DESIGN DATA

1964 Design Data Cross-Index

Issue	Date	Page
Area and Weight of Lubing No Axial and Transverse Loads,	ov. 11	12
	iy 13	11
Bars, Parallel, System of Ma Bars, Torsion, Nomograms for	ar. 4	Š
Design of De	c. 9	15
Beam Load, Concentrated, Off-Center Ap Beams, Circular Cantilver, Loaded Normal to the Plane of	r. 29	188
Curvature Sep Beams, Circular Cantilever, with	ot. 16	136
Out-of-Plane Loading Au	g. 5	8
Bolt Loads, Determination of Jul		4-
	-	
Castings, Steel, Design of Jan Centrifugal Force Nomogram Jan Circle, Trig Function		62 67
Reference Apr	. 1	93
Circles into Squares, Fitting Oct Circular Cantilever Beams,	. 28	162
Loaded Normal to the Plane		
of Curvature Sep Circular Cantilever Beams with		136
Out-of-Plane Loading Aug Circular Cross-Sections. Fitting in	5. 5	84
Other Configurations Dec Compressible Fluids, Impluse	. 9	165
Forces Caused by Moving July	22	120
Compressible Gas Flow Rates Apr Compression Springs, Nested,		182
Design of Apr	. 1	88
Cone, Volume of a Frustum of a Aug	g. 19	86
Cross-Sections, Circular, Fitting in Other		
Configurations Dec	. 9	165
Deflection, Minimum, Design of Long Spindles for May	27	90
Deflection, Rotational, of Stepped Shafts Oct.	28	152
Design of Long Spindles for Minimum Deflection May	27	90
Design of Nested Compression		
Springs Apr		88
Design of Steel Castings Jan.		62
Designing Similar Machines June		150
Determination of Bolt Loads July Determining the Developed		44
Length of Pipes Nov	, 25	83
Flats Sept	. 2	46

ANOTHER UNIQUE MARGIN OF FORMSPRAG

The margin of difference is knowledge. Because we're specialists in power transmission clutches, over the years we have accumulated a lot of knowledge, a lot of know-how, a lot of information about clutches . . . how to design them, how to select them, test them and evaluate them, how to build them, how to apply them.

We have compiled from our unique margin of difference in knowledge, information of significance to design engineers, and organized it into an exclusive, new Design Portfolio. It's available upon request.

Our experience with different kinds of clutches—over-running, no-load start centrifugal, reverse locking—gives us other unique margins of difference. In the design of clutches, for example, Formsprag has produced exclusive new developments year after year: new seals, new sprag configurations, new clutch sizes and many others.

In building clutches too, we've pioneered unique margins of difference: new processes to improve

DIFFERENCE IN CLUTCHES

performance; new procedures to improve order handling; new equipment to expedite deliveries.

And in applying clutches, we've created other unique margins of difference: we have a full time application Engineering Department to help you solve power transmission problems involving clutches.

It all adds up to exclusive knowledge in clutches . . . knowledge we offer to you in our Design Portfolio. It's yours for the asking.

BE A CLUTCH EXPERT WITH THE EXCLUSIVE NEW FORMSPRAG

It contains these five valuable aids to help you understand the types, selection and application of clutches:

1 Types of Clutches — Five descriptive sheets that explain the difference in over-running, indexing, back-stopping, no load start centrifugal and reverse locking clutches;

2 Clutch Catalogs—Three complete Formsprag clutch catalogs including size, rating, performance and dimensional data for all models, plus service factors, bore sizes and auxiliary equipment:

3 Application Folio—Eighteen typical power transmission problems and application solutions achieved with Formsprag clutches, to show the variety and scope available;

[4] Application Service—An invitation to use the Formsprag Application Engineering Department to help you solve a specific problem, and a return card for prompt action; and;

5 Designer's Templet—A plastic tool to simplify sketching.

To obtain your Formsprag Design Portfolio promptly, write us a letter, or send the coupon below. There's no obligation.

TRANSMISSION PRODUCTS
23585 Hoover Road, Dept. 112, Warren, Michigan

3585 Hoover Road, Dept. 112, Warren, Michigan Sales in Foreign Countries by Renold Chains, Utd., England

Gentlemen: Please send me the exclusive new Formsprag DESIGN PORTFOLIO.

Name	
Title	
Company	
Address	

State_

Circle Service No. 43

Issue	Date	Page
Double Reduction Drive		
Ratios	Apr. 15	58
Esides Industrial N		
Finishes, Industrial, Nomogram for	Nov. 11	116
Fitting Circles into Squares	Oct. 28	162
Fitting Circular Cross-Sections in Other Configurations	Doc 0	105
Flats, Dimensions of Shafts		165
with		46
Flow Rates, Compressible Gas Fluids, Compressible, Impulse	Apr. 29	182
Forces Caused by Moving Force, Centrifugal,	July 22	120
Nomogram	Jan. 8	67
Forces, Impulse, Caused by	3	
Moving Compressible Fluids	July 25	120
Four-Bar Linkage, Adjustable		
Graphical Synthesis of an Frequencies, Natural, of a Three-	Mar. 18	145
Mass System		104
Gas, Compressible, Flow		
Rates	. Apr. 29	182
Gas Flow System, Static Pressures in a	Aug. 19	87
Gearing, Power Capacity of	June 10	66
The Geometry of a Pipe Bend	Oct 98	156
Graphical Synthesis of an	. Oct. 20	1.00
Adjustable Four-Bar Linkage	Mar. 18	145
Linkage		140
Hydraulic Radii, Nomograms		
for	June 24	146
Impulse Forces Caused by		
Moving Compressible Fluids	Inly 99	120
Industrial Finishes, Nomogram	July 22	120
for		116 146
Inertia, Weight Moment of Joint, Tubular, Thermal	reo. 19	140
Stresses in a	. July 22	124
Laminated Structures,		
Riveted	Mar. 18	140
Law, Newton's Second	Feb. 6	78
Linkage, Four-Bar Adjustable, Graphical Synthesis of an	Mar 18	145
Graphical Synthesis of all	wiai. 10	110

(mitinued no mert page

The radiation-resistance of ROCKBESTOS wires and cables is far out: up to 10¹² Roentgens

Even in the heart of the Van Allen Belt where ionization ranges from 109 to 1011 Roentgens, a Rockbestos construction defies radiation. On earth this high degree of resistance will prove useful in industrial and nuclear application.

Six types are rated for 10^{12} Roentgens: Micatemp, 3 Quartz Braid, Firezone III, Phosroc II, and Phosroc III shielded and jacketed. Other Rockbestos constructions range in radiation resistance from 10^5 Roentgens to 10^{13} Roentgens.

In high temperature service from 800 F. to 2000 F., each is also meeting rigid electrical requirements in aircraft and missiles. Send for a bulletin describing Rockbestos wires and cables for heat and radiation resistance.

ROCKBESTOS WIRE & CABLE CO.

Division of CERRO CORPORATION • New Haven 4, Connecticut
Circle Service No. 44

Data Index . . . cont

Issue	Date	G.	Page
Loading, Out-of-Plane,			
Circular Cantilever Beams			
with	Aug.	5	84
Loads, Simultaneous Axial and Transverse	May	19	119
and Transverse	May	1.3	112
Machines, Similar,			
Designing			150
Moment of Inertia,			
Weight	. Feb.	19	146
Natural Frequencies of a Three-Mass System			
Nested Compression	. Sept.	30	104
Springs, Design of	. Apr.	1	88
Newton's Second Law	. Feb.	5	78
Nomogram for Industrial	V	1.1	
Finishes Nomograms for Design of	\01.	11	110
Torsion Bars	. Dec.	9	158
Nomograms for Hydraulic Radii	. June	24	146
Number, Reynolds	. Nov.	11	121
Off-Cenier Concentrated Beam Load			188 102
Parallel Bars, System of	. Mar.	4	56
Pipe Bend, the Geometry of a	. Oct.		156
Pipes, Determing the Developed Length of	. Nov.	25	83
and Deflection	. Nov.	25	80
by Ribs			92
Power Capacity of Gearing : Pressure Vessel, Spherical,			55
Thickness	. Jan.	22	129
Pressures, Static, in a Gas Flow System	. Aug.	19	86
Radial Stress and Deflection of			
Flat Plates	Nov.	25	80
Radii, Hydraulic, Nomograms for	. June	24	146
Rapid Solution of Triangles	. Oct.	14	84
Reduction Drive Ratios, Double Response of a Two Mass	. Apr.	15	58
System			125
Reynolds Number	. Nov.	11	121
Ribs, Shells and Plates Reinforced by	. May	27	92

Circle Service No. 45

advanced design Lexington pneumatic regulator delivers 99.99% accuracy

A completely redesigned Lexington pneumatic servo regulator places a new dimension of accuracy in the pressure flow control of gases.

By "designing out" all parts contributing to regulator inaccuracy, the reliability of the Type 10 air gauge has been advanced to within a performance accuracy of 99.99%.

A unique "servo feed back feature" is the heart of the system which maintains a constant pressure balance. The actual value of regulated pressure — the pressure acting on the measuring diaphragm — is also the pneumatic servo supply pressure. It is impossible for the regulated pressure to vary from the supply pressure beyond extremely narrow limits.

Over 100,000 units are in successful operation.

Write for descriptive literature.

Lexington Controls INCORPORATED®

51 Blanchard Road, Burlington, Mass. BRowning 2-2100 Mission 3-9000 Teletype 617-272-0527

Circle Service No. 46

Issue	Dat	e	Page
Riveted Laminated Structures Rotational Deflection of	Mar.	18	140
Stepped Shafts	Oct.	28	152
Shafts, Dimensions of,			
with Flats	Sept.	2	46
Shafts, Stepped, Rotational Deflection of	Oct.	28	152
Shells and Plates Reinforced by Ribs	May	27	92
Simultaneous Axial and Transverse Loads	May	13	119
Specifications for Music Spring Wire	Ian.	99	124
Spherical Pressure Vessel	Jan		1-1
Thickness	Jan.	22	129
Spindles, Long, Design of, for Minimum Deflection	May	27	90

. Jan. 22

Spring Wire, Music, Specifications for .

Springs, Nested Compression,

Design of Apr. Squares, Fitting Circles into Oct.		
	28	162
Static Pressures in a Gas Flow		
System Aug.	19	87
Steel Castings, Design of Jan.	8	62
Stress and Deflection, Radial, of		
Flat Plates Nov.	25	80
Stresses, Temperature, Caused by		
External Constraint Jan.	8	68
Stresses, Thermal, in a Tubular		
Joint July	22	124
System of Parallel Bars Mar.	4	56
Temperature Stresses Caused by		
External Constraint Jan.	8	68
	22	124
Three-Mass System, Natural		
Frequencies of a Sept.	30	104
Torsion Bars, Nomograms for		
Design of Dec.	9	158
Torsional Vibration , May	13	116
Transverse Loads, Simultaneous		
	13	119
	14	84
Trig Function Reference		
Circle Apr.	1	93
	11	123
Tubular Joint, Thermal Stresses		
	22	124
	22	125

Vessel, Spherical Pressure, Thickness Jan.	22	129
Vibration, Torsional May	13	116
Volume of a Frustum of a Cone Aug.	19	86

Weight Moment of Inertia	 Feb.	19	146
Wire, Music Spring,			
specifications for	 Ian.	22	124

Maxitorq

SERIES 9000

ELECTRIC CLUTCHES AND BRAKES

This is another typical example of a major machine tool builder who has specified MAXITORQ Series 9000 Electric Clutches and Brakes for reliable power transmission on a fully automated precision machine.

Incorporating advanced design principles proved through years of service, the MAXITORQ Electric Clutch is well adapted to all types of machine drives. Simple in design . . . built to machine tool standards . . . requires no adjustments, can be used either as a clutch or brake. Disc separators not only separate discs, but also break up residual magnetism and result in extremely fast, positive action with no drag or heating in neutral. There are few moving parts. Electrical operating unit remains stationary — hence, no troublesome slip rings, brushes, or difficult wiring problems. Operation is on standard 100 V d.c. Other voltages on special order.

If you have a clutch or brake application where you are looking for NEW and IMPROVED performance, we invite you to bring the problem to us. Phone, wire, or write Dept. **DN** for Bulletin No. 90.

Special features

Engaged entirely by magnetic flux * Operate either on-off or by varying voltage for torque control * NO troublesome slip rings, or brushes * NO levers, cams, or other highly stressed mechanical parts * Operation is not dependent upon rotation * Finished complete, assembled, and ready to install on shaft.

