

On enlatre le reste integral foir 0 >0
onpaent teloras
of etca of in of e (a+) & e (a+)
m' m'
L'intépale est aurante et 6 ¿ a et les mations
sent continues d'air , m 00 , m,
10 of a -t of a -t of
a sold sold sold sold sold sold sold sold
Joello NO S CO- Cath ! Jo (m+1)!
Ona al acrisance confaire lim e mili-
donc parthéorème d'ancouvement lim = qt = et
Month factor of the Of the first of the firs
ce qui prouve que la serie con casa vers ele jour 470
Proposition 1.1. Pour tout entier n_0 , les séries $\sum u_n$ et $\sum u_n$ sont de même nature.
$n \ge 0$ $n \ge n_0$

Preuve (Sn) n En et (Sn) n > no sont de
Weine Mature

Exemple 1.3. Les séries arithmétiques : $\sum_{n\geq 0} na$ avec $a\in\mathbb{C}^*$

Exemple 1.4. Les séries géométriques : $\sum_{n\geqslant 0}q^n$ avec $q\in\mathbb{C}^*$ tel que |q|<1 convergent.

Ectivons les sommes jarticles de cette série.

Son : 2 de 2 1 - q siq + 1

On jear cenclure pour jaj 21?

alors of cenclure pour jaj 21?

alors Egn cenverge vers 1 - q too 1 - 1

alors Zon cenverge de la somme est 2 - 1

1.2 Linéarité de la somme

Proposition 1.2. Si $\sum u_n$ et $\sum v_n$ sont deux séries convergentes, et si $\alpha \in \mathbb{K}$ est un scalaire, alors $\sum (\alpha u_n + v_n)$ est convergente et $\sum_{k=0}^{+\infty} (\alpha u_n + v_n) = \alpha \sum_{n=0}^{+\infty} u_n + \sum_{n=0}^{+\infty} v_n$

Proposition 1.3. Si $\sum u_n$ est une série convergente, alors $\sum \overline{u_n}$ est convergente et $\overline{\left(\sum_{n=0}^{+\infty} u_n\right)} = \sum_{n=0}^{+\infty} \overline{u_n}$

Proposition 1.4. Une série $\sum u_n$ est convergente si et seulement si les séries $\sum \text{Re}(u_n)$ et $\sum \text{Im}(u_n)$ convergent.

En cas de convergence, on a $\sum_{n=0}^{+\infty} u_n = \sum_{n=0}^{+\infty} \operatorname{Re}(u_n) + i \sum_{n=0}^{+\infty} \operatorname{Im}(u_n)$

Exemple 1.5. Étudions la série : $\sum_{n\in\mathbb{N}} e^{n(-1/2+i)}$

on sait les sommes jartielles

Son = 1 de le 2 de le 2

Exemple 1.6. Étudions la somme de ces deux séries : $\sum_{n \in \mathbb{N}} n + \sum_{n \in \mathbb{N}} \left(\frac{1}{2} \right)^n - n$

la série En est divergente : serie arcithmétique de raison 1

$C \in M \setminus L$
la serie $\mathbb{Z}\begin{pmatrix} 1 \\ 2 \end{pmatrix} - m \end{pmatrix}$ of verge can: les sommes partielles $\mathbb{S}_{m} = \mathbb{Z} \begin{pmatrix} 1 \\ 2 \end{pmatrix} + k$ $= \frac{1 - \binom{1}{2}}{1 - \binom{1}{2}} - \frac{m(m+1)}{2} - \infty$ $1 - \binom{1}{2} = \frac{m(m+1)}{2} + \frac{m(m+1)}{2} = \infty$
les simmes contre lles S. C. S.
men R=0
$-1+(\frac{2}{2})$ $M(M+1)$ \longrightarrow $-\infty$
$\frac{1}{\sqrt{1-\frac{1}{2}}}$
\mathbb{R}^{ats} $(n \in (2)^m = n) = (2)^m$
(2)
er 5/1/m extramente car se nie a em
2 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3
et $5(1)^n$ est conseignte car série géome de raison 1 avre $\left(\frac{1}{2}\right)^{2}$
2 - [2(

П

1.3 Limite du terme général d'une série convergente

Théorème 1.5.

Si $\sum u_n$ est une série convergente, alors le terme général $(u_n)_{n\in\mathbb{N}}$ est une suite convergente vers 0.

Démonstration.

Les sommes partielles $S_m = \sum_{h=0}^m U_h$ de la sèrie $\sum_{h=0}^m U_h$ Vérifient, $\sum_{h=0}^m S_m - S_{m-1} = U_m \sum_{h=0}^m S_m = S_{m-1} + U_m$ Si la sèrie $\sum_{h=0}^m U_h = \sum_{h=0}^m U_h$

Définition 1.2. Si la suite (u_n) ne tend pas vers 0, on dit que la série $\sum u_n$ est grossièrement divergente.

Exemple 1.7. Les séries géométriques : $\sum_{n\geqslant 0}q^n$ avec $q\in\mathbb{C}^*$ tel que $|q|\geqslant 1$ divergent.

Si | q | > 1 alas \(\tau \) me \(\text{converge} \) | \(\text{fax} \) O.

I donc \(\text{Z} \) q \(m \) est divergente

evemple: \(\text{Z} \) \(-1 \) \(m \)

les sommes \(\text{faticles valent} : \(1, 0, 1, 0, 1, 0, 1, 0, 1, 0, \).

Exemple 1.8. La série harmonique : $\sum_{n \ge 0} \frac{1}{n}$ est une série divergente. Mais

1.4 Séries géométriques

Théorème 1.6. La série $\sum q^n$ avec $q \in \mathbb{C}$ converge si et seulement si |q| < 1.

Corollaire 1.7. Si la série $\sum q^n$ converge, alors sa somme est $\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q}$.

Exemple 1.9. $\sum \frac{1}{(-2)^n}$

Exemple 1.10. $\sum e^{-n}$

Télescopage

Proposition 1.8. La suite $(u_n)_{n\in\mathbb{N}}$ converge si et seulement si la série $\sum (u_{n+1}-u_n)$ converge.

Démonstration.

Exemple 1.11. Étudier la convergence de la série $\sum_{n \ge 2} \frac{1}{n(n-1)}$. Déterminer la valeur de sa somme.

Exemple 1.12. Étudier la convergence de la série $\sum \frac{1}{\sqrt{n}}$.

Exercice 1.1. Montrer que la série $\sum \frac{1}{n(n+1)(n+2)}$ est convergente et déterminer la valeur de sa somme.

Norma Corre

2 Séries à termes positifs

2.1 Théorème de la limite monotone

Théorème 2.1.

Une série à termes réels positifs converge si et seulement si la suite de ses sommes partielles est majorée.

Remarque 2.1. Une série à termes réels positifs est croissante.

Exemple 2.1. Étudier la convergence de la série $\sum \frac{1}{n^n}$.

on a jour le > 2	entier,	b > 2 k	
au Pajanction U ->	u est voissa	ite sur 12+	
$d'\bar{\alpha}$ $\frac{1}{k^k} \leq \frac{1}{2^k}$	alus les son	nnes juitielles	
Sa = 2 1 = 1 k=1 kk	+ 5 1 2 k= 2 kk	sent majuies jar	
$S_{M} \leq 1 + 2$ $h=2$	$\frac{1}{2R} \leq 1 + \frac{1}{2}$	1-(2) = 1+1	= 3
la sirie Z 1 est à terme. mognies, alors elle	sportifsel ses so	mms jarlielles surt	
mojoies, alurs elle	Converge		
et a	$\frac{1}{2}$ $\frac{1}$		

Exemple 2.2. Monter que la série $\sum \frac{\ln(n)}{n}$ diverge.

Critère de comparaison des serves ou termes jostifs (CCSTP)

Théorème 2.2. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites positives et si pour tout $n, u_n \leq v_n$, alors la convergence de $\sum v_n$ implique celle de $\sum u_n$ et de plus, 0 € Mm € VM

 $\sum_{n=0}^{+\infty} u_n \leqslant \sum_{n=0}^{+\infty} v_n.$

Démonstration.

l'inte des somesparlielles de Erm Si Evn CV, alors poeu NEW

Z'Un

Z'Vn

Evn

M=0

Alors les romnes particles de Eun sont majaices donc zun, qui est à termes positifs, converge

Théorème 2.3. Si $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ sont deux suites positives et si pour tout $n, u_n \leq v_n$, alors, $\sum u_n$ diverge $\Longrightarrow \sum v_n$ diverge.

Critère d'équivalence les se vies à termes positife

Théorème 2.4. Soit $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites réelles positives.

 $Si \ u_n \underset{+\infty}{\sim} v_n$, alors $\sum v_n$ converge $\iff \sum u_n$ converge. les sever Eun et Éva sont de même nature

Démonstration.

si Un v Vn alors Um -> 1. Danc V criste un rang W tel que In=N, um <2 => Um <2 Vm * si Zvn cureige jalves Z vn carrège et jai CCSTD Zun coureige dan Eun converge « aréchange Curides de (Un) ekvn) one Zeun CV => Evn CV

Exemple 2.3. $\cancel{k} = \underbrace{M + MM(M)}_{M^2 + 2}$

One $M + \sin(n) v M et m^3 + 3 v m^3$ alors $\frac{M + \sin(m)}{M^3 + 3} + \frac{M}{m^3} + \frac{M}{m^3 + 3} + \frac{M}{m^3 + 3}$ $= \frac{1}{m^2} ext CU et la sène <math>\frac{M}{m^3 + 3} = \frac{M}{m^3 + 3} = \frac{M}{m^3 + 3}$ termes postifs alors d'après le cutère of Equivalence des senera termes positifs

erem	ple	= (Si	n (1) -	- ln/1+2	() Maliere
om a	win (1)	$\pm \sqrt{\infty}$ M	$\frac{1}{6m^3}$ + 9	(1 3)	
	In(1+)	() =	9,2	- Q I	
U ou	Aim(I)	h/1+1).	=+2	+ o(4)	V 1 2 m ²
Acar	5 dest C	V car con	eure de la	Comam 5	Lavec X > 1
Deplus	1 de gene	alors (sin	$u(\Delta)$ - {	2u/1+1)	Lavec & SI E d CV 2M ² eN/ositive in(1) lu(1+1) in(1) lu(1+1)
au vi	rivinage Citi	de +00 / i	a faith of	un Certain	inaug)
C up les	e mere	. U ega c			$\frac{1}{m}$

Comparaison à une intégrale

Théorème 2.5. Si f est une fonction décroissante et continue sur $[n_0, +\infty[$, alors on a pour $n \ge n_0+1$:

ce qui donne :

$$\int_{n}^{n+1} f(t) dt \leq f(n) \leq \int_{n-1}^{n} f(t) dt \qquad \text{an } 2 \text{ ine salles}$$

$$\int_{n_0+1}^{n+1} f(t) dt \le \sum_{k=n_0+1}^{n} f(k) \le \int_{n_0}^{n} f(t) dt$$

 $f(t) \geq f(m)$ - Lost continue, l'integrale

estracionante, les Pornes sont m > n-1, alors In-s & (t) olt > [m f(n) dt = f(n) (aire du rechangle blen) De même sur [n/n+1] {(+) < |m) $\int_{\Lambda}^{\infty} f(t) dt \leq \int_{\Lambda}^{\infty} f(\mathbf{p}) dt = \int_{\Lambda}^{\infty} h(t) dt$ ce qui donno Exemple \(\sum \) la fandian \(\lambda \rangle = \lambda \) estrantimue

sur 3,000 et dévoissante et positive On a soen a > x 2, son compraison à rue intégrale

 $\int_{M}^{M+1} \int_{M}^{M+1} \int_{M}^{M+1} \int_{M}^{M+1} \int_{M}^{M+1} \int_{M}^{M+1} \int_{M}^{M} \int_$

On some from M=2 a N: N=1 N=1 N=2 Ndou

dou $\begin{bmatrix} -2t^{-\frac{1}{2}} \end{bmatrix}^{N+1}_{1} \leq S_{N} \leq \begin{bmatrix} -2t^{-\frac{1}{2}} \end{bmatrix}^{N}_{1} = 2 - \frac{2}{2}$ dou $f_{N} \geq 2$ $S_{N} \leq 2 - \frac{2}{2}$ danc la série o ter mes jontifs don $f_{N} \geq 2$ $S_{N} \leq 2 - \frac{2}{2}$ $f_{N} \leq 2$ $f_$

Exemple 2.4. La série harmonique $\sum \frac{1}{n}$ est divergente. En déterminer un équivalent.

on conjuré à une intégrale on use { (r)= 4 sur]o, + o [
on conjure à une intégrale du pre d'entre de l'ors de l'orsante alors
on a four $k \ge 2$, $fk+1$ $f(k) dt \le f(k) = \int_{-\infty}^{\infty} f(k) dt$
on somme ces mégalités jour le allautre à m
Par relation de Charles m Met 1 of ξ ξ ξ ξ ξ ξ ξ ξ
)2 F of
$\ln (n+1) - \ln (2) \leq H_m - 1 \leq \ln (m) - \ln (n)$ One dore your on > 2
lu (m+1) +1-lu(2) & Hm & lu(m) +1
on mantie que lu (n+1) v lu (n):
avalule lu(n x) = ln (n) + ln (ren) = 1 + ln (1 + In) = 1 lu(n) lu(n) = lu(n) a > + o
alors $\forall n \geqslant 2$ $lu(n+1) + 1 - lu(2) \geq Hn \geq 1 + 1$
Obro to \$2 lu(n+1) + 1-lu(2) < Hon < 1 + 1 lu(n) Participe of cucadrement, lim Hon = 1 (consider on the consider of the considered on th
Cequi nouve / Hn v ln (n) = 1 v lu (n)
h=2 12 + 0

xemple 2.5. Étudier la série $\sum \frac{1}{1+n^2}$.	flm= 1 +nz est side dem vez de Ancham)
me four n EM m2 =1	em² (xem) 2 inntile < 1 m²
dout 0 = 1 t m2	$\leq \frac{1}{M^2}$
er E 12 et une série	consegnte (série de Rieman anoisan des 87P
donc jai critère de compa	natson des 87P
1=1 CV	

Hyper- Masseque

2.6 Comparaison à une série géométrique

Exercice 2.1. Montrer le théorème suivant pour une série $\sum u_n$ à termes strictement positifs :

« Si $\frac{u_{n+1}}{u_n} \le \underline{q}$ pour tout $n \ge n_0$ avec 0 < q < 1, alors la série $\sum u_n$ converge.

Zm ZgM

Si $\frac{u_{n+1}}{u_n} \ge q$ pour tout $n \ge n_0$ avec $q \ge 1$, alors la série $\sum u_n$ diverge. »

car un so jour tout mEM $0 - \frac{1}{2} = \frac{1}{2} = \frac{1}{2} = \frac{3}{4}$ one fn > 2 line 1 < 3 = 0 line 1 < 3 line 1on montre que f_{N} , f_{N} f_{N} initialisation: Now n=2, les $(3)^2$ $(2)^2$ $(2)^2$ here dite on supereque $(2)^n$ $(2)^n$ la proposition est nove au rang m + 1 condusion: la propositionen voice, jar le principe de récenque jour tout u > 2: Un \(\left(\frac{3}{4} \right)^m \\ \frac{16}{9} uz la sèrie géométrique 5/3 MCV car 0/3 /1 Donc 5/6 uz (3) MCV et la lettrévience decuyaraison des series à termes joriths & un ov. / E m

(esli	cer pl ci ces cles	converge	2 eu f)	- M 3		2	2 ^m (Attention la série	, cei est espon
						2	n rei	5 n.	2 x

2.7 Comparaison à une série de Riemann

Exercice 2.2. Montrer le théorème suivant pour une série $\sum u_n$ à termes positifs.

« Si il existe $\alpha > 1$ tel que $(u_n \times n^{\alpha})_{n \in \mathbb{N}}$ est bornée, alors $\sum u_n$ converge.

Si il existe $\alpha \le 1$ et K > 0 tel que $u_n \ge \frac{K}{n^{\alpha}}$, alors $\sum u_n$ diverge. »

Séries absolument convergentes

Convergence absolue 3.1

Définition 3.1. On dit qu'une série $\sum u_n$ est absolument convergente si la série à termes réels positifs $\sum |u_n|$ est convergente.

Théorème 3.1. Une série absolument convergente est convergente.

 $\frac{2\left|\mathcal{U}_{n}\right|CV}{\left|\sum_{n=0}^{+\infty}u_{n}\right|\leqslant\sum_{n=0}^{+\infty}\left|u_{n}\right|}$

Corollaire 3.2. Si $\sum u_n$ est une série absolument convergente, alors

$$\left|\sum_{n=0}^{+\infty} u_n\right| \le \sum_{n=0}^{+\infty} |u_n|$$

Démonstration.

Exemple 3.1. Étude de $\sum \frac{(-1)^n}{n^2}$ Déric al fornée

On chudic le cavugence alorlue à Gupse un= (-1)
on étidie 5/1/11 - 5/1 au character tour
on étredie
Mors la série Eun en abdument comergente dance
2 Mm CSV CONVERGENTE
Z/Um/CV => Zum ACV => Zum CV

Exemple 3.2. Étude de $\sum \frac{\sin(\sqrt{n})}{2^n}$

Exemple 3.3. Étude de $\sum (-1)^{n-1} \left(\frac{1}{n} + \frac{1}{n+1}\right)$: cette série n'est pas absolument convergente mais est convergente.

m cre Mn = (1) m - (1 + 1) low m > 2 on a lun = 1 + 1 = 1 et = 1 est divergente alors la critère de conjavaisan des series atermes l'ortifs E/m/ DV dane Zum mest /as abslument amagnite on Ent les sonnes jartielles: Su = 2 (1) 2 1 (1 + 1) $S_{m} = \sum_{k=1}^{m} \frac{1}{2} \frac{k-1}{k-1} = \sum_{k=1}^{m} \frac{1}{2} \frac{k-1}{k-1} = \sum_{k=1}^{m} \frac{k+1-1}{k-1}$ on recommande une somme referospique dance

Son = 1 - (-1) danc (Sn) converge vero 1

et 2 (-1) not (1 + 1) en convergente

many vero 1

Exemple 3.4. Étude de $\sum \frac{(-1)^{n-1}}{n}$ en utilisant $\ln(1+x)$

3.2 Convergence absolue par comparaison

Théorème 3.3. Soit (u_n) une suite réelle ou complexe et v_n une suite à termes strictement positifs. Si $u_n = O(v_n)$ et si $\sum v_n$ converge, alors $\sum u_n$ est absolument convergente donc convergente.

Exemple 3.5. Étude de $\sum \frac{\sin(n) + e^{in}}{n^2}$

4 Développement décimal d'un nombre réel

Définition 4.1. Soit x un nombre réel positif, on appelle valeur décimale approchée par défaut à 10^{-n} près de x le nombre $x_n = 10^{-n} \lfloor 10^n x \rfloor$ et valeur décimale approchée par excès à 10^{-n} près le nombre $y_n = 10^{-n} (\lfloor 10^n x \rfloor + 1) = x_n + 10^{-n}$.

On a alors $x_n \le x_{n+1} \le x < y_{n+1} \le y_n$.

Proposition 4.1. Soit $x \in \mathbb{R}$. Les suites des valeurs décimales approchées par défaut et par excès de x sont adjacentes et convergent vers x.

Définition 4.2. Soit x un nombre réel positif et n un entier naturel, on appelle développement décimal de x l'écriture de $x-\lfloor x\rfloor$ comme somme de la série convergente $x-\lfloor x\rfloor=\sum_{n=1}^{+\infty}\frac{a_n}{10^n}$ où la $n^{\text{ième}}$ décimale de x après la virgule définie par $a_n=10^n(x_n-x_{n-1})$ est un entier entre 0 et 9. On peut écrire $x=\lfloor x\rfloor+\overline{0,a_1a_2a_3\ldots a_n\ldots}$

Démonstration.

Remarque 4.1. On a pour tout entier n_0 , $\sum_{n=n_0}^{+\infty} \frac{9}{10^n} = 9 \times \frac{1}{10^{n_0}} \times \frac{1}{1 - \frac{1}{10}} = \frac{1}{10^{n_0 - 1}}$.

Proposition 4.2. Le développement décimal d'un réel positif est propre : c'est-à-dire que la suite des (a_n) ne se stabilise pas à 9 au-delà d'un certain rang.

Proposition 4.3. Tout nombre décimal a 2 développements l'un propre et l'autre impropre.

Théorème 4.4.

Un nombre x est décimal si et seulement la suite de son développement décimal (a_n) est nulle à partir d'un certain rang.

Un nombre positif x est rationnel si et seulement si la suite (a_n) de son développement décimal est périodique à partir d'un certain rang.

Théorème 4.5. Pour tout nombre $x \in [0,1[$, il existe une unique suite d'entiers $(a_n)_{n \in \mathbb{N}^*}$ telle que

$$x = \sum_{n=1}^{+\infty} \frac{a_n}{10^n} \quad , \qquad \forall n \in \mathbb{N}^*, \quad a_n \in \llbracket [0,9] \rrbracket \quad \text{et} \quad (a_n) \text{ n'est pas stationnaire à 9}.$$

On a $a_n = \lfloor 10^n x \rfloor - 10 \lfloor 10^{n-1} x \rfloor$. On l'appelle le développement décimal illimité propre de x.

