Niveau: Première année de PCSI

COLLE 20 = DÉVELOPPEMENTS LIMITÉS, COMPORTEMENT ASYMPTOTIQUE ET SÉRIES NUMÉRIQUES

Développements limités, comportement asymptotique :

Exercice 1.

Etudier l'existence et la valeur éventuelle des limites suivantes

- 1. $\lim_{x \to \pi/2} (\sin x)^{1/(2x-\pi)}$
- 2. $\lim_{n\to+\infty} \left(\cos(\frac{n\pi}{3n+1}) + \sin(\frac{n\pi}{6n+1})\right)^n$
- 3. $\lim_{x\to 0} (\cos x)^{\ln|x|}$
- 4. $\lim_{x \to e, x < e} (\ln x)^{\ln(e-x)}$
- 5. $\lim_{x \to +\infty} \left(\frac{\ln(x+1)}{\ln x} \right)^x$

Exercice 2.

- 1. Développement asymptotique à la précision x^2 en 0 de $\frac{1}{x(e^x-1)} \frac{1}{x^2}$.
- 2. Développement asymptotique à la précision $\frac{1}{x^3}$ en $+\infty$ de $x \ln(x+1) (x+1) \ln x$.

Exercice 3.

- 1. Donner un équivalent simple en $+\infty$ et $-\infty$ de $\sqrt{x^2 + 3x + 5} x + 1$.
- 2. Donner un équivalent simple en 0 de $(\sin x)^{x-x^2} (x-x^2)^{\sin x}.$
- 3. Donner un équivalent simple en $+\infty$ de $x^{\tanh x}$.

Exercice 4.

Soit $u_0 \in]0, \frac{\pi}{2}]$. Pour $n \in \mathbb{N}$, on pose $u_{n+1} = \sin(u_n)$.

- 1. Montrer brièvement que la suite u est strictement positive et converge vers 0.
- 2. (a) Déterminer un réel α tel que la suite $u_{n+1}^{\alpha} u_n^{\alpha}$ ait une limite finie non nulle.
 - (b) En utilisant le lemme de CESARO, déterminer un équivalent simple de u_n .

Séries numériques :

Exercice 5.

Donner un développement asymptotique à la précision $\frac{1}{n^3}$ de $u_n=\frac{1}{n!}\sum_{k=0}^n k!$.

Exercice 6.

Donner la nature de la série de terme général :

1.
$$\ln\left(\frac{n^2+n+1}{n^2+n-1}\right)$$

$$3. \left(\frac{n+3}{2n+1}\right)^{\ln n}$$

2.
$$\frac{1}{n+(-1)^n\sqrt{n}}$$

4.
$$\frac{n^2}{(n-1)!}$$

Exercice 7.

Trouver un développement limité à l'ordre 4 quand n tend vers l'infini de $\left(e-\sum_{k=0}^n\frac{1}{k!}\right)\times(n+1)!$.

Exercice 8.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. Montrer que les séries de termes généraux u_n , $\frac{u_n}{1+u_n}$, $\ln(1+u_n)$ et $\int_0^{u_n} \frac{dx}{1+x^e}$ sont de mêmes natures.

Exercice 9.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite décroissante de nombres réels strictement positifs telle que la série de terme général u_n converge.

Montrer que $u_n = o\left(\frac{1}{n}\right)$. Trouver un exemple de suite $(u_n)_{n\in\mathbb{N}}$ de réels strictement positifs telle que la série de terme général u_n converge mais telle que la suite de terme général nu_n ne tende pas vers 0.

Exercice 10.

Donner la nature de la série de terme général $u_n = \sum_{k=1}^n \frac{1}{(n+k)^p}, p \in]0, +\infty[.$

Exercice 11.

Calculer $\sum_{n=0}^{+\infty} \frac{(-1)^n}{3n+1}$.

Exercice 12.

Donner un développement limité à l'ordre 4 de $\sum_{k=n+1}^{+\infty} \frac{1}{k^2}$ quand n tend vers l'infini.