Extremos relativos y absolutos Puntos críticos Extremos relativos: procedimiento de cálculo Extremos condicionados

Función de varias variables: Máximos, mínimos y puntos de silla Extremos condicionados

Joaquín Bedia

Dpto. Matemática Aplicada y CC de la Computación Universidad de Cantabria

Contenidos

- Extremos relativos y absolutos
 - Extremos absolutos. Definición
 - Extremos relativos. Definición
- 2 Puntos críticos
 - Definición
 - Puntos de silla
- 3 Extremos relativos: procedimiento de cálculo
 - Procedimiento de cálculo
 - Ejemplos
- Extremos condicionados
 - Definición
 - Multiplicadores de Lagrange
 - Ejemplos

Extremos absolutos

Extremos absolutos. Definición:

Sea f(x,y) una función definida en una región D y sea $(x_0,y_0)\in D$. Se dice que:

• $f(x_0, y_0)$ es una valor máximo absoluto de f en D si:

$$f(x_0, y_0) \ge f(x, y) \ \forall (x, y) \in D$$

• $f(x_0, y_0)$ es una valor mínimo absoluto de f en D si:

$$f(x_0, y_0) \le f(x, y) \ \forall (x, y) \in D$$

Extremos relativos

Extremos relativos. Definición:

Sea f(x,y) una función definida en una región D y sea $(x_0,y_0)\in D$. Se dice que:

• $f(x_0,y_0)$ es una valor máximo relativo de f en D si existe un entorno $B(x_0,y_0)$ tal que:

$$f(x_0, y_0) \ge f(x, y) \ \forall (x, y) \in B$$

• $f(x_0, y_0)$ es una valor mínimo relativo de f en D si:

$$f(x_0, y_0) \le f(x, y) \ \forall (x, y) \in B$$

Extremos absolutos. Definición Extremos relativos. Definición

Extremos relativos

Teorema de Weierstrass

Sea $f: X \subset \mathbb{R}^n \to \mathbb{R}$ continua en X, siendo X un conjunto cerrado y acotado. Entonces, el conjunto $Y = \{f(x) / x \in X\} \subset \mathbb{R}$ posee un máximo y un mínimo, es decir, existen dos puntos x_1 y x_2 pertenecientes a X tales que:

$$\forall x \in X \Rightarrow f(x_1) \le f(x) \le f(x_2)$$

El Teorema de Weierstrass garantiza la existencia de extremos absolutos para funciones continuas definidas en conjuntos cerrados y acotados

Puntos críticos

Punto crítico. Definición:

Sea z=f(x,y) una función definida en una región D y sea un punto $P(x_0,y_0)\in D$. Se dice que P es un punto crítico si se cumple alguna de las afirmaciones siguientes:

- $P(x_0, y_0)$ es un *punto de frontera*, es decir, está situado en el contorno de D
- ② $P(x_0,y_0)$ es un *punto estacionario*. Por lo tanto, $\left. \frac{\partial f}{\partial x} \right|_{(x_0,y_0)} = \left. \frac{\partial f}{\partial y} \right|_{(x_0,y_0)} = 0, \text{ es decir } \nabla f(x_0,y_0) = \mathbf{0}$
- ③ $P(x_0,y_0)$ es un *punto singular*, es decir $\frac{\partial f}{\partial x}\bigg|_{(x_0,y_0)}$ o bien $\frac{\partial f}{\partial y}\bigg|_{(x_0,y_0)}$

Puntos críticos

Teorema:

Si $f(x_0, y_0)$ es un extremo relativo de f en una región abierta D, entonces el punto (x_0, y_0) es un punto crítico de f.

Condición necesaria para la existencia de extremos de funciones diferenciables. Teorema:

Sea z=f(x,y) una función diferenciable en D. Es condición necesaria para la existencia de un extremo relativo de f en $(x_0,y_0)\in D$ que (x_0,y_0) sea *punto estacionario*, es decir, que verifique que

$$\frac{\partial f}{\partial x}\Big|_{(x_0, y_0)} = \frac{\partial f}{\partial y}\Big|_{(x_0, y_0)} = 0$$

Nota:

El Teorema anterior da una condición necesaria pero no suficiente. Existen puntos estacionarios que no son máximos ni mínimos: *puntos de silla*.

Puntos de silla

Ejemplo:

Es condición necesaria pero no suficiente que el punto $P(x_0,y_0)$ sea estacionario para que P sea un extremo relativo. En la figura, se ilustra un ejemplo. La función $f(x,y)=y^2-x^2$ determina una superficie en la que el punto P(0,0) es estacionario, y sin embargo no es un extremo relativo (ni máximo ni mínimo).

Punto de silla:

A este tipo de puntos, que son a la vez máximos relativos en una dirección y mínimos relativos en la dirección ortogonal a la primera, se les denomina *puntos de silla*

Extremos relativos. Procedimiento de cálculo por pasos:

Cálculo de los puntos críticos, mediante resolución del sistema:

$$\frac{\partial f}{\partial x} = 0 \\ \frac{\partial f}{\partial y} = 0$$

2 Si el punto (x_0, y_0) es un punto crítico, se estudia el valor del determinante *hessiano* (particularizadas las derivadas parciales en (x_0,y_0) :

$$H = \begin{vmatrix} \frac{\partial^2 f}{\partial x^2} & \frac{\partial^2 f}{\partial x \partial y} \\ \frac{\partial^2 f}{\partial y \partial x} & \frac{\partial^2 f}{\partial y^2} \end{vmatrix}$$

- 3 El valor del hessiano permite concluir:
 - Si H>0 y $\frac{\partial^2 f}{\partial x^2}>0 \Rightarrow (x_0,y_0)$ es mínimo relativo
 - Si H>0 y $\frac{\partial^2 f}{\partial x^2}<0 \Rightarrow (x_0,y_0)$ es máximo relativo Si $H<0 \Rightarrow (x_0,y_0)$ es punto de silla.

 - Si H=0 el criterio del hessiano no permite concluir nada, y será necesario recurrir a otro método (análisis de la gráfica...) para estudiar el comportamiento en el entorno del punto

Cálculo de extremos: Ejemplos

Extremos relativos. Ejemplos:

Hallar los extremos relativos de las siguientes funciones:

$$f(x,y) = -x^3 + 4xy - 2y^2 + 1$$

$$(2) f(x,y) = x^3 - y^3 + 3xy$$

$$f(x,y) = x^2y^2$$

$$f(x,y) = xye^{x+2y}$$

$$(x,y) = \sin x + \sin y + \cos(x+y)$$

Cálculo de extremos: Ejemplos

Extremos relativos y absolutos. Ejemplo:

Sea
$$f(x,y) = xy(1-x^2-y^2)$$

- Hallar sus extremos relativos en \mathbb{R}^2
- 4 Hallar sus extremos relativos y absolutos en el dominio

$$D \equiv \{(x, y) \in \mathbb{R}^2 / 0 \le x \le 1; 0 \le y \le 1\}$$

Extremos condicionados

El objetivo es la obtención y clasificación de los *puntos críticos* de una función f(x,y) (un campo escalar de dos variables en este caso), *sujetos a una restricción*.

Extremo relativo condicionado a una curva en el plano:

Sea $f:U\subseteq\mathbb{R}^2\to\mathbb{R}$ donde U es un conjunto abierto y sea g(x,y)=0 una curva definida en U. Sea (x_0,y_0) un punto de la curva tal que $g(x_0,y_0)=0$ Se dice que f alcanza un extremo relativo condicionado a g(x,y)=0 si existe un entorno de (x_0,y_0) de modo que para todo punto (x,y) perteneciente a dicho entorno tal que g(x,y)=0 se verifica que:

Fuente: Elena Álvarez (2013)

https://personales.unican.es/alvareze/Descartes/

 $f(x,y) \le f(x_0,y_0)$ (Máximo relativo), o bien $f(x,y) \ge f(x_0,y_0)$ (Mínimo relativo)

Multiplicadores de Lagrange

Para encontrar la curva adecuada se usa la idea de que dos curvas son tangentes en un punto si y sólo si sus vectores gradiente son paralelos, y por lo tanto:

$$\nabla f(x,y) = \lambda \nabla g(x,y)$$

Al escalar λ se le conoce como multiplicador de Lagrange

Source: https://en.wikipedia.org/wiki/ Lagrange_multiplier#/media/File: LagrangeMultipliers2D.svg

Teorema de Lagrange

Sean f y g funciones con primeras derivadas parciales continuas (tipo C^1), y tales que f tiene un extremo en un punto (x_0, y_0) sobre la curva suave de restricción g(x, y) = c. Si $\nabla g(x_0, y_0) \neq \mathbf{0}$, entonces existe un $\lambda \in \mathbb{R}$ tal que:

$$\nabla f(x_0, y_0) = \lambda \nabla g(x_0, y_0)$$

Multiplicadores de Lagrange

Método de los multiplicador es de Lagrange

Sean f y g funciones que satisfacen las hipótesis del Teorema de Lagrange, y sea f una función que tiene un máximo o un mínimo sujeto a la restricción g(x,y)=c. Para hallar el mínimo o el máximo de f, se siguen los siguientes pasos:

① Resolver simultáneamente las ecuaciones $\nabla f(x,y) = \lambda \nabla g(x,y)$ y g(x,y) = c, resolviendo el sistema de ecuaciones siguiente:

$$f_x(x,y) = \lambda g_x(x,y)$$

 $f_y(x,y) = \lambda g_y(x,y)$
 $g(x,y) = c$

2 Evaluar f en cada punto solución obtenido en el primer paso. El valor mayor da el máximo de f sujeto a la restricción g(x,y)=c, y el valor menor da el mínimo de f sujeto a la restricción g(x,y)=c

Ejemplos

• Hallar el valor máximo de f(x,y)=4xy donde x>0 y y>0, sujeto a la restricción $\frac{x^2}{3^2}+\frac{y^2}{4^2}=1$

② Encuentra los extremos de la función $f(x,y) = 49 - x^2 - y^2$ sujetos a la condición x + 3y - 10 = 0