新北市立永和國民中學 113 學年度科學展覽會 作品說明書封面

參賽科別:
□物理
□ 化學
□ 生物
□ 地球科學
■數學
□ 生活與應用科學(一)(機械/能源/光電/物理/資訊之工程與應用)
□ 生活與應用科學(二)(化學工程/生物科技/食品科學/環境科學/材料)
作品名稱:鏡射三角形
關 鍵 詞:鏡射、三角形的心、保角變換
編 號:

摘要

本研究是假設任意一個點對任意三角形,利用解析幾何研究在平面上鏡射出來的三個點關係,或是用多個任意點觀察其三角形的重心的保角變換,並整理成一般式。

壹、前言

我們看了第 62 屆全國科展作品《三角形與其垂足三角形的心不變量》之後,對鏡射三角形 有新的想法,暑假開始嘗試翻閱其他文獻,想要對鏡射三角形著手研究。

貳、研究目的

相異點對同一三角形做鏡射三角形後,其重心之間的關係。

參、研究器材與設備

紙、筆、電腦、計算機、GeoGebra

肆、研究過程及方法

【名詞定義】

鏡射三角形:給定一個三角形 ABC 做一個任意點 P_1 分別對 \overline{AB} \overline{BC} \overline{CA} 鏡射得到三個鏡

射點 DEF,將其連起來就是鏡射三角形。

鏡射重心:點 P_n 對三角形 ABC 的鏡射三角形重心為 G_n 。

一、對 60°、60°、60° 的三角形鏡射後重心位置恆定

用 $P_1 imes P_2$ 兩點分別對正三角形做鏡射三角形,發現這兩個鏡射三角形的重心都與原三角形的重心重合。因此我們猜測,不論 P 點位於何處,形成之鏡射三角形重心必會和原三角形之重心重合。

底下證明之:

 \triangle ABC 為平面上的一邊長為 2a 正三角形,將 \triangle ABC 旋轉後使 C 點朝下位於 (0,0),A 位於 $(-a,a\sqrt{3})$ 此時 $B=(a,a\sqrt{3})$, \overline{AB} 平行於 x 軸,且點 A 和點 B 到 y

軸的距離均為 a 。此時 $A + B + C = (0, 2a\sqrt{3})$ 。

設 \overline{AB} 為 L_1 : $y = a\sqrt{3}x \cdot \overline{BC}$ 為 L_2 : $y = \sqrt{3}x \cdot$

 \overline{AC} 為 L_3 : $y = -\sqrt{3}x \cdot P$ 為 (x_0, y_0) °

因此可求得 P 對 L₁ 對稱點為 D = $(x_0, 2a\sqrt{3} - y_0)$ 、

此時 D+E+F= $(0,2a\sqrt{3})$ 。

因三角形重心為 $\frac{1}{3}$ 乘以三點之和,且 ABC 、 DEF 三點之和分別相同,故重心重合。

所以知道不論 P 點位於何處,對正三角形鏡射後的重心都會跟原正三角形的重心重和。接下來我們研究其他特殊三角形的性質。

二、45°、45°、90°的三角形

符证 :
$$\frac{(a_2-a_1)(a_3-a_1)+(b_2-b_1)(b_3-b_1)}{\sqrt{(a_2-a_1)^2+(b_2-b_1)^2}\cdot\sqrt{(a_3-a_1)^2+(b_3-b_1)^2}} = \frac{(x_2-x_1)(x_3-x_1)+(y_2-y_1)(y_3-y_1)}{\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\cdot\sqrt{(x_3-x_1)^2+(y_3-y_1)^2}}$$

等腰直角三角形 ΔABC 由 $L_1 \cdot L_2 \cdot L_3$ 組成

任意不位於頂點上的點 P₁

鏡射矩陣
$$\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

 $L_2(45^\circ)$ 帶入後此矩陣為 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

$$L_3$$
(135°) 帶入後此矩陣為 $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$

對 L_1 鏡射後的點為 $P_{L_1}(x_1, -y_1 + 2)$

對 L_2 鏡射後的點為 $P_{L_2}(y_1, x_1)$

對 L_3 鏡射後的點為 $P_{L_3}(-y_1, -x_1)$

此時 3 倍重心 $3G_1(x_1, -y_1 + 2)$

同理
$$3G_2(x_2, -y_2 + 2) \cdot 3G_3(x_3, -y_3 + 2)$$

此時帶入待證式子對消後即成立

三、30°、60°、90°的三角形

$$(3 - a_1)(a_3 - a_1) + (b_2 - b_1)(b_3 - b_1) = \frac{(x_2 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1)}{\sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2} \cdot \sqrt{(a_3 - a_1)^2 + (b_3 - b_1)^2}} = \frac{(x_2 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \cdot \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_2 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \cdot \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_2 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \cdot \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}} = \frac{(x_3 - x_1)(x_3 - x_1) + (y_3 - y_1)}{\sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}}$$

等腰直角三角形 ΔABC 由 $L_1 \cdot L_2 \cdot L_3$ 組成

任意不位於頂點上的點 P₁

鏡射矩陣
$$\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

$$L_2(60^\circ)$$
 帶入後此矩陣為 $\begin{bmatrix} -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{bmatrix}$

$$L_3(150^\circ)$$
 帶入後此矩陣為 $\begin{bmatrix} rac{1}{2} & -rac{\sqrt{3}}{2} \\ -rac{\sqrt{3}}{2} & -rac{1}{2} \end{bmatrix}$

對 L_1 鏡射後的點為 $P_{L_1}(\mathbf{x}_1, -y_1 + \sqrt{3})$

對
$$L_2$$
 鏡射後的點為 $P_{L_2}(\frac{-x_1+\sqrt{3}\cdot y_1}{2},\frac{y_1+\sqrt{3}\cdot x_1}{2})$

對
$$L_3$$
 鏡射後的點為 $P_{L_3}(\frac{x_1-\sqrt{3}\cdot y_1}{2},\frac{-y_1-\sqrt{3}\cdot x_1}{2})$

此時 3 倍重心
$$3G_1 = (x_1, -y_1 + \sqrt{3})$$

同理
$$3G_2(x_2, -y_2 + \sqrt{3}) \cdot 3G_3(x_3, -y_3 + \sqrt{3})$$

此時帶入待證式子對消後即成立

四、任意直角三角形

$$(3 - a_1)(a_3 - a_1) + (b_2 - b_1)(b_3 - b_1) = \frac{(x_2 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1)}{\sqrt{(x_2 - x_1)^2 + (b_2 - b_1)^2} \cdot \sqrt{(x_3 - a_1)^2 + (b_3 - b_1)^2}} = \frac{(x_2 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \cdot \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}}$$

等腰直角三角形 ΔABC 由 $L_1 \times L_2 \times L_3$ 組成

任意不位於頂點上的點 P₁

旋轉後將 A 點固定在原點, \overline{BC} 平行於 \mathbf{x} 軸,其與 \mathbf{x} 軸的距離為 \mathbf{k}

鏡射矩陣
$$\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$$

$$L_2(\theta)$$
 帶入後此矩陣為 $\begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{bmatrix}$

$$L_3(90^\circ + \theta)$$
 帶入後此矩陣為
$$\begin{bmatrix} \cos(180^\circ + 2\theta) & \sin(180^\circ + 2\theta) \\ \sin(180^\circ + 2\theta) & -\cos(180^\circ + 2\theta) \end{bmatrix} = \begin{bmatrix} -\cos 2\theta & -\sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$$

對 L_1 鏡射後的點為 $P_{L_1}(x_1, -y_1 + 2k)$

對 L_2 鏡射後的點為 $P_{L_2}(x_1 \cdot \cos 2\theta + y_1 \cdot \sin 2\theta, -y_1 \cdot \cos 2\theta + x_1 \cdot \sin 2\theta)$

對 L_3 鏡射後的點為 $P_{L_3}(-x_1\cdot\cos 2\theta-y_1\cdot\sin 2\theta$, $y_1\cdot\cos 2\theta-x_1\cdot\sin 2\theta$)

此時 3 倍重心 $3G_1 = (x_1, -y_1 + 2k)$

同理 $3G_2(x_2, -y_2 + 2k) \cdot 3G_3(x_3, -y_3 + 2k)$

此時帶入待證式子對消後即成立

總結

- 1. 任意點對正三角形 ΔABC 的鏡射三角形,其重心位置必定和 ABC 三角形的重心重合。
- 2. 我們將 $\triangle ABC$ 三個角度假設成 $45^{\circ} \times 45^{\circ} \times 90^{\circ} \circ$ 用 $P_{1} \times P_{2} \times P_{3}$ 三個點對 $\triangle ABC$ 鏡射,得到三個重心 $G_{1} \times G_{2} \times G_{3}$,將三重心連起來得到的三角形必與 $P_{1} \times P_{2} \times P_{3}$ 三角形相 似。接著我們再將 $\triangle ABC$ 三個角度假設成 $30^{\circ} \times 60^{\circ} \times 90^{\circ} \circ$ 用 $P_{1} \times P_{2} \times P_{3}$ 三個點對 $\triangle ABC$ 鏡射,得到三個重心 $G_{1} \times G_{2} \times G_{3}$,將三重心連起來得到的三角形也必與 $P_{1} \times P_{2} \times P_{3}$ 三角形相似。
- 3. 第二點證明方法是使用鏡射矩陣,並使用

$$\frac{(a_2 - a_1)(a_3 - a_1) + (b_2 - b_1)(b_3 - b_1)}{\sqrt{(a_2 - a_1)^2 + (b_2 - b_1)^2} \times \sqrt{(a_3 - a_1)^2 + (b_3 - b_1)^2}}$$

$$\Rightarrow \frac{(x_2 - x_1)(x_3 - x_1) + (y_2 - y_1)(y_3 - y_1)}{\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \times \sqrt{(x_3 - x_1)^2 + (y_3 - y_1)^2}}$$

此方法求相似形證明,發現只要一將個角度設為 90°,改變等式結果的常數項只有一個。

伍、未來展望

- 1. 討論任意三角形對任意 ΔABC 是否都存保角變換。
- 2. 找出任意三點對任意 ΔABC 鏡射,觀察保角變換的縮放倍率關係。
- 3. 希望能觀察出共同的外心性質,並且整理成一般式。

陸、參考資料

[1] 第 62 屆全國科展作品:三角形與其垂足三角形的心不變量。檢自: https://twsf.ntsec.gov.tw/activity/race-1/62/pdf/NPHSF2022-030415.pdf?0.5737694491921621 [2] 數學基礎講義 - 平面上的線性變換。檢自: https://resource.learnmode.net/upload/flip/book/14/14facc1cc84d7f7a/dcb0b85eb4dd.pdf