28 27	
MSSIGNMEN	
1) Let X1, X2 and X3 be no of products A, B and C respectively.	imber of units to be produced
The LP Model is: Maximize (total profit) Z=12	$3c_1 + 20x_2 + 45x_1$
	(1 MARK)
subject to constraints:	
Subject to constraints: (i) Labour and material	11
(a) $0.8 \times 1 + 1.1 \times 2 + 1.3 \times 3$	SIOO (IMARK)
(b) $x_1 \leq 50$	(1 MARK)
$(c) \propto 2 \leq 25$	(1 ////////
$(a) \propto_3 \leq 30$	
(ii) Order commitment	(1 MARK).
$\frac{7}{2}$	
	(1 MARK)
(iii) $\alpha_1, \alpha_2, \alpha_3 \geq 0$	
	5 MARKS

9 az) Let X1, X2 > quantity of product A (in 1000 gallons)

to be produced in plants 1 and 2

X3, X4 > quantity of product B (in quintals)

to be produced in plant 1 and 2. 12 The L'P model is. Minimize (Total cost) (2 MARKS) $Z = 15,000 \propto_1 + 18,000 \propto_2 + 28,000 \times_3$ + 26,000 X4 Subject to constraints: (1) Preparation time (a) $3x_1 + x_3 \leq 16$ (1 MARK) (b) $2xz + 1.5x_4 \le 16$ (ii) Minimum daily production requirement (a) $x_1 + x_2 \geq 10$ (1 MARK) (b) X3 + X4 Z 8 (iII) $\chi_1, \chi_2, \chi_3 \geq 0$ (1 MAKK) 5 MARKS

(03) Let I and Iz number of units of components (1 and (2 to be produced) respectively. The LP model is : maximize (total profit) (2 MARKS) Z= Selling price - Cost price = (30-10) x1 + (70-40) x2 = 2001 + 3002subject to the constraints (i) The total budget available 1000, + 4002 = 4,000 (1 MARKS). (ii) Production time (1 MARKS). (a) $3x_1 + 2x_2 \le 2,000$ (b) $2x_1 + 3x_2 \le 1,400$ 11 MARKS). $\alpha_1, \alpha_2 \geq 0$ (111)

(184) Let X, and X2 be number of class A and B truck to be disputched. respectively. The L.P model is. 12 Minimize (Total aperating (ast). (2 MARKS) $Z = 3x_1 + 4x_2$ subject to constraints. (IMPRK) 15 X1 + 10 X2 = 3,000 $\frac{\chi_1}{\chi_2} \leq \frac{149}{98}$ (1 MARK) (iii) $2(150-x_1)-(100-x_2) >= 0$ (0.5 MARK) SUND (0'5 MARK) $x_1, x_2 Z0$ (ru) MARKS