University of Toronto at Scarborough Department of Computer & Mathematical Sciences

MAT B41H 2007/2008

Term Test Solutions

1. $f(x,y) = \sqrt{4x^2 + y^2}$. Domain is \mathbb{R}^2 . Putting f(x,y) = c we have $\sqrt{4x^2 + y^2} = c$. For c = 0, the level curve is the point (0,0). For c > 0, we have $4x^2 + y^2 = c^2$, which is a family of ellipses, centered at (0,0) with intercepts $\left(0, \pm \frac{c}{2}\right)$ and $\left(\pm c, 0\right)$. (The graph of f is an ellipitical cone opening upward.)

- 2. (a) $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4}$. Evaluating along the line y=0, we have $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4} = \lim_{x\to 0} \frac{0}{x^2} = 0, \text{ but along the curve } x=y^2, \text{ we have } \\ \lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^4} = \lim_{x\to 0} \frac{x^2}{2\,x^2} = \frac{1}{2} \neq 0. \text{ Hence this limit does not exist.}$
 - (b) $\lim_{(x,y)\to(0,0)} f(x,y)$ when $f(x,y) = \begin{cases} \frac{x \sin(xy)}{y} &, \text{ if } y \neq 0 \\ 0 &, \text{ if } y = 0 \end{cases}$. Evaluating along the line y = 0, we have $\lim_{(x,y)\to(0,0)} f(x,y) = 0$. If x = 0, $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{y\to 0} \frac{0}{y} = 0$. Now, if $y \neq 0$ and $x \neq 0$, we have $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x \sin(xy)}{y} = \lim_{(x,y)\to(0,0)} (x^2) \left(\frac{\sin(xy)}{xy}\right) = (0)(1) = 0$ since $\lim_{t\to 0} \frac{\sin t}{t} = 1$ from single variable calculus. Hence $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.
- 3. For f to be continuous at (0,0), we need $\lim_{(x,y)\to(0,0)} f(x,y) = 1 = f(0,0)$. Now $\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{(x,y)\to(0,0)} \frac{x^4 y^4}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \frac{\left(x^2 + y^2\right)\left(x^2 y^2\right)}{x^2 + y^2} = \lim_{(x,y)\to(0,0)} \left(x^2 y^2\right) = 0 \neq 1 = f(0,0)$. Hence we conclude that f is not continuous at (0,0).

MATB41H Term Test Solutions page 2

- 4. (a) Let $A \subset \mathbb{R}^n$. A point $\mathbf{a} \in A$ is called an *interior point of* A if $B_r(\mathbf{a}) \subset A$, for some r > 0. $(B_r(\mathbf{a})$ is an open ball of radius r centered at \mathbf{a} .)
 - (b) $B \subset \mathbb{R}^n$ is closed if $\mathbb{R}^n B$ is open. $(X \subset \mathbb{R}^n \text{ is open if every point in } X \text{ is an interior point.})$
 - (c) $C \subset \mathbb{R}^n$ is said to be *bounded* if C can be contained in an open ball, $B_R(\mathbf{0})$, for sufficiently large R, or, if $||\mathbf{x}|| < M$, for some $M \in \mathbb{R}$, for each $\mathbf{x} \in C$.
 - (d) $D \subset \mathbb{R}^n$ is said to be *compact* if it is closed and bounded.
- 5. (a) The rate of change is given by the directional derivative of E at $\mathbf{p} = (3, 4, 5)$ in direction $\mathbf{v} = (1, 1, -1)$. Now $\nabla E = (10x 3y + yz, -3x + xz, xy)$ and $\nabla E (3, 4, 5) = (38, 6, 12)$ so $D_{\mathbf{v}}E(\mathbf{p}) = \nabla E (3, 4, 5) \cdot \left(\frac{1}{\|(1, 1, -1)\|}\right)(1, 1, -1) = \frac{(38, 6, 12) \cdot (1, 1, -1)}{\sqrt{3}} = \frac{32}{\sqrt{3}}$.
 - (b) The most rapid change is in the direction of the gradient; i.e., in direction ∇E (3, 4, 5) = (38, 6, 12).
 - (c) The maximum rate of change at \boldsymbol{p} is $D_{\nabla E}E(\boldsymbol{p}) = \frac{\nabla E(3,4,5) \cdot \nabla E(3,4,5)}{\|\nabla E(3,4,5)\|} = \|\nabla E(3,4,5)\| = \|(38,6,12)\| = \sqrt{38^2 + 6^2 + 12^2} = 2\sqrt{406}.$
- 6. (a) We put $\mathbf{p} = (1,0,4)$. Two direction vectors for π are (2,-1,0) (1,0,4) = (1,-1,-4) and (3,1,2) (1,0,4) = (2,1,-2). A normal vector for π is $\mathbf{n} = (1,-1,-4)\times(2,1,-2) = (6,-6,3)$. An equation for π is of the form 6x-6y+3z = d. Since (1,0,4) is a point on π , d = 6(1) 6(0) + 3(4) = 18. An equation for π is 2x 2y + z = 6.
 - (b) Since ℓ is orthogonal to π , a normal vector for π is a direction vector \boldsymbol{v} for ℓ . A parametric description for ℓ is $(1,1,1)+t\,\boldsymbol{v}=(1,1,1)+t\,(2,-2,1),\,t\in\mathbb{R}$.
 - (c) We note that two planes are parallel if their normals are parallel. A normal for a tangent plane to the ellipsoid is given by the gradient, $\nabla g = (8x, 16y, 8z)$, of the level surface $g(x,y,z) = 4x^2 + 8y^2 + 4z^2 7 = 0$. For the tangent plane to be parallel to π , we need $(8x, 16y, 8z) = \lambda (2, -2, 1)$, where (2, -2, 1) is a normal for π . Equating components we have $x = \frac{\lambda}{4}$, $y = -\frac{\lambda}{8}$ and $z = \frac{\lambda}{8}$. To solve for λ we substitute these into the equation of the ellipsoid, giving $4x^2 + 8y^2 + 4z^2 = 4\left(\frac{\lambda^2}{16}\right) + 8\left(\frac{\lambda^2}{64}\right) + 4\left(\frac{\lambda^2}{64}\right) = \frac{\lambda^2}{4} + \frac{\lambda^2}{8} + \frac{\lambda^2}{16} = 7 \implies 4\lambda^2 + 2\lambda^2 + \lambda^2 = (7)(16) \implies 7\lambda^2 = (7)(16) \implies \lambda = \pm 4$. The required points are $\left(1, -\frac{1}{2}, \frac{1}{2}\right)$ and $\left(-1, \frac{1}{2}, -\frac{1}{2}\right)$.

- 7. (a) For a function $f: \mathbb{R}^2 \to \mathbb{R}$ the equation of the tangent plane at (a,b) is $z=f(a,b)+\frac{\partial f}{\partial x}(a,b)\,(x-a)+\frac{\partial f}{\partial y}(a,b)\,(y-b)$. Here we have $f_x=-2x,\,f_x\,(1,1)=-2$; $f_y=-4y,\,f_y\,(1,1)=-4$ and f(1,1)=-2. Hence the equation of the tangent plane is z=-2+(-2)(x-1)+(-4)(y-1)=-2-2x+2-4y+4=-2x-4y+4, which can be rewritten as 2x+4y+z=4.
 - (b) To find the equation of the tangent plane to the surface given by $z^2 2x^2 2y^2 = 12$ at (1, -1, 4) we regard the surface as a level set of $g(x, y, z) = z^2 2x^2 2y^2 12$. Now $\nabla g = (-4x, -4y, 2z)$; hence a normal vector at (1, -1, 4) is $\nabla g(1, -1, 4) = (-4, 4, 8)$. The equation of the tangent plane is given by $0 = \nabla g(1, -1, 4) \cdot ((x, y, z) (1, -1, 4)) = (-4, 4, 8) \cdot (x 1, y + 1, z 4) = -4x + 4y + 8z 24$ which we can rewrite as -x + y + 2z = 6.
- 8. (a) From the lecture notes we have

Chain Rule. Let $f: U \subset \mathbb{R}^n \to \mathbb{R}^m$ and $g: V \subset \mathbb{R}^m \to \mathbb{R}^k$ be given functions such that $f[U] \subset V$ so that $g \circ f$ is defined. Let $\mathbf{a} \in \mathbb{R}^n$ and $\mathbf{b} = f(\mathbf{a}) \in \mathbb{R}^m$. If f is differentiable at \mathbf{a} and g is differentiable at \mathbf{b} , then $g \circ f$ is differentiable at \mathbf{a} and

$$D(g \circ f)(\boldsymbol{a}) = [Dg(\boldsymbol{b})][Df(\boldsymbol{a})].$$

(b)
$$f: \mathbb{R}^4 \to \mathbb{R}^3$$
 is given by $f(x, y, z, w) = (xzw, y^2w^3, x^2z)$ so $Df = \begin{pmatrix} zw & 0 & xw & xz \\ 0 & 2yw^3 & 0 & 3y^2w^2 \\ 2xz & 0 & x^2 & 0 \end{pmatrix}$.

$$g: \mathbb{R}^3 \to \mathbb{R}^3$$
 is given by $g(x, y, z) = (ye^x, yz^2, x + yz)$ so $Dg = \begin{pmatrix} ye^x & e^x & 0 \\ 0 & z^2 & 2yz \\ 1 & z & y \end{pmatrix}$

and
$$D g(f(x, y, z)) = \begin{pmatrix} y^2 w^3 e^{xzw} & e^{xzw} & 0\\ 0 & x^4 z^2 & 2x^2 y^2 z w^3\\ 1 & x^2 z & y^2 w^3 \end{pmatrix}$$
.

Now $D(g \circ f)(x, y, z, w) = [D g(f(x, y, z, w))] [D f(x, y, z, w)]$

$$= \begin{pmatrix} y^2 w^3 e^{xzw} & e^{xzw} & 0\\ 0 & x^4 z^2 & 2x^2 y^2 z w^3\\ 1 & x^2 z & y^2 w^3 \end{pmatrix} \begin{pmatrix} zw & 0 & xw & xz\\ 0 & 2yw^3 & 0 & 3y^2 w^2\\ 2xz & 0 & x^2 & 0 \end{pmatrix}$$

$$= \begin{pmatrix} y^2 z w^4 e^{xzw} & 2y w^3 e^{xzw} & xy^2 w^4 e^{xzw} & xy^2 z w^3 e^{xzw} + 3y^2 w^2 e^{xzw} \\ 4x^3 y^2 z^2 w^3 & 2x^4 y z^2 w^3 & 2x^4 y^2 z w^3 & 3x^4 y^2 z^2 w^2 \\ zw + 2xy^2 z w^3 & 2x^2 y z w^3 & xw + x^2 y^2 w^3 & xz + 3x^2 y^2 z w^2 \end{pmatrix}$$

- 9. Using the Chain Rule we have $\frac{\partial f}{\partial v} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial v} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial v} = e^w \frac{\partial f}{\partial x} + w e^v \frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial w} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial w} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial w} = v e^w \frac{\partial f}{\partial x} + e^v \frac{\partial f}{\partial y}$.
- 10. Recall $\cos t = \sum_{k=0}^{\infty} (-1)^k \frac{t^{2k}}{(2k)!}$, $|t| < \infty$, so $\cos(xy) = 1 \frac{x^2y^2}{2!} + \frac{x^4y^4}{4!} \cdots$, and also recall $\ln(1+t) = \sum_{k=0}^{\infty} (-1)^k \frac{t^{k+1}}{k+1}$, |t| < 1, so $\ln(1+x^2) = x^2 \frac{x^4}{2} + \frac{x^6}{3} \cdots$. Hence a Taylor series for $\cos(xy) \ln(1+x^2)$ is $T = \left(1 \frac{x^2y^2}{2!} + \frac{x^4y^4}{4!} \cdots\right) \left(x^2 \frac{x^4}{2} + \frac{x^6}{3} \cdots\right)$. The 4th degree Taylor polynomial about (0,0) is $T_4 = x^2 \frac{x^4}{2}$.