E1: WHYD/MKSS - When and How You Die/Millal ja Kuidas Sa Sured

Peeter Pissarenko, Martin Toomiste

Repository: https://github.com/PeeterPissarenko/MKSS

Business Understanding

- Identifying your business goals
 - Background
 - Life expectancy around the world is increasing but causes of death also vary more.
 - Business goals
 - Predict the cause and date of death based on nationality, birth date and sex.
 - o Business success criteria
 - We want to achieve accuracy above 80% on test data.
- Assessing your situation
 - Inventory of resources
 - Team: Martin Toomiste and Peeter Pissarenko
 - Data: Several csv files of different views on life expectancy
 - Tools: Python, machine learning libraries (e.g. scikit-learn, pandas, numpy) and visualization libraries (e.g. seaborn)
 - Requirements, assumptions, and constraints
 - Requirements
 - Sufficiently cleaned data on: life expectancy based on nationality, life expectancy based on sex, causes of death based on nationality, causes of death based on sex, causes of death based on date of birth.
 - Assumptions
 - We assume that the data we start with is valid.
 - Constraints
 - We have a limited amount of data.
 - Risks and contingencies
 - Data is fabricated, invalid and hard to process.
 - Terminology
 - There is currently no new terminology used.
 - Costs and benefits
 - Costs
 - Team members' time
 - Benefits
 - Getting new experience and possibly achieving good models.
- Defining your data-mining goals
 - Data-mining goals

Develop a machine-learning model which predicts a person's death year and cause based on a person's nationality, sex and date of birth.

Data-mining success criteria

- Model accuracy should be at least 80%.
- Model predictions should make sense.

Data Understanding

Gathering data

Outline data requirements

■ We need data tables that include a person's nationality and life expectancy and at atleast one of the following: date of birth, sex, cause of death. It would be best if the data type is csv. The table should have data from as wide a range of birthdates as possible, but at least 50 years.

Verify data availability

■ We have found many different tables of data that meet our expectations. Some even more so.

Define selection criteria

■ From the plethora of datasets present in kaggle, we chose "Life expectancy around the world ② ..." as it seems to suit our cause the best. From there we filtered out unneeded datatables from the 41 tables provided. We chose only the most straightforward and informational sets.

Describing data

- We have the following tables:
 - Annual number of deaths by region.
 - Female to male life expectancy for individuals at ages 0, 15, 45.
 - Deaths in certain age groups per year per nation. 0-4, 5-9,...,95-99,100+.
 - Death rate by cause by nationality.
 - Difference of female to male life expectancy at ages 0, 10, 15, 25, 45 65, 80.
 - Life expectancy by age groups 0, 10, 25, 45, 65, 80.
 - Life expectancy at birth for males and females.
 - Modal age at death for females and males per country.
 - Probability of dying that year among males and females of a certain age group 0, 10, 15, 25, 45, 65, 80.
 - Remaining life expectancy for males and females of a certain age group: 80, 65, 45, 25, 15, 10, 0.
- o Total number of usable columns:3+3+21+9+7+2+2+14+14 = 75.
- The number of rows can be up to 60000 deferring based on the table selected.
- Such data is of high value to our cause.

Exploring data

- o all of the tables used have the csv format.
- different values are separated by commas and null values are just empty like so ,..
- Most of the tables contain nationality, country code and a selection of years, so the tables are very compatible.
- Some values that are predicted are negative, this could lead to problems.
- Different tables have different year spans. this will lead to more null values later on.

Verifying data quality

- There are only 9 different death causes in our selection of data, this could lead to too vague death causes in our predictions.
- o As the length of tables differ, the amount of null values will be nontrivial.
- The overall data is trustworthy as it is acquired from Kaggle and it's source can be traced.

Project Plan

- Plan:
 - Data cleaning
 - 2-3h
 - Assignee: Peeter
 - Replace unnecessary values with Nan
 - Merging files
 - 2-3h
 - Assignee: Martin
 - Merge files into one data set and split them into test and training data
 - o Training models
 - 3-4h
 - Assignee: Peeter
 - Train models to predict death year and cause
 - Adding prediction complexity with statistics
 - 3-4h
 - Assignee: Martin
 - Manually editing the output of the models to make sure they make sense
 - Analyzing the results
 - 2-3h
 - Assignee: Martin, Peeter
- Tools:
 - o Pandas
 - Numpy
 - o scikit-learn models and other helper functions
 - Visualization tools like seaborn