1. Kto jest autorem słów "Wszystko jest liczbą", a kto "Liczby naturalne stworzył dobry Bóg, a reszta jest dziełem człowieka"?

Odpowiedź

"Wszystko jest liczbą" \sim hasło Pitagorejczycy (Pitagoras z Savos) VI w. p.n.e.

"Liczby naturalne stworzył dobry Bóg, a reszta jest dziełem człowieka" \sim Leopold Kroneker

2. Czy zero jest liczbą naturalną? Podać argument za tym, by zaliczyć je do liczb naturalnych oraz za tym, by liczby naturalne zaczynać od jedynki.

Odpowiedź

Obie sytuacje są poprawne. Za $0 \in \mathbb{N}$:

- konstrukcja zbioru liczb naturalnych na bazie zbiorów
- istnienie elementu neutralnego względem dodawania
- TODO

Przeciw $0 \in \mathbb{N}$:

- \bullet wzór na średnią, n=0 nie może być w mianowniku
- •
- TODO
- 3. Podać definicję grupy.

Odpowiedź

$$(G,*):*:G\times G\longrightarrow G$$

- 1) $\forall_{a,b,c \in G} (a * b) * c = a * (b * c) \text{ (łączność)}$
- 2) $\exists_{e \in G} \forall_{a \in G} e * a = a * e = a$ (istnieje element neutralny)
- 3) $\forall_{a \in G} \exists_{b \in G} a * b = b * a = e$ (istnieje element przeciwny)
- 4. Wytłumaczyć rolę klas równoważności w relacji równoważności.

Odpowiedź

Klasy równoważności w relacji równoważności odgrywają kluczową rolę, ponieważ każda relacja równoważności dzieli zbiór na rozłączne klasy, gdzie elementy w danej klasie są równoważne

5. Podać formalna definicje liczb całkowitych (na bazie liczb naturalnych).

Odpowiedź

$$\mathbb{Z} = \frac{\mathbb{N} \times \mathbb{N}}{\sim}$$
 $(m, n) \sim (a, b) \Leftrightarrow m + b = n + a$ $(2, 5) \sim (1, 4)$, bo $2 + 4 = 5 + 1$ lub $2 - 5 = 1 - 4 = -3$

6. Podać uzasadnienie tego, że przyjmujemy, iż $(-a) \cdot (-b) = ab$, nie zaś $(-a) \cdot (-b) = -ab$ dla $a, b \in \mathbb{N}$.

1

$$(-2)(-5) = -10$$

 $(-2)(10 - 5) = -2 \cdot 10 + (-2)(-5)$
 $-2 \cdot 5 = -10 \text{ oraz} = -20 + (-10) = -30$

7. Podać definicję pierścienia, pierścienia z jedynką.

Odpowiedź

Pierścień

$$(R,+,\cdot,0), \quad R\neq\emptyset$$

- a) $\forall_{a,b,c \in R} \ a + (b+c) = (a+b) + c \ (\text{lączność dodawania})$
- b) $\forall_{a \in R} \ a + 0 = a$ (element neutralny względem +)
- c) $\forall_{a \in R} \exists_{b \in R} \ a + b = 0$ (istnienie elementu przeciwnego b = -a względem dodawania)
- d) $\forall_{a,b\in R} \ a+b=b+a$ (grupa abelowa dodawania)
- e) $\forall_{a,b,c \in R} a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (łączność mnożenia)
- f) $\forall_{a,b,c \in R} \ a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ (prawo rozdzielności)
- g) $\forall_{a,b,c \in R} (b+c) \cdot a = (b \cdot a) + (c \cdot a)$ (prawo rozdzielności)

Pierścień z jedynka

$$\exists_{1 \in R} \forall_{a \in \mathbb{R}} a \cdot 1 = 1 \cdot a = a$$

8. Podać definicję dzielników zera.

Odpowiedź

Element a pewnego pierścienia, dla którego istnieje taki element b, że ab = 0 oraz $b \neq 0$.

9. Podać formalną definicję liczb wymiernych (na bazie liczb całkowitych). Jakiej struktury jest to szczególny przypadek?

Odpowiedź

$$\frac{\mathbb{Z} \times (\hat{\mathbb{Z}} \setminus \emptyset)}{\sum_{n=0}^{\infty} (m,n)} \sim (a,b) \Leftrightarrow m \cdot b = n \cdot a$$

$$\frac{m}{n} = \frac{a}{b} \text{ np. } (3,7) = (-6,-14) = \frac{3}{7}$$

10. Podać "szkolną" definicję liczby wymiernej.

Odpowiedź

p-wymierna \Leftrightarrow gdy można ją przedstawić w postaci ułamka o liczniku i mianowniku całkowitym.

11. Kto to był Nicolas Bourbaki?

Odpowiedź

To była grupa młodych matematyków, których celem było napisanie kompletu aktualnych podręczników do matematyki.

2

12. Zdefiniować "złoty podział". Obliczyć liczbę otrzymaną w wyniku złotego podziału.

Złoty podział jest to podział pewnego odcinka w następujący sposób

$$\frac{a}{b} = \frac{a+b}{a}$$

, dla a=1 $\frac{1}{b}=\frac{b+a}{1}$ b(b+1)=1 b*2+b-1=0 $\Delta=1+4=5$ $b_1=\frac{-1-\sqrt{5}}{2}$ $b_2\frac{-1+\sqrt{5}}{2}$ dotyczył on w szczególności pentagramu

$$\frac{\mathrm{d} u \dot{z} y}{\dot{s} \mathrm{redni}} = \frac{\dot{s} \mathrm{redni}}{\mathrm{maly}}$$

13. Udowodnić, że $\sqrt{2}$ nie jest liczbą wymierną.

Odpowiedź

Niech $\sqrt{2}$ będzie liczbą wymierną, można ją zatem zapisać w postaci

$$\sqrt{2} = \frac{a}{b} \Leftrightarrow 2 = \frac{a^2}{b^2} \Leftrightarrow 2b^2 = a^2$$

Rozważmy przypadki

 $1^{\circ}~a$ ibnie
parzyste - dostajemy natychmiast sprzeczność

 $2^{\circ}~a$ nie
parzyste i b parzyste - również otrzymujemy sprzeczność

 3° a parzyste i b nieparzyste - zatem możemy zapisać a=2k otrzymujemy

$$2b^2 = 4k^2$$

$$b^2 = 2k^2$$

Ponieważ prawa strona równania jest parzysta, to b musi być parzyste - sprzeczność Sytuacja, że a i b są parzyste nie może zajść z konstrukcji liczb wymiernych.

14. Podać definicję ciała.

Odpowiedź

Ciało \mathbb{K} to struktura ($\mathbb{K},+,\cdot,0,1$) z działaniami odpowiednio + i · (dodawanie i mnożenie) o własnościach

- 1) $\forall_{a,b,c\in\mathbb{K}}a + (b+c) = (a+b) + c$ (łączność dodawania)
- 2) $\forall_{a,b\in\mathbb{K}}a+b=b+a$ (przemienniość dodawania)
- 3) $\forall_{a \in \mathbb{K}} a + 0 = a$ (istnienie zera)
- 4) $\forall_{a \in \mathbb{K}} \exists_{b \in \mathbb{K}} : a + b = 0$ (itnienie elementu przeciwnego)
- 5) $\forall_{a,b,c \in \mathbb{K}} a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (łączność mnożenia)
- 6) $\forall_{a,b \in \mathbb{K}} a \cdot b = b \cdot a$ (przemienność mnożenia)
- 7) $\forall_{a \in \mathbb{K}} a \cdot 1 = a$ (element neutralny mnożenia)
- 8) $\forall_{a\in\mathbb{K}\backslash\{0\}}\exists_{b\in\mathbb{K}}:a\cdot b=1$ (element odwrotny względem mnożenia)
- 9) $\forall_{a,b,c\in\mathbb{K}}a\cdot(b+c)=(a\cdot b)+(a\cdot c)$ (rozdzielność mnożenia względem dodawania)

15. Opisać "algebraiczne" przyczyny, dla których ciało $\mathbb Q$ wymaga "rozszerzenia".

Możliwość rozwiązania równań typu

$$x^2 - 2 = 0$$

16. Opisać przyczyny związane z analizą matematyczną, dla których ciało $\mathbb Q$ wymaga "rozszerzenia".

Odpowiedź

Z tw o przyjmowaniu wartości pośrednich

$$f: [a,b] \to \mathbb{R} \text{ ciagla, } f(a) < f(b) \forall_{y \in [f(a),f(b)]} \exists_{\xi \in [a,b]} : f(\xi) = y$$

badamy funkcję $f:[0,3]\cap\mathbb{Q}\to\mathbb{Q}$

$$f(x) = \begin{cases} 0 & x^2 < 2\\ 1 & x^2 > 2 \end{cases}$$

17. Opisać przyczyny dotyczące struktury, dla których ciało Q wymaga "rozszerzenia".

Odpowiedź

 $\{x: x^2 < 2\}$ - brak kresu górnego (w \mathbb{Q})

18. Podać definicję częściowego porządku i porządku.

Odpowiedź

Relacje \prec nazywamy częściowym porządkiem na X, gdy spełnia

- i) $\forall_{x \in X} x \prec x \text{ (zwrotność)}$
- ii) $\forall_{x,y,z\in X} \ x \prec y \land y \prec z \Rightarrow x \prec z \ (przechodniość)$
- iii) $\forall_{x,y \in X} \ x \prec y \land y \prec x \Rightarrow x = y \ (\text{antysymetryczność})$

Porządek jest liniowy, gdy dodatkowo jest spójny. $(\forall_{a,b\in X} a \prec b \lor b \prec a)$

19. Podać definicję zbioru ograniczonego z góry i kresu górnego.

Odpowiedź

A- ograniczony z góry $\Leftrightarrow \exists_c : \forall_{x \in A} x \leq c$ p- kres górny $A \stackrel{\text{def}}{\Leftrightarrow} p = \min\{b : \forall_{x \in A} : x \leq b\}$

20. Podać definicję porządku ciągłego.

Odpowiedź

Liniowy porządek jest ciągły $\Leftrightarrow \forall_{A\neq\emptyset} \ A$ ograniczony z góry, wsród ograniczeń istnieje ograniczenie najmniejsze

4

21. Podać interpretację geometryczną zbioru liczb rzeczywistych.

Odpowiedź

Linia \longrightarrow o taka

22. Opisać (podać schemat) konstrukcji Cantora zbioru liczb rzeczywistych.

$$\mathbb{Q}$$
 (x_n) - ciąg Cauchego $\Leftrightarrow \forall_{\epsilon>0} \exists_k \forall_{n,m \geq k} |x_n - x_m| < \epsilon$ $\frac{X}{\sim} : (a_n) \sim (b_n) \Leftrightarrow \forall_{\epsilon>0} \exists_N \forall_{n \geq N} |a_n - b_n| < \epsilon$ $[(a_n)]$ - granica (liczba rzeczywista)

23. Jak się definiuje sumę liczb rzeczywistych, iloczyn liczb rzeczywistych oraz własność "a < b" dla liczb rzeczywistych według konstrukcji Cantora?

Odpowiedź

Jak wyżej mamy, że
$$[(a_n)]$$
 - granica (liczba rzeczywista)
Porządek $(a_n) < (b_n) \Leftrightarrow \exists_{\epsilon > 0} \exists_{k_0} \forall_{k > k_0} a_k + \epsilon < b_k$
 $(a_n) \in \mathbb{Q} \Leftrightarrow (a_n)$ zbieżny (w \mathbb{R})
 $(a_n) + (b_n) = (a_n + b_n)$ - klasy

24. Podać definicję przekroju Dedekinda, klasy górnej, klasy dolnej.

Odpowiedź

 (E, \leq) - zbiór uporządkowany liniowo

Przkrój Dedekinda zbioru
$$E=(A,B)$$
 $A,B\neq\emptyset,$ $A\cap B=\emptyset$ $\forall_{a\in A,b\in B}a< b,A\cup B=E$ A - klasa dolna, B - klasa górna

25. Określić, co to znaczy, że przekrój Dedekinda daje lukę.

Odpowiedź

Przekrój Dedekinda daje lukę \Leftrightarrow w klasie dolnej nie ma elementu największego i w klasie górnej nie ma elementu najmniejszego.

26. Opisać (podać schemat) konstrukcji Dedekinda zbioru liczb rzeczywistych.

Odpowiedź

 $\mathbb R$ - zbiór wszystkich przekrojów Dedekinda $\mathbb Q$ z utorzsamieniem " \sim ".

27. Jak się definiuje sumę liczb rzeczywistych, iloczyn liczb rzeczywistych oraz własność "a < b" dla liczb rzeczywistych według konstrukcji Dedekinda?

Odpowiedź

$$(A,B) \sim (A',B') \Leftrightarrow$$
 element największy $A=$ emelent najwięszy B'
 $(A,B)(C,D)$
 $\alpha \qquad \gamma$
 $\alpha < \gamma \Leftrightarrow A \subset C, \ A \neq C$
 $(A,B)+(C,D)=(A+C,B+D)$

28. Co można powiedzieć o sumie i iloczynie dwóch liczb wymiernych, dwóch liczb niewymiernych, liczby wymiernej i liczby niewymiernej?

5

- $a, b \in \mathbb{Q} \Rightarrow a + b \in \mathbb{Q}$ (ciało)
- $a \in \mathbb{Q}, b \notin \mathbb{Q} \Rightarrow a+b \notin \mathbb{Q}$, bo gdyby $a+b \in \mathbb{Q} \Rightarrow a+b-a=b \in \mathbb{Q}$ sprzeczność
- $a,b\notin\mathbb{Q}$, to a+b może być i wymierne i niewymierne $\sqrt{2}+\sqrt{2}\notin\mathbb{Q}$ oraz $\sqrt{2}+1-\sqrt{2}\in\mathbb{Q}$
- $a \in \mathbb{Q}, b \notin \mathbb{Q} \Rightarrow a \cdot b \notin \mathbb{Q}$, bo gdyby $a \cdot b \in \mathbb{Q}$, to $b = \frac{1}{a} \cdot ab \in \mathbb{Q}$ sprzeczność
- $a,b\notin\mathbb{Q}$, to $a\cdot b$ może być wymierne lub niewymierne $\sqrt{2}\cdot\sqrt{2}\in\mathbb{Q}$ oraz $\sqrt{2}\sqrt{3}\notin\mathbb{Q}$
- 29. Podać i udowodnić zasadę Archimedesa.

Odpowiedź

Zasada Archimedesa (tw o małych piechurach)

$$\forall_{p>0}\forall_{\alpha>0}\exists_{n\in\mathbb{N}}:n\cdot\alpha>p$$

D: p > 0, $\alpha > 0$ Hp. $\forall_{n \in \mathbb{N}} n \leq p$

 $A = \{n\alpha : n \in \mathbb{N}\}$ - ograniczony z góry K - kres górny zbioru $A \forall_n \alpha n \leq K$

$$\exists_{n_0} : K - \alpha < n_0 \alpha$$

$$(n_0 + 1)\alpha = n_0\alpha + \alpha$$

$$K < n_0 \alpha + \alpha$$

sprzeczność

30. Podać definicję zbioru uporządkowanego w sposób gęsty.

Odpowiedź

Zbiór jest uporządkowany w sposób gęsty $\Leftrightarrow \forall_{a,b \in X} \, _{a < b} \exists_{c \in X} : a < c < b$

31. Udowodnić, że zbiór liczb wymiernych jest uporządkowany gęsto.

Odpowiedź

Q uporządkowany gęsto, ponieważ

$$a, b \in \mathbb{Q}$$
: $a < b$ $c := \frac{a+b}{2}$ $a < c < b$

32. Udowodnić, że między dowolne dwie liczby rzeczywiste można wstawić liczbę wymierna.

$$\forall_{a,b \in \mathbb{R}, a < b} \exists_{p \in \mathbb{Q}} : a < p < b$$

D:
$$\frac{1}{b-a} > 0 \exists_{n \in \mathbb{N}} : n > \frac{1}{b-a} \Rightarrow \frac{1}{n} < b-a$$

$$k := \max\{k \in \mathbb{Z} : k \le na\} \Rightarrow a < \frac{k+1}{n} \ (?) \frac{k+1}{n} < b$$

$$n > \frac{1}{b-a}$$

$$n \cdot (b-a) > 1$$

$$nb > 1 + na \ge k+1 \Rightarrow \frac{k+1}{n} < b$$

33. Udowodnić, że między dowolne dwie liczby wymierne można wstawić liczbę niewymierną.

Odpowiedź

$$\forall_{a,b \in \mathbb{Q}, a < b} \exists_{p \in \mathbb{R} \setminus \mathbb{Q}} a < p < b$$

$$\sqrt{2} \notin \mathbb{Q}, \frac{\sqrt{2}}{b-a} \notin \mathbb{Q}$$

$$\exists_{n \in \mathbb{N}} : n > \frac{\sqrt{2}}{b-a} \Rightarrow b - a > \frac{\sqrt{2}}{n} \Rightarrow b > a + \frac{\sqrt{2}}{n}$$

$$a < a + \frac{\sqrt{2}}{n} < b$$

34. Udowodnić, że między dowolne dwie liczby rzeczywiste można wstawić liczbę niewymierną.

${\bf Odpowied}\acute{\bf z}$

$$\forall_{a,b \in \mathbb{R}, \ a < b} \ \exists_{\ p \in \mathbb{R} \setminus \mathbb{Q}} \ a < p < b$$

D: $x, y \in \mathbb{R}$

$$\exists \ _{a \in \mathbb{Q}} : x < a < y \qquad \exists \ _{b \in \mathbb{Q}} : a < b < y \qquad \exists \ _{p \in \mathbb{R} \backslash \mathbb{Q}} \ x < a < p < b < y$$

- 35. Zdefiniować zbiór liczb zespolonych.
- 36. Podać postać trygonometryczną liczby zespolonej; zdefiniować moduł liczby zespolonej.

Odpowiedź

$$z = a + ib$$

$$z = r(\cos \varphi + i \sin \varphi)$$

$$|z| = \sqrt{a^2 + b^2}$$

37. Uzasadnić, dlaczego niewłaściwym jest zapis liczby i jako $\sqrt{-1}$.

Odpowiedź

TODO

38. Podać "dowód" błędnego faktu, że 1=-1 z wykorzystaniem zapisu " $\sqrt{-1}$ " i pokazać błąd w tym dowodzie.

${\bf Odpowied}\acute{\bf z}$

$$\sqrt{-1} = \sqrt{-1}$$

$$\sqrt{\frac{-1}{1}} = \sqrt{\frac{1}{-1}}$$

$$\frac{\sqrt{-1}}{\sqrt{1}} = \frac{\sqrt{1}}{\sqrt{-1}}$$

$$\sqrt{-1} \cdot \sqrt{-1} = \sqrt{1} \cdot \sqrt{1}$$

$$-1 = 1$$

39. Określić (ogólnie) historię znajdywania wzorów ogólnych na rozwiązywanie równań n-tego stopnia (co zrobili: Tartaglia, Cardano, Ferrari, Abel, Galois).

Odpowiedź

Tartaglia -

Cardano -

Ferrari -

Abel -

Galois -

TODO

40. Sformułować zasadnicze twierdzenie algebry.

Odpowiedź

Dowolny wielomian n-tego stopnia ma dokładnie n pierwiastków zespolonych wraz z krotnościami.

41. Zdefiniować kwaterniony.

$$\mathbb{R}^4 \begin{bmatrix} a+ib+jc+kd \\ i^2=j^2=k^2=ijk=-1 \end{bmatrix} \Rightarrow ij=k, ik=j, jk=i, ijk=-1, ijkk=-k, -ij=-k, ij=k$$

8

42. Zdefiniować liczby naturalne na bazie zbiorów.

- \emptyset 0 elementów
- $\{\emptyset\}$ 1 element
- $\{\emptyset, \{\emptyset\}\}\$ 2 elementy
- $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$ 3 elementy
- $\{\emptyset, \{\emptyset\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}, \{\emptyset, \{\emptyset\}\}\}\}\$ 4 elementy

- itd.
- 43. Zdefiniować liczby naturalne wg aksjomatów Peano.

44. Zdefiniować liczby naturalne wg aksjomatów Wilkosza.

Odpowiedź

45. Sformułować zasadę indukcji matematycznej z użyciem zapisu " T_n " (własność prawdziwa dla liczby naturalnej n).

Odpowiedź

46. Sformułować zasadę indukcji matematycznej zapisaną za pomocą należenia liczb naturalnych do pewnego zbioru.

Odpowiedź

47. Sformułować zasadę indukcji matematycznej z założeniem w drugim kroku dotyczącym "wszystkich poprzedzających liczb".

Odpowiedź

48. Sformułować zasadę indukcji matematycznej "z przeskokiem o dwie liczby".

Odpowiedź

49. Sformułować zasadę indukcji matematycznej w wersji indukcji wstecznej.

Odpowiedź

50. Udowodnić równoważność zasady indukcji matematycznej z zasadą minimum.

Odpowiedź

51. Udowodnić indukcyjnie, że zbiór n-elementowy ma 2n podzbiorów. Zwrócić szczególną uwagę na sformułowanie drugiego kroku indukcyjnego i odpowiednie podejście do jego dowodu.

Odpowiedź

52. Udowodnić nierówność między średnią arytmetyczną a geometryczną za pomocą indukcji wstecznej.

53. Udowodnić, że suma kątów w trójkącie wynosi 180°.

Odpowiedź

54. Udowodnić, że suma kątów w n-kącie wypukłym wynosi $(n-2) \cdot 180^{\circ}$.

Odpowiedź

55. Udowodnić, że suma kątów w n-kącie wynosi $(n-2)\cdot 180^{\circ}$, wykorzystując twierdzenie o istnieniu przekątnej zawartej w wielokącie.

Odpowiedź

56. Udowodnić, że suma kątów w n-kącie wynosi $(n-2)\cdot 180^{\circ}$, wykorzystując twierdzenie o uchach (Two Ears Theorem).

Odpowiedź

57. Pokazać, na czym polega błąd w indukcyjnym "dowodzie", że suma kątów w n-kącie wynosi $(n-2)\cdot 180^{\circ}$, jeśli dowód przeprowadza się według schematu dodania trójkąta do n-kąta.

Odpowiedź

58. Podać błędny indukcyjny "dowód" tego, że wszystkie dziewczęta mają ten sam kolor oczu (lub wszystkie koty są tego samego koloru, itp.) i pokazać błąd w dowodzie.

Odpowiedź

59. Uzasadnić, że "tricku" w "dowodzie" poprzedniej własności nie można stosować w "dowodzie" tego, że wszystkie koty są czarne. Pokazać błąd w "dowodzie" własności, że wszystkie koty są czarne.

Odpowiedź

60. Podać błędny indukcyjny "dowód" tego, że wszystkie liczby naturalne są równe i pokazać bład w dowodzie.

Odpowiedź

61. Sformułować twierdzenie Pitagorasa.

Odpowiedź 62. Sformułować i wykazać twierdzenie o odcinkach stycznych. Odpowiedź 63. Sformułować twierdzenie Talesa (z wszystkimi możliwymi proporcjami). Odpowiedź 64. Udowodnić twierdzenie Talesa metodą z "Elementów" Euklidesa. Odpowiedź 65. Wykazać, że jeśli w trójkącie dwa boki są równe, to i dwa kąty są równe. Odpowiedź 66. Wykazać, że jeśli w trójkącie dwa boki są równe, to i dwa kąty są równe bez wykorzystywania Aksjomatu V Euklidesa (czyli bez twierdzenia Pitagorasa). Odpowiedź 67. Wykazać, że jeśli w trójkącie dwa kąty są równe, to i dwa boki są równe. Odpowiedź 68. Wykazać, że jeśli w trójkącie dwa kąty są równe, to i dwa boki są równe bez wykorzystywania Aksjomatu V Euklidesa (czyli bez korzystania z tego, że suma kątów w trójkącie wynosi 180°). Odpowiedź 69. Udowodnić, że symetralne boków trójkąta przecinają się w jednym punkcie. Odpowiedź

70. Udowodnić, że wysokości w trójkącie (precyzyjnie: proste zawierające wysokości w trójkącie) przecinają się w jednym punkcie.

71. Udowodnić, że dwusieczne kątów trójkąta przecinają się w jednym punkcie.

Odpowiedź

72. Udowodnić, że środkowe w trójkącie przecinają się w jednym punkcie, dzielącym każdą ze środkowych w stosunku 1 : 2.

Odpowiedź

73. Zdefiniować funkcję, dziedzinę funkcji, przeciwdziedzinę funkcji.

Odpowiedź

74. Zdefiniować obraz i przeciwobraz (przy danej funkcji).

Odpowiedź

75. Wyjaśnić różnicę między symbolami "→" i "→".

Odpowiedź

76. Zdefiniować injekcję, surjekcję i bijekcję.

Odpowiedź

77. Podać różne metody określania funkcji.

Odpowiedź

78. Wykazać, że funkcja dana wzorem: $f(k,n) = \frac{(n+k)(n+k+1)}{2+k}$ jest bijekcją z \mathbb{N}^2 na \mathbb{N} .

Odpowiedź

79. Zdefiniować funkcję parzystą i funkcję nieparzystą.

Odpowiedź

80. Wykazać, że jeśli dziedzina funkcji rzeczywistej jest zbiorem symetrycznym względem 0, to funkcja ta jest sumą funkcji parzystej i funkcji nieparzystej.

81. Zdefiniować funkcję rosnącą, funkcję malejącą, funkcję silnie rosnącą, funkcję silnie malejącą.

Odpowiedź

$$f - \text{rosnąca} \Leftrightarrow \forall_{x_1, x_2 \in D} \ x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$$

$$f - \text{malejąca} \Leftrightarrow \forall_{x_1, x_2 \in D} \ x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$$

$$f - \text{silnie rosnąca} \Leftrightarrow \forall_{x_1, x_2 \in D} \ x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

$$f - \text{silnie malejąca} \Leftrightarrow \forall_{x_1, x_2 \in D} \ x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

82. Podać i udowodnić twierdzenie o złożeniu funkcji rosnących, o złożeniu funkcji malejących, o złożeniu funkcji rosnącej z funkcją malejącą, o złożeniu funkcji malejącej z funkcją rosnącą.

Odpowiedź

Niech f,g- rosnące, wówczas $g\circ f$ jest funkcją rosnącą.

D:
$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) \Rightarrow g(f(x_1)) \le g(f(x_2))$$

Niech f - rosnąca, g - malejąca, wówczas $g \circ f$ jest funkcją malejącą.

D:
$$x_1 < x_2 \Rightarrow f(x_1) \le f(x_2) \Rightarrow g(f(x_1)) \ge g(f(x_2))$$

Niech f, g - malejące, wówczas $g \circ f$ jest funkcją rosnącą.

D:
$$x_1 < x_2 \Rightarrow f(x_1) \ge f(x_2) \Rightarrow g(f(x_1)) \le g(f(x_2))$$

83. Wykazać, że jeśli złożenie dwóch funkcji jest bijekcją, to funkcja wewnętrzna jest injekcją, a funkcja zewnętrzna surjekcją.

Odpowiedź

84. Zdefiniować funkcję okresową w przypadku, gdy dziedzina tej funkcji jest podzbiorem R.

Odpowiedź

Niech $f: D \to \mathbb{R}$, wtedy

$$f$$
 - okresowa $\Leftrightarrow \exists_{T>0} : \forall_{x \in D} : x + T \in D, x - T \in D \Rightarrow f(x) = f(x + T) = f(x - T)$

Ta część jest niepotrzebna, bo f(x-T+T)=f(x)

85. Zdefiniować funkcję okresową w przypadku, gdy dziedzina tej funkcji jest równa R.

Niech $f: \mathbb{R} \to \mathbb{R}$, wtedy

$$f$$
 – okresowa $\Leftrightarrow \exists_{T>0} : \forall_{x \in \mathbb{R}} f(x) = f(x+T)$

86. Zdefiniować funkcję Dirichleta i podać jej okresy.

Odpowiedź

$$\chi_{\mathbb{Q}}(x) = \begin{cases} 1 \text{ gdy } x \in \mathbb{Q} \\ 0 \text{ gdy } x \notin \mathbb{Q} \end{cases}$$

Okresem tej funkcji jest każde $p \in \mathbb{Q} : p > 0$.

87. Podać przykład funkcji niestałej, której okresami są 1 oraz $\sqrt{2}$.

Odpowiedź

$$g(x) = \begin{cases} 1 \text{ gdy } x = a + b\sqrt{2} : a, b \in \mathbb{Z} \\ 0 \text{ dla pozostalych } x \end{cases}$$

D: Niech x ma postać $a + b\sqrt{2}$, wówczas:

$$x + 1 = (a + 1) + b\sqrt{2}$$

$$x + \sqrt{2} = a + (b+1)\sqrt{2}$$

Niech x nie ma postaci $a + b\sqrt{2}$

Hp.
$$x+1=c+d\sqrt{2} \Rightarrow x=(c-1)+d\sqrt{2}$$
 sprzeczność

Hp.
$$x + \sqrt{2} = c + d\sqrt{2} \Rightarrow x = c + (b-1)\sqrt{2}$$
 sprzeczność

88. Zdefiniować funkcje sinus, cosinus, tangens, cotangens dla kata ostrego.

Odpowiedź

$$\sin\alpha = \frac{\mathrm{d}^{1}\mathrm{ugo\acute{s}\acute{c}}\ \mathrm{przyprostokatnej}\ \mathrm{przeciwleglej}\ \mathrm{do}\ \mathrm{danego}\ \mathrm{kata}\ \alpha}{\mathrm{d}^{1}\mathrm{ugo\acute{s}\acute{c}}\ \mathrm{przyprostokatnej}\ \mathrm{przyleglej}\ \mathrm{do}\ \mathrm{danego}\ \mathrm{kata}\ \alpha}$$

$$\cos\alpha = \frac{\mathrm{d}^{1}\mathrm{ugo\acute{s}\acute{c}}\ \mathrm{przyprostokatnej}\ \mathrm{przyleglej}\ \mathrm{do}\ \mathrm{danego}\ \mathrm{kata}\ \alpha}{\mathrm{d}^{1}\mathrm{ugo\acute{s}\acute{c}}\ \mathrm{przyprostokatnej}\ \mathrm{przyleglej}\ \mathrm{do}\ \mathrm{danego}\ \mathrm{kata}\ \alpha}$$

$$\mathrm{tg}\alpha = \frac{\mathrm{d}^{1}\mathrm{ugo\acute{s}\acute{c}}\ \mathrm{przyprostokatnej}\ \mathrm{przyleglej}\ \mathrm{do}\ \mathrm{danego}\ \mathrm{kata}\ \alpha}{\mathrm{d}^{1}\mathrm{ugo\acute{s}\acute{c}}\ \mathrm{przyprostokatnej}\ \mathrm{przyleglej}\ \mathrm{do}\ \mathrm{danego}\ \mathrm{kata}\ \alpha}$$

$$\mathrm{ctg}\alpha = \frac{\mathrm{d}^{1}\mathrm{ugo\acute{s}\acute{c}}\ \mathrm{przyprostokatnej}\ \mathrm{przyleglej}\ \mathrm{do}\ \mathrm{danego}\ \mathrm{kata}\ \alpha}{\mathrm{d}^{1}\mathrm{ugo\acute{s}\acute{c}}\ \mathrm{przyprostokatnej}\ \mathrm{przyleglej}\ \mathrm{do}\ \mathrm{danego}\ \mathrm{kata}\ \alpha}$$

89. Uzasadnić, że powyższe definicje funkcji trygonometrycznych są postawione poprawnie.

90. Zdefiniować funkcje sinus, cosinus, tangens, cotangens dla dowolnego kąta.

Odpowiedź

91. Uzasadnić, że powyższe definicje funkcji trygonometrycznych są postawione poprawnie.

Odpowiedź

92. Uzasadnić, że definicje funkcji trygonometrycznych dla dowolnego kąta są uogólnieniem analogicznych definicji dla kąta ostrego.

Odpowiedź

93. Zdefiniować funkcje sinus, cosinus, tangens, cotangens dla argumentu zespolonego.

Odpowiedź

94. Podać twierdzenie sinusów.

 ${\bf Odpowied}\acute{\bf z}$

W dowolnym trójkącie zachodzi:

$$\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma} = 2R$$

95. Podać twierdzenie cosinusów.

 ${\bf Odpowied}\acute{\bf z}$

W dowolnym trójkącie zachodzi:

$$c^2 = a^2 + b^2 - 2ab\cos\gamma$$

$$b^2 = a^2 + c^2 - 2ac\cos\beta$$

$$a^2 = b^2 + c^2 - 2bc\cos\alpha$$

96. Wyrazić liczby e^{iz} oraz e^{-iz} za pomocą $\sin z$ oraz $\cos z$, udowodnić te wzory, znając w szczególności wzór na e^z za pomocą szeregu.

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

$$e^{iz} = \sum_{n=1}^{\infty} i^n \frac{z^n}{n!} = \sum_{k=0}^{\infty} i^{2k} \frac{z^{2k}}{(2k)!} + \sum_{k=0}^{\infty} i^{2k+1} \frac{z^{2k+1}}{(2k+1)!} =$$

$$\sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} + i \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \cos z + i \sin z$$

$$e^{-iz} = \sum_{n=1}^{\infty} (-i)^n \frac{z^n}{n!} = \sum_{k=0}^{\infty} (-1)^{2k} (i)^{2k} \frac{z^{2k}}{(2k)!} + \sum_{k=0}^{\infty} (-1)^{2k+1} (i)^{2k+1} \frac{z^{2k+1}}{(2k+1)!} = \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k}}{(2k)!} - i \sum_{k=0}^{\infty} (-1)^k \frac{z^{2k+1}}{(2k+1)!} = \cos z - i \sin z$$

97. Udowodnić wzór: $\sin^2 z + \cos^2 z = 1$ dla dowolnego kąta.

Odpowiedź

W dowolnym trójkącie prostokątnym zachodzi

$$\sin^2 \alpha + \cos^2 \alpha = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{c^2}{c^2} = 1$$

98. Udowodnić wzór: $\sin^2 z + \cos^2 z = 1$ dla argumentu zespolonego.

Odpowiedź

$$\sin^2 z + \cos^2 z = (\cos z + i\sin z)(\cos z - i\sin z) = e^{iz}e^{-iz} = e^0 = 1$$

99. Podać wzory na sinus, cosinus i tangens sumy oraz różnicy katów.

Odpowiedź

$$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta$$
$$\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$$
$$tg(\alpha \pm \beta) = \frac{tg\alpha \pm tg\beta}{1 \mp tg\alpha tg\beta}$$

100. Podać wzory na sumę i różnicę sinusów kąta, sumę i różnicę cosinusów kąta.

$$\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}$$
$$\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}$$

$$\cos \alpha + \cos \beta = 2\cos \frac{\alpha + \beta}{2}\sin \frac{\alpha - \beta}{2}$$
$$\cos \alpha - \cos \beta = -2\sin \frac{\alpha + \beta}{2}\cos \frac{\alpha - \beta}{2}$$

101. Podać mechanizm tworzenia wzorów redukcyjnych i stosować go w praktyce.

Odpowiedź

102. Zdefiniować funkcje cyklometryczne: arc sin, arc cos, arc tg.

Odpowiedź

103. Udowodnić, że sin 1° jest liczbą niewymierną.

Odpowiedź

D: Hp.
$$\sin 1^{\circ} \in \mathbb{Q}$$
 $\sin^{2} 1^{\circ} \in \mathbb{Q}$
 $\cos^{2} 1^{\circ} = 1 - \sin^{2} 1^{\circ} \in \mathbb{Q}$
 $\cos 2^{\circ} = \cos^{2} 1^{\circ} - \sin^{2} 1^{\circ} \in \mathbb{Q}$
 $\sin^{2} 2^{\circ} = 1 - \cos^{2} 2^{\circ} \in \mathbb{Q}$
 $\cos 4^{\circ} = \cos^{2} 2^{\circ} - \sin^{2} 2^{\circ} \in \mathbb{Q}$
 $\sin^{2} 4^{\circ} = 1 - \cos^{2} 4^{\circ} \in \mathbb{Q}$
 $\cos 8^{\circ} = \cos^{2} 4^{\circ} - \sin^{2} 4^{\circ} \in \mathbb{Q}$
 $\cos 8^{\circ} = \cos^{2} 4^{\circ} - \sin^{2} 4^{\circ} \in \mathbb{Q}$
 $\sin^{2} 8^{\circ} = 1 - \cos^{2} 8^{\circ} \in \mathbb{Q}$
 $\cos 16^{\circ} = \cos^{2} 8^{\circ} - \sin^{2} 8^{\circ} \in \mathbb{Q}$
 $\sin^{2} 16^{\circ} = 1 - \cos^{2} 16^{\circ} \in \mathbb{Q}$
 $\cos 32^{\circ} = \cos^{2} 16^{\circ} - \sin^{2} 16^{\circ} \in \mathbb{Q}$
 $\sin 32^{\circ} = 2 \sin 16^{\circ} \cos 16^{\circ} = 4 \sin 8^{\circ} \cos 8^{\circ} \cos 16^{\circ} = 8 \sin 4^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} = 16 \sin 2^{\circ} \cos^{2} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} = 16 \sin 2^{\circ} \cos^{2} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} = 16 \sin 2^{\circ} \cos 30^{\circ} = \cos (32^{\circ} - 2^{\circ}) = \cos 32^{\circ} \cos 2^{\circ} + \sin 32^{\circ} \sin 2^{\circ} = 16 \cos 32^{\circ} \cos 2^{\circ} + 16 \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \sin^{2} 2^{\circ} \in \mathbb{Q}$
 $\cos 32^{\circ} \cos 2^{\circ} + 16 \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \sin^{2} 2^{\circ} \in \mathbb{Q}$ sprzeczność $\cos 2^{\circ} \cos 2^{\circ} \cos 2^{\circ} + 16 \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \sin 2^{\circ} = 16 \sin 2^{\circ} \cos 2^{\circ} \cos 2^{\circ} + 16 \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \sin 2^{\circ} = 16 \sin 2^{\circ} \cos 2^{\circ} \cos 2^{\circ} + 16 \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \cos 2^{\circ} \cos 2^{\circ} + 16 \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \cos 2^{\circ} \cos 2^{\circ} + 16 \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \cos 2^{\circ} \cos 2^{\circ} + 16 \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \cos 2^{\circ} \cos 2^{\circ} + 16 \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \cos 2^{\circ} \cos 4^{\circ} \cos 8^{\circ} \cos 16^{\circ} \cos 2^{\circ} \cos 4^{\circ} \cos 4^{\circ}$

104. Podać dwie równoważne definicje liczby pierwszej i wykazać ich równoważność.

Odpowiedź

Niech $p \in \mathbb{N}_+$.

Def. 1 Liczba $p \in \mathbb{P}$ jeśli ma dokładnie dwa dzielniki \updownarrow

Def. 2 Liczba $p \in \mathbb{P}$ jeśli jest podzielna tylko przez 1 i samą siebie.

$$p|p,\,1|p,\,p\neq 1$$
ok "
 "=" $1|p,\,p|p,\,p\neq 1$ \Rightarrow ma dokładnie dwa dzielniki ok

105. Podać powód, dla którego jedynka nie jest uznawana za liczbę pierwszą.

Odpowiedź

Rozkład na czynniki pierwsze powinien być jednoznaczny, gdyby $1 \in \mathbb{P}$, to np.

$$21 = 3^{1} \cdot 7^{1} = 1^{0} \cdot 2^{0} \cdot 3^{1} \cdot 5^{1} \cdot 7^{0} \cdot \dots = 1^{6} \cdot 2^{0} \cdot 3^{1} \cdot 5^{1} \cdot 7^{0} \cdot \dots$$

106. Udowodnić, że jeśli p dzieli a oraz p dzieli b, to p dzieli a-b

Odpowiedź

$$p|a i p|b \Rightarrow p|(a-b)$$

D:
$$\exists_k : a = k \cdot i \exists_m : b = m \cdot \Rightarrow a - b = p(k - m) \Rightarrow p|p(k - m) \Rightarrow p|a - b$$

107. Udowodnić, że liczb pierwszych jest nieskończenie wiele metodą Euklidesa.

Odpowiedź

Hp. Liczb pierwszych jest skończenie wiele $\mathbb{P} = \{p_1, p_2, \dots, p_n\}$.

Weźmy liczbę $p:=p_1\cdot_2\cdot\ldots p_n+1$. Wtedy $\forall_{p_i}p_i\not|p\Rightarrow p$ jest liczbą pierwszą. Sprzeczność.

108. Udowodnić, że liczb pierwszych jest nieskończenie wiele metodą Kummera.

Odpowiedź

Hp. $p_1 < p_2 < \cdots < p_n$ wszystkie liczby pierwsze.

 $p:=p_1\cdot p_2\cdot \cdots\cdot p_n>2$. Zalóżmy, że p-1 to iloczyn liczb pierwszych. Wówczas $\exists_j:p_j|p$ i $p_j|p-1$ $p_j|p-(p-1)\Rightarrow p_j|1$ sprzeczność

109. Udowodnić, że liczb pierwszych jest nieskończenie wiele metodą Stieltjesa.

Odpowiedź

Hp. Liczb pierwszych jest skończenie wiele $\mathbb{P} = \{p_1, p_2, \dots, p_n\}$.

$$p := p_1 \cdot p_2 \cdot \dots \cdot p_n$$

$$p = k \cdot m : k, m > 1$$

 $\forall_i p_i$ dzieli dokładnie jedną z liczbklubm

Rozważmy k+m>1. Gdyby $\exists_{p_i}: p_i|k+m$, to

 $p_i|k \wedge p_i|k + m \Rightarrow p_i|k + m - k \Rightarrow p_i|m \text{ sprzeczność}$

 $p_i|m \wedge p_i|k + m \Rightarrow p_i|k + m - m \Rightarrow p_i|k \text{ sprzeczność}$

Zatem $\forall_i p_i \not k + m$, czyli k + m to liczba pierwsza. Sprzeczność z hipotezą.

110. Udowodnić, że liczb pierwszych jest nieskończenie wiele metodą Eulera.

1)
$$p \in \mathbb{P} \Rightarrow \frac{1}{p}$$
 $\sum_{k=0}^{\infty}$

2) p,q- różne liczby pierwsze $(\sum_{k=0}^{\infty} \frac{1}{p^k})(\sum_{k=0}^{\infty} \frac{1}{q^k}) = \frac{1}{1-\frac{1}{p}} \cdot \frac{1}{1-\frac{1}{q}} = \sum_{p} \frac{1}{p^{\alpha}q^{\beta}} : \alpha,\beta \geq 0 \text{ każda para } (\alpha,\beta) \text{ występuje dokładnie raz}$

Hp.
$$p_1, \ldots, p_n$$
 różne liczby pierwsze

$$A = \left(\sum_{k=0}^{\infty} \frac{1}{p_1^k}\right) \cdot \left(\sum_{k=0}^{\infty} \frac{1}{p_2^k}\right) \cdot \dots \cdot \left(\sum_{k=0}^{\infty} \frac{1}{p_n^k}\right) = \frac{1}{1 - \frac{1}{p_1}} \cdot \frac{1}{1 - \frac{1}{p_2}} \cdot \dots \cdot \frac{1}{1 - \frac{1}{p_n}} \in (0, \infty)$$

Ale
$$A = \sum_{n=1}^{\infty} \frac{1}{n} = \infty$$

$$n = p_1^{\alpha_1} \cdot \dots \cdot p_n^{\alpha_1}$$
 sprzeczność

111. Udowodnić, że dla każdej liczby naturalnej n
 większej od 2 w przedziale [n,n!) znajduje się liczba pierwsza.

Odpowiedź

Tw.
$$\forall_{n\geq 2}\exists_{p\in\mathbb{P}}: p\in[n,n!)$$

D: Rozważmy liczbę n! - 1

$$1^{\circ} \ n! - 1$$
 - liczba pierwsza \Rightarrow ok

2°
$$n!-1$$
- liczba złożona $\Rightarrow \exists_{p\in \mathbb{P}}: p|(n!-1)$

Jeśli
$$p \le n$$
 to $p|n! \Rightarrow p|n! - (n! - 1) \Rightarrow p|1$ sprzeczność

Zatem
$$p > n$$

112. Podać zasadę tworzenia sita Eratostenesa.

Odpowiedź

θ	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29

 \Downarrow

θ	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29

 \Downarrow

θ	1	2	3	4	5	6	7	8	9
10	11	12	13	14	15	16	17	18	19
20	21	22	23	24	25	26	27	28	29

 \Downarrow

0		1	2	3	4	5	6	7	8	9
10	-	11	12	13	14	15	16	17	18	19
20	-	21	22	23	24	25	26	27	28	29

113. Sformułować twierdzenie Greena-Tao.

 \forall_n istnieje ciąg arytmetyczny złożony z n liczb pierwszych.

114. Wykazać, że nie istnieje nieskończony ciąg arytmetyczny, którego wyrazami są jedynie liczby pierwsze.

Odpowiedź

D: Niech p - pierwszy wyraz tego ciągu (liczba pierwsza)

Hp. $\exists_r : r$ - różnica tego ciągu i wszystkie jego wyrazy to liczby pierwsze.

$$p, p+r, p+2r, \ldots, p+pr=p(1+r) \Rightarrow p|p(1+r)$$
 Sprzeczność

115. Wykazać, że dla dowolnej liczby naturalnej n istnieje n-wyrazowy ciąg arytmetyczny, którego wyrazami są liczby niepierwsze.

D:
$$(n+1)! + 2, (n+1)! + 3, \dots, (n+1)!(n+1)$$

116. Podać zasadę konstrukcji spirali Ulama.

Odpowiedź

117. Sformułować hipotezę Riemanna.

Odpowiedź

Prosze... Tylko bez dowodu...

118. Zdefiniować wielomian (zmiennej rzeczywistej lub zespolonej). Jak nazywają się współczynniki przy najwyższej i najniższej potędze?

Wielomianem n-tego stopnia nazywamy funkcję

$$W(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z^1 + a_0,$$

gdzie $\{a_i\}_{i=1}^n$ to liczby ze zbioru \mathbb{C}

119. Wykazać, że wielomian zmiennej rzeczywistej o współczynnikach rzeczywistych stopnia nieparzystego ma zawsze co najmniej jeden pierwiastek rzeczywisty.

Odpowiedź

120. Na wielomiany którego stopnia możemy zawsze rozłożyć wielomian zmiennej rzeczywistej o współczynnikach rzeczywistych?

Odpowiedź

121. Sformułować zasadnicze twierdzenie algebry.

Odpowiedź

Wielomian n-tego stopnia ma zawsze n pierwiastków zespolonych.

122. Podać i udowodnić wzory Viete'a dla trójmianu kwadratowego.

Odpowiedź

123. Pokazać mechanizm tworzenia wzorów Viete'a dla wielomianu dowolnego stopnia.

Odpowiedź

124. Określić prawdziwość wzorów Viete'a dla trójmianu kwadratowego o współczynnikach rzeczywistych, dla którego wyróżnik Δ jest ujemny.