Nama: Muhamad Hilmi Haidar

NIM: 1103213005

Analisis Hasil Eksperimen MLP pada Dataset Dummy

Hasil dari eksperimen menunjukkan performa model MLP pada dataset dummy dengan berbagai konfigurasi hyperparameter. Secara keseluruhan, akurasi yang diperoleh berkisar antara 48% hingga 57.5%. Berikut analisis rinci dari setiap eksperimen:

1. Hidden Layers

Jumlah neuron dan layer dalam hidden layers berpengaruh signifikan terhadap performa model.

- [4, 4] memberikan akurasi terbaik 57.5%, yang lebih tinggi dibandingkan layer tunggal.
- Layer tunggal dengan jumlah neuron [8] hanya menghasilkan akurasi 48.5%,
 menunjukkan bahwa model underfitting untuk pola data yang lebih kompleks.
- Layer bertumpuk [32, 16, 8] menghasilkan akurasi 55.5%, hampir mendekati performa terbaik.

Kesimpulan: Penambahan lebih banyak layer dapat meningkatkan performa, tetapi membutuhkan eksperimen lebih lanjut untuk memahami interaksi antar layer.

2. Activation Functions

Eksperimen fungsi aktivasi menunjukkan bahwa variasi fungsi aktivasi memberikan performa yang serupa, dengan beberapa perbedaan kecil.

- Sigmoid memberikan akurasi terbaik 55.5%, diikuti oleh Tanh dengan 53.0%.
- ReLU dan Linear menghasilkan akurasi yang lebih rendah, masing-masing 52.5% dan 52.0%.

Kesimpulan: Sigmoid menunjukkan hasil terbaik pada dataset ini, kemungkinan karena rentangnya membantu menangani pola sederhana.

3. Learning Rates

Eksperimen terhadap learning rate menunjukkan dampak besar pada stabilitas pelatihan.

• **0.01** memberikan akurasi terbaik **53.0%**, diikuti oleh **0.001** dengan **52.5%**.

• Learning rate yang besar (**0.1**) menghasilkan performa terendah **50.0%**, menunjukkan ketidakstabilan dalam pelatihan.

Kesimpulan: Learning rate **0.01** adalah pilihan terbaik untuk dataset ini karena mencapai keseimbangan antara stabilitas dan kecepatan konvergensi.

4. Batch Sizes

Perubahan batch size memengaruhi akurasi model secara signifikan.

- Batch size 64 menghasilkan akurasi tertinggi 56.0%, menunjukkan keseimbangan antara efisiensi komputasi dan sensitivitas terhadap detail data.
- Batch size kecil **16** memberikan akurasi terendah **48.0%**, kemungkinan karena pembaruan parameter terlalu sering sehingga kurang stabil.
- Batch size **32** dan **128** menghasilkan akurasi **48.5**% dan **51.0**%, yang lebih baik dari batch size terkecil.

Kesimpulan: Batch size **64** memberikan hasil terbaik untuk dataset ini, menyeimbangkan konvergensi dan stabilitas.

5. Epochs

Eksperimen terhadap jumlah epoch menunjukkan bahwa pelatihan dalam jangka panjang tidak selalu meningkatkan performa.

- **50 epochs** memberikan akurasi terbaik **52.5%**, menunjukkan bahwa model belajar cukup optimal dalam jangka waktu tersebut.
- **10 epochs** menghasilkan akurasi lebih rendah **51.5**%, sedangkan **100 epochs** menunjukkan penurunan akurasi menjadi **50.0**%, kemungkinan akibat overfitting.

Kesimpulan: Jumlah epoch yang optimal untuk dataset ini adalah sekitar **50** untuk mencapai keseimbangan antara underfitting dan overfitting.

Kesimpulan Umum

Secara keseluruhan, model MLP menunjukkan performa terbatas pada dataset dummy ini, dengan akurasi terbaik **57.5%** menggunakan **hidden layers [4, 4]**, fungsi aktivasi **Sigmoid**, learning rate **0.01**, batch size **64**, dan **50 epochs**. Hasil ini menunjukkan bahwa dataset

sederhana seperti ini membutuhkan konfigurasi model yang sederhana pula, tanpa terlalu banyak layer atau epoch.