MA1002 — STATISTICAL AVERAGES

UNIT 2

DR. JENIFER

Pranaov S

CONTENTS

1		ectation	2
	1.1	Mathematical Expectation	2
	1.2	Properties	2
2	Vari	Ance Properties of Variance	2
	2.1	Properties of Variance	3
	2.2	Moments	3
		2.2.1 Moments about the mean	3
		2.2.2 Moments about any point a	3
		2.2.3 Moments about the origin	3
	2.3	Relation between moments	4
3	Skev	wness	4
4	Kur	tosis	4

For more visit https://github.com/pranaovs/college-notes.

1 EXPECTATION

Expectation talks about the long term.

1.1 Mathematical Expectation

If X is a random variable which can assume any one of the values $x_1, x_2, x_3, \ldots, x_n$ with respective probabilities $p_1, p_2, p_3, \ldots, p_n$, then the expectation of X is defined as:

$$E(X) = x_1 p_1 + x_2 p_2 + \dots + x_n p_n = \sum x_i p_i$$

If X is a continuous random variable with probability density function f(x), then the expectation of X is defined as:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

1.2 Properties

- 1. E(c) = c where c is a constant
- 2. E(cX) = cE(X) where *c* is a constant
- 3. E(aX + b) = aE(X) + b where a and b are constants
- 4. E(X + Y) = E(X) + E(Y)
- 5. $E(XY) = E(X) \cdot E(Y)$, if X and Y are **independent** random variables

Note

• For a random variable, expectation is the average value of the variable.

•
$$E(X^2) = \sum x_i^2 p_i$$
 or $\int_{-\infty}^{\infty} x^2 f(x) dx$

2 VARIANCE

Variance tells us how much the values of a random variable differ from the mean.

$$Var(x) = \sigma^2 = E[X - E(X)]^2 = E(X^2) - [E(X)]^2$$

$$= \sum x_i^2 p_i - [\sum x_i p_i]^2$$

$$\sigma = \sqrt{Var(X)}$$

2.1 Properties of Variance

- 1. Var(c) = 0 where c is a constant
- 2. Var(X + c) = Var(X) where *c* is a constant
- 3. $Var(aX) = a^2 Var(X)$ where a is a constant
- 4. $Var(aX + b) = a^2Var(X)$ where a and b are constants

Note

- Var(X) is always non-negative.
- Standard deviation is practically more useful than variance.

2.2 Moments

Moments of a random variable are the expected values of powers of the random variable.

2.2.1 Moments about the mean

Mean is the first moment of a random variable.

$$\mu = \mathrm{E}(\mathrm{X}) = \sum x_i p_i$$

2.2.2 Moments about any point a

The r^{th} moment of a random variable about any point a is defined as:

$$\mu = \mathrm{E}[(\mathrm{X} - a)^r] = \sum (x_i - a)^r p_i$$

2.2.3 Moments about the origin

The r^{th} moment of a random variable about the origin is defined as:

$$\mu = \mathrm{E}(\mathrm{X}^r) = \sum x_i^r p_i$$

2.3 Relation between moments

•
$$\mu_2 = \mu_2' - \mu_1'^2$$

•
$$\mu_3 = \mu_3' - 3\mu_1\mu_2' + 2\mu_1^3$$

•
$$\mu_4 = \mu_4' - 4\mu_1\mu_3' + 6\mu_1^2\mu_2' - 3\mu_1^4$$

where $\mu_1=E(X)$, $\mu_2=E(X^2)$, $\mu_3=E(X^3)$, $\mu_4=E(X^4)$ and μ_1' , μ_2' , μ_3' , μ_4' are the moments about the origin.

Moment	Discrete	Continuous
About the mean	$E[(X - \mu)^r] = \sum (x_i - \mu)^r p_i$	$E[(X - \mu)^r] = \int_{-\infty}^{\infty} (x - \mu)^r f(x) dx$
About any point a	$E[(X-a)^r] = \sum (x_i - a)^r p_i$	$E[(X-a)^r] = \int_{-\infty}^{\infty} (x-a)^r f(x) dx$
About the origin	$E(X^r) = \sum x_i^r p_i$	$E(X^r) = \int_{-\infty}^{\infty} x^r f(x) dx$

Table 1: Moments of Discrete and Continuous Random Variables

3 SKEWNESS

Skewness is a measure of the asymmetry of the probability distribution of a real-valued random variable about its mean.

Coefficient of skewness is defined as:

$$\gamma_1 = \frac{\mu_3}{\sigma^3}$$

where μ_3 is the third moment about the mean and σ is the standard deviation.

$$\mu_3 = E[(X - \mu)^3] = \sum (x_i - \mu)^3 p_i$$

4 KURTOSIS

Kurtosis is a measure of the "tailedness" of the probability distribution of a real-valued random variable.

Coefficient of kurtosis is defined as:

$$\gamma_2 = \frac{\mu_4}{\sigma^4}$$

where μ_4 is the fourth moment about the mean and σ is the standard deviation. σ can be calculated as $\sqrt{Var(X)}$.