MARYLIN: LORO PROPRIETÀ.

O. M. D'ANTONA, P. CODARA

1. Memorandum

$$T_{n,k} = \sum_{i,j \ge 0} c_{i,j} T_{n-i,k-j}.$$

2. Proprietà moltiplicativa

Sia \mathcal{M} una Marylin con schema $\begin{bmatrix} c_{1,1} & c_{1,0} \\ c_{0,1} & T_{n,k} \end{bmatrix}$ e sia \mathcal{L} la matrice ottenuta moltiplicando la k-esima colonna di \mathcal{M} per k. Allora, per ogni $n,k \geq 1$, si ha

(1)
$$L_{n,k} = c_{1,0}L_{n-1,k} + c_{1,1}L_{n-1,k-1} + c_{0,1}L_{n,k-1} + c_{1,1}T_{n-1,k-1} + c_{0,1}T_{n,k-1}$$

Proof. .

NOTA: \mathcal{L} non è una Marylin. PROVA

$T_{n,k}$	k=0	1	2	3	4	5	6
n = 0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	

$$T_{n,k} = T_{n-1,k-1} + T_{n-1,k}$$

Perfetto: la (1) recita

$$L_{n,k} = c_{1,0}L_{n-1,k} + c_{1,1}L_{n-1,k-1} + c_{0,1}L_{n,k-1} + c_{1,1}T_{n-1,k-1} + c_{0,1}T_{n,k-1},$$

Date: January 2, 2016.

Key words and phrases. Operazioni.tex.

ma ora $c_{1,0} = c_{1,1} = 1$ e $c_{0,1} = 0$. Quindi

$$L_{n,k} = L_{n-1,k} + L_{n-1,k-1} + T_{n,k-1}.$$

$$RS'_n = nRS_{n-1} = n2^{n-1} \text{ per } n \ge 1.$$

Bello, ma è un caso particolare. In questo caso \mathcal{L} fornisce il numero di lati del diagramma di Hasse dei k-sottoinsiemi di un n-insieme ordinati per inclusione. Si tratta di \mathcal{B}_n . La cosa generalizza alle potenze dei cammini [C,D'A].

Tentativo 2 $T_{n,k} = T_{n-1,k-1} + 2T_{n-1,k}$.

Questa è la A007051: $RS_n = 3RS_{n-1} - 1 = (3^n + 1)/2$.

La RS'_n non è su Sloane, ma mi accorgo che:

$$RS'_n = 3RS'_{n-1} + RS_{n-1} = 3RS'_{n-1} + \frac{3^{n-1} + 1}{2}$$
.

Ora chiudiamo la ricorrenza di RS'_n e, facilmente, otteniamo

$$RS'_n = \frac{(2n+3)3^{n-1}-1}{4}$$
.

Tentativo 3 $T_{n,k} = T_{n-1,k-1} + T_{n-1,k}$.

$T_{n,k}$	k=0	1	2	3	4	5	6
n = 0	1						
1	2	1					
2	3	3	1				
3	4	6	4	1			
4	5	10	10	5	1		
5	6	15	20	15	6	1	
6	7	21	35	35			

A
000225 shiftata. $RS_n = 2^{n+1} - 1.$

A000337. $RS'_n = (n+1)2^n + 1$. Anche certe mappe da C_n ad alberi ... che non ricordo.

Bisogna studiare il passaggio da RS_n s RS'_n .

Tentativo 4 $T_{n,k} = 2T_{n-1,k-1} - T_{n-1,k}$

NOTA1. Da Cap3-1.tex vedo che, per $n \ge 1$, abbiamo la ricorrenza

$$RS_n = (\alpha + \beta)RS_{n-1} + m_{n,0} - \beta m_{n-1,0}.$$

Quindi $RS_n = RS_{n-1} + (n+1) + n = RS_{n-1} + 2n + 1$. Dunque - incredibile! -

$$RS_n = (n+1)^2$$
.

Guardare anche le colonne (es. k = 4: $4 \times A002492 shift 8n(n+1)(2n+1)/3$).

NOTA2. Dalla
$$D(x) = \frac{(1 - c_{0,1}x)H(x) + (1 - c_{1,0}x)V(x) - m_{0,0}}{1 - (c_{0,1} + c_{1,0})x - c_{1,1}x^2}$$

ricavo che
$$D(x) = \frac{(1+x)(1-x)^{-2}}{1+x-2x^2} = \frac{1+x}{1-x-3x^2+5x^3-2x^4}$$
.

Per $n \geq 4$, abbiamo la ricorrenza è: $d_n = d_{n-1} + 3d_{n-2} - 5d_{n-3} + 2d_{n-4}$. Bene e se fosse così sarebbe pazzesco - |AD| inizia come il valore assoluto della A232603 (shift). Infatti, almeno per $0 \leq n \leq 8$, ho verificato che

$$|AD|_n = \left| 2^n \sum_{k=0}^n \frac{k^2}{(-2)^k} \right|.$$

Inoltre
$$27|AD|_n = |(-1)^n(9n^2 + 12n + 2) - 2^{n+1}|.$$

$kT_{n,k}$	k	= 0	1	2		3	4	5	6	7
n = 0		0								
1		0	2							
2		0	2	8						
3		0	4	0	4	24				
4		0	4	16	-2	24	64			
5		0	6	0	7	72	-128	160		
6		0	6	24	-7	72	320	-480	384	
7		0	8	0	14	14	-512	1280		
8		0	8	32	-14	14	896			
		0	1	2	3	4	5	6		
	$\overline{S'_n}$	0	2	10	28	60	110	182		
A	D_n	0	0	2	2	12	4	46	-18	

Le antidiagonali non sono su Sloane, ma le somme sono la A006331:

$$RS_n = \frac{n(n+1)(2n+1)}{3} .$$

Sorpresa: Questa è la A002492, la colonna $T_{n,4}$. Invece è ovvio che la diagonale principale sia $n2^n$ visto che prima era 2^n .

$$\frac{1}{1 - 2x} \to \frac{2x}{(1 - 2x)^2} \ .$$

E ancora: per la sottodiagonale della T vedere A241204.

2.1. $RS \to RS'$. Sopra abbiamo visto che con $H(x)=1, V(x)=(1-x)^{-1}$ e con $c_{0,1}=B$ abbiamo

$$RS_n = (B+1)^n \to RS'_n = Bn(B+1)^{n-1}.$$

Questo è quasi immediato. Poi abbiamo visto che con $H(x)=1, V(x)=(1-x)^{-2}$ e con $c_{0,1}=B=2$ abbiamo

$$RS_n = \frac{(B+1)^n + 1}{2} \rightarrow RS'_n = \frac{(2n+3)Bn(B+1)^{n-1} + 1}{4}$$
.

Congettura: sotto queste ipotesi

$$RS_n = \frac{(B+1)^n + C}{D} \rightarrow RS'_n = \frac{(Bn+E)(B+1)^{n-1} + C'}{D'}$$
.

3. Proprietà delle psuedo potenze

moltiplicando la k-esima colonna di $\mathcal M$ per b^k . Allora (¹), $\mathcal L$ è una Marylin con schema

 $^{^1\!}$ Anche questa dimostrazione è semplice, ma meno noiosa.

$$\begin{array}{c|cccc} bc_{1,1} & c_{1,0} \\ bc_{0,1} & T_{n,k} \end{array}$$

Inoltre $V^L(x) = V(x)$ e $H^L(x) = H(bx)$.

In un certo senso, la proprietà delle pseudopotenze (2X2X2X...X2) si generalizza a qualunque successione (aXbX...Xc).

Lo ho fatto per i fattoriali, ma non ricordo dove ... GGGRRR!!! Va rifatto.

3.1. Delannoy con b=2.

 $AD_n' = \mathbf{3}AD_{n-1}' + \mathbf{2}AD_{n-2}' \quad \text{NOTA: qui il } \mathbf{3} \text{ è } bc_{0,1} + c_{1,0} \text{ e il } \mathbf{2} \text{ è } bc_{1,1}.$

$$\frac{1}{1 - 2x - x^2} \to \frac{1}{1 - 3x - 2x^2} .$$

Ora ricordiamo che ...

Proposition 3.1.

The scheme
$$\tilde{\sigma} \doteq \begin{bmatrix} c_{1,1} & c_{1,0} + c_{0,1} \\ \hline 0 & * \end{bmatrix}$$
 with $\tilde{H}(x) = m_{0,0}$, and

(2)
$$\tilde{V}(x) = \frac{(1 - c_{0,1}x)H(x) + (1 - c_{1,0}x)V(x) - m_{0,0}}{1 - (c_{0,1} + c_{1,0})x}$$

triangularizes σ , the general (1,1)-scheme. That is to say that $M_{\tilde{\sigma}}$ is a lower triangular (infinite) matrix with $\tilde{d}_n = d_n$ for n = 0, 1, ...

For these matrices we also have both the recurrence and the closed form of their row sums, written \widetilde{RS}_n . Indeed $RS_0 = m_{0,0}$, and

$$\widetilde{RS}_n = (c_{1,1} + c_{1,0} + c_{0,1})\widetilde{RS}_{n-1} + m_{n,0} - (c_{1,0} + c_{0,1})m_{n-1,0},$$

for $n \geq 1$. The closed form is

$$\widetilde{RS}_n = m_{n,0} + c_{1,1} \sum_{i=0}^{n-1} (c_{1,1} + c_{1,0} + c_{0,1})^{n-1-i} m_{n,i}$$
.

Finally ...

Proposition 3.2.

(3)
$$\widetilde{RS}(x) = \frac{(1 - c_{0,1}x)H(x) + (1 - c_{1,0}x)V(x) - m_{0,0}}{1 - (c_{1,1} + c_{1,0} + c_{0,1})x}.$$

Quindi, la triangolarizzata isodiagonale , TI nel seguito, di $2^k T(n,k)$ è

con
$$c_{0,1} = 2$$
, $H(x) = (1 - 2x)^{-1}$, $m_{0,0} = 1$, $c_{1,0} = 1$ e $V(x) = ? = (1 - x)^{-1}$.

Quindi
$$\widetilde{RS}_n = \frac{(1-2x)(1-2x)^{-1} + (1-x)(1-x)^{-1} - 1}{1-(2+2+1)x} = \frac{1}{1-5x}$$
 .

3.2. Delannoy con b = -1.

	$T_{n,k}$	k = 0	1	2	3	4	5	6		
	n = 0	1	1	1	1	1	1			
	1	1	3	5	7	9	11			1 1
	2	1	5	13	25	41				
	3	1	7	25	63					$1 \mid T_{n,k}$
	4	1	9	41						
	5	1	11							
(-1)	$(1)^k T_{n,k}$	k = 0	1	2	3	4	:	5	6	
	$\frac{1)^k T_{n,k}}{n=0}$	k = 0	-1	2	-1	4 1		5 -1	6	-
							-	-1	6	
	a = 0	1	-1	1	-1	1 9	-1	-1	6	
	a = 0 1	1 1	-1 -3	1 5	-1 -7	1 9	-1	-1	6	$ \begin{array}{c c} -1 & 1 \\ -1 & T_{n,k} \end{array} $
	a = 0 1 2	1 1 1	-1 -3 -5	1 5 13	-1 -7 -25	1 9	-1	-1	6	$ \begin{array}{c c} -1 & 1 \\ -1 & T_{n,k} \end{array} $

Quindi, la TI di $(-1)^k T(n,k)$ è

con $c_{0,1} = ? = 0$, H(x) = ? = 1, $m_{0,0} = 1$, $c_{1,0} = ? = 1$ e V(x) = ? = 1.

Quindi
$$\widetilde{RS}_n = \frac{(1-0\cdot x)\cdot 1 + (1-0\cdot x)\cdot 1 - 1}{1-(-1+0+0)x} = \frac{1}{1+x}$$
 .

$$AD'_n = 0 \cdot AD'_{n-1} - AD'_{n-2}; \quad \frac{1}{1 - 2x - x^2} \rightarrow \frac{1}{1 + x^2}.$$

Nota: la proprietà dei determinanti ... vale ancora.

3.3. ALTRA PROVA. \mathcal{M} con $H(x) = V(x) = (1-x)^{-1}$ e b = 2.

4. Un'importante osservazione

Finora abbiamo trattato ricorrenze lineari, ma c'è - almeno - un importante caso non lineare in cui possiamo applicare (anche se parzialmente) la nostra teoria. Nello specifico, consideriamo la tabella generata dalla ricorrenza con schema

1	k	e condizioni al contorno	H(x) = V(x) = 1	Feeds:
0	$S_{n,k}$	e condizioni ai contorno	II(x) - V(x) - 1.	Eccola.

$S_{n,k}$	k = 0	1	2	3	4	5	6
n = 0	1						
1	0	1					
2	0	1	1				
3	0	1	3	1			
4	0	1	7	6	1		
5	0	1	15	25	10	1	

Abbiamo i numeri di Stirling di seconda specie:

$$S_{n,k} = S_{n-1,k-1} + kS_{n-1,k}$$

che, come si sa, sono univocamente individuati dalla relazione

$$x^n = \sum_{k \ge 0} S_{n,k}(x)_k.$$

Nel caso delle potenze abbiamo $s_n=0$ e, per i decrescenti, $r_k=k-1$. Quindi, come noto, il coefficiente di $S_{n-1,k}$, cioè $c_{1,0}$, è

$$r_{k+1} - s_n = k$$

mentre il coefficiente di $S_{n-1,k-1}$, cioè $c_{1,1}$, è 1. Se invece consideriamo la tabella generata dalla ricorrenza con schema

1	-1 + n	e condizioni al contorno	H(x) = V(x) = 1	ouvoro:
0	Sn h	e condizioni ai contorno	$\Pi(x) = V(x) = 1,$	ovvero.

$S_{n,k}$	k = 0	1	2	3	4	5	6
n = 0	1						
1	0	1					
2	0	-1	1				
3	0	2	-3	1			
4	0	-6	11	-6	1		
5	0	24					

Abbiamo i numeri di Stirling di prima specie:

$$s_{n,k} = s_{n-1,k-1} + (1-n)S_{n-1,k}$$

che sono univocamente individuati dalla relazione

$$(x)_n = \sum_{k \ge 0} s_{n,k} x^k.$$

Ora abbiamo $s_n = n-1$ e, $r_k = 0$. Ed ecco che $c_{1,0} = 0 - (n-1) = 1-n$. VEDERE LAH

5. Linearità

Sia \mathcal{M} una Marylin con schema $\begin{bmatrix} c_{1,1} & c_{1,0} \\ c_{0,1} & T_{n,k} \end{bmatrix}$ e sia $\mathcal{L} = a\mathcal{M}$.

Allora \mathcal{L} è (banalmente) una Marylin con schema $\begin{bmatrix} c_1, \\ c_0 \end{bmatrix}$

$c_{1,1}$	$c_{1,0}$	
$c_{0,1}$	$L_{n,k}$	

H'(x) = aH(x) e V'(x) = aV(x). Esempio: Delannoy con a = 2.

$L_{n,k}$	k = 0	1	2	3	4	5	6
n = 0	2	2	2	2	2	2	2
1	2	6	10	14	18	22	
2	2	10	26	50	82		
3	2	14	50	126			
4	2	18	82				
5	2	22					
$T_{n,k}$	k = 0	1	2	3	4	5	6
$\frac{T_{n,k}}{n=0}$	$\begin{array}{c c} k = 0 \\ \hline 1 \end{array}$	1	2	3	4	5	6
n = 0	1	1	1	1	1	1	
n = 0 1	1 1	1 3	1 5	1 7	1 9	1	
n = 0 1 2	1 1 1	1 3 5	1 5 13	1 7 25	1 9	1	

5.1. L'operazione δ . Data una Marylin \mathcal{M} , genero $\delta\mathcal{M}$ facendo la differenza prima di ogni sua riga:

$$\delta_{n,k} = T_{n,k} - T_{n,k-1}$$

per $k \ge 1$. Ecco l'esempio Delannoy.

$T_{n,k} - T_{n-1,k}$	k = 0	1	2	3	4	5	6
n=0	1	0	0	0	0	0	0
1	1	2	2	2	2	2	
2	1	4	8	12	16		
3	1	6	18	38			
4	1	8	32				
5	1	10					

Come prevedibile, $\delta\mathcal{M}$ è ancora una Marylin, ma la cosa interessante è che si perde la simmetria.

Osservazioni: (1) la successione degli AD_n' ha la stessa ricorrenza degli AD_n ; (2) la successione degli AD_n' è la A001333; (3) per $n \geq 2$,

(4)
$$AD'_{n} = AD_{n-1} + AD_{n-2}.$$

Provo con i binomiali:

Osservazioni: (1) la simmetria dei binomiali implica che le somme delle righe di δBIN siano tutte nulle; (2) per $n \geq 2$,

NOTA. Le (4) e (5) sono diretta conseguenza della (facilmente dimostrabile)

$$AD_n' = AD_n - AD_{n-1}$$

per $n \geq 1$ e $AD'_0 = AD_0$.

6. SE FUNZIONA ...

Matrice con somma delle righe $RS_n = 4^n$ e schema $\begin{bmatrix} 1 & 2 \\ 0 & G_{n,k} \end{bmatrix}$

$G_{n,k}$	k = 0	1	2	3	4	5	6		
n = 0	1								
1	3	1							
2	10	5	1						
3	36	20	7	1					
4	136	76	34	9	1				
5	528	288	144	52	11	1			
6	2080	1104	576	248	74	13	1		
7	8256	4288	2256	1072	396	100	15	1	
8					1864	596	130	17	1

First column looks like A007582. Dunque $G_{n,0}=2^{n-1}(1+2^n)$. Inoltre $G_{n,n-2}$ è la A005893: $G_{n,n-2}=2n^2+2$, per $n\geq 2$.

Le diagonali sono dei polinomi. Vediamo $G_{n,n-3}$.

Dunque, per $n \geq 3$,

$$G_{n,n-3} = 36 \binom{n-3}{0} + 40 \binom{n-3}{1} + 28 \binom{n-3}{2} + 8 \binom{n-3}{3} = \dots = \frac{4n^3 - 6n^2 + 14n + 12}{3}.$$

$$\begin{array}{r} 136 \quad 288 \quad 576 \quad 1072 \quad 1864 \\ 152 \quad 288 \quad 496 \quad 792 \\ 136 \quad 208 \quad 296 \\ 72 \quad 88 \\ 16 \end{array}$$

Dunque, per $n \geq 4$, $G_{n,n-4} =$

$$136\binom{n-4}{0} + 152\binom{n-4}{1} + 136\binom{n-4}{2} + 72\binom{n-4}{3} + 16\binom{n-4}{3}$$

$$10 \quad 20 \quad 34 \quad 52 \quad 74$$

$$10 \quad 14 \quad 18 \quad 22$$

$$4 \quad 4 \quad 4$$

Dunque, per $n \geq 2$, $G_{n,n-2} =$

$$D_{n,n-1} = n2^n + 2^{n-1}$$

Moreover $40 = 3 \times 10 + 10$, $152 = 3 \times 40 + 36$

$$28 = 2(10+4) \ 136 = 2(40+28) \dots D_{n-k} = 2(D_{n-1,k} + D_{n-1,k-1})$$

28 = 2(10+4) 136 = 2(40+28) ... $D_{n,k} = 2(D_{n-1,k} + D_{n-1,k-1})$ That's weird: so far row sums are A079028: $(n+4)4^{n-1}$. Next value is 2304.