Corso di Laurea Magistrale in Matematica Applicata a.a. 2020-21

Gabriele Tolomei

Dipartimento di Informatica Sapienza Università di Roma tolomei@di.uniroma1.it

Lecture 7: NP Completeness

Table of Contents

- 1 Introduction
- 2 Polynomial Time Reducibility
- NP-completeness
- **4** Summary

Table of Contents

- 1 Introduction
- Polynomial Time Reducibility
- 3 NP-completeness
- 4 Summary

 One important advance in the P vs. NP question came in the early 1970s thanks to Stephen Cook and Leonid Levin

- One important advance in the P vs. NP question came in the early 1970s thanks to Stephen Cook and Leonid Levin
- They found that certain problems in NP whose complexity is related to that of the entire class

- One important advance in the P vs. NP question came in the early 1970s thanks to Stephen Cook and Leonid Levin
- They found that certain problems in NP whose complexity is related to that of the entire class
- If a polynomial time algorithm exists for any of these problems, then all problems in NP would be solvable in polynomial time

- One important advance in the P vs. NP question came in the early 1970s thanks to Stephen Cook and Leonid Levin
- They found that certain problems in NP whose complexity is related to that of the entire class
- If a polynomial time algorithm exists for any of these problems, then all problems in NP would be solvable in polynomial time
- These problems are called NP-complete

• The existence of NP-complete problems are fundamental both from the theoretical and the practical perspective

- The existence of NP-complete problems are fundamental both from the theoretical and the practical perspective
- In an attempt to prove that P = NP, one would "only" needs to find a polynomial time algorithm for an NP-complete problem

- The existence of *NP*-complete problems are fundamental both from the theoretical and the practical perspective
- In an attempt to prove that P = NP, one would "only" needs to find a polynomial time algorithm for an NP-complete problem
- Vice versa, trying to prove $P \neq NP$ would require to find at least a problem that is in NP but not in P; in particular this is true for an NP-complete problem

- The existence of NP-complete problems are fundamental both from the theoretical and the practical perspective
- In an attempt to prove that P = NP, one would "only" needs to find a polynomial time algorithm for an NP-complete problem
- Vice versa, trying to prove $P \neq NP$ would require to find at least a problem that is in NP but not in P; in particular this is true for an *NP*-complete problem
- On the practical side, even if we still don't know if $P \neq NP$, showing that a problem is NP-complete is a strong evidence of its non-polynomiality (as most people indeed think $P \neq NP$)

 The first NP-complete problem we present is called the satisfiability problem

7 / 70

- The first NP-complete problem we present is called the satisfiability problem
- Let's consider variables that can take on only two possible values: 1 (TRUE) or 0 (FALSE)

Teoria degli Algoritmi a.a. 2020-21

7 / 70

- The first NP-complete problem we present is called the satisfiability problem
- Let's consider variables that can take on only two possible values: 1
 (TRUE) or 0 (FALSE)
- Those are normally called **boolean** or **binary** variables

- The first NP-complete problem we present is called the satisfiability problem
- Let's consider variables that can take on only two possible values: 1
 (TRUE) or 0 (FALSE)
- Those are normally called boolean or binary variables
- On those variables, we define **3 operators**:
 - AND: x ∧ y
 - OR: x ∨ y
 - NOT: $\neg x$ (also denoted as \overline{x})

Just to remind how those operators work:

$$0 \land 0 = 0$$
 $0 \lor 0 = 0$ $\overline{0} = 1$
 $0 \land 1 = 0$ $0 \lor 1 = 1$ $\overline{1} = 0$
 $1 \land 0 = 0$ $1 \lor 0 = 1$
 $1 \land 1 = 1$ $1 \lor 1 = 1$

A boolean formula is an expression containing boolean variables and the operators above, e.g.,:

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

 A boolean formula is an expression containing boolean variables and the operators above, e.g.,:

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

 A boolean formula is satisfiable if some assignment of 0s and 1s to the variables makes the formula evaluate to 1 (i.e., TRUE)

 A boolean formula is an expression containing boolean variables and the operators above, e.g.,:

$$\phi = (\overline{x} \wedge y) \vee (x \wedge \overline{z})$$

- A boolean formula is satisfiable if some assignment of 0s and 1s to the variables makes the formula evaluate to 1 (i.e., TRUE)
- The boolean formula ϕ of the example above is satisfiable because the assignment x = 0, y = 1, and z = 0 makes it TRUE

Definition (The Satisfiability Problem)

The Satisfiability Problem is to test whether a given boolean formula ϕ is satisfiable, namely whether it exists an assignment that satisfies it.

Definition (The Satisfiability Problem)

The Satisfiability Problem is to test whether a given boolean formula ϕ is satisfiable, namely whether it exists an assignment that satisfies it. More formally, we define:

 $SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable boolean formula} \}$

Definition (The Satisfiability Problem)

The Satisfiability Problem is to test whether a given boolean formula ϕ is satisfiable, namely whether it exists an assignment that satisfies it. More formally, we define:

$$SAT = \{ \langle \phi \rangle \mid \phi \text{ is a satisfiable boolean formula} \}$$

We now introduce the **Cook-Levin theorem**, which links the complexity of *SAT* with that of **all** problems in *NP*

The Cook-Levin Theorem

Theorem (Cook-Levin)

$$SAT \in P \Leftrightarrow P = NP$$

The Cook-Levin Theorem

Theorem (Cook-Levin)

$$SAT \in P \Leftrightarrow P = NP$$

We (re-)introduce a technique that is crucial to prove the Cook-Levin theorem

April 7, 2021

Table of Contents

- 1 Introduction
- 2 Polynomial Time Reducibility
- 3 NP-completeness
- 4 Summary

We already defined the concept of reducing one problem to another

- We already defined the concept of reducing one problem to another
- When problem A reduces to problem B $(A \le B)$, a solution to B can be used to solve A

- We already defined the concept of reducing one problem to another
- When problem A reduces to problem B ($A \le B$), a solution to B can be used to solve A
- We now extend this idea by taking into account computational efficiency

- We already defined the concept of reducing one problem to another
- When problem A reduces to problem B ($A \le B$), a solution to B can be used to solve A
- We now extend this idea by taking into account computational efficiency
- Intuitively, when a problem A is efficiently reducible to a problem B, an efficient solution to B can be used to solve A also efficiently

Definition (Polynomial Time Computable Function)

A function $f: \Sigma^* \mapsto \Sigma^*$ is a **polynomial time computable function** if some polynomial time Turing machine M exists that halts with just f(x) on its tape, when it is given x as input

Definition (Polynomial Time Mapping Reduction)

Language A is **polynomial time mapping reducible** to language B (denoted by $A \leq_P B$) if a polynomial time computable function $f: \Sigma^* \mapsto \Sigma^*$ exists, such that for every x:

$$x \in A \Leftrightarrow f(x) \in B$$

The function f is called the **polynomial time reduction** of A to B

April 7, 2021

Polynomial time reducibility is the efficient-analog to mapping reducibility

- Polynomial time reducibility is the efficient-analog to mapping reducibility
- As with any other mapping reduction, a polynomial time reduction of A to B is a way to convert membership testing in A to that in B

- Polynomial time reducibility is the efficient-analog to mapping reducibility
- As with any other mapping reduction, a polynomial time reduction of A to B is a way to convert membership testing in A to that in B
- Big plus: the conversion is now done "efficiently" (i.e., in polynomial time)

- Polynomial time reducibility is the efficient-analog to mapping reducibility
- As with any other mapping reduction, a polynomial time reduction of A to B is a way to convert membership testing in A to that in B
- Big plus: the conversion is now done "efficiently" (i.e., in polynomial time)
- If one language is polynomial time reducible to another language B, which we already know a polynomial time solution for, then we obtain an overall polynomial time solution for A

Theorem (Polynomial Time Reducibility)

If $A \leq_P B$ and $B \in P$ then $A \in P$

Theorem (Polynomial Time Reducibility)

If $A \leq_P B$ and $B \in P$ then $A \in P$

Proof.

Let M_B be the polynomial time algorithm deciding B and f be the polynomial time reduction from A to B. We can describe a polynomial time algorithm M_A that decides A as follows:

April 7, 2021

Theorem (Polynomial Time Reducibility)

If $A \leq_P B$ and $B \in P$ then $A \in P$

Proof.

Let M_B be the polynomial time algorithm deciding B and f be the polynomial time reduction from A to B. We can describe a polynomial time algorithm M_A that decides A as follows:

 M_A = "On input x:

- **①** Compute f(x);
- **2** Run M_B on f(x) and output whatever M_B does."

April 7, 2021

Before showing the power of polynomial time reductions, let's introduce a special case of the SAT problem before, called 3SAT

- Before showing the power of polynomial time reductions, let's introduce a special case of the SAT problem before, called 3SAT
- \bullet 3SAT assumes the formula ϕ which we must test the satisfiability of has a particular form

- Before showing the power of polynomial time reductions, let's introduce a special case of the SAT problem before, called 3SAT
- 3SAT assumes the formula ϕ which we must test the satisfiability of has a particular form
- We call a **literal** any boolean variable (x) or its negated (\overline{x})

- Before showing the power of polynomial time reductions, let's introduce a special case of the SAT problem before, called 3SAT
- \bullet 3SAT assumes the formula ϕ which we must test the satisfiability of has a particular form
- We call a **literal** any boolean variable (x) or its negated (\overline{x})
- A **clause** is several literals connected with \forall s, e.g., $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4)$

- Before showing the power of polynomial time reductions, let's introduce a special case of the SAT problem before, called 3SAT
- \bullet 3SAT assumes the formula ϕ which we must test the satisfiability of has a particular form
- We call a **literal** any boolean variable (x) or its negated (\overline{x})
- A **clause** is several literals connected with \vee s, e.g., $(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4)$
- A boolean formula is in conjunctive normal form (CNF) if it comprises several clauses connected with \(\lambda\)s:

$$(x_1 \vee \overline{x_2} \vee \overline{x_3} \vee x_4) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6})$$

April 7, 2021

3*SAT*

Definition (3SAT)

Let ϕ be a 3-CNF boolean formula, i.e., a CNF boolean formula where each clause has exactly 3 literals, e.g.:

$$\phi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_4 \vee x_5 \vee x_6)$$

3*SAT*

Definition (3SAT)

Let ϕ be a 3-CNF boolean formula, i.e., a CNF boolean formula where each clause has exactly 3 literals, e.g.:

$$\phi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_4 \vee x_5 \vee x_6)$$

We define 3SAT as the problem of testing whether a 3-CNF formula is satisfiable, i.e.:

$$3SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable 3-CNF formula}\}$$

3*SAT*

Definition (3*SAT*)

Let ϕ be a 3-CNF boolean formula, i.e., a CNF boolean formula where each clause has exactly 3 literals, e.g.:

$$\phi = (x_1 \vee \overline{x_2} \vee \overline{x_3}) \wedge (x_3 \vee \overline{x_5} \vee x_6) \wedge (x_3 \vee \overline{x_6} \vee x_4) \wedge (x_4 \vee x_5 \vee x_6)$$

We define 3SAT as the problem of testing whether a 3-CNF formula is satisfiable, i.e.:

$$3SAT = \{\langle \phi \rangle \mid \phi \text{ is a satisfiable 3-CNF formula}\}$$

Note

In a satisfiable CNF formula, each clause must contain **at least one** literal whose assignment equals to 1 (TRUE)

Polynomial Time Reducibility: $3SAT \leq_P CLIQUE$

Theorem (3*SAT* \leq_P *CLIQUE*)

3SAT is polynomial time reducible to CLIQUE

Polynomial Time Reducibility: $3SAT \leq_P CLIQUE$

Theorem (3*SAT* \leq_P *CLIQUE*)

3SAT is polynomial time reducible to CLIQUE

Proof.

A sketch of the proof can be the following.

The polynomial time reduction f that we look for must convert 3-CNF boolean formulas to graphs. Graphs are constructed so as cliques of a specified size correspond to satisfying assignments of the formula. Structures within the graph ar designed to mimic the behavior of literals and clauses.

• Let ϕ be a 3-CNF formula with k clauses as follows:

$$\phi = (a_1 \vee b_1 \vee c_1) \wedge (a_2 \vee b_2 \vee c_2) \wedge \ldots \wedge (a_k \vee b_k \vee c_k)$$

3SAT < P CLIQUE: Proof

Let ϕ be a 3-CNF formula with k clauses as follows:

$$\phi = (a_1 \vee b_1 \vee c_1) \wedge (a_2 \vee b_2 \vee c_2) \wedge \ldots \wedge (a_k \vee b_k \vee c_k)$$

• The reduction f must generate the string $\langle G, k \rangle$, i.e., the encoding of an undirected graph G

• Let ϕ be a 3-CNF formula with k clauses as follows:

$$\phi = (a_1 \vee b_1 \vee c_1) \wedge (a_2 \vee b_2 \vee c_2) \wedge \ldots \wedge (a_k \vee b_k \vee c_k)$$

- The reduction f must generate the string $\langle G, k \rangle$, i.e., the encoding of an undirected graph G
- The nodes of G are organized into k groups of three nodes each, called **triples**: t_1, t_2, \ldots, t_k

3SAT < P CLIQUE: Proof

Let ϕ be a 3-CNF formula with k clauses as follows:

$$\phi = (a_1 \vee b_1 \vee c_1) \wedge (a_2 \vee b_2 \vee c_2) \wedge \ldots \wedge (a_k \vee b_k \vee c_k)$$

- The reduction f must generate the string $\langle G, k \rangle$, i.e., the encoding of an undirected graph G
- The nodes of G are organized into k groups of three nodes each, called **triples**: t_1, t_2, \ldots, t_k
- Each triple t_i represents a clause of the original formula ϕ_i and each node in a triple is a literal of the associated clause

$3SAT <_{P} CLIQUE$: Proof

• The edges of G connect all but two types of pair of nodes

- The edges of G connect all but two types of pair of nodes
- In particular, no edge exists between nodes in the same triple and no edge is present between two nodes having contradictory labels

3SAT < P CLIQUE: Proof

- The edges of G connect all but two types of pair of nodes
- In particular, no edge exists between nodes in the same triple and no edge is present between two nodes having contradictory labels

$$\phi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee \overline{x_2}) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$

Teoria degli Algoritmi a.a. 2020-21

3SAT < CLIQUE: Proof

We will show that ϕ is satisfiable iff G has a k-clique

• (\Rightarrow) Suppose that ϕ has a satisfying assignment

- (\Rightarrow) Suppose that ϕ has a satisfying assignment
- Thus, at least one literal is true in every clause

- (\Rightarrow) Suppose that ϕ has a satisfying assignment
- Thus, at least one literal is true in every clause
- In each triple of *G* we select one node corresponding to a TRUE literal in the existing satisfying assignment

- (\Rightarrow) Suppose that ϕ has a satisfying assignment
- Thus, at least one literal is true in every clause
- In each triple of *G* we select one node corresponding to a TRUE literal in the existing satisfying assignment
- If more than one literal is TRUE in a clause (triple), we choose one of them uniformly at random

- (\Rightarrow) Suppose that ϕ has a satisfying assignment
- Thus, at least one literal is true in every clause
- In each triple of *G* we select one node corresponding to a TRUE literal in the existing satisfying assignment
- If more than one literal is TRUE in a clause (triple), we choose one of them uniformly at random
- The nodes just selected form a k-clique!

Why do the selected nodes form a k-clique?

First of all, we select k nodes, i.e., one for each of the k triples

- First of all, we select k nodes, i.e., one for each of the k triples
- Each pair of nodes selected are connected by an edge because no pair fits one of the exceptions described before

- First of all, we select k nodes, i.e., one for each of the k triples
- Each pair of nodes selected are connected by an edge because no pair fits one of the exceptions described before
- (i) They cannot be part of the same triple because we select only one node per triple

- First of all, we select k nodes, i.e., one for each of the k triples
- Each pair of nodes selected are connected by an edge because no pair fits one of the exceptions described before
- (i) They cannot be part of the same triple because we select only one node per triple
- (ii) They cannot have contradictory labels because the associated literals must be both TRUE in the satisfying assignment

- First of all, we select k nodes, i.e., one for each of the k triples
- Each pair of nodes selected are connected by an edge because no pair fits one of the exceptions described before
- (i) They cannot be part of the same triple because we select only one node per triple
- (ii) They cannot have contradictory labels because the associated literals must be both TRUE in the satisfying assignment
- Therefore, G has a k-clique

We will show that ϕ is satisfiable iff G has a k-clique

• (\Leftarrow) Suppose that G has a k-clique

- (\Leftarrow) Suppose that G has a k-clique
- Thus, no two of the clique's nodes occur in the same triple because nodes in the same triples are not connected by construction

- (\Leftarrow) Suppose that G has a k-clique
- Thus, no two of the clique's nodes occur in the same triple because nodes in the same triples are not connected by construction
- Therefore, each of the k triples contains exactly one of the k nodes which the k-clique is made of

We will show that ϕ is satisfiable iff G has a k-clique

- (\Leftarrow) Suppose that G has a k-clique
- Thus, no two of the clique's nodes occur in the same triple because nodes in the same triples are not connected by construction
- Therefore, each of the k triples contains exactly one of the k nodes which the k-clique is made of
- \bullet We assign truth values to the variables of ϕ so that each literal labeling a clique node is set to TRUE

Why can we make such assignment?

• Two nodes labeled in a contradictory way are not connected and therefore cannot be part of the *k*-clique!

- Two nodes labeled in a contradictory way are not connected and therefore cannot be part of the k-clique!
- \bullet Such assignment trivially satisfies ϕ because each triple contains a clique node

3SAT < P CLIQUE: Proof

- Two nodes labeled in a contradictory way are not connected and therefore cannot be part of the k-clique!
- Such assignment trivially satisfies ϕ because each triple contains a clique node
- Hence, each clause contains at least a literal that is assigned TRUE

- Two nodes labeled in a contradictory way are not connected and therefore cannot be part of the k-clique!
- \bullet Such assignment trivially satisfies ϕ because each triple contains a clique node
- Hence, each clause contains at least a literal that is assigned TRUE
- Therefore, ϕ is satisfiable!

ullet The mapping $\phi \mapsto \langle {\it G}, {\it k}
angle$ is indeed polynomial time computable

- The mapping $\phi \mapsto \langle G, k \rangle$ is indeed polynomial time computable
- Suppose we are given with a 3-CNF formula ϕ having k clauses and m variables

- The mapping $\phi \mapsto \langle G, k \rangle$ is indeed polynomial time computable
- Suppose we are given with a 3-CNF formula ϕ having k clauses and m variables
- The graph G = (V, E) of $\langle G, k \rangle$ we build has:
 - |V| = 3k nodes
 - $|E| < {3k \choose 2} = \frac{3k(3k-1)}{2} = O(k^2)$

- The mapping $\phi \mapsto \langle G, k \rangle$ is indeed polynomial time computable
- Suppose we are given with a 3-CNF formula ϕ having k clauses and m variables
- The graph G = (V, E) of $\langle G, k \rangle$ we build has:
 - |V| = 3k nodes
 - $|E| < {3k \choose 2} = \frac{3k(3k-1)}{2} = O(k^2)$
- \bullet The size of the graph ${\it G}$ is polynomial in the size of the 3-CNF formula ϕ

 The last theorem we just proved tells us that, if CLIQUE is solvable in polynomial time so is 3SAT

$3SAT \leq_P CLIQUE$: Consequences

- The last theorem we just proved tells us that, if CLIQUE is solvable in polynomial time so is 3SAT
- At first glance, this may sound odd since the two problems are indeed quite different

$3SAT \leq_P CLIQUE$: Consequences

- The last theorem we just proved tells us that, if CLIQUE is solvable in polynomial time so is 3SAT
- At first glance, this may sound odd since the two problems are indeed quite different
- Polynomial time reducibility allows us to link their complexities

$3SAT \leq_P CLIQUE$: Consequences

- The last theorem we just proved tells us that, if CLIQUE is solvable in polynomial time so is 3SAT
- At first glance, this may sound odd since the two problems are indeed quite different
- Polynomial time reducibility allows us to link their complexities
- In the following, we show how to link the complexities of an entire class of problems

Table of Contents

- 1 Introduction
- Polynomial Time Reducibility
- NP-completeness
- 4 Summary

Definition (NP-completeness)

A language *B* is *NP*-**complete** if it satisfies the following two conditions:

Definition (NP-completeness)

A language B is NP-complete if it satisfies the following two conditions:

- $\mathbf{0}$ $B \in NP$
- **2** Every $A \in NP$ is polynomial time reducible to B

Definition (NP-completeness)

A language B is NP-complete if it satisfies the following two conditions:

- $\mathbf{n} B \in NP$
- 2 Every $A \in NP$ is polynomial time reducible to B

Definition (NP-completeness)

A language B is NP-complete if it satisfies the following two conditions:

- $\mathbf{0} \ B \in NP$
- **2** Every $A \in NP$ is polynomial time reducible to B

Note

NP-complete problems are the "most difficult" problems in NP

Polynomial Time Reducibility

Definition (NP-completeness)

A language B is NP-complete if it satisfies the following two conditions:

- $\mathbf{0}$ $B \in NP$
- **2** Every $A \in NP$ is polynomial time reducible to B

Note

- NP-complete problems are the "most difficult" problems in NP
- If we omit first requirement (i.e., $B \in NP$), then we say that B is NP-hard

Theorem

If B is NP-complete and $B \in P$ then P = NP

Theorem

If B is NP-complete and $B \in P$ then P = NP

Proof.

From the definition above, if B is NP-complete it means that $B \in NP$ and **every** other language/problem $A \in NP$ is polynomially reducible to B.

Polynomial Time Reducibility

Theorem

If B is NP-complete and $B \in P$ then P = NP

Proof.

From the definition above, if B is NP-complete it means that $B \in NP$ and **every** other language/problem $A \in NP$ is polynomially reducible to B. Now, if we know that a solver for B exists and it runs in polynomial time (i.e., $B \in P$) then we can solve **every** other problem $A \in NP$ by:

 $oldsymbol{0}$ applying the polynomial time reduction from A to B

Polynomial Time Reducibility

Theorem

If B is NP-complete and $B \in P$ then P = NP

Proof.

From the definition above, if B is NP-complete it means that $B \in NP$ and **every** other language/problem $A \in NP$ is polynomially reducible to B. Now, if we know that a solver for B exists and it runs in polynomial time (i.e., $B \in P$) then we can solve **every** other problem $A \in NP$ by:

- 1 applying the polynomial time reduction from A to B
- 2 running the polynomial time solver for B

Polynomial Time Reducibility

Theorem

If B is NP-complete and $B \in P$ then P = NP

Proof.

From the definition above, if B is NP-complete it means that $B \in NP$ and **every** other language/problem $A \in NP$ is polynomially reducible to B. Now, if we know that a solver for B exists and it runs in polynomial time (i.e., $B \in P$) then we can solve **every** other problem $A \in NP$ by:

- 1 applying the polynomial time reduction from A to B
- 2 running the polynomial time solver for B

Since the process above is a composition of polynomial time algorithms and it holds for all $A \in NP$, we can state that $\forall A \in NP, A \in P \Leftrightarrow P = NP.$

Theorem

If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete

Polynomial Time Reducibility

Theorem

If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete

Proof.

We know that $C \in NP$, so we must show that every other problem in NPis polynomial time reducible to C.

Polynomial Time Reducibility

Theorem

If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete

Proof.

We know that $C \in NP$, so we must show that every other problem in NPis polynomial time reducible to C.

Instead of proving this for every possible $A \in NP$, we can take advantage of knowing that B is NP-complete itself!

Polynomial Time Reducibility

Theorem

If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete

Proof.

We know that $C \in NP$, so we must show that every other problem in NPis polynomial time reducible to C.

Instead of proving this for every possible $A \in NP$, we can take advantage of knowing that B is NP-complete itself!

Because B is NP-complete, every other $A \in NP$ is polynomial time reducible to it, i.e., $A \leq_P B$, $\forall A \in NP$.

Theorem

If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete

Proof.

We know that $C \in NP$, so we must show that every other problem in NPis polynomial time reducible to C.

Instead of proving this for every possible $A \in NP$, we can take advantage of knowing that B is NP-complete itself!

Because B is NP-complete, every other $A \in NP$ is polynomial time reducible to it, i.e., $A \leq_P B$, $\forall A \in NP$.

Plus, we know from the hypothesis that $B \leq_P C$, and due to composition of polynomial time reductions $A \leq_P B \ \forall A \in NP$ and $B \leq_P C$ then $A \leq_P C \ \forall A \in NP$. Therefore C is NP-complete!

Theorem

If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete

Polynomial Time Reducibility

 Once we have one NP-complete problem, we may obtain others by polynomial time reduction from it

Polynomial Time Reducibility

- Once we have one NP-complete problem, we may obtain others by polynomial time reduction from it
- However, finding such first NP-complete problem is really hard!

- Once we have one NP-complete problem, we may obtain others by polynomial time reduction from it
- However, finding such first NP-complete problem is really hard!
- Historically, we do so by showing that our original problem of boolean satisfiability (SAT) is NP-complete

Theorem

SAT is NP-complete

Theorem

SAT is NP-complete

Proof Sketch.

In order to show that *SAT* is *NP*-complete we must prove that:

 \bullet SAT \in NP

Theorem

SAT is NP-complete

Proof Sketch.

In order to show that SAT is NP-complete we must prove that:

- \bullet SAT \in NP

Polynomial Time Reducibility

Proof Sketch.

In order to show that SAT is NP-complete we must prove that:

- \bullet SAT \in NP
- \bigcirc $\forall A \in NP, A \leq_P SAT$

Proving 1 is straightforward:

A polynomial time NTM can guess assignment to a boolean formula ϕ and accept if that assignment satisfies ϕ

Polynomial Time Reducibility

Proof Sketch.

In order to show that SAT is NP-complete we must prove that:

- \bullet SAT \in NP
- \bigcirc $\forall A \in NP, A \leq_P SAT$

Proving 1 is straightforward:

A polynomial time NTM can guess assignment to a boolean formula ϕ and accept if that assignment satisfies ϕ

In alternative, given ϕ along with a certificate (i.e., an assignment) we can design a polynomial time verifier that checks if the assignment satisfies φ

Proof Sketch.

In order to show that SAT is NP-complete we must prove that:

- \bullet SAT \in NP
- \bigcirc $\forall A \in NP, A \leq_P SAT$

Proving 2 is harder!

• Let $A \subseteq \Sigma^*$ be a language in NP

• Let $A \subseteq \Sigma^*$ be a language in NP

Polynomial Time Reducibility

We need to show that A <_P SAT

- Let $A \subseteq \Sigma^*$ be a language in NP
- We need to show that A ≤_P SAT
- For every $w \in \Sigma^*$, we want a boolean formula ϕ such that:

 - \mathbf{Q} f is a polynomial time reduction

- Let $A \subseteq \Sigma^*$ be a language in NP
- We need to show that A ≤_P SAT
- For every $w \in \Sigma^*$, we want a boolean formula ϕ such that:

 - g f is a polynomial time reduction
- Let N be polynomial time NTM that decides A in time at most n^k , where n = |w|

Outline of the basic approach:

 $w \in A \Leftrightarrow \mathsf{NTM}\ N$ accepts input w

Polynomial Time Reducibility

Outline of the basic approach:

 $w \in A \Leftrightarrow \mathsf{NTM}\ N$ accepts input w

Polynomial Time Reducibility

 $\Leftrightarrow \exists$ an accepting computation history of N on w

Outline of the basic approach:

 $w \in A \Leftrightarrow \mathsf{NTM}\ N$ accepts input w

 $\Leftrightarrow \exists$ an accepting computation history of N on w

 $\Leftrightarrow \exists$ a boolean function ϕ and variables x_1, \ldots, x_m such that

$$\phi(x_1,\ldots,x_m)=\text{TRUE}$$

Outline of the basic approach:

 $w \in A \Leftrightarrow \mathsf{NTM}\ N$ accepts input w

 $\Leftrightarrow \exists$ an accepting computation history of N on w

 $\Leftrightarrow \exists$ a boolean function ϕ and variables x_1, \ldots, x_m such that

 $\phi(x_1,\ldots,x_m)=\text{TRUE}$

Note

The basic intuition is to be able to show that any algorithm can be encoded as a boolean formula!

Key Idea:

Key Idea:

"Satisfying assignment of ϕ " \Leftrightarrow "Accepting computation history of N on input w"

• A computation of N (i.e., a list of configurations) on **some** branch of its computation tree is described by a $n^k \times n^k$ tableau

Key Idea:

- A computation of N (i.e., a list of configurations) on **some** branch of its computation tree is described by a $n^k \times n^k$ tableau
- The first row of the tableau is the starting configuration of N on w

Polynomial Time Reducibility

Key Idea:

- A computation of N (i.e., a list of configurations) on some branch of its computation tree is described by a $n^k \times n^k$ tableau
- The first row of the tableau is the starting configuration of N on w
- Each row follows the previous one according to N's transition function

Polynomial Time Reducibility

Key Idea:

- A computation of N (i.e., a list of configurations) on **some** branch of its computation tree is described by a $n^k \times n^k$ tableau
- The first row of the tableau is the starting configuration of N on w
- Each row follows the previous one according to N's transition function
- A tableau is accepting if any row of the tableau encodes an accepting configuration

Polynomial Time Reducibility

Key Idea:

- A computation of N (i.e., a list of configurations) on some branch of its computation tree is described by a $n^k \times n^k$ tableau
- The first row of the tableau is the starting configuration of N on w
- Each row follows the previous one according to N's transition function
- A tableau is accepting if any row of the tableau encodes an accepting configuration
- Every accepting tableau for N on w corresponds to an accepting computation branch of N on w

Key Idea:

- A computation of N (i.e., a list of configurations) on **some** branch of its computation tree is described by a $n^k \times n^k$ **tableau**
- The first row of the tableau is the starting configuration of N on w
- ullet Each row follows the previous one according to N's transition function
- A tableau is accepting if any row of the tableau encodes an accepting configuration
- Every accepting tableau for N on w corresponds to an accepting computation branch of N on w
- The problem of determining whether *N* accepts *w* is **equivalent** to finding if an accepting tableau for *N* on *w* exists

Polynomial Time Reducibility

Polynomial Time Reducibility

Step 1: Describe computations of NTM N on w by boolean variables using the tableau

• If |w| = n, then any computation history of N on w has at most n^k configurations because we assumed N runs in time n^k

- If |w| = n, then any computation history of N on w has at most n^k configurations because we assumed N runs in time n^k
- Let $C = Q \cup \Sigma \cup \{\#\}$, where Q is the set of states and Σ the alphabet of N

- If |w| = n, then any computation history of N on w has at most n^k configurations because we assumed N runs in time n^k
- Let $C = Q \cup \Sigma \cup \{\#\}$, where Q is the set of states and Σ the alphabet of N
- Each cell (i, j) in the tableau contains one element of C

Polynomial Time Reducibility

- If |w| = n, then any computation history of N on w has at most n^k configurations because we assumed N runs in time n^k
- Let $C = Q \cup \Sigma \cup \{\#\}$, where Q is the set of states and Σ the alphabet of N
- Each cell (i, j) in the tableau contains one element of C
- For each $i, j \in \{1, ..., n^k\}$ and for each $s \in C$ we associate a boolean variable $x_{i,j,s}$ of ϕ

- If |w| = n, then any computation history of N on w has at most n^k configurations because we assumed N runs in time n^k
- Let $C = Q \cup \Sigma \cup \{\#\}$, where Q is the set of states and Σ the alphabet of N
- Each cell (i, j) in the tableau contains one element of C
- For each $i, j \in \{1, ..., n^k\}$ and for each $s \in C$ we associate a boolean variable $x_{i,j,s}$ of ϕ
- $x_{i,j,s} = 1$ means "cell (i,j) contains s"

N accepts w iff:

Each cell in the tableau is well-defined

N accepts w iff:

Each cell in the tableau is well-defined

Polynomial Time Reducibility

The first row of the tableau is the initial configuration with w as the input

N accepts w iff:

Each cell in the tableau is well-defined

Polynomial Time Reducibility

- The first row of the tableau is the initial configuration with w as the input
- Each row follows from the previous rows using the transition function given by N

N accepts w iff:

- Each cell in the tableau is well-defined
- The first row of the tableau is the initial configuration with w as the input
- Each row follows from the previous rows using the transition function given by N
- **4** Some row has a cell that includes an accepting state q_{accept}

N accepts w iff:

Each cell in the tableau is well-defined

Polynomial Time Reducibility

- The first row of the tableau is the initial configuration with w as the input
- Each row follows from the previous rows using the transition function given by N
- **4** Some row has a cell that includes an accepting state q_{accept}

Note

We design ϕ so that a satisfying assignment to its variables $x_{i,i,s}$ corresponds to an accepting tableau for N on w

Step 2: Express conditions for an accepting sequence of configurations of NTM N on w by a boolean formula ϕ as the AND of four parts:

$$\phi = \phi_{\mathsf{cell}} \land \phi_{\mathsf{start}} \land \phi_{\mathsf{move}} \land \phi_{\mathsf{accept}}$$

1 ϕ_{cell} = "for each cell (i, j), there is **exactly one** $s \in C$ with $x_{i,i,s} = 1$ " (cell is well defined)

Polynomial Time Reducibility

Step 2: Express conditions for an accepting sequence of configurations of NTM N on w by a boolean formula ϕ as the AND of four parts:

$$\phi = \phi_{\mathsf{cell}} \land \phi_{\mathsf{start}} \land \phi_{\mathsf{move}} \land \phi_{\mathsf{accept}}$$

- **1** ϕ_{cell} = "for each cell (i, j), there is **exactly one** $s \in C$ with $x_{i,i,s} = 1$ " (cell is well defined)
- 2 $\phi_{\text{start}} =$ "first row of tableau is the starting configuration of N on w"

Step 2: Express conditions for an accepting sequence of configurations of NTM N on w by a boolean formula ϕ as the AND of four parts:

$$\phi = \phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{accept}}$$

- **1** $\phi_{\text{cell}} = \text{"for each cell } (i,j), \text{ there is exactly one } s \in C \text{ with } x_{i,j,s} = 1$ " (cell is well defined)
- 2 $\phi_{\text{start}} =$ "first row of tableau is the starting configuration of N on w"
- § $\phi_{\rm move} =$ "every 2 \times 3 window is consistent with N's transition function"

Polynomial Time Reducibility

Step 2: Express conditions for an accepting sequence of configurations of NTM N on w by a boolean formula ϕ as the AND of four parts:

$$\phi = \phi_{\mathsf{cell}} \land \phi_{\mathsf{start}} \land \phi_{\mathsf{move}} \land \phi_{\mathsf{accept}}$$

- **1** ϕ_{cell} = "for each cell (i, j), there is **exactly one** $s \in C$ with $x_{i,i,s} = 1$ " (cell is well defined)
- 2 ϕ_{start} = "first row of tableau is the starting configuration of N on w"
- $\phi_{\text{move}} = \text{``every 2} \times 3 \text{ window is consistent with } N's \text{ transition}$ function"
- Φ_{accept} = "at least one row of tableau is an accepting configuration of N on w''

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right].$$

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right].$$

• The outer \land ensures the formula applies to every cell (i, j)

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right].$$

- The outer \land ensures the formula applies to every cell (i, j)
- The first inner component guarantees that at least one cell is "on", i.e., at least one valid symbol is on a cell

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right].$$

- The outer \land ensures the formula applies to every cell (i, j)
- The first inner component guarantees that at least one cell is "on", i.e., at least one valid symbol is on a cell
- The second inner component says that in each pair of variables, at least one is turned off

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right].$$

- The outer \wedge ensures the formula applies to every cell (i, j)
- The first inner component guarantees that at least one cell is "on", i.e., at least one valid symbol is on a cell
- The second inner component says that in each pair of variables, at least one is turned off
- The accepting tableau must meet condition 1

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge \\ x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}.$$

Polynomial Time Reducibility

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge \\ x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}.$$

 This formula ensures that the first row of the tableau is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \dots \wedge x_{1,n+2,w_n} \wedge \\ x_{1,n+3,\sqcup} \wedge \dots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#}.$$

- This formula ensures that the first row of the tableau is the starting configuration of N on w by explicitly stipulating that the corresponding variables are on
- The accepting tableau must meet condition 2

$$\phi_{\text{move}} = \bigwedge_{1 \leq i < n^k, \ 1 < j < n^k} \text{(the } (i, j)\text{-window is legal)}.$$

$$\bigvee_{\substack{a_1,\dots,a_6 \text{ is a legal window}}} \left(x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6} \right)$$

$$\phi_{ ext{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} ext{(the } (i,j) ext{-window is legal)}.$$

$$\bigvee_{\substack{a_1,\ldots,a_6 \text{ is a legal window}}} \left(x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6} \right)$$

 This formula ensures that each 2x3 window is legal according to N's transition function (proof omitted here)

$$\phi_{\mathrm{move}} = \bigwedge_{1 \leq i < n^k, \ 1 < j < n^k}$$
 (the (i, j) -window is legal).

$$\bigvee_{\substack{a_1,\ldots,a_6 \text{ is a legal window}}} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6})$$

- This formula ensures that each 2x3 window is legal according to N's transition function (proof omitted here)
- Intuitively, this is a disjunction over $|C|^6$ possible legal sequences

$$\phi_{\mathrm{move}} = \bigwedge_{1 \leq i < n^k, \ 1 < j < n^k}$$
 (the (i, j) -window is legal).

$$\bigvee_{\substack{a_1,\ldots,a_6 \text{ is a legal window}}} \left(x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6} \right)$$

- This formula ensures that each 2x3 window is legal according to N's transition function (proof omitted here)
- Intuitively, this is a disjunction over $|C|^6$ possible legal sequences
- The accepting tableau must meet condition 3

$$\phi_{ ext{accept}} = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}}.$$

$$\phi_{ ext{accept}} = igvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}}.$$

 This formula ensures that an accepting configuration occurs in the tableau

$$\phi_{ ext{accept}} = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}}.$$

- This formula ensures that an accepting configuration occurs in the tableau
- It guarantees that $q_{\rm accept}$, the symbol for the accept state, appears in one of the cells of the tableau

49 / 70

$$\phi_{ ext{accept}} = igvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}}.$$

- This formula ensures that an accepting configuration occurs in the tableau
- It guarantees that q_{accept} , the symbol for the accept state, appears in one of the cells of the tableau
- The accepting tableau must meet condition 4

Putting all together:

Putting all together:

• Given a non-deterministic Turing machine N and some input w we have shown that we can build a propositional formula ϕ :

$$\phi = \phi_{\mathsf{cell}} \land \phi_{\mathsf{start}} \land \phi_{\mathsf{move}} \land \phi_{\mathsf{accept}}$$

 ϕ is satisfiable if and only if N accepts w

Putting all together:

• Given a non-deterministic Turing machine N and some input w we have shown that we can build a propositional formula ϕ :

$$\phi = \phi_{\mathsf{cell}} \land \phi_{\mathsf{start}} \land \phi_{\mathsf{move}} \land \phi_{\mathsf{accept}}$$

- ϕ is satisfiable if and only if N accepts w
- The subformulas encode the 4 conditions needed there be an accepting tableau for the computation of N on input w

Polynomial Time Reducibility

Putting all together:

• Given a non-deterministic Turing machine N and some input w we have shown that we can build a propositional formula ϕ :

$$\phi = \phi_{\mathsf{cell}} \land \phi_{\mathsf{start}} \land \phi_{\mathsf{move}} \land \phi_{\mathsf{accept}}$$

- ϕ is satisfiable if and only if N accepts w
- The subformulas encode the 4 conditions needed there be an accepting tableau for the computation of N on input w
- ullet It only remains to show that the reduction from w to ϕ is computable in polynomial time

• We assumed that N runs in n^k time on inputs of length n

- We assumed that N runs in n^k time on inputs of length n
- Therefore, the tableau has n^k rows and n^k columns

Polynomial Time Reducibility

- We assumed that N runs in n^k time on inputs of length n
- Therefore, the tableau has n^k rows and n^k columns
- Each $n^k * n^k = n^{2k}$ cell has |C| variables associated with it, therefore the total number of literals is $|C| * n^{2k} = O(n^2k)$

Teoria degli Algoritmi a.a. 2020-21

- We assumed that N runs in n^k time on inputs of length n
- Therefore, the tableau has n^k rows and n^k columns
- Each $n^k * n^k = n^{2k}$ cell has |C| variables associated with it, therefore the total number of literals is $|C| * n^{2k} = O(n^2k)$
- Globally, the total size of the formula ϕ is $O(n^2k)$, which is clearly polynomial in the original input size |w| = n

- We assumed that N runs in n^k time on inputs of length n
- Therefore, the tableau has n^k rows and n^k columns
- Each $n^k * n^k = n^{2k}$ cell has |C| variables associated with it, therefore the total number of literals is $|C| * n^{2k} = O(n^2k)$
- Globally, the total size of the formula ϕ is $O(n^2k)$, which is clearly polynomial in the original input size |w| = n
- For every $A \in NP$, this gives a polynomial time reduction from $w \in A$ to a boolean formula ϕ which is satisfiable iff from to $\phi \in SAT$

- We assumed that N runs in n^k time on inputs of length n
- Therefore, the tableau has n^k rows and n^k columns
- Each $n^k * n^k = n^{2k}$ cell has |C| variables associated with it, therefore the total number of literals is $|C| * n^{2k} = O(n^2k)$
- Globally, the total size of the formula ϕ is $O(n^2k)$, which is clearly polynomial in the original input size |w| = n
- For every $A \in NP$, this gives a polynomial time reduction from $w \in A$ to a boolean formula ϕ which is satisfiable iff from to $\phi \in SAT$
- SAT in NP-complete!

 Showing the NP-completeness of other languages generally doesn't require such a hard proof

- Showing the NP-completeness of other languages generally doesn't require such a hard proof
- In fact, NP-completeness can be demonstrated by showing that a polynomial time reduction exists from a problem that is already known to be *NP*-complete (like *SAT*!)

- Showing the NP-completeness of other languages generally doesn't require such a hard proof
- In fact, NP-completeness can be demonstrated by showing that a
 polynomial time reduction exists from a problem that is already
 known to be NP-complete (like SAT!)
- Rather than using SAT, typically a reduction is shown from one of its variant, i.e., 3SAT or 3-CNF formulas

- Showing the NP-completeness of other languages generally doesn't require such a hard proof
- In fact, NP-completeness can be demonstrated by showing that a polynomial time reduction exists from a problem that is already known to be *NP*-complete (like *SAT*!)
- Rather than using SAT, typically a reduction is shown from one of its variant, i.e., 3SAT or 3-CNF formulas
- Before being able to do that, we need to show that 3SAT is also NP-complete

- To prove that 3SAT is NP-complete we must show that:
 - 1 3 $SAT \in NP$
 - \lozenge $\forall A \in NP, A \leq_P 3SAT$

- To prove that 3SAT is NP-complete we must show that:
 - $\mathbf{0}$ 3SAT $\in NP$
 - \lozenge $\forall A \in NP, A \leq_P 3SAT$
- Obviously, $3SAT \in NP!$

- To prove that 3SAT is NP-complete we must show that:
 - $\mathbf{0}$ 3SAT $\in NP$
 - ② \forall *A* ∈ *NP*, *A* ≤_{*P*} 3*SAT*
- Obviously, 3SAT ∈ NP!
- One way to show 2 is to prove that SAT polynomial time reduces to 3SAT

- To prove that 3SAT is NP-complete we must show that:
 - **1** $3SAT \in NP$
 - $\mathbf{2} \ \forall A \in NP, A \leq_P 3SAT$
- Obviously, 3SAT ∈ NP!
- One way to show 2 is to prove that SAT polynomial time reduces to 3SAT
- Instead, we slightly adapt the proof we used to show that SAT is NP-complete to achieve this

 \bullet The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF

April 7, 2021

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- $\phi_{\rm cell}$ is made of a big AND of subformulas, each one containing a big OR and a big AND of ORs

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} (\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}}) \right) \right].$$

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- $\phi_{\rm cell}$ is made of a big AND of subformulas, each one containing a big OR and a big AND of ORs

$$\phi_{\text{cell}} = \bigwedge_{1 \le i, j \le n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \ne t}} \left(\overline{x_{i,j,s}} \lor \overline{x_{i,j,t}} \right) \right) \right].$$

ullet Thus, ϕ_{cell} is an AND of **clauses**, therefore already in CNF

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- ϕ_{start} is just a big AND of variables

$$\begin{split} \phi_{\text{start}} &= x_{1,1,\sharp} \wedge x_{1,2,q_0} \wedge \\ &\quad x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ &\quad x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\sharp} \,. \end{split}$$

Polynomial Time Reducibility

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- ϕ_{start} is just a big AND of variables

$$\begin{split} \phi_{\text{start}} &= x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ &\quad x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ &\quad x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \,. \end{split}$$

Each variable can be considered as a "degenerate" clause of size 1 with a single literal

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- ϕ_{start} is just a big AND of variables

$$\begin{split} \phi_{\text{start}} &= x_{1,1,\#} \wedge x_{1,2,q_0} \wedge \\ &\quad x_{1,3,w_1} \wedge x_{1,4,w_2} \wedge \ldots \wedge x_{1,n+2,w_n} \wedge \\ &\quad x_{1,n+3,\sqcup} \wedge \ldots \wedge x_{1,n^k-1,\sqcup} \wedge x_{1,n^k,\#} \,. \end{split}$$

- Each variable can be considered as a "degenerate" clause of size 1 with a single literal
- Therefore, ϕ_{start} is also in CNF

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- ϕ_{accept} is just a big OR of variables

$$\phi_{ ext{accept}} = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}}.$$

Polynomial Time Reducibility

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- ϕ_{accept} is just a big OR of variables

$$\phi_{ ext{accept}} = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}}.$$

All those variables can be seen as the literals of a single, big clause

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- ϕ_{accept} is just a big OR of variables

$$\phi_{ ext{accept}} = \bigvee_{1 \leq i,j \leq n^k} x_{i,j,q_{ ext{accept}}}.$$

- All those variables can be seen as the literals of a single, big clause
- Therefore, ϕ_{accept} is also in CNF

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- ϕ_{move} is the only one slightly problematic!

$$\phi_{\text{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} \text{(the } (i, j)\text{-window is legal)}.$$

Polynomial Time Reducibility

- The boolean formula ϕ used to show that SAT is NP-complete is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- ϕ_{move} is the only one slightly problematic!

$$\phi_{\text{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} \text{(the } (i, j)\text{-window is legal)}.$$

 It is a big AND of subformulas, each containing an OR of ANDs describing all the possible windows

- \bullet The boolean formula ϕ used to show that SAT is $NP\mbox{-complete}$ is almost in CNF
- Let's see how each of ϕ 's subformulas are organized
- ϕ_{move} is the only one slightly problematic!

$$\phi_{\text{move}} = \bigwedge_{1 \le i < n^k, \ 1 < j < n^k} \text{(the } (i, j)\text{-window is legal)}.$$

- It is a big AND of subformulas, each containing an OR of ANDs describing all the possible windows
- Using the distributive law, however, we can transform any OR of ANDs into an equivalent AND of ORs (i.e., CNF)

Converting to CNF

 Every propositional formula can be converted into an equivalent formula that is in CNF

- Every propositional formula can be converted into an equivalent formula that is in CNF
- This transformation is based on rules about logical equivalences:
 - **1** double negation elimination: $P \Leftrightarrow \neg(\neg P)$

Converting to CNF

- Every propositional formula can be converted into an equivalent formula that is in CNF
- This transformation is based on rules about logical equivalences:
 - **1** double negation elimination: $P \Leftrightarrow \neg(\neg P)$
 - ② De Morgan's laws:

$$\neg (P \lor Q) \Leftrightarrow (\neg P) \land (\neg Q); \ \neg (P \land Q) \Leftrightarrow (\neg P) \lor (\neg Q)$$

Converting to CNF

- Every propositional formula can be converted into an equivalent formula that is in CNF
- This transformation is based on rules about logical equivalences:
 - **1** double negation elimination: $P \Leftrightarrow \neg(\neg P)$
 - ② De Morgan's laws:

$$\neg(P \lor Q) \Leftrightarrow (\neg P) \land (\neg Q); \ \neg(P \land Q) \Leftrightarrow (\neg P) \lor (\neg Q)$$

3 distributive law:

$$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R); P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$$

• Now, we have written ϕ in CNF but we still need to convert it to 3-CNF

- Now, we have written ϕ in CNF but we still need to convert it to 3-CNF
- In each clause containing less than 3 literals, we just replicate one of the literals until getting a 3-literal clause

- Now, we have written ϕ in CNF but we still need to convert it to 3-CNF
- In each clause containing less than 3 literals, we just replicate one of the literals until getting a 3-literal clause
- In each clause that has more than 3 literals, we need to split them into multiple 3-literal clauses preserving the satisfiability

Example

Suppose our clause is made of 4 literals:

$$c = (a_1 \lor a_2 \lor a_3 \lor a_4)$$

April 7, 2021

Example

Suppose our clause is made of 4 literals:

$$c = (a_1 \lor a_2 \lor a_3 \lor a_4)$$

Then we can transform c into c' as follows:

$$c' = (a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4)$$

April 7, 2021

Example

Suppose our clause is made of 4 literals:

$$c = (a_1 \lor a_2 \lor a_3 \lor a_4)$$

Then we can transform c into c' as follows:

$$c' = (a_1 \lor a_2 \lor z) \land (\overline{z} \lor a_3 \lor a_4)$$

Here, z is a new variable (literal) and if some assignment of the a_i 's satisifies c we can also find a setting of z that satisfies c'.

Example

More generally, if the clause contains ℓ literals:

$$c = (a_1 \vee a_2 \vee \ldots \vee a_\ell)$$

We can replace it with $\ell-2$ clauses as follows:

$$c' = \left(a_1 \vee a_2 \vee z_1 \right) \wedge \left(\overline{z_1} \vee a_3 \vee z_2 \right) \wedge \left(\overline{z_2} \vee a_4 \vee z_3 \right) \ldots \wedge \left(\overline{z_{\ell-3}} \vee a_{\ell-1} \vee a_{\ell} \right) \right)$$

Example

More generally, if the clause contains ℓ literals:

$$c = (a_1 \vee a_2 \vee \ldots \vee a_\ell)$$

We can replace it with $\ell-2$ clauses as follows:

$$c' = \left(a_1 \vee a_2 \vee z_1 \right) \wedge \left(\overline{z_1} \vee a_3 \vee z_2 \right) \wedge \left(\overline{z_2} \vee a_4 \vee z_3 \right) \ldots \wedge \left(\overline{z_{\ell-3}} \vee a_{\ell-1} \vee a_{\ell} \right) \right)$$

3SAT is NP-complete!

Proving *NP*-completeness: Summary

- Following the definition may be tedious as we need to show that:

 - **2** C is NP-hard, i.e., $\forall A \in NP, A \leq_P C$

Proving *NP*-completeness: Summary

- Following the definition may be tedious as we need to show that:
 - $\mathbf{0}$ $C \in NP$ ("easy")
 - **2** C is NP-hard, i.e., $\forall A \in NP$, $A \leq_P C$
- Recall that we proved that if B is NP-complete and $B \leq_P C$ then C is NP-complete

Proving *NP*-completeness: Summary

- We therefore need to show that:
 - $\mathbf{0} \ C \in NP$
 - ② a well-known NP-complete problem B polynomial time reduces to C (e.g., $SAT \leq_P C$ or $3SAT \leq C$)
 - the reduction actually takes polynomial time

This results follows directly from the previous findings

ullet We showed that $\textit{CLIQUE} \in \textit{NP}$

64 / 70

- We showed that CLIQUE ∈ NP
- We showed that 3SAT ≤_P CLIQUE

- We showed that CLIQUE ∈ NP
- We showed that 3SAT ≤_P CLIQUE
- We showed that 3SAT is NP-complete

- We showed that CLIQUE ∈ NP
- We showed that 3SAT ≤_P CLIQUE
- We showed that 3*SAT* is *NP*-complete
- Thus, CLIQUE is NP-complete!

Figure: Karp's 21 NP-complete Problems

Decision problems have YES/NO answers

- Decision problems have YES/NO answers
- Many decision problems have corresponding optimization version

NP-hard Optimization Problems

- Decision problems have YES/NO answers
- Many decision problems have corresponding optimization version
- Optimization version of NP-complete problems are NP-hard

Problem	Decision Version	Optimization Version
CLIQUE	Does a graph G have	Find largest clique
	a clique of size k ?	
ILP	Does \exists integer vector y	Find integer vector y to
	such that $Ay \leq b$?	$\left max \ d^{\top} y \right \; s.t. \; Ay \leq b \left \right $
TSP	Does a graph G have tour	Find min length tour
	of length $\leq d$?	
Scheduling	Given set of tasks and constraints,	Find min time schedule
	can we finish all tasks in time d ?	

Why are NP-complete and NP-hard Important?

Polynomial Time Reducibility

 Suppose you are faced with a problem and you can't come up with an efficient algorithm for it

Why are NP-complete and NP-hard Important?

- Suppose you are faced with a problem and you can't come up with an efficient algorithm for it
- If you can prove the problem is NP-complete or NP-hard, then there is no known efficient algorithm to solve it
 - No known polynomial-time algorithms for NP-complete and NP-hard problems!

Why are *NP*-complete and *NP*-hard Important?

- Suppose you are faced with a problem and you can't come up with an efficient algorithm for it
- If you can prove the problem is NP-complete or NP-hard, then there
 is no known efficient algorithm to solve it
 - No known polynomial-time algorithms for NP-complete and NP-hard problems!
- How to deal with an NP-complete or NP-hard problem?
 - Approximation algorithm
 - Probabilistic algorithm
 - Special cases
 - Heuristic

Table of Contents

- 1 Introduction
- Polynomial Time Reducibility
- NP-completeness
- 4 Summary

• Class P comprises problems that can be **decided** in polynomial time (e.g., $PATH \in P$)

- Class P comprises problems that can be **decided** in polynomial time (e.g., $PATH \in P$)
- Class NP contains problems that can be verified in deterministic polynomial time (or, equivalently, decided in non-deterministic polynomial time)

- Class P comprises problems that can be decided in polynomial time (e.g., $PATH \in P$)
- Class NP contains problems that can be verified in deterministic polynomial time (or, equivalently, **decided** in non-deterministic polynomial time)
- NP includes all problems that are in P plus, for example, HAMPATH, CLIQUE, SUBSET-SUM, 3SAT, etc.

- Class P comprises problems that can be **decided** in polynomial time (e.g., $PATH \in P$)
- Class NP contains problems that can be verified in deterministic polynomial time (or, equivalently, decided in non-deterministic polynomial time)
- NP includes all problems that are in P plus, for example, HAMPATH, CLIQUE, SUBSET-SUM, 3SAT, etc.
- P vs. NP question:
 - **1** We know that $P \subseteq NP$
 - **2** We **don't** know whether $P \neq NP$ or P = NP

$$w \in A \Leftrightarrow f(w) \in B$$

• Polynomial-time mapping reducibility: $A \leq_P B$ if exists polynomial-time computable function f such that:

$$w \in A \Leftrightarrow f(w) \in B$$

• A language B is NP-complete if $B \in NP$ and $A \leq_P B$ for all $A \in NP$

April 7, 2021

$$w \in A \Leftrightarrow f(w) \in B$$

- A language B is NP-complete if $B \in NP$ and $A \leq_P B$ for all $A \in NP$
- If any NP-complete language B is in P, then P = NP

• Polynomial-time mapping reducibility: $A \leq_P B$ if exists polynomial-time computable function f such that:

$$w \in A \Leftrightarrow f(w) \in B$$

- A language B is NP-complete if $B \in NP$ and $A \leq_P B$ for all $A \in NP$
- If any NP-complete language B is in P, then P = NP
- If any NP language B is **not** in P, then $P \neq NP$ (in particular, we could show it when B is also NP-complete)

April 7, 2021

$$w \in A \Leftrightarrow f(w) \in B$$

- A language B is NP-complete if $B \in NP$ and $A \leq_P B$ for all $A \in NP$
- If any NP-complete language B is in P, then P = NP
- If any NP language B is **not** in P, then $P \neq NP$ (in particular, we could show it when B is also NP-complete)
- If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete

$$w \in A \Leftrightarrow f(w) \in B$$

- A language B is NP-complete if $B \in NP$ and $A \leq_P B$ for all $A \in NP$
- If any NP-complete language B is in P, then P = NP
- If any NP language B is **not** in P, then $P \neq NP$ (in particular, we could show it when B is also NP-complete)
- If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete
- Cook-Levin Theorem: *SAT* is *NP*-complete

$$w \in A \Leftrightarrow f(w) \in B$$

- A language B is NP-complete if $B \in NP$ and $A \leq_P B$ for all $A \in NP$
- If any NP-complete language B is in P, then P = NP
- If any NP language B is **not** in P, then $P \neq NP$ (in particular, we could show it when B is also NP-complete)
- If B is NP-complete and $B \leq_P C$ for $C \in NP$, then C is NP-complete
- Cook-Levin Theorem: *SAT* is *NP*-complete
- 3SAT, CLIQUE, SUBSET-SUM, HAMPATH, etc. are all NP-complete (via polynomial time reduction)

