

142/615

FIGURE 141

AATGGCTGTCTTAGTACTCGCCTGACAGTTGCTGGACTGCTTGTCTTATTCTGACCTGCTATGCAGACGA
CAAACCAGACAAGCCAGACGACAAGCCAGACGACTCGGGCAAAGACCCAAGGCCAGACTTCCCCAAATTCTTAAG
CCTCCTGGCACAGAGATCATTGAGAATGCAGTCGAGTTCATCCTCCGCTCCATGTCAGGAGCACAGGATTAT
GGAATTGATGATAATGAAGGAAAACATTCAAAAGTGACATCCTCAGGACACACCCATGTTGGCTCCTGGACAA
TCCAAGAGCAGCCAAATCTGCTTTCCAGTTGGCTCCACAAGTCCTCCAGGACAGAGGCCCTCAAAGCAACTCC
CAACGAGTTCTCAGGATTCAAGGCTCTGGCTTCAACCAAACAGAACTCATTGAAACACCCCTGACTGCATTGGC
TTTTAGAAAGTTAGAATAAATATGGCGTTGGGATCACATAGTTGATGGAGAGGAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA

143/615

FIGURE 142

MAVLVRLTVVLGLLFLTCYADDKPDKPDDSGKDPKFSLLGTEIIENAVEFILRSMSRSTGFM
EFDDNEGKHSSK

144/615

FIGURE 143

GGACGCCAGGCCCTGCAGAGGCTGAGCAGGGAAAAGCCAGTGCCCCAGCGGAAGCACAGCTCAGAGCTGGTCTG
CCATGGACATCTGGTCCCCTGCAGCTGCTGGTCTGCTTACCCCTGCACCTCATGGCTCTGC
TGGGCTGCTGGCAGCCCTGTGCAAAGCTACTTCCCCTACCTGATGCCGTGCTGACTCCCAAGAGCAACCGCA
AGATGGAGAGCAAGAAACGGGAGCTTCAGCCAGATAAAGGGGCTTACAGGAGCCCTCCGGAAAGTGGCCCTAC
TGGAGCTGGGCTCGGAAACGGGAGCCAACTTCACTTCACTCCACGGGCTGCAGGGTCACTGCCTAGACCCAA
ATCCCCACTTGAGAACGTTCCCTGACAAGAGCATGGTGAAGAACAGGCACCTCCAAATATGAGCGGTTTGTGGTGG
CTCCTGGAGAGGACATGAGACAGCTGGCTGATGGCTCCATGGATGTGGTCTGCACTCTGGTCTGTGCTCTG
TGCAGAGCCAAGGAAGGTCCCTGCAGGAGGTCGGAGAGTACTGAGACCGGGAGGTGTGCTCTTTCTGGGAGC
ATGTGGCAGAACATATGGAAGCTGGGCTTCATGTGGCAGCAAGTTTCGAGCCCACCTGAAACACATTGGGG
ATGGCTGCTGCCTCACAGAGAGACCTGGAAGGATCTTGAGAACGCCAGTTCTCGAAATCCAATGGAACGAC
AGCCCCCTCCCTGAAGTGGCTACCTGTTGGGCCCCACATCATGGAAAGGCTGTCAAACAATCTTCCCAAGCT
CCAAGGCACACTATTTGCTCCTTCCCCAGCCTCCAATTAGAACACAAGCCACCCACCAGCCTATCTATCTTCCACTGA
GAGGGACCTAGCAGAATGAGAGAACATTGATGACCTACTAGTCCCTCTCTCCCCAACCTCTGCCAGGGC
AATCTCTAACCTCAATCCCGCTTCGACAGTGAAAAGCTCTACTTCTACGCTGACCCAGGGAGGAAACACTAGG
ACCCCTGTTGATCCTCAACTGCAAGTTCTGGACTAGTCTCCCAACGTTGCCTCCCAATGTTGCTCCCTTCCTT
CGTCCCCATGGTAAAGCTCTCGCTTCTCCCTGAGGCTACACCCATGCGTCTCTAGGAACGTGGTCAACAAAG
TCATGGTGCTGCATCCCTGCCAACCCCCCTGACCCCTCTCCCCACTACCACCTTCTTCTGAGCTGGGGCA
CCAGGGAGAATCAGAGATGCTGGGATGCCAGAGCAAGACTCAAAGAGGCAGAGGTTTGTCTCAAATATTTT
TAATAAAATAGACGAAACCACG

145/615

FIGURE 144

MDILVPLLQLLVLLLTPLHLMALLGCWQPLCKSYFPYLMAVLTPKSNRKMESKKRELFSQIKGLTGASGKVALL
ELGCGTGANFQFYPPGCRVTCLDPNPHFEKFITKSMAENRHLQYERFVVAPGEDMRQLADGSMDVVVCTLVLCSV
QSPRKVLQEVRRLRPGGVLFFWEHVVAEPYGSWAFMWOQVFEPWKHIGDGCCLTRETWKDLENAQFSEIQMEROQ
PPPLKWLPVGPHIMGKAVKQSFPSSKALICSFPSLQLEQATHQPIYLPLRGT

146/615

FIGURE 145

GTGGGATT TATTGAGTGCAAGATCGTTCTCAGTGGTGGAGTTGCCTCATCGCAGGCAGATGTTGGGC
TTTGTCCGAACAGCTCCCTCTGCCAGCTCTGTAGATAAGGGTAAAGAACTAATATTATGACAGAAAGAAAA
AGATGTCATTCCGTAAGTAAACATCATCATTGGCTGGCTGTTACTGGTTACAGATTAGGAATTGTAAGGGCCTCAACCTATAGACT
ACTTCCTCAGCTTGAGCAGTTGTTAGGAATGAGGTTACAGATTAGGAATTGTAAGGGCCTCAACCTATAGACT
TTGTCCCCAAATGCTCCGACATGGCAGTAGATGGAGAACAGAGGAGATTCTGTGGCTCATCCCTGCATCTGAAG
ACAGGCTTGGGGGGCCATTGCAGCTATAACAGCATTCCGACAGAACACTCGCTCCAATGTGATTTCATCATTG
TTACTCTCAACAATACAGCAGACCATCTCCGGTCTGGCTCAACAGTGATTCCCTGAAAAGCATCAGATAACAAAA
TTGTCAATT TGACCCAAACTTTGAGGAAAGTAAAGGAGGATCTGACCAGGGGGAAATCCATGAAACCTT
TAACCTTGCAAGGTTCTACTTGCCAATTCTGGTCCCAGCGCAAAGAAGGCCATATACTGGATGATGATGTA
TTGTGCAAGGTGATATTCTGCCCTTACAATACAGCACTGAAGGCCAGGACATGCAGCTGCATTTCAGAAGATT
GTGATTGCCTCTACTAAAGTTGTCACTCCGGAGCAGGAAACCGAGTACAATTACATTGGCTATCTGACTATA
AAAAGGAAGAATTGTAAGCTTCCATGAAAGCCAGCACTGCTCATTTAACCTGGAGTTTGCAAAACC
TGACGGAATGGAACGACAGAATAACTAACCAACTGAAAATGGATGAAACTCAATGTAAGAAGAGGGACTGT
ATAGCAGAACCCCTGGCTGGTAGCATCACAAACACCTCCTGCTTATCGTATTTATCAACAGCACTCTACCATCG
ATCCTATGTGGAATGTCGGCCACCTTGGTCCAGTGCTGAAAACGATATTCACCTCAGTTGTAAGGCTGCCA
AGTTACTCCATTGGAAATGGACATTGAAGCCATGGGGAGGACTGCTCATATACTGATGTTGGGAAAAATGGT
ATATTCCAGACCCAACAGGCAAATCAACCTAATCCGAAGATATACCGAGATCTCAAACATAAAGTGAAACAGAA
TTTGAACTGTAAGCAAGCATTCTCAGGAAGTCTGGAGATAGCATGGAGTAACAGTTGCTAGGCTTC
AATGCCTATCGGTAGCAAGCCATGGAAAAGATGTGTCAGCTAGGTAAAGATGACAAACTGCCCTGCTGGCAGT
CAGCTCCCAGACAGACTATAGACTATAAAATGTCTCATGCCCTACCAAGTGTCTTACTACAATGCTG
AATGACTGAAAGAAGAACTGATATGGCTAGTCAGCTAGCTGGTACAGATAATTCAAAACTGCTGTTTTA
ATTTGTAAACCTGTGGCCTGATCTGTAATAAAACTACATTTTC

147/615

FIGURE 146

MSFRKVNIILVLAVALFLLVLHHNFLSILSSILRNEVTDSGIVGPQPIDFVPNALRHAVDGRQEEIPVVIASED
RLGGAIAAINSIQHNTRSNVIFYIWTLNNTADHLRSWLNSDSLKSIRYKIVNFDPKLLEGKVKEPDQGESMKPL
TFARFYLPILVPSAKKATYMDDVIVQGDILALYNTALKPGHAAAFSEDCDSASTKVVIRGAGNQNYIGYLDYK
KERIRKLSMKASTCSFNPGVFVANLTEWKRNQITNQLEKWMKLNVEEGLYSRTLAGSITTPPLLIVFYQQHSTID
PMWNVRHLGSSAGKRYSPQFVKAAKLLHWNGHLKPWGRTASYTDVWEKWYIPDPTGKFNLJRRYTEJSNIK

148/615

FIGURE 147

GTTTGAATTCCCTCAACTATACCCACAGTCCAAAAGCAGACTCACTGTGTCAGGCTACCAGTTCCCTCCAAGCA
AGTCATTCCCTTATTAAACCGATGTGTCCTCAAACACCTGAGTGCTACTCCCTATTGCATCTGTTTGATAA
ATGATGTTGACACCCCTCCACCGAATTCTAAGTGAATCATGCGGAAGAGATAACAATCCTGGCCTGTGATCC
TCGCATTAGCCTTGTCTTGGCCATGATGTTACCTTCAGATTCACTACCCCTCTGGTACATTTTCAATTTCATT
CATTGGTTATTGGGATTGTTGCTCGGGTGTATTATGGTGGCTGTATTATGACTATACCAACGACCTCA
GCATAGAACATGGACACAGAAAGGAAAATATGAAGTGCGTGTGGGTTGCTATCGTATCCACAGGCATCACGG
CAGTGCTGCTCGTCTGATTGTTCTCAGAAAGAGAATAAAATTGACAGTTGAGCTTTCAAATCACAAATA
AAGCCATCAGCAGTGCTCCCTTCTGCTGTTCCAGCCACTGTGGACATTGCCATCTCATTCTCTGGTCC
TCTGGGTGGCTGTGCTGAGCCTGGGAAC TG CAGGAGCTGCCAGTTATGGAAGGGCCAGTGGAAATATA
AGCCCCTTCGGGCATTGGTACATGTGGTCGTACCATTAAATTGGCTCATCTGGACTAGTGAAATTCACTCTTG
CGTGCCAGCAAATGACTATAGCTGGGCAGTGTTACTTGTATTCAACAGAAGTAAAATGATCCTCTGATC
ATCCCATCCTTCGTCTCTCCATTCTCTCTACCATCAAGGAACCGTTGAAAGGGTCATTAAATCT
CTGTGGTGAGGATTCCGAGAACATTGTACATGCAAAACGCCACTGAAAGAACAGCAGCATGGTGCAATTGT
CCAGGTACCTGTTCCGATGCTGCTACTGCTGTTCTGGGTCTTGACAAAATACCTGCTCCATCTCAACCCAGAATG
CATATACTACAACGTCTTAATGGACAGATTCTGTACATCAGCAGAAAGATGCAAAATCTTGTCAAGA
ACTCAAGTCACTTTACATCTTAACGTTGGAGACTTCATAATTCTTAGGAAAGGTGTTAGTGGTGTGTT
TCACTGTTTTGGAGGACTCATGGCTTTAACATCAGGCCATTCCAGGTGTGGCAGTCCTCTGTATTGG
TAGCTTTTTGCCTACTTAGTAGCCCAGTTTATCTGTGTTGAAACTGTGCTGGATGCACTTTCTGT
GTTTGCTGTTGATCTGGAAACAAATGATGGATCGTCAGAAAAGCCCTACTTTATGGATCAAGAATTCTGAGTT
TCGTAAAAGGAGCAACAAATTAAACATGCAAGGGCACAGCAGGACAAGCACTCATTAAGGAATGAGGAGGGAA
CAGAACTCCAGGCCATTGTGAGATAGATAACCCATTAGGTATCTGTACCTGGAAAACATTCTAAGAGCCA
TTTACAGAATAGAAGATGAGACCAGAGAAAAGTTAGTGAATTTTAAAGACCTAATAAACCCATTTC
TCCCTAAAA

149/615

FIGURE 148

MSGRDTILGLCILALALSLAMMFTFRFITTLLVHIFISLVLGLLFVCGVLWWLYDYTNDSLIEDTERENMKC
VLGFAIVSTGITAVLLVLIFVLRKRIKLTVELFQITNKAISAPFLLFQPLWTFAILIFFWVLWAVLLSLGTAG
AAQVMEGGQVEYKPLSGIRYMWSYHLIGLIWSEFILACQQMTIAGAVVTCYFNRSKNDPPDHPILSSLSILFFY
HQGTVVKGFLISVVRIPRIIVMMQNALKEQOHGALSRYLFRCCYCCFWCLDKYLLHLNQNAYTTAINGTDFC
TSAKDAFKILSKNSSHFTSINCFGDFIIFLGKVLVVCFVFGGLMAFNYNRAFQVWAVPLLVAFFAYLVVAHSFL
SVFETVLDALFLCAVDLETNDGSSEKPYFMDQEFLSFVKRSNKLNNARAQQDKHSLRNEEGTELOQAIVR

150/615

FIGURE 149

GTTCGATTAGCTCCTCTGAGAAGAAGAGAAAAGGTTCTGGACCTCTCCCTGTTCTCTTGAATAATTGTAT
TGGGATTGTGATGCAGGAAAGCTAACGGGAAAGGAAAGAATATTCAATTCTGTGTTGTTGAAAATTGAAAAAA
ATTGCCCTCTTCAAACAAGGGTGTCAATTCTGATATTATGAGGACTGTGTTCTCACTATGAAGGCATCTGTTAT
TGAAATGTTCTTGTGTTGCTGGTACTGGAGTACATTCAAACAAAGAACGGCAAGAAGATAAAAGGCCAA
GTTCACTGTGCTCAGATCACTGGCATGTCAGGAAAGACATCTGATCCTGAGTTCATGAAATTGTGAAATGTCC
AGCAGGATGCCAAGACCCAAATACCATGTTATGGCACTGTGATGCACTCTACTCCAGTGTGTTGGCG
TGCCGTACACAGTGGTGTGCTGATAATTCAAGGAGGGAAATACTTGTGCGAAGGTTGCTGGACAGTCTGTTA
CAAAGGGAGTTATTCCAACGGTGTCAATCGTTATCCCTACACAGTGGAGAGAAATCCTTATCGTCTTAGAAAG
TAAACCCAAAAGGGTGTAAACCTACGGCTCTTACATCATCATCGAAAGTCCAGTGGCAAGCAG
TGAGACACACAAAAGCTATCAGAGGCCACCTATTCCAGGGACAATGCACAGCGGTCACTGTGATGCAGCTCT
GGCTGTCACTGTAGCTGGCACCCCCACCCACCTTGCAAGGCCATCCCTCTGCTGCTTCAACCACAGCAT
CCCCAGACACAAATCAGTGGGCCACAGGCCAGGAGATGGATCTGGTCACTGCCCACCTACACAAGCGCCA
AAACAGGCCAGGCTGATCCAGGTATCCAAAGGCAAGATCCTCAGGGACTGCGCTTCCAGAAACCTGTTGGAGC
GGATGTCAGCTGGACTGTTCCAAAAGAAGAAATTGAGCACACAGTCTTGGAGGCCAGTATCCTGGAGATCC
AAACTGCAAAATTGACTTGTGTTTAATTGATGGGAGCACAGCATGGCAAAAGGGCATTCCGAATCCAGAA
GCAGCTCCIGGCTGATGTTGGCCAAGCTTGTGACATTGGGCTGCGGCTTCAACTGATGGGTTGTCAGTATGG
AGACAACCCCTGCTACTCACTTAACTCAAGACACACAGAAATTCTGAGATCTGAAGAGACGCCATAGAGAAAAT
TACTCAGAGAGGAGGACTTCTAACTGTAGGTGGGCCATCTCCTTGTGACCAAGAACTTCTTCCAAAGCCAA
TGGAAACAGAAAGGGCTCCAACTGTGGTGTGATGGTGTGCTGGGCCACGGGACAAGTGGAGGAGGC
TTCAAGACTTGGAGAGGACTGAGGAATCAACATTCTCATCACCATTGAGAGTGTGCTGAAATGAGAAGCA
GTATGTGGTGGAGGCCAACTTGTGAAACAAGGGCTGTGCAAGAACAAACGGCTTCACTCGCTTCAACGTGCAAGAG
CTGGTTTGGCTCCACAAGACCCCTGCAAGCTCTGGTGAAGCGGGTCTGGACACTGACCGCCTGGCTGCAAGCAA
GACCTGCTTGAACACTGGCTGACATTGGCTTGCATCGACGGCTCCAGCAGTGTGGGACGGGCAACTTCCGCAC
CGTCTCCAGTTGTGACCAACCTCACCAGGAGATTGAGATTTCGACACGGCACCGCAGTCAGCTGGGGCGTGC
GTACACCTACGAACAGCGGCTGGAGTTGGTGTGACAAAGTACAGCAGCAAGCCTGACATCCTCAACGCCATCAA
GAGGGTGGGCTACTGGAGTGGTGGCACAGCACGGGGGCTGCCATCAACTTGGCTTCAAGCAGTCCGGATCCAGC
GTGCAAGGCCAAACAGGAAGTTAATGATCCTCATCACCCAGCAGGGAGGTCTACGACGACGGCTTCAAGGAA
CATGGCTGCCATCTGAAGGGAGTGTGACATTGGCTTGCATAGGCGTTGGCTGGCAAGAGGAGCTAGAAGT
CATTGCCACTCACCCGCCAGAGACCACTCCTCTTGTGGAGAGTGTGACAAACCTCCATCAGTATGTCCCCAG
GATCATCCAGAACATTGTGACAGGTTCAACTCACAGCCTGGAACTGAAATTGAGGAGCAGGAGCACAGCAA
GTGCTGCTTACTAAGTGTGTTGGACCAACCCACCGCTTAATGGGGCACGGTGCATCAAGTCTGGGC
AGGGCATGGAGAAACAAATGTTGTTATTATCTTGCATCATGCTTTTCAATTCCAAACTTGGAGTTAC
AAAGATGATCACAAACGTATAGAATGAGCCAAAAGGCTACATGTTGAGGGTGTGGAGATTACATTGTGA
CAATTGTTTCAAATAAATGTCAGGAATACAGTGCAGGCCATTACGACAGGCTTACGTAGAGCTTGTGAGATT
TTAAGTGTGTTATTCTGATTTGAACTCTGTAACCTCAGCAAGTTCTGATGACAATGAGGAATTG
CTGAATTAAATGTTAGAAGGATGAAAAATAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG
AAG

151/615

FIGURE 150

MRTVVLTMKASVIEMFLVLLVTGVHSNKETAKKIKRPKFTVPQINCDVKAGKIIDPEFIVKCPAGCQDPKYHVG
TDVYASYSSVCGAAVHSGVLDNSGGKILVRKVAGQSGYKGSYSNGVQSLSLPRWRESFIVLESKPKKGVTPSAL
TYSSSKSPAAQAGETTKAYQRPPIPGTTAQPVTLMQLLAVATPTTLPRPSAASTTSIIPRPQSVGRHSQE
MDLWSTATYTSSQNRPRAADPGIQQRQDPSGAAAFQKPVGADVSIGLVPKEELSTQSLEPVSLGDPNCKIDLSSLIDG
STSIGKRRFRIQKQILLADVAQALDIGPAGPLMGVVQYGDNPATHFNLKHTNSRDLKTAIEKITQRGGLSNVGRA
ISFVTKNFFSKANGNRSGAPNNVVVMVDGWPTDKVEEASRLARESGINIFFITIEGAAENEKQYVVEPNFANKAV
CRTNGFYSLHVQSWFGLHHTLQPLVKRVCDTDRACSKTCINSADIGFVIDGSSSVGTGNFRTVLQFVTNLKEF
EISDTDTRIGAVQTYEQRLEFGFDKYSSKPDILNAIKRVGWSSGGTSTGAAINFALEQLFKKSKPNKRKLMLI
TDGRSYDDVRIPTAMAHLKGVITYAIGVAWAQQEELEVIATHPARDHSFVDEFDNLHQYVPRIIQNICTEFNSQPRN

152/615

FIGURE 151

CAGGATGAACGGTTGCAGTGGCTGCTGCTGCGGGGGCGCTGAGAGGACACGAGCTCTATGCCTTCCGGCT
GCTCATCCGCTCGGCCTCCTGTGCGCGCTGCTGCCTCAGCACCATGGTGCGCCAGGTCCGACGGCTCCCGGCC
AGATCCGCCACTACAGTTTCTCTGACTCTAATTGATGCACTGGACACCTTGCTGATTTGGGAATGTCTC
AGAATTCAAAGAGTGGTGAAGTGCCTCAGGACAGCGTGGACTTGAATATTGATGTGAACGCCTCTGTGTTGA
AACAAACATTGAGTGGTAGGAGGACTCTGTCTGCTCATCTGCTCTCAAGAAGGCTGGGTGGAAGTAGAGGC
TGGATGGCCCTGTCGGGCCCTCCTGAGAATGGCTGAGGAGGCGGCCGAAAACCTCTCCCAGCCTTCAAGAC
CCCCACTGGCATGCCATATGAAACAGTGAACCTACTCATGGCTGAACCCAGGAGAGACCCCTGTACCTGTAC
GGCAGGGATTGGGACCTCATTTGTAATTGCAACCCCTGAGCAGCCTCACTGGTGACCCGTGTTGAAGATGT
GGCCAGAGTGGCTTGATGCCCTCTGGAGAGGCCGGTCAGATATGGGCTGGTCCGAACCACATTGATGTGCT
CACTGGCAAGTGGTGGCCAGGACGCAGGCATGGGGCTGGCTGGACTCCTACTTGAGTACTGGTGAAGAG
AGCCATCCTGCTTCAGGATAAGAAGCTCATGGCATGTTCTAGAGTATAACAAAGCCATCCGAACATACACCCG
CTTCGATGACTGGTACCTGTGGGTCAGATGTACAAGGGACTGTGTCCATGCCAGTCTTCAGTCCTGGAGGC
CTACTGGCCCTGGTCTTCAGAGCCTCATGGAGACATTGACAATGCCATGAGGACCTCTCAACTACTACACTGT
ATGGAAGCAGTTGGGGGGCTCCCGGAATTCTACAACATTCTCAGGGATAACACAGTGGAGAAGCGAGAGGGCTA
CCCACTTCGCCAGAACCTATTGAAAGCGCAATGTACCTTACCGTGCACGGGGATCCCACCCCTCTAGAAACT
CGGAAGAGATGCTGTGGAAATCCATTGAAAAAAATCAGCAAGGTGGAGTGCAGGATTGCAACAATCAAAGATCTGCG
AGACCCACAAGCTGGACAACCGCATGGAGTCGTTCTGGCCAGACTGTGAAATACCTTACCTCTGTTGA
CCCAACCAACTCATCCACAACAATGGGTCACCTCGACCGGTGATCACCCCTATGGGAGTGCACTCTGG
GGCTGGGGGGTACATCTCAACACAGAACGCTCACCCCATCGACCTGCGCCCTGCACTGCTGCCAGGGCTGAA
GGAAGAGCAGTGGGAGGGTGGAGGACTTGATGGGAATTCTACTCTCAAACGGAGCAGGTGAAATTTCAGAA
AAACACTGTTAGTTGGGGCCATGGAACCTCCAGCAAGGCCAGGAACACTCTTCTCACCAGAAAACCATGACCA
GGCAAGGGAGAGGAAGCCTGCCAACAGAAGGTCCCACCTCTCAGCTGCCAGTCAGCCCTCACCTCCAAGTT
GGCATTACTGGGACAGGTTTCTAGACTCCTCATAACCACTGGATAATTTTTATTGGAGGCT
AAACTATAATAATTGCTTTGGCTATCATAAAAA

153/615

FIGURE 152

MPFRLLIPIGLLCALLPQHHGAPGPDGSAPDPAHYSFSLTLIDALDTLLILGNVSEFQRVVEVLQDSVDFIDVN
ASVFETNIRVVGGLLSAHLSSKKAGVEVEAGWPCSGPILLRMAEEAARKLLPAFQTPTGMPYGTVNLLHGVPNPG
PVTCTAGIGTFIVEFATLSSLTGDPVFEDVARVALMRLWESRSRSDIGLVGNHIDVITGKWAQDAGIGAGVDSYFE
YLVKGAILLQDKKLMAMFLEYNKAIRNYTRFDDWYLWVQMYKGTVSMPVFQSLEAYWPGLQSLIGDIDNAMRTFL
NYYTWWKQFGGLPEFYNIPOQGYTVEKREGYPLRPELIESAMYLYRATGDPTLLELGRDAVESIEKISKVECGFAT
IKDLRDHKLDNRMESFFLAETVKYLYLLFDPTNFIHNNGSTFDAVITPYGECILGAGGYIFNTEAHPIDLAALHC
CQRLKEEOWEVEDLMREFYSLKRSRSKFQKNTVSSGPWEPPARPGTLFSPENHDQARERKPAKQKVPLLSCPSQP
FTSKLALLGQVFLDSS

154 / 615

FIGURE 153

CGGACGCCTGGCGGACCGTGGCGGACGCCTGGGTTGGGAGGGGCAGGATGGGAGGGAAAGTGAAGAAAACA
GAAAAGGAGAGGGACAGAGGCCAGAGGACTTCATACTGGACAGAAACCGATCAGGC**ATGGA**ACTCCCCTCGT
CACTCACCTGTTCTGCCCCCTGGTGTCTGACAGGTCTGCTCCCCCTTAACCTGGATGAACATCACCCACG
CCTATTCCCAGGGCCACCAGAAGCTGAATTTCGATACAGTGCTTACAAACATGTGGGGTGACAGCGATGGAT
GCTGGTGGCGCCCTGGGATGGCGCTCAGGCAGGGGAGGGGACGTTATCGCTGCCCTGTAGGGGGGC
CCACAATGCCCATGTGCCAAGGGCCACTTAGGTGACTACCAACTGGAAATTCACTCATCCTGCTGTGAATAT
GCACCTGGGATGTCTGTTAGAGACAGATGGTGTGGGGATTATGGTGAAGCT**AAGGAGAGGGTGGCAG**
TGTCTCTGAAGGTCCATAAAAGAAAAAGAGAACTGTGGTAAGGGAAATGGTCTGTGGAGGGGTCAAGGAGT
TAAAAAACCTAGAAAGAAAAGGTAGGTATGTCAGGGAGTAGTCTCATGCCCTTCACACTGGGAGCATGTT
TGAGGGTGCCTCCCAAGCCTGGGAGTAATTTCCCCCATCCCCAGGCCTGTGCCCTCTGGTCTCGTGC
TGTGGCAGCTCTGTCTCAGTTCTGGGATATGTGCCGTGTGGATGCTTCATTCCAGCCTCAGGGAAAGCCTGGCA
CCCACTGCCAACGTGAGCCAGAGGAAGGCTGAGTACTTGGTCCCAGAAGGAGATACTGGTGGGAAAAGATG
GGGCAAAGCGGTATGATGCCCTGGCAAAGGGCCTGCATGGCTATCCTCATTGCTACCTAATGTGCTTGCAAAAGCT
CCATGTTCTAACAGATTCAAGACTCCTGGCAGGTGTGGTGGCCACACCTGTAATTCTAGCACTTTGGGAGGC
CAAGGTGGGCAGATCACTTGAGGTCAAGGACCAAGCCTGGCAACATGGTGAACACTCCATCTACTAA
AAAAAAAAAAATACAAAAATTAGCTGGGTGCGCTAGTGCAATGCCCTGTAATCTCATCTACTGGGAGGCTAAGACA
GGAGACTCTCACTCAACCAGGGTGGAGCTTGCGGTGAGCCAAGATTGTGCCCTGCACTTAGCGTGGGTG
ACAGAGTAAGCGAGACTCCATCTAAAAATAATAATAATTCAACTCCTTATCAGGAGTCCATGATCTG
GCCCTGGCACAGTAACTCATGCCCTGTAATCCCAACATTGGGAGGCAACGCAGGAGGATTGCTTGAGGTCTGGA
GGTTTGAGACCAGCCTGGCAACATAGAAAGACCCATCTCTAAATAATGTTTAAAAAT

155/615

FIGURE 154

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57039
><subunit 1 of 1, 124 aa, 1 stop
><MW: 13352, pI: 5.99, NX(S/T): 1
MELPFVTHLFLPLVFLTGLCSPFNLDEHHPRLFPGPPEAEFGYSVLQHVGGGQRWMLVGAPWDGPGSGDRRGDVYR
CPVGGAHNAPCAKGHLGDYQLGNSSHPAVNMLGMSLLETDGDGGFMVS

Important features:

Signal peptide:

amino acids 1-22

Cell attachment sequence.

amino acids 70-73

N-glycosylation site.

amino acids 98-101

Integrins alpha chain proteins

amino acids 67-81

156/615

FIGURE 155

GGCAGCTCCGGGTGCTGGCCCCGGCTTGGCGGGGCGGCCTCCGGCTCAGGCTGGCTGAGAGGCTCCAGCTGC
ACGTCCTCCCGCCCGCTCCTCGGGAGCTCTGATCTCAGCTGACAGTGCCCTCGGGACCAAACAAGCCTGGCAGG
GTCTCACTTGTGCCCAGGCTGGAGTTCACTGCCCCATGATCATGGTTACTGCAGGCTTGACCTOCTGGGTTCAA
GCGATCCTGCTGAGTAGCTGGGACTACAGGACAAAATGAAGATCAAATGGAAAATATGCTGCTTGGGTTGAT
ATTTCACCCCTGGGTGGACCCCTATTGATGGATCTGAAATGGAATGGGATTATGTGGCAGTTGAGAAAGGT
ACCCCGGATTGTCACTGAAAGGACTTCCATCTCACCAAGCCCCGATTGAGGCAGATGCTAAGATGATGGTAAA
TACAGTGTGTGGCATGCAATGCCAGAAAGAACCTCCAACTCCAGCCTTCTGAATGGAGGATTATCTTCCATA
TGAGACTGTCTTGAGAATGGCACCCGAACCTTAACCAGGGTAAAGTCAAGATTTGGTTCTGAGCCGACTCA
AAATATCACCACAAAGGGAGTATCTGTTAGGAGAAAGAGACAGGTGTATGGCACCGACAGCAGGTTCAAGCATCTT
GGACAAAAGTTCTAACCAATTCCCTTTAGCACAGCTGTGAAGCTTCCACGGGCTGTAGTGGCATTCTCAT
TTCCCTCAGCATGTTCAACTGCTGCCACTGTGTTCATGATGGAAAGGACTATGTCAAAGGGAGTAAAAGCT
AAGGGTAGGGTTGTTGAAGATGAGGAATAAAGTGGAGGCAAGAACGTCAGGGTCTAAGAGGAGCAGGAGAGA
AGCTAGTGGTGGTACCAAGAGAGGGTACCAAGAGAGCATCTGCAGGAGAGCGAAGGGTGGGAGAAGAAGAAA
AAAATCTGGGGGGGTAGAGGATTGCCAGGGAGGCCTCCTTCAGTGGACCCGGGTCAGAAGAATACCCACAT
TCCGAAGGGCTGGGAGGGCATGGGGAGCTACCTGGACTATGACTATGCTTCTGGAGCTGAAGCG
TGCTCACAAAAGAAATCATGGAATCTGGAATCAGGCAACGATCAAGAAAATGCTGGTGGAAATGATCCACTT
CTCAGGATTGATAACGATAGGGCTGATCAGTTGGTCTATGGTTTGCAGTGTGCCAGCAATCCAATGATCT
CCTTACCAAACTGCGATGCTGAGTCGGGCTCCACGGTCTGGGGICTATCTGCGTCTGAAAGATCCAGACAA
AAAGAATTGGAAGCGAAAATCATGCGGTCTACTCAGGGCACCAGTGGTGGATGTCACGGGTTCTAGAAGGA
CTACAACGTTGCTGTTGCATCACTCCCTAAATACGCCAGATTGCTCTGGATTCACGGGAACGATGCCAA
TTGTGTTACGGCTAACAGAGACCTGAAACAGGGCGGTATCATCTAAATCACAGAGAAAACAGCTCTGCTTA
CCGTAGTGAGATCACTCATAGGTTATGCCCTGGACTTGAACCTGTCAATAGCATTCAACATTTCAAATCA
GGAGATTTCGTCCATTAAAAATGTATAGGTGAGATATTGAAACTAGGTGGGACTTCATGCCAAGTATAT
ACTCTCTTACATGGTGTGAGTTCAATTGTTAGAAAAATTGTTGCTCTTAAATTAGACACACTTTAA
ACCTTCAAACAGGTATTATAAAATACATGTGACTCCTTAATGGACTTATTCTCAGGGTCTACTCTAAGAAGAAT
CTAATAGGATGCTGGTTGTGTTAAATTGTAAGATAAGGATGCTGAAAGCAATTAGTACCTGAAAGAAT
ATAGAGACAGAAAAGTTACAACACAGTTGTACTCTGAGATGGATCCATTGAGCTCATGCCCTCAATGTTAT
ATTGTGTTATCTGTTGGGTCTGGGACATTAGTTAGTTTGAAGAATTACAATCACAGAAGAAAAGCAAGC
ATTATAACAAAACATAAAACTGTTTACTGCTTAAGAAATAACAATTACAATGTGTTATTATTTAAAATGGGA
GAAATAGTTGTTCTATGAAATAACCTAGTTAGAAATAGGGAAGCTGAGACATTAAAGATCTCAAGTTTTA
TTAACTAATACTCAAATATGGACTTTCATGTATGCATAGGAAGACACTTCACAAATTATGAATGATCATGT
GTGAAAGCCACATTATTTATGCTATACATTCTATGTGAGGTGCTACATTTTAGGACAAGAATTCTGAA
TCTTTTCAAGAAAGAGCTTTCTCCTGACAAATCCAGCTTTGTATGAGGACTATAGGGTGAATTCTCTG
ATTAGTAATTAGATATGCTTCTCTAAATGAATAAAATTATGAATATGA

157/615

FIGURE 156

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA57253
<subunit 1 of 1, 413 aa, 1 stop
<MW: 47070, pI: 9.92, NX(S/T): 3
MENMLLWLIFFTPGWTLIDGSEMWEWDFMWHLRKVPRIVSERTFHLTSPAFEADAKMMVNTVC
GIECQKELPTPSL
SELEDYLSYETVFENGTRTLTRVKQDLVLEPTQNITTKGVSVRKRVQVYGTDSRFSILDKRFLTN
FPFSTAVKL
STGCGILISPOHVLTAAHCVHDGKDVKGSKKLRVGLLKMRNKSGGKRRGSKRSRREASGGDQREGT
REHLQE
RAKGGRRKKSQRGQRIAEGRPSFWTRVKNTHIPKGWARGGMGDATLDYDYLALLELKRAHKKYME
LGISPTIK
KMPGGMIHFSGFDNDRADQLVYRFCVSDESNDLLYQYCDAESGSTGSGVYRLKDPLKNWRKIIA
VYSGHQW
VDVHGQKDYNVAVRITPLKYAQICLWIHGNDANCAYG
```

Important features:

Signal peptide:
amino acids 1-16

N-glycosylation sites.
amino acids 90-93, 110-113 and 193-196

Glycosaminoglycan attachment site.
amino acids 236-239

Serine proteases, trypsin family, histidine active site.
amino acids 165-170

158/615

FIGURE 157

GGGACCCATCGGGCCGTGACCCCCGGCTCCCTAGAGGCCAGCGCAGCCGCAGCGGACAAAGGAGCATGTCGCG
CGGGGGAAAGGCCGTCTCCGGCCGCCATAAGCTCCGGTGCAGCGCTGGGCCGCGCCGCGCTCTGCCCGCCCG
GGCTCCGGGGCGGCCCGCTAGGCCAGTGCAGCGCTGCCCGCAGGCCCGCAGCAGCATGGAGCACC
GGACGCCGGCGGGGCCGCGCAGGCCGCTGGCTCTCGCTGTTAGCGCTGCTCGCGCTGCTGGGA
GGCGCGGGCGGCCGCGCAGGCCGCTGCCCGCAGCAGCATGGGCCGAGGGCGAGGGCTGCGAG
GCCGGCGGGCGGCCGAGGGCAAGGTGGTGTGCAAGCAGCTGGACTGCCGAGGTCTGCCCGAGAATACTCTG
CCAACCGCACGGTACCCCTGATTCTGAGTAACAATAAGATGCCAGCTGAAGAATGGCTATTCTGGGTTA
AGTCTCTTGAAAGATTGGACCTCGAACAACTTATTAGTAGTATAGATCCAGGTGCTTCTGGGACTGTCA
TCTCTAAAAGATTGGATCTGACAAACAATCGAATAGGATGTCTGAATGCAGACATATTGAGGACTACCAAT
CTGGTCTGGCTAAACCTTCGGGAAATTGTTCTTCATTATCTCAAGGAACCTTGTGATTATCTTGCCTGCTTCA
CGGTCTTGGAAATTCCAGACTGAGTATCTTGTGTGACTGTAACATACTGTGGATGCATCGCTGGTAAAGGAG
AAGAACATCACGGTACGGGATACCAGGTGTTTATCTAAGTCACTGCAGGCCAACAGTCACAGGCCTGAAG
CAGGAGCTGTTGACATGCGACCCCTCGCTTGAAATTGCGCTTCTACATGACTCATCTCATGCCAAGTTGTG
TTTGAAGGAGACAGCCTCCCTTCAGTGCATGGCTTCATATATTGATCAGGACATGCAAGTGTGTGATCAG
GATGGGAGAATAGTGAACACGATGAATCGCAAGGTATTGTTGTGAAAGAACATGATTCAACTGCTCCCTG
ATTGCAAGTGGCTAACCATCTTAATTCAAGGCTGGATCTACTGGAAATTGGGCTGTCATGTCCAGACCAAA
CGTGGGAAATAACAGGAGCTGTGATATTGGTGTGATATTAGAGAGTCTGCACAGTACTGTCTCCAGAGAGGGTG
GTAAACAAACAAAGGTGACTTCAGATGGCCCAGAACATTGCAGGCAATTACTGCATATCTGCAGTGTACGGAAAC
ACCCATGGCACTGGCATATATCCCGGAAACCCACAGGATGAGAGAAAAGCTGGGCCAGATGTGATAGAGGTGGC
TTTGGGCAAGTGTGATTATTCTCGCTGTGACTGCAAATGATGTCACTAGAGTTCTTATATGTTAACAG
ATGCCCTCAATCTTACCAATGCCGTGGCAACAGCTGACAGTTACTGGCTTACACTGTGGAAGCAGCCAACCTT
TCTGACAAAATGGATGTTATATTGTCAGAAATGATTGAAAAATTGGAAGATTACCAAGGAGAAAATCA
AAAGAGCTAGGTGACGTGATGGTGCACATTGCAAGTAACATCATGTTGGCTGATGAACGTGTCCTGTGGCTGGCG
CAGAGGGAAAGCTAAAGCCCTGCAGTAGGATTGTCAGTGTCTTCAGCGCATTGCTACCTACCGGCTAGCCGGTGG
GCTCACGTTATTCAACATATTCAACCCATATTGCTCTGGAGCTTATGTCATCAAGTCTACTGGCTTCACGGGG
ATGACCTGTACCGTGTCCAGAAAGTGGCAGCTGAGCTTAAAGTCAATGTTCAAGTCTGGCAGTAAAGGTA
TGTTACATTCTGCAATCAATTAAAGACTATTACAGT**TAA**ATTAGAATGCTCAAATGTTCTGCTTCGCAAATAA
CCTTATTAAAAGATTTTTTGCAAGGAAGATAGGTATTGCTACTGTTAAAGAAAACAAACCA
GAAGAACTGCATTACGACTTCAAGGGCCCTAGGCATTGGCCTTGATTCCCTTCTCACATAAAATATCA
GAAATTACATTATAACTGCACTGGTATAATGCAAATATACTATTGTTACATGTGAAAAAATTGACT
TAAAAGTTATTATTGTTCTGCTCTGATTTAAGACAATAAGATGTTCTGATGGGCCCTAAAGTATC
ATGAGCCTTGGCACTGCGCTGCAGCCTAGTGGAGAAGTCAACCCCTGAGACCAGGTGTTAATCAAGCAAG
TGTATATCAAATTTGGCAGAAAACACAAATATGTCATATATCTTTTAAAGGATATTCAAGCA
AGCAAAATGAAAGCATTTACTGATTAAAATTGGTGTGTTAGATATAATTGACTACACTGATTGAAGCAA
ATAGAGGAGGACAACACTCCAGCACCCTAATGAAACCACATTTCACCTAGCTTCTGCTGGCATGTGTAATT
GTATTCTCTGCGGTTTAATCTCACAGTACTTTATTCTGCTTGTCCCTCAATAATCACAACAAATATTCC
AGTCATTAAATGGCTGCAATAACTGATCCAACAGGTGTTAGGTGTTAGTGTGAGCACTCAATAAA
TATTGAATGAATGAACGAAAAAAAAAAAAAA

159/615

FIGURE 158

MEPPGRRRGRAQPPLLPLSLLALLALLGGGGGGAAALPAGCKHDGRPRGAGRAAGAAEGKVVCSSLELAQVLP
PDTLPNRTVTLLILSNNKISELKNGSFSGLSLLERLDLRNNLISSIDPGAFWGLSSLKRLLDLTNNRIGCLNADIFR
GLTNLVRLNLSGGNLFSSLSQGTFDYLASLRSIEFQTEYLLCDCNILWMHRWVKEKNITVRDTRCVYPKSLSQAOPV
TGVKQELLTCDDPPELPSFYMTPSHRQVVFEQDSLPFQCMASYIDQDMQVLWYQDGRIVETDESGIFVEKNMIH
NCSLIASALTISNIQAGSTGNWGCHVQTKRGNNRTVDIVVLESSAQYCP PERVNNKGDFRWPRTLAGITAYLQ
CTRNTHGSGIYPGNPDERKAWRRCDRGGFWADDYSRCQYANDVTRVLYMFNQMPINLTNAVATARQLAYTVE
AANFSDKMDVIFVAEMIEKFGRTKEEKSKELGDVMDIASNIMLADERVLWLAQREAKACSRIVQCLQRiatYR
LAGGAHVYSTYSPNIALEAYVIKSTGFTGMTCTVFQKVAASDRTGLSDYGRRDPEGNLDKQLSFKCNVSNTFSSL
ALKVCYILQSFKTIYS

Signal peptide:
amino acids 1-33

Transmembrane domain:
amino acids 13-40 (type II)

N-glycosylation site.
amino acids 81-85, 98-102, 159-163, 206-210, 301-305, 332-336, 433-437,
453-457, 592-596

N-myristoylation site.
amino acids 29-35, 30-36, 31-37, 32-38, 33-39, 34-40, 51-57, 57-63, 99-105,
123-129, 142-148, 162-168, 317-323, 320-326, 384-390, 403-409, 554-560

160/615

FIGURE 159

GGGGAAATCTGCAGTAGGTCTGCCGGC**GATGGAGTGGTGGGCTAGCTCGCCGCTTCGGCTCTGGCTGCTGTTGTC**
CTCCTGCCCTCAGCGCAGGGCCGCCAGAAGGAGTCAGGTCAAAATGGAAAGTATTATTGACCAAATTAAACAGG
TCTTTGGAGAATTACGAACCATGTCAAGTCAAAACTGCAGCTGCTACCATGGTGTCAAGAAGAGGATCTA
CCTTCCGAGGGAGGCATCTCCAGGAAGATGATGGCAGAGGTAGTCAGACGGAAAGCTAGGGACCCACTATCAGATC
ACTAAGAACAGACTGTACCGGGAAATGACTGCATGTTCCCTCAAGGTGTAGTGGTGTGAGCACTTATTTG
GAAGT GATCGGGCGTCTCCCTGACATGGAGATGGTGTCAATGTACGAGATTATCCTCAGGTTCTAAATGGATG
GAGCCTGCCATCCCAGTCTTCCTCAGTAAGACATCAGAGTACCATGATATCATGTATCCTGCTGGACATT
TGGGAAGGGGACCTGCTGTTGCCAATTATCCTACAGGTCTGGACGGTGGGACCTCTCAGAGAACATCTG
GTAAGGT CAGCAGCAGTGAAAAGAAAAACTCTACAGCATATTCCGAGGATCAAGGACAAGTCCA
GAACGAGATCCTCTCATTCTCTGCTCGGAAAAACCCAAAACCTGTTGATGCAGAAATACACCAAAAACAGGCC
TGGAAATCTATGAAAGATACTTAGGAAAGCCAGCTGCTAAGGATGTCATCTTGATGACTGCAAATACAAG
TATCTGTTAATTTCGAGGCAGTGTGCAAGTTCCGGTTAAACACCTCTCCTGTGTGGCTCACTTGT
CATGTTGGT GATGAGTGGCTAGAAATTCTCTATCCACAGCTGAAGCCATGGGTTCACTATACCCAGTC
GATCTCTCCAATGTCCAAGAGCTGTTACAATTGTAAAAGCAAATGATGATGTAGCTCAAGAGATTGCTGAAAGG
GGAAGGCCAGTTATTAGGAACCATTGCAAGATGGATGACATCACCTGTTACTGGGAGAACCTTGTGAGTGAATAC
TCTAAATTCTGCTTATAATGTAACGAGAACGGTTATGATCAAATTATCCCCAAATGTTGAAAACGTGAA
CTATAGTAGTCATCATAGGACCATAGTCCTTTGTGGCAACAGATCTCAGATATCCTACGGTGAGAACGTTACC
ATAAGCTTGGCTCCATACCTGAAATATCTGCTATCAAGCCAAATACCTGGTTTCTTATCATGCTGCACCCAG
AGCAACTCTGAGAAAGATTAAATGTGTCTAATACACTGATATGAAGCAGTTCAACTTTTGATGAATAAGG
ACCAGAAATCGTGAGATGTGGATTGAAACCCACTCTACCTTCTATTCTTAAGACCAATCACAGCTGTGCC
TCAGATCATCCACCTGTGTGAGTCATCACTGTGAAATTGACTGTGCCATGTGATGATGCCCTTGTCCATT
TTGGAGCAGAAAATTGTCATTGGAAAGTAGTACAACCTATTGCTGAAATTGTGAAATTATCAAGGCGTGATC
TCTGTCACTTATTAAATGTTAGGAAACCTATGGGTTATGAAAATACTTGGGATCATCTGTAATGGTC
TAAGGAAGCGGTAGCCATGCAATGATGTTAGGAGTTCTCTTTGTAACCAACTCTGTTACTCAGGA
GGTTCTATAATGCCACATAGAAAGAGGCCAATTGCAATTGATGAGTAATTATTGCAATTGGATTCTAGGTTCCCTTT
GTGCCATTGCTCATGCCCTACTTCTTAATGCCCTCTAAAGCCAA

161/615

FIGURE 160

MEWWASSPLRLWLLLFLLP SAQGRQKESGSWKVFI DQINRSLEN YEPCSSQNCS CYHGVIEEDLTPFRGGISRK
MMAEVVRRKLGTHYQITKNR LREND CMFPSRCGVEHFILEVIGRLPD MEMVINVRDYPQVPKWM EPAIPVFSF
SKTSEYHDIMYPAWTFWEGGP AVWP IYPTGLGRWDLFREDLIVRSAAQWPWKKKNSTAYFRG SRTSPERDFLILLS
RKNPKLVDAEYTKNQAWKSMKDTL GKPAAKDVHLVDHCKYKYL FNFRGVAASFRFKHLFLCGSLVFHVGD EWLEF
FYPQLKPWVHYIPVKTDLSNVQELLQFVKANDDVAQEIAERGSQFIRNHLQMDDITCYWENLLSEYSKFISYNVT
RRKGYDQIIIPKMLKTEL

162/615

FIGURE 161

CCGAGGCACAGGAGATTGCCCTGGCTGGCTGGAAAAGCTATCAAGGAAGAAATTGCCAAA
CCATGTCTTTTTCTGTTTAGAGTAGTTACAACAGATCTGAGTGTAACTAAGCATGGAATACAGAAAA
CAACAAAAACTTAAGCTTAATTCACTGGAAATTCCACAGTTCTTAGCTCCCTGGACCCGGTTGACCTGTT
GGCTCTTCCCGCTGGCTGCTCATCACGTGGTGCTCCGACTACTCACCCGAGTGTAAAGAACCTTCGGCTCG
CGTCTGAGCTGCTGTGGATGGCTCGGCTCTGGACTGTGCTTCAGTAGGATGTCAGTGGATCCCTC
AAATGGAGCCTCTGCTGTCACCTCGAGTTCTTGTGATGTGGTACCTCAGCCTTCCCCACTACAATGTG
ATAGAACGCGTGAACGGATGTAACCTCTATGAGTATGAGCCATTACAGACAAGACTTCACACTTCGA
GAGCATTCAAACGTCTCATCAAATCCATTCTGGTCACTCCACCCCTCAGATGTGAAAGCC
AGGCAGGCCATTAGAGTTACTTGGGGTAAAAAGTCTGGTGGGATATGAGGTTCTTACATTTTCTTATTA
GCCAAGAGGCTGAAAAGGAACACAAAATGTGGCATTGCTTAGAGGATGAACACCTTCTTATGGTACATA
ATCCGACAAGATTTTACACATATAAACTGACCTTGAACCCATTATGGCATTCAAGCTGGGTAACTGAG
TTTGCCCCATGCCAAGTACGTAACTGAGACAGACACTGATGTTCTCATCAACTTGCAATTAGTGAAGTAT
CTTTAAACCTAAACCCTAGAGAAAGTCTGGTCACTTCTCTAATTGATAATTATCCTATAGAGGATT
TACCAAAACCCATATTCTTACAGGAGTACCTTCAGGTGTTCCCTCATACTGCAGTGGGTTGGGTTAT
ATAATGTCCAGAGATTGGTCCAAGGATCTATGAAATGATGGGTCACTGAAACCCATCAAGTTGAAGATGTT
TATGTGGGATCTGTTGAATTATTAAAGTGAACATTCAATTCCAGAAGACACAAATCTTCTTATAT
AGAATCCATTGGATGTCGCAACTGAGACGGTGTGATTGCAAGCCATGGCTTCTTCCAAGGAGATCATCACT
TTTGGCAGGTCATGCTAAGGAACACCATGCCATTATTAAACTTCACATTCTACAAAAGCCTAGAAGGACAGG
ATACCTTGTGGAAAGTGTAAATAAAAGTAGGACTGTGGAAAATTCTATGGGGAGGTCAGTGTGCTGGCTTACACT
GAACTGAAACTCATGAAAACCCAGACTGGAGACTGGAGGGTACACTTGTGATTATTAGTCAGGCCCTCAA
GATGATATGTGGAGGAATTAAATATAAGGAATTGGAGGGTTTGCTAAAGAAATTAGGACCAAACAATTG
GACATGTCAATTCTGTAGACTAGAATTCTTAAAGGGTGTACTGAGTTATAAGCTACTAGGCTGTAAAAACAA
ACAATGTAGAGTTTATTGAAACATGTACTGAAAGGTTTGCTATATCTTATGTGGATTACCAATT
TTAAAATATATGTAGTTCTGTGTCAAAAAAACTCTTCACTGAAGTTACTGAACAAAATTTCACCTGTTTG
GTCATTATAAGTACTTCAAGATGTTGCACTGAAGTTACTGAACTTAAAGTAAACTTCAACTTGTGTT
TTAAATGTTGACGATTCAATACAAGATAAAAGGATAGTGAATCAATTCTTACATGCAACATTTCCAGT
TACTTAACTGATCAGTTATTGATAACATCACTCCATTAAATGTAAGTCAGGTCATTATGCAATATCAGTA
ATCTCTGGACTTGTAAATATTACTGTGGAATATAGAGAATTAAAGCAAGAAAATCTGAAAA

163/615

FIGURE 162

MASALWTVLPSRMSLRSILKWSLLLLSLLSFFVMWYLSLPHYNVIERVNWMYFYEYEPIYRQDFHFTLREHSNC SH
QNPFLVILVTSHPSDVKARQAIRVTWGEKKSSWGYPEVLTFFLLGQEAEKEDKMLALSLEDEHLLYGDIIIRQDFLD
TYNNLTLKTIMAFRWVTEFCPNAKYVMKTDTDFINTGNLVKYLLNLNHSEKFFTGYPLIDNSYRGFYQKTHIS
YQEYPFKVFPPYCSCGLGYIMSRDLPRIYEMMGHVVKPIKFEDVYVGICLNLLKVNIHIPEDTNLFFLYRIHLDVC
QLRRVIAAHGFSSKEIITFWQVMLRNTTCHY

164/615

FIGURE 163

CATTTCTGAAACTAATCGTGTAGAATTGACTTTGAAAAGCATTGCTTTTACAGAAGTATATTAACCTTTAGG
AGTAATTCTAGTTGGATTGTAATATGAAATAATTAAAGGGCTCGCTCATATATAGAAAATCGCATATGG
TCCTAGTATTAAATTCTATTGCTTACTGATTTTGAGTTAAGAGTTGTTATATGCTAGAATATGAGGATGTG
AATATAAAATAAGAGAAGAAAAAGAATAAAAGTAGATTGAGTCTCCAATTATGTAAGCTCAGAAGAACTGGTT
TGTGTTACATGCAAGCTTATAGTTGAAATATTTCAGGAATTACATGAATGACAGTCTCGAACCAATGTGTTG
TTCGATTTCAACCAGAGACTATAGCATGTGCTTGCATCTACCTTGCAGCTAGAGCACCTCAGATTCCGTTGCCAA
CTCGTCCCCATTGGTTCTTCTTGGTACTACAGAAGAGGAATCCAGGAATCTGCATAGAAACACTTAGGC
TTTATACAGAAAAAGCAAACATGAATTACTGGAAAAGAAGTAGAAAAAGAAGTAGCCTACAAGAAG
CCAAATTAAAGCAAAGGGATTGAATCCGGATGGAACCTCCAGCCCTTCAACCCTGGGTGGATTTCAGCCT
CCAAGCCATCATCACCAGAGAAGTAAAGCTGAAGAGAAATCACCACATCTCCATTAAATGTGAAGACAGTCAAA
AAGAACCTGAGGATAGACAACAGGCTTCAAAGAACGATCACGTTCTAGATCACACTTCCAAGAACAGACT
ATAAGCAGAAGTCGAAGTCGATCGAGGTCAAGAACACGATCACGTTCTAGATCACACTTCCAAGAACAGACT
ATAATAGGGCGAGTCGATCTGGACATACAGCTCGAGATCAAGAACGGTCCCGCAGTCACAGTGAAAGCCCTC
GAAGACATCATATCATGGTCTCCTCACCTAAGGCCAACGATCACAGAGATGATTAAAAGTCAAAACAGAC
ATGGTCATAAAAGGAAAAAAATCTCGTCTCGATCTCAGAGCAAGTCTCGGGATCACTCAGATGCAGCCAAGAAC
ACAGGCATGAAAGGGGACATCATAGGCACAGGCGTGAACGATCTCGTCTTGGAGAGGTCCCATAAAAGCAAGC
ACCATGGTGGCAGTCGCTCAGGACATGGCAGGCACAGGCGCTGACTTCTCTTGGAGCTGCATCAGTTCT
TGGTTTGCCTATCTACAGTGTGATGACTCAATCAAAACATTAAACGCAAACGATTAGGATTTGATT
CTTGAAACCCCTCTAGGTCTCTAGAACACTGAGGACAGTTCTTTGAAAAGAACTATGTTAATTTCAGC
TAAAATGCCCTAGCAGTATCTAATTAAAACATGGTCAGGTTCAATTGACTTTATTATAGTTGTTAATTGTT
AATGCTATAAGAACCTGGAGCGTGAATTCTGTTAAAATGATGGTGAATACCTTCTTAACACTGGTTGCTGC
TCTATTAAAGTGGTTATTGTTAAATGATGGTGAATACCTTCTTAACACTGGTTGCTGCATGTGTAAGATT
TTTACAAGGAAATAAAATACAAATCTGTTTCTAAAAAAAAAAAGT

165/615

FIGURE 164

MNDSLRTNVFVRFQPETIACACIYLAARALQIPLPTRPHWFLFGTTEEEIQEICIETLRLYTRKKPNYELLEKE
VEKRKVALQEAKLKAKGLNPDGTPALSTLGGFPASKPSSPREVKAEKSPISINVKTVKKEPEDRQQASKSPYN
GVRKDSKRSRNSRSASRSRSRTRSRSRSHTPRRHYNNRSGTYSSRSRSRSRSHSESPRRHNGSPHLKAKH
TRDDLKSSNRHGHKRKKSRSRSQSKSRDHSDAAKKHRHERGHHRDRERSRSFERSHKSKHHGGSRGHGRHRR

166 / 615

FIGURE 165

GGTTCCTACATCCTCATCTGAGAATCAGAGAGCATATACTCTACGGGCCGTGATTATTAACGTGGCTTA
ATCTGAAGGTTCTCAGTCAAATTCTTGTGATCTACTGATTGTGGGGCATGGCAAGGTTGCTAAAGGAGCTT
GGCTGGTTGGGCCCTTGTAGCTGACAGAAGGTTGCCAGGGAGAATGCAGCACACTGCTCGGAGAATGAAGGC
TTCTGTGCTGGTCTTGCCCTGGCTCAGTCAGTACATTGACAATGTGGCAACCTGCACTTCTGTATT
CAGAACTCTGAAAGGTGCCTCCACTACGCCGTGACCAAAGATAGGAAGAGGGCCTCACAGATGGCTGCCAG
ACGGCTGCGAGCCTCACAGCACGGCTCCCTCCCCAGAGGTTCTGCAGCTGCCACCCTCCTTAATGACAG
ACGAGCCTGGCTAGACAACCCCTGCCTACGTGTCCTGGCAGAGGACGGCAGGCCAGCAATCAGCCCAGTGGACT
CTGGCCGGAGAACCGAACCTAGGGCACGGGCCCTTGTAGAGATCCACTATTAGAACGAGATCATTAAAAAAATAA
ATCGAGCTTGTGTTCTCGAAAGGACAAGAGCGGGAGTGCAGTTGCCAACATGCCAGGCCAGGGCAGGGAAA
ATTCTGAAACACCAACTGCCCTGAACTTCTCAAGGTTGATCCACCTGATTCCAGATGGTAAATTACCAAGCA
TCAAGATCAATCGAGTAGATCCAGTGAAGGCCTCTCTATTAGGCTGGTGGAGGTAGGAAACCCACTGGTCC
ATATCATTATCCAACACATTATCGTGTGGGTGATGCCAGAGACGGCCGCTACTGCCAGGAGACATCATT
TAAAGGTCAACGGGATGGACATCAGCAATGTCCTCACAACACTACGCTGTGCGTCTCTGCCAGGCCCTGCCAGG
TGCTGTGGCTGACTGTGATGCGTGAACAGAAGTCCGCAGCAGGAACAATGGACAGGCCGGATGCCATACAGAC
CCCGAGATGACAGCTTCATGTGATTCTCAACAAAAGTAGCCCCGAGGAGCAGCTTGGAAATAAAACTGGTGC
AGGTGGATGAGCCTGGGGTTTCACTTCAATGTGTCGGATGGCGGTGTCATGACATGGTCACTTGAGG
AGAATGACCGTGTGTTAGGCCATCAATGGACATGATCTTCGATATGCCAGGCCAGAAAGTGGCTCATGATT
AGGCCAGTGAAGAGCCTGTCACCTCGTGTCCCCCAGGTTGGCAGGGAGCCCTGACATCTTCAGGAAG
CCCGCTGGAAACAGCAATGGCAGCTGGTCCCCAGGGCCAGGGAGAGGAGCAACACTCCAAAGCCCCCTCATC
CAATTACTTGTGATGAGAAGGTTGAAATATCCTAAAGACCCGGTGAATCTCTCGGATGACCGTGCAGGG
GAGCATCACATAGAGAATGGGATTGGCTATCTATGTCATCAGTGTGAGGCCGGAGGAGTCAAAAGCAGAGAT
GAAGAATAAAACAGGTGACATTGGTGAATGTGGATGGGTCGAACTGACAGAGGTGAGCCGGAGTGGAGG
TGGCATTATTGAAAAGAACATCATCCTCGATAGTACTCAAAGCTTGGAAAGTCAGGAACTGATGAG
ACTGCAGCAGCCCAGCAGCCCTGGACTCCAACCAACATGGCCCCACCCAGTGAATGGTCCCCATCTGGGTCA
TGTGGCTGGAAATTACCAACGGTGTGTTGATAACTGTAAAGATATTGATTACGAAGAAACACAGCTGGAAAGTCTGG
GCTTCTGCATTGTAGGGAGGTTATGAAGAATACAATGGAAACAAACCTTTTCAATCCATTGTTGAAGGAA
CACCAGOATACAATGATGGAAGAATTAGATGTGGTGAATTCTTCTGCTGTCATGGTAGAAGTACATCAGGAA
TGATACATGCTGCTGGCAAGACTGCTGAAAGAACTTAAAGGAAGAATTACTCTAACTATTGTTCTGGC
GCACCTTTTA**TAGA**ATCAATGATGGTCAAGGAAACAGAAAATCAGAAATAGGCTAAAGAAGTGAACACT
ATATTTATCTTGTGATGTTTATATTAAAGGAAGAATTACTCTAACTATTGTTCTGGC
TGAAAGCAGTACACCTCAGAAAATGATTCCAAAATGAGTCAAGGAAAGTGTGAGGAG
TTCTCATACTCTACAAACATTGTTATTTCTATTCAATAAAAGGCCCTAAAACACTAAAATGATTGATT
TGTATACCCACTGATTAAGCTGATTTAAATTGGTATATGCTGAACTGCTGCCAGGGTACATT
GGCCATTAAATTACAGCTAAATATTGTTAAATGCAATTGCTGAGAACAGTGTGTTCAAAACAAGAAT
AAATTTTCAAGGTTAA

167/615

FIGURE 166

MKALLLVLWLSPANYIDNVGNLHFLYSELCKGASHYGLTKDRKRRSQDGCPCDGCAISLTATAPSPEVSAATIS
LMTDEPGLDNPAYVSSAEDGQPAISPVDGRSNRTRARPFERSTIRSRSFKKINRALSVLRTKSGSAVANHADQ
GRENSENTTAPEVFPRLYHLIPDGIEITSIKINRVDPSESLSTRLVGGSETPLVHIIIQHIYRDGVIARDGRLLPG
DIILKVNGMDISNVPHNYAVRLLRQPCQVLWLTVMREQFRSRNNGQAPDAYRPRDDSFHVIINKSSPEEQLGIK
LVRKVDEPGVFIFNVLDGGVAYRHGQLEENDRVLAINGHDLRYGSPESAHLIQASERRVHLVVSQRQVRSPDI
FQEAGWNSNGSWSPGPERSNTPKPLHPTITCHEKVNIIQKDGPESLGMTVAGGASHREWDLPIYVISVEPGGV
SRDGRIKTGDILLNVDGVELTEVSERSEAVALLKRTSSSIVLKALEVKEYEPQEDCSSPAALDSNHNMAPPSDWSP
SWVMWLELPRLYNCKDIVLRRNTAGSLGFCIVGGYEYNGNKPFIFIKSIVEGTPAYNDGRIRCVDILLAVNGRS
TSGMIHACIARLLKELKGRTLTIVSWPGTFI

168/615

FIGURE 167

GGGAAAGCCATTCGAAAACCCATCTATACAAACTATATTTCATTCTGCTGCTAGCTGCCTTGGCCTCAC
AATTTCAATTCTGTTCTGACTTCAGTTATACCGTGGATGGAGTTGATCCAAACCATAACATCGTGGAG
GGTTTAATTTGGTAGCCCTCACCAATTCTGGTGTGGCTTCTTGAGAGGATTCCACCTCAAAATCA
TGAACCTGGCTGTTGATCAAAGAGAATTGGATTCTACTCTAAAGTCATAAGGACTGGCAAAAGAAGCT
ACCAGAAGACTCAACCTGGCCTCCATAAACAGGACAGATTATTCAAGGTGATGGCAAAATGGATTCTACATCAA
CGGAGGCTATGAAAGCCATGAACAGATTCCAAGAAACTCAAATTGGGAGGCCAACCCACAGAACAGCATT
CTGGGCCAGGCTGTAATCAGAATTGTCGTCGATGCTCAACAGCATTGCTTTTCCCCAAATTAAACACATT
GTGGAGAAGTGTGATGATACTCTCCCTTACCTTCCCTCTCCATTCAAGCATTCAAAGTATATTTCATGAATT
AAACCTTGAGCAAGGGACCTTAGATAGGCTTATTCTGACTGTATGCTTACCAATGAGAGAAAAAAATGCATT
CCTGTATCATCCTTTCAATAAAACTGTATTGAAAAAAAAAAAAAA

169/615

FIGURE 168

MELIPTITSWRVLILVVALTQFWCGFLCRGFHLQNHEIWLLIKREFGFYSKSQYRTWQKKLAEDSTWPPINRTDY
SGDGKNGFYINGYESHEQIPKRKLKLGGQPTEQHFWARL

170/615

FIGURE 169

171/615

FIGURE 170

MELGCWTQLGLTFLQLLLSSLPREYTVINACPGAEWNIMCRECCSEYDQIECVCPGKREVVGYTIPCCRNEENE
CDSCLIHPGCTIFENCKSCRNGSWGTLDDFYVKGFYCAECRAGWGGDCMRCGQVLRAPKGQILLESYPLNAHC
EWTIHAKPGFVIQLRFVMLSLEFDYMCQYDYVEVRDGDNRDGQIIRKRCGNERPAPIQSIGSSLHVLFHSDGSKN
FDGFHAIYEEITACSSSPCFHDGTCVLDKAGSYKACLAGYTGQRCENLLEERNCSDPGGPVNGYQKITGGPGLI
NGRHAKIGTVVSFFCNNSYVLSGNEKRTCQONGEWSGKQPICIKACREPDKISDLVRRRVLPMQVQSRETLHQLY
SAAFSKQKLQSAPTKKPALPFGLPMGYQHLHTQLQYECISPFYRLGSSRRTCLRTGKWSGRAPSCIPICGKIE
NITAPKTQGLRWPWQAIIYRRTSGVHDGSLHKGAWFLVCSCALVNERTVVVAACVTDLGKVTMIKTADLKVVLG
KFYRDDDRDEKTIQSLQISAIILHPNYDPILLADIAILKLLDKARISTRVQPICLAASRDLSTSfqeshitvag
WNVLADVRSPGFKNDTLRSGVSVVDSLLCEEQHEDHGIPVSVDNMFCASWEPTAPSdictaetggiaavsfpg
RASPEPRWHLMGLVWSWSYDKTCSHRLSTAFTKVLPKDWIERNMK

172/615

FIGURE 171

CTGTCGTCTTGCTTCAGCCGCACTGGCTGCCACTGGCTGCCAGGTGCTTACAGCCTGTTCCAAGTGTGGCTTA
ATCCGTCTCCACCACCAAGATCTTCTCCGTGGATTCCCTCTGCTAAGACCGCTGCCATGCCAGTGA
CACCGCCATCACAAACCAACGACGTCATCTCGGGCTGGGGTCCCCATGATCGTGGGGTCCCCTCGGGCCCT
GACACAGCCCCCTGGGTCTCCCTCGGCTCGAGCTGGTCTACCTCGCTGCCCTCTCGCTGGTGGCTAGCGT
GGCGCCTGGACGGGTCCATGGCAACTGGTCCATGTTCACCTGGTCTCTGCTTCTCGGTGACCGT
CCTCATCGTGGAGCTGTGCGGGCTCCAGGCCGCTCCCCCTGCTGGCGCAACTTCCCATCACCTCGCCTG
CTATCGGGCCCTCTCTGCCTCTCGGCTCCATCATCACCCACCACTATGICCAGTTCCTGTCCCACGGCCG
TCGCGGGACCACGCCATGCCGCCACCTCTCTCGCATCGCGTGTGGCTTACGCCACCGAACGGCTG
GACCCGGGCCCCGGCCCGAGATCACTGGTATATGGCACCGTACCCGGCTGCTGAAGGTGCTGGAGACCTT
CGTTGCCTGCATCATCTCGCTTCATCAGCAGCCCAACCTGTACCGACCCAGCCGCTGGAGTGGTGC
GGCGGTGACGCCATCTGCTTCATCCTAGCGGCCATGCCATCTGCTGAACCTGGGGAGTGCACCAACGTGCT
ACCCATCCCTCCCCAGCTCTGTGCGGGCTGGCTTGCTGTCTGCCTCTATGCCACCGCCCTGTTCT
CTGGCCCCCTCTACCAAGTTCGATGAGAAGTATGGCCAGCCTCGCGCTCGAGAGATGTAAGCTGCAGCCGAG
CCATGCCACTACGTGCTGCTGGGACCCGGCAGCTGGCTGTGGCCATCCCTGACGCCATCAACCTACTGGCGTA
TGTGGCTGACCTGGTGCACTCTGCCACCTGGTTTGTCAAGGTCTAAGACTCTCCCAAGAGGCTCCCTGTTCC
TCTCCAACCTCTTGTCTTCTGCCCCAGTTCTTATGGAGTACTTCTTCTCCGCTTCCCTGTTCT
CTCTCCCTGCTCCCTCCCTCCACCTTTCTTCTCCCAATCCTGACTCTAACAGTTCTGGATGC
ATCTTCTTCTCCCTTCTGCTGTTCTCTGTGTTGTTGTTGCCCCACATCCTGTTTACCCCTG
AGCTGTTCTCTTTCTTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCT
CTCTCCCTGCTCCCTCCCTCCACCTTTCTTCTCCCAATCCTGACTCTAACAGTTCTGGATGC
TCTTTCTGGGTGCTGCTGGCTTCTTATCTGCCGTGTTGCAAGCACCTCTCTGTGCTGCC
GAGACTCTTCTCTCTGCCCTCCACCCACCTCCAAAGGTGCTGAGCTCACATCCACACCCCTG
ATGCCACAGCCCCCAAGGGGCCATTGCCAAAGCATGCCCTGCCACCCCTCGCTGTGCTTAGTCAGTGT
GTGTGTGTGTGTGTGTGTTGGGGGGTGGGGTAGCTGGGATTGGGGCTCTTCTCCAGTGGAGGAA
GGTGTGCAGTGTACTTCCCCCTTAAATTAAAAACATATATATATATATATTTGGAGGTCA
GCGGGAGGCATTAAGCACCGACCCCTGGGTCCCTAGGCCCGCCTGGCACTCAGCCTGCC
AATTTTGCAGGCTTACAGAACACCACTGCCAGAGGCCATCTTAAAGGAAGCAGGGCTGGATGC
CCCAACTATTCTGTGGTATGAAAAG

173/615

FIGURE 172

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58727
<subunit 1 of 1, 322 aa, 1 stop
<MW: 35274, pI: 8.57, NX(S/T): 1
MPVTVTTRTTTTTSSSGLGSPIVGSPRALTQPLGLRLQLVSTCVAFSLVASVGAWTGSMGNWSMFTWCFC
FSVTLLIIILIVELCGLQARFPLSWRNFPITFACYAALFCLSASIYPTTYVQFLSHGRSRDHAIATFFSCIACVA
YATEVAWTRARPGEITGYMATVPGLLKVLETFVACIIFAFISDPNLYQHQPALEWCVAVVYACIFILAAIAILLNL
GECTNVLPPIPFPFSFLSGLALLSVLLYATALVLWPLYQFDEKYGGQPRRSRDVCSRSHAYYCAWDRRLLAVALT
AINLLAYVADLVHSAHLVFKV
```

Important features:**Transmembrane domains:**

amino acids 41-60 (type II), 66-85, 101-120, 137-153, 171-192, 205-226, 235-
255 and 294-312

N-glycosylation site.

amino acids 66-69

Glycosaminoglycan attachment site.

amino acids 18-21

174/615

FIGURE 173

GAACGTGCCACCAGCCCAGCTAATTTGTATTTTAGTAGAGACGGGTTTACCATGTTGCCAGGGCTGGTC
 TTGAACCTCGTACCTCATGATCCGTCACCTCGGCCTCCAAAGTGTGGATTACAGGCATGAGCCACTGACGC
 CTGGCCAGCCTATGCATTTAAAGAAATTATTCTGTATTAGGTGCTGTGCTAACACATTGGCACTACAGTGACCA
 AAACAGACTGAATTCCCCAAGGCCAAAGACCAGTGAGGGAGACCAACAAGAAACAGGAAATGCAAAGAGACCA
 TTATTACTCACTATGACTAAGGGTACAAATGGGTACGTTGATGGAGAGTGATTGTTAAAGAGACTACAGAGGG
 AGGACAGACTACCAAGAGGGGGCCAGGAAAGCTCCTCTGACGAGGTGGTATTGAGCCAAACTGGAAGAATGA
 GAAAGAGCTAGCCAGCCATCAGAATAGTCCAGAAGAGATGGGAGCACTACACTCACTACACTTTGGCCTGAGAA
 AATAGCATGGGATTGGAGGAGGCTGGGGAAACACCACTCTGCCACCTGGGCAGGAGGATTGAGGGCTTGAGA
 AAGGGCAATGGCAGTAGCAGTAGAAAGGACAGGGTAGGGACAGGGACTTGCAAGGTGGAATCATTAGGTCTTATC
 AACAGATATGGGCAAGCAAAGCCAGGGAGAATTGATGTTAATGTCAGGTTGGAGCCAGGCTAGATGGGACAG
 TGGGGGTGATGCAAAGGAAAGAGGTGAGGAAGCAGGGCAGACGTCAGGGAGAAGGGTGTGGGGGTTGGGTTCCA
 TCTTGGCAGCTGCGGAATGTTGATGGGAAGACCAAGAGGAGGAGGAGCAAGGGCAGAGGGGAAGGGAATCTAA
 AGAACTCTGGATGCAACACTCTCTTCTCTTCT
 TTCTGCCCCCTGCCTCCATCTCTCTGGGTGCTGGAAAGTGGAGGATTAGCTGAAGTTTGCTTCTCGGGGCTG
 TCTGAATCTCCATTGCTTCTGGGAGGACATAATTCACTGTCTAGCTCTCTCTCATGCCCTTGCTGGGTATGGGATGTTAG
 CCACTGGGACATATGTTGTTCTCTAGCTCTGTCTCTCTCATGCCCTTGCTGGGTATGGGATGTTAG
 GGGGAAGGTCAATTGCTGTCAAGAGGGCACTGACTTTCTAATGGTGTACCAAGGTGAATGTTGGAGACACAGTC
 GCGATGCTGCCAAGTCCCAGCGAGCCCTAACATATCCAGGAGATGCGTGCCTGCCAGGTCCCTGCATGGT
 ATGCAAGCCCTCCCAATGTTCTGCCACTTGTCTTCTCTCCCGTTGCACTCCCTTGGGACTTGGAACTGTTCT
 GTGAGTACATGCTGGGTCTCCCTTCTCTCTGCTCAGGTGAATCTCAGGCCCTCTCCACCCAAAGGTTC
 ACATGGGATCTTAACACTGCAACCTTCCACCTCCCTGCTCAGGTGCTCCCTGCTCCCTGCTTACCGGCTTC
 TCCACCCCTCCCTATCTCCAGGTATTCTCCAGGTGGTGAAGGAGCACCGTGAACCGCTACCGCCATGGCCAGG
 GCGAGTGGCTCACCTCATTGAGTGGAAAGGGCTGGAGCAAGCCGAGTGAACCTGCTGCCCTGGAATCAGCCT
 TTTCTCTTCTATTCAAGACCTCAGCGAGGGCAACAAGAGGCTCGCTTGTCAAGCAGGAGTGGCTGAGCAGTTGCCA
 TCGCGGAAGCCAAGCTCCGAGCATGGTCTCGGTGGATGGCGAGGACTCCACTGATGACTCTATGATGAGGACT
 TTGCTGGGGAATGGACACAGACATGGCTGGCAGCTGCCCTGGGCCGACCTCCAGGACCTGTCACCGGCC
 ACCGGTTCTCCGGCTGTGCCAGGGCTCCGTGGAGGCTGAGAGCGACTGCTCACAGACCGTGTCCCCAGACA
 CCCTGTGCTCTAGTCTGTGCACTGGAGGATGGGTGTTGGGCTCCCGCCGGCTGCCCTCCAGCTGCTGG
 GCGATGAGCTGCTCTGCCAAACTGCCCTCCAGGCCGGAAAGTGCCTCCGCAAGCCTGGGCACTGGAGGCC
 AGGACTCACTACAACACTGCCCTCACAGAGTCTGCCTTCCCGCCGGAGGAGGAGGCCAGGCCCTGCAAGG
 ACTGCCAGCCACTCTGCCCTAACGGCAGCTGGGAACGGCAGGCCAACGCTCTGACCTGCCCTTCTCTG
 GGGTGGTGTCTTAGTGGAGGATGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGG
 GCGATGAGCTGCTCTGCCAAACTGCCCTCCAGGCCGGCTGCTGGGGCTCAAGGCTCCAGCAGAGCTCCACAGC
 TAGAGGGCTCTGGGAGCGCTCGCTCTCCGGTGTGTGTTTGCAATGAAAGTGTGTTGGAGAGGAGGAGGAGG
 GGCTGGGGCGCATGCTCTGCCCTACTCCCGGCTTGCCGGGGGTGCCCCGGGCTCTGGGAGGAGGAGGAGG
 GCTGTGGCAGACAGTGATGTTCATGTTCTAAATGCCACACACATTTCTCTCGGATAATGTAACCAACTA
 AGGGGTTGTGACTGGGCTGTGTGAGGGTGGGTGGAGGGGGCCAGCAACCCCCCACCCTCCCCATGCCCTC
 TCTTCTCTGCTTTCTCACTCCGAGTCATGTGCACTGCTGATAGAAATCACCCCCACCTGGAGGGCTGG
 CTCTGCCCTCCCGCCTATGGGTGAGCCGTCCTCAAGGGCCCTGCCAGCTGGCTGCTGTGCTTC
 ATTCACTCTCCATGCTCTAAATCTCTCTTTCTAAAGACAGAAGGTTTTGGCTGTTCTCAGTC
 GGATCTCTCTCTGGGAGGCTTGGATGATGAAAGCATGTCACCTCCACCCCTTCTGGCCCCCTAATGG
 GCCCTGGGGCCCTTCCCAACCCCTCTAGGATGTGCGGGAGTGTGCTGGGCGCTCACAGCCAGCCGGGCTGCC
 ATTCAAGCAGAGCTCTGAGCAGGGAGGTGAAGAAAGGATGGCTCTGGGGCTGCAAGAGCTGGGACTTCATGTT
 CTTCTAGAGAGGGCCACAAGAGGCCACAGGGTGGCCGGAGTTGTCAGCTGATGCCCTGCTGAGAGGCCAGGAAT
 TGTGCCAGTGAGTGACAGTCATGAGGGAGTGCTCTCTGGGGAGGAAAGAAGGTAGAGCCTTCTGCTGAAAT
 GAAAGGCCAAGGCTACAGTACAGGGCCCGCCCCAGCCAGGGTGTAAATGCCACGCTAGTGGAGGCTCTGGCAG
 ATCCCTGCATTCCAAGGTCACTGGACTGTACGTTTATGGTGTGGAGGGTGGGTGGCTTAAAGAATTAAAGGGC
 CTTGTTAGGCTTGGCAGGTAAAGAGGGCCAAGGTAAAGAACGAGGCCAACGGCACAAGCATCTATATATAAGT
 GGCTCATTAGGTGTTATTTGTTCTATTAAAGAATTGTTTATTAAATTAAATAAAAATCTTGAAATCTC
 TAAAA

175/615

FIGURE 174

MFLATLSFLLPFAHPFGTVSCEYMLGSPLSSLAQVNLSFPSHPKVHMDPNYCHPSTSLLHLCSSLAWSFTRLLHPPL
SPGISQVVVKDHVTKPTAMAQGRVAHLIEWKGWSKPSDSPAALESAFSSYSDLSEGEQEARFAAGVVAEQFAIAEAK
LRAWSSVDGEDSTDDSYDEDFAGGMDTDMAGQLPLGPHLQDLFTGHRFSPVRQGSVEPESDCSQTVSPDTLCSS
LCSLEDGLLGSPARLASQLLGDELLLAKLPPSRESAFRSLGPLEAQDSLYNSPLTESCLSPAAEEPAPCKDCQPL
CPPLTGSGWERQRQASDLASSGVVSLDEDEAEPEEQ

Signal peptide:
amino acids 1-15

Casein kinase II phosphorylation site.
amino acids 123-127, 128-132, 155-159, 162-166, 166-170, 228-232, 285-289,
324-328

Tyrosine kinase phosphorylation site.
amino acids 44-52

N-myristoylation site.
amino acids 17-23, 26-32, 173-179

Prokaryotic membrane lipoprotein lipid attachment site.
amino acids 11-22

176/615

FIGURE 175

GGTTCCCTGGCGCTCTGTTACACAAGCAAGATAACGCCAGCCCCACCTAATTTGTTCCCTGGCACCCCTCCTGC
TCAGTGCAGACATTGTACACTAACCCATCTGTTCTCTAAATGCACGACAGATTCCCTTCAGACAGGACAAC TG
TGATATTCAGTTCTGATTGTAATAACCTCTAAAGCCTGAAGCTCTGTTACTAGCATTGTGAGCTTCAGTT
CTTCATCTGAAAATGGGCATAATAACAAATCTATTCTTGCCACATCAAGGGATTGTTATTCCCTTAAAAAAAACC
AATAACAAAGAAGCCTACAATGTGGCCTAGCAAAATTCTGTTCAACGTTGTTATTCACTCTATC
GGGGAGCCATGGAAAAGAAAATCAAGACATAAACACACAGAACATTGCAGAAGTTTAAAACAATGGAAA
TAAACCTATTCCTTGAAAGTGAAGCAAACCTAAACTCAGATAAGAAAATAACCAACCTCAAATCTAAGGC
GAGTCATTCCCCTCCTTGAATCTACCCAAACACAGCCACGGAATAACAGATTCTCCAGTAACCATCAGCAGA
GCATTCTTGGGCAGCTCAAACCCACATCTACCATTTCCACAAGCCCTCCCTGATCCATAGCTTGTCTAA
AGTGCCTTGGAAATGCACCTATAGCAGATGAAGATCTTTGCCCCTCTCAGCACATCCCAATGCTACACCTGCTCT
GTCTCAGAAAACCTCACTGGTCTTGGTCAATGACACCGTAAAACCTCTGATAACAGTCCATTACAGTTAG
CATCCTCTCTCAGAACCAACTCTCCATCTGACCCCTTGATAGGAAACCAAGTGGATGGCTTACACAAA
CAGTGATAGCTTCACTGGTTACCCCTTATCAAGAAAAACAACTCTACAGCCTACCTTAAATTACACCAATAA
TTCAAAACTCTTCAAATACGTAGATCCCCAAAAGAAAATAGAAATAACAGGAATAGTATTCGGGCCATT
AGGTGCTATTCTGGGTGTCATTGCTACTCTGTTGTCAGACAGAAAATGACAGGACTCTGCGATTAGACAATGCACCGAACCTTATGATGT
TTCCCATCGCGACTTATGACGACAGAAAATGACAGGACTCTGCGATTAGACAATGCACCGAACCTTATGATGT
GAGTTTGGAAATTCTAGCTACTACAATCCAACCTTGAAATGATTGACCCATGCCAGAAAAGTGAAAGAAAATGCACG
TGATGGCATTCTATGGATGACATACTCCACTTCGACTCTGTATAGAACAAACAGCAAAAGGCCTAAAC
GCAAGTGTCTACATCCACTAGCCTTGTACAAATTCTATTTCAAAGGTTACACAAAATTACTGTCACGTGG
TTTGTCAGGAGAATCATAAAAGCAGGAGACCAGTAGCAGAAATGTAGACAGGATGTATCATCCAAAGGTTTC
TTTCTACAATTGGCCATCCTGAGGCATTACTAAGTAGCCTTAATTGTATTTAGTAGTATTTCTTAGT
AGAAAATATTGTGGAATCAGATAAAACTAAAGATTTACCAATTACAGCCCTGCCTCATAACTAAATAAAAA
ATTATTCCACCAAAAATTCTAAACAAATGAAGATGACTCTTACTGCTCTGCCTGAAGCCCTAGTACCTAAATT
CAAGATTGCATTCTAAATGAAAATTGAAAGGGTGCTTTAAAGAAAATTGACTTAAAGCTAAAGAGGAA
CATAGCCCAGAGTTCTGTTATTGGAAATTGAGGCAATAGAAATGACAGACCTGTATTCTAGTACGTTATAATT
TTCTAGATCAGCACACACATGATCAGCCCACCTGAGTTATGAAAGCTGACAATGACTGCATTCAACGGGCCATGGC
AGGAAAGCTGACCCCTACCCAGGAAAGTAATAAGCTTCTTAAAGTCTCAAAGGTTGGAAATTAACTTGT
TTAATATCTAGGCTCAATTATTGGTGCCTTAAACACTCAATGAGAATCATGGT

177/615

FIGURE 176

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58732
><subunit 1 of 1, 334 aa, 1 stop
><MW: 36294, pI: 4.98, NX(S/T): 13
MLALAKILLISTLFYSLLSGSHGKENQDINTTQNIAEVFKTMENKPISLESEANLNSDKENITTSNLKASHSPPL
NLPPNNSHGITDFSSNSAEEHSLGSLKPTSTISTSPPLIHSFVSKVPWNAPIADEDLLPISAHPNATPALSSENFT
WSLVNDTVKTPDNSSITVSILSSEPTSPSVTPLIVEPSGWLTTSNDSFTGFTPYQEKTTLQPTLKFTNNSKLFPN
TSDPQKENRNTGIVFGAILGAILGVSLLTIVGYLLCGKRKTDSFSHRRRLYDDRNEPVLRLDNAPEPYDVSFGNSS
YYNPTLNDSAMPESEENARDGIPMDDIPPLRTSV

Signal peptide:
amino acids 1-23

Transmembrane domain:
amino acids 235-262

N-glycosylation site.
amino acids 30-34, 61-65, 79-83, 90-94, 148-152, 155-159, 163-167, 218-222,
225-229, 298-302, 307-311

178/615

FIGURE 177

ACCAAGGCATTGTATCTTCAGTTGTCATCAAGTCGAATCAGATTGGAAAAGCTCAACTTGAAGCTTCTGCCT
GCAGTGAAGCAGAGAGATAGATATTATTACCGTAATAAAACATGGCTTCAACCTGACTTCCACCTTCCTA
CAAATTCCGATTACTGTTGCTGTTGACTTGTCGCTGACAGTGGTGGGTGGGCCACAGTAACACTACTCGTGGG
TGCCATTCAAGAGATTCTAAAGCAAGGAGTTCATGGCTAATTCCATAAGACCCCTCATTGGGGAAAGGGAAA
AACTCTGACTAATGAAGCATCCACGAAGAAGGTTAGAACCTGACAACGTGCTCTGTGTCCTTACCTCAGAGG
CCAGAGCAAGCTCATTCAAACAGATCTCACTTGGAAAGAGGTACAGGCAGAAAATCCCAAAGTGTCCAGAGG
CCGGTATCGCCCTCAGGAATGTAAGCTTACAGAGGGTCGCCATCCTCGTTCCCCACCGGAACAGAGAGAAACA
CCTGATGTACCTGCTGGAACATCTGCATCCCTCCTGCAGAGGCAGCAGCTGGATTATGGCATCTACGTCA
CCAGGCTGAAGGTAAGGTTAATCGAGCAGAACTCTGAATGTTGGCTATCTAGAACGCTCAAGGAAGAAAA
TTGGGACTGCTTATATTCCACGATGTGGACCTGGTACCGAGAATGACTTAACTTACAAGTGTGAGGAGCA
TCCCAGGCATCTGGTGGTGGCAGGAACAGCACTGGGTAACGGTTACGTTACAGTGGATATTGGGGGTGTTAC
TGCCCTAAGCAGAGAGCAGTTCAAGGTGAATGGATTCTCTAACAACTACTGGGATGGGAGGCGAAGACGA
TGACCTCAGACTCAGGGTGAGCTCCAAGGAATGAAAATTCCCGGCCCTGCCTGAAGTGGTAAATATAACAT
GGTCTTCCACACTAGAGACAAAGGCAATGAGGTGAACGCAGAACGGATGAAGCTCTAACCAAGTGTACAGGT
CTGGAGAACAGATGGGTTGAGTAGTTGTTCTTATAAATTAGTATCTGTGGAACACAATCCTTATATACAA
CACAGTGGATTCTGGTTGGTGCATGACCTGGATCTTGGTGAATGTTGGAAGAACTGATTCTTGTGCA
ATAATTGGCCTAGAGACTTCAAATAGTACACACATTAAGAACCTGTTACAGCTCATTGGTAGCTGAATT
TCCTTTGTATTTCTTAGCAGAGCTCTGGTGAATGAGACTAAACAGTGTAAACAGCAGCTTCTTAG
TCATTTGATCATGAGGGTTAAATATTGTAATATGGAACTTGAAGGACTTTATATAAAAGGATGACTCAAAGGA
AAAATGAACGCTATTGAGGACTCTGGTTGAAGGAGATTATTAATTGAAGTAATATATTGGATAAAA
GGCCACAGGAATAAGACTGCTGAATGTCAGAGAACCCAGAGTTGTTCTGCTTCAAGGTAGAAAGGTACGAAGA
TACAATACTGTTATTCAATTCTGTACAATCATCTGTGAAGTGGTGTGTCAGGTGAGAACGGCGTCCACAAAA
GAGGGGAGAAAAGGCAGCAATCAGGACACAGTGAACCTGGGAATGAAGAGGTAGCAGGAGGGTGGAGTGTGGC
TGCAAAGGCAGCAGTAGCTGAGCTGGTTGCAGGGTGTGATAGCCTTCAGGGGAGGACCTGCCAGGTATGCC
CAGTGATGCCACAGAGAACATACATTCTCTATTAGTTTAAAGAGTTTGTAAAATGATTGTACAGTAGG
ATATGAATTAGCAGTTACAAGTTACATATTAACTAATAAAATGTCTATCAAATACCTCTGTAGTAAAAT
GTGAAAAGCAAAA

179/615

FIGURE 178

MGFNLTFHLSYKFRLLLLLCLTVVGWATSNYFVGAIQEIPKAKEFMANFHKTLLIGKGKTLTNEASTKKVELD
NCPSVSPYLRGQSKLIFKPDLTLEEVQAENPKVSRGRYRPQECKALQRVAILVPHRNREKHLMLLEHLHPFLQR
QQLDYGIYVIHQAECKKFNRAKLNNVGYLEALKEENWDCFIFHDVDLVPENDFNLYKCEEHPKHLVVGRNSTGYR
LRYSGYFGGVITALSREOFFKVNGFSNNYWGWGGEDDDLRLRVELQRMKISRPLPEVGKYTMVFHTRDKGNEVNAE
RMKLLHQVSERVWRTDGLLSSCSYKLVSVEHNPLYINITVDFWFGA

Important features:

Signal peptide:
amino acids 1-27

N-glycosylation sites.
amino acids 4-8, 220-224, 335-339

Xylose isomerase proteins.
amino acids 191-202

180/615

FIGURE 179

CGTGGGCGGGGTGC CGCAGCGGGCTGTGGGCGGCCGGAGGAGCGACCGCCGAGTTCTGAGCTCCAGCTGC
ATTCCCTCCCGTCCGCCACGCTCTCCCCTCCGGCCGAGGGTGGCCGAGGCTGTATGAACTAATCT
CCGCATCCTCTGGCTTGCCCTCCGCCCTGGGCCCCGGCAGGGTGGCCGAGGCTGTATGAACTAATCT
CACCAACCAGATAGCCCTGCCACCAACGGGAGCGGTGGTACCGATCTCGCCAGCCTGTGGCAAGGACAACGGCAG
CCTGGCCCTGCCGCTGACGCCACCTCTACCGCTTCACGATCCACTGGACACACCCCGCTGGTGTACTGGCAAGGAT
GGAGAAGGGTCTCAGCTCCACCATCCGTGTGGTGGCCACGTGCCGGGGAAATCCCGGTCTCTGTCTGGTAC
TGCCGCTGACTGCTGGATGTGCCAGCCTGTGCCAGGGGTTGTGGTCTCCCCATCACAGAGTTCCCTGTGGG
GGACCTTGTGTACCCAGAACACTTCCCTACCCCTGGCCAGCTCCTATCTCACTAACAGCCCTGTGAAAGTCTC
CTTCCTCCACGACCGAGCAACTTCCTCAAGACCGCCFTGTTCTCTACAGCTGGACTTCGGGACGGGAC
CGAGATGGTACTGAAGACTCCGTGGTCTATTATAACTATTCCATCATCGGACCTCACCGTGAAGCTCAAAGT
GGTGGCGGAGTGGGAAGAGGTGGAGGCCGATGCCACGAGGGCTGTGAAGCAGAAAGACCGGGACTCTCCGCCTC
GCTGAAGCTGCAGGAAACCTTCAGGGCATCCAAGTGTGGGGCCACCCCTAACAGACCTCCAAAAGATGAC
CGTGAACCTGAACCTCTGGGAGGCCCTCTGACTGTGTGGCCACGGTACAACCTGACCCACCTCAGGGACCTGGG
GGAAGGGAGTGCCACCTGTGTCCTGGCCAGCACGGTACAACCTGACCCACCTCAGGGACCTGGG
CTACTGCTTCAGCATCAGGGCAGAACATATCATCAGCAAGACACATCAGTACCAAGATCCAGGTGTGCCCTC
CAGAACATCCAGCGGCTGTCTTGCTTCCATGTGCTACACTTATCAGTGTGATGTGGCCTCATCATGTACAT
GACCCCTGCCGAATGCCACTCAGCAAAGGACATGGTGGAGAACCGGAGCCACCCCTGGGTCAGGTGTGCTG
CCAGATGTGCTGTGGGCTTCTTGCTGGAGACTCCATCTGAGTACCTGGAAATTGTCGTGAGAACCCACGGGCT
GCTCCCGCCCTCTATAAGTCTGCTAAACTACACCGTGTGA~~G~~CACTCCCCCTCCCCACCCATCTCAGTGT
ACTGACTGCTGACTTGAGTTCCAGCAGGGTGGTGTGACCAACTGACCAAGGAGGGTCTATTGCGTGGGCTG
TTGGCCTGGATCATCCATCTGACTGCTACAGTCAGCCACTGCCACAAGCCCTCCCTCTGTACCCCTGACCC
CAGCCATTCAACCATCTGACTGAGTCCAGCCACTGACATAAGCCCACTCGGTTACCAACCCCTGACCCCTTAC
TTGAAAGAGGGCTCTGCGAGGACTTGTGCTGGGGTGTCCATTGGGCTCTGACTCCTAGGTGGGCTGGCTGCCAC
TGCCCATTCCCTCTCATATTGGCACATCTGCTGCTCCATTGGGGTCTCAGTTCTCCAGACAGCCCTACCT
GTGCCAGAGAGCTAGAAAGGTATCAAAGGGTAAAGGTATAACATGACATAAGGGTGTACACATAGATGGGCACA
CTCACAGAGAGAAGTGTGATGTACACACACACACACACACACAGAACATATAAACACATG
CGTCACATGGGCAATTTCAGATGATCAGCTCTGTATCTGGTTAACGCGTTGCTGGGATGCACCCCTGCACTAGAGC
TGAAAGGAAATTGACCTCAAGCAGCCCTGACAGGTTCTGGGCCGGCCCTCCCTTGTGCTTTGTCTCTGCA
GTTCTGCGCCCTTATAAGGCCATCTAGTCCCTGCTGGCTGGCAGGGGCTGGATGGGGCAGGACTAAC
TGAGTGTGAGAGTGCTTTATAAAATCACCTTATTGTGAAACCCATCTGAAACTTCACTGAGGAAA
AGGCCTTGCAGCGGTAGAAGAGGTGACTCAAGGCCGGCGCGGTGGCTACGCTGTAATCCAGCACTTGGG
AGGCCAGGGCGGGTGGATCACGAGATCAGGAGATCGAGACCAACCTGGCTAACACGGTGAACACCCGCTCTACT
AAAAAAATACAAAAAAGTTAGCCGGGCGTGGTGGTGGCTGCTGTAGTCCCAGCTACTCGGGAGGCTGAGGCAGGA
GAATGGTGCAGACCCGGAGGCGGAGCTGCACTGAGCCAGATGGGCCACTGCACTCCAGCCTGAGTGA
GCGAGACTCTGCTCCA

181/615

FIGURE 180

MAQAVWSRLGRILWLACLLPWAPAGVAAGLYELNLTTDSPATTGAVVTISASLVAKDNGSIALPADAHILYRFHWI
HTPLVLTGKMEKGLSSSTIRVVGHVPGEFPVSVWVTAADCWMCQPVARGFVVLPIFEFLVGDLVVTQNTSLPWPSS
YLTKTQLKVSFLLHDPSNFLKTALFLYSWDFGDGTQMVTEDSVVYYNYSIIGTFTVKLKVVAEWEVEPDATRAV
KQKTGDFSASLKLQETLRGIQVLGPTLIQTFQKMTVTLNFLGSPPITVCWRLKPECLPLEEGECHPVSVASTAYN
LTHTFRDPGDYCFSIRAENIISKTHQYHKIQVWPSRIQPAVFATPCATLITVMLAFIMYMTLRNATQQKDMVENP
EPPSGVRCCCQMCQCCGPFLLETPSEYLEIVRENHGLLPPLYKSVKTYTV

Important features of the protein:

Signal peptide:
amino acids 1-24

Transmembrane domain:
amino acids 339-362

N-glycosylation sites.
amino acids 34-37, 58-61, 142-145, 197-200, 300-303 and 364-367

182/615

FIGURE 181

CGGACGCGTGGCGGGCTCGGAACCTCCGTGGAGGGCCGGTGGGCCCTCGGCCTGACAGATGGCAGTGGC
CACTGCGGGCGCAGTACTGGCCGTCTGGCGGGCGCTGTGGCTGGCGGCCGCCGGTCTGGCTGGGCCAGGGT
CCAGCGGCTGCGCAGAGGCGGGACCCGCCCTATGCAAGGGAAAGACTGTGCTGATCACGGGGCGAACAGCG
CCTGGGCCGCGCCACGGCCGCCAGCTACTGCGCTGGAGCGCGGGTGTATGGCTGCCGGGACCGCGCG
CGCCGAGGAGGCGGGCTAGCTCCGCCGAGCTCCGCCAGGCCGGAGTGCGGCCAGAGCCTGGCGTCAG
CGGGGTGGCGAGCTCATAGTCCGGAGCTGGACCTCGCCTCGCTGCCCTCGTGCCTGCCAGGGAAAT
GCTCCAGGAAGAGCCTAGGCTGGATGTCTTGTATCAATAACGCAGGGATCTTCCAGTGCCCTAACATGAAGACTGA
AGATGGGTTGAGATGCAAGTCCAGTGGAGTGAACCATCTGGGCACTTCTACTCACCAATCTCTCCTTGGACTCCT
CAAAAGTTCAGCTCCAGCAGGATTGTTCTCCAAACTTATAAATAACGGAGACATCAATTGATGA
CTTGAACAGTGAACAAAGCTATAATAAAAGCTTTGTTATAGCCGGAGCAAACACTGGCTAACATTCTTTTACCAAG
GGAACTAGCCCGCGCTTAGAAGGCACAAATGTCACCGTCAATGTGTTGCATCTGGTATTGTACGGACAAATCT
GGGAGGCACATACACATTCCACTGTTGGTCAAACCAACTCTCAATTGGTGTCAATGGCTTTTCAAAACTCC
AGTAGAAGGTGCCAGACTTCCATTATTGGCCTCTCACCTGAGGTAGAAGGAGTGTCAAGGAAGATACTTGG
GGATTGTAAAGAGGAAGAACTGTTGCCAAAGCTATGGATGAATCTGTTGCAAGAAAACCTGGGATATCAGTGA
AGTGTGTTGGCTGCTAAATAGGAACAAGGAGTAAAGAGCTGTTATAAAACTGCATATCAGTTATATCTG
TGATCAGGAATGGTGGATTGAGAACCTGTTACTGAAAGAAAAGAATTGGATATTGGAATAGCCTGCTAAGA
GGTACATGTGGTATTGGAGTTACTGAAAATTATTGGATAAGAGAATTCAAGCAAGATGTTAAAT
ATATATAGTAAGTATAATGAATAAAAGTACAATGAAAATACAATTATATTGTAAGGAAATTATAACTGGCAAGCA
TGGATGACATATTAATATTGTCAGAATTAAAGTGAATGACTCAAAGTGTATCGAGAGGTTTCAAGTATTTGAGT
TTCATGGCAAAGTGTAACTAGTTACTACAATGTTGGTGTGAAATTATCTGCCTGGTGTGCA
CACAAGTCTTACTGGATAAAATTACTGGTAC

183/615

FIGURE 182

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58747
<subunit 1 of 1, 336 aa, 1 stop
<MW: 36865, pI: 9.15, NX(S/T): 2
MAVATAAAVLAALGGALWIAARRFVGPRVQLRRGGDPGLMHGKTVLITGANGLGRATAAELLRLGARVIMGCR
DRARAEAAAGQLRRELQRQAAECGPEPGVSGVGELIVRELDLTLASLRVRAFCQEMLQEEPRLDVLIINNAGIFQCPY
MKTEDGFEMQFGVNHLGHFLLTNLLGLLKSSAPSRIVVSSKLYKGDIINFDDLNSEQSYNKSFCYSRSKLANI
IFTRELARRLEGTVNVNLHPGIVRTNLGRHIHPIPLVKPLFNLVSWAFFKTPVEGAQTSIYLASSPEVEGVSG
RYFGDCKEEELLPKAMDESVARKLWDISEVMVGLLK
```

Important features:

Signal peptide:

amino acids 1-21

Short-chain alcohol dehydrogenase family protein
amino acids 134-144, 44-56 and 239-248

N-glycosylation site.

amino acids 212-215 and 239-242

184/615

FIGURE 183

AACAGGGATCTCCTTGCAGTCAGCCCCAGGACGCTGATTCCAGCAGCGCCTTACCGCGCAGCCGAAGATTCACTATGGTGAAGAAACTCTGAGCCGCACGGTCAGAACTCAGATACTGACCGCAAGGAGCTCCGAGTTGCCACCCAGAAAAAGAGGGCTCTGGGGAGATGTATGCTTACTCTTAGGCCCTTCATTCATCTTGCAAGGACTTATTGTTGGTGGAGCTGCATTTACAAGTACTCATGCCAAGAGCACCATTACCGTGGAGAGATGTGCTTTTGATTCTGAGGATCTGCAAATTCCCTCGTGGAGGAGAGCCTAACCTCCTGCCTGTGACTGAGGAGGCTGACATTGAGGATGACAACATTGCAATCATTGATGTGCCCTGCCCCAGTTCTCTGATAGTGACCCCTGCAGCAATTATTATCATGACTTGAAGAGGAATGACTGCTTACCTGGACTTGTGCTGGGAAC TGCTATCTGATGCCCTCAATACTTCTATTGTTATGCCTCCAAAATCTGGTAGAGCTTTGGCAAAC TGCGAGTGGCAGATATCTGCCTCAAACCTTATGTGGTCAGAACGACCTA GTTGCCTGGAGGAATTCTGTGATGTTAGTAACCTTGGCATCTTATTACCAACTTTGCAATAACAGAAAGTCC TTCCGCCTCGTCGAGAGACCTTGTGCTGGTTCAACAAACGTGCCATTGATAATGCTGGAAGATTAGACAC TTCCCCAACGAATTATTATTGAGACCAAGATCTGCAAGAGTAAGAGGCAACAGATAGAGTGCTTGGTAATA AGAAGTCAGAGATTACAATATGACTTTAACATTAAAGGTTATGGGATACTCAAGATATTIACATGCATTAC TCTATTGCTTATGCTTAAAGGAAAAAAAGGAAAAAAACTAACTAACCACTGCAAGCTCTGTCAAATTAGTT TAATTGGCATTGCTTGGTTGAAACTGAAATTACATGAGTTCATTTTCTTGCAATTAGGGTTAGAT TTCTGAAAGCAGCATGAATATATCACCTAACATCCTGACAATAAAATTCCATCGTTGTTTTGTTGTTGT TTTTCTTCCCTTAAGCTCTTATTACATCTTATGGTGGAGCAATTAAAATTGAAATTATTAAATT GTTTTGAACCTTTGTGTAAAATATATCAGATCTCAACATTGTTGGTTCTTTGTTTCATTGTACAAC TTCTGAAATTAGAAATTACATCTTGAGTTCTGTTAGGTGCTCTGTAATTAAACCTGACTTATATGTGAACAATT TTGAGACAGTCATTAAACTAATGCAGTGATTCTTCTCACTACTATCTGATTGTGGAATGCACAAAAT TGTGTAGGTGCTGAATGCTGTAAGGAGTTAGGTTGATGAATTCTACAACCCATAATAAAATTACTCTATAC AAAAAAAAAAAAAAAA

185/615

FIGURE 184

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58828
<subunit 1 of 1, 263 aa, 1 stop
<MW: 29741, pI: 5.74, NX(S/T): 1
MVKIAFNTPTAVQKEEARQDVALLSRTVRTQILTGKEILRVATQEKEGGSSGRCMLLGLSFILAGLIVGGACIY
KYFMPKSTIYRGEMCFDSEDPANSLRGGEPNFLPVTEEADIREDDNIAIIDVPVPSFSDSPAAIIHDFEKGMT
AYLDLLLGNCLMPLNTSIVMPPKNLVELFGKLASGRYLPQTYVVREDLVAVEEIRDVSNLGIFIFYQLCNNRKSFR
RLRRRDLLLGFNKRайдKCWKIRHFPNEFIVETKICQE

Type II transmembrane domain:
amino acids 53-75

N-glycosylation site.
amino acids 166-170

Casein kinase II phosphorylation site.
amino acids 35-39, 132-136, 134-138

N-myristoylation site.
amino acids 66-72, 103-109

Prokaryotic membrane lipoprotein lipid attachment site.
amino acids 63-74

186/615

FIGURE 185

187/615

FIGURE 186

MALSSQIWAACLLLLLLASLTGSVFPQQTGQLAELQPQDRAGARASWMPMFQRRRRDTHFPICIFCCGCCHR
SKCGMCCKT

188/615

FIGURE 187

CTGTCAGGAAGGACCATCTGAAGGCTGCAATTGTTCTAGGGAGGCAGGTGCTGGCCTGGATCTTCCAC
CATGTTCCTGTTGCTGCCTTTGATAGCCTGATTGTCACCTCTGGCATCTCCCTGACTGCTCTCACCC
CCTCTCGTTTCACTCATAGTGCAGCCATTGGAGCTCCTTGATCGCAAACCTACATGAAAAGCT
GTTAAAAATCTTGCCTGGGCTACCTTGAGAATGGAGCAGGAGCCAAGGAGAAGAACCCAGCTTACAAGCC
CTACACCAACGGAATCATTGCAAAGGATCCCACCTCACTAGAAGAAGAGATCAAAGAGATTCGTCGAAGTGGTAG
TAGTAAGGCTCTGGACAACACTCCAGAGTTGAGCTCTGACATTCTACTTTGCGGAAAGGAATGGAGAC
CATTATGGATGATGAGGTGACAAGAGATTCTCAGCAGAAGAAGTGGAGTCTGGAACCTGCTGAGCAGAACCAA
TTATAACTCCAGTACATCAGCCTCGGCTCACGGTCTGTGGGGTAGGAGTGTGATTGGTACTGCTTCT
GCTGCCGCTCAGGATAAGCACTGGCTTCACAGGGATTAGCCTCTGGTGGCACAACGTGGTGGGATACTT
GCCAAATGGGAGTTAAGGAATCATGAGTAAACATGTTCACTTAATGTGTTACCGGATCTGCGTGCAGCGCT
GACAGCCATCATCACCTACCATGACAGGGAAACAGACAAAGAAATGGTGGCATCTGTTGGCAATCATACCTC
ACCGATCGATGTGATCATCTGGCCAGCGATGGCTATTAGCCATGGTGGGTAAGTGACGGGACTCATGGG
TGTGATTCAAGAGGCCATGGTGAAGGCCATGCCACAGCTCTGGTTGAGCGCTCGGAAGTGAAGGATGCCACCT
GGTGGCTAAGAGACTGACTGAACATGTGCAAGATAAAAGCAAGCTGCTATCCATCTTCCAGAAGAACCTG
CATCAATAATACATCGGTGATGATGTTCAAAAAGGGAGTTGAATTGGAGCCACAGTTACCCGTTGCTAT
CAAGTATGACCCCTCAATTGGCGATGCCCTCGGAACAGCAGAAATACGGGATGGTGAACGTAACCTGCTGCGAAT
GATGACCAGCTGGGCCATTGTCTCAGCGTGTGGTACCTGCCCTCATGACTAGAGAGGCAAGATGAAGATGCTGT
CCAGTTGCAATAGGGTGAATCTGCCATTGCCAGGGAGGACTTGTGGACCTGCTGTGGATGGGGCCT
GAAGAGGGAGAAGGTGAAGGACACGTTCAAGGAGGAGCAGCAGAAGCTGTACAGCAAGATGATCGTGGGAACCA
CAAGGACAGGAGCCGCTCCTGAGCCTGCCCTCCAGCTGGTGGGGCACCCTGCGGGGTGCCAACGGCTCAGAGC
TGGAGTTGCCGCCGCCGCCCCACTGCTGTGCTCTTCCAGACTCCAGGCTCCCCGGCTGCTCTGGATCCCAG
GACTCCGGCTTTCGCCAGCCGACGGGATCCCTGTGACCCGGCGCAGCCTACCCCTGGTGGCTAAACGGAT
GCTGCTGGGTGTTGCGACCCAGGACGAGATGCCCTGTTCTTACAATAAGTGTGGAGGAATGCCATTAAAG
TGAACTCCCCACCTTGCACGCTGTGGGGCTGAGTGGTTGGGGAGATGTGGCATGGTCTGTGCTAGAGATGG
CGGTACAAGAGTGTATGCAAGCCCCTGTCAGGGATGTGCTGGGGGCCACCCGCTCTCCAGGAAAGGC
ACAGCTGAGGCACTGTGGCTGGCTCGGCCCTAACATGCCCTTGGAGCTCTGCAAGACATGATAGGAAG
GAAACTGTCATCTGCAAGGGCTTICAGAAAATGAAGGGTAGATTGCTGCTGTGATGGGTACTAAA
GGGAGGGGAAGAGGCCAGGTGGCCGCTGACTGGGCCATGGGGAGAACGTGTGCTGACTCCAGGCTAACCTG
AACTCCCCATGTGATGCGCGCTTGTGAATGTGTCTCGGTTCCCATCTGTAATATGAGTCGGGGGAATG
GTGGTGAATTCTACCTCACAGGGCTGTGTGGGATTAAAGTGTGCGGGTGAGTGAAGGACACATCACGTTCA
TGTTCAAGTACAGGCCACAAAACGGGCACGGCAGGCAGGCTGAGCTCAGAGCTGCTGCACTGGCTTGATTG
TTCTGTGAGTAAATAACTGGCTGGTGAATGA

189/615

FIGURE 188

MFLLLPFDLSLIVNLLGISLTVLFTLLLVLVFIIVPAIFGVSGIRKLYMKSLLKIFAWATLRMERGAKENHQLYKP
YTNGIIAKDPTSLEEEIKEIIRRSGSSKALDNTPEFELSDIFYFCRKGMETIMDDEVTKRFSAEELSWNLLSRTN
YNFQYISLRLTVLWGLGVLIACYCFLPLRIALAFTGISLLVVGTTVGYLPGNGRFKEFMSKHVHLMCYRICVRAL
TAIITYHDRENPRNGGICVANHTSPIDVIIASDGYYAMVGQVHGGLMGVIORAMVKACPHVWFERSEVKDRHL
VAKRLTEHVQDKSKLPILIFPEGTCINNTSVMMFKKGSFEIGATVYPVAIKYDPQFGDAFWNSSKYGMVTLRM
MTSWAIVCSVWYLPPMTREADEDAVQFANRVKSAIARQGLVDLLWDGLKREKVKTDFKEEQQKLYSKMIVGNH
KDRSR

190/615

FIGURE 189

GCCCCTCGAAACCAGGACTCCAGCACCTCTGGTCCCGCCCTCACCGGACCCCTGGCCCTCACGTCTCCTCCAGG
GATGGCGCTGGCGGCTTGATGATGCCCTCGGCAGCCTCGGCACACCTGGCAGGCCAGGCTGTCCCAC
CATCCTGCCCTGGGCTGGCTCCAGACACCTTGACCGATAACCTATGTGGGTTGTGCAGAGGAGATGGAGGAGAA
GGCAGCCCCCTGCTAAAGGAGGAAATGGCCACCATGCCCTGCTCGGGAAATCTGGGAGGCAGCCCAGGAGAC
CTGGGAGGACAAGCGTCGAGGGCTTACCTTGCCCCCTGGCTCAAAGCCCAGAATGGAATAGCATTATGGTCTA
CACCAACTCATCGAACACCTTGACTGGAGTTGAATCAGGCCGTGCGGACGGGCGGAGGCTCCGGAGCTCTA
CATGAGGGACTTCCCTCAAGGCCCTGCATTCTACCTGATCCGGCCCTGCAGCTGCGAGGCAGTGGGGG
CTGCAGCAGGGGACCTGGGAGGTGGTGTCCGAGGTGTGGGAGCCTTCGCTTGAAACCAAGAGGCTGGGGGA
CTCTGTCGGCTTGGCCAGTTGCCCTGGCTCCAGCTCCAGATAAGGCAGTGGCCACAGATTGGGAGAAGAGGCG
GGGCTGTGTCTCGGCCAGGGGTGCAGCTAGGGTCACAATCTGAGGGGGCTCTGCCCCCTGGAAGAC
TCTGCTCTGGCCCTGGAGAGTCCAGCTCAGGGGTTGGGCTTGAAAGTCCAACATCTGCCACTTAGGAGC
CCTGGGAACGGGTGACCTTCATATGACGAAGAGGCACCTCCAGCAGCCTTGAGAAGCAAGAACATGGTCCGGAC
CCAGCCCTAGCAGCCTCTCCCCAACCAAGGATGTTGCCCTGGGAGGCCACAGCAGGGCTGAGGGAACTCTGCTA
TGTGATGGGACTTCTGGACAAGCAAGGAAAGTACTGAGGCAGCCACTTGATTGAACGGTGTGCAATGTGGA
GACATGGAGTTTATTGAGGTAGCTACGTGATTAAATGGTATTGCAGTGTGGA

191/615

FIGURE 190

MALAALMIALGSLGLHTWQAQAVPTILPLGLAPDTFDDTYVGCAEEMEEKAAPLLKEEMAHALLRESWEAAQET
WEDKRRGLTLPPGFKAQNIGIAIMVTNSSNTLYWELNQAVRTGGGSRELYMRHFFKALHFYLIRALQLLRGSGG
CSRGPGVVFRGVGSLRFEPKRLGDSVRLGQFASSSLDKAVAHRFGEKRRGCVSAPGVQLGSQSEGASSLPPWKT
LLLAPGEFQLSGVGP

192/615

FIGURE 191

GTGGCTTCATTCAGTGGCTGACTTCCAGAGAGCAATATGGCAGTTCCCCAACATGCCTCACCCCTCATCTATAT
CCTTTGGCAGCTCACAGGGTCAGCAGCCTGGACCGTGAAAGAGCTGGTCGGTCCGTTGGTGGGGCGTGAC
TTTCCCCCTGAAGTCAAAGTAAGCAAGTGAATCTATTGTCTGGACCTCAACACAACCCCTTTGTCAACCAT
ACAGCCAGAAGGGGGCACTATCATAGTACCCAAAATCGTAATAGGGAGAGAGTAGACTTCCCAGATGGAGGCTA
CTCCCTGAAGCTCAGCAAACGTAGAAGAAGAATGACTCAGGGATCTACTATGTGGGGATATAACAGCTCATCACTCCA
GCAGCCCTCCACCCAGGAGTACGTGCTGCATGTACGAGCACCTGCAAAGCTAAAGTCACCATGGGTCTGCA
GAGCAATAAGAATGGCACCTGTGTGACCAATCTGACATGCTGCATGGAACATGGGAAGAGGATGTGATTATAC
CTGGAAGGCCCTGGGCAAGCAGCAATGAGTCCCATAATGGGTCCATCTCCCCATCTCCTGGAGATGGGAGA
AAGTGATATGACCTTCATCTGCGTTGCCAGGAACCCCTGTCAGCAGAAACTTCTCAAGCCCCATCCTGCCAGGAA
GCTCTGTGAAGGTGCTGCTGATGACCCAGATTCTCCATGGTCCTCTGTGTCTCTGTTGGTGCCTCTGCT
CAGTCTCTTGACTGGGCTATTCTTGGTTCTGAAGAGAGAGACAAGAAGAGTACATTGAAGAGAAGAA
GAGAGTGGACATTGTGGGAAACTCTAACATATGCCCTTACTCTGGAGAGAACACAGAGTACGACACAATCCC
TCACACTAATAGAACAACTCTAACAGAACAGATCCAGCAAATACGGTTACTCCACTGTGAAATACCGAAAAAGAT
GAAAAATCCCCACTCACTGCTCACGATGCCAGACACACCAAGGCTATTGCCTATGAGAATGTTATCTAGACAGC
AGTGCACCTCCCTAACGTCTGCTCA

193/615

FIGURE 192

MAGSPTCLTLIYILWQLTGSAAASGPVKELVGSGGAVTFPLKSKVQVDSIVWTFNTTPLVTIQPEGGTIIIVTQN
RNRERVDFFPDGGYSLKLSKLKKNDSGIYYVGIYSSSLQPSTQEYVLHVEHLSKPVMTMGLQSNKNGTCVTNLT
CCMEHGEEDVIYTWKALGQAANESHNGSILPISWRWGESSDMTFICVARNPVSRFSSPILARKLCEGAADDPDSS
MVLLCLLLVPLLLSPVLGLFLKRERQEEYIEEKRVDICRETPNICPHSGENTEYDTIPHTNRTILKEDPA
NTVYSTVEIPKKMENPHSLLTMPDTPRLFAYENVI

194/615

FIGURE 193

GGAGGAGGGAGGGCGGGCAGGCCAGCCCAGAGCAGCCCCGGGACCCAGCAGGACTCTCTTCCAGCCCAGG
TGCCCCCACTCTCGCTCCATTGGCGGGAGCACCCAGTCTGTACGCCAAGGAACCTGGTCTGGGGCACC**ATG**
GTTTCGGCGCAGCCCCAGCCTCCTCATCCTCTGTGCTGCTGGGGTCTGTGCCTGCTACCGACGCCGC
TCTGTGCCCTGAAGGCCACGTCCCTGGAGGATGTGGGGTAGTGGGGAGGGCAGGGCTGTCGGGCTCCTCC
CCGAGCCTCCGCCACCCCTGGACCCCGGCCCTCAGCCCCACATCGATGGGGCCCCAGCCCACAACCCCTGGGGC
CCATCACCCCCCACCACCTCCTGGATGGGATAGTGGACTCTCGCCAGTACGTGATGCTGATTGCTGTGGT
GGCTCCCTGGCTTCTGCTGATGTTCATCGTCTGTGCCCGGTGATCACCCGGCAGAAGCAGAAGGCCTGGCC
TATTACCCATCGTCCCTCCCCAAGAAGAAGTACGTGGACCAAGAGTGAACGGGGGGGGGGGGGGGGGGGG
GAGGTCCCCGACAGAGCCCCGACAGCAGGGCCGAGGAAGGCCCTGGATTCCCTCCGGCAGCTCCAGGGCAGACATC
TTGGCCGCCACCCAGAACCTCAAGTCCCCCACCAGGGCTGCACTGGCGGTGGGACGGCAGGGATGGTGGAG
GGCAGGGGGCGCAGAGGAAGAGGAAGGGCAGCCAGGGGGACAGGAAGTCCAGGGACATGGGGTCCCAGTG
GAGACACCAAGGGCAGAGGGAGGGCTGCTCAGGGGCTCTGAGGGGGCTGTGGTGGGGTGAAGGGCCAAGGG
GAGCTGGAAGGGTCTCTTGTAGCCCAGGAAGGCCAGGACAGTGGGTCCCCCGAAAGGCCCTGTGCTTGC
AGCAGTGTGTCACCCAGTGT**C****TAA**CAGTCCTCCCGGGCTGCCAGCCCTGACTGTCGGGCCCCAAGTGGTCACCT
CCCCGTGTATGAAAAGGCCCTGACTGCTTCCCTGACACTCCCTTGGGCTCCCTGTGGTGCACATCC
CAGCATGTGCTGATTCTACAGCAGGGCAGAAATGCTGGTCCCCGGTGGGGGAGGAATCTACCAAGTGCACATCA
TCCTTCACCTCAGCAGCCCCAAAGGGTACATCCTACAGCACAGCTCCCTGACAAAGTGAAGGGAGGGCACGT
CCCTGTGACAGCCAGGATAAAACATCCCCAAAGTGTGGATTACAGGGGTGAGGCCACCGTGCCCGGGCAAAC
TACTTTTAAACAGCTACAGGGTAAATCTGCAAGCACCCACTCTGGAAAATACTGCTCTTAATTTCCTGAAG
GTGGCCCCCTGTTCTAGTTGGTCCAGGATTAGGGATGTGGGTATAGGGCATTAAATCTCTCAAGCGCTCTC
CAAGCACCCCCGGCTGGGGTGAGTTCTACATCCGCTACTGCTGCTGGGATCAGGGTGAATGAATGGAACCT
TCCTGTCTGGCCTCAAAGCAGCTAGAAGCTGAGGGCTGTGTTGAGGGGACCTCCACCCCTGGGAAGTCCGA
GGGGCTGGGAAGGGTTCTGACGCCAGCCTGGAGCAGGGGGCCCTGGCCACCCCTGTTGCTCACACATTGT
CTGGCAGCTGTGTCACAATATTGTCAGTCCTCGACAGGGAGCCTGGGCTCCGTCTGCTTAGGGAGGCTCT
GGCAGGAGGTCTCTCCCCATCCCTCCATCTGGGCTCCCCAACCTCTGCACAGCTCCAGGTGCTGAGATA
TAATGCACCAAGCACAATAACCTTATTCCGGCCTGAAAAAAAAAAAAAAAAAAAAAAAGA
AAAAAAAAAAAAAAAGA

195/615

FIGURE 194

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58852
><subunit 1 of 1, 283 aa, 1 stop
><MW: 29191, pI: 4.52, NX(S/T): 0
MVSAAAPSILLLLLLLGSVPATDARSVPLKATFLEDVAGSGEAEGSSASSPSILPPPWTTPALSPTSMGPQPTTLG
GPSPPPTNFDLGIVDFFRQYVMLIAVVGSLAFLLMFIVCAAVITRQKOKASAYYPSSFPKKKYVDQSDRAGGPRAF
SEVPDRAPDSRPEEALDSSRQLQADILAATQNLKSPTRAALGGGDGARMVEGRGAEEEEKGSQEGDQEVAQGHGVP
VETPEAQEEPCSGVLEGAVVAGEGQGELEGSLLLQAQEAQGPVGPPESPCACSSVHPSV

Signal peptide:
amino acids 1-25

Transmembrane domain:
amino acids 94-118

N-myristoylation site.
amino acids 18-24, 40-46, 46-52, 145-151, 192-198, 193-199, 211-217, 238-244,
242-248

196/615

FIGURE 195

GAAAGACGTGGTCTGACAGACAGACAATCCATTCCCTACCAAAATGAAGATGCTGCTGCTGCTGTTGGGA
CTGACCCTAGTCTGTGTCATGCAGAAGAAGCTAGTTCTACGGGAAGGAACCTTAATGTAGAAAAGATAATGGG
GAATGGCATACTATTATCCTGGCCTCTGACAAAAGAGAAAAGAGATAAGAACATGGCAACTTAGACTTTCTG
GAGCAAATCCATGTCTGGAGAATTCTTAGTTCTAAAGTCCATACTGTAAGAGATGAAGAGTGCTCGAATT
TCTATGGTGCTGACAAAACAGAAAAGGCTGGTGAATATTCTGTGACGTATGATGGATTCAATAACATTACTATA
CCTAAGACAGACTATGATAACTTCTTATGGCTCACCTCATTAACGAAAAGGATGGGAAACCTTCCAGCTGATG
GGGCTCTATGCCGAGAACAGATTGAGTTCAAGACATCAAGGAAAGGTTGCACAACATATGTGAGGAGCATGGA
ATCCTTAGAGAAAATCATGACCTATCCAATGCCAATCGCTGCCTCCAGGCCGAGAATGAAGAATGGCCTGA
GCCTCCAGTGTGAGTGGACACTCTCACCAAGGACTCCACCATCATCCCTTCTATCCATACAGCATCCCCAGTA
TAAATTCTGTGATCTGCATTCCATCCTGTCTCACTGAGAAGTCCAATTCCAGTCTATCAACATGTTACTAGGAT
ACCTCATCAAGAATCAAAGACTCTTAAATTCTCTTGATACACCCCTTGACAATTTCATGAAATTATTCT
CTTCTGTCAATAATGATTACCCCTGCACTAA

197/615

FIGURE 196

MKMLLLLCLGLTLVCVHAEFASSTGRNFNVEKINGEWTIILASDKREKIEEHGNFRLFLEQIHVLNSLVLKVH
TVRDEECSELSMVADKTEKAGEYSVTYDGFNTFTIPKTDYDNFLMAHLINEKDGETFQLMGLYGREPDLSSDIKE
RFAQLCEEHGILRENIIDLDSNANRCLQARE

198/615

FIGURE 197

GGCTCGAGCGTTCTGAGCCAGGGGTGACCATGACCTGCTGCGAAGGGATGGACATCCTGCAATGGATTAGCCTG
CTGGTTCTACTGCTGTTAGGAGTAGTTCTCAATGCGATACTCTAATTGTCAGCTTAGTTGAGGAAGACCAATT
TCTCAAAACCCCACCTCTTGCTTGGAGTGGTCCCAGGAATTATAGGAGCAGGTCTGATGCCATCCAGCA
ACAACAATGTCCTTGACAGCAAGAAAAAGAGCGTGCACAAACAGAACTGGATGTTCTTCATCATTTTC
AGTGTGATCACAGTCATTGGTCTGTATTGCATGCTGATATCCATCCAGGCTCTTAAAAGGTCCCTCATG
TGTAATTCTCCAAGCAACAGTAATGCCAATTGTGAATTTCATTGAAAAACATCAGTGACATTCACTCAGAAC
TTCAACTTGCACTGGTTTCAATGACTCTTGTGCACCTCCTACTGGTTCAATAAACCCACCAGTAACGACACC
ATGGCGAGTGGCTGGAGAGCATCTAGTTCCACTTCGATTCTGAAGAAAACAACATAGGTTATCCACTCTCA
GTATTAGGTCTATTGCTTGTGGAATTCTGGAGGTCTGTTGGGCTCAGTCAGATAGTCATCGGTTCT
GGCTGTCGTGTGGAGTCTAAGCGAAGAAGTCAAATTGTGTAGTTAATGGGAATAAAATGTAAGTATCAGTA
GTTTGAAAAAAAAAAA

199/615

FIGURE 198

MTCCEGWTSCNGFSLLVLLLLGVVLNAIPLIVSLVEEDQFSQNPISCFEWWFPGIIGAGLMAIPATTMSLTARKR
ACCNNRTGMFLSSFFSVITVIGALYCMLISIQALLKGPLMCNSPSNSNANCEFSLKNISDIHPESFNLQWFFNDS
CAPPTGFNKPTSNDTMASGWRASSFHFDSEENKHRLIHFSVFLGLLLGVILEVLFGLSQIVIGFLGCLCGVSKRR
SQIV

200/615

FIGURE 199

ATCCGTTCTTGCAGCTCAGGTGAGCCCTGCCAAGGTGACCTCGCAGGACACTGGTGAAGGAGCAGTG
AGGAACCTGCAGAGTCACACAGTTGCTGACCAATTGAGCTGTGAGCCTGGAGCAGATCCGTGGGCTGCAGACCCCC
CGCCCCAGTGCCTCTCCCCCTGCAGCCCTGCCCTCGAACACTGTGACATGGAGAGAGTGACCTGGCCCTCTCCT
ACTGGCAGGCCTGACTGCCTTGGAGCCAATGACCCATTGCCAATAAGACGATCCCTTCTACTATGACTGGAA
AAACCTGCAGCTGAGCGGACTGATCTGGGAGGGCTCTGGCATTGCTGGGATCGCGGAGTTCTGAGTGGCAA
ATGCAAATACAAGAGCAGCCAGAACGAGCACAGTCTGTACCTGAGAAGGCCATCCACTCATCACTCCAGGCTC
TGCCACTACTTGTTGAGCACAGGACTGGCCTCCAGGGATGGCCTGAAGCCTAACACTGGCCCCCAGCACCTCCTC
CCCTGGGAGGCCTTATCCTCAAGGAAGGACTCTCTCCAAGGGCAGGCTGTTAGGCCCTTCTGATCAGGAGGC
TTCTTATGAATTAAACTCGCCCCACCACCCCTCA

201/615

FIGURE 200

MERVTLALLLAGLTALEANDPFANKDDPFYYDWKNLQLSGLICGLLAIAGIAAVLSGKCKYKSSQHQHPVPE
KAIPLITPGSATTC

202/615

FIGURE 201

203/615

FIGURE 202

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59212
><subunit 1 of 1, 440 aa, 1 stop
><MW: 42208, pI: 6.36, NX(S/T): 1
MKFQGPLACLLLALCLGSGEAGPLQSGEESTGTNIGEALGHGLGDALSEGVGKAIGKEAGGAAGSKVSEALGQGT
REAVGTGVRQVPGFGAADALGNRVGEAAHALGNTGHEIGRQAEDVIRHGADAVRGSWQGVPGHSGAWETSGGHGI
FGSQGGLGGQQGNPGGLGTPWVHGYPGNSAGSFGMNPQGAPWGQGGNGPPNFTNTQGAVAQPGYGSVRASNQ
NEGCTNPPPSGSGGGSSNSGGGSGSQSGSSGSGSNGDNNNGSSSGGSSGSSGGSSGGSSGNSGGS
RGDSGSESSWGSSTGSSSGNHGGGGNGHKGCEKPGNEARGSGESGIQGFRGQGVSSNMREISKEGNRLLLGGS
GDNYRGQGSSWGSGGDAVGGVNSETSPGMNFDTFWKNFKSKLGFINWDIAINKDQRSSRIP

Signal peptide:
amino acids 1-21

N-glycosylation site.
amino acids 265-269

Glycosaminoglycan attachment site.
amino acids 235-239, 237-241, 244-248, 255-259, 324-328, 388-392

Casein kinase II phosphorylation site.
amino acids 26-30, 109-113, 259-263, 300-304, 304-308

N-myristoylation site.
amino acids 17-23, 32-38, 42-48, 50-56, 60-66, 61-67, 64-70, 74-80, 90-96,
96-102, 130-136, 140-146, 149-155, 152-158, 155-161, 159-165, 163-169,
178-184, 190-196, 194-200, 199-205, 218-224, 236-242, 238-244, 239-245,
240-246, 245-251, 246-252, 249-252, 253-259, 256-262, 266-272, 270-276,
271-277, 275-281, 279-285, 283-289, 284-290, 287-293, 288-294, 291-297,
292-298, 295-301, 298-304, 305-311, 311-317, 315-321, 319-325, 322-328,
323-329, 325-331, 343-349, 354-360, 356-362, 374-380, 381-387, 383-389,
387-393, 389-395, 395-401

Cell attachment sequence.
amino acids 301-304

204/615

FIGURE 203

GGAGAAGAGGTTGTGGGACAAGCTGCCAGAGAAGGATGTCGCTGCTGACCTGCCCTGGCTGGCCTCA
GACCGGTGGCAATGTCCCCATGGCTACTCCTGCTGGTGTGGCTCCAGTGTTCACAGCCCCAAAACGAACTGGTTTGGG
GGACCTATGCCCTATAACAACGCGCCGCTCCAGTGTTCACAGAGGAGGGCTTGAAGGACTCGACCCAGATGTCGGCACCTATTCCCAGG
GCTTACGGTATGGCTGGGTCCCACATCCCCCTCATCGTTTATGCCACCCCTGACACCACATCGGTCTATCACCA
ATGCCTCAGCTGCCATTGACCCAGGATAATCTCTCATCAGGTTCTGAAGCCCTGGCTGGGAGAAGGGATAC
TGCTGAGTGGCGGTGACAAGTGGAGCCGCCACCGTCGGATGCTGACGCCGCCCTCCATTCAACATCCTGAAGT
CCTATATAACGATCTCAACAAGAGTCAAACATCATGCTTGACAAGTGGCAGCACCTGGCTCAGAGGGCAGCA
GTCGTCTGGACATGTTGAGCACATCAGCCTCATGACCTGGACAGTCTACAGAAATGCATCTTCAGCTTGACA
GCCATTGTCAGGAGAGGCCACTGAATATAGGCCACCATCTGGAGCTCAGTGCCCTTGAGAGAAAAGAACCC
AGCATATCCTCCAGCACATGGACTTCTGTATTACCTCTCCCATGACGGGCGGCCCTCCACAGGGCTGCCGCC
TGGTGCATGACTTCACAGACGCTGTCATCCGGGAGCGGGCGTCGCACCCACTCAGGGTATTGATGATT
TCAAAGACAAAGCCAAGTCAAAGACTTGGATTTCATGATGCTCTGCTGAGCAAGGATGAAGATGGAAAGG
CATTGTCAGATGAGGATAAAGAGCAGAGGCTGACACCTCATGTTGGAGGCCATGACACCCAGGGCAGTGGCC
TCTCCTGGGTCTGTACACCTTGGCAGGCACCCAGAATACCAGGAGCGCTGCCACAGGAGGTGCAAGAGCTTC
TGAAGGACCCGATCTAAAGAGATTGAATGGGACGACCTGGCCAGCTGCCCTCCTGACCATGTGCGTGAAGG
AGAGCCTGAGGTTACATCCCCAGCTCCCTCATCTCCGATGCTGCACCCAGGACATTGTTCTCCAGATGGCC
GAGTCATCCCCAAAGGATTACCTGCCTCATCGATATTATAGGGGTCCATCACACCCAACTGTGTGGCCGGATC
CTGAGGTCTACGACCCCTTCCGTTGACCCAGAGAACAGCAAGGGGAGGTACCTCTGGCTTTATTCTTTCT
CCGCAGGGCCCAGGAACGTACATGGCAGGCAGGCGTTCGCCATGGGGAGATGAAAGTGGCTCTGGCGTTGATGCTGC
TGCACCTCCGGTTCTGCCAGACCAACTGAGCCCCGCAAGGAAGCTGGAATTGATCATGCGCCGAGGGCAGGATT
TTGGCTGCCGGTGGAGCCCTGAATGTAGGCTTGCAGTGACTTCTGACCCATCCACCTGTTTTGCAGATT
GTCATGAATAAAACGGTGCTGTCAAA

205/615

FIGURE 204

MSLLSLPWLGILRPVAMSPWLLLLVVGSWLLARILAWTYAFYNNCRLQCFQPPKRNWFHGHLGLITPTEEGLK
DSTQMSATYSQGFTVWLGPPIIPFIVLCHPTIRSITNASAAIAPKDNLFIRFLKPWLGEGLLSGGDKWSRHRM
LTPAFHFNILKSYTIFNKSANIMLDKWQHASEGSSRLDMFEHISLMTLDSIQKCIFSFDSHCQERPSEYIATI
LELSALVEKRSQHILQHMDFLYLYLSHDGRFHACRLVHDFTDAVIREERRRTIPLTOGIDFFFKDKAKSKTLDFID
VLLLSKDEDGKALSDEDIRAEADTFMFGGHDTTASGLSWVLYNLRHPEYQERCRQEVAELLKDRDPKEIEWDDL
AQLPFLTMCVKESLRLHPPAPFISRCCTQDIVLPDGRVIPKGITCLIDIIGVHHNPTVWPDPPEVYDPFRFPENS
KGRSPLAFIPFSAGPRNCIGQAFAMAEMKVVLALMLLHFRFLPDHTEPRRKLELIMRAEGGLWLRVEPLNVGLQ

206/615

FIGURE 205

TCCCTTGACAGGTCTGGTGGCTGGTGGGGTCACTGAAGGCTGTCTTGATCAGGAAACTGAAGACTCTGTCT
TTGCCACAGCAGTTCCTGCAGCTCCTGAGGTGTGAACCCACATCCCTGCCCCCAGGGCACCTGCAGGACGC
CGACACCTACCCCTCAGCAGACGCCGGAGAGAAATGAGTAGCAACAAAGAGCAGCGGTAGCAGTGTCTGATC
CTCTTGCCTCATCACCATCCTCATCCTCACAGCTAACAGTGCCTAGGCTTCCATTACGGCTCCCTG
CGGGCCGTAGCCGCCACCTGTAACCTCAAGAAGTGGAGCATCACTGACGGCTATGTCCTCCATTCTCGGCAAC
AAGACACTGCCCTCTCGGTGCCACCAGTGTGTATTGTCAGCAGCTCCAGCCACCTGCTGGCACCAAGCTGGC
CCTGAGATCGAGCGGGCTGAGTGACAATCCGATGAATGATGCACCCACCAGTGTACTCAGCTGATGTGGC
AACAAAGACCACCTACCGCGTGTGGCCCATTCCAGTGTGTTCCGCGTGTGAGGAGGCCAGGAGTTGTCAAC
CGGACCCCTGAAACCGTGTTCATCTCTGGGGCCCCGAGCAAGATGCAGAAAGCCCCAGGGCAGCCTCGTGC
GTGATCCAGCGAGCGGGCTGGTGTCCCCAACATGGAAGCATATGCCGTCTCTCCGGCCGATGCGGCAATT
GACGACCTCTCCGGGGTGAGACGGGCAAGGACAGGGAGAAGTCTCATCGTGTGAGCACAGGCTGGTTACC
ATGGTGATCGCGGTGAGTTGTGACCCAGTGCATGTCATGGCATGGTCCCCCCTAACACTGCAGCCAGCG
CCCCGCTCCAGCGCATGCCCTACCAACTACGAGGCCAAGGGGGCGAGAATGTGTCACCTACATCCAGAAT
GAGCACAGTCGAAGGGCAACCACCAGCCTCATCACCAGAAAAGGGTCTTCTCATCGTGGGGCCAGCTGTAT
GGCATCACCTCTCCACCCCTCTGGACCTAGGCCACCCAGCCTGGGACCTAGGCTTGTGGAGTGTCTCCAG
AGCCTCCGGCCAGCCGCTAGGCCAGGGACCATCTCTGCCAATCAAGGCTTGTGGAGTGTCTCCAG
AGGGCTTGAGGAGGATGTATCTCCAGCCAATCAGGGCTGGGGATCTGTTGGCGAATCAGGGATTGGGAGT
CTATGTGGTAATCAGGGGTGTCTTCTTGCAAGTGTCTGGCAGGCTGGCACAGTCATCAGGGTAGAGGGGTATT
TCTGAGTCATCTGAGGCTAAGGACATGTCCTTCCATGAGGCTTGGTCAAGGAGCTGGGAACTGGGTGTTGCC
AATCACTCCCCACTCTGCTGGATAATGGGGTCTGTCCAAGGAGCTGGGAACTGGGTGTTGCC
CCAGCACCAAGAAAGAGAGATTGTGTGGGGTAGAAGCTGTCTGGAGGCCGGCAGAGAATTGTGGGGTGTGG
AGGITGTGGGGGGGGTGGGAGGTCCCAGAGGTGGGAGGCTGGCATCCAGGTCTGGCTCTGCCCTGAGACCTTG
GACAAACCCCTCCCCCTCTGGCACCCCTCTGCCACACCAGTTCCAGTGGAGTCTGAGACCCCTTCCAC
CTCCCCCTACAAGTGCCCTCGGGCTGTCTGCCCTCCGCTGGACCCCTCCAGCCACTATCCCTGCTGGAGGCTCA
GCTCTTGGGGGTCTGGGTGACCTCCCCACCTGAAACTTGGGTATTTGCCAAACTCTTCAG
GTTGGGGACTCTGAAGGAAACGGGACAAACCTTAAGCTGTTCTAGGCCAGCTGCCATTAGCT
GGCTCTTAAAGGGCCAGGCCTCTTTCTGCCCTCTAGCAGGGAGGTTTCCAAGTGTGGAGGCCCTTGGGG
CTGCCCTTGCTGGAGTCAGTGGGGCTTCCGAGGGTCTCCCTGACCCCTGTGCTCTGGGATGGCTGTG
GGAGCTGTATCACCTGGGTCTGTCCCCCTGGCTGTATCAGGCACATTAAAGCTGGCCCTAGGGGTGT
GTTTGTCTCCTGCTCTGGAGCCTGGAAGGAAAGGGCTCAGGAGGAGGCTGTGAGGCTGGAGGGACAGATG
GAGGAGGCCAGCAGCTAGCCATTGCACACTGGGTGATGGTGGGGCGGTGACTGCCAGACTGGTTGT
ATGATTTGTACAGGAATAAACACACCTACGCTCCGGAAAAAAAAAAAAAA

207/615

FIGURE 206

MSSNKEQRSAVFVILFALITILILYSSNSANEVFHYGSRLGRSRRPVNLKKWSITDGYVPILGNKTLPSRCHQCV
IVSSSSHLLGTLGPEIERAECTIRMNDAPTTGYSADVGNKTTYRVVAHSSVFRVLRRPQE VNRTPETVFIGWG
PPSKMOKPQGSLSLVRVIQRAGLVFPNMEAYAVSPGRMRQFDLFRGETGKDREKSHSWLSTGWFTMVIAVELCDHV
HVVGMVPPNYCSQRPRLQRMPYHYYEPKGDPDECVTYIQNEHSRKGNHHRFITEKRVFSSWAQLYGITFSHPSWT

Signal peptide:
amino acids 1-29

Transmembrane domain:
amino acids 9-31 (type II)

N-glycosylation site.
amino acids 64-68, 115-119

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 50-54

Casein kinase II phosphorylation site.
amino acids 3-7, 29-33, 53-57, 197-201

Tyrosine kinase phosphorylation site.
amino acids 253-262

N-myristoylation site.
amino acids 37-43, 114-120, 290-294

208/615

FIGURE 207

GTAGCGCGCTTGGGCTCCGGCTGCCGCTGCCGCCGCCCTGGGCGTGGAGGCCAGGAGCAGTCAC
CGCCATGGCAGGCATCAAAGCTTGATTAGTTGCTTGGAGGAGCAATCGGACTGATGTTTGATGCTTGG
ATGTGCCCTTCCAATATAACAACAAATACTGGCCCTCTTGTCTATTTCATCCTTCACCTATTCCATA
CTGCATAGCAAGAAGATTAGTGGATGATAAGATGCTAGAGTAACGCTTGTAAAGGAACATGCCATCTTCTTAC
AACGGGCATTGCGTGCAGCTTGGACTCCCTATTGTATTGCGAGACATCTGATTGAGTGGGGAGCTTG
TGCACCTGTTCTCACAGGAAACACAGTCATCTTGCACACTATACTAGGCTTTCTGGCTTGGAAAGCAATGA
CGACTTCAGCTGGCAGCAGTGGT~~GAAAAGAA~~ATTACTGAACATATTGCTAAATGGACTTCCTGTCAATTGTTGGCC
ATTCAACGACACAGGAGATGGGCAGTTAATGCTGAATGGTATAGAAGCCTTGGGGTATTAGGTGCTCC
CTTCTCACTTTATTGTAAGCATACTATTTCACAGAGACTTGCTGAAGGATAAAAGGATTTCTTTGGAA
AAGCTTGACTGATTCACACTATCTATAGTATGCTTTGTGGTCTGCTGAATTAAATATTIATGTGTTT
TTCTGTTAGGTTGATTGTTGGAAATCAATATGCAATGTTAAACACTTTTAATGTAATCATTTGCAATTGGT
TAGGAATTCAAATTCGCCGGCTCTTACTGGTCAGTACATCTTCTCTAAATTAGCTTCCATT
TTACAAAAAATTAAAAAATAGGTTTCACTGGTCAAGGATGACATCACTCCCAATGTTAGCAGACATACAGAC
GGTGGCATACGTTAGACTGATACTCAGTCAAATAGCTGATTTACCTCAGAGGGCCAAGTGTAA
TGCCCATGCCCTCCGTTAAGGGTTGTTGTTACTGGTAGACAGATGTTGTGGATTGAAAATTATTATGG
AATTGCTACAGAGGAGTGTCTTCTCAATTGTTAGAAGAATTATGTTAAACTTTAAGGTAAAGGGTGTAAA
ACATTGGAGATAAGGTTTATTATGTTATTAGGTTAGAGTGAGTTGCAATGTGGAAAGAAATGACATTG
AAATTCCAGTTTGAATCTGTTCTATTATAAGTGAATTTGTGATCTCTATCAACCTTCATGTTTACC
CTGTTAAAATGGACATACATGGAACCAACTACTGATGAGGGACAGTTGTATGTTGCAATATGCCAGAAAAC
CTTCCCTGCTTCCCTTGTACTTACCTGAAATAATTGCTATGCCGTACATCAGAGTGCCCCCTCCCTGCA
AGGCCTTCCCATGATTAACAGTAACTGTTAGCTTACAGATAATTGCAATTACAGTTAAGATTTAGAC
ATGGTAATGTTAGCTTCTAAGGTTATATGTAATTAAAGTATTGTTAAAGACAAGTTCCTGT
ATACCTGTAACGTTGATTGAGTTGATCATGATAGATCTGCTGTTCTTATGAAAGTTATTCTCAAGAAAATG
GAGTTAATGCAAAGTAGCCAAGTCCAGCTATAGCAGCTTCAAAACATACCTGACCAAAAAATTCCAGTAAAC
CAGGCATGATCAATTATAGTGGTCGTTACATCTAATAATTACAGGACTTTTCAGGAGTGGGTTATAAAA
CATTCAAGTGGCTGACAGTATTGTTAGGATATTGTTGTATGTTTATTCACTATACTTACATAAAAATT
ATTCGCCATCAGCCAAAACCTAGTAATCATGACAGCTGCTGTTGTTTATGAAAGTTATTCTCAAGAAAATG
GGAATAAAATTGGGATTGTTAGCTTTACTAAAGATGCCAAAGCCACAGGTTTATGCTTAACCTAAGC
CATGACTTTAGATATGAGATGACGGGAAGCAGGACGAAATATCGCGTGTGGCTGGAGCCCTCCACTGGAGGC
TGAAAGTGGCTTGTGGTATTATAATGTTCAAGAGGAAGGTGCAGGTACACATGAGTTAGAGAGCTGGT
GAGACAGTTGGGAAACTCTTGTGCTGTTGACTGACTGGACTTTTGTGAGGAAGTGCAATTCTGTCCTTC
CCTATTCTGTTCTGGATGTCAGTGCAGTGCACTGCTACTGTTTATCCACTTGGCCACAGACTTTCTAACA
GCTGCGTATTATTCTATACTAATTGCAATTGGCAGCATTGTCCTTGACCTTGTATAACTAGCTTGCACATAGT
GCTGTCCTGATTCTAGGCTAGTTACTTGAGATATGAAATTTCATAGAATATGCACTGATAACACATTACCAT
TCTTCTATGGAAAGAAAATTGGATGAAACAATAAGATTAAATATCTATTAAAAAA

209/615

FIGURE 208

MAGIKALISLSFGGAIGLMFLMLGCALPIYNKYWPLFVLFFYILSPIPYCIARRLVDDTDAMSACKELAIFLTT
GIVVSAFGLPIVFARAHLIEWGACALVLTGNTVIFATILGFFLVFGSNDDFSWQQW

210/615

FIGURE 209

CTTGCAGAGAAAGACTTTGTGCAGCACCCCTTAAAGGGTGA~~T~~CGTCCCAC~~T~~GTGTTCTCTCCTGGTGC
AGAGTTGCAAGCAAGTTATCAGAGTATGCCA~~T~~GAAGTTGTC~~C~~CCCTGCC~~T~~GCTGGTGA~~C~~CTTG~~C~~CTGCC
TGGGGACTTGGGT~~C~~AGGCCCGAGGCAAAGCAAGGAAGCA~~T~~GGGGAGGAATTCCATTCCAGACTGGAGGGA
GAGATTCTGCACTATGCGTCCCAGCAGCTTGGGCAAGGTGCTGGAGAAGTCTGGCTTCGCGTCGACTGCCGCA
ACACAGACCAGACCTACTGGTGTGAGTACAGGGGCAGCCCAGCATGTGCCAGGCTTTGCTGCTGACCCAAAC
CTTACTGGAATCAAGC~~O~~CTGCAGGAGCTGAGGCC~~T~~ACCATGCGTGCCAGGGGCCGGTGC~~T~~AGGCCAT
CCGTGTGCAGGGAGGTGGACCCCAGGCCATATGCAGCAGGTGACTTCCAGCCTCAAGGGCAGCCCAGGCCA
ACCAGCAGCCTGAGGTGGACGCCATCTGAGGCCAACAGTGA~~A~~ACTCACAGAAGCAACACAGCTGG
GAAAGGACTCGATGGAAGAGCTGGAAAAGCCAACCCACCACCCGACCCACAGCCAACCTACCCAGCCTGGAC
CCAGGCCGGAGGGAATGAGGAAGCAAAGAAGAAGGCC~~T~~GGGAACATTGTTGAAACCC~~T~~CCAGGCC~~T~~GTGCG
CCTTCTCATCAGCTCTCGAGGGT~~G~~ACAGGTGAAAGACCC~~T~~ACAGATCTGACCTCTCC~~T~~GACAGACAACC
ATCTCTTTTATATTATGCCGCTTCAATCCAACGTTCTCACACTGGAAGAAGAGAGTTCTAATCAGATGCAAC
GGCCCAAATTCTTGATCTGCAGCTCTGAGTTGGAAAAGAAACCTTCC~~T~~CTGAGTTGCAGAGTT~~C~~AG
CAATATGATAGGGAACAGGTGCTGATGGGCCAAGAGTGACAAGCATA~~C~~ACA~~A~~CTACTTATTATCTGAGAAGTT
TTGCTTGTGATCTGAGCCTCTATGAAAGTTAAATATGTAACGCATT~~C~~ATGAATTCCAGTGT~~C~~AGTAAAT
AGCAGCTATGTGTGCAAAATAAAAGAATGATT~~C~~AGAAAAAA

211/615

FIGURE 210

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59602
<subunit 1 of 1, 223 aa, 1 stop
<MW: 24581, pI: 9.28, NX(S/T): 0
MKFVPCLLLVTLSCLGQAPRQKQGSTGEFHFQTGGGRDSCTMRPSSLGQGAGEVWLR
VDCRNTDQTYWCEYRGQPSMCQAFAAADPKPYWNQALQEILRRLHHACQGAPVLRPSVCREA
GPQAHMQQTSSLKGSPEPNQQPEAGTPSLRPKATVKLTETQLGKDSMEELGKAKPTTR
PTAKPTQPGPRPGGNEAKKKWAHCWKPFQALCAFLISFFRG
```

Important features:

Signal peptide:

Amino acids: 1-19

N-myristoylation sites:

Amino acids: 38-44; 51-57; 194-200

DNA photolyases class 1 proteins:

Amino acids: 58-69

Tyrosine kinase phosphorylation site:

Amino acids: 64-71

N-myristoylation sites:

Amino acids: 38-44; 51-57; 194-200

Prokaryotic membrane lipoprotein lipid attachment site:

Amino acids: 4-15

212/615

FIGURE 211

GTGCAAGGAGCCGAGGCAGAGATGGCGTCCCTGGCCGGGTCTGCTGGCTGCAGCTCTGCGCACTGACCCAGGCG
GTCCTCAAACACTGGGTCCCCAACACGGACTTCGACGTGCGAGCCAACGGAGCCAGAACCGGACCCCGTGCGCC
GGCGCGCCGTTGAGTCCCAGGGACAAGATGGTGTCAAGTCTGGTCAAGAAGGTACGCCGTCTCAGACATG
CTCCTGCCGCTGGATGGGAACCTCGTCTGGCTTCAGGAGCCGGATTGGCGTCTCAGACGTGGCTCGCACCTG
GACTGTGGCGCGGGCGAACCTGCCGCTTCAGGAGCCGGACTCTGACCGCTTCTCCTGGCATGACCGCACCTGTGGCGCT
CTGGGGACGAGGCACCTGGCCTCTTCTCGTGGACGCCGAGCGCGTGCCCTGCCACGACGTCTTCCTTC
CGCCTAGTGCCTCCTCCCGGTGGGCTCGGCCCTGGCGCTAGCCCGTGCCTGCAGCATCTCGGCTCTGG
GCCGGACGTTCACGCCGACGAGGACCTGGCTGTTCTGGCGTCCCGCGCGGGCCCTACGCTTCACGGGC
CGGGCGCGCTGAACGCGTGGGCCCGAGGACTGCGCGAACCGTGGGCTGCGTCTGCGGAAACGCGGAGGCAGC
CGTGGATCTGCGCGGGCCCTGCTCCAGCCCC

213/615

FIGURE 212

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59603
<subunit 1 of 1, 197 aa, 1 stop
<MW: 20832, pI: 8.74, NX(S/T): 2
MGVLGRVLLWLQLCAITQAVSKLWVPNTDFDVAANWSQNRTPCAGGAAVEFPADKMVSVLV
QEGHAVSDMLLPIDGEVLVLASGAGFGVSDVGSHLDGAGEPAVFRDSDRFSWHDRTCGAL
GTRHЛАSSSWTPSACPAATTSSFRLVPPSAWGSALALAPCVSAASRLWAGRSRATRTWL
FSWRPARAAYASTGRAR
```

Important features:

Signal peptide:

Amino acids 1-19

N-glycosylation site:

Amino acids 35-39

Glycosaminoglycan attachment site:

Amino acids 81-85

N-myristoylation sites:

Amino acids 82-88;118-124;153-159

C-type lectin domain proteins:

Amino acids 108-118

214/615

FIGURE 213

ATCGCATCAATTGGGAGTACCATCTTCCTCATGGGACCAGTGAAACAGCTGAAGCGAATGTTGAGCCTACTCGT
TTGATTGCAACTATCATGGTGCTGTTGCACTTACCCGTGTTCTGCCCTTTGGTGGCATAACAAGGGA
CTTGCACCTATCTTCTGCATTTGCAGTCTTGGCATTGACGTGGTACAGCCTTCCTCATACCATTGCAAGG
GATGCTGTGAAGAAGTGTGTTGCCGTGTGCTTGCATAATTCATGCCAGTTTATGAAGCTTGGAAGGCACTA
TGGACAGAACGCTGGTGGACAGTTGTAACIATCTCGAAACCTCTGTCTACAGACATGTGCCCTTATCTTGC
AGCAATGTGTTGCTTGATTGAAACATTGAGGGTTACTTGGAAAGCAACAAACATTCTGAACCTGAATGT
CAGTAGCACAGGATGAGAAGTGGGTTCTGTATCTGTGGAGTGGAAATCTCCTCATGTACCTGTTCCCTCTG
ATGTTGTCCCAGTGAATTCCATGAATAACAAACCTATTCAAGAACAGCAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

215/615

FIGURE 214

MGPVKQLKRMFEPTRLIATIMVLLCFALTLCASFWWHNKGALIFCILQSLALTWYSLSFIPFARDAVKKCFAVCLA

216/615

FIGURE 215

GGATTTTGTGATCCCGATTGCTCCCACGGGGGGACCTTGTAAGTCGGGGAGGCCAGGACAGGCCACCC
TGCAGGGGGGGGGAGGCAGCCGGGTGAGGGAGGTGAAGAAACCAAGACGCAGAGAGGCCAAGCCCCTTGCTTGGG
TCACACAGCCAAGGAGGCAGAGGCCAGAACACTACAACCAGATCCAGAGGCCAACAGGGACATGCCACCTGGGACG
AAAAGGCAGTCACCCCGAGGGCCAAGGGTGGCTCCCGCTGAGAGGATGAGCAAGTCTTAAGGCACCTCACGGTCG
TGGGAGACGACTACCATGCCTGGAACATCAACTACAAGAAATGGGAGAATGAAGAGGAGGAGGAGGAGGAGC
AGCCACCACCCACACCAGTCTCAGGCAGAGCAGAGCTGCAGCCCCCTGACGTTGCCCCCTGCCCCCTGGCCCCG
CACCCAGGGCCCCCTTGACATTCAAGGGCATGTTGAGGAAACTGTTGAGCTCCACAGGTTCAAGGTCAAGTCATCATCA
TCTGCTTGGTGGTCTGGATGCCCTCTGGTCTTGCTGAGCTCATCTGGACCTGAAGATCATCCAGCCCGACA
AGAATAACTATGCTGCCATGGTATTCCACTACATGAGCATCACCATCTGGTCTTTTATGATGGAGATCATCT
TTAAATTATTGTCTTCCGCCTGAGTTCTTCAACCACAAGTTGAGATCCTGGATGCCGCTGTTGGTGGTCT
CATTCACTCTGGACATGTCCCTCTGGTCCAGGAGCACCAAGTTGAGGCTCTGGCCTGCTGATTCTGCTCCGGC
TGTGGCGGGTGGCCCGGATCATCAATGGGATTATCATCTAGTTAACACAGTTAGAAGACAGCAACTCTAACGGT
AAAAACAGATGAATGTACAATTGCCGCCAACATTCAACACCTTGAGTTCAAGCTCTGGCTGAGAAGGCCCTGGACT
GATGAGTTGCTGTATCAACCTGTAAGGAGAAGCTCTCCGGATGGCTATGGGAATGAAAGAATCCGACTTCTA
CTCTCACACAGCCACCGTGAAGACTCTGGAGTAAATGTGCTGTGACAGACTGGCAGTTACATTCACTTCAGATTACA
ATGTTCACTGGCTGGTGTACGACAGAGAACCTGACAGTCAGTTACATTCACTTCAGATTACA
CAGAGCATCTGCCCTGTTCAATCACAGAGAACCAAAACAAAAATCTATAAAAGATATTCTGAAAATATGACAGAA
TTTGACAAATAAAAGCATAAACGTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

217/615

FIGURE 216

MATWDEKAVTRRAKVAPAERMSKFLRHFTVVGDDYHAWNINYKKWENEAAAAAQPPTPVSGEEGRAAAPDVA
PAPGPAPRAPLDFRGMLRKLFSSHRFQVIIICLVLDALLVLAELILDLKIIQPDKNYAAMVFHYMSITILVFF
MMEIIFKLFVFRILSSFTTSLRSWMPVVVVSVILDIVLLFQEHQFEALGLLILLRLWRVARIINGIIISVKTRSE
RQLLRLKQMNQLAAKIQHLEFSCSEKPLD

218/615

FIGURE 217

GGAAGGCAGCGCAGCTCCACTCAGCCAGTACCGAGATACGCTGGAACCTCCCCAGCCATGGCTTCCCTGGGG
CAGATCCTCTTCTGGAGCATAATTAGCATCATCATTATTCTGGCTGGAGCAATTGCACTCATCATTGGCTTGCT
ATTCAGGGAGACACTCCATCACAGTCACTGTGCGCTCAGCTGGAACATGGGGAGGATGGAATCCTGAGC
TGCACCTTTGAACCTGACATCAAACCTCTGATATCGTACATGGCTGAAGGAAGGTGTTTAGGCTGGTC
CATGAGTCAAAGAAGGCAAAGATGAGCTGTCGGAGCAGGATGAAATGTCAGAGGGCGGACAGCAGTGGT
GATCAAGTGAATGGCAATGCCCTTGGCTGAAAAACGTGCAACTCACAGATGCTGGCACCTACAAATGT
TATATCATCACTCTAAAGGCAAGGGATGCTAACCTGAGTATAAAACTGGAGCCTTCAGCATGCCGAAGT
AATGTGGACTATAATGCCAGCTCAGAGACCTTGGCTGTGAGGCTCCCGATGGTCCCCCAGCCCACAGTGGTC
TGGCATCCAAAGTGGACCAGGGAGCCAACCTCTCGGAAGTCTCAAATACCAGCTTGAGCTGAACCTGAGAAT
GTGACCATGAAGGTTGTCTGTGCTACAATGTTACGATCAAACACATACTCCTGTATGATTGAAAATGAC
ATTGCCAAGCAACAGGGATATCAAAGTGACAGAATCGGAGATCAAAGGCGAGTCACCTACAGCTGCTAAAC
TCAAAGGCTCTCTGTGTGCTCTCTTCTTGCCATCAGCTGGCACTTGTGCTCTCAGCCCTAACCTGATG
CTAAAGAATGTGCTTGGCCACAAAAAGCATGCAAAGTCATTGTTACAACAGGGATCTACAGAACTATTCAC
CACCAGATATGACCTAGTTTATTTCTGGAGGAAATGAATTCATATCTAGAAGTCTGGAGTGAGCAAACAG
AGCAAGAAACAAAAGAAGCAGGAAAGCAGAAGGCTCAAATATGAACAAGATAATCTATCTCAAAGACATATTA
GAAGTTGGAAAATAATTGTAAGTGTGAACTAGACAAGTGTGTTAAGAGTGATAAGTAAAATGCACGTGGAGACAAGT
GCATCCCAGATCTCAGGGACCTCCCCCTGGCTGTACCTGGGAGTGAGAGGACAGGATAGTGCATGTTCTTG
TCTCTGAATTTTAGTTATATGTGCTGTAATGTTGCTCTGAGGAAGGCCCTGGAAAGTCTATCCAAACATATCCA
CATCTTATATTCCACAAATTAGCTGTAGTATGTACCTAAGACGCTGCTAATTGACTGCCACTTCGCAACTCAG
GGCGGCTGCATTTAGTAATGGTCAAATGATTCACTTTATGATGCTTCAAAGGTGCCTTGGCTCTCTTC
CCAAGTACAACGACAATGCCAAAGTTGAGAAAAATGATCATAATTAGATAAACAGAGCAGTCGGGACACCGATT
AAAAAAAAA

219/615

FIGURE 218

MASLGQIILFWSIISIIILAGAIALIIGFGISGRHSITVTTVASAGNIGEDGILSCTFEPDIKLSDIVIQWLKEGV
VLGLVHEFKEGKDELSEQDEMFRGRTAVFADQVIVGNASLRLKNVQLTDAGTYKCYIITSKGKGNANLEYKTGAF
SMPEVNVDYNASSETLRCEAPRWFPQPTVWWASQVDQGANFSEVSNTSFELNSENVTMKVSVLYNVTINNTYSC
MIENDIAKATGDIKVTESIEIKRRSHLQLLNKASLCVSSFFAISWALLPLSPYLMK

220/615

FIGURE 219

GAATTTGAGAAGACAGCGGCCTGCCATGGCGCGTCTCTGGGGCAGGTGTTGGCTCTGGTGTGGTGGCCGCT
CTGTGGGGTGGCACGCAGCCGCTGCTGAAGCGGGCCTCCGCCGGCCTGCAGCGGGTCATGAGCCGACCTGGGCT
CAGCAGTTGCTACAGGAGATGAAGACCCCTTCTGAATACTGAGTACCTGATGCCCTTCCTCAACCAGTGT
GGATCCCTCTCTATTACCTCACCTGGCATCGACAGATCTGACCTGGCTGTGCCATCTGTAACTCTCTGGCT
ATCATCTTCACACTGATTGTTGGGAAGGCCCTTGGAGAAGAGATATTGGTGGAAAACGTAAGTTAGACTACTGCGAG
TGCAGGGACGCAGCCTGTTGATCTGCACATACCTGTGTTAGTCCCTCCCAGAACCCATCTCCCCAGAGTGGGCTG
AGGACACAGGCTTTCCATCCTGCCCTTCCCTGCAGCTGTTGCTCCTGTGGCCATCAGAGTCCCTTC
CCCTGGACAGTCTGGAGAAAGACAGAGGCTGGGTTGGGATTGAAGACCAGACCCATCTGAGCCCTCCCTCCA
GCCCTGTACCACTGGCATGGCTGAGCTCAGACCCCTCTGATTCTGCCTATTATCCCAGGAGCAGTTG
CTGGCATGGTGTCAACCGTGATAGGAATTCACTCTGCATCACAGCTCAGTGAGTAAGACCCAGGGCAACAGT
CTACCCCTTGAGTGGCCGAACCCACTTCCAGCTCTGCCTCCAGGAAGCCCTGGGCCATGAAGTGTGGCA
GTGAGCGGATGGACCTAGCACTTCCCTCTGGCCTTAGCTTCCCTCTTATGGGGATAACAGCTACCTCA
TGGATCACATAAGAGAACAGACTGAAAGAGTTTGTIAACCTTCAAGTGCTGTTAGCTGCGGGGATTAGCAC
AGGAGACTTACGCTCACCTCAGCAACCTTCTGCCCTCAGCAGCTCTTCCCTGCTAACATCTCAGGCCCTCCAG
CCCAGCCACCATTACTGTGGCCTGATCTGACTATCATGGTGGAGGTTCCATGGACTGCAGAACTCCAGCTGCA
TGGAAAGGGCCAGCTGCAGACTTGAGCCAGAAATGCAAACGGGAGGCCTCTGGGACTCAGTCAGAGCGCTTGG
CTGAATGAGGGGTGGAACCGAGGGAGAGAGGTGCGTCGGAGTGGCAGATGCAGGAAATGAGCTGTCTATTAGCCT
TGCCTGCCCAACCCATGAGGTAGGCAGAAATCCTCACTGCCAGCCCCCTCTAAACAGGTAGAGAGCTGTGAGGCC
CAGCCCCACCTGACTCCAGCACACCTGGCGAGTAGCTGTCAATAATCTATGTAAACAGACAAAAAA
AA

221/615

FIGURE 220

MAASLGQVLALVLVAALWGGTQPLLKRASAGLQRVHEPTWAQQLLQEMKTLFINTEYLMPFLLNQCGSLLYYLTL
ASTDLTLAVPICNSLAIIFTLIVGKALGEDIGGKRKLDYCECGTQLCGSRHTCVSSFPEPISPEWVRTRPFPILP
FPLQLFCFLVAIRVPFPWTVWRKTEAGVWD

222/615

FIGURE 221

CTTCTGAGGACAGTCACCAGGCCAGATCCAGAAGCCTCTAGGCTCCAGCTTCTCTGTGGAAGATGACAGCA
ATTATAGCAGGACCCCTGCCAGGTGTCGAAAAGATTCCGAATAAAACTTGCAGTGGGAAGTACCTAGTGAAA
CGGCCTAAGATGCCACTTCTCATGTCCCAGGCTTGAGGCCCTGGTCCCCATCCTGGGAGAAGTCAGCTC
CAGCACCATGAAGGGCATCCTCGTTGCTGGTATCACTGCAGTGCTTGCAGCTGTAGAATCTCTGAGCTGCGT
GCAGTGTAATTATGGAAAAATCCTGTGTCACAGCATTGCCTCTGAATGTCCTCACATGCCAACACCCAGCTG
TATCAGCTCCTCAGCCAGCTCCTCTAGAGACACCAGTCAGATTATACCAAGAATATGTTCTGCTCAGCGGAGAA
CTGCAGTGAGGAGACACACATTACAGCCTTCACTGTCCACGTGCTGAAGAACACTTCATTTGTAAGCCA
GTGCTGCAAGGAAAGGAATGCAGCAACACCCAGCGATGCCCTGGACCCCTCCCTGAAGAACGTGTCCAGCAACGC
AGAGTGCCCTGTTATGAATCTAATGAACTTCCGTGCGTGGGAAGGCCCTGGAAATGCTATGAAGAAGAAC
GTGTGTCTTCTAGTTGAGAACTTAAGAATGACATTGAGTCTAAAGAGTCTCGTGTGAAAGGCTGTTCCAACGT
CAGTAACGCCACCTGTCACTTCCGTGAGGAGTCATCTGGAGGACTCTTCAAGCTGGGCTCAAAGCTCCCTCTA
TGCAAATGTAACAGCTTAACCCCCACGTCACCAACCTTCCACAACGTTGAGGACTCTTCAAGCTGGGCTCAAAGCTCCCTCTA
CCTCTTGCCCTTGCAGCCTCTTCTGGGACTGCTGCCCTGAGGTCTGAGGTCAGAGCACCCCTGGGTGCTGACACCCCTTTCCCTGCTCTGCCCCGTTAA
CTGCCAGTAAGTGGGAGTCACAGGTCTCCAGGCAATGCCGACAGCTGCCCTGTTCTTCAATTAAAGCACTGG
TTCATTCACTGCCAaaaaaaaaaaaaaaaaaaaaaaa

223/615

FIGURE 222

MKGILVAGITAVLVAAVESLSCVQCNWEKSCVNSIASECPSHANTSCISSASSSLETPVRLYQNMFCSAENCS
EETHITAFTVHVSAAEHFHVSQCCQGKECSNTSDALDPLKNVSSNAECPACYESNGTSCRGKPWKCYEEEQCV
FLVAELKNDIESKSLVLKGCSNVSNATCQFLSGENKTLGGVIFRKFECANVNSLTPTSAPTTSHNVGSKASLYLL
ALASLLLRLGLP

224/615

FIGURE 223

GGCCTCGGTTCAAACGACCCGGTGGGTCTACAGCGGAAGGGAGGGAGCGAAGGTAGGAGGCAGGGCTGCCTCAC
TGGCCACCCCTCCAACCCCCAAGAGCCCAGCCCCATGGTCCCGCCGCCGGCGCTGCTGTGGGTCTGCTGCTG
AATCTGGGTCCCCGGCGGGGGGCCAACGGCCTGACCCAGACTCCGACCAGAAATGCAGGGTCAGTTACGC
TTGGGGGCCCATGACCCGCAGCGACTACCGAGCACCGCCGGACTGGTCTTCCCGGAAGACAAGGATAATCTA
GAGGACGAGAATGATGCCATGGCCGACGCCGACCGCTGGCTGGACCAGCGGCTGCCGAGCTCTGGCCGCCACG
GTGTCCACCGGTTAGCCGTCGTCGCCATTAAACGAGGAGGATGGTCTTCAGAAGAGGGGTTGTGATTAAT
GCCGGAAAGGATAGCACCAGCAGAGAGCTCCCAGCTGCAGCTCCCAATACAGCGGGAGTCCAGCACGAGGTTT
ATAGCCAATAGTCAGGAGCCTGAAATCAGGCTGACTTCAAGCCTGCCGCCCTCCCGGAGGTCTACTGAGGAC
CTGCCAGGCTCGCAGGCCACCCTGAGCCAGTGGTCCACACCTGGGTCTACCCGAGCCGGTGGCGTCACCCTCA
CCCACAGGCATCTCCTGAGGGATCTGCCGCTGGTGCTGATGCCCTGGGGCCCGTGGCATGCCACTGCAAG
TCGGGCACCATGAGCCGGAGCCGGTCTGGGAAGGCTGCACGGCCTTCCGGGCCCTCGAGTTGGGGCGCTGAGC
CAGCTCCGACGGAGCACAGCCTTGCACCCATCAACAATGTCCCTGCAACCAGTCCGGGAAGAGTGCCCCTG
GACACAAGTCTCTGTACTGACACCAACTGTCCCTCAGAGCACCCAGTACAGGACCACCAACTACCCCCCTTC
CCCACCATCCACCTCAGAAGCAGTCCCAGCCTGCCACCCGCCAGCCCTGCCAGCCCTGGCTTTGGAAACGG
GTCAGGATTGGCCTGGAGGATATTGGAATAGCCTCTTCAGTGTTCACAGAGATGCAACCAATAGACAGAAAC
CAGAGGTATGGCCACTTCATCCACATGAGGAGATGTCAGTTCTCAACTCTTGCCCTTCAATCCTAGCAC
CCACTAGATATTTTAGTACAGAAAAACAAATGGAAAACACAA

225/615

FIGURE 224

MVPAAGALLWVLLNLGPRRAAGAQGLTQTPTEMQRVSLRGPMTRSYRSTARTGLPRKTRIILEDENDAMADAD
RLAGPAAAELLAATVSTGFSRSSAINEEDGSSEEGVVINAGKDSTSRELPSPNTAGSSSTRFIANSQEPEIRL
TSSLPRSPGRSTEDLPGSQATLSQWSTPGSTPSRWPSPTAMPSPEDLRLVLMPWGPWHCHCKSGTMSRSRGK
LHGLSGRIRVGALSQLRTEHKPCTYQQCPONRLREECPLDTSLCDTNCASQSTTSTRTTTPFPTIHRLSSPSL
PPASPCPALAFWKVRIGLEDIWNSLSSVTEMQPIDRNQR

226/615

FIGURE 225

CCGGGGTCGACCCACCGTCCGGGGAGAAAGGATGGCCGGCCTGGCGCGGGTTGGTCTGCTAGCTGGGCAG
CGGCCTGGCGAGCGCTCCCAGGGCACCCTGAGCCGGTGTACCGCAGCTGCGTACTGCAGTGCAGAGAGCAGA
ACTGCTCTGGGGCGCTCTGAATCACTTCCGCTCCCAGCCAATCTACATGAGTCTAGCAGGCTGGACCTGTC
GGGACGACTGTAAGTATGAGTGTATGTTGGGTCAACCGTGGCTCTACCTCCAGGAAGGTACAAAAGTGCTCAGT
TCCATGGCAAGTGGCCCTTCTCCGGTCTCTGTTCTTCAAGAGCCGGCATGGCCGTGGCCTCGTTCTCAATG
GCCTGGCCAGCCTGGTGTATGCTCTGCCGCTACCGCACCTTGTGCCAGCCTCCCTCCCCATGTACCAACACCTGTG
TGGCCTTCGCTGGGTGTCCCTCAATGCAATGGTCTGGTCCACAGTCTTCCACACCAGGGACACTGACCTCACAG
AGAAAATGGACTACTTCTGTGCTCCACTGTCATCTACACTCAATCTACCTGTGCTGCGTCAGGACCGTGGGGC
TGCAGCACCCAGCTGTGGTCAGTGCCTTCCGGCTCTCTGCTCATGCTGACCGTGCACGTCTCTACCTGA
GCCTCATCCGCTCGACTATGGCTACAACCTGGTGGCAACGTGGTATTGGGCTGGTCAACGTGGTGGTGGC
TGGCCTGGTGCCTGTGGAACCCAGCGGGCTGCCCTCAOGTGCAGTGGTGGTGGTGGTCTGCTGCTGCAGG
GGCTGTCCTGCTCGAGCTGCTTGAACCTCCACCGCTCTCTGGGATGCCATGCCATCTGGCACATCA
GCACCATCCCTGTCCACGCTCTTTCACTTCTGGAAAGATGACAGCCTGTACCTGTGAAGGAATCAGAGG
ACAAGTTCAAGCTGGACTTGAAGACCTGGAGCAGACTGCCCCAGTGGGATCTGCCCCCTGCCCCCTGCTGGCCTC
CCTTCTCCCTCAACCTTGAGATGATTCTCTTTCAACTTCTGAACATGGGACATGAAGGATGTGGGCCAG
AATCATGTGGCCAGCCCACCCCTGTTGCCCTCACAGCCTGGAGTCTGTTCTAGGGAAAGGCCCTCCAGCATC
TGGGACTCGAGAGTGGGAGCCCTCACCTCTGGAGCTGAACCTGGGTGGAACTGAGTGTGTTCTAGCTCTA
CCGGGAGGACAGCTGCTGTTCTCCCCACCAGCCTCTCCCCACATCCCCAGCTGCCCTGGTGGTCTGGAAG
CCCTCTGTCTACCTGGAGACCAGGGACCACAGGCCCTAGGGATACAGGGGGTCCCTCTGTTACCAACCCCCCA
CCCTCTCCAGGACACCACCTAGGTGGTGTGGATGCTTGTGTTGGCCAGCCAAGGTTCACGGCGATTCTCCCC
ATGGGATCTTGAGGGACCAAGCTGCTGGATTGGAAAGGAGTTCACCTGACCGTTGCCCTAGCCAGGTTCCA
GGAGGCCTCACCATACTCCCTTCAGGGCCAGGGCTCCAGCAAGGCCAGGGCAAGGATCTGTGCTGCTCTGG
TTGAGAGCCTGCCACCGTGTGTCGGGAGTGTGGCCAGGCTGAGTCATAGGTGACAGGGCCGTGAGCATGGGCC
TGGGTGTGTGAGCTCAGGCCTAGGTGCGCAGTGTGGAGACGGGTGTTGTCGGGAACAGGTGTGGCTCAAAG
TGTGTGTGTGCGAGGGGTGGGTGTGTTAGCCTGGGATAGGGAAACGTGTGCGCCTGCTGGTGGCATGTGAGA
TGAGTGACTGCCGGTGAATGTGTCACAGTTGAGAGGTGGAGCAGGATGAGGAATCCTGTCACCATCAATAAT
CACTTGTGAGGCCAGCTCTGCCAACGCCACCTGGCGAGGCCAGGAGCTCTCATGGCCAGGCTGCC
GTGTGCATGTTCCCTGTCTGGTGCCCTTGTGCCCTCTGCAACCTCACAGGGTCCCAACACAGTGGCC
TCCAGAACGCCCCCTGGAGGGAGAGGAAGGAAATGGGATGGTGGGCTCTCCATCCTCTTCTCT
TGCCTTCGCATGGCTGCCCTTCCCTCAAAACCTCCATTCCCCGCTGCCAGCCCCCTTGTGCCATAGCTGATTT
TGGGGAGGAGGAAGGGCGATTGAGGGAGAAGGGGAGAAAGCTTATGGCTGGGTCTGGTTCTCCCTTCCAG
AGGGTCTTACTGTTCCAGGGTGGCCCAAGGGCAGGCAGGGCCACACTATGCCGTGCCCTGGTAAAGGTGACCC
CTGCCATTACCAAGCAGCCCTGGCATGTTCTGCCCAAGGAATAGAATGGAGGGAGCTCCAGAAACTTCCAT
CCAAAGGCAGTCTCGTGGTTGAAGCAGACTGGATTGGCTCTGCCCTGACCCCTTGTCCCTTGTGAGGGA
GGGGAGCTATGCTAGGACTCCAACCTCAGGGACTCGGGTAGCTGGCTAGCTCTTTGATACTGAAAACCTTT
AAGGTGGGAGGGTGGCAAGGGATGTGCTTAATAATCAATTCCAAGCCTCAAAAAAAAAAAAAAA

227/615

FIGURE 226

MAGLAARLVLLAGAAAALASGSQGDREPVYRDCVLQCEEONCSGGALNHFRSRQPIYMSLAGWTCRDDCKYECMWV
TVGLYLQEKGHKVPQFHGKWPFSRFLFFQEPASAVASFLNGLASLVMLCRYRTFVPPASSPMYHTCVAFAWVSLNAW
FWSTVFHTRDTDLTEKMDYFCASTVILHSIYLCCVRTVGLQHPAVVSAFRALLMLTVHVSYLSLIRFDYGYNL
VANVAIGLVNVVVWWLAWCLWNQRRLPHVRKCVVVVLLLQGLSLLLELLDFPPLFWVLDAAHAIWHISTIPVHVLFFS
FLEDDSLYLLKESEDKFKLD

Important features:

Signal peptide:
amino acids 1-20

Transmembrane domains:

amino acids 105-123, 138-156, 169-185, 193-209, 221-240, 256-272

N-glycosylation site.
amino acids 40-44

N-myristoylation site.
amino acids 43-49

CUB domain proteins profile.
amino acids 285-302

Amiloride-sensitive sodium channels proteins.
amino acids 162-186

228/615

FIGURE 227

TTGGGCTTCCGTAGAGGAAGTGGCGGGACCTTCATTTGGGTTTGGTCCCCCTTCCCCTCCCCGGGGTC
TGGGGGTGACATTGCACCGCGCCCTCGTGGGTCGCGTTGCCACCCCACGCAGACTCCCCAGCTGGCGGCC
TCCCATTGCGCTGTCTGGTCAGGCCCCACCCCCCTTCCCACCTGACCAGCATGGGGCTGCGGTTTTGT
GCTGCACTTTCGTCGCGTTGGCCGGCTCGCGCTTTCTTGATCACTGTGGCTGGGACCCGCTTCCGCTTA
TCATCCTGGTCGAGGGGCATTTCCTGGCTGGCTCCCTGCTCCCTGGCCTGTGGTCTGGTCACTTGGTCC
ATGTGACCGACCGGTCAAGATGCCGGCTCCAGTACGGCCTCTGATTTGGTGTGCTGTCTGTCTTCTAC
AGGAGGTGTTCCGCTTGCCTACTACAAGCTGCTTAAGAAGGCAGATGAAGGGTAGCATCGCTGAGTGAGGACG
GAAGATACCCATCTCCATCGCCAGATGGCTATGTTCTGGTCTCTCCCTCGGTATCATCAGTGGTGTCTTCT
CTGTTATCAATATTTGGCTGATGCACTTGGCCAGGTGTTGGGATCCATGGAGACTACCCATTACTTCC
TGACTTCAGCCTTCTGACAGCAGCCATTATCCTGCTCATAACCTTTGGGAGTTGTGTTCTTGATGCCCTGT
AGAGGAGACGGTACTGGGCTTGGGCTGGTGGTGGAGTCACCTACTGACATCGGGACTGACATTCTGAACC
CCTGGTATGAGGCCAGCCTGCTGCCATCTATGCACTGTTCATGGGCTCTGGCCTTATCACAGCTG
GAGGGTCCCTCCGAAGTATTCAAGCAGCCCTTGTAAGGACTTGACTACCTGGACTGATGCCGTGACAGATCC
CACCTGCCCTGCCACTGCCATGACTGAGCCCAGCCCCAGCCGGTCCATTGCCACATTCTCTGCTCCCT
CGTCGGCTACCCCACTACCTCCAGGGTTTGCTTGTCTTGTGACCGTTAGTCTCTAAGCTTACAGGAG
CAGCCTGGGTTCAAGCAGTCAGTACTGGTGGTTGAATCTGCACTTATCCCACCCACCTGGGACCCCTTGT
TGTGTCCAGGACTCCCCCTGTGTCAGTGTCTGCTCACCCCTGCCAAGACTCACCTCCCTCCCTCTGAGG
CCGACGGCAGGAGGACAGTCGGGTGATGGTGTATTCTGCCCTGCGCATCCACCCAGGGACTGAGGGACCTAGG
GGGGACCCCTGGGCTGGGTGCCCTCTGATGTCCTGCCCTGTATTTCTCATCTCAGTTCTGGACAGTGC
GGTTGCCAAGAAAAGGGACCTAGTTAGCCATTGCCCTGGAGATGAAATTAAATGGAGGCTAAGGATAGATGAGC
TCTGAGTTCTCAGTACTCCCTCAAGACTGGACATCTGGTCTTTCTCAGGCCCTGAGGGGAACCATTGG
TGTGATAAAATACCCCTAAACTGCCCTTTTTCTTGTAGGTGGGGAGGGAGGTATATTGGAACTCTTCT
AACCTCCTGGCTATATTTCTCCTCGAGTTGCTCCCTCATGGCTGGCTCATTCGGTCCCTTCTCCTTGG
TCCCAGACCTGGGGAAAGGAAGGAAGTCAGTGCATGTTGGAAACTGGCATTACTGGAACTAAATGGTTTAAACCTCC
TTAACCAACAGCATCCCTCCTCTCCCCAAGGTGAAGTGAGGGTGTGTGGTGAAGCTGGCAACTCCAGAGCTGCA
GTGCCACTGGAGGAGTCAGACTACCATGACATCGTAGGGAAGGAGGGAGATTTTGTAGTTTAATTGGGG
TGTGGGAGGGCGGGGAGGTTCTATAAAACTGTATCTGCTGAGGGTGGAGTGTCCCATCCTTTAATC
AAGGTGATTGTGATTGACTAATAAAAAAGAATTGTAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA

229/615

FIGURE 228

MGAAVFFGCTFVAFGPAFALFLITVAGDPLRVIILVAGAFFWLVSLLLASVVWFILVHVTDRSDARLOQYGLLIFG
AAVSVLLQEVFRRFAYYKLLKADEGLASLSLEDGRSPISIQRQMAVSGLSFGIISGVFSVINILADALGPVVGIH
GDSPYYFLTSAFLTAIIILLHTFWGVVFFDACEERRRYWALGLVVGSLLTSGLTFLNPWYEASLLPIYAVTVSMG
LWAFITAGGSLRSIQRSLLCKD

230/615

FIGURE 229

CGGGAGGCTGGTCGTCAATGATCCGACCCATTGTCGGCCTCTGCCATGCCCTGCTCTCCCAGGCTCCCGCG
GCCGACCCCCCGCGAACATGCAAGCCCACGGCCCGCAGGGTTCCCGCGCTCAGCCGGGTATCTGCGGCCTC
TGCTGCTCCTGCTACTGCTGCTGCTGCCAGCCGTAACCCGCGGGAGACCACGCCGGCGCCCCCAGAG
CCCTCTCCACGCTGGCCTCCCCAGCCCTTCAACCACGCCGTTGCTCCAGGCCCTCACTACCCAGGCCCTCA
CTACGCCAGGCACCCCCAAAACCTGGACCTCGGGCTCGCGCAGGCCCTGATGCGGAGTTCCACTCGTGG
ACGGCCACAATGACCTGCCAGGTCTGAGACAGCGTACAAGAAATGTCAGGATGTTAACCTGCGAAATT
TCAGCCATGGTCAGACCAGCCTGGACAGGCTTAGAGACGGCCTCGTGGGTGCCAGTTCTGGTCAGCCTCCGTCT
CATGCCAGTCCCAGGACCAGACTGCCGTGCCCTGCCCTGGAGCAGATTGACCTATTCACCGCATGTGTGCC
CCTACTCTGAACCTGAGCTTGTGACCTCAGCTGAAGGCTGAACAGCTCTCAAAGCTGCCCTGCCATTGGCG
TGNAGGGTGGTCACTCACTGGACAGCAGCCTCTGTGCTGCCAGTTCTATGTGCTGGGTGCCCTACCTGA
CACTTACCTTCACCTCGCAGTACACCATGGCAGAGAGTCCACCAAGTTCAAGACACCACATGTACACCAACGTCA
GCGGATTGACAAGCTTGGTGAGAAAGTAGTAGAGGGAGTTGAACGCCCTGGCATGATGATAGATTGTCCTATG
CATCGGACACCTTGATAAGAAGGGTCTGGAAAGTGTCTCAGGCTCTGTGATCTCTCCACTCAGCTGCCAGAG
CTGTGTGTGACAATTGTTGAATGTTCCCGATGATATCTCGCAGCTCTGAAGAACGGTGGCATCGTGTGGTGA
CACTGTCCATGGGGTGTGCTGCAGTGCACCTGCTGCTAACGTGTCCTGTGGCAGATCACTTGACACACATCA
GGGCAGTCATTGGATCTGAGTTCATGGGATTGGTGGAAATTATGACGGGACTGGCCGGTCCCTCAGGGGCTGG
AGGATGTGTCCACATACCCAGTCCTGATAGAGGGAGTTGCTGAGTCGTASCTGGAGCGAGGAAGAGCTTCAAGGTG
TCCTTCGTGGAAACCTGCTGCCGGTCTCAGACAAGTGGAAAAGGTGAGAGAGGGAGAGCAGGGCGCAGAGCCCCG
TGGAGGCTGAGTTCCATATGGCAACTGAGCACATCTGCCACTCCACCTCGCTGCCCTCAGAACATGGACACCAGG
CTACTCATCTGGAGGTGACCAAGCAGCCAACCAATCGGGTCCCTGGAGGTCTCAAATGCCCTCCCATACCTTG
TTCCAGGCCTTGTGGCTGCCACCATCCCAACCTTCACCCAGTGGCTCTGCTGACACAGTCGGTCCCCGAGA
GGTCACTGTGGCAAAGCCTCACAAAGCCCCCTCTCTAGTTCATTACAAGCATATGCTGAGAATAAACATGTTA
CACATGGAAAA

231/615

FIGURE 230

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59817
><subunit 1 of 1, 487 aa, 1 stop, 2 unknown
><MW: 53569.32, pI: 7.68, NX(S/T): 5
MOPTGREGSRALSRRYLRRLLLLLLRLQPVTRAETTPGAPRALSTLGSPSLFTTPGVPSALTPGLTPGTP
KTLDLGRGAQALMRSFPLVDGHNDLPOVLRQRYKNVLQDVNLRFNFSHGOTSLDRLRDGLVGAQFWSASVSCQSQD
QTAVRLALEQIDLIHRMCASYSELELVTSAEGLNSSQKLAQCLIGVXGGHSLDSSLVLSVRSFYVLGVRYLTFTC
STPWAESSTKFRHHMYTNVSGLTSFGEKVVEELNRIGMMIDLSYASDTLIRRVLEVSQAPVIFSHSAARAVCDNL
LNVPDDILQLLKNGGIVMVTLSMGVLQCNLLANVSTVADHFDHIRAVIGSEFIGIGGNYDGTGRFPQGLEDVSTY
PVLIEELLSRXWSEEELQGVLRGNLLRVFRQVEKVRREESRAQSPVAAEFPYGQLSTSCHSHLVPQNGHQATHLEV
TKOPTNRVPWRSSNASPYLVPGLVAAATIPTFTQWLC

Important features of the protein:

Signal peptide:
amino acids 1-36

Transmembrane domain:
amino acids 313-331

N-glycosylation sites.
amino acids 119-122, 184-187, 243-246 and 333-336

N-myristoylation sites.
amino acids 41-46, 59-64, 73-78, 133-138, 182-187, 194-199, 324-329, 354-359,
357-362, 394-399, 427-432 and 472-477.

Prokaryotic membrane lipoprotein lipid attachment site.
amino acids 136-146

232/615

FIGURE 231

GCTCTGGCGGCCCGCGATTGGTCACCGCCCGTAGGGACAGCCCTGGCTCTGATTGGCAAGCGCTGG
CCACCTCCCCACACCCCTTGCAGCCTCCCAGTAGGGAGAAAGGAGTAGCTATTAGCCAATTGGCAGGGCCC
GCTTTTAAAGCTTGATTCCTTGAAGATGAAAGACTAGCGGAAGCTCTGCCTCTTCCCCAGTGGCGAGGG
AACTCGGGCGATTGGCTGGGAACTGTATCCACCCAAATGTCACCGATTCTCTTCTATGCAGGAAATGAGCAGAC
CCATCAATAAGAAATTCTCAGCCTGGCGAAAATGGTGGCCCCACGAAGCCACGACAACGGAGGCAAAGAGG
GTTGCTCAACGCCCCGCTCATTGAAAACCAAATCAGATCTGGACCTATATAGCTGGCGGAGGCGGGCGAT
GATTGTGCGCTCGCACCCACTGCAGCTGCACAGTCGCATTCTTCCCCGCCCTGAGACCCCTGCAGCACCA
TCTGTCATGGCGCTGGCTGTTGGTTGAGCGCTGCCGTCTTGGCGCAGCGCAGGGCTCCCG
GCCGCCCGCGTCCGCTGGAAATCTAGCTTCTCAGGACTGTGGTCGCCCGTCCGCTGTGGCGGGAAAGCGGCC
CCAGAACCGACCACACCGTGGCAAGAGGACCCAGAACCCGAGGACGAAAACCTGTATGAGAAGAACCCAGACTCC
CATGGTTATGACAAGGACCCGTTGGACGTCTGGAACATGCGACTTGTCTTCTTGGCGCTCCATCATC
CTGGTCTTGGCAGCACCTTGTGCCCTATCTGCCTGACTACAGGATGAAAGAGTGGTCCCGCCGGAAGCTGAG
AGGCTTGTGAAATACCGAGAGGCCAATGGCCTTCCCACATGGAATCCAACGTGTTGACCCAGCAAGATCCAG
CTGCCAGAGGATGAGTGACCAGTTGCTAAGTGGGCTCAAGAAGCACCGCCTCCCCACCCCTGCCTGCCATT
TGACCTCTCAGAGCACCTAATTAAAGGGCTGAAAGTCTGAA

233/615

FIGURE 232

MAAGLFGLSARRLLAAAATRGLPAARVRWESSFSRTVVAPS A VAGKRPPEPTTPWQEDPEPEDE NLYEKNPDSHG
YDKDPVLDVWNMRLVFFFGVSIILVLGSTFVAYLPDYRMKEWSRREAERLVKYREANGLPIMESNCFDPSKIQLPEDE

234/615

FIGURE 233

GGGGCGGCTATGCCGTTGCTCTGCTCGTCTGTGCTCCTGGGGCCCGGGCTGGTCAGAACCCCCA
CGCGACAGCTCGGGAGGAACCTGTCACTACCCCCGCTGCCTCCGGGACGTAGCCGCACATTCCAGTTCCGC
ACCGCCTGGGATTGGAGCTTCAGCGGGAAAGGAGTGTCCCATTACAGGCTCTTCCAAAGCCCTGGGGCAGCTG
ATCTCCAAGTATTCTACGGGAGCTGCACCTGTCAATTACACAAGGCTTTGGAGGACCAGATACTGGGGCCA
CCCTCCTGCAGGCCCCATCAGGTGCAGAGCTGGGCTGGTCCAAGACACTGTCACTGATGTGGATAAATCT
TGGAAGGAGCTCAGTAATGTCCCTCAGGGATCTCTGCCTCTCAACTCATCGACTCCACCAACAGTC
ACTCCCACGTCCCTCAAACCCCTGGGCTGGCAATGACACTGACCACACTTCTGCCTATGCTGTGCTG
CCGGGGAGGTGGCTGCACCGAAAACCTCACCCCTGGAAGAAGCTTGGCCCTGAGTCCAAGGCAGGCTC
TCTGTGCTGCTGAAGGCAGATCGCTTGCACACCAGTACCAACTCCCAGGCAGTGCATATCCGCCCTGTTGC
AGAAATGCACGCTGTACTAGCACTCTCTGGGAGCTGAGGCAGACCCCTGTCACTGTTGATTTGATGCCCTCATCAG
GGGCAGGGAAAGAAAGACTGGTCCCTCTCCGGATGTTCTCCCGAACCCCTCACGGAGGCCCTGGCTTCA
GAGAGCCGAGTCTATGGACATCACCAACTACAACCCAGAACAGACATTAGAGGTGACCCACCCCGACC
ACTACATATCAGGACGTCACTTGGCACTCCGAAAGACATGCCATCTGACTTGCCTGACACCGCCATGATC
AACAACTCTGAAACCTCAACATCCAGCTCAAGTGGAAAGAGACCCCAAGAGAAATGAGGCCCTCAGTGCCT
CTGCATGCCAGGGTACGTGAGTGGCTATGGCTGCAAGAGGGGAGCTGAGCACACTGCTGTACAACACCCAC
CCATACCGGGCTTCCGGTGCTGCTGGACACCGTACCCCTGGTATCTGCGGCTGTATGTGACACCCCTCAC
ATCACCTCCAAGGGCAAGGAGAACAAACCAAGTTACATCCACTACCAGCCTGCCAGGACCCGCTGCAACCCAC
CTCCTGGAGATGCTGATTCACTGGCCAACTCAGTCACCAAGGTTCCATCCAGTTGAGCGGGCGCTGCTG
AAGTGGACCGAGTACAGCCAGATCTAACCATGGCTCTATGTCAGCCCATCTGTCCCTCAGGCCCTGTGCCC
AGCATGGTAGCAGCCAAGCCAGTGGACTGGGAAGAGACTCCCTCTCAACAGCTGTTCCAGTCTGTGATGGC
TCTAACTACTTTGTGCGGCTCTACACGGAGCCGCTGCTGGTGAACCTGCCGACACCGGACTTCAGCATGCCCTAC
AACGTGACTGCCCTACGTGCACGTGGTGGCTGCTACGGCTCCCTCACATCTCCACCCGAACCTTC
CACATCGAGGAGGCCACAGTGGCTGGCAAGCGGCTGGCCAACCTTATCCGGCGGCCCGAGGTGTCCCC
CCACTCTGATTCTGCCCTTCCAGCAGCTGCTGGCTTGAACCAAAGTGCCCTGGACCAGGTGAGGCCCTACAGCTGTGTTG
TGCCACTTGTCTCTCAGAGTTGGCTTTGAACCAAAGTGCCCTGGACCAGGTGAGGCCCTACAGCTGTGTTG
CCAGTACAGGAGGCCACGAGCAAATGTGGCAATTGAATTGAATTAACTTAGAAATTCAATTCCCTCACGTAGT
GGCCACCTCTATATTGAGGTGCTAATAAGCAGGAGTGGTGGCTGCTGTTGGACAGCACAGAAAAAGAT
TTCCATCACCACAGAAAGGTGGCTGGCAGCACTGGCCAAGGTGATGGGTGTGCTACACAGTGTATGCACTGT
GTAGTGGATGGAGTTACTGTTGTGAATAAAACGGCTTTCCGTGGAAAAAAAAAAAAAA

235/615

FIGURE 234

MPLALLVLLLLGPAGWCLAEPGRDSLREELVITPLPSGDVAATFQFRTRWDSELQREGVSHYRLFPKALGQLISK
YSLRELHLSFTQGFWRTRYWGPPFLQAPSGAELWVWFQDTVTDVDKSWKELSNVLSGIFCASLNFDSTNTVTPT
ASFKPGLGLANDTDHYFLRYAVLPREVVCCTENLTPWKKLLPCSSKAGLSVLLKADRLFHTSYHSQAVHIRPVCRNA
RCTSISWELRQTLSVVFDAFITGQGKKDWSLFRMFSRTILTEPCPLASESRVYVDITTYNQNETLEVHPPPTTY
QDVILGTRKTYAIYDILLTAMINNSRNLNQIQLKWKRPPENEAPPVFLHAQRYYVSGYGLQKGELSTLLYNTHPYR
AFPVULLLDTPWYLRLYVHTLTITSKGKENKPSYIHYQPAQDRLQPHLLEMLIQLPANSVTKVSIQFERALLKWT
EYTPDPNHGFYVSPSVLSALVPSMVAAKPVDWEESPLFNSLFPPSDGSNYFVRLYTEPLLVLNLPTPDFSMPYNVI
CLTCTVVAVCYGSFYNLLTRTFHIEEPRGGGLAKRLANLIRRARGVPPL

236/615

FIGURE 235

TGACGTCAAATCACCATGGCCAGCTATCCTTACCGCAGGGCTGCCAGGAGCTGCAGGACAAGCACCAGGAGC
CCCTCCGGGTAGCTACTACCCCTGGACCCCCAATAGTGGAGGGCAGTATGGTAGTGGCTACCCCTGGTGGTGG
TTATGGGGTCTGCCCCCTGGAGGGCCTATGGACCACCAGCTGGAGGGCCCTATGGACACCCCCTGGTGGTGG
GATGTTCCCTCTGAACTCCAGGAGGACCATATGGCGGTGCAGCTCCGGGGCCCTATGGTCAGCCACCTCC
AAGTTCCCTACGGTGCCTCAGCCTGGCTTATGGACAGGGTGGCCTCCAAATGGTGGATCCTGAGGCCTA
CTCCTGGTCCAGTCGGTGGACTCAGATCACAGTGGCTATATCTCATGAAGGAGCTAAAGCAGGCCCTGGTCAA
CTGCAATTGGTCTTCATTCAATGATGAGACTGCCTCATGATGATAAACATGTTGACAAGACCAAGTCAGGCCG
CATCGATGTCTACGGCTCTCAGCCCTGTGAAATTCCAGCAGTGGAAAGAACCTCTCCAGCAGTATGACCG
GGACCGCTGGGCTCATTAGCTACACAGAGCTGCAGCAAGCTGTCCCAAATGGGCTACAACCTGAGCCCTTA
GTTCACCCAGCTCTGGTCTCCGCTACTGCCACGCTGCCAATCCTGCCATGCAGCTGACCGCTTCATCCA
GGTGTGCACCCAGCTGCAGGTGCTGACAGAGGCTTCCGGAGAAGGACACAGCTGTACAAGGCAACATCCGGCT
CAGCTTCGAGGACTTCGTACCATGACAGCTCTCGGATGCTTGACCAACCATCTGTGGAGAGTGGAGTGAC
CAGGGACCTTCTGGCTTCTAGAGTGAGAGAAGTATGTGGACATCTCTTCTTCTGTCCCTCTAGAAGAAC
ATTCTCCCTTGCTTGATGCAACACTGTTCCAAAAGAGGGTGGAGAGTCTGCATCATAGCCACCAAATAGTGAGG
ACCGGGGCTGAGGCCACAGATAGGGCCTGATGGAGGAGAGGATAGAAGTTGAATGTCTGATGGCATGAGC
AGTTGAGTGGCACAGCCTGGCACAGGAGCAGGTCTTGAATGGAGTTAGTGTCCAGTCAGCTGAGCTCCACCC
TGATGCCAGTGGTGAAGTGTTCATCGGCCTGTTACCGTTAGTACCTGTGTTCCCTCACCGGCCATCCTGTCAAAC
GAGCCCATTCTCAAAGTGGAACTGACCAAGCATGAGAGAGATCTGTCTATGGGACAGTGGCTGGATTCT
GCCACACCATAATCCTGTGTTAACTCTAGCTGCCCTGGGCTGCCCTGCTCAGACAAATCTGCTCCCTG
GGCATCTTGGCCAGGCTCTGCCCTGCAAGCTGGGACCCCTCACTTGCCTGCCATGCTCTGCTCGGCTTCAGT
CTCCAGGAGACAGTGGTCACCTCTCCCTGCCAATACTTTTAATTGCATTTTTCAATTGGGCCAAAG
TCCAGTGAATTGTAAGCTCAATAAAAGGATGAAACTCTGA

237/615

FIGURE 236

MASYPYRQCPGAAGQAPGAPPGSYYPGPPNSGGQYGSGLPPGGGYGGPAPGGPYGPPAGGGPYGHPNPGMFPSG
TPGGPYGGAAPGGPYGQPPPSSYGAQQPGLYQGGAPPNDPEAYSWFQSVDSDHSGYISMKELKQALVNCNWSS
FNDETCCLMMINMFDKTKSGRIDVYGFSAWKFIIQQWKNLFQQYDRDRSGSISYTELQQALSQMGYNLSPQFTQLL
VSRYCPRSANPAMQLDRFIQVCTQLQVLTEAFREKDTAVQGNIRLSFEDFVTMTASRML

Important features of the protein:

Signal peptide:

amino acids 1-19

N-glycosylation site.

amino acids 147-150

Casein kinase II phosphorylation sites.

amino acids 135-138, 150-153, 202-205, 271-274

N-myristoylation sites.

amino acids 9-14, 15-20, 19-24, 33-38, 34-39, 39-44, 43-48, 61-66, 70-75, 78-
83, 83-88, 87-92, 110-115

238/615

FIGURE 237

239/615

FIGURE 238

MQGRVAGSCAPLGLLLVCLHLPGLFARSIGVVEEKVSQNFGTNLPQLGQPSSTGPSNSEHPQPALDPRSNDLARV
PLKLSVPPSDGFPPAGGSQVRWPPSWGLPAMDSWPPEDPWQMMAAAEDRLGEALPEELSYLSSAALAPGSGB
LPGESSPDATGLSPEASLLHQDSESRRLPRNSNLGAGGKILSQRPPWSLIHRVLPDHPWGTLNPSVSWGGGPGBT
GWGTRPMPHPEGIWINQPPGTSGWNINRYPGGSWGNINRYPGGSWGNINRYPGGSWGNIHLYPGINNPFPNGV
LRPPGSSWNIIPAGFPNPPSPRIQWG

Important features of the protein:

Signal peptide:

amino acids 1-26

Casein kinase II phosphorylation sites.

amino acids 56-59, 155-158

N-myristoylation sites.

amino acids 48-53, 220-225, 221-226, 224-229, 247-252, 258-263, 259-264, 269-
274, 270-275, 280-285, 281-286, 305-310

240/615

FIGURE 239

GGGCGTCTCCGGCTGCTCCTATTGAGCTGTCTGCTCGCTGTGCCCGCTGTGCCCTGCTGTGCCCGCGCTGCGCCG
CTGCTACCGCGTCTGCTGGACGCCGGAGACGCCAGCGAGCTGGTGATTGGAGCCCTGCGGAGAGCTCAAGCGCCC
AGCTCTGCCCGAGGAGCCCAGGCTGCCCGTGACTCCCATAGTTGCTGCAGGAGTGGAGCCATGAGCTGCGTCCT
GGGTGGTGTCACTCCCCCTGGGGCTGCTGTTCTGGTCTGCGGATCCAAAGGCTACCTCCTGCCAACGTCACCTCT
CTTAGAGGAGCTGCTCAGCAAATACCAGCACAAACGAGCTCTCACTCCGGGTCCGAGGCCATCCCCAGGGAGGA
CAAGGAGGAGATCCTCATGCTGCACAACAAGCTTCGGGGCCAGGTGCGAGCCTCAGGCCTCAACATGGAGTACAT
GGTGAGCGCCGGCTCCGGCCGAGAGGCTGGCACCGGGGTGGGGCTGGGCCACCAGCCTGCTGTGTTCCCCAG
CCAGCTGTTCCCCAGCCAGTGCCTGATGGCTGGCTCAGGGTCTCCTCTGGCAGGGGAGGATCCCGGCTCTG
TTCTGTTTGTTGTTGAGACAGGGTCTCACCTGCCACTGACGCTGGAGTGCAATGGCACAAATCGTCA
TGCCCTGAAACCTTAGACTCCCGGGTTAAGCGATCCTGCTTCAGGCTCCAAAGTAGCTGAACTACAGGCATGC
ACCATGGTGCCCAGCTAGATTTAAATATTGTTGGAGATGGGGTCTTGCTACGTTGCCAGGCTGGCTTGAA
CTCCTAGGCTCAAGCAATCTCCCTGCCTCAGCCTCTCAAAGTGTCTAGGATTATAGGCATGAGTCACCCCTGCTG
CTCTGGCTCTGTTCTAACATTGCTTAAACACAGCTCTGGGTTCCCTGTGAGAGCTGCTGGCTCGCTCGTGCCT
ATGTCACTCTGGTAGCTCCACTGGAAACACAGCTCTAGGCTTCCCTGTGAGAGCTGCTGGGAGGGGGCC
AGGGCTGGCTTGTGATGCTGATCTCAGCTGTGCCACAGCTAGTGCACCCCTGACTTCTCCTAGGCC
TGTGAGGCTCACTTCCACTTGGAGAGTCCTCCTCGCTGGTTGCCATGACTGTGAGATAAGTCGAGGCTGTGA
AGGGCCCGGCACAGACTGACCTGCCCTCCCCAACCCCTAGGCTTGCTAACCGGAAAGGAGCTAACGGTGA
AGACAGCCAAGGTCAACCCCTCCGGGTGATTGATGGGTGTTCCAGGTGTTGGCGATGCTACTTGAC
CCCAAGCTCCAGTGTGAAACTTCTTCTGGCTGGTTCCAGAACTACAGAGGAATGGACCAACAGTCTTCCAG
GGTCCCTCTCGTCCACCAACCAGGAGCCTCCACCTGGCCATCCGTCAGCTATGAATGGTTAAACAAACC
CACGTCCCAGCCTGGTAACATGGTAAAGCCCGTCTCTACAAAAAAATCCAAGTTAGCGGGCATGGTGGTG
CACCTGTAGTCCCAGCTGCAGTGGACTGAGGTGGAGGTGGGGAGCTGAGGAAGGAGGATCG
TTGAGCCTGGGAAGTCCGAGGCTGAGCTGAGATTGACCACTGCACCTCCAGCCTGGGTGACAGAGCAAGAC
CCTGTCCTAAAAAA

241/615

FIGURE 240

MSCVLGGVIPLGLLFLVCGSQGYLLPNVTLEEELLSKYQHNESHSRVRAIPREDKEEILMLHNKLRGQVQPQAS
NMEYMVSAAGSGRRGWHRGWGLGHQPALFSQLCSPASACDGWLKVSSGRGGSRLCSVLFVCFTGSHSATDAGVQ
WHNRHALKP

Important features:

Signal peptide:

amino acids 1-22

N-glycosylation site.

amino acids 27-31, 41-45

N-myristoylation site.

amino acids 126-132, 140-146

Amidation site.

amino acids 85-89

242/615

FIGURE 241

AAGGGAGAGGCCACCGGGACTTCAGTGTCTCCTCCATCCCAGGAGGCCAGTGGCCACTATGGGGTCTGGGCTGCC
CTTGTCTCCTCTTGACCCCTCCTGGCAGCTCACATGGAACAGGGCCGGGTATGACTTTGCAACTGAAGCTGAAG
GAGTCTTTCTGACAAATTCTCCTATGAGTCCAGCTCCTGGAAATTGCTTAAAAGCTCTGCCTCCTCCAT
CTCCCTCAGGGACCAGCGTCACCCCTCCACCATGCAAGATCTCAACACCATGTTGTCTGCAACACATGACAGCCA
TTGAAGCCTGTGTCCTCTGGCCCGGGCTTTGGGCCGGGATGCAGGAGGCAGGCCCGACCCTGTCTTCAG
CAGGCCAACCTCCTGAGTGGCAATAAAATTGGTATGCTG

243/615

FIGURE 242

MGSGLPLVLLTLLGSSHGTGPGMTLQLKLKESFLTNSSYESSFELLEKLCLLHLPSGTSVTLHHARSQHHVVCNT

244/615

FIGURE 243

GGCAAGTGGAACCACTGGCTTGGGATTTGCTAGATTTAACTCCTGAAAAATATCCCAGAT
AACTGTCATGAAGCTGGTAACTATCTTCCTGCTGGTGACCACAGCCTTGTAGTTACTCTGCTACTGCCTTCCT
CATCAACAAAGTGCCCTTCCTGTTGACAAGTTGGCACCTTACCTCTGGACAACATTCTCCCTTATGGATCC
ATTAAGCTTCTTCTGAAAACTCTGGGCATTCTGTTGAGCACCTGTGGAGGGCTAAGGAAGTGTGAAATGA
GCTGGGACCAGAGGCTCTGAAGCTGTGAAGAAACTGCTGGAGGCGCTATCACACTGGTGTGACATCAAGATAA
AGAGCGGAGGTGGATGGGATGGAAGATGATGCTCCTATCCTCCCTGCCTGAAACCTGTTCTACCAATTATAGAT
CAAATGCCCTAAATGTAGTGACCCGTGAAAAGGACAATAAGCAATGAATACATTA

245/615

FIGURE 244

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA59855
<subunit 1 of 1, 93 aa, 1 stop
<MW: 10161, pI: 7.39, NX(S/T): 0
MKLVTIFLLVTISLCYSATAFLINKVPLPVDKLAPLPLDNILPFMDPLKLLLKTLGIVS
EHLVEGLRKCVNELGPEASEAVKKLLEALSHLV
```

Important features:

Signal peptide:

Amino acids 1-18

246/615

FIGURE 245

TGCTAGGCTCTGCCACAATGCACCCGAGAGCAGGAGCTGAAAGCCTCTAACACCCACAGATCCCTATGACT
GCAATGTGAGGTGTCGGCTTGTCTGGCCAGCAAGCCTGATAAGCATGAAGCTTATCTTGGTGGCTGTGGT
CGGGTGTGCTGGTCCCCAGCTGAAGCCAACAAGAGTTCTGAAGAGATATCCGGTGCAAATGCATCTGTCCACC
TTATAGAACATCAGTGGGACATTTACAACCAGAATGTATCCCAGAAGGACTGCAACTGCCTGCACGTGGTGG
GCCCATGCCAGTGCCTGCCATGACGTGGAGGCCACTGCCTGCTGTGCGAGTGCAGGTACGAGGAGCGCAGCAC
CACCACCATCAAGGTATCATTGTATCTACCTGTCCGTGGTGGGTGCCCTGTGCTCTACATGGCCTCCTGAT
GCTGGTGGACCTCTGATCCGAAAGCCGGATGCATACACTGAGCAACTGCACAATGAGGAGGAGAATGAGGATGC
TCGCTCTATGGCAGCAGCTGTCATCCCTGGGGGACCCCGAGCAAACACAGTCCTGGAGCGTGTGGAGGTGC
CCAGCAGCGGTGGAAGCTGCAGGTGCAGGAGCAGCGGAAGACAGTCTCGATCGGCACAAGATGCTCAGCTAGAT
GGGCTGGTGTGGTGGGTCAAGGGCCCAACACCATGGCTGCCAGCTCCAGGCTGGACAAGCAGGGGGCTACTT
CTCCCTTCCCTCGGTCCAGTCTCCCTTTAAAAGCCTGTGGCATTTTCTCTCTCCCTAACTTTAGAAATG
TTGTACTTGGCTATTGATTAGGGAAGAGGGATGTGGTCTCTGATCTCTGTGTTGTCTTCTGGGTCTTGGGTT
GAAGGGAGGGGAAGGCAGGCCAGAAGGGATGGAGACATTGGAGGCTCAGGAGTGGATGCGATCTGTCTC
TCCTGGCTCCACTTTGCCCTCCAGCTGTGGAGGAAAGCATGGCCAGCATTGAGCTTGGGAATGTGTTACCCCTGG
TTCAGGAACTCAGTGTCTGGAGGAAAGCATGGCCAGCATTGAGCTTGGGAATGTGTTACCCCTGGAGATAAAGCTGG
ACCACCTCCCTCCCAGCCCCGGCGCCTCAGCCCCAGCTCCAGCCCTGAGGACAGCTCTGATGGGAGAGC
TGGGCCCCCTGAGCCCACTGGGTCTCAGGGTGCAGTGGAGCTGGTGTGCTGTCCCCCTGTGCACTCTCGCA
CTGGGCATGGAGTGCCATGCATACTCTGCTGCCGGTCCCTCACCTGCACTTGAGGGTCTGGCAGTCCCTC
CTCTCCCCAGTGTCCACAGTCAGTGAGCCAGCAGGGTGGAACATGAGACTCGAGGCTGAGCGTGGATCTGA
ACACCACAGCCCCGTACTTGGGTGCCTCTGTCCTGAACCTCGTTGACAGTGCATGGAGAGAAAATTG
TCCTCTTGTCTTAGAGTGTGTAAATCAAGGAAGCCATATTAAATTGTTTATTCTCTCA

247/615

FIGURE 246

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA60278
<subunit 1 of 1, 183 aa, 1 stop
<MW: 20574, pI: 6.60, NX(S/T): 3
MKLLSLVAVVGCLLVPPEANKSSEDIRCKCICPPYRNISGHYNNQNVSKDCNCLHVVEPMPVPGHDVEAYCLL
CECRYEERSTTTIKVIIIVIYLGVGALLLYMAFLMLVDPLIRKPDAYTEQLHNEEENEDARSMAAAASLGGPRA
NTVLERVEGAQQRWKLQVQEQRKTVFDRHKMLS

Important features:

Signal peptide:
amino acids 1-20

Transmembrane domain:
amino acids 90-112

N-glycosylation sites.
amino acids 21-24, 38-41 and 47-50

248/615

FIGURE 247

AATTGTATCTGTGTAATGTTAAAACAAACGAAATAAAAGAAGGAAAAACTTCTGAGTTCAAAACAACAGA
CTAGTACTCTAAAGAACTCTTAAAACAATTAACTGTTAGGATTGCAGTTATGATTGGATATTATTTAATTCTGT
TTCTGATGTTGGGGTCTCCACTGTGTTCTGTGCTATTAAATATTACCATTCAGAAGCTCATTCAAGTGTG
AAAATGAATGCTTAGTGGATCTGTCCTCTACGCATATGTTACAAATTATCTGGAGTTCTTAATCAATGCAGAG
TTCCCCCTCCCGATTGTTCTAAATAATTGAAAGATGTCTGCTGGAAAAAGGCATGTATTTAAATCTGTAT
GATTCTCAACCATCTTAGTTGGAAAGGTCTTGAAAGCCAATGAAATACTTTTTTTCTTGCACTAAT
CAAGTGAGTGTTACCTTTCACTTAGTAGGATGTGTTACGCTAGTAAAATAGAAACCTGTGTTATTCTCAG
GTATTTAGAAACAAACAGCCATCATTATTTATTTATGTTGTTCTGGCTGTATTCAAAATTATATTTGG
GCTATCAAATATTACTTCATTCAATATAAAACAATAGTAGAAGTTGTTACTTAGATATGCTTCAGTTGCA
TTTCTCAGCCTATGTAAGACTACTTGTGTAATAGCCTTGAAATTACAGTACTGTCCTACTATCTTCA
GATTACTTGATTCAAATAAACCAATTATGTTGTAATTGATATTAATAAAACCAGAATAAAAGTTCATATCTACCC

249/615

FIGURE 248

MIGYYLILFLMWGSSTVFCVLLIFTIAEASFSENECLVDLCLLRICYKLSGVPNQCRVPLPSDCSK

Important features:**Signal peptide:**

amino acids 1-29

250/615

FIGURE 249

AGCGGGTCTCGTTGGGTCGCTAATTCTGTCCGTAGGGCGTGAGACTGAGATTCAAGGGTCTGGGTCCCCGA
ACCAGGAAGGGTTGGGGAACACAATCTGCAAGCCCCCGCAGCCAAGTGAGGGGCCCGTGTGGGTCTCTCCC
TCCCTTGCATTCCCACCCCTCGGGCTTGCCTCTGGGACCCCCCTGCCGGGAGATGGCCGCGTTGATG
CGGAGCAAGGATTGCTCCTGCCTGCTCCTACTGCCGCGGTGCTGATGGTGGAGAGCTCACAGATCGGAGT
TCGGGCCAAACTCAACTCCATCAAGTCTCTCTGGCGGGAGACGCCCTGGTCAAGGCCAATCGATCTGCG
GGCATGTACCAAGGACTGGCATTGGCGGAGTAAGAAGGGCAAAACCTGGGCAGGCCAACCTGTAGCACT
GATAAGGAGTGTGAAGTGGAGGTATTGCCACAGTCCCCACCAAGGATCATGGCCTGCATGGTGTGCGGAGA
AAAAGAAGCGCTGCCACCGAGATGGCATGTGCTGCCAGTACCCGCTGCATAATGGCATCTGTATCCCAGTT
ACTGAAAGCATCTAACCCCTCACATCCCGCTCTGGATGGTACTCGGCACAGAGATCGAAACCACGGTCAATTAC
TCAAACCATGACTGGGATGGCAGAATCTAGGAAGACCAACACTAAGATGTCACATATAAAGGCATGAAGGA
GACCCCTGCCATCAGATCATCAGACTGCATTGAAGGGTTTGTGCTGCTGTCATTTCTGGACCAAAATCTGCAA
CCAGTGTCCATCAGGGGAAGGCTGTGACCAAAACACGCAAGAAGGGTCTCATGGCTGGAAATTTCAGCGT
TGGCAGTGTGCGAAGGGCCTGCTTGCACAGTATGGAAAGATGCCACACTACTCTCCAAAGCCAGACTCCATGT
TGTAGAAAATTTGATCACCATGAGGAACATCATCAATTGCGACTGTGAAGTTGTGATTAAATGCAATTAG
CATGGTGGAAAATAAGGTTAGATGCGAGAAGATGGCTAAATAAGAAACGTGATAAGAATATAGATGATCACAA
AAAGGGAGAAAGAAAACATGAACACTGAATAGATTAGAATGGGTGACAAATGCGAGTGCAGCCAGTTCCATTATG
CAACTTGTCTATGTAATAATGTACACATTGTGGAAAATGCTATTATAAGAGAACAGCACACAGTGGAAATT
ACTGATGAGTAGCATGTGACTTCCAAGAGTTAGGGTGTGCGGAGGAGGGTTCCCTCAGATTGCTGATTG
TTATACAAATAACCTACATGCCAGATTCTATTCAACGTTAGAGTTAACAAAATACTCCTAGAATAACTGTTA
TACAATAGGTTCTAAAATAAGGTTGCTAAACAAGAAATGAAACATGGAGCATTGTTAATTACAACAGAAAAT
TACCTTTGATTGTAACACTACTCTGCTGTTCAATCAAGACTTGTGGTAGATAAGAAAAAAATCAGTCATAT
TCCAAATAATTGCAAAATAATGCCAGTGTGTTAGGAAGGACAAATAAAACAAACAG
CCACAAATACTTTTTCAAAATTGTTAGTTACCTGTAATTAAATAAGAAACTGATACAGACAAAACAGTTCC
TTCAGATTCTACGGAATGACAGTATATCTCTTATCCTATGTGATTCTGCTCTGAATGCAATTATTTCCA
AACTATACCCATAAAATTGTAACACTGAGTAGTAAATACTTACACAGAGCAGAAATTTCACAGATGGCAAAAAAATTAA
GATGTCACATATTGTTGAGGAGAGCTAACAGAGAGATCATTATTCTTAAGAGTGGCCATAACCTATATT
GATAGAAATTGATTGTTAAATACATGTTACATCATACTCTGTTAATAGAGACTTAAGCTGGATCTGACTG
CACTGGAGTAAGCAAGAAAATTGGAAAACCTTTCTGTTGTCAGGTTGGCAACACATAGATCATGTC
AGGCACAAGTGGCTGTTCATCTTGAACCAAGGGAGTGCACAGTCAAAATGAATATGCAATTGGGATTGCTAT
CATATAATTACTATGCAAGATGAATTGAGTGTGAGGTCTGTGTCCTACTATCCTCAATTATTATTATAG
TGCTGAGATCCTCAAATAATCTCAATTCTAGGAGGTTACAAAATGACTCCTGAGTAGACAGAGTAGTGAGG
TTTCATTGCCCTCTATAAGCTCTGACTAGCCAATGGCATCATCCAATTCTTCTCCAAACCTGCAAGCATCTG
CTTTATTGCCAAAGGGCTAGTTCTGTTCTGCAGCCATTGCGTTAAAAAATATAAGTAGGATAACTGTAA
ACCTGCATATTGCTAATCTATAGACACCAGTTCTAAATTCTTGAACCAACTTACTACTTTTAAACTT
AACTCAGTTCTAAATACTTTGTCGGAGCACAAACAATAAAGTTATCTTATAGTCGTGACTTTAAACTTTG
TAGACCACAATTCACTTTAGTTCTTTACTTAAATCCATCTGCAAGTCTCAAATTAAAGTTCTCCAGTAG
AGATTGAGTTGAGGCTGTTGATATCTATTAAATACTTCAACTTCCACATATAATTACTAAGATGATTAGACTTA
CATTTCTGCAACAGGCTGCAACAAACAAAATTATAAAACTAGTCCTACAGCAAGAACCAAGTTGTATAAACAGGT
TGCTATAAGCTGTAAGGAAATGGAACATTCAACATTTCTTATATAACAAATTATTATTTACAATT
TTGGTTCTGCAATTATTCTTATGTCCACCTTTAAAAAATTATTGAGTAATTATTACAGGAAATG
TTAATGAGATGTTAGAGATATTCTTACAGAAAGCTTGTAGCAGAAATATTGCAAGCTATTGAC
TTGTAATTAGGAAATGTTAGGAAATGTTAGGAAATGTTAGGAAATCTTCTCCCTAAACTGAAAAAA
AAAAAAAAAAAAAAAAAA

251/615

FIGURE 250

MAALMRSKDSSCCLLLAAVLMVESSQIGSSRAKLNSIKSSLGGETPGQAANRSAGMYQGLAFGGSKKGKNLGQA
YPCSSDKECEVGRYCHSPHQGSSACMVCRKKKRCHRDGMCCPSTRCNNGICIPVTESLTPHIPALDGTRHRDR
NHGHYSNHDLGWQNLRPHTKMSHIKGHEGDPCLRSSDCIEGFCCARHFWTICKPVLHQGEVCTKQRKKGSQGL
EIFQRCDCAKGLSCKWKDATYSSKARLHVCQKI

Signal peptide:
amino acids 1-25

252/615

FIGURE 251

TCTCAATCTGCTGACCTCGTGATCCGCCTGACCTTGTAAATCCACCTACCTGGCCTCCCAAAGTGTGGGATTAC
AGGCCTGAGCCACCGCGCCGCCAACATCACGTTTAAAGGATTGATTCCTCAAATTCAAGCAAATATTCC
CTTCCCTTAACCTCTTATGTCAGAATGAGGAAGGATAGCTGCATTATTTAGTCAGTTTCAATTGCATAGTAAT
ATTTTCATGTAGTATTTCTAAGTTATTTAGTAATTCAATATGTTAGATTATAGGTTAACATACTTGTG
AAAATACTGATGTTTAAAGCCTGGGAGAAATTCTGATTGAGGATTGTTCTTTATCCCCCTTT
AAAGTCATCCGTCCTTGGCTCAGGATTGGAGAGCTGCACCACAAAAATGGCAAACATCACAGCTCCCAGAT
TTTGGACCAGTTGAAAGCTCCGAGTTGGGAGCTTACCAACCCCCAAGTACACAGCAGAATAGTACAAGTCA
CCCTACAACACTACTCTTGGGACCTCAAGCCCCAACATCCCAGCCTCAGTCAGTCACTGACTTCAA
ATCTCAACCTGAGCCATCCCCAGTTCTTAGCCAGTTGAGCCAGCAGCACACAGCACCAGAGCAGGCAGTCAGTCACTGT
TCCTCCTCCTGGTTGGAGTCCTTCCCTCCAGGCAAACCTTCGAGAATCAACACCTGGAGACAGTCCCTCAC
TGTGAACAAGCTTGCAGCTTCCAGCACGACCATTGAAAATATCTCTGTGTCGAGCAGGCCACAGCCCCAA
ACACATCAAACCTGCTAAGCGGGGATACCCAGCTTCAAGATCCCAGCTCTGCACTGGAAATGCCCAGTT
AGCAGATGTCACAGGTTAAAGTGCAGTTGGGCTCTGGAATTGGGCTCAGAACCTCTCTGAAATTGG
ATCAGCTCCAAGCAGTGAACATAGTAATCAGATTCCCACAGCTTGTATTGAAAGTCCTTAAGTGAGCCTTGAA
TACATCTTATCAATGACCAGTGCAGTACAGAACCTCACATATAACACTTCGTCATTACCTCCTGCAGTCAG
AAGCTCATCACTGAATTCTGCTAGTCCAGTAGCAATGTCTCTTATGACCAGAGTTCTGTGCATAACAGGAT
CCCATACCAAAGCCCTGTGAGTTCATCAGAGTCAGCTCCAGGAACCATCATGAATGGACATGGTGGTGGTCGAAG
TCAGCAGACACTAGACAGTAAGTATAGCAGCAAGCTACTCTTGTATGGCTGGTGCACCCAAACAGAGGAAGAG
GATAGCTCACGTGATGGAAAACACCAGTTGGTCATGGCTATTGTTAAAAAGCAGCCTTTGCTTTTG
TTTTGGACCAGGTGTGGCTGTGGTTATTAGAAATGCTTAACACAGCAAGAAGGAGGTGGTGGTCTCAT
TTCTCTGCCATACTGACACTGCACCACAGTCAGCATACAGTATGCATTAAAGATGCTTGGCCAGGCGGG
GTGGCTGATGCCATACTCCAGTGCTTGGGGCCAAGGCAGGCAAGATTGCCAAGCTCAGGAGTTGAGACC
ACCCCTGGGCAACATGGTGAACACTCTGTCTACTAAAATACGAAAAGTACAGCCGGTGTGGTGGCGCGCTGCC
TGTAATCCCAGCTACTTGGGAGGCTGAGGCACAAGAACATCGCTTGAGGCCAGTGGCTACAAAGTGA
ACTCCGTCAG

253/615

FIGURE 252

MCFKALGRNSVLLRICSFIPLLKSSVLGSGFGEIAPPKMANITSSQILDQLKAPSLGQFTTTPSTQQNSTSHPTT
TTSWDLKPPTSQSSVLSHLDFKSQPEPSPVLSQLSQRQQHQSQAVTVPPPGLESFPSQAKLRESTPGDSPSTVNK
LLQLPSTTIENISVSVHQPQPKHIKLAKRIPPASKIPASAVEMPGSADVTGLNVQFGALEFGSEPSLSEFGSAP
SSENSNQIPISLYSKSLSEPLNTSLSMTSAVQNSTYTTSVITSCSLTSSSLNSASPVAMSSSYDQSSVHNRIPYQ
SPVSSSESAPGTIMNGHGGGRSQTLDSKYSSKLLLWLVPTKQRKRIAHVMWKTIVGQWLIR

Signal peptide:
amino acids 1-24

254/615

FIGURE 253

GGGCGCCCGCGTACTCACTAGCTGAGGTGGCAGTGGTCCACCAACATGGAGCTCTCGCAGATGTCGGAGCTCAT
GGGGCTGTCGGTGTGCTTGGGCTGCTGGCCCTGATGGCAGCGCGCGGTAGCGCGGGGGTGGCTGCGCGCGGG
GGAGGAGAGGAGCGGGCGGCCGCTGCAAAAGCAAATGGATTCCACCTGACAAATCTCGGGATCCAAGAA
GCAGAAAACAATATCAGCGGATTCGAAGGAGAACGCTCAACAACACAACCTCACCCACCGCTCCTGGCTGCAGC
TCTGAAGAGGCCACAGCGGGAACATATCTTGACATGGACTTAGCAGCAATGGCAAATACCTGGCTACCTGTGCAGA
TGATCGCACCACCGCATCTGGAGCACCAAGGACTTCCTGAGCGAGAGCACCGCAGCATGAGAGCCAACGTGGA
GCTGGACCACGCCACCCCTGGTGCCTGCAGCCCTGACTGCAGAGCCTCATCGTCTGGCTGGCAACGGGGACAC
CCTCCGTGCTTCAAGATGACCAAGCGGGAGGATGGGGCTACACCTCACAGCCACCCAGAGGACTTCCCTAA
AAAGCACAAGGCGCTGTCACTGACATTGGCATTGCTAACACAGGGAAAGTTATCATGACTGCCTCCAGTGACAC
CACTGCTCATCTGGAGGCTGAAGGGTCAAGTGTGCTTACCATCAACACCAACAGATGAACAACACACACGC
TGCTGTATCTCCCTGTCAGATTGTAGCCTGCTGCTTACCCCAGATGTGAAGGGTTGGGAAGGTCTGCTT
TGGAAAGAAGGGGGAGTTCCAGGAGGTGGTGCAGGCTTCGAACTAAAGGGCACTCCGGGCTGTGCACTCGTT
TGCTTTCTCAACGACTCACGGAGGATGGCTCTGTCAGGATGGTACATGGAAAGGACTGTGGGACACAGATGT
GGAATAACAAGAAGCAGGACCCCTACTTGCTGAAGACAGGCCCTTGAAGAGGGCGGGGTGCCGCGCGTG
CCGCCTGGCCCTCTCCCCAACGCCAGGCTTGGCCTTGGCAGTGGCAGTAGTATTCACTCTACAATACCCG
GCGGGCGAGAAGGAGGAGTGCTTGAGCGGGTCCATGGCAGTGATGCCAACATTGTCCTTGACATCACTGG
CCGCTTCTGGCCTCTGTGGGACCGGGCGGTGCCGTGTTCACAAACACTCTGGCCACCGAGCCATGGTGG
GGAGATGCAGGGCACCTGAAGCGGGCTCCAACGAGAGCACCGCCAGGGCTGCAGCAGCAGCTGACCCAGGC
CCAAGAGACCCCTGAAGAGCCTGGTGCCCTGAAGAAGTGAACCTGCTGGGAGGGCCGGCAGAGGATTGAGGAGGA
GGGATCTGCCCTCTCATGGCACTGCTGCCATTTCTCCCAGGTGGAAGCCTTCAAGAAGGAGTCTCTGGT
TTCTTACTGGTGGCCCTGCTTCTCCCATTGAAACTACTCTGTCACTTAGGTCTCTCTTGCTGGCTGT
GACTCCTCCCTGACTAGTGGCAAGGTGCTTTCTCCAGGCCAGTGGTGGAAATCTGTCCTCACCTGGC
ACTGAGGAGAATGGTAGAGAGGGAGGAGAGAGAGAGAATGTGATTGGCAGCAGCACATCCTCAC
ACCCAAAGAAGTTGTAATGTTCCAGAACACCTAGAGAACACCTGAGTACTAAGCAGCAGTTTGCAAGGATG
GGAGACTGGGATAGCTCCCATCACAGAACTGTGTTCCATCAAAAGACACTAAGGGATTCTGGCCTCA
GTTCTATTGTAAGATGGAGATAATCCTCTGTGAACCTCTTGCAAGAGATGATATGAGGCTAAGAGAATATCA
AGTCCCCAGGTCTGGAGAAAAGTAGAAAAGAGTAGTACTATTGTCCAATGTGATGAAAGGGTAAAGGGAA
CCAGTGTGCTTGAAACCAAATTAGAACACATTCCCTGGAGGCAAAGTTCTGGGACTTGATCATACATT
TATATGGTGGGACTTCTCTCTGGGAGATGATATCTGTTAAGGAGACCTTTCAAGTCAAGTT
CAGATATTGAGTGCCCACTCTGTGCCAAATAAATATGAGCTGGGATTAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

255/615

FIGURE 254

MELSQMSELMGLSVLGLLALMATAAVARGWLRA GEERSGRPACQKANGFPPDKSSGSKKQYQRIRKEKPQQH
NFTHRLLAAALKSHSGNISCMDFSSNGKYLATCADDRITIRIWSTKDFIQLREHRSRANVELDHATLVRSPDCRA
FIVWLANGDTLRVFKMTKREDGGYTFTATPEDFPKKHKAPVIDIGIANTGKFIMTASSDTTVLIWSILKGQVLSTI
NTNQMNNTHAAVSPCGRFVASCGFTP DVKWEVCFGKKG EFQEVVRAFELKGHSAAVHSFAFSNDSRRMASVSKD
GTWKWLWDTDVEYKKKQDPYLLKTGRFEAAAGAACRLALSPNAQVLALASGSSIHLYNTRGEKEECFERVHGEC
IANLSFDITGRFLASCGDRAVLFHNTPGH RAMVEEMQGHLKRASNESTRQRLQQQLTQAQETLKSLGALKK

Important features:

Signal peptide:
amino acids 1-25

N-glycosylation site.

amino acids 76-80, 92-96, 231-235, 289-293, 378-382, 421-425

Beta-transducin family Trp-Asp repeat protein.

amino acids 30-47, 105-118, 107-119, 203-216, 205-217, 296-308

256/615

FIGURE 255

ACGGACCGAGGGTTCGAGGGAGGGACACGGACCAGGAACCTGAGCTAGGTCAAAGACGCCGGGCCAGGTGCC
GTCGCAGGTGCCCTGGCCGGAGATGCGGTAGGGAGCGCGAGAAGCCTTCTCGCGCTGCCCTGCTGGCCGCTGG
GCCACCCAGCCC**ATGG**CGAACCCGGGCTGGGCTGCTTCTGGCGCTGGGCTGCCCTGCTGGCCGCTGG
GGCGAGGCTGGGGCAAATACAGACCACTCTGCAAATGAGAATAGCACTGTTTGCCCTCATCCACCAGCTCC
AGCTCCGATGGCAACCTCGTCCGGAAGCCATCACTGCTATCATCGTGGTCTCTCCCTCTGGCTGCCCTGCTC
CTGGCTGTGGGCTGGCACTGTTGGTGCAGCTTCGGGAGAAGCGGCAGACGGAGGGCACCTACGGCCCAAGT
AGCGAGGAGCAGTTCTCCCATGCAGCCGAGGCCGGCCCTCAGGACTCCAAGGAGACGGTGCAGGGCTGCC
CCCATCT**AGGT**CCCCCTCCTGCATCTGCTCCCTCATTGCTGTGACCTGGGAAAGGCAGTGCCCTCT
GGGCAGTCAGATCCACCCAGTGCTTAATAGCAGGAAAGGTACTCAAAAGACTCTGCCCTGAGGTCAAGAGA
GGATGGGCTATTCACTTTATATATATAAATTAGTAGTGAAGATGTAAAAAAAAAAAAAAA

257/615

FIGURE 256

MANPGLGILLALGLPFLLARWGRAWGQIQTTSANENSTVLPSSSTSSSDGNLRPEAITAIIVVFSLLAALLLAVG
LALLVRKLREKRQTEGYRPSSEEQFSHAAEARAPQDSKETVQGCLPI

258/615

FIGURE 257

GCAGGAAATAACTAGAGAGGAACAATGGGGTATTAGAGGTTTGTCTTAGTTCTGTGCCTGCTGCAC
CACTCAAATACTTCCTTCATTAAGCTGAATAATAATGGCCTTGAAGATATTGTCAATTGTTATAGATCCTAGTGTG
CCAGAAGATGAAAAAATAATTGAAACAAATAGAGGATATGGTACTACAGCTTCTACGTACCTGTTGAAGCCACA
GAAAAAAAGATTTTTTCAAAAATGTATCTATATAATTCTGAGAATTGGAAAGGAAATCCTCAGTACAAAAGG
CCAAAACATGAAAACCATAAACATGCTGATGTTATAGTGTGACCAACCTACACTCCCAGGTAGAGATGAACCATAC
ACCAAGCAGTTCACAGAATGTGGAGAGAAAGGCAGAACATCACTCACCCCTGACCTTCACTTGGAACAAAAAA
CAAATGAAATATGGGACCAACAGGCAAACIGTTGTCATGAGTGGGCTCACCTCCGGTGGGAGTGTGATGAG
TACAATGAGATCAGCCTTCTACCGTCTAAGTCAGGAAACAAAGGTGTTCCGCAGGTATCTCT
GGTAGAAATAGAGTTATAAGTGTCAAGGAGGAGCAGCTGTCTAGTAGAGCATGCAGAATTGATTCTACAAACAAA
CTGTATGGAAAAGATGTCAATTCTTCTGTATAAGTACAAACAGAAAAGCATCCATAATGTTATGCAAAGT
ATTGATTCTGTTGTAACGAAAAACCCATAATCAAGAGCTTCAAGCTACAAAACATAAAGTGC
AATTAGAAGTACATGGGAGGTGATTAGCAATTCTGAGGATTTTAAACACCATACCCATGGTGACACCACCT
CCTCCACCTGTCTTCATTGCTGAAGATCAGTCAGGAAATTGTGCTTAGTTCTGATAAGTCTGGAAAGCATG
GGGGGTAAGGACGCCCTAACATGAACTCAAGCAGCAAACATTCTCCTGCAAGACTGTTGAAAATGGATCC
TGGGGGGATGGTCACTGTGATAGTACTGCCACTATTGTAATAAGCTAACAAATAAAAGCAGTGTGAA
AGAAAACACACTCATGGCAGGATTACCTACATATCCTCTGGGAGGAACTTCCATCTGCTCTGGAATTAAATATGCA
TTTCAGGTGATTGGAGAGCTACATTCCAACTCAGTGGATCCGAAGTACTGCTGCTGACTGATGGGAGGATAAC
ACTGCAAGTTCTGATTGATGAACTGAAACAAAGTGGGCCATTGTCATTATTGTTGCTTGGGAGGACTGCT
GATGAGCAGTAATAGAGTGGCAAGATAACAGGAGGAAGTCATTATTGTTICAGATGAAGCTCAGAACAAAT
GGCCTCATTGATGCTTTGGGCTCTACATCAGGAAATACTGATCTCTCCAGAAGTCCCTCAGCTCGAAAGT
AAGGGATTAACACTGAATAGTAAGCTGGATGAAACGACACTGTCTAACATTGATAGTACAGTGGGAAAGGACACG
TTCTCTCATCACATGGAACAGTCTGGGAGGACTTCCAGTATTCTCTGGGAGTCCAGTGGAAACAATAATGAAAAT
TTTCAGTGGATGCAACTTCCAAAATGGCCTATCTCAGTATTCCAGGAACCTGCAAAAGGTGGCACTTGGCCTAC
AATCTTCAAGCCAAAGCGAACCCAGAAACATAACTATTACAGTAACCTCTCGAGCAGCAAATTCTCTGCT
CCAATCACAGTGAATGCTAAATGAAATAGGACGTAACAGTCTCCAGCCAAATGATTGTTACGCAGAAATT
CTACAAGGATATCTACCTGTTCTGGGAGGCAATGTGACTGCTTCTGATGAAATCAGAACATGACATACAGAACG
TTGGAACCTTGGATAATGGTGCAGGCGCTGATCTTCAAGAATGATGGAGTACTCTCAGGTTATTTACAGCA
TATACAGAAAATGGCAGATATAGCTAAAAGTCGGGCTCATGGAGGAGCAAACACTGCCAGGCTAAATTACGG
CCTCCACTGAATAGAGCCGCTACATACCAGGCTGGGTAGTGAACGGGAAATTGAAGCAAACCCGCCAACAGACCT
GAAAATTGATGAGGATACTCAGACCCATTGGAGGATTTCAGCCGAACAGCATCCGGAGGTGCATTGTGTATCA
CAAGTCCCAAGCCTCCCTGCCATGGTACCAATACCCACCAAGTCAAATCACAGACCTGATGCCACAGTTCATGAG
GATAAGGATATTCTTACATGGACAGCAGGAGATAATTGATGTTGAAAAGTTCAACGTTATATCATAAGA
ATAAGTGCAGTATTCTGATCTAAGAGACAGTTGATGATGCTCTCAAGTAATAACTACTGATCTGTCACCA
AAGGAGGCAACTCCAAGGAAAGCTTGCAATTAAACAGAAAATATCTCAGAAGAAAATGCAACCCACATATT
ATTGCCATTAAAGTATAGATAAAAGCAATTGACATCAAAGTATCCAACATTGCAAGTAACCTTGTATC
CCTCAAGCAAATCCTGATGACATTCTACACCTACTCCTACTCCTACTCCTGATAAAAGTCATAAT
TCTGGAGTTAATATTCTACGCTGGTATTGTCGTGATTGGGCTGTTGTAATTGTTAACTTTATTAAAGTACC
ACCATTGAACTTAAAGAAGAAAAATCTCAAGTAGACCTAGAACAGAGGTTTAAACAAACAAATGTA
GTAAAGGATATTCTGAAATCTTAAATGATCTCCATGTGTGATCATAAAACTCATAAAAATAATTAAAGATGTCG
GAAAAGGATACTTGTGATTAAATGAAACAAACTCATGGGATATGTAACAGGTTAAATTTAAAGTATTCA
TTTATTGTTATTGTAAGAAATAGTGTGAAACAAAGATCCTTTTCTACTGATACCTGGTTGTATATT
ATTGATGCAACAGTTCTGAAATGATATTCAAATTGATCAAGAAATTAAACATCTATCTGAGTAGTCAA
AATACAAGTAAAGGAGGAGCAAATAACAAACATTGGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAA
AAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAAAGAAAAA

259/615

FIGURE 258

MGLFRGFVFLVLCLLHQSNNTSFIKLNNNGFEDIVIVIDPSVPEDEKILIEQIEDMVTTASTYLFEATEKRFFFKN
VSILIPENWKENPQYKRPKHENHKHADVIVAPPTLPGRDEPYTKQFTECGEKGEYIHFTPDLGGKKQNEYGPPG
KLFVHEWAHLRWGVFDEYNEDQPFYRAKSKEATRCAGISGRNRVYKCQGGSCLSRACRIDSTTKLYGKDCQF
FPDKVQTEKASIMFMQSIDSVVEFCNEKTHNQEAPSLQNIKCNFRSTWEVISNSEDFKNTIPMVTPPPPVFSLL
KISQRIVCLVLDKGSGMGGKDRLNRMNQAAKFLLQTENGWSWGMVFDSTATIVNKLIQIKSSDERNTLMAGL
PTYPLGGTSICSGIKYAFQVIGELHSQDGSEVLLLTGEDNTASSCIDEVKQSGAIVHFIALGRAADEAVIEMS
KITGGSHFYVSDEAQNNGLIDAFLGALTSGNTDLSQKSLQLESKGLTNSNAWMNDTVIIDSTVGKDTFFLITWNS
LPPSISLWDPSGTIMENFTVDATSKMAYLSIPGTAKVGTWAYNLQAKANPETLTITVTSRAANSSVPPITVNAKM
NKDVNSFSPSPMIVYAEILQGYVPVLGANVIAFIESQNGHTEVLELLDNGAGADSFKNDGVYSRYFTAYTENGRYS
LKVRRAHGGANTARLKLRRPLNRAAYIPGWVVNGEIEANPRPEIDEDTQTTLEDFSRTASGGAFVVSQVPSLPLP
DQYPPSQITDLDATVHEDKIIILTWTAPGDNFVGKVQRYIIRISASILDLRDSFDDALQVNTTDLSPKEANSKES
FAFKPENISEENATHIFIAKSIDKSNLTSKVSNIAQVTLFIPQANPDDIDPTPTPTPTPDKSHNSGVNISTL
VLSVIGSVVIVNFILETTI

Signal peptide:
amino acids 1-21

Putative transmembrane domains:
amino acids 284-300, 617-633

Leucine zipper pattern.
amino acids 469-491, 476-498

N-glycosylation site.
amino acids 20-24, 75-79, 340-344, 504-508, 542-546, 588-592, 628-632,
811-815, 832-836, 837-841, 852-856, 896-900

260/615

FIGURE 259

CGCCGGAGGCAGCGGCGGTGGCGACGGCGACATGGCGTTGTCAGAGGACGACTTCAGCACAGTTCAA
ACTCCACCTACGGAACCACAAGCAGCAGTCTCCGAGCTGACCAGGAGGCAGTGCTTGAGAAGCTGCTGGACCGCC
CGCCCCCTGGCTGCAGAGGCCAGGACCGCTCTGTTGACATACATCATCTTCAAGCCTGGCATTGGCA
GTCTACTGCCATGGAACTTCTTATCACTGCCAAGGAGTACTGGATGTTCAAACCTCCGCAACTCCTCCAGCCAG
CCACCGGGAGGACCTGAGGGCTCAGACATCCTGAACACTTTGAGAGCTACCTGCCGTTGCCCTCACCGTGC
CCTCCATGCTGTGCCTGGCAACTCTGCTGTCAACAGGGTTGCACTGCCACATCCGTGCTCTGGCCTCAC
TGACGGTCACTCTGGCCATCTCATGGTATACTGCACTGGTAAGGGTGGACACTTCCCTGGACCCGTGGTT
TTTTGCGGGTCAACCATTGCTGTCACTGGTGCAGCGGTGCCTTCACTGTCTCAGCAGCAGCATCACGGCA
TGACCGGGCTCCTTCTATGAGGAACCTCCAAGCAGTGAATATCAGGAGGAGCATGGGCGGACGGTCAGCGCCG
TGGCCTCATGGTGGACTTGGCTGCATCCAGTGATGTGAGGAACAGCGCCCTGCCCTCTCTGACGCCACCA
TCTTCCTCGTCTGCTGCATGGACTCTACCTGCTGCTGCCAGGCTGGAGTATGCCAGGTACTACATGAGGCCCTG
TTCTTGCGGCCATGTGTTTCTGGTGAAGAGGAGCTTCCCAGGACTCCCTCAGTGCCTCGGTGGCTCCA
GATTCAATTGATTCCCCACACACCCCTCTCCGCCCCATCTGAAGAAAGACGCCAGCCTGGGTTCTGTCACCT
ACGTCTTCTTCATCACCGCCTCATCTACCCCGCGTGCACCAACATCGAGTCCCTCAACAAGGGCTCGGGCT
CACTGTGGACCACCAAGTTTCATCCCCCTCACTACCTTCTCTGTACAACACTTGTGACCTATGTGGCTCGGGC
AGCTCACCGCCTGGATCCAGGTGCCAGGGCCAACAGCAAGGGCGTCCCAGGGTCTGTGCTCCCTGGACCTGCC
TCATCCCCCTTCTGTGCTGTAACTACCAGCCCCGCGTCCACCTGAAGACTGTGGTCTTCCAGTCCGATGTGT
ACCCCGCACTCCTCAGCTCCCTGCTGGGCTCAGCAACGGCTACCTCAGCACCTGCCCTCCTCACGGGCTA
AGATTGTGCCAGGGAGCTGGCTGAGGCCACGGGAGTGGTGAATGTCCTTTATGTGTGCTGGCTTAACACTGG
GCTCAGCCTGCTCACCTCCTGGTCACCTCATCTAGAAGGGAGGACACAAGGACATTGGTCTCAGAGCCTT
TGAAGATGAGAAGAGAGTGCAGGAGGGCTGGGGCCATGGAGGAAGGGCTAAAGTTCACTTGGGACAGAGAG
CAGAGCACACTCGGGCTCATCCCCCAAGATGCCAGTGAGCCACGTCCATGCCATTCCGTGCAAGGCAGATA
TTCCAGTCATATTAACAGAACACTCTGAGACAGTTGAAGAAGAAATAGCACAAATCAGGGTACTCCCTCACA
GCTGATGGTTAACATCCACCTTCTTAGGCCCTCAAAGATGCTGCCAGTGTGCTGCCCTAGAGTTATTACAAA
GCCAGTGCCAAAACCCAGCCATGGCTCTTGCACCTCCAGCTGCGCTCATCCAGCTGACAGCGAGATGCAA
GCAAATGCTCAGCTCCCTTACCCGAAGGGTCTCCCTGGAATGAACTCCCTGGCATGGTCAGTCCCTCAGGC
CCAAGACTCAAGTGTGCACAGACCCCTGTGTTCTGCGGGTGAACAACGTGCCACTAACAGACTGGAAACCCAG
AAAGATGGCTTCCATGAATGCTTCAATTCCAGAGGGACCAAGAGGGCTCCGTGCAAGGGATCAAGCATGTCT
GGCCTGGGTTTCAAAAAAGAGGGATCCTCATGACCTGGTGGTCTATGGCCTGGTCAAGATGAGGGTCTTCA
GTGTTCTGTTACACATGTCAAAGCCATTGGTCAAGGGCGTAATAAAACTTGGTATTCAAAAA

261/615

FIGURE 260

MAVVSEDDFQHSSNSTYGTTS defense domain sequence:
SSLRADQEALLEKLLDRPPGLQRPEDRFGTYIIFPSLGI
GIGSLLPWNFFITAK
EYWMFKLRNSSSPATGEDPEGSDILNYFESYLAVASTVPSMLCLVANFLLVNRAVHIRV
LASLTVILAIFMVIT
ALVKVDTSSWTRGFFAVTIVCMVILSGASTVFSSSIYGMTGSFPMRNSQALISGGAMGGTV
SAVASLVDLAASSD
VRNSALAFFLTATIFLVLCMGLYLLLSRLEYARYYMRPVLA
AHVFSGEEEELPQDSLSAPSVASRFIDSHTPPLRP
ILKKTASLGFCVTYVFFITSLIYPAVCTNIESLNKGSGSLWTTKF
IPLTFLLYNFADLCGRQLTAWIQVPGPN
SKALPGFVLLRTCLIPLFVLCNYQPRVHLKT
VVVFQSDVYPALLSSLLGLSNGYLSTLALLYGP
KIVPRELAEATGVVMSFYVCLGLTLGSACSTLLVHLI

Transmembrane domain:

amino acids 50-74 (type II), 105-127, 135-153, 163-183, 228-252, 305-330,
448-472

262/615

FIGURE 261

CGGACGCGTGGCTGCTGGGGAAAGGCCAAAGAACCTGGAAAGGCCACTCTCTGGACCACACCTGTTA
AAGAACCTAACCAATTAAAGCCACTGGAAATTGTCTAGGGTGTGGTGAATAAGGAGGCAGAAT
GGATGATTCATCTCATTAGCCTGCTGCTGGCATGTTGGGTGATGTTACGTGGCCGAATCATTCCCTT
GGCTGTTAATTCTCAGAGGAAGCAGTGAAGGACTGAGGAGTACATGCCCTTATGAAGATATTCTGAGGGAAA
ACACCACCAAGCAACTGA
GGCAGTCATCGCCTGAAGGAGTACATGCCCTTATGAAGATATTCTGAGGGAAA
ACACCACCAAGCAACTGA
AACACATAATGTGATTGATCAGACAAAGCAGCAGAAAAATCAGTGTCCATGAACATGAGCACAGCCACGACCA
CACACAGCTGCATGCCATATTGGTGTTCCTCGTCTGGGCTCGTTTATGTTGCTGGTGGACAGATTGG
TAACCTCCATGTGCATTCTACTGACGATCCAGAAGCAGCAAGGTCTAGCAATTCAAATCACCACCGCTGG
TCTGGTTGTCCATGCTGCAGCTGATGGTGTCTGGGAGCAGCAGCATCTACTTCACAGACCAGTGTCCAGTT
AATTGTGTTGTGGCAATCATGCTACATAAGGCACCAGCTGCTTTGGACTGGTTCTTCTTGATGCTGATGCTGG
CTTAGAGCGGAATCGAATCAGAAAGCATTGCTGGTCTTGCAATTGGCAGCACCAGTTATGTCATGGTGCACATA
CTTAGGACTGAGTAAGAGCAGTAAAGAAGCCCTTCAGAGGTGAACGCCACGGGAGTGGCATGCTTTCTCTGC
CGGGACATTCTTATGTTGCCCCAGTACATGTCCTCCCTGAGGTGGCGGAATAGGCACAGCCACAAGCCCGA
TGCCACGGGAGGGAGAGGCCTAGCCGCTGGAAGTGGCAGCCCTGGTCTGGTTGCCTCATCCCTCATCCT
GTCAGTAGGACACCAGCATTAAATGTTCAAGGCTTCCAGCCCTGGTCCAGGGCGTTGCCCATTCCAGTGAGAACAGC
CGGCACGTGACAGCTACTCCTCAGTCAGTCCTGCGCATCTACATGTATTCTAGAGTCCA
GAGGGGAGGTGAGGTTAAACAGTGAATGAAAAGCTTGTAGAGTAGAAACACATTACGTTGCAAGTTAGCTA
TAGACATCCCATTGTTATCTTTAAAGGCCCTGACATTGCGTTTAAATATTCTCTTAACCCATTCTC
AGGGAAAGATGGAATTAGTTAAGGAAAAGAGGAGAACCTCATACTCACAATGAAATAGTGAATTGAAAATAC
AGTGTCTGTAATTAAGCTATGTCCTTCTTAGTTAGGGCTCTGCTACTTTATCCATTGATTTTAACAA
TGGTTCCCACCATGTAAGACTGGTGTCTAGCATCTATGCCACATGCGTGTGGAGGTCAAGCACCACACTCA
CTTAGATGCTAAAGGTGATTCTAGTTAATCTGGGATTAGGGTCAGGAAAATGATAGCAAGACACATTGAAAGCTC
TCCTTATACTCAAAGAGATATCATTGAAAGGATGCTAGAGGGATTAAACAGCTCCTTGGCACGTGCCT
CTCTGAATCCAGCCTGCCATTCCATCAAATGGAGCAGGAGGTGGGAGGAGCTCTAAAGAGGTGACTGGTATT
TTGAGCATTCCTGTCAAGTCTCCTTGCGAGAATACCTGTCCTCACATTCTAGAGGGAGGCCAGTCTAGT
AGTTTCAGTCTAGGCTTCTTCAGAAGAACAGTCAGATCACAAAGTGTCTGGAAATTAAAGGATATTAAATT
TAAGTGAATTGGATGGTATTGATATTCTCTAGCAGATCAGCAATCCCTCTAGGGACCTAAATAGTATGGTGTCC
TTTTTTTTGTTTTTTTTTAATTATTCTCTAGCAGATCAGCAATCCCTCTAGGGACCTAAATAGT
TCAGCTTGGCGACACTGTCCTCACAATACCACCTGAGCAAGATGGATCATAATGAGAAGTGTGTTGCCT
ATTGATTAAAGCTTATTGGAATCATGTCCTGCTCTGCTGGTGTAAATTGTTGTTGAGGATGAATTCTTACAGGACAA
CCACTCTCGAAGTGAATAATGAAGATAATAATATCTTATTCTTATCCCCCTCAAAGAAATTACCTTGTG
TCAAATGCCGCTTGTGAGCCCTAAACACCTCCATGTGAAATTGACACAATCACTAATCTGGTAAT
TTAAACAATTGAGATAGCAGAACAGACTAGGATAATTCTTCTTCAATTGCAAAATTGGTAA
ACCCCTGCTTGTCAAATAAGTGTATAATTGTTATTATTAAATTCTTACTTCTATACCATTCAAAACACA
TTACACTAAGGGGAACCAAGACTAGTTCTCAGGGCAGTGGACGTAGTAGTTGTAAGGTTCTATGAC
GCATAAGCTAGCATGCCATTGATTATTCTCTCATGAAATTGTCAGGGACTGGGATCAGCAGCTGGAAATAAGCTT
GTGAGCCCTCTGCTGGCCACAGTGAGGAAGTAGCAGCAAAATAGGATACAGTTGTTAGTGTAGTCATTGGCAACAATT
GCATACAATTCTACTACCAAGAGAAGGTATAAGTATGAAAGTCCAAATGACTCCTGATTGGATGTTAACAGCT
GACTGGTGTGAGACTTGAGGTTCATCTAGTCCTTCAAACATATGGTGCCTAGATTCTCTGGAAACTGAC
TTTGTCAAATAATAGCAGATTGAGTGTGTCAAAAAAA

263/615

FIGURE 262

MDDFISISSLALMLVGCYVAGIIPLAVNFSEERLKLVTVLGAGLLCGTALAVIVPEGVHALYEDILEGKHHQAS
ETHNVIASDKAAEKSVVHEHEHSHDHTQLHAYIGVSLVLGFVFMLLVLDQIGNSHVHSTDPEARSSNSKTTTL
GLVVHAAADGVALGAAASTSQTSQLIVFVAIMLHKAPAAGFLVSFLMHAGLERNRIRKHLIVFALAAPVMSMVT
YLGLSKSSKEALSEVNATGVAMLFSAGTFLYVATVHVLPEVGGIGHSHKPDATGGRGLSRLEVAALVLGCLIPLI
LSVGHQH

Signal peptide:
amino acids 1-18

Transmembrane domain:
amino acids 37-56, 106-122, 211-230, 240-260, 288-304

264/615

FIGURE 263

CTCCTTAGGTGAAACCCCTGGGAGTAGAGTACTGACAGCAAAGACCGGGAAAGACCATACTGTCCCCGG
GCAGGGGTGACAACAGGTGTCATCTTTGATCTCGTGTGCTGCCTCTATTCAAGGAAGAC
GCCAAGGTAATTGACCCAGGGAGCAATGATGTAGGCCACCTCCTAACCTTCCCTCTTGAAACCCCC
AGTTATGCGGAGGTTACTAGAGAGTGTCAACTCACCAGCAGCGCTCCTCGGCTTAACTGTG
TTGGAGGAGAGAACCTTGTGGGGCTCGTTCTTAGCAGTGTCTAGAAGGTACTGTGCTGAGGGGTG
GACCAGAAGAAAGGAAAGGTCCCCCTCTTGTGTTGGCTGCACATCAGGAAGGCTGTGATGGGAATGAA
GGTAAAACCTGGAGATTTCACTTCACTGCTATTGCTCTGCCTGCAAGATCATCCTTAAAGTAGAGA
AGCTGCTCTGTGTGGTTAACTCCAAGAGGAGCAACTCGTCTAGAAGGAAATGGATGCAAGCAG
TCCGGGGGCCCCAACGATGCTTCTGTGGCTAGCCCAGGGAAAGGCCCTCCGTGGGGCCCCGGCT
TTGAGGAGATGCCACCGGTTCTGGACGATGGCTATTCTGATATGATGATGTTCTGGCGGGGTG
TGCCTGGATTCCCGGGTGGTTTGCTGGTGCCTCTCTGCTGTGCTATCTCTGCTCTGTACATGT
TGGCTGCACCCAAAAGGTGACGAGGAGCAGCTGGCACTGCCAGGGCCAACAGCCCCACGGGAAG
GAGGGTACCGAGGCCCTCAGGAGTGGGAGGAGCAGCACCGCAACTACGTGAGCAGCGTGAAGCG
GCAGATCGCACAGCTCAAGGAGGAGCTGCAGGAGGAGGTGAGCAGCTCAGGAATGGCGATACCAAG
CCAGCGATGCTGCTGGCTGGGCTGGACAGGAGCCCCCAGGGAAACCCAGGCCACCTCTGGCC
TTCTGCACTCGCAGGTGGACAAGGAGGTAATGCTGGGCTCAAGCTGGCACAGAGTATGCAAGC
AGTGCCTTCGATAGCTTACTCTACAGAAGGTGACAGCTGGAGACTGGCCTAACCGCCACCCCCG
AGGAGAACGCTGTGAGGAAGGACAAGCGGGATGAGTTGGTGAAGGCCATGAAATGCACTGGGAGAC
CTGAAACATCTGCAAGGAAACAGGCCCATCACCCTCCTAACCGCCCTGTGATTTCATAGAAGGGAC
CTACCGAACAGAACAGGGACAAAGGGACATTGTGATGCTCACCTTCAAAAGGGGACCAACACGAAT
TCAACAGGCTCATCTTATTGACCATTCAGCCCCATCATGAAAAGTGAAGACTCAACATG
GCCAACAGCTTATCAATGTTATCGTCCTCTAGCAAAAGGGTGGACAAGTCTCGGCAGTTCATGCA
GAATTTCAGGGAGATGTGCAATTGAGCAGGATGGGAGACTCCATCTACTGTTTACTTGGGAAAG
AAGAAATAATGAAGTCAAAGGAATACTTGAAGACTTCAAAAGCTGCCAACCTCAGGAACTTAC
TTCATCAGCTGAATGGGAATTTCCTGGGGAAAGGGACTTGTGATGTTGGAGGCCGCTCTGGAAAGGG
AAGCAACGTCCTCTCTTGTGATGTTGGACATCTACATCTGAAATTCTCAATACGTGTA
GGCTGAATACACAGCCAGGGAAAGAAGGTATTTTATCCAGTTCTTCAGTCAGTACAATCTGGCATA
ATATACGGCCACCATGATGCACTCCCTCCCTGGAACAGCAGCTGGTCAATAAGAAGGAAACTGGATT
TTGGAGAGACTTTGGATTGGGATGACCTGTCAGTATCGGTCAAGCTCATCAATATAGTGGGTTG
ATCTGGACATCAAGGCTGGGGCGAGAGGATGTGCACTTTATGCAAGTATCTCACAGCAACTC
ATAGTGGTACGGACGCTGTGCGAGGACTCTCCACCTCTGGCATGAGAAGCGCTGCATGGACGAGCT
GACCCCCGAGCAGTACAAGATGTGCACTGCAAGGCCATGAACGAGGCACTCCACGGCCAGCTGG
GCATGCTGGTGTCAAGGAGAGATAGAGGCTCACCTCGCAACAGAACAGAACAGAACAGTGA
AAAACATGAACTCCCGAGAACAGGATTGGGAGAGACTTTCTTCTTGTCAATTACTGAAGGTG
GCTGCAACAGAACAGAACACTTCCATAAACAGGACGACAAAAGAAATTGGACTGATGGTCAAGAGATG
AGCCTCCGATTCTCTGTTGGCTTTTACAACAGAAATCAAATCTCGTTGCCTGAAAAGT
AACCCAGTTGCAACCTGTGAAGTGTCTGACAAAGGAGCAATGCTGTGAGATTATAAGCTAATGGTG
TGGAGGTTTGATGGTGTAAATACACTGAGACCTGTTGCTCATGAAATATTCTATG
ATTAAAGAGCAGTTGTGAAAAAAATTCTAGGATGAAAGGCAAGCATATTCTCATATGAATGA
GCCTATCAGGGGCTCTAGTTCTAGGAAATGCTAAATATCAGAACAGGAGAGGAGATAGGCTT
TTATGATACTAGTGTGATCATTAAGTAAAATGGACCAAGAAAAGAAAAGACATAAAATATCG
TGTCAATTCTCCCAAGATTAACAAAAATAATCTGCTTATCTTTGGTGTCTTAAACTGTCT
CCGTTTTCTCTTAAATGCACTTTTCTCCCTGTGAGTTAGTGTGCTTATTTAAATT
CCACTTGTCAAGCCTTACAAGAGGACACAAGTGGCCTACATTTTATTTAAAGAAGATACTT
GAGATGCTTATGAGAACATTCTAGTCAAGACATCAAAATGATGCCATATCCAAGGACATGCCAATG
CTGATTCTGTCAGGCACTGAATGTCAGGCATTGAGACATAGGGAAGGAATGGTTGACTAATACAGA
CGTACAGATACTTCTCTGAAGAGTATTTCGAAGAGGAGCAACTGAACACTGGAGGAAAAGAAAATG
ACACTTCTGTTACAGAAAAGGAAACTCATTCAAGACTGGTGTATCTGATGTACCTAAAAGTCAG
AAACACATTTCTCCTCAGAACAGTGGGACCTTCTTACCTGTTAAATAACCAAAAGTATACCCT
GTGAACCAAAACATCTTTCAAAACAGGGTGTCTCTTGCTTCTGCCAGTCAAGAAGGAAATG
GAGAAAATATATATATATATATATGTAAGGATCAATCATCTGCAAGGAGGAAATCTAGTGGATG
GAAGTTTGCTACATGTTATCCACCCAGGCCAGGTGGAAAGTAAGTGAATTATTTTAAATTAAAGC
AGTTCTACTCAATACCAAGATGCTTCTGAAAATTGCAATTATTACCATTTCAAACATTTTTAA
AATAAAATACAGTTAACATAGAGTGGTTCTCTGTTCACTGTAAGGAAATATTAGCCAGCACAGATG
GAGCTTAATCTCTTGTGCTTCTGTTGCTTCACTGCAAGCTAAACTCATGTTTAAAGCTTCA
GAACATTCAAGCTGTGGTGTAAAAATGCAATTGTTATTGATTTGACTGGTAGTTATGAAATT
AATTAAAACACAGGCCATGAATGGAAGGGTATGCAAGCTAATAAAATATGATTGTGGATATGAA

265/615

FIGURE 264

MMMVRRGILLAWISRVVVLLVILCCAlSVLYMLACTPKGDEEQLALPRANSPTGKEGYQAVLQEWEEQHRYVSSL
KRQIAQLKEELQERSEQLRNGQYQASDAAGLGLDRSPPEKTQADLIAFLHSQVDKAEVNAGVKLATEYAAVPFDS
FTLQKVYQLETGLTRPEEKPVRKDKRDELVEAIESALETLNNPAENSPNHRPYTASDFIEGIYRTERDKGTLYE
LTFKGDHKHEFKRLILFRPFSPIMKVNEKLNMANTLINVIVPLAKRVDKFRQFMQNREMCEQDGDRVHLTVVY
FGKEEINEVKGILENTSKAANFRNFTFIQLNGEFSRGKGLDVGARFWKGSNVLLFFCDVDIYFTSEFLNTCRLLNT
QPGKKVFPVLFQSQYNPGIIYGHDAVPPLEQQLVIKKETGFWRDEFGFGMTQCYRSDFINIGGFDLGIKGWGGED
VHLYRKYLHSNLIVVRTPVRLFHLWHEKRCMDELTPEQYKMCMQSKAMNEASHGQLGMLVFRHEIAHLRKQKQ
KTSSKKT

266/615

FIGURE 265

GGATGCAGAAAGCCTCAGTGTGCTCTTCCTGGCTGGGCTGCTTACGCTGGCATTGCCCTTTCA
CCAGTGGCTTCCTGCTCACCGTTGGAGCTCACCAACCATAGCAGCTGCCAAGAGCCCCCAGGCCCTGGTCCC
TGCCATGGGGAGCCAAGGAAACCTGGGCTGCTGGATGGCTTCCCGATTTCGCGGGTTGTGTTGGTCTGA
TAGATGCTCTCGGATTTGACTTCGCCCCAGCCCCAGCATTACACGGCTCAGAGAGGCCCTCTGCTCCTACCCCT
TCCTGGGAAACTAACGCTCCTTGAGGATCCTGGAGATTAGCAGCCCCCATGCCGGCTCTACCGATCTCAGG
TTGACCCCTCCTACCACCATGCAGCGCTCAAGGCCCTCAGGACTGGCTACTGCCAACCTTATTGATGCTG
GTAGTAACCTCGCAGCCACGCATAGTGGAAAGACAATCTCAATTAGCAGCTCACCAAGTGCAGGAAGGCGTAG
TCTTCATGGGAGATGATACTGGAAAGACCTTTCCCTGGTCTTCTCCAAAGCTTCTTCATCCATCCTCA
ATGTCAGAGACCTAGACACAGTGGACAATGGCATCCTGAAACACCTTACCCCCACCATGGACAGTGGTGAATGGG
ACGTGCTATTGCTACTTCCTGGTGTGGACACTGTGGCCACAAGCATGGCCCTCACCAACCCGTAATGGCCA
AGAAAATAGCCAGATGGACCAGGTGATCCAGGGACTTGTGGAGCGCTGGAGAATGACACACTGCTGGTAGTGG
CTGGGACCATGGGATGACCACAAATGGAGACCATGGAGGGACAGTGAAGCTGGAGGTCTCAGCTGCTCTTTTC
TGTATAGCCCCACAGCAGTCCTCCCAGCACCCCACAGAGGGAGCAGAGGTGATTCTCTCAAGTTAGCCTGTG
CCACGCTGGCCCTGCTGCTGGGCTGCCATCCCATTGGGAATATCGGGGAAGTGAATGGCTGAGCTATTCTCAG
GGGTGAGGACTCCAGGCCACTCCTCTGCTTAGGCTCAGGCTCAGCTCTCATCTCAATGCTCAGCAGGTTG
CCCAGTTCTCATACACTCAGCTGACTACTCAGGACCTTCAGGACTAAGGAGCTTCATCAGCTGAGAACCTCT
TCTCCAGGCCCTGCTGACTACAGTGGCTTCTCAGAGCCCCAAGGGGCTAGGCGACACTGCCGACTGTGA
TTGCTGAGCTGCAGTTCCTGCGGGGAGCTGGGCATGTGCATCGAGTCTGGCTCGTTCTCTGGTCC
GCATGGGGGGGTTACTGCTCTTGGCTGCTTCTGCTTATCTGCTGCTGGCATCTCACTGGCAATATCCC
CAGGCTTCCATTCTGCCCTACTCCTGACACCTGTGGCTGGGCTGGTGGGCAATAGCTATGCTGGAC
TCCTGGGAACTATTGAGCTGAAGCTAGATCTAGTGTCTTAGGGCTGTGGCTGAGCTCATTCTCCCTT
TTCTGTGAAAGCCTGGCTGGCTGGGCTTCAAGAGGCCCTGGCAACCCCTGTTCCATCCCTGGGCCGTCC
TGTTACTCTGCTGTTGCTGGCTGTGTTCTCTGATAGTTGTTGAGCTGAGGCACGGGCCACCCCT
TCCCTTTGGGCTCATTCACTCTGCTCTGGTGTCCAGCTTCACTGGGAGGGCAGCTGCTTCCACCTAACGCTAC
TCACAATGCCCGCCCTGGCATTCAAGCCACAACACCCACGGCACAAATGGTGCATATGCCCTGAGGCTTG
GAATTGGGTTGCTTTATGTAACAGGCTAGCTGGGCTTTCATCGCTGGCCTGAAGAGACACCTGTTGCCACT
CCTCTCCCTGGCTGAGCTCTGGCATCATGGTGGTGGTCAGGCCAAGAATTATGGTATGGAGCTTGTG
CGCGCTGGTGGCCCTGTTAGCTGCCGTGCGCTTGTGGCTCGCCGCTATGGTATCTCAAGAGCCCCGAGCCAC
CCATGCTTTGTGCCCTGGGACTGCCCTAATGGCATGGTACTGCTGCCACTGGCATTGGCCTGGGCTGAGGG
CAGATGAGGCTCCCCCGTCTGGGCTCTGGCTCTGGGCATCCATGGCTGCCCTGGGCTGAGGG
TGGCTCAGGGCTCGCGCTGCTGCTGGAAAGCCTGTGACAGTGTGGTAAGGCTGGGCCAGGCCCTCAA
GGACCAGGACTGTCCTCACTCCCTCTCAGGCCCTGGGACTTCTCAAGCTGACTGGATTATGTGGCCCTCAA
TCTACCGACACATGCAGGAGGAGTCCGGGCCGTTAGAGAGGACCAATCTCAGGGTCCCTGACTGTGGCTG
CTTATCAGTTGGGAGTGTCTACTCAGCTGCTATGGTACAGGCCCTCACCCCTGTTGGCTTCCACTCTGCTGT
TGCATGCCGAGCGCATCAGCTGTTCTGCTGCTGCTGGCTTCTGCTGCTGCTGCTGCTGCTGCTG
CTGGGATAACCGCTCACAGGCCACCAGCCGCTTCTGGCATCCATTGGCATGCGCTTCTGGGCCCTCATGGCCA
CACAGACCTCTACTCCACAGGCCACCAGCCGCTTCTGGCATGCGCTTCTGGCATGCGCTTCTGGGATTCC
CAGAGGTGATGGCTCTGACTTGGCTGCCCTTGTAGTGGGAGGCCAACACCTTGCTCTCCACCTCTCT
TTGCAGTAGGTTGCCACTGCTCTGCTGGCTTCTGCTGAGAGTCAGGGCTGCCAGAGAGACAGCAGC
CCCCAGGGAATGAAGCTGATGCCAGAGTCAGACCCGAGGGAGGAAGAGGAGGCCACTGATGGAGATGCCCTGGG
ATGCCCTCAGCACTCTATGCACTGCTGCACTGGCTCAAGTACCTCTTATCTGGTATTCACTGATTC
TGGCCTGTGCCCTGGCAGCCCTCATCTGCCAGGCATCTCATGGTCTGGAAAGTGTGCTTGGCCCTAAGTCATAT
TGAGGCTGTGGCTCATTGTGAGCAGCGTGGGACTTCTCTGGCATAGCTTGGTGTAGAGAGTGGATGGTG
CTGTGAGCTCTGGTCTGGCAGCTATTCTGGCCAGAGGAGCTAGCCTAGTGTGATTACTGGCACTGGCT
ACAGAGAGTGTGGAGAACAGTGTAGCCTGGCTGACAGGACTGGATGATCTGCAAGACAGGCTCAGCCATAC
TCTTACTATCATGCAGCCAGGGGCCGCTGACATCTAGGACTTCATTATCTATAATTCAAGGACACAGTGGAGTA
TGATCCCTAACCTCTGATTGGATGCACTGAGGGACAAGGGGGCGCTCCGAAGTGGAAATAAAATAGGCCG
GGCTGGTGAATTGCCACCTATAATCCCAGCATTGGGAGGCAGAGTGGAGGATTGCTTGGCTCCAGGAGTTCA
AGACCAGCCTGTGGAACATAACAAGACCCGCTCTACTATTAAAAAAAGTGTAAATAAAATGATAATAT

267/615

FIGURE 266

```

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62809
<subunit 1 of 1, 1089 aa, 1 stop
<MW: 118699, pI: 8.49, NX(S/T): 2
MQKASVLLFLAWVCFLFYAGIALFTSGFLLTLELTNHSSCQEPPPGPGSLPWGSQGKPGACWMASRFSRVVLVLI
DALRFDFAQHQSHVPREPPVSLPFLGKLSSIQRILEIQPHHARILYRSQVDPTTMQRLKALTTSGLPTFIDAG
SNFASHAIVEDNLIKQLTSAGRVVFMGDDTWKDLFPGAFSKAFFPSFNVRDLDVDNGILEHLYPTMDSGEWD
VLIAHFLGVDHCGHKHGPHHEMAKKLSQMDQVIQGLVERLENDTLIVVAGDHGMTNGDHGGDSELEVSAALFL
YSPTAVFPSTPPEEPEVIPQVSLVPTLALLLGLPIPFGNIGEVMAELFSGGEDSQPHSSALAQAQASALHINAQQVS
RFLHTYSAATQDLQAKEHLQQLNLF SKASADYQWLLQSPKGAEATLPTVIAELQQFLRGARACMIESWARFSLVR
MAGGTALLAASCFCICLLASQWAISPGFPFCPLLLTPVAWGLVGAIAYAGLLGTIELKLDLVILGAVA AVSSFLPF
LWKAWAGWGSKRPLATLFPPIP GPVLLLLFRЛАVFFSDSFVVAEARATPFLLGFSFILLLVQQLHWEGQLLPPKLL
TMPRLGTSATTNPPRHNGAYALRIGIGLLLCTRLAGLFHRCPEETPVCHSSPWLSPLASMVGRAKNLWYGACVA
ALVALLAAVRLWLRRYGNLKSPEPPMMLFVRWGLPIMALGTAAYWALASGADEAPPRLRVLVSGASMVLPRAVAGL
AASGLALLWKPVTIVKAGAGAPRTTRTVLTPSGPPTSQADLDYVVPQIYRHMQEEFRGRLERTKSQQGPLTVAA
YQLGSVYSAAMVTALTLLHAERISLVSFLLLFLQSFLLLHLLAAGI PVTTPGPFTV PWQAVSAWALMAT
QTFYSTGHQPVFPVPAIHWHAAFGVGFPEGHGSCTWLPA LLVGANTFASHLLFAVGCPLLLWPFLCESQGLRKRQQP
PGNEADARVRPEEEEPPLMEMRLRDAPQHFYAALLQLGLKYL FILGIQILACALAASILRRHLMVWKVFAPKFIF
EAVGFIVSSVGLLLGIALVMRVDGAVSSWFRQLFLAQQR

```

Important features:**Signal peptide:**

amino acids 1-16

Transmembrane domains:amino acids 317-341, 451-470, 481-500, 510-527, 538-555, 831-850, 1016-1034,
1052-1070**Leucine zipper pattern.**

amino acids 843-864

N-glycosylation sites.

amino acids 37-40, 268-271

268/615

FIGURE 267

GAGACTGCAGAGGGAGATAAGAGAGAGGGCAAAGAGGGCAGCAAGAGAGTTGTCCTGGGGATCCAGAAACCCATG
ATACCCCTACTGAACACCGAATCCCCTGGAAGGCCACAGAGACAGAGACAGCAAGAGAGATAAACACT
CACGCCAGGAGCTCGCTCGTCTCTCTCTCTCTACTCCTCCCTCCCTCTCTGCTGCTAGTCCT
CTAGTCCTCAAATTCCCAGTCCCCCTGCACCCCTCTGGGACACTATGTTCTCCGCCCCCTGCTGGAGGTG
ATTTGGATCCTGGCTCGAGATGGGGTCAACACTGGACGCTATGAGGGCCACATGGTCAGGACCATTGGCCAGCC
TCTTACCTCTGAGTGGAAACAATGCCAGTCGCCATCGATATTGAGACAGACAGTGTGACATTGACCTGAT
TTGCTGCTCTGCAGCCCCACGGATATGACCAGCCCTGGCAGGCTTGGACCTGCACAAACAATGGCACACA
GTGCAACTCTCTGCCCTCACCTGTATCTGGGTGGACTTCCCCAAAATATGAGCTGCCAGCTCACCTG
CACTGGGTCAGAAAGGATCCCCAGGGGGTCAGAACACCAGATCAACAGTGAAGCCACATTGAGAGCTCCAC
ATTGTAACATTGACTCTGATTCTATGACAGCTTGAGTGAGGCTGCTGAGAGGGCCTAGGGCCTGGCTGCTG
GGCATCTTAATTGAGGTGGGTGAGACTAAGAATATAGCTATGAACACATTCTGAGTCAGTGCATGAAGTCAGG
CTAAAGAGTCAGAAGACCTCAGTGCCTCCCTCAACCTAAAGAGAGCTGCTCCCCAACAGCTGGGCAGTACTTC
CGCTACAAATGGCTCGCTACAACCCCCCTGCTACCAGAGTGTGCTGGACACTTTTATAGAAGGTCCCAG
ATTTCAATGAAACAGCTGGAAAAGCTTCAGGGACATTGTTCTCCACAGAAGAGGGAGCCCTTAAGCTTGGTA
CAGAACTACCGAGCCCTTCAGCCTCTCAATCAGCGCATGGCTTGTCTCTGCCTTCTCCTGGCTGTTATTTC
ACACAGGTGAAATGCTGAGTCTAGGTGAGGAATCTGGGTGGCTGTCTCTGCCTTCTCCTGGCTGTTATTTC
ATTGCTAGAAAGATTGCGAAGAAGAGGCTGGAAAACCGAAAGAGTGTGGTCTTCACCTCAGCACAGCCACGACT
GAGGCATAAATTCCCTCTCAGATACCATGGATGTGGATGACTTCCCTCATGCCTATCAGGAAGCCTCTAAATG
GGGTGTAGGATCTGGCAGAAACACTGTAGGAGTAGTAAGCAGATGCTCTCTTCCCTGGACATCTTAGAGA
GGAATGGACCCAGGCTGTCAATTCCAGGAAGAAGTGCAGAGCCTCAGCCTCTCAAACATGTAGGAGGAATGAG
GAAATCGCTGTGTTGTTAATGCAGAGANCAAACCTCTGTTAGTTGCAAGGGAAAGTTGGGATATAACCCCAAAGTC
CTCTACCCCTCACTTTATGGCCCTTCCCTAGATATACTGCAGGGATCTCCTTAGGATAAAAGAGTTGCTGTT
GAAGTTGTTATTTGATCAATATAATTGGAAATTAAAGTTCTGACTTT

269/615

FIGURE 268

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62812
><subunit 1 of 1, 337 aa, 1 stop
><MW: 37668, pI: 6.27, NX(S/T): 1
MLFSALLLEVIWILAADGGQHWTYEGPHGQDHWPASYPECGNNAQSPIDIQTDSVTFDPLPALQPHGYDQPGTE
PLDLHNNGHTVQLSLPSTLYLGGLPRKYVAAQLHLHWGQKGSPGGSEHQINSEATFAELHIVHYDSDSYDSLSEA
AERPQGLAVLGILIEVGETKNIAYEHILSHLHEVRHKDQKTSVPPFNRELLPKQLGQYFRYNGSLTTPCYQSV
LWTVFYRRSQISMEQLEKLOGTLFSTEEEPSKLLVQNYRALQPLNQRMVFASFIQAGSSYTGEMLSLGVGILVG
CLCLLLAVYFIARKIRKKRLENRKSVVFTSAQATTEA
```

Important features of the protein:

Signal peptide:

amino acids 1-15

Transmembrane domain:

amino acids 291-310

N-glycosylation site.

amino acids 213-216

Eukaryotic-type carbonic anhydrases proteins

amino acids 197-245, 104-140, 22-69

270/615

FIGURE 269

GTGGCGCTGGCGGTTGCTGTCAGCTGATTCCCGGGTTGGTGGCAGCGGGCGTAGCAGCAATGGACTTTCTCCTGG
GGGAACCCGTTCAGCTCTCCAGTGGACAGCGCATCGAGAAAGCCACAGATGGCTCCCTGCAGAGCGAGGACTGG
GCCCTCAACATGGAGATCTGCGACATCATCAACAGAGACGGAGGAAGGTCCCAAAGATGCCCTCCGAGCAGTAAAG
AAGAGAACATGTTGGGAATAAGAACTTCCACGGAGGTGATGCTGGCTCTCACAGTCTTAGAAAACCTGTGTCAGAAC
TGCAGGGCACCCTTCCACGTGCTGGTGGCCAGGACTTCGTGGAGAGTGTGCTGGTGAGGACCATCCTGCC
AAGAACAAACCCACCCACCATCGTGCATGACAAAGTGCTAACCTCATCCAGTCTGGCTGACGCGTCCGCAGC
TCGCCCCGATCTGACAGGTGTGGTCACCATCTATGAGGACCTGCGGGAGGAAGGGCTGGAGTCCCCATGACTGAC
CTGGACATGCTGTACCCATCCACACACCCAGAGGACCGTGTCAACTCAGAGACACAATCAGGACAGGATTCTG
TGGGCACTGACTCCAGCCAGCAAGAGGACTCTGGCCAGCATGCTGCCCTCTGCCCGCCCCGCCATACTCTCG
GTGACACGCCCATAGCACCAACCCCGAACAGATTGGGAAGCTGCCAGTGAGCTGGAGATGGTGAGTGGGAACG
TGAGGGTGATGTCGGAGATGCTGACGGAGCTGGTGCCACCCAGGGCGAGCCCGCAGACCTGGAGCTGCTGCAGG
AGCTCAACCGCACGTGCCAGGCCATGCAGCAGCGGGTCTGAGTGATACCCCTGCTCCGGGCCATGCCCAAGGA
GCCCTTCAGAGCCCCACACTGCCAGTCGAGGGCTGGCTGGAGGCTGGCCACAGTGGAAATTCTGCCGAGCCTATTG
TCCCCTACCCCTGCTCTGCTGCATGGGGCCCCATGGCTTGGCTGCCACTGAGGGTAGGGTAGGGTGAGGAGG
CCCCCTGAGGAGCTGCCAGGCCAGGTACGAAGCTGCAACTCTGCCAGTGGCGAGATCTCATCAGCCCCA
GGCTGCAGGTGAGGCTTCAGGGGATGCTGGGGCCCCACTGCCCTCCGCTGCCCTCCATCCTTCTCTGT
TCCCTCTGGCCGGGACCCACAGCACTGGGCTCACCTTGGTGTACTGGAGAGGTGCCCTTTG
TATCCCCAATTAAAGGTAGAAAAC

271/615

FIGURE 270

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62813
><subunit 1 of 1, 209 aa, 1 stop
><MW: 23465, pI: 7.57, NX(S/T): 1
MDFLLGNPFSSPVGQRIEKATD GSLQSEDWALNMEICDIINETEEGP K DALRAVKKRIVGNKNFHEVMILALT VLE
TCVKNCGHRFHVLVASQDFVESVLVRTILPKNNPPTIVHDKVNLIQSWADAFRSSPD LTGVVTIYEDILRRKGLE
FPMTDLDMLSPIHTPRGPCSTQRHNQDRILWALTPASKRTL ASMLPLCPPRPYSPVTRP
```

Important features of the protein:

Signal peptide:

Amino acids 1-15

N-glycosylation site:

Amino acids 41-45

N-myristoylation sites:

Amino acids 6-12; 23-29

272/615

FIGURE 271

CGGACGCCGTGGCGGACCGTGGCGGACCGTGGGTCTCTGCAGGAGACGCCAGCCTGCCTGCCATGGGGC
TCGGGTTGAGGGGCTGGGACGTCCTCTGACTGTGCCACCGCCCTGATGCTGCCGTGAAGCCCCCGCAG
GCTCCTGGGGGGCCAGATCATCGGGGCCACGAGGTGACCCCCACTCCAGGCCCTACATGGCATCCGTGCGCT
TCGGGGGCCAACATCACTGCGGAGGCTTCCTGCTGCGAGCCCCTGGGTGGTCTCGGCCGCCACTGCTTCAGCC
ACAGAGACCTCCGCACTGGCCTGGTGGTGCTGGGCCACGTCCTGAGTAACGCGGAGGCCACCCAGCAGGTGT
TTGGCATCGATGCTCTCACACGCACCCGACTACCAACCCATGACCCACGCCAACGACATCTGCCTGCTGCC
TGAACGGCTCTGCTGTCCTGGCCCTGCAGTGGGCTGCTGAGGCTGCCAGGGAGAAGGGCAGGCCACAG
CGGGGACACGGTGCCGGTGGCTGGCTGGGCTTCGTGACTTTGAGGAGCTGCCCTGGACTGATGGAGG
CCAAGGTCCGAGTGCTGGACCCGACGTCGCAACAGCTCCTGGAAGGGCCACCTGACACTTACCATGCTCTGCA
CCCGCAGTGGGGACAGCCACAGACGGGGCTCTGCTCGGCCGACTCGGAGGGCCCTGGTGTGCAGGAACCGGG
CTCACGGCCTCGTTCTCTCGGGCCTCTGGTGGGCGACCCCAAGACCCCGACGTGTAACCGCAGGTGTCCG
CCTTGTCGGCTGGATCTGGGACGTGGTGGCGGACCGACTCCCCAGCCGGCCCCCTGCCCTGGGACCACCAAGC
CCCCAGGAGAAGGCCCTGAGCACAACCTGCGGATGCAAATGAGATGGCCCTCCAGGGCTTGGAAATGTTCCG
TGGCTGGGCCCCACGGGAAGCCTGATGTTCAAGGGTTGGGACGGGAGCGGTGGGACACCCATTCCACA
TGCAAAGGGAGAAGCAAACCCAGTAAATGTTAACTGACAAAAAAAAAAAAAAAAGAAA

273/615

FIGURE 272

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA62845
><subunit 1 of 1, 283 aa, 1 stop
><MW: 30350, pi: 9.66, NX(S/T): 2
MGLGLRGWGRPLLTVATALMLPVKPPAGSGWAQIIGGHEVTPHSRPMASVRFGQHHCGGFLLRARWVVSAAHC
FSHRDLRTGLVVVLGAHVLSAETPQQVFGIDALTTHPDYHPMTHANDICLRLNLSAVLGPAVGLLRLPGREARP
PTAGTRCRVAGWGVSDFEELPPGLMEAKVRLDPDVNCSSWKGHILTMLCTRSGDSHRRGFCSDSGGPLVCR
NRAHGLVFSGLWC GDPKTPDVYTQVS AFVAIW DV V RSSP QPGPLPGT RPPGEAA
```

Signal peptide:
amino acids 1-30

274/615

FIGURE 273

GAAGTTCGCGAGCGCTGGCTATGGGCTCTGGGGCGCGCTGGCGGGCTGCTGGCGGTGCTGGCGCTCGGGACAG
GAGACCCAGAAAGGGCTGCGGCTCGGGCGACACGTTCTCGGCCTGACCAGCGTGGCGCGCCCTGGCGCCCG
ACCGCCGGCTGCTGGGCTGCTGAGGCGGTACCTGCAGGGGGAGGAGGCGCGGTGCGGGACCTGACTAGATTCT
ACGACAAGGTACTTTCTTGATGAGGATTAACAACACCCCTGTGGCTAACCTCTGCTTGCAATTACTCATCA
AACGCCCTGCAGTCTGACTGGAGGAATGTGGTACATAGTCAGGAGGCCAGTGAGAACATCCGAGCTCTGAAGGATG
GCTATGAGAAGGTGGAGCAAGACCTTCAGCCTTGAGGACCTTGAGGGAGCAGCAAGGGCCCTGATGCCGCTGC
AGGACGTGTACATGCTCAATGTGAAAGGCTGGCCCAGGGTGTCTTCAAGAGAGTCAGGGCTCTGCCATCACTG
ACCTGTACAGCCCCAACGGCTTTCTCACAGGGATGACTGCTTCCAAGTGGCAAGGTGGCTATGACA
TGGGGGATTATTACCATGCCATTCCATGGCTGGAGGAGGCTGTCAGTCTTCCAGGATCTAACGGAGGTGA
AGACAGAGGATGAGGCAAGTCTAGAAGATGCCATTGGATCACTTGGCCTTGCTTATTCAGGGCAGGAAATGTT
CGTGTGCCCTCAGCCTCTCTCGGGAGCTTCTCTACAGGGCAGATAATAAGAGGATGCCAGGAATGCTTGA
AATATGAAAGGCTCTGGCAGAGAGGACACCCAACCTACGTGGTAGCTGAGGCTGTCACTCCAGAGGCCAATATACCC
ACCTGCCAGACCAGAGAACACCCACGGGCTATGTCAGACCCCTGGGTTCCAGGCCACTCTTACAGATCCCTA
GCCCTACTGTTCTATGAGACCAATTCCAACGCCAACCTGCTGCTCCAGCCATCCGAAGGAGGTCACTCCACC
TGGAGCCCTACATTGCTCTAACCATGACTCGTCAGTGACTCAGAGGCTCAGAAAATTAGAGAACCTTGCAAGAAC
CATGGCTACAGAGGTCAGTGGTGGCATCAGGGAGAACAGCTTACAAGTGGAGTACCGCATCAGCAAAGTGCCT
GGCTGAAGGACACTGTTGACCCAAAACGGTGAACCTCAACCACCGCATTGCTGCCCTCACAGGCCATTGATGTCC
GGCCTCCCTATGCAGAGTATCTGCAAGGGTGAACATGGCATCGGAGGACACTATGAGCCTCACTTTGACCATG
CTACGTCACCAAGCAGCCCCCTACAGAACATGAAAGTCAGGAAACCGAGTTGCAACATTATGATCTATCTGAGCT
CGGTGGAAGCTGGAGGAGCCACAGCCTTCATCTATGCCAACCTCAGCGTGCCTGTTAGGAATGCAGCACTGT
TTTGGTGGAACCTGCACAGGAGTGGTGAAGGGAGCAGTGACACACTTCATGCTGGCTGTCCCTGGTGGAG
ATAAGTGGGTGGCCAACAAGTGGATACATGAGTATGGACAGGAATTCCGAGAACCCCTGCAGCTCCAGGCCCTGAAG
ACTGAACACTGTTGGCAGAGAGAACGCTGGGAGTCTGGCTTCCAGAGAACGCCAGGAGCAGGAGCTGGGTA
GGAGAGGAGAACAGAGCAGGCCCTGGAGAACAGGCCCTGTCAGGTTGCTGTGCCTCGCAAATCAGAGGCAA
GGGAGAGGTTGTTACCCAGGGGACACTGAGAACATGATCTGCCCCAGCAGGAAGTCAGAGTAGGATGCA
ACAGTACAAAGGAGGGGGAGTGGAGGGCTGAGAGGGAGTTCTGGAGTTCAAGATACTCTGTGGGAACAGG
ACATCTAACAGTCTCAGGTTGATCAGTGGGCTTGGCACTTGAACCTTGACCAACAGGGACCAAGAACAGTGG
CAATGAGGACACCTGCAGGAGGGCTAGCCTGACTCCCAGAACCTTAAGACATTCTCCCCACTGCCCTGCTGC
AGCCCAAGCAGGGAGTGTCCCCCTCCCAGAACATATCCCAGATGAGTGGTACATTATAAGGATTTTTAA
GTTGAAAACAACCTTCTTTCTTTGTATGATGGTTTTAACAGTCATTAAAATGTTATAAATCAAA

275/615

FIGURE 274

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64849
><subunit 1 of 1, 544 aa, 1 stop
><MW: 61126, pI: 6.40, NX(S/T): 2
MGP GAR LA ALL A VIAL ALG TD PER A A R G D T F S A L T S V A R A L A P E R R I L G L L R R Y I L R G E E A
R L R D L T R F Y D K V L S I H E D S T T P V A N P L L A F T L I K R I Q S D W R N V V H S I E A S E N I R A L K D G Y
E K V E Q D L P A F E D L E G A A R A L M R L Q D V Y M L N V K G L A R G V F Q R V T G S A I T D L Y S P K R L F S L T
G D D C F Q V G K V A Y D M G D Y Y H A I P W L E E A V S L F R G S Y G E W K T E D E A S L E D A L D H I A F A Y F R A
G N V S C A L S I S R E F L L Y S P D N K R M A R N V L K Y E R L I A E S P N H V V A E A V I Q R P N I P H I Q T R D T
Y E G L C Q T L G S Q P T L Y Q I P S L Y C S Y E T N S N A Y I L L Q P I R K E V I H L E P Y I A L Y H D F V S D S E A
Q K I R E L A E P W L Q R S V V A S G E K Q L Q V E Y R I S K S A W L K D T V D P K L V T L N H R I A A L T G L D V R P
P Y A E Y L Q V V N Y G I G G H Y E P H D H A T S P S S P L Y R M K S G N R V A T F M I Y L S S V E A G G A T A F I Y
A N L S V P V V R N A A L F W W N L H R S G E G D S D T L H A G C P V L V G D K W V A N K W I H E Y G Q E F R R P C S S
S P E D
```

Important features of the protein:

Signal peptide:

Amino acids 1-19

Leucine zipper pattern:

Amino acids 34-56; 41-63

Ribonucleotide reductase small subunit signature:

Amino acids 340-356

N-glycosylation sites:

Amino acids 242-246; 482-486

Cell attachment sequence:

Amino acids 27-30

Tyrosine kinase phosphorylation site:

Amino acids 189-198

N-myristoylation sites:

Amino acids 4-10; 135-141; 153-159; 164-170; 241-247; 303-309; 309-315;
457-463; 473-479

276/615

FIGURE 275

GGCAACATGGCTCAGCAGGCTTGC~~CCC~~CAGAGCCATGGCAAAGAATGGACTTGTAA~~TT~~GCATCCTGGTATCACC
TTACTCCTGGACCAGACCACCAAGCCACATCAGAATTAAAGCCAGGAAGCAGC~~AA~~ACGTGAGTGAGAGAC
AAGGATGGAGATCTGAAGACTCAAAATTGAAAGCTCTGGACAGAAGTCATGCCTGAAGGAAATTCAAGCCCTG
CAGACAGTCTGTCTCCGAGGGACTAAAGTCACAAGAAAAGCTACCTGCTCAGAAGGTTGAAGGCATTCCAT
GAGGCCAATGAAGACTGCATTCCAAAGGGAGGAATCCTGTTATCCCCAGGAACTCCGACGAAATCAACGCCCTC
CAAGACTATGGTAAAGGAGCCTGCCAGGTGTCATGACTTTGGCTGGCATCAATGACATGGTACCGGAAGGC
AAGTTGTTGACGTCAACGGAATCGCTATCTCTCCTCACTGGGACCGTGCACGGCTAACGGTGGCAAGCGA
GAAA~~ACT~~TGTCTCTGTCAGCTCAGGGCAAGTGGAGTGTGAGGCCGTGCGCAGCAGCAAGAGATA
ATATGCGAGTTCACCATCCCTAAATAGGTCTTCTCAATGTGTCTCCAAGCAAGATT~~CAT~~CATAACTTATAGG
TTCATGATCTAAGATCAAGTAAAATCATAA~~TTT~~ACTTATTAAAAAAATGCAACACAAGATCAATGTCAT
AGCAATATGATAGCATCAGCCAATTGCTAACACATTCTTGGGATTTGCCCTCCTGGGTATAGGGGATC
AGAAAATATTGATCCATGTGCACGCA~~GATAAA~~ATGGCTCTGCTAACAGACTAAATCTCTAGTCTTC
TCACITGACAAACCCAGTTGTTCAAAAATCACAGTAGCAATGCAACTCATCACTCTAGAAAAGCAAGCTT
AGGCTACCTGAAAGATTCCCTTGGAGTTAGCGTATGTTGACTAACAAAATCCCTACATCAGAGACTCT
AGGTGCTATATAATCCAAA~~ACT~~TTTCAGCCTGCTCATCTCTGGGACTTGTATCTGCTGCCATATCAGAACACAAACCC
CAATTACCCCTATTGAAATTGCTCATCTCTGGGACTTGTATCTGCTGCCATATCAGAACACAAACCC
TGAAGAGGTTCTGATTGATTTTTTTCTCATGCC~~TAC~~CTTTGGAGTTCCAGCCGAATTG
AATGAAATGACAAGGTGATATTGATCAATTTCATTCCACCATTGCAATTACACCTCTAACCTAAATGGCTA
ACCCTAAGGCATATCAAAGAAGCAGATTGCA~~GATAA~~ACGGAAATGAGAAAAAGAACCTACATTATTTGCTT
TAGCATCCTTACTCTCACCTTATGAGATTGAGAGTGGACTTACATTCCCTTTACATTTCGTATATT
TTTTTTAGCCATCATTATGTTAAGTCTATTATGGCAACCAATTGGAGCTGAAA~~ACT~~GAATTAAAG
AATGCTATCTGGAAAATTGCACTCGTGTGCAATT~~TTT~~ATTCTGCC~~TAG~~TGCTATTCTGCTTAACTAG
ATTGTACAAAATAACTCATTGCTTAATATCAAATTACAAAGTTAGACTTGGAGGGAAATGGCTTTAGAAG
CAAACAAATTAAATATTGTTCTCAAAATAATAGTGTAAACATTGAATGTGTTTAGCTGTTTCAATTGCTCAAA
CACTTTGCAA~~ACT~~TTA~~ACT~~ACACATGCTGGAA~~TTAAGT~~TTAGCTGTTTCAATTGCTCAAAATAAGCCTGAA
TTCTGATCAATaaaaaaaaaaaaaaaaaaaaaaa

277/615

FIGURE 276

MAQQACPRAMAKNGLVICILVITLLLQTTSHTSRLKARKHSKRRVRDKDGDLKTQIEKLWTEVNALKEIQALQT
VCLRGTKVHKCYLASEGLKHFEANEDCISKGGILVIPRNSDEINALQDYGKRSLPGVNDFWLGINDMVTEGKF
VDVNGIAISFLNWDRDRAQPNGGKRENCVLFSQSAQGKWSDEACRSSKRYICEFTIPK

278/615

FIGURE 277

GAGATAGGGAGTCTGGGTTAAGTCCTGCTCCATCTCAGGAGCCCCCTGCTCCACCCCTAGGAAGCCACCAGAC
TCCACGGGTGCGGGCCAATCAGGTGGAATCGGCCCTGGCAGGGCAGAGCCTGGCTGAGGGACCGAGCC
GGAGAGCCCCGGAGCCCCCGTAACCCGCGGGGGAGCAGGATTCCCGCAGGGGACTCGGAGCAGGTGCGCT
ACTGCGCGCCTTCTCCTACCTCTGGCTCAAGTTTCACTTATCATCTATTCCACCGTGTCTGGCTGATTGGGG
CCCTGGTCTGTCTGGCATCTATGCAAGAGGTTGAGCGCAGAAATAAAACCTTGAAAGTGCCCTCTGG
CTCCAGCATCATCCTCATCCTCTGGCGTGTATGGTATGCTCTCCCTATTGGTGTGCTGGCGTCCCTCC
GTGACAACCTGTACCTTCTCCAAGCATTGATCATGACATCCTGGGATCTGCCTCATCATGGAGCTCATTGGTGGCG
TGGTGGCCTTGACCTCCGGAACCAGACCAATTGACTCCTGAACGACAACATTGAAGAGGAATTGAGAACTACT
ATGATGATCTGGACTCAAAAACATCATGGACTTGTTCAGAAAAGTCAAGTGCTGTGGCGGGGAGGACTACC
GAGATTGGAGCAAGAATCAGTACCAACGACTGCAGTGCAGTGCAGTGCAGTGCAGTGCAGTGCAGTGCAGTGC
GCATCAGGAACACGACAGAAGTTGCAACACCATGTTGGCTACAAACTATGACAAGGAGCCTTCAAGTGTGC
AGGATGTCATCTACGTGCGGGGCTGCACCAACGCCGTGATCATCTGGTTCATGACAACACTACACCATCATGGCGT
GCATCCTCTGGCATCCTGCTCCCCAGTCTGGGGGTGCTGCTGACGCTGTCATCACCCGGGGTGGAGG
ACATCATCATGGAGCACTCTGCACTGATGGCTCTGGGGCTGGCAAGCCCAGCGTGGAGGCGCAGGCA
CGGGATGCTGCTGTGCTACCCAAATTAGGGCCAGCCTGCCATGGCAGCTCAACAAAGGACCGTCTGGGATAGC
ACCTCTCAGTCACATCGTGGGGCTGGACAGGGCTGCGGCCCCCTGCCCACACTCAGTACTGACCAAAGGCCAGG
GCTGTGTGTGCTGTGCTAGGTCCCACGGCTCTGCCTCCCCAGGGAGCAGGCCTGGGCTCTCCCTAAGAGGC
TTTCCCCAGGGCAGCTGGAATCTGTGCCACCTGGGGCTGGGAACAAGGCCCTCCTTCTCCAGGCCCTGG
CTACAGGGGAGGGAGAGCCTGAGGCTCTGCTCAGGGCCATTTCATCTCTGGCAGTGCCTGGCGGTGGTATTCA
AGGCAGTTTGTAGCACCTGTAATTGGGGAGAGGGAGTGTGCCCCTGGGGCAGGAGGGAGGGCATCTGGGAA
GGCAGGAGGGAAAGAGCTGTCCATGCAGCCACGCCATGGCAGGTGGCCTCTCAGCCTCCAGGTGCC
GAGCCCTTGCAAGGGCGGCTGCTTCCITGAGCCTAGTTTTTACGTGATTTTGTAAACATTCAATT
GTACAGATAACAGGAGTTCTGACTAATCAAAGCTGGTATTCCCGCATGTCCTATTCTGCCCTCCCCAAC
CAGTTGTTAACAAACAATAAAACATGTTTGTGTTAAAAAA

279/615

FIGURE 278

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64863
><subunit 1 of 1, 294 aa, 1 stop
><MW: 33211, pI: 5.35, NX(S/T): 3
MPRGDSEQVRYCARFSYLWLKFSLIIYSTVFWLIGALVLSVGIFYAEVERQKYKTLESAFLAPATIILILLGVVMFM
VSFIGVLASLRDNLYILLQAFMYILGICLIMELIGGVVALTFRNQTIDFLNDNIRRGIEYYDDLDFKNIMDFVQK
KFKCCGGEDYRDWSKNQYHDCSAPGPLACGVPYTCCIRNTTEVVNTMCGYKTIDKERFSVQDVYVRGCTNAVII
WFMDNYTIMACILLGILLPQFLGVLLLYITRVEDIIMEHSVTDGLLGPGAKPSVEAAGTGCLCYPN

Signal peptide:
amino acids 1-44

Transmembrane domains:
amino acids 22-42, 57-85, 93-116, 230-257

280/615

FIGURE 279

GAGGAGCGGGCCGAGGACTCCAGCGTGCCCCAGGTCTGCATCCTGCACTTGCTGCCCTCTGACACCTGGGAAGAT
GGCCGGCCCCGTGGACCTTCACCCCTCTGTGGTTGCTGGCAGCCACCTTGATCCAAGGCCACCCCTCAGTCCCAC
TGCAGTTCTCATCCTCGGCCCCAAAGTCATCAAAGAAAAGTCAGACAGGAGCTGAAGGACACAACGCCACCAG
CATCCTGCAGCAGCTGCCGCTGTCAGTGCAGCTGGGAAAAGCCAGCCGGAGGACATCCCTGTGCTGGCAGCCT
GGTGAACACCGTCCTGAAGCACATCATCTGGCTGAAGGTCAACAGCTAACATCCTCCAGCTGCAGGTGAAGGCC
CTCGGCCATGACCAGGAGCTGCTAGTCAGATCCCCCTGGACATGGTGGCTGATTCAACACGCCCTGGTCAA
GACCATGTTGGAGTTCACATGACGACTGAGGCCAAGCCACCATCCGCATGGACACCCAGTGCAGTGGCCAC
CCGCCTGGCCTCAGTGACTGTGCCACCAGCCATGGGAGCCTGCGCATCCAACGTGTATAAGCTCTCCTTCT
GGTGAACGCCCTAGCTAACGAGGTCAACCTCTAGTGCCATCCTGCCCATCTAGTGAAAAACAGCTGTG
TCCCCTGATCGAGGCTCCTCAATGGCATGTATGCAGACCTCTGCAGCTGGTGAAGGTGCCCATTTCCCTCAG
CATTGACCGTCTGGAGTTGACCTTCTGTATCCTGCCATCAAGGGTGAACACCATTAGCTCACCTGGGGCCAA
GTTGTTGGACTCACAGGGAAAGGTGACCAAGTGGTCAATAACTCTGCAGTCCCTGACAAATGCCACCCCTGGA
CAACATCCCGTCAGCCTCATCGTGAGTCAGGACGTGGTGAAGGCTGCAGTGGCTGCTGTGCTCTCCAGAAGA
ATTCACTGGTCTCTGGGACTCTGTGCTTCTGAGAGTGCCCATCGGCTGAAGTCAAGCATCGGGCTGATCAATGA
AAAGGCTGCAGATAAGCTGGGATCTACCCAGATCGTGAAGATCCTAACTCAGGACACTCCCGAGTTTTTATAGA
CCAAGGCCATGCCAAGGTGGCCAACTGATCGTGTGGAAAGTGTTCCTCCAGTGAAGGCCCTCCGCCCTTGT
CACCCCTGGCATTGAGCCAGCTCGGAAGCTCAGTTTACACCAAGGTGACCAACTTAACTCAACTTGAATAA
CATCAGCTCTGATGGATCCAGCTGATGAACCTGGGATTGGCTGGTCAACCTGATGTTCTGAAAAACATCAT
CACTGAGATCATCCACTCCATCCTGCTGCCAACAGAATGGCAAATTAAAGATCTGGGTCCAGTGTGATTGGT
GAAGGCCTGGGATTGAGGCAGCTGAGTCCTCACTGACCAAGGATGCCCTTGCTTACTCCAGCCTCTTGT
GAAACCCAGCTCTCCTGTCCTCCAGTGAAGACTGGGATGGCAGCCATCAGGGAGGCTGGTCCCAGCTGGGAGT
ATGGGTGTGAGCTATAGACCATCCCTCTGCAATCAATAAACACTTGCTGTGAAAAA

281/615

FIGURE 280

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64881
><subunit 1 of 1, 484 aa, 1 stop
><MW: 52468, PI: 7.14, NX(S/T): 3
MAGPWTFTLLCGLLAATLIQATLSPTAVLILGPVKVKEKLTQEIKDHNATSILQQLPLLSAMREKPAGGIPVLGS
LVNTVLKHIIWLKVITANILQLQVKPSANDQELLVKIPLDMVAGFNTPLVKTIVEFHMTTEAQATIRMDTSASGP
TRLVLSDCATSHGSIRIQLLYKILSFLVNALAKQVMNLLVPSLPNVLKNQLCPVIEASFNGMYADLLQLVKVPISL
SIDRLEFDLLYPAIKGDTIQQLYLGAKLDSQGKVTKWFFNSAASLTMPTLDNIPFSLIVSQDVVKAAVAAVLSPE
EFMVLLDSVLPSAHLRKSSIGLINEKAADKLGSTQIVKILTQDTPEFFIDQGHAKVAQLIVLEVFPSEALRPL
FTLGIEASSEAQFYTKGDQLILNLNNISSDRIQLMNSGIGWFQPDVLKNIITEIHSILLPNQNGKLRSGVPVSL
VKALGFEEAAESSLTKDALVLTPASLWKSSPVSQ

Important features of the protein:

Signal peptide:

amino acids 1-21

N-glycosylation sites.

amino acids 48-51, 264-267, 401-404

Glycosaminoglycan attachment site.

amino acids 412-415

LBP / BPI / CETP family proteins.

amino acids 407-457

282/615

FIGURE 281

CCCCACGCGTCCGCCTCTCCCTCTGCTGGACCTTCCTCGTCTCCATCTCTCCCTCCTTCCCCGCCTCT
CTTTCCACCTTCTCTTCTTCCACCTTAGACACTCCCTCGCCCTCTTCCGCCCCACCGCTGCTTCCCTGGC
CCTTCTCCGACCCCGCTCTAGCAGCAGACCTCCCTGGGGTCTGTGGGGTGTATCTGTGGCCCCCTGTGCCTCCGTGTC
CTTTCTCGCTCCCTCTCCCGCTCCGCTCCGGACCAGGGCCCTGACCCCTGGGGAAAGG**ATGG**TGTTCCCGAGGT
GAGGGTCCCTCTCCCTCTGGGACTCGCGCTGCTCTGGTCTCCCTGGACTCCACGCTCGAGGCCGCCAGA
CATGTTCTGCTCTTCCATGGGAAGAGATACTCCCCCGGGAGAGCTGGCACCCCTACTTGGAGGCCACAAGGCCT
GATGTAAGTCTGCTCGCTGTACCTGCTCAGAGGGCGCCATGTGAGTTGTTACCGCCCTCCACTGTCCGCTGTCCA
CTGCCCCCAGCGTGTGACGGAGCCACAGCAATGCTGTCCAAGTGTGTGGAACCTCACACTCCCTCTGGACTCCG
GGCCCCCACAAAGTCTGCCAGCACACGGGACCATGTACCAACACGGAGAGATCTTCAGTGCCCAGTGACTGTT
CCCCCTCCCGCTGCCAACAGTGTGTCTGCAAGCTGCACAGAGGGCCAGATCTACTGCGGCCTCACACCTG
CCCCGAACCAGGCTGCCAGCACCCCTCCACTGCCAGACTCCTGCTGCCAACGCTGCAAAGATGAGGCAAGTGA
GCAATCGGATGAAGAGGGACAGTGTGCACTCGCTCATGGGGTGAGACATCCTCAGGATCCATGTTCCAGTGATGC
TGGGAGAAAGAGAGGGCCGGGACCCAGCCCCACTGGCCTCAGGCCCTCTGAGCTTCATCCCTGCCACTT
CAGACCCAAGGGAGCAGGCAGCACACTGTCAAGATGTCCTGAAGGAGAAACATAAGAAAGCCTGTGTCATGG
CGGGAAAGACGTACTCCCACGGGGAGGTGTGGCACCCGGCCTTCCGTGCTGCCCTGCCCCCTGCCCTGCATCCTATG
CACCTGTGAGGAGATGGCCGCCAGGACTGCCAGCTGTGACCTGTGCCCCACCGAGTACCCCTGCCGTACCCCGAGAA
AGTGGCTGGGAAGTGCTGCAAGATTGCCCCAGGGACAAAGCAGACCCCTGGCCACAGTGAGATCAGTTCTACCA
GTGTCCCCAAGGCACGGGCCGGTCTCGTCACACATCGGTATCCCCAAGGCCAGACAAACCTGCCGTGCTTTC
CCTGGAACACGAGGCCTGGACTTGGTGGAGATCTACCTCTGGAAGCTGGTAAAAGATGAGGAAACTGAGGCTCA
GAGAGGTGAAGTACCTGGCCAAGGCCACACAGCCAGAATCTTCAACTGACTCAGATCAAGAAAGTCAGGAAGC
AAGACTTCCAGAAAGAGGGCACAGCACTCCGACTGCTCGCTGGCCCCACGAAGGTCACTGGAACGTCTCCTAG
CCCAGACCCCTGGAGCTGAAGGTCA CGGCCAGCCAGACAAAGTGACCAAGACATAACAAAGAC**TAACAGTTGCA**
GATATGAGCTGTATAATTGTTGTATTATATATTAAATAAGAAGTTGCATTACCTCAAAAAAAA
AAAAAAA

283/615

FIGURE 282

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64902
><subunit 1 of 1, 451 aa, 1 stop
><MW: 49675, pI: 7.15, NX(S/T): 1
MVPEVRLSLLGLALLWFPLDSHARARPDMFCLFHGKRYSPGESWHPYLEPQGLMYCLRCTCSEGAHVSCYRLH
CPPVHCPQPVTEPQQCCPKCVEPHTPSGLRAPPKSCQHNGTMYQHGEIFSAHELFPSRLPNQCVLCSCTEGQIYC
GLTTCPPEPGCPAPLPLPDSCCQACKDEASEQSDEEDSVQSLHGVRHPQDPCSSDAGRKRGPFTPAPTGLSAPLSF
IPRHFRPKGAGSTTVKIVLKEKHKKACVHGGKTYSHGEVWHPAFRAFGPLPCILCTCEDGRQDCQRVTCPTEYPC
RHPEKVAGKCKICPEDKADPGHSEISSTRCPKAPGRVLVHTSVSPSPDNLRRFALEHEASDLVEIYLWKLVKDE
ETEAQRGEVPGPRPHSQNLPLSDQESQEALPERGTALPTARWPPRSLERLPSPDPGAEGHGQSRQSDQDITKT
```

Signal peptide:
amino acids 1-25

284/615

FIGURE 283

GGCATGGTGCGCCCGTGGCGGTGGCGGCCGGTGGCGGAGGCTTCCTGGTCGGATTGAAACGAGGAGAAGAT
GACTGACCAACCAGACTGGCTGAATGAATGAATGGCGGAGCCAGCGCGCCATGAGGAGCCTGCCGAGCTGGCG
GCCCTGCCCTGTTGCTGCCGCCGCCGCCGCCGCGCTGCCCTCAGCCGCCCTGCCGGGGGAATGTACCCGGTG
GGGGCGGGGCCGCCGGGGCACGTGGACCGCTGCCGGGCCGGGGTGCAGGGGCCAGGCCACCCCTCCCTA
GGGCAGGGCTCCCACGGCCCCAGGGCCCCAGGGACCGGGCCCCGCCGCCACCGTCCACCAGCACCCCTGGCTGC
CTTCTCCAGCCCCAGTCCCCGGAGACCACCCCTTTGGCGACTGCTGGACCCCTTCCACACCTTCAAGGCC
CGCTCGGCCCCCTGCCGCCACCCCTCCGGCGGCCAACGCACTTCGACCACCTCTCAGGCCGACCAGACCCG
CGCCGACCAACCCCTTCGACGACCAACTGGCCCGCGACCACCCCTGTAGCGACCACCGTACCGGCCACAGA
CTCCCCGGACCCCGACCCCCGATCTCCCCAGCAGCAACAGCAGCGTCCTCCCCACCCACCTGCCACCGAGG
CCCCCTCTCGCTCTCCAGAGTATGTATGTAAC TGCTCTGTGGTGGAAAGCCTGAATGTAATCGCTGCAACC
AGACCACAGGGCAGTGTGAGTGTGGCCAGGTTATCAGGGGCTTCACTGTGAAACCTGCAAAGAGGGCTTTTAC
TAAATTACACTTCTGGGCTCTGTCAGCCATGTGACTGTAGTCCACATGGAGCTCTCAGCATAACCGTGCAACAGGT
AAGCAACAGAGGGTGAACGTGAAGTTATTTATTTAGCAAGGGAAAAAAAAGGCTGTAACCTCAAGGACCA
TACTGGTTAAACAAGGAGGATGAGGGTCA TAGATTACAAATATTTATATACTTTATCTTACTTTATCTTACTTTAT
ATGTTATTTAATGTCAGGATTAAAAACATCTAATTACTGATTAGTTCTCTCAAAAGCACTAGACTCGCCAA
TTTTCTCTGGGATAATTCGTAATTTCATGGAAAAAAATTATTGAAGAATAAAATCTGCTTCTGGAGGGCT
TTCAGGCATGAAACCTGCTAGGGGTTAGAAATGTTCTATGTTATTAATACCATTTGAGGTTGGAGGAAAT
TTGTTGTTGGTTATTTCTCTTAATCAAATCTACATTGTTCTTGACATCTAAAGCTTAACCTGG
GGTACCCCTAATTATTAATTAACAGTGGTAACTAGACTGGTTTACTCTATTACAGTACATTGGAGACCAAA
GTAGATTAAGCAGGAATTATCTTAAACTATTATGTTATTGGAGGTAAATTAAATCTAGTGAATAATGACTGT
TATCTAAGCAATTGCTTGTACTGCACTGAAAGTAATTATTCTGACCTTATGTTGAGGCACTGGCTTTGTG
GACCCCAAGTCACAAAAGTGAAGAGACAGTTAAATAATGAAAAAAATAATGACAGGTTACTCAGTGTAA
TGGGTATAACCAAGATCTGCTGCCACTTACGAGCTGTTCTGGCAAGTAATTCTTCACTGAGCTTGT
TTCTCTCAAGGTTGTGAAGATTAAATGAGTTGATATATAAAATGCCTAGCACATGTCACTCAATAAATT
CTGGTTGTTTAATTCAAGGAATATTATGGACTGAAATGAGAGAACATGTTTAAGAACTTTAGCTCCCTG
ACAAAGAAGTGCTTTATACTTAGCACTAAATATTAAATGCTTATAAAATGATATTACTGTTATGGAATAT
TGTATCATATTGTAGTTATTAAAATGTAAGAAGAGGCTGGCGCGGTGGCTCACGCCGTAACTCCTAGCACTTT
GGGAGGCAAGGCCGGGGATCACTTGAGGGCAGGAGTCTAGATGAGCCTGGCCAGCACAGTGAACCCCCGTCT
CTACTAAAAAATACAAACAAATTAGCTGGCGTGGTGGCACACACCTGTAGTCCCAGCTACTCGGGAGGCTGAGGC
AGGAGAATCGTTGAACCCGGGAGGTGGAGGTTGCACTGAGCTGAGATCGCGCACTGCACTCCAGCCTGGTGAG
AGAGGGAGACTCTGCTTAAAAAAAAAAAAAA

285/615

FIGURE 284

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA64952
><subunit 1 of 1, 258 aa, 1 stop
><MW: 25716, pI: 8.13, NX(S/T): 5
MRSILPSLGGIALLCCAAAAAAVASAASAGNVGGGAAGQVDASPGPGLRGEPSHPFPRATAPTAQAPRTGPPRA
TVHRLPLAATSPAQSPETTPLWATAGPSSTTFQAPLGPSPTTPPAERTSTTSQAPTRPAPTLSTTGPAPTTPV
ATTVPAPTTPRTPTPDLPSSNSVLPTPPATEAPSSPPPEYVCNCVVGSLSNVRCNQTTGQCECRPGYQGLHC
ETCKEGFYLNYSGLCQPCDCSPHGALSIPCNR
```

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 30-33, 172-175, 195-198, 208-211, 235-238

EGF-like domain cysteine pattern signature.

amino acids 214-226.

286/615

FIGURE 285

AACAGACGTTCCCTCGCGGCCCTGGCACCTCAACCCCAGACATGCTGCTGCTGCCCTGCTCTGGGG
AGGGAGAGGGCGGAAGGACAGACAAGTAAACTGCTGACGATGCAGAGTTCCGTGACGGTCAGGAAGGCTGTGT
GTCCATGTGCCCTGCTCCTCTCCATCCCCCTCGCATGGCTGGATTACCCCTGGCCAGTAGTTCATGGCTACTGG
TTCCGGGAAGGGGCCAATACAGACCAGGATGCTCCAGTGGCCACAAACAACCCAGCTCGGGCAGTGTGGAGGAG
ACTCGGGACCGATTCCACCTCCTGGGGACCCACATACCAAGAATTGACCCCTGAGCATCAGAGATGCCAGAAGA
AGTATGCGGGGAGATACTTCTTCGTATGGAGAAGTAATAAAATGGAATTATAAACATCACCGCCTCTCT
GTGAATGTGACAGCCTTGACCCACAGGCCAACATCCTCATCCCAGGCACCCCTGGAGTCCGGCTGCCCTCAGAAT
CTGACCTGCTCTGTGCCCTGGGCCTGTGAGCAGGGGACACCCCTATGATCTCTGGATAGGGACCTCCGTGTCC
CCCCCTGGACCCCTCCACCACCCGCTCCTCGGTGTCACCCCTCATCCCACAGCCCCAGGACCATGGCACCCAGCCTC
ACCTGTCAGGTGACCTTCCCTGGGGCAGCGTGACCAAGAACAGACGTCCATCTAACGTGTCCTACCGCCT
CAGAACTTGACCATGACTGTCTCCAAGGAGACGGCACAGTATCCACAGTCTTGGAAATGGCTCATCTGTCA
CTCCCAGAGGGCCAGTCTCGCCCTGGTCTGTGAGTTGACAGTGTGACAGCAATCCCCCTGCCAGGCTGAGC
CTGAGCTGGAGAGGCCTGACCCCTGTGCCCTCACAGCCCTCAAACCCGGGGTGTGGAGCTGCCCTGGGTGCAC
CTGAGGGATGCAAGCTGAATTCACCTGCAGAGCTCAGAACCCCTCTGGCTCTCAGCAGGTCTACCTGAACGTCTCC
CTGCAGAGCAAAGCCACATCAGGAGTGAATCAGGGGGTGGTCAGGGGGAGCTGGAGCCACAGCCCTGGCTTCCCTG
TCCTTCTCGCTCATCTCGTTGTAGTGAGGTCTGCAGGAAGAAATCGGCAAGGCCAGCAGGGGGCTGGAGAT
ACGGGCATAGAGGATGCAAACGCTGTCAAGGGGTTCAAGCCTCTCAGGGGCCCTGACTGAACCTTGGGAGAAC
AGTCCCCAGACCAGCCTCCCCCAGCTCTGCCCGCTCTCAGTGGGGAGGGAGGAGCTCCAGTATGCACTCC
AGCTTCCAGATGGTGAAGCCTGGGACTCGGGGGACAGGAGGCCACTGACACCGAGTACTGGAGATCAAGATC
CACAGATGAAACTGCAGAGACTCACCTGATTGAGGGATCACAGCCCTCCAGGCAAGGGAGAAGTCAAGAGC
TGATTCTGTAGAATTAAACAGCCCTCAACGTGATGAGCTATGATAACACTATGAATTATGTGCAGAGTGAAGA
ACACAGGCTTCTAGAGTCAAAGTATCTCAAACCTGAATCCACACTGTGCCCTCCCTTATTTTTAACAAAAG
ACAGACAAATTCTCA

287/615

FIGURE 286

MLLLLLPLLWGRERAEGQTSKLLTMQSSVTQEGLCVHVPSCFSYPSHGWIYPGPVVGWREGANTDQDAPVA
TNNPARAVWEETRDRFHLLGDPTHKNCTLISRARRSDAGRYFFRMEKGSIKWNYKHHRLSVNVTALTHRPNILI
PGTLESGCPQNLTCSVWACEQGTPPMISWIGTSVSPLDPSTTRSSVTLIPIPQPDHGTSILTCQVTFPAGSVTTN
KTVHLNVSYPPQNLMTMVFQGDTVSTVLNGNSSLSLPEGQSLRLVCAVDADSNPPARLSLSWRGLTLCPSQPS
NPGVLELPWVHLRDAEFTCRAQNPLGSQQVYNVSLQSKATSGVTQGVVGGAGATALVFLSFCVIFVVVRSCRK
KSARPAAGVGDTGIEDANAVRGSAASQGPLTEPWAEDSPPDQPPPASARSSVGEGELOQYASLSFQMVKPWDSRGQE
ATDTEYSEIKIHR

Signal peptide:
amino acids 1-15

Transmembrane domain:
amino acids 351-370

288/615

FIGURE 287

CGCGAGCTGAGAGGGAGCAGGTAGAGGGGAGGGCGGGACTGTCGTCTGGGGAGCCGCCAGGAGGCCTCTCAG
GCCGACCCAGACCCCTGGCTGGCAGGATGAAGTATCTCCGGCACCGGCCAATGCCACCCCTCATCTGGCC
ATCGGCGCTTCACCCCTCCCTCAGTGTCTAGTGTCAACCACTGCAAGGTCCAGGAGCAGCCACCG
GCGATCCCCGAGGCCCTGGCTGGCCACTCCACCCACCCAGGGCCCGTGCATGCCAACACCTCT
ATGGTCACCCACCCGACTTCGCCACGCAGCCGAGCACGTTCAAGAACCTCCTCTGTACAGACACTGCCGCAC
TTTCCCCTGCTGAGACGTGCCAGCGAGCTGCTGCCAGCAGTGGGCGAGCGCAAGGTACGGGTTTGCAAGCTG
CCTAGCAACTATGTGCCGCCGAGCTGCTGCCAGCAGTGGGCGAGCGCAAGGTCAACCGGTGCTGGAGCTGGAG
GCACAGACTCACGGAGACATCTGCAGTGGACTTCACGACTCCTCTCAACCTCACGCTCAAGCAGGTCTG
TTCTTACAGTGGCAGGAGACAAGGTGCGCAACGCCAGCTCGTGTCAACGGGATGATGACGTCTTGACAC
ACAGACAACATGGCTTCTACCTGCAAGGACATGACCTGGCCACCTCTCGTGGGCAACTGATCCAAAAC
GTGGGCCCCATCCGGCTTTTGAGCAAGTACTATGTGCCAGAGGTGGTGACTCAGAAATGAGCGGTACCCACCC
TATTGTGGGGGTGGCTGGCTCTTGCTGTCCCCTCACGGCGCTGCCCTGCCGCTGCCATGTCCTGGAC
ATCTCCCCATTGATGATGTCCTCTGGGTATGTCCTGGAGCTTGAGGGACTGAAAGCTGCCCTCCCACAGCGGC
ATCCGCACGTCTGGCGTGCCTCCATCGAACACCTGCTCCCTTGACCCCTGCTTCAACCGAGACCTGCTG
CTGGTGCACCGCTCCTACCTATGAGATGTCATGTCATGGGATGCGCTGAACCAGCCCAACCTCACCTGCC
AATCAGACACAGATCTACTGAGTCCAGCATCAGGTCCCCAGCCTGGCTCTGTTCCATAGGAAGGGGCGAC
ACCTCCCTCCAGGAAGCTTGTGGTCTGAGCATAAGGGAGTGCCAGGGAGGTTGAGGTTGATGA
GTGAATATTCTGGCTGGCAACTCCTACACATCCTCAAAACCCACCTGGTACTGTTCCAGCATCTCCCTGGAT
GGCTGGAGGAACCTCAGAAAATATCCATCTCTTTGTGGCTGCTAATGGCAGAAGTGCCTGTGCTAGAGTCC
AACTGTGGATGCATCCGTCCCGTTGAGTCAAAGTCTTACTTCCCTGCTCACCTACTCACAGACGGGATGCTA
AGCAGTGCACCTGCAGTGGTTAATGGCAGATAAGCTCCGTCTGCAGTCCAGGCCAGCCAGAAACTCCGTGTC
CACATAGAGCTGACGTGAGAAATATCTTCAGCCCAGGAGAGAGGGGTCTGATCTAACCTTCTGGGTCTC
AGACAACTCAGAAGGTTGGGGGATACCGAGAGAGGGGGAGGCAAGTGTCTTGAAAGTTGTGAGAGGCTCAGAGTTCTG
ATGCTGTAATGGTGGAGGTGTGGCAGAGGAGGGAGGCAAGTGTCTTGAAAGTTGTGAGAGGCTCAGAGTTCTG
GGGTCTCATTAGGAGCCCCCATCCCTGTTCCCAGAATTAGAGAACAGCACTGGGCTGGAATGATCTT
AATGGGCCAAGGCCACAGGCATATGCCCTCACTACTGCCCTGGAGAGAGGGAGAGATTAGGTCTCCAGCAGCCT
CCCTCACCCAGTATGTTACAGATTACGGGGGACCGGGTGAGCCAGTGACCCCTGCAGCCCCCAGCTCAGG
CCTCAGTGTCTGCCAGTCAGCTCACAGGCAATTGTGATGGGCAGCCTGGGAATATAAAATTGTAAGAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

289/615

FIGURE 288

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA65413
<subunit 1 of 1, 372 aa, 1 stop
<MW: 42515, pI: 8.92, NX(S/T): 6
MKYLRHRRPNATLILAIGAFTLLLFSLLVSPPTCKVQEQQPAIPEALAWPTPPTRPAPAPCHANTSMTHPDFAT
QPQHVQNFLLYRHCRHFPLLQDVPPSKCAQPVFLLLVIKSSPSNYVRRELLRRTWGRERKVGRGLQLRLLFVGTA
SNPHEARKVNRLLELEAQTHGDIQWDFHDSFFNLTLKQVLFLQWQETRCANASFVLNGDDVFAHTDNMVFYLQ
DHDPGRLFVGQLIQNVGPIRAFWSKYYVPEVVTQNERYPPYCAGGGFILLSRFTAALRRAHVLIDFPIDDVFL
GMCLELEGKLPASHSGIRTSGVRAPSQHLSSFDPCFYRDLLLVHRFLPYEMLLWDALNQPNLTCGNQTQIY
```

Important features:**Type II transmembrane domain:**

Amino acids 15-34

N-glycosylation sites:

Amino acids 10-14; 64-68; 184-188; 202-206; 362-366; 367-371

TonB-dependent receptor proteins signature 1:

Amino acids 1-32

N-myristoylation sites:

Amino acids 308-314; 316-322

290/615

FIGURE 289A

CGGGCTCCCCGGCCCTCCCTGGGCTCCACGGTCTTCCCCGAGAGGCAGCCCTCCTCCAGGAGCGGGCCCT
GCACACCATGGCCCCGGGTGGCAGGGGTGGCGCCGGCTGCGCCGCCCTGGCGCTGGCCTTGGCGCTGGC
GAGCGTCTTGAGTGGCCTCCAGCCGTGCGCTGCCCCACCAAGTGTACCTGCTCCGCTGCCAGCGTGGACTGCCA
CGGGCTGGGCTCCGCGGGTCTCGGGCATCCCCCGAACGCTGAGCGCCTTGACCTGGACAGAAATAATAT
CACCAAGGATCACCAAGATGGACTCGCTGGCTCAAGAACCTCGAGTCITGCACTGGAAAGACAACCAGGTCA
CGTCATCGAGAGAGGGCCTTCAGGACCTGAAGCAGCTAGAGCAGTGCCTGAACAAGAATAAGCTGCAAGT
CCTTCCAGAATTGCTTTCCAGAGCACGCCAACGCTACCCAGACTAGATTTGAGTGAAGAACCTGCAACTGG
ACAACAACCACATCAGCTGCATTGA
CCCAGGAAAGCGTCCGCGCATCACCGATGTGAAGAACCTGCAACTGGACAACAACCACATCAGCTGCATTGA
AGATGGAGCCTCCGAGCGTGCAGATTGGAGATCCTTACCCCTAACAAACAACATCAGTCGCATCCTGGT
CACCAAGCTCAACCACATGCCGAAGATCGAACTCTGCCTCCACTCCAACCACCTACTGCACTGCCACCT
GGCCTGGCTCTCGGATGGCTGCAGCGACGGACAGTTGGCAGCTCACACTCTGCATGGCTCCTGTGCATT
GAGGGGCTCAACGTGGCGGATGTGCAGAAGAAGGAGTACGTGTGCCCCAGCCCCCACTCGGAGGCCCCATCCTG
CAATGCCAACCTCCATCTGCCCTGCACGTGAGCAATAACATCGTGGACTGTGGAGAAAGGGCTT
GATGGAGAATCTGCCAACCTGCCGGAGGGCATCGTGAAGAACCTGCTAGAACAGAACCTCATCAAAGC
TGCAGGAGCCTCACCCAGTACAAGAACCTGCAAGAACATCGAGTGGATATTGGGATATTGCTCC
AGATGCCTCCAGGGCCTGAAATCACTCACATCGTGGCTGTATGGGAAAGATCACCGAGATTGCCAACGG
ACTGTTGATGGGCTGGTGTCCCTACAGCTGCTCCTCTCAATGCCAACAGATCAACTGCCTGCAGGGTGAACAC
GTTTCAGGACCTGCAGAACCTCAACTTGCTCCTCTGTATGACAACAAGCTGCAGAACCATCAGCAAGGGCTT
CGCCCTCTGCAGTCCATCCAGACACTCCACTTAGCCAAAACCCATTGTTGCGACTGCCACTGAAGTGGCT
GGCGACTACCTCCAGGACAACCCATCGAGACAAGCGGGCCGCTGCGAGCAGCCCGCAGCAGCAG
GCGCATGCCAGATCAAGAGCAAGAAGTCCGCTGCTCAGGCTCCGAGGATTACCGCAGCAGGTT
GTGCTTCATGGACCTCGTGTGCCCCGAGAAGTGTGCTGTGAGGGCACGATTGTGGACTGCTCCAACCAG
GGTCCGCATCCCAAGOCACCTCCUTGAATATGTCACCGACCTGCACTGAATGACAATGAGGTATCTGTTCTGG
GGCCACTGGCATCTTCAAGAAGTGGCCAAACCTGCGGAAATAATCTGAGTAACAATAAGATCAAGGGTGC
AGAGGGAGCTTCGATGGAGCAGCGTGCAGGAGCTGATGCTGACAGGGAACCGAGTGGACTGCTGCCAG
GCGCGTGTCCGTGGCTCAGTGGCCTCAAAACCTGTATGCTGAGGAGTAATTGATCAGCTGTGAGTAATGA
CACCTTGGCGGCTGAGTCGGTGAGACTGCTGCTCCTCTATGACAATCGGATCACCACATCACCCTGGG
CTTCAACCACGTTGTCCTCCCTGTCACCATAAACCTCTGTCCAACCCCTCAACTGCAACTGCCAC
GCTCGGCAAGTGGTTGAGGAAGAGGCGGATGTCAGTGGGAAACCTAGGTGCCAGAACGCCATT
GATTCCCACCCAGGATGTGGCCATCCAGGACTTCACCTGTGATGGCAACGAGGAGAGTAGCTGCCAG
GCGCTGCCGGAGCAGTGCACCTGTATGGAGACAGTGGTGCAGCAACAAGGGCTCCGCGCCCT
AGGCATGCCAACGGATGTGACCGAGCTGTACCTGGAGGAAACCACCAACAGCCGTGCCAGAGAGCTGCC
CCTCCGACACCTGACGCTTATTGACCTGAGCAACAACAGCATCAGCATGCTGACCAATTACACCTTCA
GTCTCACCTCTCCACTCTGATCCTGAGCTACAAACCGGCTGAGGTGCATCCCCGTCACGCC
GTCCTCGGAGGTGCTAACCTCCATGGCAATGACATTTCAGCGTCTCTGAAGGGCTCTCAACGCC
TCTTCCCACCTCTGGCGCTGGGAACCAACCCACTCCAGTGTGACTGCAGTCTCGGTGGCTG
GGCGGGGTACAAGGAGCCTGGCATGCCCGCTGCACTAGCCCTGAGCCCATGGCTGACAGGG
CCCCAACCAACGCTTCAGTGCAGAACGGCCAGTGGACATCAACATTGTCAGGCAAT
CCCCGTGCAAGAATAACGGGACATGCACCCAGGACCTGTGGAGCTGTACCGCTGTGCCTGCC

291/615

FIGURE 289B

TACAGCTACAAGGGCAAGGACTGCCTGTGCCATCACACCTGCATCCAGAACCCCTGTCAGCATGGAGGCACC
TGCCACCTGAGTGCACGCCACAAGGAATGGGTCAGCTGCTCCTGCCCTCTGGGCTTGAGGGCAGCGGTGTGAG
ATCAACCCAGATGACTGTGAGGACAACGACTGCGAAAACATGCCACCTGCGTGGACGGGATCAACAACATACGTG
TGTATCTGCCGCTTAACACACAGGTGAGCTATGCGACGAGGTGATTGACCACTGTGTCCTGAGCTGAACCTC
TGTCACTGAGGCCAAGTGCATCCCCCTGGACAAAGGATTCACTGAGCTGCGAGTGTGCTCTGGCTACAGCGGGAAAG
CTCTGTGAGACAGACAATGATGACTGTGTCGGCCACAAGTGCCGCAACGGGCCAGTGCCTGAGACACAATCAAT
GGCTACACATGCACCTGCCCTCAGGGCTTCAGTGGACCCCTCTGTGAAACACCCCCCACCCTGGCTACTGCAG
ACCAGCCCATGCGACCAAGTACGAGTGCAGAACGGGCCAGTGCATCGTGGTGCAGCAGGAGCCCACCTGCCGC
TGCCACCAGGCTTCGCCGGCCCCAGATGCGAGAACGCTCATCACTGTCAACTCTGTGGCAAAGACTCCTACGTG
GAACCTGGCTCCGCAAGGTCCGACCCAGGCCAACATCTCCCTGCAGGTGGCACTGACAAGGACAACGGCATT
CTTCTCTACAAAGGAGACAATGACCCCTGGCACTGGAGCTGTACCTGGAGACAGTGAATGATGGCAGTTCACAGTGTGGAGCTGGT
CTGAGTTCCCTCCAACCACAGTGTACAGTGTGGAGACAGTGAATGATGGCAGTTCACAGTGTGGAGCTGGT
ACGCTAAACCAGACCCCTGAACCTAGTAGTGGACAAAGGAACCTCAAAGAGCCTGGGAAGCTCCAGAACAGCAGCCA
GCAGTGGGCATCAACAGCCCCCTTACCTGGAGGACATCCCCACCTTACCTGGCCCTTGCAGGCCAGGG
ACGGACCGGCTCTAGGGCGCTTCCACGGATGCATCCATGAGGTGCGCATCAACAAACGAGCTGCAGGACTCTCAAG
GCCCTCCACACAGTCCCTGGGGTGTCACTGGAGGCTGCAAGTCTGCACCGTGTGCAAGCACGGCTGTGCC
TCCGTGGAGAAGGACAGCGTGGTGTGCGAGTGCAGGCCAGGCTGGACCGGCCACTCTGCAGACCAGGAGGCC
GACCCCTGCCCTGGCACAGATGCCACCATGGAAAATGTGTGGCAACTGGGACCTCATACATGTGCAAGTGTGCC
GAGGGCTATGGAGGGACTTGTGTGACAACAAGAACATGACTCTGCCATGCCCTGCTCAGCCTTCAAGTGTCAAC
GGGCAGTGCCACATCTCAGACCAAGGGAGCCTACTGCCCTGCGCAGCCGGCTTAGCGGGAGCAGTGC
CAAGAGAACCCGTGCTGGGACAAGTAGTCCGAGAGGTGATCCGCCAGAAAGGTTATGCATCATGTGCC
GCCTCCAAGGTGCCCATCATGGAAATGTCGTGGGGCTGTGGGCCAGTGTGCTGCAGCCCACCCGAGAACGG
CGGAAATACGTCTCCAGTGCACGGACGGCTCTCGTGGAGAGGACTTAGAGTGGAGAGACACTTAGAGTGC
CTCGCGTGTCCCTAAGCCCCCTGCCGCCCTGCCACCTCTCGGACTCCAGCTGTGATGGAGTTGGGACAGCC
GTGGGACCCCTGGTATTGAGCATGAAGGAATGAAGCTGGAGAGGAAGGTAAGAAGAAGAATATTAAGTA
TATTGTAAAATAACAAAAATAGAACCTAAAAA

292/615

FIGURE 290

MAPGWAGVGAARVRLALALALASVLGPPAVACPTKCTCSAASVDCHGLGLRAVPRGIPRNEAERLDLDRNNITR
ITKMDFAGLKNLRVLHEDNQVSVERGAFQDLKQLERLRLNKNLQVLPPELLFQSTPKLRLDLSENQIQGIPR
KAFRGITDVKNLQLDNNHISCIEDGAFRALRDLEILTNNNNNISRILVTSFNHMPKIRTLRLHSNHYCDCHLAW
LSDWLRQRRTVGQFTLCMAPVHLRGFNADVQKKEYVCAPHSSEPPSCNANSISCPSPCTCSNNIVDCRGKGLME
IPANLPEGIVEIRLEQNSIKAIIPAGAFTQYKKLKRIDISKNQISDIAPDAFQGLKSLTSLVLYGNKITEIAKGLF
DGLVSLQQLLNANKINCRVNNTFQDLQNINLLSILYDNKLQTIISKGLFAPLQSITQLHLAQNPVFCDCHLKWLA
YLQDNPIETSGARCSSPRLANKRISQIKSKKFRCSGSDEYRSRFSSECFMIDLVCPEKRCCEGTIVDCSNQKLVR
IPSHLPEYVTDLRLNDNEVSVLEATGIFKKLPNLRKINLSNNNIKEVREGAFDGAASVQEIMLTGNQLETVHGRV
FRGLSGLKTLMRLRSNLISCVSNTFAGLSSVRLLSLYDNRITTITPGAFTTLVSLSTINLLSNPFNCNCHLAWLG
KWLRKRRIIVSGNPRCQKPFKLKEIPIQDVAIQDFTCDGNEESSCQLSPRCPEQCTCMETVVRCSNKGRLALPRGM
PKDVTELYLEGNHLTAVPRELSALRHLLIDLSNNNSISMLNTFSNMSHLSTLILSYNRIRCIPVHAFNGLRLS
RVLTIHGNDISSLVPEGSFNDLTSLSHLALGTNPLHCDCSLRWLSEWVKAGYKEPGIARCSSPEPMADRLLLTTPT
HRFQCKGPVDINIVAKCNACLSSPCKNNNGTCTQDPVELYRCACPYSYKGKDCTVPINTCIQNPCQHGGTCHLSDS
HKDGFSCSCPCLGFEGQRCEINPDCCEDNDCEENNATCVDGINNYVCICPPNYTGELCDEVIDHCVPELNLCQHEAK
CIPLDKGFSCECVPGYSGKLCETDNDDCVAHKCRHGAQCVDTINGYTCCTCPQGFSGPFCEHPPPMVLLQTSPCDQ
YECONGAQCIVVQQEPTCRCPGFGAGPRCEKLITVNFVGKDSYVELASAKVRPQANISLQVATDKDNGILLYKGD
NDPLALELYQGHVRLVYDSLSSPPTTVYSVETVNDGQFHSVELTLNQTLNLVVDKGTPKSLGKLQKQPAVGINS
PLYLGGIPTSTGLSALRQGTDRPLGGFHGCIEVRRINNELQDFKALPPQSLGVSPGCKSCTVCKHGLCRSVEKDS
VVCECRPGWTGPLCDQEARDPCLGHRCHHGKCVATGTSYMCKCAEGYGGDLCDNKNDSANACSAFKCHHGQCHIS
DQGEPYCILCQPGFSGEHCQQENPCLGQVVRREVIRRQGYASCATASKVPIMECRGGCGPQCCQPTRSKRRKYVFQ
CTDGSSFVEEVERHLECGCLACS

Signal peptide:
amino acids 1-27

293/615

FIGURE 291

GGATGCAGGACGCTCCCTGAGCTGCCTGTACCGACTAGGTGGAGCAGTGTTCAGGCTTCCGCAGACTCAACTGAGA
AGTCAGCCTCTGGGGCAGGCACCAGGAATCTGCCTTTCAGTTCTGTCTCCGGCAGGCTTGAGGATGAAGGCTG
CGGGCATTCTGACCCTCATGGCTGCCTGGTACAGGCGCCGAGTCAAATCTACACTCGTTGCAAACGGCAA
AAATACTCGAGGGCTGGCTGGACAATTACTGGGCTTCAGCCTGGAAACTGGATCTGCATGGCATATTATG
AGAGCGGCATACAACACACAGCCCCGACGGCTGGATGACGGCAGCAGTCAACAGCTGGCATCTTCCAGATCAACA
GCTTCGCGTGGTGCAGACGCGGAAAGCTGAAGGAGAACAAACCAACTGCCATGTCGCTGCTCAGCCTTGATCACTG
ATGACCTCACAGATGCAATTATCTGTGCCAGGAAAATTGTTAAAGAGACACAAGGAATGAACATTGGCAAGGCT
GGAAGAAAACATTGTGAGGGCAGAGACCTGTCCGAGTGGAAAAAGGCTGTGAGGTTTCCTAAACTGGAACGGAC
CCAGGATGCTTGCAGCAACGCCCTAGGATTGCAGTGAATGTCCAATGCCTGTGTCATCTGTCCCCTTCC
CCCAATATTCTCAAACCTGGAGAGGGAAAATTAGCTATACTTTAAGAAAATAATTCCATTAAATGTC

294/615

FIGURE 292

MKAAGILTLIGCLVTGAESKIKYTRCKLAKIFSRAGLDNWGFSLGNWICMAYYESGYNTTAPTVLDDGSIDYGIF
QINSFAWCRRGKLKENNHCHVACSLITDDLTDAAIICARKIVKETQGMNYWQGWKKHCEGRDLSEWKKGCEVS

Signal peptide:
amino acids 1-19

295/615

FIGURE 293

AGAAAGCTGCACTCTGTTGAGCTCCAGGGCGCAGTGGAGGGAGGGAGTGAAGGAGCTCTGTACCCAAGGAAAG
TGCAGCTGAGACTCAGACAAGATTACAATGAACCAACTCAGCTTCTGCTGTTCTCATAGCGACCACCAGAGGA
TGGAGTACAGATGAGGCTAATACTTACTTCAGGAATGGACCTGTTCTCGTCTCCATCTGCCAGAACGCTGC
AAGGAAATCAAAGACGAATGTCTAGTGCATTGATGCCGTATTCTCCGCACTGAGAATGGTGTATCTAC
CAGACCTCTGTGACATGACCTCTGGGGTGGCGCTGGACCCCTGGTGGCCAGCGTGCATGAGAATGACATGCGT
GGGAAGTGACGGTGGCGATCGTGGTCCAGTCAGCAGGGCAGCAAAGCAGACTACCCAGAGGGGGACGGCAAC
TGGGCAACTACAACACCTTGGATCTGCAGAGGCGGCCACGAGCGATGACTACAAGAACCCCTGGCTACTACGAC
ATCCAGGCCAAGGACCTGGCATCTGCCACGTGCCAATAAGTCCCCATGCAGCACTGGAGAACAGCTCCCTG
CTGAGGTACCGCACGGACACTGGCTCCTCAGACACTGGACATAATCTGTTGGCATCTACCAGAAATATCCA
GTGAAATATGGAGAAGGAAAGTGGTGGACTGACAACGGCCCGGTGATCCCTGTGGTCTATGATTTGGCGACGCC
CAGAAAACAGCATCTTATTACTCACCTATGGCCAGCGGAATTCACTGCGGGATTGTTCAAGGGTATT
AATAACGAGAGAGCAGCCAACGCCCTTGTGCTGGAATGAGGGTCACCGGATGTAACACTGAGCATCACTGCATT
GGTGGAGGGAGGAGATACTTCCAGAGGCCAGTCCCCAGCAGTGTGGAGATTCTGGTTTGATTGGAGTGGATAT
GGAACCTATGTTGGTTACAGCAGCAGCCGTGAGATAACTGAGGCAGCTGTGCTCTATTCTATCGTTGAGGTTT
TGTGGGAGGGAACCCAGACCTCTCCCAACCATGAGATCCCAAGGATGGAGAACAAACTACCCAGTAGCTAGA
ATGTTAATGGCAGAAGAGAAAACAATAATCATATTGACTCAAGAAAAAA

296/615

FIGURE 294

MNQLSFLLFLIATTRGWSTDEANTYFKEWTCSSSPSLPRSCKEIKDECPSAFDGLYFLRTENGVIYQTFCDMTSG
GGGWTLVASVHENDMRGKCTVGRWSSQQGSKADYPEGDGNWANYNTFGSAEAATSDDYKNPGYYDIQAKDLGIWH
HVPNKSPMQHWRNSSLLRYRTDTGFLQTLGHNLFGIYQKYPVKYGECKCWTDNGPVI
YGQREFTAGFVQFRVFNNERAANALCAGMVRTGCNTEHHCIGGGGYFPEASPQQCGDFSGFDWSGYGTHVGYSSS
REITEAAVLLFYR.

297/615

FIGURE 295

CAGGCCATTGCATCCCACTGTCCTGTGTCGGAGCCAGGCCACACCGTCTCAGCAGTGTCAATGTGTTAAAAA
CGCCAAGCTGAATATATCATGCCCTATTAAAACCTGTACATGGCTCCCCATTGGTTTGGAGAAAGTTCAAG
CTTTTACCTGGTGTGCCTGTATCCCAGTGTTCAGGCTGGCTAGACGGCGGAAGAAGATCCTATTTACTGT
CACTTCCCAGATCTGCTCTCACCAAGAGAGATTCTTCTTAAACGACTATAACAGGGCCCAATTGACTGGATA
GAGGAATACACCACAGGCATGGCAGACTGTCATCTTAGTCACAGCAGTTCACAGCTGCTGTTTAAGGAAACA
TTCAAGTCCCTGTCACATAGACCTGATGTCCTCTATCCATCTCAAATGTCACCAGCTTGACTCAGTTGTT
CCTGAAAAGCTGGATGACCTAGTCCCCAAGGGAAAAAATTCTGCTGCTCTCATCAACAGATAAGAAAG
AAAAATCTGACTTTGGCACTGGAAGCCCTAGTACAGCTGCGTGGAGATTGACATCCAAAGATTGGAGAGGGTT
CATCTGATCGTGGCAGGTGGTTATGACGAGAGACTGCTGGAGAATGTGGAACATTATCAGGAATTGAAGAAAATG
GTCCAACAGTCCGACCTTGGCAGTATGTGACCTTCTTGAGGTCTTCTCAGACAAACAGAAAATCTCCCTCCTC
CACAGCTGCACGTGTGCTTACACCCAAGCAATGAGCACTTGGCATTGTCCTCTGGAGCCATGTACATG
CAGTGCCAGTCATTGCTGTTAATTGGGTGGACCCCTGGAGTCCATTGACCAAGTGTACAGGGTTCTGTGT
GAGCCTGACCGGGTGCACCTCTCAAGCAATAGAAAAGTTCATCGTGAACCTTCTTAAAGCCACCATGGC
CTGGCTGGAAGAGCCAGAGTGAAGAAAATTCCCTGAGCATTACAGAACAGCTCTACCGATATGTTACC
AAACTGCTGGTATAATCAGATTGTTTAAGATCTCCATTAAATGTCATTTTATGGATTGTAGACCCAGTTG
AACCAAAAAGAAAACCTAGAATCTAGCAAGAGAGATCTTAAAAAAATAACTGAGTCTTGAATGTGAGCCA
CTTCCCTATATACACACCTCCGTCCACCTTTCAGAAAAACATGTCATTGCTATATCATTCCAATTT
TGCCAGTGTAAAGTACAAATGTGGTGTCACTTCATGTCAGCAGAGTATTTAATTATATTCTGGGATTAT
TGCTCTCTGTCTATAAAATTGAAATGATACTGTGCCTTAATTGGTTTCATAGTTAACGTGTATCATTATCA
AAGTTGATTAATTGGCTTCATAGTATAATGAGAGCAGGGCTATTGAGTTCCAGATTCAATCCACCGAAGTGT
TCACTGTCATCTGTTAGGAATTGGTGTCTGTCTGGATCCATAGCGAGAGTGTCTGTATTTTT
TTAAGATAATTGTATTTGCACACTGAGATATAATAAAAGGTGTTATCATAAAAAAAAAAAAAA

298/615

FIGURE 296

MPLLKLVHGSPLVFGEKFKLFTLVSACIPVFRLLARRKKILFYCHFPDLLLTKRDSFLKRILYRAPIDWIEEYTTG
MADCILVNSQFTAASFKETFKSLSHIDPDVLYPQLNVTSFDSVVPEKLDLVPKGKKFLLLSINRYERKKNLTLA
LEALVQLRGRRLTSQDWERVHLIVAGGYDERVLENVEHYQELKKMVQQSDLGQYVTFLRSFSQDKQKISLLHSCTCV
LYTPSNEHFGIVPLEAMYMQCPVIAVNSGGPLESIDHSVTGFLCEPDGVHFSEAIKFIRESLKATMGLAGRAR
VKEKFSPEAFTEQLYRYVTKLLV

Signal peptide:

amino acids 1-15

299 / 615

FIGURE 297

GAATACGCCGATCCGAGACGTGGCTCCCTGGCGGCAGAACCAATGTTGGACTTCGCGATCTCGCGTACCTTC
TTGCTGGCGTTGGTGGGAGCCGTGCTCACCTCTATCCGGCTTCCAGACAAGCTGCAGGAATTCCAGGGATTACT
CCAACATGAAGAAAAAGATGGTAATCTTCAGATATTGTGAATAGTGGAAAGTTGCATGAGTCCTGGTTAATTG
CATGAGAGATATGGGCCTGTGGCTCCTCTGGTTGGCAGGCGCCTCGTGGTAGTTGGGACTGTTGATGTA
CTGAAGCAGCATATCAATCCAATAAGACATCGGACCCTTTGAAACCAGTGAAGTCATTAAAGGTATCAA
TCTGGTGGTGGCAGTGTGAGTAAAACCACATGAGGAAAAATTGTATGAAATGGTGTGACTGATTCTCTGAAG
AGTAACCTTGCCCTCCTCTAAAGCTTCAGAAGAATTATTAGATAAATGGCTCCTACCCAGAGACCAGCAC
GTGCCCTCAGCCAGCATATGCTGGTTGCTATGAAGTCTGTTACACAGATGGAATGGTAGTACATTGAA
GATGATCAGGAAGTCATTGCTCCAGAAGAACATGGCACAGTTGGCTGAGATTGGAAAAGGCTTCTAGAT
GGGTCACCTGATAAAAACATGACTCGGAAAAACAATATGAAGAATGCCCTCATGCAACTGGAGTCTGTTTAAGG
AACATCATAAAAAGAACGAAAAGGAAGGAACCTCAGTCAGTCAACATATTTCATTGACTCCTTAAG
AATGACCAACAGATCTAGAAGACAGTATGATATTTCTGGCCAGTTGCATAAAACTGCAAATTGTGTACC
TGGGCAATCTGTTTTAACCACCTCTGAAGAAGTTCAAAAAAAATTATATGAAGAGATAAACCAAGTTTGGA
AATGGTCTGTTACTCCAGAGAAAATTGAGCAGCTCAGATATTGTCAAGCATGTGCTTGTGAAACTGTTGAACT
GCCAAACTGACTCCAGTTCTGCCAGCTCAAGATATTGAAGGAAAATTGACCGATTATTATTCCCTAGAGAG
ACCCTCGTCTTTATGCCCTGGTGTGGTACTTCAGGATCTAAACTTGGCATCTCACACAAGTTGATCCA
GATCGGTTGATGATGAATTAGTAATGAAAATTGTTCTCACTGGATTCTCAGGCACACAGGAGTGTCCAGAG
TTGAGGTTGATATATGGTACCAAGTACTCTTAGTGTATTGGTAGAGAGACTGCACCTACTTCTGTGGAG
GGACAGGTTATTGAAACAAAGTATGAACCTGGTAACATCATCAAGGGAAGAAGCTGGATCACTGTCTAAAGAGA
TATTAAAATTATACATTAAACCAACTTAAATTGATTGAGGAAAACAACCATTAAAAAAATCTATGTTG
AATCCTTTATAAACCAACTTAAACCAACTTAAACACCTATTGACTTAA

300/615

FIGURE 298

MLDFAIFAVTFLLALVGAVLYLYPASRQAAIGIPGITPTEEKDGNLPDIVNSGSLHEFLVNLHERYGPVVSFWFGR
RLVVSLGTVDVLKQHINPNKTSDPFETMLKSLLRYQSGGGSVSENHMRKKLYENGVTDSILKSNFALLKLSEELL
DKWLSYPETQHVPLSQHMLGFAMKSVTQMVMGSTFEDDQEVRFQKNHGTWSEIGKGFLDGSLDKNMTRKKQYE
DALMQLESVLRNIIKERKGRNFSQHIFIDSLVQGNLNDQQILEDSMIFSLASCIITAKLCTWAICFLTTSEEVQK
KLYEEINQVFGNGPVTPEKIEQLRYCQHVLCETVRTAKLTPVSAQLQDIEGKIDRFIIPRETLVLYALGVVLQDP
NTWPSPHKFDPDRFDELVMKTSSLGFSGTQECPELRFAYMVTIVLLSVLVKRLHLLSVEGQVIETKYELVTSS
REEAWITVSKRY

Signal peptide:

amino acids 1-18

Transmembrane domain:

amino acids 271-290

301/615

FIGURE 299

CTAGATTGTCGGCTGCAGGGAGACTTCAGGAGTCGCTGTCTGAACCCAGCCTCAGAGACC GCCGCCCTT
GTCCCCGAGGGCCTAGGCCGGGCTCAGGGCTTGTGCCCTCGCTCCTGACGCTCCTGGCGCATCTGGTGGT
CGTCATCACCTTATTCTGGTCCCAGGACAGCAACATAACAGGCCTGCCTGCCTCACGTTCACCCCCGAGGAGTA
TGACAAGCAGGACATTCACTGGTGGCCGCCTCTGTCAACCTGGCCTCTTGAGTGGAGCTGGCCGGTT
CCTCTCAGGAGTCTCCATGTTAACAGCACCCAGAGCCTCATCTCCATTGGGCTCACTGTAGTGCATCCGTGGC
CCTGTCCTCTTCATATTGAGCGTTGGGAGTGCACTAACGTATTGGTACATTTGTCTTGAGTGCAGTGCCTTCC
AGCTGTCACTGAAATGGCTTATTGTCACCGTCTTGGCCTGAAAAAGAAACCTTCTGATTACCTTCATGACG
GGAACCTAAGGACGAAGCCTACAGGGCAAGGGCCGCTCGTATTCTGGAAGAAGGAAGGCATAGGCTTCGGTT
TTCCCTCGGAAACTGCTCTGCTGGAGGATATGTGTTGGAATAATTACGTCTGAGTCTGGGATTATCCGCATT
GTATTTAGTGTGTTGTAATAAAAATGTTTAGTAACATTAAGACTTATACAGTTTAGGGACAATTAAA
AAAAAAAAAA

302/615

FIGURE 300

MGRVSGLVPSRFLTLLAHLVVVITLFWSRDSNIQACLPLTFTPEEYDKQDIQLVAALSVTLGLFAVELAGFLSGV
SMFNSTQSLISIGAHCSASVALSFIFERWECTTYWYIFVFCSALPAVTEMALFVTVFGLKKPF

Transmembrane domain:

amino acids 12-28 (type II), 51-66, 107-124

303 / 615

FIGURE 301

CTGGGACCCGAAAAGAGAAGGGGAGAGCGAGGGGACGAGAGCGGAGGAAGAATGCAACTGACTCGCTGCTGC
TTCGTGTTCTGGTGCAGGGTAGCCTCTATCTGGTCATCTGTGCCAGGATGATGGTCCTCCGGCTCAGAGGAC
CCTGAGCGTGTGACCACAGAGGGCCAGCCCCGGCCGGCTCGGAAGCGGGCACATCTCACCTAAGTCC
CGCCCCATGCCAATCCACTCTCCTAGGGCTGCTGGCCCCGCTGGGGAGGCTGGGGATTCTGGCAGGCC
CCCAACCGCCCAGACCACAGCCCCCACCTCAGCCAAGGTGAAGAAAATCTTGCTGGCGACTTCTACTCC
AACATCAAGACGGTGGCCCTGAACCTGCTCGTCACAGGGAAAGATTGTTGGACCATGGCAATGGGACCTTCAGCCTC
CACTTCCAACACAATGCCACAGGCCAGGGAAACATCTCCATCAGCCTCGTCCCCCAGTAAAGCTGTAGAGTTC
CACCAAGGAAACAGCAGATCTTCATCGAAGCCAAGGCCCTCCAAAATCTCAACTGCCGATGGAGTGGAGAAGGTA
GAACGGGGCCCGGCCGGACCTCGCTTGACCCACGACCCAGCCAAGATCTGCTCCCGAGACCACGCTCAGAGCTCA
GCCACCTGGAGCTGCTCCCAGCCCTCAAAGTCGTCTGTCTACATCGCCTCTACAGCACGGACTATCGGCTG
GTCCAGAAGGTGTGCCAGATTACAACATACCATAGTGATAACCCCTACTACCCATCTGGGTAACCCGGGCAGGC
CACAGAGGCCAGGCCAGGGCTGGAAGGACAGGCCCTGCCATGCAGGAGACCATCTGGACACCCGGCAGGGAAAGGG
GTTGGGCCTCAGGCAGGGAGGGGGTGGAGACGAGGAGATGCCAAGTGGGCCAGGGCAAGTCTCAAGTGGCAG
AGAAAAGGGTCCCAAGTGCTGGTCCAACCTGAAGCTGTGGAGTGACTAGATCACAGGAGCACTGGAGGAGGAGTG
GGCTCTCTGTGCAGCCTCACAGGGCTTGCCACGGGCCACAGAGAGATGCTGGGTCCCCGAGGCCTGTGGCAG
GCCGATCAGTGTGGCCCCAGATCAAGTCATGGAGGAAGCTAACGCCCTGGTTCTGCCATCCTGAGGAAAGATA
GCAACAGGGAGGGGGAGATTTCATCAGTGTGGACAGCCTGTCAACTTAGGATGGCTGAGAGGGCTTCCTAG
GAGCCAGTCAGCAGGGTGGGTGGGCCAGAGGAGCTCCAGCCCTGCCAGTGGCGCCCTGAGCCCCTGTC
GTGTGCTGAGCATGGCATGAGGCTGAAGTGGCAACCCCTGGGTCTTGATGTCTGACAGATTGACCATCTGTCT
CCAGCCAGGCCACCCCTTCCAAAATTCCCTCTGCCAGTACTCCCCCTGTACCAACCCATTGCTGATGGCACA
CCCATCCTTAAGCTAACAGACAGGAGATTGTGGCCTCCCACACTAACGCCACAGCCCATTCCGCGTGTGTC
CCTCTCCACCCCAACCCCTGCTGGCTCCTCTGGAGCATCCATGCCCGAGAGGGGCTCAACAGTCAGCC
TCACCTGTCAGACCGGGGTTCTCCGGATCTGGATGGCCGCCCTCTCAGCAGGGGAGGGGTGGGTGGGGGGAGGG
CGGGCCGCAGAGCATGTGCTGGATCTGTTCTGTGTCTGTGGGTGGGGGGAGGGGAGGGAAAGTCTTGTGA
AACCGCTGATTGCTGACTTTGTGTGAAGAATCGTGTCTGGAGCAGGAAATAAGCTTGCCCCGGGGCA

304/615

FIGURE 302

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66521
><subunit 1 of 1, 252 aa, 1 stop
><MW: 28127, pI: 8.91, NX(S/T): 5
MQLTRCCFVFLVQGSLYLVICGQDDGPPGSEDPERDDHEGQPRPRVPRKRGHISPKSRPMANSTLLGLAPPGEA
WGILGQPPNRPNHSPPPSAKVKKIFGWGDFYSNIKTVALNLLVTGKIVDHGNGTFSVHFQHNATGQGNISISLVP
PSKAVEFHQQQIFIEAKASKIFNCRMEEWEKVERGRRTSLCTHDPAKICSRDHAQSSATWSCSQPKVVVCYIAF
YSTDYRLVQKVCPDNYHSDTPYYPSG
```

Important features of the protein:

Signal peptide:

amino acids 1-14

N-glycosylation sites.

amino acids 62-65, 127-130, 137-140, 143-146

2-oxo acid dehydrogenases acyltransferase

amino acids 61-71

305/615

FIGURE 303

CGGTGGCCATGACTGCGGCCGTGTTCTTCGGCTGCGCCTTCATTGCCCTCGGGCTGCGCTGCCCTTATGTCT
TCACCATGCCATCGAGCCGTTGCGTATCATCTCCTCATGCCGGAGCTTCTTCTGGTTGGTGTCTACTGA
TTTGTCCCTTGTGGTCATGGAAGAGTCATTATTGACAACAAAGATGGACCAACACAGAAATATCTGCTGA
TCTTGAGCGTTGTCTGTCTATATCCAAGAAATGTCGATTCGATATTATAAACTCTAAAAAAGCCA
GTGAAGGTTGAAGAGTATAAACCCAGGTGAGACAGCACCCCTATGCCACTGCTGGCTATGTTCTGGCTTGG
GCTTGGAAATCATGAGTGGAGTATTTCTTGTGAATACCCTATCTGACTCCTGGGCCAGGCACAGTGGCA
TTCATGGAGATTCTCCTCAATTCTCCTTATTCAGCTTCATGACGCTGGCATTATCTGCTGCATGTATTCT
GGGCATTGTATTTTGATGGCTGTGAGAAGAAAAGTGGGCATCCTCCTATCGTTCTCCTGACCCACCTGC
TGGTGTCAGCCCAGACCTTCATAAGTTCTTATTATGGAATAAACCTGGCGTCAGCATTATAATCCTGGTGTCA
TGGGCACCTGGCATTCTAGCTGCCGGAGGCAGCTGCCGAAGCCTGAAACTCTGCCTGCTGCCAAGACAAGA
ACTTCTTCTTACAACCAGCGCTCCAGAACCTCAGGGAACCGACACTCCAAACCGCAGACTACATCTTA
GAGGAAGCACAACTGTGCCTTTCTGAAAATCCCTTTCTGGTGGATTGAGAAAGAAATAAAACTATGCAGATA

306/615

FIGURE 304

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA66658
><subunit 1 of 1, 257 aa, 1 stop
><MW: 28472, pI: 9.33, NX(S/T): 0
MTAAVFFGCAFIAFGPALALYVFTIAIEPLRIIFLIAGAFFWLVSSLISLIVWFMARVIIDNKDGPTQKYLLIFG
AFVSVYIQEMFRFAYYKLLKKASEGLKSINPGETAPSMRLLAYVSGLGFGIMSGVFSFVNTLSDSLGP GTVGIHG
DSPQFFFLYSAFMTLVIIILLHVFWGIVFFDGCEKKKGILLIVLLTHLLVSAQTFISSYYGINLASAFIILVLMGT
WAFLAAGGSCRSLKLCLLCQDKNFLYNQRSR
```

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domains:

amino acids 32-51, 119-138, 152-169, 216-235

Glycosaminoglycan attachment site.

amino acids 120-123

Sodium:neurotransmitter symporter family protein

amino acids 31-65

307/615

FIGURE 305

308/615

FIGURE 306

MRSTILLFCLLGSTRSLPQLKPALGLPPTKLAPDQGTLPNQQQSNQVFPSSLIPLTQM
LTLPDLHLLNPAAGMTPGTQTHPLTLGGLNVQQQLHPHVLPIFVTQLGAQGTILSSEE
LPQIFTSLIHSIFPGGILPTSQAGANPDVQDGSLPAGGAGVNPATQGTPAGRLPTPSG
TDDDFAVTTPAGIQQRSTHAIEEATTESANGIQ

Signal peptide:

amino acids 1-16

309/615

FIGURE 307

CCGGGGACATGAGGTGGATACTGTCATTGGGCCCTTATTGGGTCCAGCATCTGTGGCCAAGAAAATTTTG
GGGACCAAGTTTGAGGATTAATGTCAGAAATGGAGACGAGATCAGCAAATTGAGTCAACTAGTGAATTCAAACA
ACTTGAAGCTCAATTCTGAAATCTCCCTCCTCAATCGGCCGTGGATGTCCTGGTCCCCTGTCAGTC
TCGAGGCATTTAAATCTTCCCTGAGATCCCAGGGCTTAGAGTCAGCAACTGAGAATTGAGGACCTGCAGGGCCCTT
TAGACAATGAAGATGATGAAATGCAACACAATGAAGGGCAAGAACGGAGCAGTAATAACTCAACTACGGGGCTT
ACCATTCCCTGGAAGCTATTACACAGAGATGGACAACATTGCCGAGACTTCTGACCTGGCAGGGAGGCTGA
AGATTGGACATTGTTGAAAACCGGCCGATGTATGACTGAAAGTCAGCACTGGGAAAGGCGTGAGGCCGG
CCGTTGGCTGAATGCAGGCATCCATTCCCAGAGTGGATCTCCAGGCCACTGCAATCTGGACGGCAAGGAAGA
TTGTATCTGATTACCAAGAGGGATCCAGCTATCACCTCCATCTTGGAGAAAATGGATATTCTTGTGCTGTGG
CCAATCCTGATGGATATGTGTATACTCAAACCTAAAACCGATTATGGAGGAAGACGCGGTCCGAAATCTGGAA
GCTCCTGCATTGGTGTGACCCAAATAGAAACTGGAACGCTAGTTTGCAAGGAAAGGGAGCCAGCGACAACCCCT
GCTCCGAAGTGTACCATGGACCCACGCCAATTGGAAGTGGAGGTGAAATCAGTGGTAGATTTCATCCAAAAC
ATGGGAATTCAAGGGCTCATGCACCTGCACAGCTACTCGCAGCTGATGTATCCATATGGGTACTCAGTCA
AAAAGGCCAGATGCCAGGAACTCGACAAGGTGGCGAGGCTGCGGCCAAAGCTCTGGCTTCTGTCGGGCA
CTGAGTACCAAGTGGTCCCCACCTGCACACTGTCTATCCAGCTAGCGGGAGCAGCAGCTGGCGTATGACA
ACGGCATCAAATTGCAATTGAGTTGAGAGATAACGGGACCTATGGCTTCCCTGCCAGCTAACCCAGA
TCATCCCCACTGCAGAGGAGACGTTGGCTGGGACATGAGGAGCTGGGGACAAACCTCTACT**TAGG**
CGATGGCTCTGCTCTGCTACATTATTGTACCCACACGTGCACGCACTGAGGCCATTGTTAAAGGAGCTCTT
CCTACCTGTGTGAGTCAGAGCCCTCTGGGTTGTGGAGCACACAGGCCCTGCCAGCTCCAGGCTCCGGAG
TCGTGTGTCTGGGGTGTCCCTGCAAGAACTGGTTCTGCCAGCCTGCTCAATTGGTCTGCTGTTTGATG
AGCCTTTGTCTGTTCTCCTCCACCCCTGCTGGCTGGCGCTGCACTCAGCATCACCCCTCCTGGTGGCAT
GTCTCTCTACCTCATTAGAACCAAAGAACATCTGAGATGATTCTACCCCTCATCCACATCTAGCCAAGC
CAGTGCACCTTGCTCTGGCACTGTGGGAGACACCAACTGTCTTAGGTGGCTCAAAGATGATGAGAATT
CCTTAATTCTCGCAGTCCTGGAAAATATTTCCTTGAGCAGCAAATCTGTAGGGATATCAGTGAAGGT
CTCTCCCTCCCTCCTCTGTTTTTTTGAGACAGAGTTGCTCTGTTGCCAGGCTGGAGTGTGA
TGGCTCGATCTGGCTCACCACAACCTGCCCCGGGTTCAAGCAATTCTCTGCCCTAGCCCTTGAGTAGC
TTGGTTTATAGGCGCATGCCACCATGCGCTTAATTGTGTTTTAGTAGAGACAGGGTTCTCCATGTTGGT
CAGGCTGGCTCAAACCTCCACCTCAGGTGATCTGCCCTCCCTGGCCTCCAGAGTGTGGGATTACAGGTGTG
AGCCACTGTGCCGGGGCCGCTCCCTCTTTAGGCCCTGAATACAAAGTAGAAGATCACTTCCCTCAGTGTG
TGAGAACATTCTAGATACTACAGTTCTACTCCCTCTTGTGTTATTCAAGTGTGACCCAGGATGGCGGGAGGG
GATCTGTGCACTGTAGGTACTGTGCCAGGAAGGCTGGGTGAAGTGACCATCTAAATTGAGGATGGTGAATT
ATCCCCATCTGCTTAATGGGCTTACCTCCTCTTGCCTTTGAACTCACCTCAAAGATCTAGGCCCTCATCTTAC
AGGTCTAAATCACTCATCTGGCCCTGGATAATCTCACTGCCCTGGCACATTCCATTGTGCTGTGTTGTGTT
GTGTTCTGCTGGTTGTGTTGTGTTGTGTTGTGTTGTGTTGTGTTGTGTTGTGTTGTGTTGTGTTGTGTT
TTTGATCTGGACCACAAGTCTAAGTAGAGCAAGAATTCAACCAAGCTGCCCTTGTTGTTGTTGTTGTTGTT
CAGCACGTACCATCTGTCCTTTGTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTTGTT
TCTAACCTCCTGCCCTAGGATTGTACAGCATCTGGTGTGCTTATAAGCCAATAATTCAATGTGAAAAAAA
AAAAAAAAAA

310/615

FIGURE 308

MRWILFIGALIGSSICQEKFFGDQVLRINVNRNGDEISKLSQLVN SNNLKLNFWKSPSSFNRPVDVLVPSVSLQA
FKSFLRSQGLEYAVTIEDLQALLDNEDEMHQHNEGQERSNNFNYGAYHSLEAIYHEMDNIAADFPDLARRVKIG
HSFENRPMYVLKFSTGKGVRRAVWLNAGIHSREWIQSATAIWTARKIVSDYQRDPAITSIKEKMDIFLLPVANP
DGYVYTQTQNRLWRKTRSRRNPGSSCIGADPNRNWNASFAGKGASDNPCSEVYHGPHANSEVEVKSVVDIFIQKHGN
FKGFIDLHSYSQLLMYPYGYSVKKAPDAEELDKVARLAAKALASVGSTEYQVGPTCTTVYPASGSSIDWAYDNGI
KFAFTFELRDTGTYGFILLPANQIIPTAETWLGLKTIMEHVRDNL

Signal peptide:
amino acids 1-16

311/615

FIGURE 309

GGCTGACCGTGCTACATTGCCTGGAGGAAGCCTAAGGAACCCAGGCATCCAGCTGCCACGCCTGAGTCCAAGAT
TCTTCCCAGGAACACAACAGTAGGAGACCACGCTCTGGAAGCACCGCCTTATCTCTCACCTTCAGTCCC
CTTCTCAAGAACATCCTCTGTTCTTGCCTCTAAAGTCTGGTACATCTAGGACCCAGGCATCTGCTTCCAGC
CACAAAGAGACAGATGAAGATGCAGAAAGGAATGTTCTCCCTATGTTGGTCTACTATTGCTTAAAGCTGC
AACAAATTCCAATGAGACTAGCACCTCTGCCAACACTGGATCCAGTGTGATCTCAGTGGAGCCAGCACGCCAC
CAACTCTGGTCCAGTGTGACCTCCAGTGGGATCAGCACGCCACCATCTCAGGGTCCAGCGTGCACCTCCAATGG
GGTCAGCATAGTCACCAACTCTGAGTCCACATACAACCTCCAGTGGGATCAGCACGCCACCAACTCTGAGTCAG
CACAGCGTCAGTGGGATCAGCATAGCCACCAACTCTGAGTCCAGCACAACCTCAGTGGGAGCAGCACGCCAC
CAACTCTGAGTCCAGCACACCCTCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAGCACAAGCTGGGAGCAGCACGCCAC
CACACTCTCCAGTGGGAGCAGCACGCCACCAACTCTGACTCCAGCACAACCTCAGTGGGAGCAGCACGCCAC
CAACTCTGAGTCCAGCACAAACCTCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAGCACAAGCTGGGAGCAGCACGCCAC
GGCCAGCAGTCCAGCACACCCTCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAGCACAACCTCAGTGGGAGCAGCACGCCAC
AACGACCTCCAATGGGCTGGCACAGCCACCAACTCTGAGTCCAGCAGCACGCCACCTCAGTGGGAGCAGCACGCCAC
CAACTCTGACTCCAGCACAGTGTCCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAGCAGCACGCCACCTCAGTGG
GGCCAGCACAGCCACCAACTCTGAGTCCAGCAGCACGCCACCTCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAG
CACAAACCTCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAGCAGCACGCCACCAACTCTGAGTCCAGCAGCACAGTCCAG
CAATTCTGAGTCCAGCACACCCTCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAGTACGACCTCAGTGG
GGCCAACACAGCCACCAACTCTGAGTCCAGCACAGTGTCCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAG
CACAAACCTCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAGCAGCACGCCACCAACTCTGAGTCCAGTGG
CAACTCTGACTCCAGCACAAACCTCAGTGGGAGCAGCACGCCACCAACTCTGAGTCCAGTGG
GATCAGCACAGTCACCAATTCTGAGTCCAGCACAACCTCAGTGGGAGCAGCACGCCACCAACTCTGGGAGCAG
TGTGACCTCTGCAGGCTCTGGAACAGCAGCTCTGACTGGAATGCACACAACCTCCATAGTCATCTACTGCAGT
GAGTGAGGCAAAGCCTGGTGGGAGCAGCAGCTCTGAGTCCAGTGGGAGGAAATCTTCATCACCTGGTCTGGTTGTGGCGGC
CGTGGGAGCAGCAGCTGGTGGCTCTTCTGAGTCCAGTGGGAGGAAACAGCCTGTCCTGAGAAACACCTTAACACAGCTGT
CTACCCACCTCATGGCCTCAACCATGGCCTTGGTCCAGGCCCTGGAGGGAAATCATGGAGGCCCCCACAGGCCAG
GTGGAGTCTAATGGTCTGGAGGAGACCAGTATCATCGATAGCCATGGAGATGAGCAGGGAGGAACAGCGGGGCC
CTGAAGCAGCCCCGGAAAGCAAGTGCCTGCATTCTCAGGAAGGAAGAGACCTGGCACCCAAAGACCTGGTTCTCTT
CATTCTACCCAGGAGACCCCTCCAGCTTGAGATCCTGAAATCTTGAAGAAGGTATCTCCTCACCTTCT
TGCCTTACCAAGACACTGGAAAGAGAAATATAATTGCTCATTTAGCTAAGAAATAATACATCTCATCTAACAC
ACACGACAAAGAGAAGCTGTGCTGCCCCGGGGTGGGTATCTAGCTCTGAGATGAACCTCAGTTAGGAGAAAAC
CTCCATGCTGGACTCCATCTGGCATTCAAACAGTAAACCTCAAAGACCTAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAA

312/615

FIGURE 310

MKM**Q**KGNVLLMFGLLHLEAATNSNETSTSANTGSSVISSGASTATNSGSSVTSSGVSTATIS
GSSVTSNGSVI**T**NSEFHTTSSGISTATNSEFSTASSGISIATNSESSTSSGASTATNSESS
TPSSGASTVTNSGSSVTSSGASTATNSESSTVSSRASTATNSESSTLSSGASTATNSDSSSTS
SGASTATNSESSTSSGASTATNSESSTVSSRASTATNSESSTSSGASTATNSESRTTSNGA
GTATNSESSTSSGASTATNDSSTVSSGASTATNSESSTSSGASTATNSESSTSSGASTA
TNSDSSTTSSGAGTATNSESSTVSSGISTVTNSESSTPSSGANTATNSESSTSSGANTATNS
ESSTVSSGASTATNSESSTSSGASTATNSESSTSSGASTATNDSSTTSEASTATNSESS
TVSSGISTVTNSESSTSSGANTATNGSVTSAGSGTAALTGMHTTSHSASTAVSEAKPGGS
LVPWEIFLITLVSVVAVGLFAGLFFCVRNSLSLRNTFNTAVYHPHGLNHGLGPBPGGNHGAP
HRPRWSPNWFWRPVSSIAMEMSGRNSGP

Signal peptide:
amino acids 1-20

Transmembrane domain:
amino acids 510-532

313/615

FIGURE 311A

CTAAGCCGGAGGATGTGCAGCTGGCGCGCGCAGCTACGAAGAGGACGGGACAGGCCGTGCGAACCGA
 GCCCAGCCAGCCGGAGGACGCCGGCAGGGGGACGGGAGCCCAGCTCGTCTGCCGCCGCGTCGCCGTCG
 CGGGCATGGTCCCCCTCTAAAGGCAGGCCGG
 CCTGGGGGGGGCTCGGG
 CGCGCTAGGGCGGGCTGGCCTCGTGG
 GGCAGGG
 TGCTCGGGCTCGTCTGGCTTCGTGCTGGCCTCGCGGCTCGTCTGCCCGGGGGCTTCGAGCTGAAGCGAGCG
 GCCCACGGCGCCGCGCAGCCCCGAGGGCTGCCGGTCCGGGAGGGGGGGGGGGGGGGGGGGGGGGGGGG
 GCGATGCCGCCGGGGCGCAGCTGGCCGCCGGCTGGACCCAGATGGCGGCCGCCGACAGGAACCTTCTCT
 TCGTGGGAGTCATGACCGCCCAGAAATACCTGCAGACTCGGGCGTGGCGCCTACAGAACATGGTCAAAGACAA
 TTCTGGAAAGTTCAAGTCTGACACATCTGTACCAATTCCAGTAGTGTGCCACTACGGG
 GTGTGGACGACTCCACCCGCCAGAAGAAGTCTTCATGATGCTCAAGTACATGCACGACCAACTTGGACA
 ACTATGAATGGTTATGAGAGCAGATGATGACGTGTACATCAAAGGAGACCGTCTGGAGAACTTCTGAGGAGTT
 TGAACAGCAGCGAGCCCTCTTCTTGGCAGACAGGCCCTGGGACACAGGAAAGAAATGGGAAAACGGCCCTGG
 AGCGTGGTGGAGAAACTTCTGCATGG
 ACATGGCAAGTGTCTCGGGAGATGTACACCACCCATGAGGACGTGGAGGTGGAGGTGTGTCCGGAGGGTTG
 CAGGGGTGCACTGTCTGGCTTATGAGATGCCAGCTTTATGAGAACATGAGGAGGGGGGGGGGGGGGGGGGG
 ACATTAGAGATCTCCATAACAGTAAAATTACCAAGCTATCACATTACACCCAAACAAAACCCACCCCTACCAGT
 ACAGGCTCCACAGCTACATGCTGAGCCGAAGATATCCGAGCTCCGCCATCGCACAAATACAGCTGCACCGCGAA
 TTGTCTGTGAGCAAATACAGCAACAGAAATTCTAAAGAGGACCTCCAGCTGGGAATCCCTCCCTCTTCA
 TGAGGTTTCAGCCCCGCCAGCGAGAGGAGATTCTGGAATGGGAGTTCTGACTGGAAAATACTTGTATTGGCAG
 TTGACGCCAGCCCCCTCGAAGAGGAATGGACTCCGCCAGAGGGAAGCCTGGACGACATTGTATGCAGGTCA
 TGGAGATGATCAATGCCAACGCCAGACAGGAGGGCGCATCTGACTTCAAAGAGATCCAGTACGGCTACCGCC
 GGGTGAACCCCAGTGTATGGGCTGAGTACATCTGGACCTGCTCTGTACAAAAGCACAAGGGAGAAAA
 TGACGGTCCCTGTGAGGAGGACCGTGTATTTACAGCAGACTTCAGCAAATCCAGTTGTGGAGCATGAGGAGC
 TGGATGCCAACAGAGTGGCCAAGAGAATCAATCAGGAATCTGGATCTTGCTCTCTCTCAAACCTCCCTGAAGA
 AGCTCGTCCCCCTTCAGCTCCCTGGTCAAGAGTGGAGCATCAGGAAACAGGAAATTTGGGAAACTTGTGAGAAGCAGT
 TTCTTTGTCTGGCTTCAGCATGTTGAGATTATGGGAAACTTGTGAGAACAGCTGTCTTATCCCCAAATC
 AGAACGTCAAGCTGTTCTGCTTCAATTCTGACTCCAACCTGACAAGGGCAAACAAAGTGAACGTGATGA
 GAGATTACCGCATTAAAGTACCCATAAGCCGACATGCAAGATTGCTGTGTGGAGAGTTCAAGAGCCCTGG
 CCCTGGAAGTAGGATCTCCAGTTAACATGAATCTTGCTCTCTGCGACGTCGACCTCGTGTGTTACTA
 CAGAATTCCCTCAGCGATGTCGAGCAAATACAGTTCTGGCCAACAAATATATTCCAAATCATCTCAGCCAGT
 ATGACCCAAAGATTGTTATAGTGGAAAGTCTCCAGTACAACCATTTGCCTTACTCAGAAAATGGCTTCT
 GGAGAAAATATGGGTTGGCATACGTGTATTATAAGGGAGATCTTGTCCGAGTGGGGGTTGATGTTCCA
 TCCAAGGCTGGGGCTGGAGGATGTGGACCTTCAACAAGGTTGTCAGGCAGGTTGAAGACGTTAGGAGCC
 AGGAAGTAGGAGTAGTCCACGCCACCATCTGTCTTTGTGATCCCAATCTGACCCAAACAGTACAAAATGT
 GCTTGGGGTCCAAAGCATCGACCTATGGGTCACCCAGCAGCTGGTCAAGATGTGGCTGGAAAAAAATGATCCAA
 GTTACAGTAAAGCAGCAATAATAATGGCTCAGTGAGGACAGCCCTAATGTCTCAGTTGCTGGGAAAGACGTTT
 TAATTCTAATTATTGTTCAAAATTTGTGATGATCAGTTGAGGTTGAAGTCCAGTACAAGGATATAATTAC
 AAGTGGTTCTTACATAGGACTCTTAAAGATGAGCTTCTGAAACAAGAGGTGATCAGTGTGTTGCTTGGCTTGGAA
 CACATCTTCTGCTGAAACATTATGTAGCAGACCTGCTTAACCTTGACTGAAATGTACCTGATGAACAAAATCT
 TTAAAAAAATGTTCTTCAAGACCCCTTGTCTCCAGTCTATGGCAGAAAACGTGAACATTCTGCAAAGTAT
 TATTGTAACAAAACACTGTAACCTGTGAAATGTTCTGTTGTGATTGTTAACATCCACAGATTCTACCTTGT
 GTTTGTTTTTTTACAATTGTTAAAGCCATTCTGTTCAAGTGTGAGGATAAGGAAATGTGATAATA
 GCTGTTCTCATCTGCTTCAGGAGAGCTTCCAGAGTTGATCATTCTCTCATGGTACTCTGCTCAGCATGGC
 CACGTAGGTTTTGTTGTTGTTGTTGTTGTTGAGACGGAGTCTCAGCTGTTACCCAGGCTGGAATG
 CAGTGGCGCAATCTGGCTCAGTTAACCTCCACTTCCGTTCAAGCAATTCCCTGCCTTGCCTCCGAGT
 AGCTGGGATTACAGGCACACACCACGCCAGNTAGTTTTGTATTGTTAGTAGAGACGGGTTTACCAT
 GCAAGGCCAGCTGGCCACGTAGGTTAAAGCAAGGGGGCGTGAAGAAGGCACAGTGAGGTATGTGGCTGTTCTG
 TGGTAGTCATTGGCCTAAATAGACCTGGCATTAAATTCAAGAAGGATTGGAATTCTTCTTCTGACCCCT
 CTCTTAAAGGGAAAATATTAGTTAGAATGACAAAGATGAATTATTACAATAATCTGATGTACACAGACT
 GAAACATACACACATACACCCATAACAAACGTTGGGGAAAAATGTATTGTTGTTGTTCTTCAATTCTGCTG
 TGTTATGTGGGTGGAGATGGTTTCAATTACTGTTGTTTATCCTTGTATCTGAAATACCTTAA

314/615

FIGURE 311B

TTTATTTAATATCTGTTGTCAGAGCTCTGCCATTCTTGAGTACCTGTTAGTTAGTATTATTTATGTGTATCGG
GAGTGTGTTAGTCTGTTTATTGCAGTAAACCGATCTCAAAGATTCCCTTGGAAACGCTTTCCCCCTCC
TTAATTTTATATTCTTACTGTTTACTAAATATTAAAGTGTCTTGACAATTGGTGCCTCATGTGTTGGG
GACAAAAGTGAATGAATCTGCATTATACCAGAAAGTTAAATTCTCAGATCAAATGTGCCTTAATAAATTGTT
TTCATTTAGATTCAAACAGTGATAGACTTGCCTTTAACACGTCAATTGGAGGGCTGCCTATTGTAATAG
CCTGATGCTCATTTGGAAAAATAAACCGAGTGAACAATTGGTACTTTGAACCATTTGTCTCATT
ATTCCCTGTTTAGCTGAAGAATTGTATTACATTGGAGAGTAAAAACTAAACACGAAAAAA

315/615

FIGURE 312

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68836
><subunit 1 of 1, 802 aa, 1 stop
><MW: 91812, pi: 9.52, NX(S/T): 3
MAARGRRRAWLSVLLGLVLGFVLASRLVLPASELKAGRPRRRASPEGCRSGQAAASQAGGARG
DARGAQLWPPGSDPDGGPRDRNFLFVGVMTAQKYLQTRAVAAYRTWSKTIPGKVQFFSSEGSD
TSVPIPVVPLRGVDDSYPPQQKSFMMLKYMHDHYLDKYEWFMRADDDVYIKGDRLENFLRSLN
SSEPLFLGQTGLGTTEEMGKLALEPGENFCMGGPGVIMSREVLRRMVPHIGKCLREMYTTTED
VEVGRCVRRFAGVQCVWSYEMRQLFYENYEQNKKGYIRDLHNSKIHQAITLHPNKNPPYQYRL
HSYMLSRKISELRHRTIQLHREIVLMSKSYNTIEHKEDLQLGIPPSFMRFQPRQREEILEWEF
LTGKYLYSAVDGQPPrRGMDAQREALDDIVMQVMEMINANAKTRGRRIIDFKEIQYGYRRVNP
MYGAEYILDLLLYKKHKGKMTVPVRRHAYLQQTFSKIQFVEHEELDAQELAKRINQESGSL
SFLSNSLKKLVPFQLPGSKSEHKEPKDKKINILIPSLSGRFDMFVRFMGNFEKTCLIPNQNVKL
VVLLFNSDSNPDKAKQVELMRDYRIKYPKADMQILPVSGEFSRALALEVGSSQFNNESSLFFC
DVDLVFTTEFLQRCCRANTVLGQQIYFPIIFSQYDPKIVYSGKVPSDNHFAFTQKTGFWRNYGF
GITCIYKGDLVRVGGFDVSIQGWGLEVDLFNKVVQAGLKTFRSQEVGVVHVHPVFCDPNLD
PKQYKMCLGSKASTYGSTQQIQAEMWLEKNDPSYSKSSNNNGSVRTA

Signal peptide:
amino acids 1-23

316/615

FIGURE 313

GGCCGGACGCCCTCCCGTTACGGGATGAATTAAACGGCGGGTCCGCACGGAGGTTGTGACCCC
TACGGAGCCCCAGCTTGCACCGCACCCACTCGCGTCGCGCGCGTGCCTGCTTGTCA
GGTGGGAGGCTGGAACATATCAGGCTGAAAAACAGAGTGGGTACTCTCTCTGGGAAGCTGGCA
ACAAATGGATGATGTGATATATGCATTCCAGGGAAAGGGAAATTGTGGTGCTTCTGAACCCAT
GGTCAATTAAACGAGGCAGTTCTAGCTACTGCACGTACTCATAAAGCAGGACTCTAAAGCT
TTGGAATCATGGTGTATGGAAAGGGATTTACTTATACTGACTCTGTTGGGAAGCTTT
TTGGAAGCATTTCATGCTGAGTCCCTTTACCTTGATGTTGAAACCCATCTTGGTATC
GCTGGATCAACAACCGCCTTGTGGCAACATGGCTCACCTACCTGTGGCATTATTGGAGACCA
TGTTTGGTGTAAAAGTGATTATAACTGGGGATGCATTGTTCTGGAGAAAGAAGTGTCA
TCATGAACCATCGGACAAGAACATGGACTGGATGTTCTGTGGAAATTGCCTGATGCGATATAGCT
ACCTCAGATTGGAGAAAATTGCCTCAAAGCAGTCTCAAAGGTGTTCTGGATTGGTTGGG
CCATGCAGGCTGCTGCCTATATCTTCATTCAAGGAAATGGAAGGATGACAAGAGCCATTG
AAGACATGATTGATTACTTTGTGATATTCAAGAACACTCAACTCCTCATATTCCCAGAAG
GGACTGATCTCACAGAAAACAGCAAGTCTGAAGTAATGCATTGCTGAAAAAAATGGACTTC
AGAAAATATGAATATGTTTACATCCAAGAAACTACAGGCTTACTTTGTGGTAGACCGCTAA
GAGAAGGTAAGAACCTTGATGCTGTCCATGATATCACTGTGGCGTATCCTCACAACATTCC
AATCAGAGAACGACCTCCTCCAAGGAGACTTCCCAGGGAAATCCACTTTCACGTCCACCG
ATCCAATAGACACCCTCCCCACATCCAAGGAGGACCTCAACTCTGGTGCACAAACGGTGGG
AAGAGAAAAGAGAGAGGCTCGTCCCTCTATCAAGGGAGAAGAATTTTATTACCGGAC
AGAGTGTATTCCACCTTGCAAGTCTGAACTCAGGGTCTTGTGGTCAAATTGCTCTATAC
TGTATTGGACCCTGTTGCATGCTGCATGCTACTCATATATTGTACAGTCTTGTAA
GGTATTTTATAATCACCATTGTAATCTTGTGCTGCAAGAGAGAATATTGGTGGACTGGAGA
TCATAGAACATTGCATGTTACCGACTTTACACAAACAGCCACATTAAATTCAAAGAAAATG
AGTAAGATTATAAGGTTGCATGTGAAAACCTAGAGCATATTGGAAATGTTCTAAACCTT
TCTAACGCTCAGATGCATTGGCATGACTATGTCGAATATTCTTACTGCCATATTGT
TAAAGATATTGCACTTAATTGTGGAAAATATTGCTACAAATTTTTAATCTCTGAA
TGTAATTGATACTGTGTACATAGCAGGGAGTGTGATCGGGGTGAAATAACTGGGCCAGAATA
TTATTAAACAATCATCAGGCTTTAAA

317/615

FIGURE 314

MHSRGREIVVLLNPWSINEAVSSYCTYFIKQDSKSGIMVSWKGIFYFILTLFWGSFFGSIFML
SPFLPLMVFVNPSWYRWINNRLVATWLTLVALLETMFGVKVIITGDAFVPGERSVIIMNHRTR
MDWMFLWNCLMRYSYLRLEKICLKLASKLGVPFGFWAMQAAAYIFIHRWKDDKSHFEDMIDYF
CDIHEPLQLLIFPEGTDLTENSRSNAFAEKNGLQKYEVVLHPRTGFTFVVDRLREGKNLD
AVHDITVAYPHNIHQSEKHLLQGDFPREIHFHVRYPIDLPTSKEDLQLWCHKRWEKEERL
RSFYQGEKNFYFTGQSVIPPKSELRLVLLVKKLLSILYWTLFSPAMCLLIYLYSLVKWYFIITI
VIFVLQERIFGGLEIEELACYRLLHKQPHLNSKNE

Important features of the protein:

Signal peptide:

amino acids 1-22

Transmembrane domains:

amino acids 44-63, 90-108, 354-377

318/615

FIGURE 315

CGGCTCGAGCGGCTCGAGTGAAGAGCCTCTCCACGGCTCTGCCTGAGACAGCTGGCTGA
CCTCCAAATCATCCATCCACCCCTGCTGTCACTGTTTCATAGTGTGAGATCAACCCACAGG
AATATCC**TG**GCTTTGTGCTCATTGGTTCTCAGTTCTACGAGCTGGTGCAGGACAGTG
GCAAGTCACTGGACCGGGCAAGTTGTCAGGCCCTGGTGGGGAGGACGCCGTGTCCTG
CTCCCTCTTCCCTGAGACCAGTCAGAGGCTATGGAAGTGCCTCTTCAGGAATCAGTCCA
TGCTGTGGTCCACCTCTACAGAGATGGGAAGACTGGGAATCTAAGCAGATGCCACAGTATCG
AGGGAGAAGTGAAGTTGTGAAGGACTCCATTGCAGGGGGCGTGTCTCTAAGGCTAAAAAA
CATCACTCCCTCGGACATCGGCCTGTATGGGTGCTGGTTCAGTCCCAGATTACGATGAGGA
GGCCACCTGGGAGCTGCGGGTGGCAGCACTGGGCTCACTCCCTCTATTCCATCGTGGGATA
TGTGACGGAGGTATCCAGTTACTCTGCCTGTCTCAGGCTGGTCCCCCAGCCCACAGCAA
GTGGAAAGGTCCACAAGGACAGGATTGTCAGACTCAGAGCAAATGCAGATGGTACAG
CCTGTATGATGTGGAGATCTCATTATAGTCAGGAAAATGCTGGGAGCATATTGTGTTCCAT
CCACCTTGCTGAGCAGACTGAGGTGGAATCCAAGGTATTGATAGGAGAGACGTTTCCA
GCCCTCACCTGGCCCTGGCTCTATTACTCGGGTTACTCTGTTGCTGCCCTGTGTTG
TGTATGGGATGATAATTGTTCTTCAAATCCAAGGAAAATCCAGGCGAACTGGACTG
GAGAAGAAAGCACGGACAGGCAGAATTGAGAGACGCCGAAACACGCACTGGAGGTGACTCT
GGATCCAGAGACGGCTCACCGAAGCTCTGCCTCTGATCTGAAAACGTAAACCCATAGAAA
AGCTCCCCAGGAGGTGCCTCACTCTGAGAAGAGATTACAAGGAAGAGTGTGGTGGCTCTCA
GGGTTCCAAGCAGGGAGACATTACTGGGAGGTGGACGTGGGACAAAATGTAGGGTGGTATGT
GGGAGTGTGTCGGGATGACGTAGACAGGGGGAGAACAAATGTGACTTGTCTCCAAACAATGG
GTATTGGGTCTCAGACTGACAACAGAACATTGATTTACATTCAATCCCCATTATCAG
CCTCCCCCCCAGCACCCCTCCTACACGAGTAGGGGTCTCCTGGACTATGAGGGTGGGACCAT
CTCCTCTCAATACAATGACCATGCTTATACCTGCTGACATGTCAGTTGAAGG
CTTGTGAGACCTATATCCAGCATGCGATGTATGACGAGGAAAAGGGGACTCCCATTACAT
ATGTCCAGTGTCTGGG**TG**AACAGAGAAGACCCCTGCTAAAGGGCCCCACACCACAGACC
CAGACACAGCCAAGGGAGAGTGCTCCCGACAGGTGGCCCCAGCTCCTCTCCGGAGCCTGCGC
ACAGAGAGTCACGCCCTCACTCTCCTTAGGGAGCTGAGGTTCTCTGCCCTGACCTGTGGAGTCAGAACCC
GCAGCGGCACTCACAGCTCCAGATGAGGGGGATTGGCCTGACCTGTGGAGTCAGAACCC
ATGGCTGCCCTGAAGTGGGAGCGGAATAGACTCACATTAGGTTAGTTGTGAAAACCTCCATC
CAGCTAACGATCTTGAACAAGTCACAAACCTCCAGGCTCCTCATTGCTAGTCACGGACAGT
GATTCCCTGCCCTCACAGGTGAAGATTAAAGAGACAAACGAATGTGAATCATGCTGAGGTTGA
GGGCACAGTGTGCTAATGATGTGTTTATATTACATTTCACCATAAAACTCTGTT
GCTTATTCCACATTAATTACTTTCTATACCAAATCACCATGGAATAGTTATTGAACAC
CTGCTTGTGAGGCTCAAAGAATAAAGAGGAGGTAGGATTTCACTGATTCTATAAGGCCAG
CATTACCTGATACCAAAACCAGGCAAAGAAAACAGAAGAAGAGGAAGGAAAACACAGGTCCA
TATCCCTCATTAACACAGACACAAAATTCTAAATAAAATTAAACAAATTAAACTAAACAAT
ATATTAAAGATGATATATAACTACTCAGTGTGTTGTCACAAATGCAGAGTTGGTTAA
TATTTAAATATCAACCAGTGTAAATTGACACATTAATAAGTAAAAAGAAAACCATAAAAAA
AAAAAA

319/615

FIGURE 316

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68866
><subunit 1 of 1, 466 aa, 1 stop
><MW: 52279, pi: 6.16, NX(S/T): 2
MAFVLILVLSFYELVSGQWQVTGPGKFKVQALVGEDAVFSCSLFPETSAEAMEVRFFRNQFHAV
VHLYRDGEDWESKQMPQYRGRTEFKDSIAGGRVSLRLKNITPSDIGLYGCWFSSQIYDEEAT
WELRVAAL GSLPLISIVGYVDGGIQLLC LSSGWFPQPTAKWKG PQQDLS DS RANADG YSLY
DVEISII VQENAGS SILCSIHLAEQSHEVESKV LIGETFF QPSPW RLASILLGLL C G A L C G V V M
GMIIVFFKSKG KIQAELD WRRKH GQ AEL RDARK H A V E V TLD PETAHPKLCVSDLKTVTHRKA P
QE VP HSEKRFTRKS VVASQGFQAGRHYWEVDVGQNVG WYVGVC RDVDRG KNNV TLSPNNGY W
VLRLTTEHLYFTFNPHFISLPPSTPPTRGVFLDYEGGTISFFNTNDQSLIYTLTCQFEGLL
RPYIQHAM YDEEKGTP IFICPV SWG

Signal peptide:
amino acids 1-17

Transmembrane domains:
amino acids 131-150, 235-259

320/615

FIGURE 317

GCACCTGCGACCACCGTGAGCAGTCATGGCGTACTCCACAGTCAGAGAGTCGCTCTGGCTTC
TGGGCTTGTCTGGCTCTGTCGCTGCTGCCAAGGCCTCCTGTCCCAGGGAAAGCGGCA
GGAGCCGCCGCGACACCTGAAGGAAAATTGGGCCGATTCCACCTATGATGCATCATCACCA
GGCACCCCTCAGATGCCAGACTCCTGGGGCTCGTTCCAGAGGTCTCACCTGCCGAGGCATT
TGCAAAGGCCAAAGGATCAGGTGGAGGTGCTGGAGGAGGTAGTGGAAAGAGGTCTGATGGG
GCAGATTATTCCAATCTACGGTTTGGGATTTTATATATACTGTACATTCTATTAAAGGT
AAGTAGAACATCCTAACATATTACATCAATGAAATCTAATATGGCGATAAAAATCATTGT
CTACATTAAAACCTCTTATAGTTCAAAATTATTCAAATCCATCATCTCTTAAATCCTGC
CTCCTCTTCAAGGTACTTAGGATAGCCATTATTCAGTTCACATAAGAATGTTACTCAA
TGTTTAAGTGTGCCCCAAAATTACAACAAAGGCAGAACTAGGACTTGAACATGGAT
CTTTGGTCTTAATCCAGTGAGTGATACAATTCAATGCACTCCCTGCCA

321/615

FIGURE 318

MAYSTVQRVALASGLVLALSLLLPKAFLSRGKRQEPPPTPEGKLGRFPMMHHHQAPSDGQTP
GARFORSHLAEAFAKKGSGGGAGGGGSGRGLMGQIIPYGFGLFLYILFKVSRIILIIHQ

322/615

FIGURE 319

CCTTCACAGGACTCTCATTGCTGGTGGCAATGATGTATCGGCCAGATGTGGTGAGGGCTAG
GAAAAGAGTTGTTGGAACCCCTGGTTATCGGCCTCGTCATCTCATATCCCTGATTGTCCT
GGCAGTGTGCATTGGACTCACTGTTCATTATGTGAGATATAATCAAAGAACCTACAATT
CTATAGCACATTGTCATTACAACAGACAAACTATATGCTGAGTTGGCAGAGAGGCTTCTAA
CAATTTCAGAAATGAGCCAGAGACTTGAATCAATGGTAAAAATGCATTTATAAATCTCC
ATTAAGGGAAAGAATTGTCAGTCTCAGGTATCAAGTCAGTCAACAGAACGATGGAGTGT
GGCTCATATGCTGTTGATTGAGATTCACTACTGAGGATCCTGAAACTGTAGATAAAAT
TGTTCAACTTGTACATGAAAAGCTGCAAGATGCTGAGGACCCCTAAAGTAGATCCTCA
CTCAGTTAAAATTAAAAAAATCAACAAGACAGAACAGACAGCTATCTAAACCATTGCTGCC
AACACGAAGAAGTAAAACCTAGGTAGAGTCAGGATCGTTGGGGACAGAACGATAGAAGA
GGGTGAATGGCCCTGGCAGGCTAGCCTGCAGTGGGATGGGAGTCATCGCTGAGCAACCTT
ATTAATGCCACATGGCTTGTGAGTGCTGCTCACTGTTTACAACATATAAGAACCTGCCAG
ATGGACTGCTCCTTGGAGTAACAATAAAACCTCGAAAATGAAACGGGGCTCCGGAGAAT
AATTGTCCATGAAAATACAAACACCCATCACATGACTATGATATTCTCTGCAGAGCTTC
TAGCCCTGTTCCCTACACAAATGCAGTACATAGAGTTGTCTCCCTGATGCATCCTATGAGTT
TCAACCAGGTGATGTGATGTTGTGACAGGATTGGAGCACTGAAAATGATGGTTACAGTC
AAATCATCTCGACAAGCACAGGTGACTCTCATAGACGCTACAACCTGCAATGAACCTCAAGC
TTACAATGACGCCATAACTCCTAGAATGTTATGTGCTGGCTCCTAGAAGGAAAACAGATGC
ATGCCAGGGTGAECTGGAGGACCACGGTTAGTTCAAGTGCTAGAGATATCTGGTACCTTGC
TGGAAATAGTGAGCTGGGAGATGAATGTGCGAACACCAACAAGCCTGGTGTATTA
TACGGCCTGCAGGACTGGATTACTCAGGATCTTAAAGAGACAAAGCCTCATGGAA
CAGATAACATTGTTGTTGGGTGTGGAGGCCATTAGAGATAACAGAATTGGAGA
AGACTTGCAAAACAGCTAGATTGACTGATCTCAATAAACTGTTGCTTGATGCATGTATTT
CTTCCCAGCTCTGTCGCACGTAAGCATCCTGCTTCTGCCAGATCAACTCTGTCATCTGTGA
GCAATAGTTGAAACTTATGTACATAGAGAAATAGATAACATTACATTACAGCCTGTA
TTCATTGTTCTCTAGAAGTTGTCAGAATTGACTTGTGACATAATTGTAATGCATA
TATACAATTGAAAGCACTCCTTCTCAGTTCCCTCAGCTCCTCTCATTTCAGCAAATATCCA
TTTCAAGGTGCAGAACAGGAGTGAAAGAAAATAAGAAGAAAAATCCCTACATT
TTGGCACAGAAAAGTATTAGGTGTTCTTAGTGGAAATTAGAAATGATCATATT
GAAAGGTCAAGCAAAGACAGCAGAAATACCAATCACTTCATCATTAGGAAGTATGGGAAC
GTTAAGGAAGTCCAGAAAGAACGCAAGATATTCCTTATTTCAATTCAAACAACTACTATG
ATAAAATGTGAAGAAGATTCTGTTTTGTGACCTATAATAATTACAAACTTCATGCAATG
TACTTGTTCTAAGCAAATTAAAGCAAATTAAACATTGTTACTGAGGATGTCAACATA
TAACAATAAAATATAAATCACCCA

323/615

FIGURE 320

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68871
><subunit 1 of 1, 423 aa, 1 stop
><MW: 47696, pI: 8.96, NX(S/T): 3
MMYRPDVVRARKRVCWEPWVIGLVIFISLIVLAVCIGLTVHYVRYNQKKTNYYSTLSFTTDK
LYAEFGREASNNFTEMSQRLESMVKNAYKSPLREFVKSQVIKFQQKHGVLAHMLLICRFH
STEDPETVDKIVQLVLHEKLQDAVGPPKVDPHSVKIKKINKTETDSYLNHCCGTRRSKTLGQS
LRIVGGTEVEEGEWPWQASLQWDGSHRCGATLINATWLVSAAHCFTTYKNPARWTASFGVTIK
PSKMKRGLRRRIIVHEKYKHPHDYDISLAELSSPVYTNAVHRVCLPDASYEFQPGDVMFVTG
FGALKNDGYSQNHLRQAQVTLLIDATTCNEPQAYNDAITPRMLCAGSLEGKTDACQGDSSGPLV
SSDARDIWYLAGIVSWGDECAPNKPGVYTRVTALRDWITSKTGI
```

Transmembrane domain:

amino acids 21-40 (type II)

324/615

FIGURE 321

CCGGGCTCCTGGGTGAGGCCGGCAAGTTGGAGCGTGGTCAGACAATAGGGCGTGGCTACGG
CTCGCGGAGCGCAACCAACGCTCTAGACCAGACCTGGGCTCGAGACCATAACTGTTGGCTTT
AACAGTACGTGGCGGGCCGGAATCCGGAGTCCGGTGACCCGGGCTGTGGTCTAGCATAAAGG
CGGAGCCCAGAAGAAGGGGCGGGGTATGGGAGAAGCCTCCCCACCTGCCCGCAAGGCGGCA
TCTGCTGGCCTGCTGCTGCTCCTCTACCCCTGGTATCCCCTCCGCTGCAGCTCCTATCCA
TGATGCTGACGCCAAGAGAGCTCCTGGTCTCACAGGCTCCAGAGCCTACTCCAAGGCTT
CAGCCGACITTCCTGAAAGTAACCTGCTTCGGGCATAGACAGCTTATTCTCTGCCCAT
GGACTTCCGGGCCTCCCTGGAACTACCACAAAGAGGAGAACCAAGGAGCAGCTGGGAA
CAACACCCCTCTCCAGCCACCTCCAGATCGACAAGATGACCGACAACAAGACAGAGGAGGGTGC
GATCTCCGAGAATGTGGTGGCATCCATTCAACCAGCGGAGGGAGCTCGAGGGTGATTGAA
GGTACCCAGGATGGAGGAGAAGGAGGCCCTGGTACCCATCCAGAAGGCCACGGACAGCTCCAC
ACAGAACTCCATCCCCGGGTGGCCTCTGGATCATTAAGCTGCCACGGCGGAGGTCCCACCAG
GATGCCCTGGAGGGCGGCCACTGGCTCAGCGAGAAGCGACACCGCCTGCAGGCCATCCGGAT
GGACTCCGCAAGGGGACCCACAAGGACGTCTAGAAGAGGGACCGAGAGCTCCTCCACTCC
AGGCTGTCCCCCGAAAGACCCACTTACTGTACATCCTCAGGCCCTCTGGCAGCTGTAGGG
TGGGGACCGGGGAGCACCTGCCTGTAGCCCCATCAGACCCTGCCCAAGCACCATAATGGAAA
TAAAGTTCTTCTTACATCTAAAAA

325/615

FIGURE 322

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68879
><subunit 1 of 1, 242 aa, 1 stop
><MW: 27007, pI: 8.68, NX(S/T): 2
MGEASPPAPARRHLLVLLLLLSTLVIPSAAPIHDADAQESSLGLTGLQSLLQGFSRLFL
KGNLLRGIDSLFSAAPMDFRGLPGNYHEENQEHLGNNTLSHLQIDKMTDNKTGEVLIS
ENVVASIQPAEGSFEGDLKVPRMEEKEALVPIQKATDSFHTELHPRVAFWIILPRRRSH
QDALEGGHWLSEKRHRLQAIRDGLRKGTHKDVLVEGTTESSSHSRLSPRKTHLLYILRPSR
QL
```

Important features of the protein:**Signal peptide:**

Amino acids 1-30

N-glycosylation sites:

Amino acids 97-101;112-116

N-myristoylation sites:

Amino acids 80-86;132-138;203-209;216-222

326/615

FIGURE 323

AGAGAAAGAACGCTCCAGCTGAAGCCAATGCAGCCCTCCGGCTCTCCCGAAGAACGTTCCC
TGCCCCGATGAGCCCCCGCCGTGCGTCCCCGACTATCCCCAGGCAGGGCGTGGGCACCGGGCC
CAGCGCCGACGATCGCTGCCGTTGCCCTGGGAGTAGGATGTGGTCAAAGGATGGGCCTTC
TCCCTACGGGCTACAATGCCAGAGAAGATCCGTGAAGTGTCTGCGCTGCCTGCTCTAC
GCCCTCAATCTGCTCTTGTTAATGTCCATCAGTGTGGCAGTTCTGCTGGATGAGG
GACTACCTAAATAATGTTCTCACTTTAACGTGAGAACGAGGGTAGAGGAAGCAGTCATTG
ACTTACTTCCCTGGTTCATCCGGTCACTGATTGCTGTTGCTGTTCTTATCATTGTTGGG
ATGTTAGGATATTGAGAACGGTAAAAGAAATCTGTTGCTTCTGCATGGTACTTGGAAAGT
TTGCTGTCATTTCTGTGAGAACGGCTGTGGCAGTGGACATATGAACAGGAACCTATG
GTTCCAGTACAATGGTCAGATATGGTCACTTGAAGGCCAGGATGACAAATTATGGATACCT
AGATATCGGTGGCTACTCATGCTGGAATTTTTCAGAGAGAGTTAACGTGCTGTGGAGTA
GTATATTCACTGACTGGTTGAAATGACAGAGATGGACTGGCCCCAGATTCTGCTGTGTT
AGAGAATTCCAGGATGTTCAAACAGGCCACCAGGAAGATCTCAGTGACCTTATCAAGAG
GGTGTGGGAAGAAAATGTTACCTTTGAGAGGAACCAAACACTGCAGGTGCTGAGGTTT
CTGGGAATCTCCATTGGGTGACACAAATCCTGCCATGATTCTCACCAATTACTCTGCTCTGG
GCTCTGTATTATGATAGAAGGGAGCCTGGACAGACCAATGATGTCCTGAAGAATGACAAC
TCTCAGCACCTGTCATGCCCCCAGTAGAACACTGTTGAACCAAGCCTGTCAGAACATCTTGAA
CACACATCCATGGCAAACAGCTTAATACACACTTGAGATGGAGGAGTTTAAAAAGAAATG
TCACAGAAGAAAACCACAAACTGTTTATTGGACTTGTGAATTGGAGTACATACTATGTG
TTTCAGAAATATGTAGAAATAAAATGTTGCCATAAAATAACACCTAACGATATACTATTCTA
TGCTTAAATGAGGATGGAAAAGTTCATGTCATAAGTCACCACCTGGACAATAATTGATGC
CCTTAAATGCTGAAGACAGATGTCATACCCACTGTGAGCCTGTATGACTTTACTGAAC
ACAGTTATGTTTGAGGCAGCATGGTTGATTAGCATTCCGCATCCATGCAAACGAGTCACA
TATGGTGGACTGGAGCCATAGTAAAGGTTGATTACTTCTACCAACTAGTATATAAAGTACT
AATTAAATGCTAACATAGGAAGTTAGAAAATCTAACATTGACTACGCGATCTATT
TTCTGATGCTAAATAATTATATCAGAAAATTCATATTGGTACTACCTAAATGTGAT
TTTGCTGGTTACTAAATATTCTACCACTTAAAGAGCAAGCTAACACATGTCCTAACG
GATCAGGGATTGTTGATATAAGTCTGTTAAATCTGTATAATTCACTGATTTCACT
GATAATGTTAAGAATAACCATTATGAAAAGAAAATTGCTCTGTATAGCATCATTATTTTA
GCCTTCCTGTTAATAAGCTTACTATTCTGCTCTGGCTTATATTACACATATAACTGTTA
TTAAATACCTAACACTAATTGAAAATTACCAAGTGTGATACATAGGAATCATTATTCA
ATGTTAGTCTGGCTTTAGGAAGTTAAATAAGAAAATTGCACATAACTTAGTTGATTCA
AGGACTTGTATGCTGTTTCTCCAAATGAAGACTCTTTGACACTAAACACTTTAAAAA
AGCTTATCTTGCCTCTCCAAACAAAGCAATAGTCTCAAGTCATATAAATTCTACAGA
AAATAGTGTCTTTCTCCAGAAAATGCTGTGAGAATCATTAAACATGTGACAATTAG
AGATTCTTGTGTTATTCACTGATTAATATACTGTGGCAAATTACACAGATTATAAATT
TTTACAAGAGTATAGTATATTATTGAAAATTGGAAAAGTGCATTTACTGTATTGTTGAT
TTGTTATTCTCAGAATATGAAAATTAAATGTGTCATTAATATTCTAGAGAG
TAA

327/615

FIGURE 324

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68880
><subunit 1 of 1, 305 aa, 1 stop
><MW: 35383, pi: 5.99, NX(S/T): 0
MAREDSVKCLRCLLYALNLLFWLMSISVLAWSAWMRDYLNNVLTLTAETRVEEAVILTYFPVV
HPVMIAVCCFLIIVGMLGYCGTVKRNLLLLAWYFGSLLVIFCVELACGVWTYEQELMVPVQWS
DMVTLKARMNTNYGLPRYRWLTHAWNFFQREFKCCGVYYFTDWLEMTEMDWPPDSCCVREFPGC
SKQAHQEQLSDLYQEGCGKKMYSFLRGTKQLQVLRFLGISIGVTQILAMILTITLLWALYYDR
REPGTDQMSLKDNDNSQHLSCPSVELLKPSLSRIFEHTSMANSFNTHFEMEEL
```

Signal peptide:

amino acids 1-33

Transmembrane domains:

amino acids 12-35, 57-86, 94-114, 226-248

328/615

FIGURE 325

AGCAGTGCATTGCTGGAGCGAGGAGAAGCTCACGAATCAGCTGCAGGTCTGTTTGAAAAAA
GCAGAGATAACAGAGGCAGAGGAAAAGGGTGGACTCCTATGTGACCTGTTAGAGCAAGACA
ATCACCACATCTGAATTCCAGAACGCCCTGTTCATGGTGGGGATATTCCTCGACTGC**ATG**GAAT
CAGAAAGAAGCAAAGGATGGGAAATGCCCTGCATTCCCCTGAAAAGAATTGCTTATTCCTAT
GTCTCTTATCTGCCTTGTGACTGAGGGAGAAACAGCGAAGCCAAATGCCCTGCCG
TGTGTACTGTACCAAAGATAATGCTTATGTGAGAATGCCAGATCCATTCCACGCACCGTTC
CTCCTGATGTTATCTCATTATCCTTGTGAGATCTGGTTACTGAAATCTCAGAAGGGAGTT
TTTATTACGCCATCGCTGCAGCTCTGTTATTACATCGAACTCCTTGATGTGATCAGTG
ATGATGCTTTATTGGTCTTCCACATCTAGAGTATTATTCATAGAAAACAACAATCAAGT
CAATTCAAGACATACTTCCGGGGACTAAAGTCATTAATTCACTTGAGCCTGCAAACAACA
ATCTCCAGACACTCCAAAAGATATTCAAAGGCCTGGATTCTTAACAAATGTGGACCTGA
GGGTAATTCAATTGACTGAAACTGAAATGGCTAGTGGAAATGGCTGGCCACACCA
ATGCAACTGTTGAAGACATCTACTGCGAAGGCCCGAGAATACAAGAAGCGAAAATCAATA
GTCTCTCCCGAAGGATTGCTTCATCATTACAGAATTGCAAAGTCTCAAGACCTGCCTT
ATCAATCATTGTCATAGACACTTTCTTATTGAATGATGAGTATGATGTCATCGCTCAGC
CTTTACTGGAAAATGCATTTCTTGAATGGGACCATGTTGAAAAGACCTTCCGGAATTATG
ACAACATTACAGGCACATCCACTGTAGTATGCAAGCTATAGTCATTGAAACTCAGCTCTATG
TTATTGTGCCAGCTGTTGGCTCTCACATCTATAAGCGAGACAGTTGCAAATAAT
TCATAAAAATCCAGGATATTGAAATTCTCAAAATCCGAAAACCCAATGACATTGAAACATTCA
AGATTGAAAACAACGGTACTTGTGCTGACAGTTCAAAGCTGGTTTACTACCATTAC
AAATGGAACGGAAACGGATTCTACTCCCATCAATCCTACACGCGTGGTACAGGGACACTGAT
GTGGAATATCTAGAAATAGTCAGAACACCTCAGACACTCAGAACGCCTCATTAATTCTGTCT
AGTAGTCCCAGCGCTCTGTAATTTCAGTGGAAACAAAGCAACACAATTTCACTAACCAA
ACTGACATCCTAACATGGAGGATGTGACTGCGAGTGAAGCACTTCTCAGTGAAGGGACGTG
TACATTGCTTGACAAGATTCTGGTGAATTCCAAAGTCATGAAATGGGAGGCTCTCGTTC
CAGGATATTCAAGAGGATGCCATCGCGAGGATCCATGGTGTCCAGCCTCTCAAATAATAAT
TACCAATATGCAATTCTGGAAGTGTACTCCTTACTCAAGTGTATAACTGGGATGCAGAG
AAAGCCAAATTGTAATTCAAGGAATTAAATGTTCAAGGCACCAAGATCATCACACATGTG
TCCATTAAAGCGTAATTCTTTGCTCCAGTTAAGGGAAATACACAGATTACAAA
CATGTCATAGTTGACTTAAGCGCA**TGAG**ACACCAAATTCTGGCTGCCATCAGAAATTCT
ACAGTACATGACCCGGATGAACATCAATGCATGATGACTCTTCTTATCACACTGCAAATGAAT
GCCTTCAAACATTGAGACTGCTAGAACCAAGCAACTACCAGTATCTCCATCCTTAACGTCCA
GTCCAGTGTGGAGTTACCTTATAAGACAAAATTAAATTGTGTAACGTGTTCTTGCA
GTGAAGATGTGAAATAAGCGTTAATGGTATCTGTTACTCCAAAAGAAATATTATGTA
CTTTCCATTATTATTACATGTGACAGAACACTGCCAAATAATGTTACATTCTT
TCATA

329/615

FIGURE 326

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68882
><subunit 1 of 1, 557 aa, 1 stop
><MW: 63818, pI: 8.61, NX(S/T): 3
MESERSKRMGNACIPLKRIAYFLCLLSALLTEGKKPAKPCKPAVCTCTKDNALCENARS
IPRTVPPDVISLSFVRSGFTEISEGSFLFTPSSLQLLLFTSNSFDVISDDAFIGLPHLEYL
FIENNNIKSISRHTFRGLKSLIHLSIANNLQTLPKDIFKGLDSLTNVDLRGNSFNCDCK
LKWLVEWLGHNTATVEDIYCEGPPEYKKRKINSLSHKDFDCIITEFAKSQDLPYQSLSID
TFSYLNDEYVVIAQPFTGKCIFLEWDHVEKTFRNYDNITGTSTVVCKPIVETQLYVIVA
QLFGGSHIYKRDSFANKFIKIQDIEILKIRKPNDIETFKIENNWyFVVADSSKAGFTTIY
KWNGNGFYSHQSLHAWYRDTDVEYLEIVRTPQTLRTPHLILSSSSQRPVIYQWNKATQLF
TNQTDIPNMEDVYAVKHFSVKGDVYICLTRFIGDSKVMKGSSFQDIQRMPSRGSMVFQ
PLQINNYQYAILGSDYSFTQVYNWDAEKAKFVKFQELNVQAPRSFTHVSINKRNFLFASS
FKGNTQIYKHVIVDLSA
```

Important features of the protein:**Signal peptide:**

Amino acids 1-34

Transmembrane domain:

Amino acids 281-306

N-glycosylation sites:

Amino acids 192-196; 277-281; 422-426

cAMP- and cGMP-dependent protein kinase phosphorylation site:

Amino acids 310-314

Tyrosine kinase phosphorylation sites:

Amino acids 228-235; 378-385

N-myristoylation sites:

Amino acids 172-178; 493-499

Amidation site:

Amino acids 33-37

330/615

FIGURE 327

CCAAGGCCAGAGCTGTGGACACCTTATCCACTCATCCTCATCCTCTGATAAAGCCC
CTACCAGTGTGATAAAAGTCTTCTCGTAGAGGCCTAGAGGCCTAAAAAAAAGTGCTTGA
AAGAGAAGGGGACAAAGGAACACCAGTATTAGAGGATTTCCAGTGTCTGGCAGTTGGTC
CAGAAGGATGCCTCCATTCTGCTTCTCACCTGCCTCTCATCACAGGCACCTCCGTGTCA
CGTGGCCCTAGATCCTGTTCTGCTTACATCAGCCTGAATGAGCCCTGGAGGAACACTGACCA
CCAGTTGGATGAGTCTCAAGGCCTCCTCTATGTGACAACCATGTGAATGGGGAGTGGTACCA
CTTCACGGGCATGGCGGGAGATGCCATGCCTACCTCTGCATACCAGAAAACCACTGTGGAAC
CCACGCACCTGTCTGGCTCAATGGCAGCCACCCCTAGAAGGCAGGGCATTGTGCAACGCCA
GGCTTGTGCCAGCTCAATGGGAACGCTGTCTGGAACACCACGGTGGAAAGTCAAGGCTG
CCCTGGAGGCTACTATGTGTATCGTCTGACCAAGCCCAGCGTCTGCTCCACGTCTACTGTGG
TCATTTTATGACATCTGCGACGAGGACTGCCATGGCAGCTGCTCAGATACCAGCAGTCAC
ATGCGCTCAGGAACGTGCTAGGCCCTGACAGGCAGACATGCTTGATGAAAATGAATGTGA
GCAAACAAACCGTGGCTGCAGTGGATCTGTGTGAACCTCAAAACTCCTACCGCTGTGAGTG
TGGGGTTGCCGTGTGCTAAGAAGTGTGGCAAGACTGTGAAGACGTTGAAGGATGCCACAA
TAACAATGGTGGCTGCAGCCACTCTGGCTTGGATCTGAGAAAGGCTACCGTGTGAATGTCC
CCGGGGCCTGGTGTCTGAGGATAACCACACTTGCCTGCTGGTGGCTGGAGCTCTCCTGAC
TGCATTGAAGTGAACATCCCCAGGGAGCTGGTGGCTGGAGCTCTCCTGACCAACAC
CTCCTGCCAGGGAGTGTCCAACGGCACCCATGTCAACATCCTCTCTCAAGACATGTGG
TACAGTGGCGATGTGGTGAATGACAAGATTGTGCCAGCAACCTCGTGACAGGTCTACCCAA
GCAGACCCCCGGGAGCAGCGGGACTTCATCATCCGAACCAGCAAGCTGCTGATCCCCTGAC
CTGCGAGTTCCACGCCTGTACACCATTCTGAAGGATAACGTTCCAAACCTTCGAAACTCCCC
ACTGGAATCATGAGCCGAAATCATGGGATCTTCCATTCACTCTGGAGATCTCAAGGACAA
TGAGTTGAAGAGCCTACGGGAAGCTCTGCCACCCCTCAAGCTCGTGACTCCCTCTACTT
TGGCATTGAGCCGTGGTCACGTGAGCGGCTTGGAAAGCTTGGTGGAGAGCTGCTTGGCAC
CCCCACCTCCAAGATCGACGAGGTCTGAAATACTACCTCATCCGGATGGCTGTGTTCA
TGACTCGGTAAAGCAGTACACATCCCAGGATCACCTAGCAAAGCACTTCCAGGTCCCTGTCTT
CAAGTTGTGGCAAAGACCACAAGGAAGTGTCTGCACTGCCGGTTCTGTCTGTGGAGT
GTGGACGAGCGTCCCGCTGTGCCAGGGTGGCCACCGCGAATGCGTGTGGCAGGGAG
AGAGGACTCAGCCGGTCTACAGGGCCAGCGCTAACAGGCCCGATCCGCATCGACTGGGA
GGACTAGTTCGTAGCCATACCTCGAGTCCCTGCATTGGACGGCTTGCTCTTGGAGCTTCTC
CCCCCACCGCCCTCTAAGAACATCTGCCAACAGCTGGGTCAGACTTCACACTGTGAGTTGAG
ACTCCCAGCACCAACTCACTGTGATTCTGGCATTCACTGGGACAGGTACAGCACTGCTG
AACAAATGTGGCCTGGTGGGTTCATCTTCTAGGGTTGAAAACAAACTAAACTGTCCACCCAGAA
AGACACTCACCCATTCCCTCATTTCTTCAACTAAATACCTCGTGTATGGTGCATC
AGACCACAAAATCAGAAGCTGGGTATAATATTCAGTTACAAACCTAGAAAAATTAAACAG
TTACTGAAATTATGACTTAAATACCAATGACTCCTTAAATATGTAAATTATAGTTACCTT
GAAATTCAATTCAAATGCAGACTAATTATAGGAATTGGAGTGTATCAATAAAACAGTAT
ATAATT

331/615

FIGURE 328

MPPFLLLTCLFITGTSVSPVALDPCSAYISLNEPWRNTDHQLDESQGPPLCDNHVNGEWYHFT
GMAGDAMPTFCIPEHCGTHAPVWLNGSHPLEGDGIVQRQACASFNGNCLWNNTVEVKACPG
GYYVYRLTKPSVCFHVYCGHFYDICDEDCHGSCSDTSECTCAPGTVLGPDRTCFDENECEQN
NGGCSEICVNLKNSYRCECGVGRVLRSDGKTCEDVEGCHNNNGCASHSCLGSEKGYQCECPRG
LVLSEDNHTCQVPVLCKSNAIEVNIPRELVGGLEFLTNNTSRGVSNHGTHVNILFSLKTCGTV
VDVVNDKIVASNLVTGLPKQTGSSGDFIIRTSKLLIPVTCEFPRLYTISEGYVPNLRNSPLE
IMSRNHGIFPFTLEIFKDNEFEPPYREALPTLKLRDSLFGIEPVHVSGLESLVESCFATPT
SKIDEVLKYYLIRDGCVSDDSVKQYTSRDHLAKHFQVPVFKFVGKDHEVFLHCRVLVCGVLD
ERSRCAQGCHRRMRRGAGGEDSAGLQGQTLTGGPIRIDWED

Important features of the protein:

Signal peptide:

amino acids 1-16

N-glycosylation sites.

amino acids 89-93, 116-120, 259-263, 291-295, 299-303

Tyrosine kinase phosphorylation sites.

amino acids 411-418, 443-451

N-myristoylation sites.

amino acids 226-232, 233-239, 240-246, 252-258, 296-302, 300-306,
522-528, 531-537

Aspartic acid and asparagine hydroxylation site.

amino acids 197-209

ZP domain proteins.

amino acids 431-457

Calcium-binding EGF-like proteins.

amino acids 191-212, 232-253

332/615

FIGURE 329

GAGAGAGGCAGCAGCTTGTCAAGCGGACAAGGGATGCTGGGCGTGAGGGACCAAGGCCTGCCCT
GCACTCGGGCCTCCCTCCAGCCAGTGCTGACCAGGGACTTCTGACCTGCTGGCCAGCCAGGACC
TGTGTGGGGAGGCCCTCCTGCTGCCTGGGTGACAATCTCAGCTCAGGCTACAGGGAGACC
GGGAGGATCACAGAGCCAGC**ATGTT**ACAGGATCCTGACAGTGATCAACCTCTGAACAGCCTCG
ATGTCAAACCCCTGCGCAAACCCCCTGATCCCCATGGAGACCTTCAGAAAGGTGGGGATCCCCA
TCATCATAGCACTACTGAGCCTGGCGAGTATCATCATTGTTGCTCATCAAGGTGATT
TGGATAAAACTACTTCCTCTGGGGCAGCCTCCACTCATCCGAGGAAGCAGCTGTGTG
ACGGAGAGCTGGACTGTCCCTGGGGAGGACGAGGAGCACTGTGTCAAGAGCTCCCCGAAG
GCCCTGCAGTGGCAGTCCGCCTCTCCAAGGACCGATCCACACTGCAGGTGCTGGACTCGGCCA
CAGGGAACTGGTTCTCTGCCTGTTGACAACCTTCACAGAAGCTCTCGCTGAGACAGCCTGTA
GGCAGATGGGCTACAGCAGAGCTGTGGAGATTGGCCAGACCAGGATCTGGATGTTGAAA
TCACAGAAAACAGCCAGGAGCTCGCATCGGAACTCAAGTGGGCCCTGTCTCAGGCTCCC
TGGTCTCCCTGCACTGTCTGCCTGTTGGAAGAGCCTGAAGACCCCCCGTGTGGTGGGG
AGGAGGCCCTGTGGATTCTGGCCTGGCAGGTCAGCATCCAGTACGACAAACAGCACGTCT
GTGGAGGGAGCATCTGGACCCCCACTGGTCCTCACGGCAGCCACTGCTTCAGGAACATA
CCGATGTGTTCACTGGAAGGTGCGGGCAGGCTCAGACAAACTGGCAGCTCCATCCCTGG
CTGTGGCCAAGATCATCATATTGAATTCAACCCATGTACCCAAAGACAATGACATGCC
TCATGAAGCTGCAGTCCCACTCATTCTCAGGCACAGTCAGGCCATCTGTCTGCCCT
TTGATGAGGAGCTCACTCCAGCCACCCACTCTGGATCATGGATGGGCTTACGAAGCAGA
ATGGAGGGAAAGATGTCTGACATACTGCTGCAGGCAGTCCAGGTATTGACAGCACACGGT
GCAATGCAGACGATGCGTACCGAGGGAAAGTCACCGAGAAGATGATGTGTGCAGGCATCCGG
AAGGGGGTGTGGACACCTGCCAGGGTGACAGTGTTGGCCCTGATGTACCAATCTGACCGAT
GGCATGTGGTGGGCATCGTTAGCTGGGCTATGGCTGCAGGGGGAGCAGGCCAGGAGTAT
ACACCAAGGTCTCAGCCTATCTCAACTGGATCTACAATGTCTGGAAGGCTGAGCTG**TAATGCT**
GCTGCCCTTGCACTGCTGGAGGCCCTCCCTGCCCTGCCACCTGGGATCCCCAA
AGTCAGACACAGAGCAAGAGTCCCCTGGGTACACCCCTGCCCACAGCCTCAGCATTTCTT
GGAGCAGCAAAGGGCCTCAATTCTGTAAGAGACCCCTCGCAGCCAGAGCGCCAGAGGAAG
TCAGCAGCCCTAGCTCGGCCACACTGGTGCTCCAGCATCCCAGGGAGAGACACAGCCACT
GAACAAGGTCTCAGGGTATTGCTAACGCAAGAAGGAACCTTCCACACTACTGAATGGAAGC
AGGCTGTCTGTAAAAGCCAGATCACTGTTGGGCTGGAGAGGAAGGAAAGGGTCTCGGCCA
GCCCTGTCCGTCTCACCCATCCCCAAGCCTACTAGAGCAAGAAACCAGTTGTAATATAAAAT
GCACTGCCCTACTGTTGGTATGACTACCCTACTGTTGTCATTGTTATTACAGCTATGG
CCACTATTATAAGAGCTGTGTAACATCTGGCAAAAAAAAAAAAAA

333/615

FIGURE 330

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA68885
><subunit 1 of 1, 432 aa, 1 stop
><MW: 47644, pi: 5.18, NX(S/T): 2
MLQDPDSQQPLNSLDVKPLRKPRIPMETFRKVGIPIIIALLSLASIIVVVIKVILDKYYFL
CGQPLHFIPRKQLCDGEELDCPLGEDEEHCVKSFPEGPAVAVRLSKDRSTLQVLDSATGNWFSA
CFDNFTEALAEATACRQMGYSRAVEIGPDQDLDVVEITENSQELRMRNSSGPCLSGSLVSLHCL
ACGKSLKTPRVVGEEASVDSWPWQVSIQYDKQHVCGGSILDPHWLTAHCFRKHTDVFNWK
VRAGSDKLGSFPSLAVAKIIIEFNPMYPKDNDIALMKLQFPLTSGTVRPICLPFFDEELTP
ATPLWIIGWGFTKQNGGKMSDILLQASVQVIDSTRCNADDAYQGEVTEKMMCAGIPEGGVDT
QGDGGPLMYQSDQWHVVGIVSWGCGGPSTPGVYTKVSAYLNWIYNVWKAEL
```

Transmembrane domain:
amino acids 32-53 (typeII)

334/615

FIGURE 331

AGTGGTTCGATGGGAAGGATCTTCTCCAAGTGGTCCTCTGAGGGGAGCATTCTGCTGGC
TCCAGGACTTGGCCATCTATAAAGCTGGCAATGAGAAATAAGAAAATTCTCAAGGAGGACG
AGCTCTGAGTGAGACCCACAAGCTGCTTCAACAAATTGCAATGGAGCCTTCGAAATCA
ATGTTCAAAGCCCCAAGAGGAGAAATGGGGTGAACCTCTCCCTAGCTGTGGTGCATCTACC
TGATCCTGCTCACCGCTGGCGTGGCTGGTCCAAGTCTGAATCTGCAGGCGCGC
TCCGGGTCTGGAGATGTATTCTCAATGACACTCTGGCGGCTGAGGACAGCCCCTCCTCT
CCTGCTGCAGTCAGCACACCCCTGGAGAACACCTGGCTCAGGGTGCATCGAGGCTGCAAGTCC
TGCAGGCCAACTCACCTGGTCCGCGTCAGCCATGAGCACTGCTGCAGGGTAGACAAC
TCACTCAGAACCCAGGGATGTTCAGAATCAAAGGTGAACAAGGCGCCCCAGGTCTCAAGGTC
ACAAGGGGGCATGGCATGCCCTGGCCGCCCCGACACCTGCTGAGAACAGGGAG
CCAAGGGGGCTATGGGACGAGATGGAGCAACAGGCCCTCGGGACCCAAAGGCCACCGGGAG
TCAAGGGAGAGGCGGGCTCCAAGGACCCCAGGGTGCTCCAGGAAGCAAGGAGCCACTGGCA
CCCCAGGACCCAAAGGAGAGAACAGGCAGCAAAGGCATGGGGTCTCATGGCCAAAAGGG
AAACTGGAACTAAGGGAGAGAAAGGAGACCTGGGTCTCCAGGAAGCAAAGGGACAGGGCA
TGAAAGGAGATGCAGGGTCTGGGCTCTGGAGCCAGGGAGTAAAGGTGACTTCGGGA
GCCAGGCCACCAGGTTGGCTGGTTCTGGAGCTAAAGGAGATCAAGGACAACCTGGAC
TGCAGGGTGTCCGGGCCCTCTGGTGCAGTGGACACCCAGGTGCCAAGGGTGAGCCTGGCA
GTGCTGGCTCCCTGGCGAGCAGGACTCCAGGGAGGCCAGGGAGTCCAGGAGCCACAGGCC
TGAAAGGAAGCAAAGGGACACAGGACTCAAGGACAGCAAGGAAGAAAAGGAGAATCAGGAG
TTCCAGGCCCTGCAGGTGTGAAGGGAGAACAGGGAGGCCAGGGCTGGCAGGTCCAAGGGAG
CCCCTGGACAAGCTGCCAGAACAGGGAGACCAGGGAGTGAAGGATCTCTGGGAGCAAGGAG
TAAAGGGAGAAAAGGTGAAAGAGGTGAAAACACTCAGTGTCCGTAGGATTGTCGGCAGTAGTA
ACCGAGGCCGGCTGAAGTTACTACAGTGGTACCTGGGGACAATTGCGATGACGAGTGGC
AAAATTCTGATGCCATTGTCTCTGCCCATGCTGGTTACTCCAAAGGAAGGCCCTGTACA
AAGTGGGAGCTGGCACTGGCAGATCTGGCTGGATAATGTTAGTGTCCGGGCACGGAGAGTA
CCCTGTGGAGCTGCACCAAGAATAGCTGGGCCATCATGACTGCAGCCACGAGGAGGACGCAG
GCGTGGAGTGCAGCGTCTGACCCGGAAACCCTTCACTTCTGCTCCCGAGGTGTCCCTCGGG
CTCATATGTGGGAAGGCAGAGGATCTGAGGAGTTCCCTGGGACAACGTGAGCAGCCTCTGG
AGAGGGGCCATTAATAAGCTAACATCATTGA

335/615

FIGURE 332

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA68886
><subunit 1 of 1, 520 aa, 1 stop
><MW: 52658, pI: 9.16, NX(S/T): 3
MRNKKILKEDELLSETQQAAFHQIAAMEPFEINVPKPKRRNGVNFSLAVVVIYLLTAGAGLL
VVQVLNLQARLRVLEMYFLNDTAAEDSPSFSLQSAHPEHLAQGASRLQVLQAQLTWVRVS
HEHLLQRVDNFTQNPQMFRIKGEQGAPGLQGHKGAMGMPGAPGPPGPPAEKGAKGAMGRDGAT
GSPGPQGPPGVKGEAGLQGPQGAPGKQGATGTPGPQGEKGSKGDGGGLIGPKGETGTKGEKDL
GLPGSKGDRGMKGDAVMGPPGAQGSKDFGRPGPPLAGFPGAKGDQGQPGLQGVPGPPGAV
GHPGAKGEPGSAGSPGRAGLPGSPGSPGATGLKGSKGDTGLQGQQGRKGESGVPGPAGVKGEQ
GSPGLAGPKGAPGQAGQKGDQGVKGSSGEQGVKEKGERGENSVSRIVGSSNRGRAEVYYSG
TWGTICDDEWQNSDAIVFCRMLGYSKGRALYKVAGTGQIWLDNVQCRGTESTLWSCTKNSWG
HHDCSHEEDAGVECSV

Transmembrane domain:

amino acids 47-66 (type II)

N-glycosylation sites.

amino acids 43-47, 83-87, 136-140

Tyrosine kinase phosphorylation site.

amino acids 432-440

N-myristoylation sites.amino acids 41-47, 178-184, 253-259, 274-280, 340-346, 346-352,
400-406, 441-447, 475-481, 490-496, 515-521**Amidation site.**

amino acids 360-364

Leucine zipper pattern.

amino acids 56-78

Speract receptor repeat

amino acids 422-471, 488-519

C1q domain proteins.

amino acids 151-184, 301-334, 316-349

336/615

FIGURE 333

GGGCTGTTGATTGTGGGGATTTGAAGAGAGGAGGAATAGGAGGAAGGGGTTGAGGGGCTG
CCTCTGGCATATGCACACACTCACACATTCTGTCACACCGTCACACACATACCATGTTCT
CCATCCCCCAGGTCAGCCCTCAGTGTGTCACCCATCCAGCAGGGTACCCCTGAAGCTCTGGC
TGCAGCCCCCTCCCGTCCAGTGGCAGGGCCTTCATCCCTCTTCTCTCCAAAGCCAACTG
CTGTCAGTGCATGCTCTGCCAAGGAGGAGGAACAGCAGTGACAGCAGGAGTAAGAGTGGAG
GCAGGACAGAGCTGGGACACAGGTATGGAGAGGGGTTCAGCGAGCCTAGAGAGGGCAGACTA
TCAGGGTGCCGGCGGTGAGAATCCAGGGAGAGGAGCGGAAACAGAAAGAGGGCAGAACCGG
GGCACTTGTGGGTTGCAGAGCCCCTCAGCCATGTTGGGAGCCAAGGCCACACTGGCTACCAGGT
CCCCTACACAGTCCCAGGCTGCCCTTGGTTCTGGTCTCTGGCCCTGGGGCCGGTGGGCC
CAGGAGGGGTCAAGAGCCCCTGCTGGAGGGGAGTGCCCTGGTGGTCTGTGAGCCTGGCCGA
GCTGCTGAGGGGGCCGGGGAGCAGCCCTGGGAGAGGCACCCCCCTGGCGAGTGGCATT
GCTGCGGTCGAAGCCACCACCATGAGCCAGCAGGGAAACCGGCAATGGCACCACTGGGCC
ATCTACTTCGACCAGGTCTGGTGAACGAGGGCGGTGGCTTGACCCGGCTCTGGCTCTTC
GTAGCCCCGTCCGGGGTGTCTACAGCTTCCGGTCCATGTGGTGAAGGTGTACAACGCCAA
ACTGTCCAGGTGAGCCTGATGCTGAACACGTGGCTGTCTAGCAGCCTTGCCAATGATCCT
GACGTGACCCAGGAGGCAGCCACCAGCTGTGCTACTGCCCTGGACCCCTGGGACCGAGTG
TCTCTGCCTCGCTGGGGAAATCTACTGGTGGTGGAAATACTCAAGTTCTGCTGGCTTC
CTCATCTTCCCTCTTGAGGACCAAGTCTTCAAGCACAAGAATCCAGCCCCTGACAACCTT
CTTCTGCCCTCTTGTCCCCAGAAACAGCAGAGGCAGGAGAGACTCCCTGGCTCTATC
CCACCTCTTGCATGGGACCCGTGCCAAACACCAAGTTAAGAGAAGAGTAGAGCTGTGGC
ATCTCCAGACCAGGCCTTCCACCCACCCACCCAGTTACCCCTCCAGGCCACCTGCTGCATC
TGTTCCTGCCCTGCAGCCCTAGGATCAGGGCAAGGTTGGCAAGAAGGAAGATCTGCACTACTT
TGCAGCAGGTGAGCCTGACAGGCCACAGGAGCCAGATGGACAAGCCTCAGCGTACCCCTG
CAGGCTTCTTCTGTGAGGAAAGCCAGCATCAGGATCTCAGCCAGCACCGTCAGAAGCTGAG
CCAGCACCGTATGGCTAGGGTGGGAGGCTAGCCACAGGCAGAAGGGTGGGAAGGGCTGGA
GTCTGTGGCTGGTGGAGGAAGGAAGGAGGGTGTATTGTCTAGACTGAACATGGTACACATTCTG
CATGTATAGCAGAGCAGCCAGCAGGTAGCAATCCTGGCTGCTCTTCTATGCTGGATCCCAGAT
GGACTCTGCCCTTACCTCCCCACCTGAGATTAGGGTGAGTGTGTTGCTCTGGCTGAGAGCA
GAGCTGAGAGCAGGTATACAGAGCTGGAAGTGGACCATGGAAAACATCGATAACCATGCATCC
TCTTGCTGGCCACCTCCTGAAACTGCTCCACCTTGAAGTTGAACCTTAGTCCCTCCACAC
TCTGACTGCTGCCCTTCCCTCCAGCTCTCACTGAGTTATCTTCACTGTACCTGTTCCAG
CATATCCCCACTATCTCTTTCTCTGATCTGCTGTCTTATTCTCCTCCTTAGGCTTCCT
ATTACCTGGGATTCCATGATTCAATTCCCTCAGACCCCTCTGCCAGTATGCTAAACCCCTCCC
TCTCTCTTCTTATCCCGCTGCCCATTGGCCAGCCTGGATGAATCTATCAATAAAACA
AGAGAATGGTGGTCAGTGAGACACTATAGAATTACTAAGGAGAAGATGCCCTGGAGTTGGA
TCGGGTGTTACAGGTACAAGTAGGTATGTTGCAGAGGAAAATAATCAAACGTATACTAA
AATTAAAAA

337/615

FIGURE 334

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71180
><subunit 1 of 1, 205 aa, 1 stop
><MW: 21521, pI: 7.07, NX(S/T): 1
MLGAKPHWLPGPLHSPGLPLVLVLLALGAGWAQEGSEPVILLEGECLVVCEPGRAAAGGPGGAA
LGEAPPGRAFAAVRSHHHEPAGETGNGTSGAIYFDQVLVNEGGGFDRASGSFVAPVRGVYSF
RFHVVVKVYNRQTVQVSIMLNTWPVISAFANDPDVTREAATSSVLLPLDPGDRVSLRLRRGNLL
GGWKYSSFSGFLIFPL

Signal peptide:
amino acids 1-32

338/615

FIGURE 335

339/615

FIGURE 336

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71184
><subunit 1 of 1, 388 aa, 1 stop
><MW: 43831, pI: 9.64, NX(S/T): 3
MKTLLIAAYSGVLRGERQAEADRSQRSHGGPALSREGSGRWTGSSILSALQDLFSVTWLNRSK
VEKQLQVISVLQWVLSFLVLGVACSAILMYIFCTDCWLIAVLYFTWLVDWNTPKKGRRSQW
VRNWAVWRYFRDYFPIQLVKTHNLLTRNYIFGYHPHGIMGLGAFCNFSTEATEVSKKFPGIR
PYLATLAGNFRMPVLREYLMGGICPVSRDTIDYLLSKNGSGNAAIIIVVGAAESLSSMPGKN
AVTLRNKRGFVKLALRGADLVPIYSFGENEVYKQVIFEEGSWGRVQKKFQKYIGFAPCIFH
GRGLFSSDTWGLVPYSKPITTVVGEPITIPKLEHPTQQDIDLYHTMYMEALVKLFDKHKTFG
LPETEVLEVN

Important features of the protein:

Transmembrane domain:

amino acids 76-97

N-glycosylation sites.

amino acids 60-63, 173-176, 228-231

N-myristoylation sites.

amino acids 10-15, 41-46, 84-89, 120-125, 169-174, 229-234, 240-
245, 318-323, 378-383

340/615

FIGURE 337

GGGGCGGGGATGGGGGCCGGGGCGGGCGCCGACTCGCTGAGGCCCGACGCAAGGCCGGGCCGGGG
GGGCCGAGGAGCGCGGCCAGAGCAGGGCGAGGCAGGCCGGGGACGCCCGCGACGAGCAGGTGGC
GCGGCTGCAGGCTGTCCAGCCGAAGGCCCTGAGGGCAGCTGTTCCACTGGCTCTGCTGACCTTGTGCCTTGG
CGGCTGCTCAGCGAGGGGCCGTGACCCGCTCTGAGCAGCGCCATGGGCTGCTGGCTTCTGAAGACCCA
GTCGTGCTGACCTGCTGGCTGGCTTGTCTCGTGGTAGTGGCTGGCATCAACTTCGTCAGCTGTGCAC
GCTGGCGCTCTGGCGGTGAGCAAGCAGCTTACGCCGCTCAACTGCCCTGCCACTCACTCTGGAGCCA
ACTGGTCATGCTGCTGGAGTGGTCTGACGGAGTGTACACTGTTACGGACCAGGCCACGGTAGAGCGCTT
TGGGAAGGGAGCACCGAGTCATCATCCTCAACCACAACCTCGAGATCGACTCCTCTGTTGGGAGGACCATGTGTGA
GCGCTTGGAGTGTGGAGCTCAAGAGTCTCGTAAGAAGGAGCTGCTCTACGTGCCCCCTCATGGCTGGAC
GTGGTACTTCTGGAGATTGTGTTCTGCAAGCGGAAGTGGGAGGAGGACCGGGACACCGTGGTGAAGGGCTGAG
GCGCCTGCGACTACCCCAGTACATGTTCTCCTGTACTCGAGGGGACGCGCTCACGGAGAACCAAGCA
CCGCGTAGCATGGAGGTGGCGCTGCTAAGGGCTTCTCTGCTCAAGTACACCTGTCGCCGGGACCAAGGG
CTTCACACCGCAGTCAGTGCTCCGGGGACAGTGCAGCTGTCTATGATGTAACCTGAACCTCAGAGAAA
CAAGAACCGTCCCTGCTGGGGATCCTCTACGGGAAGTACGGAGCGACATGTGCGTAGGGAGATTCCCT
GGAAGACATCCCCTGGATGAAAAGGAAGCAGCTCAGTGGCTTCATAAACTGTACCAAGGAGAACGCGCTCCA
GGAGATATATAATCAGAAGGGCATGTTCCAGGGGAGCAGTTAACGCTGCCGGAGGCCGTGGACCCCTCTGAA
CTTCCTGCTGGGCCACCATTCTCTGTCCTCCCTCTCAGTTGTCTGGCGTCTTGCACGGGATCACC
TCTCTGATCCTGACTTTCTTGGGTTGTGGAGCAGCTTCTGGAGTTCGCAAGACTGATAGGAGAATCGCT
TGAACCTGGAGGTTGAGATTGCACTGAGCTGAGATGGCATCACTGTAACCTCAGCCTAGGCAACAGAGCAAGACT
CAGTCTCAAAAAAAAAAAAAACAAAAACCCCAGAAATTCTGGAGTTGAACTGTGTAGTTACTGACATGAAAA
ATTCACTAGAGGCTAACAGCAGATTGAGCAGGCAGAAAAAAATCAGCAAGCTGAAAGATGGTACCTTGAGATT
TTTCAGGCTAATGAAAAAGAATGAAGGAAATTAAACAGCCTCAGAGACCCATGGTGCACCGTCACACAAATCAA
CATATGCACTGAGAGTCCCAGAAGGGAGAGAACGGGTCAAGAAAGAATGCCACAAGCTGATGAAAACA
GTAACCTACCCACTCAGGAAGCTAGTAACTCAGGATGAATATCAGAGATGCCACACCTAGATATTCTCAT
AATCAAAGTGTCAAATGACAAGAATTCTGGAAAGCAGCAAGAGATGAGCAACTTATCTGTTCAAAGGACTTTG
ATCAGATTAACAGCTCATTCTCCTCAGAAATCATGGGAGCCAGGAGATAGTGGGATGAAACACTGTTGAAAGGAA
AACCTCAACTGAAATTATTGGACTTTGAGCTTCTAGATGGTCTGACCTCTTGTCTCAGGGACAGTTTCA
ATTTAATCCCTAATAACAATTAGTCAGCTTCTGACCTGAGGAAGGCCGTGCTTAGGCCGGCACAGTGGC
TTACACCTGTAATCCCAGCATTGGGAGGCCAGACGGGTGGATCATTGGGCTAGGCTGATCTCAAACCTCT
GAGTCAGGTGATCTGCCGCCTCAGCCTCCAAAGTGTGTGATTGCAAGGCGTCAAGGCACTGCCCTGGCCGGA
ATTTCTTTAAGGTGAATGAGGGGCCAGGCAGATGGCTACGCCGTGATCCCAAGTAGCTTGGATTGTA
AACATGCAACCACTGCCGTAAATTGTTGATTTTGTAGTAGAGACGTGTTAGCCAGGCTGGCTCGATCTCCT
GACCTCAAGTGCACACCTGCCCTCAGCCTCCAAAGTACTGGGATTACAGGCGTGAAGCCACTGTGCTGCCCTTGA
GCATCTGTGATGTCATTGGCATTGTTGATATCTCTATCTTGGGAAATGTCGTTCAAAGTCTTGG
CCTTTAAATTGTTATTATTATTATTGAGACAGGGCTCTGTTCTGCTGCCAGGCTGGAGT
CAGTGGCACAGTCTGGCTACTGCAGCCTCGACCTCTGGCTGAGTGAATCTCCACACTCAGCCTCCCTTGT
AGCTGTTATTGTTGTTGATTTGAGCTGAGTGTAGTTTGTGTTGAGAGACGATTTCACCATG
TGCCCAGGCTGGTCTGAACCTCTGAGCTCAAGTGAATGTCGCTCTGAGCTCCTCAAAGTGTGGGATTACAGA
CATGAGGCCACTGCACCTGGCAAACCTCCAAAATTCAACACACACACACACACACACACACACACACACAC
GAGGGGCCGGGTGTGGCCCAACTACCAGGGAGACTGAAGTGGGAGGATGCCCTGGGATGAGAAGTCAGGCGT
CAGTGAAGTCAGGTTGTGCACTGCATTCCAGCCTGGACAAACAGAGTGAAGACCCCTGTC

341/615

FIGURE 338

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71213
><subunit 1 of 1, 368 aa, 1 stop
><MW: 42550, pi: 9.11, NX(S/T): 1
MGLLAFLKTQFVLHLLVGFVFVSGLVINFVQLCTLALWPVKQLYRRLNCRAYSLWSQLVM
LLEWWSCTECTLFTDQATVERFGKEHAVIILNHNFEDFLCGWTMCERFGVLGSSKVLAKKEL
LYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKHRVSM
EVAAAKGLPVLYHLLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPSLLGILYGKKYEAD
MCVRRFPLEDIPLDEKEAAQWLHKLYQEKDALQEIQYNQKGMFPGEQFKPARRPWTLLNFLSWA
TILLSPLFSFVLGVFASGSPLLILTFLGFVGAASFGVRRLIGESLEPGRWRLQ
```

Important features of the protein:

Signal peptide:

amino acids 1-25

Transmembrane domains:

amino acids 307-323, 335-352

Tyrosine kinase phosphorylation sites.

amino acids 160-168, 161-169

342/615

FIGURE 339

GATATTCTTATTAAAGAATCTGAAGTACTATGCACTCCCTCCAATGTCCGGGGCAG
CCACCAGGCATATTCATCTTGTGTGTTTCTTTGCTTAGCACTGGGGCACTTCTTGC
TTATTCTTGGTAGGAAAGGGCTCAGTTGTCTGTGGGTTGGCAGGCAGGCCGGCT
TACGCCTGATAACGCCCTGGGTTAGAAGGGAAAGGATAAAACTTTAACAAATGGGGATA
GCTGGGGTCTGAGACCTGCTCCTCAGTAAAATTCCCTGGGATCTGCCTATACCTCTTCTC
TAACCTGGCATAACCCCTGCTAAAGCCTCTCAGGGCTTCTCTGTCTTAGGATCAAAGTATT
TAGAGCTACAAGAGCCCTATGGTCTGGCCCTGCCCTGGCCAGCTTCATTGTACATGTG
GTGTTCTTGTGCGTTCTGTAATGTGGTATGCCATGGGTCTTGACACAAGCCTTCCTCTT
TGGCTGGACACTGTCCTGCCCTGGCCCCCCTACTCTCCTACTTAATATGTAGTCATCCTGCAG
ATTTCAATTCTAACATCATTCTCCAGGGATCTGGCCTGACAGAATCTCATCTGTTAAT
GCTCTCATAAAGACCACTTGTCTCCCTTTGCAGCACCTGCCACTCAGTTGTATCTTATGTG
GTTTGTGGTTGTATGGGTTGTCTGTTCCCAGAATGCCAGCTCTGAGCTGCGTGAGGGTC
AAGGGCATTGCTGTGCCTGCCAGGTATAGTGCCTACATGTGGTGGGTGCTCATGTTTAGAGA
CTAAATGGAGGAGGAGATGAGGAAAAGATTGAAATCTCTCAGTTCACCAAGATGGTGTAGGGCC
CAGCATTGTAATTACACGTTGACTGTGCTTGTGAATTATCTGGGATGCAGGTCTGATT
AGTAGGCCAGGTTGGGCATCTCTAACAAACTCCCACGTGATGCTGATGCTGGCCTATGAAC
TATACTAAATAGTAAGAATCTATGGAGCCAGGCTGGCATGGTGGCTCACACCTATGATCCC
GCACCTTGGGAGGCTGAGGCAGGCTGATCACCTGGAGTCAGGATTCAAGACTAGCCTGGCCA
ACATGGTGGAACCCCATCTGTACTAAAAATACACAAATTAGCTGGCATGGTGGCACATGCC
GTAGTCCCAGCTACTTGGGAGGCTGAAGCAAGAGAATCGCTGAACCTGGGAGGCGGAGGTTG
CAGTGAGGCCAGGACTGTTCAACCAGGGTACAGAGTGAGACTCTATGTCCAA
AAAAAAAAAA

343/615

FIGURE 340

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71234
><subunit 1 of 1, 143 aa, 1 stop
><MW: 15624, pI: 9.58, NX(S/T): 0
MHHSLQCPGAATRHIHLCVCFSFALALGHFLLISLVGKGLSLSGVGGRQAGLRLIRPWVRRE
GKINFYTNNGDSWGLRPASSVKFLGSAYTFFSLTWHTLLKASQGFSLFLGSKYLELQEPEPSWSGP
CPPGQLHCTCGVLLSFL

Important features of the protein:

Signal peptide:

amino acids 1-28

344/615

FIGURE 341

CGCCATGGCCGGCTATCCGCGGGTCCGCGCGCAGTGCTCGCCGCCCTGCTGGCGTCGACG
CTGTTGGCGCTGCTCGTGTGCCCCGCGCGGGTGCAGGGCCGGGACACGGGGACTGGGAC
GAGGCCTCCCGGCTGCCGCCGCTACCACCCCGCGAGGACGCGCGCGCGTGGCCCCTCGTG
ACGCACGCTCTCCGACTGGGGCGCTCTGGCCACCATCTCACGCTGGAGGCAGGCGTGCAGGGCCGG
CCCTTCGCCGACGTCCCTCGCTCAGCGACGGGGCCCCGGCGCGGGCAGCGCGTGCCTAT
TTCTACCTGAGCCCCTGCAGCTCTCCGTGAGCAACCTGCAGGAGAATCCATATGCTACACTG
ACCATGACTTGGCACAGACCAACTCTGCAAGAAACATGGATTGATCCACAAAGTCCCCTT
TGTGTTCACATAATGCTGTCAGGAACGTGACCAAGGTGAATGAAACAGAAATGGATATTGCA
AACGATTGTTATTGATTGACACCCCTGAGATGAAAACCTGGCCTTCCAGCCATAATTGGTTC
TTTGCTAAGTTGAATATAACCAATATCTGGGTCTGGACTACTTGGTGGACCAAAATCGTG
ACACCAGAAGAATATTATAATGTCACAGTCAGTGAAGCAGACTGTGGTGAATTAGCAACAC
TTATGAAGTTCTTAAAGTGGCTCATACACACTAAAAGGCTTAATGTTCTGGAAAGCGT
CCCAGAATATTAGCCAGTTCTGTC

345/615

FIGURE 342

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71269
><subunit 1 of 1, 220 aa, 1 stop
><MW: 24075, pi: 7.67, NX(S/T): 3
MAGLSRGSRALLAALLASTLLALLVSPARGRRGRDHGDWDEASRLPPLPPREDAARVAR
FVTHVSDWGALATISTLEAVRGRPFADVLSSLSDGPPGAGSGVPYFYLSPLQLSVSNLQEN
PYATLTMTLAQTNFCKKHGFDPQSPLCVHIMLSGTVTKVNETEMDIAKHSLFIRHPEMKT
WPSSHNWFFAKLNITNIWVLDYFGGPKIVTPEEYYNVTQ

Important features of the protein:

Transmembrane domain:

Amino acids 11-29

N-glycosylation sites:

Amino acids 160-164;193-197;216-220

N-myristoylation sites:

Amino acids 3-9;7-13;69-75;97-103

346/615

FIGURE 343

GGCTGGACTGGAACCTCTGGCCCCAAGTGATCCACCGCCTCAGCCTCCCAAGGTGCTGTGAT
TATAGGTGTAAGCCACCGTGTCTGGCCTCTGAACAACCTTTCACTAAAGGCCACAG
GAGTTGAACGTCTAGGATTCTGACTATGCTGTGGTAGTGCTCCTACTCCTACCTACATT
AAAATCTGTTTTGTTCTCTGTAACTAGCCTTACCTCCTAACACAGAGGATCTGTCACT
GTGGCTCTGGCCAAACCTGACCTTCACTCTGGAACGAGAACAGAGGTTCTACCCACACCCT
CCCCTCGAAGCCGGGGACAGCCTCACCTTGCTGGCCTCTGCTGGAGCAGTGCCCTCACCAAC
TGTCTCACGTCTGGAGGCAGTGACTCGGGCAGTAGCTGAGGCTCTGGTAGTCGG
CTTCAAGGTGGGCCTGCCCTGGCCGTTAGAAGGGATTGACAAGGCCGAAGATTCATAGGCG
ATGGCTCCACTGCCACGGCATCAGCCTGCTGAGTCATCACTGCCCCTGGGCCAGGACGG
GCCGTGGACACCTGCTCAGAAGCAGTGGGTGAGACATCACGCTGCCGCCATCTAACCTTT
CATGTCCTGCACATCACCTGATCCATGGCTAACTGAACTCTGCTCCAAGGAACCCAGAGCT
TGAGTGAGCTGTGGCTCAGACCCAGAAGGGCTGCTTAGACCACCTGGTTATGTGACAGGA
CTTGCATTCTCCTGGAACATGAGGGAACGCCGAGGAAAGCAAAGTGGCAGGGAAGGAACCTG
TGCCAAATTATGGGTCAAGAAAAGATGGAGGTGTTGGTTATCACAAGGCATCGAGTCTCCTGC
ATTCACTGGACATGTGGGGAAAGGGCTGCCGATGGCGATGACACACTCGGGACTCACCTCTG
GGGCCATCAGACAGCCGTTCCGCCGATCCACGTACAGCTGCTGAAGGGCACTGCAAGGC
CGATGCTCTCATCAGCCAGGCAGCAGCCAAATCTGCGATCACAGCCAGGGCAGCCGTCTG
GGAAGGAGCAAGCAAAGTGACCATTTCTCCTCCCTCCTCCCTGAGAGGCCCTCTATGT
CCCTACTAAAGCCACCAGCAAGACATAGCTGACAGGGCTAATGGCTCAGTGTGGCCAGGA
GGTCAGCAAGGCCTGAGAGCTGATCAGAAGGGCTGCTGCGAACACGAAATGCCTCCAGT
AAAGCACAGGCTGAAAATCCCCAGGCAAAGGACTGTGTGGCTCAATTAAATCATGTTCTAGT
AATTGGAGCTGTCCCCAAGACCAAAGGAGCTAGAGCTTGGTCAAATGATCTCCAAGGCCCT
TATAACCCAGGAGACTTGATTGAATTGAAACCCCAAATCCAAACCTAAGAACAGGTGCA
TTAAGAATCAGTTATTGCCGGGTGTGGTGGCCTGTAATGCCAACATTGGGAGGCCAGGCG
GGTAGATCACCTGAGGTCAAGACAGCAGCCTGGCAACATGGTGAACCCCTGTCTC
TACTAAAAATACAAAAAAACTAGCCAGGCATGGGGTGTGCTGTATCCCAGCTACTCGGG
AGGCTGAGACAGGAGAATTACTGAAACCTGGGAGGTGAAGGAGGCTGAGACAGGAGAATCACT
TCAGCCTGAGCAACACAGCGAGACTCTGTCAGAAAAAATAAAAAAGAATTATGGTTATTT
GTAA

347/615

FIGURE 344

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71277
><subunit 1 of 1, 109 aa, 1 stop
><MW: 11822, pi: 8.63, NX(S/T): 0
MLWWLVLLLLPTLKSVFCSLVTSLYLPNTEDLSLWLWPKPDLHSGTRTEVSTHTVPSKPGTAS
PCWPLAGAVPSPTVSRLAALTRAVQVAEPLGSCGFQGGPCPGRRD

Signal peptide:
amino acids 1-15

348 / 615

FIGURE 345

CCGCCGCCAGCCGCTACGCCGCTGCAGCCGCTTCCGCCCTGGGCCTCGCCGTCAAG
CATGCCACACGCCCTCAAGCCCAGGGACTTGGTGTGCTAAGATGAAGGGCTACCCTCACTG
GCCTGCCAGGATCGACGACATCGCGGATGGCAGCGTGAAGCCCCACCCAACAAGTACCCCAT
CTTTTCTTGGCACACACGAAACAGCCTTCCTGGGACCCAAGGACCTGTTCCCTACGACAA
ATGTAAAGACAAGTACGGGAAGCCAACAAGAGGAAAGGCTTAATGAAGGGCTGTGGGAGAT
CCAGAACAAACCCCCACGCCAGCTACAGCGCCCTCCGCCAGTGAGCTCCGACAGCGAGGC
CCCCGAGGCCAACCCCGCCGACGGCAGTGACGCTGACGAGGACGATGAGGACCGGGGGTCAT
GGCCGTACAGCGGTAAAGGCCACAGCTGCCAGCAGGATGGAGAGCGACTCAGACTCAGA
CAAGAGTAGCGACAAACAGTGGCCTGAAGAGGAAGACGCCCTGCCTAAAGATGTCGGTCTCGAA
ACGAGCCCGAAAGGCCTCCAGCGACCTGGATCAGGCCAGCGTGTCCCCATCCGAAGAGGAGAA
CTCGGAAAGCTCATCTGAGTCGGAGAAGACCAGCGACCAGGACTTCACACCTGAGAAGAAAGC
AGCGGTCCGGCGCCACGGAGGGCCCTCTGGGGGACGGAAAAAAAAGAAGGCGCCGTCAAG
CTCCGACTCCGACTCCAAGGCCATTGGACGGGCCAACGCTGAGCCGGTGGCCATGGCGCG
GTCGGCGTCCCTCCTCCTCTCCTCCGACTCCGATGTGTCTGTGAAGAAGCC
TCCGAGGGGCCAGGAAGCCAGGGAGAACCTCTCCGAAGCCGCCAGGGCGAACCGAAGCC
TGAACGCCCTCCGTCAGCTCCAGCAGTGACAGTGACAGCGACGAGGTGGACCGCATCAGTGA
GTGGAAGCGGGCGGACGAGGCGCGAGGCGCAGCTGGAGGCCGGCGAGAGCAGGA
GGAGGAGCTCGGGCGCTGCGGGAGCAGGAGAAGGAGGAGAAGGAGCAGGCGAGCGGGC
CGACCGCGGGGAGGCTGAGCGGGCAGCGGGCAGCAGCGGGGACGAGCTCAGGGAGGACGA
TGAGCCCGTCAAGAACGGGGACGCAAGGGCCGGGCGGGGTCCCCCGTCCCTCTGACTC
CGAGCCCGAGGCCGAGCTGGAGAGAGAGGCCAACGAAATCAGCGAACAGCCGAGTCCCTCAAG
CACAGAGCCGCCAGGAAACCTGGCCAGAACGGAGAACAGAGTGCAGGCCAGGAGAACAA
AGCCAAGCCCAGTGAAGGTGGAGCGGACCCGGAAGCGGTCCAGGGCTCTCGATGGACAGGAA
GGTAGAGAAGAACAGAGCCCTCCGTGGAGGAGAACAGCTGCAGAACAGCTGAGATCAA
GTTTGCCTAAAGGTGACAGCCGGACGTGAAGAGGTGCTGAATGCCCTAGAGGAGCTGG
AACCCCTGCAGGTGACCTCTCAGATCCTCCAGAACACAGACGTGGTGGCACCTTGAAGAA
GATTGCCCTTACAAAGCGAACAGGACGTAATGGAGAACGGCAGCAGAACAGTCTATACCCGGCT
CAAGTCGGGGTCTCGGCCAAAGATCGAGGCCGGTGCAGAAAGTGAACAAGGCTGGATGGA
GAAGGAGAACGCCGAGGAGAACAGCTGGCCGGGGAGGAGCTGGCCGGGAGGAGGCCAGGA
GAAGGCGGAGGACAAGCCCAGCACCGATCTCTCAGCCCCAGTGAAATGGCGAGGCCACATCACA
GAAGGGGGAGAGCGCAGAGGACAAGGAGCACAGGAGGGTCCGGACTCGGAGGAGGGCCAAG
GTGTGGCTCTCTGAAGACCTGCAACGACAGCGTACGGGAGGGTCCGACCTGGACAGGCCTGG
GAGCGACCCGCAGGAGCGCAGAGGGCACGGGGACTCGGAGGCCCTGGACAGGAGAGCT**TG**
AGCCGCCAGCCAGGCCAGGCCAGCCCCCGCCGAGCTCAGGCTGCCCTCTCCTCCCCGGCTC
GCAGGAGAGCAGAGCAGAGAACACTGTGGGAACGCTGTGCTGTTGTATTGTCCTGGTT
TTTTTCTGCCTAATTCTGTGATTCCAACCATGAAATGACTATAAACGGTTTTTA
ATGA

349/615

FIGURE 346

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71286
><subunit 1 of 1, 671 aa, 1 stop
><MW: 74317, pI: 7.61; NX(S/T): 0
MPHAFKPGDLVFAKMKGYPHWPARIDDIADGAVKPPNKYPPIFFFTHETAFLGPKDLPYDK
CKDKYGKPNKRKGFNEGLWEIQNNPHASYSAPPVSSSDSEAPEANPADGSDADEDDEDRGVM
AVTAVTATAASDRMESDSDSDKSSDNSGLKRKTPALKMSVSKRARKASSLDQASVSPSEEEN
SESSSESEKTSDQDFTEKKAAVRAPIRGPLGGRKKKAPSASDSDSKADSDGAKPEPVAMAR
SASSSSSSSSSDSDVSVKKPRGRKPAEKPLPKPRGRKP PERPPSSSSDSDSDEVDRISE
WKRRDEARRRELEARRRREQEEELRLREQEKEEERRERADRGEAERGGSGSSGDELREDD
EPVKKGRGRKGRGRGPPSSSDSEPEAELEREAKKSAKKPQSSSTE PARKPGQKEKRVPEEKQQ
AKPVKVERTRKRSEGFSDRKVEKKKEPSVEEKLQKLHSEIKFALKVDSPDVKRCLNALEELG
TLQVTSQILQKNTDVVATLKKIRRYKANKDVMKAEEVYTRLKSRLGPKIEAVQKVNKAGME
KEKAEEKLAGEELAGEEAPQEKKAEDKPSTDLSAPVNGEATSQKGEESAEDKEHEEGRDSEEGPR
CGSSEDLHDSVREGPDLDLPGSDRQERERARGDSEALDEES

Signal peptide:

amino acids 1-13

350/615

FIGURE 347

GTGGGTTCTCCTGGATCTCACCTACCAACTGCAGATCTGGGACTCATCAGCCTCAATAATTATATTAAATTA
ACACCATTGAAAGAGAACATTGTTCATCATGAATGCTAATAAAAGATGAAAGACTTAAAGCCAGAAGCCAAGA
TTTCACCTTTCTGCTTGATGATGCTAACGATGACATGACATGTTCTTCCAGTCAGTGGCACTTTGAAGCA
AAATATTCCAAGACTCAAGCTAACCTACAAAGACTTGCTGCTTCAAATAGCTGTATTCCCTTTGGGTCATC
AGAAGGACTGGATTTCAAACTCTCTTAGATGAGGAAGAGGCAGGCTGCTTGGGAGCCAAAGACCACAT
CTTCTACTCAGTCTGGTGACTTAAACAAAATTAAAGAAGATTATTGGCCTGCTGCAAAGGAACGGGTGGA
ATTATGTAATTAGCTGGGAAAGATGCCAATACAGAATGTGCAAATTTCATCAGAGTACTTCAGCCCTATAACAA
AACTCACATATGTGTGGAACTGGAGCATTCTACCAATATGTGGGTATATTGATCTGGAGTCTACAAGGA
GGATATTATATTCAAACACTAGACACACATAATTGGAGTCTGGCAGACTGAAATGCTTCCGATCCTCAGCAGCC
TTTGCTTCAGTAATGACAGATGAGTACCTACTCTGGAACAGCTCTGATTTCCGGCAAAGATACTGCATT
CACTCGATCCCTGGGCTACTCATGACCACACTACAGAACTGACATTTCAGAGCACTACTGGCTCAATGG
AGCAAAATTATTGAAACTTCTCATACCAGACACCTACAATCCAGATGATGATAAAATATATTCTCTTCG
TGAATCATCTCAAGAACGCAGTACCTCCGATAAAACCATCCTTCTCGAGTTGGAAAGAGTTGTAAGAATGATGT
AGGAGGACAACGCAGCCTGATAAAACAGTGGAGCAGCTTCTTCTAAGGCCAGACTGATTGCTCAATTCCGGAAAG
TGATGGGGCAGATACTTACTTTGAGTACCTCAAGATATTATTACTCCCACAAAGAGATGAAAGAAATCTGT
AGTATATGGAGTCTTACTACAAACAGCTCCATCTTCAAAAGGCTCTGTTGTGTATAGCATGGCTGACAT
CAGAGCAGTTTAATGGCCATATGCTCATAGGAAAGTCAGACCATCGTGGGTGAGTATGATGGGAGAAT
TCCTTATCCACGGCCTGGTACATGTCAAAGCAAACCTATGACCCACTGATTAAGTCCACCCGAGATTTCAGA
TGATGTATCAGTTCATAAAGCGGCACTCTGTGATGATAAGTCCGTATAACCCAGTTGCAAGGAGGACCAACGTT
CAAGAGAATCAATGTGGATTACAGACTGACACAGATAGTGGGATCATGTCATTGCAAGAGATGGCAGTACGA
TGAATGTTCTGGAAACAGACATTGAACTGCTCTAAAGTTGTCAGCATTCAAAGGAAAAGTGGAAATATGGA
AGAGGTAGTGTGGAGGAGTTGCAAGATATTCAAGCACTCATCAATCATCTTGAACATGGAATGTCTCTGAAGCA
GCAACAATTGTACATTGGTCCCGAGATGGATTAGTTCAGCTCTGCAACAGATGCGACACTATGGGAAAGC
TTGCGCAGACTGTTGCTTGCAGAGACCCCTACTGTGCTGGGATGAAATGCACTGCTCTGATATGCTCCTAC
TTCTAAAAGGAGAGCTAGACGCCAAGATGTAAAATATGGCGACCCAATCACCCAGTGTGGACATCGAAGACAG
CATTAGTCATGAAACTGTCATGAAAAGGTGATTTGGCATTGAATTAACTCAACCTTCTGGAAATGTATACC
TAAATCCCAACAAGCAACTTAAATGGTATATCCAGAGGCTACTGATCGAAGTTGCAAGAAGAGGATTCTGGGATGTATTACTG
TGAAGAACATCATCAAACCGGAAATGGGCTACTGATCGAAGTTGCAAGAAGAAGGATTCTGGGATGTATTACTG
CAAAGCCCAGGAGCACACTTCATCCACACCATAGTGAAGCTGACTTGAATGTCATTGAGAATGAAACAGATGGA
AAATACCCAGAGGGCAGACATGAGGAGGGCAGGTCAAGGATCTATTGGCTGAGTCACGGTTGAGATAACAAAGA
CTACATCCAAATCCTTAGCAGCCAAACTTCAGCCTCGACCAGTACTGCGAACAGATGTGGCACAGGGAGAAGCG
GAGACAGAGAAACAAGGGGGCCAAAGTGGAAAGCACATGCGAGGAATGAAAGAAGAAACGAAATGAAAGACATCA
CAGAGACCTGGATGAGCTCCCTAGAGCTGTAGCCACGTATTTCTACTTAATTAAAGAAAATTCCCTTAC
TATAAAACATTGCCTCTGTTGTATATCCCTTATAGTAATTCAAAATGCTCCCATGGAGTTTGCTAAGG
CACAAGACAATACTGAATAAGACAATATGTGATGAAATATAAGAAAGGGAAAAATTCAATTGAACCAGTTT
CCAAGAACAAATCTGCACAAGCAAAGTATAAGAATTATCTAAAAATAGGGGGTTACAGTGTAAATGTTTA
TGTTTGAGTTGGAAATTATTGTCATGTAATAGTGTAGCTAAGCAAGCCCCGAAATTGATAGTGTATAAGGT
GCTTATTCCCTGAATGTCATGAAATTACCATGCACTGCTATGCTTATGAAACAGATATA
CATTCTTATTGAGAACCCAGTACCTGTGAGGCAATTACTCTGGAGAAATGGTATAGGAATTGGAGGGTGCATTATTCTT
TGGCCACTGGGTTAAATTAGTGTACTACAAACATTGATTACTGAAGGGCACTAATGTTCCCCCAGGTTCT
ATTGACTAGTCAGGAGTAACAGGTTCACAGAGAGAAGTTGTCAGTTAGTGTGTTTAAAGTATATAACTAA
GCTCTACAGGGACAGAAATGCTTAATAAAACTTAAAGATATGGAAAATATTAAATAAAACAAGGAAAACA
TAATGATGTATAATGCATCCTGATGGGAAGGCATGCAAGATGGGATTGTTAGAAGACAGAAGGAAAGACAGCCAT
AAATTCTGGCTTGGGAAAACCTATATCCCATGAAAAGGAAGAACATCACAAATAAGTGGAGAGTAAATGTA
TGGAGCTTTCACTAGGGTATAAGTAGCTGCCATTGTAATTGTCATTGTTAAAGTATATAAC
AACTGCTAGCAAATCTGAGGAAACATAAAATTCTCTGAAGAATCATAGGAAGAGTAGACATTATTATAACC
AATGATATTTCAGTATAATTCTCTTTAAAAAATTATTCATACTCTGTATATTATTCTTTACTGC
CTTTATTCTCTCTGTATATTGGATTGTTGATTATTTGAGTGAATAGGAGAAACAATAACACACAGA
GAATTAAAGAAAATGACATTCTGGGGAGTGGGATATATATTGTTGAATAACAGAACGAGTGTAAAATTAAAC
AACGGAAAGGGTTAAATTAACTCTTGACATCCTCACTCAACCTTTCTCATGCTGAGTTAATCTGTTGTAATT
GTAGTATTGTTTGTAAATTAAACAATAAAAGCCTGCTACATGT

351/615

FIGURE 348

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA71883
><subunit 1 of 1, 777 aa, 1 stop
><MW: 89651, pI: 7.97, NX(S/T): 3
MNANKDERLKARSQDFHLFPALMMLSMTMLFLPVGTGTLKQNIPRLKLTYKDLLLSNSCIPFLG
SSEGLDFQTLLLDEERGRLLLGAKDHIFLSLVDLNKNFKKIYWPAAKERVELCKLAGKDANT
ECANFIRVLQPYNKTHIYVCGTGAFHPICGYIDLGVYKEDIIFKLDTHNLESGRLKCPFDPQQ
PFASVMTDEYLYSGTASDFLGKDTAFTRSLGPTHDDHYIRTDISEHYWLNGAKFIGTFFIPDT
YNPD-DDK-IYFFFRESSQEGSTS-DKTILSRVGRVCKNDVGGQRSLINKWTTFLKARLIC-SIPGS
DGADTYFDELQDIYLLPTRDERNPVYYGVFTTSSIFKGSAVCVYSMADIRAVFNGPYAHKES
ADHRWVQYDGRIPYPRPGTCPSKYDPLIKSTRDFPDDVISFIKRHSVMYKSVYPVAGGPTFK
RINV DYRLTQIVVDH VIAEDGQYDVMFLGTDIGTVLKVV SISKEKW NMEEV VLEELQI FKHSS
IILNMELSLKQQQLYIGSRDGLVQLSIHRCDTYKGACADCLARDPYCAWDGNACSRYAPTSK
RRARRQDVKYGDPI TQCWDIEDSISHEADEKVIFGIEFNSTFLECIPKSQQATIKWYIQRSG
DEHREELKPDERIIKTEYGLLIRSLQKKDSGMYYCKAQEHTFIHTIVKLTLNVIENEQMENTQ
RAEHEEGQVKDLLAESRLRYKDYIQILSSPNFSLDQYCEQMWHREKRRQRNKGGPKWKHMQEM
KKKRNRHHRDLDLDEL PRAVAT

Important features of the protein:

Signal peptide:

amino acids 1-36

N-glycosylation sites.

amino acids 139-142, 607-610, 724-727

Tyrosine kinase phosphorylation site.

amino acids 571-576

Gram-positive cocci surface proteins 'anchoring' hexapeptide.

amino acids 32-37

352/615

FIGURE 349

CCCTGACCTCCCTGAGCCACACTGAGCTGGAGCGCAGAGGTATCCTGGAGCATGCCACCAGCGGGGAGCAGA
 CAACCTCCCAGGTAAAGCTGGAGCAAGACCTGAAGCTGTTCTTCAGGAGCCTGGTGTATTTCACCCCCAC
 CTCAGCAGTTTCAGCCAGCAGGGACTGATCAGGTGTGTCCTGGAGTGGGGAGCAGAAGGCCTGGCTGGCAAGA
 GTGGCCTGGAGAAAGAGGTTCAAGCAGGGACTGACCCAGCGAGCTGCCGTGACTACAAGATCCAGAACCATGGC
 CATC
 GGGTGAGGTGGGGGGCACAGGTGTATGTGACCTTCTGTCTCAGCAAGAAAGAGCTGAGAGAGGGGATCTGG
 AGCCATTGAGGGTGTATGGAGCTACAGAGGGAGGGAAAGGTATTAAAGGTAACAGTGTGGCACAAATAGTAA
 GAGCACAGTTTGGAGCTAGACCACATAGGTTCAAATTCTCTGTGTTCTAGTTCTGTAGCCCCAGGG
 AAGGGAGTGACTIONACCTCTGGACTTCATTTCTCATCACTAAAGTAGGGCCAATAATAGCACCCACCTCAT
 AAGGAAGATAATGACATAATGTATGTGATGCAACTAGCAAAGTACCAAGTCCCAGTAGTAAGTCATGCCACAG
 TATTCCACCCACCCCTGTTCTGCCTTCCAACCAGGTACTGCAACGACTGGAGCAGAGGGGGCAGCAGGCTT
 CAGAGCGGGAGGCTCAAGCATAGAACAGAGGTTACAGGAAGTGCAGAGAGACATCCGCCGGGACAGGTGAGCC
 AGGTGAAGGGGGCTGCCCGCTGGCCCTGCTGCAGGGGCTGGCTTAGATGTGGAGCGCTGGCTGAAGGCCAGCCA
 TGACCCAGGGCCCAGGATGAGGTGGAGCAGGAGCGGGCTCAGTGAGGCTCGGCTGTCCAGGGACCTCTCTC
 CAACCGCTGAGGATGCTGAGCTTCTGACTTGTAGGAATGTGAGGAGACGGGAGAGCTTTGAGGAGCCTGCC
 CCCAGGCCCCACGGGCCCCCTGCCCTGCACACGGTGTATTCGCTATCAGGCAGGGCTGAGGATG
 AGCTGACAATCACGGAGGGTAGTGGCTGGAGGTATAGAGGAGGGAGATGCTGACCAATGGGTCAGGCTCGGA
 ACCAGCACGGCAGGGTAGGCTTGTGAGCGATATCTCAACTTCCCGACCTCTCCCTCCAGAGAACGCC
 AACAGACTGACAATCCCTGCGGGCAGAGCCCACAGCATTCTGCACAGGGCTCTACAGCTACACCGGACAGA
 GTGCAGAGGAGCTGAGCTTCCCTGAGGGGCACTCATCGCTGCCCCGGGCAAGATGGAGTAGATGACG
 GCTTCTGGAGGGGAGAAATTGGGGCCGTGTGGGGCTTCCCTGCTGGTGGAGAGCTGCTGGCCCC
 CAGGGCCACCTGAACACTCTGACCCCTGAACAGATGCTGCGTCCCCCTCTCCTCCAGCTTCTCCCACCTGCAC
 CTACCTCTGTGTTGGATGGGCCCCCTGCACCTGCTGCCTGGGACAAAGCCCTGGACCTCCCTGGGTCTGG
 ACATGATGGCACCTGACTCAGGCCATGCTCCACCCTCCCCGGCTAAAGCCCCGGATCCTGGCCACC
 CAGATCCCCTCACCTGAAGGCCAGGAAGCCTGACCCCCAGTGTGCTGCTGCCATCTCAAGCTGTCAGA
 CCACACCATCAATGATCCAGAGCAACACAGCAAAGCTGAATGCCCTATTCCACCCCTCACCTCAAGGGT
 GGAAACTTGGCCCTTCCATTCTAGAGCTGGAACCCACTCTTTTCTCCATTGTTCTATCATCTAGGACC
 GGAACACTAACCTCTCTCTGACCCATCTAGGGTGTGAAATGCCCTGAATCTGGGCTGGAAACC
 ATCCATCAAGGTCTCTAGTAGTTCTGGCCACCTCTTCCCCACCTGGCTCCATGACCCACCCACTCTGGATG
 CCAGGGTCACTGGGGTTGGGCTGGGAGAGGAACAGGCTGGGAATCAGGAGCTGGAGGCCAGGATGCGAAGCAG
 CTGTAATGGTCTGAGCGGATTATTGACAATAAAGGGCACGAAGGCCAGGGCTGGGCTTGGGCTTGG
 CTAAGAGGGCAGGGGGCTACGGTGTATTGCTTGGGGCCACACGGGAGGGGGCTGGGCTTGGGCTTGG
 GCTCTATCATATGGAGCGAGGTGTGGGGAGGGGGCAGGCTGAGACTGTCACCTGGGAGTGGAGCTGG
 AGCTGGGGGCTGTGACCTCTCTGAGGCCCTCAGGCTGAGACTGTCACCTGGGAGTGGAGCTGG
 AGCTGGGGGAGGGGGCTGTGCTGCCAGTGGAGGGGGCTTACGCCACCCACCCCTGGGCTTGGGCTTGG
 TCCATCAGCACAATGAAGGAGACTGGAGAAGAGGAAGATAAACACTGTTGCTTCTGTCAAGCTGTG
 TCCAG
 TTTCCCTGGGCTCAGGACCTCCCTACCTCCACCACAAACCAAGGGATTATAGCAAAGGCTAACCTGC
 AGTTTACTCTGGGGGTTAGGGAGCGAAAGGCTTAAATAGTTAAGTAGGTGATGGGAAGAGTAGGATTACCTCA
 TTAGGGCTCAGGCAGACTCACCTCACACTCTCCCTGCTCCCTGTGGTAGAGAGACACCTGAGAGAAAGGGGG
 TCAACAATGAGAGACCCAGGGAGTAGGTCTGATCAGTGCCTTGGGAGGGGGCTGGGCTTGGGCTTCAAGTG
 AGTCCCCGGCTGTTTCTACCTGGTGTAGAAGTGTCTGGTTGCTGGCTGCCATTGCTTGG
 GCAGGCCCTGGGCTTGGGGCTTCCCTCCGGGCTCAGTGTGGCTCTGCAGAAGCTGCTGGGGTCCCTCAAGTG
 CACGAGGGGTAGGCTGCTGCTCCCTGAGTCTCTGAGTACTGGGGCTGGCTAGGACCTGGGGCTGGGCC
 TCTCAGGGGGCAGCCTCTCCATGGCAGGCATCCCTGCCCTGGGCTGCCCTGGGAGGCCACCCCTGACCACCCCTG
 GGTCTGTCCCCCACCAGAGCCCCAGCTCTGTGTGGGGAGGCCATCACGGTGTCTGCTGGAGCTCCATAGCGCT
 TCTCAATGTGTGTCACCCGGAACCTGGAGGGAGGGAACACTGGGGTTAGGACCAACTCAGAGGCTGCTT
 GCCCTCCCTCTGACCAGGGACATCCTGAGTTGGTGGCTACTTCCCTCTGGCCTAAGGTAGGGAGGCCCTC
 AGATTGTGGGCACATTGTGAGCTGACTCTGCTGGAGCTCCAGTCCAGGAGGAAAGAGGCCAAGGCCACTT
 TTGGGATCAGGTGCTGATCACTGGGCCCCCTACCTCAGCCCCCTTCCCTGGAGCACCTGCCACCTGCC
 CAGAGAACACAGTGGCTCCCTGTCGGGGGGCTTTCTCTGGAGCGCTGCCAGCGACAAGTGGAG
 GCCTCTTGCTGCGGCTGCAATGGATGCAAGGGCTGAGGCCAGGGACTGTGTGATGATGGAGGGGCTC
 CGTCTGCAAGGTGGAGGTGGCATCCACACTGGACAGCAGGAGGGAGTGAGGGTAACATTCCATT
 TCATGTTTGTCTTACGTTCTCAGCATGCTCTTAAACCCAGAAGCCCCAATTCCCAAGCCCCATT
 TTCTGTCTTATCTAATAAACTCAATATTAAG

353/615

FIGURE 350

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73401
><subunit 1 of 1, 370 aa, 1 stop
><MW: 40685, pi: 4.53, NX(S/T): 0
MQLAKYQSHSKCPTVFPPPTPVLCLPNQVLQRLEQRROQASEREAPSIEQRLOEVRESIRRAQ
VSQVKGAARLALLQGAGLDVERWLKPAMTQAQDEVEQERRLSEARLSQRDLSPTAEDAEELSDF
EECEETGELFEEPAPQALATRALPCPAHVVFRYQAGREDELTTGEWEVIEEGDADEWVKA
RNQHGEVGFVPERYLNFPDLSLPESSQDSNDNPCGAEPTAFLAQALYSYTGQSAEELSPEGAL
IRLLPRAQDGVDGFWRGEFFGRVGVPSSLVEELLGPPPELSDPEQMLPSPSPPSFSPPA
PTSVLDGPPAPVLPGDKALDFPGFLDMMAPRLRPMRPPPPPAAKAPDPGHPDPLT
```

354/615

FIGURE 351A

CACAGGGAGACCCACAGACACATATGCACAGAGAGAGACAGAGGGAGAAAGAGACAGAGACAAAGGCACAGCGGAA
GAAGGCAGAGACAGGGCAGGCACAGAAGCGGCCAGACAGAGTCTACAGAGGGAGAGGCCAGAGAACGCTGCAGA
AGACACAGGCAGGGAGAGACAAGAGATCCAGGAAGGGCTCAGGAGGAGAGTTGGAGAAGGCCAGACCCCTGG
GCACCTCTCCAAGGCCAAGGACTAAGTTTCTCATTCTTAAACGGTCTCAGCCCTCTGAAAACATTGCCC
TCTGACCTTGGCAGGAGTCCAAGCCCCCAGGCTACAGAGAGGAGCTTCCAAGAGCTAGGGTGTGGAGGACTTGGT
GCCCTAGACGGCCTCAGTCCCTCCAGTCAGTACAGTGCCTAGCAGTACAGTGCCTAGTCCCAGACAGGCTCGCATCCGGGAGGG
CTTGGCAGGGCGCTGGCTGTGGGAGGCCAACCTGCCTCTGCTCCTCCATGTGCGCCTCTCCTGGCTGGTGTG
GCTGCTCTGCTACTGCTGGCCTCTCCTGCCTCAGGCCGGCTGGCAGGCCCTCCCCCCTGGGAGGAGAGAT
CGTGTTCAGAGAGCTCAACGGCAGCGCTCTGGCTCTGGCTCGGCCCTGGGAGGAGCTGGCAGGGCTGACAGTGCAGTA
GCCCTTGGGAGAGCTGCTACTAGAGCTGGAGCAGGACTCCGGTGTGCGAGGAGCTGGCACCTACCTGACTGGCACCATCAATGGAGATCC
CCTGGGAGCAGGCGCTGAGCTGTGGGTGGAGCAGGCCCTGACAGTGGCACCATCAATGGAGATCC
GGAGTCGGTGGCATTCTGCACGGGATGGGGAGGCCCTGTTAGGCGTGTACAATATCGGGGGCTGAACTCC
CCTCCAGCCCCCTGGAGGGAGGACCCCTAAGTCTGCTGGGGACTGGGCTCACATCTACGCCGAAGAGTCC
TGCCAGCGGTCAAGGTCCATGTCAACGTCAGGCTCCTTGAAGGCCAGGCCAGGCCAGAGGCCAA
GCGCTTGCTTCACTGAGTAGATTGTGGAGACACTGGTGGTGGCAGATGACAAGATGGCGCATTCCACGGTGC
GGGGCTAAAGCGTACCTGCTAACAGTGTAGGGCAGCAGCCAGGCCAACGCCAAGCATTCCGAATCC
TGTCAGCTTGGTGGTACTCGCTAGTGTACCTGGGTCAGGCAGGGGCCAACAGTGGGCCAGTGTGC
CCAGACCCTGCGCAGCTCTGTGCTGGCAGCGGGCTCAACACCCCTGAGGACTCGGGCCCTGACCACCTTGA
CACAGCCATTCTGTTACCGTCAGGACCTGTGTGGAGTCTTCACTTGCGACACGCTGGTATGGCTGATGTGG
CACCGTCTGTGACCAGGCTCGGAGCTGTGCCATTGTGGAGGATGATGGCTCAGTCAGCCTTCACTGCTGCTCA
TGAACGGGTCTATGCTTCAACATGCTTCAAGCAGCCATGCACTAGTTGAATGGCCTTGGAGCAC
CTCTCGGCACTGTCACTGGGCTGTGATGGCTCATGGGATCTGGAGGCCCTGGTCCCCCTGAGTCCCCGCT
CATCACTGACTTCTGGACAATGGCTATGGCAGTGTCTTCAAGACAAACAGAGGCTCATTGCACTGCGCT
GACTTCTGGCAAGGACTATGATGCTGACCGCCAGTGCAGCTGACCTTGGGCCAGTCAAGCCATTGTCC
ACAGCTGCCGCCCTGTGCTGCCCTGGTGTCTGGCACCTCAATGGCAGTGCCTGGCCAGACCAAACA
CTCGCCCTGGGCCAGTGGCACACCCCTGCGGGGCCACAGGCCCTGCACTGGTGGTGTGCTGCCACATGGACCA
GCTCCAGGACTTCAATATTCCACAGGCTGGCTGGGCTCTGGGACCATGGGTGACTGCTCTGGACCTG
TGGGGTGGTGTCCAGTTCTCTCCGAGACTGCACAGGCCCTGCCCCCGAATGGTGGCAAGTACTGTGAGGG
CCGCGTACCGCTTCCGCTCTGCAACACTGAGGACTGCCAACCTGGCTAGCCCTGACCTTCCGGAGGAGCA
GTGTGCTGCCATAACCACCGCACCGACCTCTCAAGAGCTCCAGGGCCATGGACTGGTTCTCGCTACAC
AGGCGTGGCCCCCAGGACCACTGCAAACACTCACCTGCCAGGCCGGCACTGGCTACTACTATGTGCTGGAGCC
ACGGGTGGTAGATGGACCCCTGTTCCCGGACAGCTCTCGGTCTGTGCTCCAGGCCAGTCATCATCTGCTGG
CTGTGATCGCATATTGGCTTCAAGAAGAAGTTGACAAGTGCATGGTGTGCGGAGGGACGGTTCTGGTGTGAG
CAAGCAGTCAGGCTCTTCAAGGAAATTAGGTGACCGATAACAACTGTTGACTATCCCCGGGGGCCACCA
CATTCTGTCCGGCAGGAAACCCCTGGCACCGGAGCATCTACTTGGCCCTGAAGCTGCCAGATGGCTCTTA
TGGCCCTCAATGGTGAATACACGCTGATGCCCTCCCCACAGATGGTACTGCCCTGGGCACTGAGCTTGCCTA
CAGCGGGGCACTGCAACACTGAGGACACTGTCAGGCCATGGCCACTGCCCTTGACACTGCAAGTCT
AGTGGCTGGCAACCCCCAGGACACACGCCCTGGGATACAGCTTCTCGTGGCCGGCGACCCCTTCAACGCCAC
CCCCACTCCCCAGGACTGGCTGACCGAAGAGCACAGATTCTGGAGATCTTGGCCGGCGCCCTGGCGGGAG
GAAA**TAA**CTCACTATCCGGCTGCCCTTCTGGGACCCGGGCCCTGGACTAGCTGGAGAAAGAGAGAGCTT
CTGTTGCTGCCCTAGCTAAAGACTCAGTGGGAGGGGCTGTGGGCTGAGACCTGCCCTCTCTGCCCTAA
GCCGAGGCTGGCCCTGCCCTGGTTCTGCCCTGGGAGGCCAGTGTGGTACTGGGATGAAGGGCTGACAGAC
AGCCCTCCATCTAAACTGCCCTCTGCCCTGGGTACAGGAGGGAGGGGAAGGCAGGGAGGGCTGGGCC
CAGTTGTTATTGTTAGTATTCACTTTATTAGCACCAGGAAGGGAGCAAGGACTAGGGTCTGGGAA
CTGACCCCTGACCCCTCATGCCCTACCCCTGGGCTAGGAAATCCAGGGTGGTGTGATAGGTATAAGTGGTG
TGTGTTGCTGCTGTGTGTGTGAAAGATGTGTGTGCTTATGTATGAGGTACAACCTGTTCTGCTTCTC
TTCCTGAAATTATTATTGGAAAAGAGTCAGGCTAGGGTAGGGGCTTCAAGGAGGGTGGAGGATATCTTT
TTTTTTTCTT
GCACAACTCAGGCTCACTGCACTCTCCGCCCTCCGGGTTCAAGTGTGTTGCTTGTGAGGAGCTGGGAGTGAATG
GGATTACAGGCTCTGCCACCGCCAGCTAAATTGTTGTTGTTGTTGGAGACAGAGTCTGCTATTGTC
ACCAGGGCTGGAAATGATTCACTGCAACCTGCCACCTGGGTTCCAGCAATTCTCTGCCCTAGCCTC
CGAGTAGCTGAGATTAGGCACCTACCACGCCAGGCCAGTGTGTTCTTCTTCTTCTTCTTCTTCTTCTTCTTCTT
CATGTTGCCAGGCTGGCTCGAAGCTCTGACCTTAGGTGATCCACTCGCCTCATCTCCAAAGTGTGCTGGGATT
ACAGGGCTGAGGCCACCGTGTGCTGGCCACGCCAACTAATTGTTGTTAGGAGACAGGGTTTACCATGT
TGGCCAGGCTGCTCTGAACCTGACCTCAGGTAATGACCTGCCCTCCAAAGTGTGCTGGGATTACAGG

355/615

FIGURE 351B

TGTGAGCCACCACGCCCGGTACATATTTAAATTGAATTCTACTATTTATGTGATCCTTGGAGTCAGACAG
ATGTGGTTGCATCCTAACCTCATGTCTGAGCAATTAGATTCTCATTTGCCAATAATAACCTCCCTAGAAG
TTTGTGAGGATTAATAATGTAATAAAAGAACTAGCATAACACTCAAAAAAAAAAAAAAAAAGGAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGGAAA

356/615

FIGURE 352

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73492
><subunit 1 of 1, 837 aa, 1 stop
><MW: 90167, pi: 8.39, NX(S/T): 1
MSQTGSHPGRGLAGRWLWGAQPCLLLPIVPLSWLVWLLLLLASILPSARLASPLPREEEIVF
PEKLNGSVLPGSGAPARLLCRLQAFGETLLELEQDSGVQVEGLTVQYLGQAPELLGGAEPGT
YLTGTINGDPESVASLHWGDGGALLGVLQYRGAEHLHQLEGGTNSAGGPGAHILRRKSPASG
QGPMCNVKAPLGSPSPRPRRAKRFASLSRFETLVVADDKMAAFHGAGLKRYLLTVMAAAAKA
FKHPSIRNPVSLVVTRLVILGSGEEGPVGPSAQTLRSFCAWQRGLNTPEDSGPDHFDTAIL
FTRQDLCGVSTCDTLMADVTVCDFPARSCAIVEDDGLQSAFTAHELGHVFNMLHDNSKPCI
SLNGLPLTSRHMVAPVMAHVDPPEEPWSPCSARFITDFLDNGYGHCLLDKPEAPLHLPVTFPGK
DYDADRCQLTFGPDSRHCPCQLPPPACAALWCSGHLNGHAMCQTKHSPWADGTPCGPAQACMGG
RCLHMDQLQDFNIHQAGGWGPWGPGDCSRTCGGGVQFSRDCTRPRNNGKYCEGRRTFR
SCNTEDCPGTSALTFREEQCAAYNHRTDLFKSFPGPMWDWPRTGVAPQDQCKLTCQARALGY
YYVLEPRVVDGTPCSPDSSVCVQGRCIHAGCDRIIGSKKKFDKCMVCGGDGSGCSKQSGSFR
KFRYGYNNVVTIPAGATHILVRQQGNPGHRSIYLALKLPDGSYALNGEYTLMPSPTDVVLPGA
VSLRYSGATAASETLSGHGPLAQPLTLQVLVAGNPQDTRLRYSFFVPRPTPSTPRPTPQDWLH
RRAQILEILRRRPWAGRK

Important features of the protein:**Signal peptide:**

amino acids 1-48

N-glycosylation site.

amino acids 68-71

Glycosaminoglycan attachment site

amino acids 188-191, 772-775

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 182-185

Tyrosine kinase phosphorylation site.

amino acids 730-736

N-myristoylation sites.

amino acids 5-10, 19-24, 121-126, 125-130, 130-135, 147-152, 167-172, 168-173, 174-179, 323-328, 352-357, 539-544, 555-560, 577-582, 679-684, 682-687, 763-768

Amidation sites.

amino acids 560-563, 834-837

Leucine zipper pattern.

amino acids 17-38, 24-45

Neutral zinc metallopeptidases, zinc-binding region signature.

amino acids 358-367

357/615

FIGURE 353

GCAGGAACCTGGCTCCGGCTGGCACCTGAGGAGCAGCGTGACCCCGAGGGCCCAGGGAGCTGCC
GGCTGGCCTAGGCAGGCAGCCGACCATGCCCAGCACGGCGTGAGCTCTGGGCTTCCTGC
TCAGCTTCTGGGCATGGTGGGCACGTTGATCACCAACCATCCTGCCGACTGGCGAGGACAG
CGCACGTGGGCACCAACATCCTCACGGCGTGCTCCTACCTGAAAGGGCTCTGGATGGAGTGTG
TGTGGCACAGCACAGGCATCTACCAAGTGCAGATCTACCGATCCCTGCTGGCGCTGCCCAAG
ACCTCCAGGCTGCCCGGCCCTCATGGTCATCTCCTGCCTGCTCTGGGCATAGCCTGCGCCT
GCGCGTCATCGGGATGAAGTGCACGCGCTGCCAACGGCACACCCGCCAAGACCACCTTG
CCATCCTCGGCGGCACCCCTTCATCCTGGCGGCCCTGTGCATGGTGGCGCTCCTGG
CCACCAACGACGTGGTGCAGAACTTCTACAACCCGCTGCTGCCAGCGGCATGAAGTTGAGA
TTGGCCAGGCCCTGTACCTGGGCTTCATCTCCTCGTCCCTCTCGCTCATTGGTGGCACCC
TTTGCCTGTCCTGCCAGGACGAGGCACCCCTACAGGCCCTACAGGCCCGCCAGGGCACCA
CGACCACTGCAAACACCGCACCTGCCTACCAGCCACCAGCTGCCTACAAAGACAATCGGCC
CCTCAGTGACCTCGGCCACGCACAGCGGGTACAGGCTGAACGACTACGTGTGAGTCCCCACAG
CCTGCTTCCTCCCTGGGCTGCTGTGGGCTGGGTCCCCGGCGGGACTGTCAATGGAGGCAGGG
TTCCAGCACAAAGTTACTCTGGCAATTTGTATCCAAGGAAATAATGTGAATGCGAGGA
AATGTCTTAGAGCACAGGGACAGAGGGGAAATAAGAGGGAGGAGAAAGCTCTATACCAA
GAATGAAAAAAATCCTGCTGTTTGTTATTTATATATATATGTTGAGTGGGTGATTG
TAACAAGTTAATATAAGTGAATTGGAGTTGGTCAGTGGGTGGTTGTGATCCAGGAA
TAAACCTTGCAGTGGCTGTTATGAAAAAA

358/615

FIGURE 354

MASTAVQLLGFLLSFLGMVGTLLTILPHWRRTAHVGTNILTAVSYLKGLWMECVWHSTGIYQCQIYRSLLALPQDLQAARALMVISCLLSGIACACAVIGMKCTRCAKGTPAKTTFAILGGTLFILAGLLCMVAWSWTNDVVQNPFYNPLPSGMKFEIGQALYLGFISSSSLSLIGGTLLCLSCQDEAPYR PYQAPPRATTTANTAPAYQPPAAYKDNRAPSVTSATHSGYRLNDYV

Important features of the protein:

Signal peptide:

amino acids 1-21

Transmembrane domains:

amino acids 82-103, 115-141, 160-182

359/615

FIGURE 355

GAGCTCCCCTCAGGAGCGCGTTAGCTTCACACCTCGGCAGCAGGAGGGCGGCAGCTTCTCGC
AGGCAGGCAAGGGCGGGCGGCCAGGATCATGTCCACCACATGCCAAGTGGTGGCGTTCCTCC
TGTCCATCCTGGGGTGGCCGGCTGCATCGCGCCACCGGGATGGACATGTGGAGCACCCAGG
ACCTGTACGACAACCCCGTCACCTCCGTGTTCCAGTACGAAGGGCTCTGGAGGAGCTGCGTGA
GGCAGAGTCAGGCTCACCAGAATGCAGGCCCTATTCACCACATCCTGGGACTTCCAGCCATGC
TGCAGGCAGTGCAGGCCCTGATGATCGTAGGCATCGTCTGGGTGCCATTGGCCTCCTGGTAT
CCATCTTGCCTGAAATGCATCCGCATTGGCAGCAGTGGAGGACTCTGCCAAAGCCAACATGA
CACTGACCTCCGGGATCATGTTCATGGTCTCAGGTCTTGTCGAATTGCTGGAGTGTCTGTG
TTGCCAACATGCTGGTACTAACTCTGGATGTCACAGCTAACATGTACACCCGCATGGGTG
GGATGGTGCAGACTGTTAGACAGCAGGTAACACATTGGTGCAGGCTCTGTTCTGGGCTGGT
CTGGAGGCCTCACACTAAATTGGGGGTGTGATGATGTGCATCGCCTGCCGGGCTGGCACCAAG
AAGAAACCAACTACAAAGCCGTTCTTATCATGCCTCAGGCCACAGTGTGCTACAAGCCTG
GAGGCTTCAAGGCCAGCACTGGCTTGGGTCAAACACCAAAAACAAGAAGATAACGATGGAG
GTGCCCGCACAGAGGACGAGGTACAATCTTATCCTCCAAGCACGACTATGTG**TAA**TGCTCTA
AGACCTCTCAGCACGGGCGGAAGAAACTCCCGGAGAGCTACCCAAAAACAAGGAGATCCCA
TCTAGATTCTCTTGCTTTGACTCACAGCTGGAAGTTAGAAAGCCTCGATTTCATCTTG
GAGAGGCCAAATGGTCTTAGCCTCAGTCTCTGTCTCTAAATATTCCACCAATAAACAGCTGAG
TTATTATGAATTAGAGGCTATAGCTCACATTCAATCCTCTATTCTTAAATATAA
CTTCTACTCTGATGAGAGAAATGTGGTTAATCTCTCACATTGATGATCTATTCCAGCTATCCCCAAG
AAACTTTGAAAGGAAAGAGTAGACCCAAGATGTTATTCTGCTGTTGAATTGTCTC
CCCACCCCAACTGGCTAGTAATAAACACTTAAGTGAAGAAGCAATAAGAGAAAGATATT
TGTAATCTCTCCAGCCATGATCTCGGTTCTACACTGTGATCTAAAGTTACCAAAACCA
AAGTCATTTCAGTTGAGGCAACCAACCTTCTACTGCTGTTGACATCTTATTACAGC
AACACCATCTAGGAGTTCTGAGCTCCACTGGAGTCCTCTGTGCGGGTCAGAAA
TTGTCCTAGATGAATGAGAAAATTATTTTTAATTAAAGTCCTAAATATAGTTAAATAA
ATAATGTTTAGTAAATGATACACTATCTCTGTGAAATAGCCTCACCCCTACATGTGGATAG
AAGGAATGAAAAATAATTGCTTGACATTGTCTATATGGTACTTGTAAAGTCATGCTTAA
GTACAAATCCATGAAAAGCTCACACCTGTAATCCTAGCATTGGAGGCTGAGGAGGAAGG
ATCACTTGAGCCCAGAAGTTGAGACTAGCCTGGCAACATGGAGAAGCCCTGTCTCACAAA
ATACAGAGAGAAAAATCAGCCAGTCATGGTGGCATACACCTGTAGTCCCAGCATTCCGGGAG
GCTGAGGTGGAGGATCACTTGAGCCAGGGAGGTGGGCTGCAGTGAGCCATGATCACACC
ACTGCACTCCAGCCAGGTGACATAGCGAGATCCTGTCTAAAAAAATAATAATGGA
ACACAGCAAGTCCTAGGAAGTAGGTTAAACTAATTCTTAA

360/615

FIGURE 356

>/usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73734
><subunit 1 of 1, 261 aa, 1 stop
><MW: 27856, pi: 8.50, NX(S/T): 1
MSTTCQVVAFLSILGLAGCIAATGMDMWSTQDLYDNPVTSVFQYEGLWRSCVRQSSGFTEC
R PYFTI LGLPAMLQAVRALMIVGIVLGAIGLLVSIFALKCIRIGSMEDSAKANMTLTSGIMFI
V SGLCAIAGVSVFANMLVTNFWMSTANMYTGMGGMVQTVQTRYTFGAALFVGWVAGGLTLIGG
VMMCIACRGLAPEETNYKAVSYHASGHSVAYKPGGFCASTGFGSNTKNKKIYDGGARTEDEVQ
SYP SKHDYV

Signal peptide:

amino acids 1-23

Transmembrane domains:

amino acids 81-100, 121-141, 173-194

361/615

FIGURE 357

GGAAAAACTGTTCTCTGTGGCACAGAGAACCTGCTCAAAGCAGAAGTAGCAGTCCGG
AGTCCAGCTGGCTAAACTCATCCCAGAGGATAATGGCACCCATGCCTTAGAAATCGCTGGG
CTGTTCTGGTGGTGGAAATGGTGGCACAGTGGCTGTCAGTGCATGCCTCAGTGAGA
GTGTCGGCCTTCATTGAAAACAACATCGTGGTTTGAAAACCTCTGGGAAGGACTGTGGATG
AATTGCGTGAGGCAGGCTAACATCAGGATGCAGTGAAAATCTATGATTCCCTGCTGGCTCTT
TCTCCGGACCTACAGGCAGGCCAGGACTGATGTGCTGCTCCGTGATGTCCTTGGCT
TTCATGATGCCATCCTGGCATGAAATGCACCAGGTGCACGGGGACAATGAGAAGGTGAAG
GCTCACATCTGCTGACGGCTGGAATCATCTTCATCATCACGGCATGGTGGTGCATCCCT
GTGAGCTGGTTGCCAATGCCATCATCAGAGATTCTATAACTCAATAGTGAATGTTGCCAA
AAACGTGAGCTGGAGAAGCTCTACTTAGGATGGACCA CGGCACTGGTGCTGATTGTTGGA
GGAGCTCTGTTCTGCTGCGTTTGTTGCAACGAAAAGAGCAGTAGCTACAGATACTCGATA
CCTTCCCACATCGCACAAACCAAAAAAGTATCACACCGGAAAGAAGTCACCGAGCGTCACTCC
AGAAGTCAGTATGTGTAGTTGTATGTTTTTAACTTACTATAAGCCATGCAAATGACA
AAAATCTATATTACTTCTCAAATGGACCCAAAGAAACCTTGATTACTGTTCTTAACG
CTAATCTTAAATTACAGGAACTGTGCATCAGCTATTATGATTCTATAAGCTATTCA
TGAGATATTAACCCAATGCTTGATTGTTCTAGAAAGTATAGTAATTGTTCTAAGGTGG
TTCAAGCATCTACTTTTATCATTACTTCAAATGACATTGCTAAAGACTGCATTATTT
ACTACTGTAATTCTCCACGACATAGCATTATGTACATAGATGAGTGTAACATTTATCTCA
CATAGAGACATGCTTATGGTTTATTAAAATGAAATGCCAGTCATTACACTGAATAAAAT
AGAACTCAACTATTGCTTTCAGGGAATCATGGATAGGGTTGAAGAAGGTTACTATTAAATTG
TTAAAAACAGCTAGGGATTAATGTCCTCATTATAATGAAGATTAAGGCTTAA
TCAGCATTGTAAGGAAATTGAATGGCTTCTGATATGCTGTTTAGCCTAGGAGTTAGAA
ATCCTAACCTCTTATCCTCTCCAGAGGTTTTTCTTGTGTATTAATTAACATT
TTAAGCAGATATTTGTCAGGGCTTGCATTCAAACGTTGCTTTCCAGGGCTATACTC
AGAAGAAAGATAAAAGTGTGATCTAAGAAAAGTGTGGTTAGGAAAGTGAAGGCTTAA
GTTTTGTATTTGAAGAAGAATGATGCAATTGACAAGAAATCATATATGTATGGATATATT
TAATAAGTATTTGAGTACAGACTTGAGGTTTCATCAATATAAATAAAAGAGCAGAAAATAT
GTCTGGTTTCATTGCTTACAAAAAAACAACAACAAAAAGTTGTCCTTGAGAACTTC
ACCTGCTCCTATGTGGGTACCTGAGTCAAAATTGTCATTGTTCTGTGAAAATAAATTTC
CTCTTGTAACCATTCTGTTAGTTACTAAAATCTGAAATACTGTATTTCTGTTATT
CCAAATTGATGAAACTGACAATCCAATTGAAAGTTGTGCGACGTCTGTAGCTAAAT
GAATGTGTTCTATTGCTTATACATTATTAATAATTGTACATTCTAATT

362/615

FIGURE 358

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73735
><subunit 1 of 1, 225 aa, 1 stop
><MW: 24845, pi: 9.07, NX(S/T): 0
MATHALEIAGLFLGGVGMVGTAVTVMPOWRVSAFIENNIVFENFWEGLWMNCVRQANIRMQ
CKIYDSLLALSPDLQAARGLMCAASVMSFLAFMAILGMKCTRCTGDNEKVKAHILLTAGIIF
IITGMVVLIPVSWVANAIIRDYNSIVNVAQKRELGEALYLGWTTALVLIVGGALFCCVFCCN
EKSSSYRYSIPSHRTTQKSYHTGKKSPSVYSRSQYV

Signal peptide:

amino acids 1-17

Transmembrane domains:

amino acids 82-101, 118-145, 164-188

363/615

FIGURE 359

CCCGCGCCCGGTTCTCCCTCGCAGCACCTCGAAGTGCGCCCTGCCCTCTGCTCGCGCCCC
GGCGCAATGGCTGCCTCCCCCGCGGCCCTGCTGTCCTGGCCCTGACCGGGCTGGCGCTGCTC
CTGCTCCTGTGCTGGGGCCCAGGTGGCATAAGTGGAAATAAACTCAAGCTGATGCTTAAAAA
CGAGAAGCACCTGTCCAACTAAGACTAAAGTGGCCGTTGATGAGAATAAGCAAAGAACATT
CTTGGCAGCCTGAAGGCCAGAAGCGGCAGCTGTGGGACCGGACTCGGCCGAGGTGCAGCAG
TGGTACCAGCAGTTCTCATGGGCTTGATGAAGCGAAATTGAAGATGACATCACCTAT
TGGCTTAACAGAGATCGAAATGGACATGAATACTATGGCGATTACTACCAACGTCACTATGAT
GAAGACTCTGCAATTGGTCCCCGGAGCCCTACGGCTTAGGCATGGAGCCAGCGTCAACTAC
GATGACTACTAACCATGACTTGCCACACGCTGTACAAGAAGCAAATAGCGATTCTCTCATGT
ATCTCCTAATGCCTTACACTACTTGGTTCTGATTGCTCTATTCAAGCAGATCTTCTACC
TACTTTGTGTGATAAAAAGAAGAGTTAAAACAACACATGTAAATGCCTTTGATATTCAAT
GGAAATGCCTCTCATTTAAAATAGAAATAAAGCATTGGTAAAAAGA

364/615

FIGURE 360

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73742
><subunit 1 of 1, 148 aa, 1 stop
><MW: 17183, pI: 8.77, NX(S/T): 0
MAASPARPAVLALTGLALLLLCWGP GG ISGNKLKMLQKREAPVPTKTVAVDENKAKEFLG
SLKRQKRQLWDRTRPEVQQWYQQFLYMGFDEAKFEDDITYWLNRDRNGHEY YGDYYQRHYDED
SAIGPRSPYGFRHGASVNYDDY

Signal peptide:

amino acids 1-30

365/615

FIGURE 361

GAGATTGGAAACAGCCAGGTTGGAGCAGTGAGTGAGTAAGGAAACCTGGCTGCCCTCTCCAGA
TTCCCCAGGCCTCTCAGAGAAGATCAGCAGAAAGTCTGCAAGACCCCTAACGAAACCATCAGGCCCTC
AGCTGCACCTCCTCCCCTCCAAGGATGACAAAGGCGCTACTCATCTATTGGTCAGCAGCTTT
CTTGCCTAAATCAGGCCAGCCTCATCAGTCGCTGTGACTTGGCCAGGTGCTGCAGCTGGAG
GACTTGGATGGGTTGAGGGTTACTCCCTGAGTGACTGGCTGTGCCTGGCTTTGTGGAAAGC
AAGTTCAACATATCAAAGATAAAATGAAAATGCGGATGGAAGCTTGACTATGGCCTCTCCAG
ATCAACAGCCACTACTGGTGCAACGATTATAAGAGTTACTCGGAAACCTTGCCACGTAGAC
TGTCAAGATCTGCTGAATCCAACCTTCTTGCAGGCATCCACTGCGAAAAAGGATTGTGTCC
GGAGCACGGGGATGAACAACGGTAGAATGGAGGTTGCAGTGTCAAGGCCGGCCACTCTCC
TACTGGCTGACAGGATGCCGCTGAGATGAAACAGGGTGCAGGTGCACCGTGGAGTCATTCCA
AGACTCCTGCTCACTCAGGGATTCTCATTCTTCTTCTACTGCCTCCACTTCATGTTAT
TTTCTTCCCTCCATTACAACAAAATGACCAGAGCCCCAGGAATAAATGGTTTCTTGG
CTTCCTCCTTACTCCCCTGGACCCAGTCCCTGGTTCTGTCTGTTATTGTAAACTGAGG
ACCACAATAAAGAAATCTTATATTATCG

366/615

FIGURE 362

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73746
><subunit 1 of 1, 148 aa, 1 stop
><MW: 16896, pI: 6.05, NX(S/T): 1
MTKALLIYLVSSFLALNQASLISRCDLAQVLQLEDLDGFEGYSLSDWLCLAFVESKFNISKIN
ENADGSFDYGLFQINSHYWCNDYKSYSSENLCVDCQDILLNPNLLAGIHCAKRIVSGARGMNNW
VEWRLHCSGRPLSYWLTCRLLR

Signal peptide:

amino acids 1-18

367/615

FIGURE 363

TCTGACCTGACTGGAAGCGTCCAAAGAGGGACGGCTGTCA~~G~~CCCTGCTTGACTGAGAACCCAC
CAGCTCATCCCAGACACCTCATAGCAACCTATTATACAAAGGGGAAAGAAACACCTGAGCA
GAATGGAATCATTATTTTCCCAAGGAGAAACCGGGTAAAGGGAGGGAAAGCAATTCAAT
TTGAAGTCCCTGTGAATGGGCTTCAGAAGGCAATTAAAGAAATCCACTCAGAGAGGGACTTGG
GGTGAACCTGGGTCTGTGGTTCTGATTGTAAGTGGAAAGCAGGTCTTGACACCGCTGTG
GCAAATGTCAGGACCAGGTTAAGTGA~~T~~CTGGCAGAAAAACTTCAGGTTGAA~~C~~AAGCAACCCAT
GTTCTGCTGCAAGCTTGAAGGAGCCTGGAGCGGGAGAAAGCTA~~A~~CTGAACATGACCTGTTGC
ATTGGCAGTTCTAGCAACATGCTCTTAAGGAAGCGATA~~C~~AGGCACAGACC~~A~~TCAGACTCC
AGTTCCCTCTGCTGCTCCTGATGCTGGGATGCGTCCTGATGATGGTGGC~~G~~ATGTTGCACCCCTC
CCCACACACCCTGCACCAGACTGT~~C~~ACAGCCCAAGCCAGCAAGCACAGCC~~C~~CTGAAGCCAGGT
ACCGCCTGGACTTGGGAATCCCAGGATTGGTACTGGAAAGCTGAGGATGAGGGTGAAGAGT
ACAGCCCTCTGGAGGGC~~T~~GCCACCC~~T~~TATCTCACTGCGGGAGGATCAGCTGCTGGTGGCCG
TGGCCTTACCCCAGGCCAGAAGGAACCAGAGCCAGGGAGGGAGGTTGGAGCTACCGCCTCA
TCAAGCAGCCAAGGAGGCAGGATAAGGAAGCCCCAAAGAGGGACTGGGGGCTGATGAGGACG
GGGAGGTGTCTGAAGAAGAGGAGTTGACCCGTCAGCCTGGACCCACGTGGCCTCCAGGAGG
CACTCAGTGC~~CC~~GCATCCCCCTCCAGAGGGCTCTGCCAGGCCAGCGTCATCCTCTGTTCCATGATGAGGACCT
AGCAGCACCC~~T~~CAGGACAGCCTGCCACAGCCAGCGTCATCCTCTGTTCCATGATGAGGACCT
GGTCCACTCTCCTGCGGACTGTACACAGCATCCTCGACACAGTGCCAGGGC~~T~~TC~~T~~GAAGG
AGATCATCCTCGTGGAC~~C~~CTCAGCCAGCAAGGACA~~A~~CTCAAGTCTGCTCTCAGCGAATATG
TGGCCAGGCTGGAGGGGGTGAAGTTACTCAGGAGCAACAAGAGGCTGGTGCCTCATGGATGCCACTAGGGGCC
GGATGCTGGGGGCCACCAGAGCCACCAGGGGATGTGCTCGTCTCATGGATGCCACTGCGAGT
GCCACCCAGGCTGGCTGGAG~~CC~~CTCCTCAGCAGAATAGCTGGTACAGGAGGCCAGTGGTAT
CTCCGGT~~G~~ATAGATGTGATTGACTGGAAAGACTTCCAGTATTACCCCTCAAAGGAC~~T~~GCAGC
GTGGGGTGTGGACTGGAA~~G~~CTGGATTCCACTGGAAC~~C~~TTGCCAGAGCATGTGAGGAAGG
CCCTCCAGTCCCCATAAGCCCCATCAGGAGCC~~T~~GTGGTGC~~CC~~GGAGAGGTGGTGGCCATGG
ACAGACATTACTTCAAAACACTGGAGCGTATGACTCTCTTATGTC~~G~~CTGCCAGGTGGT~~G~~AAA
ACCTCGA~~A~~CTGTCTTCAAGGCC~~T~~GGCTCTGTGGCTCTGTTGAA~~A~~ATCCTCC~~T~~GC~~T~~TC
GGTAGGACACATCTACAAAATCAGGATTCCATTCCCCCTCGACCAGGAGGCCACCC~~T~~GA
GGAACAGGGTCGCATTGCTGAGAC~~T~~GGCTGGGT~~C~~ATTCAAAGAAAC~~T~~TCTACAAGCATA
GCCAGAGGCC~~T~~TC~~C~~CTTGAGCAAGGCTGAGAAGCCAGACTGCATGGAA~~G~~C~~T~~GCAGCTGC
AAAGGAGACTGGGTGT~~C~~GGACATTCCACTGGTTCTGGCTAATGTC~~T~~ACCC~~T~~GAGCTGT~~A~~CC
CATCTGAACCCAGGCCAGTTCTGTGGAAAGCTCCACAAACACTGGACTTGGCTCTG~~C~~AG
ACTGCCAGGCAGAAGGGACATCCTGGCTGT~~C~~CCATGGTGTGGCT~~C~~TTGCA~~G~~TCAG~~C~~AGGCC
GGCAGCAACAGTAC~~T~~GCAGCACACCAGCAGGAAGGAGATTC~~A~~CTTGGCAGCCACAGCACC
TGTGCTTGCTGT~~C~~AGGCAGGAGCAGGTGATTCTTCAGAA~~A~~CTGCACGGAGGAAGGCC~~T~~GGCCA
TCCACCAGCAGC~~A~~CTGGACTTCAGGAGAATGGGATGATTGTC~~C~~ACATTCTTCTGGAAAT
GCATGGAAAGCTGTGT~~C~~AGGAAAGAA~~A~~ATAAAGATTGTACCTGGCT~~C~~GTGATGGAAAAG
CCCGCCAGCAGTGGCGATTGACCAGATAATGCTGTGGATGAACGAT~~TGA~~ATGTC~~A~~ATGTCAG
AAGGAAAAGAGAA~~T~~TTGGCCATCAA~~A~~ATCCAGCTCCAAGTGAACG~~T~~AAAGAGCTTATATATT
TCATGAAGCTGATC~~T~~TTGTGTGCTC~~T~~TTGTGTTAGGAGAGAAAAAGCT~~T~~ATGAAA
GAATATAGGAAGTTCTC~~T~~TTTACACCTTATTGACTGCTGGCTGCTTA

368/615

FIGURE 364

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA73760
><subunit 1 of 1, 639 aa, 1 stop
><MW: 73063, pi: 6.84, NX(S/T): 2
MLLRKRYRHRPCRLQFLLLLLMLGCVIMMVAMLHPPHTLHQTVTAQASKHSPEARYRLDFGE
SQDWVLEAEDEGEYEYSPLEGPPFISIREDQLLVAALPQARRNQSQGRGGSYRLIKQPRRQ
DKEAPKRDWGADEDGEVSEEEELTPFSLDPRGLQEALSARIPLQRALPEVRHPLCLQQHPQDS
LPTASVILCFHDEAWSTLLRTVHSILDTPRAFLKEIILVDDLSQQGQLKSALSEYVARLEGV
KLLRSNKRLGAIRARMLGATRATGDVLFMDAHCECHPGWLEPLLSRIAGDRSRVVSPVIDVI
DWKTFQYYPSKDLQRGVLDWKLDHFWEPLPEHVRKALQSPIRSPVPGEVVAMDRHYFQN
TGAYDSLMSLRGGENLELSFKAWLCGGSVEILPCSRVGHIYQNQDSHSPLDQEATLRNRVRIA
ETWLGSFKETFYKHSPEAFSLSKAEKPDCMERLQLQRRILGCRTFHFLANVYPELYPSEPRPS
FSGKLHNTGLGLCADCQAEGDILGCPMVLAPCSDSRQQQYLQHTSRKEIHFGSPQHLCFAVRQ
EQVILQNCTEEGLAIHQHQHWDFOENGIVHILSGKCMEAVVQENNKDLYLRPCDGKARQQWRF
DQINAVDER
```

Signal peptide:

amino acids 1-28

369/615

FIGURE 365

GGAGAGAGGCGCGCGGGTGAAAGGCATTGATGCAGCCTGCGGCGGCCTCGGAGCGCGCG
AGCCAGACGCTGACCACGTTCTCTCCTCGGTCTCCTCCGCCTCCAGCTCCGCCTGCCCGC
AGCCGGAGCCATGCGACCCCCAGGGCCCCGCCGCCTCCCCGCAGCGGCTCCGCGGCTCCTGC
TGCTCCTGCTGCTGCAGCTGCCCGCCGTCAGCGCCTCTGAGATCCCCAAGGGGAAGCAAA
AGGCGCAGCTCCGGCAGAGGGAGGTGGACCTGTATAATGGAATGTGCTTACAAGGCCAG
CAGGAGTGCCTGGTCAGACGGAGCCCTGGGCCAATGTTATTCCGGGTACACCTGGATCC
CAGGTGGGATGGATTCAAAGGAGAAAAGGGGAATGTCTGAGGGAAAGCTTGAGGAGTCCT
GGACACCCAACTACAAGCAGTGTTCATGGAGTTCAATTGGCATAGATCTTGGAAAAA
TTGCGGAGTGTACATTACAAAGATGCGTCAAATAGTGCCTAAGAGTTGTCAGTGGCT
CACTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTCACATTCAATGGAGCTG
AATGTTCAAGGACCTCTCCCATTGAAGCTATAATTATTGGACCAAGGAAGCCCTGAAATGA
ATTCAACAATTAAATTACATCGCACTCTCTGTGGAAGGACTTGTGAAGGAATTGGTGT
GATTAGTGGATGTTGCTATCTGGGTTGGCACTTGTTCAGATTACCCAAAAGGAGATGCTTCTA
CTGGATGGAATTCACTGTTCTCGCATCATTATTGAAGAACTACCAAAATAAATGCTTAATT
CATTGCTACCTTTTTTATTATGCCTGGAATGGTCACTTAAATGACATTAAATAAG
TTTATGTATACATCTGAATGAAAAGCAAAGCTAAATATGTTACAGACCAAGTGTGATTCA
CACTGTTTAAATCTAGCATTATTGCTTCAATCAAAGTGGTTCAATATT
TAGTTGGTTAGAATACTTCTCATAGTCACATTCTCAACCTATAATTGGAATATTGTT
TGGTCTTTGTTCTTAGTATAGCATTAAAAAAATATAAAAGCTACCAATCTTG
TACAATTGTAAATGTTAAGAATTTTTATATCTGTTAAATAAAATTATTCCAACA

370/615

FIGURE 366

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76393
><subunit 1 of 1, 243 aa, 1 stop
><MW: 26266, pI: 8.43, NX(S/T): 1
MRPQGPAAASPQRRLRGLLLLLQLPAPSSASEIPKGKQKAQLRQREVVDLYNGMCLQGPAGVP
GRDGSPGANVIPGTPGIPGRDGFKEKGECLRESFEESWTPNYKQCSWSSLNYGIDLGKIAEC
TFTKMRNSNSALRVLFGSLRLKCRNACCQRWYFTFNGAECSGPLPIEAIYLDQGSPEMNSTI
NIHRTSSVEGLCEGIGAGLVDVAIWVGTCSDYPKGDASTGWNSVSRIIIIEELPK
```

Signal peptide:

amino acids 1-30

Transmembrane domain:

amino acids 195-217

371/615

FIGURE 367

GTAAACCAGCGCAGTCCTCCGTGCGTCCGCCGCCGCTGCCCTCACTCCC GCCAGG**ATGGC**
ATCCTGTCCTGGCCCTGCGCATGGCGCTGCTGGTCTCCGGGTTCTGGCCCTGCGGTGCT
CACAGACGATGTTCCACAGGAGCCGTGCCCACGCTGTGGAACGAGCCGGAGCTGCCGTC
GGGAGAAGGCCCGTGGAGAGCACCAGCCCCGGCCGGAGCCCGTGGACACCGGTCCCCCAGC
CCCCACCGTCGCGCCAGGACCCGAGGACAGCACCGCGCAGGAGC GGCTGGACCAGGGCGGCG
GTCGCTGGGCCCGCTATCGCGGCATCGTGATGCCGCCCTGCTGGCACCTGCGTGGT
GCTGGCGCTCGTGGTCGTCGGCTGAGAAAGTTTCTGCCCTC**TGA**AGCGAATAAAGGGCCG
CGCCCGGCCGCGGCGACTCGGCAAAAAAAAAAAAAA

372/615

FIGURE 368

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76398
><subunit 1 of 1, 121 aa, 1 stop
><MW: 12073, pI: 4.11, NX(S/T): 0
MASCLAIRMALLLVSGVLAPAVLTDDVPQEPVPTLWNEPAELPSGEGPVESTSPGREPVDTGP
PAPTVAPGPEDSTAQERLDQGGGSLGPGAIAAIVIAALLATCVVLALVVVALRKFSAS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 91-110

Glycosaminoglycan attachment site.

amino acids 44-47

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 116-119

N-myristoylation site.

amino acids 91-96

373/615

FIGURE 369

GGCCGTTGGTTGGTGC CGCGGCTGAAGGGTGTGGCGCAGCAGCGTCGGTGGTTGGCCGGCGGC
GGGCCGGGACGGGCATGCCCTGCTGCTGCTGCCTGGTGCCTGACGGCGCGCTGGCCCACG
GCTGTCTGCACTGCCACAGCAACTTCTCCAAGAAGTTCTCCTTCTACCGCCACCATGTAACT
TCAAGTCTGGTGGTGGCGACATCCCCGTGTCAGGGCGCTGCTACCGACTGGAGCGACG
ACACGATGAAGGAGCTGCACCTGCCATCCCCGCAAGATCACCCGGAGAAGCTGGACCAAG
TGGCGACAGCAGTGTACCAGATGATGGATCAGCTGTACCAGGGAGAGATGTACTTCCCCGGT
ATTTCCCAACGAGCTGCACAAACATCTCCGGAGCAGGTGCACCTCATCCAGAACGCCATCA
TCGAAAGGCACCTGGCACCAAGGCAGCTGGGGAGGGAGGGCAGCTCTCCAGGGAGGGACCCAGCC
TAGCACCTGAAGGATCAATGCCATACCCCGCGGGGACCTCCCCTAAGTAGCCCCAGAGGCG
CTGGGAGTGTGCCACCGCCCTCCCCGTAAAGTTGCTCCATCTCACGCTGGGGTCAACCTGG
GGACCCCTTCCCTCCGGGCATGGACACACATACATGAAAACCAGGCCATCGACTGTCAGC
ACCGCTGTGGCATCTCCAGTACGAGACCATCTCTGCAACAACACTGCACAGACTCGCACGTG
CCTGCTTGGCTATAACTGCGAGTAGGGCTCAGGCATCACACCCACCCGTGCCAGGGCCCTAC
TGTCCCTGGGTCCCAGGCTCTCTGGAGGGGCTCCCCGCCTCACCTGGCTGTCACTCGG
GTAGGGCGGGGCCGTGGGTTCAAGGGCGCACCACCTCCAAGCCTGTCCTCACAGGTCTCGG
CGCAGTGAAGTCAGCTGTCCAGGGCCTCTGAACTACATAAAACTGGCACAAGTAAGTCC
CCTCCTCAAACCAACACAGGCACTGTGTGTAGTGAGCACCTCGTGGGTGAGTATGTGGGG
CACAGGCTGGCTCCCTCAGCTCCACGCTCTAGAGGGGCTCCCGAGGAGGTGGAACCTCAACC
CAGCTCTGCGCAGGAGGCGGTGCACTCCTTCTCCCTCAAAGGTCTCCGACCCCTCAGCTGG
AGGCAGGCATCTTCTAAAGGGTCCCCATAGGGTCTGGTCCACCCATCCCAGGTCTGTGG
TCAGAGCCTGGGAGGGTCCCTACGATGGTTAGGGGTGCCCATGGAGGGCTGACTGCCCA
CATTGCCCTTCAGACAGGACACGAGCATGAGGTAAGGCCGCCCCGACCTGGACTTCAGGGGA
GGGGGTAAAGGGAGAGAGGGAGGGCTAGGGGCTCTAGATCAGTGGGGCACTGCAAGGT
GGGGCTCTCCCTATACCTGGACACCTGCTGGATGTCACCTCTGCAACCACACCATGTGGT
GTTTCATGAACAGACACCACGCTCCTCTGCCCTCTCCCTGGGACACACAGAGGCCACCCGG
CCTTGTGAGTGACCCAGAGAAGGGAGGGCTGGGAGAAGGGTGTGCTGTAAGCCAACACCAGC
GTGCCGCGGCTGCAACCCCTCGGACATCCCAGGCACGAGGGTGTGCTGGATGTGGCCACAC
ATAGGACACACGCTCCAGCTGGAGGGAGAGGCCTGGGCCCCCAGGGAGGGAGGCAGGGGT
GGGGGACATGGAGAGCTGAGGCAGCCTCGTCTCCCGCAGCCTGGTATGCCAGCCTTAAGGT
GTCTGGAGCCCCACACTTGGCCAACCTGACCTTGGAAAGATGCTGCTGAGTGCTCAAGCAGC
ACTGACAGCAGCTGGCCTGCCAGGGCAACGTGGGGGGAGGAGACTCAGCTGGACAGCCCT
GCCTGTCACTCTGGAGCTGGCTGCTGCCTCAGGACCCCTCTCCGACCCGGACAGAGC
TGAGCTGCCAGGGCAGGGAGGGAGGGAGGGAAATGGGGTGGGCTGTGCGCAGCATCAG
CGCCTGGCAGGTCCGCAAGAGCTGCGGGATGTGATTAAAGTCCCTGATGTTCTC

374/615

FIGURE 370

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76399
><subunit 1 of 1, 157 aa, 1 stop
><MW: 17681, pI: 7.65, NX(S/T): 1
MALLLCLVCLTAALAHGCLHCHSNFSKKFSFYRHHVNFKSWWVGDI PVSGALLTDWSDDTMKE
LHLAI PAKITREKLDQVATAVYQMMDQLYQGKMYFPGYFPNELRNI FREQVHLIQNAIIERHL
APGSWGGQQLSREGPSLAPEGSMPSPRGDLP

Signal peptide:

amino acids 1-15

375/615

FIGURE 371

CCGGGCTGTGCAGAGACGCC**ATGT**TACCGGCTCCTGTCAAGCAGTGACTGCCCGGGCTGCCGCC
CCGGGGCTTGGCCTCAAGCTGCGGACGACGCCGGTCCATCAGCGGCCGGCTGCCGCCTC
TCGGCCACGGCTGGGTGCCCCGGCTCGGGCTGGGCTGGGCTCGGGTGAAGCTGG
CAGGTGGGCTGAGGGGCGCGCCACAGGGAGCAGTCCCCCGCGGCCCGACCCCTGAGGCCTGC
CTCTGGCCGAGGCCACAGGGAGCAGTCCCTGCCCGTGGTCTCCGAGACCCCAGGCC
CCTGCTCAGGTGCTCGCCAGAGCCATCGAGAGCAGCCGCACCTGCTGCACAGGATCAAGG
ATGAGGTGGCGCACGGGCATAGTGGTTGGAGTTCTGTAGATGAAAAGAAGTCTGGTCAG
AAGGTTAGGTTATGCTGATGTTGAGAACCGTGACCATGTAACACAGAGACAGTTATGCGAA
TTGCTAGCATCAGCAAAGTCTACCATGGTTGCTCTGCCAAATTGTGGGAAGCAGGGAAAC
TGGATCTGATATTCCAGTACAACATTATGTTCCGAATTCCCAGAAAAAGAATATGAAGGTG
AAAAGGTTCTGTACAACAAGATTACTGATTTCCATTAAAGTGGAAATCGTCATTATGAAA
AGGACATAAAAAGGTGAAAGAAGAGAAAGCTTATAAACGCTTGAAGATGATGAAAGAGAATG
TTGCATTGAGCAAGAAAAGAAGGCAAAAGTAATGAAAAGAATGATTTACTAAATTAAAA
CAGAGCAGGAGAATGAAGCCAATGCCGAATTCAAAACCTGGCAAGAAAAAGAATGATTTG
AACAAAGGCAATTATATTGAGAGAAAAGTGTGAAAATTCAATTGAATCCCTAAGATTATTTA
AAAATGATCCTTGTCTTCAAACCTGGTAGTCAGTTTGATTCAACTTTGGCTATACCC
TAATGGCAGCCATAGTAGAGAGAGCTCAGGATGTAAATTGGACTATATGCAGAAAATAT
TCCATGACTGGATATGCTGACGACTGTGCAGGAAGAAAACGAGCCAGTGATTACAATAGAG
CAAGG**TAA**ATGAATACTTCTGCTGTCTAGCTATATGCCATCTAACACTATTTATTAAT
TAAAAGTCAAATTCTTGTGTTCCATTCCAAAATCAACCTGCCACATTGGAGCTTTCT
ACATGTCATCTGTTCTCATCTGAAAGTGAAGGAAGTAAAACATGTTATAAAGTAAAAAA

376/615

FIGURE 372

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76522
><subunit 1 of 1, 373 aa, 1 stop
><MW: 41221, pi: 8.54, NX(S/T): 0
MYRLLSAVTARAAPGGLASSCGRRGVHQRAGLPPLGHGWVGGLGLGLALGVKLAGGLRGA
APAQSPAAPDPEASPLAEPPEQSLAPWSPQTAPPSCRCFARAIESSRDLLHRIKDEVGAPG
IVVGVSVDGKEVWSEGLGYADVENRVPCKPETVMRIASISKSLSLTVALAKLWEAGKLDLDIPV
QHYVPEFPEKEYEGEKGVSVTTRLLISHLSGIRHYEKDIKKVKEEKAYKALKMMKENVAFEQEK
EGKSNEKNDFTKFKTEQENEAKCRNSKPGKKNDFEQGELYLREKFENSIESLRLFKNPLFF
KPGSQFLYSTFGYTLLAAIVERASGCKYLDYMQKIFHDLDMLTTQEEENEPVIYNRAR

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 39-60

377/615

FIGURE 373

GAATACGGGGAGAGAGAGGAGACCAGGACAGCTGCTGAGACCTCTAAGAACGATACTAA
GAGCAAAGATGTTCAAACTGGGGCCTCATGTCTTCTACGGCTGTTAGCCCAGACCATGG
CCAGTTGGAGGCCTGCCGTGCCCTGGACCAGACCTGCCCTGAATGTGAATCCAGCCCTG
CCCTTGAGTCCCACAGGTCTGCAGGAAGCTTGACAAATGCCCTCAGCAATGCCGTGCT
GGGGCCTGTTGGCATTCTGGAAAACCTCCGCTCCTGGACATCCTGAAGCCTGGAGGAGGT
ACTTCTGGTGGCCTCCTGGGGACTGCTTGAAAAGTGACGTCAGTGATTCCCTGGCCTGAAC
AACATCATTGACATAAGGTCACTGACCCCCAGCTGCTGGAACCTGGCCTGTGCAGAGCCCT
GATGCCACCGTCTATGTCACCATCCCTCGGCATAAGCTCCAAGTGAATACGCCCTG
GTCGGTGCAAGTCTGTTGAGGCTGGCTGTGAAGCTGGACATCACTGCAGAAATCTAGCTGTG
AGAGATAAGCAGGAGAGGATCCACCTGGCCTTGGTACTGCACCCATTCCCTGGAAGCCTG
CAAATTCTCTGCTTGATGGACTTGGCCCCCTCCCCATTCAAGGTCTCTGGACAGCCTCACA
GGGATCTGAATAAGTCCTGCCTGAGTTGGTCAAGGCAACGTGTGCCCTCTGGTCAATGAG
GTTCTCAGAGGCTTGGACATCACCCTGGTCATGACATTGTTAACATGCTGATCCACGGACTA
CAGTTGTCATCAAGGTCTAAGCCTTCCAGGAAGGGCTGGCCTCTGCTGAGCTGCTTCCAG
TGCTCACAGATGGCTGGCCATGTGCTGGAAGATGACACAGTTGCCTCTCCGAGGAACCT
GCCCTCTCCTTCCCACCAGCGTGTAAACATCCATGTGCCTCACCTAATAAAATGGCT
CTTCTTATGCA

378/615

FIGURE 374

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA76533
><subunit 1 of 1, 256 aa, 1 stop
><MW: 26713, pI: 5.62, NX(S/T): 0
MFQTGGLIVFYGLILAQTMAQFGGLPVPLDQTLPLNVNPALPLSPTLAGSLTNALSNGLL
SGGLLGILENLPLL DILKPGGGTSGGLLGGLLGKVTSVIPGLNNIIDIKVTDPQLLELGL
VQSPDGHRLYVTIPLGIKLQVNTPLVGASLLRILAVKLDITAEILAVRDKQERIHLVLGDC
THSPGSLQISLLDGLGPLPIQGLLDSLTGILNKVLPELVQGNVCPLVNEVRGQDITLVH
DIVNMLIHGLQFVIKV
```

Important features of the protein:**Signal peptide:**

Amino acids 1-19

Transmembrane domain:

Amino acids 79-97

N-myristoylation sites:

Amino acids 46-52; 49-55; 58-64; 62-68; 66-72; 80-86; 81-87;
82-88; 85-91; 86-92; 89-95; 202-208; 233-239

379/615

FIGURE 375

AGTTCTGAGAAAGAAGGAAATAAACACAGGCACCAAACCACTATCCTAAGTTGACTGTCCCTT
AAATATGTCAAGATCCAGACTTTCACTGGTCACCTCAGCGATCTCAACGATAAGGGATCTGTG
TTGCCGCTATTCCAGTTGGTGCTCTCGGACCTACCAGCGAAGAAGATGAAATGTGTG
TTATAATGACCAACACCCTAATGGCTGGTATATCTGGATCCTCCTGCTGCTGGTTTGGTGGC
AGCTCTCTCTGTGGAGCTGTGGCCTCTGCCCTCCAGTGCTGGCTGAGGAGACCCGAATTGA
TTCTCACAGGCGCACCATGGCAGTTTGCTGTGGAGACTGGACTCTATTATGGACAGA
AGCAGCTGTGAGTCCAACGTGGAAATCACCTCAAACCTCAAACCCCTGACCTATATCCTGT
TCCTGCTCCATGTTGGCCCTTAGGCTCCCCACCTCCATATGAAGAAATTGAAAAACAAAC
CTGATTTAGGTGTGGATTATCAATTAAAGTATTAACGACATCTGTAATTCCAAAACATCAA
ATTAGGAATAGTTATTCAGTTGGAAATGTCCAGAGATCTATTCAATAGTCTGAGGAA
GGACAATTGACAAAAGAATGGATGTTGGAAAAATTGGTATGGAGATGTTAAATAGTA
AAGTAGCAGGCTTGATGTGTCAGTGCTGTATCATACTTTATGCTACACAACCAAATTAAAT
GCTTCTCCACTAGTATCCAAACAGGCAACAATTAGGTGCTGGAAGTAGTTCCATCACATTAA
GGACTCCACTGCAGTATACAGCACACCATTGCTTTAAACTCTTCCTAGCATGGGTCC
ATAAAAATTATTATAATTAAACAATGCCAAGCCGAGAATCCAACATGTCCAGAACAGAAC
CAGAAAGATAGTATTGAATGAAGGTGAGGGGAGAGAGTAGGAAAAGAAAAGTTGGAGTTG
AAGGGTAAAGGATAATGAAGAGGAAAAGGAAAGATTACAAGTCTCAGCAAAACAAAGAGGT
TTTATGCCCAACCTGAAGAGGAAGAAATTGTAGATAGAAGGTGAAGGAGATTGCTGAAGATA
TAGAGCACATATAATGCCAACACGGGGAGAAAAGAAAATTCCCCTTTACAGTAATGAATGT
GGCCTCCATAGTCCATAGTGTGTTCTCTGGAGCCTCAGGGCTTGGCATTATTGCAGCATCATG
CTAAGAACCTCGGCATAGGTATCTGTTCCATGAGGACTGCAGAAGTAGCAATGAGACATCT
TCAAGTGGCATTGGCAGTGGCCATCAGCAGGGGACAGACAAAAACATCCATCACAGATGA
CATATGATCTCAGCTGACAAATTGTTGAACAAAACAATAACATCAATAGATATCTAAAAA

380/615

FIGURE 376

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77303
><subunit 1 of 1, 146 aa, 1 stop
><MW: 16116, PI: 4.99, NX(S/T): 0
MSRSRLFSVTSAI STIGILCLPLFQLVLSLPCEEDEMCVNNDQHPNGWYIWILLLVAA
LLCGAVVLCLQCWLRRPRIDSHRRTMAVFAVGDLDSIYGTEAAVSPPTVGIHLQTQTPDLYPVP
APCFGPLGSPPPYEEIVKTT
```

Signal peptide:

amino acids 1-29

Transmembrane domain:

amino acids 52-70

381/615

FIGURE 377

CGCGGGATCGGACCCAAAGCAGGTGGCGGCAGGCAGGAGAGCAGGCCGGCGTCAGCTCCTCG
ACCCCCGTGTCGGGCTAGTCAGCGAGGCAGGGCGGCAGGGCCATGGCCAGGCCGGC
ATGGAGCGGTGGCGCACCGCTGGCGCTGGTGAACGGGGCCTCGGGGGCATCGGCGCGGC
GTGGCCCGGGCCCTGGTCCAGCAGGGACTGAAGGTGGTGGCTGCAGGCCACTGTGGCAAC
ATCGAGGAGCTGGCTGCTGAATGTAAGAGTCAGGCTACCCGGACTTTGATCCCCTACAGA
TGTGACCTATCAAATGAAGAGGACATCCTCTCCATGTTCTCAGCTATCCGTTCTCAGCACAGC
GGTGTAGACATCTGCATCAACAATGCTGGCTTGCCCCGGCTGACACCCTGCTCTCAGGCAGC
ACCAGTGGTTGGAAGGACATGTTCAATGTGAACGTGCTGCCCTCAGCATCTGCACACGGGAA
GCCTACCAGTCCATGAAGGAGCGGAATGTGGACGATGGGACATCATTAACATCAATAGCATG
TCTGGCCACCGAGTGTACCCCTGTCTGTGACCCACTTCTATAGTGCCACCAAGTATGCCGTC
ACTGCCTGACAGAGGGACTGAGGCAAGAGCTCGGGAGGCCAGACCCACATCCGAGGCCACG
TGCATCTCTCCAGGTGTGGAGACACAATTGCCCTCAAACCTCCACGACAAGGACCTGAG
AAGGCAGCTGCCACCTATGAGCAAATGAAGTGTCTCAAACCGAGGATGTGGCGAGGCTGT
ATCTACGTCTCAGCACCCCCGACACATCCAGATTGGAGACATCCAGATGAGGCCACGGGAG
CAGGTGACCTAGTGAUTGTGGAGCTCCTCTCCCTCCCCACCCCTCATGGCTTGCCCTCTG
CCTCTGGATTTAGGTGTTGATTCTGGATCACGGGATACCAACTTCTGTCCACACCCCGACC
AGGGGCTAGAAATTGTTGAGATTTATATCATCTTGTCAAATGCTTCAGTTGTAATG
TGAAAAATGGGCTGGGAAAGGAGGTGGTGTCCCTAATTGTTTACTTGTAACTTGTCTTG
TGCCCCCTGGGCACTGGCCTTGTCTGCTCTCAGTGTCTCCCTTGACATGGGAAAGGAGTT
GTGGCCAAAATCCCCATCTCTGACACTAACGTCTGTGGCTCAGGGCTGGGCTGGCAGAGG
GAGGCCTTCACCTTATATCTGTGTTATCCAGGGCTCCAGACTTCCCTCTGCCTGCC
ACTGCACCCCTCTCCCCCTTATCTATCTCCTCTGGCTCCCCAGCCAGTCTGGCTTGT
CCCCCTCTGGGCTCATCCCTCCACTCTGACTCTGACTATGGCAGCAGAACACCAGGGCTGGC
CCAGTGGATTCATGGTGATCATTAAAAAGAAAAATCGCAACCAAAAAAAAAAAA

382/615

FIGURE 378

MARPGMERWRDRLALVTGASGGIGAAVARALVQQGLKVVGCARTVGNIEELAAECKSAGYPGT
LIPYRCDLSNEEDILSMFSAIRSQHSGVDICINNAGLARPDTLLSGSTSGWKDMFNVNLALS
ICTREAYQSMKERNVDDGHIININNSMSGHRLPLSVTHFYSATKYAVTALTEGLRQELREAQT
HIRATCISPGVvetQFAFKLHDKDPEKAATYEQMKCLKPEDVAEAVIYVLSTPAHIQIGDIQ
MRPTEQVT

Important features of the protein:

Signal peptide:

amino acids 1-17

N-myristoylation sites.

amino acids 18-24, 21-27, 22-28, 24-30, 40-46, 90-96, 109-115,
199-205

Short-chain alcohol dehydrogenase.

amino acids 30-42, 104-114

383/615

FIGURE 379

GAGCGGAGTAAAATCTCCACAAGCTGGAACAAACCTCGTCCAACTCCCACCCACC GGCGT TCTCCAGCTCGATCTGGAGGCTGCCAGTGTGGGACGCAGCTGACGCCGCTATTAGC TCTCGCTGCCTGCCCGGCTCAGAAGCTCCGTCGGCGGCCGACCGTGACGAGAAGGCCACG GCCAGCTCAGTTCTCTACTTTGGAGAGAGAGAAAGTCAGATGCCCTTAAACTCCCT CTTCAAAACTCATCTCCTGGGTGACTGAGTTAATAGAGTGGATAACAACCTTGCTGAAGATGAA GAATATAACAATTGAGGATATTTTTCTTTCAAGTCTGATTGTGGCTTACACT CAAGTTACCATTTCAAGTCTGTTGCTTCTTCAGAAATGTTTACAATCTC AAGAAAAAATATGCCCAGAAATTGAGTTACTGTTGCTGTATTGGACTCATTGGGGATT GATGTTACTGCACTATACTTTCAACAACCAAGACATCAAAGCAGTGTCAAGTTACGTGAGCA AATACTAGACTTAAGAAAAGATATGTTAAAGCTCTAGCAGAGGAAATAAGAACACAGTGG A TGTCGAGAACGGTGCCTCTATGGCAGGATATGCGGATCTGAAAAGAACAAATTGCTGTCCTTCT GGATGACATTTGCAACGATTGGTGAAGCTGGAGAACAAAGTTGACTATATTGTTGTAATGG CTCAGCAGCCAACACCAACCAATGGTACTAGTGGAAATTGGTGCCTAGTAACCACAAATAAAAG AACGAATGTCTCGGGCAGTATCAGATAGCAGTTGAAAATCACCTTGCTGCTCCATCCACTG TGGATTATATCCTATGGCAGAAAAGCTTATAATTGCTGCTTAGGACAGAGCAATACTTTAC AATAAAAGCTCTACACATTTCAAGGAGTATGCTGGATTCTGAACTCTAATTCTGTACATA AAAATTAAAGTTATTGTTGCTTCAGGCAAGTCTGTTCAATGCTGTACTATGCTTAA AGAGAATTGGTAACTGGTGTGGTAAGCAGATAGGTGAGTTTGATAAAATCTTTGT GTTTGAGATCAAGCTGAAATGAAAACACTGAAAACATGGATTCTTCTATAACACATTAT TTAAGTATATAACACGTTTTGGACAAGTGAAGAATGTTAATCATCTGTCATTGTTCTC AATAGATGTAACGTGTTAGACTACGGCTATTGAAAAAATGTGCTTATTGTACTATTTGTT ATTCCAATTATGAGCAGAGAAAGGAAATAATGTTGAAAATAATGTTGAAATCATGACCC AAAGAAATGTATTGATTGACTATCCTCAGAATAACTGAAGGTTAATTATTGTATTTTA AAAATTACACTTATAAGAGTATAATCTGAAATGGTAGCAGCCACTGTCCATTACCTATCGT AAACATTGGGCAATTAAACAGCATTAAAATAGTTGAAACTCTAATCTTATACTTATTG AAGAATAAAAGATATTTATGATGAGAGTAACAATAAGTATTCTGATTTTCACATACAT GAATGTTCTATTAAAGTTAATCCTTGAGTGTCTATGCTATCAGAAAGCACATTATTCC ATATTGGGTTAATTGCTTTATTATATTGGCTTAGGAGGAAGGGACTTGGAGAATGGAA CTCTGAGGACTTAGCCAGGTGTATATAAAAGTACTTTGTGCTGCATTAAATTGCTTG GAAAGTGTAAACATTATATTATAAGAGTATCCTTATGAAATTGTAATTGTATAACAGA TGCATTAGATATTCTATTATATAATGCCACTAAAATAAGAACATTAAAATATAACTAT GAAGATTGACTATCTTCAGGAAAAAGCTGTATATAGCACAGGAAACCCTAATCTGGGTA ATTCTAGTATAAAACAAATTATACTTTATTAAATTCCCTGTAGCAAATCTAATTGCCAC ATGGTGCCTATATTCTAGTATTCTCTATAGTAACGTCTTAAGTGCAGCTAGCTTCT AGATTAGACTATAGAATTAGATATTGTATTGTTCGTCATTATAATATGCTACCACATGT AGCAATAATTACAATATTATTAAATAATGTGAAATATTGTTCATGAAAGACAGATT TCCAAATCTCTCTCTCTGTACTGTACCTTATGTGAAGAAATTAAATTATATGCCA TTGCCAGGT

384/615

FIGURE 380

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA77648
><subunit 1 of 1, 140 aa, 1 stop
><MW: 15668, pI: 10.14, NX(S/T): 5
MFFTISRKNMSQKLSLLLLVFGLIWGLMLHYTFQQPRHQSSVKLREQILDLSKRYVKALAE
NKNTVDVENGASMAGYADLKRTIAVLLDDILQRLVKLENKVDYIVVNGSAANTTNGTSGNLVP
VTTNKRTNVSGSIR

Important features of the protein:

Signal peptide:

amino acids 1-26

385/615

FIGURE 381

AACTTCTACATGGGCCTCCTGCTGGTGCTCTTCCTCAGCCTCCTGCCGGTGGCCTACACC
ATCATGCCCTCCCACCCCTCTTGACTGCGGGCGTTCAAGGTGCAGAGTCTCAGTTGCCCGG
GAGCACCTCCCCCTCCGAGGCAGTCTGCTCAGAGGGCTCGGCCAGAATTCCAGTTCTGGTT
TCATGCCAGCCTGTAAAAGGCCATGGAACCTTGGGTGAATCACCGATGCCATTAAAGAGGGTT
TTCTGCCAGGATGGAAATGTTAGGTCGTTCTGTTCTGCCGTGTTCAAGTAGGCCACCAG
CCACCTGTGGCGTTGAGTGCTGAAATGAGGAACTGAGAAAATTAAATTCTCATGTATTTT
CTCATTATTTATTAAATTAACTGATAGTTGATCATATTGGGGGTACATGTGATATTGG
ATACATGTATAACAATATAATGATCAAATCAGGGTAACGGGATATCCATCACATCAAACAT
TTATTTTATTCTTTAGACAGAGTCTCACTCTGTCACCCAGGCTGGAGTGCAGTGGTGC
ATCTCAGCTTACTGCAACCTCTGCCAGGTCAAGCGATTCTCATGCCCTCACCTCCAA
GTAGCTGGGACTACAGGCATGCACCACAATGCCAACTAATTGTTGATTAGAGACG
GGGTTTGCCATGTTGCCAGGCTGGCCTGAACCTCTGCCCTCAAACAATCCACTGCCCTCG
GCCCTCCAAAGTGTATGATTACAGGCGTGAGCCACCGTGCCTGGCCTAAACATTATCTTT
CTTGTTGGAACTTGAAATTACAATGAATTATTGTTAAGTGCATCTCCCTGCTGTG
CTATGGAACACTGGGACTTCTCCCTCTATCTAACCTCTGATCACCTCATTCTACTCTACCTC
ACTTCATCCCCACTCCTCTCTATCCTCCAACCTCTGATCACCTCATTCTACTCTACCTC
CATGAGATCCACTTTTAGCTCCACATGTGAGTAAGAAAATGCAATATTGTTCTGCTG
CCTGGCTTATTCACTTAACATAATGACTTCTGTTCCATGTTGCTGCAAATGACAGGA
TTTCGTTCTTAATTCAATTAAAATAACCACACATGGCAAAA

386/615

FIGURE 382

MGLLLLVLFLSLLPVAYTIMSLPPSFDCGPFRCRVSVAREHLPSSRGSLLRGPRPRIPVLVSCQ
PVKGHGTLGESPMFKRVFCQDGTVRSFCVCAVFSSHQPPVAVECLK

Important features of the protein:

Signal peptide:

amino acids 1-18

N-myristoylation site.

amino acids 86-92

Zinc carboxypeptidases, zinc-binding region 2 signature.

amino acids 68-79

387/615

FIGURE 383

TTCTGAAGTAACGGAAGCTACCTGTATAAAGACCTCAACACTGCTGACC**ATGATCAGCGCAG**
CCTGGAGCATCTCCTCATCGGGACTAAAATTGGGCTGTTCCCTCAAGTAGCACCTCTATCAG
TTATGGCTAAATCCTGTCCATCTGTGTGCGTGCATCGGGTTCTACCTGTAATGATC
GCTTTCTGACATCCATTCCAACAGGAATACCAACAGGATGCTACAACCTCTACCTTCAGAACAA
ACCAAATAATAATGCTGGGATTCCCTCAGATTGAAAAACTGCTGAAAGTAGAAAGAATAT
ACCTATACCAACACAGTTAGATGAATTCCCTACCAACCTCCAAAGTATGTAAGAGAGTTAC
ATTTGCAAGAAAATAACATAAGGACTATCACTTATGATTCACTTCAAAATTCCCTATCTGG
AAGAATTACATTAGATGACAACACTCTGCTCTGCAGTTAGCATAGAACAGGGAGCATTCCGAG
ACAGCAACTATCTCGACTGCTTTCTGTCCCCTAATCACCTTAGCACAATTCCCTGGGTT
TGCCCAGGACTATAGAAGAACTACGCTGGATGATAATCGCATATCCACTATTCATCACCAT
CTCTTCAGGTCTCACTAGTCTAAAACGCCCTGGTTCTAGATGAAACCTGTTGAACAATCATG
GTTTAGGTGACAAAGTTCTTCAACCTAGTTAATTGACAGAGCTGCTCCCTGGTGCAGGAATT
CCCTGACTGCTGCACCAAGTAACCTCCAGGCACAAACCTGAGGAAGCTTATCTCAAGATA
ACCACATCAATCGGGTGCACCAATGCTTTCTTATCTAAGGCAGCTATGACTGGATA
TGTCCAATAATAACCTAAGTAATTACCTCAGGGTATCTTGATGATTGGACAATATAACAC
AACTGATTCTCGCAACAATCCCTGGTATTGCGGGTGCAAGATGAAATGGGTACGTGACTGGT
TACAATCACTACCTGTGAAGGTCAACGTGCGTGGGCTCATGTGCCAAGCCCCAGAAAAGGTTTC
GTGGGATGGCTATTAAGGACTCAATGCAAGACTGTTGATTGTAAGGACAGTGGATTGAA
GCACCAATTCAAGATAACCACGTCAACACAGTGTATCCTGCCAAGGACAGTGGCCAG
CTCCAGTGACCAAACAGCCAGATATTAAGAACCCCAAGCTCACTAAGGATCAACAAACCACAG
GGAGTCCCTCAAGAAAAACAATTACAATTACTGTGAAGTCTGTCACCTCTGATACCATTCATA
TCTCTGGAAACTTGCTCTACCTATGACTGCTTGAGACTCAGCTGGCTTAAACTGGGCATA
GCCCGGCATTGGATCTATAACAGAAACAATTGTAACAGGGGAACGCAGTGAGTACTGGTCA
CAGCCCTGGAGCCTGATTCACCCCTATAAAAGTATGCATGGTCCCATGGAAACCAAGCAACCTCT
ACCTATTGATGAAACTCCTGTTGATTGAGACTGAAACTGCACCCCTCGAATGTACAACC
CTACAACCAACCTCAATCGAGAGCAAGAGAAAGAACCTACAAAACCCCAATTACCTTGG
CTGCCATCATTGGTGGGCTGTGGCCCTGGTTACCATGCCCTTCTGCTTACTGTGTTGGT
ATGTTCATAGGAATGGATCGCTCTCAAGGAACGTGCACTATAGCAAAGGGAGGAGAAGAA
AGGATGACTATGCAAGACTGGCACTAAGAACGACAACCTATCCTGGAAATCAGGGAAACTT
CTTTCAAGATGTTACCAATAAGCAATGAACCCATCTCGAAGGAGGAGTTGTAATACACACCA
TATTTCTCTTAATGGAATGAATCTGTACAAAACAATCACAGTGAAGCAGTAGTAACCGAA
GCTACAGAGACAGTGGTATTCCAGACTCAGATCACTCACACT**TGATGCTGAAGGACTCACA**
GCAGACTTGTGTTGGTTAAACCTAAGGGAGGTGATGGT

388/615

FIGURE 384

MISAAWSIFLIGTKIGLFLQVAPLSVMAKSCPSVCRC DAGFIYCNDRFLTSIPTGI PEDA TTL
YLQNNQINNAGIPSDLKNLLKVERIYLYHNSLDEFPTNL PKYVKE LHLQENNIRTITYDSLSK
IPYLEELHLD DNSVSAVSIEEGAFRDSNYLRLFLSRNHILSTIPWGLPRTIEELRLDDNRIST
ISSPSLQGLTSLKRLVLDGNLLNNHGLGDKVFFNLVNLTELSLVRNSLTAAPVNLPGTNLRKL
YLQDNHINRVPPNAFSYLRQLYRLDMSNNNLSNLPGIFDDLDNITQLILRNPNWYCGCKMKW
VRDWLQSLPVKVNVRGMCQAPEKVRGMAIKDLNAELFDCKDSGIVSTIQITTAIPNTVYPAQ
GQWPAPVTKQPDIKNPKLKDQQTGSPSRKTITITVKS VTS DTI HISWKLALPM TALRLS WL
KLGHSPA FGSITETIVTGERSE YLVTALEPDSPYKVC M VPMETSNLYLFDETPVC IETET APL
RMYNPTT TLNREQEKEPYKNPNLPLAAIIGGAVALVTI ALLALVCWYVHRNGSLFSRNCAYS K
GRRRKDDYAEAGTKKD NSILEIRETSFQMLPISNEPISKEEFVIHTIFPPNGMNL YKNNHSES
SSNRSYRD SGIPDSDHS HS

Important features of the protein:**Signal peptide:**

amino acids 1-28

Transmembrane domain:

amino acids 531-552

N-glycosylation sites.

amino acids 226-229, 282-285, 296-299, 555-558, 626-629, 633-636

Tyrosine kinase phosphorylation site.

amino acids 515-522

N-myristoylation sites.

amino acids 12-17, 172-177, 208-213, 359-364, 534-539, 556-561,

640-645

Amidation site.

amino acids 567-570

Leucine zipper pattern.

amino acids 159-180

Phospholipase A2 aspartic acid active site.

amino acids 34-44

389/615

FIGURE 385

CCGTCATCCCCCTGCAGCCACCCCTCAGAGTCCTTGCCCAGGCCACCCAGGCTTCTGG
CAGCCCTGCCGGGCACCTGTCTTCATGTCTGCCAGGGGAGGTGGGAAGGAGGTGGGAGGAG
GGCGTGAGAGGCAGTCTGGGCTGGGCAGAGCTCAGGGTGTGAGCGTGTGACCAGCAGTGA
GCAGAGGCCGGCATGCCAGCCTGGGCTGCTGCTCCTGCTTACTGACAGCACTGCCACC
GCTGTGGTCTCCTCACTGCCTGGGCTGGACACTGCTGAAAGTAAAGCCACCATTGCAGACCT
GATCCTGTCTGCGCTGGAGAGAGCCACCGTCTTAGAACAGAGGCTGCCTGAAATCACCT
GGATGGCATGGTGGGGTCCGAGTGCTGGAAGAGCAGCTAAAAGTGTCCGGAGAAGTGGC
CCAGGAGCCCCCTGCTGCAGCCGCTGAGCCTGCGCTGGGGATGCTGGGGAGAAGCTGGAGG
TGCCATCCAGAGATCCCTCCACTACCTCAAGCTGAGTGATCCAAAGTACCTAACAGAGATTCCA
GCTGACCCCTCCAGCCCCGGTTTGGAAAGCTCCACATGCCTGGATCCACACTGATGCCCTCCT
GGTGTACCCCACGTTGGGCCCCAGGACTCATTCTCAGAGGAGAGAAGTGAACGTGTGCCCTGGT
GCAGCTGCTGGGAACCGGGACGGACAGCAGCAGCAGCCCTGCGGCCTCTCAGACCTCTGAGGAG
CCTCATGACCAAGCCCCGGCTGCTCAGGCTACTGCCTGTCCCACCAACTGCTCTTCTCCTG
GCCAGAAATGAGGGATGCACACAGGACCACTCCAACAGAGCCAGGACTATATCACCTCTT
CTGCGCCAACATGATGGACTGAAACCGCAGAGCTGAGGCATGGATAACGCCTACCCCTACCCG
GGACATCTCATGGAAAACATCATGTTCTGGAATGGCGGCTCTCCGACTTCTACAAGCT
CCGGTGGCTGGAGGCCATTCTCAGCTGGCAGAACAGCAGGAAGGATGCTGGGGAGCCTGA
TGCTGAAGATGAAGAATTATCTAAAGCTATTCAATATCAGCAGCATTTCGAGGAGAGTGAA
GAGGCAGAAAAACAATTCCAGATTCTCGCTGTTGCTCAGGCTGGAGTACAGTGGCGCAA
TCTCGGCTCACTGCAACCTTGCCTCTGGGTTCAAGCAATTCTCTGCCTCATCCTCCGAG
TAGCTGGGACTACAGGAGCGTGCACCCATACCTGGCTAATTTTATATTTTTAGTAGAGAC
AGGGTTTACATGTTGCTCATGCTGGTCTCGAACCTCTGATCTCAAGAGATCCGCCACCTC
AGGCTCCCAAAGTGTGGATTATAGGTGAGGCCACCGTGTGGCTGAAAAGCACTTCAAA
GAGACTGTGTTGAATAAGGCCAAGGTTCTGCCACCCAGCACTCATGGGGCTCTCTCCCC
TAGATGGCTGCTCCTCCCACACACAGGCCACAGCAGCTGGCAGCCCTGGGTGGCTTCCCTATACA
TCCCTGGCAGAACACCCCCCAGCAAACAGAGAGGCCACCCATCCACACCGCCACCAAGCA
GCCGCTGAGACGGACGGTTCCATGCCAGCTGCCTGGAGGAGAACAGACCCCTTAGTCCTCA
TCCCTAGATCCTGGAGGGCACGGATCACATCCTGGGAAGAAGGCATCTGGAGGATAAGCAA
GCCACCCGACACCAATCTTGGAAAGCCCTGAGTAGGCAGGGCAGGGTAGGTGGGGCCGGG
AGGGACCCAGGTGTGAACGGATGAATAAGTTCAACTGCAACTGAACTGAAAAAA

390/615

FIGURE 386

MSARGRWEGGGRRACRGSILGLARAQGAERVTSSEQRPMASLGLLLLLTLAPPLWSSSLPG
LDTAESKATIADLILSALERATVFLERQLPEINLDGMVGVRVLEEQLKSVREKWAQEPLLQPL
SLRVGMLGEKLEAAIQRSLLHYLKLSDPKYLREFQLTLQPGFWKLPHAWIHTDASLVYPTFGPQ
DSFSEERSDVCLVQLLGTGTDSEPCGLSDLCRSLMTKPGCSGYCLSHQLLFFLWARMRGCTQ
GPLQQSQDYINLFCANMMDLNRAEAIGYAYPTRDIFMENIMFCGMGGFSDFYKLRWLEAILS
WQKQQEGCFGEPDAEDEELSKAIQYQQHFSRRVKRREKQFPDSRSVAQAGVQWRNLGSQLQPLP
PGFKQFSCLILPSSWDYRSVPPYLANFYIFLVETGFHHVAHAGLELLISRDPPTSGSQSVGL

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 39-56

Tyrosine kinase phosphorylation sites.

amino acids 149-156, 274-282

N-myristoylation sites.

amino acids 10-16, 20-26, 63-69, 208-214

Amidation site.

amino acids 10-14

Glycoprotein hormones beta chain signature 1.

amino acids 230-237

391/615

FIGURE 387

GGTCTGAGTCAGAGCTGTCATGGCGGCCGCTCTGTGGGGCTTCTTCCGTCTGCTGC
TGCTGCTGCTATCGGGGATGTCAGAGCTCGGAGGTGCCCGGGGCTGCTGCTGAGGGATCGG
GAGGGAGTGGGGTCCGCATAGGAGATCGCTCAAGATTGAGGGCGTCAGTTGTTCCAGGGG
TGAAGCCTCAGGACTGGATCTCGCGGGCCGAGTGCTGGTAGACGGAGAAGAGCACGTCGGTT
TCCTTAAGACAGATGGAGTTTGTGGTCATGATATAACCTCTGGATCTTATGTAGTGBAAG
TTGTATCTCCAGCTACAGATTGATCCCCTGAGTGGATATCATTGAAAGGAAAATGA
GAGCAAGATATGTGAATTACATCAAACATCAGAGGTTGTCAGACTGCCCTATCCTCTCCAAA
TGAAATCTCAGGTCACCTTACTTTATTAAAAGGGATCGTGGGCTGGACAGACTTC
TAATGAACCCAATGGTTATGATGATGGTTCTCCTTATTGATATTGTGCTTCTGCCTAAAG
TGGTCAACACAAGTGATCCTGACATGAGACGGAAATGGAGCAGTCATGAATATGCTGAATT
CCAACCATGAGTTGCCGTGATGTTCTGAGTTCATGACAAGACTCTCTCTTCAAAATCATCTG
GCAAATCTAGCAGCGGCAGCAGTAAACAGGCAAAAGTGGGCTGGCAAAAGGAGGTAGTCAG
GCCGTCCAGAGCTGGCATTCGACAAACACGGCAACACTGGGTGGCATCCAAGTCTGGAAAAA
CCGTGTGAAGCAACTACTATAAACTTGAGTCATCCGACGTTGATCTTACAACGTGTATGTT
AACTTTTAGCACATGTTGACTTGAGTACCGAGAAAACCCAGCTTCATCTTGCTGT
ATGAGGTCAATATTGATGTCAGTGAATTAAATTACAGTGTCTATAGAAAATGCCATTAATAAAA
TTATATGAACTACTATACATTATGTATTTAATTAAACATCTTAATCCAGAAATCAAAAAAA
AAAAAAAAAAAAAAAAAAAAAA

392/615

FIGURE 388

MAAALWGFFPVLLLLLSDVQSEVPGAAAEGSGGSGVGIGDRFKIEGRAVPGVKPQDWIS
AARVLVDGEEHVGFLKTDGSFVVHDIPGSYVVEVSPAYRFDPVRVDITSKGKMRARYVNYI
KTSEVVRLPYPLQMKGSSGPPSYFIKRESWGWTDFLMNPMVMMMVLPPLLIFVLLPKVVNTSDPD
MRREMEQSMNMLNSNHELPDVSEFMTRLFSSKSSGKSSGSSKTGKGAGKRR

Important features of the protein:

Signal sequence:

amino acids 1-23

Transmembrane domain:

amino acids 161-182

N-glycosylation site.

amino acids 184-187

Glycosaminoglycan attachment sites.

amino acids 37-40, 236-239

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 151-154

N-myristoylation sites.

amino acids 33-38, 36-41, 38-44, 229-234

Amidation site.

amino acids 238-241

ATP/GTP-binding site motif A (P-loop).

amino acids 229-236

393/615

FIGURE 389

GTCGTGTGCTTGGAGGAAGCGCGGAACCCCCAGCGTCCATGCGTGGAGCCTGGAG
CTGGCTGGGTGGCTGCCTGCTGGTGTCAAGCATTGGAATGGTACCACTCCGAAATGTCAG
AATGAATTCTGTTAATTCAAGAACATTCTACAGTGGGAGTCACCTGCTTTGCCAAAGGGAA
CCTGACTTTCACAGCTCAGTACCTAAGTTAGGATATTCAAGATAATGCATGAATACTAC
CTTGACGGAATGTGATTCTCAAGTCTTCCAAGTATGGGACCACTTGAGAGTCAGGGC
TGAATTGAGATGAGCATTCAAGACTGGTAACATCACCTCTGCTGTGGATGACACCAT
TATTGGACCCCTGGAATGCAAGTAGAAGTACTTGCTGATTCTTACATATGCCTTCTAGC
CCCTAAAATTGAGAATGAATACGAAACTGGACTATGAAGAATGTGTATAACTCATGGACTTA
TAATGTGCAATACTGGAAAACGGTACTGATGAAAAGTTCAAATTACTCCCCAGTATGACTT
TGAGGTCCCTCAGAAACCTGGAGCCATGGACAACCTATTGTTCAAGTTCGAGGGTTCTTCC
TGATCGGAACAAAGCTGGGAATGGAGTGAGCCTGTGTGAGCAAACAAACCATGACGAAAC
GGTCCCCTCCTGGATGGTGGCGTCATCCTCATGGCCTCGGTCTTCATGGTCTGCCTGGCACT
CCTCGGCTGCTCTCCTTGCTGTTACAAGAAGACAAAGTACGCCCTCTCCCTAG
GAATTCTCTCCACAGCACCTGAAAGAGTTTGGGCCATCCTCATCATAACACACTTCTGTT
TTTCTCCTTCCATGTCGGATGAGAATGATGTTGACAAGCTAAGTGTATTGAGAAGA
CTCTGAGAGCGGCAAGCAGAACACTGGCTGGGCACAGTGACGTACTCCATCTC
ACATCTGCCTCAGTGAGGGATCAGGGCAGCAAACAAAGGGCAAGACCATCTGAGCCAGCCCCA
CATCTAGAACTCCAGACCTGGACTTAGCCACCAGAGAGCTACATTAAAGGCTGTCTGGCA
AAAATACTCCATTGGAACTCACTGCCATTATAAAGGTTCATGATGTTTCAGAAGTTGGC
CACTGAGAGTGTAAATTTCAGCCTTATATCCTAAATAAGATCATGTTAATTGAGA
AACAGGGCCGAGCACAGTGGCTCACGCCGTAAATACCAGCACCTAGAGGTGAGGCAGGG
ATCACTTGAGGTAGGAGTTCAAGACCGCCTGCCAATATGGTAAACCCAGTCTACTAA
AAATACAAAAATTAGCTAGGCATGATGGCGCATGCCATAATCCAGCTACTCGAGTGCCTGA
GGCAGGAGAATTGCATGAACCCGGAGGGAGGAGGAGGAGGTTGCAGTGAGCCGAGATAGCGGC
ACTGCACTCCAGCCTGGGTGACAAGTGAGACTCCATCTCAAAAAAAAAAAATTGTG
AGAAACAGAAATACCTAAAATGAGGAATAAGAATGGAGATGTTACATCTGGTAGATGAAACAT
TCTACCAGATTATGGATGGACTGATCTGAAATCGACCTCAACTCAAGGGTGGTCAGCTCAAT
GCTACACAGAGCACGGACTTTGGATTCTTGCACTTGAATTTATTCTACCTATAT
ATGTTTATATGCTGCTGGTGCATCAAAGTTTACTCTGTGTTGC

394/615

FIGURE 390

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA83551
><subunit 1 of 1, 325 aa, 1 stop
><MW: 37011, pi: 5.09, NX(S/T): 4
MAWSLGSWLGCGLLVSALGMVPPENVRMNSVNFKNILQWESPAFAKGNLTFTAQYLSYRIFQ
DKCMNTTILTECDFSSL SKYGDHTLRVRAEFADEHSDWVNITFCPVDDTIIGPPGMQVEVLADS
LHMRFLAPKIENEYETWTMKNVYNSWTYNVQYWKGNTDEKFQITPQYDFEVLRNLEPWTTYCV
QVRGFLPDRNKAGEWSEPVCEQTTHDETVPSSVMAVILMASVFMVCLALLGCFSLWCVYKKT
KYAFSPRNSLPQHLKEFLGHPHHNTLLFFSFPLSDENDVFDKLSVIAEDSESGKQNP GDSCSL
GTPPGQGPQS

Important features of the protein:

Signal peptide:

amino acids 1-19

Transmembrane domain:

amino acids 222-245

N-glycosylation sites.

amino acids 49-53, 68-72, 102-106, 161-165

N-myristoylation sites.

amino acids 6-12, 316-322

395/615

FIGURE 391

CTGTGCAGCTCGAGGCTCCAGAGGCACACTCCAGAGAGCCAAGGTTCTGACGCG**ATG**AGGA
AGCACCTGAGCTGGTGGCTGCCACTGTCTGCATGCTGCTCTCAGCCACCTCTGC
TCCAGACGAGGGCATCAAGCACAGAACATCAAGTGAACCGGAAGGCCCTGCCAGCAGC
AGATCACTGAGGCCAGGTGGCTGAGAACCGCCCCGGAGCCTTCATCAAGCAAGGCC
TCGACATTGACTTCGGAGCCAGGGCACAGGTACTACGAGGCCACTACTGGCAGTTCCC
ATGGCATTCCACTACAACGGCTGCTTGAGGCTAATGTGACCAAGGAGGCATTGTCACC
GCATCAATGCCACCCAGCGCGAACCAAGGGAGTCCAGAACAGCAGACAACAAGCT
AGCAGGTGCTCTGGCGCTGGTCCAGGAGCTCTGCTCCCTCAAGCATTGCGAGTTGG
AGAGGGCGCAGGACTTCGGGTCACCATGCACCAGCCAGTGCTCCTCTGCCTCTGG
TCTGGCTCATGGTAAA**TAA**GCTTGCCAGGAGGCTGGCAGTACAGAGCGCAGCGAG
TCCTGGCAAGTGAACCAGCTTCTCCCCAAACCCACGCGTGTCTGAAGGTGCCAGGAGC
GGCGATGCACTCGCAATGCCGCTCCCACGTATGCGCCCTGGTATGTCCTGCGTTCT
GATAGATGGGGACTGTGGCTTCTCCGTCACTCATTCTAGCCCTAGCAGAGCGTCTGG
CACTAGATTAGTAGTAAATGCTTGATGAGAACACATCAGGCAGTGCCACCTGCTTC
AGTACTTCCAACAACTCTTAGAGGTAGGTGTATTCCCGTTTACAGATAAGGAAACTGAG
CCAGAGAGCTGAAGTACTGCACCCAGCATCACCAGCTAGAAAGTGGCAGAGCAGGATT
CCTGGCTTGTCTAACCCCCAGGTTCTGCTCTGCCAATTCCAGAGCTGTGGTGTACT
TATGTCTCACAGGGACCCACATCCAAACATGTATCTTAATGAAATTGTGAAAGCT
TAGAAATAATGAAAACACACTGA

396/615

FIGURE 392

MRKHLSSWWLATVCMLLFSHLSAVQTRGIKHRIKWRKALPSTAQITEAQVAENRPGAFIKQG
RKLDIDFGAEGNRYYEANYWQFPDGIHYNGCSEANVTKEAFVTGCINATQAANQGEFQKPDNK
LHQQLWRLVQELCSLKHFCEFWLERGAGLRVTMHQPVLLCLLALIWLVMVK

Important features of the protein:

Signal peptide:

amino acids 1-26

Transmembrane domain:

amino acids 157-171

N-glycosylation sites.

amino acids 98-102, 110-114

Tyrosine kinase phosphorylation site.

amino acids 76-83

N-myristoylation sites.

amino acids 71-77, 88-94, 93-99, 107-113, 154-160

Amidation site.

amino acids 62-66

397/615

FIGURE 393

TGAAATGACTTCCACGGCTGGGACGGAACCTTCCACCCACAGCTATGCCTCTGATTGGTGAA
TGGTGAAGGTGCCTGTCTAACTTTCTGTAAAAAGAACCGAGCTGCCTCCAGGCAGCCAGCCCT
CAAGCATCACTTACAGGACCAGAGGGACAAGACATGACTGTGATGAGGGAGCTGCTTCGCCAA
TTAACACCAAGAAGAATTGAGGCTGCTGGGAGGAAGGCCAGGAGGAACACGAGACTGAGAG
ATGAATTTCAACAGAGGCTGCAAAGCCTGTGGACTTTAGCCAGACCCCTCTGCCCTCTTTG
CTGGCGACAGCCTCTCAAATGCAGATGGTGTGCTCCCTGCCTGGGTTTACCCCTGCTTCTC
TGGAGCCAGGTATCAGGGGCCAGGGCCAAGAATTCCACCTTGGGCCCTGCCAAGTGAAGGGG
GTTGTTCCCCAGAAACTGTGAGGAAAGCCTCTGGGCTGTGAAAGACACTATGCAAGCTCAGGAT
AACATCAGAGTGCCCAGGCTGCTGCAGCAGGAGGTCTGCAGAACGTCTCGGATGCTGAGAGC
TGTTACCTGTCCACACCCCTGCTGGAGTTCTACTTGAAAAGTGTGTTCAAAAACCACCAAAAT
AGAACAGTGAAGTCAGGACTCTGAAGTCATTCTACTCTGGCCAACAACATTGTTCTCATC
GTGTCACAACGTGCAACCCAGTCAAGAAAATGAGATGTTCCATCAGAGACAGTGCACACAGG
CGGTTCTGCTATTCCGGAGAGCATTCAAACAGTTGGACGTAGAACAGCTGACCAAAGCC
CTTGGGAAAGTGGACATTCTCTGACCTGGATGCAGAAATTCTACAAGCT**TGA**ATGTCTAGA
CCAGGACCTCCCTCCCCCTGGCACTGGTTGTTCCCTGTGTCATTCAAACAGTCTCCCTTCC
TATGCTGTCACTGGACACTTCACGCCCTGGCATGGTCCCATTCTGGCCAGGATTATT
GTCAAAGAAGTCATTCTTAAGCAGCGCCAGTGCAGTCAGGGAGGTGCCTCTGGATGCTGT
GAAGAGTCTACAGAGAAGATTCTGTATTATTACAACCTATTTAATTAAATGTCACTATTTC
AACTGAAGTTCTATTATTGTGAGACTGTAAGTTACATGAAGGCAGCAGAACATTGTGCC
ATGCTTCTTACCCCTCACAACTCCTGCCACAGTGTGGGCAGTGGATGGGTGCTTAGTAAGT
ACTTAATAAAACTGTGGTGCTTTTTGGCCTGTCTTGGATTGTTAAAAAACAGAGAGGGATG
CTTGGATGTAACACTGAACCTCAGAGCATGAAAATCACACTGTCTCTGATATCTGCAGGGAC
AGAGCATTGGGTGGGGTAAGGTGCATCTGTTGAAAAGTAAACGATAAAATGTGGATTAAA
GTGCCAGCACAAAGCAGATCCTCAATAAACATTCAATTCCCACCCACTGCCAGCTCAC
CCCATCATCCCTTCCCTGGTGCCTCCTTTTTTATCCTAGTCATTCTCCCTAATCT
TCCACTTGAGTGTCAAGCTGACCTGCTGATGGTGACATTGCACCTGGATGTAATCAATC
TGTGATGACATTCCCTGCTAATAAAAGACAACATAACTCCAAAAAAAAAAAAAAA
AAAA

398/615

FIGURE 394

></usr/seqdb2/sst/DNA/Dnaseqs.full/ss.DNA88002
><subunit 1 of 1, 206 aa, 1 stop
><MW: 23799, pi: 9.12, NX(S/T): 3
MNFQQRLQSLWTLARPFCPPLLATASQMOMVVLPCLGFTLLLWSQVSGAQGQEFGFGPCQVKKG
VVPQKLWEAFWAVKDTMQAQDNITSARLLQQEVLQNVSDAESCYLVHTLLEFYLKTVFKNHHN
RTVEVRTLKSFSTLANNFVLIVSQLQPSQENEMFSIRDSAHRRFLLFRRRAFKQLDVEAALTKA
LGEVDILLTWMQKFYKL

Signal sequence:

amino acids 1-42

N-glycosylation sites.

amino acids 85-89, 99-103, 126-130

399/615

FIGURE 395

GCCTGGCCTCCAAAGGGCTGGGATTATAGGCGTGACCACCATGTCTGGTCCAGAGTCTCAT
TTCCTGATTTATAGACTCAAAGAAAACTCATGTTCAGAAGCTCTTCTCTGGCCTC
CTCTCTGTCTTCTTCCCTTTCTTATTAAATTAGTAGCATCTACTCAGAGTCATGCA
AGCTGGAAATCTTCATTTGCTTGTCAAGTGGGTAGGTCACTGAGTCTTAGTTTATTTT
TGAAATTCAACTTCAGATTCAAGGGGTACATGTGAAGGTTGTTATGAGTATATTGCAT
GATGCTGAGGTTGGGT

400/615

FIGURE 396

MFRSSLLFWPPLCLLSLFLLLILISSIYSESCKLEIFHFACQWGRSLSLSFYFLKFQLSDSGGT
CEGLFYEYIA

Important features of the protein:

Signal peptide:

amino acids 1-25

N-myristoylation site.

amino acids 62-68

401/615

FIGURE 397

CATGCCGCTGCCGCCGCTGCTGTTGCTCCTGGCGGCCCTGGGGACGGGCAGTCCCTG
TGTCTCTGGTGGTTGCCTAAACCTGAAACATCACCTCTTATCCATCAACATGAAGAATGT
CCTACAATGGACTCCACCAGAGGGTCTCAAGGAGTTAAAGTTACTTACACTGTGCAGTATTT
CATATATGGCAAAAGAAATGGCTGAATAATCAGAACATGCAGAAATATCAATAGAACCTACTG
TGATCTTCTGCTGAAACTTCTGACTACGAACACCAGTATTATGCAAAGTTAAGGCCATTG
GGGAACAAAGTGTCCAATGGCTGAAAGTGGACGGTTCTATCCTTTTAGAAACACAAAT
TGGCCCACCAGAGGGTGGCACTGACTACAGATGAGAACGTCCATTCTGTTGTCCTGACAGCTCC
AGAGAAGTGGAAAGAGAAATCAGAACACCTCCTGTTCCATGCAAACAAATATACTCCAATCT
GAAGTATAACGTCTGTGTGAATACTAAATCAAACAGAACGTGGTCCAGTGTGACCAA
CCACACGCTGGTGCTCACCTGGCTGGAGCGAACACTCTTACTGCGTACACGTGGAGTCCTT
CGTCCCAGGGCCCCCTGCCGTGCTCAGCCTCTGAGAACAGTGTGCCAGGACTTGAAAGA
TCAATCATCAGAGTTCAAGGCTAAAATCATCTCTGGTATGTTGCCCATATCTATTACCGT
GTTTCTTTCTGTGATGGCTATTCCATCTACCGATATATCCACGTTGGCAAAGAGAAACA
CCCAGCAAATTGATTTGATTTGAAATGAATTGACAAAAGATTCTTGTGCCTGCTGA
AAAAATCGTGATTAACCTTATCACCTCAATATCTGGATGATTCTAAAATTCTCATCAGGA
TATGAGTTACTGGGAAAAGCAGTGATGTATCCAGCCTTAATGATCCTCAGGCCAGCGGGAA
CCTGAGGCCCTCAGGAGGAAGAGGGTGAACATTAGGGTATGCTTCGCATTTGATGGA
AATTTTTGTGACTCTGAAGAAAACACGGAAAGGTACTTCTCACCAGCAAAGACTCCCTCAG
CAGAACAAATACCCCGATAAAACAGTCATTGAATATGAATATGATGTCAAACCAACTGACAT
TTGTGCGGGGCCTGAAGAGCAGGAGCTCAGTTGCAGGAGGAGGTGTCACACAAGGAACATT
ATTGGAGTCGCAGGCAGCGTGGCAGTCTGGGCCGCAAACGTTACAGTACTCATACACCCC
TCAGCTCCAAGACTTAGACCCCTGGCGCAGGAGCACACAGACTCGGAGGAGGGGCCGGAGGA
AGAGCCATCGACGACCCCTGGTCAGTGGATCCCCAAACTGGCAGGCTGTGATTCTTCGCT
GTCCAGCTTCGACCAGGATTCAAGAGGGCTGCGAGCCTCTGAGGGGGATGGGCTGGAGAGGA
GGGTCTTCTATCTAGACTCATGAGGAGCCGGCTCAGACAGGCCACCAGGAGAAAATGAAAC
CTATCTCATGCAATTCAATGGAGGAATGGGGTTATATGTGCAGATGGAAAAT**TGAT**GCCAAACA
CTTCCTTTGCCTTTGTTCCAGTTGAGTCACCCCTTGATCCCAGGCCATAAA
GTACCTGGGATGAAAGAAGTTTCCAGTTGTCAGTGTCTGTGAGAA

402/615

FIGURE 398

MPLPPLLLLLLAAPWGAVPCVSGGLPKPANITFLSINMKNVLQWTPPEGLQGVKVTYTVQYF
IYGQKKWLNKSECRNINRTYCDLSAETSDYEHQYYAKVKAIWGTKCSKWAESGRFYPFLETQI
GPPEVALTTDEKSISVVLTAPEKWKRNPEDLPVSMQQIYSNLKYNVSVLNTKSNRTWSQCVTN
HTLVLTWLEPNLTYCVHVESFVPGPPRRAQPSEKQCARTLKDQSSEFKAKIIFWYVLPISITV
FLFSVMGYSIYRYIHVGKEKHPANLILIGNEFDKRFFVPAEKIVINFITLNISDDSKISHQD
MSLLGKSSDVSSLNDPQPSGNLRPPQEEEVKHLGYASHLMEIFCDSEENTEGTSLTQQESLS
RTIPPDKTVIEYEYDVRTTDICAGPEEQELSLOEEVSTQGTLLSQAAALAVLGPQLQSYTP
QLQDLDPLAQEHTDSEEGPEEPSTTLVDWDPQTGRLCIPSLSFDQDSEGCEPSEGDSLGE
GLLSRLYEEPAPDRPPGENETYLMQFMEEWGLYVQMAN

Signal sequence:

amino acids 1-18

Transmembrane domain:

amino acids 240-260

N-glycosylation sites.amino acids 31-34, 72-75, 80-83, 171-174, 180-183, 189-192,
304-307, 523-526**Tyrosine kinase phosphorylation site.**

amino acids 385-392, 518-526

N-myristoylation sites.

amino acids 53-58, 106-111, 368-373, 492-497

Tissue factor

amino acids 1-278

403/615

FIGURE 399

CCGGCGATGTCGCTCGTGTGCTAAGCCTGGCCCGCTGTGCAGGAGGCCGTACCCGAGAG
CCGACCGTTCAATGTGGCTCTGAAACTGGGCCATCTCCAGAGTGGATGCTACAACATGATCTA
ATCCCCGGAGACTTGAGGGACCTCCGAGTAGAACCTGTTACAACTAGTGTTGCAACAGGGAC
TATTCAATTGATGAATGTAAGCTGGGTACTCCGGCAGATGCCAGCATCCGTTGTAAG
GCCACCAAGATTTGTGTGACGGGAAAAGCAACTTCCAGTCCTACAGCTGTGAGGGCAAT
TACACAGAGGCCCTCCAGACTCAGACCAGACCCCTGGTGTAAATGGACATTTCTACATC
GGCTTCCCTGTAGAGCTGAACACAGTCTATTCAATTGGGCCATAATATTCTTAATGCAAAT
ATGAATGAAGATGGCCCTTCATGTCGTGAATTCACCTCACAGGCTGCCTAGACCACATA
ATGAAATATAAAAAAAAGTGTGCAAGGCCGGAAAGCCTGTGGATCCGAACATCACTGTTGT
AAGAAGAATGAGGAGACAGTAGAAGTGAACCTCACAAACCACTCCCTGGGAAACAGATACTG
GCTCTTATCCAACACAGCACTATCATCGGGTTTCTCAGGTGTTGAGCCACACCAGAAGAAA
CAAACGCGAGCTTCAGTGGTATTCCAGTGACTGGGATAGTGAAGGTGCTACGGTGCAGCTG
ACTCCATATTTCTACTTGTGGCAGCGACTGCATCCGACATAAGGAACAGTTGTGCTCTGC
CCACAAACAGGCGTCCCTTCCCTCTGGATAACAAACAAAAGCAAGCCGGAGGCTGGCTGCCT
CTCCTCCTGCTGTCTGCTGGTGGCCACATGGGTGCTGGCAGGGATCTATCTAATGTGG
AGGCACGAAAGGATCAAGAAGACTTCTTTCTACCAACCACACTACTGCCCCCCATTAGGTT
CTTGTGGTTACCCATCTGAAATATGTTCCATCACACAATTGTTACTTCACTGAATTCTT
CAAACCATTCAGCAGAGTGAGGTATCCTGAAAAGTGGCAGAAAAGAAAATAGCAGAGATG
GGTCCAGTGCAGTGCTTGCCACTCAAAGAAGCAGCAGACAAAGTCGTCTCCTTCC
AATGACGTCAACAGTGTGCGATGGTACCTGTGGCAAGAGCGAGGGCAGTCCCAGTGAGAAC
TCTCAAGACCTCTCCCCCTGCCTTAACCTTCTGCAGTGATCTAAGAAGCCAGATTCT
CTGCACAAATACGTGGTGGTCACTTAGAGAGATTGATACAAAGACGATTACAATGCTCTC
AGTGTCTGCCCAAGTACCAACCTCATGAAGGATGCCACTGCTTCTGTGCAGAACTTCTCCAT
GTCAAGCAGCAGGTGTCAGCAGGAAAAAGATACAAGCCTGCCACGATGGCTGCTCCTTG
TAG

404/615

FIGURE 400

MSLVLLSLAALCRSAVPREPTVQCGSETGPSPEWMLQHDLIPGDLRDLRVEPVTTSVATGDYS
ILMNVSWVLRADASIRLLKATKICVTGKSNFQSYSCVRCNYTEAFQTQTRPSGGKWTFSYIGF
PVELNTVYFIGAHNIPNANMNEGPGMSVNFTSPGCLDHIMKYKKKCVKAGSLWDPNITACKK
NEETVEVNFTTPLGNRYMALIQHSTIIGFSQVFEPHQKQTRASVVIPTVGDSEGATVQLTP
YFPTCGSDCIRHKGTVVLCPQTGVFPFLDNNSKPGGWLPLLLSLLVATWVLVAGIYLMWRH
ERIKKTSFSTTLLPPIKVLVVYPSEICFHHTICYFTEFLQNHCRCSEVILEKWQKKKIAEMGP
VQWLATQKAADKVVFLLSNDSVCDGTCGKSEGSPSENSQDLFPLAFNLFCSDLRSQIHLH
KYVVVYFREIDTKDDYNALSVCPKYHLMKDATAFCAELLHVKQQVSAGKRSQACHDGCCSL

Important features of the protein:

Signal peptide:

amino acids 1-14

Transmembrane domain:

amino acids 290-309

N-glycosylation sites.

amino acids 67 - 71, 103 - 107, 156 - 160, 183 - 187, 197 - 201
and 283 - 287

cAMP- and cGMP-dependent protein kinase phosphorylation sites.

amino acids 228 - 232 and 319 - 323

Casein kinase II phosphorylation sites.

amino acids 178 - 182, 402 - 406, 414 - 418 and 453 - 457

N-myristoylation site.

amino acids 116-122

Amidation site.

amino acids 488-452

405/615

FIGURE 401

GGGAACAGGAACTATCAGCCCAGCGCTCCGGGCCCTGCATTCTCTAGCC**ATG**GACCG
GGACCTTTGCAGTCGCTAAATTGCCACGGGCGTCTTGCTCTACTTCGGAG
CGAACAGCAGGACAATCCACACTTCCGTAGCCTCTGGGTCGGCCGCCAGGCCCG
GGGCCGCGCCCCAGCACCCGTTGCAGGGCAGAAAAGAGAAGAGAGTTGACAACATCGA
GATAACAGAAATTCTCATCCTCAAAAAAGCGGATCTGCTTTGCACCTTCCTGAAATCAGA
TGCACCTGCAACTCTGAAATTAAATGAAGACAGTGAAGATCATTATGCAATCATGCCACC
TTTAGAGCAATTCTGAGATACCTAGTATGGATCGGAGAGAGCTGTTTCCGAGATAT
TGAGCGTGGTGATATAGTGAATTGGAAGAATTAGTTCTATTGGAAATTGGTTTTTCAT
GGTGTGATCTGTTAGGAAGTGGTATCATGAGAGATATAGCCCACCTAGAAATCACAGC
TCTTGTCCCTTAAGAGATGTGCCTCTCACAGTAACCAGGGATCCTTATCATATTA
CCAAACTGGTGACATCATTGAGCTGGAATCAAGGATATTGACAGATACCATGAAAAGCT
AGCAGTATCTCTGTATAGCTCTCTCCACACACCTATCTGGTATTAAATTAGGTGT
AATTAGCTCTGAAGAGCTCCTTATACTACAGGAGAAGTGGTGAAGCTAAATAGCAATT
TTTGGAGTCTTATGAAAATGTCATGCAGAGTCTGGGATTTGTTAATCCAGGAGTAGT
TGAATTCTCTAGAAAAACTAGGAATAGATGAATCTAATCCACCATTTAATGAGAGG
CCTACAAAGCAAAATTCTCTGAAGATGATTTGCTCTGCATTGAGAAAAAAACAATC
CGCATCTGGGCTTAAATGTGTGAAGATCGGAGTTGACTATTTAAAGTGGACGCCA
TGTGGATGCTATGAATGAATAAAAGCTTGGAAATAGACAAACAAACGTGGAAGC
TTTGGTAGCTCGTGGAGCATTATATGCACAAAGGAAGTTGAACAAAGCAATAGAAGA
TTTGAGCTGCATTAGAAAATGTCCAATCACAGAAATGCAAGAAAATACCTCTGCCA
GACACTTGTAGAGAGAGGAGGACAGTTAGAAGAAGAAGAAAAGTTTAAATGCTGAAAG
TTACTATAAGAAAGCCTTGGCTTGGATGAGACTTTAAAGATGCAGAGGATGCTTGCA
GAAACTTCATAAATATATGCAGAAATCTTGGATTAAAGAGAAAAACAAGCTGAAAAGGA
AGAAAAGCAGAAAACAAGAAAATAGAAACAAGTGCAGAAAAGTGGCTAAGCTTAA
AGAAGAGAAGAGGCTAAAGAAGAAAAGAAGAAAATCAACTTCTCAAGTGTGTTCTC
TGCTGATGAATCAGTGTCTTCATCATCCTCTCTCTGGTCACAAAGGCATTCACTAGGGC
ATCCTCAAATCAGATAGATCAGAAATAGGAAAGATGAGTGCCTACCCAGTCCAGCTAATAC
TTCAGCATTTCTTAACCATAACAAGAAGTGGAGAAACTACTGGGAAGCAGGATAG
GTACAGTATGAAAAGACACAGATAAAAGAGAAAGATAGATGCCCCTCTCATCTTC
ACTTGAAATACCGGATGATTTGGAGTGTACTCTATTATTTAAAAGTTAAACTATAAA
ACAGCCTCAGGCAGGTCTCAGGAGATATTCCAGAAGAGGGCATTGTTATCATAGATGA
CAGCTCATTCACTGTTACTGACCCCTGAAGACCTCAAGTGGACAAGATATGGAGGTGGA
AGACAGTGGTATTGATGATCCTGACCAAGGG**TAG**GCTTAGGTTATGTGTATGTGT
CTAGTTTAAACAAAAATTAAAAGTAAAAAAACTAAAATAGAAAATGCTTAGAG
AATAAGGATATAAAGAATATTGGCAGTTGAACAATGAGTGCCTAAGCTAAATGTCA
TCACAAAAGAGTAAAAAATTACAAAATTAAAATGTTAAAGTAAAAAGCTCTAGG
AAGCTAAGGTCAATTATTATTGGAGAAATAAAATTATTTATGAATTACTGT

406/615

FIGURE 402

MDRDLLRQSLNCHGSSLLSLLRSEQQDNPHFRSLLGSAAEPARGPPPQHPLQGRKEKRV
D NIEIQKFISKKADLLFALSWKS DAPATSEINEDSEDHYAIMPPLEQFMEIPSM
DRREI FF RDIERGDIVIGRISSIREFGFFMVLCILGSGIMRDIAHLEITALCPLRDVPSHSN
HGDPL SYYQTGDIIRAGIKIDDRYHEKLAVSLYSSSLPHLSGIKLGVISS
EELPLYRRSVELN SNSLESYENVMQSSLGFVNPGVVEFLLEKLGI
DES NPPS LMRGLQSKNFSEDFASALRK KQSASWALKCVKIGVDYFKVGRHVDAMNEY
NKALEIDKQNVEALVARGALYATKGSLNKA IEDFELALENCPTHRNARKYLC
QTLVERGGQLEEEEKFLNAESYYKKALALDETFKDAED ALQKLHKYM
MQKSLELREKQAEKEEKQKTKKIELTSAEKLRLKLLKEEKR
LKKRKSTSSSS VSSADESVSSSSSSSSGHKRHKH
KRNRSESSRSSRRHSSRASSNQIDQNRKDECYPVP ANTSASFLNH
KQEVEKLLGKQDRLQYEKTQIKEKDRCP
LSSSSLEIPDDFGVYSYLFKKL TIKQPQAGPSGDIPEEGIVIID
DSSIHVTDPELDQVGQDMEVEDSGIDDPDHG

Important features of the protein:

Signal peptide:

Amino acids 1-23

Transmembrane domain:

Amino acids 138-155

N-glycosylation sites:

Amino acids 288-292; 508-512; 542-546

cAMP- and cGMP-dependent protein kinase phosphorylation sites:

Amino acids 300-304; 472-476; 473-477; 517-521; 598-602

N-myristoylation sites:

Amino acids 218-224; 222-228; 271-277; 348-354

Amidation site:

Amino acids 52-56

Cell attachment sequence:

Amino acids 125-128

407/615

FIGURE 403

CCGAGGCGGAGGAGCCCCGAGGGGGCGCGAGCCCCCATGAATCATGTAGTCAATCATTTC
CAGTTCTCAGCCGCTCAGTTGTGATCAAGGGACACGTGGTTCCGAACGTGCCAGCTCAGAATA
GGAAAATAACTTGGGATTATATTGAAAGACATGGATCTTGCTGCCAACGAGATCAGCATT
ATGACAAACTTCAGAGACTGTTGATTGGTGAGACAGACCGGCCATCAGTGTGGCATGTCAG
AGAAGGCAATTGAAAAATTATCAGACAGCTGCTGGAAAAGAATGAACCTCAGAGACCCCCCCC
CGCAGTATCCTCTCCTTATAGTTGTGATAAGGTTCTCGCAACCTGGGATTAATCTTGCTCA
CTGCCTACTTGTGATTCAACCTTCAGCCCATTAGCACCTGAGCCAGTGCTTCTGGAGCTC
ACACCTGGCGCTCACTCATCCATCACATTAGGCTGATGTCCTGCCATTGCCAAGAAGTACA
TGTCAAGAAAATAAGGGAGTTCCCTCTGCATGGGGGTGATGAAGACAGACCCCTTCCAGACTTTG
ACCCCTGGTGGACAAACGACTGTGAGCAGAATGAGTCAGAGCCATTCTGCCAAGTGCAC TG
GCTGTGCCAGAACACACTGAAGGTGATGCTCCTGGAAGACGCCAAGGAAATTGAGAGGC
TCCATCCACTGGTGATCAAGACGGAAAGCCCTGTTGGAGGAAGAGATTCA GCATTTTG
GCCAGTACCCCTGAGGCGACAGAAGGCTCTCTGAAGGGTTTCGCAAGTGGTGGCGCTGCT
TTCTGAGCGGTGGTCCCATTCTTATCCATGGAGGAGACCTCTGAACAGATCACAAATGT
TACGTGAGCTTTCTGTTCACTCACCTGCCATTCCAAAAGATGCCTCTTAAACAAAGT
GCTCCTTCTTCACCCAGAACCTGTTGGGGAGTAAGATGCATAAGATGCCCTGACCTATT
TCATTGGCAGCGGTGAGGCCATGTTGCAGCTCATCCCTCCCTCCAGTGCCGAAGACATTGTC
AGTCTGTGCCATGCCAATAGAGCCAGGGGATATCGGCTATGTCGACACCACCCACTGGAAGG
TCTACGTTATAGCCAGAGGGTCCAGCCTTGGTCATCTGCGATGGAACCGCTTCTCAGAAC
TGAGGAATAGAACTGTGCACAGGAACAGCTTCCAGAGCCGAAAACCAGGTTGAAAGGGAA
AAATAAAACAAAACGATGAAACTGCAAAA

408/615

FIGURE 404

MDLAANEISIYDKLSETVDLVRQTGHQCGMSEKAIEKFIRQLLEKNEPQRPPQYPLLIVVYK
VLATLGLILLTAYFVIQPFSPLAPEPVLSGAHTWRSLIHHLMSLPIAKKYMSENKGVPLHG
GDEDRPFPDFDPWWTNDCEQNESEPIPANCTGCAQKHLKVMLLEDAPRKFERLHPLVIKTGKP
LLEEEIQHFLCQYPEATEGFSEGFFAKWWRCFPERWFPPYPWRRPLNRSQMLRELFPPVFTHL
PFPKDASLNKCSFLHPEPVVGSKMHKMPDLFIIGSGEAMLQLIPPFQCRRHCQSVAMPIEPGD
IGYVDTTHWKVYVIARGVQPLVICDGTAFSEL

409/615

FIGURE 405

TGCCGGGCTCGGGGCGCCTGACTCTCCCTCACCTGCCTCCTGGGCTCCACTCGTCTGCCCTGGACTCCC
GTCTCCTCCTGCTCCTCCGGCTTCCCAGAGCTCCCTCCTTATGGCAGCAGCTCCCGGTCTCCGGCGCAGCTTCT
CAGCGGACGACCCCTCTCGCTCCGGGCTGAGCCAGTCCCTGGATGTTGCTGAAACTCTCGAGATCATGCGCGGG
TTTGGCTGCTGCTTCCCCGCCGGTGCCACTGCCACCAGCCGCCCTGCTGCCGCCGCGGGATGCTCAG
TAGCCCGCTGCCCGCCCCCGCATCCTGTGTCCTCGGAAGCCGTTGCTGCTGCAGAGTTGCACGAACATAGTC
ATGGTGTGCTGGGGAGTCCCAGCAGTGCAGCAGCTGGACACTTGGCAGGGCTTTGCTGGCTGCTGCTGCTG
CCCCTCATGCTACTCATCGTAGCCCGCCGGTAAGGCTCGTGTCTTCCCTACCTCTTAAGTGACTGCCAACAG
CCCACCGGCTGGAATTGCTCTGGTTATGATGACAGAGAAAATGATCTTCCCTGTCGACACCAACACCTGTAAA
TTTGATGGGAATGTTAAGAATTGGAGACACTGTGACTTGCCTGTCAGTTCAAGTGCACAAATGACTATGTG
CCTGTTGCTGCTCCAATGGGGAGAGCTACCAAGAATGAGTGTACCTGCGACAGGCTGCATGCAAACAGCAGAGT
GAGATACTTGTGGTGTCAAGAGGATCATGTGCCACAGATGCAGGATCAGGATCTGGAGATGGAGTCCATGAAGGC
TCTGGAGAAACTAGTCAAAAGGAGACATCCACCTGTGATAATTGCCAGTTGGTGCAGAATGTGACGAAGATGCC
GAGGATGTCGGTGTGTAATTGACTGTTCTCAACCAACTTCATGCCATCCCCTGCGCTTCTGATGGAAA
TCTTATGATAATGCATGCCAAATCAAAGAAGCATGTCAGAAACAGGAGAAAATTGAAGTCATGTTGGGT
CGATGTCAGATAACACAACACTACAAGTCTGAAGATGGGATTATGCAAGAACAGATTATGCAGAGAAT
GCTAACAAATTAGAAGAAAGTGCAGAGAACACCCACATACTTGTCCGAACATTACATGGCTTCTGCATGCAT
GGGAAGTGTGAGCATTCTATCAATATGCAGGAGCCATCTGCAGGTGTGATGCTGTTATACTGGACAACACTGT
GAAAAAAAGGACTACAGTGTCTATACGTTCTCCGGTCTGTACGATTTCAGTATGTTAATCGCAGCTGTG
ATTGGAACAATTGAGATTGCTGTCTGTGTTGGTGGCTCTGCATCACAGGAAATGCCAGAACAGAACAGA
ATTCAACAGACAGAACAGAAAATACAGGGCACTACAGTTCAAGAACATACAACAGAGCGTCCACGGAGGTTAATCTAA
AGGGAGCATGTTACAGTGGCTGGACTACCGAGAGCTGGACTACACAATACAGTATTATAGACAAAAGAATAA
GACAAGAGATCTACACATGTTGCCTTGCAATTGTTGTAATTACACCAATGAAAACATGACTACAGCTATATT
GATTATGTTGATGATATTGAAATAGTATACTTGTCTGATGTTCTGTAATGTAATAAAACTATTATA
TCACACAAATATAGTTTCTTCCATGTTGTTATATAATAACTCAGTGATGAG

410/615

FIGURE 406

MVLWESPRQCSSWTLCEGFCWLPLLPMILLIVARPVKLAAPTSLSDCQPTGWNCSGY
DDRENDLFLCDTNTCKFDGECLRIGDTVTCVCQFKCNNDYVPVCGSNGESYQNECYLRQ
AACKQQSEILVVSEGSCATDAGSGSGDGVHEGSGETSQKETSTCDICQFGAECDEDAED
VWCVCNIDCSQTNFNPLCASDGKSYDNACQIKEASCQKQEKIEVMSLGRQDNTTTTK
SEDGHYARTDYAENANKLEESAREHHIPCPEHYNGFCMHGKCEHSINMQEPSCRCDAGY
TGQHCEKKDYSVLYVVPGPVRFQYVLIAAVIGTIQIAVICVVVLCITRKCPRSNRIHRO
KQNTGHYSSDNTTRASTRLI

411/615

FIGURE 407

CTCGCAGCCAGCGCGCCGGGAAGGGCTCCTCCAGCGCCGAGCACTGGGCCCTGGCAG
ACGCCCAAGATTGTGAGGAGTCAGCCAGTGGTGAGCGCTGTAATCTGAACCAGCTGT
GTCCAGACTGAGGCCCATTTGATTGTTAACATACTTAGAAAATGAAGTGTCAATTAA
CATTCCCTCTCCAATTGGTTAATGCTGAATTACTGAAGAGGGCTAAGCAAACCAAGGTGCTT
GCGCTGAGGGCTCTGCAGTGGCTGGGAGGACCCGGCGCTCTCCCCTGTCCTCCACGACT
CGCTCGGCCCTCTGGAATAAAACACCCCGAGCCCCGAGGGCCCAGAGGAGGCCGACGTGCC
CGAGCTCCTCCGGGGTCCCGCCGAGCTTCTCTCGCCTCGCATCTCCTCGCG
TCTTGGAC**ATG**CCAGGAATAAAAGGAACTCACTGTTACCATTCTGGCTCTGTCTTCAA
GCCCTGGGAATGCACAGGCACAGTGCACGAATGGCTTGACCTGGATGCCAGTCAGGACAGT
GTTTAGATATTGATGAATGCCGAACCATCCCCGAGGCCTGCGAGGAGACATGATGTGTTA
ACCAAAATGGCGGGTATTATGATTGATTGATTGATTGATTGATTGATTGATTGATTGATTGATT
ACCCCTACTCGACCCCCACTCAGGTCCGTACCCAGCAGCTGCCCCACCACTCTCAGCTCAA
ACTATCCCACGATCTCAGGCCTTATATGCCGTTGGATACCAAGATGGATGAAAGCAACC
AATGTGTGGATGTGGACGAGTGTGCAACAGATTCCCACCAAGTGCACACCCACCAAGATGCA
TCAATACTGAAGGGGGTACACCTGCTCTGCACCGACGGATATTGGCTCTGGAAGGCCAGT
GCTTAGACATTGATGAATGTCGCTATGGTTACTGCCAGCAGCTCTGTGCGAATGTTCTGGAT
CCTATTCTGTACATGCAACCCCTGGTTTACCTCAATGAGGATGGAAGGTCTGCCAAGATG
TGAACGAGTGTGCCACCGAGAACCCCTGCGTGCACACCTGCGTCAACACCTACGGCTCTCA
TCTGCCGCTGTGACCCAGGATATGAACCTGAGGAAGATGGCCTTGCAGTGATATGGACG
AGTGCAGCTTCTCTGAGTTCCCTGCCAACATGAGTGTGAAACCAGCCGGCACATACTCT
GCTCCTGCCCTCCAGGCTACATCCTGCTGGATGACAACCGAACGCTGCCAAGACATCAACGAAT
GTGAGCACAGGAACACACGTGCAACCTGCGAGACAGTGTCTACAATTACAAGGGGCTTCA
AATGCATCGACCCCATCCGCTGTGAGGAGCCTATCTGAGGATCAGTGATAACCGCTGTATGT
GTCCTGCTGAGAACCCCTGGCTGAGAGACCAGCCCTTACCATTTGTAACCGGACATGGACG
TGGTGTCAAGGACGCTCCGTTCCGCTGACATCTCCAAATGCAAGGCCACGACCCGCTACCTG
GGCCTATTACATTCCAGATCAAACCTGGGAATGAGGGCAGAGAATTTCACATGCCGCAA
CGGGCCCCATCAGGCCACCTGGTGTGACACGCCCATCAAAGGGCCCAGGAAATCCAGC
TGGACTTGGAAATGATCACTGTCAACACTGTCTACAATTCAAGGGCAGCTCCGTATCCGAC
TGCAGTATATGTGTCGAGTACCCATT**CTG**ACCTGGCTGGAGCCTCCGACGCTGCCCT
CATTGGCACCAAGGGACAGGAGAAGAGAGGAAATAACAGAGAGAATGAGAGCGACACAGACGT
TAGGCATTCTGCTGAACTTCCCGAAGAGTCAGCCCCACTTCTGACTCTCACCTGTA
CTATTGCAACCTGTCACCCCTGCAGGACTTGCACCCCTGAGCTTCTATGACACAGTTATCAA
AAAGTATTATCATGCTCCCTGATAGAAGATTGTTGGTGAATTTCAGGCTTCAAGGCTTCAAG
TCCACTATTCAAAGAAAATAGATTAGGTTGGGGCTGAGTCTATGTTCAAAGACTGT
GAACAGCTGCTGTCACCTCTCACCTCCACTCCTCTCACTGTTACTGCTTGC
AAGACCCGGAGCTGGGGGAACCTGGAGTAGCTAGTTGCTTTGCGTACACAGAGAA
GGCTATGTAACAAACACAGCAGGATCGAAGGGTTTAAAGAGAATGTTCAAACCATGC
CTGGTATTTCACCCATAAAAGAAGTTCAAGTGTCTTAAATTGATATAACGGTTAAATTCT
GTCTGTTCAATTGAGTATTAAAGGAAATGTCGTTAGAATTCCCTGAAAGGCCTTCAGA
CACATGCTATGTTCTGCTTCCAAACCCAGTCTCCTCTCCATTAGCCCAGTGTCTTCTT
GAGGACCCCTTAATCTGCTTCTTAAAGATTACCAATTGGATGGAATGCAGAGGTCT
CCAAACTGATTAAATATTGAAGAGA

412/615

FIGURE 408

MPGIKRILTVTILALCLPSPGNAQAQCTNGFDLDRQSGQCLDIDECRTIPEACRGDMMCVNQN
GGYLCIPRTNPVYRGPYSNPYSTPYSGPYPAAPPLSAPNYPTISRPLICRFGYQMDESNCV
DVDECATDSHQCNPTQICINTEGGYTCSTDGYWLLEGQCLDIDECRYGYCQQLCANVPGSYS
CTCNPGFTLNEDGRSCQDVNECATENPCVQTCVNTYGSЛИRCDPGYELEEDGVHCSDMDECS
FSEFLCQHECVNQPGTYFCSCPAGYILLDDNRSCQDINECEHRNHTCNLQQTСYNLQGGFKCI
DPIRCEEPYLRISDNRCMCPAENPGCRDQPFTILYRDMDVSGRSVPADIFQMQATTRYPGAY
YIFQIKSGNEGREFYMRQTGPISATLVMTRPIKGPREIQLDLEMITVNTVINFRGSSVIRLRI
YVSQYPF

Important features of the protein:

Signal peptide:

amino acids 1-25

N-glycosylation sites.

amino acids 283-287, 296-300

N-myristoylation sites.

amino acids 21-27, 64-70, 149-155, 186-192, 226-232, 242-248,
267-273, 310-316

Aspartic acid and asparagine hydroxylation sites.

amino acids 144-156, 181-193, 262-274

Cell attachment sequence.

amino acids 54-57

Calcium-binding EGF-like.

amino acids 131-166, 172-205, 211-245, 251-286

413/615

FIGURE 409

CCACCGCGTCCGGACGCGTGGTCGACTAGTTAGATCGCGAGCGGCCGCCGGCTCA
GGGAGGAGCACCGACTCGCGCCGACCCCTGAGAGA**ATG**GTTGGTGCCATGTGAAGGTGATTGTT
TCGCTGGTCTGTTGATGCCTGGCCCCGTGATGGGCTGTTCGCTCCCTATACAGAAGTGT
TCCATGCCACCTAACGGAGACTCAGGACAGCCATTATTCACCCCTTACATGAAGCTGGG
AAGATCCAAAAAGGAAGAGAATTGAGTTGGTCGGCCCTTCCAGGACTGAACATGAAGAGT
TATGCCGGCTCCTCACCGTAATAAGACTTACAACAGCACCTCTCTGGTTCTTCCA
GCTCAGATAACGCCAGAAGATGCCAGTAGTTCTCTGGCTACAGGGTGGCCGGGAGGTTCA
TCCATGTTGGACTCTTGTGAAACATGGGCCTATGTTGTCACAAGTAACATGACCTTGCCT
GACAGAGACTCCCGGACCACAACGCTCTCCATGCTTACATTGACAATCCAGTGGCACA
GGCTCAGTTTACTGATGATAACCCACGGATATGCAGTCATGAGGACGATGTAGCACGGGAT
TTATAACAGTGCATAATTCAAGTTTCCAGATATTCTGAATATAAAAATAATGACTTTAT
GTCACTGGGAGTCTATGCAGGGAAATATGTCAGGCCATTGCACACCTCATCCATTCCCTC
AACCTGTGAGAGAGGTGAAGATCAACCTGAACGGAATTGCTATTGGAGATGGATATTCTGAT
CCCGAATCAATTATAGGGGCTATGCAGAATTCTGTACCAAATTGGCTTGGATGAGAAG
CAAAAAAAAGTACTTCCAGAACAGCAGTGCATGAATGCATAGAACACATCAGGAAGCAGAACTGG
TTTGAGGCCTTGAAAACTGGATAAAACTACTAGATGGCAGCTTAACAAGTGATCCTTCTAC
TTCCAGAATGTTACAGGATGTAGTAATTACTATAACTTTGCGGTGCACGGAACCTGAGGAT
CAGCTTACTATGTGAAATTGTCACTCCAGAGGTGAGACAAGCCATCCACGTGGGAAT
CAGACTTTAATGATGAACTATAGTTGAAAAGTACTTGCAGAGAAGATACTACAGTCAGTT
AAGCCATGGTTAACTGAAATCATGAATAATTATAAGGTTCTGATCTACAATGGCCAACGGAC
ATCATCGTGGCAGCTGCCCTGACAGAGCGCTCCTGATGGGACTGGAAAGGATCCCAG
GAATACAAGAACGGAGAAAAAAAGTTGGAAGATCTTAAATCTGACAGTGAAGTGGCTGGT
TACATCCGGCAAGCGGGTGACTCCATCAGGTAATTATTGAGGTGGAGGACATATTTACCC
TATGACCAGCCTCTGAGAGCTTGCATGATTATCGATTCTGAAAGGATGGGAT
CCTTATGTTGG**TAA**ACTACCTTCCAAAAGAGAACATCAGAGGTTTCAATTGCTGAAAAGAA
AATCGTAAAAACAGAAAATGTCATAGGAATAAAAATTATCTTTCATATCTGCAAGATT
TTTCATCAATAAAATTATCCTTGAAACAAGTGAGCTTTGTTTTGGGGGGAGATGTTACT
ACAAAATTAAACATGAGTACATGAGTAAGAATTACATTATTAACTTAAAGGATGAAAGGTATG
GATGATGTGACACTGAGACAAGATGTAAAATTAGGGTCTGAATAGGAAGTT
ATTCTTCTAAGAGTAAGTGAAAAGTGCAGTTGTAACAAACAAAGCTGTAACATCTTTCTG
CCAATAACAGAACAGTTGGCATGCCGTGAAGGTGTTGAAATATTATGGATAAGAATAGCTC
AATTATCCCAAATAATGGATGAAGCTATAATAGTTGGGGAAAAGATTCTCAAATGTATAA
AGTCTTAGAACAAAAGAATTCTTGAATAAAAATTATATAAAAAGTAAAAAAAAAA

414/615

FIGURE 410

MVGAMWKVIVSLVLLMPGPCDGLFRSLYRSVSMPKGDSGQPLFLTPYIEAGKIQKGRELSLV
GPFPGLNMKSYAGFLTVNKTYSNLFFWFFPAQIQPEDAPVVLWLQGGPGGSSMFGLFVEHGP
YVVTSNMTLDRDFPWTTTLSMLYIDNPVGTGFSFTDDTHGYAVNEDDVARDLYSALIQFFQI
FPEYKNNDFYVTGESYAGKYVPAIAHLIHSINPRevKINLNGLAIGDGYSDESIIGGYAEF
LYQIGLLDEKQKKYFQKQCHECIEHIRKQNWFEAFFEILDKLLDGDLTSDPsyFQNVTCGSNYY
NFLRCTEPEDQLYYVKFLSLPEVRQAIHVGNTFNDGTIVEKYLREDTVQSVKPWLTEIMNNY
KVLIYNGQLDIIVAAALTERSLMGMDWKGSQEYKKAEKWKIFKSDSEVAGYIRQAGDFHQV
IIRGGGHILPYDQPLRAFDMINRFIYKGWDPYVG

Signal sequence:

amino acids 1-22

N-glycosylation site.

amino acids 81-85, 132-136, 307-311, 346-350

Casein kinase II phosphorylation site.amino acids 134-138, 160-164, 240-244, 321-325, 334-338, 348-352,
353-357, 424-428**Tyrosine kinase phosphorylation site.**

amino acids 423-432

N-myristoylation site.

amino acids 22-28, 110-116, 156-162, 232-238

Serine carboxypeptidases, serine active site.

amino acids 200-208

Crystallins beta and gamma 'Greek key' motif signature.

amino acids 375-391

415/615

FIGURE 411

GCAAGCCAAGGCGCTGTTGAGAAGGTGAAGAAGTCCGACCCATGTGGAGGAGGGGACATTGTGTACCGCCT
CTACATGCCGCAGACCATCATCAAGGTGATCAAGTTCATCCTCATCATCTGCTACACCGTCTACTACGTGCACAA
CATCAAGTTCGACGTGGACTGCACCGTGGACATTGAGAGCCTGACGGCTACCGCACCTACCGCTGTGCCAACCC
CCTGGCCACACTCTCAAGATCCTGGCGTCTTCTACATCAGCCTAGTCATCTTACGGCCTCATCTGCATGTA
CACACTGTGGTGGATGTCACGGCCTCCCTCAAGAAGTACTCGTTGAGTCGATCCGTGAGGAGAGCAGCTACAG
CGACATCCCCGACGTCAAGAACGACTTCGCCTCATGCTGCACCTCATGACCAATACGACCCGCTACTCCAA
GCGCTTCGCCGTCTTCCTGTCGAGGTGAGTGAGAACAGCTGCGGCAGCTGAACCTCAACAACGAGTGGACGCT
GGACAAGCTCCGGCAGCGGCTCACCAAGAACGCGCAGGACAAGCTGGAGCTGCACCTGTTCATGCTCAGTGGC
CCCTGACACTGTGTTGACCTGGTGGAGCTGGAGGTCTCAAGCTGGAGCTGATCCCCGACGTGACCATCCC
CAGCATTGCCAGCTCACGGCCTCAAGGAGCTGTGGCTTACCCACAGCGGCCAAGATTGAAGCGCTGCGCT
GGCCTTCCTGCGCAGAACCTGCGGGCGTGCACATCAAGTTACCGACATCAAGGAGATCCCGCTGTGGATCTA
TAGCCTGAAGACACTGGAGGAGCTGCACCTGACGGGCAACCTGAGCGCGAGAACAAACCGCTACATCGTCATCGA
CGGGCTGCGGGAGCTAACGCTCAAGGTGCTGCGGCTCAAGAGCAACCTAACGAAGCTGCCACAGGTGGTAC
AGATGTGGCGTGCACCTGCAGAACGACTGTCCATCAACAATGAGGGCACCAAGCTCATCGTCCTAACAGCCTCAA
GAAGATGGCGAACCTGACTGAGCTGGAGCTGATCCGCTGCGACCTGGAGCGCATCCCCCACTCCATCTCAGCCT
CCACAACCTGCGAGGAGATTGACCTCAAGGACAACAAACCTCAAGAACCATCGAGGGAGATCATCAGCTTCCAGC
GCACCGCCTCACCTGCCCTAACGCTGGTACACCACATGCCCTACATCCCCATCCAGATCGGCAACCTCACCAA
CCTGGAGGCCCTCACCTGAACCGCAACAAAGATCGAGAACGAGATCCCCACCCAGCTTCTACTGCCGAAAGCTGCG
CTACCTGGACCTCAGCCACAACCTGACCTCCCTGCCGACATCGGCCCTCTGCGAGAACCTCCAGAACCT
AGCCATCACGGCAACCGGATCGAGACGCTCCCTCGGGAGCTCTCCAGTGCAGGAGCTGACGAGATCGAGTGC
GGGCAACAAACGCTGCTGAGTCAGTGCCTCCAGGGTGGGGAGCTGACCAACCTGACGAGATCGAGTGC
CAACCGGCTGGAGTGCCTGCCTGCGAGCTGGCAGTGCCACTGCTCAAGCGCAGCGGCTGGTGGAGGA
GGACCTGTTCAACACACTGCCACCCAGGTGAAGGAGCGGCTGTGGAGGGCTGACAAGGAGCAGGCCCTGAGCGAG
GCCGGCCCAGCACAGCAAGCAGCAGCAGGCCCTCGCGCTGGCAGGAGCCTGGGGCAGGCCCTAGCTTCTCCAG
AACTCCCGGACAGCCAGGACAGCCCTCGCGCTGGCAGGAGCCTGGGGCCTGTGAGTCAGGCCAGAGCGAGA
GGACAGTATCTGTTGGGCTGGCCCTTTCTCCCTCTGAGACTCACGTCACGCCCCAGGGCAAGTGTGTTGGAGGAG
AGCAAGTCTCAAGAGCGCAGTATTGATAATCAGGGCTCTCCCTGGAGGCCAGCTCTGCCCAAGGGCTGAG
CTGCCACCGAGGCTCTGGGACCCCTCACTTCTGTTGTTGTTCTCCATCTCCACCTCTTCATCC
AGATAACTTATACATTCCAAGAAAGTTCAAGGCCAGATGGAAGGTGTTCAAGGAAAGGTGGCTGCCTTCCCC
TTGTCCTTATTAGCGATGCCGCCGGCATTTAACACCCACCTGGACTTCAAGGAGTGGTCCGGGGCAGACAG
CCATGGGACGGTCACCCAGCTGCCGGCTGGCTCTGGGCTCGGGTCCAGGGCAGGCCCTCCAGCTGGA
AAGGCCAGGCTGGAGCTGCCTTCTCAGTTTGTGGCAGTTTGTGTTTTTTTTAACTCAA
AAACAATTTTTAAAAAGCTTGAAAATGGATGGTTGGTATTAAAAAGAAAAAAACTTAAAAAA
AAAAGACACTAACGGCCAGTGAGTGGAGTCTCAGGGCAGGGTGGCAGTTCCCTTGAGCAAAGCAGCCAGAC
TGAACGTGTTCTCCCTGGGAGGGTGTCTCCGGATCTGGTGTGACCTTGGTCCAGGAGTT
CTATTTGTTCTGGGAGGGAGTTTTGTTGTTGTTGTTGGTTTTGGTGTCTTGTGTTCTTCTCCTCC
ATGTGTTCTGGCAGGCACTCATTCTGTTGCTGTCGGCCAGAGGGAATGTTCTGGAGCTGCCAAGGAGGGAGGAG
ACTCGGGTTGGCTAATCCCGGATGAAACGGTGTCCATTGCCACCTCCCTCTCGTGCCTGCCCTGCCCTCTCCA
CGCACAGTGTAAAGGAGCCAAGAGGGAGCCACTTCGCCAGACTTGTGTTCCACCTCTGCGGAGGGTGT
CCAGTGCCACCGCTGCCCTCCGCTGCTCCATCAGCCCTGCGCCACCTGGTCTCATGAAGAGCAGACACTTA
GAGGCTGGTGGGAATGGGGAGGTGCGCCCTGGGAGGGCAGGGCGTTGGTCCAAGGCCGGTCCCTGGCG
CTGGAGTGCAACAGCCAGTCGGCACCTGGTGGCTGGAAGCCAACCTGCTTAGATCACTCGGGTCCCCACCTT
AGAAGGGTCCCGCCTAGATCAATCAGTGGAGACTAAGGCACGTTTAGAGTCTCTGTCTTAATGATTATGT
CCATCCGTCTGTCGTCATTGTTCTGCGTGTGTCATTGGATATAATCCTCAGAAATAATGCACACTAG
CCTCTGACAAACCATGAAGCAAAATCCGTTACATGTGGGTCTGAACCTGTAGACTCGGTACAGTATCAAATAA
ATCTATAACAGAAAAAA

416/615

FIGURE 412

MRQTIIKVIKFILICITYVYYVHNIKFVDCTVDIESLTGYRTYRCAHPLATLFKILASFYIS
LVIFYGLICMYTLWWMLRRSLKKYSFESIREESSYSDIPDVKNDFAFMLHLIDQYDPLYSKRF
AVFLSEVSENKLRLQLNLNNEWTLDKLQRQLTKNAQDKLELHLFMLSIGIPDTVFDLVELEVKL
ELIPDVTIIPPSIAQLTGLKEIWLYHTAAKIEAPALAFLRENLRALHIKFTDIKEIPLWIYSLK
TLEELHLTGNLSAENNRYIVIDGLRELKRLKVLRLKSNLSKLPQVVTDVGVHLQKLSINNEGT
KLIVLNSLKKMANLTELELIRCDLERIPHHSIFSLHNQEIIDLKDNNLKTIEEIIISFQHLHRLT
CLKLWYNHIAYIPIQIGNLTNLERLYLNRNKIEKIPTQLFYCRKLRYLDLSHNNLTFLPADIG
LLQNLQNLAITANRIETLPPELFQCRKLRALHGNVLQSLPSRVGELETNLTQIELRGNRLEC
LPVELGECPLLKRSGLVVEEDLFNTLPPEVKERLWRADKEQA

Transmembrane domain:

amino acids 51-75 (type II)

N-glycosylation site.

amino acids 262-266, 290-294, 328-332, 396-400, 432-436, 491-495

cAMP- and cGMP-dependent protein kinase phosphorylation site.

amino acids 85-89

Casein kinase II phosphorylation site.amino acids 91-95, 97-101, 177-181, 253-257, 330-334, 364-368,
398-402, 493-497**N-myristoylation site.**

amino acids 173-179, 261-267, 395-401, 441-447

417/615

FIGURE 413

GAATCATCCACGCACCTGCAGCTCTGCTGAGAGAGTGCAAGCCGTGGGGTTTGAGCTCATC
 TTCATCATCATATGAGGAATAAGTGGTAAACCTTCAAACATACA**ATGAGACTCATCAGAA**
 ACATTACATATTTGTAGTATTGTTATGACAGCAGAGGGTGTGCTCCAGAGCTGCCAGAAG
 AAAGGAAACTGATGACCAACTGCTCAAACATGTCCTAAGAAAGGTTCCGCAGACTTGACCC
 CAGCCACAAACGACATGGATTATCCTATAACCTCCTTCAACTCCAGAGTCAGATTTC
 ATTCTGTCTCCAAACTGAGAGTTGATTCTATGCCATAACAGAACTCAACAGCTGGATCTCA
 AAACCTTGAATTCAACAAGGAGTTAAGATATTAGATTGCTTAATAACAGACTGAAGAGTG
 TAACTTGGTATTACTGGCAGGTCTCAGGTATTAGATCTTCTTTAATGACTTGCACCCA
 TGCCTATCTGTGAGGAAGCTGGCAACATGTCACACCTGGAAATCCTAGGTTGAGTGGGCAA
 AAATACAAAATCAGATTCCAGAAAATTGCTCATCTGCATCTAAATACTGCTTCTTAGGAT
 TCAGAACTCTCCTCATTATGAAAGAAGTAGCCTGCCATCTAAACACAACAAAATGCACA
 TTGTTTACCAATGGACACAAATTCTGGGTTCTTTGCCGTATGGAATCAAGACTTCAAAAAA
 TATTAGAAATGACAAATATAGATGGCAAAGCCTAAGTTGTAAGTTATGAAATGCAACGAAATC
 TTAGTTAGAAAATGCTAACAGACATGGTTCTATTGCTTAATAAAGTGTATTACTCTGGGACG
 ACCTTTCTTATCTTACAATTGTTGGCATACATCAGTGGAACACTTCAGATCCGAAATG
 TGACTTTGGTGGTAAGGCTTATCTTGACCACAATTCAATTGACTACTCAAATACTGTAATG
 GAACTATAAAATTGGGACATGTACATTCAAGGTGTTACATTCAACAGGATAAAATCTATT
 TGCTTTGACCAAAATGGACATAGAAACCTGACAATATCAAATGCAACAAATGCCACACATGC
 TTTCGGAAATTATCCTACGAAATTCAAATATTAAATTGCCAATAATATCTAACAGACG
 AGTTGTTAAAAGAACTATCCAACGTGCTCACTTGAAAATCTCATTTGAATGGCAATAAAC
 TGGAGACACTTCTTAGTAAAGTGTCTTGCTAACACACACCCTGGAACACTTGGATCTGA
 GTCAAAATCTTACAAACATAAAATGATGAAATTGCTCATGCCAGAAACTGTGGTCAATA
 TGAATCTGTACATAAAATGTCATTGCTTCTCAGGTTGCTTGGCCAAAAGTATTCAA
 TACTTGACCTAAATAACCAAACTCAAACGTACCTAAAGAGACTATTCACTGATGGCCT
 TACGAGAACTAAATATTGCAATTAAATTCTAACTGATCTCCCTGGATGCGATCATTCTAGTA
 GACITTCAGTTCTGAACATTGAAACTTCATTCTCAGGCCATCTCTGGATTGTTGTCAGA
 GCTGCCAGGAAGTTAAAATGCGGGAAAGAAATCCATTCCGGTGTACCTGTGAATTAA
 AAAATTCTCATTCAAGCTTGAACATATTCAAGGGTCACTGATGGTTGGATGGTCAGATTAC
 CCTGTGAATACCCCTTAAACCTAAGGGAAACTAGGTTAAAAGACGTCATCTCCACGAATTAT
 CTGCAACACAGCTCTGTGATTGTCACATTGTTGTTATTGCTAGTCTGGGGTTGGCTG
 TGGCCTTCTGCTGTCCTCAATTGATCTGCCCTGGTATCTCAGGATGCTAGGTCAATGACAC
 AACATGGCACAGGGTTAGGAAACACACCAAGAACAACTCAAGAGAAAATGTCGATTCCACG
 CATTATTCTACACAGTGAACATGATTCTCTGGGTTGAAAGATGAATTGATCCCCAATCTAG
 AGAAGGAAGATGGTTCTATCTGATTGCTTTATGAAAGCTACTTGACCCCTGGCAAAGCA
 TTAGTGAAAATATTGTAAGCTCATTGAGAAAAGCTATAAGTCATCTTGTGTTGTCTCCC
 ACTTGTCCAGAATGAGTGGGCCATTATGAAATTCTACTTTGCCACCACAATCTTCCATG
 AAAATTCTGATCATATAATTCTTACTGGAACCCATCCATTCTATTGCAATTCCACCA
 GGATCATAAAACTGAAAGCTCCTCTGGAAAAAAAGCATACTGGAAATGGCCCAAGGATAGGC
 GTAAATGTGGCTTTCTGGGAAACCTTCGAGCTGCTATAATGTAATGTTATTAGCCACCA
 GAGAAATGTATGAACATGCAACGACATTCAAGAGTTAAATGAAGAGTCTCGAGGTTCTACAAATCT
 CTCTGATGAGAACAGATTGCTAT**AAAATCCCACAGTCCTGGGAAGTTGGGACACATACA**
 CTGTTGGGATGTACATTGATACAACCTTATGATGGCAATTGACAATATTATTAAAATAAA
 AAATGGTTATTCCCTCATATCAGTTCTAGAAGGATTCTAAGAATGTATCTTATAGAAACA
 CCTTCACAAGTTATAAGGGCTTATGAAAAAAAGGTGTTCATCCCAGGATTGTTATAATCATG
 AAAATGTGGCCAGGTGCAGTGGCTCACTCTGTAATCCCAGCACTATGGGAGGCAAGGTGG
 GTGACCCACAGGGTCAAGAGATGGAGACCATCTGGCCAAACATGGTAAACCCCTGTCTACT
 AAAATACAAAATAGCTGGGCGTGTGGTGCAGGCCCTGTAGTCCCAGCTACTTGGGAGGCT
 GAGGCAGGAGAATCGCTTGAACCCGGGAGGTGGCAGTTGCGATGAGCTGAGATCGAGGCCACTG
 CACTCCAGCCTGGTGACAGAGCGAGACTCCATCTCAAAAAAAAGAAAAAAAGAAAAAA
 ATGGAAAACATCCTCATGCCACAAAATAAGGTCTAATTCAATAATTATGATACATTATGT
 AATATAATATTACATGCCACTAAAAGAATAAGGTAGCTGTATATTCTGGTATGGAAAAAA
 CATATTAAATATGTTATAAAACTATTAGGTTGGTGCACAAACTAATTGTTGTTTGCCTATTGAA
 TGGCATTGAAATAAAAGTGTAAAGAAATCTATACAGATGTAGTAACAGTGGTTGGGCTGG
 GAGGTGGATTACAGGGAGCATTGATTCTATGTTGTGTTCTATAATGTTGAATTGTT
 TAGAATGAATCTGTATTCTTATAAGTAGAAAAAAATAAGATAGTTTACAGCCT

418/615

FIGURE 414

MRLIRNIYIFCSIVMTAEGDAPELPEERELMTNCNSMSLRKVPADLTPATTLDLSYNLLFQL
QSSDFHSVSKLRVLILCHNRIQQLDLKTFEFNKELRYLDLSNNRLKSVTWYLLAGLRYLDLSF
NDFDTMPICEEAGNMSHLEILGLSGAKIQKSDFQKIAHLHLNTVFLGFRTLPHYEEGSLPILN
TTKLHIVLPMDTNFWVLLRDGIKTSKILEMTNI DGKSQFVSYEMQRNLSLENAKTSVLLLNKV
DILWDDLFLLQFVWHTSVEHFQIRNVTFGGKAYLDHNSFDYSNTVMRTIKLEHVHFRVFYIQ
QDKIYLLLTKMDIENLTISNAQMPHMLFPNYPTKFQYLN FANNILTDELFKRTIQLPHLKTLI
LNGNKLETLSLVSCFANNTPLEHLDLSQNLLQHKNDENCSPETVVNMNLSSYNKLSDSVFRCL
PKSIQILDNNNQIQTVPKETIHLMALRELNIAFNFLTDLPGCSHFSRSLSVLNIEMNFILSPS
LDFVQSCQEVKTLNAGRNPFRCTCELKNIQLETYSEVMMVGWSDSYTCEYPLNLRGTRLKDV
HLHELSCNTALLITIVVIMVLGLAVAFCCFLHFDLPWYLRMLGQCTQTWHVRVRKTQEQQLKR
NVRFHAFISYSEHDSLWVKNELIPNLEKEDGSILICLYESYFDPGKSISENIVSFIEKSYKSI
FVLSPNFVQNEWCHYEFYFAHHNLFHENSDHIILILLEPIPFYCIPTRYHKLKALLEKKAYLE
WPKDERRKGGLFWANLRAAINVNVLATREMYELQFTTELNEESRGSTISLMRTDCL

419 / 615

FIGURE 415

CGGACGCGTGGCGGACCGGTGGCCTGGCAAGGGCGGGCGCCGGCGAGCCACCTCTCCCCCTCCCCGC
 TTCCCTGTCGCGCTCCGCTGGCTGGACGCGCTGGAGGAGTGGAGCAGCACCCGGCGGCCCTGGGGCTGACAGT
 CGGCAAAGTTGGCCCGAAGAGGAAGTGGCTCAAAACCCCGGCAGGTGGCGACCAGGCCAGACCAGGGCGCTCG
 CTGCCTGCGGGCGGGCTGTAGGCAGGGCGCCCGACTGGCGAGACCCGGGGCTTCAGGAGCCGGCCGGAG
 AGAAGAGTGGCGGGCGGAGCGAGAACAACTCCAAAGTGGCAAAGGACCCGGCTACTCCCCGGGCTGCCG
 CGGCCTCCCCGGCCCGAGGCTGGCATCCAGAGTACGGCTGAGGCGGGCATGGAGCCCCCTGGGGAGGCCG
 CACCAGGGAGCCTGGCGCCGGCTCGCCGAGCCCCTGGTAGACCACAGAAAGCTCCGGACCCCTTCCAG
 GCACCTCTGGACAGCCAGGATGCTGTGGCACCCCTCCTCCTCCTGGAGGCGCTGGCCATCCAG
 ACCGGATTATTTTCAAATCATGCTTGTGAGGACCCCCAGCAGTGTCTTAGAAGTGCAGGGCACCTAACAGA
 GGGCCCTGGTCCGGGACAGCGCACCTCCCTGCCAAGTGCACCTGGCTCATCCTGGGAGCAAGGAACAGACTG
 TCACCATCAGGTTCCAGAAGCTACACCTGGCTGTGGCTCAGAGCGCTTAACCCCTACGCTCCCTCTCCAGGCC
 TGATCTCCCTGTGTGAGGCACCTCCAGCCCTCTGCAGCTGCCGGGGCACGTCACCATCACTTACAGCTATG
 CTGGGGCCAGAGCACCCATGGGCCAGGGCTCTGCTCTACAGCCAAGATTGGCTGATGTGCCTGCAGGAAG
 AGTTTCAGTGCCTGAACCACCGCTGTGTATCTGCTGTCAGCGCTGTGATGGGGTGTGATGCCTGTGGCGATGGCT
 CTGATGAAGCAGGTTGCAGCTCAGACCCCTTCCTGGCTGACCCCAAGACCCGTCCTCCCTGCCTTGCATG
 TCACCTGGAGGACTCTATGGGTCTTCTCCTCTGGATACACACCTAGCCTCAGTCTCCACCCCTGGAGTGGCT
 CCTGCCATTGGCTGCTGGACCCCATGATGGCCGGCTGGCGCTGGCTCACAGCCCTGGACTTGGGCT
 GAGATGCAGTGCATGTGTATGACGGCCCTGGGGGGCTGAGGCTCCGACTACTGGTAGTCTCACCCACTTCA
 GCAATGGCAAGGCTGTCACTGTGGAGACACTGTCTGGCAGGCTGTTGTCCTACACAGATTGCTTGGAGCA
 ATGGTCGTGGCTCAATGCCACCTACCATGTGGGGCTATTGCTTGGCTGGAGACAGCCCTGGCTTGGACT
 CTGGCCTGGAGCTGGCGAAGGCCTAGGTGAGCGCTGCTACAGTGAGGCACAGCGCTGTGACGGCTCATGGGACT
 GTGCTGACGGCACAGATGAGGAGGACTGCCAGGCTGCCACCTGGACACTTCCCTGTGGGGCTGGCACCT
 CTGGTGCCACAGCCTGCTACCTGCCCTGCAACTACCAGACTTCTGCTGATGGAGCAGATGAGA
 GACGCTGTCGGCATTGCCAGCCTGGCAATTCCGATGCCGGACGAGAAGTGCCTGTATGAGACGTGGGTGTGCG
 ATGGGCAGCCAGACTGTGCGGACGGCAGTGAGTGGGACTGCTCTATGTCCTGGCCCAAGGTCTATACAG
 CTGCAGTCATTGGCAGCTAGTGTGCGGCTGCTGGCTACGCCCTGGCTGCAAGCTCTATGCC
 TTCGCACCCAGGAGTACAGCATCTTGGGGGGCTCCGGATGGAGGCTGAGATGTGCAAGCAGCAGGACCCCC
 CTTCTACGGGCAGCTCATGGGGGGCTGCCATCCACCTGTAAGAAGACTTCTACAGAGAATCTAATGATA
 ACTCAGTGTGGCAACCTGCGTTCTGCTACAGATCTACGCCAGGATATGACTCCAGGGGTGGCCCAAGGTG
 CCCGCCGTGCTAGCGGGCCGCTTGATGCGACGCCCTGGTACGCCGTCTCCGCCCTGGGCTTGTCCCTCGAA
 CCAACACCCGGCTGGGGCTCTGGAGGAGATCCCAGGTACACACTTCTGCTGCTTGGGGCTAGATG
 GTGGCACAGGTCCAGCCCGTGGGGGGCAGTGGTAGGCGAAGATGGGAGCAGGGCACCCCCACTGCCCATCA
 AGGCTCCCCCTCCCATCTGCTAGCACCGTCTCAGGCCCCACTACTGTCCCTGAAGCCCCAGGGCACTGCCCTCAC
 TGCCCTAGAGCCATCACTATTGTCTGGAGTGGTGCAAGGCCCTGCGAGGCCCTGTTGCCCCAGCCTGGGGCCCC
 CAGGACCAACCGGAGCCCCCTGGACCCACACAGCACTTGGGCCCTGGAAGATGAGGAGGATGTGACTGG
 TGCCACTGGCTGAGCCGGGGGTGTGGTAGCTGAGGAGGATGAGGCCACTGCTACCTTGAAGGGGACCTGGGG
 CTCTACTGAGGCCTCTCCCTGGGGCTCTACTCATAGTGGCACAACCTTTAGAGGTGGGTGAGCCTCTGCTATAAAAGT
 ACCACTTCCCTCCCTGTCCTGGATTTCAAGGGACTTGGTGGGCTCCCGTTGACCCCTATGAGCTGCTATAAAAGT
 TAAGTGTCCCTCAGGCAGGGAGAGGGCTCACAGAGTCTCCTCTGTAACGTGGCCATGGCCAGACACCCAGTC
 TCACCAACCTGCTCCCCACGCCACCATGGGTGGCTGTTTAAAAGTAAAGTCTAGAGGATCATA
 GGTCTGGACACTCCATCTTGCCAAACCTCTACCCAAAAGTGGGCTTAAGCACCAGAATGCCAATTAACTAGAGA
 CCCTCCAGCCCCAAGGGAGGATTGGGAGAACCTGAGGTTTGCCATCCACAACTCCCTACAGGGCTGG
 CTACACAAAAAGAGTGCACAAATGCTTCTATTCCATAGCTACGGCATTGCTCAGTAAGTTGAGGTAAAAATAAA
 GGAATCATACTC

420/615

FIGURE 416

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA49631
<subunit 1 of 1, 713 aa, 1 stop
<MW: 76193, pI: 5.42, NX(S/T): 4
MLLATLLLLLGGALAHPDRIIFPNHACEDPPAVILLEVQGTLQRPLVRDSRTSPANCTWLILG
SKEQTVTIRFQKLHLACGSERLTLRSPLQPLISLCEAPPSPQLPGGNVTITYSYAGARAPMG
QGFLLSYSQDWLMC1QEEFQCLNHRCVSAVQRCGVDACGDGSDEAGCSSDPFPGLTPRPVPS
LPCNVTLEDFYGVFSSPGYTHLASVSHPQSCHWLLDPHDGRRLAVRTALDLGFGDAHVYDG
PGPPESSRLLRSLTHFSNGKAVTVETLSGQAVVSYHTVAWSNGRGFNATYHVRGYCLPWRDPC
GLGSGLGAGEGLGERCYSEAQRCDGSWDCADGTDEECPGCPPGHFPCGAAGTSGATAACYLPA
DRCNYQTFCADGADERRCRHCQPGNFRCRDEKCVYETWVCDGQPDCAAGSDEWDCSYVLPRKV
ITAAVIGSLVCGLLLIVIALGCTCKLYAIRTQEYSIFAPLSRMEAEIVQQQAPPSYQQLIAQGA
IPPVVEDFTENPNDNSVLAGNLRSLLQILRQDMTPGGGPGARRRQRGRLMRRLVRRRLRWGLLP
RTNTPARASEARSQVTPSAAPLEALDGTTGPAREGGAVGGQDGEOAPPLPIKAPLPSASTSPA
PTTVPEAPGPLPSLPLEPSLLSGVVQALRGRLLPSLGPPGPTRSPPGPHTAVLADEDVVLL
VPLAEPGVWVAEAEDEPLL
```

Important features:**Signal peptide:**

amino acids 1-16

Transmembrane domain:

amino acids 442-462

LDL-receptor class A (LDLRA) domain proteins

amino acids 411-431, 152-171, 331-350 and 374-393

421/615

FIGURE 417

GTCGTTCCCTTGCTCTCGGCCAGTCCTCCCTGGTCTCCTCAGCCGCTGCGGAGGAGAGCACCGGA
 GACGCGGGCTGCAGTCGGCGGCTTCTCCCGCTGGCGGCCAGCAGTCACATGGGTGTTGGAGGTAGATGGCTCCCG
 AGCCTCCCTGCCGCTCCCTCCTGCCCGGCCAGCAGTCACATGGGTGTTGGAGGTAGATGGCTCCCG
 GCCCAGGAGCGGGCTGGATGCCGCTGGCAGAAGCAGCCGATTCCAGCTGCCCGCGGCCGGCG
 CCCCTGCAGTCCCCGGTCAGCCATGGGACCTCTCGAGCAGCAGCACCGCCCTGCCCTGCAGCCGCATC
 GCCCGCCGAGCCACAGCCACAGATGATCGGGCTCCCTCCTGCTGGATTCCCTAGCACACCACAGCTCAG
 CCAGAACAGAAGGCTCGAATCTCATGGCACATACCAGCATGGACCTGACCAACACAGCCTGCCGCTCTG
 GACAAGTGTCCAGCAGGAACCTATGCTCTGAGCATTGTAACCAACAGCCTGCCGCTCTGAGCAGTTGCCCT
 GTGGGGACCTTACCGCATGAGAATGGCATAGAACATGCCATGACTAGTCAGGACATGCCATGGCAATG
 ATTGAGAAATACCTTGCTGCTGCTGACTGACCGAGAACATGCACTGGCCACCTGGCATGTTCCAGTCAACGCT
 ACCTGTGCCCCCCTACGGTGTGCTGTGGGTGCGGAAGAAAGGGACAGAGACTGAGGATGTGCG
 TGTAAGCAGTGTGCTGGGTACCTCTCAGATGTGCTCTAGTGTGATGAAATGCAAAGCATACACAGACTG
 CTGAGTCAGAACCTGGTGGTGTCAAGCCGGGACCAAGGAGACAGACAACGTGTGGCACACTCCGCTCC
 TCCAGCTCACCTCACCTCCCTGGCACAGCCATCTTCCACGCCCTGAGCACATGGAAACCCATGAAGTCC
 TCCTCCACTTATGTTCCAAAGGCATGAACCTAACAGAACATCTCTGCCCTGTTAGACCAAGGACT
 AGTAGCATCCAGGAAGGGACAGTCCTGACAACACAAGCTCAGCAAGGGGAAGGAAGACGTGAACAAGACCC
 CCAAACCTTCAGGTAGTCACCACAGCAAGGCCACACAGACACATCCTGAAGCTGCTGCCGTCCATGGAG
 GCCACTGGGGCGAGAAGTCCAGCACGCCATCAAGGCCCAAGAGGGACATCCTAGACAGAACCTACACAAG
 CATTTGACATCAATGACATTGGCCCTGGATGATTGCTGTTTCTGCTGCTGGTGTGTTGAGTGTGGT
 TGCACTTCGGAAAAGCTCGAGGACTCTGAAAAAGGGGCCCGCAGGATCCCAGTGCCTGGAAAGGCA
 GGGCTGAAGAAATCCATGACTCCAACCGAGAACCGGGAGAAATGGGATCTACTACTGCAAGCTGCTGCC
 ATCTGAAGCTTGTAGCAGCCAAGTGGAAAGGAGATATCTATCAGTTCTTGCATGCCAGTGTG
 AGGGAGGTTGCTGCTTCTCCAATGGTACACAGCCGACACAGCAGGGCTACGCACTCTGCAGCACTGGACC
 ATCCGGGGCCCCGAGGCCAGCCTGCCAGCTAACTAGCCTGCCAGCAGGGAGAAACGATGTTGGAG
 AAGATTCTGGGCTGATGGAAGACACCACCCAGCTGGAAACTGACAACACTAGCTCTCCGATGAGCCCC
 CTTAGCCGAGCCCCATCCCCAGCCCCAACGCAAACCTGAGAATTCCGCTCTCTGACGGTGGAGCCT
 CAGGACAAGAACAGGCTCTCGGGATGAGTCGGAGCCCTCTCCGCTGTGACTCTACATCCAGCGCTCC
 TCCCGCTGAGCAGGAACGGTTCTTATTACCAAAGAAAAGAACAGCACAGTGTGCGGCAGGTACGCC
 CCCTGTGACTTGCAGCCATCTTGATGACATGCTCCACTTCTAAATCTGAGGAGCTGCC
 ATTCCCGAGCTGAGGACAAACTAGCCTGGCTATTGAAATATTGGAGTCAGGACAGGCCAGGAAGCC
 CAGACCCTCTGGACTCTGTTATAGCCATCTCCTGACCTGCTGTAAGAACATAAGGGACT
 ATTTAGTGGCAGGGTGGTTTTAAATTCTGTTCTGTTCTGTTCTGTTGTTGGGTGTTGTTGTTG
 GTGTGTGTGTGTGTGTGTGTGTGTTAACAGAGAAATATGGCAGTGCTTGAGTTCTTCTC
 TCTCTCTCTTTTTAAATAACTCTCTGGAAAGTTGTTATAAGCCTTGCAGGTGTA
 ACTGTTGTGAAATACCCACCAACTAAAGTTTTAAGTCCATATTCTCCATT
 TTGCCITCTTATGTATTTCAGATTCTGAGGCTCTTCAAGGATT
 TGCACCTTAAATTACTAACCTACATAATGCACTGACTTTCCCACACACTGGATTGAGGCTCTAAC
 TTCTTAAAGTATAATGGCATCTGTAATCCTATAAGCAGTCCTTATGCTCTAACATT
 CAACACTTCTTT
 AAAAACAAATATTACTATTTTATTGTTGTCCTTATAAAATTCTTAAAGGATTAAGAAAATTAAAGA
 CCCATTGAGTTACTGTAATGCAATTCAACTTGA
 GTTATCTTAAATATGCTTGTGTTAGTCATATT
 CTGAAACCTGACCAACTATTGCTGATTGTTCTACCTGGACACCGTGTAGAATGCTGATTACTGTAC
 TCTCTTATGCTAATGCTCTGGCTGGAGAAATGAAATCCTCAAGCCATCAGGATTGCTATT
 TAAGTGGCTT
 GACAACGTGGCCACCAAGAACACTGACCTTACCTTCTGTTAGGATTGAGCTGTTCTGGAAACACATT
 GGAAAGTCAAATCAAGTGCCTGGCGCCCTTCCATAGAGAAATTGCGCAGCTTGTCTTAAAGATGTCTT
 TTTTTATACACATACTCAATAGGTCCTGCTCAAGGCCCTGGCTGTGGGATT
 CCTCACCATT
 ACTTTAATTAAAAATGGCTGCACTGTAAGAACCTTGTCTGATATATTGCA
 ACTATGCTCCATTACAAATG
 TACCTTCTAATGCTCAGTTGCCAGGTCCAATGCAAAGGTGGCGTGGACT
 CCCTTGTGTGGGGTTGTGG
 GTAGTGGTGAAGGACCGATATCAGAAAAATGCCCTCAAGTGTACTA
 ATTAAACATTAGGTGTTGTT
 AAAAAAAA

422/615

FIGURE 418

```
></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA52594
><subunit 1 of 1, 655 aa, 1 stop
><MW: 71845, pi: 8.22, NX(S/T): 8
MGTPSSSTALASCSRIARRATATMIAGSLLLLGFLSTTAQPEQKASNLIGTYRHVDRATGQ
VLTCDKCPAGTYVSEHCTNTSLRVCSSCPVGTFRHENGIKEKCHDCSQPCPWPMIEKLPCAAL
TDRECTCPPGMFQSNTCAPHTVCVGWGVKKGTETEDVRCKQCARGTFSDVPSVMKCKAY
TDCLSQNLVVIKPGTKETDNVCGLPSFSSTSPPGTAIFFPRPEHMETHEVPSSTYVPKGMM
STESNASSASVRPKVLSSIQEGETVPDNTSSARGKEDVNKTLPNLQVNVHQQGPHHRHILKLLPS
MEATGGEKSSTPIKGPKRGHPRQNLHKHFDINEHLPWMIVLFLLLVLVVIVVCSIRKSSRTLK
KGPRQDPSAIVEKAGLKKSMPTQNREKWIIYCNGHGIDILKLVAACQVGSQWKDIYQFLCNAS
EREVAAFSNGYTADHERAYAALQHWTIRGPEASIAQLISALRQHRRNDVVEKIRGLMEDTTQL
ETDKLALPMSPSPLSPSPNAKLENSALLTVERPSPODKNKGFVDESEPLLRCDSSTSSGS
SALSRNGSFITKEKKDTVLRQVRLPCDLQPIFDDMLHFLNPEELRVIEEIPQAEDKLDRLE
IIGVKSQEASQTLLSDVYSHLPDLL
```

Signal sequence:

amino acids 1-41

Transmembrane domain:

amino acids 350-370

423/615

FIGURE 419

ATGGCTGGTACGGCGGGCCGGCAGGGGACCGGGGCCGGCGCCGGGAGCAGCTGCAGGGAGCCCTGA
ATCACCGCCTGGCCGACTCCACCATGAACGTGCGCTGCAGGAGCTGGAGCTGGCAGCAACGTGGGATTCCAG
AAGGGGACAAGACAGCTTAGGCTCACGCACGCAGCTGGAGCTGGCTTAGCAGGTGCCTCTACTGCCTGGCT
GCACTGCTCTGGCTGCCTGTGGCCCTAGGGTCCAGTACACAGAGACCCATCCCACAGCACCTGCCTTACA
GAGGCCTGCATTGAGTGGCTGGAAAAATCCTGGAGTCCCTGGACCGAGGGTGAGGCCCTGTGAGGACTTTAC
CAGTTCTCCTGTGGGGCTGGATTGGAGAACCCCTGCCCAGTGGCGTTCTCGCTGGAACACCTCAACAGC
CTCTGGGACAAAACCAGGCCACTGAAGCAGCTGAAACACCACTTCACACTCCAGCACTGAAGCTGAG
CAGAAGACACAGCCTCTACCTATCTGCCTACAGGTGGAGCGCATTGAGGAGCTGGAGGCCACTGAGA
GACCTCATTGAGAAGATGGGGTGGAAACATTGGGGCCCTGGGAGGACACACTTATGGAGGTTGAAG
GCAGTAGCAGGGACCTACAGGGGCCACCCATTCTCACCGTACATCAGTGCCTACTAAGAGTTCAAACAGC
AATGTTATCCAGTGGACAGTCTGGCTCTTCTGCCCTCGGGATTAACAGAACTGCAAATGAG
AAAGTGCTCACTGCCTATCTGGATTACATGGAGGAACCTGGGATGCTGCTGGGTGGCGGCCACCTCCACGAGG
GAGCAGATGCAGCAGGTGCTGGAGATACTGGGAAACATCACAGTGCCTGGAGGCCACAGTGCCTGGGAGG
GAGGAGAAGATCTACCACAAGATGACCATTCGGAGCTGCAAGGCTCTGGGCCCTCATGGACTGGCTTGAGTTC
CTGTCTTCTGCTGTCAACCATTGGAGTTGAGTGACTCTGAGCTGTGGTGTATGGGATGGATTATTCAG
CAGGTGTAGAGCTCATCACCGCACGGAAACAGCATCTGAACAATTACCTGATCTGGAACCTGGTGC
ACAACCTCAAGCCTGGACCGACGCTTGAGTCAGCACAAGAGAAAGCTGCTGGAGACCCCTATGGCA
TCTGTGTGCCAGGGTGCAGACCTGCATCTCCAACACGGATGACGCCCTGGCTTTGGGTCACTCTTC
GTGAAGGCCACGTTGACCGGCAAAGCAAAGAAATTGCAAGAGGGGATGATCAGCGAAATCGGACCGCATTGAG
GAGGCCCTGGGACAGCTGGTTGGATGGATGAGAAGACCCGCCAGGCCAGGAGAAAGCAGATGCCATCTAT
GATATGATTGGTTCCAGACTTATCTGGAGGCCAAAGAGCTGGATGATGTTTATGACGGGTACGAAATTCT
GAAGATTCTTCTTCCAAAACATGTGAATTGACAACCTCTGCAAGGTTATGGCTGACAGCTCCGA
CCTCCCAGCCAGACAGTGGAGCATGACCCCCAGACAGTGAATGCCACTACCTTCAACTAAGAATGAGATC
GTCTCCCCGCTGGCATCTGCAGGCCCTTCTATGCCCGCAACCACCCCAAGGCCCTGAACCTCGGTGC
GGTGTGGTCACTGGGCATGAGTTGACGCATGCCATTGATGACCAAGGGCGCAGTATGACAAAGAAGGG
CGGCCCTGGTGGCAGAATGAGTCCTGGCAGCCTCCGGAACACAGGCCCTGCATGGAGGAACAGTACA
TACCAAGGTCAATGGGAGAGGCTCAACGGCCGCCAGACGCTGGGGAGAACATTACTGACAACGGGG
GCTGCCTACAATGCTTACAAGCATGGCTGAGAAAGCATGGGAGGAGCAGCAACTGCCAGCCGTGGGCTCACC
AACCACCAAGCTCTCTCGTGGGATTGCCCAGGTGCTGGCTCGGCACACAGAGAGCTCTCACGAGGG
CTGGTGACCGACCCCCACAGCCCTGCCGCTTCCGCCTGCTGGGACTCTCTCCAACCTCCGTGACTCTCG
CACTTCGGCTGCCCTGCGCTCCCCATGAACCCAGGGCAGCTGAGGTGTTGAGGATCAGGG
GAAATGGCCAGCTGTCACCAGACCTGGGCAGCTCTCTGACAAAGCTGTTGCTTGGGTTGGAGGAAGCAA
ATGCAAGCTGGCTGGGTCTAGTCCTCCCCCAGGTGACATGAGTACAGACCCCTCTCAATCACCACATTG
TGCCCTGCTTGGGGTGCCTCCAGCAGAGCCCCACCATCACTGTGACATCTTCCGTGTCACCCT
GCCTGGAAGAGGTCTGGTGGGAGGCCAGTCCCATAGGAAGGAGTCTG

424/615

FIGURE 420

MNVALQELGAGSNVGFOKGTRQLLGSRTQLELVLAGASLLAALLLGCLVALGVQYHRDPSHS
TCLTEACIRVAGKILESLDRGVSPCEDFYQFSCGGWIRRNP LPDGRSRWNTFNSLWDQNQAIL
KHLLENTTFNSSEAEQKTQRFYLSCLQVERIEELGAQPLRDLIEKIGGWNI TGPPWDQDNFME
VLKAVAGTYRATPFFT VYISADSKSSNSNVIQVDQSGFLPLSRDYYLNRTANEKVLTAYLDYM
EELGMILLGGRPTSTREQM QQVLEIQLANITVPQDQRRDEEKIYHKMSISELQALAPSMDWL
EFLSFLLSPL ESDSEPVVVYGM DYLQQVSELINRTEPSILNNYLIWNLVQKTTSSLDRRFES
AQEKLLETLYG TKKSCVPRWQTCISNTDDALGFALGSLFVKATFDRQSKEIAEGMISEIRTA F
EEALGQLVWMDEKTRQA AKEKADAIYDMIGFPDFILEPKELDDVYDGYEISEDSFFQNMLNLY
NFSAKVMADQLRKPPS RDQWSMT PQT VNAYYLPTKNEIVFPAGILQAPFYARNHPKALNFGGI
GVVMGHELTHAFDDQGREYDKEGNL RPWWQNESLAAFRNHTACMEEQYNQYQVN GNERLNGRQT
LGENITDNGGLKAAYNAYKAWLRKHGEEQOLPAVGLTNHQLFFVGFAQVWCSVRTPESSHEGL
VTDPHSPARFRVLGTLNSRDFLRHF GCPVGSPMNPGQLCEVW

Type II Transmembrane domain:
amino acids 32-57

425/615

FIGURE 421

GGCGCCGCGTAGGCCCGGGAGGCCGGGCCGGCTGCAGGCCCTGCCCATGCGCCGCC
GCCTCTCCGCACGATGTTCCCTCGCGGAGGAAAGCGGCCAGCTGCCCTGGGAGGACGGCAG
GTCCGGGTTGCTCTCGGCCCTCCCTCGGAAGTGTTCGTCTCCACCTGTTGTCGGCTG
CCTCTCGCTGGGTTCTCTCCCTACTCTGGCTGCAGCTCAGCTGCTCTGGGACGTGGCCCG
GGCAGTCAGGGACAAGGCAGGAGACCTCGGGCCCTCCCCGTGCCTGCCCTCAGAGCCGCC
CCCTGAGCACTGGAAAGAAGACGCATCCTGGGCCCCACCGCCTGGCAGTGCTGGTGCCTT
CCGCGAACGCTCGAGGAGCTCTGGTCTTCGTGCCACATGCGCCGCTTCCTGAGCAGGAA
GAAGATCCGGCACCATCTACGTGCTCAACCAGGTGGACCACCTCAGGTTCAACCAGGCAGC
GCTCATCAACGTTGGCTCCTGGAGAGCAGCACAGCACGGACTACATTGCCATGCACGACGT
TGACCTGCTCCCTCTAACGAGGAGCTGGACTATGGCTTCCTGAGGCTGGCCCTTCACGT
GGCCTCCCCGGAGCTCCACCCCTCTACCACTACAAGACCTATGTCGGCGGCATCCTGCTGCT
CTCCAAGCAGCAGTACCGGCTGTGCAATGGATGTCCAACCGCTCTGGGCTGGGCCGCGA
GGACGACGAGGTTCTACCGGCGCATTAAGGGAGCTGGCTCCAGCTTCCGCCCTCGGGAAT
ACAACGGTACAAGACATTGCGCACCTGCATGACCCAGCCTGGCGGAAGAGGGACCAAGAA
GCGCATCGCAGCTAAAAACAGGAGCAGTTCAAGGTGGACAGGGAGGGAGGCCTGAACACTGT
GAAGTACCATGTGGCTCCCGCACTGCCCTGTCTGTGGCGGGCCCTGCACTGTCTCAA
CATCATGTTGGACTGTGACAAGACGCCACACCCCTGGTCACATTCAAGCTGAGCAGTGGATGGAC
AGTGAGGAAGCCGTACCTACAGGCCATATTGCTCAGGCTCAGGACAAGGCCCTAGGTCGTGG
GCCAGCTCTGACAGGATGTGGAGTGGCAGGACCAAGACAGCAAGCTACGCCATTGCGAGCCA
CCCGGCCGCCAAGGCAGGCTGGCTGGGCCAGGACACGTGGGTGCCTGGGACGCTGCTGC
CATGCACAGTGATCAGAGAGAGGCTGGGTGTGTCCTGTCGGGACCCCCCTGCCTTCCTGC
TCACCCCTACTCTGACCTCCTCACGTGCCAGGCCCTGTGGTAGTGGGAGGGCTGAACAGGA
CAACCTCTCATCACCCCTACTCTGACCTCCTCACGTGCCAGGCCCTGTGGTAGTGGGAGGG
CTGAACAGGACAACCTCTCATCACCCCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAA

426/615

FIGURE 422

></usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56531
><subunit 1 of 1, 327 aa, 1 stop
><MW: 37406, pi: 9.30, NX(S/T): 1
MFPSRRKAAQLPWEDGRSGLLSGGLPRKCSVFHIVACLSLGFFSLLWLQLSCSGDVARAVRG
QGQETSGPPRACPPEPPPEHWEEDASWGPHEVLAFLVPFRERFEELLVFPHMRRFLSRKKIRH
HIYVLNQVDHFRFNRRAALINVGFLESSNSTDYIAMHDVDLPLNEELDYGFPEAGPFHVASPE
LHPLYHYKTYVGGILLLSKQHYRLCNGMSNRFWGWGREDDDEFYRRIKGAGLQLFRPSGITTGY
KTFRHLHDPAWRKRDQKRIAAQKQEKFVDRREGGLNTVKYHVVASRTALSVGGAPCTVLNIMLD
CDKTATPWCTFS

Signal peptide:
amino acids 1-42

Transmembrane domain:
amino acids 29-49 (type II)

N-glycosylation site.
amino acids 154-158

cAMP- and cGMP-dependent protein kinase phosphorylation site.
amino acids 27-31

Tyrosine kinase phosphorylation site.
amino acids 226-233

N-myristoylation site.
amino acids 19-25, 65-71, 247-253, 285-291, 303-309, 304-310

427/615

FIGURE 423

CCATCCCTGAGATCTTTATAAAAAACCCAGTCTTGCTGACCAGACAAAGCATACCAGATC
TCACCAGAGAGTCGCAGACACTATGCTGCCTCCCATGGCCCTGCCAGTGTGCTGGATGCT
GCTTCTGCCTCATTCTCCTGTGTCAGGTTCAAGGTGAAGAAACCCAGAAGGAAC TGCCCTC
TCCACGGATCAGCTGCCAAGGCTCCAAGGCCTATGGCTCCCCCTGCTATGCCTGTTTT
GTCACCAAAATCTGGATGGATGCAGATCTGGCTGCCAGAAGCGGCCCTCTGGAAAAC TGGT
GTCTGTGCTCAGTGGGCTGAGGGATCCTCGTGTCCCTGGTGAGGAGCATTAGTAACAG
CTACTCATACATCTGGATTGGCCTCCATGACCCACACAGGGCTCTGAGCCTGATGGAGATGG
ATGGGAGTGGAGTAGCACTGATGTGATGAATTACTTTGCATGGGAGAAAATCCCTCCACCAT
CTTAAACCCCTGGCCACTGTGGGAGCCTGTCAAGAACAGCACAGGATTCTGAAGTGGAAAGATTA
TAACTGTGATGCAAAGTTACCCATGTCTGCAAGTTCAAGGACTTAGGGCAGGTGGGAAGTCAG
CAGCCTCAGCTTGGCGTGCAGCTCATGGACATGAGACCAGTGTGAAGACTCACCTGGAA
GAGAATATTCTCCCCAAACTGCCCTACCTGACTACCTTGTCAATGATCCTCTTTCTT
TTTCTCACCTTCATTCAGGCTTCTGTCTGCTTCCATGTCTGAGATCTCAGAGAATAATA
ATAAAAATGTTACTTTATAAAAAAAAAAAAAAA

428/615

FIGURE 424

</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA56965
<subunit 1 of 1, 175 aa, 1 stop
<MW: 19330, pI: 7.25, NX(S/T): 1
MLPPMALPSVSWMILSCLILLCQVQGEETQKELPSPRISCPKGSKAYGSPCYALFLSPKSWM
ADLACQKRPSGKLVSVLSGAEGSFVSSLVRSISSNSYSYIWIGLHDPTQGSEPDGDGWEWSSTD
VMNYFAWEKNPSTILNPGHCGSLSRSTGFLKWKDYNCDAKLPYVCKFKD

Important features:

Signal peptide:

amino acids 1-26

C-type lectin domain signature.

amino acids 146-171

429/615

FIGURE 425

CGGACGCGTGGGCCGCCACCTCCGGAAACAAGCCATGGTGGCGGCACGGTGGCAGCGCGTGG
CTGCTCCTGTGGCTGCGCCTGCGCGCAGCAGGAGCAGGACTTCTACGACTCAAGGCGGTC
AACATCCGGGGCAAACCTGGTGTGCTGGAGAAGTACCGCGGATCGGTGTCCTGGTGGTGAAT
GTGGCCAGCGAGTGGGCTTACAGACAGCAGCACTACCGAGCCCTGCAGCAGCTGCAGCAGAC
CTGGGCCCCCCACCACCTTAACGTGCTGCCTTCCCCTGCAACCAGTTGGCCAACAGGAGCCT
GACAGCAACAAGGAGATTGAGAGCTTTGCCCGCCGACCTACAGTGTCTCATCCCCATGTT
AGCAAGATTGCAGTCACCGTACTGGTGCCATCCTGCCTCAAGTACCTGGCCCAGACTTCT
GGGAAGGAGCCCACCTGGAACCTCTGGAAGTACCTAGTAGCCCCAGATGGAAAGGTGGTAGGG
GCTTGGGACCCAACTGTGTCAGTGGAGGAGGTCAAGACCCAGATCACAGCGCTCGTGAGGAAG
CTCATCCTACTGAAGCGAGAAGACTTATAACCCACCGCGTCTCCTCCACCACCTCATCCCG
CCCACCTGTGTGGGGCTGACCAATGCAAACCTCAAATGGTGCTTCAAAGGGAGAGACCCACTGA
CTCTCCTCCTTACTCTTATGCCATTGGTCCCATCATTCTGTGGGGAAAAATTCTAGTAT
TTTGATTATTTGAATCTTACAGCAACAAATAGGAACCTCTGGCCAATGAGAGCTTGTGACCAG
TGAATCACCAGCCGATACGAACGTCTGCCAACAAAATGTGTGGCAAATAGAAGTATATCAA
GCAATAATCTCCCACCAAGGCTCTGTAAACTGGGACCAATGATTACCTCATAGGGCTGTTG
TGAGGATTAGGATGAAATACCTGTGAAAGTGCCTAGGCAGTGCACCCAAATAGGAGGCATTC
AATGAACATTTTGATATAACCAAAAAATACTTGTATCAATAAAACTTGCATCCAAC
ATGAATTCCAGCCGATGATAATCCAGGCCAAAGGTTAGTTGTGTTATTCCTCTGTATTA
TTTCTTCAATTACAAAAGAAATGCAAGTTCAATTGTAACAATCCAACAAATACCTCACGATATA
AAATAAAATGAAAGTATCCTCCTCAAAAA

430/615

FIGURE 426

MVAATVAAAWLLLWAAACAAQEQDFYDFKAVNIRGKLVSLKYRGSVSLVVNVASECGFTDQH
YRALQQLQRDLGPHHFNVLAFCNCQFGQQEPDSNKEIESFARRTYSVSFPMFSKIAVTGTGAH
PAFKYLAQTSGKEPTWNFWKYLVAPDGKVVGAWDPTVSVEVRPQITALVRKLILLKREDL

431/615

FIGURE 427

CAGTTCTGAAATCAATGGAGTTAATTAGGGAATACAAACCAGCC**ATG**GGGGTGGAGATTGCC
TTTGCCTCAGTGATTCTCACCTGCCTCTCCCTTCTGGCAGCAGGAGTCTCCAGGTTGTCTT
CTCCAGCCAGTTCCAACTCAGGAGACAGGTCCCAAGGCCATGGGAGATCTCTCCTGTGGCTT
GCCGGCCACTCAT**TG**AAGTGTTTGAGTAAAGTATTTAGAATACTGTTGACTTCTTCAT
GATTTAATAACCATCCTTGCAGTAAAGTTATGAGGCTTAGGGGAATGTCAACCCTCAAATT
TTGTTATACTAGATGGCTTCATTACCCACCACTATTTAAGGTCCCTTATTTAGGTT
AAGGTTCAATTGACTTGAGAAAGTGCCTCTGCAGCTTATTGATTTGTTATCTTCACTA
TTAATTGTAACGATTAAGAATAAGAGCAGCAGACCTCTAGGAGAATATTTATCCCTG
GGTGCCCCCTGACACATTATGTAGTGATCCCACAAATGTGATTGTTAATTAAATGTTATTCT
AATATTAGTACATTCACTGAGTGTATGTAATATGAAATAACCAGAATCTATTCTAAAAGTTTG
AGTATATTTCAACTAGATTTGTATAGAAAGACTGAATAGTGATG

432/615

FIGURE 428

MGVEIAFASVILTCLSLLAAGVSQVVLLQPVPTQETGPKAMGDLSCGFAGHS

433/615

FIGURE 429

CCAAAGT GATCAT TTGAAAAAGAGATATCCACATCTCAAGCCCATAAAAGGATAGAAGCTG
CACAGGGCAGCTTACTTACTCCAGCACCTCCCTCTCCAGGCAATGGTGCTGACCATCTT
GGGATACAATCTCATGGATACGAGGTTTAACATCATCAGCCCAAGCAACAATGGTGGCAAT
GTT CAGGAGACAGTGACAATTGATAATGAAAAAAATACGCCATCGTTAACATCCATGCAGGA
TCATGCTCTTCTACCACAATTTGACTATAAACATGGCTACATTGCATCCAGGGTGCTCTCC
CGAAGAGCCTGCTTATCCTGAAGATGGACCATCAGAACATCCCTCCTCTGAACAATCTCAA
TGGTACATCTATGAGAACAGGCTCTGGACAACATGTTCTCCAACAAATACACCTGGGTCAAG
TACAAC CCTCTGGAGTCTCTGATCAAAGACGTGGATTGGTTCTGCTTGGGTACCCATTGAG
AAACTCTGCAAACATATCCCTTGATATAAGGGGAAGTGGTTGAAAACACACATAATGTCGGT
GCTGGAGGCTGTGCAAAGGCTGGCTCTGGCATCTGGGAATTCAATCTGTGCAGACATT
CATGTTTAGGATGATTAGCCCTCTGTTTATCTTCAAAGAAATACATCCTGGTTACAC
TCAAAAGTCAAATTAAATTCTTCCCAATGCCCAACTAATTGAGATTCA GTCA GAAAATA
TAAATGCTGTATTATA

434/615

FIGURE 430

><ss.DNA57834

><subunit 1 of 1, 176 aa, 1 stop

><MW: 19616, pI: 7.11, NX(S/T): 0

MVLTIFGIQSHGYEVFNIISPSNNGGNQETVTIDNEKNTAIVNIHAGSCSSTTIFDYKH
GYIASRVLSRRACFILKMDHQNIPLNNLQWYIYEKQALDNMFSNKYTWWVKYNPLESLIK
DWDWFLLGSPIEKLCKHIPLYKGEVVENTHNVGAGGCAKAGLLGILGISICADIHV**Important features:****Signal peptide:**

Amino acids 1-26

N-myristoylation sites:

Amino acids 48-54;153-159;156-162;167-173

435/615

FIGURE 431

GC GTGGGG**ATGT**CTAGGAGCTCGAAGGTGGTGGCCTCTCGGTGCTGCTGACGGCGCCA
CA GTGGCCGGCGTACATGTGAAGCAGCAGTGGACCAGCAGAGGCTCGTGACGGAGTTATCA
GAGACATTGAGAGGCCAATTGGAAAAAGAAAACATTGCTTTGGGAGAACAGATTATT
TGACTGAGCAACTTGAAGCAGAAAGAGAGAAGATGTTATTGGCAAAGGATCTCAAAATCAT**G**
ACTTGAATGTGAAATATCTGTTGGACAGACAACACGAGTTGTGTGTGTTGATGGAGA
GTAGCTTAGTGTATCTTCATCTTTGGTCAGTGCCTTAAACTGATCAAATAAA
GGACAGTGGGTCAATAAGTTACTGCTTCAGGGTCCCTTATATCTGAATAAAGGAGTGTGGG
CAGACACTTTGGAAGAGCTGTCTGGGTGATCCTGGTAGAAGCCCCATTAGGGTCACTGTC
CAGTGCTTAGGGTTGTTACTGAGAAGCAGTGCAGCAGCTTGTGAGAAGGAAGGGATGGATAGTA
GCATCCACCTGAGTAGTCTGATCAGTCGGCATGATGACGAAGCCACGGAGAACATCGACCTCAG
AAGGACTGGAGGAAGGTGAAGTGGAGGGAGAGACGCTCCTGATCGTCGAATCC

436/615

FIGURE 432

MSRSSKVVLGLSVLLTAATVAGVHVKKQQWDQQRLRDGVIRDIERQIRKKENIRLLGEQIILTE
QLEAEREKMLLAKGSQKS

437/615

FIGURE 433

GAATTCTGTCTCGGCACTCACCCCCGGCCGGACAGGGAGCTTCGCTGGCGCGCTTGGCCGGCGACAGGA
CAGGGTCTGGGACGCCATCTGCCATCGTCCGGAGAGAAATTACAGATCCGCAGCCCCGGGATGGGCGGCC
CGCTGCCGCTGCTGCTGGCCTCTCCTCCCCGCGCTGGCGTAGAGCTATCACTGAGGAAGGGAAAGAACCA
AGCCTTACCCGCTATTCCCGGACCTTCCAGGGAGCTGCAAACAGGACACACCACGGCTGTTATCCCTCCCTC
ACGCCAGTGGTACCAAGCCCTACCGCCTCTGCCTCAAACACACAGTTGGACACATAACTT
TCTGAACATAAAGGTGCAATTAACTGCTCAATGTAACCTAATATACCAAGGACACCAAACTTCTGG
TGGAAAGATGGGAAGGAATTGCTTGGGGACATCATCGAATCAGCTTATCAGATGAGTTACAGCA
ATAATCGCTCCTCAGCATACACAGTGCGAGCTGAGACAATGGCTGATATCTGAAGATGAAAATAAAC
ATATGAAGAGATCGTCTGATCCCCTACATCGAAGTACAAGGACTCCTCACTTACTAAGCAGCCTGAGAGC
ATGAATGTCACCAAGAACACAGCCTCACCTCACCTGTCAGGCTGTTGGCCGCGCTGAGCCCGTCAACATTTC
TGGGTTCAAAACAGTAGCCGTGTTACGAACAGCCTGAAAAAATCCCCGGCGTCTAAGTGTCCAGGCGTACG
GAGATGGCGGTCTTCAGTTGAGGGCCACAATGACAAAGGGCTGACCGTGTCCCAGGGAGTGCAGATCAACATC
AAAGCAATTCCCTCCCCACCAACTGAAGTCAGCATCGTAACAGCACTGCACACAGCATTCTGATCTCTGGGTT
CCTGGTTTGATGGATACTCCCCGTTAGGAATTGCAAGCATTGAGCTAAGGAAGCTGATCCGCTGGGTAATGGC
TCAGTCATGATTTAAACACCTCTGCCTTACACATCTGTAACCAATCAAGCAGCTGCAAGCCCTGGCTAATTAC
AGCATTGGGTTCTCGCATGAATGAAATAGGCTGGTCTGCACTGAGGCCCTGGATTCTAGCAAGCACGACTGAA
GGAGCCCCATCAGTAGCACCTTAAATGTCAGTGTGTTCTGAATGTAATCTAGTGTAAATGTGGACATCAGATGG
ATGAAGGCTCCGACTAAGCAGCAGGATGGAGAACTGGTGGGCTACCGGATATCCACGTGAGCTGAGGG
ATTTCAGGAGCTTGGAGGAATTGGCCAAGATGGCAGCGAGCTGGATCTGTTCAAGTCCACAATGCT
ACGTGCACAGTGGGATTGCAAGCCGTACCAAGAGGGGAGTTGGGCCCTCAGTGATCCAGTGAAAATATTATC
CCTGCACACGGTTGGTAGATTATGCCCTCTCAACTCCGGCGCTGGCAACGCAGATCTGTGTCATCATC
TTGGCTGCTTTGTGGATTATTTGATTGGGTTGATTATACATCTCCTGGCATCAGAAAAAGAGTCCAG
GAGACAAAGTTGGGAATGCATTACAGAGGGATTCTGAATTAGTGGTGAATTATAGCAAAGAAATCCTTC
TGTGGCGAGCCATTGAACCTACATAGCTGGGAGTCAGTGAGGAACACTAAAATAAGATGTT
GTGATTGACAGGAATTCTCTAATTCTGGAAAATTCTGGGAGAGTTGGGCTGTAATGGAAGGAAAT
CTTAAGCAGGAAGATGGACCTCTGAAAGTGGCAGTGAGACCATGAAAGTGGACAACCTTCACATCGGGAG
ATCGAGGAGTTCTCAGTGAGCAGCTGAGGAGCTGGATCTGAGCTTCTGAGCTTCTAGGTG
TGTATAGAAATGAGCTCTAAGGCATCCAAAGCCCATGGTAATTCTCCTCATGAAATACGGGACCTGCAT
ACTTACTTACTTATTCCGATTGGAGACAGGACCAAGCATTCTCCTGAGACACTATTGAAGTTCTGAG
GATATTGCCCTGGGAATGGAGTATCTGAGCAACAGGAATTCTCATCGAGATTAGCTGCTCGAAACTGCATG
TTGCGAGATGACATGACTGCTGTTGCGGACTTCGGCTCTCTAAGAAGATTACAGTGGCATTATTACCGC
CAAGGCCGATTGCTAAGATGCCCTTAAATGGATGCCATAGAAAGTCTGCAAGCCGAGTCTACACAAGTAA
AGTGTGTGGGCAATTGGCGTACCATGTGGAAATACGTACGCCATCCATTCTGGGCTCAG
AACCAGAGATGACTATCTCTCATGCCACAGGTGAAGCAGCCGAAGACTGCCATGAGCTGAACTGAT
GAAATAATGTACTCTGCTGGAGAACCGATCCCTAGACCGCCACCTTCTAGTATTGAGGCTGCAGCTAGAA
AAACTCTGAAAGTTGCCCTGAGCTGGAGACCGACGCTTACAGTCAAGACATACAGTTGCTGGAGAGC
TCTGGGGCTGGCCAGGGCCCACCTTCTGCTTCAAGCAGAAGCTGAAACTGACCTGACTCTAATTGCCCTC
TGCACCTCCCGCTGCCATCAGTGTTGAGCTGAGGAGCTGAGCTGAGCTGAGCTGAGCTGAGCTGAG
CTGAATGGGGCAGTGGAGAATGGGAAGATCTGACTCTGCCCTCTGCTGAGCTGAGCTGAGCTGAGCT
GTTTACCGGGGAGAGACTTGTAGGAATGGGCTCTGGCTCCATTGAGCATGCTGCCCTGGGAAGCTCA
TTGCCCGATGAACTTTGTTGCTGAGACTCTCAGAAGGCTCAGAAGTCTGAGCTGAGCTGAGCTGAG
GACATTCCAAAATCAAGCCAATTCTCTGCTGAGGAATCCAATTGTACCTGATGTTGGTATTGTCTT
CCTTACCAAGTGAACCTCATGCCCAAGCACCAGATGATGTTAAGGAAGCTGTCATTAAAAATACATAA
TATATATTATTAAAGAGAAAAATATGTATATCATGAAAAGACAAGGATATTAAATAAAACATTACTTA
TTTCACTTCACTTATCTGCATCTTAAATAAGCTCAGCTGCTCCCTGATATTAAACCTTGTACAGAGTTG
AAGTTGTTTTCAACTCTTCTTCTTCACTTAAATTAAGTAAAGAATGATAATTCTGATATGGCTTCCATAA
TGACTTGGCTCTGGCTTGTGATGTTGATAAGAATGATAATTCTGATATGGCTTCCATAAATAAAATTGAA
ATAGGA

438/615

FIGURE 434

MGPAPLPLLGLFLPALWRRRAITEAREEEAKPYPLFPGPFPGLQTDHTPLLSLPHASGYQPALMFSPTOQGRPH
 GNVAIPQVTSVESKPLPPLAFKHTVGHIIILSEHKGVKFNCISINVPNIYQDTTISWWKGKELLGGHHRITQFYPD
 DEVTAAIASFSITSVQRSDNGSYICKMKINNEEJVSDPIYIEVQGLPHFTKQPESMNVTRNTAFNLTCQAVGPPE
 PVNIFWVQNSSRVNEQPEKSPGVLTVPGLTEMAVFSCAEHNDKGLTVSQGVQINIKAIISPPTEVSRNSTAHSI
 LISWVPGFDGYSPFRNCSTIQVKADPLGNGSVMIFNTSALPHLYQIKQLQALANYSIGVSCMNEIGWSAVSPWIL
 ASTTEGAPSVAPlNVTVFLNESSDNVDIRWMKPPTKQQDGELEVGYRISHVWQSAGISKELLEVGQNGSRARISV
 QVHNATCTVRIAATRGGVGPFSDPVKIFIPAHGWDYAPSSTPAPGNADPVLIFGCFCGFILIGLILYISLAI
 RKRVQETKFGNAFTEEDSELVVNYIAKKSFCRRAIELTLHSLGVSEELQNKLVEDVVIDRNLLILGKILGEgefGS
 VMEGNLKQEDGTSLKAVKTMKLDNSSHREIEEFLSEAAACMKDFSHPNVIRLLGVCIEMSSQGIPKPMVILPFMK
 YGDLHTYLLYSRLETGPKHIPLQTLKFMVDIALGMEYLSNRNFHLRDLAARNCMRLDDMTVCVADFGLSKKIYS
 GDYYRQGRIAKMPVKWIAIESLADRVTYTSKSDVWAFGVTMWEIRTRGMTYPYGVQNHEMYDYLLHGHRLKOPEDC
 LDELYEIMYSCWRTDPLDRPTFSVRLQLEKLESLPDVVRNQADVIVYNTQLESSEGCLAQGPTLAFLDNIDPD
 SIIASCTPRAAISVVTAEVHDSKPHGRYIINGGSEEWDLTSAPSAAVTAEKNSVLPGERLVRNGVSWHSSML
 PLGSSLPDELLFADDSEGSEVLM

Signal sequence:	Amino acids 1-18
Transmembrane domain:	Amino acids 501-520
N-glycosylation sites:	Amino acids 114-118;170-174;207-211; 215-219;234-238;294-298;316-320;329-333; 336-340;354-358;389-393;395-399;442-446; 454-458;625-629
Tyrosine kinase phosphorylation sites:	Amino acids 675-683;865-873;923-930
N-myristoylation sites:	Amino acids 41-47;110-116;171-177; 269-275;275-281;440-446;507-513;535-541; 966-972
Prokaryotic membrane lipoprotein lipid attachment site:	Amino acids 351-362
Tyrosine protein kinases specific active-site signature:	Amino acids 719-732

439/615

FIGURE 435

AATGTGAGAGGGGCTGATGGAAGCTGATAGGCAGGACTGGAGTGTAGCACCACTGGATG
TGACAGCAGGCAGAGGAGCACTTAGCAGCTTATTCACTGGCACACTGCTCCTCTTCGGCTTCCTG
CCAAGC**ATG**GAATGCTGCCGTCGGCAACTCCTGGCACACTGCTCCTCTTCGGCTTCCTG
CTCCTGAGTCCAGGACCGCACGCTCCGAGGAGGACGGACGGCTATGGATGCCTGGG
CCATGGAGTGAATGCTCACGCACCTGCCGGGGAGGGCCTCTACTCTGAGGCGCTGCC
AGCAGCAAGAGCTGTGAAGGAAGAAATATCCGATAACAGAACATGCAGTAATGTGGACTGCCA
CCAGAACGAGGTGATTCCGAGCTCAGCAATGCTCAGCTCATAATGATGTCAAGCACCATGGC
CAGTTTATGAATGGCTTCCTGTGCTAATGACCCCTGACAACCCATGTTCACTCAAGTGCAA
GCCAAAGGAACAACCCCTGGTGTGAACTAGCACCTAAGGTCTTAGATGGTACGCGTTGCTAT
ACAGAATCTTGGATATGTGATCAGTGGTTATGCCAAATTGTTGGCTGCGATCACCAGCTG
GGAAGCACCCTCAAGGAAGATAACTGTGGGCTGCAACGGAGATGGTCCACCTGCCGGCTG
GTCCGAGGGCAGTATAAATCCCAGCTCCGCAACCAAATCGGATGATACTGTGGTTGCACTT
CCCTATGGAAGTAGACATATCGCCTGTCTAAAAGGTCTGATCAGTCTATATCTGAAACC
AAAACCCCTCCAGGGACTAAAGGTGAAAACAGTCTCAGCTCACAGGAACCTCCTGTGGAC
AATTCTAGTGTGGACTTCCAGAAATTCCAGACAAAGAGATACTGAGAATGGCTGGACCACTC
ACAGCAGATTTCATTGTCAAGATTGTAACCTGGGCTCCGCTGACAGTACAGTCCAGTTCATC
TTCTATCAACCCATCATCCACCGATGGAGGGAGACGGATTCTTCCCTGCTCAGCAACCTGT
GGAGGAGGTTATCAGCTGACATCGGCTGAGTGTACGATCTGAGGAGCAACCGTGTGGTTGCT
GACCAATACTGTCACTATTACCCAGAGAACATCAAACCCAAACCCAAAGCTTCAGGAGTGCAAC
TTGGATCCTTGTCCAGCCAGTGACGGATACAAGCAGATCATGCCCTATGACCTCTACCATCCC
CTTCCTCGGTGGAGGCCACCCCATGGACCGCGTGTCCCTCGTGTGGGGGGGATCCAG
AGCCGGGAGTTCTGTGGAGGAGGACATCCAGGGCATGTCAGTCAGTGGAAAGAGTGG
AAATGCATGTACACCCCTAAGATGCCCATCGCGCAGCCCTGCAACATTTCAGTGCCTAA
TGGCTGGCACAGGAGTGGTCTCCGTGCACAGTGACATGTGGCCAGGGCCTCAGATACCGTGTG
GTCCTCTGCATCGACCATCGAGGAATGCACACAGGAGGCTGTAGCCCCAAAACAAAGCCCCAC
ATAAAAGAGGAATGCATCGTACCCACTCCCTGCTATAAACCCAAAGAGAAACTCCAGTCGAG
GCCAAGTTGCCATGGTCAAACAAGCTCAAGAGCTAGAAGAAGGAGCTGCTGTGTCAGAGGAG
CCCTCG**TA**AGTTGTAAGACAGACTGTTCTATATTGAAACTGTTGTTAAAGAAAGCA
GTGTCTCACTGGTTGTAGCTTCATGGTTCTGAAACTAAGTGTAAATCATCTCACCAAGCTT
TTGGCTCTCAAATTAAAGATTGATTGATTTCAAAAAAAAAAAAAA

440/615

FIGURE 436

```
</usr/seqdb2/sst/DNA/Dnaseqs.min/ss.DNA58847
<subunit 1 of 1, 525 aa, 1 stop
<MW: 58416, pI: 6.62, NX(S/T): 1
MECCRRATPGTLLLFLAFLSSRTARSEEDRDGLWDAWPWSECRTCGGGASYSLRRCLSS
KSCEGRNIRYRTCSNVDCPPEAGDFRAQQCSAHNDVHHQFYEWLPVSNDPDNPCSLKCQAK
GTTLVVELAPKVLGDGTRCYTESLDMCISGLCQIVGCDHQLGSTVKEDNCGVNGDGSTCRLVR
GQYKSQLSATKSDDTVVALPYGSRHIRLVLKGPDHLYLETKTLQGTKGENSLSSTGTFLVDNS
SVDFQKFPDKEILRMAGPLTADFIVKIRNSGSADSTVQFIFYQPIIHRWRETDFFPCSATCGG
GYQLTSAECYDLRSNRVVADQYCHYY PENIKPKPKLQECNLDPASPASDGYKQIMPYDLYHPLP
RWEATPWTACSSSCGGGIQSRAVSCVEEDIQGHVTSVEEWKCMYTPKMPIAQPCNIFDCPKWL
AQEWSPCTVTCGQGLRYRVVLCIDHRGMHTGGCSPKTAPHKEECIVPTPCYKPKEKLVEAK
LPWFQQAQELEEGA AVSEEPS
```

Important features:**Signal peptide:**

amino acids 1-25

N-glycosylation site.

amino acids 251-254

Thrombospondin 1

amino acids 385-399

von Willebrand factor type C domain proteins

amino acids 385-399, 445-459 and 42-56

441/615

FIGURE 437

AACTGGAAGGAAAGAAAGAAGGTCA GCTTGGCC CAGATGTGGTTACCCCTGGTCTCCTGT
CTTTATGTCTTTCTCCTCTTCTATTCTGTCA TCTCCCTACTTAAGTCTCAGGCCTGTCAGC
AGCTCCTGTGGACATTGCCATCCCCTCTGGTAGCCTCAGAGCAAACAGGACAACCTATGTTA
TGGATGTTCCACCAACCAGGGTAGTGGCATGGAGCACCGTAACCCTGTGCTTCTGTGATC
TCTATGACAGAGCCACTTCTCCACCTCTGAAATGTTCCCTGCTC **TGAA**ATCTGGCATGAGATG
GCACAGGTGACCACGCAGAACGCCACCAGAAATCTGCCTGCCCTATTCCCTCCCAAGTCTGT
TCTCTTATTGTCAACCTCAGCACAA CAGGCTGGGCCAATGGCATTACAGAGAAAGCAATCTG
TGTGGCTAGTGGG CAGATTACCATGCAAGCCCCAGGAGAAATGGAGGAGCTTGTAGCCACCT
CCCTGTCA GCCAGTATTAACATGTCCCCCTCCCCCTGCCCGCGTAGATTCA GGACATT CGC
CCCTGTGTGCCACCAA ACCAGGACTTCCCCTGGCTTGGCATCCCTGGCTCTCCTGGTAC
CCAGCAAGACGTCTGTTCCAGGGCAGTGTAGCATTTCAAGCTCCGTTACTATGGCGATGGC
CATGATGTTACAATCCC ACTTGCCTGAATAATCAAGTGGGAAGGGGAAGCAGAGGAAATGGG
GCCATGTGAATGCAGCTGCTCTGTTCTCCCTACCC TGAGGAAAAACCAAAGGGAAAGCAACAGG
AACTTCTGCAACTGGTTTTATCGGAAGATCATCCTGCCTGCAGATGCTGTGAAGGGGCAC
AAGAAATGTAGCTGGAGAAGATTGATGAAAGTGCAAGGTGTGTAAGGAAATAGAACAGTCTGCT
GGGAGTCAGACCTGGAATTCTGATTCCAAACTCTTATTACTTTGGGAAGTCACTCAGCCTCC
CCGTAGCCATCTCCAGGGTGACGGAACCCAGTGTATTACCTGCTGGAACCAAGGAAACTAACAA
ATGTAGGTTACTAGTGAATAACCCAATGGTTCTCAATTATGCCCATGCCACCAAAACAATA
AAACAAAATTCTCTAACACTGAAA