mpi* - lycée montaigne informatique

TD14 (2) (élément de réponse)

Exercice 1

Question 1. Arbre de syntaxe abstraite.

Question 2. Les formules atomiques sont les feuilles de l'arbre : (x < y), (x < z), (z < y).

Question 3. La formule ne contient que des variables liées représentées par x, y, z.

Question 4. Les termes sont les symboles situés dans les prédicats des formules atomiques. Ici, il n'y a que x, y et z. Le seul prédicat est < exprimé, sous une forme infixe.

Exercice 2

Question 1. On peut proposer la formule suivante : $(\forall y.q(x,f(y,k))) \rightarrow ((\forall x.\exists y.p(f(x,y))) \lor q(x,z))$. Son arbre de syntaxe abstraite est le suivant. Les variables encadrées sont libres.

Question 2.

Question 3. Les variables libres de φ étant x et z, sa clôture universelle est $\varphi' = \forall x. \forall z. \varphi$.

□ 3.1. Avec les choix de notations adoptés, cette écriture peut être maladroite. On renomme certaines *variables liées* de manière à bien distinguer toutes les variables.

$$\varphi'' = \forall x. \forall z. (\forall y. q(x, f(y, k))) \rightarrow ((\forall v. \exists w. p(f(v, w))) \lor q(x, z))$$

Exercice 3

Substituer x par f(y,z) revient à remplacer toutes les occurrences de la variable libre x par l'expression f(y,z) dans laquelle y et z sont aussi des variables libres.

Question 1. La formule φ est écrite à l'aide de deux *variables liées* notées x et z et d'une *variable libre* notée y. Il convient d'abord de renommer la variable liée x pour éviter toute ambiguité de notation lors de la substitution.

$$\varphi = \forall u. \exists z. p(f(y, z), u)$$

Il devient évident que x n'est pas une variable libre de φ . La substitution ne modifie pas la formule.

$$\varphi^{\{x \leftarrow f(y,z)\}} = \varphi$$

mpi* - lycée montaigne informatique

Question 2. x est à présent une variable libre de φ mais z est une variable liée. On réécrit d'abord la formule :

$$\varphi = \forall y. \exists u. p(g(y, u, x), x)$$

La substitution donne alors :

$$\varphi^{\{x \leftarrow f(y,z)\}} = \forall y. \exists u. p(g(y,u,f(y,z)),f(y,z))$$

Question 3. Dans la troisième formule, *x* apparaît deux fois :

- une première fois dans p(h(w), x) comme variable libre;
- ullet une seconde fois dans q(x,f(z,z)) comme variable liée.

z apparaît deux fois dans f(z,z) comme variable liée. On commence par renommer les occurrences liées de x et z avant de procéder à la substitution.

$$\varphi^{\{x \leftarrow f(y,z)\}} = (\forall w.p(h(w),f(y,z))) \rightarrow (\forall u.\forall v.q(u,f(v,v)))$$

Noter que la formule peut être écrite sous la forme suivante :

$$\varphi^{\{x \leftarrow f(y,z)\}} = (\forall w.p(h(w),f(y,z))) \rightarrow (\forall x. \forall z.q(x,f(z,z)))$$

mais il convient d'être attentif à la portée de chaque variable.

Exercice 4

Question 1. On découpe la spécification en deux parties, selon que le motif apparaît ou non. Ces deux parties doivent être reliées par une conjonction.

$$\left\{ \begin{array}{l} (\exists i \in [0, l_t - l_m] \:.\: \forall j \in [0, l_m[\:.\: t[i+j] = m[j]) \to \\ (0 \leqslant r \leqslant l_t - l_m \land \forall j \in [0, l_m[\:.\: t[r+j] = m[j]) \\ (\forall i \in [0, l_t - l_m] \:.\: \exists j \in [0, l_m[\:.\: t[i+j] \neq m[j]) \to r = -1 \end{array} \right.$$

Attention aux quantificateurs : le motif apparaît lorsque l'on trouve une position i à partir de laquelle tous les indices j correspondent, et il n'apparaît pas lorsque quelle que soit la position i de départ, on peut trouver une position j invalidant l'égalité.

Question 2. Boucle interne : on continue tant qu'on n'a pas trouvé de différence entre le motif cherché et la sous-chaîne démarrant en *i*.

$$\forall k \in [0, j[\, . \, t[i+k] = m[k]]$$

Boucle externe : on continue tant qu'on n'a pas trouvé une occurrence du motif.

$$\forall k \in [0,i[\,.\,\exists j \in [0,l_m[\,.\,t[k+j] \neq m[j]$$

Exercice 5

Boucle interne : les caractères du segment t[i, i + k] sont tous égaux.

$$\forall j_1 \in [i,i+k[\,.\,\forall j_2 \in [i,i+k[\,.\,t[j_1]=t[j_2]$$

Notez que l'on peut obtenir une formule plus compacte en utilisant le premier élément du segment t[i] comme témoin pour les comparaisons.

$$\forall j \in [i,i+k[\,.\,t[i+j]=t[i]$$

Boucle externe : r contient la longueur de la plus longue séquence répétée du segment t [0,i[, c'est-à-dire qu'il existe effectivement une séquence de longueur r et qu'il n'en existe pas de strictement plus longue. Aussi, l'élément t[i-1], s'il existe, est différent de t[i]. On l'écrit ici avec trois formules (qu'on peut combiner par une conjonction). Dans les formules ci-dessous, on utilise le premier élément du segment comme base des comparaisons.

$$\left\{ \begin{array}{l} i>0 \rightarrow t[i-1] \neq t[i] \\ \exists i \in [0,n-r] \,. \, \forall k \in [0,r[\,.\,t[i+k]=t[i] \\ \forall r'.r'>r \rightarrow \forall i \in [0,n-r'] \,. \, \exists k \in [0,r'[\,.\,t[i+k]\neq t[i] \end{array} \right.$$

mpi* - lycée montaigne informatique

Exercice 6

Question 1.

$$\frac{\frac{\overline{\forall x.\varphi,\neg\varphi\vdash\forall x.\varphi}}{\overline{\forall x.\varphi,\neg\varphi\vdash\varphi}} \ \forall_{e}}{\frac{\overline{\forall x.\varphi,\neg\varphi\vdash\varphi}}{\overline{\forall x.\varphi,\neg\varphi\vdash\bot}} \ \neg_{e}} \ x\notin (\forall x.\varphi,\bot)}{\frac{\overline{\forall x.\varphi,\neg\varphi\vdash\bot}}{\overline{\forall x.\varphi\vdash\neg\exists x.\neg\varphi}} \ \neg_{i}} \ \exists_{e}$$

Question 2.

$$\begin{array}{c|c} \overline{x=y\vdash x=y} & \overline{x=y\vdash y=y} =_i \\ \hline \underline{x=y\vdash y=x} & =_e \\ \hline \underline{(x=y\vdash y=x) \rightarrow_i} & y\notin\varnothing \\ \hline \underline{(x=y\rightarrow y=x) \rightarrow_i} & x\notin\varnothing \\ \hline \underline{(x=y\rightarrow y=x) \rightarrow_i} & x\notin\varnothing \\ \hline (x=y\rightarrow y=x) & x\notin\varnothing \\ \hline (x=y\rightarrow y=x) & y\in\varnothing \\ (x=y\rightarrow y=x) & y\in\varnothing \\ \hline (x=y\rightarrow y=x) & y\in\varnothing \\ (x=y\rightarrow y=x) & y\in\varnothing \\ \hline (x=y\rightarrow y=x) & y\in\varnothing \\ (x=y\rightarrow y=x) &$$

Question 3. On note φ la formule $x=z \wedge y=z$. Note : le séquent $\varphi \vdash x=z$ en haut à droite est obtenu par la substitution $(x=y)^{\{y\leftarrow z\}}$ permise par la prémisse à sa gauche.

$$\frac{\overline{\varphi \vdash \varphi}}{\varphi \vdash y = z} \stackrel{\wedge_e}{\wedge_e} \frac{\overline{\varphi \vdash \varphi}}{\varphi \vdash x = z} \stackrel{\wedge_e}{=_e} z \notin (x = y) \\ = \overline{\frac{\varphi \vdash x = y}{\exists z.x = z \land y = z \vdash x = y}} \stackrel{\exists_e}{\exists z.x = z \land y = z) \rightarrow x = y} \stackrel{\forall_e}{\to} \psi \notin \emptyset \\ \frac{\vdash \forall y. (\exists z.x = z \land y = z) \rightarrow x = y}{\vdash \forall x. \forall y. (\exists z.x = z \land y = z) \rightarrow x = y} \forall_i$$