Ex 3.4.8) $Y \subseteq X$. X is complete.

We have to show Y is complete $\rightleftharpoons Y$ is closed. First, we show that Y is complete \Rightarrow Y is closed. Consider $(x_n) \in Y$ and $\lim_{n \to \infty} (x_n) = a \in \overline{Y}$. Since (x_n) converges, (x_n) is Cauchy in Y.

But since Y is complete, (x_n) must converge to be Y.

But the limit is unique so a = b.

We have $a \in Y : Y$ is closed. Second, we show that Y is closed => Y is complete. Consider a Cauchy sequence $(y_n) \in Y \subseteq X$.

By completeness of X, $\lim_{n\to\infty} y_n = a \in X$. But since Y is closed, it must contain all of its limit point so a∈ Y:. Y is complete

i) $f_n(x) = \sin\left(\frac{x}{n}\right)$ $f_n(x)$ converges $\forall x \in [C, 2\pi]$. Point wise Umit function f(x) = 0ii) $f_n(x) = \sin(nx)$ $f_n(x)$ converges for $x = 0, \pi, 2\pi$. fn (x) does not have a pointwise limit function. $f_n(x) = \sin^n(x)$ Hence, there is no point wise limit function.

3.4.22) 1) Consider $f_n(x) = x^n$ Since |x| < 1, then $x^n \Rightarrow 0$, $\forall x \in (-1,1)$. ii) let & > 0. If $\varepsilon \geqslant 1$. Choose N=1. Then $\forall x \in [-1, \frac{1}{2}]$ and $\forall n \geqslant N$, $|x^n| = |x|^n \leqslant \frac{1}{2}^n < 1 < \varepsilon$. If $\varepsilon < 1$. Choose $N = \left[\frac{\ln \varepsilon}{\ln k}\right] \leftarrow least greatest integer symbol. Then <math>\forall x \in \left[\frac{1}{2}, \frac{1}{2}\right]$ and $\forall n > 1$, N, $\leq \ln \varepsilon \ln x \leq \ln \varepsilon$ $n \ln |x| \leq N \ln |x|$ 50 In |x|n € € .. |x|n < & Suppose (finen is uniformly convergent to f(x)=0. Then YETO, BNE IN, Yn >, N, Yxe(-1,1) $|x|^n < \varepsilon$ $\times |x|^n < \varepsilon$, $\forall x \in (-1, 1)$ This is a contradiction because as x = 1, In(x) = 0 10/2 700.

If is continuous at $x_0 \Leftarrow 7(x_0) \rightarrow x_0 = 7f(x_0) \rightarrow f(x_0)$ let $\varepsilon \geq 0$. Since f is continuous at x_0 , $\exists S$ s.t. $d(x_0, x_0) < S \Rightarrow d'(f(x_0), f(x_0) < \varepsilon$. Since (x_0) converges to x_0 , $\exists N \in \mathbb{N}$ s.t. $\forall n \geq N$, $d(x_0, x_0) \leq S$. Thus $d(f(x_0), f(x_0)) < \varepsilon \forall n \geq N$ $f(x_0)$ converges to $f(x_0)$. Now for the backward direction, Let & > 0. Assume that \((xn) \rightarrow x. => f(xn) -> f(xo). Assume that f is not continuous at x. So we want to show that I a sequence (xn) s.t $\times_n \rightarrow \times_o$ but $f(\times_n) \not \rightarrow f(\times_o)$ f not continuous at x_0 : $\exists \varepsilon>0$ s.t $\forall \varepsilon>0$, $\exists x$ s.t. $d(x,x_0)<\delta$ \wedge $d'(f(x),f(x_0)) > \varepsilon$ Then the N, 3 xn s.t. $d(x_n, x_n) < \gamma$ and $d'(f(x_n), f(x_0)) > \epsilon$ So we have a sequence (xn) s.t. (xn) -> xo and f(xn) -> f(xo) $(5 \times 3.5.3)$ f is cont at $\times_0 \in \mathbb{R}$ f(x)= anx + an x + an + anx + an Assume $(x_n) \rightarrow (x_0)$ i.e. lim (am xn + ame xn + ... + ao = lim amxm + ... + lim a. = am lim xm + ... + a, lim xn + lima. = $a_m \left(\lim_{n \to \infty} x_n \right)^m + \dots + a_i \lim_{n \to \infty} x_n + \lim_{n \to \infty} a_n$ $= a_{\rm m}$ $(x_0)^m + ... + a_1 x_0 + a_0 = f(x_0)$ 3.5.4 & Show that f is continuous at O. let & > 0. Choose & = &. > Show that f is continuous at any irrational point $\forall n \in \mathbb{N}, \exists k \in \mathbb{Z} \text{ s.t. } \frac{k}{n} < \alpha < \frac{k+1}{n}$ Let $S_n = \min \left\{ \alpha - \frac{k}{n}, \frac{k+1}{n} - \alpha \right\}$ i.e. the shortest distance from a to a rational number with denominator n. let & > 0. 3 N & IN s.t. /N < 8. let & = min { s1, S2, ..., SN} Suppose that $|x-\alpha| < \delta$. Then $5q \le |p-\alpha| = |x-\alpha| < \delta \le 5i$ $\forall 1 \leq i \leq N$ 1, 9 > N : 1 < 1/ < E $|f(x)| = \begin{cases} 0 & \text{if } x \notin Q. \text{ (Trivial Case)} \\ 1 & \text{if } x = q \end{cases}$