Exercise 6. Show that the topologies of \mathbb{R}_{ℓ} and \mathbb{R}_K are not comparable.

Proof. Let x=0 and B=(-1,1)-K; suppose that there exists B'=[a,b) containing x such that $B'\subset B$. If there exists $n\in\mathbb{Z}_+$ such that b>1/n, then 1/(n+1) is in B' but not in B, which contradicts $B'\subset B$. Therefore b<1/n for all n; but this implies that $b\leq 0$, so that $0\notin B'$, contrary to our hypothesis. Thus the topology of \mathbb{R}_ℓ is not finer than that of \mathbb{R}_K .

Consider now B' = [0,1) and suppose that there exists $B \in \mathbb{R}_K$ containing x and included in B'. The set B has a greatest lower bound a. Since $0 \in B$ we have $a \leq 0$, and since $B \subset B'$ we have $a \geq 0$. Therefore B = (0,b) or (0,b)-K for some real $b \geq 0$; but this implies that $0 \notin B$, contrary to hypothesis. Therefore the topology of \mathbb{R}_K is not finer than that of \mathbb{R}_ℓ .

From the above we conclude that these two topologies are not comparable.