# Minimum spanning trees

#### The probler

Properties
The cut and the cycle properties
A generic algorith

Prim's algorithm

#### Kruskal's

Description
Using union-find
Cost



# A network construction problem: Minimum Spanning Tree

#### CLRS 23, KT 4.5, DPV 5.1

- We have a set of locations.
- For some pairs of locations it is possible to build a link connecting the two locations, but it has a cost.



#### The problem

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description

Using union-find
Cost

# A network construction problem: Minimum Spanning Tree

### CLRS 23, KT 4.5, DPV 5.1

- We have a set of locations.
- For some pairs of locations it is possible to build a link connecting the two locations, but it has a cost.



■ We want to build a network (if possible), connecting all the locations, with total minimum cost.

#### The problem

The cut and the cycle properties

A generic algorithm

Prim's algorithm

algorithm

Description

Using union-fin

Cost



# A network construction problem: Minimum Spanning Tree

### The problem

Properties
The cut and the cycle properties
A generic algorith

Prim's algorithm

algorithm

Description

Using union-fine

Cost

#### CLRS 23, KT 4.5, DPV 5.1

- We have a set of locations.
- For some pairs of locations it is possible to build a link connecting the two locations, but it has a cost.



- We want to build a network (if possible), connecting all the locations, with total minimum cost.
- So, the resulting network must be a tree.



### Network construction: Minimum Spanning Tree

#### The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description

Using union-find Cost • We have a set of locations. Build a link connecting the locations i and j has a cost  $w(v_i, v_i)$ .

We want to build tree spanning all the locations with total minimum cost.

The MST



#### The problem

he cut and the ycle properties

Prim's

Kruskal's

Description
Using union-find

The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Using union-find

■ A tree on n nodes has n-1 edges.

#### The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Using union-find Cost

- A tree on n nodes has n-1 edges.
- Any connected undirected graph with n vertices and n-1 edges is a tree.

#### The problem

The cut and the cycle properties

A generic algorith

Prim's algorithm

algorithm

Description
Using union-find
Cost

- A tree on n nodes has n-1 edges.
- Any connected undirected graph with n vertices and n-1 edges is a tree.
- An undirected graph is a tree iff there is a unique path between any pair of nodes.

#### The problem

Properties
The cut and the
cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm Description Using union-fin Cost ■ A tree on n nodes has n-1 edges.

- Any connected undirected graph with n vertices and n-1 edges is a tree.
- An undirected graph is a tree iff there is a unique path between any pair of nodes.

Let G = (V, E) be a (undirected) graph.

- G' = (V', E') is a subgraph of G if  $V' \subseteq V$  and  $E' \subseteq E$ .
- A subgraph G' = (V', E') of G is spanning if V' = V.
- $\blacksquare$  A spanning tree of G is a spanning subgraph that is a tree.

#### The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description

Using union-fine Cost

■ A tree on n nodes has n-1 edges.

- Any connected undirected graph with n vertices and n-1 edges is a tree.
- An undirected graph is a tree iff there is a unique path between any pair of nodes.

Let G = (V, E) be a (undirected) graph.

- G' = (V', E') is a subgraph of G if  $V' \subseteq V$  and  $E' \subseteq E$ .
- A subgraph G' = (V', E') of G is spanning if V' = V.
- $\blacksquare$  A spanning tree of G is a spanning subgraph that is a tree.

Any connected graph has a spanning tree



### MINIMUM SPANNING TREE problem (MST)

#### The problem

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Using union-fin

Using union-find
Cost
Clustering

Given as input an edge weighted graph G = (V, E, w), where  $w : E \to \mathbb{R}$ . Find a tree T = (V, E') with  $E' \subseteq E$ , such that it minimizes  $w(T) = \sum_{e \in E(T)} w(e)$ .

## MINIMUM SPANNING TREE problem (MST)

#### The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

#### Kruskal's algorithm

Description
Using union-find
Cost

Given as input an edge weighted graph G = (V, E, w), where  $w : E \to \mathbb{R}$ . Find a tree T = (V, E') with  $E' \subseteq E$ , such that it minimizes  $w(T) = \sum_{e \in E(T)} w(e)$ .



## MINIMUM SPANNING TREE problem (MST)

#### The problem

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

#### Kruskal's algorithm

Description
Using union-find
Cost

Given as input an edge weighted graph G = (V, E, w), where  $w : E \to \mathbb{R}$ . Find a tree T = (V, E') with  $E' \subseteq E$ , such that it minimizes  $w(T) = \sum_{e \in E(T)} w(e)$ .





Properties

For a graph G = (V, E):



#### The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

### Kruskal's

### algorithm Description

Using union-find



For a graph G = (V, E): A path is a sequence of consecutive edges.

#### The problem

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithn

### Kruskal's

algorithm

Description

Using union-find

Cost



For a graph G = (V, E):

A path is a sequence of consecutive edges.

A cycle is a path ending in an edge connecting to the initial vertex, with no other repeated vertex.

#### The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

#### Kruskal's

Description
Using union-find
Cost



For a graph G = (V, E):

A path is a sequence of consecutive edges.

A cycle is a path ending in an edge connecting to the initial vertex, with no other repeated vertex.

A cut is a partition of V into two sets S and V - S.



For a graph G = (V, E):

A path is a sequence of consecutive edges.

A cycle is a path ending in an edge connecting to the initial vertex, with no other repeated vertex.

A cut is a partition of V into two sets S and V-S.

The cut-set of a cut is the set of edges with one end in S and the other in V-S. cut(S, V-S) = $\{e = (u, v) \in E \mid u \in S \ v \notin S\}$ 

The problen

The cut and the cycle properties

A generic algorithm

Prim's algorithm

algorithm

Using union-find
Cost

Given a weighted graph G = (V, E, w), assume that all edge weights are different.

A MST T in G has the following properties:

The problen

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm

Using union-find
Cost
Clustering

Given a weighted graph G = (V, E, w), assume that all edge weights are different.

A MST T in G has the following properties:

• Cut property  $e \in T \Leftrightarrow e$  is the lightest edge across some cut in G.

Properties
The cut and the cycle properties

Prim's

Kruskal's algorithm

Using union-find
Cost
Clustering

Given a weighted graph G = (V, E, w), assume that all edge weights are different.

A MST T in G has the following properties:

- Cut property  $e \in T \Leftrightarrow e$  is the lightest edge across some cut in G.
- Cycle property  $e \notin T \Leftrightarrow e$  is the heaviest edge on some cycle in G.

Properties
The cut and the cycle properties

Prim's algorithm

Kruskal's algorithm

Description
Using union-find
Cost
Clustering

Given a weighted graph G = (V, E, w), assume that all edge weights are different.

A MST T in G has the following properties:

- Cut property  $e \in T \Leftrightarrow e$  is the lightest edge across some cut in G.
- Cycle property  $e \notin T \Leftrightarrow e$  is the heaviest edge on some cycle in G.

The MST algorithms use two rules for adding/discarding edges.

The problen

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm Description Using union-find Cost The  $\Leftarrow$  implication of the cut property yields the blue rule (include), which allow us to include safely in T a min weight edge from some identified cut.

The  $\Rightarrow$  implication of the cycle property will yield the red rule (exclude) which allow us to exclude from T a max weight edge from some identified cycles.

Let G = (V, E, w),  $w : E \to \mathbb{R}^+$ , such that all weights are different. Let T be a MST of G.

The problem

The cut and the cycle properties

Prim's algorithm

algorithm

algorithm

Using union-find Cost

Let G = (V, E, w),  $w : E \to \mathbb{R}^+$ , such that all weights are different. Let T be a MST of G.

Removing an edge e = (u, v) from T yields two disjoint trees  $T_u$  and  $T_v$ , so that  $V(T_u) = V - V(T_v)$ ,  $u \in T_u$  and  $v \in T_v$ . Let us call  $S_u = V(T_u)$  and  $S_v = V(T_v)$ .

The problem

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm

Using union-find
Cost
Clustering

Let G = (V, E, w),  $w : E \to \mathbb{R}^+$ , such that all weights are different. Let T be a MST of G.

Removing an edge e = (u, v) from T yields two disjoint trees  $T_u$  and  $T_v$ , so that  $V(T_u) = V - V(T_v)$ ,  $u \in T_u$  and  $v \in T_v$ . Let us call  $S_u = V(T_u)$  and  $S_v = V(T_v)$ .

#### Claim

 $e \in E(T)$  is the min-weight edge among those in  $cut(S_u, S_v)$ .

#### The problem

The cut and the cycle properties

A generic algorithm

algorithm

Kruskal's algorithm

Using union-find
Cost
Clustering

Let G = (V, E, w),  $w : E \to \mathbb{R}^+$ , such that all weights are different. Let T be a MST of G.

Removing an edge e = (u, v) from T yields two disjoint trees  $T_u$  and  $T_v$ , so that  $V(T_u) = V - V(T_v)$ ,  $u \in T_u$  and  $v \in T_v$ . Let us call  $S_u = V(T_u)$  and  $S_v = V(T_v)$ .

#### Claim

 $e \in E(T)$  is the min-weight edge among those in  $cut(S_u, S_v)$ .

#### Proof.

Otherwise, we can replace *e* by an edge in the cut with smaller weight. Thus, forming a new spanning tree with smaller weight.

The cut and the cycle properties

A generic algorithm

### Prim's algorithm

Kruskal's algorithm

Using union-find
Cost
Clustering

#### ...

The cut and the cycle properties

Prim's

Kruskal's

algorithm

Cost

#### Claim (The cut rule)

For  $S \subseteq V$ , let e = (u, v) be the min-weight edge in cut(S, V - S), then  $e \in T$ .

#### ho problem

The cut and the cycle properties

Prim's algorithm

Kruskal's
algorithm
Description
Using union-fine

Using union-find
Cost
Clustering

#### Claim (The cut rule)

For  $S \subseteq V$ , let e = (u, v) be the min-weight edge in cut(S, V - S), then  $e \in T$ .

#### Proof.

Assume  $e \notin T$  and that  $u \in S$  and  $v \notin S$ . As T is a spanning tree there must be a path from u to v in T. As  $u \in S$  and  $v \notin S$ , there is an edge  $e' \in cut(S, V - S)$  in this path. Replacing e' with e produces another spanning tree. But then, as w(e) > w(e'), T was not optimal.



The problen

The cut and the cycle properties

Prim's algorithm

Kruskal's

algorithm

Using union-find Cost For an edge  $e \notin T$ , adding it to T creates a graph T + e having a unique cycle involving e. Lets call this cycle  $C_e$ .

The problen

The cut and the cycle properties

A generic algorith

Prim's algorithm

Kruskal's

Description
Using union-find
Cost

For an edge  $e \notin T$ , adding it to T creates a graph T + e having a unique cycle involving e. Lets call this cycle  $C_e$ .

#### Claim

For  $e \notin E(T)$ , e is the max-weight edge in  $C_e$ .

The problen

The cut and the cycle properties

A generic algorith

Prim's algorithm

algorithm Kruskal's

algorithm

Description

Using union-find

Cost

For an edge  $e \notin T$ , adding it to T creates a graph T + e having a unique cycle involving e. Lets call this cycle  $C_e$ .

#### Claim

For  $e \notin E(T)$ , e is the max-weight edge in  $C_e$ .

#### Proof.

Otherwise, removing any edge different from e in T+e produces a spanning tree with smaller total weight.

#### The problem

The cut and the cycle properties

Prim's

algorithm

algorithm

Using union-find

Claim (The cycle rule)

For a cycle C in G, the edge  $e \in C$  with max-weight can not be part of T.

#### The problem

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm

Description
Using union-find
Cost

#### Claim (The cycle rule)

For a cycle C in G, the edge  $e \in C$  with max-weight can not be part of T.

#### Proof.

Observe that, as G is connected,  $G' = (V, E - \{e\})$  is connected. Furthermore, a MST for G' is a MST for G.



C=cycle spanning {a,c,d,f}

## Generic greedy for MST: Apply blue and/or red rules

A generic algorithm

■ The two rules show the optimal substructure of the MST. So, we can design a greedy algorithm.

# Generic greedy for MST: Apply blue and/or red rules

- The problem
  Properties
- A generic algorithm
  Prim's
- Prim's algorithm
- algorithm

  Description

  Using union-find

  Cost

- The two rules show the optimal substructure of the MST. So, we can design a greedy algorithm.
- Blue rule: Given a cut-set between S and V-S with no blue edges, select from the cut-set a non-colored edge with min weight and paint it blue

# Generic greedy for MST: Apply blue and/or red rules

- The problem
  Properties
  The cut and the
  cycle properties
  A generic algorithm
- Prim's algorithm
- Aruskal s
  algorithm

  Description

  Using union-find

  Cost

  Clustering

- The two rules show the optimal substructure of the MST. So, we can design a greedy algorithm.
- Blue rule: Given a cut-set between S and V-S with no blue edges, select from the cut-set a non-colored edge with min weight and paint it blue
- Red rule: Given a cycle *C* with no red edges, selected a non-colored edge in *C* with max weight and paint it red.

# Generic greedy for MST: Apply blue and/or red rules

- The problem
  Properties
  The cut and the cycle properties
  A generic algorithm
- Prim's algorithm
- Kruskal's
  algorithm

  Description

  Using union-find

  Cost

  Clustering

- The two rules show the optimal substructure of the MST. So, we can design a greedy algorithm.
- Blue rule: Given a cut-set between S and V-S with no blue edges, select from the cut-set a non-colored edge with min weight and paint it blue
- Red rule: Given a cycle C with no red edges, selected a non-colored edge in C with max weight and paint it red.
- Greedy scheme: Given G, apply the red and blue rules until having n-1 blue edges, those form the MST.
  - Robert Tarjan: Data Structures and Network Algorithms, SIAM, 1984

#### The problem

Properties
The cut and the

#### A generic algorithm

Prim's algorithm

#### Kruskal's

Description

Cost

6 6 9 Q 14 9 Q 15 h

#### The problem

Properties
The cut and the

#### A generic algorithm

Prim's algorithm

#### Kruskal's

Description
Using union-fine

Clustering



#### The problem

The cut and the

#### A generic algorithm

Prim's algorithm

#### Kruskal's

Description
Using union-fin

Cost



#### The problem

Properties
The cut and the

#### A generic algorithm

Prim's algorithm

#### Kruskal's

algorithm

Using union-fine

Clustering



#### The problem

The cut and the

#### A generic algorithm

Prim's algorithm

#### Kruskal's

Description
Using union-find

Cost



#### The problem

Properties
The cut and the

#### A generic algorithm

Prim's algorithm

#### Kruskal's

algorithm

Description

Using union-fin

Clustering



## Greedy for MST: Correctness

## Theorem

The greedy scheme finishes in at most m steps and at the end of the execution the blue edges form a MST

#### The problem

Properties

The cut and the

#### A generic algorithm

Prim's algorithm

## Kruskal's

Description
Using union-find
Cost

## Greedy for MST: Correctness

#### Theorem

The greedy scheme finishes in at most m steps and at the end of the execution the blue edges form a MST

#### Sketch.

- As in each iteration an edge is added or discarded, the algorithm finishes after at most m applications of the rules.
- As the red edges cannot form part of any MST and the blue ones belong to some MST, the selections are correct.
- A set of n-1 required edges form a spanning tree!

Γhe problem Properties

cycle properties

A generic algorithm

Prim's

Kruskal's
algorithm

Description

Using union-find

Cost

Clustering

## Greedy for MST: Correctness

#### Theorem

The greedy scheme finishes in at most m steps and at the end of the execution the blue edges form a MST

#### Sketch.

- As in each iteration an edge is added or discarded, the algorithm finishes after at most m applications of the rules.
- As the red edges cannot form part of any MST and the blue ones belong to some MST, the selections are correct.
- $\blacksquare$  A set of n-1 required edges form a spanning tree!

A generic algorithm

We need implementations for the algorithm!



## A short history of MST implementation

There has been extensive work to obtain the most efficient algorithm to find a MST in a given graph:

- O. Borůvka gave the first greedy algorithm for the MST in 1926. V. Jarnik gave a different greedy for MST in 1930, which was re-discovered by R. Prim in 1957. In 1956 J. Kruskal gave a different greedy algorithms for the MST. All those algorithms run in O(m lg n).
- Fredman and Tarjan (1984) gave a  $O(m \log^* n)$  algorithm, introducing a new data structure for priority queues, the Fibbonacci heap. Recall  $\log^* n$  is the number of times we have to apply iteratively the log operator to n to get a value  $\leq 1$ , for ex.  $\log^* 1000 = 2$ .
- Gabow, Galil, Spencer and Tarjan (1986) improved Fredman-Tarjan to  $O(m \log(\log^* n))$ .
- Karger, Klein and Tarjan (1995) O(m) randomized algorithm.
- In 1997 B. Chazelle gave an  $O(m\alpha(n))$  algorithm, where  $\alpha(n)$  is a very slowly growing function, the inverse of the Ackermann function.

- The problem
  Properties
  The cut and the
  cycle properties
  A generic algorithm
- Prim's algorithm
- algorithm

  Description

  Using union-find

  Cost

  Clustering

## Basic algorithms for MST

- The problem
  Properties
  The cut and the cycle properties
  A generic algorithm
- Prim's algorithm
- Kruskal's
  algorithm

  Description

  Using union-find

  Cost

  Clustering

- Jarník-Prim (Serial centralized) Starting from a vertex v, grows T adding each time the lighter edge already connected to a vertex in T, using the blue rule.
  Uses a priority queue
- Kruskal (Serial distributed) Considers every edge, in order of increasing weight, to grow a forest by using the blue and red rules. The algorithm stops when the forest became a tree.
  - Uses a union-find data structure.







## Jarník - Prim greedy algorithm.

#### The problem

Properties
The cut and the
cycle properties
A generic algorithn

## Prim's algorithm

Kruskal's
algorithm

Description

Using union-find

Cost

Clustering

## V. Jarník, 1936, R. Prim, 1957

- The algorithmgs keeps a tree *T* and adds one edge (and one node) to *T* at each step.
- Initially the tree T has one arbitrary node r, and no edges.
- At each step T is enlarged adding a minimum weight edge in the C(T) = cut set(V(T), V V(T)).
- Note that an edge e is in the cut-set if e has one end in V(T) and the other outside.

## Jarník - Prim greedy algorithm.

#### The probler

Properties

The cut and the cycle properties

A generic algorithm

## Prim's algorithm

algorithm

Description

Using union-find
Cost

```
\begin{aligned} &\textbf{MST} \; (G,w,r) \\ &\mathcal{T} = \{r\} \\ &\textbf{for } i = 2 \; \textbf{to} \; |V| \; \textbf{do} \\ &\text{ Let } e \; \text{be a min weight edge in the } \textit{cut}(V(\mathcal{T}),V-V(\mathcal{T})) \\ &\mathcal{T} = \mathcal{T} \cup \{e\} \\ &\textbf{end for} \end{aligned}
```

#### The problem

Properties

The cut and the cycle properties

A generic algorithm

## Prim's algorithm

## Kruskal's

algorithm

Using union-find

Clustering



#### Prim's algorithm



#### The probler

Properties
The cut and the cycle properties
A generic algorithm

## Prim's algorithm

## Kruskal's

algorithm

Using union-fine



#### The problem

Properties

The cut and the cycle properties

A generic algorithm

## Prim's algorithm

## Kruskal's

algorithm

Using union-fine



#### The problem

Properties
The cut and the cycle properties
A generic algorithm

## Prim's algorithm

## Kruskal's

algorithm

Using union-find

Cost



#### Prim's algorithm



#### The probler

Properties

The cut and the cycle properties

A generic algorithm

## Prim's algorithm

## Kruskal's

algorithm

Using union-find



#### Prim's algorithm



$$w(T) = 52$$

## Jarník - Prim greedy algorithm.

Use a priority queue to choose min weight e in the cut set. In doing so we have to discard some edges

```
MST(G, w, r)
T = (\{r\}, \emptyset); Q = \emptyset; s = 0
Insert in Q all edges e = (r, v) with key w(r, v)
while s < n-1 and Q is not empty do
  (u, v, w) = Q.pop()
  if u \notin V(T) or v \notin V(T) then
     Let u' be the vertex from (u, v) that is not in T
     Insert in Q all the edges e = (u', v') \in E(G) for
     v' \notin V(T) with key w(e)
     add e to T: ++s
  end if
end while
```

A generic algorithm

Prim's algorithm

Kruskal's
algorithm

Description
Using union-find
Cost
Clustering

## Prim's

## algorithm

■ The algorithm discards edge e:

# The cut and the cycle properties A generic algorith Prim's algorithm Kruskal's algorithm Description Using union-find

The algorithm discards edge e: Such an edge e = (u, v) has  $u, v \in V(T)$ , so it forms a cycle with the edges in T. But, e is the edge with highest weight in this cycle. This is an application of the red rule.

# The problem Properties The cut and the cycle properties A genesic algorithm

## Prim's algorithm

Kruskal's
algorithm

Description

Using union-find

Cost

- The algorithm discards edge e: Such an edge e = (u, v) has  $u, v \in V(T)$ , so it forms a cycle with the edges in T. But, e is the edge with highest weight in this cycle. This is an application of the red rule.
- The algorithm adds to *T* edge *e*:

# The problem Properties The cut and the cycle properties A generic algorithm

## Prim's algorithm

Kruskal's
algorithm

Description
Using union-find
Cost
Clustering

- The algorithm discards edge e: Such an edge e = (u, v) has  $u, v \in V(T)$ , so it forms a cycle with the edges in T. But, e is the edge with highest weight in this cycle. This is an application of the red rule.
- The algorithm adds to T edge e: Then e has minimum weight among all edges in Q, as Q contains all edges in the cut-set(V(T), V - V(T)). This is the blue rule

# The problem Properties The cut and the cycle properties A generic algorithm

## Prim's algorithm

Kruskal's
algorithm

Description

Using union-find

Cost

Clustering

- The algorithm discards edge e: Such an edge e = (u, v) has  $u, v \in V(T)$ , so it forms a cycle with the edges in T. But, e is the edge with highest weight in this cycle. This is an application of the red rule.
- The algorithm adds to T edge e: Then e has minimum weight among all edges in Q, as Q contains all edges in the cut-set(V(T), V - V(T)). This is the blue rule
- Therefore the algorithm computes a MST.

## Jarník - Prim greedy algorithm: Cost

#### Prim's algorithm

Time: depends on the implementation of the priority queue Q. We have < m insertions on the priority queue.

Q an unsorted array: 
$$T(n) = O(|V|^2)$$
;

$$Q \text{ a heap: } T(n) = O(|E| \lg |V|).$$

$$Q$$
 a Fibonacci heap:  $T(n) = O(|E| + |V| \lg |V|)$ 

## Kruskal's algorithm.

## The problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

algorithm

Using union-find

J. Kruskal, 1956

Similar to Jarník - Prim, but chooses minimum weight edges, in some cut. The selected edges form a forest until the last step.

**MST** (G, w, r)Sort E by increasing weight  $T = \emptyset$ **for** i = 1 **to** |V| **do** 

Let  $e \in E$ : with minimum weight among those that do not form a cycle with T

$$T = T \cup \{e\}$$

end for

#### The probler

Properties

The cut and the cycle properties

A generic algorithm

## Prim's algorithm

Kruskal's

#### algorithm Description

Using union-find



#### The probler

Properties

The cut and the cycle properties

A generic algorithm

## Prim's algorithm

Kruskal's

#### algorithm Description

Using union-fine



#### The probler

Properties

The cut and the cycle properties

A generic algorithm

#### Prim's algorithm

Kruskal's algorithm

algorithm Description

Using union-find Cost



#### The probler

Properties

The cut and the cycle properties

A generic algorithm

## Prim's algorithm

Kruskal's

#### algorithm Description

Using union-find

Clustering



#### The probler

Properties

The cut and the cycle properties

A generic algorithm

# Prim's algorithm

Kruskal's

#### algorithm Description

Using union-find



#### The probler

Properties

The cut and the cycle properties

A generic algorithm

# Prim's algorithm

Kruskal's

## algorithm Description

Using union-find



#### The probler

Properties

The cut and the cycle properties

A generic algorithm

#### Prim's algorithm

#### Kruskal's algorithm

Description

Cost



#### The probler

Properties

The cut and the cycle properties

A generic algorithm

#### Prim's algorithm

Kruskal's algorithm

algorithm Description

Using union-fine



# Kruskal's algorithm: Implementation

#### The problei

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

algorithm

Description

Using union-find

Cost

Clustering

- We have a cost of  $O(m \lg m)$  as we have to sort the edges. But as  $m \le n^2$ ,  $O(m \lg m) = O(m \lg n)$ .
- We need an efficient implementation of the algorithm.
- To find an adequate data structure lets look to some properties of the objects constructed along the execution of the algorithm.

# Another view of Kruskal's algorithm

#### The problei

Properties
The cut and the cycle properties
A generic algorith

Prim's algorithm

#### Kruskai s algorithm

Description

Using union-fin

# 6 5 9 g 14 2 2 10 0 15 h

### edges sorted by weight

$$(f,d,2),(c,b,3),(e,f,4),(a,f,5),(a,e,6),(c,d,8),$$
  
 $(f,g,9),(a,c,10),(a,b,14),(d,h,15)$ 

#### The problei

The cut and the cycle properties

A generic algor

Prim's algorithm

## Kruskal's

algorithm Description

Using union-find Cost **e** 

(a)

(f)

**g** 

**(b)** 

**(d)** 

h

(C)

$$(f, d, 2), (c, b, 3), (e, f, 4), (a, f, 5), (a, e, 6), (c, d, 8), (f, g, 9), (a, c, 10), (a, b, 14), (d, h, 15)$$

#### The problei

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

## Kruskal's

#### algorithm Description

Using union-find

(e)
 (a)
 (b)
 (c)

$$(f, d, 2), (c, b, 3), (e, f, 4), (a, f, 5), (a, e, 6), (c, d, 8), (f, g, 9), (a, c, 10), (a, b, 14), (d, h, 15)$$

#### The probler

The cut and the cycle properties
A generic algorit

Prim's algorithm

#### algorithm

Description

Using union-find Cost



$$(f, d, 2), (c, b, 3), (e, f, 4), (a, f, 5), (a, e, 6), (c, d, 8), (f, g, 9), (a, c, 10), (a, b, 14), (d, h, 15)$$

#### The probler

The cut and the cycle properties
A generic algorith

Prim's algorithm

#### algorithm

algorithm Description

Using union-find



$$(f, d, 2), (c, b, 3), (e, f, 4), (a, f, 5), (a, e, 6), (c, d, 8), (f, g, 9), (a, c, 10), (a, b, 14), (d, h, 15)$$

#### The probler

Properties
The cut and the cycle properties
A generic algorithm

#### Prim's algorithm

#### Kruskal's algorithm

#### algorithm Description

Using union-fine Cost



$$(f,d,2),(c,b,3),(e,f,4),(a,f,5),(a,e,6),(c,d,8),$$
  
 $(f,g,9),(a,c,10),(a,b,14),(d,h,15)$ 

#### The probler

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

#### Kruskal's algorithm

algorithm Description

Using union-fine Cost



$$(f, d, 2), (c, b, 3), (e, f, 4), (a, f, 5), (a, e, 6), (c, d, 8), (f, g, 9), (a, c, 10), (a, b, 14), (d, h, 15)$$

#### The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

#### Kruskal's algorithm

#### algorithm Description

Using union-find



$$(f,d,2),(c,b,3),(e,f,4),(a,f,5),(a,e,6),(c,d,8),$$
  
 $(f,g,9),(a,c,10),(a,b,14),(d,h,15)$ 

#### The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

#### Kruskal's algorithm

algorithm Description

Using union-fine Cost



$$(f, d, 2), (c, b, 3), (e, f, 4), (a, f, 5), (a, e, 6), (c, d, 8), (f, g, 9), (a, c, 10), (a, b, 14), (d, h, 15)$$

#### The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

#### Kruskal's algorithm

algorithm Description

Using union-find Cost



$$(f,d,2),(c,b,3),(e,f,4),(a,f,5),(a,e,6),(c,d,8),$$
  
 $(f,g,9),(a,c,10),(a,b,14),(d,h,15)$ 

#### The probler

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

#### Kruskal's algorithm

algorithm Description

Using union-find Cost



$$(f,d,2),(c,b,3),(e,f,4),(a,f,5),(a,e,6),(c,d,8),$$
  
 $(f,g,9),(a,c,10),(a,b,14),(d,h,15)$ 

#### The probler

Properties
The cut and the cycle properties
A generic algorith

Prim's algorithm

#### Kruskal's algorithm

algorithm Description

Cost



$$(f, d, 2), (c, b, 3), (e, f, 4), (a, f, 5), (a, e, 6), (c, d, 8), (f, g, 9), (a, c, 10), (a, b, 14), (d, h, 15)$$

#### he problen

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

algorithm

algorithm

Using union-find

comp union init

Kruskal evolves by building spanning forests, merging two trees (blue rule) or discarding an edge (red rule) so as to do not create a cycle.

Using union-find

- Kruskal evolves by building spanning forests, merging two trees (blue rule) or discarding an edge (red rule) so as to do not create a cycle.
- The connectivity relation is an equivalence relation:  $u\mathcal{R}_F v$ iff there is a path between u and v.

# Properties The cut and the

A generic algo

Prim's algorithm

algorithm

Description

Using union-find

- Kruskal evolves by building spanning forests, merging two trees (blue rule) or discarding an edge (red rule) so as to do not create a cycle.
- The connectivity relation is an equivalence relation:  $uR_Fv$  iff there is a path between u and v.
- Kruskal, starts with a partition of V into n sets and ends with a partition of V into one set.

# The problem Properties The cut and the cycle properties

Prim's algorithm

Kruskal's
algorithm
Description
Using union-find
Cost

- Kruskal evolves by building spanning forests, merging two trees (blue rule) or discarding an edge (red rule) so as to do not create a cycle.
- The connectivity relation is an equivalence relation:  $u\mathcal{R}_F v$  iff there is a path between u and v.
- Kruskal, starts with a partition of *V* into *n* sets and ends with a partition of *V* into one set.
- $flue{\mathcal{R}}$  partition the elements of V in equivalence classes, which are the connected components of the forest

# Disjoint Set Union-Find

The problem
Properties
The cut and the cycle properties

Prim's algorithm

Kruskal's
algorithm
Description
Using union-find
Cost

B. Galler, M. Fisher: An improved equivalence algorithm. ACM Comm., 1964; R.Tarjan 1979-1985

- Union-Find is a data structure to maintain a dynamic partition of a set.
- Union-Find is one of the most elegant data structures in the algorithmic toolkit.
- Union-Find makes possible to design almost linear time algorithms for problems that otherwise would be unfeasible.
- Union-Find is a first introduction to an active research fields in algorithmic; Self organizing data structures and data stream computation.

# Partition and equivalent relations

The problem

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's
algorithm
Description
Using union-find

Remember a **partition** of an n element set S is collection  $\{S_1, \ldots, S_k\}$  of subsets s.t.:

$$\forall S_i \subseteq S; \cup_{i=1}^k S_i = S; \forall S_i, S_j \text{ then } S_i \cap S_j = \emptyset$$

.

$$\forall x, y \in S, x \equiv y \text{ iff } x \in S_i \& y \in S_i.$$

The collection  $\{S_1, \ldots, S_k\}$  are the equivalence classes of the equivalence relation.

## Union-Find

Union-Find supports three operations on partitions of a set: MAKESET (x): creates a new set containing the single element x.



UNION (x, y): Merge the sets containing x and y, by using their union.



FIND (x): Return the representative of the set containing x.



he problem
Properties
The cut and the cycle properties

Prim's algorithm

algorithm

Description

Using union-find

Cost

Clustering

# Warning about UNION operation

The problem
Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

Kruskal's
algorithm
Description
Using union-find
Cost

- Warning: For any  $x, y \in S$ , we might need to do UNION(x, y), for x, y that are not representatives. Depending on the implementation this might or might not be allowed.
- To determine the complexity under different implementations, we consider that

UNION 
$$(x, y) = UNION (FIND(x), FIND(y)).$$

# Union-Find implementation for Kruskal

```
MST (G(V, E), w, r), |V| = n, |E| = m
                 Sort E by increasing weight: \{e_1, \ldots, e_m\}
                  T = \emptyset
                 for all v \in V do
                     MAKESET(v)
                 end for
                 for i = 1 to m do
                     Assume that e_i = (u, v)
                     if FIND(u) \neq Find(v) then
                        T = T \cup \{e_i\}
Using union-find
                        UNION(u, v)
                     end if
                 end for
```

# Union-Find implementation for Kruskal

```
MST (G(V, E), w, r), |V| = n, |E| = m
                  Sort E by increasing weight: \{e_1, \ldots, e_m\}
                  T = \emptyset
                  for all v \in V do
                     MAKESET(v)
                  end for
                  for i \equiv 1 to m do
                     Assume that e_i = (u, v)
                     if FIND(u) \neq Find(v) then
                        T = T \cup \{e_i\}
Using union-find
                        UNION(u, v)
                     end if
                  end for
```

- Sorting takes time  $O(m \log n)$ .
- The remaining part of the algorithm is a sequence of n MAKESET and O(m) operations of type FIND/UNION

# Amortized analysis

## he problem

Properties
The cut and the cycle properties
A generic algorithm

Prim's algorithm

algorithm

Description

Using union-find

Cost

(See for ex. Sect. 17-1 to 17.3 in CLRS)

- An amortized analysis is any strategy for analyzing a sequence of operations on a Data Structure, to show that the "average" cost per operation is small, even though a single operation within the sequence might be expensive.
- An amortized analysis guarantees the average performance of each operation in the worst case.
- The easier way to think about amortized analysis is to consider total number of steps for a sequence of operations of a given size.

# Union Find implementations: Cost

#### The problen

The cut and the cycle properties

A generic algorith

Prim's algorithm

Kruskal's algorithm

Description
Using union-find

Cost

(4.6 KT)

For a set with n elements.

- Using an array holding the representative.
  - MAKESET and FIND takes O(1)
  - UNION takes O(n).

# Union Find implementations: Cost

Γhe problen Properties

The cut and the cycle properties

A generic algorith

Prim's algorithm

algorithm

Description

Using union-find

Cost

Clustering

(4.6 KT)

For a set with n elements.

- Using an array holding the representative.
  - MAKESET and FIND takes O(1)
  - UNION takes O(n).
- Using an array holding the representative, a list by set, and in a UNION keeping the representative of the larger set.
  - MAKESET and FIND takes O(1)
  - any sequence of k UNION takes  $O(k \log k)$ .

# Complexity of Union Find implementations: Amortized cost

#### .......

The cut and the cycle properties

Prim's

Prim's algorithm

algorithm

Using union-fin

#### For a set with n elements.

- Using a rooted tree by set, in a UNION keeping the representative of the larger set.
  - MAKESET and UNION takes *O*(1)
  - FIND takes  $O(\log n)$ .

# Complexity of Union Find implementations: Amortized cost

#### For a set with n elements.

- Using a rooted tree by set, in a UNION keeping the representative of the larger set.
  - MAKESET and UNION takes O(1)
  - FIND takes  $O(\log n)$ .
- Using a rooted tree by set, in a UNION keeping the representative of the larger set, and doing path compression during a FIND.
  - MAKESET takes O(1)
  - **a** any intermixed sequence of k FIND and UNION takes  $O(k\alpha(n))$ .

 $\alpha(n)$  is the inverse Ackerman's function which grows extremely slowly. For practical applications it behaves as a constant.

Prim's algorithm

algorithm

Description

Using union-find

Cost

# Union-Find implementation for Kruskal

```
The problem
Properties
The cut and the cycle properties
A generic algorithm
```

Prim's algorithm

Kruskal's
algorithm
Description
Using union-find
Cost

```
MST (G(V, E), w, r), |V| = n, |E| = m
Sort E by increasing weight: \{e_1, \ldots, e_m\}
T = \emptyset
for all v \in V do
   MAKESET(v)
end for
for i = 1 to m do
   Assume that e_i = (u, v)
   if FIND(u) \neq Find(v) then
      T = T \cup \{e_i\}
      UNION(u, v)
   end if
end for
```

- Sorting take time  $O(m \log n)$ .
- The remaining part of the algorithm has cost  $n + O(m\alpha(n)) = O(n + m)$ .

But due to the sorting instruction, Kuskal takes  $O(n + m \lg n)$ . Unless we use a range of weights that allow us to use RADIX.

# Some applications of Union-Find

# The problem Properties The cut and the cycle properties

Prim's algorithm

algorithm

Description

Using union-find

Using union-find

Cost

Clustering

- Kruskal's algorithm for MST.
- Dynamic graph connectivity in very large networks.
- Cycle detection in undirected graphs.
- Random maze generation and exploration.
- Strategies for games: Hex and Go.
- Least common ancestor.
- Compiling equivalence statements.
- Equivalence of finite state automata.

# Clustering

# The problem Properties The cut and the cycle properties A generic algorithr

Prim's algorithm

Kruskal's
algorithm

Description
Using union-find
Cost
Clustering

- Clustering: process of finding interesting structure in a set of data.
- Given a collection of objects, organize them into similar coherent groups with respect to some (distance function  $d(\cdot, \cdot)$ ).
- The distance function not necessarily has to be the physical (Euclidean) distance. The interpretation of  $d(\cdot, \cdot)$  is that for any two objects x, y, the larger that d(x, y) is, the less similar that x and y are.
- There are many problems in clustering, but for most of them,  $d(\cdot,\cdot)$  must have be a metric: d(x,x)=0 and d(x,y)>0, for  $x\neq y;\ d(x,y)=d(y,x);\ d(x,y)+d(y,z)\leq d(x,z).$
- If x, y are two species, we can define d(x, y) as the years that they diverged in the course of evolution.

# Generic clustering setting

Properties
The cut and the cycle properties

Prim's algorithm

Aruskal's
algorithm
Description
Using union-find

Clustering

Given a set of data points  $\mathcal{U} = \{x_1, x_2, \dots, x_n\}$  together with a distance function d on X, and given a k > 0, a k-clustering is a partition of X into k disjoint subsets.





# The single-link clustering problem

he problen

Properties

The cut and the cycle properties

A generic algorithm

Prim's algorithm

Kruskal's algorithm

Using union-find
Cost
Clustering

Let  $\mathcal{U}$  be a set of n data points, assume  $\{C_1, \ldots, C_k\}$  is a k-clustering for  $\mathcal{U}$ .

Define the spacing s in the k-clustering as the minimum distance between any pair of points in different clusters.

# The single-link clustering problem

he problen

The cut and the cycle properties

Prim's

algorithm

Aruskal s
algorithm
Description
Using union-find
Cost

Clustering

Let  $\mathcal{U}$  be a set of n data points, assume  $\{C_1, \ldots, C_k\}$  is a k-clustering for  $\mathcal{U}$ .

Define the spacing s in the k-clustering as the minimum distance between any pair of points in different clusters.

The single-link clustering problem: Given  $\mathcal{U} = \{x_1, x_2, \dots, x_n\}$ , a distance function d, and k > 0, find a k-clustering of  $\mathcal{U}$  maximizing the spacing s.

# The single-link clustering problem

The problem
Properties
The cut and the cycle properties

A generic algorith

Prim's algorithm

Kruskal's
algorithm

Description

Using union-find

Cost

Clustering

Let  $\mathcal{U}$  be a set of n data points, assume  $\{C_1, \ldots, C_k\}$  is a k-clustering for  $\mathcal{U}$ .

Define the spacing s in the k-clustering as the minimum distance between any pair of points in different clusters.

The single-link clustering problem: Given  $\mathcal{U} = \{x_1, x_2, \dots, x_n\}$ , a distance function d, and k > 0, find a k-clustering of  $\mathcal{U}$  maximizing the spacing s.

Notice there are exponentially many different k-clustering of  $\mathcal{U}$ .

# TrKruskal: An algorithm for the single-link clustering problem

# I he problem Properties The cut and the

Prim's

# algorithm

## algorithm

Using union-find

- Represent  $\mathcal{U}$  as vertices of an undirected graph where the edge (x, y) has weight d(x, y).
- lacktriangle Apply Kruskal's algorithm until the forest has k trees.





# Complexity and correctness

#### Theorem

TrKruskal solves the single-link clustering problem in  $O(n^2 \lg n)$ 

#### Proof.

We have to create a complete graph and sort the  $n^2$  edges. This has cost  $O(n^2 \lg n)$ 

cycle properties
A generic algor

algorithm

algorithm

Description

Using union-find

Cost
Clustering

# Complexity and correctness

# Theorem

Clustering

TrKruskal solves the single-link clustering problem in  $O(n^2 \lg n)$ 

#### Proof.

We have to create a complete graph and sort the  $n^2$  edges. This has cost  $O(n^2 \lg n)$ 

#### Correctness

Let  $C = \{C_1, \dots, C_k\}$  be the k-clustering produced by TrKruskal, and let s be its spacing.

Assume there is another k-clustering  $C' = \{C'_1, \dots, C'_{k}\}$  with spacing s' and s.t.  $C \neq C'$ . We must show that s' < s.

# Complexity and correctness

If  $C \neq C'$ , then  $\exists C_r \in C$  s.t.  $\forall C'_t \in C', C_r \not\subseteq C'_t$ . That means  $\exists x, y \in C_r$  s.t.  $x, y \in C_r$  s.t.  $x \in C'_t$  and  $y \in C'_q$ .  $\exists$  a path  $x \leadsto y$  in  $C_r \Rightarrow \exists (x', y') \in E(\mathsf{MST})$  with  $x' \in C'_t$  and  $y' \in C'_q$  and s.t.  $s' \leq d(x', y') \leq s$ .

Properties
The cut and the

A generic algor

Prim's algorithm

algorithm

Description
Using union-f

Clustering