

50.007 Machine Learning, Fall 2021 Homework 5

Due Thursday 9 December 2021, 5pm

This homework will be graded by Zhang Qi

In this homework, we would like to look at the Bayesian Networks. You are given a Bayesian network as below. All nodes can take 2 different values: $\{1, 2\}$.

Question 1. Without knowing the actual value of any node, are node X_1 and X_6 independent of each other? What if we know the value of node X_5 and X_{10} ? (10 points)

Question 2. What is the *effective* number of parameters needed to for this Bayesian network? What would be the *effective* number of parameters for the same network if node X_3 , X_8 and X_9 can take 5 different values: $\{1, 2, 3, 4, 5\}$, and all other nodes can only take 4 different values: $\{1, 2, 3, 4\}$? (10 points)

Question 3. If we have the following probability tables for the nodes. Compute the following probabilities. Clearly write down all the necessary steps.

(a) Calculate the following conditional probability:

$$P(\mathbf{X}_3 = 1 | \mathbf{X}_4 = 2)$$

(8 points)

(b) Calculate the following conditional probability:

$$P(\mathbf{X}_5 = 2 | \mathbf{X}_2 = 1, \mathbf{X}_{11} = 2, \mathbf{X}_1 = 1)$$

(12 points)

(Hint: find a short answer. The values in some of the probability tables may reveal some useful information.)

05 05			$\begin{array}{c cccc} & \mathbf{X}_2 \\ \mathbf{X}_1 & 1 & 2 \\ 1 & 0.2 & 0.8 \\ 2 & 0.3 & 0.7 \end{array}$		2 0.8	$egin{array}{c} \mathbf{X}_2 \\ 1 \\ 2 \end{array}$	1 0.3 0.3	$ \begin{array}{c} 3 \\ 2 \\ \hline 0.7 \\ 0.7 \end{array} $	1	$ \begin{array}{c cccc} & & \mathbf{X}_4 \\ \mathbf{X}_3 & 1 & 2 \\ 1 & 0.1 & 0.9 \\ 2 & 0.5 & 0.5 \end{array} $		0.9	X ₄ 1 2	1 0.5 0.6	0	$ \begin{array}{c cccc} & X_6 \\ & 1 & 2 \\ \hline & 0.6 & 0.4 \end{array} $		
						\mathbf{X}	6 X	₇ X	-8	1	ζ ₉ 2							
						1	1	1		0.8	0.2							
	\mathbf{X}_7			7	X_8		1	2	2	0.1	0.9		\mathbf{X}_{10}			X_{11}		
\mathbf{X}_{5}	1	2	\mathbf{X}_5	1	2	1	2	1		0.9	0.1	\mathbf{X}_9	1		2	\mathbf{X}_{10}	1	2
1	0.2	0.8	1	0.8	0.2	1	2	2	2	0.7	0.3	1	0.8	3 (0.2	1	0.7	0.3
2	0.3	0.7	2	0.7	0.3	2	1	1		0.3	0.7	2	0.8	3 (0.2	2	0.8	0.2
						2	1	2	2	0.2	0.8	_						
						2	2	1		0.2	0.8							
						2	2	2	2	0.9	0.1							

Question 4. Now, assume we do not have any knowledge about the probability tables for the nodes in the network, but we have the following 12 observations/samples. Find a way to estimate the probability tables associated with the nodes X_7 and X_9 respectively. (10 points)

\mathbf{X}_1	\mathbf{X}_2	\mathbf{X}_3	\mathbf{X}_4	\mathbf{X}_5	\mathbf{X}_6	\mathbf{X}_7	\mathbf{X}_8	\mathbf{X}_9	\mathbf{X}_{10}	\mathbf{X}_{11}
1	1	2	2	2	1	1	1	2	1	1
1	2	1	1	2	1	1	1	1	1	2
2	2	2	1	2	2	1	1	1	2	1
1	1	2	1	2	1	1	2	1	2	2
1	2	1	1	1	1	2	2	2	1	1
2	2	1	2	1	2	2	1	1	1	2
2	1	2	2	1	2	1	2	2	2	1
2	2	2	1	2	1	2	2	1	2	2
1	1	1	1	2	2	1	1	1	1	1
1	1	1	1	2	1	1	1	2	1	2
1	2	1	2	2	1	2	1	1	1	2
2	2	1	2	1	2	2	2	2	1	1