Advanced Methods of Non-Life Insurance Prof. dr. Tim Verdonck

FORMULARY

PART A: FOUNDATIONS OF LOSS DATA ANALYTICS

Introduction non-life insurance

- Expectation
 - **Definition:** Assume rv $X \sim F$ and $h : \mathbb{R} \to \mathbb{R}$ a sufficiently nice measurable function. The expected value of h(X) is

$$E[h(X)] = \int_{\mathbb{R}} h(x)dF(x) = \begin{cases} \sum_{k \in \mathcal{A}} h(x)f(x) & X \text{ discrete} \\ \int_{-\infty}^{\infty} h(x)f(x)dx & X \text{ continuous} \end{cases}$$

provided the right side converges absolutely.

- Mean, expectation or first moment of $X \sim F$

$$\mu_X = E[X] = \int_{\mathbb{R}} x dF(x)$$

- Moment of order k: measure of variation around 0

$$\alpha_k = E(X^k) = \begin{cases} \sum_x x^k f(x) & X \text{ discrete} \\ \int_{-\infty}^{\infty} x^k f(x) dx & X \text{ continuous} \end{cases}$$

If $E[X^k]$ exists $(E[|X|^k] < \infty)$, all lower order moments $E[X^l]$, $l \le k$ exist.

- Central moment order k: measure of variation around μ

$$\mu_k = E\left[(X - \mu)^k \right] = \begin{cases} \sum_x (x - \mu)^k f(x) & X \text{ discrete} \\ \int_{-\infty}^{\infty} (x - \mu)^k f(x) dx & X \text{ continuous} \end{cases}$$

- Variance: second central moment

$$\sigma_X^2 = \text{var}(X) = E\left[(X - \mu)^2\right]$$

and its square root σ is called the standard deviation.

- Coefficient of variation is ratio of σ to μ

$$Vco(X) = \frac{\sigma_X}{\mu_X}$$

- **Skewness**: if positive (negative), then long right (left) tail

$$\zeta_X = \frac{\mu_3}{\sigma^3} = E\left[\left(\frac{X-\mu}{\sigma}\right)^3\right] = E[Z^3].$$

where $Z = \frac{X-\mu}{\sigma}$ is the so-called standardized rv.

- (Excess) Kurtosis: measure of peakedness (or thickness in the tails)

$$\gamma_X = \frac{\mu_4}{\sigma_4} = E[Z^4] - 3.$$

-3 sets $\gamma_X = 0$ for the normal distribution

- Weak law of large numbers (LLN): Suppose:
 - Probability space $(\Omega, \mathcal{F}, \mathbb{P})$
 - $-Y_1,\ldots,Y_n$ uncorrelated and identically distributed
 - Finite mean $\mu = E(Y_1)$

then the weak law of large numbers is:

$$\forall \epsilon > 0 \lim_{n \to \infty} \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n}Y_i - \mu\right| \ge \epsilon\right) = 0 \quad \text{or} \quad \overline{Y} = \frac{1}{n}\sum_{i=1}^{n}Y_i \xrightarrow{P} \mu.$$

- Central limit theorem (CLT): Suppose:
 - Probability space $(\Omega, \mathcal{F}, \mathbb{P})$
 - $-Y_1,\ldots,Y_n$ independent and identically distributed (iid)
 - Finite mean $\mu = E(Y_1)$ and finite variance $\sigma^2 = \text{var}(Y_1)$

then the central limit theorem provides the asymptotic limit distribution (convergence in distribution) as $n \to \infty$:

$$\frac{\sum_{i=1}^{n} Y_i - n\mu}{\sqrt{n}\sigma} \xrightarrow{D} Z \sim \mathcal{N}(0,1) \quad \text{or} \quad P\left[\left(\frac{\sum_{i=1}^{n} Y_i - n\mu}{\sqrt{n}\sigma}\right) \leq x\right] \xrightarrow{D} \Phi(x).$$

Practically, sums of rv's can often be approximated by those from normal distribution

$$\sum_{i=1}^{n} Y_{i} \approx N\left(n\mu, n\sigma^{2}\right) \quad \text{or} \quad \overline{Y} \approx N\left(\mu, \frac{1}{n}\sigma^{2}\right)$$

- Moment generating function (mgf) of X
 - Definition:

$$M(r) = M_X(r) = E(e^{rX}) = \int_{\mathbb{R}} e^{rx} dF(x)$$

- Alternative: characteristic function:

$$\varphi_X(r) = E[e^{irX}].$$

- **Lemma:** Choose $X \sim F$ and assume that there exists $r_0 > 0$ such that $\forall r \in (-r_0, r_0) : M_X(r) < \infty$, then $M_X(r)$ has power series expansion for $r \in (-r_0, r_0)$ with

$$M_X(r) = \sum_{k>0} \frac{r^k}{k!} E[X^k]$$

- **Property:** The derivatives at the origin are given by

$$\frac{d^k}{dr^k}M_X(r)|_{r=0} = E(X^r) < \infty$$

- Cumulant generating function (cgf)
 - Definition:

$$\log M_X(r) = \log E[e^{rX}]$$

- **Lemma:** Assume that M_X is finite on $(-r_0, r_0)$ with $r_0 > 0$. Then $\log M_X(.)$ is a convex function on $(-r_0, r_0)$.
- Survival function

$$\overline{F}(x) = 1 - F(X) = \Pr[X > x]$$

• **Property:** Assume that $X \sim F$ is non-negative, \mathbb{P} -a.s. and has finite first moment. Then

$$E(X) = \int_0^\infty x dF(x) = \int_0^\infty [1 - F(x)] dx = \int_0^\infty \mathbb{P}[X > x] dx = \int_0^\infty \overline{F}(x) dx$$

Moreover, the second moment $E[X^2]$ (when it exists) is

$$E[X^{2}] = \int_{0}^{+\infty} x^{2} f_{X}(x) dx = \int_{0}^{+\infty} 2x \overline{F}(x) dx$$

• Tower property or double expectation theorem: For any sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$ on our probability space $(\Omega, \mathcal{F}, \Pr)$ we have for any integrable rv $X \sim F$

$$E[X] = E[E[X|\mathcal{G}]]$$

In particular, if X and Y are rv's on $(\Omega, \mathcal{F}, \mathbb{P})$ we have

$$E[X] = E[E[X|Y]]$$

where E[E[X|Y]] is an abbreviation for $E[X|\sigma(Y)]$ with $\sigma(Y) \subset \mathcal{F}$ denoting the σ -algebra generated by the random variable Y.

Assume that X is square integrable then the tower proper implies

$$var(X) = E[var(X|\mathcal{G})] + var(E[X|\mathcal{G}]).$$

• Inverse of F or p-quantile of $X \sim F$: Let F be right-continuous and non-decreasing. The generalized inverse of F for $p \in (0,1)$ is then

$$F^{\leftarrow}(p) = \inf\{x; F(x) \ge p\}$$

where $inf(\emptyset) = \infty$.

Properties:

- 1. $F^{\leftarrow}(p)$ is non-decreasing and left-continuous.
- 2. F is continuous iff $F^{\leftarrow}(p)$ is strictly increasing.
- 3. F is strictly increasing iff $F^{\leftarrow}(p)$ is continuous.
- 4. (If F is right-continuous then) $F(x) \ge p$ iff $F^{\leftarrow}(p) \le x$.
- 5. $F^{\leftarrow}(F(x)) \leq x$.
- 6. $F(F^{\leftarrow}(p)) \ge p$.
- 7. If F is strictly increasing, then $F^{\leftarrow}(F(x)) = x$.
- 8. If F is continuous, then $F(F^{\leftarrow}(p)) = p$.

• Popular distributions

– Normal distribution: $X \sim \mathcal{N}(\mu, \sigma^2)$ with $\mu \in \mathbb{R}, \sigma^2 > 0$

$$f_X(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} \qquad x \in \mathbb{R}$$

$$M_X(r) = e^{r\mu+r^2\sigma^2/2} < \infty \qquad r \in \mathbb{R}$$

$$E[X] = \mu$$

$$\text{var}[X] = \sigma^2$$

- Exponential distribution: $X \sim \text{Exp}(\lambda)$ with $\lambda > 0$

$$f_X(x) = \lambda e^{-\lambda x} \qquad x \in [0, +\infty[$$

$$M_X(r) = \frac{\lambda}{\lambda - r} \qquad r < \lambda$$

$$E[X] = \frac{1}{\lambda}$$

$$var[X] = \frac{1}{\lambda^2}$$

– Geometric distribution: $X \sim \text{Geo}(p)$ with 0

$$f_X(k) = (1-p)^k p k \in \{0, 1, 2, 3, ...\}$$
 $M_X(r) = \frac{p}{1 - (1-p)e^r}$
 $E[X] = \frac{1-p}{p}$
 $var[X] = \frac{1-p}{p^2}$

Introduction aggregate loss modelling

• Compound distribution

Model assumptions

The total claim amount S is given by the following compound distribution

$$S = Y_1 + \ldots + Y_N = \sum_{i=1}^{N} Y_i$$

with 3 standard assumptions

- 1. N is a discrete rv which only takes values in $\mathcal{A} \subset \mathbb{N}_0$
- 2. $Y_1, Y_2, \dots \stackrel{iid}{\sim} G$ with G(0) = 0.
- 3. N and $(Y_1, Y_2, ...)$ are independent.

- Basic recognition features

Assume S has a compound distribution. We have (whenever they exist)

$$E[S] = E[N]E[Y_1]$$

$$var(S) = var(N)E[Y_1]^2 + E[N] var(Y_1)$$

$$Vco(S) = \sqrt{Vco(N)^2 + \frac{1}{E[N]}Vco(Y_1)^2}$$

$$M_S(r) = M_N \left(\log(M_{Y_1(r)})\right) \quad \text{for } r \in \mathbb{R}.$$

- If assumptions above hold, then distribution function of S can be written as

$$F_S(x) = \Pr[S \le x] = \sum_{k \in \mathcal{A}} \Pr\left[\sum_{i=1}^N Y_i \le x \middle| N = k\right] \Pr[N = k]$$
$$= \sum_{k \in \mathcal{A}} \Pr\left[\sum_{i=1}^k Y_i \le x\right] \Pr[N = k] = \sum_{k \in \mathcal{A}} G^{*k}(x) \Pr[N = k]$$

 G^{*k} denotes the k-th convolution of the distribution function G. In particular, we have for $Y_1,Y_2\stackrel{iid}{\sim} G$

$$G^{*2}(x) = \Pr[Y_1 + Y_2 \le x] = \int G(x - y) dG(y)$$

 $G^{*k}(x) = \int G^{*(k-1)}(x) dG(y)$

Modelling loss frequency

• Binomial distribution

– We choose fixed volume $v \in \mathbb{N}$ and fixed default probability $p \in (0,1)$. We say N has a binomial distribution $N \sim \text{Binom}(v,p)$ if

$$p_k = \Pr(N = k) = {v \choose k} p^k (1 - p)^{v - k} \qquad \forall k \in \{0, \dots, v\} = \mathcal{A}$$

- Assume $N \sim \text{Binom}(v, p)$ for fixed $v \in \mathbb{N}$ and $p \in (0, 1)$

$$E[N] = vp$$

$$var(N) = vp(1-p)$$

$$Vco(N) = \sqrt{\frac{1-p}{vp}}$$

$$M_N(r) = (pe^r + (1-p))^v \quad \forall r \in \mathbb{R}$$

- Second characterisation of binomial distribution:

Assume that $N \sim \text{Binom}(v, p)$ with given $v \in \mathbb{N}$ and $p \in (0, 1)$. Choose $X_1, \ldots, X_v \stackrel{iid}{\sim} \text{Bernouilli}(p)$. Then we have

$$N \stackrel{(d)}{=} \sum_{i=1}^{v} X_i$$

• Poisson distribution

– We choose fixed volume v > 0 and fixed expected claims frequency $\lambda > 0$. N has Poisson distribution $N \sim Poi(\lambda v)$, if

$$p_k = \Pr[N = k] = e^{-\lambda v} \frac{(\lambda v)^k}{k!} \qquad \forall k \in \mathcal{A} = \mathbb{N}$$

- Assume $N \sim Poi(\lambda v)$ for fixed $\lambda, v > 0$. Then

$$E[N] = \lambda v$$

$$var(N) = \lambda v$$

$$Vco(N) = \sqrt{\frac{1}{\lambda v}}$$

$$M_N(r) = e^{\lambda v(e^r - 1)} \quad \forall r \in \mathbb{R}$$

• Mixed poisson distribution

- Assume $\Lambda \sim H$ with $H(0) = 0, E[\Lambda] = \lambda$ and $var(\Lambda) > 0$.
- Conditionally, given Λ , $N \sim Poi(\Lambda v)$ for fixed volume v > 0.
- If N satisfies this definition, then we have E[N] < var(N).

• Gamma distribution

 $X \sim \Gamma(\gamma, c)$ with shape parameter $\gamma > 0$ and scale parameter c > 0 if X is non-negative, absolutely continuous rv with density

$$f(x) = \frac{c^{\gamma}}{\Gamma(\gamma)} x^{\gamma - 1} e^{-cx}$$

with Gamma function $\Gamma(.)$ is defined as

$$\Gamma(\gamma) = \int_0^\infty x^{\gamma - 1} e^{-x} dx \qquad (\gamma > 0)$$

$$-\Gamma(\gamma+1) = \gamma\Gamma(\gamma)$$

$$-\Gamma(1) = \Gamma(2) = 1$$
 $\Gamma(\frac{1}{2}) = \sqrt{(\pi)}$
 $-\Gamma(n) = (n-1)!$

• Negative-binomial distribution

- **Definition:** $X \sim \text{NegBin}(\lambda v, \gamma)$ with volume v > 0, expected claims frequency $\lambda > 0$ and dispersion parameter $\gamma > 0$ if
 - * $\Theta \sim \Gamma(\gamma, \gamma)$
 - * Conditionally, given Θ , $N \sim Poi(\Theta \lambda v)$
- Second definition: Negative-binomial distribution satisfies for $k \in \mathcal{A} = \mathbb{N}_0$

$$p_k = \Pr[N = k] = \binom{k + \gamma - 1}{k} (1 - p)^{\gamma} p^k$$

where we choose $p = (\lambda v)/(\gamma + \lambda v) \in (0,1)$

- **Proposition:** Assume $N \sim \text{NegBin}(\lambda v, \gamma)$ for fixed $\lambda, v, \gamma > 0$. Then

$$E[N] = \lambda v$$

$$var(N) = \lambda v(1 + \lambda v/\gamma) > \lambda v$$

$$Vco(N) = \sqrt{\frac{1}{\lambda v}} \sqrt{1 + \lambda v/\gamma} > \gamma^{-1/2} > 0$$

$$M_N(r) = \left(\frac{1 - p}{1 - pe^r}\right)^{\gamma} \quad \forall r < -\log(p)$$

where $p = (\lambda v)/(\gamma + \lambda v) \in (0, 1)$.

• (a, b, 0) class

- N belongs to (a, b, 0) class (or is a Panjer distribution) if there exist constants $a, b \in \mathbb{R}$ such that for all $k = 1, 2, 3, \ldots$ we have the recursion

$$p_k = p_{k-1} \left(a + \frac{b}{k} \right)$$

- **Lemma:** Assume N has a non-degenerate Panjer distribution or belongs to (a, b, 0) class. N is either binomially, Poisson or negative-binomially distributed.

• (a, b, 1) class

A count distribution belongs to (a, b, 1) class if there exist constants $a, b \in \mathbb{R}$ such that for all $k = 2, 3, \ldots$ the probabilities p_k satisfy

$$p_k = p_{k-1} \left(a + \frac{b}{k} \right)$$

• Zero truncation or modification

- Consider p_k^0 to be a probability for this member of (a, b, 0).
- Let p_k^M be the corresponding probability for a member of (a,b,1) where M stands for modified.
- Pick a new probability of a zero claim, p_0^M , and define $c = \frac{1-p_0^M}{1-p_0^M}$.

- We then calculate zero modified distribution as $p_k^M = cp_k^0$.
- Note that $\sum_{k=0}^{\infty} p_k^M = 1!$

Assume that $p_0^M = 0$, so that probability of N = 0 is zero (truncated at zero). Then we get zero truncated probabilities (where we use T instead of M now):

$$p_k^T = \begin{cases} 0 & k = 0\\ \frac{1}{1 - p_0^0} p_k^0 & k \ge 1 \end{cases}$$

Modelling loss severity

• Empirical distribution function

$$\hat{G}_n(y) = \frac{1}{n} \sum_{i=1}^n 1_{\{Y_i \le y\}}$$

Loss size index function and empirical version

$$\mathcal{I}(G(y)) = \frac{\int_0^y z dG(z)}{\int_0^\infty z dG(z)} \quad \text{and} \quad \hat{\mathcal{I}}_n(\alpha) = \frac{\sum_{n=1}^{\lfloor n\alpha \rfloor} Y_{(i)}}{\sum_{i=1}^n Y_i} \quad \text{for } \alpha \in [0, 1]$$

• Tail analysis

Assume that G has **infinite support** and that $\overline{G} = 1 - G$ is survival function.

 $-\overline{G} \in \mathcal{R}_{-\alpha}$: $\overline{G} = 1 - G$ is regularly varying at infinity with (tail) index $\alpha > 0$ if

$$\lim_{x \to \infty} \frac{\overline{G}(xt)}{\overline{G}(x)} = \lim_{x \to \infty} \frac{1 - G(xt)}{1 - G(x)} = t^{-\alpha} \qquad \forall t > 0$$

- If the above holds true for $\alpha = 0$ then $\overline{G} \in \mathcal{R}_0$.
- If the above holds true for $\alpha = \infty$ then \overline{G} is rapidly varying at infinity: $\overline{G} \in \mathcal{R}_{-\infty}$.
- (empirical) mean excess plot

$$u \mapsto e(u) = E[Y_i - u | Y > u]$$
 and $u \mapsto \hat{e}_n(u) = \frac{\sum_{i=1}^n (Y_i - u) \mathbb{1}_{\{Y_i > u\}}}{\sum_{i=1}^n \mathbb{1}_{\{Y_i > u\}}}$

(empirical) log-log plot

$$y \mapsto (\log y, \log(1 - G(y)))$$
 and $y \mapsto (\log y, \log(1 - \hat{G}_n(y)))$

- Parametric claim size distributions We use following notation for rv $Y \sim G$:
 - -g: density of Y for G absolutely continuous
 - $M_Y(r)$: moment generating function of Y in $r \in \mathbb{R}$, where it exists

8

- μ_Y : **expected value** of Y, if it exists
- $-\sigma_Y^2$: variance of Y, if it exists
- Vco(Y): **coefficient of variation** of Y, if it exists

- $-\zeta_Y$: skewness of Y, if it exists
- $-\overline{G}=1-G$: survival function of Y, i.e. $\overline{G}(y)=\Pr[Y>y]$

For the analysis of G also following quantities are of interest

- $E[Y1_{\{u_1 < Y < u_2\}}]$: expected value of Y within layer $(u_1, u_2]$
- $-I(G(y)) = E[Y1_{\{Y \leq y\}}]/\mu_Y$: loss size index function for level y
- -e(u) = E[Y u|Y > u]: mean excess function of Y above u

• Gamma distribution

– $Y \sim \Gamma(\gamma, c)$: Gamma distribution with shape parameter $\gamma > 0$ and scale parameter c > 0

$$g(y) = \frac{c^{\gamma}}{\Gamma(\gamma)} y^{\gamma - 1} e^{-cy}$$
 for $y \ge 0$

- No closed form solution for distribution function G

$$G(y) = \int_0^y \frac{c^{\gamma}}{\Gamma(\gamma)} x^{\gamma - 1} e^{-cx} dx = \frac{1}{\Gamma(\gamma)} \int_0^{cy} z^{\gamma - 1} e^{-z} dz = \mathcal{G}(\gamma, cy) \qquad y \ge 0$$

where $\mathcal{G}(.,.)$ is incomplete gamma function.

- Family of gamma distributions is closed towards multiplication with positive constant, that is, for $\rho > 0$ we have

$$\rho Y \sim \Gamma(\gamma, c/\rho)$$

- For mfg and moments we have

$$M_Y(r) = \left(\frac{c}{c-r}\right)^{\gamma} \quad \text{for } r < c$$

$$\mu_Y = \frac{\gamma}{c}$$

$$\sigma_Y^2 = \frac{\gamma}{c^2}$$

$$Vco(Y) = \gamma^{-1/2}$$

$$\zeta_Y = 2\gamma^{-1/2} > 0$$

- For $0 \le u_1 < u_2$ and u, y > 0 we obtain

$$E[Y1_{\{u_1 < Y \le u_2\}}] = \frac{\gamma}{c} \left[\mathcal{G}(\gamma + 1, cu_2) - \mathcal{G}(\gamma + 1, cu_1) \right]$$

$$I(G(y)) = \mathcal{G}(\gamma + 1, cy)$$

$$e(u) = \frac{\gamma}{c} \left(\frac{1 - \mathcal{G}(\gamma + 1, cu)}{1 - \mathcal{G}(\gamma, cu)} \right) - u$$

- Gamma distribution does not have a regularly varying tail at infinity. In fact, $\overline{G}(y) = 1 G(y)$ decays roughly as e^{-cy} to 0 as $y \to \infty$ because e^{-cy} gives asymptotic lower bound and $e^{-(c-\epsilon)y}$ as an asymptotic upper bound for any $\epsilon > 0$ on $\overline{G}(y)$.
- Method of moment estimators are given by

$$\hat{c}^{MM} = \frac{\hat{\mu}_n}{\hat{\sigma}_n^2}$$
 and $\hat{\gamma}^{MM} = \frac{\hat{\mu}_n^2}{\hat{\sigma}_n^2}$

– For MLE we have log-likelihood function, set $\mathbf{Y} = (Y_1, \dots, Y_n)'$

$$\ell_{\mathbf{Y}}(\gamma, c) = \sum_{i=1}^{n} \gamma \log c - \log \Gamma(\gamma) + (\gamma - 1) \log Y_i - cY_i$$

Then MLE $\hat{\gamma}^{MLE}$ of γ is solution

$$\log \gamma - \log \hat{\mu}_n - \frac{\Gamma'(\gamma)}{\Gamma(\gamma)} + \frac{1}{n} \sum_{i=1}^n \log Y_i = 0$$

This is solved numerically and MLE for c is then given by

$$\hat{c}^{MLE} = \frac{\hat{\gamma}^{MLE}}{\hat{\mu}_n}$$

• Weibull distribution

- $Y\sim \text{Weibull}(\tau,c)$ Weibull distributed with shape parameter $\tau>0$ and scale parameter c>0

$$g(y) = (c\tau)(cy)^{\tau - 1}e^{-(cy)^{\tau}}$$

- Survival function does not have regularly varying tail at infinity, but decay of

$$G(y) = 1 - e^{-(cy)^{\tau}} \qquad \text{for } y \ge 0$$

is slower than in gamma case for $\tau < 1$. In fact $\overline{\mathbf{G}}(y) = 1 - G(y)$ decays as $e^{-(cy)^{\tau}}$ to 0 for $y \to \infty$.

- Family of Weibull distributions is closed towards multiplication with $\rho > 0$

$$\rho Y \sim \text{Weibull}(\tau, c/\rho)$$

- Mgf does not exist for $\tau < 1$ and r > 0 and moments are

$$\mu_{Y}(r) = \frac{\Gamma(1+1/\tau)}{c}$$

$$\sigma_{Y}^{2} = \frac{\Gamma(1+2/\tau)}{c^{2}} - \mu_{Y}^{2}$$

$$\zeta_{Y} = \frac{1}{\sigma_{Y}^{3}} \left[\frac{\Gamma(1+3/\tau)}{c^{3}} - 3\mu_{Y}\sigma_{Y}^{2} - \mu_{Y}^{3} \right]$$

- For $0 \le u_1 < u_2$ and u, y > 0 we obtain

$$E[Y1_{u_1 < Y \le u_2}] = \frac{\Gamma(1 + 1/\tau)}{c} \left[\mathcal{G}(1 + 1/\tau, (cu_2)^{\tau}) - \mathcal{G}(1 + 1/\tau, (cu_1)^{\tau}) \right]$$

$$I(G(y)) = \mathcal{G}(1 + 1/\tau, (cy)^{\tau})$$

$$e(u) = \frac{\Gamma(1 + 1/\tau)}{c} \left(\frac{1 - \mathcal{G}(1 + 1/tau, (cu)^{\tau})}{e^{-(cu)^{\tau}}} \right) - u$$

- Generating Weibull random numbers by observing that we have identity $Y \stackrel{(d)}{=} \frac{1}{c} Z^{1/\tau}$ with $Z \sim \exp(1) \stackrel{(d)}{=} \Gamma(1,1)$: rgamma(n,shape=1,rate=1)

- Method of moment estimators are given by

$$\hat{c}^{MM} = \frac{\Gamma(1 + 1/\hat{\tau}^{M}M)}{\hat{\mu}_{n}}$$

$$\frac{\hat{\sigma}_{n}^{2}}{\hat{\mu}_{n}^{2}} + 1 = \frac{1 + 2/\hat{\tau}^{MM}}{\Gamma(1 + 1/\hat{\tau}^{M}M)^{2}}$$

which needs to be solved numerically in R

- For MLE we need to solve system of equations

$$c = \left(\frac{1}{n} \sum_{i=1}^{n} Y_i^{\tau}\right)^{-1/\tau}$$

$$\tau \frac{1}{n} \sum_{i=1}^{n} \log(cY_i)((cY_i)^{\tau} - 1) = 1$$

• Log-normal distribution

 $-Y \sim \text{LN}(\mu, \sigma^2)$ log-normal distributed with mean parameter $\mu \in \mathbb{R}$ and standard deviation parameter $\sigma > 0$

$$g(y) = \frac{1}{\sqrt{2\pi}\sigma} \frac{1}{y} e^{-\frac{1}{2} \frac{(\log y - \mu)^2}{\sigma^2}} \quad \text{for } y \ge 0$$

$$G(y) = \Phi\left(\frac{\log y - \mu}{\sigma}\right)$$

with $\Phi(.)$ denoting standard Gaussian distribution function.

- Family of log-normal distributions is closed towards multiplication with positive constant, that is, for $\rho > 0$ we have

$$\rho Y \sim \log n(\mu + \log \rho, \sigma^2)$$

- Mgf does not exist for r > 0 and we have following moments

$$\mu_{Y} = e^{\mu + \sigma^{2}/2}$$

$$\sigma_{Y}^{2} = e^{2\mu + \sigma^{2}} (e^{\sigma^{2}} - 1)$$

$$Vco(Y) = (e^{\sigma^{2}} - 1)^{1/2}$$

$$\zeta_{Y} = (e^{\sigma^{2}} + 2) (e^{\sigma^{2}} - 1)^{1/2}$$

– For $0 \le u_1 < u_2$ and u, y > 0 we obtain

$$E[Y1_{u_1 < Y \le u_2}] = \mu_Y \left[\Phi\left(\frac{\log u_2 - (\mu + \sigma^2)}{\sigma}\right) - \Phi\left(\frac{\log u_1 - (\mu + \sigma^2)}{\sigma}\right) \right]$$

$$I(G(y)) = \Phi\left(\frac{\log y - (\mu + \sigma^2)}{\sigma}\right)$$

$$e(u) = \mu_Y \left(\frac{1 - \Phi\left(\frac{\log u - (\mu + \sigma^2)}{\sigma}\right)}{1 - \Phi\left(\frac{\log u - \mu}{\sigma}\right)}\right) - u$$

- Log-normal distribution does not have regularly varying survival function at infinity.
- Generating log-normal random numbers
 - * Choose standard Gaussian numbers $Z \sim \Phi$
 - * Set $Y = e^{\mu + \sigma Z}$
- Method of moment estimators are given by

$$\hat{\sigma}^{MM} = \left[\log \left(\frac{\hat{\sigma}_n^2}{\hat{\mu}_n^2} + 1 \right) \right]^{1/2}$$

$$\hat{\mu}^{MM} = \log \hat{m}u_n - (\hat{\sigma}^{MM})^2 / 2$$

- MLE is given by

$$\hat{\mu}^{MLE} = \frac{1}{n} \sum_{i=1}^{n} \log Y_i$$

$$(\hat{\sigma}^{MLE})^2 = \frac{1}{n} \sum_{i=1}^{n} \sum_{i=1}^{n} (\log Y_i - \hat{\mu}^{MLE})^2$$

• Log-gamma distribution

- Log-gamma distribution is more heavy tailed than log-normal distribution.
- It is obtained by assuming $\log Y \sim \Gamma(\gamma, c)$ for positive parameters γ and c

$$g(y) = \frac{c^{\gamma}}{\Gamma(\gamma)} (\log y)^{\gamma - 1} y^{-(c+1)} \quad \text{for } y \ge 1$$

$$G(y) = \mathcal{G}(\gamma, c \log y)$$

- Mgf does not exist for r > 0 and for moments we have

$$\begin{array}{ll} \mu_Y & = & \left(\frac{c}{c-1}\right)^{\gamma} & \text{for } c > 1 \\ \\ \sigma_Y^2 & = & \left(\frac{c}{c-2}\right)^{\gamma} - \mu_Y^2 & \text{for } c > 2 \\ \\ \zeta_Y & = & \frac{1}{\sigma_Y^3} \left[\left(\frac{c}{c-3}\right)^{\gamma} - 3\mu_Y \sigma_Y^2 - \mu_Y^3 \right] & \text{for } c > 3 \end{array}$$

- For $0 \le u_1 < u_2$ and u, y > 0 we obtain

$$E[Y1_{u_1 < Y \le u_2}] = \left(\frac{c}{c-1}\right)^{\gamma} \left[\mathcal{G}(\gamma, (c-1)\log u_2) - \mathcal{G}(\gamma, (c-1)\log u_1)\right]$$

$$I(G(y)) = \mathcal{G}(\gamma, (c-1)\log y)$$

$$e(u) = \left(\frac{c}{c-1}\right)^{\gamma} \left(\frac{1 - \mathcal{G}(\gamma, (c-1)\log u)}{1 - \mathcal{G}(\gamma, c\log u)}\right) - u$$

- Log-gamma has regularly varying survival function at infinity with c > 0
- Method of moment estimators are given by (solved numerically)

$$\hat{\gamma}^{MM} = \frac{\log \hat{\mu}_n}{\log \frac{\hat{c}^{MM}}{\hat{c}^{MM} - 1}}$$

$$\frac{\log(\hat{\sigma}_n^2 + \hat{\mu}_n^2)}{\log \hat{\mu}_n} = \frac{\log \hat{c}^{MM} - \log(\hat{c}^{MM} - 2)}{\log \hat{c}^{MM} - \log(\hat{c}^{MM} - 1)}$$

– MLE is obtained analogously to MLE for gamma observations by simply replacing $_i$ by $\log Y_i$

• Pareto distribution

 $-Y \sim \text{Pareto}(\theta, \alpha)$ with threshold $\theta > 0$ and tail index $\alpha > 0$

$$g(y) = \frac{\alpha}{\theta} \left(\frac{y}{\theta}\right)^{-(\alpha+1)} \quad \text{for } y \ge \theta$$

$$G(y) = 1 - \left(\frac{y}{\theta}\right)^{-\alpha}$$

- Claims above threshold θ are assumed to have regularly varying tails with $\alpha > 0$.
- We have closedness towards multiplication with a positive constant $\rho > 0$

$$\rho Y \sim \text{Pareto}(\theta \rho, \alpha)$$

- Mgf does not exist for r > 0 and for moments we have

$$\mu_Y = \theta \frac{\alpha}{\alpha - 1} \quad \text{for } \alpha > 1$$

$$\sigma_Y^2 = \theta^2 \frac{\alpha}{(\alpha - 1)^2 (\alpha - 2)} \quad \text{for } \alpha > 2$$

$$\zeta_Y = \frac{2(1 + \alpha)}{\alpha - 3} \left(\frac{\alpha - 2}{\alpha}\right)^{1/2} \quad \text{for } \alpha > 3$$

- For $0 \le u_1 < u_2$ and u, y > 0 we obtain

$$E[Y1_{u_1 < Y \le u_2}] = \theta \frac{\alpha}{\alpha - 1} \left[\left(\frac{u_1}{\theta} \right)^{-\alpha + 1} - \left(\frac{u_2}{\theta} \right)^{-\alpha + 1} \right]$$

$$I(G(y)) = 1 - \left(\frac{y}{\theta} \right)^{-\alpha + 1}$$

$$e(u) = \frac{1}{\alpha - 1} u$$

– As soon as we only study tails of distributions we should use MLEs for parameter estimation (MM is not sufficiently robust against outliers). Since threshold θ has natural meaning we only need to estimate α

$$\hat{\alpha}^{MLE} = \left(\frac{1}{n} \sum_{i=1}^{n} \log Y_i - \log \theta\right)^{-1}$$

- **Lemma:** Assume $Y_1, \ldots, Y_n \stackrel{iid}{\sim} \text{Pareto}(\theta, \alpha)$, then

$$E[\hat{\alpha}^{MLE}] = \frac{n}{n-1}\alpha$$
$$\operatorname{var}(\hat{\alpha}^{MLE}) = \frac{n^2}{(n-1)^2(n-2)}\alpha^2$$

– We order claims accordingly to $Y_{(1)} \leq Y_{(2)} \leq \ldots \leq Y_{(n)}$ and define **Hill estimator**

$$\hat{\alpha}_{k,n}^{H} = \left(\frac{1}{n-k+1} \sum_{i=k}^{n} \log Y_{(i)} - \log Y_{(k)}\right)^{-1} \quad \text{for } k < n$$

– Hill estimator is based on rationale that Pareto distribution is closed towards increasing thresholds, i.e. for $Y \sim \text{Pareto}(\theta_0, \gamma)$ and $\theta_1 > \theta_0$ we have

$$\Pr[Y > y | Y \ge \theta_1] = \frac{\left(\frac{y}{\theta_0}\right)^{-\alpha}}{\left(\frac{\theta_1}{\theta_0}\right)^{-\alpha}} = \left(\frac{y}{\theta_1}\right)^{-\alpha} \quad \text{for } y \ge \theta_1$$

– Therefore if data comes from Pareto distribution we should observe stability in $\hat{\alpha}_{k,n}^H$ for changing k.

• Creating new distributions

Multiplication by a constant

Let X be a continuous r.v. with pdf $f_X(x)$ and cdf $F_X(x)$. Consider transformation Y = cX with c > 0. Then

$$F_Y(y) = F_X\left(\frac{y}{c}\right)$$
 and $f_Y(y) = \frac{1}{c}f_X\left(\frac{y}{c}\right)$

- Raising to a power

Let X be a continuous r.v. with pdf $f_X(x)$ and cdf $F_X(x)$. Let $Y = X^{\tau}$. Then, if $\tau > 0$,

$$F_Y(y) = F_X(y^{1/\tau})$$
 and $f_Y(y) = \frac{1}{\tau} y^{\frac{1}{\tau} - 1} f_X(y^{1/\tau})$

while, if $\tau < 0$,

$$F_Y(y) = 1 - F_X(y^{1/\tau})$$
 and $f_Y(y) = \left| \frac{1}{\tau} \right| y^{\frac{1}{\tau} - 1} f_X(y^{1/\tau})$

- Exponentiation

Let X be a continuous r.v. with pdf $f_X(x)$ and cdf $F_X(x)$ with $f_X(x) > 0$ for all real x. Let $Y = \exp(X)$. Then, for y > 0,

$$F_Y(y) = F_X(\ln y),$$
 and $f_Y(y) = \frac{1}{y} f_X(\ln y)$

• Probability integral transformation (PIT)

We consider rv X with cdf F, where F is strictly increasing on some interval I, F = 0 to the left of I and F = 1 to the right of I. F^{-1} is well defined for $x \in I$.

- 1. Let Y = F(X), then Y has a uniform distribution on [0,1].
- 2. Let U be uniform on [0,1] and let $Z=F^{-1}(U)$. Then the cdf of Z is F.

• k-point mixture distribution

- Consider rv X generated from k distinct subpopulations, where subpopulation i is modeled by the continuous distribution $f_{X_i}(x)$, then the pdf of X is given by

$$f_X(x) = \sum_{i=1}^k p_i f_{X_i}(x), \quad \text{with } 0 < p_i < 1, \quad \sum_{i=1}^k p_i = 1$$

– The cdf, k-th moment and moment generating function of the k-th point mixture are given as

$$F_X(x) = \sum_{i=1}^k p_i F_{X_i}(x)$$
$$\mathbb{E}(X^k) = \sum_{i=1}^k p_i \mathbb{E}(X_i^k)$$
$$M_X(r) = \sum_{i=1}^k p_i M_{X_i}(r)$$

• Continuous mixture distribution

- Let X have conditional distribution $f_X(x|\theta)$ at a particular value of θ and let $g(\theta)$ be the pdf of the unknown rv θ . The unconditional pdf of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_X(x|\theta)g(\theta)d\theta$$

The pdf $g(\theta)$ is known as the prior distribution of θ (prior information or expert opinion is used in the analysis).

- The cdf, k-moment and moment generating function of the continuous mixture are given as

$$F_X(x) = \int_{-\infty}^{\infty} F_X(x|\theta)g(\theta)d\theta$$

$$\mathbb{E}(X^k) = \int_{-\infty}^{\infty} \mathbb{E}(X^k|\theta)g(\theta)d\theta = \mathbb{E}\left[\mathbb{E}(X^k|\theta)\right]$$

$$M_X(r) = \mathbb{E}(e^{rX}) = \int_{-\infty}^{\infty} \mathbb{E}(e^{tX}|\theta)g(\theta)d\theta$$

- In particular the mean and variance of X are given by

$$\mathbb{E}(X) = \mathbb{E}\left[\mathbb{E}(X|\theta)\right]$$
$$\operatorname{Var}(X) = \mathbb{E}\left[\operatorname{Var}(X|\theta)\right] + \operatorname{Var}\left[\mathbb{E}(X|\theta)\right]$$

• Kolmogorov-Smirnov (KS) test

Assume an iid sequence Y_1, Y_2, \ldots from unknown distribution function G and corresponding empirical distribution function \hat{G}_n of finite sample size n. The non-parametric KS test investigates whether the continuous distribution function G_0 fits to given sample Y_1, Y_2, \ldots, Y_n .

- Glivenko-Cantelli theorem: the empirical distribution function of an iid sample converges uniformly to true underlying distribution function \mathbb{P} -a.s. $(n \to \infty)$.
- $H_0: G = G_0$
- $-H_1:G\neq G_0$
- KS test statistic:

$$D_n = D_n(Y_1, \dots, Y_n) = \|\hat{G}_n - G_0\|_{\infty} = \sup_{y} |\hat{G}_n(y) - G_0(y)|$$

 $-\sqrt{n}D_n \to \mathbf{Kolmogorov}$ distribution K (as $n \to \infty$)

$$K(y) = 1 - 2\sum_{j=1}^{\infty} (-1)^{j+1} e^{-2j^2 y^2} \qquad (y \in \mathbb{R}_+).$$

- H_0 is rejected on significance level $q \in (0,1)$ if

$$D_n > n^{-1/2} K^{\leftarrow} (1 - q)$$

where $K^{\leftarrow}(1-q)$ denotes the (1-q)-quantile of the Kolmogorov distribution K .

q	20%	10%	5%	2%	1%
$K^{\leftarrow}(1-q)$	1.07	1.22	1.36	1.52	1.63

• Anderson-Darling (AD) test

- AD test statistic:

$$\sup_{y} |\hat{G}_{n}(y) - G_{0}(y)| \sqrt{\psi(G_{0}(y))}$$

where $\psi:[0,1]\to\mathbb{R}_+$ is a weight function.

 $-\psi(t(1-y))^{-1}$ to investigate tails.

• Pearson's χ^2 test

- Splits support of G_0 into K disjoint intervals $I_k = [c_k, c_{k+1})$ and groups data accordingly.
- O_k counts the number of observed realisations Y_1, \ldots, Y_n in I_k and E_k denotes the expected number of observations in I_k according to G_0 .
- Test statistic of *n* observations:

$$X_{n,K}^2 = \sum_{k=1}^K \frac{(O_k - E_k)^2}{E_k}$$

- If d parameters were estimated, then $X_{n,K}^2$ is compared to χ_{K-1-d}^2 distribution.
- Rule of thumb: $E_k > 4$

• Information criteria

Assume we want to compare different densities g_1 and g_2 that were fitted to $\mathbf{Y} = (Y_1, \dots, Y_n)'$. The **Akaike** and **Bayesian Information Criterion** are

$$AIC^{(i)} = -2\ell_{\mathbf{Y}}^{(i)} + 2d^{(i)}$$

 $BIC^{(i)} = -2\ell_{\mathbf{Y}}^{(i)} + \log(n)d^{(i)}$

where $\ell_{\boldsymbol{Y}}^{(i)}$ is log-likelihood function of density g_i for data \boldsymbol{Y} and $d^{(i)}$ denotes number of estimated parameters in g_i .

• Re-insurance layers and deductibles

- In this case the pure risk premium for claim $Y \sim G$ is given by

$$E[(Y-d)_{+}] = \int_{d}^{\infty} (y-d)dG(y) = E[Y1_{\{Y>d\}}] - dP[Y>d]$$

= $P[Y>d](E[Y|Y>d]-d) = P[Y>d]e(d)$

under the assumption that P[Y > d] > 0 and that the mean excess function e(.) of Y exists.

– Insurance company covers $(Y \wedge M)$ and pure risk premium for this (bounded) claim is given by

$$E[Y \wedge M] = \int_0^M y dG(y) + MP[Y > M] = E[Y1_{\{Y \le M\}}] + MP[Y > M]$$

$$= E[Y] - (E[Y1_{\{Y > M\}}] - MP[Y > M])$$

$$= E[Y] - P[Y > M]e(M) = E[Y] - E[(Y - M)_+]$$

- If we combine deductibles with maximal covers we obtain excess-of-loss (XL) (re-)insurance treaties. Assume we have deductible $u_1 > 0$. Insurance treaty " $u_2 X L u_1$ " covers claims layer $(u_1, u_1 + u_2]$ that is, this contract covers maximal excess of u_2 above priority u_1 . The pure risk premium for such contracts is then given by

$$E[((Y-u_1)_+) \wedge u_2] = E[(Y-u_1)_+] - E[(Y-u_1-u_2)_+]$$

- Theorem: leverage effect of claims inflation: Choose a fixed deductible d > 0 and assume that claim at time 0 is given by Y_0 . Assume that there is a deterministic inflation index i > 0 such that claim at time 1 can be represented by $Y_1 \stackrel{(d)}{=} (1+i)Y_0$. We have

$$E[(Y_1 - d)_+] \ge (1 + i)E[(Y_0 - d)_+]$$

Aggregate loss models or compound distributions

• Compound binomial model

- The total claim amount S has a **compound binomial distribution**, write

$$S \sim \text{CompBinom}(v, p, G)$$

if S has a compound distribution with $N \sim \text{Binom}(v, p)$ for given $v \in \mathbb{N}$ and $p \in (0, 1)$ and individual claim size distribution G.

- **Proposition:** Assume $S \sim \text{CompBinom}(v, p, G)$. We have

$$E[S] = vpE[Y_1]$$

$$var(S) = vp (E[Y_1^2] - pE[Y_1]^2)$$

$$Vco(S) = \sqrt{\frac{1}{vp}}\sqrt{1 - p + Vco(Y_1)^2}$$

$$M_S(r) = (pM_{Y_1}(r) + (1 - p))^v \quad r \in \mathbb{R}$$

whenever they exist.

- Corollary - Aggregation property: Assume that S_1, \ldots, S_n are independent with $S_j \sim \text{CompBinom}(v_j, p, G)$ for all $j = 1, \ldots, n$. The aggregated claim has a compound binomial distribution with

$$S = \sum_{j=1}^{n} S_j \sim \text{CompBinom}\left(\sum_{j=1}^{n} v_j, p, G\right)$$

• Compound Poisson model

- The total claim amount S has a compound Poisson distribution

$$S \sim \text{CompPoi}(\lambda v, G)$$

if S has compound distribution with $N \sim \text{Poi}(\lambda v)$ for given $\lambda, v > 0$ and individual claim size distribution G.

- **Proposition:** Assume $S \sim \text{CompPoi}(\lambda v, G)$. We have

$$E[S] = \lambda v E[Y_1]$$

$$var(S) = \lambda v E[Y_1^2]$$

$$Vco(S) = \sqrt{\frac{1}{\lambda v}} \sqrt{1 + Vco(Y_1)^2}$$

$$M_S(r) = e^{\lambda v (M_{Y_1}(r) - 1)} \quad \text{for } r \in \mathbb{R}$$

whenever they exist.

- Theorem - Aggregation of compound Poisson distributions: Assume S_1, \ldots, S_n are independent with $S_j \sim \text{CompPoi}(\lambda_j v_j, G_j) \ \forall j = 1, \ldots, n$. The aggregated claim has compound Poisson distribution

$$S = \sum_{j=1}^{n} S_j \sim \text{CompPoi}(\lambda v, G)$$

with

$$v = \sum_{j=1}^{n} v_j$$
 $\lambda = \sum_{j=1}^{n} \frac{v_j}{v} \lambda_j$ $G = \sum_{j=1}^{n} \frac{\lambda_j v_j}{\lambda v} G_j$.

• Extension of the compound poisson model

- Let $(p_j^+)_{j=1,\dots,m}$ be a discrete probability distribution on finite set $\{1,\dots,m\}$. Assume $p_j^+>0$ for all j.
- Assume G_i corresponding claim size distributions of the sub-portfolios with $G_i(0) = 0$.
- Define mixture distribution

$$G(y) = \sum_{j=1}^{m} p_j^+ G_j(y)$$
 for $y \in \mathbb{R}$

Former theorem exactly provides such a mixture distribution with $p_j^+ = \frac{\lambda_j v_j}{\lambda v}$ if we aggregate sub-portfolios.

- Define a discrete random variable I which indicates to which sub-portfolio particular claim Y belongs

$$\mathbb{P}[I=j] = p_j^+ \quad \text{for all } j \in \{1, \dots, m\}$$

- **Definition Extended compound poisson model:** The total claim amount $S = \sum_{i=1}^{N} Y_i$ has a compound Poisson distribution as defined before. In addition, we assume that $(Y_i, I_i)_{i\geq 1}$ are iid and independent of N with Y_i having marginal distribution function G with G(0) = 0 and I_i having marginal distribution function given before.
- (Y_1, I_1) takes values in $\mathbb{R}_+ \times \{1, \dots, m\}$ and let A_1, \dots, A_n be a measurable disjoint decomposition of $\mathbb{R}_+ \times \{1, \dots, m\}$, i.e.

*
$$A_k \cap A_l = \emptyset$$
 for all $k \neq l$

$$* \cup_{i=1}^n A_k = \mathbb{R}_+ \times \{1, \dots, m\}$$

This measurable disjoint decomposition is called admissible for (Y_1, I_1) if for all $k = 1, \ldots, n$

$$p^{(k)} = \Pr[(Y_1, I_1) \in A_k] > 0.$$

Note that $\sum_{k=1}^{n} p^{(k)} = 1$.

- Theorem - Disjoint decomposition property: Assume that S fulfils extended compound Poisson model assumptions. We choose an admissible, measurable disjoint decomposition A_1, \ldots, A_n for (Y_1, I_1) . Define for $k = 1, \ldots, n$ the random variables

$$S_k = \sum_{i=1}^{N} Y_i 1_{\{(Y_i, I_i) \in A_k\}}$$

 S_k are independent and CompPoi $(\lambda_k v_k, G_k)$ distributed for $k = 1, \ldots, n$ with

$$\lambda_k v_k = \lambda v p^{(k)} > 0$$
 and $G_k(y) = \Pr[Y_1 \le y | (Y_1, I_1) \in A_k]$

Compound negative-binomial model

- The total claim amount S has a compound Negative-binomial distribution

$$S \sim \text{CompNB}(\lambda v, \gamma, G)$$

if S has compound distribution with $N \sim \text{NegBin}(\lambda v, \gamma)$ for given $\lambda, v, \gamma > 0$ and individual claim size distribution G.

- Proposition: Assume $S \sim \text{CompNB}(\lambda v, \gamma, G)$. We have, whenever they exist

$$E[S] = \lambda v E[Y_1]$$

$$\operatorname{var}(S) = \lambda v E[Y_1^2] + (\lambda v)^2 E[Y_1]^2 / \gamma$$

$$\operatorname{Vco}(S) = \sqrt{\frac{1}{\lambda v}} \sqrt{1 + \operatorname{Vco}(Y_1)^2 + \lambda v / \gamma} > \gamma^{-1/2}$$

$$M_S(r) = \left(\frac{1 - p}{1 - p M_{Y_1}(r)}\right)^{\gamma} \quad \text{for } r \in \mathbb{R} \text{ such that } M_{Y_1}(r) < 1/p$$

with $p = (\lambda v)/(\gamma + \lambda v) \in (0, 1)$.

Parameter estimation

- Method of moments (specific case)
 - Assume that there exist strictly positive volumes v_1, \ldots, v_T such that the components of $\mathbf{F} = (N_1/v_1, \ldots, N_T/v_T)'$ are **independent** with

$$\lambda = E[N_t/v_t]$$
 and $\tau_t^2 = \text{var}(N_t/v_t) \in (0, \infty)$

- **Lemma:** (assumption above holds) Unbiased linear (in F) estimator for λ with minimal variance is given by

$$\hat{\lambda}_{T}^{MV} = \left(\sum_{t=1}^{T} \frac{1}{\tau_{t}^{2}}\right)^{-1} \sum_{t=1}^{T} \frac{N_{t}/v_{t}}{\tau_{t}^{2}}$$

The variance of this estimator is given by

$$\operatorname{var}(\hat{\lambda}_T^{MV}) = \left(\sum_{t=1}^T \frac{1}{\tau_t^2}\right)^{-1}$$

• Maximum Likelihood Estimation (MLE) method

Assume that the components of $N = (N_1, ..., N_T)'$ are independent with probability weights $p_k^{(t)}(\vartheta) = \Pr_{\vartheta}[N_t = k] = \Pr[N_t = k]$ which depend on common unknown parameter ϑ .

- Joint likelihood function for observation N

$$\mathcal{L}_{\boldsymbol{N}}(\boldsymbol{\vartheta}) = \prod_{t=1}^{T} p_{N_t}^{(t)}(\boldsymbol{\vartheta})$$

- Joint log-likelihood function

$$\ell_{\boldsymbol{N}}(\vartheta) = \sum_{t=1}^{T} \log p_{N_t}^{(t)}(\vartheta)$$

 $-\ \hat{\vartheta}_T^{MLE}$ for ϑ based on observation N is given by

$$\hat{\vartheta}_{T}^{MLE} = \operatorname*{argmax}_{\vartheta} \mathcal{L}_{N}(\vartheta) = \operatorname*{argmax}_{\vartheta} \ell_{N}(\vartheta)$$

– Under suitable regularity properties and real valued parameter, $\hat{\vartheta}_T^{MLE}$ is solution of

$$\frac{\partial}{\partial \vartheta} \ell_{N}(\vartheta) = \frac{\partial}{\partial \vartheta} \sum_{t=1}^{T} \log p_{N_{t}}^{(t)}(\vartheta) = 0$$

- Statistical test - χ^2 goodness-of-fit test

$$-H_0: N_t \stackrel{iid}{\sim} \operatorname{Poi}(\lambda v_t) \text{ for } t = 1, \dots, T.$$

- Test statistic

$$\chi^* = \chi^*(\mathbf{N}) = \sum_{t=1}^T \frac{(N_t/v_t - \lambda)^2}{\lambda/v_t}$$

– Aggregation and disjoint decomposition theorems imply that $N_t \sim \text{Poi}(\lambda v_t)$ can be understood as a sum of v_t iid random variables $X_i \sim \text{Poi}(\lambda)$. Hence

$$N_t \stackrel{(d)}{=} \sum_{i=1}^{v_t} X_i$$

with $E[X_1] = \lambda$ and $var(X_1) = \lambda$. But then CLT applies as $v_t \to \infty$

$$\tilde{Z}_t = \frac{N_t/v_t - \lambda}{\sqrt{\lambda/v_t}} = \frac{N_t - \lambda v_t}{\sqrt{\lambda v_t}} \stackrel{(d)}{=} \frac{\sum_{i=1}^{v_t} X_i - \lambda v_t}{\sqrt{\lambda v_t}} \stackrel{D}{\longrightarrow} Z_t \sim \mathcal{N}(0, 1)$$

- Approximate \tilde{Z}_t by $Z_t \sim \mathcal{N}(0,1)$ for v_t sufficiently large.
- If $Z_1, \ldots, Z_n \stackrel{iid}{\sim} \mathcal{N}(0,1)$ then $\sum_{t=1}^T Z_t^2$ has χ_T^2 distribution. Therefore

$$\chi^* = \chi^*(\mathbf{N}) = \sum_{t=1}^{T} \frac{(N_t/v_t - \lambda)^2}{\lambda v_t} = \sum_{t=1}^{T} \tilde{Z}_t^2 \stackrel{(d)}{\approx} \sum_{t=1}^{T} Z_t^2 \sim \chi_T^2$$

– We replace unknown λ by $\hat{\lambda}_T^{MLE}$ and lose 1 df.

$$\hat{\chi}^* = \sum_{t=1}^{T} v_t \frac{\left(N_t/v_t - \hat{\lambda}_T^{MLE}\right)^2}{\hat{\lambda}_T^{MLE}} \stackrel{(d)}{\approx} \chi_{T-1}^2$$

Approximations for compound distributions

- ullet Compound distributions distribution of S
 - Basic recognition features of compound distributions: Assume S has a compound distribution. We have (whenever they exist)

$$E[S] = E[N]E[Y_1]$$

$$var(S) = var(N)E[Y_1]^2 + E[N] var(Y_1)$$

$$Vco(S) = \sqrt{Vco(N)^2 + \frac{1}{E[N]}Vco(Y_1)^2}$$

$$M_S(r) = M_N \left(\log(M_{Y_1(r)})\right) \quad \text{for } r \in \mathbb{R}.$$

- If assumptions above hold, the distribution function of S can be written as

$$F_{S}(x) = \mathbb{P}[S \leq x] = \sum_{k \in \mathcal{A}} \mathbb{P}\left[\sum_{i=1}^{N} Y_{i} \leq x \middle| N = k\right] \mathbb{P}[N = k]$$
$$= \sum_{k \in \mathcal{A}} \mathbb{P}\left[\sum_{i=1}^{k} Y_{i} \leq x\right] \mathbb{P}[N = k] = \sum_{k \in \mathcal{A}} G^{*k}(x) \mathbb{P}[N = k]$$

 G^{*k} denotes the k-th convolution of the distribution function G. In particular, we have for $Y_1,Y_2\stackrel{iid}{\sim} G$

$$G^{*2}(x) = \mathbb{P}[Y_1 + Y_2 \le x] = \int G(x - y)dG(y)$$
$$G^{*k}(x) = \int G^{*(k-1)}(x)dG(y)$$

• Normal approximation

- **Theorem:** Assume $S \sim \text{CompPoi}(\lambda v, G)$ with G having a finite second moment. We have

$$\frac{S - \lambda v E[Y_1]}{\sqrt{\lambda v E[Y_1^2]}} \Rightarrow N(0, 1) \text{ as } v \to \infty$$

- Approximation of the distribution function of S:

$$P[S \le x] = P\left[\frac{S - \lambda v E[Y_1]}{\sqrt{\lambda v E[Y_1^2]}} \le \frac{x - \lambda v E[Y_1]}{\sqrt{\lambda v E[Y_1^2]}}\right] \approx \Phi\left(\frac{x - \lambda v E[Y_1]}{\sqrt{\lambda v E[Y_1^2]}}\right)$$

• Translated gamma and log-normal approximation

- We choose $k \in \mathbb{R}$ and define **translated or shifted** random variables

$$X = k + Z$$
 where $Z \sim \Gamma(\gamma, c)$ or $Z \sim LN(\mu, \sigma^2)$

Translated gamma case	Translated log-normal case
$E[X] = k + \gamma/c$	$E[X] = k + e^{\mu + \sigma^2/2}$
$var(X) = \gamma/c^2$	$\operatorname{var}(X) = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1 \right)$
$\zeta_X = 2\gamma^{-1/2}$	$\zeta_X = \left(e^{\sigma^2} + 2\right) \left(e^{\sigma^2} - 1\right)^{1/2}$

- Assume S has a finite third moment. Then we choose

$$X = k + Z$$
 where $Z \sim \Gamma(\gamma, c)$ or $Z \sim LN(\mu, \sigma^2)$

such that the three parameters of X fulfill

$$E[X] = E[S]$$
 $var(X) = var(S)$ $\zeta_X = \zeta_S$

• Edgeworth approximation

Assume S is compound Poisson distributed with claim size distribution G having a positive radius of convergence $\rho_0 > 0$.

- Normalized random variable

$$Z = \frac{S - \lambda v E[Y_1]}{\sqrt{\lambda v E[Y_1^2]}}$$

$$\Rightarrow E[Z] = 0, \text{var}(Z) = 1 \text{ and } \zeta_Z = \zeta_S.$$

– Taylor expansion around origin, choose $n \geq 3$

$$\log M_Z(r) = \sum_{k=0}^{n} \frac{\frac{d^k}{dr^k} \log M_Z(r)|_{r=0}}{k!} r^k + o(r^n) \quad \text{as } r \to 0$$

- Set

$$a_k = \frac{\frac{d^k}{dr^k} \log M_Z(r)|_{r=0}}{k!}$$

 $\Rightarrow a_0 = \log M_Z(0) = 0, a_1 = E[Z] = 0 \text{ and } a_2 = \text{var}(Z)/2! = 1/2.$

- Approximation

$$M_Z(r) \approx e^{\frac{1}{2}r^2 + \sum_{k=3}^n a_k r^k} = e^{\frac{1}{2}r^2} e^{\sum_{k=3}^n a_k r^k}$$

- Using second Taylor expansion for $e^x = 1 + x + x^2/2! + \dots$ applied to latter exponential function in last expression, **mgf of** Z **is approximated by**

$$M_Z(r) \approx e^{r^2/2} \left[1 + \sum_{k=3}^n a_k r^k + \frac{\left(\sum_{k=3}^n a_k r^k\right)^2}{2!} + \dots \right]$$

- For appropriate constants $b_k \in \mathbb{R}$ we get approximation (for small r)

$$M_Z(r) \approx e^{r^2/2} \left[1 + a_3 r^3 + \sum_{k \ge 4} b_k r^k \right]$$
 (1)

- **Lemma:** Let Φ denote the standard Gaussian distribution function and $\Phi^{(k)}$ its k-th derivative. For $k \in \mathbb{N}_0$ and $r \in \mathbb{R}$ we have

$$r^k e^{r^2/2} = (-1)^k \int_{-\infty}^{\infty} e^{rx} \Phi^{(k+1)}(x) dx$$

- Set $X \sim N(0,1)$ and rewrite approximation (1) as (using the above Lemma):

$$M_Z(r) \approx E[e^{rX}] - a_3 \int_{-\infty}^{\infty} e^{rx} \Phi^{(4)}(x) dx + \sum_{k \ge 4} b_k (-1)^k \int_{-\infty}^{\infty} e^{rx} \Phi^{(k+1)}(x) dx$$
$$= \int_{-\infty}^{\infty} e^{rx} \left[\Phi'(x) - a_3 \Phi^{(4)}(x) + \sum_{k \ge 4} b_k (-1)^k \Phi^{(k+1)}(x) \right] dx$$

Let Z have distribution function F_Z , then the latter suggests approximation

$$dF_Z(z) \approx \left[\Phi'(z) - a_3 \Phi^{(4)}(z) + \sum_{k \ge 4} b_k (-1)^k \Phi^{(k+1)}(z) \right] dz$$

- Integration provides the **Edgeworth approximation** $(x = \sqrt{\lambda v E[Y_1^2]}z + \lambda v E[Y_1])$

$$P[S \le x] = F_Z(z) \approx EW(z) \stackrel{def}{=} \Phi(z) - a_3 \Phi^{(3)}(z) + \sum_{k>4} b_k (-1)^k \Phi^{(k)}(z)$$

- The first order approximation of Φ is corrected by higher order terms involving skewness and other higher order terms reflected by a_S and b_k .
- Consider derivatives $\Phi^{(k)}$ for $k \geq 1$

$$\begin{split} \Phi'(z) &= \frac{1}{\sqrt{2\pi}} e^{-z^2/2} \\ \Phi^{(k)}(z) &= \frac{d^{k-1}}{dz^{k-1}} \frac{1}{\sqrt{2\pi}} e^{-z^2/2} = \mathcal{O}\left(z^{k-1} e^{-z^2/2}\right) \quad \text{ for } |z| \to \infty; k \ge 2 \end{split}$$

- From this it follows that

$$\lim_{z \to -\infty} EW(z) = 0 \quad \text{and} \quad \lim_{z \to \infty} EW(z) = 1$$

PART B: COPULAS

• A copula C is supermodular (2-increasing) if the inequality

$$C(v_1, v_2) - C(u_1, v_2) - C(v_1, u_2) + C(u_1, u_2) \ge 0$$

is valid for any $u_1 \leq v_1$ and $u_2 \leq v_2$.

• Independence copula

$$C^{\mathrm{ind}}(u_1, u_2) = u_1 u_2$$

• (Co-)monotonicity copula or Fréchet upper bound copula

$$C^{M}(u_1, u_2) = \min(u_1, u_2)$$

• Counter-monotonicity copula or Fréchet lower bound copula

$$C^{\text{CM}}(u_1, u_2) = \max(u_1 + u_2 - 1, 0)$$

• Gaussian copula

$$C_{\rho}^{\text{Gauss}}(u_1, u_2) = \int_{-\infty}^{\phi^{-1}(u_1)} \int_{-\infty}^{\phi^{-1}(u_2)} \frac{1}{2\pi\sqrt{1-\rho^2}} \exp\left(-\frac{s_1^2 - 2\rho s_1 s_2 + s_2^2}{2(1-\rho^2)}\right) ds_1 ds_2$$

• Probability density function of the Gaussian copula

$$c_{\rho}^{\text{Gauss}}(u_{1}, u_{2}) = \frac{1}{2\pi\sqrt{1-\rho^{2}}} \exp\left(-\frac{\xi_{1}^{2} - 2\rho\xi_{1}\xi_{2} + \xi_{2}^{2}}{2(1-\rho^{2})}\right) \frac{d}{du_{1}} \Phi^{-1}(u_{1}) \frac{d}{du_{2}} \Phi^{-1}(u_{2})$$

$$\stackrel{(*)}{=} \frac{1}{\sqrt{1-\rho^{2}}} \exp\left(-\frac{\xi_{1}^{2} - 2\rho\xi_{1}\xi_{2} + \xi_{2}^{2}}{2(1-\rho^{2})}\right) \exp\left(\frac{\xi_{1}^{2} + \xi_{2}^{2}}{2}\right)$$

where $\xi_1 = \Phi^{-1}(u_1)$ and $\xi_2 = \Phi^{-1}(u_2)$. (*) Note that $\frac{d}{du_i}\Phi^{-1}(u_i) = \frac{1}{\phi(\Phi^{-1}(u_i))} = \sqrt{2\pi}\exp(\frac{\xi_i^2}{2})$.

• Univariate t-distribution with ν degrees of freedom: $Y_1 \sim t_{\nu}$

$$Y_1 = \frac{X_1}{\sqrt{\xi/\nu}} = \frac{\sqrt{\nu}X_1}{\sqrt{Z_1^2 + \dots + Z_{\nu}^2}}$$

where $X_1, Z_1, \dots Z_{\nu} \sim \text{Normal}(0,1)$ and $\xi \sim \chi_{\nu}^2, X_1$ independent on **Z**

• Bivariate t-distribution with mean μ and shape matrix $\frac{\nu}{\nu-2}\Sigma$:

$$(Y_1, Y_2) = \mu + \left(\frac{X_1}{\sqrt{\xi/\nu}}, \frac{X_2}{\sqrt{\xi/\nu}}\right)$$

where $\mathbf{X} = (X_1, X_2) \sim \text{Normal}(\mathbf{0}, \boldsymbol{\Sigma})$

• Student copula

$$\begin{split} C_{\rho,\nu}^{\text{Student}}(u_1,u_2) &= T_{\rho,\nu} \left(t_{\nu}^{-1}(u_1), t_{\nu}^{-1}(u_2) \right) \\ &= \int_{-\infty}^{t_{\nu}^{-1}(u_1)} \int_{-\infty}^{t_{\nu}^{-1}(u_2)} \frac{ds_1 ds_2}{2\pi \sqrt{1-\rho^2}} \left(1 + \frac{s_1^2 - 2\rho s_1 s_2 + s_2^2}{\nu (1-\rho^2)} \right)^{\frac{-(\nu+2)}{2}} \end{split}$$

where $t_{\nu} \equiv$ univariate Student distribution with ν df and $T_{\rho,\nu} \equiv$ bivariate Student distribution with ν df and $0 \le \rho \le 1$.

• Form of an Archimedean copula

$$C(u_1, u_2) = \phi^{-1} (\phi(u_1) + \phi(u_2))$$

• Archimedean copulas

Name	Generator	Bivariate copula
Frank copula	$\phi(t) = -\log\left(\frac{\exp(-\theta t) - 1}{\exp(-\theta) - 1}\right)$ $(-\infty < \theta < +\infty)$	$C^{Fr}(u_1, u_2) = \frac{-1}{\theta} \log \left(1 + \frac{(\exp(-\theta u_1) - 1)(\exp(-\theta u_2) - 1)}{\exp(-\theta) - 1} \right)$
Clayton copula	$\phi(t) = \frac{t^{-\theta} - 1}{\theta}$ $(\theta > 0)$	$C^{\text{Cl}}(u_1, u_2) = \left(u_1^{-\theta} + u_2^{-\theta} - 1\right)^{-1/\theta}$
Gumbel copula	$\phi(t) = (-\log(t))^{\theta}$ (\theta \ge 1)	$C^{Gu}(u_1, u_2) = exp\left(-\left\{(-\log(u_1))^{\theta} + (-\log(u_2))^{\theta}\right\}^{1/\theta}\right)$

• Survival copula \overline{C} associated with C

$$\overline{C}(u_1, u_2) = C(1 - u_1, 1 - u_2) + u_1 + u_2 - 1$$

• The construction of the Marhall-Olkin survival copula leads to following copula family

$$C_{\alpha_1,\alpha_2}(u_1, u_2) = \min(u_1^{1-\alpha_1}u_2, u_1u_2^{1-\alpha_2})$$
$$= \begin{cases} u_1^{1-\alpha_1}u_2 & u_1^{\alpha_1} \ge u_2^{\alpha_2} \\ u_2^{1-\alpha_2}u_1 & u_1^{\alpha_1} < u_2^{\alpha_2} \end{cases}$$

• The co-copula C^* and dual \tilde{C} are defined as

$$C^*(u_1, u_2) = 1 - C(1 - u_1, 1 - u_2)$$

 $\tilde{C}(u_1, u_2) = u_1 + u_2 - C(u_1, u_2)$

- $M_{X,Y} = M_C$ is measure of concordance between rvs X and Y (with copula C) \Leftrightarrow
 - 1. it is defined for every pairs of rvs (completeness)
 - 2. it is a relative (normalized) measure, i.e. $M_{X,Y} \in [-1,1]$
 - 3. it is symmetric, i.e. $M_{X,Y} = M_{Y,X}$
 - 4. if X and Y are independent, then $M_{X,Y} = 0$
 - 5. $M_{-X,Y} = M_{X,-Y} = -M_{X,Y}$
 - 6. if $\{(X_n,Y_n)\}$ is sequence of continuous rvs with copula C_n and $\lim_{n\to+\infty} C_n(x,y)=C(x,y), \forall (x,y)\in [0,1]^2$ then $\lim_{n\to+\infty} M_{X_n,Y_n}=M_{X,Y}$.
 - 7. it respects concordance order: if $C1 \prec C2$, then $M_{C_1} \leq M_{C_2}$
- ullet Pearson correlation coefficient between X_1 and X_2

$$\rho = \frac{\text{cov}(X_1, X_2)}{\sigma_{X_1} \sigma_{X_2}} = \frac{E[X_1 X_2] - E[X_1] E[X_2]}{\sigma_{X_1} \sigma_{X_2}}$$

• Kendall's tau

$$\begin{split} \rho_{\tau}(X_1,X_2) &= P\left((X_1^{(1)} - X_1^{(2)})(X_2^{(1)} - X_2^{(2)}) > 0\right) \\ &- P\left((X_1^{(1)} - X_1^{(2)})(X_2^{(1)} - X_2^{(2)}) < 0\right) \\ &= E\left[\operatorname{sign}\left((X_1^{(1)} - X_1^{(2)})(X_2^{(1)} - X_2^{(2)})\right)\right] \\ &\updownarrow \\ \rho_{\tau}(X_1,X_2) &= 4\int\int C_X(u,v)dC_X(u,v) - 1 \end{split}$$

• Sample Kendall's tau of a bivariate sample of size M

$$\hat{\rho}_{\tau}(X_1, X_2) = \binom{M}{2}^{-1} \sum_{1 \le i \le j \le M} \operatorname{sign}\left((X_1^{(i)} - X_1^{(j)}) (X_2^{(i)} - X_2^{(j)}) \right)$$

where

$$\left(\begin{array}{c} n\\ k \end{array}\right) = \frac{n!}{k!(n-k)!}$$

• Spearman's rho

$$\begin{array}{ll} \rho_S(X_1,X_2) &= \operatorname{Corr}\left(F_{X_1}(X_1),F_{X_2}(X_2)\right) \\ & \updownarrow \\ \rho_S(X_1,X_2) &= 12 \int \int (C_X(u,v)-uv) du dv \end{array}$$

• Sample Spearman's rho of a bivariate sample of size M

$$\hat{\rho}_S(X_1, X_2) = \frac{12}{M(M^2 - 1)} \sum_{i=1}^{M} \left(\operatorname{rank}(X_1^{(i)}) - \frac{M + 1}{2} \right) \left(\operatorname{rank}(X_2^{(i)}) - \frac{M + 1}{2} \right)$$

• ρ_{τ} and ρ_{S} for Archimedean copulas

Family	Kendall's tau	Spearman's rho	
Independence	0	0	
Clayton	$\frac{\theta}{\theta+2}$	Complicated	
Gumbel	$1-\frac{1}{\theta}$	No closed-form	
Frank	$1 - \frac{4}{\theta}(D_1(-\theta) - 1)$	$1 - \frac{12}{\theta}(D_2(-\theta) - D_1(-\theta))$	

where the Debye function $D_k(.)$ is defined as

$$D_k(x) = \frac{k}{x^k} \int_0^x \frac{t^k}{e^t - 1} dt, \ k = 1, 2 \text{ and } D_k(-x) = D_k(x) + \frac{kx}{k+1}$$

• Theorem: Let $\mathbf{X} = (X_1, \dots, X_N)$ have a meta-Gaussian distribution with continuous marginal cdfs and copula $C^{\text{Gauss}}(\cdot; \mathbf{\Omega}), (\mathbf{\Omega})_{ij} = \rho_{ij}$, then

$$\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin(\rho_{ij})$$

$$\rho_{S}(X_i, X_j) = \frac{6}{\pi} \arcsin\left(\frac{\rho_{ij}}{2}\right) \approx \rho_{ij}$$

• Theorem: Let $\mathbf{X} = (X_1, \dots, X_N)$ have a meta- t_{ν} distribution with continuous marginal cdfs and copula $C^{\text{Student}}(\cdot; \mathbf{\Omega}, \nu)$, then

$$\rho_{\tau}(X_i, X_j) = \frac{2}{\pi} \arcsin(\rho_{ij})$$

• If the limit $\lambda_u \in [0,1]$ exists, the coefficient of upper tail dependence of X_1 and X_2 is defined by

$$\lambda_u = \lim_{q \to 1^-} P\left(X_2 > F_{X_2}^{-1}(q) | X_1 > F_{X_1}^{-1}(q)\right)$$

• If the limit $\lambda_{\ell} \in [0, 1]$ exists, the coefficient of lower tail dependence of X_1 and X_2 is defined by

$$\lambda_{\ell} = \lim_{q \to 0^{+}} P\left(X_{2} \le F_{X_{2}}^{-1}(q) | X_{1} \le F_{X_{1}}^{-1}(q)\right)$$

PART C: GENERALIZED LINEAR MODELS (GLMs)

Tariffication

• We focus on risk adjusted premia using the compound Poisson model $S \sim \text{CompPoi}(\lambda v, G)$ and consider

$$S = \sum_{i=1}^{N} Y_i = \sum_{\ell=1}^{v} \sum_{i=1}^{N^{(\ell)}} Y_i^{(\ell)} = \sum_{\ell=1}^{v} S_{\ell}$$

where $S_{\ell} = \sum_{i=1}^{N^{(\ell)}} Y_i^{(\ell)}$ models total claim amount of policy $\ell = 1, \dots, v$.

ullet This decoupling provides independent compound Poisson distributions S_ℓ

$$S_{\ell} \sim \text{CompPoi}(\lambda_{\ell}, G_{\ell})$$

where we set

- volume $v_{\ell} = 1$
- $-\lambda_{\ell} > 0$ is expected number of claims of policy ℓ
- $-Y_i^{(\ell)} \sim G_\ell$ describes claim size distribution of policy ℓ .
- \bullet This implies for mean value of S the following decomposition

$$E[S] = \sum_{\ell=1}^{v} E[S_{\ell}] = \sum_{\ell=1}^{v} \lambda_{\ell} E[Y_1^{(\ell)}] = \lambda E[Y_1] \sum_{\ell=1}^{v} \frac{\lambda_{\ell} E[Y_1^{(\ell)}]}{\lambda E[Y_1]} = \mu \sum_{\ell=1}^{v} \chi^{(\ell)}$$

where

- $-\mu = E[S]/v = \lambda E[Y_1]$ is average claim over all policies
- $-\chi^{(\ell)} > 0$ reflects risk characteristics of policy $\ell = 1, \ldots, v$.

• Multiplicative tariff

We assume that we have only k=2 tariff criteria but generalisation is straightforward. We set up a multiplicative tariff structure

- First criterion has I risk characteristics $i \in \{1, ..., I\}$ Second criterion has J risk characteristics $j \in \{1, ..., J\}$
- Thus we have $M = I \cdot J$ different risk classes
- Organize data with observations having one index per rating factor. This is suitable for displaying data in a table (tabular form).
- Assume policy ℓ belongs to risk class (i, j), write $\chi^{(\ell)} = \chi^{(i,j)}$. Hence

$$E[S] = \mu \sum_{i,j} v_{i,j} \chi^{(i,j)}$$

where $v_{i,j}$ denotes number of policies belonging to risk class (i,j).

- Our aim is to set up a multiplicative tariff structure for these K=2 tariff criteria, i.e. we assume

$$\chi^{(i,j)} = \chi_{1,i}\chi_{2,j}$$

where χ_{k,ℓ_k} describes specifics of criterion k if it has risk characteristics ℓ_k .

We need to find appropriate multiplicative pricing factors $\chi_{1,i}$, $i \in \{1, ..., I\}$ and $\chi_{2,j}$, $j \in \{1, ..., J\}$ that describe risk classes (i, j) according to multiplicative tariff structure.

- $S_{i,j}$ is total claim of risk class (i,j) and $v_{i,j}$ is corresponding volume with

$$\sum_{i,j} v_{i,j} = v \qquad \text{and} \qquad \sum_{i,j} S_{i,j} = S$$

- This implies that we need to study

$$E[S_{i,j}] = v_{i,j} \frac{E[S]}{v} \chi^{(i,j)} = v_{i,j} \mu \chi_{1,i} \chi_{2,j}$$

- * $\mu = \lambda E[Y_1]$ is average claim per policy over whole portfolio $v \Rightarrow E[S] = v\mu$.
- * $\chi^{(i,j)} = \chi_{1,i}\chi_{2,j}$ describes multiplicative tariff structure fro two tariff criteria.

Simple tariffication methods

• Bailey and Simon

– Specify $\mu, \chi_{1,i}$ and $\chi_{2,j} > 0$ such that following expression (which describes the test statistic of the χ^2 -goodness-of-fit test) is minimized:

$$X^{2} = \sum_{i,j} \frac{(S_{i,j} - v_{i,j}\mu\chi_{1,i}\chi_{2,j})^{2}}{v_{i,j}\mu\chi_{1,i}\chi_{2,j}}$$

We denote the minimizers by $\hat{\mu}$, $\hat{\chi}_{1,i}$ and $\hat{\chi}_{2,j}$.

- **Lemma:** The minimizers have a (systematic) positive bias:

$$\sum_{i,j} v_{i,j} \hat{\mu} \hat{\chi}_{1,i} \hat{\chi}_{2,j} \ge \sum_{i,j} S_{i,j} = S$$

Bailey and Jung

This method imposes unbiasedness of rows and columns by definition: choose $\mu, \chi_{1,i}$ and $\chi_{2,j} > 0$ such that rows i and columns j satisfy

$$\sum_{j=1}^{J} v_{i,j} \mu \chi_{1,i} \chi_{2,j} = \sum_{j=1}^{J} S_{i,j}$$

$$\sum_{i=1}^{I} v_{i,j} \mu \chi_{1,i} \chi_{2,j} = \sum_{i=1}^{I} S_{i,j}$$

Gaussian approximation

We consider claims ratio in risk class (i, j) defined by

$$R_{i,j} = S_{i,j}/v_{i,j}$$

• Expected value for this claim ratio

$$E[R_{i,j}] = \mu \chi_{1,i} \chi_{2,j}$$

• Model that we consider:

$$X_{i,j} \stackrel{def}{=} \log R_{i,j} \sim \mathcal{N} \left(\beta_0 + \beta_{1,i} + \beta_{2,j}, \sigma^2 \right)$$

Consequently,

$$E[R_{i,j}] = e^{\beta_0 + \sigma^2/2} e^{\beta_{1,i}} e^{\beta_{2,j}}$$

 $var(R_{i,j}) = E[R_{i,j}]^2 \left(e^{\sigma^2} - 1\right)$

• The mean has a right multiplicative structure:

Set
$$\mu = e^{\beta_0 + \sigma^2/2}$$
, $\chi_{1,i} = e^{\beta_{1,i}}$ and $\chi_{2,i} = e^{\beta_{2,i}}$

• Set $M = I \cdot J$ and define for $X_{i,j} = \log R_{i,j} = \log(S_{i,j}/v_{i,j})$ the vector

$$X = (X_1, \dots, X_M)' = (X_{1,1}, \dots, X_{1,J}, \dots, X_{I,1}, \dots, X_{I,J})' \in \mathbb{R}^M.$$

Index m will always refer to

$$m = m(i, j) = (i - 1)J + j \in \{1, \dots, M = I \cdot J\}$$

We assume that X has a multivariate Gaussian distribution

$$X \sim \mathcal{N}(Z\beta, \Sigma)$$

with

- diagonal covariance matrix $\Sigma = \sigma^2 diag(w_1, \dots, w_M)$
- parameter vector $\boldsymbol{\beta} = (\beta_0, \beta_{1,2}, \dots, \beta_{1,I}, \beta_{2,2}, \dots, \beta_{2,J})' \in \mathbb{R}^{r+1}$
- design matrix $Z \in \mathbb{R}^{M \times (r+1)}$ with r+1 = I+J-1 (Z has full rank)

such that for m = m(i, j)

$$E[X_{i,j}] = (Z\beta)_m = \beta_0 + \beta_{1,i} + \beta_{2,j}$$

We initialize $\beta_{1,1} = \beta_{2,1} = 0$ and β_0 plays role of intercept. For weights w_m , one often sets $w_m = v_{i,j}^{-1}$, because then for $v_{i,j}$ large:

$$\operatorname{var}(R_{i,j}) = \operatorname{var}(e^{X_{ij}}) = E[R_{i,j}]^2 \left(e^{\sigma^2/v_{i,j}} - 1\right) \approx \frac{\sigma^2}{v_{i,j}} E[R_{i,j}]^2$$

• Goodness-of-fit analysis

We assume homoscedasticity, i.e. identical weights $w_{i,j} = w$ and $\Sigma = \sigma^2 w \mathcal{I}$ which implies $\hat{\beta}^{MLE} = (Z'Z)^{-1}Z'X$.

Total sum of squares:

$$SS_{tot} = \sum_{m} (X_m - \overline{X})^2 = \sum_{m} (\hat{X}_m - \overline{X})^2 + \sum_{m} (X_m - \hat{X}_m)^2$$
$$= SS_{reg} + SS_{err}$$

with
$$\overline{X} = \frac{1}{M} \sum_{m=1}^{M} X_m$$
 and $\hat{\boldsymbol{X}} = Z \hat{\boldsymbol{\beta}}^{MLE}$

- Coefficient of determination R^2 :

$$R^2 = \frac{SS_{reg}}{SS_{tot}} = 1 - \frac{SS_{err}}{SS_{tot}} \in [0, 1]$$

- Adjusted coefficient of determination R_a^2 :

$$R_a^2 = 1 - \frac{SS_{err}/(M-r-1)}{SS_{tot}/(M-1)} \in [0,1]$$

- The residual standard deviation σ is estimated by:

$$\hat{\sigma}^2 = \frac{1}{M} \sum_{m} \left(X_m - \hat{X}_m \right)^2 = \frac{\hat{\varepsilon}' \hat{\varepsilon}}{M} = \frac{SS_{err}}{M}$$

- * Set r = I + J 2, i.e. dimension of parameter $\boldsymbol{\beta}$ is r + 1
- * $\hat{\sigma}^2$ is MLE for σ^2 and $\frac{M\hat{\sigma}^2}{\sigma^2}$ follows χ^2_{M-r-1} distribution.
- Unbiased variance parameter estimator:

$$\hat{s}^2 = \frac{M}{M - r - 1}\hat{\sigma}^2$$

- Likelihood ratio test:
 - * We have r+1=I+J-1 dimensional parameter vector given by

$$\boldsymbol{\beta} = (\beta_0, \beta_{1,2}, \dots, \beta_{1,I}, \beta_{2,2}, \dots, \beta_{2,J})' \in \mathbb{R}^{r+1}$$

- * Note that model is invariant under permutation of parameters and components.
- * We define

$$\boldsymbol{\beta} = (\beta_0, \beta_1, \dots, \beta_r)' \in \mathbb{R}^{r+1}$$

so that we have ordering of components that is appropriate for next layout.

- * $H_0: \beta_0 = \ldots = \beta_{p-1} = 0$ for given p < r + 1
 - 1. Calculate residual differences SS_{err}^{full} and $\hat{\sigma}_{full}$ in **full model** with r+1 dimensional parameter vector $\boldsymbol{\beta} \in \mathbb{R}^{r+1}$
 - 2. Calculate residual differences $SS_{err}^{H_0}$ and $\hat{\sigma}_{H_0}$ in **reduced model** $(\beta_p, \dots, \beta_r)' \in \mathbb{R}^{r+1-p}$

* Denote the design matrix of the reduced model by Z_0 ; calculate the **likelihood** ratio Λ

$$\Lambda = \frac{\hat{f}_{H_0}(\mathbf{X})}{\hat{f}_{full}(\mathbf{X})} = \left(\frac{\hat{\sigma}_{H_0}}{\hat{\sigma}_{full}}\right)^{-M} \frac{exp\left\{-\frac{1}{2\hat{\sigma}_{H_0}^2}(\mathbf{X} - Z_0\hat{\boldsymbol{\beta}}_{H_0}^{MLE})'(\mathbf{X} - Z_0\hat{\boldsymbol{\beta}}_{H_0}^{MLE})\right\}}{exp\left\{-\frac{1}{2\hat{\sigma}_{full}^2}(\mathbf{X} - Z_0\hat{\boldsymbol{\beta}}_{full}^{MLE})'(\mathbf{X} - Z_0\hat{\boldsymbol{\beta}}_{full}^{MLE})\right\}} \\
= \left(\frac{\frac{SS_{err}^{H_0}}{M}}{\frac{SS_{err}^{full}}{M}}\right)^{-M/2} = \left(\frac{SS_{err}^{H_0}}{SS_{err}^{full}}\right)^{-M/2} = \left(1 + \frac{SS_{err}^{H_0} - SS_{err}^{full}}{SS_{err}^{full}}\right)^{-M/2}$$

- · Likelihood ratio test rejects null hypothesis for small values of Λ .
- · This is equivalent to rejection for large values of $\frac{SS_{err}^{H_0} SS_{err}^{full}}{SS_{err}^{full}}$.
- * This motivates to consider the following test statistic F

$$F = \frac{SS_{err}^{H_0} - SS_{err}^{full}}{SS_{err}^{full}} \frac{M - r - 1}{p} = \frac{SS_{err}^{H_0} - SS_{err}^{full}}{p\hat{s}_{full}^2}$$

F has F distribution with $df_1 = p$ and $df_2 = M - r - 1$ degrees of freedom, hence we reject H_0 on significance level $1 - \alpha$ if

$$F > F^{\leftarrow}_{p,M-r-1}(\alpha)$$

Generalized Linear Models (GLM) and tariffication

• Components of a GLM

Denote response Y_i and independent variables $X_i = (x_{i1}, \dots, x_{ik})$ for $i = 1, \dots, n$.

1. Random component: Y_i ($1 \le i \le n$) independent with density from the exponential family, i.e

$$f(y; \theta, \phi) = \exp\left(\frac{\theta y - b(\theta)}{a(\phi)} + c(y, \phi)\right).$$

 ϕ is dispersion parameter and functions b(.), a(.) and c(.,.) are known.

2. Systematic component (linear predictor):

$$\eta_i = \beta_1 x_{i1} + \ldots + \beta_k x_{ik} = \mathbf{x}_i' \boldsymbol{\beta} \text{ with } \boldsymbol{\beta} = (\beta_1, \ldots, \beta_k)$$

- 3. Link function: monotone and differentiable link function $g(\mu_i) = \eta_i = x_i'\beta$ which combines the linear predictor with the mean $\mu_i = E[Y_i]$ (link between random and systematic component).
 - g is chosen to ensure that the estimated parameter lies in the admissible space of values.
- Exponential dispersion family

 $X \sim f_X$ belongs to exponential dispersion family if f_X is of the form

$$f_X(x;\theta,\phi) = e^{\frac{x\theta - b(\theta)}{\phi/w} + c(x,\phi,w)}$$

Write $X \sim EDF(\theta, \phi, w, b(.))$ where

- -w>0 is given weight
- $-\phi > 0$ is dispersion parameter
- $-\theta \in \Theta$ is unknown parameter of distribution
- $-\Theta \subset \mathbb{R}$ is open set op possible parameters θ
- $-b:\Theta\to\mathbb{R}$ is cumulant function
- -c(.,.,.) is normalisation, not depending on θ

 f_X can be a density in absolutely continuous sense, probability weights in discrete case or mixture.

• Lemma - Moment generating function: Choose fixed b(.) and assume that $EDF(\theta, \phi, w, b(.))$ gives well-defined densities with identical supports for all θ in open set Θ . Assume that for any $\theta \in \Theta$ there exists neighbourhood of zero such that $\operatorname{mgf} M_X(r)$ of $X \sim EDF(\theta, \phi, w, b(.))$ is finite in this neighbourhood of zero (for r). Then we have for all $\theta \in \Theta$ and r sufficiently close to zero

$$M_X(r) = e^{\frac{b(\theta + r\phi/w) - b(\theta)}{\phi/w}}$$

• Corollary: Same assumptions as in Lemma and in addition we assume that $b \in \mathbb{C}^2$ in interior of Θ . Then we have

$$E[X] = b'(\theta)$$
 and $var(X) = \frac{\phi}{w}b''(\theta)$

- Examples of link functions
 - 1. **log**:

$$g(\mu) = \log(\mu)$$

2. logit:

$$g(\mu) = \log \left\{ \frac{\mu}{1 - \mu} \right\}$$

3. **probit**:

$$g(\mu) = \Phi^{-1}(\mu)$$

where $\Phi(.)$ is the normal cumulative distribution function.

4. **log-log** :

$$g(\mu) = \log(-\log\mu)$$

5. complementary log-log:

$$g(\mu) = \log\{-\log(1-\mu)\}.$$

• Generalized linear models - goal

Aim is to express expected claim of risk class (i, j) as expected number of claims times average claims

$$E[S_{i,j}] = E[N_{i,j}]E[Y_{i,j}^{(\ell)}]$$

- $N_{i,j}$ describes number of claims in risk class (i,j)

– $Y_{i,j}^{(\ell)}$ corresponding iid claim sizes for $\ell=1,\ldots,N_{i,j}$ in risk class (i,j)

• GLM for Poisson claims counts

We assume that $N_{i,j}$ are independent with $N_{i,j} \sim \text{Poi}(\lambda_{i,j}v_{i,j})$ and $v_{i,j}$ counting number of policies in risk class (i,j).

- Proposition: Solution to MLE problem in Poisson case is given by solution of

$$Z'Ve^{Z\boldsymbol{\beta}} = Z'V\boldsymbol{X}$$

- Poisson case is rewritten as

$$Z'Ve^{Z\beta^{MLE}} - Z'N = 0$$

• GLM for gamma claim sizes

We denote by $n_{i,j}$ number of observations $Y_{i,j}^{\ell}$ in risk class (i,j).

- **Proposition:** Solution to MLE problem in gamma case is given by solution of

$$Z'V_{\theta}e^{Z\boldsymbol{\beta}} = Z'V_{\theta}\boldsymbol{X}$$

• Variable reduction analysis

- Having observations $\mathbf{X} = (X_1, \dots, X_M)'$ with independent components, we determine MLE $\hat{\beta}^{MLE}$ for $\beta \in \mathbb{R}^{r+1}$ within exponential dispersion family with log-link function g and design matrix $Z \in \mathbb{R}^{M \times (r+1)}$.
- This provides estimate for mean

$$\hat{\mu}_m = b'(\hat{\theta}_m) = e^{(Z\hat{\boldsymbol{\beta}}^{MLE})_m}$$

- We define **inverse function** $h = (b')^{-1}$ which implies that $\hat{\theta}_m = h(\hat{\mu}_m)$.
- Log-likelihood function at this estimate is then

$$\ell_{\boldsymbol{X}}(\hat{\boldsymbol{\mu}}) = \sum_{m} \frac{X_m h(\hat{\mu}_m) - b(h(\hat{\mu}_m))}{\phi/w_m} + c(X_m, \phi, w_m)$$

where we assume that $\phi_m = \phi$ for all m = 1, ..., M.

- Consider model $Z\beta$ and compare it to **saturated model** which has as many parameters as observations

$$\ell_{\mathbf{X}}(\mathbf{X}) = \sum_{m} \frac{X_m h(X_m) - b(h(X_m))}{\phi/w_m} + c(X_m, \phi, w_m)$$

- Scaled deviance:

$$D^{*}(\boldsymbol{X}, \hat{\boldsymbol{\mu}}) = 2(\ell_{\boldsymbol{X}}(\boldsymbol{X}) - \ell_{\boldsymbol{X}}(\hat{\boldsymbol{\mu}}))$$

$$= \frac{2}{\phi} \sum_{m} w_{m} \left[X_{m} h(X_{m}) - b(h(X_{m})) - X_{m} h(\hat{\mu}_{m}) + b(h(\hat{\mu}_{m})) \right]$$

Deviance statistics:

$$D(\mathbf{X}, \hat{\boldsymbol{\mu}}) = \phi D^*(\mathbf{X}, \hat{\boldsymbol{\mu}}) = 2\phi(\ell_{\mathbf{X}}(\mathbf{X}) - \ell_{\mathbf{X}}(\hat{\boldsymbol{\mu}}))$$

- $H_0: \beta_0 = \ldots = \beta_{p-1} = 0 \text{ for given } p < r + 1$
 - 1. Calculate deviance statistics $D(X, \hat{\mu}_{full})$ in full model $\beta \in \mathbb{R}^{r+1}$
 - 2. Calculate deviance statistics $D(\boldsymbol{X}, \hat{\boldsymbol{\mu}}_{H_0})$ under H_0
- Test statistic F

$$F = \frac{D(\boldsymbol{X}, \hat{\boldsymbol{\mu}}_{H_0}) - D(\boldsymbol{X}, \hat{\boldsymbol{\mu}}_{full})}{D(\boldsymbol{X}, \hat{\boldsymbol{\mu}}_{full})} \frac{M - r - 1}{p} \ge 0$$

- F is approximated by F-distribution with df given by $df_1 = p$ and $df_2 = M r 1$.
- Second test statistic X^2

$$X^{2} = D^{*}(\boldsymbol{X}, \hat{\boldsymbol{\mu}}_{H_{0}}) - D^{*}(\boldsymbol{X}, \hat{\boldsymbol{\mu}}_{full}) \ge 0$$

- X^2 is approximately χ^2 -distributed with df = p
- For this test statistic, we need to estimate the dispersion parameter ϕ .

• Dispersion parameter

- Assume that θ_m was estimated by $\hat{\theta}_m$, then we can estimate ϕ from **Pearson residuals**

$$\hat{\phi}_P = \frac{1}{M - r - 1} \sum_m w_m \frac{(X_m - b'(\hat{\theta}_m))^2}{b''(\hat{\theta}_m)}$$

- Alternative is to use **deviances** and estimate

$$\hat{\phi} = \frac{D(\boldsymbol{X}, \hat{\boldsymbol{\mu}}_{full})}{M - r - 1}$$

- Accuracy of the model
 - Pearson's residuals

$$r_{P,m} = \frac{X_m - b'(\hat{\theta}_m)}{\sqrt{b''(\hat{\theta}_m)/w_m}}$$

- Deviance residuals

$$r_{D,m} = sgn(X_m - b'(\hat{\theta}_m))\sqrt{2w_m \left[X_m(h(X_m) - \hat{\theta}_m) - b(h(X_m)) + b(\hat{\theta}_m)\right]}$$
 for $m = 1, \dots, M$.

Claims reserving

• Notation:

- -i for accident year and j for development year (with $1 \le i, j \le n$).
- Y_{ij} incremental claim at end of development year j of accident year i.
- $-C_{ij} = \sum_{k=1}^{j} Y_{ik}$ the cumulative claim.
- Outstanding claims reserves: $R_i = C_{in} C_{i,n-i+1}$ where C_{in} is ultimate claim amount of accident year i.
- Outstanding overall reserve: $R = \sum_{i=1}^{n} R_i$

• Chain ladder method:

- Uses cumulative data and assumes existence of **development factors** $\{f_j|j=2,\ldots,n\}$ such that

$$E[C_{i,k+1}|C_{i1},\ldots,C_{ik}] = C_{ik}f_{k+1}$$
 $1 \le i \le n, 1 \le k \le n-1.$

and different accident years i are independent.

- Factors are estimated by the chain ladder method as

$$\hat{f}_j = \frac{\sum_{i=1}^{n-j+1} C_{ij}}{\sum_{i=1}^{n-j+1} C_{i,j-1}} \qquad j = 2, \dots, n.$$

- Produce forecasts of future values of cumulative claims:

$$\hat{C}_{i,n-i+2} = C_{i,n-i+1}\hat{f}_{n-i+2} \qquad i = 2, \dots, n
\hat{C}_{i,k} = \hat{C}_{i,k-1}\hat{f}_k \qquad k = n-i+3, \dots, n.$$

• Verbeek's algorithm:

- First equalities

*
$$\hat{\alpha}_1 \sum_{j=1}^n \hat{\beta}_j = RS_1 \rightarrow \hat{\alpha}_1 = RS_1$$

*
$$\hat{\alpha}_1 \hat{\beta}_n = CS_n \to \hat{\beta}_n = \frac{CS_n}{\hat{\alpha}_1}$$

– Assume OK for l < n:

 $\hat{\beta}_{l+1}, \dots, \hat{\beta}_n$ and $\hat{\alpha}_1, \dots, \hat{\alpha}_{n-l}$ are found, then

*
$$\hat{\alpha}_{n-l+1}(\sum_{j=1}^{l} \hat{\beta}_{j}) = RS_{n-l+1}$$

 $\rightarrow \hat{\alpha}_{n-l+1} = \frac{RS_{n-l+1}}{1 - \sum_{j=l+1}^{n} \hat{\beta}_{j}}$

*
$$\sum_{i=1}^{n-l+1} \hat{\alpha}_i \hat{\beta}_l = CS_l$$
$$\rightarrow \hat{\beta}_l = \frac{CS_l}{\sum_{i=1}^{n-l+1} \hat{\alpha}_i}$$

- Repeat steps for $l+1,\ldots,n$

PART D: PREMIUM CALCULATION PRINCIPLES

Simple risk-based principles

Consider 2 different portfolios S_1 and S_2 with same mean $E[S_1] = E[S_2]$ with

1.
$$S_1 \sim \Gamma(\gamma, c)$$
 with mean $E[S_1] = \gamma/c$

2.
$$S_2 \equiv \gamma/c$$
 a constant

• Variance loading principle

Choose a fixed constant $\alpha > 0$ and define the insurance premium π by

$$\pi = E[S] + \alpha \operatorname{var}(S)$$

$$\pi_1 = E[S_1] + \alpha \operatorname{var}(S_1) = \frac{\gamma}{c} + \alpha \frac{\gamma}{c^2} > \frac{\gamma}{c} = E[S_2] + \alpha \operatorname{var}(S_2) = \pi_2$$

- Assume that $r_{fx} > 0$ is the deterministic exchange rate between 2 different currencies, then we obtain $(r_{fx} \neq 0)$

$$\pi_{fx} = E[r_{fx}S] + \alpha \operatorname{var}(r_{fx}S) = r_{fx}E[S] + r_{fx}^2 \alpha \operatorname{var}(S) \neq r_{fx}\pi.$$

• Standard deviation loading principle

Choose fixed constant $\alpha > 0$ and define insurance premium π by

$$\pi = E[S] + \alpha \operatorname{var}(S)^{1/2} = E[S](1 + \alpha \operatorname{Vco}(S))$$

$$\pi_1 = E[S_1] + \alpha \operatorname{var}(S_1)^{1/2} = \frac{\gamma}{c} + \alpha \frac{\gamma^{1/2}}{c^2} > \frac{\gamma}{c} = E[S_2] + \alpha \operatorname{var}(S_2)^{1/2} = \pi_2$$

$$\pi_{fx} = E[r_{fx}S] + \alpha \operatorname{var}(r_{fx}S)^{1/2} = r_{fx}E[S] + r_{fx}^2 \alpha \operatorname{var}(S)^{1/2} = r_{fx}\pi.$$

Utility pricing principles

• **Definition preference ordering:** Assume $u: I \to \mathbb{R}$ strictly increasing and strictly concave on $I \subset \mathbb{R}$, then we prefer position $X \in \chi$ over position $Y \in \chi$, write $X \succeq Y$ if

$$E[u(X)] \ge E[u(Y)].$$

• Strictly increasing implies that if $X \ge Y$ Pr-a.s. and X > Y with positive Pr probability we have

• Strict concavity implies that we can apply **Jensen's inequality**:

$$E[u(X)] \le u(E[X])$$

• Thus, strict concavity and increasing property of u implies that the policyholder is willing to pay any premium π in non-empty interval

$$\pi \in (E[Y], c_0 - u^{-1}(E[u(c_0 - Y)]))$$

to improve his happiness position.

- Popular utility functions
 - Exponential utility function, constant absolute risk-aversion (CARA) utility function (defined on $I = \mathbb{R}$)

$$u(x) = 1 - \frac{1}{\alpha}e^{-\alpha x}$$
 for $\alpha > 0$

- Power utility function, constant relative risk-aversion (CRRA) utility function (defined on $I = \mathbb{R}_+$)

$$u(x) = \begin{cases} \frac{x^{1-\gamma}}{1-\gamma} & \gamma \neq 1\\ \log x & \gamma = 1 \end{cases}$$

• **Definition utility indifference price:** Utility indifference price $\pi = \pi(u, F_S, c_0) \in \mathbb{R}$ for utility function u, initial capital $c_0 \in I$ and law of risky position S is given by solutions of

$$u(c_0) = E[u(c_0 + \pi - S)]$$

• Corollary: Utility indifference price $\pi = \pi(u, F_S, c_0)$ for initial capital c_0 , risk-averse utility function u and risky position S satisfies

$$\pi = \pi(u, F_S, c_0) > E[S]$$

- **Proposition:** Assume that $u \in C^2$ is a risk-averse utility function on \mathbb{R} . The following two are equivalent
 - utility indifference prices $\pi = \pi(u, F_S, c_0)$ do not depend on c_0 for all S
 - utility function is of the form

$$u(x) = a - be^{-cx}$$
 $\forall a \in \mathbb{R}; b, c > 0.$

- Insights into risk-aversion
 - Absolute and relative risk-aversions of u:

$$\rho_{ARA}(x) = \rho_{ARA}^{u}(x) = -\frac{u''(x)}{u'(x)}$$

$$\rho_{RRA}(x) = \rho_{RRA}^{u}(x) = -x\frac{u''(x)}{u'(x)}$$

- The exponential utility function (CARA) with $\alpha > 0$ satisfies for all $x \in \mathbb{R}$

$$\rho_{ARA}(x) = \alpha$$

- The power utility function (CRRA) with $\gamma > 0$ satisfies for all $x \in \mathbb{R}_+$

$$\rho_{RRA}(x) = \gamma$$

- Assume u and v are two utility functions that are defined on same interval I. Then, u is more risk-averse than v if for any X with range I we have

$$u^{-1}(E[u(X)]) \le v^{-1}(E[v(X)])$$

- **Proposition:** Assume that u and v are twice differentiable utility functions defined on same interval $I \subset \mathbb{R}$. Following are equivalent
 - -u is more risk-averse than v on I
 - $\rho_{ARA}^{u}(x) \ge \rho_{ARA}^{v}(x)$ for all $x \in I$.
- Corollary: Assume u is more risk-averse than v. Then we have for the utility indifference prices

$$\pi(u, F_S, c_0) \ge \pi(v, S, c_0)$$

- Theorem: Assume $u \in \mathbb{C}^3$ is risk-averse utility function on I. The following are equivalent
 - $-\pi(u, F_S, c_0)$ is decreasing in c_0 for all S
 - $-\rho_{ABA}^{u}$ is decreasing for all $x \in I$.

Esscher premium

• Esscher (probability) distribution F_{α} for $\alpha > 0$ of F

$$F_{\alpha}(s) = \frac{1}{M_S(\alpha)} \int_{-\infty}^{s} e^{\alpha x} dF(x)$$

under the additional assumption that the mfg $M_S(\alpha)$ of S exists in α . Note that this defines a normalized distribution function F_{α} .

• Esscher premium: Choose $S \sim F$ and assume that there exists $r_0 > 0$ such that $M_S(r) < \infty$ for all $r \in (-r_0, r_0)$. The Esscher premium π_α of S in $\alpha \in (0, r_0)$ is defined by

$$\pi_{\alpha} = E_{\alpha}[S] = \int_{\mathbb{R}} s dF_{\alpha}(s)$$

• Corollary:

$$\pi_{\alpha} = \frac{d}{dr} \log M_S(r)|_{r=\alpha} \ge E[S]$$

where inequality is strict for non-deterministic S.

Probability distortion pricing principles

• Assume that $S \sim F$ with $S \geq 0$ Pr-a.s., then

$$E[S] = \int_0^\infty x dF(x) = \int_0^\infty \Pr[S > x] dx$$

• **Definition** - **probability distorted price:** Assume that $h:[0,1] \to [0,1]$ is continuous, increasing and concave function with h(0) = 1, h(1) = 1 and h(p) > p for all $p \in (0,1)$. The probability distorted price π_h of $S \ge 0$ is defined by (subject to existence)

$$\pi_h = E_h[S] = \int_0^\infty h\left(\Pr[S > x]\right) dx$$

• We obtain risk loading that provides

$$E[S] = \int_0^\infty \Pr[S > x] dx \le \int_0^\infty h\left(\Pr[S > x]\right) dx = E_h[S] = \pi_h$$

where inequality is strict for non-deterministic S.

Cost-of-capital principles

Denote by $\chi \subset L^1(\Omega, \mathcal{F}, \Pr)$ the set of (risky) positions X of interest.

• A risk measure ϱ on χ is a mapping

$$\varrho:\chi\to\mathbb{R}\qquad \text{ with }X\mapsto\varrho(X)$$

• Shareholders'/investors' expected return is

$$r_{CoC}\varrho(S - E[S]) > 0$$

on their investment $\varrho(S - E[S]) > 0$.

• Cost-of-capital pricing principle

$$\pi_{CoC} = E[S] + r_{CoC}\varrho(S - E[S]).$$

• Properties of risk measures - Coherent measures

Assume that χ is a convex cone containing \mathbb{R} , i.e. it satisfies

- $-c \in \chi$ for all $c \in \mathbb{R}$
- $-X + Y \in \chi$ for all $X, Y \in \chi$
- $-\lambda X \in \chi$ for all $X \in \chi$ and $\lambda > 0$

Assume that ϱ is a risk measure on a convex cone χ containing \mathbb{R} . Then we define for $X,Y\in\chi,c\in\mathbb{R}$ and $\lambda>0$

- 1. normalization: $\varrho(0) = 0$
- 2. monotonicity: for X, Y with $X \leq Y$ Pr-a.s., we have $\varrho(X) \leq \varrho(Y)$
- 3. translation invariance: for all X and every c we have $\varrho(X+c) = \varrho(X) + c$
- 4. positive homogeneity: for all X and for every $\lambda > 0$ we have $\varrho(\lambda X) = \lambda \varrho(X)$
- 5. subadditivity: for all X, Y we have $\rho(X+Y) \leq \rho(X) + \rho(Y)$

Risk measure ϱ is called **coherent** if it satisfies all these properties 1-5.

• Properties of risk measures - Translation invariance

– If we hold risky position X and if we inject capital c > 0 then loss is reduced to X - c. This implies for risk measure ϱ that reduced position satisfies

$$\varrho(X-c) = \varrho(X) - c$$

- This justifies definition of regulatory risk measure as stated above.
- If we sell risky portfolio S and we collect pure risk premium E[S], then risk of residual loss S E[S] is given by

$$\varrho(S - E[S]) = \varrho(S) - E[S]$$

• Properties of risk measures - Normalisation and translation invariance

- Balance sheet of insurance company is called acceptable if its (future) surplus $C_1 \in \chi$ satisfies $\varrho(-C_1) \leq 0$.
- Assume that insurance company sells policy S at price $\pi \geq E[S]$ and at same time it has initial capital $c_0 = \varrho(S E[S]) \geq 0$. Then future surplus of company is given by $C_1 = c_0 + \pi S$. Regulator then checks acceptability condition $\varrho(-C_1) = \varrho(-(c_0 + \pi S)) = -c_0 \pi + \varrho(S) = -\pi + E[S] \leq 0$.

40

– Assume that an initial capital $c_0 > 0$ is provided by investor who expects cost-of-capital rate $r_{CoC} > r_0$ on investment. Thus insurance company also needs to finance cost-of-capital cash flow $r_{CoC}c_0 = r_{CoC}\varrho(S - E[S])$ to investor. This can exactly be done with cost-of-capital premium π_{CoC} and insurance keeps its acceptable position if $r_{CoC}c_0$ is also considered as a liability of insurance company.

• Properties of risk measures - Monotonicity and normalization

– Imply that more risky positions are charged with higher capital requiremens and, in particular, if we have only downside risks, i.e. $X \ge 0$ Pr-a.s., then we will have positive capital charges $\varrho(X) \ge \varrho(0) = 0$

• Popular risk measures

- The standard deviation risk measure is for S with finite second moment given by

$$\varrho(S) = \alpha \sigma(S) = \alpha \operatorname{var}(S)^{1/2}$$

- The Value-at-Risk (VaR) of $S \sim F$ at security level $1-q \in (0,1)$ is given by left-continuous generalised inverse of F at 1-q

$$\rho(S) = VaR_{1-q}(S) = F^{\leftarrow}(1-q)$$

- The **expected shortfall** is for $S \sim F$ with F continuous

$$\varrho(S) = TVaR_{1-q}(S) = E[S|S \ge VaR_{1-q}(S)] = \frac{1}{q} \int_{1-q}^{1} VaR_u(S)du = ES_{1-q}(S)$$

Here the cost-of-capital pricing principle is given by

$$\pi = E[S] + r_{CoC}ES_{1-q}(S - E[S]) = E[S] + r_{CoC}(ES_{1-q}(S) - E[S]).$$

Deflator based pricing principles

• Assume that φ is integral and strictly positive rv with

$$E[\varphi] = d_0 = \frac{1}{1 + r_0} \in (0, 1]$$

 d_0 can be seen as deterministic discount factor and $r_0 \geq 0$ as deterministic risk-free rate.

• **Definition deflator based pricing:** Fix $\varphi \in L^1(\Omega, \mathcal{F}, \Pr)$ strictly positive with $d_0 = 1$ and assume that φ and S are positively correlated. Then we can define the deflator based price by

$$\pi_{\varphi}^{(0)} = E[\varphi S] \ge E[\varphi]E[S] = E[S]$$

It can be understood as a probability distortion principle because φ allows to define equivalent probability measure \Pr^* by Radon-Nikodym derivative as follows

$$\frac{d\Pr^*}{d\Pr} = \varphi$$

because φ is strictly positive density wrt Pr for $d_0 = 1$. Then, we price S under equivalent probability measure Pr* by

$$\pi_{\varphi}^{(0)} = E[\varphi S] = E^*[S].$$