Smart Two Channel Highside Power Switch

Features

- Overload protection
- Current limitation
- Short-circuit protection
- Thermal shutdown
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection¹⁾
- Undervoltage and overvoltage shutdown with auto-restart and hysteresis
- Open drain diagnostic output
- Open load detection in ON-state
- CMOS compatible input
- Loss of ground and loss of V_{bb} protection
- Electrostatic discharge (ESD) protection

Overvoltage Protection		$V_{\rm bb(AZ)}$	43	V
Operating voltage		$V_{\rm bb(on)}$	5.0 34	V
active	channels:	one	two parallel	
On-state resistance	Ron	60	30	Ω m
Nominal load current	$I_{L(NOM)}$	4.0	6.0	Α
Current limitation	I _{L(SCr)}	16	16	Α

Application

- μC compatible power switch with diagnostic feedback for 12 V and 24 V DC grounded loads
- All types of resistive, inductive and capacitive loads
- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input and diagnostic feedback, monolithically integrated in Smart SIPMOS® technology. Fully protected by embedded protection functions.

Product Summary

Pin Definitions and Functions

Pin	Symbol	Function
1,10,	V_{bb}	Positive power supply voltage. Design the
11,12,		wiring for the simultaneous max. short circuit
15,16,		currents from channel 1 to 2 and also for low
19,20		thermal resistance
3	IN1	Input 1,2, activates channel 1,2 in case of
7	IN2	logic high signal
17,18	OUT1	Output 1,2, protected high-side power output
13,14	OUT2	of channel 1,2. Design the wiring for the max.
		short circuit current
4	ST1	Diagnostic feedback 1,2 of channel 1,2,
8	ST2	open drain, low on failure
2	GND1	Ground 1 of chip 1 (channel 1)
6	GND2	Ground 2 of chip 2 (channel 2)
5,9	N.C.	Not Connected

Pin configuration (top view)

_			
V_{bb}	1 •	20	V_{bb}
GND1	2	19	V_{bb}
IN1	3	18	OUT1
ST1	4	17	OUT1
N.C.	5	16	V_{bb}
GND2	6	15	V_{bb}
IN2	7	14	OUT2
ST2	8	13	OUT2
N.C.	9	12	V_{bb}
V_{bb}	10	11	V_{bb}

Semiconductor Group

With external current limit (e.g. resistor R_{GND}=150 Ω) in GND connection, resistor in series with ST connection, reverse load current limited by connected load.

Block diagram

Two Channels; Open Load detection in on state;

Leadframe connected to pin 1, 10, 11, 12, 15, 16, 19, 20

Maximum Ratings at $T_i = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit
Supply voltage (overvoltage protection see page 4)	$V_{ m bb}$	43	V
Supply voltage for full short circuit protection $T_{j,start} = -40 \dots + 150$ °C	$V_{ m bb}$	34	V

Maximum Ratings at $T_j = 25$ °C unless otherwise specified

Parameter	Symbol	Values	Unit	
Load current (Short-circuit currer	nt, see page 5)	<i>I</i> ∟	self-limited	Α
Load dump protection ²⁾ V_{LoadDump} $R_{\text{I}^{3)}} = 2 \Omega$, $t_{\text{d}} = 200 \text{ ms}$; IN = low each channel loaded with $R_{\text{L}} = 300 \text{ ms}$	V _{Load dump} ⁴⁾	60	V	
Operating temperature range		T _j	-40+150	°C
Storage temperature range		T _{stg}	-55+150	
Power dissipation (DC) ⁵	$T_{\rm a} = 25^{\circ}{\rm C}$:	P _{tot}	3.7	W
(all channels active)	$T_{\rm a} = 85^{\circ}{\rm C}$:		1.9	
Inductive load switch-off energy $V_{bb} = 12V$, $T_{j,start} = 150^{\circ}C^{5)}$,	dissipation, single pulse			
$I_{L} = 4.0 \text{ A}, Z_{L} = 50 \text{ mH}, 0 \Omega$	one channel:	E _{AS}	0.5	J
$I_{L} = 6.0 \text{ A}, Z_{L} = 42 \text{ mH}, 0 \Omega$	two parallel channels:		1.0	
see diagrams on page 9 and page 10				
Electrostatic discharge capability (Human Body Model)	(ESD)	V_{ESD}	1.0	kV
Input voltage (DC)		V _{IN}	-10 +16	V
Current through input pin (DC)		I _{IN}	±2.0	mA
Current through status pin (DC)		I _{ST}	±5.0	
see internal circuit diagram page 8				
Thermal resistance		Т		
junction - soldering point ^{5),6)}	each channel:	R_{thjs}	12	K/W
junction - ambient ⁵⁾	one channel active:	R _{thja}	41	
	all channels active:	r vinja	34	

-

Supply voltages higher than $V_{bb(AZ)}$ require an external current limit for the GND and status pins, e.g. with a 150 Ω resistor in the GND connection and a 15 k Ω resistor in series with the status pin. A resistor for input protection is integrated.

 $R_{\rm I}$ = internal resistance of the load dump test pulse generator

 $^{^{4)}}$ $V_{Load\ dump}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839

Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm² (one layer, 70μm thick) copper area for V_{bb} connection. PCB is vertical without blown air. See page 15

Soldering point: upper side of solder edge of device pin 15. See page 15

Electrical Characteristics

Parameter and Conditions, each of the two channels		Symbol	Values			Unit
at $T_j = 25$ °C, $V_{bb} = 12$ V unless othe	rwise specified		min	typ	max	
Load Switching Capabilities	and Characteristics	•				
On-state resistance (V _{bb} to Ol						
$I_L = 2 A$ each ch	annel, $T_i = 25^{\circ}C$:	R _{ON}		50	60	mΩ
	$T_{\rm j} = 150^{\circ}{\rm C}$:			100	120	
two parallel ch	nannels, $T_i = 25^{\circ}\text{C}$:			25	30	
	one channel active:	I _{L(NOM)}	3.6	4.0		Α
	llel channels active:	L(NOW)	5.5	6.0		
Device on PCB ⁵), $T_a = 85^{\circ}$ C,						
Output current while GND discup; Vbb = 30 V, VIN = 0, see of	•	I _{L(GNDhigh)}			10	mA
Turn-on time	to 90% V _{OUT} :	t _{on}	80	200	400	μs
Turn-off time	to 10% V_{OUT} :	$t_{\rm off}$	80	230	450	·
$R_{L} = 12 \Omega, T_{j} = -40+150$ °C						
Slew rate on		d V/dt _{on}	0.1		1	V/µs
10 to 30% $V_{\rm OUT}$, $R_{\rm L} = 12 \Omega$,	<i>T</i> _j =-40+150°C:					
Slew rate off 70 to 40% V_{OUT} , $R_{\text{L}} = 12 \Omega$,	T _j =-40+150°C:	-dV/dt _{off}	0.1		1	V/μs

Operating Parameters

Operating Parameters						
Operating voltage ⁷⁾	$T_{\rm j}$ =-40+150°C:	$V_{ m bb(on)}$	5.0		34	V
Undervoltage shutdown	<i>T</i> _j =-40+150°C:	$V_{ m bb(under)}$	3.5		5.0	V
Undervoltage restart	$T_{\rm j}$ =-40+25°C:	V _{bb(u rst)}			5.0	V
	$T_{\rm j}$ =+150°C:				7.0	
Undervoltage restart of charge p see diagram page 14	ump <i>T</i> _j =-40+150°C:	$V_{ m bb(ucp)}$	-	5.6	7.0	V
Undervoltage hysteresis $\Delta V_{\text{bb(under)}} = V_{\text{bb(u rst)}} - V_{\text{bb(under)}}$		$\Delta V_{ m bb(under)}$		0.2		V
Overvoltage shutdown	$T_{\rm j}$ =-40+150°C:	$V_{ m bb(over)}$	34		43	V
Overvoltage restart	$T_{\rm j}$ =-40+150°C:	V _{bb(o rst)}	33			V
Overvoltage hysteresis	$T_{\rm j}$ =-40+150°C:	$\Delta V_{ m bb(over)}$		0.5		V
Overvoltage protection ⁸⁾	$T_{\rm j}$ =-40+150°C:	$V_{\rm bb(AZ)}$	42	47		V
$I_{\rm bb} = 40 \text{ mA}$						
Standby current, all channels off	<i>T</i> _j =25°C:	I _{bb(off)}		20	50	μΑ
$V_{IN} = 0$	$T_{\rm j}$ =150°C:			29	56	

⁷⁾ At supply voltage increase up to V_{bb} = 5.6 V typ without charge pump, $V_{OUT} \approx V_{bb}$ - 2 V

⁸⁾ see also $V_{
m ON(CL)}$ in circuit diagram on page 8.

Parameter and Conditions, each of the two channels	Symbol		Values		Unit
at $T_j = 25$ °C, $V_{bb} = 12$ V unless otherwise specified		min	typ	max	
Leakage output current (included in $I_{bb(off)}$) $V_{IN} = 0$	I _{L(off)}			12	μΑ
Operating current ⁹⁾ , $V_{IN} = 5V$, $T_i = -40+150$ °C $I_{GND} = I_{GND1} + I_{GND2}$, one channel on: two channels on:			1.8 3.6	3.5 7	mA
Protection Functions					
Initial peak short circuit current limit, (see timing diagrams, page 12)					
each channel, T_j =-40°C:	I _{L(SCp)}	21	32	43	Α
τ _j =25°C:		15	25	35	
<i>T</i> _j =+150°C:		11	17	24	
two parallel channels	twice the current of one channel				
Repetitive short circuit current limit,					
$T_{\rm j} = T_{\rm jt}$ each channel	I _{L(SCr)}		16		Α
two parallel channels			16		
(see timing diagrams, page 12)					
Initial short circuit shutdown time $T_{j,start} = -40$ °C:	toff(SC)		5		ms
$T_{\rm j,start} = 25^{\circ}{\rm C}$:			4		
(see page 11 and timing diagrams on page 12)					
Output clamp (inductive load switch off) ¹⁰⁾ at V _{ON(CL)} = V _{bb} - V _{OUT}	V _{ON(CL)}		47		V
Thermal overload trip temperature	$T_{\rm jt}$	150			°C
Thermal hysteresis	ΔT_{jt}		10		K
Reverse Battery					
Reverse battery voltage ¹¹⁾	- V _{bb}			32	V
Drain-source diode voltage ($V_{out} > V_{bb}$) $I_L = -4.0 \text{ A}, T_j = +150 ^{\circ}\text{C}$	-V _{ON}		610		mV

Semiconductor Group

⁹⁾ Add I_{ST} , if $I_{ST} > 0$

¹⁰⁾ If channels are connected in parallel, output clamp is usually accomplished by the channel with the lowest VON(CL)

Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Note that the power dissipation is higher compared to normal operating conditions due to the voltage drop across the intrinsic drain-source diode. The temperature protection is not active during reverse current operation! Input and Status currents have to be limited (see max. ratings page 3 and circuit page 8).

Parameter and Conditions, each	ch of the two channels	Symbol	Values		Unit	
at $T_j = 25$ °C, $V_{bb} = 12$ V unless otherw	vise specified		min	typ	max	
Diagnostic Characteristics						
Open load detection current, (on-	-condition)					
each ch	annel, $T_j = -40$ °C:	I _{L (OL)}	20		850	mΑ
	$T_{\rm j} = 25^{\circ}{\rm C}$:		20		750	
	$T_{\rm j} = 150^{\circ}{\rm C}$:		20		750	
two	o parallel channels	els twice the current of one channel				
Open load detection voltage ¹²)	$T_{\rm j}$ =-40+150°C:	$V_{\rm OUT(OL)}$	2	3	4	V
Internal output pull down (OUT to GND), V _{OUT} = 5 V	T _i =-40+150°C:	Ro	4	10	30	kΩ

Input and Status Feedback¹³⁾

Input resistance (see circuit page 8) $T_j = -40+150$ °C:	R _I	2.5	3.5	6	kΩ
Input turn-on threshold voltage $T_j = -40+150$ °C:	$V_{IN(T+)}$	1.7		3.5	V
Input turn-off threshold voltage $T_j = -40+150$ °C:	$V_{IN(T-)}$	1.5			V
Input threshold hysteresis	$\Delta V_{IN(T)}$		0.5		V
Off state input current $V_{IN} = 0.4 \text{ V}$: $T_j = -40+150$ °C:	I _{IN(off)}	1	-	50	μА
On state input current $V_{IN} = 5 \text{ V}$: $T_j = -40+150 ^{\circ}\text{C}$:	I _{IN(on)}	20	50	90	μА
Delay time for status with open load after switch off (see timing diagrams, page 13), $T_i = -40+150$ °C:	t _{d(ST OL4)}	100	520	1000	μs
Status invalid after positive input slope	$t_{\sf d(ST)}$		250	600	μs
(open load) $T_j = -40+150$ °C:					•
Status output (open drain)					
Zener limit voltage $T_j = -40 + 150$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(high)}$	5.4	6.1		V
ST low voltage $T_1 = -40 + 25$ °C, $I_{ST} = +1.6$ mA:	$V_{\rm ST(low)}$			0.4	
$T_{\rm j}$ = +150°C, $I_{\rm ST}$ = +1.6 mA:	, ,			0.6	

External pull up resistor required for open load detection in off state.
 If ground resistors R_{GND} are used, add the voltage drop across these resistors.

Truth Table

Cannel 1	Input 1	Output 1	Status 1
Cannel 2	Input 2	Output 2	Status 2
	level	level	BTS 726L1
Normal	L	L	Н
operation	Н	Н	Н
Open load	L	Z	H (L ¹⁴⁾)
_	Н	Н	L
Short circuit	L	Н	L ¹⁵)
to V _{bb}	Н	Н	H (L ¹⁶⁾)
Overtem-	L	L	Н
perature	Н	L	L
Under-	L	L	Н
voltage	Н	L	Н
Overvoltage	L	L	Н
	Н	L	Н

L = "Low" Level

X = don't care

Z = high impedance, potential depends on external circuit

H = "High" Level Status signal valid after the time delay shown in the timing diagrams

Parallel switching of channel 1 and 2 is easily possible by connecting the inputs and outputs in parallel. The status outputs ST1 and ST2 have to be configured as a 'Wired OR' function with a single pull-up resistor.

Terms

Leadframe (V_{bb}) is connected to pin 1,10,11,12,15,16,19,20

External R_{GND} optional; two resistors R_{GND1}, R_{GND2} = 150 Ω or a single resistor R_{GND} = 75 Ω for reverse battery protection up to the max. operating voltage.

¹⁴⁾ With external resistor between output and Vbb

An external short of output to V_{bb} in the off state causes an internal current from output to ground. If R_{GND} is used, an offset voltage at the GND and ST pins will occur and the $V_{ST low}$ signal may be errorious.

¹⁶⁾ Low resistance to $V_{
m bb}$ may be detected by no-load-detection

Input circuit (ESD protection), IN1 or IN2

ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Status output, ST1 or ST2

ESD-Zener diode: 6.1 V typ., max 5.0 mA; $R_{ST(ON)}$ < 380 Ω at 1.6 mA, ESD zener diodes are not to be used as voltage clamp at DC conditions. Operation in this mode may result in a drift of the zener voltage (increase of up to 1 V).

Inductive and overvoltage output clamp, OUT1 or OUT2

 V_{ON} clamped to $V_{ON(CL)} = 47 \text{ V typ.}$

Overvoltage protection of logic part GND1 or GND2

 V_{Z1} = 6.1 V typ., V_{Z2} = 47 V typ., R_I = 3.5 k Ω typ., R_{GND} = 150 Ω , R_{ST} = 15 k Ω nominal.

Reverse battery protection

 $R_{GND} = 150 \Omega$, $R_{I} = 3.5 k\Omega$ typ,

Temperature protection is not active during inverse current operation.

Open-load detection, OUT1 or OUT2

ON-state diagnostic condition:

 $V_{\text{ON}} < R_{\text{ON}} \cdot I_{L(\text{OL})}$; IN high

OFF-state diagnostic condition:

 $V_{\text{OUT}} > 3 \text{ V typ.}$; IN low

GND disconnect

Any kind of load. In case of IN = high is $V_{OUT} \approx V_{IN} - V_{IN}(T+)$. Due to $V_{GND} > 0$, no $V_{ST} = low$ signal available.

GND disconnect with GND pull up

Any kind of load. If $V_{GND} > V_{IN} - V_{IN(T+)}$ device stays off Due to $V_{GND} > 0$, no $V_{ST} = low$ signal available.

V_{bb} disconnect with energized inductive load

For an inductive load current up to the limit defined by E_{AS} (max. ratings see page 3 and diagram on page 10) each switch is protected against loss of V_{hh} .

Consider at your PCB layout that in the case of Vbb disconnection with energized inductive load the whole load current flows through the GND connection.

Inductive load switch-off energy dissipation

Energy stored in load inductance:

$$E_L = \frac{1}{2} \cdot L \cdot I_1^2$$

While demagnetizing load inductance, the energy dissipated in PROFET is

$$E_{\text{AS}} = \mathsf{E}_{\text{bb}} + \mathsf{E}_{\mathsf{L}} - \mathsf{E}_{\mathsf{R}} = \int \mathsf{V}_{\mathsf{ON}(\mathsf{CL})} \cdot \mathsf{i}_{\mathsf{L}}(\mathsf{t}) \; \mathsf{dt},$$

with an approximate solution for $R_L > 0 \Omega$:

$$E_{\text{AS}} = \frac{I_{\text{L}} \cdot L}{2 \cdot R_{\text{L}}} (V_{\text{bb}} + |V_{\text{OUT(CL)}}|) \ ln \ (1 + \frac{I_{\text{L}} \cdot R_{\text{L}}}{|V_{\text{OUT(CL)}}|})$$

Maximum allowable load inductance for a single switch off (one channel)⁵⁾

$$L = f(I_L)$$
; T_{j,start} = 150°C, V_{bb} = 12 V, R_L = 0 Ω

Typ. on-state resistance

 $R_{ON} = f(V_{bb}, T_i)$; $I_L = 2 \text{ A}$, IN = high

Typ. open load detection current

 $I_{L(OL)} = f(V_{bb}, T_j); \text{ IN = high}$

Typ. standby current

 $I_{bb(off)} = f(T_j); V_{bb} = 9...34 \text{ V}, \text{IN1,2} = \text{low}$

Typ. initial short circuit shutdown time

 $t_{off(SC)} = f(T_{i,start}); V_{bb} = 12 V$

toff(SC) [msec]

Timing diagrams

Both channels are symmetric and consequently the diagrams are valid for channel 1 and channel 2

Figure 1a: V_{bb} turn on:

Figure 2a: Switching a lamp:

The initial peak current should be limited by the lamp and not by the initial short circuit current $I_{L(SCp)}=25\,$ A typ. of the device.

Figure 2b: Switching an inductive load

*) if the time constant of load is too large, open-load-status may

Figure 3a: Turn on into short circuit: shut down by overtemperature, restart by cooling

Heating up of the chip may require several milliseconds, depending on external conditions ($t_{off(SC)}$ vs. $T_{j,start}$ see page 11)

Figure 3b: Turn on into short circuit: shut down by overtemperature, restart by cooling (two parallel switched channels 1 and 2)

ST1 and ST2 have to be configured as a 'Wired OR' function ST1/2 with a single pull-up resistor.

Figure 4a: Overtemperature: Reset if $T_j < T_{jt}$

Figure 5a: Open load: detection in ON-state, turn on/off to open load

The status delay time td(STOL4) allows to distinguish between the failure modes "open load in ON-state" and "overtemperature".

Figure 5b: Open load: detection in ON-state, open load occurs in on-state

Figure 5c: Open load: detection in ON- and OFF-state (with R_{EXT}), turn on/off to open load

Figure 6a: Undervoltage:

Figure 6b: Undervoltage restart of charge pump

IN = high, normal load conditions. Charge pump starts at $V_{bb(ucp)} = 5.6 \text{ V}$ typ.

Figure 7a: Overvoltage:

Package and Ordering Code

Standard P-DSO-20-9

Ordering Code

BTS726L1

Q67060-S7003-A2

Definition of soldering point with temperature T_s : upper side of solder edge of device pin 15.

Printed circuit board (FR4, 1.5mm thick, one layer 70 μ m, 6cm² active heatsink area) as a reference for max. power dissipation P_{tot}, nominal load current I_{L(NOM)} and thermal resistance R_{thja}

