# 練習実験報告

肖宇笑

May 22, 2024

### Is this the latest?

Click HERE to check the latest version of this document.

### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

## Galvano Sepctrum



Fig. 1: Wavelen. correction

# Galvano Sepctrum



Fig. 1: Wavelen. correction

## Galvano Sepctrum

#### Correction



Fig. 2: Correction function

### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

## Selected peaks



### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

























### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

## Peak assignments

| $464.484$ nm $\approx 43058.49$ cm <sup>-1</sup> | $464.114$ nm $\approx 43092.81$ cm <sup>-1</sup> | $460.875$ nm $\approx 43395.69$ cm <sup>-1</sup> | $456.659$ nm $\approx 43796.34$ cm          |
|--------------------------------------------------|--------------------------------------------------|--------------------------------------------------|---------------------------------------------|
| px = 253.177                                     | px = 253.650                                     | px = 181.319 & 256.147                           | px = 246.776                                |
| $rR2\ 44.5$ $qR12\ 51.5$ $qQ2\ 51.5$             | $rR2\ 45.5$<br>$qR12\ 51.5$<br>$qQ2\ 51.5$       | sR21~48.5                                        | $sR21\ 58.5$<br>$pQ12\ 76.5$<br>$pP2\ 76.5$ |

#### **Notice**

Colored assignments are mismatched, and will not be used to calculate.

### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

### Galvano Sepctrum

#### REMPI scan

Selected peaks

Radius and angular distributions

Peak assignments

### $\boldsymbol{y}$ trans. energy of NO

|                     | $E_{total}$               | $E_{bond}(\mathrm{O}\!-\!\mathrm{NO})^1$ | $E_{int.}(NO)$                    |
|---------------------|---------------------------|------------------------------------------|-----------------------------------|
| Peak 1<br>464.484nm | $43058.49$ cm $^{-1}$     |                                          | $\Delta E_v(1 \to 0) + E(J = 44)$ |
| Peak 2<br>464.114nm | 43 092.81cm <sup>-1</sup> |                                          | $\Delta E_v(1 \to 0) + E(J = 45)$ |
| Peak 3<br>460.875nm | 43 395.69cm <sup>-1</sup> | 25 128.57cm <sup>-1</sup>                | $\Delta E_v(1 \to 0) + E(J = 48)$ |
| Peak 4<br>456.659nm | 43 796.34cm <sup>-1</sup> | -                                        | $\Delta E_v(1 \to 0) + E(J = 58)$ |

<sup>&</sup>lt;sup>1</sup>Rémy Jost et al. The Journal of Chemical Physics **105**.3 (July 1996).

### $\boldsymbol{y}$ trans. energy of NO

|                     | $E_{total}$                | $E_{bond}(\mathrm{O}\!-\!\mathrm{NO})^2$ | $E_{int.}(NO)$                            |
|---------------------|----------------------------|------------------------------------------|-------------------------------------------|
| Peak 1<br>464.484nm | $43058.49\mathrm{cm}^{-1}$ |                                          | $2341.9327750 \text{cm}^{-1} + E(J = 44)$ |
| Peak 2<br>464.114nm | 43 092.81cm <sup>-1</sup>  |                                          | $2341.9327750 \text{cm}^{-1} + E(J = 45)$ |
| Peak 3<br>460.875nm | 43 395.69cm <sup>-1</sup>  | 25 128.57cm <sup>-1</sup>                | $2341.9327750 \text{cm}^{-1} + E(J = 48)$ |
| Peak 4<br>456.659nm | 43 796.34cm <sup>-1</sup>  |                                          | $2341.9327750 \text{cm}^{-1} + E(J = 58)$ |

<sup>&</sup>lt;sup>2</sup>Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

<sup>&</sup>lt;sup>3</sup>J. Danielak et al. *Journal of Molecular Spectroscopy* **181**.2 (1997), pp. 394–402.

#### y trans. energy of NO

|                     | $E_{total}$               | E <sub>bond</sub> (O-NO) <sup>2</sup> | $E_{int}$ (NO)                            |
|---------------------|---------------------------|---------------------------------------|-------------------------------------------|
| Peak 1<br>464.484nm | 43 058.49cm <sup>-1</sup> | bolia ( /                             | $2341.9327750 \text{cm}^{-1} + E(J = 44)$ |
| Peak 2<br>464.114nm | 43 092.81cm <sup>-1</sup> |                                       | $2341.9327750 \text{cm}^{-1} + E(J = 45)$ |
| Peak 3<br>460.875nm | $43395.69$ cm $^{-1}$     | 25 128.57cm <sup>-1</sup>             | $2341.9327750 \text{cm}^{-1} + E(J = 48)$ |
| Peak 4<br>456.659nm | $43796.34$ cm $^{-1}$     |                                       | $2341.9327750 \text{cm}^{-1} + E(J = 58)$ |

#### Vib. energy level<sup>3</sup>

$$E_v = \omega_e \left( v + \frac{1}{2} \right) - \omega_e x_e \left( v + \frac{1}{2} \right)^2 + \omega_e y_e \left( v + \frac{1}{2} \right)^3.$$

<sup>&</sup>lt;sup>2</sup>Rémy Jost et al. The Journal of Chemical Physics **105**.3 (July 1996).

<sup>&</sup>lt;sup>3</sup>J. Danielak et al. Journal of Molecular Spectroscopy **181**.2 (1997), pp. 394–402.

#### y trans. energy of NO

|                     | $E_{total}$               | $E_{bond}(\mathrm{O-NO})^4$ | $E_{int.}(NO)$           |
|---------------------|---------------------------|-----------------------------|--------------------------|
| Peak 1<br>464.484nm | 43 058.49cm <sup>-1</sup> |                             | 5814.033cm <sup>-1</sup> |
| Peak 2<br>464.114nm | 43 092.81cm <sup>-1</sup> |                             | 5965.969cm <sup>-1</sup> |
| Peak 3<br>460.875nm | 43 395.69cm <sup>-1</sup> | 25 128.57cm <sup>-1</sup>   | 6239.696cm <sup>-1</sup> |
| Peak 4<br>456.659nm | 43 796.34cm <sup>-1</sup> |                             | 8004.278cm <sup>-1</sup> |

(2017), pp. 221–242.

<sup>&</sup>lt;sup>4</sup>Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

<sup>&</sup>lt;sup>5</sup>J. Danielak et al. *Journal of Molecular Spectroscopy* **181**.2 (1997), pp. 394–402.

<sup>&</sup>lt;sup>6</sup>Colin M. Western. Journal of Quantitative Spectroscopy and Radiative Transfer **186** 

#### y trans. energy of NO

|                     | $E_{total}$               | $E_{bond}(\mathrm{O-NO})^4$ | $E_{int.}(NO)$           |
|---------------------|---------------------------|-----------------------------|--------------------------|
| Peak 1<br>464.484nm | 43 058.49cm <sup>-1</sup> |                             | 5814.033cm <sup>-1</sup> |
| Peak 2<br>464.114nm | 43 092.81cm <sup>-1</sup> |                             | 5965.969cm <sup>-1</sup> |
| Peak 3<br>460.875nm | 43 395.69cm <sup>-1</sup> | 25 128.57cm <sup>-1</sup>   | 6239.696cm <sup>-1</sup> |
| Peak 4<br>456.659nm | 43 796.34cm <sup>-1</sup> |                             | 8004.278cm <sup>-1</sup> |

#### Rot. energy level<sup>5</sup>

Simulated data generated by PGOPHER<sup>6</sup>.

<sup>6</sup>Colin M. Western. Journal of Quantitative Spectroscopy and Radiative Transfer 186

(2017), pp. 221–242.

<sup>&</sup>lt;sup>4</sup>Rémy Jost et al. *The Journal of Chemical Physics* **105**.3 (July 1996).

<sup>&</sup>lt;sup>5</sup>J. Danielak et al. *Journal of Molecular Spectroscopy* **181**.2 (1997), pp. 394–402.

### $\boldsymbol{y}$ trans. energy of NO

| F <sub>int.</sub> (O)                  | $\begin{split} E_{trans}(total) &\approx 2.875464 E_{trans}(NO) \\ &= E_{total} - E_{bond}(O-NO) - E_{int.}(O) - E_{int.}(NO) \end{split}$ | $E_{trans}(NO) \\ = \frac{1}{2}m(NO)v^2(NO)$                                                            |
|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| $^{3}P_{2}$ $(0 \text{cm}^{-1})$       | $11081.356 \mathrm{cm}^{-1}$ $10964.609 \mathrm{cm}^{-1}$ $10794.143 \mathrm{cm}^{-1}$ $9398.766 \mathrm{cm}^{-1}$                         | $4375.588$ cm $^{-1}$<br>$4334.685$ cm $^{-1}$<br>$4344.824$ cm $^{-1}$<br>$3870.489$ cm $^{-1}$        |
| $^{3}P_{1}$ (158.625cm <sup>-1</sup> ) | $10922.731 \mathrm{cm}^{-1}$ $10805.984 \mathrm{cm}^{-1}$ $10635.518 \mathrm{cm}^{-1}$ $9240.141 \mathrm{cm}^{-1}$                         | $4320.423 \text{cm}^{-1}$ $4279.520 \text{cm}^{-1}$ $4289.659 \text{cm}^{-1}$ $3815.324 \text{cm}^{-1}$ |
| $^{3}P_{0}$ (226.977cm <sup>-1</sup> ) | $10854.379 \mathrm{cm}^{-1} \\ 10737.632 \mathrm{cm}^{-1} \\ 10567.166 \mathrm{cm}^{-1} \\ 9171.789 \mathrm{cm}^{-1}$                      | $4296.653 \text{cm}^{-1}$ $4255.749 \text{cm}^{-1}$ $4265.888 \text{cm}^{-1}$ $3791.553 \text{cm}^{-1}$ |

<sup>&</sup>lt;sup>7</sup>Charlotte Emma Moore and Jean W. Gallagher. "Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions". 1993.

### y Trans. speed of NO

| E <sub>int.</sub> (O)                  | $v(NO) = \sqrt{\frac{2E_{trans}(NO)}{m(NO)}}$                                                                                                           | $\Delta y$                               |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| $^{3}P_{2}$ (0cm <sup>-1</sup> )       | $\begin{array}{c} 1867.845\mathrm{ms^{-1}} \\ 1859.094\mathrm{ms^{-1}} \\ 1861.267\mathrm{ms^{-1}} \\ 1756.732\mathrm{ms^{-1}} \end{array}$             | 253.177<br>253.650<br>256.147<br>246.776 |
| $^{3}P_{1}$ (158.625cm <sup>-1</sup> ) | $\begin{array}{c} 1856.033\mathrm{ms^{-1}}\\ 1847.226\mathrm{ms^{-1}}\\ 1849.413\mathrm{ms^{-1}}\\ 1744.168\mathrm{ms^{-1}} \end{array}$                | 253.177<br>253.650<br>256.148<br>246.776 |
| $^{3}P_{0}$ (226.977cm <sup>-1</sup> ) | $\begin{array}{c} 1850.920 \mathrm{m  s}^{-1} \\ 1842.089 \mathrm{m  s}^{-1} \\ 1844.282 \mathrm{m  s}^{-1} \\ 1738.726 \mathrm{m  s}^{-1} \end{array}$ | 253.177<br>253.650<br>256.147<br>246.776 |

### y Trans. speed of NO



### y Trans. speed of NO



 $12.49 \mathrm{m\,s^{-1}/px}$  @ Average

### Reference

- J. Danielak et al. Journal of Molecular Spectroscopy 181.2 (1997), pp. 394–402.
- [2] Rémy Jost et al. The Journal of Chemical Physics 105.3 (July 1996).
- [3] Charlotte Emma Moore and Jean W. Gallagher. "Tables of spectra of hydrogen, carbon, nitrogen, and oxygen atoms and ions". 1993.
- [4] Colin M. Western. Journal of Quantitative Spectroscopy and Radiative Transfer 186 (2017), pp. 221–242.