Sergiu Iliev | Bayesian ML Course | Final | Problem 3

Restricted Boltzmann Machines: Labelling Street View House Numbers (SVHN)

```
clc, clear
```

Data Preparation

(a) Loading the dataset, converting to grayscale and re-shaping

Importing Street Numbers Images Dataset

```
train_32x32 = load('train_32x32.mat');  % load training dataset
test_32x32 = load('test_32x32.mat');  % load testing dataset
```

Visualize the training dataset

Convert the images to grayscale

Visualize the converted images dataset

Reshape and normalize the images into a single vector

% Initialize the Test and Tran Image arrays in which to hold the reshaped normalised immages
images_ts = nan(26032,1024);

```
images_tr = nan(73257,1024);

% Loop over all test images to convert them to reshape and normalize
for i = 1:test_img_no
    test_32x32_grey_reshaped = reshape(test_32x32_grey.X(:,:,:,i),[1024,1]); % reshape into an
    images_ts(i,:) = double(test_32x32_grey_reshaped)/255; % normalize to have the pixel values
end

% Loop over all train images to convert them to reshape and normalize
for i = 1:train_img_no
    train_32x32_grey_reshaped = reshape(train_32x32_grey.X(:,:,:,i),[1024,1]); % reshape into a
    images_tr(i,:) = double(train_32x32_grey_reshaped)/255; % normalize to have the pixel value
end
```

b) Preparing the labels for the RBM Model

Create arrays with OneHot encoding of the labels (ref)

Labels are structured in an one-hot array with 10 columns for each-digit e.g. the third column contains 1s (on) in the rows where the label for the letter 2 and 0s (off otherwise).

```
labels_ts = transpose(full(ind2vec(test_32x32.y',10)));
labels_tr = transpose(full(ind2vec(train_32x32.y',10)));
Nd = size(images_ts,1)

Nd = 26032

Ni = size(images_ts,2)

Ni = 1024
% Test labels with one-hot labels
% Number of training data points
% Size of the input vector
```

Training the Restricted Boltzman

(d) Initialize a Restricted Boltzmann Machine

The following sections build upon Andrea Valent's RBM implementation in MATLAB ref

```
% Add path to RBM implementation % forked from https://github.com/Andrea-V/Restricted-Boltzmann
addpath(genpath([pwd '\RBM']));
% Initlialize the RBM arrays
[M, b, c] = rbm init(Ni, 100) % Ni = size of the input vector, number of hidden units = 100
M = 1024 \times 100
   0.0004
            -0.0098
                                                                     0.0015 ...
                     -0.0090
                               0.0042
                                        -0.0177
                                                 -0.0083
                                                            0.0091
                                                  0.0024
   0.0133
            0.0034
                     -0.0059
                               0.0035
                                        -0.0023
                                                            0.0009
                                                                    -0.0084
   -0.0276
            0.0204
                      0.0187
                               0.0016
                                        -0.0018
                                                 -0.0151
                                                            0.0028
                                                                    -0.0134
   0.0036
            -0.0182
                     -0.0097
                              -0.0125
                                         0.0100
                                                 -0.0038
                                                           -0.0116
                                                                    -0.0123
   -0.0018
           -0.0037
                      0.0045
                              -0.0184
                                        -0.0205
                                                 -0.0030
                                                           -0.0037
                                                                    -0.0180
  -0.0181
            -0.0194
                      0.0032
                               0.0015
                                        -0.0085
                                                  0.0107
                                                           -0.0162
                                                                    -0.0132
   -0.0093
            0.0080
                      0.0109
                               0.0095
                                        -0.0007
                                                  0.0004
                                                          -0.0026
                                                                     0.0068
   -0.0016
            0.0091
                    0.0003
                             -0.0179
                                       -0.0060 -0.0047
                                                           0.0064
                                                                    -0.0110
   0.0308
           -0.0216
                    -0.0297
                              -0.0271
                                        0.0153
                                                 -0.0184
                                                          -0.0160
                                                                    -0.0056
   0.0227
            0.0144
                    -0.0135
                               0.0094
                                        -0.0087
                                                 -0.0197
                                                           -0.0071
                                                                     0.0106
```

```
b = 1024 \times 1
       0
       0
       0
       0
       0
       0
       0
       0
c = 100 \times 1
       0
       0
       0
       0
       0
       0
       0
       0
```

M, b, c are generated by the RMB initalisation function:

- M (26032 x 100) corresponds to the interaction term between visible units (26032 inputs) and hidden units (100)
- b corresponds to the field term associated with visible units (initialised as zeros corresponding to no activation)
- c corresponds to the field term associated with hidden units (initialised as zeros corresponding to no activation)

(d) Training the Restricted Boltzmann Machine

To begin with we will use the following initial settings (10 minutes training time):

- cd_k = 1; (contrastive-divergence steps)
- eta = 0.01; (learning rate)
- alpha = 0.5; (momentum)
- lambda = 1e-5; (regularization)
- max_epochs = 5 (number of training epochs)

```
[M , b, c , errors] = rbm_train(images_ts, M, b, c, 1, 0.01, 0.5, 1e-5, 5)
```

```
-- shuffling inputs
-- training...
- epoch 0, error: 4.125456
-- shuffling inputs
-- training...
```

```
- epoch 1, error: 3.172930
-- shuffling inputs
-- training...
- epoch 2, error: 3.075481
-- shuffling inputs
-- training...
- epoch 3, error: 3.035261
-- shuffling inputs
-- training...
- epoch 4, error: 3.011611
-- shuffling inputs
-- training...
- epoch 5, error: 2.993863
-- shuffling inputs
-- training...
- epoch 6, error: 2.986387
M = 1024 \times 100
    0.0232
              0.0815
                        -0.0902
                                   0.0019
                                             -0.0052
                                                         0.1096
                                                                   0.0537
                                                                              0.0092 ...
    0.0142
              0.0942
                        -0.0746
                                  -0.0117
                                             -0.0085
                                                         0.1324
                                                                   0.0446
                                                                              0.0185
              0.0963
                        -0.0584
                                  -0.0361
                                             -0.0059
    0.0103
                                                         0.1606
                                                                   0.0303
                                                                              0.0248
                                  -0.0584
                                             -0.0003
    0.0060
              0.0885
                        -0.0484
                                                         0.1821
                                                                   0.0134
                                                                              0.0220
   -0.0002
              0.0771
                        -0.0499
                                  -0.0759
                                             -0.0036
                                                         0.1862
                                                                   0.0006
                                                                              0.0087
                       -0.0597
                                                                   0.0020
   -0.0051
              0.0650
                                  -0.0784
                                             -0.0169
                                                         0.1701
                                                                              0.0009
   -0.0114
              0.0541
                        -0.0760
                                  -0.0758
                                             -0.0298
                                                         0.1382
                                                                   0.0109
                                                                              0.0007
   -0.0165
              0.0433
                        -0.0979
                                  -0.0733
                                             -0.0401
                                                         0.1003
                                                                   0.0245
                                                                              0.0057
   -0.0184
              0.0342
                        -0.1242
                                  -0.0659
                                             -0.0388
                                                         0.0689
                                                                   0.0375
                                                                              0.0141
              0.0305
                        -0.1464
   -0.0158
                                  -0.0629
                                             -0.0241
                                                         0.0436
                                                                   0.0442
                                                                              0.0216
b = 1024 \times 1
    0.9648
    0.9528
    0.9350
    0.9241
    0.9152
    0.9125
    0.9012
    0.8981
    0.8957
    0.8922
c = 100 \times 1
   17.9612
   12.3217
   17.8723
   18.8188
   15.9893
   13.2198
   18.6086
    8.5723
   12.5963
   19.2997
errors = 1 \times 8
       Inf
              4.1255
                         3.1729
                                   3.0755
                                              3.0353
                                                         3.0116
                                                                   2.9939
                                                                              2.9864
```

(e) Building the encoded representation

Using the trained Boltzmann model we will build an encoded representations of the training and test datasets

```
img codes tr = rbm encode(images tr, M, b, c) % encoded representation of the training dataset
img\_codes\_tr = 73257 \times 100
    0.9999
             0.0043
                        1.0000
                                  1.0000
                                            0.9997
                                                      0.9850
                                                                 1,0000
                                                                           0.0230 ...
   0.9973
             0.0028
                        1.0000
                                  1.0000
                                            0.9982
                                                      0.8864
                                                                 1.0000
                                                                           0.0000
   0.0000
             0.0000
                        0.6966
                                  0.0093
                                            0.0005
                                                      0.0000
                                                                0.0002
                                                                           0.0000
   0.0000
             0.0000
                        0.7393
                                  0.0084
                                            0.0017
                                                      0.0000
                                                                0.0172
                                                                           0.0000
                                  0.9527
                                            0.0112
                                                                0.7306
   0.4712
             0.0000
                        0.9977
                                                      0.0038
                                                                           0.0000
   0.4717
             0.0000
                        0.9997
                                  0.9977
                                            0.0458
                                                      0.0001
                                                                 0.9871
                                                                           0.0000
   0.9906
             0.0010
                        0.9966
                                  0.9989
                                            0.9953
                                                      0.0042
                                                                 0.9802
                                                                           0.0000
   0.9994
             0.0592
                        0.9996
                                  0.9937
                                            0.6395
                                                      0.0040
                                                                 0.9990
                                                                           0.2900
    0.9812
              0.0000
                        1.0000
                                  1.0000
                                            0.9918
                                                      0.4153
                                                                 0.9998
                                                                           0.0002
    0.9991
              0.0000
                        0.9995
                                  0.9999
                                            0.9679
                                                      0.2018
                                                                 1.0000
                                                                           0.9991
img_codes_ts = rbm_encode(images_ts, M, b, c) % encoded representation of the test dataset
img\_codes\_ts = 26032 \times 100
                                                                           0.0000 ...
    0.9977
                                            0.9974
              0.1114
                        1.0000
                                  1.0000
                                                      0.8827
                                                                 1.0000
   0.0081
              0.0000
                        0.9999
                                  0.3391
                                            0.0001
                                                      0.0000
                                                                 0.0578
                                                                           0.0000
   0.2009
              0.0000
                        0.8886
                                  0.2437
                                            0.0106
                                                      0.0000
                                                                 0.0407
                                                                           0.0000
   0.0462
              0.0000
                        0.9999
                                  0.7541
                                            0.0009
                                                      0.0000
                                                                 0.0508
                                                                           0.0000
   0.0739
             0.0000
                        0.8984
                                  0.7718
                                            0.0017
                                                      0.0000
                                                                 0.2532
                                                                           0.0000
   0.7842
             0.0000
                        0.9998
                                  0.9992
                                            0.2612
                                                      0.0206
                                                                 0.9917
                                                                           0.0009
   1.0000
             0.9978
                        1.0000
                                  1.0000
                                            1.0000
                                                      0.9992
                                                                 1.0000
                                                                           0.9888
   0.9928
             0.2529
                        1.0000
                                  0.9999
                                            1.0000
                                                      0.0063
                                                                 0.9996
                                                                           0.0000
   0.7962
             0.0000
                        0.9839
                                            0.0000
                                  0.6689
                                                      0.0000
                                                                 0.6803
                                                                           0.0000
   0.6119
             0.0000
                        0.9952
                                  0.5284
                                            0.0893
                                                      0.0008
                                                                 0.9843
                                                                           0.0000
```

Learning the digits

sampleTime: 1

(f) Initialize a one-layer artificial neural net (ANN)

We will use the encoded representation of the model to train a shallow model using patternnet

Pattern recognition networks are feedforward networks that can be trained to classify inputs according to target classes. The target data for pattern recognition networks should consist of vectors of all zero values except for a 1 in element i, where i is the class they are to represent (ref).

```
ANN = patternnet(100) % build a neural network with one hidden layer and one output layer.

ANN =

Neural Network

name: 'Pattern Recognition Neural Network'
userdata: (your custom info)

dimensions:

numInputs: 1
numLayers: 2
numOutputs: 1
numInputbelays: 0
numLayerDelays: 0
numLayerDelays: 0
numMeedbackDelays: 0
numWeightElements: 100
```

```
connections:
   biasConnect: [1; 1]
  inputConnect: [1; 0]
  layerConnect: [0 0; 1 0]
 outputConnect: [0 1]
subobjects:
         input: Equivalent to inputs{1}
        output: Equivalent to outputs{2}
        inputs: {1x1 cell array of 1 input}
        layers: {2x1 cell array of 2 layers}
       outputs: {1x2 cell array of 1 output}
        biases: {2x1 cell array of 2 biases}
  inputWeights: {2x1 cell array of 1 weight}
  layerWeights: {2x2 cell array of 1 weight}
functions:
      adaptFcn: 'adaptwb'
    adaptParam: (none)
      derivFcn: 'defaultderiv'
     divideFcn: 'dividerand'
   divideParam: .trainRatio, .valRatio, .testRatio
    divideMode: 'sample'
       initFcn: 'initlay'
    performFcn: 'crossentropy'
  performParam: .regularization, .normalization
      plotFcns: {'plotperform', plottrainstate, ploterrhist,
                plotconfusion, plotroc}
    plotParams: {1x5 cell array of 5 params}
      trainFcn: 'trainscg'
    trainParam: .showWindow, .showCommandLine, .show, .epochs,
                .time, .goal, .min_grad, .max_fail, .sigma,
                .lambda
weight and bias values:
            IW: {2x1 cell} containing 1 input weight matrix
            LW: {2x2 cell} containing 1 layer weight matrix
             b: {2x1 cell} containing 2 bias vectors
methods:
         adapt: Learn while in continuous use
     configure: Configure inputs & outputs
        gensim: Generate Simulink model
          init: Initialize weights & biases
       perform: Calculate performance
           sim: Evaluate network outputs given inputs
         train: Train network with examples
          view: View diagram
   unconfigure: Unconfigure inputs & outputs
```

(f) Training the shallow ANN

We can now train the shallow neural net (softmax)

```
ANN_trained = train(ANN,img_codes_tr',labels_tr')
```

```
ANN_trained =
    Neural Network
              name: 'Pattern Recognition Neural Network'
          userdata: (your custom info)
    dimensions:
        numInputs: 1
        numLayers: 2
        numOutputs: 1
    numInputDelays: 0
    numLayerDelays: 0
numFeedbackDelays: 0
numWeightElements: 11110
        sampleTime: 1
    connections:
       biasConnect: [1; 1]
      inputConnect: [1; 0]
      layerConnect: [0 0; 1 0]
     outputConnect: [0 1]
    subobjects:
             input: Equivalent to inputs{1}
            output: Equivalent to outputs{2}
            inputs: {1x1 cell array of 1 input}
            layers: {2x1 cell array of 2 layers}
           outputs: {1x2 cell array of 1 output}
            biases: {2x1 cell array of 2 biases}
      inputWeights: {2x1 cell array of 1 weight}
      layerWeights: {2x2 cell array of 1 weight}
    functions:
          adaptFcn: 'adaptwb'
        adaptParam: (none)
          derivFcn: 'defaultderiv'
         divideFcn: 'dividerand'
       divideParam: .trainRatio, .valRatio, .testRatio
        divideMode: 'sample'
           initFcn: 'initlay'
      performFcn: 'crossentropy'
performParam: .regularization, .normalization
          plotFcns: {'plotperform', plottrainstate, ploterrhist,
                    plotconfusion, plotroc}
        plotParams: {1x5 cell array of 5 params}
          trainFcn: 'trainscg'
        trainParam: .showWindow, .showCommandLine, .show, .epochs,
                    .time, .goal, .min_grad, .max_fail, .sigma,
   weight and bias values:
                IW: {2x1 cell} containing 1 input weight matrix
                LW: {2x2 cell} containing 1 layer weight matrix
                 b: {2x1 cell} containing 2 bias vectors
```

methods:

adapt: Learn while in continuous use configure: Configure inputs & outputs gensim: Generate Simulink model init: Initialize weights & biases perform: Calculate performance

sim: Evaluate network outputs given inputs

train: Train network with examples

view: View diagram

unconfigure: Unconfigure inputs & outputs

view(ANN_trained);

The trained neural net has the following architecture

Testing the performance

(h) Confusion matrix for trained network on the training data

y_tr = ANN_trained(img_codes_tr') % Feeding the input training data through the trained neural

```
y = 10 \times 73257
   0.5829
              0.1185
                        0.1714
                                   0.0004
                                              0.0042
                                                        0.2162
                                                                   0.3118
                                                                             0.0168 ...
   0.0621
              0.0571
                        0.0229
                                   0.1560
                                              0.8422
                                                        0.0041
                                                                   0.2236
                                                                             0.0377
   0.0521
              0.0787
                        0.3929
                                   0.1056
                                              0.0606
                                                        0.0575
                                                                   0.1197
                                                                             0.2989
   0.0071
              0.0317
                        0.0156
                                   0.0585
                                              0.0007
                                                        0.0478
                                                                   0.1506
                                                                             0.0118
   0.1103
              0.1199
                        0.0316
                                   0.0163
                                              0.0013
                                                        0.4521
                                                                   0.0714
                                                                             0.3844
   0.0084
              0.0435
                        0.0435
                                   0.0510
                                              0.0013
                                                        0.0694
                                                                   0.0315
                                                                             0.1037
   0.1445
              0.0506
                        0.0011
                                   0.0207
                                              0.0816
                                                        0.0131
                                                                   0.0240
                                                                             0.0036
   0.0131
              0.0703
                        0.3127
                                   0.3182
                                              0.0038
                                                        0.1012
                                                                   0.0204
                                                                             0.0363
   0.0163
              0.1836
                        0.0075
                                   0.2409
                                              0.0013
                                                        0.0329
                                                                   0.0343
                                                                             0.0421
   0.0032
              0.2462
                        0.0007
                                   0.0324
                                              0.0029
                                                        0.0057
                                                                             0.0648
                                                                   0.0127
```

plotconfusion(y_tr, labels_tr') % Confusion matrix for trained network on the training data

Confusion Matrix 3844 195 227 262 148 100 96 44 72 75.6% 14.4% 0.7% 0.9% 1.0% 0.6% 0.4% 0.4% 0.3% 0.4% 24.4% 0.2% 114 60.0% 392 2312 332 127 80 260 55 1.5% 8.7% 1.2% 0.5% 0.4% 0.3% 1.0% 0.2% 0.4% 0.3% 40.0% 433 413 1480 98 241 62 110 69 94 83 48.0% 3 0.4% 1.6% 1.5% 5.5% 0.9% 0.2% 0.4% 0.3% 0.3% 52.0% 0.4% 1797 65 147 65.1% 350 109 89 21 60 51 71 1.3% 0.4% 0.3% 6.7% 0.2% 0.6% 0.1% 0.2% 0.2% 0.3% 34.9% 291 135 341 102 1129 169 30 120 96 89 45.1% Output Class 1.1% 0.5% 1.3% 0.4% 4.2% 0.6% 0.1% 0.4% 0.4% 0.3% 54.9% 153 69 205 164 890 27 173 61 211 44.1% 0.6% 0.2% 0.3% 0.8% 0.6% 3.3% 0.1% 0.6% 0.2% 0.8% 55.9% 298 320 112 49 34 49 1063 17 55 42 52.1% 1.1% 1.2% 0.2% 4.0% 0.4% 0.2% 0.1% 0.1% 0.2% 0.2% 47.9% 208 96 118 147 235 263 25 446 98 150 25.0% 0.8% 0.4% 0.9% 1.0% 0.6% 75.0% 0.4% 0.6% 0.1% 1.7% 0.4% 181 51 33.9% 205 129 130 95 56 95 594 217 0.8% 0.5% 0.5% 0.4% 0.7% 0.2% 0.2% 0.4% 2.2% 0.8% 66.1% 152 84 108 106 196 31 176 66 80 822 45.1% 10 0.6% 0.3% 0.2% 0.4% 0.4% 0.7% 0.1% 0.3% 0.7% 3.1% 54.9% 59.9% 61.8% 38.5% 42.6% 60.8% 49.9% 60.1% 46.7% 44.3% 44.1% **53.9%** 39.2% 40.1% 50.1% 39.9% 53.3% 55.7% 38.2% 61.5% 57.4% 55.9% 46.1% ტ 6 0 Target Class

Warning: Targets were not all 1/0 values and have been rounded.

(i) Predicting the labels for the training dataset

0.0000

0.0001

0.0359

0.2781

0.1184

0.2391

0.0029

0.0069

Unlike in the case for y_training, we are now evaluating the RBM ML model using previously unseen test data

ANN_trained(img_codes_ts') % feeding the encoded test images data to the RBM ANN model y ts = $y ts = 10 \times 26032$ 0.0255 0.9588 ... 0.0775 0.3020 0.1094 0.0158 0.8621 0.4538 0.0891 0.1847 0.5773 0.1721 0.0496 0.0155 0.0400 0.0005 0.0710 0.2278 0.0528 0.0482 0.0680 0.0030 0.0448 0.0004 0.0296 0.0050 0.0003 0.1298 0.0385 0.0415 0.3151 0.0382 0.0046 0.0741 0.1188 0.0020 0.1744 0.1239 0.0389 0.0004 0.0755 0.0058 0.0001 0.0475 0.2541 0.0047 0.0108 0.0002 0.0728 0.0293 0.4686 0.0630 0.0038 0.0385 0.0548 0.0000 0.0573 0.0006 0.0019 0.0245 0.3710 0.0071 0.0117 0.0014

0.0156

0.0072

0.0002

0.0000

0.0230

0.0070

0.0375

0.0379

	Confusion Matrix											
Output Class	1	3547 13.6%	242 0.9%	266 1.0%	428 1.6%	121 0.5%	116 0.4%	133 0.5%	38 0.1%	113 0.4%	95 0.4%	69.6% 30.4%
	2	548 2.1%	2142 8.2%	364 1.4%	236 0.9%	95 0.4%	97 0.4%	314 1.2%	88 0.3%	142 0.5%	123 0.5%	51.6% 48.4%
	3	541 2.1%	340 1.3%	1100 4.2%	201 0.8%	187 0.7%	64 0.2%	125 0.5%	74 0.3%	166 0.6%	84 0.3%	38.2% 61.8%
	4	238 0.9%	106 0.4%	83 0.3%	1684 6.5%	52 0.2%	157 0.6%	18 0.1%	43 0.2%	57 0.2%	85 0.3%	66.7% 33.3%
	5	301 1.2%	112 0.4%	249 1.0%	201 0.8%	758 2.9%	242 0.9%	35 0.1%	171 0.7%	187 0.7%	128 0.5%	31.8% 68.2%
	6	151 0.6%	93 0.4%	64 0.2%	332 1.3%	116 0.4%	829 3.2%	33 0.1%	122 0.5%	52 0.2%	185 0.7%	41.9% 58.1%
	7	379 1.5%	349 1.3%	136 0.5%	57 0.2%	32 0.1%	48 0.2%	877 3.4%	19 0.1%	79 0.3%		43.4% 56.6%
	8	175 0.7%	97 0.4%	73 0.3%	244 0.9%	164 0.6%	311 1.2%	23 0.1%	289 1.1%	130 0.5%	154 0.6%	17.4% 82.6%
	9	133 0.5%	91 0.3%	114 0.4%	180 0.7%	99 0.4%	78 0.3%	46 0.2%	94 0.4%	549 2.1%	211 0.8%	34.4% 65.6%
	10	111 0.4%	104 0.4%	87 0.3%	177 0.7%	93 0.4%	176 0.7%	62 0.2%	72 0.3%	214 0.8%	648 2.5%	37.2% 62.8%
			58.3% 41.7%		45.0% 55.0%	44.1% 55.9%		52.6% 47.4%			36.9% 63.1%	47.7% 52.3%
			2	ი	>	6	0	1	8	9	10	
Target Class												

Warning: Targets were not all 1/0 values and have been rounded.

Looking at the two confusion matrices above we can observe that:

- the erros are overall higher for the test dataset, which is to be expected as the model was bilnd to this set during testing
- errors do not increase significantly between the two matrices, suggesting that the model is generalizable and not overfitted to the test data
- the number that were confused the most was 0, especially with lower value digits like 0,1,2,3,4 -- this might also be due to the fact that the dataset is bias to the digit 0 (more of these examples than for other digits)

Visualizing the filters

(j) Converting from M vector space back to the image space

To visualise the filters we will convert back from encoded space M to the original image space of 32 x 32 pixels M_images

(k) Larger view of the 100 filters visualisation showing the pixel activation of each filter (black pixels)

unit 1	unit 2	unit 3	unit 4	unit 5	unit 6	unit7
		1000	1.70	177		1.
1.7		10.1	1.17			9.2
unit 11	unit 12	unit 13	unit 14	unit 15	unit 16	unit 17
7.61	17			400	100 37	17
1.6			1,00	41.74	7.6	
						2.00
un I 21	unit 22	unil 23	unil 24	unit 25	unit 28	unit 27
	2) [40	194		1.1	10.4
	14		1.0			100
unit 31	unit 32	un H 33	unit 34	unit 35	unit 36	unit 37
F 1	1.00	1 4 1		An and a second		1.80
	1.0	11.6	1/3.7			1.977
unit 41	unit 42	unit 43	unit 44	unit 45	unit 46	unit 47
unk 41	unit 42	unit 45	CHR 44	unit 45	Unit 45	Citie 47
94	. 1	7.1	3.11	1.	"11	17.1
10-4	A. J.	100		Made in	4.7	3.7
unit 51	unit 52	unit 53	unit 54	unit 55	unit 58	unit 57
100	- 25		4.4		17.7	
	- 6					37
			10,77		10.7	
un I 61	unit 62	unit 63	unil 64	unit 65	unit 66	unit 67
Fi					1 Samuel	
1 7 1	0.1	177		- 3.5	100	ling.
46460					1000-00	
un R 71	unit 72	un ti 73	unit 74	unit 75	unit 76	unit 77
	147.7			100	1.0.7	1 177
	77.5				. 3 :	1.0
	0.000					
unit 61	unit 82	unit 83	unit 64	unit 05	unit 66	unit 07
			75.14		617	1/2
					91.	10
						-
unit 91	unit 92	unit 93	unit 94	unit 95	unit 96	unit 87

(I) Identifying the most important filters

We can find the most important filters by looking at the coefficient vector, c which corresponds to the field term associated with hidden units.

I think these are emerging as the top 5 most important filters because they are the most general, unlike other more specialised hidden layers, these activate for most digits in the dataset (ref). It is particularly interesting to observe unit 57, which has the shape used by many digital clocks displays (the 7-Segment) as it best encodes all digits using the minium number of lines.

The 7-Segment, similar to unit 57 in the Restricted Boltzmann Machine trained on the Street View House Numbers (SVHN) Dataset

7 segment clock display fully activated (ref)