Aluno: Guilherme Sahdo Maciel

Matrícula: 22250363

Curso: Engenharia da Computação

Questão 1.a) Nessa questão o nosso objetivo é construir uma rede bayesiana (grafo de causalidade) para representar o funcionamento de um farol de bicicleta movido a dinamo, com base em variáveis fornecidas e relações de dependência e independência entre elas.

Foram fornecidas as seguintes variáveis::

- Str: Condição da rua
- Flw: Volante do dínamo desgastado
- R: Dínamo deslizando
- V: Dínamo mostra tensão (voltagem)
- B: Lâmpada está ok
- K: Cabo está ok
- Li: Luz ligada

Consideremos as principais independências que nos dizem quais variáveis realmente influenciam outras diretamente, e quais apenas indiretamente:

- $P(Li \mid V, R) = P(Li \mid V)$
- $P(V \mid R, Str) = P(V \mid R)$
- $P(V \mid R, Flw) = P(V \mid R)$

E Com base suposições, identificamos as seguintes ligações:

- $Str \rightarrow R$
 - o A condição da rua influencia se o dínamo escorrega
- $Flw \rightarrow R$
 - O desgaste do volante do dínamo também afeta se o dínamo escorrega.
- \bullet R \rightarrow V
 - O deslizamento do dínamo afeta a geração de voltagem.
- $V \rightarrow Li$
 - o A voltagem influencia se a luz acende.
- $B \rightarrow Li$
 - o A condição da lâmpada também influencia se a luz acende.
- $K \rightarrow Li$
 - o A condição do cabo influencia se a luz acende.

Grafo causal (rede bayesiana)

Questão 1.b) Especificamos as CPTs (Conditional Probability Tables) para todas as variáveis, dividindo-as em dois grupos:

- Variáveis raiz (sem pais): Str, Flw, B, K
 - Exemplo: P(Flw = t) = 0.1, P(B = t) = 0.95
- Variáveis com dependências:
 - o R depende de Str e Flw
 - o V depende de R
 - o Li depende de V, B, K

Essas tabelas atribuem valores de probabilidade a todos os possíveis estados das variáveis, conforme suas dependências diretas.

Str (Street condition)

Str	P(Str)
dry	0.6
wet	0.3
snow_covered	0.1

Variável raiz, valores possíveis: {dry, wet, snow covered}.

Flw (Flywheel worn out)

Flw	P(Flw)
t	0.1
f	0.9

Variável raiz, binária.

R (Dínamo deslizando)

Str	Flw	P(R = t)	P(R = f)
dry	t	0.2	0.8
dry	f	0.05	0.95
wet	t	0.6	0.4
wet	f	0.3	0.7
snow_covere	t	0.9	0.1
snow_covere d	f	0.7	0.3

Valores ilustrativos baseados em lógica: volante desgastado e rua escorregadia aumentam a chance de escorregamento, depende de $R: P(V \mid R)$).

V (Dínamo mostra tensão)

R	P(V = t)	P(V = f)
t	0.1	0.9
f	0.95	0.05

Se o dínamo escorrega, quase não gera tensão; se não escorrega, a tensão é gerada com alta chance.

B (Lâmpada ok)

В	P(B)
t	0.95
f	0.05

Variável raiz, binária.

K (Cabo ok)

K	P(K)
t	0.95
f	0.05

Variável raiz, binária.

Li (Luz ligada)

V	В	K	P(Li = t)
t	t	t	0.99
t	t	f	0.01
t	f	t	0.01
t	f	f	0.001
f	t	t	0.3
f	t	f	0.005
f	f	t	0.005
f	f	f	0.0

Depende de V, B, K: P(Li | V, B, K).

Questão 1.c) Agora inserimos valores plausíveis para todas as probabilidades da rede bayesiana do farol de bicicleta. Esses são valores hipotéticos, mas coerentes com o funcionamento físico esperado do sistema.

P(Str) – Condição da rua

Str	P(Str)
dry	0.6
wet	0.3
snow_covered	0.1

P(Flw) – Volante desgastado

Flw	P(Flw)
t	0.1
f	0.9

P(R | Str, Flw) – Dínamo escorregando

Str	Flw	P(R = t)	P(R = f)
dry	t	0.2	0.8
dry	f	0.05	0.95
wet	t	0.6	0.4
wet	f	0.3	0.7
snow_covered	t	0.9	0.1
snow_covered	f	0.7	0.3

P(V | R) – Dínamo gera voltagem

R	P(V = t)	P(V = f)
t	0.1	0.9
f	0.95	0.05

 $\emph{P(B)}$ – $\emph{Lâmpada funcionando}$

В	P(B)
t	0.95
f	0.05

P(K) – Cabo funcionando

K	P(K)
t	0.95
f	0.05

 $P(Li \mid V, B, K) - Luz ligada$

V	В	K	P(Li = t)
t	t	t	0.99
t	t	f	0.01
t	f	t	0.01
t	f	f	0.001
f	t	t	0.3
f	t	f	0.005
f	f	t	0.005
f	f	f	0.0

Questão 1.d) Em uma rede bayesiana, uma aresta de uma variável X para outra Y (ou seja, $X \to Y$) indica que Y depende diretamente de X, e que X aparece na tabela de probabilidade condicional (CPT) de Y. Isso significa que a variável X influencia Y sem intermediários.

No caso da rede do farol de bicicleta, a variável Li (luz acesa) tem como país diretos as variáveis V (voltagem), B (lâmpada funcionando) e K (cabo funcionando). Assim, sua probabilidade condicional é dada por:

$$P(Li \mid V, B, K)$$

A variável **Str (condição da rua)** não aparece nessa fórmula, o que mostra que ela **não é pai direto de Li**.

Embora Str influenciam indiretamente o funcionamento do farol, isso acontece por meio da cadeia causal:

$$Str \rightarrow R \rightarrow V \rightarrow Li$$

Ou seja, a condição da rua pode causar escorregamento do dínamo (R), que afeta a geração de voltagem (V), que por sua vez afeta a luz (Li). Esse tipo de influência indireta não justifica a existência de uma aresta direta entre Str e Li.

Além disso, a própria rede mostra que:

- $P(\text{Li} \mid V, R) = P(\text{Li} \mid \text{mid } V) \rightarrow \text{ou seja}$, Li é independente de R dado V.
- $P(V \mid R, Str) = P(V \mid mid R) \rightarrow ou seja, V \text{ \'e independente de Str dado } R.$

Essas igualdades representam independências condicionais (usando o conceito de d-separação), e nos permitem concluir que:

Li
$$\perp \perp$$
 Str | V, B, K

Ou seja, Li é condicionalmente independente de Str dado V, B e K. Isso confirma que não há uma aresta Str → Li na rede.

<u>Questão 1.e</u>) A variável Str (condição da rua) não influencia V (voltagem gerada) diretamente. Ela influencia a variável R (escorregamento do dínamo), que por sua vez afeta V.

Ou seja, a cadeia causal é:

$$Str \to R \to V$$

Portanto, para calcular $P(V \mid Str)$, precisamos considerar a variável intermediária R, pois V depende de Str apenas indiretamente.

Como V depende diretamente de R, e R depende de Str, usamos a regra da probabilidade total marginalizando sobre R:

$$\mathbf{P}(\mathbf{V} = \mathbf{t} \mid \mathbf{Str} = \mathbf{snow}) = \sum_{r \in \{t, f\}} P(V = t \mid R = r) \cdot P(R = r \mid Str = snow)$$

Com base em critérios realistas do funcionamento do sistema, adotamos os seguintes valores:

R	$P(V = t \mid R)$
t (escorrega)	0.1
f (não	
escorrega)	0.95

Probabilidade de gerar voltagem (dado escorregamento).

A escorregada do dínamo também depende da condição do volante (Flw). Assumindo:

- P(Flw = t) = 0.1
- P(Flw = f) = 0.9
- $P(R = t \mid Str = snow, Flw = t) = 0.9$
- $P(R = t \mid Str = snow, Flw = f) = 0.7$

Aplicamos a regra da soma total para calcular:

$$P(R = t \mid Str = snow) = (0.9 \cdot 0.1) + (0.7 \cdot 0.9) = 0.09 + 0.63 = 0.72$$

 $P(R = f \mid Str = snow) = 1 - 0.72 = 0.28$

Substituindo e calculando o valor final:

$$P(V = t \mid Str = snow) = (0.1 \cdot 0.72) + (0.95 \cdot 0.28) = 0.072 + 0.266 = 0.338.$$

A probabilidade de que o dínamo gera voltagem em uma rua coberta de neve é 33,8%. Esse valor reflete a chance reduzida de funcionamento eficiente do sistema devido ao risco aumentado de escorregamento em condições adversas.