Discrete-event models part 5: Reachability Graphs

Dr. Bystrov

School of Engineering Newcastle University

Reachability Graphs (PN traversal)

- Concurrency "diamonds" in RGs interleaving **semantics** (one t_i fires at a time)
- The diamonds are semi-modular, distributive lattices read Foundations of Maths→Set Theory→Lattice Theory

event modelspart 5: Reachability Grap

Reachability Graphs and hazards

Reachability Graph

"Green" states are the instances of previously encountered states

- The diamond net is "split"
 - Non-semimodular, distributive lattice
- Non-determinism/persistence, unfairness properties

Properties – discussion

- Reachability of some particular marking/state
- Safety (at most one token in a place)
- Deadlock freedom
- Liveness (any marking can be reached from the given reachable marking)
- Persistence (choice, arbitration)
 - (non-)determinism, (un-)fairness
- Early evaluation and others, which are not covered here ...

Summary

- Reactivity in models (open/closed models)
- FSM models (read the book by Rob Williams)
- Concurrency modelling
 - Petri nets
 - Reachability graphs
 - verification
- We need more examples and exercise...