PCT

song-ku, Taejon-si 305-390 (KR).

(74) Agent: LEE, Won-Hee; Suite 805, Sung-ji Heights II, 642-16 Yoksam-dong, Kangnam-ku, Scoul 135-080 (KR).

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7: WO 00/31141 (11) International Publication Number: C07K 16/28, C12N 15/13, 15/63, A61K A1 (43) International Publication Date: 2 June 2000 (02.06.00) 39/395 PCT/KR99/00699 (21) International Application Number: (81) Designated States: CA, JP, US, European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, (22) International Filing Date: 19 November 1999 (19.11.99) PT, SE). (30) Priority Data: **Published** 1998/49663 19 November 1998 (19.11.98) KR With international search report. Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of (71) Applicants (for all designated States except US): KOREA INamendments. STITUTE OF SCIENCE AND TECHNOLOGY [KR/KR]; 39-1 Hawolgok-dong, Sungbuk-ku, Scoul 136-130 (KR). KOREA GREEN CROSS CORPORATION [KR/KR]; 227 Gugal-ri, Kiheung-eup, Yongin-si, Kyonggido 449-900 (KR). (72) Inventors; and (75) Inventors/Applicants (for US only): HONG, Hyo, Jeong [KR/KR]; #15-401 Kit Apt., 237 Kajeong-dong, Eusong-ku, Taejon-si 305-350 (KR). RYU, Chun, Jeih [KR/KR]; #136-1203 Hanbit Apt., 99 Oeun-dong, Eusong-ku, Taejon-si 305-333 (KR). HUR, Hyangsuk [KR/KR]; #106-1508 Expo Apt., Jeonmin-dong, Eu-

(54) Title: HUMANIZED ANTIBODY SPECIFIC FOR SURFACE ANTIGEN PRE-S1 OF HBV AND PREPARATION METHOD THEREOF

(57) Abstract

The present invention relates to humanized antibodies specific for HBV surface antigen pre-S1, which show binding affinity similar to mouse monoclonal antibody and which show remarkably reduced immunogenicity since they have less mouse-derived amino acid residues. Thus, the humanized antibodies of the present invention may be useful for the prevention of HBV infection and for the treatment of hepatitis B.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon ·		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

HUMANIZED ANTIBODY SPECIFIC FOR SURFACE ANTIGEN PRE-S1 OF HBV AND PREPARATION METHOD THEREOF

FIELD OF THE INVENTION

5 The present invention relates to humanized antibodies specific for HBV surface antigen pre-S1.

10

15

20

25

Particularly, this invention relates to humanized antibodies specific for HBV surface antigen pre-S1, the antibody comprising humanized heavy and light chain; to genes encoding the humanized heavy or light chain; to expression vectors containing said genes and *E. coli* transformants containing said expression vector; and to pharmaceutical composition comprising said humanized antibody, which may be administered in order to prevent HBV infection or to treat chronic hepatitis B.

BACKGROUND

HBV (Hepatitis B Virus) is responsible for chronic or acute human hepatitis that may get worse to liver cirrhosis or cancer. It is estimated that about three hundred million people are suffering from hepatitis in the world (Tiollais and Buendia, Sci. Am. 264:48, 1991).

There are three kinds of HBV surface proteins containing different sets of surface antigens. Particularly, these surface antigen proteins includes the Major Protein containing S antigen, the Middle

Protein containing S and pre-S2 antigens, and the Large Protein containing S, pre-S2 and pre-S1 antigens (Neurath and Kent, Adv. Virus Res., 34:65-142, 1988). All the surface antigen proteins can induce antibodies that neutralize HBV, and especially, antibodies against HBV pre-S antigen are associated with the elimination of the virus and the recovery from HBV infection, overcoming non-responsiveness to the S antigen (Iwarson et al., J. Med. Virol., 16:89-96, 1985; Itoh et al., Proc. Natl. Acad. Sci. USA, 85:9174-9178, 1986; Budkowska et al., J. Med. Virol., 20:111-125, 1986; Milich et al., Proc. Natl. Acad. Sci. USA, 82:8168-8172, 1985; Milich et al., J. Immunol., 137:315-322, 1986).

Unlike pre-S2 or S antigen, pre-S1 antigen is exclusively present in infectious virus particles (Heerman et al., J. Virol., 52:396-402, 1984) and involved in the infection into human liver cells. Thus, it has been reported that monoclonal antibody specific for pre-S1 antigen may efficiently neutralize HBV (Neurath et al., Cell, 46:429, 1986; Pontisso et al., Virology, 173:533, 1989; Neurath et al., Vaccine, 7:234, 1989), and the monoclonal antibody is considered to be useful in the prevention of HBV infection and the treatment of chronic hepatitis B.

25

5

10

15

20

So far hepatitis B immunoglobulin has been employed as a preventive for HBV infection, which may

protect, for example, a newborn baby from a HBV-positive mother, medical personnel exposed to HBV, and liver transplant patient with chronic HBV-related liver disease (Beasley et al., Lancet, 2:1099, 1983; Todo et al., Hepatology, 13:619, 1991). However, hepatitis B immunoglobulin has some shortcomings such as its limited availability, low specific activity and its possible contamination with infectious agents. Furthermore, it is another disadvantage of hepatitis B immunoglobulin that blood plasma should be continuously supplied.

5

10

15

20

25

hepatitis As an alternative for the В immunoglobulin, mouse monoclonal antibodies against HBV surface antigens have been developed. Although the mouse monoclonal antibodies show high affinity for the antigen and can be prepared on a large scale, they induce human anti-mouse antibody response in patients (Shawler et al., J. Immunol., 135:1530, 1985). were attempts to prepare human monoclonal antibodies, but few of these antibodies showed a high level of affinity.

Instead, humanized antibodies have been developed. Humanized antibody has a high level of affinity and specificity similar to mouse antibodies, whereas its immunogenicity is minimized. Humanized antibody is a hybrid antibody in which CDRs (Complementarity Determining Regions) of a mouse antibody is grafted to

a human antibody by genetic engineering technique. It can be easily prepared on a large scale, and hardly elicits immune responses in humans since most of the DNA sequences encoding the humanized antibodies are derived from a human DNA sequence (Riechman et al., Nature, 332:323, 1988; Nakatani et al., Protein Engineering, 7:435, 1994).

5

10

15

20

25

and other overcome aforementioned the To disadvantages of mouse or human HBV immunoglobulin, we, the inventors of the present invention, have attempted to prepare humanized antibodies which can be used to prevent HBV infection and to treat chronic hepatitis B. Prior to this invention, we prepared a mouse monoclonal antibody KR127 against HBV surface antigen pre-S1. Additionally, we isolated the genes encoding the heavy and light chain variable regions of KR127 antibody and determined the sequences of the genes (Korea Patent Application No. 1997-30696). The present invention is performed by selecting human immunoglobulin genes homologous to the sequences of KR127 antibody light chain and heavy chain variable regions; constructing the humanized antibody genes; inserting the genes into expression vectors; introducing the vectors into host cells; obtaining humanized antibodies from the culture of the transformed cells; and confirming that the humanized antibodies have high affinity to HBV pre-S1

antigen, similar to the mouse monoclonal antibody KR127.

SUMMARY OF THE INVENTION

It is an object of this invention to provide humanized antibodies specific for CDRs of mouse HBV surface antigen pre-S1, having high affinity to the antigen and reduced immunogenicity in human.

In accordance with the present invention, the foregoing objects and advantages are readily obtained.

The present invention provides humanized antibodies specific for HBV surface antigen pre-S1, comprising humanized heavy and light chains.

This invention also provides genes encoding the variable regions of said humanized heavy or light chain.

In addition, this invention provides expression vectors containing said genes and $E.\ coli$ transformants containing said expression vectors.

This invention further provides pharmaceutical compositions comprising said humanized antibody, which may be administered in order to prevent HBV infection or to treat chronic hepatitis B.

Further features of the present invention will appear hereinafter.

5

10

15

20

BRIEF DESCRIPTION OF THE DRAWINGS

FIG la and FIG lb comparatively depict the amino acid and nucleotide sequences of V_{H} regions (for Variable regions of Heavy chains) in a mouse monoclonal antibody KR127 and in two humanized antibodies of this invention,

5

10

15

20

FIG 2a schematically depicts a process for preparing HKR127HC(I) gene encoding the heavy chain of a humanized antibody of this invention,

FIG 2b schematically depicts a process for preparing HKR127HC(III) gene encoding the heavy chain of a humanized antibody of this invention,

FIG 3a and FIG 3b comparatively depict the amino acid and nucleotide sequences of $V_{\rm L}$ regions (for Variable regions in Light chain) in a mouse monoclonal antibody KR127 and in a humanized antibody of this invention.

FIG 4 schematically depicts a process for preparing HKR127KC(I) gene encoding a humanized antibody of this invention,

FIG 5a depicts an expression vector pCMV-HKR127HC containing a gene for heavy chain of the humanized antibody,

FIG 5b depicts an expression vector pKC-dhfr-25 HKR127 containing a gene for light chain of the humanized antibody,

FIG 5c depicts an expression vector pCMV-HKR127HC(III) containing a gene for heavy chain of the humanized antibody,

FIG 6a comparatively shows the binding affinities of a humanized antibody (HZKR127I) and a mouse monoclonal antibody (KR127), and

FIG 6b comparatively shows the binding affinities of a humanized antibody (HZKR127III) and a humanized antibody (HZKR127I).

10

15

20

25

5

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Hereinafter, the present invention is described in detail.

This invention provides humanized antibodies specific for HBV surface antigen pre-S1, comprising humanized heavy and humanized light chains.

This invention also provides genes encoding the variable regions of said humanized heavy or light chain.

Said humanized heavy chain contains variable region which is derived from the $V_{\rm H}$ region of mouse KR127 antibody. The $V_{\rm H}$ region of mouse KR127 antibody is described by SEQ ID NO: 19, and the $V_{\rm H}$ region of the humanized antibody of this invention can be prepared by grafting the CDRs of mouse KR127 $V_{\rm H}$ region to homologous human immunoglobulin $V_{\rm H}$ region.

And said humanized light chain contains variable

region which is derived from the V_L region of mouse KR127 antibody. The V_L region of mouse KR127 antibody is described by SEQ ID NO: 22, and the V_L region of the humanized antibody of this invention can be prepared by grafting the CDRs of mouse KR127 V_L region to homologous human immunoglobulin V_L region.

5

10

15

20

25

In preferred embodiments, we screened human immunoglobulin that show the highest similarities of amino acid sequence to the heavy or light chain of the mouse monoclonal antibody KR127. In result, human immunoglobulin germ line genes DP7 and DPK12 were screened from GenBank database. DP7 shows the highest homology to the $V_{\rm H}$ region of mouse antibody KR127, while DPK12 is most similar to the $V_{\rm L}$ region of KR127.

The humanized antibodies of this invention can be produced from recombinant genes encoding humanized $V_{\rm R}$ region or $V_{\rm L}$ region. These genes are constructed by substituting CDRs of mouse KR127 for those of the human DP7 or DPK12 antibody. In constructing these genes, most of the amino acid residues corresponding to the humanized CDRs are derived from the CDRs of mouse antibody KR127. However, some mouse-derived CDRs residues are replaced by human counterparts, since their corresponding amino acid residues are expected not to be involved in the antigen binding (see FIG 1). In the same way, some human-derived amino acid residues for the non-CDR framework regions (FR) of variable

region are replaced with mouse counterparts, since it is expected that these FR residues may affect the conformation of CDRs.

Particularly, HKR127HCv(HZII) gene encoding a humanized V_H region was prepared by grafting the partial CDR1, 2, 3 and a FR residue (at position 72) of mouse KR127 heavy chain to the human DP7 gene (see FIG 1).

5

10

15

However, antibody expressed from HKR127HCv(HZII) gene did not show any significant level of binding capacity to corresponding antigen. To improve the HKR127HCv(HZII) gene, we also prepared HKR127HCv(HZI) gene and HKR127HCv(HZIII) gene which contain more mouse-derived codons than HKR127HCv(HZII) gene (see FIG 1).

HKR127HCv(HZI) contains CDR1, partial CDR2, and CDR3, and 11 FR residues of mouse KR127 $V_{\rm H}$, while HKR127HCv(HzIII) contains the same mouse CDR codons and 2 mouse FR residues (see FIG 1).

To construct HKR127HC(I) gene encoding a full-length heavy chain of the humanized antibody of this invention, PCRs were conducted, in which template for amplification is either the HKR127HCv(HZII) gene or pRC/CMV-HC-HuS (KCTC 0229BP) containing the heavy chain leader sequence and the constant region sequence of human immunoglobulin heavy chain γ1.

Six pairs of oligonucleotides (SEQ ID NO: 1 and 2;

3 and 4; 5 and 6; 7 and 8; 9 and 10; and 11 and 12) were used as PCR primers (see FIG 2a).

5

10

15

20

25

The first five PCR products were brought to annealing reaction. Then, the DNA fragment containing the five PCR products was employed as a template of recombinant PCR wherein two primers described by SEQ ID NO: 1 and 10 were used. Another recombinant PCR was conducted to link the amplified 431-bp DNA fragment to DNA fragment which was obtained by PCR using two primers (described by SEQ ID NO: 11 and 12). The recombinant PCR employed two primers described by SEQ ID NO: 1 and 12. The final 1431-bp PCR product, HKR127HC(I), encoding the heavy chain of a humanized antibody (HZKR127I) was introduced into pBluescript SK(+) vector (Clontech), and the resulting vector was designated pHKR127HC(I).

The primers are described in SEQ ID NO: 1 to 12 in SEQUENCE LISTING, and particularly, primer described by SEQ ID NO: 1 contains EcoRI sequence at the 5' end, while primer described by SEQ ID NO: 12 does SalI sequence at the 3' end.

The variable region in the HKR127HC(I) gene contains 11 mouse-derived FR residues at positions 12, 28, 30, 48, 67, 68, 70, 72, 74, 79 and 95 (see FIG 1). The heavy chain variable region has 87 FR residues, and the unmodified FR residues is 76. Thus, the amino acid sequence of the heavy chain variable FR of the

 ${
m HKR127HC}(I)$ gene is 87% homologous to that of human DP7 gene.

To more humanize the HZKR127(I), HZKR127(III) gene was constructed, which contains HKR127HCv(HZIII) gene with 2 mouse-derived FR residues at position 72 and 74 (see FIG 1).

5

10

15

20

25

To construct HKR127HC(III) gene encoding a full-length heavy chain of the humanized antibody of this invention, PCRs were conducted, in which template for amplification is either the HKR127HCv(HZII) gene or PRC/CMV-HC-HuS (KCTC 0229BP) containing the heavy chain leader sequence and the constant region sequence of human immunoglobulin heavy chain $\gamma 1$ (see FIG 2b).

Four pairs of oligonucleotides (SEQ ID NO: 1 and 24; 25 and 26; 27 and 28; and 11 and 12) were used as PCR primers (see FIG 2b). The first three PCR products were brought to annealing reaction. Then, the DNA fragment containing the three PCR products was employed as a template of recombinant PCR wherein two primers described by SEQ ID NO: 1 and 28 were used. Another recombinant PCR was conducted to link the amplified 431-bp DNA fragment to DNA fragment which was obtained by PCR using two primers (described by SEQ ID NO: 11 and 12). The recombinant PCR employed two primers described by SEQ ID NO: 1 and 12.

The final 1431-bp PCR product, HKR127HC(III), encoding the heavy chain of a humanized antibody

(HZKR127III) was introduced into pBluescript SK(+) vector (Clontech), and the resulting vector was designated pHKR127HC(III).

In a further embodiment, HKR127KCv(HZII) gene encoding a humanized V_{L} region was prepared by grafting the CDR1, CDR3 and partial CDR2 of mouse KR127 light chain to the human DPK12 gene (see FIG 3).

10

15

20

25

However, antibody expressed by using the HKR127KCv(HZII) gene did not show any significant level of binding capacity to corresponding antigen. To improve the binding capacity of HKR127KCv(HZII), we also prepared HKR127KCv(HZI) gene which contains more mouse-derived amino acid residues (see FIG 3) than HKR127HKCv(HZII) (see FIG 3).

To construct HKR127KC(I) gene encoding a full-length light chain of the humanized antibody of this invention, PCRs were conducted, in which template for amplification is either the HKR127KCv(HZII) gene or pKC-dfhr-HuS (KCTC 0230BP) containing the light chain leader sequence and the constant region sequence of human immunoglobulin light chain κ .

Three pairs of oligonucleotides (SEQ ID NO: 13 and 14; 15 and 16; and 17 and 18) were used as PCR primers (see FIG 4).

The first two PCR products were brought to annealing reaction. Then, the DNA fragment containing

the two PCR products was employed as a template of recombinant PCR wherein two primers described by SEQ ID NO: 13 and 16 were used. Another recombinant PCR was conducted to link the amplified 360-bp DNA fragment to DNA fragment which was obtained by PCR using two primers (described by SEQ ID NO: 17 and 18). The employed two primers recombinant PCR which are described by SEQ ID NO: 13 and 18. The final 739-bp PCR product, HKR127KC(I), encoding the light chain of a humanized antibody (HZKR127I) was introduced into pBluescript SK(+) vector (Clontech), and the resulting vector was designated pHKR127KC(I).

5

10

15

20

The primers are described in SEQ ID NO: 13 to 18 in SEQUENCE LISTING, and particularly, primer described by SEQ ID NO: 13 contains HindIII sequence at the 5' end, while primer described by SEQ ID NO: 18 does SalI sequence at the 3' end.

The variable region FR of the HKR127KC gene contains 5 mouse KR127-derived codons (see FIG 3). The light chain has 83 FR residues, and the unmodified FR residues is 78. Thus, the amino acid sequence of the light chain variable FR of the HKR127KC gene is 94% identical to that of human DP7 gene.

In addition, this invention provides expression vectors containing genes encoding the humanized $V_{\rm H}$ or $V_{\rm L}$ region and provides $E.\ coli$ transformants containing

said expression vector.

5

10

15

20

25

In other preferred embodiments, expression vectors are prepared, which contain the gene encoding the heavy or light chain of humanized antibody (see FIG 5a, 5b or 5c).

Particularly, two kinds of DNA fragment corresponding to humanized heavy chain was respectively obtained from the plasmids pHKR127HC(I) pHKR127HC(III) by treatment of restriction enzymes, and (Invitrogen) inserted into pRc/CMV then to give expression vector pCMV-HKR127HC (see FIG5a) and pCMV-HKR127(III) HC (see FIG 5c), respectively.

In addition, DNA fragment encoding the humanized light chain was isolated from the pHKR127KC vector, and then introduced into pCMV-dfhr (KCTC 8671P) to construct expression vector pKC-dhfr-HKR127 (see FIG 5b).

E . coli strain DH5 α was transformed with the expression vector pCMV-HKR127HC, pCMV-HKR127(III)HC or pKC-dhfr-HKR127. The resulting E. coli transformants pCMV-HKR127HC pKC-dhfr-HKR127 containing or deposited in KCTC (Korean Collection for Type Culture) (Accession Number: KCTC 0531BP and KCTC 0529BP. 1998. respectively) on October 12, The E. pCMV-HKR127(III)HC transformant containing deposited in KCTC (Accession Number: KCTC 0691BP, respectively) on November 15, 1999.

In another preferred embodiment, humanized antibodies specific for HBV surface antigen pre-S1 were expressed in animal cells and obtained from culture media of the cells. COS7 cells were transiently cotransfected with the expression vectors pCMV-HKR127HC and pKC-dhfr-HKR127, and the resulting transfected cells was cultured and the culture supernatant was used to characterize a humanized antibody HZKR127I of the present invention. COS7 cells were also cotransfected with the expression vectors pCMV-HKR127(III)HC and pKC-dhfr-HKR127, and the culture supernatant of transfected cells was used to characterize a humanized antibody HZKR127III.

15

20

10

5

This invention further provides pharmaceutical compositions containing said humanized antibody.

According to still other preferred embodiments, it was verified that HZKR127I and HZKR127III humanized antibodies of the present invention, showed almost same antigen-binding affinity when compared with mouse monoclonal antibody KR127 (see Table 1, 2 and FIG 6a, 6b).

The composition includes a therapeutically effective amounts of the humanized antibody against HBV antigen pre-S1, with/without a pharmaceutically acceptable delivery vehicle. Moreover, the

compositions may include other anti-hepatitis drug(s), such as anti-S monoclonal antibody or lamivudin.

The humanized antibody against HBV antigen pre-S1 may be formulated with a pharmaceutical vehicle or diluent for intravenous, subcutaneous, intramuscular administration. The pharmaceutical composition can be formulated in a classical manner using solid or liquid vehicles, diluents and additives appropriate to the desired mode of administration.

The humanized antibody of this invention may be administered in a dosage range of about 1 ~ 10 mg/kg, preferably 3 ~ 5 mg/kg, and may be administered once a week.

15 EXAMPLES

5

20

Practical and presently preferred embodiments of the present invention are illustrative as shown in the following Examples.

However, it will be appreciated that those skilled in the art, on consideration of this disclosure, may make modifications and improvements within the spirit and scope of the present invention.

Example 1: Preparation of gene encoding humanized heavy chain

In order to construct the humanized heavy chain variable region gene, first, we selected a human immunoglobulin heavy chain gene that shows the highest homology of amino acid sequence to the heavy chain variable region of the mouse monoclonal antibody KR127. As the result, a human immunoglobulin germ line gene DP7 was selected from GenBank database. Then, we constructed a humanized V_H region gene HKR127HCv(HZII) by DNA recombination techniques, which was based upon the comparison of the mouse KR127 $V_{\scriptscriptstyle H}$ region with the human DP7 V, region. Since the humanized heavy chain did not show significant antigen binding activity, we prepared HKR127HCv(HZI) gene encoding another V_H region in order to improve the HKR127HCv(HZII) gene (see FIG 1).

. 5

10

15

20

Particularly, the HKR127HCv(HZII) gene was constructed by grafting the $V_{\rm H}$ region of human DP7 gene with the partial CDR1, 2, and 3 and one FR residue at position 72 of mouse KR127 $V_{\rm H}$ region. It was assumed that the human CDRs and FR amino acid residues affected the antigen-binding affinity of the antibody.

Therefore, HKR127HCv(HZI) gene was constructed by PCR employing HKR127HCv(HZII) gene as a template.

On the other hand, a vector pRc/CMV-HC-HuS (Accession Number: KCTC 0229BP) was used to synthesize DNA sequence encoding human C_{H} region as well as heavy chain leader sequence, which is required in proper secretion of the heavy chain.

5

10

15

20

25

Finally, HKR127HC(I) gene encoding a humanized heavy chain was constructed by recombinant PCR for the annealing of the heavy chain leader sequence, HKR127HCv(HZI) gene, and the human C_H gene (see FIG 2a).

The primers in these PCRs are synthetic oligonucleotides described by SEQ ID NO: 1 to 12. PCR was performed by using Taq DNA polymerase, and its thermocycle was repeated 30 times, consisting of 1 minute at 94°C, 1 minute at 55°C, and then 1 minute at 72°C. Five pairs of oligonucleotides (SEQ ID NO: 1 and 2; 3 and 4; 5 and 6; 7 and 8; and 9 and 10) were used as PCR primers, and the five PCR products (113 bp; 96 bp; 120 bp; 78 bp; and 87 bp, respectively) were brought to annealing reaction. Then, the DNA fragments containing the five PCR products were employed as template of the recombinant PCR wherein primers described by SEQ ID NO: 1 and 10 were used. recombinant PCR was conducted to link the amplified 431-bp DNA fragment to 1015-bp DNA fragment which was obtained by PCR using two primers (described by SEQ ID NO: 11 and 12). The recombinant PCR employed two primers described by SEQ ID NO: 1 and 12.

The final PCR product (HKR127HC(I), about 1431-bp) encoding a recombinant heavy chain of humanized antibody was introduced into the EcoRI-SalI site of pBluescript SK(+) vector (Clontech), and the resulting vector was designated pHKR127HC(I). The DNA sequence of the inserted gene was determined by dideoxynucleotide method.

5

10

15

20

25

To more humanize the HKR127HC(I), another humanized heavy chain gene, HKR127(III), which has much less number of mouse FR residues, was constructed.

To construct the HKR127HC(III), HKR127HCv(HZIII) gene was constructed by PCR employing HKR127HCv(HZII) gene as a template. On the other hand, a vector pRc/CMV-HC-HuS (Accession Number: KCTC 0229BP) was used to synthesize DNA sequence encoding human C_H region as well as heavy chain leader sequence, which is required in proper secretion of the heavy chain.

Finally, HKR127HC(III) gene encoding a humanized heavy chain was constructed by recombinant PCR for annealing of the heavy chain leader sequence, HKR127HCv(HZIII) gene, and the human C_H gene (see FIG 2b).

The primers in these PCRs are synthetic oligonucleotides described by SEQ ID NO: 24 to 28. PCR was performed by using Taq DNA polymerase, and its thermocycle was repeated 30 times, consisting of 1 minute at 94°C, 1 minute at 55°C, and then 1 minute at

72°C. Three pairs of oligonucleotides (SEQ ID NO: 1 and 24; 25 and 26; and 27 and 28) were used as PCR primers, and the three PCR products (179 bp; 141 bp; and 87 bp, respectively) were brought to annealing reaction. Then, the DNA fragments containing the three employed products were as template recombinant PCR wherein primers described by SEQ ID NO: 1 and 28 were used. Another recombinant PCR was conducted to link the amplified 431-bp DNA fragment to 1015-bp DNA fragment which was obtained by PCR using two primers (described by SEQ ID NO: 11 and 12). recombinant PCR employed two primers described by SEQ ID NO: 1 and 12.

5

10

15

20

The final PCR product (HKR127HC(III), about 1431-bp) encoding a recombinant heavy chain of humanized antibody was introduced into the EcoRI-SalI site of pBluescript SK(+) vector (Clontech), and the resulting vector was designated pHKR127HC(III). The DNA sequence of the inserted gene was determined by dideoxynucleotide method.

Example 2: Preparation of gene encoding humanized light chain

In order to prepare humanized light chain containing variable region, we devised genes encoding

the light chain. First, we selected a human K immunoglobulin gene that shows the highest homology of amino acid sequence to the light chain of the mouse monoclonal antibody KR127. As the result, a human K immunoglobulin gene DPK12 was selected from GenBank database. Then, we constructed HKR127KCv(HZII) gene encoding a humanized V_L region by grafting CDR1, partial CDR2, and CDR3 and one FR residue at position 41 of the mouse KR127 V_L region to the human DPK12 V_L region. The resulting humanized V_L was not functional in antigen-binding. To improve the HKR127KCv(HZII) gene, we constructed HKR127KCv(HZI) gene encoding another V_L region (see FIG 3).

5

10

15

20

25

The HKR127KCv(HZI) gene was constructed by grafting the V_L region of human DPK12 antibody with a few FR residues and CDR1, CDR2 and CDR3 of mouse KR127 V_1 (see FIG 3).

On the other hand, a vector pKC-dhfr-HuS (Accession Number: KCTC 0230BP) was used to synthesize DNA sequence encoding human $C_{\rm L}$ region as well as light chain leader sequence, which is required in proper secretion of the light chain.

Finally, HKR127KC(I) gene encoding a humanized light chain was prepared by recombinant PCR for the annealing of the PCR products, light chain leader sequence, the HKR127KCv(HZI) gene, and the human C_L gene (see FIG 4).

in these PCRs are synthetic The primers oligonucleotides described by SEQ ID NO: 13 to 18. The thermocycle of these PCRs was repeated 30 times, consisting of 1 minute at 94°C, 1 minute at 55°C, and 1 minute at 72°C. Two pairs of oligonucleotides (SEQ ID NO: 13 and 14; and SEQ ID NO: 15 and 16) were used as PCR primers, and the two PCR products (101 bp and 159 bp, respectively) were brought to annealing reaction. Then, the DNA fragments containing the two PCR products was employed as a template of recombinant PCR wherein primers described by SEQ ID NO: 13 and 16 were used. Another recombinant PCR was conducted to link the amplified 248-bp DNA fragment to 515-bp DNA fragment which was obtained by PCR using two primers (described by SEQ ID NO: 17 and 18). The recombinant PCR employed two primers described by SEQ ID NO: 13 and 18.

5

10

15

20

736-bp) The final PCR product (HKR127KC(I), encoding а recombinant light chain of humanized antibody was introduced into the HindIII-SalI site of pBluescript SK(+) vector (Clontech), and the resulting vector was designated pHKR127KC(I). The DNA sequence the inserted gene determined was by dideoxynucleotide method.

Example 3: Construction of expression vector containing the humanized heavy chain gene

The pHKR127HC(I) or pHKR127HC(III) plasmid of Example 1 was digested with SalI enzyme, and the both ends of the vector was made blunt using Klenow enzyme treatment. This DNA fragment was further digested with NotI enzyme to obtain the gene encoding humanized heavy chain.

5

10

15

20

On the other hand, pRc/CMV (Invitrogen) was cut with XbaI enzyme, and the ends of the vector was made blunt by treating with Klenow enzyme, and then digested with NotI.

The humanized heavy chain gene and the linearized vector were linked to give expression vector pCMV-The E. HKR127HC or pCMV-HKR127(III)HC. coli containing pCMV-HKR127HC or pCMVtransformant HKR127(III) HC was deposited in KCTC (Korean Collection for Type Culture) (Accession Number: KCTC 0531BP and KCTC 0691BP, respectively), and the expression vector pCMV-HKR127HC and pCMV-HKR127(III)HC is shown in FIG 5a and 5c, respectively.

Example 4: Construction of expression vector containing the humanized light chain gene

The pHKR127KC vector of Example 2 was digested with HindIII and ApaI enzymes, and the resulting fragment was inserted into HindIII-ApaI site of pCMV-dhfr (Accession Number: KCTC 8671P) to give expression vector pKC-dhfr-HKR127. The E. coli transformant containing pKC-dhfr-HKR127 was deposited in KCTC (Korean Collection for Type Culture) (Accession Number: KCTC 0529BP), and the expression vector pKC-dhfr-HKR127 is shown in FIG 5b.

5

10

20

Example 5: Expression of humanized antibody in COS7 cells

15 COS7 cells were maintained in DMEM (Gibco) supplemented by 10% calf serum at 37°C, under 5% CO_2 condition. The cells were inoculated in 100mm petri dishes, and then incubated at 37°C overnight.

To express a humanized antibody HZKR127I, 5 μ g of pCMV-HKR127HC or pKC-dhfr-HKR127 was diluted with 800 μ l of OPTI MEM I (Gibco), and 50 μ l of Lipofectamin (Gibco) was also diluted with 800 μ l of OPTI MEM I. These mixtures in 15-ml tubes were incubated at room temperature for 15 minutes or more. In the meantime,

COS7 cells were washed twice with OPTI MEM I.

OPTI MEM I (6.4 ml) was added to the DNA-Lipofectamin mixture, mixed well, and poured on the COS7 cells. After the cells were cultured in a CO2 incubator for 72 hours, the medium was centrifuged, and the supernatant was concentrated by ultrafiltration kit. The concentration of antibody was determined by Sandwich ELISA using anti-human IgG and anti-human IgG-HRP (horseradish peroxidase) conjugate.

To express and obtain a humanized antibody HZKR127III, the same protocol was repeated except using pCMV-HKR127(III)HC instead of using pCMV-HKR127HC.

Example 6: Binding activity of humanized antibody to

15 HBV surface antigen pre-S1

5

20

25

We prepared HBV surface antigen pre-S1 (amino acid residue 1-56; Kim and Hong, Biotechnology Letters, 17:871-876, 1995) and 1 μq of the purified pre-S1 was coated on each well in microplates. After addition of 0, 0.25, 0.5, 1, 2, 3, 4, 5, 7.5, 10, 20, or 40 ng of the humanized antibodies prepared in Example indirect ELISA was performed, in which secondary antibody was Fc-specific anti-human IgG-HRP conjugate. binding activities of the antibodies The were determined by measuring OD at 492 nm.

Purified mouse KR127 antibody was used as a control, and ELISA of KR127 antibody was conducted using Fc-specific anti-mouse IgG-HRP conjugate as a secondary antibody. The result is presented in Table 1 and 2.

Table 1.

Binding activity of KR127 and HZKR127I to HBV surface antigen pre-S1 (OD at 492 nm)

10

5

Amount (ng) Antibody	0	0.25	0.5	1	2	3	4	5	7.5	10	20	40
KR127	0.09	0.12	0.15	0.20	0.30	0.36	0.43	0.54	0.60	0.80	1.16	1.64
HZKR127I	0.09	0.12	0.17	0.26	.0.35	0.43	0.60	0.71	0.79	1.12	1.48	1.77

Table 2.

Binding activity of HZKR127I and HZKR127III to HBV surface antigen pre-S1 (OD at 492 nm)

15

Amount (ng) Antibody	0	0.25	0.5	1	2.	3	4	5	7.5	10	20	40
HZKR127I	0.06	0.19	0.25	0.58	0.65	0.75	0.86	1.02	1.25	1.39	1.95	2.07
HZKR127III	0.06	0.20	0.37	0.60	0.87	1.10	1.24	1.37	1.65	1.89	2.04	2.10

Example 7: Antigen-binding affinity of humanized

antibody to HBV surface antigen pre-S1

Antigen-binding affinity to HBV surface antigen

pre-S1 was assayed by competitive ELISA method(Ryu et al., J. Med. Virol., 52:226, 1997).

Binding reactions between the pre-S1 antigen (1 \times $10^{-7} \sim 1 \times 10^{-12}$ M) and the humanized antibody of Example 5 (5 ng), or between the antigen (1 \times $10^{-7} \sim 1 \times 10^{-12}$ M) and control antibody KR127 (5 ng), were performed at 37°C for 2 hours. Then the reaction mixtures were added to 96-well microplates coated with the 250 ng of antigen pre-S1.

5

15

10 FIG 6a shows the affinity of two kinds of antibodies. It was confirmed that the binding affinity of the humanized antibody HZKR127I is almost same as that of the mouse antibody KR127 $(7 \times 10^7 \text{ M}^{-1})$.

FIG 6b shows the affinity of HZKR127III compared with that of HZKR127I. The affinity of HZKR127III (5 \times 10⁷ M⁻¹) was not much different from that (7 \times 10⁷ M⁻¹) of HZKR127I.

INDUSTRIAL APPLICABILITY

As shown above, the present invention provides humanized antibody against HBV surface antigen pre-S1, which shows similar level of binding affinity when compared with mouse monoclonal antibody, whereas immunogenicity of the humanized antibody is remarkably reduced. Thus, the humanized antibody of the present

invention may be useful for the prevention of HBV infection and for the treatment of hepatitis B.

Those skilled in the art will appreciate that the conceptions and specific embodiments disclosed in the foregoing description may be readily utilized as a basis for modifying or designing other embodiments for carrying out the same purposes of the present invention. Those skilled in the art will also appreciate that such equivalent embodiments do not depart from the spirit and scope of the invention as set forth in the appended claims.

5

10

BUDAPEST TRPATY ON THE INTERNATIONAL RECOGNITION OP THE DEPOSH OF MICRORAGANISMS FOR THE MIRPOSE OF PATENT PROXEDURE

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1

TO: Hong Hyo-Jeong

KIT Apt. 15-401. #237 Gajeong-dong, Yusong-ku, Taejon 305-350.

Republic of Korea

I.	IDENTIFICATIO	N OF THE	MICROORGANISM
----	---------------	----------	---------------

Identification reference given by the DEPOSITOR:

Escherichia coli DH50 /pCMV-HKR127HC Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:

KCTC 0531BP

II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION

The icroorganism identified under I above was accompanied by:

[x] a scientific description

[] a proposed taxonomic designation

(Mark with a cross where applicable)

III. RECEIPT AND ACCEPTANCE

This International Depositary Authority accepts the microorganism identified under I above, which was received by it on October 12 1998

IV. RECEIPT OF REQUEST FOR CONVERSION

The microorganism identified under I above was received by this International Depositary Authority on and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on

V. INTERNATIONAL DEPOSITARY AUTHORITY

Name: Korean Collection for Type Cultures

Address: Korea Research Institute of Bioscience and Biotechnology

(KRIBB)

#52, Oun-dong, Yusong-ku,

Taejon 305-333. Republic of Korea Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):

PARK Yong-Ha. Director Date: October 17 1998 DEFINED TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSE OF MICHOGRAPISMS FOR THE PURPOSE OF PAYENT PROCEDURE.

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1

TO: HONG, Hyo Jeong KIT Apr. 15 401, #237, Kajeong-dang, Yusong-kn, Taejon 305-350, Republic of Korea

I DENTIFICATION OF THE MICROORGANIS	M						
Identification reference given by the DEPOSITOR:	Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:						
Escherichia coli DH5@/pCMV-HKR127(III)HC	KCTC 0691BP						
II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION							
The microorganism identified under I above was accompanied by: [x] a scientific description [] a proposed taxonomic designation (Mark with a cross where applicable)							
m. receipt and acceptance							
This International Depositary Authority accepts the which was received by it on November 15	ne microorganism identified under I ahove, 1999.						
IV. RECEIPT OF REQUEST FOR CONVERSION	<u> </u>						
The microorganism identified under I above was received by this International Depositary Authority on and a request to convert the original deposit to a deposit under the Budapest Treaty was received by it on							
V. INTERNATIONAL DEPOSITARY AUTHOR	TY						
Name: Korean Collection for Type Cultures Signature(s) of person(s) having the power to represent the International Depositary Authority of authorized official(s):							
Address: Korea Research Institute of Bioscience and Biotechnology (KRBB) #52, Oun-dong, Yusong-ku, Taejon 305-333, Republic of Korea	BAE, Kyung Sook, Director Datc: November 18 1999						

INTERNATIONAL FORM

RECEIPT IN THE CASE OF AN ORIGINAL DEPOSIT

issued pursuant to Rule 7.1

TO: Hong Hyo-Jeong

KIT Apt. 15-401, #237 Gajeong-dong, Yusong-ku, Taejon 305-350,

Republic of Korea

T	IDENTIFICATION	OF THE	MICROORGANISM
ı.	JUEN HILLA HUN	OF IDE	MICKULIKGANISM

Identification reference given by the DEPOSITOR:

Accession number given by the INTERNATIONAL DEPOSITARY AUTHORITY:

KCTC 0529BP

Escherichia coli DH50 /pKC-dhfr-HKR127

II. SCIENTIFIC DESCRIPTION AND/OR PROPOSED TAXONOMIC DESIGNATION

The icroorganism identified under I above was accompanied by:

[x] a scientific description

[] a proposed taxonomic designation

(Mark with a cross where applicable)

III. RECEIPT AND ACCEPTANCE

This International Depositary Authority accepts the microorganism identified under I above, which was received by it on October 12 1998

IV. RECEIPT OF REQUEST FOR CONVERSION

The microorganism identified under I above was received by this International Depositary

Authority on and a request to convert the original deposit to a deposit

under the Budapest Treaty was received by it on

V. INTERNATIONAL DEPOSITARY AUTHORITY

Name: Korean Collection for Type Cultures

Address: Korea Research Institute of

Bioscience and Biotechnology (KRIBB)

#52. Oun-dong, Yusong-ku,

Taejon 305-333. Republic of Korea Signature(s) of person(s) having the power to represent the International Depositary Authority or of authorized official(s):

PARK Yong-Ha, Director Date: October 17 1998

What is Claimed is

 A humanized antibody specific for HBV surface antigen pre-S1, containing humanized heavy and light chain variable regions

5

- 2. The humanized antibody of claim 1, wherein the humanized heavy chain variable region comprises amino acid sequence described by SEQ ID NO: 20
- 3. The humanized antibody of claim 1, wherein the humanized heavy chain variable region comprises amino acid sequence described by SEQ ID NO: 21
- 4. The humanized antibody of claim 1, wherein the humanized heavy chain variable region comprises an amino acid sequence which is modified from an amino acid residue of SEQ ID NO: 21 by at least one amino acid substitution selected from the group comprising
- 20 Lys¹² \rightarrow Val¹², Thr²⁸ \rightarrow Ala²⁸, Thr³⁰ \rightarrow Ser³⁰, Met⁴⁸ \rightarrow Ile⁴⁸, Arg⁶⁷ \rightarrow Lys⁶⁷, Val⁶⁸ \rightarrow Ala⁶⁸, Met⁷⁰ \rightarrow Leu⁷⁰, Val⁷⁹ \rightarrow Ala⁷⁹, and Tyr⁹⁵ \rightarrow Phe⁹⁵
- 5. The humanized antibody of claim 1, wherein the humanized light chain variable region comprises amino acid sequence described by SEQ ID NO: 23

6. A gene encoding humanized heavy chain which contains a humanized heavy chain variable region of claim 2, 3 or 4

5

- 7. The gene of claim 6, wherein the humanized heavy chain variable region comprises amino acid sequence described by SEQ ID NO: 20
- 10 8. The gene of claim 6, wherein the humanized heavy chain variable region comprises amino acid sequence described by SEQ ID NO: 21
- 9. A gene encoding humanized light chain which

 contains a humanized light chain variable region

 comprising amino acid sequence described by SEQ ID

 NO: 23
- 10. An expression vector containing the gene of claim 20 6
 - 11. The expression vector of claim 10, pCMV-HKR127HC, wherein the gene of claim 7 is inserted into pRC/CMV (Accession Number: KCTC 0531BP)

25

12. The expression vector of claim 10, pCMV-HKR127(III)HC, wherein the gene of claim 8 is

inserted into pRC/CMV (Accession Number: KCTC 0691BP)

- 13. An expression vector containing the gene of claim
 - 14. The expression vector of claim 13, pKC-dhfr-HKR127, wherein the gene of claim 9 is inserted into pCMV-dhfr (Accession Number: KCTC 0529BP)

10

5

15. Pharmaceutical composition containing the humanized antibody of claim 1, which may be administered in order to prevent HBV infection or to treat chronic hepatitis B

15

FIG. 1a

•	Q	V	Q	L	Q	Q	s	Ģ	P	E	L	v	K	P	
KR127VH	CAG	GTC	CAG	CTG	CAG	CAG	TCT	GGA	CCT	GAA	CTG	GTG	AAG	CCT	42
DP7	CAG	GTG	CAG	CTG	GT G	CAG	TCT	GGG	CCT	GAG	G TG	AAG	AAG	CCT	
HZII											G ŤG				
HZI											GTG				
HZIII	CAG	GTC	CAG	CTG	GTG	CAG	ずつず	GGA	CCT	CDD	GTG.	336	AAC	CCT	42
HZII	_	_	_	_	v	_	-	-	A	-	V	K	AAG	-	42
HZI	_	_	_	_	Ÿ		_	_	A				_	_	
HZIII			_		v	_	_	_		_	V	_	-	_	
112111	_	_	_	_	V	_	-	_	A	_	V	K	-	-	
	G	A	S	V	K	I	S	С	K	Α	S	G	Y	· A	
KR127VH			TCA					TGC				GGC	TAC	GCA	84
DP7			TCA				TCC					GGA	TAC	ACC	
HZII			TCA					TGC					TAC	ACC	
HZI			TCA					TGC			TCT	GGC	TAC	GCA	
HZIII	GGG	GCC	TCA	GTG	AAG	GTT	TCC	TGC	AAA	GCT	TCT	GGC	TAC	ACC	84
HZII	-	-	-	-	-	V	-	-	_	-	-	_	_	T	
HZI	-	-	-	-	-	V	_	-	_	_	_	_	-	-	
HZIII	-	_	_	_	-	V	-	_	_	_	_	-	-	T	
	F	s	S	S	W	M	N	W.	v	ĸ	Q	R	P	G	
KR127VH	_	_									CNC	ACC.	CCT	GGA	126
DP7	TTC	ACC	AGC	TAC	TAT	ATC	CAC	TCC	CTC	CCA	CAG	200	CCI	CCA	126
HZII	TTC	ACC	AGT	TAC	TGG	ATG	AAC	TGG	CTC	CCA	CAG	900	CCT	GGA	
HZI		AGT		TCT											
HZIII		ACC		TCT							CAG				
HZII	110	T	AG I								CAG		CCT	GGA	
HZI	_	_	_	Y	-	-	_	-	_	R	_	A	-	_	
HZIII	_	T		_	-	_	_	_	-	R	-	y	-	-	
neill	_	1	_	_	-	_	_	_	-	R	-	A	-	_	
	^	_		-	7.7	-	_	_	_		_	_	_		
KR127VH	Q	G	L	E	W	I	G	R	I	Y	P	G	D.	-	
DP7			CTT	GAG	TGG	ATT	GGA	CGG	ATT	TAT	CCT		GAT		168
			CTT			ATG	GGA	ATA	ATC		CCT				
HZII		GGT		GAG			GGA			TAT			GAT		
HZI		GGT					GGA				CCT				
HZIII	CAG	GGT	CTT	GAG	TGG		GGA	CGG	ATT	TAT	CCT	GGA	GAT	GGA	
HZII	-	-	-	_	_	M	_	-	-	_	_	-	-	-	
HZI	-	-	_	_	-	_		-	-	-	-	-	_	-	
HZIII	-	-	_	-	-	M	-	-	-	-	-	-	-	-	
	D	T	N	Y	N	G	K	F	K	G	K	A	T	L	
KR127VH	GAT	ACT	AAC	TAC	AAT	GGG	AAG	TTC	AAG	GGC	AAG	GCC	ACA	CTG	210
DP7	AGC	ACA	AGC	TAC	GCA	CAG	AAG	TTC	CAG	GGC	AGA	GTC	ACC	ATG	
HZĮI	GAT	ACT	AAC	TAC	GCA	CAG	AAG	TTC	CAG	GGC	AGA	GTC	ACA	ATG	
HZI	GAT	ACT	AAC	TAC	GCA	CAG	AAG	TTC	CAG	GGC	AAG	GCC	ACA	CTG	
HZIII	GAT	ACT	AAC	TAC	GCA	CAG	AAG	TTC	CAG	GGC	AGA	GTC	ACA	ATG	
HZII								·							
	-	-	-	-	λ	0	_	_	0	_	R	v	-	M	
HZI	-	-	-	-	λ	Q	_	-	Q	-	R	V	_	M	
HZI HZIII	-	-	-	- -	A A A	0 0	-	- -	0 0	-	R - R	v - v	-	м - м	

FIG. 1b

```
K
                           S
                               S
                                   S
                                       Т
                                           Α
                                                Y
                                                    M
                                                        0
                                                            L
         ACT GCA GAC AAA TCC TCC AGC ACA GCC TAC ATG CAG CTC AGC 252
KR127VH
         ACC AGG GAC ACG TCC ACG AGC ACA GTC TAC ATG GAG CTG AGC
DP7
         ACT GCA GAC ACG TCC ACG AGC ACA GTC TAC ATG GAG CTC AGC
HZII
         ACC GCA GAC AAA TCC ACG AGC ACA GCC TAC ATG GAG CTG AGC
HZI
HZIII
         ACT GCA GAC AAA TCC ACG AGC ACA GTC TAC ATG GAG CTC AGC
HZII
                       T
                               T
                                            ٧
                                                        E
HZI
                               T
                                                        E
HZIII
                               T
                                            v
                                                        E
          S
              L
                  Т
                       S
                           V
                               D
                                   S
                                       A
                                            V
                                                        C
                                                Y
                                                    F
                                                            Α
         AGC CTG ACC TCT GTG GAC TCT GCG GTC TAT TTC TGT GCA AGA 294
KR127VH
         AGC CTG AGA TCT GAG GAC ACG GCC GTG TAT TAC TGT GCG AGA
DP7
         AGC CTG AGA TCT GAG GAC ACG GCG GTC TAT TAC TGT GCA AGA
HZII
HZI
         AGC CTG AGA TCT GAG GAC ACG GCG GTC TAT TTC TGT GCA AGA
         AGC CTG AGA TCT GAG GAC ACG GCG GTC TAT TAC TGT GCA AGA
HZIII
HZII
                  R
                           E
                                   T
                                                    Y
HZI
                  R
                           E
                                   T
HZIII
                  R
                           E
                                   T
                                                    Y
                   D
          E
              Y
                       E
                           A
                               Y
                                   W
                                                    Т
                                       G
                                            Q
                                                G
                                                        L
         GAG TAC GAC GAG GCT TAC TGG GGC CAA GGG ACT CTG GTC ACT 336
KR127VH
         GAG TAC GAC GAG GAO TAC TGG GGC CAA GGG ACT CTG GTC ACT
HZII
HZI
         GAG TAC GAC GAG GCT TAC TGG GGC CAA GGG ACT CTG GTC ACT
HZIII
         GAG TAC GAC GAG GCT TAC TGG GGC CAA GGG ACT CTG GTC ACT
HZII
                           D
HZI
HZIII
         GTC TCT GCA 345
KR127VH
HZII
         GTC TCT TCA
         GTC TCT TCA
HZIII
         GTC TCT TCA
HZII
                  8
HZI
                  8
HZIII
                   8
```

FIG. 2a

FIG. 2b

FIG. 3a

	D	I	L	M	T	Q	Т	P	L	I	L	s	v	T	
KR127VK	GAT	ATC	TTG	ATG	ACC	CAA	ACT	CCA	CTT	ATT	TTG	TCG	GTT	ACC	42
DPK12	GAT	ATT	GTG	ATG	ACC	CAG	ACT	CCA	CTC	TCT	CTG	TCC	GTC	ACC	
HZII	GAT	ATC	G TG	ATG	ACC	CAA	ACT	CCA	CTT	TCT	TTG	TCG	GTT	ACC	
HZII	_	-	v	_	_	_	_	_	_	3	_	-	_	_	
HZI	_	_	_	_	-	_	_	_	_	S	_	_	_	_	
	I	G	Q	P	Α	s	I	s	С	K	s	s	Q	s	
KR127VK	ATT	GGA	CAA	CCA	GCC	TCT	ATC	TCT	TGC	AAG	TCA	AGT	CÃG	AGC	84
DPK12	CCT	GGA	CAG	CCG	GCC	TCC	ATC	TCC	TGC	AAG	TCT	AGT	CAG	AGC	
HZII	CCT	GGA	CAA	CCA	GCC	TCT	ATC	TCT	TGC	AAG	TCA	AGT	CAG	AGC	
HZII	P	_	-	-	-	-	-	-	_	_	_	-	_		
HZI	P	_	-	_	-	-	_		_	-	-	_	_	_	
_	L	L	Y	S	N	G	K	T	Y	L	N	W	L	L	
KR127VK								ACC				TGG	TTA	TTA	126
DPK12								ACC		TTG		TGG			
HZII	CTC	TTA	TAT	AGT	AAT	GGA	AAA	ACC	TAT	TTG	AAT	TGG	TTA	TTA	
HZII	-	-	-	-	-	-	-	_	-	-	-	-	-	-	
HZI	-	_	-	-	_	~	-	-	_	-	-	-	-	-	
	_	-	_	_	_	_	_		_	_	_		_		
VD1270V	Q	R	P	G	Q	S	P	K	R	L	I	Y	L	V	
KR127VK DPK12								CAG					CTG		168
HZII								CAG							
HZII	CAG	K	-	-	CAG	P	CCA		L	CIA	AIC	IAI	CIG	GTG	
HZI	_	R	_	_	_	_	_	Q		_	_		_	_	
		••				_	_	_	_	_	_	_	_	_	
	s	K	L	D	s	G	V	P	D	R	F	· T	G	s	
KR127VK	TCT	AAA	CTG	GAC	TCT	GGA	GTC	CCT	GAC		TTC	ACT	GGC	_	210
DPK12								CCA					GGC	AGC	
HZII		AAA						CCT					GGC	AGT	
HZII	-	-	R	F	-	· -	-	_	-	_	_	S	-	_	
HZI	-	-	-	-	-	-		-	-	-	-	S	_	-	

FIG. 3b

S G G T D F T L K Ι R KR127VK GGA TCA GGA ACA GAT TTT ACA CTG AAA ATC ATC AGA GTG GAG 252 GGG TCA GGG ACA GAT TTC ACA CTG AAA ATC AGC CGG GTG GAG DPK12 GGA TCA GGA ACA GAT TTT ACA CTG AAA ATC AGC AGA GTG GAG HZII HZII S HZI 8 Α E D L G ٧ Y Y C V Q G Н KR127VK GCT GAG GAT TTG GGA GTT TAT TAC TGC GTG CAA GGT ACA CAT 294 GCT GAG GAT GTT GGG GTT TAT TAC TGC ATG CAA AGT ATA CAG DPK12 HZII GCT GAG GAT GTT GGA GTT TAT TAC TGC GTG CAA GGT ACA CAT HZII V HZI V F P F Q T G G G T K L E I K KR127VK TTT CCT CAG ACG TTC GGT GGA GGC ACC AAG CTG GAA ATC AAA 336 DPK12 CTT CCT CC HZII TTT CCT CAG ACG TTC GGT GGA GGC ACC AAG GTG GAA ATC AAA HZII HZI v R KR127VK CGG 339 HZII **CGG** HZII HZI

FIG. 4

FIG. 5a

FIG. 5b

FIG. 5c

FIG. 6a

competitive antigen(M)

FIG. 6b

SEQUENCE LISTING

<110> KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY

	KOREA GREEN CROSS CORPORATION	
<120>	HUMANIZED ANTIBODY SPECIFIC FOR SURFACE ANTIGEN PRE-S1 OF HBV A PREPARATION METHOD THEREOF	and
<130>	9FPO-11-03	
<150>	KR 1998-49663	
<151>	1998-11-19	
<160>	28	
<170>	KOPATIN 1.5	
<210>	1 .	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 1	
<400>	1	
gagaattc	ac attcacgatg tacttg	26
<210>	2	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	synthetic oligonucleotide primer 2	
<400>	2	
ggccccag	gc ttcaccactt cagctcc	27

<210>	3	
<211>	18	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 3	
<400>	3	
gtgaagco	tg gggcctca	18
<210>	4	
	27	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 4	
<400>	4	
	tg aatgegtage cagaage	27
agaactac	ty datycytage edgaage	۷,
<210>	5	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 5	
<400>	5	
gcattcag	ta gttcttggat gaactgg	27
~		
<210>	6	
-011-		
<211> <212>	27 DNA	

<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 6	
<400>	6	
aatccgto	cca atccactcaa gaccctg	27
<210>	7	
<211>	21	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 7	
<400>	7	
	ac ggatttatcc t	21
rygarry	ac gyatttatee t	21
<210>	8	
<211>	39	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 8	
-225	Synthetic originational primer o	
<400>	8	
ggatttgt	ct gcagtcagtg tggccttgcc ctggaactt	39
<210>	9	
<211>	39	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 9	

<400>	9	
actgcaga	ca aatccacgag cacagcctac atggagctc	39
<210>	10	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 10	
<400>	10	
gtcgtact	ct cttgcacaga aatagaccgc cgt	33
<210>	11	
<211>	33	
<212>	DNA	
<213>	Artificial Sequence	
	·	
<220>		
<223>	synthetic oligonucleotide primer 11	
	·	
<400>	11	
gcaagaga	gt acgacgaggc ttactggggc caa	33
<210>	12	
<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	synthetic oligonucleotide primer 12	
—— -		
<400>	12	
	tc atttacccgg agacag	26
22202340	oc december and december of the contract of th	20
<210>	13	
~Z1U~	13	

<211>	26	
<212>	DNA	
<213>	Artificial Sequence	
	·	
<220>		
<223>	synthetic oligonucleotide primer 13	
<400>	13	
caaagctt	gg aagcaagatg gattca	26
<210>	14	
<211>	36	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 14	
<400>	14	
tggagttt	gg gtcatcaaga tatccccaca ggtacc	36
-010		
<210>	15	
<211>	48	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 15	
LLO	Synthetic Originationing primer 15	
<400>	15	
	aa ctccactttc tttgtcggtt acccctggac aaccagcc	48
		70
<210>	16	
<211>	39	
<212>	DNA	
<213>	Artificial Sequence	
	*** *	
<220>		

<223>	synthetic diigonucleotide primer 16	
<400>	16	
caccaga	tag attaggcgct ttggagactg gcctggctt	39
<210>	17	
<211>	39	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 17	
<400>	17	
ctaatct	atc tggtgtctaa actggactct ggagtccct	39
<210>	18	
<211>	17-	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 18	
<400>	18	
gaagtcg	acc taacact	17
<210>	19	
<211>	115	
<212>	PRT	
<213>	Artificial Sequence	
<220>		
<223>	vanishle region of heavy chain in mouse V0127 anti-hody	
-CLJ-	variable region of heavy chain in mouse KR127 antibody	
<400>	19	
Gln Val	Gln Leu Gln Gln Ser Gly Pro Glu Leu Val Lys Pro Gly Ala	
1	5 10 15	

Ser Val Lys Ile Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Ser 20 25 30

Trp Met Asn Trp Val Lys Gln Arg Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Arg Ile Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Asn Gly Lys Phe 50 55 60

Lys Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Ser Ser Thr Ala Tyr 65 70 75 80

Met Gln Leu Ser Ser Leu Thr Ser Val Asp Ser Ala Val Tyr Phe Cys 85 90 95

Ala Arg Glu Tyr Asp Glu Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr
100 105 110

Val Ser Ala 115

<210> 20

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> variable region of humanized heavy chain HKR127HC(HZI)

<400> 20

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Val Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Ala Phe Ser Ser Ser 20 25 30

Trp Met Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Ile 35 40 45

Gly Arg Ile Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Ala Gln Lys Phe 50 55 60

Gin Gly Lys Ala Thr Leu Thr Ala Asp Lys Ser Thr Ser Thr Ala Tyr
65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Phe Cys 85 90 95

Ala Arg Glu Tyr Asp Glu Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr 100 105 110

Val Ser Ser 115

<210> 21

<211> 115

<212> PRT

<213> Artificial Sequence

<220>

<223> variable region of humanized heavy chain HKR127HC(HZIII)

<400> 21

Gln Val Gln Leu Val Gln Ser Gly Ala Glu Val Lys Lys Pro Gly Ala 1 5 10 15

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Ser Ser 20 25 30

Trp Met Asn Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met
35 40 45

Gly Arg Ile Tyr Pro Gly Asp Gly Asp Thr Asn Tyr Ala Gln Lys Phe 50 55 60

Gln Gly Arg Val Thr Met Thr Ala Asp Lys Ser Thr Ser Thr Val Tyr 65 70 75 80

Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys

85 90 95

Ala Arg Glu Tyr Asp Glu Ala Tyr Trp Gly Gln Gly Thr Leu Val Thr
100 105 110

Val Ser Ser

115

<210> 22

<211> 113

<212> PRT

<213> Artificial Sequence

<220>

<223> variable region of light chain in mouse KR127 antibody

<400> 22

Asp Ile Leu Met Thr Gln Thr Pro Leu Ile Leu Ser Val Thr Ile Gly
1 5 10 15

Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser 20 25 30

Asn Gly Lys Thr Tyr Leu Asn Trp Leu Leu Gln Arg Pro Gly Gln Ser 35 40 45

Pro Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro 50 55 60

Asp Arg Phe Thr Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile
65 70 75 80

Ile Arg Val Glu Ala Glu Asp Leu Gly Val Tyr Tyr Cys Val Gln Gly
85 90 95

Thr His Phe Pro Gln Thr Phe Gly Gly Gly Thr Lys Leu Glu Ile Lys
100 105 110

Arg

<210> 23 <211> 113 <212> PRT <213> Artificial Sequence <220> <223> variable region of humanized light chain <400> 23 Asp Ile Leu Met Thr Gln Thr Pro Leu Ser Leu Ser Val Thr Pro Gly 1 5 10 Gln Pro Ala Ser Ile Ser Cys Lys Ser Ser Gln Ser Leu Leu Tyr Ser 20 25 Asn Gly Lys Thr Tyr Leu Asn Trp Leu Leu Gln Lys Pro Gly Gln Ser 35 40 45 Pro Lys Arg Leu Ile Tyr Leu Val Ser Lys Leu Asp Ser Gly Val Pro 50 55 60 Asp Arg Phe Ser Gly Ser Gly Ser Gly Thr Asp Phe Thr Leu Lys Ile 65 70 75 Ser Arg Val Glu Ala Glu Asp Val Gly Val Tyr Tyr Cys Val Gln Gly 85 90 Thr His Phe Pro Gln Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105 110 Arg <210> 24 <211> 27 <212> <213> Artificial Sequence <220>

synthetic oligonucleotide primer 24

<223>

<400>	24	
gttcatc	caa gaactggtga aggtgta	27
<210>	25	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 25	
	,	
<400>	25	
agttcttg	gga tgaactgggt gcgacga	27
<210>	26	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 26	
<400>	26	
	pat ttgtctgcag tcattgt	27
		_,
<210>	27	
<211>	27	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	synthetic oligonucleotide primer 27	
	- -	
<400>	27	
gacaaatc	ca cgagcacagt ctacatg	27

<210> 28
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> synthetic oligonucleotide primer 28
<400> 28

gtcgtactct ctcgcacagt aatacac

27

INTERNATIONAL SEARCH REPORT

International application No. PCT/KR 99/00699

		PCT/KR 99/006	i99
	SSIFICATION OF SUBJECT MATTER		
IPC ⁷ : C	07 K 16/28; C 12 N 15/13, 15/63; A 61	K 39/395	
According t	to International Patent Classification (IPC) or to both	national classification and IPC	
B. FIELI Minimum d	DS SEARCHED locumentation searched (classification system followers)	ed by classification symbols)	·
	07 K; C 12 N; A 61 K		
Documentat	tion searched other than minimum documentation to	the extent that such documents are included	n the fields searched
Electronic d	lata base consulted during the international search (na	ume of data base and, where practicable, sear	ch terms used)
WPIL DA Database	ATABASE, Derwent Publications Ltd., , CA DATABASE, STN Karlsruhe (DE	London (GB), PAJ DATABASE,	EPO PAJ
C. DOCU	JMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appro	priate, of the relevant passages	Relevant to claim No.
X A	WO 93/16192 A1 (THE WELLCOME	FOUNDATION LIMITED)	1,15
A	19 August 1993 (19.08.93), pages 1-5,	12-18; claims.	2-14
Α	C.J.RYU et al. "A Humanized Anithod	ly with Specificity for Hepatitis	1-15
	B Surface Antigen", Hum. Antibod. H	ybridomas, Vol. 7, No. 3, 1996,	
	pages 113-122., totality.	•	
Α	C.J.RYU et al. "In Vitro Neutralization	of Henatitis B Virus by	1-15
	Monoclonal Antibodies Against the Vi	iral Surface Antigen", Journal of	1-13
	Medical Virology, Vol. 52, 1997, page	s 226-233, totality.	
i			
Further	documents are listed in the continuation of Box C.	See patent family annex.	
Special car A" document	tegories of cited documents: defining the general state of the art which is not	"T" later document published after the internation	onal filing date or priority
considered	to be of particular relevance dication or patent but published on or after the international	date and not in conflict with the application the principle or theory underlying the invent	tion
filing date		"X" document of particular relevance; the claim considered novel or cannot be considered to	ed invention cannot be involve an inventive ster
cited to est	which may throw doubts on priority claim(s) or which is tablish the publication date of another citation or other	when the document is taken alone "Y" document of particular relevance; the claim	·
special rea	son (as specified) referring to an oral disclosure, use, exhibition or other	considered to involve an inventive step who	n the document is
means		combined with one or more other such doct being obvious to a person skilled in the art	
the priority	published prior to the international filing date but later than a date claimed	"&" document member of the same patent family	y
ate of the ac	ctual completion of the international search	Date of mailing of the international search	report
	27 January 2000 (27.01.00)	29 March 2000 (29.0	3.00)
	iling adress of the ISA/AT	Authorized officer	
	Patent Office	Weniger	
COULTBACK	t 8-10; A-1014 Vienna	l weinger	
	. 1/53424/200		

INTERNATIONAL SEARCH REPORT

International application No. PCT/KR 99/00699

Patent document cited in search report	Publication date	Pater men	nt family nber(s)	Publication date
WO Al 9316192	19-08-1993	AU A: GB A(ZA A	34595/93 9202796	03-09-1993 25-03-1992 10-08-1994
				٠