Příprava tenkých vrstev slitin s vysokou entropií metodou lonized Jet Deposition

Vojtěch Stránský

Katedra inženýrství pevných látek Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

12. 3. 2025

Vedoucí práce: Ing. Michal Jůza

- Úvod
- Slitiny s vysokou entropií
- Ionized Jet Deposition
- 🐠 Příprava vzorků
- 5 Vyhodnocení vzorků
- O Zbývající práce a závěr

Motivace

- slitiny s vysokou entropií (HEAs) mají zajímavé vlastnosti
- těžko se obrábí
- možno využívat jako tenké vrstvy
- IJD je dostupná metoda tvorby kvalitních tenkých vrstev
- chceme zkoumat vývoj stechiometrického poměru složek HEAs v tenké vrstvě vytvořené IJD

Cíle

- nanést tenké vrstvy slitiny HfTaTiNbZr s proměnným parametrem urychlovacího napětí
- stanovit základní parametry připravených vzorků
- vyhodnotit závislost stechiometrického poměru v tenkých vrstvách v závislosti na urychlovacím napětí a nalezení ablační hrany

Definice a vlastnosti HEAs

Definice

- slitiny s $\Delta S_{mix} \geq 1,5R$
- například ekvimolární slitina pěti složek
- HfTaTiNbZr

[1]

Vlastnosti

- nízká hustota
- vysoká pevnost i za vysokých teplot
- korozivzdornost

[2]

Srovnání závislosti mezi kluzu na teplotě

Figure: Porovnání pevnosti HEAs a Inconel 718 [2]

Ionized Jet Deposition

- PVD metoda
- založena na pulzní elektronové ablaci
- dobré zachování stechiometrického poměru [3]

Ablace

- proces přeměny materiálu terčíku na plazma dodáním vysoké plošné hustoty energie za krátký časový úsek
- ablační hranou označujeme nejnižší podmínky, kdy nastává ablace všech složek směsi

Průběh procesu IJD

Figure: Schéma průběhu procesu [4]

Použité zařízení JetDep100

Figure: Fotografie JetDep100 na KIPL FJFI

Realizace vzorků

- substrát Si(001)
- terčík HfTaTiNbZr, 1200 °C, 80 Mpa, 2 min
- pracovní plyn VARIGON (Ar 93,5 %, H₂ 6,5 %)

Tabulka depozičních parametrů

	1	2	3	4	5	6	7	8
vzdálenost terčík, substrát [mm]	110	110	110	110	110	110	110	110
napětí [kV]	11	12	13	14	15	16	17	18
doba depozice [min]	30	30	30	30	30	30	30	30
frekvence [Hz]	25	25	25	25	25	25	25	25
plyn	varigon							
substrát	Si(001)							
teplota substrátu	R. T.							
terčík	HfTaTiNbZr							
počáteční tlak [mbar]	5,40E-05	6,50E-05						
pracovní tlak [mbar]	6,30E-04	6,80E-04						
vzdálenost tryska, terčík [mm]	3	3	3	3	3	3	3	3
conditioning [min]	3	3	3	3	3	3	3	3

Použité analytické metody

AFM

- dynamický mód
- za pomocí snímání změny rezonanční frekvence kmitajícího hrotu nad povrchem zjišťujeme výškovou souřadnici povrchu vzorku
- stanovení tloušťky vrstvy

SEM

- energiově disperzní spektroskopie (EDS)
- využívá charakteristického záření složek vzorku ke stanovení jejich kvantitativního zastoupení

Napětí 11 kV

Figure: Přechod zastíněné a nezastíněné části vzorku 1

Figure: Rozdělení výšek - výška 9 nm

Napětí 12 kV

Figure: Přechod zastíněné a nezastíněné části vzorku 2

Zbývající práce

- připravit zbytek vzorků
- naměřit EDS
- naměřit AFM zbytku vzorků
- vyhodnotit závislost tloušťky vrstvy na urychlovacím napětí
- určit ablační hranu

Závěr

- vzorky se daří připravovat
- obtížné nanášení a AFM vrstvy z 11 kV je hotovo
- zdá se, že by se mělo podařit naplnit cíle

- Xin Wang, Wei Guo, and Yongzhu Fu.
 High-entropy alloys: emerging materials for advanced functional applications.
 - Journal of Materials Chemistry A, 9(2):663-701, 2021.
- [2] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang. High-entropy alloy: challenges and prospects. *Materials Today*, 19(6):349–362, July 2016.
- [3] Ionized jet deposition, Říjen 2024.

 Dostupné na https://noivion.com/technology/.
- [4] Štěpán Nekvinda.
 - Příprava a analýza tenkých vrstev slitin s vysokou entropii nanesených metodou ionized jet deposition.
 - Bakalářská práce, Katedra inženýrství pevných látek, Fakulta jaderná a fyzikálně inženýrská, České vysoké učení technické v Praze, Praha, 2019.