Prof. Jefferson T. Oliva jeffersonoliva@utfpr.edu.br

Processamento de Imagens Engenharia de Computação Departamento Acadêmico de Informática (Dainf) Universidade Tecnológica Federal do Paraná (UTFPR) Campus Pato Branco

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license

Sumário

- Percepção de Padrões
- Reconhecimento de Padrões
- Fases do Reconhecimento de Padrões
- Tipos de Classificadores
- Abordagens de Projeto de Reconhecimento de Padrões

- O reconhecimento de padrões é uma habilidade extremamente desenvolvida nos seres humanos
- O ser humano é hábil em reconhecer rostos, vozes, caligrafias, cor e, até mesmo, estados de humor de pessoas conhecidas
- Esta habilidade também é observável em alguns animais
- O sistema de reconhecimento de padrões humano é extremamente flexível
- O humano é capaz de identificar objetos sob as diferentes condições quando está em observação

- Nível de entrada (global) entry level
 - Análise comparativa global rápida sem necessidade de detalhamento

- Nível subordinado (local) subordinate level
 - Uma discriminação mais refinada requer uma análise perceptual adicional

- Nível individual individual or exemplar level
 - O julgamento requer informações específicas sobre um objeto individual e consequentemente uma análise perceptual mais apurada

Sumário

- Antes de um objeto ser identificado nos vários níveis, a definição do contorno e da superfície devem ser agrupados em regras ou padrões coerentes
- O sistema visual humano executa a análise de características em várias localidades da cena e em diferentes níveis
- Os princípios da organização perceptual são usados para combinar características locais em estruturas mais globais

- Princípios como similaridade e continuidade foram originariamente elucidadas pela Gestalt School of Psychology durante os anos 90 e continua sendo os fundamentos da percepção visual
 - Similaridade: características similares são conjuntamente agrupadas
 - Continuidade: características de uma linha reta ou levemente curvada são conjuntamente agrupadas
 - Além dos princípios elementares, existem outros processos que aparecem para contribuir com a percepção de padrões complexos

Sumário

- A dificuldade de identificação e segmentação de um objeto, em uma cena complexa, pode ser acrescida com a adição de variações das condições de visualização em diferentes intervalos de tempo
- Os sistemas de reconhecimento podem receber imagens com inúmeras mudanças nos parâmetros de visualização, tais como:
 - Oclusão
 - Iluminação
 - Orientação

 Oclusão parcial, mudanças na iluminação, mudanças no ponto de visão e mudanças na configuração

- As fontes de variabilidade afetam a performance dos sistemas de reconhecimento
- O grau de interferência depende do nível de julgamento do sistema
 - Aumentando a similaridade entre o objeto atual e o objeto de interesse, eleva o custo da tarefa de reconhecimento

Exemplo

- Reconhecer: Conhecer novamente o que se tinha conhecido noutro tempo, admitir como verdadeiro, verificar
- Reconhecimento: ato de reconhecer
- Padrão: modelo, molde
- Inteligência artificial: área de estudo onde são desenvolvidos sistemas capazes de realizarem tarefas que normalmente exigem inteligência humana
- Reconhecimento de padrões: trata-se da ciência que descreve ou classifica (reconhece) padrões
- Técnicas de reconhecimento de padrões: são componentes importantes de sistemas inteligentes

- Relação com outras área do conhecimento
 - Inteligência artificial
 - Aprendizado de máquina e aprendizado profundo
 - Otimização
 - Teoria dos autômatos
 - Lógica Fuzzy
 - Linguagens formais
 - ..

- As aplicações em reconhecimento de padrões incluem:
 - Pré-processamento de imagens, segmentação e análise
 - Visão computacional
 - Análise sísmicas
 - Classificação/análise de sinais de radar
 - Reconhecimento de face
 - Reconhecimento/identificação de voz
 - Identificação de digitais (datiloscopia) e outros elementos biométricos
 - Reconhecimento de caracteres (letras e números)

- As aplicações em reconhecimento de padrões incluem:
 - Análise e verificação de manuscritos (textos e assinaturas)
 - Análise e interpretação de eletrocardiogramas e eletroencefalogramas
 - Imagens médicas
 - Linguística
 - ..

- O reconhecimento de padrões pode se caracterizado pelos processos de:
 - Redução de informação
 - Mapeamento da informação
 - Rotulação da informação

- Um sistema de reconhecimento de padrões consiste de:
 - Sensor (sensor para imagem ou câmera, por exemplo)
 - Mecanismo de extração de características (algoritmo)
 - Algoritmo de classificação ou descrição (dependendo da abordagem)
- Em alguns casos, adicionalmente, um conjunto de dados de treinamento pode ser usado

- Pré-tratamento dos dados de entrada
 - Cada sensor possui características próprias que fazem com que os dados fornecidos pelos mesmos sofram alterações a fim de se tornarem usáveis pelos sistemas de reconhecimento
 - A inclusão de distorções, ruídos, entre outros, podem ocasionar perdas de desempenho significativas no processo de reconhecimento
- Padrões e Extração de Características com Exemplos
 - Padrão
 - Pode ser definido como um conjunto de medidas ou observações, podendo ser representado por um vetor ou matriz
 - Podem ser as propriedades que possibilitam o agrupamento de objetos semelhantes dentro de uma determinada classe
 - Características
 - Podem ser definidas como sendo qualquer medida extraível através de algoritmos de extração de características dos dados de entrada

Sumário

- Um sistema para reconhecimento de padrões engloba três grandes etapas:
 - Representação dos dados de entrada e sua mensuração
 - Extração de características
 - 3 Identificação e classificação do objeto em estudo

- Representação dos dados de entrada e sua mensuração
 - Refere-se à representação dos dados de entrada que podem ser mensurados a partir do objeto a ser estudado
 - Essa mensuração deverá descrever padrões característicos do objeto, possibilitando a sua posterior classificação numa determinada classe
 - O vetor que caracteriza perfeitamente um objeto seria de dimensionalidade infinita

• Representação dos dados de entrada e sua mensuração

$$X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ \vdots \\ x_N \end{pmatrix}$$
 $X_1, X_2, X_3, ..., X_N$

Vetor e Características

N número de características

- Extração das características
 - Consiste na extração de características intrínsecas e atributos do objeto e consequente redução da dimensionalidade do vetor padrão
 - A escolha das características é de fundamental importância para um bom desempenho do classificador
- Identificação e classificação do objeto em estudo
 - Envolve a determinação de procedimentos que possibilitem a identificação e classificação do objeto em uma classe de objetos
 - De modo diferente da segunda etapa, aqui a concepção do classificador pode ser abordada de forma abstrata e independente da natureza do problema

• Exemplos de tarefas de classificação

Tarefas de Classificação	Dados de Entrada	Dados de Saída
Reconhecimento de caracteres	Sinais ópticos	Nome do caractere
Reconhecimento de Voz	Voz	Identificação da palavra
Diagnósticos Médicos	Sintomas	Identificação da Patologia
Previsão do tempo	Mapas atmosféricos	Chuva, Sol etc.

- Uma vez extraídas as características, dependendo da aplicação, é necessária a classificação do objeto
- Esta classificação pressupõe a designação do objeto à uma determinada classe
- Nesta etapa, o classificador "aprende" a distinguir dentre as classes, aquela à qual o objeto pertence

Sumário

Tipos de Classificadores

 A classificação é uma tentativa de discriminar objetos de interesse em diferentes classes por meio de características

 As características formal um espaço multidimensional, também denominado espaço de características

- O classificador é uma função que determina a classe da entrada com base em medidas de similaridade no espaço de características
- Os classificadores podem ser divididos nas seguintes categorias
 - Paramétricos: o treinamento do classificador exige amplo conhecimento a priori da estrutura estatística dos padrões da entrada de dados
 - Não paramétricos: O classificador utiliza determinado modelo estatístico, ajustando-se mediante processos adaptativos

- Aprendizado supervisionado
 - O padrão de entrada é identificado como membro de uma classe pré-definida pelos padrões de treinamento

Vetor de Características

- Aprendizado não supervisionado
 - A associação entre padrões se faz com base em similaridades entre os padrões de treinamento

Vetor de Características

Tipos de Classificadores

 A grande dificuldade na implementação de um projeto de reconhecimento de padrões está justamente na escolha da técnica adequada para que as fases do reconhecimento ocorram de modo a representar satisfatoriamente os fenômenos do mundo real Sumário

Abordagens de Projeto de Reconhecimento de Padrões

- As abordagens são desenvolvidas em função da forma como as classes de padrão são categorizadas ou definidas
- Basicamente são três as abordagens de projeto:
 - Rol de membros template matching
 - Propriedades comuns feature matching
 - Agrupamento clustering matching

- A comparação ocorre através de um modelo previamente armazenado cujas características servem de parâmetro de comparação
- Vantagem: procedimento bastante elementar de fácil implementação
- Desvantagem: suscetível a ruídos durante o processo de extração das características

- A imagem do modelo simplesmente desliza sobre a imagem de entrada (como na convolução 2D)
 - A imagem pode ser colorida ou em escala de cinza
- O modelo e o *patch* da imagem de entrada sob a imagem do modelo são comparados
- O resultado obtido é comparado com o limite
 - Caso o resultado seja maior que o limite, a parte será marcada como detectada
- No OpenCV
 - cv2.matchTemplate(img_gray, template, cv2.TM CCOEFF NORMED)

Template matching

 OpenCV fornece vários métodos diferentes de correlação de modelos

SqDiff - Squared difference

$$R(x,y) = \sum_{x',y'} \left(T\left(x',y'\right) - I\left(x+x',y+y'\right)\right)^2$$

SqDiffNormed - Normalized squared difference

$$R(x,y) = \frac{\sum_{x',y'} (T(x',y') - I(x+x',y+y'))^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

CCorr - Cross correlation

$$R(x,y) = \sum_{x',y'} \left(T\left(x',y'\right) \cdot I\left(x+x',y+y'\right) \right)$$

Template matching

 OpenCV fornece vários métodos diferentes de correlação de modelos

CCorrNormed - Normalized cross correlation

$$R(x,y) = \frac{\sum_{x',y'} \left(T\left(x',y'\right) - I\left(x+x',y+y'\right) \right)^2}{\sqrt{\sum_{x',y'} T(x',y')^2 \cdot \sum_{x',y'} I(x+x',y+y')^2}}$$

CCoeff - Cosine coefficient

$$R(x,y) = \sum_{x',y'} \left(T'\left(x',y'\right) \cdot I'\left(x+x',y+y'\right) \right)$$

Where:

$$T'\left(x',y'\right) = T\left(x',y'\right) - 1/(w \cdot h) \cdot \sum_{x'',y''} T\left(x'',y''\right)$$

- A caracterização de padrões por feature matching efetiva-se mediante algumas características principais inerentes aos elementos desta classe
- Padrões pertencentes a uma mesma classe possuirão propriedades comuns de discriminação dessa classe
- O processo de reconhecimento reduz-se simplesmente a estabelecer comparações com os novos objetos submetidos para análise

Feature matching

- Quando os padrões de uma classe são vetores cujos componentes são representações numéricas de características, a classe do padrão pode ser estabelecida segundo formas do agrupamento ou clusters
- Quando as classes são perfeitamente separáveis, técnicas simples de separação podem ser utilizadas

Classes de objetos perfeitamente separáveis

Classes de objetos perfeitamente separáveis

- Caso haja superposição entre os clusters, técnicas mais elaboradas são necessárias, tais como:
 - Classificação por funções similares (métodos estatísticos)
 - Utilização de outros algoritmos mais adequados

Classes de objetos não perfeitamente separáveis

Clustering matching

Classes de objetos não perfeitamente separáveis

Limiares

Referências I

Notas de aula – Classificadores elementares.

UFU. Uberlândia, MG, 2018.

Gonzalez, R. C.; Woods R. E.

Processamento de imagens digitais.

Editora Blucher, 2000.

MOREIRA, K. S.; PATARO, C. D. M.

Reconhecimento de faces empregando-se, PCA, ICA e RNA-um estudo comparativo.

Piemontez R. A.

Detecção de pontos faciais (Facemark) com OpenCV.

Disponível em: https://visaocomputacional.com.br/deteccao-de-pontos-faciais-facemark-com-opencv/, 202024.

Referências II

Prateek, J., Millan, E. D., e Vinivius, G. OpenCV by Example. Packt Publishing, 2016.

Villán, A. F.

Mastering OpenCV 4 with Python.

Packt Publishing, 2019.

Wiggers, K. L.

Notas de aula – Processamento de Imagens: segmentação de imagens.

UTFPR. Pato Branco, PR. 2024.