10 March 2022 grid • EN

Problem 2 - Mouse Precision Training (grid)

To maintain top performance in every game, you should have perfect control of your mouse. To improve your mouse skills you have to practise with a mouse accuracy game.

In this game, there's a grid of $N \times N$ squares. One of these M squares contain a target. The remaining ones are empty.

Each target square is associated to a natural number i representing the maximum number of visits possible for that square. Each time the square is visited i decreases by 1, when i=0 the square can no longer be visited.

Starting from an initial target square, you should move the mouse to the nearest target square, visit it (decreasing its value i by 1) and then continue from that square, searching for the next nearest different target square from the last one. When you reach the last target square and all other i=0, you're finished. The goal is to return the total distance travelled by the mouse.

Parameters and rules:

- 1. There are N^2 squares on an NxN grid.
- 2. Each square is identified by its coordinate (x, y). The square on the top left has coordinates (0, 0), the one on bottom right has coordinates (N-1, N-1).
- 3. M target squares, of which the initial target square is the first one in the input file.
- 4. i, the maximum number of visits for each square (each time you visit a square its i decreases by 1. This also applies also when starting from the initial square).
- 5. The distance between two squares is computed as L1 distance, i.e. the distance between p and q is $d(p,q) = |p_x - q_x| + |p_y - q_y|.$
- 6. If there are multiple squares with the same distance, always select the nearest one with lower x coordinate. If this isn't possible, select the one with a lower y coordinate.
- 7. You cannot return to the last target square you visited, except when there are only two target squares on the grid (the current one and the last one).

Input data

In each file, the first line contains T the number of test cases. Then, for each test case there is:

- a line with two space-separated integers N and M, the width of the square grid and the number of target squares.
- a line containing the coordinates of the starting target square followed by its maximum number of
- the remaining M-1 lines are the coordinates of other target squares followed by their maximum number of visits i.

Output data

The output file must contain T lines. For each test case in the input file, the output file must contain a line with the characters:

Page 1 of 2 grid

Case #t: S

where t is the test case number, from 1 to T, and S is the solution of the test case: the sum of all the travelled L1 distances.

Constraints

- $1 \le T \le 2$
- $1 \le N \le 35$
- $1 \le M \le 30$
- $1 \le i \le 6000$, for every square

Scoring

- input $\mathbf{1}: T = 1, N \leq 5, M \leq 6 \text{ and } i \leq 5$
- input 2: $T = 1, N \le 10, M \le 15 \text{ and } i \le 10$
- input 3: $T = 2, N \le 20, M \le 20 \text{ and } i \le 75$
- input 4: $T = 2, N \le 30, M \le 25$ and $i \le 1200$
- input 5: T = 2, $N \le 35$, $M \le 30$ and $i \le 6000$

Examples

input	output
1 4 4 1 0 1	Case #1: 10
3 1 1 2 2 2 0 3 1	

grid Page 2 of 2