AIM: Realization of Boolean algebra using gates.

LEARNING OBJECTIVES: Students will

- 1. Learn to minimize and design combinational logic.
- **2.** Understand the relationships between combination logic and Boolean algebra, and between sequential logic and finite state machines.

TOOLS/SOFTWARE REQUIRED:

Logic gates (IC) trainer kit.

Connecting patch chords.

IC 7400, IC 7402, IC 7404, IC 7406, IC 7408, IC 7432, IC 7486.

RELATED THEORY:

Canonical Forms (Normal Forms): Any Boolean function can be written in disjunctive normal form (sum of min-terms) or conjunctive normal form (product of max-terms). A Boolean function can be represented by a Karnaugh map in which each cell corresponds to a minterm. The cells are arranged in such a way that any two immediately adjacent cells correspond to two minterms of distance 1. There is more than one way to construct a map with this property.

Karnaugh Maps:

The K-Map for 2, 3, 4 and 5 variable is shown in the following figure.

Realization of SOP Boolean expression:

1). Y= A'B'CD' + A'BCD' + ABCD' + AB'CD' + AB'C'D' + AB'C'D + AB'C'D + AB'CD The figure below shows the truth table of the above function and on the right of TT is the K-Map simplification of the above logic function in SOP form.

inputs				O/P							
Α	В	С	D	0	Simplification using K-Map						
0	0	0	0	0							
0	0	0	1	0		CD					
0	0	1	0	1	AB		00	01	11	10	
0	0	1	1	0		\	Y-		10	тП	
0	1	0	0	0		00	0	0	0	1	
0	1	0	1	0		01	0	0	0	1	
0	1	1	0	1			U	U	U	-	
0	1	1	1	0		11	0	0	0	1	
1	0	0	0	1					_	1	-
1	0	0	1	1		10	1	1	1	1	1
1	0	1	0	1				9			H
1	0	1	1	1							
1	1	0	0	0		Υ =	- A.E	3' +	C.D'		
1	1	0	1	0							
1	1	1	0	1							
1	1	1	1	0							

Realization of Sum of Product Equations

Product of Sum Logic Equations

Figure: POS Simplification Using K-Map

Rules for Grouping:

Same as for sum-of-products, except that zero's are grouped instead of ones. Resulting Sum Terms:

- 1.If variable X has value 0 for all squares in the group, then the literal X is in the sum term.
- 2. If variable X has value 1 for all squares in the group, then the literal X' is in the sum term.
- 3.If variable X has value 0 for some squares in the group and value 1 for the others, then that variable does not appear in the sum term.

Prime Implicate: Maximal grouping of zeros b>Verification:

Result:- Hence, given Boolean Expression is implemented by the Logic Gates. SOP Equation

1).
$$Y = AB' + CD'$$

POS equation

(i)
$$D.(A+B').(B'+C')$$

(ii)
$$(A+D')$$
. $(B'+C+D)$. $(A'+B+C'+D)$

PROCEDURE:

- 1. Check the components for their working.
- 2. Insert the appropriate IC into the IC base.
- 3. Make connections as shown in the circuit diagram.
- 4. Provide the input data via the input switches and observe the output on output LEDs.

RESULTS AND DISCUSSION:

Hence given Boolean Expression is implemented by the Logic Gates.

SOP EQUATION:-

Y = AB' + CD'

POS EQUATION:-

- **→** D.(A+B').(B'+C')
- **→** (A+D').(B'+C+D).(A'+B+C'+D)

CONCLUSION: Thus realised the Boolean algebra using gates.

LAB OUTCOMES: Students will be able to

- 1. Minimize the Boolean algebra and design it using logic gates.
- 2. Analyse and design combinational circuit.

COURSE OUTCOMES: Students will be able to

- 1. Represent numbers and perform arithmetic operations.
- 2. Minimize the Boolean expression using Boolean algebra and design it using logic gates