Math 207C Partial Differential Equations: Ch 6 Second-Order Eliptic Equations

Charlie Seager

April 11, 2024

Chapter 6.1 Definitions

Chapter 6.1.1 Elliptic equations

In this chapter we will mostly study the boundary-value problem http://users.uoa.gr/pjioan-nou/nonlin/Strogatz,

$$\{Lu = f \qquad \text{in U}$$

$$\{u = 0 \qquad \text{on } \partial U$$

where U is an open, bounded subset of R^n and $u: \overline{U} \to R$ is the unknown u = u(x). Here $f: U \to R$ is given and L denotes a second order partial differential operator having either the form

(2)
$$Lu = -\sum_{i,j=1}^{n} (a^{ij}(x)u_{x_i})_{x_j} + \sum_{i=1}^{n} b^i(x)u_{x_i} + c(x)u_{x_i}$$

or else

(3)
$$Lu = -\sum_{i,j=1}^{n} a^{ij} u_{x_i x_j} + \sum_{i=1}^{n} b^i(x) u_{x_i} + c(x) u,$$

for given coefficient functions a^{ij} , b^i , c(i, j = 1, ..., n).

We say that the PDE Lu = f is in divergence form if L is given by (2) and is in nondivergence form provided by (3). The requirement that u = 0 on ∂U in (1) is sometimes called Dirichlet's boundary condition.

Definition We say the partial differential operator L is (uniformly) elliptic if there exists a constant $\theta > 0$ such that

$$(4) \qquad \sum_{i,j=1}^{n} a^{ij}(x)\xi_i\xi_j \ge \theta|\xi|^2$$

for a.e. $x \in U$ and all $\xi \in \mathbb{R}^n$

Definitions (i) The bilinear form B[u,v] associated with the divergence form eliptic operator L defined by (2) is

(8)
$$B[u,v] := \int_{U} \sum_{i,j=1}^{n} a^{ij} u_{x_i}, v_{x_j} + \sum_{i=1}^{n} b^{i} u_{x_i} v + cuv dx$$

for $u, v \in H_0^1(U)$

(ii) We say that $u \in H^1_0(U)$ is a weak solution of the boundary value problem (1) if

$$B[u, v] = (f, v)$$

for all $v\in H^1_0(U)$ where (,) {the book just leaves the interval blank btw } denotes the inner product in $L^2(U)$

Definition We say $u \in H_0^1(U)$ is a weak solution of problem (10) provided

$$B[u,v] = \langle f,v \rangle$$

for all $v \in H_0^1(U)$ where $\langle f, v \rangle = \int_U f^0 v + \sum_{i=1}^n f^i v_{x_i} dx$ and \langle , \rangle is the pairing of $H^{-1}(U)$ and $H_0^1(U)$

Chapter 6.2 Existence of Weak Solutions

6.2.1 Lax-Milgram Theorem

We now introduce a fairly simple abstract principle from linear functional analysis, which will later in 6.2.2 provide in certain circumstances the existence and uniqueness of a weak solution to our boundary value problem.

Theorem 1 (Lax-Milgram Theorem) Assume that

$$B: HxH \to R$$

is a bilinear mapping, for which there exists constants $\alpha, \beta > 0$ such that

$$|B[u,v]| \le \alpha ||u|| ||v|| \qquad (u,v \in H)$$

and

$$\beta||u||^2 \le B[u, u] \qquad (u \in H)$$

Finally, let $f: H \to R$ be a bounded linear functional on H.

Then there exists a unique element $u \in H$ such that

(1)
$$B[u,v] = \langle f,v \rangle$$

for all $v \in H$

Theorem 2 (Energy estimates) There exist constants $\alpha, \beta > 0$ and $\gamma \geq 0$ such that

$$|B[u,v]| \le \alpha ||u||_{H_0^1(U)} ||v||_{H_0^1(U)}$$

and

$$\beta||u||_{H^1_0(U)}^2 \leq B[u,u] + \gamma||u||_{L^2(U)}^2$$

for all $u, v \in H_0^1(U)$

Theorem 3 (First Existence Theorem for weak solutions) There is a number $\gamma \geq 0$ such that for each

$$(7) \mu \ge \gamma$$

and each function

$$f \in L^2(U)$$

there exists a unique weak solution $u \in H_0^1(U)$ of the boundary-value problem

(8)
$$\begin{cases} Lu + \mu u = f & \text{in U} \\ u = 0 & \text{on } \partial U \end{cases}$$

Definitions (i) The operator L*, the formal adjoint of L, is

$$L * v := -\sum_{i,j=1}^{n} (a^{ij} v_{x_j x_i} - \sum_{i=1}^{n} b^1 v_{x_i} + (c - \sum_{i=1}^{n} b_{x_i}^i) v,$$

provided $b^i \in C^1(\bar{U}) (i = 1, ..., n)$

(ii) The adjoint bilinear form

$$B*: H_0^1(U)xH_0^1(U) \to R$$

is defined by

$$B * [v, u] := B[u, v]$$

for all $u, v \in H_0^1(U)$

(iii) We say that $v \in H_0^1(U)$ is a weak solution of the adjoint problem

provided

$$B * [v, u] = (f, u)$$

for all $u \in H_0^1(U)$

Theorem 4 (Second Existence Theorem for weak solutions)

- (i) Precisely one of the following statements holds either:
- {for each $f \in L^2(U)$ there exists a unique weak solution u of the (α) boundary-value problem

(10)
$$\{ \{ \text{Lu} = f \quad \text{in U} \} \}$$
(10)
$$\{ \{ \text{u} = 0 \quad \text{on } \partial U \} \}$$

or else

{ there exists a weak solution $u \neq 0$ of the homogeneous problem (11) { Lu = 0 in U (11) { u = 0 on ∂U (β)

(11) {
$$Lu = 0$$
 in U
(11) { $u = 0$ on ∂U

(ii) furthermore, should assertion (β) hold, the dimention of the subspace $N \subset H_0^1(U)$ of weak solutions of (11) is finite and equals the dimensions of the subspace $N* \subset H_0^1(U)$ of weak solutions of

(12)
$$\{ L^* v = 0 \quad \text{in U} \\ \{ v = 0 \quad \text{on } \partial U$$

Finally, the boundary-value problem (10) has a weak solution if and only if

$$(f,v)=0$$
 for all $v\in N*$

The dichotomy (α) , (β) is the Fredholm alternative.

Theorem 5 (Third Existence THeorem for weak solutions)

(i) There exists an at most countable set $\sum \subset R$ such that the boundary-value problem

$$\begin{array}{ll} \text{(24)} & \quad \{ \text{ Lu} = \lambda u + f & \text{ in U} \\ \text{(24)} & \quad \{ \text{ u} = 0 & \text{ on } \partial U \\ \end{array}$$

has a unique weak solution for each $f \in L^2(U)$ if and only if $\lambda \notin \Sigma$ (ii) If Σ is infinite, then $\Sigma = {\{\lambda_k\}_{k=1}^{\infty}}$, the values of a nondecreasing sequence with

$$\lambda_k \to +\infty$$

Definition We call \sum the (real) spectrum of the operator L.

Theorem 6 (Boundedness of the inverse) If $\lambda \notin \Sigma$, there exists a constant C such that

$$(29) ||u||_{L^2(U)} \le C||f||_{L^2(U)},$$

whenever $f \in L^2(U)$ and $u \in H_0^1(U)$ is the unique weak solution of

$$\{ \begin{array}{ll} \operatorname{Lu} = \lambda u + f & \text{ in U} \\ \{ \ \mathrm{u} = 0 & \text{ on } \partial U \end{array}$$

The constant C depends only on λ, U and the coefficients of L. This constant will blow up if λ approaches an eigenvalue.

Chapter 6.3 Regularity

Theorem 1 (Interior H^2 -regularity) Assume

$$a^{ij} \in C^1(U), b^i, c \in L^{\infty}(U)$$
 $(i, j = 1, ..., n)$

and

$$f \in L^2(U)$$

Suppose furthermore that $u \in H^1(U)$ is a weak solution of the elliptic PDE

$$Lu = f$$
 in U

Then

$$u \in H^2_{loc}(U);$$

and for each open subset $V \subset\subset U$ we have the estimate

$$||u||_{H^2(V)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)}).$$

the constant C depending only on V, U and the coefficients of L.

Theorem 2 (Higher Interior regularity) Let m be a nonnegative integer, and assume

$$a^{ij}.b^i, c \in C^{m+1}(U)$$
 $(i, j = 1, ..., n)$

and

$$f \in H^m(U)$$

Suppose $u \in H^1(U)$ is a weka solution of the elliptic PDE

$$Lu = f$$
 in U

Then

$$u \in H^{m+2}_{loc}(U)$$

and for each $V \subset\subset U$ we have the estimate

$$(28) ||u||_{H^{m+2}(V)} \le C(||f||_{H^m(U)} + ||u||_{L^2(U)})$$

the constanc C depending only on m, U, V and the coefficients of L.

Theorem 3 (Infinite differentiability in the interior) Assume

$$a^{ij}, b^i, c \in C^\infty(U) \qquad \quad (i,j=1,...,n)$$

and

$$f \in C^{\infty}(U)$$

Suppose $u \in H^1(U)$ is a weak solution of the elliptic PDE

$$Lu = f$$
 in U

Then

$$u\in C^\infty(U)$$

Theorem 4 (Boundary H^2 -regularity) Assume

$$a^{ij} \in C^1(\bar{U}), b^i, c \in L^{\infty}(U)$$
 $(i, j = 1, ..., n)$

and

$$f \in L^2(U)$$

Suppose that $u \in H^1_0(U)$ is a weak solution of the elliptic boundary-value problem

$$\begin{array}{ll} \text{(40)} & \quad \{ \text{ Lu} = \text{f} & \quad \text{in U} \\ \text{(40)} & \quad \{ \text{ u} = 0 & \quad \partial U \\ \end{array}$$

Assume finally

(41)
$$\partial U$$
 is C^2

Then

$$u \in H^2(U)$$

and we have the estimate

$$(42) ||u||_{H^2(U)} \le C(||f||_{L^2(U)} + ||u||_{L^2(U)})$$

the constant C depending only on U and the coefficients of L.

Theorem 5 (Higher boundary regularity) Let m be a nonnegative integer, and assume

(72)
$$a^{ij}, b^i, c \in C^{m+1}(\hat{U})$$
 $(i, j = 1, ..., n)$

and

$$(73) f \in H^m(U)$$

Suppose that $u \in H_0^1(U)$ is a weak solution of the boundary-value problem

(74)
$$\{ \text{ Lu = f} \quad \text{in U} \\ \{ \text{ u = 0} \quad \text{on } \partial U$$

Assume finally

(75)
$$\partial U$$
 is C^{m+2}

Then

$$(76) u \in H^{m+2}(U)$$

and we have the estimate

$$(77) ||u||_{H^{m+2}(U)} \le C(||f||_{H^m(U)} + ||u||_{L^2(U)})$$

the constant C depending only on m, U and the coefficients of L.

Theorem 6 (Infinite differentiability up to the boundary) Assume

$$a^{ij},b^i,c\in C^\infty(\bar U) \qquad \quad (i,j=1,...,n)$$

and

$$f \in C^{\infty}(\bar{U})$$

Suppose $u \in H_0^1(U)$ is a weak solution of the boundary-value problem

$$\{ Lu = f & \text{in U} \\ \{ u = 0 & \text{on } \partial U$$

Assume also that ∂U is C^{∞} . Then

$$u \in C^{\infty}(\bar{U})$$

Chapter 6.4 Maximum principles

Theorem 1 (Weak maximum principle) Assume $u \in C^2(U) \cap C(\bar{U})$ and

$$c = 0$$
 in U

(i) If

$$Lu \le 0$$
 in U

then

 $max_{\bar{U}}u = max_{\partial U}u$

(ii) If

 $Lu \ge 0$ in U

then

 $min_{\bar{U}}u = min_{\partial U}u$

Theorem 2 (Weak maximum principle for $c \geq 0$) Assume $u \in C^2(U) \cap C(\bar{U})$ and

 $c \ge 0$ in U

(i) If

 $Lu \le 0$ in U

then

(11) $max_{\bar{U}}u \le max_{\partial U}u^+.$

(ii) Likewise, if

$$Lu \ge 0 \in U$$

then

(12)
$$\min_{\bar{U}} u \ge -\max_{\partial U} u^{-}.$$

Lemma (Hopf's Lemma) Assume $u \in C^2(U) \cap C^1(\bar{U})$ and

$$c = 0$$
 in U

Suppose further

$$Lu \le 0$$
 in U

and there exists a point $x^0 \in \partial U$ such that

(14)
$$u(x^0) > u(x)$$
 for all $x \in U$

Assume finally that U satisfies the interior ball condition at x^0 ; that is, there exists an open ball $B \subset U$ with $x^0 \in \partial B$

(i) Then

$$\frac{\partial u}{\partial v}(x^0) > 0$$

where v is the outer unit normal to B at x^0

(ii) If

$$c \ge 0$$
 in U

the same conclusion holds provided

$$u(x^0) \ge 0$$

Theorem 3 (Strong maximum principle) Assume $u \in C^2(U) \cap C(\bar{U})$ and

$$c = 0$$
 in U

Suppose also U is connected, open and bounded (i) If

$$Lu \le 0$$
 in U

and u attains its maximum over \bar{U} at an interior point, then

u is constant within U

(ii) Similarly, if

$$Lu \ge 0$$
 in U

and u attains its minimum over \bar{U} at an interior point, then

u is constant within U.

Theorem 4 (Strong maximum principle with $c \geq 0$) Assume $u \in C^2(U) \cap C(\bar{U})$ and

$$c \ge 0$$
 in U

Suppose also U is connected

(i) If

$$Lu \le 0$$
 in U

and u attains a nonnegative maximum over \bar{U} at an interior point, then

u is constant within U

(ii) SImilarly, if

$$Lu \ge 0$$
 in U

and u attains a nonpositive minimum over \bar{U} at an interior point, then

u is constant within U

Theorem 5 (Harnack's inequality) Assume $u \ge 0$ is a C^2 solution of

$$Lu = 0$$
 in U

and suppose $V\subset\subset U$ is connected. Then there exists a constant C suh
c that

$$(18) sup_V u \le Cinf_V u$$

The constant C depends only on V and the coefficients of L

Chapter 6.5 Eignevalues and Eigenfunctions

Theorem 1 (Eigenvalues of symmetric elliptic operators)

- (i) Each eigenvalue of L is real
- (ii) Furthermore, if we repeat each eigenvalue according to its (fintie) multiplicity, we have

$$\sum = \{\lambda_k\}_{k=1}^{\infty}$$

where

$$0 < \lambda_1 \le \lambda_2 \le \lambda_3 \le \dots$$

and

$$\lambda_k \to \infty$$
 as $k \to \infty$

(iii) Finally, there exists an orthonormal basis $\{w_k\}_{k=1}^{\infty}$ of $L^2(U)$, where $w_k \in H_0^1(U)$ is an eigenfunction corresponding to λ_k

(4)
$$\{ Lw_k = \lambda_k w_k \quad \text{in U} \\ \{ w_k = 0 \quad \text{on } \partial U$$

for k = 1, 2, ...

Definition We call $\lambda_1 > 0$ the principal eigenvalue of L.

Theorem 2 (Variational principle for the principal eigenvalue)

- (i) We have
 - (5) $\lambda_1 = \min\{B[u, u] | u \in H_0^1(U), ||u||_{L^2} = 1\}$
- (ii) Furthermore, the above minimum is attained for a function w_1 , positive within U, which solves

$$\begin{cases} Lw_1 = \lambda_1 w_1 & \text{in U} \\ w_1 = 0 & \text{on } \partial U \end{cases}$$

(iii) Finally, if $u \in H_0^1(U)$ is any weak solution of

$$\begin{cases}
Lu = \lambda_1 u & \text{in U} \\
u = 0 & \text{on } \partial U
\end{cases}$$

then u is a multiple of w_1

Theorem 3 (Principle eigenvalue for nonsymmetric elliptic operators)

(i) There exists a real eigenvalue λ_1 for the operators L, taken with zero boundary conditions, such that if $\lambda \in \mathcal{C}$ is any other eigenvalue, we have

$$Re(\lambda) \ge \lambda_1$$

- (ii) There exists a corresponding eigenfunction w_1 , which is positive within U
- (iii) The eignevalue λ_1 is simple; that is, if u is any solution of (1), then u is a multiple of w_1