6. Basics of graph

```
# Reference book: "Beginning R: The Statistical Programming Language"
# Author: Dr. Mark Gardener
Barplot for vector
require(grDevices)
require(stats)
ni=rpois(100,5)
ni
 [1] 3 9 8 3 7 4 5 6 4 3 4 2 3 1 8 4 5 4 5 3 9 5 7 3
[26] 5 5 12 2 5 6 4 8 1 8 7 9 5 1 6 8 7 5 7 2 2 2 2 12
[76] 7 5 2 5 3 5 3 5 2 3 6 4 6 11 5 5 4 4 5 5 6 6 7 7 4
tN=table(ni)
tΝ
ni
1 2 3 4 5 6 7 8 9 11 12
4 9 13 19 20 9 11 6 5 2 2
r=barplot(tN,col=rainbow(20))
lines(r,tN,col="blue",lwd=2)
lines(r,tN,type="h",col="red",lwd=2)
abline(h=0)
```


barplot(tN,space = 1.5,axisnames = F)
abline(h=0)


```
barplot(tN,space = 0.5,axisnames = T,sub="barplot",col="blue")
abline(h=0)
```


Bar plot for data frame

```
barplot(VADeaths,plot = T)
abline(h=0)
```



```
barplot(VADeaths,plot = T,beside = T)
abline(h=0)
```



```
mp=barplot(VADeaths)
tot=colMeans(VADeaths)
sm=colSums(VADeaths)
text(mp,sm,tot,col='blue',pos=3)
abline(h=0)
```



```
barplot(VADeaths,beside = T,col=rainbow(20))
title(main="Death Rates in Virginia",font.main=10)
abline(h=0)
```



```
hh=t(VADeaths)[,5:1]
barplot(hh,beside = T,col = rainbow(10),legend=colnames(VADeaths),cex.names = 1)
abline(h=0)
```


Pie chart for vector

```
fcolor=c(3,1,4,6,8,3,2)
pie(fcolor,main = "pie chart",)
```

pie chart

pie(fcolor, clockwise = T, main = "clockwise pie chart")

clockwise pie chart


```
lbls=c("Red","Orange","Yellow","Green","Blue","Purple","Others")
lbls=paste(lbls,fcolor)
pie(fcolor,labels = lbls,main = "pie chart",col=rainbow(7))
```

pie chart

Scatter plot

class(iris)

[1] "data.frame"

head(iris)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

summary(iris)

Sepa]	.Length	Sepa]	L.Width	Peta	l.Length	Petal	l.Width
Min.	:4.300	Min.	:2.000	Min.	:1.000	Min.	:0.100
1st Qເ	1.:5.100	1st Qu	1.:2.800	1st Qı	1.:1.600	1st Qı	1.:0.300
Mediar	.5 800	Mediar	.3 000	Media	. 4 350	Mediar	1 1 300

```
Mean :5.843 Mean :3.057
                               Mean :3.758
                                              Mean :1.199
3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800
Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500
      Species
 setosa
          :50
versicolor:50
virginica:50
table(iris$Species)
    setosa versicolor virginica
       50
                  50
cor(iris$Sepal.Length,iris$Sepal.Width)
[1] -0.1175698
cor.test(~iris$Sepal.Length+iris$Sepal.Width,data=iris)
   Pearson's product-moment correlation
data: iris$Sepal.Length and iris$Sepal.Width
t = -1.4403, df = 148, p-value = 0.1519
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.27269325 0.04351158
sample estimates:
      cor
-0.1175698
par(mfrow=c(2,2))
plot(iris$Sepal.Length,iris$Sepal.Width)
plot(iris$Sepal.Length,iris$Petal.Length)
```

plot(iris\$Sepal.Length,iris\$Petal.Width)
plot(iris\$Sepal.Width,iris\$Petal.Length)

pairs(iris)

pairs(iris[,c(1:4)])

cor(iris[,c(1:4)])

par(mfrow=c(1,1))

```
Sepal.Length Sepal.Width Petal.Length Petal.Width
Sepal.Length
               1.0000000 -0.1175698
                                        0.8717538
                                                    0.8179411
Sepal.Width
               -0.1175698
                           1.0000000
                                       -0.4284401
                                                   -0.3661259
Petal.Length
               0.8717538 -0.4284401
                                        1.0000000
                                                    0.9628654
Petal.Width
               0.8179411 -0.3661259
                                        0.9628654
                                                    1.0000000
```

Line chart for Sepal.Length

```
plot(iris$Sepal.Length,type="1",lwd=2,col="Blue")
```

