Chap: Corps purs et mélanges

TP 1

La Masse Volumique

Objectifs:

- x Mesurer la masse volumique d'un échantillon
- x Identifier une espèce chimique grâce à sa masse volumique

Problématique:

Comment identifier un échantillon à l'aide de mesures simples ?

Cours: la Masse Volumique

- La masse volumique d'un échantillon est sa masse divisée par son volume.
- La masse volumique est notée par la lettre grec rhô : ρ
- Chaque espèce chimique a une masse volumique spécifique, ce qui permet de l'identifier.
 Exemple: Un litre (1L) d'eau à une masse de un kilogramme (1kg). La masse volumique de l'eau est un kilogramme par litre (1 kg/L).

$$\rho = \frac{m}{V} \mathbf{k} \mathbf{g}$$

I Identifier un liquide

1) Vous disposez de 3 liquides incolores. Nous allons mesurer les masses volumiques de ces liquides. **Réalisez** le protocole ci-dessous.

Protocole: Mesurer la masse volumique d'un liquide

- Posez l'éprouvette vide sur la balance et faites le zéro.
- Versez 20mL du liquide dans l'éprouvette.
- Mesurez la masse des 20mL de liquide.
- Rincez l'éprouvette avant de recommencer avec un autre liquide.
- 2) A l'aide de l'encadré cours, calculez la masse volumique des trois liquides
- 3) A l'aide du tableau ci-dessous et de vos mesures, identifiez les trois liquides.

Espèce	Eau	glycérine	Éthanol	Huile d'arachide	Ether		
Masse volumique	1,00 kg/L	1,26 kg/L	0,79 kg/L	0,92 kg/L	0,71 kg/L		

II Identifier un solide

- 4) Vous disposez de trois cylindres métalliques, d'une grande éprouvette et d'eau au robinet. Comment mesurer le volume d'un cylindre métallique avec ce matériel ? Proposez un protocole sous forme d'un schéma.
- 5-a) Mesurez le volume des cylindres grâce à votre protocole.
- 5-b) Mesurez les masses des cylindres
- 6) Calculez la masse volumique des cylindres.
- 7) Identifiez les trois métaux à l'aide du tableau ci-dessous.

Espèce	Aluminium	Fer	Argent	Titane	Cuivre			
Masse volumique	2,70 g/cm ³	7,86 g/cm ³	10,50 g/cm ³	4,50 g/cm ³	8,96 g/cm ³			

Annexe : Les Unités de Volume

km ³		hm³		dam ³		m ³		dm ³		cm ³			mm ³							
														L	dL	cL	mL			
														1						
											0,	0	0	1						
														1	0	0	0			

 $1L = 1dm^3 = 0.001m^3 = 1000mL = 1000cm^3$

S'entraîner:

Convertissez:

- a) 1,3 m³ en L
- b) 0.02 L en mm³
- c) 2,4 dL en cm³
- d) 72,1 cm³ en cL

