COMP2005

Metrics for Image Segmentation

Why do we need metrics for image segmentation?

Hard to answer by looking at the results ...

- What we can do with metrics?
 - Automatic evaluation
 - Comparison between different approaches
 - Evaluation from multiple perspectives

. . .

Siméoni, Oriane, et al. "Localizing Objects with Self-Supervised Transformers and no Labels." BMVC 2021-32nd British Machine Vision Conference, 2021.

Van Gansbeke, et al. Discovering object masks with transformers for unsupervised semantic segmentation. arXiv preprint arXiv:2206.06363 (2022).

Wang, Yangtao, et al. "Tokencut: Segmenting objects in images and videos with self-supervised transformer and normalized cut." IEEE Transactions on Pattern Analysis and Machine Intelligence (2023).

First thing to do: preparing ground truth

labelme.
https://github.com/wke
ntaro/labelme
Accessed March 13,
2024.

Core concepts

prediction

True Positive

False Positive

False Negative

True Negative

- •True Positive (TP): prediction is positive and correct
- •False Positive (FP): prediction is positive but incorrect
- •False Negative (FN): prediction is negative but incorrect
- •True Negattive (TN): prediction is negative and correct

Accuracy cannot deal with class imbalance

True Negative

F1 score = -

2 * precision * recall

precision + recall

precision

Precision, Recall, and F1 score

Intersection over Union (IoU) and Dice coefficient

Is there any other potential problems?

$$Dice = \frac{TP + TP}{(TP + FP) + (TP + FN)} = \frac{2}{1 \text{ loU}} + \frac{2$$

Contour doesn't match

F-measure

contour precision = the number of blue contour pixels covered by the dilated red contour the total number of blue contour pixels

contour recall = the number of red contour pixels covered by the dilated blue contour the total number of red contour pixels

F measure = 2 * contour precision * contour recall contour precision + contour recall