- 1. (10%) Express the base vector \hat{a}_R , \hat{a}_{θ} and \hat{a}_{\emptyset} of a spherical coordinate system in terms of the cylindrical base vector \hat{a}_r , \hat{a}_{\emptyset} , \hat{a}_z and coordinate r, \emptyset and z.
- 2. (10%) In Fig.1, verify the divergence theorem by the vector field $\overrightarrow{F} = \hat{a}_R cos^2 \emptyset / R^3$ existing in the region between two spherical shells defined by R=2 and R=3.
- 3. (15%) Given a vector function $E=a_xy+a_yx$, evaluate the scalar line integral $\int E\cdot d\ell$ from P_1 (2,1,-1) to P_2 (8,2,-1)
 - a) alone the parabola $x=2y^2$,
 - b) alone the straight line joining the two points.
 - c) Evaluate $\int E \cdot d\ell$ from $P_3(3,4,-1)$ to $P_4(4,3,-1)$ by converting both E and the positions of P_3 and P_4 into cylindrical coordinates.
- 4. (16%) Given three vectors A, B and C as follows,

$$\mathsf{A} \text{=} a_x \text{+} a_y 2 \text{-} a_z 3 \text{ , } \mathsf{B} \text{=} -a_y 4 \text{+} a_z \text{ , } \mathsf{C} \text{=} a_x 5 \text{-} a_z 2$$

Find

a) a_A

b) |A-B|

c) A · B

- d) θ_{AB}
- e) the component of A in the direction of C
- f) $A \times C$

g) $A \cdot (B \times C)$ and $(A \times B) \cdot C$

- h) $(A \times B) \times C$ and $A \times (B \times C)$
- 5. (10%) In Fig.3, calculate the electric field E at the center of an equilateral triangle.
- 6. (15%) In Fig.4, verify Stokes's Theorem with vector function $\vec{F} = \hat{a}_{\emptyset} 3 \sin(\frac{\emptyset}{2})$ for a hemispherical and the boundary of hemispherical with radius r=4.

hint:
$$\nabla \times \overrightarrow{F} = \hat{a}_R \frac{3\cos\theta \sin\frac{\theta}{2}}{R\sin\theta} - \hat{a}_\theta \frac{3\sin\frac{\theta}{2}}{R}$$

y 2 1 0 Fig.2

Fig.4

- 7. (12%) An uniform electron cloud (Fig.5) with density $\rho_{(r)} = \rho_0 (1 \frac{r^2}{a^2})$, find the electric field *E* at :
 - a) r<a
 - b) r>a
 - c) Write the integral expression of charge Q.

Fig.5

- 8. (12%) Proof:
 - a) $\nabla \cdot (\nabla \times \overrightarrow{A}) = 0$
 - b) $\nabla \times (\nabla V) = 0$