University of British Columbia Department of Mechanical Engineering

MECH468 Modern Control Engineering MECH522 Foundations in Control Engineering Final exam

Examiner: Dr. Ryozo Nagamune April 11 (Wednesday), 2018, noon-2:30pm

Last name, First name	
Name:	Student #:
Signature:	

Exam policies

- Allowed: Lecture note print-outs, hand-written notes, homework, books.
- Not-allowed: PC, calculators, mobile phones.
- Write all your answers on the provided exam booklet.
- Motivate your answers properly. (No chance to defend your answers orally.)
- 100 points in total. Mark will be scaled later.

Before you start ...

- Use washroom before the exam.
- Turn off your mobile phone.
- No eating.
- Questions are NOT allowed.

If you finish early ...

• If you would like to leave the room **before 2:20pm**, **raise your hand with this booklet**, and **wait at your seat** until the invigilator comes to you and collects your exam booklet.

To be filled in by the instructor/marker

Problem #	Mark	Full mark
1		20
2		20
3		20
4		20
5		20
Total		100

1. Consider the electric circuit depicted below. Here, the notations R, L and C respectively denote the resistance, inductance and capacitance, and u is the voltage source. An electrical element T has the characteristic i = h(v), where i is the current through T and v is the voltage across T, and h is a nonlinear function which is differentiable with respect to v (i.e., h'(v) exists).

(a) Let x_1 be the voltage across the capacitance, and x_2 be the current through the inductance. Prove that the state equation for this system is described as follows. (10pt)

$$\dot{x}_1(t) = -\frac{1}{C}h(x_1(t)) + \frac{1}{C}x_2(t)
\dot{x}_2(t) = -\frac{1}{L}x_1(t) - \frac{R}{L}x_2(t) + \frac{1}{L}u(t)$$

- (b) Linearize the state equation above around the operating point $(x_1, x_2, u) = (x_{10}, x_{20}, u_0)$. (6pt)
- (c) Express x_{20} and u_0 as functions of x_{10} . (4pt)
- 2. Obtain minimal realizations of the following transfer functions. After obtaining minimal realizations, check if the realization is indeed minimal. (10pt-each)

(a)
$$G_1(s) = \begin{bmatrix} \frac{s^2 + 3s + 2}{s^2 + 2s + 1} \\ \frac{1}{s + 2} \end{bmatrix}$$

(b)
$$G_2(s) = \begin{bmatrix} \frac{1}{s} & \frac{4}{s} \\ \frac{2}{s} & \frac{8}{s} \end{bmatrix}$$

- 3. For the following state-space model, design an observer-based state-feedback controller. For the controller design, select the pole locations so that (20pt)
 - ullet state estimation error converges to zero in about 0.4 second, and
 - (2%) settling time for initial condition excitation becomes about 1 second.

$$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)
y(t) = \begin{bmatrix} 0 & 1 \end{bmatrix} x(t)$$

- 4. Determine whether each statement is True or False.
 - If your answer is 'True', provide an explanation to support your answer.
 - If your answer is 'False', provide a counter-example <u>with two states</u>, with an explanation, to support your answer. In counter-examples, use <u>non-zero</u> B-matrix and non-zero C-matrix.

One example is given below.

(10pt-each)

Example If a linear time-invariant system is stable, then it is controllable. **Answer** False

Counter-example

$$\dot{x} = \left[\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array} \right] x + \left[\begin{array}{c} 1 \\ 1 \end{array} \right] u$$

Explanation This system is stable because the eigenvalues of A-matrix are -1 and -1, both of which are in the open left-half plane. However, it is not controllable because the rank of the controllability matrix $\mathcal{C} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix}$ is one, i.e., \mathcal{C} is not full rank.

- (a) If a linear time-invariant system is unstable, it is not controllable.
- (b) If a linear time-invariant system is detectable, it is observable.
- 5. Consider the following continuous-time infinite-horizon linear quadratic regulator (LQR) problem, where α is a positive constant.

$$\min_{u(\cdot)} \int_0^\infty \left\{ \alpha x_2(t)^2 + u_1(t)^2 + u_2(t)^2 \right\} dt$$

subject to
$$\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} + \begin{bmatrix} u_1(t) \\ u_2(t) \end{bmatrix}$$

(a) Design the LQR control law.

- (10pt)
- (b) Prove that the designed LQR control law stabilizes closed-loop system for any $\alpha > 0$. (5pt)
- (c) For the closed-loop system with the designed LQR control law and $\alpha = 3$, draw the state trajectory in (x_1, x_2) -plane when the initial state is x(0) = (1, 1). (**Hint:** The state trajectory must converge to (0, 0) (i.e., origin of the (x_1, x_2) -plane because the closed-loop system is stable.) (5pt)

