Isometric Feature Mapping (Isomap)

Büşra Güvenoğlu busraguvenoglu@iyte.edu.tr

Department of Computer Engineering Izmir Institute of Technology

05.04.2017

Outline

- Intuition
- Linear method- PCA
- Linear method- MDS
- Nonlinear method- Isomap

Dimensionality Reduction

Aim:

 to find a small number of features that represent a large number of observed dimensions.

Notations

Inputs (high dimensional)

• $x_1, x_2...x_n$ in R^D

Outputs (low dimensional)

• $y_1, y_2...y_n$ in $R^d(d << D)$

Goals

- Nearby points remain nearby.
- Distant points remain distant.

Motivation

A **manifold** is a topological space which is locally Euclidean.

 Rank ordering of Euclidean distances is **NOT** preserved in "manifold learning".

Geodesic Distance

 the length of the shortest curve between two points taken along the surface of a manifold

Dimensionality Reduction Techniques

- Linear
 - PCA
 - PCA finds the directions that have the most variance.
 - Classical MDS
 - Preserves Euclidean distances between points.
- Non-Linear
 - Isomap
 - Preserves geodesic distances between points.
 - LLE
 - Preserves local configurations in data

RECALL: Principal Components Analysis (PCA)

Main steps for computing PCs:

Input:
$$z_i \in \mathbb{R}^D$$
, $i=1,...n$ Output: $y_i \in \mathbb{R}^d$, $i=1,...n$

1. Subtract sample mean from the data

$$x_i = z_i - \hat{\mu}, \quad \hat{\mu} = 1/n \sum_i z_i$$

2. Compute the covariance matrix

$$C = 1/n \sum_{i=1}^{n} x_i x_i^t$$

- Compute eigenvectors e₁,e₂,...,e_d corresponding to the d largest eigenvalues of C (d<<D).
- 4. The desired v is

$$y = P^{t}x, P = [e_1, ..., e_d]$$

RECALL: Multidimensional Scaling (MDS)

Main steps:

- Compute pairwise distance matrix D
- Convert the pairwise distance matrix D into the inner product matrix B
- Decompose B into eigenvectors and eigenvalues B=XX^T
- Use top d eigenvectors and eigenvalues to form the d dimensional embedding.

Non-Linear Manifolds

 Unlike the geodesic distance, the Euclidean distance cannot reflect the geometric structure of the data points

Isometric Feature Mapping- ISOMAP Algorithm

The key idea:

- Use geodesic instead of Euclidean distances in MDS.
- To preserve structure preserve the geodesic distance and not the euclidean distance.
- The issue
 - How do we measure the geodesic distances on the manifold?
 - How to map points on the Euclidean space in lower dimensional space?

Isomap Algorithm is based on two simple ideas

- For neighboring samples, Euclidean distance provides a good approximation to geodesic distance
- For distant points, geodesic distance can be approximated with a sequence of steps between clusters of neighboring points

Isomap operates in three steps

- Find nearest neighbors to each sample
- Find shortest path(e.g., Dijkstra)
- Apply MDS

Isomap Algorithm

- Determine the neighbors.
 - \bullet Connect each point to all points within a fixed radius ε
 - Connect each point to all of its K nearest neighbors
- These neighborhoods relation are represented as weighted graph G
 - each edge of weight $d_X(i,j)$ between neighboring points
- Result:

Isomap Algorithm

- Estimate the geodesic distances $d_M(i,j)$ between all pair of points on the manifold M by computing their shortest path distance $d_G(i,j)$ in the graph
 - Dijkstra Algorithm
 - Floyd Warshall Algorithm
- Find d dimensional embeddings that best preserves the manifold's estimated embeddings
 - apply classical MDS to the matrix of graph distances $d_G(i,j)$

Isomap Algorithm

(1) Construct neighborhood graph

- (a) Define graph G by connecting points i and j if they are [as measured by d_x(i,j)] closer than epsilon (epsilon -lsomap), or if i is one of the K nearest neighbors of i (K-lsomap).
- (b) Set edge lengths equal to $d_{\chi}(i,j)$.

(2) Compute shortest paths

(a) Initialize

```
d_G(i,j) = d_X(i,j) if i,j are linked by an edge; d_G(i,j) = \infty otherwise.
```

- (b) For k = 1, 2, ..., N, replace all entries $d_G(i,j)$ by $min\{d_G(i,j), d_G(i,k) + d_G(k,j)\}$.
- (c) Matrix $D_G = \{d_G(i,j)\}$ will contain the shortest path distances between all pairs of points in G.

(3) Construct d-dimensional embedding

- (a) Let λ_p be the p-th eigenvalue (in decreasing order) of the matrix $\tau(D_G)$, and v_p be the *i-th* component of the *p-th* eigenvector.
- (b) Set the *p-th* component of the *d*-dimensional coordinate vector y_i equal to $sqrt(\lambda_p)v_p^i$.

Examples-Sample points with Swiss Roll

 Altogether there are 20,000 points in the "Swiss roll" data set. We sample 1000 out of 20,000.

Examples-Construct neighborhood graph G

• K- nearest neighborhood (K=7) D_G is 1000 by 1000 (Euclidean) distance matrix of two neighbors (figure A)

Examples-Compute all-points shortest path in G

• Now D_G is 1000 by 1000 geodesic distance matrix of two arbitrary points along the manifold (figure B)

Examples-Use MDS to embed graph in R^D

Find a d-dimensional Euclidean space Y (Figure
c) to preserve the pairwise distances.

Conclusions

- ISOMAP is a nonlinear MDS method to recovering intrinsic manifold in a low dimensional space via minimum distortion embedding.
- It has three steps:
 - construct a neighbourhood graph,
 - compute shortest path and
 - construct low-dimensional embedding.

References

- http://studentnet.cs.manchester.ac. uk/pgt/COMP61021/lectures/ISOMAP.pdf
- http://www.cs.haifa.ac.il/~rita/uml_ course/lectures/Isomap_LLE_Lap.pdf
- http://www.math.pku.edu.cn/teachers/ yaoy/Spring2011/lecture08.pdf

Question and Answers

THANK YOU!