Определение интеграла Римана через интегральные суммы

26 сентября 2022

 $\Pi \subset \mathbb{R}^n, \ f: \Pi \to \mathbb{R} \text{ orp.}$

p – разбиение $\Pi_{i} = \{\pi_{i}, i = 1, \dots, N\}$

 $\Xi = \{ \xi_i \in \pi_i, \mid i = 1, \dots, N \}$

 $\sum (f,p,\Xi) := \sum_{i=1}^N f(\xi) v(\pi_i)$ – интегральная сумма Римана

Определение. $Ecnu\ \exists I \in \mathbb{R}: \forall \{p_k\}_{k=1}^{\infty}: d(p_k) \xrightarrow[k \to]{} 0\ \forall \{\Xi\}_{k=1}^{\infty}$

$$\sum (f,p_k,\Xi_k) \xrightarrow[k o \infty]{} I$$
, то f интегрируема по Риману и $I=\int_{\Pi}$

Теорема 1.

$$\exists I \ \forall \{p_k\} : d(p_k) \xrightarrow[k \to \infty]{} 0 \ \forall \{\Xi\} \ \sum (f, p_k, \Xi_k) \xrightarrow[k \to \infty]{} I \Leftrightarrow \int_{\overline{\Pi}} = \int_{\overline{\Pi}} = \int_{\overline{\Pi}} |f(p_k)|^2 d(p_k) d(p_k) d(p_k) d(p_k) = \int_{\overline{\Pi}} |f(p_k)|^2 d(p_k) d(p_k)$$

Доказательство.

$$\Longrightarrow \varepsilon, p_k : d(p_k) \xrightarrow[k \to \infty]{} 0 \ \forall \pi \in p_k \ \exists \xi \in \pi :$$

$$f(\xi) - \inf_{\pi} f < \varepsilon$$

Получим
$$\Xi_k \sum (f, p_K, \Xi_k) - L(f, p_k) = \sum_{\pi \in p_k} \left(f(\xi(\pi)) - \inf_{\pi} f \right) \cdot v(\pi) < \varepsilon \cdot \sum_{\pi \in p} v(\pi) = \varepsilon \cdot v(\pi)$$

Πο
$$\mathcal{J}$$
. 3 $L(f, p_k) \xrightarrow[k \to \infty]{} \int_{\Pi} \Rightarrow 0 \le I - \int_{\Pi} \le \varepsilon \cdot v(\pi)$

$$\forall arepsilon \Rightarrow rac{\int}{\Pi} = I$$
 Аналогично $\overline{\int}_{\Pi} = I$

 \sqsubseteq Пусть $\frac{\int}{\Pi} = \overline{\int}_{\Pi} = \int$. Возьмем произвольные

$$\{p_k\},\ d(p_k) \to 0,\ \{\Xi_k\}$$
 (*):

$$L(f, p_k) \le \sum (f, p_k, \Xi_k) = \sum_{\pi \in p_k} \underbrace{f(\xi(\pi))}_{(*)} v(\pi) \le U(f, p_k)$$

$$\inf_{\pi} \leq \cdots \leq \sup_{\pi} f$$

$$L(f, p_k) \xrightarrow[\text{JI. } 3, k \to \infty]{} \int_{\overline{\Pi}} = \int_{\overline{\Pi}} \langle I_{\text{JI. } 3, k \to \infty} | U(f, p_k) \rangle$$

$$\Rightarrow \sum (f, p_k, \Xi_k) \xrightarrow[k \to \infty]{} I$$

Множество меры ноль

Определение. $E \subset \mathbb{R}^n$ имеет меру ноль, если $\forall \varepsilon > 0 \; \exists \; no\kappa pumue \; E \subset \bigcup_{k=1}^{\infty} C_k$, где C_k – открытые кубы

$$\sum_{k=1}^{\infty} v(C_k) \le \varepsilon \qquad \mu(E) = 0 \quad - \text{ Mepa}$$

Замечание. $Открытые кубы \Leftrightarrow замкнутые$

Замечание. $E_1 \subset E, \ \mu(E) = 0 \Rightarrow \mu(E_1) = 0$

Лемма 4. $\mu(E_k) = 0 \Rightarrow \forall k \in \mathbb{N} \Rightarrow \mu(\bigcup_{k=1}^{\infty} E_k) = 0$

 \mathcal{A} оказательство. $\forall k \; \exists \;$ покрытие кубами с \sum объемов $< \varepsilon \cdot (\frac{1}{2})^k$ Тогда $E = \bigcup_{k=1}^{\infty} E_k \;$ будут покрыты и \sum объемов $< \varepsilon \cdot \sum_{k=1}^{\infty} (\frac{1}{2})^k = \varepsilon$

Определение. $E \subset \mathbb{R}^n$ имеет объем ноль, если $\forall \varepsilon \exists$ конечное покрытие $E = \bigcup_{k=1}^{\infty} C_k$, где c_k – открытый куб

$$\sum_{k=1}^{N} v(C_k) < \varepsilon \qquad v(E) = 0$$

Замечание.

1. $открытые \Leftrightarrow замкнутые кубы$

2.
$$v(E) = 0 \Rightarrow \mu(E) = 0$$

Лемма 5. $[a,b]\subset\mathbb{R}$ не может иметь объем 0

 \mathcal{A} оказательство. докажем, что если $[a,b] \subset \bigcup_{k=1}^N C_k$,

$$C_k$$
 – отрезки, то $\sum_{k=1}^N v(C_k) \geq b-a$

база : N = 1

$$[a,b] \subset C_1 \Rightarrow v(C_1) \ge b-a$$

переход : N+1

 $a\in U_{k=1}^{N+1}C_k\Rightarrow \exists k:a\in C_k$ перенумеруем C_k так, чтобы $a\in C_1=[lpha,eta]$

$$\alpha < a < \beta < b$$

Если $b \in [\alpha, \beta]$, то $[a, b] \subset [\alpha, \beta]$,

$$\sum_{k=1}^{N+1} v(C_k) > v(C_1) = \beta - \alpha \ge b - a$$

Если $b \notin [\alpha, \beta], \ b > \beta$

$$(\beta, b] \subset \bigcup_{k=2}^{N+1} C_k$$

$$\Rightarrow [\beta, b] \subset \bigcup_{k=2}^{N+1} C_k \xrightarrow{\text{инд. п.}} \sum_{k=2}^{N+1} v(C_k) \ge b - \beta$$

$$v(C_1) \ge \beta - a$$

$$\Rightarrow \sum_{k=1}^{N+1} v(C_k) \ge b - a$$

Лемма 6. Если $K \subset \mathbb{R}^n$ компактно, то $v(K) = 0 \Leftrightarrow \mu(K) = 0$

Доказательство. ⇒ очев. (уже доказали)

$$\sqsubseteq$$
 Пусть $K \subset \bigcup_{k=1}^{\infty} C_k$ открытые кубы,
$$\sum_{k=1}^{\infty} v(C_k) < \varepsilon$$

 \exists конечное подпокрытие $K \subset \bigcup_{j=1}^N C_{kj}$,

$$\sum_{j=1}^{N} v(C_{kj}) < \varepsilon \Rightarrow v(K) = 0$$

Пример 1. $E = [0,1] \cap \mathbb{Q}$ – разные точки $[a,b] = \{q_k, \ k \in \mathbb{N}\} = \bigcup_{k=1}^{\infty} \{q_k\}$ $\mu(\{q_k\}) = 0 \ \forall k \Longrightarrow_{\overline{J}.\ \overline{J}} \mu(E) = 0$ при этом $v(E) \neq 0$ Пусть $E \subset \bigcup_{k=1}^N C_k \Rightarrow \bar{E}_{=[0,1]} \subset \bigcup_{k=1}^N C_k \Longrightarrow_{\overline{J}.\ \overline{J}} \sum_{k=1}^N v(C_k) \geq 1$

Критерий интегрируемости Лебега

 $onumu\ везде\equiv везде,$ кроме множества точек, имеющего меру 0 $E\subset\mathbb{R}^n,\ f:E\to\mathbb{R}$ огранич. $x\in ar E,\ \delta>0$ $M_\delta(f,x):=\sup_{B_\delta(x)}f,\ m_\delta(f,x):=\inf_{B_\delta(x)}f$ $M_\delta(f,x)\uparrow,\ m_\delta(f,x)\downarrow$ - имеется в виду возрастание и убывание при росте δ $M_\delta(f,x)-m_\delta(f,x)\uparrow$ по δ

Определение. $\lim_{\delta\to 0^+} M_\delta(f,x) - m_\delta(f,x) = w(f,x)$ – колеб. ф-ии f в точке x

Лемма 7.
$$E \subset \mathbb{R}^n, \ f: E \to \mathbb{R}$$
 огр. $x \in \bar{E}$ f непр. в точке $x \Leftrightarrow w(f,x) = 0$

Доказательство.

Расписать непрерывность на языке эпс-дельт, учесть монотонность колебания функции

Лемма 8. $F \subset \mathbb{R}^n$ замкн., $f: F \to \mathbb{R}$ огр.

$$\forall \varepsilon > 0 : F_{\varepsilon} := \{x \in F \mid w(f, x) \geq \varepsilon\}.$$
 Т. д. F_{ε} – замкн.

 \mathcal{A} оказательство. Докажем, что $\mathbb{R}^n \setminus F_{\varepsilon}$ – откр.

$$\begin{array}{ll}
1. \ x \in \mathbb{R}^n \setminus F & \xrightarrow{??} \delta > 0 \quad B_{\delta}(x) \in \mathbb{R}^n \setminus F_{\varepsilon} \\
2. \ x \in F \setminus F_{\varepsilon} & \xrightarrow{} \delta > 0
\end{array}$$

1.
$$x \in \mathbb{R}^n \setminus F \Rightarrow \exists \delta > 0 \ B_{\delta}(x) \subset \mathbb{R}^n \setminus F \subset \mathbb{R}^n \setminus F_{\varepsilon}$$

2.
$$x \in F \setminus F_{\varepsilon} \Rightarrow w(f, x) < \varepsilon \Rightarrow \exists \delta > 0 : M_{\delta}(f, x) - m_{\delta}(f, x) < \varepsilon$$

$$y \in B_{\delta}(x) \ \exists \delta' > 0 \ B_{\delta'}(y) \subset B_{\delta}(y)$$

$$(\delta' < \delta - \|x - y\|)$$

если $y \not\in F$, то $y \in \mathbb{R}^n \setminus F \subset \mathbb{R}^n \setminus F_{\varepsilon}$

если $y \in F$, то $w(f, y) < \varepsilon$

$$M(f, \delta_1, y) - m(f, \delta_1, y) \le M(f, \delta, x) - m(f, \delta, x) < \varepsilon$$

$$\Rightarrow w(f, y) < \varepsilon \Rightarrow y \in \mathbb{R}^n \setminus F_{\varepsilon}$$

Тогда $\forall y \in B_\delta(x)$ верно, что $y \not\in F_\varepsilon$ или $B_\delta(x) \cap F_\varepsilon = \varnothing$

 $x\in F\setminus F_{arepsilon},\, B_{\delta}(x)$ полностью лежит в $F\setminus F_{arepsilon},\,$ значит оно открыто, F - замкнуто, $F\setminus (F\setminus F_{arepsilon})=F_{arepsilon}$ - замкнуто

Лемма 9. $\Pi \subset \mathbb{R}^n$, $f: \Pi \to \mathbb{R}$ огр.

Если $\forall x \in \Pi$ $w(f,x) < \varepsilon$, то \exists разбиение p:

$$U(f,p) - L(f,p) < \varepsilon \cdot v(\Pi)$$

$$\mathcal{A}$$
оказательство. $\forall x \in \Pi \lim_{\delta \to 0+} \left(M_{\delta}(f,x) - m_{\delta}(f,x) \right) = 0$ $\exists \delta_{\varepsilon} : M_{\delta_{\varepsilon}}(f,x) - m_{\delta_{\varepsilon}}(f,x) < \varepsilon$ $\forall x \; \exists \pi_x \; \text{открытый} \; \Pi/\Pi : \underline{\sup}_{\pi_x} f - \underline{\inf}_{\pi_x} f < \varepsilon$ $\Pi \subset \bigcup_{x \in \Pi} \pi_x, \; \Pi \; \text{компактен} \Rightarrow \exists \; \text{конечное подпокрытие}$

$$\Pi \subset \bigcup_{k=1}^N \pi_{x_k}$$

разрешем П гранями всех $\pi_{x_k}, \ k = 1, ..., N$

 \Rightarrow получаем разбиение p

$$\begin{split} U(f,p) - L(f,p) &= \sum_{\pi \in p} (\sup_{\pi} f - \inf_{\pi} f) \cdot v(\pi) < \varepsilon \cdot \sum_{\pi \in p} v(\pi) = \varepsilon v(\pi) \\ &\forall \pi \in p \ \exists k \ \pi \subset \bar{\pi}_{x_k} \\ &\Rightarrow \sup_{\pi} f - \inf_{\pi} f \leq \sup_{\bar{\pi}_{x_k}} f - \inf_{\bar{\pi}_{x_k}} f < \varepsilon \end{split}$$

Теорема 2. Критерий Лебега

$$\Pi \in \mathbb{R}^n$$
 - n/n $f: \Pi \to \mathbb{R}$ - огр $D = \{x \in \Pi \mid f - paspusha\ e \ x\}$

Тогда:

$$\exists \int_{\Pi} f \Leftrightarrow \mu(D) = 0$$

Доказательство. Пусть $\Pi_{\varepsilon} = \{x \in \Pi \mid w(f,x) \geq \varepsilon\}$ - замкнутые по Лемме, ограниченные из ограниченности исходного п/п, значит компактные

$$D \subset \bigcup_{\varepsilon > 0} \Pi_{\varepsilon}$$

$$\mu(\Pi_\varepsilon)=0, \forall \varepsilon>0 \Rightarrow v(\Pi_\varepsilon)=0$$

$$\Pi_\varepsilon\subset\bigcup_{k=1}^N\pi_k, \sum_{k=1}^N<\varepsilon, \pi_k\text{- открытые кубы}$$

Разрежем П гранями $\pi_1...\pi_N$ - получим разбиение P $P=P_1\cup P_2,\ P_1,P_2$ - не разбиения, но состоят из кубов $P_1=\{\pi\in P\mid \exists k:\pi\in\overline{\pi_k}\}$

$$P_2 = P \setminus P_1$$

$$\sum_{\pi \in P_1} v(\pi) \le \sum_{k=1}^N v(\pi_k) < \varepsilon$$

f - огр, значит $\exists M > 0 : \forall x \in \Pi |f(x)| < M$

$$\sum_{\pi \in P_1} (M_{\pi}(f) - m_{\pi}(f)) \cdot v(\pi) \le 2M \cdot \sum_{\pi \in P_1} v(\pi) \le 2M \cdot \varepsilon$$

 $\forall \pi \in P_2 : \forall x \in \pi : w(f, x) < \varepsilon$

$$\exists P(\pi) : U(f, P(\pi)) - L(f, P(\pi)) < \varepsilon \cdot v(\pi)$$

Разрежем Π гранями $\pi' \in P(\pi)$ для всех $\pi \in P_2$

Получим разбиение П: $P'=P_1'\cup P_2',\,P_1',P_2'$ - более мелкие по сравнению с P_1,P_2

$$\sum_{\pi' \in P_1'} (\sup_{\pi'} f - \inf_{\pi'} f) \cdot v(\pi') \le 2M \cdot \sum_{\pi' \in P_1'} v(\pi') < 2M \cdot \varepsilon$$

$$\sum_{\pi' \in P_2'} (\sup_{\pi'} f - \inf_{\pi'} f) \cdot v(\pi') = \sum_{\pi \in P_2} \sum_{\pi' \in P(\pi)} (\sup_{\pi'} f - \inf_{\pi'} f) \cdot v(\pi') < \sum_{\pi \in P_2} \varepsilon \cdot v(\pi) < \varepsilon \cdot v(\Pi)$$

$$U(f, P') - L(f, P') = \sum_{\pi' \in P'} (\sup_{\pi'} f - \inf_{\pi'} f) \cdot v(\pi') < \varepsilon \cdot (2M + v(\Pi)) \Rightarrow \exists \int_{\Pi} f(f, P') - L(f, P') = \sum_{\pi' \in P'} (\sup_{\pi'} f - \inf_{\pi'} f) \cdot v(\pi') < \varepsilon \cdot (2M + v(\Pi)) \Rightarrow \exists f \in P'$$

$$\Rightarrow \exists \int_{\Pi} f$$

Хотим доказать, что $\mu(D) = 0$

$$D = \bigcup_{k=1}^{\infty} \Pi_{1/k}$$

Если $\forall k : \mu(\Pi_{1/k}) = 0$, то по лемме о мере счётного объединения множеств меры 0 докажем необходимое

Из существования интеграла: $\forall \varepsilon > 0 \ \exists P : U(f,P) - L(f,P) < \frac{\varepsilon}{k}$

$$P_k = \{ \pi \in P \mid \operatorname{Int} \pi \cap \Pi_{1/k} \neq \emptyset \}$$

$$\Pi_{1/k} \subset \bigcup_{\pi \in P_k} \pi$$

$$\forall \pi \in P_k \ \exists x \in \operatorname{Int} \pi : w(f, x) \ge \frac{1}{k}$$

$$\exists \delta > 0 : B_{\delta}(x) \in \operatorname{Int} \pi \sup_{B_{\delta}(x)} f - \inf_{B_{\delta}(x)} f \ge \frac{1}{k}$$

$$\sup_{\pi} - \inf_{\pi} \ge \sup_{B_{\delta}(x)} f - \inf_{B_{\delta}(x)} f \ge \frac{1}{k}$$

$$U(f,P) - L(f,P) = \sum_{\pi \in P} (\sup_{\pi} f - \inf_{\pi} f) \cdot v(\pi) \ge \sum_{\pi \in P_k} (\sup_{\pi} f - \inf_{\pi} f) \cdot v(\pi) \ge \frac{1}{k} \cdot \sum_{\pi \in P_k} v(\pi)$$
$$\sum_{\pi \in P_k} v(\pi) \le k \cdot \left(U(f,P) - L(f,P) \right) < \varepsilon$$

$$v(\Pi_{1/k}) = 0$$