

UTAustinX: UT.6.01x Embedded Systems - Shape the World

Courseware (/courses/UTAustinX/UT.6.01x/1T2014/courseware)

Course Info (/courses/UTAustinX/UT.6.01x/1T2014/info)

Discussion (/courses/UTAustinX/UT.6.01x/1T2014/discussion/forum)

Progress (/courses/UTAustinX/UT.6.01x/1T2014/progress)

Questions (/courses/UTAustinX/UT.6.01x/1T2014/a3da417940af4ec49a9c02b3eae3460b/)

Syllabus (/courses/UTAustinX/UT.6.01x/1T2014/a827a8b3cc204927b6efaa49580170d1/)

Embedded Systems Community (/courses/UTAustinX/UT.6.01x/1T2014/e3df91316c544d3e8e21944fde3ed46c/)

Table 14.1 shows the ADC0 register bits required to perform sampling on a single channel. There are two ADCs; you will use ADC0 and the grader uses ADC1. For more complex configurations refer to the specific data sheet. Bits 8 and 9 of the **SYSCTL_RCGC0_R** specify the maximum sampling rate, see Table 14.2. The TM4C123 can sample up to 1 million samples per second. Bits 8 and 9 of the **SYSCTL_RCGC0_R** specify how fast it COULD sample; the actual sampling rate is determined by the rate at which we trigger the ADC. In this chapter we will use software trigger mode, so the actual sampling rate is determined by the SysTick periodic interrupt rate; the SysTick ISR will take one ADC sample. On the TM4C123, we will need to set bits in the **AMSEL** register to activate the analog interface.

Address	31-17	16	15-10	9	8		7-0		Name	
0x400F.E100		ADC			MAXADCSPD				SYSCTL_RCGC0_R	
	31-14	13-12	11-10	9-8	7-6	5-4	3-2	1-0		
0x4003.8020		SS3		SS2		SS1		SSO	ADC0_SSPRI_R	
		31-	-16		15-12	11-8	7-4	3-0		
							ı			
0x4003.8014					EM3	EM2	EM1	EM0	ADC0_EMUX_R	
		31	-4		3	2	1	0		
	ı						ı	ı	I	
0x4003.8000					ASEN3	ASEN2	ASEN1	ASEN0	ADC0_ACTSS_R	
0x4003.80A0						MUZ	ADC0_SSMUX3_R			
0x4003.80A4				T S0	IE0	END0	D0	ADC0_SSCTL3_R		
0x4003.8028				SS3	SS2	SS1	SSO	ADC0_PSSI_R		
0x4003.8004					INR3	INR2	INR1	INR0	ADC0_RIS_R	
0x4003.800C					IN3	IN2	IN1	IN0	ADC0_ISC_R	
		31-	-12		·	11-	0			
0x4003.80A8					DATA				ADC0_SSFIFO3	

Table 14.1. The TM4C ADCO registers. Each register is 32 bits wide. You will use ADCO and we will use ADC1 for the grader and to implement the oscilloscope feature.

Table 14.2 shows the configuration to set the maximum sampling speed. The actual sampling rate is determined by how many times per second the software starts the ADC.

Value	Maximum sampling frequency
0x3	1M samples/second
0x2	500K samples/second
0x1	250K samples/second
0x0	125K samples/second

Table 14.2. The ADC MAXADCSPD bits in the SYSCTL_RCGCO_R register specify the maximum sampling speed.

Table 14.3 shows which I/O pins on the TM4C123 can be used for ADC analog input channels. You will use PE2 for Labs 14 and 15, and TExaS uses PD3 for the voltmeter and oscilloscope.

IO	Ain	0	1	2	3	4	5	6	7	8	9	14
PB4	Ain10	Port	'	SSI2CIk		M0PWM2		0	T1CCP0	CANORX	,	
PB5	Ain11	Port		SSI2Fss		M0PWM3			T1CCP1	CAN0Tx		
PD0	Ain7	Port	SSI3Clk	SSI1CIk	I ₂ C3SCL	M0PWM6	M1PWM0		WT2CCP0			
PD1	Ain6	Port	SSI3Fss	SSI1Fss	I ₂ C3SDA	M0PWM7	M1PWM1		WT2CCP1			
PD2	Ain5	Port	SSI3Rx	SSI1Rx		M0Fault0			WT3CCP0	USB0epen		
PD3	Ain4	Port	SSI3Tx	SSI1Tx				IDX0	WT3CCP1	USB0pflt		
PE0	Ain3	Port	U7Rx									
PE1	Ain2	Port	U7Tx									
PE2	Ain1	Port										
PE3	Ain0	Port										
PE4	Ain9	Port	U5Rx		I₂C2SCL	M0PWM4	M1PWM2			CAN0Rx		
PE5	Ain8	Port	U5Tx		I ₂ C2SDA	M0PWM5	M1PWM3			CAN0Tx		

Table 14.3. Twelve different pins on the LM4F/TM4C can be used to sample analog inputs. You will use ADC0 and PE2 to sample analog input. If your PE2 pin is broken, you will have the option to perform Lab 14 with PE3 or PE5. We use ADC1 and PD3 to implement the oscilloscope feature.

The ADC has four sequencers, but you will use only sequencer 3 in Labs 14 and 15. We set the **ADCO_SSPRI_R** register to 0x0123 to make sequencer 3 the highest priority. Because we are using just one sequencer, we just need to make sure each sequencer has a unique priority. We set bits 15–12 (**EM3**) in the **ADCO_EMUX_R** register to specify how the ADC will be triggered. Table 14.4 shows the various ways to trigger an ADC conversion. More advanced ADC triggering techniques are presented in the book Embedded Systems: Real-Time Interfacing to ARM® Cortex™-M Microcontrollers. However in this course, we use software start (**EM3**=0x0). The software

writes an 8 (SS3) to the ADC0_PSSI_R to initiate a conversion on sequencer 3. We can enable and disable the sequencers using the ADC0_ACTSS_R register. There are twelve ADC channels on the LM4F120/TM4C123. Which channel we sample is configured by writing to the ADC0_SSMUX3_R register. The mapping between channel number and the port pin is shown in Table 14.3. For example channel 9 is connected to the pin PE4. The ADC0_SSCTL3_R register specifies the mode of the ADC sample. We set TS0 to measure temperature and clear it to measure the analog voltage on the ADC input pin. We set IE0 so that the INR3 bit is set when the ADC conversion is complete, and clear it when no flags are needed. When using sequencer 3, there is only one sample, so END0 will always be set, signifying this sample is the end of the sequence. In this class, the sequence will be just one ADC conversion. We set the D0 bit to activate differential sampling, such as measuring the analog difference between two ADC pins. In our example, we clear D0 to sample a single-ended analog input. Because we set the IE0 bit, the INR3 flag in the ADC0_RIS_R register will be set when the ADC conversion is complete, We clear the INR3 bit by writing an 8 to the 8 to the ADC0_ISC_R register.

Value	Event						
0x0	Software start						
0x1	Analog Comparator 0						
0x2	Analog Comparator 1						
0x3	Analog Comparator 2						
0x4	External (GPIO PB4)						
0x5	Timer						
0x6	PWM0						
0x7	PWM1						
0x8	PWM2						
0x9	PWM3						
0xF	Always (continuously sample)						

Table 14.4. The ADC EM3, EM2, EM1, and EM0 bits in the ADC_EMUX_R register.

EdX is a non-profit created by founding partners Harvard and MIT whose mission is to bring the best of higher education to students of all ages anywhere in the world, wherever there is Internet access. EdX's free online MOOCs are interactive and subjects include computer science, public health, and artificial intelligence.

(http://www.meetup.com/edX-Global-Community/)

(http://www.facebook.com/EdxOnline)

(https://twitter.com/edXOnline)

(https://plus.google.com/108235383044095082]

(http://youtube.com/user/edxonline)

© 2014 edX, some rights reserved.

Terms of Service and Honor Code - Privacy Policy (https://www.edx.org/edx-privacy-policy)