

PCT/EP200 4 / 0 0 2 4 3 6

BUNDESREPUBLIK DEUTSCHLAND

08 SEP 2005

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

103 11 118.2

CERTIFIED COPY OF PRIORITY DOCUMENT

Anmeldetag:

12. März 2003

Anmelder/Inhaber:

BASF Plant Science GmbH, 67056 Ludwigshafen/DE

Bezeichnung:

Verfahren zur Erhöhung der Resistenz gegen

Stressfaktoren in Pflanzen

IPC:

C 07 K, C 12 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 25. März 2004

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

W.A.

Ebort

BASF Plant Science GmbH

20030082

PF 54350 DE

Verfahren zur Erhöhung der Resistenz gegen Streßfaktoren in Pflanzen

Beschreibung

5

10

Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung der Resistenz gegen mindestens einen biotischen oder abiotischen Streßfaktor in Pflanzen, bevorzugt gegen pflanzliche Pathogene, durch Erhöhung der Expression mindestens eines Bax-Inhibitor 1 (BI1) Proteins in mindestens einem pflanzlichen Gewebe mit der Maßgabe, dass die Expression in der Blattepidermis im wesentlichen unverändert bleibt. Die Erfindung betrifft ferner rekombinante Expressionskassetten und Vektoren, die eine für ein BI-Protein kodierende Nukleinsäuresequenz unter Kontrolle eines gewebespezifischen Promotors umfassen, wobei der Promotor im wesentlichen keine Aktivität in der Blattepidermis aufweist. Die Erfindung betrifft ferner mit besagten Expressionskassetten oder Vektoren transformierte rekombinante Pflanzen, davon abgeleitete Kulturen, Teile oder rekombinantes Vermehrungsgut, sowie die Verwendung derselben zur Herstellung von Nahrungs-, Futtermitteln, Saatgut, Pharmazeutika oder Feinchemikalien.

Ziel biotechnologischer Arbeiten an Pflanzen ist die Herstellung von Pflanzen mit vorteilhaften, neuen Eigenschaften zum Beispiel zur Steigerung der landwirtschaftlichen Produktivität, zur Qualitätssteigerung bei Nahrungsmitteln oder zur Produktion bestimmter Chemikalien oder Pharmazeutika. Oft sind die natürlichen Abwehrmechanismen der Pflanze gegen Pathogene unzureichend. Allein Pilzerkrankungen führen zu Ernteverlusten in der Höhe von vielen Milliarden US-\$ jährlich. Die Einführung fremder Gene aus Pflanzen, Tieren oder mikrobiellen Quellen kann die Abwehr verstärken. Beispiele sind der Schutz gegen Insektenfraß in Tabak durch Expression von Bacillus thuringiensis Endotoxinen (Vaeck et al. (1987) Nature 328:33-37) oder der Schutz des Tabaks gegen Pilzbefall durch Expression einer Chitinase aus der Bohne (Broglie et al. (1991) Science 254:1194-1197). Die meisten der beschriebenen Ansätze gewähren jedoch nur eine Resistenz gegen ein einzelnes Pathogen oder gegen ein schmales Spektrum von Pathogenen.

40

25

30

Es gibt nur wenige Ansätze, die Pflanzen eine Resistenz gegen ein breiteres Spektrum von Pathogenen, vor allem Pilzpathogene, verleihen. Die systemische erworbene Resistenz ("systemic acquired resistance"; SAR) – ein Abwehrmechanismus bei verschiedenen Pflanze/Pathogen-Interaktionen – kann durch Applikation von endogene Botenstoffe wie Jasmonat (JA) oder

Salizylsäure (SA) vermittelt werden (Ward et al. (1991) Plant Cell 3:1085-1094; Uknes et al. (1992) Plant Cell 4(6):645-656). Ähnliche Effekte können auch durch synthetische Verbindungen wie 2,6-Dichlorisonikotinsäure (DCINA) oder Benzo(1,2,3)thiadiazol-7-thiocarbonsäure-S-methylester (BTH; Bion®) (Friedrich et al. (1996) Plant J 10(1):61-70; Lawton et al. (1996) Plant J 10:71-82) bewirkt werden. Auch die Expression der im Rahmen eines SAR hochregulierten "pathogenesis related" (PR) Proteine vermag zum Teil eine Pathogenresistenz zu bewirken.

10

In Gerste ist der Mlo-Locus als negativer Regulator der Pathogenabwehr beschrieben. Der Verlust oder Funktionsverlust ("loss-of-function") des Mlo-Géns bedingt eine erhöhte, rassenunspezifische Resistenz gegen zahlreiche Mehltauisolate (Büschges R et al. (1997) Cell 88:695-705; Jorgensen JH (1977) Euphytica 26:55-62; Lyngkjaer MF et al. (1995) Plant Pathol 44:786-790).

Das Mlo-Gen ist beschrieben (Büschges R et al. (1997) Cell 88:695-705; WO 98/04586; Schulze-Lefert P, Vogel J (2000) Trends Plant Sci. 5:343-348). Verschiedene Mlo-Homologe aus anderen Getreidearten wurden isoliert. Verfahren unter Verwendung dieser Gene zum Erzielen einer Pathogenresistenz sind beschrieben (WO 98/04586; WO 00/01722; WO 99/47552). Nachteilig ist, dass Mlodefiziente Pflanzen auch in Abwesenheit eines Pathogens den o.g. Abwehrmechanismus initiieren, was sich in einem spontanen

Absterben von Blattzellen äußert (Wolter M et al. (1993) Mol Gen Genet 239:122-128). Dadurch erleiden mlo-resistente Pflanzen eine Ertragseinbuße von ca. 5% (Jörgensen JH (1992) Euphytica 63: 141-152). Das spontane Absterben der Blattzellen bedingt ferner eine nachteilige Hypersuszeptibilität gegen nekrotrophe und hemibiotrophe Pathogene wie Magnaporte grisea (M. grisea) oder Cochliobolus sativus (Bipolaris sorokiniana) (Jarosch B et al. (1999) Mol Plant Microbe Interact 12:508-514; Kumar J

et al. (2001) Phytopathology 91:127-133).

35

25

Faktoren die einen der mlo-Resistenz vergleichbaren Effekt gegen nekrotrophe Pilze vermitteln, konnten bislang nicht identifiziert werden. Dies mag an dem besonderen Infektionsmechanismus der nekrotrophen Pilze liegen: Anstelle einer Appressorien-vermittelten Penetration infundieren sie zunächst die pflanzliche Wirtszelle mit Mykotoxinen und Enzymen, was zu einem Absterben der Zelle führt. Erst danach wird die Zelle penetriert (Shirasu K and Schulze-Lefert P (2000) Plant Mol Biol 44:371-385). Ähnliche Infektionsstrategien verfolgen

bakterielle Pathogene wie Erwinina carotovora (Whitehead NA et al. (2002) Antonie van Leeuwenhoek 81: 223-231). Eine Penetrationsresistenz mit Hilfe von Papillenbildung etc. stellt hier keine effiziente Abwehrstrategie dar.

5

20

25

30

40

Apoptose, auch als programmierter Zelltod bezeichnet, ist ein essentieller Mechanismus zur Aufrechterhaltung der Gewebehomöostase und steht damit der Zellteilung als negativ regulierender Mechanismus gegenüber. Im vielzelligen Organismus ist die Apoptose ein natürlicher Bestandteil der Ontogenese und u.a. an der Entwicklung der Organe und der Beseitigung von gealterten, infizierten oder mutierten Zellen beteiligt. Durch die Apoptose wird eine effiziente Elimination von unerwünschten Zellen erreicht. Eine Störung oder Inhibition der Apoptose trägt zur Pathogenese verschiedener Erkrankungen bei, unter anderem zur Karzinogenese. Die Haupteffektoren der Apoptose sind Aspartat-spezifische Cystein-Proteasen, die sogenannten Caspasen. Ihre Aktivierung kann durch mindestens zwei Apoptose-Signalwege stattfinden: Zum einen durch die Aktivierung der TNF-(Tumor Necrosis Factor) Rezeptorfamilie, zum anderen spielen Mitochondrien eine zentrale Rolle. Die Aktivierung des mitochondrialen Apoptose-Signalweges wird durch Proteine der Bcl-2-Familie reguliert. Diese Proteinfamilie besteht aus antiapoptotischen sowie pro-apoptotischen Proteinen wie z.B. Bax. Im Falle eines apoptotischen Stimulus findet eine allosterische Konformationsänderung des Bax-Proteins statt, welche zur Verankerung des Proteins in der mitochondrialen Außenmembran und seiner Oligomerisierung führt. Durch diese Oligomere werden proapoptotischen Moleküle aus den Mitochondrien ins Zytosol freigesetzt, die eine apoptotische Signalkaskade und letztlich die Degradierung spezifischer zellulärer Substrate bedingen, was den Zelltod zur Folge hat. Der Bax Inhibitor-1 BI1 wurde über seine Eigenschaft isoliert, die pro-apoptotische Wirkung von BAX zu inhibieren (Xu Q & Reed JC (1998) Mol Cell 1(3): 337-346). BI1 stellt ein hochkonserviertes Protein dar. Es findet sich überwiegend als integraler Bestandteil intrazellulärer Membranen. BI1 interagiert mit bcl-2 und bcl-xl. Überexpression von BI1 in Säugetierzellen unterdrückt die pro-apoptotische Wirkung von BAX, Etoposid und Staurosporin, aber nicht von Fas-Antigen (Roth W and Reed JC (2002) Nat Med 8: 216-218). Die Inhibition von BI1 durch antisense-RNA hingegen induziert Apoptose (Xu Q & Reed JC (1998) Mol Cell 1(3):337-346). Die ersten pflanzlichen Homologen von BI1 wurden aus Reis und Arabidopsis isoliert (Kawai et al. (1999) FEBS Lett 464:143-147;

20

25

4

Sanchez et al (2000) Plant J 21:393-399). Diese pflanzlichen Proteine supprimieren BAX-induzierten Zelltod in Hefe. Die Aminosäure-Sequenzhomologie zu menschlichem BI1 beträgt ca. 45%. Das Arabidopsis-Homolog AtBI1 vermag in rekombinanten Pflanzen die pro-apoptotische Wirkung von BAX aus Maus zu supprimieren (Kawai-Yamada et al. (2001) Proc Natl Acad Sci USA 98(21):12295-12300). Das Reis (Oryza sativa) BII-Homolog OsBI1 wird in allen pflanzlichen Geweben exprimiert (Kawai et al. (1999) FEBS Lett 464: 143-147). Beschrieben sind ferner BI1-Gene aus Gerste (Hordeum vulgare; GenBank Acc.-No.: AJ290421), Reis (GenBank Acc.-No.: AB025926), Arabidopsis (GenBank Acc.-No.: AB025927), Tabak (GenBank Acc.-No.: AF390556) und Raps (GenBank Acc.-No.: AF390555, Bolduc N et al. (2003) Planta 216:377-386). Die Expression von BI1 in Gerste wird infolge einer Infektion mit Mehltau hochreguliert (Hückelhoven R et al. (2001) Plant Mol Biol 47(6):739-748).

WO 00/26391 beschreibt die Überexpression der anti-apoptotischen Gene Ced-9 aus C. elegans, sfIAP aus Spodoptera frugiperda, bcl-2 aus Mensch sowie bcl-xl aus Huhn in Pflanzen zur Erhöhung der Resistenz gegen nekrotrophe bzw. hemibiotrophe Pilze. Pflanzliche BI1 Homologe werden nicht offenbart. Die Expression erfolgt unter Kontrolle konstitutiver Promotoren. Beschrieben ist ferner die Expression eines BI1 Proteins aus Arabidopsis unter dem starken konstitutiven 35S CaMV Promotor in Reiszellen und eine dadurch induzierte Resistenz gegen Zelltod induzierende Substanzen aus Magnaporthe grisea (Matsumura H et al. (2003) Plant J 33:425-434).

30 Überraschenderweise wurde im Rahmen dieser Erfindung gefunden, dass eine konstitutive Expression eines BI1-Proteins zwar eine Resistenz gegen nekrotrophe Pilze bedingt, jedoch ein Brechen der mlo-vermittelten Resistenz gegen obligat-biotrophen Echten Mehltau (siehe Vergleichsversuch 1) zur Folge hat. Dies stellt den wirtschaftlichen Nutzen der im Stand der Technik beschriebenen Verfahren in Frage.

Es bestand die Aufgabe, Verfahren zur Pathogenabwehr in Pflanzen bereitzustellen, die eine effiziente Abwehr pflanzlicher

Pathogene (bevorzugt nekrotropher Pathogene) ermöglichen, ohne eine ggf. bestehende Resistenz gegen andere Pathogene (wie beispielsweise biotrophe Pathogene) zu brechen. Diese Aufgabe wird durch das erfindungsgemäße Verfahren gelöst.

Ein erster Gegenstand der Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung der Resistenz gegen mindestens einen biotischen oder abiotischen Streßfaktor in Pflanzen, wobei nachfolgende Arbeitsschritte umfaßt sind

5

Erhöhung der Proteinmenge oder Funktion mindestens eines Bax a) Inhibitor-1 (BI1) Proteins in mindestens einem pflanzlichen Gewebe mit der Maßgabe, dass die Expression in der Blattepidermis im wesentlichen unverändert bleibt, und

10

Auswahl der Pflanzen, bei denen im Vergleich zur b) Ausgangspflanze eine Resistenz gegen mindestens einen biotischen oder abiotischen Streßfaktor besteht oder erhöht ist.

15

Bevorzugt ist der biotische oder abiotische Streßfaktor ein Pathogen, besonders bevorzugt ein Pathogen ausgewählt aus der Gruppe der nekrotrophen und hemibiotrophen Pathogene.

20

In einer bevorzugten Ausführungsform erfolgt die Erhöhung der Proteinmenge oder Funktion des BI1-Proteins wurzel-, knollenoder mesophyll-spezifisch, besonders bevorzugt mesophyllspezifisch, beispielsweise durch rekombinante Expression einer für besagtes BI1-Protein kodierenden Nukleinsäuresequenz unter Kontrolle eines wurzel-, knollen- oder mesophyll-spezifischen Promotors, bevorzugt unter Kontrolle eines mesophyllspezifischen Promotors.

In einer besonders bevorzugten Ausführungsform kann die Erhöhung der Proteinmenge oder Funktion mindestens eines pflanzlichen 30 ' BI1-Proteins kombiniert werden mit einem mlo-resistenten Phänotyp und so eine kombinierte Resistenz gegen sowohl nekrotrophe als auch biotrophe Pathogene gewähren.

Das BI1-Protein aus Gerste (hvBI1) wird vorwiegend im Mesophyll exprimiert (Beispiel 6) und infolge einer Infektion mit Blumeria (syn. Erysiphe) graminis f. sp.hordei hochreguliert (Beispiel 2). Die rekombinante mesophyll-spezifische Überexpression in mlo-resistenter Gerste führt - neben der Resistenz gegen 40 insbesondere nekrotrophe und hemibiotrophe Pathogene - zu einer Blumeria (syn. Erysiphe) graminis f. sp.hordei -resistenten Pflanze, die keine nekrotischen Flecken ("mlo-Flecken"; negative Begleiterscheinung der mlo-Resistenz) zeigt. Unter Ausnutzen dieses Effekts lassen sich die negativen Begleiterscheinungen

6

der mlo-vermittelten Resistenz (Ertragseinbuße von ca. 5%, Jörgensen JH (1992) Euphytica 63: 141-152); Hypersuszeptibilität gegen nekrotrophe Pilze, Jarosch B et al. (1999) Mol Plant Microbe Interact 12:508-514; Kumar J et al. (2001) Phytopathology 91:127-133) unterdrücken, ohne dass die mlo-Resistenz selber beeinträchtigt wird.

Ferner kann überraschenderweise gezeigt werden, dass eine Überexpression von BI1 eine Resistenz gegen Streßfaktoren wie nekrosen-auslösende Agenzien (isoliert z.B. aus nekrotrophen Schadpilzen; Beispiel 2) zur Folge hat.

Das erfindungsgemäße Verfahren bietet demnach eine effiziente biotechnologische Strategie der Resistenz gegen Nekrotisierung durch endogenen, abiotischen und biotischen Streß - beispielsweise mlo-Flecken, Ozonschäden, nekrotrophe und hemibiotrophe Schadorganismen.

BI1-Proteine scheinen zentrale Regulatoren der rasseunspezifischen Pilzresistenz in Pflanzen zu sein. Dies
ermöglicht eine breite Einsetzbarkeit in biotechnologischen
Strategien zur Erhöhung der Pathogenresistenz in Pflanzen
insbesondere der Pilzresistenz. Das erfindungsgemäße Verfahren
kann im Prinzip auf alle Pflanzenarten angewendet werden. BI1Proteine wurden in zahlreichen Pflanzen - Monokotyledonen und
Dikotyledonen - identifiziert (s.o.).

"Ungefähr" meint im Rahmen dieser Erfindung im Zusammenhang mit Zahlen- oder Größenangaben einen Zahlen- oder Größenbereich um den angegebenen Zahlen- oder Größenwert herum. Im allgemeinen meint der Begriff ungefähr einen Bereich von jeweils 20% des angegebenen Wertes nach oben und nach unten.

"Pflanze" im Rahmen der Erfindung meint alle Gattungen und Arten höherer und niedrigerer Pflanzen des Pflanzenreiches. Eingeschlossen unter dem Begriff sind die reifen Pflanzen, Saatgut, Sprossen und Keimlinge, sowie davon abgeleitete Teile, Vermehrungsgut, Pflanzenorgane, Gewebe, Protoplasten, Kallus und andere Kulturen, zum Beispiel Zellkulturen, sowie alle anderen Arten von Gruppierungen von Pflanzenzellen zu funktionellen oder strukturellen Einheiten. Reife Pflanzen meint Pflanzen zu jedem beliebigen Entwicklungsstadium jenseits des Keimlings. Keimling meint eine junge, unreife Pflanze in einem frühen Entwicklungsstadium.

"Pflanze" umfaßt alle einjährigen und mehrjährige,
monokotyledonen und dikotyledonen Pflanzen und schließt
beispielhaft jedoch nicht einschränkend solche der Gattungen

5 Cucurbita, Rosa, Vitis, Juglans, Fragaria, Lotus, Medicago,
Onobrychis, Trifolium, Trigonella, Vigna, Citrus, Linum,
Geranium, Manihot, Daucus, Arabidopsis, Brassica, Raphanus,
Sinapis, Atropa, Capsicum, Datura, Hyoscyamus, Lycopersicon,
Nicotiana, Solarium, Petunia, Digitalis, Majorana, Ciahorium,
Helianthus, Lactuca, Bromus, Asparagus, Antirrhinum,
Heterocallis, Nemesis, Pelargonium, Panieum, Pennisetum,
Ranunculus, Senecio, Salpiglossis, Cucumis, Browaalia, Glycine,
Pisum, Phaseolus, Lolium, Oryza, Zea, Avena, Hordeum, Secale,
Triticum, Sorghum, Picea und Populus ein.

15

Der Begriff "Pflanze" umfaßt bevorzugt monokotyledone Kulturpflanzen, wie zum Beispiel Getreidearten wie Weizen, Gerste, Hirse, Roggen, Triticale, Mais, Reis, Sorghum oder Hafer sowie Zuckerrohr.

20

40

Ferner umfaßt der Begriff dikotyledonen Kulturpflanzen, wie zum Beispiel

- Brassicacae wie Raps, Rübsen, Kresse, Arabidopsis,
 Kohlarten,
 - Leguminosae wie Soja, Alfalfa, Erbse, Bohnengewächsen oder Erdnuß
- 30 Solanaceae wie Kartoffel, Tabak, Tomate, Aubergine oder Paprika,
 - Asteraceae wie Sonnenblume, Tagetes, Salat oder Calendula,
- 35 Cucurbitaceae wie Melone, Kürbis oder Zucchini,

sowie Lein (Flachs), Baumwolle, Hanf, Klee, Spinat, Roter Pfeffer, Möhre, Karotte, Rübe, Rettich, Zuckerrübe, Süßkartoffel, Gurke, Chicorée, Blumenkohl, Brokkoli, Spargel, Zwiebel, Knoblauch, Sellerie, Erdbeere, Himbeere, Brombeere, Ananas, Avocado, und den verschiedenen Baum-, Strauch-, Nuß- und Weinarten. Baumarten umfaßt bevorzugt Pflaume, Kirsche, Pfirsich, Nektarine, Aprikose, Banane, Papaya, Mango, Apfel,

Birne, Quitte.

20

25

30

Im Rahmen der Erfindung sind solche Pflanzen bevorzugt, die als Nahrungs- oder Futtermittel zum Einsatz kommen, ganz besonders bevorzugt monokotyledone Gattungen und Arten mit landwirtschaftlicher Bedeutung wie Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen oder Zuckerrohr.

Der Begriff "Streßfaktor" umfaßt im Rahmen der vorliegenden Erfindung biotische Streßfaktoren (wie insbesondere die unten aufgeführten Pathogene) sowie abiotische Streßfaktoren. Beispielhaft jedoch nicht einschränkend sind als abiotische Streßfaktoren zu nennen: Chemischer Streß (z.B. durch Agrarund/oder Umweltchemikalien), US-Bestrahlung, Hitze, Kälte, Wassermangel, erhöhte Feuchtigkeit.

"Streßresistenz" meint das Vermindern oder Abschwächen von Symptomen einer Pflanze infolge von Stress. Die Symptome können vielfältiger Art sein, umfassen aber bevorzugt solche die direkt oder indirekt zu einer Beeinträchtigung Qualität der Pflanze, der Quantität des Ertrages, der Eignung zur Verwendung als Futter- oder Nahrungsmittel führen oder aber auch Aussaat, Anbau, Ernte oder Prozessierung des Erntegutes erschweren.

"Pathogenresistenz" meint das Vermindern oder Abschwächen von Krankheitssymptomen einer Pflanze infolge eines Befalls durch mindestens ein Pathogen. Die Symptome können vielfältiger Art sein, umfassen aber bevorzugt solche die direkt oder indirekt zu einer Beeinträchtigung Qualität der Pflanze, der Quantität des Ertrages, der Eignung zur Verwendung als Futter- oder Nahrungsmittel führen oder aber auch Aussaat, Anbau, Ernte oder Prozessierung des Erntegutes erschweren.

"Verleihen", "bestehen", "erzeugen" oder "erhöhen" einer Stressoder Pathogenresistenz meint, dass die Abwehrmechanismen einer bestimmten Pflanzenart oder -sorte durch Anwendung des erfindungsgemäßen Verfahrens im Vergleich zu dem Wildtyp der Pflanze ("Ausgangspflanze"), auf den das erfindungsgemäße

Verfahren nicht angewendet wurde, unter ansonsten gleichen Bedingungen (wie beispielsweise Klima- oder Anbaubedingungen, Stress- oder Pathogenart etc.) eine erhöhte Resistenz gegen ein und mehrere Stressfaktoren bzw. Pathogene aufweist. Dabei äußert sich die erhöhte Resistenz bevorzugt in einer verminderten

Ausprägung der Stress- oder Krankheitssymptome, wobei Krankheitssymptome - neben den oben erwähnten Beeinträchtigungen - auch beispielsweise die Penetrationseffizienz eines Pathogens in die Pflanze oder pflanzliche Zellen oder die Proliferationseffizienz in oder auf denselben umfaßt. Dabei sind die Stress- oder Krankheitssymptome bevorzugt um mindestens 10 % oder mindestens 20 %, besonders bevorzugt um mindestens 40 % oder 60 %, ganz besonders bevorzugt um mindestens 70 % oder 80 %, am meisten bevorzugt um mindestens 90 % oder 95 % vermindert.

10

15

20

"Auswahl" meint in Bezug auf Pflanzen, bei denen - im Unterschied oder Vergleich zur Ausgangspflanze - die Resistenz gegen mindestens einen Stressfaktor oder Pathogen besteht oder erhöht ist, all die Verfahren, die eine zur Erkennung einer vorliegenden oder erhöhten Stress- bzw. Pathogenresistenz geeignet sind. Dies können beispiesweise Symptome der Pathogeninfektion sein (z.B. Nekrosen-Ausbildung bei Pilzinfektion) aber auch die oben beschriebenen Symptome umfassen, die die Qualität der Pflanze, die Quantität des Ertrages, die Eignung zur Verwendung als Futter- oder Nahrungsmittel usw. betreffen.

"Pathogen" meint im Rahmen der Erfindung beispielsweise jedoch nicht einschränkend Viren oder Viroide, Bakterien, Pilze, 25 tierische Schädlinge, wie beispielsweise Insekten oder Nematoden. Besonders bevorzugt sind Pilze, insbesondere nekrotrophe oder hemibiotrophe Pilze. Es ist jedoch anzunehmen, dass die mesophyll-spezifische Expression eines BI1-Proteins auch eine Resistenz gegen weitere Pathogene bewirkt, da insgesamt eine Resistenz gegen Streßfaktoren erzeugt wird.

30

40

Beispielsweise jedoch nicht einschränkend seien nachfolgende Pathogene zu nennen:

35 Pilzpathogene oder pilz-ähnliche Pathogene:

Pilzpathogene oder pilz-ähnliche Pathogene (wie z.B. Chromista) stammen vorzugsweise aus der Gruppe umfassend Plasmodiophoramycota, Oomycota, Ascomycota, Chytridiomyceten, Zygomyceten, Basidiomycota und Deuteromyceten (Fungi imperfecti). Beispielhaft jedoch nicht einschränkend seien die in Tabelle 1 bis 4 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen. Folgende

englische und deutsche Termini können alternativ verwendet werden:

Ährenfäule - ear rot / head blight

Stengelfäule - stalk rot Wurzelfäule - root rot Rost - rust

15

20

Falscher Mehltau downy mildew

Weiter Übersetzungen können beispielsweise bei http://www.bba.de/english/database/psmengl/pilz.htm gefunden werden.

Tabelle 1: Erkrankungen hervorgerufen durch biotrophe, phytopathogene Pilze

Erkrankung	Pathogen
Braunrost	Puccinia recondita
Gelbrost	P. striiformis
Echter Mehltau	Erysiphe graminis / Blumeria graminis
Rost (gemeiner Mais)	Puccinia sorghi
Rost (südlicher Mais)	Puccinia polysora
Tabak Blattflecken	Cercospora nicotianae
Rost (tropischer Mais)	Physopella pallescens, P. zeae = Angiopsora zeae

Tabelle 2: Erkrankungen hervorgerufen durch nekrotrophe und/oder hemibiotrophe Pilze und Oomyceten

Erkrankung	Pathogen
Spelzenbräune	Septoria (Stagonospora) nodorum
Blattdürre	Septoria tritici
Ährenfusariosen	Fusarium spp.
Halmbruchkrankheit	Pseudocercosporella herpotrichoides
Flugbrand	Ustilago spp.
Kraut- und Knollenfäule	Phytohpthora infestans
Weizensteinbrand	Tilletia caries
Schwarzbeinigkeit	Gaeumannomyces graminis
Anthrocnose leaf blight	Colletotrichum graminicola
Anthracnose stalk rot	(teleomorph: Glomerella graminicola Politis); Glomerella tucumanensis

Erkrankung	Pathogen
	(anamorph: Glomerella falcatum Went)
Aspergillus ear and kernel rot	Aspergillus flavus
Banded leaf and sheath spot ("Wurzeltöter")	Rhizoctonia solani Kuhn = Rhizoctonia microsclerotia J. Matz (telomorph: Thanatephorus cucumeris)
Black bundle disease	Acremonium strictum W. Gams = Cephalosporium acremonium Auct. non Corda
Black kernel rot	Lasiodiplodia theobromae = Botryodiplodia theobromae
Borde blanco	Marasmiellus sp.
Brown spot (black spot, stalk rot)	Physoderma maydis
Cephalosporium kernel rot	Acremonium strictum = Cephalosporium acremonium
Charcoal rot	Macrophomina phaseolina
Corticium ear rot	Thanatephorus cucumeris = Corticium sasakii
Curvularia leaf spot	Curvularia clavata, C. eragrostidis, = C. maculans (teleomorph: Cochliobolus eragrostidis), Curvularia inaequalis, C. intermedia (teleomorph: Cochliobolus intermedius), Curvularia lunata (teleomorph: Cochliobolus lunatus), Curvularia pallescens (teleomorph: Cochliobolus pallescens), Curvularia senegalensis, C. tuberculata (teleomorph: Cochliobolus tuberculatus)
Didymella leaf spot	Didymella exitalis
Diplodia Ähren- und Stengelfäule	Diplodia frumenti (teleomorph: Botryosphaeria festucae)
Diplodia Ähren- und Stengelfäule, seed rot and seedling blight	Diplodia maydis = Stenocarpella maydis
Diplodia leaf spot or streak	Stenocarpella macrospora = Diplodialeaf macrospora
Brown stripe downy mildew	Sclerophthora rayssiae var. zeae
Crazy top downy mildew	Sclerophthora macrospora = Sclerospora macrospora

Erkrankung	Pathogen
Green ear downy mi ldew (graminicola downy mildew)	Sclerospora graminicola
Dry ear rot (cob, kernel and stalk rot)	Nigrospora oryzae (teleomorph: Khuskia oryzae)
Ährenfäulen (minor)	Alternaria alternata = A. tenuis, Aspergillus glaucus, A. niger, Aspergillus spp., Botrytis cinerea (teleomorph: Botryotinia fuckeliana), Cunninghamella sp., Curvularia pallescens, Doratomyces stemonitis = Cephalotrichum stemonitis, Fusarium culmorum, Gonatobotrys simplex, Pithomyces maydicus, Rhizopus microsporus Tiegh., R. stolonifer = R. nigricans, Scopulariopsis brumptii
Ergot(horse's tooth)	Claviceps gigantea (anamorph: Sphacelia sp.)
Eyespot	Aureobasidium zeae = Kabatiella zeae
Fusarium Ähren- und Stengelfäule	Fusarium subglutinans = F. moniliforme var.subglutinans
Fusarium kernel, root and stalk rot, seed rot and seedling blight	Fusarium moniliforme (teleomorph: Gibberella fujikuroi)
Fusarium Stengelfäule, seedling root rot	Fusarium avenaceum (teleomorph: Gibberella avenacea)
Gibberella Ähren- u. Stengelfäule	Gibberella zeae (anamorph: Fusarium graminearum)
Graue Ährenfäule	Botryosphaeria zeae = Physalospora zeae (anamorph: Macrophoma zeae)
Gray leaf spot (Cercospora leaf spot)	Cercospora sorghi = C. sorghi var. maydis, C. zeae-maydis
Helminthosporium root rot	Exserohilum pedicellatum = Helminthosporium pedicellatum (teleomorph: Setosphaeria pedicellata)
Hormodendrum Ährenfäule (Cladosporium Fäule)	Cladosporium cladosporioides = Hormodendrum cladosporioides, C. herbarum (teleomorph: Mycosphaerella tassiana)
Leaf spots, minor	Alternaria alternata, Ascochyta maydis, A. tritici, A. zeicola, Bipolaris victoriae =

Erkrankung	Pathogen
·	Helminthosporium victoriae (teleomorph: Cochliobolus victoriae), C. sativus (anamorph: Bipolaris sorokiniana = H. sorokinianum = H. sativum), Epicoccum nigrum, Exserohilum prolatum = Drechslera prolata (teleomorph: Setosphaeria prolata) Graphium penicillioides, Leptosphaeria maydis, Leptothyrium zeae, Ophiosphaerella herpotricha, (anamorph: Scolecosporiella sp.), Paraphaeosphaeria michotii, Phoma sp., Septoria zeae, S. zeicola, S. zeina
Northern corn leaf blight (white blast, crown stalk rot, stripe)	Setosphaeria turcica (anarnorph: Exserohilum turcicum = Helminthosporium turcicum)
Northern corn leaf spot Helminthosporium ear rot (race 1)	Cochliobolus carbonum (anamorph: Bipolaris zeicola = Helminthosporium carbonum)
Penicillium Ährenfäule (blue eye, blue mold)	Penicillium spp., P. chrysogenum, P. expansum, P. oxalicum
Phaeocytostroma Stengel- und Wurzelfäule	Phaeocytostroma ambiguum, = Phaeocytosporella zeae
Phaeosphaeria leaf spot	Phaeosphaeria maydis = Sphaerulina maydis
Physalospora Ährenfäule (Botryosphaeria Ährenfäule)	Botryosphaeria festucae = Physalospora zeicola (anamorph: Diplodia frumenti)
Purple leaf sheath	Hemiparasitic bacteria and fungi
Pyrenochaeta Stengel- und Wurzelfäule	Phoma terrestris = Pyrenochaeta terrestris
Pythium Wurzelfäule	Pythium spp., P. arrhenomanes, P. graminicola
Pythium Stengelfäule	Pythium aphanidermatum = P. butleri L.
Red kernel disease (ear mold, leaf and seed rot)	Epicoccum nigrum
Rhizoctonia Ährenfäule (sclerotial rot)	Rhizoctonia zeae (teleomorph: Waitea circinata)
Rhizoctonia Wurzel- und Stengelfäule	Rhizoctonia solani, Rhizoctonia zeae
Wurzelfäulen (minor)	Alternaria alternata, Cercospora sorghi, Dictochaeta fertilis, Fusarium acuminatum (teleomorph:

Enhandre	Dathage
Erkrankung	Gibberella acuminata), F. equiseti
	(teleomorph: G. intricans), F. oxysporum, F. pallidoroseum, F. poae, F. roseum, G. cyanogena, (anamorph: F. sulphureum), Microdochium bolleyi, Mucor sp., Periconia circinata, Phytophthora cactorum, P. drechsleri, P. nicotianae var. parasitica, Rhizopus arrhizus
Rostratum leaf spot	Setosphaeria rostrata, (anamorph:
(Helminthosporium leaf	Exserohilum rostratum =
disease, ear and stalk rot)	He/minthosporium rostratum)
Falscher Java Mehltau	Peronosclerospora maydis = Sclerospora maydis
Falscher Philippinen Mehltau	Peronosclerospora philippinensis = Sclerospora philippinensis
Falscher Sorghum Mehltau	Peronosclerospora sorghi = Sclerospora sorghi
Spontaneum downy mildew	Peronosclerospora spontanea = Sclerospora spontanea
Falscher Zuckerrohr-Mehltau	Peronosclerospora sacchari = Sclerospora sacchari
Sclerotium Ährenfäule	Sclerotium rolfsii Sacc.
(southern blight)	(teleomorph: Athelia rolfsii)
Seed rot-seedling blight	Bipolaris sorokiniana, B. zeicola = Helminthosporium carbonum, Diplodia maydis, Exserohilum pedicillatum, Exserohilum turcicum = Helminthosporium turcicum, Fusarium avenaceum, F. culmorum, F. moniliforme, Gibberella zeae (anamorph: F. graminearum), Macrophomina phaseolina, Penicillium spp., Phomopsis sp., Pythium spp., Rhizoctonia solani, R. zeae, Sclerotium rolfsii, Spicaria sp.
Selenophoma leaf spot	Selenophoma sp.
Sheath rot	Gaeumannomyces graminis
Shuck rot	Myrothecium gramineum
Silage mold	Monascus purpureus, M ruber
Flugbrand	Ustilago zeae = U. maydis
(Smut, common)	
Smut, false	Ustilaginoidea virens
Kolbenbrand	Sphacelotheca reiliana =

Erkrankung	Pathogen
(Smut, head)	Sporisorium holcisorghi
Southern corn leaf blight and stalk rot	Cochliobolus heterostrophus (anamorph: Bipolaris maydis = Helminthosporium maydis)
Southern leaf spot	Stenocarpella macrospora = Diplodia macrospora
Stengelfäulen (minor)	Cercospora sorghi, Fusarium episphaeria, F. merismoides, F. oxysporum Schlechtend, F. poae, F. roseum, F. solani (teleomorph: Nectria haematococca), F. tricinctum, Mariannaea elegans, Mucor sp., Rhopographus zeae, Spicaria sp.
Lagerfäulen (Storage rots)	Aspergillus spp., Penicillium spp. und weitere Pilze
Tar spot	Phyllachora maydis
Trichoderma ear rot and root rot	Trichoderma viride = T. lignorum teleomorph: Hypocrea sp.
White ear rot, root and stalk rot	Stenocarpella maydis = Diplodia zeae
Yellow leaf blight	Ascochyta ischaemi, Phyllosticta maydis (teleomorph: Mycosphaerella zeae-maydis)
Zonate leaf spot	Gloeocercospora sorghi

Tabelle 4: Erkrankungen hervorgerufen durch Pilze und
Oomyceten mit unklarer Einstufung hinsichtlich
biotrophen, hemibiotrophen bzw. nekrotrophen
Verhaltens

Erkrankung	Pathogen
Hyalothyridium leaf spot	Hyalothyridium maydis
Late wilt	Cephalosporium maydis

Besonders bevorzugt sind

- Plasmodiophoromycota wie Plasmodiophora brassicae
 (Kohlhernie), Spongospora subterranea, Polymyxa graminis,
 - Oomycota wie Bremia lactucae (Falscher Mehltau an Salat), Peronospora (Falscher Mehltau) bei Löwenmaul (P. antirrhini), Zwiebel (P. destructor), Spinat (P.

effusa), Sojabohne (P. manchurica), Tabak (Blauschimmel; P. tabacina) Alfalfa und Klee (P. trifolium), Pseudoperonospora humuli (Falscher Mehltau an Hopfen), Plasmopara (Falscher Mehltau bei Trauben) (P. viticola) und Sonnenblume (P. halstedii), Sclerophtohra macrospora (Falscher Mehltau bei Cerealien und Gäsern), Pythium (z.B. Wurzelbrand an Beta-Rübe durch P. debaryanum), Phytophthora infestans (Kraut- und Knollenfäule bei Kartoffel, Braunfäule bei Tomate etc.), Albugo spec.

10

15

20

25

5

Ascomycota wie Microdochium nivale (Schneeschimmel an Roggen und Weizen), Fusarium graminearum, Fusarium culmorum (Ährenfäule v.a. bei Weizen), Fusarium oxysporum (Fusarium-Welke an Tomate), Blumeria graminis (Echter Mehltau an Gerste (f.sp. hordei) und Weizen (f.sp. tritici)), Erysiphe pisi (Erbsenmehltau), Nectria galligena (Obstbaumkrebs), Unicnula necator (Echter Mehltau der Weinrebe), Pseudopeziza tracheiphila (Roter Brenner der Weinrebe), Claviceps purpurea (Mutterkorn an z.B. Roggen und Gräsern), Gaeumannomyces graminis (Schwarzbeinigkeit an Weizen, Roggen u.a. Gräsern), Magnaporthe grisea, Pyrenophora graminea (Streifenkrankheit an Gerste), Pyrenophora teres (Netzfleckenkrankheit an Gerste), Pyrenophora triticirepentis (Blattfleckenkrankheit (Blattdürre) an Weizen), Venturia inaequalis (Apfelschorf), Sclerotinia sclerotium (Weißstengeligkeit, Rapskrebs), Pseudopeziza medicaginis (Klappenschorf an Luzerne, Weiß- und Rotklee).

30

35

40

Basidiomyceten wie Typhula incarnata (Typhula-Fäule an Gerste, Roggen, Weizen), Ustilago maydis (Beulenbrand an Mais), Ustilago nuda (Flugbrand an Gerste), Ustilago tritici (Flugbrand an Weizen, Dinkel), Ustilago avenae (Flugbrand an Hafer), Rhizoctonia solani (Wurzeltöter an Kartoffeln), Sphacelotheca spp. (Kolbenbrand bei Sorghum), Melampsora lini (Rost bei Flachs), Puccinia graminis (Schwarzrost an Weizen, Gerste, Roggen, Hafer), Puccinia recondita (Braunrost an Weizen), Puccinia dispersa (Braunrost an Roggen), Puccinia hordei (Braunrost an Gerste), Puccinia coronata (Kronenrost an Hafer), Puccinia striiformis (Gelbrost an Weizen, Gerste, Roggen sowie zahlreichen Gräsern), Uromyces appendiculatus (Bohnenrost), Sclerotium rolfsii (Wurzel- und Stengelfäule bei zahlreichen Pflanzen).

Deuteromyceten (Fungi imperfecti) wie Septoria (Stagonospora) nodorum (Spelzenbräune) an Weizen (Septoria tritici), Pseudocercosporella herpotrichoides (Halmbruchkrankheit an Weizen, Gerste, Roggen), 5 Rynchosporium secalis (Blattfleckenkrankheit an Roggen und Gerste), Alternaria solani (Dürrfleckenkrankheit an Kartoffel, Tomate), Phoma betae (Wurzelbrand an Beta-Rübe), Cercospora beticola (Cercospora-Blattfleckenkrankheit an Beta-Rübe), (Alternaria brassicae (Rapsschwärze an Raps, 10 Kohl u.a. Kreuzblütlern), Verticillium dahliae (Rapswelke und -stengelfäule), Colletotrichum lindemuthianum (Brennfleckenkrankheit an Bohne), Phoma lingam -Umfallkrankheit (Schwarzbeinigkeit an Kohl; Wurzelhals- oder Stengelfäule an Raps), Botrytis cinerea (Grauschimmel an 15 Weinrebe, Erdbeere, Tomate, Hopfen etc.).

Am meisten bevorzugt sind Phytophthora infestans (Kraut- und Knollenfäule, Braunfäule bei Tomate etc.), Microdochium nivale (vormals Fusarium nivale; Schneeschimmel an Roggen und Weizen), Fusarium graminearum, Fusarium culmorum, Fusarium avenaceum und Fusarium poae (Ährenfäule an Weizen), Fusarium oxysporum (Fusarium-Welke an Tomate), Magnaporthe grisea (rice blast disease), Sclerotinia sclerotium (Weißstengeligkeit, Rapskrebs), Septoria (Stagonospora)nodorum und Septoria tritici (Spelzenbräune an Weizen), Alternaria brassicae (Rapsschwärze an Raps, Kohl u.a. Kreuzblütlern), Phoma lingam (Umfallkrankheit, Schwarzbeinigkeit an Kohl; Wurzelhals- oder Stengelfäule an Raps).

30 2. Bakterielle Pathogene:

20

25

35

Beispielhaft jedoch nicht einschränkend seien die in Tabelle 5 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

Tabelle 5: Bakterielle Erkrankungen

Erkrankung	Pathogen
Bacterial leaf blight and stalk rot	Pseudomonas avenae subsp. avenae
Bacterial leaf spot	Xanthomonas campestris pv. holcicola
Bakterielle Stengelfäule	Enterobacter dissolvens = Erwinia dissolvens
Schwarzbeinigkeit	Erwinia carotovora subsp.

Erkrankung	Pathogen
("Bacterial stalk and top rot")	carotovora, Erwinia chrysanthemi pv. zeae
Bacterial stripe	Pseudomonas andropogonis
Chocolate spot	Pseudomonas syringae pv. coronafaciens
Goss's bacterial wilt and blight (leaf freckles and wilt)	Clavibacter michiganensis subsp. nebraskensis = Corynebacterium michiganense pv.andnebraskense
Holcus spot	Pseudomonas syringae pv. syringae
Purple leaf sheath	Hemiparasitic bacteria
Seed rot-seedling blight	Bacillus subtilis
Stewart's disease (bacterial wilt)	Pantoea stewartii = Erwinia stewartii
Corn stunt (achapparramiento,maize stunt, Mesa Central or Rio Grande maize stunt)	Spiroplasma kunkelii

Ganz besonders bevorzugt sind nachfolgende pathogene Bakterien:
Corynebacterium sepedonicum (Bakterienringfäule an Kartoffel),
Erwinia carotovora (Schwarzbeinigkeit an Kartoffel), Erwinia
amylovora (Feuerbrand an Birne, Apfel, Quitte), Streptomyces
scabies (Kartoffelschorf), Pseudomonas syringae pv. tabaci
(Wildfeuer an Tabak), Pseudomonas syringae pv. phaseolicola
(Fettfleckenkrankheit an Buschbohne), Pseudomonas syringae pv.
tomato ("bacterial speck" an Tomate), Xanthomonas campestris pv.
malvacearum (Blattfleckenkrankheit an Baumwolle) und Xanthomonas
campestris pv. oryzae (Bakterienfäule an Reis und anderen
Gräsern).

3. Virale Pathogene:

15

"Virale Pathogene" schließt sämtliche Pflanzenviren ein wie beispielsweise Tabak- oder oder Cucumber-Mosaiv Virus, Ringspot-Virus, Nekrose-Virus, Mais Dwarf-Mosaic Virus etc.

20 Beispielhaft jedoch nicht einschränkend sind die in Tabelle 6 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

Tabelle 6: Virale Erkrankungen

Krankheit	Pathogen
American wheat striate (wheat striate mosaic)	American wheat striate mosaic virus (AWSMV)
Barley stripe mosaic	Barley stripe mosaic virus (BSMV)
Barley yellow dwarf	Barley yellow dwarf virus (BYDV)
Brome mosaic	Brome mosaic virus (BMV)
Cereal chlorotic mottle	Cereal chlorotic mottle virus (CCMV)
Corn chlorotic vein banding (Braizilian maize mosaic)	Corn chlorotic vein banding virus (CCVBV)
Corn lethal necrosis	Viruskomplex aus Maize chlorotic mottle virus (MCMV) und Maize dwarf mosaic virus (MDMV) A oder B oder Wheat streak mosaic virus(WSMV)
Cucumber mosaic	Cucumber mosaic virus (CMV)
Cynodon chlorotic streak	Cynodon chlorotic streak virus (CCSV)
Johnsongrass mosaic	Johnsongrass mosaic virus (JGMV)
Maize bushy stunt	Mycoplasma-like organism (MLO) associated
Maize chlorotic dwarf	Maize chlorotic dwarf virus (MCDV)
Maize chlorotic mottle	Maize chlorotic mottle virus (MCMV)
Maize dwarf mosaic	Maize dwarf mosaic virus (MDMV) strains A, D, E and F
Maize leaf fleck	Maize leaf fleck virus (MLFV)
Maize line	Maize line virus (MLV)
Maize mosaic (corn leaf stripe, enanismo rayado)	Maize mosaic virus (MMV)
Maize mottle and chlorotic stunt	Maize mottle and chlorotic stunt virus
Maize pellucid ringspot	Maize pellucid ringspot virus (MPRV)
Maize raya gruesa	Maize raya gruesa virus (MRGV)
maize rayado fino (fine striping disease)	Maize rayado fino virus (MRFV)
Maize red leaf and red stripe	Mollicute
Maize red stripe	Maize red stripe virus (MRSV)
Maize ring mottle	Maize ring mottle virus (MRMV)
Maize rio IV	Maize rio cuarto virus (MRCV)
Maize rough dwarf (nanismo ruvido)	Maize rough dwarf virus (MRDV) (Cereal tillering disease virus)

Krankheit	Pathogen
Maize sterile stunt	Maize sterile stunt virus (strains of barley yellow striate virus)
Maize streak	Maize streak virus (MSV)
Maize stripe (maize chlorotic stripe, maize hoja blanca)	Maize stripe virus
Maize stunting	Maize stunting virus
Maize tassel abortion	Maize tassel abortion virus (MTAV)
Maize vein enation	Maize vein enation virus (MVEV)
Maize wallaby ear	Maize wallaby ear virus (MWEV)
Maize white leaf	Maize white leaf virus
Maize white line mosaic	Maize white line mosaic virus (MWLMV)
Millet red leaf	Millet red leaf virus (MRLV)
Northern cereal mosaic	Northern cereal mosaic virus (NCMV)
Oat pseudorosette (zakuklivanie)	Oat pseudorosette virus
Oat sterile dwarf	Oat sterile dwarf virus (OSDV)
Rice black-streaked dwarf	Rice black-streaked dwarf virus (RBSDV)
Rice stripe	Rice stripe virus (RSV)
Sorghum mosaic	Sorghum mosaic virus (SrMV) (auch: sugarcane mosaic virus (SCMV) Stämme H, I and M)
Sugarcane Fiji disease	Sugarcane Fiji disease virus (FDV)
Sugarcane mosaic	Sugarcane mosaic virus (SCMV) strains A, B, D, E, SC, BC, Sabi and MB (formerly MDMV-B)
Wheat spot mosaic	Wheat spot mosaic virus (WSMV)

4. Tierische Schädlinge

4.1 Insekten Pathogene:

5

Beispielhaft jedoch nicht einschränkend seien Insekten wie beispielsweise Käfer, Raupen, Läuse oder Milben zu nennen. Bevorzugt sind Insekten der Gattungen Coleoptera, Diptera, Hymenoptera, Lepidoptera, Mallophaga, Homoptera, Hemiptera, Orthoptera, Thysanoptera. Dermaptera, Isoptera, Anoplura, Siphonaptera, Trichoptera, etc.. Besonders bevorzugt sind Coleoptera and Lepidoptera Insekten, wie beispielsweise den Maiszünsler (European Corn Borer), Diabrotica barberi,

Diabrotica undecimpunctata, Diabrotica virgifera, Agrotis ipsilon, Crymodes devastator, Feltia ducens, Agrotis gladiaria, Melanotus spp., Aeolus mellillus, Aeolus mancus, Horistonotus uhlerii, Sphenophorus maidis, Sphenophorus zeae, Sphenophorus parvulus, Sphenophorus callosus, Phyllogphaga spp., Anuraphis maidiradicis, Delia platura, Colaspis brunnea, Stenolophus lecontei und Clivinia impressifrons.

Ferner sind zu nennen: Das Getreidehähnchen (Oulema melanopus), 10 die Fritfliege (Oscinella frit), Drahtwürmer (Agrotis lineatus) und Blattläuse (wie z.B. Haferblattlaus Rhopalosiphum padi, Grosse Getreideblattlaus Sitobion avenae).

4.2 Nematoden:

15

Beispielhaft jedoch nicht einschränkend seien die in Tabelle 7 genannten Pathogene und die mit ihnen in Zusammenhang gebrachten Erkrankungen zu nennen.

Tabelle 7: Parasitäre Nematoden

Schädigung	Pathogene Nematode
Awl	Dolichodorus spp., D. heterocephalus
Stengel- oder Stockälchen, Rübenkopfälchen	Ditylenchus dipsaci
Burrowing	Radopholus similis
Haferzystenälchen	Heterodera avenae, H. zeae, Punctodera chalcoensis
Dagger	Xiphinema spp., X. americanum, X. mediterraneum
False root-knot	Nacobbus dorsalis
Lance, Columbia	Hoplolaimus columbus
Lance	Hoplolaimus spp., H. galeatus
Lesion	Pratylenchus spp., P. brachyurus, P. crenatus, P. hexincisus, P. neglectus, P. penetrans, P. scribneri, P. thornei, P. zeae
Needle	Longidorus spp., L. breviannulatus
Ring	Criconemella spp., C. ornata
Wurzelgallenälchen	Meloidogyne spp., M. chitwoodi, M. incognita, M. javanica
Spiral	Helicotylenchus spp.
Sting	Belonolaimus spp., B. longicaudatus

Schädigung	Pathogene Nematode
Stubby-root	Paratrichodorus spp., P. christiei, P. minor, Quinisulcius acutus, Trichodorus spp.
Stunt	Tylenchorhynchus dubius

Ganz besonders bevorzugt sind Globodera rostochiensis und G. pallida (Zystenälchen an Kartoffel, Tomate u.a. Nachtschattengewächsen), Heterodera schachtii (Rübenzystenälchen an Zucker- und Futterrübe, Raps, Kohl etc.), Heterodera avenae (Haferzystenälchen an Hafer u.a. Getreidearten), Ditylenchus dipsaci (Stengel- oder Stockälchen, Rübenkopfälchen an Roggen, Hafer, Mais, Klee, Tabak, Rübe), Anguina tritici (Weizenälchen, Radekrankheit an Weizen (Dinkel, Roggen), Meloidogyne hapla (Wurzelgallenälchen an Möhre, Gurke, Salat, Tomate, Kartoffel, Zuckerrübe, Luzerne).

Als für die einzelnen Sorten bevorzugte Pilz- oder Virus-Pathogene sind beispielsweise zu nennen:

1. Gerste:

15

20

35

Pilz-, bakterielle und virale Pathogene: Puccinia graminis f.sp. hordei, Blumeria (Erysiphe) graminis f.sp. hordei, barley yellow dwarf virus (BYDV),

Pathogene Insekten / Nematoden: Ostrinia nubilalis (European corn borer); Agrotis ipsilon; Schizaphis graminum; Blissus leucopterus leucopterus; Acrosternum hilare; Euschistus servus; Deliaplatura; Mayetiola destructor; Petrobia latens.

2. Sojabohne:

Pilz-, bakterielle oder virale Pathogene: Phytophthora megasperma fsp.glycinea, Macrophomina phaseolina, Rhizoctonia solani, Sclerotinia sclerotiorum, Fusarium oxysporum, Diaporthe phaseolorum var. sojae (Phomopsis sojae), Diaporthe phaseolorum var. caulivora, Sclerotium rolfsii, Cercospora kikuchii, Cercospora sojina, Peronospora manshurica, Colletotrichum dematium (Colletotrichum truncatum), Corynespora cassiicola, Septoria glycines, Phyllosticta sojicola, Alternaria alternata, Pseudomonas syringae p.v. glycinea, Xanthomonas campestris p.v. phaseoli, Microsphaera diffussa, Fusarium semitectum,

Phialophora gregata, Sojabohnen Mosaikvirus, Glomerella glycines, Tobacco Ring spot virus, Tobacco Streak virus, Phakopsorapachyrhizi, Pythium aphanidermatum, Pythium ultimum, Pythium debaryanum, Tomato spotted wilt virus, Heterodera glycines Fusarium solani.

Pathogene Insekten / Nematoden: Pseudoplusia includens;
Anticarsia gemmatalis; Plathypena scabra; Ostrinia nubilalis;
Agrotis ipsilon; Spodoptera exigua; Heliothis virescens;
Helicoverpa zea; Epilachna varivestis; Myzus persicae; Empoasca fabae; Acrosternum hilare; Melanoplus femurrubrum; Melanoplus differentialis; Hylemya platura; Sericothrips variabilis; Thrips tabaci; Tetranychus turkestani; Tetranychus urticae;

15 3. Raps:

20

Pilz-, bakterielle oder virale Pathogene: Albugo candida, Alternaria brassicae, Leptosphaeria maculans, Rhizoctonia solani, Sclerotinia sclerotiorum, Mycosphaerella brassiccola, Pythium ultimum, Peronospora parasitica, Fusarium roseum, Alternaria alternata.

4. Alfalfa:

Pilz,-, bakterielle oder virale Pathogene: Clavibater michiganese subsp. insidiosum, Pythium ultimum, Pythium irregulare, Pythium splendens, Pythium debaryanum, Pythium aphanidermatum, Phytophthora megasperma, Peronospora trifoliorum, Phoma medicaginis var. medicaginis, Cercospora medicaginis, Pseudopeziza medicaginis, Leptotrochila medicaginis, Fusarium, Xanthomonas campestris p.v. alfalfae, Aphanomyces euteiches, Stemphylium herbarum, Stemphylium alfalfae.

35 5. Weizen:

Pilz-, bakterielle oder virale Pathogene: Pseudomonas syringae p.v. atrofaciens, Urocystis agropyri, Xanthomonas campestris p.v. translucens, Pseudomonas syringae p.v. syringae, Alternaria alternata, Cladosporium herbarum, Fusarium graminearum, Fusarium avenaceum, Fusarium culmorum, Ustilago tritici, Ascochyta tritici, Cephalosporium gramineum, Collotetrichum graminicola, Erysiphe graminis f.sp. tritici, Puccinia graminis f.sp. tritici, Puccinia striiformis,

Pyrenophora tritici-repentis, Septoria (Stagonospora) nodorum, Septoria tritici, Septoria avenae, Pseudocercosporella herpotrichoides, Rhizoctonia solani, Rhizoctonia cerealis, Gaeumannomyces graminis var. tritici, Pythium aphanidermatum, Pythium arrhenomanes, Pythium ultimum, Bipolaris sorokiniana, Barley Yellow Dwarf Virus, Brome Mosaic Virus, Soil Borne Wheat Mosaic Virus, Wheat Streak Mosaic Virus, Wheat Spindle Streak Virus, American Wheat Striate Virus, Claviceps purpurea, Tilletia tritici, Tilletia laevis, Ustilago tritici, Tilletia indica, Rhizoctonia solani, Pythium arrhenomannes, Pythium gramicola, Pythium aphanidermatum, High Plains Virus, European Wheat Striate Virus, Puccinia graminis f.sp. tritici (Wheat stem rust), Blumeria (Erysiphe) graminis f.sp. tritici (Wheat Powdery Mildew)

15

20

Pathogene Insekten / Nematoden: Pseudaletia unipunctata; Spodoptera, frugiperda; Elasmopalpus lignosellus; Agrotis orthogonia; Elasmopalpus Zignosellus; Oulema melanopus; Hypera punctata; Diabrotica undecimpunctata howardi; Russian wheat aphid; Schizaphis graminum; Macrosiphum avenae; Melanoplus femurrubrum; Melanoplus differentialis; Melanoplus sanguinipes; Mayetiola destructor; Sitodiplosis mosellana; Meromyza americana; Hylemya coarctata; Frankliniella fusca; Cephus cinctus; Aceria tulipae;

25

6. Sonnenblume:

Pilz-, bakterielle oder virale Pathogene: Plasmophora halstedii, Sclerotinia sclerotiorum, Aster Yellows, Septoria helianthi, Phomopsis helianthi, Alternaria helianthi, Alternaria zinniae, Botrytis cinerea, Phoma macdonaldii, Macrophomina phaseolina, Erysiphe cichoracearum, Rhizopus oryzae, Rhizopus arrhizus, Rhizopus stolonifer, Puccinia helianthi, Verticillium dahliae, Erwinia carotovorum p.v. Carotovora, Cephalosporium acremonium, Phytophthora cryptogea, Albugo tragopogonis.

Pathogene Insekten / Nematoden: Suleima helianthana; Homoeosoma electellum; zygogramma exclamationis; Bothyrus gibbosus; Neolasioptera murtfeldtiana;

40

7. Mais:

Pilz-, bakterielle oder virale Pathogene: Fusarium moniliforme var. subglutinans, Erwinia stewartii, Fusarium moniliforme,

Gibberella zeae (Fusarium graminearum), Stenocarpella maydi (Diplodia maydis), Pythium irregulare, Pythium debaryanum, Pythium graminicola, Pythium splendens, Pythium ultimum, Pythium aphanidermatum, Aspergillus flavus, Bipolaris maydis 0, T (Cochliobolus heterostrophus), Helminthosporium carbonum I, II & III (Cochliobolus carbonum), Exserohilum turcicum I, II & III, Helminthosporium pedicellatum, Physoderma maydis, Phyllosticta maydis, Kabatiella maydis, Cercospora sorghi, Ustilago maydis, Puccinia sorghi, Puccinia polysora, Macrophomina phaseolina, Penicillium oxalicum, Nigrospora oryzae, Cladosporium herbarum, Curvularia lunata, Curvularia inaequalis, Curvularia pallescens, Clavibacter michiganese subsp. nebraskense, Trichoderma viride, Maize Dwarf Mosaic Virus A & B, Wheat Streak Mosaic Virus, Maize Chlorotic Dwarf Virus, Claviceps sorghi, Pseudonomas avenae, Erwinia chrysanthemi p.v. Zea, Erwinia corotovora, Cornstunt spiroplasma, Diplodia macrospora, Sclerophthora macrospora, Peronosclerospora sorghi, Peronosclerospora philippinesis, Peronosclerospora maydis, Peronosclerospora sacchari, Spacelotheca reiliana, Physopella zeae, Cephalosporium maydis, Caphalosporium acremonium, Maize Chlorotic Mottle Virus, High Plains Virus, Maize Mosaic Virus, Maize Rayado Fino Virus, Maize Streak Virus (MSV, Maisstrichel-Virus), Maize Stripe Virus, Maize Rough Dwarf Virus.

Pathogene Insekten / Nematoden: Ostrinia nubilalis; Agrotis ipsilon; Helicoverpa zea; Spodoptera frugiperda; Diatraea grandiosella; Elasmopalpus lignosellus; Diatraea saccharalis; Diabrotica virgifera; Diabrotica longicornis barberi; Diabrotica undecimpunctata howardi; Melanotus spp.; Cyclocephala borealis; Cyclocephala immaculata; Popillia japonica; Chaetocnema pulicaria; Sphenophorus maidis; Rhopalosiphum maidis; Anuraphis maidiradicis; Blissus leucopterus leucopterus; Melanoplus femurrubrum; Melanoplus sanguinipes; Hylemva platura; Agromyza parvicornis; Anaphothrips obscrurus; Solenopsis milesta; Tetranychus urticae.

8. Sorghum:

Pilz-, bakterielle oder virale Pathogene: Exserohilum turcicum, Colletotrichum graminicola (Glomerella graminicola), Cercospora sorghi, Gloeocercospora sorghi, Ascochyta sorghina, Pseudomonas syringae p.v. syringae, Xanthomonas campestris p.v. holcicola, Pseudomonas andropogonis, Puccinia purpurea, Macrophomina phaseolina, Perconia circinata, Fusarium monilifonne, Alternaria

alternate, Bipolaris sorghicola, Helminthosporium sorghicola, Curvularia lunata, Phoma insidiosa, Pseudomonas avenae (Pseudomonas alboprecipitans), Ramulispora sorghi, Ramulispora sorghicola, Phyllachara sacchari, Sporisorium reilianum (Sphacelotheca reiliana), Sphacelotheca cruenta, Sporisorium sorghi, Sugarcane mosaic H, Maize Dwarf Mosaic Virus A & B, Claviceps sorghi, Rhizoctonia solani, Acremonium strictum, Sclerophthona macrospora, Peronosclerospora sorghi, Peronosclerospora philippinensis, Sclerospora graminicola, Fusarium graminearum, Fusarium oxysporum, Pythium arrhenomanes, Pythium graminicola.

Pathogene Insekten / Nematoden: Chilo partellus; Spodoptera frugiperda; Helicoverpa zea; Elasmopalpus lignosellus; Feltia subterranea; Phvllophaga crinita; Eleodes, Conoderus und Aeolus spp.; Oulema melanopus; Chaetocnema pulicaria; Sphenophorus maidis; Rhopalosiphum maidis; Siphaflava; Blissus leucopterus leucopterus; Contarinia sorghicola; Tetranychus cinnabarinus; Tetranychus urticae.

20

15

9. Baumwolle:

Pathogene Insekten / Nematoden: Heliothis virescens; Helicoverpa zea; Spodoptera exigua; Pectinophora gossypiella; Anthonomus grandis grandis; Aphis gossypii; Pseudatomoscelis seriatus; Trialeurodes abutilonea; Lygus lineolaris; Melanoplus femurrubrum; Melanoplus differentialis; Thrips tabaci (onion thrips); Franklinkiella fusca; Tetranychus cinnabarinus; Tetranychus urticae;

30

35

25

10. Reis:

Pathogene Insekten / Nematoden: Diatraea saccharalis; Spodoptera frugiperda; Helicoverpa zea; Colaspis brunnea; Lissorhoptrus oryzophilus; Sitophilus oryzae; Nephotettix nigropictus; Blissus Ieucopterus leucopterus; Acrosternum hilare.

11. Raps:

40 Pathogene Insekten / Nematoden: Brevicoryne brassicae; Phyilotreta cruciferae; Mamestra conjgurata; Plutella xylostella; Delia ssp..

"BI1-Protein" meint im Rahmen der Erfindung Polypeptide die mindestens eine Sequenz die eine Homologie von mindestens 50%, bevorzugt mindestens 80%, besonders bevorzugt mindestens 90%, ganz besonders bevorzugt 100% aufweisen zu einem BI1-Konsensusmotiv ausgewählt aus der Gruppe bestehend aus

- a) H(L/I)KXVY
- b) AXGA(Y/F)XH
- c) NIGG

5

35

40

- 10 d) P(V/P) (Y/F) E(E/Q) (R/Q) KR
 - e) (E/Q)G(A/S)S(V/I)GPL
 - f) DP(S/G)(L/I)(I/L)
 - g) V(G/A)T(A/S)(L/I)AF(A/G)CF(S/T)
 - h) YL(Y/F)LGG, bevorzugt EYLYLGG
- 15 i) L(L/V)SS(G/W)L(S/T)(I/M)L(L/M)W
 - j) DTGX(I/V)(I/V)E

Besonders bevorzugt ist dabei das BI- Konsensusmotiv f)
YL(Y/F)LGG, ganz besonders bevorzugt (EYLYLGG). Dieses Motiv ist
charakteristisch für pflanzliche BI1-Proteine.

Besonders bevorzugt kommen Sequenzen mit Homologie zu mindestens 2 oder 3 dieser Motive (a bis g) in einem BI1-Protein vor, ganz besonders bevorzugt mindestens 4 oder 5, am meisten bevorzugt alle Motive a bis j. Weitere BI1 typischen Sequenzmotive kann der Fachmann unschwer aus dem Sequenzvergleich von BI1-Proteine – wie in Fig. 1 oder 6 dargestellt – ableiten.

Insbesondere bevorzugt sind BI-Proteine, die kodiert werden durch ein Polypeptid das mindestens eine Sequenz umfaßt ausgewählt aus der Gruppe bestehend aus:

- a) den Sequenzen gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 und 32, und
- b) Sequenzen, die eine Identität von mindestens 50%, bevorzugt mindstens 70%, besonders bevorzugt mindstens 90%, ganz besonders bevorzugt mindstens 95% zu einer der Sequenzen gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 und 32 aufweisen,
- c) Sequenzen die mindestens eine Teilsequenz von mindestens 10, bevorzugt 20, besonders bevorzugt 50 zusammenhängenden Aminosäureresten einer der Sequenzen gemäß SEQ ID NO: 2, 4,

28

6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 und 32 umfassen.

Erfindungsgemäß von dem Begriff BI-Protein umfaßt sind insbesondere natürliche oder künstliche Mutationen der BI1-Polypeptide gemäß SEQ ID NO: 2, 4, 6, 8 und 10 sowie homologe Polypeptide aus anderen Organismen, bevorzugt Pflanzen, welche weiterhin im wesentlichen gleiche Eigenschaften aufweisen. Mutationen umfassen Substitutionen, Additionen, Deletionen, Inversion oder Insertionen eines oder mehrerer Aminosäurereste. 10 Umfaßt sind insofern auch Ausführungsformen unter Verwendung von BI1-Proteinen aus nicht-pflanzlichen Organismen wie beispielsweise Mensch (GenBank Acc.-No.: P55061), Ratte (GenBank Acc.-No.: P55062) oder Drosophila (GenBank Acc.-No.: Q9VSH3). Zwischen pflanzlichen und nicht-pflanzlichen BI1-Proteinen konservierte Motive können durch Sequenzvergleiche leicht identifiziert werden (vgl. Alignment in Bolduc et 1. (2003) Planta 216:377-386; Fig. 1 und 6).

20 Somit werden beispielsweise auch solche Polypeptide durch die vorliegende Erfindung mit umfaßt, welche man durch Modifikation eines Polypeptides gemäß SEQ ID NO: 2, 4, 6, 8 und 10 erhält.

Die zu den im Rahmen dieser Erfindung offenbarten BI1-Sequenzen 25 homologen Sequenzen aus anderen Pflanzen können z.B. durch

- a) Datenbanksuche in Banken von Organismen, deren genomische oder cDNA Sequenz ganz oder teilweise bekannt ist, unter Verwendung der bereitgestellten BI1-Sequenzen als Suchsequenz oder
- b) Durchmustern von Gen- oder cDNA-Bibliotheken unter Verwendung der bereitgestellten BI1-Sequenzen als Sonde -
- aufgefunden werden. Die Durchmusterung von cDNA- oder genomischen Bibliotheken (beispielsweise unter Verwendung einer der unter SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 und 31 beschriebene Nukleinsäuresequenzen oder Teilen derselben als Sonde), ist ein dem Fachmann geläufiges Verfahren, um Homologe in anderen Arte zu identifizieren. Dabei haben die von den Nukleinsäuresequenzen gemäß SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 und 31 abgeleiteten Sonden eine Länge von mindestens 20 bp, bevorzugt mindestens 50 bp, besonders bevorzugt mindestens 100 bp, ganz besonders

20

25

30

29

bevorzugt mindestens 200 bp, am meisten bevorzugt mindestens 400 bp. Für die Durchmusterung der Bibliotheken kann auch ein zu den unter SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 und 31 37 beschriebenen Sequenzen komplementärer DNA5 Strang eingesetzt werden.

Unter Homologie zwischen zwei Nukleinsäuresequenzen wird die Identität der Nukleinsäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA; Altschul et al. (1997) Nucleic Acids Res. 25:3389ff) unter Einstellung folgender Parameter berechnet wird:

15 Gap Weight: 50 Length Weight: 3

Average Match: 10 Average Mismatch: 0

Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Nukleinsäurebasis mit der Sequenz SEQ ID NO: 1 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 1 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.

Unter Homologie zwischen zwei Polypeptiden wird die Identität der Aminosäuresequenz über die jeweils gesamte Sequenzlänge verstanden, die durch Vergleich mit Hilfe des Programmalgorithmus GAP (Wisconsin Package Version 10.0, University of Wisconsin, Genetics Computer Group (GCG), Madison, USA) unter Einstellung folgender Parameter berechnet wird:

Gap Weight: 8 Length Weight: 2

35 Average Match: 2,912 Average Mismatch:-2,003

Beispielhaft wird unter einer Sequenz, die eine Homologie von mindestens 80 % auf Proteinbasis mit der Sequenz SEQ ID NO: 2 aufweist, eine Sequenz verstanden, die bei einem Vergleich mit der Sequenz SEQ ID NO: 2 nach obigem Programmalgorithmus mit obigem Parametersatz eine Homologie von mindestens 80 % aufweist.

20

30

40

30

BI1-Proteine umfassen auch solche Polypeptide die durch Nukleinsäuresequenzen kodiert werden, die unter Standardbedingungen mit einer der durch SEQ ID NO: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29 oder 31 beschriebenen BI1 Nukleinsäuresequenz, der zu ihr komplementären Nukleinsäuresequenz oder Teilen der vorgenannten hybridisieren und die gleichen wesentlichen Eigenschaften wie die unter SEQ ID NO: 2, 4, 6, 8 und 10 beschriebenen Proteine haben.

Der Begriff "Standardhybridisierungsbedingungen" ist breit zu verstehen und meint stringente als auch weniger stringente Hybridisierungsbedingungen. Solche Hybridisierungsbedingungen sind unter anderem bei Sambrook J, Fritsch EF, Maniatis T et al., in Molecular Cloning (A Laboratory Manual), 2. Auflage, Cold Spring Harbor Laboratory Press, 1989, Seiten 9.31-9.57) oder in Current Protocols in Molecular Biology, John Wiley &Sons, N.Y. (1989), 6.3.1-6.3.6. beschrieben. Beispielhaft können die Bedingungen während des Waschschrittes ausgewählt sein aus dem Bereich von Bedingungen begrenzt von solchen mit geringer Stringenz (mit ungefähr 2X SSC bei 50°C) und solchen mit hoher Stringenz (mit ungefähr 0.2% SSC bei 50°C bevorzugt bei 65°C) (20X SSC: 0,3M Natriumcitrat, 3M NaCl, pH 7.0). Darüber hinaus kann die Temperatur während des Waschschrittes von niedrig stringenten Bedingungen bei Raumtemperatur, ungefähr 22°C, bis zu stärker stringenten Bedingungen bei ungefähr 65°C angehoben werden. Beide Parameter, Salzkonzentration und Temperatur, können gleichzeitig variiert werden, auch kann einer der beiden Parameter konstant gehalten und nur der andere variiert werden. Während der Hybridisierung können auch denaturierende Agenzien wie zum Beispiel Formamid oder SDS eingesetzt werden. In Gegenwart von 50% Formamid wird die Hybridisierung bevorzugt bei 42°C ausgeführt.

"Wesentliche Eigenschaften" meint in Bezug auf ein BI-Protein 35 beispielsweise eine oder mehr nachfolgender Eigenschaften:

- a) Verleihung oder Steigerung der Pathogenresistenz gegen zumindest ein Pathogen bei Erhöhung Proteinmenge oder Funktion des besagten BI-Proteins in mindestens einem Gewebe der Pflanze, wobei besagtes Gewebe nicht die Blattepidermis ist.
- b) Ausbleiben eines spontan-induzierten Zelltodes bei Erhöhung der Proteinmenge oder Funktion des besagten BI-Proteins

10

15

25

- c) Die Eigenschaft bei transienter co-Transfektion von Bax mit besagtem BI1-Protein beispielsweise in HEK293 Zellen die BAX-induzierte Apoptose signifikant zu inhibieren. Entsprechende Verfahren sind beschrieben (Bolduc N et al. (2003) Planta 216:377-386).
- d) Das Vorliegen von fünf bis sieben putativen Transmembrandomänen innerhalb der besagten BI1-Proteins.
- e) Eine präferentielle Lokalisation in Zellmembranen, insbesondere der Kernhüll-, ER- und/oder Thylakoidmembran.
- Dabei kann die quantitative Ausprägung besagter Eigenschaften eines BI1-Proteins nach unten als auch nach oben im Vergleich zu einem Wert erhalten für das BI1-Protein gemäß SEQ ID NO: 2, 4, 6, 8 oder 10 abweichen.
- Der Begriff "Erhöhung der BI1 Proteinmenge oder Funktion" ist im 20 Rahmen dieser Erfindung breit zu verstehen und kann auf unterschiedlichen zellbiologischen Mechanismen beruhen.
 - "Proteinmenge" meint die Menge eines BI1-Proteins in dem jeweils angegebenen Organismus, Gewebe, Zelle oder Zellkompartiment.
 - "Erhöhung der Proteinmenge" meint die mengenmäßige Erhöhung der Menge eines BI1-Proteins in dem jeweils angegebenen Organismus, Gewebe, Zelle oder Zellkompartiment. - beispielsweise durch eines der unten beschriebenen Verfahren - im Vergleich zu dem Wildtyp derselben Gattung und Art auf den dieses Verfahren nicht angewendet wurde, aber unter ansonst gleichen Rahmenbedingungen (wie beispielsweise Kulturbedingungen, Alter der Pflanzen etc.). Die Erhöhung beträgt dabei mindestens 10 %, bevorzugt mindestens 30 % oder mindestens 50 %, besonders bevorzugt mindestens 70 % oder 100 %, ganz besonders bevorzugt um mindestens 200 % oder 500 %, am meisten bevorzugt um mindestens 1000 %. Die Bestimmung der Proteinmenge kann durch verschiedene dem Fachmann geläufige Verfahren erfolgen. Beispielhaft jedoch nicht einschränkend seien zu nennen: Das Mikro-Biuret Verfahren (Goa J (1953) Scand J Clin Lab Invest 5:218-222), die Folin-Ciocalteu-Methode (Lowry OH et al. (1951) J Biol Chem 193:265-275) oder die Messung der Adsorption von CBB G-250 (Bradford MM (1976) Analyt Biochem 72:248-254). Ferner kann eine Quantifizierung über immunologische Methoden wie beispielsweise Western-Blot

erfolgen. Die Herstellung entsprechender BI1-Antikörper sowie die Durchführung von BI1-Western-Blots ist beschrieben (Bolduc et al. (2002) FEBS Lett 532:111-114). Eine indirekte Quantifizierung kann über Northern-Blots realisiert werden, wobei die mRNA Menge in der Regel gut mit der resultierenden Proteinmenge korreliert. Entsprechende Verfahren sind beschrieben (u.a. Bolduc et al. (2003) Planta 216:377-386; Matsumura H et al. (2003) Plant J 33:425-434).

"Funktion" meint bevorzugt die Eigenschaft eines BI1-Proteins den spontan-induzierten Zelltodes zu vermindern und/oder die Eigenschaft, die apoptose-indizierende Wirkung von Bax zu inhibieren. Entsprechende Funktionen zählen zu den wesentlichen Eigenschaft eines BI1-Proteins.

15

20

"Erhöhung" der Funktion meint im Rahmen dieser Erfindung beispielsweise die mengenmäßige Steigerung der inhibitorischen Wirkung auf den Bax-induzierten apoptotischen Zelltod, welche durch dem Fachmann geläufige Verfahren quantifiziert werden kann (s.o.) Der Erhöhung beträgt dabei mindestens 10 %, bevorzugt mindestens 30 % oder mindestens 50 %, besonders bevorzugt mindestens 70 % oder 100 %, ganz besonders bevorzugt um mindestens 200 % oder 500 %, am meisten bevorzugt um mindestens 1000 %. Verfahren zur Erhöhung der Funktion umfassen neben den oben beschriebenen Verfahren zur Erhöhung der Proteinmenge (die auch immer die Funktion erhöht) ferner beispielhaft – jedoch nicht einschränkend – insbesondere das Einführen von Mutationen in ein BI1-Protein.

30

- Die BI1-Proteinmenge kann beispielhaft jedoch nicht einschränkend durch eines der nachfolgenden Verfahren erhöht werden:
- a) Rekombinante Expression oder Überexpression eines BI1Proteins durch Einringen einer rekombinanten
 Expressionskassette umfassend eine Nukleinsäuresequenz
 kodierend für ein BI1-Protein unter Kontrolle eines
 gewebespezifischen Promotors, wobei besagter Promotor im
 wesentlichen keine Aktivität in der Blattepidermis aufweist.

40

b) Modifikation (z.B. Austausch) der regulatorischen Regionen (z.B. der Promotorregion) eines endogenen BI1-Gens beispielsweise Austausch gegen einen gewebespezifischen Promotor mittels homologer Rekombination, wobei besagter

Promotor im wesentlichen keine Aktivität in der Blattepidermis aufweist.

- c) Insertion einer Nukleinsäuresequenz kodierend für ein BI1-Protein in das pflanzliche Genom hinter einen gewebespezifischen Promotor mittels homologer Rekombination, wobei besagter Promotor im wesentlichen keine Aktivität in der Blattepidermis aufweist.
- d) Erhöhung der Expression eines endogenen BII-Proteins durch Einbringen eines Transkriptionsfaktors (z.B. eines artifiziellen Transkriptionsfaktors aus der Klasse der Zinkfingerproteine) geeignet zur Induktion der Expression besagten BII-Proteins. Bevorzugt ist das Einringen einer rekombinanten Expressionskassette umfassend eine Nukleinsäuresequenz kodierend für besagten Transkriptionsfaktor unter Kontrolle eines gewebespezifischen Promotors, wobei besagter Promotor im wesentlichen keine Aktivität in der Blattepidermis aufweist.

Der Begriff "Einbringen" umfaßt im Rahmen der Erfindung allgemein alle Verfahren, die dazu geeignet die einzubringende Verbindung, direkt oder indirekt, in eine Pflanze oder eine Zelle, Kompartiment, Gewebe, Organ oder Samen derselben einzuführen oder dort zu generieren. Direkte und indirekte Verfahren sind umfaßt. Die Einbringen kann zu einer vorübergehenden (transienten) Präsenz besagter Verbindung führen oder aber auch zu einer dauerhaften (stabilen) oder induzierbaren. Einführen umfaßt beispielsweise Verfahren wie Transfektion, Transduktion oder Transformation.

In den im Rahmen der Erfindung zum Einsatz kommenden rekombinanten Expressionskassetten steht ein Nukleinsäuremolekül (beispielsweise kodierend für ein BII-Protein) in funktioneller Verknüpfung mit mindestens einem gewebespezifischen Promotor, wobei besagter Promotor im wesentlichen keine Aktivität in der Blattepidermis aufweist und wobei der Promotor in Bezug auf die zu exprimierende Nukleinsäuresequenz heterolog ist d.h. natürlicherweise nicht mit derselben kombiniert vorkommt. Die erfindungsgemäßen rekombinanten Expressionskassetten können optional weitere genetische Kontrollelement umfassen.

Unter einer funktionellen Verknüpfung versteht man zum Beispiel die sequentielle Anordnung des besagten Promotors mit der zu

BASF-Plant Science GmbH

10

20

25

30

40

20030082

PF 54350 DE

34

exprimierenden Nukleinsäuresequenz und ggf. weiterer regulativer Elemente wie zum Beispiel einem Terminator derart, dass jedes der regulativen Elemente seine Funktion bei der rekombinanten Expression der Nukleinsäuresequenz erfüllen kann. Dazu ist nicht unbedingt eine direkte Verknüpfung im chemischen Sinne erforderlich. Genetische Kontrollsequenzen, wie zum Beispiel Enhancer-Sequenzen, können ihre Funktion auch von weiter entfernten Positionen oder gar von anderen DNA-Molekülen aus auf die Zielsequenz ausüben. Bevorzugt sind Anordnungen, in denen die rekombinant zu exprimierende Nukleinsäuresequenz hinter der als Promoter fungierenden Sequenz positioniert wird, so dass beide Sequenzen kovalent miteinander verbunden sind. Bevorzugt ist dabei der Abstand zwischen der Promotorsequenz und der rekombinant zu exprimierende Nukleinsäuresequenz geringer als 200 Basenpaare, besonders bevorzugt kleiner als 100 Basenpaare, ganz besonders bevorzugt kleiner als 50 Basenpaare. Die Herstellung einer funktionellen Verknüpfung als auch die Herstellung einer rekombinanten Expressionskassette kann mittels gängiger Rekombinations- und Klonierungstechniken realisiert werden, wie sie beispielsweise in Maniatis T, Fritsch EF und Sambrook J (1989) Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Silhavy TJ, Berman ML und Enquist LW (1984) Experiments with Gene Fusions, Cold Spring Harbor Laboratory, Cold Spring Harbor (NY), in Ausubel FM et al. (1987) Current Protocols in Molecular Biology, Greene Publishing Assoc. and Wiley Interscience und bei Gelvin et al. (1990) In: Plant Molecular Biology Manual beschrieben sind. Zwischen beide Sequenzen können aber auch weitere Sequenzen positioniert werden, die zum Beispiel die Funktion eines Linkers mit bestimmten Restriktionsenzymschnittstellen oder eines Signalpeptides haben. Auch kann die Insertion von Sequenzen zur Expression von Fusionsproteinen führen.

35 Bevorzugt kann die rekombinante Expressionskassette, bestehend aus einer Verknüpfung von Promoter und zu exprimierender Nukleinsäuresequenz, integriert in einem Vektor vorliegen und durch zum Beispiel Transformation in ein pflanzliches Genom insertiert werden.

Unter einer rekombinanten Expressionskassette sind aber auch solche Konstruktionen zu verstehen, bei denen der Promoter – zum Beispiel durch eine homologe Rekombination – vor ein endogenes BII-Gen plaziert wird, und so die Expression des BII-Proteins

20

25

30

35

40

35

steuert. Analog kann auch die zu exprimierende Nukleinsäuresequenz (z.B. kodierend für ein BI1-Protein) derart hinter einen endogenen Promotor plaziert werden, dass der gleiche Effekt auftritt. Beide Ansätze führen zu rekombinanten Expressionskassetten im Sinne der Erfindung.

Unter einem "gewebespezifischen Promotor, der im wesentlichen keine Aktivität in der Blattepidermis aufweist" sind im Rahmen dieser Erfindung allgemein solche Promotoren zu verstehen, die geeignet sind eine rekombinante Expression einer Nukleinsäuresequenz mindestens in einem pflanzlichen Gewebe zu gewährleisten oder zu erhöhen, mit der Maßgabe, dass

- a) besagtes pflanzliches Gewebe ausgewählt ist aus allen pflanzlichen Geweben mit Ausnahme der Blattepidermis, und
- b) die rekombinante Expression unter Kontrolle des besagten Promotors in besagtem pflanzlichen Gewebe mindestens das fünffache, bevorzugt mindestens das zehnfache, besonders bevorzugt mindestens das einhundertfache der Expression in der pflanzlichen Blattepidermis beträgt.

Dem Fachmann sind zahlreiche Promotoren bekannt, die diesen Anforderungen genügen. Insbesondere geeignet sind gewebespezifische Promotoren, wie beispielsweise, jedoch nicht einschränkend Promotoren mit Spezifitäten für die Antheren, Ovarien, Blüten, Stengel, Wurzeln, Knollen oder Samen.

Als Samen spezifische Promotoren bevorzugt sind zum Beispiel die Promotoren des Phaseolins (US 5,504,200; Bustos MM et al. (1989) Plant Cell 1(9):839-53), 2S Albumins (Joseffson LG et al. (1987) J Biol Chem 262:12196-12201), Legumins (Shirsat A et al. (1989) Mol Gen Genet 215(2):326-331) und Legumin B4 (LeB4; Baumlein H et al. (1991) Mol Gen Genet 225:121-128; Baumlein H et al. (1992) Plant J 2(2):233-9; Fiedler U et al. (1995) Biotechnology (NY) 13(10):1090f), USP (unknown seed protein; Baumlein H et al. (1991) Mol Gen Genet 225(3):459-67), Napins (US 5,608,152; Stalberg K et al. (1996) L Planta 199:515-519), Saccharosebindeproteins (WO 00/26388), Oleosins (WO 98/45461), oder der Bce4-Promoter aus Brassica (WO 91/13980). Weitere geeignete samenspezifische Promotoren sind die der Gene kodierend für das "High Molecular Weight Glutenin" (HMWG), Gliadin, Verzweigungsenzym, ADP Glucose Pyrophosphatase (AGPase) oder

10

15

20

30

35

36

die Stärkesynthase. Bevorzugt sind ferner Promotoren, die eine samenspezifische Expression in Monokotyledonen wie Mais, Gerste, Weizen, Roggen, Reis etc. erlauben. Vorteilhaft eingesetzt werden können der Promoter des 1pt2 oder 1pt1-Gen (WO 95/15389, WO 95/23230) oder die Promotoren beschrieben in WO 99/16890 (Promotoren des Hordein-Gens, des Glutelin-Gens, des Oryzin-Gens, des Prolamin-Gens, des Gliadin-Gens, des Gliadin-Gens, des Gliadin-Gens, des Secalin-Gens, des Zein-Gens, des Kasirin-Gens oder des Secalin-Gens). Weitere samenspezifische Promotoren sind beschrieben in WO 89/03887.

- b) Knollen-, Speicherwurzel- oder Wurzel-spezifische Promotoren umfassen beispielsweise den Promotor des Patatin Gens (GenBank Acc.-No.: A08215), den Patatin Promotor Klasse I B33-Promotor (GenBank Acc.-No.: X14483) oder den Promotor des Cathepsin D Inhibitors aus Kartoffel. Insbesondere bevorzugt ist der Promotor beschrieben durch SEQ ID NO: 29. Knollen-spezifische Promotoren sind im Rahmen der Erfindung insbesondere zum Erzielen einer Resistenz gegen Phytophthora infestans geeignet. Da obligat-biotrophe Pilze nur Blätter befallen, ist eine Aktivität im epidermalen Knollengewebe unerheblich.
- c) Blütenspezifische Promotoren umfassen beispielsweise den Phytoen Synthase Promotor (WO 92/16635) oder den Promotor des P-rr Gens (WO 98/22593).
 - d) Antheren-spezifische Promotoren umfassen beispielsweise den 5126-Promotor (US 5,689,049, US 5,689,051), den glob-1 Promotor und den γ -Zein Promotor.
 - e) Ährenspezifische Promotoren, wie beispielsweise der in US 6,291,666. Ähren-spezifische Promotoren sind insbesondere zur Vermittlung einer Resistenz gegen Fusarium vorteilhaft.
- f) Mesophyll-spezifische Promotoren wie beispielsweise der Promotor des Weizen Germin 9f-3.8 Gens (GenBank Acc.-No.: M63224) oder der Gerste GerA Promotor (WO 02/057412). Besagte Promotoren sind insbesondere vorteilhaft, da sie sowohl mesophyll-spzifisch und pathogen-induzierbar sind. Ferner geeignet ist der mesophyll-spezifische Arabidopsis CAB-2 Promotor (GenBank Acc.-No.: X15222), sowie der Zea mays PPCZml Promotor (GenBank Acc.-No.: X63869). Insbesondere

15

20

25

35

40

37

bevorzugt sind die Promotor beschrieben durch SEQ ID NO: 30, 31 oder 32.

Die in den erfindungsgemäßen rekombinanten Expressionskassetten oder Vektoren enthaltenen Nukleinsäuresequenzen können mit weiteren genetischen Kontrollsequenzen neben einem Promoter funktionell verknüpft sein. Der Begriff der genetischen Kontrollsequenzen ist breit zu verstehen und meint all solche Sequenzen, die einen Einfluß auf das Zustandekommen oder die Funktion der erfindungsgemäßen rekombinanten Expressionskassette haben. Genetische Kontrollsequenzen umfassen auch weitere Promotoren, Promotorelemente oder Minimalpromotoren, die die expressionssteuernden Eigenschaften modifizieren können. So kann durch genetische Kontrollsequenzen zum Beispiel die gewebespezifische Expression zusätzlich abhängig von bestimmten Streßfaktoren erfolgen. Entsprechende Elemente sind zum Beispiel für Wasserstreß, Abscisinsäure (Lam E & Chua NH (1991) J Biol Chem 266(26):17131-17135) und Hitzestreß (Schoffl F et al. (1989) Mol Gen Genet 217(2-3):246-53) beschrieben.

Genetische Kontrollsequenzen umfassen ferner auch die 5'untranslatierte Regionen, Introns oder nichtkodierende 3'-Region
von Genen wie beipielsweise das Actin-1 Intron, oder die Adh1-S
Introns 1, 2 und 6 (allgemein: The Maize Handbook, Chapter 116,
Freeling and Walbot, Eds., Springer, New York (1994)). Es ist
gezeigt worden, dass diese eine signifikante Funktionen bei der
Regulation der Genexpression spielen können. So wurde gezeigt,
dass 5'-untranslatierte Sequenzen die transiente Expression
heterologer Gene verstärken können. Beispielhaft für
Translationsverstärker sei die 5'-Leadersequenz aus dem TabakMosaik-Virus zu nennen (Gallie et al. (1987) Nucl Acids Res
15:8693-8711) und dergleichen. Sie können ferner die
Gewebsspezifität fördern (Rouster J et al. (1998) Plant J
15:435-440).

Die rekombinante Expressionskassette kann vorteilhafterweise eine oder mehrere sogenannte "enhancer Sequenzen" funktionell verknüpft mit dem Promoter enthalten, die eine erhöhte rekombinante Expression der Nukleinsäuresequenz ermöglichen. Auch am 3'-Ende der rekombinant zu exprimierenden Nukleinsäuresequenzen können zusätzliche vorteilhafte Sequenzen inseriert werden, wie weitere regulatorische Elemente oder Terminatoren. Die rekombinant zu exprimierenden Nukleinsäuresequenzen können in einer oder mehreren Kopien im

Genkonstrukt enthalten sein.

Als Kontrollsequenzen geeignete Polyadenylierungssignale sind pflanzliche Polyadenylierungssignale, vorzugsweise solche, die im wesentlichen T-DNA Polyadenylierungssignale aus Agrobacterium tumefaciens, insbesondere der OCS (Octopin-Synthase)-Terminator und der NOS (Nopalin-Synthase)-Terminator.

Als Kontrollsequenzen sind weiterhin solche zu verstehen, die eine homologe Rekombination bzw. Insertion in das Genom eines Wirtsorganismus ermöglichen oder die Entfernung aus dem Genom erlauben. Bei der homologen Rekombination kann zum Beispiel der natürliche Promoter eines BII-Gens gegen einen der bevorzugten gewebespezifischen Promoter ausgetauscht werden. Methoden wie die cre/lox-Technologie erlauben eine gewebespezifische, unter Umständen induzierbare Entfernung der rekombinanten Expressionskassette aus dem Genom des Wirtsorganismus (Sauer B (1998) Methods. 14(4):381-92). Hier werden bestimmte flankierende Sequenzen dem Zielgen angefügt (lox-Sequenzen), die später eine Entfernung mittels der cre-Rekombinase ermöglichen.

Eine rekombinante Expressionskassetten und die von ihr abgeleiteten Vektoren können weitere Funktionselemente enthalten. Der Begriff Funktionselement ist breit zu verstehen und meint all solche Elemente, die einen Einfluß auf Herstellung, Vermehrung oder Funktion der erfindungsgemäßen rekombinanten Expressionskassetten, Vektoren oder rekombinanten Organismen haben. Beispielhaft aber nicht einschränkend seien zu nennen:

30

35

40

20

25

10

Selektionsmarker, die eine Resistenz gegen einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456), Antibiotika oder Biozide, bevorzugt Herbizide, wie zum Beispiel Kanamycin, G 418, Bleomycin, Hygromycin, oder Phosphinotricin etc. verleihen. Besonders bevorzugte Selektionsmarker sind solche die eine Resistenz gegen Herbizide verleihen. Beispielhaft seien genannt: DNA Sequenzen, die für Phosphinothricinacetyltransferasen (PAT) kodieren und Glutaminsynthaseinhibitoren inaktivieren (bar und pat Gen), 5-Enolpyruvylshikimat-3-phosphatsynthasegene (EPSP Synthasegene), die eine Resistenz gegen Glyphosat® (N-(phosphonomethyl)glycin) verleihen, das für das Glyphosat degradierende Enzyme kodierende gox Gen (Glyphosatoxidoreduktase), das deh Gen (kodierend für eine

5 .

10

15

20

25

30

35

40

b)

39

Dehalogenase, die Dalapon[®] inaktiviert), Sulfonylurea- und Imidazolinon inaktivierende Acetolactatsynthasen sowie bxn Gene, die für Bromoxynil degradierende Nitrilaseenzyme kodieren, das aasa-Gen, das eine Resistenz gegen das Antibiotikum Apectinomycin verleih, das Streptomycinphosphotransferase (SPT) Gen, das eine Resistenz gegen Streptomycin gewährt, das Neomycinphosphotransferas (NPTII) Gen, das eine Resistenz gegen Kanamycin oder Geneticidin verleiht, das Hygromycinphosphotransferase (HPT) Gen, das eine Resistenz gegen Hygromycin vermittelt, das Acetolactatsynthas Gen (ALS), das eine Resistenz gegen Sulfonylharnstoff-Herbizide verleiht (z.B. mutierte ALS-Varianten mit z.B. der S4 und/oder Hra Mutation).

Reportergene, die für leicht quantifizierbare Proteine kodieren und über Eigenfarbe oder Enzymaktivität eine Bewertung der Transformationseffizienz oder des Expressionsortes oder -zeitpunktes gewährleisten. Ganz besonders bevorzugt sind dabei Reporter-Proteine (Schenborn E, Groskreutz D. Mol Biotechnol. 1999; 13(1):29-44) wie das "green fluorescence protein" (GFP) (Sheen et al. (1995) Plant Journal 8(5):777-784; Haseloff et al.(1997) Proc Natl Acad Sci USA 94(6):2122-2127; Reichel et al.(1996) Proc Natl Acad Sci USA 93(12):5888-5893; Tian et al. (1997) Plant Cell Rep 16:267-271; WO 97/41228; Chui WL et al. (1996) Curr Biol 6:325-330; Leffel SM et al. (1997) Biotechniques. 23(5):912-8), die Chloramphenicoltransferase, eine Luziferase (Ow et al. (1986) Science 234:856-859; Millar et al. (1992) Plant Mol Biol Rep 10:324-414), das Aequoringen (Prasher et al. (1985) Biochem Biophys Res Commun 126(3):1259-1268), die β -Galactosidase, R-Locus Gen (kodieren ein Protein, das die Produktion von Anthocyaninpigmenten (rote Färbung) in pflanzlichen Gewebe reguliert und so eine direkte Analyse der Promotoraktivität ohne Zugabe zusätzlicher Hilfstoffe oder chromogener Substrate ermöglicht; Dellaporta et al., In: Chromosome Structure and Function: Impact of New Concepts, 18th Stadler Genetics Symposium, 11:263-282, 1988), ganz besonders bevorzugt ist die ß-Glucuronidase (Jefferson et al., EMBO J. 1987, 6, 3901-3907).

c) Replikationsursprünge, die eine Vermehrung der erfindungsgemäßen rekombinanten Expressionskassetten oder Vektoren in zum Beispiel E.coli gewährleisten. Beispielhaft seien genannt ORI (origin of DNA replication), der pBR322

ori oder der P15A ori (Sambrook et al.: Molecular Cloning. A Laboratory Manual, 2^{nd} ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989).

5 d) Elemente, die für eine Agrobakterium vermittelte Pflanzentransformation erforderlich sind, wie zum Beispiel die rechte oder linke Begrenzung der T-DNA oder die vir-Region.

Zur Selektion erfolgreich homolog rekombinierter oder auch

- transformierter Zellen ist es in der Regel erforderlich, einen selektionierbaren Marker zusätzlich einzuführen, der den erfolgreich rekombinierten Zellen eine Resistenz gegen ein Biozid (zum Beispiel ein Herbizid), einen Metabolismusinhibitor wie 2-Desoxyglucose-6-phosphat (WO 98/45456) oder ein Antibiotikum verleiht. Der Selektionsmarker erlaubt die Selektion der transformierten Zellen von untransformierten (McCormick et al. (1986) Plant Cell Reports 5:81-84).
- Die Einführung einer erfindungsgemäßen rekombinanten Expressionskassette in einen Organismus oder Zellen, Geweben, Organe, Teile bzw. Samen desselben (bevorzugt in Pflanzen bzw. pflanzliche Zellen, Gewebe, Organe, Teile oder Samen), kann vorteilhaft unter Verwendung von Vektoren realisiert werden, in 25 denen die rekombinanten Expressionskassetten enthalten sind. Die rekombinante Expressionskassette kann in den Vektor (zum Beispiel ein Plasmid) über eine geeignete Restriktionsschnittstelle eingeführt werden. Das entstandene Plasmid wird zunächst in E.coli eingeführt. Korrekt 30 transformierte E.coli werden selektioniert, gezüchtet und das rekombinante Plasmid mit dem Fachmann geläufigen Methoden gewonnen. Restriktionsanalyse und Sequenzierung können dazu dienen, den Klonierungsschritt zu überprüfen.
- Vektoren können beispielhaft Plasmide, Cosmide, Phagen, Viren oder auch Agrobacterien sein. In einer vorteilhaften Ausführungsform wird die Einführung der rekombinante Expressionskassette mittels Plasmidvektoren realisiert. Bevorzugt sind solche Vektoren, die eine stabile Integration der rekombinanten Expressionskassette in das Wirtsgenom ermöglichen.

Die Herstellung eines transformierten Organismus (bzw. einer transformierten Zelle oder Gewebes) erfordert, dass die entsprechende DNA, RNA oder Protein in die entsprechende

20

25

41

Wirtszelle eingebracht wird.

Für diesen Vorgang, der als Transformation (oder Transduktion bzw. Transfektion) bezeichnet wird, steht eine Vielzahl von Methoden zur Verfügung (Keown et al. (1990) Methods Enzymol 185:527-537; Jenes B et al. (1993) Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, herausgegeben von SD Kung und R Wu, Academic Press, S. 128-143 sowie in Potrykus (1991) Annu Rev Plant Physiol Plant Molec Biol 42:205-225).

So kann die DNA oder RNA beispielhaft direkt durch Mikroinjektion oder durch Bombardierung mit DNA-beschichteten Mikropartikeln eingeführt werden. Auch kann die Zelle chemisch, zum Beispiel mit Polyethylenglykol, permeabilisiert werden, so dass die DNA durch Diffusion in die Zelle gelangen kann. Die DNA kann auch durch Protoplastenfusion mit anderen DNA-enthaltenden Einheiten wie Minicells, Zellen, Lysosomen oder Liposomen erfolgen. Elektroporation ist eine weitere geeignete Methode zur Einführung von DNA, bei der die Zellen reversibel durch einen elektrischen Impuls permeabilisiert werden. Entsprechende Verfahren sind beschrieben (beispielsweise bei Bilang et al. (1991) Gene 100:247-250; Scheid et al. (1991) Mol Gen Genet 228:104-112; Guerche et al. (1987) Plant Science 52:111-116; Neuhause et al. (1987) Theor Appl Genet 75:30-36; Klein et al. (1987) Nature 327:70-73; Howell et al. (1980) Science 208:1265; Horsch et al.(1985) Science 227:1229-1231; DeBlock et al. (1989) Plant Physiol 91:694-701).

- 30 Bei Pflanzen werden dabei die beschriebenen Methoden zur Transformation und Regeneration von Pflanzen aus Pflanzengeweben oder Pflanzenzellen zur transienten oder stabilen Transformation genutzt. Geeignete Methoden sind vor allem die Protoplastentransformation durch Polyethylenglykol-induzierte DNA-Aufnahme, das biolistische Verfahren mit der Genkanone, die sogenannte "particle bombardment" Methode, die Elektroporation, die Inkubation trockener Embryonen in DNA-haltiger Lösung und die Mikroinjektion.
- 40 Neben diesen "direkten" Transformationstechniken kann eine Transformation auch durch bakterielle Infektion mittels Agrobacterium tumefaciens oder Agrobacterium rhizogenes durchgeführt werden. Die Agrobacterium-vermittelte Transformation ist am besten für dicotyledone Pflanzenzellen

geeignet. Die Verfahren sind beispielsweise beschrieben bei Horsch RB et al. (1985) Science 225: 1229f).

Werden Agrobacterien verwendet, so ist die rekombinante

Expressionskassette in spezielle Plasmide zu integrieren,
entweder in einen Zwischenvektor (englisch: shuttle or
intermediate vector) oder einen binären Vektor. Wird ein Ti oder
Ri Plasmid zur Transformation verwendet werden soll, ist
zumindest die rechte Begrenzung, meistens jedoch die rechte und
die linke Begrenzung der Ti oder Ri Plasmid T-DNA als
flankierende Region mit der einzuführenden rekombinanten
Expressionskassette verbunden.

- Bevorzugt werden binäre Vektoren verwendet. Binäre Vektoren können sowohl in E.coli als auch in Agrobacterium replizieren. Sie enthalten in der Regel ein Selektionsmarkergen und einen Linker oder Polylinker flankiert von der rechten und linken T-DNA Begrenzungssequenz. Sie können direkt in Agrobacterium transformiert werden (Holsters et al. (1978) Mol Gen Genet 20 163:181-187). Das Selektionsmarkergen erlaubt eine Selektion transformierter Agrobakteria und ist zum Beispiel das nptII Gen, das eine Resistenz gegen Kanamycin verleiht. Das in diesem Fall als Wirtsorganismus fungierende Agrobacterium sollte bereits ein Plasmid mit der vir-Region enthalten. Diese ist für die Übertragung der T-DNA auf die pflanzliche Zelle erforderlich. Ein so transformiertes Agrobacterium kann zur Transformation pflanzlicher Zellen verwendet werden. Die Verwendung von T-DNA zur Transformation pflanzlicher Zellen ist intensiv untersucht und beschrieben (EP 120 516; Hoekema, In: The Binary Plant Vector System, Offsetdrukkerij Kanters B.V., Alblasserdam, 30 Chapter V; An et al. (1985) EMBO J 4:277-287). Verschiedene binäre Vektoren sind bekannt und teilweise kommerziell erhältlich wie zum Beispiel pBI101.2 oder pBIN19 (Bevan et al. (1984) Nucl Acids Res 12:8711f; Clontech Laboratories, Inc. USA). Weitere zur Expression in Pflanzen geeignet Promotoren sind beschrieben (Rogers et al. (1987) Methods Enzymol 153:253-
- Direkte Transformationstechniken eignen sich im Prinzip für jeden Organismus und Zelltyp. Im Falle von Injektion oder Elektroporation von DNA bzw. RNA in pflanzliche Zellen sind keine besonderen Anforderungen an das verwendete Plasmid gestellt. Einfache Plasmide wie die der pUC-Reihe können

Proc Natl Acad Sci USA 86:8402-8406).

277; Schardl et al. (1987) Gene 61:1-11; Berger et al. (1989)

verwendet werden. Sollen vollständige Pflanzen aus den transformierten Zellen regeneriert werden, so ist er erforderlich, das sich auf dem Plasmid ein zusätzliches selektionierbares Markergen befindet.

5

15

25

Stabil transformierte Zellen d.h. solche, die die eingeführte DNA integriert in die DNA der Wirtszelle enthalten, können von untransformierten selektioniert werden, wenn ein selektionierbarer Marker Bestandteil der eingeführten DNA ist. Als Marker kann beispielhaft jedes Gen fungieren, dass eine Resistenz gegen Antibiotika oder Herbizide (wie Kanamycin, G 418, Bleomycin, Hygromycin oder Phosphinotricin etc.) zu verleihen vermag (s.o.). Transformierte Zellen, die ein solches Markergen exprimieren, sind in der Lage, in der Gegenwart von Konzentrationen eines entsprechenden Antibiotikums oder Herbizides zu überleben, die einen untransformierten Wildtyp abtöten. Beispiel für geeignete Selektionsmarker sind oben genannt. Sobald eine transformierte Pflanzenzelle hergestellt wurde, kann eine vollständige Pflanze unter Verwendung von dem Fachmann bekannten Verfahren erhalten werden. Hierbei geht man beispielhaft von Kalluskulturen aus. Aus diesen noch undifferenzierten Zellmassen kann die Bildung von Sproß und Wurzel in bekannter Weise induziert werden. Die erhaltenen Sprößlinge können ausgepflanzt und gezüchtet werden. Dem Fachmann sind Verfahren bekannt, um aus Pflanzenzellen, Pflanzenteile und ganze Pflanzen zu regenerieren. Beispielsweise werden hierzu Verfahren beschrieben von Fennell et al. (1992) Plant Cell Rep. 11: 567-570; Stoeger et al (1995) Plant Cell Rep. 14:273-278; Jahne et al. (1994) Theor Appl Genet 89:525-533 verwendet. Die erhaltenen Pflanzen können in der üblichen Weise gezüchtet und/oder gekreuzt werden. Zwei oder mehr Generationen sollten kultiviert werden, um sicherzustellen, dass die genomische Integration stabil und vererblich ist.

Das erfindungsgemäße Verfahren kann vorteilhaft mit weiteren Verfahren die eine Pathogenresistenz (beispielsweise gegen Insekten, Pilze, Bakterien, Nematoden etc.), Streßresistenz oder eine andere Verbesserung der pflanzlichen Eigenschaften bewirken kombiniert werden. Beispiele sind u.a. genannt bei Dunwell JM (2000) J Exp Bot. 51 Spec No:487-96.

Ein weiterer Gegenstand der Erfindung betrifft Polypeptidsequenzen kodierend für BI1 Protein umfassend mindestens eine Sequenz ausgewählt aus der Gruppe bestehend aus

à

44

- a) den Sequenzen gemäß SEQ ID NO: 12, 14, 16, 18, 20, 22, 24, 28, 30 oder 32,
- 5 b) Sequenzen die eine Homologie von mindestens 90%, bevorzugt mindestens 95%, besonders bevorzugt mindesten 98% zu einer der Sequenzen gemäß SEQ ID NO: 12, 14, 16, 18, 20, 22, 24, 28, 30 oder 32 aufweisen, und
- 10 c) Sequenzen die mindestens 10, bevorzugt mindestens 20, besonders bevorzugt mindestens 30 zusammenhängende Aminosäuren einer der Sequenzen gemäß SEQ ID NO: 12, 14, 16, 18, 20, 22, 24, 28, 30 oder 32 umfassen.
- 15 Ein weiterer Gegenstand der Erfindung betrifft
 Nukleinsäuresequenzen kodierend für die erfindungsgemäßen neuen
 Polypeptidsequenzen kodierend für BI1-Proteine. Bevorzugt sind
 die Nukleinsäuresequenz gemäß SEQ ID NO: 11, 13, 15, 17, 19, 21,
 23, 25, 27, 29 oder 31, die dazu komplementäre
- 20 Nukleinsäuresequenz und die durch Entartung (Degeneration) des genetischen Codes abgeleitete Sequenzen.

Expressionskassetten, die eine der erfindungsgemäßen Nukleinsäuresequenzen umfassen. In den erfindungsgemäßen rekombinanten Expressionskassetten ist die Nukleinsäuresequenz kodierend für das BI1-Protein aus Gerste mit mindestens einem genetischen Kontrollelement nach obiger Definition derart verknüpft, das die Expression (Transkription und ggf.

Ein weiterer Gegenstand der Erfindung betrifft rekombinante

- Translation) in einem beliebigen Organismus bevorzugt in Pflanzen realisiert werden kann. Dazu geeignete genetische Kontrollelemente sind oben beschrieben. Die rekombinanten Expressionskassetten können auch weitere Funktionselementen gemäß obiger Definition enthalten. Die insertierte
- Nukleinsäuresequenz kodierend für ein BI1-Protein aus Gerste kann in sense- oder antisense-Orientierung in die Expressionskassette insertiert sein, und damit zu Expression von sense- oder antisense-RNA führen. Erfindungsgemäß sind auch rekombinante Vektoren, die die rekombinanten
- 40 Expressionskassetten beinhalten.

30

"Rekombinant" meint bezüglich zum Beispiel einer Nukleinsäuresequenz, einer Expressionskassette oder einem Vektor enthaltend besagte Nukleinsäuresequenz oder einem Organismus

transformiert mit besagter Nukleinsäuresequenz, Expressionskassette oder Vektor alle solche durch gentechnische Methoden zustandegekommene Konstruktionen, in denen sich entweder

5

- a) die BI1 Nukleinsäuresequenz, oder
- eine mit der BI1 Nukleinsäuresequenz funktionell verknüpfte genetische Kontrollsequenz, zum Beispiel ein Promotor, oder

10

c) (a) und (b)

sich nicht in ihrer natürlichen, genetischen Umgebung befinden oder durch gentechnische Methoden modifiziert wurden, wobei die Modifikation beispielhaft eine Substitutionen, Additionen, 15 Deletionen, Inversion oder Insertionen eines oder mehrerer Nukleotidreste sein kann. Natürliche genetische Umgebung meint den natürlichen chromosomalen Locus in dem Herkunftsorganismus oder das Vorliegen in einer genomischen Bibliothek. Im Fall einer genomischen Bibliothek ist die natürliche, genetische Umgebung der Nukleinsäuresequenz bevorzugt zumindest noch teilweise erhalten. Die Umgebung flankiert die Nukleinsäuresequenz zumindest an einer Seite und hat eine Sequenzlänge von mindestens 50 bp, bevorzugt mindestens 500 bp, besonders bevorzugt mindestens 1000 bp, ganz besonders bevorzugt mindestens 5000 bp. Eine natürlich vorkommende Expressionskassette - beispielsweise die natürlich vorkommende Kombination des BI1-Promotors mit dem entsprechenden BI1-Gen wird zu einer rekombinanten Expressionskassette, wenn diese durch nicht-natürliche, synthetische ("künstliche") Verfahren wie beispielsweise einer Mutagenisierung geändert wird. Entsprechende Verfahren sind beschrieben (US 5,565,350; WO 00/15815; siehe auch oben).

35 Ein anderer Gegenstand der Erfindung betrifft rekombinante Organismen, transformiert mit wenigstens einer erfindungsgemäßen Nukleinsäuresequenzen, Expressionskassette oder einem erfindungsgemäßen Vektor, sowie Zellen, Zellkulturen, Gewebe, Teile - wie zum Beispiel bei pflanzlichen Organismen Blätter,

Wurzeln usw.- oder Vermehrungsgut abgeleitet von solchen Organismen. Organismus ist breit zu verstehen und meint prokaryotische und eukaryotische Organismen, bevorzugt Bakterien, Hefen, Pilze, tierische und pflanzliche Organismen. Als rekombinante Organismen bevorzugte Wirts- oder

BASF-Plant Science GmbH

20030082

PF 54350 DE

46

Ausgangsorganismen sind vor allem Pflanzen gemäß der oben genannten Definition.

Ein weiterer Gegenstand der Erfindung betrifft die Verwendung

5 der erfindungsgemäßen, rekombinanten Organismen und der von
ihnen abgeleitete Zellen, Zellkulturen, Teile - wie zum Beispiel
bei rekombinanten pflanzlichen Organismen Wurzeln, Blätter etc., und rekombinantes Vermehrungsgut wie Saaten oder Früchte, zur
Herstellung von Nahrungs- oder Futtermitteln, Pharmazeutika oder

10 Feinchemikalien.

				•••
	Sec	quenzen		
5	1.	SEQ ID NO: 1	:	Nukleinsäuresequenz kodierend für ein BI1 Protein aus Gerste (Hordeum vulgare).
	2.	SEQ ID NO: 2	:	Aminosäuresequenz kodierend für ein BI1 Protein aus Gerste (Hordeum vulgare).
10	3.	SEQ ID NO: 3	:	Nukleinsäuresequenz kodierend für ein BI1 Protein aus Arabidopsis thaliana.
.•	4.	SEQ ID NO: 4	:	Aminosäuresequenz kodierend für ein BI1 Protein aus Arabidopsis thaliana.
15	5.	SEQ ID NO: 5	:	Nukleinsäuresequenz kodierend für ein BI1 Protein aus Tabak.
20	.6.	SEQ ID NO: 6	:	Aminosäuresequenz kodierend für ein BI1 Protein aus Tabak.
	7.	SEQ ID NO: 7	:	Nukleinsäuresequenz kodierend für ein BI1 Protein aus Reis.
25	8.	SEQ ID NO: 8:	:	Aminosäuresequenz kodierend für ein BI1 Protein aus Reis.
	9.	SEQ ID NO: 9	:	Nukleinsäuresequenz kodierend für ein BI1 Protein aus Raps.
30	10.	SEQ ID NO: 10	:	Aminosäuresequenz kodierend für ein BI1 Protein aus Raps.
35	11.	SEQ ID NO: 11	:	Nukleinsäuresequenz kodierend für Teil eines BI1 Protein aus Soja.
	12.	SEQ ID NO: 12	:	Aminosäuresequenz kodierend für Teil eines BI1 Protein aus Soja.
40	13.	SEQ ID NO: 13	:	Nukleinsäuresequenz kodierend für Teil eines BI1 Protein aus Soja.
	14.	SEQ ID NO: 14	:	Aminosäuresequenz kodierend für Teil

eines BI1 Protein aus Soja.

30

48

- 15. SEQ ID NO: 15 : Nukleinsäuresequenz kodierend für Teil eines BI1 Protein aus Weizen.
- 16. SEQ ID NO: 16 : Aminosäuresequenz kodierend für Teil eines BI1 Protein aus Weizen.
 - 17. SEQ ID NO: 17: Nukleinsäuresequenz kodierend für Teil eines BI1 Protein aus Mais.
- 10 18. SEQ ID NO: 18 : Aminosäuresequenz kodierend für Teil eines BI1 Protein aus Mais.
 - 19. SEQ ID NO: 19 : Nukleinsäuresequenz kodierend für Teil eines BI1 Protein aus Weizen.
 - 20. SEQ ID NO: 20 : Aminosäuresequenz kodierend für Teil eines BI1 Protein aus Weizen.
- 21. SEQ ID NO: 21 : Nukleinsäuresequenz kodierend für Teil eines BI1 Protein aus Mais.
 - 22. SEQ ID NO: 22 : Aminosäuresequenz kodierend für Teil eines BI1 Protein aus Mais.
- 25 23. SEQ ID NO: 23 : Nukleinsäuresequenz kodierend für Teil eines BI1 Protein aus Mais.
 - 24. SEQ ID NO: 24 : Aminosäuresequenz kodierend für Teil eines BI1 Protein aus Mais.
 - 25. SEQ ID NO: 25 : Nukleinsäuresequenz kodierend für Teil eines BI1 Protein aus Weizen.
- 26. SEQ ID NO: 26 : Aminosäuresequenz kodierend für Teil 35 eines BI1 Protein aus Weizen.
 - 27. SEQ ID NO: 27 : Nukleinsäuresequenz kodierend für Teil eines BI1 Protein aus Mais.
- 40 28. SEQ ID NO: 28 : Aminosäuresequenz kodierend für Teil eines BI1 Protein aus Mais.
 - 29. SEQ ID NO: 29 : Nukleinsäuresequenz kodierend für den

BASF-Plant Science GmbH

20030082

PF 54350 DE

49

Patatin Promotor aus Kartoffel.

30. SEQ ID NO: 30 : Nukleinsäuresequenz kodierend für den Germin 9f-3.8 Promotor aus Weizen.

31. SEQ ID NO: 31 : Nukleinsäuresequenz kodierend für den Arabidopsis CAB-2 Promotor

32. SEQ ID NO: 32 : Nukleinsäuresequenz kodierend für den PPCZm1 Promotor aus Mais

33. SEQ ID NO: 33 : Nukleinsäuresequenz kodierend für rekombinanten Expressionsvektor pUbiBI-1

15 34. SEQ ID NO: 34 : Nukleinsäuresequenz kodierend für rekombinanten Expressionsvektor pLo114UbiBI-1

35. SEQ ID NO: 35 : Nukleinsäuresequenz kodierend für rekombinanten Expressionsvektor pOXoBI-1

36. SEQ ID NO: 36 : Nukleinsäuresequenz kodierend für rekombinanten Expressionsvektor pLo1140XoBI-1

25

30

35

5

Abbildungen

1. Fig. 1a-d: Vergleich von Proteinsequenzen verschiedener BI1 Proteine aus Pflanzen. AtBI-1: Arabidopsis; BnBI-1:
Brassica napus (Raps); GmBI2: Glycine max (Soja; Variante
1); GmBI3: Glycine max (Soja; Variante 2); HVBI-1: Hordeum
vulgare (Gerste); NtBI-1: Nicotiana tabacum (Tabak); OsBI-1:
Oryza sativa (Reis); TaBI11: Triticum aestivum (Weizen,
Variante 1); TaBI18: Triticum aestivum (Weizen, Variante 2);
TaBI5 neu: Triticum aestivum (Weizen, Variante 3); ZmBI14:
Zea mays (Mais; Variante 1); ZmBI16: Zea mays (Mais;
Variante 2); ZmBI33: Zea mays (Mais; Variante 3); ZmBI8: Zea
mays (Mais; Variante 4); Consensus: Aus dem Alignment
abgeleitete Konsensussequenz.

40

 Fig. 2: Vektorkarte für Vektor pUbiBI-1 (Ubi: Ubiquitin-Promotor; BI-1 Nukleinsäuresequenz kodierend für Gerste BI1-Protein; ter: Transkriptionsterminator). Angegeben sind

20

50

ferner die Lokalisation der Schnittstellen verschiedener Restriktionsenzyme.

- Fig. 3: Vektorkarte für Vektor pL0114UbiBI-1 (Ubi:
 Ubiquitin-Promotor; BI-1 Nukleinsäuresequenz kodierend für Gerste BI1-Protein; ter: Transkriptionsterminator).
 Angegeben sind ferner die Lokalisation der Schnittstellen verschiedener Restriktionsenzyme.
- 4. Fig. 4: Vektorkarte für Vektor pOxoBI-1 (Oxo: TaGermin 9f-2.8 Promotor; BI-1 Nukleinsäuresequenz kodierend für Gerste BI1-Protein; ter: Transkriptionsterminator). Angegeben sind ferner die Lokalisation der Schnittstellen verschiedener Restriktionsenzyme.
 - 5. Fig. 5: Vektorkarte für Vektor pLO1140xoBI-1 (Oxo: TaGermin 9f-2.8 Promotor; BI-1 Nukleinsäuresequenz kodierend für Gerste BI1-Protein; ter: Transkriptionsterminator). Angegeben sind ferner die Lokalisation der Schnittstellen verschiedener Restriktionsenzyme.
- Fig. 6: Vergleich der Proteinssequenzen von BI-1 Proteinen aus Gerste (Hordeum vulgare, GenBank Acc.-No.: CAC37797), Reis (Oryza sativa, GenBank Acc.-No.: Q9MBD8), Arabidopsis thaliana (GenBank Acc.-No.: Q9LD45) und Mensch (Homo sapiens, GenBank Acc.-No.: AAB87479). Schwarzhinterlegte Aminosäuren sind identisch in allen Arten. Grau hinterlegte Aminosäuren sind nur in Pflanzen identisch. Balken zeigen die vorausgesagten sieben Transmembrandomänen in HvBI-1 an.
- 7. Fig. 7: BI-1 Expression in resistenten und suszeptiblen
 Gersten-Linien (cDNA Gelblot-Analyse): cDNAs wurde mittels
 RT-PCR ausgehend von Gesamt-RNA synthetisiert. Gesamt-RNA
 wurde aus suszeptibler Gersten-Linie Pallas, resistenter
 Gersten-Linie BCPMla12 und resistenter Gersten-Linie BCPmlo5
 zum Zeitpunkt 0 (d.h. unmittlbar vor Inokkulation), sowie
 jeweils 1, 4 und 7 Tage nach Inokkulation mit Bgh und
 parallel dazu aus nicht-infizierten Kontrollpflanzen (Ø)
 gewonnen. Die RT-PCR für BI-1 wurde unter Verwendung von 20
 Zyklen ausgeführt (s.u.). Die eingesetzte RNA-Menge (0.5 µg)
 wurde zusätzlich durch rRNA-Färbung mit Ethidiumbromid in
 Gelen kontrolliert. Wiederholung der Experimente ergab
 vergleichbare Resultate.

10

15

30

35

8. Fig. 8: BI-1 wird im Mesophyllgewebe exprimiert (cDNA Gelblot-Analyse). RT-PCR wurde ausgehend von RNA isoliert aus Pallas (P) und BCPMla12 (P10) (24 h nach Inokulation mit BghA6) durchgeführt. Für die Extraktion der Gesamt-RNA wurden abaxiale epidermale Streifen (E, inokulierte Positionen der Blätter) vom Mesophyll und der adaxialen Epidermis (M) separiert. Ubiquitin 1 (Ubi) wurde als Marker eine gewebeunspezifischen Genexpression verwendet. RT-PCR wurde unter Verwendung von 30 Zyklen durchgeführt.

9. Fig. 9: *BI-1* Expression wird während chemischer Resistenzinduktion reprimiert.

- (A) Chemisch induzierte Resistenz in der Gersten-Linie Pallas gg. Blumeria graminis (DC) Speer f.sp. hordei (Bgh). Gersten Primärblätter wurden mit 2,6-Dichloroisonicotinsäure (DCINA) behandelt und zeigten weniger Mehltau-Pustulen als entsprechende unbehandelte Kontrollpflanzen.
- (B) RNA und cDNA Blots. RNA (10 µg) wurde 0, 1, 2 und 3 Tage nach Bodenbehandlung (soil drench treatment; dpt) mit DCINA bzw. der Kontrolle (Trägersubstanz) und zusätzlich 1 und 4 Tage nach Inokulation (dpi, entspricht 4 bzw. 7 dpt) analysiert. RT-PCR (Ubi, BI-1) wurde unter Verwendung von 20 Zyklen realisiert. Wiederholung führte zu vergleichbaren Ergebnissen (siehe Beispiel 2).

Als Kontrolle wurde BCI-4 eingesetzt. BCI-4 ist ein DCINA-induziertes Gen (Besser et al. (2000) Mol Plant Pahol. 1(5): 277-286) und ein Mitglied der Barley Chemically (=BTH) Induced- Genfamilie.

- 10. Fig. 10: Überexpression von *BI-1* induziert Supersuszeptibilität.
- (A) Durchschnittliche Penetrationseffizienz von Bgh in 6 unabhängigen Experimenten mit Bgh auf Gersten-Linie Ingrid. PE von Bgh war signifikant (p<0.01, Students t-Test) erhöht in Zellen, die mit pBI-1 transformiert (bombardiert) wurden im Vergleich zu Zellen, die mit der Leervektor-Kontrolle (pGY1). bombardiert wurden.
 - (B) Die Penetrationseffizienz von Bgh auf Zellen die mit einem antisense-BI-1 Konstrukt (pasBI-1) bombardiert wurden,

war nicht-signifikant (p>0.05) vermindert im Vergleich zu Zellen, die mit der Leervektor-Kontrolle (pGY1). bombardiert wurden.

- Die Säulen geben jeweils den Mittelwert der einzelnen Experimente wieder. Die Balken stellen den Standardfehler dar.
- 11. Fig. 11: Überexpression von BI-1 induziert Bruch der mlo5-vermittelten Penetrationsresistenz.

 Penetrationseffizienz von Bgh wurde in 3 bis 4 unabhängigen Experimenten mit Bgh auf den Gersten Linien Ingrid-mlo5 bzw. Pallas-mlo5 bewertet. PE durch Bgh war signifikant (p<0.05) erhöht in Zellen, die mit pBI-1 transformiert (bombardiert) wurden im Vergleich zu Zellen, die mit der Leervektor-Kontrolle (pGY1). bombardiert wurden. Die Säulen geben jeweils den Mittelwert von drei unabhängigen Experimente wieder. Die Balken stellen den Standardfehler dar.
- 20 12. Fig. 12: BI-1 Expression wird durch toxische Kulturfiltrate aus Bipolaris sorokiniana induziert. Northern-Blots (10 µg Gesamt-RNA) mit RNA aus Ingrid (I) und BCIngrid-mlo5 (I22). RNA wurde 0, 24, 48 und 72 h nach Injektion der toxischen Kulturfiltrate von Bipolaris sorokiniana (T) bzw. Wasser (W) isoliert. BI-1 mRNAs wurde auf Nylonmembranen nach stringenten Waschen detektiert. BI-1: Detektion von BAX Inhibitor 1 mRNA; Ubi: Detektion von Ubiquitin 1; Asprot: Detection der Aspartatprotease mRNA; hat: Stunden nach Behandlung ("h after treatment")
 - 13. Fig. 13: BI-1 Überexpression bricht Nicht-Wirtsresistenz von Gerste (cv. Manchuria) gegen Blumeria graminis f.sp. tritici. Penetrationsraten wurden in drei unabhängigen Experimenten untersucht.

30

BASF-Plant Science GmbH

20030082

PF 54350 DE

53

Beispiele

Allgemeine Methoden:

Die chemische Synthese von Oligonukleotiden kann beispielsweise, in bekannter Weise, nach der Phosphoamiditmethode (Voet, Voet, 2. Auflage, Wiley Press New York, Seite 896-897) erfolgen. Die im Rahmen der vorliegenden Erfindung durchgeführten Klonierungsschritte wie z.B. Restriktionsspaltungen,

Agarosegelelektrophorese, Reinigung von DNA-Fragmenten, Transfer von Nukleinsäuren auf Nitrozellulose und Nylonmembranen, Verknüpfen von DNA-Fragmenten, Transformation von E. coli Zellen, Anzucht von Bakterien, Vermehrung von Phagen und Sequenzanalyse rekombinanter DNA werden wie bei Sambrook et al. (1989) Cold Spring Harbor Laboratory Press; ISBN 0-87969-309-6 beschrieben durchgeführt. Die Sequenzierung rekombinanter DNA-Moleküle erfolgt mit einem Laserfluoreszenz-DNA-Sequenzierer der Firma MWG-Licor nach der Methode von Sanger (Sanger et al.

20

Beispiel 1: Pflanzen, Pathogene und Inokulation

(1977) Proc Natl Acad Sci USA 74:5463-5467).

Die Gerstensorten Ingrid, Pallas und die rückgekreuzte Linie BCPMla12, BCPmlo5 und BCIngrid-mlo5 (I22) wurde von Lisa Munk,

Department of Plant Pathology, Royal Veterinary and Agriculturai University, Kopenhagen, Dänemark zur Verfügung gestellt. Ihre Herstellung ist beschrieben (Kølster P et al. (1986) Crop Sci 26: 903-907).

Das 12 bis 36 h im Dunkeln auf feuchtem Filterpapier vorgekeimte Saatgut wurde, wenn nicht anders beschrieben, zu je 5 Körnern an den Rand eines Vierkanttopfes (8x8cm) in Fruhstorfer Erde vom Typ P ausgelegt, mit Erde bedeckt und regelmäßig mit Leitungswasser gegossen. Alle Pflanzen wurden in Klimaschränken oder -kammern bei 18°C und 60 % relativer Luftfeuchte und einem 16-stündigen Licht / 8-stündigen Dunkelheitszyklus mit 3000 bzw. 5000 lux (50 bzw. 60 µmols-'m-' Photonenflussdichte) 5 bis 8 Tage lang kultiviert und im Keimlingsstadium in den Versuchen verwendet. Bei Experimenten, in denen Applikationen an Primärblättern durchgeführt wurden, waren diese vollständig entwickelt.

Vor Durchführung der transienten Transfektionsexperimente wurden die Pflanzen in Klimaschränken oder -kammern bei tagsüber 24°C,

nachts 20°C, 50 bis 60 % relativer Luftfeuchte und einem 16stündigen Licht / 8-stündigen Dunkelheitszyklus mit 30000 lux kultiviert.

5 Für die Inokulation von Gerstenpflanzen wurde echter Gerstenmehltau Blumeria graminis (DC) Speer f.sp. hordei Em. Marchal der Rasse A6 (Wiberg A (1974) Hereditas 77: 89-148) (BghA6) verwendet. Dieser wurde vom Institut für Biometrie, JLU Gießen bereitgestellt. Die Nachzucht des Inokulums erfolgte in Klimakammern zu den gleichen Bedingungen, wie sie oben für die Pflanzen beschrieben sind, durch Übertragung der Konidien von befallenem Pflanzenmaterial auf regelmäßig angezogene, 7 Tage alte Gerstenpflanzen cv. Golden Promise bei einer Dichte von 100 Konidien/mm².

15

Die Inokulation erfolgte auf primäre Blätter von Gerstenpflanzen mit nachfolgenden Konidien-Dichten: 5 Konidien/ mm² bei chemischer Induktion von Resistenz und makroskopischer Auswertung des Induktionserfolges, 50 Konidien/ mm² bei Genexpressionsstudien und 150 Konidien/ mm² bei Überprüfung der Gentransformation mit transformierten Blattsegmenten. Die Inokulation mit BghA6 erfolgte unter Verwendung von 7 Tagen alten Keimlingen durch Abschütteln der Konidien bereits befallener Pflanzen in einem Inokulationsturm(soweit nicht anders angegeben).

Beispiel 2: Modulation der BI1 Expression mit DCINA

30

2,6-Dichlorisonikotinsäure (DCINA, Syngenta AG, Basel, Schweiz; als 25% (w/w) Fomulierung) wurde auf 4-Tage alte Gerstenschößlinge der Sorte Pallas mittels Bodenbewässerung ("soil drench") in einer Endkonzentration von 8 mg/l Bodenvolumen appliziert. Die verwendete Suspension wurde mit Leitungswasser angesetzt. Als Kontrolle diente eine Bodenbewässerung mit dem Trägermaterial (benetzbares Puder "wettable powder"). Nach drei Tagen wurden die Pflanzen mit Blumeria graminis (DC) Speer f.sp. hordei Em. Marchal der Rasse A6 (5 Konidien/ mm²) infiziert. Pflanzen mit chemisch induzierter Resistenz (CIR) wiesen ca. 70% weniger Mehltaukolonien auf als die entsprechenden Kontrollpflanzen, die nur mit der Trägersubstanz behandelt wurden (Fig. 9A).

Northern Blot und RT-PCT Blots wurden zur Bestimmung der BI1 Transkriptmengen durchgeführt und zeigten eine überraschende

Verminderung der *BI1* Expression 1 bis 3 Tage nach chemischer Behandlung (Fig. 9B).

Beispiel 3: RNA-Extraktion

5

Gesamt RNA wurde aus 8 bis 10 primären Blattsegmenten (Länge 5 cm) mittels "RNA Extraction Buffer" (AGS, Heidelberg, Germany) extrahiert. Dazu wurden die zentrale Primärblattsegment von 5 cm Länge geerntet und in flüssigem Stickstoff in Mörsern 10 homogenisiert. Das Homogenisat wurde bis zur RNA-Extraktion bei -70°C gelagert. Aus dem tiefgefrorenen Blattmaterial wurde mit Hilfe eines RNA-Extraktions-Kits (AGS, Heidelberg) Gesamt-RNA extrahiert. Dazu wurden 200 mg des tiefgefrorenen Blattmaterials in einem Mikrozentrifugenröhrchen (2 mL) mit 1,7 mL RNA-Extraktionspuffer (AGS) überschichtet und sofort gut durchmischt. Nach Zugabe von 200 μL Chloroform wurde erneut gut gemischt und bei Raumtemperatur 45 min auf einem Horizontalschüttler bei 200 U/min geschüttelt. Anschließend wurde zur Phasentrennung 15 min bei 20000 g und 4°C zentrifugiert, die obere wäßrige Phase in ein neues Mikrozentrifugenröhrchen überführt und die untere verworfen. Die wäßrige Phase wurde erneut mit 900 μL Chloroform gereinigt, indem 3 mal für 10 sec homogenisiert und erneut zentrifugiert (s.o.) und abgehoben wurde. Zur Fällung der RNA wurde dann $850~\mu\text{L}$ 2-Propanol hinzugegeben, homogenisiert und für 30~bis 60~mmin auf Eis gestellt. Im Anschluß daran wurde für 20 min zentrifugiert (s.o), vorsichtig der Überstand dekantiert, 2 mL 70 %iges Ethanol (-20°C) hinzu pipettiert, durchmischt und erneut 10 min zentrifugiert. Der Überstand wurde dann wiederum dekantiert und das Pelet vorsichtig mit einer Pipette von Flüssigkeitsresten befreit, bevor es an einem Reinluftarbeitsplatz im Reinluftstrom getrocknet wurde. Danach wurde die RNA in 50 μL DEPC-Wasser auf Eis gelöst, durchmischt und 5 min zentrifugiert (s.o.). 40 $\mu 1$ des Überstandes wurden als RNA-Lösung in ein neues Mikrozentrifugenröhrchen überführt und bei -70°C gelagert.

Die Konzentration der RNA wurde photometrisch bestimmt. Dazu wurde die RNA-Lösung 1:99 (v/v) mit destilliertem Wasser verdünnt und die Extinktion (Photometer DU 7400, Beckman) bei 260 nm gemessen (E_{260 nm} = 1 bei 40 µg RNA/mL). Gemäß der errechneten RNA-Gehalte wurden die Konzentrationen der RNA-Lösungen anschließend mit DEPC-Wasser auf 1 ∝g/∝L angeglichen

und im Agarosegel überprüft.

Zur Überprüfung der RNA-Konzentrationen im horizontalen Agarosegel (1 % Agarose in 1 x MOPS-Puffer mit 0,2 µg/mL 5 Ethidiumbromid) wurde 1 µL RNA-Lösung mit 1 µL 10 x MOPS, 1 µL Farbmarker und 7 µL DEPC-Wasser versetzt, nach Ihrer Größe bei 120 V Spannung im Gel in 1 x MOPS-Laufpuffer über 1,5 h aufgetrennt und unter UV-Licht fotografiert. Eventuelle Konzentrationsunterschiede der RNA-Extrakte wurden mit DEPC- Wasser ausgeglichen und die Anpassung erneut im Gel überprüft.

Beipiel 4: Klonierung der BI1 cDNA Sequenz aus Gerste

Der Volllängenklon von hvBI1 (GenBank Acc.-No.: AJ290421) umfaßt am 3'-Ende zwei Stopp-Codons und am 5'-Ende ein potentielles Start-Codon. Der ORF überspannt 247 Aminosäuren und zeigt die höchste Sequenzhomologie zu einem BI1-Gen aus Reis, Mais, Brassica napus und Arabidopsis thaliana (jeweils 86% Identität auf Nukleotidebene) sowie einem humanen BI1-Homolog (53% Ähnlichkeit) (Fig. 1 und 6). Die Aminosäuresequenz von hvBI1 umfaßt sieben potentielle Transmembrandomänen mit einer Orientierung des C-Terminus im Cytosol.

Nachfolgende Konstrukte wurden hergestellt:

25

- Amplifikation eines 478 bp Fragment der Gerste BI1 cDNA (GenBank Acc.-No.: AJ290421)
- BI1-sense 5'-atggacgccttctactcgacctcg-3'
 30 BI1-antisense 5'- gccagagcaggatcgacgcc-3'
 - b) Amplifikation eines 513 bp Ubi cDNA Fragment (GenBank Acc.-No.: M60175)
- 35 UBI-sense 5'-ccaagatgcagatcttcgtga-3'
 UBI-antisense 5'-ttcgcgataggtaaaagagca-3'
 - c) Amplifikation eines 871 bp Volllängen BI1 Leserahmens
- BI1VL sense 5'-ggattcaacgcgagcgcaggacaagc-3'_ BI1VL antisense 5'-gtcgacgcggtgacggtatctacatg-3'

Die erhaltenen Fragmente wurden in den Vektor pGEM-T mittels T-Überhang-Ligation ligiert und dienten als Ausgangsplasmide für

die Herstellung von Sonden (z.B. für Northern-Blot) bzw. dsRNA. Die einzelnen Konstrukte trugen die Bezeichnung pGEMT-BI1 , pGEMT-BI1VL(240) und pGEMT-UBI.

5 Das BII-Volllängenprodukt wurde aus pGEMT in die Sall Schnittstelle des pGY-1 vektors (Schweizer, P., Pokorny, J., Abderhalden, O. & Dudler, R. (1999) Mol. Plant-Microbe Interact. 12, 647-654) unter Verwendung der Sall-Schnittstelle in pGEMT und mittels der dem BIIVL antisense Primer angefügten Sall-Schnittstellen umkloniert. Vektoren mit sense (pBI-1) und antisense Orientierung (pasBI-1) wurden isoliert und resequenziert. Die Vektoren enthalten die BI-1 Sequenz unter Kontrolle des CaMV 35S Promotors.

15 Beispiel 5: Reverse Transkription - Polymerasekettenreaktion (RT-PCR)

Zum Nachweis von niedrigen Transkriptmengen wurde eine semiquantitative RT-PCR unter Verwendung des "OneStep RT-PCR Kit" (Qiagen, Hilden, Germany) durchgeführt. Dabei wurde RNA (Isolation s.o.) zuerst in cDNA übersetzt (Reverse Transkription) und in einer anschließenden PCR-Reaktion mit spezifischen Primern die gesuchte cDNA amplifiziert. Um die Ausgangsmenge an Matrizen RNA abzuschätzen, wurde die Amplifikation während der exponentiellen Phase (nach 20 Zyklen) unterbrochen um Unterschiede in der Ziel-RNA wiederzuspiegeln. Die PCR Produkte wurden über ein Agarosegel aufgetrennt, denaturiert, auf Nylonmembranen geblottet und mit spezifischen, nicht-radioaktiv-markierten Sonden unter stringenten Standardbedingungen detektiert. Hybridisierung, Waschschritte und Immunodetektion erfolgten wie unter "Northern Blot" beschrieben. Für die einzelnen Reaktionen (25 µL-Ansatz) wurden unter Verwendung des "One Step RT-PCR Kit" (Qiagen, Hilden, Deutschland) zusammengegeben:

35

40

20

25

1000 ng Gesamt-RNA einer bestimmten Probe 0,4 mM dNTPs, jeweils 0,6 µM sense- und antisense-Primer 0,10 µl RNase-Inhibitor 1 µL Enzymmix in 1x RT-Puffer

Die cDNA-Synthese (reverse Transkription) erfolgte für 30 min bei 50°C. Anschließend wurde die Reverse Transkriptase für 15 min bei 95°C inaktiviert, was zugleich Aktivierung der DNA-

Polymerase und Denaturierung der cDNA bewirkt. Anschließend folgt eine PCR gemäß nachfolgendem Programm: 1 min mit 94 °C; 25 Zyklen mit 1 min mit 94 °C; 1 min mit 54°C und 1 min mit 72°C; abschließend 10 min mit 72°C. Dann Lagerung bei 4°C bis zur Weiterverarbeitung. Die PCR-Produkte wurden im 1xTBE-Agarosegel mit Ethidiumbromid aufgetrennt. Für die einzelnen Ansätze wurden mit den oben angegebenen Primer-Paaren amplifiziert.

Beispiel 6: Northern-Blot Analyse

10

Zur Vorbereitung des Northern-Blottings wurde die RNA im Agarosegel unter denaturierenden Bedingungen aufgetrennt. Ein Teil RNA-Lösung (entsprechend 10 μg RNA) wurde dazu mit gleichem Volumen Probenpuffer (mit Ethidiumbromid) gemischt, 5 min bei 94°C denaturiert, 5 min auf Eis gestellt, kurz zentrifugiert und aufs Gel aufgetragen. Das 1 x MOPS-Gel (1,5 % Agarose, ultra pure) enthielt 5 Volumenprozent konzentrierte Formaldehydlösung (36,5 % [v/v]). Die RNA wurde bei 100 V 2 h lang aufgetrennt und anschließend geblottet.

20

Das Northern-Blotting erfolgte als aufwärtsgerichteter RNA-Transfer im Kapillarstrom. Das Gel wurde dazu zunächst 30 min in 25 mM Natriumhydrogen/dihydrogenphosphat-Puffer (pH 6,5) geschwenkt und zurechtgeschnitten. Ein Whatmanpapier wurde so vorbereitet, dass es auf einer horizontalen Platte auflag und auf 2 Seiten in eine Wanne mit 25 mM Natriumhydrogen/dihydrogenphosphat-Puffer (pH 6,5) ragte. Auf dieses Papier wurde das Gel aufgelegt, wobei nicht bedeckte Teile des Whatmanpapiers mit einer Plastikfolie abgedeckt wurden. Das Gel wurde dann mit einer positiv geladenen Nylonmembran (Boehringer-Mannheim) luftblasenfrei abgedekt, wonach die Membran wiederum mit saugfähigem Papier in mehreren Lagen etwa 5 cm hoch bedeckt wurde. Das saugfähige Papier wurde noch mit einer Glasplatte und einem 100 g Gewicht beschwert. Das Blotting erfolgte über Nacht bei Raumtemperatur. Die Membran wurde kurz in A. bidest. geschwenkt und zur RNA-Fixierung mit einer Lichtenergie von 125 mJ im Crosslinker (Biorad) UV-Licht bestrahlt. Die Überprüfung des gleichmäßigen RNA-Transfers auf die Membran erfolgte auf der UV-Lichtbank.

40

Zur Detektion von Gersten mRNA wurden 10 mg Gesamt-RNA aus jeder Probe über ein Agarosegel aufgetrennt und mittels Kapillartransfer auf eine positiv-geladene Nylonmembran geblottet. Die Detektion erfolgte mit dem DIG-Systeme nach

Herstellerangaben unter Verwendung von Digoxygenin-markierten antisense-RNA Sonden (wie beschrieben in Hückelhoven R et al. (2001) Plant Mol Biol 47:739-748).

5 Herstellung der Sonden: Zur Hybridisierung mit den zu detektierenden mRNAs wurden mit Digogygenin oder Fluoreszein markierte RNA Sonden hergestellt. Diese wurden durch in vitro Transkription eines PCR-Produktes mittels einer T7 oder SP6 RNA Polymerase mit markierten UTPs erstellt. Als Vorlage für die PCR gestützte Amplifikation dienten die oben beschriebenen Plasmidvektoren pGEMT-BI1 , pGEMT-UBI. Je nach Orienttierung des Inserts wurden unterschiedliche RNA-Polymerasen zur Herstellung des antisense-Stranges herangezogen. Die T7-RNA-Polymerase wurde für für pGEMT-BI1 verwendet, die SP6-RNA-Polymerase für pGEMT-UBI. Das Insert der einzelnen Vektor wurde über PCR mit flankierenden Standard-Primern (M13 fwd und rev) amplifiziert. Die Reaktion lief dabei mit folgenden Endkonzentrationen in einem Gesamtvolumen von 50 μL PCR-Puffer (Silverstar) ab:

20 M13-fwd: 5'-GTAAAACGACGGCCAGTG-3'
M13-Rev: 5'-GGAAACAGCTATGACCATG-3'

10 % Dimethylsulfoxid (v/v)

je 2 ng/μL Primer (M13 forward und reversed)

25 1,5 mM MgCl₂,

0,2 mM dNTPs,

4 Units Taq-Polymerase (Silverstar),

2 ng/μL Plasmid-DNA.

Die Amplifikation verlief in einem Thermocycler (Perkin-Elmar 2400) temperaturgesteuert mit nachfolgendem Temperaturprogramm: 94°C für 3 min; 30 Zyklen mit 94°C für 30 sek, 58°C für 30 sek und 72°C für 1,2 min; 72°C für 5 min; anschließend Kühlung bei 4°C bis zur Weiterverarbeitung. Der Erfolg der Reaktion wurde im 1 %igen Agarosegel überprüft. Die Produkte wurden anschließend mit einem "High Pure PCR-Product Purification Kit" (Boehringer-Mannheim) aufgereinigt. Man erhielt etwa 40 µL Säuleneluat, das erneut im Gel überprüft und bei -20°C gelagert wurde.

Die RNA Polymerisation, die Hybridisierung und die Immunodetektion wurden weitestgehend nach Angaben des Herstellers des Kits zur nicht-radioaktiven RNA-Detektion durchgeführt (DIG System User's Guide, DIG-Luminescence detection Kit, Boehringer-Mannheim, Kogel et al. (1994) Plant Physiol 106:1264-1277). 4 μ1

15

20

25

60

gereinigtes PCR-Produkt wurden mit 2 μ L Transskriptionspuffer, 2 μ l NTP-Markierungsmix, 2 μ l-NTP-Mix und 10 μ l DEPC-Wasser versetzt. Anschließend wurden 2 μ L der T7-RNA-Polymeraselösung zu pipettiert. Die Reaktion wurde dann 2 h bei 37°C durchgeführt und anschließend mit DEPC-Wasser auf 100 μ L aufgefüllt. Die RNA-Sonde wurde im Ethidiumbromidgel detektiert und bei -20°C gelagert.

Zur Vorbereitung der Hybridisierung wurden die Membranen zunächst 1 h bei 68°C in 2 x SSC (Salt, Sodiumcitrate), 0,1 % SDS-Puffer (Natriumdodecylsulfat) geschwenkt, wobei der Puffer 2 bis 3 mal erneuert wurde. Die Membranen wurden anschließend an die Innenwand auf 68°C vorgeheizter Hybridisierungsröhren angelegt und 30 min mit 10 mL Dig-Easy-Hybridisierungspuffer im vorgeheizten Hybridisierungsofen inkubiert. Währenddessen wurden $10~\mu L$ Sondenlösung in $80~\mu L$ Hybridisierungspuffer bei $94^{\circ}C$ für 5min denaturiert, anschließend auf Eis gestellt und kurz zentrifugiert. Zur Hybridisierung wurde die Sonde dann in 10 mL 68°C warmem Hybridisierungspuffer überführt, und der Puffer in der Hybridisierungsröhre durch diesen Sondenpuffer ersetzt. Die Hybridisierung erfolgte dann ebenfalls bei 68°C über Nacht. Vor Immundetektion von RNA-RNA Hybriden wurden die Blots stringent zweimal für jeweils 20 min in 0.1 % (w/v) SDS, 0.1 x SSC bei 68°C gewaschen. Zur Immunodetektion wurden die Blots zunächst zweimal für 5 min bei RT in 2 x SSC, 0,1 % SDS geschwenkt. Anschließend erfolgten 2 stringente Waschschritte bei 68°C in 0,1 x SSC, 0,1 % SDS für je 15 min. Die Lösung wurde anschließend durch Waschpuffer ohne Tween ersetzt. Es wurde 1 min geschüttelt und die Lösung durch Blocking-Reagenz ausgetauscht. Nach weiteren 30 min Schütteln wurden 10 μ L Anti-Fluoreszein-Antikörperlösung hinzugefügt und weitere 60 min geschüttelt. Es folgten zwei 15 minütige Waschschritte in Waschpuffer mit Tween. Die Membran wurde anschließend 2 min in Substratpuffer äquilibriert und nach Abtropfen auf eine Kopierfolie überführt. Auf der "RNA-Seite" der Membran wurde dann ein Gemisch aus 20 μL CDP-Star^m und 2 mL Substratpuffer gleichmäßig verteilt. Im Anschluß wurde die Membran mit einer zweiten Kopierfolie abgedeckt und an den Rändern mit Hitze luftblasenfrei und wasserdicht verschweißt. Die Membran wurde dann in einer Dunkelkammer für 10 min mit einem Röntgenfilm bedeckt und dieser anschließend entwickelt. Je nach Stärke der Lumineszenzreaktion wurde die Belichtungszeit variiert.

Wenn nicht extra gekennzeichnet waren die Lösungen im

15

30

Lieferumfang des Kits enthalten (DIG-Luminescence detection Kit, Boehringer-Mannheim). Alle anderen wurden aus folgenden Stammlösungen durch Verdünnung mit autoklaviertem, destilliertem Wasser hergestellt. Alle Stammlösungen wurden, wenn nicht anders spezifiziert, mit DEPC (wie DEPC-Wasser) angesetzt und anschließend autoklaviert.

- DEPC-Wasser: Destilliertes Wasser wird über Nacht bei 37°C
 mit Diethylpyrokarbonat (DEPC, 0,1 %, w/v) behandelt und anschließend autoklaviert
 - 10 x MOPS-Puffer: 0,2 M MOPS (Morpholin-3propansulfonsäure), 0,05 M Natriumacetat, 0,01 M EDTA, pH mit 10 M NaOH auf pH 7,0 eingestellt
 - 20 x SSC (Natriumchlorid-Natriumzitrat, Salt-Sodiumcitrate):
 3 M NaClo, 0,3 M triNatriumcitrat x 2 H₂O, pH mit 4 M HCl auf pH 7,0 eingestellt.
- RNA-Probenpuffer: 760 µL Formamid, 260 µL Formaldehyd, 100 µL Ethidiumbromid (10 mg/mL), 80 µL Glycerol, 80 µL Bromphenolblau (gesättigt), 160 µL 10 x MOPS, 100 µL Wasser.
 - 10 x Waschpuffer ohne Tween: 1,0 M Maleinsäure, 1,5 M NaCl; ohne DEPC, mit NaOH (fest, ca. 77 g) und 10 M NaOH auf pH 7,5 einstellen.
 - Waschpuffer mit Tween: aus Waschpuffer ohne Tween mit Tween (0,3 %, v/v)
- 10 x Blockingreagenz: 50 g Blockingpulver (Boehringer-35 Mannheim) in 500 mL Waschpuffer ohne Tween suspendieren.
 - Substratpuffer:100 mM Tris (Trishydroxymethylamino-methan),
 150 mM NaCl mit 4 M HCl auf pH 9,5 einstellen.

Eine BI1 Expression wurde wie beschrieben mit RT-PCR und cDNA Gelblots untersucht und ergab, dass BI1 überwiegend im

Mesophyllgewebe von Blättern exprimiert wird, während Ubiquitin konstitutiv gleichmäßig in Epidermis und Mesophyll exprimiert wird (Fig. 8).

5 Ferner ist eine Expression von BI1 als Reaktion auf Behandlung der Pflanzen mit toxischen Kulturfiltraten von Bipolaris sorokiniana zu beobachten. Primärblätter der Gerste zeigen typische nekrotische Flecke (leaf spot blotch symptoms) nach Behandlung der Pflanzen mit toxischen Kulturfiltraten von

10 Bipolaris sorokiniana (durchgeführt wie bei Kumar et al. 2001 beschrieben). Die Blattnekrosen waren erkennbar 48 h nach Behandlung. Der beobachtete Gewebeschaden war in der Bghresistenten Linie BCIngrid-mlo5 (I22) deutlicher ausgeprägt als in der Elterlinie Ingrid (Mlo-Genotype, Kumar et al. 2001). Die Expression von BI1 korreliert 72 h nach Behandlung (hat) mit der

Expression von BII korreliert /2 n nach Benandiung (nac) mit c Ausprägung der Blattnekrosen (Fig. 12).

Beispiel 7:

35

40

- Die zur stabilen, mesophyll-spezifischen Überexpression wird der Oxalat-Oxidase Promoter (germin 9f-2.8) aus Weizen eingesetzt. In Gerste ist die entsprechende Oxalat-Oxidase Expression Mesophyll-spezifisch, schwach konstitutiv und Pathogen-responsiv (Gregersen PL et al. (1997) Physiol Mol Plant Pathol 51: 85-97).
- 25 Er kann deshalb zur Mesophyll-spezifischen Expression von BI1 genutzt werden. Zur Kontrolle wird HvBI1 unter Kontrolle des Mais-Ubiquitinpromoters (Christensen AH et al. (1992) Plant Mol Biol 18:675-689) oder des Reis-Aktinpromoters überexprimiert (Zhang W et al. (1991) Plant Cell 3:1155-1165). Eingesetzt werden nachfolgende Konstrukte:
 - a) pUbiBI-1 (SEQ ID NO: 33; für transiente Gerstentransformation und Weizentransformation mit Partikel Bombardement. Expression von BI-1 unter Kontrolle des Mais Ubiquitin Promotors).
 - b) pLo114UbiBI-1 (SEQ ID NO: 34; erhalten durch Umklonierung der Ubi/BI-1 Expressionscassette als EcoR1-Fragment aus pUbiBI-1 in pLo114-GUS-Kan; Binärer Vektor für transiente Gerstentransformation mit A. tumefaciens)
 - c) pOXoBI-1 (SEQ ID NO: 35; Mesophyllspezifischer TaGermin 9f-2.8 Promoter vor BI1 zur Weizentrafo über Patikelbombardement.

d) pLo1140XoBI-1 (SEQ ID NO: 36)

Es werden Wildtypgerste und Weizen sowie mlo-Gerste 5 transformiert, vermehrt und geselbstet. Die Transformation von Gerste und Weizen erfolgt wie beschrieben (Repellin A et al. (2001) Plant Cell, Tissue and Organ Culture 64: 159-183): Dazu werden Kalli aus unreifen Weizen- (bzw. Gersten-) embryonen über biolistischen Gentransfer mit Mikroprojektilen transformiert. 10 Dabei werden pUC basierte Vektoren zusammen mit Vektoren die Selektionsmarker tragen kotransformiert. Anschließend werden die Embryonen auf Selektionsmedium kultiviert und regeneriert. Gerste wird mit Hilfe von Agrobacterium tumefaciens transformiert. Dabei wird ein binärer Vektor auf Basis von pCambia_1301 eingesetzt. Unreife Embryonen von Gerste werden mit 15 A. tumefaciens cokultiviert, selektiert und anschließend regeneriert (Repellin A et al. (2001) Plant Cell, Tissue and Organ Culture 64: 159-183; Horvath H et al. (2003) Proc Natl. Acad Sci USA 100: 365-369; Horvath H et al. (2002) in Barley Science, eds. Slafer, G. A., Molina-Cano, J. L., Savin, R., 20 Araus, J. L. & Romagosa, J. (Harworth, New York), pp. 143-176; Tingay S et al. (1997) Plant J. 11: 1369-1376).

Die transgenen (rekombinanten) Gersten- und Weizenpflanzen der T1 oder T2-Generation werden auf Resistenz gegenüber hemibiotrophen und perthotrophen Erregern geprüft. Dazu werden die Blätter mit verschiedenen Pathogenen inokuliert. Als biotrophe Erreger werden Gerstenmehltau (Blumeria graminis f.sp. hordei) und Braunrost (Puccinia hordei) verwendet. Als Maß der Mehltauanfälligkeit wird die Pustelzahl pro Blattfläche 5-7 Tage nach Inokulation mit 2-5 Konidien pro mm² Blattfläche ausgewertet (Beßer K et al. (2000) Mol Plant Pathology 1: 277-286). Als hemibiotrophe Erreger werden Bipolaris sorokiniana n und Magnaporthe grisea verwendet. Die Inokulation erfolgt wie zuvor beschrieben (Kumar J et al. (2001) Phytopathology 91: 127-133; Jarosch B et al. (1999) Mol Plant Microbe Inter 12: 508-514). Als Maß für die Anfälligkeit dient die Anzahl und Größe der Blattläsionen 2 bis 6 Tage nach Sprühinokulation mit Konidien (Kumar J et al. (2001) Phytopathology 91:127-133; Jarosch B et al. (1999) Mol Plant Microbe Inter 12:508-514; Jarosch B et al. (2003) Mol Plant Microbe Inter 16:107-114.). Als perthotropher Erreger wird Fusarium graminearum verwendet.

Zur Bestimmung der Fusarium Head Blight (FHB) Typ I-Resistenz werden Weizenähren in einem frühen Blühstadium mit einer Makrokonidien-Suspension (ca. 2 x 10⁵ ml⁻¹) von *Fusarium graminearum* bzw. *Fusarium culmorum* besprüht. Die inokulierten Pflanzen werden für 3 Tage in eine Nebelkammer mit 25°C Lufttemperatur und 100% relativer Luftfeuchte transferriert. Danach werden die Pflanzen im Gewächshaus unter Dauerlicht bei einer Temperatur von 20°C inkubiert und die Stärke der FHB-Symptome über die Ähre hinweg nach 5, 7 und 8 Tagen evaluiert.

10

Zur Quantifizierung der Fusarium Head Blight (FHB) Typ IIResistenz werden jeweils 10 - 20 µl Aliquots einer
Makrokonidien-Suspension (ca. 2 x 10⁵ ml⁻¹) von Fusarium
graminearum bzw. Fusarium culmorum in einzelne, relativ zentral
gelegene Ährchen von Weizenpflanzen injiziert. Die inokulierten
Pflanzen werden für 3 Tage in eine Nebelkammer mit 25°C
Lufttemperatur und 100% relativer Luftfeuchte transferriert.
Danach werden die Pflanzen im Gewächshaus unter Dauerlicht bei
einer Temperatur von 20°C inkubiert und die Ausbreitung der FHBSymptome über die Ähre hinweg nach 7, 14 und 21 Tagen evaluiert.
Die Ausbreitung der Symptome über die Ähre (das sog. FusariumSpreading) wird als Mass für die FHB Typ II-Resistenz genommen.

25

Vergleichsbeispiel 1: Transiente BI1 Expression in der Epidermis und Evaluation der Pilzpathogenentwicklung

30

Gerste cv Ingrid Blattsegmente wurden mit einer pGY-BI1 zusammen mit einem GFP-Expressionsvektor transformiert. Anschließend wurden die Blätter mit Bgh inokuliert und das Ergebnis nach 48 h mittels Licht- und Fluoreszenzmikroskopie analysiert. Die Penetration in GFP-exprimierenden Zellen wurde mittels Detektion von Haustorien in lebenden Zellen und durch Bewertung der Pilzentwicklung aufin eben diesen Zellen beurteilt. Es wurde ein Verfahren zur transienten Transformation eingesetzt, das bereits für die biolistische Einführung von DNA und RNA in epidermale Zellen von Gerstenblättern beschrieben wurde (Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54; Schweizer P et al. (2000) Plant J 2000 24:895-903).

40

35

Für Microcarrier-Präparation wurden 55 mg Wolframpartikel (M 17, Durchmesser 1,1 μ m; Bio-Rad, München) zweimal mit 1 ml autoklaviertem Destilliertem Wasser und einmal mit 1 mL

absolutem Ethanol gewaschen, getrocknet und in 1 ml 50 %igem Glycerin aufgenommen (ca. 50 mg/ml Stammlösung). Die Lösung wurde mit 50%igem Glycerin auf 25 mg/ml verdünnt, vor Gebrauch gut gemischt und im Ultraschallbad suspendiert.

5

Zur Microcarrier-Beschichtung wurden pro Schuß 0,3 µg Plasmid pGFP (GFP unter Kontrolle des CaMV 355 Promotors; Schweizer P et al. (1999) Mol Plant-Microbe Interact 12:647-654.), 0,7 µg Leervektor pGY bzw. pGY-BI1 (1 µL), 12,5 µl Wolframpartikel-Suspension (25 mg/ml; entsprechend 312 µg Wolframpartikel), 12,5 µl 1 M Ca(NO3)2-Lösung (pH 10) tropfenweise unter ständigem Mischen zusammengegeben, 10 min bei RT stehengelassen, kurz zentrifugiert und 20 µl vom Überstand abgenommen. Der Rest mit den Wolframpartikel wird resuspendiert (Ultraschallbad) und ins Experiment eingesetzt.

15

Es wurden ca. 4 cm lange Segmente von Gerstenprimärblättern verwendet. Die Gewebe wurden auf 0,5 % Phytagar (GibcoBRL TM Life Technologies TM , Karlsruhe) mit 20 $\mu g/ml$ Benzimidazol in Petrischalen (6,5 cm Durchmesser) gelegt und direkt vor dem Partikelbeschuss an den Rändern mit einer Schablone mit einer rechteckigen Aussparung von 2,2 cm x 2,3 cm abgedeckt. Die Schalen wurden nacheinander auf den Boden der Vakuumkammer (Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54) gestellt, über dem ein Nylonnetz (Maschenweite 0,2 mm, Millipore, Eschborn) als Diffusor auf einer Lochplatte eingeschoben war (5 cm über dem Boden, 11 cm unterhalb des Macrocarriers, s.u.), um Partikelklumpen zu zerstreuen und den Partikelstrom abzubremsen. Der oben an der Kammer angebrachte Macrocarrier (Plastik-Sterilfilterhalter, 13 mm, Gelman Sciences, Swinney, UK) wurde je Schuss mit 5,8 µL DNAbeschichteten Wolframpartikeln (Microcarrier, s.u.) beladen. Mit einer Membranvakuumpumpe (Vacuubrand, Wertheim) wurde der Druck um 0,9 bar in der Kammer reduziert und die Wolframpartikel mit 9 bar Heliumgasdruck auf die Oberfläche des Pflanzengewebes geschossen. Sofort danach wurde die Kammer belüftet. Zur Markierung transformierter Zellen wurden die Blätter mit dem Plasmid (pGFP; Vektor auf pUC18-Basis, CaMV 35S-Promoter/Terminator-Kassette mit insertiertem GFP-Gen; Schweizer P et al. (1999) Mol Plant Microbe Interact 12:647-54; zur Verfügung gestellt von Dr. P. Schweizer, Institut für Pflanzengenetik IPK, Gatersleben, Deutschland) beschossen.

Vor dem Schießen eines anderen Plasmids wurde der Macrocarrier jeweils gründlich mit Wasser gereinigt. Nach vierstündiger

25

30

66

Inkubation nach dem Beschuß bei leicht geöffneten Petrischalen, RT und Tageslicht wurden die Blätter mit 100 Konidien/mm² des Echten Gerstenmehltaupilzes (Rasse A6; Blumeria graminis f.sp. hordei Mehltau A6) inokuliert und für weitere 40 h unter gleichen Bedingungen inkubiert. Anschließend wurde die Penetration ausgewertet. Das Ergebnis (z.B. die Penetrationseffizienz, definiert als prozentualer Anteil angegriffener Zellen, die ein mit reifems Haustorium und einer Sekundärhyphae ("secondary elongating hyphae"), wurde mittels Fluoreszens- und Lichtmikroskopie analysiert. Eine Inokulation mit 150 Conidia/mm² ergibt eine Angriffsfrequenz von ca. 50 % der transformierten Zellen. Für jedes einzelne Experiment wurde eine minimale Anzahl von 100 Interaktionsstellen ausgewertet. Transformierte (GFP exprimierende) Zellen wurden unter Anregung mit blauem Licht identifiziert. Drei verschiedene Kategorien von transformierten Zellen konnten unterschieden werden:

- Penetrierte Zellen, die ein leicht erkennbares Haustorium beinhalten. Eine Zelle mit mehr als einem Haustorium wurde als eine Zelle gewertet.
- Zellen, die durch ein Pilz-Appressorium zwar angegriffen wurden, aber kein Haustorium beinhalten. Eine Zelle die mehrfach von Bgh angegriffen wurden, aber kein Haustorium enthält, wurde als eine Zelle gewertet.
- 3. Zellen die nicht durch Bgh angegriffen sind.

Stomatazellen und Stomatanebenzellen wurden von der Bewertung ausgeschlossen. Oberflächenstrukturen von Bgh wurden mittels Lichtmikroskopie oder Fluoreszenzfärbung des Pilzes mit 0,3 % Calcofluor (w/v in Wasser) für 30 sec analysiert. Die Entwicklung des Pilzes kann leicht durch Fluoreszenzmikroskopie nach Anfärbung mit Calcofluor evaluiert werden. In BI1-dsRNA transformierten Zellen entwickelt der Pilz zwar ein primäres und ein appressoriales Keimschlauch ("Germ-Tube") aber kein Haustorium. Haustoriumausbildung ist eine Vorbedingung für die Bildung einer Sekundärhyphae.

Die Penetrationseffizien (Penetrationsraten) errechnet sich als Anzahl der penetrierten Zellen durch Anzahl der attackierten Zellen multipliziert mit 100.

BASF-Plant Science GmbH

5

10

15

20

25

20030082

PF 54350 DE

67

Die Penetrationseffizienz dient der Bestimmung des Suszeptibilität von Zellen, die mit pGY-BI1 transfiziert sind im Vergleich zu Zellen die mit einer Leervektorkontrolle transformiert sind (Fig. 10). Es wurde beobachtet, dass die BI1 Überexpression die Penetrationshäufigkeit von Bgh signifikant erhöht (Fig. 10). In sechs unabhängigen Experimenten bewirkte die Überexpression in der suszeptiblen Gerstensorte Ingrid eine signifikante Erhöhung der durchschnittlichen Penetrationseffizienz (PE) von 47 % auf 72 % (165 % der Kontrollen) bei Zellen die BI1 überexprimieren im Vergleich zu Zellen, die mit Leervektor transformiert wurden (Kontrolle) (Fig. 10).

Ferner wurden epidermale Zellen der Bgh-resistenten mlo5-Gerste mit dem BI1 Überexpressionskonstrukt pGY-1 wie oben beschrieben transient transformiert. Der mlo5-Genotyp in einem Pallas bzw. Ingrid Hintergrund zeigt eine geringfügige Anfälligkeit gegen Bgh. In 7 unabhängigen Experimenten wurde in Kontrollpflanzen (Transformation mit Leervektor und GFP-Vektor) eine Penetrationseffizienz von minimal 0 bis maximal 11 % gefunden. Überraschenderweise ergab eine BI1 Überexpression (pGY-BI1) eine nahezu vollständige Rekonstitution der suszeptiblen Phänotyps, d.h. es erfolgte ein nahezu kompletter Bruch der mlo-Resistenz. Die durchschnittliche Penetrationseffizienz von Bgh auf Ingridmlo5 und Pallas-mlo5 Blattsegmenten steigt von 4 % auf 23 %, bzw. von 6 % auf 33 % (Fig. 11). Dies bedeutet einen relativen Anstieg der Penetration auf 520 % bzw. 510 % der Kontrollen. Desweiteren erhöhte die Überexpression von BI1 im Gerste cv Manchuria die Anfälligkeit gegen das Weizenpathogen Blumeria graminis f.sp. tritici in drei unabhängigen Experimenten von 0 bis 4 % auf 19 bis 27 % (Fig. 13).

Patentansprüche

10

25

30

35

- Verfahren zur Erzeugung oder Erhöhung der Resistenz gegen
 mindestens einen biotischen oder abiotischen Streßfaktor in Pflanzen, wobei nachfolgende Arbeitsschritte umfasst sind
 - a) Erhöhung der Proteinmenge oder Funktion mindestens eines Bax Inhibitor-1 (BI1) Proteins in mindestens einem pflanzlichen Gewebe mit der Maßgabe, dass die Expression in der Blattepidermis im wesentlichen unverändert bleibt, und
- b) Auswahl der Pflanzen, bei denen im Vergleich zur Ausgangspflanze eine Resistenz gegen mindestens einen biotischen oder abiotischen Streßfaktor besteht oder erhöht ist.
- Verfahren nach Anspruch 1, wobei der Streßfaktor ein pflanz liches Pathogen ist.
 - Verfahren nach einem der Ansprüche 1 oder 2, wobei der Streßfaktor ein nekrotrophes oder hemibiotrophes Pathogen ist.
 - 4. Verfahren nach einem der Ansprüche 1 bis 3, wobei das BI-1 Protein mindestens eine Sequenz umfaßt, die eine Homologie von mindestens 50% aufweist zu mindestens einem BII-Konsensusmotiv ausgewählt aus der Gruppe bestehend aus
 - a) H(L/I)KXVY,
 - b) AXGA(Y/F)XH,
 - c) NIGG,
 - d) P(V/P)(Y/F)E(E/Q)(R/Q)KR,
 - e) (E/Q)G(A/S)S(V/I)GPL,
 - f) DP(S/G)(L/I)(I/L),
 - g) V(G/A)T(A/S)(L/I)AF(A/G)CF(S/T),
 - h) YL(Y/F)LGG,
 - i) L(L/V)SS(G/W)L(S/T)(I/M)L(L/M)W, und
- 40 j) DTGX(I/V)(I/V)E.
 - 5. Verfahren nach einem der Ansprüche 1 bis 4, wobei das BI-Protein kodiert wird durch ein Polypeptid, das mindestens eine Sequenz umfaßt ausgewählt aus der Gruppe bestehend aus:

45

0082/2003 Ko/gb 12.03.2003

13 Fig/Seq

10

15

20

25

35

40

2

- a) den Sequenzen gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32, und
- b) Sequenzen, die eine Identität von mindestens 50% zu einer der Sequenzen gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30 oder 32 aufweisen,
- c) Sequenzen die mindestens eine Teilsequenz von mindestens 10 zusammenhängenden Aminosäureresten einer der Sequenzen gemäß SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22; 24, 26, 28, 30 oder 32 umfassen.
 - 6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die Erhöhung der Proteinmenge oder Funktion mindestens eines BII-Proteins durch rekombinante Expression des besagten BII-Proteins unter Kontrolle eines wurzel-, knollen- oder mesophyll-spezifischen Promotors realisiert wird.
- 7. Verfahren nach einem der Ansprüche 1 bis 6, umfassend
 - (a) stabile Transformation einer pflanzlichen Zelle mit einer rekombinanten Expressionskassette enthalten eine für ein BI-Protein kodierende Nukleinsäuresequenz in funktioneller Verknüpfung mit einem gewebespezifischen Promotor, wobei der Promotor im wesentlichen keine Aktivität in der Blattepidermis aufweist und wobei der Promotor in Bezug auf die besagte das BI-Protein kodierende Nukleinsäuresequenz heterolog ist.
- 30 (b) Regeneration der Pflanze aus der pflanzlichen Zelle, und
 - (c) Expression besagter für ein BI-Protein kodierende Nukleinsäuresequenz in einer Menge und für eine Zeit hinreichend um eine Streß- und/oder Pathogenresistenz in besagter Pflanze zu erzeugen oder zu erhöhen.
 - 8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die Pflanze aus den monokotyledonen und dikotyledonen Pflanzen ausgewählt ist.
 - 9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die Pflanze ausgewählt ist aus der Gruppe der monokotyledonen Pflanzen bestehend aus Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsa-

men oder Zuckerrohr.

10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die Pflanze einen mlo-resistenten Phänotyp aufweist.

5

- 11. Polypeptidsequenz kodierend für BI1 Protein umfassend mindestens eine Sequenz ausgewählt aus der Gruppe bestehend aus
- a) den Sequenzen gemäß SEQ ID NO: 12, 14, 16, 18, 20, 22, 10 24, 28, 30 oder 32,
 - b) Sequenzen die eine Homologie von mindestens 90%, bevorzugt mindestens 95%, besonders bevorzugt mindesten 98% zu einer der Sequenzen gemäß SEQ ID NO: 12, 14, 16, 18, 20, 22, 24, 28, 30 oder 32 aufweisen, und

15

c) Sequenzen die mindestens 10, bevorzugt mindestens 20, besonders bevorzugt mindestens 30 zusammenhängende Aminosäuren einer der Sequenzen gemäß SEQ ID NO: 12, 14, 16, 18, 20, 22, 24, 28, 30 oder 32 umfassen.

20

- 12. Nukleinsäuresequenz kodierend für eine Polypeptidsequenz gemäß Anspruch 11.
- 25 13. Rekombinante Expressionskassette enthalten eine für ein BI-Protein kodierende Nukleinsäuresequenz in funktioneller Verknüpfung mit einem gewebespezifischen Promotor, wobei der Promotor im wesentlichen keine Aktivität in der Blattepidermis aufweist und wobei der Promotor in Bezug auf die besagte das BI-Protein kodierende Nukleinsäuresequenz heterolog ist.

30

14. Rekombinante Expressionskassette nach Anspruch 13, wobei

35

das BI1-Protein wie in einem der Ansprüche 4, 5 oder 11 definiert ist, und/oder

b) der gewebespezifische Promotor ausgewählt ist aus der Gruppe der wurzel-, knollen- oder mesophyllspezifischen Promotoren.

40

15. Rekombinanter Vektor enthaltend eine Expressionskassette gemäß einem der Ansprüche 13 oder 14.

45

16. Rekombinanter Organismus enthaltend mindestens eine Expressionskassette gemäß einem der Ansprüche 13 oder 14 und/oder **BASF Plant Science GmbH**

5

10

15

20030082

PF 54350 DE

Δ

mindestens einen Vektor gemäß Anspruch 15.

- 17. Rekombinanter Organismus nach Anspruch 17 ausgewählt aus der Gruppe bestehend aus Bakterien, Hefen, nicht-menschlichen Tieren und Pflanzen.
- 18. Rekombinanter Organismus nach Anspruch 16 oder 17, ausgewählt aus der Gruppe der Pflanzen bestehend aus Weizen, Hafer, Hirse, Gerste, Roggen, Mais, Reis, Buchweizen, Sorghum, Triticale, Dinkel, Leinsamen, Zuckerrohr, Raps, Kresse, Arabidopsis, Kohlarten, Soja, Alfalfa, Erbse, Bohnengewächsen, Erdnuß, Kartoffel, Tabak, Tomate, Aubergine, Paprika, Sonnenblume, Tagetes, Salat, Calendula, Melone, Kürbis und Zucchini.

19. Rekombinanter Organismus nach einem der Ansprüche 16 bis 18, wobei der Organismus eine Pflanze ist, die zusätzlich einen mlo-resistenten Phänotyp aufweist. **BASF Plant Science GmbH**

20030082

PF 54350 DE

Verfahren zur Erhöhung der Resistenz gegen Streßfaktoren in Pflanzen

Zusammenfassung

5

10

15

Die Erfindung betrifft Verfahren zur Erzeugung oder Erhöhung der Resistenz gegen mindestens einen biotischen oder abiotischen Streßfaktor in Pflanzen, bevorzugt gegen pflanzliche Pathogene, durch Erhöhung der Expression mindestens eines Bax-Inhibitor 1 (BI1) Proteins in mindestens einem pflanzlichen Gewebe mit der Maßgabe, dass die Expression in der Blattepidermis im wesentlichen unverändert bleibt. Die Erfindung betrifft ferner rekombinante Expressionskassetten und Vektoren, die eine für ein BI-Protein kodierende Nukleinsäuresequenz unter Kontrolle eines gewebespezifischen Promotors umfassen, wobei der Promotor im wesentlichen keine Aktivität in der Blattepidermis aufweist. Die Erfindung betrifft ferner mit besagten Expressionskassetten oder Vektoren transformierte rekombinante Pflanzen, davon abgeleitete Kulturen, Teile oder rekombinantes Vermehrungsgut, sowie die Verwendung derselben zur Herstellung von Nahrungs-, Futtermitteln, Saatgut, Pharmazeutika oder Feinchemikalien.

1		50
AtBI-1	(1)	MDAFSSFFDSOPGSRSWSYDSLKNFRQISPAVQNHLKR
BnBI-1	(1)	MDSFSSFFDSQPGSRSWSYDSLKNLRQISPSVQNHLKR
GmBI2	(1)	RLQAMDAFNSFFDSRNRWNYDTLKNFRQISPVVQNHLKQ
GmBI3		ITKTIRFDSLFSMDTFFKSPSSSSSRSRWSYDTLKNFREISPLVQNHIKL
HVBI-1		MDAFYSTSSAAASGWGHDSLKNFRQISPAVQSHLKL
NtBI-1		MESCTSFFNSQSASS-RNRWSYDSLKNFRQISPFVQTHLKK
OsBI-1	(1)	MDAFYSTSSAYGAAASGWGYDSLKNFRQISPAVQSHLKL
TaBI11	(1)	
TaBI18	(1)	FSGTFRNSRSDDFVLCELQRELPRCRDATLTV
TaBI5 neu	(1)	VAMPGR
ZmBI14	(1)	
ZmBI16	(1)	
ZmBI33	(1)	
ZmBI8	(1)	
Consensus	(1)	F S W YDSLKN R ISP VQ HLK
COLLDOLLDUD	(-/	
		51 100
AtBI-1	(39)	VYLTLCCALVASAFGAYLHVLWNIGGILTTIGCIGTMIWLLSCPPYEHQK
BnBI-1	(39)	VYLTLCCALVASAFGAYLHVLWNIGGILTTIGCFGSMIWLLSCPPYEQQK
GmBI2	(40)	VYFTLCFAVVAAAVGAYLHVLLNIGGFLTTVACMGSSFWLLSTPPFEERK
GmBI3	(51)	VYFTLCCAVVAAAVGAFLHVLWNIGGFLTTLASIGSMFWLLSTPPFEEQK
HVBI-1	(37)	VYLTLCFALASSAVGAYLHIALNIGGMLTMLACVGTIAWMFSVPVYEERK
NtBI-1	(41)	VYLSLCCALVASAAGAYLHILWNIGGLLTTLGCVGSIVWLMATPLYEEQK
OsBI-1	(40)	VYLTLCVALAASAVGAYLHVALNIGGMLTMLGCVGSIAWLFSVPVFEERK
TaBI11	(1)	
TaBI11	(33)	VYVIPIVGRIKSAAGAYLHIALNIGGMLTMLACIGTIAWMFSVPVYEERK
TaBI5 neu	(7)	RFRLTYALPGLICRGCLPAHCPEHWRDADNARVYRNHRLDVLGASLRGEE
ZmBI14	(1)	GSIAWLFSVPVYEERK
ZmBI16	(1)	WNIGVRLTMLGCIGSIDWLFSVPVYEERK
ZmBI33	(1)	WNIGGTLTMLGCVGSIAWLFSVPVYEERK
ZmBI8	(1)	
Consensus	(51)	VY TLC AL ASA GAYLHV NIGG LT LGCIGSI WL S PVYEERK
	, ,	
		101 150
AtBI-1	(89)	RLSLLFVSAVLEGASVGPLIKVAIDVDPSILITAFVGTAIAFVCFSAAAM
BnBI-1	(89)	RLSLLFLSAVLEGASVGPLIKVAVDFDPSILITAFVGTAIAFICFSGAAM
GmBI2	(90)	RVTLLMAASLFOGSSIGPLIDLAIHIDPSLIFSAFVGTALAFACFSGAAL
GmBI3	(101)	RLSLLMASALFQGASIGPLIDLAFAIDPGLIIGAFVATSLAFACFSAVAL
HVBI-1	(87)	REGLIMGAALLEGASVGPLIELAIDFDPSILVTGFVGTAIAFGCFSGAAI
NtBI-1	(91)	RIALLMAAALFKGASIGPLIELAIDFDPSIVIGAFVGCAVAFGCFSAAAM
OsBI-1	(90)	RECTLIAAALLEGASVGPLIKLAVDFDSSILVTAFVGTAIAFGCFTCAAI
TaBI11	(1)	AAI
TaBI18	(83)	RFGLLMGAALLEGASVGPLIELAIDFDPSILVTGFVGTAIAFGCFSGAAI
TaBIIO neu	(57)	EVWAADGCSLLEGASVGPLIELAIDFDPSILVTGFVGTAIAFGCFSGAAI
ZmBI14	(17)	RYWLLMAAALLEGASVGPLIKLAVEFDPSILVTAFVGTAIAFACFSCAAM
ZmBI14	(30)	RYGLLMAAALLEGASVGPLVKLAVEFDPSILVTAFVGTAIAFACFSGAAM
ZmBI33	(30)	RYGLLMAAALLEGASVGPLVKLAVEFDPSILVTAFVGTAIAFACFSGAPW
ZmBI8	(1)	
Consensus	(101)	R LLMAAALLEGASVGPLI LAIDFDPSILVTAFVGTAIAFACFSGAAI

Fig.1a

		151 200
AtBI-1	(139)	LARRREYLYLGGLLSSGLSMLMWLQFASSIFG-GSASIFKFELYFGLLI
BnBI-1	(139)	LARRREYLYLGGLLSSGLSMLMWLQFASSIFG-GSASIFKFELYFGLLI
GmBI2	(140)	VARRREYLYLGGLVSSGLSILLWLHFASSIFG-GSTALFKFELYFGLLV
GmBI3	(151)	VARRREYLYLGGLLSSWLSILMWLHSDSSLFG-GSIALFKFELYFGLLV
HVBI-1	(137)	IAKRREYLYLGGLLSSGLSILLWLQFVTSIFGHSS-GSFMFEVYFGLLI
NtBI-1	(141)	VARRREYLYLGGLLSSGLSILFWLHFASSIFG-GSMALFKFEVYFGLLV
OsBI-1	(140)	VAKRREYLYLGGLLSSGLSILLWLQFAASIFGHST-GSFMFEVYFGLLI
TaBF11	(4)	IAKRREYLYLGGLLSSGLSILLWLQFATSIFGHSS-GSFMFEVYFGLLI
TaBI18	(133)	IAKRREYLYLGGLLSSGLTI
TaBI5 neu	(107)	IAKRREYLYLGGLLSSGLSILLWLQFATSIFGHSS-GSFMFEVYFGLLI
ZmBI14	(67)	VAKRREYLYLGGLLSSGLSILLWLQFAASIFGHQSTSSFMFEVYFGLLII
ZmBI16	(80)	VARRREYLYLGGLLSSGLSILLWLQLAASIF-GHSATSFMFEVYFGLLII
ZmBI33	(80)	WQAR-EYLYLGGCSRRGSPSCSGCSSPPPSSALRNSFMFEVYFGLLII
ZmB18	(29)	
Consensus	(151)	VAKRREYLYLGGLLSSGLSILLWLQFASSIFG S ASFMFEVYFGLLIF
	•	201 250
AtBI-1	(188)	VGYMVVDTQEIIEKAHLGDMDYVKHSLTLFTDFVAVFVRILIIMLKNSAI
BnBI-1	(188)	VGYMVVDTQDIIEKAHLGDMDYVKHSLTLFTDFVAVFVRVLIIMLKNSAL
GmBI2	(189)	VGYIVVDTQEIVERAHLGDLDYVKHALTLFTDLVAVFVRILVIMLKNSTE
GmBI3	(200)	VGYVIVDTQEIIERAHFGDLDYVKHALTLFTDLAAIFVRILIIMLKNSSE
HVBI-1	(186)	LGYMVYDTQEIIERAHHGDMDYIKHALTLFTDFVAVLVRVLIIMLKNAGE
NtBI-1	(190)	VGYIIFDTQDIIEKAHLGDLDYVKHALTLFTDFVAVFVRILIIMLKNASC
OsBI-1	(189)	LGYMVYDTQEIIERAHHGDMDYIKHALTLFTDFVAVLVRILVIMLKNASD
TaBI11	(53)	LGYMVYDTQEIIERAHHGDMDYIKHALTLFTDFVAVLVRILIIMLKNAGD
TaBI18	(154)	L
TaBI5 neu	(156)	LGYMVYDTQEIIERAHHGDMDYIKHALTLFTDFVAVLVRVLIILLKNAAD
ZmBI14	(117)	LGYMVYDTQEVIERAHHG
ZmBI16	(129)	LGYVVYDT
ZmBI33	(127)	LG
ZmBI8	(78)	LGYMVFDTQEIIERAHRGDMDYIKHALTLFTDFVAVLVRILVIMMKNAQE
Consensus	(201)	LGYMVYDTQEIIERAH GDMDYIKHALTLFTDFVAV VRILIIMLKNA D
		251 300
AtBI-1	(238)	KEEKKKKRRNGDVK-I-LYGCYRVWPL-RYYLLALSIGDOTCE
BnBI-1	(238)	KEDKKKRRND-KVRKKAK-SGCYVCFKKKRVG
GmBI2	(239)	RNEKKKKRRD
GmBI3	(250)	RNEKKKKRRDADRPTRAQASLQ-FSLWRIHNLFR-CWSLV-
HVBI-1	(236)	KSEDKKKRKRGSS
NtBI-1	(240)	KEEKKKKRRNCISGYSKTI-I-NIAFSCSTSVDI BOVICG FO
OsBI-1	(239)	KSEEKKRKKRS-ELLFPLCT-EKTTAAIASTYYDRAALQLGFMVNTSSFA
TaBI11	(103)	KSEDKKKRKRRS
TaBI18	(155)	
TaBI5 neu	(206)	KVGGQEEEEKS
ZmBI14	(135)	
ZmBI16	(137)	
ZmBI33	(129)	
ZmBI8	(128)	KSQDEKKRK
Consensus		

Fig.1b

350		
VPSSDCKLECCSSFHKLLFFKSL	(278)	AtBI-1
CLEQFWQHTLRICVFLLVTPDCEWI	(269)	BnBI-1
	(249)	GmBI2
ISFKHLHMYLPIS-CVV-HHTLV-KKKKKKKKKKKKK	(288)	GmBI3
	(248)	HVBI-1
CQCGYGGT-MVLFPKHTIK-HACLHYIDNLRVY	(279)	NtBI-1
VVALQILACYMTRIFL-WWSR-SKRENTSSFATNLFA	(287)	OsBI-1
	(301)	Consensus
400		
GKSCLNFLKCVHFRKKKKKKKKK	(312)	AtBI-1
	(307)	BnBI-1
	(249)	GmBI2
XXXXXXXXXGVCGLRYSRHSSNH-EGSLW-PGLC-	(335)	GmBI3
	(248)	HVBI-1
-LYS-FSVMLDHLLS-RLISHIDGRNENSHRRPNLFK	(322)	NtBI-1
ζ	(334)	OsBI-1
	(351)	Consensus
450		
	(348)	AtBI-1
	(319)	BnBI-1
	(249)	GmBI2
CANS-YNVE-FI-EK-EEEEERLIG-PIAMCRVIWFV		GmBI3
	(248)	HVBI-1
	(369)	NtBI-1
	(401)	Consensus
500		
500 CCSLAMCLL-W-MSGFLLNIFICICS-YIV-TS	(424)	GmBI3
C2PWCTP-M-W2GLPFWILLTCIC2-11AL2	(451)	Consensus
	(451)	Consensus
	1101	G77.T.2
	(464)	GmBI3
·	(501)	Consensus

Fig.1c

Fig.2

Fig.3

Fig.4

Fig.5

```
MDAFYSTSS---AAASGEGHISLKWERGISPAVCSHLKLVYLTLCFALASSAVGAYLHIA 57
MDAFYSTSSAYGAAASGEGYESLKWERGISPAVCSHLKUVYLTLCVALIAASAVGAYLHVA 60
MDAFSSFFDS-OPGSRSUSYBSLKWERGISPAVCMHLKRVYLTLCCALVASAFGAYLHVL 59
MDAFSSFFDS-OPGSRSUSYBSLKWERGISPAVCMHLKRVYASFALCWFVAAAGAYVHWV 50
  H. vul.
  O. sat.
  A. tha.
  H.sap.
                                -igghtulacygtiawnfsvpvyee-
  H. vul .
                                                                                             -rkrfglingagliegasveprielaidfn 113
                       LN-IGGELTHLGCVGSIAWLFSVFVFEE-RKRFGILLAAALLEGASVGPLIKLAVDFD 116
WN-IGGILTTIGCIGTHIWLLSCPPYEH-OKRLSLLFVSAVLEGASVGPLIKVAIDVD 115
THFIQAGILSALGSLILHIWLHATEHSHETECKELGLLAGFEFLTGVGLGPALEFCIAVN 110
  O. sat.
 A. tha.
 H. sap.
                      PSILVTGFVGTATAFGCFSCAAIIAKRREYLYLGGLLSSCLSILLWLOFVTSIFGHSGS 173
SSILVTARVGTATAFGCFTCAAIVAKRREWLYLGGLLSSGLSILLWLOFAASIFGHSTGS 176
PSILITAFVGTATAFVCFSAAAMLAKRREYLYLGGLLSSGLSMLHWLOFAASIFGGSASI 175
PSILPTAFMGTAMIFTCFTLSALYARRESYLFLGGILMSALSLLLLSSLGNVFFG-SIWP 169
 H. vul.
 O. sat.
A. tha .
H. sap.
                     FNFEVYFGLLIFLGYMYVDTCEIIEBAHHGDMDYIKHALTLFTDFYAVLVRVLIIMLKNA 236
FNFEVYFGLLIFLGYMYVDTCEIIEBAHHGDMDYIKHALTLFTDFYAVLVRILVIMIKNA 236
FKFELYFGLLIFVGYMYVDTCEIIEKAHLGDMDYVKHSLTLFTDFYAVFYRINIIMLKNS 235
FQANLYVGLVVNCGFVLVDTCLIIEKAEHGDODYIWHCIDLFLDFITYFRKLMMILAMNE 229
H. vul.
O. sat.
A. tha.
H.sap.
                     GDRSEDKEKRKRGS 247
H. vul.
                     SDESEEKERKERS- 249
O. sat.
A. tha .
                     ADE-EEKEKKREN- 247
H. sap.
                     KDR---KEEKK--- 237
```

rRNAs

	d	ai			
0	1	4	7		
		-	-	inoculated	BCP mlo5
	No. of the last		Barrier on	æ	
	4-114	5	a lace	inoculated	BCP M/a12
		#/s (# P: #		Ø	
		7 mm		inoculated	Pallas
		,		Ø	

BI-1

	d	ai			
0	1	4	7		
				inoculated	BCP mlo5
<i>3.</i> 1				Ø	
	•			inoculated	BCP Mia12
થઉ	Hijiya i			Ø	
		•		inoculated	Pallas
	***	2 00		Ø	

Fig.7

Fig.8

Fig.9

Fig.10

Fig.11

1 122 1 122 | |122 1 122 1 122 1 122 1 122 BI-T N" GAR TO A COLOR BER SEE Approx (in) TRNA T W T W W 24 hat 44 hat 72 hat 0 hat

Fig.12

Fig.13

PF 54350 DE

${\tt SEQUENZPROTOKOLL}$

	<110> BAS	F Plant	Science	GmbH	I									
5	<120> Ver	fahren z eßfaktor				Res:	iste	nz g	egen					
	<130> AE2	0030082												
10	<140> <141>													
	<160> 36													
15	<170> Pat	entIn Ve	er. 2.1											
20	<210> 1 <211> 744 <212> DNA <213> Hor	1	lgare											
35	<220> <221> CDS <222> (1) <223> COS	(741)	BI1-pro	otein										
30	<400> 1 atg gac g Met Asp A	gec tte Ala Phe	tac tcg Tyr Ser 5	acc Thr	tcg Ser	tcg Ser	gcg Ala 10	gcg Ala	gcg Ala	agc Ser	ggc Gly	tgg Trp 15	ggc Gly	48
0.5	cac gac t His Asp S	tcc ctc Ser Leu 20	aag aac Lys Asn	ttc Phe	cgc Arg	cag Gln 25	atc Ile	tcc Ser	ccc Pro	gcc Ala	gtg Val 30	cag Gln	tcc Ser	96
35	cac ctc a	aag ctc Lys Leu 35	gtt tac Val Tyr	ctg Leu	act Thr 40	cta Leu	tgc Cys	ttt Phe	gca Ala	ctg Leu 45	gcc Ala	tca Ser	tct Ser	144
40	gcc gtg (Ala Val (50	ggt gct Gly Ala	tac cta Tyr Leu	cac His 55	att Ile	gcc Ala	ctg Leu	aac Asn	atc Ile 60	ggc Gly	Gl ^A aaa	atg Met	ctg Leu	192
45	aca atg Thr Met 1 65	ctc gct Leu Ala	tgt gtc Cys Val 70	gga Gly	act Thr	atc Ile	gcc Ala	tgg Trp 75	atg Met	ttc Phe	tcg Ser	gtg Val	cca Pro 80	240
50	gtc tat Val Tyr	gag gag Glu Glu	agg aag Arg Lys 85	agg Arg	ttt Phe	Gly ggg	ctg Leu 90	ctg Leu	atg Met	ggt Gly	gca Ala	gcc Ala 95	ctc Leu	288
	ctg gaa Leu Glu	ggg gct Gly Ala 100	tcg gtt Ser Val	gga Gly	cct Pro	ctg Leu 105	att Ile	gag Glu	ctt Leu	gcc Ala	ata Ile 110	gac Asp	ttt Phe	336
55	gac cca Asp Pro	agc atc Ser Ile 115	ctc gtg Leu Val	aca Thr	ggg Gly 120	ttt Phe	gtc Val	gga Gly	acc Thr	gcc Ala 125	atc Ile	gcc Ala	ttt Phe	384
60	ggg tgc Gly Cys 130	ttc tct Phe Ser	ggc gcc Gly Ala	gcc Ala 135	atc Ile	atc Ile	gcc Ala	aag Lys	cgc Arg 140	agg Arg	gag Glu	tac Tyr	ctg Leu	432
65	tac ctc Tyr Leu 145	ggt ggc Gly Gly	ctg ctc Leu Leu 150	tcg Ser	tct Ser	ggc Gly	ctg Leu	tcg Ser 155	atc Ile	ctg Leu	ctc Leu	tgg Trp	ctg Leu 160	480
	[AE-Nr.]	REF/	Datum									[gg	gf. Fig/S	Seq]

_			Science	^hU
12	$\Lambda \subseteq F$	Plant	Science	Campin
_	~~!	i iaii	00101100	~

PF 54350 DE

_	cag Gln	ttt Phe	gtc Val	acg Thr	tcc Ser 165	atc Ile	ttt Phe	ggc Gly	cac His	tcc Ser 170	tct Ser	ggc Gly	agc Ser	ttc Phe	atg Met 175	ttt Phe	528
5	gag Glu	gtt Val	tac Tyr	ttt Phe 180	ggc Gly	ctg Leu	ttg Leu	atc Ile	ttc Phe 185	ctg Leu	ggg Gly	tac Tyr	atg Met	gtg Val 190	tac Tyr	gac Asp	576
10	acg Thr	cag Gln	gag Glu 195	atc Ile	atc Ile	gag Glu	agg Arg	gcg Ala 200	cac His	cat His	ggc Gly	gac Asp	atg Met 205	gac Asp	tac Tyr	atc Ile	624
15	aag Lys	cac His 210	gcc Ala	ctc Leu	acc Thr	ctc Leu	ttc Phe 215	acc Thr	gac Asp	ttt Phe	gtt Val	gcc Ala 220	gtc Val	ctc Leu	gtc Val	cga Arg	672
20	gtc Val 225	ctc Leu	atc Ile	atc Ile	atg Met	ctc Leu 230	aag Lys	aac Asn	gca Ala	ggc Gly	gac Asp 235	aag Lys	tcg Ser	gag Glu	gac Asp	aag Lys 240	720
	aag Lys	aag Lys	agg Arg	aag Lys	agg Arg 245	Gl ^A ããã	tcc Ser	tga									744
5	-21	0> 2															
30	<21 <21	1> 2 2> P	47 RT	um v	ulga:	re										•	
05	Met 1		Ala		5					10	,						
35	His	Asp	Ser	Leu 20	Lys	Asn	Phe	Arg	Gln 25	Ile	e Ser	Pro	Ala	Va]	Glr	ser	
40			35	5				40	,					•		s Ser	
	Ala	Val		/ Ala	туг	Leu	His 55	ille 5	e Ala	. Let	ı Ası	1 Ile) e Gl ⁷	g Gl	y Met	Leu	
45	Thr 65		. Lei	ı Ala	a Cys	Val	Gly	Thi	: Ile	e Ala	a Try 7:	Met	: Phe	e Se	r Vai	Pro 80	
	۷a]	L Ty:	r Glu	ı Glu	ı Arg	Lys	Arg	g Pho	e Gly	Let 9	u Let 0	ı Me	t Gly	y Al	a Ala 9	a Leu 5	
50	Let	ı Gl	u Gly	y Ala	a Ser	Va]	Gly	y Pro	5 Let 10	ı Ile 5	e Gl	ı Le	u Ala	a Il 11	e As 0	p Phe	
55	Ası	o Pr	o Se:	r Ilo	e Lev	ı Val	L Th:	r Gl; 12	y Pho	e Va	1 Gl;	y Th	r Ala 12	a Il 5	e Al	a Phe	
		13	0				13	5				7-7	v			r Leu	
60	Ту: 14		u Gl	y Gl	y Le	150	u Se 0	r Se	r Gl	y Le	u Se 15	r Il 5	e Le	u Le	u Tr	p Leu 160	
	Gl	n Ph	e Va	l Th	r Se:	r Il	e Ph	e Gl	y Hi	s Se 17	r Se 0	r Gl	y Se	r Ph	ie Me 17	t Phe 5	
65	G1	u Va	l Ty	r Ph	e Gl	y Le	u Le	u Il	e Ph	e Le	u Gl	у Ту	r Me	t Va	ıl Ty	r Asp	•

		BA	SF F	Plant	Scie	nce (Gmb	Н		2	0030	082			PF	5435	0 DE	
											3							
					180	0				18					19	D		
	5	Thi	r Gl:	n Gl	u Ile 5	e Ile	e Glu	ı Ar	g Ala 200	a Hia	s Hi	s Gl	y Ası	о Ме 20!		o Tyi	r Ile	
	J	Lys	5 Hi: 21	s Ala O	a Lei	u Thi	r Le	21:	e Thi	: Ası	Ph	e Vai	l Ala 220		l Le	ı Val	l Arg	
	10	243	•				23()		ı Ala	a Gl	y As ₁ 23	o Ly:	s Se	r Glı	ı Ası	240	
	15	Lys	S Ly:	s Ar	g Lys	245		y Sei	r									
	13																	
;	20	·<21 <21	10> 1 11> 1 12> 1 13> 2	LO67 DNA	idops	sis t	hali	.ana										
	25	<22	1> ((1)	(741 ng fo	.) or BI	:1-pr	otei	.n									
;	30	atg	W2F	gcg	ttc Phe	tct Ser 5	ser	tto Phe	ttc Phe	gat Asp	tct Ser 10	Gln	cct Pro	ggt Gly	ago Ser	aga Arg 15	agc Ser	48
s	35	tgg Trp	ago Ser	tat Tyr	gat Asp 20	ser	ctt Leu	aaa Lys	aac Asn	ttc Phe 25	Arg	cag Gln	att	tct Ser	cca Pro 30	Ala	gtt Val	96
		cag Gln	aat Asn	cat His 35	ctt Leu	aaa Lys	cgg Arg	gtt Val	tat Tyr 40	ttg Leu	acc Thr	tta Leu	tgt Cys	tgt Cys 45	Ala	ctt Leu	gtg Val	144
. 4	10	gcg Ala	tct Ser 50	MIG	ttt Phe	gga Gly	gct Ala	tac Tyr 55	ctc Leu	cat Hiș	gtg Val	ctc Leu	tgg Trp 60	aat Asn	atc Ile	ggc Gly	ggt Gly	192
4	15	att Ile 65	ctt Leu	aca Thr	acg Thr	att Ile	gga Gly 70	tgt Cys	att Ile	gga Gly	act Thr	atg Met 75	att Ile	tgg Trp	ctc Leu	ctt Leu	tca Ser 80	240
5	60	tgt Cys	cct Pro	cct Pro	tat Tyr	gaa Glu 85	cac His	caa Gln	aaa Lys	agg Arg	ctt Leu 90	tct Ser	ctt Leu	ctg Leu	ttt Phe	gtg Val 95	tct Ser	288
5	5	gct Ala	gtt Val	ctt Leu	gaa Glu 100	ggt Gly	gct Ala	tct Ser	gtt Val	ggc Gly 105	ccc Pro	ttg Leu	atc Ile	aaa Lys	gtg Val 110	gca Ala	att Ile	336
Ŭ.	J	gat Asp	gtt Val	gac Asp 115	cca Pro	agc Ser	atc Ile	ctt Leu	atc Ile 120	act Thr	gca Ala	ttt Phe	gtt Val	gga Gly 125	act Thr	gcg Ala	ata Ile	384
60		gcg Ala	ttt Phe 130	gtc Val	tgt Cys	ttc Phe	tca Ser	gca Ala 135	gca Ala	gca Ala	atg Met	tta Leu	gca Ala 140	aga Arg	cgc Arg	agg Arg	gag Glu	432
6		tat Tyr 145	ctc Leu	tac Tyr	ctt Leu	GTĀ	gga Gly 150	ctg Leu	ctt Leu	tca Ser	tct Ser	ggc Gly 155	ttg Leu	tct Ser	atg Met	Leu	atg Met 160	480

5	tgg Trp	Leu	caç Glr	tt Ph	t gcd e Ala 16!	a Ser	tca Se	a at	c tt e Ph	t gg e Gl 17	y Gl	c tc y Se	t gc r Al	a tc a Se	t at r Il 17	c ttt e Phe 5	528
	aag Lys	ttt Phe	gag Glu	tte Lei 180	тлАл	ttt Phe	gga Gly	a ct / Le	t tt u Le 18	u Il	c tt e Ph	t gt e Va	g gg 1 Gl	a ta y Ty: 19	r Me	g gtg t Val	576
10	gtg Val	gac Asp	aca Thr 195	GII	a gaq n Glu	g att 1 Ile	ata Ile	a gaa e Gli 200	а Ly	g gca s Ala	a ca a Hi	c ct s Le	c gg u G1: 20	y As	c ate	g gac E Asp	624
15	tat Tyr	gta Val 210	гÃа	cat His	tcg Ser	ttg Leu	Thi 215	: Lei	t tte	c ac	t ga r Asj	c tt p Ph	e Va	a gci l Ala	t gto	g ttt L Phe	672
20	gtt Val 225	ALG	att Ile	cto Lev	ato 1 Ile	ata 11e 230	Met	ttg Lei	g aag 1 Lys	g aad s Asi	23!	r Ala	a gat a Asj	t aaa o Lys	a gaa s Glu	gag Glu 240	720
25	aag Lys	aag Lys	aag Lys	aaa Lys	agg Arg 245	Arg	aac Asn	tga ı	rada?	gatg	taaa	agtaa	aat 1	taad	ettta	ıt	771
	ggti	tgtt	atc	gtgt	gtgg	cc a	cttt	gaag	ra ta	ittac	ttgt	tag	gcact	ctc	tatt	ggtgac	831
	caga	acat	gtt	tcca	ctaa	aa a	ggat	ctgo	t to	rtttc	actt	: ctg	gcaca	agt	acca	tcttca	891
30	gatt	gta	aat	gact	cgag	tg t	tgtt	ctto	t tt	tcat	aaac	ttt:	tgtt	ctt	taag	agtttg	951
	gtto	ctaci	tga i	ttgc	atct	ta c	caag	ctaa	g aa	taat	gtag	gaa	aatg	ata	atco	tgttta	101:
35	aatt	ttet	caa a	aatg	tgtg	ca ti	ttca	gaaa	a aa	aaaa	aaaa	aaa	aaaa	aaa	aaaa	aa	106
40	<212	> 24 > PF	P.	lops.	is t]	nalia	ana										
45	<400 Met 1		Ala	Phe	Ser 5	Ser	Phe	Phe	Asp	Ser 10	Gln	Pro	Gly	Ser	Arg 15	Ser	
	Trp	Ser	Тух	Asp 20	Ser	Leu	Lys	Asn	Phe 25	Arg	Gln	Ile	Ser	Pro 30	Ala	Val	
50	Gln .	Asn	His 35	Leu	Lys	Arg	Val	Tyr 40	Leu	Thr	Leu	Сув	Cys 45	Ala	Leu	Val	
	Ala	Ser 50	Ala	Phe	Gly	Ala	Tyr 55	Leu	His	Val	Leu	Trp 60	Asn	Ile	Gly	Gly	
55	11e 1 65					70					75					80	
60	Cys 1				03					90					95		
	Ala V	Val 1	Leu (Glu 100	Gly	Ala	Ser	Val	Gly 105	Pro	Leu	Ile	Lys	Val 110	Ala	Ile	
	/ qaA																

	BASF Plant Science GmbH	20030082	PF 54350 DE
		6	
	Ala Ile Asp Phe Asp Pro Ser 115	Ile Val Ile Gly Ala	Phe Val Gly Cys 125
5	gct gtg gct ttt ggt tgc ttc Ala Val Ala Phe Gly Cys Phe 130	tca gct gct gcc atg Ser Ala Ala Ala Met 140	gtg gca agg cgc 432 Val Ala Arg Arg
10	aga gag tac ttg tat ctt gga Arg Glu Tyr Leu Tyr Leu Gly 145	ggt ctt ctt tca tct Gly Leu Leu Ser Ser 155	ggt ctc tct atc 480 Gly Leu Ser Ile 160
15	ctt ttc tgg ttg cac ttc gcg Leu Phe Trp Leu His Phe Ala : 165	Ser Ser Ile Phe Gly	ggt tct atg gcc 528 Gly Ser Met Ala 175
	ttg ttc aag ttc gag gtt tat i Leu Phe Lys Phe Glu Val Tyr i 180	tt ggg ctc ttg gtg Phe Gly Leu Leu Val 185	ttt gtg ggc tat 576 Phe Val Gly Tyr 190
20	atc att ttt gac acc caa gat a Ile Ile Phe Asp Thr Gln Asp 1 195	lle Ile Glu Lys Ala 1	cac ctt ggg gat 624 His Leu Gly Asp 205
25	ttg gac tac gtg aag cat gct c Leu Asp Tyr Val Lys His Ala I 210 215	etg acc ctc ttt aca g Leu Thr Leu Phe Thr 2 220	gat ttt gtt gct 672 Asp Phe Val Ala
30	gtt ttt gtg cga ata tta atc a Val Phe Val Arg Ile Leu Ile 1 225 230	ta atg ctg aag aat o le Met Leu Lys Asn 1 235	gca tcc gac aag 720 Ala Ser Asp Lys 240
35	gaa gag aag aag aag agg a Glu Glu Lys Lys Lys Lys Arg A 245	ga aac taatgcataa go rg Asn	eggttattc 767
	aaagactctg taactctaga atctggc	att ttcttgttca taaac	cttctg tagaccttcg 827
40	acaagtatgt tgttaatagt ttggtaa		
40	cgcatgccaa tgtggttatg gtggtac		
	ataacatgca tgtttacact atatcga		
45	ttttgctgtg ttaggttgtt catgatt		
	totttottga cgtttaattt ctcatat caacttgttt aagactgagg cgcaatt		
50	and any and a garage of cauce	gea gee	1160
55	<210> 6 <211> 249 <212> PRT <213> Nicotiana tabacum		
00	<400> 6 Met Glu Ser Cys Thr Ser Phe Ph 1 5	ne Asn Ser Gln Ser A 10	la Ser Ser Arg 15
60	Asn Arg Trp Ser Tyr Asp Ser Le	eu Lys Asn Phe Arg G 25	ln Ile Ser Pro 30
65	Phe Val Gln Thr His Leu Lys Ly	ys Val Tyr Leu Ser L	
	Leu Val Ala Ser Ala Ala Gly A	a Tyr Leu His Ile Lo	eu Trp Asn Ile

									7	1							
		50					55					60					
5	Gly 65	Gly	Leu	Leu	Thr	Thr 70	Leu	Gly	Cys	Val	Gly 75	Ser	Ile	Val	Trp	Leu 80	
5	Met	Ala	Thr	Pro	Leu 85	Tyr	Glu	Glu	Gln	Lys 90	Arg	Ile	Ala	Leu	Leu 95	Met	
10	Ala	Ala	Ala	Leu 100	Phe	Lys	Gly	Ala	Ser 105	Ile	Gly	Pro	Leu	Ile 110	Glu	Leu	
	Ala	Ile	Asp 115	Phe	Asp	Pro	Ser	Ile 120	Val	Ile	Gly	Ala	Phe 125	Val	Gly	Cys	
15	Ala	Val 130	Ala	Phe	Gly	Cys	Phe 135	Ser	Ala	Ala	Ala	Met 140	Val	Ala	Arg	Arg	
	Arg 145	Glu	Tyr	Leu	Tyr	Leu 150	Gly	Gly	Leu	Leu	Ser 155	Ser	Gly	Leu	Ser	Ile 160	
20	Leu	Phe	Trp	Leu	His 165	Phe	Ala	Ser	Ser	Ile 170	Phe	Gly	Gly	Ser	Met 175	Ala	
35	Leu	Phe	Lys	Phe 180	Glu	Val	Туr	Phe	Gly 185	Leu	Leu ,	Va1	Phe	Val 190	Gly	Tyr	
	Ile	Ile	Phe 195		Thr	Gln	Asp	Ile 200	Ile	Glu	Lys	Ala	His 205	Leu	Gly	Asp	
30	Leu	Asp 210	тух		Lys	His	Ala 215	Leu	Thr	Leu	Phe	Thr 220	Asp	Phe	Val	Ala	
0-	Val 225	Phe		. Arg	Ile	Lev 230	ı Ile	· Ile	Met	Leu	Lys 235	Asn	Ala	Ser	Asr	Lys 240	
35	Glu	Glu	ı Lys	Lys	Lys 245		arg	Arg	Asn	L							
40	<21	.0> 7 .1> 1 .2> I	L056														
45		.3> (a sat	iva												
	<22 <22	21> (22>	(1).	.(747 ng fo	7) or B:	I1-p:	rote:	in									
50	Met	00> ° g ga z Asj	7 c gc p Al	c tto a Pho	5 J.A.	c tc r Se	g acer Th	c tco r Sei	g tcg r Sei	g gc r Al	u ry.	c ggg r Gl	a gc y Ala	g gcq a Ala	g gc a Al 1	g agc a Ser 5	
55	Gl ₃	c tg y Tr	g gg p Gl	c tac y Ty: 2	r As	c tc p Se	g ct r Le	g aag u Lyg	g aa s As 2	n Pn	c cg e Ar	c ca g Gl	g at n Il	c tc e Se: 3		c gcc o Ala	
60	gt. Va	c ca 1 Gl	n Se	c ca r Hi 5	c ct s Le	c aa u Ly	g ct s Le	c gt u Va 4	Ť. Ι.Ά.	c ct r Le	g ac u Th	a ct r Le	a tg u Cy 4	J	c gc l Al	c ctg a Leu	
65	gc Al	a Al	g to a Se	g gc r Al	g gt a Va	g gg 1 Gl	λΫ́	a ta a Ty 5	c ct r Le	g ca u Hi	c gt s Va		c tt a Le 0	g aa u As	c at n Il	c ggc e Gly	

BASF Plant Science GmbH

PF 54350 DE

	ggg	atg Met	ttg	act	atg	ctc Leu	ggg	tgc	gtg	aaa	agc	atc	gcc	tgg	ttg	ttc	240
5	05					70					75					80	
	tcg Ser	gtg Val	ect Pro	gtc Val	ttt Phe 85	gag Glu	gag Glu	agg Arg	aag Lys	agg Arg 90	ttt Phe	ggg	att Ile	ctc Leu	ttg Leu 95	gcc Ala	288
10	gct Ala	gcc Ala	ctg Leu	ctg Leu 100	gaa Glu	GJÀ āāā	gct Ala	tca Ser	gtt Val 105	Gly	cct Pro	ctg Leu	atc Ile	aag Lys 110	ctt Leu	gct Ala	336
15	gta Val	gac Asp	ttt Phe 115	gac Asp	tca Ser	agc Ser	att Ile	ctc Leu 120	gta Val	aca Thr	gca Ala	ttt Phe	gtt Val 125	gga Gly	act Thr	gcc Ala	384
20	att Ile	gca Ala 130	ttt Phe	ggg Gly	tgc Cys	ttc Phe	act Thr 135	tgc Cys	gct Ala	gcc Ala	atc Ile	gtt Val 140	gcc Ala	aag Lys	cgt Arg	agg Arg	432
25	gag Glu 145	tac Tyr	ctc Leu	tac Tyr	ctt Leu	ggt Gly 150	ggt Gly	ttg Leu	ctc Leu	tct Ser	tct Ser 155	ggc Gly	ctc Leu	tcc Ser	atc Ile	ctg Leu 160	480
	ctc Leu	tgg Trp	ctg Leu	cag Gln	ttt Phe 165	gcc Ala	gca Ala	tcc Ser	atc Ile	ttt Phe 170	ggc Gly	cac His	tcc Ser	acc Thr	ggc Gly 175	agc Ser	528
30	ttc Phe	atg Met	ttt Phe	gag Glu 180	gtt Val	tac Tyr	ttt Phe	ggc Gly	ctg Leu 185	ttg Leu	atc Ile	ttc Phe	ctg Leu	ggg Gly 190	tac Tyr	atg Met	576
35	gtg Val	tat Tyr	gac Asp 195	acg Thr	cag Gln	gag Glu	atc Ile	atc Ile 200	gag Glu	agg Arg	gct Ala	cac His	cac His 205	ggt Gly	gac Asp	atg Met	624
40	gac Asp	tac Tyr 210	atc Ile	aag Lys	cac His	gca Ala	ctc Leu 215	acc Thr	ctc Leu	ttc Phe	act Thr	gac Asp 220	ttc Phe	gtg Val	gcc Ala	gtc Val	672
45	ctt Leu 225	gtc Val	cgg Arg	atc Ile	ctc Leu	gtc Val 230	atc Ile	atg Met	ctc Leu	aag Lys	aac Asn 235	gcg Ala	tct Ser	gac Asp	aag Lys	tcg Ser 240	720
	gag Glu	gag Glu	aag Lys	aag Lys	agg Arg 245	aag Lys	aag Lys	agg Arg	tct Ser	tgag	agct	tc t	cttc	ccgc	t		767
50	ttgc	acat	aa g	aaaa	aacc	a cc	gcgg	ctat	tgc	ctct	acg	tatt	atga	ca g	agcc	gcact	827
	tcaa	ctgg	gt t	ttat	ggtg	a at	acaa	gttc	ttt	tgca	ttt	tgtt	gata	cg g	tgtg	aatct	887
55																atctt	
															gact	aattt	1007
60	gttt	gcct	tt t	ggtg	attg	a tg	atga	tcct	ttc	ccca	aaa	aaaa	aaaa	a			1056
60	<210: <211: <212: <213:	> 24: > PR'	r	eati:	772												
65	<400	-															

										J							
	Met 1	Asp	Ala	Phe	• Tyr 5	Ser	Thr	Ser	Sei	Ala 10	Tyr)	Gly	Ala	Ala	Ala 19	a Ser	
5	Gly	Trp	Gly	Тут 20	: Asp	Ser	Leu	Lys	Asr 25	n Phe	arg	Gln	ı Ile	Sex 30		Ala	
	Val	Gln	Ser 35	His	Leu	Lys	Leu	Val 40	Туг	Leu	Thr	Leu	Cys 45		Ala	a Leu	
10	Ala	Ala 50	Ser	Ala	. Val	Gly	Ala 55	Tyr	Leu	His	Val	Ala 60	Let	ı Asr	ıle	e Gly	
15	Gly 65	Met	Leu	Thr	Met	Leu 70	Gly	Cys	Val	. Gly	Ser 75	Ile	Ala	Trç	Lev	Phe 80	
	Ser	Val	Pro	Val	Phe 85	Glu	Glu	Arg	Lys	Arg	Phe	Gly	Ile	Lev	Let 95	Ala	
20	Ala	Ala	Leu	Leu 100	Glu	Gly	Ala	Ser	Val 105	Gly	Pro	Leu	Ile	Lys 110		Ala	
	Val	qaA	Phe 115	Asp	Ser	Ser	Ile	Leu 120	Val	Thr	Ala	Phe	Val 125		Thr	Ala	
25	Ile	Ala 130	Phe	Gly	Суѕ	Phe	Thr 135	Cys	Ala	Ala	Ile	Val 140	Ala	Lys	Arg	Arg	
30	Glu 145	Tyr	Leu	Tyr	Leu	Gly 150	Gly	Leu	Leu	Ser	Ser 155	Gly	Leu	Ser	Ile	Leu 160	
	Leu	Trp	Leu	Gln	Phe 165	Ala	Ala	Ser	Ile	Phe 170	Gly	His	Ser	Thr	Gly 175	Ser	
35	Phe	Met	Phe	Glu 180	Val	Tyr	Phe	Gly	Leu 185	Leu	Ile	Phe	Leu	Gly 190	Tyr	Met	
	Val	Tyr	Asp 195	Thr	Gln	Glu	Ile	Ile 200	Gl u	Arg	Ala	His	His 205	Gly	Asp	Met	
40	Asp	Tyr 210	Ile	Lys	His	Ala	Leu 215	Thr	Leu	Phe	Thr	Asp 220	Phe	Val	Ala	Val	
45	Leu 225	Val	Arg	Ile	Leu	Val 230	Ile	Met	Leu	Lys	Asn 235	Ala	Ser	Asp	Lys	Ser 240	
	Glu	Glu	Lys	Lys	Arg 245	Lys	Lys	Arg	Ser								
50	<210	> 9															
	<211 <212 <213	> DN	Α	ca n	apus												
55	<220: <221: <222:	> > CD > (1	s)(741)													
60	<223:	> co	ding	for	BI1	-pro	tein										
65	atg of Met 2	gat	tca Ser	ttc Phe	tcg : Ser : 5	tcc i Ser 1	ttc Phe	ttc Phe	gat Asp	tct Ser 10	caa Gln	cct (Pro	ggt Gly	agc Ser	aga Arg 15	agc Ser	48
	tgg a	agc 1	tat q	gat 1	tct o	ctc a	aaa a	aac o	ctc (cat (cag a	att 1	tat.	aaa	tcc	ata	96

	ВА	SF P	lant :	Scier	nce G	imbł	ł		20	0300	82			PF	5435	0 DE	
										10							
	Trp	Ser	Tyr	Asp 20	Ser	Leu	Lys	Asn	Leu 25	Arg	Gln	Ile	Ser	Pro 30		Val	
5	cag Gln	aat Asn	cat His 35	ьeu	aag Lys	agg Arg	gtt Val	tat Tyr 40	Leu	act Thr	ctg Leu	tgt Cys	tgt Cys 45	Ala	ctc Leu	gtt Val	144
10	gcg Ala	tct Ser 50	Ala	ttt Phe	gga Gly	gct Ala	tac Tyr 55	ctc Leu	cac His	gtg Val	ctc Leu	tgg Trp 60	Asn	ata Ile	ggt Gly	ggt Gly	192
15	att Ile 65	Leu	act Thr	acc Thr	att Ile	gga Gly 70	Cys	ttt Phe	gga Gly	agc Ser	atg Met 75	att Ile	tgg Trp	ctg Leu	ctc Leu	tcc Ser 80	240
	tgt Cys	cct Pro	cct Pro	tat Tyr	gaa Glu 85	caa Gln	caa Gln	aag Lys	agg Arg	ctt Leu 90	tcc Ser	ctt Leu	ctg Leu	ttt Phe	ctg Leu 95	tct Ser	288
20	gct Ala	gtt Val	ctc Leu	gaa Glu 100	ggt Gly	gct Ala	tca Ser	gtt Val	ggt Gly 105	ccc Pro	ttg Leu	atc Ile	aaa Lys	gtg Val 110	gca Ala	gtt Val	336
25	gat Asp	ttt Phe	gac Asp 115	cca Pro	agc Ser	atc Ile	ctc Leu	atc Ile 120	act Thr	gcg Ala	ttt Phe	gtc Val	gga Gly 125	act Thr	gcg Ala	ata Ile	384
30	gcc Ala	ttt Phe 130	atc Ile	tgt Cys	ttc Phe	tca Ser	ggg Gly 135	gca Ala	gcg Ala	atg Met	ttg Leu	gca Ala 140	aga Arg	cgc Arg	aga Arg	gag Glu	432
35	tac Tyr 145	ctc Leu	tac Tyr	ctc Leu	gga Gly	gga Gly 150	ctg Leu	ctt Leu	tca Ser	tct Ser	ggc Gly 155	ttg Leu	tcc Ser	atg Met	ctt Leu	atg Met 160	480
	tgg Trp	ctt Leu	cag Gln	ttt Phe	gcc Ala 165	tct Ser	tcc Ser	atc Ile	ttt Phe	ggt Gly 170	ggc Gly	tct Ser	gca Ala	tcc Ser	atc Ile 175	ttt Phe	528
40	aag Lys	ttt Phe	gag Glu	ctc Leu 180	tac Tyr	ttt Phe	gga Gly	ctc Leu	ttg Leu 185	atc Ile	ttt Phe	gtg Val	gga Gly	tac Tyr 190	atg Met	gtg Val	576
45	gtg Val	gac Asp	act Thr 195	caa Gln	gat Asp	att Ile	ata Ile	gag Glu 200	aag Lys	gcc Ala	cac His	ctc Leu	ggt Gly 205	gac Asp	atg Met	gat Asp	624
50	tac Tyr	gtg Val 210	aaa Lys	cat His	tcg Ser	ttg Leu	acc Thr 215	ctt Leu	ttc Phe	acc Thr	qaA	ttt Phe 220	gta Val	gct Ala	gtg Val	ttt Phe	672
55	gtt Val 225	cgt Arg	gtt Val	ctc Leu	atc Ile	att Ile 230	atg Met	ctg Leu	aag Lys	aac Asn	tcg Ser 235	gca Ala	gat Asp	aaa Lys	gaa Glu	gat Asp 240	720
	aaa Lys	aag Lys	aag Lys	Arg	agg Arg 245	agg Arg	aac Asn	tgag	acta	aa a	agtg	agaa	a ga	aago	taaa	ı	771
60	taga	gtgg	gt g	ttat	gtgt	g tt	tcaa	aaaa	taa	aaaa	gag	tggg	tgtt	at a	agta	.cagac	831
	atga	tage	gt t	ggtg	tttt	t ta	cttg	tttg	gaa	cagt	ttt	ggta	acaa	ca c	acgt	tacgt	891
65	attt	gtgt	at t	cctc	ttag	t ga	ctcc	agat	tgt	gaat	gga	tcag	tatc	tt g	aaac	tgtgt	951
	tgaa	aatt	at c	agtt	ggga	g ct											973

<210> 10 <211> 247 <212> PRT <213> Brassica napus <400> 10 Met Asp Ser Phe Ser Ser Phe Phe Asp Ser Gln Pro Gly Ser Arg Ser 10 Trp Ser Tyr Asp Ser Leu Lys Asn Leu Arg Gln Ile Ser Pro Ser Val $20 \hspace{1cm} 25 \hspace{1cm} 30$ Gln Asn His Leu Lys Arg Val Tyr Leu Thr Leu Cys Cys Ala Leu Val 35 40 45 15 Ala Ser Ala Phe Gly Ala Tyr Leu His Val Leu Trp Asn Ile Gly Gly 50 60 20 Ile Leu Thr Thr Ile Gly Cys Phe Gly Ser Met Ile Trp Leu Leu Ser 65 70 75 80 Cys Pro Pro Tyr Glu Gln Gln Lys Arg Leu Ser Leu Leu Phe Leu Ser 85 90 95 Ala Val Leu Glu Gly Ala Ser Val Gly Pro Leu Ile Lys Val Ala Val 100 105 110 Asp Phe Asp Pro Ser Ile Leu Ile Thr Ala Phe Val Gly Thr Ala Ile 30 Ala Phe Ile Cys Phe Ser Gly Ala Ala Met Leu Ala Arg Arg Glu 35 Tyr Leu Tyr Leu Gly Gly Leu Leu Ser Ser Gly Leu Ser Met Leu Met 145 150 160 Trp Leu Gln Phe Ala Ser Ser Ile Phe Gly Gly Ser Ala Ser Ile Phe 165 170 175 40 Lys Phe Glu Leu Tyr Phe Gly Leu Leu Ile Phe Val Gly Tyr Met Val 180 185 Val Asp Thr Gln Asp Ile Ile Glu Lys Ala His Leu Gly Asp Met Asp 195 200 205 45 Tyr Val Lys His Ser Leu Thr Leu Phe Thr Asp Phe Val Ala Val Phe 50 Val Arg Val Leu Ile Ile Met Leu Lys Asn Ser Ala Asp Lys Glu Asp 225 230 235 240 Lys Lys Lys Arg Arg Arg Asn 245 55

<210> 11
60 <211> 747
<212> DNA
<213> Glycine max

<220>
65 <221> CDS
<222> (1)..(744)

DACE	Diant	Calanaa	CmbH
DASE	Plant	Science	GINDA

PF 54350 DE

									12	2							
	<223	> co	ding	for	BI1	-pro	tein										
5	<400 cga Arg	ttg Leu	caa Gln	Ala	Met 5	Asp	Ala	Phe	Asn	Ser 10	Phe	Phe	Asp	Ser	Arg 15	Asn	48
10	cga Arg	tgg Trp	aat Asn	tac Tyr 20	gat Asp	act Thr	ctc Leu	aaa Lys	aac Asn 25	ttc Phe	cgt Arg	cag Gln	att Ile	tct Ser 30	ccg Pro	gtc Val	96
15	gtg Val	cag Gln	aat Asn 35	cac His	ctg Leu	aag Lys	cag Gln	gtt Val 40	tat Tyr	ttt Phe	act Thr	ctg Leu	tgt Cys 45	ttt Phe	gcc Ala	gtg Val	144
15	gtt Val	gct Ala 50	gcg Ala	gct Ala	gtc Val	Gly ggg	gct Ala 55	tac Tyr	ctt Leu	cat His	gtc Val	ctc Leu 60	ttg Leu	aac Asn	att Ile	gja aaa	192
20	ggt Gly 65	ttt Phe	ctt Leu	act Thr	aca Thr	gtg Val 70	gca Ala	tgc Cys	atg Met	gga Gly	agc Ser 75	agc Ser	ttt Phe	tgg Trp	tta Leu	ctc Leu 80	240
5	tcc Ser	aca Thr	cct Pro	cct Pro	ttt Phe 85	gaa Glu	gag Glu	agg Arg	aag Lys	agg Arg 90	gtg Val	act Thr	ttg Leu	ttg Leu	atg Met 95	gcc Ala	288
30	gca Ala	tca Ser	ctg Leu	ttt Phe 100	cag Gln	ggt Gly	tcc Ser	tct Ser	att Ile 105	gga Gly	ccc Pro	ttg Leu	att Ile	gat Asp 110	ttg Leu	gct Ala	336
	att Ile	cat His	atc Ile 115	gat Asp	cca Pro	agc Ser	ctt Leu	atc Ile 120	ttt Phe	agt Ser	gca Ala	ttt Phe	gtg Val 125	gga Gly	aca Thr	gcc Ala	384
35	ttg Leu	gcc Ala 130	Phe	gca Ala	tgc Cys	ttc Phe	tca Ser 135	gga Gly	gca Ala	gct Ala	ttg Leu	gtt Val 140	gct Ala	agg Arg	cgt Arg	agg Arg	432
40	gag Glu 145	Tyr	ctg Leu	tac Tyr	ctt Leu	ggt Gly 150	GTA	ttg Leu	gtt Val	tct Ser	tct Ser 155	GTĀ	ttg Leu	tcc Ser	atc Ile	ctt Leu 160	480
45	ctc Leu	tgg Trp	ttg Leu	cac His	ttt Phe 165	Ala	tct Ser	tcc Ser	atc Ile	ttt Phe 170	GIY	ggc Gly	tca Ser	aca Thr	gct Ala 175	ctc Leu	528
50	ttt Phe	aag Lys	ttt Phe	gag Glu 180	Leu	tac Tyr	ttt Phe	ggg	ctt Leu 185	ьеч	gto Val	ttt. Phe	gta Val	ggt Gly 190	, TAT	att Ile	576
	gta Val	gta Val	gac Asp 195	Thr	caa Gln	gaa Glu	ata Ile	gtt Val 200	. GIL	agg Arg	gca Ala	a cac a His	tto Lev 205	נ בט י	gat Asp	ctg Leu	624
55	gac Asp	tat Tyr 210	· Val	aaç Lys	cat His	gcc Ala	tto Lev 215	Thr	ttg Lev	ttt i Phe	aco Thi	gat Asr 220	, те	g gto 1 Val	gca L Ala	a gtt a Val	672
60	ttt Phe 225	· Val	c cgg L Arg	g att g Ile	ctt E Lev	gtt 1 Val 230	L Il€	ato Met	ttg Lei	g aag 1 Lys	g aat S Asi 23!	a Sei	g act	gaq Gli	g agg u Arg	g aat g Asn 240	720
65	gag Glu	g aag Lys	g aaa s Lys	a aaq s Lys	g aag s Lys 245	s Arg	a aga g Arg	a gat g As <u>r</u>	tga P	ā							747

<210> 12 <211> 248 <212> PRT <213> Glycine max <400> 12 Arg Leu Gln Ala Met Asp Ala Phe Asn Ser Phe Phe Asp Ser Arg Asn 10 Arg Trp Asn Tyr Asp Thr Leu Lys Asn Phe Arg Gln Ile Ser Pro Val 20 25 30Val Gln Asn His Leu Lys Gln Val Tyr Phe Thr Leu Cys Phe Ala Val 35 40Val Ala Ala Val Gly Ala Tyr Leu His Val Leu Leu Asn Ile Gly 20 Gly Phe Leu Thr Thr Val Ala Cys Met Gly Ser Ser Phe Trp Leu Leu 65 70 75 80 Ser Thr Pro Pro Phe Glu Glu Arg Lys Arg Val Thr Leu Leu Met Ala Ala Ser Leu Phe Gln Gly Ser Ser Ile Gly Pro Leu Ile Asp Leu Ala 100 105 110 30 Ile His Ile Asp Pro Ser Leu Ile Phe Ser Ala Phe Val Gly Thr Ala Leu Ala Phe Ala Cys Phe Ser Gly Ala Ala Leu Val Ala Arg Arg Arg 35 Glu Tyr Leu Tyr Leu Gly Gly Leu Val Ser Ser Gly Leu Ser Ile Leu 150 155 160 Leu Trp Leu His Phe Ala Ser Ser Ile Phe Gly Gly Ser Thr Ala Leu 165 170 175 40 Phe Lys Phe Glu Leu Tyr Phe Gly Leu Leu Val Phe Val Gly Tyr Ile Val Val Asp Thr Gln Glu Ile Val Glu Arg Ala His Leu Gly Asp Leu 45 Asp Tyr Val Lys His Ala Leu Thr Leu Phe Thr Asp Leu Val Ala Val 210 220 50 Phe Val Arg Ile Leu Val Ile Met Leu Lys Asn Ser Thr Glu Arg Asn Glu Lys Lys Lys Lys Arg Arg Asp 245 55

<210> 13
60 <211> 1510
 <212> DNA
 <213> Glycine max

<220>
65 <221> CDS
<222> (1)..(777)

	BA	SF F	Plant	Scie	nce	Gmb	н		2	0030	082			PF	5435	50 DE	
										14							
	<22	23> (codi	ng f	or B	I-1 1	prot	ein									
5	ato Ilo	00> : c acq e Thi	gaaa	a ac s Th	r II	a cga e Arq 5	a tto g Pho	c ga e As	t tc p Se	c tte r Le: 1	u Ph	t to e Se	g ate	g ga t Asj	c ac p Th	t ttc r Phe 5	48
10	tto Phe	c aaq e Lys	g tco s Sei	C CCC Pro 20	o se	t tci r Sei	tci Sei	t tc r Se	t tc r Se 2	r Ar	a ag g Se	c cg r Ar	c tgg g Tr	g ag o Sei 30	r Ty:	c gat r Asp	96
15	1111	. Let	35 35	ASI	n Pne	e Arg	g Gli	1 Ile 40	e Se: O	r Pro	o Le	u Vai	l Glr 45	n Ası 5	n Hi	c atc s Ile	144
	aaa Lys	t cto Lev 50	ı vaı	tat Tyi	ttt Phe	acç Thr	tta Leu 55	ı Cys	t tgo s Cys	gct Ala	t gte	g gtg l Va] 60	Ala	gct Ala	gct A Ala	t gtt a Val	192
20	gga Gly 65	ALC	tto Phe	ctt Lev	cat His	gtt Val 70	пес	tgg Tr	g aad Asr	att 1 Ile	= gg ∈ Gl _y 75	/ Gl	ttt Phe	cto Lev	aco Thr	acg Thr 80	240
25	neu	Ald	ser	TTE	85 85	ser	Met	Phe	Trp	90	ı Let	ı Ser	Thr	Pro	Pro 95		288
30		014	- OIII	100	мy	пеа	ser	Leu	105	. Met	Ala	. Ser	Ala	110	Phe	cag Gln	336
35	1		115	116	GIY	PLO	ьец	120	Asp	Leu	Ala	Phe	Ala 125	Ile	Asp	cct Pro	384
	Gly ggc	ctt Leu 130	atc Ile	att Ile	ggc Gly	gca Ala	ttt Phe 135	gtg Val	gca Ala	act Thr	tct Ser	ttg Leu 140	gct Ala	ttt Phe	gct Ala	tgc Cys	432
40	ttt Phe 145	tct Ser	gca Ala	gta Val	gcc Ala	tta Leu 150	gtt Val	gca Ala	agg Arg	cga Arg	agg Arg 155	gag Glu	tac Tyr	ctc Leu	tac Tyr	ctt Leu 160	480
45	ggt Gly	ggt Gly	ttg Leu	ctt Leu	tct Ser 165	tct Ser	tgg Trp	ctt Leu	tcc Ser	att Ile 170	ctt Leu	atg Met	tgg Trp	ttg Leu	cac His 175	tct Ser	528
50	gat Asp	tcc Ser	tct Ser	ctc Leu 180	ttt Phe	Gly ggg	ggc Gly	tca Ser	att Ile 185	gca Ala	ctc Leu	ttc Phe	aag Lys	ttt Phe 190	gag Glu	ctg Leu	576
55	tac Tyr		ggg Gly 195	ctt Leu	ttg Leu	gtg Val	FIIE	gtg Val 200	GJA GGC	tac Tyr	gtt Val	ata Ile	gta Val 205	gac Asp	act Thr	caa Gln	624
	gaa Glu	att Ile 210	att Ile	gaa Glu	agg Arg	ara .	cac His 215	ttt Phe	ggt Gly	gac Asp	ctg Leu	gat Asp 220	tat Tyr	gtg Val	aag Lys	cat His	672

gca ttg aca ttg ttc act gat ttg gct gca atc ttt gtg cga att ctt Ala Leu Thr Leu Phe Thr Asp Leu Ala Ala Ile Phe Val Arg Ile Leu 235 240

att ata atg ttg aag aat tca tct gag aga aat gag aag aag aag aag Ile Ile Met Leu Lys Asn Ser Ser Glu Arg Asn Glu Lys Lys Lys Lys Lys 245

720

	ag Ar	g ag g Ar	a ga g As	t ta p	gtag	gctg	acc	gacc	gac	tcga	gctc	ag g	cttc	tcta	c		817
5	ag	taat	ttag	ttt	gtgg	aga	atac	ataa	tt a	gctg	ttta	g at	gatg	ttgg	tcc	cttgtgt	877
																catctto	
10	at	atgt	attt	gcc	aata	tca	taat	gtgt	cg t	ataa	catc	a ta	cctt	ggtt	taa	aaaaaa	. 997 .
	aa	aaaa	aaaa	aaa	aaaa	aaa	aaaa	aaaa	aa a	aaaa	aaaa	a aa	aaaa	aann	nnn	nnnnnn	1057
	nn	nnnn	nnnn	nnn	nnnn	nnn	nnnn	nnnn	nn ni	ותמתה	nnng	g tg	tttg	tggg	cta	cgttata	1117
15	gt	agac	actc	aag	taat	cat	tgag	aggg	ct c	actt	tggt	g ac	ctgg	atta	tgt	taagcat	1177
	gc	attg	acac	tgt	tcac	tga	tttg	gctg	ca a	tctt	tgtg	c ga	attc	ttaa	tata	aatgttg	1237
20	aa	taati	tcat	cta	agaga	aaa	tgag	aagaa	ag ag	ggagg	gagag	g at	taat	aggt	tga	ccgattg	1297
•	cta	atgt	gtag	agta	att	tgg	tttgi	tagag	ga al	cacat	taati	age	ctgt	ttag	aag	ttgttgg	1357
	tc	ccti	tgtg	tagi	tagt	ag i	ttago	ctato	gt gt	ttg	etgta	a atg	ggta	aatg	tcag	gatttc	1417
25	tti	taaa	acat	tttc	atat	gt a	atttg	gctaa	at aa	atcat	taata	ı tat	tagta	ataa	acat	cattcc	1477
	ttg	gtti	caaa	aaaa	igaaa	aaa a	aaaa	aaaa	a aa	aa							1510
30	<21 <21	.0> 1 .1> 2 .2> E	259	ne n	nax												
35		0> 1 יייאי		ጥኮ፦	· T10	. 71	nh -			_	_,	_					
	1		د و د	1111	5	ALG	Pne	e Asp	ser	ьеи 10	Phe	Sex	Met	Asp	Thr 15	Phe	
40	Phe	Lys	Ser	Pro 20	Ser	Ser	Ser	Ser	Ser 25	Arg	Ser	Arg	Trp	Ser 30		Asp	
	Thr	Leu	Lys 35	Asn	Phe	Arg	Glu	Ile 40	Ser	Pro	Leu	Val	G1n 45		His	Ile	
45		50					55					60					
50	0,5		Phe			. 70					75					80	
			Ser		65					90					95		
55			Gln	100					105					110			
			Ser 115					120					125				
60	Gly	Leu 130	Ile	Ile	Gly	Ala	Phe 135	Va1	Ala	Thr	Ser	Leu 140	Ala	Phe	Ala	Cys	
65	Phe 145	Ser	Ala	Val	Ala	Leu 150	Val	Ala	Arg	Arg	Arg 155	Glu	Tyr	Leu	Tyr	Leu 160	
	Gly	Gly	Leu	Leu	Ser	Ser	Tro	Leu	Ser	Ile	Leu	Met	ጥተው	T.en	Wie.	Cor	

	BASF Plan	nt Scienc	e Gmb	Н		200	3008	2		P	F 54	350 I	DE	
						16	;							
			165				170				:	175		
5	Asp Ser S	Ser Leu 180	Phe Gl	y Gly	Ser	Ile 185	Ala :	Leu 1	Phe 1	Lys I	Phe (Glu I	Leu	
5	Tyr Phe G	Sly Leu 195	Leu Va	l Phe	Val 200	Gly	Tyr '	Val :	Ile Y	Val 2 205	Asp '	Thr (Gln	
10	Glu Ile I 210	le Glu	Arg Al	a His 215	Phe	Gly	Asp	Leu i	Asp ' 220	Tyr V	Val :	Lys I	His	
	Ala Leu 1 225	Thr Leu	Phe Th	r Asp O	Leu	Ala	Ala	11e 235	Phe '	Val 2	Arg	Ile 1	Leu 240	
15	Ile Ile M	Met Leu	Lys As 245	n Ser	Ser	Glu	Arg 250	Asn	Glu :	Lys :	Lys	Lys : 255	Lys	
20	Arg Arg A	Asp												
5	<210> 15 <211> 65 <212> DN <213> Tr	1 A	aestiv	ım										
30	<220> <221> CD <222> (1 <223> CO)(651) r BI-1	prote	ein									
35	<400> 15 gtc gca Val Ala 1		ggt cg Gly A	ga cga cg Arg	a ttt g Phe	cgt Arg	ctg Leu 10	7111	tat Tyr	gct Ala	ttg Leu	cct Pro 15	Gly ggc	48
40	ctc atc Leu Ile	tgc cgt Cys Arg 20	Gly C	gc tta ys Lei	a cct u Pro	gca Ala 25	HIS	tgc Cys	cct Pro	gaa Glu	cat His 30	115	Arg	96
	gat gct Asp Ala	gac aat Asp Asr 35	gct c Ala A	gc gte rg Va	g tat l Tyr 40	ALG	aac Asn	cat His	cgc Arg	ctg Leu 45	gat Asp	gtt Val	ctc Leu	144
45	ggt gcc Gly Ala 50		a cga g ı Arg G	ga ga ly Gl 5	u Gru	ı gaçı ı Glu	gtt Val	tgg Trp	gct Ala 60		gat Asp	Gly	tgc Cys	192

agc ctc ctg gaa ggg gct tca gtt gga cct ctg att gag ctt gcc ata Ser Leu Leu Glu Gly Ala Ser Val Gly Pro Leu Ile Glu Leu Ala Ile 65 70 80

gac ttt gac cca agt atc ctc gtg aca ggg ttt gtc gga acc gcc atc Asp Phe Asp Pro Ser Ile Leu Val Thr Gly Phe Val Gly Thr Ala Ile 85 90 95

gcc ttc ggg tgc ttc tct ggc gcc gcc atc atc gcc aag cgc agg gag Ala Phe Gly Cys Phe Ser Gly Ala Ala Ile Ile Ala Lys Arg Arg Glu 100 105 110

tac ctg tac ctc ggt ggt ctg ctc tcc tcc ggc ctg tcg atc ctg ctc Tyr Leu Tyr Leu Gly Gly Leu Leu Ser Ser Gly Leu Ser Ile Leu Leu 115

tgg ctg cag ttt gcc acg tcc atc ttt ggc cac tcc tct ggc agc ttc

	BAS	SF P	lant	Scier	nce C	ambi	ł		20	0300	082			PF	5435	0 DE	
										17							
	Trp	Leu 130	Gln	Phe	Ala	Thr	Ser 135	Ile		-	r His	Ser 140		Gly	ser Ser	. Phe	
5	atg Met 145	Pne	gag Glu	gtt Val	tac Tyr	Phe 150	: GIZ	ctg Leu	ttg Leu	ato	tto Phe 155	Leu	gga Gly	tac Tyr	ato Met	g gtg Val 160	480
10	tac Tyr	gac Asp	acg Thr	cag Gln	gag Glu 165	ITE	ato Ile	gag Glu	agg Arg	gcg Ala 170	. His	cac His	ggc Gly	gac Asp	atg Met 175	gat Asp	528
15	tac Tyr	atc Ile	aag Lys	cac His 180	Ala	ctc Leu	acc	cto Leu	tto Phe 185	Thr	gac Asp	tto Phe	gto Val	gco Ala 190	Val	ctc Leu	576
	gtc Val	cgc Arg	gtc Val 195	Leu	atc Ile	atc Ile	ttg Leu	cto Leu 200	. Lys	aac Asn	gca Ala	gcg Ala	gac Asp 205	Lys	gto Val	gga Gly	624
20	ggc Gly	caa Gln 210	Glu	gag Glu	gag G1u	gaa Glu	gag Glu 215	Lys	tcc Ser								651
25	<213	0> 1 1> 2 2> P 3> T	17 RT	cum (aest.	ivum											
30		0> 1 Ala		Pro	Gly 5	Arg	Arg	Phe	Arg	Leu 10		Tyr	Ala	Leu	Pro 15	Gly	
35	Leu	Ile	Cys	Arg 20	Gly	Cys	Leu	Pro	Ala 25	His	Cys	Pro	Glu	His 30	Trp	Arg	
			35	Asn				40					45				
40		50		Leu			55					60					
45	65			Glu		70					75					80	
				Pro	85					90					95		
50	Ala			100					105					110		Glu Leu	
55	Trp		112					120					125				
	Met	120					135					140					
60	143					150					155					160	
	Tyr Tyr				102					170					175		
65	-	-	-4-	180		cu	~ 441	a.cu	185	1111	woh	FIIG	vat	190	vaı	₽ĠŨ	

	Val Arg Val Leu Ile Ile Leu Leu Lys Asn Ala Ala Asp Lys Val Gly 195 200 205	
5	Gly Gln Glu Glu Glu Glu Lys Ser 210 215	
	<210> 17	
10		
15	<pre><220> 5 <221> CDS <222> (3)(410) <223> coding for BI1-protein</pre>	
20	<pre><400> 17) tt gtt att gac ttg gat tcg agg att ctc gtc act gcg ttc gtc ggg Val Ile Asp Leu Asp Ser Arg Ile Leu Val Thr Ala Phe Val Gly</pre>	47
25	acc gca gtt gct ttt gca tgc ttc tct ggc gct gcc atc atc gcc aag Thr Ala Val Ala Phe Ala Cys Phe Ser Gly Ala Ala Ile Ile Ala Lys 20 25 30	95
30	cgc agg gaa tac ctg tac ctc ggc ggt ctg ctt tca tct ggc ctc tcc Arg Arg Glu Tyr Leu Tyr Leu Gly Gly Leu Leu Ser Ser Gly Leu Ser 35 40 45	143
35	att ctt ctc tgg ctg cag ttt gct act tca atc ttt ggc cac acc agc Ile Leu Leu Trp Leu Gln Phe Ala Thr Ser Ile Phe Gly His Thr Ser 50 55 60	191
	gcg acc ttc atg ttt gag ctc tac ttt ggc ctc ctg gtt ttc ctg gga Ala Thr Phe Met Phe Glu Leu Tyr Phe Gly Leu Leu Val Phe Leu Gly 65 70 75	239
40	tat atg gtg ttt gac acc cag gag atc atc gag agg gcg cac cgt ggg Tyr Met Val Phe Asp Thr Gln Glu Ile Ile Glu Arg Ala His Arg Gly 80 85 90 95	287
45	gac atg gac tac atc aag cac gcg ctg act ctc ttc acc gac ttt gtt Asp Met Asp Tyr Ile Lys His Ala Leu Thr Leu Phe Thr Asp Phe Val 100 105 110	335
50	gcg gtt ctt gtt cga atc ctt gtc atc atg atg aag aat gca cag gag Ala Val Leu Val Arg Ile Leu Val Ile Met Met Lys Asn Ala Gln Glu 115 120 125	383
55	aaa too caa gac gag aag aag aag aa Lys Ser Gln Asp Glu Lys Lys Arg Lys 130 135	412
60	<210> 18 <211> 136 <212> PRT <213> Zea mays	
65	<pre><400> 18 Val Ile Asp Leu Asp Ser Arg Ile Leu Val Thr Ala Phe Val Gly Thr</pre>	
	Ala Val Ala Phe Ala Cys Phe Ser Gly Ala Ala Ile Ile Ala Lys Arg	

										19							
				20)				2	5				3	0		
5		Gl:	u Ty:	r Leu	ту:	r Lei	u Gly	y Gl	y Lei 0	ı Le	u Se	r Se	c Gly		u Se	r Ile	
		Let 50	u Trg	Lev	Gli	n Phe	e Ala 59	a Thi	r Sei	r Il	e Pho	e Gly		s Th	r Se	r Ala	
10	Thr 65	Phe	e Met	. Phe	e Glu	ı Let 70	и Туз 0	r Phe	e Gly	/ Lei	u Lei 7:	ı Val	l Phe	e Le	u Gl	Y TYr 80	
	Met	. Va	l Phe	e Asp	Thi 85	Glr 5	ı Gli	ı 11e	e Ile	e Gl: 91	u Arg	y Ala	a His	s Arg	g Gl	y Asp 5	
15	Met	Ası	э Туг	100	Lys	s His	s Ala	a Let	105	Let	ı Phe	e Thi	: Ası	Phe 110		l Ala	
20		Leu	ı Val 115	Arg	Ile	e Lei	ı Val	l Ile 120	e Met	: Met	t Lys	s Asr	1 Ala		ı Glı	ı Lys	
20		Glr 130	ı Asp	Glu	Lys	Lys	3 Arg		5								
25																	
	<21	0> 1															
30	<21	1> 3 2> E 3> T	NA	cum	aest	ivum	ı										
50		1> C	_	(342)				*								
35		0> 1															
	gcc Ala 1	gcc Ala	atc Ile	atc Ile	gcc Ala 5	aag Lys	cgc Arg	agg Arg	gag Glu	tac Tyr 10	Leu	tac Tyr	ctc Leu	ggt Gly	ggc Gly 15	ctg Leu	48
40	ctc Leu	tcc Ser	tcc Ser	ggc Gly 20	ctg Leu	tcg Ser	atc Ile	ctg Leu	ctc Leu 25	tgg Trp	ctg Leu	cag Gln	ttt Phe	gcc Ala 30	acg Thr	tcc Ser	96
45	atc Ile	ttt Phe	ggc Gly 35	cac His	tcc Ser	tct Ser	ggc Gly	agc Ser 40	ttc Phe	atg Met	ttt Phe	gag Glu	gtt Val 45	tac Tyr	ttt Phe	ggc Gly	144
50	ctg Leu	ttg Leu 50	atc Ile	ttt Phe	ctg Leu	gga Gly	tac Tyr 55	atg Met	gtg Val	tac Tyr	gac Asp	acg Thr 60	cag Gln	gag Glu	atc Ile	atc Ile	192
55	gag Glu 65	agg Arg	gcg Ala	cac His	cac His	ggc Gly 70	gac Asp	atg Met	gac Asp	tac Tyr	atc Ile 75	aag Lys	cac His	gcg Ala	ctc Leu	acc Thr 80	240
33	ctc Leu	ttc Phe	acc Thr	gac Asp	ttt Phe 85	gtc Val	gcc Ala	gtc Val	ctc Leu	gtc Val 90	cgg Arg	atc Ile	ctc Leu	atc Ile	atc Ile 95	atg Met	288
60	ctc Leu	aag Lys	aac Asn	gca Ala 100	ggc Gly	gac Asp	aag Lys	tcg Ser	gag Glu 105	gac Asp	aag Lys	aag Lys	aag Lys	agg Arg 110	aag Lys	agg Arg	336
6 5	agg Arg		tga														345

PF 54350 DE

BASF Plant Science GmbH

5	<2103 <2113 <2123 <2133	> 11 > PR	4 T	um a	esti	vum											
	<400 Ala 2	> 20 Ala	Ile	Ile	Ala 5	Lys	Arg	Arg	Glu	Tyr 10	Leu	Tyr	Leu	Gly	Gly 15	Leu	
10	Leu	Ser	Ser	Gly 20	Leu	Ser	Ile	Leu	Leu 25	Trp	Leu	Gln	Phe	Ala 30	Thr	Ser	
15	Ile		35					40					45				
	Leu	Leu 50	Ile	Phe	Leu	Gly	Тут 55	Met	Val	Tyr	Asp	Thr 60	Gln	Glu	Ile	Ile	
20	Glu 65					70					15					00	
· ·	Leu	Phe	Thr	Asp	Phe 85	Val	Ala	Val	Leu	Val 90	Arg	Ile	Leu	Ile	Ile 95	Met	
35	Leu	Lys	Asn	Ala 100	Gly	Asp	Lys	Ser	Glu 105	Asp	Lys	Lys	Lys	Arg 110	Lys	Arg	
30	Arg	Ser															
35	<21:	0> 2 1> 4 2> D 3> Z	03	ays													
40	<22	1> C 2> (1)	(402 ng fo	l) or BI	1pr	otei	n									
45		0> 2 ago Sei	- 4	gco Ala	tgg Trp	cto Leu	tto Phe	tco Ser	gto Val	ccc Pro) Val	tac Tyr	gaç Glu	g gag ı Glı	g ago 1 Aro 15	g aag g Lys 5	48
50	agg Arg	tac Ty:	tgg Tr	g cto Lev 20	ı Lei	g atg 1 Met	gcg Ala	gct Ala	gco a Ala 2!	i nec	cto Lev	g gaa ı Glu	ggg Gly	g gcg Y Ala 3		g gtt c Val	96
55	gga Gly	cc Pro	c cto Let	n II	c aag e Lys	g cto s Lev	gco 1 Ala	gto a Va. 40	r Gr	a ttt u Phe	gao Asp	c cca o Pro	a age Se: 4!		c cto e Le	g gtg u Val	144
	aca Thr	gc Ala	a Ph	c gt e Va	g ggg 1 Gl	g act y Thi	gce c Ala 5	3 TT	t gc e Al	g tto a Pho	c gce e Ala	g tgo a Cys 60		c tc e Se	t tg r Cy	c gcg s Ala	192
60	gco Ala 65	a Me	g gt t Va	g gc l Al	c aa a Ly	g cgo s Aro	g Ar	g Gl	g ta u Ty	c ct r Le	c ta u Ty 7	LLC	n Gj	c gg y Gl	g ct y Le	g ctc u Leu 80	240
65	tci	t to	t gg r Gl	c ct v Le	c tc	c ate	c ct	g ct u Le	c tg u Tr	g ct p Le	g ca u Gl	g tt n Ph	c gc e Al	c gc a Al	c to a Se	c atc	288

	BASE Flant Science dinbit		
		21	
	85	90	95
5	ttc ggc cac caa tcc act a Phe Gly His Gln Ser Thr S 100	gc agc ttc atg ttt er Ser Phe Met Phe 105	gag gtc tac ttt ggg 336 Glu Val Tyr Phe Gly 110
	ctg ctc atc ttc ctg ggc t Leu Leu Ile Phe Leu Gly T 115	ac atg gtg tac gac Yr Met Val Tyr Asp 120	acg cag gag gtc atc 384 Thr Gln Glu Val Ile 125
10	gag agg gcg cac cac ggc g Glu Arg Ala His His Gly 130		403
15	<210> 22 <211> 134 <212> PRT <213> Zea mays		
20	<400> 22 Gly Ser Ile Ala Trp Leu I 1 5	Phe Ser Val Pro Val 10	Tyr Glu Glu Arg Lys 15
35	Arg Tyr Trp Leu Leu Met 2	Ala Ala Ala Leu Leu 25	Glu Gly Ala Ser Val 30
	Gly Pro Leu Ile Lys Leu 35	Ala Val Glu Phe Asp 40	Pro Ser Ile Leu Val 45
30	Thr Ala Phe Val Gly Thr . 50	55	80
35	Ala Met Val Ala Lys Arg 65 70	Arg Glu Tyr Leu Tyr 75	Leu Gly Gly Leu Leu 80
	Ser Ser Gly Leu Ser Ile 85	Leu Leu Trp Leu Gln 90	Phe Ala Ala Ser Ile 95
40	Phe Gly His Gln Ser Thr	Ser Ser Phe Met Phe 105	Glu Val Tyr Phe Gly 110
	Leu Leu Ile Phe Leu Gly 115	Tyr Met Val Tyr Asr 120	Thr Gln Glu Val Ile 125
45	Glu Arg Ala His His Gly 130		
50	<210> 23		·
	<210		
55	<220> <221> CDS <222> (3)(410) <223> coding for BI1-pro	otein	
60	<pre><400> 23 gc tgg aac atc ggc gtg Trp Asn Ile Gly Val 1</pre>	agg ctg aca atg ctc Arg Leu Thr Met Leu 10	GIY CYS IIC OIF DOX
65	ate gac tgg ete tte teg	gtg ccc gtc tac ga	g gag agg aag agg tat 95

BASF Plant Science GmbH

PF 54350 DE

	Ile	Asp	Trp	Leu	Phe 20	Ser	Val	Pro	Val.	Tyr 25	Glu	Glu	Arg	Lys	Arg 30	Tyr	
5	GJA aaa	ctg Leu	ctg Leu	atg Met 35	gcg Ala	gct Ala	gcc Ala	ctc Leu	ctg Leu 40	gaa Glu	ggc Gly	gct Ala	tcg Ser	gtc Val 45	gga Gly	ccc Pro	143
10	ctc Leu	gtc Val	aag Lys 50	ctc Leu	gcc Ala	gtg Val	gaa Glu	ttt Phe 55	gac Asp	cca Pro	agc Ser	atc Ile	ctg Leu 60	gtg Val	acg Thr	gcg Ala	191
	ttc Phe	gtg Val 65	Gly	act Thr	gcc Ala	atc Ile	gcg Ala 70	ttc Phe	gcg Ala	tgc Cys	ttc Phe	tcc Ser 75	ggc Gly	gcg Ala	gcc Ala	atg Met	239
15	gtg Val 80	gcc Ala	agg Arg	cgc Arg	agg Arg	gag Glu 85	tac Tyr	ctc Leu	tac Tyr	ctg Leu	ggc Gly 90	Gly ggg	ctg Leu	ctc Leu	tcg Ser	tcg Ser 95	287
20	ggg	cto	tco Sei	atc Ile	ctg Leu 100	ctc Leu	tgg Trp	ctg Leu	cag Gln	ctc Leu 105	ALG	gcc Ala	tcc Ser	atc Ile	ttc Phe 110		335
5	cac His	tc: Se:	gca Ala	a acc Thr 115	Ser	ttc Phe	atg Met	ttc Phe	gag Glu 120	val	tac Tyr	ttc Phe	ggg	ctg Leu 125		atc Ile	383
30	tto Phe	cte Le	g gg i Gl; 13	e tac y Tyr 0	gtg Val	gtg Val	tac Tyr	gac Asp 135	Tnr								410
35	<21 <21	L0> L1> L2> L3>	136 PRT	mays													
40	Tr	1.	n Il		=)				Τ.	,						
				20	0				4:	,					•	c Gly	
45	Le	u Le		t Ala	a Ala	a Ala	a Lei	Let 4	ı Glı O	ı Gly	y Ala	a Se	r Va:	1 G1; 5	y Pro	o Leu	
	Va	1 Ly	s Le	eu Al	a Vai	l Gl	ı Phe 5!	e Asj 5	o Pr	o Se	r Il	e Le	u Vai 0	l Th	r Ala	a Phe	٠
50		1 GI 5	y Tì	ır Al	a Il	e Ala 7	a Pho	e Al	а Су	s Ph	e Se 7	r Gl	y Al	a Al	a Me	t Val 80	
55	Al	a Aı	g A	g Ar	g Gl	и Ту 5	r Le	и Ту	r Le	u Gl	y G1 0	у Ге	u Le	u Se	r Se	r Gly 5	
	Le	u S	er I	le Le 10	u Le 0	u Tr	р Ье	u Gl	n Le 10	u Al 5	a Al	a Se	r Il	e Ph 11	e Gl 0	y His	
60	Se	er A	la T	nr Se 15	er Ph	e Me	t Ph	e Gl 12	u Va 0	1 ту	r Ph	e Gl	y Le 12	u Le 5	eu Il	e Phe	:
65			lу Т 30	yr Va	ıl Va	1 Ту	r As 13	p Th	ır								

Val Tyr Val Ile Pro Ile Val Gly Arg Ile Lys Ser Ala Ala Gly Ala

20030082

PF 54350 DE

BASF Plant Science GmbH

	Tyr	Leu 50	His	Ile	Ala	Leu	Asn 55	Ile	Gly	Gly	Met	Leu 60	Thi	• M∈	et I	eu .	Ala	
5	Cys 65	Ile	Gly	Thr	Ile	Ala 70	Trp	Met	Phe	Ser	Val 75	Pro	Va]	L Ty	yr (lu	Glu 80	
10	Arg	Lys	Arg	Phe	Gly 85	Leu	Leu	Met	Gly	Ala 90	Ala	Leu	Let	ı Gl	lu (95	Ala	
	Ser	Val	Gly	Pro 100	Leu	Ile	Glu	Leu	Ala 105	Ile	Asp	Phe	As	p Pi	ro 9	Ser	Ile	
15	Leu	Val	Thr 115	Gly	Phe	Val	Gly	Thr 120	Ala	Ile	Ala	Phe	G1; 12	y .C.	ys 1	Phe	Ser	
	Gly	Ala 130		Ile	Ile	Ala	Lys 135	Arg	Arg	Glu	Tyr	Leu 140	Ту	r L	eu (Gly	Glý	
20	Leu 145	Leu	Ser	Ser	Gly	Leu 150	Thr	Ile	Leu	Leu								
35	<21 <21	0> 2 1> 3 2> I 3> 2	88	nays													-	
30	<2.2	1> ((3).	. (386	5)													
	<22	3> 0	rodii	na fo	r Bl	:1-pr	otei	n.										
35		0> :	27	atc Ile	or Bl	ggg Gly 5	200	ata	aca Thr	atg Met	ctc Leu 10	ggt Gly	tg:	c gt s Vá	tc g al (gly	agc Ser 15	47
35 40	<40 tc	tgg Trp	27 aac Asn	atc Ile	ggc Gly	ggg Gly 5 c tcg	acg Thr	ctg Leu	Thi	mec c tac	10 c ga c Gl	a as	σa.	gg a	aag	agg	15 tat Tyr	95
	<40 tc	tgg Trp 1 gc gc	aac Asn c tg	atc Ile g ctc p Le	ggc Gly c tto Pho 20	ggg Gly 5 c tco	acg Thr g gtg	ctg Leu g ccc L Pro	c gto	g gaa	10 c ga r Gl	g ga u Gl	g a u A	gg a	aag Lys gtc	agg Arg 30	15 tat Tyr	95
40	<40 tc	tgg Trp 1 ggc Al	27 aac Asn c tg a Tr g ct u Le c aa	atc Ile g cto p Leo g ato u Me	ggc Gly tto 1 Pho 20 g gcg t Ala	ggg Gly 5 c tcg e Sei 0	acg Thr g gtg val	ctg Leu g ccc L Pro c ct a Le a tt u Ph	c gt. va	c tac l Ty: 2! g gac u Gl:	10 ga r Gl a gg u Gl	g ga u Gl c gc y Al	g a u A	gg arg] cg :	aag Lys gtc Val 45	agg Arg 30 gga Gly	15 tat Tyr	95 143
40	<40 tc atc Ile ggg Gly	tgg Trp 1 gc Al gct y Le c gt u Va	aac Asn c tg a Tr g ct u Le c aa l Ly	atc Ile g ctc p Lev g atc u Me 3 g ct s Le	ggc Gly c ttc i Pho 20 g gcc t Al	ggg Gly 5 c tcg e Ser 0 g gc a Ala	acg Thr g gtg val c gca Ala	ctg Leu g ccc l Pro c ctc a Le a tt u Ph g tt a Ph	c gt. c Va c ct u Le t ga e As	c tac l Tyr 2! g gaa u Gl 0 c cc	10 c ga r G1 5 a gg u G1 a ag	g ga u Gl c gc y Al c at r Il	g adu A	gg arg leg cg er tg eu 60	aag Lys gtc Val 45 gtg Val	agg Arg 30 gga Gly acg Thi	15 tat Tyr ccc	95 143 191
40 45 50 55	<40 tc atc Ile ggg Gly ctc Le tt Ph	tggc 1 ct c gt Va	aac Asn c tgga Tr	atc Ile g ctc g atc u Me 3 g ct s Le	gge Gly c ttc l Pho 20 g gcg t Al 5 c gc u Al t gc r Al	ggg Gly 5 c tcg e Sei 0 g gc a Al. c gt a Va c at a Il	acg Thr g gto c Val. t gco a Alo	ctg Leu g ccc Leu Procta Le a ttt Ph 5 g ttt a Ph 0 C ta	c ctu Le As c cte As	g gaa u Gl 0 c cc p Pr	a agg o Se c tt	g ga u Gl c gc y Al gc at er Il	g a u A t t S c c c c c c c c c c c c c c c c c	gg	aag Lys gtc Val 45 gtg Val gcg Ala	agg Arg 30 gga Gly acg Thi	15 tat Tyr ccc Pro	95 143 191 239
40 45 50	atorile ggg Gly cto Lee tt Ph	OO> 3 tygg Trp 1 1 cc gc Al ct Va y Le c gt u Va c gt g GI	aac Asn c tg ct u Le c aaal Ly 5	atc Ile g ctc g atc u Me 3 g ct s Le o g atc y Th	ggc Gly c ttc Pho 20 ggc Al. 5 c gc u Al c gc g Gl	ggg Gly 5 c tco c Ser 0 g gc a Al c gt a Va c at g ta u Ty	acg Thr g gtc val g gca Ala g gaa l Gl	ctg Leu g ccc L Pro c ct a Le a tt u Ph 5 g tt a Ph 0 c ta a Ph	c gt va c ct Le gas s c gc Al	g gasu Gl	10 ga ga gg	g gagaga Gl	g a a v A c c c c c c c c c c c c c c c c c c	gg a gg	aaggtcys gtcval 45 gtgval gcg Ala	agg Arg 30 gga Gly acg Thi	tat; Tyr ccc Pro gcg Ala tgg Trp	95 143 191 239 287 75 2 335

	BASF Plant Science GmbH	20030082	PF 54350 DE	
	115	25 120	125	
5	ggc ta Gly			388
10	<210> 28 <211> 128 <212> PRT <213> Zea mays			
15	<400> 28 Trp Asn Ile Gly Gly Thr 1 5	Leu Thr Met Leu Gly 10	Cys Val Gly Ser Ile	
	Ala Trp Leu Phe Ser Val 20	Pro Val Tyr Glu Glu 25	Arg Lys Arg Tyr Gly	,
20	Leu Leu Met Ala Ala Ala 35	Leu Leu Glu Gly Ala 40	Ser Val Gly Pro Leu 45	
	Val Lys Leu Ala Val Glu 50	Phe Asp Pro Ser Ile 55	Leu Val Thr Ala Phe 60	
P.5	Val Gly Thr Ala Ile Ala 65 70	Phe Ala Cys Phe Ser 75		
30	Gln Ala Arg Glu Tyr Leu 85	Tyr Leu Gly Gly Cys 90	Ser Arg Arg Gly Ser 95	
	Pro Ser Cys Ser Gly Cys 100	Ser Ser Pro Pro Pro 105	Ser Ser Ala Leu Arg 110	
35	Asn Ser Phe Met Phe Glu 115	Val Tyr Phe Gly Leu 120	Leu Ile Leu Leu Gly 125	
40	<210> 29 <211> 1737 <212> DNA <213> Solanum tuberosum			
45	<220> <221> promoter <222> (1)(1737) <223> patatin promotor			
50	<400> 29 aagcttatgt tgccatatag agttaaatttgt aatgataaaa tttataacatat gaaagacaaa tt	tttattgt aaattaaaaa gtgttaca tattttactt	ttacttataa aattgggcat ttgactttaa tatgaatatt	120 180
55	tcaatttaaa tcattgttt ati aagcaagatt gattgcaagc tai acttatatgt cttgtttag gag ttatgcttta gtataattt agi aatatttttg tcattaaata aai	ttctctt tcttttaca tgtgtcac cacgttattg gtaatatt tgatatgtt ttatttt attatatgat taattta tcacaactto	ggtataaaag gtgaaaattg atactttgga agaaattttt tagttagatt ttcttgtcat catgggtgaa ttttgataca attactttca gtgacaaaa	240 300 360 420 480
60	atgtattgtc gtagtaccct tti ttgtaattgt cactacttat gat cacttcagt gacaaaataa tag aaatttatcc ctaatttata cat tctttagtga cgatcgtagt gti catgcagtgt aaaataaacc tca	caatattt agtgacatat gatttaat cacaaaatta cttaagga caaagtattt cgagtcta gaaatcataa	atgtcgtcgg taaaagcaaa ttaacctttt ttataataat tttttatata taaaaaatag tgttgaatct agaaaaatct	600 660 720 780
65	accccaacct cagcaaaaga aas ttcaagtctc atcacacata tat gtaaacatca ttaaatcgtc ttt	acctccct tcaacaagga	catttgcggt gctaaacaat	900

```
tegteacaea aaatttttag tgacgaaaca tgatttatag atgatgaaat tatttgteec 1080 teataateta atttgttgta gtgateatta eteetttgtt tgttttattt gteatgttag 1140 teeattaaaa aaaaatatet etettettat gtacgtgaat ggttggaaeg gatetattat 1200
      ataatactaa taaagaatag aaaaaggaaa gtgagtgagg ttcgagggag agaatctgtt 1260 taatatcaga gtcgatcatg tgtcaatttt atcgatatga ccctaacttc aactgagttt 1320
       aaccaattcc gataaggcga gaaatatcat agtattgagt ctagaaaaat ctcatgtagt 1380
      gtggggtaaa cctcagcaag gacgttgagt ccatagaggg gggtgtatgt gacacccaa 1440 cctcagcaaa agaaaacctc ccctcaagaa ggacatttgc ggtgctaaac aatttcaagt 1500
       ctcatcacac atatatata attatataat actaataaat aatagaaaaa ggaaaggtaa 1560
       acatcactaa cgacagttgc ggtgcaaact gagtgaggta ataaacatca ctaactttta 1620
10
       ttggttatgt caaactcaaa gtaaaatttc tcaacttgtt tacgtgccta tatataccat 1680
       gcttgttata tgctcaaagc accaacaaaa tttaaaaaca ctttgaacat ttgcaaa
15
       <210> 30
       <211> 1317
       <212> DNA
       <213> Triticum aestivum
20
        <220>
       <221> promoter . . . . . (1317)
        <223> germin 9f-3.8 gene promotor
        gaattcaagc tatcactctc gaaccaagca cattgatgta aggtatcatt ggattccaga 60 tgtcgtgagt tccaagttgc tgaaacttga gaagatccat accgacgaca atggttcaga 120
        tatgatgacc aagatattgc gaaataagaa gctacaagca tgttgcaagg tagcgggcat 180
        ggcggtgccc ccatcatgag tcggaggggg agatttgttg ggatatcctc ctcatgtggg 240 ttctgaggag atgaccattt gaggcctttt agccagcca aagaggtgca gaagccact 300
 30
        accoattagg gttatgacct agggtcattt tggactttgc acatgagtgg atggggatgc 360 tttaccetcc atccagcage caccaccaag ggtgacgaaa atcagttcat cetecaagag 420
        agaagaagag agaaaaccaa gagagcaagg gaagaagagg aagattgaag gaagaagaaa 480 agggagctcc tccccaaggt tgtgatggtc catatccact atcttgtctc cttcaaactt 540
        cggttccacc atctttggta agattgttct aatccctagt tcttgagccc caaatcttgt 600 tgtgttcatc caagattcag aaatcttgat gtatgagatc ctctagtgct gtctagagaa 660
 35
        gaatttgttg tatcccacat ttgataatag tggaagagga tttggggtggc ttcggcccat 720 ggtttttccc ctcaagttga ggggtttcc acgtaaaatc ttggtgtct ttgttgatgc 780 ttggtgttgt ccagaaactt actctacca caagacacta ggggccagtt cttttgggaa 840
        atteteccag aattgaccet etecceaget teteccagaa ttgteactec attttett 900
 40
         acaatteeta getagttaag gtetaattag ttaggaattg taaaaaaata teaagtggca 960 attetgggag aagetgggga gggggteaat tetggaagaa ttgeecaaaa gaaetggeec 1020
         taggetgagg agtgtettge etgetgetta acattttetg etceatata tgttgttgea 1080 tatgttteet teegtgetaa geaacgatee ttgagttagt acatgatgtg gtgetgagat 1140 taetttgttt tegetgeagt tateagttaa ecaeaagtge atttgegtge taatteecaa 1200
 45
         caatatgcca cccgcaactc atccaccata gctcagcagc aaccaccaat gccatagaca 1260
         ctctcggtaa acaacctgta gcttatcagt ctagctaagc gtgctgcata gcaagca
 50
         <210> 31
         <211> 959
         <212> DNA
         <213> Arabidopsis thaliana
  55
         <220>
          <221> promoter
          <222> (1)..(959)
          <223> CAB-2 promotor
  60
         gaattcatgt gtgagggcaa ttagtgattg taaaaataaa attgtgtttt gtaaaaaact 60
          tttactgtcg aaattattta gggtgatgaa aaaatcagta aactacgaat gatagcttaa 120 agagtttcta tcaaagtgat tgaggaatag tttgttgcaa attaaacctc taacaaaatg 180
         ttttctgttg tggtttttca tctctacaaa ttttgaattt tatgatgaat tagaaagata 240
          gaatgagtta ctttagattt taaaaggttg ttcaagttta caaaacagat tactagaatc 300
  65
          atgattaaaa atttacaagc tacatattgt ctaaaccaat gatgttgaac ataccagatg 360
```

20030082

PF 54350 DE

```
atagtttttc agtgtttgaa caatcaattg gatagttttt atgtttctgc aaaatatgca 420 aataatcagt gtttttgagt ctttgcattt tgatttaaaa gcaaaaacaa ctgagtttca 480
        aggttaaatt aattacatta ttcatgagat ttatcaggtt agtggataaa ctgacaatgg 540
        aatcaatgtt attgtaaatt ggtagtgatg ttggacttct aatgttactc tctatgatgt 600
        ttcggtcatc ggtatcacac tatcittact tttattiaaa ggaaagatca cacaaataag 660 ttatcitat tcagaactat taagctgctt ccaaaagact tgcaacatgt ggtctcgaaa 720 tgctttggct gcaatgaaaa aatcatagca aaagctagtg gactagagac tgccacataa 780
        gaatagtaaa cgttaaaacc aaaatctcaa aaatccaatg agtaaagaga tatagattac 840
ttcatagata acaaacgtta ctcgcaattt tcctatataa tccaacccta cctaaccatt 900
 10
        ttcaatcact ctcactcaca agttagtcac caaaaaaaaa aaaaacacaa aaagtttca 959
        <210> 32
        <211> 445
        <212> DNA
 15
        <213> Zea mays
        <220>
        <221> promoter <222> (1)..(445)
 20
        <223> PPCZml promoter
        <400> 32
        gaattccaaa aatagacacg gcaattttct tattcacaga aaaaatataa ctacaactaa 60
        tececcaagte cacagggatt agggateaat etgeaaaact aaaagtaett ttacagttgt 120
        acttggcatg agtcatgtga ccatgagaga ggcgcacggt tcagcaaagc aacataaaat 180
        tetecaaacg ggccccgcca cacacgatca ccatcacccc cgggctcccg acccagtaca 240
       aatagacacg cacactecca actececace cateteegee gegeacaceg cecaateage 300 caateteete etecteetee geteteagae gageageggt tgecateact etecaettee 360
 30
        cacgcccgct gcgggctcgc aggcggcaga gaattgtctg tgccgccggg tgggaatttg 420
        atteggtegg atteegtgeg eegeg
        <210> 33
 35
        <211> 5455
        <212> DNA
       <213> Künstliche Sequenz
       <220>
40
       <223> Beschreibung der künstlichen Sequenz: recombinant
                expression vector pUbiBI-1
       <400> 33
       ggggatcctc tagagtcgac ctgcaggcgg ccgcactagt gattaggatt ccaacgcgag 60
       45
       etcaageteg tttacetgac tetatgettt geactggeet catetgeegt gggtgettac 300
       ctacacattg ccctgaacat cggcgggatg ctgacaatgc tcgcttgtgt cggaactatc 360
       gcctggatgt teteggtgcc agtctatgag gagaggaaga ggtttgggct gctgatgggt 420 gcagccetec tggaaggggc tteggttgga cctctgattg agcttgccat agactttgac 480
       ccaagcatce tegtgacagg gtttgtegga accecateg cetttgggtg cttcttggc 540 geogecatea tegecaageg cagggagtac ctgtaceteg gtggcetget ctcgtetggc 600 ctgtegatec tgetetgget gcagtttgtc acgtecatet ttggccate ctctggcage 660 ttcatgtttg aggtttactt tggcctgtt atcttctgg ggtacatggt gtacgacacg 720 caggagatea tcgagagggc gaccatggc gacatggact actcatagea ggtctace 780
55
       ctcttcaccg actttgttgc cgtcctcgtc cgagtcctca tcatcatgct caagaacgca 840
       ggcgacaagt cggaggacaa gaagaagagg aagagggggt cctgaacgtw tctcccgcac 900
      atgtagatac cgtcaccgcg tcgacctgca ggcatgcccg ctgaaatcac cagtctctct 960 ctacaaatct atctctcca taataatgtg tgagtagttc ccagataagg gaattagggt 1020
       tettataggg tttegeteat gtgttgagea tataagaaac cettagtatg tatttgtatt 1080 tgtaaaatac ttetateaat aaaattteta atteetaaaa ceaaaateea gtgggtaecg 1140
       agetegaatt caagettgge actggeegte gttttacaae gtegtgaetg ggaaaaceet 1200
      ggcgttaccc aacttaatcg cettgcagca catccccctt tcgccagctg gcgtaatagc 1260
65
      gaagaggccc gcaccgatcg cccttcccaa cagttgcgca gcctgaatgg cgaatggcgc 1320 ctgatgcggt attttctcct tacgcatctg tgcggtattt cacaccgcat atggtgcact 1380
```

		tataatataa t	accacataa 1	taagccage	cccgacaccc	gccaacaccc 1440
5						
3						
	traaaaaarra	agagtatgag	tattcaacat	ttccgtgtcg	cccttattcc	cttttttgcg 1800 agatgctgaa 1860
	gatcagttgg	gtgcacgagt	gggttacatc	gaactggatc	tcaacagcgg	taagatcctt 1920 tctgctatgt 1980
10	gagagttttc	gccccgaaga	acgttttcca	atgatgagca	cttttaaagt	tctgctatgt 1980 catacactat 2040
	ggcgcggtat	tatcccgtat	tgacgccggg	caagagcaac	teggtegeeg	catacactat 2040 ggatggcatg 2100
	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	agcatettae	ggatggcatg 2100 ggccaactta 2160
	acagtaagag	aattatgcag	tgctgccata	accatgagtg	ataacactyc	ggccaactta 2160 catgggggat 2220
	cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	naggatacc	catgggggat 2220 aaacgacgag 2280
15	catgtaactc	gccttgatcg	ttgggaaccg	gagetgaatg	ggazactatt	aaacgacgag 2280 aactggcgaa 2340
	cgtgacacca	cgatgcctgt	agcaatggca	acaacguige	tagaaacaaa	aactggcgaa 2340 taaagttgca 2400
	ctacttactc	tagcttcccg	gcaacaatta	acagactyga	ttactaataa	taaagttgca 2400 atctggagcc 2460
	ggaccacttc	tgcgctcggc	Collection	ggccggccca	cagatogtaa	accetecegt 2520
	ggtgagcgtg	ggtctcgcgg	tateattgea	gcaccagggc	atgaacgaaa	tagacagatc 2580 ttactcatat 2640
20	atcgtagtta	tctacacgac	ggggagccay	trataactat	cagaccaagt	ttactcatat 2640 gaagatcctt 2700
	gctgagatag	gtgcctcact	gattaagtat	taatttaaaa	ggatchaggt	gaagateett 2700
	atactttaga	ttgatttaaa	acticatic	cataaatttt	cattccactg	agcgtcagac 2760 aatctgctgc 2820
	tttgataatc	tcatgaccaa	atcttcttga	gatccttttt	ttctgcgcgt	aatctgctgc 2820 agagctacca 2880
OF.	cccgtagaaa	agattaaagg	gctaccagcg	gtggtttgtt	tgccggatca	agagctacca 2880 tgttcttcta 2940
25	ttgcaaacaa	caaaaccacc	taacttcaac	agagcgcaga	taccaaatac	tgttcttcta 2940 atacctcgct 3000
	atatageest	agttaggcaae	ccacttcaag	aactctgtag	caccgcctac	atacctcgct 3000 taccgggttg 3060
	gtgtagttgt	tottaccagt	gactactacc	agtggcgata	agtcgtgtct	taccgggttg 3060 gggttcgtgc 3120
	gactcaagac	gatagttacc	ggataaggcg	cagcggtcgg	gctgaacggg	gggttcgtgc 3120 gcgtgagctt 3180
30	acacagecea	gcttggagcg	aacgacctac	accgaactga	gatacctaca	gcgtgagctt 3180 aagcggcagg 3240
-	tgagaaagcg	ccacgcttcc	cgaagggaga	aaggcggaca	ggtatccggt	aagcggcagg 3240 tctttatagt 3300
35						
	cattaatgc	a gctggcacga	caggtttccc	gactygaaay	tacactttat	gcgcaacgca 3660 gcttccggct 3720
	attaatgtg	a gttagctcac	tcattaggca	caatttcaca	саппаааса	gcttccggct 3720 gctatgaccat 3780 gtaacatgctg 3840
40						
AE						
45						
50						
00						
55	atgttttca	a ttgttttgat	: tttactggta	a cttagatat	a tgtatatat	a catgctcgaa 4680 g tacctatata 4740
	catgettag	ra tacgtgaagt	: aacatgcta	tatggttaa	- tgttcttga	g tacctatata 4740 g atagatgtat 4800
	atatacatg	c tcgaacatg	ttagataca	- babatatta	a attatetto	a ttttactggt 4920
	cttgagtac	c tatatattci	aataaatta	t acyceeca	a acatoctac	t atgatttaat 4980
60	acttagata	ig atgtatata	c atgettaga	L acatyaayt	t tttaattat	t ttgattttac 5040
	cgttcttga	ig tacctatati	a ttctaataa	a toagtatge	c ttagataca	t gaagtaacat 5100
	tggtactta	ig atagatgta	t atatacatg	- totatotta	t sataaatca	g tatgttttta 5160
	gctactaco	g tttaatcat	t cityagtac	r tttaratar	a tcatatago	a tgcacatgct 5220 t gtcttctaat 5280
0.5	attatttt	Ja tattactgg	t deceadate	t atattetaa	t atatcagta	t gtcttctaat 5280 t agattttgaa 5340
65	gctactgtt	t thatates	t tatataata	g catatocto	c agctatgtg	t agattttgaa 5340
	tattatgat	LL LLGALGLAC	c cycacyycy	, January 1		

20030082

PF 54350 DE

29

tacccagtgt gatgagcatg catggcgcct tcatagttca tatgctgttt atttcctttg 5400 agactgttct tttttgttga tagtcaccct gttgtttggt gattcttatg caccc 5455

- 5 <210> 34 <211> 12633 <212> DNA <213> Künstliche Sequenz
- 10 <220> <223> Beschreibung der künstlichen Sequenz: recombinant expression vector pLo114UbiBI-1

	<400> 34				- ממ- ממכככמ	atctagtaac 6	50
15	aattcactgg	ccgtcgtttt	acaacgactc	agagettgae	aggaggeeeg .	atctagtaac (gttttctatc 1	120
	atagatgaca	ccgcgcgcga	taatttatee	cagtttgege	cccatatect	gttttctatc 1	180
	gcgtattaaa	tgtataattg	cgggactcta	accataattca	acagaaatta	aaataacgtc 1 tatgataatc 2	240
	atcgcaagac	cggcaacagg	attcaatctt	aagaaacccc	tatoccaaco	gtttgaacga 3	360
20							
	gaatcgggag	cggcgatacc	gtaaagcacg	aggaagcggu	cageceacce	gccgccaagc cacacccagc	540
35							
	aacagttcgg	ctggcgcgag	cccctgatgc	tcttcgtcca	gateateetg	atcgacaaga gtcgaatggg	780
	ccggcttcca	tccgagtacg	tgctcgctcg	atgcgatgtt	tegettggtg	gtcgaatggg ggatactttc	840
-							
30							
-	accaaccaca	atagccgcgc	tgcctcgtcc	tgcagttcat	tcagggcacc	ggacaggtcg	1020
35							
40							
40							
45							
40							
50							
50							
EE							
55							
	taaccagaac	ggcgggccas	r tottaotco	ttccgatcc	cagggcagto	cccgcgattg	2580
	ggcggccgr	g cgggaagact	adcegeeda.	cttcgtagt	atcgacggag	g cgccccaggc	2700
60							
	aagccctta	gacatatgg	a andergreet	tateatate	cagacgatca	a aaggcacgcg	2880
	catcggcgg	t gaggttgcc	g aggegeegg	taccaccac	ggcacaacc	g ttcttgaato	3000
	tatcacgca	a cacarasác	t acccayyca	t agazgagat	r gecactaaa	a ttaaatcaaa	3060
65	agaacccga	g ggcgacgct	g cccgcgagg	atraccass	gcacaaaca	c gctaagtgcc	3120
	actcatttg	a gttaatgag	y caaayayaa	a acgagoada			

20030082

PF 54350 DE

							-100
	ggccgtccga	gcgcacgcag (cagcaagget	gcaacgttgg	ccagcctggc	agacacgcca	3780
	accetaseac	acatcaactt :	traattacca	acagaagatc	acaccaagci	gaagatytac .	3440
	gcggtacgcc	gggccaaccc		ataatatata	aatacatcoc	gragetacca	3300
	gcggtacgcc	aaggcaagac	cattactyay	ctyctatty	tooge	goageagaat	3360
	gagtaaatga	gcaaatgaat :	aaatgagtag	atgaatttta	geggetaaag	gaggeggeac	3300
5	ggaaatcaa .	daacaaccad	acaccaacac	catagaatac	cccatgtgtg	gaggaacggg	3420
•	agattagga.	aacataaaca .	actagattat	ctaccaaccc	tgcaatggca	etggaacee	3400
	eggttggtta	ggcgcaagcg	9009990090	2220025000	acccantaca	aatcggcgcg	3540
	caagcccgag	gaateggegt	gageggtege	adactatety	gcccggcaca	aatcggcgcg	3600
	gcgctgggtg	atgacctggt	ggagaagttg	aaggccgcgc	aggeegeeca	gcggcaacgc	3000
	nennanana.	aadcacdccc	caaraaatca	taacaaacaa	Cogologalog	aaccegcaaa	5000
10	costaggeas	aagonogoogo	agccantaca	ccatcaatta	ggaagccgcc	caagggcgac	3720
10	gaaceeegge	aaccyccygc	tacestacta	tatracrtrr	acacccacas	tagtcgcagc	3780
	gagcaaccag	attttttcgt	Eccgargere	catgatgtgg		ggaggtgatc	3840
	atcatggacg	tggccgtttt	ccgtctgtcg	aagcgtgacc	gacgagetgg	cgaggtgatc	2020
		ttacadacad	acacatagaa	arrrccacao	aaccaaccag	catggccage	J
		SACSACTOCT	actratraca	GETECCCALC	Laaccyaacc	Catgaacega	
	gegegggaee	acyaccigge	accountages	gacatattee	gtccacacgt	tgcggacgta	4020
15	taccgggaag	ggaagggaga	caageeegge	cycycycccc	gcccacacgc	agaaacctcc	4080
		~~~~~~~~~	CASTAGGGGG	aaccacaaau	acuaccuque	agaaaccege	
		~~~~~~~~	AAEEACCATA.	CACCOLACUA	auaauuccaa	gaacggccgc	
		tataaaaaaaa	Fraancetta	artadecuct	acaayaccyc	aaagagogaa	
	ctggtgacgg	Lactegaggg	cguagecees	ataaataatt	ggatgtaccg	cgagatcaca	4260
	accgggcggc	cggagtacat	cgagatcgag	Clagcigati	ggatgtaccg	castaccac	4320
20			MATMACMMET	Caccccual	actitititique	Cyacocoggo	
	accygocyco		acceptace	adcaccadaa	agttcaagaa	gttctgtttc	4440
	ttgttcaaga	cgatctacga	acgeagegge	agegeeggag	aggetttgaa	ggaggaggg	4500
25			AUDIT CACES	CCCCAAALL.U	CCCCaucaya	qquuuuuggg	
.5	gccggcccc	tatgtatgt	adatadaca	tacattogga	acccaaagcc	gtacattggg	4680
	cgaaaaggtc	tettteetgt	ggatagtatg	to-cotta	gasaccaatc	acacatotaa	4740
	aaccggaacc	cgtacattgg	gaacccaaag	ccgtacatty	ggaaccggcc	acacatgtaa	4800
		+	aaaaaacaar	FFFACCOCC	aaaaccccc	aaaacccaacc	
		222222227	MACCE MEMORA	raact.ot.ctu	accaucacac	ugcegaagag	
00	addaccccca	accegact	tagatagata	cactecetae	accccaccac	ttcgcgtcgg	4920
30	ctgcaaaaag	egectacect	ceggeeg		addagadasa	tctaccaggg	4980
	cctatcgcgg	ccgctggccg	ctcaaaaaatg	getggeetac	ggccaggcaa	tctaccaggg	5040
	-~~~~~~~~	aaaaaaaaatc	accactcaac	-caccaacacc	Cacattaayy	caccecgeee	3010
		aatastasca	atassascct.	croacacatu	Caucicicia	agacggccac	
	cgcgcgcccc	55050505	202000000	acaacccct	cagggggggt	cagcgggtgt	5160
	agettgtetg	taageggatg	ccgggagcag	acaagecege	- cassacacac	tatatactaa	5220
35	tggcgggtgt	cggggcgcag	ccatgaccca	gtcacgrage	gatageggag	tgtatactgg	5290
		aaacatcaca	acadattata	craaaaacac	accatatycy	guguaaaa	2200
		Mante etana	aaaatacccc	arcadocuci	CLLCCACCC	Cocycocacc	35 40
	ccgcacagac	gcgcaaggag	tagaatacaa	caaacaatat	cageteacte	aaaggcggta	5400
	gactcgctgc	gereggrege	ccggccgcgg	cgageggeat	castatasaa	222200000	5460
	atacggttat	ccacagaatc	aggggataac	gcaggaaaya	acatytyayc	aaaaggccag	5400
40	G2222GGGGG	accataa	aaaggccgcg	ELactaacat	LLLLCCalay	geteegetee	3320
		2+42422222	traaractca	agreagaggi	ducuaaaccc	gacaygacca	3300
	cccgacgage		coghogoson	teceteatac	actetectat	tccgaccctg	5640
	taaagatacc	aggegtttee	ccctggaage	Lucutugugu	. gccccccgc	ttatastaga	5700
	aaaattaaaa	- Matacctotc	- caccetteet	CCLCCGGGG	, acguggeget	Lucucacage	3,00
	tanagatata	agtateteag	traaatataa	atcattcact	: ccaagetggg	Cigigigiae	3700
45	~~~~~~~~	ttaaaaaaaaa	ccactacacc	ttatccccta	actateqtet	tgagtccaac	5820
45	gaaccccccg	Licagocoga		- ccaccogg to	reperant	tagcagagcg	5880
_	ccggtaagac	acgacttatc	gccactggca	geagecactg	gtaataggat	tagcagagcg	5940
		acantactec	agagttcttg	aadtaataa	: Claactacy	, ctacactaga	2240
	accacactat	ttaatatata	- cactetacta	aadccadtta	l ccllcggaac	. aagagttggt	0000
	aggueageat	009900000	aaccaccact	ggtagggtg	r attttttat	ttgcaagcag	6060
	agetettgat	CCggcaaaca	aaccaccgcc		tastattta	tacggggtct	6120
50	cagattacgc	gcagaaaaaa	aggateteaa	gaayacccci	. Lyaccecce	tacggggtct	6190
	an agat agat	CCCCTTCCTT	- ctcacqttaa	aggatttta	tcalqcalge	Lacacecee	0700
		~~~~~	tacacactta	aaaataata	ı aaucayacı	, gaccegacag	02.20
	aaccegegea	. 999000000	tactteatac	atctaacgct	tragttaag	cgcgccgcga	6300
	tttggetgtg	agcaattaty	tycttagtyt		tagggethic	cttaataata	6360
	agcggcgtcg	, gcttgaacga	atttetaget	agacattat	Lyccyactac	cttggtgatc	6420
55		. aataataaa	aaattcttcc	· aactgatct	r cocacaaaa	, caagegatet	0420
			CECECTACCE	rcaagrarua	1 Cadactacta	ı cegggeegge	0-200
	CCCCCCCCCCC	. caagacaage	. addadddaca	teetteaac	r coattttoc	ggttactgcg	6540
	aggegeteea	Ligodoagio	ggcagcgacc	· cccccggc	ant agains	ccantenna	6600
	ctgtaccaaa	ı tgcgggacaa	cgtaagcact	acatttcgc	catcyccago	ccagtcgggc	6660
		+.~~~++>>	. aatttatt	- adoddottdaa	a atagateet	, LLCayyaacc	. 0000
60		· ~++~~+~~~	. cactaaact	· accaaddcaa	a coctatott	; culliguates	. 0/20
90	gyaccaaaga	. 9000000000		ataactacci	coaanataco	tgcaagaatg	6780
	gtcagcaaga	. cagccagatc	aacyccyac	, g.ggc.ggc		r ccacagaato	6840
		. ~~~~++~+~	. ssattacaat	rcacactta	T CEUGALAAC	, ccacygaacy	0040
		. ~~~~~~~~	י ממדמפרדכו	- acadededu	a daalutuu	. cccccaggg	
		- +++~~~~~~	, <u>wtwattaat</u>	r aaaderede	e acattatta	, accaugect	. 0,000
	gaageegaag	Luccaaaag	atesetsta.	atatataca	t caddccdc	atccactgcg	7020
65	acggtcaccg	, taaccagcaa	i atcaatacca	Loughgrage		- dacdddaach	7090
	gagccqtaca	a aatgtacggc	: cagcaacgto	ggttcgaga	E-ggcgcccga	t gacgccaact	. ,000

	•			31			
	acctctgata	gttgagtcga	tacttcggcg	atcaccgctt	ccccatgat	gtttaacttt [	7140
	attttagggg	azetaceeta	ctocotaaca	tcattactac	tccataacat	Caaacatcya	1200
	aaaaaaaaat	a a coccoctto	ctacttagat	acccaaaaca '	tagactgtac	CCCaaaaaaa	1200
		aandaataaa	aaccoccact	acaaaaattc	catogacata	cadalygacy	1320
5		cottttcacc	cccttttaaa	tatccdatta	LLCLdalada	Caccere	, , , ,
_		accorreaat	atatectote	aaacactgat	ageelaaael	gaaggegggu	, ==0
		agatotagta	TODESEEDS	argaccarga	ttacuccaay	Citycatyce	, 500
	L	at at agagga	traatrecea	agraggreag	tecettate	Lacycecty	7300
		accontrassa	tcaaaaaaact	caacaaccta	tgggcattca	gucuggauug	7020
10	cgaaaactgt	ggaattggtc	agcgttggtg	ggaaagcgcg	catattcata	gccgggcaat	7740
	tgctgtgcca	ggcagtttta	acgatcagtt	cgccgatgca	tagacagaga	attatgcggg	7800
	caacgtctgg	tatcagcgcg	aagtetttat	accyaaayyu	gtcaataatc	agcgtatcgt aggaagtgat	7860
	gctgcgtttc	gatgcggtca	creattacyg	acconstate	acoccotato	ttattgccgg	7920
45							
15				rrcaaaacaa	adudatutau	tatatag caa	
20							
20							
35	tgatatctac	ccgcttcgcg	tcggcatccg	gtcagtggca	gtgaagggcg	aacagttcct	8640
	ggccaactcc	taccgtacct	cgcattaccc	tratactata	gagatgeeeg	actgggcaga tctctttagg	8820
-00	tgaacatggc	atcgtggtga	ttgatgaaac	agaactgtac	agcgaagagg	cagtcaacgg	8880
30							
35							
00							
40			, ~~>+~++~	reacaaccac	aaaccuaay	, cggcggccc	
		. ~~~~~~++	, accepted	caaacacttu	ucaacaaaa	I CCCCCCCCC	
	atgtaataat	taacatgtaa	tgcatgacgt	tatttatgag	atancacaca	atgattagag	9780
45	tcccgcaatt	: atacatttaa	tacgcgatag	, tagatagaa	attcccato	a aactaggata c ctcgaggatc	9840
			, totatataca	racriauata	Latuadyta	, cacgooos	
			· ~~~t~~ctai	. ararretadu	. aaaltauta	t geceauac	
50							
50							
55			· +-~=+~==~	* aacatocta:	: Lacuuttua	a cagacaaaa	
00							
			~ ~+~~>>~	~ crradaraca	1 FORAULAAC	a Luctucucuc	
		<del></del>	- ~+~++ <u>a</u> aat	e arrrrgarri	Taction Lac	L Laqueugues	
			~ ~++~~~+=~	a traarraara	1 FOCLACIAL	u ulluauluu	
60			~ ++	a arararrra	: aallullele	u acceuces	,
				~ PACALUCEL	a nawacuwa	a ucaacacyc	, 10, 10
	1 - 1 - 1 - 1 - 1 - 1		~ ~~~~~~	a rattoraau	4 aal.Caulal	u cccaaacc	
	atgaagtaa	c atgctacta	c ggtttaatc	g ttettgagt	a ccidialat Facatotata	t ctaataaato	10980
65	agtatgtct	t aaattatct	c gattttact	y gladilaya a atoottott	a agtacctat	a tattctaata	11040
	atacatgaa	g taacatgct	a ctatgattt	a accyclett	g agracerae		

```
aatcagtatg titttaatta tittgattit actggtactt agatagatgt atatatacat 11100
      getegaacat gettagatac atgaagtaac atgetactac ggtttaatca ttettgagta 11160
      cctatatatt ctaataaatc agtatgttt taattatttt gatattactg gtacttaaca 11220
      tgtttagata catcatatag catgcacatg ctgctactgt ttaatcattc gtgaatacct 11280 atatatcta atatatcagt atgcttcta attattatga ttttgatgta cttgtatggt 11340
      ggcatatget gcagctatgt gtagattttg aatacccagt gtgatgagca tgcatggcgc 11400 cttcatagtt catatgctgt ttatttcctt tgagactgtt cttttttgtt gatagtcacc 11460
      ctgttgtttg gtgattctta tgcacccggg gatcctctag agtcgacctg caggaggcg 11520 cactagtgat taggattca acgcgacca ggacaagcga ggaaccttgc gtgcgaggcg 11580 aggccgcccc gctccgattc gattcgacgc gcaggcgag ggacgcgaggat ggacgcttc 11640
      tactcgacct cgtcggcggc ggcgagcggc tggggccacg actccctcaa gaacttccgc 11700
10
      cagatetece cegeegtgea gteceacete aagetegttt acetgaetet atgetttgea 11760
      ctggcctcat ctgccgtggg tgcttaccta cacattgccc tgaacatcgg cgggatgctg 11820
      acaatgctcg cttgtgtcgg aactatcgcc tggatgttct cggtgccagt ctatgaggag 11880 aggaagaggt ttggcctgt gatggtgca gccctcctgg aaggggttct ggttggacct 11940 ctgattgagc ttgccataga ctttgaccca agcatcctcg tgacagggtt tgtcggaacc 12000
      20
       gtcctcatca tcatgctcaa gaacgcaggc gacaagtcgg aggacaagaa gaagaggaag 12360 agggggtcct gaacgtwtct cccgcacatg tagataccgt caccgcgtcg acctgcaggc 12420
       atgcccgctg aaatcaccag teteteteta caaatctate teteteataa taatgtgtga 12480
       gtagttccca gataagggaa ttagggttct tatagggttt cgctcatgtg ttgagcatat 12540
       aagaaacct tagtatgtat ttgtatttgt aaaatacttc tatcaataaa atttctaatt 12600
        cctaaaacca aaatccagtg ggtaccgagc tcg
 30
        <210> 35
        <211> 5598
        <212> DNA
        <213> Künstliche Sequenz
 35
        <223> Beschreibung der künstlichen Sequenz: recombinant
                 expression vector pOXoBI-1
        ggggatcctc tagagtcgac ctgcaggcgg ccgcactagt gattaggatt ccaacgcgag 60
        40
  45
         ccaagcatec tegtgacagg gtttgtegga accgecateg cetttgggtg ettetetgge 540
         gccgccatca tcgccaagcg cagggagtac ctgtacctcg gtggcctgct ctcgtctggc 600 ctgtcgatcc tgctctggct gcagtttgtc acgtccatct ttggccactc ctctggcagc 660
        ttcatgtttg aggtttactt tggcctgttg atcttcctgg ggtacatggt gtacgacacg 720 caggagatca tcgagaggc gcaccatggc gacatggact acatcaagca cgccctcacc 780 ctcttcaccg actttgttgc cgtcctcgtc cgagtcctca tcatcatgct caagaacgca 840
         ggcgacaagt cggaggacaa gaagaagagg aagagggggt cctgaacgtw tctcccgcac 900
         atgtagatac cgtcaccgcg tcgacctgca ggcatgcccg ctgaaatcac cagtctctct 960
         ctacaaatct atctctcta taataatgtg tgagtagttc ccagataagg gaattagggt 1020 tcttataggg tttcgctcat gtgttgagca tataagaaac ccttagtatg tatttgtatt 1080 tgtaaaaatac ttctatcaat aaaatttcta attcctaaaa ccaaaatcca gtgggtaccg 1140
  55
         agetegaatt caagettgge actggeegte gttttacaac gtcgtgactg ggaaaaccet 1200 ggegttacce aacttaatcg cettgeagea catececett tegecagetg gegtaatage 1260
         gaagaggeee geacegateg eettecaa cagttgegea gectgaatgg egaatggege 1320 etgatgeggt attteeet tacgeatet tgeggtatt cacacegeat atggtgeact 1380 etcagtacaa tetgetetga tgeegeatag eecgacaee gecaacaee 1440
  60
         gctgacgcgc cctgacggc ttgtctgctc ccggcatccg cttacagaca agctgtgacc 1500
         gteteeggga getgeatgtg teagaggttt teacegteat cacegaaacg egegagacga 1560
         aagggcctcg tgatacgcct atttttatag gttaatgtca tgataataat ggtttcttag 1620
   65
```

	acatcagata	gcacttttcg	gggaaatgtg	cgcggaaccc	ctatttgttt	atttttctaa 16	80
	atacattcaa	atatotatcc	gctcatgaga	caataaccct	gataaatgct	tcaataatat 17	40
	tgaaaaagga	agagtatgag	tattcaacat	ttccgtgtcg	cccttattcc	cttttttgcg 18	300
	gcattttgcc	ttcctatttt	tgctcaccca	gaaacgctgg	tgaaagtaaa	agatgctgaa 18	360
5	gatcagttgg	atacacaaat	gggttacatc	gaactggatc	tcaacagcgg	taagateett 19	920
	gagagttttc	gccccgaaga	acgttttcca	atgatgagca	cttttaaagt	tctgctatgt 19	980
	ggcgcggtat	tatcccgtat	tgacgccggg	caagagcaac	teggtegeeg	catacactat 20	140
	tctcagaatg	acttggttga	gtactcacca	gtcacagaaa	agcatcttac	ggatggcatg 21	160
40	acagtaagag	aattatgcag	tgctgccata	accatgagtg	ataacactgc	ggccaactta 21	220
10	cttctgacaa	cgatcggagg	accgaaggag	ctaaccgctt	ttttgcacaa	catgggggat 22	220
	catgtaactc	gccttgatcg	ttgggaaccg	gagetgaatg	aagecatace	aaacgacgag 22	240
	cgtgacacca	cgatgcctgt	agcaatggca	acaacgttgc	tagaaactatt	aactggcgaa 23	100
	ctacttactc	tagcttcccg	gcaacaatta	acagactyga	ttactastas	taaagttgca 24	160
4 =	ggaccacttc	tgegetegge	tataattaa	ggetggttta	cagatggtaa	atctggagcc 26 gccctcccgt 25	520
15	ggtgagcgtg	ggtetegegg	aggaagtgag	gcaccagggc	atgacggcaa	tagacagate 2	580
	accgtagtta	atagatagat	ggggagccag	trataactat	cagaccaagt	ttactcatat 2	640
	gergagarag	ttastttass	acttcatttt	taatttaaaa	ggatctaggt	gaagatcctt 2	700
	tttacttaga	tcatcaccaa	aatcccttaa	cataaatttt	cottccacto	agcgtcagac 2	760
20	gagatagae	acatcaaacc	atcttcttga	gatcetttt	ttctqcqcqt	aatctgctgc 2	820
20	ttacaaacaa	aaaaaccacc	actaccaaca	ataatttatt	tgccggatca	agagetacea 2	000
	agtattttc	ccaacctaac	tagetteage	agagcgcaga	taccaaatac	tgttcttcta 2	940
	atateaccat	anttanneca	ccacttcaag	aactctgtag	caccqcctac	ataceteget 3	000
	atactaatcc	tattaccagt	gactactacc	agtggcgata	agtcgtgtct	taccgggttg 3	000
35	~~~t~~~~~	anteattacc.	ggataagggg	cadcddtcdd	gctgaacggg	gggttcgtgc_5	120
Ŭ	20202000	acttacaaca	aacdacctac	accgaactga	gatacctaca	gegtgagett 3	100
	+~~~~~~~~	acacacttcc	COSSOCIONS	aaddcddaca	ggtateeggt	aageggeagg J	230
	~+~~~~~~~	Tananaaaaa	gagggaggtt	ccagggggaa	acccciqqia	LULLUALAGE J	500
	aatataaaat	ttaaaaaaaat	ctdacttdad	carcaattt	Lucyalyce	gccaggggg -	J
30		CCCCCCC	Cadcaacdcd	accttttac	adtttttggt	Cttttgttgg J	-20
		~~=+~++~++	tectacatta	recectati	Clulygalaa	Ctytattatt 3	
		~~~~t~~t~~	cactcaccac	adccdaacda	ccaaqcqcaq	cyayccageg 3	220
	agcgaggaag	cggaagagcg	cccaatacgc	aaaccgcccc	teceegegeg	ttggccgatt 3	660
	cattaatgca	gctggcacga	caggtttccc	gactggaaag	tagactttat	gegeaacgea 3	720
35	attaatgtga	gttagctcac	tcattaggca	ccccaggett	caccacacac	getteegget 3	780
	cgtatgttgt	gtggaattgt	gageggataa	caatttcaca	caggaaacag.	ctatgaccat 3	840
	gattacgaat	tcccatgcct	cgagcagaaa	tagaaacttc	caaaaaaaat	gggtctatat 3 ccagaatata 3	900
	atatggaagg	tttcaggaag	tagattagaa	cagaaacccc	ccctagtggg	ccaaaaagcc 3	960
40	ttttggaaga	aataccctct	ttaatctaat	agtttagact	tctaattaga	cgggctctta 4	020
40	 	へん たみみたみたっち	ttamattaaa	arcceaalla	aatatuaaty	caactagget :	
		~+>~++++c+	COGGGCCCCC	rrrcarduac	Cilyaayiai	tgccggacca s	
	-44	actortorat	acttcadagt	gcacatetae	LLLUdallul	gattggtaga a	2200
		~~~~++~+~	canttaggag	aracaaccad	EEUCCGaaac	Lyccatycet	2200
45		- andastasaa	- ccatotccca	addcaaccct	tutauctaca	tycegaggee s	
40		- aaaaat caca	CCCTCCATT	FEGCALOLLC	atutuacatu	ttaaatgttg :	
		· attactaaat	atcacccarr	regreatic	auatuautau	CCCacacaca .	
		~~~+~+~++	taaactotoo	radordadaa	adalctatta	aaaagaacce -	-500
		aaaaaataaa	aateeeeate	caddetedua	adacacttt	gucucucus .	
50			ttaactaata	aaaataautt	. alactuaaty	Caucaaaaa.	
		. ~~+~++~~~	nenennanara i	- actaactaat	. acactagaty	gaccacgg	
			, ccacaddcc	arraarracc	actuacaace	adguluces .	
		. ~+~~~~+>+	. ++~~~~~~~~	· caararrraa	i actucuauuq	, yaaaggcaag ,	2000
		. + a + a a a a a a a t	. taataaataa	croarcoatc	: adladtaget	accuracy .	3000
5 5		. ++-+-+-+-	rtaacaacaa	arcarcuall	. uauaacayaa	. ucuuuuuuu	
			, antanttacc	r ccacaacaac	Ladculucus	, ccccegacga ,	± > 0 0
	tcatgccata	cgataaaccc	l accaacaaca	agaccagtta	gcaaggiige	aatgccaaca	5100
	catgtcgcgc	: tcatttctcc	gcttttcat	cttgcatgtc	; gudatydagg	ccctggacac	5160
	tgacatttct	ctcttttgct	gttgaatgaa	gaccctaacc	, illicaciati	agcacgcccc !	5220
60	tcaacttgat	aagcctagac	gaaacccata	t igeatgatts	, acyaycaacy	gtgtgcacga :	5280
						ccttgtatct ! gccacgcaag !	
			. aaataaatta	* CEECGEGEGE	. CCalluda	i acquacquag .	J-E-0-0
65			- ~~~tcaccat	· tcacrcarco	: accacacc	, agcagcagca	
65	ctatataaag	gactccatat	, gododaceat	caaactctac	ctgatcaato	ctagctaagc	5580
	acaaccagt	, ccatagacat	,				

20030082

PF 54350 DE

				.34			
	ttattacata	gcaagccc					5598
							3370
5	<210> 36	_					
Э	<211> 1277	6					
	<212> DNA						
	<213> Kuns	tliche Sequ	enz				
	<220>						
10		hreibung de	r künstlich	en Semienz.	recombinar	. ←	
		ession vect			recombinat	IC.	
	,		p	.021 1			
	<400> 36						
4-	aattcactgg	ccgtcgtttt	acaacgacto	agagettgae	aggaggcccg	atctagtaac	60
15	atagatgaca	ccgcgcgcga	taatttatcc	tagtttgcgc	gctatatttt	gttttctatc	120
	gcgtattaaa	tgtataattg	cgggactcta	atcataaaaa	cccatctcat	aaataacgtc	180
	atgcattaca	tgttaattat	tacatgctta	acgtaattca	. acagaaatta	tatgataatc	240
	taggggata	toggcaacagg	atteaatett	aagaaacttt	attgccaaat	gtttgaacga	300
20	tagaggatta	atcaggicin	rggcgggaac	tccacgaaaa	tateegaaeg	cagcaagatc gatgcgctgc	360
	gaatcgggaa	caacaataca	gaagaactcg	accaggagge	galagaaggc	gecgecaage	440
	tcttcagcaa	tatcacoggt	agccaacgct	atotoctoat	agecetacee	cacacccage	540
	cggccacagt	cgatgaatcc	agaaaagcgg	ccattttcca	ccatgatatt	cggcaagcag	600
	gcatcgccat	gggtcacgac	gagatecteg	ccatcaaaca	tacacacett	gageetggeg	660
25	aacagttcgg	ctggcgcgag	cccctgatgc	tcttcqtcca	gatcatccto	atcgacaaga	720
	ccggcttcca	tccgagtacg	tgetegeteg	atgcgatgtt	teacttaata	gtcgaatggg	780
	caggtagccg	gatcaagcgt	atgcagccgc	cgcattgcat	cagccatgat	ggatactttc	840
	cagtaggag	caaggrgaga	tgacaggaga	tectgeeeeg	gcacttcgcc	caatagcagc	900
30	accaaccaca	atagggggg	gacaacgtcg	agcacagetg	cgcaaggaac	gcccgtcgtg	960
	gtcttgacaa	aaagaaccgg	acacccctac	geageteat	ccagggcacc	ggacaggtcg ggcatcagag	1020
	cagccgattg	tctattatac	ccagtcatag	ccgaatagcc	tctccaccca	agcggccgga	1140
	gaacctgcgt	gcaatccatc	ttgttcaatc	atgcgaaacg	atccadatcc	antacagatt	1200
0=	acttggattg	agagtgaata	tgagactcta	attogatacc	gaggggaatt	tatooaacot	1260
35	cagiggagca	tttttgacaa	gaaatatttg	ctagctgata	gtgaccttag	acaactttta	ำววก
	aacgcgcaat	aatggtttct	gacgtatgtg	cttagctcat	taaactccad	aaaccccccc	1380
	cigagigget	ccttcaacgt	tacaatteta	tcaqttccaa	acotaaaaco	acttatecea	1///
	tttcccaccgt	tcagtttaaa	acgigactce	cttaattctc	cgctcatgat	cagattgtcg	1500
40	attagattgt	ttttatgcat	agatggagtg	cigacaggae	cctgcttggt	aataattgtc aagtatcaaa	1560
	cggatgttaa	ttcagtacat	taaagacgtc	cacaatatat	tattaagtta	tctaagcgtc	1620
	aatttgttta	caccacaata	tatcctcca	CCagccagcc	aacaactccc	cgaccggcag	1740
	Cccggcacaa	aaccaccacg	cqttaccacc	acaccaacca	accacataat	attaeccata	1900
45	rregeeggea	ttgccgagtt	cgagcgttcc	ctaatcatco	accocaccco	gagggggggg	1860
45	gaggeegeea	aggcccgagg	cgtgaaqttt	ggcccccacc	ctaccctcac	CCCGGCacaG	1920
	accycycacy	cccgcgagct	gatcgaccag	gaaggccgca	ccgtgaaaga	aacaactaca	1980
	cccaccaaaa	tgcatcgctc	gaccctgtac	cgcgcacttg	agcgcagcga	ggaagtgacg	2040
	ctaacaacca	ccaggeggeg	aggreente	cgtgaggacg	cattgaccga	ggccgacgcc	2100
50	aggacgaacc	gtttttcatt	accoaacagag	tcaaaacaa	gaaaccgcac	gccgggtacg	2160
	tgttcgagcc	gcccqcqcac	gtctcaaccg	tacaactaca	tasastacta	gccggtttgt	2220
	cigacgecaa	gcrggcggcc	tggccggcca	acttaaccac	tgaagaaacc	gagggggggg	23/10
	yrcraaaaag	gtgatgtgta	tttgagtaaa	acadettded	trataraata	actacatete	2400
55	Lyalycgatg	agtaaataaa	Caaatacaca	aggggaacgc	atgaaggtta	tractateat	2460
55	cuaccayaaa	ggcgggccag	ucaadacdac	categgaage	catchagece	acacactaca	2520
	accegeeggg	geegatgtte	tgttagtcga	ttccgatccc	caggggagtg	ccccccatta	2580
	ggeggeegeg	cgggaagatc	aaccgctaac	cattateace	ategacegee	ccaccattca	2640
	aacaaactta	actatataca	geeggega caatcaaca	errogragig	accgacggag	cgcccaggc	2700
60	aagcccttac	gacatatoro	ccaccacagge	cctaataa=~	graceta	cggtgcagcc agcgcattga	2760
	ggtcacggat	ggaaggctac	aagcggcctt	tateatatea	canacastas	agcgcattga	∠8∠U 2000
	catcggcggt	gaggttqcca	aggcgctggc	cadatacaaa	ctacccatta	ttgagtcccg	20/0
	caccacgcag	cgcgtgagct	acccaggcac	taccaccacc	ggcacaaccg	ttcttcaatc	3000
65	ayaacccgag	ggcgacgctg	cccgcgaggt	ccaggcgctg	gccgctgaaa	ttaaatcaaa	3060
65	acteatttga	gttaatgagg	taaagagaaa	atgagcaaaa	gcacaaacac	actaaatacc	3120
	ggccgtccga	gcgcacgcag	cagcaaggct	gcaacgttgg	ccagcctggc	agacacgcca	3180
						_	

	gccatgaago	gggtcaactt	tcagttgccc	r geggaggate	acaccaaact	gaagatgtag	3240
	gcggtacgc	aaggcaagac	cattaccoac	ctactatata	, acaecaage	gaagatgtat	3240
	gagtaaatga	anggedagae	anatacegae	, ctgctattt	aacacaccyc	gcagctacca	1 3300
	gagaaaaaga	gcaaatgaat	aaatyaytag	algaatttta	ı geggetaaag	gaggcggcat	3360
5	ggaaaaccaa	gaacaaccag	gcaccgacgc	cgtggaatgc	: cccatgtgtg	gaggaacggg	3420
5	cygriggee	ı ggcgtaagcg	gctgggttgt	ctaccaacco	: tocaatooca	ctggaacccc	3480
	caagcccgag	, gaateggegt	gageggtege	: aaaccatcco	r gcccggtaca	aatcopcoco	1 3540
	gcgctgggt	g atgacctggt	ggagaagtto	aaggccgcgc	addecaceca	acaaaaaaa	3600
	atcgagggag	g aagcacgccc	caatastas	taggoogogo	. aggeegeea	geggeaacge	2000
	gaatcccgg	7 2200000000	- cggcgaaccg	cygcaagcgg	cegergateg	aatccgcaaa	3660
10	gaaccccggc	aaccgccggc	ageeggegeg	cegtegatta	ggaagccgcc	caagggcgac	3720
10	gagcaaccag	atttttcgt	tccgatgctc	: tatgacgtgg	r gcacccgcga	tagtcgcagc	3780
	accatggacg	, tggccgtttt	ccgtctgtcg	r aagcgtgacc	gacgagetgg	cgaggtgatc	3840
	cgctacgago	ttccagacgg	gcacgtagag	gtttccgcad	aaccaaccaa	catogccagt	3900
	gtgtgggatt	acgacctggt	actgatggcg	gtttcccatc	taacogaata	catgaacaga	3060
	taccooggaac	, uussuuusus	accgacggcg	geeceeace	- caacegaare	tatgaaccga	13900
15	atassattat	ggaagggaga	caageeegge	. egegtgttet	grecacaege	tgeggaegta	4020
13	- the section	gccggcgagc	cgatggcgga	ı aagcagaaag	acgacctggt	agaaacctgc	4080
	atteggttaa	acaccacgca	cgttgccatg	r cagcgtacga	agaaggccaa	gaacggccgc	: 4140
	ctggtgacgg	, tatccgaggg	tgaageettg	r attagecget	acaagatcgt	aaagagcgaa	4200
	accgggcggc	cggagtacat	cgagatcgag	ctagctgatt	ggatgtaccg	caagatcaca	4260
	gaaggcaaga	acceggacgt	actaacaatt	cacccccatt	3544544405	castacaca	4200
20	ateggeegt	ttatataaaa	geegaeggee	- cacccegatt	actititigat	cgatecegge	: 4320
~0	ttattassa	ttctctaccg	ccuggcacge	cgcgccgcag	gcaaggcaga	agccagatgg	r 4380
	rtyttcaaga	cgatctacga	acgcagtggc	agcgccggag	agttcaagaa	gttctgtttc	4440
	accgtgcgca	ı agctgatcgg	gtcaaatgac	ctgccggagt	acgatttgaa	ggaggaggcg	4500
	gggcaggctg	, gcccgatcct	agtcatgcgc	taccocaaco	tgatcgaggg	cgaagcat.cc	4560
	gccggttcct	aatgtacgga	gcagatgcta	gggcaaattg	ccctaggag	dassasadat	1620
25	cgaaaaggto	tettteetgt	ggataggacg	tacattaca	2000222200	ggaaaaaagg c	4600
	aaccoggaacc	cotacattca	ggacagcacg	cacaccggga	acceaaagee	gracarrygg	4000
	atazatazta	cgtacattgg	gaacccaaay	ccgtacattg	ggaaccggtc	acacatgtaa	4/40
	gractgata	taaaagagaa	aaaaggcgac	ttttccgcct	aaaactcttt	aaaacttatt	4800
	addactctta	aaacccgcct	ggcctgtgca	taactgtctg	gccagcgcac	agccgaagag	4860
00	ctycaaaaag	cgcctaccct	tegateacta	coctccctac	accecaceae	ttcacatcaa	4920
30	cctategegg	ccgctggccg	ctcaaaaatg	actaacctac	ggccaggcaa	tetaccaded	4980
	cgcggacaag	ccgcgccgtc	gccactcgac	Caccaacaca	ggratggaaa	asaastaast	E040
	cacacattte	ggtgatgacg	atassagat	atasasasta	cacaccaagg	Caccetgeet	5040
	agettateta	taaggggggg	gegadaacee	ccyacacacy	cayeceeegg	agacggtcac	2100
	taacaaatat	taagcggatg	ccgggagcag	acaageeegt	cagggcgcgt	cagcgggtgt	5160
35	cagogggtgt	cggggcgcag	ccatgaccca	greacgtage	gatagcggag	tgtatactgg	5220
00	cccaactaty	cggcatcaga	gcagattgta	ctgagagtgc	accatatgcg	gtgtgaaata	5280
	ccycacagai	gcgtaaggag	aaaataccgc	atcaggcgct	cttccacttc	ctcactcact	5340
	gactegetge	geteggtegt	teggetgegg	cgagcggtat	cagctcactc	aaagggggta	5400
	acacygicat	ccacagaatc	aggggataac	gcaggaaaga	acatotoacc	aaaaggggag	5460
	caaaaggcca	ggaaccgtaa	aaaggccgcg	ttactaacat	ttttccatag	actocaocaa	5520
40	cctgacgagc	atcacaaaaa	tegaegetea	antragaggt	aaaaaaaaa	goccogcocc	5520
	taaagatacc	aggcgtttcc	CCCtccccc	tacatactes	ggcgaaaccc	gacaygacca	2280
	ccacttacaa	astagetete	ccccggaagc	ceeeegege	geteteetgt	teegaceetg	5640
	tasaaababa	gatacctgtc	cyccuttcete	ccttcgggaa	gcgtggcgct	ttctcatagc	5700
	ccacycigia	ggtatctcag	ttcggtgtag	gtcgttcgct	ccaagctggg	ctgtgtgcac	5760
4.5	gaaceeeeg	LLCagcccga	ccactacaca	ttatcccccta	actategtet	trantorano	5020
45	ccggtaagac	acgaettate	gccactggca	gcagccactg	gtaacaggat	taggagagag	E000
_	aggtatgtag	gcggtgctac	agagttcttg	aagtggtggc	ctaactacca	ctacagagagag	5000
	aggacagtat	ttggtatctg	cactetacta	aagcgagge	actteracy	nacactaga	5940
à	agetettgat	ccaacaaaca	agococgocg	aagecageta	cccccggaaa	aayagttggt	6000
	cagattaggg	ccggcaaaca	naccaccyct	ggrayeggtg	gccccccgt	rrgcaagcag	6060
50	eagactacgt	gcagaaaaaa	aggateteaa	gaagatcctt	tgatcttttc	tacggggtct	6120
50	gacycleage	ggaacgaaaa	ctcacgttaa	gggattttgg	tcatgcatga	tatatctccc	6180
	aditigigia	gggcttatta	tacacactta	aaaataataa	aadcadactt	gacotgatag	6240
	cccggccgcg	agcaattatg	Tactraatac	atetaaccet	taaattaaac	CCCCCCCCCC	6200
	agcggcgtcg	gcttgaacga	atttctagct	agacattatt	taaaaaataa	attactactac	63.00
	tegeetttea	catagtagae	assttatta	agacaccacc	tgccgactac	citggtgate	6360
55	tottottata	cgtagtggac	adacticitic	aactgatetg	cgcgcgaggc	caagcgatct	6420
-	cocceeçe	caagacaagc	CLUCCLACCE	ccaaoraroa	caaactaata	CEGGGGGGGGG	<i>61</i> 00
	aggegeteea	LLGCCCAGEC	aacaacaaca	teetteaaca	casttttaca	aut + = at aaa	CE AO
	Cigiaccada	tgcgggacaa	cgtaagcact	acatttccct	categeeage	ccaatcaaaa	6600
	ggcgagcccc	atagegetaa	ggtttcattt	agggggtgaa	atagateeta	ttaaaaaaaa	EEEA
	ggatcaaaga	gttcctccgc	cactagacet	accaaracaa	cactatatta	tattactt	2000
60	gtcagcaaga	tagccagatc	aatotoosto	ataaata	agangete	Lacingetttt	0/20
	trattgrage	cagetagace	aacyccyatt	graderager	cyaagatacc	rgcaagaatg	6780
	atataataat	gccattctcc	aaattgcagt	ccgcgcttag	ctggataacg	ccacggaatg	6840
	atgicgicgi	gcacaacaat	ggtgacttct	acadededaa	gaateteget	ctctccaacc	6000
	yaayccyaag	tttccaaaag	gtcgttgatc	aaaggtcgcc	acattatttc	atcaaccatt	6060
	acygreaceg	taaccagcaa	atcaatatca	ctatataact	traggregge	atcoactoco	7020
65	gageegraca	aatgtacggc	caocaacotc	ggttcgagat	aacactcaat	dacconnon	7000
	acctctgata	gttgagtcga	tacttogge	atcaccactt	CCCCCstcst	guegeeaact	7000
		J - 25-5-5G		accaccyctt	ccccacyat	guildacttt	/140

20030082

PF 54350 DE

		gttttagggd	gactgccctg	g ctgcgtaaca	tcgttgctgc	tccataacat	caaacatcga	7200
		cccacggcgt	: aacgcgcttg	, ctgcttggai	gcccgaggca	ı tagactgtac	cccaaaaaaa	7260
		cagtcataac	: aagccatgaa	aaccgccact	gegggggtte	catggacata	caaatggacg	7320
	5	aacggataaa	ccttttcac	ccctttaaa	a tatccgatta	ttctaataaa	cgctcttttc	7380
	3	rectaggee	accegecaat	atatectgte	aaacactgat	: agtttaaact	gaaggcggga	7440
		taccactact	agatetagta	ggaaacagct	atgaccatga	ttacgccaag	cttgcatgcc	7500
		cgcaggtcga	ctctagagga	tcgatcccc	g ggtaggtcag	tcccttatgt	tacgtcctgt	7560
		agaaacccca	accegtgaaa	tcaaaaaact	cgacggcctg	, tgggcattca	gtctggatcg	7620
	10	cgaaaaccgt	ggaactggto	agcgttggt	ggaaagcgcg	, ttacaagaaa	gccgggcaat	7680
	10	assagtata	ggcagtttta	acgatcagt	cgccgatgca	ı gatattegta	attatgcggg	7740
		caacytetgg	cateagegeg	aagtetttat	accgaaaggt	: tgggcaggcc	agegtategt	7800
		gergegeree	galgeggtea	ccattacgg	caaagtgtgg	gtcaataatc	aggaagtgat	7860
		gyaycaccag	ggcggctata	cgccatttga	agccgatgto	acgccgtate	ttattgccgg	7920
	15	tactactast	e cytaayttic	: tgcttctact	titgatatat	atataataat	tatcattaat	7980
	.0	ttacttttct	. ataatattit	addiditit	. cccaaaacaa	aagaatgtag	tatatagcaa	8040
		caaaatttat	tastatacsa	agigigiaca	ttaattta	taacttttct	aatatatgac	8100
		tatcccccc	. cgacgcgcag	ttagggaggg	. cigigigaac	aacgaactga	actggcagac	8790
		taatttett	aactatocco	gaatgaatga	aaacygcaag	aaaaagcagt	cttacttcca cgccgaacac	8220
	20	chagatagac	. dactatgetg	taataacac	tatagagaga	ccctacacca	cgccgaacac	8280
		tractorcar	gucuccaccy grantance	ataataata	cyccycycaa	gactgtaacc	acgcgtctgt cggatcaaca	8340
		antanttaca	actoracea	acygryacy	caguguugaa	ctgcgtgatg	cggatcaaca cgcacctctg	8400
		graaccggg	. deeggacaag	totatonage	gactitgead	gtggtgaate	agacagagtg	8460
_		tgatatctac	ccacttcaca	tcaacgaaca	gtgtgttata	gccaaaagcc	agacagagtg	8520
	25	gattaaccac	aaaccottct	actttactco	gttagtggta	gryaagggeg	cggacttgcg	8580
	}	tagcaaagga	ttcgataacg	tactactag	ccccggccgc	catyaayaty	actggattgg	8540
		ggccaactcc	taccotacct	cocattacco	ttacgctga	geactaatyy	actgggcaga	0760
		tgaacatggc	atcotooto	ttgatgaaac	tactactata	gagatyctcy	tctctttagg	8/60
		cattggtttc	gaagcgggga	acaagccgaa	agaactgtac	agecttaace	cagtcaacgg	0000
	30	ggaaactcag	caagcgcact	tacaggcgat	taaagagetg	agegaagagg	acaaaaacca	0000
		cccaagcgtg	gtgatgtgga	gtattgccaa	cgaaccggat	accortecae	aaggtgcacg	0740
		ggaatatttc	gcgccactgg	Cadaaacaac	gcataaactc	gacccgacgc	gtccgatcac	9000
		ctgcgtcaat	gtaatgttct	gcgacgctca	caccgatacc	atcancoatc	tctttgatgt	9120
		gergegeerg	aaccgttatt	acggatggta	totccaaaoc	ggcgatttgg	aaacqqcaqa	91 20
	35	yaaygtactg	gaaaaagaac	ttctaaccta	gcaggagaaa	ctgcatcagc	coattateat	9240
		caccyaatac	ggcgtggata	cgttagccgg	gctgcactca	atotacacco	acatotogao	9300
		tyaayaytat	cagtgtgcat	gactagatat	gtatcaccgc	gtetttgate	acatcaacac	93.60
		cgccgccggc	gaacaggtat	ggaatttcgc	caattttaca	acctcgcaag	acatattaca	19/120
	40	cyrrageggt	aacaagaaag	ggatetteae	tegegaeege	aaaccgaagt	caacaacttt	9480
	40	cergergeaa	aaacgctgga	ctggcatgaa	cttcaataaa	aaaccdcadc	acconnenne	05/0
		acaatgagag	ctcgaatttc	cccgatcggt	caaacatttc	gcaataaam	ttottaagat	9600
		cyaaccccgc	raceagreer	gcgatgatta	tcatataatt	tetattaaat	tacattaaac	9660
		atytaataat	taacatgtaa	tgcatgacgt	tatttatgag	atgggttttt	atrattarar	9720
	45	cecegeaace	atacatttaa	tacgcgatag	aaaacaaaat	atancococa	aactaggata	9780
	45	aactacegeg	cgcggtgtca	tctatqttac	tagatcggga	atteccatec	ctccaccaca	9849
_		aayatataat	atgtaaaaaa	atgggtctat	atatatogaa	ggtttcagga	agacaaaggt	aann
	2	CCLayaaact	LCCdaaaaaaa	atccagaata	tattttggaa	gaaataccct	cttagattag	9960
	j	ceeeggegea	gcccctagtg	ggccaaaaag	ccacgatcta	atcccggtct	aattaateta	10020
	50	acaytttaga	cttctaatta	gacgggctct	tataccaatc	taattootet	aattagatta	10080
	30	adaltetaal	Laaatatgaa	cacaactaaa	cttcccctct	ctctagtttt	ctcagagete	101/0
		culturalgg	accttgaagt	attgccggat	cactacttco	gaactcgtgg	atacttcaga	10200
		gracacatet	actitigaatc	ttgattggta	gatcatctcg	gagaaattet	cacagttggg	10260
		aggiataacc	agttgccgaa	attoccatoc	ttcactcaca	accaddatca	acceptates	10320
	55	CaaggCaacc	Cligtageta	cataccaaaa	cctgactact	tagaacctca	cacactacet	10390
	55	cicigcatge	ccatgtgaca	cgttaaatgt	tgagagaaat.	agattactaa	atatcaccca	10440
		artaretes	ctagatgagt	atcctacaat	atgtataccg	aaaaatgtat	tttaaactgt	10500
		ggtaggtgag	aaagatctat	taaaaagaac	tctacqtata	checcecete.	ccaatcccca	10560
		cecaggining	taagacactt	tegtetttt	ttgccgaatt	ttaaccotaa	atttractar	10620
	60	caaaaacaag	LLatactgaa	tgtaataaat	atcotacatt	cadatattaa	nennnenenen	10680
	55	coattest-	grycyctgga	rggatcacgg	tcagaaagtc	tgacttgcaa	cgccacagge	10740
		ccyccyacty	ccactgacaa	ccaagttttc	attatttaa	taataccata	ttttcccccca	10800
		cactgates	taactycgag	yayaaaggca	agcagggcgc	catatcagca	cttgatcact	10860
		aagtcatcga	ttgagaagaa	CCACCCCCCC	rgcgccgacg	tgttatatat	tattggcaac	10920
	65	Caccacacca	antancetee	aaacaaaaca	ayaagagaac	tatttgagag	agagtagtta	10980
		caagaccagt	tagcaaggtt	raaataccaa	gatcatgcca	Lacgataaac	cggccggcgg cggctttttc	11040
		Jagassage	g-aagget	gadatyccad	cacacytege	gottattet	eggetttte	77700

PF 54350 DE

							11160
	attttgcatg	tcgtcatgca	ggccctggac	actgacattt	ctctctttg	ctgttgaatg	11100
	aaataa	aatttaacca	tragracacc	CCCCAACLLU	aladycciay	acyaaaccca	
		+~atractas	taatatacac	maarartatu	aacccuttc	caayaycaac	11200
		astsassata	CHCCHHATAT	Crarratta	accountic	catageagee	TT3 40
5		++~~~+~	Chaccacaca	agraatatat	CLLLaataaa	Cicycigce	77 2 00
•		~+~~~++	SSSEACSEAC	anthacuaca	Lucacacacaca	Cageceaace	
			tocartaato	CCCTATALAA	addacticat	acycecace	
		~~~~~~~~~	t t a a c a a c a a	caacaaccau	Luccatagat	accecace	
			tactacctaa	acreactaca	Laucaaucce	ggggacccc	
10			aaaaaactaat	garraggarr.	ccaacucuau	ccaggacaag	
10		h	ANASAUCCUC	CCCCCCCCCC	LLCUALLCUA	CGCGCGGGGG	
			++~+accca	CCTCHLCQQC	aacaacaac	99009999	
15							
13							
20							
20							
05							
25							
		~+~++~=~~	гагаадааас	CCLLaulalu	Lactegeaco	090000	12720
	thebatasat	gogoogagea	attectaaaa	ccaaaatcca	gtgggtaccg	agctcg	12776
	ticiatcaal	aaaactttta	. accordana				

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

LINES OR MARKS ON ORIGINAL DOCUMENT

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY