

Комуникационные игры

Сириус. Май 2024

Введение

Дана функция $f: X \times Y \longrightarrow Z$. Алиса и Боб знают по одному числу $x \in X$ и $y \in Y$ соответственно. Они хотят выяснить значение f(x,y). При этом они могут отправлять друг другу сообщения «0» или «1» и хотят достичь своей цели за минимально возможное количество сообщений.

Базовые определения

Определение

Комуникационной сложностью функции f назовем минимально возможное количество раундов (сообщений), необходимое для ее вычисления (обозначается $\mathcal{C}(f)$).

Определение

Протоколом общения Алисы и Боба будем называть правила, по которым игроки договорились передавать собщения.

Направления исследований

Занимаясь комуникационными играми, мы интересуемся оценками на сложность разных функций. Естественным образом возникает два направления исследований:

- **Получение оценок сверху.** Построение алгоритмов, позволяющих быстро вычислить ту или иную функцию.
- Получение оценок снизу. Аналитическое доказательство того, что ту или иную функцию нельзя вычислить достаточно быстро.

Иной взгляд

Входное пространство коммуникационной задачи можно вопринимать как матрицу. Каждой функции f будем сопоставлять матрицу $X \times Y$, в которой в клетке (x_i, y_j) стоит значение $f(x_i, y_j)$.

В основном мы будем рассматривать булевы функции, поэтому их матрица будет состоять только из нулей и единиц.

Утверждение

Рассмотрим дерево протокола со входом из множества $X \times Y$ и произвольную вершину u этого дерева. Тогда все входы, из которых можно прийти в вершину u, образуют прямоугольник $R_u = X_u \times Y_u \subseteq X \times Y$.

Несколько способов доказательств оценок снизу

- Если $\chi_z(f)$ минимальное число прямоугольников, которыми можно дизъюнктно покрыть все «z» в матрице, а $\chi(f) = \sum\limits_{z \in Z} \chi_z(f)$ то $\mathcal{C}(f) \geqslant \log \chi(f)$.
- Метод трудного множества. Возьмем некоторый набор входов $(x_1, y_1), \ldots, (x_m, y_m)$, никакие два входа которого не могут лежать в одном одноцветном прямоугольнике. Тогда $\chi(f) \geqslant m$, а следовательно $C(f) \geqslant \log m$.
- Метод ранга. Пусть M_f квадратная матрица некоторой функции f со значениями из $\{0,1\}$. Тогда $C(f) \geqslant \log \operatorname{rank}(M_f)$.

Определение

Функция $\mathrm{EQ}_n: \{0,1\}^n imes \{0,1\}^n \longrightarrow \{0,1\}$ проверяет две битовые строки длины n на равенство: $\mathrm{EQ}_n(x,y)=1$ тогда и только тогда, когда x=y.

Покажем, что $\mathcal{C}(\mathsf{EQ}_n) = n+1$.

- Алгоритм на n+1: Алиса может отправить Бобу свою строчку, после чего Боб вычислит значение функции и передаст его Алисе.
- ullet Оценка на n+1 получается методом трудного множества.

Функция связности

Пусть V — множество вершин графа G. Функция $f_G: V \times V \longrightarrow \{0,1\}$ равна 1, если между вершинами входа есть ребро и 0 иначе.

Утверждение

Пусть дан граф G без петель. Алиса и Боб получают две вершины данного графа x,y и хотят узнать значение $f_G(x,y)$. Тогда верны следующие неравенства:

$$\max(C(G), \log(\chi(G))) \leqslant C(f_G) \leqslant 2 \cdot \log(\chi(G)) + C(G),$$

где $\chi(G)$ — хроматическое число графа G.

В этой модели Алиса и Боб отправляют сообщения x и y третьему игроку, выполняющему роль оракула, он вычисляет некоторую функцию g(x,y) и отправляет ее значение игрокам, Алиса и Боб хотят вычислить с помощью оракула функцию f.

Комуникационная сложность с оракулом

Определение

Протоколом, вычисляющим функцию f с оракулом g будем называть правила, по которым должны действовать игроки, чтобы добиться своей цели.

Определение

Будем обозначать за $C^g(f)$ коммуникационную сложность функции f с оракулом g, т.е. минимальную глубину протокола, который вычисляет функцию f с оракулом g.

Определение одной важной функции

Расстоянием Хэмминга между двумя числами назовем количество различающихся битов в их двоичной записи.

Определение

Точное расстояние Хэмминга $\mathrm{EHD}^n_k(x,y)=1$, когда расстояние Хэмминга между x и y равно ровно k, и равно 0 иначе, где $x,y\in\{0,1\}^n$.

Улучшения верхних оценок

На нашем проекте были улучшены верхние оценки на сложности разных функций с оракулами:

Новый результат

$$C^{\mathsf{EQ}}(\mathsf{EHD}^n_k) \leqslant k \cdot (\log(n+1) - \log(k) + 2).$$

Новый результат

$$\mathit{C}^{\mathsf{EHD}^n_\ell}(\mathsf{EHD}^n_k) \leqslant 2 \cdot k \cdot \log_\ell(n) + 1.$$

Улучшения нижних оценок

Лемма

 $\mathcal{C}(\mathsf{EHD}^n_k) = \mathcal{C}(\mathsf{EHD}^n_{n-k})$ для любой коммуникационной модели игры.

Новый результат

$$C^{\mathsf{EQ}}(\mathsf{EHD}_k) \geqslant \frac{1}{2} \left(\log_5 \binom{n}{k} - k \log_5 3 \right)$$

Новый результат

$$\mathcal{C}^{\mathsf{EHD}_l}\left(\mathsf{EHD}_k
ight)\geqslant rac{rac{1}{2}\left(\loginom{n}{k}-k\log3
ight)-\log2}{\log\left(2(n+1)^l
ight)}$$

Полудуплексная модель

Игроки разговаривают по полудуплексному каналу. В каждом раунде каждый игрок выбирает одно из трех действий: «отправить 0», «отправить 1» и «принимать». При этом возникают 3 вида раундов:

- Классический раунд: один игрок посылает какой-то бит, а другой его получает.
- Потерянный раунд: оба игрока отправляют биты во время раунда. В таком случае ни один игрок не получает информации, и раунд «теряется».
- Тихий раунд: оба игрока принимают. В зависимости от того, какую информацию получают игроки в тихий раунд, полудуплексная модель делится еще на несколько разделов.

Полудуплексная модель

Разновидности полудуплексной модели

Рассмотрим 2 наиболее исследованные модели:

- Полудуплексная модель с тишиной: в тихий раунд игроки получают специальный символ тишины s, полудуплексная коммуникационная сложность функции f в этой модели обозначается $\mathcal{C}_{\mathsf{T}}(f)$.
- Полудуплексная модель с нулем: в тихий раунд игроки получают 0, полудуплексная коммуникационная сложность функции f в этой модели обозначается $C_0(f)$. Это, конечно не единственные модели. В частности, еще об одной мы расскажем чуть позже.

Две новые функции

Определение

Функция ${\sf DISJ}_n\colon\{0,1\}^n imes\{0,1\}^n o\{0,1\}$ проверяет, есть ли позиция, в которой и у Алисы, и у Боба стоят единицы: ${\sf DISJ}_n(x,y)=0$ тогда и только тогда, когда существует $i\in\{1,\ldots,n\}$ такое, что x[i]=y[i]=1.

Определение

Внутреннее произведение $\mathrm{IP}_n\colon \{0,1\}^n imes \{0,1\}^n \to \{0,1\}$ задаётся соотношением

$$IP_n(x,y) = x[1]y[1] + x[2]y[2] + \cdots + x[n]y[n] \mod 2$$

Алгоритмы для IP и DISJ с тишиной

Задача

 $C_{T}(IP) \leqslant n/2 + O(1)$.

Задача

 $C_{\tau}(\mathsf{DISJ}) \leqslant n/2 + 2.$

Алгоритмы для IP и DISJ с нулем

Задача

 $C_0(IP) \leqslant 7n/8 + o(n)$.

Новый результат

 $\mathsf{C}_0(\mathsf{DISJ}) \leqslant 2n/3 + o(n).$

Модель с противником

Есть еще один способ определять, что получают игроки в тихом раунде. Они могут получать произвольные биты, которые отправляет им противник, причем эта модель делится еще на две:

- **Модель с честным противником.** Игроки знают, что в тихом раунде противник отправляет им обоим одинаковые биты.
- Модель с нечестным противником. Игроки могут получать различные биты от противника в тихом раунде.

Полудуплексная коммуникационная сложность функции f в модели с честным противником обозначается $\mathcal{C}_h(f)$.

Почему модель с противником сильнее обычной

Задача

Рассмотрим функицю f , которая задана матрицей 1. Докажем, что $\mathcal{C}(f)\geqslant 4$, а $\mathcal{C}_h(f)\leqslant 3$.

1	0	0	1	1	0
0	1	1	0	0	1
0	1	1	0	1	0
1	0	0	1	0	1
1	0	1	0	1	0
0	1	0	1	0	1

Рис.: Матрица значений функции f.

Почему модель с противником сильнее обычной

1	0	<u> </u>		1	0
0	1		8	0	1
0	1	1	0		<u>\</u>
1	0	0	1	<u> </u>	
	No.	1	0	1	0
No.		0	1	0	1

Рис.: Трудное множество матрицы f.

Преподаватели: Игнатьев Артур, Белова Татьяна, Дементьев Юрий, Москаленко Тимофей, Мозголина Анастасия, Сидельник Вячеслав.

Ученики: Алексеев Артем, Бакаев Артемий, Геращенков Степан, Дидоренко Михаил, Калашникова Ангелина, Камалдин Руслан, Мекешкин Глеб, Пименов Марк, Пистунов Григорий, Салимова Анастасия, Фирсов Тимофей, Чернышов Игнат, Шкляев Александр, Шкулева Ксения.

Спасибо за внимание:)