 3 +0 69 1 Mutchell	
1848 54 28 9 26 6 1 01 0 96 +2 3 +0 05 4 Dawes 3, Mitchell 1	ļ
1855 44 50 6 53 5 0 46 0 54 -2 9 -0 08 7-3 Dembowski 4-0, Secchi 3	
1856 45 64 7 61 20 49 0 50 +3 5 -0 01 20-12 Jacob 3, Dem 4-0; Sec 10-8, 6	0Σ 1. Winn 2-0
1857 68 81 4 72 8 0 50 0 43 +8 6 +0 07 1 Jacob	<b>52</b> 2, Willia 2 0
1858 13 79 4 78 5 0 40 0 42 + 0 9 - 0 02 1 Jacob	
1864 48 149 3 144 8 0 21 0 52 + 4 5 -0 31 14-4   Secchi 4, Dembowski 10-0	
1865 50 153 4 154 4 0 42 0 60 -0 1 -0 18 17-14 Dembowski 10-0, Secchi 7; Eng	lemann 7
1866 49 158 8 159 3 0 46 0.66 -0.5 -0 20 10-4 Dembowski 8-3; Secchi 2-1	,
1867.45 160 7 163.4 0.83 0 72 -2 7 +0.11 7-4 Dembowski	
1868 44 165 7 166 9 0 94 0 78 -1 2 +0 16 8-5 Dembowski 7-4, Knott 1	
1869 51 170 3 170 2 0 85 0 83 +0 1 +0 02 11 Dunér 6, Dembowski 5	
$1870\ 46\ 171\ 6\ 172\ 6\ 0\ 89\ 0.90\ -1\ 0\ -0\ 01\ 9-7\ $ Dembowski 7-5, Dunér 2	j
1871 50 174.0 174 9 0 98 0 96 - 0 9 + 0 02 13-11 Dembowski 7-5, Gledhill 1, Dui	nér 5
1872 48 176 2 177 1 1 05 0 02 -0 9 +0 03 15-12 W & S 1, Kn 1, Dem 8-5, Fer	
1873 47 177 9 179 0 1 11 1 06 -1 1 +0 05 7-5 W & S 1, Dembowski 5-3, Gled	dhill 1
1874 46   180 9   180 8   1 12   1 11   +0 1   +0 01   6   W & S 1, Dembowski 5	
1875 50   181 1   182 4   1 12   1 15   -1 3   -0 03   15   Dembowski 5, Schiaparelli 5, W	& S 1, Dunér 4
$ 1876\ 51 184\ 0 184\ 0 1\ 11\  1\ 19 \pm 0\ 0 -0\ 08 18-15 $ Howe 1, Dem 6, Hl 3, Sch 4, Pl	
1877 47 184 3 185.4 1 24   1 22   -1 1   +0 02   23-21   Dk.2-1, Dem 5, Upton 1, W & S 1,	Howe 4-1, Sch 9,
$ 187850 1861 1868 126 124 -07 +002 11-10 $ Dem 5-4, Sch 6 [ $\beta$	
187953 1886 1882 123 126 +04 =003 29=27  Howe 5, Stone 3, Egbert 3, Hi 3	3, Sch 7, Pr. 2,
1880 54 189 3 189 6 1 15   1 27   -0 3   -0 12 15 -14   Egbert 2, Dk 4-2, Frisby 1, Sci	h 6, Pr 3
1881 32 191 0 190 3 1 12   1 28 + 0 7 - 0 16   3-2   Doberck 1, Bigourdan 2-1	,
1882 46 192 5 192 1 1 24   1 28 + 0 4 - 0 04   12   Doberck 1, Hall 3, Schiaparelli 8	5, Frisby 3
$ 188350 1934 1934 126 129 \pm00 -003 25-24 $ Frisby 4, Hl 2, Kü 1-0; En 3, I	Per 3, Sch 12
$ 1884\ 49 195\ 3 194\ 7 1\ 35\  1\ 28 +0\ 6 +0\ 07 25-24 \ H\ C\ W\ 4-3,\ En\ 3,\ Hl\ 5;\ Per\ 3$	3, Pr 1, Sch 9
1885 55   197 1   196 0   1 36   1 27   +1 1   +0 09   13   Schiaparelli 8, Englemann 5	「Sch 3
188651 1980 1974 123 125 +06 -002 21-20  HC W 1, Per 2, Sm 2-1, Tar 3	3, Hall 3, En 7,
1887 54 199 6 198 8 1 16   1 23   +0 8   -0 07   9   Schiaparelli	, ,
1888 54 201 0 200 3 1 11   1 21 + 0 7 - 0 10   11   Leavenworth 2; Hall 2, Schiapa	rellı 7
1889 43 197 5 201 6 1 20  1 18 —4 1 +0 02  2   Hodges	
$ 1890\ 39 205\ 2 203\ 1 $ — $ 1\ 15 +2\ 1 $ — $ 2\  $ Glasenapp	
1891 47 208 7 204 9 1 27  1 11 +3 8 +0 16  1-2   Collins 0-2, See 1-0	
$[1892\ 55 207\ 3 206\ 8 1\ 02\  1\ 07 +0\ 5 -0\ 05 $ 7   Maw 3, Comstock 4	
$ 189351 2103 2087 102 103 +16 -001 10 \beta2$ , Schiaparelli 1; Leavenwort	h 2, Bigourdan 5
$ 1894\ 59 207\ 5 210\ 9 1\ 0\pm  0\ 99  = 3\ 4 +0\ 01 \ 2-1 \  $ Glasenapp 2-1	•
$ 1895 \ 42 213 \ 3 212 \ 8 0 \ 93 \  0 \ 95  + 0 \ 5  - 0 \ 02  \ 4-6 \   See \ 1-3$ , Comstock 3	

The following ephemeris will be useful to observers

	$oldsymbol{ heta}_{oldsymbol{\iota}}$	$ ho_c$		$oldsymbol{ heta}_{\epsilon}$	$ ho_c$
	•	<i>II</i>		•	#
$1896\ 50$	$216\ 3$	0 88	$1899\ 50$	$225\ 6$	0.74
1897 50	$219\ 3$	0 84	$1900 \ 50$	$229\ 6$	0 70
1898 50	$222\ 4$	0.79			

The motion will be rather slow for a good many years, but as the object becomes closer, about 1910, it will deserve the most careful attention

# $\sigma$ CORONAE BOREALIS = $\Sigma 2032$ .

 $\alpha = 16^{\rm h}~11^{\rm m}~,~\delta = +34^{\rm o}~7'$  6, yellow , 7, blush

Discovered by Sir William Herschel, August 7, 1780

#### OBSERVATIONS

$oldsymbol{t}$	$oldsymbol{ heta}_o$	Po	n	Observers	t	$\theta_o$	$\rho_o$	$\boldsymbol{n}$	Observers
1781 79	$347^{\circ}5$		1	Herschel	1836 47	$138^{\circ}5$		5-0	$\mathbf{Madler}$
1802 59	348 6?		1	Herschel	1836 59	134 7	1 43	6	Struve
1804 74	11 4		1	He1 schel	1837 47	1368	_	1	Dawes
			1		$1837\ 55$	1399	142	5	Struve
1819 62	48 0	_	-	Struve	1838 45	143 4	1 48	7	Struve
1821 30	65~2	_	_	Herschel	1839 52	147 8	1 55	_	Galle
1822 83	715	1 44	2-1	H & So	1839 53	144 3	1 60	1	Dawes
1823 47	729		_	Herschel	1840 57	1478	1 66	3	Dawes
1825 44	77 5	<b>1 4</b> 8	6–3	South	<b>184</b> 0 63	$149 \ 3$	1 54	4	O Struve
1040 44					1840 68	$145\ 2$	1 53	1	Struve
1827 02	89 3	1 31	4	Struve	1841 48	<b>1</b> 50 3	1 66	3	Dawes
1828 50	92 1		6	Herschel	1841 56	1488	1 57	_	Kaisei
1830 11	104 9	1 22	3	Struve	1841 56	$152\ 3$	1 60	7	Mädleı
1830 28	105 1	1 22	9–5	Herschel	1841 60	1537	1 56	1	O Struve
1831 36	108 8	1 38	3–2	Herschel	1842 31	156 4	1 81	4	Madler
1991 90	100 0	1 90	3-4	Trenscher	1842 37	153 3		1	Dawes
$1832\ 52$	113 6	1 07	6-1	$\mathbf{Herschel}$	1842 73	$157\ 5$	1 86	4	$\mathbf{M}$ adler
$1832\ 55$	$115 \ 4$	_	3	$\mathbf{Dawes}$	1843 45	1568	1 85	6	Madler
1833 26	120 0	1 29	3-2	Herschel	1843 47	156 5	177	1	Dawes
1833 36	120 6	1 30	4	Dawes	1843 68	156 3	166	_	Kaiser
1834 55	125 6	_	3	Dawes	1844 40	160 6	2 05	4	Madler
1835 40	134 9	13±	4-1	Madler	1844 44	157 2	1 53	1	Greenwich
1835 50	130 5	131	5	Struve	1845 51	163 1	2 03	20-19	Madler

				0.1	,				0.7
$oldsymbol{t}$	$\theta_o$	$\rho_o$	n	Observers	t	$\theta_o$	Po "	n	Observers
$1846\ 32$	162~8	_	-	$\mathbf{H}$ $\mathbf{n}$ $\mathbf{d}$	1856 39	$182\ 8$	252	1	Winnecke
$1846\ 36$	$162\ 4$	$2\ 25$		Jacob	1856 42	181 9	2 68	6	Dembowski
1846 46	$165 \ 1$	2 07	11	Mädler	1856 43	182 4	2 45	2	Secchi
1846 68	168 3	1 76	2	O Struve	1856 57	1799	2 46	4	O Struve
1847 44	166 6	2 16	14	Mädler	1856 73	181 2	252	3	Jacob
1847 44	166 0	1 88	2	Dawes	1857 39	$183 \ 3$	246	<b>2</b>	Madleı
1847 69	169 6	1 69	1	O Struve	1857 61	1836	243	2	Secchi
1847 70	166 7	1 33	1	Mitchell	1857 66	183 1	253	3	Jacob
					1857 66	1800	252	<b>2</b>	Dembowski
1848.41	$168 \ 4$	239	2-1	$\mathbf{M}\mathbf{a}\mathbf{d}\mathbf{l}\mathbf{e}\mathbf{r}$					
$1848\ 42$	171 9	$2 \; 2$	1	$_{G}^{W}$ $_{P}^{C}$ Bond	1858 01	181 9	2 51	5	O Struve
$1848\ 53$	$168\ 6$	199	3	$\mathbf{Dawes}$	1858 20	184 0	2 57	3	Jacob
184874	1708	1 91	1 .	O Struve	1858 50	1847	2 69	6	Dembowski
1849 45	170 1	2 09	1	Dawes	1858 54	183 6	264	7	Mädler
1849 74	170.1 $172.3$	1 96	3	O Struve	1859 34	184 9	270	20 obs	Morton
1049 14	1120	1 90	J	Obutave	1859 49	1858	2 69	8-6	Mädler
$1850\ 52$	$168 \ 9$	199	3	O Struve	1859 94	186 1	2 62	4	O Struve
1850 70	1730	223	2	Mädler					
4084.00	4 = 4 4	0.00	40.1	721 / 3	1860 36	1855	271	<b>2</b>	Dawes
1851 22	174 4	2 32		s Fletcher	1861 55	188 4	2 95	5–3	Mädler
1851 25	1745	2 34	6	Madler	1861 58	187 4	$\frac{2}{69}$	5–5	O Struve
1851 42	173 8	2 26	1	Dawes	1001 00	1014	209	Ð	O Struve
1851 63	173 4	2 06	6	O Struve	1862 71	190 5	3 01	6	Mädler
1851 76	176 2	2 43	9	Mädler	1862 76	189 1	2.77	2	O Struve
1852 31	176 4	2 38	24-38	bsMiller	1862 79	189.3	287	1	Scheumann
1852.60	177.5	2.39	12-11	Mädler	1000.00	1001	0.70	4.4	<b>7</b> 0 1 1
1852 63	1733	206	4	O Struve	1863.60 1863.60	$1901 \\ 1882$	2 76	14	Dembowski
					1803.00	188 2	277	4	O Struve
$1853 \ 14$	177 9	2 18	2	Jacob	1864 45	190 5	3 09	2	Englemann
1853 38	177 7	2 46	6	Mädler	1864 95	<b>191 2</b>	279	12	Dembowski
1853 63	177 9	2 39	4-3	Dawes				_	
1853 64		2 56	1	Argelander	1865 36	191 9	2 94	3	O Struve
1853 64		2 47	1	W Struve	1865 38	1915	3 08	1	Dawes
1853 66	175 6	2 17	4	O Struve	1865 64	1943	293	4	Englemann
1853 77	178 7	2 65	2	Madler	1865 72	189.1		1	Leyton Obs
1854 05	177 9	2 25	3	Jacob	1865 74	1925	303	1	v Fuss
1854 56	178 5	226	3	Dawes	1865 81	192 3	2 98	4	Secchi
1854 66	179 0	224	2	O Struve	1866 31	190 5	282	1	Englemann
1854 67	178 6	222		s Morton	1866 42	189 2	3 73	$\mathbf{\hat{z}}$	Leyton Obs
1854 67	179 8	2 36	5	Dembowski	1866 49	1896		2	Wagner
1854 70	179 4	251	5	Mädler	1866 49	191 3		<b>2</b>	Gyldén
			•		1866 49	$192\ 3$		<b>2</b>	Smysloff
1855  19	1799	239	3	Dembowskı	1866 49	$193\ 2$		2	Kortazzi
$1855 \ 48$	180 1	2 43	1	Dawes	1866 55	1946	3 23	3	Winlock
185554	181 6	2 49	6–5	Winnecke	1866 59	193.5	3.22	3–2	Searle
1855 61	180 8	231	, 4	Secchi	1866 63	1930	3 00	6`	O Struve
1855 61	179 1	2 29	4	O Struve	1866 68	1939	286	_	Kasser
1855 78	181 8	2 64	$2\!\!-\!\!1$	Mädler	1866 92	$193\ 2$	288	11	Dembowskı

u a

t	θο	$ ho_o$	n	Observers	t	$\theta_o$	ρο	$\boldsymbol{n}$	Obseivers
1867 30	$190^{\circ}2$	$3^{''}\!15$	1	Searle	1877 46	$202^{\circ}2$	$3^{''}68$	_	W & S
1867 31	1950	295	1	Winlock	1877 49	200 1	3 49	7	Schiaparelli
1867 34	1947	30		Knott	1877 53	201 6	3 61	5	Jedrzejewicz
1867 37	192 1	30	1	Main	1877 58	200 1	3 50	3	O Struve
1867 72	195 5	279	1	Dunér					
2001 12	1000	2.0	-	Dunor	1878 39	$202\ 3$	$3\ 51$	2-1	${f Burnham}$
186829	1938	362	1	Leyton Obs	1878 50	2020	3 51	5	$\mathbf{Dembowski}$
1868 58	1947	2 98	<b>2</b>	O Struve	1878 51	201 1	$3\ 39$	3-2	$\mathbf{Dobeick}$
1868 60	1947	3 14	4	$\mathbf{Dun\acute{e}r}$	1878 53	$201\ 2$	353	6	Schiaparelli
1868 61	$195 \ 5$	_	<b>2</b>	Zollner	1878 57	$199 \ 1$	352	3	O Struve
1868 88	$195\ 3$	299	9	Dembowski	1879 45	202 5	3 66	4	Hall
					1879 54	202 <b>3</b>	3 68		
$1869\ 57$	$195\ 2$	3 60	1	Leyton Obs	10/9 54	<i>202</i> 1	<i>5</i> 00	6	Schiaparelli
186963	$195 \ 1$	3 05	5	Dunér	1880 39	2030	3 61	1	Burnham
1870 56	196 6	3 18	1	Dunér	1880 55	2034	3 71	9	Schiaparelli
1870 97	1968	3 10	$\overline{12}$	Dembowski	1001.05	000.0	0.04	_	<del>-</del>
1010 31	130 0	910	12	Democ war	1881 05	200 6	3 94	5	Hough
1871 41	1979	323	2-3	C S Peirce	1881 46	203 0	3 64	3	Hall
$1871 \ 42$	1967	3 30	_	Leyton Obs	1881 70	204 3	3 56	6	Seabroke
1871 54	$195\ 4$	323	_	Knott	1882 43	$202 \ 6$	3 75	4	Hall
1871 61	1965	314	3	Dunér	1882 51	2038	3 79	6	Schiaparelli
1872 29	198 0	3 34		Towton Oba	1882 52	204 1	3 90	3	O Struve
1872 57		3 26	- 3	Leyton Obs	1882 65	204 9		1	Seabroke
	1953			O Struve	1882 71	2057	3 92	4	Jedrzejewicz
1872 96	198 1	3 20	12	$\mathbf{Dembowski}$					-
$1873 \ 42$	1984	3 14	-	W & S	1883 26	205 4	3 77	6	Englemann
187355	200 6	364	1	Leyton Obs	1883 47	204 5	3 77	3	Hall
1873 56	$197\ 6$	3 14	2	O Struve	1883 49	203 2	3 79	4	Penotin
1873 68	198 9	34	_	Gledhill	1883 56	204 6	3 74	12	Schiaparelli
187354	197 3		1	$\mathbf{Muller}$	1883 63	2060	3 99	<b>2</b>	$_{ m Jedizejewicz}$
1873 54	201 6		1	H Bruns	1884 48	2060	3 80	3	Hall
1873 57	199 6		1	H Struve	1884 53	205 8	3 86	3	Perrotin
					1884 53	2024	3 63	$\mathbf{\hat{2}}$	O Struve
1874 44	200 5	3 55	1	Main	1884 54	2054	3 76	11	Schiaparelli
1874 46	199 2	2 67	2	Leyton Obs	1				
1874 61	199 8	3 41	4	O Struve	1885 43	2054	3 88	4	deBall
1874 90	199 1	3 28	11	$\mathbf{Dembowski}$	1885 43	$205 \ 7$	389	3	$\mathbf{Hall}$
1875 42	1998	2 56	1	Leyton Obs	1885 54	$204 \ 9$	394	2	${f Perrotin}$
1875 46	198 6	3 34	4	Schiaparelli	1885 55	205  8	3 86	9	Schiaparelli
1875 50	200 6	3 47	_	W & S	1885 66	206  8	3 93	3	${f Jedizejewicz}$
1875 54	199 6	3 28	5	Dunér	1885 74	$207 \ 3$	409	6	Englemann
1875 65	200 6	3 74	_	Nobile	1886 47	205 6	3 99	5	Periotin
		0.2			1886 48	206 9	3 96	6	Hall
$1876\ 29$	$199\ 3$			Doberck	1886 49	208 0	4 01	4	
$1876\ 45$	200 0	3 50	3	$\mathbf{Hall}$	1000 49	2000	4 01	4	Tarrant
$1876 \ 48$	200 6	328	_	Gledhill	1887 44	$205 \ 5$	3 99	4	Hall
1876 61	$196\ 3$	3 34	3	O Struve	1887 53	207  1	3 78	7	Schiaparelli
1876 61	200 7	3 45	1	Leyton Obs	1000 44	9000	9.40		_
1877 03	201 0	3 40	11	Dembowski	1888 44	206 6	3 92	4	Hall
1877 33	199 6	3 <del>4</del> 0		Doberck	1888 57	207 4	3 92	8-7	Schiaparelli
TO11 00	799 0	0 00	-	TODGLCK	1888 62	207 8	382	3	$\mathbf{Maw}$





t	$\theta o$	$\rho_o$	n	Observers	t	$\theta$ _o	$\rho_o$	$\boldsymbol{n}$	Observers
1889 14	$20\r{0}7$	${f 4}^{''}08$	2	O Struve	1893 55	$20\overset{\circ}{9}3$	$4^{''}28$	4	Bigoui dan
1889 52	208 3	4 05	<b>2</b>	Glasenapp	1893 64	2098	$4 \; 24$	2	Maw
$1889\ 52$	208 8	394	1	Schiaparelli	1894 56	209 8	4 09	2	Glasenapp
1890 33	207 8	4 08	3	Burnham	1895 49	210 8	4 28	3	Comstock
1890 69	207 3	4 00	1	Bigourdan	1895 54	210 7	4 16	10	Schiaparelli
1891 49	208.5		1	Schiaparelli	1895 59	210 3	4 23	2	Collins
1892 61	209 9	4 06	3	Comstock	1895 59	2099	425	4	Schwarzschild
1892 64	$209 \ 4$	4 05	2	Schiaparelli	1895 72	208 9	4 26	3	See
1892 64	209 3	4 21	1	Bigouidan					

Since Herschel's discovery of this star the companion has described an arc* of 223°. The shape of this arc is such that it fixes the apparent ellipse with considerable precision, and enables us to obtain a set of elements which will never be radically changed. It is singular, however, that the periods heretofore obtained for this star are very discordant, and in several instances more than double that found below. Such extraordinary divergence of results may be explained by the lack of sufficient curvature in the arc swept over by the companion at the time the earlier elements were derived, and by the use of injudicious methods in the determination of the orbit

In this as in most other cases the graphical method based on both angles and distances is superior to analytical methods, and at once enables us to trace the apparent ellipse with the necessary precision. The following table gives a complete summary of the elements found by previous computers who have worked on the motion of this interesting binary.

P	T	е	a	ស	ı	λ	Authority	Source
286 60 608 45 478 04 736 88 195 12 240 0 420 24 843 2 845 86	1835 60 1826 60 1829 44 1826 48 1831 17 1829 7 1825 32 1828 91 1826 93	0 6112 0 6998 0 6406 0 7256 0 3088 0 3887 0 5899 0.7502 0 7515	3 68 3 92 3 90 5 194 2 72 2 94 2 385 6 001 5 885	138 0 25 12 0 5 21 05 1 95 3 13 20 73 6 72 18 35	41 25 29 48 38 93 25 65 46 78 45 1 40 87 29 67 31 37	64 63 96 73 69 4 101 95 96 88 65 9 89 3	Mädler Mädler, 1847 Hind, 1845 Jacob, 1855	AN, 2037

Making use of all the observations up to 1895 we find the following elements:

$$P = 3700 \text{ years}$$
  $Q = 30^{\circ} 5$   
 $T = 182180$   $i = 47^{\circ} 48$   
 $e = 0540$   $\lambda = 47^{\circ} 7$   
 $a = 3'' 8187$   $n = +9^{\circ} 7297$ 

^{*}Astronomische Nachrichten, 3339

## Apparent orbit

```
Length of major axis = 7'' 08

Length of minor axis = 4'' 71

Angle of major axis = 42^{\circ} 4

Angle of periastron = 66^{\circ} 9

Distance of star from centre = 1'' 735
```

There is of course some uncertainty attaching to a period of such great length, but careful consideration of all possible variations of the apparent ellipse convinces me that the value given above is not likely to be varied by more than 25 years, and a change of twice this amount is apparently impossible. The eccentricity is very well determined, and a change of  $\pm 0.04$  in the above value is not to be expected

The distance of the components of  $\sigma$  Coronae Borealis is now so great that the companion will move very slowly for the next two centuries. Therefore, so far as the orbit is concerned observations of the pair will be of small value, as very little improvement can be effected for a great many years, but it may still be worth while to secure careful measures of the system, with a view of establishing the regularity of the elliptical motion, and the absence of sensible disturbing influences. There are no irregularities in the measures heretofore secured which are not attributable to errors of observation. The table of computed and observed places shows an agreement which is extremely satisfactory.

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	$\theta_o$	$\theta_c$	$\rho_o$	$ ho_c$	$\theta_o$ — $\theta$	$\rho_0 - \rho_0$	n	Observers
1781 79	347 5	348 5		2 44	_ 1	0	1.	Heischel
1804 74	11 4	23 9			-12		1	Herschel
1819 62					-11		_	Struve
1821 30				1 50		0 —	<b>–</b>	Herschel
1822 83			1 44		+ 0	5 -0 0	2-1	Herschel and South
1823 47	72.0				_ 0		_	Herschel
1825 44	77 5	81 6	1 48	1 36	<b>—</b> 4	1 +01	6-3	South.
1827 02	80 9	88 6	1 31	1 33	$1 + \bar{0}$	7 -0 0	2 4	Struve
1828 50	921	95 3	_	1 31	_ 3	2 -	6	Herschel
1820 20	105 (	103 8	1 22	1 30	+ 1	2 - 00		Struve 3, Heischel 9-5
1991 26	108	100 1	1 38	1 30	$ \bar{c}$	3 +00	8 3-2	Herschel
1832 54	1114	5 111 7	1 07	1 30	+	8 - 02	3 9-1	Herschel 6-1, Dawes 3-0
1833 31	120	31187	1 30	1 31	1 + 1	6 -00	1 7-6	Herschel 3-2, Dawes 4
1834 58	1125	61243	1 00	1 34		3 —	3	Dawes
1835 50	1 30	5128 5	1 31	1 36	3 + 3	0 -0 0	3 5 5	Struve
1836 59	134	7 133 5	1 43	1 40	+	2  + 00		Struve
1837 5					3 +	$\frac{1}{3} = 0.0$		Dawes 1-0, Struve 5
1838 4				1 1	7 + 9	+0	1 7	Struve
1839 5	2116	0144.5			1 +	+00	6 2+	Galle — , Dawes 1
1840 6						9 + 0 0		Dawes 3, $O\Sigma$ 4, Struve 1
18/1 5	5 1 5 1	2151 5	1 60	1 6	ĭ _ i	$ \mathbf{z}  = 0$		Dawes 3, Kaiser —, Madlei 7, $O\Sigma$ 1
1849 4	7 155	7 154 1	1 8	1 6	$\tilde{6} + \tilde{6}$	16 + 01	7 9-8	Madler 4, Dawes 1-0, Madler 4
1042 4	LITUU	1 102 1	1 2 00		<u>~                                    </u>			

t	θο	$\theta_c$	ρο	ρο θ	— Ac	ρορο	n	Observers
	- 00		<del>-</del>		-			
1843 53	156 5	157 2	176	1 72 -		+0.04	8+	Dawes 1, Madler 6, Kaisei —
1844 45	$160\ 3$	159 9	1.87			+0.09	6+	Madler 4, Greenwich 1, Madler —
1846 45	164 6	164 7	2 02	1 90 -	01	+0.12	15+	Hind —, Jacob —, Madler 11, $O\Sigma$ 2
1847 57				196 -	01	+0 06	18–16	Madler 14, Dawes 2, OE 1, Mitchell 1
1848 52			2 12	2 01 +	09	+011	7-6	Madler 2-1, Bond 1, Dawes 3, $O\Sigma$ 1
1849 60				2 05 +			<b>4</b> 5	Dawes 1, $O\Sigma$ 3 $O\Sigma$ 3, Madler 2
1850 61 1851.46			$\begin{array}{c} 2\ 11 \\ 2\ 28 \end{array}$	$\begin{array}{c c} 2 & 14 & - \\ 2 & 19 & - \\ \end{array}$		-0.03 +0.09	24+	Flt 43 obs, Ma 6, Da 1, OΣ 6, Ma 9
1852 51	1757	176 2		$\frac{2}{2}\frac{19}{26}$ -			18+	Miller 24-38 obs , Madler 11 , $O\Sigma$ 4
1853,52			2 37	2 31 _	01	+0 06	18-17	Jacob 2, Ma 6, Dawes 4-3, OE 4, Ma 2
1854 55				$\frac{2}{2} \frac{37}{37} -$	$0.\overline{3}$	-0 06	20+	Ja 3, Da 3, $O\Sigma 2$ , Mo 20 obs, Mä 5, Dem 5
1855 53			$2\overline{42}$	$\begin{bmatrix} 2 & 37 \\ 2 & 43 \end{bmatrix}$	02	-0.01	20-18	Dem 3, Da 1, Winn 6-5, Sec 4, OΣ 4, Mä 2-1
1856 50			252	2 49 -	04	+0 03	16	Winn 1, Dem 6, Sec 2, $O\Sigma$ 4, Ja 3
1857 58			2 49	2 55  –	0.8	-0.06	9	Mädler 2, Secchi 2, Jacob 3, Dembowski 2
1858 31	183 5	184 2		2 60 -	07	0 00	21	OE 5, Jacob 3, Dembowski 6, Madler 7
1859 59			2 67				14-12+	Mo 20 obs, Madler 8-6, $O\Sigma$ 4
1860 36			271	$\frac{2}{2} \frac{71}{71} -$	. 11	0 00	2	Dawes
1861 57						+0.05	10 <u>–</u> 8 8	Madler 5-3; $O\Sigma$ 5
1862 73			$\begin{array}{c} 289 \\ 277 \end{array}$			+0.05	18	Madlei 6, $O\Sigma$ 2 Dembowski 14 $O\Sigma$ 4
1863 34 1864 70			$\frac{2}{2}$ 94	2 95	. 03	$\begin{bmatrix} -0.12 \\ -0.01 \end{bmatrix}$	14	Englemann 2, Dembowski 12
1865 72						-0.03	13	$O\Sigma$ 3, Da 1, En 4, Ley 1, Sec 4, Dem 4
1866 59			3 10	3 05 -	$0.\overline{1}$	+0 05		En 1, Ley 2, Wk 3, Si 3-2, $O\Sigma$ 6, Ka —
1867 41						-011	5+	Si 1, Wk 1, Kn -, Ma 1, Dunér 1
1868 59						+0.04	16	Ley 1, OΣ 2, Dunér 4, Dembowski 9
1869 60	195 2	2 195 1	3 05			-0.14		Ley 1-0, Dunér 5
1870 77			314			-0.12		Dunér 1, Dembowski 12
1871 49			3 22			-0.08		Pierce 2-3, Ley —, Knott —, Dunér 3
1872 63						-0.07		Ley $-$ , $O\Sigma$ 3 Dembowski 12 Ley 1, $O\Sigma$ 2, Gledhill $-$
1873.5						-0.05 $-0.21$		Main 0-1; Ley 2, $O\Sigma$ 4, Dembowski 11
1874.60 1875.53			3.23 3.36				12-10+	Ley 1-0, Sch 4, W &S -, Du 5, Nobile -
1876 47						-0.13		$Dk = $ , Hall 3, $Gl = $ , $O\Sigma$ 3, Ley 1
1877 40			3 54			-0.01		Dem 11, Dob $-$ , W &S $-$ , Sch 7, Jed 5, $O\Sigma$ 3
1878 50						-0.13		$\beta$ 2-1, Dem 5, Dk 3-2, Sch 6, $O\Sigma$ 3
1879 49	202 3	3 201 9	3 67			+0.03		Hall 4, Schiaparelli 6
1880 4			3 66			-0.03		$\beta$ 1, Schiaparelli 9
1881 4	202	3 203 1				-0.02		Hough 5, Hall 3, Seabroke 6
1882 5						+0.07		Hall 4, Sch 6, $O\Sigma$ 3, Sea 1-0 Jed 4
1883 4						+0.03		En 6; Hall 3, Per 4, Sch 12, Jed 2
1884 5				2 84	- 03	L - 0 08	19	Hall 3, Perrotin 3, $O\Sigma$ 2, Schiaparelli 11   de Ball 4, Hl 3, Per 2, Sch 9, Jed 3, En 6
1885 50 1886 48	200 (	205 4 205 0	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3 09 -	- 00	+0.04	27 15	Perrotin 5, Hall 6, Tanant 4
1887 48	3 206	3 206 S	3 80			2 - 0.08		Hall 4, Schiaparelli 7
1888 54				4 00 -	$-0^{2}$	-0.00	15-14	Hall 4, Schiaparelli 8-7, Maw 3
1889 3						-0.01		OΣ 2, Glasenapp 2, Schiaparelli 1
1890 5						-0.03		β 3, Bigouidan 1
1891 4				4 11	0 (	)	1	Schiaparelli
1892 6	3 209	5 208 9	4 11			3 - 0.03	6	Comstock 3, Schiaparelli 2, Bigourdan 1
18936						2 + 0.09		Bigourdan 4, Maw 2
1894 5						-0.10		Glasenapp
1895 5	8 210	2 210 3	4 23	4 23 -	- 0:	1 0 00	18	Comstock 3, Schiaparelli 10, Collins 2, See 3

# ζ HERCULIS 22084.

a 16^h .17^m 6 ; 8 +31° 17' B, yellow , 6, blubdi.

Discovered by Sir William Herschel, July 18, 1782

### OBSERVATIONS.

Ł	Hu	$p_0$	11	Observers	1 1	$\theta_o$	$\rho_{a}$	n	Olmersern
1783 55	69.3	*		Herschel	1847 45	101 1	1 23	18 17	Madler
1826-63	23,1	0.91	.5	Strave	1817 53	1080	1.63	1	Dawes
		** **			1847 68	1113	1 12	2	O Store
1828 77	amplex		1	Strave	1818 10	98,8	1.08	3	Madler
1829 67	amplex		2	Strave	1848,61	1024	1.51	:3	Dawes
1831,65	-amplex		1	Strave	1848 76	1042	1.53	2	O Strave
	•				1849 48	99 2	Y 71	1	Dawes
1832 75	220,5	0.81	1	Strave				•	
1834 45	203 5	0.91	2	Strave	1850 00	96.9	1.50	3	O Strave
					1850 54	917	1 1 t	2	Fletcher
1835, 15	1969	1.00	ь	Strave	1850.55	913	1 27	3 1	Madler
1836 57	188 0		3	Madler	1851,23	84.9	1.29	3	Madler
1836.60	186.2	1 09	ħ	Strave	1851.51	89.3	1.3 £	6	Fletcher
1838,70	168.5	1 35	3 1	Galle	1851.62	88 1	1,47	5	O Strave
1000.11	100.0	1 . 24.3	43 1		1851,65	89,1		2	Miller
1839 67	159 7	1.15	1	W. Strave	1852,63	812	1.52	5	O Store
1839,76	161.9	1 22	1	Dawes	1852.63	82.8	1 21	87	Madler
1840.58	161.7	1.49	1	W. Strave	1852,61	810	1.21	5 2	Manier Fletcher
1840,66	107.1	1.45	5	O, Struve	1852,77	811	1,21	9	
1840,66	161.9	1.22	1	Dawes	1802.11	011		2	Miller
10 10,00	1 45 1 .37				1853,15	81.2	1.58	2	Juc di
1811.44	1 19.3	1.12	9.8	Madler	1853 33	78.6	1.10	6 3	Miller
1841.60	117.0	1.23	33	O, Strave	1853.39	77.3	1.23	8	Madler
1811 65	143.0	1.24	1 3	Dawes	1853.59	80,0	1.48	4	O. Strave
1842 40	141,6	0.92	3	Madler	1853.83	71.7	1.19	3	Madler
1812.58	138.5	1.07	3 1	Dawes	1854.06	78.0	1.52	3	Jacob
1842.64	146.0	1.21	3	O. Struve	1854.66	76.8	1.56	3	O. Strave
					1854 67	72.3	1,33	5	Madler
1843.60	130.5	0.90	8 7	Madler					
1843.64	129.9	1,30	3 2	Dawes	1855.05	69.6	1 ±	13	Demlowski
1843.71	130.0	0.94	98	Madler	1855.41	68.0	1 56	1 2	Winnecke
1841 29	124.0	1.05	54	Mikiler	1855 53	69.7	1.41	3	Seachi
1841.71	125.4	1.12	2	O. Strave	1855.62	70.8	1.55	4	O. Strava
				3.Fu 11	1855.66	73.3	1.45	4	Morton
1845.43		1.01	11	Madler	1856.25	66.2	1.60	3	Jacob
1845.64	121.3	1.24	3	(). Struve	1856 43	62.6	1.43	6-3	Winnecke
1846.54	111.5	1.18	16	Madler	1856.52	64.1	1.2	15	Dembowski
1846.69		1.31	2	O. Struve	1856.52	64.1	1.41	6	Seochi
		-	5	Dawes	1856.62	64.7	1.49	3	O Strave
1846.89	1122	t-milit	5	Dawes	1856.62	64.7	1.49	3	O Strave

	_					0			01
t	$\theta_o$	ρ _ο "	n	Observers	t	$ heta_o$	ρ _ο "	n	Observers
1857 38	60 0	107	4	Mädler	1870 49	$190\ 3$	1 10	11	Dembowskı
$1857\ 46$	60 <b>4</b>	1 60	2	Morton	1870 59	$193\ 6$	1 21	6	Dunér
185759	<b>59 5</b>	$1\ 29$	6	Secchi	1871 42	181 1	1 27	14	Dembowskı
1857 63	58 <b>4</b>	149	4	O Struve	1871 52	1796	1 34	1	O Struve
185775	<b>58</b> 9	12	5	Dembowskı	1871 54	183 3	1 02	5	Knott
1857 87	<b>57</b> 0	1 46	3	Jacob	1871 60	183 7	1 19	12	Dunér
1858 48	54 6	1 06	2	Secchi				40	D 1
1858 56	49 9	10	8	Dembowskı	1872 48	173 9	1 34	$\frac{12}{12}$	Dembowski
1858 62	<b>51</b> 0	1 48	4	O Struve	1872 58	177 2	1 19	3	Dunér O Struve
1858 65	48 6	1 20	8-7	Mädler	1872 60	168 8	1 14	3	O Strave
1050 10	40.0	440	•	7./Cv 31 a	187350	1659		1	$\mathbf{M}$ ädler
1859 49	40 3	1 13	6	Mädler Saaska	187350	$164 \ 7$		1	Romberg
1859 59	43 8	0 86	3 6–5	Secchi Dawes	$1873\ 52$	$169\ 5$		2	H Bruhns
1859 61	$\begin{array}{c} 45 \ 8 \\ 42 \ 3 \end{array}$	$egin{array}{c} 1 \ 34 \ 1 \ 29 \end{array}$	0−0 4	O Struve	$1873 \ 46$	1667	0 98	3-2	W & S
1859 63	42 3	1 29	4	O Struve	187352	$162\ 4$	139	11	Dembowskı
1860 67	31 5	0.72	3	Secchi	187352	1699	1 23	2	O Struve
186074	325	1 38	1	O Struve	187354	rotunda		1	Ferran
1861 44	20 0	08±	<b>2</b>	Mädlei	1873 70	166  3	1 40	4	Dunér
1861 57	171	1 05	4	O Struve	1874 53	<b>1</b> 57 0	1 36	10	Dembowski
		2 00			1874 57	155 5	0 78	<b>2</b>	Gledhill
$1862\ 54$	361 8	cuneo	8	Dembowskı	1874 57	$156\ 4$	1 08	2	W & S
$1862\ 55$		htbar	1	Winnecke	1874 62	$162 \ 9$	1 40	4	O Struve
186274	341	1 00	1	O Struve	1874 65	1549	1 35	1	Dunér
1862 91	50.9	0 82	2	Mädler	1874 66	156 5	122	2	Newcomb
1863 49	343.0	cuneo	4	Dembowski	1875 52	1491	1 41	8	Dembowski
1864.43		semplice	3	Dembowski	1875 55	147 2	1 21	7	Schiaparelli
		_			1875 57	1503		2	w & s
$1865\ 32$		semplice	2	Dembowskı	1875 61	147 4	1 28	12	Dunér
$1865\ 54$	rotunda		3	Secchi	1876 52	143 1	1 32	<b>2</b>	Hall
$1865\ 55$	<b>25</b> 0 0	<0 5	3	Englemann	1876 54	138 1	1 17	7	Schiaparelli
1866 45	2447	06	5	Dembowski	1876 56	139 6	1 37	7	Dembowski
1866 60	1423		1	Searle	1876 61	140 1	12±	1	Plummer
1866 70	235 1	0 86	3	Dawes	1876 62	148 8	1 24	4	O Struve
1866 74	2286	0 97	<b>2</b>	O Struve	1877 53	133 8	1 36	8	Dembowski
1866 81	229 2	0 83	2	Dawes	1877 58	130 3	127	8	Schiapai elli
1866 9 <b>9</b>	225.1	0 98	2	Dawes	1877 58	$\begin{array}{c} 1303 \\ 1412 \end{array}$	160	1	Pritchett
1007 50	225 6	0 80	7	Dembowskı	1877 58	135 1	1 16	3	O Struve
1867 52	$\begin{array}{c} 2256 \\ 2276 \end{array}$	0 00	1	Winlock	1877 59	134 0	124	2	Hall
1867 59 1867 72	$\begin{array}{c} 221\ 4 \end{array}$	1 03	$\mathbf{\hat{2}}$	Dunér Dunér					
					1878 41	127 0	1 51	1	Burnham
1868 44	210 1	0 94	6	Dembowskı	1878 53	124 0	1 43	4	Schiaparelli
1868 48	206 1	0 99	4	Knott	1878 53	1270	1 29	$^{2-1}$	Doberck Dombowsky
1868 58	203 6	1 23	2	O Struve	1878 58	126 7	1 38	7	Dembowski O Struve
1868 61	1999		1	Zollner	1878 59	128 7	1 23	3	
1868 67	213 3	1 05	5	Dunér	1879 45	$122 \ 0$	1 52	3	Burnham
1869 58	200 6	1 09	8	Dembowskı	1879 46	120 7	1 50	4	Hall
1869 62	2031	1 06	11	Dunér	1879 58	117 2	1 38	8	Schiaparelli
1869 74	196 1		1	Peirce	1879 67	1249	1 56	1	Pritchett

t	$\theta_{o}$	Po	$\boldsymbol{n}$	Observers	$oldsymbol{t}$	$\theta_o$	ρο	$\boldsymbol{n}$	Observers
1880 41	118 4	<b>1</b> 29	2-1	Doberck	1886 63	85 8	$1^{''}45$	9	Schiaparelli
1880 48	<b>115</b> 0		3	Bigouidan	1886 73	88 0	142	9-7	Jedrzejewicz
188049	114 1	134	5	Buinham	188675	89 9	1 78	7	Englemann
1880 58	$112 \ 5$	1 38	9	Schiaparelli	400=====			_	-
1881 23	1129	1 49	2	Dobosola	1887 55	83 6	1 59	6	Hall
		$egin{array}{c} 1 \ 43 \ 1 \ 53 \end{array}$	5	Dobeick Buinham	1887 65	794	1 55	18	Schiaparelli
1881 45	1106				1888 51	78 7	1 52	6	Hall
1881 51	109 2	1 41	4	Hough Hall	1888 57	743	1 88	3	Comstock
1881 51	1106	1 43	5		1888 61	76 5	1 56	9–8	Schiaparelli
1881 64	1018	1 41	2	O Struve	1888 65	749	1 71	3	Maw
1881 74	108 9	1 47	1	Bigouidan	1888 69	70 9	174	1	O Struve
1882 47	1050	1 48	2-1	H Struve	1000 05	103	7 1 7	_	Obudve
$1882\ 47$	104 3	1 67	2-1	Doberck	1889 45	<i>77</i> 0	1 00	1	Hodges
$1882\ 52$	1063	1 44	5	Hall	1889 52	726	1 67	3	Schiaparelli
$1882\ 52$	98.7	1 49	4	O Struve	1889 52	762	$12 \pm$	2-1	Glasenapp
1882 60	101 5	1 47	11	Schiaparelli	1889 53	72~4	149	6	Hall
1882 66	1049	1 48	4-3	Jedizejewicz	1889 56	720	1 67	4	Comstock
188276	<b>107</b> 0	1 75	6	Englemann	1889 66	702	1 73	3	Maw
1883 52	99 5	1 50	4	Perrotin	1890 42	68 6	15	2	Glasenapp
1883 55	102 4	1 51	5	Hall	1890 51	68 5	149	6	Hall
1883 60	96 6	1 52	15	Schiaparelli	1890 70	658	1 68	3	Maw
1883 65	96 <b>4</b>	1 38	2	O Struve	1890 77	642	1 46	5 <b>-4</b>	Schiaparelli
1883 72	1025	1 65	5	Englemann	105011	0 = 2	1 40	<b>0</b> —±	Somajanem
		- ••			1891 52	64.3	135	6	Hall
1884 45	94 9		2	Bigouidan	1891 54	604	145	7-4	See
$1884\ 52$	94 7	1 63	4	Hall	1891 55	633	1 50	2	Schiaparelli
1884 55	941	1 47	3	Penotin	1891 62	627	145	5	Bigourdan
1884 55	90 9	1 32	1	Pritchett	1891 63	601	140	3	Maw
1884 58	90 8	1 64	9	Schiaparelli	1891 64	637	1 38	4	Tailant
1884 68	88 4	1 57	2	O Struve	1000 55			_	~
1884 70	94 8	1 95	6–2	Seabroke	1892 57	55 5	1 51	5	Comstock
1884 71	98 8	1 89	3	Englemann	1892 63	56 0	1 37	8	Schiaparelli
188547	88 6	1 50	6	Periotin	1893 68	47 6	1 42	3-2	Schiaparelli
188552	894	1 70	4	Tarrant	1893 80	47 6	127	5	Bigouidan
188552	920	1 61	7	$\mathbf{Hall}$	100.84			_	
188562	86 3	1 57	5	Schiaparelli	1894 51	43 8	1 24	3	Bainaid
188564	$92\ 1$	159	4	Jedrzejewicz	1894 52	421	0 85	2	Glasenapp
188571	98 0	182	6-5	<b>Englemann</b>	1894 54	40 4	1 23	2	Lewis
188569	$90 \ 5$		3	Seabroke	1894 73	39 6	1 28	9–8	Collandreau
1886 54	888	1 50	6	Hall	1894 74	<b>37 4</b>	1 12	16–14	Bigourdan
1886 55	84 5	1 56	1	Perrotin	1895 32	36 7	1 17	3	Saa
1886 58	85 O	7 00	3	Seabroke	1895 57	30 2	100	ა 4	See
T000 99	00 U		J	DOWNTORE	Togoot	<i>0</i> 0 4	T 00	4	Comstock

SIR WILLIAM HERSCHEL made his first measure of this star, July 21, 1782, and found the position-angle to be 69°.3 *

In 1795 he again examined the object, and noted that the distance had

^{*} Astronomical Journal, 357

decreased, but that it was in the same quadrant as before; this appears, however, to be a mistake, as the companion at that time must have been in the opposite quadrant. It is remarkable that Herschel could not separate the companion in 1802, as the angle was then 174°5, and the distance 1".24.

Beginning with STRUVE's observation in 1826 the record is practically continuous, and we have measures for each year, except when the companion was so close as to be lost in the rays of the larger star

The periastron is so near the central star, on account of the considerable eccentricity and the position of the node, that the companion has never been seen in this part of the orbit. According to the elements found below, the minimum distance is about 0".45. Therefore, in spite of the comparative faintness of the companion, whose magnitude is 6.5, while that of the central star is 30, this object ought to be constantly within the reach of our great refractors. In previous revolutions, however, the star has been lost, and it will therefore be a matter of great interest to follow it during the next periastron passage in 1899. Good observations in this part of the orbit are needed, and the rare phenomenon which will be presented by  $\zeta$  Herculus about the end of this century will be worthy of the attention of observers with large telescopes.

Notwithstanding the three revolutions which have been completed since Herschel's discovery in 1782, our knowledge of the orbit of this pair has remained somewhat unsatisfactory; the elements heretofore obtained are by no means accordant. This divergency of results may be attributed partly to errors of observation incident to the inequality of the components, and partly to a sensible mistake in the old position-angle of Herschel, which ought to have been about 80°. Indeed, Herschel's observation does not seem to lay claim to much accuracy, for on August 30, 1782, he says. "Saw it better than I ever did,"—implying that on the previous occasions the companion was not very well defined. The following table gives the elements published by previous investigators:

P	T	e	a	Ω	i	λ	Authority	Source
31 4678 30 216 36 357 37 21 36 715 34 221 36 606 34 58	1829 50 1830 42 1830 481 1830 56 1830 237 1830 01 1829 635 1864 90	0 4545 0 432 0 4482 0 4381 0 4831 0 4239 0 5511 0 405	1 189 1 208 — 1 350 1 223 1 374 1 36	39 43 19 4 214 35 37 23 41.9 45 93 27 0 26 13	44 1 43 7 39 35 49 1 34 87 50 23 51 11	262 1 276 65 284 9 266 9 290 6 209 5 266 7 260 97	Madler, 1847 Villarceau Fletcher, 1853 Villarceau, 1854 Dunér, 1871 Plummer,1871 Flammarion, '74	Dorp Obs, IX, p 192 Fixt Syst, I, p 269 A N., vol XXVI, p 305 M.N, XIII, p 258 C R, XXXVIII, p 871 A N, 1868 M N, XXXI, 195 Catal Ét Doub., p 101
34.4 34 411	1864 8 1864 78	0 463 0 4666	1 284 1 345	41 73 44 1	43 23 44 53	$\begin{vmatrix} 252 & 75 \\ 251 & 8 \end{vmatrix}$	Doberck, 1880 Doberck	A N ,2332

After an examination of all the observations we formed mean positions for each year, and from these mean places deduced the following elements.

```
P = 35\,00 \text{ years} \Omega = 37^{\circ}5

T = 1864\,80 \iota = 51^{\circ}77

e = 0\,497 \lambda = 101^{\circ}7

a = 1''\,4321 n = -10^{\circ}2843
```

## Apparent orbit

```
Length of major axis = 2'' 492

Length of minor axis = 1'' 752

Angle of major axis = 43^{\circ} 1

Angle of periastron = 289^{\circ} 0

Distance of star from center = 0'' 455
```

The following table of computed and observed places shows that the elements give a good representation of the observations, and render it probable that the present orbit is very near the truth. There are some errors in the position-angles which appear to be systematic, and we have not been able to improve the representation, for whatever would improve the agreement in one place would injure it in another, or in the same place during the next revolution

ŧ

It will be seen that this orbit is slightly more eccentric than most of those heretofore deduced, but it is not probable that the eccentricity will prove to be too large. If any change should be required in this element, it is likely to increase rather than diminish the value given above. The eccentricity of the orbit of  $\zeta$  Herculis is near the mean value of this element among double stars.

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	$\theta_o$	$\theta_c$	ρο	ρο	$\theta_o$ — $\theta_c$	ρορο	n	Observers
1782 55	$6\overset{\circ}{9}3$	$80^{\circ}5$		1 51	$-11^{\circ}2$		1	Herschel
1795 80		2489		0 65			1	Herschel
1802 74	_	174 5		1 24			1	Herschel
1826 63					- 37	-0 09	5	Struve
1828 71						+011		Struve
1832 72					+ 45			Struve
1834 45	2035	201 5	0 91	1 14	+ 20	-0.23	2	Struve
1835 45	1969	191 6	1 09	1 20	+ 53	-0.11	5	Struve
1836 60	1862	1828	1 09	1 23	+ 34	-014	5	Struve
1838 70	168 5	167 5	1 35	1 24	+ 10	+0 11	3±	Galle
1839 76	1619	1599	1 22	1 25	+ 20	-0.03	4	Dawes
1840 66	157 1	153 7	1 25	1 25	+ 34	±0 00	5	O Struve
1841 56	1464	1472	1 24	1 25	- 08	-0.01	16-6	Madler 9-0, $O\Sigma$ 3, Dawes 4-3
1842 54	1420	140 3	1 14	1 26	+ 17	-0.12	9-4	Madle 3-0, Dawes 3-1, OΣ 3
1843 65	1301	132 1	1 30	1 28	_ 20	+0.02	20-2	Madler 8-0, Dawes 3-2, Madler 9-0
1844 50	1247	127 1	112	1 30	_ 24	-018	7-2	Madler 5-0, $O\Sigma$ 2
1845 64	1213	1193	124	132	+ 20	-0 08	3	O Struve
1846 79	1113	1121	1 31	1 35	- 08	-0 04	7–2	$O\Sigma$ 2, Dawes 5–0





t	$\theta_o$	$\theta_c$	ρο	$\rho_o$	$\theta_o - \theta_o$	$\rho_o - \rho_c$	n	Observers
				-"		"		07.0
1847 55	107 9	1074	1 43	1 38	+05	+0.05	21–20	Madler 18-17, Dawes 1, $O\Sigma$ 2
1848 59	1018	1014	152	1 41		+0.11	8–5	Madler 3-0, Dawes 3, $O\Sigma$ 2
1849 48	992	965	1 71	1 44	. 1	+0.27	1	Dawes
1850 36	933	917	1 39	1 46		-0.07	8–6	OS 3, Fletcher 2, Madler 3-1
1851 50	879	85 7	1 35	149		-0.14		Madler 3, Fletcher 6, OE 5, Miller 2-0
1852 67	838	798	$\mid$ 1 32 $\mid$	1 52		-0 20	1	OΣ 5, Mädler 8-7, Fletcher 5-2, Miller 2-0
1853 46	783	761	1 38	1 53		-0.15	1	Jacob 2, Miller 6-3, Ma 8, OY 4, Ma 3
1854 46	750	71 2	1 47	1 53		-0.06	11	Jacob 3, OE 3, Madler 5
1855 46		664	1 47	1 53		-0.06		Dem 13-0, Secchi 3, OΣ 4, Morton 4
1856 48		62 2	1 43	1 51		-0.08	27	Jacob 3, Dembowski 15, Secchi 6, $O\Sigma$ 3
1857 61	59.0	55 5	1 35	1 46	+35	-0.11	24	Ma 4, Mo 2, Sec 6, OE 4, Dem 5, Ja 3
1858 58		50 5	1 19	1 40		-0.21		Secchi 2, Dembowski 8, $O\Sigma$ 4, Madler 8-7
1859 58		441	1 25	1 30		-0.05		Madler 6, Secchi 3-0, Dawes 6-5, $O\Sigma$ 4
1860 70	1	36 5	1 05	1 16	-45	-0 11	4	Secchi 3, $O\Sigma$ 1 Madler 2, $O\Sigma$ 4
1861 50		28 5	0 93	1 02	-99	-0.09	6	Dembowski 8, $O\Sigma$ 1, Madler 2
1862 73		129	1 00	0.78	-17   -92	+0.22	9 <b>–1</b> 4	Dembowski O. D. I., Maddel 2
1863 49		352 2	cuneo	0 59	-66	-009	3	Englemann
1865 58		256 6	0 5 0 85	$\begin{array}{c c} 0 & 59 \\ 0 & 85 \end{array}$	+35	$\pm 0.00$	14	Dem 5, Dawes 3, $O\Sigma$ 2, Dawes 2, Dawes 2
1866 74		229 0	0 91	0 99	+63	-0.08	9	Dembowski 7. Dunér 2
1867 62 1868 54		$\begin{vmatrix} 217 & 2 \\ 207 & 7 \end{vmatrix}$	1 05	1 09	+06	-0.04	1 . 1	Dembowski 6, Knott 4, OS 2, Dunér 5
1869 6		198 2	1 08	1 16	+36	-0 08	1	Dembowski 8, Dunér 11
	1920	190 9	1 15	1 20	+11	-0.05	1	Dembowski 11. Dunéi 6
1871 5		183 5	1 21	1 23	-16	-0.02		Dembowski 14, O2 1, Knott 5, Dunér 12
1872 5			1 22	1 24	-27	-0 02		Dembowski 12, Duner 12, $O\Sigma$ 3
1873 6				1 24	-22	-0.02		Dembowski 11, OE 2, Dunér 4
	160 0	1	1	1 24	-11	+0.13	14-15	Dembowski 10, OΣ 4; Dunér 0-1
	6 148 5			1 25	-60	+0.05	29-27	Dem. 8; Sch 7, W. & S 2-0; Dunér 12
	6 141 0			1.25	<b>—76</b>	+0.05	10	Hall 2, Dembowski 7, Plummer 1
1877.5			1.40	1 26	-38	+014		Dembowski 8, Pritchett 1, Hall 2
1878.5	1 126.9	133.6	140	1 28	-67		10-13	β 1, Sch 4, Doberck 2-1, Dembowski 7
1879 5	1 122.5			1 30	-41	+0.17		β 3; Hall 4, Schiaparelli 0-8; Pritchett 1
	9 115 8			1 32	-48		10_15	Doberck 2-1, Big 3-0, β. 5, Sch 0-9
1881 4				1 35	-33	+0.10		Doberck 2, $\beta$ 5, Hough 4, Hall 5, Big 1
	0 105 6			1 38	<b>-16</b>		17-19	Dk 2-0, Hl 5, Sch 0-11, Jed 4-3, En 6-0 Per 4, Hall 5, Sch 0-15, En 5 [En 3-0]
1883 6				1 41	+02		14-29	Big 2-0, Hl 4, Per 3, Prit 1, Sch 9, Sea 6-0,
1884 5	- 1		. 1	1 44	-25		28-17	
1885 5	_			1 47	$\begin{vmatrix} -0.7 \\ +2.0 \end{vmatrix}$		29–22 35–32	
1886 6				1 50 1 52	+20 + 13	+0.04	1	Hall 6, Schiaparelli 18
1887 6		1	1	1 53			21-14	Hall 6, Comstock 3-0, Sch 9-8, Maw 3-0
1888 5 1889 5	-1 -			1 54			18-17	
1890 6				1 53			16-15	
1891.5			1	1 50	1		23-20	
1892 6				1 46		-0 02		Comstock 5, Schiaparelli 8
1893 7				1 37	1	-0 08		Schiaparelli 3-2, Bigourdan 5
1894 5						-0 1	. 1	
1895 3			1 17		1	-0 04		See
		1			<u> </u>	<del></del>		

The companion is worthy of regular attention in the part of the orbit now being described, but observation will become more urgent as the star approaches periastron in 1899. If good observations can be secured they will enable us to give the highest precision to the theory of the motion of this star; but if the measures in so delicate a case are affected by sensible systematic errors they

will prove to be of little value. The phenomena of the approaching appulse of  $\zeta$  Herculis will therefore be difficult to observe, and results of importance can only be obtained by skillful treatment. It is hardly necessary to add that this phenomenon will not again be witnessed for more than a third of a century.

It seems worthy of remark that STRUVE, who devoted so much attention to the colors of double stars, noted the color of the companion as reddish, while it is now distinctly bluish, and although a change of color does not seem probable, this has been suspected as well as variability

In order that astronomers may be able to compare the present theory with observations during the rapid motion of the companion in passing periastron, we give an epheneris for the next ten years

t	$ heta_c$	$\rho_c$	t	$ heta_c$	$\rho_c$
1896 50	$28^{\circ}5$	$1^{''}\!02$	1901 50	$233^{\circ}0$	0"80
1897 50	155	0 82	1902 50	$218 \ 4$	0 97
1898 50	351 9	0 56	1903 50	2078	1 09
1899 50	2897	0 47	1904 50	1989	1 16
1900 50	$258\ 4$	0 58	$1905\ 50$	191 0	1 20

# $\beta 416 = LACAILLE 7215.$

 $\alpha = 17^{h} 12^{m} 1$  ,  $\delta = -34^{\circ} 52^{\prime}$  64, yellowish , 78, yellowish

Discovered by Burnham in 1876

#### OBSERVATIONS

t	$\theta_o$	Po	$\boldsymbol{n}$	Observers	t	$\theta_o$	$\rho_o$	n	Observers
1876 52	240 ±	1"8±	1	Burnham	1891 53	$81^{\circ}2$	0 53	3–2	Burnham
1877 53	222 6	1 80	1	Cincinnati	1892 38	24 4	0 61	4-3	Buinham
1877 64	224.4	1 77	1	${f Russell}$	1894 57	330 8	0 94	7–2	Sellois
1888 72	147 5	1 88	1	Burnham	1894 63	3347	1 27	3	Barnard
1889 43	135 2	1 17	2–1	Burnham	1895 60	321 7	0 91	2–1	Comstock
1889 63	131 9	0.97	1	Pollock	1895 74	320 0	$130\pm$	1	See

Since the discovery of this rapid binary the companion has described an arc of 280°. The magnitudes of the components are 64 and 78 respectively, and as the pair is never closer than 0″58 the object is difficult only on account of its southern declination.* The period is surprisingly short for a system of

^{*}Astronomical Journal, 872





such considerable separation, and this circumstance lends decided probability to the view that the parallax is sensible Provisional elements for this system have been computed by Glasenapp, Gore and Burnham. Their results are as follows:

P	T	е	а	ಬ	ı	λ	Authority	Source
34 88 34 48 24 7	1891 85	0 556	2 13	139 4	567	278 2	Gore, 1893	Astron and Astroph, May, 1893 Monthly Notices, Maich, 1893 Publ Lick Obs, vol II, p 247

The observations which I secured recently at the Washburn Observatory have enabled me to redetermine the orbit. Using all available measures, we find the following elements of  $\beta$  416.

$$P = 330 \text{ years}$$
  $\Omega = 144^{\circ} 6$   
 $T = 189185$   $i = 37^{\circ} 35$   
 $e = 0512$   $\lambda = 86^{\circ} 1$   
 $a = 1'' 2212$   $n = -9^{\circ} 0908$ 

### Apparent orbit:

Length of major axis = 2'' 76Length of minor axis = 2'' 38Angle of major axis  $= 142^{\circ}.8$ Angle of periastron  $= 59^{\circ}.5$ Distance of star from centre = 0'' 61

#### COMPARISON OF COMPUTED WITH OBSERVED PLACES

The angular motion during the last three years has not been very rapid, and the constancy of areas shows that the distances have been somewhat undermeasured. It is now apparent that the period will be sensibly longer than Burnham supposed. The value found above is not likely to be in error by more than one year, while the correction of the eccentricity will hardly exceed  $\pm 0.03$ . Considering the small number of observations on which this orbit is based, the elements may be regarded as highly satisfactory. As this system is

194  $\Sigma 2173$ 

visible in the United States, it is worthy of particular attention from American observers.

The following ephemeris gives the place of the companion for five years

t	$\theta_c$	$\rho_c$	$oldsymbol{t}$	$oldsymbol{ heta}_c$	$ ho_c$
1896 50	310°6	$1^{''}43$	1899 50	$28\r{7}\r{7}$	$1^{''}\!69$
1897 50	$302 \ 1$	154	1900 50	$281\ 5$	172
1898 50	294.6	<b>162</b>			

 $\Sigma 2173$ .

 $\alpha = 17^{\rm h}~25^{\rm m}~3$  ,  $\delta = -0^{\circ}~59'$  6, yellow , 6, yellow

Discovered by William Strave in July, 1829

### OBSERVATIONS

t	$\theta_o$	٥	n	Observers	t	θο	Po	n	Observers
1829 56	$147^{\circ}2$	$0^{''}62$	2	Struve	1851 32	$334^{\circ}1$	$1^{''}27$	4	Mädler
1831 69	141 5	0 62	3	Struve	1851 74	335 6	1 18	2	Mädler
1836 69	single	_	4	Struve	1852 72	334 1	1 23	2	Mädler
1837 70	353	obl ?	1	Struve	1853 12	331 2	1 04	4	O Struve
1840 47	347 1	05±	1	Dawes	1854 66	330 5	1 37	3	Mädler
1840 64	358 8	0 61	3	O Struve	1856 53	$153 \ 2$	$09 \pm$	1	Winnecke
1841 36	352 3	0 67	6–2	Mädler	1856 53	329 1	1 ±	4	Dembowski
1841 61	352 2	0 67	3	O Struve	1856 53	$329 \ 8$	0 97	1	Secchi
1841 64	347 4	0 71	2–1	Dawes	1856 90	326 0	0 94	4	O Struve
1842 45	354 9	_	5	Kaiser	1857 43	326 9	0 88	1	Secchi
$1842\ 51$	3499	0 75	3	Madler	1858 56	$325 \ 9$	0 84	2	Secchi
$1842\ 67$	3433	$0.7 \pm$	3	Dawes	1858 61	328 3	0 88	4-2	Mädlei
1843 30	343 1	0 74	3	O Struve	1858 61	325 0	$0.25\pm$	1	Morton
$1843\ 50$	$346\ 2$	0 78	8–5	Mädleı	1859 33	$324\ 2$	071	3	O Struve
184354	$341 \ 2$	09±	6	Dawes	4004 8-			_	
$1843\ 65$	345 1	0 68	10-2	Kaiser	1861 57	324 0		3	Mädler
1844 36	345 0	08±	3	Madler	1861 63	315 2	0 48	1	O Struve
1845 55	342 1	0 97	1	Mädler	1864 45	160°	0 6?	<b>2</b>	Englemann
			1	madier	1864 53	sing	gle	1	Dembowskı
184646	3394	1 07	6-5	Mädler	1865 51	100.0		-	T
$1846\ 47$	336 1	0 85	5	O Struve	1999 91	182 2		1	Leyton Obs
1847 47	339 2	1 16	2	Madler	1866 32	$360 \ 7$	0 47	3	O Struve
					1866 43	181 3		1	Leyton Obs
1848 44	339 2	1 15	1	Mädler	1866 59	107 7		1	Winlock
1848 45	339 4	1 10	1	Dawes	1866 62	$139 \ 4$	1 60	5 -1	Searle
1848 58	340 4	1 23	1	$\mathbf{Mitchell}$	1866 69	167 7	-	1	Winlock

t	$\theta_o$	ρ٥	n	Observers	1 t	θο	Po	n	Observers
1867 79	174 5	0 68	1	Dunér	1881 74	0	ng?	1	Bigouidan
1868 18	161 3	0 65	3	O Struve	1882 57	109 9	_		<del>-</del>
1868 60	160 6	0 55 0 5±	$oldsymbol{2}$	Dembowski	1882 62	349 0	03	7	Schiaparelli
1868 66	169 3	0 68	3	Dunér Dunér	1002 02	949 U	oblong	1	O Struve
					1883 50	elong	$20^{\circ}\!\!-\!\!45^{\circ}$	4	Perrotin
1869 58	157 <b>1</b>	0 58	5–1	Dembowskı	1883.60	<b>1</b> 90 0	oblong	1	O Struve
1869 93	161 1	0 68	6	Dunéi	1883 60		ıgle	7	Schiaparelli
1870 35	<b>156 4</b>	$08\pm$	2	Gledhill	1883 88	<b>24</b> 8	0 22	9	Englemann
$1870 \ 45$	1568	0 81	<b>6–4</b>	Dembowski	1884 56	17 4	0 38	3-2	Periotin
1870 67	1597	0 80	4	Dunéi	1884 59	99 ?	_	1	Bıgourdan
1871 44	<b>155</b> 0	0 99	4–2	Dembowskı	1884 60		.gle	7	Schiaparelli
1871 64	156 5	087	6	Dunéi	1884 61	42.7?		3	Schraparelli
					1884 62	99	0.32	3	Hall
$1872\ 15$ $1872\ 55$	1557	089	5	O Struve	1885 66	21 9	0 30	8–6	Englemann
	$152\ 3$	0 95	5–3	Dembowskı	1000 55	050.0			-
1873 50	154 1	1 00	2	W & S	1886 55 1886 56	3566	0 56	3	Perrotin
1873 51	150 8	0 77	4–1	Dembowskı	1886 56	353 0	$0\ 41 \ 0\ 42$	$\frac{7}{3}$	Schiaparelli
1873 67	$152\ 6$	1 10	1	Dunéi	1886 64	365 6	0 30	8	Hall Englemann
1874 46	<b>15</b> 0 0	0 91	4–3	Dembowskı					Englemann
187457	151 1	0.99	2-1	Gledhill	1887 40	350 5	0 46	4	${f Tariant}$
1874 59	151 2	0 90	2-1	W & S	1887 56	348 5	0 53	7	Schiaparelli
1874.62	149 3	0 77	2	O Struve	1888 49	347 8	0.68	3	Leavenworth
1874 66	148 8	1 09	2	Newcomb	1888 55	344 4	0 53	3	Hall
1875 53	147 5	0.74	4	Dembowskı	1888 60	<b>346</b> 9	0 58	8	Schiaparelli
1875.57	146.5	0 83	7	Schiaparelli	1888 69	342 3	0 81	1	O Struve
1875 57	147.8	1 ±	1	W & S	1889 46	345 0	0 66	5	Tarrant
1875 67	1 <b>4</b> 8 7	0 90	5	Dunér	1889 63	$345\ 5$	0 70	7	Schiaparelli
$1876\ 52$	$149\ 3$	0 77	3	Hall	1890 26	341 5	ın cont	10	Gıacomellı
187655	1448	0 69	5	Dembowski	1890 49	340 9	08±	2	Glasenapp
1876 59	1438	0 83	4	Schiaparelli	1890 69	343 1	0 84	3	Maw
1876 65	144 0	0 61	2	O Struve	1890 71	334 6	0 76	2	Bigourdan
1876 66	149 9	_	4	$\mathbf{Doberck}$	1890 74	341 7	0 70	7–5	Schiaparelli
1877 49	141 6		2	Cincinnati	1891 51	340 1	0 97	3	Hall
1877 53	142 5	0 62	<b>5–4</b>	$\mathbf{Dembowski}$	1891 53	340 0	0 81	4	Schiaparelli
1877 59	141 4	0 65	2	O. Struve	1891 58	3397	0 93	3	Burnham
1877 59	142 0	0 72	8	Schiaparelli	1891 69	340 3	0 91	3	Bigourdan
1877 68	153 5	0 67	2	$\mathbf{Doberck}$	1892 54	341 8	0 90	4	Comstock
1878 40	$142\ 5$	0.52	1	Doberck	1892 61	339 1	1 10	1	Bigourdan
1878 48	$139 \ 4$	0 60	4	Dembowskı	1892 62	339 3	0 88	7	Schiaparelli
1879 22	137 0	0 69	7-3	Cincinnati	189272	340 7	0 91	3	Maw
187958	1360	$05\pm$	8	Schiaparelli	1893 68	338 0	1 08	3	Schiaparelli
187972	$152\;2$	$0.7\pm$	3	Seabroke	1893 87	340 6	1 11	3	H C Wilson
1880 47	131 3	0 36	1	Burnham	1894 55	336 8	1 15	2	Lewis
1880 65	133 9	04±	9	Schiaparelli	1894 74	159 9	$\begin{array}{c} 1.13 \\ 1.27 \end{array}$	1	Callandreau
1881 51	114 9	0 24	3	Burnham					
1881.52	121 5°	0 27?	1	Hall	1895 30	337 3	1 19	3 *	See
		O 201	-	TT0/11	1895 57	$337 \ 7$	1 13	3	Comstock

tanil, s

196  $\Sigma 2173$ 

When this interesting double star in the constellation Ophruchus was discovered by William Struve, the companion was measured on two nights,* and again observed in 1831, but in 1836 it had disappeared, so that under the best seeing the star appeared absolutely round Struve therefore suimsed (Mensurae Micrometricae, p 294) that this is a case of occultation similar to those of  $\gamma$  Coronae Borealis and  $\omega$  Leonis, "summa attentione digna". The companion came out on the opposite side in 1840, and was subsequently followed systematically by the best observers, so that at the present time a large amount of good material is available for the investigation of its orbit. The components are so nearly equal in brightness that the angles frequently require a correction of 180°, and for a time it remained uncertain whether the period would be 46 or 23 years. Prof Dunér was the first astronomer who attempted to investigate the orbit of this pair, using measures up to 1876, the illustrious Director of the Observatory of Upsala arrived at the following results:

```
P = 45 	ext{ 43 years} \Omega = 152^{\circ} 65

T = 1872 	ext{ 91} \iota = 80^{\circ} 53

e = 0 	ext{ 1349} \lambda = 7^{\circ} 	ext{ 26}

\alpha = 1'' 	ext{ 009}
```

From an investigation of all the observations, including the measures recently secured at the Leander McCormick Observatory in Virginia, we find the following elements of  $\Sigma 2173$ .

1

```
P = 460 \text{ years} \Omega = 153^{\circ} 7

T = 1869 50 i = 80^{\circ} 75

e = 0 20 \lambda = 322^{\circ} 2

a = 1'' 1428 n = -7^{\circ} 8261
```

### Apparent orbit

Length of major axis = 2'' 22Length of minor axis = 0'' 35Angle of major axis  $= 154^{\circ} 5$ Angle of periastron  $= 160^{\circ} 8$ Distance of star from centre = 0'' 18

The accompanying table of computed and observed places shows that these elements are very satisfactory.

^{*} Astronomische Nachrichten, 3811





COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	$\theta_o$	$\theta_c$	ρο	$\rho_c$	$\theta_o$ — $\theta_c$	ρορς	n	Observers
1829 56	147°2	148°5	0 67	0 84	$-\mathring{13}$	-0"17	2–1	Struve
1831 69	141 5	143 4	0 62	0 69	-19	-0.07	3	Struve
1840 64	358 8	358 0	0 55	0 47	+0.8	+0.08	3-4	
1841 48	352 3	352 5	0 67	0 59	-0.2	+0 08		$O\Sigma$ 3, Dawes 0-1
1842 54	349 3		0 72		$\frac{-02}{+05}$		9-5	Mädler $6-2$ , $O\Sigma$ 3
1843 57		3488		0 69	-0.2	+0 03	11-6	Kaiser 5-0, Madler 3, Dawes 3
1844 36	345 7	345 9	077	0,82	$\frac{-0.2}{+0.7}$	-005	18–16	Ma 8-5, Ka 10-2, $O\Sigma$ 0-3, Da 6
	345.0	344 3	08±	0 90		-0.10	3	Madler
1845.55	342 1	343 2	0 97	0 95	$-11 \\ -14$	+0.02	1	Madler
1846 46	339 4	340 8	1 07	1 06		+0.01	6-5	Madler
1847 47	339 2	339 6	116	1 14	-0.4	+002	$\frac{2}{2}$	Madler Madler 1 Demon 1 Matchell 1
1848 49	339.6	338 4	116	1 21	+12	+0.05	3	Mädler 1, Dawes 1; Mitchell 1
1851 74	335 6	335 0	1 22	1 29	+06	-007	2_6	Madler
1852 72	3341	334 3	1 23	1 28	-0.2	-0.05	2	Madler
1853 12	331 2	333 9	1 04	1 27	-27	-0.23	4	O Struve
1854 66	330 5	332 7	1 37	124	-22	+0.13	3	Mädler
1856 65	328 3	330 2	0 97	1 10	-19	-0.13	9	Dem 4, Se 1, $O\Sigma$ 4
1857 43	326 9	$329\ 3$	0.88	1 04	-24	-0.16	_1	Secchi
1858 59	$326 \ 4$	327.5	086	0 93	-11	-0.07	7-4	Se 2, Ma 4-2, Mo 1-0
1859 33	$324\ 2$	326 1	0.71	0.85	-19	-0.14	3	O Struve
1861 60	$319 \ 6$	3197	0 48	0 57	<b>-01</b>	-009	4-1	Madler 3-0, $O\Sigma$ 1
1866 32	180 7	1848	047	0 28	-41	+0.19	3	O Struve
1867 79	1745	168 3	0 68	0 51	+62	+0.17	1	Dunér
1868 48	1638	1645	0 61	0 59	-0.7	+0.02	8	$O\Sigma$ 3, Dembowski 2, Dunér 3
1869 76	159 1	1600	0 63	0 75	-0.9	-012	11–7	Dembowski 5-1, Dunér 6
1870 56	1583	158 1	0.80	0 83	+02	_0 03	10-8	Dembowski 6-4, Dunér 4
1871 54	155 8	155,9	0 93	0 89	<b>-01</b>		10-8	Dembowski 4-2, Dunér 6
1872 35	1540	154 4	0 92	0 92	-04	0 00	10-8	$O\Sigma.5$ ; Dembowski 5–3
1873 56	152.5	152 2	089	0 92	+03	003	7-3	W & S 2, Dem 4-1, Du 1-0
1874 56	150.4	150 4	0 89	0 89	00	0.00	10-7	Dem 4-3, Gl 2-1, W & S 2-1, O $\Sigma$ 2
1875.58	1476	148 4	0 82	084	-0.8	-0 02	17–16	Dem 4, Sch. 7, W &S 1-0, Du 5
1876 58	146 9	146 2	076	0.78	+07	-002	16-12	Hl 3, Dem 5, Sch 4, Dk 4-0
1877 57	144 4	143 7	0.67	0 70	+0.7	-0.03	17-14	Cin 2-0, $Dem 5-4$ , $Sch 8$ , $Dk 2$
1878 48	139 4	140 6	0 56	0 61	-12	-0.05	5	Doberck 1, Dembowski 4
1879 40	136 5	136 4	0 59	0.52	+01	+0.07	15–11	Cincinnati 7–3, Schiaparelli 8
1880 56	$132\ 6$	128 0	0 38	0 40	+46	-0.02	10	β 1, Schiaparelli 9
1881 51	114 9	114 9	0.24	0 29	0.0	-0.05	3	Burnham
1882 61	91 6	90 5	02	0.21	+11	-001	1	Schiaparelli
1883 69	<b>4</b> 5 0	48 9	0 22	0 20	-39	+0.02	4-9	Perrotin 4-0, Englemann 0-9
1884 59	23 3	21 8	0 31	0 27	+15	+0.04	9–8	Perrotin 3-2, Sch 3, Hall 3
1885 66	21 9	5 2	0 30	0 37	+167	-007	8–6	Englemann
1886 58	357.6	358 0	0.42	0 47	-04	005	21	Per 3, Sch 7, Hall 3, En 8
1887 48	349.5	352 7	0 50	0 59	-32	-009	11	Tarrant 4, Schiaparelli 7
1888 55	346 3	348 1	0 60	072	-18	-012	14	Lv 3, Hall 3, Schiaparelli 8
1889 63	345 5	3458	070	0 82	-03	-012	7	Schiaparelli [Big 0-2; Sch 7-5]
1890 58	3418	3438	0 78	0.92	<b>_2</b> 0	-014	24-12	Gia 10-0, Glasenapp 2, Maw 3,
1891 58	340 0	3421	0 91	101	-21	-010	13	Hall 3, Sch 4, β 3, Big 3
1892 62	340 2	340 6	0 95	1 09	-04	-014	15	Com 4, Big 1, Sch 7, Maw 3
1893 77	339 3	338 9	1 09	1 19	+04	-010	6	Schiaparelli 3, H C W 3
1894 55	336 8	338 3	1.15	1 22	<b>—15</b>	-007	2	Lewis
1895 30	337 3	337 9	1 22	1 24	-0.6	-002	3-1	See
	,	1 0	<del></del> _		<del>'                                    </del>	·	<u> </u>	

Owing to the high inclination of the orbit, it is clear that a small error in angle would very sensibly alter the apparent radius vector of the companion, and for this reason good measures of distance are more trustworthy than

angles. Therefore, while the present orbit is based on both coordinates, unusual weight has been given to the observed distances

The residuals in angle are very small, except in the case of Englemann's measure of 1885, when the components were so close as to lender all observations with a small telescope very uncertain. It should be remarked that the position for 1882 is based on a measure which was rejected by Schiaparelli on account of its discordance, but as the other six measures by that distinguished astronomer give

$$\theta_o = 109^{\circ} 9$$
  $\rho_o = 0'' 30$ ,

which cannot well be reconciled with the theory of the star's motion, it appears probable that the single outstanding observation is nearer the truth, and it is therefore adopted in the above table.

The most remarkable characteristic of  $\Sigma 2173$  is the relatively small eccentricity of its orbit. Although this element is not so well defined as might be desired, yet the value given above seems to be fairly indicated by the best observations, and is not likely to need any large correction. Good measures of distance about the time of maximum elongation, in 1898 and 1899, would fix the eccentricity more accurately, and accordingly for the next five years this system will deserve the particular attention of astronomers

# $\mu^1$ HERCULIS BC = $\Lambda$ .C. 7.

 $\alpha=17^h~42^m~6$  ,  $\delta=+27^\circ~47^\prime$  94, blush white , 10, blush

Discovered by Alvan Clark in July, 1856

#### OBSERVATIONS

t	$\theta_o$	ρ,	n	Observers	t	$\theta_o$	$\rho_o$	n	Obseivers
1857 47	63±	<u>"</u>	1	Dawes	1865 43	80°5	1 ["] 84	2-1	Knott
1857 50	<b>5</b> 9 3	182	<b>2</b>	Dawes	1865 44	82 0	127	5	Dembowski
1857 85	71 7	1 74	1	Secchi	1866 59	86 3	_	1	Winlock
1859 70	<b>60 4</b>	205	3	Dawes	1866 56	863		1	Searle
1860 30	67 7	1 64	1	O Struve	1866 68	89 5	1 10	2	O Struve
1862 83	78 5	1 50	1	O Struve	1867 58	97 9	_	3	Searle
1864 43	77 6	1 81	1	Dawes	1867 59	93 0		1	Winlock
1864 49	67.5	<b>1</b> 70	1	Englemann	1868 50	977	0 88	1	O Struve
1864 76	788	1.76	1	Winnecke	1868 61	1064		1	Winlock

11 117

11 Car 1 /5

t	$ heta_o$	ρο	n	Observers	t	$\theta_o$	ρo	n	Observers
1869 73	$130^{\circ}9$	<u>"</u>	1	Winlock	1883 53	$262^{\circ}1$	$0^{''}\!74$	3	Burnham
1869 73	111 7	<del></del>	2	Peirce	1883 57	$261 \ 1$	084	3	Hough
2000 10					1883 58	262 9	0 66	3	Hall
1871 51	$100 \pm$	$0.6 \pm$	2	$\mathbf{W}$ & $\mathbf{S}$	1883 58	261 4	0 86	<b>2</b>	Frisby
1871 52	156 8	0 62	1	O Struve	1883 63	2748		5	Schiaparelli
					1883 96	80 6	0 62	8-6	Englemann
$1873\ 50$	$180 \ 5$		1	Romberg	1000,00	000		• •	
$1873 \ 50$	1745		1	H Bruns	1884 64	$273\ 4$	0.65	3	$\mathbf{Hall}$
$1873\ 50$	$175\ 4$		1	$\mathbf{M}\ddot{\mathbf{u}}$ ller	1884 68	$272\ 7$	0 77	1	O Struve
<b>1873.5</b> 0	$185\ 5$	0 63	1	O Struve					
1873 50	$90 \pm$	$0.6 \pm$	1	$\mathbf{W}$ & $\mathbf{S}$	1885.51	268 1	1 15	2_1	Holetschek
1873 67	semplice		1	Dembowskı	1885 56	2880	0 61	3	Hall
					1885 62	$245 \ 2$		<b>2</b>	$\mathbf{Smith}$
1874 48	202 4	0 76	4-2	Newcomb	1000.00	302 1	0 39	5	Hall
1874.65	100 5	$04\pm$	2	Gledhill	1886 60	302 I	0 59	5	LIMII
1875 58	215 2		6	Schiaparelli	1887 54	318 3	0 49	6–5	Schiaparelli
1875 69	$\begin{array}{c} 215\ 2\\ 225\ 9 \end{array}$		1	Newcomb	1887 58	321 5	0.42	3	Hall
1875 69	$\begin{array}{c} 220\ 5 \\ 220\ 6 \end{array}$	1 18	5–3	Hall					
1875 70	$\begin{array}{c} 2200 \\ 2176 \end{array}$	110	<i>5</i> –5	Holden	1888 47	330 7	0.45	3–2	Tarrant
191910	211 0	_	Τ.	TIOMON	1888 62	3431	0.43	11-9	Schiaparelli
1876 59	$223 \ 4$	0 72	4	Hall	1888 63	$341 \ 4$	0.39	4	$_{ m Hall}$
1876 60	$228 \ 7$	1 01	4	O Struve	1000 #4				- ·
1876 68	216 0	0 83	4	Dembowski	1889 51	357 9	0.55	4	Burnham
					1889 58	354 4	0 58	3	Schiaparelli
$1877 \ 47$	<b>2</b> 36 0		1	Seabroke	1889 65	06	0.34	4	Hall
187756	234 3	1 1,0	2	O Struve	1890.38	94	0.66	4	Burnham
1877 59	2279	08?	5	Schiaparelli	1890.55	13.2	0.50	4	Hall
1877.59	232.8	0 85	2	Hall	1890 78	15.2 15 0	0 57	3	Schiaparelli
1877.62	229 9	0.92	4	Dembowskı	1090 10	100	0 01	J	Contaparent
40-0 15	004.0		•	m 1	1891 55	21 4	06	2	Schiaparelli
1878 45	234 9	1 05	6	Burnham	1891 57	24.8	0.54	4	Hall
1878 50	233 8	0 88	2	Hall	1891 60	$23 \ 6$	0 90	3	Bigourdan
1878 6 <b>4</b>	<b>2</b> 38 2	1 17	1	O Struve					J
1879 45	242 7	0 90	5	Burnham	1892 58	291	0 83	4	Comstock
1879 55	239 5	0 97	3	Hall	1892 62	303	0 87	5-4	Schiaparelli
1879.75	234 8	0 01	11	Seabroke	1892 63	30 5	0 90	1	Bigourdan
1019.10	<b>20±</b> 0		J. J.	DCabloico	1892 65	31 6	0.84	4	Hall
1880 46	230 2	0 7?	5	Schiaparelli					
1880 47	2459	0 96	7	Burnham	1893 62	<b>3</b> 6 0	0 90	1	Bigourdan
1880 65	246 3	1 00	4	Hall	1894 43	41 1	119	7	Barnard
1880 78	$246\ 5$	1 18	3	Frisby	1894 46	38 0	0.95	4	Hough
				•	1894 54	38 7	1 17	3	Stone
1881 41	$252 \ 1$	0.92	5	Burnham	1894 77	416	1 16	3	Comstock
1881 52	$254\ 2$	0 87	3	${f Hough}$	1094 11	41 0	1 10	ð	Comstock
$1881\ 55$	$249 \ 1$	1 01	5	Hall	1895 34	41 2	0 86	1	See
4000 80	0504	0.70		Tr. II					
1882 52	259 1	0 70	4	Hall	1895 54	44 0	13?	2–1	Schiaparelli
1882 53			1	H Struve	1895 60	44 4	116	$\overset{3}{\bullet}_2$	Comstock
1882 53	261 7	0 90	3	Hough	1895 73	437	1 13		See
1882 56		1 03	3	O Struve	1895 73	43 4	1 34	1	See
1882 60	266 8		7	Schiaparelli	1895 73	44 8	1 10	2–1	$\mathbf{Moulton}$

144 4712

In July, 1856, Alvan Clark discovered that the bluish companion of  $\mu$  Herculis =  $\Sigma$  2220 is a close double star; he estimated the magnitudes of the component to be 10 and 11. The object was first measured by Dawes who predicted the binary character of the system; by repeating his observations in 1859 and 1864, he was able to announce a decided orbital motion. The object has since received considerable attention from the best observers, and the material now available for an orbit is sufficient to define the elements in a very satisfactory manner. Owing to the faintness and difficulty of the pair, the measures must be carefully combined in order to get a satisfactory set of mean places, the distances of some observers are notably too small, and hence they are omitted in forming the yearly means. Most of the early observations of Dawes seem to be affected by sensible errors, and hence we give his work in full.

t	θ.	ρ,	
1857 472	58 97	$1^{''}853$	
$1857\ 562$	60 08	$1.75 \pm$	
1859 650	58 91	$2\ 304$	distance indifferent
1859 691	<b>5</b> 9 <b>5</b> 1	$1\;422$	observation very poor
1859 757	62~02	2 040	difficult in distance
1864 431	77 59	1 806	undoubtedly binary

While measuring the wide pair in 1857, he observed that "the stars B and C certainly point rather to the north of  $\mu$ ." He gives the angle of  $\mu$  Herculis relative to BC as 242°2, and hence we gather that the angle of the pair BC must have been at least 63°.0 Since the allineation of the two faint stars with  $\mu$  Herculis would probably be more exact than even micrometer settings, it seems certain that most of Dawes' measured angles are too small; we have therefore chosen certain nights only in making up the means, and have selected the distances with some regard to the subsequent motion of the star. This selection of Dawes' material is necessary in order to represent satisfactorily the whole series of observations by an orbit based on both angles and distances. The following list gives the elements published by previous computers:

	P	T	е	a	Ω	ı	λ	Authori	•	Source
- 1	+48 65	1877 13 1880 142 1839 585 1880 43	0 14853	1 2807	63 38	65 18	182 05	Celoria.	1890	AN, 2287 PubASP, p46 AN, 2949 AJ, No324



である。 は、 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19 mm 19	に 一個 一個 一個 一個 一個 一個 一個 一個 一個 一個 一個 一個 一個	11年 人名英格兰 医多种性 人名 持衛 建筑 建筑 医外外的		
さいことによっていることには、これのからまないないのではないできないできないできないできない。	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	一日 一班等 新衛子 等工物的 非幸喜不	一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	
こうからない しょうしん はんしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうしゅうし	一年 かかかかい 一島の 八野山町 後一郎	一十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二		
子のことは、ひとは中国のとことないはませんとはなるのでは、大きないいの	一一时间以及了一年 一年	The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th		
				f   P
です。 サイス・スターのグライン 分替には、中国によっているのです。これでは、大学では、「大学ではないです」、「大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大	一日 一下川の野山の東山の東京、大学には、大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大学の大			,
このない こうしょうしゅう こうしゅうしゅ しゅうしゅうしゅう はんしゅう ないしゅう はんしょうしょう しょうかい かいかい かんしゅうしょう しゅうしゅう かんしゅう かんしゅう かんしゅう かんしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう しゅうしゅう	こうとうことをいているとのできるとのできるというというできるというというというというというというというというというというというというというと		1	1
	から 一年 あいちものかっていた まれいし			
· · · · · · · · · · · · · · · · · · ·	年 1 1111年 新川川衛大学等		1 1 1	1
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			i i	
《宋·月》中,《宋·月》中,《宋·日》中,《日》中,《宋·日》中,《宋·日》中,《宋·日》中,《宋·日》中,《宋·日》中,《宋·日》中,《宋·日》中,《宋·日》中,《宋·日》中,《宋·日》中,《宋·日》	The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		, ,	, ,
《 医生物学的 经连接收益 医小性 医甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	η ^λ . n.		11	
· 特別 · 是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	1,79 1,79		1	
	Mark.			ı
	id Fi	1114	ı	ř ₁
	1	1 7		
	il.	` f	**	7,1
	4	y		,
				r r
				1
	1	ı		1
The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		1		i i
				af r
				f
				,
				,
				4
				j
				2
				1
				ı
				1
				*
T Try N				
1 F				
1 1 7				
		•		
The control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the co	T T			

We find the following elements of  $\mu^1$  Herculis BC.

Apparent orbit.

では、大学を表現で、人人

```
P = 45 \text{ 0 years} \Omega = 61^{\circ} 4
T = 1879 \text{ 80} \iota = 64^{\circ} 28
\iota = 0 219 \iota = 180^{\circ} 0
\iota = 1'' 390 \iota = +8^{\circ} 0

Length of major axis
Length of minor axis
Angle of major axis = 2'' 78
= 1'' 148
Angle of periastron = 241^{\circ} 4
```

The period here given can hardly be in error by more than one year, while the uncertainty of the eccentricity probably does not surpass  $\pm 0.02$ . The elements are therefore well defined, and may indeed be regarded as extraordinarily good for an object of such difficulty.

Distance of star from centre = 0" 304

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	$\theta_c$	ρο	ρο	$\theta_o - \theta_c$	ρορο	n	Observers
1857 47	63 0	618		1 69	$+1^{\circ}2$		1	Dawes
1857 56	60 1	62 0	175±	1 69	-19	+0 06	1	Dawes
1859 70	62 0	66 9	1 73	165	-4.9	+0.08	1–2	Dawes
1860 30	67 7	684	1.64	163	-07	+0 01	1	O Struve
1862 83	78 5	753	1 50	1 46	+32	+0 04	1	O. Struve
1864 56	78 2	811	1 76	1 30	_29	+046	2-3	Dawes 1, Englemann 0-1, Winn. 1
1865.44	81.3	84.9	1 55	1 20	-36	+0.35	7-6	Knott 2-1, Dembowski 5
1866.68	895	91.2	110	105	-17	+0.05	2	O Struve
1867 58	954	972		0.94	-18		4	Searle 3, Winlock 1
1868 56	102 0	105 1	0.88	0.82	-31	+0.06	2–1	O Struve 1, Winlock 1-0
1869 73	121 3	118 0		0 69	+3,3		3	Winlock 1, Peirce 2
1871 52	1568	$148 \ 5$	0.62	0 57	+83	$\pm 0.05$	1	O Struve
1873 50	185 5	$182\ 3$	0 63	0 60	+32	+0.03	1	O Struve
1874 48	2024	$200 \ 5$	0 76	070	+19	+0.06	4_2	Newcomb
1875 66	2178	2136	1 18	0 82	+42	+0.36	12-3	Sch. 6-0, Hall 5-3, Holden 1
1876 62	2197	$221\ 6$	0 85	0 92	_19	-0.07	8-12	
1877 59	231 0	$228 \ 4$	0 96	100	+26	-0.04	13–8	$O\Sigma$ 2, Sch 5-0, Hall 2, Dem 4
1878 50	235 6	2340	1 11	1 06	+16	+0.05	8-7	$\beta$ 6, Hall 2-0, $O\Sigma$ 0-1
1879 50	239 0	239 7	0 94	1 08	_07	-0.14	19–8	β 5, Hall 3, Seabroke 11-0
1880 63	246 2	245 9	1 05	1 07	+03	-0.02	14	β 7, Hall 4, Frisby 3
1881 49	250 6	251 0	0 97	1 03	-04	-0.06	10	β 5, Hall 5
1882 55	261 2	258 0	0 97	0 96	+32		18–6	$H$ l 4–0, $H\Sigma$ 1–0, $H$ o 3, $O\Sigma$ 3, $S$ ch 7–0
1883 64	2645	266 5	0 80	0 85	-2.0	-0.05	16-8	$\beta 3$ , Ho 3, Hl 3–0, Frisby 2, Sch 5–0
1884 65	2730	276 6	0 77	0 74	-36	+0.03	4–1	Hall 3-0, $O\Sigma$ 1
1885 56	288 0	288 5	0 88	0 65	-05	$\pm 0.23$	5-4	Holetschek 2-1, Hall 3
1886 60	$\mid 3021 \mid$	305 5	0 39	0 58	-34	-0.19	5	Hall
1887 56	3199	324 4	0 49	0 55	-45	-0.06	9–5	Schiaparelli 6-5, Hall 3-0
1888 57	3423	343 8	0 44	0 58	-15		15-11	Tarrant 0-2, Sch 11-9, Hall 4-0
1889 58	359 3	07	0 57	0 66	-14	-0.09	8-7	β. 4, Schiaparelli 0-3, Hall 4-0
1890 57	125	120	0 62	0 75	+05		117	β 4, Hall 4-0, Schiaparelli 3
1891 57	23 3	22.5	0 90	0 87	+08	+0.03	9-3	Schiaparelli 2-0, Hall 4-0, Big 3
1892 62	304	$29 \ 9$	0 89	100	+0.5		14-5	Com 4-0, Sch 5-4, Big 1, Hall 4-0
1893.62	36 0	354	0 90	1 12	+06	-0.22	1	Bigourdan
1894 55	39 9	39 7	1 17	1 23	+02		17–13	
1895 55	433	43 5	1 34	1 33	-02	+0.01	9–1	See 1-0, Sch 2-0, Com 3-0, See 2-0,

We remark the star is now wider than most observers have indicated by their recent measures. The distance for 1895 is based upon two nights' work, one of the observations being taken by Schiaparelli, the other by the writer at Madison and accidentally omitted in *Astronomical Journal*, No 359. This observation is.

1895 732 43° 2 1" 34 1n See

The images are noted as "good but faint" There is no doubt that the distance is now at least 1".3, and it will increase for some years. Observers should follow this system carefully. The following is an ephemenis

$oldsymbol{t}$	$\theta_c$	$\rho_c$	t	$\theta_c$	ρ _c
1896 60	<b>47</b> 0	$1^{''}\!43$	1899 60	55 [°] 1	1 63
1897 60	49 9	1 51	1900 60	57 5	1 67
1898 60	52.6	1 58			

## $\tau$ OPIIIUCIII = $\Sigma 2262$ .

 $\alpha=17^{\rm h}~57^{\rm m}~6~~,~~\delta=-8^{\rm o}~11^{\prime}$  5, yellowish , 6, yellowish

Discovered by Sir William Herschel, April 28, 1783

### OBSERVATIONS

t	$\theta_o$	ρο	n	Observers	l t	$\theta_o$	Po	n	Observers
1783 34	331 [°] 6	elong	1	Herschel	1843 11	$224{}^{\circ}6$	0"80	_	Kaisei
1802 74	360±	elong	1	Herschel	1843 54	$228 \ 8$	0 80	11	Madler
1002 14	300 T	етопВ	1	TIGISCHEL	1843 61	2290	$0.95 \pm$	<b>2</b>	Dawes
1804 44	$360 \pm$	elong	1	Herschel	10	000.0	A ==	_	20.21
1825 71	176 0	cuneata	1	Struve	1844 34	2298	0 79	2	Mädler
					1844 74	2187	0 79	1	Challis
1827 28	<b>146</b> 0	oblonga	1	Struve	1845 65	$232 \ 4$	0 87	1	O Struve
1835 68	1929	0 35	6–2	Struve				_	
1000.00	400.0		_	<b>~</b> .	1846 22	$239 \ 5$	1 00	_	$\mathbf{J}$ acob
1836 62	199 9	0 44	5	Struve	1846 51	$229\ 4$	0 78	8	$\mathbf{M}$ itchell
1837 70	200 8	0 35	1	Stiuve	1846 69	230 7	0 97	2	O Struve
1840 51	223 1	0 94	1	O Struve	1847 82	233 9	0 97	1	O Struve
1840 68	$221\ 5$	0 88	4–1	Dawes	1848 10	229 7	1 18	2	70/7-4-117
1841 53	217 3	0 75	8	Mädler	1848 66			1	Mitchell
1841 60	228 1	0 13	3–2	O Struve	1040 00	$232 \ 7$	1 01	Т	Dawes
1841 66	$\frac{225}{225}$ 7	0 79	5-2 5-1	Dawes	1850 77	234 0	10	21	Jacob
TOTI OO	220 1	018	0-1	Dawos	1 2000 11	2010	<b>.</b> •		0 2000
$1842\ 57$	$225\ 6$	0 77	5	${f M\ddot{a}}{f dler}$	1851 66	$239 \ 4$	10	_	Fletcher
184264	<b>226</b> 9		1	Dawes	1851 67	$238\ 2$	1 19	1	O Struve

t	θο	Po	n	Observers	t	θο	Po	n	Observers
1852 65	$239^{\circ}5$	<b>1</b> ″10	2	Jacob	1870 04	$24\r{7} 3$	$1^{''}43$	8	Dembowski
1852 65	2397	1 23	2	O Struve	1870 71	$250 \ 7$	1 26	1	Dunér
1852 66	238 6	1 27	4–3	Madleı	1871 66 `	251 0	1 31	2	Dunér
185379	238 3	1 17	4	$\mathbf{Madler}$	1872 01	247 8	1 55	8	Dembowski
$1854\ 67$	2380	$1\;22$	1	Dawes	1872 58	248 1	1 69	1	O. Struve
185470	236 1	1 20	1	O Struve	1070 54	0400	0.10	4	
185474	$238\ 2$	1 09	3	Madleı	1873 54	248 9	2 12	1	Leyton Obs
1855 49	238 1	1 30	3	Dembowskı	1874 08	$248\ 5$	1 60	•8	$\mathbf{Dembowski}$
185555	<b>2</b> 36 9	127	<b>2</b>	Secchi	1874 57	250 7	1 48	1	Leyton Obs
$1855\ 67$	<b>240 4</b>	1 31	2	O Struve	1874 67	<b>251 1</b>	1 63	1	O Struve
1856 24	240 7	1 20	4	Secchi	1875 61	248 9	1 61	8	Schiaparelli
1856 58	$240 \ 5$	1 20	6	$\mathbf{Dembowski}$	1876 02	249 3	1 67	10	Dembowskı
1856 62	2426	129	1	$\mathbf{W}_{\mathtt{innecke}}$	1876 60	247 6	1 73	3	Schiaparelli
1857 55	239 6	126	3	Secchi	1876 62	250 4	2 05	1	Stone
1857 63	$241 \ 4$	1 20	4	Dembowski	1876 64	251 1	172	3	Hall
1857 67	$240 \ 2$	1 44	<b>2</b>	O Struve	1876 67	248 2	178	1	Waldo
1858 20	243 6	1 41		Jacob	1876 70	2465	1 58	1	O Struve
1858 52	240.0 $241.8$	1 20	6	Dembowski	1877 55	249 0	1 53		
1858 64	2407	1 33	3	Madler	1877 61	$2490 \\ 2505$		4. 8	Hall
1858 71	240 9	1 47	1	O Struve	1877 66	230 S 248 6	$190 \\ 164$	8 7	Cincinnati
1859 63	2427	1 64	1	O Struve					Schiaparelli
					1878 02	250 4	172	8	Dembowski
1860 77	2458	1.30	1	Secchi	1878 52	254.1	1 69	2	Doberck
1861 60	244.4	1 29	3	Mädler	1879 35	2479	1 63	2	Burnham
1861 63	242.9	1 43	1	O Struve	1879 41	250 1	1 78	26-25	Cincinnati
1863 05	<b>244</b> 6	1 40	13	Dembowskı	1879 72	<b>250 3</b>	174	5	Schiaparelli
1863 57	$246 \ 5$	1 20	4	Knott	1880 07	249.7	1 78	3	Cincinnati
1864 47	247 8	1 92	2	Englemann	1880 65	251 6	1 80	6	Schiaparelli
			2	-	1880 66	$251\ 1$	164	2	$\mathbf{Hall}$
1865 52	249 4	1 40	_	Kaiser	1880 67	$252\;2$	189	3	Jedrzejewicz
1865 60	243 1	1 23	1–2	Leyton Obs	1881 55	251 3	1 71	3	Hall
1865 72	244 1	1 51	1	O Struve	1881 79	$252\ 7$	1 67	2	Smith
1865 89	245 9	1 42	13	Dembowskı	1882 49	<b>252</b> 0	2.05	3	H C Wilson
1866 43	<b>246</b> 3	1 66	3-2	Leyton Obs	1882 54	253 3	173	3	Hall
1866 58	247 5	2 48	3–2	$\mathbf{Winlock}$	1882 60	252 <b>1</b>	186	7	Schiaparelli
1866 59	247 7	1 65	2–3	Searle	1882 62	250 8	2 13	1	O Struve
1866 62	243 3	1 75	1	O Struve					
186672	247 6	1 60	2	Secchi	1883 38	254.5	184	9	Englemann
$1867\ 56$	$251\ 5$	249	$2\!-\!1$	Winlock	1883 51 1883 53	$252\ 1$ $253\ 0$	166	3	Perrotin
1867 98	2460	143	9	Dembowski	1883 55	2538	2 37	2-1	H C Wilson
1868 57	2476	1 29	3	C S Peirce	1883 58	253.6 $253.4$	1 60 1 78	1 5	Seabroke Hall
1868 58	2464		1	Leyton Obs	1883 61	253.4 $252.0$	1 83	6	nan Schiaparelli
1868 61	249 5	1 44	1	Winlock	1883.66	254.8	179	3	Jedrzejewicz
1869 56	248 4		1	Leyton Obs	1884 41	253 5	194	1	•
1869.64	248 2	1 41	6	Dunér	1884 60	$\begin{array}{c} 2535 \\ 2530 \end{array}$	182	3	H C Wilson Hall
1869 73	245 0	1 41	1	C S Peirce	1884 78	251.6	1.74	6	nan Schiaparelli
			_		, 200±10	~01.0	A, 1 TE	U	Somabarem

· 自然的 "

$oldsymbol{t}$	$\theta_o$	ρο	n	Observers	ļ t	$\theta_{o}$	$ ho_o$	n	Observers
1885 48	$258^{\circ}1$	$1^{''}\!79$	3	Tarrant	1890 57	$254\ 6$	1 78	1	Hayn
1885 56	$253\ 5$	1 66	4	$\mathbf{Hall}$	1891 48	257 6	$20\pm$	1	See
$1885\ 57$	$251\ 2$	176	4	de Ball	1892 65	255 2	1 75	4	Schraparelli
188558	2560	201	5	${f Jedrzejewicz}$					Comstock
		4.00	-	771	1892 58	254 6	1 78	4	Comstock
$1886\ 22$	254 8	1 98	7	Englemann	1893 50	$254 \ 1$	1 81	3	$\mathbf{Maw}$
$1886\ 54$	254 0	1 67	4	Hall	1893 70	2547	183	1	Bigourdan
1886 62	$256\ 2$	1.85	6	Jedrzejewicz					•
1887 09	252 0	172	4	Schiaparelli	1894 59	$254\ 4$	188	<b>2</b>	$\mathbf{Glasenapp}$
			4	Hall	1894 77	254.7	1~64	3	$\mathbf{Comstock}$
1887 57	$252\ 5$	1 81	4	пац	1894 78	$253\ 2$	1 91	1	Bigouidan
1888 56	$253 \ 1$	1 70	5	$\mathbf{Hall}$	1895 56	256 1	1 78	3	Schiaparelli
1888 61	$254\ 4$	171	4	Schiaparelli	1895 58	$255\ 4$	1 98	2	Collins
1888 71	2552	180	3	Maw	1895 59	253 4	194	- 5	Schwarzschild
1889 57	255 6	2 23	2	Glasenapp	1895 72	254.7	186	4	See
	$253\ 5$	1 69	1	Schiaparelli	1895 72	257 8	190±	$\overline{2}$	Moulton
188968	<b>⊿</b> 05 0	T 09	1	pomaparem	109912	2010	T 00 T	2	TITOUTION

Since the discovery of this double star in 1783, the radius vector of the But while the length of the aic companion has swept over an arc of 285° would ordinarily be sufficient to fix the character of the orbit, it happens unfortunately in this case that the observations are neither very consistent nor very well distributed over the arc; and since by far the greater number of observed positions lie in the sixty degrees described since 1836, a satisfactory determination of the elements is embariassed by difficulties of a somewhat formidable character. But when we examine Hersonel's angle of 1783 in the light of his remarks, there seems to be every reason to regard it as fairly In his notes on the observation of  $\tau$  Ophiuchi, he says. "The closest of all my double stars can only be suspected with 460, but 932 confirms it to be a double star. It is wedge-formed with 460; with 932 one-half of the small star, if not three-quarters, seems to be behind the large star. The morning is so fine that I can hardly doubt the reality; but according to custom, I shall put it down as a phenomenon that may be a deception" If we depend on the approximate accuracy of Herschel's earliest measure, and deduce the areal velocity from the most recent observations, where both angles and distances can be relied upon, we are led to an orbit which will not differ greatly from the truth. The following orbits have been published by previous investigators:

P	<i>T</i>	е.	а	ß	ı	λ	Authority	Source
87 030 120 0 185 2 217 87	1824 8 1820 63	0 03746 0 575 0 5818 0 6055	0 8178  1 111 1 193	55° 5′ 130° 0 69° 31 67° 1	51 47 48 30 53 5 46 8	146 6 28 35	Hind, 1849	AN, 2037





We find the following elements of τ Ophiuchi:

```
P = 230 \text{ 0 years} \Omega = 76^{\circ} 4

T = 1815 \text{ 0} i = 57^{\circ} 6

e = 0592 \lambda = 18^{\circ} 05

a = 1'' 2495 n = +1^{\circ} 5652
```

## Apparent orbit:

Length of major axis = 2'' 46Length of minor axis = 1'' 09Angle of major axis  $= 80^{\circ} 0$ Angle of periastron  $= 85^{\circ} 8$ Distance of star from centre = 0'' 712

The accompanying table shows that this orbit gives a very satisfactory representation of both angles and distances.

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θε	ρο	ρι	θο-θι	ρορο	n	Observers
1783 34	331 6	313 7	elongated	0″75	+17 9		1	Heischel
1802 74	360 ±		elongated	0 49	-318		1	Herschel
1804 44	360 ±		elongated	0 51	-455		î	Herschel
1826 50	161 0	164 6	oblonga	0 37	- 36		$\bar{2}$	Struve
1835 68	192 9	211 2	0 35	0 61	-183	0 26	6-2	Struve
1836 62	199 9	2138	0 44	0 64	-139	<b>—0 20</b>	5	Struve
1837 70	200 8	216 6	0 35	0 68	-158	-0 33	1	Struve
1840 60	222 3	2223	0 91	0 78	± 00	+013	5-2	O Struve, Dawes 4-1
1841 60	223 7	224 2	0 80	0 82	<b>—</b> 05	-0.02	16-11	Mädler 8, $O\Sigma$ 3-2, Dawes 5-1
1842 60	226 2	225.7	0 77	0 84	+ 05	-0 07	6-5	Madler 5, Dawes 1-0
1843 41	227 5	227 0	0 85	0 88	+ 05	-0.03	12+	Kaiser —, Madler 11, Dawes 2
1844 54	2298	$228\ 3$	0 79	0 91	+ 15	-0.12	2-3	Madler 2, Challis 0-1
1845 65	232 4	2299	0 87	0 95	+ 25	-0.08	1	O Struve
1846 47	233 2	230 8	0 92	0 98	+ 24	-0.06	10+	Jacob —, Mitchell 8, $O\Sigma$ 2
1847 82	233 9	$232 \ 4$	0 97	1 02	+ 15	-0.05	1	O Struve
1848 66	2327	233 2	1 01	1 04	- 05	-0.03	1	Dawes
1850 77	234 0	235 2	1 00	1 10	- 12	-0.10	21obs	Jacob
1851 66	238 2	236 0	1 09	1 13	+ 22	-0.04	1+	Fletcher —, $O\Sigma$ 1
1852 65	239 3	236 8	1 20	1 16	+ 25	+0.04	8_7	Jacob 2, $O\Sigma$ 2, Madler 4-3
1853 79	238 3	237 6	1 17	1 19	+ 07	-0.02	4	Madler
1854 70	237 4	238 5	1 17	1 22	- 11	-0.05	5	Dawes 1, $O\Sigma$ 1, Madler 3
1855 57	238 5	239 1	1 28	1 24	- 06	+0.04	7	Dembowski 3, Secchi 2, $O\Sigma$ 2
1856 48	240 6	239 7	1 23	1 26	+ 09		11-10	
1857 62	240 4	240 5	1 30	1 30	- 01	$\pm 0.00$	9	Secchi 3, Dembowski 4, $O\Sigma$ 2
1858 52	241 7	241 1	1 35	1 32	+ 06	+0.03	10+	Jacob —, Dem 6, Madler 3, $O\Sigma$ 1
1859 63	242 7	241 8	1 64	1 34	+ 09	+0.30	1	O Struve
1860 77	245 8	242 6	1 30	1 37	+ 32	-0.07	1	Secchi
1861 62	243 7	243 3	1 36	1 39	+ 04	-0.03	4	Madler 3, $O\Sigma$ 1
1863 31 1864 47	245 5	243 9	$ \begin{array}{c c} 1 \ 30 \\ 1 \ 92 \\  \end{array}$	1 42	+ 16	-0.12	17	Dembowski 13, Knott 4
1865 68	$\begin{vmatrix} 247 & 8 \\ 246 & 5 \end{vmatrix}$	$\begin{array}{ c c c } 244 & 6 \\ 245 & 2 \end{array}$	1 39	1 45	+ 32	+0.47	2	Englemann
1866 59	246 5	245 6	1 66	1 47	+13 + 09	-0.08	14_16	
1867 77	248 7	246 2	1 43	1 49 1 51	+ 09 + 25	+0 17	8	Ley 3-2, Wk 3-0, S ₁ 2-3, <i>OΣ</i> 1,
1868 59	247 8	246 6	1 37	$\begin{array}{c c} 1 & 51 \\ 1 & 53 \end{array}$	$\begin{array}{c c} + 23 \\ + 12 \end{array}$	-0.08 $-0.16$	11–9 4–3	Winlock 2-0, Dembowski 9 Sec 2
1869 64	248 3		1 41	1 55	+12 + 13	-0.16	1 1	Peirce 3, Leyton 1-0, Winlock 1
1870 37	249 0		1 35	1 56	+17	-0.14 $-0.21$	$\left  \begin{array}{c} 7 \\ 9 \end{array} \right $	Leyton 1-0, Dunér 6, Peuce 1
7010 91	240 U	1 ## 1 3	1 20	7 00	ГТ		୪	Dembowski 8, Dunér 1

t	θ.	$\theta_c$	ρο	ρο	θοθο	ρορε	n	Observers
1871 66	251 0	2480	1 31	1 59	+30	-0"28	2	Dunér
1872 30	248 0	248 3	1 62	1 60	-0.3	+0.02	9	Dembowski 8, $O\Sigma$ 1
1873 54	248 9	2488	212	162	+01	+050	1	Leyton Observers
1874 44	250 1	2491	1 57	1 63	+10	-006	10	Dembowski 8, Leyton 1, $O\Sigma$ 1
1875 61	248 9	249 6	1 61	165	-0.7	-0 04	8	Schiaparelli
1876 54	249 6	250 0	1 75	1 67	-04	+0.08	17-19	$\operatorname{Dem} \overline{10}$ ; Sch 3; St 1; Hl 3; $\overline{\operatorname{W}}$ do 1,
1877 61	249 4	$250 \ 4$	1 69	168	-10	+0 01	19	Hall 4, Cincinnati 8, Schiaparelli 7
1878 27	250 4	250 6	171	1 69	-0.2	+0 02	8-10	Dembowski 8, Doberck 2
1879 49	249 4	251 1	172	1 71	-17	+001	33-32	β 2, Cincinnati 26-25, Sch 5
1880 51	251 1	251.5	1 78	172	-0.4	+0 06	14	Cin 3, Sch 6, Hall 2, Jed 3
1881 67	252 0	251 9	169	174	+01	-0 05	5	Hall 3, Smith 2
1882 56	2521	2522	1 88	1 75	<b>-01</b>	+013	14-13	
1883 53	2528	2526	184	1 76	+0.2	+0 08	17-28	
1884 60	252 7	252 9	1 83	1 77	-0.2	+0 06	10	HCW1, Hl 3; Sch 6 [Sch 6; Jed 3]
1885 55	2535	253 2	1 81	1 78	+03	+0 03	13-16	
1886 46	254 4	253 6	1 83	1 80	+08	+0.03	11-17	
1887 33	$ 252\;3 $	2539	1 77	1 81	-16	-0.04	8	Schiaparelli 4, Hall 4
1888 64	2542	254 3	1 75	182	-01	-0 07	8	Hall 5, Maw 3
1889 57	255 6	254 6	213	1 83	+10	+030	2-1	Glasenapp
1890 57	254 6	254 9	1 78	1 84	-0.3	-0.06	1	Hayn
1891 48	257 6	255 2	$2 \pm$	1 85	24	$+0.15 \pm$	1	See
1892.58	254 6	255 5	178	1 85	-09	-0 07	4	Comstock
1893 50	254 1	2558	181	1 86	-17	-0.05	3	Maw
1894 68	254 5	256 2	176	1 87	-17	-0.11	5	Glasenapp 2; Comstock 3
1895 72	256 2	256 5	1 86	1 88	-03	-0.02	6-4	See 4, Moulton 2-0

The following is an ephemeris for the next five years:

t	$\theta_c$	$ ho_c$	t	$ heta_c$	$\rho_{o}$
1896 50	$25\r{6}$ 7	$1^{''}\!88$	1899 50	$257\overset{\circ}{6}$	1 90
1897 50	257 0	1 89	1900 50	257 9	191
1898 50	257 3	1 90			

It will be evident from what has been said that this orbit is still open to some uncertainty, but a material improvement in the elements will not be possible for many years. Since the companion is at present nearing the apastron of the apparent ellipse, the motion will continue to be very slow; yet the pair will still be worthy of occasional attention from observers. While the period found above is perhaps uncertain to the extent of 15 years, it does not seem probable that the eccentricity can be in error by more than the cordingly there is no probability that even the lapse of ages. The cordingly these elements of  $\tau$  Ophiuchi.

# 70 OPHIUCHI = $\Sigma 2272$ .

Discovered by Sir William Herschel, August 7, 1779.

### OBSERVATIONS

ŧ	$\theta_o$	$\rho_o$	$\boldsymbol{n}$	Observers	l t	$\theta_o$	$\rho_o$	n	Observers
1779 77	90°		1	Herschel	1836 42	$128^{\circ}9$	$6^{''}\!\!38$	8	Madleı
1781 74	808	445	1-2	Herschel	1836 51	1277	6 48	4	$\mathbf{E}$ ncke
1000.94	336 1		1	Herschel	$1836\ 52$	$129\ 5$	634	5	Bessel
1802 34				nerschei	1836 66	$129 \ 5$	$6\ 15$	8	Struve
$1804 \ 42$	318 8	-	<b>2</b>	$\mathbf{Herschel}$	1837 13	127 7	6 47	3	Dawes
1819 64	1685		5	Struve	1837 46	$128 \ 3$	674	4	Encke
1820 77	<b>1</b> 60 <b>2</b>		2	Struve	1837 60	$127 \ 5$	6 46	16	Bessel
102011	100 2		4	Suuve	1837 72	$128 \ 0$	6.15	4	Struve
182174	157 6	Mississed for	5	Struve	1838 57	126 6	664	7	Galle
$1822\ 42$	$154 \ 8$	427	<b>2</b>	H and So	1839 52	$125 \ 2$	6 78	2	Galle
$1822\ 64$	$153 \ 9$		3	Struve	1839 65	$125 \ 2$ $125 \ 9$	6 55	$\overset{\scriptscriptstyle 2}{2}$	Dawes
182556	148 1	4 76	14	South	1			2	
1825.57	148 2	3 98	14	Struve	1840 35	128 0	6 00	-	Kaiser
	1 1	,			1840 48	$126\ 6$	652	10	O Struve
1827.02	145 1	4.37	2	Struve	1840 59	124 9	6 63	4	Dawes
1828 58	1406	537	<b>1</b>	Herschel	1841 50	$125 \ 4$	6 40	8	Madler
1828 71	$140 \ 2$	4 78	4	Struve	1841 65	$123\ 4$	654	5	Kaiser
1829 59	138 1	5 08	6	C.	1841 68	$123\;4$	663	4	Dawes
$1829\ 60$	140 6	5 08	1	Struve Herschel	184174	$123 \ 8$	6.85	7	Be and Scl
				Herschei	1842 31	$125 \ 1$	6 63	8	O Struve
$1830\ 39$	138~2	6.01	9	Herschel	1842 53	$124\ 6$	625	3	Madler
$1830\ 50$	$135 \ 8$	547	10	$\operatorname{Bessel}$	$1842\ 53$	$123\ 3$	672	${f 2}$	Dawes
1830 57	$137\ 3$	553	6	Dawes	1842 59	1226	6 48	$\overline{22}$	Kaiser
1830 84	$135\ 7$	531	<b>2</b>	Struve	1842 60	$123\ 5$	6 79	18	Schlüter
1831 53	136.5	5 94	8–6	Herschel	1843 47	122 0		1	Dawes
1831 53	<b>134</b> 0	5 68	7	Bessel	1843 52	121 1	6 70	3	Encke
$1831\ 68$	1347	541	5	Struve	1843 58	$123 \ 1$	6 44	16	Mädler
1832 55	133 8	571	3	Dawes	1844 36	120 7	6 84	5	Encke
1832 57	1354	5 35	4_3	Herschel	184450 $184452$	$120^{\circ}$ $122^{\circ}$	648	5	Mädler
1832 69	1330	5 79	<del>1</del> –0	Bessel					
					1845 43	120 8	6 77	9	Hind
$1833 \ 42$	$132 \ 8$	614	1	Dawes	1845 48	121 0	6 56	5	O Struve
$1834 \ 47$	131 1	585	4	Struve	1845 54	120 8	6 58	16	Mädler
1834 57	130 6	6 13	7	Dawes	$1846\ 25$	$120 \ 2$	6.83	1	$\mathbf{Jacob}$
1834 61	130 8	613	7	Bessel	1846 46	$120 \ 1$	$6\ 14$	7	Hind
					1846 56	117 1	7 43	_	Durham obs
<b>1835</b> 60	$130 \ 7$	611	5	Struve	1846 58	1198	6~65	10	Mädler

t	$\theta_o$	$\rho_o$	n	Observers	t	$\theta_o$	$ ho_o$	n	Observers
$1847\ 25$	$120{ m s}$	$6^{''}\!56$	4	O Struve	1857 13	110 6	$6^{''}\!\!45$	3	Jacob
$1847 \ 45$	1172	$7\ 19$	_	Durham obs	1857 41	1125	619	1	Winnecke
184759	$120 \ 3$		1	Mitchell	1857 51	110 4	$6\ 20$	4	Secchi
1847 60	1185	679	8	Madler	1857 58	$110 \ 3$	6.52	<b>2</b>	Dawes
					1857 64	$109 \ 5$	$6\ 25$	4	Dembowski
$1848 \ 12$	1188	680	3	Dawes	1857 67	110 2	$6\ 15$	2	Morton
1848 49	1184	684	4	$\mathbf{M}$ adler	1857 69	110 1	6 40	4	O Struve
$1848\ 52$	<b>118</b> 0	68	<b>2</b>	$\operatorname{\mathcal{B}ond}$					
1849 39	118 1	C C 1	F	O C4	1858 12	109 7	6 10	3	Jacob
1049 39	110 1	6 64	5	O Struve	1858 39	108 6	6 08	2	Morton
$1850 \ 42$	1168	6 88	8	Radeliffe	1858 44	1093	604	4	Dembowskı
$1850 \ 49$	$115 \ 2$	6 86	<b>2</b>	Worster & Ja	1858 63	108 9	583	9	$\mathbf{Madler}$
1850 64	116 7	6 94	4	Madler	1859 30	1090	6 20	5	O Struve
$1850 \ 66$	117 0	6 46	$\overline{4}$	Fletcher	1859 72	109 3	624	4	Dawes
		0 20	_		1859 75	109 0	6 44	5	Auwers
$1851\ 20$	$115 \ 2$	665	4	Mädleı	1859 76	107 8	6 10	5	Powell
185158	1158	$6\ 38$	8	Fletcher	1859 80	107 0	625	1	Mädler
$1851\ 67$	$115 \ 4$	634	5	O Struve					
185173	1155	667	7	Mädler	1860 61	$106\ 3$	6~07	3	$\mathbf{Secchi}$
4050.00	4400	0.00			1860 74	$109 \ 0$	6 41	_	${f Luther}$
1852 63	1160	6 36	6	Fletcher	1860 76	$106 \ 7$	652	5	Auwers
1852 67	1150	6 55	5	O Struve	1861 46	107 0	5 89	1	Radeliffe
1852 71	1147	6 56	11	Madleı	1861 69	106 6	592	7	Mädler
$1852\ 74$	<b>114</b> 0	673	15	Jacob	1861 74	106 0	621	6	Auwers
1853 55	1100		0	7. 17	1861 81	$105 \ 4$	58	3	
1853 55	113 6		9	Powell	1001 01	100 4	50	o	Powell
	1165	6 36	6	Dembowski	1862 40	$105\ 6$	5.86	3	O Struve
1853 62	114 6	6 49	6	Dawes	$1862\ 55$	1060	6~05	1	$\mathbf{W}_{\mathtt{innecke}}$
1854 08	113 6	6 36	21	Jacob	$1862\ 62$	$105\ 5$	572	9	Dembowski
1854 24	113 0	651	, 2	Jacob	186272	105~2	5 69	6	$\mathbf{M}\mathbf{\ddot{a}}\mathbf{dler}$
1854 24	113 3	651	6	O Struve	1863 47	104 0	6 07		A 7 - 1 1
1854 64	113.4	623	$\frac{6}{12}$		1863 51	104 0		11	Adolph
1854 67	1134	627	12 10	Dembowski	186351	104.1 $104.2$	5 28	2	Secchi
1854 73	1137	6 34		Madler	1863.51 $1863.55$	104.2 $104.5$	5 60	9	Dembowski
1854 78	112 9	0 34	3 3	Dawes			5 76	1	Talmage
100410	112 9	*******	3	Powell	1863 58	106 2	5 19	1	Ferguson
1855 03	115 3	6 86	2	Luther	1863 64	105 8	5 82	5	Hall
$1855\ 45$	111 6	625	3	Searle	1864 48	1048	542	2	Englemann
1855 56	114.2	6 34	1	Winnecke	1864 60	$103 \ 5$	545	11	Dembowski
1855 63	1127	6 33	5	Mädler					
1855 69	113 3	647	$\frac{3}{2}$	Dawes	$1865\ 30$	$102\ 6$	527	8	Englemann
1855 75	$112\ 4$	O Æ1	$\overset{\scriptscriptstyle\mathcal{L}}{7}$	Powell	$1865\ 51$	$102 \ 7$	5 43	4	Secchi
1855 82	112 1	7 23	1		$1865\ 51$	$102\ 3$	5 35	9	$\mathbf{Dembowski}$
100002		1 23	1	Schmidt	186556	$103 \ 9$	524	<b>2</b>	Talmage
185609	111 8	6 44	5	O Struve	$1865 \ 62$	$100 \ 6$	531	20	$\mathbf{K}$ aiser
1856.33	111 5	6 40	7	Jacob	1866 13	101 6	5 26	0	Thomas In American
1856 50	11:15	6 32	3	Madler	1866 29	101 6		8	Dembowski
1856 50	1126	6 40	8	Winnecke	1866 49		5 29	5	O Struve
1856 55	111 2	612	3	Secchi	$1866\ 54$	1018	5 26	5 4	Talmage
1856 63	111 8	6 38	6	Dembowski		1008	5 50	4	Harvard
		0.00	0 /	DOMINOW SKI	1866 69	101 1	5 27	3	Secchi

1867 44	t	$\theta_o$	ρο	n	Observers	t	θο	$\rho_o$	n	Observers
1867 54	1867 <b>4</b> 1				$\mathbf{Radcliffe}$	1875 52	83 7	$3^{''}48$	9	Dembowski
1867 57	$1867\ 44$		522	<b>2</b>	$\mathbf{K}$ nott	1875 62	84 1	344		
1867 57	$1867\ 52$			1	$\mathbf{Talmage}$	1875 68	84 8	384		•
1868 47 98 4 4 85 7   Dembowski 1876 52 78 9 346 2   Doberck 1868 57 99 9 511 2   Radcliffe 1876 54 80 9 352 7   Dembowski 1868 57 99 9 511 2   Radcliffe 1876 54 80 9 356 3   Hall 1868 57 99 9 511 2   Radcliffe 1876 64 80 9 356 3   Hall 1868 57 97 6 48 4 4   Dunér 1876 64 80 9 356 3   Hall 1868 57 99 1 46 9 2   O Stiuve 1876 66 79 7 372 1   Waldo 1868 90 98 0 4 92 5   Brumnow 1877 52 77 6 308 8   Dembowski 1869 68 100 2 5 31 1   Talmage 1877 55 75 8 36 4   Hall 1869 69 96 9 4 50 3   Dunéi 1877 55 75 8 36 4   Hall 1869 69 91 96 5 4 70 8   Dembowski 1877 65 78 5 30 8   Hall 1870 51 94 0 4 4 2   Gledhill 1877 65 78 5 31 5 4   Chonunan 1870 51 94 1 4 55 8   Dembowski 1877 65 78 5 31 5 4   Chonunan 1870 51 94 1 4 55 8   Dembowski 1877 65 77 3 312 4   Chonunan 1870 51 94 1 4 55 8   Dembowski 1877 65 77 3 312 4   Chonunan 1870 52 94 4 4 62 2   Talmage 1878 51 74 5 296 7   Dembowski 1871 49 94 9 442 2   Radcliffe 1878 72 71.9 313 4   Goldney 1871 51 90 8 4 61 2   Peirce 1878 54 75 3 30 4 3   Seabroke 1871 59 94 9 4 30 3   Rhott 1879 50 69 8 2 284 10   Schuparelli 1871 55 96 7 4 29 3   Gledhill 1879 66 68 6 30 1 5   Dembowski 1879 50 69 8 2 284 10   Schuparelli 1871 55 96 7 4 29 3   Gledhill 1879 66 67 9 2 94 5   Chonunan 1871 55 96 7 4 29 3   Gledhill 1879 66 68 6 30 1 5   Gledhill 1879 66 68 6 30 1 5   Gledhill 1879 65 70 3 304 4   Seabroke 1871 49 91 5 4 30 3   Rhott 1879 66 68 6 30 1 5   Gledhill 1879 65 70 3 304 4   Seabroke 1872 49 91 5 4 30 3   Ferran 1880 49 62 1 2 69 6   Franz 1872 49 90 8 4 28 2   Radcliffe 1880 57 65 5 275 6   Jedzejewicz 1872 49 90 7 4 04 9   Dembowski 1880 66 64 9 2 20 10   Schiaparelli 1872 51 91 5 4 29 3   W&S 1880 66 64 9 2 20 10   Schiaparelli 1873 51 88 8 38 8   Dembowski 1881 52 60 6 28 2 75 6   Jedzejewicz 1873 51 88 8 4 22 3   Radcliffe 1880 57 65 5 275 6   Jedzejewicz 1873 51 88 8 4 10 1   W & S 1880 57 65 5 275 6   Jedzejewicz 1873 51 88 8 4 22 3   Radcliffe 1880 57 65 5 275 6   Jedzejewicz 1873 51 88 8 4 22 3   Radcliffe 1880 57 65 5 2 2 9 2   Doberck 1873 51 88 8 4 10 1   W &	$1867\ 57$			7	Dembowskı					
1868 47	1867 57	992	510	3	Harvard					$\mathbf{Schur}$
1868 56						1				${f Doberck}$
1868 57	1868 47	98.4	485	7	Dembowskı	1				
1866 64	$1868\ 56$	98 5	498	2	$\mathbf{K}_{\mathbf{nott}}$				3	Plummer
1868 64	1868 57	99 9	5 11	2	Radcliffe	1				Schiaparelli
1868 72   97 6   4 84   4   Dunér   1876 64   81 5   327   4   Jedrzejewicz   1868 72   99 1   4 69   2   O Stuve   1876 66   79 7   3 72   1   Waldo   1868 87   98 0   4 92   5   Brunnow   1877 51   77 6   3 08   8   Dembowski   1877 52   77 6   3 47   2   Dobeick   1869 69   90 9   4 59   3   Dunéi   1877 55   75 8   3 36   4   Hall   1869 69   90 9   4 59   3   Dunéi   1877 55   75 8   3 36   4   Hall   1869 69   90 5   4 70   8   Dembowski   1877 65   78 5   3 39   8   Plummer   1869 91   96 5   4 70   8   Dembowski   1877 65   78 5   3 39   8   Plummer   1870 51   94 0   4 4   2   Gledhill   1877 68   75 5   3 12   4   Cincinnati   1870 51   94 1   4 55   8   Dembowski   1877 68   79 5   3 15   4   Schun   1870 52   94 4   4 02   2   Talmage   1878 54   75 3   3 04   3   Seabroke   1871 49   94 9   4 42   2   Radeliffe   1878 72   71.9   3 13   4   Goldney   1871 51   90 8   4 61   2   Perree   1874 15   96 7   4 36   1   Talmage   1879 50   69 8   2 84   10   Schuaparelli   1871 55   96 7   4 36   1   Talmage   1879 50   69 8   2 84   10   Schuaparelli   1871 55   96 7   4 36   Talmage   1879 50   69 8   2 84   10   Schuaparelli   1871 65   96 7   4 36   Talmage   1879 66   63 6   3 01   5   Jedizejewicz   1872 49   91 5   4 30   3   Knott   1879 66   63 6   3 01   5   Jedizejewicz   1872 49   90 8   4 28   2   Radeliffe   1880 47   65 8   2 44   3   Doberck   1872 49   90 8   4 28   2   Radeliffe   1880 47   65 8   2 44   3   Doberck   1872 49   90 8   4 28   2   Radeliffe   1880 47   65 8   2 44   3   Doberck   1872 49   90 8   4 28   2   Radeliffe   1880 49   62 1   2 69   6   Franz   1872 49   90 8   4 28   2   Radeliffe   1880 49   62 1   2 69   6   Franz   1872 49   90 8   4 28   2   Radeliffe   1880 49   62 1   2 69   6   Franz   1872 49   90 8   4 28   2   Radeliffe   1880 49   62 1   2 69   6   Franz   1872 49   90 8   4 28   2   Radeliffe   1880 49   62 1   2 69   6   Franz   1872 49   90 8   4 28   2   Radeliffe   1880 49   62 1   2 69   6   Franz   1872 49   90 8   4 2 9   3   W & 8   1880 6	1868 64	101 1	5 41	1		· ·			3	$\mathbf{Hall}$
1868 72	186872	97 6	484	4		1			4	Jedrzejewicz
1868 90	$1868\ 72$	99 1	4 69	<b>2</b>	O Struve	1876 66	797	372	1	Waldo
1869 68	1868 90	98 0	492	5	Brunnow	1877 51	77.6	3.08	٥	Dombonisti
1869 68   100 2   531						l .				
1869 69	1869 68	100 2	5 31	1	Talmage	1				
1869 73	1869 69	96 9	4 59			1				
1869 91	186973	$98 \ 1$	512			I .				
1870 51	1869 91	96 5	4 70			1				
1870 51				•		1				
1870 51	1870 51	94 0	44	2	Gledhill	1				
1870 52	1870 51	94 1	4 55	8	Dembowski		199	5 15	4	Schui
1871 48 92 6 4 30 2 W & S 1878 54 75 5 3 03 4 Doberck 1871 49 94 9 4 42 2 Radcliffe 1878 72 71.9 313 4 Goldney 1871 51 90 8 4 61 2 Peirce 1879 41 69 2 2 84 18 Cincinnati 1871 55 96 7 4 36 1 Talmage 1879 50 69 8 2 84 10 Schiaparelli 1871 59 94 9 4 30 3 Knott 1879 66 67 9 2 94 5 Cincinnati 1871 64 92 7 4 29 3 Gledhill 1879 65 70 3 3 04 4 Seabroke 1871 72 92 6 4 20 1 Dunér 1879 66 68 6 3 01 5 Jedizejewicz 1872 47 91 8 4 19 2 Blunnow 1880 47 65 8 2 44 3 Doberck 1872 49 91 5 4 30 3 Ferraii 1880 49 62 1 2 69 6 Franz 1872 49 90 8 4 28 2 Radcliffe 1880 57 65 5 2 75 6 Hall 1872 49 90 7 4 04 9 Dembowski 1880 66 64 9 2 69 10 Schiaparelli 1872 51 91 5 4 29 3 W & S 1880 66 64 9 2 69 10 Schiaparelli 1872 51 91 5 4 29 3 W & S 1880 66 64 9 2 69 10 Schiaparelli 1873 51 89 8 3 89 8 Dembowski 1880 74 62 7 2 55 2 Seabioke  1873 51 88 8 4 10 1 W & S 1881 72 56 3 2 45 2 Bigourdan 1873 55 84 7 3 95 1 Talmage 1881 77 62 7 2 45 2 Seabioke  1874 48 88 8 4 01 4 Radcliffe 1882 49 52 3 2 92 1 Wilson 1874 58 88 6 3 67 1 Talmage 1882 62 48 8 2 25 4 Jedrzejewicz 1874 69 8 75 3 79 3 0 Struve 1882 69 51 2 2 96 3 Seabroke	$1870\ 52$	94 4	462				74.5	296	7	Dembowski
1871 48       92 6       4 30       2       W & S       1878 54       75 5       3 03       4       Doberck         1871 49       94 9       4 42       2       Radcliffe       1878 72       71.9       3 13       4       Goldney         1871 51       90 8       4 61       2       Peirce       1879 41       69 2       2 84       18       Cincinnati         1871 55       96 7       4 36       1       Talmage       1879 50       69 8       2 84       10       Schiapaielli         1871 59       94 9       4 30       3       Knott       1879 64       67 9       2 94       5       Cincinnati         1871 64       92 7       4 29       3       Gledhill       1879 65       70 3       304       4       Seabroke         1871 72       92 6       4 20       1       Dunér       1880 47       65 8       2 44       3       Doberck         1872 47       91 8       4 19       2       Biunnow       1880 47       65 8       2 44       3       Doberck         1872 49       90 8       4 28       2       Radcliffe       1880 57       65 5       2 75       6       Hall					. 3		75 3	3.04	3	
1871 49       94 9       4 42       2       Radcliffe       1878 72       71.9       313       4       Goldney         1871 51       90 8       4 61       2       Peirce       1879 41       69 2       2 84       18       Cincinnati         1871 53       92 6       4 27       8       Dembowski       1879 50       69 8       2 84       10       Schiapaielli         1871 55       96 7       4 36       1       Talmage       1879 59       71 3       2 93       5       Hall         1871 64       92 7       4 29       3       Gledhill       1879 64       67 9       2 94       5       Cincumati         1871 72       92 6       4 20       1       Dunér       1879 65       70 3       30 4       4       Seabroke         1872 47       91 8       4 19       2       Brunnow       1880 47       65 8       2 44       3       Doberck         1872 49       91 5       4 30       3       Ferrail       1880 49       62 1       2 69       6       Franz         1872 49       90 7       4 04       9       Dembowski       1880 66       64 9       2 69       10       Schaparelli	1871 48	92 6	4 30	2	W & S	1878 54	75 5	3 03	4	
1871 51         90 8         4 61         2         Peirce         1879 41         69 2         2 84         18         Cincinnati           1871 53         92 6         4 27         8         Dembowski         1879 50         69 8         2 84         10         Schiapaielli           1871 55         96 7         4 36         1         Talmage         1879 59         71 3         2 93         5         Hall           1871 59         94 9         4 30         3         Knott         1879 64         67 9         2 94         5         Cincinnati           1871 64         92 7         4 29         3         Gledhill         1879 65         70 3         3 04         4         Seabroke           1871 72         92 6         4 20         1         Dunér         1880 65         70 3         3 04         4         Seabroke           1872 47         91 8         4 19         2         Biunnow         1880 47         65 8         2 44         3         Doberck           1872 49         90 8         4 28         2         Radcliffe         1880 66         64 9         2 69         6         Franz           1872 49         90 7         4 04 </td <td>1871 49</td> <td>949</td> <td>4 42</td> <td></td> <td></td> <td>1878 72</td> <td>71.9</td> <td>3 13</td> <td>4</td> <td>Goldne$v$</td>	1871 49	949	4 42			1878 72	71.9	3 13	4	Goldne $v$
1871 55 96 7 4 36 1 Talmage 1879 50 69 8 2 84 10 Schiapaielli 1871 55 96 7 4 36 1 Talmage 1879 59 71 3 2 93 5 Hall 1871 59 94 9 4 30 3 Knott 1879 64 67 9 2 94 5 Cincinnati 1871 64 92 7 4 29 3 Gledhill 1879 65 70 3 3 04 4 Seabroke 1871 72 92 6 4 20 1 Dunér 1880 47 65 8 2 44 3 Doberck 1872 47 91 8 4 19 2 Blunnow 1880 47 65 8 2 44 3 Doberck 1872 49 91 5 4 30 3 Ferrall 1880 49 62 1 2 69 6 Franz 1872 49 90 8 4 28 2 Radcliffe 1880 57 65 5 2 75 6 Hall 1872 49 90 7 4 04 9 Dembowski 1880 66 64 9 2 69 10 Schiaparelli 1872 51 91 5 4 29 3 W & S 1880 66 62 8 2 75 6 Jedrzejewicz 1872 60 93 6 4 08 4 O Struve 1880 74 62 7 2 55 2 Seabloke 1873 51 88 8 3 89 8 Dembowski 1881 53 60 6 2 49 5 Hall 1873 51 88 8 3 89 8 Dembowski 1881 53 60 6 2 49 5 Hall 1873 51 88 8 4 10 1 W & S 1881 72 56 3 2 45 2 Bigourdan 1873 55 84 7 3 95 1 Talmage 1882 49 52 3 2 92 1 Wilson 1874 48 88 8 4 01 4 Radcliffe 1882 57 56 1 2 31 7 Hall 1874 57 86 1 3 66 8 Dembowski 1882 62 48 8 2 25 4 Jedrzejewicz 1874 69 87 5 3 79 3 O Struve 1882 69 51 2 2 96 3 Seabroke	1871 51	908	4 61			1870 41	60.0	0.04	10	•
1871 55       96 7       4 36       1       Talmage       1879 50       71 3       2 93       5       Hall         1871 59       94 9       4 30       3       Knott       1879 64       67 9       2 94       5       Cincinnati         1871 64       92 7       4 29       3       Gledhill       1879 65       70 3       3 04       4       Seabroke         1871 72       92 6       4 20       1       Dunér       1879 66       68 6       3 01       5       Jedizejewicz         1872 47       91 8       4 19       2       Biunnow       1880 47       65 8       2 44       3       Doberck         1872 49       91 5       4 30       3       Ferraii       1880 49       62 1       2 69       6       Franz         1872 49       90 7       4 04       9       Dembowski       1880 66       64 9       2 69       10       Schiaparelli         1872 51       91 5       4 29       3       W & S       1880 66       62 8       2 75       6       Jedrzejewicz         1873 51       89 5       3 90       1       Gledhill       1881 23       61 7       2 80       2       Doberck </td <td>1871 53</td> <td>926</td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	1871 53	926				1				
1871 59       94 9       4 30       3       Knott       1879 64       67 9       2 94       5       Cincinnati         1871 64       92 7       4 29       3       Gledhill       1879 65       70 3       3 04       4       Seabroke         1871 72       92 6       4 20       1       Dunér       1879 66       68 6       3 01       5       Jedizejewicz         1872 47       91 8       4 19       2       Biunnow       1880 47       65 8       2 44       3       Doberck         1872 49       91 5       4 30       3       Ferrail       1880 49       62 1       2 69       6       Franz         1872 49       90 7       4 04       9       Dembowski       1880 66       64 9       2 69       10       Schiaparelli         1872 51       91 5       4 29       3       W & S       1880 66       62 8       2 75       6       Jedrzejewicz         1873 51       89 5       3 90       1       Gledhill       1881 23       61 7       2 80       2       Doberck         1873 51       88 8       3 89       8       Dembowski       1881 53       60 6       2 49       5       Hall	1871 55	96 7	4 36			1				
1871 64         92 7         4 29         3         Gledhill         1879 65         70 3         3 04         4         Seabroke           1871 72         92 6         4 20         1         Dunér         1879 65         70 3         3 04         4         Seabroke           1872 47         91 8         4 19         2         Biunnow         1880 47         65 8         2 44         3         Doberck           1872 49         91 5         4 30         3         Ferraii         1880 49         62 1         2 69         6         Franz           1872 49         90 8         4 28         2         Radcliffe         1880 67         65 5         2 75         6         Hall           1872 51         91 5         4 29         3         W & S         1880 66         64 9         2 69         10         Schiaparelli           1872 51         91 5         4 29         3         W & S         1880 66         62 8         2 75         6         Jedrzejewicz           1873 51         89 5         3 90         1         Gledhill         1881 23         61 7         2 80         2         Doberck           1873 51         88 8         3 89	1871 59	94 9	4 30		•					
1871 72         92 6         4 20         1         Dunér         1879 66         68 6         3 01         5         Jedrzejewicz           1872 47         91 8         4 19         2         Biunnow         1880 47         65 8         2 44         3         Doberck           1872 49         91 5         4 30         3         Ferrali         1880 49         62 1         2 69         6         Franz           1872 49         90 8         4 28         2         Radcliffe         1880 57         65 5         2 75         6         Hall           1872 49         90 7         4 04         9         Dembowski         1880 66         64 9         2 69         10         Schiaparelli           1872 51         91 5         4 29         3         W & S         1880 66         62 8         2 75         6         Jedrzejewicz           1873 51         89 5         3 90         1         Gledhill         1881 23         61 7         2 80         2         Doberck           1873 51         88 8         3 89         8         Dembowski         1881 72         56 3         2 45         2         Bigourdan           1873 55         84 7	1871 64	92.7	4 29	3		1				
1872 47 91 8 4 19 2 Blunnow 1880 47 65 8 2 44 3 Doberck 1872 49 91 5 4 30 3 Ferrall 1880 49 62 1 2 69 6 Franz 1872 49 90 8 4 28 2 Radcliffe 1880 57 65 5 2 75 6 Hall 1872 49 90 7 4 04 9 Dembowski 1880 66 64 9 2 69 10 Schiaparelli 1872 51 91 5 4 29 3 W & S 1880 66 62 8 2 75 6 Jedrzejewicz 1872 60 93 6 4 08 4 O Struve 1880 74 62 7 2 55 2 Seabloke 1873 51 88 8 3 89 8 Dembowski 1881 23 61 7 2 80 2 Doberck 1873 51 88 8 3 89 8 Dembowski 1881 53 60 6 2 49 5 Hall 1873 51 88 8 4 10 1 W & S 1881 72 56 3 2 45 2 Bigourdan 1873 55 84 7 3 95 1 Talmage 1881 77 62 7 2 45 2 Seabloke 1873 71 88 8 4 22 3 Radcliffe 1882 49 52 3 2 92 1 Wilson 1874 48 88 8 4 01 4 Radcliffe 1882 49 52 3 2 92 1 Wilson 1874 57 86 1 3 66 8 Dembowski 1882 61 51 8 2 33 9 Schiaparelli 1874 58 88 6 3 67 1 Talmage 1882 62 48 8 2 25 4 Jedrzejewicz 1874 69 87 5 3 79 3 0 Struve 1882 69 51 2 2 96 3 Seabroke	187172	926	4 20			1				
1872 49       91 5       4 30       3       Ferrail       1880 49       62 1       2 69       6       Franz         1872 49       90 8       4 28       2       Radcliffe       1880 57       65 5       2 75       6       Hall         1872 49       90 7       4 04       9       Dembowski       1880 66       64 9       2 69       10       Schiaparelli         1872 51       91 5       4 29       3       W & S       1880 66       62 8       2 75       6       Jedrzejewicz         1872 60       93 6       4 08       4       O Struve       1880 74       62 7       2 55       2       Seabioke         1873 51       89 5       3 90       1       Gledhill       1881 23       61 7       2 80       2       Doberck         1873 51       88 8       3 89       8       Dembowski       1881 53       60 6       2 49       5       Hall         1873 51       88 8       4 10       1       W & S       1881 72       56 3       2 45       2       Bigourdan         1873 55       84 7       3 95       1       Talmage       1882 49       52 3       2 92       1       Wilson							00 0	9 01	Đ	Jedizejewicz
1872 49       91 5       4 30       3       Ferrail       1880 49       62 1       2 69       6       Franz         1872 49       90 8       4 28       2       Radcliffe       1880 57       65 5       2 75       6       Hall         1872 49       90 7       4 04       9       Dembowski       1880 66       64 9       2 69       10       Schiaparelli         1872 51       91 5       4 29       3       W & S       1880 66       62 8       2 75       6       Jedrzejewicz         1872 60       93 6       4 08       4       O Struve       1880 74       62 7       2 55       2       Seabioke         1873 51       89 5       3 90       1       Gledhill       1881 23       61 7       2 80       2       Doberck         1873 51       88 8       3 89       8       Dembowski       1881 53       60 6       2 49       5       Hall         1873 51       88 8       4 10       1       W & S       1881 72       56 3       2 45       2       Bigourdan         1873 55       84 7       3 95       1       Talmage       1882 49       52 3       2 92       1       Wilson			4 19	<b>2</b>	Brunnow	1880 47	658	244	3	Doberck
1872 49       90 8       4 28       2       Radcliffe       1880 57       65 5       2 75       6       Hall         1872 49       90 7       4 04       9       Dembowski       1880 66       64 9       2 69       10       Schiaparelli         1872 51       91 5       4 29       3       W & S       1880 66       62 8       2 75       6       Jedrzejewicz         1872 60       93 6       4 08       4       O Struve       1880 74       62 7       2 55       2       Seabioke         1873 51       89 5       3 90       1       Gledhill       1881 23       61 7       2 80       2       Doberck         1873 51       88 8       3 89       8       Dembowski       1881 53       60 6       2 49       5       Hall         1873 51       88 8       4 10       1       W & S       1881 72       56 3       2 45       2       Bigourdan         1873 55       84 7       3 95       1       Talmage       1882 49       52 3       2 92       1       Wilson         1874 48       88 8       4 01       4       Radcliffe       1882 57       56 1       2 31       7       Hall	$1872 \ 49$	91 5	4 30	3	Ferran		62 1	2 69	6	
1872 51       91 5       4 29       3       W & S       1880 66       62 8       2 75       6       Jedrzejewicz         1872 60       93 6       4 08       4       O Struve       1880 74       62 7       2 55       2       Seabioke         1873 51       89 5       3 90       1       Gledhill       1881 23       61 7       2 80       2       Doberck         1873 51       88 8       3 89       8       Dembowski       1881 53       60 6       2 49       5       Hall         1873 51       88 8       4 10       1       W & S       1881 72       56 3       2 45       2       Bigourdan         1873 55       84 7       3 95       1       Talmage       1882 49       52 3       2 92       1       Wilson         1874 48       88 8       4 22       3       Radcliffe       1882 49       52 3       2 92       1       Wilson         1874 48       88 6       3 67       1       Radcliffe       1882 57       56 1       2 31       7       Hall         1874 58       86 6       3 67       1       Talmage       1882 62       48 8       2 25       4       Jedrzejewicz	187249	908	4 28	2	Radcliffe		655	275	6	$\mathbf{Hall}$
1872 51       91 5       4 29       3       W & S       1880 66       62 8       2 75       6       Jedrzejewicz         1872 60       93 6       4 08       4       O Struve       1880 74       62 7       2 55       2       Seabioke         1873 51       89 5       3 90       1       Gledhill       1881 23       61 7       2 80       2       Doberck         1873 51       88 8       3 89       8       Dembowski       1881 53       60 6       2 49       5       Hall         1873 51       88 8       4 10       1       W & S       1881 72       56 3       2 45       2       Bigourdan         1873 55       84 7       3 95       1       Talmage       1881 77       62 7       2 45       2       Seabioke         1873 71       88 8       4 22       3       Radcliffe       1882 49       52 3       2 92       1       Wilson         1874 48       88 8       4 01       4       Radcliffe       1882 57       56 1       2 31       7       Hall         1874 58       86 6       3 67       1       Talmage       1882 61       51 8       2 33       9       Schiaparelli <td></td> <td>90 7</td> <td>4 04</td> <td>9</td> <td>Dembowski</td> <td></td> <td>64 9</td> <td>2 69</td> <td>10</td> <td>Schiaparelli</td>		90 7	4 04	9	Dembowski		64 9	2 69	10	Schiaparelli
1872 60       93 6       4 08       4       O Struve       1880 74       62 7       2 55       2       Seabloke         1873 51       89 5       3 90       1       Gledhill       1881 23       61 7       2 80       2       Doberck         1873 51       88 8       3 89       8       Dembowski       1881 53       60 6       2 49       5       Hall         1873 51       88 8       4 10       1       W & S       1881 72       56 3       2 45       2       Bigourdan         1873 55       84 7       3 95       1       Talmage       1881 77       62 7       2 45       2       Seabioke         1873 71       88 8       4 22       3       Radeliffe       1882 49       52 3       2 92       1       Wilson         1874 48       88 8       4 01       4       Radcliffe       1882 57       56 1       2 31       7       Hall         1874 57       86 1       3 66       8       Dembowski       1882 61       51 8       2 33       9       Schiaparelli         1874 69       87 5       3 79       3       O Struve       1882 62       48 8       2 25       4       Jedrzejewicz	1872 <i>5</i> 1		4 29	3		1880 66	628	275	6	
1873 51       89 5       3 90       1       Gledhill       1881 23       61 7       2 80       2       Doberck         1873 51       88 8       3 89       8       Dembowski       1881 53       60 6       2 49       5       Hall         1873 51       88 8       4 10       1       W & S       1881 72       56 3       2 45       2       Bigourdan         1873 55       84 7       3 95       1       Talmage       1881 77       62 7       2 45       2       Seabioke         1873 71       88 8       4 22       3       Radcliffe       1882 49       52 3       2 92       1       Wilson         1874 48       88 8       4 01       4       Radcliffe       1882 52       55 7       2 29       2       Dorberck         1874 57       86 1       3 66       8       Dembowski       1882 57       56 1       2 31       7       Hall         1874 58       88 6       3 67       1       Talmage       1882 61       51 8       2 33       9       Schiaparelli         1874 69       87 5       3 79       3       0       Struve       1882 62       48 8       2 25       4       Jedrzej	1872 60	936	4 08	4	O Struve	1880 74	627	255		
1873 51       88 8       389       8       Dembowski       1881 53       60 6       2 49       5       Hall         1873 51       88 8       4 10       1       W & S       1881 72       56 3       2 45       2       Bigourdan         1873 55       84 7       3 95       1       Talmage       1881 77       62 7       2 45       2       Seabioke         1873 71       88 8       4 22       3       Radcliffe       1882 49       52 3       2 92       1       Wilson         1874 48       88 8       4 01       4       Radcliffe       1882 57       56 1       2 31       7       Hall         1874 57       86 1       3 66       8       Dembowski       1882 61       51 8       2 33       9       Schiaparelli         1874 69       87 5       3 79       3       O Struve       1882 62       48 8       2 25       4       Jedrzejewicz         1874 78       87 5       3 0 9       1       1882 69       51 2       2 96       3       Seabroke						1991 09	01 7			
1873 51 88 8 4 10 1 W & S 1881 72 56 3 2 45 2 Bigourdan 1873 55 84 7 3 95 1 Talmage 1882 49 52 3 2 92 1 Wilson 1882 52 55 7 2 29 2 Dorberck 1874 48 88 8 4 01 4 Radcliffe 1882 57 56 1 2 31 7 Hall 1874 57 86 1 3 66 8 Dembowski 1882 61 51 8 2 33 9 Schiaparelli 1874 58 88 6 3 67 1 Talmage 1882 62 48 8 2 25 4 Jedrzejewicz 1874 69 87 5 3 79 3 O Struve 1882 69 51 2 2 96 3 Seabroke			3 90		Gledhill					
1873 55 84 7 3 95 1 Talmage 1873 71 88 8 4 22 3 Radcliffe 1882 49 52 3 2 92 1 Wilson 1874 48 88 8 4 01 4 Radcliffe 1882 57 56 1 2 31 7 Hall 1874 57 86 1 3 66 8 Dembowski 1882 61 51 8 2 33 9 Schiaparelli 1874 58 88 6 3 67 1 Talmage 1882 62 48 8 2 25 4 Jedrzejewicz 1874 69 87 5 3 79 3 O Struve 1882 69 51 2 2 96 3 Seabroke			389	8	Dembowskı					
1873 71       88 8       4 22       3       Radcliffe       1882 49       52 3       2 92       1       Wilson         1874 48       88 8       4 01       4       Radcliffe       1882 52       55 7       2 29       2       Dorberck         1874 57       86 1       3 66       8       Dembowski       1882 57       56 1       2 31       7       Hall         1874 58       88 6       3 67       1       Talmage       1882 61       51 8       2 33       9       Schiaparelli         1874 69       87 5       3 79       3       O Struve       1882 62       48 8       2 25       4       Jedrzejewicz         1874 78       27 5       3 00       1       1882 69       51 2       2 96       3       Seabroke			4 10	1	W & S	1				-
1873 71       88 8       4 22       3       Radcliffe       1882 49       52 3       2 92       1       Wilson         1874 48       88 8       4 01       4       Radcliffe       1882 52       55 7       2 29       2       Dorberck         1874 57       86 1       3 66       8       Dembowski       1882 57       56 1       2 31       7       Hall         1874 58       88 6       3 67       1       Talmage       1882 61       51 8       2 33       9       Schiaparelli         1874 69       87 5       3 79       3       O Struve       1882 62       48 8       2 25       4       Jedrzejewicz         1874 78       87 5       3 00       1       Gl N. W.       1882 69       51 2       2 96       3       Seabroke		84 7	395	1	Talmage	1001 11	62 7	2 45	2	Seabroke
1874 48     88 8     4 01     4     Radcliffe     1882 52     55 7     2 29     2     Dorberck       1874 57     86 1     3 66     8     Dembowski     1882 57     56 1     2 31     7     Hall       1874 58     88 6     3 67     1     Talmage     1882 61     51 8     2 33     9     Schiaparelli       1874 69     87 5     3 79     3     O Struve     1882 62     48 8     2 25     4     Jedrzejewicz       1874 78     2 7 5     2 29     2     Dorberck       1882 61     51 8     2 33     9     Schiaparelli       1882 69     51 2     2 96     3     Seabroke	187371	88 8	$4\;22$	3		1882 49	$52\ 3$	292	1	Wilson
1874 48     88 8     4 01     4     Radcliffe     1882 57     56 1     2 31     7     Hall       1874 57     86 1     3 66     8     Dembowski     1882 61     51 8     2 33     9     Schiaparelli       1874 58     88 6     3 67     1     Talmage     1882 62     48 8     2 25     4     Jedrzejewicz       1874 69     87 5     3 79     3     O Struve     1882 69     51 2     2 96     3     Seabroke	4074 10					1882 52				
1874 57     86 1     3 66     8     Dembowski     1882 61     51 8     2 33     9     Schiaparelli       1874 58     88 6     3 67     1     Talmage     1882 62     48 8     2 25     4     Jedrzejewicz       1874 69     87 5     3 79     3     O Struve     1882 69     51 2     2 96     3     Seabroke						1882 57				
1874 58 88 6 3 67 1 Talmage 1882 62 48 8 2 25 4 Jedrzejewicz 1874 69 87 5 3 79 3 O Struve 1882 69 51 2 2 96 3 Seabroke						1882 61				
1874 69 87 5 3 79 3 O Struve 1882 69 51 2 2 96 3 Seabroke					Talmage	1882 62				-
1874.78 97 F 0.00 1 Cl 11 11					O Struve	1882 69				
	1874.73	87.5	392	1	Gledhill	1882 72				

4 .

t	$\theta_o$	Po	n	Observers	[ t	$\theta_o$	$ ho_o$	n	Observers
1883 49	$45^{\circ}6$	$2^{''}\!28$	4	Perrotin	1890 42	$338^{\circ}5$	$2^{''}\!40$	2	Glasenapp
1883 58	400	2 36	8	Seagrave	1890 49	338 3	2 42	8	Giacomelli
1883 62	43 7	2 21	15	Schiaparelli	1890 56	335 8	2 13	7	Hall
1883 64	42 2	222	6	Jedrzejewicz	1890 61	336 5	2 01	3	Maw
1883 68	45 2	2 51	3	Küstner	1890 61	336 6	2 16	1	Wellmann
1883 68	44 0	2 30	3	Seabroke	1890 70	334 8	2 02	6	Schur
1883 72	43 6	225	6	Englemann	1890 70	334 9	2 22	16	Bigourdan
1000 12	100	2 20	Ů	22.10.0	1890 73	336 1	215	9	Schiaparelli
1884 41	376	230	1	Wilson	1020 10	0001	2 10	·	Sommaparoni
188453	359	218	1	Piitchett	1891 54	328 3	2 11	4	Maw
$1884\ 56$	34.5	209	6	Periotin	1891 56	327 5	2 23	6	Hall
1884 59	37 6	216	7	Hall	1891 58	329 1	2 16	6	Schur
1884 62	353	2 07	8	Schiaparelli	1891 59	326 0	2 33	6	Knorre
1884 69	35~2	220	5	Englemann	1891 60	328 5	2 15	6	Schiaparelli
1884 70	<b>34</b> 8	245	3-1	Seabroke	1891 63	327 2	2 37	$\mathbf{\hat{2}}$	See
•					1891 65	326 7	$\begin{array}{c} 2 & 3 \\ 2 & 21 \end{array}$	9	Bigouidan
$1885\ 50$	<b>26</b> 0	2 08	4	Perrotin	1001 00	020.		·	2-180414441
188555	251	1 97	4-2	Sea & Sm	1892 37	321 9	2 28	4	Burnham
$1885\ 57$	295	1 88	7	$\mathbf{H}$ all	1892 41	320 5	2 36	1	Collins
1885 64	$24\ 3$	207	8	Englemann	1892 49	321 7	2 26.	3	Maw
1885 65	265	207	2	Schiaparelli	1892 57	321 3	2 19	4	Comstock
188571	234	219	5	Jedrzejewicz	1892 62	319 3	2 25	5	Bigourdan
1000 50	100	1.00	<b>~</b>	TT 11	1892 64	321 0	2 24	6	Schur
1886 53	138	1 98	7 ~	Hall	1892 65	320 3	222	17	Schiaparelli
1886 56	153	1 97	7	Perrotin	1002 00	0200			~ carragar carr
1886 66	137	2 01	7	Jedizejewicz	1893 47	3138	2 22	3	Maw
1886 66	14.1	1 81	14	Schiaparelli	1893 58	313 4	2 41	3	Tucker
1886 67	148	1 88	7	Englemann	1893 62	313 6	2 27	4	Schur
1886 67	<b>15</b> 6	2 01	4-2	Smith	1893 62	312 5	2 34	5	Comstock
1887 55	359.6		1	Smith	1893 69	309 2	2 22	1	H C Wilson
1887 61	3.6	1 92	6	Hall	1893 70	312 3	2 21	11	Schiaparelli
1887 63	43	1.87	18	Schiaparelli					10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1887 81	35	1 91	4	Tarrant	1894 50	3098	247	8	Ebell
1001 01	00	1 91	**	Lairaiii	1894 54	307 <b>4</b>	229	3	Maw
1888 41	352 7	2 07	3	Comstock	1894 59	304 6	2 38	12-11	Knorre
1888 55	354 5	2 17	4	Maw	1894 60	3063	2 26	4	Schur
1888 57	353,4	2.02	6	Hall	1894 75	302 5	$2\ 30$	4	Comstock
1888 62	355 4	2 00	3	Giacomelli	1894 77	301 3	245	5-6	Callandreau
1888 64	3551	1,88	10-9	Schiaparelli	1894 77	3032	221	6	Schiaparelli
1888.65	352.4	214	1	Leavenworth	1894 79	302 5	2 33	5	Bigourdan
1888.66	3547	2 66	• 3	Copeland				•	B
1888.85	3531	1 92	6	Tarrant	1895 32	298 6	2 22	3	See
2000000	0001	1 02	U	Larrani	1895 50	298 2	2 53	2	Glasenapp
1889 30	3487	216	2	Burnham	1895 51	301 6	2 31	- 5	Schur
1889 48	344.9	1.60	$ar{f 2}$	Hodges	1895 55	298 7	2 14	9	Schiaparelli
1889.50	3457	2 18	5	Comstock	1895 58	296 9	$2\overline{26}$	4	Maw
1889.57	344 5	210	6	Hall	1895 60	297 O	235	4	Schwarzschild
1889.64	346 4	196		Maw	1895 62	295 0	$\frac{2}{2}\frac{33}{24}$	<del>*</del> 5	Schwarzschild Hough
1889 70	344 9	1 99	17–16	Schiaparelli	1895 70	296 0	2 01	5	See
1889 77	343.6	184	4	Schur	1895 72	296 3	201	3–1	Moulton
	0.0	~ 0=		Somm	1 7090 17	200 J	∠ UI	0-T	TATOUT POIT

Researches on the Orbit of 70 Ophiuchi, and on a Periodic Perturbation in the Motion of the System Arising from the Action of an Unseen Body*

While engaged recently in the observation of double stars at the Leander McCormick Observatory of the University of Virginia, I took occasion to measure 70 Ophiuchi on three good nights (A J. 349). On comparing the results with Schur's ephemeris, four months later, I noticed with surprise that the observed angle was over four degrees in advance of the theoretical place As the Virginia measures had been made under favorable conditions and with extreme care, it became evident that even the orbit to which Professor Schur had devoted so much attention would need revision Accordingly, after all the observations had been collected from original sources and tabulated in chronological order, I proceeded to investigate the orbit in the usual manner, and obtained a set of elements very similar to those which Burnham has given in Astronomy and Astrophysics for June, 1893 On comparing the computed with the observed places there appeared to be a sensible irregularity in the angular motion, and as the observed places were admittedly exact to a very high degree, it was impossible to attribute such large and continued deviations to errors of observation. It was also observed that the sign of  $\theta_o - \theta_c$  showed a peculiar periodicity; the residuals being for many years steadily of one sign, and then as uniformly of the other. After making some unsuccessful efforts to correct the apparent orbit, from which the elements had been derived by the method of KLINKERFUES, I decided to project the orbit found by Schur, so as to compare his apparent ellipse directly with the places given by the mean observations for each year. Though I was aware that Schur's orbit had been based wholly on angles of position, I was not a little surprised to find that the distances had been vitiated in the remarkable periodic manner indicated by the pointed ellipse in the accompanying diagram since I had uniformly adhered to the use of both angles and distances in deriving the orbits of double stars, it was not allowable to violate the distances as Professor Schur had done, nor could we pass over such remarkable periodic errors in the residuals of the angles We were thus confronted with a case in which it was apparently impossible to satisfy both angles and dis-A closer examination of the diagram suggested the idea of a periodic perturbation, alternately in angle and then in distance; and the drawing, in conjunction with the computations, enabled me to see that the case is one worthy of special attention. After some delay (A J. 358) the additional observations

^{*} Astronomical Journal, 363

placed at my disposal by Professors Hough and Comstock, in conjunction with the independent measures made at Madison by Mr. Moulton and myself (A. J. 359) confirmed the correctness of the Virginia measures, and left no doubt of the rapid deviation of the companion from Schur's orbit. Before considering the physical cause of this unexpected phenomenon, I desire to remark that, in the preparation of this paper, my friend Mr. Eric Doulittle, C. E, has rendered valuable assistance. He has carried out the calculations entrusted to him not only with care and accuracy, but also with zeal and enthusiasm, and has, therefore, contributed in no small degree to the early completion of this investigation.

Since SIR WILLIAM HERSCHEL'S discovery of this beautiful system the companion has described considerably more than one revolution. More orbits have been computed for this binary than for any other in the northern sky, but, in spite of the immense labor which astronomers have bestowed upon this star, the motion has proved to be so refractory and so anomalous that the companion has departed from every orbit heretofore obtained. It follows from the phenomena disclosed in this paper that the system contains a dark body, and that no satisfactory orbit can be obtained until this disturbing cause is taken into account. The following list of the orbits found by previous investigators will be of interest to astronomers; in most cases the data have been taken from original sources, but in a few instances we have relied upon the table of elements given by Gore in his useful "Catalogue of Binary Stars for which Orbits have been Computed."

							<del> </del>		
P	T	е	а	Ω	i	λ	Authorn	ty	Source
73 862	1806.88	0 430	4 3284	147°2	46 42	283 [°] 1	Encke,	1829	BJ, 1832
							Encke,	1830	B.J, 1832, p 295
							Herschel,	1833	Mem RAS, vol V, p 217
	1806 746	0 47715	4 3159	1338	42 87	287 23	Madler,	1835	AN, 289
	1812.73	0 4438	5 316	126.9	64 86	2798	Mädler,	1842	A N,444, Dorp Obs., IX,185
	1807 60	0 482	4 675	128.55	51 5	293 3			
	1807 48	0.4973		122 23	47 33	2941	Hind,	1849	M N, IX, p.145
	1810 671	0 4445	4 966	127.35	61 05	212 97	Villarceau,	1851	CR,XXXII, p 51
	1806 92	0 546	4 48	1117	49 93	187 5	Powell,		M N., XV, p 42
98-10	1808 12	0 4894	-	12453	55.27	159 53	Jacob,	1857	AN, 1082
25.966		0 4935	4.731	123 13	57 35	160 53	Klinkerf,	1858	AN,1135
	1808 79	0 49148	4.704	125 4	57.9	1.55.7	Schur,	1868	AN,1682
32.77	1807.9	0.3859	4.88	122 0	620	163.0	Flammarion	1874	CR,LXXXIX,p 1248
174-70	1809.64 1808.90	0 47280	4.770	E27.37	60 0	149 72	Tisserand,	1876	Flam Cat Et Doub., p 166
	14808.90	0.4672			58.08	15192	Pritchard,	1878	Oxf. Obs., I, p. 63
12721	1807.65	0 4912	4.50	120.08	58 47	171 75	Gore,	1888	MN, XLVIII, No.5
	1895.28		4.45	1208	57.0	174 92	Mann,	1890	Sid Mes, Nov, 1890
	1808,0707	0.4751	4 6	121.31	<b>ι</b> δο 08	168.3	Schur,	1893	A.N ,3220-21 [1893]
Post in	1895.6	0.50	4.56	123.5	58.3	1908	Burnham		Astron. and Astroph., June,
Larry	1895 58	0.500	14:048	125.7	08.42	19825	See	1895	A J., 363





An inspection of this table discloses the fact that the early investigations, so far as they are reliable, led to periods sensibly less than 90 years, while the determinations made between 1845 and 1880, or, when the companion was describing the apastron of the real ellipse, favored a period of at least 94 years. Thus Tisserand and Pritchard, so lately as 1876 and 1878, find periods of 94 93 and 94 44 years, respectively. In 1868 Schur obtained a period of 94 37 years, and similar periods before and since have been deduced by other trustworthy computers.

There is thus unmistakable evidence of a retardation in the motion of the companion near apastron, more recently this inequality has become an acceler-It was observed by Gore in 1888 that the old orbits did not represent recent measures satisfactorily, and, accordingly, he derived a new set of elements with a period of 8784 years, which was substantially confirmed by subsequent work of Mann and Burnham. Finally Professor Schur made an exhaustive investigation of all the observations up to 1893, and adjusted his orbit by the method of least squares to about 400 mean observations of position-angle. He says that in this work he could not advantageously employ the measures of distance, owing to the differences of the individual observers The angles, however, were admitted to be admirably adapted to a fine determination of the elements, and, accordingly, Professor Schur's able discussion of 400 observations inspired the belief that his orbit would give good places of the companion for a great many years, if not for an almost indefinite period. But this just expectation has not been realized, owing to the action of an unseen body which disturbs the elliptical motion of the companion establish the existence and general character of the perturbations thus disclosed we submit the following considerations:

- (1) A reference to Professor Schur's able and exhaustive paper in the Astronomische Nachrichten, No 3220, 21, will enable the reader to judge of the improbability of an orbit based on such a multitude of good measures proving to be defective within two years of its completion, unless disturbing causes were at work to produce the sudden acceleration in angular motion. It is inconceivable that this rapid deviation could take place without a true physical cause. The error in the angle now amounts to about five degrees
- (2) In regard to the older observations we may remark, as Professor Schur and others before him have done, that Sir William Herschel's angles are open to some uncertainty, owing to a possible error in the reading or in the records, so that his observations do not give an exact or trustworthy criterion for the period. Herschel says, however, explicitly, that on "Oct. 7,

1779, the stars were exactly in the parallel, the following star being the largest," and, as it does not seem that any sensible error could affect the angle which he has thus recorded, we see from the measures in 1872-3 that the resulting period would be approximately 92 years. This is an additional indication that the period of this star is not constant. A careful examination of the other early measures shows that the first really good position is that of STRUVE in 1825. These measures are so uniform and consistent, and appear in every way so worthy of entire confidence, that I quote the record from the Mensurae Micrometricae in full.

t	$\theta_{o}$	$ ho_o$		t	$ heta_o$	$ ho_o$	
$1825 \ 42$	150 1	$3^{''}\!\!89$	1	1825 61	$149^{\circ}3$	$4^{''}05$	
$1825 \ 43$	<b>147</b> 0	405	4,6	$1825\ 62$	1468	392	
1825.44	149 1	394		$1825\ 63$	1473	3 85	
$1825 \ 48$	148 8	405		$1825\ 63$	148 4	3 99	
$1825\ 50$	$146\ 4$	421		1825 64	<b>147</b> 0	4 01	
$1825\ 60$	148 1	3 90		$1825\ 66$	$148\ 5$	4 01	4,6
$1825\ 60$	1495	385		1825 71	1488	4 02	•
			Mean	1825 56	148 2	3 98	14n Struve

An examination of these separate measures clearly indicates that the error in the mean result does not surpass 0°.5 in angle, and 0″ 1 in distance. By Schur's orbit the angle is corrected two degrees, and when the radius vector is thus thrown forward to 146°.2 the computed and observed distances are nearly identical. As Struve took special pains to secure good measures on a large number of nights, and obtained the foregoing beautiful and consistent results, we may regard his mean position as one of the highest precision. The probable error of such measures would evidently be very small.

(3) We see from the diagram illustrating the apparent ellipse that Schur's orbit falls within the positions given by the measures prior to 1845; so that nearly all the observations of Struve, Bessel, Dawes, Madler, etc., require a sensible negative correction in distance. In figure B the differences  $\rho_o + \rho_o$  of the individual measures used by Schur are plotted to scale, and a glance at the figure will show the improbability of such classic observers as Struve, Bessel and Dawes making the constant errors here indicated. It would be still more remarkable if the observers between 1845 and 1870 have as uniformly erred in the opposite direction. How has it happened that from 1825 to 1845 the distances were steadily over-measured by the best observers, while during the next period the distances were constantly under-measured? Individual observers have what may be called a personal equation (though this far from constant and is difficult to determine with any certainty) but it

could not happen that all the best observers would err alike, although in opposite directions, during the two periods Professor Schur's corrections are evidently inadmissible

- (4) The peculiar periodic manner in which Schur's apparent ellipse crosses and re-crosses the general path which best represents the mean positions, first suggested to my mind the hypothesis of a disturbing body. Figure C is based upon these mean positions, and a comparison with the curve in B shows that the mean positions are typical of all the observations for any given year. Since I was desirous of avoiding any possible prejudice of the material used, I have retained, without alteration, the mean positions which had been formed in August before suspecting the existence of a disturbing influence.
- (5) We suggest that the companion of 70 Ophruchi is attended by a dark satellite, and that the visible companion, therefore, moves in a sinuous curve about the common centre of gravity of the new system, with a period somewhat less than 40 years, and in a retrograde direction As Schur's orbit is based on a least-square adjustment of all the observations extending over two entire revolutions of the invisible body, it may reasonably be inferred that his apparent ellipse will represent very nearly the true motion of the centre of gravity, while the apparent ellipse which best represents the observed distances will give a general outline of the path of the visible star in its sinuous motion. Let us recur to the diagram of the apparent ellipse and imagine that the visible companion and the centre of gravity are in the tangent to the ellipse at the epoch of intersection in 1818 Then, the motion of the visible star being retrograde, we perceive that it will gain steadily on the centre of gravity, and, in 1836, the two will be in line with the original position, after half a sidercal revolution, from 1836 to 1845 the satellite will make another quarter revolution, and again the bright companion will be in the tangent to the apparent ellipse and in advance of the common centre of gravity. As the visible star will now steadily fall behind in its retrograde motion about the centre of gravity, it is clear that from 1845 to 1872, which is three-fourths of a revolution, the motion of the bright body will appear to be abnormally slow This is the apparent retardation previously mentioned as giving rise to the long periods found by computers who used observations extending over the apastron portion of the real orbit. Assuming that the motion is undisturbed, and hence that the areas are constant, Professor Schur was compelled to run his ellipse further out in this part of the orbit in order to represent the observed angles From the diagram we see that the retrograde motion of the visible star continues after 1872, and, as this apparently accelerates the visible

motion of the companion relative to the central star, Schur's ellipse is drawn inside of most of the observations of this period. The falling of the measured distances beyond Schur's orbit shows plainly the periodic motion of the visible star in accordance with the above theory. From this sketch of the effects of the disturbing body it is evident that, at the time Schur completed his orbit, the visible star and the unseen body were nearly in line with the central star. And since the visible companion in 1825, according to Struve, had an angle of 148° 2, whereas Schur makes it 146° 2, or, substantially the same as the centre of gravity at that epoch, it follows that our hypothesis, making Schur's orbit represent the motion of the centre of gravity, is indeed very nearly correct. Any slight correction that may be required for the periastron of Schur's ellipse in order to make it represent the true path of the centre of gravity, had better be deferred until additional observations disclose more clearly the nature and extent of the perturbations.

(6) We may fix the approximate elements of the visible companion about the centre of gravity as follows: From 1818 to 1890, or 72 years, is the time required for two revolutions, as explained in the preceding paragraph, and hence we see that the period is approximately thirty-six years. The motion is retrograde, and from the diagram of the apparent orbit, we may conclude that the distance of the visible star from the common centre of gravity is about 0".3. It is natural to suppose that the plane of the orbit is not greatly inclined to that found by Schur, but existing data will not fix all the elements with the desired precision. Perhaps until the path of the centre of gravity is known with great accuracy, the simple hypothesis of a circular orbit, with node and inclination identical with the similar elements of the visible pair, will be sufficient to explain phenomena, and it follows that both angles and distances are comparatively well represented by this hypothesis.

It is found, however, on more detailed examination that the representation can be somewhat improved by the adoption of the following elements:

P'=36  years	$\Omega' = 151^{\circ}0$
T'=18220	$i' = 60^{\circ} 1$
e'=0475	$\lambda' = 191^{\circ}7$
a' = 0'' 30	$n' = 10^{\circ} 0$

While this orbit gives a good representation of the motion of the bright body about the common centre of gravity, the data are so rough that the determination of such delicate elements must be regarded as provisional only.

In the following table we have compared Schur's elements with the mean

positions for each year; the residuals are given in the columns headed  $\theta_0 - \theta_1$  and  $\rho_0 - \rho_1$ . It is at once evident that the angles are beautifully represented down to 1893, after which the error in angle rapidly accumulates until it now amounts to nearly *five degrees!* The errors in distance are illustrated in diagram C, which shows the same general features as diagram B, where the points represent the individual measures employed by Schur

The elements of the orbit which best represents the observed distances are as follows:

```
P = 88\ 3954\ {
m years} \  Schur's values \Omega = 125^{\circ}\ 7 t = 1808\ 0707 t = 58^{\circ}\ 42 t = 0\ 500 t = 198^{\circ}\ 25 t = 4''\ 548 t = -4^{\circ}\ 0728
```

#### Apparent orbit:

```
Length of major axis = 9'' 00

Length of minor axis = 4'' 17

Angle of major axis = 122^{\circ} 9

Angle of periastron = 295^{\circ} 8

Distance of star from centre = 2'' 198
```

#### COMPARISON OF COMPUTED WITH OBSERVED PLACES ACCORDING TO THE TWO SETS OF ELEMENTS

t	$\theta_o$	Po	$\theta_0$ — $\theta_1$	$\rho_0$ — $\rho_1$	$\theta_0$ — $\theta_2$	$\rho_0 - \rho_2$	dθ"	n	Observers
1779 77	90°0		_8 ⁸ 8		$-8^{\circ}11$		_0°708	1	Herschel .
1781 74					+440	-0 11			Herschel
1802 34			+14		+0.71		+0.027		Herschel
1804 42			-0.3		-315	<u> </u>	-0.128	2	Herschel
1819 64	168 5	_	-09		+508	_	-0244	5	Struve
1820 77			-27	_	+0.78		+0.042	2	Struve
1821 74	1576				+265		+0.154	5	Struve
							+0126	2	Herschel and South
1822 64	1539		<b>-1</b> 0		+175		+0109	3	Struve
1825 56	148 2	3 98	+20	+0.03	+317	-0 37	+0.238	28-14	South 14-0, Struve 14
1827 02	145 1	4 37	+21	+0.07	+282	-0.28	+0227	2	Struve
1828 71	1402	4 78	+0.3	+010	+0.72	_D 22	+0.062	4	Struve
1829 59	138 1	5 08	-03	+0.23	+0.39	-0.15	+0.035	6	Struve
							-0.002		II ₂ 9, Bessel 10, Dawes 6, W Struve 2
1831 58	135 1	5 68	-0.3	+0.45	-0 38	+0.36	+0.036	20-18	II 8-6, Bessel 7, W Struve 5
1832 62	1334	5 75	-06	+0.35	-0.84	+0.08	-0.083	8	Dawes 3, Bessel 5
							-0.034		Dawes
1834 55	1308	6 04	-08	+0.34	-125	+0.12	-0128	18	W Struve 4, Dawes 7, Bessel 7
1835 60	130 7	611	+0.2	+0.26	-0.22	+0.07	-0.023		Struve
1836 52	1289	634	-05	+0.38	-108	+0.20	-0.115		Madler 8, Encke 4, Bessel 5, W Struve 8
							-0 104		Dawes 3, Encke 4, Bessel 16, W Struve 4
1838 59	126 6	6 64	-0.7	+0.43	-138	+0.32	-0.152	7	Galle
1839 58	125 5	6 66	-09	+0.36	-1 51	+0.25	-0.169	4	Galle 2, Dawes 2
1840 47	126 5	6 38	+10	0 00	+0.33	-0 09	+0.037		Kaiser, O Struve 10, Dawes 4
1841 64	124 0	6 60	-05	₩014	-113	+0.10	-0 129	26	Madlet 8, Kaiser 5, Dawes 4, Be and Schl 7
1842 57	123 8	6 57	+01	十0 04	-0.50	-0 01	-0 057		O Struve 8, Madler 3, Dawes 2, Kaiser 22
							-0 090	, -0	Schluter
1843 55	122 1	6 57	-0.7	-0.02	-126	-0.06	-0146	20-19	Dawes 1-0, Encke 3, Madler 16
1844 44	121 3	6 66	-07	+0 03	-136	+0.01	-0 158	10	Encke 5, Madler 5

					·			· · · · · · · · · · · · · · · · · · ·		
t	$\theta_o$	$\rho_o$	$\theta_0 - \theta_1$	$\rho_0$ — $\rho_1$	$\theta_0 - \theta_2$	$\rho_0 - \rho_2$	d heta''	n	Observers	
		- <del></del>					0 101		Hind 9, O Struve 5, Madler 16	
1845 48	120 9	6 64	-03	-0 03	-0.80	<b>一0 03</b>	0 101	30 18+	Jacob 1, Hind 7, Dur Obs —, Madler 10	
1846 46	1193	6 70	-07	+014	0 0 0	+016	-0.190 $-0.112$	13+	O Struve 4, Dur Obs —, Mitchell 1, Ma 8	
1847 47	118 1	6 81	03	+0.09	_0.96	+0.13	-0.112	9	Dawes 3, Madler 4, Bond 2	
1848 38	1104	6 64	+0.3	-0.09	-0.31	-0.03	-0.036	5	O Struve	
1850 55	1164	6.78	-05	+0 07	-101	+0.13	-0 118	18 1	Rad 8, W & J 2, Madler 4, Fletcher 4	
1851 54	115 5	6 57	-05	-0.13	-104	_004	-0.121	24	Madler 4, Fletcher 8, O Struve 5, Madler 7	
1050 60	11110	6 56	0.2	-0.11	1 - 0.63	-0.00	-0.073	37	Fletcher 6, O Struve 5, Madler 11, Jacob 15	
1050 50	71110	6 19	1406	1 - 0.22	1+0.12	1 - 0.11	+0.014	21-12	Powell 9-0, Dem 6, Dawes 6 [Po 3 0]	1
10 24 40	11190	6 27	1 03	1 - 0.22	2! 0 <i>7</i> 1	-0.11	1-0.081	57-54	Ja 21, Ja 2, O2 0, 10m 12, ma 10, 10 0,	1
1855 52	2 113 3	6 45	+0.6	-0.09	+0.35	+0.04	+0.039	20-13	Lu 2, Si 3, winn 1, Ma 5, 174 2, 10 10	Ì
1856 43	1117	6 34	+0.1	-0.14	-0.41	0 00	-0.046	$\frac{32}{20}$	OE 5, Ja 7, Ma 3, Winn 8, Sec 3, Dem. 6 Ja 3, Winn 1, Sec 4, Da 2, Dem 4, Ma 2,	
1857 52	2111 0	6 31	+0.2	-010	-0.04	+0.05	-0.005		Ja 3, Mo 2, Dem 4, Ma 9 [OZ 4]	1
1858 39	9 1091	6 01	-0.9	一U 32	-107	-010	-0 116	18 20	OΣ 5, Dawes 4, Auwers 5, Powell 5, Ma 1	- Linkely
1859 66	108 4	6 24	-04	+0.02	0.20	+0.40	-0.048 $-0.030$	8+	Secchi 3, Luther —, Auwers 5	R. A. Marketin A.
1860 70	1107 3	5 70	-04 05	-0.21	0.50	0 14	-0.050	17	Rad 1, Madler 7, Auwers 6, Powell 3	1 4
1861 67	1106 2	5 8 9	-03	-0.07	0.02	+0.09	-0.002	19	O Struve 3, Winnecke 1, Dem 9, Madler 6	
1862 54	11048	5 62		-0.17	+0.19	+0.01	+0.019		Adh 11, Sec 2, Dem 9, Ta 1, Fer. 1, III 5	1
1864 54	11041	5 43	+0.5	-0.23	+0.84	-0.06	+0.082	13	Englemann 2, Dembowski 11	
1865 50	1024	532	0 0	-0.20	+0.22	-0.03	+0 021	43	En 8, Secchi 4, Dem 9, Ta 2, Kaiser 20	
1866 49	3 101 2	5 31	0.0	-0.07	$1 \pm 0.48$	1 + 0.11	+0.044	25	Dem 8, OΣ 5, Ta 5, IIv. 4, Secchi 3	
1867 5	996	5 18	-0	-0.03	3 + 0 43	+0.14	+0.038	<b>14–1</b> 3	Rad 1, Kn 2, Ta 1-0, Dem 7, Hv. 3	
1868 6	5 98 6	4 90	+0.5	-0  13	$3 +1\ 26$	+0.05	$ +0\ 101$	22	Dem 7, Kn 2, Rad 2, Du 4, O2. 2, Brw. 5	
1869 8	0 967	4 64	1 + 04	-0.19	9 +1.32	-0.03	+0.109		Dunér 3, Dembowski 8	1
1870 5	1 942	4 52	2 - 10	-0.18	-0.40	-0.08	-0.032		Gledhill 2, Dem 8, Ta 2, [Gl. 8; Du. 1]	· ·
1871 5	6 93 4	4 34	+01	-016	0 + 1.27	-0 03	+0.099		W & S 2, Rad 2, Pei 2, Dem 8, Ta. 1; Kn. 3; Brw 2, Fer 3, Rad 2, Dem 9, W & S. 3; OΣ. 1	
	$\frac{1}{2} \frac{91}{2} \frac{6}{2}$	5 4 20	1 + 0 2	-016	+141	-0.01	+0.105		Gl 1, Dem 8, W & S 1, Ta 1, Rad. 3	
1873 5	b 88 J	14 U.	L U 1	-0.00	1 T U 43	+0.01	+0.031 +0.183	17	Rad 4, Dem 8, Ta 1, OE 3; Gledhill 1	
$18746 \\ 18756$	1 84 6	13 6	$\frac{1}{1}$	_0 1	1 + 174	-0.04	+0.113	$\frac{1}{21}$	Dem 9, Sch 8, Rad 4 [Jed. 4; Wdo 1]	
1876 5	$\frac{1}{7}$ 80 2	7 3 48	3 _ 0 6	0.00	0.+1.59	+0.07	+0.093		Sh 5, Dk 2, Dem 7, Pl 3, Sch. 6; Hall 3;	f
1877 6	0 77 4	13 2	3 -0 5	-00	5 + 1.83	+0.02	+0 104	50	Dem 8, Dk 2, III 4, Jed 10; Pl. 8; Sch. 10,	
							+0.134		Dem 7, Sea 3, Dk 4, Gold. 4 [Cin 4; Sh. 4]	1
1879 5	7 69	529	5 - 04	+00	9 +228	+0.12	+0 115		Cin 18, Sch 10, III. 5, Cin. 5, Sea. 4; Jed 5	
1880 5							+0.093		Dk 3, Fr 6, Hl 6, Sch 10, Jed. 6; Sea. 2	
1881 5							+0.172		Doberck 2, Hall 5, Big 2; Sea. 2 [En 4]	
1882 6							+0.137		II C W 1, Dk 2, III 7; Sch 9; Jed. 4; Sea 3,	
1883 6	2 44	0 2 3	$\frac{1}{2} - \frac{1}{2} = \frac{1}{2}$	3+01	8 + 24	2 + 0.11	+0.094	45	Per 4, Seag 8; Sch 15, Jed.6, Kü 3, Sea.8; En 6	1
1884 5	6 36	021	7 + 0.5	3 + 01	6 + 20	1 + 0.07	1 + 0 077	31-29	H C W 1, Pr 1, Per 6, Hl.7, Sch.8, En.5; Sea 3-1	· ·
1880 6	1 14	9 2 0	0 + 0	0 <del>+</del> 0 0	1 0 0	2 + 0 02	7 0 020	16 44	Per 4, Sea 4-2, Ill 7, En 8, Sch 2; Jed. 5 Hl 7, Per 7, Jed 7, Sch 14, En 7, Sm. 4 2	
1887 6	1 14	0 1 0	3 - 0	1 +00	1 1 0	3 -0 0	0 036	20 29	Sm 1-0, Hl 6, Sch 18, Tar. 4 [Cop. 3, Tar.6]	
	2 353	0 2 1	1 0	$\frac{1}{4} + 0.1$	$\frac{1}{5} - \frac{1}{2} \frac{1}{1}$	0 + 0.0	7 - 0.036	36_36	Com 3, Maw 4, III 6, Giac 8; Sch. 10-9; I.v.1,	
1889 5	3 345	920	8 + 0	6 + 0 0	$\frac{6}{6} - \frac{2}{2} \frac{1}{2}$	6 - 0 0	-0.089	37_34	β 2, Hod 2-0, Com 5, H16, Maw 5; Sch.17-16	
							-0.090			
1891 5							2 - 0.14		Maw 4, Hl 6, Knr 6, Sch.6; See 2, Big.9 [Sch 9]	
1892 8			6  - 0	4 - 0.0	4  - 35	2 -0.0	5 - 014	2 34	β 4, Col 1, Maw 3, Com. 4; Big. 5; Sch. 17	
1893 6			5  = 0	8 -01	.5 -23	0 -0.1	0 - 0.094	4 19-20	Maw 3, Com 5, H C W 0-1; Sch. 11	
1894 (			0  - 2	7 - 0.1	4 -48	0   -0.0	3 -0.19	5 30-29	Maw 3, Knr 12-11, Com. 4; Sch. 6; Big. 5	1 14.
1895 3							9 - 0.28		See	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1895	4 296	1 2 1	4 -4	8 - 02	න  <u> 5 6</u>	$z_{ -0 1}$	$z_{\parallel} = 0.22$	1 20-18	Maw 4, Com 8, Ho 5, See 5; Moulton 3-1	ø
1									And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	

The values of P and T are taken from Schur's orbit, because the values of these elements derived from so many observations may be regarded as very nearly the mean of all the periods and epochs which result from the observa-





tions prior to 1893. The residuals which follow from the use of these elements are given in the columns marked  $\theta_0 - \theta_2$  and  $\rho_0 - \rho_2$ . In the case of the second elements the periodic errors in angle are very noticeable, but, as the simple differences  $\theta_0 - \theta_2$  would not be strictly comparable at different distances, we have reduced all these angular displacements to seconds of the arc of a great circle by the formula

 $\frac{r''(\theta_0 - \theta_2)^{\circ}}{57^{\circ}3} = d\theta''$ 

where r'' denotes the apparent length of the radius vector in seconds of arc, and  $(\theta_0-\theta_2)^\circ$  the residuals of position-angle expressed in degrees The displacement  $d \, \theta''$  is tabulated and also illustrated graphically in diagram Awill be seen that the maximum or minimum displacement in angle is practically identical in time with the zero of the curves of distance in B and C, and that the zero of the curve of angles corresponds to the maximum or minimum of This displacement of phase would be a necessary the curve of distances consequence of the orbital motion of the visible companion about the common centie of gravity, and may be said to establish completely the reality of that The present theory does not require the several phases of the phenomenon curves to be of equal length, since the tangent to the ellipse itself revolves very unequally in different parts of the orbit, and the zero of the curve of distance, for example, depends on the coincidence of this tangent with the line connecting the bright with the dark body

The problem here presented of finding the elements of the orbit of the visible companion from irregularities in the elliptical motion is very much more difficult than those arising from the irregular proper motions of perturbed stars, such as Sirius and Procyon In the case of the phenomena first investigated by Bessel, the centre of gravity of the system moves uniformly on the arc of a great circle, but in this case the centre of gravity moves on the arc of a very small ellipse and with a velocity which follows a very complex law. Indeed the velocity at any point of the oibit is inversely as the perpendicular from the central star to the tangent to the ellipse at the point in question; and, as the central star may in general occupy any point whatever of the apparent ellipse, we see that the velocity varies in an extremely complicated In view of these facts it seems best, especially from the point of view of practical double-star work, to determine first of all the path of the centre of gravity and the elements of its orbit. Suppose we designate the rectangular coordinates of this centre, relative to the principal star, by x', y'; and the coordinates of the visible companion referred to the same origin by

x, y; then if  $\alpha$  and  $\beta$  denote the differences of these coordinates, the observations will furnish a series of equations of the form.

$$\begin{array}{llll} \alpha_1 &= x_1' - x_1 & \beta_1 &= y_1' - y_1 \\ \alpha_2 &= x_2' - x_2 & \beta_2 &= y_2' - y_2 \\ \alpha_3 &= x_3' - x_3 & \beta_8 &= y_3' - y_3 \\ \alpha_4 &= x_4' - x_4 & \beta_4 &= y_4' - y_4 \\ \alpha_5 &= x_5' - x_5 & \beta_5 &= y_5' - y_5 \\ \hline \alpha_n &= x_n' - x_n & \beta_n &= y_n' - y_n \end{array}$$

Five points, each determined by two such equations, are theoretically sufficient to fix the elements of the orbit of the visible star about the common centre of gravity, a larger number of equations, when combined in an advantageous manner, so as to render the errors of observation a minimum, will make the determination more exact, and define the elements with the desired precision. In the case of 70 Ophruchi, Schur's orbit is to all appearances a good first approximation to the path of the centre of gravity, but it does not seem worth while to enter upon the more refined analysis here indicated until additional measures of the visible companion have confirmed the accuracy of this hypothesis. Apart from these theoretical difficulties, the sensible perturbations of the central star upon the motion of its attendant system will give rise to obstacles which are scarcely less formidable.

(9) While we have spoken of the dark body as attending the companion, it is clear that similar phenomena would result from the action of a body revolving round the central star. In this case, however, the considerable distance which would result from a period of 36 years might render the stability of the system somewhat precarious, especially if the orbit be eccentric like that of the visible companion. And as there is every reason to suppose that the system is the outgrowth of nebular condensation, and is, therefore, adjusted to conditions of stability and permanence, it is more natural to regard the companion as the binary. In this case the small mass might give rise to a period of 36 years even if the pair be very close. The separation of the new system is not likely to be less than 0"4, and it may be more than twice that distance. If we adopt the parallax of 0".162 found by Krueger it will follow that the major semi-axis of the orbit of the visible companion is 28.07 astronomical units, and the combined mass is 283 that of the sun; and hence we conclude that the orbit of the visible companion about the common centre of gravity has a major semi-axis of 184 astronomical units. Therefore, while the bright companion describes an eccentric orbit with a major axis which is slightly less than that of Neptune, the action of the dark body causes it to

describe another ellipse, which in size considerably surpasses that of the planet Mars.

- (10) With regard to the position of the dark body we remark that an exact prediction is difficult, but the general indications are that at the epoch 1896 50 it lies approximately in the direction of 260°*. As the companion is now near periastron, the present is a favorable opportunity for searching for the dark body, since in this position the orbit will be expanded owing to the perturbations of the central star. In case it should be imagined that the unseen body attends the central star, it would be natural to locate it in the direction of 160°.
- (11) Many years ago a disturbing body in the system of 70 Ophruchi was suspected by Madler, Jacob and Sir John Herschel, and on two occasions, more recently, Burnham has searched for it without success. After examining both stars with the Dearborn 18-inch refractor in 1878 he adds: "Both stars round," while a still more critical search with the Lick 36-inch refractor led him to remark "I could not see any third component and both stars appeared to be round, with all powers" In spite of this negative evidence, observers with great telescopes will find this system worthy of special examination. Whatever be the result of optical search for the unseen body, it will now become a matter of great interest to measure the visible companion with the most scrupulous care until the nature and extent of its perturbations are fully established.

#### 99 HERCULIS = A.C. 15.

 $\alpha = 18^h~3^m~2$  ,  $\delta = +30^\circ~33^\prime$  60, yellow , 117, purple

Discovered by Alvan Clark, July 10, 1859

				Observ	ATIONS				
t	$\theta_o$	$\rho_o$	$\boldsymbol{n}$	Observers	t	$\theta$ _o	ρ,	$\boldsymbol{n}$	Observers
1859 61	$347^{\circ}4$	1 61	1	Dawes	1872 56	60	1 46	1	O Struve
$1859\ 65$	347 0	1 80	1	Dawes	1877 56	22 0	1 19	1	O Struve
1860 30	$342\ 3$	228	1	O Struve	101100	220	119	_	Obudio
1866 68	360 8	1 73	1	O Struve	1878 46	24 4	1 09	3–1	Burnham
1868 50	358 6	1 69	1	O Struve	1879 47	26 5	1 13	1	Burnham

^{*}The estimated position given in A J 363 for 1895 was 330°, the retrograde motion would diminish the angle considerably, but the principal change in the theoretical position results from the elements above referred to

t	$\theta_o$	Po	$\boldsymbol{n}$	Observers	į t	$\theta o$	$\rho_o$	n	Observers
1880 53	31 [°] 6	0"90	2–1	Burnham	1891 56	$292^{\circ}0$	$0{''}\!\!\!/2$	2–3	Burnham
1881 43	29 4	0 51	1	Burnham	1892 40	299 2	0 70	3	Burnham
1883 60 1883 70	$72 9 \\ 82 4$	1 30 1 04	1 1	O Struve O Struve	1894 74	305 7	0 88	1	Comstock
1888 54	77 <b>4</b>	1 05	1	O Struve	1895 47	309 5	1 04	6	Barnard
1889 50	281 2	0 65	1	Burnham	1895 50 1895 73	308 0	0 95	2	See
1890 45	285 <b>1</b>	0 59	3–2	Burnham	1895 73	$\begin{array}{c} 315\ 2 \\ 313\ 4 \end{array}$	$\begin{array}{c} 1 \ 12 \\ 1 \ 00 \end{array}$	$egin{array}{c} 3 \ 2\!-\!1 \end{array}$	$\begin{array}{c} \textbf{See} \\ \textbf{Moulton} \end{array}$

This difficult double star was discovered by Clark while testing the telescope he had just made for Dawes, at the latter's private observatory.* The physical connection of the pair was suspected, and during the same year two sets of good measures were obtained by Dawes Otto Struve began to give his attention to the pair the following year, and continued his measures from time to time until 1888. His first observations are very satisfactory, and of the highest value in fixing the elements of the orbit, but the later measures are less trustworthy, owing to the great inequality and closeness of the components. The series of measures begun by Burnham in 1878, and continued until the close of his work in California, is of great importance, and in conjunction with Struve's observations and those recently made by the writer at Madison, enables us to fix the elements with a relatively high degree of precision.

In order to obtain a good orbit from such measures, the means must be formed in a judicious manner, regard being had to the known motion of the companion. After careful study of all the observations, we have formed a suitable set of mean places, and deduced the corresponding elements. The orbits previously found for this system are:

Gore, 1890 M N , Nov 1893	SEE, 1895 unpublished
P = 5355  years	575 years
T=188558	1887 30
e = 0.7928	0 806
a = 1'' 12	1″ 163
$\Omega = 50^{\circ} 1$	77° 0
$i = 38^{\circ} 6$	35° 5
$\lambda = 110^{\circ} 73$	90° 0

^{*} Astronomical Journal, 366



The adopted elements of 99 Herculis are as follows:

```
P=54.5 years \Omega= indeterminate T=1887.70 \iota=0^{\circ}0 e=0.781 Angle of periastron =169^{\circ}5 \alpha=1''.014 n=+6^{\circ}6055
```

The apparent is the same as the real orbit.

er be commented

Length of major axis = 2'' 028Length of minor axis = 1'' 278Angle of major axis and periastron  $= 169^{\circ} 5$ 

#### TABLE OF COMPUTED AND OBSERVED PLACES

t	θο	θε	ρο	Pc	$\theta_o - \theta_c$	$\rho_o - \rho_c$	n	Observers .	
1859 65	347 0	348 4	1 80	1 81	_ ı̂4	-0"01	1	Dawes	
1859 96	344 8	348 9	1 94	181	- 41	+0.13	2	Dawes 1, O Struve 1	
1866 68	360 8	357 8	1 73	174	+ 30	-0.01	1	O Struve	
1868 50	358 6	360 5	1 69	1 70	_ 19	-0.01	1	O Struve	Ì
1872 56	6 0	7 0	1 46	1 56	<b>- 1</b> 0	-0.10	1	O Struve	1
1877 56	$22 \ 0$	174	1 19	1 29	+ 46	-0 10	1	O Struve	-
1878 46	24 4	20 1	1 04	1 21	+ 43	-0.17	3–1	Burnham	
1879 47	26 5	232	1 13	1 14	+ 33	-0 01	1	Burnham	
1880 53	31 6	27 3	0 90	1 04	+ 43	-0.14	2–1	Burnham	
1881 43	29 4	31 0	0 77	0 96	_ 16	0 19	1-2	Burnham 1, O Struve 0-1	1
1889 50	257 4	262 7	0 65	0 42	- 53	+0 23	1-1	Burnham 0-1, O Struve 1-0	
1890 45	285 1	280 5	0 59	0 56	+ 46	+0 03	3-2	Burnham	
1891 56	292 0	292 9	0 72	0 71	- 09	+001	2-3	Burnham	
1892.40	299.2	299 2	0 70	0 80	0.0	-0 10	3	Burnham	
1894.74	305.7	311 3	0 88	1 04	- 56	-0 16	1	Comstock	
1895 50	308 0	314 2	0 95	1 11	- 62	<b>—0 16</b>	2	See	
1895 73	315 2	315 1	1 12	1 13	1 + 01	-0 01	3	See	╛

#### **EPHEMERIS**

t	$\theta c$	$ ho_c$	$oldsymbol{t}$	$\theta_c$	$ ho_c$
	0.1 <b>-</b> 0.2	- ¹⁷ -1-0	4000 50	00 × 0	1,00
$1896\ 50$	$317 \ 5$	1 18	$1899\ 50$	$325 \ 3$	1 39
1897 50	$320 \ 4$	$1\ 26$	1900 50	$327\ 6$	1 45
1898 50	$323\ 0$	1 33			

While this orbit may need slight modification in the course of time, it does not seem probable that a sensible improvement can be effected for a good many years, as the motion is now very slow, and chiefly in the direction of the radius vector. The orbit is remarkable for its high eccentricity, and for having no sensible inclination. This circumstance enables us to contemplate directly the real orbit, and renders 99 Herculis an object of the highest interest. The pair is always rather difficult, owing to the inequality of the components, and exact measurement is seldom possible. But at present the star is relatively easy, and ought to be given some attention by observers.

### z SAGITTARII.

 $\alpha = 18^{\rm h}~56^{\rm m}~3~~,~~\delta = -30^{\circ}~1~~$  3 9, yellow ~,~4 4, yellow

Discovered by Winlock in July, 1867

				Observ.	ATIONS				
t	$\theta_o$	$\rho_o$	$\boldsymbol{n}$	Observers	t	$\theta_o$	ρ _o	n	Observers
1867 59	257°7	0 86	1	Winlock	1888 66	$259^{\circ}3$	$0^{''}67$	7	$\beta$ & Lv
1867 80	260 8	0 48	1	Newcomb	1889 41	255 1	0 81	5	Buinham
1878 70	84 2	0 42	1	Buinham	1890 49	251 1	0 76	3	Burnham
1879 71	<b>54</b> 8	$0.3 \pm$	1	Burnham	2000 20				
1880 62	$62\ 1$	0 55	2	Buinham	1891 53	$246\ 5$	0 61	3	Buinham
1881 61	36 1	0 31	2	Burnham	1892 39	$245 \ 1$	0 60	3	Buinham
1886 62	271 3	0 65	4	Hall	1895 32	1947	0 35	3	See
188674	$271 \ 1$		1–0	$\mathbf{Pollock}$	1895 62	$193\ 6$	013	<b>2</b>	Baınard
1887 64	$265\ 3$		5-0	Pollock	1895 74	193 1	0 20 ±	1	See

Owing to the great southern declination of  $\zeta$  Sagittarii, which renders it maccessible to European observers, and makes observations difficult even in the United States, the object was comparatively neglected for a number of years. The first observations were made by Winlock and Newcomb in the year of its discovery. The pair was not again observed until 1878, when Burnham began to give it regular attention. His series of measures now show that  $\zeta$  Sagittarii belongs to the class of bright, close binaries with short periods. This object has therefore become one of particular interest to American observers.

The first investigation of the orbit was made by Mr J E Gore, who published the following elements (Monthly Notices, RAS, 1886, p 444)

$$P = 1869 \text{ years}$$
  $i = 58^{\circ} 8$   
 $T = 188286$   $\Omega = 83^{\circ} 37$   
 $e = 01698$   $\lambda = 263^{\circ} 35$   
 $\alpha = 0'' 53$ 

MR J W Froley has more recently examined this orbit (Astronomy and Astrophysics, June, 1893), and obtained a set of elements which do not require any large corrections:

$$P = 17715 \text{ years}$$
  $\Omega = 75^{\circ}35$   
 $T = 187862$   $\iota = 73^{\circ}95$   
 $\ell = 030$   $\lambda = 327^{\circ}35$   
 $\ell = 0000$ 

^{*} Astronomical Journal, 355



While in Virginia recently, I took occasion to measure this star, and, although the object was seen with difficulty, owing to its low altitude, I could discover a distinct elongation in the direction 194°7, the distance could not be fixed with much confidence, but my settings of the micrometer gave 0"35. The estimates of distance were substantially the same, but I am now convinced, from my distinct recollection of the appearance of the object, that both the measure and the estimate were too large. The star could not be separated, although it was sharply elongated with a power of 1300, the distance was probably less than 0"25

From an examination of all the measures of this pair, we have derived the following elements.

$$P = 18.85 \text{ years}$$
  $\Omega = 69^{\circ} 3$   
 $T = 1878.80$   $\iota = 67^{\circ} 32$   
 $\iota = 0.279$   $\lambda = 328^{\circ} 1$   
 $\iota = 0.07686$   $\iota = -19^{\circ} 0.098$ 

#### Apparent orbit.

Length of major axis = 1'' 300Length of minor axis = 0'' 423Angle of major axis  $= 74^{\circ} 8$ Angle of periastron  $= 82^{\circ} 8$ Distance of star from centre = 0'' 168

### COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	θα	ρο	P¢	$\theta_o$ — $\theta_c$	ρ _ο ρ _c	n	Observers
1867 80 1878 70 1879 71 1880 62 1881 61 1886 62 1888 66 1889 41 1890 49 1891 53 1892 39	260 8 84 2 54 8 62 1 36 1 271 3 259 3 255 1 246 5 245 1	254 8 85 6 69 4 57 7 42 2 273 7 260 9 256 7 251 7 246 5 241 8	0 48 0 42 0 3± 0 55 0 31 0 65 0 67 0 81 0 76 0 61 0 60	0 81 0 41 0 48 0 42 0 33 0 59 0 79 0 81 0 78 0 70 0 60	$ \begin{array}{c}  & & & & \\  & + & 60 \\  & - & 14 \\  & - & 146 \\  & + & 44 \\  & - & 61 \\  & - & 24 \\  & - & 16 \\  & - & 16 \\  & - & 06 \\  & \pm & 00 \\  & + & 33 \end{array} $	-0 33 +0 01 -0 18 +0 13 -0 02 +0 06 -0 12 ±0 00 -0 02 -0 09 ±0 00	1 1 1 2 2 4 7 5 3 3	Newcomb Burnham Buinham Buinham Hall Buinham 6, Leavenworth 1 Buinham Buinham Buinham Burnham Burnham

#### EPHEMERIS t $\rho_c$ $\theta c$ $\rho_c$ 0.37 498 0 24 1899 50 118 1 1896 50 0 47 1900 50 299 028 1897 50 76563 5 0 46 1898 50

When we consider the small number of observations, and the discordant character of some of them, we must regard these elements as highly

satisfactory. It is not likely that they will be materially changed by future observations, but for some time this rapid binary will deserve careful attention. The eccentricity of the orbit appears to be fairly well defined, and is rather smaller than usual; good observations during the next five years will enable us to fix this element with the desired precision. The star is now very difficult, and will remain so for several years, but it is constantly within reach of our large refractors

### γ CORONAE AUSTRALIS = H₂ 5084.

 $\alpha = 18^{\rm h}~59^{\rm m}~6~~,~~\delta = -37^{\rm o}~12'$  5 5, yellowish , 5 5, yellowish

Discovered by Sir John Herschel, June 20, 1834

#### OBSERVATIONS

t	00	Po	n	Observers	t	$\theta_o$	ρο	n	Observers
1834 47	37 [°] 1	3"±	1	$\mathbf{Herschel}$	1859 72	$338^{\circ}1$	$1^{''}\!\!5\pm$	4-2	Powell
1835 43	37 0	_	1	Herschel	1861 69	328 8	15±	4–1	Powell
1835 56	36 7	_	1	Herschel	1862 27	325 3	15±	5–1	Powell
1836 43	34 5	3 67	1	Herschel	1863 84	318 1	_	4	Powell
1837 35 1837 44	$32\ 0$ $33\ 9$	$\begin{array}{c} 2\ 63 \\ 2\ 76 \end{array}$	1 1	Herschel Herschel	1870 19	286 9	_	2	Powell
1837 45	$32\ 2$	204	1	Herschel	1871 22	281 9		1	Powell
1837 46	32 7	2 40	1	Herschel	1875 65	257~4	1 45	4	Schiaparelli
$1847\ 32$	141	2 30	1	Jacob	1876 64	2531	1 67	_	Stone
1850 51	59	229	4	Jacob	1877 43	$248 \ 4$	1 49	5	Schiaparelli
1851 48	44	226	6	Jacob	1877 63	$246\;6$	1 44	4–3	Stone
$1852\ 27$	3.4	1 89	3	Jacob	1878 49	$242\ 6$	1 36	2	Stone
1853 52	359 1	1 83	-	Jacob	1880 46	233 1	1 15	1	Russell
1853 71	358 6	$2 \pm$	4-1	Powell	1880 67	$232\ 4$	132	1	Haigiave
1854 26 1854 78	356 2 355 6	171	$\frac{3}{3}$	Jacob	1881 72	$225\ 5$	1 42	3–2	H C Wilson
		_		Powell	$1883 \ 62$	$217\ 7$	1 66	41	H C Wilson
1855 77	352 9		5	Powell	1886 58	200 3	1 37	6	Pollock
1856 22	350 8	1.68	8–7	Jacob	188670	$203 \ 5$	1.52	1	${f Russell}$
1856 67	348 1	1 66	3	Jacob	1887 69	1966	1 16	4	Pollock
1857 21	348 <b>4</b>	167	5	Jacob	1887 73	1962	1 68	4–1	$\mathbf{Tebbutt}$
1857 66	346 3	1 55	3	Jacob	1888 61	1893	1 71	6–3	Tebbutt
1858 20	3434	1 53	3	Jacob	1888 71	188 0	12	1	Leavenworth

t	$\theta_o$	$\rho_o$	n	Observers	t	$\theta_o$	Po	$\boldsymbol{n}$	Observers
1889 41	$185\overset{\circ}{4}$	1 70	4–3	Buinham	1891 75	$176^{\circ}7$	$1^{''}54$	9_4	$\mathbf{Tebbutt}$
1889 84	185 4	2 30	4–1	Tebbutt	1892 64	172 9	1 65	5-2	Tebbutt
189059 $189065$	$\begin{matrix} 182\ 9 \\ 180\ 3 \end{matrix}$	1 61 0 99	$\begin{array}{c} 4 \\ \mathbf{6-4} \end{array}$	Tebbutt Sellors	1894 80	165 5	1 62	5-6	Tebbutt
1891 53 1891 70	176 9 177 6	1 68 1 33	3 3	Burnham Sellors	1895 73 1895 73	161 9 164 1	1 59 1 55	1–2 2–1	See Moulton

During his sojourn at Feldhausen Herschel made careful measures of this object with the seven-feet equatorial, and on two occasions swept over it with the twenty-feet reflector * In sweep 461 he saw the pair under specially favorable conditions, and estimated the distance of the components at 3". This value is therefore adopted in the table of observations instead of the distance (1"23") indicated by the micrometer, which was viriated by troublesome hitching of the threads, and had to be rejected as worthless. Herschel showed from his observations that the system had a considerable retrograde motion, and hence it was subsequently followed by Jacob, Powell, Russell, Tebbutt and other southern observers. At the present time the are described amounts to 238°, and even if the observations are not very numerous, they are sufficient, both in point of quantity and quality, to give an orbit which will undoubtedly prove to be substantially correct

The components are nearly equal in magnitude, and, as they are never closer than 1"42, the pair is always comparatively easy, and even if difficulties arise in the measurement of distance, there will be practically no difficulty, as Herschiel remarks, in determining the angle with the necessary accuracy. In dealing with the orbit of a bright pair with equal components, it is clear that unusual weight should be given to the position angles, and especially when the stars are fairly wide, but the measured distances are affected by relatively large errors. The orbit of this star is therefore based mainly on the angles, but the distances have been of no small service in the final definition of the elements. Some of the orbits which have been published by previous investigators are as follows.

P	$oldsymbol{T}$	е	a	v	ı	λ	Authority	Source
78 80 93 34 121 24 154 41	1863 08 1882 77 1883 20 1886 53 1887 40 1885 19 1879 33 1876 84	0 602 0 6989 0 6974 0 322 0 324 0 303 0 331 0 4244			53 6 111 45 69 3 47 43 50 5 48 8 35 62 35 6	283 95 141 0 — 153 4	Schiaparelli, 1876 Downing, 1883 Gore, 1885 Wilson, 1886 Powell, 1890 Sellors, 1892	MN, XV, p 208 AN, 2073 MN, XLIII, p 368 MN, XLVI, p 103 Gore's Catalogue, pH Gole's Catalogue, pH MN, LIII, p 45 MN, LIII, p 503

^{*} Astronomische Nachrichten, 3323

An investigation of all the observations has led to the following elements of  $\gamma$  Coronae Australis

P = 152 7 years  $\Omega = 72^{\circ} 3$  T = 1876 80  $i = 34^{\circ} 0$  e = 0 420  $\lambda = 180^{\circ} 2$  $\alpha = 2'' 453$   $n = -2^{\circ} 3575$ 

Apparent orbit.

Length of major axis = 4'' 906Length of minor axis = 3'' 661Angle of major axis  $= 72^{\circ} 2$ Angle of periastron  $= 252^{\circ} 1$ Distance of star from centre = 1'' 033

#### COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θ.	$\theta$ •	ρο	ρς	θοθσ	ρορο	n	Observers					
1834 47	37°1	37°1	3"±	2 80	±00	$+0^{''}20$	1	Herschel					
1837 42	327	32 7	$\begin{array}{c} 3 \pm \\ 266 \end{array}$	266	±00	±000	$\overline{4}$	Herschel					
1847 32	141	14 6	$\frac{2}{2}\frac{30}{30}$	2 20	-0.5	+0.10	1	Jacob					
1850 51	59	59	$\begin{array}{c} 2 \ 00 \\ 2 \ 29 \end{array}$	2 03	±00	+0.26	$\overline{4}$	Jacob					
1851 48	44	44	$\begin{array}{c} 2 \ 26 \end{array}$	200	±00	+0.26	6	Jacob					
1852 27	34	23	1 89	1 96	+11	-0.07	3	Jacob					
1853 61	358 8	358 2	1 91	1 90	+06	+0 01	6±	Jacob, Powell 4-1					
1854 52	355 9	355 5	171	1 86	+04	-0.15	6–3	Jacob 3, Powell 3-0					
1856 44	349 5	349 3	1 67	178	+0.2	-0.11	11-10	Jacob 8-7, Jacob 3					
1857 43	347 3	345 5	1 61	173	+18	-0.12	8	Jacob 5, Jacob 3					
1858 20	343 4	342 6	1 53	170	+08	-0.17	3	Jacob					
1859 72	338 1	336 8	15±	164	+13	-014	4-2	Powell					
1861 69	328 8	328 5	15±	1 58	+03	-0 08	4-1	Powell					
1862 27	325 3	325 8	15±	1 56	-05	-0.06	5-1	Powell					
1863 84	3181	319 0	_	1 52	-09		4	Powell					
1870 19	286 1	287 0		144	-09		2	Powell					
1871 22	281 9	281 3	<u> </u>	1 43	+06		1	Powell					
1875 65	257 4	258 1	1 45	1 43	-0.7	+0 02	4	Schiaparelli					
1876 64	253 1	253 0	1 67	1 43	+01	+024	_	Stone					
1877 53	247 5	247 9	1 47	1 42	-04	+0 05	9-7	Schiaparelli 5, Stone 4-3					
1878 49	242 6	243 0	1 36	1 43	-04	-0.07	2	Stone					
1880 57	2327	232 0	124	1 43	+07	-019	2	Russell 1, Hargrave 1					
1881 72	2255	226 1	1 42	1 43	-06	-0.01	3–2	H C Wilson					
1883 62	217 7	2163	1 66	1 43	+14	+0.23	4-1	H C Wilson					
1886 64	2019	200 6	1 44	1 44	+13	±000	7	Pollock 6, Russell 1					
1887 71	1964	195 2	1 42	1 46	+12	-0.04	8-5	Pollock 4, Tebbutt 4-1					
1888 66	188 6	190 6	1 46	1 47	-20	-0 01	7-3	Tebbutt 6-3, Leavenworth 1					
1889 62	1854	1861	1 70	1 49	-0.7	+0.21	8-3	Buinham 4-3, Tebbutt 4-0					
1890 62	181 6	181 6	1 61	1 51	±00	+010	10-4	Tebbutt 4, Sellors 6-0					
1891 53	1769	177 0	1 68	1 54	-01	+014	3	Burnham					
1892 64	1729	1723	1 65	1 57	+06	+0 08	5–2	Tebbutt					
1894 80	165 5	163 5	1 62	1 65	+20	-0 03	5-6	Tebbutt					
1895 73	159 2	159 9	1 59	1 69	-07	<b>—010</b>	2	See					

#### EPHEMERIS

t	θσ	Pc	t	$\theta$ _o	$ ho_o$
1896 50	$157^{\circ}4$	$1^{''}\!71$	1899 50	$147\overset{\circ}{2}$	$oldsymbol{1}^{''}\!85$
1897 50	1540	1 76	1900 50	1438	1 90
1898 50	150 6	1.80			



			,
T.	ı		t

It will be seen that my orbit is quite similar to that found by Gore. Though the period is not defined with the greatest accuracy, it does not seem probable that the value given above can be uncertain by more than five years. The eccentricity will certainly be in the immediate neighborhood of the value here assigned, and an error exceeding  $\pm 0.02$  is very improbable. The orbit of  $\gamma$  Coronae Australis is therefore comparatively well determined, and yet as great accuracy in the orbits of double stars is ultimately desirable, southern observers will find this system worthy of constant attention.

### $\beta$ DELPHINI = $\beta$ 151.

 $\alpha = 20^{h}~32^{m}~9$  ,  $\delta = +14^{\circ}~15'$  4, yellow , 6, yellowish

Discovered by Burnham with his celebrated six-inch Clark Refractor in August, 1873

OBSTRUATIONS												
t	$\theta_o$	$\rho_o$	n	Observers	t	$\theta_{o}$	$\rho_o$	$\boldsymbol{n}$	Obscivers			
1873 60	355 ±	0″7	1	Burnham	1885 61	$222^{\circ}9$	<0"4	1	H Struve			
1874 66	15 5	0 65	5	Dembowskı	1885 95	216 6	0 38	8	Englemann			
1874 70	13 6	0 49	3–1	Newcomb	1886 78	257 8	obl	1	H Struve			
1874 73	8 0	0 69	1	O Struve	1886 88	238 1	0 22 ±					
1014 10	80	0 09	1	O Siluve	1			7	Schiaparelli			
1875 61	147	042	4	Schiaparelli	1886 91	2195	0 39	4	Englemann			
$1875\ 65$	<b>2</b> 0 <b>1</b>	0.54	4	Dembowskı	1887 55	2785	0 36	5	Tarrant			
1876 65	25 8	0 48	4	Dembowski	1887 66	2720	0 39	5	H Struve			
1010 00	200	0 40	4:	Dembowski	1887 75	308 1	$0.3 \pm$	1	Hough			
1877 27	17.7	0.35	2	Schiaparelli	1887 85	2878	$02\pm$	8	Schiaparelli			
1877 71	297	0 51	5	Dembowski	1000 05	0040	0.00	_	-			
187779	408	0 32	2	Buinham	1888 65	304 0	0 30	5	Burnham			
1070 05	<b>20.7</b>	0.04		<b>3</b> 0 1	1888 76	300 9	0 35	3	H Struve			
1878 65	53 7	0.24	4	Burnham	1888 84	311 5	0.25	17	Schiapaielli			
1878 <i>75</i>	<b>59</b> 2		1	Dembowskı	1889 50	314 2	0 31	5	Burnham			
$1879\ 56$	$90 \pm$	elong doubtful	2	Burnham	1889 78	318 5	0 43	6	H Struve			
1880 68	133 6	0 26	3	Burnham	1889 86	319 2	$0.37 \pm$	11	Schiaparelli			
188075	$214\ 5$	$02\pm$	2	Hall	1890 49	$324 \ 2$	0 45	4	Burnham			
1881 54	149 2	0 26	5	Burnham	1890 89	326 5	0 43	12	Schiaparelli			
1881 88	1547		1	Bigourdan	1891 45	331 6	0 38	4	Burnham			
1882 60	107 5	0.00	•	TO 1	1891 64	3301	0 39	3	Hall			
1004 00	167 5	0 26	3	Burnham	1891 76	334 0	0 48	5	H Struve			
$1883\ 25$	$183 \ 9$	019	7	Englemann	1891 85	158 2	_	1	Bigourdan			
$1883\ 55$	$182\;5$	0 23	3	Buinhain	1891 87	333 7	0 43	9	Schiaparelli			
1884 69	195 9	0 32	3	Hall	1892 39	338 7	0 50	4	Burnham			
1884 71	1977	0.32	4	Englemann	1892 88	337 6	0 49	$\overline{2}$	Barnard			
188477	$199\ 2$	0 29	5	Buinham	1892 93	340 7	0 52	5	Schiaparelli			

$oldsymbol{t}$	$\theta_o$	$\rho_o$	$\boldsymbol{n}$	Observers	l t	$\theta$ o	$\rho_o$	n	Observers
1893 52	$339^{\circ}2$	$0^{''}58$	2	Leavenworth	1894 79	$348^{\circ}6$	<u>"</u>	1	HC Wilson
1893 53	338 8	0 73	2	HC Wilson	1894 83	347 2	0 48	13	Schiaparelli
1893 62	335 3	0 57	3	Hough					_
1893 70	$342\ 2$	0.56	5	Barnard	1895 31	3518	0 50	1	See
189379	346 8	0 51	3	${f Comstock}$	1895 42	349 8	0 73	6	Barnaid
$1893\ 87$	344 2	049	13	Schiaparelli	1895 61	$352 \ 1$	0 80	1	See
$1893\ 95$	345 8		1	Bigourdan	1895 61	$352 \ 1$	0.64	1	See
1894 51	346 3	0 56	8	Barnard	1895 66	350 8	0 58	3	Comstock

When discovered in 1873 the companion was near its maximum elongation, and was easily measured by Dembowski in 1874. The measures of the next few years showed that the pair had a rapid direct motion * In 1879-80 the distance of the components became so small (about 0" 20) that the object could be elongated only by the most powerful telescopes. The measures at this time are therefore few in number, and necessarily of doubtful accuracy.

Since the epoch of Dembowski's measures in 1874, the radius-vector of the companion has swept over 335 degrees of position-angle, and the intervening observations enable us to determine the orbit with a comparatively high degree of precision. The following table gives the orbits hitherto published for this star

P	T	e	а	Ω	ı	λ	Authorn	ty	Source
26 07 30 91 16 95 22 97 24 16	1882 19 1882 25 1885 80 1882 37 1882 38	0 357 0 337 0 096 0 260 0 284		163 6 2 67 10 9 174 2 174 4	54 9 59 33 61 6 64 1 64 64	3278 $2209$ $3439$	Dubiago, Goie, Celoria, Glasenapp, Glasenapp,	1885 1888 1893	A N, 2602 Proc R I A, IV, no 5 A N, 2824 A N, 3177 A N, 3177

From an investigation of all the observations we find the following elements for  $\beta \ Delphini$ .

$$P = 27.66 \text{ years}$$
  $\Omega = 3^{\circ} 9$   
 $T = 1883.05$   $\iota = 61^{\circ} 35$   
 $e = 0.373$   $\lambda = 164^{\circ} 93$   
 $\alpha = 0'' 6724$   $n = +13^{\circ} 015$ 

### Apparent orbit:

Length of major axis = 1'' 060Length of minor axis = 0'' 477Angle of major axis  $= 2^{\circ} 5$ Angle of periastron  $= 176^{\circ} 6$ Distance of star from centre = 0'' 194

^{*} Astronomical Journal, 857.



	•		

The accompanying table of computed and observed places shows that these elements are extremely satisfactory. The only large residual is that of 1880, which is probably due to an error of observation incident to the excessive closeness of the components

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θ.	θο	ρο	ρ۵	θοθο	ρ _ο ρ _ο	n	Observers
1874 66	15 5	$15^{\circ}2$	0 65	0 62	+ 0 3	+0"03	5	Dembowski
1875 65	201	20 0	0 54	0 55	+ 01	-0.01	4	Dembowski
1876 65	258	26 2	0 48	0 48	- 04	±000	$\overline{4}$	Dembowski
1877 75	35 3	36 2	0 41	0.38	_ 09	+0.03	7	Dembowski 5, Burnham 2
1878 70	56 4	50 1	0.24	0.29	+ 63	-0.05	5-4	Burnham 4, Dembowski 1-0
1879 56	90±	71.3	elong doubtful	0 23			2	Burnham
1880 68	133 6	1147	0 26	0.20	+189	+0 06	3	Burnham
1881 54	149 2	145 6	0 26	0.24	+ 36	+0.02	5	Burnham
1882 60	167 5	$169 \ 1$	0 26	0 31	<b>- 16</b>	-0.05	3	Burnham
1883 40	1832	181 7	0 21	0 33	+ 15	-0.12	10	Englemann 7, Burnham 3
1884 72	1976	$201\ 2$	0 31	0 33	_ 36	-0.02	12	Hall 3, Englemann 4, Burnham 5
1885 95	2198	$220 \ 7$	0 39	0.28	- 09	+0.11	9	Englemann 8, II Struve 1
1886 86	248 0	247.4	0 30	0.24	+ 06	+0.06	8-11	Sch 7, Englemann 0-4, H Struve 1-0
1887 70	2752	271.8	0 31	0.24	+ 34	+0.07	18-19	
1888 65	302 4	2963	0 30	027	+ 61	+0.03	8-5	Burnham 5, II Struve 3-0
1889 68	3173	3138	0 34	034	+ 35	$\pm 0.00$	16	β 5, Schiaparelli 11, II Struve 6-0
1890 69	3253	325 2	0 44	0 41	+ 01	$\pm 0.03$	16	Burnham 4, Schiaparelli 12
1891 68	332 4	333.5	0 42	0 48	- 11	-0.06	21	β 4, III 3, Schiaparelli 9, H Stiuve 5
1892 66	339 7	339 9	0 51	0 54	- 02	-0.03	9	Schiaparelli 5, Burnham 4 [Big 1-0]
1893 71	341 7	344 8	0 58	0 61	- 31	-0.03	24 - 23	
1894 81	347 9	349 3	0 48	0 65	_ 14	-0.17	14-13	H C Wilson 1-0, Schiaparelli 13
1895 51	352 0	351 9	0 65	0 68	+ 01	-0.03	3	See

The present orbit is somewhat more eccentric than those heretofore published, and in this respect it conforms better to the general rule among binaries. That the orbit has an eccentricity of about this magnitude is evident from the rapid motion of the radius-vector in the periastral region, and its slow motion at the present time. The slow, angular motion of the radius-vector during recent years indicates, of course, that the distance of the companion is much increased, and this leads us to remind observers that the present distance is sensibly larger than some have indicated by their measures. At present the distance is probably over 0" 65, and for some years will slightly augment

It does not seem at all probable that the true elements of this remarkable binary can differ materially from those here obtained. Nevertheless, additional exact measures will be valuable in fixing the orbit with great accuracy, and as the star will be relatively easy for several years, observers should give it regular attention. The following is a short ephemeris:

t	$\theta_c$	ρε	$oldsymbol{t}$	$\theta_c$	$\rho_c$
- 000 H-	2220	0,774	4000 84	٥	"
$1896\ 51$	$355\ 3$	0.71	$1899\ 51$	49	0.72
1897 51	$358\ 6$	0.72	1900 51	8 2	0 69
1898 51	17	0.72			

# 4 AQUARII = 2729.

 $\alpha = 20^{h} \ 46^{m} \ 1$  ,  $\delta = -6^{\circ} \ 1'$  6, yellow , 7, yellow

Discovered by Sir William Herschel, September 3, 1782

#### OBSERVATIONS

t	$\theta_o$	Po	$\boldsymbol{n}$	Observers	t	$\theta_o$	$\rho_o$	n	Observers
178355	351 [*] 5		1	Herschel	$1875\ 62$	<b>157</b> 0	$0^{''}4\pm$	4	Schiaparelli
$1802\ 65$	28 9		2	Herschel	1877 15	148 7	0 56	3	Dembowskı
$1825\ 60$	27.5	0 80	<b>2</b>	Struve	1877 70	158 5	05±	1	Cincinnati
$1830\ 92$	134	0 69	1	Struve	1879 44	156 4	0 57	5–1	Cincinnati
$1832\ 73$	<b>4</b> 6 0	0 67	2-1	$\mathbf{Herschel}$	1879 76	155.9	0.40	4.	Hall
$1832\ 90$	23 0	oblonga	1	Struve	1880 78	1655	0 51	2	Pritchett
183377	312	0 67	1	Struve	1881 54	$159\ 6$	0 52	3	Burnham
$1836\ 05$	463	0 41	4	Struve	1883 84	$182\ 1$		1	Seabroke
$1839\ 68$	62~2	_	2	Dawes	1884 77	166 8		7	Seabroke
184072	<b>65 5</b>	06±	2	Dawes	1885 64	156 1		1	Seabroke
1841 51	24 6	$0.6 \pm$	1	Mädler	1885 74	167 9	0 46	3	Hall
1841 80	72.7		1	Dawes	1886 69	$162\ 5$	_	1	Seabroke
$1842\ 82$	<b>27 2</b>	0 45	2-1	$\mathbf{M}$ ädler	188674 $188684$	$168\ 3$ $174\ 8$	0 <b>54</b> 0 <b>47</b>	$\frac{3-2}{2}$	Leavenworth
$1843\ 70$	31 9	$05\pm$	3	$\mathbf{M}$ ädler					Hall
184376	81 7	_	1	Dawes	1887 28 1887 79	1734 $1759$	0 41 0 53	$7 \\ 3$	Schiaparelli Hall
1844 90	231	$05\pm$	1	${f M}$ ädler	1887 82	170 5	0.53	$egin{array}{c} 3 \\ 2 \end{array}$	Tariant
$1853\ 70$	95 9	$05\pm$	1	Dawes	1888 81	$172\ 4$	0 48 ±	5	Schiaparelli
$1854\ 75$	101 7	03±	1	Dawes	1889 51	155 5		1	Seabroke
1855		-	1	Secchi	1889 88	176 7	$0.49\pm$	2	Schiapai elli
1856 81	1078	03±	1	Secchi	1890 78	$178\ 2$	0 49	2	Tarrant
$1862\ 68$	$137\;5$	oblonga	3	Dembowskı	1891 77	1781	$0.50 \pm$	1	Schiaparelli
1865 71	$125 \pm$	cuneo	1	Secchi	1892 70	184 5	0 55	3	Tarrant
186574	143.6	_	1	$\mathbf{Talmage}$	1892 80	181 7	0 33	2-1	Comstock
1866 08	139 6	oblonga	3	Dembowskı	1892 91	187 0	$04\pm$	1	Schiaparelli
1866.65	125 5		3	Searle	1893 81	1824	$0.35\pm$	2-1	Comstock
1866.66	110 0		5	Winlock	1894 86	186 5	$0.38 \pm$	3	Schiaparelli
1867.86	141 1	0 30	1	Newcomb	1895 61	193 9	0 30 ±	1	Comstock
1872 88	147.5	oblonga	5	Dembowskı	1895 73	184.2	0 33	3	See

This double star is always an exceedingly close and difficult object WILLIAM HERSCHEL measured the position-angle in 1783, and on repeating his observation in 1802, concluded that in nineteen years the motion had amounted to 37° 4 (Phil Trans, 1804, p 371) In 1825 the star was measured by Struve on two nights, his observations gave  $\theta = 25^{\circ} 0$ ,  $\rho = 0'' 81$ ,  $\theta = 30^{\circ} 0$ ,  $\rho = 0'' 80$ These results do not accord well with those of 1802, but we may infer with-DAWES (Mem RAS., vol xxxv p 427) that Herschiel's second observation is For it is clear that the angle could not have been the same in 1802 as in 1825, and the subsequent motion of the star shows that Struve's first position is essentially correct. All the early and some of the more recent measures of 4 Aquarii are extremely discordant, and great difficulty is experienced Careful sifting of the in determining what measures ought to be relied upon observations and judicious combinations of individual results will alone insure suitable mean places for the derivation of a satisfactory set of elements have relied principally upon the work of SIR WILLIAM HERSCHEL, STRUVE, SIR John Herschel, Dawes, Madler, Secchi, Dembowski, Hall, Burnham, Schiaparelli and Comstock

The following elements of 4 Aquarii have been published by previous computers

P	T	e	а	Ω	ı	λ	Authority	Source
129 8 126 65		0 46 0 543				$235^{\circ}0 \\ 74^{\circ}25$	Doberck, 1877 See, 1895	

A revision of my former orbit of this star gives the following elements

$$P = 129 \text{ 0 years}$$
  $\Omega = 177^{\circ} \text{ 7}$   
 $T = 1899 \text{ 40}$   $i = 72^{\circ} 53$   
 $e = 0.514$   $\lambda = 68^{\circ} 63$   
 $a = 0'' 732$   $n = +2^{\circ} 7907$ 

#### Apparent orbit

Length of major axis = 1'' 288Length of minor axis = 0'' 43Angle of major axis  $= 0^{\circ} 3$ Angle of periastron  $= 215^{\circ} 2$ Distance of star from centre = 0'' 173

The accompanying table of computed and observed places shows a very satisfactory agreement. The present orbit is narrower than the one recently published in the *Astronomical Journal*, 341, but the great discordance of results of individual observers shows that the object has always been extremely close;

and hence we think the chances favor the present orbit, which differs from the previous one chiefly in the higher inclination. It is noticeable that the representation of the more recent observations is sensibly improved.

COMPARISON	OΤ	COMPTITED	with	ORSERVED	PLACES

· t	θο	θε	ρο	ρο	θοθ c	ρορε	n	Observers
1783 55	351 5	352°2		0 53	_ 0°7		1	Herschel
1825 60	25 0	24 0	0 80	0 64	+ 10	+0.16	1-2	Struve
1832 18	27 5	31 4	0 69	0 55	_ 39	+014	4–1	Struve 1, Herschel 2-1, Struve 1
1833 77	31 2	33 5	0 67	0 53	_ 23	+0.14	1	Struve ,
1836 05	40 9	37 0	0 41	0 50	+ 39	-0 09	4	Struve
1841 12	450	464	06±	0 43	_ 14	+0.17	3	Dawes 2, Mädler 1
1842 31	499	50 3	0 45	0 40	- 04	+0.05	3–1	Dawes 1, Madler 2-1
1843 73	56 8	53 0	05±	0 39	+ 38	+0.11	4-3	Mädler 3, Dawes 1
1849 30	59 5	688	05±	0 34	- 93	+0.16	2	Madler 1, Dawes 1
1854 75	101 7	85 9	$0.3 \pm$	0 31	+158	-0.01	1	Dawes
1856 81	107 8	978	03±	0 31	+100	-0.01	1	Secch1
1864 20	131 2	125.4	cuneo	0 34	+ 58	<u> </u>	4.	Dembowski 3, Secchi 1
1866 08	139 6	131 2	oblonga	0 36	+84		3	Dembowski 3
1867 86	141 1	136 2	0 30	0 38	+ 49	-0.08	1	Newcomb
1872 88	147 5	142.6	oblonga	0.41	+ 49		1 5 8	Dentorista.
1876 82	154 7	155 2	0 49	0 47	- 05	+0 02		Schiaparelli 4; Dembowski 3; Cinn. 1
1879 60	156 2	159 7	0 49	0 49	- 35	±000	9-5	Cincinnati 5-1, Hall
1881 16	162 5		0 52	0 50	+ 04	+0.02	5	Pritchett 2, Burnham 3
1885 74	167 9	168 9	0 46	0 51	-10	-0.05	3	Hall
1886 79	171 5	170 5	0 50	0 51	+ 10	<b>—</b> 0 01	5-4	Leavenworth 5-2, Hall 2
1887 63	1733	172 2	0 49	0 50	+ 11	-0.01	12	Schiaparelli 7, Hall 3, Tarrant 2
1888 81	1724	173 5	0 48	0 49	_ 11	-0 01	5	Schiaparelli
1889 88	176 7	1753	$049 \pm$	0 48	+ 14	+001	2	Schiaparelli
1890 78	178 2		0 49	0 47	+ 13	+0.02	2	Tarrant
1891 77	1781		$0.50 \pm$	0 45	- 04	+0 05	1	Schiaparelli
1892 85	181 7	181 0	0 37	0 42	+ 07	-0.05	2	Comstock 2-1, Schiaparelli 0-1
1893 25	183 4		0 45	0 41	+ 16	+0 04	5-4	Tarrant 3, Comstock 2-1
1894 86	186 5		$0.38 \pm$	0 37	+ 12	+001	3	Schiaparelli
1895 67	189 0	188 8	0 32	0 33	+ 02	_0 01	4	Comstock 1, See 3

The period here indicated is not likely to be in error by more than five years, while a variation of  $\pm 0.03$  in the eccentricity does not seem probable. It is therefore unlikely that future observations will greatly alter the present elements, but as some improvement is still desirable, astronomers should continue to give this star careful attention. During the next few years the motion will be very rapid, and the object excessively difficult, but for this very reason observations will be the more valuable

The following is an ephemeris for five years:

$oldsymbol{t}$	$oldsymbol{ heta}_{\epsilon}$	$ ho_c$	$oldsymbol{t}$	$oldsymbol{ heta_c}$	$\rho_c$
1896 80	$193\degree 5$	$0^{''}\!28$	1899 80	$224^{\circ}0$	$0^{''}$ 14
1897 80	1994	024	1900 80	$244 \ 1$	0.12
1898 80	$208 \ 1$	0 19			



### δ EQUULEI = ο Σ 535.

 $a = 21^{h} 9^{m} 6$  ,  $\delta = +9^{\circ} 37'$ 45, yellow , 50, yellow

Discovered by Otto Struve, Avgust 19, 1852

#### OBSERVATIONS

t	$\theta_o$	Po	n	Observers	t	$\theta_o$	ρo	n	Observers
1852 64	$2\overset{\circ}{2}5$	$0^{''}45$	1	O Struve	1881 46	$22^{\circ}1$	0"38	4	Burnham
1852 67	188	0 43	1	O Struve	1882 63	98	0 29	3	Burnham
1853 91	119	0 27	1	O Struve	1883 55	307 6	0 21	3	Burnham
1854 69	sin	nple	1	O Struve	1886 84	203 5	0 47	2	Hall
1856 57	SII	nple	1	O Struve	1886 87	$204 \ 6$	0 35	6-2	Schiaparelli
1857 67	207 6	0 21	1	O Struve	1886 91	$203\ 2$	0 47	4	Englemann
1857 67	2118	0 23	1	O Struve	1887 78	$195\ 2$	0 49	2–1	$\mathbf{Hough}$
	168	0 40	1	O Struve	1887 79	$195\ 8$	0 44	5	Tarrant
185859	10.9	0 40	1	OBullye	1887 80	1987	0 41	4	Hall
$1859\ 65$	13 5	0 39	1	O Struve	1887 86	1950	0 33	11–8	Schiaparelli
1861 57	236 ?	oblong	1	O Struve	1888 69	1899	0.25	4	Burnham
1865 91	203 3	<05	1	O Struve	1888 90	187 0	0 15	14–10	Schiaparelli
-,	15 6	•	6-0	Harvard	1889 51	163 2	0 10 ±	1	Burnham
1869 7 <b>4</b>	19.0	_	0-0	TIMI VAIC	1889 82	193 1	0 2 ±	1	Hough
187073	8 0		1–0	${f Dun\'er}$	1889 84	1750	0 15	3	Schiaparelli
1874 67	24 0	oblong	1–0	O Struve	1890 88	single		3	Schiaparelli
187473	180	cuneifoi me	e <b>1</b> –0	O Struve	1891 63	316	0 20	5	Burnham
1874 75	$221\ 2$	0 33	1	O Struve	1891 85	234	0 21	5	Schiaparelli
1877 76	<b>1</b> 56 <b>4</b>	0 2 ±	1	Burnham	1892 39	266	0 35	4	Burnham
		1 1 1 0 . 1	2	Burnham	1892 91	22.8	0 30	<b>2</b>	Schiaparelli
1878 65	elong.	loubtful	Z	Durnnam	1893 93	168	0 25	. 6	Schiaparelli
1879 76	<b>150</b> 0	doubtful	2	$\mathbf{Hall}$	1893 97	200 2	_	1	Bigouidan
1880 60	29 1	0 35	5	Burnham	1894 85	simple	_	4	Schiaparelli

The pair was first measured in 1852, and when the observations were repeated the following year it was found that there was a slight diminution in the angle of position as well as in the distance. In 1854 and in 1856 the star was noted as single, but in 1857 the companion appeared in the opposite quadrant, and hence it became evident that the star is a binary in rapid retrograde motion. Continued observation disclosed the fact that the orbit is highly

inclined upon the visual ray, and STRUVE's measures seemed to indicate a period of 65 or 13 years. Since 1877 the star has been carefully followed by BURN-HAM, and by means of his fine series of observations we are enabled to derive a very satisfactory orbit.

The two orbits heretofore published for this star are as follows

P	T	e	а	ಬ	ı	λ	Authority	Source
11 48 11 45	1892 0 1892 80	0 20 0 14	$\begin{bmatrix} 0.41\\0.452 \end{bmatrix}$	$2\overset{\circ}{4}0$ $22\ 2$	81 [°] 8 79 05		Wrublewsky, 1887 See, 1895	AN, 2771 AN, 3290

An investigation of all the observations leads to the following elements of  $\delta$  Equiler

$$P = 1145 \text{ years}$$
  $\Omega = 22^{\circ} 2$   
 $T = 189280$   $\iota = 79^{\circ} 0$   
 $\iota = 0165$   $\lambda = 0^{\circ} 0$   
 $\iota = -31^{\circ}.441$ 

Apparent orbit

Length of major axis = 0'' 904Length of minor axis = 0'' 171Angle of major axis  $= 22^{\circ} 2$ Angle of periastron  $= 22^{\circ} 2$ Distance of star from centre = 0'' 075

The following table gives a comparison of the computed with the observed places, and shows that the present elements will never require any considerable correction. Only a few large deviations occur, and these are probably to be explained by the extreme difficulty of the object *

BURNHAM's measure of 1877 is marked "doubtful," and is practically only an estimate, as the object was very difficult to separate

It will be seen that the eccentricity of this orbit is considerably smaller than that generally found among double stars. It is also remarkable that the real major axis coincides with the line of nodes, so that  $\lambda$  is zero

 $\delta$  Equuler and  $\kappa$  Pegasi are the most rapid binaries in the heavens, and on this account are worthy of special attention from observers who have large telescopes. The elements given here need to be tested by further observation. It is especially important to determine the maximum distances of the companion when the angles are about 22° and 202° respectively, as this would furnish a more exact determination of the eccentricity and the major axis.

^{*}Astronomische Nachrichten, 3290



S Equulei= 0 ≥ 535=≥ 2777 AB



#### κ PEGASI = β 989

### COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	$\theta_o$	$\theta_c$	ρο	$\rho_c$	$\theta_o - \theta_c$	$\rho_o-\rho_c$	n	Observers
1852 65	200°6	202 5	0.44	0″52	_ i 9	0 -0 08	2	O Struve
		1		0 46		-0.19	ī	O Struve
1853 91						-0.10	$ \hat{2} $	O Struve
1857 67			0 40	0 38	- 42	+0.02	1	O Struve
1858 59			0 39	0 25	+ 18	+0.02	î	O Struve
1859 65		1	0 4 ±			+0 02±		O Struve
1865 91				0 38			6	Harvard
1869 74				0 31			1 1	Dunér
1870.73				0 97			2-1	O Struve
1874 74								Burnham
1877 76						$0.010\pm 0.02$	5	Burnham
1880 60			0 35	0 33		2 + 0.02		Burnham
1881 46			0 38			+0 01	4	
1882 63			0 29	0 24	+ 21	7 + 0.05	3	Burnham
1883 55						+0.12	3	Burnham
1886 87				0 52		7 - 0.05	12-6	Hall 2, Schiaparelli 6-2, Engleman
1887 81	196 2			0 50		7 - 0.08	22–18	Ho 2-1, Tar 5, Hall 4, Schiaparelli
1888 80		1929		0 49		-0 29	18–14	Burnham 4, Schiaparelli 14-10
1889 72			0 15	0 22		9 — 0 07	5	Burnham 1, Hough 1, Schiaparelli
1890 88		1 2 4		0 12	_	-	3	Schiaparelli
1891 74			0 20	0 26		5 - 0.06	10	Burnham 5, Schiaparelli 5
1892 65			0 32	0 38		2 - 0.06	6	Burnham 4, Schiaparelli 2
1893 93	1		0 25	0 26	1	8 - 0.01	6	Schiaparelli
1894 85	1	0040		0 10				Schiaparelli

### The following is a short ephemeris:

t	$ heta_c$	$ ho_c$	t	$\theta_c$	$_{_{\prime\prime}} ho_{c}$
1896 85	$21\overset{\circ}{1}$	$0^{''}\!\!39$	189985	1958	0 44
1897 85	$205\ 2$	0 50	1900 85	1864	0.28
1898 85	200 8	0.52			

## $_{\kappa}$ PEGASI = $\beta$ 989.

 $\alpha = 21^{h}~40^{m}~1~$  ,  $~\delta = +25^{\circ}~11'$  43, yellowish , 50, yellowish

Discovered by Burnham, August 12, 1880

#### OBSERVATIONS

t	$\theta_o$	$\rho_o$	n	Observers	l t	$\theta$ _o	Po	$\boldsymbol{n}$	Obse
1880 68	$137^{\circ}9$	$0^{''}\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	4	Burnham	1891 61	<b>1</b> 50°0	0 10	3	Buri
					1891 81	1446	0 13	4	$\mathbf{B}\mathbf{uri}$
$1883\ 02$	$116\ 0$	0 16	1	Englemann	1891 92	1590	0 18	3	$\operatorname{Sch}_{1}$
1888 78	274.7	0 23	3	Burnham					
				m 1.	1892 39	$132 \ 8$	0 18	4	Bur
188951	$262\ 3$	0 14	4	Burnham	1892 88	131 0	0 20	1	Bar
1890 57	187.1	0 10	4	Burnham	1892 96	1351	0 20	4	$\operatorname{\mathbf{Sch}}$

$oldsymbol{t}$	$\theta _{o}$	$\rho_o$	$\boldsymbol{n}$	Observers	t	$\theta$ _o	$\rho_{o}$	n	Observers
1893 51	$12\overset{\circ}{1}0$	$0^{''}\!29$	3	Leavenworth	1894 51	117 [°] 6	0″19	7 6	Barnard
189377	$127\ 5$	0.20	<b>2</b>	Bainaid	1894 83	1118	0.11	4	Lewis
$1893\ 82$	$130 \ 5$	0.25	2-1	Comstock	1891 87	1147	0.21	6	Schiaparelli
$1893\ 92$	$123\ 6$	0.27	8	Schiaparelli	1895 62	107 9	0.17	6	Barnard

This remarkable double star was discovered with the 18-inch refractor of the Dearborn Observatory. Its extreme closeness led to the belief that it would prove to be binary,* and accordingly it has been found to be in rapid revolution. Dr Englemann of Leipzig succeeded in making one measure of the pair in 1883, which indicated a retrograde motion. Burnium's measures were continued at the Lick Observatory from 1888 to 1892, and the new data thus obtained enabled him for the first time to get the approximate period of revolution (Monthly Notices, March, 1891)

At the request of Burnham and the writer, Barnard has since followed the star, and obtained additional measures which appear to be sufficient to give us a reasonably good approximation to the elements of the orbit. In his first examination of the motion of this pair, Burnham made the orbit nearly circular, but the recent observations show that the orbit has about the usual eccentricity prevailing among binaries, and that the inclination of the orbit is very high. In the Monthly Notices for November, 1891, Mr. Lewis has given a set of measures recently obtained with the Greenwich 28-inch refractor, and sketched an apparent orbit which would better satisfy the latest observations.

Having collected all the observations of this difficult star, including some unpublished measures kindly furnished by Barnard last Autumn, we have investigated the orbit by the method of Klinkerfues, and find the following elements:

$$P = 11 42 \text{ years}$$
  $i = 81^{\circ} 2$   
 $T = 1896 03$   $\Omega = 116^{\circ} 25$   
 $e = 0 49$   $\lambda = 89^{\circ} 2$   
 $a = 0'' 4216$   $n = -31^{\circ} 5236$ 

### Apparent orbit:

Length of major axis = 0'' 555Length of minor axis = 0'' 130Angle of major axis  $= 115^{\circ} 7$ Angle of periastron  $= 30^{\circ} 2$ Distance of star from centre = 0'' 032

^{*} Astronomische Nachrichten, 3285



COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	θο	$\theta_c$	ρο	$ ho_c$	$\theta_o - \theta_c$	ρ _ο —ρ _c	n	Obsei vers
1880 68	 137 9	136°7	0"27	0"22	$+\mathring{12}$	+0 05	4	Burham
1883 02	1160	1195	0 16	0.27	- 35	-011	1	Englemann
1888 78	$\begin{array}{c} 274.7 \end{array}$	274 1	0 23	0.21	+ 06	+0.02	3	Buinham
1889 51	$\frac{262}{262}$ 3	2579	0 14	0 15	+ 44	-0.01	4	Burnham
1890 57	187 1	191 5	0 10	0 10	_ 44	$\pm 0.00$	4	Buinham
1891 61	150 0	1450	0 10	0 18	+50	-0.08	3	Burnham
1891 81	144 6	140 2	0 13	0 20	+ 44	-0.07	4	Burnham
1891 92	159 0	139 2	0 18	0 20	+198	-0.02	3	Schiapaielli
1892 39	132 8	133 2	0 18	0 24	_ 0	-0.06	4	Burnham
1892 88	131 0	129 1	0 20	0 26	+ 19	-0 06	1	Barnard
1892 96	135 1	128 2	0 20	0 26	+169	-006	4	Schiaparelli
1893 51	121 0	125 5	0 29	0 27	_ 45	+0.02	3	Leavenworth
1893 77	127 5	123 2	0 20	0 28	+ 43	-0 08	2	Barnard
1893 82	130 5	123 0	0 25	0 28	+75	-003	2_1	Comstock
1893 92	123 6	122 2	0 27	0 28	+ 14	_0 01	8	Schiaparelli
1894 51	117 6	1188	0 19	0 26	-12	-0 07	7-6	Bainard
1894 83	1148	1167	0 14	0 25	-19	-011	4	Lewis
1894 87	1147	1166	0 24	0 25	_ 19	-0.01	6	Schraparelli
1895 62	107 9	1067	0 17	0 16	+12	+001	6	Bainaid

-					
H)	PI	TE	ML.	וד יזו	TS

t	$\boldsymbol{\theta}_{\epsilon}$	$ ho_c$	t	$\theta_{c}$	$\rho_{c}$
1896 80	$299\overset{\circ}{4}$	$0^{''}21$	1899 80	2790	$0^{''}24$
1897 80	292 6	0 27	1900 80	$260 \ 4$	0 16
1898 80	287.0	0.28			

The agreement must be considered very satisfactory when account is taken of the extreme closeness of the components, and the high inclination of the orbit, which permits a small error in angle to have a marked effect on the distance. From an examination of all the measures it seems probable that most observers have underestimated the distances, and this certainly must have been the case with Dr Englemann, who used only a 7.5-inch refractor, and therefore could not have divided the components at a distance of 0"16. The computed distance is therefore much more probable, and especially since the elements are based principally upon the excellent measures of Burnham and Barnard, made with the 36-inch refractor of the Lick Observatory.

BURNHAM has repeatedly called the attention of astronomers to the high importance of systematically following such extremely rapid binaries with large telescopes, so that we could in a few years derive orbits, which, in the case of most stars, would require the observations of centuries.

We would beg to add that it is not only important to observe  $\kappa Pegasi$  annually, but especially at certain critical parts of its orbit, where measures would enable us to fix the eccentricity and the inclination more accurately. Thus, according to the above elements, the minimum distance will occur just

after periastron passage in 1896 03, and measures made on either side of the periastron will be very valuable. At the minimum distance (0".034) the star will be single in the largest telescope in the world, but it would be important to ascertain just when this disappearance takes place, and how long it lasts According to the above orbit, the companion ought to be visible in a 30-inch refractor until August, 1895, and hence we suggest that observers should watch for it during the Summer of 1895 and the Autumn of 1896. Good observations at these epochs will be of the greatest value in improving the elements of the orbit.

 $85 \text{ PEGASI} = \beta 733.$ 

 $\alpha=23^{\rm h}~56^{\rm m}~9~$  ,  $~\delta=+26^{\circ}~34'$  6, yellowish , 10, bluish

Discovered by Burnham in 1878

				OBSERV	ATIONS				
i	$\theta_o$	$\rho_o$	$\boldsymbol{n}$	Observers	$oldsymbol{t}$	$\theta_{o}$	Po	n	Observers
1878 73	$27\overset{\circ}{4}0$	$0^{''}67$	3	Burnham	1889 59	1347	$0^{''}94$	5	Burnham
1879 46	284 6	0 75	5	Burnham	1889 90	137 0	0 70	5	Schiaparelli
4000 50	298 3	0 65	5	Burnham	1890 55	1390	0.78	4	Burnham
1880 59	298 3	0 69	5	Durmam	1890 96	<b>146 4</b>	071	6	Schiaparelli
1880 79	297 2	0 66	3–2	Hall	1891 56	151 8	0 79	3	Burnham
1881 54	311 5	0 58	1	Burnham	1891 94	1527	0 78	3	Schiaparelli
1882 62	894	0 64	1	O Struve	1892 75	169 7	0.57	1	Burnham
1883 75	333±	_	1	Burnham	1892 94	167 3	074	4	Schiaparelli
1886 91	1091	0 79	3	Hall	1893 96	176 1	0 75	6–3	Schiaparell
1886 98	111 0	0 58	1	Schiaparelli	1894 54	178 6	0 84	5	Barnard
2000 00					1894 88	251 8	0 85	1	Lewis
1887 91	119 3	0 66	1	Schiaparelli	1894 93	188 6	0 65	2-1	Schiaparell
1888 69	1267	0 95	5	Burnham	1895 65	190 2	0 80	10-9	Barnard
1888 96	$124 \ 1$	0 83	3	Hall	1895 73	1984	0 73	3	See
1888 96	$128 \ 3$	0 70	7	Schiaparelli	1895 74	2048	0.75	2	Moulton

Since Burnham's discovery of this rapid binary, the companion has described an arc of 285°* The components are of the 6th and 11th magnitude and so great an inequality in brightness combined with the closeness of the pair, renders exact measurement very difficult. Therefore it is not strange that

^{*} Astronomische Nachrichten, 3339



the position-angles as well as the distances obtained by the same or by different observers should occasionally exhibit sensible discrepancies. Yet when the measures are properly combined into suitable yearly means we obtain a series of places which will give an orbit that is substantially correct

The first orbit of this pair was computed by Professor Schaeberle in 1889; his elements are

P = 223 years	$\Omega = 306^{\circ} 1$
T = 1884~00	$i = 68^{\circ} 6$
e = 0.35	$\lambda = 70^{\circ} 3$
a = 0'' 96	$n = +16^{\circ} 144$

This orbit represents the measures prior to 1891 with the desired accuracy, but the error in angle rapidly accumulated and in 1892 surpassed 20°. Accordingly, Professor Glasenapp attempted an improvement of the orbit (AN 3145), and obtained a set of elements which rendered the residuals in angle exceedingly small.

$$P = 17 487 \text{ years}$$
  $\Omega = 307^{\circ} 32$   
 $T = 1884 21$   $i = 66^{\circ} 74$   
 $e = 0 164$   $\lambda = 69^{\circ} 73$   
 $u = 0'' 80$   $n = +20^{\circ} 586$ 

Nevertheless the ephemeris computed by Professor Glasenapp has signally failed of its purpose, as the error now amounts to about 80°. As the investigation was based wholly on angles of position we may infer that these coördinates were affected by sensible systematic errors, which might the more easily result from the inequality of the stars.

The careful measures which I recently secured at the Washburn Observatory (A.J. 359) have enabled me to make a new determination of the orbit based on all the material of a trustworthy character. We find the following elements of 85 Pegas:

$$P = 24 \text{ 0 years}$$
 $\Omega = 116^{\circ}.3$ 
 $T = 1883 80$ 
 $\iota = 55^{\circ} 6$ 
 $e = 0.388$ 
 $\lambda = 265^{\circ} 4$ 
 $\alpha = 0'' 8904$ 
 $n = +15^{\circ} 0$ 

### Apparent orbit:

```
Length of major axis = 1".52

Length of minor axis = 1".00

Angle of major axis

Angle of periastron = 18°.2

Distance of star from centre = 0" 197
```

The accompanying table gives a comparison of the computed with the observed places

COMPARISON OF COMPUTED WITH OBSERVED PLACES

t	$\theta_o$	$\theta_c$	$\rho_o$	$\rho_c$	$\theta_o - \theta_c$	$\rho_o-\rho_c$	n	Observers
1878 73 1879 46 1880 69 1881 54 1886 94 1887 91 1888 87 1889 74 1890 76 1891 75 1892 85 1893 96 1894 93 1895 73	274 0 284 6 297 7 311 5 110 1 119 3 126 4 135 8 142 7 152 2 168 5 176 1 188 6 198 4	275 5 282 2 294 4 309 0 113 4 122 8 130 8 137 8 146 0 154 7 165 0 176 4 187 5 197 4	0 67 0 75 0 66 0 58 0 69 0 66 0 83 0 82 0 75 0 79 0 74 0 75 0 65 0 73	0777 076 069 058 069 077 081 083 083 081 078 075 072	$\begin{array}{c} -15\\ +24\\ +33\\ +25\\ -33\\ -35\\ -44\\ -20\\ -33\\ -25\\ +35\\ -03\\ +11\\ +10\\ \end{array}$	$\begin{array}{c} -0.000 \\ -0.001 \\ -0.003 \\ \pm 0.00 \\ \pm 0.00 \\ -0.011 \\ +0.02 \\ -0.001 \\ -0.08 \\ -0.02 \\ -0.04 \\ \pm 0.00 \\ -0.07 \\ +0.03 \\ \end{array}$	3 5 8-7 1 4 1 15 10 10 6 5-4 6-3 2-1 3	Buinham Buinham Buinham 5, Hall 3-2 Buinham Hall 3, Schiapaielli Schiaparelli β 5, Hall 3, Schiapaielli 7 Buinham 5, Schiapaielli 5 Burnham 4, Schiapaielli 6 Buinham 3, Schiapaielli 3 Buinham 1-0, Schiapaielli 4 Schiapaielli Schiapaielli Schiapaielli Schiapaielli Schiapaielli

We are justified in predicting that the true period of 85 Pegasi will not differ from the value given above by more than one year, and that the error of the eccentricity will not surpass  $\pm 0.02$ . The good representation of the angles and distances shows that the other elements are equally satisfactory. The foregoing elements will therefore never be greatly changed, but some improvement is desirable, and observers with great telescopes should continue to give this important system regular attention. The following is an ephemeris for the next five years

t	$ heta_c$	$ ho_c$	t	$ heta_{\iota}$	$\rho_c$
1896 70	$209^{\circ}6$	$0^{''}70$	1899 70	$245^{\circ}8$	0 74
1897 70	$222\ 4$	0 69	1900 70	256 1	0.76
189870	$234\ 5$	071			

## CHAPTER III.

RESULTS OF RESEARCHES ON THE ORBITS OF FORTY BINARY STARS, WITH GENERAL CONSIDERATIONS RESPECTING THE STELLAR SYSTEMS

## § 1 Elements of the Orbits of Forty Binary Stars.

In the preceding chapter we have presented detailed researches on the orbits of forty stars. To enable the reader to grasp readily the existing state of our knowledge, we have also included diagrams of the apparent ellipses, and of the mean observations from which the elements were derived. In many cases we have seen that the observations are relatively rough, and that while the errors are small absolutely, they are yet very large in comparison with the minute quantities measured. Under these circumstances it seemed useless to attempt a Least Square adjustment of the residuals, and hence we have through-cessive approximations of an empirical character. Accordingly, the orbits are not definitive, but for reasons indicated in the several cases the changes which future observations may necessitate will be confined within narrow limits.

In the following Table we give a summary of the elements, with the probable uncertainty still attaching to the period and the eccentricity. From the variations of these elements it is easy to see about the extent of the alterations which may be required in the adopted values of the other elements. The final changes which future observations may produce in any given orbit can not yet be determined with certainty, and hence our variations may occasionally turn out somewhat too small; but as care has been exercised to avoid overestimation of the accuracy of results, the values here indicated ought not to prove very deceptive.

In glancing over the apparent orbits of the preceding chapter the reader should remember that the adopted elements depend not only on the agreement of the observed distances with the apparent ellipses, but also on the accuracy with which the law of areas is satisfied. These two criteria seem to justify the comparatively small variations indicated in the Table of elements; but as

the orbits here presented depend essentially on the observations employed, and as our choice is to some extent a matter of judgement, it is not certain that we have always arrived at the best results

RESULTS OF RESEARCHES ON THE

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Τ	T		i	1	T	1	T	1
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Star	α	δ	P	T	e	a"	ಬ	ı	λ
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Σ3062		+57 52	104 61 + 00	1000 00	0.450.1.0.00	1 9710			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				104 01 ± 20						90.9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1								217 87
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										131 03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$										75 28
wLeonis = Σ1856 $\phi$ Urs Maj = OΣ208 $\phi$ 45 3 +54 33 970 ±50 18840 0 440 ±0 03 0 3440 160 3 30 5 155 0 20 234 0 25235 11 129 +32 6 600 ± 01 1875 22 0 397 ±0 005 2 5080 100 8 55 92 126.    yCentauri = H ₂ 5370 $\phi$ 12 36 −48 25 88 0 ±50 18840 0 302 ±0 04 0 3467 157 5 50 8 206.   yVingins = Σ1670 12 366 −0 54 1940 ±40 1886 63 0 897 ±0 005 10 8690 817 49 32 137 0 0 25 269 25 Can Ven = Σ1728 13 33 +36 48 1840 ±25 0 1866 0 0 752 ±0 05 10 80 100 8 24 40 62 15 179 0 25 285     ##Bootis = Σ1888 14 468 +19 31 128 0 ±10 1903 90 0 721 ±0 02 5 5578 10 5 52 2 8 239     yCon Bor = Σ1938 15 32 4 +40 9 52 0 ±10 1883 0 0 581 ±0 02 0 7357 110 7 82 63 97 0 0 25 0 15 15 15 15 15 15 15 15 15 15 15 15 15										1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										127 52
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										124 22
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								I .		159
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										126 33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										206 8
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	I .							1		137 78
F $42\text{Com Be} = \Sigma1728$   $35\text{I} + 18$   $4$   $2556$   $\pm$   $\pm$   $\pm$   $188569$   $0.461\pm0.01$   $0.6416$   $119$   $90\pm2.80$   $2700\pm2.026$   $25\text{ Can Ven} = \Sigma1768$   $33$   $\pm$									1913	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		12 50 0								270 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										280.5
α Centauri $0.5285$ $14$ $32$ $6$ $60$ $25$ $81$ $10$ $10$ $10$ $10$ $11$ $12$ $0.5285$ $11$ $14$ $17$ $+42$ $48$ $76$ $67$ $\pm 5.0$ $1882$ $53$ $0.470 \pm 0.05$ $0.3975$ $62$ $2.5$ $15$ $19$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1.602$ $1$										32 63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									33.5	201 0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1 .							79 30	52 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1									162 23
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									52 28	239 25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										217 57
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1638	43 9	329 75
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									60.9	26 1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				•				1107	82 63	97 95
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	σCor Roy — Σ2032								70.3	1116
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							38187	30.5	17 18	17 7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	8416 — Tag 7215							37.5	51 77	101 7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						1		1116	37.35	86 1
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1537	80 75	322.2
F 70 Ophiuchi = $\Sigma 2272$   18 0 4								61.4	61.28	180 0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							1 2495	764	57.6	18 05
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F 99 Herenius — A C 15						4 548	1257	58 42	198 25
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				$54.5 \pm 3.0$			1 014	ındetei	0.0	(*)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										3281
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B Delphini — 8151					$0.420 \pm 0.02$	2453	723		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	F 4 Aquaru — 52790						0 6721			164 93
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	& Equale AR - 0 5525						0.7320		,	68 63
$\frac{1}{1}$ 85 Pages = $\frac{9732}{9}$ 21 40 1 +25 11 11 42 ± 0.4   1896 03   0.490 ± 0.1   0.4216   116.25   81.2   80.9	Perger — 2000					$0.165 \pm 0.02$				
	F 85 Person - 0722		+25 11		1896 03					
	- 00 1 08 apt = 10 10 2	23 56 9	+26 34	$240 \pm 10$	1883 80	$0.388 \pm 0.02$				256 4

(*) Angle I'er = 169° 5

In the course of the next twenty years a sensible improvement can be effected in the orbits of rapidly moving stars, such as  $\kappa$  Pegasi, but mean-

while the elements here adopted will give ephemerides sufficiently exact for the use of observers

Vigorous prosecution of the measurement of double stars will furnish the

ORBITS OF FORTY BINARY STARS

n	Maj Axis App Orbit		Maj Axis	Angle of Periastr	Star from Center	$\frac{\rho}{\alpha}$	$\pm \frac{\kappa}{\rho}$	Magnitude	Light-ratio	Colors	Proper Motion	Г	Г′
$+3^{\circ}4414$	2 526	1 984	45 7	138 4	0 446	0 572	0 261	69,75	1 175	yellowish	0 267	$67\overset{\circ}{4}$	59°3
+ 18390	15 81	1024	558	2545	3 80	1 320	0 716	$\begin{bmatrix} 4 & 7 \end{bmatrix}$	1 15 85	yellow	1 199	70 2	56 0
- 6 6667	0 706	0.084	1099	289 0	0 298	0 611	0 232	$\begin{bmatrix} \bar{5} & 5 & 7 \\ 5 & 5 & 7 \end{bmatrix}$	1 3 99	purple bluish	1 199	13 1	$\begin{vmatrix} 30 & 0 \\ 32 & 2 \end{vmatrix}$
<b>-</b> 6 8966	14 63	950	50 7	2524	416	1 161	0 715	1 , 10	1 3981	bluish white	1 306	83 0	70 7
+16 3636	0 941	0267	99.2	1345	$0\overline{152}$	0 595	0 977	$\begin{bmatrix} 57, 63 \end{bmatrix}$	1 174	yellow yellow	1 200	54 0	68 3
<b>—</b> 6 0000	1 704	1~632	88	184 9	0 290	0 659	0 053	55,62	1 191	yellow yellow	0 115	62 4	67 6
+10 5883	1 318	0 349	274	189 6	0142	0 670	0 716	72,75	1  1  32	yellow white	0 523	81 1	56 2
+ 30981	1 576	0 738	1411	293 4	0 317	0 460	0 387	6 7	1 251	yellowish yellow	0 040	13 4	65 7
+ 37114	0 690	0 530	$167\ 6$	1741	0 149	1 015	0 032	55,55	1 1	yellow vellowish	0 028	26 4	64 2
<b>—</b> 6 0000	4 760	2.700	1046	3180	0.750	0 665	0 062	$\begin{vmatrix} 4 & 5 \end{vmatrix}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	yellowish yellow	0 736	594	57 5
+46754	0 695	0437	158 0	355 2	0 098	0 924	0 399	7 70	1 209	yellowish yellowish	0 115	421	64 6
+ 4 5000	1 682	1 020	728	231 1	0.242	0 912	0 577	6 70	1 525	yellowish yellowish	$0113 \\ 0129$	89 4	193
<b>- 40911</b>	2 100	0 580	01	1778	0794	0 198	0 438	1	1 1	yellowish yellowish	0 129	83 3	740
<b>—</b> 1 8557	6824	3 530	140 4	140 4	3062	0 172	0 403	2 20	$\frac{1}{1}$ $\frac{1}{1}$ 20	yellowish vellow	0 578	54 2	508
$\pm 140867$	1 147	0 00	11 9	11 9	0 054	0 575	0 187	6 6	1 1 1	yellow orange	0 488	84 9	84 9
+ 7 3771	0.64	0 20	47 7	57 8	0.102	0 779	0 849	79 77	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	orange vellowish	0 400	69 3	60 5
- 1 9565	1 910	1 08	108 9	285 4	0 714	0 525	0 298	5 95	1 25 12	yellowish white	0114		
+ 4 4390	$32\ 18$	616	27 25	38 65	5 90	0 670	0 982	1 2	1 2512	hlme	0 114 3 685	198 478	473
<b>-</b> 4 6953	0 788	0.522	67 1	255 3	0 182	0 851	0 146		1 110	or yellow or yellow yellowish	3 000	480	88 1 47 7
<b>—</b> 2 8125	9 07	576	167 7	144 7	2 94	1 100	0 790		1 631	whitish yellow	0 161	80 4	247
+ 8 6538	1 804	0 934	28 7	229 0	0 209	$\overline{1}$ $\overline{152}$	0 661		1 1 59	purple vellowish	$\begin{array}{c} 0.101 \\ 0.217 \end{array}$	30 0	89 5
- 1 6407	2.656	1 480	173 5	186 7	0 638	0 912	0 419		1 3 98	vellowish	0 194	11 5	77 5
+ 6 9231	1 546	0 656	186 9	153	0 427	0 582	0 695	/	$\frac{1}{1}$ . $\frac{3}{145}$	white white yellowish	0 500	255	831
<b>- 4</b> 9315	1 300	0 175	111 3	329 6	0 068	0 725	0 973	- ,	1 15 85	yellowish yellow	0 115	78 0	
+ 34616	2 696	0 884	96	150 2	0 085	0 935	0 639		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	blue yellow	0 098	29 5	89 6
+ 0 9730	7 08	471	42 4	66 9	1 735	0 750	0 631		$\begin{bmatrix} 1 & 1 & 2 & 0 \\ 1 & 2 & 51 \end{bmatrix}$	yellow yellow	0 342	18 5	71 0 88 7
-10 2843	2498	1752	43 1	289 0	0 455	1 180	0 559	. ,	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	vellow	0 613	86 4	21 2
- 9 0908	2 76	2 38	1425	59 5	0 61	1 042	0 449	- , -	$\begin{bmatrix} 1 & 13 & 63 \\ 1 & 3 & 63 \end{bmatrix}$	bluish yellowish	0 019	719	86 0
<b>-</b> 7 8261	$2\ 22$	0 35	1545	1608	0 18	0 835	0 970	6 6	1 1	yellowish vellow	0 185	536	60 6
+ 8 000	2 78	1 148	61 4	241 4	0 304	0 822	0 698	· / -	1 174	yellow bluish white	0 811	483	83 1
+ 1 5652	2 46	1 09	80 0	85 8	0712	0 475	0 781	5 6		hluigh		499	$\frac{331}{720}$
<b>- 4</b> 0728	9 00	417	122 9	2958	2 198	1 475	0 848	- , -	1 398	yellowish yellowish yellow	1 123	767	
+66055	2 028	$1\overline{278}$	169 5	1695	0 792	10	0.040		1 190 55	purplish yellow		679	88 9
_19 098	1 300	0.423	74 8	82 8	0 168	1 223	0 430		1 159	purple yellow	0 136		67 9
- 23575	4 906	3 661	72 2	252 1	1 033	1 045	0 180	55,5.5	1 1 1	yellow yellowish	•	44 6	59 5
+13 015	1 060	0 477	$\frac{1}{2}\frac{1}{5}$	176 6	0 194	0 645	0 828	1 0	1 631	yellowish yellow	0 089	$egin{array}{c c} 757 & 532 & \end{array}$	87 3 30 4
+ 27907	1 288	0 43	03	215 2	0 173	1 480	0 616	g '7	$egin{array}{cccccccccccccccccccccccccccccccccccc$	yellowish yellow		$\begin{array}{c c} 632\\298 \end{array}$	
-31 441	0 904	0 171	22 2	22 2	0 075	0 930	0 532		$egin{array}{cccccccccccccccccccccccccccccccccccc$	yellow yellow			60 5
-31 5236	0 555	0 130	115 7	30 2	0 032	1 390	0 503	, ,		yellow yellowish	0 300	201	39 4
+150	1 52	1 00	1180	182	0 197	0 610	0 062		$egin{array}{cccc} 1 & 1 & 91 & 1 \ 1 & 39 & 81 & 1 \end{array}$	vellowish	1 288	68 6	87 9
					J 101	0.010	0 002	00,10	T 08.0T	yellowish bluish	1 400	803	65 8

material for one hundred orbits at the end of another half century, and accordingly such effort is urgently demanded by the highest interests of science.

### § 2 Relative Velocity of the Companion in the Line of Sight for the Epoch 1896 50

When the elements of the orbit are known, the theory developed in §5, Chapter I, first published in the Astronomische Nachrichten, No 3314, enables us to predict the relative motion of the companion of a binary in the line of sight for any given time. The columns marked  $\frac{\rho}{a}$  and  $\pm \frac{\kappa}{a}$  in the foregoing Table contain the desired results for the epoch 1896 50 The numbers in the column  $\frac{\rho}{\alpha}$  express the orbital velocities in units of the radius of the hodograph As the scale of this radius is unknown, except in a very few cases, we are not able to express this velocity in kilometres or in other absolute units, but when the parallaxes are determined this may be readily accomplished column as it stands, however, shows the rate of orbital motion, compared to what is approximately the average velocity, and we are thus enabled to select those stars which have a rapid orbital motion. If the motion of any given pair be rapid, and also mainly in the line of sight, as in the case of 70 Ophiuchi, the system so circumstanced will be favorable for spectroscopic The column  $\pm \frac{\kappa}{2}$  shows what part of the orbital motion is in the measui ement line of sight, and this enables us to select for measurement with the Spectrograph those pairs which have a large orbital velocity with the major portion of it towards or from the earth

The stars at present the most favorably situated for measurement of the relative motion in the line of vision are  $\eta$  Cassiopeae, a Canis Majoris, 9 Argûs,  $\xi$  Bootis,  $\gamma$  Coronae Borealis,  $\Sigma 2173$ , 70 Ophruchi,  $\beta$  Delphini, and a Centauri

Adopting parallaxes of 0" 75, 0" 162, and 0" 154 for a Centaur, 70 Ophruch, and  $\eta$  Cassiopeae respectively, we find the line-of-sight components for the several systems to be 6.66, 13 95, 8 89, where the unit is the kilometre. These quantities are well within the limit of spectroscopic measurement, and therefore an experimental determination offers an attractive problem to observers occupied with this branch of Astronomy

It will be seen that several of the above stars are wide, while others are very close. If the two spectra can be photographed on the same plate, the lines being only slightly displaced by the relative motion of the stars, as in the case of spectroscopic binaries, the close pairs ought to be as easily measured as the wide ones, whose spectra could perhaps be photographed separately

In any case the prosecution of these researches with the powerful spectroscopic appliances of the great telescopes of our time is an urgent desideratum

of Astronomy. And until the relative motions of visible systems are thus determined there will remain some doubt as to the reality of the so-called spectroscopic binaries, not that any one doubts the theoretical validity of the Doppler-Huggins principle, but rather that other explanations of the phenomena interpreted as spectroscopic binaries are considered possible. Moreover, the great interest attaching to investigations which will give the absolute dimensions, parallaxes and masses of binary systems, as well as the possibility of testing the validity of the law of gravitation, ought to induce astronomers to prosecute these studies with a zeal commensurate with their real importance

Owing to the small size of the earth's orbit, it seems that our principal hope for knowledge of the dimensions of the universe must be based upon this method. The change in wave-length due to motion in the line of sight was originally pointed out by Döppler, but Huggins was the first to apply the Spectroscope to the heavenly bodies, and to reduce Döppler's principle to actual practice, and to assign it a place in modern Astronomy. The application of the principle to the determination of the dimensions of binary systems was first proposed by Fox Talbot. But as his theory was restricted to the case of circular motion, it could not be applied to the eccentric orbits described by the stars, and accordingly it has since been somewhat varied and extended by others. The theory which we have developed is entirely general for ellipses of every possible eccentricity, and from the point of view of rigor and generality leaves nothing to be desired.

# §3 Investigation of a Possible Relation of the Orbit-Planes of Binary Systems to the Plane of the Milky Way

Owing to the well known arrangement of the stars and sharply-defined nebulae with respect to the Milky Way, it has been suggested that some relation might exist between the planes of the stellar orbits and this fundamental plane of the universe. An examination of this question is worthy of the attention of astronomers, and accordingly we shall compute the inclinations of the foregoing orbits by the formulae developed in the Berliner Astronomisches Jahrbuch for 1832. The method of transformation which Encke has employed enables us to refer the plane of a double-star orbit to any absolute plane in space.

Let us pass a plane through the central star parallel to the equator. The pole of this plane will meet the celestial sphere at the same point as the pole

of the heavens Consider the triangle connecting the pole of the equator with the poles of the real and of the apparent orbit. The pole of the apparent orbit is determined by the right ascension and declination of the star  $(a, \delta)$ . Let the coordinates of the pole of the real orbit referred to the same axes be A and D, and let  $\Omega'$  be the angle which the great circle passing through the poles of the real and apparent orbits makes with the meridian. The arc joining the poles of the orbits is the inclination, i, and this is one of the elements given in the foregoing Table. From the resulting spherical triangle we have

$$\sin D = \cos \iota \sin \delta + \sin \iota \cos \delta \cos \Omega' = m \cos (M - \delta),$$

$$\cos D \sin (\alpha - A) = \sin \iota \sin \Omega',$$

$$\cos D \cos (\alpha - A) = \cos \iota \cos \delta - \sin \iota \sin \delta \cos \Omega' = m \sin (M - \delta),$$
where
$$\sin \iota \cos \Omega' = m \cos M,$$
and
$$\cos \iota = m \sin M$$
Then
$$\tan M = \frac{1}{\tan \iota \cos \Omega'},$$

$$\tan (\alpha - A) = \frac{\sin (M - \delta)}{\cos M \tan \Omega'},$$

$$\tan D = \frac{\cos (\alpha - A)}{\tan (M - \delta)}$$

When the light ascension and declination of the pole of the real orbit have been determined, we may pass a plane through the central star parallel to the Milky Way. In the spherical triangle which joins the pole of this plane with the pole of the real orbit and the pole of the heavens, the inclination of the real orbit to the plane of the Milky Way is given by the arc connecting their poles. Thus we have

$$\cos \Gamma = \sin D \sin \delta' + \cos D \cos \delta' \cos (A - \alpha'),$$

where a' and 8' denote the coordinates of the north pole of the Milky Way

In our computations the coordinates of the north pole of the Milky Way are taken on the authority of Sir John Herschel, who found

$$\alpha' = 12^{h} 47^{m}$$
 ,  $\delta' = +27^{\circ}$ 

There are two solutions for  $\Gamma$ , owing to the two values of  $\Lambda$  and D incident to the indetermination of the ascending node, and the resulting inclinations to the Galaxy are tabulated as  $\Gamma$  and  $\Gamma'$ . Now, we do not know which of these two possible inclinations to the Milky Way is correct, but since it is impossible to select from either column any one prevailing angle, much less an evanescent inclination, we conclude that the orbits are not directly related to the Milky Way, or to any other fundamental plane of the heavens. Thus it is clear that the orbit-planes lie at all possible angles to the Milky Way, with no

marked relation to the general scheme which distinguishes the arrangement of the stars and well-defined nebulae. The consideration that the size of a stellar orbit is small compared to the dimensions of the Milky Way, and that the number of such systems is very great, might have enabled us to anticipate this result as probable à priori, since the condensation of nebulous matter to so many centres would almost of necessity have produced rotations in all possible planes, and even if confined originally to one plane the parallelism would have been disturbed by the action of foreign bodies during the ages required for the development of the visible universe.

### §4. High Eccentricities a Fundamental Law of Nature.

如事和

It thus appears that the inclinations of the orbit-planes bear no definite relation to any given plane of the heavens, and an examination of the periods of revolution shows that this element likewise has no characteristic property. The periods are found to range from 11 to 370 years.

It is evident that such elements as T, a,  $\alpha$ ,  $\alpha$ ,  $\lambda$ , can have no relation to physical causes, and an inspection of the Table shows no trace of such a connection. When, however, we came to deal with the eccentricity the case is different. The results given in the preceding Table establish a most remarkable law, which is of fundamental importance in our theory of the origin and development of the stellar systems, and is besides of practical value to working astronomers

On glancing over the eccentricities it is found that while nearly all values exist, few, if any, are very small like those of the planets and satellites, nor are any very large like those of the long-period comets. The smallest eccentricity is that of  $\xi$  Scorpii, e = 0.131, the largest that of  $\gamma$  Virginis, e = 0.897, the mean value for the forty orbits, e = 0.482

Let us take the x-axis as the axis of eccentricity, and the y-axis as the axis of number of orbits, and divide the interval from e = 0.0 to e = 1.0 into a convenient number of parts. Then, if we erect ordinates denoting the number of orbits falling in the given intervals, and connect the points thus determined, we shall be able to illustrate the distribution of orbits as regards the region of eccentricity.

We find no orbits between 00 and 0.1; two between 0.1 and 02; four between 02 and 03, eight between 0.3 and 0.4; nine between 0.4 and 0.5; nine between 0.5 and 0.6, two between 0.6 and 0.7, four between 0.7 and 0.8,

two between 0.8 and 0.9; none between 0.9 and 1.0. The distribution is illustrated by the broken line in the accompanying figure. Since the number of orbits is finite, the figure is an irregular line, if the number were indefinitely increased, the figure ought to become approximately a smooth curve

It is evident, therefore, that the time curve of distribution of orbits resembles a probability curve with maximum near 0 482, the slope in either direction is gradual, but the curve vanishes before it reaches zero and unity. We have drawn a pointed curve to illustrate what is conceived to be the probability curve for the distribution of orbits, but it is based on forty orbits only, and therefore is necessarily provisional. We may observe, however, that forty is a number sufficiently large to realize the essential conditions underlying the theory of probability, and accordingly we are justified in the inference that the nature of the curve here indicated will never be greatly changed. There is an irregularity in the broken line between 0.6 and 0.7, which may be attributed to the effect of chance, if the number of orbits were greatly increased this gap would be filled up. In general, there will be irregularities in the distribution so long as the number of orbits is finite, but they ought to become less marked as the number is increased.

Thus, it is clear that in whatever intervals the axis of eccentricity be divided, and however the number of orbits be increased, there will remain in the curve of distribution a conspicuous maximum near 0.482, with a gradual slope in both directions. The following table shows the eccentricities of the orbits of the planets and satellites (*Inaugural Dissertation*, Berlin, 1893, p. 58):

Planet	Eccentricity	Mean Eccentricity	Planet	Eccentricity
Venus	0 00684	0 06026	Jupiter	0 04825
Neptune	0 00896		Suturn	0 05607
Earth	0 01677		Mars	0 09326
Ur anus	0 04634		Mercury	0 20560

Satellite	Eccentricity	Mean Eccentricity	Satellite	Eccentricity	Mean Eccentricity
Satellite of Neptune  Arrel Umbriel Titania Oberon  Mimas Enceladus Tethys Dione Rhea	•	These orbits appear to be cucular	V (BARNARD) Io Europa Ganymede Dermos Phobos Calypso Iapetus Titan Moon Hyperion Supples Jupiter Saturn Saturn	0 0013 0 0057 0 0066 0 0072 0 0296 0 0299 0 05491 0 1189	These or bits appear to be circular  0 0325



	1 / / / / / / / / / / / / / / / / / / /	,	,
e-	,		
t .		ı	
			ı
M			, <del>a</del>
		· ,	
		• · · · · · · · · · · · · · · · · · · ·	r i
			ı
			ı
			The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s
	r 1		
	1		ı
			1
	ŧ		

The orbits of several satellites appear to be circular, or rather the eccentricity is found to be insensible in consequence of the errors of observation. We shall not underestimate these unknown eccentricities if we assign to them the mean value of the known eccentricities of the satellite orbits (0 0325). Making this maximum assumption we find that the average eccentricity for the solar system—the eight great planets and their twenty-one satellites—cannot surpass 0.0389.

cause the former have been drawn to our system from outer space, while the latter have originated by an anomalous process, and depart so radically from the other bodies of the system that they cannot be considered as a type of planetary evolution, but rather as an abnormal development. It is also to be remarked that the eccentricities of the orbits of the planets and satellites are still involved in some small degree of uncertainty, and moreover they will vary from century to century owing to the cumulative effects of the secular variations and of the long-period inequalities. Notwithstanding these changes it is clear that the values of the eccentricities given above represent the true nature of the solar system

It follows, therefore, that the average eccentricity among the double stars is more than twelve times that found in the planetary system, and this extraordinary result is manifestly the expression of a fundamental law of nature.

The eccentricities of the orbits of the stars discussed in this work are still subject to slight changes, but there is reason to believe that the average value (0482) will never be altered except by a very small quantity. The apparent orbits given in the preceding chapter enable the reader to make a direct inspection of the linear eccentricity, and he may thus judge of the magnitude of this element, as well as of the changes it is likely to undergo. In order to minimize the uncertainty in our final data, we have purposely restricted our researches to the forty orbits which were capable of the most exact determination. Since the orbits of the forty stars will undergo no sensible improvement, at least for a good many years, it seemed of interest to present also figures of the real orbits.

In the accompanying illustrations the orbits are arranged in the order of eccentricity, and the reader is thus enabled to examine the different degrees of elongation. Accordingly, it appears that while the orbits are much more eccentric than those of the planets and satellites, they are yet much less eccentric than those of the long-period comets.

In the preceding diagram we have drawn one broken line to illustrate the

distribution of the orbits of comets, and another for the distribution of the orbits of the planets and satellites The number of cometary orbits is so large that in this case the scale of ordinates had to be very much reduced. spection of these curves shows that the planetary orbits are heaped up about a very small eccentricity, while the cometary orbits cluster around the parabo-This characteristic of the oibits of comets indicates, as lic eccentricity Laplace first pointed out, that these bodies have been drawn to our system from the regions of the fixed stars, and therefore their eccentricities surpass, equal or approximate unity Some of the comets have passed near the larger planets, and thus suffered perturbations which have reduced their eccentricities, and hence the curve slopes down gradually on the side towards the origin The right branch of the curve is but little known, since the great perihelion distance of hyperbolic comets enables them to pass through our system unnoticed, unless they happen to be very bright

Thus it is evident that the tendency of double-star orbits is to group about a mean eccentricity which is almost equally removed from the two extremes presented in the solar system. Orbits which are so much elongated have no close analogy with those of the planets and satellites, on the other hand their lack of very great eccentricities excludes them from the category of comets, and does not permit us to assign to these systems a fortuitous origin. We shall see hereafter that the orbits were originally nearly circular, in the course of immeasurable ages they have been gradually expanded and elongated by the working of tidal friction in the bodies of the stars. The visible elongation of the orbits thus enables us to trace the changes of the stellar systems through millions of years, and to throw light upon the problems connected with their evolution.

In discussing the motion of  $\gamma Virginis$ , Sir John Herschel long ago remarked that "the eccentricity is, physically speaking, by far the most important of all the elements," and now we see that this element, which depends wholly on micrometrical measures, and is independent of the parallaxes and relative masses of the stars, gives the sole clue to the evolution of the stellar systems, and will some day enable us to lay a secure foundation for scientific Cosmogony

We may observe that besides throwing light upon the past condition of the universe the general law of the eccentricity here established will also be useful to practical astronomers. The eccentricity of any given orbit may depart considerably from the mean here indicated as the most probable value, yet the tendency towards this region will on the whole prove useful to computers













.







a=Circle b=Mean Pianetary Orbit, e=0.0389.

The observer who is aware of the high eccentricities and different inclinations of the orbits will know that in many cases the length of the apparent radius-vector is subject to great variations, and as a shortening of the radius-vector corresponds to accelerated angular motion of the companion, he will never find it safe to assume that the motion is uniform. The forty stars treated in this work present several instances where the angular motion at certain epochs has been extremely rapid, and it is much to be regretted that more observations were not secured at such critical points of the orbits. These general results may prove of value to the observer of the future, and stimulate an increased interest in the systematic measurement of revolving binaries.

### §5 Relative Masses of the Components in Stellar Systems

A problem of fundamental importance in the study of the stars is the determination of the relative masses of the components of a system. Such determinations have been made heretofore in very few cases, and even when undertaken have been seriously embarrassed by the errors of observation. It has been customary to base the investigations upon absolute positions determined with the Meridian Circle. The errors of our absolute positions deduced in this way are so large in comparison with the delicate quantities depending on the irregularity of the proper motions of the individual components of a system whose centre of gravity moves uniformly on the arc of a great circle, that the results obtained are affected by large probable errors

The systems in which such researches have been attempted are

- (1) a Cams Majoris, where  $\Lambda$ UWERS finds the masses to be in the ratio of 1 2 119
- (2) a Centauri, in which Stone found the masses approximately equal, Elkin made them as 1 1124, and Roberts finally concludes from a more elaborate investigation that they are in the ratio of 1 1041.
- (3)  $\eta$  Cassiopeae, investigated in 1881 by Ludwig Struve, who found the masses to be in the ratio of 1 3 731

So far as we are aware these three wide systems are the only ones whose relative masses have been investigated, and we may remark that the condition of each star is favorable to a determination from the circumstance that the pairs are wide and tolerably rapid in their orbital motion, and therefore the

irregularity of the proper motions of the components is conspicuous in comparison with the errors of observation

There are other systems such as 70 Ophiuchi,  $\xi$  Boötis, and  $\gamma$  Virginis, which are favorable for similar investigations, but none have yet been attempted. It would be all the more interesting to investigate the relative masses of 70 Ophiuchi from the circumstance that the system contains a dark body which sensibly perturbs the visible components

In the case of  $\gamma Virginis$  we might infer that the masses are nearly equal, as in the system of a Centauri

But even if the bright and widely-separated pairs were all investigated, it would still be difficult to reach any of the small, close stars whose distances are less than two seconds of arc. The investigation of the relative masses of the components of such systems by means of absolute positions determined with the Meridian Circle seems forever impossible, since the stars under such power would seldom be separated, and when separated the errors of observation would be larger than the quantities involved in the determination of the relative masses. The old method is therefore very limited in its application, and a new method must be invented if we are ever to have precise knowledge of the relative masses of the components of binary systems

We suggest the following method as much more general and also much more exact than the one depending on absolute positions The distance and position-angle of each component with respect to a neighboring star should be determined at different epochs, the measures being taken with the Heliometer if the distance is large, with the Micrometer if the neighboring star is close or A series of such relative positions would disclose the location of the centre of gravity by its uniform motion and the resulting conservation of areas with respect to the neighboring star. And since the measures are differential only, it ought to be possible to attain the desired degree of accuracy; the only difficulty likely to arise in practice would be one depending on the personal equations and the constant errors affecting the work of Experience alone could determine how serious this individual observers difficulty would be, but it seems probable from the results obtained in the measurement of double stars that it would become considerable only in the case of pairs which have no near companion.

Indeed, this method for finding the relative masses of stars is exactly the same as that employed in parallax measurement, except that the observations must extend over the period of a revolution (or a large part of such a period) instead of over the period of one year

The proposed method therefore is as follows. Let the differences in right ascension and declination with respect to either of the components at the epochs t, t't'' be

Let the differences in right ascension and declination of the components of the system in like manner be

$$\Delta \alpha = \rho \sin \theta \sec \delta , \quad \Delta \delta = \rho \cos \theta$$
 $\Delta \alpha' = \rho' \sin \theta' \sec \delta' , \quad \Delta \delta' = \rho' \cos \theta'$ 
 $\Delta \alpha'' = \rho'' \sin \theta'' \sec \delta'' , \quad \Delta \delta'' = \rho'' \cos \theta''$ 

Then the coordinates of the centre of gravity of the system referred to the neighboring star will be given by the expressions,

where the formulæ are arranged for the case of the smaller star, which is generally to be preferred, as the magnitude of the absolute orbital motion about the centre of gravity is in the inverse ratio of the masses of the components

In these expressions the only unknown quantity is the ratio  $\frac{M_1}{M_1+M_2}$  The most natural condition for the determination of this unknown is furnished by the principle of the conservation of the motion of the centre of gravity of a system of bodies. When the arc described by the centre of gravity is small, the motion in right ascension and declination is uniform like that in the arc of a great circle. Thus we have

$$\frac{\varDelta \alpha_0' - \varDelta \alpha_0 + \frac{M_1}{M_1 + M_2} \left(\varDelta \alpha' - \varDelta \alpha\right)}{\varDelta \alpha_0'' - \varDelta \alpha_0 + \frac{M_1}{M_1 + M_2} \left(\varDelta \alpha'' - \varDelta \alpha\right)} = \frac{\varDelta \delta_0' - \varDelta \delta_0 + \frac{M_1}{M_1 + M_2} \left(\varDelta \delta' - \varDelta \delta\right)}{\varDelta \delta_0'' - \varDelta \delta_0 + \frac{M_1}{M_1 + M_2} \left(\varDelta \delta'' - \varDelta \delta\right)} = \frac{t' - t}{t'' - t}$$

When n sets of independent observations have been secured, the number of equations for the determination of the most probable value of the ratio  $\frac{M_1}{M_1+M_2}$  is 2 (n-2)

If the precession is sensible, the observations of  $\theta_o$ ,  $\theta_o'$ ,  $\theta_o''$ , and  $\theta$ ,  $\theta'$ ,  $\theta''$ , etc, must be referred to a common epoch. An independent formula for the determination of the ratio  $\frac{M_1}{M_1+M_2}$  may be deduced from the criterion that the motion of the centre of gravity is confined to the arc of a great circle

While the method may not prove to be entirely general, owing to the occasional absence of suitable comparison stars, there is reason to think that the Heliometer and Micrometer together ought to prove very effective. Such measurements, if extended to groups of perspective involving two or more objects, will furnish the means also of detecting the existence of any possible irregularities in the proper motions of single stars. In the early days of star cataloguing it was difficult to believe that the proper motions were uniform and rectilinear, but as this has been found to be the general rule, it is now difficult for some to credit the existence of irregularities in the proper motions, or the presence of dark bodies perturbing the motions of the stars. The errors of observation are relatively so large that sound method of procedure requires caution in attributing anomalies to foreign causes, lest by undue credulity we be led to introduce all manner of vain fictions; yet it is certainly unphilosophical to doubt the existence of numerous dark companions which disturb the motions of the fixed stars. It will ultimately be a matter of great interest to determine the extent and the character of such perturbations These considerations suggest fields of inquiry of the widest scope, and assure us that while exact Astronomy shall be cultivated, the Heliometer and the Micrometer are not likely to lose their present importance, through the introduction of any sort of mechanical methods

It will be some years before the above method can be applied, and hence it is interesting to reach some general result as to the relative masses of binary stars. The determinations above spoken of, except in the case of Sirius, show that the masses are roughly in proportion to the brightness of the stars. This rule would doubtless lead to erroneous conclusions in a good many individual cases, yet in taking double stars as a class, it will give results which are not far from the truth, and hence the light-ratios of the forty stars given in the Table show that on the average the components of binaries are comparable, and frequently almost equal, in mass. This we may infer to be a general law for all binaries, and the corresponding relative masses accord perfectly with those of the double nebulae drawn by Sir John Herschel, and with the mass-ratios resulting from the rupture of the figures of equilibrium of rotating mass of fluid investigated by Poincaré and Darwin.

### §6 Exceptional Character of the Planetary System

The fundamental result indicated in the foregoing section is in striking contrast with the phenomena presented in the solar system The masses of the planets are very small compared to that of the Sun, and the masses of the satellites are very small compared to those of the planets around which they The mass-ratio in the case of the Earth and Moon amounts to at, and is by far the largest in the solar system. The mass of Jupiter, 1011, 16, is much larger than that of any other planet, and yet such a body is wholly insignificant compared to the Sun If such inconsiderable companions attend the fixed stars, they would neither be visible, nor could they be discovered by any perturbations which they might produce. It is therefore impossible to determine whether the stellar systems include such bodies as the planets, and we are thus unaware of the existence of any other systems like our own the other hand the heavens present to our consideration an indefinite number of double systems, each of which is divided into comparable masses double systems stand in direct contrast to the planetary system, where the central body has 746 times the mass of all the other bodies combined binary stars the mass distribution is evidently double, while in the solar system it is essentially single. By a process extending throughout the universe it seems that the nebulae frequently divide into approximately equal or compaiable masses, and develop into double stars, while in the case of our own nebula substantially all the matter has gone into the Sun

Therefore while observation gives us no ground for denying the existence of other systems like our own, it does not enable us on the other hand to affirm or even to render it probable that such systems do exist. And in this state of insufficient evidence we are confronted by the undoubted existence of a great number of systems of an entirely different type. Whatever theories of Cosmogony are proposed, it is evident that in order to have any claim to acceptance, they must be based upon what is really known, not upon what may or may not exist. Those who have proceeded to deduce Cosmogonic processes from our own isolated and abnormal system, have therefore pursued an illogical course, and it is not remarkable that they have failed to throw much light upon the laws of Cosmogony.

The solar system is rendered abnormal by the great number and small masses of its attendant bodies and by the circularity of their orbits about the large central bodies which govern their motion. The system is throughout so

regular, and adjusted to such admirable conditions of stability, that among known systems it stands absolutely unique. Whether observation will ever disclose any other system of such complexity, regularity and harmony, is an interesting question for the future of Astronomy. It is certain that the number of double stars will be augmented in proportion to the diligence of observers and the improvement of our telescopes, and we may reasonably expect a sensible increase in the number of triple and quadruple stars and of stars attended by dark bodies.

Such systems as Sirius, Procyon,  $\zeta$  Cancri and 70 Ophiuchi are not likely to be isolated cases; but caution is required where the observations are not decisive, lest the number be unduly increased by imaginary bodies resulting from errors of observation. It seems probable that a number of double stars are likely to disclose perturbations which can be investigated, and we have already some indications that the motions of  $\zeta$  Herculis,  $\xi$  Ursae Majoris,  $\mu^1$  Herculis and  $\eta$  Coronae Borealis are not perfectly regular. But in the present state of the measures it seemed best to attribute the apparent irregularities to errors of observation.  $\zeta$  Herculis especially merits the most careful attention of observers; after its periastron passage a refined investigation will show whether the motion is really perturbed.

The question naturally arises whether the stars of these double systems are attended by small dark bodies of a planetary character. We have seen that most of the binaries have highly eccentric orbits, and hence if planetary bodies revolved around either component, they would experience great perturbations, besides the most violent changes of light and heat. It seems probable that planets could not be formed without developing very eccentric orbits, and if once in existence, it is questionable whether such bodies could endure under the violent perturbations to which they would be subjected at periastron Even if a planet were very close to its central star, its motion would be affected by an inequality of enormous magnitude analogous to the annual equation in the moon's motion; and if not destroyed by collision with one of the stars or by disintegration under the tidal forces within Roche's limit, in all probability it would sooner or later be driven from the system on a curve analogous to a parabola or an hyperbola. Thus, while the motion of a planet around one of the components could hardly be so stable as the corresponding phenomena of the solar system, it might yet continue for long ages if the orbit of the binary be not too eccentric; the final state of the system would depend upon the densities, relative masses and distances of the components, the mutual inclinations, and above all, the eccentricities, of their orbits