Exercice 1:

Р	Q	non (P) ou Q
0	0	1
0	1	1
1	0	0
1	1	1

Tableau 1 – non (P) ou Q

Exercice 2 : La réponse est : non(Q) et P

Exercice 3:

A	В	С	C et (A ou B)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Tableau 2 – C et (A ou B)

Exercice 4 : Il faut établir la table de vérité des deux parties de l'égalité.

X	у	z	$f_1(x,y,z)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

X	у	\mathbf{z}	$f_2(x,y,z)$
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Exercice 5 : Cette fonction vérifie si une et une seule variable vaut 1 (voir tableau 3). On reconnaît une fonction XOR sur les quatre premières lignes.

$$(x, y, z) = (\neg x \land (y \oplus z)) \lor (x \land \neg y \land \neg z)$$

Exercice 6: Voir tableau 4.

X	у	Z	f(x,y,z)
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Tableau 3 – $f(x, y, z) = (x \land \neg y \land \neg z) \lor (\neg x \land y \land \neg z) \lor (\neg x \land \neg y \land z)$

e_0	e_1	e_2	e_4	s_0	s_1	c
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	1	0	0
0	0	1	1	1	1	0
0	1	0	0	0	1	0
0	1	0	1	1	0	0
0	1	1	0	1	1	0
0	1	1	1	0	0	1
1	0	0	0	1	0	0
1	0	0	1	1	1	0
1	0	1	0	0	0	1
1	0	1	1	0	1	1
1	1	0	0	1	1	0
1	1	0	1	0	0	1
1	1	1	0	0	1	1
1	1	1	1	1	0	1

Tableau 4 – Additionneur 2 bits

