

第2讲事件的关系与运算

事件的包含

(1) $A \subset B$ 事件A发生必导致事件B发生.

例如 掷一颗均匀的骰子,A="出现2点",B="出现偶数点"则 $A \subset B$

事件的相等

(2)
$$A=B \iff \begin{cases} A \subset B, \\ B \subset A. \end{cases}$$

事件的积(交)

- (3) $A \cap B$: 事件 $A \subseteq B$ 同时发生,简记AB.
- ◆ 推广: $\bigcap_{i=1}^n A_i = A_1 A_2 \cdots A_n$: 事件 A_1, A_2, \cdots, A_n 同时发生.

$$\bigcap_{i=1}^{\infty} A_i = A_1 A_2 \cdots$$
 事件 A_1, A_2, \cdots 同时发生.

互不相容事件(互斥事件)

- (4) $AB = \emptyset$: A = B不能同时发生.
- ◆推广: n个事件 $A_1, A_2, \dots A_n$ 互斥的充分必要条件是任两个事件互斥.

事件的和(并)

(5) $A \cup B$: 事件 $A \cup B$ 至少有一个发生,

当 $AB = \emptyset$: $A \cup B = A + B$.

◆ 推广: $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n$: 事件 A_1, A_2, \cdots, A_n 至少有一个发生.

 $\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \dots$ 事件 A_1, A_2, \dots 至少有一个发生.

事件的差

(6)A-B:A发生而B不发生.

$$A-B=A-AB=A\overline{B}=A\bigcup B-B.$$

对任意事件A,

$$A-A=\emptyset, A-S=\emptyset, A-\emptyset=A.$$

对立事件(逆事件)

(7) \bar{A} : 由A不发生所构成的事件.

$$A\overline{A} = \emptyset, A + \overline{A} = S, \overline{A} = A.$$

$$\frac{S}{A}$$

例如 A= "出现奇数点" B= "出现偶数点" $AB=\emptyset, A+B=S.$

例1 A="甲获奖",B="乙获奖"则

"甲、乙都获奖" = AB,

"甲、乙至少有一个获奖" = $A \cup B$,

"甲、乙都没获奖" = $\overline{AB} = \overline{A \cup B}$,

"甲、乙至少有一人没获奖"= $\bar{A}\cup \bar{B}=\bar{AB}$.

$$\overline{AB} = \overline{AB} + A\overline{B} + \overline{AB}.$$

事件表示的概率论与集合论对照表。

符号	概率论	集合论
S	样本空间,必然事件	空间 (全集)
Ø	不可能事件	空集
e	基本事件(样本点)	元素
A	事件	子集
$\overline{\mathbf{A}}$	A的对立事件	A的余集
$A \subset B$	事件A发生必然导致事件B发生	A是B的子集
A = B	事件A与事件B相等	A与B相等
$A \cup B$	事件A与事件B至少有一个发生	A与B的并集
$A \cap B$	事件A与事件B同时发生	A与B的交集
A - B	事件A发生而事件B不发生	A与B的差集
$AB = \emptyset$	事件A与事件B互不相容	A与B没有公共元素

事件的运算性质

交換律: $A \cup B = B \cup A$, AB = BA;

结合律: $(A \cup B) \cup C = A \cup (B \cup C), (AB)C = A(BC);$

分配律: $(A \cup B)C = (AC) \cup (BC)$, $(AB) \cup C = (A \cup C)(B \cup C)$;

对偶原则(德一摩根律):

$$\overline{A \cup B} = \overline{A}\overline{B}, \qquad \overline{AB} = \overline{A} \cup \overline{B}.$$

$$\bigcup_{i=1}^n A_i = \bigcap_{i=1}^n \overline{A_i} = \overline{A_1} \overline{A_2} \cdots \overline{A_n}, \qquad \bigcap_{i=1}^n A_i = \bigcup_{i=1}^n \overline{A_i} = \overline{A_1} \bigcup \cdots \bigcup \overline{A_n}.$$

例2 $A \setminus B \setminus C$ 是随机试验的三个事件,

试用 $A \setminus B \setminus C$ 表示下列事件:

(1) A与B发生,C不发生

$$ABC = AB - C = AB - ABC$$
.

(2) $A \times B \times C$ 中恰好发生两个;

$$AB\overline{C} + A\overline{B}C + \overline{A}BC$$
.

(3) A、B、C中至少有一个发生;

 $A \cup B \cup C$

$$=A\bar{B}\bar{C}+\bar{A}B\bar{C}+\bar{A}\bar{B}C+AB\bar{C}+A\bar{B}C+\bar{A}BC+ABC$$

$$=\overline{\overline{A}\overline{B}\overline{C}}.$$

(4) A 、 B 、 C 中至少有两个发生; $AB \cup AC \cup BC$

$$=ABC+ABC+ABC+ABC$$
.

(5) A、B、C中有不多于一个事件发生;

$$\overline{ABC} + \overline{ABC} + \overline{ABC} + \overline{ABC} + A\overline{BC} = \overline{AB} \cup \overline{AC} \cup \overline{BC}$$

(6) A、B、C中有不多于两个事件发生.

$$\overline{ABC} + \overline{ABC} + \overline{ABC}$$

$$= \overline{ABC} = \overline{A} \cup \overline{B} \cup \overline{C}.$$

总结:

1. 理解事件的关系与运算

2. 熟练掌握用字母表示事件

谢 谢!