Text factorisation — II: Distributional semantics Course "Text-as-data analysis of international trade"

Dmitriy Skougarevskiy

The Institute for the Rule of Law, European University at Saint Petersburg

Saint Petersburg 4 May 2018

Course outline

- Preferential Trade Agreements and International Economic Order
- Gravity and Gravitas
- Text factorisation I: Bag-of-words methods
- Text factorisation II: Distributive semantics
- Welfare effects of Preferential Trade Agreements

- 1 Understanding the meaning of the words
 - Context matters
 - Is TCM able to capture meaning?
- Using the TCM
 - Computing semantic distances
 - Factorising TCM to arrive at document vectors
 - Word2vec model to learn word emebeddings

- 1 Understanding the meaning of the words
 - Context matters
 - Is TCM able to capture meaning?
- Using the TCM
 - Computing semantic distances
 - Factorising TCM to arrive at document vectors
 - Word2vec model to learn word emebeddings

tesgüino tesgüino

Tesgüino tesgüino

A bottle of tesgüino is on the table.

Everybody likes tesgüino. Tesgüino makes you drunk.

We make tesgüino out of corn.

(Jurafsky and Martin, 2017, Ch. 15.1)

Firth (1957): "You shall know a word by the company it keeps!"

Figure 1: Syntagmatic vs. Paradigmatic relations (Sahlgren, 2008, p. 6)

		Paradigmatic				
Syntagmatic	she	adores	green	paint		
	he	likes	blue	dye		
	they	love	red	colour		

- "Paradigmatic relations hold between linguistic entities that occur in the same context but not at the same time, like the words "hungry" and "thirsty" in a sentence "the wolf is [hungry|thirsty]"" (ibid.)
- "Syntagmatic relations concern positioning, and relate entities that co-occur in the text, as in a normal sentence like "the wolf is hungry."" (ibid.)
- We can feed a distributional model with syntagmatic relations "if we collect information about word co-occurence, and with paradigmatic relations if we collect information about which words tend to share neighbors." (ibid.)

Figure 1: Syntagmatic vs. Paradigmatic relations (Sahlgren, 2008, p. 6)

		Parad	gmatic	
Syntagmatic	she	adores	green	paint
	he	likes	blue	dye
	they	love	red	colour

- "Paradigmatic relations hold between linguistic entities that occur in the same context but not at the same time, like the words "hungry" and "thirsty" in a sentence "the wolf is [hungry|thirsty]"" (ibid.)
- "Syntagmatic relations concern positioning, and relate entities that co-occur in the text, as in a normal sentence like "the wolf is hungry."" (ibid.)
- We can feed a distributional model with syntagmatic relations "if we collect information about word co-occurence, and with paradigmatic relations if we collect information about which words tend to share neighbors." (ibid.)

Figure 1: Syntagmatic vs. Paradigmatic relations (Sahlgren, 2008, p. 6)

		Paradigmatic				
Syntagmatic	she	adores	green	paint		
	he	likes	blue	dye		
	they	love	red	colour		

- "Paradigmatic relations hold between linguistic entities that occur in the same context but not at the same time, like the words "hungry" and "thirsty" in a sentence "the wolf is [hungry|thirsty]"" (ibid.)
- "Syntagmatic relations concern positioning, and relate entities that co-occur in the text, as in a normal sentence like "the wolf is hungry."" (ibid.)
- We can feed a distributional model with syntagmatic relations "if we collect information about word co-occurence, and with paradigmatic relations if we collect information about which words tend to share neighbors." (ibid.)

Figure 1: Syntagmatic vs. Paradigmatic relations (Sahlgren, 2008, p. 6)

		Paradigmatic				
Syntagmatic	she	adores	green	paint		
	he	likes	blue	dye		
	they	love	red	colour		

- "Paradigmatic relations hold between linguistic entities that occur in the same context but not at the same time, like the words "hungry" and "thirsty" in a sentence "the wolf is [hungry|thirsty]"" (ibid.)
- "Syntagmatic relations concern positioning, and relate entities that co-occur in the text, as in a normal sentence like "the wolf is hungry."" (ibid.)
- We can feed a distributional model with syntagmatic relations "if we collect information about word co-occurence, and with paradigmatic relations if we collect information about which words tend to share neighbors." (ibid.)

Context window

- We can look at words in context. Phrases like
 - to have a splendid time in Rome
 - to have a wonderful time in Rome
- become with a symmetric context window of size 2 (Sahlgren, 2008):
 - splendid: (have a) + (time in)
 - wonderful: (have a) + (time in)
 - time: (a splendid) + (in Rome)
 - time: (a wonderful) + (in Rome)
- We slide the context window one word at a time until we reach the end of the phrase

Term co-occurrence matrix

So far we've worked with document-term matrices (DTMs)

	John	likes	to	watch	movies	Mary	too	also	football	games
doc1	1	2	1	1	2	1	1	0	0	0
doc2	1	1	1	1	0	0	0	1	1	1

- Counts of words that occur together within the context window are stored in a term co-occurrence matrix (TCM).
- TCM for "whereof one cannot speak thereof one must be silent."

	whereof	one	cannot	speak	thereof	must	be	silent
whereof	0	1	0	0	0	0	0	0
one	0	0	1	0	0	1	0	0
cannot	0	0	0	1	0	0	0	0
speak	0	0	0	0	1	0	0	0
thereof	0	1	0	0	0	0	0	0
must	0	0	0	0	0	0	1	0
be	0	0	0	0	0	0	0	1
silent	0	0	0	0	0	0	0	0

- Context window size? Is it symmetric (hint: word order)?
- DTM vs TCM and syntagmatic vs paradigmatic relations

- 1 Understanding the meaning of the words
 - Context matters
 - Is TCM able to capture meaning?
- 2 Using the TCM
 - Computing semantic distances
 - Factorising TCM to arrive at document vectors
 - Word2vec model to learn word emebeddings

Benefits and challenges of the model

- We are abstracting away from almost all linguistic knowledge when we apply the Distributional hypothesis and build TCMs
 - word order may not be captured in successful way
 - we do not store information on part-of-speech of elements
 - we fail to capture information on dependencies between words
- Strikingly, in practice all this barely matters, TCMs are enough to do well empirically

- Understanding the meaning of the words
 - Context matters
 - Is TCM able to capture meaning?
- Using the TCM
 - Computing semantic distances
 - Factorising TCM to arrive at document vectors
 - Word2vec model to learn word emebeddings

Figure 2: "Apricot" TCM representation (Jurafsky and Martin, 2017, Fig. 15.10) imension I: 'large

• Consider this "apricot" TCM (Jurafsky and Martin, 2017, Ch. 15.3):

apricot

apricot digital information digital

information

information

7						
digital						
1	2	3	4	5	6	7
	ת	im anai	an 2. (d	lata?		

 Angle (digital, information) < (apricot, information). When two vectors are similar, their angle is smaller, but cosine is larger

Cosine distance in natural language processing

- Many distance metrics exist (most prominent are Euclidean, Cosine and Manhattan)
- Cosine distance between vectors v and w is defined as vector dot product over vector norm:

$$\cos(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}| |\mathbf{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Figure 3: Relationship between Euclidean and Cosine distances (source)

 Cosine distance normalises for vector length, allowing us to compare texts of uneven size

- Understanding the meaning of the words
 - Context matters
 - Is TCM able to capture meaning?
- Using the TCM
 - Computing semantic distances
 - Factorising TCM to arrive at document vectors
 - Word2vec model to learn word emebeddings

Creating document vectors from word vectors

- TCM is a symmetric #words×#words matrix. We can SVD-decompose it to arrive at word vectors.
- 2 Then we can utilise the DTM to aggregate TCM-produced word vectors (perhaps, after weighting)
- This will give us document vectors from appropriately averaged word vectors.
 - Paradigmatic relations between words ⇒ paradigmatic relations between documents with the aid of syntagmatic relations between words within documents

In practice, Step 1 (SVD reduction of TCM) doesn't work very well with enough data:

Figure 4: LSA vs skipgram word2vec model performance (Altszyler et al., 2016, fig. 1)

- Understanding the meaning of the words
 - Context matters
 - Is TCM able to capture meaning?
- Using the TCM
 - Computing semantic distances
 - Factorising TCM to arrive at document vectors
 - Word2vec model to learn word emebeddings

On word2vec model

 word2vec model by Mikolov et al. (2013) revolutionised the field. At core: a neural network that seeks to predict next word in context window

Figure 5: One-hot encoding of training data (source)

Figure 6: Skip-gram neural net architecture (source)

Vector operations

Figure 7: Trained word embeddings for words {King, Queen, Man, Woman, ...} (source)

Vector operations with word embeddings

Figure 8: Vector "King - Man + Woman" is closest to vector of word Queen (source)

An aside: predicting vowels with neural network

• http://playground.tensorflow.org/

green — input/output data, blue* — weights, brown*— bias (courtesy of http://bit.ly/2EBVDYr)

- Architecture is set by a user
- Very rough intuition: Neural net optimises (*) weights and bias to minimise loss function on test set

An aside: predicting vowels with neural network

- https://jsfiddle.net/memoryfull/g5zumxmh/4/
- One-hot-encoding of text, standardised input and output [0...1]
- No architecture: Neuroevolution of Augmenting Topologies (NEAT)
- Genotype: element types, connections and weights
- Phenotype: network architecture
- Parameters:

```
equal: truepopulation: 50
```

• elitism: 5

• iterations: 1500

error: 0.03clear: true

Take-aways

- Linguistic items with similar distributions have similar meanings
 Distributional hypothesis
- By collecting information on which words tend to share neighbours we learn paradigmatic relations between words
- State-of-art in computing word vectors is the word2vec model (fastText flavour)
- Word vectors can be averaged at document level to arrive at document vectors capturing paradigmatic relations between documents

Thank you for your attention!

References — I

- Altszyler, E., M. Sigman, S. Ribeiro, and D. F. Slezak (2016). Comparative study of Isa vs word2vec embeddings in small corpora: a case study in dreams database. arXiv preprint arXiv:1610.01520.
- Firth, J. (1957). A synopsis of linguistic theory, 1930-1955. *Studies in linguistic analysis*.
- Harris, Z. (1954). Distributional structure. Word 10(23), 146-162.
- Jurafsky, D. and J. Martin (2017). Speech and language processing (3 ed.). Pearson.
- Mikolov, T., I. Sutskever, K. Chen, G. Corrado, and J. Dean (2013). Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pp. 3111–3119.
- Sahlgren, M. (2008). The distributional hypothesis. *Italian Journal of Disability Studies 20*, 33–53.