## Yakeen NEET 2.0 2026

## Physics by Saleem Sir

## **Units and Measurements**

**DPP: 06** 

- Q1 Dimension of R(Resistance) is:
  - (A)  $ML^2T^{-1}$
  - (B)  $ML^2T^{-3}A^{-2}$
  - (C)  $ML^{-1}T^{-2}$
  - (D) None of these
- Q2 How many fundamental physical quantities are in Physics?
  - (A)5
- (B)7

(C) 2

- (D) 9
- **Q3** The dimension of  $\frac{1}{\sqrt{\varepsilon_0 \mu_0}}$  is that of:
  - (A) Velocity
- (B) Time
- (C) Capacitance
- (D) Distance
- **Q4** Gas bubble oscillates with a time period Tproportional of  $P^{\mathrm{a}}d^{\mathrm{b}}E^{\mathrm{c}}$  where P is pressure, dis the density and E is the energy. The values of a,b&c are

  - (A)  $a=\frac{1}{2}, b=-\frac{1}{3}, c=\frac{1}{2}$ (B)  $a=-\frac{5}{6}, b=\frac{1}{3}, c=\frac{1}{2}$ (C)  $a=-\frac{5}{6}, b=\frac{1}{2}, c=\frac{1}{3}$ (D)  $a=\frac{3}{2}, b=-\frac{1}{3}, c=\frac{1}{2}$
- Q5 Imagine a system of units in which the unit of mass is 10 kg, length is 1 km and time is 1 minute. Then  $1\ \mathrm{J}$  in this system is equal to units of work:
  - (A) 360
  - (B) 3.6
  - (C)  $3.6 imes 10^5$
  - (D)  $36 \times 10^{-5}$
- Q6 In a particular system of unit, if the unit of mass becomes twice and that of time becomes half, then 8 joules will be written as \_\_\_\_units of work.
  - (A) 16
- (B) 1

(C)4

- (D) 64
- Q7 The dimensional formula for moment of couple is
  - (A)  $\left[\mathrm{ML^2~T^{-2}}\right]$
  - (B)  $\left[\mathrm{MLT}^{-2}\right]$
  - (c)  $ML^{-1} T^{-3}$
  - (D)  $ML^{-2} T^{-2}$
- The number of particles crossing per unit area perpendicular to x-axis in unit time is  $N=-Drac{n_1-n_2}{x_2-x_1}$  where  $n_1$  and  $n_2$  are number of particles per unit volume for  $x_1$  and  $x_2$ respectively. The dimensions of diffusion constant D are
  - (A)  $\left[\mathrm{ML}^{0}\ \mathrm{T}^{2}\right]$
  - (B)  $[M^0 L^2 T^{-4}]$
  - (C)  $\left[\mathrm{M}^{0}\mathrm{LT^{-3}}\right]$
  - (D)  $[M^0 L^2 T^{-1}]$
- **Q9** In the relation  $P=rac{lpha}{eta}e^{rac{-lpha z}{K heta}}\mathrm{P}$  is pressure,  $\mathrm{Z}$  is the distance, K is Boltzmann's constant and  $\theta$  is the temperature. The dimensional formula of  $\alpha$  will
  - (A)  $[M^1 L^1 T^{-2}]$
  - (B)  $[M^1 L^2 T^1]$
  - (c)  $[M^1 L^0 T^{-1}]$
  - (D)  $\lceil \mathrm{M}^0 \ \mathrm{L}^2 \ \mathrm{T}^{-1} \rceil$
- Q10 The potential energy of a particle series with distance x from a fixed origin as  $U=rac{A\sqrt{x}}{x^2+B}$ , where A and B are dimensional constants then dimensional formula for AB is:

  - (B)  $\left[\mathrm{ML}^{11/2}\ \mathrm{T}^{-2}
    ight]$

  - (D) [ML13/2 T-3]

## **Answer Key**

| Q1 | (B) | Q6  | (B) |
|----|-----|-----|-----|
| Q2 | (B) | Q7  | (A) |
| Q3 | (A) | Q8  | (D) |
| Q4 | (C) | Q9  | (A) |
| Q5 | (D) | Q10 | (B) |



Master NCERT with PW Books APP

