Name:

Linear Algebra: Quiz 7

Show ALL work, as unjustified answers may receive no credit. Calculators are not allowed on any quiz or test paper. Make sure to exhibit skills discussed in class. Box all answers and clean up answers as much as possible.

1. Vector Spaces & Subspaces (4.1)

[2pts] Find all values of h such that \vec{y} will be in the subspace spanned by $\overrightarrow{v_1}$, $\overrightarrow{v_2}$, $\overrightarrow{v_3}$ if:

$$\overrightarrow{v_1} = \begin{bmatrix} 1 \\ 2 \\ -4 \end{bmatrix}, \qquad \overrightarrow{v_2} = \begin{bmatrix} 3 \\ 4 \\ -8 \end{bmatrix}, \qquad \overrightarrow{v_1} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}, \qquad \overrightarrow{y} = \begin{bmatrix} 4 \\ 2 \\ h \end{bmatrix}$$

2. Null Space, Column Space, & Linear Transformations (4.2) & Basis (4.3)

Define a Linear Transformation $T: \mathbb{R}^4 \to \mathbb{R}^3$ by $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}\right) = \begin{bmatrix} x_1 + x_2 \\ x_2 - x_3 \\ x_1 + x_4 \end{bmatrix}$.

- (a) [2pts] Find the Null Space of T
- (b) [2pts] Find the Column Space of T
- (c) [2pts] Find the Basis for the Null Space of T
- (d) [2pts] Find the Basis for the Column Space of *T*
- * The Column Space of T is Col(A) & the Null Space of T is the Nul(A), where A is the Standard Matrix of T *

Name:

Linear Algebra: Quiz 8

Show ALL work, as unjustified answers may receive no credit. Calculators are not allowed on any quiz or test paper. Make sure to exhibit skills discussed in class. Box all answers and clean up answers as much as possible.

1. Coordinate Systems (4.4)

[4pts] Use the coordinate vectors to determine whether the given polynomials are Linearly Dependent in \mathbb{P}_2 . Let \mathcal{B} be the Standard Basis of the space \mathbb{P}_2 of polynomials, that is $\mathcal{B} = \{\ 1, t, t^2\ \}$:

$$1+2t$$
 , $3+6t^2$, $1+3t+4t^2$

2. The Dimensions of a Vector (4.5)

Consider the matrix:

$$A = \begin{bmatrix} 1 & -2 & 3 & 1 & 0 & 5 & -4 \\ 0 & 0 & 1 & -6 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) [3pts] Find the Basis and Dimension of the Column Space of A.
- (b) [3pts] Find the Basis and Dimension of the Null Space of *A*.

Name:

Linear Algebra: Quiz 9

Show ALL work, as unjustified answers may receive no credit. Calculators are not allowed on any quiz or test paper. Make sure to exhibit skills discussed in class. Box all answers and clean up answers as much as possible.

1. **Change of Basis (4.7)**

Let
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}$$
 and $\mathcal{C} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$ be two Bases for \mathbb{R}^3 .

- (a) [3pts] Find the Change of Coordinates Matrix from ${\mathcal B}$ to ${\mathcal C}$.
- (b) [3pts] Find the Change of Coordinates Matrix from ${\mathcal C}$ to ${\mathcal B}$.

(c) [4pts] Let
$$\vec{x}$$
 be a vector in \mathbb{R}^3 , such that $[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$. Find \vec{x} and $[\vec{x}]_{\mathcal{C}}$