Pr. Latrach ABDELKBIR

Notions de logique mathématique

I. Proposition – Fonction propositionnelle

Activité D:

Mettre une croix (x) dans la case qui convient :

Textes mathématiques	Vrai	Faux	On ne peut pas décider sa vérité	N'a pas de sens
• 15 × 2				
• $12 \times 3 + 4 = 20$				
• -6 ∉ N				
• 2 est une racine du polynôme $P(x) = x^2 - x - 2$.				
 Chaque nombre impair et un nombre premier. 				
• $(x \in \mathbb{Z}): x + 5 \ge 0.$				
• Soient x , y de \mathbb{Z} , on a $2x - y = 1$				

Définitions :

- *Une proposition* (ou assertion) est une phrase ou une expression qui a un sens et qui est soit vraie, soit fausse, mais pas les deux en même temps.

 On note souvent une proposition par les lettres P, Q ou R ...
- On appelle *fonction propositionnelle* tout énoncé qui contient une variable (ou plusieurs variables) d'un ensemble, elle devienne proposition chaque fois qu'on remplace la variable par un élément de cet ensemble.

O Exemples:

- "Le nombre 2022 est pair " est une proposition vraie.
- " Tout carrée est un parallélogramme " est une proposition vraie.
- o "Tout nombre pair es divisible par 4" est une proposition fausse.
- o "x + y = z" n'est pas une proposition.
- o "P(x): $x \in \mathbb{R}$, $x^2 x < 0$ " est une fonction propositionnelle.

P(0) est une proposition fausse mais $P\left(\frac{1}{2}\right)$ est une proposition vraie

o "P(n,m): n+m=10 avec n,m $de\mathbb{N}$ " est une fonction propositionnelle P(4;6) est une proposition vraie mais P(2;7) est une proposition est fausse.

Application 0;

Déterminer la vérité de chacun des propositions suivantes :

- $\bullet \quad P: "\left(\frac{\sqrt{7}}{\sqrt{3}}\right)^2 = \frac{7}{3} ".$
- $Q: \sqrt[4]{3+\sqrt{5}} \times \sqrt{3-\sqrt{5}} \in \mathbb{N}$ ".
- R:"L'équation $x^2 3x + 5 = 0$ admet deux solutions dans \mathbb{R} ".

II. Les quantificateurs :

Activité @:

1. Mettre une croix (x) dans la case qui convient :

Proposition	Vrai	Faux
 Le carré de tout nombre réel est positif. 		
 Il existe un nombre réel inférieur strictement à 1. 		
Tout nombre réel est décimal.		
• L'équation $x^2 = 0$ admet une unique solution reélle.		

Les propositions précédentes apparaissent sous forme de phrases, mais on peut les écrire à l'aide des symboles.

Si on symbolise "pour tout " ou " quel que soit " avec le symbole ∀ et " Il existe au

moins" avec le symbole \exists , alors la première proposition du tableau devient $(\forall x \in \mathbb{R}): x^2 \ge 0$ et la deuxième devient $(\exists x \in \mathbb{R}): x < 1$. Les symboles \forall et \exists sont appelés les quantificateurs.

2. Compléter le tableau suivant en utilisant les symboles ∀ et ∃.

Proposition	Proposition à l'aide des quantificateurs
 Tous les entiers naturels sont positifs 	•
•	• $(\exists x \in \mathbb{R}): x^2 = -1$
• L'équation $3x - 2 = 0$ admet une solution réelle.	•
 Tout nombre réel est décimal. 	•
•	• $(\forall x \in \mathbb{R}): x^2 - x + 1 > 0$
• Pour tout réel x , il existe au moins un entier naturel n tel que $x < n + 1$	•
• $(\forall m \in \mathbb{N})(\exists n \in \mathbb{N}) : m = 2n$	•

Définitions :

Soit P(x) une fonction propositionnelle tel que x est un élément d'un ensemble E.

• Si P(x) est vraie pour tout élément de E on écrit : ($\forall x \in E$): P(x).

Le symbole "∀" s'appelle **quantificateur universel** et il se lit : **pour tout** ou **quel que soit**.

 S'il existe au moins un élément de E pour lequel P(x) est vraie on écrit : (∃x ∈ E): P(x).

Le symbole "∃" s'appelle **quantificateur existentiel** et il se lit : **il existe au moins**.

S'il existe un unique élément de E pour lequel P(x) est vraie on écrit :
 (∃! x ∈ E): P(x).

Le symbole "∃!" s'appelle *quantificateur existentiel de l'unicité* et il se lit : *il existe un unique*.

O Exemples:

- o *P*: "($\forall x \in \mathbb{R}$): 2x + 1 = 0" est une proposition fausse parce que *si x* = 0, *alors* $2 \times 0 + 1 = 0$ est faux.
- o Q: "(∃ $n \in \mathbb{N}$): 2n 4 = 0" est une proposition vraie car l'entier n = 2 vérifie 2n 4 = 0.
- o R: "(∃! $x \in \mathbb{R}$): $x^2 2x + 1 = 0$ " est une proposition vraie parce que 1 est la seule solution de l'équation $x^2 2x + 1 = 0$.

Application 2:

Réécrire les propositions suivantes en utilisant les quantificateurs logiques.

- \triangleright P₁: "La valeur absolue de tout nombre réel non nul est strictement positive".
- $ightharpoonup P_2$: "Il existe au moins un nombre réel x tel que $2x^2 3x = 0$ ".
- P₃: "L'équation $x 2\sqrt{x} + 1 = 0$ admet une unique solution réelle".
- P₄: "Le polynôme $P(x) = x^3 + 2x^2 3x + 1$ admet au moins une racine".
- $ho P_5$: "Pour tout nombre réel x, il existe un unique entier N tel que $N \le x < N+1$ ".
- \triangleright P₆: "Il existe un entier multiple de tous les autres".

O_Remarques:

- On peut inverser deux quantificateurs universels ou deux quantificateurs existentiels.
- ✓ On ne peut a priori pas inverser un quantificateur existentiel avec un quantificateur universel.

O Exemples:

Les propositions " $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$: x + y = 2" et " $(\forall y \in \mathbb{R})(\forall x \in \mathbb{R})$: x + y = 2" ont la même valeur de vérité.

Les propositions " $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})$: x + y = 2" et " $(\forall y \in \mathbb{R})(\exists x \in \mathbb{R})$: x + y = 2" n'ont pas la même valeur de vérité. La première est fausse mais la deuxième est vraie.

Exercice O:

Déterminer la valeur de vérité de chacun des propositions suivantes :

- $P_1 : "(\exists x \in \mathbb{R}) : x^2 + x 1 = 0".$
- P_2 : " $(\forall x \in \mathbb{R})$: $x^2 + 3x + 7 < 0$ ".
- $P_3 : "(\forall x \in \mathbb{R})(\exists y \in \mathbb{R}) : x \le y".$
- $P_4: "(\exists y \in \mathbb{R})(\forall x \in \mathbb{R}): x \leq y".$
- $P_5 : "(\forall y \in \mathbb{R})(\forall x \in \mathbb{R}): x \leq y".$
- P_6 : " $(\forall x \in \mathbb{R})(\forall y \in \mathbb{R})$ ": $x \le y$ ".

III. OPERATIONS SUR LES PROPOSITIONS :

1. La négation d'une proposition :

Définition :

La négation d'une proposition P, noté \bar{P} ou P, est la proposition qui vraie si P est fausse et qui est fausse si P est vraie.

P	\overline{P}	Ce tableau est appelé le
V	F	tableau de vérité de la
F	V	négation.

O Exemples:

- La négation de la proposition 3 > 2 est $3 \le 2$.
- La négation de la proposition $(-2)^2 = -4$ est $(-2)^2 \neq -4$.
- o La négation de la proposition -3 ∈ \mathbb{N} est -3 ∉ \mathbb{N} .

Propriété:

- La négation de la proposition " $(\forall x \in E): P(x)$ " est " $(\exists x \in E): \overline{P}(x)$ ".
- La négation de la proposition " $(\exists x \in E): P(x)$ " est " $(\forall x \in E): \overline{P}(x)$ ".
- La négation de la proposition " $(\forall x \in E)(\exists y \in E) : P(x,y)$ " est : " $(\exists x \in E)(\forall y \in E) : \bar{P}(x,y)$ ".
- La négation de la proposition : " $(\exists x \in E)(\forall y \in E) : P(x, y)$ " est : " $(\forall x \in E)(\exists y \in E) : \bar{P}(x, y)$ ".

O Remarques:

- ✓ Les propositions P et \bar{P} ont même valeur de vérité.
- ✓ On a le tableau suivant :

Le symbole	>	<	<u>≥</u>	≤	=	€
Sa négation	≤	≥	<	>	≠	∉

O Exemples:

La proposition P	La négation $ar{\it P}$
$\circ (\forall x \in \mathbb{R}) : x \ge 1$	$\circ (\exists x \in \mathbb{R}) : x < 1$
\circ $(\exists n \in \mathbb{N}): \sqrt{n} \in \mathbb{N}$	\circ $(\forall n \in \mathbb{N}): \sqrt{n} \notin \mathbb{N}$
$ (\forall x \in \mathbb{R}): x^2 + x + 1 \ge 0 $	○ $(\exists x \in \mathbb{R}): x^2 + x + 1 < 0$
$ \circ (\forall n \in \mathbb{N}) \ (\exists m \in \mathbb{N}) : m \ge n $	\circ $(\exists n \in \mathbb{N}) \ (\forall m \in \mathbb{N}) : m < n$

Application 3:

Compléter le tableau suivant :

	La proposition <i>P</i>	La négation $ar{P}$
•	$(\forall x \in \mathbb{R}) : x^2 + 2x + 1 \ge 0$	•
•	$(\forall x \in \mathbb{N}) : x^2 - 2x < 0$	•
•	$(\forall x \in \mathbb{Q}) : \sqrt{x} \notin \mathbb{Q}$	•

•	$(\exists x \in \mathbb{R}): x \in \mathbb{Q}$	•
•	$(\exists x \in \mathbb{N}) : x \text{ est pair}$	•
•	$(\exists x \in \mathbb{N})(\forall y \in \mathbb{N}): x \prec y$	•
•	$(\forall x \in \mathbb{Z})(\exists y \in \mathbb{Z}) : x - y = 3$	•
•	Tout triangle est rectangle	•
•	$(\forall x \in \mathbb{Q})(\forall y \in \mathbb{Z}): x \times y \in \mathbb{Z}$	•

2. La disjonction

Définition :

La disjonction de deux propositions P et Q est la proposition qui est vraie si au moins l'une des deux propositions est vraie on la note P ou Q ou $P \lor Q$.

Tableau de vérité de P ou Q :

P	Q	P ou Q
V	V	V
V	F	V
F	V	V
F	F	$oldsymbol{F}$

O Exemples:

- La proposition : $(-5 \ge 2)$ ou $(5 \ge 2)$ est vraie.
- La proposition : (3 + 2 = 6) ou $(-3 \ge 1)$ est fausse.
- o La proposition : $(-5 ∈ \mathbb{R})$ ou (3 divise 12) est vraie.
- o La proposition : (∃x ∈ ℝ): $x^2 = -1$ ou $\sqrt{2} ∈ ℚ$ est fausse.
 - 3. La conjonction

Définition :

La conjonction de deux propositions P et Q est la proposition qui est vraie uniquement si les deux propositions P et Q sont vraies en même temps on la note : P et Q ou $P \land Q$.

Tableau de vérité de (P et Q):

P	Q	P et Q
V	V	V
V	F	F
F	V	$\boldsymbol{\mathit{F}}$
F	F	$\boldsymbol{\mathit{F}}$

O Exemples:

- La proposition : $(-5 \ge 2)$ et $(5 \ge 2)$ est fausse.
- La proposition : (3 + 2 = 6) et $(-3 \ge 1)$ est fausse.
- La proposition : $(-5 \in \mathbb{R})$ et (3 divise 12) est vraie.
- La proposition : $(\exists x \in \mathbb{R})$: $x^2 = -1$ et $\sqrt{2} \in \mathbb{Q}$ est fausse.

Application 4:

Déterminer la valeur de vérité de chacune des propositions suivantes :

- P_1 : (3 est impair) et (3 = 5).
- P_2 : $(4 \times 8 = 20)$ ou $(10 \ est \ pair)$.
- P_3 : (9-3=6) et $(-1 \in \mathbb{Z})$.
- P_4 : $(-4 \in \mathbb{N})$ ou $(\forall x \in \mathbb{R}: x^2 + 1 > 0)$.

O Remarque (lois de Morgane)

Soient P et Q deux propositions.

- ✓ La négation de (P et Q) est $(\overline{P} \text{ ou } \overline{Q})$.
- ✓ La négation de (P ou Q) est $(\overline{P}$ et \overline{Q}).

O Exemples:

• La négation de « $(0 \ge 2)$ et (1 + 5 = 3)» est : « (0 < 2) ou $(1 + 5 \ne 3)$ ».

La négation de « $(5 \in \mathbb{N})$ ou $(\forall x \in \mathbb{R}: x^2 > 0)$ » est : « $(5 \notin \mathbb{N})$ et $(\exists x \in \mathbb{R}: x^2 \leq 0)$ ».

Application 5:

Nier les deux propositions suivantes :

- P: " $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})$: $x \leq y$ ou $x \geq y$ ".
- Q: " $(\exists x \in \mathbb{R})(\forall y \in \mathbb{R})$: $y^2 = x \text{ et } x > 0$ ".

4. L'implication

Définition :

L'implication de deux propositions P et Q est la proposition qui est fausse seulement dans le cas P est vraie et Q est fausse. On la note par $P \Rightarrow Q$ et se lit : P implique Q.

Tableau de vérité de $P \Rightarrow Q$:

P	Q	$P \Rightarrow Q$
V	V	V
V	F	F
F	V	V
F	F	V

Exemples:

- o La proposition 2 > 1 ⇒ 2 + 3 = -1 est fausse.
- La proposition $3 \times 2 = 9 \Rightarrow 5 1 = 20$ est vraie.
- La proposition $(3^2 = 9) \Rightarrow 4 1 = 3$ est vraie.
- La proposition $2 < 0 \Rightarrow 2 + 3 = 5$ est vraie.

O Remarques

- ✓ P \Rightarrow Q signifie si P est vraie, alors Q est vraie.
- ✓ L'implication $Q \Rightarrow P$ est appelée l'implication réciproque de l'implication $P \Rightarrow Q$.
- \checkmark Pour montrer que $P \Rightarrow Q$ est vrai, on suppose que P est vraie, et on montre que Q est vraie.
- ✓ Les propositions $P \Rightarrow Q$ et (\bar{P} ou Q) ont la même valeur de vérité.

O Exemples:

- o " $x = 2 \Rightarrow x^2 = 4$ " signifie: "si x = 2, alors $x^2 = 4$ " et c'est une proposition vraie.
- o " $x^2=4 \Rightarrow x=2$ " est l'implication réciproque de " $x=2 \Rightarrow x^2=4$ " et c'est une proposition fausse.
- o Soit *x* un réel, Montrons que : $|x| \le 3 \Rightarrow |2x 4| \le 10$

On a:
$$|x| \le 3 \Rightarrow -3 \le x \le 3$$

 $\Rightarrow -6 \le 2x \le 6$
 $\Rightarrow -10 \le 2x - 4 \le 2$
 $\Rightarrow -10 \le 2x - 4 \le 10$
 $\Rightarrow |2x - 4| \le 10$.

 $Donc: |x| \le 3 \Longrightarrow |2x - 4| \le 10.$

Application ©:

- **1.** Soit $n \in \mathbb{N}$. Montrer que n pair $\Rightarrow n^2$ pair.
- **2.** Montrer que $(\forall x \in \mathbb{R}^+)$: $\left(\frac{1}{1+\sqrt{x}} = 1 \sqrt{x} \Longrightarrow x = 0\right)$.

Exercice 2:

Soient x et y de \mathbb{R} . Montrer que $1 + xy = x + y \Rightarrow x = 1$ ou y = 1.

Exercice 3:

- 1. Montrer que $(\forall x \in \mathbb{R})$: $3 \le x \le 5 \implies \frac{1}{4} \le \frac{1}{x-1} \le \frac{1}{2}$. 2. a. Montrer que $(\forall a \in \mathbb{R})$ $(\forall b \in \mathbb{R})$: $a^2 + b^2 = 0 \Rightarrow a = b = 0$.
- - **b.** En déduire $(\forall x \in \mathbb{R}^+)$ $(\forall y \in \mathbb{R}^+)$: $x + y + 2 = 2\sqrt{x} + 2\sqrt{y} \Rightarrow x = y = 1$.

5. L'équivalence

Définition :

note par $P \Leftrightarrow Q$ et se lit « P est équivalente à Q » ou bien « P si et seulement si Q ».

 $P \Leftrightarrow Q$ est vraie seulement si P et Q ont même valeur de vérité.

Tableau de vérité de $P \Leftrightarrow Q$:

P	Q	$P \Leftrightarrow Q$
V	V	V
V	F	$oldsymbol{F}$
F	V	$oldsymbol{F}$
F	F	V

Exemple:

Soient *a* et *b* deux nombres réels

Si ab = 0, alors a = 0 ou b = 0.

Inversement, si a = 0 ou b = 0, alors ab = 0.

Donc on a l'équivalence suivant $ab = 0 \Leftrightarrow a = 0$ ou b = 0.

Application 0:

Déterminer la valeur de vérité de chacune des propositions suivantes :

- P_1 : 3 est impair \Leftrightarrow 3 = 5.
- $P_2: 4 \times 8 = 20 \Leftrightarrow 10 \text{ est pair.}$
- $P_3: -1 \in \mathbb{Z} \Leftrightarrow 9-3=6.$
- $P_4: -4 \in \mathbb{N} \iff (\forall x \in \mathbb{R}): x^2 + 1 > 0.$

Lois logiques IV. -CONTO

Définition :

Une loi logique est une proposition qui est vraie quel que soit la vérité des propositions que la constitue.

Exemple:

P et Q sont deux propositions. Montrons que $\exists (P \Leftrightarrow Q) \Leftrightarrow (\exists P \Leftrightarrow Q)$ est une loi logique.

P	Q	$P \Leftrightarrow Q$	$\exists (P \Leftrightarrow Q)$	$\exists P \Leftrightarrow Q$	$\exists (P \Leftrightarrow Q) \Leftrightarrow (\exists P \Leftrightarrow Q)$
V	V	V	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	V
V	F	F	V	V	V
F	V	\boldsymbol{F}	V	V	V
F	F	V	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	V

La proposition $\exists (P \Leftrightarrow Q) \Leftrightarrow (\exists P \Leftrightarrow Q)$ est toujours vraie quelles que soient les valeurs de vérité de P et Q. Donc elle est une loi logique.

Application 8:

Montrer que les propositions suivantes sont des lois logiques :

 $P \Leftrightarrow \exists (\exists P)$

- $\exists (P \Rightarrow Q) \Leftrightarrow P \ et \exists Q$
- $(P \Rightarrow Q) \Leftrightarrow (\exists Q \Rightarrow \exists P)$
- $[P \ et \ (Q \ ou \ R)] \Leftrightarrow [(P \ et \ Q) \ ou \ (P \ et \ R)]$
- $[P \ ou \ (Q \ et \ R)] \Leftrightarrow [(P \ ou \ Q) \ et \ (P \ ou \ R)] \quad \bullet \quad [(P \Rightarrow Q) \ et \ (Q \Rightarrow R)] \Rightarrow (P \Rightarrow R)$

Raisonnements mathématiques

1. Raisonnement par contre-exemple:

🎤 🖍 Propriété :

Pour prouver que la proposition " $(\forall x \in E)$: P(x)" est fausse, il suffit de prouver que la proposition $(\exists x \in E): \overline{P(x)}$ est vraie.

O Exemple:

Montrons que " $(\forall x \in \mathbb{R})$: 2x - 1 = 0" est fausse.

Il suffit de montrer que " $(\exists x \in \mathbb{R})$: $2x - 1 \neq 0$ " est vraie.

On a pour $x = 0 : 2 \times 0 - 1 \neq 0$

Alors " $(\exists x \in \mathbb{R})$: $2x - 1 \neq 0$ " est vraie.

Par suite " $(\forall x \in \mathbb{R})$: 2x - 1 = 0" est fausse.

Application 2:

Montrer que les propositions suivantes sont fausses :

- P_1 : " $(\forall x \in \mathbb{R})$: x + 1 = 2".
- P_2 : " $(\forall x \in \mathbb{R}^*)$: $x + \frac{1}{x} \ge 2$ ".
- $P_3: (\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+): \sqrt{a+b} = \sqrt{a} + \sqrt{b}.$
 - 2. Raisonnement par la contraposée :

Propriété :

Pour démontrer l'implication $P \Rightarrow Q$, on peut essayer de démontrer la contraposée $7Q \Rightarrow 7P$ qui est parfois plus simple.

O Exemple:

Montrons que $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+)$: $x \neq y \Rightarrow x^3 + 4x \neq y^3 + 4y$.

Essayons de montrer $(\forall x \in \mathbb{R}^+)(\forall y \in \mathbb{R}^+): x^3 + 4x = y^3 + 4y \Rightarrow x = y$.

On a
$$x^3 + 4x = y^3 + 4y \Rightarrow x^3 - y^3 + 4x - 4y = 0$$

$$\Rightarrow (x - y)(x^2 + xy + y^2) + 4(x - y) = 0$$

$$\Rightarrow (x - y)(x^2 + xy + y^2 + 4) = 0$$

$$\Rightarrow x - y = 0 \text{ car } x^2 + xy + y^2 + 4 \neq 0 \text{ du fait que } x \in \mathbb{R}^+\text{et } y \in \mathbb{R}^+.$$

Application @@:

- **1.** Montrer que : $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R}): a+b>1 \Rightarrow a>\frac{1}{2}$ ou $b>\frac{1}{2}$. **2.** Montrer que : $(\forall x>1)(\forall y>1): x\neq y \Rightarrow \frac{x}{1+x^2}\neq \frac{y}{1+y^2}$.
 - 3. Raisonnement par les équivalences successives :

🎤 🎤 Propriété :

Soient P, R et Q trois propositions.

Le raisonnement par les équivalences successives se basé sur la loi logique suivant :

$$[(P \Leftrightarrow R)et (R \Leftrightarrow Q)] \Rightarrow (P \Leftrightarrow Q)$$

Exemple:

Montrons que $(\forall a \in \mathbb{R})(\forall b \in \mathbb{R}): a^2 + b^2 = 2ab \Leftrightarrow a = b$

On a:
$$a^2 + b^2 = 2ab \Leftrightarrow a^2 - 2ab + b^2 = 0$$

$$\Leftrightarrow (a-b)^2 = 0$$

$$\Leftrightarrow a - b = 0$$

$$\Leftrightarrow a = b$$
.

- **1.** Montrer que : $(\forall x \neq -1)(\forall y \neq -1)$: $\frac{x}{1+x} = \frac{y}{1+y} \Leftrightarrow x = y$.
- **2.** Montrer, pour tout x de \mathbb{R}^+ , que $(\sqrt{2x+2}=1+\sqrt{x}) \Leftrightarrow (x=1)$.
- **3.** Montrer, pour tout x de $[1; +\infty[$, que $\frac{\sqrt{x-1}}{r} \le \frac{1}{2}$.

- **1.** Soit x un réel. Montrer que : $\frac{2}{\sqrt{1+x^2}} = 1 \iff x = \sqrt{3}$ ou $x = -\sqrt{3}$.
- **2.** Montrer que pour tout x de \mathbb{R} : $|x-1| < \frac{1}{2} \Leftrightarrow \frac{2}{5} < \frac{1}{x+1} < \frac{2}{3}$.
- **3.** Soient $a \in [1; +\infty[$ et $b \in [4; +\infty[$. Montrer que

$$\sqrt{a-1} + 2\sqrt{b-4} = \frac{a+b}{2} \Leftrightarrow a = 2 \text{ et } b = 8.$$

4. Raisonnement par disjonction des cas:

Propriété :

Soient P, R et Q trois propositions.

Pour montrer que $[(P \ ou \ Q) \Rightarrow R]$ on montre parfois $[P \Rightarrow R \ et \ Q \Rightarrow R]$.

O Exemple:

Montrons que $(\forall x \in \mathbb{R}): \sqrt{1+x^2} + x > 0$.

- Si *x* ≥ 0, alors $\sqrt{1 + x^2} + x > 0$ du fait que $\sqrt{1 + x^2} > 0$.

- Supposons que x < 0.

On a
$$1 + x^2 > x^2 \Rightarrow \sqrt{1 + x^2} > \sqrt{x^2}$$

$$\Rightarrow \sqrt{1 + x^2} > |x|$$

$$\Rightarrow \sqrt{1 + x^2} > -x$$

$$\Rightarrow \sqrt{1 + x^2} + x > 0$$

Donc dans tous les cas de x, $\sqrt{1 + x^2} + x > 0$.

Par suite $(\forall x \in \mathbb{R})$: $\sqrt{1+x^2} + x > 0$.

Application OO:

Soit $n \in IN$. Montrer que $n^2 + n$ est pair.

Exercice 5:

Montrer que $(\forall x \in \mathbb{R}) : |x-1| \le x^2 - x + 1$.

5. Raisonnement par absurde:

Propriété :

Soient P et Q deux propositions.

Le raisonnement par absurde est basé sur la loi logique $[\bar{P} \Rightarrow (Q \ et \ \bar{Q})] \Rightarrow P$.

O Exemple:

Soit n un entier naturel tel que n^2 est pair. Montrons que n est pair :

Supposons n est impair, alors $(\exists k \in IN)$: n = 2k + 1.

Donc $n^2 = 4k^2 + 4k + 1$ est impair, ce qui est contredit le fait que n^2 est pair.

D'où d'après le principe du raisonnement par l'absurde, n est pair.

Application OG:

Soient x, y et z de \mathbb{R}_+^* tels que $x+y+z<\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ et xyz>1.

Montrer que $x \neq 1$, $y \neq 1$ et $z \neq 1$.

6. Raisonnement par récurrence

Propriété :

Le principe de récurrence permet de montrer qu'une fonction propositionnelle P(n) vraie pour tout entier naturel $n \ge n_0$ avec $n_0 \in \mathbb{N}$.

La démonstration par récurrence se déroule en trois étapes :

- **Initialisation**: On prouve que P(n) est vraie pour $n = n_0$.
- **Hérédité** : On prend $n \ge n_0$ donné on suppose que P(n) est vraie, et on démontre que P(n+1) est vraie.
- **Conclusion** : On conclut que, pour tout $n \ge n_0$, P(n) est vraie.

O Exemple:

Montrons que 3 divise $4^n - 1$ pour tout $n \in IN$.

Pour n = 0, $4^0 - 1 = 0$ et 3 divise 0. Donc la propriété est vraie pour n = 1.

Soit $n \in IN$, supposons que 3 divise $4^n - 1$.

Montrons que 3 divise $4^{n+1} - 1$:

$$4^{n+1} - 1 = 4 \times 4^n - 1 = 3 \times 4^n + 4^n - 1$$
.

D'après l'hypothèse de la récurrence, il existe un entier naturel k tel que $4^n - 1 = 3k$.

Donc
$$4^{n+1} - 1 = 3 \times 4^n + 3k = 3(4^n + k) = 3k'$$
 et $k' \in IN$.

Ce qui entraine que 3 divise $4^{n+1} - 1$.

D'où d'après le principe de récurrence on conclut que 3 divise $4^n-1 \ (\forall n \in \mathbb{N})$.

Application ∅∅:

- **1.** Montrer que $(\forall n \in \mathbb{N}) : 2/5^n 3^n$
- **2.** Montrer que $(\forall n \in \mathbb{N}): 1+2+3+...+n = \frac{n(n+1)}{2}$
- **3.** Montrer que $(\forall n \in \mathbb{N}): 1+2+2^2+\ldots+2^n = 2^{n+1}-1$.