Unit 13

Analysis of Clocked Sequential Circuits

Logic Circuits (Spring 2022)

Example: Sequential Parity Checker

- (Odd) Parity bit
 - An extra bit added to detect errors in transmission
 - BBIOII
- $\begin{array}{c} 0\,0\,0\,0\,0\,0\,0\,1\\ 0\,0\,0\,0\,0\,0\,1\\ 0\,1\,1\,0\,1\,1\,0\\ 1\,0\,1\,0\,1\,0\,1\\ \end{array}$

7 Data Bits

-Parity Bits

101010101 0111000|0 8-Bit Word

- Parallel parity checker
 - Takes all inputs **simultaneously**
 - Generates a parity bit using a combinational circuit
 - Outputs 1 if okay and 0 otherwise
- Sequential parity checker
 - Takes a sequence of 0's and 1's as a single bit
 - Memorizes all past inputs to generate a parity bit
 - Outputs 1 if okay and 0 otherwise

13.1 A Sequential Parity Checker

Example: Sequential Parity Checker

- States: only two states are sufficient
 - Used to remember whether the total number of 1 inputs received is even or odd
 - The initial state(S_0): an even number of 1 inputs have been received
 - The other state (S_1) : an odd number of 1 inputs have been received
- State graph
 - If the circuit is in state S_0 and X = 1 is received, the circuit goes to state S_1
 - **–**

- Output for (even) parity checker
 - -Z=0 if the circuit is in state S_0
 - Z = 1 if the circuit is in state S_1

13.1 A Sequential Parity Checker

논리회로 13-3

Example: Sequential Parity Checker

- Wave form on when to take values as input
 - The value of X is read at the time of the active clock edge
 - The X input must be synchronized with the clock
 - The next should arrive before the next active clock edge
 - The clock is necessary to distinguish consecutive 0's or 1's on the input

13.1 A Sequential Parity Checker

Example: Sequential Parity Checker

■ State and Transition Table (Symbolic version)

Present	Next State		Present
State	X = 0	X = 1	Output
S ₀	S ₀	S ₁	0
S ₁	S ₁	S ₀	1

■ State assignment

$$S_0 \rightarrow 0$$

 $S_1 \rightarrow 1$

■ State and Transition Table (Binary version)

13.1 A Sequential Parity Checker

논리회로 13-5

Example: Sequential Parity Checker

- T flip-flop implementation
 - Flip-flop input equation T = X
 - Output equation Z = Q

Initialization

13.1 A Sequential Parity Checker

Example: Serial Adder

- Adds two *n*-bit binary numbers
 - $X = x_{n-1} \dots x_1 x_0, Y = x_{n-1} \dots x_1 x_0$
 - Two binary numbers are fed in serially, and the sum is read out serially
 - One pair of bits at a time
 - Carry should be saved for the next bit addition

Xi	y_i	c_i	C _{i + 1}	Si
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

13.3 State Tables and Graphs

논리회로 13-7

Example: Serial Adder

■ Timing diagram

10011 00110 11001

State graph

13.3 State Tables and Graphs

Procedure to Find the Output Sequence

- 1. Assume an initial state of the flip-flops (all flip-flops reset to 0 unless otherwise specified)
- 2. For the first input in the given sequence, determine the circuit output(s) and flip-flop inputs
- 3. Determine the new set of flip-flop states after the next active clock edge
- 4. Determine the output(s) that corresponds to the new states
- 5. Repeat 2, 3, and 4 for each input in the given sequence

13.2 Analysis by Signal Tracing and Timing Charts

논리회로 13-9

Procedure to Construct Transition Table

- 1. Determine the flip-flop input equations and output equations
- 2. Derive the next-state equation for each flip-flop using the characteristics equation
- 3. Plot a next-state map for each flip-flop
- 4. Combine these maps to form the transition table

13.3 State Tables and Graphs

Moore vs. Mealy Machine

- Moore machine
 - The output is a function of the present state only
 - The state graph has the output associated with the state
 - Example: sequential parity checker

13.2 Analysis by Signal Tracing and Timing Charts

논리회로 13-11

Moore vs. Mealy Machine

- Mealy machine
 - The output is a function of both the present state and the input
 - The state graph has the output associated with the arrow going between states
 - Example: serial adder

13.2 Analysis by Signal Tracing and Timing Charts

Analysis of a Moore Machine

■ Example circuit

■ Flip-flop input equations, output equation

$$D_A = X \oplus B'$$
 $D_B = X + A$ $Z = A \oplus B$

Next-state equations

$$A^+ = X \oplus B'$$
 $B^+ = X + A$

13.2 Analysis by Signal Tracing and Timing Charts

논리회로 13-13

Analysis of a Moore Machine

■ Next-state maps

■ Transition table

	A^+B^+		
AB	X = 0	X = 1	Z
00	10	01	0
01	00	11	1
11	01	11	0
10	11	01	1

Present	Next State		Present
State	X = 0	X = 1	Output (Z)
S ₀	S ₃	S ₁	0
S ₁	S ₀	S_2	1
S ₂	S ₁	S_2	0
S ₃	S ₂	S ₁	1

13.2 Analysis by Signal Tracing and Timing Charts

Analysis of a Moore Machine

■ State diagram

13.2 Analysis by Signal Tracing and Timing Charts

논리회로 13-15

Analysis of a Moore Machine

- Timing diagram
 - All state changes occur after the active edge
 - The input is synchronized with the clock ⇒ the input assumes its next value after each active edge
 - The output will only change when the state changes

X = 0 1 1 0 1 A = 0 1 0 1 0 1 B = 0 0 1 1 1 1 1 Z = (0) 1 1 0 1

13.2 Analysis by Signal Tracing and Timing Charts

Analysis of a Mealy Machine

■ Example circuit

Characteristic equation $Q^{+} = JQ' + K'Q$ Z Z Z Z Z Z

- Flip-flop input equations
- Next-state equations, output equation

$$\begin{split} A^+ &= J_A A' + K_A' A = XBA' + X'A \\ B^+ &= J_B B' + K_B' B = XB' + (AX)'B = XB' + X'B + A'B \\ Z &= X'A'B + XB' + XA \end{split}$$

13.2 Analysis by Signal Tracing and Timing Charts

논리회로 13-17

Analysis of a Mealy Machine

Next-state maps

AB^{X}	0	1
00	0	1
01	1	0
11	0	1
10	0	1
Z		

Transition table

	A+B-	+	Z	
AB	X = 0	1	X = 0	1
00	00	01	0	1
01	01	11	1	0
11	11	00	0	1
10	10	01	0	1

		Present
Present	Next State	Output
State	X = 0 1	X = 0 1
S ₀	S_0 S_1	0 1
S_1	S_1 S_2	1 0
S_2	S_2 S_0	0 1
S ₃	S ₃ S ₁	0 1

13.3 State Tables and Graphs

Analysis of a Mealy Machine

State diagram

13.3 State Tables and Graphs

논리회로 13-19

Analysis of a Mealy Machine

- Timing diagram
 - All state changes occur after the active edge
 - The input changes right after the active edge
 - The output will change when either the state or the input changes

$$X = 1$$
 0 1 0 1
 $A = 0$ 0 0 1 1 0 0
 $B = 0$ 1 1 1 1 0
 $Z = 1(0)$ 1 0(1) 0 1

13.2 Analysis by Signal Tracing and Timing Charts

General Model For Mealy Circuit

13.4 General Models for Sequential Circuits

논리회로 13-21

General Model For Moore Circuit

13.4 General Models for Sequential Circuits