《高等数学》单元自测题及其答案——第七章 微分方程

一、填空题

1. 微分方程 $y' = 2x\sqrt{1-y^2}$ 的通解为 $y = \sin(x^2 + C)$ 。

2. 微分方程 $y'\sin x = y \ln y$ 满足初始条件 $y|_{x=\frac{\pi}{2}} = e$ 的特解为 $y = \csc x - \cot x$.

3. 微分方程 $\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = 0$ 的通解为 $y = (C_1 + C_2 x)e^x$.

二、单项选择题

1. 微分方程 $y'' - 5y' + 6y = xe^{2x}$ 的特解形式(其中a,b 为常数)为(A)

(A)
$$y^* = (ax+b)xe^{2x}$$
 (B) $y^* = (ax+b)e^{2x}$

(B)
$$y^* = (ax + b)e^{2x}$$

(C)
$$y^* = ax^2e^{2x} + b$$

(C)
$$y^* = ax^2e^{2x} + b$$
 (D) $y^* = ae^{2x} + b$

2. 下列微分方程中,通解为 $y = e^x(C_1 \cos 2x + C_2 \sin 2x)$ 的微分方程是 (**B**)。

(A)
$$y'' - 2y' - 3y = 0$$

(A)
$$y'' - 2y' - 3y = 0$$
 (B) $y'' - 2y' + 5y = 0$

(C)
$$y'' + y' - 2y = 0$$

(C)
$$y'' + y' - 2y = 0$$
 (D) $y'' + 6y' + 13y = 0$

3. 微分方程 $y'' - y = e^x + 1$ 的特解形式(其中a,b 为常数)为(C

(A)
$$ae^x + b$$

(B)
$$ae^x + bx$$

(C)
$$axe^x + b$$

(B)
$$ae^x + bx$$
 (C) $axe^x + b$ (D) $axe^x + bx$

三、求下列微分方程的通解

1. $y'\cos y = \frac{1 + \sin y}{\sqrt{r}}$ 。 通解为 $\sin y = Ce^{2\sqrt{x}} - 1$.

2. $\frac{dy}{dx} = e^{\frac{y}{x}} + \frac{y}{r}$. $\mathbb{A}\mathbb{A}\mathbb{B} = e^{\frac{y}{x}} = -\frac{1}{\ln|x| + C}$.

3. $\frac{dy}{dx} + 2xy = 4x$ 。 通解为 $y = Ce^{-x^2} + 2$.

4. $y'' + y' = 2x^2e^x$ 。 通解为 $y = C_1 + C_2e^{-x} + e^x(x^2 - 3x + \frac{7}{2})$.

5. $y'' - y = x \sin x$ · 通解为 $y = C_1 e^x + C_2 e^{-x} - \frac{1}{2} \cos x - \frac{1}{2} x \sin x$.

四、应用题 1. 已知曲线 y=y(x)经过原点,且在原点处的切线与直线 2x+y+6=0 平行,而 y(x) 满足微分

方程 y'' - 2y' + 5y = 0, 求该曲线的方程。(**答案为** $y = -e^x \sin 2x$.)

2. 设连续函数 y(x) 满足方程 $y(x) = \int_0^x y(t) dt + e^x$, 求 y(x) 。 (**答案为** $y(x) = e^x(1+x)$.)