Recent Advances in Language Model Fine-tuning

Author: SEBASTIAN RUDER

Overview

• Fine-tuning a pretrained language model (e.g., BERT, mBERT, XLM-R) has become a new norm for training a model on an NLP downstream task.

Overview

• Methods discussed in this presentation:

Category	Methods	Motivation
Adaptive Fine-tuning	Domain/task/ language adaptive fine-tuning	Specialise to target domain
Behavioural Fine-tuning	Intermediate-task training, self-supervised, frame as MLM	Specialise to target task
Parameter-efficient Fine-tuning	Adapters, sparse parameter permutations, pruning	Reduce space of fine-tuned models
Text-to-text Fine-tuning	Frame as text-to-text, prompt engineering, controllable NLG	Effectively use large autoregressive pre-trained LMs
Mitigating Fine-tuning Instabilities	Stop runs early, use a small lr, regularisation, avoid random init	Reduce variance of fine-tuning runs

Adaptive fine-tuning

- Pretrained language models can get in trouble with downstream data that is very different from the pretraining data in terms of.
- Adaptive fine-tuning is a way to bridge such a shift in distribution by fine-tuning the model on relevant unlabeled data:
 - Domain-adaptive: Unlabeled data is close to the training data of the downstream task.
 - Task-adaptive: Unlabeled data is the label-removed version of the downstream training data.

Behavioural fine-tuning

- Behavioural fine-tuning focuses on learning behaviours that are useful for the target task by fine-tuning the model on labeled data of the relevant tasks.
- E.g.: This paper (https://arxiv.org/abs/2101.11038) pre-finetunes the model on 50 labelled datasets
 (classification, summarization, common sense, MRC) in a massively multi-task setting and obtains significant improvement for Natural Language Inference, Question Answering, ...

Parameter-efficient fine-tuning

• Using adapters which are small networks injected between transformer layers. During fine-tuning, original weights of the pretrained language model are fixed while adapter and task-specific weights are updated.

Source: MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer

• Removing some last few layers of the pretrained language models and performing the fine-tuning with the remaining ones might still give similar performance.

Text-to-text fine-tuning

Casting the downstream task to a generative extraction task.

Text-to-text fine-tuning

Casting the downstream task to a text generation task.

Mitigating fine-tuning instabilities

- Performance for fine-tuning on a small downstream dataset can vary drastically between different runs.
- Previous work shows that weight initialization of the output layer and the order of the training data contribute to variation in performance.
- To avoid instabilities, avoid randomly initialized output layers. We can use behavioural or text-to-text fine-tuning.