Mathématiques : CM

$$\sum_{n=0}^{+\infty} u_n \in \mathbb{R} \quad \text{if } (u_n) \text{ converges } \Leftrightarrow u_0 + u_1 + u_2 + \dots \Leftrightarrow \lim_{n \to \infty} \sum_{k=0}^{n} u_k$$

$$\sum_{k\geq 0} u_k \in \mathbb{R}^{\mathbb{N}} \quad \Leftrightarrow \quad \sum_{k=0}^n u_k = S_n \in \mathbb{R}$$

The notation $\sum u_n$ if we don't know or don't care about the first terms.

The two previous ones are named <u>Series</u> as they are equal to a sequence.

Series

Definitions:

Convergence and divergence:

Let $(u_n) \in \mathbb{R}^{\mathbb{N}}$ be a sequence and $(S_n) \in \mathbb{R}^{\mathbb{N}}$ the sequence of its partial sums, i.e.

$$S_n = \sum_{k=0}^n u_k.$$

We call <u>series</u> of the sequence (u_n) the general term S_n and denote

$$\sum u_n$$
.

We say $\sum u_n$ is convergent if and only if (S_n) converges, else $\sum u_n$ diverges.

Example: $\sum q^n$: geometric series of general term q^n .

Let $(S_n) \in \mathbb{R}^{\mathbb{N}}$ (the sequence of partial sums). We have:

For $n \in \mathbb{N}$,

$$S_n = \sum_{k=0}^n q^k = 1 + q + q^2 + \dots + q^n.$$

$$\Rightarrow q \neq 1 \quad \Rightarrow \quad S_n = \frac{1 - q^{n+1}}{1 - q}.$$

$$\lim_{n \to +\infty} S_n = \begin{cases} \frac{1}{1 - q}, & \text{if } |q| < 1, \\ \infty, & \text{if } |q| \ge 1. \end{cases}$$

 \Rightarrow diverges if else.

Conclusion

 $\sum q^n$ converges when |q| < 1 with

$$\sum_{n=0}^{+\infty} q^n = \frac{1}{1-q},$$

and diverges when $|q| \ge 1$.

Proposition:

Let $\sum u_n$ and $\sum v_n$ be two numerical series and $\lambda \in \mathbb{R}$. Then we have:

- 1. If $\sum u_n$ and $\sum v_n$ converge, then $\sum (u_n + v_n)$ converges.
- 2. If $\sum u_n$ converges, then $\sum \lambda u_n$ converges.
- 3. If $\sum u_n$ converges and $\sum v_n$ diverges, then $\sum (u_n + v_n)$ diverges.
- 4. If $\sum u_n$ diverges and $\sum v_n$ diverges, then we can't tell anything.

Sum and Remainders of a Series

Let $\sum u_n$ be a numerical series. We call:

Sum of $\sum u_n$ the following limit (in case of convergence):

$$\lim_{n \to +\infty} \sum_{k=0}^{n} u_k = S_n,$$

where S_n is the sum of a convergent series.

Example : $\sum q^n$ converges if and only if |q| < 1 and in that case:

$$S_n = \lim_{n \to +\infty} S_n = \frac{1}{1 - q}$$

Necessary condition of convergence:

$$\sum u_n \text{ convergent } \Rightarrow \lim_{n \to +\infty} u_n = 0.$$

Contrapositive: If $\lim_{n \to +\infty} u_n \neq 0 \Rightarrow \sum u_n$ diverges.

Positive Term Series:

We call PTS (positive term series) any series $\sum u_n$ such that $\forall n \in \mathbb{N}$ $u_n \geq 0$.

Proposition: Let $\sum u_k$ be a PTS and (S_n) its sequence of partial sums.

Then: $\sum u_k$ is convergent $\Leftrightarrow (S_n)$ is bounded.

Let (u_n) , (v_n) be two positive sequences such that: $\forall n \in \mathbb{N}, 0 \leq u_n \leq v_n$,

Then:

$$\begin{cases} \sum v_n \text{ is convergent } \Rightarrow \sum u_n \text{ is convergent} \\ \sum u_n \text{ is divergent } \Rightarrow \sum v_n \text{ is divergent} \end{cases}$$

Ex :

$$\sum \frac{1}{n(sin(n))} = u_n$$

$$\forall n \in \mathbb{N}^*, 0 \le |sin(n)| \le 1 \Rightarrow u_n \ge \frac{1}{n} \text{ but } \sum \frac{1}{n} \text{ diverges } \Rightarrow \sum u_n \text{ diverges}$$

Riemann Series Theorem

Definition:

We call Riemann series any series of general term:

$$\frac{1}{n^{\alpha}}, \alpha \in \mathbb{R}$$

 $\mathbf{E}\mathbf{x}$:

$$\sum \frac{1}{n}, \sum \frac{1}{n^2}, \sum \frac{1}{n^{\frac{9}{2}}}$$

Riemann theorem:

$$\forall \alpha \in \mathbb{R}, \sum \frac{1}{n^{\alpha}} converges \Leftrightarrow \alpha > 1$$

Ex:

$$u_n = \frac{2 + \cos(n)}{n^4}, \forall n \in \mathbb{N}^*; 0 \le \frac{2 + \cos(n)}{n^4} \le \frac{3}{n^4}$$

As
$$\sum \frac{2 + \cos(n)}{n^4}$$
 is a PTS:

$$\begin{cases} \sum u_n \text{ is a PTS} \\ \sum \frac{1}{n^4} \text{ converges (Riemann } \alpha = 4 > 1) \Rightarrow \frac{3}{n^4} \text{ converges} \end{cases}$$

Thus:

$$\sum \frac{2 + \cos(n)}{n^4}$$
 converges

Proposition:

1

Let (u_n) and (v_n) two sequences such that :

$$u_n = u_n = o(v_n) \quad (\frac{u_n}{v_n} \to 0)$$

Then:

$$\sum v_n \text{ converges} \Rightarrow u_n \text{ converges}$$

2

if
$$u_n \underset{+\infty}{\sim} v_n$$
 then $: \sum u_n$ same nature as $\sum v_n$

3

if
$$u_n = O(v_n)$$
 then:

$$\sum v_n$$
 converges $\Rightarrow u_n$ converges

1

 $\mathbf{E}\mathbf{x}$:

$$\sum e^{-\sqrt{n}}$$
 (PTS)

$$n^2 \times e^{-\sqrt{n}} \underset{n \to +\infty}{\longrightarrow} 0$$

$$\frac{e^{-\sqrt{n}}}{\frac{1}{n^2}} \Rightarrow e^{-\sqrt{n}} = o(\frac{1}{n^2})$$

$$\Rightarrow [\sum \frac{1}{n^2} \text{ converges (Riemann series where } \alpha > 1) \Rightarrow \sum e^{-\sqrt{n}} \text{ converges]}$$

2

Ex:

$$\sum ln(\frac{n+1}{n}) = \sum ln(1+\frac{1}{n}) \Rightarrow ln(1+\frac{1}{n}) \underset{n \to +\infty}{\sim} \frac{1}{n}$$

$$1n \Rightarrow \sum ln(1+\frac{1}{n})$$
 of same nature as $\sum \frac{1}{n} \Rightarrow \sum ln(1+\frac{1}{n})$ diverges

Definition:

$$u_n \underset{+\infty}{\sim} v_n \Leftrightarrow \frac{u_n}{v_n} \underset{n \to +\infty}{\longrightarrow} 1 \Rightarrow \exists n_0 \in \mathbb{N}, [n \geq n_0 \Rightarrow \text{sign of } u_n = \text{sign of } v_n]$$

$$\Leftrightarrow \exists n_0 \in \mathbb{N}, [n \ge n_0 \Rightarrow u_n \times v_n \ge 0]$$

Proposition:

Let
$$(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$$
. Then: $\sum (u_{n+1}-u_n)$ converges $\Leftrightarrow (u_n)_{n\in\mathbb{N}}$ converges

Proof:

Let
$$(S_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$$
 such that $\forall n\in\mathbb{N}, S_n=\sum_{k=0}^n(u_{k+1}-u_k)=\sum_{k=0}^nu_{k+1}-\sum_{k=0}^nu_k$

$$= \sum_{k=1}^{n+1} u_k - \sum_{k=0}^{n} u_k = u_{n+1} - u_0 \Leftrightarrow \lim_{n \to +\infty} S_n = \lim_{n \to +\infty} (u_{n+1} - u_0)$$

$$\implies [S_n \underset{n \to +\infty}{\longrightarrow} l \Leftrightarrow u_n \underset{n \to +\infty}{\longrightarrow} l + u_0]$$

 $\mathbf{E}\mathbf{x}$:

$$\forall n \in \mathbb{N}^*, u_n = 1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln(n) \iff \text{nature of } (u_n)?$$

$$= \sum_{k=1}^n \frac{1}{k} - \ln(n)$$

$$u_{n+1} - u_n = \sum_{k=1}^{n+1} \frac{1}{k} - \ln(n+1) - \sum_{k=1}^n \frac{1}{k} - \ln(n)$$

$$= \frac{1}{n+1} + \ln(\frac{n}{n+1}) = \frac{1}{n+1} + \ln(1 - \frac{1}{n+1})$$

$$\frac{1}{n+1} - \frac{1}{n+1} - \frac{1}{2} \times \frac{1}{(n+1)^2} + o(\frac{1}{n^2}) = -\frac{1}{2} \times \frac{1}{(n+1)^2} + o(\frac{1}{n^2}) \approx \sum_{k=1}^n u_{n+1} - u_n \text{ converges}$$

$$\implies \sum_{k=1}^n \frac{1}{k} - \ln(n)$$

$$= \frac{1}{n+1} + \ln(n)$$

$$= \frac{1}{n$$

The Rules:

Riemann's rule:

Theorem:

Let (u_n) a positive term series :

If $\exists \alpha \in \mathbb{R}, \ \alpha > 1, \ n^{\alpha} \times u_n \underset{n \to +\infty}{\longrightarrow} 0 \text{ then } : \sum u_n \text{ converges}$

Proof:

$$n^{\alpha} \times u_n \xrightarrow[n \to +\infty]{} 0 \Leftrightarrow \frac{u_n}{\frac{1}{n^{\alpha}}} \xrightarrow[n \to +\infty]{} 0 \Leftrightarrow u_n = o(\frac{1}{n^{\alpha}})$$

Thus : $\left[\sum \frac{1}{n^{\alpha}} \text{ converges (Riemann } \alpha > 1) \implies \sum u_n \text{ converges }\right]$

D'Alembert's rule:

Theorem:

Let (u_n) a strictly positive sequence such that :

 $\frac{u_{n+1}}{u_n} \xrightarrow[n \to +\infty]{} l \text{ where } l \in \mathbb{R} \cup \{+\infty\}$

Then:
$$\begin{cases} l < 1 \Rightarrow \sum u_n \text{ converge} \\ l > 1 \Rightarrow \sum u_n \text{ diverge} \end{cases}$$

Ex: $\forall n \in \mathbb{N}, u_n = \frac{1}{n!}$

$$\frac{u_{n+1}}{u_n} = \frac{1}{(n+1)!} \times n! = \frac{1}{n+1} \underset{n \to +\infty}{\longrightarrow} 0 < 1 \implies \sum u_n \text{ converges}$$

Cauchy's rule:

Theorem:

Let u_n a strictly positive sequence such that :

$$\sqrt[n]{u_n} \underset{n \to +\infty}{\longrightarrow} l \text{ where } 1 \in \mathbb{R}_+ \cup \{+\infty\}$$

Then:
$$\begin{cases} l < 1 \implies \sum u_n \text{ converges} \\ l < 1 \implies \sum u_n \text{ diverges} \end{cases}$$

Ex:

$$\forall n \in \mathbb{N}^*, u_n = \left(\frac{n}{n+1}\right)^{n^2}$$

$$\sqrt[n]{u_n} = (u_n)^{\frac{1}{n}} = \left(\frac{n}{n+1}\right)^n \text{ and we know that } \left(\frac{n}{n+1}\right) \underset{n \to +\infty}{\to} 1$$
Moreover, $e^{n\ln(\frac{n}{n+1})} = e^{n\ln(1-\frac{1}{n+1})}$ we have $n \times \ln(1-\frac{1}{n+1}) \underset{+\infty}{\sim} -1$

$$\implies e^{nln(\frac{n}{n+1})} \underset{+\infty}{\sim} e^{-1}$$

Series with Arbitrary terms:

Alternating Series

Definition:

Let (u_n) be a real sequence. We say that (u_n) is alternating if there exist a positive real sequence (a_n) such that $\forall n \in \mathbb{N}$:

$$u_n = (-1)^n a_n$$
 or $u_n = (-1)^{n+1} a_n$

We say that a numerical series $\sum u_n$ is alternating if the sequence (u_n) is alternating

Special criterion for alternating series:

Leibniz Criterion:

Let (u_n) be an alternating real sequence.

If $(|u_n|)$ is decreasing and converges to 0, then:

$$\begin{cases}
\text{The series } \sum u_n \text{ converges} \\
\forall n \in \mathbb{N}, |R_n| \leq |u_{n+1}|
\end{cases}$$

Where (R_n) is the sequence of remainders associated with $\sum u_n$

 $\mathbf{E}\mathbf{x}$:

Let $\alpha \in \mathbb{R}$. Then:

$$\sum \frac{(-1)^n}{n^{\alpha}}$$
 converges if and only if $\alpha > 0$

Absolute Convergence

Definition:

A numerical series $\sum u_n$ is said to converge absolutely if the series $\sum |u_n|$ converges.

Theorem:

If $\sum u_n$ is a numerical series that converges absolutely, then $\sum u_n$ also converges

${\bf Definition}:$

A convergent series that is not absolutely convergent is called conditionally convergent (or semi-convergent).