Training a neural network

Training a neural network is easy with a simple for loop. Typically however we would use the optim optimizer, which implements some cool functionalities, like Nesterov momentum,

adagrad and adam.

We will demonstrate using a for-loop first, to show the low-level view of what happens in training. StochasticGradient, a simple class

which does the job for you, is provided as standard. Finally, optim is a powerful module, that provides multiple optimization algorithms.

Example of manual training of a neural network

We show an example here on a classical XOR problem.

Neural Network

We create a simple neural network with one hidden layer.

```
require "nn"
mlp = nn.Sequential(); -- make a multi-layer perceptron
inputs = 2; outputs = 1; HUs = 20; -- parameters
mlp:add(nn.Linear(inputs, HUs))
mlp:add(nn.Tanh())
mlp:add(nn.Linear(HUs, outputs))
```

Loss function

We choose the Mean Squared Error criterion:

```
criterion = nn.MSECriterion()
```

Training

We create data on the fly and feed it to the neural network.

```
for i = 1,2500 do
 -- random sample
 in 2d
 local output= torch.Tensor(1);
 if input[1]*input[2] > 0 then -- calculate label for XOR
function
   output[1] = -1
 else
   output[1] = 1
 end
 -- feed it to the neural network and the criterion
 criterion:forward(mlp:forward(input), output)
 -- train over this example in 3 steps
 -- (1) zero the accumulation of the gradients
 mlp:zeroGradParameters()
 -- (2) accumulate gradients
 mlp:backward(input, criterion:backward(mlp.output, output))
 -- (3) update parameters with a 0.01 learning rate
 mlp:updateParameters(0.01)
end
```

Test the network

```
x = torch.Tensor(2)
x[1] = 0.5; x[2] = 0.5; print(mlp:forward(x))
x[1] = 0.5; x[2] = -0.5; print(mlp:forward(x))
x[1] = -0.5; x[2] = 0.5; print(mlp:forward(x))
x[1] = -0.5; x[2] = -0.5; print(mlp:forward(x))
```

You should see something like:

```
> x = torch.Tensor(2)
> x[1] = 0.5; x[2] = 0.5; print(mlp:forward(x))
-0.6140
[torch.Tensor of dimension 1]
```

```
> x[1] = 0.5; x[2] = -0.5; print(mlp:forward(x))

0.8878
[torch.Tensor of dimension 1]

> x[1] = -0.5; x[2] = 0.5; print(mlp:forward(x))

0.8548
[torch.Tensor of dimension 1]

> x[1] = -0.5; x[2] = -0.5; print(mlp:forward(x))

-0.5498
[torch.Tensor of dimension 1]
```

StochasticGradient

StochasticGradient is a high-level class for training neural networks, using a stochastic gradient algorithm. This class is serializable.

StochasticGradient(module, criterion)

Create a StochasticGradient class, using the given Module and Criterion. The class contains several parameters you might want to set after initialization.

train(dataset)

Train the module and criterion given in the constructor over dataset, using the internal parameters.

StochasticGradient expect as a dataset an object which implements the operator dataset[index] and implements the method dataset:size(). The size() methods returns the number of examples and dataset[i] has to return the i-th example.

An example has to be an object which implements the operator example[field], where field might take the value 1 (input features) or 2 (corresponding label which will be given to the criterion).

The input is usually a Tensor (except if you use special kind of gradient modules, like table layers). The label type depends of the criterion.

For example, the MSECriterion expects a Tensor, but the ClassNLLCriterion except a integer number (the class).

Such a dataset is easily constructed by using Lua tables, but it could any C object for example, as long as required operators/methods are implemented.

See an example.

Parameters

StochasticGradient has several field which have an impact on a call to train().

- learningRate: This is the learning rate used during training. The update of the parameters will be parameters = parameters learningRate * parameters_gradient. Default value is 0.01.
- learningRateDecay: The learning rate decay. If non-zero, the learning rate (note: the field learningRate will not change value) will be computed after each iteration (pass over the dataset) with: current_learning_rate =learningRate / (1 + iteration * learningRateDecay)
- maxIteration: The maximum number of iteration (passes over the dataset). Default is 25.
- shuffleIndices: Boolean which says if the examples will be randomly sampled or not. Default is true. If false, the examples will be taken in the order of the dataset.
- hookExample: A possible hook function which will be called (if non-nil) during training after each example forwarded and backwarded through the network. The function takes (self, example) as parameters. Default is nil.
- hookIteration: A possible hook function which will be called (if non-nil) during training after a complete pass over the dataset. The function takes (self, iteration, currentError) as parameters. Default is nil.

Example of training using StochasticGradient

We show an example here on a classical XOR problem.

Dataset

We first need to create a dataset, following the conventions described in StochasticGradient.

Neural Network

We create a simple neural network with one hidden layer.

```
require "nn"
mlp = nn.Sequential(); -- make a multi-layer perceptron
inputs = 2; outputs = 1; HUs = 20; -- parameters
mlp:add(nn.Linear(inputs, HUs))
mlp:add(nn.Tanh())
mlp:add(nn.Linear(HUs, outputs))
```

Training

We choose the Mean Squared Error criterion and train the dataset.

```
criterion = nn.MSECriterion()
trainer = nn.StochasticGradient(mlp, criterion)
trainer.learningRate = 0.01
trainer:train(dataset)
```

Test the network

```
x = torch.Tensor(2)
x[1] = 0.5; x[2] = 0.5; print(mlp:forward(x))
x[1] = 0.5; x[2] = -0.5; print(mlp:forward(x))
x[1] = -0.5; x[2] = 0.5; print(mlp:forward(x))
x[1] = -0.5; x[2] = -0.5; print(mlp:forward(x))
```

You should see something like:

```
> x = torch.Tensor(2)
> x[1] = 0.5; x[2] = 0.5; print(mlp:forward(x))
-0.3490
[torch.Tensor of dimension 1]
> x[1] = 0.5; x[2] = -0.5; print(mlp:forward(x))
1.0561
[torch.Tensor of dimension 1]
> x[1] = -0.5; x[2] = 0.5; print(mlp:forward(x))
0.8640
[torch.Tensor of dimension 1]
> x[1] = -0.5; x[2] = -0.5; print(mlp:forward(x))
-0.2941
[torch.Tensor of dimension 1]
```

Using optim to train a network

optim is a powerful module, that provides multiple optimization algorithms.