Cálculo Numérico

Autovalores y autovectores de una matriz simétrica

Rafael Orive Illera

Departamento de Matemáticas Universidad Autónoma de Madrid rafael.orive@uam.es

Febrero 2020

Problema de autovalores y autovectores

Sea A matriz cuadrada real de orden n. Un número λ real o complejo se conoce como autovalor de A si existe un vector columna $v \neq 0$, que se conoce como autovector, tal que

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

Los autovalores de una matriz son las raíces del polinomio característico de A

$$p(\lambda) = \det(A - \lambda I).$$

Teorema.

Sea A simétrica. Entonces, existe un conjunto de n-pares de autovalores $\{\lambda_i, v_i\}$, i = 1, ..., n, tal que:

- $\lambda_i \in \mathbb{R}$, i = 1, ..., n, raíces de $p(\lambda)$ repetidas según su multiplicidad
- $\{v_i\}$ forman una base ortonormal y $B = [v_1, \dots, v_n]$ es tal que

$$B^tAB = diag(\lambda_1, \dots, \lambda_n).$$

Método de Householder

Objetivo: Calcular una matiz simétrica tridiagonal B que sea semejante a una matriz simétrica dada A, es decir, $B = Q^t A Q$, con Q ortogonal.

Es un primer paso para la identificación de autovalores de la matriz A que nos reduce los cálculos futuros.

Paso 1. Identificar $P^{(1)}$, matriz de reflexión Householder, tal que $A^{(1)} = P^{(1)}AP^{(1)}$ es simétrica

$$(A^{(1)})^t = (P^{(1)})^t (A)^t (P^{(1)})^t = P^{(1)} A P^{(1)} = A^{(1)}$$

y satisface: $a_{j1}^{(1)}=0$, para $j=3,\ldots,n$. Se construye $P^{(1)}$ tomando X la primera columna de A e $Y=(a_{11},\alpha,0,\ldots)^t$ con

$$\alpha = -signo(a_{21})\sqrt{a_{21}^2 + \dots + a_{n1}^2}$$

Paso 2. Se toma X segunda columna de $A^{(1)}$ e $Y = (a_{21}^{(1)}, a_{22}^{(1)}, \alpha, 0, \dots)^t$ con

$$\alpha = -signo(a_{32}^{(1)})\sqrt{(a_{32}^{(1)})^2 + \dots + (a_{n2}^{(1)})^2}$$

y se construye $P^{(2)}$, matriz de reflexión Householder, tal que $A^{(2)} = P^{(2)}A^{(1)}P^{(2)}$ es simétrica y satisface:

$$a_{ji}^{(2)} = 0$$
, para $i = 1, 2$, $j = i + 1, ..., n$.

Repetimos proceso n-2 veces de manera que

$$A^{(n-2)} = P^{(n-2)} \cdots P^{(1)} A P^{(1)} \cdots P^{(n-2)} = B$$

es la matriz simétrica tridiagonal.

Factorización QR de Jacobi

Idea. Utilizar rotaciones para hacer ceros debajo de la diagonal de una matriz A simétrica y tridiagonal.

Una matriz de rotación $P(\theta)$ del elemento ij (i < j) es una matriz identidad salvo cuatro elementos $p_{ii} = p_{jj} = cos(\theta)$ y $p_{ij} = -p_{ji} = sin(\theta)$.

- Las rotaciones son matrices ortogonales.
- $AP(\theta)$ difiere de A solo en las columnas i e j.
- $P(\theta)A$ difiere de A solo en las filas i e j.

Algoritmo. Dada A matriz cuadrada de tamaño n, simétrica y tridiagonal con coeficientes a_1, \ldots, a_n en la diagonal y b_1, \ldots, b_{n-1} fuera obtenemos la factorización A = QR con Q ortogonal y R triangular superior utilizando matrices de rotación P_i .

 \blacktriangleright Se construye P_1 matriz de rotación del elemento 12 con

$$\cos = \frac{a_1}{\sqrt{(a_1)^2 + (b_1)^2}}, \quad \sin = \frac{b_1}{\sqrt{(a_1)^2 + (b_1)^2}}$$

 \blacktriangleright En P_1A son ceros por debajo del primer elemento de la diagonal

▶ Sea $a_2^{(1)}$ el segundo elemento de la diagonal de P_1A . Se construye P_2 matriz de rotación del elemento 23 con

$$\cos = \frac{a_2^{(1)}}{\sqrt{(a_2^{(1)})^2 + (b_2)^2}}, \quad \sin = \frac{b_2}{\sqrt{(a_2^{(1)})^2 + (b_2)^2}}$$

- \blacktriangleright En P_2P_1A son ceros por debajo de los dos primeros elementos de la diagonal.
- ▶ Se repite el proceso siendo $a_{n-1}^{(n-2)}$ el penúltimo elemento de la diagonal de $P_{n-2} \cdots P_1 A$. Se construye P_{n-1} matriz de rotación del elemento n-1n con

$$\cos = \frac{a_{n-1}^{(n-2)}}{\sqrt{(a_{n-1}^{(n-2)})^2 + (b_{n-1})^2}}, \quad \sin = \frac{b_{n-1}}{\sqrt{(a_{n-1}^{(n-2)})^2 + (b_{n-1})^2}}$$

▶ Se obtiene que $P_{n-1} \cdots P_1 A = R$ es triangular superior y $Q = (P_{n-1} \cdots P_1)^t$ es matriz ortogonal tal que A = QR.

Método QR

Objetivo: Dada A matriz simétrica, obtener una matriz D "casi" diagonal y una matriz ortogonal Q tal que $Q^tAQ = D$ a partir de la factorización QR.

Algoritmo iterativo QR con Householder. Llamo $A_1 = A$. Mediante transformaciones Householder P_i se factoriza $A_1 = Q_1R_1$ con

- $ightharpoonup R_1 = P_{n-1} \cdots P_1 A_1$ triangular superior
- $ightharpoonup Q_1 = P_1 \cdots P_{n-1}$ ortogonal

 P_k , k = 1, ..., n-1, es la i-éxima transformación de Householder con X es la k-éxima columna de $P_{k-1} \cdots P_1 A_1$.

▶ Se define $A_2 = R_1Q_1$ matriz equivalente de A_1 ya que

$$A_2 = Q_1^t A_1 Q_1$$
 porque $R_1 = Q_1^t A_1$.

Si la matriz A_1 es simétrica, la matriz A_2 es simétrica:

$$A_2^t = (Q_1)^t (A_1)^t (Q_1^t)^t = Q_1^t A_1 Q_1 = A_2.$$

Si la matriz A_1 es simétrica y tridiagonal, la matriz A_2 es simétrica y tridiagonal.

Algoritmo iterativo QR con Jacobi. Sea A matriz simétrica y tridiagonal. Llamo $A_1 = A$. Mediante rotaciones P_i se factoriza $A_1 = Q_1R_1$ con

- $ightharpoonup R_1 = P_{n-1} \cdots P_1 A_1$ triangular superior
- $ightharpoonup Q_1 = (P_{n-1} \cdots P_1)^t$ ortogonal
- ▶ Se define $A_2 = R_1Q_1$ matriz equivalente de A_1

El algoritmo mantiene la simetría y la tridiagonalidad en A_2 .

Se repite k-1 veces el proceso:

- ightharpoonup Dada A_i matriz simétrica y tridiagonal.
- ▶ Se factoriza $A_i = Q_i R_i$, Q_i ortogonal y R_i triagular superior.
- \blacktriangleright Se define $A_{i+1} = R_i Q_i$

Se obtiene $A_k = (a_{ij}^k)$ y se concluye cuando $a_{ij}^k \approx 0$ cuando $i \neq j$. Entonces, para k adecuado

$$A_k \approx diag(\lambda_1, \dots, \lambda_n), \qquad Q_1 \cdots Q_k \approx Q.$$

Problema. Es muy lento. Suponiendo que

$$|\lambda_1| > |\lambda_2| > \cdots > |\lambda_n|,$$

la velocidad de convergencia viene dado por $\max\{|\lambda_{i+1}|/|\lambda_i|, i=1,\ldots,n-1\}$.

Mejora: Aceleración con traslaciones

Idea. Si λ_i es un autovalor de A entonces $\lambda_j - s$ es un autovalor de B = A - sI con mismo autovector.

Algoritmo iterativo. Llamo $A_1 = A$ matriz simétrica tridiagonal.

▶ Identifico s_1 autovalor de $\widetilde{A_1}$ más cercano a a_n donde

$$\widetilde{A_1} = \left(\begin{array}{cc} a_{n-1n-1} & a_{n-1n} \\ a_{nn-1} & a_{nn} \end{array}\right)$$

- ▶ Se factoriza $A_1 s_1I = Q_1R_1$, R_1 triangular superior, Q_1 ortogonal
- ▶ Se define $A_2 = R_1Q_1$ matriz equivalente de $A_1 s_1I$.

Se repite el proceso k veces obteniendo $A_k=(a_{ij}^k)$ y se concluye cuando $a_{nj}^{k+1}\approx 0$ cuando $j\neq n$. Entonces, $a_{nn}^{k+1}+s_1+\cdots+s_k\approx \lambda_n$ y la última columna de $Q_1\cdots Q_k$ converge al autovector de λ_n .

Llamo A_1 a la matriz de tamaño n-1 de las primeras filas y columnas de A_k y repito el proceso para obtener λ_{n-1} pero ahora con una matriz de tamaño uno menos.