Soft Clustering:

Generate data using $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$

Generate data using $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$

Mixture Model:

X comes from a mixture model with k mixture components if the probability distribution of X is

$$P(X=x) = \sum_{j=1}^k P(C_j) P(X=x|C_j)$$
 Mixture proportion Represents the probability of belonging to C_j when sampling from C_j

Gaussian Mixture Model:

A Gaussian Mixture Model (GMM) is a mixture model where

$$P(X = x | C_i) \sim N(\mu, \sigma)$$

GMM Clustering:

$$\theta^* = \arg\max_{\theta} \prod_{i=1}^n \sum_{j=1}^k P(C_j) P(X_i \mid C_j)$$

It is a joint probability distribution of our data and we assume our data are independent

We can define the following:

$$l(\theta) = \log(L(\theta))$$

$$= \sum_{i=1}^{n} \log(\sum_{j=1}^{k} P(C_j) P(X_i \mid C_j))$$

For
$$\mu = [\mu_1, ..., \mu_k]^T$$
 and $\Sigma = [\Sigma_1, ..., \Sigma_k]^T$

We can solve

$$\frac{d}{d\Sigma}l(\theta) = 0 \qquad \qquad \frac{d}{d\mu}l(\theta) = 0$$

And then we can get:

$$\hat{\mu}_j = \frac{\sum_{i=1}^n P(C_j|X_i)X_i}{\sum_{i=1}^n P(C_j|X_i)}$$

$$\hat{\Sigma}_j = \frac{\sum_{i=1}^n P(C_j|X_i)(X_i - \hat{\mu}_j)^T (X_i - \hat{\mu}_j)}{\sum_{i=1}^n P(C_i|X_i)}$$

$$\hat{P}(C_j) = \frac{1}{n} \sum_{i=1}^{n} P(C_j | X_i)$$

$$P(C_{j}|X_{i}) = \frac{P(X_{i}|C_{j})}{P(X_{i})}P(C_{j})$$

$$= \frac{P(X_{i}|C_{j})P(C_{j})}{\sum_{j=1}^{k} P(C_{j})P(X_{i}|C_{j})}$$

Expectation Maximization Algorithm:

- 1. Start with random θ
- 2. Compute P(Cj | XI) for all Xi by using θ
- 3. Compute / Update θ from P(Cj | XI)
- 4. Repeat 2 & 3 until convergence

Naïve Bayes and SVM

Bayes Classifier is a probabilis8c framework for solving classifica8on problems Condi8onal Probability:

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Bayesian Classifiers: Consider each attribute and class label as random variables Given a record with aRributes (A1, A2,...,An)

- Goal is to predict class C
- Specifically, we want to find the value of C that maximizes P(C|A1, A2,...,An)

Approach: compute the posterior probability $P(C \mid A1, A2, ..., An)$ for all values of C using the Bayes theorem

$$P(C \mid A_1 A_2 \dots A_n) = \frac{P(A_1 A_2 \dots A_n \mid C) P(C)}{P(A_1 A_2 \dots A_n)}$$

Example:

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

· Normal distribution:

$$P(A_{i} | c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A_{i} - \mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

$$P(Income = 120 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)}e^{\frac{-(120-110)^2}{2(2975)}} = 0.0072$$

X = (Refund = No, Married, Income = 120K)

naive Bayes Classifier:

P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0

For taxable income:

If class=No: sample mean=110 sample variance=2975 If class=Yes: sample mean=90 sample variance=25 P(X|Class=No) = P(Refund=No|Class=No)
 × P(Married| Class=No)
 × P(Income=120K| Class=No)
 = 4/7 × 4/7 × 0.0072 = 0.0024

P(X | Class=Yes) = P(Refund=No | Class=Yes)
 × P(Married | Class=Yes)
 × P(Income=120K | Class=Yes)
 = 1 × 0 × 1.2 × 10⁻⁹ = 0

Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
=> Class = No

Probability estimation:

Original: $P(A_i \mid C) = \frac{N_{ic}}{N_c}$

Laplace: $P(A_i \mid C) = \frac{N_{ic} + 1}{N_c + c}$

m - estimate : $P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}$

Naïve Bayes summary

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estmate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some aRributes

Support Vector Machines:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 \end{cases}$$

Introduce slack variables:

- Need to minimize: $L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$
- Subject to: $f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \cdot \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \cdot \vec{x}_i + b \le -1 + \xi_i \end{cases}$

Kernel Suggestion:

We do not need to actually map explicitly each point to a high dimensional space! We just need to have a func8on that computes the similarity (distance) in the mapped space given the points in the input space (without the need to do the mapping!)

Ways to find the widest street:

We want our samples to lie beyond the street. That is:

$$\vec{w} \cdot \vec{x}_+ + b \ge 1$$

$$\vec{w} \cdot \vec{x}_- + b \le -1$$

Note: for an unknown u, we can have:

$$-1 < \vec{w} \cdot \vec{u} + b < 1$$

Introducing a variable:

$$y_i = \begin{cases} +1 & \text{if } x_i \text{ is a } + \text{sample} \\ \\ -1 & \text{if } x_i \text{ is a } - \text{sample} \end{cases}$$

If we multiply our sample decision rules by this new variable:

$$y_i(\vec{w} \cdot \vec{x}_i + b) \ge 1$$

Meaning, for on the decision boundary, we want:

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

We know that $extbf{WIDTH} = (\vec{x}_+ - \vec{x}_-) \cdot \frac{\vec{w}}{\|\vec{w}\|}$ for \vec{x}_- and \vec{x}_+ points on the boundary

And, since they are on the boundary, we know that

$$y_i(\vec{w}\cdot\vec{x}_i+b)-1=0$$
 Hence, WIDTH $=\frac{2}{\|\vec{w}\|}$

Goal is to maximize the width:

$$\begin{aligned} \max(\frac{2}{\|\vec{w}\|}) &= \min(\|\vec{w}\|) \\ &= \min(\frac{1}{2} \|\vec{w}\|^2) \end{aligned}$$

Subject to:

$$y_i(\vec{w} \cdot \vec{x}_i + b) - 1 = 0$$

Can use Lagrange multipliers to form a single expression to find the extremum of

$$L = \frac{1}{2} \|\vec{w}\|^2 - \sum_{i} \alpha_i \left[y_i (\vec{x}_i \cdot \vec{w} + b) - 1 \right]$$

$$\frac{\partial L}{\partial \vec{w}} = \vec{w} - \sum_{i} \alpha_{i} y_{i} \vec{x}_{i} = 0$$

$$\implies \vec{w} = \sum_{i} \alpha_{i} y_{i} \vec{x}_{i}$$

$$L = \sum_{i} \alpha_{i} - \frac{1}{2} \left(\sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right) \cdot \left(\sum_{i} \alpha_{i} y_{i} \vec{x}_{i} \right)$$
$$= \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \vec{x}_{i} \cdot \vec{x}_{j}$$

To find Φ :

$$K(\vec{x}_i, \vec{x}_j) = \phi(\vec{x}_i) \cdot \phi(\vec{x}_j)$$

$$K(\vec{x}_i, \vec{x}_j) = (\vec{x}_i \cdot \vec{x}_j + 1)^n$$

$$K(\vec{x}_i, \vec{x}_j) = e^{\frac{\|\vec{x}_i - \vec{x}_j\|}{\sigma}}$$