Learning Objective: Cartesian Coordinate, Vectors, and Operations

Problem 1. In a Cartesian coordinates, vector **A** points from the origin to point $P_1 = (2, 3, 3)$, and vector **B** points from P_1 to point $P_2 = (1, -2, 2)$. Review Table 1 for vector relations.

- (a) Determine vector \mathbf{A} , then calculate its magnitude |A|, and unit vector $\hat{\mathbf{A}}$.
- (b) Determine the angle between A and the y-axis.
- (c) Determine vector \mathbf{B} , then calculate its magnitude |B|, and unit vector $\hat{\mathbf{B}}$.
- (d) Find the dot product $\mathbf{A} \cdot \mathbf{B}$ and cross product $\mathbf{A} \times \mathbf{B}$ between vectors \mathbf{A} and \mathbf{B} .

Learning Objective: Cylindrical Coordinate, Length, Surface Area, and Volume

Problem 2. A section of a cylinder is described as $0 \le \rho \le 3$, $60^{\circ} \le \phi \le 120^{\circ}$, and $-2 \le z \le 2$.

- (a) Determine the perimeter of the enclosed area at z = 0.
- (b) Determine the surface area of the cylinder section for $\rho = 3$.
- (c) Determine the enclosed volume of the cylinder section.

Learning Objective: Spherical Coordinate, Length, Surface Area, and Volume

Problem 3. A section of a sphere is described as $0 \le r \le 2$, $0^{\circ} \le \theta \le 90^{\circ}$, and $30^{\circ} \le \phi \le 90^{\circ}$.

- (a) Determine the perimeter of the enclosed surface area at r=2.
- (b) Determine the surface area of the sphere section for r=2.
- (c) Determine the enclosed volume of the cylinder section.

Learning Objective: Applications of Line, Surface Area, and Volume Integral

Problem 4. Determine the total charge of the following scenarios.

- (a) Determine the total charge on a line for $0 \le y \le 5$ cm, where the line charge density is described as $\rho_L = 12y^2$ mC/cm.
- (b) Determine the total charge on the surface of a cylinder for $\rho = 4$ cm, $0 \le z \le 2$ cm, where the surface charge density is described as $\rho_S = \rho z^2$ nC/cm².
- (c) Determine the total charge enclosed by a sphere for r=4 cm, where the volume charge density is described as $\rho_v=\frac{10}{r\cdot\sin(\theta)}$ C/cm³

Table 1: Summary of vector relations

	Table 1: Summary of v	Cylindrical	Spherical
	Coordinates	Coordinates	Coordinates
Coordinate variables	x, y, z	ρ, ϕ, z	$r, heta, \phi$
	$\hat{\mathbf{x}}A_x + \hat{\mathbf{y}}A_y + \hat{\mathbf{z}}A_z$	$\hat{\rho}A_{\rho} + \hat{\phi}A_{\phi} + \hat{\mathbf{z}}A_{z}$	$\hat{\mathbf{r}}A_r + \hat{\theta}A_\theta + \hat{\phi}A_\phi$
$ \mathbf{Magnitude} \ A =$	$\sqrt{A_x^2 + A_y^2 + A_z^2}$	$\sqrt{A_\rho^2 + A_\phi^2 + A_z^2}$	$\sqrt{A_r^2 + A_\theta^2 + A_\phi^2}$
Position vector $\overrightarrow{OP_1} =$	$\hat{\mathbf{x}}x_1 + \hat{\mathbf{y}}y_1 + \hat{\mathbf{z}}z_1$	$\hat{ ho} ho_1+\hat{f z}z_1$	$\hat{\mathbf{r}}r_1$
	for $P_1 = (x_1, y_1, z_1)$	for $P_1 = (\rho_1, \phi_1, z_1)$	for $P_1 = (r_1, \theta_1, \phi_1)$
Base vector properties	$\hat{\mathbf{x}} \cdot \hat{\mathbf{x}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	$\hat{\rho} \cdot \hat{\rho} = \hat{\phi} \cdot \hat{\phi} = \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} = 1$	$\hat{\mathbf{r}} \cdot \hat{\mathbf{r}} = \hat{\theta} \cdot \hat{\theta} = \hat{\phi} \cdot \hat{\phi} = 1$
	$\hat{\mathbf{x}} \cdot \hat{\mathbf{y}} = \hat{\mathbf{y}} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\mathbf{x}} = 0$	$\hat{\rho} \cdot \hat{\phi} = \hat{\phi} \cdot \hat{\mathbf{z}} = \hat{\mathbf{z}} \cdot \hat{\rho} = 0$	$\hat{\mathbf{r}} \cdot \hat{\theta} = \hat{\theta} \cdot \hat{\phi} = \hat{\phi} \cdot \hat{\mathbf{r}} = 0$
	$\hat{\mathbf{x}} imes \hat{\mathbf{y}} = \hat{\mathbf{z}}$	$\hat{ ho} imes \hat{\phi} = \hat{\mathbf{z}}$	$\hat{\mathbf{r}} imes \hat{ heta} = \hat{\phi}$
	$\hat{\mathbf{y}} imes \hat{\mathbf{z}} = \hat{\mathbf{x}}$	$\hat{\phi} \times \hat{\mathbf{z}} = \hat{\rho}$	$\hat{ heta} imes \hat{\phi} = \hat{\mathbf{r}}$
	$\hat{\mathbf{z}} imes \hat{\mathbf{x}} = \hat{\mathbf{y}}$	$\hat{\mathbf{z}} imes \hat{ ho} = \hat{\phi}$	$\hat{\phi} imes \hat{\mathbf{r}} = \hat{ heta}$
$oxed{f Dpt\ product\ A\cdot B} =$	$A_x B_x + A_y B_y + A_z B_z$	$A_{\rho}B_{\rho} + A_{\phi}B_{\phi} + A_{z}B_{z}$	$A_r B_r + A_\theta B_\theta + A_\phi B_\phi$
	$\begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ A_x & A_y & A_z \\ B_x & B_y & B_z \end{vmatrix}$	$egin{array}{cccc} \hat{ ho} & \hat{m{\phi}} & \hat{m{z}} \ A_{ ho} & A_{\phi} & A_{z} \ B_{ ho} & B_{\phi} & B_{z} \ \end{array}$	$egin{array}{cccc} \hat{\mathbf{r}} & \hat{ heta} & \hat{\phi} \ A_r & A_{ heta} & A_{\phi} \ B_r & B_{ heta} & B_{\phi} \ \end{array}$
Differential length $d\mathbf{l} =$	$\hat{\mathbf{x}} dx + \hat{\mathbf{y}} dy + \hat{\mathbf{z}} dz$	$\hat{\rho} d\rho + \hat{\phi} \rho d\phi + \hat{\mathbf{z}} dz$	$\hat{\mathbf{r}} dr + \hat{\theta} r d\theta + \hat{\phi} r \sin(\theta) d\phi$
Differential surface areas	$d\hat{\mathbf{s}}_x = \hat{\mathbf{x}} dy dz$	$d\hat{\mathbf{s}}_{\rho} = \hat{\rho} \rho d\phi dz$	$d\hat{\mathbf{s}}_r = \hat{\mathbf{r}} r^2 \sin(\theta) d\theta d\phi$
	$d\hat{\mathbf{s}}_y = \hat{\mathbf{y}} dx dz$	$d\hat{\mathbf{s}}_{\phi} = \hat{\phi} d\rho dz$	$d\hat{\mathbf{s}}_{\theta} = \hat{\theta} r \sin(\theta) dr d\phi$
	$d\hat{\mathbf{s}}_z = \hat{\mathbf{z}} dx dy$	$d\hat{\mathbf{s}}_z = \hat{\mathbf{z}} \rho d\rho d\phi$	$d\hat{\mathbf{s}}_{\phi} = \hat{\phi} r dr d\theta$
Differential volume $d\mathcal{V}$	dxdydz	$ hod hod\phidz$	$r^2 \sin(\theta) dr d\theta d\phi$