Линейные уравнения

Опр. Линейным дифференциальным уравнением n-го порядка называется уравнение, в которое неизвестная функция y(x)и её производные входят линейно, т.е. в первой степени:

$$q_0(x)y^{(n)}+q_1(x)y^{(n-1)}+q_2(x)y^{(n-2)}+\cdots+q_{n-1}(x)y'+q_n(x)y=F(x)$$
 (1) Если $q_0(x)
eq 0$ $\forall x \in (a,b)$ то, умножая (1) на $\frac{1}{q_0(x)}$, получим

$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$
 (2)

Если $f(x) = 0 \forall x \in (a,b)$, то получим **линейное однородное** уравнение:

$$y^{(n)}+p_1(x)y^{(n-1)}+p_2(x)y^{(n-2)}+\cdots+p_{n-1}(x)y'+p_n(x)y=0$$
 (3) Задача Коши для уравнений (2) и (3): $y'(x_0)=y_0,$ у" $(x_0)=y_1,$ у" $(x_0)=y_2,$ где $y_0,y_1,y_2,...,y_{n-1}$ - заданные числа $y^{(n-1)}(x_0)=y_{n-1},$

Теорема о существовании и единственности

Для уравнения в общем виде $F(x, y, y', y'', ..., y^{(n)}) = 0$ условия существования и единственности:

непрерывность
$$F, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial y'}, \frac{\partial F}{\partial y''}, \cdots, \frac{\partial F}{\partial y^{(n-1)}}$$
 .

Тогда для уравнения (2)
$$\frac{\partial F}{\partial y} = -p_{n}(x), \frac{\partial F}{\partial y'} = -p_{n-1}(x), \frac{\partial F}{\partial y''} = -p_{n-2}(x), \cdots, \frac{\partial F}{\partial y^{(n-1)}} = -p_{1}(x)$$

Отсюда следует

Теорема 1 существования и единственности решения задачи Коши для линейного уравнения: если функции f(x), $p_i(x)$, i = 1, 2, ..., n непрерывны на интервале (a, b), x_0 - произвольная точка этого интервала, то для любых начальных условий (4) существует единственная функция y(x), определённая на всём интервале (a, b) и удовлетворяющая уравнению (2) и начальным условиям (4).

Далее везде будем предполагать, что условия теоремы существования и единственности решения задачи Коши выполняются, даже если это не оговаривается специально

Линейный дифференциальный оператор и его свойства

Множество функций, \mathbf{n} раз дифференцируемых на интервале (\mathbf{a} , \mathbf{b}), образует линейное пространство.

Рассмотрим оператор $L_n(y)$, который отображает функцию y(x), имеющую $k \ (k \ge n)$ производных, в функцию, имеющую k - n производных:

$$L_{n}(y) = y^{(n)}(x) + p_{1}(x)y^{(n-1)}(x) + p_{2}(x)y^{(n-2)}(x) + \dots + p_{n-2}(x)y''(x) + p_{n-1}(x)y'(x) + p_{n}(x)y(x) = y^{(n)}(x) + \sum_{k=1}^{n} p_{k}(x)y^{(n-k)}(x).$$
 (5)

Тогда уравнение (2) можно записать так:

$$L_n(y) = f(x) \tag{2'}$$

А уравнение (3) можно записать так:

$$L_n(y) = 0 \tag{3'}$$

Теорема 2 Дифференциальный оператор $L_n(y)$ является линейным оператором.

Док-во. Требуется доказать, что

1.
$$L_n(Cy)=CL_n(y)$$

2.
$$L_n(y_1 + y_2) = L_n(y_1) + L_n(y_2)$$

Это следует из свойств производных:

$$L_{n}(Cy) = (Cy(x))^{(n)} + \sum_{k=1}^{n} p_{k}(x)(Cy(x))^{(n-k)} =$$

$$= Cy^{(n)}(x) + \sum_{k=1}^{n} p_{k}(x)Cy^{(n-k)}(x) = C\left[y^{(n)}(x) + \sum_{k=1}^{n} p_{k}(x)y^{(n-k)}(x)\right] = CL_{n}(y).$$

$$L_{n}(y_{1} + y_{2}) = (y_{1} + y_{2})^{(n)} + \sum_{k=1}^{n} p_{k}(x)(y_{1} + y_{2})^{(n-k)} = y_{1}^{(n)} + y_{2}^{(n)} + \sum_{k=1}^{n} p_{k}(x)[y_{1}^{(n-k)} + y_{2}^{(n-k)}] = \left[y_{1}^{(n)} + \sum_{k=1}^{n} p_{k}(x)y_{1}^{(n-k)}\right] + \left[y_{2}^{(n)} + \sum_{k=1}^{n} p_{k}(x)y_{2}^{(n-k)}\right] = L_{n}(y_{1}) + L_{n}(y_{2}).$$

Далее мы сначала изучим, как устроено общее решение линейного однородного уравнения (3'), затем неоднородного уравнения (2'), и только потом научиться решать эти уравнения

Опр. Система функций $y_1(x), y_2(x), ..., y_n(x)$ называется линейно зависимой на интервале (a, b), если существует набор постоянных коэффициентов $\alpha_1, \alpha_2, \cdots, \alpha_n$, не равных нулю одновременно, таких, что линейная комбинация этих функций тождественно равна нулю на (a, b): $\alpha_1 y_1(x) + \alpha_2 y_2(x) + \cdots + \alpha_n y_n(x) = 0 \quad \forall x \in (a, b)$

Если равенство
$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) \equiv 0 \quad \forall x \in (a,b)$$
 возможно только при $\alpha_1 = \alpha_2 = \dots = \alpha_n = 0$

то система функций $\mathbf{y}_1(\mathbf{x})$, $\mathbf{y}_2(\mathbf{x})$, ..., $\mathbf{y}_n(\mathbf{x})$ называется **линейно независимой** на интервале (\mathbf{a}, \mathbf{b}) .

Другими словами, функции $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ линейно зависимы на интервале (a, b), если существует равная нулю на (a, b) их нетривиальная линейная комбинация

Примеры: 1. Функции 1, \mathbf{x} , \mathbf{x}^2 , \mathbf{x}^3 линейно независимы на любом интервале (\mathbf{a} , \mathbf{b}). Их линейная комбинация

$$\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$$
 - многочлен 3 степени

- не может иметь на (a, b) больше трёх корней, поэтому равенство

$$lpha_0+lpha_1x+lpha_2x^2+lpha_3x^3\equiv 0\;\; {
m Ha}\;(a,b)$$
 возможно только при $lpha_0=lpha_1=lpha_2=lpha_3=0$

Пример 1 система функций 1, x, x^2 , x^3 , ..., x^n .

Их линейная комбинация - многочлен степени n - не может иметь на (\boldsymbol{a} , \boldsymbol{b}) больше \boldsymbol{n} корней.

2. Функции $e^{k_1 x}, e^{k_2 x}$ линейно независимы на любом интервале (**a**, **b**), если $k_1 \neq k_2$

Действительно, если, например, $\alpha_1 \neq 0$, то равенство

 $\alpha_1 e^{k_1 x} + \alpha_2 e^{k_2 x} = 0$ имеет место в единственной точке

$$x = \frac{1}{k_1 - k_2} \ln \left(-\frac{\alpha_2}{\alpha_1} \right)$$

Система функций
$$e^{k_1x}, e^{k_2x}, \cdots, e^{k_nx}$$

также линейно независима, если числа k_i (i = 1, 2, ..., n) попарно различны, однако прямое доказательство этого факта чуть сложнее.

Для доказательства здесь следует воспользоваться тем фактом, что если функция тождественно равна нулю на отрезке, то и все её производные также тождественно равны нулю на этом отрезке.

Нам необходим простой универсальный инструмент, дающий ответ на вопрос о линейной зависимости функций.

Опр. Определителем Вронского (вронскианом) системы n-1 раз дифференцируемых функций $y_1(x), y_2(x), ..., y_n(x)$ называется определитель

$$W(x) = \begin{vmatrix} y_{1}(x) & y_{2}(x) & y_{3}(x) \cdots y_{n}(x) \\ y'_{1}(x) & y'_{2}(x) & y'_{3}(x) \cdots y'_{n}(x) \\ y''_{1}(x) & y''_{2}(x) & y''_{3}(x) \cdots y''_{n}(x) \\ y_{1}^{(n-1)}(x) & y_{2}^{(n-1)}(x) & y_{3}^{(n-1)}(x) \cdots y_{n}^{(n-1)}(x) \end{vmatrix}$$

$$(6)$$

Теорема 3 о вронскиане линейно зависимой системы функций.

Если система функций $\mathbf{y}_1(\mathbf{x})$, $\mathbf{y}_2(\mathbf{x})$, ..., $\mathbf{y}_n(\mathbf{x})$ линейно зависима на интервале (\mathbf{a}, \mathbf{b}) , то вронскиан этой системы тождественно равен нулю на этом интервале.

Док-во. Пусть $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ линейно зависимы на интервале (a, b), тогда существуют $\alpha_1, \alpha_2, \cdots, \alpha_n$

, из которых хотя бы одно отлично от нуля, такие что

$$\alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0 \quad \forall x \in (a,b)$$

Продифференцируем это равенство (n-1) раз по **х** и получим:

$$\begin{cases} \alpha_1 y_1(x) + \alpha_2 y_2(x) + \dots + \alpha_n y_n(x) = 0 \\ \alpha_1 y_1'(x) + \alpha_2 y_2'(x) + \dots + \alpha_n y_n'(x) = 0 \\ \dots \\ \alpha_1 y_1^{(n-1)}(x) + \alpha_2 y_2^{(n-1)}(x) + \dots + \alpha_n y_n^{(n-1)}(x) = 0. \end{cases}$$

Это – однородная СЛАУ относительно $\alpha_1, \alpha_2, \cdots, \alpha_n$ и не все они равны нулю. Отсюда следует..... Теорема доказана.

Теорема 4 о линейности пространства частных решений линейного однородного дифференциального уравнения. Множество частных решений линейного однородного дифференциального уравнения образует линейное пространство.

Док-во. Требуется доказать, что:

- 1. Если $y = y_1(x)$ является частным решением уравнения (3'), то и $y = Cy_1(x)$ является частным решением уравнения
 - 2. Если $y_1(x)$ и $y_2(x)$ частные решения, то $y_1(x) + y_2(x)$ также является решением ур-я (3').

Это напрямую следует из теоремы 2 о линейности дифференциального оператора.

Следствие. Если $\mathbf{y}_1(\mathbf{x})$, $\mathbf{y}_2(\mathbf{x})$, ..., $\mathbf{y}_n(\mathbf{x})$ - частные решения уравнения (3'), то их линейная комбинация $\mathbf{C}_1\mathbf{y}_1(\mathbf{x}) + \mathbf{C}_2\mathbf{y}_2(\mathbf{x}) + ... + \mathbf{C}_n\mathbf{y}_n(\mathbf{x})$ - тоже частное решение этого уравнения.

Теорема 5. Пусть $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ - частные решения линейного однородного дифференциального уравнения (3'). Если определитель Вронского этой системы функций равен нулю в некоторой точке

$$x_0 \in (a,b)$$

, то система функций $\mathbf{y}_1(\mathbf{x})$, $\mathbf{y}_2(\mathbf{x})$, ..., $\mathbf{y}_n(\mathbf{x})$ линейно зависима, и её определитель Вронского тождественно равен нулю на (\mathbf{a}, \mathbf{b}) .

Док-во. Пусть
$$W(x_0) = 0, x_0 \in (a,b)$$

Тогда однородная система линейных алгебраических уравнений с неизвестными $\boldsymbol{C}_1, \, \boldsymbol{C}_2, \, ..., \, \boldsymbol{C}_n$

$$\begin{cases} C_1 y_1(x_0) + C_2 y_2(x_0) + \dots + C_n y_n(x_0) = 0 \\ C_1 y_1'(x_0) + C_2 y_2'(x_0) + \dots + C_n y_n'(x_0) = 0 \\ \dots & \dots & \dots \\ C_1 y_1^{(n-1)}(x_0) + C_2 y_2^{(n-1)}(x_0) + \dots + C_n y_n^{(n-1)}(x_0) = 0 \end{cases}$$

имеет нетривиальное решение. То есть существуют такие C_1 , C_2 , ..., C_{n_r} не все равные нулю, при которых верны все уравнения системы.

Рассмотрим функцию $y(x) = C_1 y_1(x) + C_2 y_2(x) + ... + C_n y_n(x)$

Так как по условию теоремы $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ —частные решения ур-я(3'), то и y(x)- также частное решение этого уравнения.

Кроме того, оно удовлетворяет нулевым начальным данным, то есть y(x) является решением задачи Коши:

$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0$$

$$y(x_0) = C_1y_1(x_0) + C_2y_2(x_0) + \dots + C_ny_n(x_0) = 0,$$

$$y'(x_0) = C_1y_1'(x_0) + C_2y_2'(x_0) + \dots + C_ny_n'(x_0) = 0,$$

$$\dots$$

$$y^{(n-1)}(x_0) = C_1y_1^{(n-1)}(x_0) + C_2y_2^{(n-1)}(x_0) + \dots + C_ny_n^{(n-1)}(x_0) = 0.$$

Но этой же задаче Коши удовлетворяет и функция $y \equiv 0$ на (a,b)

По теореме о существовании и единственности решения задачи Коши

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + ... + C_n y_n(x) \equiv 0$$
 Ha (a,b)

Это и означает линейную зависимость функций $\mathbf{y}_1(\mathbf{x})$, $\mathbf{y}_2(\mathbf{x})$, ..., $\mathbf{y}_n(\mathbf{x})$. А по Теореме 3 Вронскиан также тождественно равен нулю.

Теорема 6. Если определитель Вронского W(x) системы $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ частных решений линейного однородного дифференциального уравнения отличен от нуля в некоторой точке отрезка (a,b), то W(x) отличен от нуля в любой точке этого интервала.

Теорема 5-6. Если W(x) - определитель Вронского системы $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ частных решений линейного однородного дифференциального уравнения, то либо на интервале (a, b) $W(x) \equiv 0$ (что означает линейную зависимость этих решений на (a, b)), либо $W(x) \neq 0$ в любой точке этого интервала (что означает линейную независимость этих решений на (a, b)).

Опр. Фундаментальной системой решений линейного однородного дифференциального уравнения n-го порядка называется любая линейно независимая система $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ его n частных решений.

Теорема 7 о существовании фундаментальной системы решений линейного однородного дифференциального равнения. Любое линейное однородное дифференциальное уравнение *n* -го порядка с непрерывными коэффициентами имеет фундаментальную систему решений, т.е. систему из *n* линейно независимых решений.

Док-во. Пусть $x_0 \in (a, b)$

Пусть
$$L_n[y_1] = 0, \qquad L_n[y_2] = 0, \qquad \dots \qquad L_n[y_n] = 0,$$

$$y_1(x_0) = 1, \qquad y_2(x_0) = 0, \qquad y_n(x_0) = 0,$$

$$y_1'(x_0) = 0, \qquad y_2'(x_0) = 1, \qquad y_n'(x_0) = 0,$$

$$y_1''(x_0) = 0, \qquad y_2''(x_0) = 0, \qquad y_n''(x_0) = 0,$$

$$y_n''(x_0) = 0, \qquad y_n''(x_0) = 0,$$

$$y_n''(x_0) = 0, \qquad y_n''(x_0) = 1;$$

Поскольку $x_0 \in (a,b)$, то выполняются условия теоремы о существовании и единственности для каждой из выше поставленных задач Коши. Следовательно $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ -частные решения уравнения (3'), а определитель Вронского в точке x_0 равен 1. Значит по теореме 5-6 эти функции линейно независимы. А значит ФСР из n функций существует.

Теорема 8 о структуре общего решения линейного однородного дифференциального уравнения. Общее решение *у(x)* линейного однородного дифференциального уравнения есть линейная комбинация функций из фундаментальной системы решений этого уравнения:

$$y(x) = C_1 y_1(x) + C_2 y_2(x) + ... + C_n y_n(x).$$

Док-во. Пусть $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ — ФСР линейного однородного дифференциального уравнения. Требуется доказать, что любое частное решение $y^*(x)$ этого уравнения содержится в формуле $y(x) = C_1 y_1(x) + C_2 y_2(x) + ... + C_n y_n(x)$ при некотором наборе постоянных C_1 , C_2 , ..., C_n .

Возьмём любую точку $x_0 \in (a,b)$

Тогда СЛАУ
$$C_1 y_1(x_0) + C_2 y_2(x_0) + \dots + C_n y_n(x_0) = y^*(x_0),$$

$$C_1 y_1'(x_0) + C_2 y_2'(x_0) + \dots + C_n y_n'(x_0) = y^*(x_0),$$

$$C_1 y_1^{(n-1)}(x_0) + C_2 y_2^{(n-1)}(x_0) + \dots + C_n y_n^{(n-1)}(x_0) = y^{*(n-1)}(x_0).$$

имеет единственное решение, поскольку её определитель - Вронскиан ФСР, а значит не равен нулю. Следовательно $\mathbf{y}(\mathbf{x}) = \mathbf{C}_1 \mathbf{y}_1(\mathbf{x}) + \mathbf{C}_2 \mathbf{y}_2(\mathbf{x}) + ... + \mathbf{C}_n \mathbf{y}_n(\mathbf{x})$ удовлетворяет тем же начальным условиям, что и $\mathbf{y}^*(\mathbf{x})$, а значит совпадает с ней по Теореме о СЕ.

Значит
$$\mathbf{y}^*(\mathbf{x}) = \mathbf{C}_1 \mathbf{y}_1(\mathbf{x}) + \mathbf{C}_2 \mathbf{y}_2(\mathbf{x}) + ... + \mathbf{C}_n \mathbf{y}_n(\mathbf{x})$$

Формула Лиувилля.

Теорема Определитель Вронского системы $y_1(x)$, $y_2(x)$, ..., $y_n(x)$ решений однородного уравнения удовлетворяет уравнению

$$W'(x) + p_1(x)W(x) = 0$$

, где $p_1(x)$ - коэффициент при n - 1 производной.

Понижение порядка линейного однородного уравнения, если известно одно его частное решение.

Пусть известно одно частное решение $\boldsymbol{y}_1(\boldsymbol{x})$ уравнения

$$y'' + p_1(x)y' + p_2(x)y = 0$$

Тогда мы можем понизить порядок уравнения, то есть найти второе решение данного уравнения, используя формулу Лиувилля

$$W(x) = \begin{vmatrix} y_1(x) & y_2(x) \\ y'_1(x) & y'_2(x) \end{vmatrix} = y_1(x)y'_2(x) - y_2(x)y'_1(x) = C_2e^{-\int p_1(x)dx}$$

Пример. найти общее решение уравнения $x^2(1-\ln x)y'' + xy' - y = 0$

Главная проблема в такого рода задачах – отсутствие алгоритма нахождения частного решения.

В данном случае попробуем найти его в простой форме $y = x^k$

$$x^{2}(1-\ln x)k(k-1)x^{k-2} + xkx^{k-1} - x^{k} = 0, x^{k}[k(k-1)+k-1+k(k-1)\ln x] = 0$$

Уравнение удовлетворяется, если k = 1, значит y = x - частное решение

Далее воспользуемся ф. Лиувилля

$$W(x) = \begin{vmatrix} x & y_2(x) \\ 1 & y_2'(x) \end{vmatrix} = xy_2'(x) - y_2(x) = C_2 e^{-\int p_1(x)dx}$$
$$\int p_1(x)dx = \int \frac{1}{x(1-\ln x)} dx = -\int \frac{d(1-\ln x)}{1-\ln x} = -\ln(1-\ln x), e^{-\int p_1(x)dx} = e^{\ln(1-\ln x)} = 1-\ln x,$$

$$y_2(x) = y_1(x) \int \frac{(1 - \ln x) dx}{y_1^2} = x \int \frac{(1 - \ln x) dx}{x^2} = x \int \frac{x + \ln x}{x^2} dx = x \int \left(\frac{\ln x}{x}\right)' dx = x \frac{\ln x}{x} = \ln x$$

Итак, фундаментальная система решений этого уравнения: $\mathbf{y}_1(\mathbf{x}) = \mathbf{x}$, $\mathbf{y}_2(\mathbf{x}) = \ln \mathbf{x}$, общее его решение $\mathbf{y}(\mathbf{x}) = \mathbf{C}_1 \mathbf{x} + \mathbf{C}_2 \ln \mathbf{x}$

Восстановление линейного однородного уравнения по фундаментальной системе решений.

Пусть дана система функций $\mathbf{y}_1(\mathbf{x})$, $\mathbf{y}_2(\mathbf{x})$, ..., $\mathbf{y}_n(\mathbf{x})$, для которой $\mathbf{W}(\mathbf{x})$ не= 0 на (\mathbf{a}, \mathbf{b}) . Требуется составить линейное однородное уравнение, у которого фундаментальная система решений состоит из функций $\mathbf{y}_1(\mathbf{x})$, $\mathbf{y}_2(\mathbf{x})$, ..., $\mathbf{y}_n(\mathbf{x})$.

Пусть $\mathbf{y}(\mathbf{x}) = \mathbf{C}_1 \mathbf{y}_1(\mathbf{x}) + \mathbf{C}_2 \mathbf{y}_2(\mathbf{x}) + ... + \mathbf{C}_n \mathbf{y}_n(\mathbf{x})$ — решение уравнения (3), тогда $\mathbf{y}(\mathbf{x}), \mathbf{y}_1(\mathbf{x}), \mathbf{y}_2(\mathbf{x}), ..., \mathbf{y}_n(\mathbf{x})$ — линейно зависимая система функций. Тогда

$$\begin{vmatrix} y(x) & y_1(x) & y_2(x) & y_3(x) \cdots y_n(x) \\ y'(x) & y_1'(x) & y_2'(x) & y_3'(x) \cdots y_n'(x) \\ y''(x) & y_1''(x) & y_2''(x) & y_3''(x) \cdots y_n''(x) \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ y^{(n-1)}(x) & y_1^{(n-1)}(x) & y_2^{(n-1)}(x) & y_3^{(n-1)}(x) \cdots y_n^{(n-1)}(x) \\ y^{(n)}(x) & y_1^{(n)}(x) & y_2^{(n)}(x) & y_3^{(n)}(x) \cdots y_n^{(n)}(x) \end{vmatrix} = 0.$$

Пример: составить линейное уравнение, у которого фундаментальная система решений равна $y_1(x) = \cos x$, $y_2(x) = x^3$. Решение:

$$\begin{vmatrix} y(x) & \cos x & x^3 \\ y'(x) & -\sin x & 3x^2 \\ y''(x) & -\cos x & 6x \end{vmatrix} = 0 \Rightarrow y''(x) \begin{vmatrix} \cos x & x^3 \\ -\sin x & 3x^2 \end{vmatrix} - y'(x) \begin{vmatrix} \cos x & x^3 \\ -\cos x & 6x \end{vmatrix} + y(x) \begin{vmatrix} -\sin x & 3x^2 \\ -\cos x & 6x \end{vmatrix} = 0.$$

Терема о структуре общего решения линейного неоднородного дифференциального уравнения. Общее решение линейного неоднородного дифференциального уравнения с непрерывными на интервале (*a*, *b*) коэффициентами и правой частью

$$L_n(y) = y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_{n-1}(x)y' + p_n(x)y = f(x)$$

сумме общего решения соответствующего однородного уравнения

$$L_n(y) = y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \dots + p_{n-1}(x)y' + p_n(x)y = 0$$

и частного решения неоднородного уравнения

$$y_{o6}(x) = y_{od}(x) + y_{u}(x) = (C_1y_1(x) + C_2y_2(x) + ... + C_ny_n(x)) + y_{u}(x).$$

Док-во. Мы должны доказать, что если известно частное решение $y_{\downarrow}(x)$ неоднородного уравнения, то любое его другое частное решение может быть получено по формуле

$$\varphi(x) = y_{oo}(x) + y_{q}(x) = (C_1 y_1(x) + C_2 y_2(x) + \dots + C_n y_n(x)) + y_{q}(x)$$

Это следует из того, что

$$L_n(\varphi - y_q) = L_n(\varphi) - L_n(y_q) = f(x) - f(x) = 0$$

Теорема о наложении решений

Если $\mathbf{y}_1(\mathbf{x})$ - частное решение неоднородного уравнения $\mathbf{L}_n(\mathbf{y}) = \mathbf{f}_1(\mathbf{x}), \, \mathbf{y}_2(\mathbf{x})$ - частное решение неоднородного уравнения $\mathbf{L}_n(\mathbf{y}) = \mathbf{f}_2(\mathbf{x}), \,$ то функция

$$y(x)=lpha_1y_1(x)+lpha_2y_2(x)$$
 -частное решение неоднородного уравнения $m{L_n(y)}=lpha_1f_1(x)+lpha_2f_2(x)$

Метод Лагранжа (метод вариации произвольных постоянных) решения неоднородного уравнения на примере уравнения 2-го порядка.

$$y'' + p_1(x)y' + p_2(x)y = f(x)$$

Пусть $y_1(x)$, $y_2(x)$ - фундаментальная система решений соответствующего однородного уравнения

$$y'' + p_1(x)y' + p_2(x)y = 0$$

$$y_{\text{од}}(x) = C_1 y_1(x) + C_2 y_2(x)$$
 – его общее решение.

Тогда частное решение неоднородного уравнения будем искать в виде

$$y_{y}(x) = C_{1}(x)y_{1}(x) + C_{2}(x)y_{2}(x)$$

$$y'(x) = C'_1(x)y_1(x) + C_1(x)y'_1(x) + C'_2(x)y_2(x) + C_2(x)y'_2(x) = [C'_1(x)y_1(x) + C'_2(x)y_2(x)] + [C_1(x)y'_1(x) + C_2(x)y'_2(x)]$$

$$+ [C_1(x)y'_1(x) + C_2(x)y'_2(x)]$$

Будем считать, что $C_1'(x)y_1(x) + C_2'(x)y_2(x) = 0$

Тогда

$$y''(x) = \left[C_1(x)y_1'(x) + C_2(x)y_2'(x)\right]' = C_1'(x)y_1'(x) + C_1(x)y_1''(x) + C_2'(x)y_2'(x) + C_2(x)y_2''(x)$$

$$C'_{1}(x)y'_{1}(x) + C_{1}(x)y''_{1}(x) + C'_{2}(x)y'_{2}(x) + C_{2}(x)y''_{2}(x) + p_{1}(x)[C_{1}(x)y'_{1}(x) + C_{2}(x)y'_{2}(x)] + p_{2}(x)[C_{1}(x)y_{1}(x) + C_{2}(x)y_{2}(x)] = f(x).$$

Подставим у' и у" в уравнение

$$C'_{1}(x)y'_{1}(x) + C_{1}(x)y''_{1}(x) + C'_{2}(x)y'_{2}(x) + C_{2}(x)y''_{2}(x) + p_{1}(x)[C_{1}(x)y'_{1}(x) + C_{2}(x)y'_{2}(x)] + p_{2}(x)[C_{1}(x)y_{1}(x) + C_{2}(x)y_{2}(x)] = f(x).$$

Перегруппируем

$$C_1'(x)y_1'(x) + C_2'(x)y_2(x) + C_1(x)[y_1''(x) + p_1y_1'(x) + p_2y_1(x)] + C_2(x)[y_2''(x) + p_1y_2'(x) + p_2y_2(x)] = f(x).$$

Получим $C'_1(x)y'_1(x) + C'_2(x)y'_2(x) = f(x)$.

Таким образом получим

$$\begin{cases}
C'_{1}(x)y_{1}(x) + C'_{2}(x)y_{2}(x) = 0, \\
C'_{1}(x)y'_{1}(x) + C'_{2}(x)y'_{2}(x) = f(x);
\end{cases}$$

Эта система всегда имеет единственное решение, так как её определитель – Вронскиан ФСР

Находим
$$C_1'(x)$$
 и $C_2'(x)$ Затем $C_1(x)$ и $C_2(x)$

Пример
$$x^2(1-\ln x)y'' + xy' - y = x^2(1-\ln x)^2$$

решение однородного уравнения - $y_{od}(x) = C_1 x + C_2 \ln x$

Будем искать решение неоднородного ур-я в виде: $\mathbf{y}_{4}(\mathbf{x}) = \mathbf{C}_{1}(\mathbf{x}) \mathbf{x} + \mathbf{C}_{2}(\mathbf{x}) \ln \mathbf{x}$

$$\begin{cases} C'_{1}(x)x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x)x' + C'_{2}(x)\ln x = 1 - \ln x; \end{cases} \Rightarrow \begin{cases} C'_{1}(x)x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x) + C'_{2}(x)\frac{1}{x} = 1 - \ln x; \end{cases} \Rightarrow \begin{cases} C'_{1}(x)x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x)x + C'_{2}(x)\ln x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x)x + C'_{2}(x)\ln x + C'_{2}(x)\ln x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x)x + C'_{2}(x)\ln x + C'_{2}(x)\ln x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x)x + C'_{2}(x)\ln x + C'_{2}(x)\ln x + C'_{2}(x)\ln x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x)x + C'_{2}(x)\ln x + C'_{2}(x)\ln x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x)x + C'_{2}(x)\ln x + C'_{2}(x)\ln x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x)x + C'_{2}(x)\ln x + C'_{2}(x)\ln x + C'_{2}(x)\ln x + C'_{2}(x)\ln x = 0, \\ C'_{1}(x)x + C'_{2}(x)\ln x + C'_{$$

Для уравнения n-го порядка

$$y^{(n)} + p_1(x)y^{(n-1)} + p_2(x)y^{(n-2)} + \cdots + p_{n-1}(x)y' + p_n(x)y = f(x)$$

Принцип тот же самый, только для нахождения $C_i(x)$ из тех же соображения составляется система:

$$\begin{cases} C'_{1}(x)y_{1}(x) + C'_{2}(x)y_{2}(x) + \dots + C'_{n}(x)y_{n}(x) = 0, \\ C'_{1}(x)y'_{1}(x) + C'_{2}(x)y'_{2}(x) + \dots + C'_{n}(x)y'_{n}(x) = 0, \\ C'_{1}(x)y''_{1}(x) + C'_{2}(x)y''_{2}(x) + \dots + C'_{n}(x)y''_{n}(x) = 0, \\ \dots \\ C'_{1}(x)y_{1}^{(n-1)}(x) + C'_{2}(x)y_{2}^{(n-1)}(x) + \dots + C'_{n}(x)y_{n}^{(n-1)}(x) = f(x). \end{cases}$$

Линейные однородные уравнения с постоянными коэффициентами

$$y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_n y = 0$$
 (7)

Попробуем найти решение данного уравнения в виде $y = e^{kx}$ Подставляя в уравнение данную функцию, получим:

$$k^n + a_1 k^{n-1} + a_2 k^{n-2} + a_3 k^{n-3} + \dots + a_n = 0$$
 (8) — характеристическое уравнение

Данное уравнение имеет n комплексных корней (с учетом кратности)

Каждому корню уравнения соответствует одна функция из фундаментальной системы решений.

А точнее надо рассмотреть варианты корней:

- 1. k=ko простой вещественный корень характеристического уравнения
- **2.** $k=k_0$ —вещественный корень кратности r
- 3. k=a+bi, k=a-bi пара комплексно сопряженных корней кратности 1
- **4.** k=a+bi, k=a-bi пара комплексно сопряженных корней кратности r

В первом случае все просто: простому корню соответствует функция ${m y} = {m e}^{{m k}_0 {m x}}$

2. Пусть **k=k**o –вещественный корень кратности **r.**

Это означает, что в разложении характеристического многочлена есть множитель $(k-k_0)^r$. Другими словами, этот корень является также корнем от производных характеристического многочлена до степени r-1.

Покажем, что кроме функции $e^{k_o x}$ решениями уравнения (7) также являются функции х $e^{k_o x}$, $x^2 e^{k_o x}$,..., $x^{r-1} e^{k_o x}$

Пусть
$$L(y) = y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_n y$$
 Тогда $L(e^{kx}) = P(k)e^{kx}$ (9)

где *P(k)* – характеристический многочлен (8)

Продифференцируем равенство (9) по k

Получим
$$L(xe^{kx}) = (P(k))'e^{kx} + kP(k)e^{kx}$$

Продифференцируем еще раз. Получим

$$L(x^{2}e^{kx}) = (P(k))''e^{kx} + 2k(P(k))'e^{kx} + k^{2}P(k)e^{kx}$$

И так далее:

$$L(x^{m}e^{kx}) = \sum_{l=1}^{m} C_{m}^{l} P^{(l)}(k) x^{m} e^{kx}$$

Так как k — корень кратности r, все производные от многочлена в правой части до порядка r-1 равны нулю, а то и означает, что все функции xe^{k_0x} , $x^2e^{k_0x}$,..., $x^{r-1}e^{k_0x}$ являются корнями уравнения

$$L(y) = 0$$

3-й случай: k = a + ib - Простой корень уравнения (8)

Тогда
$$e^{kx} = e^{(a+ib)x} = e^{ax}(\cos bx + i\sin bx)$$

является решением уравнения (7), то есть

$$L(e^{kx}) = L(e^{ax}(\cos bx + i\sin bx)) = L(e^{ax}\cos bx) + iL(e^{ax}\sin bx) = 0$$

Отсюда следует, что

$$L(e^{ax}\cos bx) = 0, L(e^{ax}\sin bx) = 0$$

То есть корню k = a + ib соответствуют 2 решения уравнения (7):

$$e^{ax}\cos bx$$
 и $e^{ax}\sin bx$ Почему 2?

Итак: Паре простых комплексно сопряженных корней

$$k = a \pm ib$$

соответствуют 2 решения

$$e^{ax}\cos bx$$
 и $e^{ax}\sin bx$

И случай 4: Паре комплексно сопряженных корней

$$k = a \pm ib$$

кратности r соответствуют 2r решения

Остается показать, что все *п* полученных функций составляют ФСР, то есть Являются линейно независимыми функции.

$$e^{k_{1}x}, xe^{k_{1}x}, ..., x^{r_{1}-1}e^{k_{1}x}$$
...
$$e^{k_{m}x}, xe^{k_{m}x}, ..., x^{r_{m}-1}e^{k_{m}x}$$

$$e^{a_{1}x}\cos b_{1}x, e^{a_{1}x}\sin b_{1}x, ..., x^{s_{1}-1}e^{a_{1}x}\cos b_{1}x, x^{s_{1}-1}e^{a_{1}x}\sin b_{1}x$$
...
$$e^{a_{l}x}\cos b_{l}x, e^{a_{l}x}\sin b_{l}x, ..., x^{s_{l}-1}e^{a_{l}x}\cos b_{l}x, x^{s_{l}-1}e^{a_{l}x}\sin b_{l}x$$

В общем случае мы делать этого не будем, а частные случаи рассматривались на лекциях и на практике. Главный инструмент — Вронскиан.

Примеры:

$$y'' + 4y' - 5y = 0$$
$$\lambda^2 + 4\lambda - 5 = 0$$
$$\lambda_1 = 1, \lambda_2 = -5$$
$$y = C_1 e^x + C_2 e^{-5x}$$

$$y'' - 4y' + 8y = 0$$
$$\lambda^{2} - 4\lambda + 8 = 0$$
$$\lambda_{1,2} = 2 \pm 2i$$
$$y = C_{1}e^{2x}\cos 2x + C_{2}e^{2x}\sin 2x$$

Примеры:

$$y'' - 4y' + 4y = 0$$
$$\lambda^{2} - 4\lambda + 4 = 0$$
$$\lambda_{1,2} = 2$$
$$y = C_{1}e^{2x} + C_{2}xe^{2x}$$

$$y^{(7)} + 2y^{(6)} + 8y^{(4)} + 16y''' = 0$$
$$\lambda^{7} + 2\lambda^{6} + 8\lambda^{4} + 16\lambda^{3} = 0$$
$$\lambda_{1,2,3} = 0, \lambda_{4,5} = -2, \lambda_{6,7} = 1 + i\sqrt{3}$$

$$y(x) = C_1 + C_2 x + C_3 x^2 + C_4 e^{-2x} + C_5 x e^{-2x} + C_6 e^x \cos \sqrt{3}x + C_7 e^x \sin \sqrt{3}x$$

Линейные неоднородные уравнения с постоянными коэффициентами

$$y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_{n-1} y' + a_n y = f(x)$$
 (10)

Напомним: $y_{o6}(x) = y_{od}(x) + y_{q}(x)$

Для поиска частного решения уравнения (10) мы уже знаем универсальный способ – метод Лагранжа, который всегда дает нам решение (иногда неинтегрируемое).

Подбора частного решения неоднородного уравнения с правой частью в виде квазиполинома

$$f(x)=e^{lpha x}igg[P_{m{m}_1}(x)\coseta x+Q_{m{m}_2}(x)\sineta xigg]$$
 $P_{m_1}(x)$ -многочлен степени $m{m}_1$ $P_{m_2}(x)$ -многочлен степени $m{m}_2$

Пусть $s_0 = \alpha + \beta \emph{\textbf{i}}$ - корень характеристического уравнения кратности $\emph{\textbf{r}}$ Тогда частное решение уравнения (10) будем искать в виде:

$$y_{q} = x^{r} e^{\alpha x} [R_{m}(x) \cos \beta x + S_{m}(x) \sin \beta x]$$

где $R_m(\mathbf{x})$ и $S_m(\mathbf{x})$ - многочлены степени m с неопределёнными коэффициентами

Примеры:

$$y'' - 5y' + 6y = x^3 - 2x$$

$$\lambda^2 - 5\lambda + 6 = 0$$

$$\lambda_1 = 2, \lambda_2 = 3$$

$$y_{oo} = C_1 e^{2x} + C_2 e^{3x}$$

$$y_u = Ax^3 + Bx^2 + Cx + D$$

Подставляем в уравнение и приравниваем коэффициенты при одинаковых степенях

$$y_{q}(x) = \frac{x^{3}}{6} + \frac{5x^{2}}{12} + \frac{7x}{36} + \frac{5}{216},$$
$$y(x) = C_{1}e^{2x} + C_{2}e^{3x} + \frac{x^{3}}{6} + \frac{5x^{2}}{12} + \frac{7x}{36} + \frac{5}{216}.$$

Примеры:

$$y'' - 5y' = x^3 - 2x$$
 $\lambda^2 - 5\lambda = 0$
 $\lambda_1 = 0, \lambda_2 = 5$
 $y_{o\partial} = C_1 + C_2 e^{5x}$
 $\lambda_1 = 0$ -корень уравнения, поэтому
 $y_u = Ax^4 + Bx^3 + Cx^2 + Dx$

Подставляем в уравнение и приравниваем коэффициенты при одинаковых степенях

$$y_{q}(x) = -\frac{x^{4}}{20} - \frac{x^{3}}{25} + \frac{22x^{2}}{125} + \frac{44x}{625},$$
$$y(x) = C_{1} + C_{2}e^{5x} - \frac{x^{4}}{20} - \frac{x^{3}}{25} + \frac{22x^{2}}{125} + \frac{44x}{625}.$$

Примеры:
$$y'' - 6y' + 13y = (75x^2 - 86x + 18)\sin 2x + 16xe^{3x}\cos 2x$$
 $\lambda^2 - 6\lambda + 13 = 0$ $\lambda_{1,2} = \frac{6 \pm \sqrt{-16}}{2} = 3 \pm 2i$ $y_{od} = C_1 e^{3x} \cos 2x + C_2 e^{3x} \sin 2x$

Будем искать частные решения двух уравнений:

$$y'' - 6y' + 13y = (75x^{2} - 86x + 18)\sin 2x$$

$$y'' - 6y' + 13y = 16xe^{3x}\cos 2x$$

$$y_{y}(x) = (Ax^{2} + Bx + D)\cos 2x + (Ex^{2} + Fx + G)\sin 2x$$

$$y_{y}(x) = e^{3x}[(Ax^{2} + Bx)\cos 2x + (Ex^{2} + Fx)\sin 2x]$$

$$y_{y}(x) = 4x^{2}\cos 2x + (3x^{2} - 2x)\sin 2x$$

$$y_{y}(x) = e^{3x}[x\cos 2x + 2x^{2}\sin 2x]$$

$$y(x) = y_{\text{od}}(x) + y_{\text{q1}}(x) + y_{\text{q2}}(x) = e^{3x} \left(C_1 \cos 2x + C_2 \sin 2x \right) + 4x^2 \cos 2x + \left(3x^2 - 2x \right) \sin 2x + e^{3x} \left[x \cos 2x + 2x^2 \sin 2x \right]$$