

2-W1990-02

**WHITE CONDUCTIVE TITANIUM DIOXIDE POWDER AND ITS PRODUCTION***Abstract for JP 3357107*

**Patent number:** JP6207118  
**Publication date:** 1994-07-26  
**Inventor:** YOSHIMOTO AKIHIRO; YOSHINAGA TOSHIHIRO;  
NAGAOKA SHIGERU; MORISHITA MASAYASU  
**Applicant:** TITAN KOGYO KK  
**Classification:**  
- international: C09C1/36  
- european: C09C1/36D6B  
**Application number:** JP19930003355 19930112  
**Priority number(s):** JP19930003355 19930112

[Report a data error here](#)**Abstract of JP6207118**

**PURPOSE:** To provide a titanium oxide powder low in electric resistance, excellent in whiteness and suitable for antistatic coatings, etc., by depositing the hydrolysate of a tin compound on the surfaces of titanium dioxide particles and subsequently coating the treated particles with a prescribed amount of a phosphorous compound. **CONSTITUTION:** The hydrolysate of a tin compound such as tin chloride is uniformly deposited on the surfaces of titanium dioxide particles, and the treated particles are coated with a phosphorous compound such as ortho phosphoric acid in an amount of 0.1-10wt.% based on tin chloride to provide the objective powder. The powder is further preferably thermally treated at 500-800 deg.C in a non-oxidative atmosphere.

Data supplied from the **esp@cenet** database - Worldwide

(19)日本国特許庁 (JP)

## (12) 特許公報 (B2)

(11)特許番号

特許第3357107号  
(P3357107)

(45)発行日 平成14年12月16日 (2002.12.16)

(24)登録日 平成14年10月4日 (2002.10.4)

(51)Int.Cl.

識別記号

F I

C09C 1/36  
C01G 23/04  
C09C 3/06  
H01B 1/08C09C 1/36  
C01G 23/04  
C09C 3/06  
H01B 1/08

B

請求項の数4(全4頁)

(21)出願番号

特願平5-3355

(22)出願日

平成5年1月12日 (1993.1.12)

(65)公開番号

特開平6-207118

(43)公開日

平成6年7月26日 (1994.7.26)

審査請求日

平成11年8月10日 (1999.8.10)

(73)特許権者 000109255

チタン工業株式会社

山口県宇部市大字小串1978番地の25

(72)発明者 好本 昭洋

山口県宇部市大字小串1978番地の25 チ

タン工業株式会社内

(72)発明者 好永 俊宏

山口県宇部市大字小串1978番地の25 チ

タン工業株式会社内

(72)発明者 長岡 茂

山口県宇部市大字小串1978番地の25 チ

タン工業株式会社内

(74)代理人 100089705

弁理士 杜本 一夫 (外4名)

審査官 井上 千弥子

最終頁に続く

(54)【発明の名称】白色導電性二酸化チタン粉末及びその製造方法

1

(57)【特許請求の範囲】

【請求項1】二酸化チタン粒子表面に、アンチモンを含まざりリンを0.1~10重量%含む酸化スズの被膜層を有し、該被膜層を有する二酸化チタン粒子が不活性ガスで加熱処理されており、且つ230kg/cm<sup>2</sup>の圧力で加圧成形された成形体が100Ω·cm以下の電気比抵抗を有することを特徴とする白色導電性二酸化チタン粉末。

【請求項2】請求項1記載の白色導電性二酸化チタン粉末の製造方法であって、二酸化チタン粒子表面へスズの加水反応生成物を均一に沈着させ、その後リンを酸化スズに対し0.1~10重量%被膜させ、そして、不活性ガスで加熱処理することを特徴とする製造方法。

【請求項3】前記不活性ガスでの加熱処理は、非酸化性雰囲気にて500~800°Cで加熱処理することであ

2

ることを特徴とする請求項2記載の製造方法。

【請求項4】前記不活性ガスでの加熱処理は、不活性ガスを吹き込みながら行うことであることを特徴とする請求項3記載の白色導電性二酸化チタン粉末の製造方法。

【発明の詳細な説明】

【0001】

【産業上の利用分野】本発明は帶電防止用の塗料、プラスチック、繊維等に用いられる白色導電性二酸化チタン粉末に関するものである。

【0002】

【従来の技術】現在、導電材料として多量に使用されているカーボンブラックや金属粉は、電気抵抗が非常に低く、特性的には優れているものの、それらの色調が黒色のため用途が限定されていた。その対策として、二酸化

チタンの表面を、酸化スズで被覆したもの（特開昭53-92854公報）やその導電性改良品としてアンチモンをドープした酸化スズを被覆した白色の導電性酸化チタンの製造法が開示された（特開昭58-209002公報など）。

【0003】この白色導電性酸化チタンを用いた、帯電防止用の塗料、プラスチック、繊維は、白色という利点を生かし、清潔感を必要とする白衣やクリーンルームの内装あるいは明彩色の塗料やプラスチック製品に近年需要を増してきている。

【0004】しかしながら、最近アンチモンの毒性上の問題が取沙汰されるようになり、アンチモンを含有しない白色導電性酸化チタン粉末の開発が必要となった。アンチモンを使用しない製法として、例えば特開平4-154621公報が開示されたが、この方法ではアンチモンを含有しないものの電気抵抗がアンチモンを含有したものと同等のものは得られていない。

【0005】

【発明が解決しようとする課題】本発明は毒性のあるアンチモンを使用しないにもかかわらず、白度が高く、かつ優れた導電性を有する、白色導電性二酸化チタン粉末を提供しようとするものである。

【0006】

【課題を解決するための手段】本発明者らは白度を保ちながら、かつ毒性上の問題のあるアンチモンを使用しないにもかかわらず、アンチモン含有品と同等の導電性を有する酸化チタン粉末を開発する為鋭意研究を重ねた結果、本発明を完成したものである。すなわち、本発明は、二酸化チタン粒子表面に、リンを0.1～10重量%含む酸化スズの被覆層を有することを特徴とする白色導電性二酸化チタン粉末を提供するものである。

【0007】本発明にかかる白色導電性二酸化チタン粉末は、二酸化チタン粒子表面へスズの加水反応生成物を均一に沈着させ、その後リンを酸化スズに対し0.1～10重量%被覆させることによる製造することができる。さらに非酸化性雰囲気にて500～800℃で加熱処理することが好ましく、該加熱処理は不活性ガスを吹き込みながら行う事がより好ましい。

【0008】本発明の基体となる二酸化チタンとしては、球状、針状などの様な形状のものも使用することができる。また、結晶形としては、アナターゼ型、ルチル型及び非晶質のものも使用することができる。また、二酸化チタンのアルカリ金属化合物、例えば、チタン酸カリウムやチタン酸ナトリウムなども使用することができる。

【0009】酸化スズの水和物の被膜を形成させる方法としては、種々の方法がある。例えば、二酸化チタンの水懸濁液に、スズ塩またはスズ酸塩の溶液を添加した後、アルカリまたは酸を添加する方法、スズ塩またはスズ酸塩とアルカリまたは酸とを別々に並行して添加し被

覆処理する方法等がある。二酸化チタン粒子表面に酸化スズの含水物を均一に被覆処理するには、後者の並行添加の方法がより適しており、この時、水懸濁液を50～100℃に加温保持することがより好ましい。又、スズ塩またはスズ酸塩とアルカリまたは酸とを並行添加する際のpHを2～9とし、酸化チタン及び水酸化スズの等電点より、好ましくはpH=2～3あるいはpH6.5～8.5で維持することが重要で、これによりスズの加水反応生成物を二酸化チタン粒子表面に均一に沈着させることができる。

【0010】スズ塩としては、例えば、塩化スズ、硫酸スズ、硝酸スズ等を使用することができる。また、スズ酸塩としては、例えば、スズ酸ナトリウム、スズ酸カリウム等を使用することができる。

【0011】アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、アンモニア水、アンモニアガス等、酸としては、例えば、塩酸、硫酸、硝酸、酢酸等を使用することができる。

【0012】酸化スズの被覆量は基体顔料に対してSnO<sub>2</sub>として5～100重量%が好ましく、さらに好ましくは10～50重量%である。少な過ぎると所望の導電性が得がたく、多過ぎると被覆が不均一になりやすく、白度が低下する恐れがある。

【0013】リンの処理方法としては、例えば、あらかじめ、スズ塩あるいはスズ酸塩の溶液に溶解しておき、酸化スズの含水物と同時に被膜層を形成する方法、酸化スズの含水物の被膜を形成した後に添加する方法等がある。酸化スズの含水物の被覆をより均一に形成するには、後者の方がより好ましい。

【0014】リンの原料としては、例えば、オルトリン酸、メタリン酸、ピロリン酸、トリポリリン酸、亜リン酸、次亜リン酸およびこれらのアンモニウム塩、ナトリウム塩、カリウム塩等を使用することができる。

【0015】リンの添加量はSnO<sub>2</sub>に対して、Pとして0.1～10重量%、好ましくは0.3～5重量%であり、少な過ぎると所望の導電性が得られず、多過ぎると酸化スズの結晶性が悪くなり、所望の導電性が得られない。かかる量のリンを添加することにより、無添加のものに比べ電気抵抗を更に1/10～1/20程度低くすることができる事が本発明の特徴である。

【0016】なお、本明細書において、「導電性」粉末とは、粉体の電気比抵抗値として1～500Ω·cmの値を有するものを意味する。後述の実施例においても示されるように、本発明により100Ω·cm以下という良好な値を有する二酸化チタン粉末を得ることができる。

【0017】加熱処理を行う際には、500～800℃で非酸化性雰囲気にて行うことが好ましく、空気中で加熱処理したものと比べ粉体の電気抵抗を少なくとも3桁

以上、場合により4桁低くすることができる。非酸化性雰囲気とするためには、不活性ガスあるいは、還元性ガスが使用できる。不活性ガスとしては例えば、窒素、ヘリウム、アルゴン、炭酸ガス等を使用することができる。還元性ガスとしては、例えば、水素、アンモニア、一酸化炭素等を使用することができる。好ましくは、窒素ガスなどの不活性ガスを1~10リットル/分程度吹き込みながら加熱処理を行うことにより、性状の安定したもののが得られる。

【0018】加熱する際の温度は500~800°Cが好ましく、この範囲より低い場合にはさして導電性の向上がみられず、高い場合には焼結等の問題が起こる恐れがある。又、加熱時間は、短かすぎる場合には加熱効果がなく、長すぎてもそれ以上の効果が望めないことから、15分~4時間程度が適当であり、好ましくは、1~2時間程度である。

【0019】以下に実施例を挙げて本発明をさらに詳細に説明する。以下の実施例は単に例示の為に記すものであり、発明の範囲がこれらによって制限されるものではない。

#### 【0020】実施例1

平均粒径0.22μmのルチル型二酸化チタン粉末300gを水3リットルに分散させて水懸濁液とした。この懸濁液を70°Cに加温保持した。別途用意した、塩化第二ズ (SnCl<sub>4</sub>·5H<sub>2</sub>O 98重量%) 160.5gを2N塩酸1.5リットルに溶かした溶液と12重量%アンモニア水とを、懸濁液のpHを7~8に保持する様に約2時間かけて、同時に滴下した。さらに、オルトリン酸1.1gを水10ミリリットルに溶解した水溶液を添加した後、30分間攪拌し、二酸化チタン粒子表面にリンを含んだ酸化ズの含水物を被覆処理し、処理懸濁液を\*

\* 濾過、洗浄し、得られた処理二酸化チタンのケーキを100°Cで乾燥した。次いで、得られた乾燥粉末を窒素ガス気流中(3リットル/分)で650°Cで1時間熱処理して、目的とする白色導電性二酸化チタン粉末を得た。

#### 【0021】実施例2

実施例1において、塩化第二ズ160.5gの代わりに、244.2g、オルトリン酸1.1gの代わりに1.7gを用いたことのほかは同例の場合と同様に処理して、目的とする白色導電性二酸化チタン粉末を得た。

#### 【0022】実施例3

実施例1においてオルトリン酸1.1gの代わりに6.6gを用いたことのほかは同例の場合と同様に処理した。

#### 【0023】実施例4

実施例2においてオルトリン酸1.7gの代わりに5.4gを用いたことのほかは同例の場合と同様に処理した。

#### 【0024】比較例1

オルトリン酸を添加しないことのほかは、実施例1と同様に処理した。

#### 【0025】比較例2

20 オルトリン酸を添加しないことのほかは、実施例2と同様に処理した。

#### 【0026】粉体の電気比抵抗の測定

前記の実施例および比較例で得られた各粉末試料を230kg/cm<sup>2</sup>の圧力の加压成形した状態(直径25.4mm、厚さ3.3mm)での電気抵抗を横河ヒューレット・パッカード社製デジタルLCRメータ4261Aにて測定し、比抵抗に換算した。これらの結果を表1に示す。

#### 【0027】

30 【表1】

表1

|      | 酸化ズ被覆量<br>(重量%) | リン被覆量<br>P/SnO <sub>2</sub> (重量%) | 加熱処理<br>(650°C, 1時間) | 粉体の電気比抵抗<br>(Ω·cm) |
|------|-----------------|-----------------------------------|----------------------|--------------------|
| 実施例1 | 2.3             | 0.5                               | 窒素中                  | 2.9                |
| 実施例2 | 3.5             | 0.5                               | "                    | 9.0                |
| 実施例3 | 2.3             | 3                                 | "                    | 3.3                |
| 実施例4 | 3.5             | 3                                 | "                    | 8.7                |
| 比較例1 | 2.3             | 0                                 | "                    | 633                |
| 比較例2 | 3.5             | 0                                 | "                    | 2200               |

#### 【0028】

【発明の効果】本発明は毒性上の問題のあるアンチモンを使用することなく種々の分野に利用できる導電性に優

れた白色度の高い導電性二酸化チタン粉末を、比較的容易に製造するものであり、工業的に高い利点がある。

## フロントページの続き

(72)発明者 森下 正育

山口県宇部市大字小串1978番地の25 チ  
タン工業株式会社内

## (56)参考文献

特開 昭58-209002 (J P, A)  
特開 平4-154621 (J P, A)  
特開 昭63-11519 (J P, A)  
特開 昭64-54613 (J P, A)  
特開 平4-363366 (J P, A)  
特開 平5-262526 (J P, A)  
特開 平6-183708 (J P, A)

## (58)調査した分野(Int.Cl., D B名)

C09C 1/00 - 3/12  
C01G 23/00 - 23/08  
H01B 1/00 - 1/24  
C09D 5/24  
C08K 3/00 - 3/40  
C08K 9/02