1 定积分

定积分的性质

性质 **1.** 设 k 为常数,则有

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

性质 2. (函数可加性)

$$\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

性质 **3.** (区间可加性)设 $\alpha < c < b$,则有

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$$

注记 **1.** 即使 c 不在 a 和 b 之间,上述性质依然是成立的.

性质 4.

$$\int_{a}^{b} 1 \, \mathrm{d}x = \int_{a}^{b} \mathrm{d}x = b - a$$

性质 **5.** 设在区间 [a,b] 上 $f(x) \ge g(x)$,则有

$$\int_{a}^{b} f(x) \, \mathrm{d}x \ge \int_{a}^{b} g(x) \, \mathrm{d}x.$$

特别地,如果在区间 [a,b] 上 $f(x) \ge 0$,则有

$$\int_a^b f(x) \, \mathrm{d} x \ge 0.$$

推论. $\left| \int_a^b f(x) \, \mathrm{d}x \right| \leq \int_a^b \left| f(x) \right| \, \mathrm{d}x$.

性质 **6.** 如果函数 f(x) 在区间 [a,b] 上的最大值和最小值分别为 M 和 m,则有

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

性质 **7** (积分中值定理). 设 f(x) 在 [a,b] 上连续,则在 [a,b] 中至少存在一点 ξ,使得

$$\int_{a}^{b} f(x) dx = f(\xi)(b - a)$$

积分上限的函数及其导数

定义 **1.** 设函数 f(x) 在 [a,b] 上连续,令 $\Phi(x) = \int_a^x f(t) dt$, $x \in [a,b]$,称为积分上限的函数或变上限积分.

定理 1.

$$\Phi'(x) = \left(\int_{a}^{x} f(t) dt\right)' = f(x)$$

定理 2. 对于更一般的变限积分,我们有下面求导公式:

(必考点)

$$\left(\int_{a(x)}^{b(x)} f(t) dt\right)' = f(b(x))b'(x) - f(a(x))a'(x)$$

原函数存在定理

定理 **3** (原函存在定理). 如果函数 f(x) 在 [a,b] 上连续,则函数

$$\Phi(x) = \int_{a}^{x} f(t) \, \mathrm{d}t$$

就是 f(x) 在 [a,b] 上的一个原函数.

微积分基本公式

定理 **4.** 设 f(x) 在 [a,b] 上连续,且 F(x) 是 f(x) 的一个原函数,则有

$$\int_{a}^{b} f(x) dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

它称为微积分基本公式或牛顿一莱布尼茨公式.