WEINAN WANG

1622 Waterford Dr., Edison, NJ 08817

Tel: 732-789-5103

E-mail: ww329@rutgers.edu

Blog: https://weinanwang-ru.github.io/

EDUCATION

Rutgers, The State University of New Jersey, Ph.D. Candidate

01/2021 - Present

Electrical and Computer Engineering

G.P.A.: 4.0/4.0

Thesis Topic: Artificial Intelligence for Health Monitoring via Non-Invasive Sensors

Core courses: Supervised Machine Learning, Deep Learning, Machine Vision, Detection and Estimation

Theory, Convex Optimization

Rutgers, The State University of New Jersey, M.Sc.

09/2018 - 01/2021

Electrical and Computer Engineering

G.P.A.: 4.0/4.0

Thesis: Data-driven Methodologies for Cuff-less Blood Pressure Estimation

Core courses: Digital Signal and Filters, System Analysis, Data Structure and Algorithms, Software

Engineering

University of Electronic Science and Technology of China, B.Sc.

09/2015 - 06/2018

Mechanical Design and Automation

G.P.A.: 3.88/4.0

Core courses: Signals and Systems, Theoretical Mechanics, Mechanics of Materials, CAD/CAE Technology

EXPERIENCE

Research Assistant 09/2019 – Present

Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey **Supervisor:** Prof. Laleh Najafizadeh

End-to-end Deep Learning-Based Cuff-less Blood Pressure Estimation

- Developed novel automatic and fully data-driven blood pressure estimation methods requiring only photoplethysmogram (PPG) signal as input.
- Developed methods to enable transfer learning of pre-trained deep convolutional networks for blood pressure estimation.
- Developed methods for converting 1-D physiological signals into images.
- Developed blood pressure estimation models via long-short-term-memory (LSTM) and various deep convolutional networks (CNN)

• Pulse Wave Velocity Model-Based Cuff-less Blood Pressure Estimation

- Developed robust and physiology-supported blood pressure estimation methods requiring electrocardiogram (ECG) and photoplethysmogram (PPG) as input.
- Developed and released GUI and API, named *PulseLab*, as the first comprehensive toolbox that enables users to optimize the blood-pressure estimation models.
 GitHub Page: https://github.com/pulselabteam/pulselab
- Studied and utilized linear and non-linear regression, multiple linear regression, ridge regression, correlation analysis, Bland-Altman analysis, and signal quality index (SQI) assessment.

Teaching Assistant

09/2021 - 12/2021

Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey

Courses: Analog & Digital Electronics

PEER-REVIEWED JOURNAL & CONFERENCE PUBLICATIONS

- W. Wang, P. Mohseni, K. L. Kilgore and L. Najafizadeh, "Cuff-less blood pressure estimation from photoplethysmography via visibility graph and transfer learning," *IEEE Journal of Biomedical and Health Informatics*, vol. 26, no. 5, pp. 2075-2085, 2021.
- W. Wang, F. Marefat, P. Mohseni, K. Kilgore and L. Najafizadeh, "The effects of filtering photoplethysmogram signal on pulse arrival time-systolic blood pressure correlation," to appear in proceedings of 44th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Glasgow, Scotland, UK, Jul. 11–15, 2022.
- W. Wang, C. A. Delianides, D. B. Green, P. Mohseni, K. L. Kilgore, and L. Najafizadeh, "Systolic blood pressure estimation via photoplethysmography features-an animal study," *Optical Tomography and Spectroscopy*, 2022, Optica Publishing Group, p. JM3A. 6.
- W. Wang, P. Mohseni, K. Kilgore, and L. Najafizadeh, "Cuff-less blood pressure estimation via small convolutional neural networks," 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, pp. 1031-1034.
- W. Wang, P. Mohseni, K. Kilgore, and L. Najafizadeh, "PulseLab: An integrated and expandable toolbox for pulse wave velocity-based blood pressure estimation," 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2021, pp. 5654-5657.
- W. Wang, L. Zhu, F. Marefat, P. Mohseni, K. Kilgore, and L. Najafizadeh, "Photoplethysmography-based blood pressure estimation using deep learning," 54th Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 945-949.

PROFESSIONAL SERVICES

- Conference Reviewer:

IEEE Biomedical Circuits and Systems Conference (BIOCAS)

Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC)

2021 & 2022

COURSE PROJECTS

- Convex Optimization: Experimental Comparisons of Convergence Robustness Between First Order Adaptive Learning Rate Optimizers

 Spring 2021
- Introduction to Deep Learning: Implementation of AdaBoost on LeNet-5
 Spring 2021
- Data Structure and Algorithms: Solving Printed Circuit Board (PCB) Routing Problem Using Lee's and Hadlock's Maze Routing Algorithm

 Spring 2019

AWARDS

Rutgers ECE Student Development Award

May 2022

People's Scholarship of China (Undergraduate, Annual, top 10%)

December 2017 & 2018

National Scholarship of China (Undergraduate, Annual, top 5%)

November 2016

TECHNICAL SKILLS

- MATLAB® (script & GUI orientated)
- Python (PyTorch, TensorFlow, scikit-learn, NumPy)
- C++
- AutoCAD[®]