I CLAIM:

1	1. A method of voice recognition, comprising the steps of:
2	organizing a plurality of speaker data points, representing a plurality of enrollment
3	speakers, into a data structure using high-dimensional vectors that represent
4	characteristics of enrollment voice samples from the enrollment speakers;
5	estimating a density of a subset of the plurality of speaker data points comprising the
6	approximate nearest neighbors to an unidentified voice sample from an
7	unidentified speaker; and
8	identifying the unidentified speaker based on one or more speaker data points most
9	closely matching the unidentified voice sample as indicated by the estimated
0	density.
1	2. The method of claim 1, wherein the step of estimating the density
2	comprises estimating a probability density function using Parzen windows to estimate the
3	probability density function.
1	The method of claim 1, wherein the step of estimating the density
2	comprises estimating the density based on a distance between individual speaker data points
<i>3</i> ·	within the subset of speaker data points
1	4. The method of claim 1, wherein the step of estimating the density
2	further comprises controlling the relative contributions of individual speaker data points
3	within the subset of speaker data points to the density based on a distance to a speaker data
4	point from the unidentified voice sample.
,	5. The method of claim 1, wherein the step of estimating the density
1	-,
2	comprises estimating the density of the subset of speaker data points independent of
3	parametric distribution information related to the plurality of speaker data points

1	6. The method of claim 1, wherein the data structure module organizes
2	the plurality of speaker data points such that a distance between individual speaker data
3	points is based on characteristic similarities between associated voice samples, the distance
4	measured in terms of one from the group containing: a Euclidean distance, a Minkowski
5	distance, and a Manhattan distance.
1	7. The method of claim 1, wherein the data structure comprises a kd-tree.
1	8. The method of claim 1, wherein the plurality of speaker data points
2	comprises a relatively large number of speaker data points.
1	9. The method of claim 1, further comprising a step of retrieving the
2	subset of speaker data points using an unidentified speaker data point from the unidentified
3 .	voice sample as an index into the plurality of speaker data points.
1	10. The method of claim 9, wherein the step of retrieving the subset of
2	speaker data points comprises retrieving approximate nearest neighbors to the unidentified
3	speaker data point, the approximate nearest neighbors comprising speaker data points within
4	a distance calculated as a function of a distance of an absolute nearest neighbor.
1	11. The method of claim 1, wherein the subset of speaker data points
2	includes more than one speaker data points associated with a common identification, and the
3	step of identifying the unidentified speaker accumulates a score for the common
4	identification.
1	12. The method of claim 1, further comprising extracting the high-
2	dimensional vectors from the enrollment voice samples and the unidentified voice sample.
1	13. The method of claim 1, wherein the step of identifying the unidentified
2	speaker comprises identifying the unidentified speaker as one of the enrollment speakers if

matching is within an error threshold.

1	14. The method of claim 1, wherein an enrollment voice sample and the
2	unidentified voice sample of a common speaker are text-independent.
1	15. A method of voice recognition, comprising the steps of:
2	retrieving a subset of speaker data points by using an unidentified speaker data point
3	as an index into a data structure comprising a plurality of speaker data points,
4	the subset of speaker data points representing approximate nearest neighbors
5	to the unidentified speaker data;
б	estimating a probability density function from a subset of the plurality of speaker data
7	points; and
8	identifying the unidentified speaker based on one or more speaker data points most
9	closely matching the unidentified voice sample as indicated by the probability
10	density function.
1	16. The method of claim 15, wherein the step of estimating the probability
2	density function comprises estimating the probability density function using Parzen windows
3	to estimate the probability density function.
1	17. A voice recognition system, comprising:
2	means for organizing a plurality of speaker data points, representing a plurality of
3	enrollment speakers, into a data structure using high-dimensional vectors that
4	represent characteristics of enrollment voice samples from enrollment
5	speakers;
6	means for estimating a density of a subset of the plurality of speaker data points
7	comprising the approximate nearest neighbors to an unidentified voice sample
8	from an unidentified speaker; and
9	means for identifying the unidentified speaker based on one or more speaker data
10	points most closely matching the unidentified voice sample as indicated by the
11	estimated density.

1	18. The system of claim 17, wherein the means for estimating uses Parzen
2	windows to estimate the density.
1	19. The system of claim 17, wherein the means for estimating estimates
	, , , , , , , , , , , , , , , , , , , ,
2	the density based on a distance between individual speaker data points within the subset of
3	speaker data points.
1	20. The system of claim 17, wherein the means for estimating includes a
2	smoothing parameter to control the relative contributions of individual speaker data points
3	within the subset of speaker data points to the probability density function based on a
4	distance to a speaker data point from the unidentified voice sample.
1	21. The system of claim 17, wherein the means for estimating estimates
2	the density of the subset of speaker data points independent of parametric distribution
3	information related to the plurality of speaker data points.
1	22. The system of claim 17, wherein the means for organizing organizes
2	the plurality of speaker data points such that a distance between individual speaker data
3	points is based on characteristic similarities between associated voice samples, the distance
4	measured in terms of one from the group containing: a Euclidean distance, a Minkowski
5	distance, and a Manhattan distance.
1	23. The system of claim 17, wherein the means for organizing comprises
2	kd-tree.
1	24. The system of claim 17, wherein the plurality of speaker data points
2	comprises a relatively large number of speaker data points.
I	25. The system of claim 17, further comprising means for retrieving the
2	subset of speaker data points uses an unidentified speaker data point from the unidentified
3	voice sample as an index into the plurality of speaker data points.

a

2	speaker data points retrieves approximate nearest neighbors to the unidentified speaker data
3	point, the approximate nearest neighbors comprising speaker data points within a distance
4	calculated as a function of a distance of an absolute nearest neighbor.
,	The existence of alaims 17, wherein the subset of another data mainta
1	The system of claim 17, wherein the subset of speaker data points
2	includes more than one speaker data points associated with a common identification, and the
3	identification module accumulates a score for the common identification.
1	28. The system of claim 17, further comprising a means for extracting the
2	high-dimensional vectors from voice samples.
1	29. The system of claim 17, wherein the means for identifying identifies
2	the unidentified speaker as one of the enrollment speakers if matching is within an error
3	threshold.
1	30. The system of claim 17, wherein an enrollment voice sample and the
2	unidentified voice sample of a common speaker are text-independent.
2	undendrica voice sample of a common speaker are text-independent.
1	31. A computer program product, comprising:
2	a computer-readable medium having computer program instructions and data
3	embodied thereon for voice recognition, comprising the steps of:
4	organizing a plurality of speaker data points, representing a plurality of
5	enrollment speakers, into a data structure using high-dimensional
6	vectors that represent characteristics of enrollment voice samples from
7	the enrollment speakers;
8	estimating a density of a subset of the plurality of speaker data points
9	comprising the approximate nearest neighbors to an unidentified voice
0	sample from an unidentified speaker; and
1	identifying the unidentified speaker based on one or more speaker data points
2	most closely matching the unidentified voice sample as indicated by
3	the estimated density.

26. The system of claim 25, wherein the means for retrieving the subset of

1

1	32. The computer program product of claim 31, wherein the step of
2	estimating the density comprises estimating a probability density function using Parzen
3	windows to estimate the probability density function.
1	33. The computer program product of claim 31, wherein the step of
2	estimating the density comprises estimating the density based on a distance between
3	individual speaker data points within the subset of speaker data points
1	34. The computer program product of claim 31, wherein the step of
2	estimating the density further comprises controlling the relative contributions of individual
3	speaker data points within the subset of speaker data points to the probability density
4	function based on a distance to a speaker data point from the unidentified voice sample.
1	35. The computer program product of claim 31, wherein the step of
2	estimating the density comprises estimating the probability density function of the subset of
3	speaker data points independent of parametric distribution information related to the plurality
4	of speaker data points.
1	36. The computer program product of claim 31, wherein the data structure
2	module organizes the plurality of speaker data points such that a distance between individual
3	speaker data points is based on characteristic similarities between associated voice samples,
4	the distance measured in terms of one from the group containing: a Euclidean distance, a
5	Minkowski distance, and a Manhattan distance.
1	37. The computer program product of claim 31, wherein the data structure
2	comprises a kd-tree.
I	38. The computer program product of claim 31, wherein the plurality of
2	speaker data points comprises a relatively large number of speaker data points.
1	39. The computer program product of claim 31, further comprising a step

of retrieving the subset of speaker data points using an unidentified speaker data point from

the unidentified voice sample as an index into the plurality of speaker data points.

2 3

- 1 40. The computer program product of claim 39, wherein the step of
 2 retrieving the subset of speaker data points comprises retrieving approximate nearest
 3 neighbors to the unidentified speaker data point, the approximate nearest neighbors
 4 comprising speaker data points within a distance calculated as a function of a distance of an
 5 absolute nearest neighbor.
- 1 41. The computer program product of claim 31, wherein the subset of
 2 speaker data points includes more than one speaker data points associated with a common
 3 identification, and the identification module accumulates a score for the common
 4 identification.
- 1 42. The computer program product of claim 31, further comprising
 2 extracting the high-dimensional vectors from the enrollment voice samples and the
 3 unidentified voice sample.
- 1 43. The computer program product of claim 31, wherein the step of 2 identifying the unidentified speaker comprises identifying the unidentified speaker as one of 3 the enrollment speakers if matching is within an error threshold.
- 1 44. The computer program product of claim 31, wherein an enrollment voice sample and the unidentified voice sample of a common speaker are text-independent.