Midtvejsrapport Bachelorproject

Regular Expression Matching In Genomic Data

Rasmus Haarslev - nkh877 Troels Thomsen - qvw203

Supervisors: Rasmus Fonseca 23. Februar 2015

Department of Computer Science University of Copenhagen

Contents

1	Problem definition			1
2	2 Translation of scan-for-matches patterns into regular expressions			
	2.1	Mismatches, In	sertions and Deletions	2
	2.2	Backreferencing	g	3
		2.2.0.1	Mismatches	3
		2.2.0.2	Deletions	3
		2.2.0.3	Insertions	3

1 Problem definition

We wish to determine the possibility of converting sequence analysis patterns used for scanfor-matches[?], into regular expressions[?] and test their efficiency against the KMC[?] engine.

Specifically we wish to solve the following problems:

- Is it possible to programatically convert patterns used by the scan-for-matches program into regular expressions for the KMC engine? If not all patterns used by scan-for-matches then which ones?
- Is it possible to achieve speeds matching or exceeding scan-for-matches with the generated regular expressions and the KMC engine?
- Can we find weak extensions to regular expressions, which would enable us to support more or all scan-for-matches patterns?

2 Translation of scan-for-matches patterns into regular expressions

2.1 Mismatches, Insertions and Deletions

The subpatterns can have the following form, which allows for mismatches, insertions and deletions in the subpattern.

$$x_1 \dots x_n[m, i, d] \quad \{x_1 \dots x_n \in A \mid m, i, d \in \mathbb{N}_0\}$$
 (1)

This notation allows for 0 or the given number of mismatches, insertions or deletionsin, or all possible combinations in between. This means we for an example can have m mismatches and i insertions, but not necessarily d deletions.

We can combine the matching of mismatches and deletions to somewhat simplify our expressions. We can express one mismatch and one deletion in the following regular expression.

$$((x_{1}? \mid [\hat{x}_{1}]) x_{2} \cdots x_{n}) \mid (x_{1}? \mid \hat{x}_{2}] x_{3} \cdots x_{n}) \mid \cdots \mid (x_{1}? \cdots x_{n-1} \mid \hat{x}_{n}]) \mid (2)$$

$$([\hat{x}_{1}] x_{2}? \cdots x_{n}) \mid (x_{1} (x_{2}? \mid [\hat{x}_{2}]) x_{3} \cdots x_{n}) \mid \cdots \mid (x_{1} x_{2}? \cdots x_{n-1} \mid \hat{x}_{n}]) \mid \vdots$$

$$\vdots$$

$$([\hat{x}_{1}] x_{2} \cdots x_{n}?) \mid (x_{1} \mid \hat{x}_{2}] x_{3} \cdots x_{n}?) \mid \cdots \mid (x_{1} \cdots x_{n-1} (x_{n}? \mid [\hat{x}_{n}]))$$

This quite large expression quickly grows into an even larger expression, if we have multiple mismatches or deletions. For two mismatches, we have the following. \hookrightarrow denotes the continuation of the current line.

$$((x_{1} \mid [\hat{x}_{1}]) (((x_{2} \mid [\hat{x}_{2}]) x_{3} \cdots x_{n}) \mid (x_{2} (x_{3} \mid [\hat{x}_{3}]) x_{4} \cdots x_{n})$$

$$\hookrightarrow \mid \cdots \mid (x_{2} \cdots x_{n-1} (x_{n} \mid [\hat{x}_{n}]))) \mid$$

$$(x_{1} (x_{2} \mid [\hat{x}_{2}]) (((x_{3} \mid [\hat{x}_{3}]) x_{4} \cdots x_{n}) \mid (x_{3} (x_{4} \mid [\hat{x}_{4}]) x_{5} \cdots x_{n})$$

$$\hookrightarrow \mid \cdots \mid (x_{3} \cdots x_{n-1} (x_{n} \mid [\hat{x}_{n}]))) \mid$$

$$\vdots$$

$$(x_{1} \cdots x_{n-1} (x_{n} \mid [\hat{x}_{n}]))$$

In the case of m, i, d = n, we have the following case.

$$? (x_1? \mid [\hat{x}_1]) .? (x_2? \mid [\hat{x}_2]) \cdots .? (x_n? \mid [\hat{x}_n]) .?$$
(4)

2.2 Backreferencing

One way to simplify our expression, is to use backreferences. With backreferences we can express m mismatches, d deletions and i insertions in the following regular expressions.

2.2.0.1 Mismatches

$$((x_1?|.) | (x_2?|.) | \cdots | (x_n?|.))$$
 (5)

2.2.0.2 Deletions

2.2.0.3 Insertions