Evolutionary Programming

Evolutionary Programming (EP) Generalities:

Oldest idea of EA [Fogel et al., 1964];

Evolutionary programming

- population based thought as parallel search (not be confused with parallel implementation);
- oriented towards continuous/real-valued optimisation problems!

EP: representation

Evolutionary programming

► Each individual is represented as a real-valued vector:

$$\langle \mathbf{x}, \boldsymbol{\sigma} \rangle = \langle x_1, \dots, x_n, \sigma_1, \dots, \sigma_n \rangle$$

- where the first part represents a solution x and the second is a set of self-adapting parameters σ , also referred to as *meta-EP*.
- ► This representation can be seen as *n* "evolving" normal distributions (one for each *i*th design variable)

$$\mathcal{N}(\mathsf{x}[i], \boldsymbol{\sigma}[i])$$

EP: initialisation

Evolutionary programming

- \blacktriangleright A population of μ individuals is generated.
- \triangleright The design variables x_i are uniformly sampled within the decision space.
- \triangleright The moving strategies σ_i are uniformly sampled between 0 and 1: $\mathcal{U}(0,1)$

- Each solution generates a point, namely offspring!
 - i.e. No actual selection needed, all individuals are singularly considered!
 - μ individuals $\Rightarrow \mu$ offspring!

EP: recombination

- ► There is only one variation operator, i.e. mutation (no crossover!), which is more appropriately referred to as recombination.
- ▶ Each individual $\langle \mathbf{x}, \boldsymbol{\sigma} \rangle$ generates an offspring $\langle \mathbf{x}', \boldsymbol{\sigma}' \rangle$ according to the formulas:

$$\left\{ \begin{array}{l} \sigma_{i}^{'} = \sigma_{i} \left(1 + \alpha \cdot \mathcal{N} \left(0, 1 \right) \right) \\ x_{i}^{'} = x_{i} + \sigma_{i}^{'} \cdot \mathcal{N} \left(0, 1 \right) \end{array} \right. \quad i = 1, 2, \dots, n \quad \forall \left\langle \mathbf{x}, \boldsymbol{\sigma} \right\rangle \in \textit{Pop} \right.$$

▶ Each individual contains the information about the following move (early self-adaptation) with usually $\alpha = 0.2$.

Evolutionary programming

- ▶ The so-called $(\mu + \mu)$ selection strategy is usually applied:
 - the μ parents and the μ offspring are taken into account and sorted on the basis of their fitness value;
 - those μ solutions that have the best fitness/objective function value are selected for the subsequent generation.

This approach is elitist!

The point displaying the best fitness value always find a place in the next generation!

- Each solution is evaluated against q other randomly chosen solutions (round-robin);
- for each comparison, a "win" is assigned to the solution under examination when it outperforms one of the randomly selected solution;
- the solutions who scored most wins are selected for the following generation.

Still elitist

but some (good/bad) solutions are selected depending on the random choice of the competitors.

Genetic Algorithm

Genetic Algorithm (GA)

- ▶ Developed: USA in the 1970's.
- ► Early names: J. Holland, K. DeJong, D. Goldberg [Goldberg, 1989]¹.
- Typically applied to:
 - discrete optimization;
 - but also to real-valued problems.
- Attributed features:
 - not too fast;
 - versatile, good metaheuristic for combinatorial problems.

¹Interesting book about GAs. Consider also [Eiben and Smith, 2003].

- ► Holland's original GA is now known as the simple genetic algorithm (SGA).
- ► The main features of this algorithm is the use of binary encoding.
- ► This choice was done in the 1970's to remark the analogy with biology (it is indeed inspired from biology!).
- ► This choice is generally VERY INEFFICIENT and should never applied unless the problem is naturally binary (here reported for historical reasons).

Representation

- ► A chromosome is encoded as a binary number: "chromosome", composed of "genes" representing a given parameter to be optimised, and encoded with a given number of "alleles"².
- ▶ Due to the inner discretisation of the binary encoding GA can turn out more efficient in discrete optimization.

 $^{^2}$ N.B. If a gene represents a real number, we need to fix a precision (i.e. number of binary places): higher the precision higher the dimensionality of the discrete problem \Rightarrow difficult problem, slow evolution!

Parent selection mechanism

- ► The individuals that are undergoing recombination are selected by means of a Selection Mechanism.
- Classical selection mechanisms (there is many more but we will focus on these three):
 - Tournament;
 - Fitness Proportionate;
 - Ranking.

Selection pressure:

the property of the selection component in following the promising search directions (in other words, a parent selection mechanism which selects the best individuals many times has a high selection pressure).

Tournament selection

▶ Pick up a *k* solutions (at random) and compare their fitness, the better individual is in the mating pool.

SGA

Widely used! (usually the tournament size is k = 2)

- ▶ It does not require a sorting or a global knowledge (e.g. in a parallel implementation only a sub-portion of the population could be available) of the fitness distribution over the individuals of the population.
- ▶ The higher *k*, the higher the probability of selecting o good solution.
- ▶ It can be performed with or without replacement (see [Eiben and Smith, 2003] for details).

- ▶ It is given a probability P_i to be chosen to each i^{th} solution according to $P_i = \frac{f_i}{\sum_{i=1}^{\mu} f_i}$;
- ▶ the individual/individuals are selected through a mechanisms considering such probability (usually "roulette wheel").

In some scenarios:

- outstanding individuals take over the entire population quickly: premature convergence X
- \blacktriangleright when fitness values are all similar (or equal \rightarrow plateau) there is no selection pressure X
- ▶ If this happens we adjust the previous formula with Goldberg's sigma scaling, (see [Eiben and Smith, 2003] and [Goldberg, 1989] for details).

Ranking selection (always preserves some selection pressure ✓)

- Individuals are sorted according to their fitness value and a probability is assigned according to their position in the list (rank), and a probability is assigned to each ith solution by means of:
 - ► Linear Ranking: $p_{lin-rank}(i) = \frac{2-s}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$, $1.0 < s \le 2.0$.
 - ► Exponential Ranking: $p_{exp-rank}(i) = \frac{1-e^{-i}}{c}$, c is a normalisation factor.

We still need a mechanism using this probability.

- ▶ s can be tuned to adjust the probability.
- ► Exponential ranking is preferred if an higher emphasis on selecting above-average individuals is required.

Implementing probability selection: roulette wheel algorithm.

▶ We work out probabilities P_i according to FPS or Ranking, then we select one or more individuals by spinning a one-armed roulette wheel with μ sectors, whose size is equal to P_i .

Roulette-Wheel algorithm (single spin)

$$i=1$$
 while $\sum_{i}^{i}P_{i}<\mathcal{U}\left(0,1\right)$ do $i=1+1$ end while Output i^{th} individual in the population

- ► First spin ⇒ first element, second spin ⇒ second element,...
- ► Spins are independent! (not suitable when multiple solution have to be selected 🗡)
 - ▶ in this case Stochastic universal Sampling can be adopted (see [Eiben and Smith, 2003])

Crossover

- ▶ The selected parents undergo recombination.
- ▶ In a SGA, the recombination is the crossover.
- Crossover is an operator which combines two parents in order to produce one, two or more offspring.
- ► The analogy of biological crossover in binary encoding is very straightforward.

Crossover 1-point crossover

▶ It selects a random "cut-point" and switch head and tail of two chromosomes:

- Choose n random crossover points;
- split along those points;
- ▶ glue parts, alternating between parents:

Crossover Uniform crossover

- Randomly (uniform distribution) initialise a mask for generating the first child:
 - we do not know how many cut-points we are going to have (they are uniformly distribute!)

▶ Make an inverse copy of the output if a second child is needed!

Mutation

- ▶ It is usually applied to the newly generated offspring before calculating its fitness value.
- \triangleright Alter each gene independently with a probability p_m (referred to as "mutation rate").

SGA

Which one is better? Which one is the most important?

- ▶ It depends on the problem, but, in general, it is good to have both!
- ▶ Both have a role but mutation-only-EA is possible, crossover-only-EA seems not to work.

Survivor selection

- ▶ The main feature of a GA is that the algorithm must be generational (also called age-based):
 - ▶ in other words, the parents must be replaced by the newly generated offspring.
- ▶ Some implementations employ elitism: a restricted number of parents, the best, are copied for the subsequent generation.

Integer representation

Some problems (e.g. image processing paramters, evolve a path in a grid...) naturally have integer variables:

in the example every gene is a step taken from $\{\textit{North}, \textit{South}, \textit{West}, \textit{East}\}$ $\Rightarrow \{1, 2, 3, 4\}$

- ▶ We use the same selection and crossover strategies of binary GAs!
 - But different mutations...

- ► Creep mutation: ∀ genes in the chromosome, there is probability p of adding or subtracting a small random integer.
- ► Random reset: ∀ genes in the chromosome, there is probability p to be replaced with a random integer chosen from the set of permissible values (no need to suture solution!).

Permutation representation

Some problems (e.g. e.g. TSP, scheduling...) naturally take the form of deciding on the order in which a sequence of events has to occurs:

► Still "integer" coded, but the same integer value never appears twice!

- ▶ It is difficult to be applied in a permutation based GA:
 - if we exchange variables we can have the same value multiple twice!
- ▶ The most popular were designed for specific applications:
 - Order 1 crossover;
 - Partially mapped crossover;
 - Cycle crossover;
 - Edge crossover.

A description is given in [Eiben and Smith, 2003].

Mutation (permutation representation)

► Swap: Pick two design variables at random and swap their positions:

1 2 3 4 5 6 7 8 9

▶ *Insert*: Pick two design variables at random and move the second to follow the first, shifting the rest along to accommodate:

```
1 2 3 4 5 6 7 8 9
                             1 2 5 3 4 6 7 8 9
```

▶ *Inversion*: Pick two design variables at random and then invert the substring between them:

► Scramble: Pick two design variables at random and randomly rearrange the design variables in the substring:

123456789

- ▶ Many problems occur as real valued problems, e.g. continuous parameter optimisation, design of an aircraft etc.
- ▶ In these cases, the most reasonable representation is a real valued as it would guarantee to work directly on the problem and not in a "deformed space".
- Parent and survivor selections are the same of SGA!

For a real-valued GA we distinguish between

- ▶ *Deterministic* crossover: generally inefficient as it does not use the real-valued nature of the problem.
- Arithmetic crossover: the value of the design variables is varied due to some arithmetic operations.

Given a child z obtained from parents x and y:

$$\underline{\mathsf{deterministic}} \Rightarrow \mathsf{z}[i] = \mathsf{x}[i] \mathsf{ or } \mathsf{y}[i]$$

All those seen for SGA!

arithmetic
$$\Rightarrow$$
 z[i] = α x[i] + $(1 - \alpha)$ y[i], $\alpha \in [0, 1]$

It can be:

- ▶ randomised arithmetic recombination ($\alpha = \mathcal{U}(0,1)$);
- ▶ simple, single or whole arithmetic recombination.

Crossover Simple, single and whole arithmetic, $(\alpha = \frac{1}{2})$

Simple arithmetic recombination

Single arithmetic recombination

Whole arithmetic recombination

▶ The box crossover is another important method where:

$$\mathbf{z}[i] = \min(\mathbf{x}[i], \mathbf{y}[i]) + \alpha |\mathbf{x}[i] - \mathbf{y}[i]|, \ \alpha = \mathcal{U}(0, 1)$$

It samples one (or more) points within the hyper-rectangle identified by the two parents, while the algorithm crossover works on a straight line:

Real-valued GA

Mutation (real-valued representation)

As for the binary case, there is a probability p f applying a mutation scheme that:

replace the design variable with a uniformly distributed random number within the bounds (no need to saturate!):

$$\mathbf{x_j}[i] = \mathcal{U}\left(\mathbf{x^L}[i], \mathbf{x^U}[i]\right), \ \forall i = 0, 1, 2, \dots, n;$$

or

 add a small (rarely a big) random quantity the variable from Gaussian (or Cauchy) distribution: e.g.

$$\mathbf{x_j}[i] = \mathbf{x_j}[i] + \mathcal{N}(0, \sigma_{small}), \ \forall i = 0, 1, 2, \dots, n.$$

Laboratory and participation work:

- ▶ For the four problems under consideration in this module in 10D and 50D:
 - implement a real-valued GA with 1)tournament selection; 2) box crossover; 3) Gaussian mutation; 4) Replacement of the population:
 - for the two dimensionality levels, tune the parameters (e.g. population size,...) that appear the most convenient, and draw your own conclusion.

References I

- Eiben, A. E. and Smith, J. E. (2003).
 Introduction to Evolutionary Computation.
 Springer-verlag, Berlin.
- Fogel, L. J., Owens, A., and Walsh, M. (1964).

 On the evolution of artificial intelligence(artificial intelligence generated by natural evolution process).

 In National Symposium on Human Factors in Electronics, 5th, San Diego, California, pages 63–76.
- Goldberg, D. E. (1989).

 Genetic Algorithms in Search, Optimization and Machine Learning.

 Addison-Wesley Publishing Co., Reading, MA, USA.
- Holland, J. (1975).

 Adaptation in Natural and Artificial Systems.

 University of Michigan Press.