CS 331: Algorithms and Complexity (Spring 2024) Unique Number: 50930, 50935 50940, 50945

Assignment 3 - Solution

Due on Thursday, 8 Febrauary, by 11.59pm

Problem 1: Short Answer Section

(10 pts)	True or	false. If	true, bi	riefly .	justify,	otherwise,	provide a	counter	example.	When
justifying	g, restrict	answers	to no	more	than a	few senten	ces.			

- 1. **(1 pt)** True
- 2. **(2 pts)** True
- 3. **(2 pts)** True
- 4. **(2 pts)** False
- 5. (3 pts) No, the shortest path is not necessarily the path with the fewest edges.

Problem 2

(10 points) I will denote tasks as (p(i), t(i)) where p(i) is the value of the task and t(i) is the duration of the task.

1.	. (Smallest duration first) Pick task i that has the minimum duration $t(i)$, or						
	<i>Proof.</i> This is not optimal. Counterexample:						
2.	(Most valuable first) Pick task i that has maximum $p(i)$, or						
	<i>Proof.</i> This is not optimal. Counterexample:						
3.	(Maximum time-scaled value first) Pick task i that has maximum $p(i)/t(i)$.						
	Proof. This is optimal.						

Problem 3

(10 points) Yes