MATH401 Dynamical systems

Exercise set 1 (2022)

1. Consider the differential equation

$$\dot{x} = x - y + \alpha x(x^2 + y^2)$$

$$\dot{y} = x + y + \alpha y(x^2 + y^2).$$

- (a) Verify that (x, y) = (0, 0) is the only fixed point.
- (b) Convert the system to polar coordinates, solve it and sketch solutions in the *xy*-plane.
- 2. For the Lorenz equations

$$\begin{vmatrix} \dot{x} &= \sigma (y - x) \\ \dot{y} &= r x - x z - y \\ \dot{z} &= x y - b z \end{vmatrix} = \mathbf{F}(x, y, z)$$

with $\sigma = 10$ and b = 8/3. Calculate:

- (a) the Jacobian matrix $D\mathbf{F}(0,0,0)$;
- (b) the eigenvectors of the given matrix, organised according to whether the real part of the eigenvalue is negative or positive (this may depend on r);
- (c) show that if $x=\sqrt{\frac{8}{3}(r-1)}$ then (x,x,r-1) and (-x,-x,r-1) are fixed points for r>1;
- (d) now calculate $D\mathbf{F}$ at this other fixed points and show that they have a purely imaginary pair of eigenvalues at $r_H = \frac{470}{19}$. What kind of bifurcation occurs here?
- **3**. Verify that $\varphi_t(x) = \frac{xe^t}{xe^t x + 1}$ is a flow for $x \in [0, 1]$ and find its associated vector field. *Is it a flow on* \mathbb{R} ?
- 4. A general FitzHugh-Nagumo equation can be written as

$$\dot{v} = F(v) - w - w_0$$

$$\dot{w} = \epsilon(v - \gamma w - v_0)$$

where w_0, v_0, γ are constants and ϵ is a small parameter.

Show that if $v_0=w_0=\gamma=0$ and $F(v)=v-v^3$ then $x=\sqrt{3}v$ satisfies the van der Pol oscillator equation

$$\ddot{x} - \mu (1 - x^2)\dot{x} + x = 0,$$

provided that time is scaled approriately ($au=c\,t$ for a suitable choice of c) and $\mu=\mu(\epsilon)$.

5. If A is a $d \times d$ matrix with eigenvalues $\{\lambda_1, \dots, \lambda_d\}$, show that the linear flow $\varphi_t(\mathbf{x}) = \exp(At) \mathbf{x}$ has eigenvalues $\{e^{\lambda_1 t}, \dots, e^{\lambda_d t}\}$. Deduce that every linear flow is orientation preserving.

Tutorial (Februrary 24, 2022)

Work in groups on problems 1-3 during the tutorial, and problems 4,5 afterwards.

- **6**. Consider the map $x_{n+1} = \lambda x_n$ where $x_n \in \mathbb{R}$, and λ is some constant. Write down the general solution for x_n in terms of x_0 . Investigate the long-term dependence (ie. $n \to \pm \infty$) of the behaviour of the map on the value of λ . [Hint: the values $\lambda = \pm 1$ are important].
- 7. Redo question 6 with the two parameter family of maps $x_{n+1} = \lambda x_n + \mu$, [Hints: (i) if $\lambda \neq 1$, consider the change of variables: $x(y) = y + \mu/(1 \lambda)$; (ii) if $\lambda = 1$, what happens?]
- **8**. Let f(x) = 3x(1-x). Try using the Newton-Raphson method to find a fixed point of f, starting with various initial conditions $x_0 \in [0.1, 0.6]$. How rapid is the convergence? Now try to find a period–2 point of f. What is happening, and why?
- **9**. Let f(x) = r x(1-x) be a logistic map on the interval I = [0,1].
 - (a) Show that 0 is an attracting fixed point when $r \in (0,1)$.
 - (b) Show that $p:=\frac{r-1}{r}$ is a fixed point, and that it is attracting for $r\in(1,3)$.
 - (c) Find a formula for the fixed points of $f^2=f\circ f$, and determine the range(s) of r for which they are attracting.
- **10**. Let x be a periodic point of $f: X \to X$. Is the period unique?
- **11**. Let f be the rigid rotation of the unit circle S^1 given by $f(\theta) = \theta + \omega \pmod{1}$.
 - (a) Show that f has periodic points if and only if ω is rational. [Recall: ω is said to be *rational* if there exist integers p,q such that $\omega=p/q$, and *irrational* otherwise.]
 - (b) For each of $\omega=1/5,2/7,22/37,1/\sqrt{2},\frac{\sqrt{5}-1}{2}$ compute the first 50 terms of the orbit of 0 and display them on a circle.
- **12**. Which of the following transformations are invertible? Write down formulae for the inverse(s): f^{-1}
 - (a) $f(x_n) = \lambda x_n, \lambda \in \mathbb{R}, x_n \in \mathbb{R};$
 - (b) $f(x_n) = \lambda x_n + \mu, \lambda \in \mathbb{R}, x_n \in \mathbb{R};$
 - (c) $f(x_n) = \lambda x_n(1 x_n), \lambda \in [0, 4], x_n \in \mathbb{R};$
 - (d) $f(x_n) = 2 x_n \pmod{1}, x_n \in \mathbb{R};$
 - (e) $f(x_n, y_n) = (1 + y_n a x_n^2, b x_n), (x_n, y_n) \in \mathbb{R}^2$.
- **13**. Sketch the graph of $f^n(x)$ on the unit interval [0,1] for n=1,2,3, where f(x)=4x(1-x). In general, how many periodic points of period n or less does f have?
- 14. Repeat Exercise 13 for the "2X" map

$$x_{n+1} := \begin{cases} 2x_n, & 0 \le x_n \le \frac{1}{2}, \\ 2x_n - 1, & \frac{1}{2} < x_n \le 1. \end{cases}$$

Tutorial (March 4, 2022)

Attempt all problems. We will discuss question 9 and the proof of Theorem 1 from the notes in the tutorial. There will be questions for group discussion - please bring an internet capable device!