

Colloquium

PURWADI, HENNY

A COMPARATIVE SENTIMENT ANALYSIS OF

DIGITAL AND ROBOT PET COMPANIONS IN VARIOUS LOCATIONS

Indonesia, 10-09-2023

AGENDA FOR THESIS

Introduction	1	
Literature Review	2	
Methodology	3	
Results Findings and Analysis	4	
Discussions	5	
Conclusions	6	
Bibliography	7	

1. INTRODUCTION

RESEARCH QUESTIONS

1. Will the majority of sentiments about digital and robot pet companions be positive, like joy & love, or will be negative, like anger & fear?

2. Does location or region influence people's sentiments towards digital and robot pet companions?

ABSTRACT

Compared different machine learning models for sentiment analysis on a **labeled dataset** with the purpose **of finding the best performance model.**

Collect an **unlabeled Twitter public dataset** about digital robot companions from various regions and **use the best model** with the purpose **of finding the most sentiments** in the unlabeled dataset.

Perform a **Chi-square test** with the purpose of finding **dependencies** between sentiment and various locations.

2. LITERATURE REVIEW

2.1 OVERVIEW OF RELEVANT PREVIOUS STUDIES

Why Do We Turn to Virtual Companions? A Text Mining Analysis of Replika Reviews. Siemon, Strohmann, Khosrawi-Rad, Elshan, de Vreede, & Meyer. (2022, July 11).

Based on 119,831 reviews of Replika AI digital companion that previous researchers had collected from the Google Play Store and then subjected to sentiment analysis and topic modeling, the previous study's objective was to discover the topics and emotions that users experienced when communicating with Replika AI, a digital companion.

The results of the sentiment analysis show that most users really like the Replika AI application, and most users feel joy, happiness, and a sense of wellbeing.

But this **previous study didn't differentiate locations.**

Source: Siemon, Strohmann, Khosrawi-Rad, Elshan, de Vreede, & Meyer. (2022, July 11). Why Do We Turn to Virtual Companions? A Text Mining Analysis of Replika Reviews.

Previous Study Results

Previous study results show more positive sentiments.

Topic name	Topic 1 – Excitement about AI	Topic 2 - Companionship	Topic 3 – Well-Being and Support	Topic 4 – Enjoyment
Relevant	AI	Like	Asked	Amazing
words	Good	Real	Great	App
	Fun	Talking	Feel	Love
	Pretty	Person	Good	Good
	Cool	Someone	Helpful	Awesome
	Interesting	Friend	Better	Fun
	Conversation	Nice	Talk	AI

Source: Siemon, Strohmann, Khosrawi-Rad, Elshan, de Vreede, & Meyer. (2022, July 11). Why Do We Turn to Virtual Companions? A Text Mining Analysis of Replika Reviews.

2.2 TERMINOLOGY AND DEFINITIONS

Definition of Sentiment

Sentiment is a person's emotional towards anything, such as a product or event, based on their personal beliefs, perceptions, and experiences.

This sentiment can be positive, negative, or neutral. Identifying this sentiment in a dataset, sentiment classification, is a basic step in sentiment analysis (R & Prabhu, 2018).

In this thesis, we classify sentiments into specific categories such as joy, sadness, anger, love, fear, or surprise.

SENTIMENT ANALYSIS

Sentiment analysis is the process of understanding the emotion behind texts, and classifying them into emotion categories. The classification of the sentiment analyses was done using 3 different approaches.

- 1. Machine learning-based statistical models (example: Naive Bayes, logistic regression, SVM, linear SVC).
- 2. Lexicon-based (Rule based) method (example: VADER)
- 3. Machine learning using Neural Network/ Deep-learning method. (BERT, GPT-3, Vicuna).

Source: Pati, & Pradhan, 2020, p. 2.

3. METHODOLOGY

3. METHODOLOGY

Figure 1. Research methodology workflow

The methodology for this study will be a combination of approaches, including:

- 1. An **experimental** approach for comparing several models' performance and model selection based on the best performance.
- 2.A **quantitative** approach for data collection, sentiment analysis, and hypothesis testing.

4. RESULTS FINDINGS

AND ANALYSIS

4.1. LABELED DATA PREPARATION

Training Data preparation: Dataset balancing with Oversampling, cleaning, lemmatize, tokenize, vectorize

Figure 2. Balancing Imbalance Dataset

Both train dan text dataset are Imbalance Datasets

Now both train and test dataset are perfectly balanced

Source: Own Representation

Cleaning

```
def clean text(text):
       import re
        from string import punctuation
       text=re.sub(r'(http|ftp|https): \//([\w\- ]+(?:(?:\.[\w\- ]+)+))([\w\-\.,@?^=&&:/~\+#]*[\w\-\@?^=&&/~\+#])?',
       text=re.sub(r'['+punctuation+']',' ',text)
       text=re.sub(r'#(\w+)',' ',text)
       text=re.sub(r'@(\w+)','',text)
       text = text.lower() # Convert to Lowercase
10
11
       token=RegexpTokenizer(r'\w+')
12
       tokens = token.tokenize(text)
13
       lemmatizer = WordNetLemmatizer()
14
15
       stems = [lemmatizer.lemmatize(t) for t in tokens]
       stemmer = PorterStemmer()
17
       stems = [stemmer.stem(t) for t in stems]
18
19
       return ' '.join(stems)
20
21 def tokenize(text):
22
        token=RegexpTokenizer(r'\w+')
23
       tokens = token.tokenize(text)
24
       return tokens
```

Vectorizer tf-idf

4.2. PERFORMANCE EVALUATION & MODEL SELECTION

Table 1. Sentiment Analysis Model Accuracy comparison

Model	Accuracy Score
Vicuna LoRA	0.040
GPT-3 Zero-shot Classifier	0.490
BernoulliNB	0.769
MultinomialNB	0.762
Logistic Regression	0.855
SVM (Support Vector Machine)	0.862
DistilBertForSequenceClassification	0.880
Linear SVC	0.883
BertForSequenceClassification	0.970

4.2. PERFORMANCE EVALUATION & MODEL SELECTION

Figure 3. Vicuna Classification Result

2 10 10				
uncertainty	0.00	0.00	0.00	0
uncomfortable	0.00	0.00	0.00	0
under nurtured	0.00	0.00	0.00	0
understanding	0.00	0.00	0.00	0
understood	0.00	0.00	0.00	0
undervalued	0.00	0.00	0.00	0
unfortunate	0.00	0.00	0.00	0
ungrateful	0.00	0.00	0.00	0
unhappy	0.00	0.00	0.00	0
unloved	0.00	0.00	0.00	0
unlucky	0.00	0.00	0.00	0
unprotected	0.00	0.00	0.00	0
unsure	0.00	0.00	0.00	0
unwelcome	0.00	0.00	0.00	0
useful	0.00	0.00	0.00	0
useful valued	0.00	0.00	0.00	0
useless	0.00	0.00	0.00	0
vain	0.00	0.00	0.00	0
valuable share	0.00	0.00	0.00	0
valued	0.00	0.00	0.00	0
virtuous	0.00	0.00	0.00	0
vulnerable	0.00	0.00	0.00	0
weepy	0.00	0.00	0.00	0
weird	0.00	0.00	0.00	0
welcome	0.00	0.00	0.00	0
welcomed	0.00	0.00	0.00	0
wisdom	0.00	0.00	0.00	0
wonder	0.00	0.00	0.00	0
worried	0.00	0.00	0.00	0
worry	0.00	0.00	0.00	0
worthlessness	0.00	0.00	0.00	0
youthful	0.00	0.00	0.00	0
accuracy			0.04	2000
macro avg	0.01	0.00	0.00	2000
weighted avg	0.57	0.04	0.08	2000

Calculate accuracy

accuracy = accuracy_score(data['output'], data['predict']) print(f'Accuracy: {accuracy}')

Accuracy: 0.0425

Accuracy is bad

predic	output	Input	instruction
joy <td>love</td> <td>i really feel like they were gentle reminders that while god hasnt always promised an easy road he has promised to be with us as we travel the rou</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	love	i really feel like they were gentle reminders that while god hasnt always promised an easy road he has promised to be with us as we travel the rou	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.
sympathetic <td>love</td> <td>i dont blame it all to them and im not angry at them infact i feel fairly sympathetic for them</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	love	i dont blame it all to them and im not angry at them infact i feel fairly sympathetic for them	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.
angry <td>anger</td> <td>i feel tortured delilahlwl am considering i had one the other day about one of my closest friends raping and killing chicks</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	anger	i feel tortured delilahlwl am considering i had one the other day about one of my closest friends raping and killing chicks	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.
angry <td>anger</td> <td>i told my fiance how i am feeling so angry and upset</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	anger	i told my fiance how i am feeling so angry and upset	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.
sadness <td>sadness</td> <td>i can feel its suffering</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	sadness	i can feel its suffering	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.
Angry. <td>anger</td> <td>i just keep feeling like someone is being unkind to me and doing me wrong and then all i can think of doing is to get back at them and the people</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	anger	i just keep feeling like someone is being unkind to me and doing me wrong and then all i can think of doing is to get back at them and the people	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.
angry <td>anger</td> <td>im feeling a little cranky negative after this doctors appointment</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	anger	im feeling a little cranky negative after this doctors appointment	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.
useful <td>joy</td> <td>i feel that i am useful to my people and that gives me a great feeling of achievement</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	joy	i feel that i am useful to my people and that gives me a great feeling of achievement	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.
comfortable <td>joy</td> <td>im feeling more comfortable with derby i feel as though i can start to step out my shell</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	joy	im feeling more comfortable with derby i feel as though i can start to step out my shell	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.
awkward <td>fear</td> <td>i feel all weird when i have to meet w people i text but like dont talk face to face w</td> <td>Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.</td>	fear	i feel all weird when i have to meet w people i text but like dont talk face to face w	Classify the text as one of the emotions If it's not clear, choose the emotion that is closest to: joy,sadness,anger, fear, love, surprise.

CLASSIFICATION REPORT

The classification report provides a summary of the performance of the classification model by comparing the model's performance to other models or understanding where the model might be struggling. (Burkov, A., 2019, p. 65).

To decide which one is the best model, precision, recall, and f1-score metrics in the classification report need to be considered.

- Accuracy shows the overall correctness of the model.
- Precision is a metric that measures how often a predicted label is correct.
- Recall is a metric that measures how often a true label is correctly predicted.
- ─The F1-score is the harmonic mean of precision and recall.

4.2. PERFORMANCE EVALUATION & MODEL SELECTION

Figure 4. Linear SVC Classification Report and Heatmap

Cross Validation Scores: [0.91495711 0.9129678 0.91918438 0.9129678]

Average Cross Validation Score: 0.9150192714161384

Accuracy with L1 regularization and cross validation: 0.8839328537170263

1 perform	performance_evaluation()						
	precision	recall	f1-score	support			
anger	0.89	0.91	0.90	695			
fear	0.88	0.83	0.85	695			
joy	0.88	0.85	0.86	695			
love	0.87	0.87	0.87	695			
sadness	0.94	0.90	0.92	695			
surprise	0.85	0.94	0.90	695			
accuracy			0.88	4170			
macro avg	0.88	0.88	0.88	4170			
ighted avg	0.88	0.88	0.88	4170			

4.2. PERFORMANCE EVALUATION & MODEL SELECTION

Figure 5. BertForSequenceClassification Classification Report and Heatmap

	precision	recall	f1-score	support
anger	1.00	0.80	0.89	5
fear	0.83	1.00	0.91	5
joy	1.00	1.00	1.00	11
love	1.00	1.00	1.00	1
sadness	1.00	1.00	1.00	10
accuracy			0.97	32
macro avg	0.97	0.96	0.96	32
weighted avg	0.97	0.97	0.97	32

BertForSequenceClassification as the best model saved.

Figure 5. Chosen model and vectorizer saved

- S	ave Model and Tokenizer to HuggingFace
[from huggingface_hub import notebook_login notebook_login() #Token: hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
	Copy a token from <u>your Hugging Face tokens page</u> and paste it below.
	Immediately click login after copying your token or it might be stored in plain text in this notebook file.
	Token:
	Add token as git credential?
	Login
	Pro Tip: If you don't already have one, you can create a dedicated 'notebooks' token with 'write' access, that you can then easily reuse for all notebooks.
C	notebook_login()
E	Token is valid.
	Your token has been saved in your configured git credential helpers (store).
	Your token has been saved to /root/.cache/huggingface/token
	Login successful
1	model.push_to_hub("RinInori/bert-base-uncased_finetuned_sentiments", use_auth_token=True)
	Upload 1 LFS files: 100% 1/1 [00:41<00:00, 41.72s/it]
	pytorch_model.bin: 100% 438M/438M [00:41<00:00, 10.7MB/s]
	CommitInfo(commit_url='https://huggingface.co/RinInori/bert-base-uncased_finetuned_sentiments/commit/d8a4383576c160751aeaac4d29f5090711966154', commit_message='Upload BertForSequenceClassification', commit_description='', oid='d8a4383576c160751aeaac4d29f5090711966154', pr_url=None, pr_revision=None, pr_num=None)
Ι	tokenizer.push_to_hub("RinInori/bert-base-uncased_finetuned_sentiments", use_auth_token=True)
	CommitInfo(commit_url='https://huggingface.co/RinInori/bert-base-uncased_finetuned_sentiments/commit/2a911ba9d8f0eeb6d083c731496a38da7c87276c', commit_message='Upload tokenizer', commit_description='', oid='2a911ba9d8f0eeb6d083c731496a38da7c87276c', pr_url=None, pr_revision=None, pr_num=None)

4.3 Collecting Unlabeled data

Two different datasets were used for this research:

- **Labeled public dataset** used for training, testing, model comparison, and selection. The best model and vectorizer from this dataset were saved for future use.
- To predict sentiment using the saved model, an **unlabeled dataset** is needed. To obtain this dataset, a public Twitter dataset collected from various regions including America, Europe, Asia, Australia, and Africa using the Python library.

Figure 6. Unlabeled data collection

```
1 tweet data = open('dc America.csv', 'a', newline='', encoding='utf8')
 2 csv.writer(tweet data).writerow(['text'])
   max tweets = 5000
   queries = ['jibopetbot', 'jiborobot', 'jibopetrobot', 'jibosocialrobot', 'savejibo', 'jibobot',
              'vectorpetbot', 'vectorrobot', 'vectorpetrobot', 'savevector', 'replika', 'repikaai', 'amazonalexa',
               'cozmopetbot', 'cozmorobot', 'cozmopetrobot', 'ankipetbot', 'ankirobot', 'ankipetrobot', 'saveanki']
   for query in queries:
       for n, tweet in enumerate(sntwitter. TwitterSearchScraper(
10
           f"{query} since:2014-01-01 until:2023-06-30 near:Boston +\
11
           within:1000km lang:en -filter:links -filter:replies").get items()):
12
           if n > max_tweets:
13
                break
14
            csv.writer(tweet data).writerow([tweet.content])
15
16
17 tweet data.close()
18 print("Done")
```

4.4 Sentiment Analysis on unlabeled Twitter data

Figure 7. Sentiment Analysis charts by continent

BertForSequenceClassification Model Sentiment Prediction on unlabeled dataset

Table 2. BertForClassification Model Sentiment Prediction on unlabeled dataset

Continent	Joy	Sadness	Surprise	Anger	Love	Fear	Row Total
America	1060	168	44	377	66	93	1808
Europe	413	66	15	136	32	42	704
Australia	26	4	1	13	3	2	49
Asia	48	10	4	25	4	4	95
Column Total	1547	248	64	551	105	141	2656

Linear SVC Sentiment Analysis Result Comparison

Figure 9. Linear SVCSentiment Analysis Result

Sentiment Count for Australia

Sentiment Count for Africa

BertForSequence Sentiment Analysis Result Comparison

Figure 10.
BertForSequenceClassification Result

America

Asia

Europe

Australia

Africa

Distribution of data based on labels: anger Name: label, dtype: int64

Vader Lexicon Sentiment Analysis Result

America

1 2		ent_cou ent_cou	<pre>nt_J = dfP_Am1['label'].value_counts() nt_J</pre>
posit	ive	1217	
negat	ive	379	
neutr	al	212	
Name:	label,	dtype:	int64

Europe

Africa

```
sentiment_count_J = dfP_Af1['label'].value_counts()
sentiment_count_J

positive 1
Name: label, dtype: int64
```

1 67.3% 10.2% 0 1 = positive

0 = neutral

-1 = negative

1 51.6% 32.6% 15.8%

Asia

		<pre>ment_count_J = dfP_As1['lal ment_count_J</pre>	oel'].value_counts()
posit	ive	49	
neutr	al	31	
negat	ive	15	
Name:	labe	, dtype: int64	

Australia

4.5 HYPOTHESIS TESTING

Chi- Square Table										
DF	0.995	0.99	0.975	0.95	0.9	0.1	0.05	0.025	0.01	0.005
1			0.001	0.004	0.016	2.706	3.841	5.024	6.635	7.879
2	0.010	0.020	0.051	0.103	0.211	4.605	5.991	7.378	9.210	10.597
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.348	11.345	12.838
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.277	14.860
5	0.412	0.554	0.831	1.145	1,610	9.236	11.070	12.833	15.086	16.750
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	18.548
7	0.989	1.239	1.690	2.167	2.833	12.017	14,067	16.013	18.475	20.278
8	1.344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	21.955
9	1.735	2.088	2.700	3.325	4.168	14,684	16.919	19.023	21.666	23.589
10	2.156	2.558	3.247	3.940	4,865	15.987	18.307	20.483	23.209	25.188
11	2.603	3.053	3.816	4.575	5.578	17.275	19.675	21.920	24.725	26.757
12	3.074	3.571	4,404	5.226	6.304	18.549	21.026	23.337	26.217	28.300
13	3.565	4.107	5.009	5,892	7,042	19.812	22.362	24.736	27.688	29.819
14	4.075	4,660	5.629	6.571	7.790	21.064	23.685	26.119	29.141	31.319
15	4,601	5.229	6,262	7,261	8,547	22.307	24.996	27,488	30.578	32.801
16	5.142	5.812	6.908	7,962	9.312	23.542	26.296	28.845	32.000	34.267
17	5,697	6,408	7,564	8,672	10.085	24,769	27.587	30.191	33.409	35.718
18	6.265	7.015	8.231	9.390	10,865	25.989	28.869	31.526	34.805	37.156
19	6.844	7.633	8.907	10.117	11.651	27.204	30.144	32,852	36,191	38,582
20	7.434	8.260	9.591	10.851	12.443	28.412	31.410	34,170	37.566	39,997
21	8.034	8.897	10.283	11.591	13.240	29.615	32.671	35,479	38,932	41.401
22	8.643	9.542	10.982	12.338	14.041	30.813	33.924	36.781	40.289	42.796
23	9.260	10.196	11.689	13.091	14.848	32.007	35.172	38.076	41.638	44.181
24	9.886	10.856	12.401	13.848	15.659	33.196	36.415	39.364	42.980	45.559
25	10.520	11.524	13.120	14.611	16.473	34.382	37.652	40.646	44.314	46.928
26	11.160	12.198	13.844	15.379	17.292	35.563	38.885	41.923	45.642	48.290
27	11.808	12.879	14.573	16.151	18.114	36.741	40.113	43.195	46.963	49.645
28	12.461	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	50.993
29	13.121	14.256	16.047	17.708	19.768	39.087	42.557	45.722	49.588	52.336
30	13.787	14.953	16.791	18.493	20.599	40.256	43.773	46.979	50.892	53.672
40	20.707	22.164	24.433	26.509	29.051	51.805	55.758	59.342	63.691	66.766
50	27.991	29.707	32.357	34.764	37.689	63.167	67.505	71.420	76.154	79.490

Source: Retrieved from: Chi-square Test in Spreadsheets. 2019.

DF = Degree of Freedom = (row -1) * (column -1)

From DF in the Chi-Square Table, we can find the Critical value.

A table with 2 rows and 6 columns will have DF = 5A table with 4 rows and 6 columns will have DF = 15

Based on Chi-Square table, the **Critical value** for chisquared statistic with **DF** = 5 and a p-value of 0.05 is 11.070

Based on Chi-Square table, the Critical value for chisquared statistic with **DF** =15 and a p-value of 0.05 is 24.99579

If the Chi-Square statistic is larger than the critical value, we can reject the null hypothesis of independence.

Chi-square Statistic Calculation on Pairing Continents

America and Europe

Table 5. Observed frequencies America and Europe

Continent	Joy	Sadness	Surprise	Anger	Love	Fear	Row Total
America	1060	168	44	377	66	93	1808
Europe	413	66	15	136	32	42	704
Column Total	1473	234	59	513	98	135	2512

Source: Own representation.

degree of freedom = (row - 1) * (column - 1)

$$df = (2 - 1) * (6 - 1) = 5$$

O = Observed frequency

E = Expected Frequency = (Row total * Column total) / Grand total

For example: America anger = (1808*513) / 2512 = 369

Table 6. Expected frequencies America and Europe

Continent	Joy	Sadness	Surprise	Anger	Love	Fear	Row Total
America	1060	168	42	369	71	97	1808
Europe	413	66	17	144	27	38	704
Column Total	1473	234	59	513	98	135	2512

Source: Own representation.

$$\chi^2$$
 = chi-square statistic = $\sum (O - E)^2 / E$

For example: America anger = $((377 - 369)^2) / 369 = 0.173$

Table 7. Chi-Square statistic America and Europe

Continent	Joy	Sadness	Surprise	Anger	Love	Fear	Row Total
America	0,000	0,000	0,095	0,173	0,292	0,179	0,690
Europe	0,000	0,000	0,143	0,420	0,749	0,459	1,773
Column Total	0,000	0,004	0,198	0,584	1,040	0,637	2,463

Source: Own representation.

From the calculation, Chi-Square Statistic is 2,463

Hypothesis testing result on pairing continents

Table 3. Hypothesis Testing result for Pair Locations

	Chi-Squared	Critical	P-Value (significance	Degrees of	
Continent Pair	Statistic	Value	level (0.05))	Freedom	Independent (h0)?
America and Europe	2,463	11.07	0.782	5	Yes
America and Asia	3.801	11.07	0.578	5	Yes
America and Australia	1.971	11.07	0.853	5	Yes
Europe and Asia	5.103	11.07	0.403	5	Yes
Europe and Australia	2.049	11.07	0.842	5	Yes
Asia and Australia	0.909	11.07	0.969	5	Yes

Source: Own Representation

As the **Chi-Square Statistics are lesser than Critical values**, it means that the observed frequencies are not significantly different from the expected frequencies. This means that it is **not possible to reject the null hypothesis of independence** between variables. Therefore, sentiment towards Digital and Robot pet companions are not dependent on locations.

Chi-square Test Result Overall

Table 4. Hypothesis Testing result for All Locations

Continent	joy	sadness	surprise	anger	love	fear	Row Total
America	0.045	0.004	0.004	0.010	0.420	0.093	0.576
Europe	0.021	0.001	0.227	0.691	0.624	0.573	2.138
Australia	0.226	0.072	0.028	0.790	0.583	0.139	1.839
Asia	0.972	0.144	1.279	1.421	0.016	0.216	4.047
Column Total	1.265	0.221	1.538	2.913	1.643	1.020	8.600

- From the calculation, Chi-Square Statistic is **8.600**
- degree of freedom = (row 1) * (column 1) = (4 1) * (6 1) = 15
- Based on Chi-Square table, the **Critical value** for chi-squared statistic with degree of freedom of 15 and a p-value of 0.05 is **24.99579**
- As the Chi-Square Statistic 8.600 is lesser than Critical value 24.99579, it means that the observed frequencies are not significantly different from the expected frequencies.
- This means that it is **not possible to reject the null hypothesis of independence** between the variables.
- Therefore, sentiment towards Digital and Robot pet companions are not dependent on locations. (independent, h0).

Chi-square Test Overall Result

Continent Pair	Chi-Squared Statistic	Critical Value	P-Value (significance level (0.05))	Degrees of Freedom	Independen t (h0)?
All continents	8.6	24.99	0.897	15	Yes

Source: Own Representation

The observed Chi-Squared statistic of 8.6 doesn't exceed this critical value, indicating that the observed frequencies are not significantly different from the expected frequencies. This means that the null hypothesis that the two variables are independent cannot be rejected.

Chi-square Test Result Overall with Python Code

Figure 10. Hypothesis Testing Python codes

```
import numpy as np
import pandas as pd
import scipy.stats as stats
from scipy.stats import chisquare
from scipy.stats import chi2 contingency
tab data =[
   [1060, 168, 44, 377, 66, 93],
   [413, 66, 15, 136, 32, 42],
   [26, 4, 1, 13, 3, 2],
   [48, 10, 4, 25, 4, 4],
chi2 contingency(tab data)
Chi2ContingencyResult(statistic=8.599593697366872, pvalue=0.8975061938439917, dof=15, expected_freq=array([[1053.07831325, 168.81927711, 43.56626506, 375.07831325,
         71.47590361,
                       95.98192771],
       [ 410.04819277, 65.73493976,
                                      16.96385542, 146.04819277,
         27.8313253 , 37.37349398],
                       4.5753012 ,
       28.54028614,
                                       1.18072289,
                                                    10.16528614,
          1.93712349,
                       2.60128012],
      [ 55.33320783, 8.87048193,
                                       2.28915663, 19.70820783,
          3.75564759, 5.04329819]]))
```


5. DISCUSSIONS

5.1 RESULT INTERPRETATION

1. Based on the calculated sentiment proportions, all continents have **strong positive sentiments.** Europe has the highest positive sentiment (63.2%), America (62.6%), Australia (59.1%), and Asia (54.7%).

It means that Al robot digital companion corporation marketing may succeed in all these places.

2. The Chi-Square test supports the null hypothesis of independence.

It means that location is not a significant factor in determining which continent is best for Al robot digital companion company marketing.

5.2 DISCUSSION OF LIMITATIONS

This study has several limitations, such as:

- 1. Tweets are collected without regard to age, gender, ethnicity, or culture.
- 2. Collect **only tweets written in English**. This might not represent non-English tweets.
- 3. Machine learning models include flaws and biases, inaccuracy, and mistakes (e.g., irony, sarcasm, or negation).
- 4. The sample size of tweets collected from Africa was too small and **insufficient** to be evaluated.

6. CONCLUSIONS

6. CONCLUSIONS

RESEARCH QUESTION ANSWERS:

1. Will the majority sentiments about digital and robot pet companions be positive, like joy and love, or will be negative, like anger and fear?

The predominant sentiment about digital and robot pet companions is "joy", as a positive sentiment.

2. Does location or region influence people's sentiments towards digital and robot pet companions? NO. People's sentiments towards digital and robot pet companions are not influenced by their location or region.

6.1 SUMMARY

- 1. BertForSequenceClassification model performed exceptionally well in sentiment classification, Therefore, this model was chosen as the best model for further analysis.
- 2. The **sentiment analysis results on unlabeled data** from various continents indicated more **positive sentiments, such as joy.**
- 3.The hypothesis testing using the chi-square test showed no significant continent-sentiment relationships.

Therefore, location does not affect people's sentiments towards digital and robot pet companions.

6.2 RECOMMENDATION FOR FUTURE RESEARCH

1. Future research should **include age, gender, ethnicity, and culture**, to increase sentiment analysis diversity across groups.

2. Future research should **include tweets in different languages** other than English.

3. Future research should try other machine learning models.

4. Future research should gather a larger sample from Africa.

APPENDICES

APPENDICES

Amazon Alexa - Wikipedia. (2014, November 6). Amazon Alexa - Wikipedia. Retrieved from https://en.wikipedia.org/wiki/Amazon Alexa

BERT — transformers 3.0.2 documentation. (n.d.). BERT &Mdash; Transformers 3.0.2 Documentation. https://huggingface.co/transformers/v3.0.2/model_doc/bert.html

BERT. (n.d.). BERT. https://huggingface.co/docs/transformers/v4.27.2/en/model_doc/bert

Burkov, A. (2019, January 1). The Hundred-Page Machine Learning Book.

Burkov, A. (2020, September 8). Machine Learning Engineering.

Carman. (2019, June 19). They Welcomed a Robot Into Their Family, Now They're Mourning Its Death - the Verge. Retrieved from

https://www.theverge.com/2019/6/19/18682780/jibo-death-server-update-social-robot-mourning

Carman. (2020, July 23). Jibo, the social robot that was supposed to die, is getting a second life. Jibo, the Social Robot That Was Supposed to Die, Is Getting a Second Life -

the Verge. Retrieved from https://www.theverge.com/2020/7/23/21325644/jibo-social-robot-ntt-disruptionfunding

Chauhan, V. K., Dahiya, K., & Sharma, A. (2018, January 16). Problem formulations and solvers in linear SVM: a review - Artificial Intelligence Review. SpringerLink. Retrieved

from https://link.springer.com/article/10.1007/s10462-018-9614-6

Chi-Square Statistic: How to Calculate It / Distribution. (2021). Statistics How To. Retrieved from https://www.statisticshowto.com/probability-and-statistics/chi-square/

Chi-square Test in Spreadsheets. 2019. Retrieved from https://www.datacamp.com/tutorial/chi-square-test-in-spreadsheets

Dangeti, P. (2017, July 21). Statistics for Machine Learning.

Dang, N. C., Moreno-García, M. N., & De la Prieta, F. (2020, March 14). Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics, 9(3), 483.

https://doi.org/10.3390/electronics9030483

Digital Dream Labs. (n.d.). Digital Dream Labs. Retrieved from https://www.digitaldreamlabs.com/

DistilBERT. (n.d.). DistilBERT. https://huggingface.co/docs/transformers/v4.27.2/en/model_doc/distilbert

EMO - LivingAi. (n.d.). LivingAi. Retrieved from https://living.ai/emo/

Frost, J. (2022, January 26). Chi-Square Table. Statistics by Jim. Retrieved from https://statisticsbyjim.com/hypothesis-testing/chi-square-table/

G. (2020, July 23). 10 Techniques to Solve Imbalanced Classes in Machine Learning (Updated 2023). Analytics Vidhya. https://www.analyticsvidhya.com/blog/2020/07/10-techniques-to-deal-with-class-imbalance-in-machine-learning/

G. (2020, July 23). 10 Techniques to Solve Imbalanced Classes in Machine Learning (Updated 2023). Analytics Vidhya. https://www.analyticsvidhya.com/blog/2020/07/10-techniques-to-deal-with-class-imbalance-in-machine-learning/

Hanson, Rick. (2019). Taking in the Good vs. The Negativity Bias

Hutto, C., & Gilbert, E. (2014, May 16). VADER: A Parsimonious Rule-Based Model for Sentiment Analysis of Social Media Text | Proceedings of the International AAAI Conference on Web and Social Media. https://doi.org/10.1609/icwsm.v8i1.14550

Joshua, S. (2022, April 25). How to combine multiple CSV files using Python for your analysis. Medium. Retrieved from https://medium.com/@stella96joshua/how-to-combine-multiple-csv-files-using-python-for-your-analysis-a88017c6ff9e

Hu. E. J.. Shen. Y.. Wallis. P.. Allen-Zhu. Z.. Li. Y.. Wang. S.. Wang. L.. & Chen. W. (2021. June 17). LoRA: Low-Rank Adaptation of Large Language Models. arXiv.org. https://arxiv.org/abs/2106.09685v2

Hutchinson. B.. Ostendorf. M.. & Fazel. M. (2011. September). Low Rank Language Models for Small Training Sets. IEEE Signal Processing Letters. 18(9). 489–492.

Introducing LLaMA: A foundational. 65-billion-parameter language model. (n.d.). Introducing LLaMA: A Foundational. 65-billion-parameter Language Model.

https://ai.facebook.com/blog/large-language-model-llama-meta-ai/ Joshua. S. (2022. April 25). How to combine multiple CSV files using Python for your analysis. Medium.

Retrieved from https://medium.com/@stella96joshua/how-to-combinemultiple-csv-files-using-python-for-your-analysis-a88017c6ff9e

Kuyda. (2017, July 21). The story of Replika, the AI app that becomes you. YouTube. Retrieved from https://www.youtube.com/watch?v=yQGqMVuAk04

Low Rank Language Models for Small Training Sets. (n.d.). Low Rank Language Models for Small Training Sets | IEEE Journals & Magazine | IEEE Xplore.

https://doi.org/10.1109/lsp.2011.2160850 Metatext. (n.d.). Metatext. https://metatext.io/models/bert-base-uncased

MUKHERJEE. (2022). The Maths behind Linear SVC Classifier. Retrieved from https://www.kaggle.com/code/soham1024/the-maths-behind-linear-svc-classifier.

Mohri, M., Rostamizadeh, A., Talwalkar, A., & Bach, F. (2012, September 7). Foundations of Machine Learning.

Models - Hugging Face. (2022, November 16). Models - Hugging Face. https://huggingface.co/models

Nandi, S. (2021, July 1). Twitter Sentiment Analysis Using Machine Learning Approaches. Medium. Retrieved from https://nandisoham2017.medium.com/twitter-sentiment-analysis-using-machine-learning-approaches-14fba1b8e357

Mueller, J. P., & Massaron, L. (2021, February 9). Machine Learning for Dummies. For Dummies.

OpenAl API. (n.d.). OpenAl API. https://platform.openai.com

O. (2023, March 28). GitHub - openai/openai-cookbook: Examples and guides for using the OpenAl API. GitHub. https://github.com/openai/openai-cookbook

Pati, & Pradhan. (2020, December 12). Comparison Between Machine Learning Algorithms Used for Sentiment Analysis. *IAEME Publication*. Retrieved from https://iaeme.com/Home/article_id/IJARET_11_12_026

Raschka. (2015). Python Machine Learning Equation Reference. Retrieved from https://github.com/rasbt/python-machine-learning-book

Redjeki, & Widyarto. (2022). View of Comparison of Seven Machine Learning Algorithms in the Classification of Public Opinion. View of Comparison of Seven Machine Learning Algorithms in the Classification of Public Opinion. Retrieved from https://jurnal.ubd.ac.id/index.php/te/article/view/1046/526

Rozin, P., & Royzman, E. B. (2001, November). Negativity Bias, Negativity Dominance, and Contagion. Personality and Social Psychology Review, 5(4), 296–320. https://doi.org/10.1207/s15327957pspr0504_2

R, P. K. M., & Prabhu, J. (2018, September 1). Role of sentiment classification in sentiment analysis: A survey. ResearchGate.

https://www.researchgate.net/publication/330192421_Role_of_sentiment_classification_in_ sentiment_analysis_A_survey

Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2020, January 1). [PDF] DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter | Semantic Scholar. [PDF] DistilBERT, a Distilled Version of BERT: Smaller, Faster, Cheaper and Lighter | Semantic Scholar. https://www.semanticscholar.org/paper/DistilBERT%2C-a-distilled-version-of-BERT%3A-smaller%2C-Sanh-Debut/a54b56af24bb4873ed0163b77df63b92bd018ddc

Saying Goodbye To My Emo Robot. (2022, November 9). YouTube. Retrieved from https://www.youtube.com/watch?v=JDQM6E4Vnbs

Siemon, Strohmann, Khosrawi-Rad, Elshan, de Vreede, & Meyer. (2022, July 11). Why Do We Turn to Virtual Companions? A Text Mining Analysis of Replika Reviews. AIS Electronic Library (AISeL) - AMCIS 2022 Proceedings: Why Do We Turn to Virtual Companions? A Text Mining Analysis of Replika Reviews. Retrieved from https://aisel.aisnet.org/amcis2022/sig hci/sig hci/10/

Sun, C., Qiu, X., Xu, Y., & Huang, X. (2019, May 14). How to Fine-Tune BERT for Text Classification? arXiv.org. https://arxiv.org/abs/1905.05583v3

Tabel Chi Square Atau Chi Square Table Dalam Excel. (2012, July 1). Uji Statistik. Retrieved from https://www.statistikian.com/2012/07/chi-square-tabel-dalam-excel.html

The 6 dimensions model of national culture by Geert Hofstede. (n.d.). Geert Hofstede. Retrieved from https://geerthofstede.com/culture-geert-hofstede-gert-jan-hofstede/6d-model-of-national-culture/

TheBloke/vicuna-7B-1.1-HF · Hugging Face. (n.d.). TheBloke/vicuna-7B-1.1-HF · Hugging Face. https://huggingface.co/TheBloke/vicuna-7B-1.1-HF T. (2023. April 18). GitHub - tloen/alpaca-lora: Instruct-tune LLaMA on consumer hardware. GitHub. https://github.com/tloen/alpaca-lora Touvron. H.. Lavril. T.. Izacard. G.. Martinet. X.. Lachaux. M. A.. Lacroix. T.. Rozière. B.. Goyal. N.. Hambro. E.. Azhar. F.. Rodriguez. A.. Joulin. A.. Grave. E.. & Lample. G. (2023. February 27). LLaMA: Open and Efficient Foundation Language Models. arXiv.org. https://arxiv.org/abs/2302.13971v1

udiprod. (2007, February 5). SVM with polynomial kernel visualization. YouTube. Retrieved from https://www.youtube.com/watch?v=3liCbRZPrZA

Vicuna: An Open-Source Chatbot Impressing GPT-4 with 90%* ChatGPT Quality | LMSYS Org. (n.d.). Vicuna: An Open-Source Chatbot Impressing GPT-4 With 90%* ChatGPT Quality | LMSYS Org. https://lmsys.org/blog/2023-03-30-vicuna

Vincent. (2020, January 5). Anki's toy robots are being saved from a digital death. Anki's Toy Robots Are Being Saved From a Digital Death - the Verge.

https://www.theverge.com/2020/1/5/21050378/anki-vector-saved-shutdown-servers-assets-bought

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, U., & Polosukhin, I. (2017). *Attention is All you Need*. Attention Is All You Need. https://proceedings.neurips.cc/paper files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

Wankhade, M., Rao, A. C. S., & Kulkarni, C. A. (2022, February 7). A survey on sentiment analysis methods, applications, and challenges. Artificial Intelligence Review; Springer Science+Business Media. https://doi.org/10.1007/s10462-022-10144-1

THANKS

Matriculation Number: 32009177

+62 81281536930

◀ Henny.purwadi@iubh.de