Definitions

Volume of solid via cross sections. Let $S \subseteq \mathbb{R}^3$ be a solid region in 3-space.

For each $x_0 \in \mathbb{R}$ let S_{x_0} be the **cross section** of S consisting of all points of S whose x-coordinate is equal to x_0 , and let $A(x_0)$ be the area of S_{x_0} .

Assume A(x) is integrable on the interval [a, b]. We define the **volume** V of S between x = a and x = b as the integral of A(x) from x = a to x = b: i.e.,

$$V = \int_{a}^{b} A(x) \, dx.$$

The volume of S between y = c and y = d, or z = e and z = f is defined similarly.

Solid of revolution. Given a planar region \mathcal{R} and a line L in that plane, the solid of revolution with axis of revolution L is the solid region \mathcal{S} obtained by rotating \mathcal{R} about L.

Theory

Procedures

Volume via cross sections. To compute the volume of a solid region S via x-cross sections, proceed as follows:

- 1. Sketch S along with a typical cross section S_x .
- 2. Derive a formula for A(x) in terms of x.
- 3. Determine the appropriate limits of integration: x = a and x = b.
- 4. Compute $\int_a^b A(x) dx$.

Volumes of solids of revolution. The cross section method can be applied to the *special case* of solids of revolution. The two cases below are typical, and the given procedures can be modified appropriately if a vertical axis is replaced with a horizontal one.

Cylinder (or disk) method. Suppose f(x) is integrable on [a,b] and that $f(x) \ge c$ for all $x \in [a,b]$. Let \mathcal{R} be the region between the graph of f(x) and the line y = c from x = a to x = b, and let \mathcal{S} be the solid obtained by revolving \mathcal{R} about the horizontal axis y = c.

- For each $x \in [a, b]$, S_x is a disc of radius f(x) c and area $A(x) = \pi (f(x) c)^2$.
- The volume of S from x = a to x = b is thus

$$V = \int_a^b \pi (f(x) - c)^2 dx.$$

Annulus (or washer) method. Suppose p(y) and q(y) are integrable on [a, b] and that $p(y) \ge q(y) > c$ for all $y \in [a, b]$. Let \mathcal{R} be the region between the graph of p(y) and q(y) over the interval [a, b] in the y-axis, and let \mathcal{S} be the solid obtained by revolving \mathcal{R} about the vertical axis x = c.

- For each $y \in [a, b]$, S_y is an **annulus** of inner radius q(y) c and outer radius p(y) c. The area of this annulus is $\pi((p(y) c)^2 (q(y) c)^2)$.
- The volume of S from y = a to y = b is thus

$$V = \int_{a}^{b} \pi((p(y) - c)^{2} - (q(y) - c)^{2}) dy.$$

Examples

- 1. Use the volume via cross sections method to compute the volume of a sphere of radius r.
- 2. Use the volume via cross sections method to compute the volume of a right circular cone of height h and base of radius r.
- 3. Let \mathcal{R} be the region between the graph of $y = -\frac{3}{25}x^2 + 5$ and the x-axis from x = 0 to x = 5, and let \mathcal{S} be the solid obtained by revolving \mathcal{R} about the x-axis. Sketch \mathcal{S} and compute its volume.
- 4. Let \mathcal{R} be the region enclosed by the line y + 2x = 2 and the parabola $y^2 + x = 4$, and let \mathcal{S} be the solid obtained revolving \mathcal{R} about the y-axis. Sketch \mathcal{R} and compute the volume of \mathcal{S} . Can you sketch, or at least describe \mathcal{S} ?