

目录

行为评分卡的基本概念

行为评分卡的特征构造行为评分卡模型的开发

- □ 行为评分卡的基本概念
- > 基本定义

根据贷款人放贷后的表现行为,预测未来逾期/违约风险概率的模型。

▶ 使用场景

和申请评分卡不同,行为评分卡用在贷款发放之后、到期之前的时间段,即"贷中"环节。

▶ 使用目的

监控贷款人在贷款结束之前的逾期/违约风险

- □ 适用的信贷产品
- > 还款周期长的信贷产品
- 太短的还款周期难以构造有效的特征
- 长周期的产品有房贷、车贷、某些信用现金贷
- > 循环授信类的信贷产品

信用卡、某些信用贷

注:

不宜用在按月还利息、本金一次付清的产品:

每一期的风险不同。最后一期的风险远高于之前的账单期

□ 表现期与观察期

行为评分卡预测的是条件概率:

两个肘间段

- > 当前以及过去一段时间
- > 未来一段时间

- □ 观察期与表现期
- 观察期
- 搜集变量、特征的时间窗口,通常3年以内
- 带时间切片的变量

表现期

• 搜集是否出发坏样本定义的时间窗口,通常6个月~1年

- □ 观察期与表现期(续)
- > 观察点的设定
- Month on Book(MoB) = 观察点 贷款发放日
- MoB不宜太短,否则无法构建出合适的行为变量,建议 在6个月以上
- > 表现期的设定

不宜太短,否则

- 失去预测的意义
- 时间长度无法保证
- 概率难以预测

- □ 观察期与表现期(续)
- > 观察期的设定
- · 不宜太长,否则MoB过长,大量客户无法进入模型
- 不宜太短,否则构建的变量,有效性不够

目录

行为评分卡的基本概念 行为评分卡的特征构造 行为评分卡模型的开发

□ 时间切片

定义:两个时刻间的跨度

例: 观察日期之前30天内信用卡帐户的总消费额基于时间切片的衍生

- 观察日期之前180天内,平均每月(30天)的逾期次数常用的时间切片
- (1、2个)月,(1、2个)季度,半年,1年,1年半,2年时间切片的选择
- 不能太长:保证大多数样本都能覆盖到
- 不能太短: 丢失信息

□ 还款率类型特征

定义

与还款行为有关的变量。还款行为由用户的还款能力与还款意愿决定。还款能力强、还款意愿高的客户,发生违约的可能性较小。通常情况下还受到(上)月末欠款余额有关。因此在定义还款行为时,需要将还款额转换成还款率:

本月还款率 = 本月总还款额上月末总欠款额

□ 还款率类型特征(续)

常用的还款率类型特征

过去半年内,最大(小)的月还款率

 $\max PaymentL6 = \max\{\frac{PaymentAmount_i}{Outstanding_{i-1}}, i = 1, 2, \dots, 6\}$

过去半年内, 平均月还款率

$$avgPaymentL6 = \frac{\sum_{i=1}^{6} PaymentAmount_{i}}{\sum_{j=0}^{5} Outstanding_{j}}$$

□ 额度使用率类型特征

定义

关于授信额度使用情况的特征。使用额度较多的帐户,未来还款压力较大,相对容易引发违约。同时使用额度也收到授信总额的影响,需要将使用额度转换成使用率:

注:

分母是授信总额度而非当前可以使用余额

□ 额度使用率类型特征(续)

常用的额度使用率类型特征

过去6个月内,平均额度使用率:

$$avgUrateL6M = \frac{1}{6} \sum_{i=1}^{6} \frac{Spending_i}{Limit}$$

过去6个月内,月额度使用率升高的月份数 $\frac{Spending_{i+1}}{Limit} > \frac{Spending_{i}}{Limit}, i$ $= 1,2,...,6 \}$

□ 逾期类型特征

定义

关于M0, M1, M2状态的特征。较高的逾期状态易导致较大的违约概率。

注:用在违约预测模型而非逾期预测模型

常用的逾期类型特征

当前的逾期状态

- > 过去6个月的最大逾期状态
- ▶ 过去6个月M1、M2、M3的次数

□ 消费类型特征

定义

反应用户消费行为的特征。在信用卡客户中,可以建立:

- > "国外使用"类型特征
- ▶ "提现" 类型特征
- > "线上消费"类型特征

等等

目录

行为评分卡的基本概念 行为评分卡的特征构造 行为评分卡模型的开发

- □ 行为评分卡模型的开发步骤
- a. 数据预处理
- b. 特征衍生
- c. 特征处理与筛选
- d. 模型的参数估计、特征挑选
- e. 模型的性能测试

□ 特征构造

构造了时间窗口为1、3、6、12个月的观察期 每种观察期内包含的行为变量类型:

- > 逾期类:最大逾期状态,M0/M1/M2的次数
- 额度使用类:最大月额度使用率,平均月额度使用率, 月额度使用率增加的月份
- > 还款类: 最大月还款率,最小月还款率,平均月还款率

□ 特征挑选

要求

- IV>0.02
- WOE编码后,两两线性相关性低于0.7
- WOE编码后,共线性VIF<10

□ 特征挑选后的IV分布

□ 特征挑选后的两两线性相关性

□ 特征挑选后的多重共线性(VIF分布)

□ 逻辑回归

第一次逻辑回归

□ 基于GBDT模型的变量挑选

□ 基于GBDT模型的变量挑选

步骤一

- 1,从GBDT的结果中,挑出4个最重要的变量
- 2,在1的基础上,按重要性逐渐添加新的变量
- 3, 当新添入的变量的符号为正时, 含弃该变量。否则保留
- 4, 直到添加(或剔除)最后一个变量

□ 第二次逻辑回归

Logit Regression Results

Logic Regression Results							
Dep. Variable: Model:	label Logit	Df Residuals: Df Model: Pseudo R-squ.:			28099 28084		
Method:	MLE			14			
Date:	Tue, 26 Dec 2017			0.3616 -7260.2			
Time:	23:13:17						
converged:	True	LL-Null:		-11372.			
2011/2012/00/00 This Street		LLR p-value:		0.000			
	coef	std err	Z	P> z	[0.025	0.975]	
maxDelqL3M_Bin_W0E	-0.7442	0.025	-29.335	0.000	-0.794	-0.694	
increaseUrateL6M_Bin_V	WOE -1.1690	0.072	-16.340	0.000	-1.309	-1.029	
M0FreqL3M_W0E	-0.3407	0.028	-11.975	0.000	-0.396	-0.285	
avgUrateL1M_Bin_W0E	-0.6600	0.086	-7.699	0.000	-0.828	-0.492	有不显著的变
avgUrateL3M_Bin_W0E	-0.5108	0.107	-4.780	0.000	-0.720	-0,301	
M2FreqL3M_Bin_W0E	-0.6830	0.040	-16.979	0.000	-0.762	0.604	
M1FreqL6M_Bin_W0E	-0.1131	0.033	-3.469	0.001	-0.177	-0.049	
maxDelqL1M_Bin_W0E	-0.1364	0.027	-5.063	0.000	-0.189	-0.084	
maxUrateL6M_Bin_W0E	-0.1321	0.131	-1.008	0.313	-0.389	0.125	
increaseUrateL12M_Bin	_WOE -0.0327	0.101	-0.322	0.747	0.231	0.166	
maxPayL6M_Bin_W0E	-0.0725	0.067	-1.086	0.278	-0.203	0.058	
avgUrateL6M_Bin_W0E	-0.1310	0.145	-0.906	0.365	-0.414	0.152	
avgPayL12M_Bin_W0E	-0.0256	0.045	-0.571	0.568	-0.114	0.062	
maxPayL12M_Bin_W0E	-0.0003	0.109	-0.002	0.998	-0.214	0.213	
intercept	-1.8136	0.024	-76.540	0.000	-1.860	-1.767	

□ 变量显著性检验

对于每一个不显著的变量,单独建立逻辑回归模型,检验显著性

变量	p值
maxPayL6M_Bin_WOE	≈ 0
maxUrateL6M_Bin_WOE	≈ 0
avgUrateL6M_Bin_WOE	≈ 0
avgPayL12M_Bin_WOE	≈ 0
increaseUrateL12M_Bin_WOE	≈ 0
maxPayL12M_Bin_WOE	≈ 0

每个变量都显著。需要再次进行挑选

- □ 基于带L1约束的逻辑回归模型
- a) 对逻辑回归模型中加入L1约束,挑选变量
- b) 寻找最优的惩罚因子,使得模型尽可能多地包含变量, 且每个变量都显著!
- c) 惩罚因子越大, 变量越稀疏
- d) 经计算,最优的惩罚因子是54,共计有8个变量入选

□ 逻辑回归模型的检验

计算逻辑回归模型在训练集、测试集上的AUC和KS

	AUC	KS
训练集	83.64%	59.82%
测试集	84.43%	64.94%

两组的KS、AUC都满足标准,且相差不大。

□ 分数计算

$$score = Base\ Point + \frac{PDO}{\ln(2)}(-y)$$

选取Base Point = 500, PDO = 50, 分数在测试集上的分布

疑问

- □ 小象问答官网
 - http://wenda.chinahadoop.cn

课程视频资源扫码:

联系我们

小象学院: 互联网新技术在线教育领航者

- 微信公众号: 小象学院

- 新浪微博: 小象AI学院

