MH1820 Introduction to Probability and Statistical Methods Tutorial 6 (Week 7)

Problem 1 (MGF) (a) Let X be a discrete random variable with PMF p given by

Compute the MGF of X and use the properties of MGFs from the lecture to compute $\mathbb{E}[X]$ and $\mathbb{E}[X^2]$.

(b) Let X be a continuous random variable with PDF f given as follows.

$$f(x) = 2x$$
 for $0 < x < 1$ and $f(x) = 0$ otherwise.

Compute the MGF $\mathbb{E}[e^{tX}]$ of X for $t \neq 0$.

(c) Let X be a random variable with $M_X(t) = \frac{e^t}{2 - e^t}$ for all $t < \ln 2$. What is the distribution of X? Hint: Check the table for MGF of common distributions.

Problem 2 (MGF) Let $X \sim Poisson(\lambda)$. Using the definition of MGF, verify that the MGF of X is given by $e^{\lambda(e^t-1)}$

Hence, find the mean and variance of X.

Hint: You may assume that $e^z = \sum_{x=0}^{\infty} \frac{z^x}{x!}$. This is the Maclaurin series for e^z .

Problem 3 (MGF) Suppose X and Y are independent Poisson random variables with means λ_1 and λ_2 respectively. What is the distribution of X + Y?

Problem 4 (Joint PMF, CDF, Marginal PMF) Let the joint PMF of X and Y be defined by

$$p(x,y) = \frac{x+y}{32},$$

1

for x = 1, 2, y = 1, 2, 3, 4.

- (a) Find $p_X(x)$, the marginal PMF of X.
- (b) Find $p_Y(y)$, the marginal PMF of Y.
- (c) Find $\mathbb{P}(X > Y)$

- (d) Find $\mathbb{P}(Y=2X)$
- (e) Find $\mathbb{P}(X + Y = 3)$.
- (f) Find $\mathbb{P}(X \leq 3 Y)$.
- (g) Are X and Y independent or dependent? Why or why not?

Problem 5 (Joint PMF, CDF, Marginal PMF) From a standard poker deck of 52 cards, 3 cards are chosen randomly. Let X be number of clubs among the 3 cards and let Y be the number of hearts among the 3.

- (a) Find the joint PMF of X and Y.
- (b) Find the marginal PMFs of X and Y.
- (c) Are X and Y independent?

Problem 6 (Joint PMF, CDF, Marginal PMF) There are eight similar chips in a bowl: three marked (0,0), two marked (1,0), two marked (0,1), and one marked (1,1). A player selects a chip at random and is given the sum of the two coordinates in dollars. What is the expected payoff?

Answer Keys. 1(a)
$$M_X(t) = \frac{1}{2}e^{-t} + \frac{1}{4} + \frac{1}{4}e^t$$
, $-1/4$, $3/4$. 1(b) $M_X(t) = \frac{2e^t}{t} - \frac{2e^t}{t^2} + \frac{2}{t^2}$ 1(c) $X \sim Geom(1/2)$. 3 $X + Y$ is Poisson with mean $\lambda_1 + \lambda + 2$. 4(a) $\frac{4x+10}{32}$ 4(b) $\frac{3+2y}{32}$ 4(c) $3/32$ 4(d) $9/32$ 4(e) $6/32$ 4(f) $8/32$ 4(g) Dependent. 5(a) $p(x,y) = \frac{\binom{13}{x}\binom{13}{y}\binom{26}{3-x-y}}{\binom{52}{3}}$ 5(b) $p_X(x) = \frac{\binom{13}{x}\binom{39}{3-x}}{\binom{52}{3}}$, $p_Y(y) = \frac{\binom{13}{y}\binom{39}{3-y}}{\binom{52}{3}}$ 5(c) Dependent 6 \$0.75.