Examples of how to use shortex.sty

Created by Trevor Campbell, Jonathan Huggins, and Jeff Negrea Updated February 10, 2023

1 Brackets and bracket-like functions

You can specify a bracket size using * for $\$ left and $\$ right or one of the standard size choices ($\$ big, $\$ Big, $\$ Bigg).

Description	Example	Text style	Display style
Round brackets (i.e., parentheses)	\rbra{\frac{x}{y}}	$(\frac{x}{y})$	$(\frac{x}{y})$
Curly brackets	\cbra*{\frac{x}{y}}	$\left\{\frac{x}{y}\right\}$	$\left\{\frac{x}{y}\right\}$
Square brackets	\sbra[\bigg]{\frac{x}{y}}	$\left[rac{x}{y} ight]$	$\left[\frac{x}{y}\right]$

Many other bracket-like, semantic commands are also available:

Description	Example	Text style	Display style
Absolute value	$\abs{\frac{x}{y}}$	$\left \frac{x}{y}\right $	$ \frac{x}{y} $
Set	$\ensuremath{\texttt{x}}{y}, \ensuremath{\texttt{y}}{z}$	$\left\{\frac{x}{y}, \frac{y}{z}\right\}$	$\{\frac{x}{y}, \frac{y}{z}\}$
Floor	\floor{\frac{x}{y}}	$\lfloor \frac{x}{y} \rfloor$	$\lfloor \frac{x}{y} \rfloor$
Ceiling	$\c \frac{x}{y}$	$\lceil \frac{x}{y} \rceil$	$\lceil \frac{x}{y} \rceil$
Norm	<pre>\norm{\frac{x}{y}}</pre>	$\ \frac{x}{y}\ $	$\ \frac{x}{y}\ $
Inner product	$\label{linear} $$ \displaystyle \lim_{x}{y}}{\frac{y}}{z}}$	$\langle \frac{x}{y}, \frac{y}{z} \rangle$	$\langle \frac{x}{y}, \frac{y}{z} \rangle$
Cardinality	\card{\whA}	$ \widehat{A} $	$ \widehat{A} $

The norm and inner product commands also have versions with a subscript argument:

Description	Example	Text style	Display style
Norm with subscript	$\verb \normsub*{\frac{x}{y}}{2} $	$\left\ \frac{x}{y} \right\ _2$	$\left\ \frac{x}{y} \right\ _2$
Inner product with subscript	$\label{linersub*{frac}x} $$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\left\langle \frac{x}{y},z\right\rangle _{2}$	$\left\langle \frac{x}{y}, z \right\rangle_2$

L_p Spaces and Operators

Description	Example	Text style	Display style
L_p space	\Lp{2}	L_2	L_2
L_p space for specified measure	\Lpmeas{2}{\hmu}	$L_2(\hat{\mu})$	$L_2(\hat{\mu})$
	\Lpmeas[\Big]{2}{\hmu}	$L_2\Big(\hat{\mu}\Big)$	$L_2\Big(\hat{\mu}\Big)$
L_p norm	\Lpnorm{\hGamma}{2}	$\ \hat{\Gamma}\ _{L_2}$	$\ \hat{\Gamma}\ _{L_2}$
	\Lpnorm*{\hGamma}{2}	$\left\ \hat{\Gamma} \right\ _{L_2}$	$\left\ \hat{\Gamma} \right\ _{L_2}$
	\Lpnorm*{\Gamma}{2}	$\ \Gamma\ _{L_2}$	$\ \Gamma\ _{L_2}$
	\left\Vert{\hGamma}\right\Vert_{2}	$\left\ \hat{\Gamma} \right\ _2$	$\left\ \hat{\Gamma} ight\ _2$
	$\label{left} $$\left(\operatorname{Camma}\right) \simeq {2} $	$\left\ \Gamma\right\ _2$	$\left\ \Gamma\right\ _2$
L_p norm for specified measure	\Lpmeasnorm{\hGamma}{2}{\hmu}	$\ \hat{\Gamma}\ _{L_2(\hat{\mu})}$	$\ \hat{\Gamma}\ _{L_2(\hat{\mu})}$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\left\ \hat{\Gamma}\right\ _{L_2(\hat{\mu})}$	$\left\ \hat{\Gamma}\right\ _{L_2(\hat{\mu})}$
L_p inner product	\Lpinner{\hGamma}{\Gamma}{2}	$\langle \hat{\Gamma}, \Gamma \rangle_{L_2}$	
	\Lpinner*{\hGamma}{\Gamma}{2}	$\left\langle \hat{\Gamma}, \Gamma \right\rangle_{L_2}$	$\left\langle \hat{\Gamma}, \Gamma \right\rangle_{L_2}$
L_p inner product for specified measure	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\langle \hat{\Gamma}, \Gamma \rangle_{L_2(\hat{\mu})}$	$\langle \hat{\Gamma}, \Gamma \rangle_{L_2(\hat{\mu})}$
	lem:lem:lem:lem:lem:lem:lem:lem:lem:lem:	$\left\langle \hat{\Gamma}, \Gamma \right\rangle_{L_2(\hat{\mu})}$	$\langle \hat{\Gamma}, \Gamma \rangle_{L_2(\hat{\mu})}$

3 annotation commands

 \bar{A} \barA \bara \bar{a} \bar{A} \bA \bB \bar{B} \balpha $\bar{\alpha}$ $\bar{\Gamma}$ \bGamma \mathcal{A} \mcA $\hat{\mathcal{A}}$ \mbox{hmcA} \mfA \mathfrak{A} \mfa \mathfrak{a} \bmfA \mathfrak{A} \bmfa \mathfrak{a} \hat{A} \hA \ha \hat{a} \halpha $\hat{\alpha}$ $\hat{\Gamma}$ \h Gamma ${\bf \hat{A}}$ \bhA \bha â \bhalpha $\hat{\boldsymbol{\alpha}}$ $\hat{\boldsymbol{\Gamma}}$ \bhGamma \widehat{A} \whA \wha \widehat{a} \tdA \tilde{A} \tilde{a} \tda \tdalpha $\tilde{\alpha}$ $\tilde{\Gamma}$ \tdGamma ${\bf \tilde{A}}$ \btdA \btda $\tilde{\mathbf{a}}$ \btdalpha $\tilde{\alpha}$ $ilde{f \Gamma}$ \btdGamma \biA \boldsymbol{A} \bia \boldsymbol{a} $\hat{m{A}}$ \bhiA \bhia