From Elliptic Functions to Modular forms

Tianyang Wang

Nanjing University

May 29, 2021

Table of Contents

- Elliptic functions
- 2 Complex tori
- Properties of elliptic functions
- 4 Weierstrass p function
- Modular forms

Definition(Elliptic funtions)

If f is meromorphic on \mathbb{C} , and $\exists \omega_1, \omega_2 \in \mathbb{C}^*$, such that $\forall z \in \mathbb{C}, f(z + \omega_1) = f(z), f(z + \omega_2) = f(z)$, then we say that f if an elliptic function.(double period mero.)

Definition(Elliptic funtions)

If f is meromorphic on \mathbb{C} , and $\exists \omega_1, \omega_2 \in \mathbb{C}^*$, such that $\forall z \in \mathbb{C}, f(z + \omega_1) = f(z), f(z + \omega_2) = f(z)$, then we say that f if an elliptic function.(double period mero.)

• Normalization: Let $\tau = \frac{\omega_1}{\omega_2}$, suppose Im $\tau > 0$.(If not, exchange ω_1 and ω_2), then the function $F(z) = f(\omega_2 z)$ has period 1 and τ , where $\tau \in \mathcal{H} := \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ (the upper complex plane)

Definition(Elliptic funtions)

If f is meromorphic on \mathbb{C} , and $\exists \omega_1, \omega_2 \in \mathbb{C}^*$, such that $\forall z \in \mathbb{C}, f(z + \omega_1) = f(z), f(z + \omega_2) = f(z)$, then we say that f if an elliptic function.(double period mero.)

• Normalization: Let $\tau = \frac{\omega_1}{\omega_2}$, suppose Im $\tau > 0$.(If not, exchange ω_1 and ω_2), then the function $F(z) = f(\omega_2 z)$ has period 1 and τ , where $\tau \in \mathcal{H} := \{z \in \mathbb{C} : \text{Im}(z) > 0\}$ (the upper complex plane)

Example

 $f(z) = \sum_{(m,n) \in \mathbb{Z}^2} \frac{1}{(z+m+n\tau)^3} (\tau \text{ is fixed and } \tau \in \mathcal{H}).$ Note that this function is well defined since we can verify that the series is absolutely convergent and uniformly convergent.

Figure 1. The lattice Λ generated by 1 and τ

Figure 1. The lattice Λ generated by 1 and τ

Definition

- (1) (Lattices) For a $z \in \mathbb{C}$, define a point set $\Lambda = \{m + n\tau : m, n \in \mathbb{Z}\}$, say a lattice.
- (2) We define an equivalence relation: we say $z_1 \sim z_2$ iff $z_1 z_2 \in \Lambda$.

Definition (Fundamental parallelogram)

For a $\tau \in \mathbb{C}$, define a point set $P_0 = \{z \in \mathbb{C} : z = a + b\tau$,where $0 \le a < 1, 0 \le b < 1\}$.

Figure 2. A period parallelogram

Remark

- (1) $\forall z \in \mathbb{C}, \exists ! \omega \in P_0$, such that $z \sim \omega$
- (2) If $\frac{\omega_1}{\omega_2} \in \mathbb{R}$, then when $\frac{\omega_1}{\omega_2} \in \mathbb{Q}$, f will be simple period, when $\frac{\omega_1}{\omega_2} \in \mathbb{R} \mathbb{Q}$, f will be constant. We often suppose $\frac{\omega_1}{\omega_2} \notin \mathbb{R}$.

Remark

- (1) $\forall z \in \mathbb{C}, \exists ! \omega \in P_0$, such that $z \sim \omega$
- (2) If $\frac{\omega_1}{\omega_2} \in \mathbb{R}$, then when $\frac{\omega_1}{\omega_2} \in \mathbb{Q}$, f will be simple period, when $\frac{\omega_1}{\omega_2} \in \mathbb{R} \mathbb{Q}$, f will be constant. We often suppose $\frac{\omega_1}{\omega_2} \notin \mathbb{R}$.

Definition

We say that two lattice are similar if $\exists m \in \mathbb{C}, m\Lambda = \Lambda'$, denoted $\Lambda \approx \Lambda'$.

Remark

- (1) $\forall z \in \mathbb{C}, \exists ! \omega \in P_0$, such that $z \sim \omega$
- (2) If $\frac{\omega_1}{\omega_2} \in \mathbb{R}$, then when $\frac{\omega_1}{\omega_2} \in \mathbb{Q}$, f will be simple period, when $\frac{\omega_1}{\omega_2} \in \mathbb{R} \mathbb{Q}$, f will be constant. We often suppose $\frac{\omega_1}{\omega_2} \notin \mathbb{R}$.

Definition

We say that two lattice are similar if $\exists m \in \mathbb{C}, m\Lambda = \Lambda'$, denoted $\Lambda \approx \Lambda'$.

Lemma

- (1) For two lattices: $\Lambda = \omega_1 \mathbb{Z} \bigoplus \omega_2 \mathbb{Z}, \Lambda' = \omega_1' \mathbb{Z} \bigoplus \omega_2' \mathbb{Z}, \Lambda = \Lambda'$ (as two point sets) $\iff {\omega_1 \choose \omega_2} = {ab \choose cd} {\omega_2' \choose \omega_2'}$ for some ${ab \choose cd} \in GL_2(\mathbb{Z})$.
- (2) For two lattices: $\Lambda = \mathbb{Z} \bigoplus \overline{\tau} \mathbb{Z}, \Lambda' = \mathbb{Z} \bigoplus \tau' \mathbb{Z}, \Lambda = \Lambda'$ (as two point sets) $\iff \tau = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \tau'$ for some $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{Z})$ (Fractional linear transformation).

Table of Contents

- Elliptic functions
- 2 Complex tori
- Properties of elliptic functions
- Weierstrass p function
- Modular forms

Definition(Complex tori)

For a lattice Λ , $\mathbb{C}/\Lambda := \{z + \Lambda : z \in \mathbb{C}\}$ (equivalent class)

Definition(Complex tori)

For a lattice Λ , $\mathbb{C}/\Lambda:=\{z+\Lambda:z\in\mathbb{C}\}$ (equivalent class)

Remark(structures on complex tori)

- (1) A complex torus is an Abelian group(add.).(induced by $(\mathbb{C},+)$)
- (2) A complex torus is a compact Riemann surface.

Remark

Elliptic functions are holomorphic functions: $\mathbb{CT}^1 \to \mathbb{CP}^1$

Remark

Elliptic functions are holomorphic functions: $\mathbb{CT}^1 \to \mathbb{CP}^1$

Recall a theorem about Riemann surface:

Remark

Every holomorphic function on a compact Riemann surface is constant.

Table of Contents

- Elliptic functions
- 2 Complex tori
- Properties of elliptic functions
- 4 Weierstrass p function
- Modular forms

Theorem

Holomorphic elliptic functions are constant.

Theorem

Holomorphic elliptic functions are constant.

Proof.

 $\overline{P_0}$ is compact \Rightarrow bounded on $\mathbb C.$ Apply Liouville theorem.

Theorem

Holomorphic elliptic functions are constant.

Proof.

 $\overline{P_0}$ is compact \Rightarrow bounded on $\mathbb C$. Apply Liouville theorem.

Theorem

For every elliptic function, $\#\{zeros\}=\#\{poles\}\ (z \in P_0)$.

Theorem

Holomorphic elliptic functions are constant.

Proof.

 $\overline{P_0}$ is compact \Rightarrow bounded on $\mathbb C$. Apply Liouville theorem.

Theorem

For every elliptic function, $\#\{zeros\}=\#\{poles\}\ (z \in P_0)$.

Proof.

Compute the integral on $\partial \overline{P_0}$,

$$\int_{\partial \overline{P_0}} \frac{f'(z)}{f(z)} dz = N(f, \partial \overline{P_0}) - P(f, \partial \overline{P_0}) = 0.$$

Corollary

If f is an elliptic function, then the solution numbers of f(z) = c ($z \in P_0$) are the same for every $c \in \mathbb{CP}^1$.In other words,

$$\#\{z \in P_0 : f(z) = c_1\} = \#\{z \in P_0 : f(z) = c_2\}$$

Corollary

If f is an elliptic function, then the solution numbers of f(z)=c ($z\in P_0$) are the same for every $c\in \mathbb{CP}^1$.In other words,

$$\#\{z \in P_0 : f(z) = c_1\} = \#\{z \in P_0 : f(z) = c_2\}$$

Proof.

$$\#\{z \in P_0 : f(z) = c_1\} = \#\{\text{zeros of } f(z) - c_1\}$$
 $= \#\{\text{poles of } f(z) - c_1\}$
 $= \#\{\text{poles of } f(z) - c_2\}$
 $= \#\{\text{zeros of } f(z) - c_2\}$
 $= \#\{z \in P_0 : f(z) = c_2\}$

We call this number the order of f.

Table of Contents

- Elliptic functions
- 2 Complex tori
- Properties of elliptic functions
- 4 Weierstrass p function
- Modular forms

Definition(Weierstrass *p* function)

For a lattice Λ , let

$$p(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda^*} \left[\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} \right]$$

Notice that when $|\omega| \to +\infty$, $\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} = O(\frac{1}{\omega^3})$, thus, p(z) is well defined.

Definition(Weierstrass p function)

For a lattice Λ , let

$$p(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda^*} \left[\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} \right]$$

Notice that when $|\omega| \to +\infty$, $\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} = O(\frac{1}{\omega^3})$, thus, p(z) is well defined.

Theorem

p is elliptic.

Definition(Weierstrass *p* function)

For a lattice Λ , let

$$p(z) = \frac{1}{z^2} + \sum_{\omega \in \Lambda^*} \left[\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} \right]$$

Notice that when $|\omega| \to +\infty$, $\frac{1}{(z+\omega)^2} - \frac{1}{\omega^2} = O(\frac{1}{\omega^3})$, thus, p(z) is well defined.

Theorem,

p is elliptic.

Proof.

Notice that $p'(z) = -2\sum_{\omega \in \Lambda} \frac{1}{(z+\omega)^3}$ is elliptic, whose periods are 1 and τ .

Proof.

Thus,

$$p'(z+1)-p'(z)=0=p'(z+\tau)-p'(z)(\forall z\in\mathbb{C}).$$

It follows that, for some $a,b \in \mathbb{C}$,

$$p(z+1)-p(z)=a, p(z+ au)-p(z)=b(\forall z\in\mathbb{C}).$$

However, p is even. $p(\frac{1}{2}) = p(-\frac{1}{2}) \Rightarrow a = 0$, $p(\frac{\tau}{2}) = p(-\frac{\tau}{2}) \Rightarrow b = 0$. The theorem holds.

We know that p' is odd and elliptic, which implies that $p'(\frac{1}{2}) = -p'(-\frac{1}{2}) = -p'(\frac{1}{2}) = 0$. Similarly, $p'(\frac{\tau}{2}) = p'(\frac{1+\tau}{2}) = 0 = p'(\frac{1}{2})$. On the other hand, p' has a unique pole at 0, which is of order 3. Therefore, $\frac{1}{2}$, $\frac{\tau}{2}$, $\frac{1+\tau}{2}$ are the only zeros of p', which are of order 1. Denote $F(z) = (p(z) - p(\frac{1}{2}))(p(z) - p(\frac{\tau}{2}))(p(z) - p(\frac{1+\tau}{2}))$. Then F has only three zeres, $\frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}$, which are of order 2. So does p'^2 . So we have obtained that $\frac{F}{r^2}$ is holomorphic and elliptic, thus, it is constant, say $\frac{F}{p'^2} = c$. In order to find c, we take the Laurent expansion for p and p', $p(z) = \frac{1}{z^2} + ..., p'(z) = -\frac{2}{z^3} + ...$ We conclude that $c = \frac{1}{4}$. Denote that $p(\frac{1}{2}) = e_1, p(\frac{\tau}{2}) = e_2, p(\frac{1+\tau}{2}) = e_3$, we have the following theorem.

We know that p' is odd and elliptic, which implies that $p'(\frac{1}{2}) = -p'(-\frac{1}{2}) = -p'(\frac{1}{2}) = 0$. Similarly, $p'(\frac{\tau}{2}) = p'(\frac{1+\tau}{2}) = 0 = p'(\frac{1}{2})$. On the other hand, p' has a unique pole at 0, which is of order 3. Therefore, $\frac{1}{2}$, $\frac{\tau}{2}$, $\frac{1+\tau}{2}$ are the only zeros of p', which are of order 1. Denote $F(z) = (p(z) - p(\frac{1}{2}))(p(z) - p(\frac{\tau}{2}))(p(z) - p(\frac{1+\tau}{2}))$. Then F has only three zeres, $\frac{1}{2}, \frac{\tau}{2}, \frac{1+\tau}{2}$, which are of order 2. So does p'^2 . So we have obtained that $\frac{F}{r^2}$ is holomorphic and elliptic, thus, it is constant, say $\frac{F}{r^2} = c$. In order to find c, we take the Laurent expansion for p and p', $p(z) = \frac{1}{z^2} + ..., p'(z) = -\frac{2}{z^3} + ...$ We conclude that $c = \frac{1}{4}$. Denote that $p(\frac{1}{2})=e_1, p(\frac{\tau}{2})=e_2, p(\frac{1+\tau}{2})=e_3$, we have the following theorem.

Theorem

$$p'^{2} = 4(p - e_{1})(p - e_{2})(p - e_{3}).(Elliptic curves)$$

Table of Contents

- Elliptic functions
- 2 Complex tori
- Properties of elliptic functions
- 4 Weierstrass p function
- Modular forms

Definition (Modular forms) A first glance

We say $f: \mathcal{H} \to \mathbb{C}$ is a modular form if

- (1) f is holomorphic,
- (2) $f(\gamma \cdot \tau) = (c\tau + d)^k f(\tau) (\forall \tau \in \mathcal{H}, \gamma \in SL_2(\mathbb{Z})),$
- (3) f is holomorphic at ∞ .

Then we say that f is a modular form, denoted $f \in \mathcal{M}(SL_2(\mathbb{Z}))$.

Consideration

Given a lattice, which is generated by ω_1 and ω_2 , we know that the lattice corresponds with a p function, and p and p' satisfies an elliptic curve. Our goal is to put all these elliptic curves into a certain space, viewing every elliptic curves as a point in that space, and study the functions on that space, say F.

By the above thinking, since every elliptic curve is determined by two complex number ω_1 ω_2 . It is reasonable to consider \mathbb{C}^2 to be that space. However, we know that if (ω_1,ω_2) and (ω_1',ω_2') generates the same lattice, the elliptic curves should be the same as well. So we should let the function F satisfies $F(\omega_1,\omega_2)=F(\omega_1',\omega_2')$.

Furthermore, if we want to take a normalization by substituting (ω_1, ω_2) with $\tau, \tau = \frac{\omega_1}{\omega_2}$, we should suppose $f(\tau) = F(\tau, 1)$. Now we wonder the invariant for f exactly.

$$GL_2(\mathbb{Z}) \curvearrowright \mathbb{C}^2 \ni (\omega_1, \omega_2)$$
, invariant \downarrow up to similarity

$$\mathit{GL}_2(\mathbb{Z}) \curvearrowright \mathbb{CP}^1 \ni [\omega_1, \omega_2]$$
, invariant
$$\downarrow \text{ we don't consider elliptic functions for } \frac{\omega_1}{\omega_2} \in \mathbb{R} \text{ or } = \infty$$

$$\begin{split} \textit{GL}_2(\mathbb{Z}) &\curvearrowright \mathbb{CP}^1 - \mathbb{RP}^1 \ = \mathcal{H}^+ \sqcup \mathcal{H}^-, \ \textit{invariant} \\ &\downarrow \mathsf{delete} \ \binom{1 \ 0}{0 \ -1}, \ \mathsf{which} \ \mathsf{exchanges} \ \mathcal{H}^+ \textit{and} \ \mathcal{H}^-. \end{split}$$

 $SL_2(\mathbb{Z}) \curvearrowright \mathcal{H}^+$, invariant.

Consideration

For two similar lattices $\Lambda=m\Lambda'$, the value of the elliptic functions will be multiplied by a constant $m^k(k)$ is the order of the elliptic function). We want a function $F(\omega_1,\omega_2):\mathbb{C}^2\to\mathbb{C}$ to satisfies $F(\gamma\cdot(\omega_1,\omega_2))$ and $F(m\omega_1,m\omega_2)=m^k\cdot F(\omega_1,\omega_2)$ However, we suppose another function $f(\tau)=F(\tau,1)$ to take values for lattice class up to similarity. We wonder the invariant for $f(\tau)$. Compute that

$$f(\gamma \cdot \tau) = f(\frac{a\tau + b}{c\tau + d}) = F(\frac{a\tau + b}{c\tau + d}, 1) = \frac{1}{(c\tau + d)^k} F(a\tau + b, c\tau + d)$$
$$= \frac{1}{(c\tau + d)^k} F(\gamma \cdot (\tau, 1)) = \frac{1}{(c\tau + d)^k} f(\tau).$$

Since the function f take values for lattice class, it is reasonable to suppose $\tau \in \mathcal{H}$. We have the following definition.

マロトマタトマラト ラーのの

Definition (Modular forms)

We say $f:\mathcal{H}\to\mathbb{C}$ is a modular form if

- (1) f is holomorphic,
- (2) $f(\gamma \cdot \tau) = (c\tau + d)^k f(\tau) (\forall \tau \in \mathcal{H}, \gamma \in SL_2(\mathbb{Z})),$
- (3) f is holomorphic at ∞ .

Then we say that f is a modular form, denoted $f \in \mathcal{M}(SL_2(\mathbb{Z}))$.

Definition (Modular forms)

We say $f: \mathcal{H} \to \mathbb{C}$ is a modular form if

- (1) f is holomorphic,
- (2) $f(\gamma \cdot \tau) = (c\tau + d)^k f(\tau) (\forall \tau \in \mathcal{H}, \gamma \in SL_2(\mathbb{Z})),$
- (3) f is holomorphic at ∞ .

Then we say that f is a modular form, denoted $f \in \mathcal{M}(SL_2(\mathbb{Z}))$.

Definition(Automorphic forms and cusp forms)

- [1] Instead of holomorphic, if f is meromorphic, and satisfies (2) and (3), we say f an automorphic form. Denoted $f \in A_k(SL_2(\mathbb{Z}))$.
- [2] If f is a modular form, take its Fourier expansion, if the constant term =0, namely $f=\sum_{n=1}^{+\infty}a_nq^n(q=e^{2\pi i\tau})$, say f is a cusp form. $f\in\mathcal{S}_k(SL_2(\mathbb{Z}))$.

References

- [1] Elias M. Stein, Rami Shakarchi. Complex Analysis.
- [2]Fred Diamond, Jerry Shurman. GTM-228: A First Course in Modular Forms.