

24.11.2004

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2003年10月16日
Date of Application:

出願番号 特願2003-356833
Application Number:
[ST. 10/C]: [JP2003-356833]

出願人 カルソニックカンセイ株式会社
Applicant(s):

2005年 1月 6日

特許庁長官
Commissioner,
Japan Patent Office

八 月 洋

【書類名】 特許願
【整理番号】 HE-03704
【あて先】 特許庁長官殿
【国際特許分類】 F28F 9/02
【発明者】
【住所又は居所】 東京都中野区南台5丁目24番15号 カルソニックカンセイ株式会社内
【氏名】 岩崎 充
【発明者】
【住所又は居所】 東京都中野区南台5丁目24番15号 カルソニックカンセイ株式会社内
【氏名】 生井 一憲
【特許出願人】
【識別番号】 000004765
【氏名又は名称】 カルソニックカンセイ株式会社
【代理人】
【識別番号】 100119644
【弁理士】
【氏名又は名称】 綾田 正道
【選任した代理人】
【識別番号】 100105153
【弁理士】
【氏名又は名称】 朝倉 悟
【手数料の表示】
【予納台帳番号】 146261
【納付金額】 21,000円
【提出物件の目録】
【物件名】 特許請求の範囲 1
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 0111417

【書類名】特許請求の範囲**【請求項 1】**

チューブとフィンとが交互に多数連結配置された一対の熱交換器コアが厚み方向に並列に配置され、

該両熱交換器コアにおける両チューブの一方端側が1つのUターン用中間タンクに接続され、両チューブのもう一方端側がそれぞれ別体に形成された流入側タンクと流出側タンクにそれぞれ接続され、

前記両熱交換器コアが前記中間タンクを中心としてそれぞれ独立して伸縮可能となるよう前記流入側タンクと流出側タンクおよび中間タンクが車体側に対し取り付けられていることを特徴とする対向流式熱交換器。

【請求項 2】

請求項1に記載の対向流式熱交換器において、前記流入側タンクと流出側タンクを車体側に取り付けるためのプラケットが、流入側タンクと流出側タンクの長手方向両端部に設けられ、

前記各プラケットが前記流入側タンクと流出側タンクの長手方向両端面部に対しそれぞれ1本のボルトにより該各ボルトを中心としてそれぞれ回動可能な状態に取り付けられていることを特徴とする対向流式熱交換器。

【請求項 3】

請求項1または2に記載の対向流式熱交換器において、前記中間タンク側が弾性支持部材を介して車体側に取り付けられていることを特徴とする対向流式熱交換器。

【書類名】明細書

【発明の名称】対向流式熱交換器

【技術分野】

【0001】

本発明は、1対の熱交換器コアを厚み方向に並設させ、中間タンクを介して両熱交換器コア内をUターンさせるようにした対向流式熱交換器に関する。

【背景技術】

【0002】

従来のこの種の対向流式熱交換器は、例えば、図5に示すように、チューブ101とフィン102とが交互に多数連結配置された一対の熱交換器コア103、104が厚み方向に並列に配置され、該両熱交換器コア103、104における両チューブ101、101の一方端側が1つのUターン用中間タンク105に接続され、両チューブ101、101のもう一方端側が流入側タンク106と流出側タンク106にそれぞれ接続され、流入側タンク106と流出側タンク107との間を仕切壁108で仕切ることにより、流入側タンク106と流出側タンク107とが一体に形成された構造となっていた（例えば、特許文献1参照。）。

【0003】

【特許文献1】特開2002-393498号公報（明細書（3）頁、図2～4）

【発明の開示】

【発明が解決しようとする課題】

【0004】

しかしながら、対向流式熱交換器では、上述のように、流入側タンク106と流出側タンク107との間を仕切壁108で仕切ることにより、流入側タンク106と流出側タンク107とが一体に形成された構造となっていたため、以下に述べるような問題があった。

【0005】

即ち、流入側タンク106に接続される熱交換器コア103側を流れる冷却水と、流出側タンク107に接続される熱交換器コア104側を流れる冷却水の温度差が約40℃と極めて大きいため、流入側タンク106と流出側タンク107とが一体に形成された構造では、両熱交換器コア103、104の熱膨張差によりチューブ101や流入側タンク106および流出側タンク107に大きな熱応力が作用し、これにより、各部に歪み、亀裂、破損等を生じさせる虞がある。

【0006】

また、流入側タンク106と流出側タンク107との間が一枚の仕切壁108で仕切られた構造であるため、仕切壁108を介して流出側タンク107内を流れる冷却水が流入側タンク106内を流れる高温の冷却水の熱で加温され、これにより熱交換効率が悪くなる。

【0007】

本発明の解決しようとする課題は、両熱交換器コアを流れる冷却水の温度差に基づく熱応力によって各部の歪み、亀裂、破損等が発生することを防止し、かつ、熱交換効率を高めることができる対向流式熱交換器を提供することにある。

【課題を解決するための手段】

【0008】

上記課題を解決するため請求項1記載の対向流式熱交換器は、チューブとフィンとが交互に多数連結配置された一対の熱交換器コアが厚み方向に並列に配置され、該両熱交換器コアにおける両チューブの一方端側が1つのUターン用中間タンクに接続され、両チューブのもう一方端側がそれぞれ別体に形成された流入側タンクと流出側タンクにそれぞれ接続され、前記両熱交換器コアが前記中間タンクを中心としてそれぞれ独立して伸縮可能となるように前記流入側タンクと流出側タンクおよび中間タンクが車体側に対し取り付けられていることを特徴とする手段とした。

【発明の効果】

【0009】

請求項1記載の対向流式熱交換器では、上述のように、両熱交換器コアが前記中間タンクを中心としてそれぞれ独立して伸縮可能となるように前記流入側タンクと流出側タンクおよび中間タンクが車体側に対し取り付けられた構成したことにより、両熱交換器コアを流れる冷却水の温度差に基づく熱応力によって各部の歪み、亀裂、破損等が発生することを防止することができるようになるという効果が得られる。

【0010】

また、流入側タンクと流出側タンクがそれぞれ別体に形成されることにより、流入側タンク側を流れる冷却水の熱が流出側タンクに伝わることが防止されるため、熱交換効率を高めることができるようになるという効果が得られる。

【発明を実施するための最良の形態】

【0011】

以下にこの発明の実施例を図面に基づいて説明する。

【実施例】

【0012】

この実施例の対向流式熱交換器は、請求項1～3に記載の発明に対応する。

まず、この実施例の対向流式熱交換器を図面に基づいて説明する。

【0013】

図1はこの実施例の対向流式熱交換器を示す一部切欠正面図、図2は同拡大平面図、図3は同一部切欠拡大側面図、図4は同斜視図である。

この実施例の対向流式熱交換器は、流入側熱交換器コア1と、流出側熱交換器コア2と、Uターン用中間タンク3と、流入側タンク4と、流出側タンク5と、プラケット6と、ゴムブッシュ(弾性支持部材)7と、を主な構成として備えている。

【0014】

さらに詳述すると、前記流入側熱交換器コア1と流出側熱交換器コア2は、それぞれ冷却水が流通するチューブ11、21と冷却用のフィン12、22が交互に横方向に多数連結された構造となっていて、この両熱交換器コア1、2はその厚み方向に並設された状態で配置されている。

【0015】

両熱交換器コア1、2における両チューブ11、21の下端側が1つのUターン用中間タンク3に接続され、両チューブ11、21の上端側がそれぞれ別体に形成された流入側タンク4と流出側タンク5にそれぞれ接続されている。

【0016】

前記プラケット6、6は、流入側タンク4と流出側タンク5を車体側であるラジエータコアサポート(図示せず)に取り付けるための金具であり、流入側タンク4と流出側タンク5の長手方向両端部に設けられている。

【0017】

即ち、この各プラケット6は、その熱交換器側取付部6aを流入側タンク4と流出側タンク5の長手方向両端面部に対しそれぞれ1本のボルト61、61により該ボルト61、61を中心としてそれぞれ回動可能な状態に取り付けが行われるようになっており、また61を車体側に取り付け固定するためのボルト穴6cが設けられると共に、該側取付部6bには車体側に取り付け固定するためのボルト穴6dが予め固定されていて、ラジエータコアサポート穴6cの下面側にはウエルドナット6dが予め固定されていて、ラジエータコアサポート側から挿通したボルトをブッシュを介してウエルドナット6dにねじ込むことにより、流入側タンク4と流出側タンク5がラジエータコアサポート側に取り付け固定されるようになっている。そして、

【0018】

一方、Uターン用中間タンク3側は、複数のゴムブッシュ7を介してラジエータコアサポートに取り付けられることにより、弾性支持されるようになっている。

【0019】

また、この実施例では、流入側タンク4と流出側タンク5およびUターン用中間タンク3内がその長手方向の途中で仕切られることにより、大容量の第1ラジエータAと、小容量の第2ラジエータBが幅方向に一体化された構造となっている。

【0020】

そして、第1ラジエータA側の流入側タンク4aと流出側タンク5aには流入パイプ41と流出パイプ51がそれぞ接続され、第2ラジエータB側の流入側タンク4bと流出側5bにも流入パイプ42と流出パイプ52がそれぞ接続されている。なお、図において43、53はエア抜きパイプ、31、32はドレンパイプを示す。

【0021】

なお、一般の内燃機関車両においては、大容量の第1ラジエータAがエンジン冷却水を冷却し、小容量の第2ラジエータBは電気系冷却水を冷却するため等に用いることができ、また、FCU:FCV車に適用される場合は、大容量の第1ラジエータAがエアコンのヒータ回路やフェュエルセルスタック等を冷却し、小容量の第2ラジエータBはLLC:FV車におけるインバータのモータやその回路等を冷却するため等に用いることができる。

【0022】

次に、この実施例の作用・効果を説明する。

以上のように構成された実施例の対向流式熱交換器では、第1ラジエータAおよび第2ラジエータBにおいて、流入パイプ41、42からそれぞれ各流入側タンク4a、4b内に流入した加熱冷却水は、それぞれ流入側熱交換器コア1、1のチューブ11、11内を流れ、この中間タンク3a、3b内に流入し、この中間タンク3a、3b内からそれぞれ流出側熱交換器コア2、2のチューブ21、21内を流れ、さらに冷却されて流出側タンク5a、5b内に流入し、流出パイプ51、52からそれらに冷却されて排出される。

【0023】

そして、流入側タンク4a、4bに接続される流入側熱交換器コア1、1側を流れる冷却水と、流出側タンク5a、5bに接続される流出側熱交換器コア2、2側を流れる冷却水の温度差が、第1ラジエータA側では約40℃と極めて大きく、また、第2ラジエータB側でも約20℃の温度差があるため、流入側熱交換器コア1、1と流出側熱交換器コア2、2との熱膨張差が大きくなるが、上述のように、流入側タンク4と流出側タンク5を車体側であるラジエータコアサポートに取り付けるためのプラケット6、6は、流入側タンク4と流出側タンク5の長手方向両端面に対しそれぞれ1本のボルト61、61により該各ボルト61、61を中心として回動可能に取り付けられた構造となっているため、温度変化によりUターン用中間タンク3を中心として流入側熱交換器コア1、1と流出側熱交換器コア2、2が長手方向（上下方向）に伸縮し、その際、温度差によって伸縮長さに差が生じて2、2が長手方向（上下方向）に伸縮し、その際、温度差によって伸縮長さに差が生じても、流入側タンク4a、4bおよび流出側タンク5a、5bに対しプラケット6、6が両ボルト61、61を中心としてそれぞれ相対回動することで、伸縮長さの差を吸収することができる。（請求項1、2に対応）。

【0024】

また、Uターン用中間タンク3側は、複数のゴムブッシュ7を介してラジエータコアサポートに取り付けることにより、ラジエータコアサポートに対し弾性支持した構成としたため、流入側熱交換器コア1、1と流出側熱交換器コア2、2の長手方向伸縮をゴムブッシュ7の弾性により吸収することができる。（請求項3に対応）。

【0025】

従って、流入側熱交換器コア1、1と流出側熱交換器コア2、2を流れる冷却水の温度差に基づく熱応力によって各部の歪み、亀裂、破損等が発生することを防止することができるようになるという効果が得られる。

【0026】

また、流入側タンク4と流出側タンク5がそれぞれ別体に形成されることにより、流入側タンク側4を流れる冷却水の熱が流出側タンク5に伝わることが防止される。（請求項1に対応）。

従って、熱交換効率を高めることができるようになるという効果が得られる。

【0027】

以上本実施例を説明してきたが、本発明は上述の実施例に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等があっても、本発明に含まれる。

【0028】

例えば、実施例では、プラケット6をそれぞれ1本のボルト61、61により該ボルト61、61を中心としてそれぞれ回動可能な状態に取り付けを行なったが、プラケット6のボルト挿通孔を長孔に形成することにより、プラケット6に対し流入側タンク4a、4bおよび流出側タンク5a、5bがそれぞれ独立して摺動可能となるよう構成してもよい。

【0029】

また、実施例では、1つのプラケット6に流入側タンク4と流出側タンク5を取り付けるようにしたが、それぞれ別体のプラケットにより取り付けるようにしてもよい。

【0030】

また、実施例では、Uターン用中間タンク3側を弾性支持する弾性支持部材としてゴムブッシュ7を用いたが、板ばねやコイルスプリング等を用いることができる。

【0031】

また、実施例では、流入側タンク4と流出側タンク5およびUターン用中間タンク3内をその長手方向の途中で仕切ることにより、大容量の第1ラジエータAと、小容量の第2ラジエータBとが幅方向に一体化された構造のものを例に取ったが、全体を1つのラジエータとして用いるようにしてもよい。

【図面の簡単な説明】

【0032】

【図1】実施例の対向流式熱交換器を示す一部切欠正面図である。

【図2】実施例の対向流式熱交換器を示す拡大平面図である。

【図3】実施例の対向流式熱交換器を示す一部切欠拡大側面図である。

【図4】実施例の対向流式熱交換器を示す斜視図である。

【図5】従来例の対向流式熱交換器を示す縦断側面図である。

【符号の説明】

【0033】

A エンジン冷却水用ラジエータ（第1ラジエータ）

B 電気系冷却水用ラジエータ（第2ラジエータ）

1 流入側熱交換器コア

1 1 チューブ

1 2 フィン

2 流出側熱交換器コア

2 1 チューブ

2 2 フィン

3 Uターン用中間タンク

3 a 第1ラジエータ用中間タンク

3 b 第2ラジエータ用中間タンク

3 1 ドレンパイプ

3 2 ドレンパイプ

4 流入側タンク

4 a 第1ラジエータ用流入側タンク

4 b 第2ラジエータ用流入側タンク

4 1 流入パイプ

- 4 2 流入パイプ
- 4 3 エア抜きパイプ
- 5 流出側タンク
- 5 a 第1ラジエータ用流出側タンク
- 5 b 第2ラジエータ用流出側タンク
- 5 1 流出パイプ
- 5 2 流出パイプ
- 5 3 エア抜きパイプ
- 6 ブラケット
- 6 a 热交換器側取付部
- 6 b 車体側取付部
- 6 c ボルト穴
- 6 d ウエルドナット
- 6 1 ボルト
- 7 ゴムブッシュ (弹性支持部材)

【書類名】図面

【図1】

【図2】

【図3】

【図4】

【図 5】

【書類名】要約書

【要約】

【課題】 両熱交換器コアを流れる冷却水の温度差に基づく熱応力によって各部の歪み、亀裂、破損等が発生することを防止し、かつ、熱交換効率を高めることができる対向流式熱交換器の提供。

【解決手段】 チューブ11、21とフィン12、22とが交互に多数連結配置された一対の熱交換器コア1、2が厚み方向に並列に配置され、流入側熱交換器コア1および流出側熱交換器コア2における両チューブ11、21の一方端側が1つのUターン用中間タンク3に接続され、チューブ11、21のもう一方端側がそれぞれ別体に形成された流入側タンク4と流出側タンク5にそれぞれ接続され、両熱交換器コア1、2が中間タンクを中心3としてそれぞれ独立して伸縮可能となるように流入側タンク4と流出側タンク5および中間タンク3が車体側に対し取り付けられている。

【選択図】 図3

認定・付加情報

特許出願の番号	特願2003-356833
受付番号	50301721597
書類名	特許願
担当官	第四担当上席 0093
作成日	平成15年10月30日

<認定情報・付加情報>

【提出日】 平成15年10月16日

特願 2003-356833

出願人履歴情報

識別番号 [000004765]

1. 変更年月日 2000年 4月 5日

[変更理由] 名称変更

住所 東京都中野区南台5丁目24番15号
氏名 カルソニックカンセイ株式会社

Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP04/015052

International filing date: 13 October 2004 (13.10.2004)

Document type: Certified copy of priority document

Document details: Country/Office: JP
Number: 2003-356833
Filing date: 16 October 2003 (16.10.2003)

Date of receipt at the International Bureau: 20 January 2005 (20.01.2005)

Remark: Priority document submitted or transmitted to the International Bureau in compliance with Rule 17.1(a) or (b)

World Intellectual Property Organization (WIPO) - Geneva, Switzerland
Organisation Mondiale de la Propriété Intellectuelle (OMPI) - Genève, Suisse