Numerical Analysis & Scientific Computing II

Lesson 4

Numerical Solution of PDE

4.1 BVP for 2nd Order Elliptic PDE

- Finite Difference Method
- Finite Element Method

Numerical Methods for PDE: 2nd Order Elliptic PDE

Now, lets try to solve the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

using the finite element method where Ω is a bounded domain.

Numerical Methods for PDE: 2nd Order Elliptic PDE

Now, lets try to solve the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

using the finite element method where Ω is a bounded domain.

Assume that f is continuous on $\overline{\Omega}$. Then, solution u also satisfies,

$$\int_{\Omega} \Delta u \ v = \int_{\Omega} f v$$

Now, lets try to solve the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

using the finite element method where Ω is a bounded domain.

Assume that f is continuous on $\overline{\Omega}$. Then, solution u also satisfies,

$$\int_{\Omega} \Delta u \ v = \int_{\Omega} f v$$

Conversely, if u satisfies the second equation for all integrable functions v, then u satisfies the Poisson's equation. In fact, it is sufficient that the equation is satisfied for all C^{∞} functions with compact support inside Ω .

Now, lets try to solve the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

using the finite element method where Ω is a bounded domain.

Assume that f is continuous on $\overline{\Omega}$. Then, solution u also satisfies,

$$\int_{\Omega} \Delta u \ v = \int_{\Omega} f v$$

Conversely, if u satisfies the second equation for all integrable functions v, then u satisfies the Poisson's equation. In fact, it is sufficient that the equation is satisfied for all C^{∞} functions with compact support inside Ω .

In particular, if v is a C^1 function on Ω which vanishes on Γ , we have

$$-\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v.$$

This is the weak formulation of the boundary value problem.

Now, lets try to solve the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

using the finite element method where Ω is a bounded domain.

Assume that f is continuous on $\overline{\Omega}$. Then, solution u also satisfies,

$$\int_{\Omega} \Delta u \ v = \int_{\Omega} f v$$

Conversely, if u satisfies the second equation for all integrable functions v, then u satisfies the Poisson's equation. In fact, it is sufficient that the equation is satisfied for all C^{∞} functions with compact support inside Ω .

In particular, if v is a C^1 function on Ω which vanishes on Γ , we have

$$-\int_{\Omega} \nabla u \cdot \nabla v = \int_{\Omega} f v.$$

This is the weak formulation of the boundary value problem.

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space.

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

so if $w \in V_h$ is an arbitrary element of V_h , then

$$B(u_h - w, v) = B(u - w, v)$$
 for all $v \in V_h$.

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

so if $w \in V_h$ is an arbitrary element of V_h , then

$$B(u_h - w, v) = B(u - w, v)$$
 for all $v \in V_h$.

If the bilinear form B satisfies

$$|B(u,v)| \le C||u||||v||, \qquad B(v,v) \ge \gamma ||v||^2$$

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

so if $w \in V_h$ is an arbitrary element of V_h , then

$$B(u_h - w, v) = B(u - w, v)$$
 for all $v \in V_h$.

If the bilinear form B satisfies

$$|B(u,v)| \le C||u||||v||, \quad B(v,v) \ge \gamma ||v||^2$$

then

$$\gamma \|u_h - w\|^2 \le B(u_h - w, u_h - w)$$

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

so if $w \in V_h$ is an arbitrary element of V_h , then

$$B(u_h - w, v) = B(u - w, v)$$
 for all $v \in V_h$.

If the bilinear form B satisfies

$$|B(u,v)| \le C||u||||v||, \quad B(v,v) \ge \gamma ||v||^2$$

then

$$\gamma \|u_h - w\|^2 \le B(u_h - w, u_h - w) = B(u - w, u_h - w)$$

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

so if $w \in V_h$ is an arbitrary element of V_h , then

$$B(u_h - w, v) = B(u - w, v)$$
 for all $v \in V_h$.

If the bilinear form B satisfies

$$|B(u,v)| \le C||u||||v||, \quad B(v,v) \ge \gamma ||v||^2$$

then

$$\gamma \|u_h - w\|^2 \le B(u_h - w, u_h - w) = B(u - w, u_h - w) \le C \|u - w\| \|u_h - w\|$$

To introduce the abstract framework, let V be a Hilbert space (complete inner product space), $B: V \times V \to \mathbb{R}$ be a bilinear form, and $F: V \to \mathbb{R}$ be a linear functional. Then, the week formulation of a boundary value problem reads: find $u \in V$ such that

$$B(u, v) = F(v)$$
 for all $v \in V$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

so if $w \in V_h$ is an arbitrary element of V_h , then

$$B(u_h - w, v) = B(u - w, v)$$
 for all $v \in V_h$.

If the bilinear form B satisfies

$$|B(u,v)| \le C||u||||v||, \quad B(v,v) \ge \gamma ||v||^2$$

then

$$\gamma \|u_h - w\|^2 \le B(u_h - w, u_h - w) = B(u - w, u_h - w) \le C \|u - w\| \|u_h - w\|$$

that is

$$||u_h - w|| \le (C/\gamma)||u - w||$$

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

so if $w \in V_h$ is an arbitrary element of V_h , then

$$B(u_h - w, v) = B(u - w, v)$$
 for all $v \in V_h$.

If the bilinear form B satisfies

$$|B(u,v)| \le C||u|||v||, \qquad B(v,v) \ge \gamma ||v||^2$$

then

$$\gamma \|u_h - w\|^2 \le B(u_h - w, u_h - w) = B(u - w, u_h - w) \le C \|u - w\| \|u_h - w\|$$

then

$$||u_h - w|| \le (C/\gamma)||u - w||$$

Thus,

$$||u_h - u|| \le ||u_h - w|| + ||u - w||$$

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

so if $w \in V_h$ is an arbitrary element of V_h , then

$$B(u_h - w, v) = B(u - w, v)$$
 for all $v \in V_h$.

If the bilinear form B satisfies

$$|B(u,v)| \le C||u|||v||, \qquad B(v,v) \ge \gamma ||v||^2$$

then

$$\gamma \|u_h - w\|^2 \le B(u_h - w, u_h - w) = B(u - w, u_h - w) \le C \|u - w\| \|u_h - w\|$$

then

$$||u_h - w|| \le (C/\gamma)||u - w||$$

Thus,

$$||u_h - u|| \le ||u_h - w|| + ||u - w|| \le (1 + C/\gamma)||u - w||$$
 for all $w \in V_h$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$,

so if $w \in V_h$ is an arbitrary element of V_h , then

$$B(u_h - w, v) = B(u - w, v)$$
 for all $v \in V_h$.

If the bilinear form B satisfies

$$|B(u,v)| \le C||u|||v||, \qquad B(v,v) \ge \gamma ||v||^2$$

then

$$\gamma \|u_h - w\|^2 \le B(u_h - w, u_h - w) = B(u - w, u_h - w) \le C \|u - w\| \|u_h - w\|$$

then

$$||u_h - w|| \le (C/\gamma)||u - w||$$

Thus,

$$\|u_h - u\| \le \|u_h - w\| + \|u - w\| \le (1 + C/\gamma) \|u - w\|$$
 for all $w \in V_h$. Therefore, $\|u_h - u\| \le (1 + C/\gamma) \inf_{w \in V_h} \|u - w\|$.

In the Galerkin method, we choose a finite dimensional subspace V_h of V as an approximation space and same space as the test space. The Galerkin solution is defined as $u_h \in V_h$ such that

$$B(u_h, v) = F(v)$$
 for all $v \in V_h$.

We then have

$$B(u_h, v) = B(u, v)$$
 for all $v \in V_h$.

If the bilinear form B satisfies

$$|B(u,v)| \le C||u|||v||, \qquad B(v,v) \ge \gamma ||v||^2$$

then

$$\gamma \|u_h - w\|^2 \le B(u_h - w, u_h - w) = B(u - w, u_h - w) \le C \|u - w\| \|u_h - w\|$$

then

$$||u_h - w|| \le (C/\gamma)||u - w||$$

Thus,

$$\|u_h - u\| \le \|u_h - w\| + \|u - w\| \le (1 + C/\gamma) \|u - w\|$$
 for all $w \in V_h$. Therefore, $\|u_h - u\| \le (1 + C/\gamma) \inf_{w \in V_h} \|u - w\|$.

We, therefore, see that the Galerkin approximation error is bounded by a constant multiple of the best approximation error for u by functions in V_h !

Numerical Analysis & Scientific Computing II

Lesson 4

Numerical Solution of PDE

4.1 BVP for 2nd Order Elliptic PDE

- Finite Difference Method
- Finite Element Method
 - Construction of FEM Approximation Spaces

Numerical Methods for PDE: 2nd Order Elliptic PDE

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Numerical Methods for PDE: 2nd Order Elliptic PDE

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Numerical Methods for PDE: 2nd Order Elliptic PDE

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Numerical Methods for PDE: 2nd Order Elliptic PDE

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Numerical Methods for PDE: 2nd Order Elliptic PDE

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Numerical Methods for PDE: 2nd Order Elliptic PDE

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Recall, that in one dimensions, we partitioned Ω (an interval) into subintervals and constructed a basis for piecewise linear functions with respect to the partition.

For simplicity, we take $\Omega = (0,1) \times (0,1)$ and the triangulation shown in the figure.

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Recall, that in one dimensions, we partitioned Ω (an interval) into subintervals and constructed a basis for piecewise linear functions with respect to the partition.

For simplicity, we take $\Omega = (0,1) \times (0,1)$ and the triangulation shown in the figure. Then,

$$\varphi_{mn}(x_1,x_2) =$$

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Recall, that in one dimensions, we partitioned Ω (an interval) into subintervals and constructed a basis for piecewise linear functions with respect to the partition.

For simplicity, we take $\Omega = (0,1) \times (0,1)$ and the triangulation shown in the figure. Then,

$$\varphi_{mn}(x_1, x_2) = \begin{cases} 1 - (x_1 - mh)/h \\ 1 - (x_2 - nh)/h \end{cases}$$

$$1 + (x_1 - mh)/h - (x_2 - nh)/h$$

$$1 + (x_1 - mh)/h - (x_2 - nh)/h$$

$$1 + (x_2 - nh)/h$$

$$1 - (x_1 - mh)/h + (x_2 - nh)/h - (x_2 - nh)/h$$

Back to the Poisson's equation with homogeneous boundary condition

$$\Delta u = f$$
, in Ω , $u = 0$, on Γ .

How do we construct a finite element (that is, locally supported) basis for V_h ?

Recall, that in one dimensions, we partitioned Ω (an interval) into subintervals and constructed a basis for piecewise linear functions with respect to the partition.

For simplicity, we take $\Omega = (0,1) \times (0,1)$ and the triangulation shown in the figure. Then,

$$\varphi_{mn}(x_1, x_2) = \begin{cases} 1 - (x_1 - mh)/h \\ 1 - (x_2 - nh)/h \end{cases}$$

$$1 + (x_1 - mh)/h - (x_2 - nh)/h$$

$$1 + (x_1 - mh)/h - (x_2 - nh)/h$$

$$1 + (x_2 - nh)/h$$

$$1 - (x_1 - mh)/h + (x_2 - nh)/h$$

The functions φ_{mn} form a basis for subspace of piecewise linear functions with respect to the given partition/triangulation.

Numerical Methods for PDE: 2nd Order Elliptic PDE

Note that (exercise)

$$\int_{\Omega} \nabla \varphi_{mn} \cdot \nabla \varphi_{kl} = \begin{cases} 4, & m = k, n = l, \\ -1, & m = k \pm 1, n = l \text{ or } m = k, n = l \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

For simplicity, we take $\Omega = (0,1) \times (0,1)$ and the triangulation shown in the figure. Then,

$$\varphi_{mn}(x_1, x_2) = \begin{cases} 1 - (x_1 - mh)/h \\ 1 - (x_2 - nh)/h \end{cases}$$

$$1 + (x_1 - mh)/h - (x_2 - nh)/h$$

$$1 + (x_1 - mh)/h$$

$$1 + (x_2 - nh)/h$$

$$1 - (x_1 - mh)/h + (x_2 - nh)/h$$

The functions φ_{mn} form a basis for subspace of piecewise linear functions with respect to the given partition/triangulation.

Note that (exercise)

$$\int_{\Omega} \nabla \varphi_{mn} \cdot \nabla \varphi_{kl} = \begin{cases} 4, & m = k, n = l, \\ -1, & m = k \pm 1, n = l \text{ or } m = k, n = l \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, for $u_h = \sum u_{mn} \varphi_{mn}$, the linear system reads

$$\frac{u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} - 4u_{mn}}{h^2} = \frac{1}{h^2} \int_{\Omega} f \varphi_{mn} = \tilde{f}_{mn}, \qquad 1 \leq m, n \leq N.$$

For simplicity, we take $\Omega = (0,1) \times (0,1)$ and the triangulation shown in the figure. Then,

$$\varphi_{mn}(x_1, x_2) = \begin{cases} 1 - (x_1 - mh)/h \\ 1 - (x_2 - nh)/h \end{cases}$$

$$1 + (x_1 - mh)/h - (x_2 - nh)/h$$

$$1 + (x_1 - mh)/h - (x_2 - nh)/h$$

$$1 + (x_2 - nh)/h$$

$$1 - (x_1 - mh)/h + (x_2 - nh)/h$$

The functions φ_{mn} form a basis for subspace of piecewise linear functions with respect to the given partition/triangulation.

Numerical Methods for PDE: 2nd Order Elliptic PDE

Note that (exercise)

$$\int_{\Omega} \nabla \varphi_{mn} \cdot \nabla \varphi_{kl} = \begin{cases} 4, & m = k, n = l, \\ -1, & m = k \pm 1, n = l \text{ or } m = k, n = l \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, for $u_h = \sum u_{mn} \varphi_{mn}$, the linear system reads

$$\frac{u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} - 4u_{mn}}{h^2} = \frac{1}{h^2} \int_{\Omega} f \varphi_{mn} = \tilde{f}_{mn}, \qquad 1 \leq m, n \leq N.$$

We see that matrix on the left hand side of the linear matrix (called stiffness matrix) for the piecewise linear finite elements for the Laplace operator on the unit square using a uniform mesh is exactly the matrix of the 5-point Laplacian.

Note that (exercise)

$$\int_{\Omega} \nabla \varphi_{mn} \cdot \nabla \varphi_{kl} = \begin{cases} 4, & m = k, n = l, \\ -1, & m = k \pm 1, n = l \text{ or } m = k, n = l \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, for $u_h = \sum u_{mn} \varphi_{mn}$, the linear system reads

$$\frac{u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} - 4u_{mn}}{h^2} = \frac{1}{h^2} \int_{\Omega} f \varphi_{mn} = \tilde{f}_{mn}, \qquad 1 \leq m, n \leq N.$$

We see that matrix on the left hand side of the linear matrix (called stiffness matrix) for the piecewise linear finite elements for the Laplace operator on the unit square using a uniform mesh is exactly the matrix of the 5-point Laplacian.

Note that (exercise)

$$\int_{\Omega} \varphi_{mn} = h^2$$

Note that (exercise)

$$\int_{\Omega} \nabla \varphi_{mn} \cdot \nabla \varphi_{kl} = \begin{cases} 4, & m = k, n = l, \\ -1, & m = k \pm 1, n = l \text{ or } m = k, n = l \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, for $u_h = \sum u_{mn} \varphi_{mn}$, the linear system reads

$$\frac{u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} - 4u_{mn}}{h^2} = \frac{1}{h^2} \int_{\Omega} f \varphi_{mn} = \tilde{f}_{mn}, \qquad 1 \le m, n \le N.$$

We see that matrix on the left hand side of the linear matrix (called stiffness matrix) for the piecewise linear finite elements for the Laplace operator on the unit square using a uniform mesh is exactly the matrix of the 5-point Laplacian.

Note that (exercise)

$$\int_{\Omega} \varphi_{mn} = h^2$$

and if $f \in C^2$, then (exercise)

$$\tilde{f}_{mn} = \frac{1}{h^2} \int_{\Omega} \left(f(mh, nh) + f_{x_1}(mh, nh)(x_1 - mh) + f_{x_2}(mh, nh)(x_2 - nh) + O(h^2) \right) \varphi_{mn} = f_{mn} + O(h^2)$$

Note that (exercise)

$$\int_{\Omega} \nabla \varphi_{mn} \cdot \nabla \varphi_{kl} = \begin{cases} 4, & m = k, n = l, \\ -1, & m = k \pm 1, n = l \text{ or } m = k, n = l \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, for $u_h = \sum u_{mn} \varphi_{mn}$, the linear system reads

$$\frac{u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} - 4u_{mn}}{h^2} = \frac{1}{h^2} \int_{\Omega} f \varphi_{mn} = \tilde{f}_{mn}, \qquad 1 \le m, n \le N,$$

and if $f \in C^2$, then (exercise)

$$\tilde{f}_{mn} = \frac{1}{h^2} \int_{\Omega} \left(f(mh, nh) + f_{x_1}(mh, nh)(x_1 - mh) + f_{x_2}(mh, nh)(x_2 - nh) + O(h^2) \right) \varphi_{mn} = f_{mn} + O(h^2)$$

Therefore, at vertices, we see that the finite element method converges with order 2 (why?).

Note that (exercise)

$$\int_{\Omega} \nabla \varphi_{mn} \cdot \nabla \varphi_{kl} = \begin{cases} 4, & m = k, n = l, \\ -1, & m = k \pm 1, n = l \text{ or } m = k, n = l \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, for $u_h = \sum u_{mn} \varphi_{mn}$, the linear system reads

$$\frac{u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} - 4u_{mn}}{h^2} = \frac{1}{h^2} \int_{\Omega} f \varphi_{mn} = \tilde{f}_{mn}, \qquad 1 \le m, n \le N,$$

and if $f \in C^2$, then (exercise)

$$\tilde{f}_{mn} = \frac{1}{h^2} \int_{\Omega} \left(f(mh, nh) + f_{x_1}(mh, nh)(x_1 - mh) + f_{x_2}(mh, nh)(x_2 - nh) + O(h^2) \right) \varphi_{mn} = f_{mn} + O(h^2)$$

Therefore, at vertices, we see that the finite element method converges with order 2 (why?).

Recall that, from the general error analysis, we have

$$||u_h - u||_{H^1} \le (1 + C/\gamma) \inf_{w \in V_h} ||u - w||_{H^1}.$$

Note that (exercise)

$$\int_{\Omega} \nabla \varphi_{mn} \cdot \nabla \varphi_{kl} = \begin{cases} 4, & m = k, n = l, \\ -1, & m = k \pm 1, n = l \text{ or } m = k, n = l \pm 1, \\ 0, & \text{otherwise.} \end{cases}$$

Thus, for $u_h = \sum u_{mn} \varphi_{mn}$, the linear system reads

$$\frac{u_{m-1,n} + u_{m+1,n} + u_{m,n-1} + u_{m,n+1} - 4u_{mn}}{h^2} = \frac{1}{h^2} \int_{\Omega} f \varphi_{mn} = \tilde{f}_{mn}, \qquad 1 \le m, n \le N,$$

and if $f \in C^2$, then (exercise)

$$\tilde{f}_{mn} = \frac{1}{h^2} \int_{\Omega} \left(f(mh, nh) + f_{x_1}(mh, nh)(x_1 - mh) + f_{x_2}(mh, nh)(x_2 - nh) + O(h^2) \right) \varphi_{mn} = f_{mn} + O(h^2)$$

Therefore, at vertices, we see that the finite element method converges with order 2 (why?).

Recall that, from the general error analysis, we have

$$||u_h - u||_{H^1} \le (1 + C/\gamma) \inf_{w \in V_h} ||u - w||_{H^1}.$$

Exercise: Find C and γ for the piecewise linear finite elements.

Recall that, from the general error analysis, we have

$$||u_h - u||_{H^1} \le (1 + C/\gamma) \inf_{w \in V_h} ||u - w||_{H^1}.$$

Exercise: Find C and γ for the piecewise linear finite elements.

From the approximation theory, we have the following result on the best approximation error.

Theorem

Let there be given a family of triangulations $\{T_h\}$ of a polygonal domain Ω and let $h=\max_{T\in\mathcal{T}_h}\operatorname{diam}(T)$. Let r be a

positive integer. For each h let $P_h: C(\Omega) \to M_0^r(\mathcal{T}_h)$ denote the nodal interpolant, where $M_0^r(\mathcal{T}_h)$ is the space of continuous functions which restrict to polynomials of degree at most r when restricted to any triangle $T \in \mathcal{T}_h$. Then, there is a constant c such that

$$||u - P_h u||_{L^{\infty}(\Omega)} \le ch^{r+1} ||u^{(r+1)}||_{L^{\infty}(\Omega)}, \qquad u \in C^{r+1}(\overline{\Omega}),$$

$$||u - P_h u||_{L^{2}(\Omega)} \le ch^{r+1} ||u^{(r+1)}||_{L^{2}(\Omega)}, \qquad u \in H^{r+1}(\Omega).$$

Moreover, if the family of triangulations are shape regular (the minimal angle of each triangulation is bounded below uniformly), then there is a constant C such that

$$\|\nabla(u - P_h u)\|_{L^{\infty}(\Omega)} \le Ch^r \|u^{(r+1)}\|_{L^{\infty}(\Omega)}, \qquad u \in C^{r+1}(\overline{\Omega}),$$

$$\|\nabla(u - P_h u)\|_{L^{2}(\Omega)} \le Ch^r \|u^{(r+1)}\|_{L^{2}(\Omega)}, \qquad u \in H^{r+1}(\Omega).$$