University of Toronto Scarborough Department of Computer & Mathematical Sciences

MAT B41H 2013/2014

Assignment #10

The Final Examination will take place on December 17, from 7 pm - 10 pm

Final Exam Room Assignments	
Surname	go to room
A to G	IC 220
H to Z	IC 130

This assignment will not be collected. The solution set should be available at the end of term.

- A. Suggested reading: 1. Marsden & Tromba, Chapter 1, section 1.4.
 - Marsden & Tromba, Chapter 6, sections 6.1–6.3.

B. Problems:

- 1. Find the volume of the solid bounded by the paraboloid $z = 4x^2 + y^2$ and the cylinder $y^2 + z = 2$.
- 2. Give a rough sketch of the graphs of the polar equations.
 - (a) $r = \csc \theta$
 - (b) $r = 1 \sqrt{2} \sin \theta$
 - (c) $r = -\sin 3\theta$
- 3. Find the area of the region which is inside $(x-1)^2 + y^2 = 1$ and outside $x^2 + y^2 = 1$.
- 4. Evaluate $\int_0^1 \int_0^{\sqrt{1-x^2}} (x^2 + y^2)^{5/2} dy dx$.
- 5. Find the entire area bounded by the polar graph $r = 1 + \cos \theta$.

- 6. Evaluate $\iiint_S \frac{dx \, dy \, dz}{(x^2 + y^2 + z^2)^{3/2}}$, where S is the solid bounded by the two spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$, where 0 < a < b. (page 328, #25)
- 7. Evaluate $\iiint_B z \, dx \, dy \, dz$ by using cylindrical coordinates, where B is the region within the cylinder $x^2 + y^2 = 1$ above the xy- plane and below the cone $z = (x^2 + y^2)^{1/2}$. (page 328, #30(a))
- 8. Find the volume of the region bounded by $x = y^2 + z^2$, $z = y^2$, z = 9 and z = 0.
- 9. Evaluate $\int_D e^{3x} dA$ where D is the parallelogram bounded by the lines 2x y = 0, x 2y = 0, 2x y = 6 and x 2y = -2.
- 10. Evaluate $\int_D (x^2 + y^2) \cos(xy) dA$, where D is the region to the right of the y-axis that is bounded by the hyperbolas $y = \frac{3}{x}$, $y = \frac{-3}{x}$, $x^2 y^2 = 1$ and $x^2 y^2 = 9$.
- 11. Evaluate $\int_B \sqrt{x+y+z} \ dV$, where B is the parallelepiped bounded by x+y+z=0, x+y+z=9, x+2y=1, x+2y=4, y-3z=2 and y-3z=6.
- 12. Find the volume of the region bounded by $\frac{x^2}{2} + \frac{y^2}{8} = z^2 + 1$, z = 1 and z = -1.