Lezione 17

Serie di Patenze

definizione

si definisce serie di potense centrata in xo la serie \(\sigma_{n=0}^{\infty} \alpha_{n} (x-x_0)\)

insieme di convergenza

ni definisce insieme di convergenza di ura serie di patenze l'insie me E= {XER: \(\sum \arg X \) (converge}, si osserva:

i)
$$f(x) = \sum_{x = 0}^{\infty} \alpha_x x \forall x \in E$$

11) x=0=> 0EE

raggio di convergenza

si définisce raggio di comergenza di una serie di patenze il SUPE

eorena insieme di convergen za

$$\cdot E = (-\infty, +\infty)$$

earema raggio di convergenza

te5i

· se
$$\exists \lim_{n \to +\infty} \sqrt[n]{\alpha_n} = \underline{\quad > 0 \qquad (L = 0 \Rightarrow)} R = +\infty$$

Serie derivata

sid > 0 x con R = 0

ai chiama serie derivata la serie stenuta derivando termine a termine

$$\sum_{n=1}^{\infty} n \alpha x^{n-1} = \sum_{n=0}^{\infty} (n+1) \alpha x^{n}$$

$$x=1$$

egrema di derivazione per serie di potenze

tes:-

· la rud derivata > na x+1 ha la sterso raggio di convergenza

$$|\cdot|_{F(X)} = \sum_{n=0}^{\infty} \alpha_n x^n \hat{e}$$
 detinabile in $(-R, R)$ le vale $f(X) = \sum_{n=0}^{\infty} n(n-1)...(n-k+1)\alpha_n x^n + \sum_{n=0}^{\infty} n(n-1)...(n-k+1$

egremo di integrazione per serie di potenze

La serie
$$\sum_{n=0}^{\infty} \frac{x}{n+1}$$
 ha la stena raggio di convergenza
· sia $F(x) = \sum_{n=0}^{\infty} a \times n$ allora $\sum_{n=0}^{\infty} a + d = \sum_{n=0}^{\infty} a + d$

