Aufgabe 1

a)

Technische Grenzen: Magnetfelder und Frequenzen sind nach oben begrenzt

b)

Problem: Lichtwelle immer senktrecht zur Bewegungsrichtung

Lösung: Elektronen mit Undulator auf "Schlangenlinie" schicken → Bewegungskomponente senkrecht zur gemittelten Bewegungsrichtung

Aufgabe 2

a)
$$\lambda = 2.61 * R = 2.61 * D / 2 = 603 mm$$

f = c/ λ = 497 MHz

- b) Wenn dies möglich wäre: Keine, da es durch alle pos. und neg. Halbwellen fliegt. (Annahme: $L = \lambda * n$, also gleichviele pos. wie neg. Halbwellen)
- c) Δ Ekin = e * E0 * sin(ω * d / (2v)) * 2v / ω

$$v = c \omega = 2 \pi f$$

$$\Delta$$
 Ekin = 6,1 * 10⁻¹⁴ J = 0,38 MeV