Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks

Patrick Lewis^{1,2} Ethan Perez³ Aleksandra Piktus¹ Fabio Petroni¹ Vladimir Karpukhin¹ Naman Goyal¹ Heinrich Küttler¹ Mike Lewis¹ Wen-tau Yih¹ Tim Rocktäschel^{1,2} Sebastian Riedel^{1,2} Douwe Kiela¹

¹Facebook AI Research ²University College London ³New York University

Presenter: Shiwei Zhang

Content

- ► Introduction
- Models
- Process
- Experiments
- Conclusion

Introduction

Motivation

Pre-trained neural language models generate content based on parameterized implicit knowledge base. Such models have several downsides:

- ► They cannot easily expand or revise their memory.
- They cannot straightforwardly provide insights into the predictions.
- They may produce "hallucinations".

Hybrid models that combine parametric memory with non-parametric (i.e. retrieval-based) memories may address these issues.

Overview

Retriever $p_{\eta}(z|x)$ returns (top-K) probabilities over documents for query x.

Generator $p_{\theta}(y_i|x, z, y_{1:i-1})$ generates a current token based on a context of the previous i-1 tokens $y_{1:i-1}$, the original input x, and a retrieved passage z.

Models

Marginalization

RAG treats the retrieved document as a latent variable and proposes two models to marginalize over the latent documents in different ways to produce a distribution over generated text.

$$\frac{p_{\eta}(z|x)}{p_{\theta}(y_i|x, z, y_{1:i-1})} \right\} \stackrel{?}{\Rightarrow} p(y|x)$$

RAG-Sequence Model

The RAG-Sequence model uses the same retrieved document to generate the complete sequence.

$$\begin{split} p_{\text{RAG-Sequence}}(y|x) &\approx \sum_{z \in \text{top-k}(p(\cdot|x))} p_{\eta}(z|x) p_{\theta}(y|x,z) \\ &= \sum_{z \in \text{top-k}(p(\cdot|x))} p_{\eta}(z|x) \prod_{i}^{N} p_{\theta}(y_{i}|x,z,y_{1:i-1}) \end{split}$$

RAG-Token Model

The RAG-Token model draws a different latent document for each target token. This allows the generator to choose content from several documents when producing an answer.

$$p_{\mathsf{RAG-Token}}(y|x) pprox \prod_{i}^{N} \sum_{z \in \mathsf{top-k}(p(\cdot|x))} p_{\eta}(z|x) p_{\theta}(y_i|x, z_i, y_{1:i-1})$$

Retriever: DPR

$$p_{\eta}(z|x) \propto \exp(\mathbf{d}(z)^T \mathbf{q}(x))$$
 $\mathbf{d}(z) = \mathsf{BERT}_d(z), \ \mathbf{q}(x) = \mathsf{BERT}_q(x)$

 $\mathbf{d}(z)$ is a vector representation of a document produced by a BERT model and $\mathbf{q}(x)$ is a vector presentation of the query produced by another BERT model. Calculating top-k $(p_{\eta}(\cdot|x))$ is a Maximum Inner Produce Search (MIPS) problem, which can be approximately solved in sub-linear time.

Generator: BART

BART is a seq2seq transformer model with 400M parameters. RAG concatenates the input x and the retrieved document z to produce the input for BART.

Process

Training

Given a fine-tuning training corpus of input/output pairs (x_j, y_j) , the retriever and generator are jointly trained by minimizing the negative marginal log-likelihood $\sum_j -\log p(y_j|x_j)$.

The document encoder $BERT_d$ is not updated during training as it is costly to do so (the document indices needs to be updated as the model changes).

Decoding - RAG-Token

The RAG-Token model can be seen as a standard autoregressive seq2seq generator with transition probability:

$$p'_{\theta}(y_i|x, y_{i:i-1}) = \sum_{z \in \text{top-k}(p(\cdot|x))} p_{\eta}(z_i|x) p_{\theta}(y_i|x, z_i, y_{1:i-1})$$

Standard beam-search decoder can be used to sample the output.

Decoding - RAG-Sequence

For RAG-Sequence, RAG runs beam search for each document z, scoring each hypothesis using $p_{\theta}(y_i|x,z,y_{1:i-1})$ and yielding a set of hypotheses Y. Some of the hypotheses may not appear in the beams of all documents.

If a hypothesis y does not appear in a beam with document z, there are two options. The first option is to run an additional forward pass to get $p_{\theta}(y_i|x,z,y_{1:i-1})$. This is referred to as "Thorough Decoding". The other option is to assume $p_{\theta}(y|x,z_i)\approx 0$ if y was not generated during beam search for x,z_i . This is referred to as "Fast Decoding".

Experiments

Setup

- ▶ **Non-parametric knowledge**: Dec. 2018 Wikipedia dump split into 100 word chunks, totaling 21M documents.
- MIPS solver: FAISS with Hierarchical Navigable Small World approximation.
- ▶ **Hyper-parameters**: $k \in 5, 10$ when retrieving the top-k documents.

Open-domain Question Answering

The four columns corresponds to four datasets.

Model		NQ TQA		WQ	CT
	T5-11B [52]	34.5	- /50.1	37.4	-
Book	T5-11B+SSM[52]	36.6	- /60.5	44.7	-
Open	REALM [20]	40.4	- / -	40.7	46.8
Book	DPR [26]	41.5	57.9/ -	41.1	50.6
	RAG-Token	44.1	55.2/66.1	45.5	50.0
	RAG-Seq.	44.5	56.8/ 68.0	45.2	52.2

RAG can generate correct answers even if it is not in any retrieved document, where extractive models would score 0%.

Abstractive Question Answering

This task consists of questions, ten gold passages retrieved from a search engine for each question, and a full sentence answer annotated from the retrieved passages.

RAG does not use the gold passages and relies only on its parametric and non-parametric (Wikipedia) knowledges.

Model	Jeopardy		MSMARCO		FVR3	FVR2
	B-1	QB-1	R-L	B-1	Labe	l Acc.
SotA	-	-	49.8*	49.9*	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.					72.5	<u>89.5</u>

Jeopardy Question Generation

Jeopardy is about guessing an entity from a fact about that entity.

Model	Jeon	pardy	MSM	ARCO	FVR3	FVR2
	B-1	QB-1	R-L	B-1	Labe	l Acc.
SotA	-	-	49.8*	49.9*	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.			40.1 40.8	41.5 44.2	72.5	89.5

Jeopardy questions often contain two separate pieces of information, and RAG-Token may perform best because it can generate responses that combine content from several documents.

Fact Verification

This task requires classifying a claim is supported or reduted by Wikipedia, or whether there is not enough information.

Model	Jeopardy		MSMARCO		FVR3	FVR2
	B-1	QB-1	R-L	B-1	Labe	l Acc.
SotA	-	-	49.8*	49.9*	76.8	92.2*
BART	15.1	19.7	38.2	41.6	64.0	81.1
RAG-Tok. RAG-Seq.				41.5 44.2	72.5	89.5

Conclusion

Conclusion

Strength:

- Addresses important problems.
- General and relatively simple formulation.

Limitation (and Oppotunities):

- Does not actually solve the hallucination problem.
- ightharpoonup Needs to run k times inference passes during generation.
- ▶ The input *x* needs to be additionally processed by another model.
- ▶ The retrieving process does not use GPU and is likely to be disk-IO intensive.

Thank you!