

```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -411000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                       = 77000 N/mm<sup>2</sup>
Ν
        = 30600 N
                                                                                                                               G
                                                                                     \sigma_{\text{a}}
                                          M_y
                                                                                             = 200000 \text{ N/mm}^2
M_t
        = 571000 Nmm
                                                  = -466000 Nmm
                                          J_t
\mathbf{y}_{\mathsf{g}}
                                          \sigma(N) =
                                          \sigma(M_x)=
                                          \sigma(M_{v})=
                                          \tau(M_t) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06
```



```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -355000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                       = 77000 \text{ N/mm}^2
Ν
        = 39000 N
                                                                                                                               G
                                                                                    \sigma_{\text{a}}
                                          M_y
                                                                                             = 200000 \text{ N/mm}^2
M_t
        = 837000 Nmm
                                                  = -745000 Nmm
                                          J_t
\mathbf{y}_{\mathsf{g}}
                                          \sigma(N) =
                                          \sigma(M_x)=
                                          \sigma(M_{v})=
                                          \tau(M_t) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06
```



```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -454000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                    = 77000 \text{ N/mm}^2
Ν
        = 48300 N
                                                                                                                            G
                                                                                   \sigma_{a}
                                                                                           = 200000 \text{ N/mm}^2
M_t
        = 775000 Nmm
                                         M_{v}
                                                 = -1090000 Nmm
                                         J_t
\mathbf{y}_{\mathsf{g}}
                                         \sigma(N) =
                                         \sigma(M_x)=
                                         \sigma(M_{v})=
                                         \tau(M_t) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06
```



```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -565000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                        = 77000 \text{ N/mm}^2
Ν
        = 39800 N
                                                                                                                                G
                                                                                     \sigma_{\text{a}}
                                          M_{y}
                                                                                             = 200000 \text{ N/mm}^2
M_t
        = 1040000 Nmm
                                                  = -1530000 Nmm
y<sub>g</sub>
u<sub>o</sub>
                                          J_t
                                          \sigma(N) =
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                          \tau(M_t) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06
```



```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -687000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                             = 77000 \text{ N/mm}^2
Ν
         = 49200 N
                                                                                                                                     G
                                                                                        \sigma_{\text{a}}
                                            M_y
                                                                                                 = 200000 \text{ N/mm}^2
M_t
         = 1340000 Nmm
                                                    = -1400000 Nmm
                                                                                        Ε
y<sub>g</sub>
u<sub>o</sub>
                                            J_t
                                            \sigma(N) =
                                                                                        \sigma_{\text{I}}
                                            \sigma(M_x)=
                                            \sigma(M_v)=
                                                                                        \sigma_{tresca}=
                                            \tau(M_t) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06
```



```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -309000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                      = 77000 \text{ N/mm}^2
Ν
        = 34700 N
                                                                                    \sigma_{\text{a}}
                                                                                                                              G
                                          M_y
                                                                                            = 200000 \text{ N/mm}^2
M_t
        = 629000 Nmm
                                                  = -537000 Nmm
                                          J_t
\mathbf{y}_{\mathsf{g}}
                                          \sigma(N) =
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                          \tau(M_t) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06
```



```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -400000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                                              = 77000 \text{ N/mm}^2
Ν
          = 43700 N
                                                                                                                                                     G
                                                                                                   \sigma_{\text{a}}
                                                                                                             = 200000 \text{ N/mm}^2
M_t
          = 622000 Nmm
                                                 M_{v}
                                                          = -849000 Nmm
                                                 J_{t}
\mathbf{y}_{\mathsf{g}}
                                                 \sigma(N) =
                                                                                                   \sigma_{\text{I}}
                                                 \sigma(M_x)=
                                                 \sigma(M_v)=
                                                                                                   \sigma_{tresca}=
                                                 \tau(M_t) =
```



```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -502000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                             = 77000 \text{ N/mm}^2
Ν
         = 36500 N
                                                                                                                                     G
                                                                                        \sigma_{\text{a}}
                                            M_{y}
                                                                                                 = 200000 \text{ N/mm}^2
M_t
         = 873000 Nmm
                                                    = -1240000 Nmm
                                                                                        Ε
                                            J_{t}
\mathbf{y}_{\mathsf{g}}
                                            \sigma(N) =
                                                                                        \sigma_{\text{I}}
                                            \sigma(M_x)=
                                            \sigma(M_v)=
                                                                                        \sigma_{tresca}=
                                            \tau(M_t) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06
```



```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -615000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                       = 77000 \text{ N/mm}^2
Ν
        = 45400 N
                                                                                                                               G
                                                                                     \sigma_{\text{a}}
                                          M_{y}
                                                                                             = 200000 \text{ N/mm}^2
M_t
        = 1160000 Nmm
                                                  = -1160000 Nmm
                                                                                     Ε
y<sub>g</sub>
u<sub>o</sub>
                                          J_t
                                          \sigma(N) =
                                          \sigma(M_x)=
                                          \sigma(M_v)=
                                          \tau(M_t) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06
```



```
Calcolo degli sforzi con forze baricentriche in * punto B di BA 0 N M_x = -503000 \text{ Nmm} \sigma_a = 200 \text{ N/mm}^2
                                                                                                                                              = 77000 \text{ N/mm}^2
Ν
         = 55400 N
                                                                                                                                     G
                                                                                         \sigma_{\text{a}}
                                            M_y
                                                                                                 = 200000 \text{ N/mm}^2
M_t
         = 1480000 Nmm
                                                    = -1610000 Nmm
                                                                                         Ε
y<sub>g</sub>
u<sub>o</sub>
                                            J_t
                                            \sigma(N) =
                                                                                         \sigma_{\text{I}}
                                            \sigma(M_x)=
                                            \sigma(M_v)=
                                                                                         \sigma_{tresca}=
                                            \tau(M_t) =
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06
```


	Galcolo degli	i Sidizi culi idize banceninche	e iii punito b ui bA					
Ν	= 30600 N	$M_{x} = -411000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$			
M_t	= 571000 Nmm	$M_{v} = -466000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}	= 29.52 mm	J_{t} = 245370 mm ⁴	$\tau = -64.65 \text{ N/mm}^2$	θ_{t}	= 0.03022 / m			
u_o	= 0 mm	$\sigma(N) = 58.31 \text{ N/mm}^2$	$\sigma_1 = 186 \text{ N/mm}^2$	r_u	= 20.9 mm			
V_{o}	= -5.022 mm	$\sigma(M_x) = 52.9 \text{ N/mm}^2$	$\sigma_{II} = -22.47 \text{ N/mm}^2$	r_v	= 20.18 mm			
A_n	$= 524.8 \text{ mm}^2$	$\sigma(M_{v}) = 52.31 \text{ N/mm}^{2}$	$\sigma_{\text{tresca}} = 208.5 \text{ N/mm}^2$	r_{o}	= 29.49 mm			
J_u	= 229344 mm ⁴	$\tau(M_t) = -64.65 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 198.2 \text{ N/mm}^2$					
J_{v}	= 213811 mm ⁴	$\sigma = 163.5 \text{ N/mm}^2$	$\sigma_{\rm st.ven}$ = 192.7 N/mm ²					
@ A	Adalfa Zavalani Bassi, Balitaaniaa di Milana yara 10.06.06							

	Calcolo degli :	Storzi con torze bancentriche	in punto b di ba				
Ν	= 39000 N	$M_{x} = -355000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$		
M_t	= 837000 Nmm	$M_{v} = -745000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$				
y_g	= 29.18 mm	$J_{t}^{2} = 372018 \text{ mm}^{4}$	$\tau = -71.08 \text{ N/mm}^2$	Θ_{t}	= 0.02922 / m		
u_o	= 0 mm	$\sigma(N) = 64.83 \text{ N/mm}^2$	$\sigma_1 = 188.7 \text{ N/mm}^2$	r _u	= 21.16 mm		
V_{o}	= -4.73 mm	$\sigma(M_x) = 38.46 \text{ N/mm}^2$	$\sigma_{II} = -26.77 \text{ N/mm}^2$	r_v	= 25.99 mm		
A_n	$= 601.6 \text{ mm}^2$	$\sigma(M_v) = 58.67 \text{ N/mm}^2$	$\sigma_{\text{tresca}} = 215.5 \text{ N/mm}^2$	r_{o}	= 33.84 mm		
J_u	= 269327 mm ⁴	$\tau(M_t) = -71.08 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 203.4 \text{ N/mm}^2$				
J_{v}	= 406323 mm ⁴	$\sigma = 162 \text{ N/mm}^2$	$\sigma_{\rm st.ven}$ = 196.7 N/mm ²				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06						

	Carcolo degli storzi con forze bancentriche in punto B di BA					
Ν	= 48300 N	$M_{x} = -454000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$	
M_t	= 775000 Nmm	$M_v = -1090000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$			
y_g	= 28.91 mm	$J_{t}' = 506709 \text{ mm}^4$	$\tau = -52.65 \text{ N/mm}^2$	Θ_{t}	= 0.01986 / m	
uo	= 0 mm	$\sigma(N) = 71.2 \text{ N/mm}^2$	$\sigma_1 = 192.6 \text{ N/mm}^2$	ru	= 21.35 mm	
Vo	= -4.461 mm	$\sigma(M_x) = 42.45 \text{ N/mm}^2$	$\sigma_{II} = -14.4 \text{ N/mm}^2$	r _v	= 31.56 mm	
A_n	$= 678.4 \text{ mm}^2$	$\sigma(M_v) = 64.51 \text{ N/mm}^2$	$\sigma_{\text{tresca}} = 207 \text{ N/mm}^2$	r_{o}	= 38.37 mm	
J	= 309200 mm ⁴	$\tau(M_t) = -52.65 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 200.1 \text{ N/mm}^2$			
J_{v}	= 675840 mm ⁴	$\sigma = 178.2 \text{ N/mm}^2$	$\sigma_{\rm st,ven}$ = 196.9 N/mm ²			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06						

	Calcolo degli siorzi con iorze bancentriche in punto 6 di 6A					
Ν	= 39800 N	$M_{x} = -565000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$	
M_t	= 1040000 Nmm	$M_v = -1530000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$			
y_g	= 28.7 mm	$J_{t}' = 646699 \text{ mm}^4$	$\tau = -58.88 \text{ N/mm}^2$	θ_{t}	= 0.02089 / m	
uo	= 0 mm	$\sigma(N) = 52.7 \text{ N/mm}^2$	$\sigma_{l} = 188.7 \text{ N/mm}^{2}$	ru	= 21.5 mm	
Vo	= -4.216 mm	$\sigma(M_x) = 46.47 \text{ N/mm}^2$	$\sigma_{II} = -18.37 \text{ N/mm}^2$	r_{v}	= 36.97 mm	
A_n	$= 755.2 \text{ mm}^2$	$\sigma(M_{v}) = 71.15 \text{ N/mm}^{2}$	$\sigma_{\text{tresca}} = 207.1 \text{ N/mm}^2$	r_{o}	= 42.97 mm	
J	= 348997 mm ⁴ .	$\tau(M_t) = -58.88 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 198.5 \text{ N/mm}^2$	-		
J_{v}^{-}	= 1032192 mm ⁴	$\sigma = 170.3 \text{ N/mm}^2$	$\sigma_{\rm st,ven}$ = 194.2 N/mm ²			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06						

	Calcolo degli siorzi con iorze bancentriche in punto 6 di 6A					
Ν	= 49200 N	$M_{x} = -687000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$	
M_t	= 1340000 Nmm	$M_v = -1400000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$			
y_g	= 28.53 mm	$J_t' = 790365 \text{ mm}^4$	$\tau = -65.02 \text{ N/mm}^2$	Θ_{t}	= 0.02202 / m	
u _o	= 0 mm	$\sigma(N) = 59.13 \text{ N/mm}^2$	$\sigma_{l} = 185.2 \text{ N/mm}^{2}$	ru	= 21.62 mm	
Vo	= -3.994 mm	$\sigma(M_x) = 50.42 \text{ N/mm}^2$	$\sigma_{II} = -22.83 \text{ N/mm}^2$	r _v	= 42.25 mm	
A_n	$= 832 \text{ mm}^2$	$\sigma(M_v) = 52.79 \text{ N/mm}^2$	σ_{tresca} = 208 N/mm ²	r_{o}	= 47.63 mm	
J	= 388739 mm ⁴	$\tau(M_t) = -65.02 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 197.6 \text{ N/mm}^2$			
J_{v}	= 1485210 mm ⁴	$\sigma = 162.3 \text{ N/mm}^2$	$\sigma_{\rm st,ven} = 192 \text{N/mm}^2$			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06						

	Calcolo degli s	storzi con torze baricentriche	in * punto B di BA		•
Ν	= 34700 N	$M_x = -309000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$
M_t	= 629000 Nmm	$M_{v} = -537000 \text{ Nm/m}$	$E = 200000 \text{ N/mm}^2$		
\mathbf{y}_{g}	= 30.26 mm	$J_{t}^{2} = 245370 \text{ mm}^{4}$	$\tau = -71.22 \text{ N/mm}^2$	θ_{t}	= 0.03329 / m
u_o	= 0 mm	$\sigma(N) = 64.93 \text{ N/mm}^2$	$\sigma_{l} = 188.7 \text{ N/mm}^2$	r_u	= 21.42 mm
V_{o}	= -6.334 mm	$\sigma(M_x) = 38.13 \text{ N/mm}^2$	$\sigma_{II} = -26.88 \text{ N/mm}^2$	r_v	= 20.26 mm
A_n	$= 534.4 \text{ mm}^2$	$\sigma(M_{v}) = 58.76 \text{ N/mm}^{2}$	$\sigma_{\text{tresca}} = 215.6 \text{ N/mm}^2$	r_{o}	= 30.16 mm
J_{u}	= 245183 mm ⁴	$\tau(M_t) = -71.22 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 203.5 \text{ N/mm}^2$		
J_{v}	= 219341 mm ⁴	$\sigma = 161.8 \text{ N/mm}^2$	$\sigma_{\rm st.ven}$ = 196.7 N/mm ²		

	Galcolo degli storzi con torze baricentriche in punto B di BA							
Ν	= 43700 N	$M_{x} = -400000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$			
M_t	= 622000 Nmm	$M_v = -849000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$					
y_{g}	= 29.83 mm	$J_{t}^{'} = 372018 \text{ mm}^4$	$\tau = -52.82 \text{ N/mm}^2$	θ_{t}	= 0.02171 / m			
u_o	= 0 mm	$\sigma(N) = 71.5 \text{ N/mm}^2$	$\sigma_{l} = 193 \text{ N/mm}^2$	r_u	= 21.61 mm			
V_{o}	= -5.982 mm	$\sigma(M_x) = 41.79 \text{ N/mm}^2$	$\sigma_{II} = -14.45 \text{ N/mm}^2$	r_v	= 26.09 mm			
A_n	= 611.2 mm ²	$\sigma(M_v) = 65.28 \text{ N/mm}^2$	$\sigma_{\text{tresca}} = 207.5 \text{ N/mm}^2$	r_{o}	= 34.41 mm			
J_{u}	= 285469 mm ⁴	$\tau(M_t) = -52.82 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 200.6 \text{ N/mm}^2$					
J_{v}	= 416154 mm ⁴	$\sigma = 178.6 \text{ N/mm}^2$	$\sigma_{\rm st.ven}$ = 197.3 N/mm ²					
ര വ	Adolfo Zavelani Rossi, Politecnico di Milano, vers 12 06 06							

	Calcolo degli siorzi con lorze bancentriche in punto B di BA						
Ν	= 36500 N	$M_{x} = -502000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$		
M_t	= 873000 Nmm	$M_{v} = -1240000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$				
y_g	= 29.49 mm	$J_{t}' = 506709 \text{ mm}^4$	$\tau = -59.31 \text{ N/mm}^2$	θ_{t}	= 0.02238 / m		
u_o	= 0 mm	$\sigma(N) = 53.05 \text{ N/mm}^2$	$\sigma_1 = 188.9 \text{ N/mm}^2$	r _u	= 21.75 mm		
V_{o}	= -5.653 mm	$\sigma(M_x) = 45.47 \text{ N/mm}^2$	$\sigma_{II} = -18.62 \text{ N/mm}^2$	r_{v}	= 31.7 mm		
A_n	$= 688 \text{ mm}^2$	$\sigma(M_v) = 71.76 \text{ N/mm}^2$	$\sigma_{\text{tresca}} = 207.5 \text{ N/mm}^2$	r_{o}	= 38.86 mm		
J_{u}	= 325579 mm ⁴	$\tau(M_t) = -59.31 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 198.9 \text{ N/mm}^2$				
J_{v}	= 691200 mm ⁴	$\sigma = 170.3 \text{ N/mm}^2$	$\sigma_{\rm st.ven}$ = 194.5 N/mm ²				
@ A	@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06						

	Calcolo degli storzi con torze baricentriche in punto B di BA							
Ν	= 45400 N	$M_x = -615000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$			
M_t	= 1160000 Nmm	$M_v = -1160000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$					
\mathbf{y}_{g}	= 29.23 mm	J_{t} = 646699 mm ⁴	$\tau = -65.67 \text{ N/mm}^2$	Θ_{t}	= 0.0233 / m			
u_o	= 0 mm	$\sigma(N) = 59.36 \text{ N/mm}^2$	$\sigma_1 = 184.7 \text{ N/mm}^2$	r_{u}	= 21.86 mm			
V_{o}	= -5.352 mm	$\sigma(M_x) = 49.17 \text{ N/mm}^2$	$\sigma_{II} = -23.35 \text{ N/mm}^2$	r_{v}	= 37.13 mm			
A_n	$= 764.8 \text{ mm}^2$	$\sigma(M_v) = 52.81 \text{ N/mm}^2$	$\sigma_{\text{tresca}} = 208 \text{ N/mm}^2$	r_{o}	= 43.42 mm			
J_u	= 365566 mm ⁴ ₁	$\tau(M_t) = -65.67 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 197.4 \text{ N/mm}^2$					
J_{v}	= 1054310 mm ⁴	$\sigma = 161.3 \text{ N/mm}^2$	$\sigma_{\text{st.ven}}$ = 191.7 N/mm ²					
	Adolfo Zavelani Rossi, Politecnico di Milano, vers 12 06 06							

	Calcolo degli siorzi con iorze bancentriche in punto 6 di 6A					
Ν	= 55400 N	$M_{x} = -503000 \text{ Nmm}$	$\sigma_a = 200 \text{ N/mm}^2$	G	$= 77000 \text{ N/mm}^2$	
M_t	= 1480000 Nmm	$M_v = -1610000 \text{ Nmm}$	$E = 200000 \text{ N/mm}^2$			
y_g	= 29.01 mm	$J_{t}' = 790365 \text{ mm}^{4}$	$\tau = -71.82 \text{ N/mm}^2$	Θ_{t}	= 0.02432 / m	
u_o	= 0 mm	$\sigma(N) = 65.83 \text{ N/mm}^2$	$\sigma_{l} = 188.7 \text{ N/mm}^{2}$	ru	= 21.95 mm	
Vo	= -5.077 mm	$\sigma(M_x) = 35.99 \text{ N/mm}^2$	$\sigma_{II} = -27.34 \text{ N/mm}^2$	r_{v}	= 42.43 mm	
A_n	$= 841.6 \text{ mm}^2$	$\sigma(M_{v}) = 59.5 \text{ N/mm}^{2}$	σ_{tresca} = 216 N/mm ²	r_{o}	= 48.04 mm	
Ju	$= 405464 \text{ mm}^4$	$\tau(M_t) = -71.82 \text{ N/mm}^2$	$\sigma_{\text{mises}} = 203.7 \text{ N/mm}^2$			
J_{v}	= 1515315 mm ⁴	$\sigma = 161.3 \text{ N/mm}^2$	$\sigma_{\rm st.ven}$ = 196.8 N/mm ²			
@ Adolfo Zavelani Rossi, Politecnico di Milano, vers.12.06.06						