

BIT3 Datasheet V09

Widora BIT系列是一款基于联发科MT7688AN的核心板模块,提供多种配置,引出MT7688AN的所有接口,方便二次开发。

更新:BIT3尺寸图

更新: UART_RX0设计注意

更新: VDD_FLASH部分简化,增加CS1的设计注意

产品命名: Widora BIT16CY

品牌: Widora

型号字段:

1-3、代表系列。BIT: MT7688AN核心模块

4-5、FLASH大小。16:16MB, 32:32MB, 08:8MB

6、RAM大小。A: 32MB、B: 64MB、C: 128MB、D: 256MB

7、代表连接方式。Y: 邮票半孔方式, C: 板对板连接器方式, H: 排针, M:

金手指方式

质检标签:

- 1、模块在焊接厂质检完(包括通电测试、所有IO测试、WIFI信号校准后,贴绿色小圆标签)。
- 2、模块在我司出货前会烧录Widora提供的openwrt固件,也可以烧录客户制定的固件。
- 3、整批模块外包装袋不再有质检标示。

技术参数:

协议与接口标准				
WiFi标准	IEEE 802.11b/g/n			
Ethernet接口	1-5个10M/100M自适应			
USB2.0	1路			
SDIO	1路			
SPI	1路			
I2C	1路			
I2S	1路			
UART	3路			
PWM	4路			
GPIO□	8路及以上			

内存容量范围					
外挂Flash	8MB、16MB、32MB				
运行内存	DDR2: 128MB				
WIFI射频参数(典型值)					
工作频率	2.4GHz ISM Band				
IPEX端子发射功率	16.5dbm±1dBm				
信道	1-14				
无线校准	已校准				
供电要求(典型值)					
电源输入	DC: 3.3V±0.2V				
空载运行电流	170±50mA				
峰值电流	800mA				
工作条件					
工作温度	0°C to +55°C				
储存温度	-20°C to +80°C				
物理规格(典型值)					
尺寸	33.02*17.7mm				

机械尺寸:

因BIT3底部有器件,图示圆圈部分为底板开孔,建议开孔直径为7mm。

引脚	功能	电器特性	说明
A1	I2S_SDI	I	I2S数据输入端
A2	I2S_SDO	О	I2S数据输出端,核心板已有4.7K下拉
A3	12S_WS	О	I2S声道选择,0:左声道,1:右声道
A4	I2S_CLK	О	I2S数据位时钟
A5	I2C_SCLK	О	I2C总线时钟
A6	I2C_SD	I/O	I2C总线数据
A7	VDD_FLASH	I	FLASH独立供电端,3.3V
A8	SPI_CS1	О	SPI总线片选信号1,核心板已有4.7K下拉
A9	SPI_CLK	О	SPI总线时钟信号,核心板已有4.7K上拉
A8	SPI_CS1		SPI总线片选信号1,核心板已有4.7K下拉

A10 SPI_MIS	SO I		SPI总线数据主入从出		
A11 SPI_MC	SI O)	SPI总线数据主出从入,核心板已有4.7K下拉		
A12 SPI_CS	0 0)	SPI总线片选信号0		
A13 GPIO_C) 1/0	О	通用输入输出口,实际为GPIO11		
B1 UART_1	XD0 O)	串口0数据输出,核心板已有4.7K下拉		
B2 UART_F	RXD0 I		串口0数据输入,外部电路需考虑上拉电阻增强 抗干扰		
B3 RXI_P	A		PORT0网络信号接收正		
B4 RXI_N	A		PORT0网络信号接收负		
B5 TXO_P	A	1	PORT0网络信号发送正		
B6 TXO_N	A		PORT0网络信号发送负		
B7 GPIO14	/TXO_P /	О	通用输入输出口/PORT1网络信号发送正		
B8 GPIO15	/TXO_N I/	О	通用输入输出口/PORT1网络信号发送负		
B9 GPIO16	/RXI_P I/	О	通用输入输出口/PORT1网络信号接收正		
B10 GPIO17	/RXI_N I/	O	通用输入输出口/PORT1网络信号接收负		
B11 PWM_C	H0 O)	PWM通道0		
B12 PWM_C	H1 O)	PWM通道1		
B13 TXD2/P	WM2 O)	串口2数据发送/PWM通道2		
B14 RXD2/P	WM3 I/	О	串口2数据接收/PWM通道3		
B15 SD_WP	I		写保护,1:写保护,0:未写保护		
B16 SD_CD	I		插卡检测,1:无TF卡;0:有TF卡		
B17 SD_D1	1/	O	SDIO数据1		
B18 SD_D0	1/	O	SDIO数据0		
B19 SD_CLk	(0)	SDIO时钟		
B20 SD_CMI	D 0)	SDIO命令		
B21 SD_D3	1/	О	SDIO数据3		
B22 SD_D2	1/	O	SDIO数据2		

B23	GND	Р	电路地		
B24	UD_P	I/O	USB数据正		
B25	UD_N	I/O	USB数据负		
C1	GND	Р	电路地		
C2	RF	A	射频输出信号		
СЗ	GND	Р	电路地		
C4	GND	Р	电路地		
C5	UART_RXD1	I	串口1数据接收		
C6	UART_TXD1	О	串口1数据发送,核心板已有4.7K上拉		
C7	WLED_N	О	WIFI LED,低有效		
C8	LINK0	О	PORT0 LED,低有效		
C9	GPIO42/LINK1	I/O	通用输入输出口/PORT1 LED,低有效		
C10	GPIO41/LINK2	I/O	通用输入输出口/PORT2 LED,低有效		
C11	PCIE_CKP0	0	PCIE总线时钟输出正		
C12	PCIE_CKN0	О	PCIE总线时钟输出负		
C13	PCIE_RXN0	I	PCIE总线数据接收负		
C14	PCIE_RXP0	I	PCIE总线数据接收正		
C15	PCIE_TXP0	О	PCIE总线数据发送正		
C16	PCIE_TXN0	О	PCIE总线数据发送负		
C17	3.3VD	Р	3.3V电源		
C18	GND	Р	电路地		
C19	GPIO40/LINK3	I/O	通用输入输出口/PORT3 LED,低有效		
C20	GPIO39/LINK4	I/O	通用输入输出口/PORT4 LED,低有效		
C21	CPURST_N	I	CPU复位输入,低有效		
C22	WPS_RST_PBC	I	用户按键,WPS输入信号。		
C23	REF_CLK	О	基准时钟输出,默认12MHz		
C24	PERST_N	О	PCIE复位输出端,核心板已有4.7K上拉		

C25	GND	Р	电路地

引脚定义:

备注:

I: 输入 O: 输出

A: 模拟信号 P: 电源或地

红色: 和芯片启动相关, 外部电路设计需考虑核心板已有的上下拉电阻情况,

不可与核心板上下拉有电平冲突。

引脚分布:

BIT模块二次回流焊接温度曲线: (请严格按照此温度曲线执行,回流焊接温度不适可能导致BIT模块损坏!!!)

温度设置 (摄	氏度)								
温区	1	2	3	4	5	6	7	8	
上温区	125	135	155	185	195	225	240	230	
下温区	125	135	155	185	195	225	240	230	
传送带速度(公分/分):	70.0							

PWI= 94%	恒温时间1	75至190C	回流时间	i] /220C	最高	温度
<tc2></tc2>	35.53	-82%	55.58	-72%	230.28	-94%
<tc3></tc3>	37.66	-74%	58.66	-57%	230.56	-89%
<tc4></tc4>	41.52	-62%	60.63	-47%	233.62	-28%
<tc5></tc5>	37.07	-76%	60.44	-48%	231.67	-67%
温差	5.99		5.05		3,34	

制程界限:

锡膏:	System Default for Reflow			
统计数名称		最低界限	最高界限	单位
恒温时间175-190摄氏度		30	90	秒
回流以上时间 - 220摄氏度	£	50	90	秒
最高温度		230	240	度 摄氏度
回流以上时间 - 220摄氏度	ŧ	50	90	秒

最小系统设计推荐电路:

免焊刷机:指的是在不需要把FLASH芯片焊接下来的情况下,利用SPI编程器的SPI接口连接BIT模块对应管脚直接刷机。3.3V经过一个肖特基二极管向VDD_FLASH供电即可,例如RB520S30。

要点1: SPI_CS1引脚,该引脚控制7688启动时SPI的地址模式,有两种情况:

情况A: FLASH 为 16MB, SPI CS1悬空。

情况B: FLASH 为 32MB, SPI CS1使用1K电阻上拉至3.3V。

要点2:所有红色的PIN,外部不可擅自接上下拉电阻,以免影响启动。

要点3:WPS为用户按键,默认出厂Uboot启动会检测此引脚电平,原理设计请上拉到3.3V。

要点4: 电源处,需要一个10uF去耦电容,布局时尽量靠近核心版的C17引脚。

要点5: RF跳线电阻要紧挨C2引脚,可确保仅使用I-PEX端子时获得最佳性能。

要点6:最小系统中的网口部分电路的设计是电容耦合方式,如果想设计变压器方式,则参考以下电路,7688的网口引脚直接接变压器,中心抽头用0.1uF电容旁路到地即可(此种接法不需要50R电阻)。

要点7:5口路由器模式,PORT0始终不变,PORT1-4的对应图:

ВЗ	RXI_P0		PORT0网络信号接收正
B4	RXI_N0		PORT0网络信号接收负
B5	TXO_P0	网口0	PORT0网络信号发送正
B6	TXO_N0		PORT0网络信号发送负
B7	TXO_P1		PORT1网络信号发送正
B8	TXO_N1	WD4	PORT1网络信号发送负
В9	RXI_P1	网口1	PORT1网络信号接收正
B10	RXI_N1		PORT1网络信号接收负
B11	RXI_P2	网口2	PORT2网络信号接收正
B12	RXI_N2		PORT2网络信号接收负
B13	TXO_P2		PORT2网络信号发送正
B14	TXO_N2		PORT2网络信号发送负
B15	TXO_P3		PORT3网络信号发送正
B16	TXO_N3		PORT3网络信号发送负
B17	RXI_P3		PORT3网络信号接收正
B18	RXI_N3		PORT3网络信号接收负
B19	RXI_P4		PORT4网络信号接收正
B20	RXI_N4		PORT4网络信号接收负
B21	TXO_P4	网□4	PORT4网络信号发送正
B22	TXO_N4		PORT4网络信号发送负

5口路由器模式,PORT1-4的LED对应图:

C9	LINK1	О	PORT1 LED,低有效
C10	LINK2	О	PORT2 LED,低有效
C19	LINK3	0	PORT3 LED,低有效
C20	LINK4	0	PORT4 LED,低有效

要点8: UART_RX0设计时,外部请考虑上拉电阻到3.3V,例如10K、4.7K。防止RX0受到干扰情况下执行"命令"。