שיעור 10 NP שלמות

NPH -ו NPC המחלקות 10.1

NP-hard 10.1 הגדרה

 $A \leqslant_P B$ קיימת רדוקציה $A \in NP$ בעייה לכל קשה אם NP נקראת בעייה בעייה

NP-complete 10.2 הגדרה

בעייה B נקראת NP שלמה קשה אם

- $B \in NP$ (1
- $A\leqslant_p B$ קיימת רדוקציה $A\in NP$ לכל בעייה

משפט 10.1

P=NP אזי $B\in P$ אלמה וגם P=NP אזי אם B

הוכחה:

- $P \subseteq NP$ -ש- הוכחנו כבר ש
 - $.NP \subseteq P$ נוכיח כי

 $A \in P$ ממשפט הרדוקציה מתקיים, $B \in P$ ומכיוון ש- א קיימת בוקציה מתקיים ומכיוון ש- א קיימת בעייה

מסקנה 10.1

 $ar{A}\leqslant_Par{B}$ איז $A\leqslant_P B$ אם

משפט 2.01

 $A\leqslant_p C$ אזי $B\leqslant_p C$ אם $A\leqslant_p B$ אם

הוכחה:

משפט 10.3

. שלמה. אזי לכל היא $P \leqslant_p C$ אם אם אוי לכל בעייה לכל היא לכל אזי לכל אזי לכל בעייה P

 $B\leqslant_p C$ - שלמה, מכיוון ש- $A\leqslant_p B$ היא $A\leqslant_p B$ קיימת רדוקציה א קיימת פלל בעייה $A\in NP$ היא $A\leqslant_p C$ מכיוון ש- $A\leqslant_p C$ מהטרנזטיביות מתקיים $A\leqslant_p C$ לכל בעייה $A\in NP$ ולכן $A\leqslant_p C$ שלמה.

10.2 בעיית הספיקות

10.3 הגדרה

נוסחת היא נוסחה בוליאנית מעל n משתנים x_1,x_2,\ldots,x_n המכילה ϕ CNF היא נוסחה בוליאנית מעל ϕ כאשר כל פסוקית מכילה אוסף של ליטרלים ($x_iackslash x_i$) המחוברים ע"י בוליאני והפסוקיות מחוברים ע"י בוליאני.

לדוגמה

$$\phi = \begin{pmatrix} C_1 \\ x_1 \lor \bar{x}_2 \lor x_4 \lor \bar{x}_7 \end{pmatrix} \land \begin{pmatrix} C_2 \\ x_3 \lor x_5 \lor \bar{x}_8 \end{pmatrix} \land \cdots$$

הגדרה 10.4 נוסחת CNF ספיקה

ערך $T \setminus F$ כך ש- ϕ מקבלת ערך ע"י איז ע"י $T \setminus F$ כך ערך לוסחת נוסחת השמה למשתנים השמה למשתנים ליטרל אחד שקיבל ערך σ .

SAT בעיית 10.3

הגדרה 10.5 בעיית

<u>קלט:</u>

 $.\phi$ CNF נוסחת

<u>פלט:</u>

?האם ϕ ספיקה

 $SAT = \{\langle \phi
angle \mid$ ספיקה CNF נוסחת $\phi \}$

$SAT \in NP$ 10.4 משפט

 $SAT \in NP$.

SAT עבור V עבור אימות V

 $:(\left\langle \phi\right\rangle ,y)$ על קלט V

- x_1, x_2, \dots, x_n בודק האם y היא בודק (1
 - אם לא ⇒ דוחה.
 - ϕ בודק האם השמה זו מספקת את ϕ .

- אם כן \Rightarrow מקבל.
- אם לא ⇒ דוחה.

10.4 משפט קוק לוין

משפט 10.5 (1973)משפט קוק לוין

הבעיית SAT היא NP הבעיית

רעיון ההוכחה:

 $A \leqslant_p SAT$, $A \in NP$ לכל

 $:w\in\Sigma^*$ לכל

$$w \in A \iff f(w) \in SAT$$
,

 $.f(w) = \langle \phi_w \rangle$ כאן

מסקנה 10.2

$$P = NP \Leftrightarrow SAT \in P$$
.

kSAT גרסאות של 10.5

ישנן לכל היותר k ליטרלים בכל פסוקית:

 $.1SAT \in P \bullet$

 $\phi = x_1 \wedge \bar{x}_2 \wedge x_3 \wedge \cdots$

 $.2SAT \in P \bullet$

$$\phi = (x_1 \vee \bar{x}_2) \wedge (x_2 \vee x_4) \wedge \cdots$$

. שלמה - NP היא 3SAT

3SAT בעיית 10.6

הגדרה 10.6 בעיית 3-SAT

<u>קלט:</u>

 $.\phi$ 3-CNF נוסחת

פלט:

האם ϕ ספיקה?

 $3SAT = \{\langle \phi \rangle \mid$ ספיקה 3-CNF נוסחת $\phi \}$

משפט NP היא 3-SAT 10.6 משפט

. שלמה NP שלמה 3-SAT

הוכחה:

יש לקיים את השני תנאים הבאים:

 $.3SAT \in NP$ (1

ניתן לבנות אלגוריתם אימות עבור $SAT \in NP$ דומה לאלגוריתם האימות עבור SAT שבנינו בהוכחה של המשפט קוק-לוין 10.5 למעלה.

קשה ע"י רדוקציה NP היא 3SAT (2

$$SAT \leqslant_{p} 3SAT$$
.

ואז בגלל ש- $SAT\in NP$ היא אז לפי משפט קוק-לוין 10.5) ומכיוון ש- $SAT\in SAT$ אז לפי משפט אז בגלל ש- $SAT\in SAT$ היא אז לפי משפט האסימפטוטית 10.2 גם $SAT\in SAT$ שלמה.

 $SAT \leqslant_p 3SAT$ קיום פונקצית הרדוקציה

.3SAT ל- SAT ל- כעת נבנה את פונקציה הרדוקציה מ-

. בזמן פולינומיאלי באורה CNF ראשית נציין כי כל נוסחה בוליאנית ϕ ניתנת לרשום בצורה

נוכיח (3SAT הקלט של הקלט (הקלט של אינומיאלי נוסחת (בנה בזמן בולינומיאלי של אינוס של הקלט של אינוסחת (הקלט של אינוסחת שמתקיים שמתקיים

$$\langle \phi' \rangle \in 3SAT \iff \langle \phi \rangle \in SAT$$
.

לכל פסוקיות כך שכל פסוקית ב- C' ליטרלים, ניצור אוסף C' ב- ϕ של פסוקיות כך שכל פסוקית ב- C' תכיל פסוקית ב- C' המכילה יותר מ- C הבאה של C:

$$C = x_1 \vee x_2 \vee x_3 \vee \bar{x}_4 \vee \bar{x}_5$$

 $:\phi'$ -באה ב- C' הפסוקית ניצור את הפסוקית

$$C' = (x_1 \lor x_2 \lor y_1) \land (\bar{y}_1 \lor x_3 \lor y_2) \land (\bar{y}_2 \lor \bar{x}_4 \lor \bar{x}_5) .$$

באופן כללי, לכל פסוקית שבו כל המכיל k>3 המכיל המכיל $C=a_1\vee a_2\vee\ldots\vee a_k$ של פסוקיות שבו כל באופן כללי, לכל פסוקית ע"י הוספת א מכילה k>3 משתנים השתנים המכילה 3 ליטרלים, ע"י הוספת החספת א משתנים באופן מכילה 3 ליטרלים, ע"י הוספת א מכילה 3 ליטרלים, ע"י

$$C' = (a_1 \lor a_2 \lor y_1) \land (\bar{y}_1 \lor a_3 \lor y_2) \land \ldots \land (\bar{y}_{i-2} \lor a_i \lor y_{i-1}) \land \ldots \land (\bar{y}_{k-3} \lor a_{k-1} \lor a_k) .$$

נניח ל- הוא הליטרל הראשון ששווה ל- $C=(a_1\vee a_2\vee\ldots\vee a_k)$ בפרט, עבור כל פסוקית

- $j,1\leqslant j\leqslant i-2$ לכל לכל $y_j=1$ נשים •
- $i-1\leqslant j\leqslant k-3$ לכל $y_j=0$ ונשים •

סיימנו להגדיר את הפונקציה הרדוקציה.

כעת נוכיח כי הפונקציה הזאת מקיימת את התנאי ההכרחי

$$\langle \phi' \rangle \in 3SAT \quad \Leftrightarrow \quad \langle \phi \rangle \in SAT .$$

:⇐ כיוון

 ϕ את המספקת השמה השמה Xותהי ל $\langle \phi \rangle \in SAT$ נניח כי נניח השמה ל $\langle \phi \rangle$ השמה השמה מחימת השמה נוכיח שקיימת השמה את ל

- X -בכל פסוקית של ϕ , עבור הליטרלים a_1,a_2,\ldots,a_k ניתן אותם ערכים כמו ב-
- ערך שקיבל אחד ליטרל ליטרל פחות ר $C=(a_1\vee a_2\vee\ldots\vee a_k)$ בכל פסוקית את מספקת אX -ש מכיוון ש- מכיוון מיטרל פחות בכל פחות אז על פי ההגדרה של פונקצית הרודקציה: .1
 - $1 \le j \le i-2$ לכל $y_i = 1$, $y_i = 1$, *
 - $i-1\leqslant j\leqslant k-3$ לכל $y_j=0$ ונשים *

באופן הזה אנחנו ניצור אוסף C^\prime של פבוקיות עם המבנה הבא:

$$\begin{pmatrix}
a_1 \lor a_2 \lor y_1
\end{pmatrix} \land \begin{pmatrix}
0 & 1 \\
\bar{y}_1 \lor a_2 \lor y_2
\end{pmatrix} \land \dots \land \begin{pmatrix}
0 & 1 \\
\bar{y}_{i-3} \lor a_{i-1} \lor y_{i-2}
\end{pmatrix} \land \begin{pmatrix}
0 & 1 & 0 \\
\bar{y}_{i-2} \lor a_i \lor y_{i-1}
\end{pmatrix} \land \begin{pmatrix}
1 \\
\bar{y}_{i-1} \lor a_{i+1} \lor y_i
\end{pmatrix}$$

$$\land \dots \dots \land \begin{pmatrix}
1 \\
\bar{y}_{k-3} \lor a_{k-1} \lor a_k
\end{pmatrix}$$

 $\langle \phi' \rangle \in 3SAT$ ולכן השמה זו מספקת את ולכן

:⇒ כיוון

 ϕ' את המספקת השמה השמה או נניח כי לניח ל $\langle \phi' \rangle \in 3SAT$ נניח כי נוכיח שקיימת השמה או המספקת השמה לוכיח שקיימת השמה או המספקת את

 $C=(a_1\vee a_2\vee\ldots\vee a_k)$ נסתכל על פסוקית נסתכל על השמה X השמה שלא קיימת השמה אז בהכרח נניח בשלילה שלא היימת השמה א

$$a_1 = a_2 = \ldots = a_k = 0$$

 $1 \leqslant j \leqslant k-3$ לכל $y_j=1$, לפי זה, באוסף פסוקיות שנקבל על פי ההגדרה של פונקצית הרדוקציה, $y_1=y_2=\ldots=y_{k-3}=0$ כלומר מתקיים $y_1=y_2=\ldots=y_{k-3}=0$

$$C' = \begin{pmatrix} 0 & 0 & 1 \\ a_1 \lor a_2 \lor y_1 \end{pmatrix} \land \begin{pmatrix} 0 & 0 & 1 \\ \bar{y}_1 \lor a_3 \lor y_2 \end{pmatrix} \land \dots \land \begin{pmatrix} 0 & 0 & 1 \\ \bar{y}_{i-2} \lor a_i \lor y_{i-1} \end{pmatrix} \land \dots \land \begin{pmatrix} 0 & 0 & 0 \\ \bar{y}_{k-3} \lor a_{k-1} \lor a_k \end{pmatrix}$$

... אינה מסופקת. $\left(\bar{y}_{k-3} \lor a_{k-1} \lor a_k \right)$ אינה מסופקת. C' אינה מסופקת, בסתירה לכך ש- X'

 $.\langle\phi
angle\in SAT$ ולכן

 $.SAT \leqslant 3SAT$ הוכחנו שקיימת הרדוקציה

כעת נוכיח כי הרדוקציה הזו היא זמן פולינומיאלית.

סיבוכיות

החישוב של הפונקציה מתבצע בזמן פולינומיאלי. ספציפי, אם האורך של הנוסחה ϕ הוא $n=|\phi|$ אז הרודקציה החישוב של הפונקציה מתבצע בזמן פולינומיאלי. ספציפי, אם האורך של הנוסחה O(n).

*ווכחת משפט קוק לוין

משפט 10.7 משפט קוק לוין

הבעיית SAT היא

הוכחה:

חשיפה מלאה: ההוכחה הבאה מתבססת על ההוכחה שנתונה בהספר של Sipser.

על פי הגדרה 10.2 יש להוכיח ששני התנאים הבאים מתקיימים:

 $.SAT \in NP$:1 תנאי

 $A \in NP$ לכל $A \leqslant_p SAT$:2 תנאי

 $SAT \in NP$ באשית נוכיח כי

כדי להוכיח כי SAT שייכת ל- NP, נוכיח כי אישור המורכב מהשמה מספקת עבור נוסחת קלט ϕ ניתן לאימות בזמן פולינומיאלי.

. נניח כי n ליטרלים. ϕ כלומר ב- ϕ מופיעים n ליטרלים.

היותר. משתני בוליאניים לכל היותר. n

- אלגוריתם האימות מחליף כל משתנה בנוסחה בערך המתאים לו על פי ההשמה. $O\left(n\right).$
 - אחר כך האלגוריתם מחשב את ערכו של הביטוי:
 - . נניח כי הנוסחה ϕ מכילה k דורות של סוגריים בתוך סוגריים.
 - * החישוב מתחיל עם החישובים של הביטויים בתוך הסוגריים הכי בפנים.
- יש n סוגריים הכי-בפנים לכל היותר, וכל אחד של הסוגריים האלה מכיל n ליטרלים לכל היותר. א יש סוגריים הזה הוא $O\left(n^2\right)$.
 - $O\left(kn^2
 ight)$ איש א דורות של סוגריים לכן החישוב כולו א דורות *
 - בסה"כ הסיבוכיות זמן הריצה היא

$$O(n) + O(kn^2) = O(n^2)$$

לפיכך אישור של השמה כלשהי מתבצע בזמן פולינומיאלי.

. אם ערכו של הביטוי הוא 1 הנוסחה ספיקה.

 $A\leqslant_p SAT$ כי עכשיו נוכיח כי $SAT\in NP$ הוכחנו

תהי N מ"ט אי-דטרמיניסטית זמן-פולינומיאלית שמכריעה שפה A כלשהי בזמן $O\left(n^k\right)$ עבור k טבעי. התרשים למטה מראה טבלה של קונפיגורציות של N. ברשימה הבאה רשומות ההגדרות של הטבלה:

- N של אחד של מסלול שורה מראה את תוכן הסרט בשלב מסוים של \bullet
 - בשורה הראשונה יש את הקונפיגורציה ההתחלתית.
 - n אנחנו מניחים כי האורך של המילה, כלומר אורך הקלט הוא w_1, \ldots, w_n מסמנים את התווים של הקלט.

- N בתא הראשון בכל שורה יש M, ואחר כך רשומה הקונפיגורציה של בסוף הקונפיגורציה בכל שורה יש .
- אחרי ה- # בקצה הימין של המילה, בכל תא יש תו רווח עד הסוף של השורה.
 - התווי רווח לפני המשבצת הראשונה של הקונפיגורציה לא מופיעים בטבלה.
 - . תאים של כל שורה הוא בדיוק n^k תאים \bullet
 - בטבלה יש בדיוק n^k שורות לסיבה הבאה: •
 - .המכונת טיורינג מבצעת n^k צעדים לכל היותר -
 - . בכל צעד המ"ט עוברת לקונפיגורציה חדשה.
 - בכל שורה רשומה קונפיגורציה.
 - . בסה"כ יש n^k שורות עבור ה- n^k קונפיגוריות שונות האפשריות.

#	q_0	w_1	w_2	 w_n	_		#
#	q_0						#
#	q_0						#
#							#

אנחנו אומרים כי טבלה שלהי היא $\,$ טבלה המקבלת אם באחת השורות יש קונפיגורציה אשר N מקבלת אותה.

SAT -כלשהי A משפה f משפה מון-פולינומיאלית הרדוקציה את הרדוקציה בעזרת הטבלה נתאר את

הפונקצית הרדוקציה

מקבלת קלט w ומחזירה נוסחה $\phi=f(w)$, אשר לפי ההגדרה של פונקצית הרדוקציה, עומדת בתנאי הבא:

$$w \in A \qquad \Leftrightarrow \qquad f(w) \in SAT \ .$$

נגדיר N הסרט של הסרט המצבים ו- Γ האלפיבית של

$$C = Q \cup \Gamma \cup \{\#\} \ .$$

 $\cdot C$ איבר כלשהו של s

 $1\leqslant i,j\leqslant n^k$ לכל $x_{i,j,s}$ לכל משתנה בוליאני נגדיר הקונפיגורציות הקונפיגורציות של הטבלת העבור כל מוגדר על פי התנאי מוגדר על פי התנאי

$$x_{iis} = 1$$

אז a או הטבלה מופיע התו ה. $s\in C$ אם בתא ה- ij אל הטבלה מופיע התו

$$x_{2,5,a} = 1$$

בעוד

$$x_{2.5,b} = 0$$
.

 ϕ במובן הזה, התכנים של כל התאים של הטבלה מסומנים על ידי המשתנים של

N עכשיו נבנה נוסחה ϕ על סמך התנאי שהשמה מספקת של ϕ תהיה מתאימה לטבלה המקבלת של גדיר

$$\phi = \phi_{\text{cell}} \wedge \phi_{\text{start}} \wedge \phi_{\text{move}} \wedge \phi_{\text{acc}} . \tag{10.1}$$

. אחד אחד אחד למטה ו- $\phi_{
m move}$, $\phi_{
m start}$, $\phi_{
m cell}$ אחד אחד למטה אנחנו נסביר את כל הנוסחאות

$\phi_{ m cell}$ הנוסחה ullet

כפי שמצויין לעיל, אם המשתנה $x_{i,j,s}$ "דולק", כלומר אם $x_{i,j,s}$, זאת אומרת שיש סימן $x_{i,j,s}$ בתא ה-ij הטבלה. אנחנו רוצים להבטיח שהשמה כלשהי בנוסחה אשר מתאימה לקונפיגורציה של הטבלה, מדליקה בדיוק משתנה אחד לכל תא של הטבלה. למטרה זו נגדיר $\phi_{\rm cell}$ כך:

$$\phi_{\text{cell}} = \bigwedge_{1 \leqslant i, j \leqslant n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \land \left(\bigwedge_{\substack{s,t \in C \\ s \neq t}} \left(\overline{x}_{i,j,s} \lor \overline{x}_{i,j,t} \right) \right) \right]$$
 (10.2)

- . דולק. משתנה אחד הטבלה, שלכל תא שלכל מבטיח מבטיח מבטים, מבטיח מרובעים מרובעים, $x_{i,j,s}$ מבטיח אחד איבר הראשון בסוגריים מרובעים. \ast
- . האיבר השני לכל היותר אחד לכל מבטיח שעבור אחד אחד לכל היותר האיבר אחד לכל היותר אחד א מבטיח $\bigwedge_{\substack{s,t\in C\\s\neq t}} (\overline{x}_{i,j,s} \vee \overline{x}_{i,j,t})$

לפיכך כל השמה מספקת עומדת בתנאי שיהיה בדיוק סימן אחד, s, בכל תא של הטבלה.

$\phi_{ extsf{start}}$ הנוסחה ullet

w נוסחה שבטיחה ששורה הראשונה של הטבלה היא הקונפיגורציה ההתחלתית של

$$\phi_{\text{start}} = x_{1,1,\#} \wedge x_{1,2,q_0} \wedge x_{1,3,w_1} \wedge x_{1,4,w_2} \\ \wedge \dots \wedge \\ x_{1,n+2,w_n} \wedge x_{1,n+3,_} \wedge \dots \wedge x_{1,n^k-1,_} \wedge x_{1,n^k,\#}$$
(10.3)

$\phi_{ m acc}$ הנוסחה ullet

. הנוסחה אשר המ"ט אותה שקיימת טבלה קונפיגורציה אשר המ"ט $\phi_{\rm acc}$ הנוסחה הנוסחה שקיימת

 $x_{i,j,q_{
m acc}}$ מבטיחה שהסימן מופיע בתא אחד של הטבלה דרך התנאי שלפחות אחד המשתנים בפרט בפרט דולק:

$$\phi_{\text{acc}} = \bigvee_{1 \le i, j \le n^k} x_{i,j,q_{\text{acc}}} \tag{10.4}$$

$\phi_{ m move}$ הנוסחה •

."שורה חוקית" מבטיחה שכל שורה של הטבלה היא שורה חוקית הנוסחה $\phi_{
m move}$

כלומר בכל שורה, הקונפיגורציה היא כך שאפשר להגיע אליה על ידי תזוזה חוקית של N מהקונפיגורציה כלומר בכל שורה, הקונפיגורציה האחת למעלה.

N תזוזה חוקית בין כל שתי קונפיגורציות נקבעת על ידי הפונקצית המעברים של המ"ט

בשפה פורמלית, אם c_i הקונפיגורציה של שורה i, ו- c_{i+1} הקונפיגורציה של השורה i+1 אחת למטה, אז בשפה פורמלית, אם $1\leqslant i\leqslant n^k-1$ מבטיחה כי לכל ϕ_{move}

$$c_i \vdash_N c_{i+1}$$
.

במונחי הטבלה, אפשר להגדיר תזוזה חוקית בין כל שתי שורות על ידי תת-טבלה מסדר 2 imes 3 שמכילה נתאים מתאימים של שתי שורות שכנות.

מכאן ואילך אנחנו נקרא לתת-טבלה כזאת "חלון".

למטה יש דוגמאות של חלונות חוקיים:

החלונות האלה למטה הם דוגמאות לחלונות לא חוקיים:

a	b	а	а	q_1	b	b	q_1	b
a	а	а	q_1	a	а	q_2	b	q_2

הנוסחה קובעת שכל חלון של הטבלה חוקי. בפרט, כל חלון מכיל 6 תאים. לכן קובעת שהתכנים הנוסחה ϕ_{move} קובעת של ה-6 תאים של כל חלון מהווה חלון חוקי. ז"א

$$\phi_{ ext{move}} = \bigwedge_{\substack{1 \leqslant i \leqslant n^k \ 1 \leqslant j \leqslant n^k}} ($$
חלון ה- i,j חוקי (10.5)

אנחנו מציבים בטקסט " חלון ה- i,j חוקי " את הנוסחה הבאה, כאשר a_1,\dots,a_6 מסמנים את התכנים של ה-6 תאים של כל חלון:

$$\bigvee_{\substack{\{a_1,a_2,a_3,a_4,a_5,a_6\}\\ \text{volume}}} (x_{i,j-1,a_1} \wedge x_{i,j,a_2} \wedge x_{i,j+1,a_3} \wedge x_{i+1,j-1,a_4} \wedge x_{i+1,j,a_5} \wedge x_{i+1,j+1,a_6})$$
 (10.6)

עד כה הוכחנו שקיים רדוקציה מכל שפה $A \in NP$ ל-. SAT ל-. כעת נוכיח כי הרדוקציה זו חישובית בזמן-פולינומיאלי.

. תאים n^{2k} מכילה אי
מ $n^k \times n^k$ מסדר מסדר אים של הטבלה אים הטבלה איז מסדר חיא

 ϕ_{move} , ϕ_{acc} , ϕ_{start} , ϕ_{cell} ונחשב את הסיבוכיות של כל הנוסחאות

 $\phi_{
m cell}$ הנוסחה ullet

הנוסחה (10.2) של מכילה מכילה מכילה מכילה $\phi_{\rm cell}$ של (10.2) הנוסחה $\phi_{\rm cell} = O\left(n^{2k}\right) \ .$

 $\phi_{ ext{start}}$ הנוסחה ullet

הנוסחה לכן ליטרלים. לכן מכילה בדיוק $\phi_{\rm start}$ של (10.3) הנוסחה $\phi_{\rm start} = O\left(n^k\right) \; .$

 $\phi_{
m acc}$ הנוסחה ullet

הנוסחה ליטרלים. לכן מכילה בדיוק $\phi_{\rm acc}$ של (10.4) הנוסחה $\phi_{\rm acc} = O\left(n^k\right) \; .$

 $\phi_{
m move}$ הנוסחה ullet

ליטרלים. לכן 6 מכילה n^{2k} מכילה $\phi_{
m move}$ של (10.6,10.5) הנוסחה $\phi_{
m move} = O\left(n^{2k}\right) \ .$

לכן בסה"כ

 $\phi = O(n^{2k}) + O(n^k) + O(n^k) + O(n^{2k}) = O(n^{2k})$.

.SAT -ל $A \in NP$ שפה מכל מכל פולינומיאלי הישובית חישוביה רדוקציה לפיכך לפיכ