Performance Modeling of Computer Systems and Networks

Prof. Vittoria de Nitto Personè

Multiserver and Priority scheduling

Università degli studi di Roma Tor Vergata

Department of Civil Engineering and Computer Science Engineering

Copyright © Vittoria de Nitto Personè, 2021 https://creativecommons.org/licenses/by-nc-nd/4.0/

1

esempio:

Analytical models priority scheduling

Assumptions:

- Arrival rate 1 j/s random
- Average demand Z=4x10⁵ oxat, expo, do not know size (astratto)
 Z = quanto job chiede, op/job

Possible configurations:

- 1 server of capacity C=10⁶ oxat/s capacità server, non è v.a.
- Dual-core of C/2 each one dual core equivalente, ciascun proc ha capacità dimezzata.

QoS requirements:

- Average waiting $T_Q < 0.15$ s
- For at least 35% of arrivals average response time $T_S < 0.5 {
 m \ s}$ la percentuale viene fornita dal testo

Def.

E(S) = Z/C = 0.4 s operazioni richiesta/operazioni server nell'unità di tempo

prof. Vittoria de Nitto Personè

21/04/2023

QoS requirements:

• Average waiting $T_Q < 0.15$ s

Analytical models priority scheduling

 $\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ s}$ $\rho = 0.4$

• 1 server of capacity C=10⁶ oxerat/s

$$E(T_O) = 0.26 \text{ s}$$

 $E(T_O)^{\text{Abstract-P}} = 0.2243 \text{ s}$

• Dual-core of C/2 each one

$$E(S_i) = \frac{Z}{\frac{C}{2}} = 2\frac{Z}{C} = 2E(S) = 0.8 \text{ s}$$

 $E(T_Q)_{Erlang} = \frac{P_Q E(S)}{1 - \rho} = 0.15238 \text{ s}$

$$E(T_Q)_{Erlang} = \frac{P_Q E(S)}{1 - \rho} = 0.15238 \text{ s}$$

prof. Vittoria de Nitto Personè

3

QoS requirements:

• Average waiting $T_Q < 0.15$ s

Analytical models priority scheduling

$$\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ s}$$

• Dual-core of C/2 each one

prof. Vittoria de Nitto Personè

Multiserver with priority classes

Multiserver with priority classes

$$E(T_Q) = p_1 \frac{\rho_1 E(S)}{(1 - \rho_1)} + p_2 \frac{\rho E(S)}{(1 - \rho)(1 - \rho_1)}$$

$$E(T_Q) = p_1 \frac{P_{Q1}E(S)}{(1 - \rho_1)} + p_2 \frac{P_QE(S)}{(1 - \rho)(1 - \rho_1)}$$

7

Multiserver with priority classes

$$P_{Q_1} = Erlang(\rho_1) = 0.03438$$

Multiserver with priority classes

$$P_{Q1} = Erlang(\rho_1) = 0.03438$$
 $P_Q = 0.22857$

$$E(T_Q) = p_1 \frac{P_{Q1}E(S)}{(1-\rho_1)} + p_2 \frac{P_QE(S)}{(1-\rho)(1-\rho_1)} = 0.12077$$

QoS requirements:

• Average waiting $T_Q < 0.15$ s !!

9

QoS requirements:

• For at least 35% of arrivals average response time $T_S < 0.5 \text{ s}$

$$\lambda = 1 \text{ j/s}, E(S) = 0.4 \text{ s}$$
 $\rho = 0.4$

• 1 server of capacity C=10⁶ oxerat/s

$$E(T_O) = 0.26 \text{ s}$$

Dual-core of C/2 each one

$$E(S_i) = \frac{Z}{C} = 2\frac{Z}{C} = 2E(S) = 0.8$$

prof. Vittoria de Nitto Personè

10

Analytical models

priority scheduling

