Mean, Variance, Correlation Andy Field: Discovering Statistics Using IBM SPSS Statistics p.262 -292

Ads and Pralinés

Participants	1	2	3	4	5
Adverts Watched	5	4	4	6	8
Packets Bought	8	9	10	13	15

variance

$$s_X^2 = \frac{1}{I - 1} \sum_{i=1}^{I} (x_i - \overline{x})^2$$

Covariance:

cov(x, y)

$$= \frac{1}{I-1} \sum_{i=1}^{I} (x_i - \overline{x})(x_i - \overline{x})$$

$$= \frac{1}{I-1} \sum_{i=1}^{I} (x_i - \overline{x})(y_i - \overline{y}) =$$

Participants	1	2	3	4	5
Adverts Watched	5	4	4	6	8
Packets Bought	8	9	10	13	15

Standardization and Correlation Coefficient

Sample standard deviations:

$$s_X = \sqrt{\frac{1}{I-1} \sum_{i=1}^{I} (x_i - \overline{x})^2}$$

$$= 1.67$$
• -1 \le r \le 1
• r close to 1: (positive) correlation
• r close to -1: negative/anticorrelation
• r close to 0: no correlation

Pearson correlation coefficient:

$$r = \frac{COV(x, y)}{s_X s_Y} = \frac{4.25}{1.67 \cdot 2.92} = .87$$

Measure of effect size

