Kapitel 1

grundlegende Sätze

Proposition 16.3 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994]

Satz 1. Sei $\pi: S \longrightarrow T$ ein R-Algebrenephimorphismus mit $Kern(\pi) := I$ Dann ist folgende Sequenz rechtsexakt:

$$I/I^2 \xrightarrow{f} T \otimes_S \Omega_{S/R} \xrightarrow{g} \Omega_{T/R} \longrightarrow 0$$

mit:
$$f: I/I^2 \longrightarrow T \otimes_S \Omega_{S/R}$$
, $[a]_{I^2} \longmapsto 1 \otimes d_S(a)$
 $g: T \otimes_S \Omega_{S/R} \longrightarrow \Omega_{T/R}$, $b \otimes d_S(c) \longmapsto b \cdot (d \circ \pi)(c)$

Beweis.

f ist wohldefiniert: Seien $a, b \in I^2$. Zeige $f(a \cdot b) = 0$:

$$f(a \cdot b) = 1 \otimes (d_S \circ \pi)(a \cdot b) = 1 \otimes \pi(a) \cdot (d_S \circ \pi)(b) + \pi(b) \cdot (d_S \circ \pi)(a) = 0$$

 $D\pi$ ist surjektiv:

$$\Omega_{S/R} \xrightarrow{D\pi} \Omega_{T/R}$$

$$d_{S} \uparrow \qquad \qquad d_{T} \uparrow$$

$$S \xrightarrow{\pi} T$$

Da $\Omega_{S/R}$ und $\Omega_{T/S}$ jeweils von d_S und d_T erzeugt werden, vererbt sich die Surjektivität von π auf $D\pi$. Somit ist auch $1 \otimes_S D\pi$ surjektiv.

im(f) = kern(g):

Dies folgt direkt aus folgender Isomorphie: $(T \otimes_S \Omega_{S/R})/Im(f) \simeq \Omega_{T/R} = im(f)$.

$$(T \otimes_S \Omega_{S/R})/Im(f) = (T \otimes_S \Omega_{S/R})/(T \otimes_S d_S(I)) = T \otimes_S (\Omega_{S/R}/d_S(I)) \simeq T \otimes_S d_S(S/I) \simeq T \otimes_S d_T(T)$$

Kapitel 2

Kolimes

In diesem Kapitel werden wir das Konzept des Kolimes als Konstrukt der Kathegorientheorie kennen lernen. Am Ende des Kapitels werden wir sehen, dass der Kolimes von R-Algebren mit der Bildung des Kähler-Differenzials harmoniert. Dies wird es uns im folgenden vereinfachen, bestimmte Eigenschaften des Kähler-Differenzials nachzuweisen.

Vgl. Anhang A6 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994].

Definition 1. Sei A eine Kategorie und $C \in A$ ein Objekt

- Ein <u>Diagramm</u> über A ist eine Kategorie B zusammen mit einem Funktor $\mathcal{F}: \mathcal{B} \longrightarrow A$.
- Ein Morphismus $\psi : \mathcal{F} \longrightarrow C$ ist eine Menge von Funktionen $\{\psi_B \in Hom(F(B), C) | B \in \mathcal{B}\}$, wobei für alle $B_1, B_2 \in \mathcal{B}$ und $\varphi \in Hom(B_1, B_2)$ folgendes Diagramm kommutiert:

• Der Kolimes $\varinjlim \mathcal{F}$ eines Diagramms $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ist ein Objekt $A \in \mathcal{A}$ zusammen mit einem Morphismus $\psi: \mathcal{F} \longrightarrow A$ und folgender universellen Eigenschaft:

für alle Morphismen $\psi': \mathcal{F} \longrightarrow A'$ existiert genau eine Funktion $\varphi \in Hom(A, A')$, sodass folgendes Diagramm kommutiert:

Bevor der Kolimes weiter charakterisiert wird, zeigen wir zunächst, dass er durch die obige Definition eindeutig bestimmt ist.

Lemma 2. Seien \mathcal{B} , \mathcal{A} zwei Kategorien und $\mathcal{F}: \mathcal{B} \longrightarrow \mathcal{A}$ ein Funktor, so git: Im Falle der Existenz sind $\varinjlim \mathcal{F}$ und der dazugehörige Morphismus $\psi: \mathcal{F} \longrightarrow \mathcal{A}$ bis auf Isomorphie eindeutig bestimmt.

Beweis. Seien $A_1 \in \mathcal{A}, (\psi_1 : \mathcal{F} \longrightarrow A_1)$ und $A_2 \in \mathcal{A}, (\psi_2 : \mathcal{F} \longrightarrow A_2)$ beide gleich $\lim \mathcal{F}$.

Erhalte durch die universelle Eigenschaft des Kolimes die eindeutig bestimmten Funktionen $\varphi_1 \in Hom_{\mathcal{A}}(A_1, A_2)$ und $\varphi_2 \in Hom_{\mathcal{A}}(A_2, A_1)$, für welche die folgende Diagramme kommutieren:

Wende nun die Universelle Eigenschaft von ψ_1 auf ψ_1 selbst an und erhalte $id_{A_1} = \varphi_2 \circ \varphi_1$. Analog erhalte auch $id_{A_2} = \varphi_1 \circ \varphi_2$.

Im folgenden beschäftigen wir uns mit dem Fall des $\lim_{\longrightarrow} \mathcal{F}: \mathcal{B} \hookrightarrow \mathcal{A}$, bei welchem \mathcal{B} eine Unterkategorie von \mathcal{A} ist. Zur Vereinfachung unterschlagen dabei die triviale Existenz des Funktors $\lim_{\longrightarrow} \mathcal{F}: \mathcal{B} \hookrightarrow \mathcal{A}$. Wir werden also im folgenden von dem Diagramm \mathcal{B} und dem entsprechenden Kolimes $\lim_{\longrightarrow} \mathcal{B}$, sowie dem Morphismus $\phi: \mathcal{B} \longrightarrow A$ sprechen.

Zunächst untersuchen wir bei einer gegebenen Kategorie \mathcal{A} das Koprodukt einer Menge von Objekten $B_i \in \mathcal{A}$, sowie den Differenzkokern zweier Morphismen $f, g \in Hom_{\mathcal{A}}(C_1, C_2)$.

Definition 3. Sei A eine Kategorie.

- Das Koprodukt von $\{B_i\} \subseteq \mathcal{A}$ wird durch $\prod_i \{B_i\} := \varinjlim_{\mathcal{B}} \mathcal{B}$ definiert, wobei \mathcal{B} $\{B_i\}$ als Objekte und die Identitätsabbildungen $id_{B_i} : B_i \longrightarrow B_i$ als Morphismen enthält.
- Der Differenzkokern (oder auch Coequilizer) von $f, g \in Hom_{\mathcal{A}}(C_1, C_2)$ wird durch $\varinjlim \mathcal{C}$ definiert, wobei \mathcal{C} $\{C_1, C_2\}$ als Objekte und $\{f, g\} := Hom_{\mathcal{C}}(C_1, C_2)$ als Morphismen enthält.

In der Einführung des Differenzkokern's in ?? ist deutliche zu sehen, inwiefern dieser ein Kolimes ist. Um aber mit dem Differenzkokern besser zu arbeiten wird er meist anders eingeführt. Daher betrachten auch wir ab nun eine andere, aber äquivalente Definition des Differenzkokern's. **Lemma 4.** Sei A eine Kategorie mit $C_1, C_2 \in Hom_A(C_1, C_2)$, so sind folgende Formulierungen äquivalent zur Definition des Differenzkokern's $T := \lim_{n \to \infty} C$

- 1. Es existiert ein Morphismus $\psi: \mathcal{C} \longrightarrow T$, mit der Eigenschaft, dass für alle Morphismen $\psi': \mathcal{C} \longrightarrow T'$ genau ein $\varphi \in Hom_{\mathcal{A}}(T, T')$ mit $\varphi \circ \psi = \psi'$ existiert.
- 2. Es existiert ein $q \in Hom_{\mathcal{A}}(C_2,T)$ mit $q \circ f = q \circ g$ und der Eigenschaft, dass für alle Morphismen $q' \in Hom_{\mathcal{A}}(C_2,Z)$ mit $q' \circ f = q' \circ g$ genau ein $\varphi \in Hom_{\mathcal{A}}(T,T')$ mit $\varphi \circ q = q'$ existiert.

$$C_1 \xrightarrow{f,g} C_2 \xrightarrow{q} T$$

$$\downarrow q' \qquad \downarrow \exists ! \varphi$$

$$T'$$

Beweis. 1. ist offensichtlich eine Ausformulierung der Einführung des Kolimes aus ??, zeige also im folgenden noch die Äquivalenz von 1. und 2.

• $1 \Rightarrow 2$:

Da $\psi: \mathcal{C} \longrightarrow T$ ein Morphismus ist, gilt für $\{f,g\} = Hom_{\mathcal{C}}(C_1,C_2)$: $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_1} \circ \psi_{C_2}$, setze also $q := \psi_{C_2}$.

Sei nun $q' \in Hom_{\mathcal{A}}(C_2, T)$ mit der Eigenschaft $q' \circ f = q' \circ g$ gegeben: Definiere den Morphismus $\psi' : \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q' \circ f, \psi_2 = q'\}$, somit folgt direkt aus der Universellen Eigenschaft von ψ , dass genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ existiert, mit $\varphi \circ q = q'$.

• $2 \Rightarrow 1$:

Definiere $\psi: \mathcal{C} \longrightarrow T$ als $\{\psi_1 = q \circ f, \psi_2 = q\}$. Durch die Eigenschaft von q gilt $\psi_{C_1} = \psi_{C_2} \circ f = \psi_{C_2} \circ g$.

Sei nun $\psi': \mathcal{C} \longrightarrow \mathcal{A}$ ein beliebiger Morphismus.

Definiere $d' := \psi'$, somit existiert durch die Eigenschaft von d genau ein $\varphi \in Hom_{\mathcal{A}}(C_2, T)$ mit $\varphi \circ q = q'$.

$$\Rightarrow \varphi \circ \psi_2 = \psi_2'$$
und $\varphi \circ \psi_1 = \varphi \circ \psi_2 \circ f = \varphi \circ \psi_2' \circ f = \varphi \circ \psi_1'$

Wenn im weiteren Verlauf von dem Differenzkokern zweier Homomorphismen $f,g:C_1\longrightarrow C_2$ gesprochen wird, meinen wir damit den Homomorphismus $q:C_2\longrightarrow T$ aus ??.

Da wir es hauptsächlich mit R-Algebren zu tun haben, wollen wir natürlich auch wissen, wie sich Koprodukte und Differenzkokerne von R-Algebren verhalten. Daher betrachten wir in der folgenden Proposition genauer welche Form diese haben.

Proposition 5. in der Kategorie der R-Algebren existieren Koprodukte und Differenzkokerne, wobei:

- **1.** Das Koprodukt einer endlichen Familie von R Algebren $\{S_i\}_{i\in\Lambda}$ entspricht deren Tesorprodukt $\bigotimes_{i\in\Lambda} S_i$.
- 2. Der Differenzkokern zweier R-Algebra-Homomorphismen $f,g: S_1 \longrightarrow S_2$ einspricht dem Homomorphismus $q: S_2 \longrightarrow S_2/Q$, $y \longmapsto [y]$, wobei $Q:=\{f(x)-g(x)\mid x\in S_2\}$ das Bild der Differenz von f und g ist.

Beweis. Zu 1.:

Sei \mathcal{B} die Unterkategorie der R-Algebren, welche $\{S_i\}_{i\in\Lambda}$ zusammen mit den Identitätsabbildungen enthält. Wir wollen die universellen Eigenschaften des Tensorproduktes und des Kähler-Differenzials nutzen, um einen Isomorphismus zwischen $\lim \mathcal{F}$ und $\bigotimes_{i\in\Lambda} B_i$ zu finden.

Es sind der Morphismus $\psi: \mathcal{B} \longrightarrow \varinjlim \mathcal{B}$ und die bilineare Abbildung $g: \oplus_i S_i \longrightarrow \otimes_i S_i$ gegeben.

Konstruiere den Morphismus $\psi': \mathcal{B} \longrightarrow \otimes_i S_i$ durch $\psi'_i: S_i \longrightarrow \otimes_i S_i$, $s_i \longmapsto g(1,..,1,s_i,1,..,1)$ für $i \in \lambda$ und die bilineare Abbildung $f: \oplus_i S_i \longrightarrow \varinjlim \mathcal{B}$, $s \longmapsto \prod_i \psi_i(s_i)$.

Somit liefern uns die universellen Eigenschaften folgende zwei R-Algebra-Homomorphismen:

$$\varphi: \lim_{\longrightarrow} \mathcal{B} \longrightarrow \bigotimes_{i} S_{i}$$
$$\phi: \bigotimes_{i} S_{i} \longrightarrow \lim_{\longrightarrow} \mathcal{B}.$$

Die Eindeutigkeit der universellen Eigenschaften liefert uns, das φ und ϕ zueinander Inverse sind und somit haben wir unsere gesuchten Isomorphismen zwischen $\lim \mathcal{B}$ und $\bigotimes_i S_i$ gefunden.

Zu 2.

Zeige, dass $q:S_2\longrightarrow S_2/Q$ die in \ref{sphi} eingeführten Eigenschaften des Differenzkokern's besitzt.

$$q \circ f = q \circ g$$
 gilt, da $kern(q) = Q = \{f(x) - g(x) \mid x \in C_2\}.$

Sei nun eine Funktion $q' \in Hom_{\mathcal{A}}(S_2, T')$ mit $q' \circ f = q' \circ$ gegeben. Somit gilt $q' \circ (f - g) = 0$, wodurch Q ein Untermodul von Q' := kern(q') ist. Mit dem Isomorphiesatz für R-Algebren erhalten wir:

$$S_2/Q' \simeq (S_2/Q)/(Q'/Q).$$

Somit ist $q': S_2 \longrightarrow (S_2/Q)/(Q'/Q)$, $y \longmapsto [y]'$ eine isomorphe Darstellung von $q': S_2 \longrightarrow T'$.

$$\Rightarrow \exists ! \varphi : S_2/Q \longrightarrow (S_2/Q)/(Q'/Q), [y] \longmapsto [y]' \ mit \ (\varphi \circ q) = q'.$$

Also ist $q: S_2 \longrightarrow S_2/Q$ der bis auf Isomorphie eindeutig bestimmte Differenz-kokern von f und g.

Um im weiteren auch Koprodukte bzw. Differenzenkokerne des Kählerdifferenzials betrachten zu können, wollen wir wissen, wie sich diese in der Kategorie der R-Module verhalten. Daher betrachten wir in der folgenden Proposition genauer welche Form diese haben.

Proposition 6. In Der Kategorie der R-Module existieren Koprodukte und Differenzkokerne, wobei:

- 1. das Koprodukt $\lim_{\longrightarrow} \mathcal{B}$ von R-Modulen $M_i \in (R Module)$ entspricht der direkten Summe $\sum_i M_i$.
- **2.** der Differenzenkokern zweier Homomorphismen $f, g: M_1 \longrightarrow M_2$ entspricht dem Kokern $M_2/im(f-g)$ der Differenzenabbildung.

Beweis. für 1. Sei $\phi: \{M_i\} \longrightarrow \mathcal{B}$ ein beliebiger Morphismus. Zeige:

Für ein beliebiges i existiert genau ein $\varphi_i: M_i \bigoplus 0 \longrightarrow M'$, $(0,...,0,m_i,0,...,0 \longmapsto \psi_i'(m_i)$ mit $\psi_i' = \psi_i \circ \varphi_i$

$$\Rightarrow \exists! \varphi : \bigoplus_i M_i \longrightarrow M', (m_1, ..., m_n) \longmapsto \sum_i \psi_i(m_i)$$

2. ist Analog zu ??

Die in ?? gezeigten Darstellungen gelten mit kurzen Überlegungen auch für S-Module, wobei S eine R-Algebra ist.

Kapitel 3

Aufgaben

Aufgabe A6.7 aus Kommutativ Algebra with a view Torwards Algebraic Geometrie [David Eisenbud 1994].

Lemma 1. Sei S eine R-Algebra und $U\subseteq S$ multiplikativ abgeschlossen. Dann gilt:

$$S[U^{-1}] = \lim_{\longrightarrow} \mathcal{B}$$

Wobei \mathcal{B} aus den Objekten $\{S[t^{-1}]|t\in U\}$ und den Morphismen $S[t^{-1}]\longrightarrow S[tt'^{-1}], (s,t^n)_{mod\sim_t}\longmapsto (st'^n,t^nt'^n)_{mod\sim_{(tt')}} \ \forall t,t'\in U \ besteht.$

Beweis. Sei $\psi: \mathcal{B} \longrightarrow A$ der Kolimes von \mathcal{B} . Zeige $S[U^{-1}] \simeq A$, definiere dazu:

$$\psi': \mathcal{B} \longrightarrow S[U^{-1}]$$

$$\psi'_{S[t^{-1}]}: S[t^{-1}] \longrightarrow S[t^{-1}], (s, t^n)_{mod \sim_t} \longmapsto (s, t^n)_{mod \sim_U}$$

 ψ' ist ein Morphismus, da für beliebige $t,t'\in U$ und $s\in S$ gilt:

$$(s,t^n)_{mod\sim_U} = (st'^n,t^nt'^n)_{mod\sim_U}$$

Durch die Universelle Eigenschaft des Kolimes, erhalten wir den Homomorphismus $\varphi:A\longrightarrow S[U^{-1}].$

$$S[U^{-1}] \stackrel{\mathcal{B}}{\longleftarrow} A$$

Für $\phi: S[U^{-1}] \longrightarrow A$ benötigen wir kleinere Vorüberlegungen. Zunächst können wir jedes Element $(s,u)_{mod\sim_U} \in S[U^{-1}]$ als $\psi_{S[t^{-1}]}((s,t)_{mod\sim_t})$ schreiben. Weiter gilt für alle $s_1, s_2 \in S, t_1, t_2 \in U$:

$$\psi'_{S[t^{-1}]}((s_1, t_1)_{mod \sim_t}) = \psi'_{S[t^{-1}]}((s_2, t_2)_{mod \sim_t})$$

$$\Rightarrow \exists u \in U : (s_1 t_1 - s_2 t_2) \cdot u = 0$$

$$\Rightarrow (s_1 u, t_1 u)_{mod \sim_{tu}} = (s_2 u, t_2 u)_{mod \sim_{tu}}$$

$$\Rightarrow \psi_{S[t^{-1}]}((s_1, t_1)_{mod \sim_t}) = \psi_{S[t^{-1}]}((s_2, t_2)_{mod \sim_t})$$

Mit diesem Wissen können wir den R-Algebra-Homomorphismus $\phi:S[U^{-1}]\longrightarrow A$ definieren:

$$\phi: S[U^{-1}] \longrightarrow A, \psi'_{S[t^{-1}]}((s,t)_{mod \sim_t}) \longmapsto \psi_{S[t^{-1}]}((s,t)_{mod \sim_t})$$

 $\phi\circ\varphi=id_A$ ergibt sich direkt aus der Universellen Eigenschaft des Kolimes:

Für $\varphi\circ\phi=id_{S[U^{-1}]}$ wähle beliebige $s\in S, t\in U,$ für diese gilt:

$$(\varphi \circ \phi)(\psi((s,t)_{mod \sim_t})) = \varphi(\psi'((s,t)_{mod \sim_t})) = \psi((s,t)_{mod \sim_t})$$

Damit haben wir gezeigt, dass φ, ϕ Isomorphismen sind und somit $A \simeq S[U^{-1}]$ gilt.

Da der Kolimes bis auf Isomorphie eindeutig ist, definiere ab sofort $S[U^{-1}]$ als den eindeutigen Kolimes von \mathcal{B} .