

METHOD OF PRODUCING CASTINGS

Patent Number: SU1306641

Publication date: 1987-04-30

Inventor(s): NIKISHIN YURIJ A (SU); ZHARKOV DMITRIJ V (SU); PONIPARTOV NIKOLAJ I (SU);
LEBEDINSKAYA ELENA V (SU)

Applicant(s): NIKISHIN YURIJ A (SU); ZHARKOV DMITRIJ V (SU); PONIPARTOV NIKOLAJ (SU);
LEBEDINSKAYA ELENA V (SU)

Requested

Patent: SU1306641

Application

Number: SU19853943635 19850816

Priority Number

(s): SU19853943635 19850816

IPC Classification: B22D27/20

EC Classification:

Equivalents:

Abstract

Data supplied from the esp@cenet database - I2

СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР
ПО ДЕЛАМ ИЗОБРЕТЕНИЙ И ОТКРЫТИЙ

(19) SU (11) 1306641 A1

(SU 4 B 22 D 27/20)

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

- (21) 3943635/22-02
(22) 16.08.85
(46) 30.04.87. Бюл. № 16
(72) Ю.А. Никишин, Д.В. Жарков,
Н.И. Понипартов и Е.В. Лебединская
(53) 621.746.3 (088.8)
(56) Авторское свидетельство СССР
№ 1136369, кл. В 22 D 27/04, 1984.
Патент США № 3991808,
кл. В 22 D 27/20, 1976.

(54) СПОСОБ ИЗГОТОВЛЕНИЯ ОТЛИВОК.
(57) Изобретение относится к области
литейного производства, а именно к
способам изготовления отливок с мел-
кодисперсной структурой и может быть
использовано для получения отливок
из жаростойких сплавов методом литья

по выплавляемым моделям. Цель изобре-
тения - измельчение литого зерна,
повышение плотности и механических
свойств металла отливок. Сущность
способа заключается в том, что в ли-
тейную форму, преимущественно керами-
ческую, заливают жидкий сплав, одновре-
менно вводя в него струю нагретые метал-
лические добавки в виде жидкотвердой
суспензии бестигельного переплава ших-
товой заготовки, в качестве которой
применяют гранулированный материал
с мелкодисперсной структурой. Способ
позволяет в 6-10 раз уменьшить размер
литого зерна, повысить прочность высо-
колегированных сталей на 3-8% и пластич-
ность на 15-25% за счет увеличения плот-
ности металла. 1 з.п.ф-лы, 1 ил., 1 табл.

(19) SU (11) 1306641 A1

Изобретение относится к литейному производству, а именно к способам приготовления отливок с мелкозернистой структурой, и может быть использовано для получения отливок из жаростойких сплавов методом литья по выплавленным моделям.

Цель изобретения - измельчение литого зерна, повышение плотности и механических свойств металла отливок.

Сущность способа заключается в том, что в литейную форму, преимущественно керамическую, производят заливку жидкого сплава с одновременным введением в его струю нагретых металлических добавок в виде жидкотвердой сuspензии безтигельного переплава шихтовой заготовки, в качестве которой применяют гранулированный металл с мелкозернистой структурой.

На чертеже представлено устройство для осуществления способа.

Способ осуществляют следующим образом.

В нагревательной печи 1, размещенной внутри вакуумной плавильно-заливочной камеры 2, производят нагрев керамической формы 3 до температуры 1300-1600 К. Основную часть (60-80%) заливаемого в форму металла плавят в индукционной тигельной печи 4 и заливают в металлоприемную чашу 5, из которой через щелевой фильтр 6 очищенный от шлака и плен расплав поступает в рабочую полость литейной формы. Одновременно с заливкой основной части расплава из печи 4 производят оплавление шихтовой заготовки 7 в индукционном устройстве 8. Заготовку 7 предварительно получают с мелкозернистой структурой из гранулированного материала или одним из специальных методов литья, например, вакуумно-дуговой плавкой с заливкой металла в кокиль с принудительным охлаждением и вибрацией его в процессе кристаллизации. Материал заготовки 7 имеет химический состав, одинаковый с шихтой, переплавляемой в тигельной печи 4. В процессе оплавления заготовки 7 в случае необходимости ее могут дополнительно подвергать воздействию ультразвука с помощью волновода 9 с целью увеличения интенсивности отделения твердотопливных капель от заготовки и повышения содержания твердой фазы в заливаемом расплаве.

По мере оплавления заготовку 7 постепенно опускают вниз. Расплав с поверхности заготовки стекает в воронку 10, из которой попадает в центральную часть основного потока, поступающего в рабочую полость формы через щелевой фильтр. Расплав при поступлении в воронку имеет температуру не выше температуры ликвидуса сплава. За счет быстрого прогрева керамической оболочки, оформляющей воронку 10, основным расплавом, поступающим перегретым из тигельной печи, и образованию разряжения в нижней части воронки при омывании ее снизу потоком металла, сuspензия из металлических добавок свободно поступает в рабочую полость формы без затвердевания в горловине воронки даже при относительно низкой температуре предварительного нагрева керамической оболочки (1300 К). После заполнения полости жидким металлом плавление шихтовой заготовки и заливку расплава прекращают.

Дальнейшие операции по изготовлению отливки производят известным методом литья по выплавляемым моделям.

Пример. Сталь ВНП-1 в Z:C 0,06, Cr 13,8, Ni 7,5, Mo 1,0, Mn 0,4, Si 0,2 выплавляют из свежих шихтовых материалов в вакуумной установке ИСВ-0,16 с заливкой в кокиль мерные шихтовые заготовки размерами 50*300 мм. Плавление и кристаллизацию стали производят при остаточном давлении аргона в плавильной камере 150 мм.рт.ст. После расплавления металла производят раскисление жидкой ванны углеродом в количестве 0,01 % и ферроцерием в количестве 0,2 % от веса шихты.

Полученные мерные шихтовые заготовки одинакового химического состава переплавляют в опытной вакуумной плавильно-заливочной установке типа УППФЗ, оснащенной дополнительно индукционным устройством бестигельной плавки. При этом основную массу металла, расходуемого на получение литьего блока, плавят в индукционной тигельной печи емкостью 15 кг. После доведения температуры стали в тигеле до 1888 К (температура заливки по серийной технологии) расплав заливают с массовой скоростью 8000 г/с в форму с литниковой системой, оснащенной щелевым фильтром кольцевого типа с отверстиями шириной 1,5 мм. Фор-

ма на основе электрокорунда имеет температуру 1373 К.

Одновременно с плавкой шихты в тигельной печи проводят предварительный нагрев шихтовой заготовки в устройстве бестигельной плавки при производимой мощности 10-15 кВт. За 1,5 мин до слива металла из тигеля в форму включают формированный разогрев заготовки при максимальной мощности на индукторе 80 кВт. Для обеспечения синхронного заполнения формы металлом тигельного и бестигельного переплавов слив металла из тигеля начинают после нагрева нижней торцовой части шихтовой заготовки в устройстве бестигельной плавки до температуры 1678 К, которая на 30 град. ниже температуры солидуса. Массовая скорость оплавления и стекания струи бестигельного переплава составляет 200-230 г/с. Температура расплава в струе бестигельного переплава 1738-1728 К, т.е. в пределах 10 град. ниже температуры ликвидуса, равной 1738 К. Количество твердой фазы в расплаве составляет 20-25% (по диаграмме состояния). Общая масса литейного блока, состоящего из трех вертикально расположенных плит 100x30x150 мм и литниковой системы, 14,5 кг.

Для сравнения заливают формы с введением добавки в виде механически обработанного и нагретого до 1573 К прутка ϕ 18 мм в горловину литейной воронки ϕ 40 мм. Отливки исследуют на прочность металла (методом гидростатического взвешивания), определяют размеры литого (первичного) зерна и механические свойства (на вырезанных из отливок образцах).

Заготовки образцов для механических испытаний термообрабатывают по режиму: закалка с температуры 1400 К, 45

охлаждение на воздухе, обработка ходом при -60°C , отпуск при 873 К.

Результаты исследований свойств отливок из стали ВНЛ-1 приведены в таблице.

Сравнение полученных результатов показывает, что применение нового способа изготовления отливок обеспечивает измельчение зерна, повышение плотности и механических свойств металла в отливках.

Кроме того, ввод металлических добавок в расплав в виде жидкотвердой суспензии позволяет снять перегрев над температурой ликвидуса уже в процессе заливки (с 150 до 50 град.), что способствует снижению пригара отливок.

Применение способа позволяет в 20-60 раз уменьшить размер литого зерна, повысить прочность высоколегированных сталей на 3-8% и пластичность на 15-25% за счет увеличения плотности металла.

Ф о р м у л а и з о б р е т е н и я

1. Способ изготовления отливок, включающий заливку в литейную форму, преимущественно керамическую, жидкого сплава с одновременным введением в его струю нагретых металлических добавок, отличающийся тем, что, с целью измельчения литого зерна, повышения плотности и механических свойств металла отливок в качестве металлической добавки используют жидкотвердую суспензию бестигельного переплава шихтовой заготовки.

2. Способ по п.1, отличающийся тем, что в качестве шихтовой заготовки используют гранулированный материал с мелкозернистой структурой.

Технология заливки	Плотность металла, г/см ³	Средний ϕ литьих зерен, мм	Механические свойства				
			σ_b , МПа	σ_{qz} , МПа	δ , %	φ , %	КС, МДж/м ²
Из тигельной печи с добавкой суспензии бестигельного переплава	7,848	0,2-0,8	1160	950	20,0	57,6	1,26
	7,855	0,3-0,9	1165	1010	20,0	59,2	1,50
	7,850	0,2-1,0	1112	947	23,2	60,0	1,06
	7,850	0,3-1,5	1125	975	24,0	56,5	0,95

Продолжение таблицы

Технология заливки	Плотность металла, г/см ³	Средний флигель зерен, мм	Механические свойства				
			σ_s , МПа	$\sigma_{0,2}$, МПа	$\delta, \%$	$\psi, \%$	КС МДж/м ²
	7,846	0,3-1,5	1148	1020	22,8	60,0	1,05
	7,857	0,1-0,7	1135	905	26,4	58,6	1,31
	7,853	0,2-0,9	1137	960	23,0	63,0	1,40
Среднее	7,851	0,23-1,04	1139	971	22,8	59,3	1,22
Из тигельной печи с введением прутка в расплав (прототип)	7,825	3,5-7,0	1095	930	18,2	52,5	0,93
	7,846	1,5-5,0	1120	965	19,0	51,0	1,02
	7,820	2,5-6,5	1105	894	17,5	53,0	0,85
	7,836	0,5-4,0	1080	885	16,4	52,0	1,05
	7,841	1,0-5,5	1140	1010	20,5	56,0	1,10
	7,817	4,0-8,5	1075	854	14,0	47,0	0,75
	7,820	3,5-7,5	1097	910	14,5	50,0	0,90
Среднее	7,829	2,3-6,4	1102	921	17,1	51,6	0,94

Составитель В.Андреев

Редактор Э.Слиган

Техред М.Ходакич

Корректор Е.Рошко

Заказ 1482/8

Тираж 741

Подписьное

ВНИИПИ Государственного комитета СССР

по делам изобретений и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Производственно-полиграфическое предприятие, г.Ужгород, ул.Проектная, 4