LAB4

牛庆源 PB21111733

• 1.and2.

No.	Time	Source	Destination	Protocol	Length Info
Г	1 0.000000	192.168.1.102	128.119.245.12	TCP	62 1161 → 80 [SYN] Seq=0 Win=16384 Len=0 MSS=1460 SA(
	2 0.023172	128.119.245.12	192.168.1.102	TCP	62 80 → 1161 [SYN, ACK] Seq=0 Ack=1 Win=5840 Len=0 MS
	3 0.023265	192.168.1.102	128.119.245.12	TCP	54 1161 → 80 [ACK] Seq=1 Ack=1 Win=17520 Len=0
	4 0.026477	192.168.1.102	128.119.245.12	TCP	619 1161 → 80 [PSH, ACK] Seq=1 Ack=1 Win=17520 Len=569
	5 0.041737	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [PSH, ACK] Seq=566 Ack=1 Win=17520 Len=1
	6 0.053937	128.119.245.12	192.168.1.102	TCP	60 80 → 1161 [ACK] Seq=1 Ack=566 Win=6780 Len=0
	7 0.054026	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [ACK] Seq=2026 Ack=1 Win=17520 Len=1460
	8 0.054690	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [ACK] Seq=3486 Ack=1 Win=17520 Len=1460
	9 0.077294	128.119.245.12	192.168.1.102	TCP	60 80 → 1161 [ACK] Seq=1 Ack=2026 Win=8760 Len=0
1	0 0.077405	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [ACK] Seq=4946 Ack=1 Win=17520 Len=1460
1	1 0.078157	192.168.1.102	128.119.245.12	TCP	1514 1161 → 80 [ACK] Seq=6406 Ack=1 Win=17520 Len=1460
1	2 0.124085	128.119.245.12	192.168.1.102	TCP	60 80 → 1161 [ACK] Seq=1 Ack=3486 Win=11680 Len=0

- 1.将文件传输到gaia.cs.umass.edu的客户端ip地址为192.168.1.102,端口号为1161
- 2.gaia.cs.umass.edu的IP地址是128.119.245.12,端口号为80

• 3.

No.	Time	Source	Destination	Protocol	Length Info
	381 12.970158	128.119.245.12	202.141.190.132	TCP	60 80 → 64146 [ACK] Seq=1 Ack=18268 Win=65792 Len=0
	382 12.970158	128.119.245.12	202.141.190.132	TCP	60 80 → 64146 [ACK] Seq=1 Ack=24108 Win=77440 Len=0
	383 12.970158	128.119.245.12	202.141.190.132	TCP	60 80 → 64146 [ACK] Seq=1 Ack=34328 Win=97920 Len=0
	384 12.970158	128.119.245.12	202.141.190.132	TCP	60 80 → 64146 [ACK] Seq=1 Ack=31408 Win=92032 Len=0
	385 12.970226	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=47468 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembl
	386 12.970226	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [PSH, ACK] Seq=48928 Ack=1 Win=131328 Len=1460 [TCP segment of a reas
	387 12.970226	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=50388 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembl
	388 12.970226	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=51848 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembl…
	389 12.970226	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=53308 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembl…
	390 12.970226	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=54768 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembl…
	391 12.970226	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=56228 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembl
	392 12.970226	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=57688 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembl
	393 12.970226	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=59148 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembl

本机客户端ip地址为202.141.190.132,端口号为64146

4.and5.

330 12.344860	202.141.190.132	128.119.245.12	TCP	66 64148 → 80 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 WS=256 SACK_PERM
331 12.364554	128.119.245.12	202.141.190.132	TCP	66 80 → 64146 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK PERM WS=128

> Flags: 0x002 (SYN)

4.TCP SYN段序号为0(由seq=0可得),在flags标识SYN段

Acknowledgment Number: 1 (relative ack number)

```
Flags: 0x012 (SYN, ACK)

000. ... = Reserved: Not set
... 0 ... = Accurate ECN: Not set
... 0 ... = Congestion Window Reduced: Not set
... 0 ... = ECN-Echo: Not set
... 0 ... = Urgent: Not set
... 1 ... = Acknowledgment: Set
... 1 ... = Acknowledgment: Set
... 0 ... = Push: Not set
... 0 ... = Reset: Not set
... 0 ... = Reset: Not set
... 0 ... = Fin: Not set
[TCP Flags: ... A··S·]
```

5.SYN,ACK段序列号为0(由seq=0可得), ACK为1, flags标识该段

• 6.

post存在于PSH,ACK段,其序列号为1 (seq=1)

7.

				,
334 12.364869	202.141.190.132	128.119.245.12	TCP	801 $64146 \rightarrow 80$ [PSH, ACK] Seq=1 Ack=1 Win=131328 Len=747 [TCP segment of a reassembled PDU]
335 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=748 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembled PDU]
336 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 \rightarrow 80 [ACK] Seq=2208 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembled PDU]
337 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=3668 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembled PDU]
338 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=5128 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembled PDU]
339 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 $ ightarrow$ 80 [ACK] Seq=6588 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembled PDU]
340 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=8048 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembled PDU]
341 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=9508 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembled PDU]
342 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=10968 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembled PDU]
343 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 \rightarrow 80 [ACK] Seq=12428 Ack=1 Win=131328 Len=1460 [TCP segment of a reassembled PDU]
344 12.395713	128.119.245.12	202.141.190.132	TCP	66 80 → 64147 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM WS=128
345 12.395798	202.141.190.132	128.119.245.12	TCP	54 64147 → 80 [ACK] Seq=1 Ack=1 Win=131328 Len=0

前6个段的序列号为1 748 2208 3668 5128 6588,

分段1在12.364869s发送,

剩下五个分段在12.364954s并发发送

351 12.661227	128.119.245.12	202.141.190.132	TCP	60 80 → 64146 [ACK] Seq=1 Ack=748 Win=30720 Len=0
352 12.661265	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=13888 Ack=1 Win=131328 Len=1460 [TCP se
353 12.661321	128.119.245.12	202.141.190.132	TCP	60 80 → 64146 [ACK] Seq=1 Ack=6588 Win=42496 Len=0

收到了两个ACK分别为748和6588,分别为第二段和第六段的序列号,即第一段和第五段返回的ACK,收到的时间分别为12.661227s和12.661321s,

依据时间差计算得到第一段和第五段的RTT分别为0.296358s和0.296367s

第一段的EstimatedRTT1 = SampleRTT1 = 0.296358s

第五段的EstimatedRTT5 = 0.875 * EstimatedRTT1 + 0.125 * SampleRTT5 = 0.296359s

• 8.

由题7图可知第一段为747bytes,剩下都为1460bytes

• 9.

80 → 64146 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS=1460 SACK_PERM WS=128

the minimum amount of available buffer space 是 29200bytes (win)

由题八答可知最大为1460bytes不超过29200bytes所以没有限制

10.

341 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=9508 Ack=1 Win=131328 Len=1460 [
342 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=10968 Ack=1 Win=131328 Len=1460
343 12.364954	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=12428 Ack=1 Win=131328 Len=1460
344 12.395713	128.119.245.12	202.141.190.132	TCP	66 80 → 64147 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS
345 12.395798	202.141.190.132	128.119.245.12	TCP	54 64147 → 80 [ACK] Seq=1 Ack=1 Win=131328 Len=0
346 12.402099	128.119.245.12	202.141.190.132	TCP	60 80 → 64137 [FIN, ACK] Seq=778 Ack=153070 Win=244608 L
347 12.402123	202.141.190.132	128.119.245.12	TCP	54 [TCP Dup ACK 96#1] 64137 → 80 [ACK] Seq=153070 Ack=1
349 12.642135	128.119.245.12	202.141.190.132	TCP	66 80 → 64148 [SYN, ACK] Seq=0 Ack=1 Win=29200 Len=0 MSS
350 12.642230	202.141.190.132	128.119.245.12	TCP	54 64148 → 80 [ACK] Seq=1 Ack=1 Win=131328 Len=0
351 12.661227	128.119.245.12	202.141.190.132	TCP	60 80 → 64146 [ACK] Seq=1 Ack=748 Win=30720 Len=0
352 12.661265	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=13888 Ack=1 Win=131328 Len=1460
353 12.661321	128.119.245.12	202.141.190.132	TCP	60 80 → 64146 [ACK] Seq=1 Ack=6588 Win=42496 Len=0
354 12.661321	128.119.245.12	202.141.190.132	TCP	60 80 → 64146 [ACK] Seq=1 Ack=13888 Win=57088 Len=0
355 12.661360	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=15348 Ack=1 Win=131328 Len=1460
356 12.661360	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [PSH, ACK] Seq=16808 Ack=1 Win=131328 Len=
357 12.661360	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=18268 Ack=1 Win=131328 Len=1460
358 12.661360	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=19728 Ack=1 Win=131328 Len=1460
359 12.661360	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=21188 Ack=1 Win=131328 Len=1460
360 12.661360	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=22648 Ack=1 Win=131328 Len=1460
361 12.661360	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=24108 Ack=1 Win=131328 Len=1460
362 12.661360	202.141.190.132	128.119.245.12	TCP	1514 64146 → 80 [ACK] Seq=25568 Ack=1 Win=131328 Len=1460

由标记的内容可知seq是在不断增大的(由12.364954s到12.661265s到12.661360s时, seq仍然在一直增大),因此没有重传

11.

```
66 80 → 64146 [ACK] Seq=1 Ack=64988 Win=162176 Len=0 SLE=82508 SRE=83255
66 80 → 64146 [ACK] Seq=1 Ack=66448 Win=165120 Len=0 SLE=82508 SRE=83255
66 80 → 64146 [ACK] Seq=1 Ack=72288 Win=176768 Len=0 SLE=82508 SRE=83255
66 80 → 64146 [ACK] Seq=1 Ack=79588 Win=178432 Len=0 SLE=82508 SRE=83255
60 80 → 64146 [ACK] Seq=1 Ack=83255 Win=181632 Len=0
60 80 → 64146 [ACK] Seq=1 Ack=90555 Win=179584 Len=0
60 80 → 64146 [ACK] Seq=1 Ack=97855 Win=179584 Len=0
```

Ack差为1460bytes的整数倍

12.

 331 $^{12.364554}$ $^{128.119.245.12}$ $^{128.119.245.12}$ $^{202.141.190.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.132}$ $^{129.119.129}$ 1

13.

后续都为拥塞避免 (类似下图)

区别为在拥塞避免阶段每隔一个RTT拥塞窗口增加5,而不是1

• 14.

(这题是后面重新抓包后做的,可能与之前数据有所偏差)

慢启动阶段为下图,每隔一个RTT,增长约为指数速度增长

后续为拥塞避免阶段 区别为慢启动阶段不是严格的指数速度增长