Дискретный источник X с алфавитом A из L символов $\{a_1,...,a_L\}$ выдает последовательность букв (символов) $x_i \in A$ (i=1,2,...) выбираемых из этого алфавита. Здесь i - дискретное время. Например, двоичный источник выдает двоичную последовательность 01100010100011110... . Причем алфавит состоит из L=2 символов $A \in \{a_1,a_2\} = \{0,1\}$. Пусть каждый символ алфавита имеет заданную вероятность выбора $p_k = p(a_k) = P\{X = a_k\}, k = 1,2,...L$, где $\sum_{k=1}^{L} p_k = 1$. Рассмотрим две математические модели для ДИ.

- 1) Если символы выходной последовательности источника статистически независимы, то такой источник называется источником без памяти (ДИБП).
- 2) Если символы источника взаимозависимы, то можно создать модель на основе статистической стационарности. ДИ называется **стационарным**, если совместные вероятности двух последовательностей длины n $x_1,...,x_n$ и $x_{1+m},...,x_{n+m}$ одинаковы для всех $n \ge 1$ и при всех сдвигах m:

$$p(x_1,...,x_n) = p(x_{1+m},...,x_{n+m}).$$

Т.е. совместные вероятности двух последовательностей инвариантны по отношению к произвольному сдвигу.

4.1.1. Мера информации ДИ.

Рассмотрим две случайные величины X,Yс возможными значениями $X \in \{a_k, k=1,2,...,L\}$ и $Y \in \{b_l, l=1,2,...,M\}$. Пусть мы наблюдаем некоторый выход $Y = b_l$ и желаем количественно определить величину информации, которая содержится в выборке Y относительно события $X = a_k$. Замечание: если X и Y статистически независимы, тогда выбор Y не дает информации о событии X. X0 статистически X1 у однозначно определяется X3 от информационное содержание X3 них одинаковое. Взаимная информация определяется как

$$I(a_k, b_l) = \log_2(\frac{p(a_k/b_l)}{p(a_k)})$$
 (бит), (4.1)

где $p(a_k/b_l) = P\{X = a_k/Y = b_l\}$ - вероятность наступления события $X = a_k$ при условии, что $Y = b_l$.

- 1) Если X,Y независимы, тогда $p(a_k,b_l)=p(a_k)p(b_l)$, а $p(a_k/b_l)=\frac{p(a_k,b_l)}{p(b_l)}=p(a_k)$ Тогда по формуле (4.1) $I(a_k,b_l)=\log_2(1)=0$.
- 2) Если X,Y полностью зависимы, тогда $p(a_k/b_l) = 1 \Rightarrow$