MATEMÁTICA DISCRETA I PRIMER CONTROL (SOLUCIONES)

Observaciones:

- Sólo se valorarán aquellas respuestas que justificadamente utilicen los métodos desarrollados en esta asignatura.
- No está permitido el uso de dispositivos electrónicos.

Ejercicio 1 (10 ptos.)

a) En el conjunto de los números enteros se define la relación de equivalencia: a R b \Leftrightarrow 7 | (b-a). Dados los subconjuntos de números enteros

{19,-12,-5,5,12,19}	{0, 7, 14, 21}	{16, -9, -2, 5, 12, 19}	{5, 12, 19}
{18,-11,-4,4,11,18,}	{4, 11, 18,}	{,-21, -14, -7, 0, 7, 14, 21}	{17, -10, -3, 4, 11, 18,}

selecciona el subconjunto asociado a cada una de las clases [5], [4] y [0].

- b) Dibuja el diagrama de Hasse del conjunto $C = \{\emptyset, \{1\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}$ con el orden de contenido o igual \subseteq . Razona si el conjunto \mathcal{C} es un retículo.
- c) Demuestra por inducción que $2^0 + 2^1 + \dots + 2^{n-1} + 2^n = 2^{n+1} 1$

$$2^{0} + 2^{1} + \dots + 2^{n-1} + 2^{n} = 2^{n+1} - 1$$

SOLUCIÓN:

- a) $[5] = \{...-16, -9, -2, 5, 12, 19...\}, [4] = \{...-17, -10, -3, 4, 11, 18,...\}, [0] = \{..., -21, -14, -7, 0, 7, 14, 21...\}.$
- b) Es retículo.

c) Sin = 1,

$$\sum_{k=0}^{1} 2^k = 2^2 - 1$$

Supongamos cierto para k = n y sea

$$\sum_{k=0}^{n+1} 2^k = \sum_{k=0}^{n} 2^k + 2^{n+1} = 2^{n+1} - 1 + 2^{n+1} = 2^{n+2} - 1$$

Ejercicio 2 (10 ptos.)

Sea $C = \{0, a, b, c, d, e, f, g, h, i, j, 1\}$ con la relación dada por el siguiente diagrama de Hasse.

Se pide:

- a) Halla cotas superiores e inferiores, supremo e ínfimo, si los hay, del subconjunto $B = \{c, g, i\}$ en C.
- b) Halla los elementos maximales y minimales, máximo y mínimo, si los hay, de B.
- c) Calcula el complementario de f en C y encuentra un elemento en C que no tenga complementario.
- d) Razona si C es un Álgebra de Boole.

SOLUCIÓN:

- a) Cotas superiores $B = \{1, i\}$, cotas inferiores $B = \{b, 0\}$, supremo B = i, infimo B = b en C.
- b) Elementos maximales $B = \{i\}$, minimales $B = \{c, g\}$, máximo B = i, mínimo B = i no existe.
- c) Complementario de f = c. Los elementos en C que no tienen complementario son $C \{0, 1, c, f\}$.
- d) C no es un Álgebra de Boole porque no es complementario.

Ejercicio 3 (8 ptos.)

- a) Dibuja el mapa de Karnaugh asociado a la función booleana f que toma valor 1 en el conjunto numérico $C = \{1, 3, 6, 7, 9, 10, 11, 13, 15\}$ y valor 0 en el conjunto numérico $C' = \{0, 2, 4, 5, 8, 12, 14\}$.
- b) Halla una expresión booleana mínima, en forma de suma de productos, mediante el método de Quine-McCluskey, para la función g que toma el valor 1 en el subconjunto $S(g) = \{(0001), (0011), (0101), (0111), (1100), (1101), (1110), (1111)\}$ de B^4 y O en su complementario

SOLUCIÓN:

a) Mapa de Karnaugh asociado a la función f:

	У	У	y'	у'	_
X			1		
×	1	1	1	1	
x'		1	1	1	
x'		1			
	z'	Z	Z	z'	_

b) Método de Quine-McCluskey:

<u>xyzt</u>	<u>xyzt</u>	<u>xyzt</u>
1111 *	111-*	11
	11–1 *	-1-1
1110 *	−111 *	
1101 *		01
0111 *	11–0 *	
	110-*	
1100 *	−101 *	
0101 *	01–1 *	
0011	0–11 *	
0001 *	0-01 *	

00-1 *

	1111	1110	1101	0111	1100	0101	0011	0001
11	1	1	1		1			
-1-1	1		1	1		1		
01				1		1	1	√

†' † †

El término correspondiente a -1-1 es redundante. La expresión booleana mínima, en forma de suma de productos, para la función g es: g(x, y, z, t) = xy + x't

Ejercicio 4 (12 ptos.)

- a) Felipe, dueño de una pequeña tienda de comunicaciones, empleó 4043 euros en la compra de móviles de dos modelos A y B cuyos precios respectivos eran de 260 y 169 euros unidad. Utilizando el algoritmo de Euclides, averigua cuántos móviles compró de cada modelo.
- b) Calcula en \mathbb{Z}_{507} la operación $(1017 + 2^{3123} + 5^{-1})$.

SOLUCIÓN:

a) Si compró x móviles del modelo A, e y móviles del modelo B, se ha de cumplir que:

$$260x + 169y = 4043$$

Se calcula el máximo común divisor de los coeficientes y se comprueba que la ecuación tiene solución: $260 = 169 \cdot 1 + 91$, $169 = 91 \cdot 1 + 78$, $91 = 78 \cdot 1 + 13$, $78 = 13 \cdot 6 + 0$. Por tanto, mcd(260,169) = 13|4043 ya que $4043 = 13 \cdot 311$, luego la ecuación tiene solución. Se halla una solución particular a partir del algoritmo de Euclides:

$$260 \cdot 2 + 169 \cdot (-3) = 13 \underset{x311}{\Longrightarrow} 260 \cdot 622 + 169 \cdot (-933) = 4043 \Rightarrow \begin{cases} x_0 = 622 \\ y_0 = -933 \end{cases}$$

La solución general es:

$$(x,y) = (622, -933) + \frac{(169, -260)}{13}t \Rightarrow \begin{cases} x = 622 + 13t \\ y = -933 - 20t \end{cases} \forall t \in \mathbb{Z}$$

Los valores de x e y deben ser enteros y positivos:

$$\begin{cases} x = 622 + 13t & \ge 0 \\ y = -933 - 20t & \ge 0 \end{cases} \Rightarrow \begin{cases} t \ge -\frac{622}{13} \approx -47.8 \\ t \le -\frac{933}{20} \approx -46.6 \end{cases} \Rightarrow t = -47 \Rightarrow \begin{cases} x = 622 + 13 \cdot (-47) = 11 \\ y = -933 - 20 \cdot (-47) = 7 \end{cases}$$

Por tanto, compró 11 móviles del modelo A y 7 móviles del modelo B.

b)
$$1017 + 2^{3123} + 5^{-1}$$
 en \mathbb{Z}_{507}

•
$$n = 507 = 3.13^2$$
 y $\Phi(507) = \Phi(3.13^2) = \Phi(3) \Phi(13^2) = 2(13^2-13) = 312$.

Como mcd(2,507) = 1 entonces,

$$2^{\Phi(507)} \equiv 1 \mod 507 \Rightarrow 2^{312} \equiv 1 \mod 507 \Rightarrow 2^{3123} = (2^{312})^{10} \ 2^3 \equiv 8 \mod 507.$$

• Como mcd (5, 507) = 1, existe $x = 5^{-1} \mod 507$.

Por tanto, existen x, y tales que 5x + 507y = 1. Aplicando el A. de Euclides,

$$507 = 5.101 + 2$$

 $5 = 2.2 + 1$ $\Rightarrow 1 = 5 - 2.2 = 5 - 2(507 - 101.5) = -2.507 + 203.5 \Rightarrow x \equiv 203 \mod 507$
 $2 = 2.1$

- $1017 \equiv 3 \mod 507$
- $(1017 + 2^{3123} + 5^{-1}) \mod 507 = (3 + 8 + 203) \mod 507 = 214 \mod 507$