Statistik Übung Aufgabe 11

Gegeben sei die Menge $M := \{1, 2, 3, 4, 5, 6, 7, 8\}$ und ein Wahrscheinlichkeitsmaß auf dieser Menge mit $P[\{i\}] = \frac{1}{8} \ \forall i \in M.$

Für die Ereignisse $D := \emptyset$ und E := M gilt:

$$\sqrt{D}$$
 und E sind **disjunkt**: $D \cap E = \emptyset$

$$\sqrt{D}$$
 und E sind **unabhängig**: $0 = P(D \cap E) \stackrel{\checkmark}{=\!=\!=} P(D) * P(E) = 0 * 1$

$$\sqrt{}$$
 D und E ergeben sie **ganze** Menge $M: D \cup E = M$

Für die Ereignisse $A := \{1, 2, 3, 4\}, B := \{2, 4, 6, 8\}$ und $C := \{1, 8\}$ gilt:

$$\checkmark$$
 A und B sind unabhängig: $P(A \cap B) = P(\{2,4\}) = \frac{1}{4} \stackrel{\checkmark}{===} P(A) * P(B)$
 \checkmark B und C sind unabhängig: $P(B \cap C) = P(\{8\}) = \frac{1}{8} \stackrel{\checkmark}{===} P(B) * P(C)$

$$\sqrt{B}$$
 und C sind unabhängig: $P(B \cap C) = P(\{8\}) = \frac{1}{8} \stackrel{\checkmark}{==} P(B) * P(C)$

$$\checkmark$$
 A und C sind unabhängig: $P(A \cap C) = P(\{1\}) = \frac{1}{8} \stackrel{\checkmark}{=} P(A) * P(C)$

A und B und C sind aber nicht unabhängig: X

$$P(A\cap B\cap C)=P(\emptyset)=0 = \frac{1}{4} = P(A)*P(B)*P(C)$$

Statistik Übung Aufgabe 12

Ereignis B sind die Farbenblinden, \overline{B} die Leute ohne Sehschwäche. Ereignis W sind die Frauen, \overline{W} die Männer.

KT	В	\overline{B}	Σ
W	$0,771\% \ (P(B W) = 1,5\%)$	$50,629\% = P(W) - P(B \cap W)$	$51, 4\% = 1 - P(\overline{W})$
\overline{W}	$3,598\% \ (P(B \overline{W}) = 7\%)$	$45,002\% = P(\overline{W}) - P(B \cap \overline{W})$	48,6% gegeben
Σ	4,369%	95,631%	100%

P(B) = 4,369% der Bevölkerung sind farbenblind.

Die Ereignisse B und W sind nicht unabhängig,

weil
$$0,771\% = P(B \cap W) \neq P(B) * P(W) = 4,369\% * 51,4\% = 2,246\%$$

 $P(\overline{W}|B) = 3,598\%/4,369\% = 82,35\%$ der Farbenbilden sind männlich.

Statistik Übung Aufgabe 14

Kleinste Augensumme	0	1	2	3	4	5	6
Wahrscheinlichkeit [1/36]		1	3	5	7	9	11
kum Verteilungsfunktion [1/36]		1	4	9	16	25	36

Statistik Übung Aufgabe 13

Pralinenfabrik Mon Cherie

Ereignis A Praline kommt aus Fabrik A.	Ereigis $B = \overline{A}$ Praline kommt aus Fabrik B.			
Ereignis K Praline enthält weiterhin einen Kern.	Ereignis \overline{K} Praline wurde korrekt entkernt.			
Ereignis V Praline wird verkauft.	Ereignis \overline{V} Praline wird entsorgt.			

$$P(K|V) = \frac{P(K \cap V)}{P(V)} = \frac{0.355\%}{91.397\%} = 0.388\% =: p$$

 $B(100, p, 0) = (1 - p)^{100} = 67,76\%$ Chance, eine gute Packung zu erwischen.

