

Indirect Network Troubleshooting with The Chase

Mubashir Anwar[†], Fangping Lan^{*}, Anduo Wang^{*}, Matthew Caesar[†]

†University of Illinois Urbana-Campaign, *Temple University

Two clouds obscuring network verification

- Cloud I: Concurrent Events
- failures and changes are common in networks
- Cloud II: Distributed Policies
- global invariants are ensured using policies in different parts of the network
- Problem Formulation:
- I: Temporal Decision Problem: Does a policy still hold under different network environments (e.g. failures)?
- II: Spatial Decision Problem: Do local policies (under different network partitions) imply a network-wide invariant?

Indirect Troubleshooting

- Solves an implication problem
- decides if known facts about the network imply some unknown property
- natively supports reasoning about concurrent events (link failures) and distributed policies
- a unifying implementation with the chase
- The chase: Tests implications among data dependencies in databases
- a unifying database primitive (denoted, chase(γ , σ)) denotes the impact of applying the premise σ to the conclusion γ
- premise and conclusion represented as tableaux
- premise could be policies verified by existing verification tools directly

Future Possibilities

- Networks are hard to reason about
- grow without a premeditated plan
- different parts often managed by different departments
- The chase provides a flexible framework to reason with disparate network views

is new policy σ_v redundant (impossible)? \Rightarrow chase(σ_v , Σ) = T(\bot)?

is policy σ_i unaffected when a new error ϵ_1 is detected?

 \Rightarrow chase(σ_i , { ϵ_1 , Σ }) = σ_i ?

is detected failure ϵ_1 a sure symptom of σ_i ? \Rightarrow chase(σ_i , $\{\epsilon_1, \Sigma\}$) = \bot ?

is remote ϵ_2 bound to occur if ϵ_1 is detected? \Rightarrow chase(ϵ_2 , $\{\epsilon_1, \Sigma\}$) = T?

This work is supported by the NSF Awards CNS-1909450 and CNS-2145242