Contents

Day 15	2
Z-Score Example	2
R-Code	2
Water bottle example	3
Questions	3
Shape	4
Outliers	7
Outliers Attempting to determine outliers	7
Box-Plots	7
Rule of Thumb	7
Example: Senator Ages	7
Numerical Variable Connection to Random Variables	8

Day 15

Z-Score Example

Two tests of "English" ability

- NAEP Reading Test
- SAT verbal

Suppose a student score scored 320 on NAEP & 650 SAT

Which test did he do better on?

$$NAEP \sim N(288, 38)$$

$$SAT \sim N(500, 120)$$

Convert to Z-Scores

NAEP:

$$Z = \frac{value - mean}{standard\,deviation} = \frac{320 - 288}{38} = 0.842$$

Student scored 0.842 standard deviation above average

SAT:

$$Z = \frac{value - mean}{standard\,deviation} = \frac{650 - 500}{120} = 1.25$$

Student scored 1.25 standard deviation above average

R-Code

```
pnorm(320, mean = 288, sd = 38)
[1] 0.8001355
```

Cumulative proportion of 0.800~(80%) which means $80^{\rm th}$ percentile.

Cumulative proportion of 0.8943502 which means 89th percentile.

Water bottle example

Questions

- Why does it continue to overfill
 - How much does it actually pour \rightarrow average
- Why does Dr. Wynne have such terrible reaction speed?
 - Reaction speed \rightarrow average
- Does the water fill at the same rate
 - Average rate for one pour
 - \rightarrow average over several attempts

Expected value = μ = expected amount filled

 \bar{X} = average amount filled in a sample of pours "sample mean".

Variability: how variable are the individual values. (range)

- $\sigma = \text{Standard Deviation}$
- σ^2 = Variance
- S = Sample Standard Deviation
- $S^2 = \text{Sample Variance}$

Bias: Center: - on average, are we where we expected to be? (mean, median, mode)

Shape

Shape: where "average" is compared to "most likely"

 $\bullet\,$ How "consistent" the values are given variability

 $Figure \ 1: \ Unimodal \ Distribution$

Figure 2: Bimodal Distribution

The median is resistant, the mean is subject to more change.

Figure 3: Left and Right Skewed Graphs

Figure 4: Symmetric Graph

Approximating a Density Curve: Histogram

Figure 5: Histogram

- $\bullet\,$ "bins": intervals on the x-axis
- Choice of bins is very important
 - Endpoints of binsCenter & Width
- Reimann Integral of an unknown density curve

Outliers

Points that doesn't fit with everything else

Attempting to determine outliers

- Plot your data & look for points that don't belong
- † best way
- Investigate why they're different

Box-Plots

Figure 6: Box Plot

Rule of Thumb

- Step 1: Get five number summary (min, Q_1 , medium(Q_2), Q_3 , max)
- Step 2: Compute IQR = range middle 50% of data
 - $IQR = Q_3 Q_1$
- Step 3: Compute "fences"
 - Lower fence: $Q_1 K \times IQR$
 - Upper fence: $Q_3 + K \times IQR$

Anything outside the fences is an outlier.

By convention, k = 1.5

Anything outside the fences is an outlier.

By convention, k = 1.5

Example: Senator Ages

Five number summary: - Min = 39 - $Q_1 = 55.5$ - Median = 63 - $Q_3 = 69$ - Max = 85

$$IQR = 69 - 55.5 = 13.5$$

Lower fence: 55.5 - (1.5)(13.5) = 35.25 Upper fence: 69 + (1.5)(13.5) = 89.25

In this data set we have no outliers because our data falls between the fences.

Numerical Variable Connection to Random Variables

Recall for random variable X

$$E(A + Bx) = a + b \times E(x)$$

$$Var(A + Bx) = b^2 \times Var(x)$$

$$SD(A + Bx) = |b| \times sd(x)$$

Recall for random variable \boldsymbol{X} and \boldsymbol{Y}

$$E(Ax + By) = aE(x) + bE(y)$$

$$Var(Ax + By) = A^2 \times var(x) + B^2 var(y)$$

$$SD(Ax+By) = \sqrt{A^2 \times var(x) + B^2 \times var(y)}$$

All of these rules hold for numerical variables too