

Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311

Phone: (818) 701-4933 Fax: (818) 701-4939

BC546A/B/C BC547A/B/C BC548A/B/C

Features

- Lead Free Finish/RoHS Compliant ("P" Suffix designates RoHS Compliant. See ordering information)
- Through Hole Package
- 150°C Junction Temperature
- Epoxy meets UL 94 V-0 flammability rating
- Moisure Sensitivity Level 1

Mechanical Data

- Case: TO-92, Molded Plastic
- · Polarity:indicated as below

Maximum Ratings @ 25°C Unless Otherwise Specified

Charateristic		Symbol	Value	Unit	
Collector-Emitter Voltage	BC546	_	65		
	BC547	V _{CEO}	45	V	
	BC548		30		
Collector-Base Voltage	BC546		80		
	BC547	V _{CBO}	50	V	
	BC548		30		
Emitter-Base Voltage		V _{EBO}	6.0	V	
Collector Current(DC)		I _C	100	mA	
Power Dissipation@T _A =25°C		В	625	mW	
		P _d	5.0	mW/°C	
Power Dissipation@T _C =25°C		D	1.5	W	
		P_{d}	12	mW/°C	
Thermal Resistance, Junction to Ambient Air		$R_{ heta JA}$	200	°C/W	
Thermal Resistance, Junction to Case		$R_{ heta JC}$	83.3	°C/W	
Operating & Storage Temperature		T _i , T _{STG}	-55~150	°C	

NPN Silicon Amplifier Transistor 625mW

BC546 thru BC548

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Micro Commercial Components

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Collector–Emitter Breakdown Voltage $(I_C = 1.0 \text{ mA}, I_B = 0)$	BC546 BC547 BC548	V _(BR) CEO	65 45 30	_ _ _	_ _ _	V
Collector–Base Breakdown Voltage ($I_C = 100 \mu Adc$)	BC546 BC547 BC548	V _{(BR)CBO}	80 50 30			V
Emitter–Base Breakdown Voltage ($I_E = 10 \mu A, I_C = 0$)	BC546 BC547 BC548	V _{(BR)EBO}	6.0 6.0 6.0		_ _ _	V
ON CHARACTERISTICS						
DC Current Gain ($I_C = 10 \mu A$, $V_{CE} = 5.0 V$)	BC546A/547A/548A BC546B/547B/548B BC546C/547C/548C	h _{FE}	_ _ _	90 150 270	_ _ _	_
$(I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC546A/547A/548A BC546B/547B/548B BC546C/547C/548C		110 200 420	180 290 520	220 450 800	
$(I_C = 100 \text{ mA}, V_{CE} = 5.0 \text{ V})$	BC546A/547A/548A BC546B/547B/548B BC546C/547C/548C		_ _ _	120 180 300	_ _ _	
Collector–Emitter Saturation Voltage (Ic = 100 mA, IB = 5.0 mA)		V _{CE(sat)}	_		0.3	V
Base–Emitter Saturation Voltage (Ic = 100 mA, IB = 5.0 mA)		V _{BE(sat)}	_	_	1.0	V
Base–Emitter On Voltage ($I_C = 2.0 \text{ mA}, V_{CE} = 5.0 \text{ V}$) ($I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}$)		V _{BE(on)}	0.55 —		0.7 0.77	V
SMALL-SIGNAL CHARACTERISTICS			•	•	•	
Current–Gain — Bandwidth Product ($I_C = 10 \text{ mA}, V_{CE} = 5.0 \text{ V}, f = 100 \text{ MHz}$)	BC546 BC547 BC548	f⊤	150 150 150	300 300 300	_ _ _	MHz
Output Capacitance ($V_{CB} = 10 \text{ V}, I_{C} = 0, f = 1.0 \text{ MHz}$)		C _{obo}	_	1.7	4.5	pF
Input Capacitance (V _{EB} = 0.5 V, I _C = 0, f = 1.0 MHz)		C _{ibo}	_	10	_	pF
Small–Signal Current Gain (I _C = 2.0 mA, V _{CE} = 5.0 V, f = 1.0 kHz)		h _{fe}				_
	BC546A/547A/548A BC546B/547B/548B BC546C/547C/548C		125 240 450	220 330 600	260 500 900	
Noise Figure (I _C = 0.2 mA, V _{CE} = 5.0 V, R _S = 2 k Ω , f = 1.0 kHz, Δ f = 200 Hz)	BC546 BC547 BC548	NF	_ _ _	2.0 2.0 2.0	10 10 10	dB

BC546 thru BC548

Figure 1. Normalized DC Current Gain

Figure 2. "Saturation" and "On" Voltages

Figure 3. Collector Saturation Region

Figure 4. Base-Emitter Temperature Coefficient

BC547/BC548

Figure 5. Capacitances

Figure 6. Current-Gain - Bandwidth Product

BC546 thru BC548

BC547/BC548

Micro Commercial Components

Figure 7. DC Current Gain

Figure 8. "On" Voltage

Figure 9. Collector Saturation Region

Figure 10. Base-Emitter Temperature Coefficient

BC546

Figure 11. Capacitance

Revision: A

Figure 12. Current-Gain - Bandwidth Product

Micro Commercial Components

Ordering Information:

Device	Packing			
Part Number-AP	Ammo Packing: 2Kpcs/Ammo Box			
Part Number-BP	Bulk: 100Kpcs/Carton			

IMPORTANT NOTICE

Micro Commercial Components Corp. reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. **Micro Commercial Components Corp.** does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold **Micro Commercial Components Corp.** and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation.

CUSTOMER AWARENESS

Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.