Question no.19	SUM AND PRODUCT:-
Similar to 18.	
t => write answe	ADDITION OF BINARY NO.S :-
	AUDITION STAINT TOURS
Question no. 20.	Consider following example
how to convert Binary to	to understand the method.
<u> </u>	
Base 64 expansions (9)	Add a = (1110)2 and
& 64 exp -> to Binary. Base. — (b)	b = (1011)2.
9 Octal to 764 base_1	
& 64 Base -> octal_c	Starting from 150
exp.	aotbo = 0+1 = 0.271
Not Included.	Take the carry to R.H.S successive
X	previous arry
Qn0.21	aitbi = 1+1+0 = 1.2+0
Find sum and product.	
	and so on.
(a) $(112)_2$, $(210)_3$.	+-C1
	a2+b2=1+0+1=1.2+
Only Base 2 symand products are included in	1 1 1 1 - 1 1
products are included in	93+62= 1+1+1=(1)2+
our syllabus.	This mo
	this carry will be
	the MSBA
	the output
	: starting from (3 till S1 aret
	autret
	(11001)

MULTIPLICATION :-

Similarly for multiplication consider two binary nos a and ib' then multiplication is given as:-

a.b= a(bn-12"+bn-22"+b,2+b02°)

= (abn-12n-1+ abn-22n-2+abi2+abo2°) con be re-written as.

ab, 2°+ ab, 2'+

Now as the no. of power of a increases we serform a left-shift as

per-that no accordingly

$$a = (110), b = (101)$$

 $ab_12' = (10)_2.0.2'$ abo2° = (110), (1) 2°

 $a.b_{1}2^{2} = (110)_{2}.1.2^{2}$ $110_{2}2^{2} = 7(11000)_{2}3^{3}$ abyl3=rdaesnof

Date Now adding @ @ & 3 (110) + (0000), + (11000), Adding using the algorithm. let a= 110 b = (0000)_ 90+60=0.2+091+61 = 1+0+0=0.2+1 92+b2 = 1+0+0=0.2+1=7 (110)2 C= (11000) 0+0=0.2+0 aot Co = 1+0=0.2+1 a + c = $q_1+c_2=1+0=0.2+$ 0+1=0.2+1 93+C3 = ay + cy = 0+1=0.2+1 Qno.21 Solve the following for SUM & PRODUCT:-1111 (0000)2 c. (10 1010 1010) Solve by aunself -> imp for practice.