Correction

- 1.a Soit M un point du plan et $M'=s_{(Ox)}(M)$. On a MF=M'F et MF'=M'F' donc $M\in\Gamma\Leftrightarrow M'\in\Gamma$. Soit M un point du plan et $M'=s_{(Oy)}(M)$. On a MF=M'F' et MF'=M'F donc $M\in\Gamma\Leftrightarrow M'\in\Gamma$. Ainsi Γ est symétrique par rapport aux axes (Ox) et (Oy) (et par suite par rapport au point O).
- 1.b Soit $M \begin{vmatrix} x \\ 0 \end{vmatrix}$ un point de l'axe (Ox). MF = |x-1| et MF' = |x+1| donc $M \in \Gamma \Leftrightarrow |x-1||x+1| = 1 \Leftrightarrow x^2 1 = \pm 1 \Leftrightarrow x = \pm \sqrt{2}$ ou x = 0. Par suite $\Gamma \cap (Ox) = \left\{A, O, A'\right\}$ avec $A \begin{vmatrix} \sqrt{2} \\ 0 \end{vmatrix}$ et $A' \begin{vmatrix} -\sqrt{2} \\ 0 \end{vmatrix}$.

 $\text{Soit } M \begin{vmatrix} 0 \\ y \text{ un point de 1'axe } (Oy) \text{ . } MF = MF' = \sqrt{1+y^2} \text{ donc } M \in \Gamma \Leftrightarrow 1+y^2 = 1 \Leftrightarrow y = 0 \text{ .}$

Par suite $\Gamma \cap (Oy) = \{O\}$.

1.c Si OM>2 alors $FM\geq OM-OF>1$ et F'M>1 donc MF.MF'>1 et $M\not\in\Gamma$. Par contraposée $M\in\Gamma\Leftrightarrow OM\leq 2$ et donc Γ est incluse dans le disque de centre O et de rayon 2 . ou :

$$OM^{2} = \frac{1}{4} \left\| \overrightarrow{MF} + \overrightarrow{MF'} \right\|^{2} = \frac{1}{4} \left(MF^{2} + MF'^{2} + 2\overrightarrow{MF} \cdot \overrightarrow{MF'} \right)$$

$$= \frac{1}{4} \left(MO^{2} + OF^{2} + 2\overrightarrow{MO} \cdot \overrightarrow{OF} + MO^{2} + OF'^{2} + 2\overrightarrow{MO} \cdot \overrightarrow{OF'} + 2\overrightarrow{MF} \cdot \overrightarrow{MF'} \right) \le \frac{1}{2} OM^{2} + 1$$

donc $OM^2 \le 2$ puis $OM \le \sqrt{2}$.

- 2.a $MF^2 = (\rho \cos \theta 1)^2 + (\rho \sin \theta)^2 = \rho^2 + 1 2\rho \cos \theta$ et $MF'^2 = (\rho \cos \theta + 1)^2 + (\rho \sin \theta)^2 = \rho^2 + 1 + 2\rho \cos \theta$.
- 2.b $M \in \Gamma \Leftrightarrow MF.MF' = 1 \Leftrightarrow MF^2.MF'^2 = 1 \Leftrightarrow (\rho^2 + 1 2\rho\cos\theta)(\rho^2 + 1 + 2\rho\cos\theta) = 1$ $\Leftrightarrow \rho^4 + 2\rho^2(1 2\cos^2\theta) = 0 \Leftrightarrow \rho^4 = 2\rho^2\cos2\theta$
- 2.c Notons Γ' la courbe d'équation polaire $\rho = \sqrt{2\cos 2\theta}$. Par ce qui précède $\Gamma' \subset \Gamma$. Inversement, soit M un point de Γ . Si M = O alors $M \in \Gamma'$ car $O \in \Gamma'$ (prendre $\theta = \pi/4$).

Si $M \neq O$ alors on peut choisir un représentant polaire (ρ, θ) du point M avec $\rho > 0$. La relation $\rho^4 = 2\rho^2 \cos 2\theta$ implique alors $\rho^2 = 2\cos 2\theta$ d'où $\cos 2\theta \ge 0$ et $\rho = \sqrt{2\cos 2\theta}$.

La relation $\rho^2 = 2\rho^2 \cos 2\theta$ implique alors $\rho^2 = 2\cos 2\theta$ d'où $\cos 2\theta \ge 0$ et $\rho = \sqrt{2}\cos 2\theta$ Ainsi $M \in \Gamma'$. Finalement $\Gamma = \Gamma'$.

3.a $\theta \mapsto \rho(\theta) = \sqrt{2\cos 2\theta}$ est définie sur les intervalles $\left[-\pi/4 + k\pi, \pi/4 + k\pi\right]$ donc $\theta \mapsto M(\theta)$ aussi $\rho(\theta + \pi) = \rho(\theta)$ donc $M(\theta + \pi) = s_O(M(\theta))$.

On peut limiter l'étude à $\left[-\pi/4,\pi/4\right]$, courbe complétée par la symétrie de centre O. $\rho(-\theta)=\rho(\theta)$ donc $M(-\theta)=s_{(Ox)}(M(\theta))$.

On peut limiter l'étude à $\left[0,\pi/4\right]$, courbe complétée par la symétrie d'axe $\left(Ox\right)$.

3.b $\theta \mapsto \rho(\theta)$ est dérivable sur $\left[0, \pi/4\right]$ et $\rho'(\theta) = -\frac{2\sin 2\theta}{\sqrt{2\cos 2\theta}}$. $\rho'(\theta) = 0 \Leftrightarrow \theta = 0$.

θ	0		$\pi/4$
$\rho'(\theta)$	0	_	
$\rho(\theta)$	$\sqrt{2}$	\searrow	0

Etude en $\theta=0$: $\rho(0)=\sqrt{2}$ et $\rho'(0)=0$. Tangente orthoradiale. 3.c

Etude en
$$\theta = \pi/4$$
: Passage par l'origine $\frac{\theta}{\rho(\theta)} \begin{vmatrix} \pi/4 \\ + 0 \end{vmatrix}$

La droite $\theta = \pi/4$ est tangente à la courbe en ce point.

Pour déterminer les points de tangentes horizontales, introduisons $y(\theta) = \rho(\theta) \sin \theta$ et déterminons les 3.d valeurs d'annulation de $y'(\theta)$. En effet, tout point en dehors de l'origine étant régulier, l'annulation de

 $y'(\theta)$ en un tel point équivaut à l'horizontalité de la tangente en ce point car $x'(\theta)$ y sera non nul. , $y'(\theta) = 0 \Leftrightarrow \theta = \pi/6 \text{ dans } [0, \pi/4]$.

 $\overrightarrow{FA(\theta)} = \overrightarrow{FO} + \overrightarrow{OM(\theta)} + \overrightarrow{M(\theta)A(\theta)} \text{ donc } \overrightarrow{FA(\theta)} \Big| \begin{cases} -1 + \rho \cos \theta + \cos 2\theta \\ \rho \sin \theta + \sin 2\theta \end{cases} \text{ avec } \rho = \sqrt{2\cos 2\theta}$ $FA(\theta)^{2} = (-1 + \rho\cos\theta + \cos 2\theta)^{2} + (\rho\sin\theta + \sin 2\theta)^{2}$

 $= 2 + \rho^2 - 2\rho\cos\theta + 2\rho\cos\cos2\theta - 2\cos2\theta + 2\rho\sin\theta\sin2\theta$

 $=2+\rho^2-2\rho\cos\theta+2\rho\cos\theta-2\cos2\theta=2$

Posons $A(\theta)\begin{vmatrix} x(\theta) \\ y(\theta) \end{vmatrix}$ avec $x(\theta) = \sqrt{2\cos 2\theta}\cos \theta + \cos 2\theta$ et $y(\theta) = \sqrt{2\cos 2\theta}\sin \theta + \sin 2\theta$. 4.b

$$\operatorname{Sur}\left[0,\pi/4\right[,\ x'(\theta) = -\frac{\sin 3\theta}{\sqrt{2\cos 2\theta}} - 2\sin 2\theta \le 0 \ \operatorname{donc}\left[\frac{\theta}{x(\theta)} \left| \begin{array}{cc} 0 & \pi/4 \\ \sqrt{2} + 1 & \searrow & 0 \end{array}\right].$$

De plus sur $[0, \pi/4]$, $y(\theta) > 0$ donc $A(\theta)$ décrit la portion du cercle \mathcal{C} correspondant aux abscisses et ordonnées strictement positives.

A partir d'un point A de la portion précédente du cercle $\mathcal C$, on forme l'intersection du cercle de centre 4.c A et de rayon 2 avec le cercle \mathcal{C}' et on y considère le point B d'ordonnée différente de celle de A. De part ce qui précède, il existe $\exists \theta \in]0, \pi/4[$ tel que $A = A(\theta)$ et $B = B(\theta)$.

Le point $M(\theta)$ est alors le milieu du segment [A, B].

