Lecture 10 Global Extrema via /Lagrange Multipliers

Stewart 14.1, McCallum 12.3, 12.5

• understand and use Lagrange multipliers to answer questions about global extrema

Example 10.1. Use contour map of $f(x,y) = x^2 + y^2$ and the graph of the curve x + y = 2 to find the absolute minimum of the function f(x,y) subject to the constraint x + y = 2 (that is, the absolute minimum of f on the boundary). (find a graph at https://www.geogebra.org/m/pvj8wwrs)

Question 10.2. Can we make a general statement about the gradient of a function and the gradient of a constraint condition at a point of local extrema on the boundary?

Theorem 10.3. (Lagrange Multipliers) Let f(x,y) be a differentiable function defined over a region R, with the boundary of R given by a differentiable function g(x,y) = c (where c is any constant). If f(x,y) has a local extremum on the boundary at P(a,b), and $\nabla g(x,y) \neq 0$, then

$$\nabla f(a,b) = \lambda \nabla g(a,b),$$

for some constant λ . Here, g = c is called a **constraint curve** and λ is called the **Lagrange Multiplier**.

Example 10.4. Use Lagrange multipliers to find the critical points of $f(x, y) = x^2 + y^2$ subject to x + y = 2.

(find a graph at https://www.geogebra.org/m/zmf4fwfn)

Example 10.5. Find the global maximum and global minimum of the function $f(x, y, z) = x + z^2$ on the sphere $x^2 + y^2 + z^2 = 1$.

Example 10.6. Find global extrema of f(x,y) = x + 2y on the disk $x^2 + y^2 \le 5$. (find a graph at https://www.geogebra.org/m/nesu9yym)

Example 10.7. Find the point on x + y + z = 1 closest to the origin. (find a graph at https://www.geogebra.org/m/m3jzzek4)