Lecture 4

Polynomial Regression & Splines

Motivating Example

I want to predict power output from a wind turbine based on wind speed.

There is an obvious relationship, but it's not linear, so a linear model won't work (obviously)

Polynomial Regression

$$f(x) = x^n$$

Maybe I can fit it to some polynomial function of wind speed?

```
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

X = np.concatenate([[wind_speed], [wind_speed**2], axis=0).T

lr = LinearRegression()
lr.fit(X, power)
y_pred = lr.predict(X)

# import statsmodels.api as sm
# model = sm.OLS(power, X).fit()
# y_pred = model.predict(X)

print(mean_squared_error(power, y_pred))
>>>81.52
```


Polynomial Regression

• Maybe I can fit it to some polynomial function of wind speed?

Checking Fit for Polynomial Regression

Plot the residuals

Calculate Cook's distance

Check the significance of each order

	coef	std err	t	P> t	[0.025	0.975]
x1	-2.1513	2.709	-0.794	0.438	-7.867	3.564
x2	-0.3549	1.303	-0.272	0.789	-3.103	2.393
х3	0.5504	0.227	2.422	0.027	0.071	1.030
х4	-0.0646	0.018	-3.572	0.002	-0.103	-0.026
x5	0.0027	0.001	4.102	0.001	0.001	0.004
х6	-3.976e-05	9.2e-06	-4.321	0.000	-5.92e-05	-2.03e-05
x7	2.41e-09	1.23e-09	1.959	0.067	-1.86e-10	5.01e-09
x8	-1.127e-09	1.02e-09	-1.103	0.285	-3.28e-09	1.03e-09

Other Functional Regression

Sigmoid

```
def sigmoid(x, loc=0, scale=1):
    return 1 / (1+np.exp(-(x-loc)/scale))

X = sigmoid(wind_speed, 5, 1.0).reshape(-1,1)
lr = LinearRegression()
lr.fit(X, power)
y_pred = lr.predict(X)
```


Other Functional Regression $t_{anh}(y) = \frac{e^{2y-1}}{e^{2y+1}}$

Low saale

Tanh

```
def tanh(x, loc=0, scale=1):
    y = (x-loc)/scale
    return (np.exp(2*y)-1) / (np.exp(2*y)+1)
X = tanh(wind\_speed, 5, 2).reshape(-1,1)lr =
LinearRegression()
lr.fit(X, power)
y_pred = lr.predict(X)
```


Other Functional Regression

Heaviside

H(x) = { 1 x>/L O x < L

More Complex Example

I want to predict the shear modulus of a material based on its temperature.

Trying Polynomial Regression

Piecewise Polynomials interesting bit bit linear linear

What if I break this up into multiple polynomials?

Temperature

Splines

 Piecewise polynomials, or splines, are a flexible way to model all smooth functions

Splines merge two polynomials at a point called a knot

$$s(x) = \begin{cases} -2x^2 + 0.5x^3, & x < 6 \\ -2x^2 + 0.5x^3, -2(x-6)^3, & x \ge 6 \end{cases}$$

Splines

$$s(x) = \begin{cases} -2x^2 + 0.5x^3, & x < 6 \\ -2x^2 + 0.5x^3, -2(x-6)^3, & x \ge 6 \end{cases}$$

$$s(x) = -2x^2 + 0.5x^3$$

$$s(x) = -2x^2 + 0.5x^3, -2(x-6)^3$$

Truncated Power Functions

• A truncated power function is a polynomial function of the form

$$\mathbf{x}_{+}^{n} = \begin{cases} x^{n} : x > 0 \\ 0 : x \le 0 \end{cases}$$

```
def truncated_power_function(x, knot, degree=2):
    return x > knot * (x-knot)**degree
```


Fitting a TPF

Components of a Spline

B-Splines

- Alternative to P-Splines
- Uses a function defined only between two knots:

$$B_{i,0}(x) = \begin{cases} 1; t_i \le x \le t_{i+1} \\ 0; otherwise \end{cases}$$

Higher orders are defined recursively

$$B_{i,p}(x) = \frac{x - t_i}{t_{i+p} - t_i} B_{i,k-1}(x) + \frac{t_{i+p+1} - x}{t_{i+p+1} - t_{i+1}} B_{i+1,p-1}(x)$$

B-Splines

3(x)

Value estimate is a sum of all predictions

$$\sqrt[n]{} = s(x) = \sum_{i=1}^{n} c_i * B_{i,k,k}(x)$$

where $B_{i,k,t}(x)$ are B-spline basis functions of degree k and knots t.

$$S(x) = G_1 B_1 (x)$$

 $+ G_2 B_2 (x)$
 $+ G_3 B_3 (x)_{18}$

B-Spline Results

```
import scipy.interpolate as interpolate

knots = [700., 800., 850., 900., 950., 1000.]

knots, coefs, degree = interpolate.splrep(temperature, heat, task=-1, t=knots, k=2)

xr = np.linspace(x.min(), x.max(), 100) 

x = temperature

spline = interpolate.BSpline(knots, coefs, degree, extrapolate=False)

y_pred = interpolate.spley(x, (knots, coefs, degree))
```


Unsmoothed Smoothed

B-Spline Results

Takeaways

You can transform your independent variables to make better predictors

Polynomials can increase fit, but often don't work well out-of-sample

- Polynomial splines and B-Splines fit incrementally over smaller ranges of the data
 - B-Splines do not work well on noisy data