

Sebaran Normal Ganda

Pertemuan 2 - STA1342

Sebaran Normal Univariat

Fungsi kepekatan peluang dari sebaran Normal univariat (p=1) adalah sebagai berikut:

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right\}$$
 for $-\infty < x < \infty$

Dengan parameter:

$$\mu = E(X) = \text{mean}$$
 $\sigma^2 = \text{var}(X) = \text{variance}$

dalam bentuk lain dapat dinyatakan:

$$\left(\frac{x-\mu}{\sigma}\right)^2 = (x-\mu)(\sigma^2)^{-1}(x-\mu)$$

Sifat Sebaran Normal Univariat

Plot dari fungsi sebelumnya akan menghasilkan kurva berbentuk lonceng dengan ciri sebagai berikut:

- 1. Simetrik terhadap nilai tengah (μ)
- 2. Nilai tengah, median, dan modus berada pada titik yang sama
- 3. Peluang amatan berada antara $\mu \pm \sigma$ adalah 68%
- 4. Peluang amatan berada antara $\mu \pm 1.96\sigma$ adalah 95%.

Sebaran Normal univariat beserta parameternya dinotasikan dengan $N(\mu, \sigma^2)$

Sebaran Normal Ganda

Fungsi kepekatan sebaran Normal ganda (multivariate normal) merupakan generalisasi dari fungsi kepekatan Normal univariat dengan p ≥ 2 dimensi.

$$\left(\frac{x-\mu}{\sigma}\right)^2 = (x-\mu)(\sigma^2)^{-1}(x-\mu) \qquad \frac{p \ge 2}{\text{Bentuk eksponen multivariat}} \qquad (x-\mu)' \mathbf{\Sigma}^{-1}(\mathbf{x}-\mu) = \Delta^2$$
Jarak
Mahalanobis

- di mana:
 - x' = [x1, ..., xp] yang merupakan vektor peubah
 - $\mu' = [\mu 1, ..., \mu p]$ yang merupakan nilai tengah dari vektor acak x
 - Σ merupakan matriks kovarian berukuran pxp

Sehingga diperoleh FKP sebaran Normal ganda sebagai berikut:

$$f(\mathbf{x}) = \frac{1}{(2\pi)^{p/2} |\mathbf{\Sigma}|^{1/2}} \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})'\mathbf{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

where $-\infty < x_i < \infty$ for $i = 1, \dots, p$.

Sebaran Normal multivariat beserta parameternya dinotasikan dengan $N_n(\mu, \Sigma)$

Sebaran Normal Ganda - Bivariat

Sebaran Kombinasi Linier dari Peubah Ganda Normal

Kombinasi linier dari semua komponen peubah X juga menyebar Normal.

- Jika a adalah vektor konstanta, maka fungsi linier a'x = $a_1x_1 + a_2x_2 + ... + a_px_p$ adalah univariat normal Sehingga, ketika x ~ $N_p(\mu, \Sigma)$, maka a'x ~ $N(a'\mu, a'\Sigma a)$
- Jika A adalah konstanta q x p matriks pangkat q, di mana q ≤ p, q kombinasi linier di Ax memiliki sebaran multivariat normal.
 Sehingga, ketika x ~ N_D(μ, Σ), maka Ax ~ N_Q(Aμ, AΣA')

Kenormalan Baku

Vektor **z** diperoleh dengan:

$$z = (T)^{-1}(x - \mu)$$

di mana Σ = T'T dan T diperoleh menggunakan pemfaktoran dengan prosedur Cholesky, dengan z = $(\Sigma^{1/2})^{-1}$ (x - μ) dan $\Sigma^{1/2}$ adalah matriks akar kuadrat simetris yang didefinisikan dari Σ = $\Sigma^{1/2}\Sigma^{1/2}$

Jika
$$\mathbf{x} \sim N_p(\mathbf{\mu}, \mathbf{\Sigma})$$
, maka $\mathbf{z} \sim N_p(\mathbf{0}, \mathbf{I})$

Distribusi Chi Kuadrat

Jika **z** merupakan vektor standar yang telah didefinisikan sebelumnya, maka **z'z** ~ $\chi^2_{(p)}$.

z'z juga dapat diperoleh dari: z'z = $(x - \mu)' \Sigma^{-1} (x - \mu)$.

Maka dari itu, jika $\mathbf{x} \sim N_p(\mathbf{\mu}, \mathbf{\Sigma})$ maka $(\mathbf{x} - \mathbf{\mu})' \mathbf{\Sigma}^{-1} (\mathbf{x} - \mathbf{\mu}) \sim \chi^2_{(b)}$

Normalitas Distribusi Marginal

Jika $\mathbf{x} \sim N_p(\mathbf{\mu}, \mathbf{\Sigma})$, maka setiap partisi dari \mathbf{x} mengikuti sebaran normal multivariat, dengan ketentuan:

$$X = \begin{bmatrix} X_{(1)} \\ X_{(2)} \end{bmatrix}_{p \ X \ 1}, \quad \mu = \begin{bmatrix} \mu_{(1)} \\ \mu_{(2)} \end{bmatrix} \text{ and } \Sigma = \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix}$$
where $X_{(1)} = \begin{bmatrix} X_1 \\ \vdots \\ X_q \end{bmatrix}, \quad X_{(2)} = \begin{bmatrix} X_{(q+1)} \\ \vdots \\ X_p \end{bmatrix}, \quad \mu_{(1)} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_q \end{bmatrix}, \quad \mu_{(2)} = \begin{bmatrix} \mu_{(q+1)} \\ \vdots \\ \mu_p \end{bmatrix}$

$$\Sigma_{ij} = E \left[(X_{(i)} - \mu_{(i)})(X_{(j)} - \mu_{(j)})' \right], i, j = 1, 2$$

Jika
$$\mathbf{X}_{(1)}$$
 dan $\mathbf{X}_{(2)}$ saling bebas: $\Sigma = \begin{bmatrix} \Sigma_{11} & 0 \\ 0 & \Sigma_{22} \end{bmatrix}$

Jika $\mathbf{x} \sim N_p(\mathbf{\mu}, \mathbf{\Sigma})$, maka $\mathbf{x}_1 \sim N_q(\mathbf{\mu}_1, \mathbf{\Sigma}_{11})$ (tidak berlaku sebaliknya)

Sebaran Bersyarat

Jika **x** dan **y** saling bebas, maka kovarian **x** dan **y** adalah 0.

Jika \mathbf{x} dan \mathbf{y} saling bebas, maka $\mathbf{\Sigma}_{xy} = \mathbf{\Sigma}_{yx} = \mathbf{0}$, dan sebaran bersyarat dari \mathbf{y} jika diberikan \mathbf{x} , di mana $\mathbf{x} \sim N_p(\mathbf{\mu}_x, \mathbf{\Sigma}_{xx})$ dan $\mathbf{y} \sim N_p(\mathbf{\mu}_y, \mathbf{\Sigma}_{yy})$, maka sebaran bersyarat ($\mathbf{y}|\mathbf{x}$) adalah

$$(y|x) \sim N_{p+q} \begin{bmatrix} \mu_x \\ - \\ \mu_y \end{bmatrix}, \begin{bmatrix} \Sigma_{xx} & \mathbf{0} \\ - & - \\ \mathbf{0} & \Sigma_{yy} \end{bmatrix}$$

Jika **tidak** saling bebas, maka $\Sigma_{xy} = \Sigma_{yx} \neq 0$, nilai tengah dan ragam sebaran bersyarat diperoleh dengan:

$$E(\mathbf{y}|\mathbf{x}) = \boldsymbol{\mu}_{\mathbf{y}} + \boldsymbol{\Sigma}_{\mathbf{y}\mathbf{x}} \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}}^{-1} (\mathbf{x} - \boldsymbol{\mu}_{\mathbf{x}})$$

$$cov(y|x) = \Sigma_{yy} - \Sigma_{yx} \Sigma_{xx}^{-1} \Sigma_{xy}$$

Contoh Soal - 1

Untuk

$$X \sim N_3(\mu, \Sigma)$$

Tentukan sebaran dari **AX** dengan:
$$\mathbf{A} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

$$\mathbf{AX} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} X_1 - X_2 \\ X_2 - X_3 \end{pmatrix}$$

Jawaban - 1

Dari sifat sebaran normal multivariat:

$$X \sim N_p(\mu, \Sigma)$$
, maka $Ax \sim N_q(A\mu, A\Sigma A')$

Maka kombinasi linier dari X,

$$\mathbf{AX} = \begin{bmatrix} a_{11}X_1 + \dots + a_{1p}X_p \\ a_{21}X_1 + \dots + a_{2p}X_p \\ \vdots \\ a_{q1}X_1 + \dots + a_{qp}X_p \end{bmatrix} \sim N_q \left(\mathbf{A}\mathbf{\mu}, \mathbf{A}\mathbf{\Sigma}\mathbf{A}^T \right)$$

Nilai tengah:

$$\mathbf{A}\boldsymbol{\mu} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} = \begin{pmatrix} \mu_1 - \mu_2 \\ \mu_2 - \mu_3 \end{pmatrix}$$

Maka:

$$\mathbf{A}\mathbf{X} \sim N_2(\mathbf{A}\mathbf{\mu}, \mathbf{A}\mathbf{\Sigma} \mathbf{A}^T)$$

Ragam:

$$\mathbf{A} \Sigma \mathbf{A}^{t} = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1 & 1 \\ 0 & -1 \end{pmatrix}$$
$$= \begin{pmatrix} \sigma_{11} - 2\sigma_{12} + \sigma_{22} & \sigma_{12} + \sigma_{23} - \sigma_{22} - \sigma_{13} \\ \sigma_{12} + \sigma_{23} - \sigma_{22} - \sigma_{13} & \sigma_{32} - 2\sigma_{23} + \sigma_{23} \end{pmatrix}$$

Contoh Soal - 2

Jika,
$$\mathbf{X} \sim N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ $\boldsymbol{\mu} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ $\boldsymbol{\Sigma} = \begin{pmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{pmatrix}$

1. Tentukan sebaran marginal bagi $\chi_{_{1}}$

Sifat yang sama berlaku seperti pada sebaran normal bivariat, masing-masing variabel mempunyai sebaran normal univariat.

$$\mu = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ 2 & 1 & 2 \end{pmatrix} \qquad \qquad X_1 \sim N_1(0,7)$$

Jawaban – 2

2. Tentukan sebaran marginal bagi $\mathbf{X}^{(1)} = \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$

Ingat: Sifat sebaran dari peubah yang dipartisi.

Jika
$$\mathbf{X} \sim N_p(\mathbf{\mu}, \mathbf{\Sigma})$$
, maka $\mathbf{X}^{(1)} \sim N_q(\mathbf{\mu}^{(1)}, \mathbf{\Sigma}_{11})$

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \overline{X_3} \end{pmatrix} \qquad \mathbf{\mu} = \begin{pmatrix} 0 \\ 0 \\ \overline{0} \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 7 & 3 & 2 \\ 3 & 4 & 1 \\ \overline{2} & 1 & 2 \end{pmatrix} \qquad \qquad \mathbf{\mu}^{(1)} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \qquad \sum_{11} = \begin{pmatrix} 7 & 3 \\ 3 & 4 \end{pmatrix}$$

Diperoleh
$$X^{(1)} \sim N_2(\mu^{(1)}, \Sigma_{11})$$

Contoh Soal - 3

Diberikan

$$\mathbf{X} \sim N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$$
 $\boldsymbol{\Sigma} = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$

- 1. Apakah X_1 dan X_2 saling bebas?
- 2. Apakah (X_1, X_2) dan X_3 saling bebas?

Jawaban – 3

Perhatikan: matriks ragam dan partisinya.

Berdasarkan matriks ragam,

$$\Sigma = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$

 $\sigma_{12} = \sigma_{12} = 1 \neq 0$, maka X_1 dan X_2 tidak saling bebas.

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \hline X_3 \end{pmatrix} \qquad \qquad \Sigma = \begin{pmatrix} 4 & 1 & 0 \\ 1 & 3 & 0 \\ \hline 0 & 0 & 2 \end{pmatrix} = \begin{pmatrix} \sum_{12} & \sum_{12} \\ \hline \sum_{21} & \sum_{22} \end{pmatrix} \qquad \text{Kovarians dari } (X_1, X_2) \text{ dan } X_3 \text{ adalah vektor nol.}$$

$$\sum_{12} = \sum_{21}^{\tau} = \mathbf{0}$$

$$\text{Maka dapat dikatakan keduanya saling bebas}$$

$$\sum_{12} = \sum_{21}^{7} = 0$$

Maka dapat dikatakan keduanya saling bebas.

Contoh Soal - 4

Diberikan

$$X \sim N_3(\mu, \Sigma)$$

$$\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} \ \boldsymbol{\mu} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} \ \boldsymbol{\Sigma} = \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.5 & 1 & 0.2 \\ 0.4 & 0.2 & 1 \end{pmatrix}$$

1. Seperti apa sebaran bersyarat $(X_1, X_2 | X_3 = 1)$?

Jawaban – 4

Berdasarkan partisi:

$$X = \begin{pmatrix} X_1 \\ X_2 \\ -- \\ X_3 \end{pmatrix} = \begin{pmatrix} X^{(1)} \\ -- \\ X^{(2)} \end{pmatrix} \qquad \bullet \qquad \text{Mencari nilai tengah}$$

$$\eta = \mu^{(1)} + \Sigma_{12} \Sigma_{22}^{-1} (x^{(2)} - \mu^{(2)})$$

$$\boldsymbol{\mu} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} \boldsymbol{\mu}^{(1)} \\ - \\ \boldsymbol{\mu}^{(2)} \end{pmatrix}$$

$$X^{(1)} \sim N_2(\boldsymbol{\eta}, \boldsymbol{\Sigma}_{11\cdot 2})$$

$$\mu^{(1)} = \begin{pmatrix} 1 \\ 4 \end{pmatrix}$$
 , $\mu^{(2)} = -2$

$$\Sigma_{11} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$$
 , $\Sigma_{12} = \Sigma_{21} = \begin{pmatrix} 0.4 \\ 0.2 \end{pmatrix}$, $\Sigma_{22} = 1$

$$\eta = \mu^{(1)} + \Sigma_{12} \Sigma_{22}^{-1} (x^{(2)} - \mu^{(2)})$$

$$\eta = {1 \choose 4} + {0.4 \choose 0.2} (1) (1 - (-2))$$

$$\boldsymbol{\eta} = \begin{pmatrix} 1\\4 \end{pmatrix} + \begin{pmatrix} 1.2\\0.6 \end{pmatrix} = \begin{pmatrix} 2.2\\4.6 \end{pmatrix}$$

Jawaban – 4

Mencari ragam

$$\Sigma_{11 \cdot 2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}$$

$$\Sigma_{11 \cdot 2} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} - \begin{pmatrix} 0.4 \\ 0.2 \end{pmatrix} (1)(0.4 \ 0.2)$$

$$\Sigma_{11 \cdot 2} = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix} - \begin{pmatrix} 0.16 & 0.08 \\ 0.08 & 0.04 \end{pmatrix}$$

$$\Sigma_{11 \cdot 2} = \begin{pmatrix} 0.84 & 0.42 \\ 0.42 & 0.96 \end{pmatrix}$$

Diperoleh sebaran bersyarat

$$(X_1, X_2 | X_3) \sim N_2 \begin{pmatrix} 2.2 \\ 4.6 \end{pmatrix}, \begin{pmatrix} 0.84 & 0.42 \\ 0.42 & 0.96 \end{pmatrix}$$

Contoh Soal - 5

Diberikan

$$\mathbf{X} \sim N_3(\mathbf{\mu}, \Sigma)$$
 $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix}$ $\mathbf{\mu} = \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix}$ $\Sigma = \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.5 & 1 & 0.2 \\ 0.4 & 0.2 & 1 \end{pmatrix}$

1. Seperti apa sebaran bagi $(2X_1 + X_2, X_1 + 2X_2 + 3X_3)$?

Jawaban – 5

Bentuk matriks koefisiennya terlebih dulu.

$$\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix}$$

$$\mathbf{B} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \qquad \mathbf{BX} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \end{pmatrix} = \begin{pmatrix} 2X_1 + X_2 \\ X_1 + 2X_2 + 3X_3 \end{pmatrix} \sim N_2 \left(\mathbf{B} \boldsymbol{\mu}, \mathbf{B} \boldsymbol{\Sigma} \mathbf{B}^T \right)$$

Mencari nilai tengah

$$\mathbf{B}\boldsymbol{\mu} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ 4 \\ -2 \end{pmatrix} = \begin{pmatrix} 6 \\ 3 \end{pmatrix}$$

Diperoleh

BX ~
$$N_2 \begin{pmatrix} 6 \\ 3 \end{pmatrix}, \begin{pmatrix} 7 & 9.5 \\ 9.5 & 20.8 \end{pmatrix}$$

Mencari ragam

$$\mathbf{B}\Sigma\mathbf{B}^{\mathsf{T}} = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0.5 & 0.4 \\ 0.5 & 1 & 0.2 \\ 0.4 & 0.2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \\ 0 & 3 \end{pmatrix} = \begin{pmatrix} 7 & 9.5 \\ 9.5 & 20.8 \end{pmatrix}$$

Eksplorasi Sebaran Normal Ganda

- 1. Untuk mengevaluasi apakah data yang dimiliki menyebar normal ganda dapat ditelusuri secara eksplorasi
- 2. Seperti halnya untuk kasus *univariate* penelusuran sebaran normal ganda dapat juga memanfaatkan plot quantil-quantil -> **quantil khi-kuadrat**

Tahapan dari pembuatan q-q plot

- 1. Mulai
- 2. Tentukan nilai vektor rata-rata: $ar{X}$
- 3. Tentukan nilai matriks varians-kovarians: S
- 4. Tentukan nilai jarak *mahalanobis* atau kuadrat *general* setiap titik pengamatan dengan vektor rataratanya $d_i^2 = (x_i \overline{x})' S^{-1}(x_i \overline{x})$, i = 1, 2, ..., n.
- 5. Urutkan nilai d_i^2 dari kecil ke besar: $d_{(1)}^2 \leq d_{(2)}^2 \leq d_{(3)}^2 \leq \cdots \leq d_{(n)}^2$.
- 6. Tentukan nilai $p_i = \frac{i-1/2}{n}$, i = 1, 2, ..., n.

Tahapan dari pembuatan q-q plot

- 7. Tentukan nilai q_i sedemikian hingga $\int_{-\infty}^{q_i} f(\chi^2) d\chi^2 = p_i$ atau $q_{i,p}(p_i) = \chi_p^2 ((n-i+1/2)/n)$.
- 8. Buat scatter-plot $d_{(i)}^2$ dengan q_i
- 9. Jika scatter-plot ini cenderung membentuk garis lurus dan lebih dari 50% nilai $d_i^2 \leq \chi_p^2(0,50)$, artinya data berdistribusi normal multivariat.

10.Selesai

Latihan Soal

Berikut data diambil dari Garperz (1992) dalam simatupang (2002).

X1 = Kontribusi industri manufaktur dalam produk dosmestik regional bruto(%)

X2 = Banyaknya tenaga kerja dalam sektor industri manufaktur (%)

X1	8.8	8.5	7.7	4.9	9.6	10	11.5	11.6	11.2	10.7	10	6.8
X2	2589	1186	291	1276	6633	12125	36717	43319	10530	3931	1536	61400

Apakah data ini menyebar bivariate normal? Jelaskan!

Tugas

- Bangkitkan X1~Unif(1,3) sebanyak 10 amatan (dengan R)
- 2. Bangkitkan X2~Exp(5) sebanyak 10 amatan (dengan R)
- 3. Gunakan set.seed(xxxxx) di mana xxxxx adalah 5 digit terakhir NRP Anda
- 4. Lakukan pengecekan apakah X1 dan X2 menyebar bivariate normal? Jelaskan! Lakukan pengujian baik secara visual maupun formal.
- 5. Tugas dikumpulkan maksimal Selasa, 29 Agustus 2023 pukul 23.59 WIB.
- 6. Link pengumpulan tugas: https://ipb.link/tugas1-sta1342-2023
- 7. Format nama tugas: Nama_NRP