FIG. 1A Input file Fbh18903FL.seq; Output File 18903.trans Sequence length 1983 CCTTTAGCCAATTCGGCCGAGGCCTCCCGCCCCAGTACTTGCTGGCAGGGATTAAGAGCAGATAAAAGTGTGCTCACAC

15	35 105	55 165	75	95 285	115 345	135 405	155 465	175 525
i E	ပ ညီ	K AAA	TTA	д ССС	s TCC	TIC	CAG	TAC
႕ 닭	U	₽ ACC	F	A CCC	G.A.G.	G 78	۳ ک	s TCG
က ညီ	₽ ACC	V GTC	> GIC	GA.	O. P.	r CIG	GAT	S TCT
A D		v GTG	-	₽ 200	G C	¥ TGG	ა მცვ	₽ GCT
i E		CA.A.		G. P	၁ ညီ	K AAG	d SS	₽ GCT
or c	¥ E	CCT	ရ ပိပ္ပ	gC.	ი გმ	TAC	₽ GCG	စ ညီ
F &	ပည္	R AGG	ACA H	TIL	G P	ය විවි	ස වි	orge
က္ခ	Gig	R AAG	K AAG	R AGG	අ	GAA	₽	I ATC
a S	I ATT	₽ ACC	უ ე	CHC	Y	ж 260	မှ ညီ	F
IIG.	¥ TGG	CAC	org org	ATC	₽ PCC	₽ Acg	₽	4
> GIG	R AGG	TIG	H	GGT.	₽ ACC	S AGC	Y TAC	စ ဗ္ဗ
₽ Ç	ATG	₹	ATG	CIA	₽ GCT	orc STC	V GTG	ი გე
နှင့်	S AGC	GGT	CAG CAG	CCT	D GAT	Y TAC	N AAC	d S
4 S	¥ TGG	TTG	K AAA	CCT	R AGA	ATG	CIG	F
M ATG	ဗ	∢ ၁၁	ი გე ნ	r Aga	ATC	s TCG	Y TAC	W
ACC	₹ ÿ	T ACG	ું કુ	S ဦင်	6GA	≰ ည	cig r	v GTC
GGCI	ი ცე	CAG	GR	TTC	A AAA	CIG	ng Tg	M ATG
ACTGTAGACACGGCTACC	gC _A	A 606	₽ CC	မှ သ	¥ TGG	o ₽	σ .Β .	V GTG
GTAG	ACA	M ATG	ი გეგ	V GTC	P CCC	ა ეც	E GAG	d S
ACT	P CCC	CIG	Y	ତ ଜୟୁ	E GAG	W	s AGC	CIG

1/24

ADDOLUNY DELICOR

FIG. 1B

195 585 215 645 235 705 255 765 275 825 295 885 315 945 335 1005 355 1065 375 1125 395 TTG GCC GCC GAG AAA GTG GTG CTG GTG TIT CTG CAG CAC AGG CTC CIG GGA GAC CCA L M M CTG ATG ATG A S G : L F H R A I S Q S G T A L F GCC TCG GGT CTC TTC CAI CGG GCC ATT TCC CAG AGT GGC ACC GCG TTA TTC 9 9 G T K IIG Д GAC CCG GAA CIG GCG ATG AGA CCT CIG CTG GCT щ д GTC AAC AAC 999 ¥ ø GAC н Ω O Д 999 GGC ATC TIC GGC TIC CIG AGC ACG GAC GAC AGC CAC GCG CGC GGG AAC IGG GTG ACC CTG TTC GGC CAG TCG GGG GCC ATG AGC ATC TCA GGA CIT TIC AIC ACT AGT AAC CCA CIG AAA GIG GCC AAG AAG GIT GCC CAC GAT N S FT Q I L V N C L R A L S AAC AGC ACA CAG AIC CIG GIA AAC TGC CIG AGG GCA CIA ICA GTG TCC AAC AAG ATG AGA TTC CTC CAA CTG AAC TTC CAG AGA Д Ö Ö = F N W L L P Y I M K F P L N R Q TIC AAI IGG CIC IIG CCI IAI AIC AIG AAG IIC CCG CIA AAC CGG CAG œ > Q M A A L R W V Q E N I A A F CAG ATG GCG GCT CTG CGC TGG GTG CAG GAG AAC ATC GCA GCC TTC Д z GGT GTG GTG ATC CCA CTA GGT Ø Ø O Ö O н > Ŀ н T Q G K V S S V P Y L ACC CAG GGG AAG GTT TCA TCT GTG CCC TAC CTT æ O) × z ž × н н R. 4 œ Ø Ö > P V V D CCT GTG GTG GAT н × А Ø 14 > Δ ß н 4 Oi Д × Д H ß ტ z ATT ATC TGG TCC ATG AGC SNIK S · W [24 . ß н н 14 Н S - W. × GAC > н TCI CGT PA CIA н CAC CIG > 124 = H ည္ဟ GGA AAT ပ္ပ AAC STG ATG SEC z GAG SAC ĘĞ AGA IGC SAA G ß SIG > ы

FIG. 1C

	415	1245	435	1305	455	1365	475	1425	495	1485	515	1545	53.3	1605	555	1665	575	1725	585	1755
	M	GAG	×	ATG	0	CAG	ш	CAC	×	TAC	Ø	AGC	z	AAT	H	ACA	v.	īcī		
	×	AAG	×	AAG	н	CIG	ш	CAC	×	ATG	н	CII	U	999	H	ACC	o	CAG		
	H	ACC	×	ŢĞĞ	H	ACA	M	GAG	闰	GAG	4	GCA	А	GAT	<u>[24</u>	II	×	TAC		
	н	ATC	Д	GAC	K	ည္ဟ	Ē	TTI	Δ	GAT	×	AAG	×	AAT	Д	GAT	н	CTG		
	z	AAT	H	CAT	Ħ	TAT	M	GAA	ტ	999	国	GAG	Д	ပ္ပ	н	CIG	Ø	AGT		
	н	TIG	Ħ	GAG	>	GTG	×	TAT	m	CAT	×	AAG	z	AAC	O)	CAG	Σ	ATG		
		CIG	z	AAT	Ē	TIC	н	CIG	Д	GAC	O	GGI	O	GGA	н	CIG	Z	IGG		
)	H	ACC	>	GIC	H	ACT	Ħ	TAC	ø	GCA	Σ	ATG	H	ACA	×	TAC	Œ	TII		
-	ĸ		z	AAT	Ø	ပ္ပ	>	GIC	O	999	Ø	JC JC	ø	၁၅၁	×	AAG	ø	GCT		
)	H	ACC	Ω	GAC	Q	GAT	д	CCI	А	GAT	н	CII	4	ပ္ပ	Ħ	GAA	Σ	ATG		
-	Ø		н	CIG	O)	CAA	н	CIC	H	ACT	O	ည္သ	Ē4	TI	Ω	GAT	×	AAG	*	TAA
	×	TGG	×		>	GII	Ö	ပ္ပမ္မ	œ	ပ္ပင္ပ	H	ACA	z	AAC	×	AAG	×	AAG	Ēų	HC
	н	-	Ħ		н	ATA	ø	ညည	щ	SSS	4	ပ္ပ	ø	ည္သ	z	AAC	Ħ	GAG	O)	CAA
	Σ		国	_	Д		Ω	GAT	×	AAA	ſω	TIC	×	1GG	×	TAC	×	AAG	œ	AGG
	×		>		×		æ	CGA	>	GIC	Д	ວິ່	×	TAC	ď	5	н	CIC	ø	CAG
	H		>	GIG	×	ATG	m	CAC	н	ATC	ŋ	ပ္ပ	×	AAA	Д	CCA	×	AAG	×	AAG
	н		н	Ę	æ	CGI	ы	TAC	н	ATA	O	999	×	ATG	×	TGG	×	ATG	网	GAG
	H		Д		z	-	н	CAC	O	GGA	E 4	LLI	×	ATG	υ	ည္	ŋ	ည္သ	щ	CCI
	M		>	-	ĸ	-	¥	GCT	œ	CGT	н	CIC	ON.	CAG	Д	ပ္ပ	>	GTG	ρ¢	AGA
	×	AAG	Oł	CAG	н	CIA	H	ACT	¥	ECE.	Ēυ	TIC	н	CEC	н	Ç	æ	AGA	Oi	CAA

3/24

GGGTGGCTATGCAGGAAGGAGCCAAAGAGGGGTTTGCCCCCACCATCCAGGCCCTGGGGAGACTAGCCATGGACATACC

TGGGGACAAGAGTTCTACCCAAGGGCGAATTCGTTTAAACCTGCAGGACTAG

FIG. 3A

Protein Family / Domain Matches, HMMer version 2

HAMER is freely distributed under the GNU General Public License (GPL). Scores for sequence family classification (score includes all domains): --- -----4.1e-164 1 /prod/ddm/wspace/orfanal/oa-script.6214.seq E-value N score E-value -----Copyright (C) 1992-1998 Washington University School of Medicine /prod/ddm/seqanal/PFAM/pfam6.4/Pfam Score 558.6 ---hmmpfam - search a single seq against HMM database 1 612 [] hmm-f hmm-t -----Searching for complete domains in PFAM 25 569 .. Domain seq-f seq-t ----- ----- ------COesterase Carboxylesterase HMMER 2.1.1 (Dec 1998) Description Sequence file: Query: Fbh18903FL Parsed for domains: COesterase --------------

5/24

COesterase: domain 1 of 1, from 25 to 569: score 558.6, E = 4.1e-164 RWILCWSLTLCLMAQTALGALHT---KRPQVVTKY---GTLQGKQMH 65 *->mvllllfLllllliavlaaakaspedpllVatnnVlcGkvrGvnek ++ V t++ G++ G++ +1+ +L 1 1 ++ +1+a+++ Alignments of top-scoring domains:

558.6 4.1e-164

VGKT--PIQVFLGVPFSRPPLGILRFAPPEP-PEPWKGIRDATTYPPGCL 112 tdngeqsvysFlGIPYAePPVGnLRFkaPqPYkepWsdvldAtkyppsCl ++ +F1G+P+ PP+G LRF +P+P +epW++++dAt+ypp C1 99

FIG. 3B

t + A 150	ר נ 195	2 243	J 285	334	379	418	
QdddgfslsdLKvalkmlslgwnklvg:lklssDCLYLNVytPknt Q + +g+ Q-ESWGQLASMYVSTRErykwLRFSEDCLYLNVYAPRRA	kpnskl PVmVwIhGGGFmfGsghslplslYdgeslaregnVIvVsiNYRL + + + 1PVmVw +GG+F +G++ s+Y g+ la+++V++V ++ RL PGDPQLPVMVWFPGGAFIVGAASSYEGSDLAAREKVVIVPIQHRL	GplGFLstgddklpgsGNyGLlDQrlALkWyddNlaaFGGDPnsVTifGe G++GFLst+d+++ GN+GLlDQ +AL+WYd+NTaaFGGDP++VT+fG+ GIFGFLSTDDSHARGNWGLLDQMAALRWYQENIAAFGGDPGNVTLFGQ	SAGaaSVsllllsngGDNppsskgirhRALsqSGsalspwaigsesnarg SAGa+S+s 1++s p++ gLFhRALsqSG+al +i+s+ + SAGAWSISGIAMSPIA-SSLERKALSQSGTALFRETISNPLK	rakelarilGCnetssselldCLRsksaeeLleatrsfllfeyvpflplf ak++a 1+GCn++s 1+ CLR s + + + + + f + + f + + VAKKVAHLAGCNHNSTQLIVNCLRALSGTKVMRVSNK-MRFLQLNFQRDP	1argPvvDGdDapeafipedPeelikeGkfadvPyliGvtkdEGgy ++ + +PvvDG+ +ip+dP+ 1+ +Gk + vPyl Gv++ E+ + EeiiwSNSPVVDGVVIPDDPIVLITQGKVSSVPYLLGVNNLEFNW	faamlinasskgedelkketnpdvwleilkylifyssealnikdMddiad ++++ +++ + + ket ++ 1+ 11+ ++ + ilpyimkrpink-Qamrkeritk-Miwstrmilan-IrkeQvp	kvlekYpgdvddfsvesrkpnlqdmltDllFkcptrvaadlhakhggsPv v e+Y++ v ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ ++ + Pv TAXMPWT DAXAMERIA BANDAR FARAMER FA
113	151	196	244	286	335	380	419
18903	18903	18903	18903	18903	18903	18903	18903

FIG. 3C

YLYEFEHHAR-----GIIVKPRTDGADHGDEMYFLFGGPFAIG-LS-- 507 YaYvfdhpasfgigQflakrvdpefggavHgdEiffvFgnpllkeqlyka teeeeksssktmmnywanFAktGnPnngtsnglvvWpkytseeqkYslli e+++s +mm+ywanFA+tGnP n++ +1+ Wp y+++e +1+ + v+p+++ga+HgdE++f+Fg p+ ++ 1 Y+Y+f h+a+ 468 18903

MGKEKALS-LOMMKYWANFARTGNP-NDG--NLPCWPRYNKDEK--YLQL 551 508

llttitaqklkardprkvlcnfw<-* DFTTRVGMKLKEKK-----MAFW +tt +k1k+++ 18903

Searching for complete domains in SMART

8/24

FIG. 4A

GAP of: FrGcgManager 76 IOA81nWg check: 5132 from: 1 to: 1983 Fbh18903FL - Import - vector trimmed to: FrGcgManager_76_JOA3WXZ1_ check: 1319 from: 1 to: 2456 z34105 in Patent Nucleotide Symbol comparison table: /ddm local/gcg/gcg 9.1/ 1/gcgcore/data/rundata/nwsgapdna.cmp CompCheck: 8760 Gap Weight: 12 Average Match: 10.000 Length Weight: 4 Average Mismatch: 0.000 Ouality: 13796 Length: 2746 6.957 Ratio: Gaps: 14 Percent Similarity: 92.617 Percent Identity: 92.617 Match display thresholds for the alignment(s): = IDENTITY : = 5 . = 1 FrGcgManager_76_IOA81nWg x FrGcgManager 76 JOA3WXZ1 COE-2 Z34105 101 CATTTCGCCTTGCTGACGGCGTCGAGCCCTGGCCAGACATGTCCACAGGG 150 4 TTAGCCAATTCGGCCGAGGCCTCCCGCCCCAGTA.CTTGCTGGCAGGGAT 52 11 111 1 1 11 11 11 151 TTCTCCTTCGGGTCCGGGACTCTGGGCTCCACCACCGTGGCCGCCGGCGG 200 53 TAAGAGCAGA.TAAAAGTGTGCTCACACACTGTAGACACGGCTACCATGC 101 201 GACCAGCACAGGCGGCGTTTTCTCCTTCGGAACGGGAACGTCTAGCAACC 250 102 CATC.....CACAGTGTTGCCATCCACAGTGTTGCCATCACTCCTGC. 143 251 CTTCTGTGGGGCTCAATTTTGGAAATCTTGGAAGTACTTCAACTCCAGCA 300 144 .CCACAGCAGGAGCT..GGCTGGAGCATGAGGTGGATTCTGTG..CTGGA 188 - 11

301 ACTACATCTGCTCCTTCAAGTGGTTTTGGAACCGGGCTCTTTGGATCTAA 350

9/24 FIG. 4B

351	GCCTCACCCTCTGCCTCATGGCGCAGACGGCCTTGGGGTGCCTTGCAC	399
236	ACCAAGAGGCCTCAAGTGGTCACCAAATATGGAACCCTGCAAGGAAAACA	285
400	ACCAAGAGGCCTCAAGTGGTCACCAAATATGGAACCCTGCAAGGAAAACA	449
	GATGCATGTGGGGAAGACACCCATCCAAGTCTTTTTAGGAGTCCCCTTCT	335
	GATGCATGTGGGGAAGACACCCATCCAAGTCTTTTTAGGAGTCCCCTTCT	499
	CCAGACTCCTCTAGGTATCCTCAGGTTTGCACCTCCAGAACCCCCGGAG	385 549
386	CCCTGGAAAGGAATCAGAGATGCTACCACCTACCCGCCTG	425
550		599
	÷	
426	GGTGCCTGCAGGAGTCCTGGGGCCAGCTGGCCTCGATGTA	465
700	$\tt TGGGGCTACAGGTGCCTGCAGGAGTCCTGGGGCCAGCTGGCCTCGATGTA$	749
466		515
750		799
516	TGTACCTGAACGTGTACGCGCGGGGGGGGGGGGGGGGGG	565
300	TGTACCTGAACGTGTACGCGCCGGCGCGCGCGCGCGCGCG	849
566	CCAGTGATGGTCTGGTTCCCGGGAGGCGCCTTCATCGTGGGCGCTGCTTC	615
350	CCAGTGATGGTCTGGTTCCCGGGAGGCGCCTTCATCGTGGGCGCCTTC	899
616	TTCGTACGAGGCTCTGACTTGGCCGCCCGCGAGAAAGTGGTGCTGGTGT	665
900	TTCGTACGAGGGCTCTGACTTGGCCGCCGCGAGAAAGTGGTGCTGGTGT	949
666	TTCTGCAGCACAGGCTCGGCATCTTCGGCTTCCTGAGCACGGACGACAGC	715
950	TTCTGCAGCACAGGCTCGGCATCTTCGGCTTCCTGAGCACGGACGACAGC	999
716	$\mathtt{CACGCGCGGGGAACTGGGGGCTGCTGGACCAGATGGCGGCTCTGCGCTG}$	765

FIG. 4C

766	GGTGCAGGAGAACATCGCAGCCTTCGGGGGAGACCCAGGAAATGTGACCC	815
1050	GGTGCAGGAGAACATCGCAGCCTTCGGGGGAGACCCAGGAAATGTGACCC	1099
816	TGTTCGGCCAGTCGGCGGGGCCATGAGCATCTCAGGACTGATGATGTCA	865
1100		1149
866	CCCCTAGCCTCGGGTCTCTTCCATCGGGCCATTTCCCAGAGTGGCACCGC	915
1150		1199
916	GTTATTCAGACTTTTCATCACTAGTAACCCACTGAAAGTGGCCAAGAAGG	965
1200		1249
966		1015
1250	TTGCCCACCTGGCTGGATGCAACCACACACACACACACAC	1299
1016	TGCCTGAGGGCACTATCAGGGACCAAGGTGATGCGTGTCCCAACAAGAT	1065
1300		1349
1066	GAGATTCCTCCAACTGAACTTCCAGAGAGACCCGGAAGAGATTATCTGGT	1115
1350		1399
1116	CCATGAGCCCTGTGGTGGATGGTGTGGTGATCCCAGATGACCCTTTGGTG	1165
1400		1449
1166	$\verb CTCCTGACCCAGGGGAAGGTTTCATCTGTGCCCTACCTTCTAGGTGTCAA $	1215
1450		1499
1216	CAACCTGGAATTCAATTGGCTCTTGCCTTATATCATGAAGTTCCCGCTAA	1265
1500		1530
	· ·	
1216		
	CGCACCCTGTTGAATATCACCAAGGAGCAGGTACCACTTGTGGTGGAGGA	
1531		1568
1366	GTACCTGGACAATGTCAATGAGCATGACTGGAAGATGCTACGAAACCGTA	1415

FIG. 4D

	TGATGGACATAGTTCAAGATGCCACTTTCGTGTATGCCACACTGCAGACT	
1619	TGATGGACATAGTTCAAGATGCCACTTTCGTGTATGCCACACTGCAGACT	1668
	GCTCACTACCACCGAGATGCCGGCCTCCCTGTCTACCTGTATGAATTTGA	1515
1669	GCTCACTACCACCGA	1683
	:	
	CAACTTTGCCCGCACAGGAAACCCCCAATGATGGGGAATCTGCCCTGCTGGC	1715
1684		1716
1716	CACGCTACAACAAGGATGAAAAGTACCTGCAGCTGGATTTTACCACAAGA	1765
1717	CACGCTACAACAAGGATGAAAAGTACCTGCAGCTGGATTTTACCACAAGA	1766
	GTGGGCATGAAGCTCAAGGAGAAGAAGATGGCTTTTTGGATGAGTCTGTA	
1767	GTGGGCATGAAGCTCAAGGAGAAGAAGATGGCTTTTTGGATGAGTCTGTA	1816
1816	CCAGTCTCAAAGACCTGAGAAGCAGAGGCAATTCTAAGGGTGGCTATGCA	1865
1817	CCAGTCTCAAAGACCTGAGAAGCAGAGGCAATTCTAAGGGTGGCTATGCA	1866
1866	GGAAGGAGCCAAAGAGGGGTTTGCCCCCACCATCCAGGCCCTGGGGAGAC	1915
1867		1916
1916	TAGCCATGGACATACCTGGGGACAAGAGTTCTACCCAAGGGCGAATTCGT	1965
1917	TAGCCATGGACATACCTGGGGACAAGAGTTCTACCCACCCCAGT	1960
1966		
1961		

FIG. 5A

ALIGN calculates a global alignment of two sequences version 2.0uPlease cite: Myers and Miller, CABIOS (1989) COE-2 584 aa vs. Scoring matrix: BLOSUM50, gap penalties: -12/-2 62.4% identity, Global alignment score: 2271	### ##################################
	COE-2 MVLPSTVLPSILPTAG i. : : : :
10 COE-2 MVLPSTVLPSILPTAG pro873 MSTGFSFGSTTLGSTTVAAGGFSTGGTVFSFGTGTSSTFGTTSTRFGILGSTSTSTATTSAPS 20 30 40 60 50 60 60 60 60 60 60 60 60 60 60 60 60 60	20 AGWSHRWILCWSLTLCLAAAQTALGALHTKRPQVVTKXGTLGGKQMHVGKTPIQVFLG SGFGTGLEGSKPATGGTLGGTWTGALHTKRPQVVTKYGTLGGKQMHVGKTPIQVFLG SGFGTGLEGSKPATGGTWTGALHTKRPQVTKYGTLGGKQMHVGKTPIQFLG 100 110
10 MSTGFSFGSGTLGSTTVAAGGTSTGGVFSFGTGTSSSTSTPATTS 10 30 40 50 70 70 30 AGWSMRWILCWSLTLCLAAQTALGALHTKRPQVVTKYGTLGGGWHVGKTPIQVFLG 10 10 11 11 11 11 11 11	90 90 100 SRPEGILREAPPEPWKGIRDATTYPPG
10 10 10 10 10 10 10 10	120 140 150 COE-2

FIG. 5B

			_	
OMA OMA 300	LFI LFI 360	IIW IIW 420	390 TI	H : H
9 :: 6 6	FRL	8 . 8 H . H 4	RKE	LOTA :::: LOTA 510
GE.	F :: E	9::0	SAM	J: 12
210 ARGINI ARGINI 90	270 SQSG1 ***** SQSG7 50	330 LNFQ: ::::: LNFQ: 10	380 PLNR(450 TFVY2 :::::
21 HAR 11: HAR 290	27 H SQ 11:1 350	33. OLNI 01.0 410	FPI	ATE
ğ : ğ	H.: H.	RFI	ř.	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
LST	GLF	NIKA NIKA	LPY:	ğ : ğ
190 200 210 WPPPGGAFTYGAASSYEGSDLAAREXVVJVFEQHRIGTEGFLSTDDSHARGNWGILIDQWA 111111111111111111111111111111111111	0 230 240 250 250 270 210 210 210 210 210 210 210 210 210 21	0 320 330 330 330 330 330 330 330 330 TSNPLKVAKKVAHLAQCNINSTQILVNCLRALSGTKVMRVSKRRFLQLNFCRDEEIIW ::::::::::::::::::::::::::::::::::	340 350 370 380 390 370 380 390 390 390 390 390 390 390 390 390 39	00 410 420 430 440 450 TRALINSTRELANITREQVELVVEEYLDNVNEHDWKALRNRAMDIVQDATFVYATLGTAHY
161 161 161	MSP ::: MSP 3	KVI 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	EE: EE	KMLR :::: KMLR 490
H :: H	SIN SIN	3GT		DWIK SWIK
190 LVFL :::: LVFL 70	250 MSIS(**** MSIS(310 LRAL 1:1: LRAL 90	360 YLLG :::: YLLG	430 IVNEH :::: IVNEH
19 WLV :::: WLV	25 3AMS :::: 3AMS	MCLR SCLR SCLR 390	36 /PYL /PYL 450	4 NO. : O
EK.	SAC	5 : 5	7.5.57 7.5.57	TYLD TYLD TYLD 480
4 : 4	, i i	8 : 5	GE :: GG	_
180 GSDL :::: GSDL 260	240 NVTL :::: NVTL 320	300 NHNS' :::: NHNS' 380	350 LLTQ :::: LLTQ	420 PLV
XEC .	£ : £		1 1 1	KEQV HESQV KEQV
ASS 	999	H:H	4 3 4 4 6 7	ATI:
170 IVGA :::: IVGA 50	230 IAAF :::: IAAF	290 KKVA :::: KKVA 70	340 VVIP ::::	TLLN TLLN
AFIV AFIV AFIV 250	23 ENIA :::: ENIA 310	29 VAKK :::: VAKK 370	34 DGVV :::: DGVV 430	TRT
55 : 5	Ø :: Ø	71	* * * * * *	SM2
VWF.	FER SER	SSN SSN	SMS	Σ
•	N	00		0
1 COE-2 pro873	2 COE-2 pro873	2 COE-2 pro873	COE-2 pro873	4 COE-2 pro873
5 g	5 g	S F	S 4	ភ ដូ

580 COE-2 KQRQF :. pro873 -QEWA

COE-2 HRDAGLPVYLYEFEHHARGIIVKPRTDGADHGDENYFLFGGPFATGLSNGKEKALSLQMM COE-2 KYWANFARTGNPNDGNLPCWPRYNKDEKYLQLDFTTRVGNKLKEKKMAFWMSLYQSQRPE pro873 HRET--PMM-----GIC--P----AGHA----pro873 -----KSTCSWIL-----P-200 260 530 FIG. 5C : 550 480 540 470 . 530 :::::

FIG. 6A

98

								~~	~	_	_	<u> </u>
							(FA) (Salivary	24.55	18.74	5.81	17.82
							8	Prostate	25.73	17.90	7.83	4.39
								Placenta	26.50	18.06	8.45	2.87
								Mammary Gland	24.36	17.47	6.89	8.43
							8	Lung	25.41	16.89	8.52	2.72
						W	((4.6	Liver	25.24	19.06	6.18	13.79
								Kidney	25.64	18.06	7.58	5.23
							E L	Heart	27.95	18.66	9.29	1.60
		- - - -	Sops.	33.80°	un F	2/2	833	Brain	23.86	20.22	3.64	80.49
			*		-			Adrenal Gland	25.93	18.73	7.20	08.9
-02	- 09	- 20	40 -	30-	- 20	10-	0		18903 MEAN	B2M803 MEAN	ģţ	Expression

FIG. 6B

2.83	DRG	25.06	19.07	5.99	15.73
	Skin	23.01	17.10	5.91	16.63
	Spinal	23.99	19.20	4.80	36.02
<u>Æ</u>	Uterus	26.18	18.53	99.7	4.96
	Trachea	25.14	19.10	6.04	15.25
	Thymus	26.33	18.19	8.15	3.53
	Teste	24.29	19.32	4.97	31.91
<u>\$</u>	Stomach	26.27	18.03	8.25	3.30
	Spleen	26.89	16.37	10.52	0.68
	Sm. Intestine	25.43	17.86	7.58	5.24
	Muscle	29.70	20.66	9.04	1.91

250-

150-

20-

FIG. 7B

Hu. Lung	25.805	15.87	9.935	1.57002147	
Hu. Liver	25.43	18.22	7.21	10.3803579 1	
Hu. Kidney	26.155	17.925	8.23	1.13349992 5.11872423	
Hu. Heart	28.26	17.855	10.405		
Hu. Spinal cord	23.78	18.295	5.485	377.618146 34.3154004	
Hu. Brain	21.27	19.245	2.025	377.618146	

norma 29.68 20.58 9.10

8

0.08

Expression ģ

12.05

Spinal cord/ | Brain cortex/ normal 33.06 11.66 0.31 SMC (Aortic) 31.76 18.74 13.02 0.12 Vein/normal 18.99 36.01 Heart/CHF FIG. 8A-1 31.50 19.45 Heart/normal 31.54 17.89 13.65 Aorta/normal 36.11 22.53 13.58 Fetal heart/ norma 31.89 19.68 12.21 2.07 1.6 1.4 1.2-1.0-0.2 0.6 8 B2M803 MEAN **18903 MEAN**

FIG. 8A-2

20/24	\sim		~	~	_	_	
	Prostate/	Tumor	29 03	17.57	11.46	0.35	
	Prostate/	Normal	31.16	18.34	12.83	0.14	
	-	Pancreas	30.88	17.33	13.55	90.0	
7. 	OVARY/	Tumor	33.59	18.91	14.68	0.04	
	OVARY/	Normal	31.73	19.95	11.79	0.28	
	Breast tumor/	DC	30.75	17.66	13.09	0.11	
	Breast/	normal	30.10	18.60	11.50	0.35	
	Brain/	Glioblastoma	30.39	17.43	12.97	0.13	
	Glial cells	(Astrocytes)	33.94	21.09	12.86	0.13	
	Brain	hypothalamus	29.45	19.24	10.21	0.85	

FIG. 8A-3

	_			
Lung/tumor	30.30	17.71	12.53	0.17
Lung/normal	30.54	17.31	13.73	0.10
Fetal Liver/ normal	33.55	21.39	12.16	0.22
Liver fibrosis	30.10	18.82	11.29	0.40
Liver/normal	31.82	19.08	12.75	0.15
Kidney/ normal	30.98	20.03	10.95	0.51
 Colon/IBD	32.37	17.72	14.65	0.04
Colon/tumor	30.80	18.15	12.66	0.16
Solon/normal	32.03	17.78	14.26	0.05

FIG. 8A-4

22/24	$\overline{}$		\sim	~	~	~
	Adipose/	Normal	32.43	17.96	14.47	0.04
	14.10	Skin/Normal	31.16	20.29	10.87	0.54
	Fibroblasts	(Dermal)	33.10	18.18	14.92	0.03
	Skeletal	Muscle	31.06	18.26	12.81	0.14
Consumer	ш	Cells (Aortic)	35.27	20.16	15.11	0.03
N. S.	Epithelial Cells	(Prostate)	30.70	20.13	10.57	99:0
	Thymus/	normal	32.80	20:03	12.78	0.14
	Lymph node/	normal	31.40	17.91	13.49	0.09
	Tonsilhormal	i ci i ci i ci i	31.13	17.19	13.94	90:0
	una/COPD		29.44	17.10	12.34	0.19

FIG. 8A-5

	HIMVEC	32.74	18.74	14.00	90:0
	HUVEC	32.17	19.27	12.91	0.13
	Aorta SMC (Late)	32.72	18.77	13.96	90:0
	Aorta SMC (Early)	32.50	19.53	12.97	0.13
(Carterina)	Osteoclasts	32.47	17.25	15.22	0.03
(Selectory)	Osteoblasts (Diff)	33.23	17.83	15.40	0.02
resista	Osteoblasts (Undiff)	33.19	18.50	14.69	0.04
SESSE	Osteoblasts (Primary)	34.84	20.44	(14.40	0.05

FIG. 8B

Tissue 1890	3 MEAN	β 2м803 меан	δct	B
Fetal heart/normal	31.89	19.68	12.21	Expression 0.21
Aorta/normal	36.11	22.53	13.58	0.21
Heart normal	31.54	17.89	13.58	
Heart/CHF				0.08
Vein/normal	31.50	19.45	12.05	0.24
	36.01	18.99	17.02	0.00
SMC (Aortic)	31.76	18.74	13.02	0.12
Spinal cord/normal	33.06	21.40	11.66	0.31
Brain cortex/normal	29.68	20.58	9.10	1.83
Brain hypothalamus/normal		19.24	10.21	0.85
Glial cells (Astrocytes)	33.94	21.09	12.86	0.13
Brain/Glioblastoma	30.39	17.43	12.97	0.13
Breast/normal	30.10	18.60	11.50	0.35
Breast tumor/IDC	30.75	17.66	13.09	0.11
Ovary/normal	31.73	19.95	11.79	0.28
Ovary/tumor	33.59	18.91	14.68	0.04
Pancreas	30.88	17.33	13.55	0.08
Prostate/normal	31.16	18.34	12.83	0.14
Prostate/tumor	29.03	17.57	11.46	0.35
Colon/normal	32.03	17.78	14.26	0.05
Colon/tumor	30.80	18.15	12.66	0.16
Colon/IBD	32.37	17.72	14.65	0.04
Kidnev/normal	30.98	20.03	10.95	0.51
Liver/normal	31.82	19.08	12.75	0.15
Liver/fibrosis	30.10	18.82	11.29	0.40
Fetal Liver/normal	33.55	21.39	12.16	0.22
Lung/normal	30.54	17.31	13.23	0.10
Lung/tumor	30.30	17.77	12.53	0.17
Lung/COPD	29.44	17.10	12.33	0.19
Tonsil/normal	31.13	17.19	13.94	0.06
Lymph node/normal	31.40	17.19	13.49	0.09
Thymus/normal	32.80	20.03	12.78	0.14
Epithelial Cells(prostate		20.13	10.57	0.14
Endothelial Cells (aortic)		20.13	15.11	0.03
Skeletal Muscle/normal	31.06	18.26	12.81	0.03
Fibroblasts (Dermal)	33.10	18.18		
Skin/normal	31.16		14.92	0.03
Adipose/normal	32.43	20.22	10.87	0.54
Osteoblasts (primary)	34.84	17.96	14.47	0.04
Osteoblasts (Undiff)		20.44	14.40	0.05
, , , , , , , , , , , , , , , , , , , ,	33.19	18.50	14.69	0.04
Osteoblasts (Diff)	33.23	17.83	15.40	0.02
Osteoblasts	32.47	. 17.25	15.22	0.03
Aorta SMC (Early)	32.50	19.53	12.97	0.13
Aorta SMC (Late)	32.72	18.77	13.96	0.06
HUVEC	32.17	19.27	12.91	0.13
HMVEC	32.74	18.74	14.00	0.06
	40.00	40.00	•	00
	40.00	40.00	0.	UU