

Signature

Note:

- Cross your Registration number(with leading zero). It will be evaluated automatically.
- Sign in the corresponding signature field.

Discrete Mathematics for Engineers

Exam: EDE1202 / Endterm **Date:** Tuesday 23rd February, 2021

Examiner: Prof. Dr. Ing. Ulf Schlichtmann **Time:** 16:30 – 18:00

$Problem \ 1 \quad {\tt Propositional \ Logic} \ (8 \ {\tt credits})$

Given is the ring normal form RNF[A] of the propositional form A(x,y).

$$RNF[A(x,y,z)] \iff x \longleftrightarrow y \longleftrightarrow t$$

Problem 2 Propositional Logic (5 credits)

Prove the following implication by means of the deductive proof scheme:

$$(a \longleftrightarrow c) \Longrightarrow (b \longrightarrow a) \longleftrightarrow (b \longrightarrow c)$$

Name all laws you use.

Row		From Row(s)	Law(s)
1	$a \longleftrightarrow c \qquad \Longrightarrow (b \longrightarrow a) \longleftrightarrow (b \longrightarrow c)$		
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			

$Problem \ 3 \quad {\bf Propositional \ Logic} \ (5 \ credits)$

a)* Given is the following propositional form B(a,b,c,d):

$$B(a,b,c,d) \iff (a \vee \neg b) \wedge (c \vee d) \wedge (\neg a \vee \neg d) \wedge (b \vee \neg d) \wedge \neg c.$$

Prove by means of the layer algorithm that B(a,b,c,d) is a contradiction.

$(a \vee \neg b) \wedge (c \vee d) \wedge (\neg a \vee \neg d) \wedge (b \vee \neg d) \wedge \neg c$	Layer
	1
	2
	3
	4
	5
	6

b)* Additionally, the propositional form C(a, b, c) is given:

$$C(a,b,c) \iff c \lor (a \land b)$$

Is the implication $B(a,b,c,d) \Longrightarrow C(a,b,c)$ always valid? Justify your answer.

Problem 4 Propositional Logic (6 credits)

Given is the ROBDD[C] of the propositional form C(x, y, z):

$Problem \ 5 \quad {\bf Propositional \ Logic \ (6 \ credits)}$

Given is the propositional form D(a, b, c):

$$D(a,b,c) \iff [a \longleftrightarrow (b \longrightarrow c)] \lor \neg (a \longrightarrow \neg b)$$

Give the canonical conjunctive normal form CCNF[D] of D. Name all laws you use.

$Problem \ 6 \ \ {\tt Predicate \ Logic \ and \ Sets} \ (8 \ {\tt credits})$

Prove by means of the inductive proof scheme that the following predicate is a tautology for $n \in \mathbb{N}$:

$$P(n) \iff \sum_{k=1}^{n} (4k - 1) = 2n^2 + n$$

Show how the different steps are related by equivalences or implications.

Basis step:

Induction step:

Conclusion:

$Problem \ 7 \quad {\tt Predicate \ Logic \ and \ Sets} \ (5 \ {\tt credits})$

Prove that the following subset relation is valid for arbitrary sets $A,B,C\subseteq A^2$:

$$\overline{A} \setminus (B \cup C) \subseteq \overline{(\overline{B} \cup C) \cap \overline{\overline{\overline{B}} \setminus A}}$$

Name all laws you use.

$Problem \ 8 \quad {\tt Predicate \ Logic \ and \ Sets} \ (6 \ {\tt credits})$

Given are the following sets and predicates:

- S: Set of all students.
- L: Set of all lectures.
- Pxy: Student x is present in lecture y.
- Cy: Lecture y is being cancelled.

Formalize the following statements A_1 , A_2 and A_3 with the help of predicate logic only. Only use the predicates and sets given above.

a)* $A_1 \iff$ For every lecture applies: If there is at least one student present in the lecture, it will not be cancelled.

b) $A_2 \iff$ If statement A_1 is being observed and there is at least one student present in every lecture, then all lectures will take place.

c) $A_3 \iff$ If there is a lecture that has been cancelled, then no student was present in that lecture.

$Problem \ 9 \quad {\tt Predicate \ Logic \ and \ Sets} \ (5 \ {\tt credits})$

Transform the following statement given in component free notation into predicate logic notation:

$$[(A \setminus B) \triangle \overline{C} \neq \emptyset] \land (B = \emptyset) \Longrightarrow A \neq C$$

For this, only use the following predicates, where $A,B,C\subseteq G$:

- $\bullet \ \ x \in A \iff Px$
- $x \in B \iff Qx$
- $x \in C \iff Sx$

The result must not contain operations from set notation or relation notation.

Problem 10 Predicate Logic and Sets (6 credits)

Prove the following implication by means of the deductive proof scheme:

$$(A \bigtriangleup B \subseteq B) \land (\overline{C} \cup A = G) \Longrightarrow C \subseteq B$$

 ${\cal G}$ is the universal set. Name all laws you use.

Row		From Row(s)	Law(s)
1	$A \triangle B \subseteq B$		
2	$\overline{C} \cup A = G \qquad \Longrightarrow C \subseteq B$		
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			

Problem 11 Relations (8 credits)

a)* Prove that the following subset relations are logically equivalent: Name all laws you use.

$$W^{-1}\overline{X^{-1}\cap Y^{-1}}\subseteq \overline{Z}\iff Z^{-1}W^{-1}\subseteq X\cap Y$$

b)* Given is the Hasse diagram $G_H = (A, H)$ of the partial order relation $R \subseteq A^2$ with $A = \{1, 2, 3, 4, 5, 6, 7\}$:

Calculate the following bounds and extrema of the set $B = \{2, 3, 4, 5\}$: ub(B), max(B), lst(B), glb(B)

Problem 12 Relations (5 credits)

Given is the following graph G = (A, R) of the relation $R \subseteq A^2$ with $A = \{1, 2, 3, 4, 5\}$:

Calculate the transitive closure R^+ by means of the Warshall Algorithm. Use the variable order given in the table below. For each iteration cycle, give $\Gamma^-(i)$, $\Gamma^+(i)$, and $G=(A,R_i)$.

i	$\Gamma^-(i)$	$\Gamma^+(i)$	$G = (A, R_i)$
			1 2
			5 4 3
1			
			1 2
			$\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$ $\overline{}$
2			
			5 4 3
3			
			1 2
			5 4 3
4			
			1 2
			5 4 3
5			

$Problem \ 13 \quad {\rm Relations} \ (7 \ {\rm credits})$

Given is the relation R by the following successor table, with $R \subseteq A^2$:

X	$\Gamma^+\{x\}$
1	{2,3}
2	${3,4,5,6}$
3	$\{4,6\}$
4	$\{1,5\}$
5	$\{1,3,6\}$
6	{1,4,6}

a)* Give the adjacency matrices of reflexive closure r(R), the symmetric closure s(R) and the transitive symmetric reflexive closure tsr(R) of R.

b)* Mark all correct statements in the following.

Mark correct answers with a cross

To undo a cross, completely fill out the answer option

To re-mark an option, use a human-readable marking

D	_	D^{+}
B	=	B'

The nodes 3 and 1 are indirectly accessible.

 \square R is antisymmetric.

 \square R is semiconnex.

 \square R is a homogeneous relation.

 \square R is asymmetric.

 \square R is connex.

Problem 14 Relations (10 credits)

Given are the basic sets $A = \{a, b, c, d\}$ and $B = \{V, W, X, Y, Z\}$, and the following relations:

- $R = \{(a, V), (a, W), (a, X), (b, Z), (c, Z), (d, Y)\}; R \subseteq A \times B$
- $S = \{(V, a), (W, c), (X, b), (Y, d), (Z, a)\}; S \subseteq B \times A$

Additional space for solutions–clearly mark the (sub) problem your answers are related to and strike out invalid solutions.

