

Gradient-based Hyperparameter Optimization

Dougal Maclaurin, David Duvenaud, Ryan P. Adams

Abstract

- Hyperparameters are everywhere
- Gradient-free optimization fails in high dimensions
- Validation loss is a just a function
- Why not take gradients?

Stochastic gradient descent is a function

SGD (with momentum) is Reversible

Forward update rule:

$$\mathbf{x}_{t+1} \leftarrow \mathbf{x}_t + \alpha \mathbf{v}_t$$
$$\mathbf{v}_{t+1} \leftarrow \beta \mathbf{v}_t - \nabla L(\mathbf{x}_{t+1})$$

Reverse update rule:

$$\mathbf{v}_{t} \leftarrow (\mathbf{v}_{t+1} + \nabla L(\mathbf{x}_{t+1})) / \beta$$
$$\mathbf{x}_{t} \leftarrow \mathbf{x}_{t+1} - \alpha \mathbf{v}_{t}$$

Example uses of hyper-gradients: learning rates

Optimizing initialization distributions

0.1 Optimizing training data

Optimizing regularization: Omniglot

	Input	Middle	Output	Train	Test
	weights	weights	weights	error	error
Separate networks Tied				0.61	1.34
Tied weights Learned				0.90	1.25
Learned sharing				0.60	1.13

Chaotic Learning Dynamics

Learning rate

Automatic differentiation of Numpy code

Conclusion

- We can compute gradients of learning procedures
- Can optimize thousands of hyperparameters