Finite-Difference Time-Domain Method (FDTD)

Metasurfaces

Photonic Integrated Circuits

LIDAR/RADAR

Sensors Displays Cameras

What can FDTD simulations do?

Transmittance

Reflectance

Absorbance

Coupling Efficiency

Insertion Losses

Quality Factor

Mode Volume

Far-field radiation

Scattering Cross-section

Dielectric Metasurface

PhC Nanocavity

Mode and Polarization Demultiplexer

Metalens

Grating Coupler

Metal nanoparticle

Proposed in 1966 by Kane Yee.

Considering material variations only in the x-direction: $\frac{\partial}{\partial y} = 0$ $\frac{\partial}{\partial z} = 0$

Maxwell's scalar equations

$$u\frac{\partial H_{y}}{\partial t} = \frac{\partial E_{z}}{\partial x} \qquad \qquad \varepsilon \frac{\partial E_{z}}{\partial t} = \frac{\partial H_{y}}{\partial x}$$

Faraday's law

$$\nabla \times \vec{E} = -\mu \frac{\partial \vec{H}}{\partial t}$$

$$-\mu \frac{\partial \vec{H}}{\partial t} = \nabla \times \vec{E} = \begin{bmatrix} \hat{a}_x & \hat{a}_y & \hat{a}_z \\ \frac{\partial}{\partial x} & 0 & 0 \\ 0 & 0 & E_z \end{bmatrix} = -\hat{a}_y \frac{\partial E_z}{\partial x}$$

Ampere's law

$$abla imes \vec{H} = \varepsilon \frac{\partial \vec{E}}{\partial t}$$

$$\varepsilon \frac{\partial \vec{E}}{\partial t} = \nabla \times \vec{H} = \begin{bmatrix} \hat{a}_x & \hat{a}_y & \hat{a}_z \\ \frac{\partial}{\partial x} & 0 & 0 \\ 0 & H_y & 0 \end{bmatrix} = \hat{a}_z \frac{\partial H_y}{\partial x}$$

Maxwell's scalar equations

$$\mu \frac{\partial H_{y}}{\partial t} = \frac{\partial E_{z}}{\partial x}$$

$$\varepsilon \frac{\partial E_z}{\partial t} = \frac{\partial H_y}{\partial x}$$

Yee Grid

- Spatial step size: Δx
- Temporal step size: Δt
- Staggered E and H in space and time

Convert differential operator to difference operator, for example:

$$\frac{\partial E_z}{\partial t} \to \frac{E_z(t + \Delta t) - E_z(t)}{\Delta t}$$

Update equations

$$H_{y}\left(t+\frac{\Delta t}{2}\right)=H_{y}\left(t-\frac{\Delta t}{2}\right)+\frac{\Delta t}{\mu\Delta x}\left[E_{z}(x+\Delta x)-E_{z}(x)\right]$$

$$H_{y}\left(t + \frac{\Delta t}{2}\right) = H_{y}\left(t - \frac{\Delta t}{2}\right) + \frac{\Delta t}{\mu \Delta x}\left[E_{z}(x + \Delta x) - E_{z}(x)\right]$$

$$E_{z}(t + \Delta t) = E_{z}(t) + \frac{\Delta t}{\varepsilon \Delta x}\left[H_{y}\left(x + \frac{\Delta x}{2}\right) - H_{y}\left(x - \frac{\Delta x}{2}\right)\right]$$

$$\mu \frac{H_{y}\left(t + \frac{\Delta t}{2}\right) - H_{y}\left(t - \frac{\Delta t}{2}\right)}{\Delta t} = \frac{E_{z}(x + \Delta x) - E_{z}(x)}{\Delta x}$$

$$\varepsilon \frac{E_{z}(t + \Delta t) - E_{z}(t)}{\Delta t} = \frac{H_{y}\left(x + \frac{\Delta x}{2}\right) - H_{y}\left(x - \frac{\Delta x}{2}\right)}{\Delta x}$$

Yee Grid at time step $\alpha + \frac{1}{2}$

Update all $H_y^{\alpha + \frac{1}{2}}$

$$H_{y}^{\alpha + \frac{1}{2}} \left[m + \frac{1}{2} \right] = H_{y}^{\alpha - \frac{1}{2}} \left[m + \frac{1}{2} \right] + \frac{\Delta t}{\mu \Delta x} \left(E_{z}^{\alpha} [m+1] - E_{z}^{\alpha} [m] \right)$$

Yee Grid at time step $\alpha + 1$

Update $E_z^{\alpha+1}$

$$E_{z}^{\alpha+1}[m+1] = E_{z}^{\alpha}[m+1] + \frac{\Delta t}{\varepsilon \Delta x} \left(H_{y}^{\alpha+\frac{1}{2}} \left[m + \frac{3}{2} \right] - H_{y}^{\alpha+\frac{1}{2}} \left[m + \frac{1}{2} \right] \right)$$

Physical light speed

С

Numerical light speed

$$\frac{\Delta x}{\Delta t}$$

Courant number:

$$C = \frac{c\Delta t}{\Delta x} \le 1$$

The minimum time step is limited by the spatial grid size.

$$\Delta t = 0.99 \Delta x/c$$

$$\Delta t = 1.01 \Delta x/c$$

Courant number: C = 0.99

Courant number: C = 1.01

Boundary Conditions:

Absorbing Boundary Condition

$$E_z^{\alpha+1}[m+2] = E_z^{\alpha}[m+2] + \frac{\Delta t}{\varepsilon \Delta x} \left(H_y^{\alpha + \frac{1}{2}} \left[m + \frac{5}{2} \right] - H_y^{\alpha + \frac{1}{2}} \left[m + \frac{3}{2} \right] \right)$$

Source

Point dipole source excitation

Conclusion

- lacktriangledown Maxwell's equations are approximated by finite-differences.
- ☐ FDTD can obtain the response for multiple frequencies in a single simulation.

- ☐ The FDTD algorithm should include:
- ✓ Structures and Materials
- ✓ Discretization
- ✓ Update equations
- ✓ Boundary Conditions
- ✓ Sources
- ✓ Monitors

Flexcompute

Cloud-based FDTD solver

100-1000X larger

10–100X faster

Python-based User Interface

Graphical User Interface

Learn FDTD, from basics to advanced topics.

Examples Library

Explore various FDTD simulation examples, such as photonic integrated circuits, metasurfaces, photonic crystals, metalenses, inverse designs, and more.

Learn the adjoint-based inverse design method.

Tidy3D GUI

Step-by-step tutorials on using Tidy3D graphical user interface (GUI). Practical examples included.

Complete documentation to Python-based Tidy3D user interface.