Interpolation

Projet 3

Eloise Vannier GMC1035

INTERPOLATION

Table des matières

Détermination de l'équation et des méthode	s de résolutions2
Méthode 1 : Dichotomie	
Méthode 2 : Point fixe	
Méthode 3 : Newton-Raphson	Erreur! Signet non défini
Le code	Erreur! Signet non défini
Résultats	Erreur! Signet non défini

Détermination de l'équation et des méthodes de résolutions

Méthode des splines naturels

INTERPOLATION

Méthode des splines paramétrés

INTERPOLATION

Analyse

L'Interpolation par les spline cubique naturel donne un courbe qui n'est pas C² aux extrémités. Les splines paramétrés devrait résoudre ce problème, cependant, ma fonction LU ne fonctionne pas correctement car la dernière valeur de la matrice L est nulle.

Il est cependant possible d'utiliser les splines paramétré de manière plus efficace en ne remplissant pas la matrice mais en s'arrangeant pour garder une matrice tri-diagonale. Pour cela, il faut prendre en compte la dépendance des extrémités par rapport à l'une et l'autre mais également les deux intervalles suivants. Je n'ai cependant pas réussi à mettre en œuvre cette idée.