PROVA SCRITTO FISICA II - 12/01/2022

Scegliete un esercizio e provate a farlo in 45 minuti.

Esercizio 1

Una spira di forma romboidale (a=5 cm, $\theta=40^\circ$) ha massa m=10 g, è percorsa da una corrente i ed è posta, in equilibrio, in una regione di spazio in cui sono presenti due campi magnetici aventi direzione \hat{z} . Per y<0 il campo vale $\vec{B}_2=-B_2\hat{z}$, con $B_2=0.3$ T, mentre per y>0 il campo vale $\vec{B}_1=B_1\hat{z}$, con $B_1=0.7$ T. **Nota Bene:** la forza peso agisce lungo $-\hat{y}$.

- 1. Determinare verso e intensità di i.
- 2. Determinare il modulo della forza magnetica agente sul segmento diagonale in alto a destra.
- 3. Il campo \vec{B}_1 viene spento, mentre l'intensità di corrente che scorre nella spira rimane invariata. Determinare il nuovo valore del modulo che \vec{B}_2 deve avere per far sì che la spira rimanga in equilibrio.

Esercizio 2

Un spira conduttrice di resistenza R = $1\,\Omega$ avente la forma di un triangolo rettangolo isoscele di lato l=1 m, giace sul piano xy e si muove lungo l'asse x con velocità **costante** v=0.1 m/s, come mostrato in figura. All'istante $t_0=0$ entra in una zona di spazio in cui è presente un campo magnetico B=1 T, uniforme e ortogonale al piano della spira.

Nota Bene: l'area di un triangolo è ab/2, dove a e b sono la base e l'altezza, ma nel caso di un triangolo rettangolo isoscele come quello in figura si ha sempre a=b.

- 1. Determinare l'espressione del flusso del campo magnetico che attraversa la spira in funzione del tempo.
- 2. Determinare verso e intensità della corrente che fluisce nella spira in funzione del tempo.
- 3. Calcolare il tempo t_f necessario affinché la spira entri completamente nella regione di campo e la carica totale che fluisce attraverso la spira nell'intervallo di tempo t_f-t_0 .

Esercizio 3

Una particella di massa $m=1.68\times 10^{-27}$ Kg e carica $q=1.602\times 10^{-19}$ C si muove all'interno di un solenoide indefinito con velocità \vec{v} . Al tempo t=0 nel solenoide viene fatta scorrere una corrente che genera un campo magnetico uniforme \vec{B}_v di direzione e verso tali per cui \vec{v} forma un angolo $\theta=30^\circ$ con il piano ortogonale al campo (vedi figura). La particella comincia quindi a percorrere un moto elicoidale di velocità angolare $\omega=9.69\times 10^7\,\mathrm{s^{-1}}$ e passo $p=3.28\times 10^{-2}$ m. Una volta percorsa una distanza d=1 m lungo la direzione del campo la particella entra in una regione di spazio in cui è presente anche un materiale di costante magnetica relativa $\kappa_m=10$ (in grigio in figura).

Nota Bene: gli esercizi vanno risolti nell'approssimazione in cui il campo magnetico è costante e uniforme in entrambe le regioni.

- 1. Determinare i raggi di curvatura r_v e r_p della traiettoria percorsa dalla particella quando questa si trova nella regione vuota e nella regione piena.
- 2. Calcolare il numero di circonferenze complete percorse dalla particella dal momento in cui è stato acceso il campo a quello in cui è entrata nella regione di campo piena di materiale.
- Calcolare il modulo delle componenti della velocità ortogonale e parallela al campo nella regione piena di materiale.