慶應義塾大学試験問題用紙 (日吉)

				-	a tree			試	験時間	50	分	90分	
平成 20年	月月28日(月) 6 時限施行		学部		学科	年	組		採り	点欄	*		
担当者名	井口 達雄	学籍番号											
科目名	数学A3	氏 名											

答案用紙は1人2枚配布する. 答案用紙1枚目の表面に問題 1, 裏面に問題 2, 答案用紙2枚目の表面に問題 3, 裏面に問題 4 を解答せよ.

1 以下で定められる関数 f の導関数 f' を計算せよ.

- (1) $f(x) = x^{\sin x}$ (x > 0)
- (2) $f(x) = \arctan \frac{1+x}{1-x}$ $(x \neq 1)$
- (3) $f(x) = \begin{cases} x^2 \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$
- [2] (1) f および φ を \mathbf{R} 上の C^3 級関数とし、それらの合成関数を

$$F(x) := f(\varphi(x))$$

とおく. このとき, F'(x), F''(x), F'''(x) を f および φ の導関数を用いて表せ.

(2) f = f(x,y) を \mathbf{R}^2 上の C^2 級関数, $\varphi = \varphi(t), \psi = \psi(t)$ を \mathbf{R} 上の C^2 級関数とし、それらの合成関数を

$$F(t) := f(\varphi(t), \psi(t))$$

とおく、このとき、F'(t) および F''(t) を f の偏導関数と φ, ψ の導関数を用いて表せ、

- ③ (1) $\lim_{x\to 1} x^{\frac{1}{1-x}}$ を求めよ.
 - (2) $\lim_{x\to 0} \frac{2\log(\cos x) + x^2}{x^n}$ が 0 以外の有限な極限値をもつように自然数 n を定め,そのときの極限値を求めよ.
- $\boxed{4} \ f(x) = \frac{1}{x^2 + x 2} \ \text{に対して, 以下の問いに答えよ.}$
 - (1) f on階導関数 $f^{(n)}$ を求めよ.
 - (2) f の有限 Maclaurin 展開を

$$f(x) = \sum_{k=0}^{n} a_k x^k + O(x^{n+1}) \quad (x \to 0)$$

とするとき、係数 a_k $(0 \le k \le n)$ を求めよ.

期末試験問題(数学A3)の解答例

1 (1) $f(x) = e^{\sin x \cdot \log x}$ と書けることに注意すれば、合成関数の微分法および積の微分法より

$$f'(x) = e^{\sin x \cdot \log x} \left(\sin x \cdot \log x\right)'$$
$$= x^{\sin x} \left(\cos x \cdot \log x + \frac{\sin x}{x}\right) \qquad \cdots \qquad (答)$$

(2) $\frac{d}{dy}$ $\arctan y = \frac{1}{1+y^2}$ に注意すれば、合成関数の微分法および商の微分法より

$$f'(x) = \frac{1}{1 + \left(\frac{1+x}{1-x}\right)^2} \left(\frac{1+x}{1-x}\right)' = \frac{1}{1 + \left(\frac{1+x}{1-x}\right)^2} \frac{2}{(1-x)^2}$$
$$= \frac{2}{(1-x)^2 + (1+x)^2} = \frac{1}{1+x^2} \dots (2)$$

(3) $x \neq 0$ のとき、積の微分法、合成関数の微分法および商の微分法より

$$f'(x) = (x^2)' \sin \frac{1}{x} + x^2 \left(\frac{1}{x}\right)' \cos \frac{1}{x} = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$

x=0 のときは、微分係数の定義より

$$f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} h \sin \frac{1}{h} = 0$$

したがって,

$$f'(x) = \begin{cases} 2x \sin \frac{1}{x} - \cos \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases} \dots (2x)$$

[2] (1) 合成関数の微分法および積の微分法より

$$\begin{cases}
F'(x) = f'(\varphi(x))\varphi'(x) \\
F''(x) = f'(\varphi(x))\varphi''(x) + f''(\varphi(x))(\varphi'(x))^{2} \\
F'''(x) = f'(\varphi(x))\varphi'''(x) + 3f''(\varphi(x))\varphi''(x)\varphi'(x) + f'''(\varphi(x))(\varphi'(x))^{3}
\end{cases}$$
(\text{\texit{\texitilex{\text{\text{\text{\text{\text{\text{\text{\text{\texi\text{\texitex{\text{\text{\texit{\texit{\text{\text{\text{\texi\texit{\text{\texit{\text{\texi\texi\texit{\texi\texit{\texi\texit{\texi\texit{\texit{\texi\

(2) 合成関数の微分法および積の微分法より

$$\begin{cases}
F'(t) = f_x(\varphi(t), \psi(t))\varphi'(t) + f_y(\varphi(t), \psi(t))\psi'(t) \\
F''(t) = f_x(\varphi(t), \psi(t))\varphi''(t) + f_y(\varphi(t), \psi(t))\psi''(t) \\
+ f_{xx}(\varphi(t), \psi(t))(\varphi'(t))^2 + f_{yy}(\varphi(t), \psi(t))(\psi'(t))^2 \\
+ 2f_{xy}(\varphi(t), \psi(t))\varphi'(t)\psi'(t)
\end{cases}$$
(\(\frac{\psi}{2}\)

ここで、f が C^2 級であることから $f_{xy}(x,y)=f_{yx}(x,y)$ が成り立つことを用いた.

③ (1) $x^{\frac{1}{1-x}}=\mathrm{e}^{\frac{\log x}{1-x}}$ に注意して,極限 $\lim_{x\to 1}\frac{\log x}{1-x}$ を考える.これは $\frac{0}{0}$ の不定形であるから, l'Hôspital の定理より

$$\lim_{x \to 1} \frac{\log x}{1 - x} = \lim_{x \to 1} \frac{1/x}{-1} = -1$$