

Master's Thesis Presentation

On the Parameterized Complexity of SEMITOTAL DOMINATING SET On Graph Classes

Lukas Retschmeier

Theoretical Foundations of Artificial Intelligence School of Computation Technical University of Munich

February 28th, 2023

Creative Introduction

Our Plan for Today

Motivation

DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that N[D] = V?

- The domination number is the minimum cardinality of a ds of G, denotes as $\gamma(G)$
- Observation: In connected G every $v \in D$ has another $z \in D$ with $d(v,z) \leq 3$.

Motivation

TOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that

 $\forall d_1 \in X : \exists d_2 \in D \setminus \{d_1\} \text{ with } d(d_1, d_2) \leq 1$?

• The total domination number is the minimum cardinality of a tds of G, denoted as $\gamma_t(G)$.

• We say d_1 witnesses d_2 (and vice versa)

Motivation

SEMITOTAL DOMINATING SET

Input Graph $G = (V, E), k \in \mathbb{N}$

Question Exists $D \subseteq V$ with $|D| \le k$ such that

 $\forall d_1 \in X : \exists d_2 \in D \setminus \{d_1\} \text{ with } d(d_1, d_2) \leq 2$?

• The semitotal domination number is the minimum cardinality of a sds of G, denoted as $\gamma_{2t}(G)$.

• Observation: $\gamma(G) \leq \gamma_{2t}(G) \leq \gamma t(G)$

• We say d_1 witnesses d_2 (and vice versa)

Example: $\gamma(G) < \gamma_{2t}(G) < \gamma_t(G)$

DOMINATING SET

SEMITOTAL DOMINATING SET

TOTAL DOMINATING SET

Parameterized Complexity

- NP-hard? We expect problem to be at least exponential
- Idea: Limit combinatorial explosion to some aspect of the problem
- Goal: Find an algorithm running in time $\mathcal{O}(f(k) \cdot n^c)$ for some parameter k
- In this work: by solution size
- **Techniques:** Kernelization, Bounded Search Trees, ...

If possible, the problem is **fixed-parameter tractable**.

Fixed-Parameter Intractability

- Class NP corresponds to whole hierarchy W[i] in parameterized setting.
- ullet Problems at least W[1]-hard considered **fixed-parameter intractable**
- Dominating Set is W[2]-complete
- Tool for Proving Hardness: FPT Reductions, preserving the parameter

Master's Thesis Presentation

Lukas

Complexity Comparison

Graph Class	DOMINATING SET		SEMITOTAL DOMINATING SET		TOTAL DOMINATING	
	classical	Parameterized	classical	Parameterized	classical	Parame
bipartite	NPc [Bertossi1984]	W_2 [Raman2008]	NPc [Henning2019]	W_2 (this)	NPc [Pfaff1983]	W_2 (cite
line graph of bipartite	NPc [Korobitsin1992]	?	NPc [Galby2020]	? (?)	NPc [McRae1995]	?
circle	NPc [Keil1993]	W_1 [Bousquet2012]	NPc [Kloks2021]	? (?)	NPc [McRae1995]	W_1 [Bo
chordal	NPc [Booth1982]	W_2 [Raman2008]	NPc [Henning2019]	W_2 (this)	NPc [Laskar1983]	W_1 [Ch
s-chordal , $s > 3$	NPc [Liu2011]	W_2 [Liu2011]	? (?)	? (?)	NPc [Liu2011]	W_1 [Liu
split	NPc [Bertossi1984]	W_2 [Raman2008]	NPc [Henning2019]	W_2 this	NPc [Laskar1983]	W_1 [Ch
3-claw-free	NPc [Cygan2011]	FPT [Cygan2011]	Prob. Unk	Prob. Unk	NPc [McRae1995]	Unknow
t-claw-free, $t > 3$	NPc [Cygan2011]	W_2 [Cygan2011]	Prob. Unknown	Unknown	NPc [McRae1995]	Prob. U
chordal bipartite	NPc [Mueller1987]	? (?)	NPc [Henning2019]	?	P [Dam	naschke1
planar	NPc (Sources!)	FPT [Alber2004]	NPc	FPT (this)	NPc	FPT [G
undirected path	NPc [Booth1982]	FPT [Figueiredo2022]	NPc [Henning2022]	?	NPc [Lan2014]	?
dually chordal	P [Brandstaedt1998]		? (attempted [Galby2020])		P [Kratsch199	
strongly chordal	P [Farber1984]		P [Tripathi2021]		NPc [Farber1984]	
AT-free	P [Kratsch2000]		P [Kloks2021]		P [Kratsch200	
tolerance	P [Giannopoulou2016] P [Farber1984] P [Chang1998a]		? P [Henning2022] P [Pradhan2021]		? P [Chang1989 P [Bertossi198	
block						
interval						
bounded clique-width	P [Courcelle1990]		P [Courcelle1990]		P [Courcelle19	
bounded mim-width	P [Belmonte2011, BuiXuan2013]		P [Galby2020]		P [Belmonte2011, Buil	

Status SEMITOTAL DOMINATING SET

Warmup: Intractability Results

 ω_2 hard on split, chordal and bipartite graphs

• Split Graph: G = Clique + IndependentSet

Split Graphs

Semitotal Dominating Set on *split* and *chordal* graphs is ω_2 -hard

Proof by fpt-reduction from PLANAR DOMINATING SET on split graphs:

- **1** Construct G^* by adding v with pendant z to clique. G^* split
- 2 If ds D in G, $D' = D \cup \{v\}$ is sds D'.
- 3 If sds D' in G', $D \setminus \{v\}$ is D in G
- 4 Parameter k only changed by constant

Bipartite Graphs

Semitotal Dominating Set on *bipartite* graphs is ω_2 -hard

Proof by fpt-reduction from PLANAR DOMINATING SET on bipart. graphs:

- **1 Construct** Add new neighbor to each vertex and add d_1, d_2, u_1, u_2
- 2 If ds D in G, then $D' = D \cup \{d_1, d_2\}$ is sds in G'
- **3** Assume sds D' in G'. If $a_i \in D'$ (b_i) , flip. $D = D' \setminus \{d_1, d_2\}$ is ds in G

A Linear Kernel for PLANAR SEMITOTAL DOMINATING SET Another Explicit kernel for a Dominating Problem

Kernelization

• Idea: Preprocess an instance using *Reduction Rules* until hard *kernel* is found.

Kernelization

• Idea: Preprocess an instance using Reduction Rules until hard kernel is found.

Related Works

Problem PLANAR DOMINATING SET PLANAR TOTAL DOMINATING SET PLANAR SEMITOTAL DOMINATING SET	$\begin{array}{c} \textbf{Size} \\ 67k \\ 410k \\ 359k \end{array}$	Source [Diekert2005] [Garnero2018] This work
PLANAR EDGE DOMINATING SET PLANAR EFFICIENT DOMINATING SET PLANAR RED-BLUE DOMINATING SET PLANAR CONNECTED DOMINATING SET PLANAR DIRECTED DOMINATING SET	$14k \\ 84k \\ 43k \\ 130k \\ Linear$	[Guo2007] [Guo2007] [Garnero2017] [Luo2013] [Alber2006]

Main Theorem

The Main Theorem

SEMITOTAL DOMINATING SET parameterized by solution size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that, given a planar graph (G,k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that $|V(G')| \leq 359 \cdot k$.

The Big Picture

Given a planar graph G = (V, E), we will:

- Split the neighborhoods of the graph;
- 2 Define reduction Rules
- 3 Use the region decomposition to analyse size of each region

The basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v,w)

The Basic Principle: Regions

Region (Simplified)

Given plane G and $v, w \in V$, a region is a closed subset, such that

- there are two non-crossing (but possibly overlapping) boundary paths
- Every vertex in R belongs to N(v,w)

D-region decomposition

D-region decomposition [Alber2004]

Given G=(V,W) and $D\subseteq V$, a D-region decomposition is a set $\mathfrak R$ with poles in D such that:

- for any vw-region $R \in \mathfrak{R}$: $D \cap V(R) = \{v, w\}$
- Regions are disjunct, but can share border vertices

A region is **maximal**, if no $R \in \mathfrak{R}$ such that $\mathfrak{R}' = \mathfrak{R} \cup \{R\}$ is a *D-region decomposition* with $V(\mathfrak{R}) \subsetneq V(\mathfrak{R}')$.

Maximal *D*-region decomposition

Splitting up N(v)

Splitting up N(v)

We split N(v) into three subsets:

$$N_1(v) = \{ u \in N(v) : N(u) \setminus N[v] \neq \emptyset \}$$
 (1)

$$N_2(v) = \{ u \in N(v) \setminus N_1(v) : N(u) \cap N_1(v) \neq \emptyset \}$$

$$N_3(v) = N(v) \setminus (N_1(v) \cup N_2(v)) \tag{3}$$

For $i, j \in [1, 3]$, we denote $N_{i,j}(v) := N_i(v) \cup N_j(v)$.

(2)

Rule 1, Appetizer: Shrinking $N_3(v)$

Let G = (V, E) be a graph and let $v \in V$. If $|N_3(v)| \ge 1$:

- remove $N_{2,3}(v)$ from G,
- add a vertex v' and an edge $\{v, v'\}$.

• Idea: v better choice than $N_{2,3}$

Splitting up N(v,w)

Splitting up N(v,w)

$$N_1(v, w) = \{ u \in N(v, w) \mid N(u) \setminus (N(v, w) \cup \{v, w\}) \neq \emptyset \}$$

$$\tag{4}$$

$$N_2(v,w) = \{ u \in N(v,w) \setminus N_1(v,w) \mid N(u) \cap N_1(v,w) \neq \emptyset \}$$
 (5)

$$N_3(v,w) = N(v,w) \setminus (N_1(v,w) \cup N_2(v,w))$$
(6)

For $i, j \in [1, 3]$, we denote $N_{i,j}(v, w) = N_i(v, w) \cup N_j(v, w)$.

Rule 2: Setting Up Our Weapons

Key Idea: $N_{2,3}(v,w)$ can **always** be semitotally dominated with 4 vertices.

Rule 2: Setting Up Our Weapons

Key Idea: $N_{2,3}(v,w)$ can **always** be semitotally dominated with 4 vertices.

$$\mathcal{D} = \{ \tilde{D} \subseteq N_{2,3}(v,w) \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3 \}$$
 (7)

$$\mathcal{D}_v = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{v\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ v \in \tilde{D} \}$$
 (8)

$$\mathcal{D}_w = \{ \tilde{D} \subseteq N_{2,3}(v,w) \cup \{w\} \mid N_3(v,w) \subseteq \bigcup_{v \in \tilde{D}} N(v), \ |\tilde{D}| \le 3, \ w \in \tilde{D} \}$$
 (9)

Rule 2

If $\mathcal{D} = \emptyset$ we apply the following:

Case 1: if
$$\mathcal{D}_v = \emptyset$$
 and $D_w = \emptyset$

- Remove $N_{2,3}(v,w)$
- Add vertices v' and w' and two edges $\{v,v'\}$ and $\{w,w'\}$
- Preserve d(v, w)

Case 2: if
$$\mathcal{D}_v \neq \emptyset$$
 and $D_w = \emptyset$

- Remove $N_{2,3}(v)$
- Add $\{v, v'\}$

Case 3: if $\mathcal{D}_v = \emptyset$ and $D_w \neq \emptyset$ Symmetric

Rule 2: Shrinking Regions

Rule 3: Shrinking the size of simple regions

Let G=(V,E) be a plane graph, $v,w\in V$ and R be a simple region between v and w. If $|V(R)\setminus \{v,w\}|\geq 5$ apply the following:

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add vertex y with edges $\{v,y\}$ and $\{y,w\}$

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add vertices y, y' and four edges $\{v, y\}, \{v, y'\}, \{y, w\}$ and $\{y', w\}$

Simple Regions

Rule 3: Shrinking the size of simple regions

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add vertex y with edges $\{v, y\}$ and $\{y, w\}$

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add vertices y, y' and four edges $\{v, y\}, \{v, y'\}, \{y, w\}$ and $\{y', w\}$

Rule 3: Shrinking the size of simple regions

Case 1: If $G[R \setminus \partial R] \cong P_3$, then:

- remove $V(R \setminus \partial R)$
- add vertex y with edges $\{v,y\}$ and $\{y,w\}$

Case 2: If $G[R \setminus \partial R] \ncong P_3$, then

- remove $V(R \setminus \partial R)$
- add vertices y, y' and four edges $\{v,y\}$, $\{v,y'\}$, $\{y,w\}$ and $\{y',w\}$

Retschmeier

Notes

- All the rule are sound
- and only change the solution size by a constant factor
- they can be applied in pplynomial-time
- Rule 3 is a swiss-army-knife to be found on many surprising places

For each d in sds D:

Retschmeier

Bounding the Kernel: Outside

For each d in sds D:

For each d in sds D:

- $|N_1(v) \setminus V(\mathfrak{R})| = 0$ [Alber2004], On Border
- 2 $|N_2(v) \setminus V(\mathfrak{R})| = 96$ [Alber2004]: TODO Reasoning

For each d in sds D:

- $|N_1(v) \setminus V(\mathfrak{R})| = 0$ [Alber2004], On Border
- 2 $|N_2(v) \setminus V(\mathfrak{R})| = 96$ [Alber2004]: TODO Reasoning
- **3** $|N_3(v) \setminus V(\mathfrak{R})| = 1$, by Rule 1

Bounding the Kernel: Idea 2

Retschmeier

Bounding the Kernel: Number of Regions

Number of Regions [Alber2004]

Let G be a plane graph and let D be a with $|D| \geq 3$. There is a maximal D-region decomposition of G such that $|\mathfrak{R}| \leq 3 \cdot |D| - 6$.

Summary: Bounding Kernel Size

Let D be sds of size k. There exists a maximal D-region decomposition $\mathfrak R$ such that:

- **1** \mathfrak{R} has only at most 3k-6 regions ([Alber2004]);
- **2** There are at most $97 \cdot k$ vertices outside of any region;
- **3** Each region $R \in \mathfrak{R}$ contains at most 87 vertices.

Hence:
$$|V| = \bigcup_{v \in D} N(v) = 87 \cdot (3k - 6) + 97 \cdot k + k < 359 \cdot k$$

Main Theorem

All reduction rules can be applied in poly/time, hence:

The Main Theorem

The Semitotal Dominating Set problem parameterized by solution size admits a linear kernel on planar graphs. There exists a polynomial-time algorithm that, given a planar graph (G,k), either correctly reports that (G,k) is a NO-instance or returns an equivalent instance (G',k) such that $|V(G')| \leq 359 \cdot k$.

Proof: Add Proof here.

Conclusions

Results:

•

Future Work:

- Improve Kernel Size
- Solve complexities for...

References I

