KLASIKOKi

$$\overline{M}_{z} = \frac{M_{z}}{N} = \mu \left[\operatorname{coth} \left(\frac{\mu H}{h B T} \right) - \frac{\mu}{\mu H} \right]$$

$$\mu \left[\left(\frac{\mu H}{k B T} \right) \right]$$

$$L(x) = \operatorname{coth} x - \frac{1}{x}$$

KUANTIKOKI

$$= \frac{\min \left\{ \left[1 + \frac{1}{2J} \cdot x \right] \right\}}{\sinh \left\{ \left[\frac{1}{2J} \right] \cdot x \right\}} \longrightarrow$$

$$\overline{\mu_{2}} = \frac{M_{2}}{N} = N(g\mu\sigma J) \cdot \left[\left(1 + \frac{1}{2J} \right) \cosh \left(1 + \frac{1}{2J} \right) \cdot x - \frac{1}{2J} \cosh \left(\frac{1}{2J} \cdot x \right) \right]$$

 $\chi = \frac{1}{C^2}$