Lecture Summary: Functions of Two Random Variables (Sum, Max, and Min)

Source: Lec 2.6.pdf

Key Points

- Introduction to Functions of Two Random Variables:
 - Expands on functions of one random variable to consider combinations of two variables.
 - Common functions include the sum, maximum, and minimum, which often arise in data analysis.
- Table Method for Small-Sized Examples:
 - For discrete random variables with few values, the table method remains effective.
 - Example: $X, Y \sim \text{iid Uniform}\{0, 1\}$, with Z = X + Y:
 - * Joint PMF table:

(X,Y)	Z	P(X,Y)
(0,0)	0	$\frac{1}{4}$
(0,1)	1	$\frac{1}{4}$
(1,0)	1	$\frac{1}{4}$
(1, 1)	2	$\frac{1}{4}$

*
$$P(Z=0) = \frac{1}{4}$$
, $P(Z=1) = \frac{1}{2}$, $P(Z=2) = \frac{1}{4}$.

- The method involves identifying repetitions and summing probabilities for each unique value of Z.

• Example for Maximum Function:

- Define $Z = \max(X, Y)$ with different distributions for X and Y.
- Tabular computation includes joint PMFs and evaluations of $\max(X, Y)$.
- Example:

(X,Y)	Z	P(X,Y)
(0,0)	0	$\frac{1}{2}$
(0,1)	1	
(1,0)	1	$\frac{\overline{4}}{8}$
(1,1)	1	$\frac{1}{16}$
(0,2)	2	$\frac{1}{16}$

- Sum probabilities for repetitions to find:

$$P(Z=0) = \frac{1}{2}, \quad P(Z=1) = \frac{11}{32}, \quad P(Z=2) = \frac{5}{32}.$$

- Challenges for Larger Examples:
 - When X and Y have many possible values, the table method becomes cumbersome.

- Example: Two dice rolls produce 36 combinations, manageable but error-prone.
- Larger scales, such as $X,Y\in\{1,2,\ldots,100\}$, yield 10^4 combinations, making tabular methods impractical.

• Next Steps for Large Scenarios:

- Transition to visualization and analytical techniques.
- Understanding how functions map (X,Y) to specific outcomes becomes essential for simplification.

Simplified Explanation

Functions of Two Variables: Sum, max, and min are common operations. Small datasets can be managed with tables; larger ones require alternative methods.

Example: For $X, Y \sim \text{Uniform}\{0, 1\}$ and Z = X + Y: - $P(Z = 0) = \frac{1}{4}$, $P(Z = 1) = \frac{1}{2}$, $P(Z = 2) = \frac{1}{4}$. **Challenges:** Tables become impractical for large datasets, necessitating smarter techniques.

Conclusion

In this lecture, we:

- Applied the table method to functions of two random variables.
- Explored examples for sum and max functions.
- Discussed limitations of the table method for larger datasets.

Future discussions will focus on analytical and visualization approaches for handling large-scale random variable functions.