ADSP-BF548 EZ-KIT Lite® Evaluation System Manual

Revision 1.1, September 2007

Part Number 82-000206-01

Analog Devices, Inc. One Technology Way Norwood, Mass. 02062-9106

Copyright Information

©2007 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form without prior, express written consent from Analog Devices, Inc.

Printed in the USA.

Limited Warranty

The EZ-KIT Lite evaluation system is warranted against defects in materials and workmanship for a period of one year from the date of purchase from Analog Devices or from an authorized dealer.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices icon bar and logo, VisualDSP++, the VisualDSP++ logo, Blackfin, the Blackfin logo, the CROSSCORE logo, EZ-KIT Lite, and EZ-Extender are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of their respective owners.

Regulatory Compliance

The ADSP-BF548 EZ-KIT Lite is designed to be used solely in a laboratory environment. The board is not intended for use as a consumer end product or as a portion of a consumer end product. The board is an open system design which does not include a shielded enclosure and therefore may cause interference to other electrical devices in close proximity. This board should not be used in or near any medical equipment or RF devices.

The ADSP-BF548 EZ-KIT Lite has been certified to comply with the essential requirements of the European EMC directive 89/336/EEC amended by 93/68/EEC and therefore carries the "CE" mark.

The ADSP-BF548 EZ-KIT Lite has been appended to Analog Devices, Inc. Technical Construction File (TCF) referenced '**DSPTOOLS1**' dated December 21, 1997 and was awarded CE Certification by an appointed European Competent Body as listed below.

Technical Certificate No: Z600ANA1.029

Issued by: Technology International (Europe) Limited 60 Shrivenham Hundred Business Park Shrivenham, Swindon, SN6 8TY, UK

The EZ-KIT Lite evaluation system contains ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused EZ-KIT Lite boards in the protective shipping package.

PREFACE

Purpose of This Manualxv
Intended Audience xvi
Manual Contentsxvi
What's New in This Manual xvii
Technical or Customer Supportxvii
Supported Processorsxviii
Product Informationxviii
MyAnalog.comxviii
Processor Product Information xix
Related Documentsxx
Online Technical Documentation
Online Technical Documentation

Notation Conventions xxiv
USING ADSP-BF548 EZ-KIT LITE
Package Contents
Default Configuration
Installation and Session Startup
Evaluation License Restrictions
Memory Map
DDR Interface
Burst Flash Memory Interface
NAND Flash Interface 1-12
SPI Interface
SD Interface
EPPI Interface
LCD Module Interface
Touchscreen Interface
Keypad Interface
Rotary Encoder Interface
Ethernet Interface
Audio Interface
ATAPI Interface 1-21
USB OTG Interface
UART Interface 1-22
CAN Interface 1-23
Host Interface

CAN1 Enable Switch (SW15)	2-23
Peripheral Control Enable (SW16)	2-23
LCD Module Configuration (SW17)	2-24
Jumpers	2-26
UART1 Loopback Jumper (JP1)	2-27
SPI1 Enable Jumper (JP2)	2-27
Ethernet Speed Select Jumper (JP3)	2-28
VDDINT Power Jumper (JP4)	2-28
VDDEXT Power Jumper (JP5)	2-29
VDDDDR Power Jumper (JP6)	2-29
MOSI1 Out Jumper (JP7)	2-30
MOSI1 In Jumper (JP8)	2-30
USB OTG Power Jumper (JP11)	2-31
PPI1FS3 Pull-down Jumper (JP12)	2-31
LEDs	2-32
User LEDs (LED1–6)	2-32
Power LED (LED7)	2-33
Reset LED (LED8)	2-33
Ethernet Link/Activity LED (LED9)	2-33
Connectors	2-34
Expansion Interface Connectors (J1-3)	2-35
Ethernet Connector (J4)	2-35
SD Memory Card Connector (J5)	2-36
RS-232 Connector (J6)	2-36

Power Connector (J7)	Ó
Dual Audio Connectors (J8 and J9)	7
Audio Connector (J10)	7
CAN Connectors (J11 and J12)	7
Battery Holder (J13)	3
ATAPI Connector (J14)	3
Keypad Connector (P1)	3
Host Interface Connector (P3))
USB OTG Connector (P4))
LCD Backlight Connector (P5))
SPORT2 Connector (P6))
SPORT3 Connector (P7))
PPI1 Connector (P8))
SPI Connector (P9)	L
Two-Wire Interface Connector (P10)	L
TIMERS Connector (P11)	L
UART3 Connector (P12)	2
LCD Touchscreen Connector (P14)	2
LCD Data Connector (P15)	2
USB Debug Agent Connector (ZJ1)	;
ITAG Connector (ZP4)	,

ADSP-BF548 EZ-KIT LITE BILL OF MATERIALS ADSP-BF548 EZ-KIT LITE SCHEMATIC

Title Page	B-1
DDR Interface	B-2
EBIU	В-3
Control	B-4
PPI, Keypad, Thumbwheel Interface	B-5
Processor Power	В-6
AC'97 Audio	В-7
ATAPI Hard Drive, USB, OTG	В-8
Ethernet	В-9
CAN	B-10
MXVR Port, UART, SD Conn	B-11
LCD	B-12
Push Buttons, LEDs, Boot Mode	В-13
Expansion Interface and JTAG	B-14
STAMP Connectors	B-15
Power Page 1	В-16
Power Page 2	B-17

INDEX

PREFACE

Thank you for purchasing the ADSP-BF548 EZ-KIT Lite[®], Analog Devices, Inc. evaluation system for Blackfin[®] processors.

Blackfin processor family embodies a new type of embedded processor designed specifically to meet the computational demands and power constraints of today's embedded audio, video, and communications applications. They deliver breakthrough signal-processing performance and power efficiency within a reduced instruction set computing (RISC) programming model.

Blackfin processors support a media instruction set computing (MISC) architecture. This architecture is the natural merging of RISC, media functions, and digital signal processing (DSP) characteristics. Blackfin processors deliver signal-processing performance in a microprocessor-like environment.

Based on the Micro Signal Architecture (MSA), Blackfin processors combine a 32-bit RISC instruction set, dual 16-bit multiply accumulate (MAC) DSP functionality, and eight-bit video processing performance that had previously been the exclusive domain of very-long instruction word (VLIW) media processors.

The evaluation board is designed to be used in conjunction with the VisualDSP++® development environment to test the capabilities of ADSP-BF548 Blackfin processors. The VisualDSP++ development environment gives you the ability to perform advanced application code development and debug, such as:

- Create, compile, assemble, and link application programs written in C++, C, and ADSP-BF548 assembly
- Load, run, step, halt, and set breakpoints in application programs
- Read and write data and program memory
- Read and write core and peripheral registers
- Plot memory

Access to the ADSP-BF548 processor from a personal computer (PC) is achieved through a USB port or an optional JTAG emulator. The USB interface gives unrestricted access to the ADSP-BF548 processor and the evaluation board peripherals. Analog Devices JTAG emulators offer faster communication between the host PC and target hardware. Analog Devices carries a wide range of in-circuit emulation products. To learn more about Analog Devices emulators and processor development tools, go to http://www.analog.com/dsp/tools/.

The ADSP-BF548 EZ-KIT Lite provides example programs to demonstrate the capabilities of the evaluation board.

The ADSP-BF548 EZ-KIT Lite installation is part of the VisualDSP++ installation. The EZ-KIT Lite is a licensed product that offers an unrestricted evaluation license for the first 90 days. For details about evaluation license restrictions after the 90 days, refer to "Evaluation License Restrictions" on page 1-7 and the VisualDSP++ Installation Quick Reference Card.

The board features:

- Analog Devices ADSP-BF548 Blackfin processor
 - ✓ Core performance up to 600 MHz
 - External bus performance up to 133 MHz
 - ✓ 400-pin mini-BGA package
 - 25 MHz crystal
- Double data rate (DDR) synchronous dynamic random access memory (SDRAM)
 - ✓ Micron MT46V32M16 64 MB (8M x 16-bits x 4 banks)
- Burst flash memory
 - ✓ Intel PC28F128K3C115 32 MB (16M x 16-bits)
- NAND flash memory
 - ✓ ST Micro NAND02 2 Gb
- SPI flash memory
 - ✓ ST Micro M25P16 16 Mb
- Advanced technology attachment packet interface (ATAPI)
 - ▼ Toshiba 2.5" MK4032GAX 40 GB HDD
- Analog audio interface
 - Analog Devices AD1980 SoundMAX codec
 - → 6 DAC channels for 5.1 surround
 - 1 input stereo MIC jack
 - → 1 input stereo LINE IN jack

- → 1 output stereo LINE OUT/HEAD PHONE OUT jack
- → 1 output stereo SURROUND jack
- ✓ 1 output center and LFE jack
- TFT LCD display with touchscreen
 - ✓ Sharp LQ043T1DG01 480 x 272, 4.3" touchscreen LCD
 - → Analog Devices AD7877 touchscreen controller
- Ethernet interface
 - ✓ SMSC LAN9218 device
 - ▼ 10-BaseT and 100-BaseTX Ethernet controller
 - Integrated PHY and MAC
 - HP Auto-MDIX
- Keypad
 - → ACT components 4 x 4 keypad assembly
- Thumbwheel
 - CTS Corp rotary encoder
- Universal asynchronous receiver/transmitter (UART)
 - → ADM3202 RS-232 line driver/receiver
 - → DB9 female connector
- LEDs
 - ✓ 10 LEDs: 1 power (green), 1 board reset (red), 1 USB (red), 6 general-purpose (amber), and 1 USB monitor (amber)

- Push buttons
 - 5 push buttons: 1 reset, 4 programmable flags with debounce logic
- Expansion interface: all ADSP-BF548 processor signals
- Other features
 - → JTAG ICE 14-pin header
 - USB OTG connector
 - → HOST interface connector
 - → Blackfin power measurement jumpers
 - ▶ PPI1 IDC connector
 - ▼ SPORT2 and SPORT3 IDC connectors
 - ✓ TWI, SPI, timers, UART3 IDC connectors

For information about the hardware components of the EZ-KIT Lite, refer to the ADSP-BF548 EZ-KIT Lite Evaluation System Manual.

Purpose of This Manual

The ADSP-BF548 EZ-KIT Lite Evaluation System Manual provides instructions for installing the product hardware (board). The text describes the operation and configuration of the board components and provides guidelines for running your own code on the ADSP-BF548 EZ-KIT Lite. Finally, a schematic and a bill of materials are provided as a reference for future designs.

EZ-KIT Lite users should use this manual in conjunction with the *Getting Started with ADSP-BF548 EZ-KIT Lite*, which familiarizes users with the hardware capabilities of the evaluation system and demonstrates how to access these capabilities in the VisualDSP++ environment.

Intended Audience

The product software installation is detailed in the *VisualDSP++ Installation Quick Reference Card*.

Intended Audience

The primary audience for this manual is a programmer who is familiar with Analog Devices processors. This manual assumes that the audience has a working knowledge of the appropriate processor architecture and instruction set. Programmers who are unfamiliar with Analog Devices processors can use this manual but should supplement it with other texts (such as the ADSP-BF548 Blackfin Processor Hardware Reference and Blackfin Processor Instruction Set Reference) that describe your target architecture.

Programmers who are unfamiliar with VisualDSP++ should refer to the VisualDSP++ online Help and user's or getting started guides. For the locations of these documents, see "Related Documents".

Manual Contents

The manual consists of:

- Chapter 1, "Using ADSP-BF548 EZ-KIT Lite" on page 1-1
 Describes the EZ-KIT Lite functionality from a programmer's perspective and provides an easy-to-access memory map.
- Chapter 2, "ADSP-BF548 EZ-KIT Lite Hardware Reference" on page 2-1
 Provides information on the EZ-KIT Lite hardware components.
- Appendix A, "ADSP-BF548 EZ-KIT Lite Bill Of Materials" on page A-1 Provides a list of components used to manufacture the EZ-KIT Lite board.

• Appendix B, "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1 Provides the resources to allow EZ-KIT Lite board-level debugging or to use as a reference design.

Appendix B is part of the online Help. The PDF version of the *ADSP-BF548 EZ-KIT Lite Evaluation System Manual* is located in the Docs\EZ-KIT Lite Manuals folder on the installation CD. Alternatively, the schematics can be found on the Analog Devices Web site, www.analog.com/processors.

What's New in This Manual

The ADSP-BF548 EZ-KIT Lite Evaluation System Manual has been updated to reflect the latest revision of the board.

Technical or Customer Support

You can reach Analog Devices, Inc. Customer Support in the following ways:

- Visit the Embedded Processing and DSP products Web site at http://www.analog.com/processors/technicalSupport
- E-mail tools questions to processor.tools.support@analog.com
- E-mail processor questions to processor.support@analog.com (World wide support) processor.europe@analog.com (Europe support) processor.china@analog.com (China support)
- Phone questions to 1-800-ANALOGD

Supported Processors

- Contact your Analog Devices, Inc. local sales office or authorized distributor
- Send questions by mail to:

Analog Devices, Inc. One Technology Way P.O. Box 9106 Norwood, MA 02062-9106 USA

Supported Processors

This evaluation system supports Analog Devices ADSP-BF548 Blackfin embedded processors.

Product Information

You can obtain product information from the Analog Devices Web site, from the product CD-ROM, or from printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides information about a broad range of products—analog integrated circuits, amplifiers, converters, and digital signal processors.

MyAnalog.com

MyAnalog.com is a free feature of the Analog Devices Web site that allows customization of a Web page to display only the latest information on products you are interested in. You can choose to receive weekly e-mail notifications containing updates to the Web pages that meet your interests, including documentation errata against all manuals. You can also

choose to receive weekly e-mail notifications containing updates to the Web pages that meet your interests. MyAnalog.com provides access to books, application notes, data sheets, code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click **Register** to use MyAnalog.com. Registration takes about five minutes and serves as means for you to select the information you want to receive.

If you are already a registered user, just log on. Your user name is your e-mail address.

Processor Product Information

For information on embedded processors and DSPs, visit our Web site at www.analog.com/processors, which provides access to technical publications, data sheets, application notes, product overviews, and product announcements.

You may also obtain additional information about Analog Devices and its products in any of the following ways.

- E-mail questions or requests for information to processor.support@analog.com (World wide support) processor.europe@analog.com (Europe support) processor.china@analog.com (China support)
- Fax questions or requests for information to 1-781-461-3010 (North America) +49-89-76903-157 (Europe)

Product Information

Related Documents

For information on product related development software, see the following publications.

Table 1. Related Processor Publications

Title	Description
ADSP-BF542/BF544/BF548/BF549 Blackfin Embedded Processor Preliminary Data Sheet	General functional description, pinout, and timing.
ADSP-BF548 Blackfin Processor Hardware Reference	Description of internal processor architecture and all register functions.
Blackfin Processor Programming Reference	Description of all allowed processor assembly instructions.

Table 2. Related VisualDSP++ Publications

Title	Description
ADSP-BF548 EZ-KIT Lite Evaluation System Manual	Description of the hardware capabilities of the evaluation system; description of how to access these capabilities in the VisualDSP++ environment.
VisualDSP++ User's Guide	Description of VisualDSP++ features and usage.
VisualDSP++ Assembler and Preprocessor Manuals	Description of the assembler function and commands.
VisualDSP++ C/C++ Complier and Library Man- ual for Blackfin Processors	Description of the complier function and commands for Blackfin processors.
VisualDSP++ Linker and Utilities Manual	Description of the linker function and commands.
VisualDSP++ Loader and Utilities Manual	Description of the loader/splitter function and commands.
VisualDSP++ Device Drivers and System Services Manual for Blackfin Processors	Description of the device drivers' and system services' functions and commands

If you plan to use the EZ-KIT Lite board in conjunction with a JTAG emulator, also refer to the documentation that accompanies the emulator.

All documentation is available online. Most documentation is available in printed form.

Visit the Technical Library Web site to access all processor and tools manuals and data sheets:

http://www.analog.com/processors/technicalSupport/technicalLibrary/.

Online Technical Documentation

Online documentation comprises the VisualDSP++ Help system, software tools manuals, hardware tools manuals, processor manuals, the Dinkum Abridged C++ library, and Flexible License Manager (FlexLM) network license manager software documentation. You can easily search across the entire VisualDSP++ documentation set for any topic of interest. For easy printing, supplementary .pdf files of most manuals are provided in the Docs folder on the VisualDSP++ installation CD.

Each documentation file type is described as follows.

File	Description
.chm	Help system files and manuals in Help format
.htm or .html	Dinkum Abridged C++ library and FlexLM network license manager software documentation. Viewing and printing the .html files requires a browser, such as Internet Explorer 6.0 (or higher).
.pdf	VisualDSP++ and processor manuals in Portable Documentation Format (PDF). Viewing and printing the .pdf files requires a PDF reader, such as Adobe Acrobat Reader (4.0 or higher).

Product Information

If documentation is not installed on your system as part of the software installation, you can add it from the VisualDSP++ CD at any time by running the Tools installation. Access the online documentation from the VisualDSP++ environment, Windows[®] Explorer, or the Analog Devices Web site.

Accessing Documentation From VisualDSP++

To view VisualDSP++ Help, click on the Help menu item or go to the Windows task bar and navigate to the VisualDSP++ documentation via the **Start** menu.

To view ADSP-BF548 EZ-KIT Lite Help, which is part of the VisualDSP++ Help system, use the **Contents** or **Search** tab of the Help window.

Accessing Documentation From Windows

In addition to any shortcuts you may have constructed, there are many ways to open VisualDSP++ online Help or the supplementary documentation from Windows.

Help system files (.chm) are located in the Help folder, and .pdf files are located in the Docs folder of your VisualDSP++ installation CD-ROM. The Docs folder also contains the Dinkum Abridged C++ library and the FlexLM network license manager software documentation.

Your software installation kit includes online Help as part of the Windows interface. These help files provide information about VisualDSP++ and the ADSP-BF548 EZ-KIT Lite evaluation system.

Accessing Documentation From Web

Download manuals at the following Web site:

http://www.analog.com/processors/technicalSupport/technicalLibrary/.

Select a processor family and book title. Download archive (.zip) files, one for each manual. Use any archive management software, such as Win-Zip, to decompress downloaded files.

Printed Manuals

For general questions regarding literature ordering, call the Literature Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

Hardware Tools Manuals

To purchase EZ-KIT Lite and in-circuit emulator (ICE) manuals, call 1-603-883-2430. The manuals may be ordered by title or by product number located on the back cover of each manual.

Processor Manuals

Hardware reference and instruction set reference manuals may be ordered through the Literature Center at 1-800-ANALOGD (1-800-262-5643), or downloaded from the Analog Devices Web site. Manuals may be ordered by title or by product number located on the back cover of each manual.

Data Sheets

All data sheets (preliminary and production) may be downloaded from the Analog Devices Web site. Only production (final) data sheets (Rev. 0, A, B, C, and so on) can be obtained from the Literature Center at 1-800-ANALOGD (1-800-262-5643); they also can be downloaded from the Web site.

Notation Conventions

To have a data sheet faxed to you, call the Analog Devices Faxback System at 1-800-446-6212. Follow the prompts and a list of data sheet code numbers will be faxed to you. If the data sheet you want is not listed, check for it on the Web site.

Notation Conventions

Text conventions used in this manual are identified and described as follows.

Example	Description
Close command (File menu)	Titles in reference sections indicate the location of an item within the VisualDSP++ environment's menu system (for example, the Close command appears on the File menu).
{this that}	Alternative required items in syntax descriptions appear within curly brackets and separated by vertical bars; read the example as this or that. One or the other is required.
[this that]	Optional items in syntax descriptions appear within brackets and separated by vertical bars; read the example as an optional this or that.
[this,]	Optional item lists in syntax descriptions appear within brackets delimited by commas and terminated with an ellipse; read the example as an optional comma-separated list of this.
.SECTION	Commands, directives, keywords, and feature names are in text with letter gothic font.
filename	Non-keyword placeholders appear in text with italic style format.

Example	Description
(i)	Note: For correct operation, A Note provides supplementary information on a related topic. In the online version of this book, the word Note appears instead of this symbol.
M	Caution: Incorrect device operation may result if Caution: Device damage may result if A Caution identifies conditions or inappropriate usage of the product that could lead to undesirable results or product damage. In the online version of this book, the word Caution appears instead of this symbol.
\Diamond	Warning: Injury to device users may result if A Warning identifies conditions or inappropriate usage of the product that could lead to conditions that are potentially hazardous for the devices users. In the online version of this book, the word Warning appears instead of this symbol.

1 USING ADSP-BF548 EZ-KIT LITE

This chapter provides specific information to assist you with development of programs for the ADSP-BF548 EZ-KIT Lite evaluation system.

The following topics are covered.

- "Package Contents" on page 1-3
- "Default Configuration" on page 1-4
- "Installation and Session Startup" on page 1-5
- "Evaluation License Restrictions" on page 1-7
- "Memory Map" on page 1-7
- "DDR Interface" on page 1-9
- "Burst Flash Memory Interface" on page 1-12
- "NAND Flash Interface" on page 1-12
- "SPI Interface" on page 1-13
- "SD Interface" on page 1-14
- "EPPI Interface" on page 1-14
- "LCD Module Interface" on page 1-15
- "Touchscreen Interface" on page 1-17
- "Keypad Interface" on page 1-18

- "Rotary Encoder Interface" on page 1-18
- "Ethernet Interface" on page 1-19
- "Audio Interface" on page 1-20
- "ATAPI Interface" on page 1-21
- "USB OTG Interface" on page 1-22
- "UART Interface" on page 1-22
- "CAN Interface" on page 1-23
- "Host Interface" on page 1-24
- "RTC Interface" on page 1-25
- "LEDs and Push Buttons" on page 1-25
- "JTAG Interface" on page 1-26
- "Expansion Interface" on page 1-26
- "Power Measurements" on page 1-27
- "Design Reference Information" on page 1-28
- "Power-On-Self Test" on page 1-28
- "Example Programs" on page 1-29
- "Background Telemetry Channel" on page 1-29

For information about the graphical user interface, including the boot loading, target options, and other facilities of the EZ-KIT Lite system, refer to the online Help.

For more detailed information about the ADSP-BF548 Blackfin processor, see documents referred to as "Related Documents".

Package Contents

Your ADSP-BF548 EZ-KIT Lite evaluation system package contains the following items.

- ADSP-BF548 EZ-KIT Lite board
- VisualDSP++ Installation Quick Reference Card
- CD containing:
 - VisualDSP++ software
 - → ADSP-BF548 EZ-KIT Lite debug software
 - USB driver files
 - Example programs
 - → ADSP-BF548 EZ-KIT Lite Evaluation System Manual
- Universal 7.5V DC power supply
- 256 MB secure digital (SD) memory card
- 1 GB USB high-speed flash drive
- 7-foot Ethernet crossover cable
- 7-foot Ethernet patch cable
- Four 6-foot 3.5 mm male-to-male audio cables
- 3.5 mm headphones
- 10-foot USB A-B male cable for USB Debug Agent
- 5-in-1cable and connectors for USB on-the-go (OTG) applications
- Ethernet loopback connector
- CAN loopback cable

If any item is missing, contact the vendor where you purchased your EZ-KIT Lite or contact Analog Devices, Inc.

Default Configuration

The EZ-KIT Lite evaluation system contains ESD (electrostatic discharge) sensitive devices. Electrostatic charges readily accumulate on the human body and equipment and can discharge without detection. Permanent damage may occur on devices subjected to high-energy discharges. Proper ESD precautions are recommended to avoid performance degradation or loss of functionality. Store unused EZ-KIT Lite boards in the protective shipping package.

The ADSP-BF548 EZ-KIT Lite board is designed to run outside your personal computer as a stand-alone unit. You do not have to open your computer case.

When removing the EZ-KIT Lite board from the package, handle the board carefully to avoid the discharge of static electricity, which can damage some components. Figure 1-1 shows the default jumper settings, switches, connector locations, and LEDs used in installation. Confirm that your board is in the default configuration before using the board.

Figure 1-1. EZ-KIT Lite Hardware Setup

Installation and Session Startup

For correct operation, install the software and hardware in the order presented in the *VisualDSP++ Installation Quick Reference Card*.

There are two USB interfaces on the ADSP-BF548 EZ-KIT Lite. Be sure to use the debugger's interface (labelled USB Debug Agent) when connecting your computer to the board with provided USB cable. The other USB interface (labelled USB-OTG) is for applications use.

- 1. Verify that the yellow USB monitor LED (ZLED3, located near the USB connector) is lit. This signifies that the board is communicating properly with the host PC and is ready to run VisualDSP++.
- 2. If you are running VisualDSP++ for the first time, navigate to the VisualDSP++ environment via the **Start**->**Programs** menu. The main window appears. Note that VisualDSP++ does not connect to any session. Skip the rest of this step to step 3.

If you have run VisualDSP++ previously, the last opened session appears on the screen. You can override the default behavior and force VisualDSP++ to start a new session by pressing and holding down the Ctrl key while starting VisualDSP++. Do not release the Ctrl key until the Session Wizard appears on the screen. Go to step 4.

- 3. To connect to a new EZ-KIT Lite session, start **Session Wizard** by selecting one of the following.
 - From the Session menu, New Session.
 - From the Session menu, Session List. Then click New Session from the Session List dialog box.
 - From the Session menu, Connect to Target.

Installation and Session Startup

- 4. The Select Processor page of the wizard appears on the screen. Ensure Blackfin is selected in Processor family. In Choose a target processor, select ADSP-BF548. Click Next.
- 5. The Select Connection Type page of the wizard appears on the screen. Select EZ-KIT Lite and click Next.
- 6. The **Select Platform** page of the wizard appears on the screen. Ensure that the selected platform is ADSP-BF548 EZ-KIT Lite via Debug Agent. Specify your own Session name for your session or accept the default name.

The session name can be a string of any length; although, the box displays approximately 32 characters. The session name can include space characters. If you do not specify a session name, VisualDSP++ creates a session name by combining the name of the selected platform with the selected processor. The only way to change a session name later is to delete the session and to open a new session.

Click Next.

7. The Finish page of the wizard appears on the screen. The page displays your selections. Check the selections. If you are not satisfied, click **Back** to make changes; otherwise, click **Finish**. VisualDSP++ creates the new session and connects to the EZ-KIT Lite. Once connected, the main window's title is changed to include the session name set in step 6.

To disconnect from a session, click the disconnect button or select Session->Disconnect from Target.

To delete a session, select Session -> Session List. Select the session name from the list and click Delete. Click OK.

Evaluation License Restrictions

The ADSP-BF548 EZ-KIT Lite installation is part of the VisualDSP++ installation. The EZ-KIT Lite is a licensed product that offers an unrestricted evaluation license for the first 90 days. Once the initial unrestricted 90-day evaluation license expires:

- VisualDSP++ restricts a connection to the ADSP-BF548 EZ-KIT
 Lite via the USB debug agent interface only. Connections to simulators and emulation products are no longer allowed.
- The linker restricts a user's program to 60 KB of memory for code space with no restrictions for data space.
- The EZ-KIT Lite hardware must be connected and powered up to use VisualDSP++ with a valid evaluation or permanent license.

Refer to the VisualDSP++ Installation Quick Reference Card for details.

Memory Map

The ADSP-BF548 processor has internal static random access memory (SRAM), used for instruction or data storage. See Figure 1-1. The internal memory details can be found in the ADSP-BF548 Blackfin Processor Hardware Reference.

The ADSP-BF548 EZ-KIT Lite board includes five types of external memory: double data rate (DDR), serial peripheral interconnect (SPI), burst flash, NAND, and secure digital (SD). See Figure 1-2. For more information about a specific memory type, go the respective section in this chapter.

Memory Map

Table 1-1. EZ-KIT Lite Internal Memory Map

Start Address	Content	
0xEF00 0000	BOOT ROM (4K BYTE)	
0xEF00 1000	Reserved	
0xFEB0 0000	L2 SRAM (128K BYTE)	
0xFEB2 0000 0xFF40 0000 0xFF40 4000 0xFF40 8000 0xFF50 0000 0xFF50 4000 0xFF60 0000 0xFF60 4000 0xFF60 8000 0xFF60 C000 0xFF61 0000 0xFF61 4000 0xFF70 0000 0xFF70 1000	Reserved	
0xFF80 0000	L1 DATA BANKA SRAM (16K BYTE)	
0xFF80 4000	L1 DATA BANKA SRAM/CACHE (16K BYTE)	
0xFF80 8000	Reserved	
0xFF90 0000	L1 DATA BANKB SRAM (16K BYTE)	
0xFF90 4000	L1 DATA BANKB SRAM/CACHE (16K BYTE)	
0xFF90 8000	Reserved	
0xFFA0 0000	L1 DATA BANKA LOWER SRAM (16K BYTE)	
0xFFA0 4000	L1 DATA BANKA UPPER SRAM (16K BYTE)	
0xFFA0 8000	Reserved	
OxFFAO COOO	Reserved	
0xFFA1 0000	L1 INSTRUCTION SRAM/CACHE (16K BYTE)	

Table 1-1. EZ-KIT Lite Internal Memory Map (Cont'd)

Start Address	Content	
0xFFA1 4000 0xFFA1 8000 0xFFA1 C000 0xFFA2 0000	L1 INSTRUCTION BANKB ROM (64K BYTE)	
0xFFA2 4000	Reserved	
0xFFB0 0000	L1 SCRATCHPAD SRAM (4K BYTE)	
0xFFB0 1000	Reserved	
0xFFC0 0000	SYSTEM MMR REGISTERS	
0xFFE0 0000	CORE MMR REGISTERS	

Table 1-2. EZ-KIT Lite External Memory Map

Start Address	End Address	Content
0x0000 0000	0x03FF FFFF	SDRAM bank 0 (SDRAM) See "DDR Interface" on page 1-9.
0x2000 0000	0x20FF FFFF	ASYNC memory bank 0 See "Burst Flash Memory Interface" on page 1-12.
0x2400 0000	0x2400 007F	ASYNC memory bank 1 See "Ethernet Interface" on page 1-19.
0x2800 0000	0x2BFF FFFF	ASYNC memory bank 2
0x2C00 0000	0x2FFF FFFF	ASYNC memory bank 3
0x3000 0000	OxEEFF FFFF	Reserved

DDR Interface

The ADSP-BF548 processor has a built-in double data rate (DDR) SDRAM controller, which connects to a Micron MT46V32M16 32M x 16 bits (64 MB) DDR memory chip. The controller connects to the DDR memory bank 0 via the ~DDRCSO signal of the processor. The

DDR Interface

DDR memory chip is the only device connected to the processor's DDR interface. The DDR interface can operate at a maximum system clock (SCLK) frequency of 133 MHz.

There is a trade-off between selecting the maximum core clock (CCLK) of the processor and the maximum system clock. Consequently, the respective control registers must be initialized appropriately to get either maximum CCLK or maximum SCLK.

When you are in a VisualDSP++ session and connected to the EZ-KIT Lite board via the USB debug agent, the DDR registers are configured automatically with values listed in Table 1-3 each time the processor is being reset. The values are used whenever DDR bank 0 is accessed through the debugger (for example, when viewing memory windows or loading a program).

To disable the automatic setting of the DDR registers, select **Target Options** from the **Settings** menu in VisualDSP++ and uncheck **Use XML reset values**. For more information on changing the reset values, refer to the online Help.

Table 1-3. DDR Default Settings with an 83 MHz to 133 MHz SCLK

Register	Value	Function
EBIU_DDRCTLO	0x218A8287	Calculated with SCLK = 83 MHz to 133 MHz 16-bit data path External buffering timing disabled tRC = 8 SCLK cycles tRAS = 6 SCLK cycles tRP = 2 SCLK cycles tRFC = 10 SCLK cycles tRFFI = 0x0287 clock cycles

Table 1-3. DDR Default Settings with an 83 MHz to 133 MHz SCLK

Register	Value	Function
EBIU_DDRCTL1	0x20022222	tWTR = 2 SCLK cycles Device size = 512 Mbit Device width = 16 bits Ext. banks = CSO only Data width = 16 bits tWR = 2 SCLK cycles tMRD = 2 SCLK cycles tRCD = 2 SCLK cycles
EBIU_DDRCTL2	0×00000021	Processor default values
EBIU_AMGCTL	0x0009	Enables the EBIU of the processor to generate a clock out for all memory banks

Table 1-4 shows the configuration for the PLL registers using a 120 MHz SCLK and a 133 MHz SCLK. The PLL_CTL and PLL_DIV registers need to be initialized in the user code to achieve maximum performance.

Table 1-4. PLL Register Settings

Register	SCLK = 133 MHz CCLK = 400 MHz	SCLK = 120 MHz CCLK = 600 MHz
PLL_CTL	0x2000	0x3000
PLL_DIV	0x3	0x5

Please remember that the DDR control register values in Table 1-3 are for the SCLK set between 83 MHz and 133 MHz.

An example program is included in the EZ-KIT Lite installation directory to demonstrate how to setup and access the DDR interface. For more information on how to initialize the registers after a reset, search the VisualDSP++ online Help for "reset values".

Burst Flash Memory Interface

The burst flash memory interface of the ADSP-BF548 EZ-KIT Lite contains a 32 MB (16M x 16-bits) Intel PC28F128K3C115 chip. The flash memory connects gluelessly to the processor and is mapped to the processor's external bank 0. This is accomplished by mapping the flash memory's chip enable pin to the ~AMS0 memory select pin of the processor. The address range for the flash memory is 0x2000 0000 to 0x20FF FFFF.

The flash is pre-loaded with boot code for the blink and power-on-self test (POST) programs. For more information, refer to "Power-On-Self Test" on page 1-28.

By default the EZ-KIT Lite boots from the 16-bit burst flash memory. The processor boots from the burst flash if the boot mode select switch (SW1) is set to a position of 1 (see "Boot Mode Select Switch (SW1)" on page 2-16).

The flash memory code can be modified. For instructions, refer to the online Help and example program included in the EZ-KIT Lite installation directory.

NAND Flash Interface

The ADSP-BF548 processor is equipped with an internal NAND flash controller, which allows the 2 Gbit ST Micro's NAND02 device to be attached gluelessly to the processor. The NAND flash is attached via the processor's specific NAND flash control lines and external eight-bit data bus on the EBIU interface. The NAND flash shares the data bus with the burst flash memory, Ethernet controller, ATAPI hard drive, and expansion interface. You can write to each of the mentioned peripherals, one peripheral at a time.

Refer to the ST Microelectronics Web site at http://www.st.com/ston-line/products/families/memories/memory/index.htm for more information.

An example program is included in the EZ-KIT Lite installation directory to demonstrate how to setup and access the NAND flash interface.

SPI Interface

The ADSP-BF548 processor has three serial peripheral interconnect (SPI) ports that share multi-function I/O pins. The processor's SPI port 0 connects directly to serial flash memory, AD7877 touchscreen controller, and expansion interface.

The serial flash memory is a 16 Mb ST Micro M25P16 device, which is selected using the SPI0SEL1 flag pin of the processor. The SPI flash memory is pre-loaded with boot code for the blink and POST programs. For more information, refer to "Power-On-Self Test" on page 1-28. By default the EZ-KIT Lite boots from the 16-bit flash burst memory. The SPI flash can be used to boot up the processor by setting the boot mode select switch (SW1) to position 3 (see "Boot Mode Select Switch (SW1)" on page 2-16).

The SPI flash code can be modified. For instructions, refer to the VisualDSP++ online Help and example program included in the EZ-KIT Lite installation directory.

The AD7877 touchscreen controller for the LCD can be selected using the SPIOSEL2 flag pin of the processor. For more information, refer to "Touchscreen Interface" on page 1-17.

SD Interface

SPI ports 0 and 2 of the processor also connect to the expansion interface and can be accessed with an EZ-Extender[®] board that interfaces with the ADSP-BF548 EZ-KIT Lite. When using SPI port 0, use the processor's SPIOSEL3 flag pin on an EZ-Extender because SPIOSE11 and SPIOSEL2 are dedicated for the serial flash and touchscreen controller, respectively.

Refer to the ST Microelectronics Web site at http://www.st.com/ston-line/products/families/memories/memory/index.htm for more information.

SD Interface

The ADSP-BF548 processor has a secure digital (SD) interface. The interface consists of a CLK pin, a command pin, and a four-bit data bus. The SD interface of the processor gluelessly connects to the on-board memory. The SD interface pins are not shared with other peripherals on the board. The memory can be written to in both one-bit and four-bit modes. The EZ-KIT Lite is accompanied with a 256 MB SD memory card plugged into the SD memory card connector (J5). For more information, refer to "SD Memory Card Connector (J5)" on page 2-36.

An example program is included in the EZ-KIT Lite installation directory to demonstrate how to setup and access the SD interface.

EPPI Interface

The ADSP-BF548 processor provides up to three enhanced parallel peripheral interfaces (EPPIs), supporting data widths up to 24 bits. Each EPPI interface is a half-duplex, bi-directional bus consisting of up to 24 bits of data, a dedicated clock, and synchronization signals. The EZ-KIT Lite board utilizes two EPPI ports. One port connects to a TFT LCD module, while the other port connects to the expansion interface and STAMP connector.

The PPI0 interface is configured to output 18-bit or 24-bit data to an LCD module (see "LCD Module Interface" on page 1-15). The PPI0 interface also connects to the expansion interface and can be used with an EZ-Extender board. When using the PPI0 interface with an EZ-Extender board, the PPI0 signals can be disconnected from the LCD module via the SW14 and SW17 switches. Refer to "LCD/PPI Configuration Switch (SW14)" on page 2-22 and "LCD Module Configuration (SW17)" on page 2-24 for more information.

The PPI1 interface connects to the LCD, STAMP connector, and expansion interface. Since the PPI1 signals are connected to multi-function pins, the signals also can be configured for the host port and keypad interfaces. Refer to "Keypad Interface" on page 1-18 for more information.

The PPI1 interface has a dedicated clock, generated either internally or externally and configured independently by software via the PPI1_SEL signal, which connects to PJ13. The clock source is the on-board 27 MHz oscillator or an external source via the expansion interface. The PPI1_SEL signal is configured via the SW14 switch. Refer to "LCD/PPI Configuration Switch (SW14)" on page 2-22 for more information.

LCD Module Interface

The EZ-KIT Lite features a Sharp LQ043T1DG01 TFT LCD module. This is a 4.3" landscape display with a resolution of 480 x 272 and a color depth of 18 or 24 bits.

Table 1-5 lists the register values when the PPI0 interface is configured for the LCD module. The values are obtained from the timing characteristics section of the LQ043T1DG01 datasheet.

LCD Module Interface

Table 1-5. LCD Module Interface Settings

EPPI Register	Name	Datasheet Symbol	Value
EPPIO_LINE	Samples per line	TH	525
EPPIO_FRAME	Lines per frame	TV	286
EPPIO_FS1W_HBL	Frame sync 1 width	ТНр	41
EPPIO_FS1P_AVPL	Frame sync 1 period	TH	525
EPPIO_HDELAY	Horizontal delay	THp + THf	43 (41 + 2)
EPPIO_HCOUNT	Horizontal transfer count	THd	480
EPPIO_FS2W_LVB	Frame sync 2 width	ТН x TVp	5250 (525 x 10)
EPPIO_FS2P_LAVF	Frame sync 2 period	H x TV	150150 (525 x 286)
EPPIO_VDELAY	Vertical delay	TVp + TVf	12 (10 + 2)
EPPIO_VCOUNT	Vertical transfer count	TVd	272
EPPIO_CLKDIV	Clock divide register	N/A	0x07
EPPIO_CONTROL (18 bit)	Control	N/A	0x12EE2F
EPPIO_CONTROL (24 bit)	Control	N/A	0x136E2F

The LCD module connects to the EPPI0 port. The LCD interface can be configured to run in either 18-bit or 24-bit mode:

- In 24-bit mode, 16M colors are possible, and the PPI data is mapped as eight bits each of red, green, and blue. The D5-D0 signals of EPPI1 are not available because the signals share pins with D18-23 of EPPI0.
- In 18-bit mode, 256K colors are possible, and the PPI data is mapped as six bits each of red, green, and blue. Since the LCD is a 24-bit display, the lower two least significant bits of red, green, and blue are tied low.

Refer to "LCD Module Configuration (SW17)" on page 2-24 for information on how to configure the board for 18-bit or 24-bit mode.

The LCD module can be disconnected from PPI0 by disabling signals on SW14 and SW17. Refer to "LCD/PPI Configuration Switch (SW14)" on page 2-22 and "LCD Module Configuration (SW17)" on page 2-24 for more information.

The DISP signal is generated internally by software via PE3.

An example program is included in the EZ-KIT Lite installation directory to demonstrate how to setup and access the LCD module.

Touchscreen Interface

The AD7877 touchscreen controller connects to the SPI0 interface. The controller provides the X and Y positions, as well as a measurement for the pressure applied to the touchscreen. The touchscreen can be used with either a stylus or a finger.

The AD7877touchscreen controller connects to the SPIO interface via the SPIOSEL2 control signal. Two interrupt signals connect to the device:

- The data available output (DAV) signal is mapped to PJ11 and is used to notify the ADSP-BF548 processor that new ADC data is available in the results register.
- The pen interrupt (PENIRQ) signal is mapped to PJ12 and is used to notify the ADSP-BF548 processor that the screen has been touched.

Refer to "LCD/PPI Configuration Switch (SW14)" on page 2-22 for information on how to configure the interrupt signals.

Keypad Interface

The STOPACQ pin connects to PPIOFS1. The STOPACQ signal is used to ensure that an acquisition never occurs during the noisy period when the LCD is being updated.

An example program is included in the EZ-KIT Lite installation directory to demonstrate how to setup and access the touchscreen controller.

Keypad Interface

The EZ-KIT Lite features a 4 x 4 keypad assembly connected to the keypad interface of the ADSP-BF548 processor. The keypad connects to the EZ-KIT Lite via a nine-pin connector (P1). The keypad interface of the processor shares the same multi-function pins as the EPPI1 port and the host interface. Consequently, the same keypad pins connect to the host connector, PPI connector, and expansion interface. If you need to use the processor's pins for functions other than keypad, simply disconnect the keypad via the eight-position keypad switch (SW2). For more information, see "Keypad Enable Switch (SW2)" on page 2-17.

An example program is included in the EZ-KIT Lite installation directory to demonstrate how to setup and access the keypad interface.

Rotary Encoder Interface

The ADSP-BF548 processor has a built-in, up-down counter with support for a rotary encoder. The three-wire rotary encoder interface connects to the rotary switch (SW3) and host connector. The rotary encoder can be turned clockwise for the up function, counter clockwise for the down function, or can be used as a push button for clearing the counter.

If you need to use the processor pins for the host interface, disconnect the rotary encoder switch via the four-position rotary enable switch (SW4). For more information, see "Rotary Encoder Enable Switch (SW4)" on page 2-18.

An example program is included in the EZ-KIT Lite installation directory to demonstrate how to setup and access the rotary encoder interface.

Ethernet Interface

The EZ-KIT Lite has a fully functional, high-performance, single-chip Ethernet controller with HP Auto-MDIX and is fully compliant with IEEE 802.2/802.2u standards. The SMSC LAN9218 chip contains an integrated Ethernet MAC and PHY, supports 10BASE-T and 100BASE-TX operations. The part is attached gluelessly to the ADSP-BF548 processor via the asynchronous memory bus and is mapped directly to the processor's ~AMS1 memory bank. The valid address range for the Ethernet chip access is 0×2400 0000 through 0×2400 007F. The IRQ signal of the Ethernet chip is mapped to the PE8 flag pin of the processor and is connected via the SW16 switch position 3. If PE8 needs to be used elsewhere on the board, turn off the SW16 switch to disconnect it from the Ethernet chip. For more information, see "Peripheral Control Enable (SW16)" on page 2-23.

The Ethernet chip is pre-loaded with a MAC address for the EZ-KIT Lite. The MAC address is stored in the Ethernet serial ROM (U12) and can be found on a sticker on the bottom side of the EZ-KIT Lite. The serial ROM is connected directly to the LAN9218 and is accessed via the Ethernet chip only.

The PHY portion of the Ethernet chip connects to a Pulse HX1188 (U15) magnetics, then to a standard RJ-45 Ethernet connector (J4). For more information, see "Ethernet Connector (J4)" on page 2-35.

Example programs are included in the EZ-KIT Lite installation directory to demonstrate the Ethernet interface.

Audio Interface

The audio interface of the EZ-KIT Lite consists of an Analog Devices AD1980 audio codec and its associated passive components. The AD1980 is a AC'97 2.3 compliant SoundMAX codec that supports 5.1 surround sound. The codec carries integrated DACs and requires minimal external circuitry. The codec connects to the ADSP-BF548 processor via the processor's serial port 0; the port is dedicated for the audio interface and does not connect to anything else on the board.

The codec connects to multiple connectors which allow you to get audio IN and OUT signals. Connector J10 can be used as a line or head phone out. J10 also can be configured via software as the front surround left and right channel or a 5.1 surround system. Connector J9 has two locations for plugging in 3.5 mm cables. The top location is the center channel on the left channel and the LFE out on the right channel. The bottom location of J9 is left and right back surround channels for a 5.1 surround system. Similarly to J9, J8 has two locations for 3.5 mm cables. The top location is for a stereo microphone, and the bottom location is for a stereo line in.

For more information, see "Dual Audio Connectors (J8 and J9)" on page 2-37 and "Audio Connector (J10)" on page 2-37.

The EZ-KIT Lite is shipped with a headphone and multiple 3.5 mm cables, which allow you to run the example programs provided in the EZ-KIT Lite installation directory and learn about the audio interface.

For more information on the AD1980 codec, please refer to the codec's datasheet at www.analog.com.

ATAPI Interface

The ADSP-BF548 processor has a built-in advanced technology attachment packet interface (ATA/ATAPI-6) controller that can be attached to any peripherals that support ATAPI standards. The EZ-KIT Lite is shipped with a 2.5" Toshiba 5V 40GB ATAPI hard disk drive. The ATAPI interface shares pins with other peripherals on the EZ-KIT Lite. Consequently, the ATAPI interface of the processor can connect to an ATAPI device (hard drive) via the PPI port pins or the external address and data bus. The EZ-KIT Lite is wired such that it connects the ATAPI hard drive to the processor via the external address and data bus.

Two external 5V tolerant bus switches (U4 and U24) are used between the 3.3V processor signals and the 5V ATPI hard drive. U24 connects to all control signals of the ATAPI controller and is always enabled. U4 connects to the 16-bit data bus of the processor and is enabled with simple signal conditioning:

- When you write data to the hard drive, the FET switch U4 automatically connects the two devices together.
- When you do not use the ATAPI interface, the FET switch U4 is disconnected, and the processor does not see the capacitive load or the net traces associated with the hard disk drive.

Example programs are included in the EZ-KIT Lite installation directory to demonstrate the ATAPI controller and hard disk drive operations. For more information about Toshiba MK4032GAX, refer to the datasheet provided by the product's manufacturer.

For more information on the ATAPI interface, refer to the ADSP-BF548 Blackfin Processor Hardware Reference.

USB OTG Interface

The ADSP-BF548 processor has a built-in, high-speed USB on-the-go (OTG) interface and integrated PHY. This interface connects to a 24 MHz clock (U13), has surge protection, and can be configured as a host or device. When in device mode, the USB 5V regulator (VR1) and FET switch (U39) are turned OFF. When in host mode, the USB 5V regulator and FET are turned ON and can supply 5V at 500 mA.

The control mechanism to turn the two devices 0N and 0FF are via the PE7 flag pin of the processor. By default PE7 is set low or a logic '0' via a pull-down resistor, and both devices are turned 0FF. If you are not using the USB OTG interface and would like to use the PE7 flag pin for other purposes, turn 0FF position 2 on the SW16 switch. This disconnects the PE7 flag pin from both the VR1 regulator and U39 FET. For more information, see "Peripheral Control Enable (SW16)" on page 2-23.

The USB OTG interface has a mini-AB connector (P4); cables that plug into P4 are shipped with the EZ-KIT Lite.

Use the example programs in the EZ-KIT Lite installation directory to learn about the ADSP-BF548 processor's device and host modes. For more information on the USB interface, refer to the ADSP-BF548 Black-fin Processor Hardware Reference.

UART Interface

The *ADSP-BF548* processor has four built-in universal asynchronous receiver transmitters (UARTs). UART3-0 share the same processor pins as other peripherals on the EZ-KIT Lite. As a result, not all of the UARTs are available on the board: UART0 is not available on the board.

UART1 has full RS-232 functionality via the Analog Devices 3.3V ADM3202 (U32) line driver and receiver. The UART can be disconnected from the ADM3202 bit by turning OFF all positions on the SW7 switch. See

"UART Enable Switch (SW7)" on page 2-20. When using UART1, jumpers JP1 and JP12 should not be installed. JP1 is a UART loopback jumper and should be installed only when running the POST program. JP12 is installed when you are not using the UART and need to use PP1FS3. See "UART1 Loopback Jumper (JP1)" on page 2-27 and "PPI1FS3 Pull-down Jumper (JP12)" on page 2-31 for more information.

UART2 and UART3 are connected to the expansion interface. UART3 of the processor also is available via a STAMP connector (P12). See "UART3 Connector (P12)" on page 2-42.

Example programs are included in the EZ-KIT Lite installation directory to demonstrate UART and RS-232 operations.

For more information on the UART interface, refer to the ADSP-BF548 Blackfin Processor Hardware Reference.

CAN Interface

The Controller Area Network (CAN) interface contains two Philips TJA1041 high-speed CAN transceivers. The two transceivers are connected to the CAN0 and CAN1 ports of the processor. Either of the CAN ports can be used to transmit or receive data. The PC0 programmable flag connects to the error and power-on indication output of CAN0 (CAN0_ERR). The PC5 programmable flag connects to the error and power-on indication output of CAN1 (CAN1_ERR). The transmit and receive pins for both transceivers connect to the dedicated CAN0 and CAN1 transmit and receive pins of the processor.

The CANO interface can be disconnected from the processor by turning OFF positions 1 though 4 of the SW6 switch. Similarly, the CAN1 interface can be disconnected from the processor by turning OFF positions 1 though 4 of the SW15 switch. When OFF, the signals can be used elsewhere on the board. See "CANO Enable Switch (SW6)" on page 2-19 and "CAN1 Enable Switch (SW15)" on page 2-23 for more information.

Host Interface

The CAN interface contains two 4-position modular connectors (see "CAN Connectors (J11 and J12)" on page 2-37)

Example programs are included in the EZ-KIT Lite installation directory to demonstrate CAN circuit operation.

Host Interface

The host DMA port of the Blackfin processor is available via a IDC 16x2 header (P3) on the EZ-KIT Lite. The port allows a host device external to the Blackfin processor to be a DMA master and transfer data back and forth.

When using the host interface port, the host device is the master, and the Blackfin processor is a DMA slave device. Since the host signals share pins with other peripherals on the EZ-KIT Lite, certain switches and jumpers must be <code>OFF</code> in order to use the host interface. When turning the switches or jumpers <code>OFF</code>, you disable the respective peripherals and are not able to evaluate the peripherals at the same time as the host interface. Table 1-6 describes the jumpers and switches that must be <code>OFF</code>, the respective host interface signal associated with these jumpers or switches, and the peripherals that are affected by turning these jumpers or switches <code>OFF</code>.

Table 1-6. Host Interface

Switch or Jumper:	Host Signals Affected:	EZ-KIT Lite Peripheral Affected:
SW2 (all OFF)	PPI1D[8:15]/HPD[0:7]	Keypad disabled
SW4 (all OFF)	HPACK, HPA, #HPCE	Rotary encoder disabled
SW5 (position 4 0FF)	HPWAIT	Push button 4 disabled
SW17 (position 3 OFF)	PPI1D[0:5]/HPD[8:13]	LCD 24-bit mode disabled; LCD 18-bit mode operational
JP2 (OFF)	#HPCE, #HPRD, #HPWR	STAMP interface disabled; LED1-2 can not be used as global status indicators.

RTC Interface

The ADSP-BF548 processor has a real-time clock (RTC) and a watchdog timer. Typically the RTC interface is used to implement a real-time watch or a life counter of the time elapsed since the last system reset. The EZ-KIT Lite is equipped with a Panasonic lithium coin 3V 24 MM battery with a 1000 mAh. The 3V battery and the 3.3V supply of the board are connected to the RTC power pin of the processor. When the EZ-KIT Lite is powered, it uses the board power to supply voltage to the RTC pin. When the EZ-KIT Lite is not powered, it uses the lithium battery to maintain the power to the RTC pin.

The battery allows you to evaluate the RTC functionality for the life of the EZ-KIT Lite. You can calculate your application's specific power requirements and use a much smaller battery in a custom design.

Example programs are included in the EZ-KIT Lite installation directory to demonstrate the RTC features.

The EZ-KIT Lite is shipped with a protective Mylar sheet placed between the coin battery and the positive pin of the battery holder. Please remember to remove the Mylar sheet before trying to use the RTC functionality of the processor.

For more information on the RTC and watchdog timer, refer to the ADSP-BF548 Blackfin Processor Hardware Reference.

LEDs and Push Buttons

The EZ-KIT Lite provides four push buttons and six LEDs for general-purpose I/O.

The six LEDs, labeled LED1 through LED6, are accessed via the PG6-11 pins of the processor. For information on how to program the pins, refer to the ADSP-BF548 Blackfin Processor Hardware Reference.

The four general-purpose push button are labeled PB1 through PB4. The status of each individual button can be read through programmable flag (PF) inputs, PF8-11. A PF reads 1 when a corresponding switch is being pressed. When the switch is released, the PF reads 0. A connection between the push button and PF input is established through the SW5 DIP switch. See "Push Button Enable Switch (SW5)" on page 2-19 for details.

An example program is included in the EZ-KIT Lite installation directory to demonstrate the functionality of the LEDs and push buttons.

JTAG Interface

The JTAG emulation port allows an emulator to access the processor's internal and external memory through a six-pin interface. The JTAG emulator port of the processor can be accessed via the on-board USB Debug Agent or with an external emulator via the JTAG connector (ZP4). When an external emulator connects to the board, the on-board USB Debug Agent is disabled. See "JTAG Connector (ZP4)" on page 2-43 for more information.

For more information on emulators, contact Analog Devices or go to: http://www.analog.com/processors/blackfin/evaluationDevelop ment/crosscore/.

Expansion Interface

The expansion interface consists of three 90-pin connectors, J1-3. These connectors contain a majority of the ADSP-BF548 processor's signals. For the pinout of the connectors, go to "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1. The expansion interface allows an EZ-Extender or a custom-design daughter board to be tested across various hardware platforms. The mechanical dimensions of the expansion connectors can be obtained by contacting Technical or Customer Support.

Analog Devices offers many EZ-Extender products. For more information about EZ-Extenders, visit the Analog Devices Web site at:

http://www.analog.com/processors/blackfin/evaluationDevelopment/crosscore/.

Limits to current and interface speed must be taken into consideration when using the expansion interface. Because current for the expansion interface is sourced from the EZ-KIT Lite, the current should be limited to 1A for both the 5V and 3.3V planes. If more current is required, then a separate power connector and a regulator must be designed on a daughter card. Additional circuitry can add extra loading to signals, decreasing their maximum effective speed.

Analog Devices does not support and is not responsible for the effects of additional circuitry.

Power Measurements

Several locations are provided for measuring the current draw from various power planes. Precision 0.05 ohm shunt resistors are available on the VDDINT, VDDEXT, and VDDDDR pins. For the current draw measuments, the associated jumper (JP4, JP5, or JP6) should be removed. Once the jumper is removed, the voltage across the resistor can be measured using an oscilloscope. Once the voltage is measured, the current can be calculated by dividing the voltage by 0.05. For the highest accuracy, a differential probe should be used for measuring the voltage across the resistor.

For more information, see "VDDINT Power Jumper (JP4)", "VDDEXT Power Jumper (JP5)", and "VDDDDR Power Jumper (JP6)".

Design Reference Information

A design reference info package is available for download on the Analog Devices Web site. The package provides information on the design, layout, fabrication, and assembly of the EZ-KIT Lite.

The information can be found at:

http://www.analog.com/en/prod/0,2877,BF548%252DHARDWARE,00.html.

Power-On-Self Test

Once assembled, each EZ-KIT Lite is fully tested for an extended period of time with a power-on-self test (POST). The POST tests all EZ-KIT Lite peripherals and validates functionality as well as connectivity to the processor. The POST is loaded into the burst flash memory (U5) and can be activated by resetting the board and pressing the associated push button(s). The POST also can be used as a reference for a custom software design or hardware troubleshooting.

When running the POST, you may need to place switches and jumpers in specific test modes. In some instances, such as Ethernet, you may need to plug in an Ethernet loopback connector (provided with the EZ-KIT Lite) to run the POST. The user LEDs (LED1-6) will convey whether the specific tests have passed or failed.

The POST program is included in the EZ-KIT Lite installation directory. For more information, refer to the readme file in the POST directory.

Example Programs

Example programs are provided with the ADSP-BF548 EZ-KIT Lite to demonstrate various capabilities of the evaluation board. These programs are installed with the EZ-KIT Lite software and can be found in the ...\Blackfin\Examples\ADSP-BF548 EZ-KIT Lite subdirectory of the VisualDSP++ installation directory. Please refer to the readme file provided with each example for more information.

Background Telemetry Channel

The ADSP-BF548 USB debug agent supports the background telemetry channel (BTC), which facilitates data exchange between VisualDSP++ and the processor without interrupting processor execution.

The BTC allows you to view a variable as it is updated or changed, all while the processor continues to execute. For increased performance of the BTC, including faster reading and writing, please check our latest line of processor emulators at:

http://www.analog.com/processors/blackfin/evaluationDevelop ment/crosscore/. For more information about the background telemetry channel, see the *VisualDSP++ User's Guide* or online Help.

2 ADSP-BF548 EZ-KIT LITE HARDWARE REFERENCE

This chapter describes the hardware design of the ADSP-BF548 EZ-KIT Lite board.

The following topics are covered.

- "System Architecture" on page 2-2
 Describes the configuration of the ADSP-BF548 EZ-KIT Lite board and explains how the board components interface with the processor.
- "Programmable Flags" on page 2-3 Shows the location and describes the function of the programming flags (PFs).
- "Push Button and Switch Settings" on page 2-16
 Shows the location and describes the function of the push buttons and switches.
- "Jumpers" on page 2-26
 Shows the location and describes the function of the configuration jumpers.
- "LEDs" on page 2-32 Shows the location and describes the function of the LEDs.
- "Connectors" on page 2-34
 Shows the location and provides the part number for all of the connectors on the board. Also, the manufacturer and part number information is provided for the mating parts.

System Architecture

This section describes the processor's configuration on the EZ-KIT Lite board (Figure 2-1).

Figure 2-1. System Architecture

This EZ-KIT Lite is designed to demonstrate the capabilities of the ADSP-BF548 Blackfin processors. The processor has an I/O voltage of 3.3V. The core voltage of the processor is controlled by the internal voltage regulator.

The core voltage and clock rate can be set on the fly by the processor. The input clock is 25 MHz. A 32.768 kHz crystal supplies the real-time clock (RTC) inputs of the processor. The default boot mode for the processor is burst flash boot. See "Boot Mode Select Switch (SW1)" on page 2-16 for information on how to change the default boot mode.

Programmable Flags

The processor has 153 general-purpose input/output (GPIO) signals spread across ten ports (PA, PB, PC, PD, PE, PF, PG, PH, PI, and PJ). The pins are multi-functional and depend on the ADSP-BF548 processor setup. The following tables show how the programmable flag pins are used on the EZ-KIT Lite.

PA programmable flag pins in Table 2-1	PF programmable flag pins in Table 2-6
PB programmable flag pins in Table 2-2	PG programmable flag pins in Table 2-7
PC programmable flag pins in Table 2-3	PH programmable flag pins in Table 2-8
PD programmable flag pins in Table 2-4	PI programmable flag pins in Table 2-9
PE programmable flag pins in Table 2-5	PJ programmable flag pins in Table 2-10

Table 2-1. PA Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PAO	TFS2	Expansion interface, SPORT2 connector
PA1	DT2SEC/TMR4	Expansion interface, SPORT2 connector
PA2	DT2PRI	Expansion interface, SPORT2 connector
PA3	TSCLK2	Expansion interface, SPORT2 connector
PA4	RFS2	Expansion interface, SPORT2 connector
PA5	DR2SEC/TMR5	Expansion interface, SPORT2 connector
PA6	DR2PRI	Expansion interface, SPORT2 connector

Programmable Flags

Table 2-1. PA Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PA7	RSCLK2/TACLKO	Expansion interface, SPORT2 connector
PA8	TFS3/TACLK1	Expansion interface, SPORT3 connector
PA9	DT3SEC/TMR6	Expansion interface, SPORT3 connector
PA10	DT3PRI/TACLK2	Expansion interface, SPORT3 connector
PA11	TSCLK3/TACLK3	Expansion interface, SPORT3 connector
PA12	RFS3/TACLK4	Expansion interface, SPORT3 connector
PA13	DR3SEC/TMR7/TACLK5	Expansion interface, SPORT3 connector
PA14	DR3PRI/TACLK6	Expansion interface, SPORT3 connector
PA15	RSCLK3/TACLK7 and TACI7	Expansion interface, SPORT3 connector

Table 2-2. PB Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PB0	SCL1	Expansion interface, TWI connector
PB1	SDA1	Expansion interface, TWI connector
PB2	UART3RTS	Expansion interface
PB3	UART3CTS	Default: audio codec reset via SW16.1 Expansion interface
PB4	UART2TX	Expansion interface
PB5	UART2RX/TACI2	Expansion interface
PB6	UART3TX	Expansion interface, UART3 connector
PB7	UART3RX/TACI3	Expansion interface, UART3 connector
PB8	SPI2SS/TMR0	Default: PB1 via SW5.1. Expansion interface, timers connector, SPORT2-3 connectors

ADSP-BF548 EZ-KIT Lite Hardware Reference

Table 2-2. PB Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PB9	SPI2SEL1/TMR1	Default: PB2 via SW5.2. Expansion interface, timers connector, UART3 connector, SP0RT2-3 connectors
PB10	SPI2SEL2/TMR2	Default: PB3 via SW5.3. Expansion interface, timers connector, UART3 connector, SP0RT2-3 connectors
PB11	SPI2SEL3/BOOTWAIT	Default: PB4 via SW5.4. Expansion interface, host interface connector. NOR RESET via SW16.4.
PB12	SPI2SCK	Expansion interface
PB13	SPI2MOSI	Expansion interface
PB14	SPIMISO	Expansion interface

Table 2-3. PC Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PCO	TFS0	Default: CANO via SW6.3 SPI connector, TWI connector, SPORT2-3 connectors
PC1	DTOSEC/MMCLK	Not used
PC2	DTOPRI	Audio codec data pin
PC3	TSCLK0	Audio codec clock pin
PC4	RFS0	Audio codec sync pin
PC5	DROSEC/MBCLK	Default: CAN1 via SW15.3 SPI connector, TWI connector, SPORT2-3 connectors
PC6	DROPRI	Audio codec data pin
PC7	RSCLKO	Audio codec clock pin
PC8	SD_DO	SD memory data pin

Programmable Flags

Table 2-3. PC Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PC9	SD_D1	SD memory data pin
PC10	SD_D2	SD memory data pin
PC11	SD_D3	SD memory data pin
PC12	SD_CLK	SD memory clock pin
PC13	SD_CMD	SD memory command pin

Table 2-4. PD Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PDO	PPI1_D0/HOST_D8/ TFS1/PPI0_D18	Default: LCD module via SW17.3. Host interface connector, expansion interface, PPI1 connector
PD1	PPI1_D1/HOST_D9/ DT1SEC/PPI0_D19	Default: LCD module via SW17.3. Host interface connector, expansion interface, PPI1 connector
PD2	PPI1_D2/HOST_D10/ DT1PRI /PPI0_D20	Default: LCD module via SW17.3. Host interface connector, expansion interface, PPI1 connector
PD3	PPI1_D3/HOST_D11/ TSCLK1/PPI0_D21	Default: LCD module via SW17.3. Host interface connector, expansion interface, PPI1 connector
PD4	PPI1_D4/HOST_D12/ RFS1/PPI0_D22	Default: LCD module via SW17.3. Host interface connector, expansion interface, PPI1 connector
PD5	PPI1_D5/HOST_D13/ DR1SEC/PPIO_D23	Default: LCD module via SW17.3. Host interface connector, expansion interface, PPI1 connector
PD6	PPI1_D6/HOST_D14/ DR1PRI	Host interface connector, expansion interface, PPI1 connector
PD7	PPI1_D7/HOST_D15/ RSCLK1	Host interface connector, expansion interface, PPI1 connector

ADSP-BF548 EZ-KIT Lite Hardware Reference

Table 2-4. PD Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PD8	PPI1_D8/HOST_D0/ PPI2_D0/KEY_ROW0	Default: keypad via SW2.8. Host interface connector, expansion interface, PPI1 connector
PD9	PPI1_D9/HOST_D1/ PPI2_D1/KEY_ROW1	Default: keypad via SW2.7. Host interface connector, expansion interface, PPI1 connector
PD10	PPI1_D10/H0ST_D2/ PPI2_D2/KEY_R0W2	Default: keypad via SW2.6. Host interface connector, expansion interface, PPI1 connector
PD11	PPI1_D11/HOST_D3/ PPI2_D3/KEY_ROW3	Default: keypad via SW2.5. Host interface connector, expansion interface, PPI1 connector
PD12	PPI1_D12/HOST_D4/ PPI2_D4/KEY_COLO	Default: keypad via SW2.4. Host interface connector, expansion interface, PPI1 connector
PD13	PPI1_D13/HOST_D5/ PPI2_D5/KEY_COL1	Default: keypad via SW2.3. Host interface connector, expansion interface, PPI1 connector
PD14	PPI1_D14/HOST_D6/ PPI2_D6/KEY_COL2	Default: keypad via SW2.2. Host interface connector, expansion interface, PPI1 connector
PD15	PPI1_D15/HOST_D7/ PPI2_D7/KEY_COL3	Default: keypad via SW2.1. Host interface connector, expansion interface, PPI1 connector

Table 2-5. PE Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PEO	SPIOSCK/KEY_COL7	SPI memory, LCD touchscreen controller, expansion interface
PE1	SPIOMISO/KEY_ROW6	SPI memory, LCD touchscreen controller, expansion interface

Programmable Flags

Table 2-5. PE Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PE2	SPIOMOSI /KEY_COL6	SPI memory, LCD touchscreen controller, expansion interface
PE3	SPIOSS/KEY_ROW5	Default: LCD DISP via SW14.4. Expansion interface
PE4	SPIOSEL1/KEY_COL5	Default: SPI memory. Expansion interface
PE5	SPIOSEL2/KEY_ROW4	Default: LCD touchscreen controller Expansion interface
PE6	SPIOSEL3/KEY_COL4	Expansion interface
PE7	UARTOTX/KEY_ROW7	Default: USB OTG VR1 and U39 enable via SW16.2. Expansion interface
PE8	UARTORX/TACIO	Default: Ethernet IRQ via SW16.3. Expansion interface
PE9	UART1RTS	UART1 serial port via SW7.3
PE10	UART1CTS	UART1 serial port via SW7.1
PE11	PPI1_CLK	Expansion interface, PPI1 connector
PE12	PPI1_FS1	Expansion interface, PPI1 connector
PE13	PPI1_FS2	Expansion interface, PPI1 connector
PE14	SCLO	Expansion interface, SPORT2-3 connectors, PPI1 connector
PE15	SDAO	Expansion interface, SPORT2-3 connectors, PPI1 connector

ADSP-BF548 EZ-KIT Lite Hardware Reference

Table 2-6. PF Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PF0	PPIO_DO	Default: LCD module via SW17. Expansion interface
PF1	PPIO_D1	Default: LCD module via SW17. Expansion interface
PF2	PPIO_D2	Default: LCD module via SW17. Expansion interface
PF3	PPIO_D3	Default: LCD module via SW17. Expansion interface
PF4	PPIO_D4	Default: LCD module via SW17. Expansion interface
PF5	PPIO_D5	Default: LCD module via SW17. Expansion interface
PF6	PPIO_D6	Default: LCD module via SW17. Expansion interface
PF7	PPIO_D7	Default: LCD module via SW17. Expansion interface
PF8	PPIO_D8	Default: LCD module via SW17. Expansion interface
PF9	PPIO_D9	Default: LCD module via SW17. Expansion interface
PF10	PPIO_D10	Default: LCD module via SW17. Expansion interface
PF11	PPIO_D11	Default: LCD module via SW17. Expansion interface
PF12	PPIO_D12	Default: LCD module via SW17. Expansion interface
PF13	PPIO_D13	Default: LCD module via SW17. Expansion interface

Programmable Flags

Table 2-6. PF Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PF14	PPIO_D14	Default: LCD module via SW17. Expansion interface
PF15	PPIO_D15	Default: LCD module via SW17. Expansion interface

Table 2-7. PG Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PGO	PPIO_CLK/TMRCLK	Default: LCD module via SW17. Expansion interface
PG1	PPIO_FS1	Default: LCD module via SW17. Expansion interface
PG2	PPIO_FS2	Default: LCD module via SW17. Expansion interface
PG3	PPIO_D16	Default: LCD module via SW17. Expansion interface
PG4	PPIO_D17	Default: LCD module via SW17. Expansion interface
PG5	SPI1SEL1/HOST_CE/ PPI2_FS2/ CZM	Default: rotary encoder via SW4.3. Host interface connector SPI connector via JP2 SPORT2 connector via JP2 SPORT3 connector via JP2 PPI1 connector via JP2
PG6	SPI1SEL2/HOST_RD/ PPI2_FS1	Default: LED1. Expansion interface Host interface connector SPI connector via JP2 SPORT2 connector via JP2 SPORT3 connector via JP2 PPI1 connector via JP2

ADSP-BF548 EZ-KIT Lite Hardware Reference

Table 2-7. PG Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PG7	SPI1SEL3/HOST_WR/ PPI2_CLK	Default: LED2. Expansion interface Host interface connector SPI connector via JP2 SPORT2 connector via JP2 SPORT3 connector via JP2
PG8	SPI1SCK	Default: LED3. Expansion interface SPI connector via JP2 SPORT2 connector via JP2 SPORT3 connector via JP2 PPI1 connector via JP2
PG9	SPI1MISO	Default: LED4. Expansion interface SPI connector via JP2 SPORT2 connector viaJP2 SPORT3 connector via JP2 PPI1 connector via JP2
PG10	SPI1MOSI	Default: LED5. Expansion interface SPI connector via JP2, JP7, and JP8 SPORT2 connector via JP2, JP7, and JP8 SPORT3 connector via JP2, JP7, and JP8 PPI1 connector via JP2, JP7, and JP8
PG11	SPI1SS/MTXON	Default: LED6. Expansion interface SPI connector via JP2 SPORT2 connector via JP2 SPORT3 connector via JP2 PPI1 connector via JP2
PG12	CANOTX	CANO
PG13	CANORX/TACI4	Default: CANO via SW6.4 SPI connector, TWI connector, timers connector, SPORT2-3 connectors, PPI1 connector

Programmable Flags

Table 2-7. PG Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PG14	CAN1TX	CAN1
PG15	CAN1RX/TACI5	Default: CAN1 via SW15.4 SPI connector, TWI connector, timers connector, SPORT2-3 connectors, PPI1 connector

Table 2-8. PH Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PH0	UART1_TX/PPI1_FS3	Default: UART1 serial port. Expansion interface, PPI1 connector
PH1	UART1_RX/PPI2_FS3/TACI1	Default: UART1 serial port via SW7.2. Expansion interface
PH2	ATAPI_RESET/TMR8/ PPIO_FS3	ATAPI reset; expansion interface
РН3	HOST_ADDR/TMR9/CUD	Default: rotary encoder via SW4.2. Host interface connector
PH4	HOST_ACK/TMR10/CDG	Default: rotary encoder via SW4.1. Host interface connector
PH5	MTX/DMARO/TACI8 and TACLK8	Not used
PH6	MRX/DMAR1/TACI9 and TACLK9	Not used
PH7	MRXON/BOOTWAIT/TACI10 and TACLK10	Expansion interface, host interface connector
PH8	A4	Address line on burst flash memory, Ethernet controller, expansion interface
PH9	A5	Address line on burst flash memory, Ethernet controller, expansion interface
PH10	A6	Address line on burst flash memory, Ethernet controller, expansion interface

ADSP-BF548 EZ-KIT Lite Hardware Reference

Table 2-8. PH Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PH11	A7	Address line on burst flash memory, Ethernet controller, expansion interface
PH12	A8	Address line on burst flash memory, expansion interface
PH13	A9	Address line on burst flash memory, expansion interface

Table 2-9. PI Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PIO	A10	Address line on burst flash memory, expansion interface
PI1	A11	Address line on burst flash memory, expansion interface
PI2	A12	Address line on burst flash memory, expansion interface
PI3	A13	Address line on burst flash memory, expansion interface
PI4	A14	Address line on burst flash memory, expansion interface
PI5	A15	Address line on burst flash memory, expansion interface
PI6	A16	Address line on burst flash memory, expansion interface
PI7	A17	Address line on burst flash memory, expansion interface
PI8	A18	Address line on burst flash memory, expansion interface
PI9	A19	Address line on burst flash memory, expansion interface

Programmable Flags

Table 2-9. PI Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PI10	A20	Address line on burst flash memory, expansion interface
PI11	A21	Address line on burst flash memory, expansion interface
PI12	A22	Address line on burst flash memory, expansion interface
PI13	A23	Address line on burst flash memory, expansion interface
PI14	A24	Address line on burst flash memory, expansion interface
PI15	A25/NORCLK	Clock for burst flash memory

Table 2-10. PJ Port Programmable Flag Connections

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PJ0	ARDY/WAIT	WAIT for burst flash memory, expansion interface
PJ1	ND_CE	Chip enable for NAND
PJ2	ND_RB	Ready/busy for NAND
PJ3	ATAPI_DIORB	ATAPI (hard disk drive) interface
PJ4	ATAPI_DIOWB	ATAPI (hard disk drive) interface
PJ5	ATAPI_CSOB	ATAPI (hard disk drive) interface
PJ6	ATAPI_CS1B	ATAPI (hard disk drive) interface
PJ7	ATAPI_DMACKB	ATAPI (hard disk drive) interface
PJ8	ATAPI_DMARQ	ATAPI (hard disk drive) interface
PJ9	ATAPI_INTRQ	ATAPI (hard disk drive) interface
PJ10	ATAPI_IORDY	ATAPI (hard disk drive) interface

ADSP-BF548 EZ-KIT Lite Hardware Reference

Table 2-10. PJ Port Programmable Flag Connections (Cont'd)

Processor Pin	Other Processor Function	EZ-KIT Lite Function
PJ11	BR	Default: LCD data available via SW14.1. Expansion interface
PJ12	BG	Default: LCD IRQ via SW14.2. Expansion interface
PJ13	BGH	Default: PPI1CLK Mux select via SW14.3. Expansion interface

Push Button and Switch Settings

This section describes the operation of the push buttons and switches. The push button and switch locations are shown in Figure 2-2.

Figure 2-2. Push Button and Switch Locations

Boot Mode Select Switch (SW1)

The rotary switch (SW1) determines the boot mode of the processor. Table 2-11 shows the available boot mode settings. By default the ADSP-BF548 processor boots from the on-board burst flash memory.

Table 2-11. Boot Mode Select Switch (SW1)

SW1 Position	Processor Boot Mode
0	Idle—no boot
1	Boot from 16-bit burst flash memory (default)

Table 2-11. Boot Mode Select Switch (SW1) (Cont'd)

SW1 Position	Processor Boot Mode
2	Boot from 16-bit asynchronous FIFO
3	Boot from serial SPI memory
4	Boot from SPI host device
5	Boot from serial TWI memory
6	Boot from TWI host
7	Boot from UART host
8–9	Reserved
A	Boot from double-data rate (DDR) SDRAM
B, C, D	Reserved
Е	Boot from 16-bit host DMA
F	Boot from eight-bit host DMA

Keypad Enable Switch (SW2)

The keypad enable switch (SW2) disconnects the keypad signals from the GPIO pins of the processor. When the switch is OFF, its associated GPIO signals can be used on the PPI1 port, host interface, or expansion interface (see Table 2-12).

Table 2-12. Keypad Enable Switch (SW2)

EZ-KIT Lite Signal	SW2 Switch Position (Default)	Processor Signal
PPI1D15/HPD7/KPC3	1 (ON)	PD15
PPI1D14/HPD6/KPC2	2 (ON)	PD14
PPI1D13/HPD5/KPC1	3 (ON)	PD13
PPI1D12/HPD4/KPC0	4 (ON)	PD12
PPI1D11/HPD3/KPR3	5 (ON)	PD11

Push Button and Switch Settings

Table 2-12. Keypad Enable Switch (SW2) (Cont'd)

EZ-KIT Lite Signal	SW2 Switch Position (Default)	Processor Signal
PPI1D10/HPD2/KPR2	6 (ON)	PD10
PPI1D9/HPD1/KPR1	7 (ON)	PD9
PPI1D8/HPD0/KPR0	8 (ON)	PD8

Rotary Encoder with Momentary Switch (SW3)

The rotary encoder can be turned clockwise for an up count or counter-clockwise for a down count. The encoder also features a momentary switch that allows you to zero the counter. The rotary encoder can be disabled from the processor by using the rotary encoder enable switch (SW4). See "Rotary Encoder Enable Switch (SW4)" for more information.

Rotary Encoder Enable Switch (SW4)

The rotary encoder enable switch (SW4) disconnects the rotary encoder signals from the GPIO pins of the processor. When the switch is OFF, its associated GPIO signals can be used on the host interface (see Table 2-13).

Table 2-13. Rotary Encoder Enable Switch (SW4)

EZ-KIT Lite Signal	SW4 Switch Position (Default)	Processor Signal
HPACK/CNTCUD	1 (ON)	PH4
HPA/CNTCDG	2 (ON)	PH3
#HPCE/CNTCZM	3 (ON)	PG5
N/A	4 (OFF)	N/A

Push Button Enable Switch (SW5)

The push button enable switch (SW5) disconnects the associated push button circuit from the GPIO pins of the processor. When SW5 is OFF, the associated GPIO signals can be used on the expansion interface, host interface, or STAMP (0.1" IDC) headers (see Table 2-14).

Table 2-14. Push Button Enable Switch (SW5)

Push Button	EZ-KIT Lite Signal	SW5 Switch Position (Default)	Processor Signal
PB1 (SW13)	PUSHBUTTON1	1 (ON)	PB8
PB2 (SW12)	PUSHBUTTON2	2 (ON)	PB9
PB3 (SW11)	PUSHBUTTON3	3 (ON)	PB10
PB4 (SW10)	PUSHBUTTON4/HPWAIT	4 (ON)	PB11

CANO Enable Switch (SW6)

The CANO enable switch (SW6) disconnects the CANO signals from the GPIO pins of the processor and deactivates the CANO transceiver (U21). When SW6 is in the default positions (shown in Table 2-15), the switch connects to CANO; otherwise, the associated GPIO signal of SW6 can be used as a STAMP GPIO.

Table 2-15. CAN0 Enable Switch (SW6)

CAN0 Signal	EZ-KIT Lite Signal	SW6 Switch Position (Default)	Processor Signal
ENABLE	N/A	1 (OFF)	N/A
STANDBY	N/A	2 (OFF)	N/A
ERROR	CANO_ERR	3 (ON)	PCO
RECEIVE DATA	CANORX	4 (ON)	PG13

UART Enable Switch (SW7)

The UART enable switch (SW7) disconnects the UART1 signals from the GPIO pins of the processor. When the switch is OFF, the associated GPIO signal of SW7 can be used elsewhere on the board (see Table 2-16).

Table 2-10. Office Litable Switch (5 W /	Table 2-16.	UART	Enable Switch	(SW7)
--	-------------	------	---------------	-------

EZ-KIT Lite Signal	SW7 Switch Position (Default)	Processor Signal
UART1CTS	1 (ON)	PE10
UART1_RX	2 (ON)	PH1
UART1RTS	3 (ON)	PE9
N/A	4 (OFF)	N/A

Audio Loopback Test Switch (SW8)

The audio loopback test switch (SW8) connects the inputs signals of the audio interface to the output signals. This allows the EZ-KIT Lite to be placed in a loopback test mode for signal and circuit continuity and functionality (see "Power-On-Self Test" on page 1-28). All positions of the switch should be 0N when running POST. In all other cases, the switch should be kept 0FF. Table 2-17 shows the default settings for the SW8 switch.

Table 2-17. Audio Loopback Test Switch (SW8)

EZ-KIT Lite Input Signal	SW8 Switch Position (Default)	EZ-KIT Lite Output Signal
LINEIN_L	1 (OFF)	SURROUT_L
LINEIN_R	2 (OFF)	SURROUT_R
LINEIN_L	3 (OFF)	CENTER_OUT
LINEIN_R	4 (OFF)	LFE_OUT

Table 2-17. Audio Loopback Test Switch (SW8) (Cont'd)

EZ-KIT Lite Input Signal	SW8 Switch Position (Default)	EZ-KIT Lite Output Signal
MIC_L	5 (OFF)	LINEOUT_L
MIC_R	6 (OFF)	LINEOUT_R

Reset Push Button (SW9)

The reset push button (SW9) resets all of the ICs on the board. One exception is the USB interface chip. The chip is not reset when the push button is pressed after the USB cable has been plugged in and communication with the PC has been initialized correctly. After USB communication has been initialized, the only way to reset the USB chip is by powering down the board.

Programmable Flag Push Buttons (SW10-13)

Four momentary push buttons (SW10-13) are provided for general-purpose user input. The buttons connect to the PB11-8 programmable flag pins of the processor. The push buttons are active high and, when pressed, send a high (1) to the processor. The push button enable switch (SW5) disconnects the push buttons from the corresponding PB signal (refer to "Push Button Enable Switch (SW5)" on page 2-19 for more information). The programmable flag signals and associated switches are shown in Table 2-18.

Table 2-18. Programmable Flag Switches

Push Button	EZ-KIT Lite Signal	Processor Signal
PB1 (SW13)	PUSHBUTTON1	PB8
PB2 (SW12)	PUSHBUTTON2	PB9
PB3 (SW11)	PUSHBUTTON3	PB10
PB4 (SW10)	PUSHBUTTON4/HPWAIT	PB11

LCD/PPI Configuration Switch (SW14)

The LCD/PPI configuration switch (SW14) connects the GPIO pins of the processor to the LCD or PPI configuration pins:

- SW14 position 1 connects PJ11 to the data available output (DAV) of the touchscreen controller (U9).
- SW14 position 2 connects PJ12 to the pen interrupt output (PENIRQ) of the touchscreen controller (U9).
- SW14 position 3 connects PJ13 to the PPI1CLK multiplexter (U20). This allows you to connect the PPI1CLK to the clock signal generated on the expansion interface or the on-board 27 MHz oscillator (U19).
- SW14 position 4 connects PE3 to the DISP signal of the LCD via the LCD data connector (P15).

When SW14 is OFF, its associated GPIO signals can be used on the expansion interface (see Table 2-19).

Table 2-19. LCD/PPI Configuration Switch (SW14)

EZ-KIT Lite Signal	SW14 Switch Position (Default)	Processor Signal
LCD_DAV	1 (ON)	BR/PJ11
LCD_IRQ	2 (ON)	BG/PJ12
PPI1_SEL	3 (ON)	BGH/PJ13
LCD_DISP	4 (ON)	PE3

CAN1 Enable Switch (SW15)

The CAN1 enable switch (SW15) disconnects the CAN1 signals from the GPIO pins of the processor and deactivates the CAN1 transceiver (U33). When SW15 is in the default positions (shown in Table 2-20), the switch connects to CAN1. When otherwise, the associated GPIO signal of SW15 can be used as a STAMP GPIO.

Table 2-20. CAN1 Enable Switch (SW15)

CAN1 Signal	EZ-KIT Lite Signal	SW15 Switch Position (Default)	Processor Signal
ENABLE	N/A	1 (OFF)	N/A
STANDBY	N/A	2 (OFF)	N/A
ERROR	CAN1_ERR	3 (ON)	PC5
RECEIVE DATA	CAN1RX	4 (ON)	PG15

Peripheral Control Enable (SW16)

The peripheral control enable (SW16) connects the GPIO pins of the processor to the enable pins of the audio codec, USB regulator, or Ethernet controller:

- SW16 position 1 connects PB3 to the reset pin of the audio codec (U11). This allows the audio codec to be reset via software.
- SW16 position 2 connects PE7 to the 5 volt VBUS USB regulator (VR1) and FET switch (U39). This allows the software to control the enable pins of both the regulator and the FET switch if the VBUS line is powered with 5 volts by some other host device. When in USB OTG host mode, the signal needs to be a logic 1. This will cause the EZ-KIT to supply the 5V to the VBUS line. When in

Push Button and Switch Settings

USB OTG device mode, the signal needs to be a logic 0. This will allow the host device to power the VBUS line and allow the Blackfin processor to remain in device mode.

- SW16 position 3 connects PE8 to the interrupt signal of the Ethernet controller (U14).
- SW16 position 4 connects PB11 to the reset of the burst flash memory. This allows the software to reset the burst flash. In order to use this signal as a reset for burst flash, SW5.4 needs to be set OFF. When the signal is used as a reset for the burst flash, the HOSTWAIT signal and PB4 are not be available. By default the switch is set to OFF and is not used.

When the switch is OFF, its associated GPIO signals can be used on the expansion interface (see Table 2-21).

Table 2-21. Peripheral Co	ntrol Enable (SW16)
---------------------------	---------------------

EZ-KIT Lite Signal	SW16 Switch Position (Default)	Processor Signal
AUDIO_RESET	1 (ON)	UART3CTS/PB3
USB_VRSEL	2 (ON)	PE7
LAN_IRQ	3 (ON)	PE8
NOR_RESET	4 (OFF)	PB11 (PUSHBUTTON4/HPWAIT)

LCD Module Configuration (SW17)

The LCD module configuration switch (SW17) is used to set up the LCD module in 24-bit mode, 18-bit mode, or to disconnect the LCD in order to use the processor EPPI signals on other areas of the board. The default setting is for the LCD module to operate in 24-bit mode; the corresponding switch settings are shown in Table 2-22. To operate the LCD module in 18-bit mode, set SW17 as shown in Table 2-23.

ADSP-BF548 EZ-KIT Lite Hardware Reference

In order to disconnect the LCD module so that PPI1 or PPI0 can be used elsewhere on the board, follow the settings in Table 2-24. When the switch is OFF, its associated PPI1 and PPI0 signals can be used on the expansion interface, host interface, or STAMP PPI1 header.

Table 2-22. LCD Module Configuration in 24-bit Mode (SW17)

SW17 Switch Position (Default)	Processor Signal	EZ-KIT Lite Signal
1 (ON)	PPIOCLK PPIOFS1 PPIOFS2	LCD_PPIOCLK LCD_PPIOFS1 LCD_PPIOFS2
2 (OFF)	PPIOD[0-17]	LCD_R[2-7] LCD_G[2-7] LCD_B[2-7]
3 (ON)	PPIOD[0-17] PPI1D[0-5]/HPD[8-13]	LCD_R[0-7] LCD_G[0-7] LCD_B[0-7]
4 (OFF)	N/A	N/A

Table 2-23. LCD Module Configuration in 18-bit Mode (SW17)

SW17 Switch Position	Processor Signal	EZ-KIT Lite Signal
1 (ON)	PPIOCLK PPIOFS1 PPIOFS2	LCD_PPIOCLK LCD_PPIOFS1 LCD_PPIOFS2
2 (ON)	PPIOD[0-17]	LCD_R[2-7] LCD_G[2-7] LCD_B[2-7]
3 (OFF)	PPIOD[0-17] PPI1D[0-5]/HPD[8-13]	LCD_R[0-7] LCD_G[0-7] LCD_B[0-7]
4 (OFF)	N/A	N/A

Table 2-24. LCD Module Configuration Disconnected (SW17)

SW17 Switch Position	Processor Signal	EZ-KIT Lite Signal
1 (OFF)	PPIOCLK PPIOFS1 PPIOFS2	LCD_PPIOCLK LCD_PPIOFS1 LCD_PPIOFS2
2 (OFF)	PPIOD[0-17]	LCD_R[2-7] LCD_G[2-7] LCD_B[2-7]
3 (OFF)	PPIOD[0-17] PPI1D[0-5]/HPD[8-13]	LCD_R[0-7] LCD_G[0-7] LCD_B[0-7]
4 (OFF)	N/A	N/A

Jumpers

This section describes the functionality of the configuration jumpers. Figure 2-3 shows the locations of the configuration jumpers.

Figure 2-3. Configuration Jumper Locations

UART1 Loopback Jumper (JP1)

The UART1 loopback jumper (JP1) is used to place the UART1 port of the processor in a loopback condition. The jumper connects the UART1_TX line of the processor to the UART1_RX signal of the processor. The jumper is required only when the power-on-self-test (POST) is used to test the serial port interface. The jumper setting is shown in Table 2-25.

Table 2-25. UART1 Loopback Jumper (JP1)

JP1 Setting	Mode
OFF	Normal operation. UART1_TX to UART1_RX is disconnected (default)
ON	Loopback operation. Connects UART1_TX to UART1_RX

SPI1 Enable Jumper (JP2)

The SPI1 enable jumper (JP2) activates a buffer and enables the SPI1 port of the processor to be connected to the STAMP headers. The default for these signals is the buffer being disabled, and the SPI1 port not connecting to the STAMP headers. Be aware that using the SPI1 port and its associated signals will disable the user LEDs (LED1-6) because the port and LEDs share the same pins on the processor. The jumper setting is shown in Table 2-26.

Table 2-26. SPI1 Enable Jumper (JP2)

JP2 Setting	Mode
OFF	SPI1 port deactivated (default)
ON	SPI1 port activated

Ethernet Speed Select Jumper (JP3)

The Ethernet speed select jumper (JP3) selects the speed of the LAN9218 Ethernet controller. No jumper is required by default. The default setting operates the LAN9218 (U14) in 100 Mbps mode and enables auto negotiation. When JP3 is populated, the controller operates in 10 Mbps mode with auto negotiation disabled. The jumper setting is shown in Table 2-27.

Table 2-27. Ethernet Speed Select Jumper (JP3)

JP3 Setting	Mode
OFF	LAN9218 in 100 Mbps mode; auto negotiation ON (default)
ON	LAN9218 in 10 Mbps mode; auto negotiation 0FF

VDDINT Power Jumper (JP4)

The VDDINT power jumper (JP4) is used to measure the core voltage and current supplied to the processor core. By default JP4 is 0N, and the power flows through the two-pin IDC header. To measure power, remove the jumper and measure the voltage across the 0.05 ohm resistor. Once the voltage is measured, the power can be calculated. For more information, refer to "Power Measurements" on page 1-27. The jumper setting is shown in Table 2-28.

Table 2-28. VDDINT Power Jumper (JP4)

JP4 Setting	Mode
ON	No power measurement (default)
OFF	For power measurement

VDDEXT Power Jumper (JP5)

The VDDEXT power jumper (JP5) is used to measure the processor's I/O voltage and current. By default JP5 is 0N, and the power flows through the two-pin IDC header. To measure power, remove the jumper and measure the voltage across the 0.05 ohm resistor. Once the voltage is measured, the power can be calculated. For more information, refer to "Power Measurements" on page 1-27. The jumper setting is shown in Table 2-29.

Table 2-29. VDDINT Power Jumper (JP5)

JP5 Setting	Mode
ON	No power measurement (default)
OFF	For power measurement

VDDDDR Power Jumper (JP6)

The VDDDDR power jumper (JP6) is used to measure the voltage and current supplied to the DDR interface of the processor. By default JP6 is 0N, and the power flows through the two-pin IDC header. To measure power, remove the jumper and measure the voltage across the 0.05 ohm resistor. Once the voltage is measured, the power can be calculated. For more information, refer to "Power Measurements" on page 1-27. The jumper setting is shown in Table 2-30.

Table 2-30. VDDDDR Power Jumper (JP6)

JP6 Setting	Mode
ON	No power measurement (default)
OFF	For power measurement

MOSI1 Out Jumper (JP7)

The MOSI out jumper (JP7) connects the PG10/MOSI1 pin of the processor to the STAMP headers. To flow data from the processor to the STAMP headers, connect the jumper. To flow data from the STAMP headers to the processor, do not populate the header but the JP8 jumper. Be aware that using the SPI1 port and its associated signals will disable the user LEDs (LED1-6) because the port and LEDs share the same pins on the processor. The jumper setting is shown in Table 2-31.

Table 2-31. MOSI1 Out Jumper (JP7)

JP7 Setting	Mode
OFF	No connection between the MOSI1 of the processor to the STAMP headers (default)
ON	MOSI1 of the processor transmitting data to the STAMP headers

MOSI1 In Jumper (JP8)

The MOSI in jumper (JP8) connect the PG10/MOSI1 pin of the processor to the STAMP headers. To flow data to the processor from the STAMP headers, connect the jumper. To flow data to the STAMP headers from the processor, do not populate the header but the JP7 jumper. Be aware that using the SPI1 port and its associated signals disable the user LEDs (LED1-6) because the port and LEDs share the same pins on the processor. The jumper setting is shown in Table 2-32.

Table 2-32. MOSI1 In Jumper (JP8)

JP8 Setting	Mode
OFF	No connection between the MOSI1 of the processor to the STAMP headers (default)
ON	MOSI1 of the processor receiving data from the STAMP headers

USB OTG Power Jumper (JP11)

The USB on-the-go (OTG) power jumper (JP11) connects the supply voltage for the USB OTG interface to the supply voltage of the USB interface of the processor. JP11 should always be populated. The jumper setting is shown in Table 2-33.

Table 2-33. USB OTG Power Jumper (JP11)

USB Power for	JP11 Pins 1 and 3	JP11 Pins 2 and 4
ADSP-BF548 processor	ON	ON

PPI1FS3 Pull-down Jumper (JP12)

The PPI1FS3 pull-down jumper (JP12) connects the PPI1FS3 signal of the processor to GND via a pull-down resistor. The jumper should be used when the processor pin is being used for EPPI, and the PPI1FS3 pin is not used. The pull-down assures that the PPI1FS3 signal is not floating and is used for certain modes of the EPPI interface, in which the signal needs to be low. Be aware that installing this jumper while using the serial port (J6) will cause data communication errors on the UART1. By default JP12 is not populated. The jumper setting is shown in Table 2-34.

Table 2-34. PPI1FS3 Pull-down Jumper (JP12)

JP12 Setting	Mode
OFF	No pull-down resistor to GND on PPIFS3/UART1_TX; Using the serial port J6 (default)
ON	Pull-down resistor connected to GND on PPIFS3/UART1_TX; Not using the serial port J6

LEDs

This section describes the on-board LEDs. Figure 2-3 shows the LED locations.

Figure 2-4. LED Locations

User LEDs (LED1-6)

Six LEDs connect to six general-purpose I/O pins of the processor (see Table 2-35). The LEDs are active high and are lit by writing a 1 to the correct PG signal.

Table 2-35. User LEDs

LED Reference Designator	Processor Programmable Flag Pin	
LED1	PG6	
LED2	PG7	

ADSP-BF548 EZ-KIT Lite Hardware Reference

Table 2-35. User LEDs (Cont'd)

LED Reference Designator	Processor Programmable Flag Pin	
LED3	PG8	
LED4	PG9	
LED5	PG10	
LED6	PG11	

Power LED (LED7)

When LED7 is lit (green), it indicates that power is being properly supplied to the board.

Reset LED (LED8)

When LED8 is lit, it indicates that the master reset of all the major ICs is active. The reset LED is controlled by the Analog Devices ADM708 supervisory reset circuit. You can assert the reset push button (SW9) to assert the master reset and to activate LED8. For more information, see "Reset Push Button (SW9)" on page 2-21.

Ethernet Link/Activity LED (LED9)

When LED9 is lit solid, it indicates that the SMSC LAN9218 (U14) chip detects a valid link. When transmit or receive activity is sensed, LED9 flashes as an activity indicator. For more information on the LED, refer to the LAN9218 datasheet provided by the product manufacturer.

Connectors

This section describes the connector functionality and provides information about mating connectors. The connector locations are shown in Figure 2-5.

Figure 2-5. Connector Locations

Expansion Interface Connectors (J1–3)

Three board-to-board connector footprints provide signals for most of the processor's peripheral interfaces. The connectors are located at the bottom of the board. For more information, see "Expansion Interface" on page 1-26. For the availability and pricing of the J1-3 connectors, contact Samtec.

Part Description	Manufacturer	Part Number
90-position 0.05" spacing, SMT	SAMTEC	SFC-145-T2-F-D-A
	Mating Connector	
90-position 0.05" spacing (through hole)	SAMTEC	TFM-145-x1 series
90-position 0.05" spacing (surface mount)	SAMTEC	TFM-145-x2 series
90-position 0.05" spacing (low cost)	SAMTEC	TFC-145 series

Ethernet Connector (J4)

Part Description	Manufacturer	Part Number	
RJ-45 Ethernet jack	STEWART	SS-6488-NF	
Mating Cable (shipped with EZ-KIT Lite)			
Cat 5E patch cable	RANDOM	PC10/100T-007	
Cat 5E crossover cable	RANDOM	PC10/100TC-007	
Mating Connector (shipped with EZ-KIT Lite)			
RJ-45 loopback connector	RANDOM	RAN830	

SD Memory Card Connector (J5)

Part Description	Manufacturer	Part Number
SD 9-pin connector	ITT CANON	CCM05-5777LFT T50
Mating Memory Card (shipped with EZ-KIT Lite)		
256 MB	SanDISK	SDSDB-256-A10

RS-232 Connector (J6)

Part Description	Manufacturer	Part Number	
DB9, female, right angle mount	TYCO	5747844-4	
Mating Cable			
2m female-to-female cable	DIGI-KEY	AE1020-ND	

Power Connector (J7)

The power connector provides all of the power necessary to operate the EZ-KIT Lite board.

Part Description	Manufacturer	Part Number	
2.5 mm power jack	SWITCHCRAFT	RAPC712X	
Mating Power Supply (shipped with EZ-KIT Lite)			
7.5VDC@4A power supply	CUI INC	DTS075400UDC-P6P-DB	

Dual Audio Connectors (J8 and J9)

Part Description	Manufacturer	Part Number	
3.5 mm dual stereo jack	SWITCHCRAFT	35RAPC7JS	
Mating Cable (shipped with EZ-KIT Lite)			
3.5mm male/male 6' cable RANDOM 10A3-01106			
Mating Headphone (shipped with EZ-KIT Lite)			
3.5 mm stereo headphones	KOSS	151225 UR5	

Audio Connector (J10)

Part Description	Manufacturer	Part Number	
3.5 mm stereo jack	SWITCHCRAFT	RAPC712X	
Mating Cable (shipped with EZ-KIT Lite)			
3.5mm male/male 6' cable	RANDOM	10A3-01106	
Mating Headphone (shipped with EZ-KIT Lite)			
3.5 mm stereo headphones	KOSS	151225 UR5	

CAN Connectors (J11 and J12)

Part Description	Manufacturer	Part Number	
RJ11 4-pin modular jack	TYCO	5558872-1	
Mating Cable			
4-conductor modular jack cable	L-COM	TSP3044	
Mating Loopback Cable (shipped with EZ-KIT Lite)			
4-conductor modular jack cable	RANDOM	RAN290	

Connectors

Battery Holder (J13)

Part Description	Manufacturer	Part Number
24 mm battery holder	KEYSTONE	1025-7
Mating Battery (shipped with EZ-KIT Lite)		
3V 1000MAH 24 mm LI-COIN	PANASONIC	CR2477

ATAPI Connector (J14)

Part Description	Manufacturer	Part Number	
ATAPI 44-pin 22 x 2 mm	SAMTEC	ASP-130199-02	
Mating Hard Drive (shipped with EZ-KIT Lite)			
5V ATAPI hard disk drive	TOSHIBA	MK4032GAX	

Keypad Connector (P1)

Part Description	Manufacturer	Part Number
IDC header female	SAMTEC	SSW-109-01-TM-S
Mating Keypad (shipped with EZ-KIT Lite)		
4 x 4 keypad	ACT COMPONENTS	ACT-07-30008-000-R

Host Interface Connector (P3)

The pinout of the P3 connector can be found in "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Part Description	Manufacturer	Part Number
IDC header	SAMTEC	TSW-116-26-T-D
Mating Connector		
IDC socket	SAMTEC	TSW-116-01-T-D

USB OTG Connector (P4)

The pinout of the P4 connector can be found in "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Part Description	Manufacturer	Part Number
USB 5-pin mini AB	MOLEX	56579-0576
Mating Cables (shipped with EZ-KIT Lite)		
5-in-1 USB 2.0 cable	JO-DAN INTERNAT	GXQU-06

LCD Backlight Connector (P5)

Part Description	Manufacturer	Part Number	
FPC 4-pin 0.5 mm	KYOCERA ELCO	046298004000883+	
Mating LCD Display Module (shipped with EZ-KIT Lite)			
4" TFT LCD with touchscreen	SHARP	LQ043T1DG01	

SPORT2 Connector (P6)

The pinout of the P6 connector can be found in "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Part Description	Manufacturer	Part Number
IDC header	FCI	68737-434HLF
Mating Connector		
IDC socket	DIGI-KEY	S4217-ND

SPORT3 Connector (P7)

The pinout of the P7 connector can be found in "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Part Description	Manufacturer	Part Number
IDC header	FCI	68737-434HLF
Mating Connector		
IDC socket	DIGI-KEY	S4217-ND

PPI1 Connector (P8)

The pinout of the P8 connector can be found in "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Part Description	Manufacturer	Part Number
IDC header	FCI	68737-440HLF
Mating Connector		
IDC socket	DIGI-KEY	S4220-ND

SPI Connector (P9)

The pinout of the P9 connector can be found in "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Part Description	Manufacturer	Part Number
IDC header	FCI	68737-420HLF
Mating Connector		
IDC socket	DIGI-KEY	S4210-ND

Two-Wire Interface Connector (P10)

The pinout of the P10 connector can be found in "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Part Description	Manufacturer	Part Number		
IDC header	FCI	68737-420HLF		
Mating Connector				
	8			

TIMERS Connector (P11)

The pinout of the P11 connector can be found in "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Part Description	Manufacturer	Part Number	
IDC header	FCI	68737-410HLF	
Mating Connector			
IDC socket	DIGI-KEY	S4205-ND	

Connectors

UART3 Connector (P12)

The pinout of the P12 connector can be found in "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Part Description	Manufacturer	Part Number		
IDC header	FCI	68737-410HLF		
Mating Connector				
IDC socket	DIGI-KEY	S4205-ND		

LCD Touchscreen Connector (P14)

Part Description	Manufacturer	Part Number
FPC 4-pin 1mm	JST	04FMS-1.0SP-TF(LF)(SN
Mating LCD Displ	ay Module (shipped with EZ-	KIT Lite)
4" TFT LCD with touchscreen	SHARP	LQ043T1DG01

LCD Data Connector (P15)

Part Description	Manufacturer	Part Number			
FPC 40-pin 0.5mm	HIROSE	FH12-40S-0.5SH(55)			
Mating LCD Display Module (shipped with EZ-KIT Lite)					
4" TFT LCD with touchscreen	SHARP	LQ043T1DG01			

USB Debug Agent Connector (ZJ1)

The USB debug agent connector is the connecting point for the JTAG USB debug agent interface. The JTAG header (ZP4) should not be used whenever ZJ1 and its mating cable are used to communicate to the processor via VisualDSP++.

JTAG Connector (ZP4)

The JTAG header is the connecting point for a JTAG in-circuit emulator pod. When an emulator connects to the JTAG header, the USB debug interface is disabled.

Pin 3 is missing to provide keying. Pin 3 in the mating connector should have a plug.

When using an emulator with the EZ-KIT Lite board, follow the connection instructions provided with the emulator.

Connectors

A ADSP-BF548 EZ-KIT LITE BILL OF MATERIALS

The bill of materials corresponds to "ADSP-BF548 EZ-KIT Lite Schematic" on page B-1.

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
1	1	48MHZ OSC003	U48	EPSON	SG-8002CA MP
2	2	74LVC14ASOIC14	U10,U30	TI	74LVC14AD
3	1	IDT74FCT3244AP Y SSOP20	U29	IDT	IDT74FCT3244APYG
4	1	24.576MHZ OSC005	Y1	EPSON	MA-505 24.5760M-C3:ROHS
5	1	25MHZOSC005	Y3	EPSON	MA-505 25.0000 MHZ
6	1	32.768KHZ OSC008	Y2	EPSON	MC-156-32.7680KA- A0:ROHS
7	1	SN74LVC1G32 SOT23-5	U45	TI	SN74LVC1G32DBVR
8	2	25MHZOSC003	U7,U47	EPSON	SG-8002CA MP
9	2	SN74LVC1G08 SOT23-5	U25,U31	TI	SN74LVC1G08DBVR
10	2	TJA1041 SOIC14	U21,U33	PHILIPS	TJA1041T
11	1	FDS9431ASOIC8	U28	FAIRCHILD	FDS9431A
12	1	NAND02TSOP48	U3	ST MICRO	NAND02GW3B2CN6E
13	1	27MHZOSC003	U19	EPSON	SG-8002CA-MP
14	2	FDS9926ASOIC8	U22-23	MOUSER	512-FDS9926A
15	1	SI4411DY SO-8	U16	VISHAY	Si4411DY-T1-E3

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
16	1	HX1188 ICS007	U15	PULSE	HX1188NL
17	1	LAN9218TQFP100	U14	SMSC	LAN9218-MT
18	1	24MHZOSC003	U13	EPSON	SG-8002CA-MP
19	1	MT46V32M16 TSOP66	U1	MICRON	MT46V32M16P-5B:F
20	1	BF548 PC28F128P33"U5"	U5	INTEL	PC28F128P33T85
21	1	SN74LVC1G02 SOT23-5	U35	DIGI-KEY	296-11597-1-ND
22	2	SN74CB3Q16211 TSSOP56	U37-38	DIGI-KEY	296-17629-1-ND
23	1	SN74CB3Q3245 TSSOP20	U36	DIGI-KEY	296-19130-1-ND
24	1	MIC2025-1SOIC8	U39	DIGI-KEY	576-1057-ND
25	1	93LC46A SOIC8	U12	MICROCHIP	93LC46A-E/SN
26	1	BF548 M25P16 "U6"	U6	ST MICRO	M25P16-VMW6G
27	1	CBT3244ASSOP20	U26	DIGI-KEY	568-3620-5-ND
28	2	SN74CB3Q16245 TSSOP48	U4,U24	DIGI-KEY	296-19117-1-ND
29	1	ADM708SARZ SOIC8	U27	ANALOG DEVICES	ADM708SARZ
30	3	ADP3336ARMZ MSOP8	VR1-2,VR5	ANALOG DEVICES	ADP3336ARMZ-REEL
31	1	ADG752BRTZ SOT23-6	U20	ANALOG DEVICES	ADG752BRTZ-REEL
32	1	ADM3202ARNZ SOIC16	U32	ANALOG DEVICES	ADM3202ARNZ
33	1	ADSPBF535PKBZ- 350 PBGA260	U46	ANALOG DEVICES	ADSP-BF535PKBZ-350

ADSP-BF548 EZ-KIT Lite Bill Of Materials

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
34	1	ADSP-BF548 MBGA400	U2	ANALOG DEVICES	ADSP-BF548
35	1	ADP1864AUJZ SOT23-6	VR3	ANALOG DEVICES	ADP1864AUJZ-R7
36	1	ADP1823LFCSP32	VR7	ANALOG DEVICES	ADP1823ACPZ-R7
37	1	AD7877LFCSP32	U9	ANALOG DEVICES	AD7877ACPZ-500RL7
38	1	AD1980 LQFP48	U11	ANALOG DEVICES	AD1980JSTZ
39	1	ADP1611MSOP8	VR8	ANALOG DEVICES	ADP1611ARMZ-R7
40	1	ADP1715MSOP8	VR4	ANALOG DEVICES	ADP1715ARMZ-R7
41	1	PWR 2.5MM_JACK CON005	J7	SWITCH- CRAFT	RAPC712X
42	3	.0545X2CON019	J1-3	SAMTEC	SFC-145-T2-F-D-A
43	1	DIP8 SWT016	SW2	C&K	TDA08H0SB1
44	1	DIP6 SWT017	SW8	CTS	218-6LPST
45	8	DIP4 SWT018	SW4-7,SW14-17	ITT	TDA04HOSB1
46	1	DB9 9PIN DB9F	Ј6	TYCO	5747844-4
47	2	RJ11 4PIN CON039	J11-12	TYCO	5558872-1
48	7	IDC 2X1 IDC2X1	JP2-8	FCI	90726-402HLF
49	2	IDC 2X1 IDC2X1	JP1,JP12	FCI	90726-402HLF
50	2	IDC5X2IDC5X2	P11-12	FCI	68737-410HLF
51	2	IDC 10X2 IDC10X2	P9-10	BURG-FCI	54102-T08-10LF
52	2	IDC 17X2 IDC17X2	P6-7	BURG-FCI	54102-T08-17LF

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
53	1	IDC 20X2 IDC20X2	P8	BURG-FCI	54102-T08-20LF
54	1	IDC 2X2 IDC2X2	JP11	FCI	68737-404HLF
55	1	3.5MM STEREO_JACK CON001	J10	DIGI-KEY	CP1-3525NG-ND
56	1	5A RESETABLE FUS005	F1	MOUSER	650-RGEF500
57	1	ROTARYSWT023	SW1	DIGI-KEY	563-1047-ND
58	1	ROTARY_ENCOD ER SWT022	SW3	CTS	290UAB0R201B2
59	2	3.5MM DUAL_STEREO CON050	J8-9	SWITCH- CRAFT	35RAPC7JS
60	1	SD_CONN 9PIN CON051	J5	DIGI-KEY	401-1954-ND
61	1	IDC16x2IDC16x2	Р3	SAMTEC	TSW-116-26-T-D
62	1	USB_MINI-AB 5PIN CON052	P4	MOLEX	56579-0576
63	1	BATT_HOLDER 24MM CON054	J13	KEYSTONE	1025-7
64	1	RJ45 8PIN CON_RJ45_12P	J4	DIGI-KEY	380-1022-ND
65	1	ATAPI44 44PIN 22x2_2MM	J14	SAMTEC	ASP-130199-02
66	5	MOMENTARY SWT024	SW9-13	PANASONIC	EVQ-Q2K03W
67	1	FPC 40PIN CON057	P15	HIROSE	FH12-40S-0.5SH(55)
68	1	FPC4PINCON060	P5	KYOCERA ELCO	046298004000883+

ADSP-BF548 EZ-KIT Lite Bill Of Materials

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
69	1	FPC4PINCON061	P14	JST	04FMS-1.0SP-TF(LF) (SN)
70	1	IDC 9X1 IDC 9X1	P1	SAMTEC	SSW-109-01-TM-S
71	1	0 1/4W 5% 1206	R76	KOA	0.0ECTRk7372BTTED
72	11	YELLOWLED001	LED1-6,LED9, LED11-13,ZLED4	PANASONIC	LN1461C
73	3	22PF 50V 5% 0805	C115-116,C225	AVX	08055A220JAT
74	4	0.1UF 50V 10% 0805	C30-32,C266	AVX	08055C104KAT
75	1	1M1/10W5%0805	R78	VISHAY	CRCW08051M00JNEA
76	7	100 1/10W 5% 0805	R34-36,R100-101, R103,R138	VISHAY	CRCW0805100RJNEA
77	11	600 100MHZ 200MA 0603	FER1-10,FER20	DIGI-KEY	490-1014-2-ND
78	5	600 100MHZ 500MA 1206	FER11-12,FER15-17	STEWARD	HZ1206B601R-10
79	7	1UF 16V 10% 0805	C129,C139,C203- 205,C278-279	KEMET	C0805C105K4RACTU
80	2	30PF 100V 5% 1206	C143-144	AVX	12061A300JAT2A
81	1	10UH20%IND001	L1	TDK	445-2014-1-ND
82	3	270 1/10W 5% 0805	R201-203	VISHAY	CRCW0805270RJNEA
83	2	01/10W5%0805	R147,R259	VISHAY	CRCW08050000Z0EA
84	1	190 100MHZ 5A FER002	FER19	MURATA	DLW5BSN191SQ2
85	2	1A ZHCS1000 SOT23-312	D5,D21	ZETEX	ZHCS1000TA pb-free
86	6	22 125MW 5% RNS001	RN11-16	CTS	744C083220JP

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
87	4	1UF10V10%0805	C210,C220-222	AVX	0805ZC105KAT2A
88	24	10UF 6.3V 10% 0805	C9,C26,C49,C60, C67,C74,C84,C122- 123,C149,C152, C167,C206,C208, C232-233,C235-237, C255,ZC42,ZC44, ZC46,ZC80	AVX	080560106KAT2A
89	5	4.7UF 6.3V 10% 0805	C138,C140,C198, C202,C209	AVX	08056D475KAT2A
90	42	0.1UF 10V 10% 0402	C1-2,C25,C27,C96, C109,C114,C119- 121,C124-125,C132, C134,C142,C153- 166,C175,C177-179, C240,C256,C275- 277,ZC37-40	AVX	0402ZD104KAT2A
91	147	0.01UF 16V 10% 0402	C3-8,C10-19,C23- 24,C33-48,C50-59, C61-66,C68-73,C75- 83,C85-92,C112- 113,C130-131,C136, C141,C148,C150- 151,C170-171,C180, C184-186,C188, C192,C194-197, C211,C214,C229- 230,C243-254,C257- 259,ZC36,ZC41, ZC48-79	AVX	0402YC103KAT2A

ADSP-BF548 EZ-KIT Lite Bill Of Materials

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
92	66	10K 1/16W 5% 0402	R8-13,R16-19,R26, R29,R55-56,R60, R77,R95,R108-111, R120-123,R131-133, R148,R158,R161- 163,R166,R168, R171,R173,R178, R182,R187,R198- 200,R204-206,R213, R222-225,R229-230, R248-249,R254, R257,R273-275, ZR21,ZR25-26, ZR28,ZR35-36	VISHAY	CRCW040210K0FKED
93	11	4.7K 1/16W 5% 0402	R43,R45-49,R65, R143,R196,R212, ZR30	VISHAY	CRCW04024K70JNED
94	31	01/16W5%0402	R20,R30,R57-59, R61,R146,R149, R172,R174-177, R207,R210-211, R215,R232-242, R278-279,ZR20	PANASONIC	ERJ-2GE0R00X
95	4	1.2K 1/16W 5% 0402	R139-140,R276-277	PANASONIC	ERJ-2GEJ122X
96	6	221/16W5%0402	R151-154,R169-170	PANASONIC	ERJ-2GEJ220X
97	25	331/16W5%0402	R7,R14,R21,R27-28, R66,R197,R243-247, R250-253,R255, R268-272,ZR23-24, ZR32	VISHAY	CRCW040233R0JNEA
98	2	18PF 50V 5% 0805	C28-29	AVX	08055A180JAT2A
99	6	100UF10V10%C	CT1-3,CT5,CT8-9	AVX	TPSC107K010R0075
100	2	64.9K 1/10W 1% 0805	R69,R165	VISHAY	CRCW080564K9FKEA

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
101	2	210.0K 1/4W 1% 0805	R68,R164	VISHAY	CRCW0805210KFKEA
102	1	0.022UF 50V 5% 0805	C145	AVX	08055C223JAT2A
103	10	49.9 1/10W 1% 0805	R83-92	DIGI-KEY	311-49.9CRCT-ND
104	6	0.1UF 16V 10% 0603	C189,C260,C264- 265,C272,C274	AVX	0603YC104KAT2A
105	8	1UF16V10%0603	C94,C103-104,C118, C215-216,C241-242	PANASONIC	ECJ-1VB1C105K
106	1	4.7UF 25V 20% 0805	C102	AVX	0805ZD475KAT2A
107	1	68PF 50V 5% 0603	C200	AVX	06035A680JAT2A
108	11	470PF 50V 5% 0603	C93,C97-101,C105- 106,C110-111,C199	AVX	06033A471JAT2A
109	1	220UF 6.3V 20% D2E	CT4	SANYO	10TPE220ML
110	3	10K 1/10W 5% 0603	R99,R263-264	VISHAY	CRCW060310K0JNEA
111	1	10M 1/10W 5% 0603	R15	VISHAY	CRCW060310M0FNEA
112	3	100K 1/10W 5% 0603	R188-189,R261	VISHAY	CRCW0603100KJNEA
113	11	330 1/10W 5% 0603	R119,R124-130, R141,ZR29,ZR31	VISHAY	CRCW0603330RJNEA
114	1	1M1/10W5%0603	R67	VISHAY	CRCW06031M00FNEA
115	2	01/10W5%0603	R73,R156	РНҮСОМР	232270296001L
116	8	101/10W5%0603	R102,R104,R134- 137,R218,R220	VISHAY	CRCW060310R0JNEA
117	2	75.0K 1/16W 1% 0603	R71,R179	VISHAY	CRCW060375K0FKEA

ADSP-BF548 EZ-KIT Lite Bill Of Materials

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
118	2	1K1/10W5%0603	R37,R42	DIGI-KEY	311-1.0KGRTR-ND
119	3	4700PF 16V 10% 0603	C168,C218,C226	DIGI-KEY	311-1083-2-ND
120	4	100PF 50V 5% 0603	C169,C172,C227- 228	AVX	06035A101JAT2A
121	1	12.4K 1/10W 1% 0603	R80	DIGI-KEY	311-12.4KHRTR-ND
122	4	62.0 1/10W 1% 0603	R105-106,R219, R221	DIGI-KEY	311-62.0HRTR-ND
123	1	680PF 50V 5% 0603	C231	PANASONIC	ECJ-1VC1H681J
124	2	75.0 1/10W 1% 0603	R93-94	DALE	CRCW060375R0FKEA
125	2	270PF 50V 5% 0603	C95,C117	DIGI-KEY	311-1185-2-ND
126	2	1UF6.3V20%0402	C107-108	PANASONIC	ECJ-0EB0J105M
127	3	100 1/16W 5% 0402	R1,R50-51	DIGI-KEY	311-100JRTR-ND
128	1	390PF 25V 5% 0603	C261	AVX	06033A391FAT2A
129	1	24.9K 1/10W 1% 0603	R155	DIGI-KEY	311-24.9KHTR-ND
130	6	1.05K 1/16W 1% 0603	R74-75,R81,R96-98	PANASONIC	ERJ-3EKF1051V
131	4	10UF 10V 10% 0805	C135,C193,C271, C273	PANASONIC	ECJ-2FB1A106K
132	2	20.0K 1/16W 1% 0603	R266,ZR19	PANASONIC	ERJ-3EKF2002V
133	4	0.051/2W1%1206	R157,R192-194	SEI	CSF 1/2 0.05 1%R
134	3	10UF 16V 10% 1210	C201,C234,C238	AVX	1210YD106KAT2A

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
135	1	GREEN LED001	LED7	PANASONIC	LN1361CTR
136	1	RED LED001	LED8	PANASONIC	LN1261CTR
137	2	1000PF 50V 5% 1206	C190-191	AVX	12065A102JAT2A
138	1	255.0K 1/10W 1% 0603	R160	VISHAY	CRCW06032553FK
139	1	80.6K 1/10W 1% 0603	R159	DIGI-KEY	311-80.6KHRCT-ND
140	1	200MA BAT54A SOT23D	D12	MOUSER	512-BAT54A
141	2	200MA BAT54 SOT23D	D10-11	MOUSER	512-BAT54
142	1	8.2UH 20% IND012	L4	COILCRAFT	MSS6132-822ML
143	1	10UH20%IND012	L3	COILCRAFT	MSS6132-103ML
144	2	1.1K 1/16W 1% 0402	R191,R208	PANASONIC	ERJ-2RKF1101X
145	1	18K 1/16W 5% 0402	R183	DIGI-KEY	311-18KJRCT-ND
146	1	820 1/16W 5% 0402	R184	DIGI-KEY	311-820JRCT-ND
147	1	12.0K 1/16W 1% 0402	R79	DIGI-KEY	311-12.0KLRCT-ND
148	1	430 1/16W 1% 0402	R180	DIGI-KEY	311-430LRCT-ND
149	1	1200PF 50V 10% 0402	C219	DIGI-KEY	490-1304-1-ND
150	1	82PF 50V 5% 0402	C217	DIGI-KEY	490-1290-1-ND
151	2	22000PF 25V 10% 0402	C223,C239	DIGI-KEY	490-3252-1-ND

ADSP-BF548 EZ-KIT Lite Bill Of Materials

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
152	1	1500PF 50V 10% 0402	C224	DIGI-KEY	490-3245-1-ND
153	3	5A MBRS540T3G SMC	D4,D13,D15	ON SEMI	MBRS540T3G
154	3	15KV PGB1010603 0603	D1,D8-9	LITTLEFUSE	PGB1010603MR
155	1	VARISTOR V5.5MLA 30A 0603	R142	LITTLEFUSE	V5.5MLA0603
156	1	THERM 0.5A 0.4 1206	R72	LITTLEFUSE	1206L050-C
157	19	33 125MW 5% RNS001	RN1-10,RN17-25	CTS	744C083330JP
158	1	20MA MA3X717E DIO005	D16	PANASONIC	MA3X717E
159	2	100MA MA27D27 DIO006	D2,D7	PANASONIC	MA27D27
160	1	2A CZRF52C2V2 DIO007	D3	DIGI-KEY	641-1052-1-ND
161	1	2.5UH 30% IND013	L2	COILCRAFT	MSS1038-252NLB
162	4	47.0K 1/16W 1% 0402	R38-41	ROHM	MCR01MZPF4702
163	2	3.01K 1/16W 1% 0402	R52-53	ROHM	MCR01MZPF3011
164	1	5.6K 1/16W 5% 0402	R25	PANASONIC	ERJ-2GEJ562X
165	5	1.0K 1/16W 1% 0402	R2-3,R31-33	PANASONIC	ERJ-2RKF1001X
166	2	1000PF 2000V 10% 1206	C146-147	AVX	1206GC102KAT1A
167	3	821/16W5%0402	R4-6	ROHM	MCR01MZPJ820

Ref.	Qty.	Description	Reference Designator	Manufacturer	Part Number
168	1	1UF50V10%0603	C267	DIGI-KEY	587-1257-1-ND
169	1	154.0K 1/16W 1% 0402	R70	DIGI-KEY	541-154KLCT-ND
170	1	10.0 1/10W 1% 0603	R82	DIGI-KEY	311-10.0HRTR-ND
171	3	10.0K 1/16W 1% 0402	R181,R185,R265	DIGI-KEY	541-10.0KLCT-ND
172	1	60.41/8W1%0805	R262	ROHM	MCR10EZPF60R4
173	1	15uH20%IND015	L5	COILCRAFT	MSS4020-153ML
174	3	.5A B0540W SOD-123	D17-19	DIODES INC	B0540W-7-F
175	1	.5A BZT52C33S SOD-323	D20	DIODES INC	BZT52C33S-7-F
176	4	2.2UF 25V 10% 0805	C263,C268-270	DIGI-KEY	490-3331-1-ND
177	1	1.01/16W1%0402	R260	DIGI-KEY	541-1.00LCT-ND
178	1	34.0K 1/10W 1% 0603	R186	DIGI-KEY	541-34.0KHCT-ND

I INDEX

A	В
AD1980 audio codec See also audio interface data pin (PC2), 2-5 reset switch (SW16.1), 2-4, 2-23 AD7877 touchscreen controller, See touchscreen ADM3202 bit, 1-22 advanced technology attachment packet interface, See ATAPI	background telemetry channel (BTC), 1-29 battery holder (J13), 2-37 bill of materials, A-1 board schematic (ADSP-BF548), B-1 boot modes, 2-16 mode select switch (SW1), 1-12, 1-13, 2-16 burst flash memory, xiii, 1-12, 2-12, 2-13, 2-14 2-24
-AMS0 memory select pin, 1-12 -AMS1 memory select pin, 1-19 analog audio interface, <i>See</i> audio interface architecture, of this EZ-KIT Lite, 2-2 ASYNC (asynchronous memory control) external memory banks 0-3, 1-9 ATA/ATAPI-6 controller, 1-21 ATAPI interface, 1-21, 2-14 connector (J14), 2-38 hard disk drive, 1-21 reset signal (PH2), 2-12 audio interface, xiii, 1-20 connector (J10), 1-20, 2-37 dual connectors (J8-9), 1-20, 2-37 loopback test switch (SW8), 2-20	C CAN interface, 1-23 CAN0 signals, 2-19 CAN1 signals, 2-23 SW15 (CAN1) enable switch, 2-23 SW6 (CAN0) enable switch, 2-19 transceiver devices, 1-23 CAN0_ERR signal, 1-23, 2-19 CAN0RX signal, 2-19 CAN1_ERR signal, 1-23, 2-23 CAN1RX signal, 2-23 CCLK register, 1-11 CLK pin, 1-14 clock in (CLK IN) signal, 2-3 configuration, of this EZ-KIT Lite, 1-4

INDEX

connectors	DIP switch (SW5), 1-26, 2-4, 2-5, 2-19, 2-21,
diagram of locations, 2-34	2-24
J10 (audio), 1-20, 2-37	double data rate (DDR) interface, xiii, 1-9
J13 (battery), 2-37	
J1-3 (expansion), 1-26, 2-35	E
J14 (ATAPI), 2-38	
J4 (Ethernet), 1-19, 2-35	EBIU_AMGCTL register, 1-11
J5 (SD card), 1-14, 2-36	EBIU_DDRCTL0-2 registers, 1-10
J6 (RS-232), 2-36	enhanced parallel peripheral interface (EPPI),
J7 (power), 2-36	See PPI0, PPI1
J8-9 (dual audio), 1-20, 2-37	ERR signals, 1-23
P10 (TWI), 2-41	Ethernet
P11 (timers), 2-41	interface, xiv, 1-19
P12 (UART3), 1-23, 2-4, 2-42	cables, 1-3
P14 (LCD touchscreen), 2-42	connector (J4), 1-19, 2-35
P15 (LCD data), 2-22, 2-42	controller (U14), 1-19, 2-12, 2-24
P1 (keypad), 1-18, 2-38	enable switch (SW16.3), 1-19, 2-24
P3 (host interface), 1-18, 2-5, 2-6, 2-10, 2-39	LED (LED9), 2-33
P4 (USB OTG), 1-22, 2-39	PHY portion, 1-19
P5 (LCD backlight), 2-39	serial ROM (U12), 1-19
P6 (SPORT2), 2-3, 2-4, 2-8, 2-10, 2-40	speed select jumper (JP3), 2-28
P7 (SPORT3), 2-4, 2-8, 2-10, 2-40	example programs, 1-29
P8 (PPI1), 2-6, 2-8, 2-12, 2-40	expansion interface, 1-13, 1-15, 1-18, 1-26, 2-3,
P9 (SPI), 2-41	2-4, 2-7, 2-12, 2-13, 2-14, 2-35
PJ11 (AD7877 data), 1-17, 2-15, 2-22	external memory, 1-7, 1-9
PJ12 (AD7877 interrupt), 1-17, 2-15, 2-22	
ZJ1 (USB), 2-43	F
ZP4 (JTAG), 1-26, 2-43	
contents, of this EZ-KIT Lite package, 1-3	features, of this EZ-KIT Lite, xiii
core	FET switches, 1-21, 1-22, 2-23
clock signal (CCLK), 1-10	flag pins, See programmable flags by name (PAx
voltage, 2-2	to PJx)
	flash memory, See burst flash memory
customer support, xvii	
	G
D	general-purpose IO pins, 1-25, 2-17, 2-18,
data available output (DAV) signal, 1-17, 2-22	2-19, 2-20, 2-22, 2-23, 2-32
-DDRCS0 signal, 1-9	2-17, 2-20, 2-22, 2-23, 2-32
DDR registers, 1-10	
default configuration, of this EZ-KIT Lite, 1-4	Н
design reference info, 1-28	Help, online, xxii
	.

host interface, 1-24	L
host interface connector (P3), 1-18, 2-5, 2-6,	LCD module
2-10, 2-39	See also touchscreen
	interface, xiv, 1-15
I	backlight connector (P5), 2-39
	config switch (SW17), 1-17, 2-6, 2-9, 2-10
IDC header (P3), 1-24	data connector (P15), 2-22, 2-42
installation, of this EZ-KIT Lite, 1-4, 1-5	PPI config switch (SW14), 1-17, 2-8, 2-15,
interrupt output (PENIRQ) signal, 2-22 IO voltage, 2-2	2-22
TO voltage, 2-2	touchscreen connector (P14), 2-42
_	LEDs
J	diagram of locations, 2-32
JTAG	LED1-6 (PG6-11), 1-25, 1-28, 2-10, 2-30,
interface, 1-26	2-32
connector (ZP4), 1-26, 2-43	LED7 (power), 2-33
jumpers	LED8 (reset), 2-33
diagram of locations, 2-26	LED9 (Ethernet), 2-33
JP11 (USB OTG power), 2-31	ZLED3 (USB monitor), 1-5
JP12 (PPIFS3), 1-23, 2-31	license restrictions, xii, 1-7
JP1 (UART1 loopback), 1-23, 2-27	
JP2 (SPI enable), 2-27	M
JP3 (Ethernet speed select), 2-28	
JP4 (VDDINT power), 1-27, 2-28	MAC address, 1-19
JP5 (VDDEXT power), 1-27, 2-29	Media Instruction Set Computing (MISC), xi
JP6 (VDDDDR power), 1-27, 2-29	memory map, of this EZ-KIT Lite, 1-7
JP7 (MOSI1 out), 2-30	Micro Signal Architecture (MSA), xi MOSI1
JP8 (MOSI1 in), 2-30	in jumper (JP8), 2-30
	out jumper (JP7), 2-30
K	out jumper ()17), 2-30
keypad interface	NT
connections, 1-18	N
connector (P1), 2-38	NAND
enable switch (SW2), 1-18, 2-7, 2-17	chip enable signal, 2-14
	flash memory interface, xiii, 1-12
	NOR RESER (SW16.4), 2-5
	notation conventions, xxiv
	O
	oscillator, 1-15, 2-22

INDEX

oscilloscope, 1-27	power
OTG interface, 1-22	connector (J7), 2-36
	LED (LED7), 2-33
P	measurements, 1-27
	supply, 1-3
PA0-15 signals, 2-3	PPI0 interface
package contents, 1-3	config for LCD module, 1-15
PB0-7 signals, 2-4	PPI0FS1 signal, 1-18
PB11 signal, 2-4, 2-19, 2-21, 2-24	PPI1 interface
PB12-14 signals, 2-4 PB1-4 (SW13-10) push buttons, 2-19, 2-21	connections, 1-15
<u>*</u>	connector (P8), 2-6, 2-8, 2-12, 2-40
PB8-10signals, 2-4, 2-19, 2-21	connector via JP2, 2-10
PC0-13 signals, 2-5	PPI1CLK multiplexter, 2-22
PD0-7 signals, 2-6	PPI1FS3 pull-down jumper (JP12), 1-23,
PD8-15 signals, 2-6, 2-17	2-31
PE0-6 signals, 2-7 PE11-15 signals, 2-7	PPI1_SEL signal, 1-15
	programmable flags (PCs)
PE7 signal, 1-22, 2-7 PE8 signal, 1-19, 2-7	PC0 (CAN0_ERR), 1-23
PE9-10 signals, 2-7, 2-20	PC5 (CAN1_ERR), 1-23
pen interrupt (PENIRQ) signal, 1-17	programmable flags (PFs), See PAx, PBx, PCx,
peripheral control enable (SW16), 2-23	PDx, PEx, PFx, PGx, PHx, PIx, PJx
PF0-15 signals, 2-9	push buttons
PG0-4 signals, 2-10	See also switches by name (SWx)
PG10/MOSI1 signal, 2-10, 2-30	SW13-10, 2-19, 2-21
PG11-15 signals, 2-10	
PG5 signal, 2-10, 2-18	R
PG6-11 (IO) signals, 1-25, 2-10, 2-32	real-time clock (RTC), 1-25, 2-3
PH0 signal, 2-12	Reduced Instruction Set Computing (RISC), xi
PH1 signal, 2-12, 2-20	reset
PH2 signal, 2-12	AD1980 codec (SW16.3), 2-4, 2-23
PH3-4 signals, 2-12, 2-18	LEDs (LED8), 2-33
PH5-13 signals, 2-12	push button (SW9), 2-20, 2-21
PI0-15 signals, 2-13	restriction, of the evaluation license, 1-7
PJ0-13 signals, 2-14	rotary enable switch (SW4), 1-18, 2-12
PLL_CTL register, 1-11	rotary encoder
PLL_DIV register, 1-11	interface, 1-18
POST (power-on-self test) program, 1-12, 1-13,	enable switch (SW4), 2-10, 2-18
1-23, 1-28, 2-27	switch (SW3), 1-18, 2-18
	RS-232 connector (J6), 2-36
	RTC interface, 1-25

S	SW16.3 (Ethernet enable) switch, 1-19, 2-24
schematic, of ADSP-BF548 EZ-KIT Lite, B-1 SD memory card connector (J5), 1-14, 2-36 clock pin (SD_CLK), 2-6 data pins (SD_Dx), 2-5 SDRAM	SW16.4 (NOR RESET) switch, 2-5, 2-24 SW16 (peripheral ctr enable) switch, 2-23 SW17 (LCD config) switch, 1-17, 2-6, 2-9, 2-10 SW1 (boot mode select) switch, 1-12, 1-13, 2-16 SW2 (keypad enable) switch, 1-18, 2-7, 2-17
controller, 1-9 memory map, 1-9	SW3 (rotary) switch, 1-18, 2-18
secure digital (SD) interface, <i>See</i> SD memory serial flash memory, 1-13, 2-7	SW4 (rotary enable) switch, 1-18, 2-10, 2-12, 2-18
serial peripheral interconnect (SPI) ports, <i>See</i> SPI	SW5 (push button enable) DIP switch, 1-26, 2-4, 2-5, 2-19, 2-21, 2-24
SPI connector (P9), 2-5, 2-41 connector via JP2, 2-10 flash memory, xiii, 1-13, 2-7	SW6 (CAN0 enable) switch, 1-23, 2-19 SW7 (UART enable) switch, 1-22, 2-8, 2-12, 2-20 SW8 (audio loopback test) switch, 2-20
SPI0 interface connections, 1-17 SPI0SEL1 signal, 1-13 SPI0SEL2 signal, 1-13, 1-17 SPI0SEL3 flag pin, 1-14	SW9 (reset) push button, 2-20, 2-21 switches See also switches by name (SWx) diagram of locations, 2-16 synchronous dynamic random access memory, See SDRAM
SPI1 interface, enable jumper (JP2), 2-27 SPORT2 connector (P6), 2-3, 2-4, 2-5, 2-8, 2-10, 2-40 SPORT3 connector (P7), 2-4, 2-5, 2-8, 2-10,	system architecture, of this EZ-KIT Lite, 2-2 clock (SCLK), 1-10
2-40 SRAM memory, 1-7	Т
See also internal memory STAMP connectors, 1-14, 1-23, 2-19, 2-27 startup, of this EZ-KIT Lite, 1-5 STOPACQ signal, 1-18 SW14 (LCD/PPI config) switch, 1-15, 1-17, 2-8, 2-15, 2-22 SW15 (CAN1 enable) switch, 1-23, 2-23 SW16.1 (audio codec reset) switch, 2-4, 2-23 SW16.2 (USB OTG enable) switch, 1-22, 2-8, 2-23	thumbwheel control, xiv timers connector (P11), 2-41 touchscreen interface, 1-17 AD7877 controller, 1-13, 1-17, 2-7, 2-22 connector (P14), 2-42 data connector (PJ11), 1-17, 2-15, 2-22 interrupt (PJ12), 1-17, 2-15, 2-22 TWI connector (P10), 2-4, 2-5, 2-41

INDEX

U	V
UART1 interface connections, 2-12 enable switch (SW7.2), 2-12 installing JP12, 2-31 loopback jumper (JP1), 1-23, 2-27 UART1_RX signal, 2-27 UART1_TX signal, 2-27	VDDDDR pin, 1-27 power jumper (JP6), 1-27, 2-29 VDDEXT pin, 1-27 power jumper (JP5), 1-27, 2-29 VDDINT
UART3 interface connector (P12), 1-23, 2-4, 2-42 UART enable switch (SW7), 1-22, 2-8, 2-20 universal asynchronous receiver transmitter, <i>See</i> UART	pin, 1-27 power jumper (JP4), 1-27, 2-28 very-long instruction word (VLIW), xi VisualDSP++ environment, 1-5
USB debug agent connector (ZJ1), 2-43 enable (SW16.2) switch, 1-22, 2-8, 2-23 interface, 2-43	online Help, xxii voltage planes, 1-27 VR1 (USB voltage) regulator, 1-22
OTG interface connector (P4), 1-22, 2-39 power jumper (JP11), 2-31 regulator (VR1), 2-23 voltage regulators, 1-22	W watchdog timer, 1-25