Self-Test 2, Page 465

1. 88; 616 2. 81π 3. a. 6π b. 36π c. 36π – 72 4. 16:49 5. 2:3

7. $64 - 16\pi$ 8. $36\pi - 27\sqrt{3}$ 9. $\frac{3}{5}$ 10. $\frac{\pi}{4}$

Extra, Page 466

Answers may vary in Exs. 1–8. 1. 55.2 3. 39.7 5. 75.3 7. 178.2

Chapter Review, Page 470

7. 7 9. 30 + $4\sqrt{2}$; 52 11. $9\sqrt{3}$ 13. 188.4; 2826 15. $8\pi\sqrt{2}$; 32π 1. 64 3. 18 cm² 5. 9 19. 16π 21. 1:4 23. $\frac{9}{25}$ 17. $24\pi + 9\sqrt{3}$

Cumulative Review, Pages 472-473

3. False 5. False 7. True 9. True 11. False 13. , skew 15. -45 17. 5 1. False 19. a sphere with ctr. P and radius 4 cm, along with its interior 21. Key steps of proof: 1. $\triangle ABC \cong$ $\triangle DCB$ (HL) 2. $\angle 1 \cong \angle 2$ (CPCT) 3. $\overline{CE} \cong \overline{BE}$ (Thm. 4-2) 4. $\triangle BCE$ is isos. (Def. isos. \triangle) 23. Assume temp, that there is a \triangle whose sides have lengths x, y, and x + y, then the length of the longest side equals the sum of the lengths of the other two sides. This contradicts the \triangle Ineq. Thm., if 2 sides of a triangle have lengths x and y, then the third side must be greater than x + y. Therefore, the temp. assumption must be

false. It follows that no \triangle has sides of length x, y, and x + y. 25. 5 27. 4.5 29. 17 33. Const. a seg. of length 2x. Use Const. 13 with a = y, b = 2x, and c = x to find a seg. with length t;

 $\frac{y}{2x} = \frac{x}{t}$; $ty = 2x^2$; $t = \frac{2x^2}{y}$. 35. $32\sqrt{6}$ 37. a. 46 b. $\frac{1}{4}$

Chapter 12

Written Exercises, Pages 478-480

9. 10; 600 **11.** 5; 125 **13.** 390 **1.** 40; 88; 48 **3.** 3; 54; 90 **5.** 6, 168, 108 **7.** 54; 27 **15.** 4; 8 **17.** 240; $240 + 32\sqrt{3}$; $160\sqrt{3}$ **19.** 252; 372; 420 **21.** 180; 228; 216 **23.** 675 cm³

25. 1.8 kg 27. 19 kg 29. $50x^3$; $120x^2$ 31. 198 cm² 33. ≈ 336 35. $V = Bh = \frac{1}{2}aph = \frac{1}{2}aph$

 $\frac{1}{2} \cdot \frac{x\sqrt{3}}{6} \cdot 3x \cdot x = \frac{1}{4}x^3\sqrt{3}$ 39. 6 cm

Written Exercises, Pages 485-487

9. 192 **11.** 60; 96; 48 **13.** 260; 360; 400 1. 6; $\sqrt{34}$ 3. 25: $\sqrt{674}$ 5. 3; $\sqrt{41}$ 7. 36

15. 6 cm 17. a. 15 cm; 13 cm b. 384 cm² (V-ABCD is not reg.) 19. Vol. pyr. = $\frac{1}{6}$ vol. rect. solid

21. 8; $\sqrt{73}$ **23.** a. 3; 6; $6\sqrt{3}$ b. $45\sqrt{3}$; $36\sqrt{3}$ **25.** 144; $24\sqrt{39}$ **27.** \approx 66 cubic units **29.** $\frac{x^3\sqrt{2}}{12}$

31, 246

Mixed Review Exercises, Page 487

1. 12π ; 36π **2.** 22π ; 121π **3.** π ; $\frac{\pi}{4}$ **4.** $6\pi\sqrt{3}$; 27π **5.** 5; 25π **6.** 9; 81π

8. $\sqrt{15}$; $2\pi\sqrt{15}$ **9. a.** 144π mm² **b.** 576 mm² **10. a.** 32 **b.** $8\pi\sqrt{2}$

Written Exercises, Pages 492-495

5. 4 7. 48π 9. 5; 20π ; 36π ; 16π 1. 40π ; 72π ; 80π 3. 24π ; 56π ; 48π

11. 5; 156π ; 300π ; 240π 13. 12; 9; 324π ; 432π 15. 8; 17; 255π ; 480π 17. a. 1:4 b. 1:4

19. 1:3 21. 24 cm 23. 25 min 25. 2 27. a. cyl. with r = 6, h = 10; $V = 360\pi$

b. cyl. with r = 10, h = 6; $V = 600\pi$ **29. a.** $270\sqrt{3}$; $180\sqrt{3}$ **b.** 720; $240\sqrt{2}$ **c.** $540\sqrt{3}$; 360 **31.** cyl. with r = s, h = s; $V = \pi s^3$ **33.** 16π cm³ **35.** $18\pi\sqrt{2}$ cm³ **37.** 60π ; $18\sqrt{91}$ **39.** 1200π