Nuclear and Radiation Physics (PHY2005) Lecture 2

D. Margarone

2021-2022

Recap & Learning Goals

Summary of Lecture 1 (Chap. 1)

- General nuclear properties
- Nuclear radius and density
- Mass and abundance of nuclei
- Nuclear binding energy

$$R = R_0 A^{1/3}$$

$$\theta = \sin^{-1}\left(\frac{1.22}{D}\right)$$

$$B = \left[Zm(^{1}H) + Nm_{N} - m(^{A}X) \right] c^{2}$$

Learning goals of of Lecture 2 (Chap. 1-2)

- Knowing the terminology and notation of nuclear angular momentum and parity
- Understanding physical reasoning behind nuclear electromagnetic moments
- Understanding physical reasoning behind the model of the deuteron

1. Nuclear Properties

1.5. Nuclear Angular Momentum and Parity

Angular momentum

- J is the total angular momentum of a single nucleon (J = L + S)
- I is the total angular momentum of a nucleus (A nucleons)
- I is usually called "nuclear spin"
- in each nucleus there are many quantum states (quantum numbers L, S, J, m), and $I_z = m\hbar$ (m = -I, ..., +I)
- the energy of a quantum state is independent of the *m* quantum number (unless we apply a magnetic field)
- each J must be half-integer (1/2,3/2, 5/2,...), thus $J_z = \pm 1/2\hbar$, $\pm 3/2\hbar$...
- odd-A nuclei $\rightarrow I_7$ half-integer $\rightarrow I$ half-integer
- even-A nuclei $\rightarrow I_Z$ integer $\rightarrow I$ integer

Parity

- hundreds of known nuclei with even-Z and even-N have spin-0 ground state (evidence of nuclear pairing!)
- nucleons couple together in spin-0 pairs
- the ground <u>state *I* of an odd-A nucleus is equal to the *J* of the <u>unpaired nucleon</u> (proton or neutron)</u>
- parity can take either even (+) or odd (-) values, and is usually denoted as a superscript (0+, 2-, 1/2-, 5/2+)

"Quantum precession" of an angular momentum of fixed length L and projection m

Vector addition of spin and orbital angular momentum

1. Nuclear Properties

1.6. Electromagnetic Moments

Electric and Magnetic multiple moments

- restriction on multiple moments coming from the symmetry of the nucleus (parity of the nuclear states)
- magnetic dipole moment (charge moving in a circle), with L corresponding to the angular momentum quantum number of the orbit (μ_N nuclear magneton)

$$\mu = \frac{e\hbar}{2m}L$$

$$\mu = \frac{e\hbar}{2m}L \qquad \mu_{\rm N} = \frac{e\hbar}{2m} = 3.1x10^{-8} \frac{eV}{T} \text{ (for a proton)} <<\mu_{\rm B} = 5.8x10^{-5} \frac{eV}{T} \text{ (for an electron)}$$

protons and neutrons (like electrons) have intrinsic spin (s = 1/2), and magnetic dipole:

$$\mu_p = +2.79 \; \mu_N$$

(the uncharged neutron has a nonzero magnetic moment!) $\mu_{n} = -1.91 \; \mu_{N}$

- paired nucleons do not contribute to the magnetic moment (only valence nucleons to be considered)
- **electric quadrupole moment** (nuclei with no spherical shape)
- prolate nuclei → positive el. quad. mom.
- oblate nuclei → negative el. quad. mom
- for an isotropic distribution → zero

$$Q_0 = \int \rho(r)(3z^2 - r^2)dV$$

 $\rho(r)$ is the nuclear charge density distribution

Oblate Spheroid $Q_I < 0$

 $Q_I > 0$

1. Nuclear Properties

1.7. Nuclear Excited States

Excited states

- nuclear excited states are <u>unstable</u> and decay "rapidly" to the ground state
- nuclear spectroscopy allows to observe possible excited states (e.g. radioactive decay or nuclear reactions)
- ... and measure nuclear properties
 (e.g. excitation energy, lifetime, spin
 and parity, electromagnetic moments)
- nuclear potential (extending beyond the nuclear mass distribution – range of the nuclear force) and total energy of a nucleon (E)
- nuclei possess both single and collective structures, thus excited states can be produced also by adding energy to the core of paired nucleons

2. The Inter-nucleon Force 2.1. The Deuteron I

The deuteron (2H)

- simplest bound system of nucleons (p + n)
- binding energy can be precisely measured by:
 - (i) mass spectrometry (2.22463 ± 0.00004 MeV)
 - (ii) γ -photon energy from ¹H + n \rightarrow ²H + γ (2.224589 \pm 0.000002 MeV)
 - (iii) photodissociation $\gamma + {}^{2}H \rightarrow {}^{1}H + n (2.224 \pm 0.002 MeV)$
- ²H is very <u>weakly bound</u> (~1 MeV/u) compared to heavier nuclei (~8 MeV/u)
- ²H has no excited states (just free proton and neutron)
- ²H inter-nucleon (p-n) potential can be roughly approximated as a 3D square well of the following form: $V(r) = -V_0$ (r < R); V(r) = 0 (r > R); R: deuteron diameter
- ²H wave function (assuming L = 0):

The deuteron spherical square well and wave function

2.1. The Deuteron II

Deuteron nuclear properties

- ²H <u>nuclear spin</u> (p and n intrinsic spins and orbital angular momentum around their common centre of mass)
- experimentally measured nuclear spin: I = 1 (L = 0, 1, 2)
- experimentally measured <u>parity</u> is *even*, and it is given by $(-1)^L$, thus states with L = 1 (*p-state*) are not permitted, and only or L = 0 (*s-state*) or L = 2 (*d-state*) can be considered
- assuming the only possibility for 2H is L=0, no contribution from orbital angular momentum to magnetic dipole moment
- ...theoretical value (0.879804 μ_N) shows a small discrepancy with the experimentally measured magnetic dipole moment (0.8574376 \pm 0.0000004 μ_N): the deuteron wave function is a mixture of d-state (L =2) and s-state (L =0)
- also confirmed by experimental measurements of the <u>electric quadrupole</u> moment: $Q_0 = 0$, if L = 0 (p and n have no intrinsic electric quadrupole moments); however experimentally $Q_0 = 0.00288 \pm 0.00002 \ b$

Example 2.1

Calculate the magnetic dipole moment of rigid (light) nuclei with:

$$\succ$$
 $L=0$

Example 2.2

Calculate the mass defect and the binding energy of the deuteron, and compare the result with the energy required to liberate an electron bound to a hydrogen atom

$$DM = M + M - M = \frac{m(H) = 938.28 \text{ MeV/c}^2}{m_n = 939.57 \text{ MeV/c}^2}$$

$$= $38.28 \text{ TeV} + $35^{\circ}, $77 \text{ TeV} - 1.875.61 \text{ MeV/c}^2$$

$$= 2.24 \text{ TeV/c}^{7}$$

$$B(2H) = Dm c^{2} = 2.24 \text{ TeV} + \frac{1}{2}$$

$$E: 2.10 \text{ eV}$$

$$= 2.24 \text{ NeV} = 2.24 \text{ TeV} + \frac{1}{2}$$

$$= 2.24 \text{ NeV} = 2.24 \text{ TeV} + \frac{1}{2}$$

$$= 2.24 \text{ NeV} = 2.24 \text{ Ne$$

Example 2.3

Calculate the binding energy per nucleon of the tritium nucleus (3H)

$$B = [Zm(^{1}H) + Nm_{N} - m(^{A}X)]c^{2}$$

$$B = [Zm(^{1}H) + Nm_{N} - m(^{A}X)]c^{2}$$

$$B = [Zm(^{1}H) + Nm_{N} - m(^{A}X)]c^{2}$$

$$E = [I + 1.007 + 2.5 m + 2.$$

 $m(^{3}H) = 3.016049 \text{ u}; m(^{1}H) = 1.007825 \text{ u};$ $1 u = 931.50 \text{ MeV/c}^2$

