

Figure 1. Summary of experimental design and data collected for this study. (A) The datasets and analyses that were performed are summarized. Genes are divided according to whether they show evidence for differential expression (DE) between the two parents, B73 and Mo17 and the subset of genes that exhibit single parent expression (SPE) was then identified. The additivity of expression for all DE genes was assessed and classified. A subset of DE genes that include sequence polymorphisms and are expressed at sufficient levels were used to assess and classify cis/trans regulatory variation. (B) The numbers of genes that are detected (Counts per Million (CPM) >1 in at least two samples in each tissue) in 0-23 tissues are shown. Different colors represent the proportion out of all 23 tissues where each gene is expressed: not expressed in any tissue ("Silent"), expressed in less than 20% of tissues (Tissue specific), expressed in 20-80% tissues (Intermediate frequency) and those expressed in more than 80% tissues (Constitutive). (C) The proportion genes in each expression category (defined in panel B) that are non-syntenic (relative to other grasses including sorghum and rice) or lack any known domains (Interproscan, see methods) were compared to the background gene set (all genes).

Figure 2. Analysis of developmental dynamics of differential expression. (A) The number of DEGs for each tissue is indicated by the square symbols with the genotype exhibit higher expression indicated by color (blue - B73 and orange - Mo17). The number of genes with single parent expression (SPE - DEGs with expression <0.1 CPM (Counts per Million) in one parent) for each tissue is shown by the circle. (B) The number of DEGs that are detected in 1-23 tissues is shown.

The color indicates which genotypes is more highly expressed as in (A) with pink indicating genes for which some tissues exhibit higher expression for B73 and other tissues with higher expressed for Mo17. (C) The numbers of SPE genes that are detected in 1-23 tissues. (D) The set of DE/SPE genes that have detectable expression in at least 10 tissues were classified according to whether the DE/SPE pattern is observed in less than 20% of expressed tissues (red, "tissue-specific), in 20-80% of expressed tissues (blue, "intermediate frequency") or more than 80% of expressed tissues (green, "constitutive"). (E-F) Characterization of DE/SPE patterns relative to presence of expression. Genes were first classified according to the number of tissues with expression (y-axis) with the number of genes expressed in that number of tissues indicated in the parentheses. For each subset of genes the number of tissues with DE/SPE patterns was determined and is visualized as a heatmap. The proportion of genes for which no tissues show differential expression is indicated in gray and then the proportion of tissues with DE is indicated as a heat map (yellow - low to blue - high). (G) The proportion of genes that exhibit DE or SPE patterns that are non-syntenic, lack any known domains (Interproscan) or lack any homologs in public databases was determined and compared for all genes, all expressed genes (genes expressed in at least one out of total 23 tissues), non-DE genes (genes expressed in at least 10 tissues but not showing DE in any tissue), DE genes (genes expressed in at least 10 tissues and DE in at least one tissue) and SPE genes (genes expressed in at least 10 tissues and SPE in at least one tissue). For the set of DE/SPE genes we also show the frequencies for the subset of genes with constitutive (DE/SPE in more than 80% expressed tissues) patterns.

Figure 3. Classification of non-additive expression patterns. (A) The distribution of scaled difference (sometimes referred to as dominance/additivity (d/a) values) is shown. For each gene the scaled difference value is calculated as the (F1-MP)/(HP-MP) such that a value of -1 would indicate expression at the same level of the low parent, a value of 0 indicates mid-parental expression and a value of 1 indicates high parent expression levels. The d/a distributions are shown for all DEGs (DE2+), DEGs that are 2-4 fold change between parents (DE2-4), DEGs that are 4-8 fold change between parents (DE4-8), DEGs that are above 8 fold change between parents (DE8+). In (B) the scaled difference distributions are shown for all DE genes compared to SPE and non-SPE genes. (C) The proportion of genes showing different additivity patterns (BLP: below low-parent, LP: low-parent, MP: mid-parent, HP: high-parent and AHP: above high-parent) was determined for aforementioned gene sets. The numbers in parentheses are total number of DE instances (passing given thresholds) summed across 20 non-seed tissues. (D) The set of genes that are DE in at least five tissues were used to examine the prevalence of additivity patterns across development. Among these genes there are 759 examples with AHP expression in at least one tissue, 2,607 HP examples, 1,755 MP examples, 3,105 LP examples and 389 BLP examples. For each gene we determined the proportion of tissues exhibiting the additivity pattern of interest and use a box-plot to visualize the distribution of values.

Figure 4. Analysis of biased allelic expression patterns and regulatory variation classification across tissues. (A-B) Scatterplot showing the parental B73 allele ratio (x-axis, CPMB/(CPMB/CPMM)) and hybrid B73 allele ratio (y-axis) for DEGs (A) and non-DEGs (B) in maize root tissue. The colors represent different regulatory variation classifications determined for each gene (see methods). (C) The pie-chart (left) shows the proportion of all differentially expressed genes (between the two parents) that were assigned to different regulatory mechanisms across all tissues. The plots on the right show the enrichment or depletion (as fold change relative to background proportion from the left pie-chart) for subsets of genes for each regulatory variation classification. The subsets of genes include different levels of fold change in expression (DE2-4, DE4-8, DE8+ and SPE), different additivity patterns (BLP, LP, MP, HP, AHP) and genes that were characterized by previous eQTL study (in Shoot Apex Meristem) to be regulated by only cis-eQLT(s), only trans-eQTL(s) or

by both cis-eQTL(s) and trans-eQTL(s). For each subset of genes the proportion of each regulatory classification was compared to background proportion (left pie-chart) with the ratio plotted as bars along x-axis. P-values were determined using hypergeometric test (lower.tail = FALSE for enrichment and lower.tail = TRUE for depletion) and labelled as "*" (P < 0.01) or "**" (P < 0.001). (D-E) For genes that are DE and have allele-specific expression data in at least five tissues we assessed the consistency of regulation variation classifications. In (D) the subset of genes that are classified into each pattern in at least one tissue were used to assess the proportion of tissues that show this pattern. In (E) all genes classified into a specific pattern in at least one tissue were used to assess whether that classification was tissue specific (showing that pattern in less than 20% of DE tissues), intermediate frequency (20%-80% DE tissues) or constitutive (more than 80% of DE tissues).

Table S1. Samples used in this study.

SampleID	Tissue	Genotype	Replicate	TotalReadPair	TrimmedReadPair	MappingRate	UniqueMappingRate
BR001	blade_v12	B73	1	9,456,463	9,367,415	98.4%	91.6%
BR002	blade_v12	B73	2	10,614,657	10,530,486	98.5%	92.9%
BR003	blade_v12	Mo17	1	9,456,508	9,374,216	92.2%	87.1%
BR004	blade_v12	B73	3	10,983,851	10,894,598	98.4%	92.0%
BR005	blade_v12	Mo17	2	9,878,003	9,791,778	92.5%	86.6%
PD006		D 14	1		12.005.210	05.00/	02 00/
BR006	blade_v12	BxM	1	13,109,236	13,005,210	95.2%	83.8%
BR007	blade_v12	Mo17	3	10,136,440	10,049,207	94.2%	41.5%
BR008	blade_v12	BxM	2	9,958,057	9,762,863	91.8%	81.6%
BR009	blade_v12	BxM	3	10,368,573	10,283,237	95.1%	88.1%
BR010	auricle_v12	B73	1	12,161,908	12,062,687	97.4%	92.3%
BR011	auricle_v12	B73	2	8,756,804	8,681,487	97.7%	91.8%
BR012	auricle_v12	B73	3	9,205,753	9,115,520	98.4%	93.5%
BR013	auricle_v12	Mo17	1	12,629,990	12,534,713	92.4%	68.5%
BR014	auricle_v12	Mo17	2	12,106,840	12,015,331	91.9%	85.6%
BR015	auricle_v12	Mo17	3	12,789,833	12,688,046	91.9%	86.2%
BR016	auricle_v12	BxM	1	13,001,085	12,894,656	95.2%	90.2%
BR017	auricle v12	BxM	2	10,302,708	10,221,028	95.0%	89.9%
BR018	auricle_v12	BxM	3	10,717,426	10,612,110	93.9%	88.7%
BR019	sheath v12	B73	1	11,363,325	11,252,448	98.3%	92.6%
BR020	sheath_v12	B73	2	11,653,190	11,560,292	98.5%	92.6%
BR021	sheath_v12	B73	3	10,397,926	10,313,536	98.3%	91.6%
BR022	sheath_v12	Mo17	1	10,300,996	10,223,999	91.0%	84.9%
BR023	sheath_v12	Mo17	2	10,610,559	10,504,881	90.6%	84.8%
BR024	sheath_v12	Mo17	3	10,818,591	10,732,498	91.1%	85.2%
BR025	sheath_v12	BxM	1	10,460,515	10,317,769	89.3%	80.0%
BR026	sheath_v12	BxM	2	13,454,079	13,205,917	90.2%	84.6%
BR027	sheath_v12	BxM	3	10,947,765	10,796,345	93.0%	85.9%
BR028	internode_v12	B73	1	11,704,246	11,566,394	97.2%	92.1%
BR032	internode_v12	Mo17	1	18,897,584	18,677,705	90.6%	84.7%
BR030	internode_v12	B73	2	11,511,692	11,382,708	98.1%	91.9%
DD021	: t d10	M - 17	2	11 (75)75	11 554 047		OF 00/
BR031 BR029	internode_v12	Mo17 B73	2	11,675,275	11,554,947 7,207,320	90.9% 97.4%	85.9% 90.0%
BR033	internode_v12 internode_v12	Б/3 Мо17	3	7,280,863 11,763,511	11,618,868	90.2%	85.3%
BR034	internode_v12	BxM	1	11,446,013	11,309,805	94.4%	89.6%
BR035	internode_v12	BxM	2	10,813,338	10,680,875	94.0%	88.2%
DROSS	Internode_v12	DAIVI	_	10,013,336		9 4. 0 /0	00.270
BR036	internode_v12	BxM	3	12,185,937	12,056,501	94.8%	89.3%
BR037	tassel_v12	B73	1	11,869,598	11,767,998	98.2%	87.0%
BR038	tassel_v12	B73	2	13,057,367	12,963,185	98.2%	80.5%
BR039	tassel_v12	B73	3	11,971,434	11,876,376	98.4%	86.7%
BR040	tassel_v12	Mo17	1	10,198,649	10,119,317	92.8%	78.9%
BR041	tassel_v12	Mo17	2	9,541,534	9,458,818	92.5%	86.3%
BR042	tassel_v12	Mo17	3	12,122,651	12,028,360	92.8%	73.7%
BR043	tassel_v12	BxM	1	11,577,660	11,490,867	94.8%	87.3%
BR044	tassel_v12	BxM	2	9,209,055	9,080,007	94.3%	81.8%
BR045	tassel_v12	BxM	3	11,345,207	11,254,362	94.8%	87.8%
	_		1	10.270.754			
BR046	ear_v14	B73	1	10,279,754	10,201,193	97.1%	77.0%
BR047	ear_v14	B73	2	10,892,889	10,799,410	98.2%	88.4%
BR048	ear_v14	B73	3	10,423,251	10,340,695	98.2%	87.5%
BR049	ear_v14	Mo17	1	11,158,750	11,087,463	93.4%	88.3%
BR050	ear_v14	Mo17	2	10,615,140	10,544,171	92.6%	87.5%
BR051	ear_v14	Mo17	3	10,130,338	10,058,913	93.5%	88.5%
BR052	ear_v14	BxM	1	9,779,316	9,705,723	96.0%	90.8%
BR053	ear_v14	BxM	2	10,765,471	10,691,005	96.1%	90.7%
BR054	ear_v14	BxM	3	10,866,113	10,786,414	96.0%	90.8%

Table S1. Samples used in this study. (continued)

SampleID	Tissue	Genotype	Replicate	TotalReadPair	TrimmedReadPair	MappingRate	UniqueMappingRate
BR055	silk_0DAP	B73	1	10,460,214	10,354,824	98.3%	92.9%
BR056	silk_0DAP	B73	2	10,094,098	10,015,873	98.3%	87.9%
BR057	silk_0DAP	B73	3	9,351,362	9,259,488	98.2%	92.8%
BR058	silk_0DAP	Mo17	1	9,154,814	9,077,113	91.2%	84.3%
BR059	silk_0DAP	Mo17	2	9,271,623	9,184,908	91.2%	85.6%
BR060	silk_0DAP	Mo17	3	8,610,999	8,539,340	91.1%	86.0%
BR061	silk_0DAP	BxM	1	12,378,233	12,274,018	94.4%	88.3%
BR062	silk_0DAP	BxM	2	11,117,019	10,918,321	93.2%	87.6%
BR063	silk_0DAP	BxM	3	12,831,768	12,714,257	95.0%	89.4%
BR064	spikelets_0DAP	B73	1	12,862,409	12,756,383	97.9%	92.1%
BR065	spikelets_0DAP	B73	2	13,140,565	13,016,984	98.5%	92.8%
BR066	spikelets_0DAP	B73	3	12,366,130	12,261,404	98.5%	92.9%
BR067	spikelets_0DAP	Mo17	1	12,302,995	12,214,346	92.0%	85.9%
BR068	spikelets_0DAP	Mo17	2	12,364,997	12,266,006	92.3%	85.0%
BR069	spikelets_0DAP	Mo17	3	12,363,396	12,261,701	92.5%	86.7%
BR070	spikelets_0DAP	BxM	1	10,329,056	10,246,209	95.4%	89.4%
BR071	spikelets_0DAP	BxM	2	12,278,485	12,184,457	95.4%	89.8%
BR072	spikelets_0DAP	BxM	3	12,426,693	12,323,355	95.7%	89.9%
BR073	husk_0DAP	B73	1	12,468,897	12,338,745	98.3%	92.5%
BR074	husk_0DAP	B73	2	11,486,069	11,389,989	98.3%	92.2%
BR075	husk_0DAP	B73	3	11,705,643	11,598,042	98.3%	92.1%
BR076	husk_0DAP	Mo17	1	12,818,182	12,713,872	92.1%	83.4%
BR077	husk_0DAP	Mo17	2	12,761,502	12,635,684	91.4%	85.5%
BR078	husk_0DAP	Mo17	3	12,826,901	12,717,414	91.9%	85.6%
BR079	husk_0DAP	BxM	1	12,503,981	12,395,438	94.7%	89.1%
BR080	husk_0DAP	BxM	2	11,607,643	11,406,667	93.7%	88.0%
BR081	husk_0DAP	BxM	3	13,790,861	13,666,823	95.3%	89.8%
BR082	tasselstem_0DAP	B73	1	12,451,564	12,349,251	97.8%	92.1%
BR083	tasselstem_0DAP	B73	2	12,221,050	12,112,847	98.3%	92.7%
BR084	tasselstem_0DAP	B73	3	11,567,848	11,471,842	98.0%	88.0%
BR085	tasselstem_0DAP	Mo17	1	9,540,165	9,463,815	90.5%	83.1%
BR086	tasselstem_0DAP	Mo17	2	9,089,631	9,011,444	91.1%	85.8%
BR087	tasselstem_0DAP	Mo17	3	9,244,929	9,157,904	91.2%	85.7%
BR088	tasselstem_0DAP	BxM	1	8,876,713	8,797,378	94.5%	88.0%
BR089	tasselstem_0DAP	BxM	2	9,021,520	8,943,627	93.9%	88.0%
BR090	tasselstem_0DAP	BxM	3	9,072,250	8,993,652	94.2%	87.0%
BR091	floret_0DAP	B73	1	10,046,688	9,917,126	98.1%	89.5%
BR092	floret_0DAP	B73	2	10,344,979	10,247,053	98.3%	88.6%
BR093	floret_0DAP	B73	3	9,586,452	9,469,113	98.1%	89.7%
BR094	floret_0DAP	Mo17	1	9,591,540	9,496,979	90.9%	83.0%
BR095	floret_0DAP	Mo17	2	10,171,616	10,050,093	90.1%	83.2%
BR096	floret_0DAP	Mo17	3	8,968,665	8,870,021	91.6%	84.9%
BR097	floret_0DAP	BxM	1	8,971,648	8,871,487	95.1%	89.1%
BR098	floret_0DAP	BxM	2	9,125,085	8,871,603	93.3%	86.3%
BR099	floret_0DAP	BxM	3	10,114,073	10,000,848	95.0%	86.9%
BR118	kernel_14DAP	B73	1	10,936,328	10,843,315	98.3%	87.3%
BR119	kernel_14DAP	B73	2	11,056,044	10,956,542	98.4%	89.0%
BR120	kernel_14DAP	B73	3	10,542,981	10,452,024	98.3%	86.7%
BR121	kernel_14DAP	Mo17	1	13,288,857	13,186,732	94.6%	85.2%
BR122	kernel_14DAP	Mo17	2	13,244,937	13,134,240	94.5%	86.1%
BR123	kernel_14DAP	Mo17	3	11,612,393	11,504,790	94.3%	83.0%
BR124	kernel_14DAP	BxM	1	12,287,598	12,188,660	97.5%	82.4%
BR125	kernel_14DAP	BxM	2	11,390,752	11,303,494	97.4%	82.3%
BR126	kernel_14DAP	BxM	3	10,802,003	10,718,433	97.5%	82.8%
			J	, - ,	,- 10,100		

Table S1. Samples used in this study. (continued)

SampleID	Tissue	Genotype	Replicate	TotalReadPair	TrimmedReadPair	MappingRate	UniqueMappingRate
BR100	flagleaf_0DAP	B73	1	8,870,907	8,779,729	98.3%	90.6%
BR101	flagleaf_0DAP	B73	2	8,927,886	8,852,968	98.5%	92.2%
	o .						
BR102	flagleaf_0DAP	B73	3	9,310,919	9,227,730	98.6%	92.3%
BR103	flagleaf_0DAP	Mo17	1	12,454,393	12,351,934	92.0%	87.2%
BR104	flagleaf_0DAP	Mo17	2	11,124,928	11,016,585	92.4%	86.5%
BR105	flagleaf_0DAP	Mo17	3	9,139,066	9,063,499	92.0%	86.9%
BR106	flagleaf_0DAP	BxM	1	8,237,380	8,161,554	95.1%	89.4%
	_						
BR107	flagleaf_0DAP	BxM	2	11,375,396	11,265,249	95.3%	89.9%
BR108	flagleaf_0DAP	BxM	3	8,739,031	8,651,672	95.2%	89.0%
BR109	root_0DAP	B73	1	12,780,458	12,681,574	98.7%	94.0%
BR110	root_0DAP	B73	2	11,071,413	10,726,484	95.8%	91.2%
BR111	root_0DAP	B73	3	14,352,722	14,232,937	98.7%	94.2%
DD440	(OD A D	3.6.45	1	10 400 400	10.007.040	01.00/	07.20/
BR112	root_0DAP	Mo17	1	13,432,400	13,337,049	91.9%	87.2%
BR113	root_0DAP	Mo17	2	11,241,291	11,148,033	91.9%	87.7%
BR114	root_0DAP	Mo17	3	11,748,397	11,657,233	91.8%	87.4%
BR115	root_0DAP	BxM	1	12,447,495	12,322,988	94.7%	90.3%
BR116	root_0DAP	BxM	2	13,501,613	13,391,660	95.0%	90.7%
DD117	1 OD AD	D M	2	10 014 750	11 017 400	05.20/	00.00/
BR117	root_0DAP	BxM	3	12,014,758	11,917,490	95.3%	90.9%
BR130	endosperm_14DAP	B73	1	7,971,614	7,908,501	98.4%	87.7%
BR131	endosperm_14DAP	B73	2	8,354,751	8,297,059	98.6%	87.4%
BR132	endosperm_14DAP	B73	3	8,106,969	8,043,877	98.4%	87.1%
BR133	endosperm_14DAP	Mo17	1	7,996,705	7,944,390	95.1%	86.0%
BR134	endosperm_14DAP	Mo17	2	7,111,069	7,056,236	95.0%	86.1%
		Mo17					
BR135	endosperm_14DAP		3	7,053,101	7,003,061	94.9%	85.4%
BR136	endosperm_14DAP	BxM	1	7,342,993	7,293,685	97.3%	80.3%
BR137	endosperm_14DAP	BxM	2	7,408,587	7,282,363	95.5%	82.6%
BR138	endosperm_14DAP	BxM	3	8,295,102	8,242,013	97.5%	81.5%
BR142	embryo_27DAP	B73	1	7,372,483	7,316,640	98.5%	86.8%
BR143	embryo_27DAP	B73	2	7,042,198	6,983,724	98.7%	90.0%
BR144	embryo_27DAP	B73	3	6,553,609	6,498,382	98.3%	87.1%
BR145	embryo_27DAP	Mo17	1	7,077,358	7,002,686	91.6%	83.7%
BR146	embryo_27DAP	Mo17	2	7,533,408	7,451,111	91.3%	83.5%
DK140	embryo_27DAF	WIO17	2	7,333,406	7,431,111	91.3 /0	63.5 /6
BR147	embryo_27DAP	Mo17	3	8,261,322	8,162,520	92.3%	47.1%
BR148	embryo_27DAP	BxM	1	7,602,835	7,530,655	94.5%	84.1%
BR149	embryo_27DAP	BxM	2	8,456,705	8,336,995	94.2%	85.4%
BR150	embryo_27DAP	BxM	3	8,081,181	7,993,598	94.9%	83.0%
BR154	endosperm_27DAP	B73	1	17,736,115	17,600,317	98.3%	68.2%
	_	<i>D7</i> 0	1	17,700,110	17,000,017		
BR155	endosperm_27DAP	B73	2	17,169,716	17,057,377	98.3%	68.4%
BR156	endosperm_27DAP	B73	3	18,730,409	18,611,675	98.4%	69.2%
BR157	endosperm_27DAP	Mo17	1	14,649,158	14,549,188	96.2%	66.5%
BR158	endosperm_27DAP	Mo17	2	15,811,476	15,702,263	96.4%	66.1%
BR159	endosperm_27DAP	Mo17	3	13,053,684	12,967,048	96.6%	67.5%
	_						
BR160	endosperm_27DAP	BxM	1	14,814,247	14,719,774	97.8%	71.6%
BR161	endosperm_27DAP	BxM	2	14,413,309	14,133,430	95.7%	67.7%
BR162	endosperm_27DAP	BxM	3	14,883,939	14,783,781	97.7%	68.9%
BR166	coleoptile_tip	B73	1	12,267,403	12,126,234	98.0%	89.7%
BR167	coleoptile_tip	B73	2	11,485,549	11,384,771	98.4%	93.3%
DD1/0		D72	2	10 200 407	10.000 (00	00 50/	01.70/
BR168	coleoptile_tip	B73	3	12,399,486	12,290,630	98.5%	91.7%
BR169	coleoptile_tip	Mo17	1	11,947,303	11,849,179	92.4%	87.4%
BR170	coleoptile_tip	Mo17	2	12,242,354	12,126,048	92.5%	87.4%
BR171	coleoptile_tip	Mo17	3	13,259,951	13,138,932	92.4%	86.6%
BR172	coleoptile_tip	BxM	1	12,391,702	12,284,694	95.3%	90.0%
BR173	coleoptile_tip	BxM	2	12,048,829	11,802,713	94.0%	88.8%
BR174	coleoptile_tip	BxM	3	12,187,226	12,068,545	95.1%	73.1%
DIXI/4	corcopuie_up	DVIAI	3	12,107,220	12,000,343	/3.1 /0	7.0.1 /0

Table S1. Samples used in this study. (continued)

SampleID	Tissue	Genotype	Replicate	TotalReadPair	Trimmed Read Pair	MappingRate	UniqueMappingRate
BR175	radicle_root	B73	1	12,295,498	12,171,020	97.0%	92.8%
BR176	radicle_root	B73	2	11,534,982	11,416,060	98.1%	93.0%
BR177	radicle_root	B73	3	10,646,209	10,526,034	97.8%	92.8%
BR178	radicle_root	Mo17	1	12,066,875	11,965,649	90.8%	84.2%
BR179	radicle_root	Mo17	2	11,661,817	11,558,386	90.2%	85.7%
BR180	radicle_root	Mo17	3	10,959,894	10,841,662	90.1%	85.5%
BR181	radicle_root	BxM	1	13,122,821	13,004,621	94.2%	89.9%
BR182	radicle_root	BxM	2	12,468,832	12,358,623	94.8%	90.2%
BR183	radicle_root	BxM	3	11,587,217	11,485,773	94.1%	89.5%
BR184	embryo_imbibedseed	B73	1	16,521,544	16,009,522	98.4%	86.6%
BR242	embryo_imbibedseed	B73	2	18,100,445	17,634,613	98.4%	87.7%
BR243	embryo_imbibedseed	B73	3	16,539,617	16,051,406	98.4%	88.7%
BR245	embryo_imbibedseed	Mo17	1	15,060,983	14,635,237	91.8%	78.2%
BR188	embryo_imbibedseed	Mo17	2	19,136,137	18,583,167	91.9%	77.8%
BR227	embryo_imbibedseed	Mo17	3	10,606,785	10,249,652	92.2%	62.6%
BR191	embryo_imbibedseed	BxM	1	12,528,211	11,753,391	95.2%	83.8%
BR192	embryo_imbibedseed	BxM	2	16,939,295	16,506,855	95.8%	84.8%
BR193	seedlingleaf_11DAS	B73	1	12,931,365	12,562,955	98.4%	90.7%
BR194	seedlingleaf_11DAS	B73	2	12,993,398	12,476,399	98.7%	91.5%
BR195	seedlingleaf_11DAS	B73	3	12,944,343	12,533,704	98.7%	91.8%
BR196	seedlingleaf_11DAS	Mo17	1	13,154,046	12,759,277	91.3%	83.2%
BR197	seedlingleaf_11DAS	Mo17	2	14,456,660	14,047,653	91.8%	85.8%
BR198	seedlingleaf_11DAS	Mo17	3	12,627,543	12,111,783	91.5%	82.8%
BR199	seedlingleaf_11DAS	BxM	1	13,369,929	12,922,403	95.2%	87.0%
BR200	seedlingleaf_11DAS	BxM	2	12,269,095	11,890,258	94.9%	88.5%
BR201	seedlingleaf_11DAS	BxM	3	16,931,135	16,451,260	95.4%	86.3%
BR202	seedlingroot_11DAS	B73	1	14,286,923	13,837,005	98.3%	92.4%
BR203	seedlingroot_11DAS	B73	2	13,799,806	13,493,069	98.5%	93.1%
BR204	seedlingroot_11DAS	B73	3	12,973,928	12,661,827	98.6%	93.2%
BR187	embryo_imbibedseed	Mo17	4	12,018,006	11,651,375	90.8%	74.2%
BR206	seedlingroot_11DAS	Mo17	1	11,969,669	11,569,090	90.5%	84.8%
BR208	seedlingroot_11DAS	BxM	1	14,247,885	13,919,656	95.2%	88.8%
BR209	seedlingroot_11DAS	BxM	2	12,311,137	11,773,916	95.0%	89.2%
BR211	seedlingmeristem_11DAS	B73	1	15,300,678	14,943,561	98.7%	93.6%
BR212	seedlingmeristem_11DAS	B73	2	13,228,641	12,892,735	98.9%	93.1%
BR213	seedlingmeristem_11DAS	B73	3	14,690,786	14,301,943	98.9%	93.1%
BR214	seedlingmeristem_11DAS	Mo17	1	17,091,762	16,707,591	93.7%	88.4%
BR215	seedlingmeristem_11DAS	Mo17	2	14,961,784	14,610,501	93.7%	88.6%
BR216	seedlingmeristem_11DAS	Mo17	3	14,085,672	13,755,241	93.9%	88.9%
BR217	seedlingmeristem_11DAS	BxM	1	15,456,137	15,088,536	96.4%	91.4%
BR218	seedlingmeristem_11DAS	BxM	2	14,791,193	14,459,872	96.5%	89.3%
BR219	seedlingmeristem_11DAS	BxM	3	13,255,400	12,905,133	96.4%	91.0%

Table S2. Enriched Gene Ontology (GO) terms for identified gene sets.

Gene set	GO	P-value	GO name
All genes			
Constitutive	GO:0005739	3.08e-22	mitochondrion
	GO:0022625	1.45e-11	cytosolic large ribosomal subunit
	GO:0006412	4.17e-11	translation
	GO:0005774	7.24e-10	vacuolar membrane
	GO:0009793	2.54e-09	embryo development ending in seed dormancy
	GO:0000398	3.25e-06	mRNA splicing, via spliceosome
	GO:0005743	4.24e-05	mitochondrial inner membrane
Silent	GO:0005654	4.47e-09	nucleoplasm
	GO:0043161	3.49e-06	proteasome-mediated ubiquitin-dependent protein catabolic process
	GO:0005737	2.47e-05	cytoplasm
non-DEGs btw. B73 a	nd Mo17		
Above-Parent	GO:0022625	1.36e-08	cytosolic large ribosomal subunit
TIDOTE T MICH	GO:0042256	1.43e-05	mature ribosome assembly
	GO:0002181	4.30e-05	cytoplasmic translation
	GO:0002101 GO:0009941	1.85e-04	chloroplast envelope
	GO:0010287	2.02e-04	plastoglobule
	GO:0009535	1.93e-03	chloroplast thylakoid membrane
	GO:0005555	2.09e-03	vacuolar membrane
	GO:0006412	4.39e-03	translation
Below-Parent	GO:0000412 GO:0022625	1.09e-22	cytosolic large ribosomal subunit
Delow Tarent	GO:0022025 GO:0042256	2.63e-20	mature ribosome assembly
	GO:0002181	4.38e-13	cytoplasmic translation
	GO:0002101 GO:0022627	5.96e-13	cytosolic small ribosomal subunit
	GO:0022027 GO:0006412	6.76e-13	translation
	GO:0000412 GO:0048046	4.04e-12	apoplast
	GO:0005794	9.05e-12	Golgi apparatus
	GO:0003794 GO:0042788	8.01e-09	polysomal ribosome
	GO:0005774	4.04e-08	vacuolar membrane
	GO:0005618	1.88e-06	cell wall
	GO:0009506	3.10e-05	plasmodesma
	GO:0009500 GO:0046686	7.22e-05	response to cadmium ion
	GO:0000008	4.78e-04	ribosomal small subunit assembly
	GO:0000028 GO:0009735	1.23e-03	response to cytokinin
	GO:0005886	1.23e-03	plasma membrane
	GO:0009409	2.49e-03	response to cold
	GO:0009409 GO:0009651	3.26e-03	response to salt stress
DECo http://DZ2 13	/io17		-
DEGs btw. B73 and M HP/AHP	GO:0009535	7.76e-31	chloroplast thylakoid mombrana
ти / АПГ	GO:0009535 GO:0009941	9.82e-19	chloroplast thylakoid membrane chloroplast envelope
	GO:0009941 GO:0009570	9.82e-19 3.78e-16	chloroplast stroma
	GO:0009570 GO:0009768	6.89e-08	photosynthesis, light harvesting in photosystem I
	GO:0009768 GO:0009507	2.61e-06	chloroplast
			1
	GO:0009773	3.32e-06	photosynthetic electron transport in photosystem I
	GO:0010287	6.58e-06	plastoglobule
	GO:0031977	1.49e-05	thylakoid lumen
	GO:0016036	2.32e-05	cellular response to phosphate starvation
ID/DID	GO:0010027	9.02e-05	thylakoid membrane organization
LP/BLP	GO:0005886	6.65e-08	plasma membrane

Figure S1. Summary of read mapping statistics. For each tissue / genotype combination we show the number of read pairs (in millions) mapped to the maize B73 AGPv4 reference, and the proportion of reads that failed QC (failedQC), failed to map to the genome (Unmap), mapped in multiple locations (Map_LowQual), mapped in high quality to intergenic regions (Unassigned) as well as high quality reads assigned to genes (Assigned).

	Pearsor	n (upper right) and	Spearman (lower	· left) Correlation (Coefficient	0.05	
auricle_v12	auricle_v12	auricle_v12	blade_v12	blade_v12	0.85 0.90 blade_v12	0.95 coleoptile_tip	coleoptile_tip
Rep1 BR010 0.98 0.99	BxM BR016 0.99 0.94	Mo17 BR013 0.98 0.98	BR001 1.00 0.98	BxM BR006 0.99 0.99	Mo17 BR003 1.00 0.99	B73 BR166 0.99 0.99	BxM BR172 1.00 0.99
Rep2 0.99 BR011 0.98	0.99 BR017 0.92	0.99 BR014 0.97	0.99 BR002 0.98	0.99 BR008 0.99	0.99 BR005 0.99	0.99 BR167 1.00	0.99 BR173 0.99
Rep3 0.99 0.98 BR012	0.98 0.97 BR018	0.99 0.99 BR015	0.99 0.99 BR004	0.99 0.99 BR009	0.99 0.99 BR007	0.99 0.99 BR168	0.99 0.99 BR174
coleoptile_tip	ear_v14	ear_v14	ear_v14	embryo_27DAP	embryo_27DAP	embryo_27DAP	embryo_imbibedseed
Mo17 Rep1 BR169 0.99 1.00	BR046 0.99 0.99	BxM BR052 1.00 1.00	Mo17 BR049 0.99 0.99	BR142 1.00 0.99	BxM BR148 1.00 0.99	Mo17 BR145 1.00 0.96	B73 BR184 0.93 0.93
Rep2 0.99 BR170 1.00	0.99 BR047 1.00	0.99 BR053 1.00	0.99 BR050 0.99	0.99 BR143 0.99	0.99 BR149 0.99	0.99 BR146 0.96	0.96 BR242 0.99
Rep3 0.99 0.99 BR171	0.99 0.99 BR048	1.00 0.99 BR054	0.99 0.99 BR051	0.99 0.99 BR144	0.98 0.98 BR150	0.98 0.98 BR147	0.96 1.00 BR243
embryo_imbibedseed	embryo imbibedseed	endosperm_14DAP	endosperm_14DAP	endosperm 14DAP	endosperm_27DAP	endosperm_27DAP	endosperm_27DAP
BxM	Mo17	B73	BxM	Mo17	B73	BxM	Mo17
Rep1 BR191 0.98	BR245 0.95 0.88	BR130 1.00 1.00	BR136 1.00 1.00	BR133 1.00 1.00	BR154 0.99 0.99	BR160 1.00 1.00	BR157 1.00 1.00
Rep2 0.99 BR192	0.97 BR188 0.92	0.99 BR131 1.00	0.98 BR137 0.99	0.99 BR134 1.00	0.98 BR155 0.97	0.99 BR161 1.00	0.99 BR158 0.99
Rep3	0.94 0.96 BR227	0.99 0.99 BR132	0.99 0.98 BR138	0.99 0.99 BR135	0.99 0.98 BR156	0.99 0.99 BR162	0.99 0.98 BR159
flagleaf_0DAP B73	flagleaf_0DAP BxM	flagleaf_0DAP Mo17	floret_0DAP B73	floret_0DAP BxM	floret_0DAP Mo17	husk_0DAP B73	husk_0DAP BxM
Rep1 BR100 1.00 1.00	BR106 1.00 1.00	BR103 1.00 1.00	BR091 0.97 0.99	BR097 1.00 0.99	BR094 0.98 0.98	BR073 0.99 0.98	BR079 0.98 0.98
Rep2 0.99 BR101 1.00	0.99 BR107 1.00	0.99 BR104 1.00	0.99 BR092 0.97	0.99 BR098 0.99	0.97 BR095 0.95	0.99 BR074 0.99	0.99 BR080 0.97
Rep3 0.99 BR102	0.99 DR108	0.99 0.99 BR105	0.99 0.98 BR093	0.99 0.99 BR099	0.99 0.97 BR096	0.99 0.99 BR075	0.98 0.98 BR081
husk_0DAP Mo17	internode_v12 B73	internode_v12 BxM	internode_v12 Mo17	kernel_14DAP B73	kernel_14DAP BxM	kernel_14DAP Mo17	radicle_root B73
Rep1 BR076 0.91 0.91	BR028 0.95 0.99	BR034 <mark>0.98 0.98</mark>	BR032 0.95 0.89	BR118 1.00 1.00	BR124 1.00 1.00	BR121 1.00 0.99	BR175 0.99 0.99
Rep2 0.95 BR077 0.99	0.97 BR030 0.98	0.99 BR035 0.99	0.97 BR031 0.97	0.99 BR119 1.00	0.99 BR125 1.00	1.00 BR122 1.00	0.99 BR176 0.99
Rep3 0.95 0.98 BR078	0.98 0.99 BR029	0.98 0.99 BR036	0.94 0.98 BR033	0.99 0.99 BR120	0.99 0.99 BR126	0.99 0.99 BR123	0.99 0.99 BR177
radicle_root	radicle_root	root_0DAP	root_0DAP	root_0DAP	seedlingleaf_11DAS	seedlingleaf_11DAS	seedlingleaf_11DAS
Rep1 BR181 0.97 0.99	Mo17 BR178 1.00 0.98	BR109 0.98 0.99	BxM BR115 0.99 0.97	Mo17 BR112 0.99 0.99	B73 BR193 1.00 1.00	BxM BR199 1.00 1.00	Mo17 BR196 0.99 1.00
Rep2 0.98 BR182 0.98	0.99 BR179 0.98	0.99 BR110 0.98	0.99 BR116 0.99	0.99 BR113 0.99	0.99 BR194 1.00	0.99 BR200 1.00	0.99 BR197 1.00
Rep3 0.99 0.98 BR183	0.99 0.98 BR180	0.99 0.99 BR111	0.98 0.99 BR117	0.99 0.99 BR114	0.99 0.99 BR195	0.99 0.99 BR201	0.99 0.99 BR198
edlingmeristem_11DA	edlingmeristem_11DA	edlingmeristem_11DA	seedlingroot_11DAS	seedlingroot_11DAS	sheath_v12	sheath_v12	sheath_v12
B73	BxM	Mo17	B73	BxM	B73	BxM	Mo17
Rep1 BR211 0.99 0.97 Rep2 0.99 BR212 0.97	0.99 BR218 1.00	0.99 BR215 0.99	0.99 BR203 0.97	0.99 BR209	0.99 0.96 0.96 0.99 0.96	0.93 BR026 0.96	0.99 BR023 0.98
Rep3 0.95 0.96 BR213	0.99 BR218 1.00 0.99 0.99 BR219	0.99 BR215 0.99 0.99 0.99 BR216	0.99 BR203 0.97 0.99 0.99 BR204	0.99 BR209	0.98 0.98 BR021	0.95 BR026 0.96	0.99 BR023 0.98 0.99 0.99 BR024
silk_0DAP		silk 0DAP	spikelets_0DAP	anikalata ADAR	spikelets_0DAP		
B73	silk_0DAP BxM	Mo17	B73	spikelets_0DAP BxM	Mo17	tassel_v12 B73	tassel_v12 BxM
Rep1 BR055 0.99 0.99	BR061 0.99 0.99	BR058 0.98 0.98	BR064 0.98 0.98	BR070 0.99 0.99	BR067 0.97 0.97	BR037 0.99 0.98	BR043 0.92 0.92
Rep2 0.99 BR056 1.00	0.99 BR062 0.99	0.99 BR059 0.99	0.99 BR065 0.99	0.99 BR071 0.99	0.98 BR068 0.99	0.99 BR038 0.98	0.97 BR044 0.88
Rep3 0.99 BR057	0.99 BR063	0.98 0.99 BR060	0.99 BR066	0.99 0.99 BR072	0.98 0.99 BR069	0.98 0.98 BR039	0.96 0.97 BR045
tassel_v12 Mo17	tasselstem_0DAP B73	tasselstem_0DAP BxM	tasselstem_0DAP Mo17				
Rep1 BR040 0.95 0.98	BR082 0.88 0.97	BR088 0.96 0.97	BR085 0.99 0.98				
Rep2 0.98 BR041 0.96	0.97 BR083 0.85	0.99 BR089 0.98	0.99 BR086 0.99				
Rep3 0.98 BR042	0.95 0.92 BR084	0.99 0.99 BR090	0.97 0.97 BR087				

Figure S2. Consistency between biology replicates of each sample. Each panel shows a heatmap of the correlations between biological replicates for each tissue-genotype combination. These show both the Pearson (upper right half) and Spearman (lower left half) correlation values of gene expression levels (FPKMs) between each pair of replicates. The subset of 14,216 genes with CPM >1 in at least 90% samples were used in this analysis.

Figure S3. Distance matrix heatmap between all samples. Pearson correlation coefficients based on gene expression levels (FPKMs) between each pair of samples were shown as a heatmap. The subset of 14,216 genes with CPM >1 in at least 90% samples were used in this analysis.

Figure S4. Principal component analysis of gene expression in 23 tissues for B73, Mo17 and the F1 hybrid. A set of 17,135 genes with CPM >1 in at least 170 out of 204 samples were used for this analysis. Clustering was done using the log2 transformed CPM values and the "prcomp" function in R with no centering or scaling. The color indicates the genotypes while the symbols indicate the tissue type (key shown on the left).

Figure S5. The distribution of gene CPM (Counts per Million) values is show for B73, Mo17

and hybrid in each tissue. The expression values are normalized using the TMM normalization approach implemented in the edgeR (see methods).

Figure S6. Differential expression analysis based on the Mo17 reference genome. (A) The number of DEGs for each tissue is indicated by the square symbols with the genotype exhibit higher expression indicated by color (blue - B73 and orange - Mo17). The number of genes with single parent expression (SPE - DEGs with expression <0.1 CPM (Counts per Million) in one parent) for each tissue is shown by the circle. (B) The number of DEGs that are detected in 1-23 tissues is shown. The color indicates which genotypes is more highly expressed as in (A) with pink indicating genes for which some tissues exhibit higher expression for B73 and other tissues with higher expressed for Mo17. (C) The numbers of SPE genes that are detected in 1-23 tissues.

Figure S7. Analysis of non-additive expression for genes that are non-DE in B73 and Mo17. (A) The number of genes that are non-DE between the parents but show above parent (AP, blue) or below parent (BP, orange) expression levels in the hybrid is show for each tissue. The number in brackets indicates total number of non-additively expressed non-DE genes in each tissue. Some tissues showed extremely low levels of parent-hybrid DE (ear, seedling meristem, root, auricle, coleoptile tip, internode) while other tissues have many more non-additive expression examples between hybrid and parents (sheath, tassel, spikelets, floret, silk). (B) The number of tissues with non-additive expression for these non-DE genes is shown. The color indicates which genotype (parents or hybrid) is more highly expressed (blue - hybrid is higher, orange - parents higher and pink - hybrid is higher than parents in some tissues but lower in others. For the genes that exhibit non-additive expression in 2 or more tissues there were 21.7% (1,119) with consistently aboveparent expression in the hybrids and 18.5% (954) with consistent below-parent expression in the hybrids. The remaining 59.7% (3,073) exhibit a mixture of effects with some tissues showing higher hybrid expression and other tissues showing lower hybrid expression. (C) The genes that are expressed in at least 10 tissues and exhibit parent-hybrid DE in at least one tissue were classified as tissue-specific (DE in less than 20% expressed tissues), intermediate frequency (DE in 20-80% expressed tissues) or constitutive (DE in more than 80% of expressed tissues). There are very few examples of non-additive patterns for these non-DE genes that occur in >20% of expressed tissues and there are no examples with non-additivity in >80% of the tissues. (D) The relative expression changes between parents and hybrid for these non-additive genes was assessed. The majority of these genes were just passing the 2-fold change cut-off used for DE and only 124 (1.3%) of these

genes exhibit at least 5-fold change in expression in the hybrid relative to the parents.

Figure S8. Analysis of additivity patterns for genes that are DE between parents across tissues. (A) The number of genes assigned to each additive or non-additive inheritance pattern in each tissue. MP: mid-parent like; LP: low-parent like; BLP: below low-parent; HP: high-parent like; AHP: above high-parent; PD_H: partial dominance higher than mid-parent; PD_L: partial dominance lower than mid-parent. (B) Genes were classified according to the number of tissues with non-MP expression patterns (x-axis). Within each category a heatmap is used to visualize the number of tissues with differential expression between parents in 1-20 tissues. (C-D) Bar plot shows among all genes that are DE in 1-20 tissues (y-axis) the proportion with LP/BLP (panel C) or HP/AHP

(panel D) pattern shared across different number of tissues (1-10). (E) Bar plot shows among all genes that are DE in 1-20 tissues (y-axis), the proportion that are classified as "consistent MP", "consistent LP/BLP", "consistent HP/AHP" or "mix of HP/LP" based on whether the observed non-additive pattern switches direction among tissues. For panels C through E numbers in brackets are the total number of genes in each bar category (i.e., number of genes DE in 1-20 tissues). (F) Analogous to panel E but rather than proportion, the number of genes showing non-MP patterns in 1-10 tissues were shown, with color coding the same as panel E.

Figure S9. Frequency distribution of scaled difference values (between hybrid and mid-parent, i.e, D/A values) for genes that are assigned to different inheritance patterns.

Figure S10. Analysis of allele-specific expression. For each sample we counted the number of reads carrying the Mo17 allele (SNP) or the B73 allele for each gene. Numbers below x-axis show the number of genes with at least 10 allele-specific reads, while y-axis gives the distribution of the B73 allele proportions for all genes in each sample. Not surprisingly, transcripts in inbred samples

all carry the corresponding B73 or Mo17 allele, while genes in hybrid samples have varying levels of allele proportion but center around 50% (for endosperm, the expectation becomes 67% due to the 2:1 parantal ratio).

Figure S11. Analysis of regulatory variation across tissues and developmental stages. (A) The proportion of genes classified into each pattern of regulatory variation is shown for each tissue (cis-only, trans-only, cis+trans: opposite direction, cis+trans: same direction and unexpected) in each tissue. The numbers in parentheses reflect the number of genes classified in each tissue. (B) A non-redundant list of gene/tissue combinations of regulatory classifications was assessed. In total there are 62,883 gene/tissue combinations with a classification for regulatory variation (DE2+). The distribution of classifications for genes characterized by previous eQTL mapping study as cisor trans- regulated, with varying levels of differential expression, SPE or additivity patterns were assessed. (C) The proportion of genes under different regulatory patterns that are non-syntenic, lack any known domains (Interproscan) or lack any homologs (arabidopsis of uniprot.plants) was determined and compared to all genes, all expressed genes (i.e., genes expressed in at least one out of the total 23 tissues) and non-DE genes (genes not showing DE in any of the 23 tissues). (D) The proportion of different regulatory patterns for the set of genes that have consistent B73 higher

expression (consis. DE_B), consistent Mo17 higher expression (consis. DE_M) or a mix of B73 higher expression and Mo17 higher expression across tissues was shown.

Figure S12. Analysis of allelic bias of non-DE genes across tissues. (A) Proportion of genes showing B73-biased or Mo17-biased allelic expression in each tissue. (B) DEGs between parents and hybrid are enriched in biased allelic expression in the hybrid. Bar shows across all tissues the proportion of DEGs (AP - hybrid is above parents or BP - hybrid is below parents) or non-DEGs with conserved allelic ratio, B73-biased allelic ratio or Mo17-biased allelic ratio.

Figure S13. Comparison of regulatory classification approaches based on eQTL mapping and ASE analysis. The pie-chart (left) shows the proportion of all differentially expressed genes (between the two parents) that were assigned to different regulatory mechanisms across all tissues. The plots on the right show the enrichment or depletion (as fold change relative to background proportion from the left pie-chart) for genes that were characterized by previous eQTL study (in Shoot Apex Meristem) to be regulated by only cis-eQLT(s), only trans-eQTL(s) or by both cis-eQTL(s) and trans-eQTL(s). The comparison was made using the ASE data from seedling meristem tissue (closest to SAM used in the eQTL analysis) as well as three other tissues (flag leaf, root and ear). For each comparison the proportion of each regulatory classification was compared to background proportion (left pie-chart) with the ratio plotted as bars along x-axis. P-values for each comparison were determined using hypergeometric test (lower.tail = FALSE for enrichment and lower.tail = TRUE for depletion) and labelled as "*" (P < 0.01) or "**" (P < 0.001).