William Stallings Data and Computer Communications 7th Edition

Chapter 18
Internet Protocols

Fungsi Protokol

- Satuan kecil fungsi yang membentuk basis dari semua protokol
- Tidak semua protokol mempunyai semua fungsi
 - Mengurangi duplikasi usaha
 - mempunyai jenis fungsi yang sama di protokol pada tingkat yang berbeda
- Encapsulation
- Pemisahan dan perakitan kembali
- Kontrol
- koneksi
- Pengiriman tersusun
- pengiriman perintah
- Kontrol Alur
- Kontrol Kesalahan
- Pengalamatan
- Multiflexing
- Layanan transmisi

Encapsulation

- Data pada umumnya ditransfer dalam blok-blok
 - Protocol Data Unit(PDUs)
 - Masing-Masing PDU berisi data dan kontrol informasi
 - Beberapa PDU hanya mengendalikan
- Tiga kategori kontrol
- Alamat
 - Pengirim dan/atau penerima
- Kode pendekteksian Kesalahan
 - Misal Memeriksa urutan farme
- Kontrol protokol
 - Informasi tambahan untuk menerapkan fungsi-fungsi protokol
- Penambahan kontrol informasi ke data adalah encapsulation
- Data diterima atau dihasilkan oleh kesatuan dan encapsulated ke dalam PDU
 - berisi data dan kontrol informasi
 - Misal: TFTP, HDLC, penyiaran ulang bingkai, ATM, AAL5 (Gambar 11.15), LLC, IEEE 802.3, IEEE 802.11

Pemecahan dan Reassembly(Segmentation— OSI)

- Penukaran data antara dua kesatuan
- Ditanandai sebagai urutan beberapa PDU dari beberapa batasan ukuran
 - Pesan Tingkatan Aplikasi
- Protokol tingkat yang lebih rendah mungkin harus memisahkan data ke dalam blok [yang] lebih kecil
- Jaringan komunikasi mungkin hanya menerima blok sampai suatu ukuran tertentu
 - ATM 53 komposisi music 8 suara
 - Ethernet 1526 komposisi music 8 suara
- Kontrol kesalahan yang lebih efisien
 - Pengiriman ulang yang lebih kecil
- Lebih Adil
 - Mencegah stasiun yang memonopoli medium
- Penyangga yang lebih kecil
- Ketetapan pos pemeriksaan dan operasi ulang

Kerugian Fragmentation

- Membuat PDU-PDU sebesar mungkin sebab
 - PDU berisi beberapa kontrol informasi
 - Blok yang lebih kecil, ongkos yang lebih besar
- Kedatangan PDU menghasilkan gangguan
 - Blok yang lebih kecil, lebih banyak gangguan
- Lebih kecil waktu memproses, lebih banyak PDU

Reassembly

- Data yang terbagi-bagi harus dikumpulkan kembali ke dalam pesan
- lebih rumit Jika PDU-PDU rusak

PDUS and Fragmentation

(Copied from chapter 2 fig 2.4)

kontrol Koneksi

- Pemindahan Data Tanpa Sambungan
 - Masing-Masing PDU diperlakukan sendiri-sendiri
 - Misal: Datagram
- Perpindahan data Connection-oriented
 - Lintasan yang sebetulnya
- Lebih Disukai Connection-oriented untuk pertukaran data yang panjang
- Atau jika detil protokol harus terpecahkan secara dinamis
- Asosiasi yang logis, atau koneksi, yang dibentuk diantara kesatuan
- Terjadi tiga fasa
 - Penetapan koneksi
 - Perpindahan data
 - Penghentian koneksi
 - Dapat menyela dan menyembuhkan pertahap untuk menangani kesalahan

Tahap Koneksi Mengorientasi Perpindahan

Penetapan Koneksi

- Kesatuan setuju untuk menukar data
- Berdasarkan tipenya, satu setasiun mengeluarkan koneksi meminta
 - Dalam tampilan yang tanpa koneksi
- Bisa melibatkan otoritas pusat
- Menerima kesatuan menerima atau menolak
- Bisa memasukkan negosiasi
- Sintaksis, ilmu semantik, dan pemilihan waktu
- Kedua-Duanya kesatuan harus menggunakan protokol yang sama
- Bisa mengiiinkan corak [yang] opsional
- Harus disetujui
- Misal protokol mungkin menetapkan MAX PDU ukuran 8000 komposisi music 8 suara; satu setasiun mungkin ingin membatasi untuk 1000 komposisi music 8 suara

Memindahkan dan Penghentian Data

- Data dan kontrol informasi ditukar
 - Misal: Kontrol Alur dan kontrol informasi
- Data mengalir melalui dua arah
- Satu sisi mungkin mengirimkan permintaan penghentian
- Atau otoritas pusat untuk mengakhiri

Peruntunan

- Banyak protokol connection-oriented menggunakan peruntunan
 - Misal HDLC, IEEE 802.11
- PDU menomori secara berurutan
- Masing-Masing sisi menjejaki angka-angka yangberikutnya
- Mendukunglah tiga fungsi utama
 - Kiriman tersusun
 - kontrol Alur
 - kontrol kesalahan
- Tidak menemukan dalam semua protokol connection-oriented
 - Misal: Frame menyiarkan ulang dan ATM
- Semua protokol connection-oriented termasuk beberapa cara dalam mengidentifikasi koneksi
 - Koneksi unik identifier
 - Kombinasi alamat tujuan dan sumber

Penyerahan Yang Diperintah/Dipesan

- PDUS mungkin tiba rusak
 - Alur berbeda melalui jaringan
- PDU memesan harus dirawat
- Nomor PDUs secara sekuen
- Mudah untuk memesan lagi PDUs yang diterima
- Bidang nomor;jumlah urutan yang terbatas
 - Angka-Angka mengulangi modulo nomor yang maksimum
 - Nomor urutan maksimum yang lebih besar dibanding nomor PDUS maksimum yang bisa terkemuka
 - Sesungguhnya, nomor maksimum mungkin perlu untuk dua kali nomor PDUs maksimum yang bisa terkemuka
- Misal: selective-repeat ARQ

Arus kontrol

- Dilakukan dengan menerima kesatuan untuk membatasi jumlah atau tingkat data yang dikirim
- Stop-And-Wait
 - Masing-Masing PDU harus diakui sebelum yang dikirim berikutnya
- Kredit
 - Jumlah data yang dapat dikirim tanpa pengakuan
 - Misal HDLC sliding-window
- Harus diterapkan di dalam beberapa protokol
 - kontrol lalu lintas jaringan
 - Ruang;Spasi penyangga/bantalan
 - Banjir aplikasi
- Misal: menantikan akses disk

kontrol Kesalahan

- Menjaga dari kerugian atau merusakkan
- Pendeteksian kesalahan dan retransmission
 - Pengirim memasukkan/menyisipkan error-detecting kode di dalam PDU
 - Fungsi bit lain di dalam PDU
 - Penerima memeriksa kode pada PDU yang datang/yang berikutnya
 - Jika kesalahan, barang buangan
 - Jika pemancar tidak mendapatkan pengakuan dalam waktu yang layak, retransmit
- Error-Correction kode
- Memungkinkan penerima untuk mendeteksi dan mungkin kesalahan yang benar
- Kesalahan mengendalikan dilakukan pada berbagai lapisan protokol
 - Antara jaringan dan setasiun
 - Di dalam jaringan

Pengalamatan

- Tingkatan pengalamatan
- Lingkup pngalamatan
- Mengidentrifikasi koneksi
- Model pengalamatan

Konsep TCP/IP

Tingkatan pengalamatan

- Mengukur dalam arsitektur komunikasi di mana kesatuan dinamai
- Alamat unik untuk masing-masing sistem akhir
 - Misal server atau stasiun-kerja
- Dan masing-masing sistem intermediate
 - (Misal, penerus)
- Network-Level alamat
 - IP menunjuk atau internet alamat
 - OSI- jaringan melayani titik akses (NSAP)
 - Rute PDU yang digunakan untuk melalui/sampai jaringan
- Pada data tujuan harus menyalurkan ke beberapa proses
 - Masing-Masing proses menugaskan suatu identifier
 - TCP/IP pelabuhan
 - Melayani titik akses dalam OSI

Lingkup Pengalamatan

- Alamat global
 - Nonambiguas yang global
 - Mengidentifikasi sistem yang unik
 - Sinonim diijinkan
 - Sistem mungkin punya lebih dari satu alamat yang global
 - Applicabilas yang global
 - Mungkin Pada manapun alamat global untuk mengidentifikasi alamat yang global lain, di dalam manapun sistem, atas pertolongan alamat global sistem yang lain
 - Memungkinkan internet untuk mengarahkan data antara manapun dua sistem
- Memerlukan alamat unik untuk masing-masing alat menghubungkan pada jaringan
 - MAC menunjuk pada IEEE 802 jaringan dan ATM alamat tuan rumah
 - Memungkinkan jaringan untuk mengarahkan unit data melalui jaringan dan mengirimkan untuk berniat sistem
 - Pemasangan jaringan menunjuk alamat
- Menujukan lingkup hanya relevan untuk network-level alamat
- Pelabuhan atau SAP di atas jaringan mengukur adalah unik di dalam sistem
 - Tidak perlu serentak unik
 - Misal: pelabuhan 80 server jaringan yang mendengarkan pelabuhan di TCP/IP

Pengidentifikasi Koneksi

- Kesatuan sistem Suatu koneksi permintaan ke kesatuan 2 pada atas sistem B, menggunakan alamat B.2 yang global.
- B.2 menerima koneksi
- Koneksi identifier digunakan oleh kedua-duanya kesatuan untuk transmisi masa depan
- Ongkos Exploitasi yang dikurangi
 - biasanya lebih pendek Dibanding identifiers yang global
- Penaklukan
 - Rute yang ditetapkan;perbaiki mungkin digambarkan
 - Koneksi identifier mengidentifikasi rute ke sistem intermediate/antara
- Terdiri Dari Banyak Bagian
 - Kesatuan mungkin ingin koneksi lebih dari satu secara serempak
 - PDUs harus dikenali oleh koneksi identifier
- Penggunaan informasi status
- Sekali ketika koneksi di/mendirikan;tetapkan, mengakhiri sistem dapat memelihara informasi status tentang koneksi
 - kesalahan dan Arus mengendalikan menggunakan angka-angka urutan

Adressing Mode

- Pada umumnya alamat mengacu pada pelabuhan atau sistem tunggal
 - Alamat yang unicast atau individu
- Menunjuk dapat mengacu pada pelabuhan atau kesatuan lebih dari satu
 - Berbagai penerima bersama untuk data
 - Siaran untuk semua kesatuan di dalam daerah
 - Multicast untuk subset spesifik kesatuan

Terdiri Dari Banyak Bagian

- Hubungan paralel ke dalam sistem tunggal
 - Misal membingkai penyiaran ulang, kaleng mempunyai berbagai data menghubungkan koneksi yang mengakhiri di dalam sistem akhir yang tunggal
 - koneksi Multiplexed di atas alat penghubung phisik tunggal
- Mampu juga terpenuhi via nama pelabuhan
 - Juga mengijinkan berbagai koneksi bersama
 - Misal:berbagai TCP koneksi untuk memberi sistem
- Masing-Masing koneksi tentang pelabuhan penghembus yang berbeda

Multiplexing Dengan Tingkatantingkatan

- Upward or inward multiplexing
 - Berbagai koneksi tingkat yang lebih tinggi membagi bersama koneksi [yang] tingkat yang lebih rendah tunggal
 - Lebih efisien menggunakan lower-level service
 - Menyediakan beberapa koneksi tingkat yang lebih tinggi di mana hanya koneksi tingkat yang lebih rendah tunggal ada
- Terdiri Dari Banyak Bagian mengarah ke bawah, atau pemisahan
 - Higher-Level koneksi membangun pada puncak berbagai koneksi [yang] tingkat yang lebih rendah
 - Lalu lintas pada koneksi lebih tinggi dibagi antar koneksi lebih rendah
- Keandalan, capaian, atau efisiensi.

Layanan Transmisi

- Protokol mungkin menyediakan jasa tambahan ke kesatuan
- Misal:
- Prioritas
 - Basis koneksi
 - Pada basis pesan
 - Misal:permintaan terminate-connection
- Mutu layanan
 - Misal:throughput minimum atau ambang pintu penundaan [yang] maksimum
- Keamanan
 - Mekanisme keamanan, membatasi akses
- Jasa ini tergantung pada sistem dasar transmisi dan kesatuan tingkat yang lebih rendah

Internetworking Terminologi (1)

- Jaringan Komunikasi
 - Fasilitas yang menyediakan data layanan pemindahan
- Suatu internet
 - Koleksi jaringan komunikasi yang saling behubungan oleh penerus dan/atau jembatan
- Internet- mencatat huruf besar I
 - Koleksi global beribu-ribu mesin individu dan jaringan
- Intranet
 - perusahaan Internet yang beroperasi di dalam organisasi
 - Menggunakan Internet (TCP/IP dan http)technology untuk mengirimkan sumber daya dan dokumen

Terminologi Internetworking (2)

Mengakhiri Sistem

- Alat terhubung dengan salah satu dari jaringan dari suatu internet
- Mendukung jasa atau aplikasi pemakai akhir

Sistem Intermediate

- Alat digunakan untuk menghubungkan dua jaringan
- Mengijinkan komunikasi antara sistem akhir jaringan berbeda yang dihubungkan

Internetworking Terminologi (3)

Jembatan

- APAKAH digunakan untuk menghubungkan dua LANS yang menggunakan LAN protokol yang serupa
- Menunjuk saringan yang menyampaikan paket kepada jaringan diperlukan saja
- OSI lapisan 2 (Mata Rantai Data)

Penerus

- Menghubungkan dua orang (mungkin berlainan) jaringan
- Menggunakan internet protokol hadir di masingmasing penerus dan sistem akhir
- OSI Lapisan 3 (Jaringan)

Kebutuhan dalam Internetworkinglah

- Mata rantai antara jaringan
 - Phisik minimum dan lapisan mata rantai
- Penaklukan dan penyerahan data antar[a] memproses tentang jaringan yang berbeda
- status dan Jasa akuntansi info
- Tidak terikat pada arsitektur jaringan

Corak Arsitektur Jaringan

- Menujukan
- Ukuran paket
- Mengakses mekanisme
- Timeouts
- Kesembuhan kesalahan
- Status yang melaporkan
- Penaklukan
- Pemakai mengakses kontrol
- Koneksi mendasarkan atau connectionless

Pendekatan Secara Arsitektur

- Connection oriented
- Connectionless

Connection oriented

- Berasumsi bahwa masing-masing jaringan adalah connection oriented
- Menghubungkan dua atau lebih jaringan
 - Nampak sebagai untuk masing-masing jaringan
 - Koneksi logis yang disediakan antara ESS
 - Penggabungan koneksi logis ke seberang jaringan
 - Jaringan individu sirkit sebetulnya yang dihubungkan oleh IS
- Memerlukan peningkatan jasa jaringan lokal
 - 802, FDDI adalah datagram jasa

Koneksi Oriented adalah Fungsi

- Penyiaran
- Penaklukan
- Misal X.75 digunakan untuk saling behubungan X.25 paket jaringan yang diswitch
- Connection oriented tidak sering digunakan
 - (IP dominan)

Operasi Connectionless

- Sesuai dengan datagram mekanisme di dalam paket jaringan yang diswitch
- Masing-Masing NPDU memperlakukan secara terpisah
- Protokol lapisan jaringan yang umum untuk semua DTEs dan routers
 - yang diketahui Untuk umum sebagai internet protokol
- Internet Protokol
 - Satu internet protokol seperti itu dikembangkan untuk ARPANET
 - RFC 791
 - Menurunkan lapisan protokol diperlukan untuk mengakses jaringan tertentu

Internetworking Connectionless

- Keuntungan
 - Fleksibilitas
 - Sempurna
 - Tidak ada ongkos exploitasi yang tak perlu
- Tak Dapat Dipercaya
 - Tidak menjamin penyerahan
 - Tidak menjamin order;pesanan penyerahan
 - Paket dapat mengambil rute berbeda
 - Keandalan adalah tanggung jawab dari lapisan berikutnya (Misal:TCP)

Operasi IP

Disain Isu

- Routing
- Datagram seumur hidup
- Pemecahan menjadi kepingan dan reassembly
- kontrol kesalahan
- Kontrol aliran

Internet sebagai network

(a) Packet-switching network architecture

(b) Internetwork architecture

Routing

- Mengakhiri sistem dan router memelihara tabel routing
 - Menandai router berikutnya yang mana datagram harus dikirim
 - Statis
 - Berisi rute alternatif
 - Dinamis
 - Tanggapan fleksibel untuk kesalahan
- Sumber routing
 - Sumber menetapkan rute sebagai percontohan daftar router untuk diikuti
 - Keamanan
 - Prioritas
- Merekam route

Datagram Seumur Hidup

- Datagrams bisa pengulangan/jerat dengan tak terbatas
 - Mengkonsumsilah sumber daya
 - Mengangkutlah protokol mungkin memerlukan senyawa/bentuk bagian atas pada [atas]

datagram hidup

- Datagram ditandai dengan seumur hidup
 - Waktu Untuk Tinggal/Hidup di dalam IP
 - Sekali ketika seumur hidup berakhir, datagram di/membuang (tidak di/menyampaikan)
- Meloncat gelar ningrat
- Waktu pengurangan untuk mempertahankan hidup melintas suatu masing-masing penerus
 - Gelar Ningrat waktu
- Harus mengetahui berapa lama sejak penerus yang lalu
- (Ke Samping: membandingkan dengan Logan'S Di/Yang Lari)

Pemecahan menjadi kepingan dan Re-Assembly

- Ukuran paket yang berbeda
- Kapan ke re-assemble
 - Pada tujuan
 - Mengakibatkan paket menjadi lebih kecil ketika data menyilang internet
 - Intermediate/Antara re-assembly
 - Memerlukan penyangga besar pada router
 - Penyangga mengisi dengan fragmen
 - Semua fragmen harus berhasil menyamai router
 - Menghalangi dinamis menaklukkan

Pemecahan IP (1)

- Ip re-assembles pada tujuan saja
- Menggunakan bidang header
 - Data Unit Identifier (ID)
 - Mengidentifikasi sistem akhir datagram yang dimulai
 - alamat tujuan dan Sumber
 - Lapisan protokol yang membangitkan data (Misal TCP)
 - Identifikasi yang disediakan oleh lapisan itu
- Panjangnya data
 - Panjangnya data pemakai di dalam komposisi music
 8 suara

Pemecahan IP(2)

- Offset
 - Posisi fragmen data pemakai di dalam datagram yang asli
 - Di dalam 64 bit (8 komposisi music 8 suara)
- Lebih banyak flags
 - Menunjukkan bahwa ini bukan fragmen terakhir

Contoh Fragmentasi

Original datagram
Data length = 404 octets
Segment offset = 0
More = 0

Berhadapan Dengan Kegagalan

- Re-Assembly mungkin gagal jika beberapa fragmen hilang
- Harus mendeteksi kegagalan
- Re-Assembly beristirahat
 - yang ditugaskan Ke fragmen pertama untuk tiba
 - Jika timeout berakhir terutama sekali fragmen tiba, membuang data yang parsial
- Menggunakan paket seumur hidup (waktu untuk tinggal di IP)

kontrol Kesalahan

- Tidak menjamin penyerahan
- router perlu mencoba untuk menginformasikan sumber jika paket dibuang
 - Misal:karena waktu untuk tinggal/hidup berakhir
- Sumber mungkin memodifikasi strategi transmisi
- Menginformasikan protokol lapisan yang tinggi
- Datagram identifikasi diperlukan
- (Memandang ICMP)

Arus kontrol

- Mengijinkan router-router dan/atau stasiun-stasiun untuk membatasi tingkat data yang datang
- Terbatas di dalam sistem yang connectionless
- Mengirimkan arus untuk mengendalikan paket
 - Permintaan arus yang dikurangi
- Misal:ICMP

Internet Protokol (IP) Versi 4

- Bagian Dari TCP/IP
 - Digunakan oleh Internet
- Menetapkan alat penghubung dengan lapisan yang lebih tinggi
 - Misal:TCP
- Menetapkan mekanisme dan format protokol
- RFC 791
 - Dapatkan dan pelajari!
 - www.rfc-editor.org
- Akankah (secepatnya) jadi digantikan oleh IPV6

Layanan IP

- Primitif
 - Berfungsi untuk dilakukan
 - Format bergantung implementasi yang primitif
- Misal subroutine call
 - Mengirim
- Meminta transmisi unit data
 - Mengirimkan
- Memberitahu pemakai kedatangan unit data
- Parameter
 - Data pass yang digunakan untuk dan kontrol info

Parameter (1)

- Alamat sumber
- Alamat tujuan
- Protokol
 - penerima Misal TCP
 - Jenis Layanan
 - Menetapkan perawatan unit data selama transmisi melalui jaringan
- Identifikasi
 - Sumber, tujuan pengalamatan dan protokol pemakai
 - Dengan uniknya mengidentifikasi PDU
 - Perlu untuk re-assembly dan pelaporan kesalahan
 - Mengirimkan saja

Parameter (2)

- Tanpa membagi-bagi indikator
 - Mampukah IP membagi-bagi data
 - Jika tidak,tidak mungkin untuk mengirimkan
 - Mengirimkan saja
- Waktu untuk tinggal/hidup
 - Mengirimkan saja
- Panjang data
- Data pilihan
- Data pemakai

Pilihan

- Keamanan
- Sumber routing
- Merekam routing
- Identifikasi arus
- Timestamping

IPv4 Header

Bidang Header (1)

- Versi
 - Sekarang ini 4
 - IP v6- kemudian
- Panjangnya header Internet
 - Di dalam 32 kata bit
 - Termasuk pilihan
- Jenis layanan
- Total panjang
- O-F datagram, di dalam komposisi music 8 suara

Bidang Header (2)

- Identifikasi
 - Nomor; urutan
 - protokol pemakai dan alamat yang digunakan untuk mengidentifikasi datagram dengan uniknya
- Flags
 - Lebih banyak bit
 - tanpa fragmen
- Offset pemecahan menjadi kepingan
- Waktu untuk tinggal/hidup
- Protokol
 - Lapisan lebih tinggi berikutnya untuk menerima bidang data pada tujuan

Bidang Header (3)

- Header Checksum
 - Reverified dan recomputed pada masing-masing router
 - 16 bit melengkapi penjumlahan dari semua 16 katakata bit dalam header
 - Mulailah nol selama kalkulasi
- Alamat sumber
- Alamat tujuan
- Pilihan
- Lapisan
 - Untuk mengisi 32 bit panjang

Bidang Data

- Membawa data pemakai dari lapisan berikutnya
- Bilangan bulat berbagai 8 bit panjang (komposisi music 8 suara)
- Max panjangnya datagram (header tambah data) 65,535 komposisi music 8 suara

IPv4 Address Formats

Alamat IP- Kelas A

- 32 bit internet alamat global
- Bagian Jaringan dan bagian host
- Kelas A
 - Mulai dengan biner 0
 - Semua 0 dipesan
 - 01111111 (127) disediakan untuk loopback
 - Mencakup 1.x.x.x ke 126.x.x.x
 - Semua dialokasikan

Alamat IP- Kelas B

- Mulai 10
- Mencakup 128.x.x.x ke 191.x.x.x
- Ke Dua Komposisi music 8 suara juga tercakup di jaringan menunjuk
- 214= 16,384 kelas B menunjuk
- Semua dialokasikan

Alamat IP- Kelas C

- Mulai 110
- Mencakup 192.x.x.x ke 223.x.x.x
- Ke dua dan komposisi music 8 suara ketiga juga bagian dari jaringan menunjuk
- 221= 2,097,152 alamat
- Hampir semua dialokasikan
 - lihat IPV6

Subnets dan Topeng Subnet

- Mengijinkanl kompleksitas INTERNETWORKED LANS sewenang-wenang di dalam organisasi
- Membatasi keseluruhan internet dari pertumbuhan angka-angka jaringan dan kompleksitas routing
- Lokasi menantikan istirahat internet seperti jaringan tunggal
- Masing-Masing LAN menugaskan subnet nomor
- Porsi host alamat menyekat ke dalam subnet nomor;jumlah tuan rumah dan nomor;jumlah
- Rute router lokal di dalam subnetted jaringan
- Subnet topeng menandai adanya bit yang merupakan subnet n

Routing Using Subnets

IP Address: 192.228.17.97

Host number: 1

ICMP

- Internet Control Message Protocol
- RFC 792
- Perpindahan (kontrol) pesan dari hosts dan routers ke hosts
- Umpan balik tentang permasalahan
 - Misal:waktu untuk tinggal/hidup berakhir
- Encapsulated di dalam IP datagram
 - Tidak dapat dipercaya

Format Pesan ICMP

(a) Destination Unreachable; Time Exceeded; Source Quench

(b) Parameter Problem

(c) Redirect

(d) Echo, Echo Reply

0		8	16	31	
	Туре	Code	Checksum		
	Identifier		Sequence Number		
	Originate Timestamp				

(e) Timestamp

0	8	16 31		
Туре	Code	Checksum		
Identifier		Sequence Number		
Originate Timestamp				
Receive Timestamp				
Transmit Timestamp				

(f) Timestamp Reply

(g) Address Mask Request

(h) Address Mask Reply

IP v6- Nomor Versi

- IP v 1-3 digantikan dan digambarkan
- IP v4- versi yang sekarang
- IP v5- protokol arus
- IP v6- penggantian untuk IP v4
 - Selama pengembangan disebut IPNG
 - Generasi yang Berikutnya

Mengapa Merubah IP?

- Menunjuk kelelahan ruang spasi
 - Dua tingkatan yang menuju (host dan jaringan) memboroskan ruang
 - Alamat jaringan menggunakan sekalipun tidak menghubungkan ke Internet
 - Pertumbuhan jaringan dan Internet
 - Penggunaan TCP/IP yang diperluas
 - Alamat tunggal saban tuan rumah
- Kebutuhan untuk jenis layanan yang baru

RFCS IPV6

- 1752- Pujian/Rekomendasi untuk IP Protokol Generasi [yang] Berikutnya
- 2460- Keseluruhan spesifikasi
- 2373- menujukan struktur
- yang lain
- www.rfc-editor.org

Peningkatan IPV6 (1)

- Ruang;Spasi alamat yang diperluas
 - 128 bit
- Mekanisme pilihan yang ditingkatkan
 - Memisahkan header opsional antara header IPV6 dan header lapisan pengangkutan
 - Kebanyakan tidak diuji oleh rute intermediate
- Kecepatan yang ditingkatkan dan penerus yang disederhanakan yang memproses
- Lebih mudah untuk meluas pilihan
- Menunjuk autoconfiguration
 - Tugas alamat yang dinamis

Peningkatan IPV6 (2)

- Fleksibilitas yang menujukan yang ditingkatkan
 - Anycast yang dikirimkan ke salah satu satu set node
 - Scalabilas yang ditingkatkan multicast alamat
- Pendukung alokasi sumber daya
 - Menggantikan jenis layanan
 - Label paket ke arus lalu lintas yang tertentu
 - Mengijinkan penanganan yang khusus
 - Misal:video waktu yang riil

Perluasan Header

- Hop-By-Hop Pilihan
 - Memerlukan proses pada masing-masing router
- Routing
 - serupa Ke v4 sumber yang menaklukkan
- Fragmen
- Pengesahan
- Encapsulating muatan penghasil untung keamanan
- Pilihan tujuan
 - Karena node tujuan

Header IP v6

Bidang Header Ip V6 (1)

- Versi
 - **–** 6
- Jalur Kelas
 - prioritas atau paket kelas
 - Meski demikian di bawah pengembangan
 - Melihat RFC 2460
- Aliran Label
 - Digunakan oleh hosts yang meminta penanganan khusus
- Panjangnya muatan penghasil untung
 - Memasukkan semua perluasan header dan data pemakai yang lebih

Bidang Header Ip V6 (2)

- Header yang Berikutnya
 - Mengidentifikasi jenis header
 - Perluasan atau lapisan berikutnya
- Alamat Sumber
- Alamat tujuan

Alamat IPV6

- 128 bit panjang
- ditugaskan untuk menghubungkan
- Alat penghubung tunggal mungkin punya berbagai alamat yang unicast
- Tiga jenis alamat

Jenis alamat

- Unicast
 - Alat Penghubung tunggal
- Anycast
 - Satuan alat penghubung (node yang berbeda secara khas)
 - Dikirimkan ke tiap penghubung
 - yang "paling dekat"
- Multicast
 - Satuan alat penghubung
 - Dikirimkan ke semua alat penghubung yang mengenali

IPv6 Extension Headers

Pilihan Hop-By-Hop

- Header berikutnya
- Panjangnya header
- Pilihan
 - Pad1
- Memasukkan satu byte lapisan ke dalam Options area header
 - Padn
- Memasukkan N (? 2) bytes lapisan ke dalam Options areaheader
- Memastikan header adalah 8 bytes
 - Jumbo muatan penghasil untung
- Di atas 216= 65,535 komposisi music 8 suara
 - Penerus siaga
- Menceritakan kepada router bahwa muatan paket menjadi perhatian utama ke router
- Menyediakanlah pen; dukungan untuk RSPV (bab 16)

Pemecahan Header

- Pemecahan hanya diijinkan pada sumber
- Tidak ada pemecahan pada penerus intermediate
- Node harus menemukan alur untuk menemukan MTU paling kecil jaringan intermediate
- Sumber membagi-bagi untuk bertemu MTU
- Jika tidak membatasi untuk 1280 komposisi music 8 suara

Pemecahan bidang Header

- Header yang Berikutnya
- Memesan
- Offset pemecahan menjadi kepingan
- Memesan
- Lebih bayak flag
- Identifikasi

Routing Header

- Daftar satu atau lebih node-node intermediate untuk dikunjungi
- Header Berikutnya
- Panjangnya perluasan Header
- Jenis routing
- Segmen ditinggalkan
 - yaitu. beberapa nodes masih dikunjungi

Pilihan Tujuan

 Format sama sebagai Hop-By-Hop serudukan/palu air pilihan