.1 Presentations and resolutions

Exercise .1.1. Prove that if R is an integral domain and M is an R-module, then Tor(M) is a submodule of M. Give an example showing that the hypothesis that R is an integral domain is necessary.

Solution. Clearly $\text{Tor}(M) \neq \emptyset$ since $0 \in \text{Tor}(M)$. Now suppose $a, b \in \text{Tor}(M)$. Then $\exists r, s \in R$ such that ra = sb = 0. Therefore, rs(a + b) = s(ra) + r(sb) = 0 so $a + b \in \text{Tor}(M)$. Similarly, for all $s \in R$, we have r(sa) = s(ra) = 0 so $sa \in \text{Tor}(M)$. Thus, Tor(M) is a submodule of M.

To see that R is an integral domain is necessary, consider $R = M = \mathbb{Z}/6\mathbb{Z}$. Then $\text{Tor}(M) = \{0, 2, 3, 4\}$. But then $2 + 3 = 5 \notin \text{Tor}(M)$ so Tor(M) is not a submodule of M.

Exercise .1.2. Let M be a module over an integral domain R, and let N be a torsion-free module. Prove that $\operatorname{Hom}_R(M,N)$ is torsion-free. In particular, $\operatorname{Hom}_R(M,R)$ is torsion-free. (We will run into this fact again; see Proposition VIII.5.16.)

Solution. Let $f \in \operatorname{Hom}_R(M, N)$ and suppose $r \cdot f = 0$ for some $r \in R$. That is, for all $m \in M$,

$$r \cdot f(m) = 0.$$

But since $f(m) \in N$, f(m) is not a torsion element and r = 0. Thus, $\operatorname{Hom}_R(M, N)$ is torsion-free.

Exercise .1.3. Prove that an integral domain R is a PID if and only if every submodule of R itself is free.

Solution. Note that the submodules of R are its ideals. If R is a PID, then every submodule of R is generated by a single element. That is, every submodule of R has a basis, making it free. Now suppose every submodule of R is free. Recall that if M is a submodule of R, then $\dim(M) \leq \dim(R)$. In particular, $\dim(M) \leq 1$. Thus, every ideal of R is generated by at most one element so R is a PID.

Exercise .1.4. Let R be a commutative ring and M an R-module.

- Prove that Ann(M) is an ideal of R.
- If R is an integral domain and M is finitely generated, prove that M is torsion if and only if $\operatorname{Ann}(M) \neq 0$.
- Give an example of a torsion module M over an integral domain, such that Ann(M) = 0. (Of course this example cannot be finitely generated!)

Solution. Let $a, b \in \text{Ann}(M)$. That is, for all $m \in M$, we have am = bm = 0. Then (a+b)m = am + bm = 0 so $a+b \in \text{Ann}(M)$. Similarly, for all $r \in R$, we find $(ra) \cdot m = r \cdot (am) = r \cdot 0 = 0$ so $ra \in \text{Ann}(M)$, proving that it is an ideal.

If $\operatorname{Ann}(M) \neq 0$, there exists an $r \in R$ such that rm = 0 for all $m \in M$. Thus, every element of M is torsion. Now suppose M is torsion. That is, for every element $m_i \in M$, there exists an $r_i \in R, r_i \neq 0$ such that $r_i m_i = 0$. In particular, there is such an r_i for each generator of M. Then we may consider s to be the product of these r_i . Since R is an integral domain, $s \neq 0$. Furthermore, since all $m \in M$ is a linear combination of these generators, we have sm = 0 for all $m \in M$. Thus, $s \in \operatorname{Ann}(M)$.

Let $R = \mathbb{Z}$ and consider the \mathbb{Z} -module

$$M = \bigoplus_{i=1}^{\infty} \frac{\mathbb{Z}}{2^i \mathbb{Z}}.$$

Then each element of M has the form

$$a = (a_1 + \mathbb{Z}/2\mathbb{Z}, a_2 + \mathbb{Z}/2^2\mathbb{Z}, \dots, a_k + \mathbb{Z}/2^k\mathbb{Z}, 0, 0, \dots)$$

so $2^k a = 0$ which makes M a torsion module. Now suppose $r \in \text{Ann}(M)$. Choose $k \in \mathbb{Z}$ such that $r < 2^k$ and consider the element

$$a = (0, 0, \dots, 1 + \mathbb{Z}/2^k \mathbb{Z}, 0, 0, \dots).$$

Then ra = 0, but since $r < 2^k$, it must be the case that r = 0. Thus, Ann(M) = 0.

Exercise .1.5. Let M be a module over a commutative ring R. Prove that an ideal I of R is the annihilator of an element of M if and only if M contains an isomorphic copy of R/I (viewed as an R-module).

The associated primes of M are the prime ideals among the ideals $\mathrm{Ann}(m)$, for $m \in M$. The set of the associated primes of a module M is denoted $\mathrm{Ass}_R(M)$. Note that every prime in $\mathrm{Ass}_R(M)$ contains $\mathrm{Ann}_R(M)$.

Solution. Let I be the annihilator of an element $m \in M$. That is, for all $r \in I$, rm = 0. Consider the map $\varphi : R \to M$ which sends r to rm. The kernel of this map is the set of r such that rm = 0. That is, $\ker(\varphi) = I$ so, by the isomorphism theorem,

$$\frac{R}{I} \cong \operatorname{im}(\varphi) \subseteq M.$$

Now suppose M contains a submodule $N \cong R/I$ for an ideal $I \subseteq R$ and let $\varphi : R \to M$ be the composition of the natural projection and inclusion. We claim that I is the annihilator of $m = \varphi(1)$. Indeed, if $r \in I$ then

$$rm = r\varphi(1) = \varphi(r) = i(\pi(r)) = i(0) = 0$$

so $r \in \text{Ann}(m)$ and $I \subseteq \text{Ann}(m)$. Similarly, if $r \in \text{Ann}(m)$ then

$$rm = 0 \Longrightarrow \varphi(r) = 0 \Longrightarrow \pi(r) = 0$$

so $r \in I$ and Ann(m) = I.

Exercise .1.6. Let M be a module over a commutative ring R, and consider the family of ideals $\operatorname{Ann}(m)$, as m ranges over the nonzero elements of M. Prove that the maximal elements in this family are prime ideals of R. Conclude that if R is Noetherian, then $\operatorname{Ass}_R(M) \neq \emptyset$ (cf. Exercise 4.5).

Solution. Let \mathfrak{m} be a maximal element in this family of ideals, say $\mathfrak{m}=\mathrm{Ann}(m)$. Suppose $rs\in\mathfrak{m}$. If $r\in\mathfrak{m}$ then there is nothing to prove so suppose otherwise. We know $rs\cdot m=0$ but $rm\neq 0$. Thus, $s\in\mathrm{Ann}(rm)$. Furthermore, it is clear that $\mathrm{Ann}(m)\subseteq\mathrm{Ann}(rm)$ since if am=0 then a(rm)=0. Then, by the maximality of $\mathrm{Ann}(m)$, we have $\mathrm{Ann}(m)=\mathrm{Ann}(rm)$ so $s\in\mathfrak{m}$ and the ideal is prime.

If R is Noetherian, then every family of ideals has a maximal element. In particular, given a module M, the family of ideals Ann(m) as m ranges over the nonzero elements of M has a maximal element which is a prime ideal. Such prime ideals are elements of $Ass_R(M)$, meaning the set is nonempty.

Exercise .1.7. Let R be a commutative Noetherian ring, and let M be a finitely generated module over R. Prove that M admits a finite series

$$M = M_0 \supseteq M_1 \supseteq \cdots \supseteq M_m = \langle 0 \rangle$$

in which all quotients M_i/M_{i+1} are of the form R/\mathfrak{p} for some prime ideal \mathfrak{p} of R. (Hint: Use Exercises 4.5 and 4.6 to show that M contains an isomorphic copy M' of R/\mathfrak{p}_1 for some prime \mathfrak{p}_1 . Then do the same with M/M', producing an $M'' \supseteq M'$ such that $M''/M' \cong R/\mathfrak{p}_2$ for some prime \mathfrak{p}_2 . Why must this process stop after finitely many steps?)

Solution. By Exercise 4.6, $\operatorname{Ass}_R(M) \neq \emptyset$ so let $\mathfrak{p}_1 \in \operatorname{Ass}_R(M)$. Then by Exercise 4.5, M contains a submodule $M' \cong R/\mathfrak{p}_1$. Now consider M/M', which is also an R-module. Thus, $\operatorname{Ass}_R(M/M') \neq \emptyset$ and there is a submodule $M'' \supseteq M'$ of M such that $M''/M' \cong R/\mathfrak{p}_2$ for some prime \mathfrak{p}_2 . That is, we have a chain

$$M \supset M'' \supset M' \supset \langle 0 \rangle$$

such that $M''/M' \cong R/\mathfrak{p}_2$ and $M'/0 \cong R/\mathfrak{p}_1$ for prime ideals of R. Since M is finitely generated over a Noetherian ring, it is a Noetherian module and all chains of submodules eventually stabilize. Thus, iterating this process yields a finite series whose quotients are isomorphic to R/\mathfrak{p} for prime ideals.

Exercise .1.8. Let R be a commutative Noetherian ring, and let M be a finitely generated module over R. Prove that every prime in $\operatorname{Ass}_R(M)$ appears in the list of primes produced by the procedure presented in Exercise 4.7. (If \mathfrak{p} is an associated prime, then M contains an isomorphic copy N of R/\mathfrak{p} . With notation as in the hint in Exercise 4.7, prove that either $\mathfrak{p}_1 = \mathfrak{p}$ or $N \cap M' = 0$. In the latter case, N maps isomorphically to a copy of R/\mathfrak{p} in M/M'; iterate the reasoning.)

In particular, if M is a finitely generated module over a Noetherian ring, then Ass(M) is finite.

Solution. Let $\mathfrak{p} \in \mathrm{Ass}_R(M)$ and suppose $R/\mathfrak{p} \cong N \subseteq M$. In particular, if $x \in M$ such that $\mathrm{Ann}_R(x) = \mathfrak{p}$, then N = Rx. If $Rx \cap M' \neq 0$, say rx = m is a nonzero element, then $\mathrm{Ann}_R(m) \subseteq \mathfrak{p}$. But by definition, $\mathrm{Ann}_R(m) = \mathfrak{p}_1$ so $\mathfrak{p}_1 \subseteq \mathfrak{p}$. The reverse inclusion can be shown similarly. Thus, if M' and N have nontrivial intersection, $\mathfrak{p} = \mathfrak{p}_1$. Otherwise, $M' \cap N = 0$. In the latter case, N is isomorphic to some R/\mathfrak{p} in $M/M' \cong R/\mathfrak{p}_2$. Thus, we may repeat the above reasoning which eventually terminates.

Exercise .1.9. Let M be a module over a commutative Noetherian ring R. Prove that the union of all annihilators of nonzero elements equals the union of all associated primes of M. (Use Exercise 4.6)

Deduce that the *union* of the associated primes of a Noetherian ring R (viewed as a module over itself) equals the set of zero-divisors of R.

Solution. Certainly every associated prime is the annihilator of some element $m \in M$, so we only need to show the other direction. If $I \in \operatorname{Ann}_R(m)$ for some $m \in M$, then $I \subseteq \mathfrak{p}$ for some maximal element in the family of annihilators of elements of M. By Exercise 4.6, \mathfrak{p} is prime in R so I is in the union of all associated primes, proving the result.

Exercise .1.10. Let R be a commutative Noetherian ring. One can prove that the minimal primes of Ann(M) (cf. Exercise V.1.9) are in Ass(M). Assuming this, prove that the *intersection* of the associated primes of a Noetherian ring R (viewed as a module over itself) equals the nilradical of R.

Solution. Recall that the nilradical of R is the set of elements $r \in R$ such that $r^n = 0$ for some n > 0. If $x \in \text{nil}(R)$ then x is in the intersection of all prime ideals of R, particularly the intersection of associated primes of R. Now suppose x is in the intersection of the associated primes of R. Then it is in the minimal primes of Ann(R). Since every prime ideal contains a minimal prime ideal, the intersection of all prime ideals equals the intersection of all minimal prime ideals. Thus, $x \in \text{nil}(R)$.

Exercise .1.11. Review the notion of presentation of a group, and relate it to the notion of presentation introduced in §4.2.

Solution. Recall that a presentation of a group G is an explicit isomorphism

$$G \cong \frac{F(A)}{R}$$

for a set A and a subgroup R of relations. A presentation of an R-module M is an exact sequence

$$R^n \longrightarrow R^m \longrightarrow M \longrightarrow 0$$

In particular, if G is an abelian group, then we have the exact sequence

$$R \longrightarrow F(A) \longrightarrow G$$

where R is also a free module since it is a submodule of F(A).

Exercise .1.12. Let \mathfrak{p} be a prime ideal of a polynomial ring $k[x_1, \ldots, x_n]$ over a field k, and let $R = k[x_1, \ldots, x_n]/\mathfrak{p}$. Prove that every finitely generated module over R has a finite presentation.

Solution. Let M be a finitely generated module over R. Then there is a surjection $\pi: R^a \to M$ for some $a \in \mathbb{Z}$ where $\ker(\pi)$ is a submodule of R^a . Since k is a field, by Hilbert's basis theorem, $k[x_1, \ldots, x_n]$ is also Noetherian. But then R is a quotient of a Noetherian ring and is Noetherian itself. Thus, $\ker(\pi)$ is finitely generated and there is an exact sequence

$$R^b \longrightarrow \ker(\pi) \longrightarrow 0$$

which yields the exact sequence

$$R^b \longrightarrow R^a \longrightarrow M \longrightarrow 0$$

so M is finitely presented.

Exercise .1.13. Let R be a commutative ring. A tuple (a_1, a_2, \ldots, a_n) of elements of R is a regular sequence if a_1 is a non-zero-divisor in R, a_2 is a non-zero-divisor modulo (a_1) , a_3 is a non-zero-divisor modulo (a_1, a_2) , and so on

For a, b in R, consider the following complex of R-modules:

(*)
$$0 \longrightarrow R \xrightarrow{d_2} R \oplus R \xrightarrow{d_1} R \xrightarrow{\pi} \frac{R}{(a,b)} \longrightarrow 0$$

where π is the canonical projection, $d_1(r,s) = ra + sb$, and $d_2(t) = (bt, -at)$. Put otherwise, d_1 and d_2 correspond, respectively, to the matrices

$$\begin{pmatrix} a & b \end{pmatrix}, \begin{pmatrix} b \\ -a \end{pmatrix}.$$

- Prove that this is indeed a complex, for every a and b.
- Prove that if (a, b) is a regular sequence, this complex is *exact*.

The complex (*) is called the *Koszul complex* of (a,b). Thus, when (a,b) is a regular sequence, the Koszul complex provides us with a free resolution of the module R/(a,b).

Solution. First we verify that this is a complex for all a and b. Certainly the image of the zero map is a subset of $\ker(d_2)$. Let $(r,s) \in \operatorname{im}(d_2)$. Then (r,s) = (bt, -at) for some $t \in R$ and

$$d_1(bt, -at) = bta - bta = 0$$

so $\operatorname{im}(d_2) \subseteq \ker(d_1)$. Furthermore, let $ra + sb \in \operatorname{im}(d_1)$. Then $\pi(ra + sb) = 0 \in R/(a,b)$ so $\operatorname{im}(d_1) \subseteq \ker(\pi)$. Finally, the image of π is clearly a subset of the kernel of the zero map. Thus, we have verified that this is in fact a complex.

Now suppose (a, b) is a regular sequence. Let $t \in \ker(d_2)$. That is, (bt, -at) = (0, 0). Since $a \neq 0$, it must be the case that t = 0 so t is in the image of the zero map, proving the two are equal.

Now suppose $(r, s) \in \ker(d_1)$. Then ra + sb = 0. Consider the equation mod a: sb = 0. Since b is not a zero-divisor in R/(a), $s \in (a)$ so s = at for some $t \in R$. Then we have ra + atb = 0, or (r + tb)a = 0. Since a is not a zero-divisor in R, it must be the case that r + tb = 0, or r = -tb. That is, $(r, s) = (-tb, at) \in \operatorname{im}(d_2)$ so the two sets must be equal.

Now let $x \in \ker(\pi)$ so $\pi(x) = 0 \Longrightarrow x = ra + sb$ for $r, s \in R$. Then $x = d_1(r, s) \in \operatorname{im}(d_1)$ and the two sets are equal.

Finally, the projection is surjective and the kernel of the zero map is all of its domain so the last map is exact. \Box

Exercise .1.14. A Koszul complex may be defined for any sequence a_1, \ldots, a_n of elements of a commutative ring R. The case n = 2 seen in Exercise 4.13 and the case n = 3 reviewed here will hopefully suffice to get a gist of the general construction; the general case will be given in Exercise VIII.4.22.

Let $a, b, c \in R$. Consider the following complex:

$$0 \longrightarrow R \xrightarrow{d_3} R \oplus R \oplus R \xrightarrow{d_2} R \oplus R \oplus R \xrightarrow{d_1} R \xrightarrow{\pi} \frac{R}{(a,b,c)} \longrightarrow 0$$

where π is the canonical projection and the matrices for d_1, d_2, d_3 are, respectively,

$$\begin{pmatrix} a & b & c \end{pmatrix}, \begin{pmatrix} 0 & -c & -b \\ -c & 0 & a \\ b & a & 0 \end{pmatrix}, \begin{pmatrix} a \\ -b \\ c \end{pmatrix}.$$

• Prove that this is indeed a complex, for every a, b, c.

• Prove that if (a, b, c) is a regular sequence, this complex is *exact*.

Koszul complexes are very important in commutative algebra and algebraic geometry.

Solution. Clearly the image of the zero map is in the kernel of d_3 . Let $(ar, -br, cr) \in \text{im}(d_3)$. Then

$$\begin{pmatrix} 0 & -c & -b \\ -c & 0 & a \\ b & a & 0 \end{pmatrix} \cdot \begin{pmatrix} ar \\ -br \\ cr \end{pmatrix} = \begin{pmatrix} bcr - bcr \\ -acr + acr \\ abr - abr \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

so $(ar, -br, cr) \in \ker(d_2)$. Now let $(-cs - bt, -cr + at, br + as) = d_2(r, s, t) \in \operatorname{im}(d_2)$. Then

$$\begin{pmatrix} a & b & c \end{pmatrix} \cdot \begin{pmatrix} -cs - bt \\ -cr + at \\ br + as \end{pmatrix} = -acs - abt - bcr + abt + bcr + acs = 0$$

so im $(d_2) \subseteq \ker(d_1)$. Now consider $ra + sb + ct = d_1(r, s, t) \in \operatorname{im}(d_1)$. We have

$$\pi(ra + sb + ct) = 0$$

by definition of the projection to a quotient so $\operatorname{im}(d_1) \subseteq \ker(\pi)$. The image of projection is obviously a subset of the kernel of the zero map. Thus, this is indeed a complex.

Now suppose (a, b, c) is a regular sequence. If $r \in \ker(d_3)$ then $d_3(r) = (0, 0, 0)$. In particular, ar = 0 and since a is not a zero-divisor, we must have r = 0 so r is in the image of the zero map, hence it equals the image of d_3 .

If $(r_1, r_2, r_3) \in \ker(d_2)$, then

$$\begin{pmatrix} 0 & -c & -b \\ -c & 0 & a \\ b & a & 0 \end{pmatrix} \cdot \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} -cr_2 - br_3 \\ -cr_1 + ar_3 \\ br_1 + ar_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The third equation mod a yields $br_1 = 0$ in R/(a). Since b is not a zero-divisor in this ring, we must have $r_1 = at$ for some $t \in R$. Substituting this back into the third equation, we have $abt + ar_2 = 0$, or $r_2 = -bt$ (since a is not a zero-divisor in R). Substituting this into the second equation yields $-act + ar_3 = 0$ so $r_3 = ct$ by the same reasoning as above. But then

$$(r_1, r_2, r_3) = (at, -bt, ct) = d_3(t)$$

so $im(d_3) = ker(d_2)$.

If $(r_1, r_2, r_3) \in \ker(d_1)$, then

$$\begin{pmatrix} a & b & c \end{pmatrix} \cdot \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = ar_1 + br_2 + cr_3 = 0.$$

Considering this equation mod (a, b) yields $cr_3 = 0$ in R/(a, b) and since c is not a zero-divisor in this ring, we must have $r_3 \in (a, b)$ or $r_3 = ar + bs$ for $r, s \in R$. Substituting this into the equation yields

$$ar_1 + br_2 + acr + bcs = 0$$

which we can consider mod a to yield $br_2 + bcs = 0$ in R/(a), or $r_2 + cs = at$ for some $t \in R$. That is, $r_2 = at - cs$, which we can again substitute into the equation to obtain

$$ar_1 + abt - bcs + acr + bcs = 0$$

which yields $a(r_1 + bt + cs) = 0$ so $r_1 = -bt - cs$. But then

$$(r_1, r_2, r_3) = (-bt - cs, at - cs, ar + bs) = d_2(r, s, t)$$

so $im(d_2) = ker(d_1)$.

Finally, suppose $x \in \ker(\pi)$. That is, $x \in (a, b, c)$. Then $x = ra + bs + ct = d_1(r, s, t)$ and $\operatorname{im}(d_1) = \ker(\pi)$. The last equality is obvious. Thus, the complex is exact.

Exercise .1.15. View \mathbb{Z} as a module over the ring $R = \mathbb{Z}[x, y]$, where x and y act by 0. Find a free resolution of \mathbb{Z} over R.

Solution. Recall that a free resolution of an R-module M is an exact complex

$$\cdots \longrightarrow R^{m_3} \longrightarrow R^{m_2} \longrightarrow R^{m_1} \longrightarrow R^{m_0} \longrightarrow M \longrightarrow 0.$$

Consider the complex

$$0 \longrightarrow R \xrightarrow{d_2} R^2 \xrightarrow{d_1} R \xrightarrow{\pi} \mathbb{Z} \longrightarrow 0$$

where d_1 and d_2 correspond to the matrices

$$\begin{pmatrix} x & y \end{pmatrix}, \quad \begin{pmatrix} y \\ -x \end{pmatrix}$$

and π is the natural projection to the constant term. It is easy to see that this is in fact a complex. To see that it is exact, let $f(x,y) \in \ker(\pi)$. That is, f has no constant term, so it may be written as

$$f = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} f_1(y) \\ f_2(x) \end{pmatrix}$$

so $f \in \text{im}(d_1)$. Similarly, if $(f,g) \in \text{ker}(d_1)$ then fx + gy = 0. Gathering terms, this is only possible if f = hy and g = -hx for some $h \in R$. That is, $(f,g) = d_2(h)$ so $\text{ker}(d_1) = \text{im}(d_2)$ and the sequence is exact. Thus, this is a free resolution of \mathbb{Z} over R.

Exercise .1.16. Let $\varphi: R^n \to R^m$ and $\psi: R^p \to R^q$ be two R-module homomorphisms, and let

$$\varphi \oplus \psi : R^n \oplus R^p \to R^m \oplus R^q$$

be the morphism induced on direct sums. Prove that

$$\operatorname{coker}(\varphi \oplus \psi) = \operatorname{coker} \varphi \oplus \operatorname{coker} \psi.$$

Solution. First note that

$$\operatorname{im}(\varphi \oplus \psi) = \operatorname{im}(\varphi) \oplus \operatorname{im}(\psi).$$

Now consider the map

$$R^m \oplus R^q \to \frac{R^m}{\operatorname{im} \varphi} \oplus \frac{R^q}{\operatorname{im} \psi}.$$

The kernel of this map is $\operatorname{im}(\varphi) \oplus \operatorname{im}(\psi)$ so by the first isomorphism theorem, we have

$$\frac{R^m \oplus R^q}{\operatorname{im}(\varphi \oplus \psi)} \cong \frac{R^m}{\operatorname{im} \varphi} \oplus \frac{R^q}{\operatorname{im} \psi}$$

and $\operatorname{coker}(\varphi \oplus \psi) = \operatorname{coker}(\varphi) \oplus \operatorname{coker}(\psi)$.

Exercise .1.17. Determine (as a better known entity) the module represented by the matrix

$$\begin{pmatrix} 1+3x & 2x & 3x \\ 1+2x & 1+2x-x^2 & 2x \\ x & x^2 & x \end{pmatrix}$$

over the polynomial ring k[x] over a field.

Solution. We perform Gaussian elimination to reduce the matrix to a simpler but equivalent form. Subtracting three times the third row from the first yields a unit in the 1,1 position so we are reduced to the 2×2 matrix

$$\begin{pmatrix} 1 + 2x - x^2 & 2x \\ x^2 & x \end{pmatrix}.$$

Adding the second row to the first and subtracting $\frac{2}{3}$ times the second column from the first yields another unit in the 1,1 position so we have reduced the matrix to

$$(x)$$
.

The module represented by the original matrix is isomorphic to the cokernel of the homomorphism

$$\varphi: k[x] \to k[x]$$

which maps 1 to x. That is,

$$M \cong \operatorname{coker} \varphi \cong \frac{k[x]}{(x)} \cong k.$$