CIRCULANT MATRICES

DYLAN ANG

Definition 1. An nxn matrix C is called circulant if C =

$$\begin{bmatrix} c_1 & c_n & c_{n-1} & \cdots & c_2 \\ c_2 & c_1 & c_n & \cdots & \cdots \\ c_3 & c_2 & c_1 & \cdots & \cdots \\ \cdots & c_3 & c_2 & \cdots & c_{n-1} \\ c_{n-1} & \cdots & c_3 & \cdots & c_n \\ c_n & c_{n-1} & c_{n-1} & \cdots & c_2 & c_1 \end{bmatrix}$$

Example.

$$C = \begin{bmatrix} 4 & 1 & 2 & 3 \\ 3 & 4 & 1 & 2 \\ 2 & 3 & 4 & 1 \\ 1 & 2 & 3 & 4 \end{bmatrix}$$

1. Discrete Fourier Transform

Definition 2. The nxn DFT matrix is given by

$$F_{n} = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & omega^{3} & \cdots & \omega^{n-1}\\ 1 & \omega^{2} & \omega^{4} & omega^{6} & \cdots & \omega^{2(n-1)}\\ 1 & \omega^{3} & \omega^{6} & omega^{9} & \cdots & \omega^{3(n-1)}\\ & & & \ddots & & \\ 1 & \omega^{n-1} & \omega^{2(n-1)} & \omega^{3(n-1)} & \cdots & \omega^{(n-1)(n-1)} \end{bmatrix}$$

where $\omega = e^{2\pi i/n}$ and $i = \sqrt{-1}$

Theorem 1. A circulant matrix is diagonalized by the DFT matrix. Then $F_n^{-1}CF_n = \Lambda$ where $\Lambda =$ diagonal matrix, containing eigenvalues of C.

Remark. $F_n^{-1} = F_n^H$ and $C^{-1} = F_n \Lambda^{-1} F_n^H$

Date: May 31, 2021.

Multiplication by the DFT matrix F_N can be done in $n \log n$ computations instead of n^2 computations. Done via Fast Fourier Transforms.