# Weather prediction





By George Petropoulos, Thijs Spoor & Skipper van den Brekel

## Dataset

Variables

Only one location



## Research question 1

To what extent does the Vector Autoregression improve the Linear Regression Model? Will capturing interdependencies between naturally related variables (e.g. temperature and humidity) improve modeling with VAR?

H0: Vector Autoregression does not improve the Linear Regression Model in weather prediction.



## Research question 2

To what extent are periodic variables that follow seasonal patterns more predictable than variables that don't exhibit these tendencies?

H0: Variables exhibiting seasonal periodicity do not have statistically lower forecasting errors than variables without such patterns.



## Research question 3

What is the effect of sample size on predicting power with a Vector Autoregression in weather prediction?

H0: Increasing the sample size does not have an effect on the predicting power of a Vector Autoregression.



## LRM fit







# LRM prediction



## VAR explanation

$$\vec{y}(t) = \vec{c} + M\vec{y}(t-1) + \vec{e}$$

$$Y_t = C + M \cdot Y_{t-1}$$

residuals = 
$$Y_t - (C + M \cdot Y_{t-1})$$





## VAR predictions (alternative)







# Discrete fourier transform: $X_k =$

$$X_k = \sum_{t=0}^{N-1} x_n \cdot e^{\frac{-i2\pi kt}{N}}$$







## Reconstruction:

$$x_t = \sum_{k=0}^{N-1} A_k \cos(\frac{-i2\pi kt}{N} + \delta_k)$$

$$A_k = |X_k|$$

$$\delta_k = \arg(X_k)$$







## Fourier prediction

$$y(t) = F(t)$$







# **Hybrid prediction:** $\vec{y}(t) = \vec{F}(t) + M \cdot (\vec{y}(t-1) - \vec{F}(t)) + \vec{e}(t)$







# Hybrid (lucky) prediction







### Question 1 Results:

H0: Vector Autoregression does not improve the Linear Regression Model in weather prediction. (Reject)

### Diebold-Mariano test

| Variable         | DM_stat   | p_value  | R^2 > 0.85 | highly correlated r > 0.5 |
|------------------|-----------|----------|------------|---------------------------|
| cloud_cover      | 0.843585  | 0.398902 |            | X                         |
| wind_speed       | 1.733281  | 0.083046 |            | x                         |
| wind_gust        | 0.881572  | 0.378008 |            |                           |
| humidity         | 3.114168  | 0.001845 |            | X                         |
| pressure         | -2.239301 | 0.025136 | x          |                           |
| global_radiation | 4.665723  | 0.000003 |            | x                         |
| precipitation    | 1.354706  | 0.175511 |            |                           |
| sunshine         | 2.621137  | 0.008764 |            |                           |
| temp_mean        | -2.450796 | 0.014254 | x          |                           |
| temp_min         | -1.376901 | 0.168543 | x          | х                         |
| temp_max         | -1.293419 | 0.195866 | х          | х                         |



#### **Question 2 Results**

H0: Seasonality does not make a variable more predictable in the VAR framework (in terms of lower RMSE). (Accept)



### Two Sample t-test





#### **Question 3 Results**

H0: Increasing the sample size does not have an effect on the predicting power of a Vector Autoregression. (Reject)

| Sample Size | Aggregated MSE |  |  |
|-------------|----------------|--|--|
| 50          | 0.900<br>0.895 |  |  |
| 100         | 0.865<br>0.863 |  |  |
| 150         | 0.841<br>0.842 |  |  |
| 200         | 0.815<br>0.815 |  |  |
| 250         | 0.800<br>0.797 |  |  |
| 300         | 0.781<br>0.780 |  |  |
| 350         | 0.763<br>0.763 |  |  |
| 400         | 0.750<br>0.750 |  |  |

Pearson Correlation: -0.992

p-value: 0.000

Significance: Significant (p<0.05)

Conclusion: Reject Ho

#### Diebold-Mariano test



 Please disregard the results of the Aggregate MSE. They are not statistically correct and should not have been included in the presentation.

## Conclusion

- Weather Prediction is Hard!
- Var models do not provide consistent efficiency over standalone linear models, if that variable follows a strong linear trend.



## Questions

