LÓGICA CUANTIFICIONAL: ENFOQUE AXIOMÁTICO

SISTEMA FORMAL PROPOSICIONAL $SF_1 = \langle L_1, Ax_1, RT_1 \rangle$

CÁLCUL	O CUANTIFICACIONAL $L_1 = \langle Alf_1, RF_1 \rangle$		
	ALFABETO Alf_1 .		
SIGNOS PRIMITIVOS			
Constantes individuales (A_c)	$a, b, c, d, e, \dots, a_i, b_i, c_i, d_i, e_i \dots$ Los subíndices i son números naturales.		
Variables individuales (A_v)	$u, v, x, y, z, \dots, u_i, v_i, x_i, y_i, z_i, \dots$ Los subíndices i son números naturales.		
Funciones (A_f)	$f,g,h,i,j,k,\ldots,f_i,g_i,h_i,i_i,j_i,k_i\ldots$ Los subíndices i son números naturales.		
Signos de puntuación	Paréntesis izquierdo (, y derecho); la coma,		
Conectivos lógicos primarios	¬,V		
Predicados (A_{p_1})	$l, m, n, o, p, q, r, s, t,, l_i, m_i, n_i, o_i, p_i, q_i, r_i, s_i, t_i,$ Los subíndices i son números naturales.		
Cuantificador universal	A		
SIGNOS COMPLEMENTARIOS			
Conectivos lógicos secundarios:	$\land,\rightarrow,\leftrightarrow$		
Cuantificador existencial	Э		

		,	,	
DECLA	C DE EODMA	CION DE	EODMAC	DECLADADTIVAC DE
KEUTLA	IS DE FURNIA	CIUN DE	FURWAS	DECLARARTIVAS RF ₁

BÁSICAS

Definición de forma proposicional simple

RFC1. Cualquier <u>fórmula atómica</u> es una fbf

Definición de forma proposicional negada

RFP2. Si R es una fbf, entonces \neg R es una fbf.

Definición de forma proposicional disyuntiva

RFP3. Si R y S son fbfs, entonces R V S es una fbf.

Definición de forma proposicional agrupada

RFP4. Si R es una fbf, entonces (R) también es una fbf

Definición de forma proposicional universalmente cuantificada

RFC2. Si R es una fbf y x pertenece a A_v , entonces $\forall x$ R es una fbf.

Una fórmula atómica, átomo, literal, forma proposicional simple, o función proposicional simple¹, se estructura así: $p(t_1, t_2, ..., t_n)$; donde p es un símbolo de predicado, $t_1, t_2, ..., t_n$ son <u>términos</u>, y n es la cantidad de términos.

Cuando al símbolo de predicado no le siguen términos encerrados en paréntesis la fbf se convierte en p. Ello significa que "cualquier elemento del conjunto A_{p_0} también es una fbf en el cálculo

¹ No confundir con el concepto de signo primitivo para función para representar términos.

cuantificacional".

Los *términos* son símbolos que se emplean para hacer referencia a objetos o individuos de cualquier índole (persona, animal o cosa). Según el conocimiento que se tenga para determinar al individuo, se recurre a:

- Un símbolo de constante. Se emplea para simbolizar a un individuo que está completamente determinado. Se recurre, entonces, al uso de cualquier signo perteneciente a A_c .
- Un símbolo de variable. Se usa para hacer referencia a un individuo que no se conoce con certeza. Se apela al uso de cualquier signo de A_{ν} .
- Una secuencia de signos $f(t_1, t_2, ..., t_m)$, donde $t_1, t_2, ..., t_m$ son a su vez términos; f es un símbolo de A_f , y m es el número de términos de la función. Los términos tipo función, se emplean cuando se requiere determinar al individuo f() a través de un proceso en el que se involucran otros individuos $t_1, t_2, ..., t_m$.

COMPLEMENTARIAS

Definición de forma proposicional conjuntiva

RFP5. Sean R y S fbfs, entonces la fórmula R \(\Lambda \) S se considera bien formada y se define como:

$$\neg(\neg R \lor \neg S)$$

Definición de forma proposicional condicional

RFP6. Sean R y S fbfs, entonces la fórmula $R \rightarrow S$ se considera bien formada y se define como:

$$\neg R \lor S$$

Definición de forma proposicional bicondicional

RFP7. Sean R y S fbfs, entonces la fórmula $R \leftrightarrow S$ se considera bien formada y se define como:

$$(R \rightarrow S) \land (S \rightarrow R)$$

Definición de forma proposicional existencialmente cuantificada

RFC3. Si R es una fbf, entonces $\exists x$ R es una fbf; que se define como:

$$\exists x R \leftrightarrow \neg \forall x \neg R$$

RFC4. Una secuencia de símbolos del alfabeto Alf_1 es una fbf del cálculo L_1 si, y sólo si, puede obtenerse de las anteriores reglas de formación.