Homological Algebra

Sheet 2 — MT23

Section A

1. Show \mathbb{Q} is not a projective \mathbb{Z} -module.

Solution: \mathbb{Z} is a PID, thus projective \mathbb{Z} -mods are free. Divisible abelian groups can't be free.

More explicit alternative: $\bigoplus_{i \in \mathbb{Q}} \mathbb{Z}e_i \to \mathbb{Q} \to 0$,

 $Hom(\mathbb{Q}, \bigoplus_{i\in\mathbb{Q}}\mathbb{Z}e_i)=0$ thus $h^{\mathbb{Q}}$ not exact, i.e. \mathbb{Q} not projective.

Mathematical Institute, University of Oxford Kobi Kremnizer: kremnitzer@maths.ox.ac.uk

Section B

- 2. Write an injective resolution for \mathbb{Z} as a \mathbb{Z} -module.
- 3. Write free resolutions for:
 - 1. $\mathbb{Z}/2$ in $Mod_{\mathbb{Z}}$,
 - 2. $\mathbb{Z}/2$ in $Mod_{(\mathbb{Z}/2)[x]}$,
 - 3. $\mathbb{Z}/2$ in $Mod_{\mathbb{Z}[x]}$,
 - 4. $\mathbb{Z}/2$ in $Mod_{\mathbb{Z}[x]/2x}$.
- 4. R: commutative ring, $r \in R$, $M \in Mod_R$. $R[r^{-1}] := \frac{R[x]}{rx-1} = coker(R[x] \overset{rx-1}{\to} R[x])$, $M[r^{-1}] = coker(M[x] \overset{rx-1}{\to} M[x])$ where $M[x] = \{\sum_i m_i x^i\}$ is viewed naturally as an R[x]-module

Show $M \otimes_R R[r^{-1}] \simeq M[r^{-1}].$

5. Prove the general Frobenius reciprocity formula (Tensor-Hom adjunction):

 $Hom_S(A, Hom_R(B, C)) \cong Hom_R(A \otimes_S B, C)$. where A is a right S-module, B is an S-R-bimodule, and C is a right R-module.

Mathematical Institute, University of Oxford Kobi Kremnizer: kremnitzer@maths.ox.ac.uk

Section C

6. Show that every R-submodule of a free R-module M is free when R is a PID.

Solution: Note that this would be a trivial statement if we were thinking about finitely-generated modules by the structure theorem (which implies free iff torsion-free. Generally for domain R, we only have free \Longrightarrow projective \Longrightarrow flat \Longrightarrow torsion-free. For a Dedekind domain, torsion-free \Longrightarrow flat! Note ideals in a Dedekind domain are projective, but may not be free).

Let $N \leq M \cong \bigoplus_{i \in I} Re_i$. The well-ordering principle (equivalently, Zorn's lemma) equips I with an ordering < rendering I well-ordered.

For all $j \in I$, set $M_{< j} := \bigoplus_{i < j} Re_i$ and $M_j := M_{< j} \oplus Re_j$. Denote $\pi_j : N \cap M_j \to Re_j$ Observe we have the following SES: $0 \to N \cap M_{< j} \to N \cap M_j \to im\pi_j \to 0$ since $\ker \pi_j \subseteq M_{< j}$ and $\subseteq N$ (and $N \cap M_{< j} \subseteq \ker \pi_j$).

R is a PID, so $im\pi_j = a_jRe_j$ for some $a_j \in R$. Choose $n_j \in N \cap M_j$ such that $\pi_j(n_j) = a_je_j$; in particular, set $n_j = 0$ iff $a_j = 0$. Let $J \subseteq I$ denote the j such that $a_j \neq 0$.

(Linear Independence) Suppose $\sum_{i=1}^k r_{j_i} n_{j_i} = 0$ for some $r_{j_i} \in R$ with $j_1 < \cdots < j_k$. Thus $0 = \pi_{j_k}(\sum_{i=1}^k r_{j_i} n_{j_i}) = r_{j_k} a_{j_k}$; since R is a PID, this implies $r_{j_k} = 0$. Induction shows that $r_{j_{k-1}} = \cdots = r_{j_1} = 0$ as well. So we have $\sum R n_j = \bigoplus R n_j \subseteq N$.

(Spanning) Assume $\bigoplus_{j\in J} Rn_j \subsetneq N$. Thus there exists a minimal $i\in J$ such that $\exists n\in M_i\cap N$ and $n\notin\bigoplus_{j\in J} Rn_j$. If $a_i=0$, then $n\in M_i\cap N=M_{< i}\cap N$, which contradicts minimality of i; so $a_i\neq 0$, and there exists an $r\in R-\{0\}$ such that $\pi_i(n)=ra_ie_i$. Now $n-rn_i$ must also not be in $\bigoplus_{j\in J} Rn_j$ (since that would imply $n\in\bigoplus_{j\in J} Rn_j$). However, $\pi_i(n-rn_i)=0$, thus $n-rn_i\in M_{< i}\cap N$, and this contradicts minimality of i.

Thus, $\bigoplus_{i \in J} Rn_i \cong N$, and so N is a free R-module.

Mathematical Institute, University of Oxford Kobi Kremnizer: kremnitzer@maths.ox.ac.uk