ANNEAUX - CORPS

I/ Anneaux

1. Distributivité

Soit E un ensemble muni de 2 opérations \circ et \star .

On dit que la loi * est distributive sur la loi ° ssi :

$$\forall a,b,c \in E \mid a \star (b \circ c) = (a \star b) \circ (a \star c) \text{ et } (b \circ c) \star a = (b \star a) \circ (c \star a)$$

Exemples:

- \triangleright Dans $\mathbb{N}, \mathbb{Z}, \mathbb{R}$ ou \mathbb{C} , la multiplication est distributive par rapport à l'addition
- \triangleright Dans $\mathcal{P}(E)$ on rappelle que $A \triangle B = (A \cup B) (A \cap B) = (A B) \cup (A C)$
 - ∩ est distributive par rapport à ∪
 - ∪ est distributive par rapport à ∩
 - \cap est distributive par rapport à Δ
 - Δ n'est pas distributive par rapport à \cap
- \triangleright Dans l'ensemble $\mathbb{R}^{\mathbb{R}}$ des fonctions de \mathbb{R} dans \mathbb{R} ,
 - on rappelle que f + g est définie par $\forall x \in \mathbb{R} / (f + g)(x) = f(x) + g(x)$.
 - La loi est distributive à droite sur l'addition, mais pas à gauche.
 - Exemple $x \xrightarrow{f} x^2$, $x \xrightarrow{g} x$, $x \xrightarrow{h} -x$
- \triangleright Soient E un espace vectoriel, $\mathcal{L}(E)$ l'ensemble des applications linéaires de E dans E (endomorphismes).
 - Dans $\mathcal{L}(E)$, la loi \circ est distributive sur l'addition.

2. Définition

Un ensemble A muni de 2 opérations + et \star . est un **anneau** si

- \Box (A, +) est un groupe commutatif.
 - On note 0 son élément neutre. On note -x l'opposé de l'élément x.
- □ La loi ★ est associative
- \Box A possède un élément neutre pour la loi \star . On le note 1.
- □ La loi ★ est distributive par rapport à la loi +

Si, de plus, la loi \star est commutative, on dit que $(A, +, \star)$ est un **anneau commutatif**.

La loi \star est souvent noté multiplicativement : \times , ou .

Si A est muni de deux lois notées autrement que + et . , bien distinguer la loi de groupe (la $1^{\text{ère}}$) de l'autre. Ne pas confondre les deux neutres :

le « zéro » 0 neutre pour la loi + (la confusion avec le zéro d'un autre anneau n'étant pas gênante)

l' « unité » 1 neutre pour la loi \star (ou 1_A si il y a possibilité de confondre avec l'unité d'un autre anneau).

Exemples d'anneaux :

- \triangleright $(\mathbb{Z},+,\times),(\mathbb{R},+,\times),(\mathbb{C},+,\times),(\mathbb{Z}/n\mathbb{Z},+,\times)$ sont des anneaux commutatifs

> Soient E un ensemble quelconque, et (A, +, *) un anneau.

Pour 2 applications f et g de E dans A, on définit $f \oplus g$ et $f \otimes g$ par

$$\forall x \in E / (f \oplus g)(x) = f(x) + g(x)$$
 et $(f \otimes g)(x) = f(x) \star g(x)$

Alors (A^E, \oplus, \otimes) est un anneau. Il est commutatif si A est commutatif.

Exemples : Fonctions de $\mathbb R$ dans $\mathbb R$, suites de réels, polynômes ...

- Soit E un ensemble quelconque. $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif.
- Matrices $n \times n : (\mathcal{M}_2(\mathbb{R}), +, \times)$ est un anneau (non commutatif si $n \ge 2$)
- \triangleright Endomorphismes d'un espace vectoriel : $(\mathcal{L}(E), +, \circ)$ est un anneau (non commutatif si dim $(E) \geqslant 2$)
- Anneau produit : Soient $(A, +, \times)$ et $(B, +, \times)$ deux anneaux. On définit sur $A \times B$ une addition et une multiplication en posant $(a,b) \oplus (a',b') = (a+a',b+b')$ et $(a,b) \otimes (a',b') = (a \times a',b \times b')$ $(A \times B, \oplus, \otimes)$ est un anneau. Il est commutatif si A et B le sont.
- Soit $\mathbb{Z}\left[\sqrt{2}\right]$ l'ensemble des réels de la forme $a+b\sqrt{2}$ où a et b sont des entiers quelconques. $\left(\mathbb{Z}\left[\sqrt{2}\right],+,\times\right)$ est un anneau commutatif.

De même l'ensemble $\mathbb{Z}[i]$ des complexes de la forme a + bi où a et b sont des entiers quelconques.

Soient $(A, +, \star)$ et B une partie de A. $(B, +, \star)$ est appelé sous-anneau de A si B est un anneau et s'il a le même élément neutre pour \star .

On montre que $(B, +, \star)$ est un sous-anneau de $A \Leftrightarrow \begin{cases} 1_A \in B \\ \forall x, y \in B / x - y \in B \\ \forall x, y \in B / x \star y \in B \end{cases}$

3. Règles de calcul dans un anneau

Soit $(A, +, \star)$ un anneau

- $\forall x \in A, x \star 0 = 0 \star x = 0$ on dit que 0 est **absorbant** pour la loi.
- Si 0 =1, A est réduit à un élément : On exclut généralement cette éventualité.
- $\forall x, y \in A, x \star (-y) = (-x) \star y = -(x \star y)$. On écrit $-x \star y$. $\forall x, y \in A, (-x) \star (-y) = x \star y$

Pour $n \in \mathbb{N}$ et $x \in A$ on rappelle (définition) que :

$$nx = x + x + ... + x$$
, $(-n)x = -(nx)$, $0x = 0$ (plus précisément $0_{\mathbb{Z}}x = 0_{\mathbb{A}}$)

On a alors

- $\forall n, p \in \mathbb{Z}, \forall x, y \in A, (n+p)x = nx + px$ et n(x+y) = nx + ny(Attention : ça ressemble à la distributivité, mais ce n'est pas la distributivité)
- $\forall n \in \mathbb{Z}, \forall x, y \in A, x \star (n y) = n(x \star y) = (n x) \star y$. On écrit $n x \star y$.

(Attention : ça ressemble à l'associativité, mais ce n'est pas l'associativité)

Attention : distinguer le produit **interne** $a \star b$, avec $a, b \in A$, et le produit **externe** n a, avec $n \in \mathbb{Z}$ et $a \in A$

Sommes

•
$$\forall n \in \mathbb{N}, \forall x \in A, (1-x) \star (1+x+...+x^n) = (1-x) \star \sum_{k=0}^n x^k = \left(\sum_{k=0}^n x^k\right) \star (1-x) = 1-x^{n+1}$$

•
$$\forall n \in \mathbb{N}, \forall x \in A, (1+x) \star (1-x+x^2...-x^{2n-1}+x^{2n}) = (1+x) \star \sum_{k=0}^{2n} (-1)^k x^k = \left(\sum_{k=0}^{2n} (-1)^k x^k\right) \star (1+x) = 1+x^{2n+1}$$

Éléments qui commutent

Soient $(A, +, \star)$, x et y deux éléments de A.

On dit que x et y commutent ssi $x \star y = y \star x$

Remarques:

Si l'anneau est commutatif, tous les éléments commutent 2 à 2

Si x commute avec y et avec z, alors x commute avec y + z

Formule du binôme

Soient a, b deux éléments qui **commutent** d'un anneau $(A, +, \star)$ et $n \in \mathbb{N}$.

$$(a+b)^{n} = \sum_{k=0}^{n} {n \choose k} a^{k} \star b^{n-k} = \sum_{k=0}^{n} {n \choose k} a^{n-k} \star b^{k}$$

Remarque: on a aussi avec les mêmes hypothèses: $a^{n+1} - b^{n+1} = (a-b) \star \sum_{k=0}^{n} a^k \star b^{n-k}$

Remarque: C'est faux a priori si les éléments ne commutent pas. Exemple $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}^2$

4. Morphisme d'anneaux

Définition:

Soient $(A, +, \star)$ et $(B, +, \times)$ deux anneaux et f une application de A dans B.

On dit que f est un morphisme d'anneaux si et seulement si :

$$\Box f(1_A) = 1_B$$

$$\forall x, y \in A / f(x+y) = f(x) + f(y)$$

$$\neg \forall x, y \in A / f(x \star y) = f(x) \times f(y)$$

L'ensemble $Ker(f) = \{x \in A / f(x) = 0_B\}$ est le noyau de f.

Propriétés :

Si f est un morphisme d'anneaux de A dans B, alors :

$$\Box f(0_A) = 0_B \text{ (i.e. } 0_A \in Ker(f) \text{)}$$

$$\Box$$
 f est injective si et seulement si $Ker(f) = \{0_A\}$

 \Box Si x est inversible dans A, alors f(x) est inversible dans B

Exemples:

- \blacktriangleright L'application $x \to x$ est un morphisme injectif de l'anneau $(\mathbb{Z}, +, \times)$ dans l'anneau $(\mathbb{R}, +, \times)$.
- L'application $x \to x \mod n$ est un morphisme de l'anneau $(\mathbb{Z}, +, \times)$ dans l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$. Son noyau est l'ensemble $n\mathbb{Z}$ des multiples de n.
- \triangleright Soit *P* une matrice $n \times n$ inversible.

L'application $M_n(\mathbb{R}) \to M_n(\mathbb{R})$ est un isomorphisme d'anneaux (morphisme bijectif) $A \to PAP^{-1}$

- Soit \mathcal{B} une base de \mathbb{R}^n . L'application $f \mapsto M_n(\mathbb{R}) \to Mat_{\mathcal{B}}(f)$ est un isomorphisme d'anneaux.
- ightharpoonup L'application f de \mathbb{R} dans $M_n(\mathbb{R})$ telle que $f(x) = \begin{pmatrix} x & 0 \\ 0 & 0 \end{pmatrix}$ n'est pas un morphisme d'anneaux car $f(1) \neq I_n$.

5. Anneau intègre

Définitions:

Soient $(A,+,\star)$ un anneau et a un élément de A différent de 0.

On dit que a est un **diviseur de zéro** si $\exists b \in A - \{0\} / b \star a = 0$ **ou** $\exists c \in A - \{0\} / a \star c = 0$

On dit que a est **régulier** si et seulement si $\forall b, c \in A / (a \star b = a \star c \Rightarrow b = c)$ et $(b \star a = c \star a \Rightarrow b = c)$

Remarques : 0 n'est pas régulier.

si a est inversible, alors a n'est pas diviseur de 0 et a est régulier

Propriété : Soit $a \in A - \{0\}$. a est régulier si et seulement si a n'est pas un diviseur de 0.

- \triangleright (\mathbb{Z} ,+,.) n'a pas de diviseurs de zéro. Tout entier est régulier, mais seuls -1 et 1 sont inversibles.
- \triangleright Dans l'anneau $(\mathbb{R}^{\mathbb{R}},+,\times)$ des fonctions de \mathbb{R} dans \mathbb{R} étudier fg pour

$$f(x) = x + |x|$$
 et $g(x) = x - |x|$, puis pour $f(x) = \begin{cases} 0 & \text{si } x \notin \mathbb{Q} \\ 1 & \text{si } x \in \mathbb{Q} \end{cases}$ et $g(x) = \begin{cases} 1 & \text{si } x \notin \mathbb{Q} \\ 0 & \text{si } x \in \mathbb{Q} \end{cases}$

 \triangleright Dans l'anneau $(\mathcal{M}_n(\mathbb{R}),+,\times)$ une matrice est régulière si et seulement si elle est inversible :

Si A n'est pas inversible, son noyau n'est pas réduit à $\{0\}$ donc 0 est valeur propre.

Il existe donc P inversible telle que $P^{-1}AP = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & * & \cdots & * \\ \vdots & \vdots & & \vdots \\ 0 & * & \cdots & * \end{pmatrix} = A'$.

Alors
$$A'$$
 $\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$ $A' = 0$ donc en posant $B = P \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$ P^{-1} , $AB = BA = 0$

Exemple: Étudier AB et BA pour $A = \begin{pmatrix} 2 & -1 \\ -2 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$

Définition:

L'anneau $(A,+,\star)$ est **intègre** si et seulement si il n'a aucun diviseur de 0.

i.e. L'anneau $(A, +, \star)$ est intègre si et seulement tout élément non nul de A est régulier.

Exemples:

- \triangleright $(\mathbb{Z},+,.)$ $(\mathbb{R},+,.)$ $(\mathbb{Q},+,.)$ sont des anneaux intègres.
- \triangleright L'anneau des matrices carrées $(\mathcal{M}_n(\mathbb{R}), +, \times)$ n'est pas intègre (si $n \ge 2$)
- \triangleright L'anneau des endomorphismes $(\mathcal{L}(E),+,\circ)$ n'est pas intègre (si dim $(E)\geqslant 2$)
- \triangleright $(\mathbb{Z}/6\mathbb{Z},+,\times)$ n'est pas intègre
- \triangleright $(\mathbb{Z}/5\mathbb{Z},+,\times)$ est intègre
- ightharpoonup Si $Card(E) \geqslant 2$, L'anneau $(\mathcal{P}(E), \Delta, \cap)$ n'est pas intègre.

6. Groupe des unités d'un anneau

Soit $(A, +, \star)$ un anneau **commutatif**.

L'ensemble A^* des éléments de A inversibles pour la loi \star est un groupe pour la loi \star . C'est le **groupe des unités** de l'anneau A.

Exemples:

- \triangleright Le groupe des unités de $(\mathbb{Z}, +, \times)$ est $\{-1, +1\}$
- $\text{ Le groupe des unités de } \left(\mathbb{R}\,,+,\times\right) \text{ est } \mathbb{R}^* = \mathbb{R}\,-\left\{0\right\}, \text{ celui de } \left(\mathbb{C}\,,+,\times\right) \text{ est } \mathbb{C}^* = \mathbb{C}\,-\left\{0\right\}$
- \triangleright Le groupe des unités de $(\mathcal{M}_n(\mathbb{R}),+,\times)$ est le groupe GL(n) des matrices $n\times n$ inversibles
- Le groupe des unités de $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est l'ensemble des entiers $k \in \{1, 2, ..., n-1\}$ qui sont premiers avec n. l'ordre de ce groupe est $\varphi(n)$ (indicatrice d'Euler)
- \blacktriangleright Le groupe des unités de $(\mathcal{P}(E), \Delta, \cap)$ ne contient que l'élément neutre de $\cap : E$.

8. Anneau des polynômes

Soit $(A, +, \star)$ un anneau **commutatif**.

Un polynôme à coefficients dans A est une suite d'éléments de A nulle à partir d'un certain rang.

La suite
$$[a_0, a_1, a_2, ..., a_n, 0, ... 0, ...]$$
 est notée $a_0 + a_1 X + a_2 X^2 + ... + a_n X^n = \sum_{k=0}^{n} a_k X^k$

Noter que des coefficients peuvent être nuls et ainsi, quand $a_{n+1} = 0$, on a $\sum_{k=0}^{n} a_k X^k = \sum_{k=0}^{n+1} a_k X^k$

Si $P = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n$ et $a_n \neq 0$, on dit que P est de **degré** n:

Si $P \neq 0$, deg(P) est le **dernier** indice n tel que $a_n \neq 0$.

On définit la somme de 2 polynômes comme la somme des suites :

$$(a_n) + (b_n) = (a_n + b_n)$$
: $\sum_{k=0}^{n} a_k X^k + \sum_{k=0}^{m} b_k X^k = \sum_{k=0}^{\max(n,m)} (a_k + b_k) X^k$

On définit le produit de 2 polynômes comme le produit de Cauchy :

$$(a_n) + (b_n) = (c_n) \text{ où } c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_n b_0 = \sum_{k=0}^n a_k b_{n-k}$$

$$(a_0 + a_1 X + a_2 X^2 + \dots) (b_0 + b_1 X + b_2 X^2 + \dots) = a_0 b_0 + (a_1 b_0 + a_0 b_1) X + (a_2 b_0 + a_1 b_1 + a_0 b_2) X^2 + \dots$$
en particulier $X^n X^m = X^{n+m}$

Muni de ces 2 opérations, l'ensemble A[X] des polynômes est un anneau commutatif.

Si l'anneau A est intègre, l'anneau A[X] est intègre et dans ce cas, pour deux polynômes P et Q non nuls, on a $\deg(PQ) = \deg(P) + \deg(Q)$

Remarque : Dans
$$(\mathbb{Z}/6\mathbb{Z})[\mathbb{X}]$$
, $(1+2X+3X^2)(1-2X)=1-X^2-6X^3=1-X^2$

Unités de l'anneau $\mathbb{R}[X]$: L'ensemble des polynômes constants (degré 0) non nuls

Unités de l'anneau $\mathbb{Z}[X]$: $\{-1,+1\}$

Dans $\mathbb{Z}/4\mathbb{Z}[X]$, (1-2X)(1+2X)=1 donc (1-2X) est inversible bien que son degré soit 1.

Soient $(B,+,\star)$ un anneau **commutatif** et $(A,+,\star)$ un sous-anneau de B.

Pour tout $\alpha \in B$ et tout polynôme $P = a_0 + a_1 X + a_2 X^2 + ... + a_n X^n$ à coefficients dans A, on pose $P(\alpha) = a_0 + a_1 \alpha + a_2 \alpha^2 + ... + a_n \alpha^n$.

Alors, α étant fixé, l'application $\varphi_{\alpha}: A[X] \to B$ est un morphisme d'anneaux.

Son image, notée $A[\alpha] = \{P(\alpha) \mid P \in [X]\}$ est un sous-anneau de B qui contient A.

Exemples

$$ightharpoonup \mathbb{Z} \subset \mathbb{Z} \left\lceil \sqrt{2} \right\rceil \subset \mathbb{R}$$
.

Tout élément de $\mathbb{Z} \lceil \sqrt{2} \rceil$ s'écrit de manière unique $x = a + b\sqrt{2}$

Le noyau de $\, \varphi_{\sqrt{2}} \,$ est l'ensemble des polynômes divisibles par $\, X^2 - 2 \,$.

L'étude des unités de $\mathbb{Z}\left[\sqrt{2}\right]$ permet de résoudre l'équation de (Pell-)Fermat $x^2 - 2y^2 = \pm 1$, x et $y \in \mathbb{Z}$

- ightharpoonup Résultats analogues pour $\mathbb{Z} \subset \mathbb{Z}[i] \subset \mathbb{C}$. Les unités de $\mathbb{Z}[i]$ sont $\{1,i,-1,-i\}$
- \triangleright $\mathbb{R}[i] = \mathbb{C}$

II/ Corps

1. Définition - Exemples

Un ensemble K muni de 2 opérations + et \times . est un **corps** ($K\ddot{o}rper$) si

- \Box $(K,+,\times)$ est un anneau.
 - On note 0 son élément neutre de + et 1 l'élément neutre de ×
- \Box Tout élément de $K \{0\}$ a un inverse pour la loi \times
- Si, de plus, la loi \times est commutative, on dit que $(K,+,\times)$ est un **corps commutatif**. Quand on parle de **corps**, on sous-entend fréquemment **corps commutatif** (*Field*)

Remarque (théorème de Wedderburn) Tout corps fini est nécessairement commutatif.

Exemples:

- \triangleright $(\mathbb{R},+,\times),(\mathbb{C},+,\times),(\mathbb{Q},+,\times)$ sont des corps commutatifs
- \triangleright L'anneau ($\mathbb{Z},+,\times$) n'est pas un corps
- \triangleright L'anneau $(\mathbb{Z}/n\mathbb{Z},+,\times)$ est un corps si et seulement si n est premier. Si n=p est premier, on le note \mathbb{F}_p

- ► L'anneau $(\mathcal{M}_n(\mathbb{R}),+,\times)$ des matrices $n\times n$ n'est pas un corps (si $n\geqslant 2$)
- Soit $\mathbb{Q}\left[\sqrt{2}\right]$ l'ensemble des réels de la forme $a+b\sqrt{2}$ où a et b sont des rationnels quelconques. $\left(\mathbb{Q}\left[\sqrt{2}\right],+,\times\right)$ est un corps commutatif.

Le « corps des nombres constructibles » (à la règle et au compas) est un corps.

Avec la règle et le compas, on peut construire :

la perpendiculaire issue de M à une droite

la parallèle issue de M à une droite

Par conséquent, 2 réels constructibles étant donnés, on peut construire :

leur somme

leur différence

source : wikipedia

2. Propriétés

- Tout corps est un anneau intègre. (réciproque fausse)
- Propriété caractéristique :

Dans un corps (commutatif) K, si $a \ne 0$, l'équation ax + b = 0 a une solution unique $x = -a^{-1}b$.

On la note souvent $-\frac{b}{a}$.

• Dans un corps (commutatif) K, tout polynôme de degré n a au plus n racines.

3. Sous-corps

Soient $(K, +, \times)$ un corps et A une partie de K.

A est un **sous-corps** de K si et seulement si

- \Box $(A,+,\times)$ est un sous-anneau de K.
- \Box Tout élément de $A \{0\}$ a un inverse dans A pour la loi \times (i.e A est un corps)

Dans ce cas on dit aussi que K est une **extension** de A.

Propriété caractéristique :

- $0 \in A, 1 \in A$
- \Box A est stable par les opérations + et \times

Exemples:

- \triangleright $\mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$
- $ightharpoonup \mathbb{Q}\left[\sqrt{2}\right] \subset \mathbb{Q}\left[\sqrt{2},\sqrt{3}\right] \subset \mathbb{R}$

4. Morphisme de corps

Définition:

Soient $(A,+,\times)$ et $(B,+,\times)$ deux corps et f une application de A dans B.

On dit que f est un morphisme de corps si et seulement si c'est un morphisme d'anneaux :

$$\Box f(1_A) = 1_B$$

$$\neg \forall x, y \in A / f(x+y) = f(x) + f(y)$$

$$\neg \forall x, y \in A / f(xy) = f(x)f(y)$$

Propriétés:

- □ Tout morphisme de corps est injectif.
- \Box Si f est un morphisme de corps $f(x^{-1}) = (f(x))^{-1}$

5. Caractéristique d'un corps

Soit $(K,+,\times)$ un corps (commutatif) On note ici e l'élément neutre de \times

Soit
$$f: \mathbb{Z} \to K$$
 (Rappel: si $n > 0$, $n.e = e + e + ... + e$, $(-n).e = -(n.e)$ et $0.e = 0_K$)

Alors f est un morphisme du groupe $(\mathbb{Z},+)$ dans le groupe (K,+).

Son noyau est donc un sous-groupe de \mathbb{Z} , donc de la forme $n\mathbb{Z}$.

• Si n = 0, on dit que K est un corps de caractéristique nulle. Dans ce cas, on a $\forall x \in K / \forall n \in \mathbb{Z} / n.x = 0 \Leftrightarrow (n = 0 \text{ ou } x = 0)$

exemples :
$$\mathbb{Q},\mathbb{R},\mathbb{C},\mathbb{Q}\Big[\sqrt{2}\,\Big]...$$

• Sinon, on dit que K est un corps de caractéristique n. Dans ce cas, on démontre que n est un nombre premier p, et on a alors $\forall x \in K / p.x = 0$ Exemple : $\mathbb{Z}/p\mathbb{Z}$

Si K est un corps de caractéristique p, alors $\forall x, y \in K, \forall n \in \mathbb{N} / (x+y)^p = x^p + y^p$