

# HEXFET® Power MOSFET

| V <sub>DS</sub>                                   | 30  | V          |  |
|---------------------------------------------------|-----|------------|--|
| $R_{DS(on) max}$ (@V <sub>GS</sub> = 10V)         | 2.8 | <b>m</b> Ω |  |
| $R_{DS(on) max}$ (@V <sub>GS</sub> = 4.5V)        | 3.8 |            |  |
| Q <sub>g (typical)</sub>                          | 44  | nC         |  |
| <b>I</b> <sub>D</sub><br>(@T <sub>A</sub> = 25°C) | 24  | Α          |  |





#### **Features**

| Industry-standard pinout SO-8 Package             |
|---------------------------------------------------|
| Compatible with Existing Surface Mount Techniques |
| RoHS Compliant, Halogen-Free                      |
| MSL1, Industrial qualification                    |

### Benefits

| Multi-Vendor Compatibility |
|----------------------------|
| Easier Manufacturing       |
| Environmentally Friendlier |
| Increased Reliability      |

| Page Part Number | Standard Pack     |           |          | ard Pack              |  |
|------------------|-------------------|-----------|----------|-----------------------|--|
| Base Part Number | Package Type      | Form      | Quantity | Orderable Part Number |  |
| IDE0700DbE 1     | CO 0              | Tube/Bulk | 95       | IRF8788PbF-1          |  |
| INFO/OOFDF-1     | IRF8788PbF-1 SO-8 |           | 4000     | IRF8788TRPbF-1        |  |

## **Absolute Maximum Ratings**

|                                        | Parameter                                       | Max.         | Units |
|----------------------------------------|-------------------------------------------------|--------------|-------|
| $V_{DS}$                               | Drain-to-Source Voltage                         | 30           |       |
| $V_{GS}$                               | Gate-to-Source Voltage                          | ±20          |       |
| I <sub>D</sub> @ T <sub>A</sub> = 25°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 24           |       |
| I <sub>D</sub> @ T <sub>A</sub> = 70°C | Continuous Drain Current, V <sub>GS</sub> @ 10V | 19           | Α     |
| I <sub>DM</sub>                        | Pulsed Drain Current ①                          | 190          |       |
| P <sub>D</sub> @T <sub>A</sub> = 25°C  | Power Dissipation                               | 2.5          | W     |
| P <sub>D</sub> @T <sub>A</sub> = 70°C  | Power Dissipation                               | 1.6          | VV    |
| Linear Derating Factor                 |                                                 | 0.02         | W/°C  |
| $T_J$                                  | Operating Junction and                          | -55 to + 150 | °C    |
| T <sub>STG</sub>                       | Storage Temperature Range                       |              |       |

## **Thermal Resistance**

|                 | Parameter                | Тур. | Max. | Units |  |
|-----------------|--------------------------|------|------|-------|--|
| $R_{\theta JL}$ | Junction-to-Drain Lead ® |      | 20   | °C/M  |  |
| $R_{\theta JA}$ | Junction-to-Ambient @\$  |      | 50   | °C/W  |  |

Notes ① through ⑤ are on page 9



# Static @ T<sub>J</sub> = 25°C (unless otherwise specified)

|                                | Parameter                                           | Min. | Тур.  | Max. | Units | Conditions                                        |
|--------------------------------|-----------------------------------------------------|------|-------|------|-------|---------------------------------------------------|
| BV <sub>DSS</sub>              | Drain-to-Source Breakdown Voltage                   | 30   |       |      | V     | $V_{GS} = 0V, I_D = 250\mu A$                     |
| $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient                 |      | 0.024 |      | V/°C  | Reference to 25°C, I <sub>D</sub> = 1mA           |
| R <sub>DS(on)</sub>            | Static Drain-to-Source On-Resistance                |      | 2.3   | 2.8  | mΩ    | V <sub>GS</sub> = 10V, I <sub>D</sub> = 24A ③     |
|                                |                                                     |      | 3.04  | 3.8  | 11122 | $V_{GS} = 4.5V, I_D = 19A$ ③                      |
| $V_{GS(th)}$                   | Gate Threshold Voltage                              | 1.35 | 1.80  | 2.35 | ٧     | $V_{DS} = V_{GS}, I_D = 100 \mu A$                |
| $\Delta V_{GS(th)}$            | Gate Threshold Voltage Coefficient                  |      | -6.59 |      | mV/°C |                                                   |
| I <sub>DSS</sub>               | Drain-to-Source Leakage Current                     |      |       | 1.0  | uА    | $V_{DS} = 24V, V_{GS} = 0V$                       |
|                                |                                                     |      |       | 150  | μΑ    | $V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$ |
| I <sub>GSS</sub>               | Gate-to-Source Forward Leakage                      |      |       | 100  | nA    | V <sub>GS</sub> = 20V                             |
|                                | Gate-to-Source Reverse Leakage                      |      |       | -100 | IIA   | V <sub>GS</sub> = -20V                            |
| gfs                            | Forward Transconductance                            | 95   |       |      | S     | $V_{DS} = 15V, I_D = 19A$                         |
| Qg                             | Total Gate Charge                                   |      | 44    | 66   |       |                                                   |
| Q <sub>gs1</sub>               | Pre-Vth Gate-to-Source Charge                       |      | 12    |      |       | V <sub>DS</sub> = 15V                             |
| Q <sub>gs2</sub>               | Post-Vth Gate-to-Source Charge                      |      | 4.7   |      | nC    | $V_{GS} = 4.5V$                                   |
| $Q_{gd}$                       | Gate-to-Drain Charge                                |      | 14    |      | 110   | I <sub>D</sub> = 19A                              |
| $Q_{godr}$                     | Gate Charge Overdrive                               |      | 13.3  |      |       | See Figs. 17a & 17b                               |
| Q <sub>sw</sub>                | Switch Charge (Q <sub>gs2</sub> + Q <sub>gd</sub> ) |      | 18.7  |      |       |                                                   |
| Q <sub>oss</sub>               | Output Charge                                       |      | 22    |      | nC    | $V_{DS} = 16V, V_{GS} = 0V$                       |
| $R_g$                          | Gate Resistance                                     |      | 0.54  | 1.09 | Ω     |                                                   |
| t <sub>d(on)</sub>             | Turn-On Delay Time                                  |      | 23    |      |       | $V_{DD} = 15V, V_{GS} = 4.5V$                     |
| t <sub>r</sub>                 | Rise Time                                           |      | 24    |      |       | I <sub>D</sub> = 19A                              |
| t <sub>d(off)</sub>            | Turn-Off Delay Time                                 |      | 23    |      | ns    | $R_G = 1.8\Omega$                                 |
| t <sub>f</sub>                 | Fall Time                                           |      | 11    |      |       | See Fig. 15a & 15b                                |
| C <sub>iss</sub>               | Input Capacitance                                   |      | 5720  |      |       | V <sub>GS</sub> = 0V                              |
| Coss                           | Output Capacitance                                  |      | 980   |      | рF    | V <sub>DS</sub> = 15V                             |
| C <sub>rss</sub>               | Reverse Transfer Capacitance                        |      | 450   |      |       | f = 1.0MHz                                        |

## **Avalanche Characteristics**

|                 | Parameter                       | Тур. | Max. | Units |
|-----------------|---------------------------------|------|------|-------|
| E <sub>AS</sub> | Single Pulse Avalanche Energy ② |      | 230  | mJ    |
| I <sub>AR</sub> | Avalanche Current ①             |      | 19   | A     |

## **Diode Characteristics**

|                 | Parameter                 | Min.                                                                 | Тур. | Max. | Units | Conditions                                           |
|-----------------|---------------------------|----------------------------------------------------------------------|------|------|-------|------------------------------------------------------|
| Is              | Continuous Source Current |                                                                      |      | 3.1  | А     | MOSFET symbol                                        |
|                 | (Body Diode)              |                                                                      |      | 5.1  | ^     | showing the                                          |
| I <sub>SM</sub> | Pulsed Source Current     |                                                                      |      | 190  | Α     | integral reverse                                     |
|                 | (Body Diode) ①            |                                                                      |      | 130  | ^     | p-n junction diode.                                  |
| $V_{SD}$        | Diode Forward Voltage     |                                                                      |      | 1.0  | V     | $T_J = 25^{\circ}C, I_S = 19A, V_{GS} = 0V$ ③        |
|                 |                           |                                                                      |      | 0.75 | V     | $T_J = 25^{\circ}C$ , $I_S = 2.2A$ , $V_{GS} = 0V$ ③ |
| t <sub>rr</sub> | Reverse Recovery Time     |                                                                      | 24   | 36   | ns    | $T_J = 25^{\circ}C$ , $I_F = 19A$ , $V_{DD} = 15V$   |
| $Q_{rr}$        | Reverse Recovery Charge   |                                                                      | 33   | 50   | nC    | di/dt = 230A/µs ③                                    |
| t <sub>on</sub> | Forward Turn-On Time      | Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) |      |      |       |                                                      |







Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics







Fig 4. Normalized On-Resistance vs. Temperature

 $V_{DS}^{l} = 24V$ 

V<sub>DS</sub>'= 15V





0 20 40 60 80 100
Qg, Total Gate Charge (nC)

Fig 6. Typical Gate Charge vs.

Gate-to-Source Voltage

16

12

8

0

V<sub>GS</sub>, Gate-to-Source Voltage (V)

I<sub>D</sub>= 19A

**Fig 5.** Typical Capacitance vs. Drain-to-Source Voltage



Fig 8. Maximum Safe Operating Area



**Fig 7.** Typical Source-Drain Diode Forward Voltage

120







**Fig 9.** Maximum Drain Current vs. Ambient Temperature

Fig 10. Threshold Voltage vs. Temperature



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

June 23, 2014





I D TOP 6.4A 7.4A BOTTOM 19A 50 75 100 125 150 Starting T<sub>J</sub>, Junction Temperature (°C)

Fig 12. On-Resistance vs. Gate Voltage

 $V_{DD}$ 0.01Ω

Fig 14a. Unclamped Inductive Test Circuit



Fig 13. Maximum Avalanche Energy



Fig 14b. Unclamped Inductive Waveforms



Fig 15a. Switching Time Test Circuit



Fig 15b. Switching Time Waveforms





Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs



Fig 17a. Gate Charge Test Circuit

Fig 17b. Gate Charge Waveform



# SO-8 Package Outline(Mosfet & Fetky)

Dimensions are shown in milimeters (inches)



| DIM   | INCHES  |       | MILLIMETER  |      |
|-------|---------|-------|-------------|------|
| DIIVI | MIN MAX |       | MIN         | MAX  |
| Α     | .0532   | .0688 | 1.35        | 1.75 |
| A1    | .0040   | .0098 | 0.10        | 0.25 |
| b     | .013    | .020  | 0.33        | 0.51 |
| С     | .0075   | .0098 | 0.19        | 0.25 |
| D     | .189    | .1968 | 4.80        | 5.00 |
| Е     | .1497   | .1574 | 3.80        | 4.00 |
| е     | .050 B  | ASIC  | 1.27 BASIC  |      |
| el    | .025 B  | ASIC  | 0.635 BASIC |      |
| Н     | .2284   | .2440 | 5.80        | 6.20 |
| K     | .0099   | .0196 | 0.25        | 0.50 |
| L     | .016    | .050  | 0.40        | 1.27 |
| У     | 0°      | 8°    | 0°          | 8°   |





#### NOTES:

- 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.
- 2. CONTROLLING DIMENSION: MILLIMETER
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- (5) DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 (.006).
- DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
  MOLD PROTRUSIONS NOT TO EXCEED 0.25 (.010).
- DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.



## SO-8 Part Marking Information



Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/



## SO-8 Tape and Reel (Dimensions are shown in milimeters (inches)



- NOTES:

  1. CONTROLLING DIMENSION : MILLIMETER.

  2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).

  3. OUTLINE CONFORMS TO EIA-481 & EIA-541.



NOTES:
1. CONTROLLING DIMENSION: MILLIMETER.
2. OUTLINE CONFORMS TO EIA-481 & EIA-541

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

## Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting  $T_J = 25^{\circ}C$ , L = 1.25mH,  $R_G = 25\Omega$ ,  $I_{AS} = 19A$ .
- ③ Pulse width  $\leq$  400µs; duty cycle  $\leq$  2%.
- When mounted on 1 inch square copper board.

#### Qualification information<sup>†</sup>

| Qualification level        | Industrial<br>(per JEDEC JESD47F <sup>††</sup> guidelines) |                                               |  |  |  |
|----------------------------|------------------------------------------------------------|-----------------------------------------------|--|--|--|
| Moisture Sensitivity Level | SO-8                                                       | MSL1<br>(per JEDEC J-STD-020D <sup>††</sup> ) |  |  |  |
| RoHS compliant             | Yes                                                        |                                               |  |  |  |

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release



IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/