電子電路實驗 9: 二次線路的頻率響應 實驗結報

B02901178 江誠敏

March 9, 2015

1 實驗結果

1.1 固定頻率,調整可變電阻

濾波後的頻率倍率	v_i	v_o	v_o/v_i
×1	$1.02\mathrm{V}$	0.898 V	0.880
$\times 3$	$960\mathrm{mV}$	$220\mathrm{mV}$	0.229
$\times 5$	$960\mathrm{mV}$	$104\mathrm{mV}$	0.108
$\times 7$	$960\mathrm{mV}$	$58.0\mathrm{mV}$	0.06
濾波後的頻率倍率	可變電阻値	理論電阻値	% 誤差
×1	9395Ω	9739Ω	-3.5%
$\times 3$	983.3Ω	1082.1Ω	-9.13%
$\times 5$	349Ω	389.56Ω	-10.41%
$\times 7$	162.5Ω	198.76Ω	-18.24%

1.2 固定可變電阻,調整頻率

頻率	v_i	v_o	v_o/v_i	
333 Hz	$976\mathrm{mV}$	424 V	0.434	
$200\mathrm{Hz}$	$1010\mathrm{mV}$	$320\mathrm{mV}$	0.317	
$142.9\mathrm{Hz}$	$1020\mathrm{mV}$	$284\mathrm{mV}$	0.278	

2 結報問題

1. 請討論三角波 (Triangular Waves) 的諧波分析。

答:

不妨假設三角波的波形爲

$$f(t) = \begin{cases} \frac{2t}{\pi}, & \text{if } 0 \le t \le \frac{\pi}{2} \\ 2 - \frac{2t}{\pi}, & \text{if } \frac{\pi}{2} < t \le \pi \\ -f(t), & \text{if } -\pi < t < 0 \end{cases}$$

且 $f(t+2\pi) = f(t)$, 令

$$f(t) = c_0 + \sum_{k=1}^{\infty} a_k \sin(kt) + \sum_{k=1}^{\infty} b_k \cos(kt)$$

注意到 f 是奇函數, $c_0=0, b_k=0 \ \forall k$ 。

$$\int_{-\pi}^{\pi} f(t) \sin(kt) \, \mathrm{d}t = \sum_{k=1}^{\infty} \int_{-\pi}^{\pi} a_k \sin(kt) \, \mathrm{d}t = \pi a_k$$

因此

$$\begin{split} a_k &= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin(kt) \, \mathrm{d}t \\ &= \frac{2}{\pi} \int_{0}^{\pi} f(t) \sin(kt) \, \mathrm{d}t \\ &= \frac{2}{\pi} \left(\int_{0}^{\frac{\pi}{2}} \frac{2t}{\pi} \sin(kt) \, \mathrm{d}t + \int_{\frac{\pi}{2}}^{\pi} \frac{2t}{\pi} \sin(kt) \, \mathrm{d}t \right) \\ &= \frac{4}{\pi^2} \left(\left(\frac{-t}{k} \cos(kt) + \frac{1}{k^2} \sin(kt) \right)_{0}^{\pi/2} + \left(\frac{-\pi}{k} \cos(kt) + \frac{t}{k} \cos(kt) - \frac{1}{k^2} \sin(kt) \right)_{0}^{\pi/2} \right) \\ &= \frac{4}{\pi^2} \frac{2 \sin(k\pi/2)}{k^2} \\ &= \begin{cases} 0, & \text{if } k = 2n \\ \frac{8}{\pi^2 k^2}, & \text{if } k = 4n + 1 \\ \frac{-8}{\pi^2 k^2}, & \text{if } k = 4n + 3 \end{cases} \end{split}$$

得出

$$f(t) = \sum_{n=0}^{\infty} \frac{(-1)^n \cdot 8}{\pi^2 (2n+1)^2}$$

3 心得

這次是這個學期的最後一個實驗了,其實我是蠻喜歡做實驗的,可以玩很多有趣的儀器。希望下 學期可以使用更多沒有玩過的儀器或是元件!