Business Analytics

Session 2a. More on Linear Regression

Renyu (Philip) Zhang

New York University Shanghai

Spring 2019

Warm-up Exercises

- What is the purpose of doing supervised learning?
 - Making accurate predictions about the outcome variable(s).

- What is the difference between supervised and unsupervised learning?
 - Supervised learning seeks to predict the outcome variable whereas unsupervised learning aims to find the structures in the data.

- How do we interpret R^2 in linear regression?
 - The ability of fitted/predicted outcome values to "explain" the sample variability of the true outcome values.

Wine Analytics

R^2 for Models with More Covariates

Covariates	
AGST	0.44
AGST+Harvest Rain	0.71
AGST+Harvest Rain+Age	0.79
AGST+Harvest Rain+Age+Winter Rain	
AGST+Harvest Rain+Age+Winter Rain+Population	0.83

lacktriangled Adding more variables improves R^2 with diminishing returns.

R^2 for Models with More Covariates

Covariates	
AGST	0.44
AGST+Harvest Rain	0.71
AGST+Harvest Rain+Age	
AGST+Harvest Rain+Age+Winter Rain	
AGST+Harvest Rain+Age+Winter Rain+Population	0.83

- Adding more variables improves R² with diminishing returns.
- Not all variables should be used.
 - More variables require more data.
 - Over-fitting (bad performance on unseen data).
 - How to choose variables to remove? Significance and correlations.

Understanding the Model

Coefficients:

- Significance (p-value): Which covariates have (statistically) significant association with the outcome?
 - Consider removing insignificant covariates from the model (Age and France Population).
- Sign of coefficients: Positive or negative association with the outcome?
- Estimated values of coefficients: How strong are the associations?

Correlations between Covariates

 Correlation: Meassure of dependence/association between two covariates X and Z.

$$\begin{split} \rho_{XZ} &= \frac{\mathit{Cov}(X,Z)}{\sigma_{X}\sigma_{Z}} = \frac{\sum_{i=1}^{n}(X_{i}-\bar{X}))(Z_{i}-\bar{Z})}{\sqrt{\sum_{i=1}^{n}(X_{i}-\bar{X})^{2}]}\sqrt{\sum_{i=1}^{n}(Z_{i}-\bar{Z})^{2}}} \in [-1,1] \\ \bar{X} &= \frac{1}{n}\sum_{i=1}^{n}X_{i} \text{ and } \bar{Z} = \frac{1}{n}\sum_{i=1}^{n}Z_{i} \end{split}$$

- $\rho_{XZ} > 0$: Positive relationship.
- $\rho_{XZ} = 1$: Perfect positive relationship.
- $\rho_{XZ} = 0$: "No" relationship.
- $\rho_{XZ} < 0$: Negative relationship.
- $\rho_{XZ} = -1$: Perfect negative relationship.
- Consider removing one of the two covariates who have strong positive or negative correlation.
 - The correlation between Age and France Population is -0.994.
 - Remove France Population from the covariates.

Predictive Power

- Out linear regression model has $R^2 = 0.83$.
 - In-sample fit between model and training data.
- How does the model perform on a new testing data set?
 - Out-of-sample R^2 : 1 SSE/SST on a new data set.

Covariates	R^2	Out-of-Sample R ²
AGST	0.44	0.79
AGST+Harvest Rain	0.71	-0.08
AGST+Harvest Rain+Age	0.79	0.53
AGST+Harvest Rain+Age+Winter Rain	0.83	0.79
AGST+Harvest Rain+Age+Winter Rain+Population	0.83	0.76

- Better in-sample R^2 does not necessarily mean better testing R^2 .
- Out-of-sample R² can be negative.
- Any issue with our testing?

Model Interpretations and Recommendations

■ Im(Price~AGST+Harvest Rain+Age+Winter Rain)

- How do we interpret the results?
 - Correlation/association?
 - Prediction?
 - Causation?
- What recommendations can we make?
 - Store the wine produced with high AGST, low harvest rain, and high winter rain.

Analytics vs. Expert

- Expert
 - 1986 is "very good to sometimes exceptional".

- Analytics
 - 1986 is medicore.
 - 1989 will be "the wine of the century" and 1990 will be even better.

- In wine auctions (the real market)
 - 1989 sold for more than twice the price of 1986.
 - 1990 sold for even higher prices.

More on Linear Regression

Interpreting Regression Coefficients

$$\mathbf{Y}_{i} pprox \hat{eta}_{0} + \hat{eta}_{1} \mathbf{X}_{i1} + \cdots + \hat{eta}_{p} \mathbf{X}_{ip}$$

- How to interpret the coefficients?
 - $\hat{\beta}_0$ is the fitted outcome value when the covariates $X_i = (0, 0, \dots, 0)$.
 - $\hat{\beta}_j$ is the change in the fitted outcome value for a unit change in the j'th covariate, with all other covariates constant.
- When we can/cannot say the following:
 - (a) A unit change in X_{ij} is associated/correlated with a $\hat{\beta}_i$ unit change in Y_i .
 - (b) Given $(X_{i1}, X_{i2}, \dots, X_{ip})$, we predict Y_i will be $\hat{\beta}_0 + \hat{\beta}_1 X_{i1} + \dots + \hat{\beta}_p X_{ip}$.
 - (c) A unit change in X_{ij} leads to a $\hat{\beta}_j$ unit change in Y_i .
- If we blindly run a linear regression, (a) is valid, but not (b) and (c).
 - We will address (b) and (c) later in this course.

Collinearity and Identifiability

- If $\hat{\beta}$ is not unique under OLS, the model is called nonidentifiable.
 - This occurs when one covariate can be expressed as the linear combination of other covariates.
 - This problem is referred to as collinearity and the resulting model is nonidentifiable.
- Example: We add a new coefficient to the wine analytics model,
 Year, which refers to the year the wine was produced.
- If $p \approx n$ and n is large, this is called the high-dimensional regime.
 - If $p+1 \ge n$, a linear regression model can perfectly fit the data. Is this a good model?
 - If $p \ge n$, the model is nonidentifiable.

Beyond Linearity

- What if the relationship between Y and X are inherently non-linear?
 - Include higher order terms, $(X_i)^2$, or cross terms $X_j X_k$.
 - The context and domain knowledge are important.
- If the value of one covariate affects the slope of another, then we need an interaction term.
 - Demo: Child IQ.
- Rules-of-thumb
 - Include interactions with a covariate with large coefficient in a standard linear regression.
 - Include interactions with a covariate describing groups of data (e.g., Child IQ example).

Visualization of Interactions

$$\label{eq:kid_score} \begin{split} & \textit{kid_score} \approx \\ & -11.48 + 0.97 \textit{mom_iq} \text{ if} \\ & \textit{mom_hs} = 0 \end{split}$$

$$\begin{aligned} &\textit{kid_score} \approx \\ &39.79 + 0.48 \textit{mom_iq} \text{ if} \\ &\textit{mom_hs} = 1 \end{aligned}$$

Data Transformation

 In a lot of cases, working with transformed versions of the data makes the regression more meaningful.

- Two commonly used transformations:
 - Logarithms of positive variables
 - Centering and standardizing

Logarithmic Transformation

- In some contexts, the outcome Y is positive (e.g., height, counts, prices, revenues, etc.).
- The linear regression model may be problematic, because Y_i may be negative for some covariate X_i.
- One approach is to take logarithmic transformation of the data before applying linear regression (e.g., the log of wine price).

$$\log(\mathbf{Y}_i) \approx \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j \mathbf{X}_{ij}$$

- One unit change in X_{ij} is suggesting a proportional change of fitted outcome by $\exp(\hat{\beta}_j) \approx 1 + \hat{\beta}_j$.
 - If both the outcome and the covariates are logged, the coefficients give proportional changes in the fitted outcome associated with the proportional changes in covariates.

Centering

- Sometimes to make coefficients interpretable, it is useful to center covariates by removing the mean $\tilde{X}_{ij} = X_{ij} \bar{X}_j$, where $\bar{X}_i = \frac{1}{n} \sum_i X_{ij}$.
- $\mathbf{Y}_i \approx \hat{\beta}_0 + \sum_{j=1}^p \hat{\beta}_j \tilde{\mathbf{X}}_{ij}$.
- Example: Wine Analytics. Any observations? How to interpret $\hat{\beta}_0$?
 - The intercept can be directly interpretable as the average value of the outcome when the covariates are around the average.

- ullet Sometimes it is useful to standardize $ilde{X}_{ij} = rac{X_{ij} ar{X}_j}{\hat{\sigma}_j}$
 - How to interpret $\hat{\beta}_i$ in this case?