Homework 4

CptS 317, Spring 2021

Due Date: March 10th, 2021 by 11:59pm Pacific.

To be submitted on Canvas.

This homework has six problems, each of which is equally weighted.

1. Convert the following NFA into a DFA:

2. Convert the following DFA into a 2-state GNFA using the iterative process discussed in class and in the textbook (i.e. first turn into a 5-state GNFA, then remove one state at a time)

- 3. Describe the error in the following "proof" that 0^*1^* is not a regular language (an error must exist because 0^*1^* is regular). The proof is by contradiction.
 - Assume 0*1* is regular.
 - Let p be the pumping length for 0^*1^* given by the pumping lemma.
 - Choose s to be the string $0^p 1^p$.
 - We know that s is a member of 0^*1^* , but a previous proof[†] shows that s cannot be pumped.
 - Thus there is a contradiction. So 0^*1^* is not regular.

† This is demonstrated both in example 1.73 in your textbook and in example 1 of the Pumping Lemma lecture slides on Canvas.

4. Let $\Sigma = \{1, \#\}$ and let $Y = \{w | w = x_1 \# x_2 \# \cdots \# x_k \text{ for } k \ge 0, \text{ and each } x_i \in 1^*, \text{ and } x_i \ne x_j \text{ for } i \ne j\}$

Prove that Y is not regular using the pumping lemma.

- 5. Give context-free grammars generating the following languages. In all parts, the alphabet $\Sigma = \{0, 1\}$
 - a) $\{w|w \text{ starts and ends with the same symbol }\}.$
 - b) $\{w | \text{ the length of } w \text{ is odd } \}.$
 - c) $\{w|w=w^R$, that is, w is a palindrome $\}$.
 - d) The empty set.

- 6. The following is a description for "JH-Lisp2", which is a **modified** version of the language previously described in homework 3, problem 6:
 - (a) The alphabet of JH-Lisp2 consists of the open '[' and close ']' square brackets, the digits 0-9, the underscore character '_', and the letters {a,b,d,i,l,m,o,s,u,v}
 - (b) An **operator** is a substring in JH-Lisp2 containing one of the following strings: {add, sub, mul, div, mod}.
 - (c) A **number** is a substring in JH-Lisp2 containing one or more of the digits 0-9
 - (d) An expression is defined as either a number or a list expression
 - (e) A **list expression** is defined by the following, in order:
 - i. An open bracket: '['
 - ii. An operator
 - iii. An underscore: '_'
 - iv. An **expression**
 - v. An underscore: '_'
 - vi. An **expression**
 - vii. A close bracket: ']'
 - (f) A string in the JH-Lisp2 language is a single list expression.

An example string in this language might be [add_[mod_4_3]_21]

Give a context-free grammar for JH-Lisp2.