UNIVERSITE DE NICE-SOPHIA ANTIPOLIS

POLYTECH'NICE-SOPHIA

PEIP2

ANNEE UNIVERSITAIRE 2016/2017

Fonctions de plusieurs variables

René-J. BWEMBA

CHAPITRE 3 – FONCTIONS DE PLUSIEURS VARIABLES

- 1. GENERALITES ET NOTION DE LIMITE
 - 1.1 LIMITE D'UNE FONCTION EN UN POINT
 - 1.2 APPLICATIONS PARTIELLES
- 2. CONTINUITE DANS UN E.V.N. APPLICATIONS LIPSCHITZIENNES
 - 2.1 CONTINUITE
 - 2.2 APPLICATIONS LIPSCHITZIENNES
- 3. DIFFERENTIABILITE D'UNE FONCTION DE \mathbb{R}^n DANS \mathbb{R}^p .
 - 3.1 DIFFERENTIABILITE
 - 3.2 DERIVEE DIRECTIONNELLE
 - 3.3 FONCTIONS DE CLASSE \mathcal{C}^1
- 4. DERIVEES PARTIELLES SECONDES ET EXTREMA LOCAUX
 - 4.1 MATRICE HESSIENNE
 - 4.2 EXTREMUM LOCAL

- 1. GENERALITES ET NOTION DE LIMITE.
 - 1.1 LIMITE D'UNE FONCTION EN UN POINT.

Soient deux espaces vectoriels normés (E, \mathcal{N}_E) et (F, \mathcal{N}_F) .

Soit f une application définie sur un sous-espace vectoriel V de E à valeurs dans F.

Soit enfin $x_0 \in \overline{V}$.

DEFINITION 1.1.

On dit que f admet pour limite $l \in F$ quand x tend vers x_0 si :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in V, \mathcal{N}_E(x - x_0) < \eta \Rightarrow \mathcal{N}_F(f(x) - l) < \varepsilon$$

On note alors:

$$\lim_{x \to x_0} f(x) = l$$

REMARQUE 1.1.

Comment traduire cette notion en termes de boules ?

Nous pouvons ré-écrire la DEFINITION 1.1 sous la forme :

$$\forall \varepsilon > 0, \exists \eta > 0; f(\mathcal{B}_{\mathcal{N}_E}(x - x_0, \eta)) \subset \mathcal{B}_{\mathcal{N}_E}(f(x) - l, \varepsilon)$$

PROPOSITION 1.1.

On a les équivalences suivantes :

- (i) $\lim_{x \to x_0} f(x) = l$
- (ii) L'image par f de toute suite de vecteurs de V (convergeant vers x_0) tend vers l; en d'autres termes :

$$\forall \{x_n\}_{n\in\mathbb{N}} \in V \ t. \ q. \lim_{n\to\infty} x_n = x_0 \quad , \quad \lim_{n\to\infty} f(x_n) = l$$

(iii)
$$\forall \{x_n\}_{n\in\mathbb{N}} \in V \ t. \ q. \lim_{n\to\infty} x_n = x_0$$
 , $\lim_{n\to\infty} \mathcal{N}_F(f(x_n) - l) = 0$

REMARQUE 1.2.

- (i) Unicité de la limite : si la limite existe, alors elle est unique.
- (ii) Si E et F sont deux espaces vectoriels de dimension finie, alors la notion de limite ne dépend pas des normes choisies.
- (iii) Dans la pratique : on peut étudier l'existence et calculer la valeur (éventuelle) d'une limite l de f en $x_0 \in \overline{V}$ par majoration, par encadrement, par composition (de limites)...

EXEMPLE 1.1.

Soit la fonction f définie de $\mathbb{R}^2\setminus\{(0,0)\}$ à valeurs dans \mathbb{R} par :

$$f(x,y) = \frac{\sin(x^4) + \sin(y^4)}{\sqrt{x^4 + y^4}}$$

La limite de f en (0,0) existe-t-elle?

On peut partir de la majoration : $|\sin x| \le |x|$, $\forall x \in \mathbb{R}$

Et donc

$$|f(x,y)| \le \frac{|\sin(x^4) + \sin(y^4)|}{\sqrt{x^4 + y^4}} \le \frac{|\sin(x^4)| + |\sin(y^4)|}{\sqrt{x^4 + y^4}} \le \frac{|x^4| + |y^4|}{\sqrt{x^4 + y^4}} = \frac{x^4 + y^4}{\sqrt{x^4 + y^4}}$$

Puis,

$$|f(x,y)| \le \sqrt{x^4 + y^4}$$

Et comme

$$\lim_{(x,y)\to(0,0)} \sqrt{x^4 + y^4} = 0$$

On en déduit :

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

EXEMPLE 1.2.

Par encadrement, on peut calculer la limite de la fonction suivante en (0,0).

$$f(x,y) = \frac{1 + \cos x}{|\ln|y||}$$

En effet, sachant que pour tout $x \in \mathbb{R}$:

$$0 \le 1 + \cos x \le 2$$

On a:

$$0 \le \frac{1 + \cos x}{|\ln|y||} \le \frac{2}{|\ln|y||}$$

Or

$$\lim_{y \to 0} \frac{2}{|\ln|y||} = 0$$

Et donc

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0$$

1.2 APPLICATIONS PARTIELLES.

DEFINITION 1.2.

Nous considérons les e.v.n suivants : (E,\mathcal{N}) , (E_1,\mathcal{N}_1) et (E_2,\mathcal{N}_2) , et la fonction :

$$f: E_1 \times E_2 \to E$$

telle que

$$\forall (x,y) \in E_1 \times E_2, \qquad f(x,y) = z$$

On appelle alors applications partielles, les applications définies par :

(i)
$$\forall a \in E_1, f_a: E_2 \to E$$
, t.q. $f_a(y) = f(a, y)$;

(ii)
$$\forall b \in E_2, f_b: E_1 \to E$$
, t.q. $f_b(x) = f(x, b)$.

PROPOSITION 1.2.

Soit un vecteur $(a,b) \in E_1 \times E_2$.

Si

$$\lim_{(x,y)\to(a,b)} f(x,y) = l$$

Alors

$$\lim_{y \to b} f(a, y) = l \quad et \quad \lim_{x \to a} f(x, b) = l$$

(c'est -à-dire que les applications partielles tendent également vers l)

ATTENTION: la réciproque est FAUSSE.

EXEMPLE 1.3.

Soit la fonction f définie sur $\mathbb{R}^2 \setminus \{(0,0)\}$ par :

$$f(x,y) = \frac{x y}{x^2 + y^2}$$

Afin de calculer la limite de cette fonction en (0,0), étudions ses applications partielles :

Fixons
$$a = 0$$
 , $f(0, y) = 0$ et $\lim_{y\to 0} f(0, y) = 0$

et
$$\lim_{y\to 0} f(0,y) = 0$$

De même,

fixons
$$b = 0$$
, $f(x, 0) = 0$ et $\lim_{x \to 0} f(x, 0) = 0$.

$$et \quad \lim_{x\to 0} f(x,0) = 0.$$

Cependant,

$$\lim_{(x,y)\to(0,0)} f(x,y) \neq 0$$

Car si on considère la suite $\{u_n\}_{n\in\mathbb{N}^*}$ de $\mathbb{R}^2ackslash\{(0,0)\}$ définie par :

$$u_n = (x_n, y_n) = (\frac{1}{n}, \frac{1}{n})$$

On a bien:

$$\lim_{n\to\infty}(x_n,y_n)=(0,0)$$

Calculons à présent

$$\lim_{n\to\infty}f(x_n,y_n)$$

On a:

$$f(x_n, y_n) = \frac{\left(\frac{1}{n}\right) \cdot \left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)^2 + \left(\frac{1}{n}\right)^2} = \frac{1}{2}$$

Et donc

$$\lim_{n\to\infty} f(x_n, y_n) = \frac{1}{2} \neq 0$$

L'unicité de la limite quand elle existe, permet donc de conclure que la fonction f n'admet pas de limite en (0,0).

D'où la remarque suivante.

REMARQUE 1.3.

Pour montrer qu'une fonction f n'admet pas de limite en un point (x_0, y_0) , il suffira de montrer que les applications partielles f_{x_0} et f_{y_0} ont des limites différentes quand $y \to y_0$ et quand $x \to x_0$ ou alors que l'une des applications partielles n'admet pas de limite.

2. CONTINUITE DANS UN E.V.N. ET APPLICATIONS LIPSCHITZIENNES.

Soient deux espaces vectoriels normés (E, \mathcal{N}_E) et (F, \mathcal{N}_F) .

Soit f une application définie sur un sous-espace vectoriel V de E à valeurs dans F.

2.1 CONTINUITE.

DEFINITION 2.1.

On dit que f est continue en $x_0 \in E$, si et seulement si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in V, \mathcal{N}_{\varepsilon}(x - x_0) < \eta \Rightarrow \mathcal{N}_{\varepsilon}(f(x) - f(x_0)) < \varepsilon$$

On dit que f est continue sur V si et seulement si f est continue en tout point de V.

REMARQUE 2.1.

f est continue en x_0 peut donc s'interpréter par :

$$\lim_{x \to x_0} f(x) = f(x_0)$$

EXEMPLE 2.1.

La fonction f définie sur \mathbb{R}^2 et à valeurs dans \mathbb{R} , par :

$$f(x,y) = \begin{cases} \frac{\sin(x+y)}{x+y} & x \neq -y\\ 1 & x = -y \end{cases}$$

est continue sur \mathbb{R}^2 .

En effet:

Pour $x \neq -y$: la fonction f est continue comme quotient de fonctions continues (de dénominateur non nul) ;

Pour x = -y:

$$\lim_{(x,y)\to(x,-x)} \frac{\sin(x+y)}{x+y} = \lim_{u\to 0} \frac{\sin u}{u} = 1$$

D'autre part, par définition de f:

$$f(x, -x) = 1$$

On en déduit donc la continuité de f sur \mathbb{R}^2 .

PROPOSITION 2.1.

Soit (E, \mathcal{N}_E) un espace vectoriel normé.

Soit f une application définie sur un sous-espace vectoriel V de E à valeurs (vectorielles) dans $F = \mathbb{R}^p$, $p \in \mathbb{N}^*$.

On note : $f(x) = (f_1(x), \dots, f_p(x)), \forall x \in V$

Soit enfin $x_0 \in V$.

f est continue en x_0 si et seulement si f_j est continue en x_0 , $\forall j=1,\dots,p$.

EXEMPLE 2.2.

L'application $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^2$ définie par :

$$\varphi(r,\theta) = (r\cos\theta, r\sin\theta)$$

est continue sur \mathbb{R}^2 car

$$\varphi_1(r,\theta) = r\cos\theta$$

et

$$\varphi_2(r,\theta) = r\sin\theta$$

sont continues de $\mathbb{R}^2 \to \mathbb{R}$.

2.2 APPLICATIONS LIPSCHITZIENNES.

DEFINITION 2.2.

Soient deux espaces vectoriels normés (E, \mathcal{N}_E) et (F, \mathcal{N}_F) .

Soit f une application définie sur un sous-espace vectoriel V de E à valeurs dans F.

L'application f est dite lipschitzienne de rapport k>0 (ou encore k-lipschitzienne) si et seulement si :

$$\exists k > 0, \forall (x, y) \in V^2, \qquad \mathcal{N}_F(f(x) - f(y)) \le k \mathcal{N}_E(x - y)$$

CONSEQUENCE IMMEDIATE:

Une application lipschitzienne est continue sur son domaine de définition.

Démonstration:

Soit $x_0 \in V$, montrons que f est continue en x_0 c'est-à-dire :

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in V, \ \mathcal{N}_E(x - x_0) \le \eta \Rightarrow \mathcal{N}_F(f(x) - f(x_0)) \le \varepsilon$$
 (2)

D'après l'hypothèse que f est k-lipschitzienne, on a :

$$\exists k > 0, \forall (x, y) \in V^2, \qquad \mathcal{N}_F(f(x) - f(y)) \le k \mathcal{N}_E(x - y)$$

En $y = x_0$:

$$\mathcal{N}_F(f(x) - f(x_0)) \le k \, \mathcal{N}_E(x - x_0) \le k\eta$$

Il suffit de choisir : $\eta = \frac{\varepsilon}{k}$ pour conclure à la continuité de f en x_0 .

EXEMPLE 2.3.

(i) Toute application f continue sur [a,b] à valeurs dans \mathbb{R} dont la dérivée est également continue sur [a,b] à valeurs dans \mathbb{R} est lipschitzienne.

On a pour tous $x, y \in [a, b]$:

$$|f(x) - f(y)| = \left| \int_{x}^{y} f'(t) dt \right| \le \sup_{t \in [a,b]} \left| f'(t) \right| \int_{x}^{y} dt$$

En effet, l'application |f'| étant continue sur [a, b], y est bornée, c'est-à-dire :

$$\exists M > 0, |f'(t)| \leq M, \forall t \in [x, y] \subset [a, b]$$

Donc:

$$|f(x) - f(y)| \le M|x - y|$$

L'application f est M-lipschtzienne.

(ii) Dans l'e.v.n (E, \mathcal{N}) , l'application \mathcal{N} est 1-lipschtzienne.

Considérons la DEFINITION 2.2 pour l'application ${\mathcal N}$:

$$\mathcal{N}_F\big(\mathcal{N}(x)-\mathcal{N}(y)\big) \leq k \,\, \mathcal{N}_E(x-y)$$

Or $\mathcal{N}: E \to \mathbb{R}^+$, on peut donc choisir pour la norme \mathcal{N}_F la valeur absolue, et $\mathcal{N}_E = \mathcal{N}$.

L'inéquation précédente devient :

$$|\mathcal{N}(x) - \mathcal{N}(y)| \le k \, \mathcal{N}(x - y)$$

A-t-on alors:

$$|\mathcal{N}(x) - \mathcal{N}(v)| < \mathcal{N}(x - v)$$
?

L'inégalité triangulaire donne :

$$\mathcal{N}(x) = \mathcal{N}(x - y + y) \le \mathcal{N}(x - y) + \mathcal{N}(y) \Rightarrow \mathcal{N}(x) - \mathcal{N}(y) \le \mathcal{N}(x - y)$$
$$\Rightarrow |\mathcal{N}(x) - \mathcal{N}(y)| \le \mathcal{N}(x - y)$$

(iii) L'application produit (notée p), définie de la boule $\mathcal{B}(0,r) \subset \mathbb{R}^2$, r > 0, à valeurs dans \mathbb{R} par : p(x,y) = xy est lipschtzienne.

En effet, prenons : $(u, v) \in \mathcal{B}(0, r), t. q. \ u = (x_1, y_1) \ ; \ v = (x_2, y_2) \ .$

Considérons les espaces vectoriels normés :(\mathbb{R}^2 , $\|.\|_{\infty}$) et (\mathbb{R} , |.|) et montrons qu'il existe un réel k > 0

$$\forall u, v \in \mathcal{B}(0, r), |p(u) - p(v)| \le k||u - v||_{\infty}$$

C'est-à-dire

$$|x_1y_1 - x_2y_2| \le k \max(|x_1 - x_2|, |y_1 - y_2|)$$

Or

$$|x_1y_1 - x_2y_2| = |x_1y_1 - x_2y_1 + x_2y_1 - x_2y_2| = |(x_1 - x_2)y_1 + (y_1 - y_2)x_2|$$

$$\leq |x_1 - x_2||y_1| + |y_1 - y_2||x_2| \leq \max(|x_1 - x_2|, |y_1 - y_2|) \cdot (|y_1| + |x_2|)$$

$$\leq 2r \max(|x_1 - x_2|, |y_1 - y_2|)$$

On prend k = 2r.

L'application p est k-lipschitzienne sur $\mathcal{B}(0,r)$, $\forall r>0$, elle est donc continue sur $\mathcal{B}(0,r)$, $\forall r>0$, on en déduit que cette application est continue sur $\mathbb{R}^2=\bigcup_{r>0}\mathcal{B}(0,r)$.

PROPOSITION 2.2:

Soit (E, \mathcal{N}_E) un e.v.n de dimension **finie**; et soit (F, \mathcal{N}_E) un e.v.n quelconque.

Alors, toute application $f: E \to F$ est lipschitzienne.

Démonstration: (à voir)

COROLLAIRE 2.2:

Soit (E, \mathcal{N}_E) un e.v.n de dimension **finie**; et soit (F, \mathcal{N}_E) un e.v.n quelconque.

Alors:

- (i) Toute application $f: E \to F$ est continue sur E;
- (ii) L'application « somme », $S: E \times E \rightarrow F$, t.q. S(x,y) = x + y est continue sur $E \times E$;
- (iii) Si $E=\mathbb{R}^n$, l'application « coordonnée », $\pi_i\colon\mathbb{R}^n\to\mathbb{R}$, t.q. $\pi_i(x_1,\ldots,x_n)=x_i$ est continue sur \mathbb{R}^n .

CONTINUITE ET COMPOSITION DE LIMITES :

PROPOSITION 2.3:

Soient E, F, G trois e.v.n.

Soient deux applications continues f, g;

$$f:V\subset E\to F,\,g:W\subset F\to G$$
;

Alors l'application:

$$gof: V \cap f^{-1}(W) \to G$$

Est continue sur son ensemble de définition.

EXEMPLE 2.4:

- (i) Soit $E=\mathbb{R}^p$. Soient $n_1,n_2,\ldots,n_p\in\mathbb{N}^*$. L'application $\varphi\colon E\to\mathbb{R}$ telle que : $\varphi\big(x_1,x_2,\ldots,x_p\big)=x_1^{n_1}+x_2^{n_2}+\cdots+x_p^{n_p} \text{ est continue}.$
 - En fait, les polynômes à plusieurs variables sont continues sur E.
- (ii) Les fonctions définies par des formules explicites, par composition de fonctions usuelles (sin , cos , exp , $\sqrt{}, \frac{1}{x}$) et de polynômes sont continues sur leur ensemble de définition.

CONTINUITE ET DENSITE :

THEOREME 2.1 (Prolongement unique):

Soit E un e.v.n.

Soit V un sous-espace vectoriel de E, **dense** dans E (c'est-à-dire $\overline{V}=E$).

Soient deux applications f, g définies et continues sur E, et à valeurs dans F.

Si
$$f(x) = g(x)$$
, $\forall x \in V$ alors $f(t) = g(t)$, $\forall t \in E$.

Démonstration:

Soit $a \in E$, comme $\overline{V} = E$ alors $a \in \overline{V}$.

Il existe donc une suite $\{x_n\}$ de vecteurs de V qui converge vers a.

Et par hypothèse,

$$\forall n \geq 0, f(x_n) = g(x_n)$$

Donc

$$\lim_{n\to\infty}f(x_n)=\lim_{n\to\infty}g(x_n)$$

Par continuité des applications f et g, on a :

$$f(\lim_{n\to\infty}x_n)=g(\lim_{n\to\infty}x_n)$$

C'est-à-dire

$$f(a) = g(a)$$

Le vecteur a étant quelconque dans E, on conclut que :

$$\forall t \in E, f(t) = g(t)$$

BORNES D'UNE FONCTION CONTINUE:

Une fonction continue sur un intervalle fermé, borné [a,b] inclus dans $\mathbb R$ est bornée et atteint ses bornes.

La notion de compact permet de généraliser cette propriété qui sera utile lors de l'étude des extrema de fonctions de plusieurs variables.

RAPPELS:

Un sous-espace V de E est fermé ssi $\overline{V} = V$.

DEFINITION 2.3:

Soit (E, \mathcal{N}) un e.v.n et soit V un sous-espace vectoriel de E.

(i) Le sous-espace V est dit borné s'il existe un réel r>0 tel que $V\subseteq \overline{\mathcal{B}}_{\mathcal{N}}(0,r)$ c'est-à-dire :

$$\forall x \in V$$
, $\mathcal{N}(x) \leq r$

(ii) Supposons E de dimension finie. Si V est un sous-espace vectoriel fermé et borné de E, alors on dit que V est un sous-espace vectoriel compact de E.

THEOREME 2.2:

Soit (E, \mathcal{N}) un e.v.n de dimension finie et soit V un sous-espace vectoriel **compact** de E.

Soit une application f définie et **continue** sur V à valeurs dans \mathbb{R} .

Alors f est bornée sur V et atteint ses bornes, c'est-à-dire :

- Il existe un vecteur m de V tel que : $f(m) = \inf_{V} f(x)$;
- Il existe également un vecteur M de V tel que : $f(M) = \sup_{V} f(x)$.