Applied Convex Models

Nick Henderson, AJ Friend (Stanford University) Kevin Carlberg (Meta)

August 8, 2022

Image in-painting (inpaint.ipynb)

Outline

```
Image in-painting (inpaint.ipynb)
```

Image in-painting

Image in-painting

guess pixel values in obscured/corrupted parts of image

- **b** decision variable $x \in \mathbb{R}^{m \times n \times 3}$
- ▶ $x_{i,j} \in [0,1]^3$ gives RGB values of pixel (i,j)
- many pixels missing
- ▶ K: set of known pixel IDs, whose values given by **data** $y \in \mathbf{R}^{m \times n \times 3}$

total variation in-painting: choose pixel values $x_{i,j} \in \mathbb{R}^3$ to minimize

$$\mathsf{TV}(x) = \sum_{i,j} \left\| \left[\begin{array}{c} x_{i+1,j} - x_{i,j} \\ x_{i,j+1} - x_{i,j} \end{array} \right] \right\|_{2}$$

that is, for each pixel, minimize distance to neighbors below and to the right, subject to known pixel values

In-painting: Convex model

$$\begin{array}{ll} \text{minimize} & \mathsf{TV}(x) \\ \text{subject to} & x_{i,j} = y_{i,j} \text{ if } (i,j) \in K \\ \end{array}$$

In-painting: Code example

```
\# K[i, j] == 1 \text{ if pixel value known, 0 if unknown}
from cvxpy import *
variables = []
constr = []
for i in range(3):
    x = Variable(rows. cols)
    variables += Γx1
    constr += [multiply(K, x - y[:,:,i]) == 0]
prob = Problem(Minimize(tv(*variables)), constr)
prob.solve(solver=SCS)
```

In-painting: 600×512 color image; about 900k variables

Corrupted

In-painting

Recovered

Image in-painting (inpaint.ipynb)

In-painting (80% of pixels removed)

Corrupted

In-painting (80% of pixels removed)

Recovered

Image in-painting (inpaint.ipynb)

Kalman filtering (robust_kalman.ipynb)

Outline

```
Kalman filtering (robust_kalman.ipynb)
```

Vehicle tracking

Kalman filtering

- estimate vehicle path from noisy position measurements (with outliers)
- ightharpoonup dynamic model of vehicle state x_t :

$$x_{t+1} = Ax_t + Bw_t, \quad y_t = Cx_t + v_t$$

- Given:
 - ► A, B: matrices characterizing time-discrete dynamics
 - C: output-measurement matrix
 - $ightharpoonup y_t$, $t=1,\ldots,N$: position measurements over N time steps
- ► Unknown:
 - $ightharpoonup x_t$: vehicle state (position, velocity): **to be estimated**
 - $ightharpoonup w_t$: unknown drive force on vehicle
 - $\triangleright v_t$: noise

Kalman filter and Robust Kalman filter

Kalman filter:

ightharpoonup estimate x_t by solving

minimize
$$\sum_{t=1}^{N} (\|w_t\|_2^2 + \gamma \|v_t\|_2^2)$$

subject to $x_{t+1} = Ax_t + Bw_t$, $y_t = Cx_t + v_t$, $t = 1, \dots, N$

- ightharpoonup can interpret w_t and v_t as the **residuals** of the equations
- lacktriangle a least-squares problem; maximum likelihood if assuming w_t, v_t Gaussian

Robust Kalman filter:

lacktriangle to handle outliers in v_t , replace square cost with Huber cost ϕ

minimize
$$\sum_{t=1}^{N} (\|w_t\|_2^2 + \gamma \phi(v_t))$$

subject to $x_{t+1} = Ax_t + Bw_t$, $y_t = Cx_t + v_t$, $t = 1, ..., N$

▶ No longer least squares due to Huber cost

Robust KF CVXPY code

```
from cvxpy import *
 x = Variable(4.n+1)
 w = Variable(2.n)
 v = Variable(2.n)
 obj = sum squares(w)
 obj += sum(huber(norm(v[:,t])) for t in range(n))
 obi = Minimize(obj)
 constr = []
 for t in range(n):
     constr += [x[:,t+1] == A*x[:,t] + B*w[:,t].
                 v[:,t] == C*x[:,t] + v[:,t]
 Problem(obj, constr).solve()
Kalman filtering (robust kalman.ipynb)
```

- ightharpoonup N = 1000 time steps
- $ightharpoonup w_t$ standard Gaussian
- $ightharpoonup v_t$ standard Gaussian, except 30% are outliers with $\sigma=10$

Portfolio optimization (portfolio_optimization.ipynb)

Outline

```
Portfolio optimization (portfolio optimization.ipynb)
```

Portfolio allocation vector

- ▶ invest fraction w_i in asset i for i = 1, ..., n
- $ightharpoonup w \in \mathbf{R}^n$ is portfolio allocation vector
- $ightharpoonup \mathbf{1}^T w = 1$
- \blacktriangleright $w_i < 0$ means short position in asset i (borrow shares and sell now; replace later)
- $w \ge 0$ is a *long only* portfolio
- $\|w\|_1 = \mathbf{1}^T w_+ + \mathbf{1}^T w_-$ is *leverage* (there are other definitions)
 - smaller leverage = fewer investments (sparser)

Asset Returns

- investments held for one period
- ▶ initial prices $p_i > 0$; end of period process $p_i^+ > 0$
- ightharpoonup asset (fractional) returns $r_i = (p_i^+ p_i)/p_i$
- **>** portfolio (fractional) return $R = \sum_i r_i w_i = r^T w$
- common model: r is a random variable, with mean $\mathbf{E}[r] = \mu$, covariance $\mathbf{E}[(r-\mu)(r-\mu)^T] = \Sigma$
- ▶ so R is a random variable with $\mathbf{E}[R] = \mu^T w$, $\mathbf{var}[R] = w^T \Sigma w$
- ightharpoonup $\mathbf{E}[R]$ is (mean) return of portfolio
- $ightharpoonup \mathbf{var}[R] = w^T \Sigma w$ is risk of portfolio
- Finance: high return, low risk (multiobjective)

Classical (Markowitz) portfolio optimization

minimize
$$-\mu^T w + \gamma w^T \Sigma w$$

subject to $\mathbf{1}^T w = 1, \ w \in \mathcal{W}$

- ightharpoonup variable $w \in \mathbf{R}^n$
- $ightharpoonup \mathcal{W}$ is set of allowed portfolios
- ightharpoonup common case $\mathcal{W} = \mathbf{R}^n_+$ (long only)
- $ightharpoonup \gamma > 0$ is risk aversion parameter
- $ightharpoonup \mu^T w \gamma w^T \Sigma w$ is risk-adjusted return
- lacktriangle varying γ gives (convex hull of) Pareto-optimal risk-return trade-off
- can also fix return and minimize risk, etc.
- ▶ To limit leverage use $||w||_1 \le L^{\text{max}}$

Pareto front

- Pareto front shows Pareto-optimal allocations
- ▶ Red points show single-asset allocation points

Pareto front

Two Pareto-optimal portfolios:

- $ightharpoonup \gamma = 0.29$: higher return, higher risk
- $ightharpoonup \gamma = 1.05$: lower return, lower risk

Leverage

Now, introduce a constraint on leverage:

minimize
$$-\mu^T w + \gamma w^T \Sigma w$$

subject to $\mathbf{1}^T w = 1, \ w \in \mathcal{W}$
 $\|w\|_1 \le L_{\max}$

Pareto curves for different values of L_{max} :

lacktriangle Larger values of $L_{
m max}$ are less restrictive and enable superior portfolios in terms of risk and return

Leverage

Now, introduce a constraint on risk:

$$\begin{array}{ll} \text{minimize} & -\mu^T w \\ \text{subject to} & \mathbf{1}^T w = 1, \ w \in \mathcal{W} \\ & \|w\|_1 \leq L_{\max} \\ & w^T \Sigma w \leq 2 \end{array}$$

Single objective

Portfolios for different values of L_{max} :

lacktriangle Smaller values of $L_{
m max}$ enforce sparsity and smaller variation in the resulting portfolios (lower leverage)

Nonnegative matrix factorization (nonneg_matrix_fact.ipynb)

Outline

```
Nonnegative matrix factorization (nonneg matrix fact.ipynb)
```

Nonnegative matrix factorization

policity goal: factor $A \in \mathbf{R}_+^{m \times n}$ such that

$$A \approx WH$$
,

where $W \in \mathbf{R}_{+}^{m \times k}$, $H \in \mathbf{R}_{+}^{k \times n}$ and $k \ll n, m$

- $lackbox{ }W$, H give nonnegative low-rank approximation to A
- lacktriangle low-rank means data more interpretable as combination of just k features
- nonegativity may be natural to the data, e.g., no negative words in a document
- applications in recommendation systems, signal processing, clustering, computer vision, natural language processing

NMF formulation

- ightharpoonup many ways to formalize $A \approx WH$
- ightharpoonup for given A and k, we'll try to find W and H that solve

$$\begin{array}{ll} \text{minimize}_{W,H} & \|A-WH\|_F^2 \\ \text{subject to} & W_{ij} \geq 0 \\ & H_{ij} \geq 0 \end{array}$$

 $\|X\|_F = \sqrt{\sum_{ij} X_{ij}^2}$ is the matrix **Frobenius norm**

Principal component analysis

- NMF can be thought of as a dimensionality reduction technique
- ▶ PCA is a related dimensionality reduction method, solving the problem

$$\mathsf{minimize}_{W,H} \quad \|A - WH\|_F^2$$

for $W \in \mathbf{R}_{+}^{m \times k}$, $H \in \mathbf{R}_{+}^{k \times n}$, without nonnegativity constraint

- ► PCA has "analytical" solution via the **singular value decomposition**
- won't go further into the interpretation of the models; focus on methods for computing NMF instead

Biconvexity

► the NMF problem

minimize
$$_{W,H}$$
 $\|A - WH\|_F^2$ subject to $W_{ij} \geq 0$ $H_{ij} \geq 0$

is **nonconvex** due to the product WH

ightharpoonup however, the objective function is **biconvex**: convex in either W or H if we hold the other fixed

Alternating minimization

biconvexity suggests the following algorithm:

- ightharpoonup initialize W^0
- for k = 0, 1, 2, ...

$$\begin{split} H^{k+1} = & \text{ argmin}_H & \quad \|A - W^k H\|_F^2 \\ & \text{ subject to } & \quad H_{ij} \geq 0 \end{split}$$

$$\label{eq:wk+1} \begin{split} W^{k+1} = & \ \operatorname{argmin}_W \quad \|A - WH^{k+1}\|_F^2 \\ & \ \operatorname{subject to} \quad W_{ij} \geq 0 \end{split}$$

In CVXPY

```
for iter_num in range(1, 1+MAX_ITERS):
     # For odd iterations, treat Y constant, optimize over X.
     if iter num % 2 == 1:
              X = cvx.Variable(k, n)
              constraint = [X >= 0]
     # For even iterations, treat X constant, optimize over Y.
     else:
              Y = cvx.Variable(m. k)
              constraint = [Y >= 0]
     # Solve the problem.
     obj = cvx.Minimize(cvx.norm(A - Y*X, 'fro'))
     prob = cvx.Problem(obj, constraint)
     prob.solve(solver=cvx.SCS)
Nonnegative matrix factorization (nonneg matrix fact.ipynb)
```

NMF results in CVXPY

► Residual goes to zero

Discussion

- ightharpoonup expression $A-W^kH$ is **linear** in variable H
- $\|A-W^kH\|_F^2$ is exactly the least squares objective, but with matrix instead of vector variable
- each subproblem is a convex nonnegative least squares problem
- ▶ no guarantee of global minimum, but we do get a local minimum
- due to biconvexity, the objective function decreases at each iteration, meaning that the iteration converges

Extensions

sparse factors with ℓ_1 penalty

$$\begin{array}{ll} \text{minimize}_{W\!,H} & \|A-WH\|_F^2 + \sum_{ij} \left(|W_{ij}| + |H_{ij}|\right) \\ \text{subject to} & W_{ij} \geq 0 \\ & H_{ij} \geq 0 \end{array}$$

Extensions

matrix completion: only observe subet of entries A_{ij} for $(i,j) \in \Omega$

use low-rank assumption to estimate missing entries

$$\begin{array}{ll} \text{minimize}_{W,H,Z} & \sum_{i,j\in\Omega} (A_{ij}-Z_{ij})^2 \\ \text{subject to} & Z=WH \\ & W_{ij}\geq 0 \\ & H_{ij}\geq 0 \end{array}$$

Optimal advertising (optimal_advertising.ipynb)

Outline

```
Optimal advertising (optimal advertising.ipynb)
```

Ad display

- ightharpoonup m advertisers/ads, $i = 1, \ldots, m$
- ightharpoonup n time slots, $t = 1, \ldots, n$
- $ightharpoonup T_t$ is total traffic in time slot t
- ▶ $D_{it} \ge 0$ is number of ad i displayed in period t
- $ightharpoonup \sum_i D_{it} \leq T_t$
- ightharpoonup contracted minimum total displays: $\sum_t D_{it} \geq c_i$
- ightharpoonup goal: choose D_{it}

Clicks and revenue

- $ightharpoonup C_{it}$ is number of clicks on ad i in period t
- ightharpoonup click model: $C_{it} = P_{it}D_{it}$
- ▶ $P_{it} \in [0,1]$: fraction of ads i in period t that are clicked
- **>** payment: $R_i > 0$ per click for ad i, up to budget B_i
- ad revenue

$$S_i = \min\{R_i \sum_t C_{it}, B_i\}$$

is a concave function of D

Ad optimization

choose displays to maximize revenue:

maximize
$$\sum_{i} S_{i} = \min\{R_{i} \sum_{t} P_{it} D_{it}, B_{i}\}$$

subject to $D \geq 0$, $D^{T} \mathbf{1} \leq T$, $D \mathbf{1} \geq c$

- ightharpoonup variable is $D \in \mathbf{R}^{m \times n}$
- ightharpoonup data are T, c, R, B, P
- constraint interpretation:
 - $ightharpoonup D \geq 0$: non-negative number of each ad in each time period
 - ▶ $D^T \mathbf{1} \leq T$: cannot exceed total traffic in each time slot
 - ▶ $D1 \ge c$: cannot violate minimum number of contracted ad displays

Ad optimization example

- ▶ 24 hourly periods, 5 ads (A–E)
- ightharpoonup total traffic T_t :

Optimal advertising (optimal_advertising.ipynb)

Example

ad data:

Ad	А	В	С	D	Е
c_i R_i B_i	61000	80000	61000	23000	64000
	0.15	1.18	0.57	2.08	2.43
	25000	12000	12000	11000	17000

 $ightharpoonup c_i$: minimum contracted amount for ad i

 $ightharpoonup R_i$: payment per click for ad i

 $ightharpoonup B_i$: maximum budget for ad i

Ad optimization CVXPY code

Ad optimization results in CVXPY

Example

ad revenue

Ad	А	В	С	D	E
$\overline{c_i}$	61000	80000	61000	23000	64000
$egin{array}{c} c_i \ R_i \end{array}$	0.15	1.18	0.57	2.08	2.43
B_i	25000	12000	12000	11000	17000
$\sum_t D_{it}$	61000	80000	148116	23000	167323
\overline{S}_i	182	12000	12000	11000	7760

- ▶ Only show minimum number of ad A; makes very little money
- ► Maximize the budget for ads B, C, and D