Trabajo final de la materia Estadística Bayesiana

# Modelos de regresión ordinal

Agustina Fernández Casafuz







#### Papanicolau (PAP):



#### Muestra:



#### Clasificación:







### Variables ordinales

#### Clasificación imagen médica:



#### Escala likert:



#### Rating servicio:



### Variables ordinales

En desacuerdo

Totalmente en

desacuerdo



Ni de acuerdo ni

en desacuerdo



¿Qué se hace?

Totalmente de

acuerdo

De acuerdo

### Modelos de regresión ordinales

Variable ordinal Y



Variable latente Ÿ

- acumulativo
- secuencial
- categoría adyacente

### Modelo de regresión ordinal acumulativo

#### Variable ordinal Y



#### Variable latente **Y**



$$Y = k \quad \leftrightarrow \quad \tau_{k-1} < \tilde{Y} \le \tau_k$$

$$P(Y = k) = F(\tau_k) - F(\tau_{k-1})$$

### Modelo de regresión ordinal acumulativo

#### Variable ordinal Y



#### Variable latente **Y**

$$\tilde{Y} = \eta + \epsilon$$

$$\eta = b_1 x_1 + b_2 x_2 + \dots$$



$$P(Y = k|\eta) = F(\tau_k - \eta) - F(\tau_{k-1} - \eta)$$

 $brm(Y \sim X, family = cumulative(), ...)$ 

### Se busca tesista de grado!



Analizar consenso o reliability en clasificación de imágenes médicas















Luciana Bruno lucianabruno@ic.fcen.uba.ar



### Modelo de regresión ordinal secuencial

Variable ordinal Y



Variables latentes  $\tilde{Y}_{k}$ 







$$P(Y=3) = P(\tilde{Y}_1 > \tau_1) * P(\tilde{Y}_2 > \tau_2) * P(\tilde{Y}_3 \le \tau_3) = \left(1 - P(\tilde{Y}_1 \le \tau_1)\right) * \left(1 - P(\tilde{Y}_2 \le \tau_2)\right)$$

$$P(Y = k|\eta) = F(\tau_k - \eta) \prod_{j=1}^{k-1} (1 - F(\tau_j - \eta))$$