BAYES-STEIN ESTIMATION FOR PORTFOLIO ANALYSIS

PHILIPPE JORION, JFQA, SEP 1986

Krishnan Raman

Table of Contents

- Prelude: Stein Paradox
 Efron & Morris, Scientific American
 Samworth, Statslab Cambridge
- Prelude: Markowitz Portfolio Analysis
 Rubinstein, "Markowitz: A 50 Year Retrospective"
- ▶ Introduction: Bayes-Stein Estimation for Portfolio Analysis
- Estimation Risk
- Stein Estimation
- Empirical Bayes
- My Project: Markowitz for FAANG
- Conclusion

PRELUDE: STEIN'S PARADOX

Stein's Paradox in Statistics, Efron & Morris, Scientific American (1977)

► There are estimators better than the arithmetic average.

PRELUDE: STEIN'S PARADOX

Stein's Paradox in Statistics, Efron & Morris, Scientific American (1977)

- There are estimators better than the arithmetic average.
- Charles Stein at Stanford discovered such an estimator in 1955.

Prelude: Stein's Paradox

Stein's Paradox in Statistics, Efron & Morris, Scientific American (1977)

- ▶ There are estimators better than the arithmetic average.
- Charles Stein at Stanford discovered such an estimator in 1955
- Shrinkage Estimator undermined 150 years of estimation theory !!!

PRELUDE: STEIN'S PARADOX

Stein's Paradox in Statistics, Efron & Morris, Scientific American (1977)

- ▶ There are estimators better than the arithmetic average.
- ► Charles Stein at Stanford discovered such an estimator in 1955
- ▶ Shrinkage Estimator undermined 150 years of estimation theory !!!
- Led to long period of frequent, angry debate

Prelude: Stein's Paradox

STEIN'S PARADOX IN STATISTICS, EFRON & MORRIS, SCIENTIFIC AMERICAN(1977)

- ▶ There are estimators better than the arithmetic average.
- Charles Stein at Stanford discovered such an estimator in 1955
- ▶ Shrinkage Estimator undermined 150 years of estimation theory !!!
- Led to long period of frequent, angry debate
- Shrinkage estimators now routinely used in applied statistics

PRELUDE: STEIN'S PARADOX

Stein's Paradox in Statistics, Efron & Morris, Scientific American (1977)

- ► There are estimators better than the arithmetic average.
- Charles Stein at Stanford discovered such an estimator in 1955
- ▶ Shrinkage Estimator undermined 150 years of estimation theory !!!
- Led to long period of frequent, angry debate
- Shrinkage estimators now routinely used in applied statistics
- Stein's estimate contradicts most elementary law of statistical theory: individual average is the best estimator

PURDUE

Prelude: Stein's Paradox

Stein's Paradox in Statistics, Efron & Morris, Scientific American(1977)

- ► There are estimators better than the arithmetic average.
- Charles Stein at Stanford discovered such an estimator in 1955
- ▶ Shrinkage Estimator undermined 150 years of estimation theory !!!
- Led to long period of frequent, angry debate
- Shrinkage estimators now routinely used in applied statistics
- Stein's estimate contradicts most elementary law of statistical theory: individual average is the best estimator
- Individual averages that exceed grand mean shrink, those that are smaller inflate.

Bayes-Stein Estimation for Portfolio Analysis

Stein's Paradox, Dr. Richard Samworth , Statslab Cambridge

Data, Distribution, Parameter $X_i \sim N(\theta_i, 1), i = 1...p, p > 2, \theta = (\theta_1, \theta_2, ..., \theta_p)'$

Stein's Paradox, Dr. Richard Samworth , Statslab Cambridge

- **Data, Distribution, Parameter** $X_i \sim N(\theta_i, 1), i = 1...p, p > 2, \theta = (\theta_1, \theta_2, ..., \theta_p)'$
- Estimator
 MLE & UMVUE: $\hat{\theta}^0(X) = (X_1, X_2, ..., X_p)'$ James-Stein: $\hat{\theta}^{JS}(X) = (1 \frac{p-2}{\|X\|^2})X$

Stein's Paradox, Dr. Richard Samworth , Statslab Cambridge

- **Data, Distribution, Parameter** $X_i \sim N(\theta_i, 1), i = 1...p, p > 2, \theta = (\theta_1, \theta_2, ..., \theta_p)'$
- Estimator
 MLE & UMVUE: $\hat{\theta}^0(X) = (X_1, X_2, ..., X_p)'$ James-Stein: $\hat{\theta}^{JS}(X) = (1 \frac{p-2}{\|X\|^2})X$
- Admissibility

Squared Error Loss: $L(\hat{\theta}, \theta) = \left\| \hat{\theta} - \theta \right\|^2$ Risk Function: $R(\hat{\theta}, \theta) = E\{L(\hat{\theta}, \theta)\}$ If $R(\hat{\theta}^1, \theta) \leq R(\hat{\theta}^2, \theta) \, \forall \theta$, we say $\hat{\theta}^2$ is inadmissible

Stein's Paradox, Dr. Richard Samworth , Statslab Cambridge

- **Data, Distribution, Parameter** $X_i \sim N(\theta_i, 1), i = 1...p, p > 2, \theta = (\theta_1, \theta_2, ..., \theta_p)'$
- Estimator
 MLE & UMVUE: $\hat{\theta}^0(X) = (X_1, X_2, ..., X_p)'$ James-Stein: $\hat{\theta}^{JS}(X) = (1 \frac{p-2}{\|X\|^2})X$
- Admissibility

Squared Error Loss: $L(\hat{\theta}, \theta) = \left\| \hat{\theta} - \theta \right\|^2$ Risk Function: $R(\hat{\theta}, \theta) = E\{L(\hat{\theta}, \theta)\}$ If $R(\hat{\theta}^1, \theta) \leq R(\hat{\theta}^2, \theta) \ \forall \theta$, we say $\hat{\theta}^2$ is inadmissible

Stein's Paradox $R(\hat{\theta}^{JS}, \theta) \leq R(\hat{\theta}^0, \theta) \ \forall \theta => \hat{\theta}^0(X)$ is inadmissible!

Markowitz: A 50 Year Retrospective, Rubinstein (2002)

 Title: Portfolio Selection Author: Harry Markowitz Journal: The Journal of Finance

Date: March 1952

Markowitz: A 50 Year Retrospective, Rubinstein (2002)

 Title: Portfolio Selection Author: Harry Markowitz Journal: The Journal of Finance

Date: March 1952

Markowitz Paper was the birth of Modern Financial Economics

Markowitz: A 50 Year Retrospective, Rubinstein (2002)

Title: Portfolio Selection
Author: Harry Markowitz
Journal: The Journal of Finance

Date: March 1952

- Markowitz Paper was the birth of Modern Financial Economics
- lacktriangle Markowitz Paper in Finance \sim Isaac Newton's contribution in Math & Physics

- ► Title: Portfolio Selection Author: Harry Markowitz Journal: The Journal of Finance
 - Date: March 1952
- Markowitz Paper was the birth of Modern Financial Economics
- lacktriangle Markowitz Paper in Finance \sim Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good

- Title: Portfolio Selection
 Author: Harry Markowitz
 Journal: The Journal of Finance
 - Date: March 1952
- Markowitz Paper was the birth of Modern Financial Economics
- lacktriangle Markowitz Paper in Finance \sim Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes. Bible

- Title: Portfolio Selection Author: Harry Markowitz Journal: The Journal of Finance
 - Date: March 1952
- Markowitz Paper was the birth of Modern Financial Economics
- Markowitz Paper in Finance ∼ Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes, Bible
- "Split one's assets into thirds: one third in business, one third gold, one third in land" Talmud

- Title: Portfolio Selection Author: Harry Markowitz
 - Journal: The Journal of Finance
 - Date: March 1952
- Markowitz Paper was the birth of Modern Financial Economics
- ► Markowitz Paper in Finance ~ Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes, Bible
- "Split one's assets into thirds: one third in business, one third gold, one third in land" Talmud
- "... I thank my fortune for it,
 - My ventures are not in one bottom trusted,
 - Nor to one place; nor is my whole estate
 - Upon the fortune of this present year . . ."
 - Antonio in The Merchant of Venice, William Shakespeare

- ► Title: Portfolio Selection
 - Author: Harry Markowitz

 Journal: The Journal of Finance
 - Date: March 1952
- Markowitz Paper was the birth of Modern Financial Economics
- ► Markowitz Paper in Finance ~ Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes, Bible
- "Split one's assets into thirds: one third in business, one third gold, one third in land" Talmud
- "... I thank my fortune for it,
 - My ventures are not in one bottom trusted,
 - Nor to one place; nor is my whole estate
 - Upon the fortune of this present year . . ."
 - Antonio in The Merchant of Venice, William Shakespeare
- "...it is advisable to divide goods which are exposed to some small danger into several portions rather than to risk them all together" Daniel Bernoulli, 1738 (LLN, 1715)

Markowitz: A 50 Year Retrospective, Rubinstein (2002)

Title: Portfolio Selection

Author: Harry Markowitz

Journal: The Journal of Finance

Date: March 1952

- Markowitz Paper was the birth of Modern Financial Economics
- Markowitz Paper in Finance ∼ Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes, Bible
- "Split one's assets into thirds: one third in business, one third gold, one third in land" Talmud
- "... I thank my fortune for it,
 - My ventures are not in one bottom trusted,
 - Nor to one place; nor is my whole estate
 - Upon the fortune of this present year . . ."
 - Antonio in The Merchant of Venice, William Shakespeare
- "...it is advisable to divide goods which are exposed to some small danger into several portions rather than to risk them all together" - Daniel Bernoulli, 1738 (LLN, 1715)
- Keynes, 1920s "If possible, hold assets with opposed risks since they are likely to move in opposite directions when there are general fluctuation"

Markowitz: A 50 Year Retrospective, Rubinstein (2002)

► Title: Portfolio Selection

Author: Harry Markowitz

Journal: The Journal of Finance

Date: March 1952

- Markowitz Paper was the birth of Modern Financial Economics
- ▶ Markowitz Paper in Finance ∼ Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes, Bible
- "Split one's assets into thirds: one third in business, one third gold, one third in land" Talmud
- "... I thank my fortune for it,

My ventures are not in one bottom trusted,

Nor to one place; nor is my whole estate

Upon the fortune of this present year . . ."

- "...it is advisable to divide goods which are exposed to some small danger into several portions rather than to risk them all together" Daniel Bernoulli, 1738 (LLN, 1715)
- Keynes, 1920s "If possible, hold assets with opposed risks since they are likely to move in opposite directions when there are general fluctuation"
- But how to quantify diversification ?

Markowitz: A 50 Year Retrospective, Rubinstein (2002)

► Title: Portfolio Selection

Author: Harry Markowitz

Journal: The Journal of Finance

Date: March 1952

- Markowitz Paper was the birth of Modern Financial Economics
- ► Markowitz Paper in Finance ~ Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes, Bible
- "Split one's assets into thirds: one third in business, one third gold, one third in land" Talmud
- "... I thank my fortune for it,

My ventures are not in one bottom trusted,

Nor to one place; nor is my whole estate

Upon the fortune of this present year . . ."

- "...it is advisable to divide goods which are exposed to some small danger into several portions rather than to risk them all together" Daniel Bernoulli, 1738 (LLN, 1715)
- Keynes, 1920s "If possible, hold assets with opposed risks since they are likely to move in opposite directions when there are general fluctuation"
- But how to quantify diversification ?
- Jacob Marschak (Money & the theory of assets, 1938, Econometrica)

Markowitz: A 50 Year Retrospective, Rubinstein (2002)

► Title: Portfolio Selection

Author: Harry Markowitz

Journal: The Journal of Finance

Date: March 1952

- Markowitz Paper was the birth of Modern Financial Economics
- ▶ Markowitz Paper in Finance ∼ Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes, Bible
- "Split one's assets into thirds: one third in business, one third gold, one third in land" Talmud
- "... I thank my fortune for it,
 - My ventures are not in one bottom trusted,
 - Nor to one place; nor is my whole estate
 - Upon the fortune of this present year . . ."

- "... it is advisable to divide goods which are exposed to some small danger into several portions rather than to risk them all together" Daniel Bernoulli, 1738 (LLN, 1715)
- Keynes, 1920s "If possible, hold assets with opposed risks since they are likely to move in opposite directions when there are general fluctuation"
- But how to quantify diversification ?
- ▶ Jacob Marschak(Money & the theory of assets, 1938, Econometrica)
- Marschak's idea: Use the means and the covariance matrix of commodities

Markowitz: A 50 Year Retrospective, Rubinstein (2002)

Title: Portfolio Selection

Author: Harry Markowitz

Journal: The Journal of Finance

Date: March 1952

- Markowitz Paper was the birth of Modern Financial Economics
- Markowitz Paper in Finance ∼ Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes, Bible
- "Split one's assets into thirds: one third in business, one third gold, one third in land" Talmud
- "... I thank my fortune for it,

My ventures are not in one bottom trusted,

Nor to one place; nor is my whole estate

Upon the fortune of this present year . . ."

- "...it is advisable to divide goods which are exposed to some small danger into several portions rather than to risk them all together" - Daniel Bernoulli, 1738 (LLN, 1715)
- Keynes, 1920s "If possible, hold assets with opposed risks since they are likely to move in opposite directions when there are general fluctuation"
- But how to quantify diversification ?
- Jacob Marschak (Money & the theory of assets, 1938, Econometrica)
- Marschak's idea: Use the means and the covariance matrix of commodities
- A.D. Roy (Safety first & the holding of assets, 1952, Econometrica)

- ► Title: Portfolio Selection
 - Author: Harry Markowitz
 - Journal: The Journal of Finance
 - Date: March 1952
- Markowitz Paper was the birth of Modern Financial Economics
- ► Markowitz Paper in Finance ~ Isaac Newton's contribution in Math & Physics
- Main Message: Diversification is good
- "But divide your investments among many places, for you do not know what risks might lie ahead" Book of Ecclesiastes, Bible
- "Split one's assets into thirds: one third in business, one third gold, one third in land" Talmud
- "... I thank my fortune for it,
 - My ventures are not in one bottom trusted,
 - Nor to one place; nor is my whole estate
 - Upon the fortune of this present year . . .'
 - Antonio in The Merchant of Venice, William Shakespeare
- "... it is advisable to divide goods which are exposed to some small danger into several portions rather than to risk them all together" Daniel Bernoulli, 1738 (LLN, 1715)
- Keynes, 1920s "If possible, hold assets with opposed risks since they are likely to move in opposite directions when there are general fluctuation"
- But how to quantify diversification ?
- Jacob Marschak (Money & the theory of assets, 1938, Econometrica)
- Marschak's idea: Use the means and the covariance matrix of commodities
- A.D. Roy (Safety first & the holding of assets, 1952, Econometrica)
- Roy's idea: Maximize $\frac{\mu_p d}{\sigma_p^2}$, d = disaster return

Markowitz: A 50 Year Retrospective, Rubinstein (2002)

Markowitz' most important contribution was the formulation.

- Markowitz' most important contribution was the formulation.
- Maximize expected portfolio return μ_D

- Markowitz' most important contribution was the formulation.
- Maximize expected portfolio return μ_D
- while Minimizing portfolio variance of return σ_p^2

- Markowitz' most important contribution was the formulation.
- Maximize expected portfolio return μ_p
- while Minimizing portfolio variance of return σ_p^2
- $\mu_p = \sum_i x_i \mu_i \text{ subject to } \sum_i x_i = 1$

- Markowitz' most important contribution was the formulation.
- Maximize expected portfolio return μ_p
- \blacktriangleright while Minimizing portfolio variance of return σ_p^2
- $\mu_p = \sum x_j \mu_j \text{ subject to } \sum x_j = 1$

- Markowitz' most important contribution was the formulation.
- Maximize expected portfolio return μ_{D}
- while Minimizing portfolio variance of return σ_p^2
- $\mu_p = \sum x_j \mu_j$ subject to $\sum x_j = 1$
- Inputs to the Markowitz Problem: The means μ_j , the variances σ_i^2 , the correlations ρ_{jk}

- Markowitz' most important contribution was the formulation.
- Maximize expected portfolio return μ_D
- while Minimizing portfolio variance of return σ_p^2
- $\mu_p = \sum x_j \mu_j \text{ subject to } \sum x_j = 1$
- Inputs to the Markowitz Problem: The means μ_j , the variances σ_i^2 , the correlations ho_{jk}
- \triangleright Output of the Markowitz Problem: The x_i , optimal proportion of weights that sum to 1.

Introduction

JORION: SECTION 1

Markowitz is a 2 step procedure.

Introduction

Jorion: Section 1

- Markowitz is a 2 step procedure.
- Step 0: Pick a bunch of stocks
 Grab time series of their historical returns

Introduction

- Markowitz is a 2 step procedure.
- Step 0: Pick a bunch of stocks
 Grab time series of their historical returns
- Step 1: Estimate moments (mean, variance) from time series Certainity Equivalence : Treat estimates as population parameters !!! Certainity Equivalence bad idea: Barry,Brown,Klein, Dickenson et al. Markowitz procedure is inherently multivariate Cannot estimate each expected return independently! Sample Mean inadmissible if portfolio has >2 stocks. Portfolio with multiple stocks must use Stein Estimator

Introduction

- Markowitz is a 2 step procedure.
- Step 0: Pick a bunch of stocks
 Grab time series of their historical returns
- Step 1: Estimate moments (mean, variance) from time series Certainity Equivalence : Treat estimates as population parameters !!! Certainity Equivalence bad idea: Barry,Brown,Klein, Dickenson et al. Markowitz procedure is inherently multivariate Cannot estimate each expected return independently! Sample Mean inadmissible if portfolio has >2 stocks. Portfolio with multiple stocks must use Stein Estimator
- ▶ Step 2: Solve Markowitz problem using moments computed above.

Jorion: Section II

► Given a vector of returns r, choose set of weights q

- Given a vector of returns r, choose set of weights q
- Return on portfolio z = q'r

JORION: SECTION I

- Given a vector of returns r, choose set of weights q
- Return on portfolio z = q'r
- Maximize the expected utility of the return

$$EU(z) = \int U(z)p(z|\theta)dz$$

U(z) a utility function

 $p(z|\theta)$ Distribution of return, conditioned on unknown θ

JORION: SECTION II

- Given a vector of returns r, choose set of weights q
- Return on portfolio z = q'r
- Maximize the expected utility of the return $EU(z) = \int U(z)p(z|\theta)dz$ U(z) a utility function

 $p(z|\theta)$ Distribution of return, conditioned on unknown θ

ightharpoonup Certainty equivalence: Assumes $heta=\hat{ heta}$

- Given a vector of returns r, choose set of weights q
- Return on portfolio z = q'r
- Maximize the expected utility of the return $EU(z) = \int U(z)p(z|\theta)dz$
 - U(z) a utility function
 - $p(z|\theta)$ Distribution of return, conditioned on unknown θ
- ightharpoonup Certainty equivalence: Assumes $\theta = \hat{\theta}$
- Certainty equivalence obviously ignores parameter uncertainty.

- Given a vector of returns r, choose set of weights q
- Return on portfolio z = q'r
- Maximize the expected utility of the return

$$EU(z) = \int U(z) p(z|\theta) dz$$

 $U(z)$ a utility function
 $p(z|\theta)$ Distribution of return, conditioned on unknown θ

- ightharpoonup Certainty equivalence: Assumes $heta=\hat{ heta}$
- Certainty equivalence obviously ignores parameter uncertainty.
- Bayesian solution (Zellner/Chetty): Optimal portfolio choice via Predictive Density function Integrate out the unknown parameter θ Integrating out will explicitly takes into account uncertainty about θ

- Given a vector of returns r, choose set of weights q
- Return on portfolio z = q'r
- Maximize the expected utility of the return

$$EU(z) = \int U(z)p(z|\theta)dz$$
 $U(z)$ a utility function $p(z|\theta)$ Distribution of return, conditioned on unknown θ

- ightharpoonup Certainty equivalence: Assumes $heta=\hat{ heta}$
- Certainty equivalence obviously ignores parameter uncertainty.
- Bayesian solution (Zellner/Chetty):
 Optimal portfolio choice via Predictive Density function Integrate out the unknown parameter θ Integrating out will explicitly takes into account uncertainty about θ
- $\max E_{\theta}[E_{y|\theta}[U(z)|\theta]]$ $= \int \int U(z)p(z|\theta)dz \ p(\theta|y, l_0)d\theta$ $= \int U(z)[\int p(z|\theta) \ p(\theta|y, l_0)d\theta \]dz$

- Given a vector of returns r, choose set of weights q
- Return on portfolio z = q'r
- Maximize the expected utility of the return $EU(z) = \int U(z)\rho(z|\theta)dz$ $U(z) \text{ a utility function } \rho(z|\theta) \text{ Distribution of return, conditioned on unknown } \theta$
- ightharpoonup Certainty equivalence: Assumes $heta=\hat{ heta}$
- Certainty equivalence obviously ignores parameter uncertainty.
- Bayesian solution (Zellner/Chetty):

 Optimal portfolio choice via Predictive Density function Integrate out the unknown parameter θ Integrating out will explicitly takes into account uncertainty about θ
- $\max E_{\theta}[E_{y|\theta}[U(z)|\theta]]$ $= \int \int U(z)p(z|\theta)dz \ p(\theta|y, l_0)d\theta$ $= \int U(z)[\int p(z|\theta) \ p(\theta|y, l_0)d\theta \]dz$
- Predictive Density Function of $z = q'r = p(z|\theta) p(\theta|y, I_0)d\theta$

JORION: SECTION II

- Given a vector of returns r, choose set of weights q
- Return on portfolio z = q'r
- Maximize the expected utility of the return $EU(z) = \int U(z)p(z|\theta)dz$

 $U(z) = \int G(z)\rho(z|\theta)dz$ U(z) a utility function $\rho(z|\theta)$ Distribution of return, conditioned on unknown θ

- ightharpoonup Certainty equivalence: Assumes $heta=\hat{ heta}$
- Certainty equivalence obviously ignores parameter uncertainty.
- Bayesian solution (Zellner/Chetty): Optimal portfolio choice via Predictive Density function Integrate out the unknown parameter θ Integrating out will explicitly takes into account uncertainty about θ
- $\max E_{\theta}[E_{y|\theta}[U(z)|\theta]]$ $= \int \int U(z)p(z|\theta)dz \ p(\theta|y, I_0)d\theta$ $= \int U(z)[\int p(z|\theta) \ p(\theta|y, I_0)d\theta \]dz$
- Predictive Density Function of $z = q'r = p(z|\theta) \ p(\theta|y, I_0)d\theta$
- Posterior Density of $\theta = p(\theta|y, I_0)$

Jorion: Section II

• Utility function $EU(z) = F(\mu_z, \sigma_z^2)$

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- ► Variance of Portfolio: $\sigma_z^2 = q' Σq$
- q = The vector of investment *proportions*

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- q = The vector of investment proportions
- Choose q to maximize expected utility Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- q = The vector of investment proportions
- Choose q to maximize expected utility Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i=1$
- ► Suppose we know θ = (μ, Σ)

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q'\mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- q = The vector of investment proportions
- Choose q to maximize expected utility
 Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$
- Suppose we know $\theta = (\mu, \Sigma)$
- Optimal portfolio is $F_{MAX} = F(q'_*\mu, q'_*\Sigma q_*)$ But we don't know θ

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q'\mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- q = The vector of investment proportions
- Choose q to maximize expected utility
 Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$
- Suppose we know $\theta = (\mu, \Sigma)$
- Optimal portfolio is $F_{MAX} = F(q'_*\mu, q'_*\Sigma q_*)$ But we don't know θ
- So we choose q based on sample estimate $\hat{\theta}(y)$

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- q = The vector of investment proportions
- Choose q to maximize expected utility
 Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$
- Suppose we know $\theta = (\mu, \Sigma)$
- Popular portfolio is $F_{MAX} = F(q_*'\mu, q_*'\Sigma q_*)$ But we don't know θ
- So we choose q based on sample estimate $\hat{\theta}(y)$
- ► The expected utility will now necessarily be lower than before

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- q = The vector of investment proportions
- Choose q to maximize expected utility
 Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$
- Suppose we know $\theta = (\mu, \Sigma)$
- Popular Depart Policy of the Policy Policy
- So we choose q based on sample estimate $\hat{\theta}(y)$
- ► The expected utility will now necessarily be lower than before
- $\qquad \qquad F(\hat{q}(\hat{\theta}(y)|\mu,\Sigma) = F(\hat{q}'\mu,\hat{q}'\Sigma\hat{q}) \leq F_{MAX}$

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- q = The vector of investment proportions
- Choose q to maximize expected utility
 Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$
- Suppose we know $\theta = (\mu, \Sigma)$
- Poptimal portfolio is $F_{MAX} = F(q'_*\mu, q'_*\Sigma q_*)$ But we don't know θ
- So we choose q based on sample estimate $\hat{\theta}(y)$
- ► The expected utility will now necessarily be lower than before
- $F(\hat{q}(\hat{\theta}(y)|\mu, \Sigma) = F(\hat{q}'\mu, \hat{q}'\Sigma\hat{q}) \leq F_{MAX}$
- ► The loss due to estimation risk can be measured

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- ► Variance of Portfolio: $\sigma_z^2 = q' Σq$
- q = The vector of investment proportions
- Choose q to maximize expected utility
 Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$
- Suppose we know $\theta = (\mu, \Sigma)$
- Optimal portfolio is $F_{MAX} = F(q'_*\mu, q'_*\Sigma q_*)$ But we don't know θ
- So we choose q based on sample estimate $\hat{\theta}(y)$
- ► The expected utility will now necessarily be lower than before
- $F(\hat{q}(\hat{\theta}(y)|\mu, \Sigma) = F(\hat{q}'\mu, \hat{q}'\Sigma\hat{q}) \leq F_{MAX}$
- ► The loss due to estimation risk can be measured
- $L(q^*, \hat{q}) = \frac{F_{MAX} F(\hat{q})}{F_{MAX}} > 0$

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- q = The vector of investment proportions
- Choose q to maximize expected utility
 Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$
- Suppose we know $\theta = (\mu, \Sigma)$
- Optimal portfolio is $F_{MAX} = F(q'_*\mu, q'_*\Sigma q_*)$ But we don't know θ
- So we choose q based on sample estimate $\hat{\theta}(y)$
- ► The expected utility will now necessarily be lower than before
- $F(\hat{q}(\hat{\theta}(y)|\mu, \Sigma) = F(\hat{q}'\mu, \hat{q}'\Sigma\hat{q}) \leq F_{MAX}$
- ► The loss due to estimation risk can be measured
- $L(q^*, \hat{q}) = \frac{F_{MAX} F(\hat{q})}{F_{MAX}} > 0$
- Linear mapping from q to θ

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- ▶ q = The vector of investment *proportions*
- Choose q to maximize expected utility
 Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$
- Suppose we know $\theta = (\mu, \Sigma)$
- Optimal portfolio is $F_{MAX} = F(q'_*\mu, q'_*\Sigma q_*)$ But we don't know θ
- So we choose q based on sample estimate $\hat{\theta}(y)$
- ► The expected utility will now necessarily be lower than before
- $F(\hat{q}(\hat{\theta}(y)|\mu, \Sigma) = F(\hat{q}'\mu, \hat{q}'\Sigma\hat{q}) \leq F_{MAX}$
- ► The loss due to estimation risk can be measured
- $L(q^*, \hat{q}) = \frac{F_{MAX} F(\hat{q})}{F_{MAX}} > 0$
- Linear mapping from q to θ
- $R(\theta) = \int L(\theta, \hat{\theta}) f(y|\theta) dy > 0$

Jorion: Section II

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q' \mu$
- ► Variance of Portfolio: $\sigma_z^2 = q' Σq$
- q = The vector of investment proportions
- Choose q to maximize expected utility Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i = 1$
- Suppose we know $\theta = (\mu, \Sigma)$
- Optimal portfolio is $F_{MAX} = F(q_*'\mu, q_*'\Sigma q_*)$ But we don't know θ
- So we choose q based on sample estimate $\hat{\theta}(y)$
- ► The expected utility will now necessarily be lower than before
- $F(\hat{q}(\hat{\theta}(y)|\mu, \Sigma) = F(\hat{q}'\mu, \hat{q}'\Sigma\hat{q}) \leq F_{MAX}$
- ► The loss due to estimation risk can be measured
- $L(q^*, \hat{q}) = \frac{F_{MAX} F(\hat{q})}{F_{MAX}} > 0$
- Linear mapping from q to θ
- $R(\theta) = \int L(\theta, \hat{\theta}) f(y|\theta) dy > 0$
- A reasonable minimum requirement for any estimator is admissibility

- Utility function $EU(z) = F(\mu_z, \sigma_z^2)$
- Expected Portfolio Return: $\mu_z = q'\mu$
- Variance of Portfolio: $\sigma_z^2 = q' \Sigma q$
- q = The vector of investment proportions
- Choose q to maximize expected utility
- Subject to the constraint investment proportions sum to unity i.e. $\Sigma q_i=1$
- ► Suppose we know θ = (μ, Σ)
- Optimal portfolio is $F_{MAX} = F(q_*'\mu, q_*'\Sigma q_*)$ But we don't know θ
- So we choose q based on sample estimate $\hat{\theta}(y)$
- ► The expected utility will now necessarily be lower than before
- $F(\hat{q}(\hat{\theta}(y)|\mu, \Sigma) = F(\hat{q}'\mu, \hat{q}'\Sigma\hat{q}) \leq F_{MAX}$
- ► The loss due to estimation risk can be measured
- $L(q^*, \hat{q}) = \frac{F_{MAX} F(\hat{q})}{F_{MAX}} > 0$
- Linear mapping from q to θ
- $R(\theta) = \int L(\theta, \hat{\theta}) f(y|\theta) dy > 0$
- A reasonable minimum requirement for any estimator is admissibility
- Central thesis of this paper is that the usual sample mean is not admissible for portfolio estimation

IORION: SECTION III

Let $\hat{\mu}=$ vector of N normal means, with covariance matrix assumed known.

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $y_t \sim N(\hat{\mu}, Σ), t = 1..T$ are the stock returns.

- Let $\hat{\mu}=$ vector of N normal means, with covariance matrix assumed known.
- $y_t \sim N(\hat{\mu}, Σ), t = 1..T$ are the stock returns.
- ▶ Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- y_t ∼ N($\hat{\mu}$, Σ), t = 1..T are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$

- Let $\hat{\mu} = \text{vector of N normal means, with covariance matrix assumed known.}$
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- If N ≤ 2, MLE is admissible & the best estimator.

Jorion: Section III

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1...T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- If N ≤ 2, MLE is admissible & the best estimator.
- Shrinkage Estimator: $\hat{\mu}_{JS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- If N < 2, MLE is admissible & the best estimator.</p>
- Shrinkage Estimator: $\hat{\mu}_{JS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- ▶ Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- ► If N < 2, MLE is admissible & the best estimator.</p>
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1}(\mu \hat{\mu}(y))$
- If N ≤ 2, MLE is admissible & the best estimator.
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE
- Stein Estimator has nonzero bias. It is nonlinear since ŵ is itself a function of data.

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- ▶ Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- ► If N < 2, MLE is admissible & the best estimator.</p>
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE
- Stein Estimator has nonzero bias. It is nonlinear since ŵ is itself a function of data.
- Superiority of Stein Estimator result is a startling result

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- ▶ Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- ► If N < 2, MLE is admissible & the best estimator.
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE
- Stein Estimator has nonzero bias. It is nonlinear since ŵ is itself a function of data.
- Superiority of Stein Estimator result is a startling result
- Stein Estimator is one of the most important statistical idea of the decade: Dennis Lindley

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- ► If N < 2, MLE is admissible & the best estimator.</p>
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE
- Stein Estimator has nonzero bias. It is nonlinear since ŵ is itself a function of data.
- Superiority of Stein Estimator result is a startling result
- Stein Estimator is one of the most important statistical idea of the decade: Dennis Lindley
- What about Normality assumption ?

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- ► If N < 2, MLE is admissible & the best estimator.</p>
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE
- Stein Estimator has nonzero bias. It is nonlinear since ŵ is itself a function of data.
- Superiority of Stein Estimator result is a startling result
- ▶ Stein Estimator is one of the most important statistical idea of the decade : Dennis Lindley
- What about Normality assumption ?
- Normality is NOT critical to Stein estimate

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- ► If N < 2, MLE is admissible & the best estimator.</p>
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE
- Stein Estimator has nonzero bias. It is nonlinear since ŵ is itself a function of data.
- Superiority of Stein Estimator result is a startling result
- ▶ Stein Estimator is one of the most important statistical idea of the decade : Dennis Lindley
- What about Normality assumption ?
- Normality is NOT critical to Stein estimate
- Mhat about assumption of known σ^2 ?

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- ► If N < 2, MLE is admissible & the best estimator.</p>
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE
- Stein Estimator has nonzero bias. It is nonlinear since ŵ is itself a function of data.
- Superiority of Stein Estimator result is a startling result
- ▶ Stein Estimator is one of the most important statistical idea of the decade : Dennis Lindley
- What about Normality assumption ?
- Normality is NOT critical to Stein estimate
- What about assumption of known σ^2 ?
- In real-life (finance), standard deviations of stocks tend to not change as much (Merton)

- Let $\hat{\mu} = \text{vector of N normal means}$, with covariance matrix assumed known.
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- ▶ If N < 2, MLE is admissible & the best estimator.</p>
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE
- Stein Estimator has nonzero bias. It is nonlinear since ŵ is itself a function of data.
- Superiority of Stein Estimator result is a startling result
- Stein Estimator is one of the most important statistical idea of the decade: Dennis Lindley
- What about Normality assumption ?
- Normality is NOT critical to Stein estimate
- What about assumption of known σ^2 ?
- In real-life (finance), standard deviations of stocks tend to not change as much (Merton)
- Standard deviations of stocks tend to be larger than the means

- Let $\hat{\mu} = \text{vector of N normal means, with covariance matrix assumed known.}$
- $v_t \sim N(\hat{\mu}, \Sigma), t = 1..T$ are the stock returns.
- Stein's Paradox: If N > 2, MLE = vector of sample means = is inadmissible.
- Inadmissibility is wrt quadratic loss $L(\mu, \hat{\mu}(y)) = (\mu \hat{\mu}(y))' \sigma^{-1} (\mu \hat{\mu}(y))$
- ► If N < 2, MLE is admissible & the best estimator.</p>
- Shrinkage Estimator: $\hat{\mu}_{IS}(y) = (1 \hat{w})Y + \hat{w}Y_01$, Y_0 is any point.
- $\hat{w} = \min(1, \frac{(N-2)/T}{(Y-Y_01)'\Sigma^{-1}(Y-Y_01)})$
- Maximum benefit when Y_0 closest to true value, though $\hat{\mu}_{JS}(y)$ always has lower risk than MLE
- Stein Estimator has nonzero bias. It is nonlinear since ŵ is itself a function of data.
- Superiority of Stein Estimator result is a startling result
- Stein Estimator is one of the most important statistical idea of the decade: Dennis Lindley
- What about Normality assumption ?
- Normality is NOT critical to Stein estimate
- What about assumption of known σ^2 ?
- In real-life (finance), standard deviations of stocks tend to not change as much (Merton)
- > Standard deviations of stocks tend to be larger than the means
- Stein Estimator instead of sample mean is already a significant improvement

IORION: SECTION IX

▶ Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor

Jorion: Section IV

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- ▶ Data $y = (y_1, y_2, ... y_t)$

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- ▶ Data $y = (y_1, y_2, ... y_t)$
- Covariance Matrix Σ

Jorion: Section IV

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- ▶ Data $y = (y_1, y_2, ... y_t)$
- Covariance Matrix Σ
- Scale Factor λ

Jorion: Section IX

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- ▶ Data $y = (y_1, y_2, ... y_t)$
- Covariance Matrix Σ
- Scale Factor λ
- ightharpoonup Empirical Bayes, $\eta, \lambda =$ prior grand mean & prior precision , are both estimated from the data (could alternately use prior knowledge)

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- ▶ Data $y = (y_1, y_2, ... y_t)$
- Covariance Matrix Σ
- Scale Factor λ
- ightharpoonup Empirical Bayes, $\eta,\lambda=$ prior grand mean & prior precision , are both estimated from the data (could alternately use prior knowledge)
- $p(r|y, \Sigma, \lambda) = \int \int p(r, \mu, \eta|y, \Sigma, \lambda) d\mu d\eta$

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- ▶ Data $y = (y_1, y_2, ... y_t)$
- Covariance Matrix Σ
- Scale Factor λ
- ightharpoonup Empirical Bayes, $\eta,\lambda=$ prior grand mean & prior precision , are both estimated from the data (could alternately use prior knowledge)
- $p(r|y, \Sigma, \lambda) = \int \int p(r, \mu, \eta|y, \Sigma, \lambda) d\mu d\eta$
- The joint density of r,μ and η is $p(r,\mu,\eta|y,\Sigma,\lambda) = p(r|\mu,\eta,\Sigma,\lambda) \cdot p(\mu,\eta|y,\Sigma,\lambda)$ $\propto p(r|\mu,\eta) \cdot f(y|\mu,\eta) \cdot p(\mu|\eta,\lambda) \cdot p(\eta)$

Jorion: Section IV

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- Data y = (y₁, y₂, ...y_t)
- Covariance Matrix Σ
- Scale Factor λ
- ightharpoonup Empirical Bayes, $\eta,\lambda=$ prior grand mean & prior precision , are both estimated from the data (could alternately use prior knowledge)
- $p(r|y, \Sigma, \lambda) = \int \int p(r, \mu, \eta|y, \Sigma, \lambda) d\mu d\eta$
- The joint density of r, μ and η is $p(r, \mu, \eta | y, \Sigma, \lambda) = p(r | \mu, \eta, \Sigma, \lambda) \cdot p(\mu, \eta | y, \Sigma, \lambda)$ $\propto p(r | \mu, \eta) \cdot f(y | \mu, \eta) \cdot p(\mu | \eta, \lambda) \cdot p(\eta)$
- We assume the returns are normally distributed. The conditional likelihood of y is $f(y_t|\mu,\Sigma) \propto \exp((-1/2)(y_t-\mu'\Sigma^{-1}(y_t-\mu))$

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- Data y = (y₁, y₂, ...y_t)
- Covariance Matrix Σ
- Scale Factor λ
- ightharpoonup Empirical Bayes, $\eta,\lambda=$ prior grand mean & prior precision , are both estimated from the data (could alternately use prior knowledge)
- $p(r|y, \Sigma, \lambda) = \int \int p(r, \mu, \eta|y, \Sigma, \lambda) d\mu d\eta$
- The joint density of r,μ and η is $p(r,\mu,\eta|y,\Sigma,\lambda) = p(r|\mu,\eta,\Sigma,\lambda) \cdot p(\mu,\eta|y,\Sigma,\lambda)$ $\propto p(r|\mu,\eta) \cdot f(y|\mu,\eta) \cdot p(\mu|\eta,\lambda) \cdot p(\eta)$
- We assume the returns are normally distributed. The conditional likelihood of y is $f(y_t|\mu, \Sigma) \propto \exp((-1/2)(y_t \mu)'\Sigma^{-1}(y_t \mu))$
- ▶ Density of μ is given by the conjugate Prior $p(\mu|\eta,\lambda) \propto exp((-1/2)(\mu-1\eta)'\lambda\Sigma^{-1}(\mu-1\eta))$

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- ▶ Data $y = (y_1, y_2, ... y_t)$
- Covariance Matrix Σ
- Scale Factor λ
- ightharpoonup Empirical Bayes, $\eta, \lambda =$ prior grand mean & prior precision , are both estimated from the data (could alternately use prior knowledge)
- $p(r|y, \Sigma, \lambda) = \int \int p(r, \mu, \eta|y, \Sigma, \lambda) d\mu d\eta$
- The joint density of r,μ and η is $p(r,\mu,\eta|y,\Sigma,\lambda) = p(r|\mu,\eta,\Sigma,\lambda) \cdot p(\mu,\eta|y,\Sigma,\lambda)$ $\propto p(r|\mu,\eta) \cdot f(y|\mu,\eta) \cdot p(\mu|\eta,\lambda) \cdot p(\eta)$
- We assume the returns are normally distributed. The conditional likelihood of y is $f(y_t|\mu, \Sigma) \propto \exp((-1/2)(y_t \mu)'\Sigma^{-1}(y_t \mu))$
- Density of μ is given by the conjugate Prior $p(\mu|\eta,\lambda) \propto \exp((-1/2)(\mu-1\eta)'\lambda\Sigma^{-1}(\mu-1\eta))$
- ightharpoonup The λ parameter measures the tightness of the prior

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- Data y = (y₁, y₂, ...y_t)
- Covariance Matrix Σ
- Scale Factor λ
- ightharpoonup Empirical Bayes, $\eta,\lambda=$ prior grand mean & prior precision , are both estimated from the data (could alternately use prior knowledge)
- $p(r|y, \Sigma, \lambda) = \int \int p(r, \mu, \eta|y, \Sigma, \lambda) d\mu d\eta$
- The joint density of r, μ and η is $p(r, \mu, \eta | y, \Sigma, \lambda) = p(r | \mu, \eta, \Sigma, \lambda) \cdot p(\mu, \eta | y, \Sigma, \lambda)$ $\propto p(r | \mu, \eta) \cdot f(y | \mu, \eta) \cdot p(\mu | \eta, \lambda) \cdot p(\eta)$
- We assume the returns are normally distributed. The conditional likelihood of y is $f(y_t|\mu, \Sigma) \propto \exp((-1/2)(y_t \mu)' \Sigma^{-1}(y_t \mu))$
- Density of μ is given by the conjugate Prior $p(\mu|\eta,\lambda) \propto \exp((-1/2)(\mu-1\eta)'\lambda\Sigma^{-1}(\mu-1\eta))$
- The λ parameter measures the tightness of the prior
- Why doesn't Sample mean work? Special Case $\lambda=0$, corresponds to Diffuse Prior Improper Prior, won't integrate to 1 In this special case Bayes rule won't be admissible (Berger: Statistical Decision Theory)

Jorion: Section IV

- Goal: Find the predictive distribution of future returns, conditioned on the prior, data, covariance matrix & scale factor
- \triangleright Data $y = (y_1, y_2, ... y_t)$
- Covariance Matrix Σ
- ightharpoonup Scale Factor λ
- ightharpoonup Empirical Bayes, $\eta,\lambda=$ prior grand mean & prior precision , are both estimated from the data (could alternately use prior knowledge)
- $p(r|y, \Sigma, \lambda) = \int \int p(r, \mu, \eta|y, \Sigma, \lambda) d\mu d\eta$
- The joint density of r, μ and η is $p(r, \mu, \eta | y, \Sigma, \lambda) = p(r | \mu, \eta, \Sigma, \lambda) \cdot p(\mu, \eta | y, \Sigma, \lambda)$ $\propto p(r | \mu, \eta) \cdot f(y | \mu, \eta) \cdot p(\mu | \eta, \lambda) \cdot p(\eta)$
- We assume the returns are normally distributed. The conditional likelihood of y is $f(y_t|\mu, \Sigma) \propto \exp((-1/2)(y_t \mu)' \Sigma^{-1}(y_t \mu))$
- Density of μ is given by the conjugate Prior $p(\mu|\eta,\lambda) \propto \exp((-1/2)(\mu-1\eta)'\lambda\Sigma^{-1}(\mu-1\eta))$
- The λ parameter measures the tightness of the prior
- Why doesn't Sample mean work? Special Case $\lambda = 0$, corresponds to Diffuse Prior Improper Prior, won't integrate to 1 In this special case Bayes rule won't be admissible (Berger: Statistical Decision Theory)
- Another interpretation of above prior: Means μ vary around the common grand mean η

$$\begin{aligned} & p(r, \mu, \eta | y, \Sigma, \lambda) \propto exp((-1/2)G) \\ & G = (r - \mu)' \Sigma^{-1}(r - \mu) + \sum_{t=1}^{T} (y_t - \mu) \Sigma^{-1}(r - \mu) + (\mu - 1\eta)' \lambda \Sigma^{-1}(\mu - 1\eta)) \end{aligned}$$

- $\begin{array}{l} & \rho(r,\mu,\eta|y,\Sigma,\lambda) \propto \exp((-1/2)G) \\ & G = (r-\mu)'\Sigma^{-1}(r-\mu) + \sum\nolimits_{t=1}^{T} (y_t-\mu)\Sigma^{-1}(r-\mu) + (\mu-1\eta)'\lambda\Sigma^{-1}(\mu-1\eta)) \end{array}$
- After integration over η, μ , we find the predictive density is Normal with mean vector & covariance matrix Mean Vector $E(r) = (1-w)Y + w1Y_0$ $w = \text{shrinkage factor} = \frac{\lambda}{T+\lambda}$

$$\begin{aligned} \mathbf{Y} &= \text{vector of sample means} = \frac{\sum_{t=1}^{T} \mathbf{y}_t}{T} \\ \mathbf{Y}_0 &= \text{grand mean} = \mathbf{x}'\mathbf{Y} \end{aligned}$$

x' = weights of the minimum variance portfolio =
$$\frac{1'\Sigma^{-1}}{1'\Sigma^{-1}1}$$

Covariance matrix $V = \Sigma(1 + \frac{1}{T+\lambda}) + \frac{\lambda}{T(T+1+\lambda)} \frac{11'}{1'\Sigma^{-1}1}$

JORION: SECTION IV: DERIVATION

- $\begin{array}{l} & p(r,\mu,\eta|y,\Sigma,\lambda) \propto \exp((-1/2)G) \\ & G = (r-\mu)'\Sigma^{-1}(r-\mu) + \sum\nolimits_{t=1}^{T} (y_t-\mu)\Sigma^{-1}(r-\mu) + (\mu-1\eta)'\lambda\Sigma^{-1}(\mu-1\eta)) \end{array}$
- After integration over η, μ , we find the predictive density is Normal with mean vector & covariance matrix Mean Vector $E(r) = (1-w)Y + w1Y_0$ $w = \text{shrinkage factor} = \frac{\lambda}{T+\lambda}$

$$\begin{aligned} \mathbf{Y} &= \text{vector of sample means} &= \frac{\sum_{t=1}^{T} y_t}{T} \\ \mathbf{Y}_0 &= \text{grand mean} &= \mathbf{x}'\mathbf{Y} \end{aligned}$$

x' = weights of the minimum variance portfolio =
$$\frac{1'\Sigma^{-1}}{1'\Sigma^{-1}1}$$

Covariance matrix $V = \Sigma(1 + \frac{1}{T+\lambda}) + \frac{\lambda}{T(T+1+\lambda)} \frac{11'}{1'\Sigma^{-1}1}$

Covariance Matrix Interpretation: Σ : variation of y_t around the mean μ $\frac{\Sigma}{T+\lambda}$: uncertainity of the sample average Y Third term is the uncertainity in the common factor

- $\begin{array}{l} & \rho(r,\mu,\eta|y,\Sigma,\lambda) \propto \exp((-1/2)G) \\ & G = (r-\mu)'\Sigma^{-1}(r-\mu) + \sum\nolimits_{t=1}^{T} (y_t-\mu)\Sigma^{-1}(r-\mu) + (\mu-1\eta)'\lambda\Sigma^{-1}(\mu-1\eta)) \end{array}$
- After integration over η, μ , we find the predictive density is Normal with mean vector & covariance matrix Mean Vector $E(r) = (1-w)Y + w1Y_0$ $w = \text{shrinkage factor} = \frac{\lambda}{T+\lambda}$

$$\begin{aligned} \mathbf{Y} &= \text{vector of sample means} &= \frac{\sum_{t=1}^{T} y_t}{T} \\ \mathbf{Y}_0 &= \text{grand mean} &= \mathbf{x}'\mathbf{Y} \end{aligned}$$

x' = weights of the minimum variance portfolio =
$$\frac{1'\Sigma^{-1}}{1'\Sigma^{-1}1}$$

Covariance matrix $V = \Sigma(1 + \frac{1}{T+\lambda}) + \frac{\lambda}{T(T+1+\lambda)} \frac{11'}{1/\Sigma^{-1}1}$

- Covariance Matrix Interpretation: Σ : variation of y_t around the mean μ $\frac{\Sigma}{T+\lambda}$: uncertainity of the sample average Y Third term is the uncertainity in the common factor
- Large T: $w \to 0$, $r \to Y$, $V \to \Sigma$

- $\begin{array}{l} \rho(r,\mu,\eta|y,\Sigma,\lambda) \propto \exp((-1/2)G) \\ G = (r-\mu)'\Sigma^{-1}(r-\mu) + \sum_{t=1}^{T} (y_t-\mu)\Sigma^{-1}(r-\mu) + (\mu-1\eta)'\lambda\Sigma^{-1}(\mu-1\eta)) \end{array}$
- After integration over η, μ , we find the predictive density is Normal with mean vector & covariance matrix Mean Vector $E(r) = (1-w)Y + w1Y_0$ $w = \text{shrinkage factor} = \frac{\lambda}{T + \lambda}$

$$Y = \text{vector of sample means} = \frac{\sum_{t=1}^{T} y_t}{T}$$

$$Y_0 = \text{grand mean} = x'Y$$

x' = weights of the minimum variance portfolio =
$$\frac{1'\Sigma^{-1}}{1'\Sigma^{-1}1}$$

Covariance matrix $V = \Sigma(1 + \frac{1}{T+\lambda}) + \frac{\lambda}{T(T+1+\lambda)} \frac{11'}{1'\Sigma^{-1}1}$

- Covariance Matrix Interpretation: Σ : variation of y_t around the mean μ $\frac{\Sigma}{T+\lambda}$: uncertainity of the sample average Y Third term is the uncertainity in the common factor
- Large T: $w \to 0, r \to Y, V \to \Sigma$
- ► Small $\lambda: w \to 0, E(r) \to Y, V \to \Sigma(1 + (1/T))$

- $\begin{array}{l} & \rho(r,\mu,\eta|y,\Sigma,\lambda) \propto \exp((-1/2)G) \\ & G = (r-\mu)'\Sigma^{-1}(r-\mu) + \sum\nolimits_{t=1}^{T} (y_t-\mu)\Sigma^{-1}(r-\mu) + (\mu-1\eta)'\lambda\Sigma^{-1}(\mu-1\eta)) \end{array}$
- After integration over η, μ , we find the predictive density is Normal with mean vector & covariance matrix Mean Vector $E(r) = (1-w)Y + w1Y_0$ $w = \text{shrinkage factor} = \frac{\lambda}{T+\lambda}$

$$Y = \text{vector of sample means} = \frac{\sum_{t=1}^{T} y_t}{T}$$

$$Y_0 = \text{grand mean} = x'Y$$

x' = weights of the minimum variance portfolio =
$$\frac{1'\Sigma^{-1}}{1'\Sigma^{-1}1}$$

Covariance matrix $V = \Sigma(1 + \frac{1}{T+\lambda}) + \frac{\lambda}{T(T+1+\lambda)} \frac{11'}{1/\Sigma^{-1}1}$

- Covariance Matrix Interpretation: Σ : variation of y_t around the mean μ $\frac{\Sigma}{T+\lambda}$: uncertainity of the sample average Y Third term is the uncertainity in the common factor
- Large T: $w \to 0, r \to Y, V \to \Sigma$
- Small $\lambda: w \to 0, E(r) \to Y, V \to \Sigma(1 + (1/T))$
- Large $\lambda: w \to 1, E(r) \to 1Y_0, V \to \frac{11'}{T(1'\Sigma^{-1}1)}$

JORION: SECTION IV: SIMPLIFIED WORKING FORMULAS

Y = vector of sample means of returns

- Y = vector of sample means of returns
- S = sample covariance matrix

Jorion: Section IV: Simplified Working Formulas

- Y = vector of sample means of returns
- ► S = sample covariance matrix
- $\hat{\Sigma} = \frac{T-1}{T-N-2}S$

- Y = vector of sample means of returns
- ► S = sample covariance matrix
- $\hat{\Sigma} = \frac{T-1}{T-N-2}S$
- $\hat{w} = \frac{N+2}{(N+2)+(Y-Y_01)'T\hat{\Sigma}^{-1}(Y-Y_01)}$

Jorion: Section IV: Simplified Working Formula

- Y = vector of sample means of returns
- S = sample covariance matrix

$$\hat{\Sigma} = \frac{T-1}{T-N-2}S$$

$$\hat{w} = \frac{N+2}{(N+2)+(Y-Y_01)'T\hat{\Sigma}^{-1}(Y-Y_01)}$$

$$Y_0 = \frac{1'\hat{\Sigma}^{-1}}{1'\hat{\Sigma}^{-1}}Y$$

- Y = vector of sample means of returns
- ► S = sample covariance matrix

$$\hat{\Sigma} = \frac{T-1}{T-N-2}S$$

$$\hat{w} = \frac{N+2}{(N+2)+(Y-Y_01)'T\hat{\Sigma}^{-1}(Y-Y_01)}$$

$$Y_0 = \frac{1'\hat{\Sigma}^{-1}}{1'\hat{\Sigma}^{-1}}Y$$

$$\hat{\lambda} = \frac{\hat{w}T}{1-\hat{w}}$$

- Y = vector of sample means of returns
- ▶ S = sample covariance matrix

$$\hat{\Sigma} = \frac{T-1}{T-N-2}S$$

$$\hat{w} = \frac{N+2}{(N+2)+(Y-Y_01)'T\hat{\Sigma}^{-1}(Y-Y_01)}$$

$$Y_0 = \frac{1'\hat{\Sigma}^{-1}}{1'\hat{\Sigma}^{-1}}Y$$

$$\hat{\lambda} = \frac{\hat{w}T}{1-\hat{w}}$$

$$E(r) = (1 - \hat{w})Y + \hat{w}1Y_0$$

- Y = vector of sample means of returns
- ▶ S = sample covariance matrix

$$\hat{\Sigma} = \frac{T-1}{T-N-2}S$$

$$\hat{w} = \frac{N+2}{(N+2)+(Y-Y_01)'T\hat{\Sigma}^{-1}(Y-Y_01)}$$

$$Y_0 = \frac{1'\hat{\Sigma}^{-1}}{1/\hat{\Sigma}^{-1}}Y$$

$$\hat{\lambda} = \frac{\hat{w}T}{1-\hat{w}}$$

$$E(r) = (1 - \hat{w})Y + \hat{w}1Y_0$$

$$\hat{V}(r) = \hat{\Sigma} \cdot \left(1 + \frac{1}{T + \hat{\lambda}}\right) + \frac{\hat{\lambda}}{T(T + 1 + \hat{\lambda})} \frac{11'}{1'\Sigma^{-1}1}$$

Krishnan: Markowitz for Faang stock

Consider Daily returns for Facebook, Amazon, Apple, Netflix & Google for the year 2020

Krishnan: Markowitz for FAANG stock:

- Consider Daily returns for Facebook, Amazon, Apple, Netflix & Google for the year 2020
- > 253 Trading Days in 2020, using 223 Days of returns

Krishnan: Markowitz for Faang stock

- Consider Daily returns for Facebook, Amazon, Apple, Netflix & Google for the year 2020
- > 253 Trading Days in 2020, using 223 Days of returns
- ▶ We construct a Markowitz portfolio allocation with Certainity Equivalence

Krishnan: Markowitz for FAANG stocks

- Consider Daily returns for Facebook, Amazon, Apple, Netflix & Google for the year 2020
- 253 Trading Days in 2020, using 223 Days of returns
- ▶ We construct a Markowitz portfolio allocation with Certainity Equivalence
- ▶ We construct a Markowitz portfolio allocation with Bayes-Stein estimates.

Krishnan: Markowitz for FAANG stock

- Consider Daily returns for Facebook, Amazon, Apple, Netflix & Google for the year 2020
- 253 Trading Days in 2020, using 223 Days of returns
- ▶ We construct a Markowitz portfolio allocation with Certainity Equivalence
- We construct a Markowitz portfolio allocation with Bayes-Stein estimates.
- Compare the allocations for the remaining 30 Days

FUTURE DIRECTIONS

We looked at 2 different estimators. There are many more...

Future Directions

- ▶ We looked at 2 different estimators. There are many more...
- ► Certainity Equivalence(Markowitz): Y, S use sample mean, sample cov

Future Direction:

- We looked at 2 different estimators. There are many more...
- Certainity Equivalence(Markowitz): Y, S use sample mean, sample cov
- ▶ Bayes Diffuse Prior(Brown): $\lambda = 0, Y, \hat{V} = \hat{\Sigma} \cdot (1 + 1/T)$

FUTURE DIRECTIONS

- We looked at 2 different estimators. There are many more...
- Certainity Equivalence(Markowitz): Y, S use sample mean, sample cov
- ▶ Bayes Diffuse Prior(Brown): $\lambda = 0, Y, \hat{V} = \hat{\Sigma} \cdot (1 + 1/T)$
- Minimum Variance(Jobson): $w=1,1Y_0, \hat{V}=\Sigma+(1/T)11'(1/1'\Sigma^{-1}1)$ Based entirely on grand mean Matrix added to Σ reflects uncertainity in this grand mean.

Conclusion

FUTURE DIRECTIONS

- We looked at 2 different estimators. There are many more...
- Certainity Equivalence(Markowitz): Y, S use sample mean, sample cov
- Bayes Diffuse Prior(Brown): $\lambda = 0, Y, \hat{V} = \hat{\Sigma} \cdot (1 + 1/T)$
- Minimum Variance(Jobson): $w=1,1Y_0, \hat{V}=\Sigma+(1/T)11'(1/1'\Sigma^{-1}1)$ Based entirely on grand mean Matrix added to Σ reflects uncertainity in this grand mean.
- ▶ Bayes-Stein Estimate(Jorion): compromise between grand mean & sample mean

Conclusion

Future Directions

- We looked at 2 different estimators. There are many more...
- Certainity Equivalence(Markowitz): Y, S use sample mean, sample cov
- Bayes Diffuse Prior(Brown): $\lambda = 0, Y, \hat{V} = \hat{\Sigma} \cdot (1 + 1/T)$
- Minimum Variance(Jobson): $w=1,1Y_0, \hat{V}=\Sigma+(1/T)11'(1/1'\Sigma^{-1}1)$ Based entirely on grand mean Matrix added to Σ reflects uncertainity in this grand mean.
- ▶ Bayes-Stein Estimate(Jorion): compromise between grand mean & sample mean
- Unified View of Shrinkage: Stein Estimator if dim(response) > 2 vs Ridge/Lasso/ElasticNet if dim(predictors) > p (model selection)

Conclusion

Future Directions

- We looked at 2 different estimators. There are many more...
- Certainity Equivalence(Markowitz): Y, S use sample mean, sample cov
- Bayes Diffuse Prior(Brown): $\lambda = 0, Y, \hat{V} = \hat{\Sigma} \cdot (1 + 1/T)$
- Minimum Variance(Jobson): $w = 1, 1Y_0, \hat{V} = \Sigma + (1/T)11'(1/1'\Sigma^{-1}1)$ Based entirely on grand mean Matrix added to Σ reflects uncertainity in this grand mean.
- ▶ Bayes-Stein Estimate(Jorion): compromise between grand mean & sample mean
- Unified View of Shrinkage: Stein Estimator if dim(response) > 2
 vs Ridge/Lasso/ElasticNet if dim(predictors) > p (model selection)
- Ledger (Peer Reviewed Blockchain Journal) & BTC Assets