EXHIBIT R

'156 Patent

Claim Limitation (Claim 7)	Exemplary Disclosure
[156a] A device comprising:	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system that consists of a device. See, e.g.:
	"The Wildstar Reconfigurable Computing Engine
	Reconfigurable computing is characterized by use of hardware elements that have reconfigurable architectures, as opposed to general purpose computing which uses hardware elements with fixed architectures.
	Many reconfigurable computing systems are based on one or more FPGAs connected to a number of memory banks. All designs presented in this project are implemented on the Wildstar reconfigurable computing engine from Annapolis Micro Systems. Figure 1.2 shows the structure of this board.
	Some of the main features of the Wildstar board are: • 3 Xilinx VIRTEX XCV1000 FPGAs, • total of 3 million system gates, • 40 Mbytes of SRAM, • 1.6 Gbytes/sec I/O bandwidth, • 6.4 Gbytes/sec memory bandwidth, • processing clock rates up to 100MHz."
	Belanovic, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application at 14.
	"For synthesis and mapping of all designs in this project we used Synplicity Pro from Synplify. Mapping, placing and routing of the designs was done using Xilinx Alliance tools. In order to verify the fidelity of the VHDL descriptions to the intended

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)	Exemplary Disclosure
	functionality, all designs in this project were simulated with Mentor Graphics ModelSim prior to being implemented in hardware." Belanovic, <i>Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application</i> at 13-14.
[156b] at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system with at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first input signal representing a first numerical value to produce a first output signal representing a second numerical value. See, e.g.:
numerical value,	"Thus, module parameterized priority encoder has been developed, taking a signal to be examined on its input and producing the value, in unsigned fixed-point representation, of the index of the most significant '1' in the input signal. The module is parameterized by the width of the input signal, as well as the width of the output signal." Belanovic, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application at 25-26.
	"The final stage of both the signed and the unsigned architectures is the output stage, where the computed fixed-point representation is placed on the output, unless the input was zero or an exception was encountered during operation or received at the input, in which case the output is set to all zeros." Belanovic, <i>Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application</i> at 43.
	See also Belanovic, Library of Parameterized Hardware at 15 (Fig 1.2) (showing 32-bit inputs and outputs to PE 1 and PE 2).

Exhibit 10 – Belanovic and Leeser

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)	Exemplary Disclosure
	control, arithmetic operations and conversion to and from any fixed-point format. The format converters allow for hybrid implementations that combine both fixed and floating-point calculations. This permits the designer to choose between the increased range of floating-point and the increased precision of fixed-point within the same application." Belanovic and Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> at 1.
	"A natural tradeoff exists between smaller bitwidths requiring fewer hardware resources and higher bitwidths providing better precision. Also, within a given total bitwidth, it is possible to assign various combinations of bitwidths to the exponent and fraction fields, where wider exponents result in higher range and wider fractions result in better precision Often, much smaller bitwidths than those specified in the 754 standard are sufficient to provide the desired precision. Reduced bitwidth implementations require fewer resources and thus allow for more parallel implementations than using the full IEEE standard format. In custom hardware designs, it is possible, and indeed desirable, to have full control and flexibility over the exact floating-point format implemented." Belanovic and Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> at 2.
[156c] wherein the dynamic range	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules
of the possible valid inputs to the	for Floating-Point Arithmetic with an Example Application, and his related article with
first operation is at least as wide as from 1/1,000,000 through	Miriam Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> , they made and used a system with the dynamic range of the possible valid inputs to the first
1,000,000 and for at least X=5% of	operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least
the possible valid inputs to the first	X=5% of the possible valid inputs to the first operation, the statistical mean, over
operation, the statistical mean, over	repeated execution of the first operation on each specific input from the at least X% of
repeated execution of the first	the possible valid inputs to the first operation, of the numerical values represented by
operation on each specific input from the at least X% of the possible	the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the
valid inputs to the first operation, of	first operation on the numerical values of that same input. See, e.g.:
the numerical values represented by	inst operation on the numerical values of that same input. See, e.g
the first output signal of the	"The floating-point formats in our work are a generalized superset of all these formats.

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)				Exe	mnlarv	Disclo	sure			
LPHDR unit executing the first	Exemplary Disclosure It includes all the IEEE formats as particular instances of exponent and mantissa									
operation on that input differs by at	bitwidths, as well as the flexible floating-point format presented by Dido et al.[2] and									
least Y=0.05% from the result of an	the two formats by Shirazi et al.[17]." Belanovic, Library of Parameterized Hardware									
exact mathematical calculation of	at 19.									
the first operation on the numerical										
values of that same input; and	"The experim point formats engine (see S floating-poin expressed in Table 2.2 als Floating-poin realistic float single precise	s on the A Section 1 t operator slices of to o represent formats ting-point	Annapo 3). Ta r mod the Xi nt the s used	olis Micr ble 2.2 sl ules. The linx XCV fp_sub n in the ex ats from	o System hows reconstruction of the control of the	ms Wils of ties for FPGA. which of the were bits in	dstar reference the are Results the the chose total bi	econfig nthesis a of ea s for the same a en to re twidth	urable c experin ch instar e fp_ado amount present and incl	computing ments on nce are d module in of logic.
	Hardware at		(121							
			(L1	Table 2.2:	Operator	synthesi			·IC	eter tzeu
		46-47.	total	Table 2.2: Bitwidtlexponent	Operator	synthesi An	s results rea fp_mul	Per fp_add	· IC fp_mul	eter tzeu
		46-47. Format A0	total 8	Table 2.2: Bitwidtlexponent	Operator h fraction 5	synthesi An fp_add 39	s results rea fp_mul 46	Per fp_add 236	FIC fp_mul 200	eter tzeu
		46-47. Format A0 A1	total 8 8	Table 2.2: Bitwidtl exponent 2 3	Operator h fraction 5 4	synthesi An fp_add 39 39	s results rea fp_mul 46 51	Per fp_add 236 236	Fp_mul 200 180	eter tzeu
		46-47. Format A0	total 8	Table 2.2: Bitwidtlexponent	Operator h fraction 5	synthesi An fp_add 39	s results rea fp_mul 46	Per fp_add 236	FIC fp_mul 200	eter tzeu
		A0 A1 A2 B0 B1	total 8 8 8 12 12	Table 2.2: Bitwidtlexponent 2 3 4 3 4	fraction 5 4 3 8 7	synthesi An fp_add 39 39 32 84 80	s results rea fp_mul 46 51 36	Per fp_add 236 236 288	fp_mul 200 180 256	eter tzeu
		46-47. Format A0 A1 A2 B0 B1 B2	total 8 8 8 12 12 12	Table 2.2: Bitwidtlexponent 2 3 4 3 4 5	fraction 5 4 3 8 7 6	synthesi An fp_add 39 39 32 84 80 81	s results rea fp_mul 46 51 36 127 140 108	Per fp_add 236 236 288 109 115 113	FIC fp_mul 200 180 256 72 65 85	rier izeu
		A0 A1 A2 B0 B1 B2 C0	total 8 8 8 12 12 16	Table 2.2: Bitwidtlexponent 2 3 4 3 4 5 4	5 Operator fraction 5 4 3 8 7 6 11	synthesi An fp_add 39 39 32 84 80 81 121	s results rea fp_mul 46 51 36 127 140 108 208	Per fp_add 236 236 288 109 115 113 76	FIC fp_mul 200 180 256 72 65 85 44	rier izeu
		46-47. Format A0 A1 A2 B0 B1 B2	total 8 8 8 12 12 12	Table 2.2: Bitwidtlexponent 2 3 4 3 4 5	fraction 5 4 3 8 7 6	synthesi An fp_add 39 39 32 84 80 81 121 141	s results rea fp_mul 46 51 36 127 140 108 208 178	Per fp_add 236 236 288 109 115 113 76 65	FIC fp_mul 200 180 256 72 65 85 44 51	rier izeu
		A0 A1 A2 B0 B1 B2 C0 C1	total 8 8 8 12 12 16 16	Table 2.2: Bitwidtl exponent 2 3 4 3 4 5 4 5	5 4 3 8 7 6 11	synthesi An fp_add 39 39 32 84 80 81 121	s results rea fp_mul 46 51 36 127 140 108 208	Per fp_add 236 236 288 109 115 113 76	FIC fp_mul 200 180 256 72 65 85 44	rier izeu
		A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1	total 8 8 8 12 12 16 16 16 24 24	Table 2.2: Bitwidtlexponent 2 3 4 3 4 5 4 5 6 6 8	5 4 3 8 7 6 11 10 9 17 15	synthesi An fp_add 39 39 32 84 80 81 121 141 113 221 216	s results rea fp_mul 46 51 36 127 140 108 208 178 150 421 431	Per fp_add 236 236 288 109 115 113 76 65 81 41 42	Fig. 10 180 200 180 256 72 65 85 44 51 61 21 21	zier izeu
		A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2	total 8 8 8 12 12 16 16 16 24 24 24	Table 2.2: Bitwidtlexponent 2 3 4 3 4 5 4 5 6 6 8 10	5 Operator h fraction 5 4 3 8 7 6 11 10 9 17 15 13	synthesi An fp_add 39 39 32 84 80 81 121 141 113 221 216 217	s results rea fp_mul 46 51 36 127 140 108 208 178 150 421 431 275	Per fp_add 236 236 288 109 115 113 76 65 81 41 42 42	FIC fp_mul 200 180 256 72 65 85 44 51 61 21 21 33	rier izeu
		A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2 E0	total 8 8 8 12 12 12 16 16 16 24 24 24 32	Table 2.2: Bitwidtlexponent 2 3 4 3 4 5 6 6 8 10 5	5 Operator h fraction 5 4 3 8 7 6 11 10 9 17 15 13 26	synthesi An fp_add 39 39 32 84 80 81 121 141 113 221 216 217 328	s results rea fp_mul 46 51 36 127 140 108 208 178 150 421 431 275 766	Per fp_add 236 236 288 109 115 113 76 65 81 41 42 42 28	FIC fp_mul 200 180 256 72 65 85 44 51 61 21 21 33 12	zier izeu
		A0 A1 A2 B0 B1 B2 C0 C1 C2 D0 D1 D2	total 8 8 8 12 12 16 16 16 24 24 24	Table 2.2: Bitwidtlexponent 2 3 4 3 4 5 4 5 6 6 8 10	5 Operator h fraction 5 4 3 8 7 6 11 10 9 17 15 13	synthesi An fp_add 39 39 32 84 80 81 121 141 113 221 216 217	s results rea fp_mul 46 51 36 127 140 108 208 178 150 421 431 275	Per fp_add 236 236 288 109 115 113 76 65 81 41 42 42	FIC fp_mul 200 180 256 72 65 85 44 51 61 21 21 33	rier izeu

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)	Exemplary Disclosure
	• •
	"The hardware modules described in Chapter 2 lend themselves to the creation of finely customized hardware implementations of algorithms. They give the designer full freedom to implement various sections of the algorithm in the most suitable arithmetic representation, be it fixed or floating-point. Also, bitwidths of all the signals in the circuit, whether in fixed or floating point representation, can be optimized to the precision required by the values the signal carries.
	When using floating-point arithmetic, the designer using the library has full control to trade off between range and precision. Because all the modules in the library are fully parameterized, the boundary between the exponent and fraction fields for the same total bitwidth is flexible. With a wider exponent field, the designer provides larger range to the signal, while sacrificing precision. Similarly, to increase the precision of a signal at the cost of reduced range, the designer chooses a narrower exponent and wider fraction field." Belanovic, <i>Library of Parameterized Hardware</i> at 50. Thus, the floating point library was capable of implementing various formats for any given bitwidth, and was not limited to the fraction and exponent combinations set forth in Table 2.2 of the Belanovic thesis. The formats implemented by the library could have included, for example, the floating point format, including the exponent and fraction widths described in the following: Sudha et al., <i>An Efficient Digital Architecture for Principal Component Neural Network and its FPGA Implementation</i> (2007) at 428 (each parameter in the design is represented as a floating point number with an 8-bit mantissa and an 8-bit exponent); Tong et al., <i>Reducing Power by Optimizing the Necessary</i>
	Precision/Range of Floating-Point Arithmetic (2000) at 273 (each parameter in the design is represented as a floating point number with a 5-bit fraction and 6-bit exponent); Texas Instruments TMS320C32 DSP (1995) (each parameter in the design is
	represented as a floating point number with a 7-bit fraction and 8-bit exponent); and Cray T3D System (1994) (each parameter in the design is represented as a floating point
	number with a 5-bit fraction and 11-bit exponent).
	"This line of thought was expanded on by the significant work of Shirazi et al. [17] who suggested application-specific formats for image and DSP algorithms in widths of 16

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)				Exemplary D	Disclosure			
	"Resulthe sar	rd." Belano Its for the fp me amount of itwidth, for		ppposed to the Parameterize n Table 2 also esults in Table 3 Belanovic and position of the Parameterize n Table 2 also n Table	full 32 (1-8-ed Hardware represent the 2 show grow	at 18. e fp sub m wth in area	odule, which has with increasing	
	Table 2. Operator synthesis resu					esults	ults	
		Format	Total bits	Exponent	Fraction		ea	
						fp_add	fp_mul	
		A0	8	2	5	39	46	
		A1	8	3	4	39	51	
		A2	8	4	3	32	36	
		$_{ m B0}$	12	3	8	84	127	
		B1	12	4	7	80	140	
		B2	12	5	6	81	108	
		C0	16	4	11	121	208	
		C1	16	5	10	141	178	
		C2	16	6	9	113	150	
		D0	24	6	17	221	421	
		D1	24	8	15	216	431	
		D2	24	10	13	217	275	
		E0	32	5	26	328	766	
		E1	32	8	23	291	674	
		E2	32	11	20	284	536	
	"The a	algorithm ha	s been partition	ned so the dis	tance calcula	ition is per	formed in floating	

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)	Exemplary Disclosure
	point arithmetic with 5 exponent and 6 fraction bits (1-5-6 format), while the comparison and accumulation operations are performed in 12-bit unsigned fixed-point format. Input data is in 12-bit unsigned fixed-point format, so it needs to be converted to the 1-5-6 floating-point representation." Belanovic and Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> at 8-9.
	"Also, all bitwidths in the datapath, whether in fixed or floating-point representation, can be optimized to the precision required for that signal. Hence, designing with our library of parameterized modules avoids expensive inefficiencies that are inherent in designs that operate only in the IEEE standard formats. In fact, such inefficiencies occur in any design that is restricted to using a small set of particular formats, even if these are custom. Using our library of parameterized modules provides the finest-grain control possible over datapath bitwidths. Finally, when using floating-point arithmetic, the designer has full control to trade off between range and precision. Because our modules are fully parameterized, the boundary between the exponent and the fraction for the same total bitwidth is flexible. Thus, with a wider exponent field, the designer has larger range for a value while sacrificing precision. Similarly, to increase the precision of a signal at the cost of reduced range, the designer chooses a narrower exponent and wider fraction field." Belanovic and Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> at 8-9.
	To the extent that Singular contends that this system does not itself identify a floating-point format that meets the particular range and error requirements, notwithstanding its disclosure of a floating point format with 9 fraction bits and 6 exponent bits, that format would have been obvious to one of skill in the art for the reasons explained in the Responsive Contentions Regarding Non-Infringement and Invalidity, which explain how those skilled in the art would mix and match formats depending on application specific needs. <i>See also</i> Belanovic, <i>Library of Parameterized Hardware</i> at 16 (explaining how custom datapaths for fixed- and floating-point arithmetic would have "optimal signal bitwidths throughout the custom datapath [that] are application-specific and depend on the values they carry.") For example, one of skill in the art would have understood the different combinations of fraction and exponent bits (e.g., 5 fraction bits,

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)	Exemplary Disclosure
	6 exponent bits, and one sign bit, for a total of 12 bits) would have been possible and even desired depending on the application. Alternatively, one of skill in the art would have been motivated to apply the teachings of Tong, which included a 5-bit mantissa and 6-bit exponent (see Tong chart) because Tong is cited. See Belanovic, Library of Parameterized Hardware at 73, n.21.
	See also Appendix to Responsive Contentions Regarding Non-Infringement and Invalidity (detailing error rates associated with different mantissa sizes).
[156d] at least one first computing device adapted to control the operation of the at least one first LPHDR execution unit;	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system with at least one first computing device adapted to control the operation of the at least one first LPHDR execution unit. See, e.g.:
	"The Wildstar Reconfigurable Computing Engine
	Reconfigurable computing is characterized by use of hardware elements that have reconfigurable architectures, as opposed to general purpose computing which uses hardware elements with fixed architectures.
	Many reconfigurable computing systems are based on one or more FPGAs connected to a number of memory banks. All designs presented in this project are implemented on the Wildstar reconfigurable computing engine from Annapolis Micro Systems. Figure 1.2 shows the structure of this board.
	Some of the main features of the Wildstar board are: • 3 Xilinx VIRTEX XCV1000 FPGAs, • total of 3 million system gates,
	 40 Mbytes of SRAM, 1.6 Gbytes/sec I/O bandwidth, 6.4 Gbytes/sec memory bandwidth,

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)	Exemplary Disclosure
	computer engine, including (1) a PCI 64, which implies an interconnection with a PC and thus a CPU, and (2) an I/O Card and Controller, which qualifies as a state machine).
	WILDSTAR TM ON PCI SFAM SFAM SFAM SFAM SFAM SFAM SFAM SFAM SFAM Number Consider PC Order Screen SFAM SFAM SFAM SFAM SFAM SFAM SFAM SFAM
	Figure 1.2: Structure of the Wildstar reconfigurable computing engine
	"Field Programmable Gate Arrays (FPGAs) are integrated circuits with a flexible architecture, such that their structure can be programmed by the designer. FPGAs are composed of an array of hardware resources called configurable logic blocks (CLBs). The designer creates the functionality of the overall circuit by configuring CLBs to perform appropriate logic functions. Hence, FPGAs are a form of reconfigurable hardware, combining flexibility similar to software with the speed of specialized hardware." Belanovic, <i>Library of Parameterized Hardware</i> at 13.

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)	Exemplary Disclosure
	"Typically, the parts of the algorithm that are assigned to software are serial or procedural in nature, while the highly parallel, computational parts of the algorithm get implemented in hardware. Custom datapaths are created in reconfigurable hardware to achieve desired functionality. Communication with the general purpose processor is done through memory banks and/or register tables in reconfigurable hardware, both of which are accessible by the custom hardware and the general purpose processor." Belanovic, <i>Library of Parameterized Hardware</i> at 15-16.
[156f] and, wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.	As reflected in Pavle Belanovic's thesis, <i>Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application</i> , and his related article with Miriam Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> , they made and used a system in which the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide. <i>See</i> , <i>e.g.</i> : "Unlike in fixed-point, in floating-point arithmetic multiplication is a relatively straightforward operation compared to addition. This is due to the sign-exponent-magnitude
	nature of the floating-point format. The sign of the product is the exclusive OR (XOR) of the operand signs. The exponent of the product is the sum of the operand exponents. The mantissa is the product of the operand mantissas. Note that the operations on all three fields of the floating-point format are independent and can be implemented in parallel. The structure of the floating-point multiplier is shown in Figure 2." Belanovic and Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> at 4-5.

Exhibit 10 – Belanovic and Leeser

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)	Exemplary Disclosure
	rounding and normalizing functionality each, for the IEEE single precision format.
	Similarly, a useful custom floating-point format, with 5 exponent and 6 mantissa bits for example, may provide the designer with up to 113 addition or 85 multiplication modules, all also complete with full format handling functionalities, on the same FPGA." Belanovic, <i>Library of Parameterized Hardware</i> at 34.
	"Some of the main features of the Wildstar board are: 3 Xilinx VIRTEX XCV1000 FPGAs." Belanovic, <i>Library of Parameterized Hardware</i> at 14.
	"All these modules are specified in VHDL and implemented on the Wildstar reconfigurable computing engine from Annapolis Microsystems, using a Xilinx XCV1000 FPGA. Synthesis results for parameterized arithmetic operator modules are presented in Table 2, for a set of floating-point formats labeled A0 through E2." Belanovic and Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> at 7.
	Thus, the system described by Belanovic and Leeser could have a total of 255 LPHDR execution units (85 multiplication modules per each of three FPGAs).
	"[I]t can be concluded that the three fields of the floating-point format do not interact during multiplication and can thus be processed at the same time, in parallel. The sign of the product is given as the exclusive OR (XOR) of the input value signs. Mantissa of the product is calculated by fixed-point multiplication of the input value mantissas, while the exponents of the input values are added to give the exponent of the product.
	To the extent that Singular contends that Belanovic's thesis does not identify a device with at least 100 multiplication execution units, notwithstanding its disclosure of a system with 255 such units, such a device would have been obvious given intervening FPGA developments for the reasons explained in the Responsive Contentions Regarding Non-Infringement and Invalidity.

Case 1:19-cv-12551-FDS Document 377-21 Filed 11/03/22 Page 17 of 22

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 7)	Exemplary Disclosure
	"Often, much smaller bitwidths than those specified in the 754 standard are sufficient to provide the desired precision. Reduced bitwidth implementations require fewer resources and thus allow for more parallel implementations than using the full IEEE standard format. In custom hardware designs, it is possible, and indeed desirable, to have full control and flexibility over the exact floating-point format implemented." Belanovic and Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> at 2.
	"Each component is parameterized by exponent and mantissa bitwidths. Each component has a ready and a done signal to allow them to be easily assembled into larger designs." Belanovic and Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> at 3.

'273 Patent

Claim Limitation (Claim 53)	Exemplary Disclosure
[273a] A device:	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system that consists of a device. See [156a]
[273b] comprising at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system with at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first input signal representing a first numerical value to produce a first output signal representing a second numerical value. See [156b].
[273c] wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first	As reflected in Pavle Belanovic's thesis, <i>Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application</i> , and his related article with Miriam Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> , they made and used a system with the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input. <i>See</i> [156c].
operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values	To the extent that Singular contends that this system does not itself identify a floating-point format that meets the particular range and error requirements, notwithstanding its disclosure of a floating point format with 9 fraction bits and 6 exponent bits, that format would have been obvious to one of skill in the art for the

Case 1:19-cv-12551-FDS Document 377-21 Filed 11/03/22 Page 19 of 22

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 53)	Exemplary Disclosure
of that same input;	reasons explained in the Responsive Contentions Regarding Non-Infringement and Invalidity.
[273d] wherein the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide.	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system in which the number of LPHDR execution units in the device exceeds by at least one hundred the non-negative integer number of execution units in the device adapted to execute at least the operation of multiplication on floating point numbers that are at least 32 bits wide. See [156f].

'961 Patent

Claim Limitation (Claim 4)	Exemplary Disclosure
[961a] A device comprising:	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system that consists of a device. See [156a].
[961b] at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical value,	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system with at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first input signal representing a first numerical value to produce a first output signal representing a second numerical value. See [156b].
[961c] wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=10% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.2%	As reflected in Pavle Belanovic's thesis, <i>Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application</i> , and his related article with Miriam Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> , they made and used a system with the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input. <i>See</i> [156c].
from the result of an exact mathematical calculation of the first operation on the numerical values of that same input; and	To the extent that Singular contends that this system does not itself identify a floating-point format that meets the particular range and error requirements, notwithstanding its disclosure of a floating point format with 9 fraction bits and

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 4)	Exemplary Disclosure
	6 exponent bits, that format would have been obvious to one of skill in the art for the reasons explained in the Responsive Contentions Regarding Non-Infringement and Invalidity.
[961d] at least one first computing device adapted to control the operation of the at least one first LPHDR execution unit.	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system with at least one first computing device adapted to control the operation of the at least one first LPHDR execution unit. See [156d].

Claim Limitation (Claim 13)	Exemplary Disclosure
[961e] A device comprising:	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system that consists of a device. See [156a].
[961f] a plurality of components comprising:	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system with at least one first computing device adapted to control the operation of the at least one first LPHDR execution unit. See above [156d].
[961g] at least one first low precision high-dynamic range (LPHDR) execution unit adapted to execute a first operation on a first input signal representing a first numerical value to produce a first output signal representing a second numerical	As reflected in Pavle Belanovic's thesis, Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application, and his related article with Miriam Leeser, Library of Parameterized Floating-Point Modules and Their Use, they made and used a system with at least one first low precision high dynamic range (LPHDR) execution unit adapted to execute a first input signal representing a first numerical value to produce a first output

Exhibit 10 – Belanovic and Leeser

Claim Limitation (Claim 13)	Exemplary Disclosure
value,	signal representing a second numerical value. See [156b].
[961h] wherein the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=10% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.2% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input.	As reflected in Pavle Belanovic's thesis, <i>Library of Parameterized Hardware Modules for Floating-Point Arithmetic with an Example Application</i> , and his related article with Miriam Leeser, <i>Library of Parameterized Floating-Point Modules and Their Use</i> , they made and used a system with the dynamic range of the possible valid inputs to the first operation is at least as wide as from 1/1,000,000 through 1,000,000 and for at least X=5% of the possible valid inputs to the first operation, the statistical mean, over repeated execution of the first operation on each specific input from the at least X% of the possible valid inputs to the first operation, of the numerical values represented by the first output signal of the LPHDR unit executing the first operation on that input differs by at least Y=0.05% from the result of an exact mathematical calculation of the first operation on the numerical values of that same input. <i>See</i> [156c]. To the extent that Singular contends that this system does not itself identify a floating-point format that meets the particular range and error requirements, notwithstanding its disclosure of a floating point format with 9 fraction bits and 6 exponent bits, that format would have been obvious to one of skill in the art for the reasons explained in the Responsive Contentions Regarding Non-
	Infringement and Invalidity.