

Runtime randomization and perturbation for virtual machines.

JAVIER CABRERA ARTEAGA

Licentiate Thesis in [Research Subject - as it is in your ISP]
School of Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden [2022]

TRITA-ICT XXXX:XX ISBN XXX-XXX-XXXX-X KTH School of Information and Communication Technology SE-164 40 Kista SWEDEN

Akademisk avhandling som med tillstånd av Kungl Tekniska högskolan framlägges till offentlig granskning för avläggande av licentiatexamen i [ämne/subject] [veckodag/weekday] den [dag/day] [månad/month] [år/2022] klockan [tid/time] i [sal/hall], Electrum, Kungl Tekniska högskolan, Kistagången 16, Kista.

© Javier Cabrera Arteaga, [month] [2022]

Tryck: Universitetsservice US AB

Abstract

Write your abstract here... $\textbf{Keywords:} \ \, \textbf{Keyword1}, \, \textbf{keyword2}, \, \dots$

Sammanfattning

Write your Swedish summary (popular description) here... $\bf Keywords : Keyword1, \, keyword2, \, ...$

Acknowledgements

Write your professional acknowledgements here...

Acknowledgements are used to thank all persons who have helped in carrying out the research and to the research organizations/institutions and/or companies for funding the research.

Name Surname, Place, Date

Personalizado iconos creados por monkik - Flaticon

 $<\!a\,href="https://www.flaticon.es/iconos-gratis/computadora"\,title="computadora iconos">Computadora iconos creados por Freepik - Flaticon>$

Contents

Contents						
1	Intr 1.1 1.2 1.3	Research questions	1 1 2 2			
2	Background & State of the art					
	2.1	WebAssembly overview	5			
	2.2	Software Diversification	10			
	2.3	Statement of Novelty	15			
3	Technical contributions					
	3.1	Artificial Software Diversity for WebAssembly	19			
	3.2	CROW: Code Randomization Of WebAssembly	21			
	3.3	MEWE: Multi-variant Execution for WEbAssembly	26			
4	Methodology					
	4.1	RQ_1 . To what extent can we artifically generate program variants for WebAssembly?	33			
	4.2	RQ_2 . To what extent are the generated variants dynamically different?	36			
	4.3	RQ_3 . To what extent do the artificial variants exhibit different execution times on Edge-Cloud platforms?	38			
5	Results					
	5.1	RQ_1 . To what extent can we artifically generate program variants for WebAssembly?	41			
	5.2	RQ_2 . To what extent are the generated variants dynamically different?	44			
	5.3	RQ_3 . To what extent do the artificial variants exhibit different execution times on Edge-Cloud platforms?	47			
6	C	•				
		clusion and Future Work	51			
	6.1	Summary of the results	51			

CONTENTS	vii
6.2 Future work	-
Bibliography	53
Index	61