Large Scale Training

argonne-lcf / ai-science-training-series

Sam Foreman 2022-11-01

Why Distributed Training?

- Large batches may not fit in GPU memory
- Splitting data across workers → larger batch size
- Smooth loss landscape
- Improved gradient estimators
- Less iterations needed for same number of epochs
 - May need to train for more epochs if another change is not made
 - e.g. scaling learning rate
- See Large Batch Training of Convolutional Networks

Recent Progress

Year	Author	Batch Size	Processor	DL Library	Time	Accuracy
2016	He et al. [1]	256	Tesla P100 x8	Caffe	29 Hrs	75.3%
	Goyal et al. [2]	8192	Tesla P100	Caffe 2	1 hour	76.3%
	Smith et al. [3]	8192 → 16,384	full TPU pod	TensorFlow	30 mins	76.1%
	Akiba et al. [4]	32,768	Tesla P100 x1024	Chainer	15 mins	74.9%
	Jia et al. [5]	65,536	Tesla P40 x2048	TensorFLow	6.6 mins	75.8%
	Ying et al. [6]	65,536	TPU v3 x1024	TensorFlow	1.8 mins	75.2%
	Mikami et al. [7]	55,296	Tesla V100 x3456	NNL	2.0 mins	75.29%
2019	Yamazaki et al	81,920	Tesla V100 x 2048	MXNet	1.2 mins	75.08%

Model Parallel Training

Model Parallel Training

- Split up network over multiple workers
 - Each receives disjoint subset
 - All communication associated with subsets are distributed
- Communication whenever dataflow between two subsets
- Typically more complicated to implement than data parallel training
- Suitable when the model is too large to fit onto a single device (CPU / GPU)

Model Parallel Training

$$y = w_0 * x_0 + w_1 * x_1 + w_2 * x_2$$

- 1. Compute $y_0 = w_0 * x_0$ and send to o GPU1
- 2. Compute $y_1 = y_0 + w_1 * x_1$ and send to ightarrow GPU2
- 3. Compute $y=y_1*w_2*x_2$

- Each worker has identical copy of complete model
- Each Worker computes the corresponding loss and gradients w.r.t local data
- Before updating parameters, loss and gradients averaged across workers
- Typically easier / simpler to implement

Data Parallel

- Each worker has identical copy of model
- Global batch of data split across workers
- Loss + Grads averaged across workers before updating parameters

Broadcast Initial State

- At the start of training (or when loading from a checkpoint), we want all of our workers to be initialized consistently
 - Broadcast the model and optimizer states from hvd.rank() == 0 worker

- Disjoint subsets of a neural network are assigned to different devices
- Each worker receives:
 - identical copy of model
 - unique subset of data

TensorFlow + Horovod

Set one GPU per process ID (hvd.local_rank())

```
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
    tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
    local_rank = hvd.local_rank()
    tf.config.experimental.set_visible_devices(gpus[local_rank], 'GPU')
```


Scale the Learning Rate

 Scale the learning rate by the number of workers to account for the increased batch size

```
import horovod.tensorflow as hvd
optimizer = tf.optimizers.Adam(lr_init * hvd.size())
```


Thank you!

- Organizers
- ALCF Data Science & Operations
- Feel free to reach out!

Acknowledgements

This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.

