Algorítmica

Tema 2. Algoritmos «divide y vencerás»

Francisco Javier Cabrerizo Lorite

Curso académico 2023-2024

ETS de Ingenierías Informática y de Telecomunicación. Universidad de Granada

Índice

- 1. La técnica «divide y vencerás»
- 2. El problema del umbral
- 3. Análisis de algoritmos «divide y vencerás»
- 4. Búsqueda binaria
- 5. Ordenación rápida
- 6. Problema de selección
- 7. Multiplicación de enteros grandes
- 8. Multiplicación de matrices
- 9. La línea del horizonte

Objetivos

- Ser capaz de proponer diferentes soluciones para un determinado problema y evaluar la calidad de estas.
- Ser consciente de la importancia del análisis de la eficiencia de un algoritmo como paso previo a su implementación.
- Entender la técnica de resolución de un problema por división en problemas de menor tamaño.
- Conocer y saber aplicar los esquemas básicos de la técnica divide y vencerás.
- Conocer los criterios de aplicación de cada una de las diferentes técnicas de diseño de algoritmos.

Características de los problemas

- La instancia del problema se puede descomponer en subinstancias más pequeñas del mismo problema.
- Las subinstancias se pueden resolver independientemente unas de otras (casi siempre).
- Las subinstancias son disjuntas, sin solapamiento.
- La solución de la instancia original se obtienen mediante una combinación de las subsoluciones.

Pasos

- Descomponer (dividir) la instancia del problema de tamaño n en k subinstancias ($1 \le k \le n$) del mismo tipo y menor tamaño (cada una con una entrada de tamaño n_k , donde $0 < n_k < n$).
- Resolver (vencer) sucesiva e independientemente las subinstancias, bien directamente si son elementales (casos «base») o bien de forma recursiva.
- Combinar las subsoluciones obtenidas para construir la solución de la instancia original.

- Si las subinstancias son todavía relativamente grandes se aplicará de nuevo esta técnica hasta alcanzar subinstancias lo suficientemente pequeñas para ser resueltas directamente.
- Esto sugiere el uso de la recursividad en las implementaciones de estos algoritmos (soluciones eficientes).
- Las ecuaciones recurrentes son naturales en esta técnica.

```
Esquema general
  function DyV(P, n)
      if P es suficientemente pequeño then
          Solution \leftarrow adhoc(P, n)
      else
          Dividir P en k subinstancias más pequeñas S_1, S_2, \ldots, S_k con
  tamaños n_1, n_2, \ldots, n_k.
          for all i = 1, ..., k do
              Subsolucion_i \leftarrow DyV(S_i, n_i)
          end for
          Solution \leftarrow Combinar(Subsolution_1, \dots, Subsolution_k)
      end if
      return Solucion
  end function
```

Algunas consideraciones

- El número de subinstancias, k, suele ser pequeño e independiente de la instancia concreta que se vaya a resolver.
- Si k = 1, hablamos de reducción o simplificación.
- adhoc(P, n) es un algoritmo básico capaz de resolver el problema:
 - Debe ser eficiente en instancias pequeñas.
 - Su rendimiento en instancias grandes nos da igual.

Ejemplo: elevar un número real a un entero

- Sean r y n un número real y un número entero, respectivamente.
- Se requiere un algoritmo que realice la operación r^n .
- Existe un método básico que resuelve el problema (basta con multiplicar r un total de n veces:

```
r^n = r \cdot r \cdot r \quad (n \text{ veces})
```

Algoritmo

```
double Elevar_basico(double r, int n) {
  double resultado = 1.0;
  for (int i = 0; i < n; i++) {
    resultado *= r;
  }
  return resultado;
}</pre>
```

Ejemplo: elevar un número real a un entero

- ¿Se puede dividir el problema?
 - Sí: $r^n = r \cdot r^{n-1}$
 - Esta división no es muy interesante.
- ¿Alguna otra división?
 - $r^n = r^{n/2} \cdot r^{n/2}$
 - Esta división es más eficiente.
- Expresión:

$$r^{n} = \begin{cases} r^{n/2} \cdot r^{n/2} & n \text{ par} \\ r \cdot r^{n/2} \cdot r^{n/2} & n \text{ impar} \end{cases}$$

Ejemplo: elevar un número real a un entero

Expresión:

$$r^{n} = \begin{cases} r^{n/2} \cdot r^{n/2} & n \text{ par} \\ r \cdot r^{n/2} \cdot r^{n/2} & n \text{ impar} \end{cases}$$

- «Divide y vencerás»: la instancia del problema se tiene que poder dividir en una o más subinstancias equivalentes de menor tamaño, independientes entre sí, que se puedan resolver por separado:
 - Se puede dividir en dos subinstancias de menor tamaño (n/2), independientes y que se pueden resolver por separado (sacando partido de las propiedades de las potencias).

Ejemplo: elevar un número real a un entero

• Expresión:

$$r^{n} = \begin{cases} r^{n/2} \cdot r^{n/2} & n \text{ par} \\ r \cdot r^{n/2} \cdot r^{n/2} & n \text{ impar} \end{cases}$$

- «Divide y vencerás»: las soluciones de las subinstancias de menor tamaño se deben poder combinar entre sí para obtener la solución de la instancia inicial:
 - La combinación es la multiplicación de la subsolución de calcular $r^{n/2}$ por la subsolución de calcular $r^{n/2}$.

Ejemplo: elevar un número real a un entero

Expresión:

$$r^{n} = \begin{cases} r^{n/2} \cdot r^{n/2} & n \text{ par} \\ r \cdot r^{n/2} \cdot r^{n/2} & n \text{ impar} \end{cases}$$

- «Divide y vencerás»: debe existir un método básico que resuelva el problema o un caso base indivisible donde el problema esté resuelto:
 - Existe el método básico mostrado anteriormente y los casos base $r^0 = 1$ y $r^1 = r$:

$$r^{n} = \begin{cases} 1 & n = 0 \\ r & n = 1 \\ r^{n/2} \cdot r^{n/2} & n > 1 \text{ y } n \text{ par} \\ r \cdot r^{n/2} \cdot r^{n/2} & n > 1 \text{ y } n \text{ impar} \end{cases}$$

Ejemplo: elevar un número real a un entero

- Diseño del algoritmo:
 - Caso base: Si $n \le 1 \Rightarrow r^n$.
 - División: la instancia original del problema rⁿ se divide en subinstancias de tamaño n/2 (en realidad, en una).
 - Combinación: sea S₁ la subsolución de la subinstancia, la solución S de la instancia original se calcula como:

$$S = \begin{cases} S_1 \cdot S_1 & n \text{ es par} \\ r \cdot S_1 \cdot S_1 & n \text{ es impar} \end{cases}$$

```
Ejemplo: elevar un número real a un entero
  function DyV(r, n)
      if n = 0 then
           Solucion \leftarrow 1
      else if n = 1 then
           Solution \leftarrow r
      else
           parcial \leftarrow DyV(r, floor(n/2))
           if n es par then
               Solution \leftarrow parcial \cdot parcial
           else
               Solucion \leftarrow r \cdot parcial \cdot parcial
           end if
      end if
      return Solucion
  end function
```

Ejemplo: elevar un número real a un entero

```
double Elevar_DyV(double r, int n) {
    if (n == 0)
    return 1;
3
   else if (n == 1)
     return r;
5
   else {
      double subsolucion = Elevar_DyV(r, n/2);
7
    if (n % 2 == 0)
8
        return subsolucion * subsolucion;
   else
10
        return r * subsolucion * subsolucion;
11
  }
12
13 }
```

Ecuación de recurrencias T(n) = T(n/2) + 1Eficiencia del algoritmo $O(\log_2(n))$

Cuestiones clave de la técnica «divide y vencerás»

- ¿Cómo descomponer la instancia del problema en subinstancias?
- ¿Cómo resolver las subinstancias?
- ¿Cómo combinar las soluciones?
- ¿Merece la pena hacer esto?

 Supongamos una instancia de un problema P, de tamaño n, que sabemos puede resolverse con un algoritmo (básico) A:

$$T_A(n) \leq c \cdot n^2$$

- Dividimos P en 3 subinstancias de tamaños n/2, siendo cada una de ellas del mismo tipo que P, y consumiendo un tiempo lineal la combinación de sus soluciones: T_{com}(n) ≤ d · n.
- Tenemos un nuevo algoritmo B, «divide y vencerás», que consumirá un tiempo:

$$T_B(n) = 3T_A(n/2) + T_{com}(n) \le 3T_A(n/2) + d \cdot n \le \frac{3}{4} \cdot c \cdot n^2 + d \cdot n$$

 B tiene un tiempo de ejecución mejor que el algoritmo A, ya que disminuye la constante oculta.

 Pero si cada subproblema se resuelve de nuevo con «divide y vencerás», podemos hacer un tercer algoritmo C, recursivo, que tendría un tiempo:

$$T_{C}(n) = \begin{cases} T_{A}(n) & n \leq n_{0} \\ 3T_{C}(n/2) + T_{com}(n) & n > n_{0} \end{cases}$$

• C es mejor en eficiencia que los algoritmos A y B:

$$T_C(n) \leq b \cdot n^{1.58}$$

 Al valor n₀ se le denomina umbral y es fundamental para que funcione bien la técnica.

Tamaño del caso muy pequeño

- Muchas llamadas recursivas.
- Muy costoso de tantas llamadas.

Alternativa

- ¿Se posee un método menos costoso?
- Ejecutarlo cuando *P es suficientemente pequeño*.
- ¿Cuándo es *suficientemente pequeño*? Comparando los tiempos de ejecución del algoritmo «divide y vencerás» diseñado y el algoritmo básico.

$$\mathsf{Mejor} = \begin{cases} \mathsf{O}(n^2) & n \le 6\\ \mathsf{O}(n) & 6 < n \le 8\\ \mathsf{O}(\log_2(n)) & n > 8 \end{cases}$$

Mergesort y algoritmo base inserción

- El algoritmo base para el problema de ordenación será el algoritmo de ordenación por inserción $(O(n^2))$.
- Para determinar cuando el tamaño es suficientemente pequeño como para dejar de aplicar «divide y vencerás» calculamos empíricamente el tiempo de ejecución de los dos algoritmos:
 - Se mide el tiempo de ejecución de ambos algoritmos para distintos tamaños del problema.
 - Se calcula la constante oculta: $T_{\text{inserción}}(n) \leq c_1 \cdot n^2$
 - Se calcula la constante oculta: $T_{\text{mergesort}}(n) \leq c_2 \cdot n \cdot \log_2(n)$
 - Se calcula n de la igualdad: $c_1 \cdot n^2 = c_2 \cdot n \cdot \log_2(n)$

Inserción

Mergesort

		_		
n	<i>T</i> (<i>n</i>)		n	T(n)
10000	45425		10000	2267
20000	140155		20000	2599
30000	303081		30000	3992
40000	542304		40000	5461
50000	856232		50000	6968
60000	1228797		60000	8413
70000	1673289		70000	9932
80000	2198850		80000	11629
90000	2787441		90000	11835
100000	3449736		100000	12038
$c_1 = 3.54 \cdot 10^{-4}$		•	$c_2 = 9.48 \cdot 10^{-3}$	

¿En qué punto comienza a ser mergesort mejor que inserción?

$$c_1 \cdot n^2 = c_2 \cdot n \cdot \log_2(n)$$

 n se puede calcular gráficamente o de forma aproximada si no se dispone de métodos matemáticos para ello

Mergesort y algoritmo base inserción

 Implementación del algoritmo MergeSort tras resolver el problema del umbral:

```
void MergeSort(int *v, int ini, int fin) {
    if (fin - ini <= 208) {</pre>
      Insercion(v, ini, fin);
3
    } else {
      int med = (ini + fin) / 2;
5
      MergeSort(v, ini, med);
6
7
      MergeSort(v, med + 1, fin);
      Combina(v, ini, med, fin);
8
    }
9
10 }
```

Condiciones para que «divide y vencerás» sea ventajoso

- Selección cuidadosa de cuándo usar el algoritmo ad hoc (calcular el umbral de recursividad).
- Poder descomponer la instancia del problema en subinstancias y combinar de forma eficiente a partir de las soluciones parciales.
- El número k de subinstancias debe ser razonablemente pequeño.
- Las subinstancias deben tener aproximadamente el mismo tamaño.
- Las subinstancias deben ser del menor tamaño posible.

Análisis de algoritmos «divide y

vencerás»

- Cuando un algoritmo contiene una llamada recursiva a sí mismo, generalmente su tiempo de ejecución puede describirse por una recurrencia que da el tiempo de ejecución para un caso de tamaño n en función de entradas de menor tamaño.
- En «divide y vencerás» tenemos recurrencias del tipo:

$$T(n) = \begin{cases} d(n) & n \leq n_0 \\ k \cdot T(n/b) + g(n) & n > n_0 \end{cases}$$

• k representa el número de subinstancias, n/b el tamaño de estas, g(n) el coste de descomponer la instancia del problema inicial en las k subinstancias y el de combinar las soluciones para obtener la solución de la instancia original, y d(n) el coste de resolver un problema elemental.

Fórmula maestra

$$T(n) = k \cdot T(n/b) + g(n)$$

- Si $g(n) \in \Theta(n^a)$, $a \in \mathbb{R}^{\geq 0}$, el orden de complejidad de la solución a esta ecuación es:
 - $\Theta(n^a)$ si $k < b^a$
 - $\Theta(n^a \cdot \log(n))$ si $k = b^a$
 - $\Theta(n^{\log_b(k)})$ si $k > b^a$
- El orden de eficiencia depende de la relación entre el número de subinstancias (k), el tamaño de estas (b) y la dificultad de dividir y combinar (a).

La importancia de las condiciones

• El número de subinstancias tiene importancia:

$$T(n) = 2T(n/2) + c \longrightarrow T(n) \in O(n^{\log_2(2)}) = O(n)$$

$$T(n) = 4T(n/2) + c \longrightarrow T(n) \in O(n^{\log_2(4)}) = O(n^2)$$

$$T(n) = 8T(n/2) + c \longrightarrow T(n) \in O(n^{\log_2(8)}) = O(n^3)$$

• La eficiencia de la combinación de subsoluciones tiene importancia:

$$T(n) = 2T(n/2) + c \longrightarrow T(n) \in O(n^{\log_2(2)}) = O(n)$$

$$T(n) = 2T(n/2) + n \longrightarrow T(n) \in O(n \cdot \log_2(n))$$

$$T(n) = 2T(n/2) + n^2 \longrightarrow T(n) \in O(n^2)$$

La importancia de las condiciones

 Que las subinstancias sean aproximadamente del mismo tamaño tiene importancia:

$$T(n) = 2T(n/2) + n \longrightarrow T(n) \in O(n \cdot \log n)$$

$$T(n) = T(1) + T(n-1) + n \longrightarrow T(n) \in O(n^2)$$

• El tamaño de las subinstancias tiene importancia:

$$T(n) = 2T(n/4) + c \longrightarrow T(n) \in O(n^{\log_4(2)}) = O(n^{0.5}) = O(\sqrt{n})$$

$$T(n) = 2T(n/2) + c \longrightarrow T(n) \in O(n^{\log_2(2)}) = O(n)$$

$$T(n) = 2T(n-1) + c \longrightarrow T(n) \in O(2^n)$$

Enunciado

- Sea V[1...n] un vector ordenado en orden no decreciente, $V[i] \le V[j]$ para $1 \le i \le j \le n$, y sea x un elemento a buscar.
- Formalmente, se quiere encontrar el índice i tal que $1 \le i \le n+1$ y $V[i-1] < x \le V[i]$.

1	2	3	4	5
3	7	25	41	53

Si
$$x = 25$$
, entonces $i = 3$

Si
$$x = 15$$
, entonces $i = 3$

Si
$$x = 67$$
, entonces $i = 6$

Si
$$x = 2$$
, entonces $i = 1$.

Búsqueda secuencial

• La forma simple de resolver el problema es buscar hasta que llegar al final o encontrar un elemento que no sea menor que x.

```
int Busqueda ( int *v, int n, int x) {
   int i = 0;
   while (i < n && x > v[i]) {
        i++;
   }
   return i;
}
```

• El orden de eficiencia es O(n).

Fundamento

- Para acelerar la búsqueda, podemos buscar x bien en la primera mitad del vector o bien en la segunda.
- Para averiguar cuál de esas búsquedas es la correcta comparamos x con un elemento del vector, k = n/2.
- Si $x \le V[k]$ podemos restringir la búsqueda a $V[1 \dots k]$. En otro caso, buscamos en $V[k+1 \dots n]$.
- Realmente es un caso de reducción o simplificación: la solución de toda instancia se reduce a una única instancia más pequeña (concretamente de tamaño mitad).

Búsqueda binaria

Algoritmo

```
int Binaria_recursiva (int *v, int ini, int fin, int x){
      int centro = (ini + fin) / 2:
2
      if (ini == fin) return ini:
3
      if (x <= v[centro])</pre>
          return Binaria_recursiva (v, ini , centro, x);
5
     return Binaria_recursiva (v, centro+1, fin, x);
6
7 }
8 int Busqueda_binaria (int *v, int n, int x) {
    if (x > v[n-1]) return n;
  else {
10
      return Binaria_recursiva(v, 0, n-1, x);
11
  }
12
13 }
```

Eficiencia

- T(n) = T(n/2) + c
- Como $k = 1, b^a = 2^0$, entonces $T(n) = O(\log(n))$.

Quicksort

- Sea V[1...n] un vector de n elementos. La idea es ordenarlo en orden ascendente, es decir, $V[i] \le V[j]$ para $1 \le i \le j \le n$.
- Propuesto por C.A.R. Hoare en 1962.
- Es el algoritmo «divide y vencerás» de ordenación general más eficiente (en caso promedio).

Idea básica

- Determinar un elemento, denominado pivote, que divida al vector en dos partes: una que contenga los elementos menores que él y otra que contiene los mayores o iguales.
- Ordenar los dos subvectores obtenidos.
- Combinar los dos subvectores ordenados para obtener el vector inicial ordenado.

División

- Se divide el vector $V[1 \dots n]$ en dos subvectores (mejor si son tamaño parecido), independientes, y que se pueden ordenar por separado.
- Para dividir el vector, seleccionaremos un elemento, denominado pivote, de modo que los elementos menores que este queden a la izquierda del vector, y los mayores o iguales a la derecha.

Casos

- Mejor caso: el pivote divide al vector en dos mitades iguales.
- Peor caso: el pivote deja un subvector con 1 elemento y el otro con n-1 elementos.

Resolución

- Al llegar al caso base de 1 elemento, el vector estará ordenado.
- La penúltima llamada recursiva (vector de 2 elementos) también hará que el vector resultante esté ordenado, ya que se ha pivotado y el elemento mayor estará en la segunda posición, mientras que el elemento menor estará en la primera.
- En las llamadas recursivas anteriores, pasará lo mismo debido a que se va pivotando cada vez que se ejecuta la función.

Combinación

 No se requiere combinación adicional ya que al usar el pivote y gracias a las llamadas recursivas no es necesario.

Algoritmo

```
void quicksort(int *v, int ini, int fin) {
   if (ini < fin) {
      int pos_pivote = pivotar(v, ini, fin);
      quicksort(v, ini, pos_pivote - 1);
      quicksort(v, pos_pivote + 1, fin);
}
</pre>
```

Elección del pivote

- Cualquiera puede diseñar su algoritmo quicksort: la elección del pivote condiciona el tiempo de ejecución.
- El pivote puede ser cualquier elemento en el dominio (no es necesario que esté en el vector):
 - Podría ser la media de los elementos seleccionados del vector.
 - Podría elegirse aleatoriamente.
- Pivotes usuales:
 - La mediana de un mínimo de tres elementos del vector.
 - El elemento medio del vector.

Elección del pivote

- El empleo de la mediana de tres elementos no tiene justificación teórica.
- Si queremos usar el concepto de mediana, deberíamos escoger como pivote la mediana del vector porque lo divide en dos subvectores de igual tamaño:
 - Mediana: $(n/2)^{\underline{o}}$ mayor elemento.
 - Elegir tres elementos al azar y coger su mediana. Esto suele reducir el tiempo de ejecución en un 5%.
- Una elección más rápida es escoger el mayor de los dos primeros elementos del vector.

¿Cómo conseguir realizar eficientemente la partición, es decir colocar todos los menores que el pivote a su izquierda y todos los mayores o iguales a su derecha?

Partición

- Es fácil crear un algoritmo de partición con tiempo lineal.
- Es importante que la constante oculta sea lo más pequeña posible para que quicksort sea competitivo.
- Se puede recorrer el vector una sola vez, pero empezando por los dos extremos.

Partición

- Sea $V[k \dots l]$ el vector.
- Sea p = V[k] el pivote (el primer elemento).
- Los punteros i y j se inician en k y l, respectivamente.
- El puntero i se incrementa hasta que V[i] ≥ p y el puntero j se disminuye hasta que V[j] < p.
- Entonces, se intercambian V[i] y V[j]. Este proceso se repite mientras i < j.
- Finalmente, V[k] y V[j] se intercambian para poner el pivote en su posición correcta.

Algoritmo

```
int pivotar(int *v, int ini, int fin) {
     int pivote = v[ini], i = ini + 1, j = fin;
2
3
     while (i <= j) {
4
       while (i <= j && v[i] < pivote) {</pre>
5
         i++:
6
       }
7
       while (i <= j && v[j] >= pivote) {
8
         j--;
9
       }
10
      if (i < j) {</pre>
11
         intercambiar(v[i], v[j]);
12
       }
13
     }
14
    if (ini < j) {</pre>
15
       intercambiar(v[ini], v[j]);
16
     }
17
     return j;
18
19 }
```

Eficiencia en el peor caso

- El pivote es el primer elemento del vector.
- T(n) = T(1) + T(n-1) + n
- $O(n^2)$.
- En el peor caso es tan malo como el peor caso del método de inserción (selección).

Eficiencia en el mejor caso

- El pivote es la mediana.
- T(n) = 2T(n/2) + n
- $\Omega(n \cdot \log_2(n))$.

Eficiencia en el caso promedio

- La probabilidad del peor caso es muy baja.
- Se ha demostrado que es $O(n \cdot \log_2(n))$.
- En promedio se comporta mejor que los demás algoritmos de ordenación.

Enunciado

 Sea V[1...n] un vector de n elementos. Se desea conocer qué elemento se situaría en la i-ésima posición del vector en caso de que este estuviese ordenado.

Ejemplo de uso

• Cálculo de la mediana.

Algoritmo básico

- Ordenar el vector y devolver el elemento que hubiese en la i-ésima posición.
- Complejidad: $O(n \cdot \log(n))$. La ordenación tiene esa eficiencia y es la operación más costosa que se realiza.

Idea general

- No es necesario que el vector esté totalmente ordenado.
- Lo único necesario es que el elemento *i*-ésimo esté ordenado.

¿Podemos usar algo ya conocido?

- La función pivotar de quicksort.
- Al terminar su ejecución, en la j-ésima posición del vector se encuentra el pivote y todos los elementos a su izquierda son menores que él, por lo que se encuentra ordenado en su posición.

División

- Para encontrar el elemento en la i-ésima posición del vector, se colocan los elementos menores que un pivote a la izquierda del vector, y los mayores o iguales en la parte derecha. La posición del pivote, posPivote, estará por tanto ordenada.
- Si la posición i que buscamos es la posición del pivote, posPivote, hemos terminado.
- Si la posición i que buscamos es inferior a posPivote, dividimos la instancia del problema en 1 subinstancia (vector V desde la primera posición hasta posPivote – 1).
- Si la posición i que buscamos es superior a posPivote, dividimos la instancia del problema en 1 subinstancia (vector V desde posPivote + 1 hasta el último elemento).

Resolución

 Se vuelve a calcular el pivote para el subvector generado, aplicando recursivamente este proceso hasta que se encuentre la i-ésima posición.

Combinación

 Como la función de pivotar deja en posPivote el elemento que estamos buscando, y solo dividimos la instancia del problema en 1 subinstancia, no es necesario realizar combinación ni operaciones adicionales.

```
Pseudocódigo
  function Selection(v, ini, fin, i)
      if ini = fin then
         return v[ini]
      else
         posPivote, v \leftarrow pivotar(v, ini, fin)
         if posPivote = i then
             return v[posPivote]
         else if posPivote > i then
             return Seleccion(v, ini, posPivote - 1, i)
         else if PosPivote < i then
             return Seleccion(v, posPivote + 1, fin, i)
         end if
      end if
  end function
```

Algoritmo

```
int seleccion(int *v, int ini, int fin, int posicion) {
    if (ini == fin) {
2
     return v[ini];
3
    }
4
    else {
5
      int p = pivotar(v, ini, fin);
6
7
      if (p == posicion) {
8
        return v[p];
9
      }
10
      else if (posicion < p) {</pre>
11
        return seleccion(v, ini, p-1, posicion);
12
      }
13
      else {
14
        return seleccion(v, p+1, fin, posicion);
15
      }
16
    }
17
18 }
```

Eficiencia en el peor caso

- Divide al vector en dos partes de tamaño 1 y n-1, respectivamente.
- T(n) = T(n-1) + n
- $O(n^2)$.

Eficiencia en el mejor caso

- Divide al vector en dos partes de igual tamaño (n/2).
- T(n) = T(n/2) + n
- $\Omega(n)$.

Eficiencia en el caso promedio

- Es muy improbable que se dé el peor caso.
- En promedio, se comporta como $\Omega(n)$.

Multiplicación de enteros

grandes

Enunciado

Sean dos números enteros positivos A y B con n dígitos cada uno.
 Se desea calcular la multiplicación C = A · B.

Multiplicación clásica

$$\begin{array}{c} & 1 & 2 & 3 & 4 \\ & \times & 5 & 6 & 7 & 8 \\ \hline & 9 & 8 & 7 & 2 \\ & 8 & 6 & 3 & 8 \\ & 7 & 4 & 0 & 4 \\ \hline & 6 & 1 & 7 & 0 \\ \hline & 7 & 0 & 0 & 6 & 6 & 5 & 2 \end{array}$$

Eficiencia $O(n^2)$.

«Divide y vencerás»

 Debemos poder obtener la solución de la instancia original del problema en base a subinstancias de menor tamaño.

Idea

- $1234 = 12 \cdot 100 + 34$
- $5678 = 56 \cdot 100 + 78$

$$(12 \cdot 100 + 34) \cdot (56 \cdot 100 + 78) =$$

$$= 12 \cdot 56 \cdot 10000 +$$

$$+ (12 \cdot 78 + 34 \cdot 56) \cdot 100 +$$

$$+ (34 \cdot 78)$$

 Se reduce la multiplicación de cuatro cifras a 4 multiplicaciones de 2 cifras, más 3 sumas y varios desplazamientos.

Dividir

- *A* = 12345678:
 - $A_i = 1234$
 - $A_d = 5678$
 - $A = A_i \cdot 10^4 + A_d$
- B = 24680135:
 - $B_i = 2468$
 - $B_d = 0135$
 - $\bullet \ B = B_i \cdot 10^4 + B_d$

Combinar

$$A \cdot B = (A_i \cdot 10^4 + A_d) \cdot (B_i \cdot 10^4 + B_d)$$

= $A_i \cdot B_i \cdot 10^8 + (A_i \cdot B_d + A_d \cdot B_i) \cdot 10^4 + A_d \cdot B_d$

Procedimiento general

$$A = A_i \cdot 10^{n/2} + A_d$$

$$B = B_i \cdot 10^{n/2} + B_d$$

$$A \cdot B = (A_i \cdot B_i) \cdot 10^n + (A_i \cdot B_d + A_d \cdot B_i) \cdot 10^{n/2} + A_d \cdot B_d$$

```
Pseudocódigo
  function DVbasico(A, B, n)
      if n es pequeño then
          return A · B
      else
          Obtener ai, ad, bi, bd
          c1 \leftarrow DVbasico(ai, bi, n/2)
          c2 \leftarrow DVbasico(ai, bd, n/2)
          c3 \leftarrow DVbasico(ad, bi, n/2)
          c4 \leftarrow DVbasico(ad, bd, n/2)
          aux \leftarrow Sumar(c2, c3)
          c1 \leftarrow DesplazarDerecha(c1, n)
          aux ← DesplazarDerecha(aux, n/2)
          C \leftarrow Sumar(c1, aux, c4)
          return C
      end if
  end function
```

Eficiencia

- $T(n) = 4 \cdot T(n/2) + c \cdot n$
- k = 4, b = 2, a = 1. Entonces, $4 > 2^1$.
- T(n) es del orden de $O(n^{\log_2(4)}) = O(n^2)$.

Razón

- El cuello de botella está en el número de multiplicaciones (cuatro) que se realizan de tamaño n/2.
- Para mejorar la eficiencia es necesario reducir el número de multiplicaciones.

Algoritmo «divide y vencerás» mejorado

- Sean:
 - $R = (A_i + A_d) \cdot (B_i + B_d) = (A_i \cdot B_i) + (A_i \cdot B_d + A_d \cdot B_i) + A_d \cdot B_d$
 - $P = A_i \cdot B_i$
 - $Q = A_d \cdot B_d$
 - Por tanto $A_i \cdot B_d + A_d \cdot B_i = R P Q$
- Ahora se puede calcular:

$$A \cdot B = P \cdot 10^{n} + (R - P - Q) \cdot 10^{n/2} + Q$$

• 1 multiplicación de tamaño $n \Longrightarrow 3$ multiplicaciones de tamaño n/2.

```
Pseudocódigo
  function DVmejorado(A, B, n)
      if n es pequeño then
          return A \cdot B
      else
          Obtener ai. ad. bi. bd
          s1 ← Sumar(ai, ad)
          s2 \leftarrow Sumar(bi, bd)
          P \leftarrow DVmejorado(ai, bi, n/2)
          Q \leftarrow DVmejorado(ad, bd, n/2)
          R \leftarrow DVmejorado(s1, s2, n/2)
          aux \leftarrow Sumar(R, -P, -Q)
          P \leftarrow DesplazarDcha(P, n)
          aux \leftarrow DesplazarDcha(aux, n/2)
          C \leftarrow Sumar(P, aux, Q)
          return C
      end if
  end function
```

Eficiencia

- Obtener A_i , A_d , B_i , B_d es O(1).
- Se crean tres subinstancias de tamaño n/2 para resolver el problema.
- Las sumas se asume que son O(n).
- $T(n) = 3 \cdot T(n/2) + O(n)$
- $T(n) \in O(n^{\log_2 3}) = O(n^{1.585})$

Enunciado

- Sean dos matrices cuadradas A y B de n filas y n columnas $(n \cdot n)$.
- Se desea calcular la multiplicación $C = A \cdot B$.

Método básico

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

$$C = \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{1n} & c_{2n} & \cdots & c_{nn} \end{pmatrix}$$

$$c_{ij}$$

$$B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

Algoritmo básico

```
void Mult_Matrices (int **a, int **b, int **c, int n) {
  for(int i = 0; i < n; i++) {
    for(int j = 0; j < n; j++) {
        c[i][j] = 0;
    for(int k = 0; k < n; k++) {
        c[i][j] += a[i][k]*b[k][j];
    }
}
</pre>
```

Eficiencia del algoritmo $O(n^3)$

Idea

- Descomponer cada matriz en submatrices que se puedan multiplicar entre sí.
- Se reduce el tamaño de cada matriz.

Ejemplo

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Descomposición

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

Submatrices

$$C_{11} = A_{11} \cdot B_{11} + A_{12} \cdot B_{21}$$

$$C_{12} = A_{11} \cdot B_{12} + A_{12} \cdot B_{22}$$

$$C_{21} = A_{21} \cdot B_{11} + A_{22} \cdot B_{21}$$

$$C_{22} = A_{21} \cdot B_{12} + A_{22} \cdot B_{22}$$

Eficiencia

- 8 multiplicaciones de tamaño n/2.
- 4 sumas de eficiencia $O((n/2)^2) = O(n^2)$
- $T(n) = 8 \cdot T(n/2) + 4 \cdot n^2 \Rightarrow O(n^3)$

Descomposición de Strassen

 Strassen descubrió en 1969 una forma de dividir que reducía el número de multiplicaciones totales (muchas sumas y restas).

División del problema en 7 subproblemas

$$M = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$N = (A_{21} + A_{22}) \cdot B_{11}$$

$$O = A_{11} \cdot (B_{12} - B_{22})$$

$$P = A_{22} \cdot (B_{21} - B_{11})$$

$$Q = (A_{11} + A_{12}) \cdot B_{22}$$

$$R = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$$

$$S = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

Descomposición de Strassen

Dividimos cada matriz en cuatro submatrices.

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

División del problema en 7 subproblemas

$$M = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$$

$$N = (A_{21} + A_{22}) \cdot B_{11}$$

$$O = A_{11} \cdot (B_{12} - B_{22})$$

$$P = A_{22} \cdot (B_{21} - B_{11})$$

$$Q = (A_{11} + A_{12}) \cdot B_{22}$$

$$R = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$$

$$S = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$$

Descomposición

 Los 7 subproblemas M, N, O, P, Q, R, y S, son independientes y se resuelven por separado.

Combinación

• Se combinan para formar la solución *C*:

$$C_{11} = M + P - Q + S$$

 $C_{12} = O + Q$
 $C_{21} = N + P$
 $C_{21} = M + O - N + R$

Ejemplo

$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \quad B = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix} \quad C = \begin{pmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{pmatrix}$$

$$M = (A_{11} + A_{22}) \cdot (B_{11} + B_{22}) = (1+4) \cdot (5+8) = 65$$

$$N = (A_{21} + A_{22}) \cdot B_{11} = (3+4) \cdot 5 = 35$$

$$O = A_{11} \cdot (B_{12} - B_{22}) = 1 \cdot (6-8) = -2$$

$$P = A_{22} \cdot (B_{21} - B_{11}) = 4 \cdot (7-5) = 8$$

$$Q = (A_{11} + A_{12}) \cdot B_{22} = (1+2) \cdot 8 = 24$$

$$R = (A_{21} - A_{11}) \cdot (B_{11} + B_{12}) = (3-1) \cdot (5+6) = 22$$

$$S = (A_{12} - A_{22}) \cdot (B_{21} + B_{22}) = (2-4) \cdot (7+8) = -30$$

$$C_{11} = M + P - Q + S = 65 + 8 - 24 + (-30) = 19$$
 $C_{12} = O + Q = (-2) + 24 = 22$
 $C_{21} = N + P = 35 + 8 = 43$
 $C_{22} = M + O - N + R = 64 + (-2) - 35 + 22 = 50$
 $C = \begin{pmatrix} 19 & 22 \\ 43 & 50 \end{pmatrix}$

Algoritmo

```
function MultiplicaMat(A,B,n)
     if n=1 then
          C \leftarrow A \cdot B
     else
          Obtener A<sub>11</sub>, A<sub>12</sub>, A<sub>21</sub>, A<sub>22</sub> v B<sub>11</sub>, B<sub>12</sub>, B<sub>21</sub>, B<sub>22</sub>
          M \leftarrow MultiplicaMat(A_{11} + A_{22}, B_{11} + B_{22}, n/2)
          N \leftarrow MultiplicaMat(A_{21} + A_{22}, B_{11}, n/2)
          O \leftarrow MultiplicaMat(A_{11}, B_{12} - B_{22}, n/2)
          P \leftarrow MultiplicaMat(A_{22}, B_{21} - B_{11}, n/2)
          Q \leftarrow MultiplicaMat(A_{11} + A_{12}, B_{22}, n/2)
          R \leftarrow MultiplicaMat(A_{21} - A_{12}, B_{11} + B_{22}, n/2)
          S \leftarrow MultiplicaMat(A_{12} - A_{22}, B_{21} + B_{22}, n/2)
          C_{11} \leftarrow M + P - Q + S
          C_{12} \leftarrow O + O
          C_{21} \leftarrow N + P
          C_{22} \leftarrow M + O - N + R
          C \leftarrow Combinar(C_{11}, C_{12}, C_{21}, C_{22})
     end if
     return C
end function
```

Eficiencia

- 7 Multiplicaciones y *k* sumas y restas.
- Ecuación de recurrencias:

$$T(n) = 7 \cdot T(n/2) + k \cdot n^2$$

• $T(n) \in O(n^{\log_2(7)}) = O(n^{2.807})$

Requisitos

- Las matrices A y B deben ser cuadradas y su tamaño tiene que ser potencia de 2.
- Si no se cumple, se añaden y rellenan filas y columnas con el valor 0 hasta que la matriz tenga el tamaño requerido.

Enunciado

- Se dispone de un conjunto de *n* edificios.
- Cada edificio E_i, i ≤ n, se representa como una tripleta (I_i, h_i, r_i) en la que I_i y r_i representan la coordenada x izquierda y derecha del edificio y h_i su altura.
- Se desea obtener la línea del horizonte (lista de coordenadas x y alturas conectando los edificios de izquierda a derecha).

Ejemplo

División

- Dividir en dos subinstancias de tamaño lo más parecido posible (n/2), conteniendo los edificios de la parte izquierda y la parte derecha, respectivamente.
- La división se puede conseguir en tiempo lineal si se asume que los edificios están ordenados por componente 1.

Caso base

• Cuando el conjunto de edificios contenga un único edificio.

Combinación

- Comparar los puntos de ambos conjuntos empezando por el extremo izquierdo.
- La división se puede conseguir en tiempo lineal si se asume que los edificios están ordenados por componente *l*.
- Elegir el que tenga la coordenada menor.
- Si la altura del punto elegido es menor que la altura del último punto visto del otro conjunto, se actualiza la altura a esta última.
- Escoger el siguiente punto y repetir el proceso anterior.
- Una vez que se han escogido todos los puntos de uno de los conjuntos, se añade el resto de la otra lista sin necesidad de realizar ningún cálculo adicional.
- Para evitar añadir dos puntos consecutivos con igual altura, se compara con la altura de último punto añadido y, en caso de ser igual, no se añade.

Ejemplo

- {(2,5), (6,3), (9,10), (13,0)}
- {(3,13),(11,5),(15,0)}
- Combinación: $\{(2,5), (3,13), (11,10), (13,5), (15,0)\}$


```
Algoritmo
  function Skyline(E,n)
      if n = 1 then
          return \{(l_1, h_1), (r_1, 0)\}
      else
          Dividir E en dos subconjuntos E1 y E2, con los edificios de E1
  teniendo su componente / menor que la de los edificios de E2
          S1 \leftarrow Skyline(E1,n/2)
          S2 \leftarrow Skyline(E2,n/2)
          S \leftarrow Combinar(S1, S2)
      end if
      return S
  end function
```

Eficiencia

• Ecuación de recurrencias: $T(n) = 2 \cdot T(n/2) + n \Rightarrow O(n \cdot \log_2(n))$

Bibliografía

Bibliografía

Aclaración

- El contenido de las diapositivas es esquemático y representa un apoyo para las clases teóricas.
- Se recomienda completar los contenidos del tema 1 con apuntes propios tomados en clase y con la bibliografía principal de la asignatura.

Por ejemplo

G. Brassard and P. Bratley.

Fundamentals of Algorithmics.

Prentice Hall, Englewwod Cliffs, New Jersey, 1996.

J. L. Verdegay.

Lecciones de Algorítmica.

Editorial Técnica AVICAM. 2017.