Applications of Newton's Laws of Motion

Muhammad Adeel

The Runaway Car

Suppose a car is released from rest at the top of the incline, and the distance from the front edge of the car to the bottom is *d. How long does it take the front edge to* reach the bottom, and what is its speed just as it gets there?

Because $a_x = \text{constant}$, we can apply $x_f - x_i = v_{xi}t + \frac{1}{2}a_xt^2$, to analyze the car's motion

replace displacement by
$$x_f - x_i = d$$

Put, $v_{xi} = 0$, we get $d = \frac{1}{2}a_x t^2$

(1)
$$\sum F_x = mg \sin \theta = ma_x$$

(2)
$$\sum F_{y} = n - mg\cos\theta = 0$$

Solving (1) for
$$a_x$$
 $a_x = g \sin \theta$

put the value of a_x in $d = \frac{1}{2}a_x t^2$ and find time, as follows

$$t = \sqrt{\frac{2d}{a_x}}$$

$$t = \sqrt{\frac{2d}{g\sin\theta}}$$

Calculation for Final Velocity

Using
$$v_{xf}^{2} = v_{xi}^{2} + 2a_{x}(x_{f} - x_{i})$$

with $v_{xi} = 0$, $x_{f} - x_{i} = d$
 $v_{xf}^{2} = 2a_{x}d$

$$v_{xf} = \sqrt{2gd\sin\theta}$$

Conclusion

We see that the time t needed to reach the bottom and the speed v_{xf} , are independent of the car's mass.

One Block Pushes Another

Two blocks of masses m_1 and m_2 are placed in contact with each other on a frictionless horizontal surface. A constant horizontal force \mathbf{F} is applied to the block of mass m_1 . (a) Determine the magnitude of the acceleration of the two-block system.

(b) Determine the magnitude of the contact force between the two blocks.

(a) Determine the magnitude of the acceleration of the two-block system.

Solution

we know that both blocks must experience the same acceleration because they remain in contact with each other.

F is the only external horizontal force acting on the system (the two blocks), we have

$$\sum F_x(\text{system}) = F = (m_1 + m_2) a_x$$

$$(1) a_x = \frac{F}{m_1 + m_2}$$

(b) Determine the magnitude of the contact force between the two blocks.

To solve this part of the problem, we must treat each block separately with its own free-body diagram, We denote the contact force by \mathbf{P} .

From Figure c, we see that the only horizontal force acting on block 2 is the contact force **P**(the force exerted by block 1 on block 2), which is directed to the right. Applying Newton's second law to block 2 gives

$$(2) \qquad \sum F_x = P = m_2 a_x$$

Substituting into (2) the value of a_x given by (1), we obtain

(3)
$$P = m_2 a_x = \left(\frac{m_2}{m_1 + m_2}\right) F$$

$$P = m_2 a_x = \left(\frac{m_2}{m_1 + m_2}\right) F$$

From this result, we see that the contact force \mathbf{P} exerted by block 1 on block 2 is *less* than the applied force \mathbf{F} . This is consistent with the fact that the force required to accelerate block 2 alone must be less than the force required to produce the same acceleration for the two-block system.

It is instructive to check this expression for P by considering the forces acting on block 1, shown in Figure b. The horizontal forces acting on this block are the applied force \mathbf{F} to the right and the contact force \mathbf{P}' to the left (the force exerted by block 2 on block 1). From Newton's third law, \mathbf{P}' is the reaction to \mathbf{P} , so that $|\mathbf{P}'| = |\mathbf{P}|$. Applying Newton's second law to block 1 produces

(4)
$$\sum F_x = F - P' = F - P = m_1 a_x$$

(4)
$$\sum F_x = F - P' = F - P = m_1 a_x$$

Substituting into (4) the value of a_x from (1), we obtain

$$P = F - m_1 a_x = F - \frac{m_1 F}{m_1 + m_2} = \left(\frac{m_2}{m_1 + m_2}\right) F$$

Task 1

Exercise If $m_1 = 4.00 \text{ kg}$, $m_2 = 3.00 \text{ kg}$, and F = 9.00 N, find the magnitude of the acceleration of the system and the magnitude of the contact force.

Answer $a_x = 1.29 \text{ m/s}^2$; P = 3.86 N.

Muhammad Adeel 10/29/2020

Weighing a fish in an Elevator

$$\sum F_y = T - mg = ma_y$$

$$T = ma_y + mg = mg\left(\frac{a_y}{g} + 1\right)$$

The Atwood Machine

$$\sum F_{y} = T - m_{1}g = m_{1}a_{y}$$

$$\sum F_y = m_2 g - T = m_2 a_y$$

$$a_y = \left(\frac{m_2 - m_1}{m_1 + m_2}\right) g$$

$$T = \left(\frac{2m_1m_2}{m_1 + m_2}\right)g$$