COURSE SCHEDULE (Tentative)

Time: 10:00 AM - 11:50 AM

Week	Tuesday	Friday
1	8/29	9/01
	Class 1: Math background I	Class 2: Math background II
	Chapter 1.1, 1.4, Appendix B	Chapter 1.1
	Introduction to quantum physics	Partial differential equations
	Complex variables	Maxwell wave equations
	Euler equation	EM in cavity
	Differential equations	
2	9/05	9/08
	, Labor Day (9/4)	Class 3: Wave nature of light
	, ,	Chapter 1.2, 1.5, 1.6
		Interference by light:
		Young double slit experiment
		X-ray diffraction from crystals
		Homework 1 due 10am
3	9/12	9/15
	Class 4: Particle nature of light	Class 5: Wave nature of matter
	Chapter 1.3, 1.4	Chapter 2.1, 2.2
	Photoelectric effect	de Broglie wavelength
	Compton scattering	Atom interference from double slit
		Atom diffraction from single slit
		Diffraction envelope
		Homework 2 due 10am

Week	Tuesday	Friday
4	9/19	9/22
	Class 6. Schrodinger wave equation	Class 7: Wave packets
	Chapter 2.3, 2.4	Chapter 2.6, 2.7
	Uncertainty in position and momentum	Gaussian wave packets
	Electron diffraction from crystal	Phase and group velocities
	Schrodinger wave equation	
	Free particle solutions	Homework 3 due 10am
	Probability interpretation	
	Normalization of wave functions	
	Probability flux	
5	9/26	9/29
	Class 8: Expectation values	Class 9: Particle in a box
	Chapter 2.8, 2.9	Chapter 3.1, 3.2, 3.3
	Quantum operators	Time independent Schrodinger equation
	Expectation values	Wave functions and energy in a box
	Heisenberg uncertainty principle	Discrete energy states
	Ehrenfest's theorems	
		Homework 4 due 10am
6	10/03	10/06
	Class 10: Functional vector space	Class 11: Exam 1
	Chapter 3.3, 3.4	
	Mixed states and time dependent solutions	
	Functional vector space	
	Orthonormal conditions	
7	10/10	10/13
	Class 12: Energy eigenvalue problems	Class 13: Simple harmonic oscillators
	Chapter 3.4	Chapter 4.3
	Position and momentum operators	Eigenfunctions and eigenenergies
	Eigenvalue equations	Hermite polynomials
	Energy eigenvalues	Homework 5 due 10am.

Week	Tuesday	Friday
8	10/17	10/20
	Class 14: Finite potential wells	Class 15: Scattering from stepped potentials
	Chapter 4.1, 4.2	Chapter 4.6
	Finite wells	Traveling waves
	Boundaries matching	Probability currents
	First derivative matching	Waves at stepped surfaces
	Bound state solutions	Reflection and transmission coefficients
		Homework 6 due 10am
9	10/24	10/27
	Class 16: Quantum tunneling	Class 17: Quantum postulates
	Chapter 4.7	Chapter 5.1, 5.2
	Penetration of wavefunctions	Basic principles of quantum physics
	Escape traveling wavefunctions	Operators
	Transmission probability	Measurements and associated operators
		Eigenvalue problems
		Mixed states
		Probability of single measurement
		Commutators
		Homework 7 due 10am
10	10/31	11/03
	Class 18: Commutation relationships	Class 19: 3D problems
	Chapter 5.3, 5.4, 5.5	Chapter 6.1, 6.2
	Commutation relationships	Cartesian vs spherical coordinate systems
	Commuting observables	Separation of variables
	Uncertainty relationships	3D infinite square well and harmonic oscillator
	Time evolution of expectation values	3D central field problems
	Hermitian operators	
		Homework 8 due 10am

Week	Tuesday	Friday
11	11/07	11/10
	<u>Class 20: Exam 2</u>	Class 21: Angular momentum
		Chapter 6.1, 6.2
		Angular momentum operators
		Polar coordinates
		Azimuthal angular momentum operator
		Eigenvalues of azimuthal angular momentum
		operator
12	11/14	11/17
	Class 22: Spherical harmonics	Class 23. Hydrogen atom
	Chapter 6.2	Chapter 6.3
	Eigenvalue problem of L^2	Central field problems
	Spherical harmonics	Hydrogen atom
	Matrix representation	Associated Laguerre polynomials
		Quantization of energy levels
		Homework 9 due 10am
13	11/21	11/24
	Class 24: Zeeman effect	No Class (Thanksgiving break 22 nd – 24th)
	Chapter 6.4	
	Classical magnetic moment	
	Relationship with angular momentum	
	Hamiltonian in external magnetic field	
	Energy splitting and removal of degeneracies	

Week	Tuesday	Friday
14	11/28	12/01
	Class 25: Intrinsic spins	Class 26: More on quantum mechanics
	Chapter 6.5	Chapter: 'class notes'
	Stern-Gerlach experiment	Spin-orbit interactions
	Half integer spin	Qubit and entanglement
	Spin operators	Dirac equation and spin
	The need of a generalized state function	Quantization of fields
	Homework 10 due 10am	Homework 11 due 10am
15	12/05	12/08 (last class)
	Class 27: Review	Class 28: Exam 3
16	12/12	12/15

Additional Academic Integrity Course Policy and Penalty Information

Here are some examples of what is considered "cheating" and "not cheating" in PHYS 1200. This is not intended to be a comprehensive list. If you are unsure about something, ask your lab instructor or lecturer.

Not cheating:

Most learning is done through discussion with your peers and instructors. It is encouraged. Students are expected to actively participate in a collaborative group when working on the in-class activity. Discussion with peers or instructors is encouraged.

Discussion with peers or instructors on homework is encouraged.

Cheating:

Each student must turn in her/his own activity write-up. No student will be allowed to submit an activity in the name of any other student. The same policy applies to homework and in-class assignments. If you are caught copying or handing in work that is not your own, you will receive a non-droppable zero for that assignment and will be warned that this is not acceptable behavior. If unacceptable behavior persists after warning, it may result in an F for the course and a letter to the Dean of Students.

Collaboration (giving or taking information) or copying of any sort or using any aid that is not allowed during an exam is cheating. It will result in immediate failure and a letter to the Dean of Students.

Altering a returned exam and asking for a re-grade is cheating.

If you become aware of another student cheating on an exam or in any other aspect of the course, it is your responsibility and also in your best interests to inform the professor so that appropriate action may be taken. The reputation of Rensselaer as a premiere institute of research and learning rests on the integrity of its students, faculty, and staff.

If you have any question concerning this policy before submitting an assignment, please ask for clariffication.