网络技术与应用课程报告

实验一: 共享式和交换式以太网组网

姓名: 孙悦

学号: 2110052

专业: 物联网工程

一、实验内容

(一) 仿真环境下的共享式以太网组网

- 1. 学习虚拟仿真软件的基本使用方法;
- 2. 在仿真环境下进行单集线器共享式以太网组网,测试网络的连通性;
- 3. 在仿真环境下进行多集线器共享式以太网组网,测试网络的连通性;
- 4. 在仿真环境的"模拟"方式中观察数据包在共享式以太网中的传递过程,并进行分析。

(二) 仿真环境下的交换式以太网组网和VLAN配置

- 1. 在仿真环境下进行单交换机以太网组网,测试网络的连通性;
- 2. 在仿直环境下利用终端方式对交换机讲行配置:
- 3. 在单台交换机中划分VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析;
- 4. 在仿真环境下组建多集线器、多交换机混合式网络。划分跨越交换机的VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析;
- 5. 在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析;
- 6. 学习仿真环境提供的简化配置方式。

二、实验准备

1.单集线器共享式以太网组网

IP地址:

PC3: 192.168.0.3

PC4: 192.168.0.4

子网掩码: 255.255.255.0

2.多集线器共享式以太网组网

IP地址:

PC3: 192.168.0.3

PC4: 192.168.0.4

PC5: 192.168.0.5

PC6: 192.168.0.6

子网掩码: 255.255.255.0

3.单交换机以太网组网

IP地址:

PC0: 192.168.0.10

PC1: 192.168.0.11

PC2: 192.168.0.12

PC3: 192.168.0.13

子网掩码: 255.255.255.0

4.多集线器、多交换机混合式网络

IP地址:

PC0: 192.168.0.1

PC1: 192.168.0.2

PC2: 192.168.0.3

PC3: 192.168.0.4

PC4: 192.168.0.5 (myVLAN1)

PC5: 192.168.0.6 (myVLAN2)

PC6: 192.168.0.7 (myVLAN1)

PC7: 192.168.0.8 (myVLAN2)

PC9: 192.168.0.10 (myVLAN1)

PC10: 192.168.0.11 (myVLAN2)

子网掩码: 255.255.255.0

交换机设置:

交换机Switch0:

交换机Switch1:

三、实验过程

(一) 仿真环境下的共享式以太网组网

1.仿真环境下进行单集线器共享式以太网组网,测试网络连通性

仿真图: 两台PC, PC3 (IP: 192.168.0.3)、PC4 (IP: 192.168.0.4), 子网掩码均为

255.255.255.0,如下:

测试是否可以ping通:

```
PC3
                                                                                               X
                     De<u>sktop</u> Programming
  Physical
            Config
                                            Attributes
   ommand Prompt
                                                                                                    X
   Packet Tracer PC Command Line 1.0
   C:\>
   C:\ ping
   C:\>ping 192.168.0.4
   Pinging 192.168.0.4 with 32 bytes of data:
   Reply from 192.168.0.4: bytes=32 time<1ms TTL=128
   Ping statistics for 192.168.0.4:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
   Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 0ms, Average = 0ms
   C:\>
```


测试成功!

2.在仿真环境下进行多集线器共享式以太网组网,并测试网络的连通性

仿真图: 四台PC, PC3 (IP: 192.168.0.3) 、PC4 (IP: 192.168.0.4) 、PC5 (IP: 192.168.0.5) 、PC6 (IP: 192.168.0.6) ,子网掩码均为255.255.255.0,如下:

测试是否可以ping通:

PC3分别ping PC4、PC5、PC6

PC6分别ping PC5、PC4、PC3

```
₽PC6
                                                                                               \Box
                                                                                                      X
  Physical
            Config Desktop Programming
                                            Attributes
   ommand Prompt
                                                                                                    X
   Packet Tracer PC Command Line 1.0
   C:\>ping 192.168.0.5
   Pinging 192.168.0.5 with 32 bytes of data:
   Reply from 192.168.0.5: bytes=32 time<1ms TTL=128
   Ping statistics for 192.168.0.5:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
   Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 0ms, Average = 0ms
   C:\>ping 192.168.0.4
   Pinging 192.168.0.4 with 32 bytes of data:
   Reply from 192.168.0.4: bytes=32 time<1ms TTL=128
   Ping statistics for 192.168.0.4:
   Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 0ms, Average = 0ms
   C:\>ping 192.168.0.3
   Pinging 192.168.0.3 with 32 bytes of data:
   Reply from 192.168.0.3: bytes=32 time<1ms TTL=128
   Ping statistics for 192.168.0.3:
      Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
   Approximate round trip times in milli-seconds:
       Minimum = 0ms, Maximum = 0ms, Average = 0ms
   C:\>
```

测试成功!

3.在仿真环境的"模拟"方式中观察数据包在共享式以太网中的传递过程,并进行分析

点击Cisco Packet Tracer右下角的Simualation,点击PC3,命令行中输入ping 192.168.0.6,尝试从PC3向PC6发送数据。发现这次ping包会停下来,PC0的CMD中不会立即显示ICMP信息,而是由Cisco Packet Tracer去模拟这个瞬间的过程。

• 过程和分析如下:

。 目前ping包仍在PC3,目的地址是PC6

。 现在ping包到第一个集线器Hub0,目的地址是PC6,集线器没有过滤的功能所以它会把收到的数据广播到所有端口:

。 数据包会从集线器Hub0传送到PC4和集线器Hub1,然后PC1的接受机制监测到数据帧的目标地址与mac地址不符,拒绝接受,所以显示X

。 然后数据包从Hub1发送到PC5和PC6,同理PC5拒绝接收数据包,PC6接收数据包

。 再次点击Capture/Forward,直至回到PC3; PC0处显示打勾符号,表示此次发送数据已完成。

(二) 仿真环境下的交换式以太网组网和VLAN配置

1.在仿真环境下进行单交换机以太网组网,测试网络的连通性。

仿真图:一个交换机,四台主机,PC0 (IP: 192.168.0.10) , PC1 (IP: 192.168.0.11) , PC2 (IP: 192.168.0.12) , PC3 (IP: 192.168.0.13) , 子网掩码均为255.255.255.0

测试连通性:

PC0分别ping其他主机

PC3 ping PC1和PC2

测试成功!

2.在仿真环境下利用终端方式对交换机进行配置。

将 PC4的 RS-232 串行口与交换机Switch0的 Console端口连接,在主机 PC4 的配置界面中选择 Desktop-terminal 启动终端控制程序。仿真环境的控制终端串行口也需要设置为 9600 波特、8 个数据位、1 个停止位。接下来就可以配置交换机了。

前提: PC0 (IP: 192.168.0.10) , PC1 (IP: 192.168.0.11) , PC2 (IP: 192.168.0.12) , PC3 (IP: 192.168.0.13) , 子网掩码均为255.255.255.0

3.在单台交换机中划分VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。

• 未进行VLAN配置时,两两PC机可以ping通

Ping statistics for 192.168.0.12:

Ping statistics for 192.168.0.13:

C:\>ping 192.168.0.13

C:\>

Approximate round trip times in milli-seconds:

Minimum = 0ms, Maximum = 1ms, Average = 0ms

Reply from 192.168.0.13: bytes=32 time<1ms TTL=128 Reply from 192.168.0.13: bytes=32 time<1ms TTL=128 Reply from 192.168.0.13: bytes=32 time<1ms TTL=128 Reply from 192.168.0.13: bytes=32 time<1ms TTL=128

Approximate round trip times in milli-seconds:
Minimum = 0ms, Maximum = 0ms, Average = 0ms

Pinging 192.168.0.13 with 32 bytes of data:

• 单交换机上划分VLAN, 配置过程:

○ 添加第一个VLAN: myVLAN1

```
Switch>enable
Switch#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #vlan 10
Switch(config-vlan) #name myVLAN1
Switch(config-vlan) #exit
Switch(config) #exit
Switch(config) #exit
Switch#
%SYS-5-CONFIG_I: Configured from console by console
```

○ 为VLAN分配接口

```
Switch#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#interface Fa0/1
Switch(config-if)#switchport mode access
Switch(config-if)#switchport access vlan 10
Switch(config-if)#exit
Switch(config)#exit
Switch#
%SYS-5-CONFIG_I: Configured from console by console
```

```
Switch#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config)#interface Fa0/3
Switch(config-if)#switchport mode access
Switch(config-if)#switchport access vlan 10
Switch(config-if)#exit
Switch(config)#exit
Switch(config)#exit
Switch#
%SYS-5-CONFIG_I: Configured from console by console
```

Swite	ch#shov	w vlan									
VLAN	Name				Stat	tus Po:	rts				
1	defau	lt			act:	Fa Fa Fa Fa	0/7, 1 0/11, 0/15, 0/19,	Fa0/4, Fa0/8, Fa0/8, Fa0/12, In Fa0/16, In Fa0/20, In Fa0/24, 00	0/9, Fa0 Fa0/13, Fa0/17, Fa0/21,	0/10 Fa0/14 Fa0/18 Fa0/22	
1002 1003 1004	token- fddin	N1 default -ring-defau et-default -default			act: act:	ive ive ive	0/1, 1	Fa0/3			
		SAID		Parent	RingNo	BridgeNo	Stp	BrdgMode	Trans1	Trans2	
1 10 1002 1003 1004	enet enet fddi tr fdnet	100010 101002 101003 101004	1500 1500 1500 1500 1500				- - ieee		0 0 0 0	0 0 0 0 0 0	
		SAID 	MTU 	Parent	RingNo	BridgeNo	Stp	BrdgMode	Trans1	Trans2	
Prima	ary Sec	condary Typ	e		Ports						

○ 添加第一个VLAN: myVLAN2

```
Switch#config terminal
Enter configuration commands, one per line. End with CNTL/Z.
Switch(config) #vlan 20
Switch(config-vlan) #name myVLAN2
Switch(config-vlan) #exit
Switch(config) #exit
```

。 为VLAN分配接口

```
Switch#
Switch#config terminal
Enter configuration commands, one per line. End with \mathtt{CNTL}/\mathtt{Z}.
Switch(config)#interface Fa0/2
Switch(config-if)#switchport mode access
Switch(config-if) #switchport access vlan 20
Switch(config-if)#exit
Switch(config)#exit
Switch#
%SYS-5-CONFIG I: Configured from console by console
Switch#config terminal
Enter configuration commands, one per line. End with \mathtt{CNTL}/\mathtt{Z}.
Switch(config)#interface Fa0/4
Switch(config-if)#switchport mode access
Switch(config-if) #switchport access vlan 20
Switch(config-if) #exit
Switch (config) #exit
Switch#
%SYS-5-CONFIG I: Configured from console by console
```

VLAN	Name				Stat	tus P	orts			
1	defau.	lt			act			Fa0/6, Fa		
								Fa0/10, Fa		
								Fa0/14,		
								Fa0/18, 1		
								Giq0/22,	tau/23,	Fa0/24
10	myVLAi	J1			act		a0/1, I			
	myVLAi						a0/1, 1			
	_	default			act					
1003	token-	-ring-defau	lt		act	ive				
1004	fddine	et-default			act:	ive				
1005	trnet-	-default			act	ive				
VLAN	Туре	SAID	MTU	Parent	RingNo	BridgeN	o Stp	BrdgMode	Trans1	Trans2
1	enet	100001	1500						0	0
10	enet	100010	1500						0	0
			1500						0	0
									0	0
									0	0
							ieee		0	0
1005	trnet	101005	1500				ibm		0	0
VLAN	Type	SAID	MTU	Parent	RingNo	BridgeN	o Stp	BrdgMode	Trans1	Trans2
Domet	o CDA	J W ANG								
Remot	e SPAI	N VLANS								
Prima	ary Sec	condary Type	e		Ports					

- VLAN已经划分完成,PCO和PC2是myVLAN1,PC1和PC3是myVLAN2
- 测试同一VLAN下主机连通性:

PC0 ping PC2

PC1 ping PC3

可以看出同一VLAN下的主机是连通的。

• 测试不同VLAN下主机的连通性:

PC1 ping PC0

PC0 ping PC3

可以看出,不同VLAN下的主机不连通。

4.在仿真环境下组建多集线器、多交换机混合式网络。划分跨越交换机的VLAN,测试同一VLAN中主机的连通性和不同VLAN中主机的连通性,并对现象进行分析。

PC4: 192.168.0.5 (myVLAN1)

PC5: 192.168.0.6 (myVLAN2)

PC6: 192.168.0.7 (myVLAN1)

PC7: 192.168.0.8 (myVLAN2)

PC9: 192.168.0.10 (myVLAN1)

PC10: 192.168.0.11 (myVLAN2)

子网掩码: 255.255.255.0

- VLAN划分配置过程与上面单台交换机划分VLAN同理,需要将Switch0和Switch1的接口设置为Trunk
- 测试网络连通性:

同一VLAN下的主机连通,不同VLAN下的主机不连通

- 5.在仿真环境的"模拟"方式中观察数据包在混合式以太网、虚拟局域网中的传递过程,并进行分析。
 - 单交换机划分VLAN,在"模拟"模式下观察数据包的收发

PC3开始产生两个数据包 ICMP 和 ARP,并将 ARP数据包发送给交换机,交换机直接将 ARP数据包发给主机PC1,主机PC1收到后又将ARP发送给交换机,并由交换机发送给 PC3。然后 PC3发送 ICMP 数据包,这个数据包的传播路径同上一次传播的 ARP 包一致。

is. 1		rent List					
	Time(sec)	Last Device	At Device	Type			
C	0.000		PC3	ICMP			
C	0.000		PC3	ARP			
0	0.001	PC3	Switch0	ARP			
C	0.002	Switch0	PC1	ARP			
C	0.003	PC1	Switch0	ARP			
Visible 0	0.004	Switch0	PC3	ARP			
Visible 0	0.004		PC3	ICMP			

• 多交换机划分VLAN,在"模拟"模式下观察数据包的收发

PC9 ping PC6

PC9产生一个数据包 ICMP,将它发送给交换机 Switch0,交换机再将这个数据包发送给交换机 Switch1,Switch1将它发送给 PC6。PC6接收到数据包后,这个数据包又按原路返回。PC9收到返回的数据包后,Switch0产生了一个数据包 STP,并将它广播到连接的所有端口。 观察

发现,本次连接没有发送 ARP 包。ICMP 包只会经过发送设备、接收设备和交换机,而STP 包被发送给所有终端。

Simulatio	on Panel			
Event Lis	st			
Vis.	Time(sec)	Last Device	At Device	Type
	0.000		PC9	ICMP
	0.001	PC9	Switch0	ICMP
	0.002	Switch0	Switch1	ICMP
	0.003	Switch1	PC6	ICMP
	0.004	PC6	Switch1	ICMP
	0.005	Switch1	Switch0	ICMP
	0.006	Switch0	PC9	ICMP
	0. 785		Switch0	STP
	0.786	Switch0	PC5	STP
	0.786	Switch0	PC10	STP
	0.786	Switch0	Switch1	STP
	0.787	Switch1	Hub2	STP
	0.787	Switch1	PC7	STP
	0.788	Hub2	PC2	STP
	0.788	Hub2	PC3	STP
	0. 788	Hub2	Hub0	STP
	0.789	Hub0	PC0	STP
	0. 789	Hub0	PC1	STP