MATHEMATICS

EXERCISE 8

- .1. Four options are given against each statement. Encircle the correct option.
- Which of the following expressions is often related to inductive reasoning?
 - (a) based on repeated experiments
 - (b) if and only if statements
 - (c) statement is proven by a theorem
 - (d) based on general principles
- ii) Which of the following sentences describe deductive reasoning?
 - (a) general conclusions from a limited number of observations
 - (b) based on repeated experiments
 - (c) based on units of information that are accurate
 - (d) draw conclusion from well-known facts
- (iii) Which one of the following statements is true?
 - (a) The set of integers is finite
 - (b) The sum of the interior angles of any quadrilateral is always 180°
 - (c) $\frac{22}{7} \notin Q'$
 - (d) All isosceles triangles are equilateral triangles

(iv)	Which of the for represent the negation burning"?	llowing statements is the best to tion of the statement "The stove i
	(a) the stove is not	burning.
	(b) the stove is dim	
	(c) the stove is turn	
	(d) it is both burnir	
(v)		two statements p and q is true when:
(.,	(a) both p and q are	
	(b) both p and q are	
	(c) only q is true.	
	(d) only p is true	
(vi)		garded as false only when:
()		ue and consequent is false.
		ue and antecedent is false.
	(c) antecedent is tru	
	(d) consequent is fa	
(vii)	Contrapositive of q	
	(a) $q \rightarrow \sim p$	(b) $\sim q \rightarrow p$
	(c) $\sim p \rightarrow \sim q$	$(d) \sim q \rightarrow \sim p$
(viii)	The statement "Eve	ery integer greater than 2 is a sum of
	two prime numbers	" is:
	(a) theorem	(b) conjecture
(in)	(c) axiom	(d) postulates
(ix)	any two points" is:	straight line can be drawn between
	(a) theorem	(b) conjecture
	(c) axiom	(d) logic
(x)	The statement "The triangle is 180°" is:	ne sum of the interior angle of a
	(a) converse	(b) theorem
	(c) axiom	(d) conditional

Answers:

(i)	(a)	(ii)	(d)	(iii)	(c)	(iv)	(a)	(v)	(b)
(vi)	(a)	(vii)	(c)	(viii)	(b)	(ix)	(c)	(x)	(b)

- Q.2. Write the converse, inverse and contrapositive of the following conditionals:
- (i) $\sim p \rightarrow q$
- Sol. Converse is $q \to \sim p$ Inverse is $p \to \sim q$ Contrapositive is $\sim q \to p$
- (ii) $q \rightarrow p$
- Sol. Converse is $p \to q$ Inverse is $\sim q \to \sim p$ Contrapositive is $\sim p \to \sim q$
- (iii) $\sim p \rightarrow \sim q$
- Sol. Converse is $\sim q \rightarrow \sim p$ Inverse is $p \rightarrow q$ Contrapositive is $q \rightarrow p$
- (iv) $\sim q \rightarrow \sim p$
- Sol. Converse is $\sim p \rightarrow \sim q$ Inverse is $q \rightarrow p$ Contrapositive is $p \rightarrow q$
- Q.3. Write the truth table of the following:
- (i) $\sim (p \vee q) \vee (\sim q)$

Sol.

p	q	~ q	pvq	~(p ∨ q)	$\sim (p \vee q) \vee (\sim q)$
T	T	F	T	F	F
T	F	T	T	F	T
F	T	F	T	F	F
F	F	T	F	T	T

(ii)	~	(~	a	V	~	nì
(ч	v		PI

Sol.

p	9	- q	~ q	~q ∨ ~p	~(~q v~p)
T	T	F	F	F	T
T	F	F	T	T	F
F	T	T	F	T	F
F	F	T	T	T	F

(iii)
$$(p \lor q) \leftrightarrow (p \land q)$$

Sol.

p	q	pvq	$p \wedge q$	$(p \lor q) \leftrightarrow (p \land q)$
T	T	T	T	T
T	F	T	F	F
F	T	T	F	F
F	F	F	F	T

- Q.4. Differentiate between a mathematical statement and its proof. Given two examples.
- Sol. A mathematical statement is a claim that can be true or false while a proof is the method used to verify whether the statement is true.

A mathematical statement is a sentence which is either true or false. It may contain words and symbols. For example, "the square root of '4 is 5'. Is a mathematical statement which is of course false.

- Q.5. What is the difference between an axiom and a theorem? Give examples of each.
- Sol. Axiom: A mathematical statement which we believe to be true without any evidence or requiring any proof.

Theorem: A theorem is a mathematical statement that has been proved true based on previously known facts. For example, the following statements are theorem.

- The sum of the interior angles of a quadrilateral is 360°.
- The sum of interior angles of a polygon is $(n-2) \times 180^{\circ}$

Examples of Axiom:

- Through a given point, there pass infinitely many lines.
- A straight line can be drawn between any two points.
- Q.6. What is the important of logical reasoning in mathematical proofs? Give an example to illustrate your point.
- Sol. Logical reasoning is a fundamental part of mathematical thinking and is essential for proving theorem and other mathematical facts.

Logical reasoning is used to prove mathematical theorems based on a set of premises called axioms.

For example, Peano arithmetic uses a small set of axioms to infer the essential properties of natural numbers.

- Q.7. Indicate whether it is an axiom, conjecture or theorem and explain your reasoning.
- (i) There is exactly one straight line through any two points.
- Sol. "Through any two points, there is exactly one straight line". The is Euclid Axiom.
- (ii) Every even number greater than 2 can be written as the sum of two prime numbers."
- Sol. Every even number greater than 2 can be written as the sum of two prime numbers. This is conjecture.
- (iii) The sum of the angles in a triangle is 180°.
- Sol. The sum of angles in a triangle is 180°. This is theorem.
- Q.8. Formulate simple deductive proofs for each of the following algebraic expressions, prove that the L.H.S is equal to the R.H.S:
- (i) Prove that $(x-4)^2 + 9 = x^2 8x + 25$
- Sol. L.H.S = $(x-4)^2 + 9$

Expand
$$(x - 4)^2$$
 as
= $(x - 4)(x - 4) + 9$
= $x(x - 4) - 4(x - 4) + 9$
= $x^2 - 4x - 4x + 16 + 9$

Add like terms

$$= x^2 - 8x + 25$$

Conclusion:

The L.H.S is exactly the same as the R.H.S thus, we have shown that:

$$(x-4)^2 + 9 = x^2 - 8x + 25$$

This completes the proof.

(ii) Prove that
$$(x + 1)^2 - (x - 1)^2 = 4x$$

Sol. L.H.S =
$$(x + 1)^2 - (x - 1)^2$$

= $(x + 1)(x + 1) - (x - 1)(x - 1)$
= $x(x + 1) + 1(x + 1) - [x(x - 1) - 1(x - 1)]$
= $x^2 + x + x + 1 - (x^2 - x - x + 1)$

Adding like terms

$$= x^{2} + 2x + 1 - (x^{2} - 2x + 1)$$
$$= x^{2} + 2x + 1 - x^{2} + 2x - 1$$

Adding like terms

$$= x^{2} - x^{2} + 2x + 2x + 1 - 1$$

$$= 0x^{2} + 4x + 0$$

$$= 4x$$

Conclusion:

The L.H.S is exactly the same as the R.H.S

Thus we have shown that

$$(x+1)^2 - (x-1)^2 = 4x$$

This completes the proof.

(iii) Prove that
$$(x + 5)^2 - (x - 5)^2 = 20x$$

Sol. L.H.S =
$$(x+5)^2 - (x-5)^2$$

Expand both terms

$$= (x+5)(x+5) - (x-5)(x-5)$$

$$= x(x+5) + 5(x+5) - [x(x-5) - 5(x-5)]$$

$$= x^2 + 5x + 5x + 25 - (x^2 - 5x - 5x + 25)$$

Adding like terms

$$= x^{2} + 10x + 25 - (x^{2} - 10x + 25)$$
$$= x^{2} + 10x + 25 - x^{2} + 10x - 25$$

Adding like terms

$$= x^{2} - x^{2} + 10x + 10x + 25 - 25$$

$$= 0x^{2} + 20x + 0$$

$$= 20x$$

Conclusion:

The L.H.S is exactly the same as the R.H.S.

Thus we have shown that

$$(x+5)^2 - (x-5)^2 = 20x$$

This completes the proof.

Q.9. Prove the following by justifying each step:

(i)
$$\frac{4+16x}{4}=1+4x$$

Sol. L.H.S =
$$\frac{4+16x}{4}$$

= $\frac{1}{4}$. (4 + 16x) (Multiplication of fractions)
= $\frac{1}{4}$. 4(1 + 4x) (Distributive property)
= 1. (1 + 4x) (Multiplicative inverse)
= 1 + 4x (Multiplicative identity)

(ii)
$$\frac{6x^2 + 18x}{3x^2 - 9} = \frac{2x}{x - 3}$$

= R.H.S

Sol. L.H.S =
$$\frac{6x^2 + 18x}{3x^2 - 9}$$

$$= \frac{6x (x + 3)}{3(x^2 - 3)}$$
 (6x is common)
= $\frac{2x(x + 3)}{x^2 - 3} \neq \frac{2x}{x - 3}$

(iii)
$$\frac{x^2 + 7x + 10}{x^2 - 3x - 9} = \frac{x + 5}{x - 5}$$

Sol. L.H.S =
$$\frac{x^2 + 7x + 10}{x^2 - 3x - 9}$$
 (Factorizing)
= $\frac{x(x+2) + 5(x+2)}{x^2 - 3x - 9}$ (Distributive property)
= $\frac{(x+2)(x+5)}{x^2 - 3x - 9} \neq \frac{x+5}{x-5}$

- Q.10. Suppose x is an integer. Then x is odd if and only if 9x + 4 is odd.
- Sol. Let x be odd.

By definition, an odd integer can be written as

$$x = 2k + 1$$
 (for some integer)

Replace x by 2k + 1 in 9x + 4

$$9x + 4 = 9(2k + 1) + 4$$

$$= 18k + 9 + 4$$

$$= 18k + 13$$

$$= 18k + 12 + 1$$

$$= 2(9k + 6) + 1$$
(1)

Since 2(9k+6)+1 is in the form 2m+1. So 9x+4 is odd.

Conversely,

If 9x + 4 is odd, then x is odd.

$$9x + 4 = 2m + 1$$

 $9x = 2m + 1 - 4$
 $9x = 2m - 3$
 $9x = 2\left(m - \frac{3}{2}\right)$

Since 9x is even and 9 is odd. x must be odd (because even divided by odd yields an odd).

Conclusion:

x is odd if and only if 9x + 4 is odd.

- Q.11. Suppose x is an integer. If x is odd, then 7x + 5 is even.
- Sol. Given that x is an odd integer.

As we know that

Odd is written by definition as

x = 2k + 1 (for some integer k)

Replace x by 2k + 1 in 7x + 5.

So,
$$7x + 5 = 7(2k + 1) + 5$$

= $14k + 7 + 5$
= $14k + 12$
= $2(7k + 6)$

As 2(7k + 6) is divisible by 2.

So, 7x + 5 is even.

Conclusion:

If x is odd, then 7x + 5 is even.

- Q.12. Prove the following statements
- (a) If x is an odd integer, then show that $x^2 4x + 6$ is odd.
- Sol. Let x is odd (given)

By definition

$$x = 2k + 1$$
 (for some integer)

Replace x by 2k + 1 in

$$x^2 - 4x + 6$$

So,

$$x^{2}-4x+6 = (2k+1)^{2}-4(2k+1)+6$$

$$= 4k^{2}+4k+1-8k-4+6$$

$$= 4k^{2}-4k+3$$

$$= 2(2k^{2}-2)+3$$

As $2(2k^2-2)$ is even.

If we add 3 to it, it will become an odd.

Conclusion:

If x is an odd integer, then $x^2 - 4x + 6$ is odd.

- (b) If x is an even integer then show that $x^2 + 2x + 4$ is even.
- Sol. Let x be an even integer (given) then
 By definition

$$x = 2k$$
 (for some integer k)

Replace x by 2k in
$$x^2 + 2x + 4$$

 $x^2 + 2x + 4 = (2k)^2 + 2(2k) + 4$
 $= 4k^2 + 4k + 4$
 $= 2(2k^2 + 2k + 2)$

As $2(2k^2 + 2k + 2)$ is divisible by 2.

So, expression is even.

Conclusion:

If x is an even integer, then $x^2 + 2x + 4$ is even.

- Q.13. Prove that for any two non-empty sets A and B, $(A \cap B)' = A' \cup B'$.
- Sol. L.H.S = $(A \cap B)'$

Let $x \in (A \cap B)'$

By definition

 \Rightarrow $x \notin A \text{ and } x \notin B$

 \Rightarrow $x \in A' \text{ or } x \in B'$

 \Rightarrow $x \in A' \cup B'$

 $\Rightarrow (A \cap B)' \subseteq A' \cup B' \qquad \dots (1)$

Now R.H.S

Let $x \in A' \cup B'$

 \Rightarrow $x \in A'$ or $x \in B'$

$$x \notin A$$
 and $x \notin B$

$$\Rightarrow$$
 $x \notin A \cap B$

$$\Rightarrow$$
 $x \in (A \cap B)'$

$$\Rightarrow A' \cup B' \subseteq (A \cap B)'$$
 ...(2)

From (1) and (2) we get

$$(A \cap B)' = A' \cup B'$$

Similarly, we can prove that

$$(A \cup B)' = A' \cap B'$$

- Q.14. If x and y are positive real numbers and $x^2 < y^2$ then x < y.
- Sol. Since x and y are positive real numbers and $x^2 < y^2$ Taking square root of both sides.

$$\sqrt{x^2} < \sqrt{y^2}$$
$$x < y$$

- Q.15. The sum of the interior angles of a triangle is 180°.
- Sol. Draw a triangle PQR

Draw a line $\overrightarrow{AB} \parallel QR$ (construction)

$$\angle 3 + \angle 4 + \angle 5 = 180^{\circ}$$
 (straight angle)

$$\angle 4 = \angle 1$$
 (alternate interior angles)

$$\angle 2 = \angle 5$$
 (alternate interior angles)

So,
$$\angle 1 + \angle 2 + \angle 3 = 180^{\circ}$$

So proved.

Q.16. If a, b and c are non-zero real numbers, prove that:

(a)
$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow ad = bc$$

Sol. Suppose
$$\frac{a}{b} = \frac{c}{d}$$

We will prove that ad = bc

Then
$$\frac{a}{b} = \frac{c}{d}$$
 (Given)

By Golden rule of fraction.

$$\frac{ad}{bd} = \frac{bc}{bd}$$

ad
$$\frac{1}{bd} = bc \cdot \frac{1}{bd}$$

$$\left(ad.\frac{1}{bd}\right).bd = \left(bc.\frac{1}{bd}\right).bd$$
 (: Multiplication property)

ad
$$\left(\frac{1}{bd}, bd\right) = bc \cdot \left(\frac{1}{bd}, bd\right)$$
 (: associative property)

$$ad = bc$$

Now suppose that

we shall prove that

$$\frac{a}{b} = \frac{c}{d}$$
. Then

ad . 1 = bc . 1 (: Multiplicative inverse property)

ad,
$$\left(\frac{1}{bd} \cdot bd\right) = bc \cdot \left(\frac{1}{bd} \cdot bd\right)$$

(: Multiplicative inverse property)

ad
$$\frac{1}{bc} = bc \cdot \frac{1}{bd}$$

(:: Cancellation property of multiplication)

$$\frac{ad}{bd} = \frac{bc}{bd} \quad (\because \text{ Multiplication property})$$

$$\frac{a}{b} = \frac{c}{d} \quad (\text{Golden rule of fraction})$$
So
$$\frac{a}{b} = \frac{c}{d} \Leftrightarrow \text{ad} = bc$$
(b)
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$$
Sol. L.H.S =
$$\left(a \cdot \frac{1}{b}\right) \cdot \left(\frac{1}{d} \cdot c\right) \quad (\because \text{ Multiplication property})$$

$$= a \cdot \left[\frac{1}{b} \cdot \left(\frac{1}{d} \cdot c\right)\right] \quad (\because \text{ Associative property})$$

$$= a \cdot \left[\left(\frac{1}{b} \cdot \frac{1}{d}\right) \cdot c\right] \quad (\because \text{ Multiplication property})$$

$$= a \cdot \left[\frac{1}{bd} \cdot c\right] \quad (\because \text{ Multiplication property})$$

$$= a \cdot \frac{c}{bd} \qquad (\because \text{ Multiplication property})$$

$$= R.H.S$$
(c)
$$\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b}$$
Sol. L.H.S =
$$\frac{a}{b} + \frac{c}{d}$$

$$= a \cdot \frac{1}{b} + c \cdot \frac{1}{b} \quad (\because \text{ Multiplication property})$$

$$= (a+b) \cdot \frac{1}{b} \quad (\because \text{ Distributive property})$$

$$= \frac{a+c}{b} \qquad (\because \text{ Multiplication property})$$