

EDUCATION

CARNEGIE MELLON UNIVERSITY

MS IN ROBOTICS | 2021-2022 BS IN ELECTRICAL AND COMPUTER Engineering | 2017-2021

Cum. GPA: 3.92 / 4.0

INTERESTS

Motion Planning and Controls Reinforcement Learning Motion Prediction Meta Learning for Human Robot Interaction

LINKS

Github:// Alvinosaur LinkedIn://alvinshek Portfolio: alvinosaur.github.io/AboutMe

COURSEWORK

MACHINE LEARNING

Deep Reinforcement Learning (TA Fall 2021) Intro to Deep Learning Probabilistic Graphical Models Convex Optimization* Introduction to Machine Learning

ROBOTICS AND CONTROLS

Provably Safe Robotics Adaptive Control and Reinforcement Learning Planning Techniques for Robotics Computer Vision Robot Kinematics and Dynamics

COMPUTER SCIENCE

Introduction to Embedded Systems Parallel Computer Architecture and Prog. Introduction to Computer Systems Fundamentals of Imperative Computation

SKILLS

PROGRAMMING

Python • C/C++ • Julia • Matlab • Java

SOFTWARE

Pytorch • Tensorflow • CUDA • ROS

* Denotes current semester

RESEARCH/WORK EXPERIENCE

MASTERS THESIS RESEARCH | ADVISOR: CHANGLIU LIU

May 2021 - Present | CMU

- (Submitted to ICRA 2022) Recurrent hand gesture control of robot arm, adaptable to unique gesture styles
- (Current) Learning manipulation tasks from human demonstration and physical interaction
- Focus in RL and IL, Meta Learning, and Visual scene understanding

UBER ATG | Software Engineering Intern on Motion Planning May 2020 - August 2020 | Remote from Pittsburgh, PA

- Optimized GPU runtime of expensive cost functions
- Built full pipeline and interface using CUDA and Tensorflow in C++
- Achieved 238x speedup to make costing real-time
- Presented 1-hour talk comparing different algorithms in GPU occupancy and memory constraints to 60+ people

CANVAS CONSTRUCTION | ROBOTICS SOFTWARE INTERN

May 2019 - August 2019 | San Francisco, CA

- Compared LiDAR accuracy with point-to-plane projections in Python
- Developed point cloud feature extractor for obstacle avoidance in C++
- Designed 2D, grid-based path planner for max area coverage with obstacle avoidance in Python and C++
- Integrated feature detection and path planning with global map association into fully functional system
- Presented results to entire company, including non-technical audience

PROJECTS

LEARNED GRAPH STRUCTURE FOR ROBOT DYNAMICS

March 2021 - May 2021 | Github: learned dynamics

- (Goal) Learn complex dynamics of robots for simulation
- (Novelty) Learn the graph structure of such dynamics with Graph NN's and Message Passing
- Implemented with Pytorch and MuJoco simulator
- Voted 3rd best project among 25

META-LEARNING FOR ROBOTICS

October 2020 - December 2020 | Github: idl_project

- Compared performance of popular Meta-Learning algorithms (MAML, Reptile) with classic algorithms (PPO)
- Proposed new modification to MAML, analyzed its poor performance
- Goal to train robot arm to reach a target location
- Gained experience in reward-shaping and debugging RL algorithms

HIGH-SPEED DRONE FOLLOWING

October 2020 - December 2020 | Github: drone_controls

- Explored minimum snap(4th derivative of position) trajectory generation
- Implemented LQR and MPC for drone controls and compared performance
- Learned how and when to apply differential flatness to solve nonlinear controls with linear systems