Introduction

Quadratics (Babylonians):

$$X^{2} + bX = c = (X + \frac{1}{2}b)^{2} + c - \frac{b^{2}}{4}$$

$$= (X - x_{1})(X - x_{2}) \implies x_{1}x_{2} = c, x_{1} + x_{2} = -b$$

$$x_{1} = \frac{1}{2} \left[(x_{1} + x_{2}) + (x_{1} - x_{2}) \right] = \frac{1}{2} \left[-b + \sqrt{b^{2} - 4c} \right]$$

Cubics (Italy, 16th Century):

$$X^{3} + aX^{2} + bX + c = (X - x_{1})(X - x_{2})(X - x_{3})$$

$$\implies x_{1} + x_{2} + x_{3} = -a, x_{1}x_{2} + x_{1}x_{3} + x_{2}x_{3} = b, x_{1}x_{2}x_{3} = -c$$

WLOG $X \to X - a/3$ and a = 0

$$x_1 = \frac{1}{3} \left[(x_1 + x_2 + x_3) + \underbrace{(x_1 + \omega x_2 + \omega^2 x_3)}_{=u} + \underbrace{(x_1 + \omega^2 x_2 + \omega x_3)}_{=v} \right]$$

where $\omega = e^{2\pi i/3}$ so $\omega^2 + \omega + 1 = 0$. Cyclic permutation of x_1, x_2, x_3 gives $u \to \omega u \to \omega^2 u$ and $v \to \omega v \to \omega^2 v$ which implies u^3 and v^3 are invariant under cyclic permutations of the roots.

Also $u \leftrightarrow v$ under $x_2 \leftrightarrow x_3$. So $u^3 + v^3$, u^3v^3 are invariant under permutations of roots.

In fact,

$$u^3 + v^3 = 27x_1x_2x_3 = -27c$$
$$u^3v^3 = -27b^2$$

So u^3, v^3 are roots of $Y^2 + 27cY - 27b^2$. This gives a formula for x_1 (Cardano's formula).

Can follow a similar method for quartics - auxilliary cubic equation. Unfortunately it doesn't work for quintics - the reason being group theory.

1 Polynomials

In this course, all rings are commutative and non-zero. Let R be a ring, then R[X] denotes the ring of polynomials $\sum_{i=0}^{n} a_i X^i$, $a_i \in R$. A polynomial $f \in R[X]$ determines a function $R \to R$, $r \mapsto f(r)$.

The polynomial is not in general determined by this function, e.g let $R = \mathbb{Z}/p\mathbb{Z}$ (p prime). Then for all $a \in R$, $a^p = a$ so the polynomials X^p and X represent the same function.

In the case when R = K (a field), K[X] is a <u>Euclidean domain</u>. The "division algorithm" says that if $f, g \in K[X]$, $g \neq 0$ then there exists unique $q, r \in K[X]$ such that f = gq + r and $\deg r < \deg g$ (define $\deg(0) = -\infty$).

In particular, if g = X - a is linear then f = (X - a)q + f(a) ("remainder theorem"). So K[X] is also a PID and a UFD - every polynomial is a product of irreducible polynomials, and there are GCD's, computable via Euclids algorithm in the usual way.

Proposition 1.1. If K is a field, $0 \neq f \in K[X]$, then f has at most deg f roots in K.

Proof. If f has no roots then we are done. Otherwise, suppose f(a) = 0 for $a \in K$. Then

$$f = (X - a)g$$

for some $g \in K[X]$ and $\deg g = \deg f - 1$. If $b \in K$ is a root of f then either b = a or g(b) = 0 so the number of roots of f is at most one more than the number of roots of g. Now done by induction.

2 Symmetric polynomials

Let R be a ring, consider $R[X_1, \ldots, X_n]$ for $n \ge 1$.

Definition. A polynomial $f \in R[X_1, ..., X_n]$ is *symmetric* if for every $\sigma \in S_n$, $f(X_{\sigma(1)}, ..., X_{\sigma(n)}) = f$.

The set of symmetric polynomials is a subring of $R[X_1, \ldots, X_n]$.

Example. $X_1 + \ldots + X_n$, or more generally, $p_k = X_1^k + \ldots + X_n^k = \sum_{i=1}^n X_i^k$.

Alternative definition: if $f \in R[X_1, \ldots, X_n]$, define $f\sigma = f(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$. This is an action (on the right) of S_n on $R[X_1, \ldots, X_n]$. A polynomial f is symmetric if and only if it is fixed by this action.

Definition. The elementary symmetric polynomials are

$$s_r(X_1, \dots, X_n) = \sum_{1 \le i_1 < \dots < i_r \le n} X_{i_1} X_{i_2} \dots X_{i_r}$$

Example. When n=3 we have

$$s_1 = X_1 + X_2 + X_3$$

 $s_2 = X_1X_2 + X_1X_3 + X_2X_3$
 $s_3 = X_1X_2X_3$

Theorem 2.1.

- (i) Every symmetric polynomial over R can be expressed as a polynomial in $\{s_r : 1 \le r \le n\}$, with coefficients in R.
- (ii) There are no non-trivial relations between s_1, \ldots, s_n .

Remark:

(a) Consider the ring homomorphism

$$\theta: R[Y_1, \dots, Y_n] \to R[X_1, \dots, X_n], Y_r \mapsto s_r$$

then (i) says the image of θ is the set of symmetric polynomials. (ii) says that θ is injective.

(b) Equivalent definition of the s_r 's is

$$\prod_{i=1}^{n} (T + X_i) = T^n + s_1 T^{n-1} + \ldots + s_{n-1} T + s_n$$

If we need to specify the number of variables, write $s_{r,n}$ instead of s_r .

Proof. Terminology:

- A monomial is some $X_I = X_1^{i_1} \dots X_n^{i_n}$ for $I \in \mathbb{N}^n = \{0, 1, 2, \dots\}^n$. Its (total) degree is $\sum_{\alpha} i_{\alpha}$.
- A term is some cX_I , for $0 \neq c \in R$. So a polynomial is uniquely a sum of terms.
- Total degree of f is the maximum degree over its terms

<u>Lexicographical</u> ordering on monomials X_I : write $X_I > X_J$ if either $i_1 > j_1$ or, for some $1 \le r < n$, $i_1 = j_1, \ldots, i_r = j_r$ and $i_{r+1} > j_{r+1}$.

This is a total ordering: for each pair $I \neq J$, exactly one of $X_I > X_J$ or $X_J > X_I$ holds.

First we prove (ii):

Let d be the total degree of some symmetric polynomial f, and let X_I be the largest (in lexicographical order) monomial which occurs in f, with coefficient $\overline{c \in R}$. As f is symmetric, we must have $i_1 \geq i_2 \geq \ldots \geq i_n$ (otherwise we could exchange variables to get a larger monomial).

So

$$X_I = X_1^{i_1 - i_2} (X_1 X_2)^{i_2 - i_3} \dots (X_1, \dots X_n)^{i_n}$$

consider

$$g = s_1^{i_1 - i_2} s_2^{i_2 - i_3} \dots s_{n-1}^{i_{n-1} - i_n} s_n^{i_n}$$

the leading monomial (i.e largest in lexicographical order) of g is X_I , and g is symmetric. So f-cg is symmetric of total degree $\leq d$, and its leading monomial term is smaller (lexicographical) than X_I . As the set of monomials of degree at most d is finite, this process terminates.

To prove (ii): induct on n. Suppose we have $G \in R[Y_1, \ldots, Y_n]$ with $G(s_{n,1}, \ldots, s_{n,n}) = 0$. We want to show G = 0. If n = 1, this is trivial $(s_{1,1} = X_1)$. If $G = Y_n^k H$, with $Y_n \nmid H$, then $s_{n,n}^k H(s_{n,1}, \ldots, s_{n,n}) = 0$. As $s_{n,n} = X_1 \ldots X_n$, $s_{n,n}$ is not a zero divisor in $R[X_1, \ldots, X_n]$ so $H(s_{n,1}, \ldots, s_{n,n}) = 0$.

So we may assume G is not divisible by Y_n . Replace X_n by 0. Then

$$s_{n,r}(X_1, \dots, X_{n-1}, 0) = \begin{cases} s_{n-1,r}(X_1, \dots, X_{n-1}) & \text{if } r < n \\ 0 & \text{if } r = n \end{cases}$$

and so $G(s_{n-1,1},...,s_{n-1,n-1},0) = 0$. So by induction, $G(Y_1,...,Y_{n-1},0) = 0$, i.e $Y_n \mid G$, a contradiction.

Example. $f = \sum_{i \neq j} X_i^2 X_j$ for $n \geq 3$. The leading term is $X_1^2 X_2 = X_1(X_1 X_2)$. Then compute

$$s_1 s_2 = \sum_i \sum_{j < k} X_i X_j X_k = \sum_{i \neq j} X_i^2 X_j + 3 \sum_{i < j < k} X_i X_j X_k$$

so $f = s_1 s_2 - 3s_3$.

Computing say $\sum X_i^5$ by hand is tedious. But there are alternative formulae.

Recall $p_k = \sum_{i=1}^n X_i^k$ for $k \ge 1$.

Theorem 2.2 (Newton's formulae). Let $n \ge 1$. Then for all $k \ge 1$

$$p_k - s_1 p_{k-1} + \ldots + (-1)^{k-1} s_{k-1} p_1 + (-1)^k k s_k = 0$$

by convention, $s_0 = 1$, and $s_r = 0$ if r > n.

Proof. We may assume $R = \mathbb{Z}$ (or \mathbb{R}). Generating function

$$F(T) = \prod_{i=1}^{n} (1 - X_i T) = \sum_{r=0}^{n} (-1)^r s_r T^r$$

Take logarithmic derivative with respect to T:

$$\frac{F'(T)}{F(T)} = \sum_{i=1}^{n} \frac{-X_i}{1 - X_i T} = -\frac{1}{T} \sum_{i=1}^{n} \sum_{r=1}^{\infty} X_i^r T^r = -\frac{1}{T} \sum_{r=1}^{\infty} p_r T^r$$

So

$$-TF'(T) = s_1T - 2s_2T^2 + \dots + (-1)^{n-1}ns_nT^n$$

$$= F(T) \sum_{r=1}^{\infty} p_r T^r = (s_0 - s_1 T + \dots + (-1)^n s_n T^n) (p_1 T + p_2 T^2 + \dots)$$

comparing coefficients of T^k gives the result.

Definition. The discriminant polynomial is

$$D(X_1, \dots, X_n) = \Delta(X_1, \dots, X_n)^2$$

where $\Delta = \prod_{i < j} (X_i - X_j)$. (Recall from IA Groups that applying $\sigma \in S_n$ to Δ multiplies Δ by $\mathrm{sgn}(\sigma)$, so D is symmetric.)

So $D(X_1,\ldots,X_n)=d(s_1,\ldots,s_n)$ for some polynomial d (\mathbb{Z} -coefficients). For example, when n=2, $D=(X_1-X_2)^2=s_1^2-4s_2.$

Definition. Let $f = T^n + \sum_{i=0}^{n-1} a_{n-i}T^i \in R[T]$. Its discriminant is $\operatorname{Disc}(f) = d(-a_1, a_2, -a_3, \dots, (-1)^n a_n) \in R$.

Observe that if $f = \prod_{i=1}^n (T - x_i)$, $x_i \in R$, then $a_r = (-1)^r s_r(x_1, \dots, x_n)$, so

Disc
$$(f) = \prod_{i < j} (x_i - x_j)^2 = D(x_1, \dots, x_n)$$

If moreover R=K is a field, then $\mathrm{Disc}(f)=0$ iff f has a repeated root (i.e $x_i=x_j$ for some $i\neq j$). E.g when n=2, $\mathrm{Disc}(T^2+bT+c)=b^2-4c$.