ол Группа

1.1.1. Лекция

Определение 0.1.1. Группоид := множество с определенной на нем бинарной операцией.

Определение 0.1.2. Полугруппа := группоид + ассоциативность операции.

Определение 0.1.3. Моноид G:= полугруппа + единичный (нейтральный) элемент e, то есть такой, что $\forall g \in G$ выполнено ge=eg=g.

Определение 0.1.4. Элемент $b \in G$ называется обратным к элементу $a \in G$, если ab = ba = e. Обозначатся a^{-1} . Если к элементу существует обратный, то он называется обратимым.

Определение 0.1.5. Группа := моноид, в котором все элементы обратимы.

Определение 0.1.6. Группа, состоящая из конечного числа элементов, называется конечной группой. Иначе — бесконечной.

Определение 0.1.7. Число элементов в конечной группе называется порядком группы и обозначается |G|.

Определение 0.1.8. Пусть g элемент некоторой группы. Наименьшее натуральное число n такое, что $g^n = e$, называют порядком элемента g. Обозначается |g|. Если такого n нет, то говорят, что элемент имеет бесконечный порядок: $|g| = \infty$.

Так как с понятием группы мы будем часто встречаться, дадим еще раз определение в удобной форме.

Множество G с определенной на нем бинарной операцией " \cdot " называется группой, если

1. операция ":" ассоциативна, то есть

$$(a \cdot b) \cdot c = a \cdot (b \cdot c) \, \forall a,b,c \in G$$

2. существует единичный элемент e, то есть такой элемент $e \in G$, что

$$a \cdot e = e \cdot a = a \ \forall a \in G$$

3. к любому элементу существует обратный, то есть

$$\forall a \in G \ \exists a^{-1} \in G : \ a \cdot a^{-1} = a^{-1} \cdot a = e$$

Обозначается (G, \cdot) .

Иногда знак операции опускают: вместо $a \cdot b$ пишут ab. Кроме того, благодаря ассоциативности можно опускать скобки: вместо (ab)c = a(bc) пишут abc. Кстати, несложно доказать справедливость ассоциативного закона для n элементов.

Определение 0.1.9. Подмножество элементов H в группе G называется подгруппой, если оно само является группой относительно той же бинарной операции. То, что H подгруппа группы G мы будем обозначать H < G.

У любой группы G есть как минимум две подгруппы: подгруппа $\{e\}$ и сама G. Их называют тривиальными подгруппами. Если подгруппа H группы G не совпадает со всей группой, то будем писать H < G.

Напоминание. Бинарная операция "·", определенная на множестве G, называется коммутативной, если $\forall a,b \in G \ ab = ba$.

Определение 0.1.10. Группа с коммутативной операцией называется коммутативной или абелевой.

Определение 0.1.11. Циклической группой (порядка n) называется группа, порожденная одним элементом (порядка n):

$$G = \{e, a, a^2, \dots, a^{n-1}\} = \langle a \rangle = \langle a \rangle_n.$$

Циклической группой бесконечного порядка называется группа, порожденная одним элементом бесконечного порядка:

$$G = \{e, a, a^{-1}, a^{2}, a^{-2}, \ldots\} = \{a^{n}, n \in \mathbb{Z}\} = \langle a \rangle = \langle a \rangle_{\infty}$$

(здесь
$$a^{-n} = (a^{-1})^n$$
).

1.1.2. Семинар

В задачах этого семинара требуется доказать сформулированные утверждения.

Задача 0.1.1. Единичный элемент e — единственный.

Доказательство. Пусть e_1, e_2 - две единицы в группе. Тогда $e_1 = e_1 e_2 = e_2$.

Задача 0.1.2. Для любого $x \in G$ обратный элемент — единственный.

Доказательство. Пусть y, z — суть обратные к x.

Тогда
$$y = ye = y(xz) = (yx)z = ez = z$$
.

Задача 0.1.3. Пусть $x,y \in G$. Тогда, если xy = e, то $y = x^{-1}$ (а тогда и yx = e).

Доказательство.
$$y = ey = (x^{-1}x)y = x^{-1}(xy) = x^{-1}e = x^{-1}$$

Задача 0.1.4. Пусть $x, y \in G$. Тогда $(xy)^{-1} = y^{-1}x^{-1}$.

Доказательство.
$$(xy)(y^{-1}x^{-1}) = x(yy^{-1})x^{-1} = xex^{-1} = xx^{-1} = e$$
.

Задача 0.1.5. Пусть $x \in G$, $n, m \in \mathbb{Z}$. Тогда $x^n x^m = x^{n+m}$.

Доказательство. Рассмотрим несколько случаев:

 $1. \ n > 0, m > 0,$ тогда

$$x^n x^m = \underbrace{x \cdot \ldots \cdot x}_{n} \cdot \underbrace{x \cdot \ldots \cdot x}_{m} = \underbrace{x \cdot \ldots \cdot x}_{n+m} = x^{n+m};$$

- 2. $n<0, m<0 \Rightarrow n=-k\ (k>0), m=-l\ (l>0),$ тогда $x^nx^m=x^{-k}\cdot x^{-l}=(x^{-1})^k\cdot (x^{-1})^l=(\text{см. случай }1))=(x^{-1})^{k+l}=x^{-(k+l)}=x^{n+m};$
- $3. \ n>0, m<0, n+m\geq 0,$ тогда $x^nx^m=($ см. случай $1))=(x^{n+m}\cdot x^{-m})\cdot x^{-(-m)}=x^{n+m}\cdot x^{-m}\cdot (x^{-m})^{-1}=x^{n+m};$
- $4. \ n>0, m<0, n+m<0,$ тогда $x^nx^m=($ см. случай $2))=x^n\cdot(x^{-n}\cdot x^{n+m})=x^n\cdot(x^n)^{-1}\cdot x^{n+m}=x^{n+m}.$

L

Задача 0.1.6. Если $x^2=e$ для всех элементов группы, то группа G коммутативна.

Доказательство. Если
$$xx = e$$
, то $x = x^{-1} \ \forall x \in G$. Тогда $xy = (xy)^{-1} = y^{-1}x^{-1} = yx$.

Задача 0.1.7. Если $\exists n \neq k \in \mathbb{N} : x^n = x^k$, то $|x| < \infty$.

Доказательство. Пусть для определенности n > k. Из $x^n = x^k$ следует, что $x^{-k}x^n = x^{-k}x^k$, то есть $x^{n-k} = e$.

Задача 0.1.8. Пусть $x, y \in G$. Тогда $|x| = |y^{-1}xy|$.

Доказательство. Пусть $|x| = n \Rightarrow x^n = e$. Тогда

$$(y^{-1}xy)^n = \underbrace{(y^{-1}xy) \cdot (y^{-1}xy) \cdot \dots \cdot (y^{-1}xy)}_{n} =$$

$$= y^{-1}x(yy^{-1})x \dots (yy^{-1})xy = y^{-1}x^ny = y^{-1}y = e$$

 $\Rightarrow |y^{-1}xy| \leqslant n = |x|.$

Остается заметить, что поскольку

$$x = (yy^{-1})x(yy^{-1}) = (y^{-1})^{-1}(y^{-1}xy)y^{-1}$$
, to $|x| \le |y^{-1}xy|$.

Задача 0.1.9. Пусть $x, y \in G$. Тогда |xy| = |yx|.

Доказательство. Пользуясь предыдущей задачей, получим: $|xy| = |x^{-1}(xy)x| = |yx|$.

Задача 0.1.10. Пусть $x \in G$ и $|x| = n < \infty$. Тогда, если $x^m = e$, то $n \mid m$.

Доказательство. Пусть m=nd+r, где $0\leqslant r\leqslant n-1$. Тогда $x^m=x^{nd+r}=x^{nd}x^r=(x^n)^dx^r=x^r$. Но $x^r=e\Leftrightarrow r=0$ (так как $x^0=e$). Отсюда $x^m=e\Leftrightarrow m=nd$.

Задача 0.1.11. Пусть $H_1 < G, H_2 < G$. Тогда $H_1 \cap H_2 < G$.

Доказательство. Во-первых $H_1 \cap H_2$ содержит единицу, так как $e \in H_1, e \in H_2$. Пусть $x \in H_1 \cap H_2$, то есть $x \in H_1, x \in H_2$. Следовательно, $x^{-1} \in H_1$ и $x^{-1} \in H_2$. Значит, $x^{-1} \in H_1 \cap H_2$.

Задача 0.1.12. Пусть $H_1 < G, H_2 < G$. Тогда, если $H_1 \cup H_2$ — подгруппа, то либо $H_1 \subseteq H_2$, либо $H_2 \subseteq H_1$.

Доказательство. От противного. Пусть $\exists h_1 \in H_1 \setminus H_2$ и $h_2 \in H_2 \setminus H_1$. Так как по предположению $H_1 \cup H_2$ является подгруппой, $h_1h_2 = h_3 \in H_1 \cup H_2$. Пусть для определенности $h_3 \in H_1$, тогда $h_2 = h_1^{-1}h_3 \in H_1$, но это противоречит $h_2 \in H_2 \setminus H_1$.

Задача 0.1.13. Доказать, что группа, имеющая лишь конечное число подгрупп конечна.

Доказательство. Бесконечная циклическая группа изоморфна \mathbb{Z} и, следовательно, имеет бесконечное число подгрупп. Поэтому циклическая подгруппа, порожденная произвольным элементом нашей группы, конечна (в противном случае наша группа содержала бы бесконечное число подгрупп). Поскольку любой элемент содержится в циклической подгруппе порожденной им самим, группа содержится в конечном объединении (так как число всех подгрупп конечно) конечных циклических подгрупп, а значит имеет конечное число элементов.

Обозначение. (n,m) = HOД(m,n) — наибольший общий делитель чисел n и m.

Задача 0.1.14. Пусть $x \in G$, |x| = n. Тогда $|x^k| = \frac{n}{(k,n)}$.

Доказательство. Пусть (n,k)=d. Тогда $(x^k)^{\frac{n}{d}}=x^{\frac{kn}{d}}=(x^n)^{\frac{k}{d}}=e^{\frac{k}{d}}=e$. Поэтому $|x^k|\leq \frac{n}{d}$.

Осталось доказать, что $|x^k| \leq \frac{n}{d}$. Имеем: $n = n_1 d$; $k = k_1 d$, причем $(n_1, k_1) = 1$. Пусть $m \in \mathbb{N}$ такое число, что $(x^k)^m = x^{km} = e$. Следовательно, mk:n, то есть $mk_1 d$: $n_1 d$, откуда mk_1 : n_1 . Но числа k_1 и n-1 взаимно просты, поэтому m: $n_1 = \frac{n}{d}$. Значит, наименьшим m таким, что $(x^k)^m = e$ является $m = \frac{n}{d}$.

Задача 0.1.15. Пусть $x \in G$. Тогда $|x| = |x^{-1}|$.

Доказательство. Пусть $|x| = n \Rightarrow x^n = e \Rightarrow x^{-n} = (x^{-1})^n = e \Rightarrow |x^{-1}| \le n = |x|$. Заменив в этом рассуждении x на x^{-1} , получаем $|x| \le |x^{-1}|$. Следовательно, $|x| = |x^{-1}|$.

Можно рассуждать по-другому. Ясно, что $x^{-1}=x^{n-1}$. Поэтому $|x^{-1}|=|x^{n-1}|=\frac{n}{(n,n-1)}=n$.

Кстати, если $|x| = \infty$, то и $|x^{-1}| = \infty$ (если бы $|x^{-1}| = n$, то предыдущее рассуждение дало бы |x| = n.

Задача 0.1.16. Пусть $x,y\in G$ такие, что xy=yx и (|x|,|y|)=1. Тогда |xy|=|x||y|.

Доказательство. Пусть |x|=n, |y|=m. Очевидно, что $(xy)^{nm}=(x^n)^m(y^m)^n=e^me^n=e\Rightarrow |xy|\leq nm$. Пусть |xy|=k. Так как $(xy)^k=x^ky^k=e$, то $y^k=x^{-k}$, откуда $|y^k|=|x^k|$, то есть $\frac{m}{(k,m)}=\frac{n}{(k,n)}; \ m(k,n)=n(k,m)$. Но первый множитель левой части равенства взаимно прост с первым множителем правой части, поэтому (k,n) делится на n, а тогда и k делится на n. Рассуждая аналогично, получаем, что k делится на m. А так как m и n взаимно просты, k делится на их произведение. \square

Замечание. Хотелось бы получить обобщение предыдущего результата, отбрасывая то или иное требование. В обоих случаях нас подстерегает неудача. Если не требовать xy = yx, контрпример может быть получен уже по результатам следующей лекции о подстановках. Если не требовать (|x|,|y|)=1, то напрашивающееся обобщение вида $|xy|=\mathrm{HOK}(|x|,|y|)$ ложно хотя бы по причине $|xx^{-1}|=|e|=1$ (почему оно напрашивается: на семинаре, посвященном подстановкам, будет доказано, что порядок произведения независимых циклов равен НОК порядков этих циклов).

Определение 0.1.12. Периодической частью группы G называется множество $T(G)=\{g\in G,|g|<\infty\}.$

Задача 0.1.17. Привести пример группы G, такой что T(G) — не является ее подгруппой.

Доказательство. Пусть G — группа, порожденная отражениями относительно двух параллельных прямых (очевидно, что отражения имеют порядок 2). При этом их произведение является уже параллельным переносом и поэтому имеет бесконечный порядок.

0.2 Подстановки, теорема Кэли

1.2.1 Лекция

Определение 0.2.1. Перестановкой длины (степени) n называется последовательность чисел $1, 2, \ldots, n$, записанных в произвольном порядке. Всего имеется n! перестановок.

Определение 0.2.2. Подстановкой длины n называется биекция f: $\{1,\,2,\,\ldots,\,n\}\longrightarrow \{1,\,2,\,\ldots,\,n\}$. Подстановку принято записывать в виде $\begin{pmatrix} 1 & 2 & \ldots & n \\ f(1) & f(2) & \ldots & f(n) \end{pmatrix}$.

Пример 0.2.1. Подстановка $f = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$ действует так: f(1) = 2, f(2) = 1, f(3) = 3. Ясно, что, поменяв местами столбцы, получаем ту же самую подстановку: $\begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} = \begin{pmatrix} 1 & 3 & 2 \\ 2 & 3 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 & 3 \\ 1 & 2 & 3 \end{pmatrix} = \dots$

Определение 0.2.3. Пусть есть перестановка i_1, i_2, \ldots, i_n . Будем говорить, что пара чисел i_k, i_m , где k < m, образует инверсию, если $i_k > i_m$. Другими словами, если большее число встречается раньше меньшего.

Определение 0.2.4. Подстановка $\begin{pmatrix} i_1 & i_2 & \dots & i_n \\ j_1 & j_2 & \dots & j_n \end{pmatrix}$ называется четной, если сумма количества инверсий в нижней и верхней строчке — четное число, нечетной — если нечетное. Поменяв местами два соседних столбца, меняем число инверсий в каждой строке на 1, при этом сумма инверсий или не поменяется, или изменится на 2, поэтому понятие четной (нечетной) подстановки не зависит от порядка столбцов.

Определение 0.2.5. Пусть подстановка σ имеет k инверсий. Тогда число $(-1)^k$ будем называть знаком подстановки σ и обозначать $\mathrm{sgn}(\sigma)$. Таким образом, если σ — четная подстановка, то $\mathrm{sgn}(\sigma)=1$, а если нечетная, то $\mathrm{sgn}(\sigma)=-1$.

Пример 0.2.2. Подстановка $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}$ имеет следующие инверсии: (3,1),(3,2),(5,1),(5,2),(5,4)-5 штук \Rightarrow подстановка нечетная и, следовательно, имеет знак -1.

Произведение подстановок определяется как суперпозиция двух функций, и, следовательно, осуществляется справа налево.

Пример 0.2.3.

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 3 & 2 \end{pmatrix} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{pmatrix}$$

Рассуждения были следующими. Смотрим на правую подстановку: 1 переходит в 4, смотрим на левую подстановку: 4 переходит в 3, левее подстановок нет, следовательно, 1 переходит в 3. Снова смотрим на правую подстановку: 2 переходит в 1, смотрим на подстановку левее: 1 переходит в 2, следовательно, 2 переходит в 2, то есть остается на месте. Теперь смотрим на 3 в правой подстановке, она переходит в себя же, смотрим на левую подстановку: там 3 переходит в 4, следовательно, 3 переходит в 4. Пока у нас получилось $\begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & * \end{pmatrix}$. Так как в каждой строчке должны быть все числа от 1 до 4, то вместо * можем дописать 1.

Так как умножение подстановок — суперпозиция функций, то ассоциативность выполняется.

Тождественную подстановку $\begin{pmatrix} 1 & 2 & \dots & n \\ 1 & 2 & \dots & n \end{pmatrix}$, которая все элементы оставляет на месте, будем обозначать id или e.

К любой подстановке $\begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \beta_1 & \beta_2 & \dots & \beta_n \end{pmatrix}$ существует обратная $-\begin{pmatrix} \beta_1 & \beta_2 & \dots & \beta_n \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix}$. Действительно, $\begin{pmatrix} \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \beta_1 & \beta_2 & \dots & \beta_n \end{pmatrix} \cdot \begin{pmatrix} \beta_1 & \beta_2 & \dots & \beta_n \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \end{pmatrix} = id = e$.

Таким образом, мы получили все свойства группы:

- 1. ассоциативность по умножению;
- 2. единичный элемент тождественная подстановка;
- 3. наличие обратного элемента для каждой подстановки.

Определение 0.2.6. Группу всех подстановок длины n с операцией умножения называют симметрической группой степени n и обозначают S_n .

Какой порядок группы S_n ? То есть сколько существует различных подстановок длины n? Располагая числа в первой строке в порядке возрастания, видим, что подстановок столько же, сколько есть перестановок. Поэтому $|S_n| = n!$.

Подстановка может какие-то элементы перемещать, а какие-то оставлять на месте. Например, подстановка $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 2 & 1 & 3 & 7 & 6 & 4 \end{pmatrix}$ оставляет на месте 2 и 6, а остальные элементы двигаются циклически: $1 \longmapsto 5 \longmapsto 7 \longmapsto 4 \longmapsto 3 \longmapsto 1$. Это можно записать в виде цикла длины 5: (15743).

Определение 0.2.7. Подстановки, записанные в виде цикла, так и называются — циклами.

Определение 0.2.8. Два цикла называются независимыми, если у них нет общих элементов.

Легко заметить, что независимые циклы коммутируют.

Определение 0.2.9. Транспозицией называется цикл длины 2.

Пример 0.2.4. Рассмотрим подстановку $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix}$. Здесь есть два независимых цикла: (145) длины 3 и (23) длины 2. Тогда исходная подстановка может быть записана в виде произведения этих двух циклов: $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 2 & 5 & 1 \end{pmatrix} = (145)(23)$. Порядок перемножения этих циклов не важен, так как они независимы.

Таким образом, любую подстановку можно разложить в произведение независимых циклов, причем единственным образом, если не учитывать их порядок и исключить циклы длины 1.

Теорема 0.2.5. (Теорема Кэли) Любая конечная группа порядка n изоморфна некоторой подгруппе S_n .

1.2.2 Семинар

Задача 0.2.6. Как должны быть расположены числа в перестановке, чтобы инверсий было наибольшее количество ?

Решение. В порядке убывания.

Задача 0.2.7. Сколько инверсий образует число 1, стоящее на k-м месте ?

Решение. 1 меньше любого числа в перестановке \Rightarrow 1 будет образовывать инверсии со всеми числами, стоящими левее, а их k-1.

Задача 0.2.8. Сколько инверсий образует число n, стоящее на k-м месте, в перестановке из n элементов ?

Решение. Так как n больше любого числа в перестановке, то n будет образовывать инверсии со всеми числами, стоящими правее, а их n-k.

Задача 0.2.9. Сколько всего четных (нечетных) перестановок?

Решение. Разобъем все перестановки на пары, включив в одну пару те перестановки, которые отличаются только расположением 1 и 2. В каждой паре одна перестановка четная, одна нечетная.

Поэтому всего четных (нечетных) перестановок
$$\frac{n!}{2}$$
.

Задача 0.2.10. Доказать, что произведение двух четных подстановок является четной подстановкой, произведение двух нечетных — четной, произведение четной и нечетной — нечетной.

Доказательство. Пусть, например, α и β — четные подстановки.

$$\alpha \cdot \beta = \begin{pmatrix} a_1 & \dots & a_n \\ b_1 & \dots & b_n \end{pmatrix} \begin{pmatrix} 1 & \dots & n \\ a_1 & \dots & a_n \end{pmatrix} = \begin{pmatrix} 1 & \dots & n \\ b_1 & \dots & b_n \end{pmatrix}$$

Перестановка $(1 \dots n)$ — четная $\Rightarrow (a_1 \dots a_n)$ — четная $\Rightarrow (b_1 \dots b_n)$ — четная.

Подстановка длины n — элемент конечной группы S_n , следовательно имеет конечный порядок. Порядок цикла длины k равен k.

Задача 0.2.11. Если подстановка разложена в произведение независимых циклов, то ее порядок равен НОК длин этих независимых циклов.

Доказательство. Если $\sigma = \alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_k$, то (в силу независимости циклов) $\sigma^m = \alpha_1^m \cdot \alpha_2^m \cdot \ldots \cdot \alpha_k^m$; для того, чтобы $\sigma^m = e$, необходимо и достаточно, чтобы $\alpha_1^m = \alpha_2^m = \ldots = \alpha_k^m = e$. Остается напомнить, что длина цикла совпадает с его порядком, то есть минимальной натуральной степенью, в которой цикл дает e.

Задача 0.2.12. Пусть
$$\alpha = (i_1 \dots i_k)$$
 и $\beta \in S_k$. Тогда $\beta \alpha \beta^{-1} = (\beta(i_1)\beta(i_2)\dots\beta(i_k))$.

Доказательство.
$$\beta^{-1}(\beta(i_1)) = i_1 \Rightarrow \alpha(\beta^{-1}(\beta(i_1))) = i_2 \Rightarrow \beta(\alpha(\beta^{-1}(\beta(i_1)))) = \beta(i_2)$$

Задача 0.2.13. Доказать, что любую подстановку можно представить следующими способами:

- 1. в виде произведения транспозиций;
- 2. в виде произведения транспозиций $(12), (23), \ldots, (n-1, n);$
- 3. в виде произведения транспозиций $(12), (13), \ldots, (1n);$
- 4. в виде произведения транспозиции (12) и цикла (123...n).

Доказательство. 1.
$$(i_1i_2...i_k) = (i_1i_2)(i_2i_3)...(i_{k-1}i_k)$$
.

- 2. На первом этапе раскладываем циклы в произведение транспозиций (см. первый способ). Далее используем тот факт, что (ik)(ij)(ik) = (kj). (в средней транспозиции i поменялось на k. Пример: (25) = (23)[(34)(45)(34)](23).
- 3. (ij) = (1j)(1i)(1j).
- 4. Обозначим $\alpha=(1\,2)$ и $\beta=(1\,2\,\ldots n)$. Воспользуемся предыдущей задачей: $\beta\alpha\beta^{-1}=(\beta(1)\beta(2))=(23);\ \beta(23)\beta^{-1}=(\beta(2)\beta(3))=$ (34), и так далее. Получили все транспозиции из второго способа.

Задача 0.2.14. Доказать, что знак цикла длины k равен $(-1)^{k-1}$ (иными словами, цикл четной длины является нечетной подстановкой, а цикл нечетной длины — четной подстановкой.

Доказательство. Указание. Транспозиция - нечетна, а любой цикл раскладывается в произведение транспозиций (см. предыдущую задачу, способ 1).

Определение 0.2.10. Группа всех четных подстановок называется знакопеременной группой и обозначается A_n .

Задача 0.2.15. Любая четная подстановка из A_n может быть представлена в виде произведения тройных циклов.

Доказательство. Если n=3, то утверждение очевидно.

Покажем, как произведение транспозиций выражается через циклы длины три:

$$(i_1i_2)(i_1i_3) = (i_1i_3i_2), (i_1i_2)(i_3i_4) = (i_1i_4i_3)(i_1i_2i_3).$$

Задача 0.2.16. Игра в "пятнашки". На поле 4 на 4 расположены плитки с номерами от 1 до 15, причем правый нижний угол свободен:

a_1	a_2	a_3	a_4
a_5	a_6	a_7	a_8
a_9	a_{10}	a_{11}	a_{12}
a_{13}	a_{14}	a_{15}	

Плитки можно передвигать по горизонтали и вертикали. Доказать, что если перестановка $(a_1a_2\dots a_{15})$ нечетная, то получить "правильное" распо (на рисунке ниже) невозможно.

1	2	3	4
5	6	7	8
9	10	11	12
13	14	15	

Задача 0.2.17. Выяснить, как изменится разложение подстановки в произведение независимых циклов при умножении ее (с обеих сторон) на произвольную транспозицию.

0.3 Морфизмы

1.3.1 Лекция

Определение 0.3.1. Отображение $\phi: G \longrightarrow H$ называется гомоморфизмом (или морфизмом) группы G в группу H, если $\phi(ab) = \phi(a)\phi(b)$, $\forall a,b \in G$.

Определение 0.3.2. Кег $\phi = \{g \in G : \phi(g) = e_H\}$ — ядро гомоморфизма ϕ .

Определение 0.3.3. Іт $\phi = \{h \in H : \exists g \in G : \phi(g) = h\}$ — образ гомоморфизма ϕ .

Определение 0.3.4. Гомоморфизм $\phi: G \longrightarrow H$ называется мономорфизмом, если $\forall g_1 \neq g_2 \in G: \Rightarrow \phi(g_1) \neq \phi(g_2)$.

Определение 0.3.5. Гомоморфизм $\phi:G\longrightarrow H$ называется эпиморфизмом, если ${\rm Im}\,\phi=H.$

Определение 0.3.6. Гомоморфизм $\phi: G \longrightarrow H$ называется изоморфизмом, если он является мономорфизмом и эпиморфизмом.

Определение 0.3.7. Если существует изоморфизм $\varphi: G \longrightarrow H$, то группы G и H называются изоморфными. Этот факт обозначается так: $G \cong H$.

Определение 0.3.8. Гомоморфизм $\phi: G \longrightarrow G$ называется эндоморфизмом. Обозначим множество всех эндоморфизмов через End G. Операция взятия композиции эндоморфизмов вводит структуру моноида, единица – тождественный изоморфизм id_G .

Определение 0.3.9. Изоморфизм $\phi: G \longrightarrow G$ называется автоморфизмом.

Ниже доказывается, что автоморфизмы группы G образуют группу относительно суперпозиции. Эта группа обозначается $\operatorname{Aut} G$.

Свойства гомоморфизма

2.
$$\phi(g^{-1}) = (\phi(g))^{-1}$$

 $\blacktriangleleft e = \phi(e) = \phi(gg^{-1}) = \phi(g)\phi(g^{-1}) \Leftrightarrow (\phi(g))^{-1} = \phi(g^{-1}) \blacktriangleright$

Ненулевые элементы поля K образуют абелеву группу относительно умножения. Она называется мультипликативной группой поля K и обозначается K^* .

 \mathbb{R}_+ – множество неотрицательных вещественных чисел.

Пример 0.3.1. $f: \mathbb{C}^* \longrightarrow \mathbb{R}_+^*$, f(z) = |z| — гомоморфизм, не мономорфизм, эпиморфизм, не изоморфизм, не эндоморфизм, не автоморфизм.

Предложение 0.3.2. Пусть $f:G\longrightarrow H$ — гомоморфизм. Тогда $\operatorname{Ker} f$ — подгруппа группы G.

Доказательство. $g_1, g_2, g \in \text{Ker } f$. Надо доказать две вещи:

- (1) $g_1 \cdot g_2 \in \operatorname{Ker} f$
- $(2) g^{-1} \in \operatorname{Ker} f$

Если $|G| < \infty$, то достаточно доказать только $g_1 \cdot g_2 \in \text{Ker } f$. То есть не нужно доказывать существование обратного.

Почему так?

 $G = \{g, g^2, g^3, \dots, g^n = e\}$. Пусть $g^m = g^k, m > k \Rightarrow g^{m-k} = e$. Значит, обратный к g - это g^{m-1} , то есть $gg^{m-1} = e$.

Теперь, наконец, докажем, что Ker f < G.

Пусть $g_1, g_2 \in \text{Ker } f$. Тогда $f(g_1 \cdot g_2) = f(g_1) \cdot f(g_2) = e \cdot e = e \Rightarrow g_1 g_2 \in \text{Ker } f$.

Пусть $g \in \operatorname{Ker} f$. Тогда $f(g^{-1}) = (f(g))^{-1} = e^{-1} = e \Rightarrow g^{-1} \in G$. Кстати, если $|G| < \infty$, доказательство принадлежности g^{-1} можно модифицировать: в этом случае $g^{-1} = g^{m-1} \in \operatorname{Ker} f$ (здесь m - порядок g).

Предложение 0.3.3. Пусть $f:G\longrightarrow H$ — гомоморфизм. Тогда $\operatorname{Im} f$ — подгруппа H.

Доказательство. Пусть $h_1, h_2 \in \text{Im } f$, то есть $\exists g_1, g_2 : f(g_1) = h_1, \ f(g_2) = h_2$. Тогда $h_1 \cdot h_2 = f(g_1) \cdot f(g_2) = f(g_1 \cdot g_2) \in \text{Im } f$. Пусть $h \in \text{Im } f$, то есть $\exists g \in G : f(g) = h$. Тогда $h^{-1} = (f(g))^{-1} = f(g^{-1}) \in \text{Im } f$.

Теорема 0.3.4. Гомоморфизм $f:G\longrightarrow H$ является мономорфизмом $\Leftrightarrow \operatorname{Ker} f=\{e\}.$

Доказательство. \Rightarrow Пусть f — мономорфизм, $g \in \operatorname{Ker} f$. Следовательно, f(g) = e = f(e). Значит, g = e.

 \Leftarrow Пусть $\operatorname{Ker} f = \{e\}$ и $g_1, g_2 \in G$ такие, что $f(g_1) = f(g_2)$. Тогда $f(g_1 \cdot g_2^{-1}) = f(g_1) \cdot f(g_2^{-1}) = f(g_1) \cdot (f(g_2))^{-1} = e$. Отсюда $g_1 \cdot g_2^{-1} = e \Rightarrow g_1 = g_2$, то есть f — мономорфизм. \square

Задача 0.3.5. Все автоморфизмы группы G образуют группу относительно суперпозиции, которая обозначается $\operatorname{Aut} G$.

Доказательство. Пусть $f_1, f_2: G \longrightarrow G$ — автоморфизмы. Операция есть — $(f_1f_2)(g)=f_1(f_2(g))$. Нужно проверить, что f_1f_2 - автоморфизм:

$$(f_1f_2)(g_1g_2) = f_1(f_2(g_1g_2)) = f_1(f_2(g_1)f_2(g_2)) = f_1(f_2(g_1))f_1(f_2(g_2)) = f_1(f_2(g_1g_2)) = f_1(f_2(g_1g_2)$$

 $(f_1f_2)(g_1)(f_1f_2)(g_2) \Rightarrow f_1f_2$ — гомоморфизм.

Очевидно, что моно и эпи, т. к. f_1, f_2 — автоморфизмы.

Тождественное отображение является автоморфизмом и играет роль единичного элемента.

Обратное отображение к автоморфизму снова является автоморфизмом.

Предложение 0.3.6. Зафиксируем элемент $g \in G$. Тогда отображение $i_q: G \longrightarrow G, i_q(h) = ghg^{-1}$ является автоморфизмом.

Доказательство. Пусть $h_1,h_2\in G$. Тогда $i_g(h_1h_2)=g(h_1h_2)g^{-1}=gh_1eh_2g^{-1}=gh_1(g^{-1}g)h_2g^{-1}=(gh_1g^{-1})(gh_2g^{-1})=i_g(h_1)i_g(h_2)\Rightarrow i_g$ — гомоморфизм. Докажем изо = моно + эпи.

Докажем сначала моно. Пусть $h \in Ker(i_g) \Rightarrow i_g(h) = ghg^{-1} = e \Leftrightarrow h = g^{-1}g = e$.

Докажем теперь эпи. Пусть $a \in G$. Надо найти $h \in G$: $i_g(h) = ghg^{-1} = a$. Ясно, что $h = g^{-1}ag$.

Определение 0.3.10. Автоморфизм называется внутренним, если он имеет вид $i_g(h) = ghg^{-1}$.

Предложение 0.3.7. Множество всех внутренних автоморфзмов группы G образует группу относительно суперпозиции, которая обозначается $\operatorname{Int} G$. Тем самым, $\operatorname{Int} G < \operatorname{Aut} G$.

Доказательство.

$$(i_{g_1}i_{g_2})(h) = i_{g_1}(i_{g_2})(h) = i_{g_1}(g_2hg_2^{-1}) = g_1g_2hg_2^{-1}g_1^{-1} = (g_1g_2)h(g_1g_2)^{-1} = i_{g_1g_2}(h),$$

т.е. $i_{g_1}i_{g_2}=i_{g_1g_2}$. Далее, $i_e(h)=ehe^{-1}=h$, поэтому $i_e=id\in {\rm Int}\, G$ является единичным элементом. Наконец, $i_gi_{g^{-1}}=i_{gg^{-1}}=i_e=id$, т.е. $(i_g)^{-1}=i_{g^{-1}}$.

Задача 0.3.8. Если G – абелева, то существует единственный внутренний автоморфизм — тождественный.

Доказательство. Используем коммутативность операции: $i_g(h) = ghg^{-1} = gg^{-1}h = h$.

Предложение 0.3.9. Если $f:G\to H$ — изоморфизм групп (как частный случай $f:G\to G$ — автоморфизм группы G), то для любого элемента g группы G выполнено |f(g)|=|g|.

Доказательство. Если $g^k = e$, то $f(g)^k = f(g^k) = f(e) = e \Rightarrow |f(g)| \leq |g|$. Так как к автоморфизму есть обратный, то верно и обратное неравенство.

Задача 0.3.10. Привести пример группы, у которой $\operatorname{Int} G = \operatorname{Aut} G$.

Доказательство. Докажем, что $\operatorname{Int} S_3 = \operatorname{Aut} S_3 \cong S_3$. Выписывая все внутренние автоморфизмы, убеждаемся, что разные элементы S_3 задают разные автоморфизмы. Поэтому $|\operatorname{Int} S_3| = 6$. Следовательно, $|\operatorname{Aut} S_3| \geq 6$. Далее, вспоминаем, что S_3 порождается транспозициями a = (12) и b = (13) (ну и заодно добавим к ним c = (23), хуже не будет). Каждый автоморфизм каким-то образом перемешивает эти транспозиции. Например, если f(a) = b; f(b) = a; f(c) = c, то естественно сопоставить этому автоморфизму подстановку, состоящую из символов a, b, c: $\begin{pmatrix} a & b & c \\ b & a & c \end{pmatrix}$ Поэтому функция Φ : $\operatorname{Aut} S_3 \to S_3$ построена. То, что она

Поэтому функция Φ : Aut $\dot{S}_3 \rightarrow \dot{S}_3$ построена. То, что она является гомоморфизмом, предлагается проверить самостоятельно. Впрочем, можно обойтись и без этого: как известно, есть (с точностью до изоморфизма) только две группы шестого порядка: циклическая и группа подстановок. Так как Aut S_3 , очевидно, некоммутативна и состоит из шести элементов, значит, она изоморфна S_3 . А тогда и Aut S_3 изоморфна S_3 .

1.3.2 Семинар

Задача 0.3.11. Доказать, что все группы 2-го порядка изоморфны между собой.

Доказательство. $G = \{e, g\}$. Тогда ee = e, eg = ge = g. Если $g \cdot g = g = ge$, то g = e. Противоречие. Значит, $g^2 = e$. Следовательно, существует только одна группа, содержащая 2 элемента.

Задача 0.3.12. Доказать, что все группы 3-го порядка изоморфны между собой.

Доказательство. $G = \{e, g, h\}$. Нужно задать таблицу умножения gh, hg, gg, hh. Если gh = g, то h = e – противоречие. Аналогично доказываем, что $gh \neq h$. Значит, gh = e, а тогда и hg = e. Если $gg = g^2 = g$, то g = e – противоречие; если $g^2 = e = gh$, то g = h противоречие. Значит $g^2 = h$ и точно так же $h^2 = g$. Следовательно, существует только одна группа, состоящая из трех элементов.

Задача 0.3.13. Доказать, что все циклические группы n-го порядка изоморфны.

Доказательство. Пусть
$$G = \langle a \rangle_n, H = \langle b \rangle_n$$
 и $f(a = b - \text{изоморфизм.}$ Действительно, $f(a^k) = f(aa \cdot \ldots \cdot a) = f(a) \cdot \ldots \cdot f(a) = b \cdot \ldots \cdot b = b^k$. $f(g^l g^m) = l + m$ и $f(g^l g^m) = f(g^{l+m}) = l + m$.

Задача 0.3.14. Доказать, что все группы простого порядка — циклические.

Доказательство. Если элемент |g|=p – простое число. Тогда если, m – произвольное целое число, то либо $g^m=e\ (m\ \text{кратно}\ p)$, либо элемент $|g^m|=p$. Действительно, $(g^m)^p=g^{mp}=(g^p)^m=e^m=e$. Поэтому $|g^m|$ должен быть делителем p, но, p – простое, то либо $|g^m|=p$ либо m:p. Теперь вспомним, что порядок элемента равен порядку порожденной им циклической подгруппы.

 ${f C}_n$ — группа комплексных корней n-й степени из 1.

 D_n — группа самосовмещений правильного n-угольника, включающая как вращения, так и осевые симметрии.

Определение 0.3.11. Группа $\mathbb{Z}_n = (\mathbb{Z}_n, +) = \{0, 1, \dots, n-1\}$ называется группой вычетов по модулю n.

Задача 0.3.15. Доказать, что все группы простого порядка — изоморфны между собой.

Доказательство. Следует из двух предыдущих задач.

Задача 0.3.16. Найти все (с точностью до изоморфизма) группы 4-го порядка.

Доказательство. Группа вращений квадрата $Rot(\square)=\{e,r_1,r_2,r_3\},$ где $e=R_{0^0},\,r_1=R_{90^0},\,r_2=R_{180^0},\,r_3=R_{270^0}.$

Таблица Кэли для $Rot(\square)$:

	e	r_1	r_2	r_3
e	e	r_1	r_2	r_3
r_1	r_1	r_2	r_3	e
r_2	r_2	r_3	e	r_1
r_3	r_3	e	r_1	r_2

Группа симметрий (самосовмещений) ромба $Sym(\lozenge)=\{e,r,s_1,s_2\},$ где $e=R_{0^0},\,r=R_{180^0},\,s_1,s_2$ - симметрии относительно диагоналей ромба.

Таблица Кэли для $Sym(\lozenge)$:

	e	r	s_1	s_2
e	e	r	s_1	s_2
r	r	e	s_2	s_1
s_1	s_1	s_2	e	r
s_2	s_2	s_1	r	e

Отсюда видно, что $Rot(\Box)\ncong Sym(\Diamond)$, т.к. в первой группе есть элемент 4-го порядка, во второй — нет элемента, у которого порядок больше 2.

Задача 0.3.17. Привести пример неизоморфных групп 6-го порядка.

Доказательство. Например, $D_3 \ncong {\bf C}_6$, т.к. ${\bf C}_6$ – коммутативна, а D_3 – нет.

Задача 0.3.18. Доказать, что группы $(\mathbb{Z},+)$ и $(n\mathbb{Z},+)$ изоморфны. Доказательство. Изоморфизм $f(k)=nk \quad \forall k\in\mathbb{Z}$.

Задача 0.3.19. Доказать, что $(\mathbb{Z}_4, +)$ изоморфна (\mathbb{Z}_5^*, \cdot) .

Доказательство. Выпишем изоморфизм поэлементно:
$$f(0)=2^0=1, f(1)=2^1=2, f(2)=2^2=4, f(3)=2^3=3 \pmod 5$$
 .

Определение 0.3.12. Группой движений Клейна называется группа самосовмещений ромба. Она обозначается V_4 .

Задача 0.3.20. Привести пример плоских геометрических фигур, группы движений которых изоморфны:

- 1. \mathbb{Z}_2 есть группа симметрий фигур: отрезок (тождественное отображение и симметрия относительно центра); две точки (на прямой); равнобедренный, но не равносторонний треугольник (на плоскости);
- $2. \mathbb{Z}_3 \cong A_3$
- $3. S_3 \cong D_3$

1 Факторизация и изоморфизмы

1.1 Отношение эквивалентности, факторизация

2.1.1 Лекция

Определение 1.1.1. Мы говорим, что задано отношение на множестве M, если задано подмножество $T \subseteq M \times M = \{(m_1, m_2)\}.$

Определение 1.1.2. Отношением эквивалентности (в этом случае, вместо $(x,y) \in T$ пишут $x \sim y$), называется такое отношение, которое обладает следующими свойствами:

- 1) Рефлексивность: $x \sim x$.
- 2) Симметричность: $x \sim y \Rightarrow y \sim x$.
- 3) Транзитивность: если $x \sim y$ и $y \sim z$, то $x \sim z$.

Обозначим $T_x = \{y : x \sim y\}$ – класс элементов, эквивалентных x.

Предложение 1.1.1. Пусть T — отношение эквивалентности на множестве M. Тогда,

- 1. $\forall x \in M \Rightarrow x \in T_x$
- $2. \bigcup_{x \in G} T_x = M$
- 3. Если $T_x \cap T_y \neq \emptyset$, то $T_x = T_y$.

Доказательство. Первое утверждение следует из рефлексивности, второе утверждение следует из первого. Докажем 3).

Пусть $z \in T_x \cap T_y \Rightarrow x \sim z$ и $y \sim z$ (а тогда $z \sim y$). Итак, $x \sim z \sim y$, поэтому $x \sim y$, а если $y \sim y_1$, то $x \sim y_1$. Следовательно, $T_y \subseteq T_x$. Аналогично доказываем, что $T_x \subseteq T_y$. В итоге, $T_x = T_y$.

Таким образом, мы показали, что любое отношение эквивалентности разбивает множество на непересекающиеся классы эквивалентности.

Примеры. Рассмотрим несколько отношений и выясним, являются ли они отношениями эквивалентности.

- 1. $M = \mathbb{R}, T = \{(x, y) : x < y\}$ не является (выполнена только транзитивность);
- 2. $M = \mathbb{C}, T = \{(z_1, z_2) : z_1 \text{ и } z_2 \text{ лежат на одном луче, выходящем из нуля} выполнено 1) и 2), а 3) не выполнено, так как <math>(x, 0) \in T, (0, y) \in T \Rightarrow (x, y) \in T;$
- 3. $M = \mathbb{C}^*, T = \{(z_1, z_2) : z_1 \text{ и } z_2 \text{ лежат на одном луче, выходящем из нуля} является отношением эквивалентности;$
- 4. $M = M_{2\times 2}; \ T = \{(x,y): xy = yx\}$ выполнено 1,2, не выполено 3;
- 5. $M = M_{2\times 2}$; $T = \{(x,y): \exists z \in M, \det z \neq 0 : x = z^{-1}yz \text{отношение эквивалентности};$
- 6. M любое непустое множество; $T = \{(x,x)\}$ отношение эквивалентности;
- 7. M любое непустое множество; $T = M \times M$ отношение эквивалентности.

Задача 1.1.2. На группе G с фиксированной подгруппой H задано отношение $T=\{(x,y):x^{-1}y\in H\}$. Доказать, что T является отношением эквивалентности.

Доказательство. 1) $x^{-1}x = e \in H \Rightarrow (x, x) \in T$

- 2) Пусть $(x,y) \in T$, то есть $x^{-1}y \in H \Rightarrow (x^{-1}y)^{-1} = y^{-1}x \in H \Rightarrow (y,x) \in T$.
- 3) Если $x^{-1}y \in H$, и $y^{-1}z \in H$, то $(x^{-1}y)(y^{-1}z) = x^{-1}(yy^{-1})z = x^{-1}z \in H$.

В дальнейшем для нас это отношение эквивалентности будет основным. Относительно него $T_x = \{y : x \sim y\} = \{y \mid x^{-1} \cdot y \in H\}$. Группа G оказывается разбитой на непересекающиеся классы эквивалентности. Так как $x \sim y \Leftrightarrow x^{-1}y \in H \Leftrightarrow \exists h \in H : x^{-1}y = h \Leftrightarrow y = xh \Rightarrow$ класс эвивалентности T_x — это $xH = \{xh \mid h \in H\}$. Далее, если $h_1 \neq h_2 \Rightarrow xh_1 \neq xh_2$. Отсюда делаем вывод, что если $|H| < \infty$, то во всех классах эквивалентности одинаковое

количество элементов, совпадающее с порядком подгруппы: |xH| = |H|.

Определение 1.1.3. $xH = \{xh \mid h \in H\}$ будем называть левым смежным классом элемента x по подгруппе H, а $Hx = \{hx \mid h \in H\}$ — правым смежный классом элемента x по подгруппе H. Правые смежные классы возникают как классы эквивалентности, если задавать эквивалентность по формуле $yx^{-1} \in H$.

Теорема 1.1.3. (Теорема Лагранжа) Порядок подгруппы делит порядок конечной группы.

Доказательство. Утверждение непосредственно следует из доказанного равенства |xH| = |H|.

Задача 1.1.4. Дано: $H < G; \ x, \ y \in G$. Доказать, что $x^{-1}y \in H \Leftrightarrow \exists g \in G: \ x \in gH, y \in gH$.

Доказательство. Пусть $x^{-1}y = h \in H \Rightarrow y = xh$, то есть $y \in xH$. Кроме того, очевидно, что $x \in xH$, так как x = xe. Обратно. Пусть $x = gh_1, y = gh_2$. Следовательно, $x^{-1}y = (gh_1)^{-1}gh_2 = h_1^{-1}g^{-1}gh_2 = h_1^{-1}h_2 \in H$.

Поставим задачу задать структуру группы на множестве левых смежных классов. Естественно, вводимая групповая операция должна быть связана с операцией в исходной группе. Единственным разумным способом добиться этого представляется задание операции по формуле (xH)(yH) = (xy)H. Возникает вопрос: если $xH = x_1H$ и $yH = y_1H$, будет ли смежный класс (xy)H совпадать с $(x_1y_1)H$? Оказывается, в общем случае гарантировать совпадение нельзя, хотя, скажем, для коммутативной группы этот факт очевиден.

Пример 1.1.5.
$$G = S_3 = \{e, (12), (13), (23), (123), (132)\};$$

 $H = <(12) >= \{e, (12)\};$
 $eH = (12)H; (123)H = (13)H = \{(13), (123)\};$
 $e(123)H = (123)H \neq (12)(13)H = \{(132), (23)\}$

Итак, у нас есть группа G и ее подгруппа H. Мы умеем строить левые смежные классы, а также правые смежные классы. Вообще

говоря, эти классы не обязаны совпадать. Так, в только что разобранном примере $(13)H = \{(13), (123)\} \neq H(13) = \{(13), (132)\}$. Но если, например, группа коммутативна, то xH = Hx для любого $x \in G$. Но это не единственный случай их совпадения. А сейчас мы докажем, что их совпадение необходимо и достаточно для того, чтобы в фактормножестве, состоящем, скажем, из левых смежных классов, операция в группе G индуцировала групповую операцию.

Еще раз берем классы $xH = x_1H$ ($\Rightarrow x = x_1a; a \in H$), $yH = y_1H$ ($\Rightarrow y = y_1b; b \in H$), (xy)H и $(x_1y_1)H$. Тогда $xy = x_1ay_1b$, а для совпадения классов (xy)H и $(x_1y_1)H$ нужно, чтобы $xy = x_1y_1c;$ $c \in H$. Приравнивая правые части, получаем $x_1ay_1b = x_1y_1c;$ $ay_1 = y_1(cb^{-1}); \ y_1^{-1}ay_1 = cb^{-1}$. Меняя x_1 в равенстве $x = x_1a$, мы можем получить любой $a \in H$, поэтому равенство $y_1^{-1}ay_1 = cb^{-1}$ равносильно $y_1^{-1}Hy_1 \subseteq H$. Далее, обратим внимание на то, что y_1 может быть любым элементом группы G. Поэтому лучше переписать это включение в виде

$$g^{-1}Hg \subseteq H; g \in G.$$

Умножая его слева на g, а справа на g^{-1} , получаем $H \subseteq gHg^{-1} = (g^{-1})^{-1}Hg^{-1} \subseteq H$. Последнее включение следует из $g^{-1}Hg \subseteq H$, если заменить в нем g на g^{-1} .

Следовательно, включение равносильно равенству

 $g^{-1}Hg = H$; $g \in G$, ну а оно равносильно равенству

$$Hg = gH; g \in G,$$

что и означает совпадение левых и правых смежных классов.

Определение 1.1.4. Подгруппа H группы G называется нормальной подгруппой (будем записывать это в виде $H \lhd G$), если выполнено любое из равносильных условий:

- $g^{-1}Hg \subseteq H \ \forall g \in G$
- $q^{-1}Hq = H \ \forall q \in G$
- $Hg = gH \ \forall g \in G$

2.1.2 Семинар

Задача 1.1.6. Порядок элемента делит порядок группы.

Доказательство. Любой элемент порождает циклическую подгруппу, чей порядок равен порядку этого элемента. По теореме Лагранжа порядок подгруппы делит порядок группы.

Задача 1.1.7. $D_3 \cong S_3$

Доказательство. D_3 — группа самосовмещений правильного треугольника. Занумеруем вершины треугольника цифрами 1,2,3. Сопоставим каждому элементу $g \in D_3$ подстановку $\phi(g) = \sigma_g \in S_3$, которая задается перестановкой соответствующих вершин треугольника.

Задача 1.1.8. Если группа коммутативна, то все ее подгруппы нормальны.

Доказательство. Пусть G – коммутативная группа, а H – ее подгруппа. Тогда $g^{-1}hg=g^{-1}gh=h$.

Задача 1.1.9. Пусть G — группа и $H_1 \triangleleft G, H_2 \triangleleft G, \ldots, H_k \triangleleft G$. Тогда $H_1 \cap H_2 \cap \ldots \cap H_k \triangleleft G$.

Доказательство. Пусть $h \in H_1 \cap H_2 \cap \ldots \cap H_k$. Тогда $h \in H_1, h \in H_2, \ldots, h \in H_k$. Поэтому если g – произвольный элемент группа G. то $ghg^{-1} \in H_1, ghg^{-1} \in H_2, \ldots, ghg^{-1} \in H_k$. А это значит, что $ghg^{-1} \in H_1 \cap H_2 \cap \ldots \cap H_k$.

Задача 1.1.10. Пусть $|G| = n, H < G : |H| = \frac{n}{2}$. Тогда $H \lhd G$.

Доказательство. Если $x \in H$, то xH = Hx = H. Если $x \notin H$, то $xH \neq H$, $Hx \neq H \Rightarrow xH \cap H = \emptyset$, $Hx \cap H = \emptyset \Rightarrow xH = G \setminus H$, $Hx = G \setminus H$.

Определение 1.1.5. Подгруппа H < G : $|H| = \frac{|G|}{k}$ называется подгруппой индекса k.

Задача 1.1.11. Найти все подгруппы S_3 и выяснить, какие из них нормальны.

Решение. $|S_3| = 3! = 6$ $H_1 = \{e\}$ $H_2 = \{e, (12)\}$ $H_3 = \{e, (13)\}$ $H_4 = \{e, (23)\}$

$$H_5=\{e,(123),(123)^2=(132)\}=\langle(123)\rangle_3$$

 $H_6=\{e,(12),(23),(13),(123),(132)\}=S_3$
Нормальны $H_1,\,H_5$ и $H_6.$

Задача 1.1.12. Пусть $f: G \longrightarrow F$ — гомоморфизм. Тогда $Ker \ f \lhd G$.

Доказательство. Нам уже известно, что Ker f < G. Пусть $h \in Ker f, g \in G$. Тогда $f(ghg^{-1}) = f(g)f(h)f(g^{-1}) = f(g)ef(g)^{-1} = e$. Значит, $ghg^{-1} \in Ker f$.

Задача 1.1.13. Привести пример такого гомоморфизма $\phi: G_1 \longrightarrow G_2$, что Im ϕ не является нормальной подгруппой G_2 .

Определение 1.1.6. Пусть A и B — два подмножества группы G. Их произведением назовем множество $AB = \{ab \mid a \in A, b \in B\}$.

Задача 1.1.14. Пусть G — группа, $H_1 \lhd G, H_2 < G$. Тогда $H_1 H_2 < G$.

Доказательство. Пусть $h_1, h_3 \in H_1, h_2, h_4 \in H_2, g \in G$. Из $H_1 \triangleleft G$ следует, что $gh_1g^{-1} \in H_1$. Тогда $\underbrace{(h_1h_2)}_{\in H_1H_2}\underbrace{(h_3h_4)}_{\in H_1H_2} = h_1h_2h_3h_4 =$

$$h_{1}\underbrace{(h_{2}h_{3}h_{2}^{-1})}_{\in H_{1}}\underbrace{h_{2}h_{4}}_{\in H_{2}}\in H_{1}H_{2};\ (h_{1}h_{2})^{-1}=h_{2}^{-1}h_{1}^{-1}=\underbrace{(h_{2}^{-1}h_{1}^{-1}h_{2})}_{\in H_{1}}h_{2}^{-1}\in H_{1}H_{2}.$$

Задача 1.1.15. Пусть G — группа и $H_1 \triangleleft G, H_2 \triangleleft G$. Тогда $H_1 H_2 \triangleleft G$.

Доказательство. Пусть $h_1 \in H_1, h_2 \in H_2, g \in G$. Тогда $gh_1g^{-1} \in H_1, gh_2g^{-1} \in H_2$. Следовательно, $g(h_1h_2)g^{-1} = \underbrace{(gh_1g^{-1})}_{\in H_1}\underbrace{(gh_2g^{-1})}_{\in H_2} \in H_1$

1.2 Теорема о гомоморфизме

2.2.1 Лекция

Определение 1.2.1. Факторизацией называется переход от множества к классам эквивалентности этого множества.

Мы видели, что операция $xH \cdot yH = xyH$, которую мы ввели на классах эквивалентности, корректна только в случае нормальной подгруппы H. Теперь, удостоверимся, что , если $H \triangleleft G$, то G/H,

то есть множество смежных классов, является группой (будем называть ее факторгруппой).

Ассоциативность операции следует из ассоциативности в самой группе G, а именно $((xH)\cdot (yH))\cdot (zH)=(xyH)\cdot (zH)=(xyZ)H=(xH)\cdot ((yZ)H)=(xH)\cdot ((yH)\cdot (zH)).$

Единичный элемент — это сама подгруппа H=eH, так как $(gH)\cdot (eH)=(eH)\cdot (gH)=gH$.

Обратным классом к классу gH будет $g^{-1}H$, так как $(gH)\cdot (g^{-1}H)=(gg^{-1})H=eH=H$ и $(g^{-1}H)\cdot (gH)=(g^{-1}g)H=eH=H$. Если $|G|<\infty$, то $|G/H|=\frac{|G|}{|H|}$.

Пример 1.2.1. $G/\{e\} = G$ и $G/G = \{e\};$

$$\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n = \{0, 1, \dots, n-1\}.$$

Теорема 1.2.2. (Теорема о гомоморфизме)

Пусть $f:G\longrightarrow F$ — гомоморфизм. Тогда имеется естественный изоморфизм $\phi\colon G/\operatorname{Ker} f\cong \operatorname{Im} f$, определенный формулой $\phi(g\operatorname{Ker} f):=f(g)$.

Доказательство. Построим гомоморфизм $\phi: G/\operatorname{Ker} f \longrightarrow \operatorname{Im} f$: $\phi(g \cdot \operatorname{Ker} f) = f(g)$, где $g \in G$.

Проверим корректность (то есть что на эквивалентных элементах получается одинаковый результат). Пусть $g \sim \tilde{g}$, то есть $\exists h \in \operatorname{Ker} f: g = \tilde{g}h$. Тогда $f(g) = f(\tilde{g}h) = f(\tilde{g})f(h) = f(\tilde{g})$. Следовательно, $\phi: G/\operatorname{Ker} f \longrightarrow \operatorname{Im} f$ определено корректно.

Пусть $x, y \in G$. Докажем, что $\phi(xy \operatorname{Ker} f) = \phi(x \operatorname{Ker} f)\phi(y \operatorname{Ker} f)$. Действительно,

$$\phi(xy \operatorname{Ker} f) = f(xy) = f(x)f(y) = \phi(x \operatorname{Ker} f)\phi(y \operatorname{Ker} f).$$

Значит ϕ — гомоморфизм.

С другой стороны, $\phi(x \operatorname{Ker} f) = f(x) = e \Leftrightarrow x \in \operatorname{Ker} f$. Следовательно, $\operatorname{Ker} \phi = \{\operatorname{Ker} f\} = \{e\}$. Значит ϕ — мономорфизм.

Очевидно, что Im $f=\operatorname{Im}\phi$, то есть ϕ — эпиморфизм. В итоге, ϕ — изоморфизм.

Следствие 1.2.3. Пусть $f:G\longrightarrow F$ — мономорфизм. Тогда $G\cong \operatorname{Im} f$.

Замечание. Для каждой нормальной подгруппы H группы G найдется гомоморфизм f этой группы (более того, эпиморфизм) такой, что $\ker f = H$. Это — гомоморфизм, сопоставляющий каждому элементу смежный класс, которому этот элемент принадлежит.

Задача 1.2.4.
$$S_n/A_n \cong U_2 (= \{-1, 1\} \cong C_2)$$

Доказательство. Так как $|S_n|=n!, |A_n|=\frac{n!}{2}\Rightarrow |S_n|=|A_n|\cdot 2\Rightarrow A_n$ индекса 2, поэтому $A_n\lhd S_n$. Построим гомоморфизм $f:S_n\longrightarrow U_2$: $f(\sigma)=\operatorname{sgn}\sigma$. Тогда $\operatorname{Im} f=U_2$ и $\operatorname{Ker} f=\{\sigma:\operatorname{sgn}\sigma=1\}=A_n$. По теореме о гомоморфизме, $S_n/\operatorname{Ker} f\cong \operatorname{Im} f$, то есть $S_n/A_n\cong U_2$. Кстати, нормальность A_n можно было не проверять: ядро гомоморфизма автоматически является нормальной подгруппой.

Предложение 1.2.5. $S_4/V_4 \cong S_3$

Доказательство. Сперва докажем, что $V_4 \triangleleft S_4$, непосредственно проверив совпадение левых и правых смежных классов:

$$V_4 = \{e, (12)(34), (13)(24), (14)(23)\};$$

$$(12)V_4 = (34)V_4 = (1324)V_4 = (1423)V_4 = V_4(12) = \dots$$

... = $\{(12), (34), (1324), (1423)\}$ (конечно, все эти вычисления делать не надо: найдя $(12)V_4$ и $V_4(12)$ и убедившись, что они совпадают, делаем вывод, что остальные элементы найденного смежного класса порождают его же);

$$(13)V_4 = \{(13), (1234), (24), (1432)\} = V_4(13)$$

$$(14)V_4 = \{(14), (1243), (1342), (23)\} = V_4(24)$$

$$(123)V_4 = \{(123), (134), (243), (142)\} = V_4(123)$$

$$(132)V_4 = \{(132), (234), (124), (143), \} = V_4(132)$$

Замечаем следующую закономерность: в каждом смежном классе ровно одна подстановка оставляет на месте цифру 4. Поэтому представляется совершенно естественным при построении изоморфизма $S_4/V_4 \simeq S_3$ поставить в соответствие каждому смежному классу именно эту подстановку (рассматривая ее как элемент S_3). Сохранение операции (то есть гомоморфность этого отображения) очевидна.

Теорема 1.2.6. (Теорема об изоморфизмах)

1. Пусть G – группа, K и H – ее нормальные подгруппы, причем

K – содержится в H. Тогда H/K – подгруппа в G/K и $(G/K)/(H/K)\cong G/H.$

[Кратко: Пусть $K \leq H \leq G$ и $K \trianglelefteq G$, $H \trianglelefteq G$. Тогда $H/K \trianglelefteq G/K$ и $(G/K)/(H/K) \cong G/H$.]

2. Пусть G – группа, K и H – ее подгруппы, причем K нормальна в G. Тогда HK – подгруппа в G, K – нормальная подгруппа в HK, $H\cap K$ – нормальная подгруппа в H и

$$HK/K \cong H/H \cap K$$
.

[Кратко: Пусть $H \leq G$ и $K \trianglelefteq G$. Тогда $HK \leq G$ и $K \trianglelefteq HK$, $H \cap K \trianglelefteq H$ и $HK/K \cong H/H \cap K$.]

Доказательство.

- 1. Первое утверждение вытекает из теоремы о гомоморфизме, если определить $\varphi \colon G/K \to G/H$ формулой $\varphi(gK) := gH$.
- 2. Для доказательства второго утверждения снова применяем теорему о гомоморфизме к гомоморфизму

$$\psi \colon HK/K \to H/H \cap K, \ \psi(hkK) := h(H \cap K),$$

и проверяем, что ψ на самом деле является изоморфизмом.

Отметим, что первое утверждение теоремы дает следующее соотношение между индексами подгрупп:

$$|G:H| = \frac{|G:K|}{|H:K|}.$$

Пример 1.2.7. В S_4 имеется нормальная подгруппа — четверная группа Клейна

 $V_4 := \{e, (12)(34), (13)(24), (14)(23)\} \cong \mathbb{Z}_2 \oplus \mathbb{Z}_2$. Обозначим через T подгруппу в S_4 , состоящую из подстановок оставляющих 4 на месте. Ясно, что $T \cong S_3$. Кроме того, $S_4 = TV_4$ и $T \cap V_4 = \{e\}$. Второе утверждение теоремы об изоморфизмах дает

$$S_4/V_4 \cong TV_4/V_4 \cong T/T \cap V_4 = T/\{e\} \cong T \cong S_3.$$

Ниже мы дадим описание этого гомоморфизма используя группу вращений трехмерного куба, которая, как будет показано, изоморфна S_4 .

Пример 1.2.8. Дуальная группа. У дуальной группы G^{o} те же элементы и та же единица, что и у самой группы G, но другое умножение, которое определяется фомулой: g*h := hg. Аксиомы легко проверяются.

Рассмотрим биекцию $\varphi \colon G \to G^{\mathrm{o}}, \varphi(g) := g^{-1}$. Имеем $\varphi(g_1g_2) = (g_1g_2)^{-1} = g_2^{-1}g_1^{-1} = g_1^{-1}*g_2^{-1} = \varphi(g_1)*\varphi(g_2)$, поэтому φ – изоморфизм. Обратный изоморфизм $\psi \colon G^{\mathrm{o}} \to G$ дается той же формулой $\psi(g) := g^{-1}$.

Для группы $G=GL(n,\mathbb{K})$, где \mathbb{K} – поле, биекция $G\to G^{\mathrm{o}}$, переводящая матрицу в транспонированную является изоморфизмом. Обратный изоморфизм определяется тем же правилом $A\mapsto A^T$, поскольку $(A^T)^T=A$ для любой матрицы $A\in GL(n,\mathbb{K})$.

Экспонента группы

Определение 1.2.2. Экспонентой группы (обозначается $\exp G$) называется наименьшее натуральное m такое, что $g^m = e \ \forall g \in G$. Если такое число не существует, то полагаем $\exp(G) = \infty$.

Если группа G конечна, то $g^{|G|}=e$ для любого $g\in G$, поэтому $\exp G\leq |G|$, т. е. экспонента конечной группы не превосходит ее порядка.

Пример 1.2.9.
$$\exp(\mathbb{Z}_k \oplus \mathbb{Z}_n) = \operatorname{HOK}(k, n);$$

 $\exp(\mathbb{Z}_{k_1} \oplus \cdots \oplus \mathbb{Z}_{k_s}) = \operatorname{HOK}(k_1, \ldots, k_s);$
 $\exp(\mathbb{Z}_p \oplus \mathbb{Z}_{p^2} \oplus \mathbb{Z}_{p^3} \oplus \cdots \oplus \mathbb{Z}_{p^s} \oplus \ldots) = \infty.$

2.2.2 Семинар

Введем несколько обозначений.

- $GL(n, \mathbb{C}) = \{A \in M_{n \times n}(\mathbb{C}) \mid \det A \neq 0\}$ множество невырожденных матриц размера n с элементами из поля \mathbb{C} ;
- $SL(n, \mathbb{C}) = \{A \in M_{n \times n}(\mathbb{C}) \mid \det A = 1\}$ множество матриц размера n с элементами из поля \mathbb{C} с определителем 1;
- $\bullet \ \mathbf{U} = \{ z \in \mathbb{C} \mid |z| = 1 \}$
- $\mathbf{H}_n = \{ z \in \mathbb{C} \mid \arg(z) = \frac{2\pi k}{n}, k \in \mathbb{Z} \}$

•
$$\mathbf{C}_n = \mathbf{U}_n = \{ z \in \mathbb{C} \mid z = \sqrt[n]{1} \}$$

Задача 1.2.10. $SL(n,\mathbb{C}) \triangleleft GL(n,\mathbb{C})$

Доказательство. Надо доказать, что $A \cdot B \cdot A^{-1} \in \mathrm{SL}(n,\mathbb{C}) \quad \forall A \in \mathbb{C}$ $\mathrm{GL}(n,\mathbb{C}), B \in \mathrm{SL}(n,\mathbb{C}).$

Воспользуемся свойствами определителя:

 $\det(ABA^{-1}) = \det A \det B \det A^{-1} = \det A \det B (\det A)^{-1} = \det B =$ 1.

Второй способ доказательства сводится к ссылке на то, что $\mathrm{SL}(n,\mathbb{C})$ является ядром гомоморфизма, который строится в следующей задаче.

Задача 1.2.11. $\operatorname{GL}(n,\mathbb{C})/\operatorname{SL}(n,\mathbb{C}) \cong \mathbb{C}^* = \mathbb{C} \setminus \{0\}$

Доказательство. Зададим $f: \mathrm{GL}(n,\mathbb{C}) \longrightarrow \mathbb{C}^*: f(A) = \det A$. Ясно, что f — гомоморфизм: $f(AB) = \det AB = \det A \det B =$ f(A) f(B).

Очевидно, что $\forall z \in \mathbb{C}^* \exists A \in \mathrm{GL}(n, \mathbb{C}) : \det A = z.$

K тому же Ker $f = \{A : \det A = 1\} = \mathrm{SL}(n, \mathbb{C}).$

По теореме о гомоморфизме $GL(n, \mathbb{C})/SL(n, \mathbb{C}) \cong \mathbb{C}^*$.

Задача 1.2.12. $\mathbb{R}^*/\mathbb{R}_{>0} \cong \mathbb{Z}_2$

Доказательство. Зададим $f: \mathbb{R}^* \longrightarrow \mathbb{Z}_2: f(x) = \operatorname{sgn}(x) =$ $\begin{cases} 1, & \text{если } x > 0; \\ -1, & \text{если } x < 0; \end{cases} \forall x \in \mathbb{R}^*.$

Так как $f(xy) = \operatorname{sgn}(xy) = \operatorname{sgn}(x)\operatorname{sgn}(y) = f(x)f(y) \quad \forall x, y \in \mathbb{R}^*,$ то f — гомоморфизм; $\operatorname{Ker} f = \mathbb{R}_{>0}$.

Задача 1.2.13. $\mathbb{C}^*/\mathbb{R}_{>0} \cong \mathbf{U}$

Доказательство. Зададим $f: \mathbb{C}^* \longrightarrow \mathbf{U}: \quad z \longmapsto \frac{z}{|z|}$. Пусть $z_1, z_2 \in \mathbb{C}^*$. Тогда $f(z_1 z_2) = \frac{z_1 z_2}{|z_1 z_2|} = \frac{z_1}{|z_1|} \frac{z_2}{|z_2|} = f(z_1) f(z_2) \implies f$ — гомоморфизм. Ker $f = \{\frac{z}{|z|} = 1\} = \mathbb{R}_{>0}$.

Задача 1.2.14. $\mathbb{C}^*/\mathbf{U} \cong \mathbb{R}_{>0}$

Доказательство. $f: \mathbb{C}^* \longrightarrow \mathbb{R}_{>0}: \quad f(z) = |z|.$

Задача 1.2.15. $\mathbf{U}/\mathbf{U}_n \cong \mathbf{U}$

Доказательство. $f: \mathbf{U} \longrightarrow \mathbf{U}: \quad z \longmapsto z^n$.

Задача 1.2.16. $\mathbb{R}/\mathbb{Z} \cong \mathbf{U}$

Доказательство. Зададим $f: \mathbb{R} \longrightarrow \mathbf{U}: \quad f(x) = e^{i2\pi x} = \cos 2\pi x + i \sin 2\pi x, \ x \in \mathbb{R}.$

В группе \mathbb{R} операция — сложение. Тогда $f(x+y) = e^{i2\pi(x+y)} = e^{i2\pi x + i2\pi y} = e^{i2\pi x}e^{i2\pi y} = f(x)f(y) \Rightarrow f$ — гомоморфизм. Найдем ядро: $e^{i2\pi x} = 1 \Leftrightarrow x \in \mathbb{Z}$. То есть $\ker f = \mathbb{Z}$.

Задача 1.2.17. $\mathbb{C}^*/\mathbf{U}_n \cong \mathbb{C}^*$

Доказательство. $f: \mathbb{C}^* \longrightarrow \mathbb{C}^*: z \longmapsto z^n$.

Задача 1.2.18. $\mathbb{C}^*/\mathbf{H}_n \cong \mathbf{U}$

Доказательство. $f: \mathbb{C}^* \longrightarrow \mathbf{U}: \quad z \longmapsto (\frac{z}{|z|})^n$.

Задача 1.2.19. $\mathbf{H}_n/\mathbb{R}_{>0} \cong \mathbf{U}_n$

Доказательство. $f: \mathbf{H}_n \longrightarrow \mathbf{U}_n: \quad f(z) = \frac{z}{|z|}.$

Задача 1.2.20. $\mathbf{H}_n/\mathbf{U}_n \cong \mathbb{R}_{>0}$

Доказательство. $f: \mathbf{H}_n \longrightarrow \mathbb{R}_{>0}: \quad z \longmapsto |z| \in \mathbb{R}_{>0}.$

Задача 1.2.21. $\mathrm{GL}(n,\mathbb{R})/\{X\in\mathrm{GL}(n,\mathbb{R})\mid\det X>0\}\cong\mathbf{U}_2$

Доказательство. $f: \mathrm{GL}(n,\mathbb{C}) \longrightarrow \mathbf{U}_2: X \longmapsto \mathrm{sgn}(\det X).$

1.3 Действие группы на множестве

Пусть X — множество. Множество S(X) биекций X на себя превращается в группу если в качестве умножения взять операцию композиции отображений. Единицей группы служит тождественное отображение $\mathrm{id}\colon X\to X$.

Если множества X и Y эквивалентны (имеют одинаковую мощность) и $\phi\colon X\to Y$ – биективное отображение, то $\Phi\colon S(X)\to S(Y)$ заданное формулой

$$\Phi(f) := \phi \circ f \circ \phi^{-1}, \ f \in S(X),$$

является изоморфизмом групп. Действительно, ясно, что $\Phi(f) \in S(X)$ и что Φ – биекция, кроме того,

$$\Phi(f\circ g):=\phi\circ (f\circ g)\circ\phi^{-1}=(\phi\circ f\circ\phi^{-1})\circ (\phi\circ g\circ\phi^{-1})=\Phi(f)\circ\Phi(g),\ \ f,g\in S(X),$$
 так что $\Phi\colon S(X)\to S(Y)$ – изоморфизм.

В частности, если |X| = n, то $S(X) \cong S_n$.

1.3.1 Левые и правые действия

Определение 1.3.1. Левое действие группы G на множестве X – это гомоморфизм $G \to S(X)$. Правое действие – гомоморфизм $G \to S(X)^{\rm o}$ в дуальную группу. Обычно рассматривают левые действия, которые называют просто действиями.

Напомним, что у дуальной группы G^{o} те же элементы и та же единица, что и у самой группы G, но другое умножение, которое определяется фомулой: g*h:=hg, а отображение $g\mapsto g^{-1}$ дает изоморфизмы $G\to G^{o}$ и $G^{o}\to G$.

Если $\alpha \colon G \to S(X)$ – действие (т. е. левое действие), то $\alpha(g)x$ обычно обозначают через $g \cdot x$ или еще проще gx, где $g \in G$ и $x \in X$. Поскольку α – гомоморфизм, имеем $\alpha(e)x = x$ и $\alpha(g_1g_2)x = (\alpha(g_1) \circ \alpha(g_2))(x) = \alpha(g_1)(\alpha(g_2)x)$, что в упрощенных обозначениях приобретает вид:

- 1. ex = x,
- 2. $(g_1g_2)x = g_1(g_2x)$.

Поэтому можно дать эквивалентное определение: действие (т. е. левое действие) G на X – это отображение $G \times X \to X$, $(g,x) \mapsto gx$, удовлетворющее условиям 1 и 2.

Аналогичные формулы для правого действия таковы:

- 1. xe = x,
- 2. $x(g_1g_2) = (xg_1)g_2$.

Имея правое действие на множестве можно определить левое действие и наоборот. Например, имея левое действие мы можем определить правое действие формулой: $xg:=g^{-1}x$. Аналогично, по правому действию можно ввести левое: $gx:=xg^{-1}$.

Отметим, что действие группы S(X) на X состоит в нахождении образа элемента: $S(X) \times X \to X, (f,x) \mapsto f(x)$.

Определение 1.3.2. Действие называется тривиальным, если gx = x для любых $g \in G$ и $x \in X$.

Иными словами, действие $\alpha\colon G\to S(X)$ тривиально, если $\operatorname{Ker} \alpha=G.$

Определение 1.3.3. Действие называется эффективным (или точным), если из того, что gx=x для любого $x\in X$ следует, что g=e.

Иными словами, действие G на X эффективно (точно), если $\alpha\colon G\to S(X)$ – мономорфизм.

Примеры 1.3.1. 1. Пусть X и Y-G-множества с действиями, обозначаемыми как $(g,x)\mapsto gx,\,(g,y)\mapsto gy,$ где $g\in G,\,x\in X,\,y\in Y$. Обозначим через $M(X,Y)=Y^X$ множество отображений из X в Y. Тогда M(X,Y) становится G-множеством, если определить действие $(g,f)\mapsto g\cdot f$ формулой $(g\cdot f)(x):=gf(g^{-1}x)$.

В частности, если считать, что G действует тривиально на \mathbb{R} и \mathbb{C} , то множества вещественно- и комплексно-значных функций $M(X,\mathbb{R})$ и $M(X,\mathbb{C})$ превращаются в G-множества с действием $(g,f)\mapsto gf$, где $(gf)(x):=f(g^{-1}x)$. Эта же формула задает действие на $M(X,Y)=Y^X$, если на Y считать действие группы G тривиальным.

2. Определим отображения $L_g, R_g \colon G \to G$ – левый и правый сдвиги на элемент $g \in G$ формулами $L_g(h) := gh, R_g(h) := hg, h \in G$. Эти отображения – биекции, поэтому $L_g, R_g \in S(G)$. Отметим также, что левые и правые сдвиги коммутируют между собой, т. е. $L_{g_1} \circ R_{g_2} = R_{g_2} \circ L_{g_1}$ для любых $g_1, g_2 \in G$.

Имеем

$$L_{g_1g_2}(h) = (g_1g_2)h = g_1(g_2h) = g_1L_{g_2}(h) = L_{g_1}(L_{g_2}(h)) = (L_{g_1} \circ L_{g_2})(h).$$

Следовательно, $L_{g_1g_2}=L_{g_1}\circ L_{g_2}$, т. е. отображение $L:G\to S(G)$, определенное формулой $L(g):=L_g,\ g\in G$, является гомоморфизмом. Кроме того, $L_g=\operatorname{id}$ только если g=e, поэтому L – мономорфизм или – точное действие. По теореме о гомоморфизме группа G изоморфна образу мономорфизма L, т. е. ее можно считать подгруппой группы S(G). Это утверждение называется теоремой Кэли. Если G конечна и |G|=n, то ее можно считать подгруппой симметрической группы S_n .

Аналогично, поскольку $R_{g_1g_2}=R_{g_2}\circ R_{g_1}$, возникает точное правое действие $R\colon G\to S(G)^{\mathrm{o}},\ R(g):=R_q.$

3. Поскольку $g\mapsto R_g$ – правое действие, $g\mapsto R_{g^{-1}}$ – действие (т. е. левое действие). В силу того, что левые и правые сдвиги коммутируют, получаем, что $g\mapsto i_g:=L_g\circ R_{g^{-1}}$ – тоже действие. Это действие назывыется действием сопряжениями. Элементы $h\in G$ и $i_g(h)=(L_g\circ R_{g^{-1}})(h)=ghg^{-1}$ группы G называются сопряжеными.

Это действие продолжается до действия на множестве подгрупп группы G. Подгруппа H при действии элемента $g \in G$ переходит в

$$i_q(H) = gHg^{-1} = \{ghg^{-1} \mid h \in H\}.$$

Нетрудно видеть, что gHg^{-1} – подгруппа группы G. Подгруппы H и gHg^{-1} называются сопряжеными. Ясно также, что подгруппа H < G нормальна в том и только в том случае, когда $i_g(H) = H$ для дюбого $g \in G$.

Нетрудно показать также, что биекция $i_g \colon G \to G$ для любого $g \in G$ на самом деле является автоморфизмом (обратное отображение – это автоморфизм $i_{g^{-1}}$). Такие автоморфизмы называются внутренними. Множество Int G всех внутренних автоморфизмов является группой, поскольку $i_e = \mathrm{id}_G, i_g \circ i_h = i_{gh}$ и $(i_g)^{-1} = i_{g^{-1}}$. Таким образом, Int G – подгруппа группы всех автоморфизмов Aut G. Эта подгруппа на самом деле является нормальной подгруппой, т.е. Int $G \unlhd$ Aut G. Действительно, пусть $f \in$ Aut G, тогда

$$f \circ i_g \circ f^{-1} = i_{f(g)},$$

поскольку для любого $x \in G$ имеем:

$$(f \circ i_g \circ f^{-1})(x) = f(i_g(f^{-1}(x))) = f(gf^{-1}(x)g^{-1}) =$$

$$= f(g)f(f^{-1}(x))f(g^{-1}) = f(g)xf(g)^{-1} = i_{f(g)}(x).$$

Факторгруппу Int G/Aut G называют группой внешних автоморфизмов.

Подробнее действие сопряжениями будет изучаться ниже.

1.3.2 Орбиты и стационарные подгруппы

Определение 1.3.4. Множество $Gx = \{gx \mid g \in G\}$ называется орбитой точки $x \in X$. Если орбита – конечное множество, то число ее элементов |Gx| называют длиной орбиты Gx.

Орбиты либо не пересекаются, либо полностью совпадают.

Определение 1.3.5. Множество орбит обозначается X/G и называется фактормножеством множества X по действию группы G.

Определение 1.3.6. Действие называется транзитивным, если имеется ровно одна орбита, т. е. |X/G|=1. Иными словами $X=Gx \ \forall x \in X$.

Определение 1.3.7. Пусть X и Y-G-множества. Отображение $f\colon X\to Y$ называется эквивариантным (или G-отображением), если $f(gx)=gf(x)\ \forall\,x\in X,\ \forall\,g\in G.$

Если G-отображение является биекцией, то легко видеть, что обратное отображение также является эквивариантной биекцией. В этом случае мы будем называть G-множества X и Y G-эквивалентными (G-изоморфными), а само отображение f G-эквивалентностью или G-изоморфизмом. Ясно, что в этом случае множества эквивалентны (имеют одинаковую мощность), а само понятие эквивалентности множеств для единичной группы $G = \{e\}$ совпадает с понятием G-эквивалентности.

Определение 1.3.8. Стабилизатором точки x (стационарной подгруппой точки) называется подгруппа $G_x = \operatorname{St}_x := \{g \in G \mid gx = x\}.$

Легко видеть, что G_x действительно является подгруппой.

Предложение 1.3.2. Отображение $f\colon Gx\to G/G_x$ переводящее gx в gG_x корректно определено и является G-эквивалентностью.

Предложение 1.3.3. Если группа G конечна, то $|Gx| = |G:G_x| = \frac{|G|}{|G_x|}$.

Предложение 1.3.4. Имеем $G_{gx} = gG_xg^{-1} = i_g(G_x)$. Таким образом, стабилизаторы точек из одной и той же орбиты являются сопряженными подгруппами.

1.3.3 Действия сопряжением

Положим $i_g(h):=ghg^{-1}=(L_g\circ R_{g^{-1}})(h)$, где $h,g\in G$. Отображение $i_g\colon G\to G$ является биекцией как композиция биекций $L_g\circ R_{g^{-1}}$. Это легко проверить и непосредственно – поскольку $h=i_g(g^{-1}hg)$, отображение i_g сюръективно, а из равенства $i_g(h)=i_g(h')$ следует, что h=h', т. е. i_g инъективно.

Далее

$$i_g(h_1h_2) := gh_1h_2g^{-1} = gh_1g^{-1} \cdot gh_2g^{-1} = i_g(h_1)i_g(h_2).$$

Следовательно, i_g является автоморфизмом, т. е. изоморфизмом группы G на себя. Автоморфизмы вида i_g называются внутренними. Определим отображение $i\colon G\to \operatorname{Aut}(G)$ в группу автоморфизмов $\operatorname{Aut}(G)$ группы G формулой $i(g):=i_g$. Поскольку

$$i_{gg'}(h) = gg'h(gg')^{-1} = gg'hg'^{-1}g^{-1} = gi_{g'}(h)g^{-1} = i_g(i_{g'}(h)) = (i_g \circ i_{g'})(h),$$

 $i: G \to \operatorname{Aut}(G)$ — гомоморфизм. Ядро $\operatorname{Ker} i$ состоит из элементов перестановочных со всеми элементами группы. Следовательно, $\operatorname{Ker} i$ совпадает с центром группы $Z(G) := \{z \in G \mid zg = gz \ \forall g \in G\}.$

Положим $\operatorname{Int} G := \{i_g \mid g \in G\}$. Поскольку $\operatorname{Inn} G = \operatorname{Im} i = i(G)$, а образ гомоморфизма является подгруппой, $\operatorname{Int} G$ – подгруппа в $\operatorname{Aut}(G)$. Она называется подгруппой внутренних автоморфизмов. Покажем, что $\operatorname{Int} G$ – нормальная подгруппа в $\operatorname{Aut}(G)$.

Пусть $\varphi \colon G \to G$ – автоморфизм. Покажем, что $\varphi \circ i_g \circ \varphi^{-1}$ – внутренний автоморфизм. Имеем

$$(\varphi \circ i_g \circ \varphi^{-1})(h) = \varphi(i_g(\varphi^{-1}(h))) = \varphi(g(\varphi^{-1}(h))g^{-1}) = \varphi(g)\varphi(\varphi^{-1}(h))\varphi(g^{-1}) = \varphi(g)h\varphi(g)^{-1} = i_{\varphi(g)}(h),$$

T. e. $\varphi \circ i_q \circ \varphi^{-1} = i_{\varphi(q)} \in \operatorname{Inn} G$.

Факторгруппа $\operatorname{Aut}(G)/\operatorname{Int} G$ называется группой внешних автоморфизмо

Поскольку $\mathrm{Aut}(G)\subset S(G)$, можно рассматривать i как гомоморфизм $G\to S(G)$, т. е. как действие G на себе, действие сопряжением. Орбиты этого действия называются классами сопряженных элементов. Орбиту элемента $x\in G$ обозначим как $C(x):=\{gxg^{-1}\mid g\in G\}$.

Если H < G — подгруппа, то gHg^{-1} — подгруппа в G. Эти подгруппы называются сопряженными. Таким образом, G действует сопряжениями на множестве подгрупп. Орбиты — классы сопряженных подгрупп. Орбитой подгруппы H является множество подгрупп $\{gHg^{-1} \mid g \in G\}$.

Определение 1.3.9. $Z(x) := \{g \in G \mid gx = xg\} = \{g \in G \mid gxg^{-1} = x\}$ называется централизатором элемента $x \in G$. Легко видеть, что централизаторы элементов являются подгруппами в G.

Определение 1.3.10. Нормализатором подгруппы H в G называется

$$N(H) := \{g \in G \mid gH = Hg\} = \{g \in G \mid gHg^{-1} = H\}.$$

Нормализатор — подгруппа в G и H — нормальная подгруппа в N(H).

Теорема 1.3.5. Мощность множества элементов группы G, сопряженных с элементом $x \in G$ равна |G:Z(x)| — индексу централизатора элемента x. Мощность множества подгрупп группы G, сопряженных с подгруппой H группы G, равна |G:N(H)| — индексу нормализатора подгруппы H в G.

Доказательство. При действии сопряжением орбитой точки $x \in G$ является класс сопряженных элементов $C(x) = \{gxg^{-1} \mid g \in G\}$. Покольку стабилизатором точки x является как раз централизатор Z(x) элемента x, мощность множества элементов группы G, сопряженных с $x \in G$ равна |G:Z(x)| = |G|/|Z(x)|.

Аналогично, G действует сопряжениями на множестве подгрупп группы G, причем орбитой подгруппы H является множество подгрупп вида $\{gHg^{-1} \mid g \in G\}$ – класс подгрупп сопряженных с H. Стабилизатором точки H является нормализатор N(H). Поэтому мощность множества подгрупп группы G, сопряженных с подгруппой H, равна индексу нормализатора |G:N(H)| = |G|/|N(H)|.