Guía de suplementación para profesionales de la salud y deporte: suplementos con nivel de evidencia fuerte

Supplementation guideline for health and sports professionals: supplements with a strong level of evidence

Guia de suplementação para profissionais em saúde e esporte: suplementos com forte nível de evidência

Alejandra Hernández Bonilla^{1,2*}, Diana Paola Córdoba-Rodríguez^{1,2}.

Recibido: 11 de febrero de 2023. Aceptado para publicación: 6 de julio de 2023. Primero en línea: 13 de julio de 2023. https://doi.org/10.35454/rncm.v6n4.508

Resumen

Los alimentos deportivos y suplementos pueden tener un papel pequeño pero importante en los planes nutricionales deportivos de los atletas de alto rendimiento. Las organizaciones deportivas, los profesionales de las ciencias del deporte y de la salud y los entrenadores deberán considerar los siguientes puntos al recomendar a un deportista el uso de un suplemento o alimento deportivo: ¿su consumo es seguro?, ¿es efectivo?, ¿está permitido su uso en el deporte? Por lo anterior, el objetivo de esta quía de suplementación deportiva, adaptada del marco establecido por el Instituto Australiano del Deporte (IAD), es ofrecer información clara, resumida y actualizada acerca del uso seguro y la evidencia científica en torno a los suplementos y alimentos deportivos. El presente documento se construyó a partir del documento original "Australian Institute of Sport Position Statement. Supplements and Sports Foods in High Performance Sport" sumado a una revisión de la literatura llevada a cabo por los autores entre los meses de febrero y mayo de 2022, incluyendo ensayos clínicos aleatorizados y metaanálisis publicados en la base de datos PubMed en los últimos 10 años. Esta guía está dividida en 4 secciones según los niveles de evidencia y seguridad en su uso. El presente documento corresponde a la primera

Summary

Sports food and supplements may play a small, but important role in the nutrition plans of high-performance athletes. Sports organizations, health professionals and coaches should consider these guestions when recommending a sports food or supplement: Is it safe? Is it allowed to be used in sports? Is it effective? This sports supplementation guideline, within the Australian Institute of Sport (AIS) framework, aims to offer clear, summarized, and current information regarding safe use and scientific evidence on sports food and supplements. This document was constructed based on the original "Australian Institute of Sport Position Statement. Supplements and Sports Foods in High Performance Sport" document, in addition to a narrative review of clinical trials and meta-analysis was performed during the months of February and May, 2022. Randomized clinical trials and metaanalysis from the last 10 years published in the PubMed database were included. This guideline is divided into four sections, according to the levels of evidence and safe use. The present document is the first part of the guideline, which comprises foods and supplements with a strong level of evidence in sport.

Resumo

Alimentos e suplementos esportivos podem ter um papel pequeno, mas importante, nos planos de nutrição esportiva de atletas de alto rendimento. As organizações esportivas, os profissionais das ciências da saúde e do esporte e os treinadores deverão considerar os seguintes pontos ao recomendar o uso de um suplemento ou alimento esportivo para um atleta: Seu consumo é seguro? É eficaz? Seu uso é permitido no esporte? Portanto, o objetivo desta guia de suplementação esportiva, adaptada da estrutura estabelecida pelo Instituto Australiano de Esportes (IAE), é oferecer Informação clara, resumida e atualizada sobre o uso seguro e a evidência científica sobre suplementos e alimentos esportivos. O presente documento foi construído a partir do documento original "Australian Institute of Sport Position Statement. Supplements and Sports Foods in High Performance Sport" adicionado a uma revisão da literatura realizada pelos autores entre os meses de fevereiro e maio de 2022, incluindo ensaios clínicos randomizados e metaanálises publicados na base de dados PubMed nos últimos 10 anos. Este quia está dividida em 4 seções de acordo com os níveis de evidência e segurança na sua utilização. Este documento corresponde à primeira parte da guia, que inclui alimen-

parte de la guía, que incluye los alimentos con nivel de evidencia fuerte de un efecto ergogénico y seguro para el deporte.

Palabras clave: rendimiento deportivo, suplementos nutricionales, alimentos, nutrición en el deporte.

Keywords: Athletic performance; Dietary supplements; Sport; Sports nutritional sciences; Food.

tos com nível de evidência forte de um efeito ergogênico e seguro para o esporte.

Palavras-chave: rendimento desportivo, suplementos nutricionais, alimentos, nutrição no esporte.

- ¹ Comité de Nutrición Deportiva de la Asociación Colombiana de Nutrición Clínica (ACNC). Bogotá, Colombia.
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Nutrición y Bioquímica. Bogotá, Colombia.

*Correspondencia: Alejandra Hernández. hernandezalejandra 40@gmail.com

INTRODUCCIÓN

Los alimentos deportivos y suplementos pueden tener un papel pequeño pero importante en los planes nutricionales deportivos de los atletas de alto rendimiento. Se considera suplemento a todo alimento, componente alimentario, nutriente o componente no alimentario que se ingiere internacionalmente además de la dieta habitual, con el fin de lograr un beneficio específico para el rendimiento o la salud⁽¹⁾. Las organizaciones deportivas, los profesionales de las ciencias del deporte y de la salud y los entrenadores, deberán considerar los siguientes puntos al recomendar a un deportista el uso de un suplemento o alimento deportivo: ¿su consumo es seguro?, ¿es efectivo?, ¿está permitido su uso en el deporte?⁽²⁾

El sistema de clasificación ABCD, como parte del esquema de suplementación deportiva del Instituto Australiano del Deporte (IAD), clasifica los ingredientes de alimentos y suplementos deportivos en cuatro grupos de acuerdo con su nivel evidencia científica y otras consideraciones prácticas que determinan la seguridad del producto, efectividad y uso permitido para mejorar el rendimiento deportivo⁽²⁾.

En Colombia, actualmente a través del Ministerio de Salud y Protección Social, la Dirección de Promoción y Prevención, la Subdirección de Salud Nutricional, Alimentos y Bebidas en su documento "Análisis de impacto normativo en la temática de alimentos para deportistas – Definición del problema" se ha dado inicio a la construcción de una regulación de todos los productos alimenticios cuyo objetivo sean los deportistas⁽³⁾. Desde 2014, el Sistema Nacional del Deporte Colombiano adoptó la clasificación ABCD del IAD y construyó el *Vademécum Nacional de Suplementos Deportivos Nutricionales*, el cual ofrece a los profesionales de las ciencias de la salud y del deporte información

sobre los productos disponibles en el mercado colombiano (Figura 1) $^{(4)}$.

El objetivo de esta guía de suplementación deportiva, adaptada del marco establecido por el IAD, es ofrecer información clara, resumida y actualizada acerca del uso seguro y la evidencia científica en torno a los suplementos y alimentos deportivos. Por lo anterior, el presente documento se construyó a partir del documento original "Australian Institute of Sport Position Statement. Supplements and Sports Foods in High Performance Sport", sumado a una revisión de la literatura llevada a cabo por los autores.

Esta revisión se realizó entre los meses de febrero y mayo de 2022, incluyendo ensayos clínicos aleatorizados y metaanálisis publicados en la base de datos PubMed en los últimos 10 años y usando estrategias de búsqueda con los siguientes términos Mesh y términos comunes: "Athletes", "athletic", "sport", "Athletic Performance", "physical fitness", "endurance training", "endurance", "exercise capacity", "muscle", "power", "strength", "physically active", "Energy drinks", "Beverages", "Sports food", "Sports drink", "Sports Drinks", "Electrolytes", "Dietary Proteins", "Sports Drinks". "Sports Gels", "Sports Confectionary", "Electrolyte supplements", "Isolated Protein supplements", "Sport bar", "Liquid Meal", "Iron", "Calcium", "Vitamin D", "Multivitamin", "Probiotics", "Zinc", "Caffeine", "β-alanine", "Bicarbonate", "Beetroot juice", "Nitrate", "Creatine", "Glycerol", "Polyphenols", "Flavonoids", "Antioxidants", "Anti-Oxidants", "Antioxidant Effect", "Ascorbic Acid", "Vitamin C", "L-Ascorbic Acid", "Acetylcysteine", "N-Acetyl-L-cysteine", "NAC AL", "Menthol", "Transient receptor potential", "channel agonists", "TRP", "TRP channel", "transient receptor potential channels", "Quinine", "Quinimax", "Quinine Bisulfate", "Quinine Sulphate", Hydrochloride", "Collagen", "Curcumin", "Turmeric Yellow", "1,6-Heptadiene-3,5-dione, 1,7-bis(4-hydroxy-3-metho-

A

- Nivel de evidencia: fuerte para el uso en situaciones deportivas específicas bajo protocolos basados en la evidencia.
- Uso dentro de programas de suplementación: permitido para personas deportistas de acuerdo con los protocolos de buenas prácticas.

B

- Nivel de evidencia: respaldo científico emergente, requiere más investigación.
- Uso dentro de programas de suplementación: se considera su uso en personas deportistas como parte de investigaciones o situaciones bajo monitorización médica.

C

- Nivel de evidencia: la evidencia científica no respalda sus beneficios en deportistas o no hay investigaciones que permitan ofrecer una opinión informada.
- Uso dentro de programas de suplementación: no se recomienda su uso para deportistas dentro de programas de suplementación.

D

- Nivel de evidencia: prohibidos o con alto riesgo de contaminación con sustancias que pueden llevar a una prueba positiva de dopaje.
- Uso dentro de programas de suplementación: los deportistas no los deben usar.

Figura 1. Clasificación de suplementos según el Instituto Australiano del Deporte basado en su nivel de evidencia científica.

xyphenyl)-, (E,E)", "Curcumin Phytosome", "Ketones", "Ketone Bodies", "3-Hydroxybutyric Acid", "Pentanones", "Fish Oils", "Fatty Acids, Omega-3", "Docosahexaenoic "Eicosapentaenoic Acids". Acid", "Carnitine", "Acetylcarnitine", "apple polyphenol extract", "Thioctic Acid", "Taurine", "Ephedrine", "Dehydroepiandrosterone", "HMB", "β-hydroxy-β-methyl butyric acid", "Leucine", "Glutamine", "Argnine", "L-Arginine", "Monohydrate DL-Arginine Acetate", "Tyrosine", "L-Tyrosine", "Amino Acids, Branched-Chain", "Aminoisobutyric Acids", "L-Isoleucine", "L-Valine", "Vitamin E", "Tocopherols", "Magnesium", "Phosphates", "Calcium Phosphates", "Prebiotics", "Synbiotics, Bacterial", "Polysaccharides", "Erythro Isomer of Ephedrine", "5-Androsten-3-beta-hydroxy-17-one", "Sal-Phedrine Dehydroisoandrosterone", , "Ephedrine Sulfate", "Androstenolone", "Androstenedione", "testosterone boosters", "Renaudin, Ephedrine", "delta-4-Androstenedione", "4-Androstene-3,17-dione", «Strychnine», "Tribulus terrestris", "Sibutramine", "Goathead", "di-"Reductil", desmethylsibutramine", "(R)-DDMS", "sibutramine hydrochloride", "Meridia", "BTS-54524", "mono-desmethylsibutramine", "Methylhexanamine", "19-norandrosterone", "3-hydroxyestran-17-one", "19-noretiocholanolone", "Ellagic Acid", "1,3-dimthylbutylamine", "DMBA", "Maca root".

GRUPO A

En la clasificación del IAD, este grupo presenta aquellos alimentos y suplementos con un nivel de evidencia

científica fuerte de su eficacia y seguridad. Por lo tanto, son los suplementos permitidos para personas deportistas de acuerdo con los protocolos de buenas prácticas. Incluyen los alimentos deportivos, suplementos médicos y suplementos para mejorar el rendimiento deportivo⁽²⁾. En la Tabla 1 se presenta un resumen de los usos y dosis de los productos del grupo A.

Alimentos deportivos (fuentes de carbohidratos: geles, barras, gomas y bebidas deportivas)

Este grupo de alimentos deportivos aportan carbohidratos de fácil consumo y digestión. Los carbohidratos durante el ejercicio tienen claros beneficios en el rendimiento deportivo para múltiples disciplinas deportivas y mejoran el rendimiento a través de dos mecanismos⁽⁴³⁾:

- 1. Aportan energía para el músculo.
- Debido a su sabor, estimulan el sistema nervioso central y reducen la percepción del esfuerzo y mejoran el rendimiento de ejercicios prolongados (44-47).

La captación y la utilización celular de carbohidratos consumidos durante el ejercicio dependerá en gran medida de la velocidad a la cual este se absorbe a nivel del intestino. Usualmente, el consumo de carbohidratos ricos en glucosa (p. ej., sacarosa, polímeros de glucosa, maltodextrinas) no genera beneficios adicionales al consumirlos a una velocidad de más de 60 g por hora de ejercicio. De hecho, en este punto se saturan

Tabla 1. Resumen de usos y dosis de los productos del grupo A (nivel de evidencia fuerte y permitido para personas deportistas de acuerdo con los protocolos de buenas prácticas)

Subcategoría	Producto	Usos (tipo de deporte)	Dosis e indicaciones		
Alimentos deportivos	Geles deportivos ⁽⁵⁾	 Ejercicios de alta intensidad y de resistencia o aeróbicos. Preejercicio: como fuente de carbohidratos bajos en fibra y compacto, como combustible previo al evento para atletas que no pueden tolerar comidas o líquidos normales. Durante el ejercicio: para deportes continuos y/o intermitentes con duración > 1 hora. Posejercicio: puede formar parte de la estrategia de recuperación junto con otros alimentos. 	 1 sachet aporta 20 a 30 g de carbohidratos, consumir con agua o líquidos para reducir riesgo de intolerancia. Los geles "isotónicos" se pueden consumir sin agua. Ajustar la dosis de geles para lograr la meta de carbohidratos por hora según la duración e intensidad del ejercicio (Tabla 2) y la tolerancia intestinal del deportista. 		
	Gomas deportivas ⁽⁶⁾	 Ejercicios de alta intensidad y de resistencia cardiovascular o aeróbicos en los que sea viable consumir pequeñas dosis frecuentemente. Preejercicio: mismo uso que los geles. Durante el ejercicio: mismo uso que los geles. Posejercicio: mismo uso que los geles. 	 Cada goma usualmente aporta un promedio de 5 g de carbohidratos. Ajustar la dosis de gomas para lograr la meta de carbohidratos por hora según la duración e intensidad del ejercicio (Tabla 2) y la tolerancia intestinal del deportista. Consumir las gomas con agua o fluidos hipotónicos tanto para cumplir con las metas de hidratación como para reducir la concentración neta intragástrica de carbohidratos y el riesgo de síntomas gastrointestinales. 		
	Barras deportivas ^(7,8)	 Preejercicio: previa a un evento deportivo cuando no se tolera la alimentación normal. Durante: ejercicios intermitentes > 1 hora, de resistencia de bajo impacto, deportes con descanso en el medio tiempo y especialmente en deportes de ultralarga distancia (> 2,5 horas). Posejercicio: especialmente en deportistas, muy altos requerimientos de energía. Puede formar parte de la estrategia de recuperación junto con otros alimentos. 	 Ajustar la dosis de barras para lograr la meta de carbohidratos por hora según la duración e intensidad del ejercicio (Tabla 2) y la tolerancia intestinal del deportista. Preferir barras bajas en grasa (3-9 g/porción) y moderadas en proteína (3-10 g/porción) para reducir molestias gastrointestinales. 		
	Bebidas deportivas ^(9,10)	 Tradicionales: aportan agua, 6%-8% de carbohidratos y algunos electrólitos. Uso antes, durante y/o después del ejercicio. Bajas en o sin azúcar: proveen palatabilidad para estimular la ingesta, pero no son fuente significativa de combustible. En situaciones de restricción calórica o eventos cortos en deportistas sudoradores profusos. Bebidas de endurance: contienen mayores concentraciones de electrólitos y/o carbohidratos, ideales para eventos de ultralarga duración (> 2,5 horas). 	 Beba según la sed o midiendo el peso preejercicio y la pérdida de peso posejercicio y la tasa de sudoración previamente para determinar la cantidad de líquido por hora que se debería beber. La estrategia de hidratación previa y durante el ejercicio deberá evitar una pérdida mayor al 2% del peso corporal durante entrenamientos y competencias. La rehidratación implica beber ~150% del peso perdido. 		

Tabla 1. Resumen de usos y dosis de los productos del grupo A (nivel de evidencia fuerte y permitido para personas deportistas de acuerdo con los protocolos de buenas prácticas)

(continuación)

Subcategoría	ategoría Producto Usos (tipo de deporte)		Dosis e indicaciones		
Alimentos deportivos	Suplementos de electrólitos (polvo, líquido o tableta) ⁽¹¹⁾	- Preejercicio en ambientes calurosos, donde no se pueden reponer fácilmente fluidos.	 Consumir una a dos horas previas al ejercicio, 10 mL/kg de líquidos con muy alta concentración de sodio, idealmente tan cerca de concentraciones plasmáticas (135 mmol de sodio/L) como el deportista tolere. Para lograrlo se requiere alterar la composición de las bebidas deportivas que usualmente contienen 10-30 mmol/L (230 a 690 mg/L) de sodio. Se pueden diluir en menos volumen o añadir suplementos de electrólitos a una bebida que ya contiene electrólitos para llegar a la meta. *1 gramo de sal de mesa contiene 17 mmol de sodio o 400 mg de sodio. 		
		 Durante el ejercicio: en sudoradores profusos o perdedores de sal o sudoración por largos períodos de tiempo (> 180 minutos). Durante el ejercicio: > 180 minutos cuando se desea reponer electrólitos sin ingesta de carbohidratos. 	 No hay consenso guía sobre dosis óptimas de sodio durante el ejercicio. La recomendación general es de 500 a 700 mg de sodio por litro de líquido. Suplementos de electrólitos según indicación del nutricionista o médico deportivo para lograr la meta de sodio individualizada. En eventos de larga y ultradistancia, también se puede lograr la meta de sodio con los alimentos. 		
		- Durante períodos de diarrea o gastroenteritis	- Sales de rehidratación oral a concentración de 50-60 mmol/L, según indicación de nutricionista o médico deportivo.		
		 Posejercicio: recuperando déficits de líquidos moderados a graves. Cuando el deportista quiere rehidratar rápidamente para no interrumpir su sueño al levantarse a orinar en la noche. 	 En las siguientes dos a cuatro horas, consumir un volumen de líquido de 1,2 a 1,5 veces su pérdida de líquidos estimada, acompañada de electrólitos, especialmente sodio. Se puede reponer con alimentos o con suplementos de electrólitos. Cuando las pérdidas sean muy altas, apuntarle a consumir una concentración similar a las sales de rehidratación oral (SRO): entre 1000 mg a 1400 mL de sodio por litro de agua. 		
	Proteínas (Tabla 3)	Deportistas con entrenamiento moderado a intenso tanto de resistencia como de fuerza/potencia y de equipos.	- Dosis diaria: 1,2 a 1,6 g/kg peso.		
		- Deportistas en restricción calórica/ pérdida de peso.	- Dosis diaria: 1,6 a 2,4 g/kg peso.		
		- Deportistas en general.	- Dosis por comida: entre 0,3 a 0,4 g/kg/comida (aprox. 15-30 g por comida) para cumplir la dosis diaria.		
	Suplementos de macro- nutrientes mixtos ^(12,13)	 Situaciones donde no es práctico comer o acceder a la comida. Situaciones de inapetencia antes o después del ejercicio. 	 La composición de cada suplemento varía. Se debe adaptar al momento alrededor del ejercicio, la tolerancia gástrica y los requerimientos personalizados del deportista. 		
		- Antes, durante y después del ejercicio.	- Barras o productos en polvo altos en carbohidratos: aportan entre 200-300 kcal, > 40 g de carbohidratos y menos de 10 g de proteína por porción.		

Tabla 1. Resumen de usos y dosis de los productos del grupo A (nivel de evidencia fuerte y permitido para personas deportistas de acuerdo con los protocolos de buenas prácticas)

(continuación)

Subcategoría	ocategoría Producto Usos (tipo de deporte)		Dosis e indicaciones		
Alimentos deportivos	Suplementos de macro- nutrientes mixtos ^(12,13)	- Para deportistas con requerimientos elevados de energía.	- Barras o productos en polvo hipercalóricos y altos en carbohidratos: aportan > 300 kcal, > 40 g de carbohidratos y menos de 10 g de proteína por porción.		
		 Para deportistas en fase de hipertrofia, recuperación posejercicio o deportistas con requerimientos elevados de energía. 	- Alimentos deportivos hipercalóricos e hiperproteicos: aporta > 300 kcal, entre 20-60 g de carbohidratos y 20-30 g de proteína por porción.		
		- Para deportistas con bajos requerimientos de energía o en restricción calórica.	- Alimentos deportivos normocalóricos o hipocalóricos e hiperproteicos: aporta menos de 300 kcal, menos de 30 g de carbohidratos y 15-30 g de proteína por porción.		
		- Cuando no hay comida disponible.	- Barras de snack o reemplazos de comidas: aportan entre 180-300 kcal, menos de 40 g de carbohidratos y 7-15 g de proteína.		
Suplementos médicos	Minerales y vitaminas	 Suplementos utilizados para prevenir o tratar problemas clínicos, incluidas las deficiencias de nutrientes diagnosticadas. Deben usarse dentro de un plan más grande bajo la guía experta de un médico/nutricionista deportivo acreditado. 	- Salvo las situaciones especiales mencionadas en esta tabla, el RDA y el UL establecidos para la población general son extensibles a quienes practican un deporte.		
	Hierro ^(1,14)	- Deportistas con deficiencia de hierro confirmada.	- > 18 mg/día para mujeres y > 8 mg/día para hombres.		
	Calcio ^(1,14)	- Deportistas con baja disponibilidad de energía o disfunción menstrual.	- Se recomienda ingestas de calcio de 1500 mg/día y 1500-2000 UI de vitamina D.		
	Vitamina D ^(1,14)	 Deportistas con deficiencia de vitamina D- La suplementación no mejora el rendimiento si el deportista no 	 Las pautas de suplementación aún no están establecidas en los deportistas. Suplementos de dosis altas a corto plazo que incluyen 50.000 Ul/semana durante ocho a 16 		
		tiene una deficiencia.	semanas o 10.000 UI/día durante varias semanas puede ser apropiado para restaurar el estado en atletas deficientes. Las necesidades de suplementación dependen de la exposición a la luz solar y del tipo de piel. Se necesita monitorizar para evitar la toxicidad.		
	Probióticos ^(1,14)	- Deportistas fatigados o durante un tratamiento antibiótico o con una deficiencia inmunitaria identificable.	 Apoyo moderado en atletas con dosis diarias de ~1010 bacterias vivas. Se requieren más pruebas que respalden la eficacia para reducir los trastornos gastrointestinales e infección, por ejemplo, en atletas que viajan con frecuencia y pueden llegar a presentar procesos diarreicos de distintas etiologías. 		
Suplementos para el rendimiento	Cafeína o 1,3,7 trimethy- Ixantina ^(1,14-17)	 Deportes de resistencia (> 1 hora continua). Deportes de equipo. Deportes de corta duración y alta intensidad (de 1 a 60 minutos). Preentrenamiento cuando se sienta fatiga general antes de entrenar. *Se debe probar la tolerancia del deportista a la cafeína. 	 1 hora antes del ejercicio o durante el ejercicio de larga duración. 2 a 3 mg/kg de cafeína (aproximadamente 200 mg). Existen recomendaciones y evidencia moderada de dosis ergogénicas seguras hasta 6 mg/kg. 		

Tabla 1. Resumen de usos y dosis de los productos del grupo A (nivel de evidencia fuerte y permitido para personas deportistas de acuerdo con los protocolos de buenas prácticas)

(continuación)

Subcategoría	Producto	Usos (tipo de deporte)	Dosis e indicaciones		
Suplementos para el rendimiento	Monohidrato de creatina ^(1,17-20)	 Ejercicios cortos (< 30 segundos) de alta intensidad y en ciclos repetitivos. Ejemplos: pesas, crossfit, pruebas de velocidad o potencia, como saltos. Deportes de equipos, programas de acondicionamiento físico y recuperación de lesiones deportivas. Procesos de hipertrofia, aumento de fuerza y resistencia muscular Efectos más notorios en deportistas vegetarianos o veganos. 	 Mezclar con bebidas o comidas semisólidas (ej., yogurt griego). Consumir inmediatamente después de preparado. Usar cualquiera de los siguientes protocolos (ver consideraciones especiales para este suplemento): Protocolo de carga: iniciar con ~5 g (0,3 g/kg) de creatina, cuatro veces al día, durante cinco días. Mantenimiento con 0,03 g/kg una vez al día durante al menos cuatro semanas. Protocolo alternativo: iniciar y mantener dosis entre 3 a 5 g/día durante al menos cuatro semanas. 		
	β-alanina ^(1,21,22)	 Ejercicios continuos o intermitentes de alta intensidad que duran entre 30 segundos a 10 minutos. Cuando se realizan esfuerzos de alta intensidad durante o al final de sesiones de resistencia aeróbica. Ejemplos: velocistas, remo, natación, ciclismo de pista, deportes de equipo y de raqueta, ejercicio de fuerza intenso, ejercicios de intervalos de alta intensidad, crossfit. 	 Dosis de carga: 3,2 g/día mínimo ocho semanas o 6,4 g/día, mínimo cuatro semanas. Repartir la dosis total en tres a cuatro dosis al día, cada una entre 0,8 a 1,6 g de β-alanina. Dosis de mantenimiento: 1,2 g/día. Consumir preferiblemente junto con comidas⁽²³⁾. 		
	Bicarbonato de sodio ^(1,24-27)	Durante el entrenamiento o competencia: en deportes con esfuerzos únicos y/o repetitivos de alta intensidad de entre uno a diez minutos de duración. Ejemplo: natación, remo, ciclismo y atletismo de media distancia, deportes de combate y/o de equipo. Días previos a una competencia.	 Dosis: 200 a 400 mg/kg de bicarbonato + 10 mL/kg de líquido (en caso de consumir como polvo o efervescente). Junto con una comida alta en carbohidratos (~1,5 g CHO/kg). 120 minutos a 150 minutos antes del ejercicio. Protocolo precompetencia: 500 mg/kg dividido en tres a cinco dosis iguales, junto con las comidas, hasta cinco días precompetencia. 		
	Nitratos (jugo de remolacha) (1,17,28-30)	 Deportes de equipos e individuales con esfuerzos intermitentes de alta intensidad. Deportes esfuerzos submáximos entre cuatro a 30 minutos. Ejemplo: atletismo o running, ciclismo. Entrenamientos de resistencia aeróbica. En condiciones de hipoxia (entrenamiento en altura). 	 Dosis aguda: 350 a 600 mg de nitratos, dos a tres horas antes del ejercicio. Dosis crónica: 350 a 600 mg de nitratos al día, de tres a 15 días previo a la competencia + 300 a 600 mg de nitratos tres horas previas a la competencia. Se obtienen cerca de 400 mg de nitratos en: 500 mL de jugo de remolacha fresco, en 200 g de remolacha, en dos tazas o 150 g de perejil, en dos tazas o 150 g de espinaca o en un racimo de 120 g de Bok Choy^(29,30). 		
	Glicerol ⁽³¹⁾	 Ambientes calurosos y húmedos⁽³²⁾. Durante ejercicio prolongado. En situaciones con acceso restringido a líquidos. Ejemplo: durante la natación de un Ironman, en partidos de fútbol o tenis en situaciones calurosas. Rehidratación agresiva tras pérdidas de peso súbitas para "lograr el peso" o en eventos de días consecutivos. 	 Hiperhidratación preejercicio: 1,2 a 1,4 g/kg peso en cerca de 25 mL/kg de líquido (agua o bebida con electrólitos), 90 a 180 minutos previo al ejercicio. Hidratación posejercicio: consumo de líquidos equivalente al 150% del peso perdido + 1 g/kg de glicerol por cada 1,5 litros consumidos⁽³³⁾. 		

RDA: recomendación de ingesta diaria; SRO: sales de rehidratación oral; UL: límite máximo de seguridad.

Tabla 2. Guías para el consumo de carbohidratos según la actividad deportiva

Tipo de ejercicio	Duración	Meta de consumo de carbohidrato	Comentarios
Ejercicio corto	< 45 minutos	No necesita	
Ejercicio intenso continuo	45 a 75 minutos	Pequeñas dosis incluyendo enjuagues	Se puede usar un rango de fuentes de carbohidratos desde bebidas, geles y productos deportivos. - El beneficio principal acá se obtiene de la interacción con el cerebro y el sistema nervioso central. Para optimizar los beneficios, el deportista debe planificar para poder realizar enjuagues frecuentes y de una duración significativa > 10 segundos.
Ejercicio de resistencia incluyendo deportes de "paradas y arranques"	1-2,5 horas	30 a 60 g/hora	 Las oportunidades para consumir carbohidratos dependen de las reglas de cada deporte. Se pueden usar opciones líquidas hasta sólidas. El deportista debe practicar su plan de combustible e hidratación según sus requerimientos y tolerancia gastrointestinal. Los beneficios posiblemente se obtengan tanto en la disponibilidad de combustible muscular como a nivel del sistema nervioso central (percepción del esfuerzo).
Eventos de ultrarresistencia	> 2,5-3 horas	Hasta 90 g/hora	 Igual que arriba. Mayores ingestas de carbohidratos se asocian con más rendimiento. Los productos con carbohidratos de transportadores múltiples permitirán mayores tasas de absorción y oxidación de carbohidratos.

Adaptada del Instituto Australiano del Deporte⁽⁵⁾.

los transportadores intestinales de glucosa (llamados cotransportadores de sodio-glucosa tipo 1 [SGLT1]) y una ingesta excesiva puede generar síntomas gastrointestinales que afecten el rendimiento⁽⁴³⁾.

Los deportistas pueden (y deberían) "entrenar" el intestino, consumiendo carbohidratos en variedad de presentaciones y cantidades por hora durante el ejercicio para maximizar el número y la actividad de los transportadores SGLT1, con el fin de aumentar la captación de glucosa y reducir la frecuencia de síntomas gastrointestinales (43).

Algunos alimentos deportivos ricos en carbohidratos contienen carbohidratos de "transporte múltiple". Esto significa que contienen una combinación de glucosa y fructosa (idealmente en una *ratio* glucosa:fructosa de 2:1), lo cual permite mayores ingestas y captación de carbohidratos teniendo en cuenta que cada uno se absorbe por un transportador diferente. El transportador de glucosa SGLT1 tiene una saturación de 60 g/hora, mientras que el de fructosa puede transportar hasta 30 g/hora. De ahí la importancia de que siempre haya menor cantidad de fructosa para evitar el efecto "cuello de botella" a nivel de transportadores intestina-

les y evitar una acumulación de monosacáridos a nivel de la luz intestinal que puedan empezar a causar una carga osmótica y síntomas gastrointestinales (cólicos, náusea, diarrea) (7,43,48).

El consumo de carbohidratos antes, durante y después del ejercicio intenso o prolongado puede ayudar a proteger la función inmune debido a que el consumo de carbohidratos se asocia con menos daño muscular inducido por el ejercicio, menos producción de citocinas y células inmunitarias secundario al estrés⁽⁴⁹⁾. Adicionalmente, puede haber un beneficio en la salud ósea que reduzca el efecto de resorción ósea que sucede al realizar ejercicio con baja disponibilidad energética^(7,48).

Las bebidas deportivas tradicionales y de *endurance* o resistencia aportan carbohidratos y electrólitos para reponer simultáneamente líquidos y electrólitos perdidos por sudor y evitar desbalance hidroelectrolítico, especialmente evitar la hiponatremia dilucional. Según varias posiciones de expertos, la composición ideal para rehidratar, maximizar tolerancia y palatabilidad está en los rangos de 4%-8% de carbohidratos (4-8 g/100 mL) y 230-690 mg/L (10–30 mmol/L) de sodio. Algunas bebi-

Tabla 3. Fuentes proteicas de suplementos en polvo, barras u otros alimentos deportivos altos en proteína⁽³⁴⁻⁴²⁾

Fuente de proteína	Valor biológico ¹	Comentarios	
Suero (de leche) o proteína Whey	Alto	 Conforma el 20% del contenido proteico de la leche animal. Es buena fuente de aminoácidos de cadena ramificada, incluyendo la leucina. Una dosis de 30 g de polvo de cualquier presentación (concentrado, aislado o hidrolizado) aportará cerca de 21 a 27 g de proteína. Concentrado de proteína Whey: (CPW) <l>Es la presentación más económica, aporta un 70%-80% de su peso en proteína, junto con pequeñas cantidades de carbohidratos y grasa.</l> Aporta una pequeña cantidad de lactosa, por lo tanto, esto se debe tener en cuenta en deportistas con intolerancia a la lactosa. Aislado de proteína de Whey (APW) De mayor costo pues requiere más filtración para aumentar la concentración de proteína (usualmente un 90% del peso del producto). Contiene mínimas cantidades de carbohidratos y grasa. Su pico o máxima absorción es a los 60 minutos aproximadamente tras la ingesta y mantiene la aminoacidemia durante dos a tres horas cuando se consume sin otros alimentos. Hidrolizado de proteína de Whey (HPW) Es la presentación más costosa. Tiene un procesamiento adicional para romper las proteínas completas del CPW o del APW, hasta convertirlas en péptidos de cadena corta, con lo cual dicen acelerar su captación. 	
Caseína (de leche)	Alto	 Conforma el 80% del contenido proteico de la leche animal. Se puede encontrar como caseína, caseinato de calcio o hidrolizado de caseína. Se coagula en el ambiente ácido del estómago, reduce el vaciamiento gástrico y reduce la velocidad de absorción de aminoácidos. Su pico de absorción es aproximadamente a las dos a tres horas tras la ingesta y mantiene la aminoacidemia hasta por seis horas. A menudo se recomienda su consumo en la noche con la proclama de liberación prolongada de aminoácidos; sin embargo, falta investigación que confirme la ventaja de usar caseína en la noche sobre otras proteínas. 	
Albúmina o clara de huevo	Alto	 Proteína de alto valor biológico que no aporta grasa ni carbohidratos. Se encuentra disponible como clara de huevo en los supermercados para añadir a comidas preparadas. 	
Soya	Alto	 Proteína de alto valor biológico y digestión intermedia. Se encuentra en presentación concentrada o aislada. Es más baja en leucina que la proteína de Whey, pero esto se puede solucionar con una fortificación de leucina. Es más económica que la proteína de Whey y a menudo se agrega a barras de proteína. 	
Otras proteínas vegetales (ej., de arveja o guisante, Hemp, de garbanzo, de arroz)	Variable según la fuente	 Se encuentran en el mercado como proteínas de una sola fuente o mezclas de proteínas. Su valor biológico puede aumentar al mezclar fuentes, al fortificar con leucina y otros aminoácidos o al aumentar el tamaño de la porción. 	
BCAAS	Bajo	 Los aminoácidos individuales que incluyen leucina, glutamina y aminoácidos de cadena ramificada pueden ser útiles para fortificar las proteínas de fuentes vegetales. Por sí solos, son innecesarias cuando se consumen fuentes de proteína animal o para consumirlos como un suplemento aislado. 	

El método vigente para evaluar el valor biológico de las proteínas es la puntuación de aminoácidos corregida por la digestibilidad de las proteínas (PDCAAS). Una proteína se considera de alto valor biológico cuando su valor de PDCAAS es 1.

das deportivas pueden contener proteína añadida, pero esto no ha demostrado tener beneficios adicionales⁽⁵⁰⁾.

Los geles deportivos vienen al 60%-75% de concentración de carbohidratos, con una consistencia tipo

miel. Los geles con carbohidratos de transporte múltiple, que combinan glucosa y fructosa, se absorben por diferentes transportadores a nivel intestinal. Las combinaciones de glucosa:fructosa en *ratio* 2:1 pueden ser útiles cuando las ingestas superan los 60 g de carbohidrato por hora⁽⁵⁰⁾.

Las gomas deportivas son otra forma altamente concentrada (75%-90%) de carbohidratos de fácil consumo y digestión. Algunas variedades pueden contener sodio y cafeína⁽⁵⁰⁾.

Las barras deportivas son una forma más compacta de carbohidratos. Comparados con los geles y bebidas deportivas, tienen composiciones nutricionales mucho más variadas, por lo cual se debe revisar cuidadosamente la información nutricional de cada una⁽⁵⁰⁾.

Los suplementos de electrólitos son útiles antes del ejercicio si se realiza una precarga de sodio para evitar hiponatremia en ambientes calurosos, donde no se pueden reponer fácilmente los fluidos. Durante el ejercicio, son útiles para prevenir la deshidratación particularmente en situaciones de entrenamiento de baja disponibilidad de carbohidratos o períodos de restricción calórica; o en episodios de diarrea cuando la prioridad es rehidratar más que consumir energía o carbohidratos. Por lo tanto, se busca lograr metas de reposición focalizada o específicas de sodio y potasio, los cuales se pierden por el sudor o intolerancias gastrointestinales. Después del ejercicio, los suplementos de electrólitos apoyan la reposición planificada de electrólitos y líquidos, y favorecen una rehidratación más rápida y efectiva. Esto aplica para la deshidratación posterior al ejercicio y otras actividades que implican deshidratación como las de "lograr el peso de la categoría" previo a una competencia (50).

Consideraciones especiales en el consumo de alimentos deportivos ricos en carbohidratos

Las barras, geles, gomas o bebidas deportivas pueden ser un gasto innecesario, ya que no se necesitan en todas las sesiones de entrenamiento. Los deportistas deben considerar sus metas de composición corporal y requerimientos nutricionales antes de decidir si consumir o no algún alimento deportivo. En el caso de deportistas que tengan restricciones calóricas a corto o largo plazo, el uso desmesurado de alimentos deportivos puede dañar el balance energético y la densidad nutricional general de la dieta (5-7,12,50-52).

Todo alimento deportivo que se planee usar en competencia se debe probar previamente y practicar su consumo durante las sesiones de entrenamiento para probar la tolerancia.

Algunos deportistas pueden presentar problemas gastrointestinales importantes y requerirán planes

de manejo personalizados. Las siguientes estrategias puede ayudar:

- Comer barras, geles y gomas con líquidos para cumplir la meta de hidratación y mejorar la tolerancia gástrica.
- "Entrenar el intestino": aumentar intencionalmente la cantidad de carbohidratos que se consumen a partir de alimentos deportivos para ir desarrollando una mejor capacidad de absorber carbohidratos y mejorar el confort intestinal.
- Usar alimentos deportivos con carbohidratos de transportadores múltiples, especialmente cuando se consuma a una velocidad mayor a 60 g de carbohidratos por hora.
- Los deportistas con malabsorción de fructosa o intolerancia a FODMAP debería estar alertas al contenido de fructosa en los alimentos deportivos u otros ingredientes añadidos como inulina.

Los alimentos deportivos, al ser altos en carbohidratos, probablemente contribuyen a la erosión dental. Para reducir el impacto potencial en la salud oral, los deportistas podrían considerar las siguientes alternativas si se adaptan de manera realista dentro de sus planes de alimentación:

- Minimizar el tiempo de exposición entre los dientes y el alimento deportivo.
- Beber agua después de consumir el alimento deportivo para enjuagar la boca.
- Cuando sea viable, consumir productos lácteos inmediatamente después del ejercicio o goma de mascar sin azúcar inmediatamente después de consumir el alimento deportivo.
- Evitar lavarse los dientes por lo menos 30 minutos después de consumir el alimento deportivo rico en carbohidratos para permitir que se endurezca nuevamente el esmalte dental.

Dentro de la periodización del entrenamiento, existen períodos planificados para una "baja disponibilidad de carbohidratos" (cuando se entrena con bajos depósitos de glucógeno o en ayunas). Esta estrategia puede aumentar algunas respuestas adaptativas al ejercicio. Por lo tanto, en algunas ocasiones, el deportista puede elegir intencionalmente no consumir carbohidratos durante la sesión o al menos durante la primera parte de una sesión de entrenamiento (5-7,12,50-52).

Proteínas

La mayoría de los deportistas cubren sus requerimientos diarios de proteínas a través de los alimentos de su dieta, sin necesidad de recurrir a un suplemento de proteína. Sin embargo, para optimizar la ingesta, se debe prestar atención especial a la cantidad total consumida al día, el fraccionamiento a lo largo del día y alrededor del ejercicio y la calidad de la proteína^(1,53).

El perfil de aminoácidos de algunas proteínas animales y de la soya se considera de alto valor biológico, dado que contienen mayores cantidades de aminoácidos esenciales, incluyendo la leucina, que es el principal aminoácido responsable de estimular la síntesis proteica muscular (34). Generalmente, las proteínas de origen vegetal tienen menor digestibilidad y cantidad de aminoácidos esenciales, por lo cual, para cubrir los requerimientos del deportista, basta simplemente con consumir una mayor cantidad de proteína total diaria y usar combinaciones de proteínas (p. ej., cereales con leguminosas) para complementar sus perfiles de aminoácidos (53).

Antes de iniciar un suplemento de proteína, se debe haber considerado factores como las cargas de entrenamiento y metas del deportista, los requerimientos nutricionales diarios, el aporte proteico del plan de alimentación, la practicidad de los escenarios posejercicio y la viabilidad económica para el deportista.

Algunos usos apropiados para un suplemento serían:

- En el período inmediato posejercicio, cuando la prioridad es aumentar la disponibilidad de proteínas de rápida digestión y absorción.
- Como método de fortificar comidas y refrigerios que usualmente son bajos en proteína (ej., desayuno o refrigerio nocturno).
- Como alternativa a alimentos de gran volumen en períodos de inapetencia.
- Cuando hay pocas posibilidades higiénicas de preparar o conservar alimentos fuentes de proteína, para evitar enfermedades transmitidas por alimentos.
- Para preservar o aumentar la masa libre de grasa durante procesos guiados de pérdida de peso, donde se requiere una mayor ingesta de proteína en el marco de una dieta con restricción calórica.
- Estimular y proveer sustrato para la síntesis proteica en procesos de mantenimiento y reparación muscular.

La síntesis muscular óptima sucede hasta 24 horas después del ejercicio, entonces se recomienda fraccionar la dosis proteica diaria en tres a cinco tomas diarias (34-36,53,54).

Consideraciones especiales en el consumo de alimentos deportivos altos en proteína⁽⁵⁵⁾

 El uso de proteínas en polvo como suplemento puede ser un gasto innecesario. Se recomienda abordar la

- ingesta de proteína diaria primero desde los alimentos y bebidas fuentes de este nutriente en cada comida y refrigerio antes de pensar en un suplemento.
- Depender de los suplementos de proteína o abusar de ellos implica perder oportunidades para incluir alimentos ricos en proteína que también aporten otros nutrientes a la dieta.
- En las ocasiones en las que por practicidad se amerite el uso de un suplemento, el deportista puede reducir el costo eligiendo la versión más sencilla (concentrado o aislado) en vez de elegir las presentaciones más costosas debido a que traen la proteína hidrolizada o mezclada con otros ingredientes (innecesario). También se puede combinar la proteína en polvo en conjunto con otros alimentos fuente de proteína.
- Algunos suplementos altos en proteína pueden tener alérgenos u otros ingredientes que son innecesario o incluso están prohibidos. En general, se recomienda consumir productos que hayan sido analizados por terceras partes y mantener el consumo a máximo dos dosis al día.

Suplementos de macronutrientes mixtos⁽¹³⁾

Vienen en presentaciones en polvo, bebidas listas para consumir, barras normocalóricas, hipercalóricas, hiperproteicas o altas en carbohidratos o como "reemplazos de comidas". Aportan una fuente concentrada de carbohidratos con proteína y otros micronutrientes. Usualmente contienen mayores cantidades de grasas, por lo que se debe tener en cuenta que habrá un vaciamiento gástrico más lento y, así mismo, la velocidad con la que se dispondrá de los nutrientes en sangre⁽¹³⁾.

Las barras o reemplazos de comida con frecuencia tienen nueces, frutas, granos y otros ingredientes "integrales" o "saludables".

Dado que la composición de cada uno varía, se debe adaptar al momento alrededor del ejercicio, la tolerancia gástrica y los requerimientos personalizados del deportista⁽¹³⁾.

Suplementos médicos

Suplementos utilizados con el fin de prevenir o tratar condiciones médicas o enfermedades incluidas deficiencias nutricionales diagnosticadas.

Deben utilizarse como parte de un plan guiado por un profesional de la salud o nutricionista deportivo acreditado. Como ejemplos tenemos: hierro, calcio, vitaminas, multivitaminas, probióticos y cinc. El ejercicio físico requiere de la activación de diversas vías metabólicas y resultan en adaptaciones bioquímicas musculares que aumentan las necesidades de micronutrientes. Sumado a esto, con frecuencia algunos deportistas restringen su ingesta de energía, se someten a prácticas extremas de pérdida de peso, eliminan de su alimentación uno o más grupos de alimentos, consumen dietas mal elegidas, consumen cantidades subóptimas de alimentos, lo cual pone en riesgo los niveles corporales de diversos micronutrientes. Esto ocurre con mayor frecuencia en el caso del calcio, vitamina D, hierro y algunos antioxidantes; los cuales pueden requerir de una suplementación ante una deficiencia clínicamente definida⁽⁵⁶⁾.

Deficiencia de hierro

La deficiencia de hierro, con o sin anemia, puede afectar la función muscular y limitar la capacidad de trabajo, la cual compromete la adaptación al entrenamiento y el rendimiento atlético. Un estado de hierro subóptimo a menudo resulta de la ingesta baja de alimentos fuentes de hierro hemo y de un aporte calórico inadecuado. Además, los períodos de rápido crecimiento, entrenamiento a grandes altitudes, pérdida de sangre a nivel menstrual, hemólisis por pisada, donación de sangre, aumentos de las pérdidas a través del sudor, orina y heces o una lesión pueden afectar negativamente los depósitos corporales de hierro (1).

Algunos parámetros bioquímicos que permiten identificar el estado del hierro serían: cuadro hemático y ferritina.

Los atletas con deficiencia de hierro requieren seguimiento clínico, puede incluir suplementación con dosis mayores a su recomendación de ingesta diaria (RDA) (es decir > 18 mg/día para mujeres y > 8 mg/día para hombres) junto con una mejor ingesta de hierro a partir de la dieta. Sin embargo, los suplementos de hierro en dosis altas no se deben tomar a menos que haya deficiencia de hierro^(1,56).

Deficiencia de calcio

Evitar productos lácteos y otros alimentos ricos en calcio, un aporte restringido de energía en la dieta, así como, un incremento de las necesidades de calcio y/o la alimentación desordenada pueden producir riesgo de un estado subóptimo de calcio. La suplementación con calcio debe ser determinada después de una evaluación exhaustiva de la ingesta dietética habitual y, en caso de requerirse suplementación, se recomien-

dan dosis de calcio de 1500 mg/día y 1500-2000 UI de vitamina D para optimizar la salud ósea en atletas con baja disponibilidad de energía o disfunción menstrual^(1,56).

Deficiencia de vitamina D

La vitamina D es importante en la regulación de transcripción de genes en la mayoría de los tejidos, entonces la insuficiencia/deficiencia afecta a muchos sistemas del cuerpo.

Muchos atletas están en riesgo de deficiencia en distintos momentos del año, particularmente si entrenan en interiores, tienen la piel oscura, viven lejos del ecuador, llevan prendas que cubren la mayoría del cuerpo, utilizan protectores solares con regularidad o evitan intencionalmente el sol. Por tanto, en casos diagnosticados de deficiencias, la suplementación dependerá de la exposición a UVB y el tipo de piel e incluirá 50.000 UI/semana durante 8-16 semanas o 10.000 UI/día durante varias semanas^(1,56).

Cinc

No hay soporte o evidencia para prevenir, pero sí existe evidencia moderada para tratar síntomas de la vía respiratoria alta.

Una revisión realizada por la organización Cochrane⁽⁵⁷⁾ muestra el beneficio de las pastillas de acetato de cinc (75 mg) para disminuir la duración de síntomas de la vía respiratoria alta; sin embargo, el cinc debe tomarse menos de 24 horas después del inicio de los síntomas. Los efectos secundarios pueden incluir mal gusto y náuseas. Se deben evitar las altas dosis de cinc porque pueden disminuir la función inmune^(1,56).

Antioxidantes

Los antioxidantes tienen un papel importante en la protección de las membranas celulares contra el daño oxidativo. Debido a que el ejercicio puede aumentar el consumo de oxígeno de 10 a 15 veces, se ha planteado la hipótesis de que el entrenamiento crónico contribuye a un constante "estrés oxidativo". Pero actualmente también se sabe que el ejercicio da como resultado un aumento neto en las funciones del sistema antioxidante nativo. Por lo tanto, un atleta bien entrenado puede tener un sistema antioxidante endógeno más desarrollado que un individuo menos activo y puede no beneficiarse de la suplementación con antioxidantes, especialmente si consume una dieta alta en alimentos ricos en estos^(1,56).

Hoy en día es poca la evidencia de que los antioxidantes mejoran el rendimiento deportivo y los estudios disponibles presentan problemas de diseño (variabilidad en las características de los sujetos, protocolos de entrenamiento, dosis y combinaciones de suplementos de antioxidantes, así como, la escasez de diseños cruzados), que evitan llegar a conclusiones contundentes. También hay evidencia de que la suplementación con antioxidantes puede influir negativamente en las adaptaciones al entrenamiento. Por tanto, la estrategia más segura y efectiva para su adecuado consumo es una dieta bien elegida que contenga alimentos ricos en antioxidantes^(1,56).

En resumen, se debe informar a los atletas que la ingesta de suplementos de vitaminas y minerales no mejora el rendimiento a menos de que su objetivo sea revertir una deficiencia preexistente. Además, los estudios científicos disponibles que apoyan el uso de suplementación con micronutrientes a menudo se ven empañados por problemas de diseño, hallazgos equívocos y débiles. Finalmente, los atletas deben buscar una evaluación clínica completa que recopile la ingesta de nutrientes, junto con la observación de signos y síntomas asociados con deficiencia de micronutrientes, antes de considerar la opción del uso de un suplemento⁽⁵⁶⁾.

Suplementos para el mejorar el rendimiento

Según el Comité Olímpico Internacional (COI), esta categoría puede ser subdividida en dos: suplementos que mejoran el rendimiento directamente (cafeína, β-alanina, bicarbonato, nitratos y creatina), suplementos que mejoran el rendimiento del deportista de manera indirecta al prevenir enfermedades (vitamina D, C y E, probióticos, carbohidratos, calostro bovino, polifenoles, cinc, glutamina, cafeína, equinácea, omega-3 y β-glucanos), favorecer la modificación de la composición corporal (proteína, leucina, cromo, té verde, ácido α-lipoico, quitosano y fibra konjac), mejorar la tolerancia al dolor y mejorar la tolerancia al entrenamiento (creatina, β-hidroxi-β-metilbutirato [HMB], omega-3, vitamina D y C, colágeno, curcumina y jugo de cereza concentrado) (1). Dado que muchos de los suplementos mencionados en esta segunda subdivisión, según el COI, no tienen la evidencia suficiente para pertenecer a la categoría A, estos no son analizados en el presente documento.

Suplementos o ingredientes que pueden apoyar o potenciar el rendimiento deportivo

Mejor utilizar bajo un protocolo individualizado y orientado a eventos específicos, con la orientación de

un nutricionista deportivo experto y acreditado. Como ejemplos tenemos: cafeína, β -alanina, bicarbonato, jugo de remolacha/nitratos, creatina, glicerol.

Cafeína

La cafeína, cafeína anhidra o 1,3,7-trimetilxantina, es un estimulante natural que se encuentra en el café, el té, las bebidas de cola, las bebidas energizantes, los chocolates y los alimentos deportivos especializados. Gran parte de los estudios que evalúan su efecto en el rendimiento deportivo utilizan la presentación concentrada en polvo o cápsulas de cafeína anhidra para lograr las dosis ergogénicas de 2 a 6 mg/kg. Sin embargo, la manera más común de consumirla es a través de los alimentos, con la dificultad de que sus contenidos de cafeína pueden variar según la preparación. Por ejemplo, en una misma tienda, cada café que se prepara puede variar en el contenido de cafeína. Se podría decir que, por regla del pulgar general, una taza de café puede contener cerca de 100 mg de cafeína. Esto sugiere que, para un sujeto de 60 kg, con dos tazas de café (200 mg = 3,3 mg/kg peso) se podría una lograr dosis ergogénica^(15,58).

Para obtener una dosificación precisa habría que usar más alimentos o suplementos cuya concentración sea conocida y estandarizada, y leer la información nutricional del producto (suplementos, alimentos deportivos, bebidas energizantes).

A continuación, se presentan algunos alimentos con su contenido de cafeína (y sus variaciones) (29):

- Café instantáneo, 250 mL: 60 mg.
- Café de infusión, 250 mL: 80 mg-282 mg.
- Café corto o expreso, 30 mL: 25-214 mg.
- Té verde de infusión, 250 mL: 30-50 mg.
- Chocolate caliente, 250 mL: 5-10 mg.
- Coca Cola, 600 mL: 58 mg.
- Red Bull (y sugar free), 250 mL: 80 mg.
- Monster energy drink, 237 mL: 151 mg.
- Vive 100, 240 mL: 121 mg.
- Speed Max, 240 mL: 45 mg.
- Gel GU con cafeína, sobre de 32 g: 20 mg.
- Gel Hammer Espresso, sobre de 32 g: 50 mg.
- Gel 100 Maurten Caf100, sobre de 40 g: 100 mg.
- Gel SIS GO+Caff, sobre de 40 g: 75 mg.
- Gel Going Café: sobre de 33 g: 12,5 mg.

Desde 2004, la Agencia Mundial Antidopaje (AMA) dejó de considerarla sustancia de dopaje y se permite su uso libre dentro de la dieta y como ayuda ergogénica para las competencias⁽⁵⁹⁾.

Después de su ingesta, la cafeína se absorbe rápidamente y tiene un efecto máximo cerca de los 40 minutos posingesta. En la actualidad, hay evidencia científica robusta que comprueba los siguientes efectos ergogénicos o de mejora del rendimiento deportivo^(16,60,61):

- Incluso en bajas dosis (2-3 mg/kg o aproximadamente 200 mg) mejora el rendimiento sin importar si se ingiere antes del ejercicio o durante el ejercicio (en el caso de actividades de larga duración).
- Tiene efectos en el sistema nervioso central al ser antagonista de receptores de adenosina, lo que reduce la percepción de la fatiga, mejora la autorregulación y permite sostener por mayor tiempo actividades de habilidad y destreza.
- Su efecto ergogénico se produce mediante diferentes componentes del rendimiento deportivo, incluyendo resistencia aeróbica, fuerza y resistencia muscular, potencia y velocidad.
- Aumenta la movilización de grasas del tejido adiposo a la célula muscular y puede cambiar la contractilidad muscular. Esta puede ser una razón de la mejoría del rendimiento, pero probablemente no es la principal.

Dado que algunas personas pueden no responder a la cafeína o tener efectos adversos, se recomienda probar esta sustancia y las dosis óptimas individuales antes de usarla en una competencia⁽⁵⁹⁾.

Creatina

La creatina se almacena principalmente en el músculo en su forma libre o fosforilada (fosfocreatina) y desempeña un papel importante en la provisión de energía para ejercicios intensos y explosivos. El músculo tiene una capacidad de almacenamiento limitado de este nutriente, el cual le alcanza para sostener 8 a 10 segundos de ejercicios en condiciones máximas⁽⁶²⁾.

El ser humano sintetiza endógenamente cerca de 1 g/día de creatina, por lo cual este es un nutriente no esencial. También se obtiene de la dieta en forma concentrada en las carnes animales, por lo cual las personas con una alimentación vegetariana o vegana suelen tener menores niveles de creatina en la sangre y el músculo^(18,63).

La suplementación según las guías descritas en este documento ha mostrado aumentar la concentración muscular de creatina y fosfocreatina, junto con un aumento en el rendimiento en deportes de alta intensidad, aumento de la fuerza muscular, potencia muscular, resistencia muscular e hipertrofia, reducción de la fatiga y/o mejora el rendimiento en intervalos repetidos de *sprints*^(1,18,64,65). Esto es útil para una gran variedad de

deportes e incluso para procesos de recuperación de largos períodos de inmovilidad o lesiones al mejorar el mantenimiento de la masa muscular, mantener o incrementar la creatina y los receptores musculares GLUT4, aumento del glucógeno muscular y aumento de la expresión factor de crecimiento^(19,66). La suplementación de creatina también tiene efectos en el cerebro, incluyendo mejor procesamiento cognitivo en sujetos sanos y podría reducir el deterioro cognitivo o favorecer la recuperación de lesiones traumáticas cerebrales leves^(18,64,67,68).

El suplemento viene en forma de monohidrato de creatina, el cual se absorbe en un 99% (otras presentaciones no tienen evidencia científica robusta de mayor absorción o velocidad de absorción y no hay razones científicas para consumir la creatina en otra presentación) (69). No existe evidencia de efectos adversos serios relacionados con el consumo de creatina a largo plazo (4 años) (18,20), ni efectos sobre la función renal o termorreguladora en sujetos sanos.

Dado que la captación muscular de la creatina está mediada por insulina, se podría obtener una mayor respuesta a la suplementación al consumirla con alimentos ricos en proteína (50 g) y carbohidratos (50 g) sin necesidad de que sean carbohidratos simples.

Una vez diluida la creatina, con agua, bebidas deportivas o alimentos semisólidos, esta se degrada rápidamente a creatinina, por lo cual se debe consumir inmediatamente.

Son pocos estudios los que muestran una diferencia significativa en el momento de consumo (antes o después del ejercicio). Sin embargo, una recomendación prudente sería consumirlo junto con la comida post ejercicio (18,70).

Consideraciones especiales en el consumo de creatina

- Ganancia de 1 a 2 kg de peso: esto es de especial importancia en deportes que compiten por categorías de peso o que requieren mantenerse livianos, como el salto con garrocha. Debido a que el aumento de la concentración muscular de creatina genera un aumento de la ganancia de peso secundario a un aumento del agua corporal, este aumento de peso se mantendrá siempre que se mantenga la suplementación con creatina. Una vez suspendida la creatina, el peso ganado por agua y creatina se normaliza en las siguientes cuatro a seis semanas.
- Algunos deportistas pueden experimentar síntomas gastrointestinales tras su consumo, por lo que es prudente probar este suplemento lejos de una com-

petencia. En caso de presentar síntomas gastrointestinales sería recomendable evitar el protocolo de carga y preferir el protocolo alternativo que sostiene la misma dosis en el tiempo, evitar el consumo simultáneo de la creatina con comidas altas en fibra o grasa o suplementos que, se conoce, pueden producir síntomas gastrointestinales^(17,71).

β-alanina

La suplementación crónica (entre cuatro a 24 semanas) con β -alanina es segura y aumenta las concentraciones intramusculares de carnosina, ya que esta última es un dipéptido compuesto por β -alanina y L-histidina. A pesar de que la L-histidina es un aminoácido esencial, se encuentra en cantidades suficientes en el cuerpo, mientras que la β -alanina es el aminoácido limitante en la síntesis intramuscular de carnosina $^{(21)}$.

Aunque la carnosina se encuentra en carnes animales, tras la ingesta de estas la carnosina se descompone rápidamente en sus dos aminoácidos, por lo cual la suplementación de carnosina no incrementa los niveles intramusculares de la misma^(72,73).

La carnosina participa en el buffering de protones o amortiguación de pH, la regulación muscular de calcio previene glicosilación y actúa como antioxidante $^{(74)}$. Con la suplementación de β -alanina y su consiguiente incremento de las concentraciones intramusculares de carnosina, los deportistas entrenados y no entrenados pueden mejorar la resistencia en actividades de alta intensidad en ejercicios que duran entre 30 segundos hasta 10 minutos, como por ejemplo en ciclistas que participan en sprints o piques $^{(75-77)}$.

La presentación comercial del suplemento es en forma de polvo o cápsula. De ser posible se recomienda usar fórmulas de liberación prolongada, consumir con las comidas dado que hay evidencia que sugiere que esto aumenta la captación muscular⁽⁷⁸⁾.

Se estima que, en promedio, tras 18 semanas de suplementación con β -alanina, se alcanzan los máximos niveles de carnosina intramuscular y que con una dosis de mantenimiento (1,2 g/día) se puede mantener los niveles de carnosina un 30% a 50% por encima de lo usual. Una vez suspendido el suplemento, el proceso de *washout* o descarga de carnosina es lento (~2% por semana)⁽²¹⁾.

Consideraciones especiales en el consumo de β-alanina⁽²¹⁾

 Aunque la mayoría de los suplementos pre-workout contienen β-alanina, no hay evidencia de que la

- β-alanina tenga efectos ergogénicos de manera aguda, es decir, que consumir una sola dosis no tendrá efectos inmediatos durante el entrenamiento.
- Las dosis agudas de liberación rápida que superen los 1600 mg por dosis pueden generar parestesias u hormigueos en la piel que puede durar hasta una hora^(17,79,80). Esto es común en los suplementos pre-workout, y algunos deportistas pueden asociar erróneamente estos síntomas con "evidencia" de la efectividad del suplemento.
- Dado que la β-alanina puede aumentar la capacidad de entrenamiento en alta intensidad, los deportistas deben estar conscientes de la posibilidad de lesiones por sobre entrenamiento.
- La suplementación debe ser crónica para que surta efecto ergogénico (mínimo cuatro u ocho semanas según el protocolo), por lo cual es un costo importante que el deportista debe considerar⁽⁸¹⁾. El profesional que lo prescribe debe asegurarse que las condiciones del deporte lo ameriten.

Bicarbonato de sodio

Aunque el cuerpo produce este anión extracelular, la evidencia muestra que se pueden elevar los niveles endógenos de bicarbonato de forma aguda tras la ingesta de 200 a 400 mg/kg de bicarbonato de sodio, con el fin de atenuar la acumulación de protones o hidrogeniones que generan la fatiga durante el ejercicio de alta intensidad^(17,82,83).

Con la suplementación de bicarbonato se puede mejorar un 2% a 3% del rendimiento deportivo al mejorar la potencia, velocidad, capacidad de trabajo y el tiempo para llegar al fallo, tanto en esfuerzos únicos como repetitivos de alta intensidad (entre uno a diez minutos de duración)^(24,84,85).

El bicarbonato de sodio en polvo que se encuentra en los hogares es la forma más común de obtenerlo y se puede consumir diluido, sin embargo, puede ser desagradable al gusto. Existen alternativas en forma de tabletas efervescentes (que además contienen otros ingredientes como vitamina C y/o carbohidratos) o cápsulas. Estas últimas pueden tener una ventaja en cuanto a palatabilidad y dado que su recubierta resiste el ácido gástrico, se disuelven y se liberan en la luz intestinal, reduciendo así los síntomas gastrointestinales que son frecuentes con el bicarbonato⁽⁸⁶⁾.

Los efectos ergogénicos se dan en concentraciones plasmáticas de 5 a 6 mmol/L y duran tres a cuatro horas⁽⁸⁷⁾. Se recomienda monitorizar el pH sanguíneo y las concentraciones plasmáticas de bicarbonato del

deportista en respuesta a la ingesta del suplemento para así calcular el protocolo personalizado de la ingesta de forma que comience la competencia durante el pico de capacidad amortiguadora, así como identificar problemas que se puedan abordar para mejorar el rendimiento del deportista (88-90). De no ser posible una estrategia individualizada, el IAD sugiere consumir la dosis más alta posible del espectro (300 a 400 mg/kg) dos a cuatro horas antes de la competencia.

La ingesta simultánea con pequeñas comidas altas en carbohidratos promueve la alcalosis y reduce la aparición de síntomas gastrointestinales⁽⁹¹⁾.

Consideraciones especiales en el consumo de bicarbonato de sodio(25)

- Es frecuente la aparición de síntomas gastrointestinales (náusea, dolor abdominal, diarrea y vómito), con su pico a los 90 minutos posingesta. En este caso, preferir cápsulas de liberación retardada o beber la dilución lentamente en un lapso de 30 a 60 minutos.
- En caso de consumirlo en forma de cápsulas o polvo, ingerir suficiente líquido (~10 mL/kg) para prevenir diarrea osmótica. Tener en cuenta que esta ingesta de líquido puede significar también una ganancia de peso.
- El pH urinario cambia tras la suplementación. En caso de que el deportista sea seleccionado para una prueba de dopaje, tendría que esperar varias horas para que el nivel de pH retorne a niveles aceptables para realizar la prueba⁽²⁵⁾.

Nitratos (jugo de remolacha)

Aumentar la ingesta de nitratos (a partir de alimentos o suplementos como sales de nitratos) puede aumentar la disponibilidad de óxido nítrico en sangre, el cual participa en varios procesos fisiológicos, incluyendo la regulación del flujo sanguíneo y de la presión arterial, la oxidación mitocondrial, la contracción muscular y la función inmune. Esto cobra importancia en el ejercicio de alta intensidad donde la disponibilidad de óxido nítrico puede estar comprometida. La evidencia muestra que la suplementación con nitratos puede mejorar la potencia, la velocidad explosiva, los *sprints* múltiples y el ejercicio intermitente de alta intensidad^(28,92-96).

Este nitrato se absorbe rápidamente y tiene su máxima concentración plasmática una hora después de la ingesta. Adicionalmente, el cuerpo produce óxido nítrico endógenamente oxidando el aminoácido argi-

nina. Pero durante el ejercicio, cuando la disponibilidad de oxígeno en el músculo es baja, la ruta del nitrato cobra importancia; gran parte del nitrato plasmático entra al sistema enterosalival, donde es extraído y concentrado en las glándulas salivales. Las bacterias de la cavidad oral lo convierten en nitrito y luego se traga junto con la saliva. Parte de este nitrito se convierte en óxido nítrico y otra parte a especies reactivas de oxígeno. El pico plasmático de nitrito es 2,5 horas después de la ingesta aproximadamente⁽²⁹⁾.

Se ha reportado que tanto la suplementación aguda (única dosis previo al ejercicio) como crónica (tres a cinco días) con jugo de remolacha (alto en nitratos) mejora la economía del ejercicio, la capacidad aeróbica y el rendimiento deportivo (17). Adicionalmente, existe una limitación en el efecto de los nitratos en sujetos entrenados con capacidad aeróbica alta ($VO_{2\,m\acute{a}x} > 65\,$ mL/kg/min), pues no perciben mejorías significativas del rendimiento tras la suplementación (97,98).

Consideraciones especiales con el consumo de nitratos

Existían preocupaciones sobre la asociación entre el consumo de nitratos y desenlaces negativos en salud, como mayor riesgo de cáncer de colon, los cuales surgen de estudios realizados en animales. Sin embargo, ahora existe evidencia de que su consumo trae beneficios para la salud cardiovascular y metabólica. Se sugiere que el consumo de nitratos sea en su forma natural, a partir de frutas y verduras, lo cual implica también el consumo de sustancias antioxidantes y polifenoles, que pueden reducir o inhibir la formación de sustancias potencialmente dañinas⁽⁹⁹⁾.

- El consumo frecuente de remolacha puede alterar la coloración de la orina y las heces. Esto no afecta la salud, pero altera la evaluación de hidratación por tirillas o por escala de color.
- La suplementación indiscriminada con sales de nitrato de sodio o potasio puede exponer a los deportistas a riesgo de sufrir efectos tóxicos como metahemoglobinemia.

Glicerol

Al ser un agente osmótico, el glicerol dentro de la bebida hidratante va a reducir la producción de orina, adicionalmente tiene un efecto directo sobre los túbulos renales incrementando el gradiente de concentración en la médula renal y, de esta manera, incrementará la reabsorción de líquido⁽⁵⁶⁾.

Comparado con beber solamente agua, añadir glicerol al agua previo o durante el ejercicio mejora en un ~35% la retención de líquido, mientras que añadir glicerol y sodio lo incrementa en un ~73%⁽¹⁰⁰⁻¹⁰²⁾.

Como estrategia de hiperhidratación previo al ejercicio, el glicerol será útil en situaciones en las que hay limitación para beber líquidos durante el evento deportivo o para prevenir deshidratación excesiva asociada con las condiciones climáticas o al ejercicio prolongado^(33,103,104).

Posterior al ejercicio, se puede utilizar el glicerol como parte de la estrategia de rehidratación para corregir las pérdidas de fluidos acumuladas durante un evento deportivo o entrenamiento y especialmente en eventos consecutivos o en días consecutivos (31,105). Una vez ingerido el glicerol, se alcanza la máxima retención de fluidos a las cuatro horas y se excretará gradualmente en las siguientes 24 a 48 horas. Usualmente se tolera bien y genera muy poca molestia abdominal (33,103,104).

El glicerol se puede encontrar en droguerías o farmacias en forma de glicerina. Aunque sus presentaciones comerciales usualmente sugieren usos tópicos, su consumo es seguro siguiendo las guías aquí consignadas (33,103,104).

Consideraciones especiales con el consumo de glicerol

- Algunos deportistas pueden experimentar molestias gastrointestinales que afecten el rendimiento deportivo (náusea, dolor de cabeza, efecto laxante).
- Puede haber ganancias de peso asociada con la retención de líquidos, lo cual puede afectar el rendimiento de algunos atletas (ej., salto con garrocha).
- No se recomienda realizar prehidratación si el atleta está en capacidad de llegar al evento deportivo en un estado de euhidratación y podrá beber lo suficiente para mantener las pérdidas de fluidos en menos del 2% del peso corporal, pues puede causar sobrehidratación (33,104).

Financiamiento

El presente estudio no tuvo financiación.

Conflicto de intereses

Los autores declaran no tener conflicto de intereses.

Declaración de autoría

A. Hernández y D. Córdoba contribuyeron igualmente a la concepción y diseño de la investigación; A.

Hernández contribuyó al diseño de la investigación, a la adquisición y análisis de los datos; A. Hernández y D. Córdoba contribuyeron a la interpretación de los datos; y A. Hernández y D. Córdoba redactaron el manuscrito. Todos los autores revisaron el manuscrito, acuerdan ser plenamente responsables de garantizar la integridad y precisión del trabajo, y leyeron y aprobaron el manuscrito final.

Referencias bibliográficas

- Maughan RJ, Burke LM, Dvorak J, Larson-Meyer DE, Peeling P, Phillips SM, et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Br J Sports Med. 2018;52(7):439–55. doi: 10.1136/bjsports-2018-099027
- Australian Institute of Sport (AIS). Australian Institute of Sport Position Statement Supplements and Sports Foods in High Performance Sport; 2021. p. 1–9 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0014/1000841/Position-Statement-Supplements-and-Sports-Foods.pdf
- Ruiz F, Hurtado AE, Escobar G, Bermont GO, Cadena EM.
 Análisis de impacto normativo en la temática de alimentos para deportistas-Definición del problema [Internet].
 Subdirección de Salud Nutricional, Alimentos y Bebidas.
 2022. p. 1–62 [consultado el 1 de marzo 2022]. Disponible en: https://www.minsalud.gov.co/Normativa/Documents/Definición del problema AIN Alimentos para deportistas.pdf
- 4. Quinchia Castro AE, Piñeros Suárez AL, González Pulido BJ, Chica García C, Díaz Torres CM, Marino Isaza FE, et al. Lineamientos de Política Pública en Ciencias del Deporte en Nutrición. Departamento Administrativo del Deporte, la Recreación, la Actividad Física y el Aprovechamiento del Tiempo Libre - COLDEPORTES; 2015.
- Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Sports Gels. AIS Sport Suppl Framework [Internet]. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/nutrition/supplements/group_a#sports_gels
- Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Sports confectionery. AIS Sport Supplement Framework [Internet]. 2021;1-4 [consultado el 1 de marzo de 2022]. Disponible en: https://www.ais.gov.au/nutrition/ supplements/group_a#sports_confectionery
- Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Sports Bars. AIS Sport Suppl Framework [Internet]. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/nutrition/supplements/group_a#sports_bars
- Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Sports [Energy] Bars infographic. AIS Sport Supplement Framework [Internet]. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.

- au/__data/assets/pdf_file/0007/1001104/Sports-Bars-Infographic-2pg.pdf
- Ariffin H, Chong XQ, Chong PN, Okechukwu PN. Is the consumption of energy drink beneficial or detrimental to health: a comprehensive review? Bull Natl Res Cent. 2022;46(1):163. doi: 10.1186/s42269-022-00829-6
- 10. Australian Institute of Sport (AIS). Sports drinks (carbohydrate-electrolyte drinks). AIS Sports Supplement Framework. AIS Sport Suppl Framework [Internet]. 2021;1-5 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/nutrition/supplements/group_a#electrolyte_supplement
- Australian Institute of Sport (AIS). AIS Sports Supplement Framework: electrolyte replacement supplements. AIS Sport Suppl Framework. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0020/1000487/36194_Sport-supplement-fact-sheets-electrolytes-v5.pdf
- Australian Institute of Sport (AIS). AIS sports supplement framework: Mixed macronutrient supplement (bar, powder, liquid meal). AIS Sport Supplement Framework [Internet]. 2021;1-3 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0004/1000489/Sport-supplement-fact-sheets-Mixed-macronutrient-v4.pdf
- 13. Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Mixed macronutrient supplements infographic. AIS Sport Supplement Framework [Internet]. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0018/1000494/Sport-supplement-fact-sheets-Probiotics-v3.pdf
- 14. Palacios N, Antuñano G De, Manonelles P, Redondo RB, Fernández CC, Bonafonte LF, et al. Suplementos nutricionales para el deportista. Ayudas ergogénicas en el deporte 2019. Med del Deport. 2019;36(1):7-83.
- Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Caffeine. 2021;1-5 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/ assets/pdf_file/0004/1000498/36194_Sport-supplementfact-sheets-Caffeine-v6.pdf
- 16. Grgic J, Grgic I, Pickering C, Schoenfeld BJ, Bishop DJ, Pedisic Z. Wake up and smell the coffee: Caffeine supplementation and exercise performance—an umbrella review of 21 published meta-analyses. Br J Sports Med. 2020;54(11):1-9. doi: 10.1136/bjsports-2018-100278
- 17. Casazza GA, Tovar AP, Richardson CE, Cortez AN, Davis BA. Energy availability, macronutrient intake, and nutritional supplementation for improving exercise performance in endurance athletes. Curr Sports Med Rep. 2018;17(6):215-23.
- 18. Australian Institute of Sport (AIS). AIS Sport Supplement Framework Creatine Monohydrate. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0007/1000501/Sport-supplement-fact-sheets-Creatine-v4.pdf

- 19. Harris RC, Söderlund K, Hultman E. Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond). 1992;83(3):367-74. doi: 10.1042/cs0830367
- Kreider RB, Kalman DS, Antonio J, Ziegenfuss TN, Wildman R, Collins R, et al. International Society of Sports Nutrition position stand: safety and efficacy of creatine supplementation in exercise, sport, and medicine. J Int Soc Sports Nutr. 2017;14:18. doi: 10.1186/s12970-017-0173-z
- 21. Australian Institute of Sport (AIS). AIS Sports Supplement Framework ß-alanine. 2021;1–4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0005/1000499/Sport-supplement-fact-sheets-B-Alanine-v4.pdf
- 22. Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Beta-alanine Group A. Infographic. 2021;1-2 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0018/1001385/Beta-alanine-InfographicFINAL.pdf
- 23. Stegen S, Blancquaert L, Everaert I, Bex T, Taes Y, Calders P, et al. Meal and beta-alanine coingestion enhances muscle carnosine loading. Med Sci Sports Exerc. 2013;45(8):1478-85. doi: 10.1249/MSS.0b013e31828ab073
- Hadzic M, Eckstein ML, Schugardt M. The impact of sodium bicarbonate on performance in response to exercise duration in athletes: A systematic review. J Sport Sci Med. 2019;18(2):271-81.
- Australian Institute of Sport (AIS). AIS Sports Supplement Framework Sodium Bicarbonate: Group A. Infographic. 2021;1-2 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0015/1001382/Sodium-Bicarbonate-Infographic-Final.pdf
- 26. Australian Institute of Sport (AIS). AIS Sport Supplement Framework Sodium Bicarbonate. 2021;1-3 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0006/1000500/Sport-supplement-fact-sheets-Sodium-bicarbonate-v4.pdf
- Burke LM. Practical considerations for bicarbonate loading and sports performance. Nestle Nutr Inst Workshop Ser. 2013;75:15-26. doi: 10.1159/000345814
- Senefeld JW, Wiggins CC, Regimbal RJ, Dominelli PB, Baker SE, Joyner MJ. Ergogenic Effect of Nitrate Supplementation: A Systematic Review and Meta-analysis. Med Sci Sports Exerc. 2020;52(10):2250-261. doi: 10.1249/ MSS.00000000000002363
- Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Dietary Nitrate/Beetroot Juice. 2021;1-3 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0013/1000552/36194_ Sport-supplement-fact-sheets-Beetroot-Juice-Nitrate-v3.pdf
- 30. Australian Institute of Sport (AIS). AIS Sports Supplement Framework Beetroot Juice (Nitrates). 2021;1-2 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.

- $au/_data/assets/pdf_file/0005/1001102/Beetroot-juice-Infographic-2pg.pdf$
- American College of Sports Medicine; Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, et al. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377-90. doi: 10.1249/mss.0b013e31802ca597
- McCubbin AJ, Allanson BA, Caldwell Odgers JN, Cort MM, Costa RJS, Cox GR, et al. Sports Dietitians Australia Position Statement: Nutrition for Exercise in Hot Environments. Int J Sport Nutr Exerc Metab. 2020;30(1):83-98. doi: 10.1123/ ijsnem.2019-0300
- 33. van Rosendal SP, Osborne MA, Fassett RG, Coombes JS. Guidelines for glycerol use in hyperhydration and rehydration associated with exercise. Sports Med. 2010;40(2):113-29. doi: 10.2165/11530760-0000000000-00000
- 34. FAO Expert Consultation. Dietary protein quality evaluation in human nutrition. FAO Food Nutr Pap. 2011;92:1-66.
- Hoffman JR, Falvo MJ. Protein-which is best? J Sports Sci Med. 2004;3(3):118.
- Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J Int Soc Sports Nutr. 2017;14(1):1-25.
- 37. Lee WT, Weisell R, Albert J, Tomé D, Kurpad AV, Uauy R. Research Approaches and Methods for Evaluating the Protein Quality of Human Foods Proposed by an FAO Expert Working Group in 2014. J Nutr. 2016;146(5):929-32. doi: 10.3945/jn.115.222109
- 38. Boirie Y, Dangin M, Gachon P, Vasson MP, Maubois JL, Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A. 1997;94(26):14930-5. doi: 10.1073/pnas.94.26.14930
- 39. Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Isolated Protein Supplements. AIS Sport Suppl Framework. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0003/1000488/Sport-supplement-fact-sheets-Isolated-protein-supplement-v3.pdf
- Dangin M, Boirie Y, Garcia-Rodenas C, Gachon P, Fauquant J, Callier P, et al. The digestion rate of protein is an independent regulating factor of postprandial protein retention.
 Am J Physiol Endocrinol Metab. 2001;280(2):E340-8. doi: 10.1152/ajpendo.2001.280.2.E340
- 41. Farnfield MM, Trenerry C, Carey KA, Cameron-Smith D. Plasma amino acid response after ingestion of different whey protein fractions. Int J Food Sci Nutr. 2009;60(6):476-86. doi: 10.1080/09637480701833465
- Reidy PT, Walker DK, Dickinson JM, Gundermann DM, Drummond MJ, Timmerman KL, et al. Protein blend ingestion following resistance exercise promotes human muscle protein synthesis. J Nutr. 2013;143(4):410-6. doi: 10.3945/ jn.112.168021

- 43. Costa R, Miall A, Khoo A, Rauch C, Snipe R, Camoes Costa V, et al. Gut-training: The impact of two weeks repetitive gut-challenge during exercise on gastrointestinal status, glucose availability, fuel kinetics, and running performance. Appl Physiol Nutr Metab. 2017;42(5):547-57. doi: 10.1152/ajplung.00521.2007
- 44. Burke LM, Hawley JA, Jeukendrup A, Morton JP, Stellingwerff T, Maughan RJ. Toward a Common Understanding of Diet–Exercise Strategies to Manipulate Fuel Availability for Training and Competition Preparation in Endurance Sport. Int J Sport Nutr Exerc Metab. 2018;28(5):451-63. doi: 10.1123/ijsnem.2018-0289
- 45. Impey SG, Hearris MA, Hammond KM, Bartlett JD, Louis J, Close GL, et al. Fuel for the Work Required: A Theoretical Framework for Carbohydrate Periodization and the Glycogen Threshold Hypothesis. Sport Med. 2018;48(5):1031-48. doi: 10.1007/s40279-018-0867-7
- 46. Jeukendrup AE. Oral Carbohydrate Rinse: Placebo or Beneficial? Curr Sports Med Rep. 2013;12(4):222-7. doi: 10.1249/JSR.0b013e31829a6caa
- Taylor P, Burke LM, Maughan RJ. European Journal of Sport Science The Governor has a sweet tooth – Mouth sensing of nutrients to enhance sports performance. Eur J Prev Cardiol. 2014;15(1):29-40. doi: 10.1080/17461391.2014.971880
- 48. Sale C, Varley I, Jones TW, James RM, Tang JC, Fraser WD, et al. Effect of carbohydrate feeding on the bone metabolic response to running. J Appl Physiol (1985). 2015;119(7):824-30. doi: 10.1152/japplphysiol.00241.2015
- Viribay A, Arribalzaga S, Mielgo-ayuso J, Castañeda-babarro A. Effects of 120 g/h of Carbohydrates Intake during a Mountain Marathon on Exercise-Induced Muscle Damage in Elite Runners. Nutrients. 2020;12(5):1367-83. doi: 10.3390/ nu12051367
- Stearns RL, Emmanuel H, Volek JS, Casa DJ. Effects of Ingesting protein in combination with carbohydrate during exercise on endurance performance: A systematic review with meta-analysis. J Strength Cond Res. 2010;24(8):1292–202. doi: 10.1519/JSC.0b013e3181ddfacf
- 51. Close GL, Kasper AM, Walsh NP, Maughan RJ. "Food First but Not Always Food Only": Recommendations for Using Dietary Supplements in Sport. Int J Sport Nutr Exerc Metab. 2022; (March):1–16. doi: 10.1123/ijsnem.2021-0335
- 52. Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Sports Drinks infographic. AIS Sport Supplement Framework [Internet]. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/ assets/pdf_file/0009/1001106/Sports-Drinks-Infographic-2pg.pdf
- 53. Berrazaga I, Micard V, Gueugneau M, Walrand S. The Role of the Anabolic Properties of Plant- versus Animal-Based Protein Sources in Supporting Muscle Mass Maintenance: A Critical Review. Nutrients. 2019;11(8):1825. doi: 10.3390/nu11081825

- 54. Areta JL, Burke LM, Ross ML, Camera DM, West DWD, Broad EM, et al. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. 2013;591(9):2319-31. doi: 10.1113/jphysiol.2012.244897
- 55. Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Isolated Protein Supplements Infographic. AIS Sport Suppl Framew [Internet]. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/_data/assets/pdf_file/0018/1000494/Sport-supplement-fact-sheets-Probiotics-v3.pdf
- Thomas DT, Erdman KA, Burke LM. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med Sci Sports Exerc. 2016;48(3):543-68. doi: 10.1249/MSS.0000000000000852
- 57. Singh M, Das RR. Zinc for the common cold. Cochrane Database Syst Rev. 2013 Jun 18;(6):CD001364. doi: 10.1002/14651858.CD001364.pub4. Update in: Cochrane Database Syst Rev. 2015;(4):CD001364.
- 58. Australian Institute of Sport (AIS). AIS Sports Supplement Framework Caffeine. Group A. 2021. p. 1–2 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/_data/assets/pdf_file/0003/1001379/Caffeine-Infographic-final.pdf
- Pickering C, Grgic J. Caffeine and Exercise: What Next? Sport Med. 2019;49(7):1007-30. doi: 10.1007/s40279-019-01101-0
- Paton C, Costa V, Guglielmo L, Paton C, Costa V, Guglielmo L. Effects of caffeine chewing gum on race performance and physiology in male and female cyclists. J Sports Sci. 2015;33(10):1076-83. doi: 10.1080/02640414.2014.984752
- 61. Polito MD, Grandolfi K, de Souza DB. Caffeine and resistance exercise: the effects of two caffeine doses and the influence of individual perception of caffeine. Eur J Sport Sci. 2019;19(10):1342–8.
- 62. Australian Institute of Sport (AIS). AIS Sports Supplement Framework. AIS Sport Supplement Framework [Internet]. 2021;1-4 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/nutrition/supplements
- Kreider RB, Stout JR. Creatine in health and disease. Nutrients. 2021;13(2):1-28. doi: 10.3390/nu13020447
- 64. Deminice R, Rosa FT, Franco GS, Jordao AA, de Freitas EC. Effects of creatine supplementation on oxidative stress and inflammatory markers after repeated-sprint exercise in humans. Nutrition. 2013;29(9):1127-32. doi: 10.1016/j. nut.2013.03.003
- 65. Lanhers C, Pereira B, Naughton G, Trousselard M, Lesage FX, Dutheil F. Creatine Supplementation and Upper Limb Strength Performance: A Systematic Review and Meta-Analysis. Sports Med. 2017;47(1):163-73. doi: 10.1007/s40279-016-0571-4
- 66. Hultman E, Söderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol (1985). 1996;81(1):232-7. doi: 10.1152/jappl.1996.81.1.232

- 67. Roschel H, Gualano B, Ostojic SM, Rawson ES. Creatine Supplementation and Brain Health. Nutrients. 2021;13(2):586. doi: 10.3390/nu13020586
- 68. Dolan E, Gualano B, Rawson ES. Beyond muscle: the effects of creatine supplementation on brain creatine, cognitive processing, and traumatic brain injury. Eur J Sport Sci. 2019;19(1):1-14. doi: 10.1080/17461391.2018.1500644
- 69. Jäger R, Purpura M, Shao A, Inoue T, Kreider RB. Analysis of the efficacy, safety, and regulatory status of novel forms of creatine. Amino Acids. 2011;40(5):1369-83. doi: 10.1007/s00726-011-0874-6
- Jurado-Castro JM, Campos-Pérez J, Vilches-Redondo MÁ, Mata F, Navarrete-Pérez A, Ranchal-Sanchez A. Morning versus Evening Intake of Creatine in Elite Female Handball Players. Int J Environ Res Public Health. 2021;19(1):393. doi: 10.3390/ijerph19010393
- Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Creatine Group A; 2021;1-2 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov. au/__data/assets/pdf_file/0013/1001380/Creatine-InfographicFINAL.pdf
- 72. Blancquaert L, Everaert I, Missinne M, Baguet A, Stegen S, Volkaert A, et al. Effects of Histidine and β -alanine Supplementation on Human Muscle Carnosine Storage. Med Sci Sports Exerc. 2017;49(3):602-09. doi: 10.1249/MSS.0000000000001213
- 73. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, et al. The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids. 2006;30(3):279-89. doi: 10.1007/s00726-006-0299-9
- 74. Rezende NS, Swinton P, de Oliveira LF, da Silva RP, da Eira Silva V, Nemezio K, et al. The Muscle Carnosine Response to Beta-Alanine Supplementation: A Systematic Review With Bayesian Individual and Aggregate Data E-Max Model and Meta-Analysis. Front Physiol. 2020;11:913. doi: 10.3389/fphys.2020.00913
- Hill CA, Harris RC, Kim HJ, Harris BD, Sale C, Boobis LH, et al. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids. 2007;32(2):225-33. doi: 10.1007/ s00726-006-0364-4
- Saunders B, Elliott-Sale K, Artioli GG, Swinton PA, Dolan E, Roschel H, et al. β-alanine supplementation to improve exercise capacity and performance: a systematic review and meta-analysis. Br J Sports Med. 2016;1–14. doi: 10.1136/bjsports-2016-096396
- 77. Bellinger PM, Minahan CL. Performance effects of acute β -alanine induced paresthesia in competitive cyclists. Eur J Sport Sci. 2016;16(1):88-95. doi: 10.1080/17461391.2015.1005696
- 78. Varanoske AN, Hoffman JR, Church DD, Coker NA, Baker KM, Dodd SJ, et al. Comparison of sustained-release and rapid-release β -alanine formulations on changes in skeletal

- muscle carnosine and histidine content and isometric performance following a muscle-damaging protocol. Amino Acids. 2019;51(1):49-60. doi: 10.1007/s00726-018-2609-4
- Décombaz J, Beaumont M, Vuichoud J, Bouisset F, Stellingwerff
 T. Effect of slow-release β-alanine tablets on absorption kinetics and paresthesia. Amino Acids. 2012;43(1):67-76. doi: 10.1007/s00726-011-1169-7
- 80. Liu Q, Sikand P, Ma C, Tang Z, Han L, Li Z, et al. Mechanisms of itch evoked by β -alanine. J Neurosci. 2012;32(42):14532-7. doi: 10.1523/JNEUROSCI.3509-12.2012
- 81. Saunders B, De Salles Painelli V, De Oliveira LF, Da Eira Silva V, Da Silva RP, Riani L, et al. Twenty-four Weeks of β-Alanine Supplementation on Carnosine Content, Related Genes, and Exercise. Med Sci Sports Exerc. 2017;49(5):896-906. doi: 10.1249/MSS.000000000001173
- Siegler JC, Marshall PWM, Raftry S, Brooks C, Dowswell B, Romero R, et al. The differential effect of metabolic alkalosis on maximum force and rate of force development during repeated, high-intensity cycling. J Appl Physiol. 2013;115(11):1634-40. doi: 10.1152/japplphysiol.00688.2013
- Percival ME, Martin BJ, Gillen JB, Skelly LE, MacInnis MJ, Green AE, et al. Sodium bicarbonate ingestion augments the increase in PGC-1α mRNA expression during recovery from intense interval exercise in human skeletal muscle. J Appl Physiol. 2015;119(11):1303-12. doi: 10.1152/japplphysiol.00048.2015
- 85. Siegler JC, Marshall PWM, Finn H, Cross R, Mudie K. Acute attenuation of fatigue after sodium bicarbonate supplementation does not manifest into greater training adaptations after 10-weeks of resistance training exercise. PLoS One. 2018;13(5):1-18. doi: 10.1371/journal.pone.0196677
- 86. Hilton NP, Leach NK, Sparks SA, Gough LA, Craig MM, Deb SK, et al. A Novel Ingestion Strategy for Sodium Bicarbonate Supplementation in a Delayed-Release Form: a Randomised Crossover Study in Trained Males. Sports Med Open. 2019;5(1):4. doi: 10.1186/s40798-019-0177-0
- 87. Price MJ, Singh M. Time course of blood bicarbonate and pH three hours after sodium bicarbonate ingestion. Int J Sports Physiol Perform. 2008;3(2):240-2. doi: 10.1123/ijspp.3.2.240
- 88. Siegler JC, MIdgley AW, Polman RCJ. Effects of various sodium bicarbonate loading protocols on the time-dependent extracellular buffering profile. J Strength Cond Res. 2010;24(9):2551-7. doi: 10.1519/JSC.0b013e3181aeb154
- 89. Boegman S, Stellingwerff T, Shaw G, Clarke N, Graham K, Cross R, et al. The Impact of Individualizing Sodium Bicarbonate Supplementation Strategies on World-Class Rowing Performance. Front Nutr. 2020;7(138):1-11. doi: 10.3389/fnut.2020.00138

- De Oliveira LF, Saunders B, Yamaguchi G, Swinton P, Artioli GG. Is Individualization of Sodium Bicarbonate Ingestion Based on Time to Peak Necessary? Med Sci Sports Exerc. 2020;52(8):1801-8. doi: 10.1249/MSS.00000000000002313
- 91. Peart DJ, Siegler JC, Vince R V. Practical recommendations for coaches and athletes: a meta-analysis of sodium bicarbonate use for atheltic performance. J Strength Cond Res. 2012;26(7):1975-83. doi: 10.1519/JSC.0b013e3182576f3d
- 92. Bailey SJ, Winyard P, Vanhatalo A, Blackwell JR, Fred J, Wilkerson DP, et al. Dietary nitrate supplementation reduces the O 2 cost of low-intensity exercise and enhances tolerance to high-intensity exercise in humans exercise in older adults Dietary nitrate supplementation reduces the O 2 cost of low-intensity exercise and enhances. J Appl Physiol. 2009;107:1144-55. doi: 10.1152/japplphysiol.00722.2009
- Wylie LJ, Bailey SJ, Kelly J, Blackwell JR, Vanhatalo A, Jones AM. Influence of beetroot juice supplementation on intermittent exercise performance. Eur J Appl Physiol. 2016;116(2):415-25. doi: 10.1007/s00421-015-3296-4
- 94. Thompson C, Vanhatalo A, Jell H, Fulford J, Carter J, Nyman L, et al. Dietary nitrate supplementation improves sprint and high-intensity intermittent running performance. Nitric Oxide. 2016;61:55-61. doi: 10.1016/j.niox.2016.10.006
- 95. Hoon MW, Jones AM, Johnson NA, Blackwell JR, Broad EM, Lundy B, et al. The effect of variable doses of inorganic nitrate-rich beetroot juice on simulated 2,000-m rowing performance in trained athletes. Int J Sports Physiol Perform. 2014;9(4):615-20. doi: 10.1123/ijspp.2013-0207
- 96. Jones AM, Thompson C, Wylie LJ, Vanhatalo A. Dietary Nitrate and Physical Performance. Annu Rev Nutr. 2018;38:303-328. doi: 10.1146/annurev-nutr-082117-051622
- 97. Reynolds CME, Evans M, Halpenny C, Hughes C, Jordan S, Quinn A, et al. Acute ingestion of beetroot juice does not improve short-duration repeated sprint running performance in male team sport athletes. J Sports Sci. 2020;38(18):2063-2070. doi: 10.1080/02640414.2020.1770409
- 98. Jones AM, Vanhatalo A, Seals DR, Rossman MJ, Piknova B, Jonvik KL. Dietary Nitrate and Nitric Oxide Metabolism: Mouth, Circulation, Skeletal Muscle, and Exercise Performance. Med Sci Sports Exerc. 2021;53(2):280-94. doi: 10.1249/MSS.00000000000002470
- McDonagh STJ, Wylie LJ, Webster JMA, Vanhatalo A, Jones AM. Influence of dietary nitrate food forms on nitrate metabolism and blood pressure in healthy normotensive adults. Nitric Oxide. 2018;72:66-74. doi: 10.1016/j.niox.2017.12.001
- 100. Goulet ED. Review of the effects of glycerol-containing hyperhydration solutions on gastric emptying and intestinal absorption in humans and in rats. Int J Sport Nutr Exerc Metab. 2009;19(5):547-60. doi: 10.1123/ijsnem.19.5.547
- 101. Savoie FA, Dion T, Asselin A, Goulet ED. Sodium-induced hyperhydration decreases urine output and improves fluid balance compared with glycerol- and water-induced hyperhydration. Appl Physiol Nutr Metab. 2015;40(1):51-8. doi: 10.1139/apnm-2014-0243

- 102. Goulet EDB, De La Flore A, Savoie FA, Gosselin J. Salt+Glycerol-Induced Hyperhydration Enhances Fluid Retention More Than Salt- or Glycerol-Induced Hyperhydration. Int J Sport Nutr Exerc Metab. 2018;28(3):246-52. doi: 10.1123/ijsnem.2017-0310
- 103. Australian Institute of Sport (AIS). AIS Sports Supplement Framework: Glycerol. 2021 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/__data/assets/pdf_file/0020/1014185/Glycerol-Infographic.pdf
- 104. Australian Institute of Sport (AIS). AIS Sports Supplement Framework Glycerine or Glycerol. 2021 [consultado el 1 de marzo 2022]. Disponible en: https://www.ais.gov.au/_data/assets/pdf_file/0008/1000502/Sport-supplement-fact-sheets-Glycerol-v4.pdf
- 105. Goulet ED, Aubertin-Leheudre M, Plante GE, Dionne IJ. A meta-analysis of the effects of glycerol-induced hyperhydration on fluid retention and endurance performance. Int J Sport Nutr Exerc Metab. 2007;17(4):391-410. doi: 10.1123/ijsnem.17.4.391