Labor_11

K-MEANS ALGORITHM

Unsupervised learning

Market segmentation

Astronomical data analysis

K-Means pseudocode

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {  for i = 1 \ to \ m   c^{(i)} := index \ (from \ 1 \ to \ K \ ) \ of \ cluster \ centroid   closest \ to \ x^{(i)}   for \ k = 1 \ to \ K   \mu_k := average \ (mean) \ of \ points \ assigned \ to \ cluster \ k  }
```

Random initialization

Should have K < m

Randomly pick K training examples.

Set μ_1, \dots, μ_K equal to these K examples.

Local optimum

What is the right number of K?

Choosing K

Elbow method:

Choosing K

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

