FOGLIO DI ESERCIZI 4

...E FINALMENTE UN PO' DI ALGEBRA!

Esercizio 1 (Automorfismi di \mathbb{Z}^2). Lo scopo di questo esercizio è mostrare che il gruppo di automorfismi di gruppo di \mathbb{Z}^2 è isomorfo a $GL(2,\mathbb{Z})$.

• Mostare che, dati $a,b,c,d\in\mathbb{Z}$, l'applicazione

$$(n,m) \mapsto (an + bm, cn + dm)$$
 (1)

definisce un omomorfismo di gruppi da \mathbb{Z}^2 in se stesso.

- Mostrare che una matrice $A \in \mathcal{M}(2 \times 2, \mathbb{Z})$ è invertibile in $\mathcal{M}(2 \times 2, \mathbb{Z})$ se e solo se $\det A = \pm 1$.
- Dedurre che, data $A \in GL(2,\mathbb{Z})$, con entrate a,b,c,d, (1) definisce un automorfismo di \mathbb{Z}^2 .
- Mostrare che tutti gli automorfismi di \mathbb{Z}^2 sono della forma (1).
- Mostare che questa costruzione induce un isomorfismo tra il gruppo degli automorfismi di \mathbb{Z}^2 e $GL(2,\mathbb{Z})$.

Esercizio 2 (Riemann-Hurwitz per funzioni meromorfe). Data la funzione meromorfa su $\mathbb{C}P^1$ definita da:

$$f(z) = \frac{z^3}{1 - z^2}$$
,

- \bullet Calcolare gli zeri ed i poli di f ed i relativi ordini.
- Verificare la formula

$$\sum_{p \in \mathbb{C}\mathrm{P}^1} \mathrm{ord}_p(f) = 0.$$

- ullet Trovare i punti di ramificazione e di diramazione di f.
- Verificare la formula di Riemann-Hurwitz.

Esercizio 3 (Ottimalità del teorema di Harnack). Consideriamo il sottoinsieme Σ di \mathbb{C}^2 definito da

$$y^2 = x^3 - x .$$

- Mostrare che il proiettivizzato di Σ è una curva algebrica proiettiva nonsingolare in $\mathbb{C}\mathrm{P}^2$.
- Mostrare che $\{(x,y)\in\mathbb{R}^2:y^2=x^3-x\}$ ha due componenti connesse, una compatta ed una illimitata. Trovare i punti all'infinito.
- Dedurre che l'insieme dei punti di Σ in $\mathbb{R}P^2$ ha due componenti connesse.
- Verificare che $\Sigma \cap \mathbb{R}P^2$ ha un numero di componenti connesse massimale rispetto al teorema di Harnack.

1

Esercizio 4 (Mappa antipodale). Verificare che la mappa antipodale sulla sfera di Riemann è espressa, nelle coordinate date da una carta affine, da

$$z\mapsto -\frac{1}{\overline{z}}$$
.

Esercizio 5 (Curve iperellittiche). Consideriamo il sottoinsieme

$$\Sigma = \{(z, w) \in \mathbb{C}^2 : z^2 = p(w)\},\$$

dove p è un polinomio di grado n > 2.

Ricordare che, per il teorema fondamentale dell'algebra, p si scrive nella forma

$$p(w) = (w - a_1) \cdots (w - a_n)$$

per $a_1, \ldots, a_n \in \mathbb{C}$.

- Mostrare che il polinomio $p(z,w)=z^2-p(w)$ è riducibile se e soltanto se p è della forma $p(w)=q(w)^2$.
- Supponiamo d'ora in poi che gli a_1, \ldots, a_n sono a due a due distinti. Osservare che $p'(a_i) \neq 0$ per $i = 1, \ldots, n$.
- Mostrare che Σ è una curva algebrica liscia in \mathbb{C}^2 . (Suggerimento: distinguere i casi z = 0 e $z \neq 0$.)
- Dedurre dai punti precedenti che Σ è superficie di Riemann.
- Mostrare che la mappa $\pi:\Sigma\to\mathbb{C}$ definita da $\pi(z,w)=w$ ha grado due, e trovare i punti di ramificazione e diramazione.

Esercizio 6 (Rivestimenti ramificati tra curve di Fermat). Consideriamo la curva di Fermat di grado m, definita da

$$\Sigma_m = \{ [X:Y:Z] : X^m + Y^m + Z^m = 0 \}.$$

• Mostrare che la mappa F definita da

$$[X:Y:Z] \mapsto [X^p:Y^p:Z^p]$$

è ben definita come applicazione da $\mathbb{C}P^2$ a $\mathbb{C}P^2$, ed induce un'applicazione olomorfa da Σ_{mp} a Σ_m .

- Mostrare che la preimmagine di un elemento di Σ_m avente tutte le coordinate non nulle è composta da p^2 elementi, e dedurre che F ha grado p^2 .
- Mostrare che il gruppo composto dagli elementi

$$[X:Y:Z] \mapsto [\omega^i X:\omega^j Y:\omega^k Z]$$
,

dove ω è una radice p-esima dell'identità, agisce su Σ_{mp} per biolomorfismi, in maniera transitiva sulle fibre di F, ed il sottogruppo che agisce banalmente su Σ_{mp} ha ordine p.

- Quanti e quali sono i punti di ramificazione e diramazione?
- Utilizzando la formula per il genere della curva di Fermat, verificare la formula di Riemann-Hurwitz.