

Procedimento para cálculo do CRC

Histórico da Revisão

Data	Versão	Descrição	Autor
09/11/2009	1.0	Versão inicial	Glaydstone Gonçalves da Cunha/ Marcus Fortes

TERMO DE CONFIDENCIALIDADE

As informações contidas neste documento são confidenciais e se constituem em propriedade da MAXTRACK INDUSTRIAL LTDA (MAXTRACK). Estas informações não poderão ser utilizadas para outro propósito, não podendo ser reveladas fora de sua organização sem prévia autorização por escrito da MAXTRACK. É vedada a geração de fotocópias deste documento, bem como sua reprodução ou distribuição, no todo ou em parte, por qualquer meio, inclusive sob meio gráfico, magnético, ótico, fotográfico ou eletrônico.

Maxtrack Industrial Ltda | Procedimento para cálculo do CRC para MXT

SUMÁRIO

1.	INTRODUÇÃO	4
2.	PACOTE DE POSIÇÃO E ACK DE CONFIRMAÇÃO DE POSIÇÃO	4
3.	EXEMPLO DE CÓDIGO PARA O CÁLCULO DO CRC	5

1. Introdução

Esse documento descreve um exemplo de algoritmo para cálculo do CRC (Cyclic Redundancy Check) tomando como referências o pacote de posição enviado pelo MXT e o ACK da aplicação que recebe os dados desses equipamentos. O calculo do CRC gera um valor que permite a identificação de erros de transmissão a partir da analise do pacote. O CRC dos pacotes MXT é o CRC CCITT 16.

2. Pacote de posição e ACK de confirmação de posição

Pacote de posição

O pacote de dados enviado pelo MXT possui o seguinte frame:

Campo	Descrição	Informação	
SOF	Início do frame	0x01	
DD		> MXT-100: 0xA0	
	Identificador do modelo de equipamento que enviou a	> MXT-101 : 0xA1	
	mensagem	> MXT-150: 0xA2	
147		> MXT-151: 0xA3	Camp
MT		➤ Ack : 0x02	para cálcul
	Tipo de mensagem enviada	Nack: 0x03	do CF
		Pacote de posição: 0x31	
DEVID	ID do equipamento	ID do módulo	
DATA	Informações coletadas pelo	Coordenadas geográficas, status das	
	equipamento	entradas, saídas, etc.]
CRC	CRC calculado a partir da mensagem atual	Valor do CRC	
EOF	Final de frame	0x04	

Tabela 1: Datagrama correspondente ao pacote de posição

CONFIDENCIAL

Maxtrack Industrial Ltda - As informações contidas neste documento são confidenciais e de propriedade da MAXTRACK INDUSTRIAL LTDA., não podendo ser utilizadas para outro propósito senão de uso dentro dos limites de sua organização. Constituindo sua divulgação não autorizada em quebra de sigilo, sujeita as sanções cabíveis.

pos los ılο RC

2.2. ACK de confirmação da posição

O ACK de confirmação da posição enviada pela aplicação que recebe os dados pelo MXT, deverá possuir o seguinte formato:

Campo	Descrição	Informação	
SOF	Início do frame	01	
DD	Modelo de equipamento	> MXT-100 : 0xA0	
		> MXT-101 : 0xA1	
		> MXT-150: 0xA2	
		> MXT-151 : 0xA3	Campos
MT	Tipo de mensagem enviada	> Ack: 0x02	usados
		> Nack: 0x03	para o cálculo do CRC
		Pacote de posição: 0x31	
		> Comando enviado pelo servidor (GPRS): 0x32	
DEVID	ld do módulo	Id do módulo	
CRC -	CRC da posição enviada pelo	CRC da posição em relação ao qual esse	
POS	módulo	é o ACK de reposta	ノ
CRC – ACK	CRC gerado pela aplicação	Valor do CRC	
EOF	Final de frame	04	

Tabela 2: Datagrama correspondente ao ACK de confirmação da posição

3. Exemplo de código para o cálculo do CRC

A linguagem utilizada para o exemplo é C++.

CONFIDENCIAL 5 de 8


```
Classe principal:
```

```
#include <string>
#include <algorithm>
#include <fstream>
#include <sstream>
#include <iostream>
#include "crc_ccitt16.hpp"
```

/* This sample build a CRC_CCITT16 word to use in position ACK command. */

/*Este exemplo demonstra o cálculo de uma String contendo um CRC para utilização em um ACK de posição*/

```
void main() {
/*Pacote de posição:
```

01 a3 31 05 00 50 00 08 06 cb 45 89 f9 18 1c f6 d2 cf Fe 84 62 61 fd 80 23 28 80 02 00 05

03 2e 06 02 00 49 1b f4 27 50 00 83 00 7e 50 53 8d 04

CRC correspondente ao pacote de posição enviado pelo módulo: 538d

Para montar pacote correspondente ao ACK de posição, deve-se extrair do pacote correspondente à posição recebida as informações contendo o tipo de equipamento, tipo de transmissão, ID do módulo e o crc do pacote. Em seguida, calcular o CRC tomando esses dados como base e o inserir no pacote.

ACK de confirmação de recebimento dessa posição – 01 a3 02 05 00 50 00 53 8d 8c 03 04. Esse é um ACK enviado por uma aplicação já funcional.

CRC correspondente ao ack de posição gerado pela aplicação para essa posição: 8c03*/

Esse exemplo apenas imprime o valor do CRC. Exibe na tela o seguinte texto:

CRC: 038c | CRC Posicao: 8c03

CONFIDENCIAL 6 de 8

Maxtrack Industrial Ltda | Procedimento para cálculo do CRC para MXT

```
#ifndef CRC CCITT16 HPP
#define _CRC_CCITT16_HPP
       namespace CRC {
               const unsigned short crc16 ccitt table[256] = {
                       0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50a5, 0x60c6, 0x70e7,
                       0x8108, 0x9129, 0xa14a, 0xb16b, 0xc18c, 0xd1ad, 0xe1ce, 0xf1ef,
                       0x1231, 0x0210, 0x3273, 0x2252, 0x52b5, 0x4294, 0x72f7, 0x62d6,
                       0x9339, 0x8318, 0xb37b, 0xa35a, 0xd3bd, 0xc39c, 0xf3ff, 0xe3de,
                       0x2462, 0x3443, 0x0420, 0x1401, 0x64e6, 0x74c7, 0x44a4, 0x5485,
                       0xa56a, 0xb54b, 0x8528, 0x9509, 0xe5ee, 0xf5cf, 0xc5ac, 0xd58d,
                       0x3653, 0x2672, 0x1611, 0x0630, 0x76d7, 0x66f6, 0x5695, 0x46b4,
                       0xb75b, 0xa77a, 0x9719, 0x8738, 0xf7df, 0xe7fe, 0xd79d, 0xc7bc,
                       0x48c4, 0x58e5, 0x6886, 0x78a7, 0x0840, 0x1861, 0x2802, 0x3823,
                       0xc9cc, 0xd9ed, 0xe98e, 0xf9af, 0x8948, 0x9969, 0xa90a, 0xb92b,
                       0x5af5, 0x4ad4, 0x7ab7, 0x6a96, 0x1a71, 0x0a50, 0x3a33, 0x2a12,
                       Oxdbfd, Oxcbdc, Oxfbbf, Oxeb9e, Ox9b79, Ox8b58, Oxbb3b, Oxab1a,
                       0x6ca6, 0x7c87, 0x4ce4, 0x5cc5, 0x2c22, 0x3c03, 0x0c60, 0x1c41,
                       Oxedae, Oxfd8f, Oxcdec, Oxddcd, Oxad2a, Oxbd0b, Ox8d68, Ox9d49,
                       0x7e97, 0x6eb6, 0x5ed5, 0x4ef4, 0x3e13, 0x2e32, 0x1e51, 0x0e70,
                       0xff9f, 0xefbe, 0xdfdd, 0xcffc, 0xbf1b, 0xaf3a, 0x9f59, 0x8f78,
                       0x9188, 0x81a9, 0xb1ca, 0xa1eb, 0xd10c, 0xc12d, 0xf14e, 0xe16f,
                       0x1080, 0x00a1, 0x30c2, 0x20e3, 0x5004, 0x4025, 0x7046, 0x6067,
                       0x83b9, 0x9398, 0xa3fb, 0xb3da, 0xc33d, 0xd31c, 0xe37f, 0xf35e,
                       0x02b1, 0x1290, 0x22f3, 0x32d2, 0x4235, 0x5214, 0x6277, 0x7256,
                       0xb5ea, 0xa5cb, 0x95a8, 0x8589, 0xf56e, 0xe54f, 0xd52c, 0xc50d,
                       0x34e2, 0x24c3, 0x14a0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405,
                       0xa7db, 0xb7fa, 0x8799, 0x97b8, 0xe75f, 0xf77e, 0xc71d, 0xd73c,
                       0x26d3, 0x36f2, 0x0691, 0x16b0, 0x6657, 0x7676, 0x4615, 0x5634,
                       0xd94c, 0xc96d, 0xf90e, 0xe92f, 0x99c8, 0x89e9, 0xb98a, 0xa9ab,
                       0x5844, 0x4865, 0x7806, 0x6827, 0x18c0, 0x08e1, 0x3882, 0x28a3,
                       0xcb7d, 0xdb5c, 0xeb3f, 0xfb1e, 0x8bf9, 0x9bd8, 0xabbb, 0xbb9a,
                       0x4a75, 0x5a54, 0x6a37, 0x7a16, 0x0af1, 0x1ad0, 0x2ab3, 0x3a92,
                       Oxfd2e, Oxed0f, Oxdd6c, Oxcd4d, Oxbdaa, Oxad8b, Ox9de8, Ox8dc9,
                       0x7c26, 0x6c07, 0x5c64, 0x4c45, 0x3ca2, 0x2c83, 0x1ce0, 0x0cc1,
                       Oxef1f, Oxff3e, Oxcf5d, Oxdf7c, Oxaf9b, Oxbfba, Ox8fd9, Ox9ff8,
                       0x6e17, 0x7e36, 0x4e55, 0x5e74, 0x2e93, 0x3eb2, 0x0ed1, 0x1ef0
               }
//Tabela de referência para obtenção dos valores de CRC
//função para cálculo do CRC
               inline unsigned short CRC16 CCITT(unsigned short crc, unsigned char b)
               {
                       unsigned char pom;
                       pom = b \land (crc >> 8);
                       return ((crc << 8) ^ crc16 ccitt table[pom]);
#endif // CRC CCITT16 HPP
```


Maxtrack Industrial Ltda | Procedimento para cálculo do CRC para MXT

A função CRC16_CCITT recebe como parâmetros, em cada chamada realizada na classe principal, o valor do CRC calculado e um fragmento do ACK. Na última chamada, é obtido o valor final do CRC que deverá estar no ACK de confirmação da posição.

CONFIDENCIAL 8 de 8