Řešení vzorového testu příjmacích zkoušek na FEL ČVUT - VZOR01

1. Množina všech řešení nerovnice $2^{|x+3|} < 2$ s neznámou $x \in \mathbb{R}$ je...

$$\begin{array}{c|ccccc}
2^{|x+3|} & < & 2 \\
2^{|x+3|} & < & 2^{1} \\
|x+3| & < & 1
\end{array}$$

$$\frac{x \in (-\infty, -3)}{-(x+3)} & \frac{x \in (-3, \infty)}{(x+3)} < 1 \\
\frac{x > -4}{x \in (-4, -3)} & \frac{x \in (-3, \infty)}{x \in (-3, -2)}$$

Výsledek: $x \in (-4, -2)$.

2. Maximální definiční obor funkce $f(x) = \frac{x}{\sin x}$ je...

$$\sin x \neq 0$$

$$x \neq k\pi, \quad k \in \mathbb{Z}$$

Výsledek: $\bigcup_{k\in\mathbb{Z}}(k\pi,\ (k+1)\pi),\ k\in\mathbb{Z}$. Vzhledem k nabízeným odpovědím je správná odpověď "stejný jako pro funkci $g(x)=\cot g\,x$ ".

3. Jestliže $\sin \alpha \cdot \cos \alpha = \frac{1}{2}$ a $\alpha \in (\pi, 2\pi)$, pak $\operatorname{tg}(\pi - \alpha)$ je...

$$\sin \alpha \cdot \cos \alpha = \frac{1}{2}$$

$$2 \sin \alpha \cdot \cos \alpha = 1$$

$$\sin 2\alpha = 1$$

$$2\alpha = \frac{\pi}{2} + 2k\pi, \ k \in \mathbb{Z}$$

$$\alpha = \frac{\pi}{4} + k\pi, \ k \in \mathbb{Z}$$

$$\alpha \in (\pi, 2\pi) \Rightarrow \alpha = \frac{5\pi}{4}$$

$$\operatorname{tg}\left(\pi - \frac{5\pi}{4}\right) = \operatorname{tg}\left(-\frac{\pi}{4}\right) = -1.$$

Výsledek: $\operatorname{tg}\left(\pi - \alpha\right) = -1.$

4. V intervalu $(0, 2\pi)$ má rovnice $\sin x = \cos x - 1$ (kolik řešení)...

Ze znalostí hodnot goniometrických funkcí v "základních bodech" ihned vidíme rovnost pro x=0 a $x=2\pi$. Dále si uvědomíme, že v intervalu $(0,2\pi)$ je cos x-1<0. Možná další řešení lze tedy hledat pouze v intervalu $(\pi,2\pi)$, kde je funkce sin x záporná. V tomto intervalu platí sin $x=-\sqrt{1-\cos^2 x}$.

Výsledek: Rovnice má v intervalu $\langle 0,\, 2\pi \rangle$ právě 3 řešení $(x \in \{0; \frac{3\pi}{2}; 2\pi\})$.

5. Algebraický tvar komplexního čísla
$$z = \frac{1+i}{1+2i}$$
 je...

$$\frac{1+i}{1+2i} = \frac{1+i}{1+2i} \cdot \frac{1-2i}{1-2i} = \frac{1-2i+i+2}{1+4} = \frac{3-i}{5}$$

Výsledek:
$$z = \frac{3}{5} - \frac{1}{5}i$$
.

6. Jestliže
$$\log_2 y = 3\log_2 \frac{x-2}{2} - 2\log_2 \frac{x^2-4}{2}$$
, pak číslo y je rovno...

$$\begin{aligned} \log_2 y &=& 3 \log_2 \frac{x-2}{2} - 2 \log_2 \frac{x^2 - 4}{2} \\ \log_2 y &=& \log_2 \frac{\left(\frac{x-2}{2}\right)^3}{\left(\frac{x^2 - 4}{2}\right)^2} \\ y &=& \frac{\left(\frac{x-2}{2}\right)^3}{\left(\frac{x^2 - 4}{2}\right)^2} = \frac{(x-2)^3}{8} \cdot \frac{4}{(x-2)^2 (x+2)^2} = \frac{x-2}{2(x+2)^2} \end{aligned}$$

Výsledek:
$$y = \frac{x-2}{2(x+2)^2}$$
.

7. Jsou dány dvě rekurentní posloupnosti
$$(a_n)_{n=1}^{\infty}$$
 a $(b_n)_{n=1}^{\infty}$ následujícími vztahy: $a_1 = 3, b_1 = 0$ a pro $n \ge 2$ platí $a_n = 2 \cdot a_{n-1}, b_n = b_{n-1} + a_n$. Určete b_{11} .

 $(a_n)_{n=1}^{\infty}$ je očividně geometrická posloupnost s kvocientem q=2. Lze tedy vyjádřit n-tý člen pomocí prvního členu a kvocientu $a_n=a_1\cdot q^{n-1}=3\cdot 2^{n-1}$. Z posloupnosti $(b_n)_{n=1}^{\infty}$ si postupně začneme vypisovat první členy.

$$b_1 = 0$$

$$b_2 = b_1 + a_2$$

$$b_3 = b_2 + a_3 = b_1 + a_2 + a_3$$

$$b_4 = b_3 + a_4 = b_1 + a_2 + a_3 + a_4$$

$$\vdots$$

$$b_n = b_1 + \sum_{i=2}^{n} a_i$$

$$b_{11} = 0 + \sum_{i=2}^{11} 3 \cdot 2^{i-1} = 3 \cdot \sum_{i=1}^{10} \cdot 2^i = 3 \cdot (2^{11} - 2) = 3 \cdot (2048 - 2) = 6138$$

Výsledek: $b_{11} = 6138$.

$$a_1=7,\ a_6=22=a_1+5d\ \Rightarrow\ d=3\ \Rightarrow\ a_8=a_1+7d=7+7\cdot 3=28$$

$$s_8=a_1+a_2+\ldots a_8=\frac{a_1+a_8}{2}\cdot 8=\frac{7+28}{2}\cdot 8=140$$
 Výsledek: $s_8=140$.

9. Výraz
$$\frac{6x^3b^3}{25y^4} \cdot \frac{15y}{b^2}$$
 je roven...

Výraz pouze zkrátíme a ošetříme podmínky.

Výsledek:
$$\frac{18bx^3}{5y^3}$$
, pokud $y \neq 0 \land b \neq 0$.

10. Graf funkce $y = \left(\frac{1-\sqrt{x}}{\sqrt{x}-x}\right)^2$ je částí...

$$y = \left(\frac{1 - \sqrt{x}}{\sqrt{x} - x}\right)^2 = \left(\frac{1 - \sqrt{x}}{\sqrt{x}(1 - \sqrt{x})}\right)^2 = \left(\frac{1}{\sqrt{x}}\right)^2 = \frac{1}{x}, \ x > 0$$

Grafem lomené funkce $\frac{1}{x}$ je hyperbola.

Výsledek: Graf zadané funkce je částí hyperboly.

11. Množinou všech řešení nerovnice $|x+5| \ge 4 + |3-2x|$ s neznámou $x \in \mathbb{R}$ je...

Výsledek: $x \in \langle \frac{2}{3}, 4 \rangle$.

12. Směrnice přímek, které procházejí bodem A = [0, -5] a mají od počátku souřadné soustavy vzdálenost $\sqrt{5}$, jsou...

Hledáme přímku, která je tečnou ke kružnici se středem v počátku O a poloměrem $\sqrt{5}$ z bodu A ležícího na ose y. Situace tedy bude symetrická podle osy y a směrnice budou mít hodnoty $\pm k$. Hledejme tedy pouze přímku s kladnou směrnicí. Ta protne osu x v bodě B = [b, 0]. Obsah trojúhelníku AOB lze spočítat pomocí odvěsen jako $\frac{5 \cdot b}{2}$ nebo také pomocí přepony a výšky $\frac{|AB| \cdot \sqrt{5}}{2}$, kde velikost přepony $|AB| = \sqrt{25 + b^2}$. Z rovnosti obsahů spočteme b:

$$\frac{5 \cdot b}{2} = \frac{\sqrt{25 + b^2} \cdot \sqrt{5}}{2}
25b^2 = (25 + b^2) \cdot 5
5b^2 = 25 + b^2
b^2 = \frac{25}{4}
b = \frac{5}{2}$$

Sice jsme rovnici umocňovali, ale předpokládali jsme, že pracujeme s kladnými čísly a zkouška proto není nutná. Směrnice přímky procházející body A = [0, -5] a $B = [\frac{5}{2}, 0]$ je $k = 5 : \frac{5}{2} = 2$. Druhý bod B' = [-b, 0] bude symetrický k bodu B podle osy y a směrnice přímky procházející body A a B' bude mít hodnotu k' = -2.

Výsledek: Směrnice hledaných přímek jsou čísla -2 a 2.

13. Jsou dány množiny A,B,C a D následovně: $A=\{1,2,\ldots,1000\},\ B=\{x\in A:\frac{x}{6}\in\mathbb{Z}\},\ C=\{x\in A:\frac$

Množina B obsahuje dělitele 6, množina C dělitele 8 a jejich průnik $B \cap C$ dělitele 24. Těch je mezi čísly 1 a 1000 přesně 41. Dále množina D obsahuje čísla od 237 do 356, tedy 120 prvků.

$$B \cap C = \{24, 48, \dots, 216, \underline{240}, \underline{264}, \underline{288}, \underline{312}, \underline{336}, 360, \dots 984\}$$

$$D = \{237, 238, 239, \underline{240}, 241, \dots 355, 356\}$$

Množiny $(B \cap C)$ a D mají 5 společných prvků (240, 264, 288, 312, 336) a jejich sjednocení tedy obsahuje 41+120-5=156 prvků.

Výsledek: Množina $(B \cap C) \cup D$ obsahuje 156 prvků.

14. Rovnice $x^2 - (p+1)x + 4 = 0$ (s neznámou x) nemá reálný kořen právě tehdy, když... Kvadratická rovnice nemá žádný reálný kořen právě tehdy, když diskriminant D je záporný.

$$D = (p+1)^2 - 4 \cdot 4 = p^2 + 2p - 15 = (p+5)(p-3) < 0$$

Výsledek: $p \in (-5,3)$.

15. Kolik znaků Morseovy abecedy lze vytvořit, sestavují-li se tečky a čárky ve skupiny po jedné až pěti? Znaky délky jedna až pět sestavujeme ze dvou symbolů (tečka, čárka). Celkový počet S bude součtem všech takových možností.

$$S = 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 2 + 4 + 8 + 16 + 32 = 62$$

Výsledek: Celkem lze vytvořit 62 znaků.

Správné odpovědi v testu: ceddbacabbedeca