Subtraktion von binären Zahlen

Drei Schritte zu Subtraktion:

Das Einerkomplement Das Zweierkomplement Die Subtraktion von Dualzahlen

Einerkomplement

Was ist das Komplement von Dualzahlen? Man bildet das sogenannte Einerkomplement, indem man jede Zahl durch ihr Gegenteil ersetzt, also die 0 durch die 1 und die 1 durch die 0.

01011010 wird zu 10100101 11101101 wird zu 00010010

Das Zweierkomplement Das Zweierkomplement entspricht dem Einerkomplement, nur wird zusätzlich noch 00000001 addiert.

01011010wird im Einerkomplement zu 10100101im Zweierkomplement zu 10100110 11101101wird im Einerkomplement zu 00010010im Zweierkomplement zu 00010011

Konvertierung von Festkommazahlen Dez zu Bin 10,2

```
Vorkommastelle 10 = 1010

Nachkommastelle 0.2 * 2 = 0.4 + 0 MSB

0.4 * 2 = 0.8 + 0

0.8 * 2 = 0.6 + 1

0.6 * 2 = 0.2 + 1 LSB
```

Sobald es sich wiederholt kann aufgehört werden.

```
0, 2 = 0.0011

10.2 = 1010.00110011 \approx 0.19921875

\implies Eine Abweichung von - 0.00078125
```

Konvertierung von Fließkommazahlen Dez zu Bin

Die Subtraktion von Dualzahlen Der Satz lautet: Die Subtraktion von 2 Zahlen erfolgt durch die Addition des Zweierkomplementes. Als konkretes Beispiel nehmen wir dazu die Rechnung 14-9=5.

9 ist im Dualsystem 00001001. Das Einerkomplement zu 00001001 ist 11110110. Das Zweierkomplement 11110111. Dies addieren wir nun zu 14 also 00001110.

00001110 + 11110111 = = = = = = 00000101

Auch hier wäre die richtige Zahl eigentlich 00000101 Übertrag 1, da wir den Übertrag jedoch nicht speichern können, bleiben wir bei 00000101 was ja der Dezimalzahl 5 entspricht.

Assemblerbefehle AREA MyCommonBlock, COMMON, ALIGN = 10; Read-Write-Data; MyCommonBlock bezeichnet die Anfangsadresse des Speicherblocks; COMMON: vom Linker mit Nullen initialisierter Speicherbereich; Alignment mit 2^{10} erzeugteineBlockgrenzebzw. anfangmitn*1024