ESAME DI MATEMATICA DISCRETA 04/02/2022

I APPELLO

ISTRUZIONI, leggere attentamente.

- (1) Tempo massimo: 2 ore.
- (2) Voto massimo: **30/30**.
- (3) È possibile ritirarsi dall'esame, ma non prima di un'ora dall'inizio.
- (4) Dove richiesto è necessario spiegare le risposte. Risposte corrette senza spiegazioni o con spiegazioni errate o incoerenti saranno valutate 0.
- (5) Si è ammessi all'orale con un punteggio di almeno 15/30.
- (6) Non è permessa nessuna forma di comunicazione con l'esterno o con gli altri partecipanti all'esame.
- (7) Per la consegna è necessario mandare per e-mail la prova all'indirizzo slapenta@unisa.it con oggetto "matematica discreta".
- (8) Buon lavoro!

2 I APPELLO

Esercizio 1 (9 punti). Dimostrare che per ogni $n \geq 8$ esistono $a, b \in \mathbb{N}_0$ tali che n = 3a + 5b. Suggerimento: per $8 \leq n \leq 15$ l'asserto si può verificare direttamente caso per caso. Usare l'ipotesi di induzione per $n \geq 16$.

Soluzione: Per n=8, si ha banalmente a=b=1. Supponiamo l'asserto vero per ogni $8 \le t < n$ e dimostriamolo per n. Se $8 \le n \le 15$, l'asserto si può verificare facilmente caso per caso. Se $n \ge 16$, sarà $n=t_1+t_2$ con $8 \le t_1,t_2 < n$. Per ipotesi di induzione si ha $t_1=3a_1+5b_1$, $t_2=3a_2+5b_2$, da cui segue $n=3(a_1+a_2)+5(b_1+b_2)$.

Esercizio 2 (6 punti). Trovare una soluzione x, y dell'equazione 13x + 19y = 1 usando l'algoritmo della divisione euclidea.

Soluzione: Si ha

$$19 = 13 \cdot 1 + 6$$

$$13 = 6 \cdot 2 + 1$$

$$6 = 4 \cdot 1 + 0.$$

Quindi

$$1 = 13 - 6 \cdot 2 = 13 - (19 - 13) \cdot 2 = 13 \cdot 3 - 19 \cdot 2,$$

da cui segue x = 3 e y = -2.

Esercizio 3 (8 punti). Determinare gli elementi invertibili e i divisori dello zero dell'anello ($\mathbb{Z}_{20}, +, \cdot$). Per ogni elemento invertibile determinarne l'inverso.

Soluzione: Un elemento $[a]_{20} \in \mathbb{Z}_{20}$ è invertibile se, e solo se, MCD(20, a) = 1. Quindi, gli elementi invertibili sono

$$[1]_{20}, [3]_{20}, [7]_{20}, [9]_{20}, [11]_{20}, [13]_{20}, [17]_{20}, [19]_{20}$$

I divisori dello zero sono tutti gli elementi non invertibili (diversi da zero). Per calcolare gli inversi, dato $[a]_{20}$, l'inverso è quella classe $[b]_{20}$ tale che $ab \equiv 1 \pmod{20}$. Risolvendo quindi le equazioni congruenziali relative, si ha

$$([1]_{20})^{-1} = [1]_{20}$$
 $([3]_{20})^{-1} = [7]_{20}$ $([9]_{20})^{-1} = [9]_{20}$ $([11]_{20})^{-1} = [11]_{20}$ $([13]_{20})^{-1} = [17]_{20}$ $([19]_{20})^{-1} = [19]_{20}$.

Esercizio 4 (7 punti). Dimostrare che il sottoinsieme del piano cartesiano \mathbb{R}^2 di equazione $x^2 - y^2 = 0$ non e' un sottospazio vettoriale di \mathbb{R}^2 .

Soluzione: Sia $S = \{(x,y) \in \mathbb{R}^2 \mid x^2 - y^2 = 0\}$. Si ha $(1,-1), (1,1) \in S$ ma $(1,1) + (1,-1) = (2,0) \notin S$.