数学科教育法レポート® 解答

課題 8-1

定義 0.1.

- (1) 「 $\mathbf{0}$ 」とは、任意の数 a に対し、a+0=0+a=a を満たす数である.
- (2) 数 a の対し、a + a' = a' + a = 0 を満たす数 a' を a の逆符号の数とよび、a' = -a と書く.
- (3) (減法の定義) c = a b を a = c + b を満たす数と定義する.

定理 **0.2.** a - a = 0

Proof. 0 の定義と減法の定義から明らか.

定理 **0.3.** a + (-b) = a - b.

 $Proof.\ c = a + (-b)$ とおく、すると、c + b = (a + (-b)) + b = a + ((-b) + b) = a + 0 = a. したがって、減法の定義より、c = a - b となる.

定理 **0.4.** 任意の数 a に対し、 $a \times 0 = 0 \times a = 0$.

Proof. $a \times 0 = c$ とおく. 0+0=0 であるから, $c=a \times 0 = a \times (0+0) = a \times 0 + a \times 0 = c+c$. したがって,c=c-c=0 を得る.

定理 **0.5.** $(-a) \times b = -(a \times b)$.

Proof. $(a+(-a))\times b=0\times b=0$. 一方, $(a+(-a))\times b=a\times b+(-a)\times b$. したがって, $a\times b+(-a)\times b=0$ となり, $(-a)\times b$ は $a\times b$ の逆符号の数であることがわかる. すなわち, $(-a)\times b=-(a\times b)$.

定理 **0.6.** $(-a) \times (-b) = a \times b$.

 $Proof. \ (-a) \times ((-b) + b) = (-a) \times 0 = 0. \ \ \neg$ 方, $(-a) \times ((-b) + b) = (-a) \times (-b) + (-a) \times b = (-a) \times (-b) + (-a) \times (-b)$

[課題 8-2] 「有理数の稠密性」とは、「任意の有理数 a < b に対し、a < c < b を満たす有理数 c が存在すること」である。実際に $\frac{1}{2}(a+b)$ は有理数 で $a < \frac{1}{2}(a+b) < b$ を満たす ($\frac{1}{2}(a+b)$ は $a \ge b$ の中点である).

П