1. True or false? The PoE formula in the space frame only correctly calculates the end-effector configuration if you first put the robot at its zero configuration, then move joint n to θ_n , then move joint $n-1$ to θ_{n-1} , etc., until you move joint 1 to θ_1 .	1/1 point
○ True. ⑤ False.	
Correct Of course not! The configuration of the end-effector doesn't depend on the time history of the joint values, just the current joint values.	
2. Consider the screw axis \mathcal{S}_i used in the PoE formula. Which of the following is true?	1/1 point
\bigcirc S_i represents the screw axis of joint i , expressed in the end-effector frame [b], when the robot is at its zero configuration.	
\bigcirc \mathcal{S}_i represents the screw axis of joint i , expressed in the end-effector frame (b), when the robot is at an arbitrary configuration θ .	
$oldsymbol{\Theta}$ \mathcal{S}_i represents the screw axis of joint i , expressed in the space frame (s), when the robot is at its zero configuration.	
$ \bigcirc \mathcal{S}_i \text{ represents the screw axis of joint } i, \text{ expressed in the space frame (s), when the robot is at an arbitrary configuration } \theta. $	
⊙ Correct	
3. When the robot is at an arbitrary configuration θ_i does the screw axis corresponding to motion along joint i_i represented in [s], depend on θ_{i-1} ?	1/1 point
O No.	
Yes.	
\odot Correct Since joint $i-1$ is between joint i and the space frame (s), the joint variable θ_{i-1} impacts how the joint motion is represented in (s).	