《电磁场与波》阶段测试一(满分40)

一、选择题(每题1分,共10分)

1.	下面关于梯度的性质,错误的一条是(D)。 A.标量场的梯度的模值是该点处方向导数的最大值。 B.标量场在空间任意一点的梯度垂直于该点标量场的等值面。 C.一个标量场的梯度构成一个矢量场。
	D.梯度的方向由数值较高的等值面指向数值较低的等值面。
2.	关于矢量场散度的性质哪一条是错误的(C)。 A.散度不等于 0 的点,表示存在散度源。 B.散度大于 0 的点发出矢量线。 C.一个矢量场的散度构成一个矢量场。 D.散度小于 0 的点吸收矢量线。
3.	一个有限区域内定义的矢量场,如果在该区域内沿任意闭合曲线的积分都是零,那么该矢量场是(B)。 A. 无散场 B. 无旋场 C. 无法判断
4.	半径为 a 的导线中电流密度分布为 $\vec{J} = \vec{e}_z J_0 \rho$,电流强度是(A)。
	A. $\frac{2\pi}{3}J_0a^3$ B. πJ_0a^3 C. $\frac{4\pi}{3}J_0a^3$ D. $\frac{\pi}{3}J_0a^3$
5.	安培环路定理 $\oint_C \vec{B} \cdot d\vec{l} = \mu_0 I$ 中,闭合回路上任一点的磁感应强度 \vec{B} 是(C)。
	A. 闭合回路内的电流产生 B.闭合回路外的电流产生 C. 闭合回路内、外的电流共同产生
6.	关于介质极化的描述正确的是(A)。 A. 介质极化产生的场会使外加的电场减弱。 B. 均匀介质中不会出现极化体电荷。 C. 被均匀极化的电介质在其表面和内部都存在极化电荷; D. 极化电荷在外加电场的作用下将会发生运动,从而形成极化电流;
7.	在介电常数为 ε 的介质中方程 $\nabla \cdot \overline{E} = \rho / \varepsilon_0$ 中的 ρ 指(C)。
	A. 自由电荷体密度; B. 极化电荷体密度; C. 自由电荷体密度+极化电荷体密度

8. 一根线电荷密度为 ρ_1 的无限长直导线置于大介质板(介电常数 ϵ)表面 上,如图所示,则在介质表面上任一点,介质外侧的电场强度 \overline{E}_0 与介 质内部的电场强度 \overline{E} 相比(B)。

- A. $\overrightarrow{D}_0 = \overrightarrow{D}$ B. $\overrightarrow{E}_0 = \overrightarrow{E}$ C. $\overrightarrow{E}_0 > \overrightarrow{E}$ D. $\overrightarrow{E}_0 < \overrightarrow{E}$

- 9. 时变场情况下,可得到矢量位 \vec{A} 和标量位 $oldsymbol{arphi}$ 各自满足的波动方程,此时二者的关系
 - A. 由库伦规范联系
- B. 由洛伦兹规范联系
- C. 相互独立
- 10. 分析静电场时,引入标量电位 φ ,并令 $\bar{E} = -\nabla \varphi$ 的理论依据为 (A)。
 - A. $\nabla \times \vec{E} = 0$
- B. $\nabla \bullet \vec{E} = 0$
- C. $\nabla \bullet \vec{D} = \rho$

二、填空题(每空2分,共30分)

- 1. 根据亥姆霍兹定理,无界空间中任意矢量场可表示为 $\vec{F}(\vec{r}) = \nabla \cdot \vec{A}(\vec{r}) + \nabla \times \vec{A}(\vec{r})$ 。
- 2. 电流连续性方程的理论依据是 电荷守恒定律
- 3. 半径为 a 的球形带电体,电荷总量 Q 均匀分布在球体内,当 r > a 时, $\nabla \bullet \vec{E}(\vec{r}) = \underline{\qquad 0}$ $\nabla \times \vec{E}(\vec{r}) = \underline{0}$
- 4. 半径为 a 的球形理想电介质体(介电常数 $\varepsilon=4\varepsilon_0$)的球心处放置一点电荷,介质体外为空 气(介电常数 $\varepsilon = \varepsilon_0$)。已知电介质内电场强度为 $\vec{E} = \frac{1}{2\pi\varepsilon_r r^2} \vec{e}_r \text{ V/m}$,则球心处的点电荷电 量为 $Q = _{8}$ 库伦,电介质内极化强度矢量为 $\bar{P} = _{7} \frac{3}{2\pi r^2}\bar{e}_r _{7}$ C/m²,球面上极化 电荷面密度为 $\rho_{sp} = \frac{3}{2\pi a^2}$ _____C/m², 球体内极化电荷体密度 $\rho_p = ___0$ ___。
- 5. 在电导率 $\sigma = 4.0 \text{ S/m}$ 、相对介电常数为 $81 (\varepsilon_0 = \frac{1}{36\pi} \times 10^{-9} \text{ F/m})$ 的海水中,当频率为 1 MHz 时,位移电流振幅与传导电流振幅的的比值为_ 1.125×10^{-3} ___。
- 6. 空气与无耗介质($\varepsilon_{r}=4$)分界面为 x=0 的平面,已知空气中的静电场为

- 8. 如图所示,在 x<0 的半空间内充满磁导率为 μ_1 的磁介质, x>0 的半空间为真空,一无限长线电流 I 沿 z 轴流动,则

$$x<0$$
 空间中的磁场强度 $\overrightarrow{H}_1=$ ___ $\frac{I}{\pi\rho}\frac{\mu_0}{\mu_1+\mu_0}\overrightarrow{e}_{\varphi}$ ___, $x>0$ 空

间中的磁场强度
$$\vec{H}_2 = \underline{\frac{I}{\pi\rho} \frac{\mu_1}{\mu_1 + \mu_0}} \vec{e}_{\varphi} \underline{\hspace{0.5cm}}$$
,分界面处的磁

化电流面密度为 \vec{J}_{MS} = $_0$ ___。

9. 两种不同媒质分界面上存在面电流密度 $\vec{J}_s = \vec{e}_x 2 \text{A/m}$,如图 所示。若已知分界面上媒质 1-侧的磁场强度 $\vec{H}_1 = \vec{e}_x + \vec{e}_y 2 + \vec{e}_z 3 \text{A/m} \text{ ,试求分界面上媒质 2 --侧的}$ 磁场强度 $\vec{H}_2 = \vec{e}_x + \vec{e}_y \frac{2\mu_1}{\mu_2} + \vec{e}_z \text{ A/m}$ 。

