Integral Equations Notes: [457]

[Drew Remmenga]

June 9, 2024

Definition 1. An integral equation is any equyation in which the unknown function is inside the integral sign.

Example 1. $\int_a^b k(x,y)u(y)dy = f(x), x \in (a,b)$ Here k and f are given and u(x) is the unknown function.

Example 2. $\int_0^\infty e^{-xt}u(t)dt = f(x), x \in (0,\infty)$ f(x) is the laplace transform of u.

Remark 1. There is an inversion formula giving u from f but it involves an integhral of f(x) over complex values of x. In practice we may only know f(x) for real values of x.

Example 3. $\int_{-1}^{1} u(t)dt = 1$ One solution $u(t) = \frac{1}{2}, t \in (-1,1)$ Clearly there are lots of solutions, e.g. $u(t) = \frac{1}{2} + any$ odd function of t or $u(t) = \frac{1}{2} + \sum_{n=1}^{\infty} \{a_n cos(nt\pi) + b_n sin(nt\pi)\}$ For any reasonable a_n and b_n .