

Artificial Intelligence Science Program

Chapter 5: Neural Networks and Deep Learning

DEEP LEARNING EVERYWHERE

ERNET & CLOUD

age Classification eech Recognition nguage Translation nguage Processing entiment Analysis Recommendation MEDICINE & BIOLOGY

Cancer Cell Detection Diabetic Grading Drug Discovery MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation SECURITY & DEFENSE

Face Detection Video Surveillance Satellite Imagery AUTONOM

Pedestri Lane Recogniz

Deep Learning

• Deep learning is a specific subfield of machine learning: learning representations from data that puts an emphasis on learning successive layers of increasingly meaningful representations.

Deep Learning

- Deep learning is a specific subfield of machine learning: learning representations from data that puts an emphasis on learning successive layers of increasingly meaningful representations.
- Also, called **layered representations learning** and hierarchical representations learning.
- How many layers contribute to a model of the data is called the **depth** of the model.
- Modern deep learning often involves tens or even hundreds of successive layers of representations

Raw Image Representation

Machine Learning

Deep Learning: learn representations!

- In deep learning, the layered representations are (almost always) learned via models called neural networks, where layers stacked on top of each other.
- The term neural network is a reference to neurobiology.

Traditional Neural Network

- Artificial Neural Networks(ANN) are part of supervised machine learning where we will be having input as well as corresponding output present in our dataset.
- ANN can be used for solving both regression and classification problems.
- Neural networks form the base of deep learning,
- Neural networks take input data, train themselves to recognize patterns found in the data, and then predict the output for a new set of similar data.
- Therefore, a neural network can be thought of as the functional unit of deep learning, which mimics the behavior of the human brain to solve complex data-driven problems.

Neural Network

Perceptron and Neural Nets

• From biological neuron to artificial neuron (perceptron)

Traditional Neural Network

General Structure of ANN

Perceptron

• A perceptron is a neural network without any hidden layer. A perceptron only has an input layer and an output layer.

hidden layer 1 hidden layer 2 hidden layer 3 input layer output layer

Steps involved in the implementation of a neural network:

1. Feedforward:

• we have a set of input features and some random weights. Notice that in this case, we are taking random weights that we will optimize using backward propagation.

2. Backpropagation:

 we calculate the error between predicted output and target output and then use an algorithm (gradient descent) to update the weight values.

Flow chart for a simple NN

Perceptron Example

Input	Target Output
0	0
1	2
2	4
3	6

Input	Target Output	Predicted Output (W=3)
0	0	0
1	2	3
2	4	6
3	6	9

Input	Target Output	Predicted	Error In
		Output (W=3)	Prediction
0	0	0	0
1	2	3	1
2	4	6	2
3	6	9	3

Input	Target Output	Predicted Output
		(W=2)
0	0	0
1	2	2
2	4	4
3	6	6

Input	Target	Predicted	Error In	Predicted
	Output	Output	Prediction	Output
		(W=3)		(W=4)
0	0	0	0	0
1	2	3	1	4
2	4	6	2	8
3	6	9	3	12

Input	Target Output	Predicted	Error In
		Output (W=2)	Prediction
			(W=2)
0	0	0	0
1	2	2	0
2	4	4	0
3	6	6	0

Activation Function

• Sigmoid Function

Example (logical OR Gate)

Input 1	Input 2	Output
0	0	0
0	1	1
1	0	1
1	1	1

Input for o1 =
$$w1*x1 + w2*x2 + b*x3$$

= $0.2*0 + 0.3*1 + 0.5*1$
= $0 + 0.3 + 0.5$
= 0.8

$$f(X) = \frac{1}{1 + e^{-X}}$$

Output for 01 =
$$\frac{1}{1+e^{-0.8}}$$
 = 0.68997

$$MSE = \sum_{i=1}^{n} \frac{1}{2} * (target - output)^2$$

$$MSE = \sum_{i=1}^{n} \frac{1}{2} * (target - output)^{2}$$
 $MSE = \frac{1}{2} * (1 - 0.68997)^{2} = 0.048059$

