Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ» (ФГБОУ ВО «НИУ «МЭИ»)

Институт радиотехники и электроники им. В.А. Котельникова Кафедра формирования и обработки радиосигналов

Лабораторная работа №2 «Моделирование дискретных сигналов»

Дисциплина: Цифровая обработка сигналов

Группа: ЭР-11-21

Студент: Тимохин С.А.

Вариант: 15

Преподаватель: Торопчин Д.С.

Цель лабораторной работы

Освоить способы описания дискретных сигналов и методики их моделирования. Изучить способ формирования дискретных сигналов с помощью дискретных фильтров и определение спектральной плотности таких сигналов.

Домашняя подготовка

Таблица 1 - Данные

№ п/п	ФИО	Вещественная посл.	p	M
15	Тимохин С.А.	$x(nT) = \{-0.5, 1, 3, -2\}$	7	3

1. Вещественная дискретная последовательность

Рисунок 1 — Графики x(n), $|X(e^{j\phi})|$, $arg~X(e^{j\phi})$, $real[X(e^{j\phi})]$, $img[X(e^{j\phi})]$

$$\begin{split} &\chi(n\tau) = \left\{-0.5; 1; 3; -2\right\} \quad \text{p-$7} \quad \text{$M$-$3} \\ & \text{g-$8 byte byte warms of popular yours greams - unique col}; \\ &\chi(n\tau) = \sum_{K=0}^{\infty} \chi(\kappa\tau) \int_{0}^{\infty} (n\tau - \kappa\tau) = -0.5 \int_{0}^{\infty} (n\tau) + 1 \int_{0}^{\infty} (n\tau - \tau) + 1 \int_{0}^{$$

2. Периодическая дискретная последовательность

2- popula repusque event roalegobarneus comu: $X(z) = X_1(z)(X_{M\Pi}(z)) = (-0.5 + 2^{-1} + 3z^{-2} - 2z^{-3})(1+z^{-1})$ Om zanual 6 buge 2-popula repeigelle K chermpaus with members repergurea von roalegobarneus warnu: $X(e^{j\omega t}) = X_1(e^{j\omega t}) X_{M\Pi}(e^{j\omega t}) = (-0.5 + e^{-j\omega t} + 3e^{-j\omega 2t} - 2e^{j\omega 3t})(1+e^{-j\omega t})$

Рисунок 2 — График $X_1e^{j\omega T}X_{\rm M\Pi}e^{j\omega T}$, $|fft(X_1e^{j\omega T}X_{\rm M\Pi}e^{j\omega T})|$

Рисунок 3 — Графики $phase(X_1e^{j\omega T}X_{\rm MII}e^{j\omega T})$, $phase(X(e^{j\phi}))$

3. Выполнение работы

3.1 Составление функциональной схемы для моделирования вещественного дискретного сигнала. Временной анализ дискретного сигнала.

График 4 - Схема для моделирования x(n)

График 5 – Дискретная последовательность x(n)

3.2 Моделирование вещественной последовательности в частотной области. Расчёт модуля, аргумента, действительной и мнимой составляющих спектральной плотности.

Рисунок 6 — Графики x(n), $|X(e^{j\phi})|$, $arg\ X(e^{j\phi})$, $real[X(e^{j\phi})]$, $img[X(e^{j\phi})]$

3.3 Составление функциональной схемы для моделирования периодического дискретного вещественного сигнала. Временной анализ дискретного периодического сигнала.

Рисунок 7 - Схема для моделирования периодического дискретного сигнала

График 8 — Дискретная периодическая последовательность $\, \, c \,$ параметрами $\, P = 7, \, M = 3 \,$

3.4 Моделирование вещественной последовательности в частотной области. Расчёт модуля, аргумента, действительной и мнимой составляющих спектральной плотности

Рисунок 9 $-\left|\left(X_1e^{j\omega T}X_{\mathrm{M}\Pi}e^{j\omega T}\left(e^{j\phi}\right)\right|$, $arg\left[X_1e^{j\omega T}X_{\mathrm{M}\Pi}e^{j\omega T}\right]$

4. Вывод

Я освоил способы описания дискретных сигналов и методики их моделирования. Изучил способ формирования дискретных сигналов в программе micro-cap. Изучил спектр и фазу дискретного сигнала и периодического дискретного сигнала. После перемножения двух спектров, получим результирующий спектр периодической последовательности. Уровень сигнала на нулевой частоте равен сумме импульсов, а т.к. последовательность периодична, это можно записать через формулу:

$$A_0 = \sum_{n=0}^{PM} x(nT) = 4.5$$