

Lecture #14

Logic Circuits

Lecture #14: Logic Circuits

- 1. Logic Gates
 - 1.1 Inverter/AND/OR Gates
 - 1.2 NAND/NOR Gates
 - 1.3 XOR/XNOR Gates
- 2. Logic Circuits
 - 2.1 Drawing and Analysing Logic Circuits
- 3. Universal Gates
 - 3.1 NAND Gate
 - 3.2 NOR Gate
 - 3.3 SOP and NAND Circuits
 - 3.4 POS and NOR Circuits
- 4. Integrated Circuit (IC) Chip
- 5. Programmable Logic Array
- 6. Read Only Memory (ROM)

1. Logic Gates

EXCLUSIVE OR

Gate symbols Symbol set 2 Symbol set 1 (ANSI/IEEE Standard 91-1984) a⋅b a⋅b **AND** ≥1 a+b OR a+b NOT & _ (a⋅b)' **NAND** (a⋅b)' ≥1 (a+b)' (a+b)' NOR

a ⊕ b

=1

- a ⊕ b

1.1 Inverter/AND/OR Gates

Inverter (NOT gate)

Α	A'	
0	1	
1	0	

AND gate

Α	В	A · B	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

OR gate

Α	В	A + B
0	0	0
0	1	1
1	0	1
1	1	1

1.2 NAND/NOR Gates

NAND gate

NOR gate

1.3 XOR/XNOR Gates

XOR gate

Α	В	$A \oplus B$
0	0	
0	1	
1	0	
1	1	

XNOR gate

XNOR can be represented by \odot (Example: A \odot B)

Α	В	(A ⊕ B)'
0	0	
0	1	
1	0	
1	1	

2. Logic Circuits (1/2)

- Fan-in: the number of inputs of a gate.
- Gates may have fan-in more than 2.
 - Example: a 3-input AND gate

Every input must be connected in a working circuit!

- Given a Boolean expression, we may implement it as a logic circuit.
- Example: $F1 = x \cdot y \cdot z'$ (note the use of a 3-input AND gate)

2. Logic Circuits (2/2)

■ Example: F2 = x + y'·z

If complemented literals are available

If complemented literals are <u>not</u> available

• Example: $F3 = x \cdot y' + x' \cdot z$

2.1 Analysing Logic Circuits

- Given a logic circuit, we can analyse it to obtain the logic expression.
- Example: Given the logic circuit below, what is the Boolean expression of F4?

$$F4 = ?$$

 DLD page79 Quick Review Questions Questions 4-1 to 4-4.

3. Universal Gates

- AND/OR/NOT gates are sufficient for building any Boolean function.
- We call the set {AND, OR, NOT} a complete set of logic.
- However, other gates are also used:
 - Usefulness (eg: XOR gate for parity bit generation)
 - Economical
 - Self-sufficient (eg: NAND/NOR gates)

3.1 Universal Gates: NAND Gate

- {NAND} is a complete set of logic.
- Proof: Implement NOT/AND/OR using only NAND gates.

$$(x \cdot x)' = x'$$
 (idempotency)

$$((x \cdot y)' \cdot (x \cdot y)')' = ((x \cdot y)')'$$
 (idempotency)
= $x \cdot y$ (involution)


```
((x \cdot x)' \cdot (y \cdot y)')' = (x' \cdot y')' (idempotency)
= (x')' + (y')' (DeMorgan)
= x + y (involution)
```

3.2 Universal Gates: NOR Gate

- {NOR} is a complete set of logic.
- Proof: Implement NOT/AND/OR using only NOR gates.

$$(x+x)' = x'$$
 (idempotency)

$$((x+x)'+(y+y)')' = (x'+y')'$$
 (idempotency)
= $(x')'\cdot(y')'$ (DeMorgan)
= $x\cdot y$ (involution)

$$((x+y)'+(x+y)')' = ((x+y)')'$$
 (idempotency)
= x+y (involution)

 DLD page79 Quick Review Questions Questions 4-6 to 4-8.

3.3 SOP and NAND Circuits (1/2)

- An SOP expression can be easily implemented using
 - 2-level AND-OR circuit
 - 2-level NAND circuit
- Example: F = A·B + C'·D + E
 - Using 2-level AND-OR circuit

3.3 SOP and NAND Circuits (2/2)

- Example: F = A·B + C'·D + E
 - Using 2-level NAND circuit

3.4 POS and NOR Circuits (1/2)

- A POS expression can be easily implemented using
 - 2-level OR-AND circuit
 - 2-level NOR circuit
- Example: G = (A+B) · (C'+D) · E
 - Using 2-level OR-AND circuit

3.4 POS and NOR Circuits (2/2)

- Example: G = (A+B) · (C'+D) · E
 - Using 2-level NOR circuit

Reading

- Propagation Delay
 - Read up DLD section 4.5, pg 75 77.
- Integrated Circuit Logic Families
 - Read up DLD section 4.6, pg 77 78.

4. Integrated Circuit (IC) Chip

Example of a 74LS00 chip: Quad NAND gates.

5. Programming Logic Array (PLA) (1/3)

 A programmable integrated circuit – implements sumof-products circuits (allow multiple outputs).

2 stages

- AND gates = product terms
- OR gates = outputs
- Connections between inputs and the planes can be 'burned'.

5. PLA Example (2/3)

Inputs		Outputs			
A	В	С	D	E	F
0	0	0	0	0	0
0	0	1	1	0	0
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	1	1	0
1	1	0	1	1	0
1	1	1	1	0	1

5. PLA Example (3/3)

Simplified representation of previous PLA.

6. Read Only Memory (ROM)

- Similar to PLA
 - Set of inputs (called addresses)
 - Set of outputs
 - Programmable mapping between inputs and outputs
- Fully decoded: able to implement any mapping.
- In contrast, PLAs may not be able to implement a given mapping due to not having enough minterms.

Lab Assignments (1/2)

 For the next few labs, you will implement simple circuits using the Logic Trainer

Lab Assignments (2/2)

- Lab sheets will be given out in lectures.
- Remember to read the Logic Lab Guidelines <u>before</u> you come for your first lab session.
- Please read the lab sheet and fill up as much as you can before the lab, or you may not have enough time to complete your lab experiment.
- Aim to finish your experiment as quickly as possible. Vacate the room 10 minutes before the hour. If not, just submit your lab report.

End of File