## LCPB 23-24 Exercise 2, data visualization and clustering

## Exercise 4A

Visualize and clusterize the data in the file  $x_12d.dat$  (N=600 samples, L=12 dimensions), which also has labels for checking the performances ( $y_12d.dat$ ).

**1.** "eps" ( $\varepsilon$ ) and "minPts" ( $m_P$ ) in DBSCAN algorithm for clustering

Refine the grid with more values of  $\varepsilon$  and  $m_P$  and plot a heat-map showing the normalized mutual information (NMI) between true and predicted clusters, similar to the one on the right.

Is the high NMI region showing a correlation between  $\varepsilon$  and  $m_P$ ?

**Note:** In the lesson we have looked at the typical distance between a point and its closest neighbor, but this does not say what the typical distance is from the  $2^{nd}$ ,  $3^{rd}$ , ...,  $m_P$ -neighbor. The plots of ranked distances to the i-th neighbor might also help choose the  $\varepsilon$  for a given  $i=m_P$ .



## 2. Understanding the 12-dimensional data

Use the principal component analysis (PCA) to visualize the first components of the data. Does it help understand its structure?

## 3. Compare different clustering methods

- a) Perform a k-means clustering of the data, with k=3. Does it work better than DBSCAN? Why?
- b) Perform a hierarchical clustering of the data and <u>plot the corresponding dendrogram</u>. Does it work better than DBSCAN?
- 4. **OPTIONAL:** Visualize the data with other <u>methods from the scikit package</u>