Predições para Gestão de Projetos com Regressão Linear Múltipla em R

Equipe EducaECO

13/08/2025

```
knitr::opts_chunk$set(echo = FALSE)
library("dplyr")
# Bibliotecas necessárias
library(magrittr)
library(stringr)
library(tidyverse)
#diretório do projeto
setwd("c:/R/gestao")
#ler as sprints
dfsprint=read.csv("sprints.csv",sep=";",fileEncoding="latin1")
#ler as atividade
dfativ=read.csv("atividades.csv",sep=";",fileEncoding="latin1")
#separa os dados de treino da trilha 1
dfsprint_treino<-dfsprint[1:5,]</pre>
#separa os dados para a predição da trilha 1
dfsprint_teste<-dfsprint[6:12,]</pre>
#separa os dados de treino trilha 2
dfativ_treino<-dfativ[1:17,]
#separa os dados para a predição trilha 2
dfativ_teste<-dfativ[18:18,]</pre>
# Ajustando o modelo de regressão linear múltipla trilha 1
modelo <- lm(horas_reais ~ story_point + complexidade + horas_estimadas, data = dfsprint_treino)
# Ajustando o modelo de regressão linear múltipla trilha 2
modelo2 <- lm(horas_reais ~ story_point + complexidade + dependencia + interrupcao + horas_estimadas, d
#verificando a qualidade do modelo trilha 1
```

```
summary(modelo)$r.squared
## [1] 0.9956681
summary(modelo)$adj.r.squared
## [1] 0.9826723
#verificando a qualidade do modelo trilha 2
summary(modelo2)$r.squared
## [1] 0.9833852
summary(modelo2)$adj.r.squared
## [1] 0.975833
#faz a predição da trilha 1
dfsprint_teste$horas_previstas <- predict(modelo, newdata = dfsprint_teste)</pre>
#faz a predição da trilha 2
dfativ_teste$horas_previstas <- predict(modelo, newdata = dfativ_teste)</pre>
#ajustando data_frame para exibir os desvios trilha 1
dfsprint_treino$horas_previstas=NA
dfsprint_treino$desvio=(dfsprint_treino$horas_reais - dfsprint_treino$horas_estimadas) / dfsprint_trein
dfsprint_teste$desvio=(dfsprint_teste$horas_previstas - dfsprint_teste$horas_estimadas) / dfsprint_test
#desvios trilha 2
desvio_ativ<-(dfativ_teste$horas_previstas - dfativ_teste$horas_estimadas) / dfativ_teste$horas_estimad
#data frame para exibição dos desvios
df_desvio<-rbind(dfsprint_treino, dfsprint_teste)</pre>
#ajuste para gerar gráfico
dfgrafico<- df_desvio %>% pivot_longer(
  cols = c(horas_reais, horas_previstas,horas_estimadas), # as colunas desse intervalo
 names_to = "tipo_horas", # terão seus nomes armazenados nessa nova coluna
 values to = "qtd horas") # e os seus valores armazenados nessa nova coluna
```

Predição do tempo das Sprints

Projeto com 12 Sprints — 5 concluídas (com desvios) + 5 futuras (com predição)

Sprints 1–5 concluídas com problemas entre horas estimadas e reais. Treinamos um modelo com a função lm() do R base nas sprints 1–5. Prevemos as horas reais para as sprints 6–12 e comparamos com o estimado. Métricas: R^2 e R^2 Ajustado. Gráfico: Estimado x Real/Previsto por sprint.

Table 1: Desvios Real/Previsto X Estimado (horas) por Sprint

sprint	story_point	horas_estimadas	horas_reais	horas_previstas	desvio
1	10	60	72	NA	20.000000
2	8	24	26	NA	8.333333
3	6	36	50	NA	38.888889
4	10	90	110	NA	22.22222
5	6	36	44	NA	22.222222
6	10	30	NA	34	13.333333
7	16	144	NA	161	11.805556
8	10	90	NA	110	22.222222
9	10	60	NA	72	20.000000
10	26	198	NA	219	10.606061
11	26	150	NA	183	22.000000
12	10	90	NA	110	22.22222

Gráfico — Estimado x Real/Previsto (horas) por Sprint

Forma de verificar a qualidade do modelo

R-quadrado

O R-quadrado é uma medida estatística de quão próximos os dados estão da linha de regressão ajustada.

Ele também é conhecido como o coeficiente de determinação ou o coeficiente de determinação múltipla para a regressão múltipla.

A definição do R-quadrado é bastante simples: é a porcentagem da variação da variável resposta que é explicada por um modelo linear. Ou:

R-quadrado = Variação explicada/Variação total

O R-quadrado está sempre entre 0 e 100%:

0% indica que o modelo não explica nada da variabilidade dos dados de resposta ao redor de sua média. 100% indica que o modelo explica toda a variabilidade dos dados de resposta ao redor de sua média.

R-quadrado ajustado

O R-quadrado ajustado (ou R² ajustado) é uma métrica estatística que avalia a qualidade de um modelo de regressão, levando em consideração o número de variáveis independentes (preditores) e o tamanho da amostra. Ele penaliza a inclusão de variáveis irrelevantes no modelo, ao contrário do R-quadrado simples, que sempre aumenta com a adição de novas variáveis.

Predição do Tempo da Atividade 1 da Sprint10 - Trilha 2

Sprints 1–5 concluídas com problemas entre horas estimadas e reais das atividades. Treinamos um modelo com a função lm() do R base das atividades da sprints 1–5. Prevemos as horas reais para a atividade 1 da print 10, que está prevista como a mais complexa da sprint, e comparamos com o estimado. Métricas: R^2 e R^2 Ajustado.

Table 2: Previsão da Atividade 1 da Sprint 10

	story_point	complexidade	dependencia	interrupcao	equipe	horas_estimadas	horas_previstas
18	8	3	1	0	2	55	80.25

Desvio da Atividade: 45.91 %