

ESCUELA POLITÉCNICA NACIONAL

FACULTAD DE CIENCIAS COMPLEMENTOS DE CÁLCULO DEBER 01. LÍMITES DE SUCESIONES.

Fecha entrega: 2015/10/13

EJERCICIOS

1. Demuestre que la sucesión de término a_n converge a L:

1.1
$$a_n = \frac{n-1}{n+1}, L = 1.$$

$$a, b \neq 0.$$

1.2
$$a_n = \frac{2n}{n+2}, L = 2.$$

1.4
$$a_n = \frac{2\sqrt{n}+5^{-n}}{\sqrt{n}+1}, L=2.$$

1.3
$$a_n = \frac{an+1}{bn+1}$$
, $L = \frac{a}{b}$ para cualesquier **1.5** $a_n = \frac{n(n+1)}{2(n^2+1)}$, $L = \frac{1}{2}$.

1.5
$$a_n = \frac{n(n+1)}{2(n^2+1)}, L = \frac{1}{2}.$$

2. Calcule el límite de la sucesión a_n , cuando $n \to \infty$:

2.1
$$a_n = \frac{4}{3n+1}$$
.

2.6
$$a_n = n^2 + (-1)^n n$$
.

2.2
$$a_n = \frac{4n^2 + 2n - 1}{5n^2 + 10n}$$
.

2.7
$$a_n = (n+4)\sqrt{\frac{1}{3n^2+5}}$$

2.3
$$a_n = \sqrt{n^2 - 2} - \sqrt{n^2 + n}$$
.

2.8
$$a_n = \frac{6n^5 + n}{3n^5 + 1}$$
.

2.4
$$a_n = \sqrt{n+k} - \sqrt{n}$$
 para algún $k \in N$

2.9
$$a_n = \frac{3t}{-1+\sqrt{t}}$$
.

2.5
$$a_n = (-1)^n \frac{n-3}{n}$$
.

2.10
$$a_n = \frac{\sqrt{2n+1}}{\sqrt{n}}$$
.