## Übungsblatt 13 zu Modellkategorien

**Aufgabe 1.** Lokale Präsentierbarkeit der Kategorie der Kettenkomplexe Zeige, dass die Kategorie  $Ch_{>0}(R)$  über einem Ring R lokal präsentierbar ist.

## Aufgabe 2. Die Dold-Kan-Korrespondenz

- a) Sei  $V_{\bullet} \in \operatorname{Ch}_{\geq 0}(R)$ . Konstruiere einen simplizialen R-Modul  $\Gamma(V)$  mit  $\Gamma(V_{\bullet})_m = \bigoplus_{[m] \to [k]} V_k$  (direkte Summe über alle monotonen Surjektionen  $[m] \to [k]$ ).
- b) Sei X ein simplizialer R-Modul. Sei  $CX_{\bullet}$  der Kettenkomplex mit  $(CX)_m = X_m$  und Differential  $d = \sum_i (-1)^i X(\partial^i)$ . Sei  $DX_{\bullet}$  der Unterkomplex der degenerierten Ketten. Sei  $NX_{\bullet} = CX_{\bullet}/DX_{\bullet}$ . Was ist  $N(R\langle \Delta[n]\rangle)$ ? Dabei ist  $(R\langle \Delta[n]\rangle)_m$  der freie R-Modul mit Basis  $\Delta[n]_m$ .
- c) Zeige, dass die Kategorie der simplizialen R-Moduln vermöge  $\Gamma$  und N zur Kategorie der Kettenkomplexe von R-Moduln (in nichtnegativen Graden) äquivalent ist.
- d) Wie ist auf der Kategorie der simplizialen R-Moduln eine Modellstruktur zu definieren, damit diese Quillen-äquivalent zu  $Ch_{\geq 0}(R)$  wird?

## Aufgabe 3. Ringwechsel

Sei  $R \to S$  ein Ringhomomorphismus. Zeige, dass Skalarerweiterung und -einschränkung eine Quillen-Adjunktion bezüglich der projektiven Modellstrukturen bilden.

$$\begin{pmatrix} \operatorname{Ch}_{\geq 0}(R) & \longrightarrow & \operatorname{Ch}_{\geq 0}(S) \\ V_{\bullet} & \longmapsto & V_{\bullet} \otimes_{R} S \end{pmatrix} \to \begin{pmatrix} \operatorname{Ch}_{\geq 0}(S) & \longrightarrow & \operatorname{Ch}_{\geq 0}(R) \\ W_{\bullet} & \longmapsto & W_{\bullet} \end{pmatrix}$$

## Aufgabe 4. Die Ableitung des Tensorprodukts

Sei k ein Körper. Seien f und g reguläre Elemente von k[x,y]. Berechne das abgeleitete Tensorprodukt  $k[x,y]/(f) \otimes_{k[x,y]}^{\mathbb{L}} k[x,y]/(g)$ . Kannst du das Ergebnis geometrisch deuten?

