Devoir Sur Table $n^{\circ}1$ – Corrigé

Exercices 1 : Calculs de sommes et de produits

1. (a)
$$\sum_{k=0}^{n} (2-k) = \sum_{k=0}^{n} 2 - \sum_{k=0}^{n} k = 2 \sum_{k=0}^{n} 1 - \sum_{k=1}^{n} k = 2(n+1) - \frac{n(n+1)}{2} = (n+1)(2 - \frac{n}{2}) = \boxed{\frac{(n+1)(4-n)}{2}}$$

(b)
$$\sum_{i=1}^{n} 3i(i-1) = 3\sum_{i=1}^{n} (i^2 - i) = 3\left(\sum_{i=1}^{n} i^2 - \sum_{i=1}^{n} i\right) = 3\left(\frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2}\right)$$
$$= 3\frac{n(n+1)(2n+1-3)}{6} = \frac{n(n+1)(2n-2)}{2} = \boxed{n(n+1)(n-1)}.$$

(c)
$$\sum_{j=1}^{n} 2^{2j-1} = \sum_{j=1}^{n} 4^{j} \times 2^{-1} = \frac{1}{2} \sum_{j=1}^{n} 4^{j} = \frac{1}{2} \times \frac{4 - 4^{n+1}}{1 - 4} = \frac{4^{n+1} - 4}{6} = \frac{4(4^{n} - 1)}{6} = \boxed{\frac{2}{3}(4^{n} - 1)}.$$

(d) D'abord
$$\prod_{k=n}^{2n} \frac{1}{k} = \frac{1}{\prod_{k=n}^{2n} k}$$
 puis on utilise l'astuce classique : $\prod_{k=n}^{2n} k = \frac{\prod_{k=1}^{2n} k}{\prod_{k=1}^{n-1} k} = \frac{(2n)!}{(n-1)!}$.

Ainsi en prenant l'inverse : $\prod_{k=n}^{2n} \frac{1}{k} = \frac{(n-1)!}{(2n)!}$

(e)
$$\sum_{1 \leqslant i < j \leqslant n} \frac{i}{j} = \sum_{j=2}^{n} \left(\sum_{i=1}^{j-1} \frac{i}{j} \right) = \sum_{j=2}^{n} \left(\frac{1}{j} \sum_{i=1}^{j-1} i \right) = \sum_{j=2}^{n} \left(\frac{1}{j} \times \frac{(j-1)j}{2} \right) = \sum_{j=2}^{n} \frac{(j-1)}{2} = \sum_{k=1}^{n-1} \frac{k}{2} = \frac{1}{2} \sum_{k=1}^{n-1} k = \boxed{\frac{(n-1)n}{4}}.$$

2. (a) En notant que $j = \sum_{i=1}^{j} 1$, on peut ré-écrire :

$$S = \sum_{j=1}^{n} j \, 2^{j} = \sum_{j=1}^{n} \left(\sum_{i=1}^{j} 1 \right) 2^{j} = \sum_{j=1}^{n} \left(\sum_{i=1}^{j} 2^{j} \right) = \sum_{1 \le i \le j \le n} 2^{j}.$$

Calculons cette somme double en sommant "dans l'autre sens" :

$$S = \sum_{1 \le i \le j \le n} 2^j = \sum_{i=1}^n \left(\sum_{j=i}^n 2^j \right) = \sum_{i=1}^n \left(\frac{2^i - 2^{n+1}}{1 - 2} \right) = \sum_{i=1}^n (2^{n+1} - 2^i)$$

$$= \sum_{i=1}^n 2^{n+1} - \sum_{i=1}^n 2^i = n2^{n+1} - \left(\frac{2 - 2^{n+1}}{1 - 2} \right) = n2^{n+1} + 2 - 2^{n+1}$$

$$= \left[(n-1)2^{n+1} + 2 \right]$$

(b) Puisqu'on connait la valeur explicite de S, la fonction est assez simple :

Remarque: On part toujours du principe que l'utilisateur d'une fonction sait comment elle fonctionne! Sauf mention du contraire dans l'énoncé, il n'est donc pas utile de vérifier que la variable n contient bien un entier positif. On postule que l'utilisateur n'essaiera jamais d'appeler valeurS(-1) ou valeurS(3.5) par exemple.

1

Exercice 2 : Etude d'une famille de fonctions

Pour tous $a,b,c,d\in\mathbb{R}$ avec $a\neq 0$ et $c\neq 0$, on considère la fonction notée $f_{a,b,c,d}$ définie sur $\mathbb{R}\setminus\left\{-\frac{d}{c}\right\}$ par :

$$\forall x \in \mathbb{R} \setminus \left\{ -\frac{d}{c} \right\}, \quad f_{a,b,c,d}(x) = \frac{ax+b}{cx+d}.$$

1. Etude d'un exemple. Dans cette question, on choisit $a=1,\,b=2,\,c=-1,\,d=3.$

On considère donc la fonction $f_{1,2,-1,3}$ définie par : $\forall x \in \mathbb{R} \setminus \{3\}$, $f_{1,2,-1,3}(x) = \frac{x+2}{-x+3}$.

(a) Il faut justifier que pour tout $x \in \mathbb{R} \setminus \{3\}$, $f_{1,2,-1,3}(x) \neq -1$. Or on a les équivalences :

$$f_{1,2,-1,3}(x) = -1 \Longleftrightarrow \frac{x+2}{-x+3} = -1 \Longleftrightarrow x+2 = x-3 \Longleftrightarrow 2 = -3$$
 ce qui est toujours faux.

Ainsi, on a bien $f_{1,2,-1,3}: \mathbb{R} \setminus \{3\} \to \mathbb{R} \setminus \{-1\}$.

(b) Soit $y \in \mathbb{R} \setminus \{-1\}$ fixé. Pour tout $x \in \mathbb{R} \setminus \{3\}$, on a les équivalences suivantes :

$$f_{1,2,-1,3}(x) = y \Longleftrightarrow \frac{x+2}{-x+3} = y \Longleftrightarrow x+2 = (-x+3)y \Longleftrightarrow x+2 = -xy+3y$$
$$\Longleftrightarrow x+xy = 3y-2 \Longleftrightarrow x(y+1) = 3y-2 \Longleftrightarrow x = \frac{3y-2}{y+1}.$$

Ceci montre que l'application $f_{1,2,-1,3}$ est bijective et :

$$(f_{1,2,-1,3})^{-1}: \begin{array}{ccc} \mathbb{R}\setminus\{-1\} & \to & \mathbb{R}\setminus\{3\} \\ y & \mapsto & \frac{3y-2}{y+1}. \end{array}$$

On remarque en fait que $(f_{1,2,-1,3})^{-1} = f_{3,-2,1,1}$

On revient à présent au cas général où $a,b,c,d\in\mathbb{R}$ sont des réels quelconques avec $a\neq 0$ et $c\neq 0$.

2. On suppose que ad = bc. Alors, pour tout $x \in \mathbb{R} \setminus \left\{-\frac{d}{c}\right\}$,

$$f_{a,b,c,d}(x) = \frac{ax+b}{cx+d} = \frac{a(x+\frac{b}{a})}{c(x+\frac{d}{c})} = \frac{a}{c} \times \frac{x+\frac{b}{a}}{x+\frac{d}{c}} = \frac{a}{c}.$$

(en effet, ad = bc donc $\frac{b}{a} = \frac{d}{c}$!) Ainsi $f_{a,b,c,d}$ est constante égale à $\frac{a}{c}$.

- 3. Montrons l'équivalence $f_{a,b,c,d}$ est injective $\iff ad \neq bc$ par double implication.
 - Montrons que $(f_{a,b,c,d} \text{ est injective}) \Rightarrow ad \neq bc$.

Cela revient à montrer la contraposée : $ad = bc \Rightarrow (f_{a,b,c,d} \text{ n'est pas injective}).$

Or ceci est évident puisqu'on a vu en question 2. que si ad = bc, alors $f_{a,b,c,d}$ est une fonction constante (qui n'est donc évidemment pas injective!)

• Montrons maintenant que $ad \neq bc \Rightarrow (f_{a,b,c,d} \text{ est injective}).$

Supposons que $ad \neq bc$ et montrons que $f_{a,b,c,d}$ est injective.

Soient $x_1, x_2 \in \mathbb{R} \setminus \{-\frac{d}{c}\}$ tels que $f_{a,b,c,d}(x_1) = f_{a,b,c,d}(x_2)$. Montrons que $x_1 = x_2$. On a :

$$f_{a,b,c,d}(x_1) = f_{a,b,c,d}(x_2) \iff \frac{ax_1 + b}{cx_1 + d} = \frac{ax_2 + b}{cx_2 + d} \iff (ax_1 + b)(cx_2 + d) = (ax_2 + b)(cx_1 + d)$$

$$\iff acx_1x_2 + adx_1 + bcx_2 + bd = acx_1x_2 + adx_2 + bcx_1 + bd$$

$$\iff adx_1 + bcx_2 = adx_2 + bcx_1$$

$$\iff adx_1 - bcx_1 = adx_2 - bcx_2$$

$$\iff (ad - bc)x_1 = (ad - bc)x_2$$

$$\iff x_1 = x_2 \text{ (car on a supposé ici } ad \neq bc)$$

Ceci montre que $f_{a,b,c,d}$ est injective. On a donc bien démontré l'équivalence voulue

- 4. On se place maintenant dans le cas où $ad \neq bc$.
 - (a) Il faut vérifier que pour tout $x \in \mathbb{R} \setminus \{-\frac{d}{c}\}$, $f_{a,b,c,d}(x) \in \mathbb{R} \setminus \{\frac{a}{c}\}$. On a les équivalences :

$$f_{a,b,c,d}(x) = \frac{a}{c} \Longleftrightarrow \frac{ax+b}{cx+d} = \frac{a}{c} \Longleftrightarrow c(ax+b) = a(cx+d) \Longleftrightarrow acx+bc = acx+ad \Longleftrightarrow ad = bc.$$

Or ici on a supposé que $ad \neq bc$. La dernière proposition est donc fausse et il en résulte qu'on n'a jamais $f_{a,b,c,d}(x) = \frac{a}{c}$. On a donc bien $f_{a,b,c,d}: \mathbb{R} \setminus \{-\frac{d}{c}\} \to \mathbb{R} \setminus \{\frac{a}{c}\}$

(b) Soit $y \in \mathbb{R} \setminus \{\frac{a}{c}\}$ fixé. Pour tout $x \in \mathbb{R} \setminus \{-\frac{d}{c}\}$, on a les équivalences suivantes :

$$f_{a,b,c,d}(x) = y \Longleftrightarrow \frac{ax+b}{cx+d} = y \Longleftrightarrow ax+b = (cx+d)y \Longleftrightarrow ax+b = cxy+dy$$
$$\Longleftrightarrow ax-cxy = dy-b \Longleftrightarrow x(a-cy) = dy-b \Longleftrightarrow x = \frac{dy-b}{-cy+a}.$$

Ceci montre que l'application $f_{a,b,c,d}$ est | bijective | et :

$$(f_{a,b,c,d})^{-1}: \begin{array}{ccc} \mathbb{R}\setminus\left\{\frac{a}{c}\right\} & \to & \mathbb{R}\setminus\left\{-\frac{d}{c}\right\} \\ y & \mapsto & \frac{dy-b}{-cy+a}. \end{array}$$

On remarque en fait que $(f_{a,b,c,d})^{-1} = f_{d,-b,-c,a}$

Exercice 3 : Suites récurrentes de type " $u_{n+1} = au_n + b_n$ ".

Pour commencer, on considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=1$ et $\forall n\in\mathbb{N}, u_{n+1}=2u_n+\frac{1}{2^n}$

1. (a) Montrons par récurrence que pour tout $n \in \mathbb{N}$, $u_n = \frac{5 \times 2^n}{3} - \frac{2}{3 \times 2^n}$

<u>Initialisation</u>: On a $\frac{5 \times 2^0}{3} - \frac{2}{3 \times 2^0} = \frac{5}{3} - \frac{2}{3} = \frac{3}{3} = 1$ donc effectivement $u_0 = \frac{5 \times 2^0}{3} - \frac{2}{3 \times 2^0}$. Hérédité : Soit $n \in \mathbb{N}$ fix

Supposons que $u_n = \frac{5 \times 2^n}{3} - \frac{2}{3 \times 2^n}$ et montrons que $u_{n+1} = \frac{5 \times 2^{n+1}}{3} - \frac{2}{3 \times 2^{n+1}}$

D'après la relation de récurrence

$$u_{n+1} = 2u_n + \frac{1}{2^n} = 2\left(\frac{5 \times 2^n}{3} - \frac{2}{3 \times 2^n}\right) + \frac{1}{2^n}$$

$$= \frac{5 \times 2^{n+1}}{3} - \frac{2}{3 \times 2^n} + \frac{1}{2^n} = \frac{5 \times 2^{n+1}}{3} - \frac{2}{3 \times 2^n} + \frac{3}{3 \times 2^n}$$

$$= \frac{5 \times 2^{n+1}}{3} - \frac{1}{3 \times 2^n} = \frac{5 \times 2^{n+1}}{3} - \frac{2}{3 \times 2^{n+1}}.$$

- 2. Dans cette question, on se propose de retrouver l'expression de u_n d'une autre façon. On définit, pour tout $n \in \mathbb{N}$, $v_n = \frac{u_n}{2^n}$.
 - (a) Pour tout $n \in \mathbb{N}$,

$$v_{n+1} = \frac{u_{n+1}}{2^{n+1}} = \frac{2u_n + \frac{1}{2^n}}{2^{n+1}} = \frac{2u_n}{2^{n+1}} + \frac{\frac{1}{2^n}}{2^{n+1}} = \frac{u_n}{2^n} + \frac{1}{2^{2n+1}}.$$

Ainsi
$$v_{n+1} = v_n + \frac{1}{2^{2n+1}}$$

(b) Soit $n \in \mathbb{N}^*$.

D'une part, par téléscopage,
$$\sum_{k=0}^{n-1} (v_{k+1} - v_k) = \boxed{v_n - v_0}$$
.

D'autre part, d'après l'expression du 2.(a), $v_{k+1}-v_k=\frac{1}{2^{2k+1}},$ on peut donc calculer :

$$\sum_{k=0}^{n-1} (v_{k+1} - v_k) = \sum_{k=0}^{n-1} \frac{1}{2^{2k+1}} = \frac{1}{2} \sum_{k=0}^{n-1} \left(\frac{1}{4}\right)^k = \frac{1}{2} \times \frac{1 - \left(\frac{1}{4}\right)^n}{1 - \frac{1}{4}} = \frac{1}{2} \times \frac{4}{3} \times \left(1 - \left(\frac{1}{4}\right)^n\right) = \boxed{\frac{2}{3} \left(1 - \left(\frac{1}{4}\right)^n\right)}$$

On en déduit ainsi que $v_n - v_0 = \frac{2}{3} \left(1 - \left(\frac{1}{4} \right)^n \right)$.

Puisque
$$v_0 = \frac{u_0}{2^0} = 1$$
, on obtient finalement : $v_n = 1 + \frac{2}{3} \left(1 - \left(\frac{1}{4}\right)^n\right)$.

(c) Soit $n \in \mathbb{N}^*$. Puisque $v_n = \frac{u_n}{2^n}$, on a $u_n = 2^n v_n$. En remplaçant avec l'expression précédente :

$$u_n = 2^n \left(1 + \frac{2}{3} \left(1 - \left(\frac{1}{4} \right)^n \right) \right) = 2^n + \frac{2^{n+1}}{3} \left(1 - \frac{1}{4^n} \right)$$
$$= 2^n + \frac{2^{n+1}}{3} - \frac{2^{n+1}}{3 \times 2^{2n}} = \frac{3 \times 2^n + 2^{n+1}}{3} - \frac{1}{3 \times 2^{n-1}}$$
$$= \frac{2^n (3+2)}{3} - \frac{2}{3 \times 2^n} = \boxed{\frac{5 \times 2^n}{3} - \frac{2}{3 \times 2^n}}.$$

On retrouve donc bien l'expression de u_n du 1.(a).

On cherche maintenant à adapter la méthode exploitée dans la question 2 à une cadre plus général.

Dans la suite de l'exercice, $a \in \mathbb{R}^*$ est un réel non-nul fixé, $(b_n)_{n \in \mathbb{N}}$ est une suite de réels quelconques. La nouvelle suite $(u_n)_{n \in \mathbb{N}}$ satisfait la relation générale : $\forall n \in \mathbb{N}, u_{n+1} = au_n + b_n$, avec $u_0 \in \mathbb{R}$ quelconque.

3. (a) Pour tout $n \in \mathbb{N}$, on a :

$$w_{n+1} = \frac{u_{n+1}}{a^{n+1}} = \frac{au_n + b_n}{a^{n+1}} = \frac{u_n}{a^n} + \frac{b_n}{a^{n+1}} = \boxed{w_n + \frac{b_n}{a^{n+1}}}$$

(b) Soit $n \in \mathbb{N}^*$ fixé. On raisonne comme dans la question 2. en calculant $\sum_{k=0}^{n-1} (w_{k+1} - w_k)$.

D'une part, par télescopage, $\sum_{k=0}^{n-1} (w_{k+1} - w_k) = w_n - w_0.$

D'autre part,

$$\sum_{k=0}^{n-1} (w_{k+1} - w_k) = \sum_{k=0}^{n-1} \frac{b_k}{a^{k+1}} = \sum_{k=0}^{n-1} b_k a^{-(k+1)}.$$

Ainsi, on a $w_n - w_0 = \sum_{k=0}^{n-1} b_k a^{-(k+1)}$ donc $w_n = w_0 + \sum_{k=0}^{n-1} b_k a^{-(k+1)} = u_0 + \sum_{k=0}^{n-1} b_k a^{-(k+1)}$

(car $w_0 = \frac{u_0}{a^0} = u_0$). Enfin, puisque $w_n = \frac{u_n}{a^n}$, on a $u_n = w_n \times a^n$ et donc :

$$u_n = \left(u_0 + \sum_{k=0}^{n-1} b_k a^{-(k+1)}\right) \times a^n = \left[u_0 \times a^n + \sum_{k=0}^{n-1} b_k a^{n-(k+1)}\right]$$

Cette formule est valable quel que soit $n \in \mathbb{N}^*$.

En fait, quand n = 0 cette formule est toujours valable !

En effet, par convention, $\sum_{k=0}^{-1} b_k a^{n-(k+1)} = 0$ (somme vide).

4. Application: On considère ici la suite définie par $u_0 = 1$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{3} - 2$. Cela revient à la situation de la question 3. avec $a = \frac{1}{3}$ et $\forall n \in \mathbb{N}, \ b_n = -2$. La formule établie en 3.(b) nous donne donc, pour tout $n \in \mathbb{N}$:

$$u_n = u_0 \times a^n + \sum_{k=0}^{n-1} b_k a^{n-(k+1)}$$

$$= 1 \times \left(\frac{1}{3}\right)^n + \sum_{k=0}^{n-1} (-2) \left(\frac{1}{3}\right)^{n-(k+1)}$$

$$= \frac{1}{3^n} - \frac{2}{3^n} \sum_{k=0}^{n-1} 3^{k+1} = \frac{1}{3^n} - \frac{2}{3^n} \sum_{j=1}^n 3^j$$

$$= \frac{1}{3^n} - \frac{2}{3^n} \times \frac{3 - 3^{n+1}}{1 - 3} = \frac{1}{3^n} + \frac{3 - 3^{n+1}}{3^n}$$

$$= \frac{1 + 3}{3^n} - \frac{3^{n+1}}{3^n} = \left[\frac{4}{3^n} - 3\right].$$

 $\star\star\star$ Fin du sujet $\star\star\star$