1. Penguins.jpg(repeats 50 times)

k = 20

%	K=2	K=5	K=10	K=15	K=20
1	10.929	13.993	15.004	15.036	14.713
2	10.927	13.828	14.933	14.761	14.919
3	10.929	13.519	15.176	14.823	14.681
4	10.927	13.402	15.003	14.764	14.681
5	10.927	13.997	15.194	14.864	14.622
6	10.927	13.931	15.222	15.029	14.631
7	10.929	13.606	15.238	14.765	14.751
8	10.929	14.160	14.922	14.769	14.641
9	10.929	13.906	14.983	14.743	14.741
10	10.927	13.606	15.217	14.743	14.666
average	10.928	13.727	15.089	14.830	14.705
variance	near 0	0.021	0.015	0.012	0.007

2. Koala(repeats 50 times)

k = 20

%	K=2	K=5	K=10	K=15	K=20
1	16.669	22.119	22.035	20.942	20.421
2	16.758	22.034	22.378	20.702	20.509
3	16.670	22.613	21.325	20.816	21.315
4	16.670	22.078	22.051	21.357	20.827
5	16.670	22.134	22.609	20.856	20.851
6	16.758	20.117	22.617	22.573	20.842
7	16.758	22.122	22.105	21.403	20.945
8	16.670	22.617	21.975	22.321	20.758
9	16.758	22.609	21.972	22.617	20.840
10	16.758	22.134	21.429	20.892	20.953
average	16.714	22.058	22.050	21.448	20.826
variance	0.002	0.471	0.167	0.528	0.054

Is there a tradeoff between image quality and degree of compression? What would be a good value of K for each of the two images?

There is a tradeoff between them.

For the penguin picture, from k = 2 to k = 10, the quality of the picture after compression gets better and better while its size is larger and larger. Then when k = 15 and k = 20, both two pictures have good quality and almost the same size. Certainly, k = 20 is the best choice.

For the koala picture, for k = 2 and k = 5, the quality of the picture after compression gets better and better while its size is larger and larger. But from k = 10 to k = 20, the quality is getting better while its size is smaller. Without doubt, we want to have the best quality and smallest size, which means k = 20 is what we want.