1895: XXAY discovery | Miknown rayson 1896: Radioactiveity | Penemare opaque to covery opaque to covery opaque to covery opaque to covery the covery opaque to covery opaqu

Black body radiation

sheoretical notion: A black body can absorb 100%. Sadialis and emit man. amount of energy possible at a given temperature.

padiates energy at an wancelength padiates energy at an wancelength so creases, peak wavelength enichted by the black body decreases hack body decreases yotal energy enichted (the total area under the wire) increase weith temp.

i) Double slit expt.

.;) protodeceric effet. effect

ii) stomic specto a

is) stern-yeerlach expt. (response of atoms to magnetic) fields)

v) Heat capacity of solids

vi) scattering of x-rays by socieds (compton effect)

vii) Diffraction of electrons by Crystals

(Y =) ware function defines a state of a quantum system

Y(n, t) for one dimension su the physical properties of a system can be expressed as oper ators.

ラスミーi木 2

where
$$\hat{p}_{x}$$
 is momentum operation operation and $\hat{h} = \frac{h}{3\pi}$
 $\hat{p}_{x} \psi(x,t) = p \psi(x,t)$

Smomentum

(III.y $\hat{H} = i\hbar \frac{\partial}{\partial t}$
 $\hat{H} \psi(x,t) := \xi \psi(x,t) \rightarrow 0$
 $\hat{H} = \hat{p}_{x} + \hat{p}_{x} + \hat{q}_{x}(x)$
 $\hat{H} = -\frac{h^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}} + \hat{q}_{x}(x)$
 $\hat{q}_{x} = -\frac{h^{2}}{2m} \frac{\partial^{2}}{\partial x} + \hat{q}_{x}(x)$
 $\hat{q}_{x} = -\frac{h^{2}}{2m} \frac$

paretic energy $\frac{\hat{P}_{x} \hat{P}_{x}}{2m}$ $= -i \frac{\hbar}{2m} \frac{\partial}{\partial x} \left[-i \frac{\hbar}{\partial x} \right]$ $= -\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}}$ $= -\frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial x^{2}}$ $= \frac{\hbar^{2}}{2m} \frac{\partial^{2}}{\partial$

[suodinger equation]

model: particle is a onedimensional box.

where d < < L $\approx 1D$ system

Place the wire on x axis

with one end at n = Dand other at n = L. The

electron cannot go out of

the wire

Patential is ∞ at end

and beyond

$$x = 0, \quad f(x) \quad \psi(x = 0) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x = L) = 0$$

$$x = 1, \quad \psi(x$$

w(x) w(x) dx quees probable of finding dre e between n and n + dx, where 41/4 is the complex conjugate (Bom's) γ (x) y (x) d x = 1 l'since total probability=1] =) $B^2 \int \sin^2\left(\frac{n\pi x}{L}\right) dx = 1$ = \[\frac{2}{1} \] $\psi(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$ 4, (n) denote no state of For N=1, Ψ , $(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{\pi x}{L}\right)$ ger first excited state, $\Psi_2(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{2\pi x}{L}\right)$ and so on. (n is quantum number)

Scanned by CamScanner

model : Parincle in a tree dimension ac box (x, y) Schrodinger equation bor 20 $-\frac{\hbar^2}{2m}\left(\frac{\Im^2}{\Im x^2} + \frac{\Im^2}{\Im y^2}\right)\psi(x,y) = E$ Inside the bon ((x,y)=0 $u(x,y) = \infty$, for $x \leq 0$, $x \geq L_x$ $y \leq 0$, $y \geq L_y$ Coutside the bon u(x,y)=0 for 0<x</ OCYLL (circi de tre bor $\Psi_{n,n_2}(x,y) = \sqrt{\frac{2}{L_n}} \sin\left(\frac{n,\pi x}{L_n}\right)$ $\int \frac{2}{L_y} \sin\left(n_2 \frac{\pi y}{L_y}\right)$

is the general solution $= \frac{2}{JL_{nly}} \sin\left(\frac{n_1 \pi x}{L_n}\right) \sin\left(\frac{n_2 \pi y}{L_y}\right)$ (w rue n, n2 = 1,2,3....) $E_{n_1,n_2} = \frac{n_1^2 h^2}{8m L_x^2} + \frac{n_2^2 h^2}{8m L_y^2}$ 26 2n = Ly = L =) En, n2 = (n,2+n22) h2 8mL2 yound state: $=) n, = 1, n_2 = 1$ $=) E_{11} = \frac{h^2}{4mL^2}$ in first excited state, $D_1 = 1 D_2 = 2$ $= \int E_{1,2} = \frac{5h^2}{8mL^2}$ $n_{1}=2, n_{2}=1 =) \quad E_{1,2}=\frac{5h^{2}}{8mL^{2}} \longrightarrow \boxed{6}$ This is a degenerate state, ence both sa are first encured seater (@ and @

They are distind states since ware function and probably nein differ. Probability density S ((π, y) Ψ(x, y) dx dy u(x)=0 u(x)=0 ELCUO May. $\int_{\alpha=1}^{\infty} \frac{-h^2}{2m} \frac{\partial^2 \psi(\alpha)}{\partial \alpha^2}$ n = 0 + u(x) \(\pi(x) Quantum = E W(x) dunieling

carried mechanics , & coplanae pendulum 1, m, Inechanics by Landau - four soured problems) - Miding pendulum - circular pendulum (some frequency given) Suartum expectation value

Probability = $y_h^*(x) \psi_h(h) dx$ we an $\begin{cases} \hat{A} = (A) \\ \text{expectation} \end{cases}$ $\begin{cases} \hat{A} = (A) \\ \hat{A} \end{cases} = (A) \begin{cases} \hat{A} = (A) \end{cases}$ $\langle P \rangle$; $\langle P \rangle$

Error / uncertainty in χ $= \langle (\Delta x)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2$ $= \langle (\Delta P)^2 \rangle = \langle P^2 \rangle - \langle P \rangle^2$