budget maths

or
$$z = B1^T \gamma$$

P. Fischer
2020-03-27

Abstract

- Let's write the formula chain that calculates the budget.
- γ is the scalar costbase.
- k, p, q, 1 are k-dimensional vectors, respectively for cost distribution, price, quantity, column-vector of 1's (where k is the number of cost centres to be distinguished).
- z, b are the z-dimensional vectors resp. for budget and observed budget distribution (where z is the number of budget lines to be distinguished)

Formulas

- $k\gamma = p * q$ (Hadamart product, element-wise)
- $B = bk^T$ (a z by k matrix)
- $z = B1^T \gamma$ (Matrix multiplication)

Example

```
gamma <- 1000
b <- purrr::set_names(c(0.55, 0, 0.20, 0.25), paste0("Z",1:4))
k <- purrr::set_names(c(0.1, 0.6, 0.15, 0.10, 0.05), paste0("dg",0:4))
B <- b %*% t(k)
one <- 1+0*k
z <- c(B %*% one * gamma) %>% purrr::set_names(names(b))
```

• γ costbase

gamma 1000

• \mathbf{z} (the final result) and \mathbf{b} (the distribution z-vector)

Z	b
550	0.55
0	0.00
200	0.20
250	0.25

• k (the cost distribution over cost centres, e.g. DGs, is driven by staff quantity and unit price)

$$\frac{k}{0.10}$$

 $\begin{array}{r} \hline k \\ \hline 0.60 \\ 0.15 \\ 0.10 \\ 0.05 \\ \end{array}$

•
$$B = bk^T$$

dg0	dg1	dg2	dg3	dg4
0.055	0.33	0.0825	0.055	0.0275
0.000	0.00	0.0000	0.000	0.0000
0.020	0.12	0.0300	0.020	0.0100
0.025	0.15	0.0375	0.025	0.0125

• $z = B1^T \gamma$ see result above

Notation

- Scalar multiplication $z = y\alpha$
- Vector addition y = x + y
- Matrix / Vector multiplication C = AB or z = Bk