1

Assignment

Barath surya M — EE22BTECH11014

Question 9.3.3 Five cards are drawn successively with replacement from well shuffled deck of 52 cards, what is the probability that

- 1) all the five cards are spades?
- 2) only 3 cards are spades
- 3) None is a spade

Solution:

Binomial

Parameter	Value	Description
X	{0,1,2,3,4,5}	Number of spade cards drawn
n	5	Number of cards drawn
p	0.25	Drawing a spade card
q	0.75	Drawing any other card
$\mu = np$	1.25	Mean of Binomial distribution
$\sigma^2 = npq$	0.9375	Varience of Binomial distribution

TABLE 1: Random variable and Parameter

PMF of the distribution is,

$$\Pr(X = k) = {}^{n}C_{k}p^{k}(1 - p)^{n-k} \tag{1}$$

1)

$$k = 5 \tag{2}$$

$$\implies \Pr(X=5) = {}^{5}C_{5}(0.25)^{5}(0.75)^{0} \tag{3}$$

$$= 0.0009765625 \tag{4}$$

2)

$$k = 3 \tag{5}$$

$$\implies \Pr(X=3) = {}^{5}C_{3}(0.25)^{3}(0.75)^{2}$$
 (6)

$$= 0.087890625 \tag{7}$$

3)

$$k = 0 \tag{8}$$

$$\implies \Pr(X = 0) = {}^{5}C_{0}(0.25)^{0}(0.75)^{5}$$
(9)

$$= 0.2373046875 \tag{10}$$

Gaussian

Central limit theroem states that ,Z be a random variable

$$Z \approx \frac{X - \mu}{\sigma} \tag{11}$$

Z converges to normal distribution for large value of n

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{12}$$

Q function is defined

$$Q(x) = \int_{x}^{\infty} f(x) dx$$
 (13)

then CDF of X is:

$$\Pr(X < x) = \int_{-\infty}^{x} f(x) dx \tag{14}$$

$$=1-\int_{x}^{\infty}f(x)\,dx\tag{15}$$

$$=1-Q(x) \tag{16}$$

and for finding $Pr\left(Z = \frac{X-\mu}{\sigma}\right)$ Using approximation,

$$\Pr\left(Z = \frac{X - \mu}{\sigma}\right) \approx \Pr\left(\frac{X + 0.5 - \mu}{\sigma} < Z < \frac{X - 0.5 - \mu}{\sigma}\right)$$
(17)

$$\approx \Pr\left(Z < \frac{X + 0.5 - \mu}{\sigma}\right) - \Pr\left(Z < \frac{X - 0.5 - \mu}{\sigma}\right)$$
(18)

$$\approx Q\left(\frac{X - 0.5 - \mu}{\sigma}\right) - Q\left(\frac{X + 0.5 - \mu}{\sigma}\right) \tag{19}$$

1)

$$X = 5 \tag{20}$$

$$Pr(Z = 3.872) \approx Q(3.356) - Q(4.389) \tag{21}$$

$$\approx 0.0003888\tag{22}$$

2)

$$X = 3 \tag{23}$$

$$Pr(Z = 1.8073) \approx Q(1.2909) - Q(2.3237)$$
 (24)

$$\approx 0.08828\tag{25}$$

3)

$$X = 0 \tag{26}$$

$$Pr(Z = -1.2909) \approx Q(-1.8073) - Q(-0.7745)$$
(27)

$$\approx 0.1839\tag{28}$$

Fig. 1: Binomial and gaussian distribution