What use of AI in finance?

ISCF Final Presentation Supervisor: Prof. Dritan NACE

Denis DEMKO Thomas DEROO Doris FEJZA Elona KARAJ Hussein LEZZAIK Estia MALIQARI Yijue XIE

Table of Contents

- Introduction
- **Portfolio Management**
- 3 Credit risk Evaluation
- Project before & after
- **Conclusions**

Objectives

PROVIDE A STUDY ON THE VARIOUS APPLICATIONS OF MACHINE LEARNING IN FINANCE

STUDY THE PORTFOLIO MANAGEMENT PROBLEM AND THE APPLICATION OF THE SVM & DEEP LEARNING METHODS

STUDY THE TOOL DEVELOPED FOR THE APPLICATION OF CREDIT RISK ASSESSMENT

Team organization

Main milestones

Al applications in finance

Portfolio Management

Context

Objective

Provide a tool for investors to support decisions on investing in a specific stock or not, by predicting stock market behaviour.

- Implement machine learning algorithm SVM
- Implement Deep Learning algorithm LSTM
- Make 7-day predictions for market trend with LSTM

CAC40 dataset

- Source: Yahoo! Finance, FCHI ticker
- Contains information from 25/02/1990 up to the current date
- Essentially a time series with 1605 samples, 6 features

Part 1: Support Vector Machine

Predicting stock market changes

2 main theories: Fundamental analysis vs Technical Analysis

Support Vector Machines(SVM)

SVM is the machine learning algorithm used in classification problems

Our contribution

- Reading and understanding the financial and technical aspects of the project
- Adapted pre-processing steps to conform to our dataset
- Tuned learning parameters to help improve predictions for our scenario

Implementation: Trading Signal

- Five trading signals that perform a weighted average conclusion
- Conclusion reflects the trend of the data (uptrend, downtrend or sideways)
- Backtests show that long-term predictions are more certain

Part 2: LSTM

Context

- LSTM is a deep neural network model used for stock prediction
- Contrary to SVM, it is a regression model for the near future predictions
- Training datasets that are used for LSTM
 - 1. FCHI CAC40 French stock market index
 - 2. AEX Amsterdam Stock Exchange
 - 3. BFX BEL20 Belgium Stock Exchange
 - 4. GR German Stock Market
 - 5. IB Spanish Stock Market

LSTM results

Credit risk Evaluation

Context and Methodology

Objective

Automation of the process of approving an overdraft.

Figure: Schema of methodology

Final model & evaluation

- Balanced Random Forest
- Simple model and similar results to other methods

Method	Specificity	Sensitivity	Accuracy	AUC
BRF	0.785	0.707	0.712	0.746

Model explainability

- The banks has to justify the decision of approving or not approving the credit
- We calculate the most important features for each prediction separately

Figure: Local feature importance

Dataset exploration

The goal of the second part was to develop a general credit assessment tool

We explored a few datasets:

- UCI Repository: Mutiple credit datasets from various countries, only a small number of usable features
- PAKDD 2010 : Too few usable features
- Home Credit Default Risk: Unusable in our context
- Fast Credit : Too few samples

Lending Club dataset

Huge number of samples (> 1M), sufficient number of usable features, the only dataset we found really usable for our purpose.

Model generalization

- We finally selected 13 features from the generalization Dataset for the final model analysis.
- From 3 different aspects:
 - Credit information required by the client
 - Client's Personal information
 - Traceability of the past credit demanded by the client

Balanced Random Forest Model with AUC = 0.64

Web application functionalities

- Require all the necessary information from the client using a multi step form
- Output the probability that the client gets an approbation for the credit

Web application architecture

18 / 22

Project before & after

Comparing Gantt charts I

Comparing Gantt charts II

State of the project

Portfolio Optimization

- Start mostly from scratch
- Based on Haifei Zhang's Master Thesis

- Adapting to CAC40 dataset
- Improving SVM model
- Adding Deep Learning methods (LSTM)
- Make 7-day predictions

Credit Risk

- Start mostly from scratch
- Based on Zinan Zhou's Master Thesis

- Implement Balanced Random Forest for Overdraft
- Adapt to Lending club dataset
- Build a web application

Conclusions

- The study of AI applications helped to create an idea of how the AI and finance world are connected as well as how our two applications are placed.
- For the portfolio management problem, we studied previous and state-of-the-art algorithms and implemented for the French stock market dataset. We used different models of SVM and LSTM.
- For the credit risk assessment problem, we analysed the loan data and after implementing various methods we concluded that the best method to use is **Balanced Random Forest**. We chose to implement it to the Lending club dataset and built a web application.

