Algebra - Notatki z wykladu

Rafal Wlodarczyk

INA 1 Sem.

1 Wyklad Pierwszy

1.1 Symbole

Logika $\neg, \land, \lor, \Longrightarrow, \Longleftrightarrow$

Zbiory $x \in A, A \cap B, A \cup B, A - B, A \setminus B, A^C, B^C, A \subseteq B, A \times B$

Funkcje $f: X \to Y, f: X \times Y \to A$ funkcja dwu
argumentowa

Własność

Dla \mathbb{N} $W(n) \forall_x (x|n) \implies x = 1 \lor x = n$ Jest to definicja liczb pierwszych.

1.2 Definicje

Definicja 1.2.1. Niech X - Zbiór. Działaniem na X nazywamy każdą funkcję $f:X\cdot X\to X$

Przykład 1.2.1. Rozważmy następujące przykłady:

- $f(x,y) = x \cdot y$ Jest działaniem na \mathbb{R} tak
- f(x,y) = x y Jest działaniem na \mathbb{N} ? nie, ponieważ $\exists_{x,y} f(x,y) \notin \mathbb{N}$

Oznaczenie $f(x,y) \iff x+y, x\cdot y, x\circ y$ - Działanie ogólne

Definicja 1.2.2. Niech X - Zbiór. Działanie o nazywamy łącznym, gdy: $\forall_{x,y,z\in X}(x\circ y)\circ z=x\circ (y\circ z)$ Działanie o nazywamy przemiennym, gdy: $\forall_{x,y\in X}x\circ y=y\circ x$

Przykład 1.2.2. .

- $\bullet\,$ + na $\mathbb R$ jest łączne i przemienne
- \bullet na \mathbb{R} nie jest ani łączne, ani nieprzemienne

Definicja 1.2.3. Niech \circ - działanie na zbiorze X. Element $e \in X$ nazywamy elementem neutralnym (dla \circ), gdy: $\forall_{x \in X} e \circ x = x \circ e = x$

Przykład 1.2.3. .

- $\bullet\,$ 0 jest elementem neutralnym dla + na $\mathbb N$
- $\bullet\,$ 1 jest elementem neutralnym dla \cdot na $\mathbb R$

FAKT. Niech \circ - działanie na zbiorze X. Jeżeli \circ ma element neutralny, to jest on jedyny. D-d. Niech a,b oznaczają elementy neutralne. Działanie \circ na X:

- $a \circ b = b$
- $a \circ b = a$

Zatem: a = b

Definicja 1.2.4. Niech \circ - działanie na zbiorze X. Element $a \in X$ nazywamy elementem odwrotnym (dla \circ), gdy: $\forall_{x \in X} a \circ x = x \circ a = e$

Przykład 1.2.4.

- -x jest elementem odwrotnym dla + na \mathbb{R}
- $\frac{1}{x}$ jest elementem odwrotnym dla · na $\mathbb R$
- $\bullet \ x^2$ nie ma elementu odwrotnego dla \cdot na $\mathbb R$
- x^2 ma element odwrotny dla · na \mathbb{R}^+