The pst-sigsys Package

(version 1.4)

Farshid Delgosha fdelgosha@gmail.com

March 7th, 2011

Abstract

This package is a collection of useful macros for disciplines related to signal processing. It defines macros for plotting a sequence of numbers, drawing the pole-zero diagram of a system, shading the region of convergence, creating an adder or a multiplier node, placing a framed node at a given coordinate, creating an up-sampler or a down-sampler node, drawing the block diagram of a system, drawing adaptive systems, sequentially connecting a list of nodes, and connecting a list of nodes to one node using any node-connecting macro. The author welcomes all comments for further improvements of this package and suggestions for adding new macros or features.

Contents

1	Intro	duction	2	3.13	\psldots	14
		_		3.14	\ldotsnode	15
2	Chan	ge Log	2	3.15	\psblock	16
3	Macr	os	3	3.16	\psfblock	16
	3.1	\psaxeslabels	3	3.17	\psadaptive	17
	3.2	\pstick	4	3.18	\psknob	18
	3.3	\psTick	5	3.19	\psusampler	19
	3.4	\pssignal	6	3.20	\psdsampler	19
	3.5	\psstem	7	3.21	\nclist	20
	3.6	\pszero	9	3.22	\ncstar	22
	3.7	\pspole	10 4	Extra	us	23
	3.8	\pscircleop	11	4.1	New Styles	23
	3.9	\psframeop	12	4.2	Brace Macros	24
	3.10	\psdisk	12	4.3	Golden Ratio	25
	3.11	\psring	13	4.4	Frame Width and Height	26
	3.12	\psdiskc	13	4.5	Fill Color	26

2 Change Log 2

5	Examples			5.7	Block Diagrams	33
	5.1	Complex Number	27	5.8	C/D Converter	34
	5.2	Plotting	28	5.9	Direct Form II	35
	5.3	Sampling	29	5.10	Filter Bank	36
	5.4	Pole-Zero Diagram	30	5.11	System Identification	37
	5.5	Butterworth Filter	31	5.12	Adaptive Linear Combiner	38
	5.6	Region of Convergence	32			

1 Introduction

To use the pst-sigsys package, add the command

\usepackage{pst-sigsys}

to the preamble of the document. This package loads pstricks [3], pst-node [4], and pst-xkey [1] packages. Moreover, it activates polar coordinates through the \SpecialCoor macro defined by the pstricks package. Hence, all macros support polar coordinates. Simultaneously loading the pst-sigsys package along with some other packages in regular TeX might be impossible due to memory restrictions. If TeX runs out of memory, load the etex package.

Section 2 keeps a change log from previous versions of the package. All macros defined by the pst-sigsys package are introduced in Section 3. The extra functionalities of the package are introduced in Section 4. Many practical examples are provided in Section 5 that illustrate the applications of the introduced macros.

2 Change Log

- Version 1.4 (03/07/2011): The code for the \psaxeslabels macro is updated to accommodate for cases when one of the two axes lines has length zero. The code for \pspole is updated due to the new changes in the pst-node package. The new key afac is added to the \psadaptive macro.
- Version 1.3 (06/18/2010): In the \pstick and \psTick macros, the tick angle is either directly specified by the user or set by the angle key when unspecified. The ticklength key refers to the entire length of a tick, not half of it. The new key killzero is added to the \psstem macro. In the \psldots and \ldotsnode macros, the angle of dots is either directly specified by the user or set by the angle key when unspecified. Two new macros \psadaptive and \psknob are added. The new keys framewidth, frameheight, and FillColor are introduced.
- Version 1.2 (01/15/2010): Five new macros \pstick, \psTick, \pssignal, \ldotsnode, and \ncstar are added. The macros \pshtick, \psvtick, \pshTick, and \psvTick are not available any longer since their functionalities are carried out by the newly defined macros \pstick and \psTick. Codes for the macros \pscircleop, \psframeop, \psldots, and

\nclist are updated. Four new keys gratioWh, gratioWv, gratioHh, and gratioHv are added that allow frames with edges proportional by the golden ratio. The global round-cornering settings are removed because of their undesired effects in other packages. Hence, the option notelegant is not available any longer. Instead, the new style RoundCorners is introduced. The styles BraceUp, BraceDown, BraceLeft, and BraceRight are not available any longer. Instead, the macros \psBraceUp, \psBraceDown, \psBraceLeft, and \psBraceRight are defined. The option pstadd is not available any longer. If the package pstricks-add is loaded, the relevant styles are automatically defined. The macros \RE, \IM, \sRE, and \sIM are not available any longer because of their irrelevance to the objectives of the package.

- Version 1.1 (04/01/2009): Four new macros \pshtick, \psvtick, \pshTick, and \psvTick are added. The codes of macros \psusampler and \psdsampler are updated. However, there is no change in their user interface.
- Version 1.0 (01/15/2009): The fist version of the package.

3 Macros

In this section, we introduce all the macros defined by the pst-sigsys package. Every macro has some optional keys that can be assigned either directly inside brackets right after the macro name or through the \psset macro provided by the pstricks package. In the syntax of every macro, the optional portions are identified by the shaded background. Unless directly stated, all coordinates specified by (coor) could be either in the cartesian format (x, y) or the polar format $(\rho; \theta)^1$. After the introduction of every macro, some examples are provided to illustrate the usage of that macro.

3.1 \psaxeslabels

```
\verb|\psaxeslabels| [keys] | \{arrows\}| (x_0,y_0)(x_1,y_1)(x_2,y_2) \{x\text{-}label\} \{y\text{-}label\}
```

This macro is a simplified version of the \psaxes macro defined by the pst-plot package [5]. As depicted in Figure 1, the \psaxeslabels draws two straight lines, one vertical and one horizontal, that intersect at the point (x_0, y_0) . These lines are enclosed by a virtual rectangular box with the lower left corner at (x_1, y_1) and the upper right corner at (x_2, y_2) . The two lines are labeled x-label and y-label, respectively. Similar to the \psaxes macro, the use of arrows is optional. The keys specific to the \psaxeslabels are summarized in Table 1.

Table 1. \psaxeslabels keys

Key	Value	Default	Description
xlpos	t b	Ъ	Position of the x-label along the horizontal axis
ylpos	1 r	r	Position of the y -label along the vertical axis

¹Recall that pst-sigsys activates the polar coordinates on loading. Hence, there is no need to use the \SpecialCoor macro.

Figure 1. \psaxeslabels macro

3.2 \pstick

```
\verb|\pstick|| \{angle\}| (coor) \{ticklength\}|
```

As depicted in Figure 2, the \pstick macro draws a straight line with length ticklength centered at (coor) and angled angle with respect to the horizontal axis. If the optional parameter angle is absent, then the angle is determined using the angle key. This macro could be used for adding tick lines to coordinate axes in addition to many other usages. The keys specific to the \pstick are summarized in Table 2.

Figure 2. \pstick macro

Table 2. \pstick keys

Key	Value	Default	Description
angle	num	0	Tick angle


```
begin{pspicture}[showgrid](-2,-1)(3,2)

psaxeslabels(0,0)(-2,-1)(3,2){$x$}{$y$}

pstick[linecolor=red](0,1){.2}

pstick[arrows=|-|]{90}(-1,0){.5}

psset{angle=45}

pstick[arrows=->](0,0){1}

pstick[linecolor=blue](1,0){.5}

pstick[linecolor=green]{135}(2,0){.5}

end{pspicture}
```

3.3 \psTick

```
\verb|\psTick|| \{angle\}| (coor)
```

Similar to \pstick, the \psTick macro draws a straight line centered at (coor) and angled angle with respect to the horizontal axis. The only difference is that the tick length is specified by the ticklength key (Table 3). This macro is useful when multiple ticks are to be drawn all with the same length.

Table 3. \psTick keys

Key	Value	Default	Description
ticklength	num[dimen]	0.15	Tick length
angle	num	0	Tick angle


```
begin{pspicture}[showgrid](-2,-1)(3,2)

psaxeslabels(0,0)(-2,-1)(3,2){$x$}{$y$}

psset{ticklength=.5}

psTick[linecolor=red](0,1)

psTick[arrows=|-|]{90}(-1,0)

psTick[linecolor=blue]{90}(1,0)

psset{angle=45}

psTick[linecolor=green](2,0)

end{pspicture}
```

3.4 \pssignal

```
\verb|\pssignal|| [keys]| (coor) \{node\} \{stuff\}
```

This macro places *stuff* inside an invisible frame centered at (*coor*) and makes that a node labeled *node* (Figure 3). The separation of the frame and the *stuff* is determined by the key **signalsep** (Table 4).

Figure 3. \pssignal macro

Table 4. \pssignal keys

Key	Value	Default	Description
signalsep	num[dimen]	$5\mathrm{pt}$	Frame separation


```
begin{pspicture}[showgrid](-2,-1)(2,1)

pssignal(-1.5,.5){x}{$x[n]$}

pssignal[signalsep=.5](1.5,-.5){y}{$y[n]$}

ncline{x}{y}

end{pspicture}
```

3.5 \psstem

```
\label{eq:list} $$\left| \ker \left[ keys \right] (x_0, \Delta) \{ list \} \right| $$\left| \ker \left[ keys \right] \{ list \} $$
```

The \psstem macro plots the sequence defined by list, which is a comma-separated list of numbers. As shown in Figure 4a, if $list = n_1, n_2, n_3, \ldots$, then \psstem draws vertical lines (stems) at $x_0, x_0 + \Delta, x_0 + 2\Delta, \ldots$ on the horizontal axis with heights n_1, n_2, n_3, \ldots , respectively. It is important to remember that both x_0 and Δ must be integers. In case their values are not explicitly given, they are assumed $x_0 = 0$ and $\Delta = 1$. The stem ends are determined by the stemhead key. The \psstem macro is also capable of numerically tagging the stems. As depicted in Figure 4b, the tag of every stem is placed either below or above it depending on whether the corresponding number in the sequence is nonnegative (positive or zero) or negative, respectively. The distance of tags to stems is determined by the labelsep key. In some cases (e.g., when the stemhead is >), it is desirable to remove zero-height stems. The key killzero, when used, removes such stems. The keys specific to the \psstem macro are summarized in Table 5.

Figure 4. \psstem macro

Table 5. \psstem keys

Key	Value	Default	Description
stemhead	style	*	Stem head. Possible choices are *, o, >, <,
			>>, <<, ,), (, > , and < .
stemtag	Boolean	false	Tagging the stems
stemtagformat	format	\scriptstyle	Tag format
killzero	Boolean	false	Removing zero-height stems


```
1
0 1
3 5
-1 0 1 2 3 4 5 6
```

```
begin{pspicture}[showgrid](0,-1)(6,2)
psset{style=Stem,linecolor=blue,%
stemtagformat=\color{red}\scriptstyle}
psstem[stemhead=>,stemtag](1,2){-1,1,2}
end{pspicture}
```

```
2
1
0 2 5
0 1 3 4
-1 0 1 2 3 4 5
```

```
begin{pspicture}[showgrid](0,-1)(6,2)

psset{style=Stem, stemtag}

psstem[linecolor=red](0,2){1,-.75,1}

psset{stemhead=o}

psstem[linecolor=blue](1,2){.5,2,-1}
end{pspicture}
```



```
begin{pspicture}[showgrid](5,1)
psset{stemhead=>}

psstem{1,0,1}

psset{linecolor=red,killzero}

psstem(3,1){1,0,1}
end{pspicture}
```

```
begin{pspicture}[showgrid](5,1)
psstem[xunit=.5]{1,.5,1,.5,1,.5,1}
end{pspicture}
```

```
\begin {pspicture}[showgrid](5,3)
    \proots [stemhead=*](0,1){1}
    \proots [stemhead=o](1,1){1}
    \proots [stemhead=>](2,1){1}
    \proots [stemhead=<](3,1){1}
    \proots [stemhead=>>](4,1){1}
    \proots [stemhead = <<] (5,1){1}
    \rput(0,1.5){%
      \proots [stemhead=|](0,1){1}
10
      \proots [stemhead=)](1,1){1}
11
      \proots [stemhead=(](2,1){1}
12
      \proots [stemhead=>|](3,1){1}
13
      \proots [stemhead=<|](4,1){1}
14
15
  \end{pspicture}
```

3.6 \pszero

```
\verb|\pszero|| [keys]| (coor) \{node\}
```

This macro is used to generate a circle node centered at (coor) and labeled node that represents a zero of a system. It could also be used to generate several circles, all centered at (coor), representing high order zeros as shown in Figure 5. The radius of innermost circle is zeroradius, and it is incremented by zeroradiusinc for high order zeros. The line-width of all circles is determined by the zerowidth key. The key order determines the order of the zero, i.e., the number of circles. The key scale can be used to scale up or down the radius of the innermost circle, the radius increment, and the line-width of all circles. Table 6 summarizes keys corresponding to \pszero and their default values.

Figure 5. \pszero macro

Table 6. \pszero keys

Key	Value	Default	Description
zerowidth	num[dimen]	$0.7 \mathrm{pt}$	Line-width of all circles
zeroradius	num[dimen]	0.08	Radius of the innermost circle
zeroradiusinc	num[dimen]	0.07	Radius increment
order	int	1	Order of the zero
scale	num	1	Scale factor


```
begin{pspicture}[showgrid](5,2)
pszero(1,1){z1}
nput{-90}{z1}{$z_1$}
pszero[linecolor=red](2,1){z2}
pszero[zerowidth=2pt](3,1){z3}
pszero[zeroradius=.25](4,1){z4}
end{pspicture}
```



```
begin{pspicture}[showgrid](4,2)
pszero[order=3](1,1){z5}
nput{-90}{z5}{$z_5$}

pszero[zeroradiusinc=.15,%
order=2](2,1){z6}
pszero[scale=3](3,1){z7}
end{pspicture}
```

3.7 \pspole

```
\verb|\pspole| [keys]| (coor) \{node\}
```

This macro is used to generate a cross node, as shown in Figure 6, centered at (coor) and labeled node that represents the pole of a system. The length and the line width of the cross are controlled by the polelength and polewidth keys, respectively. The key scale can be used to scale up or down the pole line-width and the pole length. The keys corresponding to the \pspole macro are summarized in Table 7.

Figure 6. \pspole macro

Table 7. \pspole keys

Key	Value	Default	Description
polelength	num[dimen]	0.12	Cross length
polewidth	num[dimen]	$0.7 \mathrm{pt}$	Cross line-width
scale	num	1	Scale factor


```
begin{pspicture}[showgrid](6,2)
pspole(1,1){p1}
nput{-90}{p1}{$p_1$}
pspole[linecolor=blue](2,1){p2}
pspole[polewidth=2pt](3,1){p3}
pspole[polelength=.5](4,1){p4}
pspole[scale=3](5,1){p5}
nput{-90}{p5}{$$p_5$}
end{pspicture}
```

3.8 \pscircleop

```
\verb|\pscircleop| [keys]| (coor) \{node\}
```

This macro draws a cross inside a circle. Both the circle and the cross are centered at (coor). Then, it turns the circle into a node labeled node as shown in Figure 7. The length of the cross and its line-width are controlled by the oplength and opwidth keys, respectively. The line-width of the enclosing circle is separately controlled by the linewidth key. The distance between the circle and the cross is determined by the opsep key. The type of operation (whether plus or times) is controlled by the operation key. Another way of determining the operation inside the circle is through the key angle that determines the angle of the cross. The key scale can be used to scale up or down the cross line-width, the cross length, the separation between the cross and the circle, and the circle line-width. The keys corresponding to the \pscircleop macro are summarized in Table 8.

Figure 7. \pscircleop macro

Table 8. \pscircleop and \psframeop keys

Key	Value	Default	Description
oplength	num[dimen]	0.125	Cross length
opwidth	num[dimen]	$0.7 \mathrm{pt}$	Cross line-width
opsep	num[dimen]	0.1	Separation between the cross and the frame
operation	plus times	plus	Operation
angle	angle	0	Cross angle
scale	num	1	Scale factor


```
begin{pspicture}[showgrid](5,2)

pscircleop(1,1){op1}

pscircleop[opwidth=2pt](2,1){op2}

pscircleop[oplength=.25](3,1){op3}

pscircleop[opsep=0](4,1){op4}

end{pspicture}
```



```
begin{pspicture}[showgrid](5,2)
pscircleop[operation=times](1,1){op5}

pscircleop[angle=20](2,1){op6}

psset{fillstyle=solid,fillcolor=gray!50}

pscircleop[scale=2.5](4,1){op7}
end{pspicture}
```

3.9 \psframeop

```
\verb|\psframeop| [keys]| (coor) \{node\}
```

This macro is very similar to the \pscircleop macro with the same keys as in Table 8. The only difference is that the operation is enclosed in a square frame rather than a circular one.


```
begin{pspicture}[showgrid](5,2)
psframeop(1,1){op1}

psframeop[opwidth=2pt](2,1){op2}

psframeop[oplength=.25](3,1){op3}

psframeop[opsep=0](4,1){op4}
end{pspicture}
```

```
1 X X I
```

```
begin{pspicture}[showgrid](5,2)
psframeop[operation=times](1,1){op5}

psframeop[angle=20](2,1){op6}

psset{fillstyle=solid,fillcolor=blue!20}

psframeop[scale=2.5](4,1){op7}
end{pspicture}
```

3.10 \psdisk

```
\verb|\psdisk|| [keys]| (coor) \{radius\}
```

This macro is used to shade the region of convergence of a system in the z plane. It draws a solid disk centered at (coor) with radius radius as depicted in Figure 8. The fill color is specified by the fillcolor key.

Figure 8. \psdisk macro

```
begin{pspicture}[showgrid](5,2)
psdisk[fillcolor=red](1,1){.5}

psdisk[fillcolor=blue!50](3,1){1}

end{pspicture}
```

3.11 \psring

```
\verb|\psring| [keys] | (coor) \{inner-radius\} \{outer-radius\}
```

This macro is used to shade the region of convergence of a system in the z plane. It draws a solid ring centered at (coor) with inner radius inner-radius and outer radius outer-radius as shown in Figure 9. The fill color is specified by the fillcolor key.

Figure 9. \psring macro


```
begin{pspicture}[showgrid](5,2)
psring[fillcolor=red](1,1){.5}{1}
psring[fillcolor=green](3,1){.25}{.5}
dend{pspicture}
```

3.12 \psdiskc

```
\verb|\psdiskc|| [keys]| (coor)(x_0,y_0) \{radius\}
```

This macro is used to shade the region of convergence of a system in the z plane. As shown in Figure 10, it shades the area confined between a circle centered at (coor) with radius radius and a rectangle centered at (coor) with width $2x_0$ and height $2y_0$. The fill color is specified by the fillcolor key.

Figure 10. \psdiskc macro

3.13 \psldots

```
\verb|\psldots|| \{angle\}| (coor)
```

As depicted in Figure 11, this macro draws three dots each with diameter ldotssize on the same straight line, where the middle one is centered at (coor). Every two consecutive dots are separated by ldotssep. The angle of the line on which the dots lie with the horizontal axis is controlled by the optional parameter angle. In case it is absent, the angle is determined by the key angle. The key scale can be used to scale up or down the dot diameter and the dot separation. The keys corresponding to \psldots are summarized in Table 9.

Figure 11. \psldots macro

Key	Value	Default	Description
ldotssize	num[dimen]	0.05	Dot diameter
ldotssep	num[dimen]	0.15	Distance between consecutive dots
angle	angle	0	Dots angle
scale	num	1	Scale factor


```
begin{pspicture}[showgrid](6,2)
psldots(1,1)

psldots{45}(2,1)

psldots[ldotssize=.1]{120}(3,1)

psset{linecolor=blue,angle=90}

psldots[ldotssep=.5](4,1)

psldots[scale=3](5,1)

end{pspicture}
```

3.14 \ldotsnode

This macro is very similar to the \psldots macro. The only difference is that the \ldotsnode places the dots inside an invisible frame and turns that frame into a node labeled *node* as shown in Figure 12. The frame is separated from the dots by half signalsep.

Figure 12. \ldotsnode macro


```
begin{pspicture}[showgrid](-2,-1)(2,1)

pssignal(1.5;0){a}{$a$}

pssignal(1.5;180){b}{$b$}

pssignal(1;270){c}{$c$}

ldotsnode{45}(0,0){dots}

ncline{a}{dots} \ncline{b}{dots}

end{pspicture}
```

3.15 \psblock

```
\verb|\psblock|| [keys]| (coor) \{node\} \{stuff\}
```

This macro places *stuff* at coordinate (*coor*), encloses it in a rectangular frame, and turns that frame into a node labeled *node*. The separation between the *stuff* and the frame is controlled by the framesep key.

3.16 \psfblock

```
\verb|\psfblock|| [keys]| (coor) \{node\} \{stuff\}
```

This macro is very similar to the \psblock macro except that the size of the frame is controlled by the key framesize. The frame size is specified as

```
framesize=num1/dimen/num2/dimen/
```

in which num1 and num2 are separated by a space, not by a comma. If num2 is absent, then a square frame is created.

3.17 \psadaptive

This macro is useful in drawing adaptive systems. It creates $node\ B$ at coordinate (coor) with respect to the center of $node\ A$. Then, it connects $node\ B$ to $node\ A$ and continues to $node\ C$ on the same line (Figure 13). The proportion of the distances of $node\ B$ and $node\ C$ from $node\ A$ is determined by the key afac. A horizontal offset to the location of $node\ B$ is achieved through the aoffset key (Table 10).

Figure 13. \psadaptive macro

Table 10. \psadaptive keys

Key	Value	Default	Description
aoffset	num	0	Horizontal offset
afac	num	1	Length factor


```
begin{pspicture}[showgrid](-3,-1)(3,1)

psblock(-1.5,0){H}{$H(z)$}

psadaptive{->}{H}(-.5,-.75){Ha}

"------

psblock(1.5,0){H}{$H(z)$}

psadaptive{-*}{H}(1;-45){Ha}

end{pspicture}
```



```
begin{pspicture}[showgrid](-3,-1)(3,2)
psblock(0,0){H}{$H(z)$}
psadaptive[afac=2]{->}{H}
(1;-120){Ha}
bend{pspicture}
```

3.18 \psknob

```
\verb|\psknob|| [keys]| (coor) \{node\}
```

This macro is useful in drawing adjustable weights in adaptive systems. It creates a circle node centered at (coor) and labeled node. The radius of this circle is determined by the radius key. Then, it draws a straight arrow centered at (coor) (Figure 14). The length and the angle of this line are controlled by the knoblength and the knobangle keys. The line width of both the circle and the line are controlled by the knobwidth key. The key scale can be used to control the length of the line and the line width of both the circle and the line. The keys specific to \psknob are summarized in Table 11.

Figure 14. \psknob macro

Table 11. \psknob keys

Key	Value	Default	Description
knobwidth	num[dimen]	$0.7 \mathrm{pt}$	Line width
knoblength	num[dimen]	1	Line length
knobangle	num	45	Line angle
radius	num[dimen]	$0.25\mathrm{cm}$	Circle radius
scale	num	1	Scale factor

3.19 \psusampler

```
\verb|\psusampler|| [keys]| (coor) \{node\} \{stuff\}
```

This macro is similar to the \psfblock except that stuff is placed next to an up-arrow in the math mode representing an up-sampler. It is important to remember that stuff must be in the text mode, not in the math mode, i.e., do not put \$ around stuff.

3.20 \psdsampler

```
\verb|\psdsampler|| (coor) \{node\} \{stuff\}
```

This macro is similar to the \psfblock except that stuff is placed next to a down-arrow in the math mode representing a down-sampler. It is important to remember that stuff must be in the text mode, not in the math mode, i.e., do not put \$ around stuff.

3.21 \nclist

```
\label{list_list} $$ \left[ keys \right] $ \left\{ arrows \right\} $ \left\{ nc\text{-}macro \right\} \left\{ list \right\} $$ \\ \left\{ nclist \left[ keys \right] \right. \left\{ arrows \right\} \left\{ nc\text{-}macro \right\} \left[ nc\text{-}label \right] \left\{ list \right\} $$ $$ $$
```

This macro is very useful when sequentially connecting several nodes using a single node-connecting macro. In addition, it is capable of labeling the node connections. The *list* must be a comma-separated list of items. Possible uses of the \nclist are summarized below.

- \nclist [keys] $\{arrows\}$ $\{nc\text{-}macro\}\{n_1, n_2, n_3, \dots\}$ connects the node n_{i-1} to the node n_i , for all $i = 2, 3, \dots$, using the macro nc-macro.
- \nclist [keys] {arrows} {nc-macro}[nc-label]{n_1, n_2 l_2, n_3 l_3, ...} connects the node n_{i-1} to the node n_i , for all $i=2,3,\ldots$, using the macro nc-macro. Moreover, it puts the label l_i on the connection n_{i-1} - n_i , for all $i=2,3,\ldots$, using the macro nc-label. It is important to remember the following:
 - 1. In the list, the node n_i and the label l_i are separated by a space. If the label contains spaces, then it must be enclosed in double curly braces, i.e., n_i { $\{l_i\}$ }.
 - 2. The first element of the list must be a single node (n_1) ; it should not have any labels.
- \nclist [keys] $\{arrows\}$ $\{nc\text{-}macro\}[nc\text{-}label]\{n_1,n_2 \text{ ncl}_2 \ l_2,n_3 \text{ ncl}_3 \ l_3,\dots\}$ connects the node n_{i-1} to the node n_i , for all $i=2,3,\dots$, using the macro nc-macro. Moreover, it puts the label l_i on the connection $n_{i-1}-n_i$ using the macro ncl_i for all $i=2,3,\dots$. If for some i, ncl_i is empty, then the macro nc-label is used. In other words, the nc-label is the default macro for labeling connections when such macro is not explicitly present in the list. It is important to remember the following:
 - 1. In the list, the node n_i , the connection-labeling macro ncl_i , and the label l_i are separated by spaces. If the label contains spaces, then it must be enclosed in double curly braces, i.e., n_i ncl_i $\{\{l_i\}\}$.

2. The first element of the list must be a single node (n_1) ; it should not have any labels.


```
begin{pspicture}[showgrid](6,2)
psblock(1,1){a}{A}

psblock(2.5,1){b}{B}

psblock(4,1){c}{C}

psblock(5.5,1){d}{D}

nclist{->}{ncline}{a,b,c,d}

end{pspicture}
```



```
begin{pspicture}[showgrid](6,2)

dotnode(.5,1){a}

dotnode(2,1){b}

dotnode(3.5,1){c}

dotnode(5,1){d}

nclist{ncline}[naput]%

{a,b $1$,c,d {{$3$ $4$}}}

end{pspicture}
```

```
begin{pspicture}[showgrid](6,2)

dotnode(.5,1){a}

dotnode(2,1){b}

dotnode(3.5,1){c}

dotnode(5,1){d}

nclist{ncline}[naput]%

{a,b $1$,c nbput $2$,d ncput $3$}

end{pspicture}
```

3.22 \ncstar

This macro is used to connect several nodes to a single node. It is also capable of labeling the node connections. The *list* must be a comma-separated list of items. Possible uses of the \ncstar are summarized below.

- \ncstar [keys] $\{arrows\}$ $\{nc\text{-}macro\}\{n_1, n_2, \dots\}\{N\}$ connects the node n_i to the node N, for all $i = 1, 2, \dots$, using the macro nc-macro.
- \ncstar [keys] {arrows} {nc-macro}[nc-label]{n_1 l_1, n_2 l_2, ...}{N} connects the node n_i to node N, for all $i=1,2,\ldots$, using the macro nc-macro. Moreover, it puts the label l_i on the connection n_i -N, for all $i=1,2,\ldots$, using the macro nc-label. It is important to remember that the node n_i and the label l_i are separated by a space in the list. If the label contains spaces, then it must be enclosed in double curly braces, i.e., n_i { $\{l_i\}$ }.
- \ncstar [keys] {arrows} {nc-macro}[nc-label]{n_1 ncl_1 l_1, n_2 ncl_2 l_2, ...}{N} connects node n_i to node N, for all i=1,2,..., using the macro nc-macro. Moreover, it puts the label l_i on the connection n_i -N using the macro ncl_i for all i=1,2,... If for some i, ncl_i is empty, then the macro nc-label is used. In other words, the nc-label is the default macro for labeling connections when such macro is not explicitly present in the list. It is important to remember that the node n_i and the label l_i are separated by a space in the list. If the label contains spaces, then it must be enclosed in double curly braces, i.e., n_i ncl_i {{ l_i }}.


```
begin{pspicture}[showgrid](0,-2)(3,2)

pssignal(1,1){x1}{$x_1$}

pssignal(1,0){x2}{$x_2$}

pssignal(1,-1){x3}{$x_3$}

pscircleop(2.5,0){oplus}

ncstar{->}{ncline}{x1,x2,x3}{oplus}

end{pspicture}
```

```
\begin{bmatrix} b \\ 23 \\ 0 \\ a \\ \end{bmatrix} \begin{bmatrix} 23 \\ -1 \\ 0 \end{bmatrix}
```

```
begin{pspicture}[showgrid](-2,-1)(2,2)

pssignal(-1.5,0){a}{$a$}

pssignal(0,1.5){b}{$b$}

pssignal(1.5,0){c}{$c$}

pssignal(0,0){d}{$d$}

ncstar{ncline}[naput]%

{a $1$,b {{$2$ $3$}},c}{d}

end{pspicture}
```

4 Extras 23


```
begin{pspicture}[showgrid](0,-2)(5,2)

psblock(1,1){a}{$a$}

psblock(1,0){b}{$b$}

psblock(1,-1){c}{$c$}

pscircleop(3,0){oplus}

pssignal(4.5,0){y}{$y$}

psset{labelsep=.1,npos=.25}

ncstar{->}{ncline}[naput]%

{a $x_1$,b $x_2$,c nbput $x_3$}{oplus}

ncline{->}{oplus}{y}

end{pspicture}
```

4 Extras

In addition to the macros introduced in Section 3, the pst-sigsys package defines some extra styles, brace macros, and new keys that are introduced in this section. Their usages are shown in Section 5 with some examples.

4.1 New Styles

The pst-sigsys package defines a few useful PSTricks styles for drawling arrows and dashed lines as shown in Figure 15. Some of these styles, which are shown in Figure 15b, can be used only with the pstricks-add package.

Figure 15. New styles


```
begin{pspicture}[showgrid](-1,-1)(5,2)

psset{style=Stem,linecolor=blue}

psstem[stemtag]{2,1.5,1,.5,0}

end{pspicture}
```

4 Extras 24

In addition, the pst-sigsys package defines the style RoundCorners that makes the following settings:

```
framesep=0.125
framearc=0.25
linearc=0.1
```

The author believes that when drawing block diagrams, it is more elegant to have round corners.

4.2 Brace Macros

The pst-sigsys package defines four new macros \psBraceUp, \psBraceDown, \psBraceRight, and \psBraceLeft that are derived from the \psbrace macro (using the \newpsobject macro) defined by the pstricks-add package. They all have the same syntax that is the same as that of the \psbrace macro. The usage of these macros is shown by the following examples:


```
begin{pspicture}[showgrid](4,3)

psset{linecolor=red}

dotnode(1,1){a}

dotnode(3,2){b}

------

psset{linecolor=blue}

psBraceUp*(b)(a){up}

psBraceDown*(a)(b){down}

end{pspicture}
```

4 Extras 25

4.3 Golden Ratio

The pst-sigsys package defines four keys gratioWh, gratioWv, gratioHh, and gratioHv for determining the frame size by the golden ratio φ defined as

$$\varphi = \frac{1+\sqrt{5}}{2} \approx 1.61803398875$$
.

The ancient Greeks thought a rectangle is the most pleasing to the eye if its edges a and b were in the proportion $a: b = \varphi$ [2]. In the gratio keys, the capital letters W and H stand for the width and the height of the frame, respectively. The ending letters h and v imply whether the frame is horizontal or vertical, respectively. In a horizontal frame, the longest edge is horizontal while in a vertical one, the longest edge is vertical.

The four aforementioned keys set one of the edges of a frame as specified by the user and determine the other one by the golden ratio φ as follows:

- The key assignment gratioWh = a sets the width of the frame to a and the height to a/φ as in Figure 16a.
- The key assignment gratioWv = a sets the width of the frame to a and the height to $a\varphi$ as in Figure 16b.
- The key assignment gratioHh = a sets the height of the frame to a and the width to $a\varphi$ as in Figure 16c.
- The key assignment gratioHv = a sets the height of the frame to a and the width to a/φ as in Figure 16d.

Figure 16. Setting the size of a frame by the golden ratio φ


```
| \begin{pspicture}[showgrid](6,2)
| \psfblock[gratioWh=1](.5,1){a}{a}
| \psfblock[gratioWv=1](2,1){b}{b}
| \psfblock[gratioHh=1](3.5,1){c}{c}
| \psfblock[gratioHv=1](5,1){d}{d}
| \end{pspicture}
```

4.4 Frame Width and Height

When drawing block diagrams, it is sometimes useful to change only the width or the height of a frame. This goal is achieved through the keys framewidth and frameheight.


```
begin{pspicture}[showgrid](6,2)
psset{framesize=1 .5}

psfblock[framewidth=.5](1,1){a}{a}

psfblock[frameheight=1](3,1){b}{b}

psdsampler(5,1){c}{2}

end{pspicture}
```

4.5 Fill Color

To emphasize the functions of some blocks in a diagram, it is useful to color them. For this purpose, both the fillstyle and the fillcolor keys must be set. This could be cumbersome when many blocks are to be colored. Since almost always the fill style is solid, it makes sense to define a single key that automatically sets the fill style to solid. The key FillColor plays this role.

```
0 1 2 3 4 5 6
```

```
begin{pspicture}[showgrid](6,1)
psset{fillstyle=crosshatch*}
psframe[fillcolor=red](1,0)(2,1)
psframe[FillColor=blue](3,0)(4,1)
end{pspicture}
```

5 Examples

In this section, we provide some examples to illustrate the benefits and usages of the macros, styles, and keys defined in Sections 3 and 4. Some of these examples require the use of additional packages. In that case, additional packages are mentioned next to the example number.

5.1 Complex Number

Example 1. (use pstricks-add) Show the complex number $c=a+jb=\rho e^{j\theta}$ as a point in the complex plane.


```
\begin{pspicture}[showgrid](-1,-1)(3,3)
                   %--- Drawing axes ---
                   \protect{\protect} \protect{\p
                                         { Re } { m }
                  %--- Defining some useful nodes ---
                   \dotnode[linecolor=purple](2,2){c}
                   \pnode (0,0) {org}
                   \prode(2,0){a}
 10
                   \pnode (0,2){b}
                   %--- Connecting nodes ---
12
                   \ncline{org}{c}
13
                   \ncstar[style=Dash,linecolor=gray]
 14
                                    {ncline}{a,b}{c}
 15
 16
                   %--- Labeling ---
17
                   \color{blue}
18
                   \psset{linecolor=blue,nrot=:U}
19
                   \psBraceDown*(org)(a){$a$}
20
21
                   \psBraceLeft*(b)(org){$b$}
                   \cline[offset=.25]{|*-|*}{org}{c}
22
                   \new {$\new {$\new {$}}}
23
                   \prootember [linecolor=gray](org){.75}{0}{45}
24
                   \t(1;22.5) {\theta}
25
        \end{pspicture}
```

5.2 Plotting

Example 2. (use pst-plot) Draw the sampled sequence $x[n] = x_c(\pi n/4)$, where

$$x_c(t) = \begin{cases} \sin(t) , & t \ge 0 \\ 0 , & t < 0 . \end{cases}$$


```
\begin{pspicture}[showgrid](-3,-2)(9,2)
                 \%--- Drawing axes ---
                  \proonup (3, -2) (9, 2) {n }{ x[n] }
                  %--- x_c(t) ---
                  \psplot[style=Graph, style=Dash, linecolor=gray] {0}{8}{x 45 mul sin}
                 %--- x[n] ---
                  \psset{style=Stem,linecolor=teal,
                                                stemtagformat={\color{blue}\scriptstyle}}
10
                  \protect\ (0, -1) {0,0,0}
11
                  \psstem[stemtag](1,1){.707107,1,.707107,0,-.707107,-1,-.707107,0}
12
13
                 \%--- Labeling the origin ---
14
                  \displaystyle \left[ -45 \right] (0,0) \left\{ \quad 0 \right\} 
15
16
                 %--- Horizontal ticks ----
17
                  \psset{linecolor=gray}
18
                  \psTick(0,1)
19
                  \prootember \pro
20
                  \uput[180](0,1){$\scriptstyle 1$}
^{21}
                  \uput[180](0,-1){{\scriptstyle -1}}
22
        \end{pspicture}
```

5.3 Sampling

Example 3. (use pst-plot and multido) Consider the process of sampling a continuous-time signal $x_c(t)$ with period T: (1) multiply $x_c(t)$ by the impulse train $s(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$ to get $x_s(t) = x_c(t)s(t)$, and (2) convert every delta in $x_s(t)$ into a sample to get the sequence x[n]. Demonstrate this process for the continuous-time signal $x_c(t) = 0.5 \sin(\pi t/2) + 0.5$ and T = 1.


```
\begin{pspicture}[showgrid](-7,-5)(7,1)
             \psset{plotpoints=500, stemtag}
            %--- x_c(t) ---
            \prootember \pro
            \psplot[style=Graph,linecolor=blue]{-6}{6}{x 90 mul sin .5 mul .5 add}
            \mbox{\mbox{multirput(-6,0)(1,0){13}{\psTick[linecolor=gray]{90}(0,0)}}
            \mdots \multido{\nn=-6+1}{13}{\rput[t](\nn,-.25){\structure{1}}
            %--- s(t) ----
10
            \t(0,-1.5) {\psaxeslabels(0,0)(-7,0)(7,0){$t$}{}
11
                      \rput[t1](-7,1){$s(t)$}
12
                      \psstem[style=Stem, stemhead=>, linecolor=blue](-6,1)
13
                                           {1,1,1,1,1,1,1,1,1,1,1,1,1,1}}
14
15
            %--- x_s(t) ---
16
            \t(0,-3){\psaxeslabels(0,0)(-7,0)(7,0){$t$}{}}
17
                      \rput[tl](-7,1){$x_s(t)$}
18
                      \psplot[style=Graph, style=Dash, linecolor=gray]{-6}{6}
19
                                           {x 90 mul sin .5 mul .5 add}
20
                      \psset{style=Stem, stemhead=>, linecolor=blue}
21
                      \psstem[killzero](-6,1){.5,0,.5,1,.5,0,.5,1,.5,0,.5,1,.5}}
^{22}
23
            %--- x[n] ----
^{24}
            \t (0, -4.5) {\psaxeslabels(0,0)(-7,0)(7,0){$n$}{}}
25
                      \rput[t1](-7,1){$x[n]$}
26
                      \psstem[style=Stem,linecolor=blue](-6,1)
27
                                            {.5,0,.5,1,.5,0,.5,1,.5,0,.5,1,.5}}
     \end{pspicture}
```

5.4 Pole-Zero Diagram

Example 4. Draw the pole-zero diagram of a system with the following system function:

$$H(z) = \frac{z^4 - 2z^3 + 2z^2}{z^2 - 4} \ .$$


```
\begin{pspicture}[showgrid](-3,-2)(3,2)
                            \protect{\protect} \protect{\p
                            \psset{linecolor=red}
                            \%--- Placing zeros ---
                            \prootember = 2](0,0)\{z1\}
                            \protect{pszero(1,1){z2}}
                                                                                                                                                             \ny \{90\} \{z2\} \{\$1 + j\$\}
                            \protect{pszero(1,-1){z3}}
                                                                                                                                                              \ny = 1 -90 {z3} {$1 - j$}
                            %--- Placing poles ---
                            \pspole(2,0){p1}
                                                                                                                                                              \nput{-90}{p1}{$2$}
11
                                                                                                                                                      \nput{-90}{p2}{$-2$}
                            pspole(-2,0){p2}
12
              \end{pspicture}
```

5.5 Butterworth Filter

Example 5. (use multido) Draw the pole-zero diagram of a fifth-order Butterworth filter.


```
\begin{pspicture}[showgrid](-3,-3)(3,3)
    %--- Drawing axes ---
    \proonup (3,3) {\$Re\$} {\$ Im\$}
    \pscircle[linecolor=gray](0,0){2}
    %--- Angle between poles ---
    \psset{linecolor=gray}
    \psline[style=Dash](3;108)
    \psline[style=Dash](3;144)
    \prootember [style=Arrow] {<->} (0,0) {2.5} {108} {144}
10
    \t(2.75;126) {\text{circ}}
11
^{12}
    %--- Placing poles ---
13
    \psset{linecolor=red,scale=1.25}
14
    \mbox{\mbox{multido}(\np=108+36){5}{\pspole(2;\np){p}}}
15
  \end{pspicture}
```

5.6 Region of Convergence

Example 6. Shade the region of convergence (ROC) of a system with the following system function assuming it is: (1) causal, and (2) stable.

$$H(z) = \frac{1}{z^2 + z - \frac{3}{4}}$$

Since the poles of the system are at $z = \frac{1}{2}$ and $z = -\frac{3}{2}$, the ROC of the system with the given assumptions is as follows:


```
\begin{pspicture}[showgrid](-4,-3)(4,3)
   %--- Shading ROCs ---
    \psring[fillcolor=teal!30](0,0){.75}{2.25}
   \psdiskc[fillcolor=blue!30](0,0)(3,2.5){2.25}
   %--- Drawing axes ---
   %--- Placing poles ---
   \psset{linecolor=purple,labelsep=.05}
10
   \pscircle(0,0)\{1.5\}
11
   \rput[b]{45}(1.68;135){{\scriptsize\color{purple}unit circle}}
12
   \protect\operatorname{pscircle}[style=Dash,linecolor=gray](0,0){.75}
13
                        pspole(.75,0){p1}
14
   \pscircle[style=Dash,linecolor=gray](0,0){2.25}
15
   \pole(-2.25,0){p2} \pole(-2.25,0){p2} \pole(-2.25,0){p2}
16
17
18
   \%--- Labeling the stable and causal ROCs ---
   \rput*(1.5;45){\scriptsize Stable}
19
   \rput * (3;45) {\scriptsize Causal}
^{20}
21 \end{pspicture}
```

5.7 Block Diagrams

Example 7. Draw the block diagrams of two systems $H_1(z)$ and $H_2(z)$ in both parallel and series combinations.


```
%=== Parallel Combination ===
  \begin{pspicture}[showgrid](-3,-1)(3,1)
    \psset{style=RoundCorners,gratioWh=1.25}
    %--- Defining blocks ---
    \proonup (-3,0) {x} {x[n] $}
    \dotnode(-1.5,0){dot}
    \psfblock[FillColor=red!20](0,.75){H1}{$H_1(z)$}
    \psfblock[FillColor=blue!20](0,-.75){H2}{$H_2(z)$}
    \pscircleop(1.5,0){oplus}
10
    \proonup (3,0) {y} {\$y[n]\$}
11
1\,2
    %--- Connecting blocks ---
13
    \psset{style=Arrow}
14
    \ncline{-}{x}{dot}
15
    \label{localization} $$ \ncangle[angleA=90,angleB=180]{dot}{H1}$
16
    \ncangle[angleA=-90, angleB=180]{dot}{H2}
17
    \ncangle[angleB=90]{H1}{oplus}
18
    \ncangle[angleB=-90]{H2}{oplus}
19
    \ncline{oplus}{y}
20
  \end{pspicture}
21
22 %
  \hspace{1cm}
23
24
  \% === Series Combination ===
25
  \begin{array}{l} \begin{array}{l} \begin{array}{l} \\ \\ \end{array} \end{array}
    \psset{style=RoundCorners, gratioWh=1.25}
27
28
    %--- Defining blocks ---
29
    \proonup (-3.5,0) {x}{$x[n]$}
30
    \psfblock[FillColor=red!20](-1.25,0){H1}{$H_1(z)$}
31
    \psfblock[FillColor=blue!20](1.25,0){H2}{$H_2(z)$}
32
    \proonup (3.5,0){y}{\$y[n]\$}
33
34
    %--- Connecting blocks ---
35
    \nclist[style=Arrow]{ncline}[naput]{x,H1,H2 $v[n]$,y}
36
37 \end{pspicture}
```

5.8 C/D Converter

Example 8. Draw the block diagram of a continuous-to-discrete-time (C/D) converter.


```
\beta = \frac{1}{2}
    \psset{style=RoundCorners}
    %--- Defining blocks ---
    \proonup (-1.75,0) \{xc\} \{x_c(t)\}\
    \pscircleop[operation=times](0,0){otimes}
    \psignal(0,1.25){s}{sc(t)}
    \psblock[FillColor=blue!20](3.25,0){conv}{\parbox[c]{3\psunit}},
    {\centering Conversion from impulse train to discrete-time sequence}}
    \proonup (6.5,0){x}{x[n]}
11
    %--- Connecting blocks ---
12
    \psset{style=Arrow}
13
    \nclist{ncline}[naput]{xc,otimes,conv $x_s(t)$,x}
14
    \ncline{s}{otimes}
15
16
    \%--- Drawing the dashed frame ---
17
    \fnode[style=Dash,linecolor=purple,framesize=6 3.25](2.25,0){box}
18
    \nput{90}{box}{\textcolor{purple}{C/D Converter}}
19
20 \end{pspicture}
```

5.9 Direct Form II

Example 9. (use multido) Draw the direct-form II block diagram of a discrete-time LTI system with the following system function:

$$H(z) = \frac{1 - z^{-1} + 2z^{-2} + 3z^{-3}}{1 + z^{-1} - 0.5z^{-2} + 0.75z^{-3}} \ .$$


```
\begin{pspicture}[showgrid](-5,-6)(5,1)
             \psset{style=RoundCorners, style=Arrow}
             %--- Defining blocks ---
             \dotnode(0,0){dot1}
             \multido\{\nA=1+1,\nB=2+1,\ryA=-.9+-1.8,\ryB=-1.8+-1.8\}\{3\}\{\%\}
                    \psblock(0,\ryA){D\nA}{$z^{-1}}} \dotnode(0,\ryB){dot\nB}}
             \mdot {nn=1+1, ry=0+-1.8}{3}{pscircleop(-2, ry){oplusLnn}}
             \mdots \multido{\nn=1+1,\ry=0+-1.8}{3}{\pscircleop(2,\ry){oplusR\nn}}
             \prootember \pro
10
             \pssignal(4,0){y}{$y[n]$}
11
12
             %--- Connecting blocks ---
13
             \psset{style=Arrow}
14
             \nclist{ncline}{x,oplusL1,oplusR1,y}
15
             \nclist{ncline}{dot1,D1,D2,D3}
16
             \ncline{-}{D3}{dot4}
17
             \nclist{ncline}{oplusL3,oplusL2,oplusL1}
18
             \nclist{ncline}{oplusR3,oplusR2,oplusR1}
19
             \label{localine} $$ \operatorname{c-}{ncline}[naput] {oplusL2 $-1$,oplusR2 nbput $-1$} {dot2} $$
20
             \label{localine} $$ \operatorname{c-}{ncline}[naput] {oplusL3 $0.5$, oplusR3 nbput $2$}{dot3} $$
21
             \ncangle[angleA=180, angleB=-90]{dot4}{oplusL3}
22
             \n put[npos=.5] {$-0.75$}
23
             \ncangle[angleB=-90]{dot4}{oplusR3}
24
             \naput[npos=.5]{$3$}
25
     \end{pspicture}
```

5.10 Filter Bank

Example 10. Draw the block diagram of an M-channel maximally-decimated filter bank.

5.11 System Identification

Example 11. Draw the block diagram of an adaptive system used for system identification.


```
\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} \end{array} \end{array} \end{array} 
                                        \psset{style=RoundCorners}
                                       	ilde{\mbox{$\%$}}	ext{---} Placing the input signal and drawing blocks ---
                                       \proonup (-4,0) {x} {x_k}
                                       \dotnode(-2.5,0){dot}
                                       \psblock(0,-1){AdapSys}
                                                                                       {\parbox[c]{1.75\psunit}{\centering\small Adaptive System}}
                                       \prooteman{ \begin{tabular}{ll} \prooteman{ \begin{tabular}{
                                       \pscircleop(3,-1){oplus}
10
                                       \mbox{ \nput{150}{oplus}{$\scriptstyle -$}}
11
                                       \ \footnote{10} {\scriptsize 00} {\scriptsize 00
^{12}
                                       \psblock(0,1){UnSys}
13
                                                                                       {\parbox[c]{1.75\psunit}{\centering\small Unknown System}}
14
15
16
                                     %--- Connecting blocks ---
                                       \psset{style=Arrow}
17
                                       \ncline{-}{x}{dot}
18
                                       \ncangle[angleA=-90,angleB=180]{dot}{AdapSys}
19
                                       \ncangle[angleA=90,angleB=180]{dot}{UnSys}
20
                                       \label{localization} $$ \c angle B = 90 ] {UnSys} {oplus} $$ \naput [npos = 1.5] {$d_k$} $$
^{21}
22
                                       \ncline { AdapSys} { oplus }
                                       \n \{ y_k \}
^{23}
                                       \ncangle[angleA = -90] \{-\} \{oplus\} \{AdapSysA\}
24
                                       \neg [npos=.5] { e_k }
26 \end{pspicture}
```

5.12 Adaptive Linear Combiner

Example 12. (use multido) Draw the block diagram of an adaptive linear combiner.


```
\begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \begin{array}{l} \end{array} \end{array} \end{array} \end{array} \end{array} 
                \psset{style=RoundCorners,gratioWh=1,radius=.25}
               %--- Signals ---
               \prootember [n] 
               \prootember{pssignal(-1.25,0){x2}{$x_2[n]$}}
               \psignal(1.25,0){x3}{x_{k-1}[n]}
               \psignal(3.25,0){x4}{xx_k[n]}
               \proonup (0, -5) {y}{$y[n]$}
10
               \%--- Gains, dots, and the adder ---
1\,1
               \psknob(-3.25, -1.75){w1}
                                                                                                                       \nput{180}{w1}{$w_1$}
12
               \p sknob (-1.25, -1.75) \{w2\}
                                                                                                                        13
               \psknob(1.25, -1.75) \{w3\}
                                                                                                                        14
               \psknob(3.25, -1.75){w4}
                                                                                                                        \ny \{0\} \{ w4 \} \{ w_k \} \}
15
               \psldots(0,0)
                                                                         \psldots(0,-1.75)
16
               \prootember \pro
17
18
               %--- Connections ---
19
               \psset{style=Arrow}
20
               ^{21}
               \ncstar[armA=.75, angleA=-90]{ncdiagg}{w1,w2,w3,w4}{oplus}
22
               \ncline{oplus}{y}
24 \end{pspicture}
```

References 39

References

[1] Hendri Adriaens. pst-xkey package, 2004. CTAN:/macros/latex/contrib/xkeyval/run/pst-xkey.

- [2] J. J. Rotman. A First Course in Abstract Algebra. Prentice Hall, NJ, 2nd edition, 2000. 25
- [3] Timothy Van Zandt. PSTricks PSTricks macros for generic TEX, 1993. http://www.tug.org/application/PSTricks. 2
- [4] Timothy Van Zandt. pst-node package, 1999. CTAN:/graphics/pstricks/base/pst-node. 2
- [5] Timothy Van Zandt. pst-plot: Plotting two dimensional functions and data, 1999. CTAN:graphics/pstricks/base/pst-plot. 3

Index

scale, 9-11, 14, 18

```
afac, 17
                                               signalsep, 6, 15
angle, 4, 11, 14
                                               stemhead, 7
aoffset, 17
                                               ticklength, 5
FillColor, 26
                                               xunit, 7
fillcolor, 12-14, 26
fillstyle, 26
                                               zeroradius, 9
frameheight, 26
                                               zeroradiusinc, 9
framesep, 16
                                               zerowidth, 9
framesize, 16
framewidth, 26
gratioHh, 25
gratioHv, 25
gratioWh, 25
gratioWv, 25
killzero, 7
knobangle, 18
knoblength, 18
knobwidth, 18
labelsep, 7
ldotssep, 14
ldotssize, 14
linewidth, 11
operation, 11
oplength, 11
opsep, 11
opwidth, 11
order, 9
Package
    etex, 2
   multido, 29, 31, 35, 38
    pst-node, 2
   pst-plot, 3, 28, 29
    pst-xkey, 2
    pstricks, 2, 3
    pstricks-add, 23, 24, 27
polelength, 10
polewidth, 10
radius, 18
RoundCorners, 24
```