) (주) PDP-One

설비 및 작업 조건 최적화를 통한 불량률 Zero화 달성

A반 4조 구본철 박진주 서혜민 유대선 이종하 장혜림

Contents

01 추진배경

02 현상파악

03 잠재원인도출

04 데이터정제

05 데이터분석

06 질문 & 피드백

추진배경 PDP 평면 TV의 성장

응답속도가 빠르고 대형화하기 쉬운 PDP 평면 TV의 성장

전극이 장착된 두 장의 판으로 구성

- → 하판에는 격벽을 사이에 두고 RGB의 형광물질을 칠함
- → 전국을 통해 전기를 가하면 기체는 분리되어 플라즈마 상태가 되고, 이 과정에서 자외선이 방출됨
- → 방출된 자외선은 RGB 형광체에 충돌함
- → 형광체들은 해당하는 색의 가시광선을 방출하여 상판을 통해 나옴

QLED, OLED TV 등 여러 기술의 등장으로 인해 PDP 업계가 맞이한 어려움

변수	상세 설명
산업구조	각각의 브랜드가 직접 자사 제품의 원재료 생산, 설계, 제조, 판매까지 담당하며 유연한 대처 불가
제품	QLED, OLED TV 등의 고해상도, 넓은 시야각이 가능한 고가의 TV 출시
가격	LCD의 가격이 대폭 줄어들면서 대형 PDP의 점유율은 타격을 입음

추진배경 가격 경쟁력을 이용한 틈새시장 공략

제 3세계에서는 아직까지 저렴한 가격으로 PDP 수요가 여전히 높음

- 중남미 등 신흥시장이 성장을 견인할 전망
- 평판 시장 2010 TV 전망을 보면 중남미와 아시아/태평양, 중국 등 신흥시장이 성장 축의 역할을 할 것으로 예상
- 중남미 시장은 아시아/태평양 시장도 가 넘는 높은 성장률 60%, 아/태 시장도 52% 을 보일 전망.
- 중국 역시 34%에 가까운 성장 예상 (출하량 기준)

현상파악 문제제기

명점(Bright Dot) 불량

Black 패턴에서 R/G/B 색으로 발광하는 현상이 하나라도 있는 경우 색으로 빛나고 특정 색상으로 나타나 확연히 보이는 불량 사유 암점의 경우 2~5개까지 정상으로 판단하나 명점은 단 1개만 있어도 불량

120억 원 의품질비용 발생

Performance Indicator

서느기ㅠ	성능지표 현수준	목표	수준
영하시표		20′	21′
불량률	12%	7%	3%

수익성 향상을 위한 불량률 개선

- 불량으로 인한 보이지 않는 비용 절감(고객 이탈 방지 등)
- 불량률 감소가 품질 비용 증가를 의미하지 않음
- 현대의 품질비용 곡선에서 총 품질비용이 가장 낮은 점은 불량률 0% 지점과 일치

잠재원인	중요도	분석가능성	합계	선정
Bus 전극과 투명 전극 간 밀착 불량	3	3	6	
유전체 기포 발생	1	3	4	
2차 전자 방출 계수 높음	3	9	12	0
Address 전극 인쇄 방법 불량	9	1	10	0
격벽 두께 불량	9	9	18	0
격벽 높이 불량	9	9	18	0
PR 소성 불량	3	1	4	
모델 조립 불량	3	3	6	
배기 불량	3	1	4	

잠재원인	중요도	분석가능성	합계	선정
가스 주입 불량	3	3	6	
Tip-off 불량	3	1	4	
Panel과 회로 간 연결 불량(FPC 연결 불량)	3	3	6	
Sputtering 불량	3	1	4	
유전체 두께 불량	3	9	12	0
유전체 벽전하 불량	9	9	18	0
PR 두께 불량	9	3	12	0
형광체 막 두께 품위 확보 불가	3	3	6	
Frit 불량	-1	1	2	

잠재불량원인	데이터명	속성	수집주기	담당자	수집가능성	주요특성
	PR 점도 측정	연속형	일		0	센서부착
PR 두께	Spindle RPM	연속형	일	구본철	0	센서부착
	PR 두께	연속형	일		Δ	센서부착
유전체 절연성	유전체 두께	연속형	일	장혜림	Δ	센서부착
MgO층	2차 전자 방출 계수	연속형	일	서혜민	0	자동측정
거H	격벽 두께	연속형	일	지대비	Δ	센서부착
격벽 -	격벽 높이	연속형	일	박진주	Δ	센서부착
Address 전극	Address 신호불량	이산형	시간	유대선	0	센서부착
모듈	상/하판 밀착도	연속형	일	이종하	X	자동측정

04

데이터정제 데이터 항목의 의미와 유형 확인

연속형: ■ / 이산형: □

공정	세부 공정	시작시각	소요시간	설비	<u>온</u> 5		· 배기압력	배기량
					시작 종료	최대		
Black	인쇄							
Diack	RTD		•					
	인쇄							
Ag	RTD		•					
	노광		•					
Due	현상		•					
Bus	소성		•					
유전	<u>년</u> 체							
Mç	g0	•	-					
	Dispenser		-					
형광체	건조(RTD)		-					
	소성							
합	착							
에C	기징							

데이터정제 결측치 및 이상치 처리

결축치 MFG PROCESS 파일기준

87개의 설명변수(Feature) 에서 총 5828개의 결측치 존재 1개의 설명변수당 평균적으로 66.98개의 결측치 발생

이상치 예시) PROCESS 파일의 PHOS_G_DRY_TEMP_GLASS_OUT 변수

이 4 데이터정제 데이터셋 구축

분석 데이터셋	파일명(Table명)	파일 내용	항목명
	MFG_MACHINE	설비 및 작업시각	BLACK, AG, BUS, 유전체, MGO, 형광체, 합착, PANEL_AGING 설비
Panel	MFG_TAT	공정별 공정시간	BLACK, AG, BUS, 유전체, MGO, 형광체, 합착, PANEL_AGING 소요시간
	MFG_PROCESS	공정별 작업상태	BLACK, AG, BUS, 유전체, 형광체의 온도, 압력, 배기량
	MFG_MACHINE	설비 및 작업시각	BLACK, AG, BUS, 유전체, MGO, 형광체, 합착, PANEL_AGING 설비
Lot	MFG_TAT	공정별 공정시간	BLACK, AG, BUS, 유전체, MGO, 형광체, 합착, PANEL_AGING 소요시간
	MFG_PROCESS	공정별 작업상태	BLACK, AG, BUS, 유전체, 형광체의 온도, 압력, 배기량

데이터셋	목적	분석방법	주요내용	비고
설비 및 공정조건		카이제곱 검정	설비와 불량여부 간의 검정	
Panel 단위	불량여부 간의 관련성 확인	ANOVA 분석	작업조건과 불량여부 간의 검정	이산형 목표변수 (명점/양품)
잠재인자 <u></u>		분류모델	로지스틱회귀분석, 의사결정나무 등의 모델링을 통한 주 요 변수 도출	
	설비 및 공정조건과	ANOVA분석	설비와 불량률 간의 검정	
Lot 단위	불량률 간의 관련성 확인 Lot 단위 상관분		작업조건과 불량률 간의 검정	연속형 목표변수 (불량률)
	불량률 예측	회귀분석	불량률 예측 및 회귀계수 확인	

데이터분석 유전체소성설비

공정의 설비에 의한 차이 분석

<카이제곱 검정 결과>

[] chi("MC_4DIELEC_1FIRE")

8

1호기 불량률: 0.10895522388059702

2호기 불량률: 0.1265625

3호기 불량률: 0.08623188405797101

MC_4DIELEC_1FIRE 의 카이제곱 검정

카이제곱 검정 통계량: 11.4303216299264

p값: 0.003295620493948868

자유도: 2

공정 호기가 3개입니다

- 유전체 소성 호기별 불량률 차이 有

<로지스틱 회귀분석결과>

- 3호기의 불량률이 현저히 낮은 것을 확인할 수 있음

<트리 3종 검정 결과>

의사결정나무	랜덤포레스트	그래디언트 부스팅
MC_6PHOS_4FIRE 1호기	MC_2AG_3EXPOSURE_1호기 0.043	15 MC_4DIELEC_1FIRE_2호기 0.075
MC 4DIELEC 1FIRE 2호기	MC_1BLACK_1PRINT_2호기 0.039	16 MC_4DIELEC_1FIRE_3호기 0.075
MC_6PHOS_2G_1DISPENSER 1호기	MC_6PHOS_3B_1DISPENSER_1호기 0.038	17 MC_5MGO_1호기 0.045
MC_6PHOS_3B_1DISPENSER 1호기	MC_4DIELEC_1FIRE_2호기 0.038	3 MC_1BLACK_2RTD_2호기 0.045
MC_6PHOS_2G_2DRY 2호기	MC_6PHOS_1R_2DRY_1호기 0.038	11 MC_3BUS_1DEVELOP_2호기 0.044
MC_7PASTE 2호기	MC_7PASTE_2호기 0.035	6 MC_2AG_2RTD_1호기 0.043
MC_5MGO 2호기	MC_6PHOS_4FIRE_3호기 0.034	19 MC_6PHOS_1R_1DISPENSER_1호기 0.039
		0 MC_1BLACK_1PRINT_1호기 0.038
		1 MC_1BLACK_1PRINT_2호기 0.037
		33 MC_7PASTE_2호기 0.035

- 유전체 소성 호기(특히 2호기)의 변수 중요도가 높은 것으로 확인됨
- 그래디언트 부스팅 결과에서는 3호기 또한 변수 중요도가 높음

데이터분석 유전체소성소요시간

공정의 작업시간 편차에 의한 차이

<로지스틱 회귀분석 및 트리 3종 검정 결과>

	Coef
TAT_4DIELEC_FIRE	0.169543
TAT_6PHOS_1R_1DISPENSER	0.131045
TAT_6PHOS_2G_1DISPENSER	0.108665
TAT_3BUS_2FIRE	0.090818
TAT_1BLACK_2RTD	0.073379
TAT_2AG_1PRINT	0.071379
TAT_8AGING	0.068493
TAT_5MGO	0.048757
TAT_6PHOS_1R_2DRY	0.043132

의사결정나무	랜덤포레스트	그래디언트 부스팅
TAT_4DIELEC_FIRE	TAT_4DIELEC_FIRE 0.167	7 TAT_4DIELEC_FIRE 0.351
TAT_3BUS_2FIRE	TAT_3BUS_2FIRE 0.098	6 TAT_3BUS_2FIRE 0.121
TAT_8AGING	TAT_8AGING 0.088	13 TAT_6PHOS_3B_1DISPENSER 0.105
TAT_6PHOS_4FIRE	TAT_6PHOS_4FIRE 0.085	14 TAT_6PHOS_4FIRE 0.063
TAT_6PHOS_3B_1DISPENSER	TAT_3BUS_1DEVELOP 0.072	5 TAT_3BUS_1DEVELOP 0.060
TAT_1BLACK_1PRINT	TAT_6PHOS_3B_1DISPENSER 0.068	0 TAT_1BLACK_1PRINT 0.054
TAT_2AG_1PRINT	TAT_6PHOS_1R_2DRY 0.067	2 TAT_2AG_1PRINT 0.049

- 로지스틱 회귀분석 및 트리 3종 검정 모두 유전체 소성 소요시간의 변수중요도가 가장 높음

<유전체 소성 소요시간 편차에 따른 불량률>

- 유전체 소성 소요시간 변수의 편차(각 변량 변수의 평균)를 이용하여 각 panel 별 작업시간의 편차(gap) 확인
- Histogram을 통해 gap이 5 이상인 경우 불량일 가능성이 높음

데이터분석 작업조건의 Vital Few

<로지스틱 회귀분석 및 트리 3종 검정 결과>

의사결정나무	랜덤포레스트	그래디언트 부스팅
AG_RTD_TEMP_GLASS_OUT	AG_RTD_TEMP_GLASS_OUT 0.293	15 AG_RTD_TEMP_GLASS_OUT 0.495
BUS_DEVELOP_TEMP_TANK2	BUS_DEVELOP_TEMP_TANK2 0.073	23 BUS_DEVELOP_TEMP_TANK2 0.180
BUS_DEVELOP_TEMP_TANK1	AG_EXPOSURE_TEMP_MASK 0.034	22 BUS_DEVELOP_TEMP_TANK1 0.041
DIELEC_FIRE_EXHAUST_HEAT5	DIELEC_FIRE_EXHAUST_HEAT5 0.029	41 DIELEC_FIRE_EXHAUST_HEAT5 0.037
BLACK_RTD_TEMP_GLASS_START	PHOS_R_DRY_TEMP_HOOD_MAX 0.029	47 PHOS_R_DRY_TEMP_WALL_MAX 0.029
PHOS_FIRE_EXHAUST_HEAT3	PHOS_FIRE_EXHAUST_HEAT2 0.025	68 PHOS_FIRE_EXHAUST_HEAT3 0.024
BLACK_RTD_TEMP_HOOD_MAX	_PHOS_R_DRY_TEMP_HOOD_START 0.023	18 AG_EXPOSURE_TEMP_MASK 0.020
BLACK_RTD_TEMP_WALL_START	_AG_RTD_TEMP_WALL_START 0.021	67 PHOS_FIRE_EXHAUST_HEAT2 0.014
BUS_DEVELOP_PRESS3	PHOS_FIRE_EXHAUST_HEAT3 0.021	8 BLACK_RTD_TEMP_HOOD_MAX 0.013
PHOS_R_DRY_TEMP_WALL_MAX	PHOS_R_DRY_TEMP_WALL_MAX 0.020	51 PHOS_R_DRY_TEMP_HOOD_START 0.011

<로지스틱 회귀분석 결과>

AG_RTD_TEMP_GLASS_OUT	2.915816
BUS_DEVELOP_TEMP_TANK2	1.153892
BLACK_RTD_TEMP_HOOD_MAX	0.496049
AG_RTD_TEMP_GLASS_START	0.405909
DIELEC_FIRE_TEMP_KEEP_CH01	0.390692
PHOS_FIRE_TEMP_ANEAL_CH04	0.369759
BLACK_RTD_TEMP_WALL_MAX	0.339479
BUS_DEVELOP_TEMP_OVEN1	0.330950
DIELEC_FIRE_TEMP_ANEAL_CH03	0.270872
BLACK_RTD_TEMP_GLASS_END	0.264749

Vital Few

BUS_DEVELOP_TEMP_TANK2(BUS 공정 현상 온도)
DIELEC_FIRE_EXHAUST5_HEAT (유전체 소성 배기량)
AG_RTD_TEMP_GLASS_OUT(AG RTD공정 배출 온도)

데이터분석 작업조건의 Vital Few

Vital Few 작업조건

1. BUS_DEVELOP_TEMP_TANK2

BUS_DEVELOP_TEMP_TANK2가 31.402보다 높으면 명점 발생 가능성 높음

2. DIELEC_FIRE_EXHAUST5_HEAT

- HEAT5가 3243보다 낮으면 명점 발생 가능성 높음
- HEAT5 -> HEAT4 -> HEAT7 순서대로 명점 발생 가능성 높음

3. AG_RTD_TEMP_GLASS_OUT

AG_RTD_TEMP_GLASS_OUT이 48.05보다 높으면 명점 발생 가능성 높음

질문& 피드백

1 Q. 명점 발생률이 적은 작업 조건이 부합한 호기 별 우선 순위로 최적 경로를 도출 하는 것이 옳은 방향인지 궁금합니다.

예시) RF Graphviz 활용하여 명점 발생률을 기준으로 각 공정별 최적/최악 작업조건을 도출하였음. 명점 발생률이 가장 적은 각각의 작업 조건과 부합한 호기 간 우선 순위를 선정함으로써 최적 경로를 설정하고자 함.

- 2 Q. 전(前) 공정의 진행 설비/작업조건에 따른 후(後) 공정의 설비/작업 조건별 불량률을 어떻게 예측할 수 있는지, 그에 대한 접근 방법이 궁금합니다.
- 3 Q. Graphviz를 해석할 때 특정 조건 이후 데이터가 명점으로 다량 분류된 경우, 그 조건을 명점 발생에 유의미한 조건으로 판단할 수 있는지 궁금합니다.

예시) 'DIELEC_FIRE_EXHAUST_HEAT5가 3243보다 낮으면 명점 발생 가능성이 높음' 으로 해석이 가능한지에 대한 여부

3-1 Q. 만약 위처럼 해석이 가능하다면, 분류되는 데이터 수가 적은 경우에도 적용 가능한지 궁금합니다.

예시) AG_RTD_TEMP_HOOD_START가 91.85보다 낮으면 명점 발생 가능성이 높음

4 Q. 관리도를 통한 개선안의 도출이 공정 관리 한계선 / 규격 한계선(공정능력) 두 가지 측면 모두 제시되어야 하는지 여쭈어 보고자 합니다.

예시) CL-> 개선안 -> 관리한계선 도출 후 공정상태 안정 모니터링 / LSL/ULS -> 도출된 불량 원인에 따라 소성 온도 규격 한계를 30~60'C 사이로 도출