CS 480 – Introduction to Artificial Intelligence

TOPIC: BAYESIAN NETWORKS

CHAPTER: 13

http://www.cs.iit.edu/~mbilgic

https://twitter.com/bilgicm

JOINT DISTRIBUTION

- We have n random variables, $V_1, V_2, ..., V_n$
- We are interested in the probability of a possible world, where
 - $V_1 = v_1, V_2 = v_2, ..., V_n = v_n$
- $P(V_1, V_2, ..., V_n)$ associates a probability for each possible world = the **joint distribution**
- How many independent parameters are needed, if V_i are all binary?

JOINT DISTRIBUTION

- Extremely useful
 - Can answer any type of query
- Extremely inefficient
 - Requires exponential size memory
 - Inference using an exponential-size table requires exponential time
- Chapter $13 \Rightarrow$ Efficient representation and inference

CHAIN RULE

- $P(V_1, V_2, ..., V_n) =$
 - $P(V_1)P(V_2 | V_1)P(V_3 | V_1, V_2) \dots P(V_n | V_1, V_2, \dots, V_{n-1})$
 - $P(V_2)P(V_1 | V_2)P(V_3 | V_2, V_1) \dots P(V_n | V_2, V_1, \dots, V_{n-1})$
 - •
- If all V_i are binary, $P(V_1, V_2, ..., V_n)$ requires 2^n -1 independent parameters
- \circ P(V₁): How many?
- \circ P(V₂ | V₁): How many?
- \circ P(V₃ | V₁, V₂): How many?
- **o** ...
- $P(V_n | V_1, V_2, ..., V_{n-1})$: How many?
- o How many in total?

MARGINAL INDEPENDENCE

- Two random variables A and B are marginally independent if and only if
 - P(A, B) = P(A)*P(B), equivalently
 - $P(A \mid B) = P(A)$, equivalently
 - $\bullet \ \mathrm{P}(\mathrm{B} \mid \mathrm{A}) = \mathrm{P}(\mathrm{B})$

THE JOINT REVISITED

- \circ P(V₁, V₂, ..., V_n) =
 - $P(V_1)P(V_2 | V_1)P(V_3 | V_1, V_2) \dots P(V_n | V_1, V_2, \dots, V_{n-1})$
- If $V_i \perp V_j$ for all $i \neq j$
 - $P(V_1, V_2, ..., V_n) =$
 - \circ P(V₁)P(V₂ | V₁)P(V₃ | V₁,V₂) ... P(V_n | V₁, V₂, ..., V_{n-1})
 - \circ P(V₁)P(V₂)P(V₃) ... P(V_n)
 - o How many independent parameters now?

CONDITIONAL INDEPENDENCE

- Marginal independence is not very common
- Two random variables A and B are conditionally independent given C if and only if
 - $P(A, B \mid C) = P(A \mid C) * P(B \mid C)$, equivalently
 - P(A | B,C) = P(A | C), equivalently
 - $P(B \mid A, C) = P(B \mid C)$

WHY INDEPENDENCE?

- The joint distribution for n binary random variables
 - $2^{n} 1$ independent entries; exponential
- If the variables were all
 - Marginally independent, then
 - \circ 1 + 1 + ... + 1 = n independent parameters; polynomial
 - Conditionally independent given one of them, then
 - o 1 + 2 + 2 + ... + 2 = 1 + 2(n-1) = 2n 1 independent parameters; polynomial

ADVANTAGES OF MORE COMPACT REPRESENTATION

- Fewer parameters
 - Makes learning and reasoning easier
- Consider asking an expert the probability of specific entry in a huge probability table

BAYESIAN NETWORKS

- Random variables = nodes
- Direct relationships = directed edges
- BNs capture independencies
 - More compact than full joint representation
- Graphs provide
 - Graph theory / efficient reasoning
 - Intuition

BURGLARY EXAMPLE

11

DIRECTED GRAPHS

- o A graph consists of nodes and edges
- **Nodes:** $X = \{X_1, X_2, ..., X_n\}$
- \circ Undirected Edge: $X_i X_j$
- \circ Directed Edge: $X_i \rightarrow X_j$
- A graph is **directed** if its *all* edges are directed

RELATIONSHIPS

- $\circ X_i \rightarrow X_j$
 - X_i is the parent
 - X_i is the **child**
- \circ X_i is an **ancestor** of X_j if there is a directed path from X_i to X_i
- X_i is a **descendant** of X_j if there is a directed path from X_i to X_i
- Nondescendants(X_i) = $X \setminus Descendants(X_i)$

BAYESIAN NETWORK FACTORIZATION

$$P(X_1,...,X_n) = \prod_i P(X_i | Pa(X_i))$$

BURGLARY EXAMPLE

Independencies - Parents

- X is independent of its non-descendants given its parents
 - $X \perp Non-descendants(X) \mid Parents(X)$
- What are the independencies in the burglary example?

PARAMETERIZATION

Given the indecencies encoded in a BN, what are the parameters needed to capture the joint representation efficiently?

BURGLARY EXAMPLE

18

THEOREMS Assumption Tactorisch

- **Theorem 1:** If a probability distribution P holds the independencies encoded in G, then P factorizes according to G
- **Theorem 2:** If P factorizes according to G, then it holds the independencies encoded in G
- Let's see a constructive proof for Theorem 1; we'll not prove Theorem 2

FROM INDEPENDENCE TO FACTORIZATION

- Linear chain example
 - $A \rightarrow B \rightarrow C \rightarrow D \rightarrow E$
- Burglary example

BURGLARY EXAMPLE

- The joint representation
 - Equation
- Contrast number of parameters for
 - Probability table for joint
 - Bayesian network

STUDENT EXAMPLE

STUDENT EXAMPLE

- The joint representation
 - Equation
- Contrast number of parameters for
 - Probability table for joint
 - Bayesian network

SO FAR

- We've discussed the representation
- Now, it's time for inference

REASONING PATTERNS

Causal reasoning

- From causes to effects
 - E.g., Burglary to Alarm to MaryCalls
 - E.g., Intelligence to Grade to Letter

Evidential reasoning

- From effects to the causes
 - E.g., JohnCalls to Alarm to Earthquake
 - E.g, Letter to Grade to Difficulty

Explaining away/inter-causal reasoning

- Causes of a common effect interact
 - E.g., Earthquake, Burglary, and Alarm (and Alarm's descendants)
 - E.g., Difficulty, Intelligence, and Grade (and Grade's descendants)

Inference in Bayesian Networks

- There are several methods, some are exact and some are approximate
- We will study only one in this class
- Variable Elimination

VARIABLE ELIMINATION

• Let

- V be the set of all variables, Q be the set of query variables, E be the set of evidence variables
- $P(\mathbf{Q} \mid \mathbf{E})$ be the query
- 1. Write down the joint dist. using the Bayesian network structure
- 2. Set the variables in \mathbf{E} to their respective values
- 3. Sum over all variables in $V \setminus (Q \cup E)$
 - a) Pick an order for variables in $V \setminus (Q \cup E)$
 - b) For each variable V_i in $V \setminus (Q \cup E)$, create a new factor by
 - Multiplying all the factors that contains V_i, and
 - Summing over possible values of V_i
- 4. Normalize the last remaining factor (this step is unnecessary if **E** is empty)

EXAMPLES

- Given the following BNs, compute the requested probabilities efficiently (without computing the full joint)
 - $A \rightarrow B \rightarrow C$;
 - P(A) = <0.6, 0.4>,
 - $P(B \mid A=t) = <0.8, 0.2>, P(B \mid A=f) = <0.1, 0.9>$
 - $P(C \mid B=t) = <0.7, 0.3>, P(C \mid B=f) = <0.4, 0.6>$
 - Compute P(A), P(B), P(C), $P(C \mid A=t)$, $P(A \mid C=t)$

IRRELEVANT

- Let
 - V be the set of all variables, Q be the set of query variables, E be the set of evidence variables
 - $P(\mathbf{Q} \mid \mathbf{E})$ be the query
- \circ *Y* ∈ $V \setminus \{Q \cup E\}$ is irrelevant iff
 - $Y \notin Ancestors \ of \{ Q \cup E \}$
 - o or
 - $Y \perp Q \mid E$
- Examples

WHY VARIABLE ELIMINATION?

- We could compute P(D) by
 - Computing the full joint table, and then
 - Summing over the remaining variables
- Variable elimination, with a *good* ordering, can
 - Save memory, and
 - Save time

APPLICATIONS OF BAYESIAN NETWORKS

- Too many to list
- Here is a book about it: http://www.wiley.com/WileyCDA/WileyTitle/productCd-0470060301.html
- Chapters include:
 - Medical diagnosis
 - Complex genetic models
 - Crime risk factors analysis
 - Inference problems in forensic science
 - Classifiers for modeling of mineral potential
 - Reliability analysis of systems
 - Credit-rating of companies
 - Classification of Chilean wines
 - Complex industrial process operation
 - Probability of default for large corporates
 - Risk management in robotics