

Inteligencia Artificial

Procesos de Decisión de Markov PDM

Procesos de decisión de Markov

- Aprendizaje por refuerzo
- Procesos de decisión de Markov:
 - Definición
 - Solución de un proceso de decisión de Markov
 - Ejemplo
 - Algoritmos para resolver un PDM
 - Utilidad de una secuencia de acciones.
 - Iteración de valores
 - Iteración de políticas

Bibliografía de MDP y RL

 Consultar libro electrónico de Sutton and Barto

http://webdocs.cs.ualberta.ca/~sutton/book/ebook

- capítulos 3, 4 y 6 (secciones 6.1, 6.2, 6.5)
- Las transparencias de MDP y RL también corresponden al libro de Russell and Norvig:
 - capítulos 17 y 21

Aprendizaje por refuerzo

Juguemos:

Véis una luz encendida, dos botones (uno a la derecha y otro a la izquierda) y un feriante con mala cara que os pide un euro por cada vez que presionéis un botón y os dice que juguéis. No parecéis tener otra opción jugar a su juego... así que le dais el primer euro y os pregunta que botón queréis apretar.

Aprendizaje por refuerzo

Idea fundamental:

- Recibimos información en forma de recompensa.
- La utilidad del agente viene dada por la función de recompensa.
- El agente debe aprender a actuar para maximizar la recompensa esperada.

Mundo rejilla

- El agente vive en una rejilla
- Los bloques oscuros impiden el paso del agente
- Las acciones del agente no siempre tienen el mismo resultado. Si quiere ir hacia el norte:
 - 80% de las veces va al norte
 - 10% al este
 - 10% al oeste
- Puede recibir una pequeña recompensa por "sobrevivir"
- La mayor recompensa llega al final del juego
- Objetivo: maximizar la suma de recompensas.

Procesos de decisión de Markov

Un MDP se define por:

- Un conjunto de estados S.
- Un conjunto de acciones A.
- Una función de transición

$$T:A \times S \times S \rightarrow R$$

- T(a,s,s') = Probabilidad de ir al estado s' cuando estamos en el estado s y usamos la acción a.
- T(a,s,s') = P(s'|s,a)
- Función de recompensa R(s,a,s')
 - En ocasiones R(s)
- Un estado inicial
- Posiblemente un estado terminal

Procesos de decisión de Markov

- Los procesos de decisión de Markov son una familia de problemas de búsqueda no deterministas.
- El aprendizaje por refuerzo es un PDM del que desconocemos la función de recompensa o la función de transición.

Procesos de decisión de ¿Markov?

- Andrei Markov (1856-1922)
- La hipótesis de Markov:
 - El estado actual resume toda la información relevante del pasado.
- En el caso de los procesos de decisión de Markov, esto quiere decir que:

$$P(S_{t-1}|S_t, a_t, S_{t-1}, a_{t-1}, \dots, S_0, a_0) = P(S_{t-1}|S_t, a_t)$$

¿Qué es resolver un PDM?

- En problemas de búsqueda deterministas en que interviene un único agente, queremos un plan óptimo, una secuencia de acciones desde el inicio hasta un objetivo.
- En un PDM queremos una política óptima π*:S → A
 - Una política asigna una acción a cada estado π(s)=a.
 - Una política óptima maximiza la utilidad esperada si se sigue.
 - El resultado es un agente reflejo.

Mundo rejilla

 Política óptima para el mundo rejilla cuando R(s)=-0.04 para todos los estados no terminales?

Mundo rejilla

 Política óptima para el mundo rejilla cuando R(s)=-0.04 para todos los estados no terminales

Mundo rejilla

 Política óptima para el mundo rejilla cuando R(s)=-0.04 para todos los estados no

terminales En el mejor de los casos -0.04+1=0,96 Tenemos posibilidad de que sea -1

¿Qué pasa con otros valores universitat de Barcelona de R(s)? (para estados no terminales)

¿Qué pasa con otros valores wiversitat De Barcelona de R(s)? (para estados no terminales)

¿Qué pasa con otros valores wiversitat De Barcelona de R(s)? (para estados no terminales)

¿Qué pasa con otros valores universitat de Barcelona de R(s)? (para estados no terminales)

$$R(s) = -0.01$$

$$R(s) = -0.4$$

$$R(s) = -0.03$$

¿Qué pasa con otros valores inversitat de Barcelona de R(s)? (para estados no terminales)

$$R(s) = -0.03$$

Y si R(s)>0 ? (para estados no terminales)

¿Qué pasa con otros valores universitat de Barcelona de R(s)? (para estados no terminales)

R(s) = -0.4

$$R(s) = -0.03$$

$$R(s) = -2.0$$

Y si R(s)>0?

- Tres tipos de cartas: 2,3,4
- Mazo infinito
- Comenzamos con un 3
- Después de cada carta tenemos que decir: Superior o Inferior
- Se saca una nueva carta:
 - Si hemos acertado (o si sale la misma carta) ganamos tantos puntos como el valor de la carta.
 - El juego termina si hemos fallado.

- ¿Podemos usar expectimax?
- No, porque:
 - En expectimax las recompensas llegan únicamente al final del juego
 - En expectimax el juego termina en algún momento.
- Formalicemos Superior/Inferior como un PDM...

Superior/Inferior como PDM

- Estados: 2,3,4,fin
- Acciones: Superior, Inferior
- Modelo: T(s,a,s')

$$-$$
 T(s=4,a=Inferior,s'=4)=0.25

$$-$$
 T(s=4,a=Inferior,s'=3)=0.25

$$-$$
 T(s=4,a=Inferior,s'=2)=0.5

$$-$$
 T(s=4,a=Superior,s'=4)=0.25

$$-$$
 T(s=4,a=Superior,s'=3)=0

$$-$$
 T(s=4,a=Superior,s'=2)=0

$$-$$
 T(s=4,a=Superior,s'=fin)=0.75

- ...

- Retorno: R(s,a,s') = valor(s') si s'≠fin,
 = 0 si s'=fin
- Estado inicial: 3

Árboles de búsqueda PDM

 Cada estado del PDM genera un árbol de búsqueda expectimax.

Utilidad de una secuencia de acciones B

- Para formalizar la optimalidad de una política, necesitamos entender la optimalidad de una secuencia de acciones.
- Típicamente consideramos preferencias estacionarias sobre secuencias de acciones.

$$[r, r_0, r_1, r_2, \ldots] \succ [r, r'_0, r'_1, r'_2, \ldots]$$
 \Leftrightarrow
 $[r_0, r_1, r_2, \ldots] \succ [r'_0, r'_1, r'_2, \ldots]$

Utilidad de una secuencia de acciones 19

- Teorema: Si las preferencias son estacionarias únicamente existen dos maneras de definir la utilidad de una secuencia de acciones:
 - Utilidad aditiva:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$$

– Utilidad aditiva con descuento:

$$U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$$

¿Utilidad infinita?

- Problema: Las secuencias de acciones infinitas pueden tener una utilidad infinita.
- Soluciones:
 - Horizonte finito. Establecemos que sólo se jugará al juego durante T unidades de tiempo. Da lugar a políticas no estacionarias (π* depende del tiempo que queda)
 - Estado absorbente: Garantizamos que para cualquier política se alcance siempre un nodo terminal.
 - Descontar: Dado un $0 < \gamma < 1$

$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

 Un γ más pequeño indica que estamos mucho más interesados en los estados más inmediatos que en los que llegarán más tarde.

Descontar

- Normalmente se descuenta por γ < 1 cada paso de tiempo
- Las recompensas más cercanas en el tiempo tienen una utilidad mayor que las que tardarán más en llegar.
 - "Más vale pájaro en mano..."
- Ayuda a los algoritmos a converger.

Valor óptimo de un estado

- Operación fundamental: Calcular el valor óptimo de cada estado.
- V*(s) = Valor que obtendríamos si empezásemos en s y aplicásemos la política óptima
- Q*(s,a) = Valor que obtendríamos si empezásemos en s, tomáramos la acción a y después aplicásemos la política óptima
- π*(s) = Acción óptima cuando nos encontramos en el estado s.

Ecuaciones de Bellman

 La definición de "utilidad óptima" nos lleva a pensar que obtenemos la recompensa óptima maximizando sobre la primera acción y siguiendo la política óptima a partir de ahí.

Formalmente:

$$V^*(s) = \max_a Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Resolviendo PDM

- Queremos encontrar una política óptima π*
- Propuesta 1: Podemos hacer una búsqueda expectimax modificada empezando en el estado s.

$$\pi^{*}(s) = \arg\max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

¿Por qué no utilizar búsqueda?

- El árbol es usualmente infinito.
- Los mismos estados aparecen una y otra vez.
- Buscaríamos una vez por estado.

Iteración de valores

- Computar los valores óptimos para todos los estados al mismo tiempo utilizando aproximaciones sucesivas.
- V*₀,V*₁,...,V*_k, ...
- Una vez terminamos, no necesitamos replanificar (toda la planificación se realiza offline).

Estimación de valor

- Para cada estado s calculamos estimaciones V*_k(s):
 - No son el valor óptimo de s!!
 - Son el valor óptimo considerando k recompensas.
 - Cuando k → ∞, se aproxima al valor óptimo
- ¿Por qué?
 - Cuando descontamos, las recompensas que están lejos se vuelven negligibles.
 - Si desde cualquier parte se puede alcanzar un estado terminal, la fracción de episodios que no terminan se convierte en negligible.
 - En otro caso, podríamos tener utilidad infinita y la aproximación no funcionará.

Iteración de valores

Idea (algoritmo):

- Empezar con $V_0^*(s)=0$
- Dado V*_i, calcular el valor de todos los estados a profundidad i+1

$$V_{i+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

- Esta es la actualización de Bellman.
- Repetir hasta que converja
- Teorema: El algoritmo converge a valores óptimos únicos.
 - Nota: Las políticas pueden converger mucho antes de que lo hagan los valores

Ecuaciones de Bellman: Ejempto Barcelona

(extraído del curso de Dan Klein – UC Berkeley)

Example: γ =0.9, living reward=0, noise=0.2

$$V_{i+1}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_i(s') \right]$$

$$V_2(\langle \mathbf{3}, \mathbf{3} \rangle) = \sum_{s'} T(\langle \mathbf{3}, \mathbf{3} \rangle, \text{right}, s') \left[R(\langle \mathbf{3}, \mathbf{3} \rangle) + 0.9 V_1(s') \right]$$

max happens for a=right, other actions not shown

$$= 0.9 [0.8 \cdot 1 + 0.1 \cdot 0 + 0.1 \cdot 0]$$

Ejemplo: Iteración de valores Barcelona

 La información se propaga hacia atrás desde los estados terminales. Al final todos los estados tienen estimaciones de valor correctas42

Evaluación de políticas

- Otra operación básica: calcular el valor de un estado en una política (en general, no necesariamente óptima) dada.
- V^π(s) = Suma total de recompensas esperadas a partir de s si seguimos la política π.

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Evaluación de políticas

- ¿Cómo calculamos las V's para una política π determinada?
- Idea 1: Modifiquemos las ecuaciones de Bellman

$$V_0^{\pi}(s) = 0$$

$$V_{i+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_i^{\pi}(s')]$$

 Es simplemente un sistema lineal, se puede resolver con Matlab (por ejemplo).

Iteración de políticas

- Problemas de la iteración de valores:
 - Considerar todas las acciones en cada iteración es lento. Tarda |A| veces más tiempo que la evaluación de una política
 - En ese tiempo la política no cambia... tiempo perdido.
- Alternativa a la iteración de valores:
 - Iteración de políticas:
 - Repetir hasta que converja:
 - Paso 1: Evaluar una política
 - Paso 2: Mejorar la política

Iteración de políticas

- Repetir hasta que converja la política
 - Evaluación de política: Dada la política actual π encontrar los valores asociados aplicando las ecuaciones de Bellman simplificadas de forma iterativa

$$V_{i+1}^{\pi_k}(s) \leftarrow \sum_{s'} T(s, \pi_k(s), s') \left[R(s, \pi_k(s), s') + \gamma V_i^{\pi_k}(s') \right]$$

 Mejora de política: Determinar una nueva política a partir de los valores encontrados en el paso anterior

$$= \pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_k}(s') \right]_{46}$$

Comparación

- Iteración de valores:
 - Cada paso modifica tanto los valores de cada estado (explícitamente) como la política.
- Iteración de políticas:
 - Varias iteraciones para calcular las utilidades de una política determinada.
 - Cada iteración se modifica la política.

$$\pi_0 \xrightarrow{E} V^{\pi_0} \xrightarrow{1} \pi_1 \xrightarrow{E} V^{\pi_1} \xrightarrow{1} \pi_2 \xrightarrow{E} \cdots \xrightarrow{1} \pi^* \xrightarrow{E} V^*,$$

Iteración de valores

(libro Russell and Norvig)

function Value-Iteration(mdp,ϵ) returns a utility function inputs: mdp, an MDP with states S, transition model T, reward function R, discount γ ϵ , the maximum error allowed in the utility of any state local variables: U,U', vectors of utilities for states in S, initially zero θ , the maximum change in the utility of any state in an iteration

repeat
$$U \leftarrow U'; \delta \leftarrow 0$$
 for each state s in S do
$$U'[s] \leftarrow R[s] + \gamma \max_{a} \sum_{s'} T(s, a, s \cdot) \ U[s']$$
 if $|U'[s] - U[s]| > \delta$ then $\delta \leftarrow |U'[s] - U[s]|$ until $\delta < \epsilon(1-\gamma)/\gamma$ return U

Figure 17.4 The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (17.8).

Actualización de Bellman usada:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max \sum_{s'} T(s,a,s') U_i(s')$$
.

Iteración de valores

<u>(e-libro Sutton and Barto)</u>

Initialize
$$V$$
 arbitrarily, e.g., $V(s) = 0$, for all $s \in S^+$

Repeat
$$\Delta \leftarrow 0$$
For each $s \in S$:
$$v \leftarrow V(s)$$

$$V(s) \leftarrow \max_a \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V(s') \right]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$
until $\Delta < \theta$ (a small positive number)

Output a deterministic policy, π , such that
$$\pi(s) = \arg \max_a \sum_{s'} \mathcal{P}^a_{ss'} \left[\mathcal{R}^a_{ss'} + \gamma V(s') \right]$$

Figure 4.5: Value iteration.

Iteración de políticas

(libro Russell and Norvig)

```
function POLICY-ITERATION(mdp) returns a policy
   inputs: mdp, an MDP with states S, transition model T
   local variables: U, a vector of utilities for states in S, initially zero
                        \pi, a policy vector indexed by state, initially random
       given a policy \pi_i calculate U_i = U^{\pi_i}, the utility of each state if \pi_i were to be executed.
   repeat
       for each state s in S do
            if max, \sum_{s'} T(s, a, s') \ U[s'] > \sum_{s'} T(s, \pi[s], s) U[s'] then \pi[s] \leftarrow \underset{a}{\operatorname{argmax}}, \ \sum_{s'} T(s, a, s) \ U[s']
                 unchanged? \leftarrow false
  until unchanged?
   return n
```

Figure 17.7 The policy iteration algorithm for calculating an optimal policy.

Iteración de políticas

(e-libro Sutton and Barto)

- 1. Initialization $V(s) \in \Re$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in \mathcal{S}$
- 2. Policy Evaluation

Repeat
$$\Delta \leftarrow 0$$
 For each $s \in \mathcal{S}$:
$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s'} \mathcal{P}_{ss'}^{\pi(s)} \left[\mathcal{R}_{ss'}^{\pi(s)} + \gamma V(s') \right]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$
 until $\Delta < \theta$ (a small positive number)

3. Policy Improvement $policy\text{-stable} \leftarrow true$ For each $s \in \mathcal{S}$: $b \leftarrow \pi(s)$ $\pi(s) \leftarrow \arg\max_{a} \sum_{s'} \mathcal{P}^{a}_{ss'} \left[\mathcal{R}^{a}_{ss'} + \gamma V(s') \right]$ If $b \neq \pi(s)$, then $policy\text{-stable} \leftarrow false$ If policy-stable, then stop; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for V^* . In the " $\arg \max$ " step in 3, it is assumed that ties are broken in a consistent order.

Iteración asíncrona de valores

- En la iteración de valores se actualiza cada estado en cada iteración
- De hecho, cualquier secuencia de actualizaciones de Bellman convergerá si cada estado es visitado un número infinito de veces.
- Podemos actualizar la política tan a menudo como queramos que seguirá convergiendo
- Idea: actualizar los estados cuyos valores esperamos que cambien:

IF $|V_{i+1}(s) - V_i(s)|$ es grande THEN actualiza los predecesores de s

Algunas consideraciones

Notación:

- en las transparencias casi siempre se considera R(s,a,s'):
 - R: $S \times A \times S \rightarrow \Re$
- en el libro de Al (Russell and Norvig) se dice R(s)
 - R: $S \rightarrow \Re$
 - "does not change the problem in any fundamental way"
- U(s) para denotar V(s)
 - Utilidades de los estados (es decir, Valores)

Video: swing-up and balance from scratch

http://www.youtube.com/watch?v=Lt-KLtkDlh8

Video: robotic soccer goalkeeper

http://www.youtube.com/watch?v=CIF2SBVY-J0&NR=1

Bibliografia (MDP y RL)

http://webdocs.cs.ualberta.ca/~sutton/book/ebook