Sintassi - Variabili 1 vo, vo, ... } arieta - linguaggio = insieme du simboli 2R,..., f,..., c,...? -> formiamo : termini : costanti, vaniabili, f (t,, tz, ..., tn) ad esempio: • (x_1y_1)) some some aggett; • $f(x_1y_1)$) non some net vert net folsi \rightarrow formule atomiche: $(t_1 = t_2)$, ha senso clieders; se er $R(t_1, ..., t_n)$ has senso clieders; se er - Se P e una formula, allora (7 P) lo e. - Se P e 4 sono formule, allera (914) lo e-- Se P e formula e x vaniabile, allara ones al (9x4) 9 (9xE)Se ha qualcasa della forma: $\exists x (....x...)$ Vincolata vincolata invece se: $\exists x (..., y...)$ vincoloto (libero

<u>Esempio</u>

((Yz(P(z,z))) x = x, y vincolata

z vincolata

z libera

Esercizio 4 Determinare le occorrenze libere e vincolate neue seguenti formule:

$$\exists x P(x) \longrightarrow \forall z (f(z) = x \cup 7R(x,z))$$

tutte vincolate => ENUNCIATO

Semontice

- Struttura:
$$A = \{A, R^6, f^4, c^6\}$$

universo
insiena non

Se R e un simbolo di relazione con arieto 2 apporo $R^A \subseteq A \times A$

Se f et un simbolo di funcione con orieta 3 accora $f^{4}: A^{3} \longrightarrow A$

Se c e un simbolo di costante : c « EA

Esemplo
$$A = (IN, <, +, 0)$$

$$R^{A} = (X, y) \in IN^{2} \mid x \in y$$

$$f^{A}(x, y) = x + y$$

$$c^{A} = 0 \in IN$$

Sie L un linguaggio, sie A une l-strutture, si puo definire $A \models \emptyset [x_1/a_1 \dots x_n/n]$

 $A \models Q [x_1/\alpha_1, ..., x_n/n]$ Soddisfo $a_1 \text{ in } x_1 \text{ (etc.)}$

Se t e un termina, t [x,/a,, ..., xn In] E A

Esempio

x e' una variabile vincolata quindi non posso assegnargli un valore

G JxeA : xc3

$$ES$$
. $L = \{R\}$ $\delta = (N, <)$

[[ε\γ , ε\×] ((γ, κ)) x Ε = A

Vero \iff $\exists x \in \mathbb{N}$ 1.c. x < 3 81

Esercisio 2 $L = \{P, f, g, c\}$

P: simbolo di relezione boneria

f, g: simboli di fonvona bonaria

C: Simbolo di costoure

Sie A = (Q, <, +, ·, 1)

Sio φ be formula P(g(x,x), f(y,c))Sio φ be formula (f(x,x) = g(y,c))

Determinane 2e A = 4[x/2, y/1]

" A = 4 [x/2, y/1]

 $\varphi: \chi^2 < \gamma + \lambda \iff 4 < 2$ NO

 Ψ 2x = 41 \iff 4 = 1 No

Esercizio 7 L= YP, f, c 9

 $\varphi: \forall x \forall y \left(\varphi(c_1 y) \wedge f(x_1 x) = y \longrightarrow P(x_1 y) \right)$

 $(\mathbb{Z}, \langle, +, -1\rangle) \models \varphi$

 $Q: A \times D \longrightarrow X < A$

Vera (=> $\forall x \in \mathbb{Z}$, $\forall y \in \mathbb{Z}$ se -1(y e $2x = y \implies x \in Y$ FALSA

Eservicio 6 L= {f, c}

Trovare un enunciaro o tole du

 $(M, +, 0) \models \varphi \quad e \quad (M, \cdot, A) \not\models \varphi$

 $(x = (Y, X)^{\frac{1}{2}}) \cap (Y \in X)^{\frac{1}{2}}$

YXEIN JYEN F.C. X+Y +X Vero UXEIN JYEN t.c. XY #X folso per X=0