Chapter 1

Fuzzy Sets

Sets.

Elements of sets

- X: an universal set
- \blacksquare A: a set A in the universal set X $(A \subseteq X)$
- x: an element x is included in the set A ($x \in A$)
- For a set A, we define a membership function μ_A such as $\mu_A(\mathbf{x}) = \begin{cases} 1 & \text{if and only if } x \in A \\ 0 & \text{if and only if } x \notin A \end{cases}$

Sets.

Relation between sets

- Family of sets $\{A_i | i \in I\}$
- $A \subseteq B$ iff (if and only if) $x \in A \Rightarrow x \in B$
- If $A \subseteq B$ and $B \subseteq A$ then A = B
- $A \subseteq B$ and $A \ne B$ then $A \subseteq B$ (A is called a **proper subset** of B)

Operation of Sets >

- \blacksquare Complement $B A = \{x \mid x \in B, xA\}$
- \blacksquare Union $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
- \blacksquare Intersection $A \cap B = \{x \mid x \in A \text{ and } x \in B \}$
- # Partition $\pi(A) = \{A_i \mid i \in I, A_i \subseteq A\}$
 - (1) $A_i \neq \emptyset$
 - (2) $A_i \cap A_j = \emptyset$ $i \neq j$ $i, j \in I$
 - $(3) \bigcup_{i \in I} A_i = A$

Characteristics of Crisp Set >

(1) Involution	$(\overline{\overline{A}})=A$
(2) Commutativity	$A \cup B = B \cup A$ $A \cap B = B \cap A$
(3) Associativity∌	$(A \cup B) \cup C = A \cup (B \cup C)$ $(A \cap B) \cap C = A \cap (B \cap C)$
A) Distributivity	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
(B) Idempotency	$A \cup A = A, A \cap A = A$
6) Law of contradiction	$A \cap \overline{A} = \emptyset$
(7) Law of excluded middle	$A \cup \overline{A} = X$
(8) De Morgan's law)	$\overline{A \cap B} = \overline{A} \cup \overline{B} \qquad \overline{A \cup B} = \overline{A} \cap \overline{B}$

Characteristics of Crisp Set

Convex set

The term convex is applicable to a set A in \mathbb{R}^n (n-dimensional Euclidian ve ctor space) if the followings is satisfied;

For two arbitrary points s and r are defined in A, point t is involved in A where t is

$$t = (\lambda r_i + (1 - \lambda)s_i \mid i \in N_n)$$

Characteristics of Crisp Set

Convex set(example)

Fig 1.1 convex sets A1, A2, A3 and non-convex sets A4, A5, A6 in R²

Definition of Fuzzy Set >

■ Definition (Membership function of fuzzy set)

In fuzzy sets, each elements is mapped to [0,1]

by membership function.

$$\mu_A: X \rightarrow [0, 1]$$

Where [0,1] means real numbers between 0 and 1 (including 0 and 1).

Definition of fuzzy set

Example 1.2

Fig 1.2 Graphical representation of crisp set

Fig 1.3 Graphical representation of fuzzy set

Examples of fuzzy set (1)

A= "young", B="very young"

Fig 1.5 Fuzzy sets representing "young" and "very young"

Examples of fuzzy set >

$$A = \{\text{real number near 0}\}$$

$$A = \int \mu_A(x)/x \quad \text{where } \mu_A(x) = \frac{1}{1+x^2}$$

Fig 1.6 membership function of fuzzy set "real number near 0"

Examples of fuzzy set >

$$\blacksquare B = \{\text{real number very near } 0\}, \ \mu_B(x) = \left(\frac{1}{1+x^2}\right)^2$$

Fig 1.7 membership function for "real number very near to 0"

Examples of fuzzy set >

Example of Fuzzy Set

 $X = \{5, 15, 25, 35, 45, 55, 65, 75, 85\}$: age domain

age(element	infant	young.	adult♪	senior.	
33	POD	Pop	Pop	Pop	
₹5♪	तवर	0.2	Ø. 1D	201	
₽5♪	त्वर	27.5	0.91	201	
₿5♪	त्वर	0.8)	DID	201	
45)	त्तर	0.4)	27.0	Ø. 1♪	
₿5♪	रवर	Ø. 1D	27.0	0.2)	
₿5♪	रवर	201	DID	Ø.6»	
75)	त्वर	201	27.0	مرار	
₿5♪	त्वर	701	کر اک	مرار	
>	D 11 1 2		>	♪	
Table 1.2 example of fuzzy set					

Expanding Concepts of Fuzzy Set

Support

$$Support(A) = \{x \in X \mid \mu_A(x) > 0\}$$

: a set that is made up of elements contained in A

ex)
$$Support(youth) = \{15, 25, 35, 45, 55\}$$

Height: maximum value of the membership

Fig 1.9 Non-Normalized Fuzzy Set and Normalized Fuzzy Set

α-Cut Set ♪

α-cut set

- $A_{\alpha} = \{x \in X \mid \mu_{A}(x) \ge \alpha\}, \alpha \text{ is an arbitrary real number in } [0,1]$
- \blacksquare α -cut set is a crisp set

Example 1.11

- \bullet Young_{0,2} = {12, 25, 35, 45}
- If α =0.4, Young_{0.4} = {25, 35, 45}
- If α =0.8, Young_{0.8} = {25, 35}

α-Cut Set♪

Fig 1.10 α -cut set $\alpha \leq \alpha'$, $A_{\alpha} \subseteq A_{\alpha'}$

Convex Fuzzy Set ♪

♯ Convex fuzzy set(1)

$$\mu_A(t) \ge \text{Min}[\mu_A(r), \mu_A(s)]$$

where
$$t = \lambda r + (1 - \lambda)s$$
 $r, s \in \mathcal{R}^n, \lambda \in [0, 1]$

Convex Fuzzy Set ♪

♯ Convex fuzzy set(2)

Non-Convex Fuzzy Set $\mu_A(t) \leq \mu_A(r)$

The magnitude of fuzzy set >

- \blacksquare scalar cardinality $|A| = \sum_{x \in X} \mu_A(x)$
- \blacksquare relative cardinality $||A|| = \frac{|A|}{|X|}$
 - ex) |senior| = 0.1 + 0.4 + 1 = 1.5, |X| = 6, ||senior|| = 1.5/6 = 0.25

The magnitude of Fuzzy set

♯ Fuzzy cardinality

$$\mu_{|A|}(|A_{\alpha}|) = \alpha, \quad \alpha \in \Lambda_A$$

where A_{α} is α – cut set.

$$\begin{array}{lll} & \text{tx} & \text{ex}) & \text{senior}_{0.1} = \{45, \, 55, \, 65, \, 75, \, 85\}, & |\text{senior}_{0.1}| = 5, \\ & \text{senior}_{0.2} = \{55, \, 65, \, 75, \, 85\}, & |\text{senior}_{0.2}| = 4, \\ & \text{senior}_{0.6} = \{65, \, 75, \, 85\}, & |\text{senior}_{0.6}| = 3, \\ & \text{senior}_{1.0} = \{75, \, 85\}, & |\text{senior}_{1.0}| = 2. \end{array}$$
 Fuzzy cardinality $|\text{senior}|_{\text{F}} = \{(5, \, 0.1), \, (4, \, 0.2), \, (3, \, 0.6), \, (2, 1)\}$

Subset of fuzzy set >

- \blacksquare equivalence: A = B iff $\mu_A(x) = \mu_B(x)$, $\forall x \in X$
- # subset : $A \subseteq B$ iff $\mu_A(x) \le \mu_B(x)$, $\forall x \in X$

Fig 1.15 Subset $A \subset B$