Facultatea de Automatica si Calculatoare, Universitatea Politehnica din Bucuresti

Examen Partial MN

/3

/13

Student:		Grupa:	
Descriere curs:	MN, An I, Semestrul II	Rezultate Examen Subject Punctaj	
Titlu curs:	Metode Numerice		
Profesor:	Conf.dr.ing. Florin POP	1	
		1	/3
Durata examenului:	90 minute	2	/4
			/4
Tip Examen:	Closed Book Nul Fara telefoane mobile!!!	3	/3
-vialemaje Admionaje,	INII! FATA LEIEIOANE MODIIE!!!		

Subjecte (Seria CC)

Numar pagini:

3 puncte

1. Se considera matricea $A \in \mathbb{R}^{n \times n}$, cu $a_{ij} = \begin{cases} n+j-i+1 & pentru & j < i \\ j-i+1 & pentru & j \geq i \end{cases}$; (a) Scrieti A desfasurata. (b) Fie sistemul $(A+mI_n)x = b$. Discutati in raport cu m convergenta metodei Jacobi. (c) Scrieti o functie Matlab care implementeaza metoda Jacobi.

4 puncte

2. Fie $A \in R^{n \times n}$. a) Scrieti algoritmii de triangularizare folosind reflectori Householder daca matricea A este tridiagonala simetrica si este memorata economic prin 2 vectori a (sub si supra diagonala) si d (diagonala); (b) Aplicati algoritmul Gram-Schmidt daca $d=[2\ 2\ 2\ 2]$ si $a=[1\ 1\ 1]$; (c) O matrice $J_n=\begin{bmatrix}I_p&0\\0&-I_q\end{bmatrix}$, p+q=n re-defineste un reflector $U=I_n-\frac{uu^TJ_n}{\beta}$, $\beta=\frac{1}{2}||u||_J^2$ (norma $||\cdot||_J$ se calculeaza pe baza prodului scalar $\langle x,y\rangle=y^TJx$). Ce proprietati ale reflectorului se pastreaza prin aceasta re-definire (simetrie, ortogonalitate, conservarea normelor, proprietatea de reflexie $Ux=-\sigma e_1$)?

3 puncte

3. Pentru matricea $A \in \mathbb{R}^{n \times n}$, fie spectrul $\lambda(A) = \{\lambda_1, \lambda_2, \dots, \lambda_n\}$ si vectorii proprii $x(A) = \{x_1, x_2, \dots, x_n\}$. Se formeaza matricea $B = A - \lambda_i x_i y_i^T$ cu x_i si y_i vectorii proprii la dreapta, respectiv la stanga; a) Calculati $\lambda(B)$ si x(B); b) Definiti o functie care calculeaza o pereche proprie dominanta prin metoda putetii directe: function [lmbd, x, OK]=direct(A, y, max, tol) si o functie care calculeaza matricea B daca se dau λ_i si x_i : function [B]=Hotelling(A,lmbd,x). c) Folosind cele doua functii calculati valorile proprii si vectorii proprii pentru o matrice A.

3 puncte

4. BONUS. (a) Prezentati un algoritm eficient pentru rezolvarea sistemului $A^k x = b, A \in \mathbb{R}^{n \times n}$ nesingulara, $b \in \mathbb{R}^n$ si $k \in \mathbb{N}, k > 0$. (b) Demonstrati ca orice matrice ortogonala se poate scrie ca produs de reflectori elementari. (c) Daca matricea $A \in \mathbb{R}^{n \times n}$ are valorile proprii λ_i , vectorii proprii la dreapta x_i si la stanga y_i , aratati ca $A = \sum_{i=1}^n \lambda_i x_i y_i^T$.