OR 과제 - 3

20192208 김형훈

2025-04-05

4.6-2

수식을 다시 재구성해보면 아래와 같다.

$$\begin{array}{ll} \text{Maximize} & Z-4x_1-2x_2-3x_3-5x_4+M\bar{x}_5+M\bar{x}_6=0\\ \text{Subject to} & 2x_1+3x_2+4x_3+2x_4+\bar{x}_5=300\\ & 8x_1+x_2+x_3+5x_4+\bar{x}_6=300\\ & \text{and} \\ & x_j\geq 0, for j=1,2,3,4\\ & \bar{x}_5\geq 0, \bar{x}_6\geq 0 \end{array}$$

a

	Z	x_1	x_2	x_3	x_4	\bar{x}_5	\bar{x}_6	RHS
	1	-4	-2	-3	-5	M	M	0
\bar{x}_5	0	2	3	4	2	1	0	300
\bar{x}_6	0	8	1	1	5	0	1	300

basic 변수가 0이 되도록 다시 계산해준다.

	Z	x_1	x_2	x_3	x_4	\bar{x}_5	\bar{x}_6	RHS
	1	-4 - 10M	-2 - 4M	-3 - 5M	-5-7M	0	0	-600M
\bar{x}_5	0	2	3	4	2	1	0	300
\bar{x}_6	0	8	1	1	5	0	1	300

- 초기 BFS: (0, 0, 0, 0, 300, 300)
- 초기 진입 변수: x_1
- 초기 퇴출 변수: $ar{x}_6$

b

		Z	x_1	x_2	x_3	x_4	\bar{x}_5	\bar{x}_6	RHS
		1	0	$-\frac{3}{2} - \frac{11}{4}M$	$-\frac{5}{2} - \frac{15}{4}M$	$-\frac{5}{2} - \frac{3}{4}M$	0	$\frac{1}{2} + \frac{5}{4}M$	150 - 225M
1 /	\bar{x}_5	0	0	$\frac{11}{4}$	$\frac{15}{4}$	$\frac{3}{4}$	1	$-\frac{1}{4}$	$\frac{900}{4}$
	x_1	0	1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{5}{8}$	0	$\frac{1}{8}$	$\frac{300}{8}$

• 진입 변수: x_3

• 퇴출 변수: $ar{x}_5$

	Z	x_1	x_2	x_3	x_4	\bar{x}_5	\bar{x}_6	RHS
	1	0	$\frac{1}{3}$	0	-2	$\frac{2}{3} + M$	$\frac{1}{3} + M$	300
x_3	0	0	$\frac{11}{15}$	1	$\frac{1}{5}$	$\frac{4}{15}$	$-\frac{1}{15}$	60
x_1	0	1	$\frac{1}{30}$	0	$\frac{3}{5}$	$-\frac{1}{30}$	$\frac{2}{15}$	30

• 진입 변수: x_4

• 퇴출 변수: x_1

	Z	x_1	x_2	x_3	x_4	\bar{x}_5	\bar{x}_6	RHS
	1	$\frac{10}{3}$	$\frac{4}{9}$	0	0	$\frac{5}{9} + M$	$\frac{7}{9} + M$	400
x_3	0	$-\frac{1}{3}$	$\frac{13}{18}$	1	0	$\frac{5}{18}$	$-\frac{1}{9}$	50
x_4	0	$\frac{5}{3}$	$\frac{1}{18}$	0	1	$-\frac{1}{18}$	$\frac{2}{9}$	50

종료.

- $x_1 = 0$
- $x_2 = 0$
- $x_3 = 50$
- $x_4 = 50$
- $x_5 = 0$
- $x_6 = 0$
- Z = 400

C

$$\begin{array}{ll} \text{Minimize} & Z - \bar{x}_5 - \bar{x}_6 = 0 \\ \text{Subject to} & 2x_1 + 3x_2 + 4x_3 + 2x_4 + \bar{x}_5 = 300 \\ & 8x_1 + x_2 + x_3 + 5x_4 + \bar{x}_6 = 300 \\ & \text{and} \\ & x_j \geq 0, for j = 1, 2, 3, 4 \\ & \bar{x}_5 \geq 0, \bar{x}_6 \geq 0 \end{array}$$

Minimize를 Maximize로 바꿔주자.

$$\begin{array}{ll} \text{Maximize} & -Z + \bar{x}_5 + \bar{x}_6 = 0 \\ \text{Subject to} & 2x_1 + 3x_2 + 4x_3 + 2x_4 + \bar{x}_5 = 300 \\ & 8x_1 + x_2 + x_3 + 5x_4 + \bar{x}_6 = 300 \\ & \text{and} \\ & x_j \geq 0, for j = 1, 2, 3, 4 \\ & \bar{x}_5 \geq 0, \bar{x}_6 \geq 0 \end{array}$$

표로 작성하면

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	\bar{x}_6	RHS
	1	0	0	0	0	1	1	0
\bar{x}_5	0	2	3	4	2	1	0	300
\bar{x}_6	0	8	1	1	5	0	1	300

basic 변수를 0이 되도록 다시 계산하면

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	\bar{x}_6	RHS
	1	-10	-4	-5	-7	0	0	-600
\bar{x}_5	0	2	3	4	2	1	0	300
\bar{x}_6	0	8	1	1	5	0	1	300

자 이제 표를 완성해보자.

• 진입변수: x_1 • 퇴출변수: \bar{x}_6

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	\bar{x}_6	RHS
	1	0	$-\frac{11}{4}$	$-\frac{15}{4}$	$-\frac{3}{4}$	0	$\frac{5}{4}$	-225
\bar{x}_5	0	0	$\frac{11}{4}$	$\frac{15}{4}$	$\frac{3}{4}$	1	$-\frac{1}{4}$	225
x_1	0	1	$\frac{1}{8}$	$\frac{1}{8}$	$\frac{5}{8}$	0	$\frac{1}{8}$	$\frac{75}{2}$

• 진입변수: x_3 • 퇴출변수: \bar{x}_5

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	\bar{x}_6	RHS
	1	0	0	0	0	1	1	0
x_3	0	0	$\frac{11}{15}$	1	$\frac{1}{5}$	$\frac{4}{15}$	$-\frac{1}{15}$	60
x_1	0	1	$\frac{1}{30}$	0	$\frac{3}{5}$	$-\frac{1}{30}$	$\frac{2}{15}$	30

Phase 1 종료.

이제 필요없는 인공변수를 제거하고, 기존의 obj를 가져와서 다시 표를 만들어보자.

	Z	x_1	x_2	x_3	x_4	RHS
	1	-4	-2	-3	-5	0
x_3	0	0	$\frac{11}{15}$	1	$\frac{1}{5}$	60
x_1	0	1	$\frac{1}{30}$	0	$\frac{3}{5}$	30

basic 변수를 0으로 만들어주자.

	Z	x_1	x_2	x_3	x_4	RHS
	1	0	$\frac{1}{3}$	0	-2	300
x_3	0	0	$\frac{11}{15}$	1	$\frac{1}{5}$	60
x_1	0	1	$\frac{1}{30}$	0	$\frac{3}{5}$	30

• 초기 BFS(x_1, x_2, x_3, x_4): (30, 0, 60, 0)

• 초기 진입변수: x_4 • 초기 퇴출변수: x_1

4.6-3

a

$$\begin{array}{ll} \text{Maximize} & -Z = -2x_1 - 3x_2 - x_3 - M\bar{x}_5 - M\bar{x}_7\\ \text{Subject to} & x_1 + 4x_2 + 2x_3 - x_4 + \bar{x}_5 = 8\\ & 3x_1 + 2x_2 - x_6 + \bar{x}_7 = 6\\ & \text{and} \\ & x_j \geq 0, for j = 1, 2, 3, 4, 6\\ & \bar{x}_5 \geq 0, \bar{x}_7 \geq 0 \end{array}$$

b

먼저 basic 변수를 0으로 만들어주자.

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	x_6	\bar{x}_7	RHS
	1	2-4M	3-6M	1-2M	M	0	M	0	-14M
\bar{x}_5	0	1	4	2	-1	1	0	0	8
\bar{x}_7	0	3	2	0	0	0	-1	1	6

• 진입변수: x_2 • 퇴출변수: \bar{x}_5

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	x_6	\bar{x}_7	RHS
	1	$\frac{5}{4} - \frac{5}{2}M$	0	$M - \frac{1}{2}$	$\frac{3}{4} - \frac{1}{2}M$	$\frac{3}{2}M - \frac{3}{4}$	M	0	-2M - 6
x_2	0	$\frac{1}{4}$	1	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{1}{4}$	0	0	2
\bar{x}_7	0	$\frac{5}{2}$	0	-1	$\frac{1}{2}$	$-\frac{1}{2}$	-1	1	2

• 진입변수: x_1 • 퇴출변수: \bar{x}_7

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	x_6	\bar{x}_7	RHS
	1	0	0	0	$\frac{1}{2}$	$M - \frac{1}{2}$	$\frac{1}{2}$	$M - \frac{1}{2}$	-7
x_2	0	0	1	$\frac{3}{5}$	$-\frac{3}{10}$	$\frac{3}{10}$	$\frac{1}{10}$	$-\frac{1}{10}$	$\frac{9}{5}$
x_1	0	1	0	$-\frac{2}{5}$	$\frac{1}{5}$	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{2}{5}$	$\frac{4}{5}$

종료.

- $x_1 = \frac{4}{5}$
- $x_2 = \frac{9}{5}$
- $x_3 = 0$
- $x_4 = 0$
- $\bar{x}_5 = 0$
- $x_6 = 0$
- $\bar{x}_7 = 0$
- -Z = -7

최적해는 7

C

Minimize
$$Z-\bar{x}_5-\bar{x}_7=0$$
 Subject to $x_1+4x_2+2x_3-x_4+\bar{x}_5=8$ $3x_1+2x_2-x_6+\bar{x}_7=6$ and $x_j\geq 0, for j=1,2,3,4,6$ $\bar{x}_5\geq 0, \bar{x}_7\geq 0$

Minimize를 Maximize로 바꿔주자.

$$\begin{array}{ll} \text{Maximize} & -Z+\bar{x}_5+\bar{x}_7=0\\ \text{Subject to} & x_1+4x_2+2x_3-x_4+\bar{x}_5=8\\ & 3x_1+2x_2-x_6+\bar{x}_7=6\\ \text{and} & \\ & x_j\geq 0, for j=1,2,3,4,6\\ & \bar{x}_5\geq 0, \bar{x}_7\geq 0 \end{array}$$

표로 작성하면

									RHS
	1	0	0	0	0	1	0	1	0
\bar{x}_5	0	1	4	2	-1	1	0	0	0 8
\bar{x}_7	0	3	2	0	0	0	-1	1	6

basic 변수를 0이 되도록 다시 계산하면

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	x_6	\bar{x}_7	RHS
	1	-4	-6	-2	1	0	1	0	-14
\bar{x}_5	0	1	4	2	-1	1	0	0	-14 8 6
\bar{x}_7	0	3	2	0	0	0	-1	1	6

자 이제 표를 완성해보자.

• 진입변수: x_2 • 퇴출변수: \bar{x}_5

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	x_6	\bar{x}_7	RHS
	1	$-\frac{5}{2}$	0	1	$-\frac{1}{2}$	$\frac{3}{2}$	1	0	-2
x_2	0	$\frac{1}{4}$	1	$\frac{1}{2}$	$-\frac{1}{4}$	$\frac{1}{4}$	0	0	2
$ \bar{x}_7 $	0	$\frac{5}{2}$	0	-1	$\frac{1}{2}$	$-\frac{1}{2}$	-1	1	2

• 진입변수: x_1 • 퇴출변수: \bar{x}_7

	-Z	x_1	x_2	x_3	x_4	\bar{x}_5	x_6	\bar{x}_7	RHS
	1	0	0	0	0	1	0	1	0
x_2	0	0	1	$\frac{3}{5}$	$-\frac{3}{10}$	$\frac{3}{10}$	$\frac{1}{10}$	$-\frac{1}{10}$	$\frac{9}{5}$
x_1	0	1	0	$-\frac{2}{5}$	$\frac{1}{5}$	$-\frac{1}{5}$	$-\frac{2}{5}$	$\frac{2}{5}$	$\frac{4}{5}$

Phase 1 종료.

이제 필요없는 인공변수를 제거하고, 기존의 obj를 가져와서 다시 표를 만들어보자.

	-Z	x_1	x_2	x_3	x_4	x_6	RHS
	1	2	3	1	0	0	0
x_2	0	0	1	$\frac{3}{5}$	$-\frac{3}{10}$	$\frac{1}{10}$	$\frac{9}{5}$
x_1	0	1	0	$-\frac{2}{5}$	$\frac{1}{5}$	$-\frac{2}{5}$	$\frac{4}{5}$

basic 변수를 0으로 만들어주자.

	-Z	x_1	x_2	x_3	x_4	x_6	RHS
	1	0	0	0	$\frac{1}{2}$	$\frac{1}{2}$	-7
x_2	0	0	1	1	$\frac{3}{5}$	$\frac{1}{10}$	$\frac{9}{5}$
x_1	0	1	0	$-\frac{2}{5}$	$\frac{1}{5}$	$-\frac{2}{5}$	$\frac{4}{5}$

종료.

- $x_1 = \frac{4}{5}$
- $x_2 = \frac{9}{5}$
- $x_3 = 0$
- $x_4 = 0$
- $x_6 = 0$
- -Z = -7

최적해는 7

d

- b BFS 진행 순서
- 1. $(x_1, x_2, x_3, x_4, \bar{x}_5, x_6, \bar{x}_7) = (0, 0, 0, 0, 8, 0, 6)$
- 2. $(x_1, x_2, x_3, x_4, \bar{x}_5, x_6, \bar{x}_7) = (0, 2, 0, 0, 0, 0, 2)$
- 3. $(x_1, x_2, x_3, x_4, \bar{x}_5, x_6, \bar{x}_7) = (\frac{4}{5}, \frac{9}{5}, 0, 0, 0, 0, 0)$
- c BFS 진행 순서
- 1. $(x_1, x_2, x_3, x_4, \bar{x}_5, x_6, \bar{x}_7) = (0, 0, 0, 0, 8, 0, 6)$
- 2. $(x_1, x_2, x_3, x_4, \bar{x}_5, x_6, \bar{x}_7) = (0, 2, 0, 0, 0, 0, 2)$
- 3. $(x_1, x_2, x_3, x_4, x_6) = (\frac{4}{5}, \frac{9}{5}, 0, 0, 0)$

두 방법의 BF 해 진행 과정과 최종 해는 동일하다.

인공 변수를 사용한 인공 문제에만 가능한 해는 인공 변수 \bar{x}_5 와 \bar{x}_7 이 양수인 경우입니다. 초기 BF 해인 (0,0,0,0,8,0,6)가 여기에 해당합니다. 이 해는 인공 변수 $(\bar{x}_5=8,\bar{x}_7=6)$ 가 양수이므로 원래 문제에서는 가능해가 아닙니다.

최종 BFS인 $(\frac{4}{5},\frac{9}{5},0,0,0,0,0)$ 는 인공 변수 \bar{x}_5 와 \bar{x}_7 가 모두 0이므로 실제 문제에서도 가능해다. 이것이 바로 Phase 1과 Big-M 방법의 목적이며, 인공 변수들이 모두 0이 되는 실행 가능한 해를 찾고, 그 다음에 원래 목적함수에 대해 최적화를 진행하는 것이다.

따라서

- 인공 변수를 사용한 인공 문제에만 가능한 해 = 인공 변수가 0이 아닌 해 = (0, 0, 0, 0, 8, 0, 6), (0, 2, 0, 0, 0, 0, 2)
- 실제 문제에도 가능한 해 = 인공 변수가 0인 해 = $(\frac{4}{5},\frac{9}{5},0,0,0,0,0)$

4.6-8

a

$$\begin{array}{ll} \text{Minimize} & Z - \bar{x}_4 - \bar{x}_6 = 0 \\ \text{Subject to} & 5x_1 + 2x_2 + 7x_3 + \bar{x}_4 = 420 \\ & 3x_1 + 2x_2 + 5x_3 - x_5 + \bar{x}_6 = 280 \\ \text{and} & \\ & x_j \geq 0, for j = 1, 2, 3, 4, 5 \\ & \bar{x}_4 \geq 0, \bar{x}_6 \geq 0 \end{array}$$

Minimize를 Maximize로 바꿔주자.

$$\begin{array}{ll} \text{Maximize} & -Z + \bar{x}_4 + \bar{x}_6 = 0 \\ \text{Subject to} & 5x_1 + 2x_2 + 7x_3 + \bar{x}_4 = 420 \\ & 3x_1 + 2x_2 + 5x_3 - x_5 + \bar{x}_6 = 280 \\ \text{and} & \\ & x_j \geq 0, for j = 1, 2, 3, 4, 5 \\ & \bar{x}_4 \geq 0, \bar{x}_6 \geq 0 \end{array}$$

표로 작성하면

	-Z	x_1	x_2	x_3	\bar{x}_4	x_5	\bar{x}_6	RHS
	1	0	0	0	1	0	1	0
\bar{x}_4	0	5	2	7	1	0	0	420
\bar{x}_6	0	3	2	5	0	-1	1	280

basic 변수를 0이 되도록 다시 계산하면

	-Z	x_1	x_2	x_3	\bar{x}_4	x_5	\bar{x}_6	RHS
	1	-8	-4	-12	0	1	0	-700
\bar{x}_4	0	5	2	7	1	0	0	420
\bar{x}_6	0	3	2	5	0	-1	1	280

자 이제 표를 완성해보자.

• 진입변수: x_3

• 퇴출변수: \bar{x}_6

	-Z	x_1	x_2	x_3	\bar{x}_4	x_5	\bar{x}_6	RHS
	1	$-\frac{4}{5}$	$\frac{4}{5}$	0	0	$-\frac{7}{5}$	$\frac{12}{5}$	-28
\bar{x}_4	0	$\frac{4}{5}$	$-\frac{4}{5}$	0	1	$\frac{7}{5}$	$-\frac{7}{5}$	28
x_3	0	$\frac{3}{5}$	$\frac{2}{5}$	1	0	$-\frac{1}{5}$	$\frac{1}{5}$	56

• 진입변수: x_5 • 퇴출변수: \bar{x}_4

	-Z	x_1	x_2	x_3	\bar{x}_4	x_5	\bar{x}_6	RHS
	1	0	0	0	1	0	1	0
x_5	0	$\frac{4}{7}$	$-\frac{4}{7}$	0	$\frac{5}{7}$	1	-1	20
x_3	0	$\frac{5}{7}$	$\frac{2}{7}$	1	$\frac{1}{7}$	0	0	60

종료.

초기 BFS
$$(x_1,x_2,x_3,x_5)$$
 = (0, 0, 60, 20)

4.7-3

a

최적해는 $\frac{35}{3}$

b

• 자원 1: 60

• 자원 2: 75

• 자원 3: $\frac{70}{3}$

C

15

4.7-4

표준형으로 변환하면

$$\begin{array}{ll} \text{Maximize} & Z-x_1+7x_2-3x_3=0\\ \text{Subject to} & 2x_1+x_2-x_3+x_4=4\\ & 4x_1-3x_2+x_5=2\\ & -3x_1+2x_2+x_3+x_6=3\\ \text{and} \\ & x_j\geq 0, for j=1,2,3,4,5,6 \end{array}$$

a

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	-1	7	-3	0	0	0	0
x_4	0	2	1	-1	1	0	0	4
x_5	0	4	-3	0	0	1	0	2
x_6	0	-3	2	1	0	0	1	3

• 진입변수: x_3 • 퇴출변수: x_6

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	-10	13	0	0	0	3	9
x_4	0	2	1	-1	1	0	0	7
x_5	0	4	-3	0	0	1	0	2
x_3	0	-3	2	1	0	0	1	3

• 진입변수: x_1 • 퇴출변수: x_5

	Z	x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	0	$\frac{11}{2}$	0	0	$\frac{5}{2}$	3	14
x_4	0	0	$\frac{9}{4}$	0	1	$\frac{1}{4}$	1	$\frac{15}{2}$
x_1	0	1	$-\frac{3}{4}$	0	0	$\frac{1}{4}$	0	$\frac{1}{2}$
x_3	0	0	$-\frac{1}{4}$	1	0	$\frac{3}{4}$	1	$\frac{9}{2}$

종료.

- $x_1 = \frac{1}{2}$ $x_2 = 0$ $x_3 = \frac{9}{2}$ $x_4 = \frac{15}{2}$ $x_5 = 0$
- $x_6 = 0$
- Z = 14

b

- 자원 $1 = -\frac{7}{2}$
- 자원 2 = 2
- 자원 3 = 3

5.1-6

a

1.
$$-3x_1 + 2x_2 = 30, 2x_1 + x_2 = 50$$

- 꼭짓점: (10, 30)
- 가능해

2.
$$-3x_1 + 2x_2 = 30, x_1 + x_2 = 30$$

- 꼭짓점: (6, 24)
- $2x_1 + x_2 \ge 50$ 제약 불만족

3.
$$-3x_1 + 2x_2 = 30, x_1 = 0$$

- 꼭짓점: (0, 15)
- $2x_1 + x_2 \ge 50$ 제약 불만족

4.
$$-3x_1 + 2x_2 = 30, x_2 = 0$$

- 꼭짓점: (-10, 0)
- $x_1 \ge 0$ 제약 불만족

5.
$$2x_1 + x_2 = 50, x_1 + x_2 = 30$$

- 꼭짓점: (20, 10)
- 가능해

6.
$$2x_1 + x_2 = 50, x_1 = 0$$

- 꼭짓점: (0,50)
- $-3x_1+2x_2\leq 30$ 제약 불만족

7.
$$2x_1 + x_2 = 50, x_2 = 0$$

- 꼭짓점: (25, 0)
- $-3x_1 + 2x_2 \le 30$ 제약 불만족

8.
$$x_1 + x_2 = 30, x_1 = 0$$

- 꼭짓점: (0, 30)
- $-3x_1 + 2x_2 \le 30$ 제약 불만족

9.
$$x_1 + x_2 = 30, x_2 = 0$$

- 꼭짓점: (30, 0)
- 가능해

- 10. $x_1 = 0, x_2 = 0$
 - 꼭짓점: (0,0)
 - $2x_1+x_2\geq 50$ 제약 불만족

b

- 1. (10, 30, 0, 0, 10)
- 2. (20, 10, 80, 0, 0)
- 3. (30, 0, 60, 10, 0)

5.1-20

a

(2,4,3,2,0,0,0)에서 비기저변수는 (x_5,x_6,x_7) 이고, 기저변수는 (x_1,x_2,x_3,x_4) 이다. α 만큼 움직일 때, 비기저변수의 변화량은 (2,0,0)로, x_5 만 증가한다. 고로 진입기저에 포함됨을 알 수 있다.

b

- $x_1 = 2 + 2\alpha \ge 0$ (항상 양수)
- $x_2 = 4 2\alpha \ge 0 \rightarrow 4 2\alpha = 0 \rightarrow \alpha = 2$
- $x_3 = 3 + \alpha \ge 0$ (항상 양수)
- $x_4 = 2 2\alpha \ge 0 \rightarrow 2 2\alpha = 0 \rightarrow \alpha = 1$

하지만 α 는 $0 \le \alpha \le 1$ 로 제한된다. 따라서 α = 1일 때

- x₁ = 4
- $x_1 = 2$
- $x_1 = 4$
- $x_1 = 0$

 x_4 가 0으로 떨어지므로, 탈락 기저 변수는 x_4

C

α가 1일 때 새로운 BFS는 (4, 2, 4, 0, 2, 0, 0)이다.

5.2-1

a

최적해는 $C_B B^{-1} b$

$$C_B = [6,8,9], B^{-1} = \frac{1}{27} \begin{bmatrix} 11 & -3 & 1 \\ -6 & 9 & -3 \\ 2 & -3 & 10 \end{bmatrix}, b = \begin{bmatrix} 180 \\ 270 \\ 180 \end{bmatrix}$$

답은 990

b

$$B^{-1}b = \begin{bmatrix} 50\\30\\50 \end{bmatrix}$$

최적해에서 BFS는 (30, 0, 50, 0, 50)

이때 세 자원의 잠재 가격은

• resource 1: 180

• resource 2: 270

• resource 3: 180

5.2-2

iteration 1

• basic: x_6, x_7

Reduced cost: $C_bB-1N-C_n$,

$$C_b = [0,0] \,{\to}\, \mathrm{Rc}\, \text{=-} C_n \,\text{=[-5,-8,-7,-4,-6]}$$

• enter: x_2

$$B^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A_*2 = \begin{bmatrix} 3 \\ 5 \end{bmatrix}, b = \begin{bmatrix} 20 \\ 30 \end{bmatrix}$$

 $\text{min ratio test: } [\tfrac{20}{3}, 6]$

• exit: x_7

iteration 2

• basic: x_6, x_2

$$C_b = [0, 8], B = \begin{bmatrix} 1 & 3 \\ 0 & 5 \end{bmatrix}, B^{-1} = \begin{bmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{bmatrix}$$

$$N = \begin{bmatrix} 2 & 3 & 2 & 2 & 0 \\ 3 & 4 & 2 & 4 & 1 \end{bmatrix}, C_n = \begin{bmatrix} 5 & 7 & 4 & 6 & 0 \end{bmatrix}$$

• Reduced cost:

$$\begin{bmatrix} 0 & 8 \end{bmatrix} \begin{bmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 & 2 & 0 \\ 3 & 4 & 2 & 4 & 1 \end{bmatrix} - \begin{bmatrix} 5 & 7 & 4 & 6 & 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} & -\frac{3}{5} & -\frac{4}{5} & \frac{2}{5} & \frac{8}{5} \end{bmatrix}$$

• enter: x_4

$$A_*4B^{-1} = \begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} 1 & -\frac{3}{5} \\ 0 & \frac{1}{5} \end{bmatrix} = \begin{bmatrix} \frac{4}{5} \\ \frac{2}{5} \end{bmatrix}, bB^{-1} = \begin{bmatrix} 2 \\ 6 \end{bmatrix}$$

min ratio test: $\left[\frac{5}{2}, 15\right]$

• exit: x_6

iteration 3

• basic: x_4, x_2

$$C_b = [4, 8], B = \begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix}, B^{-1} = \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$N = egin{bmatrix} 2 & 3 & 2 & 1 & 0 \\ 3 & 4 & 4 & 0 & 1 \end{bmatrix}, C_n = egin{bmatrix} 5 & 7 & 6 & 0 & 0 \end{bmatrix}$$

• Reduced cost:

$$\begin{bmatrix} 4 & 8 \end{bmatrix} \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 & 1 & 0 \\ 3 & 4 & 4 & 0 & 1 \end{bmatrix} - \begin{bmatrix} 5 & 7 & 6 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

종료.

$$bB^{-1}=\begin{bmatrix}\frac{5}{2}\\5\end{bmatrix}C_bB^{-1}b=50$$

- $x_1 = 0$
- $x_2 = 5$
- $x_3 = 0$
- $x_4 = \frac{5}{2}$
- $x_5 = 0$
- $x_6 = 0$
- $x_7 = 0$
- Z = 50