

ME414 - Estatística para Experimentalistas

Parte 20

Inferência para duas populações: Teste de hipótese para duas médias

Teste de hipótese para duas médias

População 1: Coletamos uma amostra aleatória X_1, X_2, \ldots, X_n de uma população com média μ_1 e a variância σ_1^2 e usamos \bar{X} para estimar μ_1 .

População 2: Coletamos uma amostra aleatória Y_1, Y_2, \ldots, Y_m de uma população com média μ_2 e a variância σ_2^2 e usamos \bar{Y} para estimar μ_2 .

A população 1 é independente da população 2.

Teste de hipótese para duas médias

Condições:

- 1. As populações 1 e 2 são aproximadamente normais ou
- 2. Os tamanhos amostrais n e m são suficientemente grandes.

Se pelo menos uma das condições acima é satisfeita, temos:

$$\bar{X} \sim N\left(\mu_1, \frac{\sigma_1^2}{n}\right)$$
 e $\bar{Y} \sim N\left(\mu_2, \frac{\sigma_2^2}{m}\right)$

Caso 1: Variâncias diferentes e conhecidas

Assumindo que as duas amostras X_1, \ldots, X_n e Y_1, \ldots, Y_m são independentes com $\sigma_1^2 \neq \sigma_2^2$ conhecidas, temos:

$$\bar{X} - \bar{Y} \sim N\left(\mu_1 - \mu_2, \frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}\right)$$

Caso 1: Variâncias diferentes e conhecidas

Temos interesse em testar as hipóteses:

$$H_0: \mu_1 - \mu_2 = \Delta_0$$
 vs $H_A: \mu_1 - \mu_2 \neq \Delta_0$ ou $H_A: \mu_1 - \mu_2 < \Delta_0$ ou $H_A: \mu_1 - \mu_2 > \Delta_0$.

E daí, sob H_0 , temos que:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim N(0, 1)$$

Definidas as hipóteses, coletamos as informações das duas populações.

Para a população X: uma amostra aleatória de tamanho n é coletada e calculase a média amostral \bar{x} .

Para a população Y: similarmente, uma amostra aleatória de tamanho m é coletada e calcula-se a média amostral \bar{y} .

Calcula-se a estatística do teste:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \implies z_{obs} = \frac{(\bar{x} - \bar{y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}}$$

O valor-de-p é calculado de acordo com a hipótese alternativa.

Se o teste é **bilateral**, ou seja,

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

 $H_A: \mu_1 - \mu_2 \neq \Delta_0$

Usando o valor observado da estatística do teste:

valor-p =
$$P(|Z| \ge |z_{obs}|)$$

= $2P(Z \le -|z_{obs}|)$

Conclusão: Rejeita-se H_0 se valor-p $\leq \alpha$ ou, de forma equivalente, se z_{obs} cai na região crítica (área cinza do gráfico).

O valor-de-p é calculado de acordo com a hipótese alternativa.

Se o teste é unilateral à esquerda, ou seja,

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

$$H_A: \mu_1 - \mu_2 < \Delta_0$$

Usando o valor observado da estatística do teste:

valor-p =
$$P(Z \le z_{obs})$$

Conclusão: Rejeita-se H_0 se valor-p $\leq \alpha$

ou, de forma equivalente, se z_{obs} cai na região crítica (área cinza à esquerda do gráfico).

O valor-de-p é calculado de acordo com a hipótese alternativa.

Se o teste é unilateral à direita, ou seja,

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

$$H_A: \mu_1 - \mu_2 > \Delta_0$$

Usando o valor observado da estatística do teste:

valor-p =
$$P(Z \ge z_{obs})$$

Conclusão: Rejeita-se H_0 se valor-p $\leq \alpha$ ou, de forma equivalente, se z_{obs} cai na região crítica (área cinza à direita do gráfico).

Região crítica: teste unilateral à direita

Caso 2: Variâncias iguais e conhecidas

$$\bar{X} - \bar{Y} \sim N\left(\mu_1 - \mu_2, \frac{\sigma^2}{n} + \frac{\sigma^2}{m}\right)$$

As hipóteses são as mesmas que as testadas no caso 1.

E daí, sob H_0 , temos que:

$$Z = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim N(0, 1)$$

Caso 3: Variâncias iguais e desconhecidas

Assim como no caso de uma média com variância desconhecida, usamos uma estimativa de σ^2 e a distribuição normal é substituída pela distribuição t.

No caso de duas populações, o estimador da variância σ^2 é a combinação das variâncias amostrais de cada população, ou seja,

$$S_p^2 = \frac{(n-1)S_1^2 + (m-1)S_2^2}{n+m-2},$$

sendo S_i^2 é a variância amostral da população i.

Teste de hipótese para duas médias

As variâncias são iguais $\sigma_1^2 = \sigma_2^2 = \sigma^2$.

Quando σ^2 é conhecida:

$$Z = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim N(0, 1)$$

Quando σ^2 é desconhecida:

$$T = \frac{\bar{X} - \bar{Y} - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2}$$

Temos interesse em testar:

$$H_0: \mu_1 - \mu_2 = \Delta_0$$
 vs $H_A: \mu_1 - \mu_2 \neq \Delta_0$ (ou hipóteses unilaterais)

E daí, sob H_0 , temos que:

$$T = \frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2}.$$

Observação: Se n e m são pequenos, as duas amostras devem vir de populações aproximadamente normais. Se n e m são grandes, então a distribuição t com n+m-2 graus de liberdade aproxima-se de uma normal.

Esse teste é conhecido como teste t para amostras independentes.

Resumo: Teste de hipótese para duas médias

Para
$$H_0: \mu_1 - \mu_2 = \Delta_0$$
 vs $H_A: \mu_1 - \mu_2 \neq \Delta_0$

$$H_A: \mu_1 - \mu_2 \neq \Delta_0$$

Variâncias	Estatística do teste	Valor crítico para $lpha$	Valor de p
Diferentes e conhecidas ($\sigma_1^2 eq \sigma_2^2$)	$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim N(0, 1)$	rejeitar se $ z_{obs} \ge z_{\alpha/2}$	$2P(Z \ge z_{obs})$
Iguais e conhecidas ($\sigma_1^2=\sigma_2^2=\sigma^2$)	$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim N(0, 1)$	rejeitar se $ z_{obs} \ge z_{\alpha/2}$	$2P(Z \ge z_{obs})$
Iguais e desconhecidas ($\sigma_1^2=\sigma_2^2=\sigma^2$)	$T = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2}$	rejeitar se $ t_{obs} \ge t_{n+m-2,\alpha/2}$	$2P(T \ge t_{obs})$

Resumo: Teste de hipótese para duas médias

Para $H_0: \mu_1 - \mu_2 = \Delta_0$ vs $H_A: \mu_1 - \mu_2 < \Delta_0$

$$H_A: \mu_1 - \mu_2 < \Delta_0$$

Variâncias	Estatística do teste	Valor crítico para $lpha$	Valor de p
Diferentes e conhecidas ($\sigma_1^2 eq \sigma_2^2$)	$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim N(0, 1)$	rejeitar se $z_{obs} \leq -z_{\alpha}$	$P(Z \le z_{obs})$
Iguais e conhecidas ($\sigma_1^2=\sigma_2^2=\sigma^2$)	$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim N(0, 1)$	rejeitar se $z_{obs} \leq -z_{\alpha}$	$P(Z \le z_{obs})$
Iguais e desconhecidas ($\sigma_1^2=\sigma_2^2=\sigma^2$)	$T = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2}$	rejeitar se $t_{obs} \leq -t_{n+m+2,\alpha}$	$P(T \le t_{obs})$

Resumo: Teste de hipótese para duas médias

Para
$$H_0: \mu_1 - \mu_2 = \Delta_0$$
 vs $H_A: \mu_1 - \mu_2 > \Delta_0$

$$H_A: \mu_1 - \mu_2 > \Delta_0$$

Variâncias	Estatística do teste	Valor crítico para $lpha$	Valor de p
Diferentes e conhecidas ($\sigma_1^2 eq \sigma_2^2$)	$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} \sim N(0, 1)$	rejeitar se $z_{obs} \geq z_{\alpha}$	$P(Z \ge z_{obs})$
Iguais e conhecidas ($\sigma_1^2=\sigma_2^2=\sigma^2$)	$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim N(0, 1)$	rejeitar se $z_{obs} \geq z_{\alpha}$	$P(Z \ge z_{obs})$
Iguais e desconhecidas ($\sigma_1^2=\sigma_2^2=\sigma^2$)	$T = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{S_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} \sim t_{n+m-2}$	rejeitar se $t_{obs} \geq t_{n+m+2,\alpha}$	$P(T \ge t_{obs})$

Relembrando: Como encontrar $z_{\alpha/2}$

$$P(|Z| \le z_{\alpha/2}) = P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$$

Procure na tabela o valor de z tal que a probabilidade acumulada até o valor de z, isto é, $P(Z \le z) = \Phi(z)$, seja $1 - \alpha/2$.

Relembrando: Como encontrar $t_{\nu,\alpha/2}$

$$P(-t_{\nu,\alpha/2} < T < t_{\nu,\alpha/2}) = 1 - \alpha$$

Nesse caso, $\nu=n+m-2$ e os valores da distribuição t encontram-se tabelados.

O tempo de incubação do vírus 1 segue uma distribuição normal com média μ_1 e desvio padrão $\sigma_1 = \sqrt{2}$.

Por outro lado, o tempo de incubação do vírus 2 segue uma distribuição normal com média μ_2 e desvio padrão $\sigma_2=1$.

Os tempos de incubação de ambos os vírus são considerados independentes.

Afirma-se que em média, o tempo de incubação do vírus 1 é 3 meses depois do tempo médio de incubação do vírus 2.

Realizaram um estudo de controle e os tempos de incubação registrados foram (tempo em meses):

X: tempo de incubação do vírus 1 (20 observações)

```
## [1] 4.56 3.72 3.45 2.86 4.03 4.08 6.56 4.31 0.42 5.56 5.92 2.65 4.54 4.04 4.23 ## [16] 6.24 6.16 5.46 3.22 2.28
```

Y: tempo de incubação do vírus 2 (22 observações)

```
## [1] 2.44 1.49 2.68 2.60 1.51 1.60 1.47 3.70 2.22 1.78 2.36 1.56 2.98 3.33 2.22 ## [16] 0.58 2.26 2.26 1.92 0.50 1.17 1.70
```


Recentemente, pacientes contaminados com os vírus foram avaliados e suspeita-se que talvez o tempo de incubação do vírus 1 não seja 3 meses depois do tempo médio de incubação do vírus 2.

Definindo as hipóteses as serem testadas:

$$H_0: \mu_1 - \mu_2 = 3$$
 vs $H_A: \mu_1 - \mu_2 \neq 3$

Os dados coletados serão usados para avaliar se temos ou não evidências contra H_0 .

Vamos calcular a média amostral das duas populações: $\bar{x} = 4.21$ e $\bar{y} = 2.02$.

Pelo enunciado, as duas populações são normais e as variâncias são conhecidas: $\sigma_1^2=2$ e $\sigma_2^2=1$. Veja que as populações são normais, variâncias diferentes mas conhecidas. Além disso, n=20 e m=22.

Cálculo da estatística do teste:

$$Z = \frac{(\bar{X} - \bar{Y}) - \Delta_0}{\sqrt{\frac{\sigma_1^2}{n} + \frac{\sigma_2^2}{m}}} = \frac{(4.21 - 2.02) - 3}{\sqrt{\frac{2}{20} + \frac{1}{22}}} = -2.12 = z_{obs}$$

Como é um teste bilateral, o valor de p é dado por:

valor-p =
$$P(|Z| \ge |z_{obs}|) = P(|Z| \ge 2.12) = 2P(Z \le -2.12) = 0.034$$

Para um nível de significância $\alpha=0.01$: Como p-valor = 0.034 > $\alpha=0.01$, não temos evidência para rejeitar $H_0: \mu_1=3+\mu_2$.

Valor crítico para $\alpha=0.01$: $z_{0.005}=2.58$, ou seja, rejeita-se H_0 se $z_{obs}\geq 2.58$ ou $z_{obs}\leq -2.58$.

Dois tipos diferentes de tecido devem ser comparados. Uma máquina de testes *Martindale* pode comparar duas amostras ao mesmo tempo. O peso (em miligramas) para sete experimentos foram:

Tecido	1	2	3	4	5	6	7
Α	36	26	31	38	28	20	37
В	39	27	35	42	31	39	22

Construa um teste de hipótese com nível de significância 5% para testar a hipótese nula de igualdade entre os pesos médios dos tecidos. Admita que a variância é a mesma, e igual a 49.

Quais outras suposições são necessárias para que o teste seja válido?

Adaptado de: Profa. Nancy Garcia, Notas de aula.

Os tecidos do tipo A tem uma média amostral igual a $\bar{X}_A=30.86$. Já os tecidos do tipo B têm média amostral de $\bar{X}_B=33.57$.

A variância populacional é igual a 49, enquanto as variâncias amostrais são 44.14 e 52.62, respectivamente.

Suposições: Como os tamanhos amostrais n=m=7 são pequenos, devemos assumir os pesos dos tecidos dos dois tipos são normalmente distribuídos ou seja, $X_A \sim N(\mu_A, \sigma^2)$ e $X_B \sim N(\mu_B, \sigma^2)$. Além disso são independentes e com variâncias iguais.

Assumimos que as variâncias são iguais e **conhecidas** ($\sigma_1^2 = \sigma_2^2 = 49$). Além disso, n=7 e m=7.

Definindo as hipóteses a serem testadas:

$$H_0: \mu_A - \mu_B = 0$$
 vs $H_A: \mu_A - \mu_B \neq 0$

Como a variância é conhecida, a estatística do teste é dada por

$$Z = \frac{(\bar{X}_A - \bar{X}_B) - \Delta_0}{\sqrt{\sigma^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}}$$

Se a hipótese nula é verdadeira, temos que $\Delta_0 = \mu_A - \mu_B = 0$ e $Z \sim N(0, 1)$. Note que a hipótese alternativa é do tipo \neq , então o teste é bilateral.

Cálculo da estatística do teste:

$$Z = \frac{(\bar{X}_A - \bar{X}_B) - \Delta_0}{\sqrt{\sigma^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} = \frac{(30.86 - 33.57) - 0}{\sqrt{49 \left(\frac{1}{7} + \frac{1}{7}\right)}} = -0.72 = z_{obs}$$

Como é um teste bilateral, o valor de p é dado por:

valor-p =
$$P(|Z| \ge |z_{obs}|) = P(|Z| \ge 0.72) = 2P(Z \le -0.72) = 0.4716$$

Para um nível de significância $\alpha=0.05$: Como p-valor = $0.4716>\alpha=0.05$, não temos evidência para rejeitar $H_0:\mu_A=\mu_B$.

Valor crítico para $\alpha = 0.05$: $z_{0.025} = 1.96$, ou seja, rejeita-se H_0 se $|z_{obs}| \ge 1.96$.

Vamos assumir agora que a variância populacional não fosse conhecida.

Assumindo ainda que as variâncias são iguais mas desconhecidas, vamos então estimar a variância amostral combinada.

Sabendo que $s_1^2 = 44.14$, $s_2^2 = 52.62$ e n = m = 7 temos:

$$s_p^2 = \frac{(n-1)s_1^2 + (m-1)s_2^2}{n+m-2}$$

$$= \frac{(7-1)44.14 + (7-1)52.62}{7+7-2}$$

$$= 48.38$$

Nesse caso, a estatística do teste, sob H_0 , é dada por:

$$T = \frac{\bar{X}_A - \bar{X}_B}{\sqrt{S_p^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} \sim t_{n+m-2}$$

Então,

$$t_{obs} = \frac{\bar{x}_A - \bar{x}_B}{\sqrt{s_p^2 \left(\frac{1}{n_A} + \frac{1}{n_B}\right)}} = \frac{30.86 - 33.57}{\sqrt{48.38 \left(\frac{1}{7} + \frac{1}{7}\right)}} = -0.73$$

Para um nível de significância $\alpha = 0.05$, rejeitamos H_0 se $|t_{obs}| \ge t_{n+m-2,0.025}$.

No caso, $|t_{obs}| = 0.73 < 2.18 = t_{12,0.025}$. Portanto, não temos evidências para rejeitar a hipótese de que as médias dos dois tecidos são iguais.

Exemplo: Tempo de Adaptação

Num estudo comparativo do tempo médio de adaptação (em anos), uma amostra aleatória, de 50 homens e 50 mulheres de um grande complexo industrial, produziu os seguintes resultados:

Estatística	Homens	Mulheres
Média	3.2	3.7
Desvio Padrão	0.8	0.9

Construa um teste de hipótese com nível de significância de 5% para a diferença entre o tempo médio de adaptação para homens e mulheres.

Fonte: Adaptado de Morettin & Bussab, Estatística Básica 5^a edição, pág 365.

Exemplo: Tempo de Adaptação

Veja que não sabemos a variância populacional, mas temos os desvios padrão amostrais e estes são bem próximos. Então iremos assumir que as variâncias são iguais porém desconhecidas.

Nesse caso, vamos então estimar a variância amostral combinada.

Sabendo que $s_H = 0.8$, $s_M = 0.9$ e n = m = 50 temos:

$$s_p^2 = \frac{(n-1)s_H^2 + (m-1)s_M^2}{n+m-2}$$

$$= \frac{(50-1)(0.8)^2 + (50-1)(0.9)^2}{50+50-2}$$

$$= 0.73$$

Exemplo: Tempo de Adaptação

Nesse caso, a estatística do teste, sob H_0 , é dada por:

$$T = \frac{\bar{X}_H - \bar{X}_M}{\sqrt{S_p^2(\frac{1}{n} + \frac{1}{m})}} \sim t_{n+m-2}$$

Então,

$$t_{obs} = \frac{\bar{x}_H - \bar{x}_M}{\sqrt{s_p^2 \left(\frac{1}{n} + \frac{1}{m}\right)}} = \frac{3.2 - 3.7}{\sqrt{0.73 \left(\frac{1}{50} + \frac{1}{50}\right)}} = -2.93$$

Para um nível de significância $\alpha = 0.05$, rejeitamos H_0 se $|t_{obs}| \ge t_{n+m-2,0.025}$.

No caso, $|t_{obs}| = 2.93 > 1.98 = t_{98,0.025}$. Portanto, temos evidências para rejeitar a hipótese de que as médias dos tempos de adaptação são iguais.

Inferência para duas populações: Teste de hipótese para duas proporções

Considere X_1, \ldots, X_{n_1} e Y_1, \ldots, Y_{n_2} duas amostras independentes de ensaios de Bernoulli tal que $X \sim b(p_1)$ e $Y \sim b(p_2)$, com probabilidade p_1 e p_2 de apresentarem uma certa característica.

Temos interesse em testar as hipóteses:

$$H_0: p_1 - p_2 = 0$$
 vs $H_A: p_1 - p_2 \neq 0$ ou $H_A: p_1 - p_2 < 0$ ou $H_A: p_1 - p_2 > 0$

Em aulas anteriores vimos que:

$$\hat{p}_1 \sim N\left(p_1, \frac{p_1(1-p_1)}{n_1}\right)$$
 e $\hat{p}_2 \sim N\left(p_2, \frac{p_2(1-p_2)}{n_2}\right)$

Como as variâncias de \hat{p}_1 e \hat{p}_2 dependem de p_1 e p_2 e, portanto, não são conhecidas, iremos usar uma estimativa dessas variâncias.

Sob H_0 , $p_1 = p_2 = p$, portanto:

$$\hat{p}_1 \sim N\left(p_1, \frac{p(1-p)}{n_1}\right)$$
 e $\hat{p}_2 \sim N\left(p_2, \frac{p(1-p)}{n_2}\right)$

No entanto, *p* é desconhecido.

Iremos utilizar como estimativa para p, a proporção de sucessos na amostra toda (\hat{p}) , sem levar em consideração as populações, ou seja,

$$\widehat{p} = \frac{n_1 \widehat{p}_1 + n_2 \widehat{p}_2}{n_1 + n_2}.$$

Então, para $H_0: p_1 = p_2$ usamos a estatística do teste a seguir:

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1)$$

em que \hat{p} é a proporção de sucessos entre os $n_1 + n_2$ elementos amostrados.

Condições: Todas as quantidades $n_1\hat{p}_1$, $n_1(1-\hat{p}_1)$, $n_2\hat{p}_2$ e $n_2(1-\hat{p}_2)$ devem ser pelo menos igual a 10 para que a aproximação pela normal seja válida.

Para testar $H_0: p_1 - p_2 = 0$, calcula-se a estatística do teste

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1)$$

O valor de p e a conclusão se dá de acordo com a hipótese alternativa na tabela:

Hipótese Alternativa	Valor crítico para $lpha$	Valor de p
$H_A: p_1-p_2\neq 0$	rejeitar H_0 se $ z_{obs} \ge z_{lpha/2}$	$2P(Z \ge \mid z_{obs} \mid)$
$H_A: p_1-p_2<0$	rejeitar H_0 se $z_{obs} \leq -z_{\alpha}$	$P(Z \le z_{obs})$
$H_A: p_1-p_2>0$	rejeitar H_0 se $z_{obs} \geq z_{lpha}$	$P(Z \ge z_{obs})$

O dinheiro que não é gasto hoje pode ser gasto depois.

Será que ao relembrar o aluno deste fato faz com que tome a decisão sobre uma compra de maneira diferente?

O cético pode pensar que relembrar não irá influenciar na decisão.

Podemos utilizar um teste de hipótese:

- H_0 : Relembrar o aluno de que ele pode poupar para comprar algo especial depois não irá influenciar na decisão de gasto do aluno.
- H_A : Relembrar o aluno de que ele pode poupar para comprar algo especial depois irá aumentar a chance dele não gastar em algo no presente.

Alunos de ME414 do segundo semestres de 2015 foram recrutados para um estudo e cada um recebeu a seguinte informação através do Google Forms:

Imagine que você estivesse poupando para comprar algo especial. Em uma visita ao shopping você encontra um DVD da sua série/filme favorita que estava na sua "lista de desejos" há tempos. O DVD está em promoção, custando R\$ 20,00. O que você faria?

56 alunos (Grupo 1) selecionados ao acaso receberam a seguinte opção de resposta:

- · Compraria o DVD.
- · Não compraria o DVD.

54 alunos (Grupo 2) selecionados ao acaso receberam a seguinte opção de resposta:

- · Compraria o DVD.
- · Não compraria o DVD. Pouparia os R\$ 20,00 para algo especial.

Obs: estudo adaptado do artigo *Frederick S, Novemsky N, Wang J, Dhar R, Nowlis S. 2009. Opportunity Cost Neglect. Journal of Consumer Research 36: 553-561.*

	Compraria	Não compraria	Total
Grupo1	31	25	56
Grupo2	29	25	54

Entre os alunos do Grupo 1, a proporção que decide não comprar foi

$$\hat{p}_1 = 25/56 = 0.45$$

Entre os alunos do Grupo 2, a proporção que decide não comprar foi

$$\hat{p}_2 = 25/54 = 0.46$$

Temos evidências contra a hipótese nula, ou seja, relembrar o aluno não influencia na decisão?

Para realizar o teste de hipótese, devemos fazer algumas suposições.

Considere duas populações, X e Y, tal que:

- $X_i \sim b(p_1)$ indica se o i-ésimo aluno do **Grupo 1** decide não comprar o DVD e p_1 é a probabilidade de decidir por não comprar.
- $Y_i \sim b(p_2)$ indica se o i-ésimo aluno do **Grupo 2** decide não comprar o DVD e p_2 é a probabilidade de decidir por não comprar.

Queremos testar:

$$H_0: p_1 = p_2$$
 vs $H_A: p_1 < p_2$

Seja \hat{p}_1 a proporção que decide não comprar entre os n_1 alunos **amostrados do Grupo 1**. Seja \hat{p}_2 a proporção que decide não comprar entre os n_2 alunos **amostrados do Grupo 2**.

Relembrando o TCL:

$$\hat{p}_1 \sim N\left(p_1, \frac{p_1(1-p_1)}{n_1}\right)$$
 e $\hat{p}_2 \sim N\left(p_2, \frac{p_2(1-p_2)}{n_2}\right)$

Condições: Todas as quantidades $n_1\hat{p}_1$, $n_1(1-\hat{p}_1)$, $n_2\hat{p}_2$ e $n_2(1-\hat{p}_2)$ devem ser pelo menos igual a 10 para que a aproximação pela normal seja válida.

Então, para H_0 : $p_1 = p_2$ usamos a estatística do teste a seguir:

$$Z = \frac{(\hat{p}_1 - \hat{p}_2)}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \sim N(0,1),$$

em que \hat{p} é a proporção que decide não comprar entre os $n_1 + n_2$ alunos amostrados:

$$\hat{p} = \frac{25 + 25}{56 + 54} = \frac{50}{110} = 0.45$$

$$\begin{cases} H_0: p_1 = p_2 \\ H_A: p_1 < p_2 \end{cases} \iff \begin{cases} H_0: p_1 - p_2 = 0 \\ H_A: p_1 - p_2 < 0 \end{cases}$$

Calculando a estatística do teste:

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} = \frac{0.45 - 0.46}{\sqrt{(0.45)(0.55)\left(\frac{1}{56} + \frac{1}{54}\right)}} = -0.11 = z_{obs}$$

Para um nível de significância $\alpha=0.05$, rejeitamos H_0 se $z_{obs}\leq -z_{0.05}$. No caso, $z_{obs}=-0.11>-1.64=-z_{0.05}$. Portanto, não temos evidências para rejeitar a hipótese de que as duas proporções são iguais.

valor de p = $P(Z \le z_{obs}) = P(Z \le -0.11) = 0.4562 > \alpha$. Portanto, não rejeitamos H_0 .

Leituras

- · Ross: seções 10.1, 10.2, 10.3, 10.4 e 10.6.
- · OpenIntro: seções 3.2 e 4.3.
- · Magalhães: capítulo 9.

Slides produzidos pelos professores:

- Samara Kiihl
- · Tatiana Benaglia
- Larissa Matos
- · Benilton Carvalho

