

Název a adresa školy:	Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01				
Název operačního programu:	OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5				
Registrační číslo projektu:	CZ.1.07/1.5.00/34.0129				
Název projektu	SŠPU Opava – učebna IT				
Typ šablony klíčové aktivity:	III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (20 vzdělávacích materiálů)				
Název sady vzdělávacích materiálů:	SPS III				
Popis sady vzdělávacích materiálů:	Stavba a provoz strojů II, 3. ročník				
Sada číslo:	C-08				
Pořadové číslo vzdělávacího materiálu:	02				
Označení vzdělávacího materiálu: (pro záznam v třídní knize)	VY_32_INOVACE_C-08-02				
Název vzdělávacího materiálu:	Řemenové převody				
Zhotoveno ve školním roce:	2011/2012				
Jméno zhotovitele:	Ing. Hynek Palát				

Řemenové převody

Řemenový převod je opásaný převod se silovým stykem, u nějž se kroutící moment přenáší z hnacího na hnané kolo pomocí pásu (nebo řemenu, lana, struny). Využívá se zde vláknové tření.

Řemenové převody se použijí zejména tam, kde je z objektivních důvodů mezi hnací a hnanou hřídelí větší vzdálenost.

Výhody – převody jsou konstrukčně jednoduché a levné, mají tichý chod, při přetížení proklouznou a tlumí rázy. Je možné jimi pohánět i více hřídelů najednou.

Nevýhody – větší radiální namáhání ložisek v důsledku napnutí pásu, nestálý převodový poměr v důsledku prokluzu pásu, malá odolnost vůči vyšším teplotám, nutnost občasných kontrol a úpravy napínání pásu.

Protože se u řemenových převodů využívá vláknové tření, je nutné zajistit, aby řemen byl neustále napnutý. Napnutí bývá zabezpečeno vhodným mechanismem, který pokryje i určité prodloužení řemene během provozu.

Rozdělení řemenových převodů podle druhu pásu

- Vlastní řemenové převody dělí se na dvě skupiny, na převody s plochými řemeny a s klínovými řemeny;
- lanové převody kladky jsou opásány lanem nebo plastovou strunou;
- převody s ozubenými řemeny zde se jedná o převody s tvarovým stykem, podobají se řetězovým převodům.

Rozdělení řemenových převodů podle způsobu opásání

otevřené opásání;

zkřížené opásání;

polozkřížené opásání;

• pohon více hřídelů najednou.

Výpočet délky řemene

Před výpočtem řemene musíme nejprve vyřešit převod samotný. Nejprve určíme převodový poměr:

$$i = \frac{n_1}{n_2}$$

Poté zvolíme průměr menší řemenice, průměr větší řemenice vypočteme:

$$i = \frac{D_2}{D_1}$$

Následuje určení vzdálenosti os obou řemenic. Přitom se snažíme dodržet tyto podmínky:

pro ploché řemeny;

$$A = (2 \div 3) \cdot (D + d)$$

• pro klínové řemeny.

$$A = (0.7 \div 2) \cdot (D_p + d_p)$$

Velikost úhlu β získáme ze vztahu:

$$\sin\beta = \frac{D-d}{2A}$$

Pro celkovou délku pásu pak platí vztah:

$$L = 2A \cdot \cos \beta + \frac{\pi \cdot D}{2} + \frac{\pi \cdot d}{2} + 2\pi \cdot D \cdot \frac{\beta}{360} - 2\pi \cdot d \cdot \frac{\beta}{360}$$

Jednotlivé části uvedeného vzorce představují tyto úseky skutečného pásu:

2.4	0	v		v/ /	/ 1	,		
$2A \cdot cc$	IS K	představu	ie oba	nrime	usekv	ทลรม	mezi ren	renicemi:
	, U P	p. castava	jc 0.00	P	asc.,	Pusu		

$$\frac{\pi \cdot D}{2}$$
 představuje polovinu opásání velké řemenice;

$$\frac{\pi \cdot d}{2}$$
 představuje polovinu opásání malé řemenice;

$$2\pi\cdot D\cdot rac{\beta}{360}$$
 představuje dva krátké doplňkové úseky pásu na velké řemenici, které je třeba přičíst;

$$2\pi\cdot d\cdot rac{eta}{360}$$
 představuje dva krátké doplňkové úseky pásu na malé řemenici, které je třeba odečíst.

Řešíme-li klínový řemen, postupujeme stejně, pouze místo rozměrů D a d dosadíme střední průměry obou řemenic D_p a d_p .

Řemeny vyrábějí jen v typizovaných délkách. Po provedeném výpočtu vyhledáme v katalogu řemen s podobnou délkou a poté provedeme zpětný přepočet rozteče **A**.

Převody klínovými řemeny

Tyto řemeny se dnes používají mnohem častěji než ploché pásy. Důvodem je schopnost přenosu vyšších kroutících momentů. Mají lichoběžníkový průřez, který v klínové drážce řemenice vytváří tření na bočních plochách. Jsou vyrobeny z pryže, která je uvnitř zpevněna textilními vlákny. Drážka v řemenici musí být tvarována tak, aby řemen **nedosáhl na její dno.**

správně

špatně

Druhy klínových řemenů:

V zásadě se klínové řemeny dělí do dvou skupin, a to na řemeny klasického průřezu a na řemeny úzké.

Klínové řemeny klasického průřezu se vyrábějí v profilech s těmito rozměry:

- **Z** 10 × 6;
- **A** 13 × 8;
- **B** 17 × 11;
- **C** 22 × 14;
- **D** 32 × 20;
- **E** 38 × 23,5.

Obrázek průřezu řemenu "A":

Úzké klínové řemeny se vyrábějí v profilech s těmito rozměry:

- **SPZ** 9,5 × 8;
- **SPA** $12,5 \times 10;$
- **SPB** 16 × 13;
- **SPC** 21 × 18.

Řemenice se obvykle vyrábějí odléváním ze šedé litiny, oceli na odlitky, z hliníku. Někdy se dokonce i lisují z plechu. Velmi často na nich je více řemenů vedle sebe. Profil drážek pro řemeny je normalizován. Udává se pro něj tzv. výpočtový průměr řemenice D_p .

Napínání řemenů:

Aby řemeny plnily svou funkci, musí být trvale vtlačovány do drážek na všech řemenicích. Musí tedy být trvale napnuty, aby neprokluzovaly. Protože se řemeny v provozu po čase obvykle natáhnou, je třeba převod vybavit vhodným napínacím zařízením. Je možné např. prodloužit osovou rozteč obou řemenic, nebo je možné řemen napnout pomocí kladky.

Pevnostní výpočet klínových řemenů

Abychom mohli správně zvolit klínový řemen převodu, potřebujeme nejprve znát nebo zvolit tyto parametry:

- přenášený výkon nebo kroutící moment;
- otáčky alespoň jedné řemenice;
- průměr malé řemenice (obvykle ho volíme);
- převodový poměr;
- druh strojního zařízení, kde bude řemen nasazen.

Skutečné provozní zatížení budoucího řemenového převodu získáme ze vztahu:

$$P^I = P \cdot C_2$$

Kde ${\bf P}$ je přenášený výkon (pozn.: můžeme jej zjistit ze vztahu $P=M_k\cdot 2\pi\cdot n$)

C₂ je součinitel provozního zatížení dle typu stroje.

Profil řemene pak volíme z monogramu dle ČSN (viz. ST), a to dle výkonu P^i a otáček malé řemenice n_1 .

Zvolíme průměr malé řemenice d_1 a s pomocí zadaného převodového poměru vypočteme průměr velké řemenice d_2 .

$$i_{12} = \frac{n_1}{n_2} = \frac{d_2}{d_1} \Longrightarrow d_2 = i_{12} \cdot d_1$$

Dále počítáme potřebný počet řemenů v převodu:

$$z = \frac{P \cdot C_2}{C_1 \cdot C_3 \cdot P_1}$$

Kde C_1 je součinitel úhlu opásání malé řemenice;

C₂ je součinitel provozního zatížení (závisí na typu stroje);

C₃ je součinitel délky klínového řemene;

P₁ je výkon, který je schopen přenést jeden klínový řemen zvoleného profilu;

P je přenášený výkon.

Vypočtený počet řemenů zaokrouhlíme na celá čísla (nahoru). Údaje C_1 , C_2 , C_3 a P_1 přitom musíme vyhledat v katalogu výrobce řemenů popřípadě ve strojnických tabulkách.

Poté počítáme délku řemenů podle vzorce pro celkovou délku pásu odvozeného v této kapitole o něco výše. Z katalogu výrobce vybereme řemen, který se této délce nejvíc blíží. Vzájemnou rozteč os obou řemenic nakonec podle potřeby upravíme.

Ozubené řemeny

U hladkých klínových řemenů hrozí jeho prokluzování především v případě, kdy není dostatečně napnut. Uvedenou nevýhodu dokážeme odstranit použitím ozubených řemenů, které mají svou vnitřní plochu opatřenou ozubením.

Převod s ozubeným řemenem je vlastně převodem s tvarovým stykem. Obě řemenice jsou u něj také opatřeny ozubením, které přesně zapadá mezi zuby na řemenu. Převody plní funkci řetězových převodů a navíc i tlumí rázy. Mají i tichý chod.

Opakovací otázky a úkoly

- Jaké jsou výhody a nevýhody řemenových převodů a jaké druhy řemenů znáš?
- Napiš vzorec pro výpočet délky řemene a vysvětli jeho jednotlivé části.
- Uveď postup pevnostního výpočtu řemene.

Seznam použité literatury

- KŘÍŽ, R. a kol.: Stavba a provoz strojů II, Převody. Praha: SNTL, 1978.
- LEINVEBER, J. VÁVRA, P.: Strojnické tabulky. 3. doplněné vydání. Praha: Albra, 2006. ISBN 80-7361-033-7.