

ENCODERS

COMBINATIONAL LOGIC CIRCUITS

prepared by:

Gyro A. Madrona

Electronics Engineer

TOPIC OUTLINE

Binary Encoder

Priority Encoder

Decimal-to-BCD Encoder

ENCODERS

BINARY ENCODER

A <u>binary encoder</u> encodes information from 2^n inputs into an n-bit code.

Graphical Symbol

Truth Table

D_3	D_2	D_1	D_0	Y_1	Y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

EXERCISE

Synthesize a 4-to-2 binary encoder based on its truth table.

Sol	ution

D_3	D_2	D_1	D_0	Y_1	Y_0
0	0	0	1	0	0
0	0	1	0	0	1
0	1	0	0	1	0
1	0	0	0	1	1

PRIORITY ENCODER

A <u>priority encoder</u> assigns a binary code to the <u>highest-priority</u> input signal and ignores other inputs with lower priority.

Graphical Symbol

Truth Table

D_3	D_2	D_1	D_0	Y_1	Y_0	Z
0	0	0	0	d	d	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

EXERCISE

Synthesize a 4-to-2 priority encoder based on its truth

Solution
table.

D_3	D_2	D_1	D_0	<i>Y</i> ₁	Y_0	Z
0	0	0	0	d	d	0
0	0	0	1	0	0	1
0	0	1	X	0	1	1
0	1	X	X	1	0	1
1	X	X	X	1	1	1

DECIMAL-TO-BCD ENCODER

The <u>decimal-to-BCD encoder</u> has ten inputs – one for each decimal digit – and four outputs corresponding to the BCD code.

Graphical Symbol

Truth Table

Doginal	BCD Code					
Decimal	b_3	b_2	b_1	b_0		
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	00 _		
9	1	0	0	Ton many		

EXERCISE

Synthesize a decimal-to-BCD encoder based on its truth table.

Decimal	BCD Code					
Decimal	b_3	b_2	b_1	b_0		
0	0	0	0	0		
1	0	0	0	1		
2	0	0	1	0		
3	0	0	1	1		
4	0	1	0	0		
5	0	1	0	1		
6	0	1	1	0		
7	0	1	1	1		
8	1	0	0	0		
9	1	0	0	1		

Solution

LABORATORY

