Санкт-Петербургский национальный исследовательский университет информационных технологий, механикии оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа	m3115	К работе допущен		
Студент <u>Кочуб</u>	беев Николай Сергеевич	Работа выполнена		
Преподаватель: Рахманова Гульназ Раифовна Отчет принят				

Лабораторная работа № 3.05

«Температурная зависимость электрического сопротивления металла и полупроводника»

- 1. Цель работы: экспериментальным путем установить зависимость электрического сопротивления проводника от температуры и установить материал изготовления полупроводникового и металлического образцов;
- 2. Задачи:
 - 1. Путем прямых измерений зафиксировать изменение напряжения при одной силе тока с постепенным подогревом полупроводникового образца от комнатной температуры до 75°C;
 - 2. Провести аналогичный эксперимент для металлического образца;
 - 3. Провести косвенные измерения с целью подсчета температурного коэффициента металла и ширины запрещенной зоны полупроводника;
 - 4. Сопоставить значения с табличными и выяснить, из какого материала сделаны образцы;
- 3. Объект исследования: полупроводниковый и металлический образцы;
- 4. Метод экспериментального исследования: фиксирование изменения напряжения на участке цепи в процессе охлаждения образца с пиковой до комнатной температуры;
- 5. Рабочие формулы и постоянные величины:
 - 1. $I = \frac{U}{R}$ закон Ома;
 - 2. $\alpha_{ij} = \frac{R_i R_j}{R_j * t_i R_i * t_j}$ температурный коэффициент сопротивления металла для пары измерений электрического сопротивления;

3. $E_{g_{ij}} = 2k \frac{T_i T_j}{T_j - T_i} \ln(\frac{R_i}{R_j})$ – рабочая формула для оценки ширины запрещенной зоны полупроводника;

4.
$$k=1,380649*10^{-23}\frac{\text{Дж}}{\text{K}}\cong 8,61733*10^{-5}\frac{\text{эВ}}{\text{K}}$$
 – постоянная Больцмана;

6. Измерительные приборы:

Наименование	редел измерений	Цена деления	Погрешность
			измерения
Амперметр-вольтметр АВ1	I: 0,002 A	<i>I</i> : 0,0000001 <i>A</i>	$I: \pm 0,0002 A$
Амперметр-вольтметр АВТ	<i>U</i> : 2 B	<i>U</i> : 0,001 B	$U: \pm 0.2 \text{ B}$
Термометр стенда «С3-ТТ01»	390 K	1 K	-

Таблица 1. Измерительные приборы

7. Схема установки:

Рис. 1. Принципиальная электрическая схема установки

Puc 2. Органы управления амперметра-вольтметра AB1

Рис. 2. Общий вид лабораторной установки

- индикатор значения тока,
- индикатор выбранного предела измерений амперметра; кнопка переключения пределов измерений амперметра;
- видикатор значения напряжения; видикатор выбранного предела измерений вольтметра;
- кнопка переключения пределов измерений вольтметра, кнопка выключателя "Сеть";
- входные гнезда измерителя тока
- кнопка переключения мА / мкА;
 кнопка переключения постоянный / переменный сигнал;
 входные гнезда измерителя напряжения.

8. Результаты прямых измерений:

Полупроводник:

N⁰	<i>T, K</i>	І, мкА	<i>U, B</i>	R , О м	ln R	1/T, K ⁻¹
1	300	1172	0,154	131,40	4,88	0,00333
2	305	1200	0,134	111,67	4,72	0,00328
3	310	1234	0,108	87,52	4,47	0,00323
4	315	1257	0,097	77,17	4,35	0,00317
5	325	1284	0,08	62,31	4,13	0,00313
6	330	1299	0,07	53,89	3,99	0,00308
7	335	1315	0,059	44,87	3,80	0,00303
8	340	1328	0,051	38,40	3,65	0,00299
9	345	1340	0,043	32,09	3,47	0,00294
10	350	1350	0,036	26,67	3,28	0,00290

Металлический образец:

N⁰	T, K	I, мкА	<i>U</i> , <i>B</i>	R , О м	<i>t</i> , ℃
1	350	1123	1,712	1524,49	77
2	345	1135	1,7	1497,80	72
3	340	1147	1,688	1471,67	67
4	335	1161	1,679	1446,17	62
5	330	1172	1,667	1422,35	57
6	325	1184	1,657	1399,49	52
7	320	1196	1,646	1376,25	47
8	315	1209	1,634	1351,53	42
9	310	1221	1,624	1330,06	37
10	305	1235	1,613	1306,07	32

9. Расчет результатов косвенных измерений и их погрешности:

α	Значение, С ⁻¹	$oldsymbol{C}$ реднее значение, $oldsymbol{C}^{-1}$
1, 6	0,00280	
2, 7	0,00282	
3, 8	0,00287	0,00286
4, 9	0,00287	
5, 10	0,00296	

 $\Delta \alpha \approx 0,0003 \, \mathrm{C}^{-1}$

E	Значение, Дж* 10 ⁻¹⁹	Среднее значение, Дж* 10 ⁻¹⁹
1, 7	0,95	
2, 8	0,00	
3, 9	1,00	0,98
4, 10	0,00	
5, 11	0,93	
6, 12	0,95	

$$\Delta E = 0.021 * 10^{-19}$$
Дж

E	Значение, эВ	Среднее значение, эВ
1, 7	0,59	
2, 8	0,00	
3, 9	0,62	0,61
4, 10	0,00	
5, 11	0,58	
6, 12	0,59	

 $\Delta E = 0.013 \text{ } \text{3B}$

10. Графики:

11. Результаты работы и вывод:

По таблице выясняем, что полученный температурный коэффициент металла приблизительно соответствует действительному температурному коэффициенту никелина, а ширина запрещенной зоны — теллуру. $0,00286 \pm 0,00030 \, \mathrm{C}^{-1} \, \mathrm{u} \, 0,610 \pm 0,013 \, \mathrm{sB}$ соответственно. Экспериментальным путем установил зависимость электрического сопротивления проводника от температуры и установил материал изготовления полупроводникового и металлического образцов.