Claims

What is claimed as new and desired to be protected by Letter Patent of the United States is:

5 1. A demodulator for phase modulated (PM) signals comprising:

A direct phase sampler / digitizer;

A differencing circuit;

A "p" deep running averager;

A digital subtractor;

A phase to amplitude converter.

- 2. A demodulator as in claim 1, wherein the direct phase digitizer provides the instantaneous phase of the input signal, at the time of the clock transitions.
- 3. A demodulator as in claim 1, wherein a differencing circuit generates on every clock cycle the phase difference in the input signal over the clock period.
- 4. A demodulator as in claim 1, wherein a running averager generates a running average of phase differences over the last "p" consecutive phase differences.
- 5. A demodulator as in claim 1, wherein a subtractor subtracts the average phase difference generated by the averager from the instantaneous phase difference calculated by the differencing circuit and generates a digital data which indicates the instantaneous phase deviation.
- 6. A demodulator as in claim 1, wherein a phase to amplitude converter converts the instantaneous phase deviation generated by the subtractor into an amplitude directly proportional to the phase deviation.
- 7. A running averager as in claim 4, wherein "p" the depth of the averaging span determines the precision for the center frequency.
- 8. A phase to amplitude converter as in claim 6, wherein the conversion of phase information into a voltage output is obtained by a sine lookup table followed by a digital to analog converter.
- 9. A phase to amplitude converter as in claim 6, wherein the conversion of phase information into a voltage output is obtained by converting binary code presentation of the phase information into a Grey code followed by further processing using EXOR functions, bit drivers and a resistive network.
- 10. <u>DELETAD A demodulator for frequency modulated (FM) signals comprising:</u>

A differencing circuit;

A "p" deep running averager;

A second "q" deep running averager

A direct phase sampler / digitizer:

10

)

10

15

20

25

30

35

	A-digital subtractor;
	A phase to amplitude converter.
	11. DELETAD A demodulator as in claim 10. wherein the direct phase digitizer provides
	the instantaneous phase of the input signal, at the time of the clock transitions.
5	12. DELETAD A demodulator as in claim 10, wherein a differencing circuit generates on
	every clock cycle the phase difference in the input signal over the clock period.
	13- DELETAD A demodulator as in claim 10, wherein a running averager generates a
	running average of phase differences over the last "p" consecutive phase differences.
	14. DELETAD A demodulator as in claim 10, wherein a second running averager
10	generates a running average of phase differences over the last "q" consecutive
	phase differences.
	15. DELETAD A demodulator as in claim 10, wherein a subtractor subtracts the average
	phase difference generated by the averager from the instantaneous phase difference
	calculated by the differencing circuit and generates a digital data which indicates the
15	instantaneous phase deviation.
	16- DELETAD A demodulator as in claim 10, wherein a phase to amplitude converter
	converts the instantaneous phase deviation generated by the subtractor into an
	amplitude directly proportional to the phase deviation.
	17. DELETAD A running averager as in claim 13, wherein "p" the depth of the averaging
20	span determines the precision for the center frequency.
	18- DELETAD A second running averager as in claim 14, wherein "q" the depth of the
	averaging span of the second averager determines the bandwidth of the
	demodulated signal output.
	19. DELETAD A phase to amplitude converter as in claim 16, wherein the conversion of
25	phase information into a voltage output is obtained by a sine lookup table followed by a
	digital to analog converter.
	20.20. A phase to amplitude converter as in claim 6, wherein the conversion of phase
	information into a voltage output is obtained by converting binary code presentation of the
	phase information into a Grey code followed by further processing using EXOR functions,
30	bit drivers and a resistive network.
	21. DELETAD An FM or PM receiver comprising:
	A quadrature input signal generator;

22. DELETAD A receiver as in claim 21, wherein the quadrature generation may be

obtained by quadrature-down-conversion or by any type of quadrature-power-splitter.

A direct digital phase digitizer;

A-digital-demodulator.

35

	23. D DELETAD A demodulator as in claim 21, wherein the direct phase digitizer provides
	the instantaneous phase of the input signal, at the time of the clock transitions.
	24. DELETAD A receiver as is claim 21, wherein the demodulator contains no tuned or
	resonant circuits and wherein the operation of the demodulator is controlled by a
5	clock.
	25. DELETAD A converter to convert binary code presentation of the phase of a signal
	into a magnitude of voltage or current comprising:
	EXOR Logic to convert the binary code into Grey code;
	EXOR logic to generate specific driver code;
10	A resistive network to convert the drive code into a voltage or current.
	26. DELETAD A converter as in claim 25, wherein the conversion of binary code to Grey
	code is obtained using the formula $G_n = B_n \oplus B_{n+1}$ and wherein G_n represents a Grey
	code bit n and B _n represents a binary code bit n.
	27. DELETAD A converter as in claim 25, wherein the drive code is obtained from the
15	Grey code using the formula $D_k \mid_0^n = G_k \oplus G_{k+1} \oplus G_{k+2} \oplus \oplus G_n$, and wherein D_k
	represents a drive bit k.
	28. (NEW) A digital demodulator for phase modulated (PM) signals wherein a digital
	input is a digital presentation of the instantaneous phase of the modulated signal.
	29. (NEW) A demodulator for phase modulated (PM) signals as in claim 11 comprising:
20	A differencing circuit:
	A "p" deep running averager;
	A digital subtractor:
	A phase to amplitude converter.
	30. (NEW) A demodulator as in claim 29, wherein a differencing circuit generates on
25	every clock cycle the phase difference in the input signal over the clock period.
	31. (NEW) A demodulator as in claim 29, wherein a running averager generates a
	running average of phase differences over the last "p" consecutive phase differences
	32. (NEW) A demodulator as in claim 29, wherein a subtractor subtracts the average
	phase difference generated by the averager from the instantaneous phase difference
30	calculated by the differencing circuit and generates a digital data which indicates the
	instantaneous phase deviation.
	33. (NEW) A demodulator as in claim 29, wherein a phase to amplitude converter
	converts the instantaneous phase deviation generated by the subtractor into an
	amplitude directly proportional to the phase deviation.
35	34. (NEW) A running averager as in claim 31, wherein "p" the depth of the averaging

span determines the precision for the center frequency.

- 35. (NEW) A phase to amplitude converter as in claim 33, wherein the conversion of phase information into a voltage output is obtained by a sine lookup table followed by a digital to analog converter.
- 36. (NEW) A phase to amplitude converter as in claim 33, wherein the conversion of phase information into a voltage output is obtained by converting binary code presentation of the phase information into a Grey code followed by further processing using EXOR functions, bit drivers and a resistive network.

10

5