The System Unit: Processing and Memory

K.N.Toosi

Fall 2023

Data and Program Representation

- In order to be understood by a computer, data and programs need to be represented appropriately
- Digital computers: Can only understand two states, off and on (0 and 1)
- Coding systems: Used to represent data and programs in a manner understood by the computer

Digital data representation: The process of representing data in digital form so it can be understood by a computer.

Digital Data Representation

- Bit (**b**inary dig**it**): The smallest unit of data that a binary computer can recognize (a single 1 or 0)
- Byte = 8 bits
- Byte terminology used to express the size of documents and other files, programs, etc.
- Prefixes are often used to express larger quantities of bytes: kilobyte (KB), megabyte (MB), gigabyte (GB), terabyte (TB), etc.

The Binary Numbering System

- Numbering system: A way of representing numbers
- Decimal numbering system
 - Uses 10 symbols (0-9)
- Binary numbering system
 - Uses only two symbols (1 and 0) to represent all possible numbers
- In both systems, the position of the digits determines the power to which the base number (such as 10 or 2) is raised

The Binary Numbering System

Coding Systems for Text-Based Data

- ASCII and EBCDIC
 - ASCII (American Standard Code for Information Interchange): coding system traditionally used with personal computers
 - EBCDIC (Extended Binary-Coded Decimal Interchange Code): developed by IBM, primarily for mainframe use

Coding Systems for Text-Based Data

- Unicode: newer code (32 bits per character is common); universal coding standard designed to represent text-based data written in any ancient or modern language
 - Replacing ASCII as the primary text-coding system

Coding Systems for Other Types of Data

- Graphics (still images such as photos or drawings)
 - Bitmapped images: A variety of bit depths are possible (4, 8, 24 bits)
 - More bits = more colors

Coding Systems for Other Types of Data

- Audio data: Must be in digital form in order to be stored on or processed by a computer
 - Often compressed when sent over the Internet
 - MP3 files
- Video data: Displayed using a collection of frames, each frame contains a still image
 - Amount of data can be substantial, but can be compressed

Representing Programs: Machine Language

- Machine language: Binary-based language for representing computer programs the computer can execute directly
 - Early programs were written in machine language.
 - Today's programs still need to be translated into machine language in order to be understood by the computer
- Most programs are written in other programming languages
 - Language translators are used to translate the programs into machine language

Inside the System Unit

- System unit: The main case of a computer
 - Houses the <u>processing hardware</u> for a computer
 - Also contains storage devices, the power supply, and cooling fans
 - Houses the CPU, memory, interfaces to connect to peripheral devices (printers, etc), and other components such as CD/DVD drives
 - With a desktop computer, usually looks like a rectangular box

system unit. The system unit houses the CPU, memory, and other important pieces of hardware.

From: https://www.youtube.com/watch?v=HB4I2CgkcCo

The Motherboard

- Computer chip: A very small pieces of silicon or other semiconducting material onto which integrated circuits are embedded
- Circuit board: A thin board containing computer chips and other electronic components.
 - Motherboard or system board: The main circuit board inside the system unit
 - All devices must connect to the motherboard
 - External devices (monitors, keyboards, mice, printers) typically connect by plugging into a port exposed through the exterior of the system unit
 - Wireless devices connect through a transceiver or wireless networking technology (like Bluetooth)

The CPU

- Central processing unit (CPU): circuitry and components packaged together and connected directly to the motherboard
 - Does the vast majority of processing for a computer
 - Also called a processor; called a microprocessor when talking about personal computer
- **Dual-core CPU:** Contains the processing components (cores) of two separate processors on a single CPU
- Quad-core CPU: Contains 4 cores
- Typically different CPUs for desktop computers, portable computers, servers, mobile devices, consumer devices, etc.
- Often made by Intel or AMD

▼ FIGURE 2-8
CPUs. CPUs today typically have multiple cores.

Shared Level 3 cache memory

SERVER AND WORKSTATION PROCESSORS Typically have at least 4 cores and are

designed for very high performance.

DESKTOP PROCESSORS

Typically have 2 to 4 cores and are designed for performance.

NOTEBOOK PROCESSORS

Typically have 2 to 4 cores and are designed for performance and increased battery life.

NETBOOK PROCESSORS

Typically have 1 to 2 cores, are small in size, and are designed for extended battery life.

TYPE OF PROCESSOR	NAME	NUMBER OF CORES	CLOCK	TOTAL CACHE MEMORY		
				LEVEL 1	LEVEL 2	LEVEL 3
DESKTOP	Intel Core i7 AMD Phenom II	4 2-4	2.66-3.33 GHz 2.4-3.2 GHz	64 KB* 128 KB*	256 KB* 512 KB*	8 MB 4-6 MB
SERVER/ WORKSTATION	Intel Xeon (5500 series) AMD Opteron (3rd generation)	2 or 4 4 or 6	1.86-3.2 GHz 2.0-3.1 GHz	64 KB* 128 KB*	256 KB* 512 KB*	4-8 MB 6 MB
NOTEBOOK	Intel Core 2 Mobile AMD Turion X2 Mobile	1, 2, or 4 2	1.06-3.06 GHz 2.0-2.5 GHz	64 KB* 128 KB*	1-12 MB 1-2 MB*	none none
NETBOOK	Intel Atom AMD Athlon Neo	1-2	800 MHz-2 GHz 1.6 MHz	56 KB* 128 KB*	512 KB* 512 KB*	none none

* Per core

FIGURE 2-9

Some examples of current Intel and AMD CPUs.

Processing Speed

- CPU clock speed: One measurement of processing speed
 - Measured in megahertz (MHz) or gigahertz (GHz)
 - Higher CPU clock speed = more instructions processed per second
- FLOPS: Alternate measure of processing speed is the number of instructions a CPU can process per second
 - Megaflops, gigaflops, teraflops
- Other factors (CPU architecture, memory, bus speed, amount of RAM, etc.) also affect the overall processing speed of a computer
- **Word Size:** A computer *word* is the amount of data (measured in bits or bytes) that a CPU can manipulate at one time.
 - 32-bit processors vs 64-bit processors
 - a larger word size → faster processing and the use of more RAM

Cache Memory

- Cache memory: Special group of very fast memory chips located on or close to the CPU
 - Level 1 is fastest, then Level 2, then Level 3
 - More cache memory typically means faster processing
 - Usually internal cache (built into the CPU)
 - Often some cache dedicated to each core; may also have some shared cache accessible by any core

Bus Width, Bus Speed, and Bandwidth

- Bus: An electronic path over which data can travel
- Bus width: The number of wires in the bus over which data can travel
- Bus width and speed determine the throughput (or bandwidth) of the bus
 - The amount of data that can be transferred by the bus in a given time period

Memory

- Memory refers to chip based storage
- RAM (random access memory): Computer's main memory. Random-access memory is a form of computer memory that can be read and changed in any order, typically used to store working data and machine code
 - Stores essential parts of operating system, programs, and data the computer is currently using
 - Adequate RAM is needed to run programs
 - Volatile: Contents of RAM is lost when the computer is shut off
 - RAM is called "random access" because any storage location can be accessed directly.
 - In contrast to memory on magnetic tape in which an item of data could only be accessed by *starting from the beginning* of the tape and finding an address *sequentially*.

Each location in memory has a unique address, just like mailboxes at the post office.

DATA

Programs and blocks of data are almost always too big to fit in a single address. A directory keeps track of the first address used to store each program and data block, as well as the number of addresses each block spans.

Memory

- Registers: High-speed memory built into the CPU; used by the CPU
- ROM (read-only memory): Non-volatile chips located on the motherboard into which data or programs have been permanently stored.
 - One of main duties of ROM is storing system information, such as a computer's BIOS (basic input/output system),
 - sequence of instructions the computer follows during the boot process.
 - one of the computer's first activities when you turn on the power is to perform a *poweron* self-test or *POST*.
 - The POST checks each component to see if it is functioning properly, and initializes system settings, produces the beeps you may hear as your computer boots.
- **Flash memory:** consists of *nonvolatile* memory chips that can be used for storage by the *computer or the user*. Flash memory chips have begun to replace ROM. By storing this information in flash memory instead of ROM, the boot sequence can be updated as needed.

RAM Capacity

- The amount of RAM that can be installed in a computer depends on:
 - CPU & operating system being used
- 32-bit CPUs can use up to only 4 GB of RAM
- Computers with 64-bit CPUs and a 64-bit operating system can use significantly more RAM.
- different versions of computers with 64-bit CPUs and a 64-bit operating system may support different amounts of RAM

Fans and Other Cooling Components

- Heat: A continuing problem for CPU and computer manufacturers
- Fans: Used on most personal computers
- Water cooling systems: Cool the computer with liquid-filled tubes
- Notebook cooling stands

Fans, Heat Sinks, and Other Cooling Components

Expansion Slots, Expansion Cards, and ExpressCards

• Expansion slot: A location on the motherboard into which expansion cards are inserted

Expansion card: A circuit board used to add additional functionality or to

attach a peripheral device

 ExpressCard modules: Designed for notebook computer expansion

FIGURE 2-14

Expansion cards and ExpressCard modules. These are most often used with desktop and notebook computers, respectively.

Buses

- Bus: An electronic path within a computer over which data travels
 - Expansion bus: Connects the CPU to peripheral (typically input and output) devices
 - Memory bus: connects CPU directly to RAM
 - Frontside bus: connects CPU to I/O bridge
 - PCI and PCI Express (PCIe) bus
 - Universal Serial Bus (USB)
 - FireWire/IEEE 1394 bus

Ports and Connectors

• **Port:** A connector on the exterior of a computer's system unit to which a device may be attached

Monitor (VGA, DVI, HDMI)

- SCSI

, . . _ . . . ,

- MIDI

Network

- IrDA

Modem

Flash memory card slots

- USB

Game

FireWire

Audio

Keyboard

- eSATA

How the CPU Works?

- CPU: Consists of a variety of circuitry and components packaged together
 - Transistor: Key element of the microprocessor
 - Made of semi-conductor material that acts like a switch <u>controlling the flow of electrons</u> inside a chip
- Today's CPUs contain hundreds of millions of transistors; the number doubles about every 18 months (*Moore's Law*)
 - Moore's law is the observation that the number of transistors in a dense integrated circuit (IC) doubles about every two years.

Typical CPU Components

- Arithmetic/Logic Unit (ALU): Performs integer arithmetic and logical operations
- Floating Point Unit (FPU): Performs decimal arithmetic
- Control unit: Coordinates and controls activities
- **Prefetch unit:** Tries to fetch data and instructions before they are needed from cache or RAM
- Decode unit: Translates instructions so they are understood by the control unit, ALU, and FPU
- Internal cache and registers: Store data and instructions needed by the CPU
- Bus interface unit: Allows the core to communicate with other CPU components

The System Clock and the Machine Cycle

- System clock: Timing mechanism within the computer system that synchronizes the computer's operations
 - Each signal is a cycle
 - Number of cycles per second = hertz (Hz)
 - Many PC system clocks run at 200 MHz
 - Computers can run at a multiple or fraction of the system clock
 - For instance, with a CPU clock speed of 2 GHz, the CPU clock "ticks" 10 times during each system clock tick
 - During each CPU clock tick, one or more pieces of microcode are processed

The System Clock and the Machine Cycle

- Machine cycle: The series of operations involved in the execution of a single machine level instruction
 - Fetch: The program instruction is fetched
 - Decode: The instructions are decoded so the control unit, ALU, and FPU can understand them
 - Execute: The instructions are carried out
 - Store: The original data or the result from the ALU or FPU execution is stored in the CPU's registers

From: https://www.youtube.com/watch?v=Z5JC9Ve1sfI&t=3s

From https://www.youtube.com/watch?v=xnyFYiK2rSY