Textbook reading for this week:

- Chapter 1.3 (Linear combinations) and 1.4 (linear independence)
- Sections §A1.1 through §A1.4 (pages 344-351) of Appendix 1 (notation about sets and logic)

Study items:

- Definitions: linear combination, span.
- Understand what is means to say that a subspace is spanned by a set of vectors.
- Definitions: linearly dependent, linearly independent.
- How do you determine whether a set of vectors is linearly dependent or linearly independent?

Problems:

- 1. (Damiano-Little 1.2.3(h,i)) For each of the following subsets W of a vector space V, determine if W is a subspace of V. Say why or why not in each case.
 - (h) $V = P_n(\mathbb{R}), W = \{p : p(\sqrt{2}) = 0\}.$
 - (i) $V = P_n(\mathbb{R}), W = \{p : p(1) = 1 \text{ and } p(2) = 0\}.$
- 2. (Damiano-Little 1.2.5) Let W be a subspace of a vector space V, let $\vec{y} \in V$, and define the set $\vec{y} + W = \{\vec{x} \in V : \vec{x} = \vec{y} + \vec{w} \text{ for some } \vec{w} \in W\}$. Show that $\vec{y} + W$ is a subspace of V if and only if $\vec{y} \in W$.
- 3. $(Damiano-Little\ 1.3.1(a,d))$
 - (a) Let $S = \{(1,0,0), (0,0,2)\}$ in \mathbb{R}^3 . Describe the set Span(S). (See the examples in this section to see what is meant by "describe" in questions like this)
 - (d) Let $S = \{1, x, x^2\}$. Describe the set $\mathrm{Span}(S)$ in $P_4(\mathbb{R})$.
- 4. (Damiano-Little 1.3.3) In $V = P_2(\mathbb{R})$, let $S = \{1, 1 + x, 1 + x + x^2\}$. Show that Span $(S) = P_2(\mathbb{R})$.
- 5. (Damiano-Little 1.3.6(a)) Let $W_1 = \operatorname{Span}(S_1)$ and $W_2 = \operatorname{Span}(S_2)$ be subspaces of a vector space. Show that $W_1 \cap W_2 \supseteq \operatorname{Span}(S_1 \cap S_2)$.
- **Note.** This problem uses the symbol \cap for the "intersection" of two sets. See p. 350 of the textbook (in Appendix 1) for a discussion of this notation and several related symbols that we may use throughout the course.
 - 6. (Damiano-Little 1.3.7) Show that if S is a subset of a vector space V and W is a subspace of V that contains S, then $\operatorname{Span}(S) \subset W$.
 - 7. $(Damiano-Little\ 1.4.1(a,b,c,e))$ Determine whether each of the following sets of vectors is linearly dependent or linearly independent.
 - (a) $S = \{(1,1), (1,3), (0,2)\}$ in \mathbb{R}^2
 - (b) $S = \{(1, 2, 1), (1, 3, 0)\}$ in \mathbb{R}^3

(c)
$$S = \{(0,0,0), (1,1,1)\}$$
 in \mathbb{R}^3

(e)
$$S = \{(x^2 + 1, x - 7) \text{ in } P_2(\mathbb{R}) \}$$

- 8. (Damiano-Little 1.4.5) Let $\vec{v}, \vec{w} \in V$ Show that $\{\vec{v}, \vec{w}\}$ is linearly independent if and only if $\{\vec{v} + \vec{w}, \vec{v} \vec{w}\}$ is linearly independent.
- 9. Suppose that $\{\vec{u}, \vec{v}, \vec{w}\}$ is a set of three vectors in a vector space V, and that $\vec{x} \in \text{Span}(\{\vec{u}, \vec{v}, \vec{w}\})$. Prove that $\{\vec{u}, \vec{v}, \vec{w}, \vec{x}\}$ is a linearly dependent set.

Extra practice (not to hand in)

• (Damiano-Little 1.2.6)

• (Damiano-Little 1.3.8)

- (Damiano-Little 1.2.10)
- (Damiano-Little 1.3.6)

• (Damiano-Little 1.4.2)