DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH

Shen Yu 1500012713 2019.5.9

Motivation

Substantial effort of human experts on discovering architectures

- Existing NAS algorithms are demanding
 - 2000 GPU days for RL algorithms (NASNet)
 - 3150 GPU days for evolutionary algorithms (AmoebaNet)
 - 225 GPU days for SMBO (PNAS)

Existing NAS algorithms are non-differentiable

Contributions

- Differentiable network architecture search on both convolutional and recurrent architectures
- Highly competitive results with non-differentiable search techniques
- Remarkable efficiency improvement
- Transferable architectures

Related Work

- Reinforcement learning
 - NASNet
 - ENAS
- Evolutionary algorithm
 - AmoebaNet
- SMBO
 - PNAS

Overview

• DAG of N nodes in each cell

Softmax over operations

$$\bar{o}^{(i,j)}(x) = \sum_{o \in \mathcal{O}} \frac{\exp(\alpha_o^{(i,j)})}{\sum_{o' \in \mathcal{O}} \exp(\alpha_{o'}^{(i,j)})} o(x)$$

Approximation

Bilevel optimization

$$\min_{\alpha} \quad \mathcal{L}_{val}(w^*(\alpha), \alpha)$$
s.t. $w^*(\alpha) = \operatorname{argmin}_{w} \quad \mathcal{L}_{train}(w, \alpha)$

Approximation 1: Adapt w using only a single training step

$$\nabla_{\alpha} \mathcal{L}_{val}(w^{*}(\alpha), \alpha)$$

$$\approx \nabla_{\alpha} \mathcal{L}_{val}(w - \xi \nabla_{w} \mathcal{L}_{train}(w, \alpha), \alpha)$$

Algorithm

Algorithm 1: DARTS - Differentiable Architecture Search

Create a mixed operation $\bar{o}^{(i,j)}$ parametrized by $\alpha^{(i,j)}$ for each edge (i,j)while not converged do

- 1. Update architecture α by descending $\nabla_{\alpha} \mathcal{L}_{val}(w \xi \nabla_{w} \mathcal{L}_{train}(w, \alpha), \alpha)$ $(\xi = 0 \text{ if using first-order approximation})$ 2. Update weights w by descending $\nabla_w \mathcal{L}_{train}(w, \alpha)$

Derive the final architecture based on the learned α .

Approximation

According to chain rule, the gradient is

$$abla_{\alpha} \mathcal{L}_{val}(w', \alpha) - \xi \nabla_{\alpha, w}^{2} \mathcal{L}_{train}(w, \alpha) \nabla_{w'} \mathcal{L}_{val}(w', \alpha)$$

$$w' = w - \xi \nabla_{w} \mathcal{L}_{train}(w, \alpha)$$

Approximation 2: Avoid expensive matrix-vector product

$$abla_{lpha,w}^2 \mathcal{L}_{train}(w,lpha)
abla_{w'} \mathcal{L}_{val}(w',lpha) pprox rac{
abla_{lpha} \mathcal{L}_{train}(w^+,lpha) -
abla_{lpha} \mathcal{L}_{train}(w^-,lpha)}{2\epsilon}
onumber \ w^\pm = w \pm \epsilon
abla_{w'} \hat{\mathcal{L}}_{val}(w',lpha)$$

- First-order approximation: $\xi = 0$, 2 forward, 2 backward
- Second-order approximation: $\xi \neq 0$, 4 forward, 4 backward

Deriving architectures

- Retain the top-k strongest operations from all previous nodes
- k=2 for conv cell, k=1 for recurrent cell

Experiments

• Search space for CIFAR-10

TABLE 1. Selection of POs in current NAS methods.

POs	NAS-Net	ENAS	NAO	DARTS	PNASNet	Evolutionary search
Identity	✓	✓	✓	✓	✓	✓
1×1 Conv	✓	×	✓	×	×	✓
1×1 SepConv	✓	×	✓	×	×	×
2×2 Conv	×	×	✓	×	×	×
2×2 SepConv	×	×	✓	×	×	×
3×3 Conv	✓	×	×	×	×	×
3×3 SepConv	×	✓	✓	✓	✓	✓
3×3 DilConv	✓	×	×	✓	✓	×
$1 \times 3 \ then \ 3 \times 1 \ Conv$	✓	×	×	×	×	✓
5×5 SepConv	✓	✓	×	✓	✓	×
5×5 DilConv	×	×	×	✓	×	×
7×7 SepConv	✓	×	×	×	✓	×
$1 \times 7 \ then \ 7 \times 1 \ Conv$	✓	×	×	×	×	×
2×2 MP	×	×	✓	×	×	×
3×3 MP	✓	✓	✓	✓	✓	✓
$5 \times 5 \text{ MP}$	✓	×	×	×	×	×
$7 \times 7 \text{ MP}$	✓	×	×	×	×	×
2×2 AP	×	×	✓	×	×	×
3×3 AP	✓	✓	✓	✓	✓	✓
None	×	×	×	✓	×	×

Search progress

Run 4 times with different random seeds

Architectures

Figure 4: Normal cell learned on CIFAR-10.

Figure 5: Reduction cell learned on CIFAR-10.

Figure 6: Recurrent cell learned on PTB.

Performance

Architecture	Test Error (%)	Params (M)	Search Cost (GPU days)	#ops	Search Method	
DenseNet-BC (Huang et al., 2017)	3.46	25.6	_	_	manual	
NASNet-A + cutout (Zoph et al., 2018)	2.65	3.3	2000	13	RL	
NASNet-A + cutout (Zoph et al., 2018) [†]	2.83	3.1	2000	13	RL	
BlockQNN (Zhong et al., 2018)	3.54	39.8	96	8	RL	
AmoebaNet-A (Real et al., 2018)	3.34 ± 0.06	3.2	3150	19	evolution	
AmoebaNet-A + cutout (Real et al., 2018) [†]	3.12	3.1	3150	19	evolution	
AmoebaNet-B + cutout (Real et al., 2018)	2.55 ± 0.05	2.8	3150	19	evolution	
Hierarchical evolution (Liu et al., 2018b)	3.75 ± 0.12	15.7	300	6	evolution	
PNAS (Liu et al., 2018a)	3.41 ± 0.09	3.2	225	8	SMBO	
ENAS + cutout (Pham et al., 2018b)	2.89	4.6	0.5	6	RL	
ENAS + cutout (Pham et al., 2018b)*	2.91	4.2	4	6	RL	
Random search baseline [‡] + cutout	3.29 ± 0.15	3.2	4	7	random	
DARTS (first order) + cutout	3.00 ± 0.14	3.3	1.5	7	gradient-based	
DARTS (second order) + cutout	2.76 ± 0.09	3.3	4	7	gradient-based	

^{*} Obtained by repeating ENAS for 8 times using the code publicly released by the authors. The cell for final evaluation is chosen according to the same selection protocol as for DARTS.

[†] Obtained by training the corresponding architectures using our setup.

[‡] Best architecture among 24 samples according to the validation error after 100 training epochs.

Performance

Architecture		exity test	Params (M)	Search Cost (GPU days)	#ops	Search Method
Variational RHN (Zilly et al., 2016)	valid 67.9	65.4	23	-		manual
LSTM (Merity et al., 2018)	60.7	58.8	24	_	_	manual
LSTM + skip connections (Melis et al., 2018)	60.9	58.3	24	_	_	manual
LSTM + 15 softmax experts (Yang et al., 2018)	58.1	56.0	22	_	_	manual
NAS (Zoph & Le, 2017)	_	64.0	25	1e4 CPU days	4	RL
ENAS (Pham et al., 2018b)*	68.3	63.1	24	0.5	4	RL
ENAS (Pham et al., 2018b) [†]	60.8	58.6	24	0.5	4	RL
Random search baseline [‡]	61.8	59.4	23	2	4	random
DARTS (first order)	60.2	57.6	23	0.5	4	gradient-based
DARTS (second order)	58.1	55.7	23	1	4	gradient-based

^{*} Obtained using the code (Pham et al., 2018a) publicly released by the authors.

[†] Obtained by training the corresponding architecture using our setup.

[‡] Best architecture among 8 samples according to the validation perplexity after 300 training epochs.

Performance

Architecture	Test Error (%)		Params	+×	Search Cost	Search
Arcintecture	top-1	top-5	(\mathbf{M})	(\mathbf{M})	(GPU days)	Method
Inception-v1 (Szegedy et al., 2015)	30.2	10.1	6.6	1448	_	manual
MobileNet (Howard et al., 2017)	29.4	10.5	4.2	569	_	manual
ShuffleNet $2 \times (g = 3)$ (Zhang et al., 2017)	26.3	-	~5	524	-	manual
NASNet-A (Zoph et al., 2018)	26.0	8.4	5.3	564	2000	RL
NASNet-B (Zoph et al., 2018)	27.2	8.7	5.3	488	2000	RL
NASNet-C (Zoph et al., 2018)	27.5	9.0	4.9	558	2000	RL
AmoebaNet-A (Real et al., 2018)	25.5	8.0	5.1	555	3150	evolution
AmoebaNet-B (Real et al., 2018)	26.0	8.5	5.3	555	3150	evolution
AmoebaNet-C (Real et al., 2018)	24.3	7.6	6.4	570	3150	evolution
PNAS (Liu et al., 2018a)	25.8	8.1	5.1	588	\sim 225	SMBO
DARTS (searched on CIFAR-10)	26.7	8.7	4.7	574	4	gradient-based

Q&A