ABSTRACT

- Se aplicó Deep Q-Network con una red neuronal convolucional, el cual toma imágenes de gráficas de mercado como entrada para hacer predicciones de mercado a nivel mundial.
- El modelo se entrenó con data del mercado de US y se probó con con data del mercado de 31 países en un periodo de 12 años.
- Resultados:
 - Precios a futuro pueden ser predecidos incluso si el modelo fue entrenado y probado con data de distintos países.
 - El modelo puede ser entrenado en mercados relativamente grandes, y ser probado en mercados más pequeños.
 - IA basada en modelos de predicción de precios del mercado puede ser usada en mercado relativamente pequeños, incluso si estos no cuentan con suficiente cantidad de data para su entrenamiento

INTRODUCCIÓN

- Predecir precios futuros de las acciones del mercado siempre ha sido un tópico controversial debido al "efficient market hypothesis"
- Varios tipos estudios se concentraron en demostrar la rentabilidad de los mercados: análisis técnico, descubrimiento de señales no convencionales mediante la web y construcción de IA basada en modelos que utilizan machine learning.

INTRODUCCIÓN

- Redes neuronales y aprendizaje reforzado son de los métodos de machine learning que más se utilizan actualmente.
- Se utilizó el framework Deep-Q-Network en vez del aprendizaje supervisado tradicional para entrenar el modelo. Como se trabaja con predicciones en los precios de acciones, el asignar valores binarios no es suficiente.

BACKGROUND

Red neuronal convolucional (CNN):

Usualmente toma imágenes 2D con 3 canales de colores como entrada. Se pasa por múltiples *capas escondidas*, consistiendo de capas convolucionales seguidas por capas de *nonlinearity* y de *pooling*. Las últimas capas escondidas están totalmente conectada y son usadas para funciones softmax. En este caso se utiliza como una función de aproximación para O-learning

BACKGROUND

• Q-learning:

Algoritmo de aprendizaje basado en valores y se centra en la optimización de la función de valor según el entorno o el problema. La Q en el Q-learning representa la calidad con la que el modelo encuentra su próxima acción mejorando la calidad. El proceso puede ser automático y sencillo. El modelo almacena todos los valores en una tabla, que es la Tabla Q.

- 1. El agente "percibe" el ambiente y obtiene un estado.
- En base al estado actual, el agente toma una acción en base a las estrategia del ambiente.
- 3. El agente obtiene una *reward* del ambiente y actualiza su estrategia.
- 4. Después de actuar, el ambiente se actualiza y se obtiene un sig. estado.
- 5. Se repite 1-4

BACKGROUND

MÉTODO

Se muestra como la red neuronal lee la entrada y da de salida valores de acción para compañías individuales. El término "valor de la acción" se refiere a la recompensa acumulativa esperada de una acción.

Muestra La arquitectura de la red neuronal , en el ejemplo se ilustra una imagen de una gráfica de W x W en un tiempo T y T+1.

Por ejemplo, si W=8, como se muestra en la figura, la red la lee de entrada como una matriz de 8x8, con todos los elementos llenados con un 0 o un 1, una sola columna en la matriz representa un solo dia.

Los elementos en negro representan un 1 y los en blanco un 0, la parte superior de la matriz representa el valor relativo del valor de cierre y la media baja representa el valor relativo del volumen. Las dos lineas en medio de la grafica estan vacias para ayudar a la red a distinguir entre valor y volumen.

Arquitectura

- Toma imágenes de 32x32x1 como entrada.
- Cuenta con 6 capas ocultas(H=6), las primeras 4 son capaz convolucionales seguidas por una capa ReLu, y las últimas dos son capas totalmente conectadas.
- Después de la 2da y 4ta capa se encuentra una capa de max pooling con un filtro de 2x2.
- Las últimas 2 capas son totalmente conectadas una de 2048 x 32 y otra de 32x3.

FIGURE 1. Overview of how our CNN reads an input chart of a single company at a specific time point (time t) and outputs the two vectors ρ and η .

DESCRIPCIÓN DE LA DATA

- Com#: Numero de compañias en cada país.
- N y NL: Número de compañías que se utilizaron para el experimento
- Data#: Número total de data utilizado.
- Avg: Promedio diario en retorno (en porcentaje) de la compra y sostener portafolios de un periodo dado.
- STD: Desviación estándar de los retornos diarios.
- Excess Rate: Porcentaje de data con un valor absoluto del escalar.

Proceso de entrenamiento

El entrenamiento consiste en N*T data points, donde N = 1500 aprox y T= 1000 (días hábiles en 4 años, el cual será el 80% del dataset para el entrenamiento).

TABLE 2. List of hyperparameters mentioned in the paper. Hyperparameter optimization is done using 20% of the training set.

Hyperparameter	Description	Value
maxiter	The maximum number of iterations	5,000,000
learning rate	The learning rate used by Adam optimizer	0.00001
ϵ_m	The minimum value of ϵ	0.1
W	Horizontal and vertical size of input matrix	32
M	The capacity of the memory buffer	1,000
В	The update interval of parameters θ	10
C	The update interval of parameters θ^*	1,000
P	The transaction penalty while training	
γ	The discount factor	
β	The batch size	32