# 10.4 Addition and Multiplication Rules of Probability - Overview

#### **Addition Rules**

Addition Rule for Probability: Consider two events A and B. The probability of A or B occurring is

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$P(\text{king or spade}) = P(\text{king}) + P(\text{spade}) - P(\text{king and spade})$$

$$= K S + K S - K S$$

Mutually Exclusive Events: Two events are considered to be mutually exclusive if they have no outcomes in common.

P(Club or Heart) = P(Club) + P(Heart)

**Addition Rule for Mutually Exclusive Events:** 

$$P(A \text{ or } B) = P(A) + P(B)$$



**Example 1:** Suppose we collected data from MATH 125 students about their major and attendance record. Then we randomly selecting a single student. Assume no double majors.

|         | Statistic | cs Art | Chemistry | Total |
|---------|-----------|--------|-----------|-------|
| Perfect | 100       | 40     | 80        | 220   |
| Good    | 20        | 50     | 70        | 140   |
| Poor    | 30        | 15     | 30        | 75    |
| Total   | 150       | 105    | 180       | 435   |

a) Find the probability the student is a Statistics major.

b) Find the probability the student has Good attendance.

c) Find the probability the student is a Statistics major and has Good attendance.

d) Find the probability the student is a Statistics major or has Good attendance.

$$\rho(\text{taty of 600d}) = \frac{150}{435} + \frac{140}{425} - \frac{20}{425} = \frac{270}{435}$$

e) Find the probability the student is a Chemistry major or has Poor attendance.

$$P(\text{Chem or Poor}) = \frac{180 + 75 - 30}{435} = \frac{225}{435} = \frac{15}{29}$$

f) Find the probability the student is an Art major or a Chemistry major.

$$P(Art \text{ or (hun)} = \frac{105 + 180 - 0}{435} = \frac{285}{435}$$

$$N_0 \text{ overlap (unitrally exclusive)}$$

### **Conditional Probability**

The conditional probability of Event B, given that Event A has already occurred is written as: P(B | A)

Event A is the "additional information" that we know, so we can restrict what we are looking at if we have a table. Then we are interested in Event B.

#### Example 2:

|         | Statistics | Art | Chemistry | Total |
|---------|------------|-----|-----------|-------|
| Perfect | 100        | 40  | (80       | 220   |
| Good    | 20         | 50  | 70        | 140   |
| Poor    | 30         | 15  | 30        | 75    |
| Total   | 150        | 105 | 180       | 435   |

goes second

"B given A"

a) Given the student has Perfect attendance, find the probability they are a Chemistry major.

b) Find the probability the student has Perfect attendance given they are a Chemistry major.

Given the student is an Art major, find the probability they have Poor attendance.

Example 3: A swim team consists of 6 boys and 4 girls. A relay team of 4 swimmers is chosen at random from the team members. What is the probability that 2 boys are selected for the relay team given that the first two selections were girls?

Conditional

Ly additional into

$$\frac{6}{6} \frac{6}{6} \frac{(lemaining)}{spots}$$

$$\frac{6}{6} \frac{6}{8075} \frac{(lemaining)}{spots}$$

$$\frac{6}{6} \frac{8075}{26715}$$
Direct
$$\frac{6}{6} \times \frac{5}{3} = \frac{30}{3} = \frac{15}{3}$$

Counting

Other docum't matter

$$Prob = \frac{successes}{Possibilities} = \frac{6C_2}{8C_3} = \frac{15}{28}$$

## **Multiplication Rules**

No impact

Independent IF

> with replacement

> unrelated experiments

**Independent Events**: The result of one event <u>does not influence</u> the probability of the other.

**Dependent Events**: The result of one event <u>does influence</u> the probability of the other.

**Multiplication Rule for Independent Events:** Consider two independent events A and B. The probability of <u>A and B</u> occurring is:

$$P(A \text{ and } B) = P(A) \times P(B)$$

Independent

**Example 4**: Three cards are drawn with replacement from a standard deck of 52 cards. Find the probability that the first card will be a diamond, the second card will be a red card, and the third card will be a queen.

$$\rho/\rho + R + \rho \gamma = \frac{13}{52} \times \frac{26}{52} \times \frac{4}{52} = \frac{4}{416} = \frac{1}{104}$$

**Multiplication Rule for Dependent Events:** Consider two dependent events A and B. The probability of <u>A and B</u> occurring is:

 $P(A \text{ and } B) = P(A) \times P(B \mid A)$ 

"Both events occurred" = "A occurred, then B occurred later"

> Dependent

**Example 5**: If you are dealt two cards from a standard 52 card deck without replacement. Find the probability of getting a 10 of hearts and then a red card.

$$O(10 + 1 + \text{Red}) = \frac{1}{52} \times \frac{25}{51} = \frac{25}{7052}$$
 $P(10 + 1) \times P(\text{Red} | 10 + 1)$ 

**Example 6:** Suppose that the probability of randomly selecting a cookie with chocolate chips out of a variety tin is 0.45 and the probability of selecting a cookie with raisins is 0.14. If the probability of selecting a cookie with raisins and chocolate chips is 0.12. What is the probability that the cookie chosen has neither raisins nor chocolate chips?

$$\rho(C) = 0.45$$
 $\rho(R) = 0.14$ 
 $\rho(C \text{ and } R) = 0.17$ 
 $\rho(Not ( \text{ and } Not R) = 77$ 

