Fondamenti di Data Science e Machine Learning - Prof. G. Polese - Anno Accademico 2019/20 Prova Scritta (ore 9:00) 15/06/2020

Cognome e Nome:

Matricola:

Esercizio 1 (punti 7 su 30)

Data la seguente tabella:

Tuple number	${f Height}$	${\bf Weight}$	Shoe size
1	175	70	40
2	175	75	39
3	175	69	40
4	176	71	40
5	178	81	41
6	169	73	37
7	170	62	39

Relativamente agli attribute *Height*, *Weight* e *Shoe size*:

- a) Elencare eventuali FD tra tali attributi, con lato destro a singolo attributo
- b) Elencare eventuali RFD con RHS singolo che rilassano solo sul confronto, solo sull'extent, o su entrambi, mostrando le relative soglie di similarità o della misura di coverage g3 error

Esercizio 2 (punti 7 su 30)

Data la seguente signature matrix:

Shingle	S_1	S_2	S 3	S ₄
0	1	1	0	1
1	0	1	1	0
2	1	0	0	1
3	0	0	1	0
4	0	0	1	1
5	1	0	0	0

- a) Calcolare la similarità di Jaccard tra ogni coppia di colonne;
- b) Calcolare la signature di minhash per ogni colonna usando le seguenti 3 funzioni hash:

$$h_1(x) = (2x + 1) \mod 6;$$
 $h_2(x) = (3x + 2) \mod 6;$ $h_3(x) = (5x + 2) \mod 6.$

Mostrare l'evoluzione della matrice delle signature di minhash simulando l'esecuzione dell'algoritmo per il loro calcolo. Inoltre, calcolare le similarità di Jaccard tra tutte le coppie di signature di minhash.

Esercizio 3 (punti 6 su 30)

Date la seguente tabella di transazioni su un sito di commercio elettronico:

Trans.ID	Data	Prodotto	Quantità
11	11/3/2020	Computer	1
11	11/3/2020	Borsa computer	1
11	11/3/2020	Mouse	1
12	12/3/2020	Televisore	1
12	12/3/2020	Staffa TV	1
12	12/3/2020	Antenna	1
13	15/3/2020	Computer	1
13	15/3/2020	Borsa computer	1
14	18/3/2020	Televisore	1
14	18/3/2020	Computer	1
14	18/3/2020	Mouse	1
14	18/3/2020	Borsa computer	1

- a) Elencare i frequent item sets con l'algoritmo Apriori supporto di almeno il 50%
- b) Trovare tutte le regole di associazione con supporto e confidenza di almeno il 50%

Esercizio 4 (punti 6 su 30)

Dati i seguenti punti in uno spazio bidimensionale:

$$(1,2)(2,4)(2,5)(3,4)(3,5)(5,2)(6,3)(6,8)(9,3)(11,2)(10,4)(12,3)$$

- a) Mostrare i passi di un algoritmo di clustering gerarchico (mostrando ad ogni passo cluster e centroidi) per raggruppare i suddetti punti in 2 cluster, usando la funzione di distanza euclidea
- b) Come a) ma usando la distanza del coseno.

Esercizio 5 (punti 4 su 30)

Supponendo che i primi 6 punti dell'esercizio 4 siano etichettati come *True* ed i restanti come *False*, classificare i seguenti punti utilizzando l'algoritmo *KNN* prima con K=3 e poi con K=5:

(6,10)(4,8)(7,9)(9,10)