BDFZ NOIP 2020

第二试

题目名称	生活在树上	三千世界	大过滤器	碎梦
题目类型	传统型	传统型	传统型	传统型
可执行文件名	tree.exe	thousands.e	x∉ilter.exe	broken.exe
输入文件名	tree.in	thousands.i:	nfilter.in	broken.in
输出文件名	tree.out	thousands.o	utilter.out	broken.out
每个测试点时限	1.0 秒	1.0 秒	0.5 秒	2.0 秒
内存限制	512 MB	512 MB	512 MB	512 MB
测试点/包数目	10	10	7	20
测试点是否等分	是	是	否	是

提交源程序文件名

对于 C++ 语言 tree	e.cpp thousands.c	ppfilter.cpp	broken.cpp
----------------	-------------------	--------------	------------

编译选项

对于 C++ 语言	2 -Wl,stack=536870912
-----------	-----------------------

注意事项

- 1. 选手提交的源文件无需建子文件夹。
- 2. 若无特殊说明,输入文件中同一行内的多个整数、浮点数、字符串等均使用一个空格进行分隔。
- 3. 若无特殊说明,结果比较方式为忽略行末空格、文末回车后的全文比较。
- 4. 程序可使用的栈空间大小与该题内存空间限制一致。
- 5. 评测时采用的机器配置为: Intel(R) Core(TM) i5-6500 CPU @ 3.20GHz, 内存 8GB。上述时限以此配置为准。
- 6. 编译选项中的 <u>-m32</u> 命令意为仅编译在 32 位,64 位系统均可运行的可执行文件,因此选手程序中无法使用 128 位整型。

生活在树上(tree)

【题目描述】

小忆和小艾生活在树上。这颗树 T 有 n 个节点,由 n-1 条边连接。现在树上有一个排列 p,每次小艾可以选择一条边 $(u,v) \in T$,将 p_u 与 p_v 交换,小艾的任务是将排列完成排序。为了估算自己至少要交换多少次,小艾找小忆请教,小忆经过思考,写下了这个式子:

$$\frac{1}{2}\sum_{i=1}^n \operatorname{dist}(i, p_i)$$

小艾经过尝试,发现很巧的是,当前的这个排列刚好达到了小忆给出的下界! 他想 考考你,你能不能给出一个达到这一下界的排序方案呢? 特别地,她还希望你给出的方案的字典序最小。我们认为树上的边是从 $1 \subseteq n-1$ 编号的,方案的字典序是由依次比较操作的边的编号决定的。

【输入格式】

从文件 tree.in 中读入数据。

第一行输入一个正整数 n,表示树的节点数。

接下来 n-1 行每行输入两个正整数 u_i, v_i ,表示第 i 条边 $(1 \le i \le n-1)$ 。

接下来一行 n 个正整数,表示排列 p。

【输出格式】

输出到文件 tree.out 中。

输出一行。按顺序输出字典序最小的解中,操作的边的编号。

【样例 1 输入】

5

5 2

3 2

2 4

1 3

2 1 5 3 4

【样例 1 输出】

2 1 3 4 2

【样例1解释】

初始序列为 2,1,5,3,4。接下来的 5 次操作过程中,序列变为:

- $2, \underline{5}, \underline{1}, 3, 4$
- 2, <u>4</u>, 1, 3, <u>5</u>
- 2, <u>3</u>, 1, <u>4</u>, 5
- <u>1</u>, 3, <u>2</u>, 4, 5
- 1, 2, 3, 4, 5

【样例 2】

见选手目录下的 *tree/tree2.in* 与 *tree/tree2.ans*。

【子任务】

对于 100% 的数据,保证 $1 \le n \le 10^3$,且给出的排列可以在 $\frac{1}{2} \sum_{i=1}^n \operatorname{dist}(i, p_i)$ 次操作内完成排序。

测试点	n	特殊限制
1,2	=5	
3,4	= 30	
5	$=10^{2}$	
6		A0
7		A1
8	$=10^{3}$	B0
9		B1
10		

特殊限制:

- A 表示边集为 $\{(1,2),(2,3),\ldots,(n-1,n)\}$ 。
- B 表示边集为 {(1,2),(1,3),...,(1,n)}。
- 0 表示保证边按照前述所给的顺序给出。
- 1表示可能以任何一个顺序给出。

三千世界 (thousands)

【题目背景】

对于一颗树上的一些路径组成的集合 S,定义 f(S) 为最大的子集 $T \subseteq S$ 的大小,满足 T 内的路径点两两不交。我们认为点对 (x,y) 表示了一条路径。

对于全体路径 $P = \{(x,y) | 1 \le x, y \le n\}$, 试求出

$$\sum_{S\subseteq P} f(S)$$

即你需要对这 2^{n^2} 种集合的 f 值求和。你只需要输出对 998244353 取模的结果。

【输入格式】

从文件 *thousands.in* 中读入数据。

第一行输入一个正整数 n,表示树的节点数量。

接下来 n-1 行,每行输入两个正整数 u,v 表示树上的一条边。

【输出格式】

输出到文件 thousands.out 中。

输出一行一个整数,表示答案对998244353取模的结果。

【样例 1 输入】

2

1 2

【样例 1 输出】

19

【样例 1 解释】

f 值为 0 的有 Ø 这一个。f 值为 2 的必须含有 (1,1) 和 (2,2),而 (1,2) 和 (2,1) 任取,有 4 种。剩下的 11 种集合的 f 值均为 1,因此答案为 $0 \times 1 + 1 \times 11 + 2 \times 4 = 19$ 。

【样例 2 输入】

- 5
- 1 2
- 2 3
- 3 4
- 4 5

【样例 2 输出】

103767551

【子任务】

对于 100% 的数据, 保证 $1 \le n \le 5,000$ 。

测试点	n	特殊限制
1	=2	
2	= 3	
3	= 4	
4	= 5	
5,6	= 200	
7		A
8	= 5,000	В
9,10		

特殊限制:

- A 表示边集为 $\{(1,2),(2,3),\ldots,(n-1,n)\}$ 。
- B 表示边集为 $\{(1,2),(1,3),\ldots,(1,n)\}$ 。

大过滤器 (filter)

【题目背景】

大过滤器理论(The Great Filter)认为,文明在发展过程中存在若干个重要的划分阶段,各阶段之间存在着极难跨越的沟壑,以至于达到最终可以实现星际殖民阶段的文明少之又少。这一理论也被认为是费米悖论的一种解释。

【题目描述】

在本题中,我们认为文明存在 n 个级别,而这 n 个级别又被划分为 k 个阶段。具体地,我们有数组 L_0, L_1, \ldots, L_k ,满足 $0 = L_0 < L_1 < \cdots < L_k = n$,其中第 $L_{j-1} + 1$ 到第 L_i 个文明级别被认为是处于阶段 j 的。

我们认为一张有向图 G = (V, E) 刻画了文明可以通过什么手段达到最终级别。若 $(x,y) \in E$,则说明处于 x 级别的文明可以尝试进步到 y 级别(注意这里并不保证 x < y!)特别地,由于大过滤器的存在,设 $x \in j$ 阶段的文明,那么 y 只可能处于 j 阶段或者 j+1 阶段,如果 y 也属于 j 阶段,那么我们认为这是一次"常规进步",否则 y 属于 j+1 阶段,我们认为这是一次"危险进步"。

我们认为现在人类文明所处的级别为 1 级别,我们的目标是达到 i 级别,我们需要规划一个进步方案。方案可以表示为 1 到 n 的一条路径,我们如此定义一种方案的困难程度:设计数器初始有 s=0,我们按顺序考虑这条路径,每次发生一次"常规进步",那么 $s \leftarrow s \times 2$;最后的 s 值就是该进步方案的困难程度。

对于每个 $1 \le i \le n$,请你判断是否存在一种从 1 级别进步至 i 级别的方案,如果存在,那么请规划一种方案使得困难程度最小。

【输入格式】

从文件 filter.in 中读入数据。

第一行输入三个正整数 n, m, k,表示文明的级别数量,图的边数,以及文明的阶段数。

接下来一行输入 k-1 个正整数,表示 L_1, \ldots, L_{k-1} ,如题意所示。接下来 m 行每行输入两个正整数 x, y 表示一条边。

【输出格式】

输出到文件 filter.out 中。

输出共n行,第i行一个整数,表示从1级别进化到i级别的最小困难程度。由于这个数很大,你只需要输出其mod 998244353的结果即可。如果无法进化到i级别,输出-1。

【样例1输入】

- 6 6 2
- 3
- 1 2
- 2 3
- 3 4
- 4 5
- 5 6
- 2 6

【样例 1 输出】

- 0
- 1
- 2
- 4
- 5
- 2

【样例 2】

见选手目录下的 *filter/filter2.in* 与 *filter/filter2.ans*。

【样例2解释】

注意取模。

【样例 3】

见选手目录下的 *filter/filter3.in* 与 *filter/filter3.ans*。

【子任务】

对于 100% 的数据,保证 $2 \le k \le n \le 3 \times 10^5, 1 \le m \le 5 \times 10^5, 1 \le x, y \le n$ 。

测试点	分值	<i>n</i> ≤	<i>m</i> ≤	<i>k</i> ≤
1	10	10^{2}	200	
2	15	10^{5}	2×10^{5}	40
3	10	3×10^{5}	5×10^5	
4	20	500	10^{3}	
5	20	3×10^{4}	6×10^{4}	
6	15	10^{5}	2×10^{5}	n
7	10	3×10^5	5×10^5	

【提示】

本题输入文件在 10 MB 以内,输出文件在 5 MB 以内,请使用较快的输入输出方式。

碎梦 (broken)

【题目背景】

「从我又小又拥挤的房间」

「从我堆满了贪念的床边」

「飞向总有容身处的世界」

「却碎裂 却碎裂 |

——「碎梦 | COP, 洛天依

多年以后,算法竞赛的一切对于忆哀来说是什么呢?一个光辉而没有结局的梦 罢了。

永恒的梦, 失落的梦, 无望的梦, 破碎的梦。

仿佛是想到了什么,她又从纸箱里拿出落了几层灰的笔记本,好不容易找出旧时代的充电插头。随着散热风扇的嗡鸣声,一个尘封的世界再次展现在她眼前,还觉得自己只要稍微看看问题,就有可能抽丝剥茧理清问题的思路,那只是逞强罢了。

"第二类斯特林数怎么求来着?"这个问题突然从她脑中浮现。

是啊,她曾经深深扎入各种组合计算中流连忘返,但如今已经连这些基础也不甚记得了。

【题目描述】

第二类斯特林数,是说将 n 个数划分进 m 个非空集合的方案数。我们接下来记为 f(n,m)。

忆哀的程序使用的是一个很朴素的递推式: f(n,m) = f(n-1,m-1) + mf(n-1,m), 初值为 f(0,0) = 1, $f(0,m) = 0 (m \neq 0)$, 这个递推式的意义是不难解释的: 要么第 n 个元素是自成一个集合,要么就将其分配给已有的 m 个集合之一。

忆哀的程序是这样的:

(你可以认为数组越界的部分值为 0,并且电脑开的下 $(n+1) \times (m+1)$ 的数组)最后忆哀的程序理应输出 $f(n,m) \mod 998244353$,但出了一个问题:由于种种原

因,在计算完 f(x,y) 后,内存的写入产生了意外,在内存中 f(x,y) 被赋值为了一个数 z,这样的事件对于不同的 (x,y) 总共发生了 k 次。

请你输出经过了这 k 次意外后,实际上忆哀的程序给出的 f(n,m) mod 998244353 为多少。

【输入格式】

从文件 broken.in 中读入数据。

第一行输入三个整数 n, m, k,意义如题目描述所示。

接下来 k 行每行输入三个数 x_i, y_i, z_i ,表示 $f(x_i, y_i)$ 在计算完成后实际写入的值为 z_i 。

【输出格式】

输出到文件 broken.out 中。

输出一个整数,表示计算得到的实际 f(n,m) 结果。

【样例1输入】

5 3 1

1 0 1

【样例 1 输出】

31

【样例 2 输入】

1000 100 0

【样例 2 输出】

958221900

【样例 3】

见选手目录下的 broken/broken3.in 与 broken/broken3.ans。

【子任务】

对于 100% 的数据,保证 $1 \le x_i \le n \le 9 \times 10^8, 0 \le y_i \le m \le \min(n, 10^5), 0 \le k \le 20, 0 \le y_i \le x_i, 0 \le z_i < 998244353, (x_i < x_{i+1}) \lor (x_i = x_{i+1} \land y_i < y_{i+1})$ 。

测试点	$n \leq$	<i>m</i> ≤	k =
1,2,3,4,5,6	10^{3}	500	20
7,8,9	9 ×10 ⁸	10	20
10,11		10^{2}	0
12,13,14			20
15,16,17		500	
18		10^{5}	0
19,20		10	20