Lenguaje matemático, conjuntos y números

Pregunta 1 (2,5puntos)

Dados tres conjuntos arbitrarios no vacíos A, B y C y dos aplicaciones $f: A \longrightarrow B$ y $g: B \longrightarrow C$, demuestre que:

- a) si $g \circ f$ es inyectiva entonces f es inyectiva.
- b) si $g \circ f$ es sobreyectiva entonces g es sobreyectiva.

Solución: a) Supongamos que $g \circ f$ es inyectiva y veamos que f también lo es.

En efecto sean $x, x' \in A$ tales que f(x) = f(x'). Componiendo con g se cumple que g(f(x)) = g(f(x')). Es decir, $(g \circ f)(x) = (g \circ)f(x')$. Por tanto x = x' pues $g \circ f$ es inyectiva. En consecuencia, g es inyectiva.

b) Supongamos que $g \circ f$ es sobreyectiva y veamos que g también lo es. Sea $z \in C$. Tenemos que ver que existe $y \in B$ tal que g(y) = z. En efecto, como $g \circ f$ es sobreyectiva, sabemos que existe $x \in A$ tal que $g \circ f(x) = g(f(x)) = z$. En consecuencia si tomamos y = f(x) se tiene que $y \in B$ y g(y) = z. Por tanto, g es sobreyectiva.

Pregunta 2 (2,5 puntos)

Se define en \mathbb{R} la relación \mathcal{R} dada por:

$$a \mathcal{R} b$$
 si y sólo si $a^2 - b^2 = a - b$

Demuestre que \mathcal{R} es una relación de equivalencia y describa las clases de equivalencia.

Solución: Veamos que \mathcal{R} es una relación de equivalencia.

Es reflexiva: para todo $a \in \mathbb{R}$ se tiene que $a \Re a$ pues $a^2 - a^2 = a - a = 0$.

Es simétrica: para todo $a, b \in \mathbb{R}$ se tiene que si $a \mathcal{R} b$ entonces $a^2 - b^2 = a - b$ y por tanto, multiplicando por $-1, b^2 - a^2 = b - a$, es decir, $b \mathcal{R} a$.

Es transitiva: sean $a,b,c\in\mathbb{R}$ tales que $a\,\mathcal{R}\,b$ y $b\,\mathcal{R}\,c$. Por tanto, $\begin{cases} a^2-b^2=a-b\\ b^2-c^2=b-c \end{cases}$. Sumando ambas igualdades se obtiene $a^2-c^2=a-c$ y en consecuencia $a\,\mathcal{R}\,c$.

Observemos que

$$a^{2} - b^{2} = a - b \iff (a - b)(a + b) = (a - b) \iff (a - b)(a + b - 1) = 0$$

por tanto,

$$a \Re b$$
 si v sólo si $b = a \lor b = 1 - a$.

En consecuencia, la clase de cada $a \in \mathbb{R}$ es

$$[a] = \{b \in \mathbb{R} \mid a \mathcal{R} b\} = \{a, 1 - a\}.$$

Esto es, la clase de equivalencia de cualquier elemento está formada por el conjunto de dos elementos $\{a, 1-a\}$ salvo si $a = \frac{1}{2}$ en cuyo caso la clase tiene un único elemento que es el propio $\frac{1}{2}$.

Pregunta 3 (3 puntos)

Sea $(A, +, \cdot)$ un anillo conmutativo unitario.

- a) Demuestre que dados $x, y \in A$ si xy es inversible entonces x e y son inversibles.
- b) Demuestre que si $x \in A$ es inversible entonces x no es un divisor de cero.
- c) Sea $a \in A$ y sea aA el ideal generado por a. Demuestre que aA = A si y sólo si a es inversible.

Solución: a) Supongamos que xy es inversible. En consecuencia existe $z \in A$ tal que (xy)z = z(xy) = 1. Teniendo en cuenta que en un anillo el producto es asociativo, podemos escribir que x(yz) = 1 y (zx)y = 1. Como el anillo es conmutativo también se tiene que (yz)x = 1 e y(zx) = 1. Así pues x e y son inversibles siendo yz el inverso de x y zx el inverso de y.

- b) Por reducción al absurdo supongamos que existe $x \in A$ inversible y divisor de cero. Sean x^{-1} el inverso de x, que existe pues x es inversible, y $b \in A$ tal que $b \neq 0$ y xb = 0, b existe pues x es un divisor de cero. Multiplicando la igualdad xb = 0 por x^{-1} , se obtiene $x^{-1}(xb) = x^{-1}0 = 0$. Por tanto, $x^{-1}(xb) = (x^{-1}x)b = 1 \cdot b = b = 0$ que contradice la elección de $b \neq 0$.
- c) Se recuerda que en un anillo A el ideal generado por a es:

$$aA = \{ ay \mid y \in A \}$$

Supongamos que aA = A. En particular el elemento unidad de A, 1, será un elemento de aA. Por tanto existe $c \in A$ tal que 1 = ac. Teniendo en cuenta que el anillo es conmutativo, se obtiene que a es inversible siendo c el inverso de a.

Recíprocamente, si a es inversible y $a^{-1} \in A$ es el inverso de a, se tiene que $1 = aa^{-1}$. Como para cada $x \in A$ se cumple que $x = 1 \cdot x = (aa^{-1})x = a(a^{-1}x)$, resulta que $x \in aA$. Por tanto $A \subset aA$. La inclusión $aA \subset A$ es siempre verdadera para cualquier elemento a, inversible o no inversible, de A. En conclusión, si a es inversible entonces aA = A.

Pregunta 4 (2 puntos)

Sea el número complejo $w = e^{i\frac{2\pi}{3}}$

- a) Exprese w y w^2 en forma binómica y calcule $1+w+w^2$.
- b) Resuelva en \mathbb{C} la ecuación $z^3 8i = 0$.

Solución: a) Se tiene:

$$w = e^{i\frac{2\pi}{3}} = \cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
$$w^2 = e^{i\frac{4\pi}{3}} = \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

Por tanto, sustituyendo se obtiene:

$$1 + w + w^{2} = 1 - \frac{1}{2} + \frac{\sqrt{3}}{2}i - \frac{1}{2} - \frac{\sqrt{3}}{2}i = 0$$

b) Pasando a forma polar para $z=r_{\alpha}$ tenemos la ecuación $r_{3\alpha}^3=8_{\pi/2}$ y se obtiene:

$$\left\{ \begin{array}{lll} r^3 &=& 8 \pmod{2\pi} \\ 3\alpha &=& \pi/2 \pmod{2\pi} \end{array} \right., \, \text{y por tanto:} \quad \left\{ \begin{array}{lll} r &=& \sqrt[3]{8} = 2 \\ \alpha &=& \frac{\pi}{6} \pmod{\frac{2\pi}{3}} \right] \right.$$

Las raíces cúbicas de 8i, que expresamos también en forma binómica, son:

si
$$k = 0$$
, $z_0 = 2e^{i\frac{\pi}{6}} = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = \sqrt{3} + i$
si $k = 1$, $z_1 = 2e^{i\frac{5\pi}{6}} = 2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = -\sqrt{3} + i$
si $k = 2$, $z_2 = 2e^{i\frac{3\pi}{2}} = 2(0 - i) = -2i$