1 特征值与特征向量

1.1 基础概念

- 1. 设 A 是 n 阶矩阵,如果存在一个数 λ 及非零的 n 维列向量 α 使得 $A\alpha = \lambda\alpha$ 成立,则称 λ 是矩阵 A 的一个特征值,称非零向量 α 是矩阵 A 属于特征值 λ 的一个特征向量
- 2. 设 $A = [a_{ij}]$ 为一个 n 阶矩阵,则行列式

$$|A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix}$$

称为矩阵 A 的特征多项式, $|A - \lambda E| = 0$ 称为 A 的特征方程

3. 设 A 和 B 都是 n 阶矩阵,如果存在可逆矩阵 P,使得 $P^{-1}AP = B$ 则称矩阵 A 和 B 相似,记作 $A \sim B$ 。相似具有如下性质

• 反身性: *A* ∼ *A*

• 对称性: $A \sim B \Leftrightarrow B \sim A$

• 传递性: $A \sim B, B \sim C \Rightarrow A \sim C$

- 4. 如果 A 能与**对角矩阵**相似,则称 A可对角化
- 5. 设 $\mathbf{A} = (a_{ij})_{n \times n}$ 为 n 阶方阵,称 \mathbf{A} 的**迹(trace)**为主对角线上元素之和,记作: $\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} a_{ii}$

1.2 运算

1. 设矩阵 A 的特征值为 λ ,对应的特征向量为 α ,即: $A\alpha = \lambda \alpha$ 则

A	kA + E	A + kE	A^{-1}	A^*	A^T	A^n	$P^{-1}AP$	f(A)
λ	$k\lambda + 1$	$\lambda + k$	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$	λ	λ^n	λ	$f(\lambda)$
lpha	α	lpha	lpha	lpha	$oldsymbol{lpha}^T$	lpha	$P^{-1} \alpha$	α

1.3 定理

- 1. 如果 $\alpha_1, \alpha_2, \ldots, \alpha_t$ 都是矩阵 A 的属于特征值 λ 的特征向量,那么当 $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_t\alpha_t$ 非零时, $k_1\alpha_1 + k_2\alpha_2 + \cdots + k_t\alpha_t$ 仍是矩阵 A 属于特征值 λ 的特征向量
- 2. 若 α_1, α_2 是矩阵 A 不同特征值的特征向量,则 $\alpha_1 + \alpha_2$ 不是 A 的特征向量

1

3. 设 $A \in \mathbb{R}$ 阶矩阵, $\lambda_1, \lambda_2, \ldots, \lambda_n$ 是矩阵 A 的特征值,则

$$\Rightarrow \sum \lambda_{i} = \sum a_{ii}$$

$$\Rightarrow |A| = \lambda_{1}\lambda_{2}...\lambda_{n}$$

$$\Rightarrow |A - \lambda E| = (\lambda_{1} - \lambda)(\lambda_{2} - \lambda)\cdots(\lambda_{n} - \lambda)$$

$$\Rightarrow |A - aE| = (\lambda_{1} - a)(\lambda_{2} - a)\cdots(\lambda_{n} - a)$$

$$\Rightarrow |A^{-1} + kE| = (\frac{1}{\lambda_{1}} + k)(\frac{1}{\lambda_{2}} + k)\cdots(\frac{1}{\lambda_{n}} + k)$$

- 4. 如果 $\lambda_1, \lambda_2, \ldots, \lambda_m$ 是矩阵 A 的互不相同的特征值, $\alpha_1, \alpha_2, \ldots, \alpha_m$ 分别是与 之对应的特征向量,则 $\alpha_1, \alpha_2, \ldots, \alpha_m$ 线性无关
- 5. 如果 $A \in \mathbb{R}$ 阶矩阵, $\lambda_i \in A$ 的 m 重特征值,则属于 λ_i 的线性无关的特征向量的个数不超过 m 个
- 6. 如果 n 阶矩阵 A 与 B 相似,则

$$\Rightarrow \lambda_A = \lambda_B$$

$$\Rightarrow A - \lambda E = B - \lambda E$$

$$\Rightarrow |A| = |B|$$

$$\Rightarrow r(A) = r(B)$$

$$\Rightarrow tr_A = tr_B$$

- 7. 单位矩阵只和自身相似
- 8. n 阶方阵 A 可相似对角化的充分必要条件是 A 有 n 个线性无关的特征向量
- 9. n 阶矩阵 A 可相似对角化的充分必要条件是对于 A 的每个特征值,其线性无关的特征向量的个数恰好等于该特征值的重数。即若 $A \sim \Lambda$,则

$$\Leftrightarrow \lambda_i$$
 是 A 的 n_i 重特征值,且 λ_i 有 n_i 个线性无关的特征向量 $(n-r(A))$ $\Leftrightarrow r(A-\lambda_i E) = n-n_i, \quad \lambda_i$ 为 n_i 重特征值

10. 若 n 阶矩阵 A 有 n 个不同的特征值 $\lambda_1, \lambda_2, \ldots, \lambda_n$,则 A 可相似对角化,且 有:

$$A \sim \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix} = \Lambda$$

其中存在可逆矩阵 P 使得:

$$P^{-1}AP = \Lambda, \quad P = [\boldsymbol{\alpha}_1, \, \boldsymbol{\alpha}_2, \, \dots, \, \boldsymbol{\alpha}_n],$$

其中 α_i 是与特征值 λ_i 对应的特征向量

- 11. 实对称矩阵 A 的不同特征值 λ_1, λ_2 所对应的特征向量 α_1, α_2 比**正交**
- 12. 实对称矩阵 A 的特征值都是实数
- 13. n 阶实对称矩阵 A 必可对角化,且总存在正交阵 Q,使得

$$Q^{-1}AQ = Q^{T}AQ = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$$

其中 $\lambda_1, \lambda_2, \dots, \lambda_n$ 是 A 的特征值

14. 上三角矩阵、下三角矩阵、对角矩阵的特征值就是矩阵主对角线上的元素

1.4 公式

1. $A_1 \sim B_1, A_2 \sim B_2$,则

$$\begin{bmatrix} A_1 & \\ & A_2 \end{bmatrix} \sim \begin{bmatrix} B_1 & \\ & B_2 \end{bmatrix}$$

1.5 方法步骤

1. Schmidt 正交规范化方法: 如果 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 线性无关,令

$$egin{align} oldsymbol{eta}_1 &= oldsymbol{lpha}_1, \ oldsymbol{eta}_2 &= oldsymbol{lpha}_2 - rac{(oldsymbol{lpha}_2, oldsymbol{eta}_1)}{(oldsymbol{eta}_1, oldsymbol{eta}_1)} oldsymbol{eta}_1, \ oldsymbol{eta}_3 &= oldsymbol{lpha}_3 - rac{(oldsymbol{lpha}_3, oldsymbol{eta}_1)}{(oldsymbol{eta}_1, oldsymbol{eta}_1)} oldsymbol{eta}_1 - rac{(oldsymbol{lpha}_3, oldsymbol{eta}_2)}{(oldsymbol{eta}_2, oldsymbol{eta}_2)} oldsymbol{eta}_2, \end{split}$$

那么 $\beta_1, \beta_2, \beta_3$ 两两正交,称为正交向量组,将其单位化,有

$$\gamma_i = \frac{\beta_i}{\|\beta_i\|}, \quad i = 1, 2, \dots, n.$$

则 $\alpha_1, \alpha_2, \ldots, \alpha_n$ 到 $\gamma_1, \gamma_2, \gamma_3$ 这一过程称为Schmidt 正交规范化

- 2. 证明 $A \sim B \Rightarrow A \sim \lambda \, \underline{\square} \, \lambda \sim B \Rightarrow A \sim B$
- 3. 证明 A 可相似对角化 \Rightarrow A \sim B且B \sim λ \Rightarrow A \sim λ 即 A 可相似对角化
- 4. 由 $A\alpha = \lambda \alpha$, $\alpha \neq 0$ 有 $(\lambda E A)\alpha = 0$, 即 α 是齐次线性方程组 $(\lambda E A)\alpha = 0$ 的非零解

 - (b) 再由 $(A \lambda E)\alpha = 0$ 求基础解系,即矩阵 A 属于特征值 λ_i 的线性无关的特征向量

- 5. 判断 A 与 B 相似
 - (a) 如果不满足以下条件则不相似
 - $\lambda_A = \lambda_B$
 - $A \lambda E = B \lambda E$
 - |A| = |B|
 - r(A) = r(B)
 - $tr_A = tr_B$
 - (b) A 与 B 都可对角化
- 6. 若已知两个特征向量,求第三个特征向量时,可根据正交条件构造方程组求 解。即

$$\alpha_3 \perp \alpha_1$$
, $\alpha_3 \perp \alpha_2$.

- 7. 若已知一个特征向量,且另两个特征值相同(即存在重根),则可设一般形式的特征向量,并利用正交条件建立方程组,求得一组线性无关的特征向量作为基础解系
- 8. 对于实对称矩阵 A求正交矩阵 Q 或正交对角矩阵的时候需要对特征向量改造
 - 特征值不同⇒ 单位化
 - 特征值有重根
 - 特征向量正交⇒ 单位化
 - 特征向量不正交⇒ Schmidt 正交规范化,即正交化 + 单位化
 - 故: 计算重根特征值的特征向量时直接给出正交的特征向量
- 9. 矩阵

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 3 & 0 \\ 4 & 5 & 6 \end{bmatrix}$$

特征值从主对角线上看出来,为 1,3,6 且特征值 6 的特征向量是 $(0,0,1)^T$

- 10. 求实对称矩阵 A 的特征值(解方程 $|A \lambda E| = 0$)的方法:
 - (a) 通过行列式初等变换,将副对角线元素化为 0 (对角化处理)
 - (b) 对列进行操作,例如 $C_3 C_1$,简化行列式
 - (c) 对行进行操作,例如 $R_1 + R_3$,进一步化简
- 11. 用正交矩阵将实对称矩阵 A 化为对角矩阵的步骤
 - (a) 处理一些未知参数
 - (b) 求矩阵 A 的特征值
 - (c) 求矩阵 A 的特征向量
 - (d) 单位化, 当特征值有重根时, 可能还要 Schmidt 正交化
 - (e) 构造正交矩阵 P,使得 $P^{-1}AP = \Lambda$,其中 $P = \Lambda$ 次序要协调一致

1.6 条件转换思路

- 1. 实对称矩阵
 - ⇔ 必与对角矩阵相似
 - ⇔ 可用正交矩阵对角化
 - ⇔ 不同特征值的特征向量必正交
 - ⇔ 特征值必是实数
 - ☆ k重特征值必是实数必有k个线性无关的特征向量
- 2. $A \sim B$

$$\Rightarrow A^n = PB^nP^{-1}$$

$$\Rightarrow \lambda_A = \lambda_B$$

$$\Rightarrow A - \lambda E = B - \lambda E$$

$$\Rightarrow |A| = |B|$$

$$\Rightarrow r(A) = r(B)$$

$$\Rightarrow tr_A = tr_B$$

$$\Rightarrow A + kE \sim B + kE$$

$$\Rightarrow (A + kE)^n \sim (B + kE)^n$$

$$\Rightarrow f(A) \sim f(B)$$

$$\Rightarrow |A + kE| = |B + kE|$$

$$\Rightarrow r(A + kE) = r(B + kE)$$

$$\Rightarrow A^n \sim B^n$$

$$\Rightarrow A^T \sim B^T$$

$$\Rightarrow A^* \sim B^*$$

$$\Rightarrow A^{-1} \sim B^{-1}$$

$$\Rightarrow$$
 若 $A\alpha_A = \lambda \alpha_A$, 则 $B(P^{-1}\alpha_A) = \lambda(P^{-1}\alpha_A) \Rightarrow \alpha_B = P^{-1}\alpha_A$

$$\Rightarrow$$
 若 $B\alpha_B = \lambda \alpha_B$, 则 $A(P\alpha_B) = \lambda(P\alpha_B) \Rightarrow \alpha_A = P\alpha_B$

3.
$$P_1^{-1}AP_1 = B$$
, $P_2^{-1}BP_2 = C \Rightarrow P^{-1}AP = C$, 其中 $P = P_1P_2$

- 4. $r(A) < n \Rightarrow 0$ 是A的特征值
- 5. $A \in n$ 阶矩阵,若 r(A) = 1,则

$$\Leftrightarrow$$
 矩阵 A 的行向量组线性相关,且秩为 1

$$\Rightarrow |A - \lambda E| = \lambda^n - \sum a_{ii} \lambda^{n-1}$$

$$\Rightarrow \lambda_1 = \lambda_2 = \cdots = \lambda_{n-1} = 0$$

$$\Rightarrow \lambda_n = \operatorname{tr}(A) = a_{11} + a_{22} + \dots + a_{nn}$$

6. 求矩阵 A 中参数

- 已知特征向量 α
 - (a) 构造方程组
 - (b) $A\alpha = \lambda \alpha$
 - (c) 解 A 中变量和 λ
- 相似于对角矩阵(可以对角化)
 - (a) 需要有 n 个线性无关的特征向量
 - (b) 若有重根,则 $n r(A \lambda E) =$ 重根个数
 - (c) $|A \lambda E| = 0$ 计算特征值和特征向量
- 特征值 $\lambda \Rightarrow |A \lambda E| = 0$
- 7. 抽象矩阵思考:
 - 线性相关 + 线性方程组
 - 秩
- 8. $A^2 = A \Rightarrow A$ 的特征值只能取 1 或 0

1.7 理解

- 1. 在求参数的问题中,可以由特征向量可构造方程组
- 2. 特征向量 = k 基础解系,其中 k 为非零常数
- $3. a \neq 0$,矩阵 A 如下

$$A = \begin{bmatrix} 1 & a & a & a \\ a & 1 & a & a \\ a & a & 1 & a \\ a & a & a & 1 \end{bmatrix}$$

解析

$$A = (1 - a)E + aJ_4,$$

其中 J_4 是 4×4 全 1 矩阵。已知 J_4 的特征值为 4,0,0,0

$$\therefore J_4 \boldsymbol{\alpha}_1 = 4 \boldsymbol{\alpha}_1$$

∴ 特征值4的特征向量是 $(1,1,1,1)^T$

对于 α_2 , α_3 , α_4 , 它们满足 $J_4\alpha_i=0$, 因为四个分量和为零,因此它们属于零特征值的特征空间,故取标准基

$$\alpha_2 = (1, -1, 0, 0)^T, \alpha_3 = (1, 0, -1, 0)^T, \alpha_4 = (1, 0, 0, -1)^T$$

利用线性性质求 A 的特征值:

$$A\boldsymbol{\alpha}_1 = (1-a)\boldsymbol{\alpha}_1 + aJ_4\boldsymbol{\alpha}_1 = (1-a)\boldsymbol{\alpha}_1 + a\cdot 4\boldsymbol{\alpha}_1 = (1+3a)\boldsymbol{\alpha}_1,$$

$$A\boldsymbol{\alpha}_2 = (1-a)\boldsymbol{\alpha}_2 + aJ_4\boldsymbol{\alpha}_2 = (1-a)\boldsymbol{\alpha}_2 + a \cdot 0 = (1-a)\boldsymbol{\alpha}_2,$$

$$A\boldsymbol{\alpha}_3 = (1-a)\boldsymbol{\alpha}_3 + aJ_4\boldsymbol{\alpha}_3 = (1-a)\boldsymbol{\alpha}_3,$$

$$A\alpha_4 = (1-a)\alpha_4 + aJ_4\alpha_4 = (1-a)\alpha_4.$$

故 A 的特征值为1+3a, 1-a, 1-a, 1-a, 对应特征向量为 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$.