whoami

Consulting

• Human-in-the-loop machine learning + MLOps

Getting the Materials

https://github.com/jonathandinu/spark-livetraining

Types of Learning

Supervised Learning

Training data includes desired output

Unsupervised Learning

Training data does not include desired output

Semi-supervised Learning

Training data includes some desired outputs

Reinforcement Learning

Rewards from sequence of actions

Types of Learning

Supervised Learning

Training Data includes desired output

Unsupervised Learning

Training Data does not include desired output

Semi-supervised Learning

Training Data includes some desired outputs

Reinforcement Learning

Rewards from sequence of actions

Iris Dataset

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	label
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

Features

(feature matrix)

Target

What to learn an unknown target function f()

Input: labeled training set (x_i, y_i)

•
$$y_i = f(x_i)$$

Output: hypothesis h() function "close" to f()

Many possible hypothesis families:

- Logistic
- Linear
- decision trees
- example-based (nearest neighbor)
- etc.

Linear Regression

Parameters

$$A = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

Logistic Regression

$$A = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

$$P(label \mid X) = \sigma(A)$$

$$\sigma = \frac{1}{1 + e^{-A}}$$
 (function bound between 0 and 1)

Logistic Regression

$$A = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$

$$P(label \mid X) = \sigma(A)$$

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}}$$

Logistic Regression

(contrary to its name... actually used to classify)

Linear Separator

Interpreting Logistic Regression

Log odds

$$p = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n)}}$$

$$\frac{p}{1-p} = e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_n X_n} = e^{\beta_0} e^{\beta_1 X_1} e^{\beta_2 X_2} \dots e^{\beta_n X_n}$$

A one unit change in X_1 increases the odds ratio by e^{eta_1}

Solving for Parameters

- 1. Analytically with differential calculus
- 2. Computationally with optimization methods
- 3. Approximately with iterative methods

Solving for Parameters

- 1. Analytically with differential calculus
- 2. Computationally with optimization methods
- 3. Approximately with iterative methods

What are the most likely parameters given the data we have?

$$P(\theta \mid x_1, x_2, \dots, x_n)$$

$y = f(X) + \varepsilon$

$y = f(X, \beta) + \varepsilon$

Repeat until Convergence....

$$\beta_i \leftarrow \beta_i - \frac{\partial}{\partial \beta_i} J(\beta)$$

"Learning Rate"

Sequential

Concurrent

Parallel

Concurrent

Parallel

Concurrent Parallel

Concurrent Parallel Arrow of Time

Model Diagnostics

- Overfitting (high variance)
- Underfitting (high bias)
- Training Convergence
- Label Distribution (imbalanced classes)
- Data/covariate Shift

K-fold Cross Validation

K-fold Cross Validation

Turns

Bias-variance trade-off

Grid Search

Grid Search

- Exhaustive brute force search
- Find optimal hyperparameters or models
- Computationally costly
- But embarrassingly parallel!

Live Code

Short Comings of Accuracy

- Sensitive to imbalanced classes
- Misclassifications carry equal weight

Evaluation Metrics

- Accuracy
- Precision/Recall
- F1
- AUC (area under the curve)

Precision and Recall

Predicted Label

Logistic Regression

Logistic Regression

Confusion Matrix vs. Point Metrics

- Confusion matrix has fine-grained information about misclassifications
- Precision/Recall/F1 can be used in automated comparison (grid search)

ROC plots

ROC plots

Live Code

Strategies

Error decomposition

• Input ground truth for each component/stage of pipeline.

Ablation analysis

• Remove components/parameters one at a time.

See also: http://cs229.stanford.edu/materials/ML-advice.pdf

Improving a Model

- More data
- Better data (and labels)
- Feature Selection and Engineering
- Regularization
- Model Selection (more/less complex model)

Model Selection

- Performance (optimizing for metric of interest)
- Training time vs testing time
- Online vs. batch
- Interpretability
- Multiclass vs. single class
- High dimensionality
- Nonlinear vs. linear

Machine Learning in the Wild

Overview

Overview

Online Evaluation Strategies

- Continuous Batch Offline Evaluation
- "Live" A/B Testing
- Multi-armed Bandit

Deploying Models

Deploying Models

Batch Offline Evaluation

Live A/B Testing

Live A/B Testing

Multi-armed Bandit

