

■ CS286: Al for Science and Engineering

Lecture 13: Al in Cryo EM (Part 1)

Lijie Wu (武丽杰)

PhD, Research Associate iHuman Institute, ShanghaiTech University Fall, 2023

A brief History of Cryo EM

Principle of Cryo EM

Short brief of Cryo ET

What AI could do in Cryo EM

Time Stamp

Number of Structures solved by CryoEM grows annually

Inconvenience of TEM on sample of biology

Strong interaction of electron beam with samples

High level radiation damage

Weak signal that could be detected

Why is difficult to solve CryoEM data

Particles: electron scattering

The probability that an electron is scattered is a function of sample thickness.

fraction of unscattered electrons							
Electron energy (keV)	10 nm	20 nm	30 nm	50 nm	100 nm	200 nm	300 nm
100	0.90	0.82	0.74	0.61	0.37	0.14	0.05
300	0.95	0.90	0.86	0.78	0.61	0.37	0.22

Mean free path is the distance in which fraction of unscattered electrons is = e^{-1} = 0.37

Electron Crystallography of Biological Molecules, Glaeser, Downing DeRosier, Chiu, Frank

Signals of Cryo EM

(f) $SNR = 2^{-4}$

(g) $SNR = 2^{-5}$

 $\sigma = 0$, $\sigma = 0.2$, and $\sigma = 1.2$. (e) $SNR = 2^{-3}$ (b) SNR=2⁰ (c) $SNR = 2^{-1}$ (d) $SNR = 2^{-2}$ (a) Clean

(h) $SNR = 2^{-6}$

(j) $SNR = 2^{-8}$

(i) $SNR = 2^{-7}$

Nobel Prize in Chemistry in 2017

Photo: Félix Imhof © UNIL [CC BY-SA 4.0] Jacques Dubochet Prize share: 1/3

Columbia University Medical Center Joachim Frank Prize share: 1/3

Photo: MRC Laboratory of Molecular Biology Richard Henderson Prize share: 1/3

From left: Jacques Dubochet, Joachim Frank and Richard Henderson

Shared the Nobel Prize in Chemistry in 2017

Method of Sample preparation

Dubochet

Method of single particle reconstruction

Frank et al Nature 1995

Joachim Frank

Processing of Cryo EM

Processing of the method of Cryo EM to solve a structure

Direct electron detection camera

Unmatched DQE (detective quantum efficiency) up to 80% Used for ground-breaking structural cryo-EM discoveries Best resolution and contrast High resolution imaging below 500 kDa Resolve differences with heterogeneous samples High quality cryo-tomography

Richard Henderson

Principle of Cryo EM

The equipment

Principle of Cryo-EM

Projection--slice theorem

The F.T. of a 2D projection of a 3D object is a central slice through the 3D F.T. of that object

Flowchart of Single Particle Reconstruction

► Motion Correction

■ Motion Correction in Cryosparc

Point Spread Function

- · Imperfect imaging:
 - Perfect signal -> Imperfect image

Multiplication in Fourier-space

CTF equations...

$$\gamma(\vec{s}) = \gamma(s,\theta) = -\frac{\pi}{2} \frac{C_s \lambda^3 s^4 + \pi \lambda z(\theta) s^2}{\sqrt{}}$$

REMEMBER! CTF ≈ a sine function that varies with frequency and defocus

 C_s : spherical aberration λ : wavelength electrons z: defocus

CTF Refienment

good

ice too thick

astigmatism

drift

立志成才极图谷民

CTF refinement in Cryosparc

Particle picking

Particle picking

Topaz (deep learning picking)

- it can be done manually -

Positive-unlabeled convolutional neural networks for particle picking in cryo-electron micrographs. Tristan Bepler, Andrew Morin, Micah Rapp, Julia Brasch, Lawrence Shapiro, Alex J. Noble & Bonnie Berger Nature Methods volume 16, pages1153–1160(2019)

2D alignment and classification

2D Classification

- Reject noisy particles
- 2D images classification
- 2D images alignment
- 2D images average

2D alignment

Align and average

Iteration 0

1241 prets 1017 prets 677 prets 1041 prets 2004 prets 2004 prets 1041 prets 1020 prets 1040 prets 1

Iteration 1

1041 ptch 842 ptch 697 ptch 569 ptc s

2042 ptch 569 ptc s

2042 ptch 569 ptc s

2044 ptch 242 ptch 241 ptch 241 ptch 237 ptc s

6047 ptc 560 A 9 ptc s

105 ptch 142 ptch 122 ptch 123 ptch 165 ptch 142 ptch 123 ptch 142 ptch 142 ptch 142 ptch 143 ptch 142 ptch 143 ptch 143

Iteration 5

Iteration 10

Initial volume reconstruction

Option 5: Central Slice Theorem

Option 5: Common lines

Initial volume reconstruction in Cryosparc

Final Model

- Small Sets of Particles.
- Low resolution map.
- Need further refinement.

Cycle 1500

Post processing (B sharping)

DeepEMhancer

EM Ready

Principle of Cryo ET

- In site experiment
- Single Particle

- Low dose
- Low resolution

Electron cryotomography

CryoET is here

Al in electron cryotomography

Method of Al in CryoEM

