CCL 9/95 9/97 9/96 9/00

AMIPAD 22-141 50 SHEETS 22-144 200 SHEETS 22-144 200 SHEETS

III-3 LATERAL EARTH PRESSURES AND RETAINING	vg walls	PageNo
1. Background		2
1.1 Typical Problems		2
1.2 Theoretical vs. Conventional Design Practice		2
	. <u>.</u>	
2. Ranking States of Stress: Horizontal Ground	·	2
2,1 Introduction		2
2.2 Rankine active		3
2.3 Rankine Passive		
3. Rankine States of Stress: Sloping Ground	· · · · · · · · · · · · · · · · · · ·	4
3.1 Stesses in Infinite Slopes: General	· · · · · · · · · · · · · · · · · · ·	
3.2 Maximum Slope angle		4
3.3 Values of Pa and Pp for Vertical Walls		5
3.4 Values of Pa inth Sloping Well and Surcharge	· · · · · · · · · · · · · · · · · · ·	7
4 Earth Pressures on Retaining Wolls		8
4.1 Movement of Wall on active Distribution	·	જ
4.2 Wall Friction		8
4.3 Coulomb Method + Fig II 3-1 (p8a)	: : : : : : : : : : : : : : : : : : :	.8
4.4 Coulomb vs. Reality		9

/ BACKGROUND ("Dry Soil," (= 01)

1.1 Typical Problems

Gravity Retaining Wall

Sheet Pile Excavation

1.2 Theoretical vs. Conventional Design Practice

- (1) Because problem is indeterminate since stresses = f(wall movements), need finite element analyses with advanced soil model (a.g., MIT-51) to solve theretically, which is expensive. Also details of actual construction are visually important, but difficult to predict and model.
- (2) Hence conventional practice usually: a) predicts earth pressure on wall assuming that surrounding soil is in a state of facture (called the "limit plastic zone); b) Checks overall equilibrium (limiting equilibrium mechanics) dissipi".

 c) adds a "factor of safety" to quard against collapse and uses empirical charts to estimate struct loads, wall of ground movements, etc.

2. RANKINE STATES OF STRESS: HORIZONTAL GROUND

2.1 Introduction

(1) Rankine = failure condition with same stresses on all parallel planes (ea, vertical or sloping)

(2) Active

- . "Small" outward Dy plastic zone
- · Mobilized soil T decreases P
- (2) Passive
 - . "Large" In ward Dy plastic zone
 - · Mobilized soil & increases P

Frictionless Wall

22 Rankine Active (NC sand; 8, 0, 0=0)

Field condition Plastic (failure) Zona

[Actually plane strain]

Stresses & stress paths

Kamarks

Limiting condition from development of plastic zone

Coef. of active stress = Ka $= \sigma_{hf}/\sigma_{ff} = \sigma_{3f}/\sigma_{ff}$ = $tan^2(4s - \frac{\phi}{2}) = \frac{(1 - sin \phi)}{(1 + sin \phi)}$

Pa = Katro 1 Pa = 1 & H2 Ka

O = Inclination of slip lines that intersect at 90 + 00

23 Rankine Passive (different scale; 0-0)

Part III-3 EARTH PRESSURES

3. RANKINE STATES OF STRESS : SLOPING GROUND

3.1 Strassas in Infinite Slopes: General (0=0)

· W = 3 & cosi

· Reasoning -> Pi=PR at inclination i

·· N=W/cosi & T=Wsini

P#

13 P-17 P2

* Pe indatarminata
axcept at failure

Pr & Pe are conjugate stresses (act 11 to planes of other stresses)

· Po = 3 & cosi = CONSTANT (Independent of Po)

J = P, cosi = 3 8 cos2

T = Pr smi = 3 8 cosi sini

-> T/T = cosi sini/cos? = tani

3.2 Maximum Slope Angle (angle of repose for cohesionless soil)

Slip lines at

Magnitudes of Riff

Magnitudes of the for

9/25/9

Supplement to 3.3 (Rankine Active & Passive for Vertical Wall)

Activa

Passive

Required wall friction (\$) tan \$ =

* From 1.361 student S. Kazzi (1986)

Part III-3 EARTH PRESSURES

3,4 Values of Pa With Sloping Wall & Surcharge (Rankine)

95 = force / unit slope area

d= B-900 L= To Sini B = Cood

3 = H(1+tanoxtani)

NOTES: PA = 1 Pal at H/3 for & DPA - DPa L of H/2 for gs.

Equations to Obtain Wand Q

Equations to Obtain Pa

Fig 113-1 Derivation of Equations for Coulomb Po (Active)

CCL 10/4/83 9/95 1.361-1.366 Part III - 3 EARTH PRESSURES P9/9 4.4 Coulomb Vs. Reality (1) Active case (Fig. 13.16) Daviation is relatively small · Can use Rankine Pa, but inclined at du Actual failure Surface Smaller 0 -> Coulomb PA 7 (2) Passive case 45-4/2 Coulomb. Actual (log spiral) Coulomb UNSAFE Smaller o's lower To Pp = 2 XHZKp Example Coulomb Actual Ranking Kp 30° 35° 10 (+60%) 3.7 = tan 2 (62.5°) 100 300 (+7%) 4.4 3.0 (Fig. 32.1) (Fig. 13.20) Conservative