Algebraic Curves

Labix

March 6, 2025

Abstract

Contents

1		ebraic Curves in Classical Algebraic Geometry	
	1.1	Basic Properties of Curves	
		Morphisms between Curves	
	1.3	Blowing Up Curves and Normalization	
	1.4	Ramification Index	
		Differential Forms on Curves	
2	Classical Divisors on Curves		
	2.1	The Pullback Map of Divisors	
	2.2	The Linear System of Divisors	
	2.3	The Canonical Divisor for Curves	
	2.4	The Riemann-Roch Theorem	
3	Alg	ebraic Curves in the Context of Schemes	
	3.1	Riemann-Roch Theorem	
	3.2	Classification of Curves in \mathbb{P}^3	

1 Algebraic Curves in Classical Algebraic Geometry

1.1 Basic Properties of Curves

Definition 1.1.1: Curves

Let k be a field. Let X be a variety over k. We say that X is a curve if $\dim(X) = 1$.

Proposition 1.1.2

Let k be an algebraically closed field. Let C be an irreducible curve over k. Let $p \in C$ be a non-singular point. Then $\mathcal{O}_{C,p}$ is a DVR. Moreover, the valuation is given by the degree of the regular function.

Proof. Since p is non-singular, by definition $\mathcal{O}_{C,p}$ is a regular local ring. Moreover, we know that $1 = \dim(C) = \dim(\mathcal{O}_{C,p})$ so that $\mathcal{O}_{C,p}$ has Krull dimension 1. By the equivalent characterization of DVR we conclude.

We denote the valuation map by $v_p : \operatorname{Frac}(\mathcal{O}_{C,p}) \to \mathbb{Z}$.

Example 1.1.3

Consider the projective curve $C = \mathbb{V}(x^2 + y^2 - z^2) \subset \mathbb{P}^2_{\mathbb{C}}$. Let $p = [p_0 : p_1 : p_2]$ be a point on the curve.

If $p_2 \neq 0$, then $p \in U_2$. Under the affine chart (U_2, φ_2) , we find that $C_2 = \varphi_2(C \cap U_2) = \mathbb{V}(x^2 + y^2 - 1)$. The corresponding coordinate ring is given by $\frac{\mathbb{C}[x,y]}{(x^2 + y^2 - 1)}$. The formula for the local ring in the affine case gives

$$\mathcal{O}_{C,p} \cong \left(\frac{\mathbb{C}[x,y]}{(x^2+y^2-1)}\right)_{m_{(p_0/p_2,p_1/p_2)}}$$

Recall that the unique maximal ideal of the local ring is given as the $\mathcal{O}_{X,p}$ -module $m_p=\{f\in\mathbb{C}[C_2]\mid f(p_0/p_2,p_1/p_2)=0\}$, which under the nullstellensatz is the maximal ideal corresponding to the point $(p_0/p_2,p_1/p_2)$ and is given by $m_p=(x-r,y-s)$ where $r=p_0/p_1$ and $s=p_0/p_2$. By Nakayama's lemma, since x-r,y-s generate m_p we know that $x-r+m_p^2,y-s+m_p^2$ span the vector space m_p/m_p^2 over $\mathcal{O}_{X,p}/m_p$. I claim that they are linearly dependent. This mean that I want to find $f+m_p^2$ and $g+m_p^2$ in $\mathcal{O}_{X,p}/m_p$ that are non-trivial, and that $(x-r)f+(y-s)g+m_p^2=m_p^2$. This means that we want to find $f,g\in\mathcal{O}_{X,p}\setminus m_p$ such that $(x-r)f+(y-s)g\in m_p^2$. Choose f=x+r and g=y+s to get

$$(x-r)(x+r) + (y-s)(y+s) = x^2 - r^2 + y^2 - s^2 = 1 - 1 = 0$$

since (r,s) lie on the curve. Moreover, $x+r,y+s\mathcal{O}_{X,p}\setminus m_p$ since evaluating at (r,s) at the functions are non-zero. This verifies that $\mathcal{O}_{X,p}$ is a regular local ring of dimension 1, hence is a DVR.

We can even find its uniformizer and valuation. Since x-r and y+s are linearly dependent and spans m_p/m_p^2 , any one of the two is a basis for the vector space. WLOG take x-r to be a basis. Nakayama's lemma implies that x-r generates m_p . Being a DVR means that for all $f \in \mathcal{O}_{X,p}$, $f = u(x-r)^n$ where u is invertible. Then the valuation of f is n.

Proposition 1.1.4

Let C be an affine irreducible curve over $\mathbb C$. Then C is smooth if and only if C is a normal variety.

1.2 Morphisms between Curves

Proposition 1.2.1

Let k be a field. Let C be a smooth curve over k. Then for any projective variety $X \subseteq \mathbb{P}^n$ and rational map $\phi: C \to X$, there exists a regular map

$$\overline{\phi}:C\to X$$

such that $\overline{\phi}|_U = \phi|_U$ for some dense subset $U \subseteq C$.

Proposition 1.2.2

Let k be an algebraically closed field. Let X,Y be smooth irreducible projective curves over k. Let $\phi: X \to Y$ be a non-constant regular map. Then ϕ is a finite morphism.

Proposition 1.2.3

Let k be an algebraically closed field. Let X,Y be smooth irreducible projective curves over k. Let $\phi: X \to Y$ be a rational map. If ϕ is birational, then ϕ is an isomorphism of varieties.

1.3 Blowing Up Curves and Normalization

Recall that by taking the integral closure of the coordinate ring k[C] of an irreducible affine curve $C \subseteq \mathbb{A}^n$, we obtain a corresponding variety \widetilde{C} called the normalization of C.

Proposition 1.3.1

Let k be an algebraically closed field. Let $C \subseteq \mathbb{A}^n_k$ be an irreducible affine curve over k. Then the normalization \widetilde{C} is smooth.

Theorem 1.3.2

Let k be an algebraically closed field. Let C be an irreducible curve over k. Then C is birational to a unique non-singular projective irreducible curve.

1.4 Ramification Index

Definition 1.4.1: Ramification Index

Let k be an algebraically closed field. Let X,Y be smooth irreducible projective curves over k. Let $\phi:X\to Y$ be a non-constant regular map. Let $p\in X$. Define the ramification index of ϕ at p to be

$$e_{\phi}(p) = v_p(\phi^*(\pi))$$

where π is a uniformizing parameter of $\mathcal{O}_{Y,\phi(p)}$.

Lemma 1.4.2

Let k be an algebraically closed field. Let X,Y be smooth irreducible projective curves over k. Let $\phi:X\to Y$ be a non-constant regular map. Let $p\in X$. Then

$$e_{\phi}(p) = \dim_k \left(\frac{\mathcal{O}_{X,p}}{(\phi^*(\pi))} \right)$$

where π is a uniformizing parameter of $\mathcal{O}_{Y,\phi(p)}$.

Let $\phi: X \to Y$ be a non-constant regular map between smooth irreducible and projective curves. Since ϕ is finite, the notion of degree makes sense. Recall that the degree is defined to be

$$\deg(\phi) = \dim_{K(Y)} K(X)$$

Proposition 1.4.3

Let k be an algebraically closed field. Let X, Y be smooth irreducible projective curves over k. Let $\phi: X \to Y$ be a non-constant regular map. Let $q \in Y$. Then we have

$$\sum_{p \in \phi^{-1}(q)} e_{\phi}(p) = \deg(\phi)$$

1.5 Differential Forms on Curves

Proposition 1.5.1

Let C be a smooth irreducible curve over \mathbb{C} . Then $\Omega^1_{\mathbb{C}(C)/\mathbb{C}}$ is a 1-dimensional vector space over $\mathbb{C}(C)$.

Proposition 1.5.2

Let C be a smooth irreducible curve over \mathbb{C} . Let $f \in \mathbb{C}(C)$ be non-constant. Then the follow-

- $df \neq 0$ in $\Omega^1_{\mathbb{C}(C)/\mathbb{C}}$. df is a $\mathbb{C}(C)$ -basis for $\Omega^1_{\mathbb{C}(C)/\mathbb{C}}$.

Definition 1.5.3: Valuation of Differential 1-Forms

Let C be a smooth irreducible curve over $\mathbb C.$ Let $p\in C.$ Let $\omega\in\Omega^1_{\mathbb C(C)/\mathbb C}$ be a differential 1-form of C. Define the valuation of ω at p as follows. Choose a uniformizing parameter $\pi \in$ $\mathcal{O}_{C,p}$. Write $\omega = f d\pi$ for $f \in \mathbb{C}(C)$. Then define the valuation as

$$\operatorname{val}_p(\omega) = \operatorname{val}_p(f)$$

2 Classical Divisors on Curves

2.1 The Pullback Map of Divisors

Definition 2.1.1: Pullback Map of Divisors

Let k be an algebraically closed field. Let X,Y be smooth irreducible projective curves over k. Let $\phi:X\to Y$ be a non-constant regular map. Define the induced pullback map $\phi^*:\operatorname{Div}(Y)\to\operatorname{Div}(X)$ by

$$\phi^* \left(\sum_{q \in Y} n_q \cdot q \right) = \sum_{q \in Y} n_q \cdot \left(\sum_{p \in \phi^{-1}(q)} e_{\phi}(p) \cdot p \right) = \sum_{p \in X} n_{\phi(p)} e_{\phi}(p) \cdot p$$

Proposition 2.1.2

Let k be an algebraically closed field. Let X,Y be smooth irreducible projective curves over k. Let $\phi:X\to Y$ be a non-constant regular map. Then we have

$$\deg(\phi^*(D)) = \deg(\phi)\deg(D)$$

for any $D \in Div(Y)$.

Proposition 2.1.3

Let k be an algebraically closed field. Let X be a smooth irreducible projective curve over k. Let $D \in \text{Div}(X)$ be a principal divisor of X. Then $\deg(D) = 0$.

Proposition 2.1.4

Let k be an algebraically closed field. Let X,Y be smooth irreducible projective curves over k. Let $\phi: X \to Y$ be a non-constant regular map. Then $\phi(\text{Prin}(Y)) \subseteq \text{Prin}(X)$.

Definition 2.1.5: Induced Map of Divisor Class Groups

Let k be an algebraically closed field. Let X,Y be smooth irreducible projective curves over k. Let $\phi:X\to Y$ be a non-constant regular map. Define the induced map of divisor class groups $\phi^*:\operatorname{Cl}(Y)\to\operatorname{Cl}(X)$ by

$$\phi^*([D]) = [\phi^*(D)]$$

2.2 The Linear System of Divisors

Definition 2.2.1: The Linear System of Divisors

Let k be an algebraically closed field. Let X be a smooth irreducible projective curve over k. Let $D \in Div(X)$ be a divisor. Define the linear system of D to be

$$\mathcal{L}(D) = \{0\} \cup \{f \in K(X) \mid \deg(D + \operatorname{div}(f)) \ge 0\} \subseteq K(X)$$

Lemma 2.2.2

Let k be an algebraically closed field. Let X be a smooth irreducible projective curve over k. Let $D \in \text{Div}(X)$ be a divisor. Then $\mathcal{L}(D)$ is a vector space over k.

Proposition 2.2.3

Let k be an algebraically closed field. Let X be a smooth irreducible projective curve over k. Let $D, D' \in \text{Div}(X)$ be divisors. If $D \sim D'$ are linearly equivalent, then we have

$$\dim_k(\mathcal{L}(D)) = \dim_k(\mathcal{L}(D'))$$

Proposition 2.2.4

Let k be an algebraically closed field. Let X be a smooth irreducible projective curve over k. Let $D \in \text{Div}(X)$ be a divisor. Then the following are true.

• If deg(D) < 0, then we have

$$\dim_k(\mathcal{L}(D)) = 0$$

• If deg(D) = 0, then we have

$$\dim_k(\mathcal{L}(D)) = \begin{cases} 0 & \text{if } D \not\sim 0\\ 1 & \text{if } D \sim 0 \end{cases}$$

Proposition 2.2.5

Let k be an algebraically closed field. Let X be a smooth irreducible projective curve over k. Let $D \in \text{Div}(X)$ be a divisor. Then we have

$$\dim_k(\mathcal{L}(D)) \le \deg(D) + 1$$

2.3 The Canonical Divisor for Curves

Definition 2.3.1: Divisors of Differential Forms

Let C be a smooth irreducible curve over \mathbb{C} . Let $p \in C$. Let $\omega \in \Omega^1_{\mathbb{C}(C)/\mathbb{C}}$ be a differential 1-form of C. Define the divisor of ω by

$$\operatorname{div}(\omega) = \sum_{p \in C} \operatorname{val}_p(\omega) \cdot p \in \operatorname{Div}(C)$$

Proposition 2.3.2

Let C be a smooth irreducible curve over \mathbb{C} . Let $p \in C$. Let $\omega, \tau \in \Omega^1_C$ be non-zero. Then $\operatorname{div}(\omega)$ and $\operatorname{div}(\tau)$ are linearly equivalent.

Definition 2.3.3: The Canonical Divisor

Let C be a smooth irreducible projective curve over \mathbb{C} . Let $p \in C$. Define the canonical divisor of C to be

$$K_C = [\omega] \in \operatorname{Pic}(C)$$

in the divisor class group for any non-zero $\omega \in \Omega^1_C$.

Lemma 2.3.4

Let C be a smooth irreducible projective curve over \mathbb{C} . Then

$$\dim_{\mathbb{C}}(\mathcal{L}(K_C)) = \dim_{\mathbb{C}}(\Omega_C^1)$$

2.4 The Riemann-Roch Theorem

Theorem 2.4.1: Riemann-Roch Theorem

Let C be a smooth irreducible projective curve over \mathbb{C} . Let $D \in \mathrm{Div}(C)$ be a divisor on C. Then

$$\dim_{\mathbb{C}}(\mathcal{L}(D)) + \dim_{\mathbb{C}}(\mathcal{L}(K_C - D)) = \deg(D) + 1 - p_q(C)$$

Proposition 2.4.2

Let C be a smooth irreducible projective curve over \mathbb{C} . Let $D \in \mathrm{Div}(C)$ be a divisor on C. Then

$$\deg(D) + 1 - p_q(C) \le \dim_{\mathbb{C}}(\mathcal{L}(D)) \le \deg(D) + 1$$

Proposition 2.4.3

Let C be a smooth irreducible projective curve over \mathbb{C} . Then we have

$$\deg(K_C) = 2p_g(C) - 2$$

Proposition 2.4.4

Let C be a smooth irreducible projective curve over \mathbb{C} . Then the following are equivalent.

- C is isomorphic to \mathbb{P}^1 .
- The geometric genus $p_q(C) = 0$ is zero.
- For all $p, q \in C$, $p \sim q$ are linearly equivalent.
- There exists distinct $p, q \in C$, such that $p \sim q$ are linearly equivalent.
- The degree map $\deg : \text{Pic}(C) \to \mathbb{Z}$ is an isomorphism.
- For all $D \in Div(C)$ with deg(D) > 0, we have l(D) = deg(D) + 1.
- There exists $D \in Div(C)$ with deg(D) > 0 such that l(D) = deg(D) + 1.

3 Algebraic Curves in the Context of Schemes

Definition 3.0.1: Algebraic Curves

Let k be an algebraically closed field. A curve over k is an integral separated scheme X of finite type over k that has dimension 1.

Proposition 3.0.2

Let X be an algebraic curve. Then the arithmetic and geometric genus coincide. In particular,

$$p_a(X) = p_q(X) = \dim_k H^1(X, \mathcal{O}_X)$$

We will simply call the genus of a curve g from now on since the arithmetic genus is the same as the geometric genus.

3.1 Riemann-Roch Theorem

Definition 3.1.1: Canonical Divisor

Let X be an algebraic curve. The canonical divisor K of X is a divisor in the linear equivalence class of

$$\Omega^1_{X/k} = \omega_X$$

Theorem 3.1.2: Riemann-Roch Theorem

Let X be an algebraic curve. Let D be a divisor on X and let K be the canonical divisor of X. Let $\mathcal{L}(D)$ be the associated sheaf of the divisor D. Then

$$\dim_k(H^0(X,\mathcal{L}(D))) + \dim_k(H^0(X,\mathcal{L}(K-D))) = \deg(D) + 1 - p_q(X)$$

3.2 Classification of Curves in \mathbb{P}^3