Physics 212: Problem Set 2

Due on September 22, 2016

Problem 1: Consider the relic population of neutrinos. At $k_BT \gg 1$ MeV, neutrinos (and antineutrinos) interact quickly enough that they are populated at their thermal abundances. At $k_BT \approx 1$ MeV, the neutrinos stop interacting with the rest of the particles. After that time, the annihilation of the electrons and positrons heats the photons to a temperature that is $(11/4)^{1/3}$ higher than the temperature of the neutrinos.

The mass is negligible near the decoupling redshift, so one can use the relativistic limit E = qc. But at low redshift, we will assume the mass is large enough that the neutrinos are non-relativistic.

- a) What is the velocity distribution of the massive neutrinos today? In other words, what is dn/dv? To compute this, use the fact that the neutrinos at high temperature are in a thermal distribution for a massless fermion and that the temperature at the decoupling redshift z_d is $(4/11)^{1/3}(1+z_d)2.725$ K. After decoupling, the momenta scale as $(1+z)^{-1}$. You should compute the momentum distribution at z_d and then convert is to the velocity distribution today. (Note that you do not need to compute z_d ; it will cancel out).
- b) Compute the mean velocity of the neutrinos today. The following integrals could be useful:

$$\int dx \frac{x^n}{e^x - 1} = n! \, \zeta(n+1) \tag{1}$$

$$\int dx \frac{x^n}{e^x + 1} = n! \, \zeta(n+1)(1-2^{-n}) \tag{2}$$

where $\zeta(m)=\sum_{k=1}^\infty k^{-m}$ is the Riemann zeta function. $\zeta(2)=\pi^2/6,\ \zeta(3)\approx 1.202,\ \zeta(4)=\pi^4/90.$

Problem 2: Big Bang Nucleosynthesis

- a) Suppose an extra neutrino species is added to the Universe. Would the predicted helium abundance go up or down?
- b) Suppose the weak interactions were stronger than they actually are, so that the thermal equilibrium distribution between neutrons and protons were

maintained until $k_BT=0.25$ MeV. Would the predicted helium abundance be larger or smaller than in the standard model?

c) Suppose the proton-neutron mass difference were larger than the actual value. Would the predicted helium abundance be larger or smaller than in the standard BBN calculation?

Problem 3:

Consider the following reaction that takes place in the Universe:

$$p + n \rightarrow D + \gamma$$

What fraction of neutrons are in Deuterium when the Universe is 5-minutes old? Use that $\Omega_b h^2 = 0.02$, and that the baryons consist of 14% neutrons and 86% protons.