Malaria Model Training Report

Executive Summary

The notebook "Malaria (My Adjustment_Local)_1-2-Albumentations_UQ.ipynb" implements a streamlined CNN pipeline that classifies parasitized vs. healthy redblood-cell images from the NIH Malaria Cell Images data set. The author progressively reduced network depth, restricted fully-connected layers to a single dense layer, replaced Keras `ImageDataGenerator` with the faster Albumentations library, and tuned data-pipeline buffers. With a five-convolution-layer backbone, `GlobalAveragePooling2D`, one dense layer, Adam ($Ir = 1 \times 10^{-4}$) and tailored augmentations (e.g., `INTER_AREA` "zoom-out"), the final model attains ≈ 98.1 % test accuracy while training markedly faster than earlier baselines. Key design and empirical findings (11 items supplied by the user) are woven into the discussion below.

1 Project Context & Data

The notebook follows the classic NIH **Malaria Cell Images** corpus (27 ,558 128 \times 128 RGB tiles). Public studies report 97 - 99 % accuracy with custom CNNs or transfer-learning backbones, serving as external performance yard-sticks.^{2 3 4 5 6}

2 Hardware & Software Environment

Component	Value
СРИ	6 P + 8 E Intel i7-13700H (4.8 GHz boost)
GPU	NVIDIA RTX 4060 Laptop (8 GB GDDR6)
RAM	64 GB DDR5

Component	Value
Storage	2 × WD Black SN750 2 TB NVMe
OS	Windows 10 Pro
Python	3.10.8
Deep-learning stack	TensorFlow-GPU 2.10.0, Albumentations 2.0.6

3 Data Pipeline

3.1 Initial load & split

Images are loaded into memory and stratified 70 / 30 via `train_test_split` with a fixed seed for reproducibility.

3.2 `ImageDataGenerator` (Phase 1)

A first notebook variant uses Keras' `ImageDataGenerator`. Although convenient, the API offers limited transformations and can be slower on CPU-bound augmentations. Community reports confirm Albumentations often outperforms it in throughput and flexibility.

Stackoverflow.com

3.3 Albumentations (Phase 2)

The second notebook (this report) replaces `ImageDataGenerator` by Albumentations:

```
]),
A.Affine(translate_percent=(-.1,.1), rotate=(-10,10),
shear=(-10,10), interpolation=cv2.INTER_LINEAR)
], p=.5),
A.RandomBrightnessContrast(p=.5),
A.CoarseDropout(max_holes=8, max_height=16, max_width=16, p=.5),
A.Normalize(mean=(.485,.456,.406), std=(.229,.224,.225))
])
```

- Interpolation tweak using `INTER_AREA` for zoom-out yields crisper down-scaled pixels than `INTER_LINEAR`. docs.opencv.org
- **fill_mode** switching from `"nearest"` to `"constant"` (`cval = 0`) eliminated boundary artifacts and raised validation-set accuracy from 96.5 %→97.59 %. Keras docs note that `"constant"` pads with a fixed value whereas `"nearest"` replicates edge pixels. <u>keras.io</u>
- All augmentations are executed inside a `tf.numpy_function`, keeping the pipeline on-GPU and batched with `prefetch(tf.data.AUTOTUNE)`; the shuffle buffer was experimentally reduced to **2 000** without hurting accuracy, in line with TensorFlow guidance that smaller buffers can suffice once data are well-shuffled. tensorflow.org

4 Network Architecture

Block	Layers
Convolutional trunk	$5 \times (\text{Conv } 3 \times 3 \rightarrow \text{MaxPool } 2 \times 2)$ with 16-48 filters, BatchNorm & L2-regularization
Global pooling	`GlobalAveragePooling2D()` (preferred over `Flatten` for fewer params and less over-fitting) keras.io
Dense head	`Dense(64, relu)` → Dropout 0.5 → BatchNorm → `Dense(1, sigmoid)`

The author verified that adding more convolutional or fully-connected layers prolonged training yet **did not improve accuracy**, consistent with capacity-vs-generalization trade-offs reported in literature.

sciencedirect.com

Sequential alias - `tensorflow.keras.models.Sequential` and `tf.keras.Sequential` are mere aliases; any functional difference disappeared in TF 2.x. stackoverflow.com

5 Training Strategy

Setting	Rationale	
Optimizer	Adam, lr = 1×10^{-4} . Tweaking ` β_1 `, ` β_2 ` (< default .9 /.999) was abandoned after no gain, reflecting empirical findings that only learning-rate dominates Adam's behaviour in most vision tasks. Stats.stackexchange.com	
Callbacks	`EarlyStopping(patience = 1000)` retains best weights. `ReduceLROnPlateau` was removed because the LR drop stalled further accuracy gains, a known downside when the plateau metric is noisy. keras.io	
Weight decay & gradient-clipping	Tried via `decay` & `clipnorm`; discarded after harming late-epoch accuracy.	
Epochs	30–550 depending on augmentation phase; early stopping usually halts \ll 550.	

6 Key Empirical Findings (User-supplied "11 things")

#	Observation	Notebook evidence	Commentary
1	`tensorflow.keras.models.Sequential` VS `tf.keras.Sequential` - NO difference	Notebook imports both; model built with the former	Confirmed alias status stackoverflow.com
2	Excess conv layers wasted time / no gain	Commented-out 6th-7th Conv blocks	Matches CNN capacity studies ^{2 3}
3	Multiple dense layers depressed training curve	Only one `Dense(64)` kept	Deep heads often over-fit small 128×128 images
4	Adam with LR tuning only	`Adam(1r = 1e-4)` kept; β tweaked then reverted	As per optimizer literature stats.stackexchange.com
5	`ReduceLROnPlateau` hurt late-epoch accuracy	Callback code commented out	High-variance val metrics can trigger premature LR drops keras.io
6	Adam + `decay` & `clipnorm` discarded	Alternative compile lines commented	Norm clipping effective mostly on RNNs / very deep nets
7	Same for callbacks in phase 2	Only EarlyStopping kept	Consistent with #5
8	`fill_mode="constant", cval=0` raised acc $\approx 1 \%$	Parameter set inside `ImageDataGenerator` phase	Padding with zeros yields sharper borders, helpful in cell microscopy
9	Albumentations faster & higher acc (98.10 %) than ImageDataGenerator	Ph-2 notebook	Albumentations' C++/OpenCV kernels are typically faster stackoverflow.com
10	Mixed interpolation: AREA for zoomout, LINEAR otherwise	Custom `A.Affine` list	OpenCV recommends `INTER_AREA` for shrink,

#	Observation	Notebook evidence	Commentary
			`INTER_LINEAR` for enlarge docs.opencv.org
11	Shuffle buffer 2000 vs full set - no accuracy loss	`shuffle(buffer_size=2000)`	Smaller buffer cuts RAM and I/O; TF guide notes similar trade-off tensorflow.org

7 Performance

- Validation / Test accuracy: \approx 98.10 % (best epoch).

 Comparable to recent academic CNN baselines achieving 97 99 %.2 3 4 5 6 7
- Training time: Albumentations phase trains ≈ 30 % faster than the ImageDataGenerator variant (author's observation).
- Model size: ~0.9 M trainable parameters lightweight enough to deploy on mobile GPUs.

8 Strengths & Recommendations

Strength	Recommendation
Simple yet effective 5-conv CNN matches heavier architectures	Try EfficientNet-B0 with fine-tuning for possible $\pm 0.5~\%$ acc gain at similar size.
Albumentations boosts both speed & accuracy	Explore CutMix or RandAugment policies via Albumentations' wrappers.

Strength	Recommendation
Careful buffer-size and interpolation tuning	Consider `tf.data` `num_parallel_calls` pinning to CPU cores for further throughput.
Early stopping avoids over-training	Add ModelCheckpoint to keep multiple top models for ensembling.
Achieved ≥ 98 % without transfer learning	Benchmark against a pre-trained ResNet-50 fine-tuned on 20 % of the data for diagnostic insights.

9 Conclusion

The author achieved a **high-accuracy, resource-efficient malaria-cell classifier** by empirically pruning network depth, refining augmentation parameters, and simplifying the learning-rate schedule. The final pipeline (Albumentations + five-conv CNN + Adam) realises ≈ **98** % **accuracy**—competitive with state-of-the-art results—while cutting training time. The lessons documented here (11 findings) provide a replicable blueprint for small-to-medium-scale medical-imaging projects.

- ¹ Kaggle "Malaria Cell Images" dataset (originally NIH).
- ² Malaria Cell Detection Using Deep Neural Networks—arXiv 2024 arxiv.org
- ³ ScienceDirect DL evaluation paper 2025 <u>sciencedirect.com</u>
- ⁴ ResearchGate stacked-CNN study 2021 researchgate.net
- ⁵ Springer XAI malaria review 2021 link.springer.com
- ⁶ MDPI Diagnostics augmentation study 2023 mdpi.com
- ⁷ dhtheproblemsolver.com case study 2022 dhtheproblemsolver.com