CSX415Data Science Principals and Practice

Christopher Brown
U.C. Berkeley / Decision Patterns LLC
Spring 2018

What is Machine Learning?

Today's Question: What three things do all Machine Learning Algorithms have in common?

What is machine learning?

A formal *process* for building a *model*

Other names for ML:

Machine Learning
Artificial Intelligence
Statistical Learning
Pattern Recognition
Data Mining
Predictive Analytics
Knowledge Discovery
Predictive Modeling
Model Induction

. . .

What is a model?

a function (f)

... that estimates a **response** (\widehat{y})

... associated with (a set of) known predictors(x)

What is a function?

$$\widehat{y} = f(x_1, x_2, \dots, x_n)$$

$$\widehat{y} = f(\overrightarrow{x})$$

"maps"

Independent variables, covariates predictors, attribute, descriptor, **feature**

Prediction, Forecast, Estimate,

• • •

• • •

How do we find f?

Model Training: Finding f

How do we use *f*?

There are **two major** ways to distinguish ML problems ... both are determined by y

i.e. by what we are trying to *learn*

1. Based on availability of y

Are there previous/historical observations to learn from?

Yes -> SUPERVISED LEARNING

No

UNSUPERVISED LEARNING

Not Necessarily Binary ... There are *special (edge?)* cases

SPECIAL CASE 1

Only some y's are known - and/or -

V's are not directly known inferable

SEMI-SUPERVISED Learning

SPECIAL CASE 2

y 's change during training/scoring -and/or-

ADAPTIVE REINFORCEMENT Learning

y 's become available during training/scoring

* Less commonly, more frequently "adversary learning"

2. Based on the type of y

What values can y assume?

Continuous -> Regression

(predict an count or amount)

Categorical* → Classification

(predict a class or category)

^{*}Binary classification is an important special case

Not Necessarily Binary ... There are *special (edge?)* cases

SPECIAL CASE 1

ORDINAL RESPONSE

Use Either Regression or Classification

SPECIAL CASE 2

Date

Use Either Regression or Classification -or-

Special
Techniques

(forecast | survival)

y Known

Dependent variable,
Target (variable),
Outcome, Response,
Class (classification)

Data Uses

Dependent variable, Target (variable), Outcome, Response, Class (classification) Independent variables, covariates predictors, attribute, descriptor, **feature**

...

Unit of observation, Cases, Instance, Data Point, Sample

Υ		X_1	X ₁		X_2		X ₃		X _n	
	data,	data,	data,	data,	data,	data,	data,	data		
	data,	data,	data,	data,	data,	data,	data,	data		
	data,	data,	data,	data,	data,	data,	data,	data		
	data,	data,	data,	data,	data,	data,	data,	data		
	data,	data,	data,	data,	data,	data,	data,	data		
	data,	data,	data,	data,	data,	data,	data,	data		
	data,	data,	data,	data,	data,	data,	data,	data		
	data,	data,	data,	data,	data,	data,	data,	data		
	data,	data,	data,	data,	data,	data,	data,	data		

A major limitation of ML is:

(nearly) every ML algorithm expects data in a tabular form.

Now what about ... f?

How do we find f?

Well what properties should f have?

Desirable Properties of *f*?

- Takes a one or more inputs
- Yields a single output value for each input
- Should be easy* to evaluate
- •Outputs, \hat{y} , should be "close to" observed values, y:

$$\widehat{y} \sim y$$

^{*} Computational cheap/efficient

What do we mean by "Close to"?

qualitative measure of "close to"?

$$f(\widehat{y}, y)$$

$$\mathcal{L}(\widehat{y},y)$$

How do we calculate $\mathcal{L}(\widehat{y}, y)$?

Depends on whether we are doing regression or classification

• • •

qualitative measure of "close to"?

Depends on whether we are doing regression or classification

Regression

$$\mathcal{L}(\widehat{y},y)=y-\widehat{y}$$

$$(\mathbf{y} - \widehat{\mathbf{y}}) = 0$$

That's just one observation

We need to evaluate

$$\mathcal{L}(\widehat{y}, y) = y - \widehat{y}$$
 for all pairs

And arrive at a single value, we need:

$$L(\mathcal{L}(\widehat{y},y)) = (L o \mathcal{L})(\widehat{y},y)$$

Our Model

"Naïve" model

$$\hat{y} = mean(y)$$

Linear functions (of one variable)

$$\hat{y} = b + mx$$

$$\hat{y} = \beta_0 + \beta_1 x_1$$

Classification

$$\mathcal{L}(\widehat{y}, y) = \begin{cases} \mathbf{0} \mid y = \widehat{y} \\ \mathbf{1} \mid y \neq \widehat{y} \end{cases}$$

$$L(\mathcal{L}(\widehat{y},y)) = (L o \mathcal{L})(\widehat{y},y)$$

What functions *f* can be used?

Search / Optimization

Find the **parameters** (β) that minimize that minimize the loss function ...

SOLVE:

$$\hat{y} = \beta_0 + \beta_1 x_1$$
 argmin_{\beta} $L(\mathbf{y}, \hat{\mathbf{y}})$

$$argmin_{\beta} \sum (y - \hat{y})^2 (SSE)$$

Solution Methods

- Direct Solution (special case)
- Numerical optimization; recursive goal seeking

3 Requirement for ML Algorithm

- A method for evaluating how well the algorithm performs (ERRORS)
- A restricted class of functions (MODEL)
- A process for proceeding through the restricted class of functions to identify the functions (SEARCH/OPTIMIZATION)

How to understand Algorithms

1. Errors

2. Model

3. Search Optimization

* Strengths / Limitations

Frame problems to make the suitable for solution via machine learning

Distinguish fundamental aspects of machine learning algorithms → **know** what algorithms are appropriate for which problems

Measures/evaluate model performance

Know how to **improve** a model **and** determine when the model is good enough

is more than building/training models:

Deploying machine learning models to operations

Generating high quality, graphical and textual results regarding model behavior

Collaborating in a group using tools for collaborative/social programming