Deep Learning for Natural Language Processing

Cornelia Caragea

Computer Science University of Illinois at Chicago

Credits for slides: Piyush Rai, Andrew Ng

Basics of Machine Learning

Today

Lecture Structure:

- Fundamental Problems of Learning
- Univariate Linear Regression
- Gradient Descent
- Multivariate Linear Regression

Required reading: DL Section 4.3

Three Fundamental Problems of Learning

- Regression: Learning to predict continuous outputs associated with given observations
 - Example: how long does it take to bike to Northampton? How much does it cost to visit Florida? How much money can I make if do a PhD in CS?
- Classification: Learning to predict discrete labels associated with given observations.
 - Binary classification: positive vs. negative examples
 - Multiclass classification: digit recognition
- Unsupervised learning: Learning to group objects into categories, without any training labels.
 - Examples: density estimation, clustering

Regression

Plot of a training data set of N=10 points, shown as blue circles, each comprising an observation of the input variable x along with the corresponding target variable t. The green curve shows the function $\sin(2\pi x)$ used to generate the data. Our goal is to predict the value of t for some new value of x, without knowledge of the green curve.

Linearly Separable Classification

Unsupervised Learning

Supervised learning

Unsupervised learning

Linear Regression with One Variable

Linear Regression: One-Dimensional Case

Regression: we observe a real-valued input x and we wish to use x to predict the value of a real-valued target t (or y).

- Given: a set of N input-target pairs
 - The inputs (x) and targets (y) are one dimensional scalars
- Goal: Model the relationship between x and y

Linear Regression: One-Dimensional Case

- Assumption: the relationship between x and y is linear
- ullet Linear relationship defined by a straight line with parameter w
- Equation of the straight line: $y = wx \ (y = w_0 + w_1x_1)$

- The line may not fit the data exactly
- But we can try making the line a reasonable approximation

Example - House Price Prediction

Example - House Price Prediction

Data Representation

Training set of housing prices (Portland, OR):

Size in $\mathbf{feet}^2(x)$	Price ($\$$) in 1000 's (y)
2104	460
1416	232
1534	315
852	178
• • •	

Notation:

- N = number of training examples
- x's = "input" variable / features
- y's = "output" variable / "target" variable
- \bullet (x,y) one training example
- $(x^{(i)}, y^{(i)})$ the i^{th} training example

Model Representation

Model Representation

How do we represent h?

$$h_w(x) = w_0 + w_1 x$$

Regression: Estimating $h_w(x)$ of x that minimizes a cost function.

Model Representation

Training set of housing prices (Portland, OR):

Size in $feet^2(x)$	Price ($\$$) in 1000 's (y)
2104	460
1416	232
1534	315
852	178
• • •	

Hypothesis: $h_w(x) = w_0 + w_1 x$

- ullet Model parameters: w_i 's
- How to choose w_i 's?

Hypothesis

$$h_w(x) = w_0 + w_1 x$$

Hypothesis

$$h_w(x) = w_0 + w_1 x$$

Hypothesis

$$h_w(x) = w_0 + w_1 x$$

How to choose a hypothesis?

Intuition

Idea: Choose w_0 , w_1 s.t. $h_w(x)$ is close to y for our training examples (x,y).

- Error for the pair (x_i, y_i) pair: $e_i = y_i wx_i$
- The total squared error:

$$E = \frac{1}{2N} \sum_{i=1}^{N} e_i^2 = \frac{1}{2N} \sum_{i=1}^{N} (y_i - wx_i)^2$$

 $\bullet \ \ \ \ \, \text{The best fitting line is defined by } w \\ \ \, \underset{\text{minimizing the total error } E$

The Cost Function

Idea: Choose w_0 , w_1 s.t. $h_w(x)$ is close to y for our training examples (x, y).

$$\min_{w_0, w_1} \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2,$$

where

$$h_w(x) = w_0 + w_1 x$$

$$E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2,$$

Hence,

$$\min_{w_0, w_1} E(w_0, w_1),$$

Cost Function Intuition

Hypothesis:

$$h_w(x) = w_0 + w_1 x$$

Parameters:

Cost Function:

$$E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2,$$

Goal:

$$\min_{w_0,w_1} E(w_0,w_1),$$

Simplified:

Hypothesis:

$$h_w(x) = w_1 x, w_0 = 0$$

Parameters:

Cost Function:

$$E(w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2,$$

Goal:

$$\min_{w_1} E(w_1),$$

$$h_w(x)$$

(for fixed w_1 , this is a function of x)

$$E(w_1)$$
 (function of the parameter w_1)

$$E(w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2 = \frac{1}{2N} \sum_{i=1}^{N} (w_1 x_i - y_i)^2$$
$$= \frac{1}{2N} (0^2 + 0^2 + 0^2) = 0$$

$$h_w(x)$$

(for fixed w_1 , this is a function of x)

 $E(w_1)$ (function of the parameter w_1)

$$E(w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2 = \frac{1}{2N} \sum_{i=1}^{N} (w_1 x_i - y_i)^2$$
$$= \frac{1}{2N} (0^2 + 0^2 + 0^2) = 0$$

$h_w(x)$ (for fixed w_1 , this is a function of x)

 $E(w_1)$ (function of the parameter w_1)

$$E(0.5) = \frac{1}{2N} \left[(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \right]$$
$$= \frac{1}{2 \times 3} (3.5) \approx 0.58$$

$h_w(x)$ (for fixed w_1 , this is a function of x)

 $E(w_1)$ (function of the parameter w_1)

$$E(0.5) = \frac{1}{2N} \left[(0.5 - 1)^2 + (1 - 2)^2 + (1.5 - 3)^2 \right]$$
$$= \frac{1}{2 \times 3} (3.5) \approx 0.58$$

$h_w(x)$ (for fixed w_1 , this is a function of x)

$$E(w_1)$$
 (function of the parameter w_1)

$$E(0) = \frac{1}{2N} \left[1^2 + 2^2 + 3^2 \right]$$
$$= \frac{1}{2 \times 3} (14) \approx 2.3$$

$$h_w(x)$$

(for fixed w_1 , this is a function of x)

$$E(w_1)$$
 (function of the parameter w_1)

$$E(0) = \frac{1}{2N} \left[1^2 + 2^2 + 3^2 \right]$$
$$= \frac{1}{2 \times 3} (14) \approx 2.3$$

 $h_w(x_i)$

X

3

0

0

How to minimize E(w)?

 w_1

Cost Function Intuition - Unsimplified Version

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

 θ_0, θ_1

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: $\underset{\theta_0,\theta_1}{\operatorname{minimize}} J(\theta_0,\theta_1)$

Simplified

$$h_{\theta}(x) = \theta_1 x$$

$$\theta_0 = 0$$

$$\theta_1$$

$$h(x)$$

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $\underset{\theta_1}{\text{minimize}} J(\theta_1)$

Notice the change in notation.

Gradient Descent

How to minimize our cost function?

Given: Some function $E(w_0, w_1)$ Want: $\min_{w_0, w_1} E(w_0, w_1)$

Outline:

- Start with some w_0, w_1
- Keep changing w_0, w_1 to reduce $E(w_0, w_1)$ until hopefully we end up at a minimum

Gradient Descent Algorithm

```
repeat until convergence { w_j:=w_j-\alpha\frac{\partial}{\partial w_j}E(w_0,w_1) (for j=0 and j=1) }
```

- ullet α the learning rate
- ullet $\frac{\partial}{\partial w_i} E(w_0, w_1)$ derivative of E.

Correct: Simultaneous update

$$\begin{split} & \mathsf{temp0} := w_0 - \alpha \frac{\partial}{\partial w_0} E(w_0, w_1) \\ & \mathsf{temp1} := w_1 - \alpha \frac{\partial}{\partial w_1} E(w_0, w_1) \\ & w_0 := \mathsf{temp0} \\ & w_1 := \mathsf{temp1} \end{split}$$

Incorrect

$$\begin{array}{l} \operatorname{temp0} := w_0 - \alpha \frac{\partial}{\partial w_0} E(w_0, w_1) \\ w_0 := \operatorname{temp0} \\ \operatorname{temp1} := w_1 - \alpha \frac{\partial}{\partial w_1} E(w_0, w_1) \\ w_1 := \operatorname{temp1} \end{array}$$

Gradient Descent Algorithm

```
repeat until convergence { w_j:=w_j-\alpha\frac{\partial}{\partial w_j}E(w_0,w_1) (for j=0 and j=1) }
```

- ullet α the learning rate
- ullet $\frac{\partial}{\partial w_i} E(w_0, w_1)$ derivative of E.

Correct: Simultaneous update

```
\begin{array}{l} \mathsf{temp0} := w_0 - \alpha \frac{\partial}{\partial w_0} E(w_0, w_1) \\ \mathsf{temp1} := w_1 - \alpha \frac{\partial}{\partial w_1} E(w_0, w_1) \\ w_0 := \mathsf{temp0} \\ w_1 := \mathsf{temp1} \end{array}
```

Incorrect

```
\begin{array}{l} \operatorname{temp0} := w_0 - \alpha \frac{\partial}{\partial w_0} E(w_0, w_1) \\ w_0 := \operatorname{temp0} \\ \operatorname{temp1} := w_1 - \alpha \frac{\partial}{\partial w_1} E(w_0, w_1) \\ w_1 := \operatorname{temp1} \end{array}
```

- If α is too small, gradient descent can be slow.
- ullet If lpha is too large, gradient descent can overshoot the minimum. It may fail to converge, or even diverge.

General Cost Function

In the general case, cost function may have multiple local minima.

Gradient Descent for Linear Regression

Gradient Descent Algorithm for the Linear Regression Model

```
repeat until convergence { w_j := w_j - \alpha \frac{\partial}{\partial w_j} E(w_0, w_1) (for j=0 and j=1) }
```

where

$$h_w(x) = w_0 + w_1 x$$

$$E(w_0, w_1) = \frac{1}{2N} \sum_{i=1}^{N} (h_w(x_i) - y_i)^2$$

$$\frac{\partial}{\partial w_j} E(w_0, w_1) = \frac{\partial}{\partial w_j} \frac{1}{2N} \sum_{i=1}^N (h_w(x_i) - y_i)^2$$
$$= \frac{\partial}{\partial w_j} \frac{1}{2N} \sum_{i=1}^N (w_0 + w_1 x_i - y_i)^2$$

$$j = 0 : \frac{\partial}{\partial w_0} E(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (h_w(x_i) - y_i)$$
$$j = 1 : \frac{\partial}{\partial w_1} E(w_0, w_1) = \frac{1}{N} \sum_{i=1}^{N} (h_w(x_i) - y_i) x_i$$

Gradient Descent for Linear Regression

Gradient Descent Algorithm for the Linear Regression Model

```
repeat until convergence {  w_0 := w_0 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x_i) - y_i \right) \\ w_1 := w_1 - \alpha \frac{1}{N} \sum_{i=1}^N \left( h_w(x_i) - y_i \right) x_i  }
```

Update w_0 and w_1 simultaneously.

Univariate Linear Regression as a Neural Network: Linear Perceptron

Multivariate Linear Regression

Linear Regression: In Higher Dimensions

- Analogy to line fitting: In higher dimensions, fit hyperplanes
- For 2-dim. inputs, linear regression fits a 2-dim. plane to the data

- Many planes are possible. Which one is the best?
- ullet Intuition: Choose the one closest to the targets y
 - Linear regression uses the sum-of-squared error notion of closeness
- Similar intuition carries over to higher dimensions too
 - Fitting a *D*-dimensional hyperplane to the data (hard to visualize)
- The hyperplane is defined by parameters \mathbf{w} (a $D \times 1$ weight vector)

Example - House Price Prediction

Multiple features (variables):

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
X ₁	X ₂	X ₃	X ₄	у
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

Notation:

- n = number of features
- ullet $x^{(i)} = \text{input (features) of the } i^{th} \text{ training example}$
- $ullet x_j^{(i)} = ext{value of feature } j ext{ in the } i^{th} ext{ training example}$

Model Representation

Previously: $h_w(x) = w_0 + w_1 x$

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

Model Representation

Previously: $h_w(x) = w_0 + w_1 x$

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

$$h_w(x) = 80 + 0.1 x_1 + 0.001 x_2 + 3x_3 + 2x_4$$

Model Representation

Previously: $h_w(x) = w_0 + w_1 x$

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 x_4$$

$$h_w(x) = 80 + 0.1 x_1 + 0.001 x_2 + 3x_3 + 2x_4$$

More generally,

$$h_w(x) = w_0 + w_1 x_1 + w_2 x_2 + \cdots + w_n x_n$$

For convenience of notation, define $x_0 = 1$. Hence,

$$h_w(x) = \sum_{j=0}^n w_j x_j = \mathbf{w}^T \mathbf{x} = [w_0 w_1 \cdots w_n] \begin{bmatrix} x_0 \\ x_1 \\ \dots \\ x_n \end{bmatrix}$$

Linear Regression: In Higher Dimensions (Formally)

- \bullet Given training data $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- Inputs $\mathbf{x}^{(i)}$: n-dimensional vectors (R^n) , targets $y^{(i)}$: scalars (R)
- In the linear model: target is a linear function of the model parameters

$$y = h_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{j=1}^n w_j x_j = w_0 + \mathbf{w}^T \mathbf{x}$$

- \bullet $\mathbf{x} = [x_1, \cdots, x_n]$
- w_j 's and w_0 are the model parameters (w_0 is an offset)
 - $\mathbf{w} = [w_1, \cdots, w_n]$, the **weight vector** (to be learned from \mathcal{D})
 - Parameters define the mapping from the inputs to targets

Linear Regression: In Higher Dimensions (Formally)

- \bullet Given training data $\mathcal{D} = \{(\mathbf{x}^{(1)}, y^{(1)}), \cdots, (\mathbf{x}^{(N)}, y^{(N)})\}$
- Inputs $\mathbf{x}^{(i)}$: n-dimensional vectors (R^n) , targets $y^{(i)}$: scalars (R)
- In the linear model: target is a linear function of the model parameters

$$y = h_{\mathbf{w}}(\mathbf{x}) = w_0 + \sum_{j=1}^{n} w_j x_j = w_0 + \mathbf{w}^T \mathbf{x}$$

- \bullet $\mathbf{x} = [x_1, \cdots, x_n]$
- w_j 's and w_0 are the model parameters (w_0 is an offset)
 - $\mathbf{w} = [w_1, \cdots, w_n]$, the **weight vector** (to be learned from \mathcal{D})
 - Parameters define the mapping from the inputs to targets

How to choose w?

Linear Regression: Gradient Descent Solution

 One solution: Iterative minimization of the cost function Cost Function:

$$E(w_0, w_1, \dots, w_n) = \frac{1}{2N} \sum_{i=1}^{N} \left(h_w(x^{(i)}) - y^{(i)} \right)^2,$$

Goal:

$$\min_{w_0,w_1,\cdots,w_n} E(w_0,w_1,\cdots,w_n),$$

- How: Using Gradient Descent (GD)
- A general recipe for iteratively optimizing similar loss functions
- Gradient Descent rule:
 - Initialize the weight vector $\mathbf{w} = \mathbf{w}^0$
 - Update ${\bf w}$ by moving along the direction of negative gradient $-\frac{\partial E}{\partial {\bf w}}$

Linear Regression: Gradient Descent Solution

- Initialize $\mathbf{w} = \mathbf{w}^0$
- Repeat until convergence:

$$w_j := w_j - \alpha \frac{\partial E}{\partial w_j}$$
$$:= w_j - \alpha \frac{1}{N} \sum_{i=1}^{N} (\mathbf{w}^T \mathbf{x}^{(i)} - y^{(i)}) \mathbf{x}_j^{(i)}$$

- Simultaneously update for every $j = 0, \dots, n$
- ullet α is the learning rate
- **Stop:** When some criteria is met (e.g., max. # of iterations), or the rate of decrease of E falls below some threshold.

Gradient Descent for Linear Regression

Gradient Descent for Univariate Linear Regression

n=1

```
repeat until convergence {  w_0 := w_0 - \alpha \frac{1}{N} \sum_{i=1}^N \left(h_w(x^{(i)}) - y^{(i)}\right) \\ w_1 := \\ w_1 - \alpha \frac{1}{N} \sum_{i=1}^N \left(h_w(x^{(i)}) - y^{(i)}\right) x^{(i)} \\ \}
```

Update w_0 and w_1 simultaneously.

Gradient Descent for Multivariate Linear Regression

n > 1

```
 \begin{array}{l} \text{repeat until convergence } \{ & w_0 := \\ w_0 - \alpha \frac{1}{N} \sum_{i=1}^{N} \left( h_w(x^{(i)}) - y^{(i)} \right) x_0^{(i)} \\ w_1 := \\ w_1 - \alpha \frac{1}{N} \sum_{i=1}^{N} \left( h_w(x^{(i)}) - y^{(i)} \right) x_1^{(i)} \\ w_2 := \\ w_2 - \alpha \frac{1}{N} \sum_{i=1}^{N} \left( h_w(x^{(i)}) - y^{(i)} \right) x_2^{(i)} \\ \vdots \\ w_n := \\ w_n - \alpha \frac{1}{N} \sum_{i=1}^{N} \left( h_w(x^{(i)}) - y^{(i)} \right) x_n^{(i)} \\ \} \end{array}
```

Update w_0, w_1, \cdots, w_n simultaneously.

Practical Advise: Learning Rate

- To choose α , try:
 - $\bullet \cdots, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1, \cdots$

Practical Advice: Feature Scaling

- When using multivariate linear regression, make sure that the features are on a similar scale.
- Ideally, features should be in the [-1,1] interval.
- Otherwise, the gradient descent can take a long time to find the global minimum.
- E.g., if $x_1 = \text{size } (0 2000 \text{ feet})$ and $x_2 = \text{number of bedrooms } (1-5)$

Multivariate Linear Regression as a Neural Network: Linear Perceptron

Summary

We discussed:

- Fundamental Problems of Learning
- Univariate Linear Regression
- Gradient Descent
- Multivariate Linear Regression