${\bf Baye suvius},$

a small visual dictionary of Bayesian Networks

Robert R. Tucci www.ar-tiste.xyz

March 25, 2021

Figure 1: View of Mount Vesuvius from Pompeii

Figure 2: Mount Vesuvius and Bay of Naples

Contents

Foreword			
Navigating the ocean of Judea Pearl's Books		10	
Notati	Notational Conventions and Preliminaries 1		
0.1	Some abbreviations frequently used throughout this book	11	
0.2	$\mathcal{N}(!a)$	11	
0.3	One hot	11	
0.4	Special sets	11	
0.5	Kronecker delta function	12	
0.6	Dirac delta function	12	
0.7	Indicator function (aka Truth function)	12	
0.8	Underlined letters indicate random variables	12	
0.9	Probability distributions	12	
	Discretization of continuous probability distributions	13	
	Samples, i.i.d. variables	13	
	Normal Distribution	14	
0.13	Uniform Distribution	14	
	Sigmoid and logit functions	14	
0.15	Expected Value and Variance	15	
	Conditional Expected Value	15	
0.17	Law of Total Variance	15	
0.18	Notation for covariances	16	
0.19	Conditional Covariance	17	
0.20	Linear regression, Ordinary Least Squares (OLS)	17	
	0.20.1 LR, assuming x_{σ} are non-random	18	
	0.20.2 LR, assuming x_{σ} are random and i.i.d	21	
	Short Summary of Boolean Algebra	23	
	Entropy, Kullback-Liebler divergence	24	
0.23	Definition of various entropies used in Shannon Information Theory .	24	
	ion of a Bayesian Network	2 6	
1 AR.	ACNE-structure learning	29	

2	Bac 2.1	Ekdoor Adjustment Examples
3	Bac	ck Propagation (Automatic Differentiation)
	3.1	General Theory
		3.1.1 Jacobians
		3.1.2 bnets for function composition, forward propagation and back
		propagation
	3.2	Application to Neural Networks
		3.2.1 Absorbing b_i^{λ} into $w_{i j}$
		propagation for NN
	3.3	General bnets instead of Markov chains induced by layered structure
		of NNs
4	Ras	sic Curve Fitting Using Gradient Descent
_		
5	Bell	l and Clauser-Horne Inequalities in Quantum Mechanics
6	Ber	kson's Paradox
7	Bin	ary Decision Diagrams
8	Cho	ow-Liu Trees and Tree Augmented Naive Bayes (TAN)
	8.1	Chow-Liu Trees
	8.2	Tree Augmented Naive Bayes (TAN)
9	Cou	interfactual Reasoning
	9.1	The 3 Rungs of Causal AI
	9.2	Two kinds of intervention operators
	9.3	Do operator for DEN diagrams
	9.4	Mediation Analysis
10	Dec	cision Trees
11	Diff	ference-in-Differences
		John Snow, DID and a cholera transmission pathway
		PO analysis
	11.3	Linear Regression
12	Dig	ital Circuits
	_	Mapping any dcircuit to a bnet
		12.1.1 Option A of Fig.12.2
		12.1.2 Option B of Fig.12.2

13	Do-Calculus 13.1 Parent Adjustment	78 81 82 83 84
14	D-Separation	88
15	Dynamic Bayesian Networks	91
16	Expectation Maximization 16.1 The EM algorithm:	93 94 95 96 97 97 98 100
17	Front-door Adjustment 17.1 Examples	101 102
18	Generative Adversarial Networks (GANs)	103
19	Gaussian Nodes with Linear Dependence on Parents	108
20	Hidden Markov Model	111
21	Influence Diagrams & Utility Nodes	115
22	Instrumental Inequality and beyond 22.1 I-inequality	
23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	123 123 124 126 126
24	Junction Tree Algorithm	127

25	Kalman Filter	128
	25.1 Problem	. 129
	25.2 Solution	. 129
26	Linear and Logistic Regression	131
	26.1 Generalization to x with multiple components (features)	. 133
	26.2 Alternative $V(b, m)$ for logistic regression	. 133
27	Linear Deterministic Bnets with External Noise	135
	27.1 Example of LDEN diagram	. 135
	27.2 Fully Connected LDEN diagrams	. 136
	27.2.1 Fully connected LDEN diagram with $nx = 2 \dots \dots$. 137
	27.2.2 Fully connected LDEN diagram with $nx = 3 \ldots \ldots$. 137
	27.2.3 Fully connected LDEN diagram with arbitrary nx	. 138
	27.3 Non-linear DEN diagrams	. 140
28	Markov Blankets	141
29	Markov Chain Monte Carlo (MCMC)	143
	29.1 Inverse Cumulative Sampling	. 143
	29.2 Rejection Sampling	
	29.3 Metropolis-Hastings Sampling	. 146
	29.4 Gibbs Sampling	. 149
	29.5 Importance Sampling	. 150
30	Markov Chains	152
31	Message Passing (Belief Propagation)	153
	31.1 Distributed Soldier Counting	. 153
	31.2 Spring Systems	. 155
	31.3 BP for Markov Chains	
	31.4 BP Algorithm for Polytrees	
	31.4.1 How BP algo for polytrees reduces to the BP algo for Markov	
	chains	
	31.5 Derivation of BP Algorithm for Polytrees	
	31.6 Example of BP algo for a Tree	
	31.7 Bipartite bnets	
	31.8 BP for bipartite bnets (BP-BB)	
	31.8.1 BP-BB and general BP agree on Markov chains	
	31.8.2 BP-BB and general BP agree on tree bnets	
	31.9 BP-BB and sum-product decomposition	. 182

32	Missing Data, Imputation	183
	32.1 Imputation via EM	184
	32.2 Imputation via MCMC	187
	32.3 Multiple Imputations	188
33	Monty Hall Problem	189
34	Naive Bayes	191
35	Neural Networks	192
	35.1 Activation Functions $\mathcal{A}_i^{\lambda}: \mathbb{R} \to \mathbb{R}$	193
	35.2 Weight optimization via supervised training and gradient descent	195
	35.3 Non-dense layers	197
	35.4 Autoencoder NN	198
36	Noisy-OR gate	199
	36.1 3 ways to interpret the parameters π_i	200
97	Non negative Metric Feetenization	203
31	Non-negative Matrix Factorization 37.1 Bnet interpretation	203
	37.2 Simplest recursive algorithm	203 204
	57.2 Shirplest recursive agorranii	201
38	Observational Equivalence of DAGs	205
	38.1 Examples	206
39	Potential Outcomes	209
	39.1 G and G_{den} , bnets, the starting point bnets	210
	39.2 G_{do+} bnet	212
	39.3 G_{im+} bnet	213
	39.4 G_{im+} bnet with nodes $y^{\sigma}(0), y^{\sigma}(1)$ added to it	214
	39.5 Conditional Independence Assumption	216
	39.6 $\mathcal{Y}_{ \tilde{d},x}$ and G_{do}	217
	39.7 Translation Dictionary	217
	39.8 $\mathcal{Y}_{d \tilde{d}}$ differences (aka treatment effects)	218
	39.9 Zero ACE, $\mathcal{Y}_{1 0} = \mathcal{Y}_1$	220
	39.10(SDO, ATE) space	221
	39.11Matching Strata	223
	39.11.1 Exact strata-match	223
	Example, calculation of estimators for a treatment	225
	39.11.2 Approximate strata-match	227
	39.11.3 Positivity	227
	39.12Propensity Score	228
	39.13Multi-time PO bnets (Panel Data)	230

40	Program evaluation and review technique (PERT)	233
	40.1 Example	235
41	Recurrent Neural Networks	239
	41.1 Language Sequence Modeling	242
	41.2 Other types of RNN	243
	41.2.1 Long Short Term Memory (LSTM) unit (1997)	244
	41.2.2 Gated Recurrence Unit (GRU) (2014)	246
42	Regression Discontinuity Design	248
	42.1 PO analysis	248
	42.2 Linear Regression	249
43	Reinforcement Learning (RL)	251
	43.1 Exact RL bnet	254
	43.2 Actor-Critic RL bnet	256
	43.3 Q function learning RL bnet	258
44	Reliability Box Diagrams and Fault Tree Diagrams	260
	44.1 Minimal Cut Sets	266
45	Restricted Boltzmann Machines	268
46	ROC curves	270
47	Scoring the Nodes of a Learned Bnet	273
	47.1 Probability Distributions and Special Functions	274
	47.2 Single node with no parents	276
	47.3 Multiple nodes with any number of parents	278
	47.4 Bayesian Scores	280
	47.5 Information Theoretic scores	280
48	Simpson's Paradox	282
	48.1 Pearl Causality	284
	48.2 Numerical Example	285
49	Structure and Parameter Learning for Bnets	286
	49.1 Overview	286
	49.2 Score based SL algorithms	288
	49.3 Constraint based SL algorithms	289
	49.4 Pseudo-code for some bnet learning algorithms	290

50	Synthetic Controls	292
	50.1 A bnet G_t with weighted treatment outcomes	294
	50.2 PO analysis	
51	Turbo Codes	297
	51.1 Decoding Algorithm	300
	51.2 Message Passing Interpretation of Decoding Algorithm	302
${f 52}$	Uplift Modelling	303
	52.1 UP types	303
	52.2 Some Relevant Technical Facts from Chapter 39	305
	52.3 UP workflow	305
	52.4 Finding an x classifier	307
53	Variational Bayesian Approximation	308
	53.1 Free Energy $\mathcal{F}(\vec{x})$	310
54	Zero Information Transmission (Graphoid Axioms)	313
	54.1 Consequences of Eq.(54.2)	313
Bi	bliography	316

Chapter 41

Recurrent Neural Networks

This chapter is mostly based on Ref.[19].

This chapter assumes you are familiar with the material and notation of Chapter 35 on plain Neural Nets.

Figure 41.1: Simple example of RNN with T=3

Suppose

```
T \text{ is a positive integer.}
t = 0, 1, \dots, T - 1,
\underline{x}_i(t) \in \mathbb{R} \text{ for } i = 0, 1, \dots, numx - 1,
\underline{h}_i(t) \in \mathbb{R} \text{ for } i = 0, 1, \dots, numh - 1,
\underline{Y}_i(t) \in \mathbb{R} \text{ for } i = 0, 1, \dots, numy - 1,
W^{h|x} \in \mathbb{R}^{numh \times numx},
W^{h|h} \in \mathbb{R}^{numh \times numh},
W^{y|h} \in \mathbb{R}^{numy \times numh},
b^y \in \mathbb{R}^{numy},
b^h \in \mathbb{R}^{numh}.
```

Henceforth, $x(\cdot)$ will mean the array of x(t) for all t.

The simplest kind of recurrent neural network (RNN) has the bnet Fig.41.1 with arbitrary T. The node TPMs, printed in blue, for this bnet, are as follows.

$$P(x(\cdot)) = given (41.1)$$

$$P(x(t)) = \delta(x(t), [x(\cdot)]_t) \tag{41.2}$$

$$P(h(t) \mid h(t-1), x(t)) = \delta(h(t), \mathcal{A}(W^{h|x}x(t) + W^{h|h}h(t-1) + b^{h})), \qquad (41.3)$$

where h(-1) = 0.

$$P(Y(t) | h(t)) = \delta(Y(t), \mathcal{A}(W^{y|h}h(t) + b^y))$$
 (41.4)

Define

$$W^{h} = [W^{h|x}, W^{h|h}, b^{h}], (41.5)$$

and

$$W^y = [W^{y|h}, b^y] . (41.6)$$

The bnet of Fig.41.1 can be used for classification once its parameters W^h and W^y have been optimized. To optimize those parameters via gradient descent, one can use the bnet of Fig.41.2.

Let $\sigma = 0, 1, \dots, nsam(\vec{x}) - 1$ be the labels for a minibatch of samples. The node TPMs, printed in blue, for bnet Fig.41.2, are as follows.

$$P(x(\cdot)[\sigma]) = \text{given}$$
 (41.7)

$$P(x(t)[\sigma]) = \delta(x(t)[\sigma], [x(\cdot)]_t[\sigma])$$
(41.8)

$$P(h(t)[\sigma] \mid h(t-1)[\sigma], x(t)[\sigma]) = \delta(h(t)[\sigma], \mathcal{A}(W^{h|x}x(t)[\sigma] + W^{h|h}h(t-1)[\sigma] + b^h)$$

$$(41.9)$$

$$P(Y(t)[\sigma] \mid h(t-1)[\sigma]) = \delta(Y(t)[\sigma], \mathcal{A}(W^{y|h}h(t-1)[\sigma] + b^y)$$
(41.10)

Figure 41.2: RNN bnet used to optimize parameters W^h and W^y of RNN bnet Fig.41.1.

$$P(y(\cdot)[\sigma] \mid x(\cdot)[\sigma]) = \text{given}$$
 (41.11)

$$P(\mathcal{E}(t) \mid \vec{y}(\cdot), \vec{Y}(t)) = \frac{1}{nsam(\vec{x})} \sum_{\sigma} d(y(t)[\sigma], Y(t)[\sigma]) , \qquad (41.12)$$

where

$$d(y,Y) = |y - Y|^2. (41.13)$$

If $y, Y \in [0, 1]$, one can use this instead

$$d(y,Y) = XE(y \to Y) = -y \ln Y - (1-y) \ln(1-Y) . \tag{41.14}$$

$$P(\mathcal{E} \mid [\mathcal{E}(t)]_{\forall t}) = \delta(\mathcal{E}, \sum_{t} \mathcal{E}(t))$$
(41.15)

For a = h, y,

$$P(W^a) = \text{given} . (41.16)$$

The first time it is used, W^a is fairly arbitrary. Afterwards, it is determined by previous horizontal stage.

$$P((W^a)'|\mathcal{E}, W^a) = \delta((W^a)', W^a - \eta^a \partial_{W^a} \mathcal{E}). \tag{41.17}$$

 $\eta^a > 0$ is the learning rate for W^a .

41.1 Language Sequence Modeling

Figs.41.1, and 41.2 with arbitrary T can be used as follows to do Language Sequence Modeling.

For this usecase, one must train with the following TPM for node $\vec{y}(\cdot)$:

$$P(y(\cdot)[\sigma] \mid x(\cdot)[\sigma]) = \prod_{t} \mathbb{1}(\quad y(t)[\sigma] = P(x(t)[\sigma] \mid [x(t')[\sigma]]_{t' < t}) \quad) \tag{41.18}$$

With such training, one gets

$$P(Y(t)|h(t)) = \mathbb{1}(Y(t) = P(x(t) \mid [x(t')]_{t' < t})). \tag{41.19}$$

Therefore,

$$Y(0) = P(x(0)), (41.20)$$

$$Y(1) = P(x(1)|x(0)), (41.21)$$

$$Y(2) = P(x(2)|x(0), x(1)), (41.22)$$

and so on.

We can use this to:

• predict the probability of a sentence, example: Get P(x(0), x(1), x(2)).

- predict the most likely next word in a sentence, example: Get P(x(2)|x(0), x(1)).
- generate fake sentences. example: Get $x(0) \sim P(x(0))$. Next get $x(1) \sim P(x(1)|x(0))$. Next get $x(2) \sim P(x(2)|x(0), x(1))$.

41.2 Other types of RNN

Figure 41.3: RNN bnet of the many to many kind. This one can be used for translation. x(0) and x(1) might denote two words of an English sentence, and Y(2) and Y(3) might be their Italian translation.

Let $\mathcal{T} = \{0, 1, \dots, T-1\}$, and $\mathcal{T}^x, \mathcal{T}^y \subset \mathcal{T}$. Above, we assumed that $\underline{x}(t)$ and $\underline{Y}(t)$ were both defined for all $t \in \mathcal{T}$. More generally, they might be defined only for subsets of \mathcal{T} : $\underline{x}(t)$ for $t \in \mathcal{T}^x$ and $\underline{Y}(t)$ for $t \in \mathcal{T}^y$. If $|\mathcal{T}^x| = 1$ and $|\mathcal{T}^y| > 1$, we say the RNN bnet is of the 1 to many kind. In general, can have 1 to 1, 1 to many, many to 1, many to many RNN bnets.

Plain RNNs can suffer from the **vanishing or exploding gradients problem**. There are various ways to mitigate this (good choice of initial W^h and W^y , good choice of activation functions, regularization). Or by using GRU or LSTM (discussed below). **GRU and LSTM** were designed to mitigate the vanishing or exploding gradients problem. They are very popular in NLP (Natural Language Processing).

41.2.1 Long Short Term Memory (LSTM) unit (1997)

This section is based on Wikipedia article Ref. [63]. In this section, ⊙ will denote the Hadamard matrix product (elementwise product).

Figure 41.4: bnet for a Long Short Term Memory (LSTM) unit.

Let

unit

 $\underline{x}(t) \in \mathbb{R}^{numx}$: input vector to the LSTM unit

 $f(t) \in \mathbb{R}^{numh}$: forget gate's activation vector

 $\overline{i}(t) \in \mathbb{R}^{numh}$: input/update gate's activation vector

 $o(t) \in \mathbb{R}^{numh}$: output gate's activation vector

 $\underline{h}(t) \in \mathbb{R}^{numh}$: hidden state vector also known as output vector of the LSTM

 $\tilde{c}(t) \in \mathbb{R}^{numh}$: cell input activation vector

 $\underline{c}(t) \in \mathbb{R}^{numh}$: cell state vector

 $Y(t) \in \mathbb{R}^{numy}$: classification of x(t).

 $\overline{W} \in \mathbb{R}^{numh \times numx}$, $U \in \mathbb{R}^{numh \times numh}$ and $b \in \mathbb{R}^{numh}$: weight matrices and bias vectors, parameters learned by training.

 $\mathcal{W}^{y|h} \in \mathbb{R}^{numy \times numh}$: weight matrix

Fig.41.4 is a bnet net for a LSTM unit. The node TPMs, printed in blue, for this bnet, are as follows.

 $P(f(t)|x(t), h(t-1)) = \mathbb{1}(f(t) = \text{sig}(W^{f|x}x(t) + U^{f|h}h(t-1) + b^f)),$ (41.23) where h(-1) = 0.

$$P(i(t)|x(t), h(t-1)) = 1(i(t) = sig(W^{i|x}x(t) + U^{i|h}h(t-1) + b^{i}))$$
(41.24)

$$P(o(t)|x(t), h(t-1)) = 1(o(t) = sig(W^{o|x}x(t) + U^{o|h}h(t-1) + b^{o}))$$
(41.25)

$$P(\tilde{c}(t)|x(t), h(t-1)) = \mathbb{1}(\quad \tilde{c}(t) = \tanh(W^{c|x}x(t) + U^{c|h}h(t-1) + b^c) \quad) \quad (41.26)$$

$$P(c(t)|f(t), c(t-1), i(t), \tilde{c}(t)) = 1(c(t) = f(t) \odot c(t-1) + i(t) \odot \tilde{c}(t))$$
 (41.27)

$$P(h(t)|o(t), c(t)) = 1$$
 $h(t) = o(t) \odot \tanh(c(t))$ (41.28)

$$P(Y(t)|h(t)) = 1(Y(t) = A(W^{y|h}h(t) + b^y))$$
 (41.29)

41.2.2 Gated Recurrence Unit (GRU) (2014)

This section is based on Wikipedia article Ref. [52]. In this section, \odot will denote the Hadamard matrix product (elementwise product).

GRU is a more recent (17 years later) attempt at simplifying LSTM unit.

Figure 41.5: bnet for a Gated Recurrent Unit (GRU).

Let

 $\underline{x}(t) \in \mathbb{R}^{numx}$: input vector

 $\underline{\underline{h}}(t) \in \mathbb{R}^{numh}$: output vector

 $\underline{\hat{h}}(t) \in \mathbb{R}^{numh}$: candidate activation vector

 $\underline{z}(t) \in \mathbb{R}^{numh}$: update gate vector

 $\underline{r}(t) \in \mathbb{R}^{numh}$: reset gate vector

 $\underline{Y}(t) \in \mathbb{R}^{numy}$: classification of x(t).

 $\overline{W} \in \mathbb{R}^{numh \times numx}$, $U \in \mathbb{R}^{numh \times numh}$ and $b \in \mathbb{R}^{numh}$: weight matrices and bias vectors, parameters learned by training.

 $\mathcal{W}^{y|h} \in \mathbb{R}^{numy \times numh}$: weight matrix

Fig.41.5 is a bnet net for a GRU. The node TPMs, printed in blue, for this bnet, are as follows.

$$P(z(t)|x(t), h(t-1)) = 1(z(t) = sig(W^{z|x}x(t) + U^{z|h}h(t-1) + b^z)),$$
 (41.30)
where $h(-1) = 0$.

$$P(r(t)|x(t), h(t-1)) = \mathbb{1}(r(t) = \operatorname{sig}(W^{r|x}x(t) + U^{r|h}h(t-1) + b^r))$$
 (41.31)

$$P(\hat{h}(t)|x(t), r(t), h(t-1)) = \mathbb{1}(\hat{h}(t) = \tanh(W^{h|x}x(t) + U^{h|h}(r(t) \odot h(t-1)) + b^h))$$
(41.32)

$$P(h(t)|z(t), h(t-1), \hat{h}(t)) = \mathbb{1}(h(t) = (1 - z(t)) \odot h(t-1) + z(t) \odot \hat{h}(t))$$
(41.33)

$$P(Y(t)|h(t)) = \mathbb{1}(Y(t) = \mathcal{A}(\mathcal{W}^{y|h}h(t) + b^y))$$
(41.34)

Bibliography

- [1] Dan Bendel. Metropolis-Hastings: A comprehensive overview and proof. https://similarweb.engineering/mcmc/.
- [2] Alexandra M Carvalho. Scoring functions for learning Bayesian networks. http://www.lx.it.pt/~asmc/pub/talks/09-TA/ta_pres.pdf.
- [3] Scott Cunningham. Causal inference: The mixtape. Yale University Press, 2021. https://mixtape.scunning.com/index.html.
- [4] Robin J. Evans. Graphical methods for inequality constraints in marginalized DAGs. https://arxiv.org/abs/1209.2978.
- [5] Matheus Facure Alves. Causal Inference for The Brave and True. 2021. https://matheusfacure.github.io/python-causality-handbook/landing-page.html.
- [6] George Fei. Modeling uplift directly: Uplift decision tree with kl divergence and euclidean distance as splitting criteria. https://tinyurl.com/yhnzwj58.
- [7] Charles Fox, Neil Girdhar, and Kevin Gurney. A causal Bayesian network view of reinforcement learning. https://www.aaai.org/Papers/FLAIRS/2008/FLAIRS08-030.pdf".
- [8] Bruno Gonçalves. Model testing and causal search.

 blog post https://medium.com/data-for-science/
 causal-inference-part-vii-model-testing-and-causal-search-536b796f0384.
- [9] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, David Warde-Farley Bing Xu, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks. https://arxiv.org/abs/1406.2661.
- [10] Pierre Gutierrez and Jean-Yves Grardy. Causal inference and uplift modelling: A review of the literature. In *Proceedings of The 3rd International Conference on Predictive Applications and APIs*, pages 1–13, 2017. http://proceedings.mlr.press/v67/gutierrez17a.html.

- [11] Christina Heinze-Deml. Causality, spring semester 2019 at ETH Zurich. https://stat.ethz.ch/lectures/ss19/causality.php#course_materials.
- [12] Cecil Huang and Adnan Darwiche. Inference in belief networks: A procedural guide. *International journal of approximate reasoning*, 15(3):225-263, 1996. http://www.ar-tiste.com/Huang-Darwiche1996.pdf.
- [13] Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society: Series B (Methodological), 50(2):157-194, 1988. http://www.eecis.udel.edu/~shatkay/Course/papers/Lauritzen1988.pdf.
- [14] Sergey Levine. Course CS 285 at UC Berkeley, Deep reinforcement learning. http://rail.eecs.berkeley.edu/deeprlcourse/.
- [15] Dimitris Margaritis. Learning Bayesian network model structure from data (thesis, 2003, Carnegie Mellon Univ). https://apps.dtic.mil/sti/citations/ADA461103.
- [16] Adam A Margolin, Ilya Nemenman, Katia Basso, Chris Wiggins, Gustavo Stolovitzky, Riccardo Dalla Favera, and Andrea Califano. Aracne: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. In *BMC bioinformatics*, volume 7, page S7. Springer, 2006. https://link.springer.com/article/10.1186/1471-2105-7-S1-S7.
- [17] Robert J. McEliece, David J. C. MacKay, and Jung-Fu Cheng. Turbo decoding as an instance of Pearls belief propagation algorithm. http://authors.library.caltech.edu/6938/1/MCEieeejstc98.pdf.
- [18] Richard E Neapolitan. Learning Bayesian networks. Pearson Prentice Hall, 2004.
- [19] Andrew Ng. Lecture at deeplearning.ai on recurrent neural networks. http://www.ar-tiste.com/ng-lec-rnn.pdf.
- [20] Gregory Nuel. Tutorial on exact belief propagation in Bayesian networks: from messages to algorithms. https://arxiv.org/abs/1201.4724.
- [21] Judea Pearl. Linear models: A useful microscope for causal analysis. https://ftp.cs.ucla.edu/pub/stat_ser/r409-corrected-reprint.pdf.
- [22] Judea Pearl. Mediating instrumental variables. https://ftp.cs.ucla.edu/pub/stat_ser/r210.pdf.
- [23] Judea Pearl. On the testability of causal models with latent and instrumental variables. https://arxiv.org/abs/1302.4976.

- [24] Judea Pearl. Reverend Bayes on inference engines: A distributed hierarchical approach. https://www.aaai.org/Papers/AAAI/1982/AAAI82-032.pdf, 1982.
- [25] Judea Pearl. Probabilistic Inference in Intelligent Systems. Morgan Kaufmann, 1988.
- [26] Judea Pearl. Causality: Models, Reasoning, and Inference, Second Edition. Cambridge University Press, 2013.
- [27] Judea Pearl. Causal and counterfactual inference. *The Handbook of Rationality*, pages 1–41, 2019. https://ftp.cs.ucla.edu/pub/stat_ser/r485.pdf.
- [28] Judea Pearl, Madelyn Glymour, and Nicholas P Jewell. Causal inference in statistics: A primer. John Wiley & Sons, 2016.
- [29] Judea Pearl and Dana Mackenzie. The book of why: the new science of cause and effect. Basic Books, 2018.
- [30] ReliaSoft. System analysis reference. http://reliawiki.org/index.php/ System_Analysis_Reference.
- [31] Piotr Rzepakowski and Szymon Jaroszewicz. Decision trees for uplift modeling with single and multiple treatments. *Knowledge and Information Systems*, 32(2):303-327, 2012. https://link.springer.com/content/pdf/10.1007/s10115-011-0434-0.pdf.
- [32] Marco Scutari. bnlearn. https://www.bnlearn.com/.
- [33] Marco Scutari, Catharina Elisabeth Graafland, and José Manuel Gutiérrez. Who learns better Bayesian network structures: Accuracy and speed of structure learning algorithms. *International Journal of Approximate Reasoning*, 115:235–253, 2019. https://arxiv.org/abs/1805.11908.
- [34] Nitish Srivastava, G E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan R Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting. http://www.cs.toronto.edu/~rsalakhu/papers/srivastava14a.pdf.
- [35] Masayoshi Takahashi. Statistical inference in missing data by MCMC and non-MCMC multiple imputation algorithms: Assessing the effects of between-imputation iterations. *Data Science Journal*, 16, 2017. https://datascience.codata.org/articles/10.5334/dsj-2017-037/.
- [36] theinvestorsbook.com. Pert analysis. https://theinvestorsbook.com/pert-analysis.html.

- [37] Robert R. Tucci. Bell's inequalities for Bayesian statisticians. blog post in blog Quantum Bayesian Networks, https://qbnets.wordpress.com/2008/09/19/bells-inequaties-for-bayesian-statistician/.
- [38] Robert R. Tucci. Quantum Fog. https://github.com/artiste-qb-net/quantum-fog.
- [39] W. E. Vesely, F. F. Goldberg, N. H. Roberts, and D. F. Haasl. Fault tree handbook nureg-0492. https://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/.
- [40] Wikipedia. Belief propagation. https://en.wikipedia.org/wiki/Belief_propagation.
- [41] Wikipedia. Berkson's paradox. https://en.wikipedia.org/wiki/Berkson% 27s_paradox.
- [42] Wikipedia. Beta function. https://en.wikipedia.org/wiki/Beta_function.
- [43] Wikipedia. Binary decision diagram. https://en.wikipedia.org/wiki/Binary_decision_diagram.
- [44] Wikipedia. Boolean algebra. https://en.wikipedia.org/wiki/Boolean_algebra.
- [45] Wikipedia. Categorical distribution. https://en.wikipedia.org/wiki/Categorical_distribution.
- [46] Wikipedia. Chow-Liu tree. https://en.wikipedia.org/wiki/Chow%E2%80%93Liu_tree.
- [47] Wikipedia. Data processing inequality. https://en.wikipedia.org/wiki/Data_processing_inequality.
- [48] Wikipedia. Dirichlet distribution. https://en.wikipedia.org/wiki/Dirichlet_distribution.
- [49] Wikipedia. Errors in variables models. https://en.wikipedia.org/wiki/Errors-in-variables_models.
- [50] Wikipedia. Expectation maximization. https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm.
- [51] Wikipedia. Gamma function. https://en.wikipedia.org/wiki/Gamma_function.
- [52] Wikipedia. Gated recurrent unit. https://en.wikipedia.org/wiki/Gated_recurrent_unit.

- [53] Wikipedia. Gibbs sampling. https://en.wikipedia.org/wiki/Gibbs_sampling.
- [54] Wikipedia. Hidden Markov model. https://en.wikipedia.org/wiki/Hidden_Markov_model.
- [55] Wikipedia. Importance sampling. https://en.wikipedia.org/wiki/Importance_sampling.
- [56] Wikipedia. Instrumental variables estimation. https://en.wikipedia.org/wiki/Instrumental_variables_estimation.
- [57] Wikipedia. Inverse transform sampling. https://en.wikipedia.org/wiki/Inverse_transform_sampling.
- [58] Wikipedia. Junction tree algorithm. https://en.wikipedia.org/wiki/Junction_tree_algorithm.
- [59] Wikipedia. k-means clustering. https://en.wikipedia.org/wiki/K-means_clustering.
- [60] Wikipedia. Kalman filter. https://en.wikipedia.org/wiki/Kalman_filter.
- [61] Wikipedia. Least squares. https://en.wikipedia.org/wiki/Least_squares.
- [62] Wikipedia. Linear regression. https://en.wikipedia.org/wiki/Linear_regression.
- [63] Wikipedia. Long short term memory. https://en.wikipedia.org/wiki/Long_short-term_memory.
- [64] Wikipedia. Markov blanket. https://en.wikipedia.org/wiki/Markov_blanket.
- [65] Wikipedia. Metropolis-Hastings method. https://en.wikipedia.org/wiki/ Metropolis%E2%80%93Hastings_algorithm.
- [66] Wikipedia. Minimum spanning tree. https://en.wikipedia.org/wiki/Minimum_spanning_tree.
- [67] Wikipedia. Monte Carlo methods. https://en.wikipedia.org/wiki/Category:Monte_Carlo_methods.
- [68] Wikipedia. Multinomial distribution. https://en.wikipedia.org/wiki/Multinomial_distribution.
- [69] Wikipedia. Multinomial theorem. https://en.wikipedia.org/wiki/Multinomial_theorem.

- [70] Wikipedia. Multivariate normal distribution. https://en.wikipedia.org/wiki/Multivariate_normal_distribution.
- [71] Wikipedia. Natural experiment. https://en.wikipedia.org/wiki/Natural_experiment.
- [72] Wikipedia. Non-negative matrix factorization. https://en.wikipedia.org/wiki/Non-negative_matrix_factorization.
- [73] Wikipedia. Ordinary least squares. https://en.wikipedia.org/wiki/ Ordinary_least_squares.
- [74] Wikipedia. Program evaluation and review technique. https://en.wikipedia.org/wiki/Program_evaluation_and_review_technique.
- [75] Wikipedia. Receiver operating characteristic. https://en.wikipedia.org/wiki/Receiver_operating_characteristic.
- [76] Wikipedia. Rejection sampling. https://en.wikipedia.org/wiki/Rejection_sampling.
- [77] Wikipedia. Simple linear regression. https://en.wikipedia.org/wiki/Simple_linear_regression.
- [78] Wikipedia. Simpson's paradox. https://en.wikipedia.org/wiki/Simpson's s_paradox.
- [79] Wikipedia. Spring system. https://en.wikipedia.org/wiki/Spring_system.
- [80] Wikipedia. Uplift modelling. https://en.wikipedia.org/wiki/Uplift_modelling.
- [81] Wikipedia. Variational Bayesian methods. https://en.wikipedia.org/wiki/ Variational_Bayesian_methods.
- [82] Hao Wu and Zhaohui Steve Qin. course notes, BIOS731: Advanced statistical computing, 2016 Emory Univ. http://web1.sph.emory.edu/users/hwu30/teaching/statcomp/statcomp.html.