Audio-based Distributional Representations of Meaning Using a Fusion of Feature Encodings

G. Karamanolakis¹, E. Iosif¹, A. Zlatintsi¹, A. Pikrakis², A. Potamianos¹

¹School of ECE, National Technical University of Athens, Greece ²Department of Informatics, University of Piraeus, Greece

Introduction

- Questions
 - 1 Contribution of multimodal information in lexical semantics
 - 2 Representation of concepts and related attributes
- Computational framework
 - Text-based Distributional Semantic Models (DSMs)
 - Bag-of-words approach
 - Semantic model based on modalities other than text?
- Audio-based DSMs (ADSMs)
 - Bag-of-audio-words approach
 - Combination of lexical features with audio clips
- Prior work
 - A. Lopopolo and E. van Miltenburg (2015)
 - D. Kiela and S. Clark (2015)

Goal – Motivation

- Goal: compute the semantic distance between words
 - Exploit their acoustic properties through the ADSM
 - Fusion of different feature encodings
- Symbol grounding problem:
 - Mainstream DSMs are ungrounded to real world
 - Rely solely on linguistic data extracted from corpora
 - Other modalities (e.g. audio, vision) contribute to the acquisition and representation of semantic knowledge
- Diversity of audio collections
 - Music, Speech, other audio classes
 - Some features do not work universally for all genres of audio sounds
 - Include feature representations that are able to describe, discriminate and distinguish all audio genres

Overview

- System Description
 - 1 Audio-word vocabulary
 - 2 Audio representations
 - 3 Tag representations
- Fusion of feature spaces
- Experimental dataset
- Evaluation datasets
- Experiments and evaluation results
- Conclusions

Baseline System - Overview

System Description - Audio-word vocabulary

- Selection of a training subset including 400 clips
- Feature extraction by partitioning clips in partially overlapping windows
- Clustering of the feature vectors (k-means)
- audio-words: the k centroids of the returned clusters

System Description - Audio representations (1)

- Representing the semantics of audio clips with respect to the audio-word vocabulary
- Feature extraction: For each window $\vec{o_t}$, a feature vector $\vec{x_t} \in R^d$ is computed
- Hard encoding (one-hot representation): assigning $\vec{x_t}$ to the closest audio word (centroid) using the Euclidean distance : $\vec{e_t} = (0, ..., 1, 0, ..., 0)$
- Representation of entire audio clip: summing the vectors computed for the respective windows

System Description - Audio representations (2)

Soft encoding

- Robust to noisy values
- More than one audio words contribute to the encoding of $\vec{x_t}$

$$\vec{e}_t' = (w_1, w_2, ..., w_k),$$
 (1)

■ Weight w_i of the i_{th} audio-word:

$$w_i = \frac{p(\vec{c_i}|\vec{x_t})}{\sum_{j=1}^k p(\vec{c_j}|\vec{x_t})},$$
 (2)

where $\sum_{i=1}^{k} w_i = 1$.

System Description - Audio representations (3)

Soft encoding (Calculation of weights)

$$p(\vec{c_j}|\vec{x_t}) = \frac{p(\vec{x_t}|\vec{c_j})p(\vec{c_j})}{p(\vec{x_t})} = \frac{p(\vec{c_j})e^{-\frac{1}{2}h_{t_j}^2}}{(2\pi)^{d/2}|\Sigma|^{1/2}p(\vec{x_t})},$$
 (3)

- h_{tj} : Mahalanobis distance between $\vec{x_t}$ and $\vec{c_j}$,
- $p(\vec{c_j})$: a-priori probability of cluster $\vec{c_j}$,
- Σ: the covariance matrix,
- p(.): probabilities computed via ML estimation.

By assuming Σ as diagonal:

$$w_i = \frac{p(\vec{c_i})e^{-h_{ij}^2}}{\sum_{i=1}^k p(\vec{c_i})e^{-h_{ij}^2}}.$$
 (4)

System Description - Tag representations

Averaging the representations of the clips having this tag in their descriptions

- For a collection of clips with T (unique) tags: $T \times k$ matrix.
- Positive Pointwise Mutual Information (PPMI) weighting
- Dimensionality reduction via Singular Value Decomposition (SVD)

Fusion of feature spaces (1)

Fusion of feature spaces (2)

- Represent a sound depending on its nature
- Three different feature spaces
 - S1: 13 MFCCs, 1st and 2nd order derivatives.
 - S2: F0 feature
 - S3: chroma features, spectral flux, zero-crossing-rate, spectral centroid etc.
- Train audio-word vocabularies for each feature space
- Categorization of a clip
 - 3 classes: "music", "speech", "other"
 - Support Vector Machines (SVM) with linear kernel

Fusion of feature spaces (3)

- Computation of three feature encodings
 - $\vec{e_t}$, $\vec{e_t^2}$, $\vec{e_t^3}$ are computed with respect to S_1 , S_2 , S_3
- Fusion of different feature encodings
 - weighted concatenation of the three encodings:

$$\vec{e_t''} = (u_1 \vec{e_t^1}, u_2 \vec{e_t^2}, u_3 \vec{e_t^3}), \tag{5}$$

- where $\sum_{i=1}^{3} u_{i} = 1$.
- Weights u_i : set according to the classification to the "music", "speech" or "other" class.
- Representation of an audio clip: summing the $\vec{e_t'}$ representations of the respective windows.

Experimental dataset

- Audio clips from the online search engine Freesound
- Not limited to only music or speech, everyday sounds e.g., footsteps, alarm notifications, street noise, etc.
- Provided with tags and descriptions by the uploaders
- Filtering of tags
 - Retain tags that occure more than 5 times
 - Discard tags that contain only digits
- Statistics of clip collection:

Number of clips	4474	Number of tags	37203
Min duration	0.1s	Avg tags per clip	8
Max duration	120s	Avg clips per tag	40
Avg duration	16.6s	Num of unique tags	940

Evaluation datasets

- Evaluation task: word semantic similarity
- MEN, SimLex datasets: limited number of word pairs
- Construction of CDSM, PDSM datasets
 - State-of-the-art CDSM and PDSM models presented in [E. losif, S. Georgiladakis, and A. Potamianos LREC 2016]
 - similarity scores: highly correlated with human ratings
- Statistics of evaluation datasets

Dataset	MEN	SimLex	CDSM	PDSM
# word pairs	157	44	1084	785

Experimentation procedure & parameters

- Experimentation procedure
 - Similarity score between two words: cosine of their respective ADSM representations
 - Evaluation metric against ground truth ratings: Spearman correlation coefficient
- Experimentation parameters
 - L: the window length used for feature extraction (range: 25-500ms). The window step (*H*) increases (10-400ms) proportionally to the window length
 - ★: the auditory dimensions, i.e., the k parameter of k-means (range: 100-550)
 - SVD dim: the SVD dimensions regarding dimensionality reduction of the matrix of tag representations (range: 90-300)

Evaluation results (1)

Comparison with results reported in literature:

k	SVD	MEN	SimLex	CDSM	PDSM
	dim				
Results reported in literature					
100	60	0.402	0.233	n/a	n/a
300	-	0.325	0.161	n/a	n/a
Reimplementation of baseline					
100	60	0.382	0.302	0.321	0.294
300	-	0.416	0.235	0.333	0.332

 Results reported for hard encoding (comparable performance for soft encoding)

Evaluation results (2)

- Fusion of feature spaces
 - $\vec{e_t}$, $\vec{e_t^2}$, $\vec{e_t^3}$ are computed with respect to S_1 , S_2 , S_3

 Configuring fusion weights: exhaustive search using held out data

Evaluation results (3)

Fusion of feature spaces

Feature	SVD	MEN	SimLex	CDSM	PDSM
Space		dim			
S_1		0.416	0.235	0.333	0.332
S_2	-	0.308	0.313	0.269	0.248
S_3		0.418	0.205	0.278	0.315
S ₁₂₃		0.468	0.387	0.388	0.382
S_1		0.436	0.209	0.283	0.320
S_2	90	0.302	0.34	0.275	0.26
S_3		0.422	0.252	0.343	0.337
S ₁₂₃		0.480	0.374	0.402	0.401

Table : Correlation performance of feature space fusion S_{123} vs individual encodings S_1 , S_2 , S_3 , (L=250ms, k = 300).

Conclusions

Summary

- Reimplementation of baseline ADSM described in literature
- Investigation of various parameters of the baseline model
- Extension of ADSM via the fusion of three feature spaces, outperforming the baseline approach (relative improvement up to 23.6%)

Future work

- Experiment with more feature spaces (e.g. rhythm)
- Evaluate the proposed model using datasets in languages other than English
- Develop fully multimodal semantic models: integration of features extracted from text, audio and images

ADSM Applications - Auto-tagging

- Comparing clips with tags?
- Bag-of-audio-words representations for both clips and tags

Clip id	Groundtruth Tags	Predicted Tags
3843	indian, sitar	sitar, indian, eastern, india, oriental
13526	bass, drums, drum, funky, reggae	funky, beat, drums, reggae, funk
15380	classical, solo, cello, violin, strings	cello, viola, violin, solo, classical
19920	-	orchestra, violins, flutes, fiddle, violin
21725	choir, choral, men, man	monks, chant, chanting, men, choral
29231	acoustic, guitar	classical guitar, guitar, acoustic, lute, spanish
43390	rock, loud, pop, vocals, male vocals	male vocals, pop, male vocal, male singer, rock
48010	silence	low, soft, no singing, quiet, wind
57081	piano	piano solo, piano , classic, solo, classical

Table : Magnatagatune clips, N = 5 predicted tags

Thank You!