

UNIVERSIDAD NACIONAL DE PIURA

Facultad de Ciencias

Escuela Profesional de Estadística

"Año del Bicentenario del Perú: 200 años de independencia"

CURSO:

DISEÑOS Y ANÁLISIS DE EXPERIMENTOS II

DOCENTE:

Dr. MARCOS V. QUIROZ CALDERÓN

CICLO:

ΙX

ALUMNO:

MAX FLORENCIO CAJO CHAVEZ

TRABAJO ENCARGADO:

DBCA CON ARREGLO EN PARCELAS DIVIDIDAS

PIURA – PERÚ

2021

ANÁLISIS DE EXPERIMENTO BIFACTORIAL 3x3 CON UN DBCA CON ARREGLO EN PARCELAS DIVIDIDAS

COMPORTAMIENTO DE TRES CLONES DE CAMOTE (Ipomoea batatas (L.) Lam.), CON TRES DISTANCIAMIENTOS DE SIEMBRA EN LA ZONA DE TULUMAYO

Diseño Experimental

El diseño experimental adoptado fue bifactorial con DBCA con arreglo en Parcelas divididas, con cuatro repeticiones, estudiando en las parcelas principales el efecto de 3 clones de camotes y en las sub parcelas el efecto de 3 distanciamientos de siembra teniendo 9 tratamientos.

La variable respuesta a evaluar para este anáisis estadístico será el porcentaje de cobertura foliar de los clones de camote a los treinta días de la siembra

Table 1: Factores, Niveles y Claves

FACTOR	NIVEL	CLAVE
Clon (A)	CC92.079.129 SR92.601.13 SR92.008	A_1 A_2 A_3
Distanciamiento entre plantas (B)	0.20 m 0.25 m 0.30 m	B_1 B_2 B_3

Table 2: Tratamientos o combinaciones

TRATAMIENTOS	CLAVE
CC92.079.129 - 0.20 m	A_1B_1
CC92.079.129 - 0.25 m	A_1B_2
CC92.079.129 - 0.30 m	A_1B_3
SR92.601.13 - 0.20 m	A_2B_1
SR92.601.13 - 0.25 m	A_2B_2
SR92.601.13 - 0.30 m	A_2B_3
SR92.008 - 0.20 m	A_3B_1
SR92.008 - 0.25 m	A_3B_2
SR92.008 - 0.30 m	A_3B_3

Porcentaje de cobertura foliar de los clones de camote a los treinta días de la siembra.

		Д	\1		A2				A3				
	B1	B2	В3	$X_{1.k}$	B1	B2	В3	$X_{2.k}$	B1	B2	В3	$X_{3.k}$	X_{k}
T.	36	50	44	130	56	62	66	184	36	40	32	108	422
H H	34	50	60	144	54	62	54	170	32	38	26	96	410
H H	40	52	62	154	56	56	60	172	26	44	34	104	430
IV	36	44	54	134	52	60	62	174	34	42	32	108	416
AB X_{ij} .	146	196	220		218	240	242		128	164	124		1678
A X _i		562				700				416			1678
B X,k.		49	92			6	00			5	86		1678

VERIFICACIÓN DE SUPUESTOS

I. Supuesto de Normalidad - Test de Shapiro Wilk

- H_0 : La distribución de los datos no difiere de la normal

##		Test	Variable	Statistic	p value	Normality
##	1	${\tt Shapiro-Wilk}$	CC92.079.129 - 0.20	0.8949	0.4064	YES
##	2	Shapiro-Wilk	CC92.079.129 - 0.25	0.8397	0.1945	YES
##	3	${\tt Shapiro-Wilk}$	CC92.079.129 - 0.30	0.9119	0.4923	YES
##	4	${\tt Shapiro-Wilk}$	SR92.601.13 - 0.20	0.8634	0.2725	YES
##	5	${\tt Shapiro-Wilk}$	SR92.601.13 - 0.25	0.8274	0.1612	YES
##	6	${\tt Shapiro-Wilk}$	SR92.601.13 - 0.30	0.9815	0.9109	YES
##	7	${\tt Shapiro-Wilk}$	SR92.008 - 0.20	0.9271	0.5774	YES
##	8	${\tt Shapiro-Wilk}$	SR92.008 - 0.25	0.9929	0.9719	YES
##	9	${\tt Shapiro-Wilk}$	SR92.008 - 0.30	0.8397	0.1945	YES

Porcentaje de cobertura foliar de los clones de camote a los treinta días de la siembra en los 9 tratamientos

	Pruebas de norma	lidad		
	_	Sh	apiro-Wilk	
	Tratamientos	Estadístico	gl	Sig.
Porcentaje de Cobertura	CC92.079.129 - 0.20	,895	4	,406
Foliar	CC92.079.129 - 0.25	,840	4	,195
	CC92.079.129 - 0.30	,912	4	,492
	SR92.601.13 - 0.20	,863	4	,272
	SR92.601.13 - 0.25	,827	4	,161
	SR92.601.13 - 0.30	,982	4	,911
	SR92.008 - 0.20	,927	4	,577
	SR92.008 - 0.25	,993	4	,972
	SR92.008 - 0.30	,840	4	,195

Fuente: SPSS

Porcentaje de cobertura foliar de los tratamientos a los treinta días de la siembra

Fuente: SPSS

Según el test de normalidad Shapiro Wilk, los valores de cobertura foliar (%) a los treinta días de la siembra para todos los tratamientos se distribuyen normalmente.

II. Supuesto de Homocedasticidad - Test de Levene

•
$$H_0: \hat{\sigma}_{T1}^2 = \hat{\sigma}_{T2}^2 = \dots = \hat{\sigma}_{T9}^2$$

•
$$H_1: \hat{\sigma}_{T1}^2 \neq \hat{\sigma}_{T2}^2 \neq \cdots \neq \hat{\sigma}_{T9}^2$$

```
## Levene's Test for Homogeneity of Variance (center = mean)
## Df F value Pr(>F)
## group 8 1.4387 0.226
## 27
```

Prueba de homogeneidad de varianzas

Porcentaje de Cobertura Foliar a los 30 días de la siembra

Estadístico de				
Levene	df1		df2	Sig.
1,439		8	27	,226

Fuente: SPSS

De acuerdo al test de levene las varianzas de la cobertura foliar (%) a los treinta días de la siembra en los 9 tratamientos son estadísticamente iguales.

ANÁLISIS DE VARIANZA PARA EL PORCENTAJE DE COBERTURA FOLIAR DE LOS CLONES DE CAMOTE A LOS TREINTA DÍAS DE LA SIEMBRA

Modelo:

$$X_{ijk} = \mu + \alpha_i + \xi_{ik} + \delta_k + \beta_j + (\alpha\beta)_{ij} + \gamma_{ijk}$$

$$i = 1, 2, 3 \ (a = 3)$$

 $j = 1, 2, 3 \ (b = 3)$
 $k = 1, 2, 3, 4 \ (r = 4)$

Suma de Cuadrados

- $TC = \frac{x^2}{abr} = \frac{1678^2}{36} = 7.8213444 \times 10^4$
- $SCT = \sum x_{ijk}^2 TC = 4878.5555556$
- $SC_{BLOQUE} = \sum \frac{X_{-k}^2}{ab} TC = 24.3333333$
- $SC_{PG} = \sum \frac{X_{i,k}^2}{b} TC = 3547.8888889$
- $SC_A = \sum \frac{x_{i..}^2}{br} TC = 3361.5555556$
- $SC_{E_{(a)}} = SC_{PG} SC_A SC_{BLOQUE} = 3547.8888889 3361.5555556 24.3333333 = 162$
- $SC_B = \sum \frac{x_{.j.}^2}{ar} TC = 574.8888889$
- $SC_{AB} = (\sum \frac{x_{ij.}^2}{r} TC) SC_A SC_B = 469.1111111$
- $SC_{E_b} = SCT SC_{PG} SC_B SC_{AB} = 286.6666667$

Hipótesis Estadísticas

Factor A: Clones de camote

- 1. $H_0: \alpha_i = 0$ $H_1: \alpha_i \neq 0$
- 2. Nivel de confianza $\alpha = 1\%$; 5%
- 3. $F_0 = 62.25$
- 4. $F_{5\%}(2,6) = 5.1432528$ $F_{1\%}(2,6) = 10.9247665$
- 5. $F_0 > F_{1\%}(2,6)$
- 6. Dado que $F_0 > F_{1\%}(2,6)$ se rechaza la H_0 , por lo tanto existe diferencia altamente significativa (p < 1%) entre el porcentaje promedio de cobertura foliar para los 3 clones de camote.

Factor B: Distanciamiento entre plantas

- 1. $H_0: \beta_j = 0$ $H_1: \beta_j \neq 0$
- 2. Nivel de confianza $\alpha = 1\%$; 5%
- 3. $F_0 = 18.05$
- 4. $F_{5\%}(2, 18) = 3.5545571$ $F_{1\%}(2, 18) = 6.0129048$
- 5. $F_0 > F_{1\%}(2, 18)$
- 6. Dado que $F_0 > F_{1\%}(2,18)$ se rechaza la H_0 , por lo tanto existe diferencia altamente significativa (p < 1%) entre el porcentaje promedio de cobertura foliar para los 3 distanciamientos de siembra entre plantas.

Interacción AxB : Clon x Distanciamiento entre plantas

- 1. $H_0: (\alpha\beta)_{ij} = 0$ $H_1: (\alpha\beta)_{ij} \neq 0$
- 2. Nivel de confianza $\alpha=1\%;~5\%$
- 3. $F_0 = 7.36$
- 4. $F_{5\%}(4, 18) = 2.9277442$ $F_{1\%}(4, 18) = 4.579036$
- 5. $F_0 > F_{1\%}(4, 18)$
- 6. Dado que $F_0 > F_{1\%}(4,18)$ se reachaza a la H_0 , por lo tanto existe interacción (p < 1%) y los factores no son independientes.

Table 3: ANOVA manual

$\overline{F.V}$	G.L	SC.	CM.	F_0	Sig.
BLOQUE	3	24.333333	8.111111	0.3	
A	2	3361.555556	1680.777778	62.25	**
$E_{(a)}$	6	162	27		
T_{PG}	11	3547.888889			
В	2	574.888889	287.444444	18.05	**
AB	4	469.111111	117.277778	7.36	**
$E_{(B)}$	18	286.666667	15.925926		
Total	35	4878.555556			

Análisis de variancia para el porcentaje de cobertura foliar de los clones de camote a los treinta días de la siembra

	Suma de		Media		
Origen	cuadrados	gl	cuadrática	F	Sig.
Bloque	24,333	3	8,111	,30	,824
Clon	3361,556	2	1680,778	62,25	,000
Bloque * Clon	162,000	6	27,000		
Distanciamiento	574,889	2	287,444	18,05	,000
Clon * Distanciamiento	469,111	4	117,278	7,36	,001
Error	286,667	18	15,926		
Total	4878,556	35			

Fuente: SPSS

Análisis de variancia para el porcentaje de cobertura foliar de los clones de camote a los treinta días de la siembra

Fuente	Suma de Cuadrados	Gl	Cuadrado Medio	Razón-F	Valor-P
Bloque	24,3333	3	8,11111	0,30	0,8244
Clon	3361,56	2	1680,78	62,25	0,0001
Bloque*Clon	162,0	6	27,0		
Distanciamiento	574,889	2	287,444	18,05	0,0000
Clon*Distanciamiento	469,111	4	117,278	7,36	0,0011
Residuo	286,667	18	15,9259		
Total	4878,56	35			

Fuente: Statgraphics

Análisis de variancia para el porcentaje de cobertura foliar de los clones de camote a los treinta días de la siembra

F.V.	SC	gl	CM	F	p-valor	(Error)
Modelo	4591.89	17	270.11	16.96	<0.0001	
BLOQUE	24.33	3	8.11	0.30	0.8244	(BLOQUE*CLON)
CLON	3361.56	2	1680.78	62.25	0.0001	(BLOQUE*CLON)
BLOQUE*CLON	162.00	6	27.00	1.70	0.1795	
DISTANCIA	574.89	2	287.44	18.05	<0.0001	
CLON*DISTANCIA	469.11	4	117.28	7.36	0.0011	
Error	286.67	18	15.93			
Total	4878.56	35				

Fuente: InfoStat

COMPARACIONES MULTIPLES A PRIORI

PARA FACTOR A: CLONES DE CAMOTE

$$Totales = \begin{cases} SC_c = \frac{Q^2}{rb\sum c_i^2} \\ Q = \sum c_i x_i... \end{cases}$$

$$C_1 = \mu_{2..} \ vs. \ (\mu_{1..} \ ; \ \mu_{3..}) \Rightarrow C_1 = 2\mu_{2..} \ - \ \mu_{1..} \ - \ \mu_{3..}$$

 $C_2 = \mu_{1..} \ vs. \ \mu_{3..} \Rightarrow C_2 = \mu_{1..} \ - \ \mu_{3..}$

I. HIPÓTESIS

 $H_0: c=0$

 $H_1: c \neq 0$

II. NIVEL DE SIGNIFICANCIA

 $\alpha = 0.05$

 $\alpha = 0.01$

III. VERIFICACIÓN DE ORTOGONALIDAD

	μ_{1}	μ_{2}	μ_{3}
C_1	-1	2	-1
C_2	1	0	-1
$k_i l_i$	-1	0	1

$$\sum \frac{k_i l_i}{n} = 0$$

$\overline{x_{i}}$	562	700	416	$\sum C_i^2$	$\sum c_i x_i$	SC_c	F_0	Sig.
$\overline{C_1}$	-1	2	-1	6	422	2473.3888889	91.61	**
C_2	1	0	-1	2	146	888.1666667	32.9	**

$$SC_{C_1} = \frac{Q^2}{rb\sum_{i=0}^{2} c_i^2} = \frac{(422)^2}{4(3)6} = 2473.3888889$$

$$SC_{C_2} = \frac{Q^2}{rb\sum_{i} c_i^2} = \frac{(146)^2}{4(3)^2} = 888.1666667$$

IV. ESTADÍSTICO DE PRUEBA

$$F_{C1} = \frac{CM_{C_1}}{CM_{EA}} = \frac{2473.3888889}{27} = 91.6069959$$

$$F_{C_2} = \frac{CM_{C_2}}{CM_{EA}} = \frac{888.1666667}{27} = 32.8950617$$

Se comprueba que $SC_A = SC_{C_1} + SC_{C_2}$

- $SC_A = 3361.5555556$
- $SC_{C_1} + SC_{C_2} = 2473.3888889 + 888.1666667 = 3361.5555556$

V. PUNTO CRÍTICO

- $F_t = 5.9874$ al 5%
- $F_t = 13.745 \text{ al } 1\%$

VI. VALOR EXPERIMENTAL

- $F_{C_1} = 91.61$
- $F_{C_2} = 32.9$

Contrastes a Priori para el Factor Clones de camotes

Contrastes

CLON	Contraste	E.E.	SC	gl	CM	F	p-valor	(Error)
Contrastel	35.17	2.82	2473.39	1	2473.39	91.61	0.0001	(BLOQUE*CLON)
Contraste2	12.17	1.63	888.17	1	888.17	32.90	0.0012	(BLOQUE*CLON)
Total			3361.56	2	1680.78	62.25	0.0001	(BLOQUE*CLON)

Coeficientes de los contrastes

CLON	Ct.1	Ct.2
CC92.079.129	-1.00	1.00
SR92.008	-1.00	-1.00
SR92.601.13	2.00	0.00

Fuente: InfoStat

VII. DECISIÓN

- Para el C_1 se rechaza la H_0 con un 99% de confianza. Por lo tanto existe diferencia altamente significativa en el porcentaje de cobertura foliar para el clon SR.92.601.13 con respecto a los clones restantes, obteniendo un mejor porcentaje de cobertura foliar con el clon de camote SR.92.601.13.
- Para el C_2 se rechaza la H_0 con un 99% de confianza. Por lo tanto existe diferencia altamente significativa en el porcentaje de cobertura foliar para el clon CC.92.079.129 con respecto aL clon SR.92.005, obteniendo un mejor porcentaje de cobertura foliar con el clon de camote CC.92.079.129

PARA FACTOR B: DISTANCIAMIENTO DE SIEMBRA ENTRE PLANTAS

$$Totales = \begin{cases} SC_c = \frac{Q^2}{ra\sum_i c_i^2} \\ Q = \sum_i c_i x_{.j.} \end{cases}$$

$$C_1 = \mu_{.2.} \ vs. \ (\mu_{.1.} \ ; \ \mu_{.3.}) \Rightarrow C_1 = 2\mu_{.2.} \ - \ \mu_{.1.} \ - \ \mu_{.3.}$$

 $C_2 = \mu_{.1.} \ vs. \ \mu_{.3.} \Rightarrow C_2 = \mu_{.1.} \ - \ \mu_{.3.}$

I. HIPÓTESIS

 $H_0: c=0$

 $H_1: c \neq 0$

II. NIVEL DE SIGNIFICANCIA

 $\alpha = 0.05$

 $\alpha = 0.01$

III. VERIFICACIÓN DE ORTOGONALIDAD

	$\mu_{.1.}$	$\mu_{.2.}$	$\mu_{.3.}$
C_1	-1	2	-1
C_2	1	0	-1
$k_i l_i$	-1	0	1

$$\sum \frac{k_i l_i}{n} = 0$$

$\overline{x_{.j.}}$	492	600	586	$\sum C_i^2$	$\sum c_i x_{.j.}$	SC_c	F_0	Sig.
$\overline{C_1}$	-1	2	-1	6	122	206.7222222	12.98	**
C_2	1	0	-1	2	-94	368.1666667	23.12	**

$$SC_{C_1} = \frac{Q^2}{ra\sum_i c_i^2} = \frac{(122)^2}{4(3)6} = 206.72222222$$

$$SC_{C_2} = \frac{Q^2}{ra\sum_i c_i^2} = \frac{(-94)^2}{4(3)2} = 368.1666667$$

IV. ESTADÍSTICO DE PRUEBA

$$F_{C1} = \frac{CM_{C_1}}{CM_{EB}} = \frac{206.7222222}{15.925926} = 12.9802325$$

$$F_{C_2} = \frac{CM_{C_2}}{CM_{EB}} = \frac{368.1666667}{15.925926} = 23.1174418$$

Se comprueba que $SC_B = SC_{C_1} + SC_{C_2}$

- $SC_B = 574.8888889$
- $SC_{C_1} + SC_{C_2} = 206.72222222 + 368.1666667 = 574.8888889$

V. PUNTO CRÍTICO

- $F_t = 4.4139 \text{ al } 5\%$
- $F_t = 8.2854$ al 1%

VI. VALOR EXPERIMENTAL

- $F_{C_1} = 12.98$
- $F_{C_2} = 23.12$

Contrastes a Priori para el Factor Distanciamiento de siembra entre plantas

Contrastes DISTANCIA Contraste E.E. SC gl CM F p-valor (Error) Contrastel 10.17 2.82 206.72 1 206.72 12.98 0.0020 Contraste2 -7.83 1.63 368.17 1 368.17 23.12 0.0001 Total 574.89 2 287.44 18.05 <0.0001</td>

Coeficientes de los contrastes

DISTANCIA	Ct.1	Ct.2
0.20	-1.00	1.00
0.25	2.00	0.00
0.30	-1.00	-1.00

Fuente: InfoStat

VII. DECISIÓN

- Para el C_1 se rechaza la H_0 con un 99% de confianza. Por lo tanto existe diferencia altamente significativa en el porcentaje de cobertura foliar para el distanciamiento entre plantas de 0.25 m con respecto a los distanciamientos de 0.20 m y 0.30 m, obteniendo un mejor porcentaje de cobertura foliar con un distanciamiento de 0.25 m.
- Para el C_2 se rechaza la H_0 con un 99% de confianza. Por lo tanto existe diferencia altamente significativa en el porcentaje de cobertura foliar para el distanciamiento entre plantas de 0.20 m con respecto al distanciamiento de 0.30 m, obteniendo un mejor porcentaje de cobertura foliar con un distanciamiento de 0.30 m.

COMPARACIONES MULTIPLES A POSTERIORI

FACTOR A : CLON PRUEBA DUNCAN

$$ALS = AES \times S_{\bar{x}}$$

I.
$$S_{\bar{x}} = \sqrt{\frac{CME_{(a)}}{br}} = \sqrt{\frac{27}{3(4)}} = 1.5$$

II. AES: De la tabla Duncan \Rightarrow ($\alpha=5\%$, a = 3, $GL_{E_{(a)}}=6$)

	2	3
AES	3.46	3.59
ALS	5.19	5.385

III.
$$\bar{x}_{i..} = \frac{x_{i..}}{br}$$

 $\bar{x}_{1..} = \frac{x_{1..}}{br} = \frac{562}{3(4)} = 46.8333$
 $\bar{x}_{2..} = \frac{x_{2..}}{br} = \frac{700}{3(4)} = 58.3333$

 $\bar{x}_{3..} = \frac{x_{3..}}{br} = \frac{416}{3(4)} = 34.6667$

IV. Ordenamos los promedios de forma ascendente

$\overline{\bar{x}_{3}}$	\bar{x}_{1}	\bar{x}_{2}
34.6667	46.8333	58.3333

MÉTODO III

$ar{X}_{3}$	$ar{X}_{1}$	$ar{X}_{2}$
34.6667	46.8333	58.3333
_		a
	b	•
c		

	2	3
AES	3.46	3.59
ALS	5.19	5.385

$$1.58.3333 - 5.385 = 52.9483$$

 $2.46.8333 - 5.19 = 41.6433$

[1] "Duncan al 5% para el Porcentaje de Cobertura Foliar en los 3 clones de camote"

PORCENTAJE DE COBERTURA FOLIAR groups

SR92.601.13 58.33333 a

CC92.079.129 46.83333 b

SR92.008 34.66667 c

Table 12: Duncan al 5% del Porcentaje de Cobertura Foliar

Clon	\bar{X}_{i}		Sig.	
SR92.601.13	58.33	a		
CC92.079.129	46.83		b	
SR92.008	34.67			$^{\mathrm{c}}$

Duncan al 5% para el Porcentaje de Cobertura Foliar en los 3 clones de camote

Comparaciones Múltiples para Porcentaje de cobertura Foliar por Clon

Método: 95,0 porciento Duncan

Clon	Recuento	Media MC	Sigma MC	Grupos Homogéneos
3	12	34,6667	1,5	Х
1	12	46,8333	1,5	Х
2	12	58,3333	1,5	Х

Fuente: Statgraphics

Comparaciones Múltiples para Porcentaje de cobertura Foliar por Clon

Test:Duncan Alfa=0.05

Error: 27.0000 gl: 6

CLON	Medias	n	E.E.			
SR92.601.13	58.33	12	1.50	Α		
CC92.079.129	46.83	12	1.50		В	
SR92.008	34.67	12	1.50			С

Medias con una letra común no son significativamente diferentes (p > 0.05)

Fuente: InfoStat

FACTOR B : DISTANCIAMIENTO ENTRE PLANTAS PRUEBA DUNCAN

$$ALS = AES \times S_{\bar{x}}$$

I.
$$S_{\bar{x}} = \sqrt{\frac{CME_{(b)}}{ar}} = \sqrt{\frac{15.925926}{3(4)}} = 1.1520245$$

II. AES: De la tabla Duncan \Rightarrow ($\alpha=5\%$, b = 3, $GL_{E(b)}=18$)

	2	3
AES	2.97	3.12
ALS	3.4215	3.5943

III.
$$\bar{x}_{.j.} = \frac{x_{.j.}}{ar}$$

$$\bar{x}_{.1.} = \frac{x_{.1.}}{ar} = \frac{492}{3(4)} = 41$$

$$\bar{x}_{.2.} = \frac{x_{.2.}}{ar} = \frac{600}{3(4)} = 50$$

$$\bar{x}_{.3.} = \frac{x_{.3.}}{ar} = \frac{586}{3(4)} = 48.8333$$

IV. Ordenamos los promedios de forma ascendente

$\bar{X}_{.1.}$	$ar{X}_{.3.}$	$\bar{X}_{.2}$
41	48.8333	50

MÉTODO III

$ar{X}_{.1.}$	$\bar{X}_{.3.}$	$ar{X}_{.2.}$
41	48.8333	50
	a	l

	2	3
AES	2.97	3.12
ALS	3.4215	3.5943

1. 50 - 3.5943 = 46.4057 2. 48.8333 - 3.4215 = 45.4118 ## [1] "Duncan al 5% para el Porcentaje de Cobertura Foliar en los 3 distanciamientos entre plantas"

PORCENTAJE DE COBERTURA FOLIAR groups

0.25 50.00000 a

0.3 48.83333 a

0.2 41.00000 b

Table 15: Duncan al 5% para el Porcentaje de Cobertura Foliar en los 3 distanciamientos entre plantas

Distancia entre plantas	$\bar{X}_{.j.}$		Sig.
0.25	50	a	
0.30	48.8333	a	
0.20	41		b

Duncan al 5% para el Porcentaje de Cobertura Foliar en los 3 distanciamientos entre plantas

Distanciamiento entre plantas

Comparaciones Múltiples para Porcentaje de cobertura Foliar por Distanciamiento

Método: 95,0 porciento Duncan

	trietodo. 25,0 poreiento Banean				
	Distanciamiento	Recuento	Media MC	Sigma MC	Grupos Homogéneos
ſ	0.20 m	12	41,0	1,15202	Х
	0.30 m	12	48,8333	1,15202	Х
	0.25 m	12	50,0	1,15202	Х

Fuente: Statgraphics

Comparaciones Múltiples para Porcentaje de cobertura Foliar por Distanciamiento

Test:Duncan Alfa=0.05

Error: 15.9259 gl: 18 DISTANCIA Medias n E.E. 0.25 50.00 12 1.15 A 0.30 48.83 12 1.15 A 0.20 41.00 12 1.15 B

Medias con una letra común no son significativamente diferentes (p > 0.05)

Fuente: InfoStat

PRUEBA DUNCAN: CLON x DISTANCIAMIENTO

I.
$$\bar{X}_{ij.} = \frac{X_{ij.}}{r}$$

•
$$\bar{X}_{11.} = \frac{146}{4} = 36.5$$

•
$$\bar{X}_{12.} = \frac{196}{4} = 49$$

•
$$\bar{X}_{13.} = \frac{220}{4} = 55$$

•
$$\bar{X}_{21.} = \frac{218}{4} = 54.5$$

•
$$\bar{X}_{22.} = \frac{240}{4} = 60$$

•
$$\bar{X}_{23.} = \frac{242}{4} = 60.5$$

•
$$\bar{X}_{31.} = \frac{128}{4} = 32$$

•
$$\bar{X}_{32.} = \frac{164}{4} = 41$$

•
$$\bar{X}_{33.} = \frac{124}{4} = 31$$

	A_1	A_2	A_3
$\overline{B_1}$	36.5	54.5	32
B_2	49	60	41
B_3	55	60.5	31

COMPARACIONES VERTICALES

Para los clones de camote (A_i) en distanciamientos entre plantas (B)

AES: De tabla Duncan \Rightarrow ($\alpha=5\%$, b = 3, $GL_{E(b)}=18$)

$$S_{\bar{x}} = \sqrt{\frac{CME_{(b)}}{r}} = \sqrt{\frac{15.925926}{4}} = 1.995365$$

	2	3
AES	2.97	3.12
ALS	5.9262	6.2255

Para el clon CC92.079.129 $({\cal A}_1)$ en distanciamientos entre plantas (B)

	A_1	Sig.	
$\overline{B_1}$	36.5		b
B_2	49	a	
B_3	55	a	

1.
$$55 - 6.2255 = 48.7745$$

$$2. 49 - 5.9262 = 43.0738$$

Para el clon SR92.601.13 (A_2) en distanciamientos entre plantas (B)

	A_2	Sig
$\overline{B_1}$	54.5	a
B_2	60	a
B_3	60.5	a

1.
$$60.5 - 6.2255 = 54.2745$$

Para el clon SR92.008 (A_3) en distanciamientos entre plantas (B)

	A_3	Sig.	
$\overline{B_1}$	32		b
B_2	41	\mathbf{a}	
B_3	31		b

1.
$$41 - 6.2255 = 34.7745$$

$$2. 32 - 5.9262 = 26.0738$$

COMPARACIONES HORIZONTALES

Para los distanciamientos entre plantas (B_i) en clones de camote (\mathbf{A})

AES: De tabla Duncan \Rightarrow ($\alpha=5\%$, a = 3, $GL_E=V$)

$$S_{\bar{x}} = \sqrt{\frac{CME_{(a)} + (b-1)CME_{(b)}}{br}} = \sqrt{\frac{27 + (3-1)(15.925926)}{3(4)}} = 2.2146$$

$$GL_E = V = \frac{[(b-1)CME_b + CME_a]^2}{\frac{[(b-1)CME_b]^2}{GLE_b} + \frac{[CME_a]^2}{GLE_a}}$$

$$GL_E = V = \frac{[(3-1)15.925926+27]^2}{\frac{[(3-1)15.925926]^2}{18} + \frac{[\cdot27]^2}{6}} = 19.47 \sim 19$$

AES: De tabla Duncan \Rightarrow ($\alpha=5\%$, a = 3, $GL_E=19$)

	2	3
AES	2.96	3.11
ALS	6.5552	6.8871

Para un distanciamiento entre plantas de 0.20 m (B_1) en los clones de camotes $({\bf A})$

	A_1	A_2	A_3
$\overline{B_1}$	36.5	54.5	32
Sig.	Б	A	Б
	В		В

1.
$$54.5 - 6.8871 = 47.6129$$

$$2. \ 36.5 - 6.5552 = 29.9448$$

Para un distanciamiento entre plantas de $0.25 \text{ m} (B_2)$ en los clones de camotes (A)

1.
$$60 - 6.8871 = 53.1129$$

$$2. \ 49 - 6.5552 = 42.4448$$

Para un distanciamiento entre plantas de 0.30 m $\left(B_{3}\right)$ en los clones de camotes (A)

1.
$$60.5 - 6.8871 = 53.6129$$

$$2. 55 - 6.5552 = 48.4448$$

Table 25: Prueba de significación de Duncan (α = 5%) de la interacción entre los factores en estudio en el carácter porcentaje de cobertura foliar de los clones de camote a los treinta días de la siembra.

	CC92.079.129	SR92.601.13	SR92.008
0.20 m	bВ	a A	bВ
$0.25~\mathrm{m}$	a B	a A	a C
$0.30~\mathrm{m}$	a A	a A	bВ

Letras minúsculas para comparaciones verticales y letras mayúsculas para comparaciones horizontales.

Table 26: Prueba de significación de Duncan (a= 5%) de la interacción entre los factores en estudio en el carácter porcentaje de cobertura foliar de los clones de camote a los treinta días de la siembra

Tratamientos	\bar{x}_{ij}		Sig.		
(SR92.601.13) (0.30 m)	60.50	a			
(SR92.601.13) (0.25 m)	60.00	a			
(CC92.079.129) (0.30 m)	55.00	\mathbf{a}	b		
(SR92.601.13) (0.20 m)	54.50	\mathbf{a}	b		
(CC92.079.129) (0.25 m)	49.00		b		
(SR92.008) (0.25 m)	41.00			$^{\mathrm{c}}$	
(CC92.079.129) (0.20 m)	36.50			$^{\mathrm{c}}$	$^{\mathrm{d}}$
(SR92.008) (0.20 m)	32.00				d
(SR92.008) (0.30 m)	31.00				d

Comparaciones Múltiples para Porcentaje de cobertura Foliar para la interacción de los factores: Clones de camote y Distanciamientos de siembra entre plantas

Test:Duncan Alfa=0.05

Error: 15.92	59 gl: 18						
CLON	DISTANCIA	Medias	n	E.E.			
SR92.601.13	0.30	60.50	4	2.00 A			
SR92.601.13	0.25	60.00	4	2.00 A			
CC92.079.129	0.30	55.00	4	2.00 A	В		
SR92.601.13	0.20	54.50	4	2.00 A	В		
CC92.079.129	0.25	49.00	4	2.00	В		
SR92.008	0.25	41.00	4	2.00		C	
CC92.079.129	0.20	36.50	4	2.00		C	D
SR92.008	0.20	32.00	4	2.00			D
SR92.008	0.30	31.00	4	2.00			D

Medias con una letra común no son significativamente diferentes (p > 0.05)

Fuente: InfoStat

Interacción Distancia - Clon

Distancias de siembra entre plantas

ANÁLISIS DE TENDENCIA

FACTOR B: DISTANCIAMIENTO ENTRE PLANTAS

$$Totales = \begin{cases} SC_{R(B)} = \frac{Q^2}{ra \sum c_i^2} \\ Q = \sum c_i x_{.j.} \end{cases}$$

$\overline{X_{.j.}}$	492	600	586	$\sum c_i^2$	$\sum c_i x_{.j.}$	SC_R	F_0	Sig.
Lineal	-1	0	1	2	94	368.1666667	23.12	**
Cuadrático	1	-2	1	6	-122	206.7222222	12.98	**

Análisis de Tendencia para el Porcentaje de cobertura foliar por distanciamientos de siembra entre plantas.

Contrastes

DISTANCIA	Contraste	E.E.	SC	gl	CM	F	p-valor	(Error)
Contrastel	7.83	1.63	368.17	1	368.17	23.12	0.0001	
Contraste2	-10.17	2.82	206.72	1	206.72	12.98	0.0020	
Total			574.89	2	287.44	18.05	<0.0001	

Coeficientes de los contrastes

DISTANCIA	Ct.1	Ct.2
0.20	-1.00	1.00
0.25	0.00	-2.00
0.30	1.00	1.00

Fuente: InfoStat

$$SC_{B(Lineal)} = \tfrac{Q^2}{ra\sum c_i^2} = \tfrac{94^2}{12(2)} = 368.1666667 \Rightarrow F_0 = \tfrac{CM_{B_{Lineal}}}{CM_{E(B)}} = \tfrac{368.1666667}{15.925926} = 23.12$$

$$SC_{B(Cuadra.)} = \frac{Q^2}{ra\sum_i c_i^2} = \frac{-122^2}{12(6)} = 206.72222222 \Rightarrow F_0 = \frac{CM_{BCuadra.}}{CM_{E(B)}} = \frac{206.7222222}{15.925926} = 12.98$$

$$\alpha = 0.05 \rightarrow F_{5\%}(1, 18) = 4.4138734$$

$$\alpha = 0.01 \rightarrow F_{1\%}(1, 18) = 8.2854196$$

Se comprueba que $SC_B = SC_{B_{lineal}} + SC_{B_{Cuadra}}$

•
$$SC_B = 574.8888889$$

•
$$SC_{B_{lineal}} + SC_{B_{Cuadra.}} = 368.1666667 + 206.7222222 = 574.8888889$$

X	Y
0.20	41
0.25	50
0.30	48.8333

Análsis de Tendencia del Porcentaje de cobertura Foliar en 3 distanciamientos de siembra entre plantas

$$y = 27.02785 + 78.333x$$

$$r=0.8003$$

INTERACCIÓN A x B : CLON x DISTANCIAMIENTO

$$Totales = \begin{cases} SC_{R(A*B)} = \frac{Q_*^2}{r(\sum c_i^2)} - SC_{R(B)} \\ Donde \ Q_* = Q_1^2 + Q_2^2 + Q_3^2 \ (a = 3, \ 3 \ niveles \ de \ A) \\ Q_i = \sum c_i x_{ij}. \end{cases}$$

	Lineal	Cuadrática		A_1	A_2	$\overline{A_3}$
-	-1	1	B_1	146	218	128
	0	-2	B_2	196	240	164
	1	1	B_3	220	242	124
$\sum c_i^2$	2	6	$\sum c_i x_{ij}$. (Lineal)	74	24	-4
			$\sum c_i x_{ij}$ (Cuadrática)	-26	-20	-76

Lineal

$$SC_{AB_{Lineal}} = \frac{Q_*^2}{r \sum c_i^2} - SC_{B_{Lineal}}$$

$$Q_{\star}^2 = 74^2 + 24^2 + (-4)^2 = 6068$$

$$SC_{AB_{Lineal}} = \frac{6068}{4(2)} - 368.1666667 = 390.3333333$$

Cuadrático

$$SC_{AB_{Cuadrat.}} = \frac{Q_*^2}{r\sum c_i^2} - SC_{B_{Cuadrat.}}$$

$$Q_*^2 = (-26)^2 + (-20)^2 + (-76)^2 = 6852$$

 $SC_{AB_{Cuadrát}} = \frac{6852}{4(6)} - 206.7222222 = 78.7777778$

Se comprueba que $SC_{AB} = SC_{AB_{lineal}} + SC_{AB_{Cuadra}}$

- $SC_{AB} = 469.11111111$
- $SC_{AB_{lineal}} + SC_{AB_{Cuadra.}} = 390.3333333 + 78.7777778 = 469.1111111$
- $\alpha = 0.05 \rightarrow F_{5\%}(2, 18) = 3.5545571$
- $\alpha = 0.01 \rightarrow F_{5\%}(2, 18) = 6.0129048$

Table 30: Análisis de variancia para el porcentaje de cobertura foliar de los clones de camote a los treinta días de la siembra

$\overline{F.V}$	G.L	SC.	CM.	F_0	Sig.
BLOQUE	3	24.333333	8.111111	0.3	
A	2	3361.555556	1680.777778	62.25	**
$E_{(a)}$	6	162	27		
T_{PG}	11	3547.888889			
В	2	574.888889	287.444444	18.05	**
B_{Lineal}	1	368.166667	368.166667	23.12	**
$B_{Cuadr\acute{a}t.}$	1	206.722222	206.722222	12.98	**
AB	4	469.111111	117.277778	7.36	**
AB_{Lineal}	2	390.3333333	195.166666	12.25	**
$AB_{Cuadr\acute{a}t.}$	2	78.777778	39.388889	2.47	No
$E_{(B)}$	18	286.666667	15.925926		
Total	35	4878.55556			

Modelo AB_{Lineal}

1. A_1B_{Lineal}

X	Y
0.20	36.5
0.25	49
0.30	55

Análsis de Tendencia del Porcentaje de cobertura Foliar para el clon CC92.079.129 en 3 distanciamientos de siembra entre plantas

$$y = 0.5833333 + 185x$$

$$r = 0.98$$

2. A_2B_{Lineal}

X	Y
$0.20 \\ 0.25$	54.5 60
0.30	60.5

Análsis de Tendencia del Porcentaje de cobertura Foliar para el clon SR92.601.13 en 3 distanciamientos de siembra entre plantas

$$y = 43.3333333 + 60x$$

$$r = 0.9011$$

3. A_3B_{Lineal}

X	Y
0.20	32
0.25	41
0.30	31

Análsis de Tendencia del Porcentaje de cobertura Foliar para el clon SR92.008 en 3 distanciamientos de siembra entre plantas

$$y = 37.1666667 - 10x$$

$$r = -0.0908$$

CONCLUSIONES

- Para el Factor : 'Clones de camote' según el test de duncan al 95~% de confianza existe diferencia significativa en el promedio del porcentaje de cobertura foliar para los tres clones de camote, obteniendo en promedio un porcentaje mayor con el clon SR.92.601.13
- Para el Factor : 'Distanciamientos de siembra entre plantas' según el test de duncan al 95 % de confianza existe diferencia significativa en el promedio del porcentaje de cobertura foliar en los distanciamientos con 0.25 m y 0.30 con respecto al distanciamiento de 0.20, además el promedio del porcentaje de cobertura foliar para un distanciamiento de 0.25 m y 0.30 son estadísticamente iguales.
- Para la interaccion entre ambos factores según el test de duncan al 95% de confianza los tratamientos (SR92.601.13) (0.30 m), (SR92.601.13) (0.25 m), (CC92.079.129) (0.30 m) y (SR92.601.13) (0.20 m) estadísticamente presentan en promedio porcentajes de cobertura foliar homogéneos, obteniendo un mayor porcentaje de cobertura foliar con el tratamiento (SR92.601.13) (0.30 m).