This course material is now made available for public usage.
Special acknowledgement to School of Computing, National University of Singapore for allowing Steven to prepare and distribute these teaching materials.

CS3233

Competitive Programming

Dr. Steven Halim

Week 08 – Max Flow and Bipartite Graph (both are *not* in IOI syllabus 2009)

Outline

- Mini Contest #6 + Break + Discussion + Admins
- Max Flow
 - (We will skip the many variants → read the book!)
- Special Graphs 2
 - Bipartite Graph
 - Finding the bipartite graph in a problem
 - The important Alternating Path algorithm

MAX FLOW

Motivation

- How to solve this UVa problem:
 - 820 (Internet Bandwidth)
 - Similar problems: 259, 753, 10092, 10480, 10511, etc
- Without Max Flow algorithms, they look "hard"

Max Flow in a Network

- Imagine connected, weighted, directed graph as pipe network
 - The edges are the pipes
 - The vertices are the splitting points
 - There are also two special vertices: source s & sink t
 - What is the max flow (rate) from source s to sink t in this graph?
 (imagine water flowing in the pipe network)

Maximum Flow in Network

One Solution: <u>Ford Fulkerson</u>'s Method

- A surprisingly simple iterative algorithm
 - Send a flow through path p whenever there exists an augmenting path p from s to t
 - Augmenting path is a path from source s to sink t that pass through positive edges in residual graph

What is the Max Flow value? (1)

Answer: Maximum flow = 150

Note: backward edges are not shown...

Flow so far = 50

Flow so far = 100

Flow so far = 150

What is the Max Flow value? (2)

Answer: Maximum flow = 125

Flow so far = 50 Flow so far = 100

Note: backward edges are not shown...

Flow so far = 125

What is the Max Flow value? (3)

Answer: Maximum flow = 60

Flow so far = 50

Flow so far = 55

Flow so far = 60

Note: backward edges are not shown...

Ford Fulkerson's Method

setup directed residual graph

```
each edge has the same weight with the original graph
mf = 0 // this is an iterative algorithm, mf stands for max_flow
while (there exists an augmenting path p from s to t) {
 // p is a path from s to t that pass through positive edges in residual graph
  augment/send flow f along the path p (s -> ... -> i -> j -> ... t)
   1. find f, the min edge weight along the path p
   2. decrease the weight of forward edges (e.g. i -> j) along path p by f
      reason: obvious, we use the capacities of those forward edges
   3. increase the weight of backward edges (e.g. j -> i) along path p by f
      reason: not so obvious, but this is important for the correctness of Ford
      Fulkerson's method; by increasing the weight/capacity of a backward edge
      (j -> i), we allow later iteration/flow to cancel part of weight/capacity
      used by a forward edge (i -> j) if not all capacity of edge (i -> j) is
      used in the final set of paths that produce the max flow
  mf += f // we can send a flow of size f from s to t, increase mf
output mf
```

CS3233 - Competitive Programming, Steven Halim, SoC, NUS

DFS Implementation

- DFS implementation of Ford Fulkerson's method runs in O(|f*|E) and can be very slow on graph like this:
 - Notice the presence of backward edges (drawn this time)
 - Q: What if we do not use backward edges?

BFS Implementation

 BFS implementation of Ford Fulkerson's method (called <u>Edmonds Karp</u>'s algorithm) runs in O(VE²)

Edmonds Karp's (using STL) (1)

```
int res[MAX_V][MAX_V], mf, f, s, t; // global variables
vi p; // note that vi is our shortcut for vector<int>
// traverse the BFS spanning tree as in print_path (section 4.3)
void augment(int v, int minEdge) {
  // reach the source, record minEdge in a global variable 'f'
  if (v == s) { f = minEdge; return; }
  // recursive call
  else if (p[v] != -1) { augment(p[v], min(minEdge, res[p[v])[v]));
  // alter residual capacities
                         res[p[v]][v] -= f; res[v][p[v]] += f; }
// in int main()
  // set up the 2d AdjMatrix 'res', 's', and 't' with appropriate values
```

Edmonds Karp's (using STL) (2)

```
mf = 0;
while (1) { // \text{ run } O(VE * V^2 = V^3*E) Edmonds Karp to solve the Max Flow problem
  f = 0;
  // run BFS, please examine parts of the BFS code that is different than in Section 4.3
  queue<int> q; vi dist(MAX_V, INF); // #define INF 2000000000
  q.push(s); dist[s] = 0;
  p.assign(MAX_V, -1); // (we have to record the BFS spanning tree)
  while (!q.empty()) { // (we need the shortest path from s to t!)
    int u = q.front(); q.pop();
    if (u == t) break; // immediately stop BFS if we already reach sink t
    for (int v = 0; v < MAX_V; v++) // note: enumerating neighbors with AdjMatrix is 'slow'
      if (res[u][v] > 0 \&\& dist[v] == INF) dist[v] = dist[u] + 1, q.push(v), p[v] = u;
  augment(t, INF); // find the min edge weight 'f' along this path, if any
  if (f == 0) break; // if we cannot send any more flow ('f' = 0), terminate the loop
  mf += f; // we can still send a flow, increase the max flow!
printf("%d\n", mf); // this is the max flow value of this flow graph
                                   CS3233 - Competitive Programming,
                                        Steven Halim, SoC, NUS
```

UVa 259 – Software Allocation

Other Applications of Max Flow

Variants:

- Min Cut
- Multi-source Multi-sink Max Flow
- Max Flow with Vertex Capacities
- Max Independent Path
- Max Edge-Disjoint Path
- Min Cost Max Flow (MCMF)

On "Special Graphs":

- Max Cardinality Bipartite Matching (MCBM)
- Max Independent Set on Bipartite Graph (brief)
- Max Vertex Cover on Bipartite Graph (brief)
- Min Path Cover on DAG → MCBM on Bipartite Graph

We will focus only on the red ones for this semester's CS3233 ☺

For the rest, read the book!

Max Flow = Min Cut (Dual)

Min Cut:

- How to cut the edge(s) of the graph such that we minimizes sum of the edge weights being cut?
 - Note: This is 'similar' to finding 'bridges', but they are different!
- It happens that running max flow algorithm can give us the answer for min cut problem :O
 - Idea: Once we cannot add any more flow (max flow reached), do graph traversal from source s one more time
 - All vertices still reachable from s are ∈ first component,
 the rest are ∈ second component, and the cut is obvious
 - Detailed proof is not shown...

Min Cut Example

Bipartite Graph

SPECIAL GRAPHS 2

Matching on Bipartite Graph

- In general graph
 - We need to use Edmonds's Blossom Shrinking (not discussed today) that is quite hard to code
 - DP + bitmask can only be used if input size is not too large
 (N <= 20)
 - More than that... MLE ☺
- In bipartite graph...
 - − Let's see the next few slides ☺

PrimePairs (1)

- Group a list of numbers into pairs s.t the sum of each pair is prime.
- Given the numbers {1, 4, 7, 10, 11, 12}, you could group them as follows:

1.
$$1 + 4 = 5$$
 $7 + 10 = 17$ $11 + 12 = 23$

2.
$$1 + 10 = 11$$
 $4 + 7 = 11$ $11 + 12 = 23$

- Task: Given a int[] numbers, return a int[] of all the elements in numbers that could be paired with numbers[0] successfully as part of a complete pairing, sorted in ascending order.
- The answer for the example above would be {4, 10}.
 - Even though 1 + 12 is prime, there would be no way to pair the remaining 4 numbers.

Constraints:

- numbers contain an even number of elements in [2 .. 50], inclusive.
- Each element of **numbers** will be between 1 and 1000, inclusive.
- Fach element of numbers will be distinct.

PrimePairs (2)

- Sample test cases (Source: TCO09 Qual 1):
 - Input: {1, 4, 7, 10, 11, 12}, Output: {4, 10}
 - This is the example from the problem statement.
 - Input: {11, 1, 4, 7, 10, 12}, Output: {12}
 - The same numbers, but in a different order.
 - In both of the 2 possible complete pairings, the 11 is paired with the 12.
 - Input: {8, 9, 1, 14}, Output: { }
 - No complete pairings are possible because none of the numbers can be paired with 1.
 - Input: {34, 39, 32, 4, 9, 35, 14, 17}, Output: {9, 39}
 - Input: {941, 902, 873, 841, 948, 851, 945, 854, 815, 898, 806, 826, 976, 878, 861, 919, 926, 901, 875, 864}, Output: {806, 926}

PrimePairs (3)

- Is this a Math problem?
 - Yes, there is a bit Math here, we need list of prime...
 - But elements of numbers are ≤ 1000!
 - This is not the major issue
- Complete Search Pairings?
 - ${}_{50}C_2$ for the first pair, ${}_{48}C_2$ for the second pair, ..., until ${}_{2}C_2$ for the last pair?
 - This is too much...
 - This is the major issue

PrimePairs (4)

- Pairing = Matching, familiar?
- Is this matching bipartite^?
 - YES :D

- 1 odd + 1 odd = even number → not a prime
- 1 even + 1 even = even number → not a prime
- Split odd/even numbers to left/right set
 - Give edge from left to right if left[i] + right[j] = prime

PrimePairs (5)

- Solution is then trivial:
 - If size of even and odd set are different
 - Pairing is not possible...
 - Otherwise, if size of both sets are n/2
 - Try to match left[0] with right[k] for k = [0 .. n/2 - 1]
 - Do Bipartite Matching for the rest
 - If we obtain n/2-1 more matchingsAdd right[k] to the answer
 - For this test case,
 we get 1 + 4 and 1 + 10 as the answer

PrimePairs (6)

Can Be Tricky! Independent Set / Vertex Cover

Graph Theory in ICPC

- Graph problems appear several times in ICPC!
 - Min 1, normally 2, can be 3 out of 10
 - Master all known solutions for classical graph problems
 - Or perhaps combined with DP/Greedy style
- This can move your team nearer to top 10
 - Perhaps rank [11-20] out of 60 now
 - Solving 3-5 problems out of 10

References

- CP2, Chapter 4 ©
- Introduction to Algorithms, Ch 22,23,24,25,26 (p643-698)
- Algorithm Design, Ch 3,4,6,7 (p337-450)
- Algorithms (Dasgupta et al), Ch 6 & Ch 7
- Algorithms (Sedgewick), Ch 33 & Ch 34
- Algorithms (Alsuwaiyel), Ch 16 & Ch 17
- Programming Challenges, p227-230, Ch 10
- http://www.topcoder.com/tc?module=Static&d1=tutorials&d2=standardT emplateLibrary2
- Internet: <u>TopCoder Max-Flow tutorial</u>, UVa Live Archive, UVa main judge, Felix's blog, Suhendry's blog, Dhaka 2005 solutions, other Max Flow lecture notes, etc...