

Skein Relations from Quantum Mechanics

Minh-Tâm Quang Trinh

Yale University

- 1 Quantum Mechanics
- 2 The Algebra of Coupled Momenta
- 3 Skeins
- 4 Hecke Algebras

- 1 Quantum Mechanics
- 2 The Algebra of Coupled Momenta
- 3 Skeins
- 4 Hecke Algebras

Themes of this talk:

- Solving problems in quantum mechanics = studying relations among linear operators.
- The algebras generated by these operators can be abstracted to other settings.
- A particular algebra governing quantum angular momentum also shows up in knot theory.
- Not a coincidence: Representation theory predicts a hierarchy of algebras of broad importance.

Themes of this talk:

- Solving problems in quantum mechanics = studying relations among linear operators.
- The algebras generated by these operators can be abstracted to other settings.
- A particular algebra governing quantum angular momentum also shows up in knot theory.
- Not a coincidence: Representation theory predicts a hierarchy of algebras of broad importance.

1 Quantum Mechanics

classical

An observable is a function $f: \mathcal{M} \to \mathbf{R}$ on a state space \mathcal{M} .

A measurement in $E \subseteq \mathbf{R}$ lets us infer a state in $f^{-1}(E) \subseteq \mathcal{M}$.

quantum

A state is a line in a Hilbert space \mathcal{H} .

An observable is a projection-valued measure. It assigns a projection $\pi_E : \mathcal{H} \to \mathcal{H}$ to each $E \subseteq \mathbf{R}$.

The probability of a measurement in E is

 $\langle \varphi, \pi_E(\varphi) \rangle$, for a state with unit vector $\varphi \in \mathcal{H}$.

Themes of this talk:

- Solving problems in quantum mechanics = studying relations among linear operators.
- The algebras generated by these operators can be abstracted to other settings.
- A particular algebra governing quantum angular momentum also shows up in knot theory.
- Not a coincidence: Representation theory predicts a hierarchy of algebras of broad importance.

1 Quantum Mechanics

classical

An observable is a function $f: \mathcal{M} \to \mathbf{R}$ on a state space \mathcal{M} .

A measurement in $E \subseteq \mathbf{R}$ lets us infer a state in $f^{-1}(E) \subseteq \mathcal{M}$.

quantum

A state is a line in a Hilbert space \mathcal{H} .

An observable is a projection-valued measure. It assigns a projection $\pi_E : \mathcal{H} \to \mathcal{H}$ to each $E \subseteq \mathbf{R}$.

The probability of a measurement in ${\cal E}$ is

 $\langle \varphi, \pi_E(\varphi) \rangle$, for a state with unit vector $\varphi \in \mathcal{H}$.

1 Quantum Mechanics

classical

An observable is a function $f: \mathcal{M} \to \mathbf{R}$ on a state space \mathcal{M} .

A measurement in $E\subseteq \mathbf{R}$ lets us infer a state in $f^{-1}(E)\subseteq \mathcal{M}$.

quantum

A state is a line in a Hilbert space \mathcal{H} .

An observable is a projection-valued measure. It assigns a projection $\pi_E: \mathcal{H} \to \mathcal{H}$ to each $E \subseteq \mathbf{R}$.

The probability of a measurement in E is

$$\langle \varphi, \pi_E(\varphi) \rangle$$
, for a state with unit vector $\varphi \in \mathcal{H}$.

The expectation of the observable, given φ , is

$$\langle \varphi, J(\varphi) \rangle$$
, where $J(\varphi) = \int_{\mathbf{R}} \lambda \, d\pi_{\lambda}(\varphi)$.

We often say that $J: \mathcal{H} \to \mathcal{H}$ "is" the observable.

We'll focus on (total) quantum angular momentum:

$$J_x$$
, J_y , J_z .

In experiment, the product of the variances of the observables has a strictly positive lower bound.

Heisenberg (\sim 1925) Can derive this mathematically from the identities

$$[J_x,J_y]=i\hbar J_z,\quad [J_y,J_z]=i\hbar J_x,\quad [J_z,J_x]=i\hbar J_y,$$
 where $[A,B]=A\circ B-B\circ A.$

The expectation of the observable, given φ , is

$$\langle \varphi, J(\varphi) \rangle$$
, where $J(\varphi) = \int_{\mathbf{R}} \lambda \, d\pi_{\lambda}(\varphi)$.

We often say that $J: \mathcal{H} \to \mathcal{H}$ "is" the observable.

We'll focus on (total) quantum angular momentum:

$$J_x$$
, J_y , J_z .

In experiment, the product of the variances of the observables has a strictly positive lower bound.

Heisenberg (\sim 1925) Can derive this mathematically from the identities

$$[J_x,J_y]=i\hbar J_z, \quad [J_y,J_z]=i\hbar J_x, \quad [J_z,J_x]=i\hbar J_y,$$
 where $[A,B]=A\circ B-B\circ A.$

Let
$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$:
$$[\sigma_x, \sigma_y] = 2i\sigma_z, \quad [\sigma_y, \sigma_z] = 2i\sigma_x, \quad [\sigma_z, \sigma_x] = 2i\sigma_y.$$

The actions $J_x, J_y, J_z \curvearrowright \mathcal{H}$ define a representation of the Lie algebra

$$\mathfrak{sl}_2 = \mathbf{C}\sigma_x + \mathbf{C}\sigma_y + \mathbf{C}\sigma_z \subseteq \mathrm{Mat}_2(\mathbf{C}).$$

Classic example where the algebra underlying QM has broader importance.

Our main topic is a fancier, more modern example, arising from coupled momenta.

The expectation of the observable, given φ , is

$$\langle \varphi, J(\varphi) \rangle$$
, where $J(\varphi) = \int_{\mathbf{R}} \lambda \, d\pi_{\lambda}(\varphi)$.

We often say that $J:\mathcal{H}\to\mathcal{H}$ "is" the observable.

We'll focus on (total) quantum angular momentum:

$$J_x$$
, J_y , J_z .

In experiment, the product of the variances of the observables has a strictly positive lower bound.

Heisenberg (\sim 1925) Can *derive* this mathematically from the identities

$$[J_x,J_y]=i\hbar J_z,\quad [J_y,J_z]=i\hbar J_x,\quad [J_z,J_x]=i\hbar J_y,$$
 where $[A,B]=A\circ B-B\circ A.$

Let
$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$:
$$[\sigma_x, \sigma_y] = 2i\sigma_z, \quad [\sigma_y, \sigma_z] = 2i\sigma_x, \quad [\sigma_z, \sigma_x] = 2i\sigma_y.$$

The actions $J_x, J_y, J_z \curvearrowright \mathcal{H}$ define a representation of the Lie algebra

$$\mathfrak{sl}_2 = \mathbf{C}\sigma_x + \mathbf{C}\sigma_y + \mathbf{C}\sigma_z \subseteq \mathrm{Mat}_2(\mathbf{C}).$$

Classic example where the algebra underlying QM has broader importance.

Our main topic is a fancier, more modern example, arising from coupled momenta.

Let
$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$:
$$[\sigma_x, \sigma_y] = 2i\sigma_z, \quad [\sigma_y, \sigma_z] = 2i\sigma_x, \quad [\sigma_z, \sigma_x] = 2i\sigma_y.$$

The actions $J_x, J_y, J_z \curvearrowright \mathcal{H}$ define a representation of the Lie algebra

$$\mathfrak{sl}_2 = \mathbf{C}\sigma_x + \mathbf{C}\sigma_y + \mathbf{C}\sigma_z \subseteq \mathrm{Mat}_2(\mathbf{C}).$$

Classic example where the algebra underlying QM has broader importance.

Our main topic is a fancier, more modern example arising from *coupled* momenta.

2 The Algebra of Coupled Momenta

The \mathfrak{sl}_2 -action puts a lot of structure on \mathcal{H} .

The action must respect a direct-sum decomposition

$$\mathcal{H} = \bigoplus_{s=0,\frac{1}{2},1,\frac{3}{2},\dots} V_s^{\oplus m_s}, \quad \text{where dim } V_s = 2s+1.$$

Above, s is called the *spin number* of V_s .

Elementary particles have fixed spin numbers.

A system of particles with spins s_1, s_2, \ldots has a state space given by a tensor product:

$$\mathcal{H} = V_{s_1} \otimes V_{s_2} \otimes \dots$$

How to decompose the \otimes product back into a \oplus sum?

2 The Algebra of Coupled Momenta

The \mathfrak{sl}_2 -action puts a lot of structure on \mathcal{H} .

The action must respect a direct-sum decomposition

$$\mathcal{H} = \bigoplus_{s=0, \frac{1}{2}, 1, \frac{3}{2}, \dots} V_s^{\oplus m_s}, \quad \text{where dim } V_s = 2s + 1.$$

Above, s is called the *spin number* of V_s .

Elementary particles have fixed spin numbers.

A system of particles with spins s_1, s_2, \ldots has a state space given by a tensor product:

$$\mathcal{H} = V_{s_1} \otimes V_{s_2} \otimes \dots$$

How to decompose the \otimes product back into a \oplus sum?

two-body problem

 V_c occurs in $V_a \otimes V_b$ if and only if a, b, c form the sides of a triangle and $a + b + c \in \mathbf{Z}$.

In this case, the embedding is unique up to scaling. $\implies \operatorname{Hom}_{\mathfrak{sl}_2}(V_c,V_a\otimes V_b) \text{ is one-dimensional}.$

three-body problem

 V_d can occur in $V_a \otimes V_b \otimes V_c$ more than once.

$$\operatorname{Hom}(V_d, V_a \otimes V_b \otimes V_c)$$
 has $\underline{\operatorname{two}}$ bases $(\Phi_e)_e, (\Psi_f)_f$:

$$\mathbf{C}\Phi_e = \operatorname{Hom}(V_d, \underline{V_e} \otimes V_c) \otimes \operatorname{Hom}(\underline{V_e}, V_a \otimes V_b),$$

$$\mathbf{C}\Psi_f = \operatorname{Hom}(V_d, V_a \otimes V_f) \otimes \operatorname{Hom}(V_f, V_b \otimes V_c).$$

2 The Algebra of Coupled Momenta

The \mathfrak{sl}_2 -action puts a lot of structure on \mathcal{H} .

The action must respect a direct-sum decomposition

$$\mathcal{H} = \bigoplus_{s=0,\frac{1}{2},1,\frac{3}{2},...} V_s^{\oplus m_s}, \text{ where dim } V_s = 2s+1.$$

Above, s is called the *spin number* of V_s .

Elementary particles have fixed spin numbers.

A system of particles with spins s_1, s_2, \ldots has a state space given by a tensor product:

$$\mathcal{H} = V_{s_1} \otimes V_{s_2} \otimes \dots$$

How to decompose the \otimes product back into a \oplus sum?

two-body problem

 V_c occurs in $V_a \otimes V_b$ if and only if a, b, c form the sides of a triangle and $a + b + c \in \mathbf{Z}$.

In this case, the embedding is unique up to scaling.

 $\implies \operatorname{Hom}_{\mathfrak{sl}_2}(V_c, V_a \otimes V_b)$ is one-dimensional.

three-body problem

 V_d can occur in $V_a \otimes V_b \otimes V_c$ more than once.

 $\operatorname{Hom}(V_d, V_a \otimes V_b \otimes V_c)$ has $\underline{\operatorname{two}}$ bases $(\Phi_e)_e, (\Psi_f)_f$:

$$\mathbf{C}\Phi_e = \operatorname{Hom}(V_d, \underline{V_e} \otimes V_c) \otimes \operatorname{Hom}(\underline{V_e}, V_a \otimes V_b),$$

$$\mathbf{C}\Psi_f = \mathrm{Hom}(V_d, V_a \otimes \underline{V_f}) \otimes \mathrm{Hom}(\underline{V_f}, V_b \otimes V_c).$$

two-body problen

 V_c occurs in $V_a \otimes V_b$ if and only if a, b, c form the sides of a triangle and $a + b + c \in \mathbf{Z}$.

In this case, the embedding is unique up to scaling $\implies \operatorname{Hom}_{\mathfrak{sl}_2}(V_c, V_a \otimes V_b)$ is one-dimensional.

three-body problem

 V_d can occur in $V_a \otimes V_b \otimes V_c$ more than once.

$$\operatorname{Hom}(V_d, V_a \otimes V_b \otimes V_c)$$
 has $\underline{\operatorname{two}}$ bases $(\Phi_e)_e, (\Psi_f)_f$:

$$\mathbf{C}\Phi_e = \operatorname{Hom}(V_d, V_e \otimes V_c) \otimes \operatorname{Hom}(V_e, V_a \otimes V_b),$$

$$\mathbf{C}\Psi_f = \mathrm{Hom}(V_d, V_a \otimes V_f) \otimes \mathrm{Hom}(V_f, V_b \otimes V_c).$$

The 6j symbols are the entries of the change-of-basis matrix from $(\Phi_e)_e$ to $(\Psi_f)_f$:

Using self-duality of V_a , etc., we can show that the symbol is invariant under permutations of a, b, c, d.

Regge (1958) A more surprising symmetry

where $p = \frac{a+b+c+d}{2}$.

Granovskii–Zhedanov (1988) Conceptual proof of these symmetries via a new operator algebra.

The 6j symbols are the entries of the change-of-basis matrix from $(\Phi_e)_e$ to $(\Psi_f)_f$:

Using self-duality of V_a , etc., we can show that the symbol is invariant under permutations of a, b, c, d.

Regge (1958) A more surprising symmetry

where $p = \frac{a+b+c+d}{2}$.

Granovskii–Zhedanov (1988) Conceptual proof of these symmetries via a new operator algebra.

On any \mathcal{H} , have $J^2 := J_x^2 + J_y^2 + J_z^2$ commuting with J_x, J_y, J_z .

Any nonzero vector in V_s is an eigenvector of J^2 with eigenvalue $\hbar^2 s(s+1)$. Thus, J^2 distinguishes spins.

The 6j symbols arise from two ways to parenthesize:

$$V_e \otimes V_c \to (V_a \otimes V_b) \otimes V_c,$$
$$V_a \otimes V_f \to V_a \otimes (V_b \otimes V_c).$$

From $J_{12}^2 \curvearrowright V_a \otimes V_b$ and $J_{23}^2 \curvearrowright V_b \otimes V_c$, we form $J_{12}^2 \otimes 1$, $1 \otimes J_{23}^2 \curvearrowright V_a \otimes V_b \otimes V_c$.

The nontriviality of the 6j symbols is the failure of $J_{12}^2 \otimes 1$ and $1 \otimes J_{23}^2$ to commute.

The 6j symbols are the entries of the change-of-basis matrix from $(\Phi_e)_e$ to $(\Psi_f)_f$:

$$\left\{ \begin{matrix} a & b & e \\ c & d & f \end{matrix} \right\} \in \mathbf{C}.$$

Using self-duality of V_a , etc., we can show that the symbol is invariant under permutations of a, b, c, d.

Regge (1958) A more surprising symmetry

where $p = \frac{a+b+c+d}{2}$.

Granovskii–Zhedanov (1988) Conceptual proof of these symmetries via a new operator algebra.

On any \mathcal{H} , have $J^2 := J_x^2 + J_y^2 + J_z^2$ commuting with J_x, J_y, J_z .

Any nonzero vector in V_s is an eigenvector of J^2 with eigenvalue $\hbar^2 s(s+1)$. Thus, J^2 distinguishes spins.

The 6j symbols arise from two ways to parenthesize:

$$V_e \otimes V_c \to (V_a \otimes V_b) \otimes V_c,$$
$$V_a \otimes V_f \to V_a \otimes (V_b \otimes V_c).$$

From $J_{12}^2 \curvearrowright V_a \otimes V_b$ and $J_{23}^2 \curvearrowright V_b \otimes V_c$, we form

$$J_{12}^2 \otimes 1$$
, $1 \otimes J_{23}^2$ \sim $V_a \otimes V_b \otimes V_c$.

The nontriviality of the 6j symbols is the failure of $J_{12}^2\otimes 1$ and $1\otimes J_{23}^2$ to commute.

On any \mathcal{H} , have $J^2 := J_x^2 + J_y^2 + J_z^2$ commuting with J_x, J_y, J_z .

Any nonzero vector in V_s is an eigenvector of J^2 with eigenvalue $\hbar^2 s(s+1)$. Thus, J^2 distinguishes spins.

The 6j symbols arise from two ways to parenthesize:

$$V_e \otimes V_c \to (V_a \otimes V_b) \otimes V_c$$

 $V_a \otimes V_f \to V_a \otimes (V_b \otimes V_c)$

From $J_{12}^2 \curvearrowright V_a \otimes V_b$ and $J_{23}^2 \curvearrowright V_b \otimes V_c$, we form $J_{12}^2 \otimes 1$, $1 \otimes J_{22}^2 \curvearrowright V_a \otimes V_b \otimes V_c$.

The nontriviality of the 6j symbols is the failure o $J_{12}^2 \otimes 1$ and $1 \otimes J_{23}^2$ to commute.

3 Skeins We set $K_{13} = [K_{12}, K_{23}]$, where

$$K_{12} = J_{12}^2 \otimes 1, \quad K_{23} = 1 \otimes J_{23}^2.$$

The other commutation relations look like

$$[K_{23}, K_{13}] = 2(\eta_1 + \theta K_{23} - \{K_{12}, K_{23}\} - K_{23}^2),$$

$$[K_{13}, K_{12}] = 2(\eta_2 + \theta K_{12} - \{K_{12}, K_{23}\} - K_{12}^2),$$

where $\{A, B\} = A \circ B + B \circ A$.

Here, η_1, η_2, θ are polynomial functions of a, b, c.

Now consider these relations on abstract *variables*. Berest–Samuelson (2018) These relations arise in knot theory, from Kauffman's construction of the *Jones polynomial*.

3 Skeins We set $K_{13} = [K_{12}, K_{23}]$, where

$$K_{12} = J_{12}^2 \otimes 1, \quad K_{23} = 1 \otimes J_{23}^2.$$

The other commutation relations look like

$$[K_{23}, K_{13}] = 2(\eta_1 + \theta K_{23} - \{K_{12}, K_{23}\} - K_{23}^2),$$

$$[K_{13}, K_{12}] = 2(\eta_2 + \theta K_{12} - \{K_{12}, K_{23}\} - K_{12}^2),$$

where $\{A, B\} = A \circ B + B \circ A$.

Here, η_1, η_2, θ are polynomial functions of a, b, c.

Now consider these relations on abstract variables.

Berest–Samuelson (2018) These relations arise in knot theory, from Kauffman's construction of the *Jones polynomial*.

 $\Sigma = 4$ -punctured sphere = 3-punctured plane

The Kauffman skein module of Σ is

$$\begin{aligned} \operatorname{Sk}_{\Sigma}(q) &= \frac{\mathbf{C}[q^{\pm 1}] \langle \operatorname{unoriented link diagrams in } \Sigma \rangle}{(\operatorname{skein relations})} \\ &= \mathbf{C}[q^{\pm 1}] \langle \Gamma_1, \Gamma_2, \Gamma_3, \Gamma_{12}, \Gamma_{23}, \Gamma_{13}, \Gamma_{123} \rangle \end{aligned}$$

where Γ_I is the loop encircling the punctures in I.

We make $\operatorname{Sk}_{\Sigma}(q)$ into a ring by declaring: $\Gamma \cdot \Gamma'$ is the diagram where we put Γ' on top of Γ .

 $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_{123}$ then belong to the center.

3 Skeins We set $K_{13} = [K_{12}, K_{23}]$, where

$$K_{12} = J_{12}^2 \otimes 1, \quad K_{23} = 1 \otimes J_{23}^2.$$

The other commutation relations look like

$$[K_{23}, K_{13}] = 2(\eta_1 + \theta K_{23} - \{K_{12}, K_{23}\} - K_{23}^2),$$

$$[K_{13}, K_{12}] = 2(\eta_2 + \theta K_{12} - \{K_{12}, K_{23}\} - K_{12}^2),$$

where $\{A, B\} = A \circ B + B \circ A$.

Here, η_1, η_2, θ are polynomial functions of a, b, c.

Now consider these relations on abstract *variables*. Berest–Samuelson (2018) These relations arise in knot theory, from Kauffman's construction of the *Jones polynomial*.

 $\Sigma = 4$ -punctured sphere = 3-punctured plane

The Kauffman skein module of Σ is

$$\begin{split} \operatorname{Sk}_{\Sigma}(q) &= \frac{\mathbf{C}[q^{\pm 1}] \langle \operatorname{unoriented link diagrams in } \Sigma \rangle}{(\operatorname{skein relations})} \\ &= \mathbf{C}[q^{\pm 1}] \langle \Gamma_1, \Gamma_2, \Gamma_3, \Gamma_{12}, \Gamma_{23}, \Gamma_{13}, \Gamma_{123} \rangle \end{split}$$

where Γ_I is the loop encircling the punctures in I.

We make $\operatorname{Sk}_{\Sigma}(q)$ into a ring by declaring: $\Gamma \cdot \Gamma'$ is the diagram where we put Γ' on top of Γ .

 $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_{123}$ then belong to the center.

 $\Sigma = 4$ -punctured sphere = 3-punctured plane

The Kauffman skein module of Σ is

$$\begin{aligned} \operatorname{Sk}_{\Sigma}(q) &= \frac{\operatorname{C}[q^{\pm 1}] \langle \operatorname{unoriented link diagrams in } \Sigma \rangle}{(\operatorname{skein relations})} \\ &= \operatorname{C}[q^{\pm 1}] \langle \Gamma_1, \Gamma_2, \Gamma_3, \Gamma_{12}, \Gamma_{23}, \Gamma_{13}, \Gamma_{123} \rangle \end{aligned}$$

where Γ_I is the loop encircling the punctures in I. We make $\operatorname{Sk}_{\Sigma}(q)$ into a ring by declaring: $\Gamma \cdot \Gamma'$ is the diagram where we put Γ' on top of Γ .

 $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_{123}$ then belong to the center

Berest-Samuelson (2018), Fig. 2

Bullock–Przytycki (1999) $\mathbf{C}(q) \otimes \operatorname{Sk}_{\Sigma}(q)$ is generated by the elements $\kappa_{ij} := \frac{\Gamma_{ij} - [2]_q}{(q-q^{-1})^2}$ modulo

$$[\kappa_{12}, \kappa_{23}]_q = K_{13},$$

$$[\kappa_{23}, \kappa_{13}]_q = [2]_q (\eta_{1,q} + \theta_q \kappa_{23} - \{\kappa_{12}, \kappa_{23}\} - \kappa_{23}^2),$$

$$[\kappa_{13}, \kappa_{12}]_q = [2]_q (\eta_{2,q} + \theta_q \kappa_{12} - \{\kappa_{12}, \kappa_{23}\} - \kappa_{12}^2),$$

and one more relation. ($[A, B]_q = qAB - q^{-1}BA$.) $\eta_{1,q}, \eta_{2,q}, \theta_q$ are functions of $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_{123}$.

Berest-Samuelson (2018), Fig. 2

Bullock–Przytycki (1999) $\mathbf{C}(q) \otimes \operatorname{Sk}_{\Sigma}(q)$ is generated by the elements $\kappa_{ij} := \frac{\Gamma_{ij} - [2]_q}{(q-q^{-1})^2}$ modulo

$$\begin{split} & [\kappa_{12},\kappa_{23}]_q = K_{13}, \\ & [\kappa_{23},\kappa_{13}]_q = [2]_q (\eta_{1,q} + \theta_q \kappa_{23} - \{\kappa_{12},\kappa_{23}\} - \kappa_{23}^2), \\ & [\kappa_{13},\kappa_{12}]_q = [2]_q (\eta_{2,q} + \theta_q \kappa_{12} - \{\kappa_{12},\kappa_{23}\} - \kappa_{12}^2), \\ & \text{and one more relation.} \quad ([A,B]_q = qAB - q^{-1}BA.) \end{split}$$

 $\eta_{1,q}, \eta_{2,q}, \theta_q$ are functions of $\Gamma_1, \Gamma_2, \Gamma_3, \Gamma_{123}$.

•

4 Hecke Algebras

Problem Explain the coincidence of identities.

An analogue for *oriented* links should be easier:

 $\mathsf{Rep}(\mathfrak{sl}_2)$ has a deformation $\mathsf{Rep}(\mathsf{U}_q(\mathfrak{sl}_2))$ involving a Hopf algebra $\mathsf{U}_q(\mathfrak{sl}_2)$. The swap maps

$$egin{array}{ccc} V\otimes U & v\otimes u \\ \uparrow & \uparrow \\ U\otimes V & u\otimes v \end{array}$$

deform to maps that behave like *braidings*.

Elements in an oriented analogue of $\operatorname{Sk}_{\Sigma}(q)$ encode diagrams of maps in $\operatorname{Rep}(\operatorname{U}_q(\mathfrak{sl}_2))$.

Berest-Samuelson (2018), Fig. 2

Bullock–Przytycki (1999) $\mathbf{C}(q) \otimes \mathrm{Sk}_{\Sigma}(q)$ is generated by the elements $\kappa_{ij} := \frac{\Gamma_{ij} - [2]_q}{(q-q^{-1})^2}$ modulo

$$\begin{split} & [\kappa_{12},\kappa_{23}]_q = K_{13}, \\ & [\kappa_{23},\kappa_{13}]_q = [2]_q (\eta_{1,q} + \theta_q \kappa_{23} - \{\kappa_{12},\kappa_{23}\} - \kappa_{23}^2), \\ & [\kappa_{13},\kappa_{12}]_q = [2]_q (\eta_{2,q} + \theta_q \kappa_{12} - \{\kappa_{12},\kappa_{23}\} - \kappa_{12}^2), \end{split}$$

and one more relation. ([A,B]_q = $qAB-q^{-1}BA$.) $\eta_{1,q},\eta_{2,q},\theta_q$ are functions of $\Gamma_1,\Gamma_2,\Gamma_3,\Gamma_{123}$.

4 Hecke Algebras

Problem Explain the coincidence of identities.

An analogue for oriented links should be easier:

 $\mathsf{Rep}(\mathfrak{sl}_2)$ has a deformation $\mathsf{Rep}(\mathsf{U}_q(\mathfrak{sl}_2))$ involving a Hopf algebra $\mathsf{U}_q(\mathfrak{sl}_2)$. The swap maps

$$\begin{array}{ccc} V \otimes U & v \otimes u \\ \uparrow & \uparrow \\ U \otimes V & u \otimes v \end{array}$$

deform to maps that behave like braidings.

Elements in an oriented analogue of $\mathrm{Sk}_{\Sigma}(q)$ encode diagrams of maps in $\mathsf{Rep}(\mathrm{U}_q(\mathfrak{sl}_2))$.

4 Hecke Algebras

Problem Explain the coincidence of identities.

An analogue for *oriented* links should be easier:

 $\mathsf{Rep}(\mathfrak{sl}_2)$ has a deformation $\mathsf{Rep}(\mathsf{U}_q(\mathfrak{sl}_2))$ involving a Hopf algebra $\mathsf{U}_q(\mathfrak{sl}_2)$. The swap maps

$$\begin{array}{ccc} V \otimes U & v \otimes u \\ \uparrow & \uparrow \\ U \otimes V & u \otimes v \end{array}$$

deform to maps that behave like braidings

$$\times$$
 - \times

Elements in an oriented analogue of $\operatorname{Sk}_{\Sigma}(q)$ encode diagrams of maps in $\operatorname{Rep}(\operatorname{U}_q(\mathfrak{sl}_2))$.

$$\begin{array}{lll} \mathfrak{g} & \operatorname{End}_{\operatorname{U}_q(\mathfrak{g})}(V^{\otimes n}) & \text{skeins} \\ \\ \mathfrak{sl}_k & \operatorname{Hecke\ algebra} & [0,1] \times [0,1] \\ \\ \widehat{\mathfrak{sl}}_k \supset \mathfrak{sl}_k(\!(z)\!) & \operatorname{affine\ Hecke\ algebra} & S^1 \times [0,1] \end{array}$$

Frenkel (\sim 1990) There should be a third row for a "double affine" theory.

Cherednik (1992) The "right" definition of a double affine Hecke algebra, with two parameters q_1, q_2 .

 \approx Frohman–Gelca (2000) The spherical DAHA for \mathfrak{sl}_2 is a quotient of $\mathrm{Sk}_\Sigma(q)$.

 \approx Bullock–Przytycki (2000) The $q_1 = q_2$ limit is a quotient of $\operatorname{Sk}_T(q)$, where T is the torus $S^1 \times S^1$.

•

$$\begin{array}{lll} \mathfrak{g} & \operatorname{End}_{\operatorname{U}_q(\mathfrak{g})}(V^{\otimes n}) & \operatorname{skeins} \\ \\ \mathfrak{sl}_k & \operatorname{Hecke\ algebra} & [0,1] \times [0,1] \\ \\ \widehat{\mathfrak{sl}}_k \supset \mathfrak{sl}_k((z)) & \operatorname{affine\ Hecke\ algebra} & S^1 \times [0,1] \end{array}$$

Frenkel (\sim 1990) There should be a third row for a "double affine" theory.

Cherednik (1992) The "right" definition of a double affine Hecke algebra, with two parameters q_1, q_2 .

 \approx Frohman–Gelca (2000) The spherical DAHA for \mathfrak{sl}_2 is a quotient of $\mathrm{Sk}_\Sigma(q).$

 \approx Bullock-Przytycki (2000) The $q_1 = q_2$ limit is a quotient of $Sk_T(q)$, where T is the torus $S^1 \times S^1$.

Spin in QM is explained by the classification

{finite-dim. irreps of
$$\mathfrak{sl}_2\}=\{V_s\}_{s=0,\frac{1}{2},1,\frac{3}{2},\dots}$$

Analogous classifications known for Sk(q), DAHAs...

Problem Construct the irreps from knot theory, etc.

Cherednik, Berest-Etingof-Ginzburg (2000s)

Can classify finite-dim. irreps of DAHAs by way of rational degenerations.

Gorsky-Oblomkov-Rasmussen-Shende (2014)

Spherical rational DAHA irreps from triply-graded Khovanov-Rozansky homology of torus knots.

$$\begin{array}{lll} \mathfrak{g} & \operatorname{End}_{\operatorname{U}_q(\mathfrak{g})}(V^{\otimes n}) & \operatorname{skeins} \\ \\ \mathfrak{sl}_k & \operatorname{Hecke\ algebra} & [0,1] \times [0,1] \\ \\ \widehat{\mathfrak{sl}}_k \supset \mathfrak{sl}_k(z)) & \operatorname{affine\ Hecke\ algebra} & S^1 \times [0,1] \end{array}$$

Frenkel (\sim 1990) There should be a third row for a "double affine" theory.

Cherednik (1992) The "right" definition of a double affine Hecke algebra, with two parameters q_1, q_2 .

 \approx Frohman–Gelca (2000) The spherical DAHA for \mathfrak{sl}_2 is a quotient of $\mathrm{Sk}_\Sigma(q)$.

 \approx Bullock–Przytycki (2000) The $q_1=q_2$ limit is a quotient of $\mathrm{Sk}_T(q)$, where T is the torus $S^1 \times S^1$.

Spin in QM is explained by the classification

{finite-dim. irreps of
$$\mathfrak{sl}_2\}=\{V_s\}_{s=0,\frac{1}{2},1,\frac{3}{2},\dots}$$

Analogous classifications known for Sk(q), DAHAs...

Problem <u>Construct</u> the irreps from knot theory, etc.

Cherednik, Berest-Etingof-Ginzburg (2000s)

Can classify finite-dim. irreps of DAHAs by way of rational degenerations.

Gorsky-Oblomkov-Rasmussen-Shende (2014)

Spherical rational DAHA irreps from triply-graded Khovanov- $Rozansky\ homology$ of torus knots.

Spin in QM is explained by the classification

{finite-dim. irreps of
$$\mathfrak{sl}_2\}=\{V_s\}_{s=0,\frac{1}{2},1,\frac{3}{2},\dots}$$

Analogous classifications known for $\mathrm{Sk}(q),\,\mathrm{DAHAs}.\,.\,.$

Cherednik, Berest-Etingof-Ginzburg (2000s)

Can classify finite-dim. irreps of DAHAs by way of rational degenerations.

Gorsky-Oblomkov-Rasmussen-Shende (2014)

Spherical rational DAHA irreps from triply-graded Khovanov-Rozansky homology of torus knots.

KhR polynomial in $a, q, t \rightsquigarrow$ Jones polynomial in q.

Wolfram, "Torus Knots"

Trinh (2021) Uniform character formula generalizing to torus *links* (and beyond):

$$\sum_{\lambda \vdash n} \operatorname{Deg}_{\lambda}(e^{2\pi i/n}) [\Delta_{m/n}(\chi^{\lambda})]_{q}.$$

Problem Explain it using $Sk_T(q) \rightarrow sDAHA$.

Problem Lift theory from DAHA to $Sk_T(q)$, $Sk_{\Sigma}(q)$.

Thank you for listening.