Resumen

Formulario:

	Constantes y Variables			
Nombre	Variables Símbolo	Unidado	es	
Carga total	Q		С	
Carga	q		С	
Carga de Prueba	q_0		С	
Campo Eléctrico	$ec{E}$		$\frac{N}{C}$	
Densidad Lineal de Carga	λ		$\frac{C}{m}$	
Densidad Superficial de Carga	σ		$\frac{C}{m^2}$	
Densidad Volumétrica de Carga	ρ		$\frac{C}{m^3}$	
Momento Dipolar Eléctrico	р		C * m	
Flujo Eléctrico	Φ_E		$\frac{N*m}{C}$	
Potencial Eléctrico	V	V	volt	$\frac{J}{C}$

		Constantes	
Nombre	Símbolo	Magnitud	Unidades
Constante de Coulomb	k	9 <i>E</i> 9	$\frac{N*m^2}{C^2}$
Constante Eléctrica	ϵ_o	8,8542E — 12	$\frac{C^2}{N*m^2}$
Carga de un Electrón o Protón	е	1.602 176 565(35) E $-$ 19 \cong 1,6E $-$ 19	С
Masa de Electrón	m_e	$9,109\ 382\ 91(40)E - 31$ $\cong 9,11E - 31$	kg
Masa de Protón	m_{p^+}	$1,672 621 777(74)E - 27$ $\cong 1,67E - 27$	kg

	Carga Eléctrica y Campo Eléctrico
1	$Q = \frac{q_{n_1} + q_{n_2}}{\sum n}$
2	$k = \frac{1}{4\pi\epsilon_0}$
3	$\vec{F} = k * \frac{ q_1 q_2 }{r^2}$
4	$ec{E}=rac{ec{F}_0}{q_0}$
5	$\hat{r} = \frac{x \hat{\imath} + y \hat{\jmath}}{r}$
6	$ec{E}=rac{k q }{r^2}*\hat{r}$
	Campo Eléctrico de Distribuciones de Carga
	Distribuciones Lineales de Carga
1	$\lambda = \frac{Q}{L}$
2	$dE = \frac{k \ dq}{r^2}$
3	$dq = \lambda dx$

	L	Dipolo Eléctrico	0	
1	$ec{ au} = ec{p} \times ec{E}$ $ au = p * E * sen ($		$\tau = p * E * sen(\phi)$	
2	p = d * q			
3	$\vec{U} = -\vec{p} \times \vec{E} \qquad \qquad \vec{U} = -p * E * \cos(\phi) \qquad \qquad U_{min} = -p * E$		$U_{min} = -p * E$	
4	$W_{campo\ sobre\ el\ dipolo} = -\Delta U$		ΔU	
5	$W_{Agente\;Externo\;sobre\;el\;Dipolo}=\Delta U$			
		Ley de Gauss	3	
		Flujo Eléctrico	1	
1	$\Phi_E = \vec{E} * \vec{A}$ Φ_E	$= E A * \cos$	$(\theta) \Phi_E$	$= E_x A_x + E_y A_y + E_z A_z$
2		$\Phi_{total} = \Phi_1 + \Phi_2$	$\Phi_2 + \cdots + \Phi_n$	Φ_n
3		$\Phi_{total} = \frac{q_i}{q_i}$	encerrada \mathcal{E}_0	
4	$\Phi_{total} = \frac{\lambda *}{\varepsilon_{\epsilon}}$	<u>. L</u>	Para una	a distribución de carga lineal.

	Ley 0	Gauss		
1	$\int ec{E}$:	$* d\vec{A} =$	$\frac{q_{encerr}}{\varepsilon_o}$	ada_
2	$\lambda = \frac{Q}{Longitud}$;	5	$q_{enc} = \lambda * Longitud$
3	$\sigma = \frac{Q}{\text{Á}rea}$		6	$q_{enc} = \sigma * ext{Area}$
4	$\rho = \frac{Q}{Volumen}$		7	$q_{enc} = \rho * Volumen$
8	Magnitud del Campo Eléctrio una Lámina Infinita en cualo punto			$E = \frac{\sigma}{2\varepsilon_o}$
	Potencial	Eléct	rico	
	Energía Pote	ncial E	léctrico)
1	U	$J = \frac{k *}{}$	$q_1 * q_2$ r_{12}	
2	Agente Externo			$W = U_f - U_o$
3	Fuerza Eléctrica			$W = -\Delta U$

	Potencial Eléc	trico
1	Potencial Eléctrico de una partícula	$V = \frac{kq}{r}$
2	Potencial Eléctrico de un sistema de partículas	$V_A = V_{A1} + V_{A2} + \dots + V_n$ $V_A = \frac{kq_{A1}}{r_{A1}} + \frac{kq_{A2}}{r_{A2}} + \dots + \frac{kq_n}{r_{An}}$
3	Potencial Eléctrico debido a una Distribución continua de carga	$V = k \int \frac{dq}{r}$
4	U =	V*q