

Thapar Institute of Engineering & Technology (Deemed to be University)

Bhadson Road, Patiala, Punjab, Pin-147004

Contact No.: +91-175-2393201 Email: info@thapar.edu



## Basic Identities of Boolean Algebra

• 
$$1. X + 0 = X$$

• 
$$3. X + 1 = 1$$

• 5. 
$$X + X = X$$

• 4. 
$$X \cdot 0 = 0$$

• 6. 
$$X \cdot X = X$$

# Basic Identities (2)

• 
$$7. X + X' = 1$$

• 8. 
$$X \cdot X' = 0$$

| X | X' | RES |
|---|----|-----|
| 0 | 1  | 1   |
| 1 | 0  | 1   |

• 9. 
$$(X')' = X$$

## Basic Properties (Laws)

- Commutative
  - -10. X + Y = Y + X
- Associative
  - -12. X+(Y+Z)=(X+Y)+Z
- Distributive
  - -14. X(Y+Z) = XY+XZ
  - AND distributes over OR

- Commutative
  - $-11. X \cdot Y = Y \cdot X$
- Associative
  - 13. X(YZ) = (XY)Z
- Distributive
  - -15. X+YZ=(X+Y)(X+Z)
  - OR distributes over AND

## Basic Properties (2)

- DeMorgan's Theorem
- Very important in simplifying equations

$$-16. (X + Y)' = X' \cdot Y'$$

$$-17. (XY)' = X' + Y'$$

|   | X | Y | <b>X</b> + <b>Y</b> | $\overline{X+Y}$ | _ | X | Y | $\overline{\mathbf{X}}$ | $\overline{\mathbf{Y}}$ | $\overline{X} \cdot \overline{Y}$ |
|---|---|---|---------------------|------------------|---|---|---|-------------------------|-------------------------|-----------------------------------|
| _ | 0 | 0 | 0                   | 1                |   | 0 | 0 | 1                       | 1                       | 1                                 |
|   | 0 | 1 | 1                   | 0                |   | 0 | 1 | 1                       | 0                       | 0                                 |
|   | 1 | 0 | 1                   | 0                |   | 1 | 0 | 0                       | 1                       | 0                                 |
|   | 1 | 1 | 1                   | 0                |   | 1 | 1 | 0                       | 0                       | 0                                 |

# Simplify, simplify

- These properties (Laws and Theorems) can be used to simplify equations to their simplest form.
  - Simplify F=X'YZ+X'YZ'+XZ

$$\mathbf{F} = \overline{\mathbf{X}}\mathbf{Y}\mathbf{Z} + \overline{\mathbf{X}}\mathbf{Y}\overline{\mathbf{Z}} + \mathbf{X}\mathbf{Z}$$

$$= \overline{X}Y(Z + \overline{Z}) + XZ$$
 by identity 14

$$= \overline{X}Y \cdot 1 + XZ$$
 by identity 7

$$= \overline{X}Y + XZ$$
 by identity 2

## Affect on implementation

• F = X'YZ + X'YZ' + XZ



• Reduces to F = X'Y + XZ



## More examples

$$-1. X + XY$$

$$= X(1+Y)$$

$$= X \cdot 1 = X$$

$$-2. XY+XY'$$

$$= X(Y + Y')$$

$$= X \cdot 1 = X$$

$$-3. X+X'Y$$

$$- = (X+X')(X+Y)$$

$$- = 1 \cdot (X+Y) = X+Y$$

$$-4. X \cdot (X+Y)$$

$$=X \cdot X + X \cdot Y$$

$$= X+XY=X(1+Y)$$

$$=X+XY'+XY+0$$

$$=X(1+Y'+Y)$$

## Consensus Theorem

The Theorem gives us the relationship

$$- XY + X'Z + YZ = XY + X'Z$$

$$XY + X'Z + YZ \rightarrow XY + X'Z + (X + X')YZ$$

$$\rightarrow XY + X'Z + XYZ + X'YZ$$

$$\rightarrow (XY + XYZ) + (X'Z + X'YZ)$$

$$\rightarrow XY(1 + Z) + X'Z(1 + Y)$$

$$\rightarrow XY + X'Z$$

## **Application of Consensus Theorem**

#### Consider

```
- (A+B)(A'+C) = AA' + AC + A'B + BC

- = AC + A'B + BC

- = AC + A'B
```

## Canonical and standard forms

#### Minterms and Maxterms for Three Binary Variables

| x y |   | Minterms |        | Maxterms    |              |             |
|-----|---|----------|--------|-------------|--------------|-------------|
|     | У | Z        | Term   | Designation | Term         | Designation |
| 0   | 0 | 0        | x'y'z' | $m_0$       | x + y + z    | $M_0$       |
| 0   | 0 | 1        | x'y'z  | $m_1$       | x + y + z'   | $M_1$       |
| 0   | 1 | 0        | x'yz'  | $m_2$       | x + y' + z   | $M_2$       |
| 0   | 1 | 1        | x'yz   | $m_3$       | x + y' + z'  | $M_3$       |
| 1   | 0 | 0        | xy'z'  | $m_4$       | x' + y + z   | $M_4$       |
| 1   | 0 | 1        | xy'z   | $m_5$       | x' + y + z'  | $M_5$       |
| 1   | 1 | 0        | xyz'   | $m_6$       | x' + y' + z  | $M_6$       |
| 1   | , | 1        | xyz    | $m_7$       | x' + y' + z' | $M_7$       |

Functions of Three Variables

| X | У | z | Function $f_1$ | Function | $f_2$                                                    |
|---|---|---|----------------|----------|----------------------------------------------------------|
| 0 | 0 | 0 | 0              | 0        | $f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$            |
| 0 | 0 | 1 | 1              | 0        |                                                          |
| 0 | 1 | 0 | 0              | 0        | Similarly, it may be easily verified that                |
| 0 | 1 | 1 | 0              | 1        | $f_2 = x'yz + xy'z + xyz' + xyz = m_3 + m_5 + m_6 + m_7$ |
| 1 | 0 | 0 | 1              | 0        |                                                          |
| 1 | 0 | 1 | 0              | 1        |                                                          |
| 1 | 1 | 0 | 0              | 1        |                                                          |
| 1 | 1 | 1 | 1              | 1        |                                                          |
|   |   |   |                |          |                                                          |

$$f_1' = x'y'z' + x'yz' + x'yz + xy'z + xyz'$$

If we take the complement of  $f'_1$ , we obtain the function  $f_1$ :

$$f_1 = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$
  
=  $M_0 \cdot M_2 \cdot M_3 \cdot M_5 \cdot M_6$ 

Similarly, it is possible to read the expression for  $f_2$  from the table:

$$f_2 = (x + y + z)(x + y + z')(x + y' + z)(x' + y + z)$$
  
=  $M_0 M_1 M_2 M_4$ 

Express the Boolean function F = A + B'C in a sum of minterms. The function has three variables, A, B, and C. The first term A is missing two variables; therefore:

$$A = A(B + B') = AB + AB'$$

This is still missing one variable:

$$A = AB(C + C') + AB'(C + C')$$
$$= ABC + ABC' + AB'C + AB'C'$$

The second term B'C is missing one variable:

$$B'C = B'C(A + A') = AB'C + A'B'C$$

Combining all terms, we have

$$F = A + B'C$$

$$= ABC + ABC' + AB'C + AB'C' + AB'C + A'B'C$$

But AB'C appears twice, and according to theorem 1(x + x = x), it is possible to remove one of them. Rearranging the minterms in ascending order, we finally obtain

$$F = A'B'C + AB'C' + AB'C + ABC' + ABC$$
  
=  $m_1 + m_4 + m_5 + m_6 + m_7$ 

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

$$F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$$

$$F = A + B'C$$

|   |   | for $F = A + B$ | 'C |
|---|---|-----------------|----|
| Α | В | С               | F  |
| 0 | 0 | 0               | 0  |
| 0 | 0 | 1               | 1  |
| 0 | 1 | 0               | 0  |
| 0 | 1 | 1               | 0  |
| 1 | 0 | 0               | 1  |
| 1 | 0 | 1               | 1  |
| ì | i | 0               | 1  |
| 1 | 1 | 1               | 1  |
|   |   |                 |    |

Express the Boolean function F = xy + x'z in a product of maxterm form. First, convert the function into OR terms using the distributive law:

$$F = xy + x'z = (xy + x')(xy + z)$$
  
=  $(x + x')(y + x')(x + z)(y + z)$   
=  $(x' + y)(x + z)(y + z)$ 

The function has three variables: x, y, and z. Each OR term is missing one variable; therefore:

$$x' + y = x' + y$$
  $(x' + y + z)(x' + y + z')$   
 $x + z = x + z + yy' = (x + y + z)(x + y' + z)$   
 $y + z = y + z + xx' = (x + y + z)(x' + y + z)$ 

Combining all the terms and removing those that appear more than once, we finally obtain:

$$F = (x + y + z)(x + y' + z)(x' + y + z)(x' + y + z')$$
  
=  $M_0 M_2 M_4 M_5$ 

A convenient way to express this function is as follows:

$$F(x, y, z) = \Pi(0, 2, 4, 5)$$

The product symbol,  $\Pi$ , denotes the ANDing of maxterms; the numbers are the maxterms of the function.

$$(n+\bar{n})(y+\bar{n})$$
  $(n+2)(y+3)$   
 $(ny+\bar{n}n+\bar{n}y+\bar{n}n)$   $(ny+n_2+y_3+32)$   
 $(ny+\bar{n}y+\bar{n})$   $(ny+n_3+y_3+3)$   
 $(ny+(\bar{n}y)\bar{n})$   $(ny+3(\bar{n}y)+n_3)$   
 $(ny+\bar{n})$   $(ny+3+n_3)$   
 $(ny+\bar{n})$   $(ny+(\bar{n}y+3)$   
 $(ny+\bar{n})$   $(ny+(\bar{n}y+3)$ 

# Binary Arithmetic Operations: Subtraction

#### Learn new borrow rules

$$-0.0 = 0b0$$
 (result 0 with borrow 0)

$$-1-0 = 1b0$$

$$-0-1=1b1$$

$$-1-1=0b0$$

#### **Binary Codes**

| Decimal<br>digit | (BCD)<br>8421 | Excess-3 |
|------------------|---------------|----------|
| 0                | 0000          | 0011     |
| 1                | 0001          | 0100     |
| 2                | 0010          | 0101     |
| 3                | 0011          | 0110     |
| 4                | 0100          | 0111     |
| 5                | 0101          | 1000     |
| 6                | 0110          | 1001     |
| 7                | 0111          | 1010     |
| 8                | 1000          | 1011     |
| 9                | 1001          | 1100     |

 To code a number with n decimal digits, we need 4n bits in BCD

e.g. 
$$(365)_{10} = (0011\ 0110\ 0101)_{BCD}$$

• This is different to converting to binary, which is  $(365)_{10} = (101101101)_2$ 

### **BCD** Addition

Example: Add 448 and 489 in BCD.

```
0100 0100 1000 (448 in BCD)
0100 1000 1001 (489 in BCD)
            10001 (greater than 9, add 6)
            1 0111 (carry 1 into middle digit)
       1101
                    (greater than 9, add 6)
1001 1 0011
                    (carry 1 into leftmost digit)
       0011 0111 (BCD coding of 937_{10})
```

## Binary to Gray Code Conversion



- MSB does not change as a result of conversion
- Start with MSB of binary number and add it to neighboring binary bit to get the next Gray code bit
- Repeat for subsequent Gray coded bits

## **Gray To Binary**



- MSB does not change as a result of conversion
- Start with MSB of binary number and add it to the second MSB of the Gray code to get the next binary bit
- Repeat for subsequent binary coded bits