Союз Советских Социалистических Республик

Государственный комитет СССР по делам изобретений и открытий RAHEOOODDA WAYEN CATENTAL A ALIM THE WALL ALIM A

О П И С А Н И Е БА (II) 659260 ИЗОБРЕТЕНИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное и авт. свид-ву-

(22) Заявлено 051277 (21) 2552906/25-27

с присоединением заявки № -

(23) Приоритет -

Опубликовано 30,04.79. Бюллетень № 16

Дата опубликования описания 300479

(51) M. Ka.2

B 21 H 8/00 B 21 B 3/00

(53) **岁**ДK 621.77.04 (088.8)

(72) Авторы изобретения А.В.Фролов, В.Ф.Калугин, Е.И.Разуваев, Б.Н.Аксенов, В.С.Теренин и Д.Е.Герасимов

(71) Заявитель

(54) СПОСОБ ПОЛУЧЕНИЯ ТОЛСТЫХ ЛИСТОВ ИЗ АЛЖМИНИЕВЫХ, ЖАРОПРОЧНЫХ И ТИТАНОВЫХ СПЛАВОВ

.

Изобретение относится к обработке металлов давлением и может быть использовано при изготовлении стальных конструкций, резервуаров, корпусов морских сосудов, труб из алюминиевых жаропрочных и титановых сплавов, применяемых в различных отраслях народного хозяйства, таких как судостроение, энергетическое и транспортное машиностроение, самолетостроение и др.

Известен способ получения толстых листов методом горячей прокатки на гладких валках $\begin{bmatrix} 1 \end{bmatrix}$.

недостатком известного способа является то, что он не обеспечивает получение качественных толстых листов из-за недостаточной проработки структуры и сечения заготовки.

Известен способ получения толстых листов из алюминиевых, жаропрочных и титановых сплавов путем штамповки исходной заготовки с последующей ее прокаткой [2].

Однако недостаточные степени обжатий приводят к неравномерному зерну по сечениям и снижению механических характеристик. 2

целью изобретения является повышение физико-механических свойств получаемых изделий.

Для достижения цели прокатку велут при соотношении длины дуги захвата валков к средней геометричесткой толщине заготояки, равном 0,9-2,7, причем обжатие за проход составляет 30-50%.

Для спределения численных значения указанного соотношения задавались различными диаметрами прокатных валков, исходными и конечными толщинами прокатываемых листов и различными степенями деформации, после чего взяли нижний и верхний пределы результатов подсчетов по формуле

$$\frac{\ell_{Q}}{H_{CP}} = \frac{\sqrt{R \Delta H}}{\sqrt{H h}}$$

где R — радиус прокатного валка; Н — исходная толшина заготовки;

h — койечная толюжна листа.

Для большего выравнивания скоростей течения поверхностных и серединных слоев произволится подстуживание поверхности металла при входе заготовки в валки струей сжатого воздуха.

30 Прокатка с соотношением ℓ_{ϕ}/H_{CP} =0,9-2,7 позволяет увеличить угол зах-

15

рата валков, катать заготовки практических любых толщин и давать обжатия до 30-50% за проход. Скорость вращения валков для лучшей проработки структуры и более полного прохождения процессов рекристаллизации колеблется в пределах 0,3-0,6 м/сек.

Получение более равномерного зерна требует, чтобы температура конца прокатки была достаточно высокой:для жаропрочных сплавов не ниже температуры рекристаллизации, для титановых — на 30-50°C ниже температуры рекристаллизации и для труднодеформируемых алюминиевых на 50-60°C ниже температуры начала прокатки.

В конечном итоге полученые после прокатки толстые листы подвергаются термической обработке - отжигу по стандартному режиму для каждой группы сплавов для снятия наклепа после пластической деформации и выравнивания структуры по сечению.

Горячая прокатка с обжатиями в 30-50% за проход позволяет улучшить проработку структуры по сечению заготовки, получить более равномерное зерно, увеличить производительность труда из-за снижения количества пропусков. Применение обжатия ниже 30% не обеспечивает проработку структуры заготовки по глубине, а выше 50% не позволяют возможности современного оборудования.

В опытно-лабораторных условиях проводилось опробование предлагаемого способа. Проводилась прокатка толстых листов из титанового сплава ВТ6. Химическия состав сплава, \$: 6,1 At ;5,0 V; 0,08 C;0,25 Fe; 0,1 Si; 0,15 O₂; 0,03 N₂; 0,01 H; 0,25 прочих примесея, остальное титан.

Предварительно штампованная заготовка размером 40х300х600 мм нагревалась до 1050°С, после чего производилась прокатка на валках, обеспечивающих коэффициент трения между контактной поверхностью валка и толстого листа 0,5 отношением [9/ /H_{Cp} = 1,1 и обжатиями 30% за прохол. Последние 2 прохода производились на гладких валках для получения качественной поверхности и выравнивания разницы по толщине. Скорость вращения валков составляла 0,5 м/с.

При входе металла в валки осушествлялось подстуживание поверхностных слоев заготовки направленноя струея сжатого воздуха. Полученные после прокатки толстые листы полвергались термообработке по режиму: нагрев до 800°С, выдержка 30 мин, охлаждение с печью до 500°С, далее на воздухе.

Результаты испытаний полученных толстых листов из материала ВТ6 и размеры исходной и конечной заготовок приведены в таблице.

Способ	Состояние контроль- ных образ- цов	nepa-	Механические Свойства					Размеры конеч- нов заготовки		
			напряже- ние 	обжа- тие, ов	дли- на, мм	шири- на, мм	тол- щина, мм	дли- на, мм	шири-	r
Пред- лага- емый	Отоженный	20	95	8	600	300	40	1500	315	15
Изве- стный	·	20	88	8	1200	1000	400	2900	1100	150

Использование способа обеспечивает по сравнению с существующими способами возможность получения толстых листов из алюминиевых, жаропрочных и титановых сплавов с проработкой структуры на всю глубину заготовки с получением равномерного зерна по всему сечению полученной заготовки, кроме того, предлагаемыя способ позволяет получить физико-механические свойства выше на 3,0%.

Формула изобретения

Способ получения толстых листов из алюминиевых, жаропрочных и титановых сплавов путем штамповки исходной заготовки с последующей ее прокаткой, о т л и ч а ю ш и й с я тем, что, с целью повышения физикомеханических свойств получаемых изделий, прокатку ведут при соотношении длины дуги захвата валков к средней геометрической толшине за-

5

готовки, равном 0,9-2,7, причем обжатие за проход составляет 20-50%. Источники информации, принятые во внимание при экспертизе 1. Бровман М.Я., Зеличенок Б.Ю.,

1. Бровман М.Я., Зеличенок Б.Ю., Герцев А.И. Усовершенствование технологии прокатки толстых листов.
''Металлургия'', М., 1969, с.22-27.
2. Заявка № 2436814/27,
кл. В 23 Р 3/00, 1977, по котороя
было принято решение о выдаче авторского свидетельства.

Составитель И.Ментягова

Редактор Т.Морозова Техред С.Мигай Корректор И. Муска

Заказ 2098/2 Тираж 1033 Подписное

ЩНИПИ Государственного комитета СССР

по делам изобретения и открытий

113035, Москва, Ж-35, Раушская наб., д. 4/5

Филиал IIIII "Патент", г.Ужгород, ул.Проектная,4