	Date / /
	Time Complexity Analysis
	Privaity Queuls
(1)	Time Complexity for Building Priority Dune using
	Time Complexity for Building Priority Dune using
	· m + 20 00 30 11 1 14 14
<u>→</u>	We call the max heapify function in a bottom to
	- (AGGREGATE METHOD) KIPPO
\rightarrow	Amortized Cost Analysis -> assuming a complete
	tree with n = 2h+19-1 where In is height tree
>	Bettom most level those are 2 nodes, but we
	dont call max heapthy on any of this node.
	50 (ot = 0
	At next to bottom level, 2 h-1 nodes, each may
	each may move of levels.
	: Yotal time = $T(n) - \sum_{i=1}^{n} \frac{2^{n-i}}{2^{n-i}} = \sum_{i=1}^{n} \frac{2^{n-i}}{2^{n-i}}$
	1=0 1-0 24
,	N. S.
	$T(n) = 2^{n}$
	j=0 20 (5-1)
	5 n 5 j 2 n h+1
	- 2 2 = 2
	2004 J=0 explained in next tage (APPDX A)
	Lake (HELDY, H)

Scanned by CamScanner

00	M5	Page No.	
Date	1	1	
in	Pri	outy	Øw

2) AM Cost Analysis INSERT in Priority Que
•	Mount case analysis -> We push the new value at, the end of array, if its it has shighest poisouty it will mave to shift logn levels.
	Worst case complexity O(logn)
	Amortized Complexity Analysis
	I will use potential method.
->	Let to Si be the state of pay after ith operation. Sconsisting of ni nodes.
->	Let each individual insert take at most (worst) klogn; time.
7	Define potential function of 100 100 100 100 100 100 100 100 100 10
	$\phi = \begin{cases} 0 & \text{if } m_i = 0 \\ \text{kmilegn}_i & \text{the} \end{cases}$
	- mounting ith insort on a to now empty hear ->
	-(or since heap was non empty, n; ≥2
*	2 1-0/19 1 1-11/19 23/1-19
t de a	

Scanned by CamScanner

	# 1	Dom <i>5</i> Page No.
	Amortized Complexity for Insert =	
3	Complexity for hot front.	. 4 = -
	Morat Case > We replace top of the last element of array. To Priority Queue Structure, the last call may have lean surply.	maintain the max hearily
	: Wort Care - O(logn)	A
-) -)	Amortized Complexity using same hotential function a operation, number of nodes n C: = C: + O(D:) - O(D:	s before After ith
	< Klegn - Knilegn - Kn	i-, log ni-1
	= $K \log m_{i-1} + K(m_{i-1} - 1) \log m_{i-1} - 1)$ = $K \log m_{i-1} + K m_{i-1} \log (m_{i-1} - 1)$	- Kn; leg n;
	-Kmi-, logni-,	, a. 2.
	$= k \log \frac{m_{i-1}}{m_{i-1}-1} + k m_{i-1} \log 1$	$\frac{M_{i-1}}{M_{i-1}}$
	$\leq k \log m_{i-1} + k(\log l) (r$	

