NATIONAL UNIVERSITY OF SINGAPORE MATHEMATICS SOCIETY

PAST YEAR PAPER SOLUTIONS with credits to Teo Wei Hao, Lau Tze Siong

MA4204 Group Theory AY 2008/2009 Sem 1

Question 1

(a) Let $H = \operatorname{Stab}_G(x)$, and let relation $\phi: X \to (G:H)$ be such that for all $x' \in X$ and $g \in G$ such that $g^{-1} \cdot x' = x$, we have $\phi(x') = gH$.

Since G acts transitively on X, $\phi(x')$ exists for all $x' \in X$.

Let $g_1, g_2 \in G$ such that $g_1^{-1} \cdot x' = x = g_2^{-1} \cdot x'$. This give us $g_1 \cdot x = x' = g_2 \cdot x$, and so $g_2^{-1} g_1 \cdot x = x$.

Thus $g_2^{-1}g_1 \in \operatorname{Stab}_G(x) = H$, i.e. $g_2H = g_1H$, and so, $\phi(x')$ is unique for all $x' \in X$.

Therefore ϕ is a function.

Let $x_1, x_2 \in X$ be such that $\phi(x_1) = \phi(x_2)$ for some $g \in G$.

Since G acts transitively on X, there exists $g_1, g_2 \in G$ such that $g_1^{-1} \cdot x_1 = x = g_2^{-1} \cdot x_2$. This give us $g_1 H = \phi(x_1) = \phi(x_2) = g_2 H$, i.e. $g_2^{-1} g_1 \in H = \operatorname{Stab}_G(x)$.

Thus $g_2^{-1}g_1 \cdot x = x$, i.e. $x_1 = g_1 \cdot x = g_2 \cdot x = x_2$, i.e. ϕ is injective.

Let $g \in G$ (equivalently, let $gH \in (G:H)$).

Since $g^{-1} \cdot (g \cdot x) = x$, we have $\phi(g \cdot x) = gH$, i.e. ϕ is surjective.

Therefore ϕ is bijective.

Notice that as $1_G^{-1} \cdot x = x$, we have $\phi(x) = 1_G H = H$, and so for all $g \in G$, $\phi(g \cdot x) = gH = g\phi(x)$. Thus we established such a subgroup H and a bijection ϕ that satisfy our conditions.

(b) Let H and K be conjugate subgroups of G, i.e. there exists $b \in G$ such that $bHb^{-1} = K$. Let G acts on (G:H) by left composition. Since G acts transitively on (G:H), with $bH \in (G:H)$, and $\operatorname{Stab}_G(bH) = bHb^{-1} = K$, by result of (1a), there exists a bijection $\psi: (G:H) \to (G:K)$ such that $\psi(gH) = \psi(g \cdot H) = g \cdot \psi(H) = g\psi(H)$ for all $g \in G$.

Instead, let there exists a bijection $\psi: (G:H) \to (G:K)$ such that $\psi(gH) = g\psi(H)$ for all $g \in G$. Since ψ is surjective, there exists $a \in G$ such that $\psi(aH) = K$.

Thus for all $h \in H$, we have $aha^{-1}K = aha^{-1}\psi(aH) = \psi(aha^{-1}aH) = \psi(ahH) = \psi(aH) = K$, i.e. $aha^{-1} \in K$. This implies that $aHa^{-1} \leq K$.

Also, for all $k \in K$, we have $\psi(a^{-1}kaH) = a^{-1}k\psi(aH) = a^{-1}kK = a^{-1}K = a^{-1}\psi(aH) = \psi(H)$, i.e. $a^{-1}ka \in H$, or rather $k \in aHa^{-1}$. This implies that $K \leq aHa^{-1}$.

Therefore H and K are conjugate subgroups of G.

Question 2

(a) Since G is simple, we have G to be a subgroup of A_{n+1} of index $\frac{k}{2}$, i.e. $|G| = \frac{|a_{n+1}|}{k} \ge \frac{|a_{n+1}|}{2n+2} = \frac{n!}{2}$. If k = 2, then $[A_{n+1} : G] = 1$, i.e. $G = A_{n+1}$.

Else we have $1 \le \frac{k}{2} - 1 \le n$. Let $l = \frac{k}{2} - 1$.

Then $|(A_{n+1}:G) - \{G\}| = l$, and so $(\bar{A}_{n+1}:G) - \{G\}$ is non-empty.

Let G act on $(A_{n+1}:G) - \{G\}$ by left composition (this is well-defined since $\{G\}$ is a G-orbit).

This induce a homomorphism $\varphi: G \to S_l$.

Assume on the contrary that $ker(\varphi) = G$.

Then for all $g \in G$, $a \in A_{n+1}$, we have gaG = aG, i.e. $a^{-1}ga \in G$. Thus $G \triangleleft A_{n+1}$.

Since $n+1 \geq 5$, A_{n+1} is simple, $G = \{1_{A_{n+1}}\}$ or $G = A_{n+1}$, either way a contradiction since

$$[A_{n+1}:G] \neq \frac{(n+1)!}{2}$$
 and $[A_{n+1}:G] \neq 1$.

Therefore $\ker(\varphi) \neq G$, and together with G is simple, we conclude that $\ker(\varphi) = \{1_G\}$.

Therefore $G \cong \varphi[G] \leq S_l$.

Since $|\varphi[G]| = |G| \ge \frac{n!}{2} > 2$ and $\varphi[G]$ is simple, we have $\varphi[G] \le A_l$.

Also l = n, else l < n with $n \ge 5$, which give us $|G| = |\varphi[G]| \le |S_l| = l! < \frac{n!}{2}$, a contradiction.

Thus $\varphi[G] \leq A_n$, and so $|\varphi[G]| \leq \frac{n!}{2}$.

Therefore $|\varphi[G]| = \frac{n!}{2} = |A_n|$, and so $G \cong \varphi[G] = A_n$.

(b) Let G be a simple group with |G| = 60. Let $n_5 = |\text{Syl}_5(G)| \neq 1$.

Then by Sylow's Theorem, we have $n_5 \equiv 1 \mod 5$ and $n_5 \mid 12$, i.e. $n_5 = 6$.

Thus we can let G act on $Syl_5(G)$ by conjugation.

Since $n_5 = 6$, this induce a homomorphism $\phi : G \to S_6$.

Since the action is transitive, we have $\ker(\phi) \neq G$, and together with G being simple, we have $\ker(\phi) = \{1_G\}$. Thus $\phi[G] \leq S_6$ with $[S_6 : \phi[G]] = 12 = 2(5) + 2 \neq 2$.

Since $\phi[G]$ is simple subgroup of S_6 of index 12, by result of (2a.), we have $G \cong \phi[G] \cong A_5$.

Question 3

(a) Let G be a group with $|G| = p^2$. Then Z(G) is non-trivial, and so |Z(G)| = p or $|Z(G)| = p^2$.

Either way, we have |G/Z(G)| = 1 or |G/Z(G)| = p, i.e. G/Z(G) is cyclic.

Therefore G is Abelian.

Thus by classification of Abelian groups, we have $G \cong C_{p^2}$ or $G \cong C_p \times C_p$.

(b) Let G be a group with |G| = 2p.

Then by Sylow's Theorem, there exists $H, K \leq G$ such that |H| = 2, |K| = p.

Since [G:K]=2, we have $K \triangleleft G$, and so $G=K \rtimes H$.

Let $\varphi : H \to \text{Aut}(K)$, let $H = \{1_G, h\}$ and $K = \{1_G, k, k^2, \dots, k^{p-1}\}$.

Then let $\varphi(h)(k) = k^l$ for some $l \in \{1, 2, \dots, p-1\}$. This give us $\varphi(h)(k^q) = k^{ql}$ for all $q \in \mathbb{Z}$.

Since $h^2 = 1_G$, $k = \varphi(1_G)(k) = \varphi(h^2)(k) = \varphi(h)\varphi(h)(k) = k^{l^2}$, i.e. $l^2 \equiv 1 \mod p$.

By Euclid's Lemma, we have $l \equiv \pm 1 \mod p$.

If $l \equiv 1 \mod p$, then $\varphi(h)(k^q) = k^q$ for all $q \in \mathbb{Z}$, i.e. $\varphi(h) = 1_{\operatorname{Aut}(G)}$. Thus $G \cong C_2 \times C_p$.

Page: 2 of 3

Else $l \equiv -1 \mod p$, then $\varphi(h)(k^q) = k^{-q}$ for all $q \in \mathbb{Z}$, i.e. $G \cong D_{2p}$.

Therefore $G \cong C_2 \times C_p$ or $G \cong D_{2p}$.

Question 4

(a) Let G be a group such that |G| = 595. Let $n_p = |\text{Syl}_p(G)|$ for p = 5, 7, 17.

Then by Sylow's Theorem, we have:-

 $n_5 \equiv 1 \mod 5 \text{ and } n_5 \mid 7 \cdot 17, \text{ i.e. } n_5 = 1.$

 $n_7 \equiv 1 \mod 7$ and $n_7 \mid 5 \cdot 17$, i.e. $n_7 = 1$ or $n_7 = 5 \cdot 17$.

 $n_{17} \equiv 1 \mod 17$ and $n_{17} \mid 5 \cdot 7$, i.e. $n_{17} = 1$ or $n_{17} = 5 \cdot 7$.

Let $P_5 \in \text{Syl}_5(G)$. Since $n_5 = 1$, we have $P_5 \triangleleft G$.

Assume on the contrary that $n_7 = 5 \cdot 17$.

Let $P_7 \in \text{Syl}_7(G)$. Then $|N_G(P_7)| = 7$.

Since $P_5 \triangleleft G$, we have $P_5P_7 \leq G$.

By Sylow's Theorem, $|\text{Syl}_7(P_5P_7)| \equiv 1 \mod 7$ and $|\text{Syl}_7(P_5P_7)| \mid 5$.

Thus $|\text{Syl}_7(P_5P_7)| = 1$, i.e. $P_7 \triangleleft P_5P_7$.

This give us $P_5P_7 \leq N_G(P_7)$, i.e. $35 = |P_5P_7| \leq |N_G(P_7)| = 7$, a contradiction.

Similarly, we can show that $n_{17} \neq 5 \cdot 7$, by letting $P_{17} \in \text{Syl}_{17}(G)$ and show that $P_5 P_{17} \leq N_G(P_{17})$. Thus $n_7 = n_{17} = 1$, i.e. $P_7, P_{17} \triangleleft G$.

Since P_5 , P_7 and P_{17} are cyclic and normal in G, we have G to be cyclic.

(b) Not necessarily.

Let $C_3 = \{1, p, p^2\}$ and $C_7 = \{1, q, q^2, \dots, q^6\}$.

Let homomorphism $\varphi: C_3 \to \operatorname{Aut}(C_7)$ be such that $\varphi(p^k)(q^l) = q^{2^k l}$ for all $k, l \in \mathbb{Z}$.

Then φ is not a trivial homomorphism, and thus it can be used to form the semi-direct product $C_7 \rtimes C_3$ which is not cyclic. Thus $|(C_7 \rtimes C_3) \times C_{17}| = 3 \cdot 7 \cdot 17$, but $(C_7 \rtimes C_3) \times C_{17}$ is not cyclic.

Question 5

 $(a) \rightarrow (b)$

Let $\{1_G\} = G_0 \subseteq G_1 \subseteq \cdots \subseteq G_n = G$ be a central series.

Let H < G, and $k \in \mathbb{Z}$ be such that $G_k \leq H$ but $G_{k+1} \nleq H$.

This give us $[G_{k+1}, H] \leq [G_{k+1}, G] \leq G_k \leq H$.

Thus for all $g \in G_{k+1}$, $h \in H$, we have $ghg^{-1}h^{-1} \in H$, i.e. $ghg^{-1} \in hH = H$.

Therefore $G_{k+1} \leq N_G(H)$, and so $H < N_G(H)$.

 $(b) \rightarrow (c)$

Let M be a maximal subgroup of G.

Since M < G, we have $M < N_G(H)$. By the maximality of M, we have $N_G(H) = G$, i.e. $M \triangleleft G$.

 $(c) \rightarrow (d)$

Assume on the contrary that P is a Sylow subgroup which is not normal in G.

Since $N_G(P) < G$, we have $N_G(P) \le M$, where M is a maximal subgroup of G.

Hence for all $g \in G$, we have $gPg^{-1} \leq gMg^{-1} = M$.

Since P and gPg^{-1} are Sylow subgroups of M, there exists $m \in M$ such that $gPg^{-1} = mPm^{-1}$, i.e. $m^{-1}g \in N_G(P)$. Therefore $g \in MN_G(P)$, which gives us $G = MN_G(P) = M$ (since $N_G(P) \leq M$), a contradiction.

 $(d) \rightarrow (a)$

Since every Sylow subgroup of G is normal in G, G is a direct product of its Sylow subgroups.

Page: 3 of 3

As every p-group is nilpotent, and finite direct products of nilpotent groups are nilpotent, we have G to be nilpotent.