16.7 Surface Integrals.

Parametric surfaces.

$$\iint\limits_{S} f(x, y, z) dS = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^{*}) \Delta S_{ij}$$

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA$$

Mass and center of mass.

EXAMPLE 1 Compute the surface integral $\iint_S x^2 dS$, where *S* is the unit sphere $x^2 + y^2 + z^2 = 1$.

Graphs of functions.

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, g(x, y)) \sqrt{\left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2} + 1} dA$$

EXAMPLE 2 Evaluate $\iint_S y \, dS$, where *S* is the surface $z = x + y^2$, $0 \le x \le 1$, $0 \le y \le 2$. (See Figure 2.)

EXAMPLE 3 Evaluate $\iint_S z \, dS$, where S is the surface whose sides S_1 are given by the cylinder $x^2 + y^2 = 1$, whose bottom S_2 is the disk $x^2 + y^2 \le 1$ in the plane z = 0, and whose top S_3 is the part of the plane z = 1 + x that lies above S_2 .

Non-orientable surfaces.

Orientable surface.

Special orientations:

1. Graph of a function.

2. Parametric surface.

Example with a sphere.

Positive orientation.

Flux integral (or Surface integral).

8 Definition If F is a continuous vector field defined on an oriented surface S with unit normal vector \mathbf{n} , then the **surface integral of F over** S is

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{S} \mathbf{F} \cdot \mathbf{n} \ dS$$

This integral is also called the flux of F across S.

- Parametric surface: Integral formula.

$$\iint\limits_{S} \mathbf{F} \cdot d\mathbf{S} = \iint\limits_{D} \mathbf{F} \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dA$$

- Graph of a function: Integral formula.

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left(-P \frac{\partial g}{\partial x} - Q \frac{\partial g}{\partial y} + R \right) dA$$

EXAMPLE 4 Find the flux of the vector field $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ across the unit sphere $x^2 + y^2 + z^2 = 1$.

EXAMPLE 5 Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F}(x, y, z) = y \mathbf{i} + x \mathbf{j} + z \mathbf{k}$ and S is the boundary of the solid region E enclosed by the paraboloid $z = 1 - x^2 - y^2$ and the plane z = 0.

Applications to Physics.

Electric Flux.

$$\iint_{S} \mathbf{E} \cdot d\mathbf{S}$$

Gauss' Law.

$$Q = \varepsilon_0 \iint_S \mathbf{E} \cdot d\mathbf{S}$$

Heat flow.

$$-K\iint_{S}\nabla u\cdot d\mathbf{S}$$

EXAMPLE 6 The temperature u in a metal ball is proportional to the square of the distance from the center of the ball. Find the rate of heat flow across a sphere S of radius a with center at the center of the ball.