Лабораторная работа 11.1 Определение ширины запрещённой зоны полупроводника

Драчов Ярослав Факультет общей и прикладной физики МФТИ

1 марта 2021 г.

Аннотация

Исследуется температурная зависимость проводимости типичного полупроводника — германия или кремния. Определяется ширина запрещённой зоны методом, частично исключающим ошибки эксперимента.

1 Теоретическое введение

Величина электропроводности в полупроводниках определяется числом электронов в зоне проводимости и дырок в валентной зоне (эти числа в чистыых полупроводниках, конечно, равны друг другу).

Числа электронов, находящихся в зоне провод

2 Выполнение

По проведённым прямым измерениям, представленным в таблице 1, ис-

U, MB	$R_{\rm пр}$, кОм	$R_{\rm пп}$, кОм
0	$0,093 \pm 0,016$	0.73 ± 0.02
$0,410 \pm 0,010$	$0,095 \pm 0,016$	$0,43 \pm 0,02$
0.820 ± 0.010	$0,098 \pm 0,016$	0.27 ± 0.02
$1,230 \pm 0,010$	$0,106 \pm 0,016$	0.18 ± 0.02
$1,640 \pm 0,010$	$0,118 \pm 0,016$	$0,\!106 \pm 0,\!016$
$2,050 \pm 0,010$	$0,109 \pm 0,016$	$0,097 \pm 0,016$
$2,460 \pm 0,010$	0.111 ± 0.016	$0,064 \pm 0,016$
$2,870 \pm 0,010$	$0,115 \pm 0,016$	$0,048 \pm 0,016$

Таблица 1: Прямые измерения

следуем зависимости

$$\ln \sigma = f(1/T)$$

для проводника и полупроводника, где

$$\sigma = \frac{l}{RS}, \quad t = t_{\text{комн}} + \beta U, \quad \beta = 41 \cdot 10^{-6} \, \text{B/K}, \quad t_{\text{комн}} = 24.0 \pm 1.0 \,^{\circ}\text{C}.$$

$$l_{\text{пп}} = 39.20 \pm 0.10 \, \text{мм}, \quad S_{\text{пп}} = a^2, \quad a = 4.10 \pm 0.10 \, \text{мм}.$$

$$l_{\text{пр}} = 13.40 \pm 0.10 \, \text{м}, \quad S_{\text{пр}} = \pi d^2, \quad d = 0.070 \pm 0.010 \, \text{мм}.$$

Также, кроме систематической погрешности, в таблице 1 учтена погрешность установки

$$\pm [0.015 \pm 0.02 (R_k/R_x - 1)],$$

где R_k — включённый предел измерений (2 кОм), R_x — значение измеряемой величины в килоомах. Для обезразмеривания аргумента логарифма разделим все полученные значения σ на $\sigma_0 = \sigma(t_{\text{комн}})$. Полученные описанным образом косвенные измерения приведены в таблице 2. График зависи-

T^{-1} , $10^{-3} \cdot \mathrm{K}^{-1}$	$\sigma_{\scriptscriptstyle \Pi\Pi}$, $^{1}/_{\scriptscriptstyle {\rm OM}\cdot_{\rm M}}$	$\sigma_{\rm np}$, $1/_{\rm mkOm\cdot m}$	$\ln \left(\sigma_{\pi\pi}/\sigma_{\pi\pi0} \right)$	$\ln \left(\sigma_{\rm np}/\sigma_{\rm np0} \right)$
$3,365 \pm 0,011$	$3,19 \pm 0,19$	9 ± 3	0	0
$3,256 \pm 0,011$	$5,4 \pm 0,4$	9 ± 3	0.53 ± 0.09	0.0 ± 0.4
$3,153 \pm 0,011$	$8,6 \pm 0,9$	9 ± 3	$0,99 \pm 0,12$	0.0 ± 0.4
$3,057 \pm 0,012$	$13,0 \pm 1,9$	8 ± 3	$1,40 \pm 0,16$	-0.1 ± 0.4
$2,966 \pm 0,012$	22 ± 3	7 ± 2	$1,93 \pm 0,16$	-0.2 ± 0.4
$2,880 \pm 0,013$	24 ± 4	8 ± 2	$2,02 \pm 0,18$	-0.2 ± 0.4
$2,800 \pm 0,014$	36 ± 9	8 ± 2	$2,4 \pm 0,2$	-0.2 ± 0.4
$2,724 \pm 0,015$	48 ± 16	8 ± 2	$2,7 \pm 0,3$	-0.2 ± 0.4

Таблица 2: Косвенные измерения

мости $\sigma(T)$ для полупроводника представлен на рис. 1, а для проводника — на рис. 2. Для проводника (в нашем случае — меди) коэффициент наклона

Рис. 1: График зависимости $\sigma(T)$ полупроводника

Рис. 2: График зависимости $\sigma(T)$ проводника

Рис. 3: График $\ln \sigma = f(1/T)$ полупроводника

графика

$$\frac{d\sigma}{dT} = -0.027 \pm 0.006 \ \frac{1}{\mbox{\tiny MKOM} \cdot \mbox{\tiny M} \cdot \mbox{\tiny K}}. \label{eq:dsigma}$$

Среднее значение σ по исследуемому интервалу будет равно

$$\overline{\sigma} = 8.3 \pm 1.0 \, \frac{1}{\text{MKOM} \cdot \text{M}}.$$

А температурный коэффициент сопротивления соответственно

$$\alpha = -\frac{1}{\overline{\sigma}}\frac{d\sigma}{dT} = 0,0033 \pm 0,0008\,^{\circ}\mathrm{C}^{-1},$$

что в пределах погрешности совпадает с табличным значением

$$\alpha_{\rm Cu} \approx 0.004 \,^{\circ} \rm C^{-1}$$
.

По графику на рис. 3 определяем коэффициент наклона

$$\eta = (-4.20 \pm 0.15) \,\mathrm{K}.$$

Откуда ширина запрещённой зоны полупроводника

$$\Delta = -2k\eta = 0.73 \pm 0.03 \,\mathrm{sB},$$

что сопвадает с табличной величиной запрещённой зоны для германия

$$\Delta_{\rm Ge} \approx 0.7 \, {\rm sB}$$
.