Mein Dokument

Dein Name

29. Juni 2025

Kapitel 1

Grundlagen

1.1 Grundgleichungen der Weber-Kraft

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right)$$

Daraus folgt die Bewegungsgleichung:

$$\ddot{r} - r \dot{\varphi}^2 = -\frac{GM}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r \ddot{r}}{2c^2} \right)$$

1.2 Klassische Lösung (0. Ordnung)

Für $c \to \infty$ ergibt sich die Kepler-Bahn:

$$r_0(\varphi) = \frac{a(1 - e^2)}{1 + e\cos\varphi}$$

$$a_0(\varphi) = -\frac{GM}{r_0^2(\varphi)}$$

1.3 Relativistische Korrektur (1. Ordnung)

Störungsansatz für die Beschleunigung:

$$a(\varphi) = a_0(\varphi) + \frac{GM}{c^2}a_1(\varphi) + \mathcal{O}(1/c^4)$$

Einsetzen in die Bewegungsgleichung liefert den Korrekturterm:

$$a_1(\varphi) = \frac{GM}{r_0^2(\varphi)} \left(\frac{3h^2}{r_0^2(\varphi)} - \frac{h^2}{2GMr_0(\varphi)} \left(\frac{dr_0}{d\varphi} \right)^2 \right)$$

1.4 Beschleunigung bis zur 1. Ordnung

$$a(\varphi) = -\frac{GM}{r_0^2(\varphi)} \left[1 - \frac{1}{c^2} \left(\frac{3h^2}{r_0^2(\varphi)} - \frac{h^2}{2GMr_0(\varphi)} \left(\frac{dr_0}{d\varphi} \right)^2 \right) \right]$$

Hinweis: $r_0(\varphi)$ ist die klassische Kepler-Lösung, h der spezifische Drehimpuls.

1.5 Explizite Form mit Bahnelementen

Einsetzen von $r_0(\varphi) = \frac{a(1-e^2)}{1+e\cos\varphi}$:

$$a(\varphi) = -\frac{GM(1 + e\cos\varphi)^2}{a^2(1 - e^2)^2} \left[1 - \frac{3h^2(1 + e\cos\varphi)^2}{c^2a^2(1 - e^2)^2} + \frac{h^2e^2\sin^2\varphi}{2c^2GMa^3(1 - e^2)^3} (1 + e\cos\varphi)^3 \right]$$

1.6 Theoretische Grundlage

$$r(\phi) = r_{\text{ART}}(\phi) + \delta r(\phi)$$

Hier ist $r_{\text{ART}}(\phi)$ die analytische Näherung (ART-genau) und $\delta r(\phi)$ die numerisch berechnete Korrektur.

1.7 Schrittweitensteuerung

Die Schrittweite $\Delta\phi$ wird dynamisch aus den analytischen Ableitungen bestimmt:

$$\Delta \phi = \min \left(\Delta \phi_{\max}, \frac{\epsilon}{|w(\phi)| + |v(\phi)|} \right)$$

mit $v(\phi)=\frac{dr}{d\phi}$ und $w(\phi)=\frac{d^2r}{d\phi^2}$ aus der ART-Näherung.

1.8 Numerische Korrektur

In jedem Schritt wird nur die Abweichung von der ART-Näherung numerisch integriert:

 $\delta r(\phi + \Delta \phi) = \delta r(\phi) + \text{Numerische Integration von (DGL - ART-Ableitung)}$

1.9 Gesamtlösung

Die finale Lösung kombiniert beide Anteile:

$$r(\phi + \Delta\phi) = r_{\text{ART}}(\phi + \Delta\phi) + \delta r(\phi + \Delta\phi)$$

1.10 Kartesische Koordinaten

$$\begin{split} \vec{r}(\phi) &= \begin{pmatrix} x(\phi) \\ y(\phi) \end{pmatrix} \\ r(\phi) &= \sqrt{x(\phi)^2 + y(\phi)^2} \\ \omega(\phi) &= \frac{d\phi}{dt} = \frac{h}{r(\phi)^2} \end{split}$$

14

1.11 Weber-Kraft in kartesischer Form

$$\vec{F} = -\frac{GMm}{r^3}\vec{r}\left(1 - \frac{|\dot{\vec{r}}|^2}{c^2} + \frac{\vec{r}\cdot\ddot{\vec{r}}}{2c^2}\right)$$

Zeitliche Ableitungen 1.12

$$\dot{\vec{r}} = \omega \frac{d\vec{r}}{d\phi} = \omega \vec{r}'$$

$$\begin{split} \dot{\vec{r}} &= \omega \frac{d\vec{r}}{d\phi} = \omega \vec{r}' \\ \ddot{\vec{r}} &= \omega^2 \vec{r}'' + \omega \frac{d\omega}{d\phi} \vec{r}' \end{split}$$

1.13 Skalarprodukte

$$|\dot{\vec{r}}|^2 = \omega^2 (x'^2 + y'^2)$$

$$\vec{r} \cdot \ddot{\vec{r}} = \omega^2 (xx'' + yy'') + \omega \frac{d\omega}{d\phi} (xx' + yy')$$

1.14 Differential gleichung für $x(\phi)$

$$x'' = \frac{1}{1 + \frac{GM}{2c^2r}} \left[\frac{2(x'^2 + y'^2)}{r^2} x - \frac{GM}{\omega^2 r^3} x \left(1 - \frac{\omega^2 (x'^2 + y'^2)}{c^2} \right) \right]$$

1.15 Differential gleichung für $y(\phi)$

$$y'' = \frac{1}{1 + \frac{GM}{2c^2r}} \left[\frac{2(x'^2 + y'^2)}{r^2} y - \frac{GM}{\omega^2 r^3} y \left(1 - \frac{\omega^2 (x'^2 + y'^2)}{c^2} \right) \right]$$

1.16 Differential gleichung für $\omega(\phi)$

$$\frac{d\omega}{d\phi} = -\frac{2h}{r^3}(xx' + yy')$$

Zusammenfassung des DGL-Systems 1.17

$$\vec{Y} = \begin{pmatrix} x \\ y \\ x' \\ y' \\ \omega \end{pmatrix}$$

$$\vec{Y} = \begin{pmatrix} x \\ y \\ x' \\ y' \\ \omega \end{pmatrix}$$

$$\frac{d\vec{Y}}{d\phi} = \begin{pmatrix} x' \\ y' \\ x'' \\ y'' \\ \omega' \end{pmatrix}$$

1.18 Koordinatensystem und Basisvektoren

$$\begin{split} \hat{e}_r &= \cos\phi \, \hat{i} + \sin\phi \, \hat{j} \\ \hat{e}_\phi &= -\sin\phi \, \hat{i} + \cos\phi \, \hat{j} \\ \vec{r} &= r \hat{e}_r, \quad \dot{\vec{r}} = \dot{r} \hat{e}_r + r \dot{\phi} \hat{e}_\phi \end{split}$$

1.19 Post-Newtonische Kraft in vektorieller Form

$$\vec{F} = -\frac{GMm}{r^2} \left(1 - \frac{|\dot{\vec{r}}|^2}{c^2} + \frac{(\vec{r} \cdot \ddot{\vec{r}})}{2c^2} \right) \hat{e}_r$$

${\bf 1.20}\quad {\bf Geschwindigkeits quadrat}$

$$|\dot{\vec{r}}|^2 = \dot{r}^2 + r^2 \dot{\phi}^2$$

${\bf 1.21}\quad Beschleunigungs skalar produkt$

$$\vec{r} \cdot \ddot{\vec{r}} = r\ddot{r} - r^2 \dot{\phi}^2$$

1.22 Bewegungsgleichung in vektorieller Form

$$m\ddot{\vec{r}} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2 + r^2 \dot{\phi}^2}{c^2} + \frac{r\ddot{r} - r^2 \dot{\phi}^2}{2c^2} \right) \hat{e}_r$$

${\bf 1.23}\quad {\bf Differential gleichungs system}$

$$\begin{cases} \frac{d^2x}{d\phi^2} = f_x \left(x, y, \frac{dx}{d\phi}, \frac{dy}{d\phi} \right) \\ \frac{d^2y}{d\phi^2} = f_y \left(x, y, \frac{dx}{d\phi}, \frac{dy}{d\phi} \right) \end{cases}$$

1.24 Explizite DGL für x-Komponente

$$\frac{d^2x}{d\phi^2} = \frac{\frac{GMm^2}{L^2}\frac{x}{r^3} - \frac{x}{r^2} - \frac{GM}{c^2} \left[\frac{1}{r^2} \left(\frac{dx}{d\phi} \frac{dy}{d\phi} (y \frac{dx}{d\phi} - x \frac{dy}{d\phi}) + \frac{x}{2r^4} \left((\frac{dx}{d\phi})^2 + (\frac{dy}{d\phi})^2 \right) \right) \right]}{1 - \frac{GM}{2c^2r}}$$

1.25 Explizite DGL für y-Komponente

$$\frac{d^2y}{d\phi^2} = \frac{\frac{GMm^2}{L^2}\frac{y}{r^3} - \frac{y}{r^2} - \frac{GM}{c^2}\left[\frac{1}{r^2}\left(\frac{dx}{d\phi}\frac{dy}{d\phi}(x\frac{dy}{d\phi} - y\frac{dx}{d\phi}) + \frac{y}{2r^4}\left((\frac{dx}{d\phi})^2 + (\frac{dy}{d\phi})^2\right)\right)\right]}{1 - \frac{GM}{2c^2r}}$$

1.26 Transformiertes System 1. Ordnung

$$\begin{cases} \frac{dx}{d\phi} = v_x \\ \frac{dy}{d\phi} = v_y \\ \frac{dv_x}{d\phi} = f_x(x, y, v_x, v_y) \\ \frac{dv_y}{d\phi} = f_y(x, y, v_x, v_y) \end{cases}$$

1.27 Klassische Weber-Kraft (Elektrodynamik)

$$F_{Weber}^{EM} = \frac{Qq}{4\pi\epsilon_0 r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{2r\ddot{r}}{c^2}\right) \hat{r}$$

1.28 Quantisierte Weber-Kraft (Gittermodell)

$$F_{Weber}^{QED} = \frac{V_1(t)V_2(t)}{4\pi\epsilon_0(nL_p)^2} \left(1 - \frac{(\Delta L_p/\Delta t_p)^2}{c^2} + \frac{2L_p\Delta^2 L_p}{c^2\Delta t_p^2}\right) \hat{r}$$

1.29 Elektrisches Feld als Deformationsgradient

$$\vec{E} = \frac{\Delta(\text{Zellvolumen})}{L_p^3} \cdot \hat{r}$$

1.30 Universelle Weber-Kraft

$$F_{universal} = \frac{K \cdot V_1(t) V_2(t)}{(nL_p)^2} \left(1 - \frac{v_{eff}^2}{c^2} + \frac{\beta L_p a_{eff}}{c^2} \right) \hat{r}$$

1.31 Energie-Impuls-Beziehung für Photonen

$$E = \hbar \nu = \frac{hc}{\lambda}$$

1.32 Webers Gravitationskraft

$$F = \frac{G \cdot M \cdot m}{r^2} \cdot \left[1 - \frac{v^2}{c^2} + \frac{r \cdot a}{c^2}\right]$$

1.33 Theorievergleich: ART vs. Weber

Aspekt	ART	Weber
Raummodell	Raumzeitkrümmung	Direkte Teilchenwechselwirkung
Gravitationswellen	Vorhanden	Nicht existent
Schwarze Löcher	Singularitäten	Keine Singularitäten
Galaxienrotation	Dunkle Materie benötigt	Natürliche Erklärung
Quantenkompatibilität	Problemhaft	Einfacher quantisierbar

1.34 Vorteile der Weber-Theorie

- Erklärt Galaxienrotation ohne Dunkle Materie
- Vermeidet Singularitäten
- $\bullet\,$ Leichter mit Quantenphysik vereinbar
- Direkte Kräfte zwischen Teilchen (keine Raumkrümmung)

1.35 Historische Dominanz der ART

- Frühe experimentelle Bestätigung (1919)
- Einsteins Bekanntheit
- $\bullet\,$ Forschungsinfrastruktur auf ART ausgerichtet
- $\bullet\,$ Weber-Theorie als ältmodischäbgetan

1.36 Quantengravitation mit Weber

- \bullet Keine Hawking-Strahlung vorhergesagt
- $\bullet\,$ Neue Gravitationssignal-Typen möglich
- Direkte Quantisierung der Kraftgleichung
- $\bullet\,$ Kompatibel mit Quantenfeld theorien

1.37 Modifizierte Weber-Kraft (gravitativ)

$$F_{Weber}^{Grav} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right) \hat{r}$$

1.38 Periheldrehung des Merkur

$$\Delta\theta = \frac{6\pi GM}{ac^2(1-e^2)}$$

1.39 Allgemeine β -Formel

$$\beta = 2 \cdot \left(\frac{1}{2}\right)^{\delta} \cdot \left(1 - \frac{mc^2}{E}\right)$$

1.40 Universelle Weber-Kraft für Massen

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right)$$

1.41 Gravitationswellengleichung

$$\Box h_{\mu\nu} = -\frac{16\pi G}{c^4} \left(T_{\mu\nu} - \frac{1}{2}\beta \cdot \partial_t^2 Q_{\mu\nu} \right)$$

1.42 Quantisierte Weber-Kraft (QED)

$$F_{Weber}^{QED} = \frac{V_1(t)V_2(t)}{4\pi\epsilon_0(nL_p)^2} \left(1 - \frac{(\Delta L_p/\Delta t_p)^2}{c^2} + \frac{2L_p\Delta^2 L_p}{c^2\Delta t_p^2}\right) \hat{r}$$

1.43 Frequenzabhängige Lichtablenkung

$$\Delta\phi \sim \frac{4GM}{c^2b} \left(1 + \frac{\lambda_0^2}{\lambda^2} \right)$$

1.44 Hamiltonian des Dodekaeder-Gitters

$$\mathcal{H} = \sum_{\mathrm{Kanten}} \epsilon (V_i(t) - V_j(t))^2$$

48

1.45 Modifizierte Weber-Kraft (gravitativ)

$$F_{Weber}^{Grav} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right) \hat{r}$$

1.46 Periheldrehung des Merkur

$$\Delta\theta = \frac{6\pi GM}{ac^2(1-e^2)}$$

1.47 Gravitative Rotverschiebung

$$\frac{\Delta\lambda}{\lambda} = \frac{GM}{c^2r} + \frac{v_r^2}{2c^2}$$

1.48 Shapiro-Laufzeitverzögerung

$$\Delta t \approx \frac{4GM}{c^3} \ln \left(\frac{4r_1 r_2}{b^2} \right)$$

${\bf 1.49}\quad {\bf Gravitations wellen-Quadrupol formel}$

$$F_{\rm GW} = -\frac{G}{c^4} \cdot \frac{\partial^3 Q_{ij}}{\partial t^3} \cdot \frac{x^i x^j}{r^3}$$

1.50 Quantisierte Raumzeit-Parameter

$$L_p = \sqrt{\frac{\hbar G}{c^3}} \approx 1.616 \times 10^{-35} \mathrm{m}$$

$$t_p = \sqrt{\frac{\hbar G}{c^5}} \approx 5.391 \times 10^{-44} \text{s}$$

$1.51\quad \text{Weber-Kraft im Dreik\"{o}rpersystem}$

$$\mathbf{F}_{1} = -Gm_{1} \left[\frac{m_{2}}{r_{12}^{3}} \mathbf{r}_{12} \left(1 - \frac{\dot{r}_{12}^{2}}{c^{2}} + \frac{r_{12}\ddot{r}_{12}}{2c^{2}} \right) + \frac{m_{3}}{r_{13}^{3}} \mathbf{r}_{13} \left(1 - \frac{\dot{r}_{13}^{2}}{c^{2}} + \frac{r_{13}\ddot{r}_{13}}{2c^{2}} \right) \right]$$

1.52 Modifizierte Weber-Kraft

$$F_{Weber} = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right)$$

1.53 Predictor-Corrector-Verfahren

- Berechne aktuelle Beschleunigung $a = F_{weber}(r, v)/m$
- Vorhersage neue Geschwindigkeit $v_{neu} = v + a \cdot dt$
- Vorhersage neue Position $r_{neu} = r + v \cdot dt + 0.5 \cdot a \cdot dt^2$
- Neuberechnung $a_{neu} = F_{weber}(r_{neu}, v_{neu})/m$
- Korrektur $v = v + 0.5 \cdot (a + a_{neu}) \cdot dt$
- Update $r = r + v \cdot dt + 0.5 \cdot a_{neu} \cdot dt^2$

1.54 Symplektische Integration

$$\begin{cases} q_{n+1} = q_n + p_n \cdot dt \\ p_{n+1} = p_n - \nabla V(q_{n+1}) \cdot dt \end{cases}$$

$1.55 \quad \text{Gitter-QCD-Ansatz}$

$$S = \sum_{x,\mu<\nu} \operatorname{Re} \operatorname{Tr}(1 - U_{\mu\nu}(x)) + \sum_{x} \bar{\psi}(x) D\psi(x)$$

1.56 N-Körper-Weber-Kraft

$$\mathbf{F}_{i} = -G \sum_{j \neq i} \frac{m_{i} m_{j}}{r_{ij}^{3}} \mathbf{r}_{ij} \left(1 - \frac{\dot{r}_{ij}^{2}}{c^{2}} + \frac{r_{ij} \ddot{r}_{ij}}{2c^{2}} \right)$$

1.57 Weber-Gravitationskraft

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2}\right)$$

1.58 Bewegungsgleichung in Polarkoordinaten

$$m(\ddot{r} - r\dot{\phi}^2) = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2} \right)$$

1.59 Drehimpulserhaltung

$$h=r^2\dot{\phi}={
m konstant}$$

$$\dot{\phi}={h\over r^2}$$

1.60 Modifizierte Radialgleichung

$$\frac{d^2u}{d\varphi^2} + u = \frac{GM}{h^2} + \frac{3GM}{c^2}u^2 - \frac{GM}{2c^2h^2}\left(\frac{du}{d\varphi}\right)^2$$

1.61 Winkelgeschwindigkeit

$$\dot{\phi}(\varphi) = \frac{h}{r(\varphi)^2}$$

1.62 Näherungslösung für Merkurbahn

$$\begin{split} r(\varphi) &\approx \frac{a(1-e^2)}{1+e\cos\varphi} \left[1 + \frac{3GM}{c^2a(1-e^2)} \varphi e\sin\varphi \right] \\ \dot{\phi}(\varphi) &\approx \frac{h(1+e\cos\varphi)^2}{a^2(1-e^2)^2} \left[1 - \frac{6GM}{c^2a(1-e^2)} \varphi e\sin\varphi \right] \end{split}$$

1.63 Die Kerninnovation

$$\mathbf{F} = -\mathbf{F}_{\text{Newton}} \left(1 - \frac{(\dot{\mathbf{r}})^2}{c^2} + \frac{\mathbf{r} \cdot \ddot{\mathbf{r}}}{2c^2} \right)$$

1.64 Vollständige Impulsdynamik

$$\mathbf{p}(\phi) = \frac{L}{a(1 - e^2)} \left[e \sin \phi (1 + e \cos \phi) \hat{r} + (1 + e \cos \phi) \hat{\phi} \right]$$

${\bf 1.65}\quad Impulsverteilung smechanismus$

$$\Delta \mathbf{p}_i = -\frac{m_i}{\sum_{j \neq k} m_j} \mathbf{K}_{ik} \Delta \mathbf{p}_k$$

$$\mathbf{K}_{ik} = \frac{(\mathbf{r}_k - \mathbf{r}_i) \otimes (\mathbf{r}_k - \mathbf{r}_i)}{|\mathbf{r}_k - \mathbf{r}_i|^2}$$

1.66 Iterationsschema der Impulsverteilung

$$\Delta \mathbf{p}_{i}^{(n+1)} = \sum_{j \neq i} \mathcal{K}_{ij} \Delta \mathbf{p}_{j}^{(n)}$$

$$\mathcal{K}_{ij} = -\frac{m_i}{\sum_{k \neq j} m_k} \mathbf{K}_{ij}$$

${\bf 1.67}\quad {\bf Gesamtkopplungsmatrix}$

$$\mathcal{K} = \begin{pmatrix} 0 & \mathcal{K}_{12} & \cdots & \mathcal{K}_{1N} \\ \mathcal{K}_{21} & 0 & \cdots & \mathcal{K}_{2N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathcal{K}_{N1} & \mathcal{K}_{N2} & \cdots & 0 \end{pmatrix}$$
$$\Delta \vec{P} = (I - \mathcal{K})^{-1} \Delta \vec{P}^{(0)}$$

1.68 Konvergenzkriterium

$$\sum_{n=0}^{\infty} \|\mathcal{K}^n\| \cdot \|\Delta \vec{P}^{(0)}\| < \epsilon$$

1.69 Erhaltungssicherung

$$\Delta \mathbf{p}_k \leftarrow \Delta \mathbf{p}_k - \sum_{i \neq k} \Delta \mathbf{p}_i$$
 (Gesamtimpuls)

$$\Delta \mathbf{p}_i \leftarrow \Delta \mathbf{p}_i - \frac{\Delta E}{\sum m_i v_i^2} m_i v_i$$
 (Energie)

$$\Delta \mathbf{p}_i \leftarrow \Delta \mathbf{p}_i - \frac{\Delta \mathbf{L} \times \mathbf{r}_i}{|\mathbf{r}_i|^2}$$
 (Drehimpuls)

1.70 Modifizierte Kraftgleichung

$$\mathbf{F} = -\mathbf{F}_{\text{Newton}} \left(1 - \frac{(\dot{\mathbf{r}})^2}{c^2} + \frac{\mathbf{r} \cdot \ddot{\mathbf{r}}}{2c^2} \right)$$

1.71 Impulsgleichung für modifizierte Keplerbahn

$$\mathbf{p}(\phi) = \frac{L}{a(1 - e^2)} \left[e \sin \phi (1 + e \cos \phi) \hat{r} + (1 + e \cos \phi) \hat{\phi} \right]$$

1.72 Vollständige Impulsverteilung

1.72.1 Grundprinzip

$$\Delta \mathbf{p}_i = -\frac{m_i}{\sum_{j \neq k} m_j} \mathbf{K}_{ik} \Delta \mathbf{p}_k$$

- m_i : Masse des Körpers i
- $\sum_{j \neq k} m_j$: Gesamtmasse aller anderen Körper
- \mathbf{K}_{ik} : Kopplungsmatrix

1.72.2 Kopplungsmatrix

$$\mathbf{K}_{ik} = \frac{(\mathbf{r}_k - \mathbf{r}_i) \otimes (\mathbf{r}_k - \mathbf{r}_i)}{|\mathbf{r}_k - \mathbf{r}_i|^2}, \quad \|\mathbf{K}_{ik}\| = 1$$
$$\mathbf{a} \otimes \mathbf{b} = \begin{pmatrix} a_x b_x & a_x b_y & a_x b_z \\ a_y b_x & a_y b_y & a_y b_z \\ a_z b_x & a_z b_y & a_z b_z \end{pmatrix}$$

1.72.3 Erhaltungssätze

1. Impulserhaltung:

$$\sum_{i} \Delta \mathbf{p}_i + \Delta \mathbf{p}_k = 0$$

2. Schwerpunkterhaltung:

$$\sum_{i} m_i \Delta \mathbf{r}_i = 0$$

3. Drehimpulserhaltung:

$$\sum_{i} \mathbf{r}_{i} \times \Delta \mathbf{p}_{i} + \mathbf{r}_{k} \times \Delta \mathbf{p}_{k} = 0$$

1.72.4 Spezialfall: Zwei Körper

$$\Delta \mathbf{p}_1 = -\frac{m_1}{m_2} \mathbf{K}_{12} \Delta \mathbf{p}_2$$
$$\mathbf{K}_{12} = \frac{(\mathbf{r}_2 - \mathbf{r}_1) \otimes (\mathbf{r}_2 - \mathbf{r}_1)}{|\mathbf{r}_2 - \mathbf{r}_1|^2}$$

1.73 Ausgangsgleichungen

1.73.1 Keplerbahn

$$r(\phi) = \frac{a(1 - e^2)}{1 + e\cos\phi}$$

1.73.2 Drehimpulserhaltung

$$\dot{\phi} = \frac{L}{mr(\phi)^2}$$

1.74 Geschwindigkeitskomponenten

$1.74.1 \quad {\bf Radialgeschwindigkeit}$

$$\dot{r} = \frac{Le\sin\phi}{ma(1-e^2)}(1+e\cos\phi)$$

1.74.2 Azimutalgeschwindigkeit

$$r\dot{\phi} = \frac{L(1+e\cos\phi)}{ma(1-e^2)}$$

1.75 Impulsberechnung

1.75.1 Impuls in Polarkoordinaten

$$\mathbf{p} = m \left(\dot{r} \hat{r} + r \dot{\phi} \hat{\phi} \right)$$

1.75.2 Endergebnis

$$\mathbf{p}(\phi) = \frac{L}{a(1 - e^2)} \left[e \sin \phi (1 + e \cos \phi) \hat{r} + (1 + e \cos \phi) \hat{\phi} \right]$$

1.75.3 Betrag des Impulses

$$|\mathbf{p}(\phi)| = \frac{L(1 + e\cos\phi)}{a(1 - e^2)}\sqrt{1 + e^2\sin^2\phi}$$

1.76 Spezialfälle

1.76.1 Kreisbahn (e = 0)

$$\mathbf{p} = \frac{L}{a}\hat{\phi}, \quad |\mathbf{p}| = \frac{L}{a}$$

1.76.2 Perihel $(\phi = 0)$

$$\mathbf{p} = \frac{L}{a(1-e)}\hat{\phi}$$

1.76.3 Aphel ($\phi = \pi$)

$$\mathbf{p} = \frac{L}{a(1+e)}\hat{\phi}$$

1.77 Physikalische Interpretation

- Azimutaler Impuls p_ϕ ist maximal im Perihel und minimal im Aphel
- \bullet Radialer Impuls p_r verschwindet in Perihel und Aphel
- \bullet Drehimpuls Lbleibt erhalten (Zentralkraft)
- Winkelabhängigkeit zeigt Modulation durch Exzentrizität