Practical Machine Learning

Module 2: Linear Regression with Multiple Variables

Content and objectives

Content

- Linear Model with Multiple Variables
- Feature Scaling
- Debugging Gradient
 Descent

Objectives

 Extend linear model to handle multiple features

Content and objectives

Content

- Linear Model with Multiple Variables
- Feature Scaling
- Debugging Gradient
 Descent

Objectives

- Understand why feature scaling is needed
- Understand how to scale features effectively

Content and objectives

Content

- Linear Model with Multiple Variables
- Feature Scaling
- Debugging Gradient Descent

Objectives

- Understand how to check convergence of Gradient Descent
- Understand how to fix problems

Linear Regression with multiple variables

Linear Model with one variable

Target only a function a single FEATURE

$$f_{\theta}(x) = \theta_0 + \theta_1 x$$

Size in ft^2 (x)	Rent / month (£) (y)		
3121	450		
1746	415		
2443	398		
•••	•••		

Linear Model with multiple variables

Target a function of several FEATURES

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots$$

Size in ft^2 (x_I)	No. of bedrooms	No. of floors (x ₃)	Age of house (x ₄)	Rent / month (£) (y)
3121	4	2	45	450
1746	2	I	24	415
2443	3	3	36	398
•••				•••

Linear Model with multiple variables

Size in ft^2 (x _I)	No. of bedrooms (x ₂)	No. of floors (x ₃)	Age of house (x ₄)	Rent / month (£) (y)
3121	4	2	45	450
1746	2	I	24	415
2443	3	3	36	398
•••				•••

Notation

n = No. of features

$$\mathbf{x}^{(i)}$$
 = features of ith example $\mathbf{x}_{j}^{(i)}$ = jth feature in ith example

Function: $f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots$

Parameters: $\theta_0, \theta_1, \theta_2, \cdots$

Cost Function: $C(\theta_0, \theta_1, \cdots) = \frac{1}{2m} \sum_{i=1}^m (f_{\theta}(\mathbf{x}^i) - y^i)^2$

Gradient Descent:

repeat until convergence {

$$\theta_j := \theta_j - \alpha \frac{\partial C}{\partial \theta_j}$$
 for $j = 0, 1, 2, \cdots$

OSI

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{\partial C}{\partial \theta_j}$$
 for $j=0,1,2,\cdots$

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (f_{\theta}(\mathbf{x}^i) - y^i) \cdot x_j^i$$
 for $j = 0, 1, 2, \cdots$

repeat until convergence {
$$\theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (f_{\theta}(\mathbf{x}^i) - y^i) \cdot x_j^i$$
 for $j = 0, 1, 2, \cdots$

For
$$heta_0$$
 note that $\,x_0^i=1\,$ always

$$f_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \cdots$$

$$x_0^i = 1$$

Practical tip

- Feature Scaling -

Feature scaling

We want INPUT FEATURES to operate on a SIMILAR SCALE

 $C(\theta_1, \theta_2)$ Eg: $x_1 \in (0, 4000)$ ft²

 $x_2 \in (1,5)$ bedrooms

Feature scaling

We want INPUT FEATURES to operate on a SIMILAR SCALE

 $C(\theta_1, \theta_2)$ Eg: $x_1 \in (0, 4000)$ ft² $x_2 \in (1, 5) \text{ bedrooms}$

$$x_1 = \frac{\text{size ft}^2}{4000}$$

$$x_2 = \frac{\text{no. of bedrooms}}{}$$

asi

How to scale features

Get every feature into approximately

$$-1 < x_j < 1$$

Normalisation:

$$x_i \longrightarrow \frac{x_i - \mu_i}{\sigma}$$

normalise data

centre data

How to scale features

Get every feature into approximately

$$-1 < x_i < 1$$

Normalisation:

$$x_i \longrightarrow \frac{x_i - \mu_i}{\sigma_i}$$

REMEMBER – new inputs must also be scaled!

$$x^* \longrightarrow \frac{x^* - \mu_i}{\sigma_i}$$

Practical tip

- Debugging Gradient Descent -

Checking Gradient Descent

Above two parameters we cannot visualise the cost surface effectively

How can we check that Gradient Descent is converging?

Checking Gradient Descent

Observe COST FUNCTION against ITERATION

intelligent layer

C(heta) should decrease after every iteration

No. of iterations /er

Checking Gradient Descent

Observe COST FUNCTION against ITERATION

 $C(\theta)$ should decrease after every iteration

Evaluating cost function enables us to test when convergence is achieved.

e.g. difference < 10⁻³

Common problems

SLOW CONVERGENCE and DIVERGENCE can be seen in COST HISTORY

Common problems

Modify lpha according to diagnosis of problem

EXERCISE

Time: ? mins

Linear Regression Multiple Variables

 Finish exercises in Linear Regression with Multiple Variables iPython Notebook

