SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

DIPLOMSKI RAD br. 2981

Usporedba algoritama grupiranja u postupcima otkrivanja anomalija

Jelena Nemčić

SVEUČILIŠTE U ZAGREBU FAKULTET ELEKTROTEHNIKE I RAČUNARSTVA

Zagreb, 11. ožujka 2022.

DIPLOMSKI ZADATAK br. 2981

Pristupnica: Jelena Nemčić (0036497921)

Studij: Računarstvo

Profil: Računarska znanost

Mentor: izv. prof. dr. sc. Goran Delač

Zadatak: Usporedba algoritama grupiranja u postupcima otkrivanja anomalija

Opis zadatka:

Odabrati, proučiti i opisati algoritme za grupiranje primjerene obradi velikih skupova podataka. Opisati obilježja algoritama i objasniti njihov princip rada nad pokaznim primjerima. Proučiti postojeće metrike za vrednovanje uspješnosti algoritama grupiranja. Odabrati primjeren skup podataka za postupak otkrivanja anomalija. Programski ostvariti i provesti vrednovanje odabranog podskupa algoritama nad odabranim skupom podataka. Opisati programsko ostvarenje sustava, rezultate vrednovanja algoritama te navesti korištenu literaturu i primljenu pomoć.

Rok za predaju rada: 27. lipnja 2022.

Sadržaj

1.	Uvo	od .	1								
2.	And	omalije	6								
	2.1.	Pojava anomalija i njeni uzroci	4								
	2.2.	Klasifikacija anomalija	•								
	2.3.	Problem otkrivanja anomalija	4								
	2.4.	Metode otkrivanja anomalija	(
3.	Algoritmi grupiranja										
	3.1.	O algoritmima grupiranja	8								
		3.1.1. Podjela	8								
		3.1.2. Vrednovanje	,								
	3.2.	Algoritam K-sredina	12								
	3.3.	DBSCAN algoritam	14								
	3.4.	Model Gaussove mješavine	17								
4.	Korišteni skupovi podataka										
	4.1.	Otkrivanje prijevare s kreditnim karticama	22								
	4.2.	Detekcija upada u mrežu	22								
	4.3.	Detekcija raka	23								
5.	Programsko ostvarenje										
	5.1.	Obrada podataka	2!								
	5.2.	Smanjenje broja uzoraka	26								
	5.3.	Algoritmi i ostvarenje detekcije anomalija	2								
6.	Rezultati 2										
	6.1.	Detekcija anomalija u transakcijama	29								
	6.2.	Otkrivanje anomalija u mreži	3								

т 2.	terat											•	39
7.	Zak	ljučak											38
	6.3.	Detek	cija raka	ı kao a	nomali	ije		 	 		 		35
		6.2.2.	Napad	Probe	kao ar	nomali	ja .		 		 		34
		6.2.1.	Napad	U2R k	cao and	omalija	ι.,		 		 		32

1. Uvod

Svaki dan stvara se velika količina podataka koja se zatim obrađuje kako bi se iz nje saznale nove informacije. Jedan od načina korištenja podataka jest otkrivanje neobičnog ponašanja i pronalaženje anomalija.

Anomalijom se smatra svaki događaj ili opažanje koje značajno odstupa od većine podataka i ne ponaša se na očekivan način. Takvi primjeri mogu izazvati sumnju da ih proizvodi drugačiji mehanizam ili se činiti nedosljednima s ostatkom tog skupa podataka.

Otkrivanje anomalija pronalazi primjenu u mnogim domenama uključujući kibernetičku sigurnost, medicinu, računalni vid, statistiku, neuroznanost i oružane snage. Koristi se također i za otkrivanje financijskih prijevara, industrijskih oštećenja i poremećaja u ekosustavu. Anomalije mogu predstavljati problem te su tada tražene radi namjernog izostavljanja iz skupa podataka kako bi se dobila točnija statistička analiza ili bolje predviđanje nekog modela strojnog učenja. Međutim, u mnogim su primjenama anomalije najzanimiljiviji dio skupa podataka i predstavljaju novu pojavu koju je potrebno prepoznati i dalje istražiti.

Jedna od tehnika otkrivanja anomalija jest korištenje algoritama grupiranja s ciljem pronalaženja elemenata koji ne pripadaju niti jednoj grupi. U ovom radu dano je objašnjenje problema pronalaska anomalija, opis različitih algoritama grupiranja i korištenih skupova podataka te usporedba izvedbe tih algoritama u postupcima otkrivanja anomalija. Algoritmi odabrani za usporedbu su algoritmi K-sredina, DBSCAN i Gaussova mješavina, a ispitivani su na problemima otkrivanja prijevara kreditnim karticama, detekcije upada u mrežu i detekcije raka.

2. Anomalije

2.1. Pojava anomalija i njeni uzroci

Postoji više pokušaja definiranja anomalija, a većina njih opisuje anomaliju kao opažanje čiji se obrazac ponašanja razlikuje od očekivanog, najčešće se pojavljuje vrlo rijetko u skupu podataka i njegova su obilježja značajno drugačija od onih većine preostalih opažanja. Također, anomalijom se može smatrati podatak koji se čini nedosljedan i relativno udaljen od drugih podataka iz skupa ili izaziva sumnju da ga proizvodi drugačiji mehanizam.

Anomalije se mogu pojaviti u bilo kojem skupu podataka i njihovo otkrivanje može biti od izuzetne važnosti. Često se otkrivanje anomalija provodi u predobradi kako bi se mogle ukloniti iz skupa podataka. Time se dobiva točnija statistika podataka, bolje predviđanje modela strojnog učenja i bolja vizualizacija podataka. S druge strane, anomalije mogu biti najvažnija i najzanimljivija opažanja i tada se otkrivanje anomalija provodi radi njih samih. Primjeri takve primjene su otkrivanje upada u području kibernetičke sigurnosti, otkrivanje financijskih prijevara i lažnih informacija, otkrivanje kvarova i pogrešaka, praćenje stanja sustava i vremenskih serija, detekcija događaja u senzorskim mrežama, otkrivanje poremećaja u ekosustavu, otkrivanje nedostataka na slikama pomoću računalnog vida te postavljanje medicinske dijagnoze i provođenje zakona.

Mogući uzroci pojave anomalija su:

- 1. Podaci pripadaju različitim razredima.
 - Anomalije se razlikuju od ostalih podataka jer pripadaju drugom razredu, koji ima drugačija obilježja.
 - Primjer takvih anomalija su financijske prijevare, strani upad u sustav i pojava bolesti.

2. Prirodna varijacija.

- Neki skupovi podataka mogu se modelirati normalnom distribucijom, gdje su anomalije oni događaji koji imaju vrlo malu vjerojatnost pojavljivanja.
- 3. Pogreške u mjerenju ili prikupljanju podataka.
 - Do pojave anomalija može doći ako podaci sadrže šum, ako postoji kvar u mjernim instrumentima ili zbog ljudske pogreške.
 - Krajnji je cilj eliminirati ovakve anomalije jer smanjuju kvalitetu podataka.

U ovom radu razmatrat će se samo anomalije koje se javljaju kao posljedica toga što podaci prirodno pripadaju različitim razredima.

2.2. Klasifikacija anomalija

Kako bi sustav za otkrivanje anomalija mogao točno prepoznati potencijalna odstupanja, nužno je znati koja vrsta anomalije se očekuje. Anomalije se mogu podijeliti u tri glavne kategorije:

1. Globalne anomalije

Opažanje se smatra globalnim odstupanjem ili globalnom anomalijom ako se njegova vrijednost ili vrijednost nekih njegovih obilježja značajno razlikuje od vrijednosti cjelokupnog skupa podataka. Gledano u n-dimenzionalnom prostoru, taj se podatak nalazi daleko od svih ostalih podataka iz skupa. Primjer globalne anomalije dan je na slici 2.1.

Slika 2.1: Globalna anomalija. Preuzeto s [5]

2. Kontekstualne anomalije

Kontekstualne ili uvjetne anomalije su opažanja čije se vrijednosti znatno razlikuju od ostalih opažanja koja postoje u istom kontekstu. Takve vrijednosti ne moraju biti izvan globalnih očekivanja, ali odudaraju od konteksta u kojem se nalaze. Također, jedan podatak koji je anomalija u kontekstu jednog skupa podataka ne mora biti anomalija u drugom. Ovakva odstupanja najčešća su u podacima vremenskih serija jer takvi skupovi podataka sadrže zapise ovisne o vremenskom razdoblju. Slika 2.2 prikazuje primjer takve anomalije.

Slika 2.2: Kontekstualna anomalija. Preuzeto s [5]

3. Kolektivne anomalije

Podskup podataka smatra se kolektivnom anomalijom ako njihove vrijednosti kao grupa značajno odstupanju od cijelog skupa podataka, ali vrijednosti pojedinačnih podataka nisu same po sebi anomalne ni u globalnom ni u kontekstualnom smislu. U podacima vremenskih serija, kolektivne anomalije mogu se manifestirati kao vrhovi i doline koje se javljaju izvan vremenskog okvira kada je takvo ponašanje normalno, kao što se vidi na slici 2.3.

Ovisno o vrsti anomalije primjenjuju se različite metode i načini detekcije. Ovaj rad fokusira se na globalne anomalije i njihovo pronalaženje.

2.3. Problem otkrivanja anomalija

Otkivanje anomalija svodi se na problem definiranja očekivanog ponašanja podataka ili granica unutar kojih se podaci smatraju normalnima te prepoznavanje točaka koje se ne nalaze unutar njih. Postoji nekoliko faktora koji čine ovaj problem vrlo teškim.

Slika 2.3: Kolektivna anomalija. Preuzeto s [5]

- Učinkovito modeliranje normalnih vrijednosti i ponašanja može biti vrlo izazovan problem. Često je teško nabrojati sva moguća normalna ponašanja nekog objekta i klasificirati neki podatak kao anomaliju. Također, granica između normalnih podataka i anomalija može biti vrlo nejasna.
- Svaki problem zahtjeva specifičan način detekcije anomalija jer su odabir mjere sličnosti i modeliranje odnosa ovisni o svojstvima tog problema.
 Zbog toga nije moguć razvoj univerzalno primjenjive metode otkivanja anomalija.
- Prikupljeni podaci često sadrže šum koji može imati vrijednosti koje znatno odstupaju od normalnih ili čak nedostaju. Šum smanjuje kvalitetu podataka i otežava definiranje granica između normalnih podataka i anomalija te se često šum može pogrešno odrediti kao anomalija i obrnuto.
- Mnogi načini otkrivanja anomalija postaju neučinkoviti u slučaju velike dimenzionalnosti skupa podataka. Podaci su tada rijetki i udaljenosti među podacima su sve veće te se puno točaka može pogrešno klasificirati kao anomalija.

U nekim primjenama, korisnik ne želi samo prepoznati anomalije već i razumjeti zašto su ti podaci detektirani kao abnormalni. Zbog toga metoda otkrivanja anomalija mora biti razumljiva, smislena i pružiti opravdanje detekciji.

2.4. Metode otkrivanja anomalija

Postoji puno različitih tehnika otkrivanja anomalija i one se mogu podijeliti u četiri glavne kategorije.

1. Statističke metode

Statistički pristup naziva se još i pristup zasnovan na modelu jer sadrži model koji opisuje obilježja skupa podataka. Model najčešće sadrži distribuciju vjerojatnosti podataka i za svaki podatak računa se vjerojatnost njegova pojavljivanja u tom modelu. Ako je ta vjerojatnost vrlo mala, podatak se proglašava anomalijom.

2. Metode zasnivane na blizini

(a) Metode zasnivane na udaljenosti

Metode zasnivane na udaljenosti pretpostavljaju da je podatak anomalija ako mu se najbliži susjedi nalaze daleko u prostoru značajki odnosno ako blizina njegovih susjeda značajno odstupa od blizine većine drugih objekata njihovim susjedima u istom skupu podataka.

(b) Metode zasnivane na gustoći

Metode zasnivane na gustoći koriste broj podataka koji se nalaze unutar definiranog prostora ispitivanog podatka za definiranje lokalne gustoće. Što je lokalna gustoća objekta manja, veća je vjerojatnost da je on anomalija.

3. Metode zasnivane na grupiranju

Metode koje se zasnivaju na grupiranju pretpostavljaju da normalni podaci pripadaju velikim i gustim grupama, dok anomalije pripadaju malim i rijetkim grupama ili ne pripadaju niti jednoj. Razlika između grupiranja i metoda zasnivanih na gustoći je u tome što grupiranje dijeli podatke u grupe dok metode zasnivane na gustoći dijele podatkovni prostor.

U ovom radu za detekciju anomalija koristit će se algoritmi zasnivani na grupiranju. Za usporedbu su izabrani algoritam K-sredina, algoritam DBSCAN i model Gaussove mješavine.

3. Algoritmi grupiranja

3.1. O algoritmima grupiranja

Grupiranje je podjela skupa podataka u grupe, tako da su podaci u istoj grupi sličniji jedni drugima nego podacima iz ostalih grupa. Cilj jest pronalaženje intrinzičnih grupa u skupu podataka. Algoritmi grupiranja pripadaju u skupinu nenadziranih metoda strojnog učenja jer su ulazni podaci dani bez ciljnih vrijednosti odnosno nisu označeni.

3.1.1. Podjela

Grupiranje se može podijeliti u dvije kategorije:

- 1. Tvrdo grupiranje podatak ili pripada grupi ili ne pripada
- 2. Meko grupiranje podatak pripada svakoj grupi s određenom vjerojatnošću

Osim po tipu grupiranja koje provode, algoritmi grupiranja razlikuju se i po tome kako definiraju pojam grupe i sličnost podataka. Svaki algoritam pretpostavlja specifičan model grupe, a najčešći modeli su:

- Modeli povezanosti na osnovi udaljenosti podataka stvara se hijerarhijsko stablo grupa
- Centroidni modeli podaci se organiziraju u nehijerarhijske grupe ovisno o udaljenosti od centroida te grupe
- Modeli distribucije grupe se modeliraju pomoću vjerojatnosti da podaci pripadaju istoj statističkoj distribuciji
- 4. Modeli gustoće područja veće gustoće povezuju se u grupe

Ne postoji objektivno najbolji algoritam grupiranja, već odabir algoritma ovisi o problemu koji se rješava. Algoritam se može odabrati na osnovi modela grupe ili eksperimentalno. Također, algoritam dizajniran za jednu vrstu modela grupe općenito neće raditi na skupu podataka koji sadrži drugačiji tip grupa.

U ovom radu uspoređivat će se tri različita modela: algoritam K-sredina kao predstavnik centroidnih modela, DBSCAN algoritam kao model gustoće i model Gaussove mješavine koji pripada modelima distribucije.

3.1.2. Vrednovanje

Rezultati algoritama grupiranja mogu se vrednovati na dva načina. Prvi je vredovanje korištenjem podataka za koje su poznate oznake grupa. Takvo vrednovanje mjeri koliko je dobiveno grupiranje blizu unaprijed određenoj podjeli. Metode vrednovanja tada su često prilagođene varijante metoda koje se koriste za vrednovanje klasifikacije. Neke od tih metrika su:

1. Matrica zabune (eng. Confusion Matrix)

Matrica koja opisuje uspješnost modela prikazom broja istinski pozitivnih (eng. True Positive - TP), lažno positivnih (eng. False Positive - FP), istinski negativnih (eng. True Negative - TN) i lažno negativnih (eng. False Negative - FP) primjera.

2. Točnost (eng. Accuracy)

Točnost je udio točno klasificiranih primjera u skupu svih primjera.

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$

3. Preciznost (eng. *Precision*)

Preciznost predstavlja udio točno klasificiranih primjera među onima koje je model deklarirao kao pozitivne.

$$P = \frac{TP}{TP + FP}$$

4. Odziv (eng. Recall)

Odziv je udio točno klasificiranih primjera u skupu svih stvarno pozitivnih primjera.

 $R = \frac{TP}{TP + FN}$

5. F1-mjera (eng. F1-score)

F1-mjera jest harmonijska sredina preciznosti i odziva i najčešće korištena mjera za usporedbu klasifikatora.

$$F1 = \frac{2PR}{P+R}$$

6. AUC mjera

ROC krivulja (eng. Receiver Operating Characteristic curve) jest graf koji prikazuje odnos stope istiniski pozitivnih primjera (eng. True Positive Rate - TPR) odnosno odziva i stope lažno pozitivnih primjera (eng. False Positive Rate - FPR), koja se računa kao: $\frac{FP}{FP+TN}$. Njihov odnos prikazuje se na svim mogućim pragovima klasifikacije. AUC mjera (eng. Area under the ROC curve) predstavlja površinu ispod cijele ROC krivulje.

7. Randov indeks

Randov indeks računa u kojoj mjeri dobiveno grupiranje odgovara referentnom grupiranju odnosno točnost na razini parova primjera. Za svaki mogući par iz skupa primjera gleda se jesu li ta dva primjera završila u istoj grupi ili nisu.

$$R = \frac{a+b}{\binom{N}{2}}$$

gdje je:

- a broj jednako označenih parova u istim grupama
- b broj različito označenih parova u različitim grupama

Drugi način vrednovanja algoritama grupiranja jest korištenje metrika koje ne zahtjevaju oznake podataka kako bi izračunale učinkovitost algoritma. Najčešće korištene metrike su:

1. Koeficijent siluete (eng. Silhouette Coefficient)

Koeficijent siluete definira se na osnovi udaljenosti unutar grupe i između različitih grupa i računa se kao:

$$S = \frac{1}{N} \sum_{i=1}^{N} \frac{b_i - a_i}{max(a_i, b_i)}$$

gdje je:

- $-\,$ a- srednja udaljenost između uzorka ii svih ostalih podataka u toj grupi
- b srednja udaljenost između uzorka i i svih ostalih podataka u drugoj najbližoj grupi

Vrijednost koeficijenta siluete nalazi se u skupu [-1,1] i što je ona veća, grupe su jasnije odijeljene i grupiranje se smatra točnijim.

2. Dunnov indeks

Dunnov indeks zahtjeva da su udaljenosti primjera unutar grupe male, a udaljenosti između različitih grupa što veće. Računa se kao:

$$D = \frac{\min_{1 \le i < j \le m} \delta(C_i, C_j)}{\max_{1 < k < m} \Delta_k}$$

gdje je:

- $\delta(C_i, C_j)$ udaljenost između grupa C_i i C_j (udaljenost između dva najbliža primjera, dva najudaljenija primjera ili prosječna udaljenost)
- $-\Delta_k$ udaljenost primjera unutar iste grupe (najveća udaljenost između dva primjera, prosječna udaljenost ili udaljenost primjera od centroida grupe)

Što je vrijednost Dunnovog indeksa veća, bolje je grupiranje.

3. Davies-Bouldin indeks

Davies-Bouldin indeks računa se kao prosjek sličnosti svake grupe s grupom koja joj je najsličnija:

$$DB = \frac{1}{K} \sum_{i=1}^{K} \max_{j \neq i} \frac{\Delta_i + \Delta_j}{\delta(C_i, C_j)}$$

Razlikuje se od ostalih metrika jer manja vrijednost ovog indeksa označava bolje grupiranje.

4. DBCV (eng. Density-Based Clustering Validation)

Metrika DBCV računa gustoću unutar grupe i gustoću između grupa. Visoka gustoća unutar grupe, a niska gustoća između njih ukazuje na dobro grupiranje.

Za vrednovanje algoritama u ovom radu koristit će se sve navedene metode osim točnosti, Randovog indeksa, Dunnovog indeksa i metode DBCV. Točnost i Randov indeks postaju nepouzdani u slučaju neuravnoteženih razreda kao što je to slučaj u detekciji anomalija, a Dunnov indeks i DBCV su metode bez svojstva razmjernog rasta, čije računanje postaje računski vrlo zahtjevno već za nekoliko tisuća primjera.

3.2. Algoritam K-sredina

Algoritam K-sredina (eng. K-Means) najpoznatiji je algoritam grupiranja koji se zasniva na centroidnom modelu. U ovom algoritmu, svaka grupa ima centroid koji se računa kao srednja vrijednost članova grupe i predstavlja tu grupu. Primjeri se iz neoznačenog skupa podataka grupiraju u K grupa na način da svaki podatak pripada onoj grupi čijem je centroidu najbliži.

Algoritam očekuje broj grupa K kao hiperparameter i njegova se vrijednost može odrediti na više načina, a najpoznatiji su:

- Metoda lakta (eng. Elbow method)

U metodi lakta grafički se prikazuje ovisnost funkcije gubitka o broju grupa K. S porastom broja grupa vrijednost funkcije će se smanjivati te je cilj pronaći "lakat" funkcije, odnosno broj grupa nakon kojeg se vrijednosti funkcija počinju smanjivati vrlo sporo.

- Analiza siluete (eng. Silhouette analysis)

Ova je metoda grafička metoda koja se zasniva na ranije objašnjenom koeficijentu siluete. Njegova vrijednost prikaže se za svaki primjer iz skupa podataka ovisno o grupi u koju je primjer raspoređen te se izabere onaj broj grupa za koji svi primjeri imaju približno jednak koeficijent siluete.

Osim odabira broja grupa, potrebno je definirati i način odabira početnih centroida. Neki od mogućih prisupa su:

- Nasumičan odabir K primjera.
- Nasumična dodjela grupe svakom primjeru i izračun centroida na osnovi primjera u grupi.
- Izračun srednje vrijednosti sviju primjera i dodavanje K slučajnih vektora toj vrijednosti.

Slika 3.1: Primjer izvođenja algoritma K-sredina uz K = 3. Preuzeto s [14]

 Nasumičan odabir prvog centroida, nakon čega se svaki sljedeći bira na način da bude što dalje od postojećih. Verzija algoritma koja ostvaruje ovakav pristup zove se K-sredine++.

Postupak grupiranja algoritma K-sredina je iterativan. Nakon inicijalizacije početnih centroida, svi se primjeri stavljaju u onu grupu čiji im je centroid najbliži. U sljedećem se koraku, na osnovi razvrstanih primjera, ponovno računaju novi centroidi za svaku grupu. Dalje se ponavljaju ova dva koraka sve do konvergencije odnosno do trenutka kad više nema promjene u podjeli primjera grupama i u vrijednostima centroida. Ovaj postupak prikazan je pseudokodom 3.1 i na slici 3.1.

Pseudokod 3.1: Pseudokod algoritma K-sredina

```
definiraj broj grupa K
inicijaliziraj centroide \mu_k, k=1,...,K

ponavljaj

za svaki x_i \in D

pronađi najbliži centroid

dodjeli x_i toj grupi

za svaki \mu_k, k=1,...,K

ažuriraj vrijednost centroida

dok svi \mu_k ne konvergiraju
```

Bitna karakteristika algoritma K-sredina je da pripada algoritmima tvrdog grupiranja, što znači da će svaku točku dodijeliti jednoj i točno jednoj grupi. Algoritam se dobro nosi s velikim skupovima podataka jer ima linearnu vremensku složenosti O(nkdi), gdje je:

– n - veličina skupa podataka

- k broj grupa
- d dimenzionalnost podataka
- i broj iteracija algoritma

Međutim, algoritam K-sredina uvijek traži grupe sfernog oblika te ne može prepoznati nekonveksne grupe. Također, jako je osjetljiv na prisutnost anomalija i šuma u podacima.

3.3. DBSCAN algoritam

DBSCAN algoritam (eng. Density-based spatial clustering of applications with noise) priprada u skupinu algoritama grupiranja zasnivanih na gustoći. On grupira zajedno točke koje su blizu jedna drugoj odnosno točke s mnogo susjednih točaka. Primjere koji nisu svrstani niti u jednu grupu i nalaze se u područjima niske gustoće algoritam označava kao anomalije. Kao i algoritam K-sredina, i DBSCAN je algoritam tvrdog grupiranja.

Glavna ideja algoritma DBSCAN jest da grupa mora sadržavati određeni minimalni broj točaka unutar definiranog polumjera. Zato algoritam zahtjeva dva parametra:

1. minPts

Parametar minPts predstavlja najmanji broj točaka u grupi da bi se ona smatrala gusto popunjenom. Za njegovu procjenu može se primjeniti generalno pravilo $minPts \geq D+1$, gdje je D broj dimenzija skupa podataka. Također, što je veći skup podataka potrebno je odabrati veći minPts i tada se može koristiti pravilo minPts = 2*D. Veće vrijednosti obično daju bolje rezultate kada je u podacima prisutan šum.

$2. \epsilon$

Parametar ϵ jest polumjer unutar kojeg se traže susjedne točke. Pri odabiru vrijednosti ϵ nema generalnog pravila. Vrijednost ne smije biti ni prevelika niti premala i mora biti sukladna udaljenostima među podacima.

DBCAN algoritam pridjeljuje svakoj točki jednu od tri moguće oznake:

1. Središnja točka (eng. $Core\ point$) - točka oko koje se nalazi minimalno minPts drugih točaka unutar udaljenosti ϵ

- 2. Granična točka (eng. $Border\ point$) točka koja ima barem jednu središnju točku na udaljenosti manjoj od ϵ , ali nalazi se na rubu grupe i broj točaka oko nje manji je od minPts
- Točka šuma (eng. Noise point) točka koja nije niti središnja niti granična točka; točka od koje DBSCAN nije znao formirati grupu te je proglašava anomalijom

Na slici 3.2 prikazane su grafički različite vrste točaka.

Slika 3.2: Primjer središnje točke, granične točke i točke šuma uz minPts=3. Preuzeto s [26]

Središnja točka p formira grupu zajedno sa svim središnjim i graničnim točkama koje su iz nje dohvatljive. Točka q može biti:

- Izravno dohvatljiva ako se nalazi unutar udaljenosti ϵ od točke p
- Dohvatljiva ako postoji put $p_1, ..., p_n$, pri čemu je $p_1 = p$ i $p_n = q$ i svaka točka p_{i+1} izravno je dohvatljiva iz točke p_i

Dohvatljivost nije simetrična relacija, već samo središnje točke mogu dohvatiti granične. Zbog toga je uveden pojam povezanosti, kojim se formalno definira opseg grupe. Dvije točke p i q povezane su ako postoji točka o takva da su i p i q dohvatljive iz o. Ova relacija je simetrična i grupa tada ispunjava sljedeća svojstva:

- Sve točke unutar grupe međusobno su povezane.
- Ako je točka dohvatljiva iz bilo koje točke koja pripada grupe, tada ona također pripada grupi.

(a) Točka q je izravno do- (b) Točka q je dohvatljiva iz (c) Točka p i točka q su pohvatljiva iz točke p točke p preko točke r vezane preko točke o

Slika 3.3: Prikaz izravne dohvatljivosti, dohvatljivosti i povezanosti na primjeru gdje je minPts = 6. Slike su preuzete s [8]

Svojstva izravne dohvatljivosti, dohvatljivosti i povezanosti prikazana su grafički na slici 3.3.

Na početku algoritma odabire se nasumična točka od koje se formira grupa ako ona ispunjava navedeni kriterij. Grupe se zatim rekurzivno proširuju obilaženjem ostalih članova grupe. Kad se grupa više ne može proširiti, odabire se nasumično nova točka iz skupa podataka i algoritam se ponavlja dok sve točke nisu obiđene. Pseudokod 3.2 prikazuje pseudokod algoritma DBSCAN.

Pseudokod 3.2: Pseudokod algoritma DBSCAN

```
definiraj minimalan broj članova grupe minPts i udaljenost \epsilon
1
    inicijaliziraj početni broj grupa: C=0
2
    za svaku točku p \in D
3
           ako je točka p već označena
4
                    nastavi
           pronađi skup točaka S izravno dohvatljivih iz p
           ako je |S| < minPts onda
                    označi p kao točku šuma
                    nastavi
           C = C + 1
10
           dodaj p u grupu C
11
           za svaku točku q \in S
12
                    ako točka q već pripada grupi
13
                             nastavi
14
                    dodaj q u grupu C
15
                    pronađi skup točaka N izravno dohvatljivih iz q
16
                    ako je |N| \ge minPts onda
17
                             dodaj točke iz N u skup S
18
```

Ako je skup podataka spremljen tako da se upiti o susjedstvu mogu izvoditi u logaritamskom vremenu, složenost DBSCAN algoritma je O(nlogn), gdje je n broj podataka. Ako nema strukture indeksiranja, složenost raste na $O(n^2)$.

Prednosti algoritma DBSCAN su što ne zahtjeva definiranje broja grupa unaprijed, može pronaći grupe proizvoljnog oblika i otporan je na prisutnost šuma i anomalija. Nedostatak mu je što ne može dobro grupirati skup podataka u kojem je prisutna velika razlika u gustoći među grupama jer se tada ne može odabrati kombinacija parametara minPts i ϵ koja bi bila prikladna za sve grupe.

3.4. Model Gaussove mješavine

Gaussova je mješavina model distribucije koji pretpostavlja da su sve točke iz skupa podataka stvorene iz mješavine konačnog broja Gaussovih distribucija s nepoznatim parametrima. Model zatim grupira podatke na način da svaka grupa sadrži podatke iz jedne distribucije.

Gaussova distribucija još se naziva normalnom distribuciju i ima karakterističan zvonolik oblik. Funkcija gustoće vjerojatnosti Gaussove distribucije u jednoj dimenziji glasi:

$$\mathcal{N}(x;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-(x-\mu)^2}{2\sigma^2}}$$
(3.1)

pri čemu je:

- $-\mu$ srednja vrijednost skupa podataka; određuje "visinu" krivulju
- $-\sigma$ standardna devijacija podataka; odeđuje "širinu" krivulje

Funkcija gustoće vjerojatnosti daje vjerojatnost dobivanja podatka x u slučaju kada imamo normalnu distribuciju s parametrima μ i σ . Slika 3.4 prikazuje funkciju gustoće za različite vrijednosti parametara μ i σ .

U slučaju više dimenzionalnog skupa podataka, formula multivarijatne (višedimenzijske) Gaussove razdiobe glasi:

$$\mathcal{N}(X;\mu,\Sigma) = \frac{1}{\sqrt{(2\pi)^k |\Sigma|}} e^{-\frac{1}{2}(X-\mu)^T \Sigma^{-1}(X-\mu)}$$
(3.2)

U tom je slučaju k broj dimenzija skupa podatka, μ k-dimenzionalni vektor srednjih vrijednosti, a Σ kovarijacijska matrica veličine $k \times k$. Kovarijacijska matrica prikazuje, osim varijance svake dimenzije podatka, i odnos između različitih dimenzija.

Slika 3.4: Funkcija gustoće vjerojatnosti Gaussove distrubucije za različite vrijednosti parametara μ i σ . Preuzeto s [40]

Gaussova je mješavina funkcija koja se sastoji od onoliko Gaussovih funkcija koliko ima grupa u skupu podataka. Broj grupa K jest hiperparametar algoritma. Svaka Gaussova funkcija u mješavini ima sljedeće parametare:

- Srednju vrijednost μ koja definira središte.
- Kovarijancu Σ koja odeđuje "širinu" funckije.
- Vjerojatnost miješanja π koja definira vjerojatnosti pripadnosti primjera toj distribuciji.

Slika 3.5 prikazuje kako model Gaussove mješavine grupira podatke u slučaju kada imamo tri grupe.

Model Gaussove mješavine radi na načelu generativnog modeliranja i pretpostavlja se da se ulazni podaci ravnaju po Gaussovoj distribuciji. Iako to nije
uvijek slučaj, centralni granični teorem iz statistike kaže da ako se prikuplja sve
više i više uzoraka iz skupa podataka, oni imaju tendenciju nalikovati Gaussovoj
funkciji, čak i kad izvorna distribucija skupa podataka nije Gaussova.

Cilj ovog modela jest pronaći parametre Gaussove funkcije koji maksimiziraju vjerojatnost dobivanja tih podataka. Svaku točku promatra se kao mješavinu više različitih Gaussovih funkcija te ona ima vjerojatnost:

$$p(x_i) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i; \mu_k, \Sigma_k)$$
(3.3)

Slika 3.5: Primjer Gaussove mješavine za K=3. Preuzeto s [6]

$$\sum_{k=1}^{K} \pi_k = 1 \tag{3.4}$$

Jednadžba 3.3 govori da je određena točka x linearna kombinacija K Gaussovih funkcija. $p(x_i)$ još se naziva i izglednost primjera x_i (eng. likelihood). Varijabla π predstavlja vjerojatnost miješanja te Gaussove funkcije odnosno njenu jačinu. Ograničenje na vjerojatnosti miješanja jest da njihova suma mora biti 1, kao što se vidi u jednadžbi 3.4. Cilj algoritma jest maksimizirati logaritamsku izglednost svih podataka u skupu veličine N koja glasi:

$$\ln p(X; \mu, \sigma, \pi) = \sum_{i=1}^{N} p(x_i)$$
(3.5)

Potrebno je za svaku Gaussovu funkciju odrediti vrijednosti vjerojatnosti miješanja π_k , srednje vrijednosti μ_k i kovarijance Σ_k , takve da maksimiziraju izraz 3.5. Vrijednosti ovih parametara dobiju se primjenom algoritma Očekivanje-Maksimizacija (eng. Expectation-Maximization Algorithm - EM). Taj algoritam ima dva koraka:

1. Očekivanje

U prvoj iteraciji algoritma inicijaliziraju se vrijednosti parametara slučajnim odabirom ili pomoću rezultata grupiranja nekog drugog algoritma. Zatim se u ovom koraku računa vjerojatnost da je svaki podatak stvoren svakom od K Gaussovih funkcija. Vjerojatnost da je primjer x_i stvoren pomoću Gaussove funkcije j računa se kao:

$$W_{ij} = \frac{\pi_j \mathcal{N}(x_i; \mu_j, \Sigma_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(x_i; \mu_k, \Sigma_k)}$$
(3.6)

Dijeljenje s $p(x_i)$ provodi se radi normalizacije odnosno kako bi suma svih vjerojatnosti bila 1. U algoritmu K-sredina ovaj korak algoritma odgovara podjeli primjera u grupe.

2. Maksimizacija

Korak maksimizacije ažurira vrijednosti vjerojatnosti miješanja, srednje vrijednosti i kovarijance na sljedeći način:

$$\pi_j = \frac{1}{N} \sum_{i=1}^{N} W_{ij} \tag{3.7}$$

$$\mu_j = \frac{\sum_{i=1}^N W_{ij} x_i}{\sum_{i=1}^N W_{ij}}$$
 (3.8)

$$\Sigma_{j} = \frac{\sum_{i=1}^{N} W_{ij} (x_{i} - \mu_{j}) (x_{i} - \mu_{j})^{T}}{\sum_{i=1}^{N} W_{ij}}$$
(3.9)

Vjerojatnost π_j računa se kao vjerojatnost da je svaka točka stvorena Gaussovom funkcijom j podijeljeno s ukupnim brojem točaka. Parametri μ_j i Σ_j računaju se kao srednja vrijednost i kovarijacija svih točaka koje su pomnožene s vjerojatnošću W_{ij} . Ovaj korak analogan je pomicanju centroida grupa u algoritmu K-sredina.

Ova dva koraka ponavljaju se do konvergencije logaritmske izglednosti podataka, a pseudokod je dan kao pseudokod 3.3.

Pseudokod 3.3: Pseudokod modela Gaussove mješavine

```
definiraj broj grupa K
inicijaliziraj parametre \pi, \mu i \Sigma

ponavljaj

za svaku točku x_i \in N

za svaku distribuciju k \in K

izračunaj vjerojatnost W_{ik} da je x_i nastao iz k

za svaku distribuciju k \in K

ažuriraj vjerojatnost miješanja \pi_k

ažuriraj srednju vrijednost \mu_k

ažuriraj kovarijancu \Sigma_k

dok \ln p(X; \mu, \sigma, \pi) ne konvergira
```

Model Gaussove mješavine model je mekog grupiranja i svakoj točki dodijeljuje vektor vjerojatnosti pripadanja svakoj grupi. Iako sporije konvergira od algoritma K-sredina, za razliku od njega može se koristiti i na malim skupovima podataka te kada grupe nisu jasno razdvojene. Također, može pronaći grupe različitih oblika i otporan je na prisutnost anomalija ili loše definiranih podataka.

4. Korišteni skupovi podataka

4.1. Otkrivanje prijevare s kreditnim karticama

Važno je da banke mogu prepoznati neobične transakcije kreditnim karticama kako bi se otkrila prijevara i spasili novci korisnika. Prvi skup podataka koristi se za otkrivanje prijevara kreditnim karicama (eng. *Credit Card Fraud Detection*) i preuzet je s [27]. Sadrži transakcije koje su europski vlasnici kartica izvršili kreditnim karticama u rujnu 2013. godine u 2 dana. Skup podataka izrazito je neuravnotežen te prijevare čine samo 0,172% svih transakcija.

Skup podataka sadrži numeričke značajke koje su rezultat analize glavnih komponenata (eng. Principal component analysis). Zbog povjerljivosti nisu dostupni originalni podaci i imena značajki već samo rezultat PCA transformacije. Dobivene glavne komponente su značajke V1, V2, ..., V28. Značajke koje nisu transformirane i koje su zadržale svoje vrijednosti i ime su značajke Vrijeme i Iznos. Značajka Vrijeme sadrži sekunde koje su protekle između svake transakcije i prve transakcije u skupu podataka, a značajka Iznos je iznos transakcije. Na kraju, značajka Klasa je varijabla oznake koja poprima vrijednost 1 u slučaju prijevare, a 0 inače.

Skup podataka koji se koristi već je obrađen, maknuta je značajka *Vrijeme* jer ne pomaže u problemu detekcije prijevara i provedena je normalizacija podataka.

4.2. Detekcija upada u mrežu

Skup podataka *KDD Cup 1999* umjetno je stvoren skup koji se može koristiti za detekciju mrežnog upada ili napada. Taj skup podataka korišten je za Treće međunarodno natjecanje u otkrivanju znanja i alatima za rudarenje podataka. Zadatak natjecanja bio je izgraditi prediktivni model koji će detektirati upade u mrežu i razlikovati ih od normalnih veza. Svaka veza je slijed TCP paketa koji počinje i završava u nekom definiranom vremenu, u kojem se podaci šalju od

izvorne IP adrese na ciljnu IP adresu prema nekom definiranom protokolu.

Ovaj skup podataka sadrži standardni skup podataka za provjeru modela i preuzet je s [27]. Nastao je tako što je *Lincoln Labs* postavio okolinu za prikupljanje neobrađenih TCP podataka za lokalnu mrežu (LAN) tokom devet tjedana simulirajući tipični LAN američkih zračnih snaga. Upravljali su LAN-om kao da se radi o pravoj okolini zračnih snaga uz dodatak višestrukih napada. Prikupljeno je oko 7 milijuna zapisa veza, pri čemu svaka veza ima 41 značajku i označena je kao normalna veza ili kao napad, s točno specificiranom vrstom napada. U skupu za treniranje korišteno je ukupno 24 različita tipa napada.

Za potrebe ovog rada korištena su dva podskupa skupa podataka *KDD Cup* 1999: *U2R* i *Probe*.

Napad *U2R* (eng. *User to Root*) jest napad u kojem napadač na početku pristupa normalnom korisničkom računu, a kasnije dobiva pristup korijenskom korisniku (eng. *root*) iskorištavanjem ranjivosti sustava ili greške korisnika. *Probe* napad skenira mrežu sa svrhom praćenja mreže ili prikupljanje podataka o mreži i mrežnoj aktivnosti.

Novi skupovi podataka izvedeni su iz skupa podataka *KDD Cup 1999* koristeći *U2R* ili *Probe* napad kao anomaliju naspram normalnih veza. Ti skupovi su znatno manji i broj značajki smanjen je na 6 osnovnih:

- 1. Vrsta transportnog protokola
- 2. Vrsta aplikacijskog protokola
- 3. Zastavica odnosno status povezivanja
- 4. Prijava uspješna
- 5. Prijava ostvarena kao domaćin
- 6. Prijava ostvarena kao gost

Prve tri značajke su kategoričkog tipa, a druga tri tipa boolean (točno/ne-točno).

4.3. Detekcija raka

Jedna od važnih primjena otkrivanja anomalija jest u medicini gdje one mogu signalizirati pojavu bolesti. Detekcija anomalija korisiti se za analizu medicinskih slika kako bi se otkrile abnormalne stanice ili tumori. Primjer toga jest predikcija je li tumor dojke dobroćudan ili zloćudan i za tu svrhu korišten je skup podataka preuzet s [10].

Svaki primjer skupa podataka ima 32 značajke, među kojima su i značajke Identifikacijski broj i Dijagnoza, koja klasificira tumor kao dobroćudni ili zloćudni. Preostale značajke su zračunate iz digitalizirane slike aspiracijske biopsije finom iglom (FNA) tkiva dojke i opisuju karakteristike staničnih jezgri prisutnih na slici. Za svaku jezgru izračunato je deset vrijednosti kao što su radijus, tekstura, područje i glatkoća. Značajke su zatim dobivene iz tih podataka kao srednja vrijednost, standardna pogreška i najgora (odnosno najveća) vrijednost mjerenja.

Pregled svih korištenih skupova podataka dan u tablici 4.1.

Tablica 4.1: Podaci o korištenim skupovima podataka.

Skup podataka	Broj primjera	Dimenzionalnost	Udio anomalija
Kreditne kartice	284 807	29	0.17%
U2R	60 821	6	0.38%
Probe	64 759	6	6.88%
Rak dojke	569	32	37.26%

5. Programsko ostvarenje

5.1. Obrada podataka

Na početku programskog ostvarenja provedena je obrada i priprema podataka kako bi se na njima mogli koristiti algoritmi grupiranja.

Prvi skup podataka, prijevare s kreditnim karticama, nije bilo potrebno mijenjati niti obraditi budući da je na njemu već prethodno provedena normalizacija i maknuta je značajka *Vrijeme*.

Skupovi podataka *U2R* i *Probe* sadrže kategoričke značajke koje su se morale kodirati jer svi navedeni algoritmi rade isključivo s numeričkim podacima. Provedeno je *One-hot* kodiranje u kojem se svaku kategoričku značajku prikazuje vektorom binarnih vrijednosti. Svaka pozicija u vektoru označava jednu vrijednost te značajke i svaka značajka ima jedinicu samo na mjestu koje odgovara njezinoj vrijednosti te nulu na svim ostalim mjestima. Time se broj dimenzija podataka poveća za broj svih različitih vrijednosti značajki. Budući da značajka *Vrsta aplikacijskog protokola* može poprimiti 65 različitih vrijednosti, odabrano je 5 najčešćih vrijednosti dok su preostale označene kao *ostalo*. Najčešće vrijednosti u oba skupa podataka su: *http, private, smtp, domain_u* i *ftp_data*. Značajka *Zastavica* poprima ukupno 9 različitih vrijednosti, od čega 94.86% u jednom skupu odnosno 99.51% podataka u drugom skupu ima vrijednost *SF*. Zbog toga je samo ta vrijednost zadržana, a preostale su označene s *ostalo*. Značajka *Vrsta transportnog protokola* ima samo tri moguće vrijednosti (*tpc, udp* i *icmp*) te ovdje reduciranje broja vrijednosti nije bilo potrebno.

U obradi skupa podataka tumora dojke maknute su značajke *Identifikacijski* broj i *Dijagnoza* budući da nam prva ne daje nikakvu informaciju, dok nam druga daje rješenje problema grupiranja. Zbog toga se značajka *Dijagnoza* koristi u vrednovanju kao oznaka grupe kojoj primjer pripada. Također, provedena je normalizacija podataka koristeći robusno skaliranje (eng. *RobustScaler*). Takvo skaliranje uklanja medijan i skalira podatke prema interkvartilnom rasponu (eng.

Interquartile Range - IQR), što je raspon između 25. i 75. kvantila. Korištena je ova vrsta skaliranja jer je najotpornija na stršeće vrijednosti te anomalije ostaju prisutne i nakon skaliranja.

5.2. Smanjenje broja uzoraka

Zbog ograničene snage računalnog procesora, bilo je potrebno provesti smanjenje broja uzoraka za neke skupove podataka.

Za svaki skup podataka definira se udio normalnih (negativnih) primjera i udio anomalija (pozitivnih primjera) koji se žele zadržati u skupu. Kako bi rezultati bili što vjerodostojniji, skup podataka je svaki put prvo izmiješan te su primjeri koji ostaju izabrani slučajnim odabirom.

U skupu podataka o kreditnim karticama zadržano je 10% normalnih primjera i sve anomalije, kako bi se povećao udio anomalija u skupu. U slučaju detekcije upada u mrežu, u oba skupa podataka U2R i Probe, testiranje je provedeno nad 50% normalnih primjera i 50% anomalija.

Skup podataka za detekciju raka nije zahtijevao smanjenje broja uzoraka budući da je skup sam po sebi malen. Međutim, provedeno je smanjenje broja anomalija u skupu jer je njihov originalni udio bio prevelik da bi se takvi primjeri smatrali odstupanjima. Iz tog je razloga zadržano 10% anomalija i svi normalni primjeri.

U tablici 5.1 dan je pregled svih korištenih skupova podataka nakon njihove obrade i smanjenja broja primjera.

Tablica 5.1: Korišteni skupovi podataka nakon obrade.

Skup podataka	Broj primjera	Dimenzionalnost	Udio anomalija
Kreditne kartice	28 924	29	1.70%
U2R	30 410	14	0.37%
Probe	32 379	14	6.43%
Rak dojke	378	30	5.56%

5.3. Algoritmi i ostvarenje detekcije anomalija

Za algoritme K-sredina, DBSCAN i Gaussovu mješavinu, kao i za sve metrike, korištena su programska ostvarenja iz biblioteke *scikit-learn* [30].

Algoritam K-sredina očekuje hiperparametar K odnosno broj grupa. Budući da u korištenim skupovima podataka uvijek postoji samo jedna grupa, koja sadrži određeni postotak odstupanja, broj grupa fiksiran je na 1. Algoritam je testiran i za veći broj grupa, međutim za svaki skup podataka dobije se najbolje rješenje kada postoji samo jedna grupa. Zadatak algoritma je računanje vrijednosti centroida te grupe nakon čega se računa udaljenost svake točke od centroida. One točke koje su najudaljenije smatraju se anomalijama, a granična udaljenost dobiva se kao određeni percentil distrubucije svih udaljenosti. Odabrani percentil najčešće ovisi o očekivanom udjelu anomalija u skupu podataka. Na primjer, ako se očekuje oko 10% anomalija u skupu, uzima se 90. percentil kao prag udaljenosti. To znači da će 10% točaka s najvećom udaljenošću biti označeno kao anomalije.

Algoritam DBSCAN sam po sebi otkriva anomalije jer proglašava anomalijom svaku točku koja nije niti središnja niti granična točka. Algoritam zahtjeva dva hiperparametra, minimalan broj točaka minPts i udaljenost ϵ . Njihovo određivanje pokazalo se kao težak zadatak te je za svaki skup podataka provedeno pretraživanje po rešetci (eng. $Grid\ Search$). Na taj način otkrivena je kombinacija parametara za koju algoritam dalje najbolju detekciju anomalija. Budući da DBSCAN algoritam sam određuje broj grupa, on može biti i veći od 1. U tom je slučaju prije vrednovanja provedeno označavanje točaka gdje je svaka točka, koja nije prepoznata kao anomalija, označena kao normalna točka. Ovaj korak nije nužan i zapravo mijenja rezultat grupiranja, ali je proveden kako bi se vredovanje fokusiralo na detekciju anomalija, a ne na otkrivanje grupa.

Za model Gaussove mješavine potrebno je definirati broj grupa K odnosno broj Gaussovih komponenata u skupu podataka. Kao i u slučaju algoritma K-sredina, model Gaussove mješavine testiran je za različite brojeve komponenata, ali najbolji rezultat ostvaren je kada postoji samo jedna grupa. Korišten je model koji ima sferni tip kovarijance, u kojem svaka komponenta ima vlastitu varijancu koja je ista po svim osima te se zato dobije kružni oblik u grafičkom prikazu. Za inicijalizaciju srednjih vrijednosti, kovarijance i vjerojatnosti miješanja korišten je algoritam K-sredina. Ti su parametri izabrani jer je za njih dobivena najtočnija detekcija anomalija. Algoritam za svaki primjer računa njegovu logaritamsku

izglednost u tom skupu podataka te se primjeri s najmanjom izglednošću proglašavaju anomalijama. Granična izglednost uzeta je kao određeni percentil svih izglednosti, koji također ovisi o očekivanom udjelu anomalija. Ako se očekuje 10% anomalija, 10. percentil uzima se kao granični i sve točke s manjom izglednosti od njegove označuju se kao anomalije.

Prilikom određivanja hiperparametara algoritma i graničnih vrijednosti, odabrane su one vrijednosti koje maksimiziraju F1-mjeru.

6. Rezultati

6.1. Detekcija anomalija u transakcijama

Prva usporedba algoritama grupiranja provedena je na skupu podataka o kreditnim karticama, sa ciljem detektiranja prijevara.

Za algoritam K-sredina bilo je potrebno odrediti granični percentil udaljenosti od centroida te je ovisnost F1-mjere o odabranom percentilu prikazana na slici 6.1. Kao granični percentil odabran je percentil 98.65 jer je za njega dobivena maksimalna vrijednost F1-mjere.

Slika 6.1: Graf ovisnosti F1-mjere o percentilu udaljenosti za skup podataka o kreditnim karticama.

Kako bi se definirali hiperparametri algoritma DBSCAN provedeno je pretraživanje po rešetci te su najveće vrijednosti F1-mjere dobivene za $\epsilon=0.25$ i minPts=55. Slika 6.2 prikazuje promjenu F1-mjere za različit minimalni broj točaka minPts uz fiksnu udaljenost $\epsilon=0.25$.

U slučaju modela Gaussove mješavine potrebno je odrediti percentil logari-

Slika 6.2: Graf ovisnosti F1-mjere o minimalnom broju točaka minPts uz $\epsilon=0.25$ za skup podataka o kreditnim karticama.

tamske izglednosti ispod kojeg se točke proglašavaju anomalijama. Ovisnost F1-mjere o tom percentilu prikazana je na slici 6.3 te je percentil 1.35 uzet kao granični percentil. Slučajno je i u algoritmu K-sredina i u modelu Gaussove mješavine odabran granični percentil koji proglašava jednak postotak primjera anomalijama odnosno 1.35%.

Slika 6.3: Graf ovisnosti F1-mjere o percentilu logaritamske izglednosti za skup podataka o kreditnim karticama.

Svaki algoritam pokrenut je 20 puta na svakom skupu podataka. Na slici 6.4

prikazana je grafička usporedba uspješnosti svih triju algoritama na temelju dobivenih F1-mjera, a u tablici 6.1 dana je usporedba algoritama po svim metrikama, pri čemu je uzeta srednja vrijednost u 20 mjerenja.

Slika 6.4: Usporedba F1-mjere algoritama na problemu detekcije kartičnih prijevara.

Tablica 6.1: Usporedba algoritama na skupu podataka o kreditnim karticama.

	K-sredine	DBSCAN	Gaussova mješavina
Preciznost	0.774	0.721	0.771
Odziv	0.615	0.753	0.613
F1-mjera	0.685	0.737	0.683
AUC mjera	0.806	0.874	0.805
Koeficijent siluete	0.653	0.611	0.653
Davies-Bouldin indeks	1.212	1.414	1.215

6.2. Otkrivanje anomalija u mreži

U sljedeća dva skupa podataka zadatak je bio prepoznati mrežni napad kao anomaliju. Algoritmi su uspoređeni na skupovima podataka koji sadrže U2R i Probe mrežne napade.

6.2.1. Napad U2R kao anomalija

U slučaju skupa podataka U2R, za algoritam K-sredina određen je percentil 99.62 kao granični percentil jer on maksimizira vrijednost F1-mjere, kao što se vidi na slici 6.5.

Slika 6.5: Graf ovisnosti F1-mjere o percentilu udaljenosti za skup podataka U2R.

Slika 6.6: Graf ovisnosti F1-mjere o minimalnom broju točaka minPts uz $\epsilon=0.1$ za skup podataka U2R.

Za algoritam DBSCAN izabrani su parametri $\epsilon=0.1$ i minPts=150. Na slici 6.6 vidi se da je F1-mjera najveća za minPts=150, iako niti za jednu vrijednosti minPts nije dobivena zadovoljavajuća vrijednost F1-mjere, koja bi bila iznad 0.5. Mijenjanje udaljenosti ϵ nije imalo utjecaja na rezultat.

Slika 6.7 prikazuje promjenu F1-mjere ovisno o odabranom graničnom percentilu za model Gaussove mješavine te je, sukladno slici, odabran percentil 0.38. Tako je i u algoritmu K-sredina i u modelu Gaussove mješavine odabran percentil koji upravo odgovara stvarnom udjelu anomalija u skupu podataka.

Slika 6.7: Graf ovisnosti F1-mjere o percentilu logaritamske izglednosti za skup podataka U2R.

Algoritmi su vrednovani pomoću F1-mjere na 20 izvođenja i na slici 6.8 dan je grafički prikaz rezultata. U tablici 6.2 prikazane su srednje vrijednosti svih mjerenih metrika.

Tablica 6.2: Usporedba algoritama na skupu podataka s mrežnim napadom U2R.

	K-sredine	DBSCAN	Gaussova mješavina
Preciznost	0.609	0.266	0.603
Odziv	0.591	0.832	0.596
F1-mjera	0.600	0.403	0.599
AUC mjera	0.795	0.911	0.797
Koeficijent siluete	0.526	0.467	0.526
Davies-Bouldin indeks	0.552	1.699	0.585

Slika 6.8: Usporedba F1-mjere algoritama na problemu detekcije mrežnog napada U2R.

6.2.2. Napad *Probe* kao anomalija

Za skup podataka koji kao anomaliju imaju mrežni napad *Probe*, slika 6.9 prikazuje promjenu F1-mjere algoritma K-sredina pri promjeni graničnog percentila. Odabran je percentil 93.5, iako je to mogao biti i bilo koji u rasponu [89, 93.5] jer za sve njih F1-mjera postiže maksimum.

Slika 6.9: Graf ovisnosti F1-mjere o percentilu udaljenosti za skup podataka Probe.

Kao i kod skupa podataka s napadom U2R, udaljenost ϵ nije imala velikog utjecaja na izvođenje algoritma DBSCAN, pa je ona fiksirana na $\epsilon=0.1$. Slika 6.10 prikazuje ovisnost F1-mjere o minimalnom broju točaka minPts te je odabrano minPts=1300.

Slika 6.10: Graf ovisnosti F1-mjere o minimalnom broju točaka minPts uz $\epsilon=0.1$ za skup podataka Probe.

Slika 6.11: Primjer Gaussove mješavine za K=3. Preuzeto s [6]

6.3. Detekcija raka kao anomalije

Slika 6.12: Primjer Gaussove mješavine za K=3. Preuzeto s $\left[6\right]$

Slika 6.13: Primjer Gaussove mješavine za K=3. Preuzeto s $\left[6\right]$

Slika 6.14: Primjer Gaussove mješavine za ${\cal K}=3.$ Preuzeto s[6]

7. Zaključak

Zaključak.

LITERATURA

- [1] Anton Andrésen Adam Håkansson. Comparing unsupervised clustering algorithms to locate uncommon user behavior in public travel data. 2020. URL https://www.diva-portal.org/smash/get/diva2: 1439878/FULLTEXT01.pdf.
- [2] Indraneel Dutta Baruah. K-Means, DBSCAN, GMM, agglomerative clustering mastering the popular models in a segmentation problem, 2020. URL https://towardsdatascience.com/k-means-dbscan-gmm-agglomerative-clustering-mastering-the-popular
- [3] Jason Brownlee. Ordinal and one-hot encodings for categorical data, 2020. URL https://machinelearningmastery.com/one-hot-encoding-for-categorical-data/.
- [4] Nagesh Singh Chauhan. DBSCAN clustering algorithm in machine learning, 2022. URL https://www.kdnuggets.com/2020/04/dbscan-clustering-algorithm-machine-learning.html.
- [5] Ira Cohen. Outliers explained: a quick guide to the different types of outliers, 2019. URL https://towardsdatascience.com/ outliers-analysis-a-quick-guide-to-the-different-types-of-outlier
- [6] Oscar Contreras Carrasco. Gaussian Mixture Models explained, 2019. URL https://towardsdatascience.com/ gaussian-mixture-models-explained-6986aaf5a95.
- [7] Mohit Deshpande. Clustering with Gaussian Mixture Models, 2020. URL https://pythonmachinelearning.pro/clustering-with-gaussian-mixture-models/.

- [8] Debomit Dey. ML | DBSCAN reachability and connectivity, 2019. URL https://www.geeksforgeeks.org/ml-dbscan-reachability-and-connectivity/.
- [9] Debomit Dey. Dunn index and DB index cluster validity indices | set 1, 2022. URL https://www.geeksforgeeks.org/ dunn-index-and-db-index-cluster-validity-indices-set-1/ ?ref=lbp.
- [10] Dheeru Dua i Casey Graff. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.
- [11] Agasti Kishor Dukare. Anomaly detection in Python with Gaussian Mixture Models, 2020. URL https://towardsdatascience.com/understanding-anomaly-detection-in-python-using-gaussian-mixture-
- [12] Ernst. Outlier detection: data preparation, 2019.

 URL https://donernesto.github.io/blog/
 outlier-detection-data-preparation/.
- [13] Ernst. Outlier detection: DBSCAN, 2019. URL https://donernesto.github.io/blog/outlier-detection-with-dbscan/.
- [14] Luigi Fiori. K-Means clustering using Python, 2020.

 URL https://medium.com/@luigi.fiori.lf0303/
 k-means-clustering-using-python-db57415d26e6.
- [15] Ginni. What are the causes of anomalies?, 2022. URL https://www.tutorialspoint.com/what-are-the-causes-of-anomalies.
- [16] Ginni. What are the challenges of outlier detection?, 2022. URL https://www.tutorialspoint.com/what-are-the-challenges-of-outlier-detection.
- [17] Tufan Gupta. Gaussian Mixture Model, 2021. URL https://www.geeksforgeeks.org/gaussian-mixture-model/.
- [18] Sauravkaushiki Kaushik. An introduction to clustering and different methods of clustering, 2016. URL https://www.analyticsvidhya.com/blog/2016/11/an-introduction-to-clustering-and-different-methods-of-clustering

- [19] Bora Kizil. Introduction to anomaly detection in time-series data and K-Means clustering, 2020. URL https://medium.com/swlh/introduction-to-anomaly-detection-in-time-series-data-and-k-means
- Gaussian Model cluste-[20] Vincenzo Lavorini. Mixture how components select the number of ring: to (clus-URL https://towardsdatascience.com/ ters), 2018. gaussian-mixture-model-clusterization-how-to-select-the-number-of
- [21] G Sandhya Madhuri i Dr. M. Usha Rani. Anomaly detection techniques causes and issues. *International Journal of Engineering & Technology*, 2018. URL https://www.sciencepubco.com/index.php/ijet/article/view/22791.
- [22] Cory Maklin. Gaussian Mixture Models clustering algorithm explained, 2019. URL https://towardsdatascience.com/gaussian-mixture-models-d13a5e915c8e.
- [23] Seiichi Uchida Markus Goldstein. A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. 2016. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4836738/pdf/pone.0152173.pdf.
- [24] Davoud Moulavi, Pablo A. Jaskowiak, Ricardo J. G. B. Campello, Arthur Zimek, i Jörg Sander. Density-based clustering validation. *Society for Industrial and Applied Mathematics*, 2014. URL https://epubs.siam.org/doi/pdf/10.1137/1.9781611973440.96.
- [25] Tara Mullin. DBSCAN parameter estimation using Python, 2020. URL https://medium.com/@tarammullin/dbscan-parameter-estimation-ff8330e3a3bd.
- [26] Pallavi Pandey. DBSCAN clustering, 2020. URL https://machinelearninggeek.com/dbscan-clustering/.
- [27] Guansong Pang, Chunhua Shen, Longbing Cao, i Anton Van Den Hengel. Deep learning for anomaly detection: A review. *ACM Computing Surveys* (CSUR), 54(2):1–38, 2021.

- [28] Animesh Patcha i Jung-Min Park. An overview of anomaly detection techniques: Existing solutions and latest technological trends. Science-Direct, 2007. URL https://www.sciencedirect.com/science/ article/abs/pii/S138912860700062X.
- Pathak. Quick |29| Manish guide to evaluation metrics for suunsupervised machine URL pervised and learning, 2020. https://www.analyticsvidhya.com/blog/2020/10/ quick-guide-to-evaluation-metrics-for-supervised-and-unsupervised
- [30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, i E. Duchesnay. Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12: 2825–2830, 2011.
- [31] Ramiz Aliguliyev Rasim Alguliyev i Lyudmila Sukhostat. Anomaly detection in big data based on clustering. Statistics Optimization & Information Computing, 2017. URL https://www.researchgate.net/publication/321448608_Anomaly_Detection_in_Big_Data_based_on_Clustering.
- [32] scikit-learn developers. Compare the effect of different scalers on data with outliers, 2022. URL https://scikit-learn.org/stable/auto_examples/preprocessing/plot_all_scaling.html.
- [33] Ajay Sreenivasulu. Evaluation of cluster based anomaly detection. 2019. URL https://www.diva-portal.org/smash/get/diva2: 1382324/FULLTEXT01.pdf.
- [34] Jiong Jin Srikanth Thudumu, Philip Branch i Jugdutt (Jack) Singh. A comprehensive survey of anomaly detection techniques for high dimensional big data. *Journal of Big Data*, 2020. URL https://doi.org/10.1186/ s40537-020-00320-x.
- [35] Dilip Valeti. DBSCAN algorithm for fraud detection & outlier detection in a data set, 2021. URL https://medium.com/@dilip.voleti/ dbscan-algorithm-for-fraud-detection-outlier-detection-in-a-data-

- [36] Wikipedia contributors. DBSCAN Wikipedia, the free encyclopedia, 2022. URL https://en.wikipedia.org/wiki/DBSCAN. [Online; accessed 05-June-2022].
- [37] Wikipedia contributors. Anomaly detection Wikipedia, the free encyclopedia, 2022. URL https://en.wikipedia.org/wiki/Anomaly_detection. [Online; accessed 05-June-2022].
- [38] Wikipedia contributors. Cluster analysis Wikipedia, the free encyclopedia, 2022. URL https://en.wikipedia.org/wiki/Cluster_analysis. [Online; accessed 05-June-2022].
- [39] Wikipedia contributors. k-means clustering Wikipedia, the free encyclopedia, 2022. URL https://en.wikipedia.org/wiki/K-means_clustering. [Online; accessed 05-June-2022].
- [40] Wikipedia contributors. Normal distribution Wikipedia, the free encyclopedia, 2022. URL https://en.wikipedia.org/wiki/Normal_distribution. [Online; accessed 05-June-2022].
- [41] Jan Šnajder. Strojno učenje: 19. grupiranje. 2021. URL https://www.fer.unizg.hr/_download/repository/ SU-2020-19-Grupiranje[1].pdf.

Usporedba algoritama grupiranja u postupcima otkrivanja anomalija
Sažetak
Sažetak na hrvatskom jeziku.
Ključne riječi: Ključne riječi, odvojene zarezima.
Title
Abstract
Abstract.
Historiae.
Keywords: Keywords.