Contents

I. 1	Introduction - définition	2
	Utilisation des arbres	2
	Classification	2
	Définitions	2
	Définition inductive	4
	Remarques:	4
	Propriété:	5
	Preuve:	5
II.	Arbres particuliers	5
	Définitions	5
	Arbres binaires:	5
	Arbre binaire entier:	5
	Arbre binaire complet	6
	Propriétés	6
	Remarque:	7
	Transformation d'un arbre en arbre binaire	7
	Arbres binaires: implémentation sous forme de tableau en C (sérialisation)	
	Arbres binaires de recherche	17
		21
	Arbres binaires bicolores (rouge - noir)	21
TTT	I. Parcours d'arbres	26
	Définition	26
	Utilisation des arbres	26
	Parcours en profondeur	26
	Définitions	26
	Parcours en profondeur : arbre d'expression	28
	Bilan	$\frac{20}{31}$
		$\frac{31}{32}$
	Parcours en largeur	32
IV	. Implémentation	33
	Arbres binaires de recherche	33
	Arbre bicolore	35
	Équilibrage des arbres (arbres binaires de recherche) $\ \ldots \ \ldots \ \ldots$	35
\mathbf{V}	Tas et files de priorité	38
٠.	Tas: définition	38
	Implémentation des tas	40
	Opérations sur les tas	42
	Conservation de la propriété des tas max	42
		44
	Tri par tas (heap sort)	44
	Files de priorité	44
	CORTALIOUS SULTES THES OF DETOFFLES	43

I. Introduction - définition

Utilisation des arbres

- Arbres syntaxiques
- Arbre lexicographique
- Arbre de décision / classification (ML)
- Compression de données
- Expressions mathématiques

Classification

Définitions

Un arbre (enraciné) est

- soit un ensemble vide
- soit un ensemble fini non vide A muni d'une relation binaire < (est le fils de ...) telle que
- il existe $r \in A$ tel que $\forall x \in A, r < x$ (il existe un ancêtre)
- $\forall x \in A \setminus \{r\}, \exists ! y \in A, x < y \text{ (il y a un père unique)}$
- $\forall x \in A \setminus \{r\}, \exists n \in \mathbb{N} \text{ et } (x_1, x_2, \dots, x_n) \in A^n, x < x_1 < x_2 < \dots < x_n < r$ (chaque élément descend de l'ancêtre)

On parle aussi de frères, de descendance et d'ancêtres.

L'arité d'un père correspond au nombre de ses fils

Un $arbre\ n$ -aire est un arbre dont les nœuds sont d'arité maximale n Dans l'exemple, chaque nœud a au maximum une arité de 3 donc l'arbre est un arbre ternaire.

La *taille* de l'arbre est le nombre de nœuds qui le compose. Dans l'exemple, la taille est 6.

La profondeur d'un nœud est:

- $\bullet~$ -1 si l'arbre est vide
- 0 pour la racine
- le nombre de nœuds depuis la racine avant d'atteindre le nœud

Par exemple, le nœud N a une profondeur de 2.

La hauteur de l'arbre est la profondeur maximale de ses feuilles. Dans l'exemple, la hauteur est de 3.

Définition inductive

Soit A un ensemble fini appelé nœuds.

- les arbres de hauteur 0 sont les éléments de A noté (e,0) où e est la racine de l'arbre
- Si $e \in A$ et Si A_1, A_2, \ldots, A_n sont des arbres de hauteur respectives h_1, h_2, \ldots, h_n et dont les racines respectives sont e_1, e_2, \ldots, e_n , alors en connectant $e \ge e_1, e_2, \ldots e_n$, on définit $(e, (A_1, A_2, \ldots, A_n))$ l'arbre de racine e, de hauteur $1 + \max_{k \in \llbracket 1, n \rrbracket} (h_k)$ de sous arbres A_1, A_2, \ldots, A_n

Remarques:

Arbre marqué: Chaque nœud associé à une étiquette / valeur

Arbre non marqué: Les nœuds n'ont pas de valeurs associés

Un arbre est un graph:

- Simple: pas de boucles ou d'arêtes multiples
- Non orienté: les parcours $a \to b$ et $b \to a$ sont toujours possible
- Acyclique: pas de "boucles"
- Connexe: tous les nœuds sont accessibles

Propriété:

Pour un arbre de hauteur h d'arité a>1, le nombre n de nœuds vérifie

$$h+1 \geqslant n \geqslant \frac{a^{h+1}-1}{a-1}$$

Preuve:

Le nombre minimal de nœuds pour une hauteur donnée est un arbre contenant 1 nœud par hauteur. Le nombre maximal de nœuds pour une hauteur donnée est un arbre contenant i nœud par niveau i.

$$\sum_{i=0}^{h} 1 \geqslant n \geqslant \sum_{i=0}^{h} a^{i}$$

$$\iff h+1 \geqslant n \geqslant \frac{a^{h+1}-1}{a-1}$$

II. Arbres particuliers

Définitions

Arbres binaires:

Tous les nœuds sont d'arité au maximum 2.

Arbre binaire entier:

Tous les nœuds sont d'arité 2

Arbre binaire complet

Arbre binaire dont les feuilles ont toutes la même profondeur. Il possède le nombre maximal de feuilles pour une hauteur donnée. On parle donc de fils gauche et de fils droit.

Propriétés

Nombre de nœud
s $n\leqslant 2^p$ (pour un niveau p)

Hauteur $h: \lfloor \log_2(n) \rfloor < h \leqslant n-1$

Arbre binaire à inœuds interne (et la racine) d'arité 2 et f feuilles : f=i+1

Nombre de feuilles $f \leqslant 2^h$

Profondeur maximale d'un arbre d'arité a composée de n nœuds:

$$\log_a ((a-1) \times n + 1) - 1 \leqslant h \leqslant n - 1$$

Remarque:

$$\begin{split} \log_a((a-1)\times n+1) - 1 &\leq h \\ \Longrightarrow \log_a((a-1)\times n) < \log_a((a-1)\times n+1) \leq h+1 \\ \Longrightarrow \lfloor \log_a((a-1)\times n)\rfloor < h+1 \\ \Longrightarrow \lfloor \log_a((a-1)\times n)\rfloor \leq h \end{split}$$

soit
$$\lfloor \log_a((a-1) \times n) \rfloor \le h \le n-1$$

Transformation d'un arbre en arbre binaire

Algorithme de transformation d'un arbre n-aire A en arbre binaire:

Pour chaque $e\in A$ Laisser e_g (fils le plus à gauche) en place Supprimer les autres fils de e et les chainer à e_g Le nœud e_d est le prochain frère de e Fin pour

Exercice:

Arbres binaires : implémentation sous forme de tableau en C (sérialisation)

On stocke un arbre binaire dans un tableau d'enregistrements Chaque enregistrement E est défini par:

• E.clé : valeur du nœud

• E.gauche : indice du fils gauche dans le tableau

• E.droit : indice du fils droit dans le tableau

Une valeur de E.gauche ou E.droit égale à -1 indique qu'il n'existe pas de fils.

Indice dans le tableau	0	1	2	3	4	5	6	7	8	9
Clé	23	2	3	5	7	11	13	37	41	19
Gauche Droit	-1 -1	$\frac{5}{4}$	$\frac{3}{0}$	-1 -1	-1 -1	9 -1	$-1 \\ 2$	8 1	6 -1	-1 -1

1. Représenter cet arbre. Est-il binaire? Entier? Complet?

C'est un arbre binaire mais il n'est pas complet ni entier.

2. Définir le code en C permettant de définir ce tableau (statique)

```
typedef struct item {
           int val;
           int left;
           int right;
      };
       item table[10];
3. Écrire une fonction en C qui renvoie l'enregistrement de la racine
      int getRoot(item* table, int len, item* root) {
           for(int i = 0; i < len; i++) {</pre>
               for(int j = 0; j < len; j++) {
                   // on vérifie si i est un fils de j
                   if(table[j].left == i || table[j].right == i) {
                       break; // nouvelle itération de la boucle exterieure
               }
               return i;
           }
           // pas de racine, il y a une boucle
           return -1;
       }
  Solution:
       item getRoot(item* table) {
           int search[10] = {0};
           for(int i = 0; i < 10; i++) {
               if(table[i].left != -1) {
                   search[table[i].left] = 1;
               }
               if(table[i].right != -1) {
                   search[table[i].right] = 1;
               }
           }
           for(int i = 0; i < 10; i++) {</pre>
               if(search[i] == 0)
                   return table[i];
```

```
Solution 2:
      item getRoot(item* table, int len) {
           int root = 0;
           for(int i = 0; i < len; i++) {</pre>
               root += i;
               if(table[i].left != -1) {
                   root -= table[i].left;
               if(table[i].right != -1) {
                   root -= table[i].right;
               }
           }
           return table[root];
4. Écrire une fonction en C qui affiche la valeur de toutes les feuilles de T
      void showValues(item* table, int len) {
           item root;
           int rootIndex = getRoot(table, len, &root);
           showChildValues(rootIndex, table);
      }
      void showChildValues(int index, item* table) {
           item val = table[index];
           if(val.left == -1 && val.right == -1) {
               printf("%d\n", val.val);
           if(val.left != -1)
               showChildValues(val.left, table);
           if(val.right != -1)
               showChildValues(val.right, table);
      }
  Solution:
  void showValues(item* table, int len) {
```

```
for(int i = 0; i < len; i++) {

    // uniquement vrai si gauche = droite = -1
    if(table[i].left == table[i].right) {
        printf("%d", table[i].val);
    }
}</pre>
```

Arbres binaires de recherche

Arbre binaire marqué:

- Présence d'une étiquette pour chaque nœud x de A
- Étiquettes
 - Même type
 - Présence d'une clé appartenant à un ensemble ${\cal E}$
 - Relation d'ordre total sur E
 - Notation $x.{\rm cl\acute{e}}$

Organisation de l'arbre binaire de recherche: soit un nœud x de A.

- Alors toutes les étiquettes des nœud
sydes sous arbres gauches de xsont telles que
 $y.\text{cl\'e} \leqslant x.\text{cl\'e}$
- Et toutes les étiquettes des nœuds y des sous arbres droits de x sont telles que y.clé $\geqslant x.$ clé

Exemples:

Nœud:

- Étiquette
 - clé
 - information
- Fils gauche
- Fils droit

Opérations fondamentales des ABR:

- Constructeur
- Accesseurs
 - Recherche d'une clé
 - Rechercher le minimum
 - Rechercher le maximum
 - Rechercher un successeur
 - Rechercher un prédécesseur

- Transformateurs
 - Insérer un nœud
 - Supprimer un nœud

Utilité: faciliter une recherche avec une recherche par clé dans l'ABR

- temps de recherche proportionnel à la hauteur h de l'arbre

 - $-T(n) = \mathcal{O}(n)$ recherche linéaire dans le pire des cas (liste chainée) $-T(n) = \mathcal{O}(\log_2(n))$ recherche en temps logarithmique en moyenne pour un ABR complet.
- Dépend de la construction de l'arbre:

6 nœuds, hauteur 2 : Efficace

6 nœuds, hauteur 4 : Peu efficace

L'efficacité augment quand la hauteur diminue.

Arbre dégénéré (filiforme) : chaque nœud n'a qu'un enfant.

Arbres binaires bicolores (rouge - noir)

Arbre de recherche: possibilité d'arbre déséquilibré (filiforme, dégénéré)

- Recherche en $\mathcal{O}(n)$ où n est le nombre de nœuds
- aucun apport par rapport à une liste chainée

Arbre bicolore: arbre de recherche particulier, approximativement équilibré

• Recherche en $\Theta(\log_2(n))$

Arbre binaire bicolore \rightarrow marqué

• présence d'une étiquette pour chaque nœud x de A

- Fils gauche, fils droit
- Étiquettes
 - $-\,$ même type
 - clé
 - information
 - information supplémentaire : couleur (1 bit)

Propriétés rouge noir:

- chaque nœud est soit rouge, soit noir
- chaque feuille est noire
- la racine est noire
- si un nœud est rouge, ses deux enfants sont noirs
- pour chaque nœud, tous les chemins simples reliant le nœud à des feuilles situées plus bas dans l'arbre contiennent le même nombre de nœuds noirs

Remarque:

- Ajout de nœuds noirs vide (pointeur sur NIL) pour générer les feuilles
- Informations contenues dans les nœuds internes

Exemple:

Les nœuds rouges sont entre [] et les nœuds noirs entre $\langle \rangle$

T.NIL: sentinelle

- Simplification des conditions aux limites
- Même attributs qu'un nœud ordinaire:
 - Valeur: noir
 - Autres attributs: valeurs quelconques
- Aussi parent de la racine

Hauteur noire omise

Propriété rouge - noire : la longueur L d'un chemin allant de la racine à une feuille est comprise entre h_n et $2h_n$.

Chemin: suite de nœuds dont chacun est le prédécesseur ou le successeur du suivant.

 h_n étant la profondeur noire de l'arbre.

Justification:

Si tous les nœuds sont noirs, alors h_n est égale à la profondeur de l'arbre.

S'il y a systématiquement une alternance entre nœuds rouges et noirs, alors la hauteur totale h de l'arbre vaut $2h_n$

Exercice 1:

- Arbre 1 : non (rouge \rightarrow rouge)
- Arbre 2 : non (racine rouge)
- Arbre 3 : non (nombre de nœuds noirs \neq)
- Arbre 4: non (n'est pas un ABR car 10 < 22)

Exercice 2:

Exercice 3:

- 1. hauteurs $h_n(30)=3$, $h_n(20)=3$, $h_n(35)=2$ et $h_n(50)=1$ 2. Dans le meilleur des cas, il n'y a pas de nœuds rouges, donc $h=h_n$ et donc le nombre de feuille f vaut 2^h donc $2^{h_n(x)}$. Or, le nombre de nœuds internes i valide f=i+1 donc i=f-1 et donc $i\geqslant 2^{h_n(x)}-1$

3. Dans le meilleur des cas, on a $h = h_n$.

$$i \geqslant 2^{h_n(x)} - 1 \iff i + 1 \geqslant 2^{h_n(x)}$$

 $\iff \log_2(i+1) \geqslant h_n(x) = h$

III. Parcours d'arbres

Définition

Soit un arbre A de taille n.

Objectif:

- visiter les nœuds pour traitement
- contrainte: chaque nœud doit être traité une seule fois

Définition:

Un parcours d'arbre est une succession de nœuds (n_1, n_2, \ldots, n_n) , indiquant l'ordre dans lequel ils ont été visités

Pricipe général des parcours d'arbre :

- marquage du nœud après sont traitement pour ne plus le traiter
- maintien d'un ensemble de nœuds en attente de traitement

Existence de plusieurs manières de parcourir un arbre

Utilisation des arbres

Arbres d'expression \rightarrow représentation d'expressions

- Arbre syntaxique
- Expressions mathématiques

Arbres préfixes (ou trie) \rightarrow représentation d'un ensemble de mots

Parcours en profondeur

Définitions

Principe de parcours en profondeur:

- Utilisation de la définition inductive des arbres
- Proposition d'algorithmes récursifs
- \implies Exploration d'un des sous-arbres avant d'explorer le sous-arbre suivant

Plusieurs posibilités:

- Exploration en partant de la racine
- Exploration en partant des feuilles
- Exploration symétrique

Remarque: Le choix de traiter de gauche à doite est arbitraire.

Ordre préfixé:

- Départ à la racine
- Exploration préfixe du sous-arbre gauche
- Exploration préfixe du sous-arbre droit
- •
- Exploration du sous-arbre A_n

Pour un arbre binaire, ordre = père, fils gauche, fils droit.

Pour l'arbre ci-dessous, l'ordre préfixé est

$$a \rightarrow b \rightarrow e \rightarrow h \rightarrow i \rightarrow f \rightarrow c \rightarrow d \rightarrow g \rightarrow j \rightarrow k \rightarrow o \rightarrow p \rightarrow q \rightarrow l \rightarrow m \rightarrow n$$

Ordre infixé ou parcours symétrique:

- Exploration infixé du sous-arbre gauche
- Puis racine

- Exploration infixé du sous-arbre droit
- .
- Exploration des nœuds de A_n en ordre infixé

Pour un arbre binaire, ordre : fils gauche, père, fils droit.

Pour un ABR : ordre infixé

• Obtention de la suite ordonnée des étiquettes

Pour l'arbre précédent, l'ordre infixé est

$$h \to e \to i \to b \to f \to a \to c \to j \to g \to o \to k \to p \to g \to l \to m \to n \to d$$

Ordre postfixé:

- Exploration postfixé du sous-arbre gauche
- Exploration postfixé du sous-arbre droit
- •
- Exploration du sous-arbre A_n
- Traitement de la racine

Pour une arbre binaire, l'ordre est fils gauche, fils droit, père

Parcours en profondeur de l'arbre précédent :

$$h \rightarrow i \rightarrow e \rightarrow f \rightarrow b \rightarrow c \rightarrow j \rightarrow o \rightarrow p \rightarrow q \rightarrow k \rightarrow l \rightarrow m \rightarrow n \rightarrow g \rightarrow d \rightarrow a$$

Parcours en profondeur : arbre d'expression

Problème lié aux expressions infixes : gestion des parenthèses

$$(1+2 \times \sqrt{3})/4 \text{ pour } \frac{1+2\sqrt{3}}{4}$$

Représentation d'une expression sous forme d'arbre :

Parcours de l'arbre :

• Infixe : $(1 + (2 \times \sqrt{3})) / 4$ • Préfixe : $/ (+1 (\times 2 \sqrt{3})) 4$ • Postfixe : $(1 (2 (3 \sqrt{}) \times) +) 4 /$

Notation polonaise inversée (NPI):

- Notation postfixé
- Nécessité de deux piles :
 - pile d'expression
 - pile de calcul

 $\frac{9}{(2+(-3))\times(4-(-5))}$

In fixe : 9 \div ((2 + (–3)) \times (4 - (–5)))

Préfixe : \div 9 (× (+ 2 (- 3)) (- 4 (- 5)))

Postfixe : 9 ((2 (3 -) +) (4 (5 -) -) \times) \div

Etape Mot lu								-	-	11 ÷	12
	9	3 2	-3	$-1 \\ 9$	$-1 \\ 9$				_9 9	$-9 \\ 9$	-1
		9	9 9			-1	-1	9			

Parcours de l'arbre \rightarrow utilisation d'une pile

Visite des fils droits avant les fils gauches pour retrouver l'ordre préfixe (fils gauche en somme de pile)

Pile:

1	
3	2
3	4
3	
6	5
6	7
6	

Clés traité: $1 \rightarrow 2 \rightarrow 4 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 6$

Bilan

Parcours d'un arbre \rightarrow fonction récursive

Comportement d'une pile

Depth First Search (DFS)

Fonction ParcoursArbre(Élément)

Entrée: pointeur sur un nœud de l'arbre

Sortie: traitement sur chacun des nœuds du sous-arbre enraciné en un élément Début

Si Élément != NIL Alors

```
Traitement Élément != parcours préfixé
Parcours arbre.gauche
Traitement Élément != parcours infixé
Parcours arbre.droit
Traitement Élément != parcours postfixé
Fin Si
Fin
```

Parcours en largeur

Principe du parcours en largeur :

- Départ de la racine
- Exploration des nœuds par niveaux de l'arbre
- Pour un même niveau, parcours de gauche à droite
- \implies Parcours réalisé à l'aide d'une file

Visite des fils gauches avant les fils droits

Parcours intéressant pour

- une recherche avec la plus petite profondeur possible
- pour une énumération

File:

Clés traitées: $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 6 \rightarrow 7$

IV. Implémentation

Arbres binaires de recherche

Type arbre n'existe pas \rightarrow sérialisation (stockage sous un autre format)

Deux implémentations possibles :

- 1. Par tableaux (voir exercice)
- 2. Par enregistrement et pointeurs

Solution par enregistrement:

- Création du type nœud
- Creation du type arbre pointant sur la racine de l'arbre (en C)
- Arbre complet contenu dans un enregistrement d'enregistrements (en OCAML)
 - ⇒ structure récursive

Quels champs pour un nœud?

- entier clé
- pointeur fils_gauche
- pointeur fils_droit
- pointeur parent
- enregistrement informations

En C, nécessité d'écrire une fonction créant un nœud :

- Entrée:
 - valeur (int)
 - info (enregistrement contenu dans le nœud)
- Sortie:
 - pointeur sur le nœud créé (les champs fils_gauche, fils_droit et parent sont initialisé à NULL)

Constructeur : créer un arbre

- Entrée : aucun
- Sortie : pointeur sur la racine, qui peut être NULL/NIL
- Sémantique :
 - Fonction créant un pointeur sur la racine
 - Pointeur sur la racine initialisé à NULL/NIL

Transformateur : insérer un nouveau nœud \rightarrow nouvelle feuille. Plusieurs cas à envisager :

- Arbre vide \rightarrow insérer au niveau de la racine
- Arbre non vide
 - Début de la racine
 - Parcours de l'arbre par chemin descendant à la recherche d'un ${\tt NULL/NIL}$
 - Pointeur sur nœud, descendant l'arbre jusqu'à NIL (pointeur de traine)
 - Mise à jour du parent de nouveau
 - Mise à jour du fils gauche / droit du futur parent
 - Nécessité d'un pointeur temporaire conservant l'adresse du futur parent
 - Mise à jour dans la boucle du pointeur sur parent
 - \implies Deux phases :
 - 1. Recherche de la feuille
 - 2. Modification de l'arbre / mise à jours des nœuds

Cette fonction est linéaire en temps : $\mathcal{O}(h)$ où h est la hauteur de l'arbre.

Transformateur: Supprimer un nœud

- Argument : pointeur sur l'arbre, valeur de la clé
- Retourne : arbre modifié
- Sémantique : ?

Quel cas envisager?

Il faut vérifier que la clé est présent dans l'arbre

Suppression d'une feuille

Suppression d'un nœud interne / racine ayant un seul enfant

Suppression d'un nœud interne / racine ayant deux enfants

- Suppression d'une feuille : modification du parent et suppression de la feuille
- Suppression d'un nœud interne / racine ayant un seul enfant

- modification du parent (Parent.gauche ou Parent.doit pointe sur l'enfant non nul du nœud supprimé)
- modification de l'enfant (Enfant.parent pointe sur le parent du nœud supprimé)
- Suppression d'un nœud interne / racine ayant deux enfants
 - Enfant droit est le successeur (la définition est après) du nœud à supprimer
 - Enfant droit devient le fils de Parent à la place du nœud à supprimer: mise à jour de Parent.gauche et de Enfant droit.parent
 - Enfant gauche devient le fils gauche de Enfant droit : mise à jours de Enfant droit gauche et Enfant gauche parent

Prédécesseurs et successeurs : Si toutes les clés sont distinctes, le successeur d'un nœud x est le nœud y possédant la plus petite clé supérieure à x.clé

Les algorithmes sont sur la feuille "Structures hiérarchiques — Arbres" mais uniquement pour information : on n'a pas à savoir les écrire.

Arbre bicolore

Modification du type : ajout d'un champ pour désigner la couleur Opérations d'insertion et de suppression :

 \rightarrow visite des nœuds pour préserver les propriétés des arbres bicolores NON TRAITÉ (aucune indication dans le programme)

Équilibrage des arbres (arbres binaires de recherche)

Préservation des propriétés de l'arbre binaire de recherche

Utile pour équilibrage des arbres

- \rightarrow se rapprocher d'un arbre entier
- \rightarrow éviter les arbres filiformes (car la recherche est en $\mathcal{O}(n)$)

Arbre H-équilibré:

Déséquilibre d'un arbre en a:

$$d\acute{e}s\acute{e}quilibre(a) = h(gauche(a)) - h(droit(a))$$

Un arbre a est H-équilibré si, pour tous ses sous—arbres b on a :

$$d\acute{e}s\acute{e}quilibre(b) \in \{-1, 0, 1\}$$

Un arbre AVL (Adelson – Velskii – Landis en 1962) est un arbre H-équilibré.

$Arbre\ initial:$

Après une rotation gauche, on a

Après une rotation droite, on retrouve l'arbre initial.

Rotation gauche : x va à droite Rotation droite : y va à gauche

Exercice 1:

1. Arbre A_1 a. déséquilibre $(A_1)=3-3=0$, il est donc H-équilibré

b. Après une rotation à droite de centre le nœud 3:

Après la rotation à gauche de centre le nœud 14 :

- 2. Arbre A_2
 - a. $d\acute{e}s\acute{e}quilibre(A_2) = 0$
 - b. Rotation à gauche de centre 5 puis à droite de centre 14

V. Tas et files de priorité

Tas: définition

Un tas est un arbre binaire :

- tel que (condition sur le squelette) : toutes les feuilles sont de profondeur h ou h-1. Pour toute profondeur p < h, il y a exactement 2^p nœuds. Toutes les feuilles (de profondeur h) sont le plus à gauche de l'arbre
- tournoi (condition sur les étiquettes) : l'étiquette d'un nœud est supérieure (inférieure) ou égale à celles de ses fils

Tas max : l'étiquette d'un nœud est supérieure ou égale à celles de ses fils.

Tas min : l'étiquette d'un nœud est inférieure ou égale à celles de ses fils.

Structure bin adaptée pour gérer les files de priorité :

implémentation : (priorité, élément)

la priorité sert de clé

Exercice : construire 3 tas max contenant les nœuds de clés $\{8,10,14,15,16,17,20\}$

Implémentation des tas

Implémentation dans un tableau :

- Chaque nœud correspond à un élément du tableau
- Fils gauche d'un nœud istocké à l'indice 2i
- Fils droit d'un nœud istocké à l'indice 2i+1
- Parent d'un nœud i stocké à l'indice $\left\lfloor \frac{i}{2} \right\rfloor$

Tableau A représentant un tas : deux attributs (algorithmique) :

- A.longueur : nombre d'éléments dans un tableau,
- A.taille : nombre d'éléments dans le tas,
- Le premier élément du tableau A est la racine du tas,
- On a A.longueur \leq A.taille.

Possibilités :

- Stocker la taille du tas à l'indice 0 du tableau lors de la programmation,
- Définir un enregistrement contenant la taille du tas et le tableau.

Exercice 2:

- 1. Au maximum, on a un arbre complet de hauteur h donc $2^{h+1}-1$ nœuds. Au minimum, on a un arbre complet de hauteur h-1 et le nœud le plus à gauche à un fils gauche. On a donc au minimum 2^h nœuds.
- 2.

Cet arbre n'est pas un tas max car 7>6. Il faut donc enlever 7 et 12 :

 $[\ 23,17,14,6,13,10,1,5\]$

La taille de ce tas est 8.

3. On suppose que le nœud stocké en $\lfloor \frac{n}{2} \rfloor + 1$ est un parent. Alors, son fils gauche est stocké en $2\left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right)$. Or

$$\left\lfloor \frac{n}{2} \right\rfloor + 1 > \frac{n}{2} \iff 2\left(\left\lfloor \frac{n}{2} \right\rfloor + 1 \right) > n.$$

Donc, l'indice étant en dehors du tableau, il n'a pas de fils. C'est donc une feuille.

Soit $k \in \left[\!\left[1, \left\lfloor \frac{n}{2} \right\rfloor \right]\!\right]$. $k \times 2 \leqslant 2$ donc k a un fils donc ce n'est pas une feuille.

Opérations sur les tas

Trois opérations

1. Préservation de la propriété des tas max

Reçoit un tableau et un indice du tableau

Modifie le tableau pour qu'il contienne un tas max

2. Construction d'un tas max

Reçoit un tableau

Retourne un tas max

3. Tri par tas

Tri d'un tableau par ordre croissant (décroissant) en utilisant les propriétés d'un tas max (min).

Conservation de la propriété des tas max

(code sur la feuille)

État de l'arbre et du tableau pour l'appel de entasserMax(A, 2) avec

$$A = [20, 15, 17, 34, 5, 7, 12, 10, 16]$$
 ?

Après une itération, on a A = [20, 34, 17, 15, 5, 7, 12, 10, 16].

Après deux itération, on a A = [20, 34, 17, 16, 5, 7, 12, 10, 15].

devient

 $Que\ représente\ i\ pour\ l'arbre\ résultant\ ?$

Le i représente l'indice dans le tableau de l'arbre de la racine du tas max que l'on veut former.

Fonction entasserMax:

- Reçoit un tableau A représentant un tas,
- Reçoit un i,
- \bullet Retourne A modifié.
- entasserMax fait l'hypothèse que les sous arbres gauche et droit du nœud *i* sont des tais mais que le nœud *i* est peut être plus petit que ses enfant.
- entasserMax fait alors descendre le nœud i jusqu'à ce que la propriété de tas max soit rétablie localement.
- Complexité en $\mathcal{O}(\ln n) = \mathcal{O}(h)$

Fonction construireTasMax:

- Construction d'un tas,
- Conversion en tas max,
- Invariant : au début de chaque itération de la boucle pour, chaque nœud $i+1, i+2, \ldots, n$ est la racine d'un tas max,
- Complexité en $T(n) = \mathcal{O}(n \ln n)$.

Tri par tas (heap sort)

On fait remonter la dernière valeur du tableau en l'interchangeant avec la racine du tas (la plus grande valeur). Pour éviter de faire remonter la plus grande valeur à la racine, on diminue la taille du tas. On recrée un tas local en replaçant la valeur maximale à la racine.

Première étape :

Construction du tas max

La première valeur est la racine donc l'élément de clé la plus grande.

On place cet élément en dernier.

Seconde étape:

On rétablit la propriété de tas max sur le tableau privé du dernier élément.

Répétition du processus jusqu'à arriver à un tas de taille 2.

Complexité en $\mathcal{O}(n \ln n)$.

Files de priorité

Exemple d'utilisation très répandue des tas \rightarrow gestion de files de priorités

Objectifs : classer des événements par ordre de priorité

Nœuds \rightarrow association (priorité, élément)

Existence de files de priorités min et de files de priorités max

Exemple d'utilisation de files de priorités

- Ordonnancement des tâches
- Ordinateurs multi threads (programme de spé.)
- Parcours en largeur de graphs (Dijkstra, A^* , Prim, ...)

Opérations sur les files de priorités

Opérations sur les tas $\max \rightarrow$ restent accessibles :

- entasserMax(A, i)
- construireTasMax(A)

Opérations propres aux files max :

- maximumTas(A)
- extraireMaxTas(A)
- augmenterCle(A, i, cle)
- insererTasMax(A, cle)

Opération propres aux files min :

- minimumTas(A)
- extraireMinTas(A)
- diminuerCle(A, i, cle)
- insererTasMin(cle)

Opérations propres aux files de priorité max

• Opération maximumTax(A) :

Entrée : tableau A

Sortie : élément de priorité maximale

Sémantique :

Retourne -1 si le tas est vide

Retourne la racine sinon

Ne supprime pas les éléments du tas

• Opération extraireMaxTas(A):

Entrée : tableau A

Sortie : élément de priorité maximale, tableau modifié

Sémantique :

Retourne -1 si le tas est vide

Retourne la racine et le tableau modifié sinon

Supprime l'élément du tas

Reconstitue la propriété de tas max

- Opération augmenterCle(A, i, cle) (c.f. feuille)
- Opération insérerTasMax(A, cle) (c.f. feuille)