

Vishay Siliconix

# N- and P-Channel 20 V (D-S) MOSFET

| PRODUCT SUMMARY |                     |                                     |                                 |                       |  |  |  |
|-----------------|---------------------|-------------------------------------|---------------------------------|-----------------------|--|--|--|
|                 | V <sub>DS</sub> (V) | R <sub>DS(on)</sub> (Ω)             | I <sub>D</sub> (A) <sup>a</sup> | Q <sub>g</sub> (TYP.) |  |  |  |
| N-Channel       |                     | $0.390$ at $V_{GS} = 4.5 \text{ V}$ | 0.7                             |                       |  |  |  |
|                 | 20                  | 0.510 at V <sub>GS</sub> = 2.7 V    | 0.5                             | 0.55                  |  |  |  |
|                 |                     | 0.578 at V <sub>GS</sub> = 2.5 V    | 0.5                             |                       |  |  |  |
| P-Channel       | -20                 | $0.850$ at $V_{GS} = -4.5$ V        | -0.5                            |                       |  |  |  |
|                 |                     | 1.350 at V <sub>GS</sub> = -2.7 V   | -0.5                            | 0.95                  |  |  |  |
|                 |                     | $1.480$ at $V_{GS} = -2.5$ V        | -0.3                            |                       |  |  |  |

## SOT-363 SC-70 Dual (6 leads)



Top

Marking Code: RH

Ordering Information: Si1553CDL-T1-GE3 (Lead (Pb)-free and Halogen-free)

#### **FEATURES**

- TrenchFET® power MOSFET
- 100 % R<sub>g</sub> tested
- Material categorization: for definitions of compliance please see <u>www.vishay.com/doc?99912</u>



ROHS COMPLIANT HALOGEN FREE

## **APPLICATIONS**

- · Load switch
- DC/DC converter



N-Channel MOSFET

P-Channel MOSFET

| ABSOLUTE MAXIMUM RATINGS                           | (T <sub>A</sub> = 25 °C, unles    | s otherwise      | noted)              |           |     |
|----------------------------------------------------|-----------------------------------|------------------|---------------------|-----------|-----|
| PARAMETER                                          | SYMBOL                            | N-CHANNEL        | P-CHANNEL           | UNIT      |     |
| Drain-Source Voltage                               | $V_{DS}$                          | 20               | -20                 | V         |     |
| Gate-Source Voltage                                |                                   | V <sub>GS</sub>  | ± 12                |           | 7 V |
|                                                    | T <sub>C</sub> = 25 °C            |                  | 0.7                 | -0.5      |     |
| Continuous Dunis Comment /T 150 °C\                | T <sub>C</sub> = 70 °C            | 1 , [            | 0.6                 | -0.4      | A   |
| Continuous Drain Current (T <sub>J</sub> = 150 °C) | T <sub>A</sub> = 25 °C            | l <sub>D</sub>   | 0.7 b, c            | -0.4 b, c |     |
|                                                    | T <sub>A</sub> = 70 °C            |                  | 0.5 <sup>b, c</sup> | -0.4 b, c |     |
|                                                    | T <sub>C</sub> = 25 °C            |                  | 0.3                 | -0.3      |     |
| Source-Drain Current Diode Current                 | T <sub>A</sub> = 25 °C            | - I <sub>S</sub> | 0.2 b, c            | -0.2 b, c |     |
| Pulsed Drain Current (t = 300 μs)                  |                                   | I <sub>DM</sub>  | 2                   | -1        |     |
| Maximum Power Dissipation                          | T <sub>C</sub> = 25 °C            |                  | 0.34                | 0.34      | 10/ |
|                                                    | T <sub>C</sub> = 70 °C            | 1 , [            | 0.22                | 0.22      |     |
|                                                    | T <sub>A</sub> = 25 °C            | P <sub>D</sub>   | 0.29 b, c           | 0.29 b, c | W   |
|                                                    | T <sub>A</sub> = 70 °C            | 1                | 0.18 b, c           | 0.18 b, c | 1   |
| Operating Junction and Storage Temperature F       | T <sub>J</sub> , T <sub>stg</sub> | -55 to           | °C                  |           |     |

| THERMAL RESISTANCE RATINGS       |              |            |           |      |           |      |      |  |  |
|----------------------------------|--------------|------------|-----------|------|-----------|------|------|--|--|
|                                  |              |            | N-CHANNEL |      | P-CHANNEL |      |      |  |  |
| PARAMETER                        |              | SYMBOL     | TYP.      | MAX. | TYP.      | MAX. | UNIT |  |  |
| Maximum Junction-to-Ambient b, d | t ≤ 10 s     | $R_{thJA}$ | 365       | 438  | 365       | 438  | °C/W |  |  |
| Maximum Junction-to-Foot (Drain) | Steady State | $R_{thJF}$ | 308       | 370  | 308       | 370  | C/VV |  |  |

### Notes

- a. Based on  $T_C = 25$  °C.
- b. Surface mounted on 1" x 1" FR4 board.
- c. t = 10 s.
- d. Maximum under steady state conditions is 486 °C/W (N-Channel) and 486 °C/W (P-Channel).



# Vishay Siliconix

| PARAMETER                                   | SYMBOL                  | TEST CONDITIONS                                                                                                                    |      | MIN. | TYP. a | MAX.  | UNIT  |  |
|---------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------|------|------|--------|-------|-------|--|
| Static                                      |                         |                                                                                                                                    |      |      |        |       |       |  |
|                                             | .,                      | $V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$                                                                                      | N-Ch | 20   | -      | -     |       |  |
| Drain-Source Breakdown Voltage              | $V_{DS}$                | $V_{GS} = 0 \text{ V}, I_{D} = -250 \mu\text{A}$                                                                                   | P-Ch | -20  | -      | -     | V     |  |
|                                             | A) / /T                 | I <sub>D</sub> = 250 μA                                                                                                            | N-Ch | -    | 24     | -     |       |  |
| V <sub>DS</sub> Temperature Coefficient     | $\Delta V_{DS}/T_{J}$   | I <sub>D</sub> = -250 μA                                                                                                           | P-Ch | 1    | -13    | ı     | mV/°C |  |
| V Tamparatura Caafficiant                   | AV /T                   | I <sub>D</sub> = 250 μA                                                                                                            | N-Ch | -    | -1.8   | -     |       |  |
| V <sub>GS(th)</sub> Temperature Coefficient | $\Delta V_{GS(th)}/T_J$ | I <sub>D</sub> = -250 μA                                                                                                           | P-Ch | =    | 2.3    | -     |       |  |
| Cata Sauraa Thrashald Valtaga               | V                       | $V_{DS} = V_{GS}, I_D = 250 \mu A$                                                                                                 | N-Ch | 0.6  | -      | 1.5   | V     |  |
| Gate-Source Threshold Voltage               | V <sub>GS(th)</sub>     | $V_{DS} = V_{GS}, I_{D} = -250 \mu A$                                                                                              | P-Ch | -0.6 | -      | -1.5  |       |  |
| Cata Sauraa Laakaga                         | 1                       |                                                                                                                                    | N-Ch | =    | -      | ± 100 | nA    |  |
| Gate-Source Leakage                         | I <sub>GSS</sub>        | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 12 \text{ V}$                                                                                  | P-Ch | -    | -      | ± 100 |       |  |
|                                             |                         | $V_{DS} = 20 \text{ V}, V_{GS} = 0 \text{ V}$                                                                                      | N-Ch | -    | -      | 1     | μΑ    |  |
| Zero Gate Voltage Proin Current             |                         | $V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}$                                                                                     | P-Ch | 1    | _      | -1    |       |  |
| Zero Gate Voltage Drain Current             | I <sub>DSS</sub>        | $V_{DS}$ = 20 V, $V_{GS}$ = 0 V, $T_J$ = 55 °C                                                                                     | N-Ch | ı    | -      | 10    |       |  |
|                                             |                         | $V_{DS} = -20 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 \text{ °C}$                                                              | P-Ch | -    | -      | -10   |       |  |
| On-State Drain Current <sup>b</sup>         | I <sub>D(on)</sub>      | V <sub>DS</sub> = 5 V, V <sub>GS</sub> = 5 V                                                                                       | N-Ch | 2    | -      | -     | А     |  |
|                                             |                         | $V_{DS} = -5 V$ , $V_{GS} = -5 V$                                                                                                  | P-Ch | -1   | -      | -     |       |  |
|                                             | R <sub>DS(on)</sub>     | $V_{GS} = 4.5 \text{ V}, I_D = 0.7 \text{ A}$                                                                                      | N-Ch | -    | 0.325  | 0.390 | - Ω   |  |
|                                             |                         | $V_{GS} = -4.5 \text{ V}, I_D = -0.4 \text{ A}$                                                                                    | P-Ch | =    | 0.708  | 0.850 |       |  |
| Drain-Source On-State Resistance b          |                         | $V_{GS} = 2.7 \text{ V}, I_D = 0.4 \text{ A}$                                                                                      | N-Ch | ı    | 0.425  | 0.510 |       |  |
| Drain-Source On-State Resistance            |                         | $V_{GS} = -2.7 \text{ V}, I_D = -0.2 \text{ A}$                                                                                    | P-Ch | -    | 1.130  | 1.350 |       |  |
|                                             |                         | $V_{GS} = 2.5 \text{ V}, I_D = 0.4 \text{ A}$                                                                                      | N-Ch | -    | 0.462  | 0.578 |       |  |
|                                             |                         | $V_{GS} = -2.5V$ , $I_D = -0.2 A$                                                                                                  | P-Ch | -    | 1.230  | 1.480 |       |  |
| Forward Transconductance b                  | g <sub>fs</sub>         | $V_{DS} = 15 \text{ V}, I_D = 0.7 \text{ A}$                                                                                       | N-Ch | -    | 1.5    | -     |       |  |
| Forward Transconductance *                  |                         | $V_{DS} = -15 \text{ V}, I_D = -0.5 \text{ A}$                                                                                     | P-Ch | =    | 0.8    | -     | S     |  |
| Dynamic <sup>a</sup>                        |                         |                                                                                                                                    |      |      |        |       |       |  |
| Input Capacitance                           | C                       |                                                                                                                                    | N-Ch | 1    | 38     | ı     |       |  |
| input dapacitance                           | Ciss                    | N-Channel                                                                                                                          | P-Ch | 1    | 43     | ı     | pF    |  |
| Output Capacitance                          |                         | $V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$                                                                   | N-Ch | -    | 14     | -     |       |  |
| Output Capacitance                          | C <sub>oss</sub>        | P-Channel                                                                                                                          | P-Ch | 1    | 16     | ı     |       |  |
| Reverse Transfer Capacitance                | C <sub>rss</sub>        | $V_{DS} = -10 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$                                                                  | N-Ch | 1    | 6      | ı     |       |  |
|                                             |                         |                                                                                                                                    | P-Ch | 1    | 10     | 1     |       |  |
|                                             | Q <sub>g</sub>          | $V_{DS} = 10 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 0.7 \text{ A}$                                                                | N-Ch | -    | 1.2    | 1.8   | 1     |  |
| Total Cata Charge                           |                         | $V_{DS} = -10 \text{ V}, V_{GS} = -10 \text{ V}, I_{D} = -0.5 \text{ A}$                                                           | P-Ch | -    | 1.9    | 3     | 1     |  |
| Total Gate Charge  Gate-Source Charge       |                         | $\begin{aligned} &\text{N-Channel} \\ &\text{V}_{DS} = \text{10 V}, \text{V}_{GS} = \text{4.5 V I}_D = \text{0.5 A} \end{aligned}$ | N-Ch | -    | 0.55   | 1.1   | nC    |  |
|                                             |                         |                                                                                                                                    | P-Ch | -    | 0.95   | 1.5   |       |  |
|                                             |                         |                                                                                                                                    | N-Ch | -    | 0.15   | -     |       |  |
|                                             |                         | P-Channel                                                                                                                          | P-Ch | -    | 0.25   | -     |       |  |
| Cata Duais Chausa                           | $Q_{gd}$                | $V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_D = -0.4 \text{ A}$                                                            | N-Ch | -    | 0.15   | -     |       |  |
| Gate-Drain Charge                           |                         |                                                                                                                                    | P-Ch | -    | 0.25   | -     |       |  |
| Out - Profite                               |                         | f = 1 MHz                                                                                                                          | N-Ch | 1.5  | 7.2    | 14.4  | Ω     |  |
| Gate Resistance                             | $R_g$                   |                                                                                                                                    | P-Ch | 2.1  | 10.3   | 20.6  |       |  |



www.vishay.com

# Vishay Siliconix

| PARAMETER                                  | SYMBOL              | YMBOL TEST CONDITIONS                                                                       |      |   | TYP. a | MAX. | UNIT             |
|--------------------------------------------|---------------------|---------------------------------------------------------------------------------------------|------|---|--------|------|------------------|
| Dynamic <sup>a</sup>                       |                     |                                                                                             |      |   |        |      |                  |
| Turn-On Delay Time                         | † s                 |                                                                                             | N-Ch | 1 | 2      | 4    |                  |
| Turr-On Delay Time                         | t <sub>d(on)</sub>  | N-Channel                                                                                   | P-Ch | 1 | 2      | 4    |                  |
| Rise Time                                  | t <sub>r</sub>      | $V_{DD} = 10 \text{ V}, R_L = 20 \Omega$                                                    | N-Ch | - | 14     | 21   | ns               |
| Tilise Tillie                              |                     | $I_D \cong 0.5 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$                           | P-Ch | - | 9      | 18   |                  |
| Turn-Off Delay Time                        | t <sub>d(off)</sub> | P-Channel                                                                                   | N-Ch | - | 11     | 20   |                  |
| Turr On Belay Time                         | <b>-</b> а(оп)      | $V_{DD} = -10 \text{ V}, R_L = 25 \Omega$                                                   | P-Ch | - | 10     | 20   |                  |
| Fall Time                                  | t <sub>f</sub>      | $I_D \cong -0.4 \text{ A}, V_{GEN} = -10 \text{ V}, R_g = 1 \Omega$                         | N-Ch | - | 7      | 14   |                  |
| Tall Tillic                                | ч                   |                                                                                             | P-Ch | - | 7      | 14   |                  |
| Turn-On Delay Time                         | t <sub>d(on)</sub>  |                                                                                             | N-Ch | - | 16     | 24   |                  |
| Turr-On Delay Time                         |                     | N-Channel                                                                                   | P-Ch | - | 15     | 23   |                  |
| Rise Time                                  | t <sub>r</sub>      | $V_{DD} = 10 \text{ V}, R_L = 20 \Omega$                                                    | N-Ch | 1 | 22     | 33   | -<br>-<br>-<br>- |
|                                            |                     | $I_D \cong 0.5 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$                          | P-Ch | 1 | 15     | 23   |                  |
| Turn-Off Delay Time                        | t <sub>d(off)</sub> | P-Channel                                                                                   | N-Ch | - | 22     | 33   |                  |
|                                            |                     | $V_{DD} = -10 \text{ V}, R_L = 25 \Omega$                                                   | P-Ch | ı | 12     | 20   |                  |
| Fall Time                                  | t <sub>f</sub>      | $I_D \cong -0.4 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$                        | N-Ch | ı | 13     | 20   |                  |
| I all Tillle                               |                     |                                                                                             | P-Ch | - | 8      | 16   |                  |
| <b>Drain-Source Body Diode Characteris</b> | stics               |                                                                                             |      |   |        |      |                  |
| Continuous Source-Drain Diode              | I <sub>S</sub>      | T <sub>C</sub> = 25 °C                                                                      | N-Ch | - | -      | 0.3  | - A              |
| Current                                    |                     |                                                                                             | P-Ch | - | -      | -0.3 |                  |
| Pulse Diode Forward Current <sup>a</sup>   | I <sub>SM</sub>     |                                                                                             | N-Ch | - | -      | 2    |                  |
| Tuise blode Forward Current                |                     |                                                                                             | P-Ch | - | -      | -1   |                  |
| Body Diode Voltage                         | V <sub>SD</sub>     | I <sub>S</sub> = 0.5 A                                                                      | N-Ch | - | 8.0    | 1.2  | V                |
| Body Blode Voltage                         |                     | I <sub>S</sub> = -0.4 A                                                                     | P-Ch | 1 | -0.8   | -1.2 | V                |
| Body Diode Reverse Recovery Time           | +                   |                                                                                             | N-Ch | 1 | 8      | 15   | ns               |
| Body Blode Neverse Necovery Time           | t <sub>rr</sub>     |                                                                                             | P-Ch | - | 12     | 20   | 113              |
| Body Diode Reverse Recovery Charge         | Q <sub>rr</sub>     | N-Channel                                                                                   | N-Ch | ı | 1      | 2    | nC               |
| Body Blode neverse necovery Charge         |                     | $I_F = 0.5 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$ | P-Ch | ı | 5      | 10   | 110              |
| Reverse Recovery Fall Time                 | t <sub>a</sub>      | P-Channel                                                                                   | N-Ch | - | 4      | -    |                  |
| neverse necessary rail fille               |                     | $I_F = -0.4 \text{ A}, \text{ dI/dt} = -100 \text{ A/}\mu\text{s}, T_J = 25 \text{ °C}$     | P-Ch | 1 | 9      | -    | ns               |
| Reverse Recovery Rise Time                 | +                   |                                                                                             | N-Ch | 1 | 4      | -    | 115              |
| neverse necovery hise fillie               | t <sub>b</sub>      |                                                                                             | P-Ch | - | 3      | -    |                  |

#### Notes

- a. Guaranteed by design, not subject to production testing.
- b. Pulse test; pulse width  $\leq$  300 µs, duty cycle  $\leq$  2 %.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.





### **Output Characteristics**



On-Resistance vs. Drain Current and Gate Voltage





**Transfer Characteristics** 



## Capacitance



On-Resistance vs. Junction Temperature





#### Source-Drain Diode Forward Voltage



0.8

On-Resistance vs. Gate-to-Source Voltage



**Threshold Voltage** 



Single Pulse Power, Junction-to-Ambient



Safe Operating Area, Junction-to-Ambient





#### **Current Derating\***







**Power Derating, Junction-to-Ambient** 

<sup>\*</sup> The power dissipation  $P_D$  is based on  $T_{J \text{ (max.)}} = 150 \,^{\circ}\text{C}$ , using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.





#### Normalized Thermal Transient Impedance, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Foot





### **Output Characteristics**



On-Resistance vs. Drain Current and Gate Voltage



0.2

0.15

0.15

0.10  $T_{C} = 25 \, ^{\circ}C$ 0.05  $T_{C} = 125 \, ^{\circ}C$ 0.05  $T_{C} = 125 \, ^{\circ}C$ 1.5  $T_{C} = -55 \, ^{\circ}C$ V<sub>GS</sub> - Gate-to-Source Voltage (V)

**Transfer Characteristics** 



## Capacitance



On-Resistance vs. Junction Temperature





## Source-Drain Diode Forward Voltage



On-Resistance vs. Gate-to-Source Voltage



**Threshold Voltage** 



Single Pulse Power, Junction-to-Ambient



Safe Operating Area, Junction-to-Ambient





#### **Current Derating\***







**Power Derating, Junction-to-Ambient** 

ARE SUBJECT TO SPECIFIC DISCLAIMERS, SET FORTH AT www.vishay.com/doc?91000

<sup>\*</sup> The power dissipation  $P_D$  is based on  $T_{J \text{ (max.)}} = 150 \,^{\circ}\text{C}$ , using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.





#### Normalized Thermal Transient Impedance, Junction-to-Ambient



Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see <a href="https://www.vishay.com/ppg?67693">www.vishay.com/ppg?67693</a>.