Corrigé de l'exercice 3 du TD2 (Automates et Langages Formels)

- 1. On vérifie la symmétrie, la réflexivité et la transitivité.
- **2.** Si u n'est pas un préfixe de v et que u < v alors u = xay et v = xbz pour certains $x, y, z \in \Sigma^*$ et $a < b \in \Sigma$.

Donc pour tous $w_1, w_2 \in \Sigma^*$, on a

$$uw_1 = xa(yw_1) < xb(yw_2) = vw_2$$

3. $(i \Rightarrow ii)$ On suppose i)

Si u est égal à un de ses conjugués propres, alors u=ts=st pour $t,s\neq\epsilon$ et donc t et s commutent et sont donc puissance d'un même mot (cf. cours) :

$$t = w^k, s = w^{k'}(k, k' > 1)$$

et donc $u = w^{k+k'}$ n'est pas primitif. Contradiction avec i).

Ainsi, u est strictement inférieur à chacun de ses conjugués propres (ii).

 $(ii \Rightarrow iii)$ Par contraposée, on suppose $\neg iii)$.

Alors $u = xy, x, y \neq \epsilon$ et y < u.

Si yx < u, on a montré $\neg ii$)

sinon, $yx \ge u$ donc y est préfixe de u (par y < u et question 2)

donc u = yw, donc $yw \le yx$ (c'est $u \le yx$)

donc $w \le x$ et puisque w et x ont même longueur (|u| - |y|), on a

 $wy \le xy = u$ ce qui est une négation de ii).

(c'était pas si long que ça finalement!)

 $(iii \Rightarrow i)$ Encore une contraposée, on suppose $\neg i$).

Deux cas:

- $-u = w^m (w \neq \epsilon, m \ge 2) \Rightarrow w < u : \neg iii)$
- $-u = xy, (x, y \neq \epsilon)$ et $yx < u \Rightarrow y < yx < u : \neg iii)$
- **4.** Montrons d'abord que uv < v.

Si u n'est pas préfixe de v, alors $u < v \Rightarrow uv < v$ (question 2)

si par contre v = ux, alors v < x (car $v \in L$) et donc

$$uv < ux = v$$

Soit w un suffixe propre de uv. Si c'est un suffixe de v, alors

$$uv < v \le w$$

Si par contre w = xv (avec |x| < |u|), alors u n'est pas préfixe de x et l'on a

$$u < x \quad (\operatorname{car} u \in L)$$

donc on a bien (question 2) uv < xv = w.

Ainsi, uv est inférieur à tous ses suffixes propres et est donc un mot de Lyndon.

5. On a w = uv où $w \in L$ et v est le plus long suffixe de w qui soit dans L.

Raisonnons par l'absurde en supposant $u \notin L$.

Soit x le plus court suffixe de u non vide tel que x < u (il existe puisque $u \notin L$).

On va montrer qu'alors $xv \in L$

Regardons tous les suffixes de xv. Deux cas :

- Soit z un suffixe de v. On a (par relation de préfixe, ou par propriété des mots de Lyndon)

$$x < u < w < v \le z$$

Donc x < z et si x est préfixe de z, on a z = xz' avec z' < v et donc xv < xz' = z, et sinon, par application de la question 1, on a xv < z.

– Soit x = ab, $(a, b \neq \epsilon)$. On considère le suffixe bv.

Puisque x est le plus court suffixe de u tel que x < u, on a

Or x n'est pas préfixe de b donc xv < bv.

On a bien montré que xv était un mot de Lyndon, ce qui contredit la maximalité de v.

6. unicité. Supposons que l'on ait un mot w qui se décompose de deux manières différentes en mots de Lyndon décroissants. De la même manière que l'on avait fait pour les codes, on peut se ramener à deux décomposition d'un mot w' dont les premiers termes diffèrent (en supprimant tous les mots de la décomposition de w qui sont égaux au début).

On est donc dans la situation

$$w' = u_1 u_2 \dots u_n$$
$$= v_1 v_2 \dots v_m$$

avec $u_1 \neq v_1$. On suppose $|v_1| > |u_1|$.

On considère k tel que

$$v_1 = u_1 u_2 \dots u_{k-1} x$$

où x est un préfixe de u_k (u_k est le dernier u_i que v_1 touche). Par décroissance des décompositions, et relation de préfixe, on a

$$x \le u_k \le u_1 \le v_1$$

et donc v_1 n'est pas un mot de Lyndon (contradiction).

existence. Par récurrence sur la longueur de w. On considère u le plus long suffixe de w qui est dans L (u est non vide car une lettre est dans L).

$$w = xu$$

et par hypothèse de récurrence $x = a_1 a_2 \dots a_k$ (décomposition décroissante en mots de L). Si $a_k < u$, alors $a_k u \in L$ (question 4) ce qui contredit la maximalité de u, donc $a_k \ge u$ et

$$w = a_1 a_2 \dots a_k u$$

est une décomposition décroissante en mots de L.

7. On a vu à la question précédente, que u_n est le plus long suffixe de u qui est dans L (preuve de l'existence). Considérons maintenant v le plus petit suffixe de u (au sens de \leq).

Alors $v \in L$ puisqu'aucun de ses suffixes n'est plus petit que lui et pour tout suffixe xv de u plus long, $xv \notin L$ (puisque v < xv). Donc v est le plus long suffixe de u qui est dans L, c'est donc u_n .