Réseaux de Petri

V. Augusto

Introduction

Présentation informelle Définitions

formelles d'un réseau de Peti

ronctionnement d'ur réseau

Séquence de franchissement

Modélisation

Réseaux de Petri

Vincent Augusto

École Nationale Supérieure des Mines de Saint-Étienne

2012-2013

Réseaux de Petri

v. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisatior

- Introduction
- 2 Définition
- 3 Fonctionnement d'un réseau
- 4 Séquence de franchissement
- Modélisation

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'ur réseau

Séquence of franchissement

Modélisation

Un réseau de Petri

- est un modèle mathématique permettant la représentation de systèmes distribués discrets (informatique, industriel), introduit par Petri (1962).
- est également un langage de modélisation, représenté sous forme d'un graphe biparti orienté.

Étude des systèmes discrets dont les champs d'application sont les systèmes de production (caractérisés par une variation imprévisible des besoins).

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'ur réseau

Séquence of franchissement

Modélisation

Un réseau de Petri

- est un modèle mathématique permettant la représentation de systèmes distribués discrets (informatique, industriel), introduit par Petri (1962).
- est également un langage de modélisation, représenté sous forme d'un graphe biparti orienté.

Étude des systèmes discrets dont les champs d'application sont les systèmes de production (caractérisés par une variation imprévisible des besoins).

Réseaux de Petri

V. Augusto

Introduction

Définition

Présentation
informelle

Définitions
formelles d'un

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Systèmes Manufacturiers Flexibles (FMS), caractérisés par :

- un ensemble de machines flexibles (multi-produits);
- un système de transfert automatique (multi-ressources);
- un système de prise de décision (ordonnanceur).

Système à Événements Discrets (SED), caractérisés par :

- des contraintes de précédence (dans les gammes de fabrication ou dans les algorithmes);
- des effets de concurrence induits par le partage des ressources;
- une structuration en tâches parallèles, asynchrones, soumises à des contraintes temporelles strictes ou non

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Systèmes Manufacturiers Flexibles (FMS), caractérisés par :

- un ensemble de machines flexibles (multi-produits);
- un système de transfert automatique (multi-ressources);
- un système de prise de décision (ordonnanceur).

Système à Événements Discrets (SED), caractérisés par :

- des contraintes de précédence (dans les gammes de fabrication ou dans les algorithmes);
- des effets de concurrence induits par le partage des ressources;
- une structuration en tâches parallèles, asynchrones, soumises à des contraintes temporelles strictes ou non.

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Systèmes complexes et couteux à mettre en œuvre :

- valider les spécification;
- prévoir les performances;
- optimiser le fonctionnement (théorie des files d'attentes, simulation, etc.).

Deux principaux types de représentation permettent d'aborder les réseaux de Petri :

- une représentation graphique sous forme de graphe, permettant de capturer la dynamique du système;
- une représentation algébrique linéaire.

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence d franchissement

Modélisation

Systèmes complexes et couteux à mettre en œuvre :

- valider les spécification;
- prévoir les performances;
- optimiser le fonctionnement (théorie des files d'attentes, simulation, etc.).

Deux principaux types de représentation permettent d'aborder les réseaux de Petri :

- une représentation graphique sous forme de graphe, permettant de capturer la dynamique du système;
- une représentation algébrique linéaire.

Réseaux de Petri

Introduction

Définition

informelle

Définitions
formelles d'un
réseau de Petr

nement d'un réseau

Séquence de franchissement

Modélisation

- Introduction
- 2 Définition
- Fonctionnement d'un réseau
- 4 Séquence de franchissement
- Modélisation

Présentation informelle

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

- Un réseau de Petri est un graphe biparti dont on particularise les deux familles de sommets : les places et les transitions.
- Comme dans tout graphe biparti, un **arc** ne relie jamais deux sommets de la même famille.
- Les places sont représentées par des cercles, tandis que les transitions sont représentrées par des traits ou des rectangles.

Dynamique du système

Réseaux de Petri

V. Augusto

Introduction

Définition

Présentation
informelle

Définitions
formelles d'un

Fonctionnement d'ui

Séquence d franchissement

Modélisation

Chaque place va contenir un nombre entier de **jetons** (ou marques) pour modéliser la dynamique du système.

2 jetons

25 jetons

Le marquage du réseau est constitué de toutes les marques présentées dans le réseau à un instant donné.

Un réseau de Petri **généralisé** est un réseau dans lequel les valuations des arcs ne sont pas forcément égales à 1. Un réseau de Petri **ordinaire** est un réseau dont le graphe sous-jacent est un 1-graphe.

Dynamique du système

Réseaux de Petri

Présentation informelle

Chaque place va contenir un nombre entier de **jetons** (ou marques) pour modéliser la dynamique du système.

2 jetons

25 jetons

Le marquage du réseau est constitué de toutes les marques présentées dans le réseau à un instant donné.

Dynamique du système

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'ur réseau

Séquence de franchissement

Modélisatior

Chaque place va contenir un nombre entier de **jetons** (ou marques) pour modéliser la dynamique du système.

Le **marquage** du réseau est constitué de toutes les marques présentées dans le réseau à un instant donné.

Un réseau de Petri **généralisé** est un réseau dans lequel les valuations des arcs ne sont pas forcément égales à 1. Un réseau de Petri **ordinaire** est un réseau dont le graphe sous-jacent est un 1-graphe.

Notation

Réseaux de Petri

V. Augusto

Introductio

Definition Présentation

informelle Définitions formelles d'un réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

On note souvent:

- T l'ensemble des transitions;
- P l'ensemble des places;
- v la fonction de valuation des arcs;
- M(p) le marquage de la place p (i.e. le nombre de jetons contenus dans p à un instant donné).

Exemple

Réseaux de

Présentation informelle

Tir de t_2 t_1 p_2 p_1 t_2 3 **p**₄ р3

t₃

 t_4

Réseaux de Petri

V. August

Introduction

Définition Présentation informelle

Définitions formelles d'un réseau de Petr

Fonctionnement d'un

Séquence d franchisse-

Modéliestion

$\overline{\text{Tir}} \ \overline{\text{de}} \ t_4$ t_1 p_2 4 p_1 t_2 3 *p*₄ *p*₃ 2

t₃

 t_4

Réseaux de Petri

V. August

Introduction

Définition Présentation informelle

Définitions formelles d'un réseau de Petr

Fonctionnement d'un

Séquence d franchisse-

Modéliestion

Exemple

Réseaux de Petri

Présentation

informelle

Transition validée

Réseaux de Petri

V. Augusto

Introduction

Définition Présentation informelle

Définitions formelles d'un réseau de Petr

Fonctionnement d'un réseau

Séquence d franchissement

Modélisation

Chaque place de $\Gamma^{-1}(t_2)$ contient plus de jetons que la valuation de l'arc la reliant à t_2 .

$$M(p_2) \geq v(p_2, t_2)$$

On dit que t_2 est **franchissable** (**tirable**, **validée**). Si l'on tire t_2 , le marquage des places de $\Gamma^{-1}(t_2)$ et de $\Gamma(t_2)$ va être modifié :

$$M(p_2) \leftarrow M(p_2) - v(p_2, t_2)$$

$$M(p_3) \leftarrow M(p_3) + v(t_2, p_3)$$

$$M(p_4) \leftarrow M(p_4) + v(t_2, p_4)$$

On note $M_0|_{t_2} > M_1$: M_0 valide la transition t_2 , et le tir de t_2 depuis M_0 donne le marquage M_1 .

Transition validée

Réseaux de Petri

V. Augusto

Introduction

Définition

Présentation
informelle

Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence d franchissement

Modélisation

Chaque place de $\Gamma^{-1}(t_2)$ contient plus de jetons que la valuation de l'arc la reliant à t_2 .

$$M(p_2) \geq v(p_2, t_2)$$

On dit que t_2 est **franchissable** (**tirable**, **validée**). Si l'on tire t_2 , le marquage des places de $\Gamma^{-1}(t_2)$ et de $\Gamma(t_2)$ va être modifié :

$$M(p_2) \leftarrow M(p_2) - v(p_2, t_2)$$

$$M(p_3) \leftarrow M(p_3) + v(t_2, p_3)$$

$$M(p_4) \leftarrow M(p_4) + v(t_2, p_4)$$

On note $M_0|_{t_2} > M_1$: M_0 valide la transition t_2 , et le tir de t_2 depuis M_0 donne le marquage M_1 .

Transition validée

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Chaque place de $\Gamma^{-1}(t_2)$ contient plus de jetons que la valuation de l'arc la reliant à t_2 .

$$M(p_2) \geq v(p_2, t_2)$$

On dit que t_2 est **franchissable** (**tirable**, **validée**). Si l'on tire t_2 , le marquage des places de $\Gamma^{-1}(t_2)$ et de $\Gamma(t_2)$ va être modifié :

$$M(p_2) \leftarrow M(p_2) - v(p_2, t_2)$$

$$M(p_3) \leftarrow M(p_3) + v(t_2, p_3)$$

$$M(p_4) \leftarrow M(p_4) + v(t_2, p_4)$$

On note $M_0[t_2 > M_1 : M_0$ valide la transition t_2 , et le tir de t_2 depuis M_0 donne le marquage M_1 .

Réseau de Petri généralisé

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Def : Réseau de Petri généralisé

Un **réseau de Petri généralisé** est un quadruplet \mathcal{R} tel que $\mathcal{R} = (P, T, Pre, Post)$ avec :

- P : ensemble des places du réseau ;
- T : ensemble des transitions du réseau;
- Pre: application d'incidence avant, de $P \times T$ dans \mathbb{N} . $\forall p \in P$, $\forall t \in T$, Pre(p,t) = v(p,t) si $(p,t) \in G$, 0 sinon.
- *Post* : application d'incidence arrière, de $P \times T$ dans \mathbb{N} . $\forall p \in P$, $\forall t \in T$, Post(p, t) = v(t, p) si $(t, p) \in G$, 0 sinon.

À chaque application d'incidence est associée une matrice $|P| \times |T|$.

Réseaux de Petri

Définitions formelles d'un réseau de Petri

Exemple

Réseaux de Petri

V. August

Introduction

Définition Présentation

Définitions formelles d'un réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Matrice d'incidence

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation

Définitions formelles d'un réseau de Petri

Fonctionnement d'un réseau

Séquence d franchissement

Modélisatio

Def : Matrice d'inc<u>idence</u>

La **matrice d'incidence** du réseau est C = Post - Pre.

Def : Réseau pur

Un réseau de Petri $\mathcal{R} = (P, T, Pre, Post)$ est **pur** lorsque $\forall p \in P, \forall t \in T, Pre(p, t) \times Post(p, t) = 0$ (membre à membre).

Def: Réseau marqué

Un réseau **marqué** \mathcal{N} est un couple (\mathcal{R}, M) constitué d'un réseau de Petri \mathcal{R} et d'une application de marquage définie sur P et à valeurs dans \mathbb{N} (i.e. le marquage du réseau à un instant donné).

Matrice d'incidence

Réseaux de Petri

V. Augusto

Introduction

Présentation informelle
Définitions formelles d'un réseau de Petri

Fonctionnement d'un

Séquence de franchissement

Modélisation

Def: Matrice d'incidence

La **matrice d'incidence** du réseau est C = Post - Pre.

Def : Réseau pur

Un réseau de Petri $\mathcal{R} = (P, T, Pre, Post)$ est **pur** lorsque $\forall p \in P, \ \forall t \in T, \ Pre(p, t) \times Post(p, t) = 0$ (membre à membre).

Def : Réseau marqué

Un réseau marqué \mathcal{N} est un couple (\mathcal{R}, M) constitué d'un réseau de Petri \mathcal{R} et d'une application de marquage définie sur P et à valeurs dans \mathbb{N} (i.e. le marquage du réseau à un instant donné).

Matrice d'incidence

Réseaux de Petri

V. Augusto

Introduction

Définition

Présentation
informelle

Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence d franchissement

Modélisation

Def: Matrice d'incidence

La **matrice d'incidence** du réseau est C = Post - Pre.

Def : Réseau pur

Un réseau de Petri $\mathcal{R} = (P, T, Pre, Post)$ est **pur** lorsque $\forall p \in P, \ \forall t \in T, \ Pre(p, t) \times Post(p, t) = 0$ (membre à membre).

Def: Réseau marqué

Un réseau **marqué** \mathcal{N} est un couple (\mathcal{R},M) constitué d'un réseau de Petri \mathcal{R} et d'une application de marquage définie sur P et à valeurs dans \mathbb{N} (i.e. le marquage du réseau à un instant donné).

Réseaux de Petri

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

- Introduction
- 2 Définition
- 3 Fonctionnement d'un réseau
- 4 Séquence de franchissement
 - Modélisation

Franchissement

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence d franchissement

Modélisatior

Def: Tir d'une transition

Une transition t est **tirable** (ou **franchissable**, ou **validée**) lorsque :

$$\forall p \in \Gamma^{-1}(t) \ M(p) \geq Pre(p,t)$$

Lorsqu'une transition est validée dans le marquage M_0 , on note $M_0[t>$.

Évolution du marquage

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Def : Évolution du marquage

Soit $\mathcal{N}=(\mathcal{R},M)$ un réseau de Petri marqué de transitions T et de places P. Le **franchissement** d'une transition t de T validée dans le marquage M conduit au marquage M_1 :

$$\forall p \in P, \ \forall t \in T, \ M_1(p) = M(p) + C(p,t)$$

$$\forall p \in P, \ \forall t \in T, \ M_1(p) = M(p) + Post(p, t) - Pre(p, t)$$

On note alors $M[t > M_1$.

Réseaux de Petri

v. Augusti

Introduction

Définition

Présentation informelle

Définitions formelles d'un

Fonctionnement d'ur réseau

Séquence de franchissement

Modélisation

- Introduction
- 2 Définition
- Fonctionnement d'un réseau
- 4 Séquence de franchissement
- Modélisation

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'ur réseau

Séquence de franchissement

Modélisation

- On s'intéresse à l'évolution du réseau lors du tir successif de plusieurs transitions.
- Lorsque $M[t_1 > M_1[t_2 > M_2]$, on dit que la séquence de transitions t_1t_2 est franchissable depuis le marquage M.
- On note $M[t_1t_2 > M_2]$.

Def : Séquence de franchissement

Une séquence de franchissement est un mot construit sur l'alphabet T^* des transitions de T. On note σ une séquence de franchissements.

Exemple

 $\sigma = t_1 t_2$ et $M[\sigma > M_2]$

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'ur réseau

Séquence de franchissement

Modélisation

- On s'intéresse à l'évolution du réseau lors du tir successif de plusieurs transitions.
- Lorsque $M[t_1 > M_1[t_2 > M_2]$, on dit que la séquence de transitions t_1t_2 est franchissable depuis le marquage M.
- On note $M[t_1t_2 > M_2]$.

Def : Séquence de franchissement

Une séquence de franchissement est un mot construit sur l'alphabet \mathcal{T}^* des transitions de \mathcal{T} . On note σ une séquence de franchissements.

Exemple

 $\sigma = t_1 t_2$ et $M[\sigma > M_2]$

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'ur réseau

Séquence de franchissement

Modélisation

- On s'intéresse à l'évolution du réseau lors du tir successif de plusieurs transitions.
- Lorsque $M[t_1 > M_1[t_2 > M_2]$, on dit que la séquence de transitions t_1t_2 est franchissable depuis le marquage M.
- On note $M[t_1t_2 > M_2]$.

Def : Séquence de franchissement

Une séquence de franchissement est un mot construit sur l'alphabet \mathcal{T}^* des transitions de \mathcal{T} . On note σ une séquence de franchissements.

Exemple

$$\sigma = t_1 t_2$$
 et $M[\sigma > M_2]$.

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'ur réseau

Séquence de franchissement

Modélisation

Pour caractériser une séquence de franchissements σ , on utilise son **image commutative** $\vec{\sigma}$.

Exemple

$$\sigma = t_1 t_2; \ T = \{t_1, t_2, t_3\}; \ \vec{\sigma} = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'ur réseau

Séquence de franchissement

Modélisation

Pour caractériser une séquence de franchissements σ , on utilise son **image commutative** $\vec{\sigma}$.

Exemple

$$\sigma=t_1t_2$$
; $\mathcal{T}=\{t_1,t_2,t_3\}$; $\vec{\sigma}=\left(egin{array}{c}1\\1\\0\end{array}
ight)$

Séquence

Réseaux de Petri

V. Augusto

Introduction

Présentation informelle Définitions formelles d'un

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Chaque composante de l'image commutative est le nombre d'occurrences de la transition correspondante dans σ .

Exemple

$$\vec{\sigma_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix}$$
 : $\sigma_1 = t_1 t_2 t_3$ ou $\sigma_1 = t_3 t_1 t_2 ...$

$$\vec{\sigma_2} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$$
 : $\sigma_2 = t_1 t_2 t_2 t_1 t_2$ ou $\sigma_2 = t_2 t_2 t_2 t_1 t_1$..

Séquence

Réseaux de Petri

Séquence de franchissement

Chaque composante de l'image commutative est le nombre d'occurrences de la transition correspondante dans σ .

Exemple

$$\vec{\sigma_1} = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} : \sigma_1 = t_1 t_2 t_3 \text{ ou } \sigma_1 = t_3 t_1 t_2 ...$$

$$\vec{\sigma_2} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} : \sigma_2 = t_1 t_2 t_2 t_1 t_2 \text{ ou } \sigma_2 = t_2 t_2 t_2 t_1 t_1 ...$$

$$\vec{\sigma_2} = \begin{pmatrix} 2 \\ 3 \\ 0 \end{pmatrix} : \sigma_2 = t_1 t_2 t_2 t_1 t_2 \text{ ou } \sigma_2 = t_2 t_2 t_2 t_1 t_1...$$

Équation d'état

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Théorème : Équation d'état

Soit σ une séquence finie de transitions tirable depuis un marquage M d'un réseau $\mathcal R$ de matrice d'incidence $\mathcal C$. On a :

$$M[\sigma > M_1 \Rightarrow M_1 = M + C\vec{\sigma}$$

Remarque 1

Il s'agit d'une condition nécessaire mais pas suffisante : il se pourrait que σ ne soit pas franchissable depuis M!

Remarque 2

Deux étapes pour calculer un marquage

- démontrer que le marquage valide la séquence;
- calculer le marquage résultat.

Équation d'état

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Théorème : Équation d'état

Soit σ une séquence finie de transitions tirable depuis un marquage M d'un réseau $\mathcal R$ de matrice d'incidence C. On a :

$$M[\sigma > M_1 \Rightarrow M_1 = M + C\vec{\sigma}$$

Remarque 1

Il s'agit d'une condition nécessaire mais pas suffisante : il se pourrait que σ ne soit pas franchissable depuis M!

Remarque 2

Deux étapes pour calculer un marquage

- démontrer que le marquage valide la séquence;
- calculer le marquage résultat.

Équation d'état

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'ur réseau

Séquence de franchisse-

Modélisation

Théorème : Équation d'état

Soit σ une séquence finie de transitions tirable depuis un marquage M d'un réseau $\mathcal R$ de matrice d'incidence $\mathcal C$. On a :

$$M[\sigma > M_1 \Rightarrow M_1 = M + C\vec{\sigma}]$$

Remarque 1

Il s'agit d'une condition nécessaire mais pas suffisante : il se pourrait que σ ne soit pas franchissable depuis M!

Remarque 2

Deux étapes pour calculer un marquage :

- démontrer que le marquage valide la séquence ;
- calculer le marquage résultat.

Exercice

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un

Fonctionnement d'ur réseau

Séquence de franchissement

Modélisation

La séquence $t_1t_2t_1$ est franchissable dans le réseau marqué $\mathcal{N}=(\mathcal{R},M_0)$ avec

$$M_0 = \begin{pmatrix} 4 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

- **1** Exprimer $\vec{\sigma}$.
- ② On a $M_0[\sigma > M$. Calculer M.

Réseaux de Petri

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'ur réseau

Séquence de franchissement

- Introduction
- 2 Définition
- 3 Fonctionnement d'un réseau
- 4 Séquence de franchissement
- Modélisation

Interprétation

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'un réseau

Séquence of franchissement

Place d'entrée	Transition	Place de sortie
Précondition	Événement	Postcondition
Donnée d'entrée	Traitement	Donnée de sortie
Ressources nécessaires	Job ou activité	Ressources libérées
Buffer d'entrée	Processus	Buffer de sortie

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Peti

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Def: Transition source

Une transition source t_s d'un réseau de Petri (\mathcal{R}, M_0) est une transition de T telle que $\Gamma^{-1}(t_s) = \emptyset$.

Def: Transition puits

Une **transition puits** t_p d'un réseau de Petri (\mathcal{R}, M_0) est une transition de T telle que $\Gamma(t_p) = \emptyset$.

Proposition: Validation d'une transition source

Une transition source est toujours validée

Remarque

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'un réseau

Séquence de franchisse-

Modélisation

Def: Transition source

Une **transition source** t_s d'un réseau de Petri (\mathcal{R}, M_0) est une transition de \mathcal{T} telle que $\Gamma^{-1}(t_s) = \emptyset$.

Def: Transition puits

Une **transition puits** t_p d'un réseau de Petri (\mathcal{R}, M_0) est une transition de T telle que $\Gamma(t_p) = \emptyset$.

Proposition : Validation d'une transition source

Une transition source est toujours validée

Remarque

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'un réseau

Séquence de franchisse-

Modélisation

Def : Transition source

Une **transition source** t_s d'un réseau de Petri (\mathcal{R}, M_0) est une transition de \mathcal{T} telle que $\Gamma^{-1}(t_s) = \emptyset$.

Def: Transition puits

Une **transition puits** t_p d'un réseau de Petri (\mathcal{R}, M_0) est une transition de T telle que $\Gamma(t_p) = \emptyset$.

Proposition: Validation d'une transition source

Une transition source est toujours validée.

Remarque

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Peti

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Def: Transition source

Une **transition source** t_s d'un réseau de Petri (\mathcal{R}, M_0) est une transition de T telle que $\Gamma^{-1}(t_s) = \emptyset$.

Def: Transition puits

Une **transition puits** t_p d'un réseau de Petri (\mathcal{R}, M_0) est une transition de \mathcal{T} telle que $\Gamma(t_p) = \emptyset$.

Proposition: Validation d'une transition source

Une transition source est toujours validée.

Remarque

Lancement de tâches en parallèle

Réseaux de Petri

V. Augusto

Introduction

Définition

Définitions formelles d'un

Fonctionnement d'un réseau

Séquence de franchissement

Communication asynchrone

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Soient deux tâches τ_1 et τ_2 qui communiquent par messages. τ_1 émet un message en le plaçant dans un tampon de communication tandis que τ_2 est réceptrice, et est bloquée tant qu'elle n'a pas reçu le message.

Le nombre de jetons dans p_3 correspond au nombre de messages en attente.

Communication asynchrone

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un

Fonctionnement d'un réseau

Séquence de franchisse-

Modélisation

Soient deux tâches τ_1 et τ_2 qui communiquent par messages. τ_1 émet un message en le plaçant dans un tampon de communication tandis que τ_2 est réceptrice, et est bloquée tant qu'elle n'a pas reçu le message.

Émission d'un message par τ_1 .

Le nombre de jetons dans p_3 correspond au nombre de messages en attente.

Communication asynchrone

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchisse-

Modélisation

Soient deux tâches τ_1 et τ_2 qui communiquent par messages. τ_1 émet un message en le plaçant dans un tampon de communication tandis que τ_2 est réceptrice, et est bloquée tant qu'elle n'a pas reçu le message.

Réception d'un message par τ_2 .

Le nombre de jetons dans p_3 correspond au nombre de messages en attente.

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'ur réseau

franchissement

Modélisation

Deux processus concurrents demandent l'accès à une section critique en exclusion mutuelle. La procédure d'accès se décompose de la manière suivante :

- demander l'accès à la section critique;
- utiliser la ressource en section critique;
- libérer l'accès à la section critique.

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions

Fonctionnement d'un

Séquence d franchissement

Réseaux de Petri

V. Augusto

Introduction

Définition Présentation informelle

Définitions formelles d'ur réseau de Pet

Fonctionnement d'un réseau

Séquence d franchissement

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un

Fonctionnement d'un réseau

Séquence d franchissement

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions

Fonctionnement d'un réseau

Séquence d franchissement

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un

Fonctionnement d'un réseau

Séquence d franchissement

Modèle producteur-consommateur

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Le producteur et le consommateur sont deux processus cycliques : le producteur produit des entités qu'il dépose dans une zone tampon, tandis que le consommateur retire ces entités afin de les consommer.

Modèle producteur-consommateur

Réseaux de Petri

V. Augusto

Introduction

Définition
Présentation
informelle

informelle Définitions formelles d'ui réseau de Pet

Fonctionnement d'un réseau

Séquence de franchisse-

Processus industriel

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

Une série de pièces entrent dans l'atelier et sont fixées sur des palettes. Chacune subit une première opération d'usinage sur la machine M_1 . Cette opération terminée, un robot R décharge M_1 et place la pièce dans une zone tampon T_a .

Chaque pièce de T_a est ensuite chargée sur M_2 où elle subit une deuxième opération d'usinage. Une fois l'opération sur M_2 terminée, R décharge la pièce de M_2 . La pièce est terminée, elle quitte l'atelier et la palette est libérée.

Processus industriel

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'ur réseau

Séquence de franchissement

Modélisation

Hypothèses:

- Stock d'entrée de capacité infinie;
- T_a a une capacité de M_t pièces;
- M_p palettes;
- Le robot n'est utilisé que pour le déchargement des machines :
- Les machines ne peuvent traiter qu'une pièce à la fois, le robot aussi.

Activités :

- Mp_1 : la machine M_1 charge, fixe et usine une pièce palettisée.
- R_1 : le robot décharge M_1 .
- Tp: une pièce est placée dans le tampon T_a par le robot.
- Mp_2 : la machine M_2 charge une pièce depuis T_a et l'usine.
- R_2 : le robot décharge M_2 , la palette est libérée et la pièce quitte l'atelier; la palette libérée retournée à l'entrée.

Bloc opératoire

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'un réseau

Séquence de franchissement

Modélisation

On considère que le processus d'intervention chirurgicale se décompose en 5 étapes distinctes :

TR1 Transfert du patient de sa chambre vers le bloc.

SUR Intervention dans une salle opératoire

REC Réveil dans un lit de réveil.

TR2 Transfert du patient du bloc vers sa chambre.

CL Nettoyage de la salle opératoire.

Le nettoyage de la salle opératoire commence dès que le patient a quitté la salle opératoire. On considère 3 ressources : n salles opératoires ; m lits de réveils ; p équipes de brancardiers.

Questions:

- Proposer une modélisation du problème en prenant pour hypothèse que le patient est susceptible d'attendre entre les tâches.
- 2 Proposer une modélisation du problème dans le cas où le patient ne quitte la salle opératoire seulement si un lit de réveil est disponible.

Modélisation du processus de don du sang

Réseaux de Petri

V. Augusto

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petri

Fonctionnement d'un réseau

Séquence de franchisse-

Modélisation

On se propose de modéliser le processus de don du sang sur site fixe, i.e. dans les locaux de l'EFS (Établissement Français du Sang). Plusieurs types de donneurs peuvent se présenter à l'EFS pour effectuer un don :

- Les donneurs de sang total arrivent sans rendez-vous. Le donneur doit tout d'abord s'enregistrer auprès d'une secrétaire au comptoir d'accueil. Si le dossier du donneur n'est pas en règle, il quitte le système. Dans le cas contraire, le donneur doit subir une consultation médicale auprès d'un médecin de l'EFS. Si le patient n'est pas apte au don de sang, il quitte le système. Dans le cas contraire, il se rend ensuite dans la salle de prélèvement, où il doit patienter jusqu'à ce qu'un lit se libère. Dès qu'une place est libre, le patient s'installe. Un infirmier installe l'équipement et le prélèvement peut commencer. À l'issu du prélèvement, le patient quitte le système.
- Les donneurs de plaquette et de plasma doivent avoir un rendez-vous et se présentent donc à l'heure qui leur a été fixée. Il existe une probabilité pour que les donneurs ne se présentent pas (no-show). Le processus est ensuite similaire à celui des donneurs de sang total. La seule différence réside dans le fait que les donneurs de plaquette et de plasma doivent utiliser une machine dédiée pour le prélèvement.

Modélisation du processus de don du sang

Réseaux de Petri

V. August

Introductio

Définition
Présentation
informelle
Définitions
formelles d'un
réseau de Petr

Fonctionnement d'un réseau

Séquence of franchissement

Modélisation

Les ressources suivantes sont considérées : 1 secrétaire pour l'accueil, 1 médecin pour la consultation médicale, six machines de prélèvement de sang total, deux machines de prélèvement de plasma et deux machines de prélèvement de plaquettes. Trois infirmiers travaillent dans la salle de prélèvement. Ceux-ci interviennent uniquement au début et à la fin du prélèvement (branchement et débranchement du matériel), ainsi qu'en cas de problème durant le prélèvement.

Modéliser le fonctionnement d'un tel système au moyen d'un réseau de Petri.