Department of Electrical Engineering School of Engineering, Gautam Buddha University

Electrical Technology lab: Professor in-charge: Dr. C.B.Vishwakarma Technical Assistant: Mr. Indrapal Singh

S.No.	Name of Instruments with specifications	Quantity
1.	House wiring training kit	2
2.	1-phase transformer kit (1KVA)	1
3.	Advance DC shunt motor kit (230 V,5A)	1
4.	Network theorem trainer kit (type DC)	4
5.	Kirchhoff's law training kit (type DC)	2
6.	Electronic work bench	2
7.	CRO and digital oscilloscope (30 MHz)	5
8.	DC supply (0-30 V)	3
9.	Function Generator (50 Hz)	4
10.	Digital multimeter	5
11.	Cut section of DC motor	1
12.	Auto transformer (0-260 V)	2
13.	Tachometer (5000RPM)	3
14.	Inductive load (5KVA)	2
15.	Resistive load(5KVA)	1
16.	Rheostat 50ohm, 10 A,300ohm, 3A, 500ohm, 1A,1700ohm, 1A	10
17.	Desktop with windows operating system	2

Measurement and Instrumentation Lab: Professor-in charge: Dr. C. B. Vishwakarma Technical Support: Mr. Faheem Ahmed

S.No.		Name of Instruments	Quantity
1	Setup for measurement of resistant	nce by Kelvin's Double Bridge	1
2	Setup for measurement of self inc	ductance by Maxwell's Bridge	1
3	Setup for measurement of self inc	ductance by Hay's Bridge	1
4	Setup for measurement of capacit	tance by Schering Bridge	1
5	Setup for measurement of frequen	ncy by Wein's Bridge	1
6	Setup for measurement of capacit	tance by Wein's Bridge	1
7	Setup for measurement of temper	rature using Resistance Temperature Detector(RTD)	1
8	Setup for study and plot of LDR	Characteristics	1
9	Setup to verify characteristics of	LVDT	1
10	Setup for measurement of temper	rature using Thermocouple	1
11	Setup for measurement of displac Transducer	ement using Strain Gauge type Displacement	1
12	Setup to study and measurement	of Pressure using Pressure Transducer	1
13	Setup for measurement of humid	ity using Capacitive Transducer	1
14	Setup for measurement of liquid	level	1
15	Compact data acquisition system platform	a. Measurement of Flow b. Measurement of various digital quantities by using universal counter	1
16	Ammeter/Voltmeter		1
17	CT Testing by Silbee's Method		
18	PT testing by Comparison		1
19	Measurement of power in a Three	e phase system	1
20	Measurement of Power and Power Three Voltmeter Method	er factor of single phase using Three Ammeter and	1

Network Theory Lab: Professor-in charge: Dr. Nidhi Singh Pal
Technical Support: Mr. Faheem Ahmed

S.No.	Name of Instrument and Specifications	Quantity
1	Superposition Theorem kit with digital meters and AC-DC supply	2
2	Thevenin's and Norton's Theorem kit with digital meters and AC-DC supply	4
3	Tellegen's Theorem kit	2
4	Transient and Frequency response kit of an RLC circuit	2
5	Two port network parameters kit with digital meters	4
6	LC Filter kit	3
7	Digital Multimeters	5
8	50MHz Digital Oscilloscope	3
9	LCR Meter	2
10	Clamp Meter	1
11	Programmable DC Power Supply	4
12	Function Generators	2

MATLAB Programming Lab: Professor in -c	charge: Dr. M.A. Ansari
Technical Assi	istant: Mr. Devi Singh

S.No.	Name of instruments with specification	Quantity
1.	MATLAB software concurrent Lic.	30 user
2.	Computer system	27
3.	Desktop with windows operating system	1

Electrical Machine I&II Lab: Professor in-charge: Dr. C.B.Vishwakarma Technical Assistant: Mr. Devi Singh

S.No.	Name of instruments with specification	Quantity
1.	DC Machine trainer-1	1
	3 hp dc shunt motor CG make with	
	loading arrangement and Lamp load 2kw	
2.	DC Machine trainer-II	1
	MG Set 2.2 kw, 3 hp dc shunt motor, Lamp load 2kw	
3.	Open lab: Dissectible experimental rotating machine	1
4.	Single Phase transformer trainer -1	1
	1 Phase variac 15A,1-Phase transformer, 3KVA	
5.	Single Phase transformer trainer -II	1
	1 Phase variac 15A,1 Phase variac 8A,1-Phase transformer, 3KVA,1- Phase resistive	
	load 2KW	
6.	Synchronus Machine Trainer-I	1
	MG Set, DC Shunt Motor 3 HP, Generator 5KVA	
7.	Slip Ring Induction Motor trainer	1
	Slip Ring Induction Motor with loading, 5HP	
	3-phase Autotransformer 415V,15A	
8.	Synchronization of 3-Phase Alternators	1
	MG Set, DC Shunt Motor 3 HP, Generator 5KVA	
9.	Single phase induction motor trainer	1
	1 phase induction motor with loading, 2 HP	
	Variac 1- phase ,8 A	
10.	3 phase transformer trainer -1	1
	Variac 3 phase, 8 A,3 phase T/F, 3 KVA with temperature sensor,3- Phase resistive	
	load 5KW	
11.	3 phase transformer trainer -II	1
	Variac 3 phase, 15 A,3 phase T/F, 3 KVA, 4.2 A, 3- Phase resistive load 5KW	
12.	3-phase induction motor trainer -1	1
	3 phase I/M with loading, 3 HP, Variac, 415V, 10A	
13.	3-phase induction motor trainer -ll	1
	3 phase I/M with loading, 3 HP	
14.	Desktop with windows operating system	1

Control System Lab: Professor-in charge: Dr. Nidhi Singh Pal Technical Support: Mr. Faheem Ahmed

S.No.	Name of Instrument and Specifications	Quantity
1	PID Control Trainer and Processes – Master Control Panel	3
2	Process Simulator Panel	1
3	Thyristor Actuator Panel	1
4	Servo Interface Panel(DC &AC position control)	1
5	Stepper Motor Panel	1
6	Process Control Trainer(Pressure, Flow and Temperature)	1
7	Servo Voltage Stabilizer Kit	1
8	P, PI, PID Control Simulator Trainer	3
9	Linear System Simulator	3
10	Temperature Controller Kit	2
11	Synchro-Transmitter Receiver Unit	1
12	Digital Storage Oscilloscope 50MHz, 2-Channel	3
13	33/4 digit Digital Multimeter	3

Power Electronics Lab: Professor in-Charge: Dr. M.A. Ansari Technical Support: Neeraj

S.No.	Name of Instruments	Quantity
1	Characteristic study Trainers - IGBT, MOSFET ,SCR , TRIAC, DIAC	01
2	Single phase AC Voltage controller Using SCR & TRIAC with Load	01
3	Single Phase (Half & Full) Converter With R, RL loads	01
4	Forced Commutation circuits class A, class B, class C, class E	01
5	Single phase cyclo-converter R & RL loads	01
6	Single phase Bridge Inverter with DC supply power circuit triggering circuit	01
7	Morgen Chopper Circuit Trainer with DC power supply	01
8	Three Phase Half & fully Controlled Bridge Converter	01
9	Single Phase MC- Murray bed ford Full Bridge Inverter	01
10	Three phase Cyclo- Converter with Power supply input 440V	01
11	SCR based AC/ DC drives trainer	01
12	Speed Control (V/F Control) of Three phase AC induction Motor	01
13	DSP Based AC Induction Motor Control, Input :230V AC	01
14	FPGA Kit, 288k Block Ram USB interface	01

Switchgear & Protection Lab: Professor-in charge: Dr. Omveer Singh Technical Assistant: Mr. Devi Singh		
S.No.	Name of Instruments with specification	Quantity
1.	BUCHHOLZ RELAY	Quantity
2.	DIFFERENTIAL RELAY TESTING SYSTEM	1
3.	70 MHZ DIGITAL STORAGE OSCILLOSCOPE (NVIS 207CIT)	1
4.	EARTH FAULT RELAY TESTING SYSTEM(NVIS 7094)	1
5.	ELECTRO MECHANICAL TYPE OVER VOLTAGE RELAY TEST SETUP	1
6.	ELECTRO MECHANICAL TYPE OVER CURRENT RELAY TEST SETUP	1
7.	ELECTRO MECHANICAL TYPE EARTH FAULT RELAY TEST SETUP	1
8.	FUNCTION GENARATOR	1
9.	MCB AND HRC FUSE TESTING SYSTEM(NVIS 7090)	1
10.	MAGGER 250 V/500V AND 1000V INSULATION AND CONTINUITY TESTER	1
11.	MICRO- CONTROLLER BASED OVER/ UNDER POWER FREQUENCY RELAY	1
12.	MICRO- CONTROLLER BASED directional over current RELAY	1
13.	MICRO CONTROLLER BASED REVERSE POWER RELAY	1
14.	MICRO CONTROLLER BASED OVER /UNDER VOLTAGE RELAY(VPL-05)	1
15.	MICRO CONTROLLER BASED OVER CURRENT RELAY(VPL-01)	1
16.	IDMT OVER CURRENT RELAY SETUP(NVIS 7091)	1
17.	OVER/UNDER VOLTAGE RELAY TRAINER	1
18.	PROGRAMMABLE AC POWER SOURCE(VPL-06 ACC3)	1
19.	3 PHASE OVER CURRENT AND EARTH FAULT NUMERIC RELAY TESTING SYSTEM(NVIS 7098)	1
20.	3 – PHASE RELAY TEST OR UNIVERSAL TEST SYSTEM(ME-2000)	1
21.	TRANSFORMER OIL TESTING SETUP	1
22.	UNIVERSAL RELAY TRAINING SYSTEM (NVIS 7099)	1
23.	VARIABLE AC CURRENT SOURCE (VPL-01 ACC)	1
24.	Desktop with windows operating system	1

Power System Lab: Professor in- charge: Dr. Omveer Singh
Technical Support: Neeraj

S.No.	Name of Instruments with Specifications	Quantity
1	Three phase Symmetrical And Unsymmetrical fault analysis.	1
2	To Study and Measurement of Direct Axis and Quadrature And (XP) Reactance by Slip Test & Study & Measurement of Positive & Negative & Zero Sequence Impedance of Three Phase Synchronous Alternator. Input mains; 230 AC, 50Hz Fixed DC output; 200V	1
3	To determine Sub Transient Direct Axis Reactance (Xd'') and Sub Transient Quadrature Axis Reactance (Xq'') of an Alternator.	1
4	To Study Percentage Differential Relay	1
5	To determine location of fault in a cable using cable fault locator.	1
6	To Study Ferranti Effect & Voltage Distribution in H. V. Long Transmission Line using Transmission Model	1
7	To determine A, B, C, D, Parameters of an artificial transmission line	1
8	Test for breakdown strength of a transformer oil	1
9	Power Measurement using CT & PT	1
10	To study Radial & Ring main Distribution System	1
11	Digital Multimeter	5
12	Function Generator	5

Advanced Power Electronics & Drive Lab: Professor in-Charge : Dr. M.A.Ansari Lab Assistant : Neeraj

S.No.	Name of Instruments	Quantity
1	Advance Machine & Drives – Vector control Of Induction	1
2	Direct Torque Control (DTC) Of Induction Motor Drive	1
3	Permanent Magnet Synchronous Motor (PMSM) Drive	1
4	Switched Reluctance Motor Drive	1
5	Advance converter -3 Phase Cyclo-Converter	1
6	Advance converter -3 Phase Inverter	1
7	Advance converter- Dc-DC Buck Boost Converter	1
8	STATCOM	1
9	Advance PWM Technique-Sinusoidal PWM generation	1
10	FPGA Based Controller	1
11	Training on PLC Based Automation for Motor Control	1
12	Wind/ Solar based Hybrid System with 3-Phase AC Sour	1
13	Power Supply	1
14	UPS	1
15	SMPS	1
16	Digital Storage Oscilloscope	2
17	Three phase half wave cyclo-converter	1
		<u> </u>

Digital & Nonlinear Control Lab: Professor in-charge: Dr. Nidhi Singh Pal
Technical Assistant: Mr. Devi Singh

S.No.	Name of instruments with specification	Quantity
1.	ANALOG CONTROL MODULE	1
	Make: Google tech HK modal:GAE1001	
2.	BALL AND BEAM CONTROL SYSTEM	1
	Make: Google tech HK model:GBB1004	
3.	3 DOF HELICOPTER SIMULATOR	1
	Make: Google tech HK modal:GHP2002	
4.	LINEAR 2 –STAGE INVERTED PENDULAM	1
	Make: Google tech HK modal:GLIP2002	
5.	MAGNETIC LEVITATION SYSTEM	1
	Make: Google tech HK modal:GML1001	
6.	DIGITAL PENDULAM	1
	MAKE:FEEDBACK	
7.	INDUSTRIAL ROBOT	1
	MAKE: ABB	
	(ABB IRB 120 ROBOTS IRB M2004 C3HAC031431-001)	
8.	Computer system	5

Advance Instrumentation and Control Lab: Professor in-charge: Dr. Shabana Urooj Technical Support: Mr. Faheem Ahmed

S.No.	Name of Instrument	Specifications	Quantity
1	Workbench Platform Hardware	 a. 5 DMM (51/2 digit Digital Multimeter) b. DSO (Multifunction 50MHz Digital Storage Oscilloscope) c. FGEN (1MHz Function Generator) d. Arbitrary Waveform Generator e. +/- 12V Variable Power Supply f. +/-15V, 5V Constant Power Supply g. 5MHz Bode Analyzer h. Dynamic Signal Analyzer i. 1Hz to 35Hz Impedence Analyzer j. Electronic Breadboard System 	1
2	Sensors Bundle	a. Temperature Sensors: RTD, Thermocouple,Thermistorb. Single Axis Accelerometer for Vibration	1

		Measurement c. Array Microphone for Real-time Audio	
		Processing d. Bioinstrumentation Sensors Kit – EKG Sensor, Hand-Grip Heart Rate Monitor, Hand	
		Dynamometer, Oxygen Gas Sensor, Surface Temperature, Blood Pressure Monitor, Spirometer	
		e. Green Engineering Sensors Kit – CO2 Gas Sensor, pH Sensor, Temperature Probe, Conductivity Probe, Differential Voltage Probe, Current Probe and Analog Proto board Connector	
3	Data Acquisition, Real-time Analysis and Data Visualisation Software	a. LabVIEW full development system b. LabVIEW Controls and Embedded Software c. LabVIEW Signal Processing and Communications Software	*25
4	DIAdem Professional Edition	Data Visualization Software	1
5	Educational Laboratory Virtual Instrument Suit Multisensor Addon Modules	a. Strain Guage b. Piezo film sensor c. Rotary potentiometer d. Pressure sensor e. Thermistor sensor f. Long range sensors – Sonar and Infrared g. Short range sensors – magnetic field and optical h. Micro switch, push button and optical switch i. Two digital output LEDs j. Encoder	1
6	Compact DAQ based Real-time DAQ platform	a.Multislot Compact Data Acquisition Chassis with USB connectivity with integrated DAQ and signal conditioning modules for temperature, pressure, strain sensors	1
7	Wireless Data Acquisition Platform	ZigBee based programmable WSN platform for measurement of real-time data	1
8	Wi-Fi Data Acquisition Platform	Wireless Data Acquisition modules for strain, temperature etc sensors	1
9	Ethernet Based Data Acquisition Platform	Ethernet Based Compact DAQ module for multisensor input and LabVIEW supported PC based Analysis	1
10	USB Based Data Acquisition Platform	USB based multifunction data acquisition modules for general purpose instrumentation and actuator control applications	1
11	PCIe/PCI Based PC Data Acquisition Platform	PCIe multifunction DAQ modules with support for multichannel analog input/output and digital input/output	1
12	Industrial PXI Based Data Acquisition Platform	PXI Chassis, PXI Controller and PXI based multifunction DAQ module	1
13	Virtual and Remote Lab Platform	Internet Enabled Sensor Input, Signal conditioning and Data Acquisition Platform with support for a variety of sensors	1
14	Embedded	a. Compact Real time Controller with Real time	1

	Instrumentation System Design Platform	Controller (Power PC) running on RTOS b. Integrated Signal Conditioning and I/O modules for Analog Input, Analog Output, Custom Sensor input and Programmable DIO	
15	Set-up to Study and Measurement of different BIO MEDICAL	Bioinstrumentation Sensor Kit	1
13	SIGNALS complete system	Myolectric Kit	1
16	LabVIEW Full Development System with 1 year updates		1
17	Desktop Computer	Desktop Computers with Windows Operating System	8

Biomedical Instrumentation Labs	: Professor in- charge: Dr. Shabana Urooj
	Technical Support: Mr. Faheem Ahmed

S.No.	Name of Instruments	Specifications	Quantity
1	Circuit Design Platform for Biomedical Circuit Prototyping with following specifications	a. 5 DMM (51/2 digit Digital Multimeter) b. DSO (Multifunction 50MHz Digital Storage Oscilloscope) c. FGEN (1MHz Function Generator) d. Arbitrary Waveform Generator e. +/- 12V Variable Power Supply f. +/-15V, 5V Constant Power Supply g. 5MHz Bode Analyzer h. Dynamic Signal Analyzer i. 1Hz to 35Hz Impedence Analyzer j. Two wire current analyzer (+/-10V sweeps) k. Three-wire current-voltage analyzer for NPN, PNP Transistors	1
2	Circuit Design Software for Biomedical Instrumentation Circuit Simulation		1
3	PCB software for PCB layout and routing of Bioinstrumentation circuits		1

	1	,	
		a. EKG sensor for 3-lead EKG tracing with 100 disposable electrodesb. Hand-grip Heart Rate Monitor consisting of wireless hand grips and a receiver module for	
		data collection	
		c. Isometric Hand Dynamometer with Force	
	Workbench	Range 0-600N with an accuracy of +/-0.06N	
	Bioinstrumentation	d. Oxygen Gas Sensor	
4	Sensor Addon Bundle	e. Surface Temperature Sensor including	1
	consisting of the	thermistor sensor	
	following sensors	f. Non-invasive Blood Pressure Sensor including	
		standard adult size adjustable cuff(27cm-	
		39cm), pump bulb and pressure transducer	
		g. Spirometer including 1 sensor handle, 1 flow	
		head, 5 disposable mouthpieces, 1 disposable	1
		bacterial filter and 1 nose clip h. Analog Proto board connector	
		LM3S962 processor (256KB Flash ROM, 64KB SRAM,	
		50MHz) with 1CAN interface, SD Card interface, OLED	
5	ARM Cortex M3	Graphics Display with 128x96 pixel resolution, User LED,	1
		Navigation Switches, Pushbuttons, Ethernet connectivity	_
	ARM 7	and Analog Input	
		MCB2300 featuring NXP LPC2300 processor with 2 serial	
6		interfaces, potentiometer, LCD, USB, and Ethernet	1
		Connectivity LEDs and Pushbuttons)	
7	Medical Device	sBRIO with Freescale PowerPC Processor, ADC/DAC and	1
	Prototyping Platform	Xilinx FPGA for Algorithm Prototyping and Deployment	
		a. Spartan 3E based FPGA Training Platform	
		containing 8LEDs, 8DIP Switches, 4 Switch	
0	Workbench Addon for	Buttons, 2 seven segment LED displays,	1
8	Digital Electronics	breadboarding and prototyping area with 6Pmod Connectors.	1
		b. Programmable with LabVIEW FPGA and	
		Xilinx ISE Tools	
		a. Imaging Sensor for Real-time Image	
		Acquisition	
		b. Lenses (12mm, 16mm and 25mm)	
	Smart Camera Platform	c. Ring Lighting	
		d. Rotary Stage and Camera Stand	
9		e. Ethernet and Power Accessories	1
		(An industrial, High quality Sony CCD image sensors,	
		with high performance processors, industrial I/O, lighting	
		control and dual Gigabit Ethernet which works with real	
		time module. Camera supports Programmable Automation	
		Controllers(PAC) and Human Machine Interface systems)	
10	Desktop Computer	Desktop Computers with Windows Operating System	2