DBSCAN

Data Mining Lab 6

Example:

The starting dataset:

I did <u>not</u> standardize the data because I wanted to have nice numbers for the example, but **YOU HAVE TO**! (We are using distances;))

	x0	x1	
0	2.0	2.0	
1	5.0	2.0	
2	4.0	4.0	
3	1.0	1.5	
4	1.0	1.0	
5	3.0	4.0	

Final Result

Params:

- epsilon = 2.0
- min_samples = 2

	x0	x1	Cluster
0	2.0	2.0	0
1	5.0	2.0	-1
2	4.0	4.0	1
3	1.0	1.5	0
4	1.0	1.0	0
5	3.0	4.0	1

Initialization

Initialize clusters to -1 (= outlier)

visited = set()

queue = []

	x0	x1	Cluster
0	2.0	2.0	/-1
1	5.0	2.0	-1
2	4.0	4.0	-1
3	1.0	1.5	-1
4	1.0	1.0	-1
5	3.0	4.0	\-1

Point 0 has not been visited yet. Start a cluster formation and add point 0 to the queue.

		x0	x1	Cluster
Step: 0	0	2.0	2.0	-1
Current Cluster: 0 (from point 0) Visited: {0}	1	5.0	2.0	-1
Queue: [0]	2	4.0	4.0	-1
	3	1.0	1.5	-1
	4	1.0	1.0	-1
	5	3.0	40	-1

The queue is not empty -> pop point 0 from the queue.

Find its neighbourhood: [0, 3, 4]

Point 0 is a core point, so assign its neighbours to the current cluster (0), add the unvisited ones to the queue and set them as vi x0 x1 Cluster

Step: 1
Current Cluster: 0 (from point 0)

Visited: {0, 3, 4}
Queue: [3, 4]

0 2.0 2.0 0

1 5.0 2.0 -1

2 4.0 4.0 -1

3 1.0 1.5 0

4 1.0 1.0 0

5 3.0 4.0 -1

The queue is not empty -> pop point 3 from the queue.

Find its neighbourhood: [0, 3, 4]

Point 3 is a core point, so assign its neighbours to the current cluster (0), add the unvisited ones to the queue and set them as vi x0 x1 Cluster

Step: 2 Current Cluster: 0 (from point 0) / Visited: {0, 3, 4} Queue: [4]

The queue is not empty -> pop point 4 from the queue.

Find its neighbourhood: [0, 3, 4]

Point 4 is a core point, so assign its neighbours to the current cluster (0), add the unvisited ones to the queue and set them as vi x0 x1 Cluster

Step: 3
Current Cluster: 0 (from point 0)
Visited: {0, 3, 4}
Queue: []

The queue is empty and cluster 0 has been fully formed.

Current Cluster++

Point 1 has not been visited yet. Start a cluster formation and add point 1 to the queue.

Step: 5		x0	x1	Cluster
Current Cluster: 1 (from point 1) Visited: {0, 1, 3, 4}	0	2.0	2.0	0
Queue: [1]	1	5.0	2.0	-1
	2	4.0	4.0	-1
	3	1.0	1.5	0
	4	1.0	1.0	0
	5	3.0	40	-1

The queue is not empty -> pop point 1 from the queue.

Find its neighbourhood: [1]

Point 1 is not a core point, so just continue

Step: 6		x0	x1	Cluster
Current Cluster: 1 (from point 1) Visited: {0, 1, 3, 4}	0	2.0		0
Queue: []		5.0		-1
	2	4.0	4.0	-1
	3	1.0	1.5	0
	4	1.0	1.0	0
	5	3.0	4.0	-1

The queue is empty and no cluster could be formed.

Step: 7
Current Cluster: 1 (from point 1)
Visited: {0, 1, 3, 4}
Queue: []

		x0	x1	Cluster
	0	2.0	2.0	0
×	1	5.0	2.0	-1
	2	4.0	4.0	-1
	3	1.0	1.5	0
	4	1.0	1.0	0
	5	3.0	4.0	-1

Select the next point from the dataset.

Point 2 has not been visited yet. Start a cluster formation and add point 2 to the queue.

```
Step: 8
Current Cluster: 1 (from point 2)
Visited: {0, 1, 2, 3, 4}
Queue: [2]
```

	x0	x1	Cluster
0	2.0	2.0	0
1	5.0	2.0	-1
2	4.0	4.0	-1
3	1.0	1.5	0
4	1.0	1.0	0
5	3.0	4.0	-1

The queue is not empty -> pop point 2 from the queue.

Find its neighbourhood: [2, 5]

Point 2 is a core point, so assign its neighbours to the current cluster (1), add the unvisited ones to the queue and set them as visited

Step: 9
Current Cluster: 1 (from point 2)
Visited: {0, 1, 2, 3, 4, 5}
Queue: [5]

	x0	x1	Cluster
0	2.0	2.0	0
1	5.0	2.0	-1
2	4.0	4.0	1
3	1.0	1.5	0
4	1.0	1.0	0
5	3.0	4.0	1

The queue is not empty -> pop point 5 from the queue.

Find its neighbourhood: [2, 5]

Point 5 is a core point, so assign its neighbours to the current cluster (1), add the unvisited ones to the queue and set them as visited

Step: 10
Current Cluster: 1 (from point 2)
Visited: {0, 1, 2, 3, 4, 5}
Queue: []

	x0	x1	Cluster
0	2.0	2.0	0
1	5.0	2.0	-1
2	4.0	4.0	1
3	1.0	1.5	0
4	1.0	1.0	0
5	3.0	4.0	1

The queue is empty and cluster 1 has been fully formed.

Step: 11
Current Cluster: 1 (from point 2)
Visited: {0, 1, 2, 3, 4, 5}
Queue: []

	x0	x1	Cluster
0	2.0	2.0	0
1	5.0	2.0	-1
2	4.0	4.0	1
3	1.0	1.5	0
4	1.0	1.0	0
5	3.0	4.0	1

Current Cluster++

Point 3 has already been visited -> continue.

Step: 12
Current Cluster: 2 (from point 3)
Visited: {0, 1, 2, 3, 4, 5}
Queue: []

x0 x1 Cluster

0 2.0 2.0 0

1 5.0 2.0 -1

2 4.0 4.0 1

3 1.0 1.5 0

4 1.0 1.0 0

5 3.0 4.0 1

Point 4 has already been visited -> continue.

Point 5 has already been visited -> All points have been visited -> **DONE**.

