

计算机组织与体系结构

Computer Architectures

陆俊林

第四讲 RISC和MIPS指令(1)

本讲要点

首先简介RISC兴起的历程,其次分析MIPS指令的设 计原则和主要特点,然后按照指令格式分类讲解主要的 MIPS指令,本讲主要分析R型和I型的典型指令,其他指令 类型将在下一讲讲解。

阅读教材 "COD": 第2章, 附录E

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- I RISC的发展变迁
- II MIPS指令的主要特点
- III MIPS指令分类说明: R型
- IV MIPS指令分类说明: I型

2017年图灵奖获得者

戴维·帕特森 David Patterson 1947年出生

约翰·亨尼西 John Hennessy 1953年出生

For pioneering a systematic, quantitative approach to the design and evaluation of computer architectures with enduring impact on the microprocessor industry.

RISC的先驱,两位传奇人物

戴维·帕特森 David Patterson 1947年出生

约翰·亨尼西 John Hennessy 1953年出生

MIPS公司的商业兴衰

- № 1984年,MIPS计算机系统公司成立
- № 1988年,SGI公司在其计算机产品中采用MIPS处理器
- № 1989年, MIPS第一次上市
- № 1992年, SGI收购MIPS, 更名为MIPS技术公司
- 1998年, MIPS再次上市
- № 2012年, Imagination Technologies收购MIPS

- ▶ MIPS处理器广泛应用的领域:
 - 。数字电视、机顶盒、蓝光播放器、游戏机、网络设备等

MIPS指令的发展

1985年,R2000

1990年,R3000

1999年 以MIPS II为基础, 增加了MIPS III/IV/V的部分特性

个人计算领域 CISC vs. RISC

Android activations (est.)

iOS shipments

Windows
Mobile/Phone

Windows PC shipments

2007 年, iPhone 推出。此后一年到 五年的变化情况

智能手机的市场出货量(2013-2016)

个人计算机的市场出货量(2009-2016)

📕 Lenovo 🔚 HP Inc** 📗 Dell 📕 Asus* 📟 Apple 📒 Acer 🔳 Toshiba* 🔃 Others

个人计算机的市场出货量(2017~2018)

继上一页,之后两年的发展变化

Company	4Q18 Shipments	4Q18 Market Share (%)	4Q17 Shipments	4Q17 Market Share (%)	4Q18-4Q17 Growth (%)
Lenovo	16,628	24.2	15,697	21.9	5.9
HP Inc.	15,380	22.4	16,092	22.4	4.4
Dell	10,915	15.9	10,763	15	1.4
Apple	4,920	7.2	5,112	7.1	-3.8
ASUS	4,211	6.1	4,716	6.6	-10.7
Acer Group	3,861	5.6	4,726	6.6	-18.3
Others	12,710	18.5	14,590	20.3	-12.9
Total	68,626	100.0	71,696	100.0	-4.3

新能源汽车(2019-2021)

- ❷ BEV, 纯电动
 - BaiBattery Electrical Vehicle
- HEV, 混合动力
 - Hybrid Electric Vehicle
- ❷ PHEV, 插电式混合动力
 - Plug in Hybrid Electric Vehicle
- ICE, 内燃机
 - Internal Combustion Engine

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- II MIPS指令的主要特点
- III MIPS指令分类说明: R型
- IV MIPS指令分类说明: I型

MIPS的设计指导思想

● MIPS的全称

Microprocessor without Interlocked Piped Stages

▶ 主要关注点

- 。减少指令的类型
- 。降低指令复杂度

▶ 基本原则

A simpler CPU is a faster CPU.

MIPS指令示例

▶ 装载

。格式: lw \$8,(\$19)

。操作:以19号寄存器的内容为地址,取出存储器中的32位数据,存入8号寄存器

№ 加法

。格式: add \$10,\$9,\$8

。操作:将8号和9号寄存器的内容相加,结果存入10号寄存器中

❷ 存储

。格式: sw \$10,32(\$19)

。操作:将10号寄存器的内容存入存储器,地址为19号寄存器的内容加32

MIPS的通用寄存器(32个,每个都是32位宽)

编号	编号 名称 用途		编号	名称	用途
0	\$zero	ro The Constant Value 0		\$t8-\$t9	Temporaries
1	\$at	Assembler Temporary	26-27	\$k0-\$k1	Reserved for OS Kernel
2-3	\$v0-\$v1	Values for Function Results and Expression Evaluation	28*	\$gp	Global Pointer
4-7	\$a0-a3	Arguments	29*	\$sp	Stack Pointer
8-15	15 \$t0-\$t7 Temporaries		30*	\$fp	Frame Pointer
16-23*	\$s0-\$s7	Saved Temporaries	31*	\$ra	Return Address

^{*} Preserved across a call

通用寄存器使用示例

以下指令与对应注释中的指令相同

编号	名称	用途
8-15	\$t0-\$t7	Temporaries
16-23	\$s0-\$s7	Saved Temporaries

MIPS指令示例

假设变量和寄存器的对应关系如下

$$f \rightarrow \$s0$$
 $g \rightarrow \$s1$ $h \rightarrow \$s2$ $i \rightarrow \$s3$ $j \rightarrow \$s4$

$$f = (g + h) - (i + j)$$

```
add $t1, $s3, $s4
add $t2, $s1, $s2
sub $s0, $t2, $t1
```

MIPS指令的主要特点(1)

- ⑤ 固定的指令长度 (32-bit, 即1 word)
 - 。简化了从存储器取指令

x86指令

- 长度不确定
- 最短1个字节
- 长可达15个字节

模型机的CPU和存储器

x86指令不同长度的使用比例

- 整数指令平均长度2.8个字节
- · 浮点指令平均长度4.1个字节

MIPS指令的主要特点(2)

只有Load和Store指令可以访问存储器

例如,不支持x86 指令的这种操作:

ADD AX, [3000H]

MIPS指令的主要特点(3)

◎ 简单的寻址模式

。简化了从存储器取操作数

lw \$8,(\$19)
sw \$10,32(\$19)

MOV EBX, 40

MOV AL, BL

MOV ECX, [1000H]

MOV [DI], AX

MOV DX, [BX+SI*2+200H]

MIPS指令的主要特点(4)

- ❷ 指令数量少,指令功能简单
 - 。一条指令只完成一个操作,简化指令的执行过程

影响

- 处理器设计简单
- 处理器运行速度快
- 编程复杂
- 程序代码量大
- 需要优秀的编译器

MIPS指令

MIPS	n	•		0	6		ARIT
			ence D	ata			NA.
CORE INSTRUCT	ON S					OPCODE	Branc
NAME, MNEMO	4170	FOR		ATTENDED CO. March		/ FUNCT	Branc
Add	eviti.	MAI R		tATION (in Verilog)		(Hex) 0/20 _{hex}	Divid
Add Immediate		-	R[rd] = R[rs				FPA
	edd1	1		+ SignExtImm	(1,2)	Black	FPA
Add Imm. Unsigned			7.5	+ SignExtImm	(2)	9 _{box}	Doub FP C
Add Unsigned	eddu	R	R[rd] = R[rs			0/21 _{bes}	FPC
And	and	R	R[rd] = R[rs]			0/24 _{bes}	Doub
And Immediate	andi	I	R[n] = R[n] if $[R[n] = R[n]$	& ZeroExtImm	(3)	chex	FPE
Branch On Equal	beq	1		Branch Addr	(4)	4 _{bex}	FP D
Branch On Not Equa	time	1		BranchAddr	(4)	5hca	FPN
Jump	1	3	PC=JumpA	idr	(5)	2 _{bex}	FP M Doul
Jump And Link	jal	3	R[31]=PC+6	;PC=JumpAddr	(5)	3 _{bex}	FPS
Jump Register	3=	R	PC=R[B]			0/08bcs	FPS
Load Byte Unsigned	lbru	1	R[rt]={24'b	0,M[R[rs] nExtimm](7:0)}	(2)	24 _{bex}	Load
Load Halfword			Rini=(16°b		(2)		Load
Unsigned	lhru.	1		nExtImm)(15:0)}	(2)	25 _{hex}	Doub
Load Linked	11	1		[rs]+SignExtImm]	(2,7)	30 _{bex}	Mov
Load Upper Imm.	lui	1	R[rt] = (imn	n, 16°b0}		face	Mov
Load Word	lw	1	R[rt] = M[R	[rs]+SignExtImm]	(2)	23 _{bes}	Mul
Nor	nor	R	R[rd] = - (R			0/27hex	Mult
Or	30	R	R[rd] = R[rs			0/25 _{bes}	Shift
Or Immediate	ori	1		ZeroExtImm	(3)		Store
Set Less Than	wit.	R		s] < R[n]) 7 1 : 0	(0)	0/2abcs	Dou
Set Less Than Imm.	mit:	1		4 < SignExtImm)? 1	-0(2)	Phen.	FLO
Set Less Than Imm.	witte	-	R[n] = (R[n] < SignExtImm)		black	FLU
Unsigned				71:0	(2,6)		
Set Less Than Unsig		R		s] < R[n]) ? 1:0	(6)	0/2bbex	
Shift Left Logical	×11	R	R[rd] = R[ri			0/00hes	
Shift Right Logical	srl	R	R[rd] = R[rt]			0/02 _{bes}	PSE
Store Byte	жbı	1		mExtimm)(7:0) = R[ft](7:0)	(2)	28_{last}	
Store Conditional	RE	1	RIT	mExtlmm] = R[rt]; t] = (atomic) 7 1 : 0	(2,7)	$38_{\rm hex}$	1
Store Halfword	жħ	1	M[R[n]+Sig	mExtimm)(15:0) = R[rt](15:0)	(2)	$29_{\rm hex}$	1
Store Word	304	1	M[R[rs]+Sig	mExtimm] = R[rt]	(2)	2bben	7
Subtract	wub	R	R[rd] = R[rs			0/22bes	REG
Subtract Unsigned	widow	R	R[rd] = R[rs			0/23 _{hex}	
	(1) M	ау сап	se overflow e	sception			
	(2) Si	gn Exti	mm = 16 ii	nmediate[15]], imm b'0], immediate]	ediate	}	
	(4) Bt	anch/	\ddr={ 14{ir	nmediate[15]], imm	ediate,	2'b0 }	
	(5) Ju	mpAd	dr = { PC+4	[31:28], address, 21	100		
				uteigned numbers (v R[rt] = 1 if pair atom			
BASIC INSTRUCT				refrig - 1 to pean about	0.0	and anomatic	
R opcode	UN F	UKM/	410	rd sham		funct	

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

AFTIO OODE I	HOTOL	IOTION OFT	~		1						
METIC CORE I	NSTH	JCTION SET	(2)	/ FMT/FT	l						
	FOR			/FUNCT			CONVER	ISION, A			
E, MNEMONIC				(Hex)		(1) MIPS			Deci-	Hexa-	ASCI
On FP True bel		if[FPcond]PC=PC+4+BranchAdd	r (4)		opcode	funct	funct	Binary	mal		Char-
On FP Palse but		if[!FPcond)PC=PC+4+BranchAd			(31:26)	(5:0)	(5:0)	00 0000	- 0	mal	acter
dis		Lo=R[m]/R[n]; Hi=R[m]%R[n]	_ (-)	0/-/-/1a	(0)	X11	sub.f	00 0001	i	1	SOH
Insigned div		Lo-Rini/Rint Hi-Rini%Rini	(6)	0/-/-/16	11.	mr1	mulf	00 0010		2	STX
Single and		F[fd]=F[fs]+F[ft]	(-)	11/10//0	101	REG	divi	00 0011	3	3	ETX
		[F[fd],F[fd+1]] = [F[fs],F[fs+1]]	+		bed	milly	sqrt.	00 0100	- 4	4	EOT
add.	d FR	[Ffft1Ffft+1]		11/11/-/0	bree		aba.	00 0101	5	5	ENQ
pare Single car	· FR	FPcond = (F[fs] op F[ft]) 7 1:0		11/10/-/y	blez	MILLA	nov	00 0110	6 7	6	ACK
	* FR	FPcond = ({F[fs],F[fs+1]} op			bgt.z.	3E	neq.	00 0111	8	8	BEL
CAL	PR	(P[ffLF[ft+1]))71:0)	11/11//y	addiu	jair		00 1000	0	9	HT
	(op is	=, <, or <=) (y is 32, 3c, or 3e)			alts	movz		00 1010			LF
le Single div.	x FR	F[fd] = F[fs] / F[ft]		11/10/-/3	witte	move		00 1011	11	ь	VT
de din	d FR	$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\}$	1	11/11/-/3	andi	syscall.	round.v.	00 1100	12	C	FF
414		{F[ft],F[ft+1]			ori	break	trunc.v.	00 1101	13	d	CR
ply Single mul.	× FR	F[fd] = F[fs] * F[ft]		11/10/-/2	sor1			00 1110	14	e	SO
ply	d FR	[F[fd],F[fd+1]] = [F[fs],F[fs+1]]		11/11/-/2	lui	жупс	floor.v.	00 1111	15	f 10	SI
		{F[ft],F[ft+1]			(2)	mihi		01 0000	17	11	DCI
act Single Nub.	x FR	F[fd]=F[fs] - F[ft]		11/10/-/1	(2)	mflo	movz.f	01 0010		12	DC2
act	d FR	$\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\}$	-	11/11/-/1	11	mtio	novn.f	01 0011	19	13	DC3
		{P[ft],P[ft+1]			-			01 0100	20	14	DC4
Single Iwo	1 1	F[n]=M[R[n]+SignExtImm]	(2)	31/-/-/	11			01 0101	21	15	NAK
1 de	1 1	F[ft]=M[R[fs]+SignExtImm];	(2)	35/-/-/	11			01 0110		16	SYN
		F[rt+1]=M[R[rs]+SignExtImm+4	1		1			01 0111	23	17	ETB
om Hi nth		R[rd] = Hi		0/-/-/10		mult.		01 1000	24	18	CAN
om Lo nfi		R[rd] = Lo		0/-/-/12	11	multu div		01 1001	25 26	19 1a	SUB
om Control at a		R[rd] = CR[rs]		10 /0/-/0	11	dive		01 1011	27	1b	ESC
mul		{Hi,Lo} = R[rs] * R[rt]		0/-/-/18	-	4111		01 1100	28	Ic	FS
Unsigned mult		{Hi,Lo} = R[rs] * R[rt]	(6)	0/-/-/19	11			01 1101	29	1d	GS
he Anth. sre		R[rd] = R[rt] >>> shamt		0/-/-/3	11			01 1110	30	1e	RS
Single swo	1 1	M[R[rs]+SignExtImm] = F[rt]	(2)	39/_/_/_	11			01 1111	31	11	US
*do	1 1	M[R[rs]+SignExtImm] = F[rt];	(2)	34/-/-/	15	403	CVL.R.	10 0000	32	20	Space
		M[R[rs]+SignExtImm+4] = F[rt+	1]		1h	eddu.	cvt.d.	10 0001	33	21	1
NG-POINT INS	TRUC	TION FORMATS			lw1	sub-		10 0010	34	22	
					1bu	statro sand	cvt.v./	10 0100		24	3
opcode	fmt	ft fs fd	_	funct	1hu	or		10 0101	37	25	94
31 26-25		21 30 16 15 11 10	6.5	0	lwr	101		10 0110	38	26	B
opcode	fmt	ft imme	diate			nor		10 0111	39	27	
31 26 25		21 30 36 15		0	1620 ·			10 1000	40	28	-
OINSTRUCTIO	N SET				mb			10 1001	41	29	2
NAME		MNEMONIC OPERA	TIO	N	aw1	alt		10 1010	42	2a 2b	1
och Less Than		bit if(R[n] <r[n]) pc<="" td=""><td></td><td></td><td></td><td>8114</td><td></td><td>10 1100</td><td>44</td><td>20</td><td>_</td></r[n])>				8114		10 1100	44	20	_
och Greater Than	1	bgt if(R[n]>R[n]) PC			11			10 1101	45	2d	
och Less Than or	Equal	ble if(R[n] = R[n]) P	C=1	abel	NV F			10 1110	46	2e	
sch Greater Than	or Equ	al boo if(R[n]>=R[n]) P	C = I	abel	nume			10 1111	47	2f	1
d Immediate		11 R[rd] = immediate			11	tige	c.t.	11 0000	48	30	0
re		move R[rd] = R[rs]			lwat	t.geu	c.un√	11 0001	49	31	1
ER NAME, NU	MBER	USE, CALL CONVENTION			pref	titu	c.oq.f	11 0010	50	32	3
		DDESCO	VPD	ACROSS	pret	teg	c.unq.	11 0100	52	34	4
AME NUMBI	ER		CAL		latet	- and	c.ult.	11 0101	53	35	5
Szero 0	The	Constant Value 0	N.A		1 d c 2	tres	c.ole.	11 0110	54	36	6
Sat 1		sembler Temporary	No	_			c.ules	11 0111	55	37	7
		ues for Function Results			80		c.st.	11 1000	56	38	8
0-\$v1 2-3		Expression Evaluation	No		mwst1		c.sqle.	11 1001	57	39	9
10-523 4-7		juments	No		anvis2		c.mq	11 1010		3a	- 3
	_		_				c.nql.	11 1011	59	3b	÷
10-\$17 8-15		nporaries	No		wdst		c.it.	11 1101	61	3d	=
s0-\$s7 16-23 BLSF9 24-25		red Temporaries	Yes		wds2		c.lo.	11 1110		3e	>

Yes

Yes

Yes

28 Global Pointer

30 Frame Pointer

29 Stack Pointer

MIPS		(2) MIPS				ASCII		Hexa-	ASCII
pcode	funct	funct	Binary	Deci-		Char-	Deci-	deci-	Char-
31:26)	(5:0)	(5:0)	,	mal	mal	acter	mal	mal	acter
1)	×11	#44.J	00 0000	- 0	0	NUL	64	40	(a)
		muts.f	00 0001	1	1	SOH	65	41	A
1	REL	mul.f	00 0010	2	2	STX	66	42	В
jal	9/18	div.	00 0011	3	3	ETX	67	43	C
ped	RILLA	agrt.	00 0100	5	5	ENO	68	44 45	D
bne blez	arly	aba.	00 0101	6	6	ACK	70	46	P
batz	REGA	nov.f	00 0111	7	7	BEL	71	47	G
eddi	10		00 1000	8	- 8	BS	72	48	Н
eddiu	jair		00 1001	9	9	HT	73	49	1
witz	movz.		00 1010	10	a	LF	74	42	J
witte	move		00 1011	11	Ъ	VT	75	4b	K
andi.	syscall	round.v.	00 1100	12	C	PP	76	40	L
pri	break	trunc.v.	00 1101	13	d	CR	77	4d	M
sor1		cell.v.	00 1110	14	e	SO	78	4e	N
1111	Rync	floor.v.	00 1111	15	f	SI	79	4f 50	O
(20)	mthi mthi		01 0000	16	10	DCI	81	51	o
(2)	stio		01 0010	18	12	DC2	82	52	R
	stio	move.	01 0011	19	13	DC3	83	53	s
	4110	morning	01 0100	20	14	DC4	84	54	-
			01 0101	21	15	NAK	85	55	U
			01 0110	22	16	SYN	86	56	V
			01 0111	23	17	ETB	87	57	W
	mult.		01 1000	24	18	CAN	88	58	X
	multu		01 1001	25	19	EM	89	59	Y
	div		01 1010		la	SUB	90	5a	Z
	dive		01 1011	27	1b	ESC FS	91	56 5c	-
			01 1101	29	1d	GS	93	5d	,
			01 1110	30	1e	RS	94	5e	Ĭ
			01 1111	31	11	US	95	5f	
15	e33	cvt.x/	10 0000	32	20	Space	96	60	-
1h	eddu	cvt.df	10 0001	33	21	1	97	61	2
lw1	wub		10 0010	34	22	10	98	62	ь
lw	midre		10 0011	35	23		99	63	c
lbu	end	cvt.v.	10 0100	36	24	2	100	64	d
1 hu	or		10 0101	37	25	%	101	65	e
lwr	101		10 0110	38	26	æ	102	66	f
stb:	nor		10 0111	39 40	27		103	68	8
m fo			10 1000	41	29	5	105	69	i
my 1	alt		10 1010	42	2a	4	106	64	j
EW.	altu		10 1011	43	2b	+	107	66	į,
			10 1100	44	2c	•	108	60	Ť
			10 1101	45	2d	- 1	109	6d	m
KW E			10 1110		2e		110	60	
neme.			10 1111	47	2f	1	111	6f	0
11	tige	c.t.	11 0000	48	30	0	112	70	P
lwcl	tgeu	c.un.	11 0001	49	31	1	113	71	9
lws2	tit	€.04.5	11 0010	50	32	2	114	72	r
pref	titu	c.unq)	11 0011	51	34	4	115	73	5
ldel	teq	c.olt.	11 0100	53	35	5	117	75	u
ide2	tree	c.ult,	11 0110		36	6	118	76	v
- detail		c.uie.	11 0111	55	37	7	119	77	w
118		c.at.	11 1000	56	38	- 8	120	78	X.
evet.		c.sqle.	11 1001	57	39	9	121	79	ý
ev c2		c. mq.	11 1010	58	3a		122	72	z
-		c.nql.	11 1011	59	3b		123	76	ĺ
		c.lt.	11 1100	60	30	÷	124	70	
wds:1		c.age J	11 1101	61	3d	=	125	7d	1
wds2		c.lo.	11 1110		Зе	>	126	7e	-
		c.sqt.	11 1111	63	3f	7	127	71	DEL

(2) opcode(31:26) == 17_{km} (11_{bus}); if fmt(25:21)==16_{km} (10_{bus}) f = s (single); if fmt(25:21)==17km (11km) f = a (double)

IEEE	754 Sym	bols
Exponent	Fraction	Object ± 0
0		
Ho MAX - 1		# Denorm
	7 0	±=
	*0	NaN
	255, D.P. 5	
Praction		
		0
Praction	27	
Aty	ument 6	Higher Memory Addresses
	Exponent 0 1 to MAX - 1 MAX MAX S.P. MAX Fraction STACK FRAM	0 0 0 0 0 0 1 10 MAX - 1 anything MAX 0 MAX 0 0 S.P. MAX = 255, D.P. 3 Fraction Fraction Fraction STACK FRAME Anyument 5 Anyument 5

Sap-▶1000 8000 _{bes}	Dynamic Data	2th-	Saved Registers	Stack Grows
1000 0000 _{les}	Static Data		Local Variables	Į.
pc →0040 0000 _{bes}	Text	Ssp_		Lower
Ohen	Reserved			Memory Addresses
DATA ALIGNMENT				
	Doubl	e Word		
· ·	Vord		Word	\neg

			Doub	le Wor	d			
	Wo	rd		Word				
Halfword		Half	word	Halfword Ha			Halfword	
Byte	Byte	Byte	Byte	Byte	Byte	Byte	Byte	
	1	2	1	4	4	4	7	

Value of three least significant bits of byte address (Big Endian)

B	Interrupt Mask	Code	
31	35 8	6	2
	Pending	U	E 1
	Interrupt	M	L I
	15 micrope	7	÷

BD = Branch Delay, UM = User Mode, EL = Exception Level, IE =Interrupt Enable

CEPTI	ON CO	DES			
Number	Name	Cause of Exception	Number	Name	Cause of Exception
0	lat	Interrupt (hardware)	9	Bp	Breakpoint Exception
4	Adel	Address Error Exception (load or instruction fetch)	10	RI	Reserved Instruction Exception
5	Ades		11	CpU	Coprocessor Unimplemented
6	IBE	Bus Error on Instruction Fetch	12	Ov	Arithmetic Overflow Exception
7	DBE	Bus Error on Load or Store	13	Tr	Trap
8	Sys	Syscall Exception	15	FPE	Floating Point Exception

SIZE PREFIXES (10^X for Disk, Communication; 2^X for Memory)

	SIZE	FIX	SIZE	FIX	SIZE	PRE- FIX	SIZE	FIX
	103, 210	Kilo-	1015, 250	Peta-	10-3	milli-	10-15	femto-
	106, 220	Mega-	1018, 260	Еха-	10-6	micro-	10-18	atto-
	109, 230	Giga-	1021, 270	Zetta-	10-9	nano-	10-21	zepto-
	1012, 240	Tera-	1024, 280	Yotta-	10-12	pico-	10-24	yocto-
1	he symbol	for each	prehx is ju	st sts hos	lettet,	ексері ц	is used	or macro

Copyright 2009 by Elsevier, Inc., All rights reserved. From Patterson and Hennessy, Computer Organization and Design, 4th ed.

Reference Data Card ("Green Card")

1. Pull alone perforation to separate card 2. Fold bottom side (columns 3 and 4) to eether

MIPS

MIPS指令的基本格式

▶ R: Register, 寄存器

№ I: Immediate, 立即数

J: Jump, 无条件转移

R	opcod	de		rs		rt		rd	sł	namt	f	funct	
	31	26	25	21	20	16	15	11	10	6	5	0	

I	opcode		rs		rt		immediate		
	31	26	25	21	20	16	15		0

J	opcode			address	
	31	26	25		0

不同维度的指令分类(示例)

运算指令	add rd, rs, rt sll rd, rt, shamt	addi rt,rs,imm slti rt,rs,imm	
访存指令		lw rt, imm(rs) sw rt, imm(rs)	
分支指令	jr rs	beq rs, rt, imm	j addr
	R型指令	I型指令	J型指令

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- I RISC的发展变迁
- II MIPS指令的主要特点
- III MIPS指令分类说明: R型
- IV MIPS指令分类说明: I型

不同维度的指令分类(示例)

运算指令	add rd, rs, rt sll rd, rt, shamt	addi rt,rs,imm slti rt,rs,imm	
访存指令		lw rt, imm(rs) sw rt, imm(rs)	
分支指令	jr rs	beq rs, rt, imm	j addr
	R型指令	J型指令	

R型指令的格式(1)

- ▶ R型指令格式包含6个域
 - 。2个6-bit域,可表示0~63的数
 - 。 4个5-bit域, 可表示0~31的数

用于指定指令的类型。对于所有R型指令,该域的值均为0

opcode

与opcode域组合,精确地 指定指令的类型

funct

6-bit 5-bit 5-bit 5-bit 6-bit

R	opco	ode		rs		rt		rd		sha	mt	f	funct
	31	26	25	21	20	16	15	1	1	10	6	5	0

R型指令的格式(2)

- rs Source Register
 - 。通常用于指定第一个源操作数所在的寄存器编号
- rt Target Register
 - 。通常用于指定第二个源操作数所在的寄存器编号
- rd Destination Register
 - 。通常用于指定目的操作数(保存运算结果)的寄存器编号
- № 5-bit的域可表示0~31,对应32个通用寄存器

	6-bit	t	,	5-bit		,	5-bit			5-bit		5-	bit		6-bit	
R	opco	de		rs			rt			rd		sha	amt	1	funct	
	31	26	25		21	20		16	15		11	10	6	5		0

R型指令的格式(3)

- shamt shift amount
 - 。用于指定移位指令进行移位操作的位数
 - 。5-bit的域可表示0~31,对于32-bit数,更多移位没有实际意义
 - 。对于非移位指令,该域设为0

	6-bit	•	ļ	5-bit		5-bit		5-bit		5-bit		6-bi	t
R	opcod	de		rs		rt		rd		shamt	t	func	:t
	31	26	25	21	20	16	5 15	,	11	10	6	5	0

R型指令的编码示例(1)

- add \$8,\$9,\$10 # R[rd]=R[rs]+R[rt]
 - 。 查指令编码表得到:

opcode =
$$0$$
, funct = 32 , shamt = 0 (非移位指令)

。根据指令操作数得到:

$$rd = 8$$
 (目的操作数), $rs = 9$ (第一个源操作数)

	00000	00	0	1001	C)1010	C)1000	OC	0000	1	00000)
R	opcod	de		rs		rt		rd	sh	amt	1	funct	
	31	26	25	21	20	16	15	11	10	6	5		0

R型指令的编码示例(2)

- sll \$8,\$9,10 # R[rd]=R[rt]<<shamt</pre>
 - 。 查指令编码表得到:

opcode = 0, funct = 0, rs = 0 (未使用的寄存器)

。 根据指令操作数得到:

rd = 8 (目的操作数)

rt = 9 (源操作数)

31

shamt = 10 (移位数)

26

25

R	opcode	rs	rt	rd	shamt	funct
	000000	00000	01001	01000	01010	000000

K

21	20 16	15	11 10	6 5	0

主要内容

通过学习本课程 了解计算机的发展历程,理解计算机的组成原理,掌握计算机的设计方法

- I RISC的发展变迁
- II MIPS指令的主要特点
- III MIPS指令分类说明: R型
- IV MIPS指令分类说明: I型

不同维度的指令分类(示例)

运算指令	add rd, rs, rt sll rd, rt, shamt	addi rt,rs,imm slti rt,rs,imm	
访存指令		lw rt, imm(rs) sw rt, imm(rs)	
分支指令	jr rs	beq rs, rt, imm	j addr
	R型指令	J型指令	

I型指令的格式(1)

- ▶ R型指令只有一个5-bit域表示立即数,范围为0~31
- 常用的立即数远大于这个范围,因此需要新的指令格式
- ▶ I型指令的大部分域与R型指令相同

	6-bi	t	,	5-bit	,	5-bit				16	6-bit		
I	opco	de		rs		rt				imme	diate)	
'	31	26	25	21	20	,	16	15					0
	6-bi	t		5-bit		5-bit			5-bit	5	-bit	6-bi	t
R	opco	de		rs		rt			rd	sh	amt	func	t
	31	26	25	21	20		16	15	11	10	6	5	0

I型指令的格式(2)

- opcode
 - 。用于指定指令的操作类型(但没有funct域)
- s Source Register
 - 。指定第一个源操作数所在的寄存器编号
- rt Target Register
 - 。指定用于目的操作数(保存运算结果)的寄存器编号
 - 。对于某些指令,指定第二个源操作数所在的寄存器编号

	6-DI	t		5-bit			5-bit			16-bit	
I	opco	de		rs			rt			immediate	
	31	26	25		21	20		16	15		0

I型指令的格式(3)

- immediate
 - 。16-bit的立即数,可以表示216个不同数值
 - 。对于访存指令,如lw rt, *imm*(rs) 通常可以满足访存地址偏移量的需求(-32768~+32767)
 - 。对于运算指令,如addi rt,rs,imm 无法满足全部需求,但大多数时候可以满足需求

	6-l	oit		o-bit	;	5-bit		16-bit
I	opc	ode		rs		rt		immediate
	31	26	25	21	20	16	15	0

I型指令的编码示例(1)

- addi \$21,\$22,-50 # \$21=\$22+(-50)
 - 。 查指令编码表得到:

$$opcode = 8$$

。分析指令得到:

rs = 22 (源操作数寄存器编号)

rt = 21 (目的操作数寄存器编号)

immediate = -50 (立即数)

001000 10110 10101 1111 1111 1100 1110	001000	10110	10101	1111	1111	1100	1110
--	--------	-------	-------	------	------	------	------

I	opcode			rs		rt		immediate		
	31	26	25	21	20	16	15	0		

I型指令的编码示例(2)

- \bigcirc **lw** \$21,-50(\$22) # \$21=Mem[\$22+(-50)]
 - 。 查指令编码表得到:

opcode =
$$35$$

。分析指令得到:

rs = 22 (源操作数寄存器编号)

rt = 21 (目的操作数寄存器编号)

immediate = -50 (立即数)

100011	10110	10101	1111	1111	1100	1110

I	opco	de		rs		rt		immediate
	31	26	25	21	20	16	15	0

I型指令的编码示例(3)

- ⑤ slti \$21,\$22,-50 # \$21=(\$22<(-50))?1:0</pre>
 - 。 查指令编码表得到:

$$opcode = 10$$

。分析指令得到:

rs = 22 (源操作数寄存器编号)

rt = 21 (目的操作数寄存器编号)

immediate = -50 (立即数)

001010 10110 10101 1111 1111 1100 111	001010	10110	10101	1111	1111	1100	1110
---------------------------------------	--------	-------	-------	------	------	------	------

I	opcod	de		rs		rt		immediate	
	31	26	25	21	20	16	15		0

本讲到此结束,谢谢 欢迎继续学习本课程

计算机组织与体系结构 Computer Architectures 主讲: 陆俊林

