Author Information

• Name: 鍾博丞

• Student ID: 408410120

• E-mail: <u>my072814638@csie.io</u>

Part A

We **omit the doubly-linked list** between all nearby data leaf nodes. They indeed actually exist.

A1

This is an SVG picture so please be free to zoom in.

Assign the doubly-linked list Insert the New Data Pointer to the appropriate index

Insert the New Data Pointer to the appropriate index

Insert the New Data Pointer to the appropriate index

A2

Part B

B1

Find the names of students who got grade 10 in some courses.

$$\Pi_{sname}(\sigma_{grade=10}(Enrolled)\bowtie_{Students.sid=Enrolled.sid}Students)$$

B2

Find the ages of students who take some courses with 3 credits.

$$\begin{split} &\Pi_{age}[Courses\bowtie_{Courses.cid=Enrolled.cid}(Enrolled)\\ -&\sigma_{credits\neq3}(Courses)\bowtie_{Courses.cid=Enrolled.cid}(Enrolled)]\\ &\bowtie_{Enrolled.sid=Students.sid}(Students) \end{split}$$

B3

Find the names of students who take a course named 'Calculus'.

$$\Pi_{\text{sname}}[\sigma_{\text{cname}='\text{Calculus}'}(\text{Courses}) \bowtie_{\text{Courses.cid}=\text{Enrolled.cid}} (\text{Enrolled}) \\ \bowtie_{\text{Enrolled.sid}=\text{Students.sid}} (\text{Students})]$$

B4

Find the names of students who obtained grades of at least 8 in some course that has less than 4 credits.

$$\Pi_{sname}[\sigma_{grade}\>_{>=}\>_8Enrolled\bowtie\sigma_{credits}\>_<\>_4Courses\bowtie Students]$$

B5

Find the names of students who obtained only grades of 10 (which implies that they took at least one course).

$$\begin{split} &\Pi_{sname}\{\Pi_{sid,\;sname}[Enrolled\bowtie_{Students.sid=Enrolled.sid}Students]\\ -&\Pi_{sid,\;sname}[\sigma_{grade\neq10}(Enrolled)\bowtie_{Students.sid=Enrolled.sid}(Students)]\} \end{split}$$

B6

Find the names of students who took a course with three credits or who obtained grade 10 in some course.

$$\begin{split} \Pi_{sname} \{ \{ \Pi_{sid}[\sigma_{grade=10}(Enrolled)] \\ \cup \Pi_{sid}[Enrolled \bowtie_{Enrolled.cid=Courses.cid \land Courses.credits=3} Courses] \} \\ \bowtie_{sid=Students.sid} Students \} \end{split}$$

B7

Find the ages of students who attend 'Calculus' but never took any 4-credit course (assume there is a course 'Calculus' with 3 credits).

$$\Pi_{age}[(\sigma_{cname='Calculus'}Courses \cap \sigma_{credits\neq 4}Courses) \bowtie_{Enrolled.cid=Courses.cid} Enrolled \\ \bowtie_{Enrolled.sid=Students.sid} Students]$$

B8

Find the names of students who have the lowest grades.

$$\Pi_{\mathrm{sname}}[\sigma_{\mathrm{Enrolled.grade}=\mathrm{min}(\mathrm{Enrolled.grade})}(\mathrm{Enrolled}\bowtie\mathrm{Students})]$$

B9

Find the names of students who are enrolled in a **single** course.

$$\Pi_{\text{sname}}[\sigma_{\text{count(cid)}=1}(\text{Enrolled} \bowtie \text{Students}) \bowtie \text{Courses}]$$

B10

Find the grades of students who are enrolled in the course(s) with the highest number of credits.

$$\Pi_{\text{grade}}[\text{Enrolled} \bowtie (\Pi_{\text{cid. credits}}\text{Courses}) \div \max_{\text{credits}}\text{Courses}] \bowtie \text{Students}$$

Part C

C1

C2

Every time when data leaf node overflows, the key in its parent will increase by 1 amount. In this case, the internal node already has 2 keys. If there happen 3 times of data leaf overflow, then the keys in this internal node will increase to 5 keys and thus overflow.

We observe that all these 3 data leaf nodes are full now. Therefore, we insert data into each data leaf node.

Insert the first data $x_1 < 14$, the second data $14 \le x_2 < 22$, and the third data $x_3 \ge 22$.

For example, insert 7, 16, 23.

Part D

D1

The result of bulk loading is shown below.

The last data leaf node is underflow, we have to deal with this issue.

The height of this tree is 3.

D3

We need to delete **5** keys to make the tree decrease its height.

Delete 49, 47, 45, 43, 41

Try to let underflow occurs as many times as possible when deletion.

1. Delete 49

1 3 5 7 9 11 13 15 17 19 21 23 0 25 27 29 31 0 33 35 37 39 0 41 43 45 47

2. Delete 47, 45, 43

3. Delete 41

Part E

E1

First, we insert records a to i.

We then insert record j, and this will cause overflow.

Insert Record j

	Depth	2		
1	Record	Hash_10	Hash_2	
,	g	16	010000	
	i	60	111100	

Depth	3		
Key_10	Key_2	ptr	
0	000		
1	001		
2	010		
3	011		
4	100		
5	101	•	
6	110		
7	111	•	

Depth	2	
Record	Hash_10	Hash_2
d	41	101001
f	41	101001

Depth	3		
Record	Hash_10	Hash_2	
b	26	011010	
С	26	011010	

Depth	3		
Record	Hash_10	Hash_2	
а	14	001110	
j	6	000110	

Depth	2		
Record	Hash_10	Hash_2	
е	23	010111	
h	23	010111	

Now we insert records k, l, and m.

Insert R	ecord k,	l, m	Depth	2		
			1	Record	Hash_10	Hash_2
				g	16	010000
				i	60	111100
				m	16	010000
				Depth	2	
Depth	3			Record	Hash_10	Hash_2
Key_10	Key_2	ptr		d	41	101001
0	000		/	f	41	101001
1	001			I	37	100101
2	010		\mathcal{A}	Depth	3	
3	011					
4	100			Record	Hash_10	
5	101		\wedge	b	26	011010
6	110			С	26	011010
7	111					
				Depth	3	
				Record	Hash_10	Hash_2
				а	14	001110
				j	6	000110
				Depth	2	
			V	Record	Hash_10	Hash_2
				е	23	010111
				h	23	010111
				k	43	101011

We then insert record n, and this will cause overflow.

Insert	Record	n		Depth	3	
					Hash_10	Hash_2
			/	g	16	010000
				m	16	010000
				Depth	3	
Depth	3] / /	7	Hash_10	
Key_10	Key_2	ptr	/////	i	60	111100
0	000			n	8	000100
1	001					
2	010			D "		
3	011			Depth	2	I
4	100				Hash_10	
5	101			d	41	101001
6	110] \ \	f	41	101001
7	111		<u> </u>	I	37	100101
			/	Depth	3	
				Record	Hash_10	Hash_2
			\ \	b	26	011010
				С	26	011010
				Depth	3	
				Record	Hash_10	Hash_2
				а	14	001110
				j	6	000110

E2

There are **4** buckets that have local depth 3, which are the sa

Depth	2		
^m Record ^{gl}	phashepth.	Hash_2	
е	23	010111	
h	23	010111	
k	43	101011	