*	F _x 1	

Soit G un sous-groupe fini des déplacements du plan.

- 1. Montrer que G ne contient pas d'autre translation que l'identité.
- 2. En déduire que G est commutatif. Peut-on en dire autant d'un sous-groupe fini des déplacements de l'espace de dimension 3?
- 3. Montrer que G est engendré par une seule rotation. Á quel groupe connu est-il isomorphe?

Corrigé de l'exercice 1

1. Supposons que G contienne une translation de vecteur $\vec{u} \neq \vec{0}$.

Alors en tantq eu groupe, G contientrait toutes les translations de vecteurs $n\vec{u}$ avec $n \in \mathbb{Z}$, ce qui contredit le fait que G soit d'ordre fini. La seule translation contenue dans le groupe G est donc l'identité.

2. Les déplacements du plan étant les translations et les rotations, G ne contient donc que des rotations.

Soient r_1 et r_2 deux rotations de G d'angles respectifs θ_1 et θ_2 . Le déplacement $r_1 \circ r_2 \circ r_1^{-1} \circ r_2^{-1}$ est donc une translation qui appartient aussi à G: d'après la question précédente c'est donc l'identité du plan.

On a alors

$$r_1 \circ r_2 \circ r_1^{-1} \circ r_2^{-1} = \operatorname{Id}$$

 $r_1 \circ r_2 = (r_1^{-1} \circ r_2^{-1})^{-1}$
 $= r_2 \circ r_1.$

Le groupe G est donc commutatif.

Dans l'espace le groupe des déplacements du cube est fini mais non abélien.

 $3. \ \ {\rm Deux\ rotations\ du\ plan\ ayant\ un\ centre\ différent\ ne\ commutant\ pas,\ toutes\ les\ rotations\ de\ \it G\ ont\ un\ même\ centre.}$

G étant fini, l'ensemble des mesures des angles des rotations de G ont un plus petit élément dans $]0; 2\pi]$. Notons θ_0 ce plus petit élément, et r_0 cette rotation. Pour tout $n \in \mathbb{Z}$, r_0^n est dans G.

Soit r une rotation élément de G d'angle $\theta \in [0; 2\pi]$.

Il existe un élément p de \mathbb{Z} tel que $\theta - p\theta_0 \in [0; \theta_0[$. La rotation d'angle $\theta - p\theta_0$ appartenant à G est donc l'identité du plan car θ_0 est le plus petit angle non nul de raotation de G.

Par suite, pour toute rotation r de g, il existe $p \in \mathbb{Z}$ tel que r soit une rotation d'angle $p\theta_0$, et donc $r = r_0^p$.

Le groupe G est donc engendré par r_0 .

Notons $n \in \mathbb{N}^*$ l'ordre de G, on a donc $\theta_0 = \frac{2\pi}{n}$, et est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ ou encore au groupe des racines n-ièmes de l'unité.

Soit a, b et c trois réels; on considère la matrice

$$A = \begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix}.$$

On désigne par f l'endomorphisme de \mathbb{R}^3 associé à la matrice A dans la base canonique.

- 1. Trouver une condition nécessaire et suffisante pour que la matrice A soit orthogonale. Montrer que dans ce cas, $a+b+c=\pm 1$.
- 2. On suppose que la matrice A est orthogonale.

Déterminer la nature géométrique de f et ses éléments caractéristiques lorsque :

- a) a+b+c=1;
- b) a+b+c=-1.

On examinera le cas particulier où b = c.

1. A étant orthogonale étant équivalent au fait que les vecteurs colonnes de A forment une base orthonormée de \mathbb{R}^3 , de manière équivalente à

$$\begin{cases} a^2 + b^2 + c^1 = 1 \\ ab + bc + ca = 0. \end{cases}$$

Or

$$(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca) = 1,$$

ce qui donne

$$a + b + c = \pm 1$$
.

2. Posons $a+b+c=\epsilon$.

On a

$$\begin{vmatrix} a & c & b \\ b & a & c \\ c & b & a \end{vmatrix} = a^3 + b^3 + c^3 - 3abc.$$

De plus on a

$$a^{3} + b^{3} + c^{3} - 3abc = (a^{2} + b^{2} + c^{2})(a+b+c) - ab(a+b) - bc(b+c) - ac(a+c) - 3abc$$

$$= \epsilon - ab(\epsilon - c) - bc(\epsilon - a) - ac(\epsilon - b) - 3abc$$

$$= \epsilon - (ab + bc + ca)\epsilon + 3abc - 3abc$$

$$= \epsilon.$$

a) Si $\epsilon=1$, on a donc det A=1 et $A\in \mathscr{SO}_3(\mathbb{R}), \ f$ est donc une rotation. De plus

$$A = \begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}.$$

Le vecteur $\vec{u}(1\;;\;1\;;\;1)$ est invariant par f: il dirige donc l'axe de la rotation. Soit $\vec{v}(1\;;\;-1\;;\;0)$ dans \vec{v}^{\perp} (on a plein de choix bien sûr...),

on a alors

$$A = \begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} a - c \\ b - a \\ c - b \end{pmatrix}.$$

Soit θ l'angle de la rotation :

$$\cos \theta = \frac{(\vec{v}|f(\vec{v}))}{|\vec{v}|||f(\vec{v})||}$$

$$= \frac{3a-1}{\sqrt{2}\sqrt{(a-c)^2 + (b-a)^2 + (c-b)^2}}$$

$$= \frac{3a-1}{2},$$

 $car: (a-c)^2 + (b-a)^2 + (c-b)^2 = 2(a^2 + b^2 + c^2) - 2(ab + bc + ca) = 2.$

Pour orienter l'axe de la rotation on calcule $\overrightarrow{v} \wedge f(\overrightarrow{v})$:

$$\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \land \begin{pmatrix} a-c \\ b-c \\ c-b \end{pmatrix} = \begin{pmatrix} b-c \\ b-c \\ b-c \end{pmatrix} = (b-c) \overrightarrow{u}.$$

- Si $b>c, \ f$ est la rotation d'axe Vect (\overrightarrow{u}) dirigé par \overrightarrow{u} et d'angle $\arccos \frac{3a-1}{2}$.
- Si b < c f est la rotation d'axe $\mathrm{Vect}(\overrightarrow{u}),$ dirigé par $-\overrightarrow{u}$ et d'angle $\arccos \frac{3a-1}{2}$
- Si b=c, la relation ab+bc+ca=0 donne $2ba+b^2=0$ soit b=0 ou 2a+b=0
 - Si b = c = 0 alors a = 1 et $A = I_3$, f est l'identité de \mathbb{R}^3 .
 - si 2a+b=0, a+b+c=-3a=1 d'où $\cos\theta=-1$; f est le demi-tour d'axe $\operatorname{Vect}(\vec{u})$.

3. Si $\epsilon = -1$, on a $A \in \mathscr{O}_3(\mathbb{R}) - \mathscr{SO}_3(\mathbb{R})$; f est donc une reflexion orthogonale ou la composée d'une réflexion orthogonale par une rotation.

On a

$$A = \begin{pmatrix} a & c & b \\ b & a & c \\ c & b & a \end{pmatrix} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}.$$

Le vecteur \vec{u} est change en son opposé. En reprenant les mêmes calculs qu'à la question 2a avec le vecteur \vec{v} , on obtient :

$$\cos\theta = \frac{3a+1}{2}.$$

- Si b > c, f est la composée de la rotation d'axe $\text{Vect}(\vec{u})$, dirigé par \vec{u} , d'angle $\arccos \frac{3a+1}{2}$, et de la réflexion par rapport au plan $\text{Vect}(\vec{u})^{\perp}$.
- Si b < c, f est la composée de la rotation d'axe $\text{Vect}(\vec{u})$, dirigé par $-\vec{u}$, d'angle $\arccos \frac{3a+1}{2}$, et de la réflexion par rapport au plan $\text{Vect}(\vec{u})^{\perp}$.
- Si b=c, la relation ab+bc+ca=0 donne $2ab+b^2=0$ soit b=0 ou 2a+b=0.
 - si b=c=0, alors a=-1, d'où $A=-I_3,\,f$ est l'homothétie de rapport -1.
 - Si 2a+b=0, a+b+c=-3a=-1, d'où $\cos\theta=1$; f est la réflexion par rapport au plan $\operatorname{Vect}(\vec{u})^{\perp}$.

***** Ex.3

On considère dans l'espace affine euclidien E de dimension 3 orienté, deux rotations r te r' d'axes respectifs D et D' et d'angles respectifs θ et θ' (en orientant convenablement les axes, on peut choisir θ et θ' dans $[0; \pi]$). Les rotations r et r' sont dites **conjuguées** si, et seulement si, il existe un déplacement f de E tel que

$$r' = f^{-1} \circ r \circ f.$$

Montrer que r et r' sont conjuguées si, et seulement si

$$\theta = \theta'$$
.

Expliciter alors le déplecement f.

Corrigé de l'exercice 3

Il existe un repère orthonormé direct $(O; \vec{e}_1, \vec{e}_2, \vec{e}_3)$ de E dans lequel r a pour écriture analytique :

$$\begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

La relation $r' = f^{-1} \circ r \circ f$ signifie que r' a la même expression analytique que r dans le repère $(O; f(\vec{e}_1), f(\vec{e}_2), f(\vec{e}_3))$, qui est aussi orthonomal direct. Cette condition est satisfaite si, et seulement si, les deux rotations ont le même angle dans $[0; \pi]$.

Plus généralement, désignons par O et O' les intersections respectives de D et D' avec leur perpendiculaire commune. Notons \overrightarrow{e}_1 et \overrightarrow{e}_1' les vecteurs unitaires de D et de D' qui orientent les axes de rotations conformément à r et r'. On complète alors par deux vecteurs \overrightarrow{e}_2 et \overrightarrow{e}_3 pour obtenir une base orthonormée $(\overrightarrow{e_1}, \overrightarrow{e}_2, \overrightarrow{e}_3)$ directe.

L'unique vissage V qui transforme O en O' et \overrightarrow{e}_1 en \overrightarrow{e}_1' , transforme le repère orthonormé direct $(O; \overrightarrow{e}_1, \overrightarrow{e}_2, \overrightarrow{e}_3)$ en le repère orthonormé direct $(O'; \overrightarrow{e}_1', \overrightarrow{e}_2', \overrightarrow{e}_3')$ dans lequel l'expression analytique de r' est celle indiquée ci-dessus. On a bien

$$r' = V \circ r \circ V^{-1}.$$

* Ex.4	

Soit E un espace affine euclidien de dimension 3, D_1 , D_2 et D_3 trois droites de E deux à deux non coplanaires et non parallèles à un même plan.

Démontrer qu'il existe des vissages V_1 , V_2 et V_3 , d'axes respectifs D_1 , D_2 et D_3 tels que

$$V_3 \circ V_2 \circ V_1 = \mathrm{Id}_E$$
.

Corrigé de l'exercice 4

Considèrons les droites :

- Δ_1 perpendiculaire commune à D_2 et D_3 ;
- Δ_2 perpendiculaire commune à D_3 et D_1 ;
- Δ_3 perpendiculaire commune à D_1 et D_2 .

Désignons par $s_1,\,s_2$ et s_3 les demi-tours d'axes respectifs $\Delta_1,\,\Delta_2$ et $\Delta_3.$

- $V_1 = s_3 \circ s_2$ est un vissage d'axe D_1 ;
- $V_2 = s_1 \circ s_3$ est un vissage d'axe D_2 ;
- $V_3 = s_2 \circ s_1$ est un vissage d'axe D_3 .

Alors:

$$V_3\circ V_2\circ V_1=s_2\circ s_1\circ s_1\circ s_3\circ s_3\circ s_2=\mathrm{Id}_E.$$