Teo del Valor Medio, para derivadas

Teorema 1 (Teorema del Valor Medio). Sea $f:[a,b] \to \mathbb{R}$ una función continua en [a,b] y diferenciable en (a,b). Bajo estas condiciones, existe $c \in (a,b)$ tal que

$$\frac{f(b) - f(a)}{b - a} = f'(c)$$

 $o\ equivalente mente$

$$f(b) - f(a) = f'(c)(b - a).$$

Por comodidad, vamos a denotar a éste teorema como T.V.M.

Para la demostración vamos a seguie el esquema:

Teo. máx/mín. \Rightarrow Teo. de Fermat \Rightarrow Teo. de Rolle \Rightarrow T.V.M.

donde el primer teorema lo damos por dado, es decir, no vamos a dar demostración de éste.

Teorema máx./mín.

Teorema 2 (Máx/mín. de funciones continuas). Sea $f:[a,b] \to \mathbb{R}$, una función continua en todo punto de [a,b]. Entonces f alcanza su máximo y mínimo absolutos en [a,b]. Es decir, existen al menos dos puntos $x_*, x^* \in [a,b]$ tales que, para toda $x \in [a,b]$

$$f(x_*) \le f(x) \le f(x^*)$$

Este teorema lo damos por dado. No daremos demostración.

Teoremas de Fermat y Rolle

En ésta sección veremos la pruebas del Teorema de Fermat y el de Rolle, pero antes una definción.

Definición 1. Sea D un intervalo abierto de \mathbb{R} y sea $f:D\to\mathbb{R}$ una función.

1. Decimos que f tiene un máximo relativo en el punto $x^* \in D$ si existe $I \subset D$, un intervalo abierto centrado en x^* tal que

$$f(x) \le f(x^*), \quad para \ todo \ x \in I$$

2. Decimos que f tiene un mínimo relativo en el punto $x_* \in D$ si existe $I \subset D$, un intervalo abierto centrado x_* tal que

$$f(x_*) \le f(x)$$
, para todo $x \in I$

3. Decimos que f tiene un extremo local en x_0 si f tiene un máximo o mínimo local en x_0 .

Teorema 3 (Teo. de Fermat para mín/máx locales). Sea D un intervalo abierto de \mathbb{R} y sea $f: D \to \mathbb{R}$.

Supon que f tienen un extremo local en $x_0 \in D$. Demuestra que si f es diferenciable en x_0 entonces $f'(x_0) = 0$.

La demostración se hace siguiendo los siguientes pasos.

(i) Supón que f tiene un máximo local en x_0 y sea $I=(x_0-\delta,x_0+\delta)$ una vecindad de x_0 tal que

$$f(x) \le f(x_0)$$
, para todo $x \in I$

Demuestra:

$$\frac{f(x) - f(x_0)}{x - x_0} \le 0$$
 para $x \in (x_0 - \delta, x_0)$

у

$$\frac{f(x) - f(x_0)}{x - x_0} \ge 0 \quad \text{para } x \in (x_0, x_0 + \delta)$$

(ii) Tomando límite cuando $x \to x_0$ en el cociente diferencial demuestra $f'(x_0) = 0$.

Teorema 4 (Teorema de Rolle). Sea $f:[a,b]\to\mathbb{R}$ una función tal que

- 1. f es continua en [a,b];
- 2. f es diferenciable en (a, b).
- Si f(a) = f(b) entonces existe almenos un $c \in (a,b)$ tal que f'(c) = 0.

La demostración se hace mediante los siguientes pasos.

- (i) Sea x_* y x^* puntos en [a,b] donde f alcanza su mínimo y máximo, respectivamente (aquí es donde se usa el Teorema máx/mín.).
- (ii) Caso 1: x_* o x^* están en el intervalo abierto (a,b). Usa el Teorema de Fermat. Nota que en este caso la c del teorema de Rolle es $c=x_*$ o $c=x^*$.
- (iii) Caso 2: x_* y x_* no están en el intervalo abierto. En este caso prueba que f es constante. Nota que en este caso c puede ser cualquier punto en [a, b].

Para enterder el Teorema de Rolle, haz un diujo de éste.

Demostración del Teorema del Valor Medio

Sugerencia: considera la función L(x) = m(x-a) + f(a) donde $m = \frac{f(b) - f(a)}{b-a}$. Aplica el Teorema de Rolle a la función f(x) - L(x).