Modeling of polydisperse sprays using a high order size moment method for the numerical simulation of advection and evaporation

General context: injection in engines

- Sprays in internal combustion engines
- Numerical simulation of reactive multiphase flow

General context: modeling of two-phase flow

- Two ways of modeling
- Lagrangian
 - Implementation
 - Coupling gas/liquid
 - ■Non stationary flow: high CPU cost

- Eulerian
 - Coupling gas/liquide
 - Non stationary flow
 - Modeling, Implementation

- Current modeling (IFP-C3D): Euler/Euler version (*Truchot 05, Vessiller 08,* Baer et Nunziato model (85)

 Bayoro 08)
 - 7 equation model
 - Mixture, interface, cavitation, detonation

Our objective

- Improve the description of the coupling terms (gas/liquid)
- ⇒ Better predict fuel fraction in gas for combustion solvers (Temperature, NOx,...)
 - Separate phase: evolution of interfacial area Σ (Jay 06)
 - Dispersed phase: description of polydispersity

Fig: Prof Edwards (Stanford)

- IFP-C3D: two-fluid formalism
 - Volume fraction : α
 - Interfacial area density : Σ

Mean diameter : $d = \frac{6\alpha}{\Sigma}$

How to introduce the capacity to describe polydispersity in the dispersed phase, in a two-fluid formalism?

Description of polydispersity(1/2)

- Statistical approach
 - Spherical droplets (1-100 µm): no interface problem
 - ullet Number density function (NDF) f(t,x,v,S,T)
 - Williams-Boltzmann Equation (Williams, 1958)

$$\partial_t f + \partial_x v f + \partial_S R f + \partial_v \frac{F}{m} f + \partial_T E f = \Gamma$$

- Eulerian framework
 - Resolution with Finite Volume impossible moment method
 - Size moments $m_k = \int_0^{S_{max}} \int_{\mathbb{R}} S^k f \, dS dv$
- Models describing polydispersity in a Eulerian framework ?

Description of polydispersity(2/2)

- Sectional method (Tambour 1985): Multi-fluid method (Laurent 02, Chaisemartin 09)
 - lacksquare Several size sections $[S_i,S_{i+1}]$
 - ullet Evolution of $m_{3/2,i}, m_{3/2,i}u_i$ in each section
 - Can describe every distribution function
 - High accuracy potential
 - Important CPU cost, at least 2 sections to describe polydispersity
- Two-fluid formalism: Presumed NDF method (Mossa 05)
 - One section
 - Presumed NDF, not generical
 - Scheme not stable for evaporation

What we precisely want to achieve

- Design a method
 - Describing polydispersity in a two-fluid formalism
 - Generic
 - Reasonnable CPU cost

Several size moments

- Difficulties:
 - Mathematic: closure problems
 - Physics : accuracy of the description ?
 - Numerical : stable scheme
- Different contexts, solved independtly through splitting :
 - Evaporation
 - Advection in physical space

Table of contents

- Evaporation
- Advection

Conclusions - Perspectives

Table of contents

- Evaporation
- Advection

Conclusions - Perspectives

Evaporation: Principle

- Solution of $\partial_t f + \partial_S R f = 0$
- R, evaporation coefficient, determined by an evaporation model
- We use d^2 law (infinite conductivity) and non dimensional variables: $R=-1, S\in [0,1]$

Analytical solution

Evaporation: Model

phase space: S

$$\int_0^1 \int_{\mathbb{R}} S^k \partial_t f \, dS dv + \int_0^1 \int_{\mathbb{R}} S^k \partial_S (Rf) \, dS dv = 0, \ k = 0 \dots 3$$

Dynamics of four size moments:

 m_0 : number density

 m_1 : mean size

 m_2 : mean square size, dispersion around the mean value

 m_3 : mean cubic size

Evaporation: Model

$$\int_0^1 \int_{\mathbb{R}} S^k \partial_t f \, dS dv + \int_0^1 \int_{\mathbb{R}} S^k \partial_S (Rf) \, dS dv = 0, \ k = 0 \dots 3$$

$$\partial_t m_1 = -m_0$$

$$\partial_t m_2 = -2m_1$$

$$\partial_t m_3 = -3m_2$$

Evaporation: Model

$$\int_0^1 \int_{\mathbb{R}} S^k \partial_t f \, dS dv + \int_0^1 \int_{\mathbb{R}} S^k \partial_S (Rf) \, dS dv = 0, \ k = 0 \dots 3$$

•
$$\partial_t m_0 = -f(t, S=0)$$
: evaporative flux $\partial_t m_1 = -m_0$ $\partial_t m_2 = -2m_1$ $\partial_t m_3 = -3m_2$

$$\partial_t m_1 = -m_0$$

$$\partial_t m_2 = -2m_1$$

$$\partial_t m_3 = -3m_2$$

Feasibility (Moments of a NDF)

(Fox,Laurent,Massot 08)

Evaporation: Numerical scheme

- ODE solvers are unstable: Explicit Euler, 2 stage Runge Kutta.
- New scheme
 - Finite Volume scheme
 - Flux calculation by temporal integration of the kinetic equation Equivalence microscopic / macroscopic description levels (Bouchut 03) $\partial_t f \qquad \partial_t m_k$

Algorithm

- Moments in the section
- Reconstruction of f by Entropy Maximisation
- Calculation of the flux using f, solution of the kinetic equation
- Flux addition and update of the moments
- Kinetic scheme (Perthame 02)
 - Satisfies the feasability condition

Evaporation: Results

Results in terms of moments

Analytical and numerical moments

Error on the moments (in percent)

$$\partial_t f + \partial_S(Rf) = 0$$
 , $R = -1, S \in [0, 1]$

- Solution in terms of moments (Massot et al 08)
 - Closure problem: Entropy Maximisation
 - Numerical scheme: Kinetic scheme
- Applications:

- Implement these evolution equations in IFP-C3D
- New closure of the evaporation term

Ability to evaporate a population with different sizes

Application in other domain: soots

Table of contents

- Evaporation
- Advection

Conclusions - Perspectives

Advection: model (1/2)

Velocity moments

Advection: model (1/2)

Velocity moments

closure problem

$$f(t, x, v, s) = n(t, x, S)\delta(v - u(t, x, S))$$

Advection: model (1/2)

Velocity moments

closure problem

Unique velocity conditioned by size

$$f(t, x, v, s) = n(t, x, S)\delta(v - u(t, x, S))$$

$$\partial_t \int_0^1 nu \, dS + \partial_x \int_0^1 n(u)^2 \, dS = 0$$

Size moments

Velocity moments

closure problem

Unique velocity conditioned by size

$$f(t, x, v, s) = n(t, x, S)\delta(v - u(t, x, S))$$

$$\partial_t \int_0^1 nu \, dS + \partial_x \int_0^1 n(u)^2 \, dS = 0$$

Size moments

Constant velocity in a section

$$\int_0^1 u^2(S)f \, dS = m_0 \bar{u^2} = m_0(\bar{u})^2$$

Advection: model (2/2)

$$\partial_t m_0 + \partial_x m_0 \bar{u} = 0$$

$$\partial_t m_1 + \partial_x m_1 \bar{u} = 0$$

$$\partial_t m_2 + \partial_x m_2 \bar{u} = 0$$

$$\partial_t m_3 + \partial_x m_3 \bar{u} = 0$$

$$\partial_t m_0 \bar{u} + \partial_x m_0 \bar{u}^2 = 0$$

Objective: Design a 2nd order scheme satisfying:

Advection: model (2/2)

$$\partial_t m_0 + \partial_x m_0 \bar{u} = 0$$

$$\partial_t m_1 + \partial_x m_1 \bar{u} = 0$$

$$\partial_t m_2 + \partial_x m_2 \bar{u} = 0$$

$$\partial_t m_3 + \partial_x m_3 \bar{u} = 0$$

$$\partial_t m_0 \bar{u} + \partial_x m_0 \bar{u}^2 = 0$$

- Objective: Design a 2nd order scheme satisfying:
- Feasability condition
 - Independant transport of the moment fails
- Presurreless Gas formalism (Bouchut 03)
 - Potentiel singularity formation (δ-shocks)

Pressureless Gas formalism

$$\partial_t m_0 + \partial_x m_0 \bar{u} = 0$$

$$\partial_t m_0 + \partial_x m_0 \bar{u} = 0$$

$$\partial_t m_0 \bar{u} + \partial_x m_0 \bar{u}^2 = 0$$
 Pressure=0

- $\partial_t \bar{u} + \bar{u} \partial_x \bar{u} = 0$ (Burgers Equation)
- Potential singularity formation

$$c_k = \frac{m_k}{m_0}, \ k = 1..3$$
 $\partial_t c_k + u \partial_x c_k = 0$

Reconstruction

$$c_k = \frac{m_k}{m_0}, \ k = 1..3$$
 $\partial_t c_k + u \partial_x c_k = 0$

Reconstruction

$$c_k = \frac{m_k}{m_0}, k = 1..3$$
 $\partial_t c_k + u \partial_x c_k = 0$

Reconstruction

Advection: conclusion

- 2nd order scheme for advection of a moment set
 - Kinetic scheme
 - Canonical moment theory (Dette & Studden 97)
- Application:

Implementation of these tools in IFP-C3D

- Application in other domains:
 - Combustion
 - Meteorology: (Wright07, McGraw07)

$$\partial_t f + \partial_x (vf) + \partial_S (Rf) = 0$$

$$\partial_t f + \partial_x (vf) + \partial_S (Rf) = 0$$

- Transport of the moments
- Vacuum zone handled

$$\partial_t f + \partial_x (vf) + \partial_S (Rf) = 0$$

- Dilute flow
- No collision

$$\partial_t f + \partial_x (vf) + \partial_S (Rf) = 0$$

- Dilute flow
- No collision

- Singularity handled
- Not physical

Table of contents

- Evaporation
- Advection

Conclusions - Perspectives

Conclusions

Objectives

Design a model and numerical schemes for advection of size moments of an evaporative polydisperse spray, in a two-fluid formalism:

Achivements:

- High size moment model and numerical scheme for evaporation
 - M.Massot, F.Laurent, D.Kah, S. de Chaisemartin: A robust moment method for evalution of the disappearance rate of evaporating sprays, submitted to SIAM journal of applied mathematics available in HAL (2008)
- High size moment model and 2nd order numerical scheme for advection
 - D.Kah, F. Laurent, M. Massot, S. Jay: A high order moment method simulating evaporation and advection of a polydisperse liquid spray, to be submitted to Journal of Aerosol Science (2009)
- Theoretical and numerical problems solved
- Methods applicable in other fields (soots, meteorology)

Perspectives

- Implementation of these tools in the code IFP-C3D to simulate the dispersed phase
- Test cases in 2D and 3D
- Coupling with the separate phase
- High order velocity moments to overcome singularities (Fox 08)
 - S. De Chaisemartin, L. Fréret, D. Kah, F. Laurent, R.O. Fox, J. Réveillon, M. Massot: Turbulent combustion of polydisperse evaporating sprays with droplet crossing: Eulerian modeling and validation in the infinite Knudsen limit, proceedings of CTR (2008)

Thank you for your attention

