

Введение в искусственные нейронные сети

# **TensorFlow**

# На этом уроке

- 1. Познакомимся с TensorFlow и его основами синтаксиса
- 2. Рассмотрим его применение на практике

# Оглавление

На этом уроке

Оглавление

**Что такое TensorFlow** 

Основы синтаксиса TensorFlow

Классификация изображений одежды

Импортируем Fashion MNIST датасет

Анализ датасета

Preprocess the data

Построение модели

Тренировка модели

Использование полученной модели

Используемые источники

# Что такое TensorFlow

TensorFlow — это фреймворк для создания ML моделей. TensorFlow в первую очередь предназначен для Deep Learning, т.е. создания современных нейросетей, однако в нём также есть поддержка некоторых классических ML алгоритмов: K-means clustering, Random Forests, Support Vector Machines, Gaussian Mixture Model clustering, Linear/logistic regression.

TensorFlow выпустила компания Google в 2015 как opensource проект. На данный момент это один из основных инструментов для создания нейросетей в рабочих целях. TensorFlow позволяет создавать нейронные сети как для кластеров из большого количества вычислительных устройств, так и для устройств с относительно небольшой вычислительной мощностью, таких как смартфоны и одноплатные компьютеры.

Google использует TensorFlow для собственных продуктов: поиска, почты, переводчика, распознавания голоса и внутренних нужд, наподобие мониторинга оборудования. Компании применяют TensorFlow для различных проектов, связанных с компьютерным зрением, решением задач ранжирования и т.д.

# Основы синтаксиса TensorFlow

Процесс создания нейросети на TensorFlow схож с разобранным нами процессом обучения нейросети на Keras. Отличие заключается в том, что здесь в коде необходимо прописать больше деталей.

Название TensorFlow означает поток тензоров. Тензоры — это массивы. Данные в компьютере часто представлены в виде массивов, и работа с ними подразумевает их преобразование. Преобразования осуществляются через, к примеру, математические операции. Работа TensorFlow складывается из цепочки преобразований тензоров, т.е. данных. Сами операции, осуществляющие преобразование данных, представлены в TensorFlow в виде графов. Особенностью TensorFlow версии 1 является то, что сначала необходимо декларировать переменные и вычисления, которые будут совершены над ними, а уже потом запускать работу над данными.

Рассмотрим базовые вещи в синтаксисе Tensorflow 2. Сначала выведем строку Hello world, а также версию tensorflow:

```
import tensorflow as tf

print(tf.__version__)

msg = tf.constant('TensorFlow 2.0 Hello World')

tf.print(msg)
```

Пример создания тензора:

#### Пример сложения тензоров:

#### Пример изменения размерности тензора:

Пример умножения матриц, одной из самых частых операций в машинном обучении:

# Классификация изображений одежды

Разберём использование tensorflow 2 на примере датасета с одеждой. В датасете будут находиться маленькие изображения на белом фоне, такие как кроссовки, футболки и прочее. В этом случае мы будем использовать High API от TensorFlow.

```
from __future__ import absolute_import, division, print_function, unicode_literals

# TensorFlow and tf.keras
import tensorflow as tf

from tensorflow import keras

# Helper libraries
import numpy as np
import matplotlib.pyplot as plt

print(tf.__version__)
```

### Импортируем Fashion MNIST датасет

Мы будем использовать следующий датасет: <u>Fashion MNIST</u>. Он содержит 70,000 чёрно-белых изображений в 10 категориях, изображения имеют разрешение 28x28 пикселей.

Долгое время в машинном обучении для программ Hello world использовался датасет MNIST с рукописными цифрами. Данный датасет призван несколько усложнить задачу распознавания, но также подходит в качестве программы Hello world.

В этом датасете 60 000 тренировочных изображений и 10 000 тестовых.

```
fashion_mnist = keras.datasets.fashion_mnist

(train_images, train_labels), (test_images, test_labels) = fashion_mnist.load_data()
```

Каждому классу, обозначенному цифрой, мы можем присвоить текстовое значение:

# Анализ датасета

Посмотрим структуры полученного массива данных:

```
train_images.shape
len(train_labels)
train_labels
```

Проанализируем тестовую выборку:

```
test_images.shape
len(test_labels)
```

# Preprocess the data

Рассмотрим конкретный пример изображений с помощью matplotlib:

```
plt.figure()

plt.imshow(train_images[0])

plt.colorbar()

plt.grid(False)

plt.show()
```

Для процесса обучения нейронной сети важно перевести данные из диапазона от 0 до 255 в диапазон от 0 до 1:

```
train_images = train_images / 255.0

test_images = test_images / 255.0
```

Посмотрим первые 25 изображений:

```
plt.figure(figsize=(10,10))

for i in range(25):
    plt.subplot(5,5,i+1)

    plt.xticks([])

    plt.yticks([])

    plt.grid(False)

    plt.imshow(train_images[i], cmap=plt.cm.binary)

    plt.xlabel(class_names[train_labels[i]])

plt.show()
```

### Построение модели

Построение нейронной сети подразумевает конфигурацию её слоев и последующую компиляцию.

#### Определение слоев

Создадим 3 слоя нейронной сети с помощью функционала Keras.layers:

```
model = keras.Sequential([
    keras.layers.Flatten(input_shape=(28, 28)),
    keras.layers.Dense(128, activation='relu'),
    keras.layers.Dense(10)
])
```

Первый слой, tf.keras.layers.Flatten, трансформирует двумерный массив на входе в одномерный массив.

Получившиеся 784 (28 x 28) входных нейрона присоединяем к полносвязному слою из 128 нейронов, которые будут использовать функцию активации relu. В выходном слое будет 10 нейронов (по числу классов, которые он должен предсказывать). В нём будет использоваться функция активации softmax, и он будет давать предсказание от 0 до 1, где 1 — стопроцентная вероятность.

#### Компиляция модели

Вспомним ключевые понятия, которые понадобятся при компиляции:

- Loss function измеряет точность работы нейросети
- Optimizer определяет способ корректировки весов
- Metrics определяет, какие характеристики будут отражаться в процессе обучения

### Тренировка модели

Здесь всё стандартно — данные передаются в нейросеть и сопоставляются изображения и лейблы.

#### Передача данных в модель

Команда, непосредственно запускающая процесс обучения, называется model.fit:

```
model.fit(train_images, train_labels, epochs=3)

test_loss, test_acc = model.evaluate(test_images, test_labels, verbose=2)

print('\nTest accuracy:', test_acc)
```

В выводе выше мы следим за точностью в процессе обучения, проверяем точность на тестовых данных и меняем параметры нейросети, если точность на тестовых данных нас не устраивает.

#### Предсказания нейросети

Команды ниже позволяют проверить работу натренированной ранее нейросети:

```
plt.grid(False)
 plt.xticks([])
 plt.yticks([])
 plt.imshow(img, cmap=plt.cm.binary)
 predicted_label = np.argmax(predictions_array)
 if predicted_label == true_label:
   color = 'blue'
   color = 'red'
 plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
                               100*np.max(predictions_array),
                               class_names[true_label]),
                               color=color)
def plot_value_array(i, predictions_array, true_label):
 predictions_array, true_label = predictions_array, true_label[i]
 plt.grid(False)
 plt.xticks(range(10))
 plt.yticks([])
 thisplot = plt.bar(range(10), predictions_array, color="#777777")
 plt.ylim([0, 1])
 predicted_label = np.argmax(predictions_array)
 thisplot[predicted_label].set_color('red')
 thisplot[true_label].set_color('blue')
```

#### Проверка предсказаний

Matplotlib даёт возможность посмотреть наше предсказание графически:

```
i = 0
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()
i = 12
plt.figure(figsize=(6,3))
plt.subplot(1,2,1)
plot_image(i, predictions[i], test_labels, test_images)
plt.subplot(1,2,2)
plot_value_array(i, predictions[i], test_labels)
plt.show()
```

#### Сделаем ещё несколько предсказаний:

```
num_rows = 5
num_cols = 3
num_images = num_rows*num_cols
plt.figure(figsize=(2*2*num_cols, 2*num_rows))

for i in range(num_images):
   plt.subplot(num_rows, 2*num_cols, 2*i+1)
   plot_image(i, predictions[i], test_labels, test_images)
   plt.subplot(num_rows, 2*num_cols, 2*i+2)
   plot_value_array(i, predictions[i], test_labels)

plt.tight_layout()
plt.show()
```

### Использование полученной модели

Возьмём одно изображение из тестовой выборки и изучим предсказание нейронной сети:

```
img = test_images[1]

print(img.shape)

# Add the image to a batch where it's the only member.

img = (np.expand_dims(img,0))

print(img.shape)

predictions_single = probability_model.predict(img)

print(predictions_single)

plot_value_array(1, predictions_single[0], test_labels)

_ = plt.xticks(range(10), class_names, rotation=45)
```

keras.Model.predict возвращает список списков — по одному списку для каждого предсказания в батче. Нам нужны предсказания только для одного изображения:

```
np.argmax(predictions_single[0])
```

При хорошо подобранных параметрах нейросеть должна была выдать корректное предсказание.

# Используемые источники

- 1. <a href="https://www.tensorflow.org/">https://www.tensorflow.org/</a>
- 2. https://www.tensorflow.org/tutorials/keras/classification
- 3. Singh P., Manure A. LearnTensorFlow 2.0 2020
- 4. Шакла Н. Машинное обучение и TensorFlow 2019