

신뢰도공학을 활용한 고속도로 낙석 및 사면 붕괴 리스크 관리 시스템 개발

- 최적의 비용으로 사면 안전도 목표 달성을 위한 정량적 위험 관리 도구 -

Top10% SCI(E) Journal Published Product for Prototype!

제출자: 이종욱 Team. Quant Safety jongooklee@gmail.com orcid.org/0000-0001-6645-6623

주관기관

고속도로 낙석 및 사면 붕괴 사례

❖ 낙석과 사면 붕괴 방지를 위한 관리 지침이 있음에도 계속되는 사고... → 보다 과학적이고 체계적인 위험 관리 방안이 필요함!

<그림> 2012년 영동 고속도로 낙석 사고 (건교부, 2018)

<그림> 2014년 익산-포항 고속도로 낙석사고(건교부, 2018)

<그림> 2018년 서천-공주 고속도로 사면붕괴 사고 (중도일보, 2018) <그림>2013년 경부고속도로 사면붕괴 사고 (도로공사, 2016)

❖ 낙석 및 붕괴 위험도에 따른 차등의 관리계획 수립은...?

- 추가적인 저감시설이 필요하지 않을까...?
 - 점검 주기를 보다 합리적으로 결정하는 방법은...?
 - 낙석울타리를 긴 사면 전체에 다 설치해야 할까 ... ?

❖ 비용을 절감하면서 사면안전성을 개선할 수 없을지...??

© orcid.org/0000-0001-6645-6623 Jongook Lee (Quant Safety)

❖ 신뢰도공학 기본 개념 활용

(안전한 고속도로의 운영) Safe operation of transportation

Functional - Overall safety relating to the process which depends on the correct functioning Safety of the safety related system and other protection layer (IEC 61508)

• Rockfall mitigation measures (낙석 방지울타리 등의 저감방안)

Periodic maintenance etc. (주기적 점검 등의 관리)

❖ 안전한 고속도로 운영을 위한 신뢰도의 추정

Reliability - The probability that an item will perform a required function without failure under stated conditions for a stated period of time (O'Connor & Kleyner, 2012).

(낙석 및 사면 붕괴 등으로 인한 고속도로 안전운영 실패없이 필요한 도로 기능을 특정 기간 동안 수행할 확률 산정 가능)

목표 1. 데이터의 체계적 분류

Location of slope

Detached location

Rockfall ENOIE status

지사	노선	방향	이정	피해일자	붕괴구분	손상규모.	손상규모	손상규모_	손상위치	조사시상태
양산지사	경부선	부산	7	20140826	일상	3	1	10	⑧중앙하부우	
양산지사	경부선	부산	7	20090707	재해	10	2	10	⑨우측하부	붕괴발생-흘러내림
양산지사	경부선	부산	7	20060709	재해	30	5	8	⑧중앙하부	붕괴발생-흘러내림
양산지사	경부선	부산	10	20050808	재해	5	30	50	⑨우측하부	붕괴발생-흘러내림
양산지사	경부선	부산	10	20020810	재해	10	5	50	⑤중앙중간	붕괴발생-흘러내림
양산지사	경부선	부산	11	20060710	재해	15	6	0	⑧중앙하부	붕괴발생-흘러내림
양산지사	경부선	부산	11	20140304	일상	2	1	5		붕괴가능추정
양산지사	경부선	부산	11	20110908	일상	6	3	5	⑨우측하부	
양산지사	경부선	부산	11	20140826	일상	5	3	30	⑧중앙하부우	
양산지사	경부선	부산	11	20070315	해빙기	10	20	5	③우측상부	
양산지사	경부선	서울	12	20140825	일상	0	0	0	⑧중앙하부우	
양산지사	경부선	서울	12	20060716	재해	25	5	5	⑧중앙하부	붕괴발생-흘러내림
양산지사	경부선	서울	13	20110503	일상	20	3	60	①좌측상부	
양산지사	경부선	서울	13	20090716	재해	10	5	50	②중앙상부	붕괴발생-흘러내림
양산지사	경부선	서울	13	20060716	재해	6	3	1	⑦좌측하부	붕괴발생-흘러내림
양산지사	경부선	서울	14	20020810	재해	20	13	400	⑧중앙하부	붕괴발생-흘러내림
양산지사	경부선	서울	16	20100930	일상	20	6	26	⑧중앙하부	
양산지사	경부선	부산	19	20140826	일상	3	1	10		
양산지사	경부선	부산	19		재해	10	10	5	②중앙상부	붕괴발생-걸려있음

Non-Damaging

(출처: 고속도로 공공데이터 포털, 한국도로공사, http://data.ex.co.kr/)

Туре	Description	Example of rockfall inventory data
λ_{DD}	Dangerous damaging	Rockfall occurred and rock material re
	failure	ached the road surface
λ_{DN}	Dangerous	Rockfall occurred and rock material w
	non-damaging failure	as stopped by rockfall protection barr
		iers
λ_{S}	Safe failure	A fracture that could cause a rockfall
		was identified on a slope

- ❖ 신뢰도공학에 바탕을 두어 낙석 데이터의 분류 체계를 새로 적용함.
 - λDD: 낙석 발생하여 도로면 도달
 - λDN: 낙석 발생하였으나 저감시설이 도달 방지
 - λs: 낙석 없이 사면에 균열만 발생

❖ 신뢰도공학에 기반하여 빈도분석을 수행하고, 사면별 위험도 특성 및 위험 저감의 산술적 평균 파악 가능

<그림> 1215개 사면의 낙석 및 사면 붕괴 데이터 분산도 (Scatter diagram)

<그림> 낙석 및 사면 붕괴 데이터 의 분류를 통한 $\lambda_{DD}, \, \lambda_{total}$ 의 빈도 분석 히스토그램

<그림> 1215개 고속도로 사면에 대해 저감시설 없는 조건에서의 낙석 발생 확률 (F_{U}) 산정 $(T_{\mathrm{DL}}=25~\mathrm{years})$; (b) 저감시설 있는 조건에서의 낙석 발생 확률 (F_{M}) 산정 후 평균 낙석확률 $(P_{\mathrm{f,M}})$ 목표 위험치인 0.3 이하로 낮춘 사례 $(T_{\mathrm{DL}}=25~\mathrm{years},~n=2,T_{\mathrm{I}}=4~\mathrm{years},~CR=0.8,~TR=1~\mathrm{month})$

목표 3. 저감방안 의사결정

- 1) Calculate $P_{f,U}$ using λ_D and Eqs. (1) and (2).
 - a) If $P_{f,U} \leq \bar{P}_f$, no protection is needed.
 - b) If $P_{f,U} > \overline{P}_f$, set n = 1 and install the 1st protection barrier with CR = 100% and no maintenance.
- 2) Calculate $P_{f,M}$ using $\lambda_i = \lambda_{DD}$ and Eqs. (3) and (5).
 - a) If $P_{f,M} \leq \bar{P}_f$, reduce CR until $P_{f,M} = \bar{P}_f$ or $CR = CR_{\min}$. No additional protection is needed.
 - b) If $P_{f,M} > \bar{P}_f$, apply periodic maintenance with $T_I = T_{I,max}$.
- 3) Calculate $P_{f,M}$ using Eqs. (3) and (5) and considering periodic maintenance.
 - a) If $P_{f,M} \leq \overline{P}_f$, reduce CR until $P_{f,M} = \overline{P}_f$ or $CR = CR_{\min}$. No additional protection is needed.
 - b) If $P_{f,M} > \overline{P}_f$, reduce T_I until $P_{f,M} \leq \overline{P}_f$ or $T_I = T_{I,\min}$
- 4) Calculate $P_{f,M}$ using Eqs. (3) and (5) and considering periodic maintenance.
 - a) If $P_{f,M} \leq \bar{P}_f$, reduce CR until $P_{f,M} = \bar{P}_f$ or $CR = CR_{\min}$. No additional protection is needed.
 - b) If $P_{f,M} > \overline{P}_f$ and $T_I = T_{I,min}$, check n:
 - i) If $n < n_{\text{max}}$, set n = n + 1, install another protection barrier, and go back to step #2.
 - ii) If $n = n_{\text{max}}$, the target failure probability cannot be achieved under the selected design constraints.

❖ 낙석 및 사면 붕괴 방지 저감시설 설치위해 의사결정 절차수립가능!

목표위험도 ($ar{P}_{
m f}$)에 비교 <u>추가 저감시설</u>설치(n) 필요한가 ?

 최대점검 기한(T_{I,max})에 대비한 적정한 점검주기 (T_I)는 ?

• <u>저감시설 설치폭</u>(CR) 조정을 통한 비용최소화 방안은 ?

목표 안전도를
 구현할 수 있는가?

❖ 독창성

- 고속도로공공데이터로 제공되는 엑셀시트 형태의 낙석 및 사면 붕괴 데이터를 활용하여 신뢰도공학 기반의 독창적인 위험 관리 시스템 개념을 고안.
- SCI(E) 상위 10% 해외 저명 학술지(IF: 6.73)에 결과 게재하여 과학적 성과로서 입증 (제안자가 제1저자임!).

Top10% SCI(E) Journal Published Product for Prototype!

❖ 구체성

- 분류체계가 미흡하였던 낙석 및 사면 붕괴 데이터를 체계적으로 관리하기 위한 프레임 제공.
- 수집 데이터를 활용하여 낙석 및 사면 붕괴 위험도를 시각적으로 나타냄(그래프 형식, 기본 Coding 완료!).
- 저감시설의 개수, 저감시설 설치폭, 점검주기 등 안전관리계획을 최적의 비용으로 수립하기 위한 의사결정 방안(수치) 제공.

❖ 성장성

- 낙석 및 사면안전관리 시스템(웹 플랫폼) 개발 시 도로공사, 철도공사 등 선형 인프라스트럭쳐의 절토사면 안전관리가 필요한 기관으로부터 대 국민 안전 강화를 위한 수요 예상.
- 성공사례 축적 경우 해외 도로 및 철도 관리 회사 등에 플랫폼 판매 기대. (추가 작업 중인 안전 관리 비용 최적화 방안 접목 시비용 반영 위험도 관리 시스템으로 업그레이드 가능!)

orcid.org/0000-0001-6645-6623 Jongook Lee

신뢰도공학을 활용한 고속도로 낙석 및 사면 붕괴 리스크 관리 시스템 개발

감사합니다!

이종욱 PhD

Team. Quant Safety

jongooklee@gmail.com

orcid.org/0000-0001-6645-6623