Diskrétka 7

Hynek Kydlicek

22. listopadu 2020

1 Úkol 1

Ukážeme, že pokud je velikost jedné z parit ≥ 3 , doplněk takového grafu není bipartitní. Označme si partity A,B. Z definice bipartitního grafu G pro doplněk G' platí $(\forall v_1,v_2\in A)(\{v_1,v_2\}\in E').$ Tedy žádné 2 vrcholy z A nesmí být ve stejné partitě v novém G'. Partity máme jenom 2, proto $|A|\leq 2 \wedge |B|\leq 2.$ Tedy $2\leq n\leq 4.$ Ukážeme, že takové grafy a jejich doplňky opravdu existují viz. obr. 1

Obrázek 1: Bipartitní graf

2 Úkol 2

2.1 Počet úplných bipartitních grafů

V textu budou všechny bipartitní grafy úplné. Počet různých úplných bipartitních grafů na n vrcholech s velikostí partit $k,n-k=\binom{n}{k}$. Vybíráme k vrcholů z n prvků do první partity, druhá je určena jednoznačně. Zároveň je nutné si uvědomit, že pokud $\mathbf{k}=\mathbf{n}$ -k, pak výsledek musíme ještě vydělit 2, protože graf s partitami $A=\{a_1,a_2\dots a_k\},B=\{b_1,b_2\dots b_k\}$ je stejný jako graf s paritami $B=\{a_1,a_2\dots a_k\},A=\{b_1,b_2\dots b_k\}$.

Nyní stačí sečíst počet všech různých bipartitních grafů pro všechna $k\in\{1,n-1\}$. Uvědomíme si, že množina různých bipartitní grafů k, n-k je stejná

jako množina různých bipartitních grafů n-k, n. Tedy výsledný počet musíme vydělit 2. Dostáváme, že počet různých úplných bipartitních grafů je.

Pro sudá n:
$$\sum_{k=1}^{\frac{n}{2}-1} \binom{n}{k} + \frac{\binom{n}{\frac{n}{2}}}{2} = \sum_{k=1}^{n-1} \frac{\binom{n}{k}}{2}$$
Pro lichá n:
$$\sum_{k=1}^{n-1} \frac{\binom{n}{k}}{2}$$

2.2 Počet kružnic délky n

Počet všech možností jako očíslovat vrcholy = n!. Uvědomíme si, že pokud očíslujeme vrcholy $1, 2, 3 \dots n$ je to stejný graf jako $n, 1, 2, 3 \dots n-1$. Takových posunů je n. Zárověn očíslovaní $1, 2, 3 \dots n$ je stejné jako $1, n, n-1 \dots 3, 2$.

Počet různých kružnic:
$$\frac{n!}{2*n}$$
.

3 Úkol 3

Ukážeme že 7-regulární graf na 15 vrcholech musí být nutně souvislý. Pro ostatní grafy, kde mají všechny vrcholy stupeň ≥ 7 to bude triviálně platit taky, přidáním hrany nemůže graf udělat nesouvislý.

Pokud by nebyl 7-regulární graf souvislý, musela by minimální velikost každé komponenty souvislosti být alespoň 8 (z každého vrcholu musí vést hrana do 7 dalších vrcholů, tyto vrcholy jsou nutně souvislé). Tedy počet vrcholů by musel být alespoň 16. To je spor s předpokladem, že vrcholů je 15.