CK Equations: P(t+I) = P(t)P(I)

CK Equations:
$$P(t + I) = P(t)P(I)$$

Theorem

Let P(t) be a transition function. Then the generator matrix $Q = \lim_{h \to 0} \frac{P(h)-I}{h}$ exists.

CK Equations:
$$P(t + I) = P(t)P(I)$$

Theorem

Let P(t) be a transition function. Then the generator matrix $Q = \lim_{h \to 0} \frac{P(h)-I}{h}$ exists.

Theorem

$$P(Y_t > u | X(t) = i) = e^{-a_i u}$$
 where $a_i > 0$.

CK Equations:
$$P(t + I) = P(t)P(I)$$

Theorem

Let P(t) be a transition function. Then the generator matrix $Q = \lim_{h \to 0} \frac{P(h)-I}{h}$ exists.

Theorem

$$P(Y_t > u | X(t) = i) = e^{-a_i u}$$
 where $a_i > 0$.

Theorem

For a CTMC with Q matrix, we have $P(Y_t > u|X(t) = i) := e^{q_{ii}u}$, i.e., $q_{ii} = -a_i$. $P(X(t + Y_t) = j|X(t) = i) = \frac{q_{ij}}{|q_{ii}|}$.

$$P(t) \lim_{s \to \infty} \frac{P(s) - I}{s}$$

$$P(t) \lim_{s \to \infty} \frac{P(s) - I}{s}$$

$$P(t) \lim_{s \to \infty} \frac{P(s) - I}{s}$$

 $P(t) = e^{tQ}$ satisfies the above. (Calculus of Matrix exponentials)

$$P(t) \lim_{s \to \infty} \frac{P(s) - I}{s}$$

 $P(t) = e^{tQ}$ satisfies the above. (Calculus of Matrix exponentials)

$$P(t) = e^{tQ} := I + tQ + \ldots + \frac{(tQ)^n}{n!} \ldots$$

▶ States $S = Z_{\geq 0}$.

- ightharpoonup States $S = Z_{>0}$.
- Why is it a Markov process / Markov property satisfied?

- ightharpoonup States $S = Z_{>0}$.
- Why is it a Markov process / Markov property satisfied?
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t) = k | N(t_m) = k_m)?$

- ightharpoonup States $S = Z_{\geq 0}$.
- Why is it a Markov process / Markov property satisfied?
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t) = k | N(t_m) = k_m)?$
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t t_k) = k k_m)$. Therefore the above is true.

- ▶ States $S = Z_{\geq 0}$.
- Why is it a Markov process / Markov property satisfied?
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t) = k | N(t_m) = k_m)?$
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t t_k) = k k_m)$. Therefore the above is true.
- $ightharpoonup p_{ij}(t) = P(N(t) = j | N(0) = i).$

- \triangleright States $S = Z_{\geq 0}$.
- Why is it a Markov process / Markov property satisfied?
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t) = k | N(t_m) = k_m)?$
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t t_k) = k k_m)$. Therefore the above is true.
- $p_{ij}(t) = P(N(t) = j | N(0) = i)$. max(j i, 0) arrivals in time t.

- ▶ States $S = Z_{\geq 0}$.
- Why is it a Markov process / Markov property satisfied?
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t) = k | N(t_m) = k_m)?$
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t t_k) = k k_m)$. Therefore the above is true.
- $p_{ij}(t) = P(N(t) = j|N(0) = i)$. max(j i, 0) arrivals in time t.
- We know that this has Possion distribution.

- ▶ States $S = Z_{\geq 0}$.
- Why is it a Markov process / Markov property satisfied?
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t) = k | N(t_m) = k_m)?$
- $P(N(t) = k | N(t_1) = k_1, ..., N(t_m) = k_m) = P(N(t t_k) = k k_m)$. Therefore the above is true.
- $p_{ij}(t) = P(N(t) = j|N(0) = i)$. max(j i, 0) arrivals in time t.
- We know that this has Possion distribution.
- ightharpoonup How does P(t) look for a Poisson process ?

- ► How does P(t) = [[P(N(t) = j | N(0) = i)]] look ?
- Entries below the diagonal are zero.
- ▶ Diagonal entries have the value $e^{-\lambda t}$
- ijth entry above the diagonal has the value $e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}$

► How does $Q = \frac{dP(h)}{dh}|_{h=0}$ look ?

- ► How does $Q = \frac{dP(h)}{dh}|_{h=0}$ look ?
- ijth entry above the diagonal $p_{ij}(t) = e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}$

- ► How does $Q = \frac{dP(h)}{dh}|_{h=0}$ look ?
- ijth entry above the diagonal $p_{ij}(t) = e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}$
- what is $\frac{d}{dt}(e^{-\lambda t}\frac{(\lambda t)^{j-i}}{(j-i)!})|_{t=0}$?

- ► How does $Q = \frac{dP(h)}{dh}|_{h=0}$ look ?
- ijth entry above the diagonal $p_{ij}(t) = e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}$
- what is $\frac{d}{dt}(e^{-\lambda t}\frac{(\lambda t)^{j-i}}{(j-i)!})|_{t=0}$?
- ▶ If j i = 1, then $\frac{d}{dt}(e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}) = \lambda$.

- ► How does $Q = \frac{dP(h)}{dh}|_{h=0}$ look ?
- ijth entry above the diagonal $p_{ij}(t) = e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}$
- what is $\frac{d}{dt}(e^{-\lambda t}\frac{(\lambda t)^{j-i}}{(j-i)!})|_{t=0}$?
- ▶ If j i = 1, then $\frac{d}{dt}(e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}) = \lambda$.
- ► If j i > 1, then $\frac{d}{dt} \left(e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!} \right) = 0$.

- ► How does $Q = \frac{dP(h)}{dh}|_{h=0}$ look ?
- ijth entry above the diagonal $p_{ij}(t) = e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}$
- what is $\frac{d}{dt}(e^{-\lambda t}\frac{(\lambda t)^{j-i}}{(j-i)!})|_{t=0}$?
- ▶ If j i = 1, then $\frac{d}{dt}(e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}) = \lambda$.
- ► If j i > 1, then $\frac{d}{dt} \left(e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!} \right) = 0$.
- ► How does *Q* for Poisson process look like ?

- ► How does $Q = \frac{dP(h)}{dh}|_{h=0}$ look ?
- ijth entry above the diagonal $p_{ij}(t) = e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}$
- what is $\frac{d}{dt}(e^{-\lambda t}\frac{(\lambda t)^{j-i}}{(j-i)!})|_{t=0}$?
- ▶ If j i = 1, then $\frac{d}{dt}(e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!}) = \lambda$.
- ► If j i > 1, then $\frac{d}{dt} \left(e^{-\lambda t} \frac{(\lambda t)^{j-i}}{(j-i)!} \right) = 0$.
- ► How does *Q* for Poisson process look like ?
- $P(t) = e^{tQ} = I + tQ + \ldots + \frac{(tQ)^n}{n!} + \ldots$

Example 3: Binomial process as a DTMC

Example 3: Binomial process as a DTMC

▶ DO IT YOURSELF!

ightharpoonup Consider a CTMC over state space S.

- ightharpoonup Consider a CTMC over state space S.
- Let Y_n , $n \ge 0$ denote the sequence of times spent in successive states of the CTMC

- ightharpoonup Consider a CTMC over state space S.
- Let Y_n , $n \ge 0$ denote the sequence of times spent in successive states of the CTMC
- ightharpoonup Define T_n to be the jump times of the CTMC, i.e., the times of successive state transitions.

- ightharpoonup Consider a CTMC over state space S.
- Let Y_n , $n \ge 0$ denote the sequence of times spent in successive states of the CTMC
- ▶ Define T_n to be the jump times of the CTMC, i.e., the times of successive state transitions.
- ightharpoonup Then $T_n = \sum_{k=1}^n Y_k$.

Embedded DTMC in a CTMC

- ightharpoonup Consider a CTMC over state space S.
- Let Y_n , $n \ge 0$ denote the sequence of times spent in successive states of the CTMC
- ▶ Define T_n to be the jump times of the CTMC, i.e., the times of successive state transitions.
- $\blacktriangleright \text{ Then } T_n = \sum_{k=1}^n Y_k.$
- ▶ Define $X_n = X(T_n)$ for $n \ge 0$. X_n is the DTMC embedded in the CTMC.

Embedded DTMC in a CTMC

- ightharpoonup Consider a CTMC over state space S.
- Let Y_n , $n \ge 0$ denote the sequence of times spent in successive states of the CTMC
- ▶ Define T_n to be the jump times of the CTMC, i.e., the times of successive state transitions.
- $\blacktriangleright \text{ Then } T_n = \sum_{k=1}^n Y_k.$
- ▶ Define $X_n = X(T_n)$ for $n \ge 0$. X_n is the DTMC embedded in the CTMC.
- ▶ The corresponding TPM has $p_{ij} = \frac{q_{ij}}{|q_{ii}|}$.

Embedded DTMC in a CTMC

- ightharpoonup Consider a CTMC over state space S.
- Let Y_n , $n \ge 0$ denote the sequence of times spent in successive states of the CTMC
- ▶ Define T_n to be the jump times of the CTMC, i.e., the times of successive state transitions.
- ightharpoonup Then $T_n = \sum_{k=1}^n Y_k$.
- ▶ Define $X_n = X(T_n)$ for $n \ge 0$. X_n is the DTMC embedded in the CTMC.
- ▶ The corresponding TPM has $p_{ij} = \frac{q_{ij}}{|q_{ii}|}$.
- ▶ $\{X_n,\}$ is such that there are no one step transitions from a state to itself, i.e., $p_{ii} = 0$.

ightharpoonup Consider a Markov process with state space $\mathcal S$

- ightharpoonup Consider a Markov process with state space ${\cal S}$
- ▶ We say that j is accessible from i if $p_{ij}^n > 0$ for some n.

- ightharpoonup Consider a Markov process with state space ${\cal S}$
- ▶ We say that j is accessible from i if $p_{ij}^n > 0$ for some n.
- ▶ This is denoted by $i \rightarrow j$.

- ightharpoonup Consider a Markov process with state space $\mathcal S$
- We say that j is accessible from i if $p_{ij}^n > 0$ for some n.
- ▶ This is denoted by $i \rightarrow j$.
- ▶ if $i \rightarrow j$ and $j \rightarrow i$ then we say that i and j communicate. This is denoted by $i \leftrightarrow j$.

- ightharpoonup Consider a Markov process with state space ${\cal S}$
- We say that j is accessible from i if $p_{ij}^n > 0$ for some n.
- ▶ This is denoted by $i \rightarrow j$.
- if $i \rightarrow j$ and $j \rightarrow i$ then we say that i and j communicate. This is denoted by $i \leftrightarrow j$.

A chain is said to be irreducible if $i \leftrightarrow j$ for all $i, j \in \mathcal{S}$.

We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$

- We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$
- $ightharpoonup F_{ii}$ is not easy to calculate. (We will se ethis after Quiz)

- We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$
- $ightharpoonup F_{ii}$ is not easy to calculate. (We will se ethis after Quiz)
- ▶ If a state is not recurrent, it is transient.

- We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$
- $ightharpoonup F_{ii}$ is not easy to calculate. (We will se ethis after Quiz)
- If a state is not recurrent, it is transient.
- For a transient state i, $F_{ii} < 1$.

- We say that a state i is recurrent if $F_{ii} = P(\text{ ever returning to } i \text{ having started in } i) = 1.$
- $ightharpoonup F_{ii}$ is not easy to calculate. (We will se ethis after Quiz)
- If a state is not recurrent, it is transient.
- For a transient state i, $F_{ii} < 1$.
- ▶ If $i \leftrightarrow j$ and i is recurrent, then j is recurrent.

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0.6 & 0.4 \\ 0.6 & 0.4 & 0 \end{bmatrix} P^5 = \begin{bmatrix} .06 & .3 & .64 \\ .18 & .38 & .44 \\ .38 & .44 & .18 \end{bmatrix} P^{30} = \begin{bmatrix} .23 & .385 & .385 \\ .23 & .385 & .385 \\ .23 & .385 & .385 \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0.6 & 0.4 \\ 0.6 & 0.4 & 0 \end{bmatrix} P^5 = \begin{bmatrix} .06 & .3 & .64 \\ .18 & .38 & .44 \\ .38 & .44 & .18 \end{bmatrix} P^{30} = \begin{bmatrix} .23 & .385 & .385 \\ .23 & .385 & .385 \\ .23 & .385 & .385 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} \lim_{n \to \infty} P^n = \begin{bmatrix} \frac{b}{a+b} & \frac{a}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b} \end{bmatrix}$$

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0.6 & 0.4 \\ 0.6 & 0.4 & 0 \end{bmatrix} P^5 = \begin{bmatrix} .06 & .3 & .64 \\ .18 & .38 & .44 \\ .38 & .44 & .18 \end{bmatrix} P^{30} = \begin{bmatrix} .23 & .385 & .385 \\ .23 & .385 & .385 \\ .23 & .385 & .385 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} \lim_{n \to \infty} P^n = \begin{bmatrix} \frac{b}{a+b} & \frac{a}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b} \end{bmatrix}$$

▶ What is the interpretation of $\lim_{n\to\infty} p_{ij}^{(n)} = [\lim_{n\to\infty} P^n]_{ij}$?

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0.6 & 0.4 \\ 0.6 & 0.4 & 0 \end{bmatrix} P^5 = \begin{bmatrix} .06 & .3 & .64 \\ .18 & .38 & .44 \\ .38 & .44 & .18 \end{bmatrix} P^{30} = \begin{bmatrix} .23 & .385 & .385 \\ .23 & .385 & .385 \\ .23 & .385 & .385 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} \lim_{n \to \infty} P^n = \begin{bmatrix} \frac{b}{a+b} & \frac{a}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b} \end{bmatrix}$$

- ▶ What is the interpretation of $\lim_{n\to\infty} p_{ij}^{(n)} = [\lim_{n\to\infty} P^n]_{ij}$?
- $\pi_j = \lim_{n \to \infty} p_{ij}^{(n)}$ denotes the probability of being in state j at time n when starting in state i.

$$P = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0.6 & 0.4 \\ 0.6 & 0.4 & 0 \end{bmatrix} P^5 = \begin{bmatrix} .06 & .3 & .64 \\ .18 & .38 & .44 \\ .38 & .44 & .18 \end{bmatrix} P^{30} = \begin{bmatrix} .23 & .385 & .385 \\ .23 & .385 & .385 \\ .23 & .385 & .385 \end{bmatrix}$$

$$P = \begin{bmatrix} 1 - a & a \\ b & 1 - b \end{bmatrix} \lim_{n \to \infty} P^n = \begin{bmatrix} \frac{b}{a+b} & \frac{a}{a+b} \\ \frac{b}{a+b} & \frac{a}{a+b} \end{bmatrix}$$

- ▶ What is the interpretation of $\lim_{n\to\infty} p_{ij}^{(n)} = [\lim_{n\to\infty} P^n]_{ij}$?
- $\pi_j = \lim_{n \to \infty} p_{ij}^{(n)}$ denotes the probability of being in state j at time n when starting in state i.
- For an M state DTMC, $\bar{\pi} = (\pi_1, \dots, \pi_M)$ denotes the limiting distribution.

▶ Do the limiting probabilities always exist ?

▶ Do the limiting probabilities always exist ?

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Do the limiting probabilities always exist ?

$$P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
 In this case the limiting probabilities do not exist.

- Do the limiting probabilities always exist ?
- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ In this case the limiting probabilities do not exist.
- Now suppose $\bar{\mu} = [.5, .5]$. Then $P(X_1 = 1) = 0.5$.

- Do the limiting probabilities always exist ?
- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ In this case the limiting probabilities do not exist.
- Now suppose $\bar{\mu}=[.5,.5]$. Then $P(X_1=1)=0.5$. But this is true for every X_n , i.e., $P(X_n=1)=0.5$.

- Do the limiting probabilities always exist ?
- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ In this case the limiting probabilities do not exist.
- Now suppose $\bar{\mu} = [.5, .5]$. Then $P(X_1 = 1) = 0.5$. But this is true for every X_n , i.e., $P(X_n = 1) = 0.5$. (already in steady state)

- Do the limiting probabilities always exist ?
- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ In this case the limiting probabilities do not exist.
- Now suppose $\bar{\mu} = [.5, .5]$. Then $P(X_1 = 1) = 0.5$. But this is true for every X_n , i.e., $P(X_n = 1) = 0.5$. (already in steady state)
- What is happening ?

- Do the limiting probabilities always exist ?
- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ In this case the limiting probabilities do not exist.
- Now suppose $\bar{\mu}=[.5,.5]$. Then $P(X_1=1)=0.5$. But this is true for every X_n , i.e., $P(X_n=1)=0.5$. (already in steady state)
- What is happening ?
- Now suppose $\bar{\mu} = [.1, .9]$. Then $P(X_1 = 1) = 0.9$.

- Do the limiting probabilities always exist?
- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ In this case the limiting probabilities do not exist.
- Now suppose $\bar{\mu} = [.5, .5]$. Then $P(X_1 = 1) = 0.5$. But this is true for every X_n , i.e., $P(X_n = 1) = 0.5$. (already in steady state)
- What is happening ?
- Now suppose $\bar{\mu} = [.1, .9]$. Then $P(X_1 = 1) = 0.9$. But this is **not** true for every X_n , i.e., $P(X_2 = 1) = 0.9, P(X_3 = 1) = 0.1$.

- Do the limiting probabilities always exist?
- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ In this case the limiting probabilities do not exist.
- Now suppose $\bar{\mu} = [.5, .5]$. Then $P(X_1 = 1) = 0.5$. But this is true for every X_n , i.e., $P(X_n = 1) = 0.5$. (already in steady state)
- What is happening ?
- Now suppose $\bar{\mu} = [.1, .9]$. Then $P(X_1 = 1) = 0.9$. But this is **not** true for every X_n , i.e., $P(X_2 = 1) = 0.9$, $P(X_3 = 1) = 0.1$. (Never in steady-state)

 $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a periodic chain for which the limiting probabilities do not exist.

- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a periodic chain for which the limiting probabilities do not exist.
- What however always exists is known as stationary distribution (not necessarily unique)

- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a periodic chain for which the limiting probabilities do not exist.
- What however always exists is known as stationary distribution (not necessarily unique)
- A **stationary distribution** is a probability (row) vector on S that satisfies $\pi = \pi P$ in case of DTMC.

- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a periodic chain for which the limiting probabilities do not exist.
- What however always exists is known as stationary distribution (not necessarily unique)
- A stationary distribution is a probability (row) vector on S that satisfies $\pi = \pi P$ in case of DTMC.
- For a CTMC, we know that $\frac{dP(t)}{dt} = P(t)Q$. When $\lim_{t\to\infty} P(t) = \Pi$, this means that at stationarity $\frac{dP(t)}{dt} = 0$.

- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a periodic chain for which the limiting probabilities do not exist.
- What however always exists is known as stationary distribution (not necessarily unique)
- A stationary distribution is a probability (row) vector on S that satisfies $\pi = \pi P$ in case of DTMC.
- For a CTMC, we know that $\frac{dP(t)}{dt} = P(t)Q$. When $\lim_{t\to\infty} P(t) = \Pi$, this means that at stationarity $\frac{dP(t)}{dt} = 0$. Therefore we have $\pi Q = 0$ in case of CTMC.

- $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is a periodic chain for which the limiting probabilities do not exist.
- What however always exists is known as stationary distribution (not necessarily unique)
- A stationary distribution is a probability (row) vector on S that satisfies $\pi = \pi P$ in case of DTMC.
- For a CTMC, we know that $\frac{dP(t)}{dt} = P(t)Q$. When $\lim_{t\to\infty} P(t) = \Pi$, this means that at stationarity $\frac{dP(t)}{dt} = 0$. Therefore we have $\pi Q = 0$ in case of CTMC.
- If the limiting distribution exists, it is equal to its stationary distirbution.