Symmetric matrices $(A=A^T)$ arise naturally in many contexts, when a_{ij} depends Q7, the Hessian matrix of second partial derivatives from Multivariate Calculus). on i and j but not on their order (e.g. the friendship matrix from Homework $\bf 3$ The goal of this section is to observe some very nice properties about the eigenvectors of a symmetric matrix.

Example:
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix}$$
 is a symmetric matrix.
$$\begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix} = -1 \begin{bmatrix} -1 \\ 2 \end{bmatrix}, \text{ so } \begin{bmatrix} -1 \\ 2 \end{bmatrix} \text{ is a } -1\text{-eigenvector.}$$

$$\begin{bmatrix} 3 & 2 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 4 \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \text{ so } \begin{bmatrix} 2 \\ 1 \end{bmatrix} \text{ is a } 4\text{-eigenvector.}$$

Notice that the eigenvectors are orthogonal: $\begin{bmatrix} -1 \\ 2 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 0$. This is not a

Semester 1 2016, Week 14, Page 1 of 9

Theorem 1: Eigenvectors of Symmetric Matrices: If A is a symmetric matrix, Compare: for an arbitrary matrix, eigenvectors corresponding to distinct then eigenvectors corresponding to distinct eigenvalues are orthogonal. eigenvalues are linearly independent (week 11 p22).

Proof: Suppose ${\bf v}_1$ and ${\bf v}_2$ are eigenvectors corresponding to distinct eigenvalues λ_1 and λ_2 . Then

$$(A\mathbf{v}_1)\cdot\mathbf{v}_2=(\lambda_1\mathbf{v}_1)\cdot\mathbf{v}_2=\lambda_1(\mathbf{v}_1\cdot\mathbf{v}_2),$$

$$\mathbf{v}_1 \cdot (A\mathbf{v}_2) = \mathbf{v}_1 \cdot (\lambda_2 \mathbf{v}_2) = \lambda_2 (\mathbf{v}_1 \cdot \mathbf{v}_2).$$

But the two left hand sides above are equal, because (see also week 13 p25)
$$(A\mathbf{v}_1)\cdot\mathbf{v}_2=(A\mathbf{v}_1)^T\mathbf{v}_2=\mathbf{v}_1^TA^T\mathbf{v}_2=\mathbf{v}_1^TA\mathbf{v}_2=\mathbf{v}_1\cdot(A\mathbf{v}_2).$$

So the two right hand sides are equal: $\lambda_1({\bf v}_1\cdot \dot{{\bf v}}_2)=\lambda_2({\bf v}_1\cdot {\bf v}_2).$ Since $\lambda_1\neq\lambda_2,$ is symmetric it must be that $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$.

HKBU Math 2207 Linear Algebra

Semester 1 2016, Week 14, Page 2 of 9

Remember from week 11 §5

Definition: A square matrix A is diagonalisable if there is an invertible matrix P and a diagonal matrix D such that $A=PDP^{-1}$ **Diagonalisation Theorem**: An $n \times n$ matrix A is diagonalisable if and only if A has \boldsymbol{n} linearly independent eigenvectors. Those eigenvectors are the columns of $\boldsymbol{P}.$

Given our previous observation, we are interested in when a matrix has \boldsymbol{n} orthogonal this is the same as asking, when does a matrix have n orthonormal eigenvectors, i.e. eigenvectors. Because any scalar multiple of an eigenvector is also an eigenvector, when is the matrix P in the Diagonalisation Theorem an orthogonal matrix? **Definition**: A square matrix A is orthogonally diagonalisable if there is an orthogonal matrix P and a diagonal matrix D such that $A = PDP^{-1}$, or equivalently, $A = PDP^T$ We can extend the previous theorem (being careful about eigenvectors with the same eigenvalue) to show that any diagonalisable symmetric matrix is orthogonally diagonalisable, see the example on the next page.

Example: Orthogonally diagonalise $B=\begin{bmatrix} 4&-1&-1\\-1&4&-1\\-1&-1&4 \end{bmatrix}$, i.e. find an orthogonal P

Step 1 Solve the characteristic equation $\det(B-\lambda I)=0$ to find the eigenvalues.

This gives $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ as a basis for the 2-eigenspace, and $\begin{bmatrix} -1\\1\\0 \end{bmatrix}$, $\begin{bmatrix} -1\\0\\1 \end{bmatrix}$ as a basis for the 5-eigenspace. Notice the 2-eigenvector is orthogonal to both the 5-eigenvectors,

but the two 5-eigenvectors are not orthogonal.

Step 2A For each eigenspace of dimension >1, find an orthogonal basis (e.g. by Gram-Schmidt) Applying Gram-Schmidt to the above basis for the 5-eigenspace $\begin{bmatrix} -1 \\ 1 \end{bmatrix} \begin{bmatrix} -1/2 \\ 1 \end{bmatrix}$. To avoid fractions, let's use $\begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, which is still

gives
$$\left\{ \begin{array}{c} 1\\1\\0 \end{array}, \begin{array}{c} -1/2\\1 \end{array} \right\}$$
. To avoid fractions, let's use $\left\{ \begin{array}{c} 1\\1\\0 \end{array}, \begin{array}{c} -1\\2 \end{array} \right\}$

HKBU an orthogonal set.

emester 1 2016, Week 14, Page 4 of 9

 ${1/\sqrt{3} \choose 1/\sqrt{3}}$ is an orthonormal basis for the 2-eigenspace, and ${-1/\sqrt{2} \choose 1/\sqrt{2}}, {-1/\sqrt{6} \choose 1/\sqrt{3}}$ ${1/\sqrt{3} \choose 1/\sqrt{3}}$

is an orthonormal basis for the 5-eigenspace. Step 3 Put the normalised eigenvectors from Step 2B as the columns of P.

Step 4 Put the corresponding eigenvalues as the diagonal entries of
$$D$$
.
$$\begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix}, D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

Check our answer:
$$\begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \end{bmatrix} \begin{bmatrix} 2 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ -1/\sqrt{2} & 1/\sqrt{2} & 0 \\ -1/\sqrt{6} & -1/\sqrt{6} & 2/\sqrt{6} \end{bmatrix} = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 4 \end{bmatrix}.$$

A geometric illustration of "orthonormalising" the eigenvectors:

Semester 1 2016, Week 14, Page 5 of 9 HKBU Math 2207 Linear Algebra

This algorithm shows that any diagonalisable symmetric matrix is orthogonally diagonalisable.

Amazingly, every symmetric matrix is diagonalisable:

The name of the theorem is because the set of eigenvalues and multiplicities of a matrix is called its spectrum. There are spectral theorems for many types of linear Theorem 3: Spectral Theorem for Symmetric Matrices: A symmetric matrix is orthogonally diagonalisable, i.e. it has a orthonormal basis of eigenvectors. transformations.)

The reverse direction is also true, and easy:

Theorem 2: Orthogonally diagonalisable matrices are symmetric: If $A = PDP^{-1}$ and P is orthogonal and D is diagonal, then A is symmetric.

$$A^T = (PDP^{-1})^T = (PDP^T)^T = (P^T)^T D^T P^T = PDP^T = A.$$
 P is orthogonal

A diagram to summarise what we know about diagonalisation:

Diagonalisable matrices: has n linearly ndependent eigenvectors

distinct eigenvalues Matrices with n

Symmetric orthogonal

matrices: has n eigenvectors

Non-examinable: ideas behind the proof of the spectral theorem

linear transformations $((T\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (T\mathbf{v}))$ instead of symmetric matrices. So we want to show: a self-adjoint linear transformation has an orthogonal basis of eigenvectors. Because we need to work on subspaces of \mathbb{R}^n in the proof, we consider self-adjoint

The key ideas are:

- Proof: Every polynomial has a solution if we allow complex numbers. Apply this to 1. Every linear transformation (on any vector space) has a complex eigenvector. the characteristic polynomial.
 - eigenvector corresponding to a real eigenvalue. (We won't comment on the proof.) 2. Any complex eigenvector of a (real) self-adjoint linear transformation is a real
 - 3. Let v be an eigenvector of a self-adjoint linear transformation T, and w be any vector orthogonal to \mathbf{v} . Then $T(\mathbf{w})$ is still orthogonal to \mathbf{v} .

Proof: $\mathbf{v} \cdot (T(\mathbf{w})) = (T(\mathbf{v})) \cdot \mathbf{w} = \lambda \mathbf{v} \cdot \mathbf{w} = \lambda 0 = 0.$

any vector in W stays in W after applying T (i.e. W is an invariant subspace under T), eigenvector ${\bf v}.$ Let $W=({\rm Span}\,\{{\bf v}\})^\perp$, the subspace of vectors orthogonal to ${\bf v}.$ By 3, so we can consider the restriction $T:W \to W$, which is self-adjoint. So repeat this Putting these together: if $T:\mathbb{R}^n o\mathbb{R}^n$ is self-adjoint, then by 1 and 2 it has a real argument on W (i.e. use induction on the dimension of the domain of ${\cal T}$).