Linear System Equations

Mongi BLEL

King Saud University

September 18, 2018

Table of contents

1 Introduction to Linear System Equations

Introduction to Linear System Equations

Definition

A linear system of equations with m equations and n unknowns is defined as follows:

$$\begin{cases} a_{1,1}x_1 + a_{1,2}x_2 + \cdots + a_{1,n}x_n = b_1 \\ a_{2,1}x_1 + a_{2,2}x_2 + \cdots + a_{2,n}x_n = b_2 \\ \vdots & \vdots & \ddots + \vdots + \vdots \\ a_{m,1}x_1 + a_{m,2}x_2 + \cdots + a_{m,n}x_n = b_m. \end{cases}$$

where b_1, \ldots, b_n , $(a_{j,k})$ are real numbers with $(1 \le j \le m, 1 \le k \le n)$ called the data of the system and x_1, \ldots, x_n the unknowns or the variables of the system.

The following linear system with two variables

$$\begin{cases} 4x - y = 5 \\ -7x + 2y = 3 \end{cases}$$

cal be interpreted as the intersection in the plane of the straight lines of equations respectively 4x - y = 5 and -7x + 2y = 3.

This linear system can be represented in matrix form:

$$AX = B$$
 where

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{pmatrix}, \qquad B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}, \qquad X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}.$$

Example

Let the matrices $A = \begin{pmatrix} 1 & -1 \\ 1 & -2 \end{pmatrix}$ and $C = \begin{pmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \end{pmatrix}$ and we look for a matrix of order (2,3) such that AB = C.

If $B = \begin{pmatrix} x & y & z \\ t & u & v \end{pmatrix}$ we find the following linear system:

$$\begin{cases} x - t &= 0 \\ x - 2t &= 1 \\ y - u &= 1 \\ y - 2u &= 2 \\ z - v &= 2 \\ z - 2v &= 3 \end{cases}$$

The solution of this system is (-1,0,1,-1,-1,-1)

$$x = t = -1, y = 0, u = -1, z = 1, v = -1.$$

Definition

- Two linear systems are called equivalent if they have the same solutions.
- We say that a linear system is consistent if it has solutions and we call that it is inconsistent if it has no solutions.

Gauss And Gauss Jordan Methods

The augmented matrix of the linear system AX = B is the matrix [A|B].

The elementary row operations on the augmented matrix of a system produce the augmented matrix of an equivalent system.

The Gauss-Jordan elimination method to solve a system of linear equations is described in the following steps.

- Write the augmented matrix of the system.
- ② Use elementary row operations to transform the augmented matrix in a row echelon form.
- 3 Solve the obtained triangular system.

The Gauss and Gauss Jordan Method

ullet The Gauss Jordan method consists to take the reduced row echelon form of the augmented matrix [A|B] and solve the obtained system.

Examples

Let the following linear system

$$\begin{cases} x + 2y - z &= -4 \\ -x + y &= -2 \end{cases}$$
 The extended matrix of the system is
$$y - z &= -4$$

$$\begin{bmatrix} 1 & 2 & -1 & | -4 \\ -1 & 1 & 0 & | -2 \\ 0 & 1 & -1 & | -4 \end{bmatrix}$$

and the matrix

$$\begin{bmatrix} 1 & 2 & -1 & | -4 \\ 0 & 1 & -1 & | -4 \\ 0 & 0 & 1 & | 3 \end{bmatrix}$$

is a row echelon form of this matrix.

Using Gauss method, the system has a unique solution which is x = 1, y = -1, z = 3.

The reduced row echelon form of this matrix is

$$\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 3 \end{bmatrix}.$$

Using Gauss Jordan method, the system has a unique solution which is x = 1, y = -1, z = 3.

$$\begin{cases} x + 2y - z + t &= 1 \\ 3x - y + 5z - t &= 2 \\ 5x + 3y + 3z + t &= m \end{cases}; m \in \mathbb{R}.$$

$$\begin{bmatrix} 1 & 2 & -1 & 1 & 1 \\ 0 & 1 & -\frac{8}{7} & \frac{4}{7} & \frac{1}{7} \\ 0 & 0 & 0 & 0 & m-4 \end{bmatrix}$$

is the reduced row echelon form of this the matrix .

If $m \neq 4$ The system is inconsistent.

If m = 4 the system has an infinite solutions :

$$\{(\frac{5}{7}-\frac{9}{7}z+\frac{1}{7}t,\frac{1}{7}+\frac{8}{7}z-\frac{4}{7}t,z,t)\in\mathbb{R}^4\}.$$

$$\begin{cases}
-2y + 3z &= 0 \\
2x - 4y + 2z &= 1 \\
-x - 2y + 5z &= 0 \\
x - 2y &= 1
\end{cases}$$

The extended matrix of the system is:

$$\begin{bmatrix} 0 & -2 & 3 & 0 \\ 2 & -4 & 2 & 1 \\ -1 & -2 & 5 & 0 \\ 1 & -2 & 0 & 1 \end{bmatrix}$$

A row echelon form of the extended matrix is $\begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & -2 & 3 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 3 \end{bmatrix}$

The system is inconsistent.

Give the relations between the numbers a, b and c such that the following linear system is consistent.

$$\begin{cases} x+y+2z &= a \\ x+z &= b \\ 2x+y+3z &= c \end{cases}$$

The extended matrix of the system is: $\begin{bmatrix} 1 & 1 & 2 & a \\ 1 & 0 & 1 & b \\ 2 & 1 & 3 & c \end{bmatrix}$.

A row echelon form of the extended matrix is $\begin{bmatrix} 1 & 1 & 2 & a \\ 0 & 1 & 1 & a-b \\ 0 & 0 & 0 & c-a-b \end{bmatrix}.$

The system is consistent if and only if c - a - b = 0.

$$\begin{cases} x + my + (m-1)z & = m+1 \\ 3x + 2y + mz & = 3 \\ (m-1)x + my + (m+1)z & = m-1 \end{cases}$$

The determinant of the system is $m^2(m-4)$.

If m = 0, the extended matrix of the system is:

$$\begin{bmatrix} 1 & m & (m-1) & m+1 \\ 3 & 2 & m & 3 \\ (m-1) & m & (m+1) & m-1 \end{bmatrix}$$

The extended matrix of the system is:

$$\begin{bmatrix} 1 & 0 & -1 & 1 \\ 3 & 2 & 0 & 3 \\ -1 & 0 & 1 & -1 \end{bmatrix}$$

The system is inconsistent.

A row echelon form of the extended matrix is
$$\begin{bmatrix} 1 & 0 & -1 & | & 1 \\ 0 & 2 & 3 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}.$$
 The system has an infinity of solutions $\{(1+z,-\frac{3}{2}z,z);\ z\in\mathbb{R}\}.$ If $m=4$, a row echelon form of the extended matrix is
$$\begin{bmatrix} 1 & 4 & 3 & | & 5 \\ 0 & 2 & 1 & | & 0 \\ 0 & 0 & 0 & | & 12 \end{bmatrix}.$$

Homogeneous Linear Systems

Definition

We say that a linear system AX = B homogeneous if B = 0.

Remarks

- Any homogeneous linear system is consistent. 0 is a solution of the system.
- ② If X_1 and X_2 are solutions of the homogeneous system AX=0, then $X_1+\lambda X_2$ is also a solution of the linear system for all $\lambda\in\mathbb{R}$.
- 3 If the homogeneous linear system AX = 0 has a non zero solution, it has an infinite number of solutions.

Theorem

If X_0 is a solution of the linear system AX = B, then any solution X of the system is in the following form: $X = X_0 + X_1$ with X_1 is a solution of the homogeneous system. AX = 0.

Conculsion Any consistent linear system can has only one solution or an infinite number of solutions.

Crammer Method

Theorem

If A is a square matrix of order n and has an inverse, then the linear system AX = B has the following unique solution

$$x_1 = \frac{\det A_1}{\det A}, \dots, x_n = \frac{\det A_n}{\det A}.$$

with A_j is the matrix obtained by replace the j^{th} column in the matrix A by the column matrix B.

Example

Use Crammer method to solve the following system:

$$\begin{cases} 3x - 2z = 2 \\ -2x + 3y - 2z = 3 \\ -5x + 4y - z = 1 \end{cases}$$

$$\begin{vmatrix} 3 & 0 & -2 \\ -2 & 3 & -2 \\ -5 & 4 & -1 \end{vmatrix} = 1, \qquad \begin{vmatrix} 2 & 0 & -2 \\ 3 & 3 & -2 \\ 1 & 4 & -1 \end{vmatrix} = -8 = x,$$

$$\begin{vmatrix} 3 & 2 & -2 \\ -2 & 3 & -2 \\ -5 & 1 & -1 \end{vmatrix} = -13 = y, \qquad \begin{vmatrix} 3 & 0 & 2 \\ -2 & 3 & 3 \\ -5 & 4 & 1 \end{vmatrix} = -13 = z.$$