UNIVERSIDADE DE PERNAMBUCO ESCOLA POLITÉCNICA DE PERNAMBUCO

RELATÓRIO DE PRÁTICA DE ALGORITIMOS GENÉTICOS

CARLOS HENRIQUE MACIEL - PPGEC CRISTÓVÃO ZUPPARDO RUFINO - PPGES

1.Introdução

A motivação desse estudo é desenvolver e aprender como desenvolver um algoritmo inteligente baseado na técnica de computação evolucionária.

O objeto de estudo é o código-fonte da versão clássica de algoritmo genético.

O propósito é programar e testar um algoritmo genético. Os objetivos secundários são verificar a convergência do algoritmo, comparar os operadores e definir os melhores parâmetros que fazem com que o algoritmo convirja mais rápido.

É assumida a perspectiva do desenvolvedor durante o desenvolvimento do algoritmo, e a perspectiva do usuário para a melhor definição das variáveis do algoritmo para garantir que os resultados sejam alcançados no menor tempo, custo e maior qualidade.

O escopo que define esse trabalho é um projeto único para a implementação e teste do algoritmo genético.

Objetivo da Medição

Será realizada uma comparação do desempenho do algoritmo genético, a medida que mudamos os valores assumidos pelas variáveis.

• Melhor fitness por iteração.

Objetivo do estudo

Implementar e testar um algoritmo genético.

Com o objetivo de configurar os melhores operadores e definir os parâmetros que garantem uma convergência mais rápida do algoritmo.

A respeito do tamanho da população, tipo de cruzamento, taxa de cruzamento, tipo de mutação, taxa de mutação e tipo de seleção para sobrevivência.

Do ponto de vista do usuário dessa técnica.

No contexto de estudantes de um curso de Computação Inteligente do Mestrado de Engenharia da Computação e de Sistemas.

Questões

Aumentando o número de iterações é possível garantir a convergência do algoritmo genético? A partir de que número de iteração, há uma pequena variação no resultado obtido? Quais são os melhores parâmetros a serem definidos para um algoritmo genético para minimizar a função de teste Rastringin.

Métricas

A métrica utilizada é o melhor fitness por iteração, que é apresentada por valores absolutos contidos no intervalo entre 1050 e 0.

2. Planejamento do Experimento

Projeto

O experimento consiste na análise da convergência do algoritmo genético para cada caso de teste definido a partir da seleção dos parâmetros do algoritmo genético. Além disso, será realizado o teste estatístico não paramétrico de Wilcoxon para comparar os casos de testes definidos.

Erros

O tipo de erro utilizado no teste de hipótese não paramétrico de Wilcoxon é do tipo II, o que significa que é aceito o caso em que a hipótese nula é aceita, mesmo que realmente ela não seja verificada. Na prática, aceita-se os falsos positivos. Ou seja, o erro do tipo II aceita o caso em que um paciente realizará um tratamento de câncer mesmo que ele não tenha desenvolvido a doença, ao invés de, correr o risco de não tratar um paciente de câncer.

Mudanças

Para o experimento, não houve mudanças na arquitetura do sistema, na disponibilidade do processador, nem no manuseio de memória que pudessem tornar o ambiente de teste dinâmico.

Confiabilidade

Considera-se os resultados obtidos confiáveis.

Pareamento de Dados

Como se trata do mesmo algoritmo sendo executado antes e depois de algumas mudanças, podem realizar o pareamento dos dados sem problemas.

Complexidade

O algoritmo programado foi concebido na linguagem C, uma linguagem de nível intermediário (apenas um passo de tradução para linguagem de máquina), para que o desempenho do programa fosse o melhor possível.

O código gerado é bastante reduzido, porém modularizado, o nível de complexidade do programa na notação $O(Big\ O)$ é $O(n^2)$. Porque o algoritmo genético tem uma complexidade linear e o algoritmo de ordenação utilizado tem uma complexidade quadrática.

Métricas orientadas às questões

As métricas definidas são específicas para responder as questões de convergência e teste pareado.

A métrica selecionada é:

Melhor fitness por iteração (fit_{it});

Validação das medições

As medições são válidas, pois as melhores soluções sempre são armazenadas na memória do programa, além disso, verificamos a integridade dessa memória, já que outros programas não tem permissão concedida pelo Sistema Operacional para invadir essa região e violá-la.

Coleta automatizada dos dados

Os dados são gerados e armazenados automaticamente pelo programa que executa o algoritmo. Os dados são armazenados em formato de tabela num arquivo de texto.

Nível de medição

Nominal.

Definição das Hipóteses

Hipótese Nula (H0): Como hipótese nula, assume-se que fit_{it} de cada experimento não são diferentes.

H0: $fit_i^{e'} = fit_i^{e''}$, tal que o fitness por iteração fit_i em cada experimento e não são diferentes.

Hipótese Alternativa (H1): Como hipótese alternativa, assume-se que fit_{it} de cada experimento são diferentes.

H0: $fit_i^{e'} \neq fit_i^{e''}$, tal que o *fitness* por iteração fit_i em cada experimento e são diferentes.

Tratamento

O tratamento aplicado a esse estudo é a implementação modularizada e parametrizada do algoritmo, para facilitar a extração dos dados. As variáveis do algoritmo a serem analisadas são apresentadas nas seções seguintes, junto com os possíveis valores assumidos. Após a extração, os resultados de cada experimento foram salvo em arquivos separadamente. Cada experimento foi executado 30 vezes repetidamente.

Em seguida, os dados foram tratados e trabalhados por uma ferramenta estatística para geração dos gráficos de convergência. Por fim, os dados de cada experimento foram comparados um a um, utilizando uma ferramenta estatística para realização do teste não paramétrico pareado de Wilcoxon.

Objeto de Controle

Com o objetivo de implementar o algoritmo genético, o objeto de controle foi o pseudo código do algoritmo apresentado em [1]. Com o objetivo de analisar os parâmetros, foi utilizado como parâmetro de controle os valores da Tabela 1.

Tabela 1. Parâmetros de controle

Variável	
Tamanho da	30
População	indivíduos
Tipo de Cruzamento	1 ponto
Taxa de Cruzamento	0.9
Tipo de Mutação	Uniforme
Taxa de Mutação	0.1
Tipo de Seleção	Elitismo
para Sobrevivência	

Objetos do Experimento

Os objetos do experimentos são os possíveis valores que podem ser assumidos pelas variáveis para a minimização da função de teste. A função de teste utilizada foi a Rastringin, que é uma função bastante conhecida e relativamente difícil de se encontrar os mínimos globais devido a existência de um grande platô no qual as soluções recursivas geralmente demoram a percorrer e alcançar o mínimo global.

A função Rastrigin[2] utilizada tem 30 variáveis, sendo que o intervalo de f(x) encontra-se entre 0 e 1050, o intervalo de x encontra-se entre -5,12 e 5,12. A Figura 1 representa a função Rastrigin com 2 variáveis.

Figura 1. Rastrigin com 2 variáveis

Os possíveis valores assumidos pelas variáveis dos algoritmos são apresentados na Tabela 2.

Sujeitos do Experimento

Sistema operacional Linux, Arch-Linux, Kernel 3.5, gcc 4.6, libc x.y, 4GB de memória, Processador Intel Core 2 Duo 1.86MHz.

Variáveis Independentes

Todas as variáveis que não estão sobre o nosso controle.

Variáveis Dependentes

As variáveis analisadas no estudo: tamanho da população, tipo de cruzamento, taxa de cruzamento, tipo de mutação, taxa de mutação e tipo de seleção para sobrevivência.

Concepção dos Ensaios

Combinando os possíveis valores assumidos pelas variáveis, chegamos a 48 combinações possíveis, ou 48 experimentos. Para cada experimento, executamos o algoritmo 30 vezes.

3. Operação

Preparação

Antes de Começar o experimento, nós compilamos o código-fonte na arquitetura de teste com uma versão de compilador compatível, para eliminar a possibilidade de erro de processamento interno.

Análise

A análise do experimento é a comparação dos dados coletados a partir dos ensaios do objeto do experimento e ensaios de objetos de controle com o objetivo de verificar se a hipótese nula pode ser rejeitada. O estudo analisa a convergência do algoritmo de acordo com as suas variáveis.

Como nós não podemos dizer a origem dos dados gerados no experimento, se eles satisfazem o Teste de Normalidade de Kolmogorov-Smirnov, e se descendem de distribuições de mesma variância, obtido com o Teste de Fisher, nós utilizamos o Teste Não Paramétrico Pareado de Wilcoxon. O Teste de Wilcoxon é um teste estatístico que compara se as medianas de duas amostras, e analisa se suas diferenças são significantes.

Ameaças a Validade

Validade Interna

O algoritmo é executado na mesma máquina, sob as mesmas condições iniciais. Logo, o ambiente do experimento é estável.

Validade da Conclusão

Um mentor estava acompanhando a execução do estudo para garantir a correta coleta dos dados. O Teste Não Paramétrico Pareado de Wilcoxon pode ser considerado um teste adequado, já que permite que os dados sejam tratados com uma rigidez menor, quando não tem-se tantas informações sobre as amostras.

Validade da Construção

A construção do algoritmo foi baseada na implementação mais simples do Algoritmo Genético[1].

Validade Externa

Os resultados desse estudo estão limitados às restrições acima.

Execução

Os ensaios são organizados e classificados segundo a Tabela 2.

Tabela 2. Definição dos parâmetros das variáveis

Variável			
Tamanho da	30	50	-
População	indivíduos	indivíduos	
Tipo de Cruzamento	1 ponto	2 pontos	Aleatório
Taxa de Cruzamento	0.9	0.7	-
Tipo de Mutação	Uniforme	Gaussiana	-
Taxa de Mutação	0.1	0.3	-
Tipo de Seleção	Elitismo	Roleta	-
para Sobrevivência			

Na Tabela 3, rotulamos cada experimento.

Tabela 3. Identificação de cada experimento

Experimento	Tam. População	Taxa Mutação	Taxa Cruzamento	Tipo Cruzamento	Tipo Mutação
1			0,9	1,0	
2		0,1	0,9	1,0	2,0
3		0,1	0,9	2,0	1,0
4	İ	0,1	0,7	2,0	2,0
5	30,0	0,1	0,7	1,0	1,0
6	30,0	0,1	0,7	1,0	2,0
7	30,0	0,1	0,9	2,0	1,0
8	30,0	0,1	0,9	2,0	2,0
9	30,0	0,1	0,9	1,0	1,0
10	30,0	0,1	0,7	1,0	2,0
11	30,0	0,1	0,7	2,0	1,0
12	30,0	0,1	0,7	2,0	2,0
13	30,0	0,5	0,9	1,0	1,0
14	30,0	0,5	0,9	1,0	2,0
15	30,0	0,5	0,9	2,0	1,0
16	30,0	0,5	0,7	2,0	2,0
17	30,0	0,5	0,7	1,0	1,0
18	30,0	0,5	0,7	1,0	2,0
19	30,0	0,5	0,9	2,0	1,0
20	30,0	0,5	0,9	2,0	2,0
21	30,0	0,5	0,9	1,0	1,0
22	30,0	0,5	0,7	1,0	2,0
23	30,0	0,5	0,7	2,0	1,0
24	30,0	0,5	0,7	2,0	2,0
25	50,0	0,1	0,9	1,0	1,0
26	50,0	0,1	0,9	1,0	2,0
27	50,0	0,1	0,9	2,0	1,0
28	50,0	0,1	0,7	2,0	2,0
29	50,0	0,1	0,7	1,0	1,0

1	l l	ĺ	1	1	
30	50,0	0,1	0,7	1,0	2,0
31	50,0	0,1	0,9	2,0	1,0
32	50,0	0,1	0,9	2,0	2,0
33	50,0	0,1	0,9	1,0	1,0
34	50,0	0,1	0,7	1,0	2,0
35	50,0	0,1	0,7	2,0	1,0
36	50,0	0,1	0,7	2,0	2,0
37	50,0	0,5	0,9	1,0	1,0
38	50,0	0,5	0,9	1,0	2,0
39	50,0	0,5	0,9	2,0	
40	50,0	0,5	0,7	2,0	2,0
41	50,0	0,5	0,7	1,0	1,0
42	50,0	0,5	0,7	1,0	2,0
43	50,0	0,5	0,9	2,0	1,0
44	50,0	0,5	0,9	2,0	2,0
45	50,0			1,0	
46	50,0			1,0	
47	50,0	0,5	0,7	2,0	
48	50,0			2,0	

Desenvolvemos dois scripts para gerar os resultados, um que executa o experimento 30 vezes e outro que define os possíveis valores assumidos pelas variáveis. De forma que o último, executa o primeiro através da definição dos parâmetros.

Convergência do Algoritmo

As Figuras a seguir apresentam todos os Boxplots obtidos para os 48 experimentos.

Figura 2. Rastrigin com 2 variáveis

Figura 3. Rastrigin com 2 variáveis

Figura 4. Rastrigin com 2 variáveis

Figura 5. Rastrigin com 2 variáveis

Figura 6. Rastrigin com 2 variáveis

Figura 7. Rastrigin com 2 variáveis

Figura 8. Rastrigin com 2 variáveis

Figura 9. Rastrigin com 2 variáveis

Figura 10. Rastrigin com 2 variáveis

Figura 11. Rastrigin com 2 variáveis

Figura 12. Rastrigin com 2 variáveis

Figura 13. Rastrigin com 2 variáveis

Figura 14. Rastrigin com 2 variáveis

Figura 15. Rastrigin com 2 variáveis

Figura 16. Rastrigin com 2 variáveis

Figura 17. Rastrigin com 2 variáveis

Figura 18. Rastrigin com 2 variáveis

Figura 19. Rastrigin com 2 variáveis

Figura 20. Rastrigin com 2 variáveis

Figura 21. Rastrigin com 2 variáveis

Figura 22. Rastrigin com 2 variáveis

Figura 23. Rastrigin com 2 variáveis

Figura 24. Rastrigin com 2 variáveis

Figura 25. Rastrigin com 2 variáveis

Figura 26. Rastrigin com 2 variáveis

Figura 27. Rastrigin com 2 variáveis

Figura 28. Rastrigin com 2 variáveis

Figura 29. Rastrigin com 2 variáveis

Figura 30. Rastrigin com 2 variáveis

Figura 31. Rastrigin com 2 variáveis

Figura 32. Rastrigin com 2 variáveis

Figura 33. Rastrigin com 2 variáveis

Figura 34. Rastrigin com 2 variáveis

Figura 35. Rastrigin com 2 variáveis

Figura 36. Rastrigin com 2 variáveis

Figura 37. Rastrigin com 2 variáveis

Figura 38. Rastrigin com 2 variáveis

Figura 39. Rastrigin com 2 variáveis

Figura 40. Rastrigin com 2 variáveis

Figura 41. Rastrigin com 2 variáveis

Figura 42. Rastrigin com 2 variáveis

Figura 43. Rastrigin com 2 variáveis

Figura 44. Rastrigin com 2 variáveis

Figura 45. Rastrigin com 2 variáveis

Figura 46. Rastrigin com 2 variáveis

Figura 47. Rastrigin com 2 variáveis

Figura 48. Rastrigin com 2 variáveis

Figura 49. Rastrigin com 2 variáveis

Teste Não Paramétrico Pareado de Wilcoxon

Os Testes Não Paramétricos Pareados de Wilcoxon foram realizados para cada par de experimentos. Os resultados são apresentados na Tabela 4. "P" significa que o experimento da linha é pior que o da coluna. "M" significa que o experimento da linha é melhor que o da coluna.

Tabela 4. Classificação dos 15 experimento

	Teste Não Paramétrico Pareado de Wilcoxon														
	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	E13	E14	E15
E1	ı	Р	Р	Μ	Р	Р	Р	Р	Р	Р	Р	Μ	Р	Р	Р
E2	М	-	М	М	М	М	Р	Р	Р	М	Р	М	М	Р	Р
E3	М	Р	-	М	Р	М	Р	Р	Р	Р	Р	М	М	Р	Р
E4	Р	Р	Р	1	Р	Р	Р	Р	Р	Р	Р	Μ	Р	Р	Р
E5	Μ	Р	Μ	Μ	1	Μ	Р	Р	Р	Р	Р	Μ	Μ	Р	Р
E6	Μ	Р	Р	Μ	Р	1	Р	Р	Р	Р	Р	Μ	Р	Р	Р
E7	Μ	Μ	Μ	Μ	Μ	Μ	1	Р	Р	М	Р	Μ	Μ	Р	Р
E8	Μ	Μ	Μ	Μ	Μ	Μ	Μ	ı	Р	М	Р	Μ	Μ	Р	Р
E9	Μ	Μ	Μ	Μ	Μ	Μ	Μ	М	-	М	Μ	Μ	Μ	М	М
E10	М	Р	М	М	М	М	Р	Р	Р	-	Р	М	М	Р	Р

E11	М	М	Μ	М	Μ	М	Μ	М	Р	М	-	М	М	Р	Р
E12	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	1	Р	Р	Р
E13	М	Р	Р	М	Р	М	Р	Р	Р	Р	Р	М	-	Р	Р
E14	М	М	М	М	М	М	М	Μ	Р	М	М	М	М	-	Р
E15	Р	Р	Р	Р	Р	Р	Р	Μ	Р	М	М	М	М	М	-

Referências

- [1] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Professional, 1 edition, January 1989.
- [2] A. Törn and A. Zilinskas. Global Optimization. Lecture Notes in Computer Science, № 350, Springer-Verlag, Berlin, 1989.