Conversions Between Cartesian and B-Plane States

Noble Hatten

June 10, 2020

Abstract

This document describes conversions between Cartesian and B-Plane state variables. Transformations in both directions and associated Jacobians are given.

Contents

1	State Representations	3
	1.1 Cartesian State	3
	1.2 B-Plane State	4
2	Cartesian State to B-Plane State Transformation	4
3	Cartesian State to B-Plane State Transformation Jacobian	5
	3.1 Derivatives of Position Vector	5
	3.2 Derivatives of Velocity Vector	6
	3.3 Derivatives of Right Ascension of Velocity at Infinity	6
	3.4 Derivatives of Declination of Velocity at Infinity	6
	3.5 Derivatives of Velocity at Infinity Magnitude	6
	3.6 Derivatives of Periapsis Radius	6
	3.7 Derivatives of B-Plane Clock Angle	6
	3.8 Derivatives of B_T	7
	3.9 Derivatives of B_R	7
	3.10 Derivatives of B Vector Magnitude	7
	3.11 Derivatives of B Vector \dots	7
	3.12 Derivatives of B Unit Vector	8
	3.13 Derivatives of R Unit Vector	8
	3.14 Derivatives of T Unit Vector	8
	3.15 Derivatives of S Unit Vector	9
	3.16 Derivatives of Angular Momentum Vector	9
	3.17 Derivatives of P Vector	9
		10
		10

4	B-P	Plane State to Cartesian State Transformation	11
5	B-P	Plane State to Cartesian State Transformation Jacobian	12
	5.1		12
	5.2	9	12
	5.3		13
	5.4		13
	5.5		13
	5.6		13
	5.7	Derivatives of Angular Momentum Magnitude	13
	5.8	Derivatives of Angular Momentum Unit Vector	13
	5.9	Derivatives of S Unit Vector	13
	5.10	Derivatives of B Vector	14
	5.11	Derivatives of T Unit Vector	14
	5.12	Derivatives of R Unit Vector	14
	5.13	Derivatives of Eccentricity Unit Vector	15
	5.14	Derivatives of Incoming True Anomaly at Infinity	15
	5.15	Derivatives of Position Vector	15
		5.15.1 Derivatives of Position Vector with Respect to Angular	
			16
		5.15.2 Derivatives of Position Vector with Respect to Eccentric-	
		·	16
		1	16
	5.16	v	16
		5.16.1 Derivatives of Velocity Vector with Respect to Angular	
		Momentum Vector	17
		5.16.2 Derivatives of Velocity Vector with Respect to Eccentric-	
		ity Vector	17
		5.16.3 Derivatives of Velocity Vector with Respect to True Anomaly	17
N	om	enclature	
_ '			
α		Right ascension of hyperbolic asymptote	
δ		Declination of hyperbolic asymptote	
μ		Gravitational parameter of flyby body	
ν		True anomaly	
ν_{∞}		True anomaly at infinity	
θ		B-Plane clock angle	
$\hat{m{R}}$		B-Plane R unit vector	
$\hat{m{S}}$		Unit vector in direction of incoming asymptote	

 \hat{T} B-Plane T unit vector

 ϕ B-Plane reference vector

B B-Plane B vector

e Eccentricity vector

h Angular momentum vector

I Identity matrix

 $\boldsymbol{i},~\boldsymbol{j},~\boldsymbol{k}~$ Unit vectors

P Shorthand for $h \times e$

r Position vector

 $oldsymbol{v}$ Velocity vector

 $oldsymbol{v}_{\infty,in}$ Incoming velocity vector at infinity

 $\boldsymbol{x}; \, \hat{\boldsymbol{x}}; \, x$ Arbitrary vector; its unit vector; its magnitude

 \boldsymbol{x}_c Cartesian state vector

b Magnitude of \boldsymbol{B} vector (sometimes called Δ)

 $B_R \qquad \boldsymbol{B}^T \hat{\boldsymbol{R}}$

 $B_T \qquad \boldsymbol{B}^T \hat{\boldsymbol{T}}$

 r_p Periapsis radius

 v_{∞} Magnitude of velocity at infinity

x, y, z As subscripts: represent components of 3D vector

1 State Representations

1.1 Cartesian State

The Cartesian state consists of the position and velocity vector of the spacecraft in an assumed inertial reference frame whose origin is the spacecraft's flyby body:

$$x_c = \begin{pmatrix} r \\ v \end{pmatrix}_{6 \times 1}$$
 (1)

1.2 B-Plane State

The B-Plane state is given by the vector

$$\boldsymbol{x}_{b} = \begin{pmatrix} v_{\infty} \\ \alpha \\ \delta \\ b \\ \theta \\ \nu \end{pmatrix}_{6 \times 1} . \tag{2}$$

Full definition of the B-Plane state requires setting a reference vector (frequently some inertial k). In this document, the reference vector is denoted ϕ and left undefined further.

2 Cartesian State to B-Plane State Transformation

First, define standard convenience variables:

$$\boldsymbol{e} = \frac{1}{\mu} \left[\left(v^2 - \frac{\mu}{r} \right) \boldsymbol{r} - \left(\boldsymbol{r}^T \boldsymbol{v} \right) \boldsymbol{v} \right]$$
 (3)

$$\boldsymbol{h} = \boldsymbol{r} \times \boldsymbol{v} \tag{4}$$

$$P = h \times e. \tag{5}$$

Then, $\hat{\boldsymbol{S}}$, in the direction of the incoming asymptote (i.e., $\boldsymbol{v}_{\infty,in}$) is given by

$$\hat{S} = \frac{1}{e}\hat{e} + \sqrt{1 - \frac{1}{e^2}}\hat{P}.$$
 (6)

Additional variables are defined by

$$\hat{T} = \frac{\hat{S} \times \phi}{||\hat{S} \times \phi||} \tag{7}$$

$$\hat{\boldsymbol{R}} = \frac{\hat{\boldsymbol{S}} \times \boldsymbol{T}}{||\hat{\boldsymbol{S}} \times \boldsymbol{T}||} \tag{8}$$

$$\hat{\boldsymbol{B}} = \frac{\hat{\boldsymbol{S}} \times \boldsymbol{h}}{||\hat{\boldsymbol{S}} \times \boldsymbol{h}||} \tag{9}$$

$$= b \left[\sqrt{1 - \frac{1}{e^2}} \hat{\boldsymbol{e}} - \frac{1}{e} \hat{\boldsymbol{P}} \right] \tag{10}$$

$$b = \frac{h^2}{\mu \sqrt{e^2 - 1}}. (11)$$

Then, the B-Plane dot products are

$$B_T = \boldsymbol{B}^T \hat{\boldsymbol{T}} \tag{12}$$

$$B_R = \mathbf{B}^T \hat{\mathbf{R}}.\tag{13}$$

The B-Plane clock angle is given by

$$\theta = \operatorname{atan2}(B_R, B_T). \tag{14}$$

The magnitude of the velocity at infinity is

$$v_{\infty} = \sqrt{v^2 - \frac{2\mu}{r}}. (15)$$

The radius of periapsis is

$$r_p = \frac{\mu \left(e - 1\right)}{v_\infty^2}.\tag{16}$$

The right ascension and declination of the incoming asymptote are given by

$$\alpha = \operatorname{atan2}\left(S_y, S_x\right) \tag{17}$$

$$\delta = \operatorname{asin}\left(\frac{S_z}{S}\right) \tag{18}$$

$$= a\sin\left(S_z\right). \tag{19}$$

True anomaly is given by the angle between e and r:

$$\nu = \operatorname{atan2}\left(||\boldsymbol{e} \times \boldsymbol{r}||, \boldsymbol{e}^T \boldsymbol{r}\right), \tag{20}$$

with the quadrant check:

if
$$\mathbf{r}^T \mathbf{v} < 0$$
: $\nu \leftarrow 2\pi - \nu$. (21)

3 Cartesian State to B-Plane State Transformation Jacobian

3.1 Derivatives of Position Vector

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}_c} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$
 (22)

3.2 Derivatives of Velocity Vector

$$\frac{\partial \mathbf{v}}{\partial \mathbf{x}_c} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
 (23)

3.3 Derivatives of Right Ascension of Velocity at Infinity

$$\frac{\partial \alpha}{\partial \hat{\mathbf{S}}} = \begin{bmatrix} -\frac{\hat{S}_y}{\hat{S}_x^2 + \hat{S}_y^2} & \frac{\hat{S}_x}{\hat{S}_x^2 + \hat{S}_y^2} & 0 \end{bmatrix}$$
 (24)

$$\frac{\partial \alpha}{\partial \mathbf{x}_c} = \frac{\partial \alpha}{\partial \hat{\mathbf{S}}} \frac{\partial \hat{\mathbf{S}}}{\partial \mathbf{x}_c} \tag{25}$$

3.4 Derivatives of Declination of Velocity at Infinity

$$\frac{\partial \delta}{\partial \hat{\mathbf{S}}} = \begin{bmatrix} 0 & 0 & \frac{1}{\sqrt{1 - \hat{S}_z^2}} \end{bmatrix} \tag{26}$$

$$\frac{\partial \delta}{\partial \mathbf{x}_c} = \frac{\partial \delta}{\partial \hat{\mathbf{S}}} \frac{\partial \hat{\mathbf{S}}}{\partial \mathbf{x}_c} \tag{27}$$

3.5 Derivatives of Velocity at Infinity Magnitude

$$\frac{\partial v_{\infty}}{\partial \boldsymbol{x}_{c}} = \frac{1}{2} \left(v^{2} - \frac{2\mu}{r} \right)^{-\frac{1}{2}} \left(2\boldsymbol{v}^{T} \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}_{c}} + \frac{2\mu}{r^{3}} \boldsymbol{r}^{T} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{x}_{c}} \right)$$
(28)

3.6 Derivatives of Periapsis Radius

$$\frac{\partial r_p}{\partial \boldsymbol{x}_c} = \mu \left[\hat{\boldsymbol{e}}^T \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_c} v_{\infty}^{-2} - 2 \left(e - 1 \right) v_{\infty}^{-3} \frac{\partial v_{\infty}}{\partial \boldsymbol{x}_c} \right]$$
 (29)

3.7 Derivatives of B-Plane Clock Angle

$$\frac{\partial \theta}{\partial \boldsymbol{x}_c} = \frac{B_T}{B_R^2 + B_T^2} \frac{\partial B_R}{\partial \boldsymbol{x}_c} - \frac{B_R}{B_R^2 + B_T^2} \frac{\partial B_T}{\partial \boldsymbol{x}_c}$$
(30)

Derivatives of B_T 3.8

$$\frac{\partial B_T}{\partial \boldsymbol{x}_c} = \hat{\boldsymbol{T}}^T \frac{\partial \boldsymbol{B}}{\partial \boldsymbol{x}_c} + \boldsymbol{B}^T \frac{\partial \hat{\boldsymbol{T}}}{\partial \boldsymbol{x}_c}$$
(31)

Derivatives of B_R 3.9

$$\frac{\partial B_R}{\partial \boldsymbol{x}_c} = \hat{\boldsymbol{R}}^T \frac{\partial \boldsymbol{B}}{\partial \boldsymbol{x}_c} + \boldsymbol{B}^T \frac{\partial \hat{\boldsymbol{R}}}{\partial \boldsymbol{x}_c}$$
(32)

Derivatives of B Vector Magnitude

$$\boldsymbol{\xi}_1 \triangleq -\left(e^2 - 1\right)^{-\frac{3}{2}} \boldsymbol{e}^T \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_a} \tag{33}$$

$$\boldsymbol{\xi}_2 \triangleq 2\boldsymbol{h}^T \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{x}} \tag{34}$$

$$\boldsymbol{\xi}_{1} \triangleq -\left(e^{2}-1\right)^{-\frac{3}{2}} \boldsymbol{e}^{T} \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_{c}}$$

$$\boldsymbol{\xi}_{2} \triangleq 2\boldsymbol{h}^{T} \frac{\partial \boldsymbol{h}}{\partial \boldsymbol{x}_{c}}$$

$$\frac{\partial b}{\partial \boldsymbol{x}_{c}} = \frac{1}{\mu} \left[h^{2} \boldsymbol{\xi}_{1} + \left(e^{2}-1\right)^{-\frac{1}{2}} \boldsymbol{\xi}_{2} \right]$$

$$(33)$$

Derivatives of B Vector 3.11

$$\frac{\partial \boldsymbol{B}}{\partial \boldsymbol{x}_c} = \hat{\boldsymbol{B}} \frac{\partial b}{\partial \boldsymbol{x}_c} + b \frac{\partial \hat{\boldsymbol{B}}}{\partial \boldsymbol{x}_c}$$
 (36)

3.12 Derivatives of B Unit Vector

$$\frac{\partial \hat{\boldsymbol{P}}}{\partial \boldsymbol{x}_c} = \frac{1}{P} \left(\boldsymbol{I} - \frac{1}{P^2} \boldsymbol{P} \boldsymbol{P}^T \right) \frac{\partial \boldsymbol{P}}{\partial \boldsymbol{x}_c}$$
(37)

$$\frac{\partial \hat{\boldsymbol{e}}}{\partial \boldsymbol{x}_c} = \frac{1}{e} \left(\boldsymbol{I} - \frac{1}{e^2} \boldsymbol{e} \boldsymbol{e}^T \right) \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_c}$$
(38)

$$\zeta_1 \triangleq \sqrt{1 - \frac{1}{e^2}} \tag{39}$$

$$\frac{\partial \zeta_1}{\partial \boldsymbol{x}_c} = \frac{1}{e^3} \left(1 - \frac{1}{e^2} \right)^{-\frac{1}{2}} \hat{\boldsymbol{e}}^T \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_c} \tag{40}$$

$$\zeta_2 \triangleq -\frac{1}{e^2} \hat{e}^T \frac{\partial e}{\partial x_c} \tag{41}$$

$$\boldsymbol{\xi}_1 \triangleq \zeta_1 \frac{\partial \hat{\boldsymbol{e}}}{\partial \boldsymbol{x}_c} \tag{42}$$

$$\boldsymbol{\xi}_2 \triangleq \hat{\boldsymbol{e}} \frac{\partial \zeta_1}{\partial \boldsymbol{x}_c} \tag{43}$$

$$\boldsymbol{\xi}_{3} \triangleq -\frac{1}{e} \frac{\partial \hat{\boldsymbol{P}}}{\partial \boldsymbol{x}_{c}} \tag{44}$$

$$\boldsymbol{\xi}_4 \triangleq -\hat{\boldsymbol{P}}\boldsymbol{\zeta}_2 \tag{45}$$

$$\frac{\partial \hat{\boldsymbol{B}}}{\partial \boldsymbol{x}_c} = \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2 + \boldsymbol{\xi}_3 + \boldsymbol{\xi}_4 \tag{46}$$

3.13 Derivatives of R Unit Vector

$$\mathbf{R} \triangleq \hat{\mathbf{S}} \times \mathbf{T} \tag{47}$$

$$\frac{\partial \mathbf{R}}{\partial \mathbf{x}_c} = -\left\{\mathbf{T}\right\}^{\times} \frac{\partial \hat{\mathbf{S}}}{\partial \mathbf{x}_c} + \left\{\hat{\mathbf{S}}\right\}^{\times} \frac{\partial \mathbf{T}}{\partial \mathbf{x}_c}$$
(48)

$$\frac{\partial \hat{\mathbf{R}}}{\partial \mathbf{x}_c} = \frac{1}{R} \left(\mathbf{I} - \frac{1}{R^2} \mathbf{R} \mathbf{R}^T \right) \frac{\partial \mathbf{R}}{\partial \mathbf{x}_c}$$
(49)

3.14 Derivatives of T Unit Vector

$$T \triangleq \hat{\mathbf{S}} \times \boldsymbol{\phi} \tag{50}$$

$$\frac{\partial \mathbf{T}}{\partial \mathbf{x}_c} = -\{\phi\}^{\times} \frac{\partial \hat{\mathbf{S}}}{\partial \mathbf{x}_c} + \{\hat{\mathbf{S}}\}^{\times} \frac{\partial \phi}{\partial \mathbf{x}_c}$$
 (51)

$$\frac{\partial \hat{\boldsymbol{T}}}{\partial \boldsymbol{x}_c} = \frac{1}{T} \left(\boldsymbol{I} - \frac{1}{T^2} \boldsymbol{T} \boldsymbol{T}^T \right) \frac{\partial \boldsymbol{T}}{\partial \boldsymbol{x}_c}$$
 (52)

3.15 Derivatives of S Unit Vector

$$\frac{\partial \hat{\mathbf{P}}}{\partial \mathbf{x}_c} = \frac{1}{P} \left(\mathbf{I} - \frac{1}{P^2} \mathbf{P} \mathbf{P}^T \right) \frac{\partial \mathbf{P}}{\partial \mathbf{x}_c}$$
 (53)

$$\zeta_1 \triangleq \sqrt{1 - \frac{1}{e^2}} \tag{54}$$

$$\frac{\partial \zeta_1}{\partial \boldsymbol{x}_c} = \frac{1}{e^3} \left(1 - \frac{1}{e^2} \right)^{-\frac{1}{2}} \hat{\boldsymbol{e}}^T \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_c}$$
 (55)

$$\boldsymbol{\xi}_1 \triangleq -\frac{1}{e^2} \hat{\boldsymbol{e}} \hat{\boldsymbol{e}}^T \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_c} \tag{56}$$

$$\boldsymbol{\xi}_2 \triangleq \frac{1}{e} \frac{\partial \hat{\boldsymbol{e}}}{\partial \boldsymbol{x}_c} \tag{57}$$

$$\boldsymbol{\xi}_3 \triangleq \hat{\boldsymbol{P}} \frac{\partial \zeta_1}{\partial \boldsymbol{x}_c} \tag{58}$$

$$\boldsymbol{\xi}_4 \triangleq \zeta_1 \frac{\partial \hat{\boldsymbol{P}}}{\partial \boldsymbol{x}_c} \tag{59}$$

$$\frac{\partial \hat{\mathbf{S}}}{\partial \mathbf{x}_c} = \boldsymbol{\xi}_1 + \boldsymbol{\xi}_2 + \boldsymbol{\xi}_3 + \boldsymbol{\xi}_4 \tag{60}$$

3.16 Derivatives of Angular Momentum Vector

$$\frac{\partial \boldsymbol{h}}{\partial \boldsymbol{x}_{c}} = \begin{bmatrix} -\left\{\boldsymbol{v}\right\}^{\times} & \left\{\boldsymbol{r}\right\}^{\times} \end{bmatrix} \tag{61}$$

3.17 Derivatives of P Vector

$$\frac{\partial \mathbf{P}}{\partial \mathbf{x}_c} = -\left\{\mathbf{e}\right\}^{\times} \frac{\partial \mathbf{h}}{\partial \mathbf{x}_c} + \left\{\mathbf{h}\right\}^{\times} \frac{\partial \mathbf{e}}{\partial \mathbf{x}_c}$$
 (62)

3.18 **Derivatives of Eccentricity Vector**

$$\zeta_1 \triangleq r^T \frac{\partial v}{\partial x_c} + v^T \frac{\partial r}{\partial x_c}$$
(63)

$$\zeta_{1} \triangleq \mathbf{r}^{T} \frac{\partial \mathbf{v}}{\partial \mathbf{x}_{c}} + \mathbf{v}^{T} \frac{\partial \mathbf{r}}{\partial \mathbf{x}_{c}}$$

$$\frac{\partial r}{\partial \mathbf{r}} = \frac{\mathbf{r}^{T}}{r}$$

$$(63)$$

$$\frac{\partial v}{\partial \boldsymbol{v}} = \frac{\boldsymbol{v}^T}{v} \tag{65}$$

$$\boldsymbol{\xi}_{1} \triangleq \boldsymbol{r} \left(2v \frac{\partial v}{\partial \boldsymbol{v}} \frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}_{c}} + \frac{\mu}{r^{2}} \frac{\partial r}{\partial \boldsymbol{r}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{x}_{c}} \right) + \left(v^{2} - \frac{\mu}{r} \right) \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{x}_{c}}$$
(66)

$$\boldsymbol{\xi}_2 \triangleq \boldsymbol{v}\boldsymbol{\zeta}_1 + \left(\boldsymbol{r}^T\boldsymbol{v}\right)\frac{\partial \boldsymbol{v}}{\partial \boldsymbol{x}_c} \tag{67}$$

$$\frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_c} = \frac{1}{\mu} \left(\boldsymbol{\xi}_1 - \boldsymbol{\xi}_2 \right) \tag{68}$$

3.19**Derivatives of True Anomaly**

The derivatives of true anomaly with respect to the Cartesian state are obtained by differentiating Eq. (20).

$$\frac{\partial \left(\boldsymbol{e} \times \boldsymbol{r}\right)}{\partial \boldsymbol{e}} = -\left\{\boldsymbol{r}\right\}^{\times} \tag{69}$$

$$\frac{\partial \left(\boldsymbol{e} \times \boldsymbol{r}\right)}{\partial \boldsymbol{r}} = \left\{\boldsymbol{e}\right\}^{\times} \tag{70}$$

$$\frac{\partial \left(\boldsymbol{e} \times \boldsymbol{r}\right)}{\partial \boldsymbol{x}_{c}} = \frac{\partial \left(\boldsymbol{e} \times \boldsymbol{r}\right)}{\partial \boldsymbol{e}} \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_{c}} + \frac{\partial \left(\boldsymbol{e} \times \boldsymbol{r}\right)}{\partial \boldsymbol{r}} \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{x}_{c}} \tag{71}$$

$$\xi_1 \triangleq ||\boldsymbol{e} \times \boldsymbol{r}|| \tag{72}$$

$$\xi_2 \triangleq \boldsymbol{e}^T \boldsymbol{r} \tag{73}$$

$$\frac{\partial \xi_1}{\partial \boldsymbol{x}_c} = \frac{1}{\xi_1} \left(\boldsymbol{e} \times \boldsymbol{r} \right)^T \frac{\partial \left(\boldsymbol{e} \times \boldsymbol{r} \right)}{\partial \boldsymbol{x}_c}$$
 (74)

$$\frac{\partial \xi_2}{\partial \boldsymbol{x}_c} = \boldsymbol{e}^T \frac{\partial \boldsymbol{r}}{\partial \boldsymbol{x}_c} + \boldsymbol{r}^T \frac{\partial \boldsymbol{e}}{\partial \boldsymbol{x}_c}$$
 (75)

$$\frac{\partial \nu}{\partial \xi_1} = \frac{\xi_2}{\xi_1^2 + \xi_2^2} \tag{76}$$

$$\frac{\partial \nu}{\partial \xi_2} = -\frac{\xi_1}{\xi_1^2 + \xi_2^2} \tag{77}$$

$$\frac{\partial \nu}{\partial x_c} = \frac{\partial \nu}{\partial \xi_1} \frac{\partial \xi_1}{\partial x_c} + \frac{\partial \nu}{\partial \xi_2} \frac{\partial \xi_2}{\partial x_c}$$
 (78)

Like with the calculation of true anomaly itself, a quadrant check is required at the end of the derivatives calculations:

if
$$\mathbf{r}^T \mathbf{v} < 0$$
: $\frac{\partial \nu}{\partial \mathbf{x}_c} \leftarrow -\frac{\partial \nu}{\partial \mathbf{x}_c}$ (79)

B-Plane State to Cartesian State Transformation

The transformation from B-Plane state to Cartesian state is accomplished by expressing the Cartesian state as a function of e, h, and ν :

$$\mathbf{r} = \frac{h^2}{\mu (1 + e \cos \nu)} \left[\hat{\mathbf{e}} \cos \nu + \hat{\mathbf{P}} \sin \nu \right]$$

$$\mathbf{v} = -\frac{\mu}{h} \left[\hat{\mathbf{e}} \sin \nu - (e + \cos \nu) \, \hat{\mathbf{P}} \right].$$
(80)

$$\mathbf{v} = -\frac{\mu}{\hbar} \left[\hat{\mathbf{e}} \sin \nu - (e + \cos \nu) \, \hat{\mathbf{P}} \right]. \tag{81}$$

True anomaly ν is known because it is a member of \boldsymbol{x}_b . The rest of the elements needed to calculate the Cartesian state are given by:

$$e = \sqrt{1 + \frac{v_{\infty}^4 b^2}{\mu^2}} \tag{82}$$

$$h = v_{\infty}b \tag{83}$$

$$\mathbf{v}_{\infty} = v_{\infty} \begin{bmatrix} \cos \delta \cos \alpha \\ \cos \delta \sin \alpha \\ \sin \delta \end{bmatrix} \tag{84}$$

$$B_R = \mathbf{B}^T \hat{\mathbf{R}} = b \sin \theta \tag{85}$$

$$B_T = \mathbf{B}^T \hat{\mathbf{T}} = b \cos \theta \tag{86}$$

$$\hat{\boldsymbol{S}} = \hat{\boldsymbol{v}}_{\infty} \tag{87}$$

$$\hat{\boldsymbol{T}} = \frac{\hat{\boldsymbol{S}} \times \boldsymbol{\phi}}{||\hat{\boldsymbol{S}} \times \boldsymbol{\phi}||} \tag{88}$$

$$\hat{\boldsymbol{R}} = \frac{\hat{\boldsymbol{S}} \times \hat{\boldsymbol{T}}}{||\hat{\boldsymbol{S}} \times \hat{\boldsymbol{T}}||} \tag{89}$$

$$\boldsymbol{B} = B_R \hat{\boldsymbol{R}} + B_T \hat{\boldsymbol{T}} \tag{90}$$

$$\hat{\boldsymbol{h}} = \frac{\boldsymbol{B} \times \hat{\boldsymbol{S}}}{||\boldsymbol{B} \times \hat{\boldsymbol{S}}||} \tag{91}$$

$$\boldsymbol{h} = h\hat{\boldsymbol{h}} \tag{92}$$

$$\nu_{\infty,in} = -\operatorname{acos}\left(-\frac{1}{e}\right) \tag{93}$$

$$\hat{e} = \frac{\hat{\mathbf{S}}\cos(\pi - \nu_{\infty,in}) - \hat{\mathbf{B}}\sin(\pi - \nu_{\infty,in})}{\|\hat{\mathbf{S}}\cos(\pi - \nu_{\infty,in}) - \hat{\mathbf{B}}\sin(\pi - \nu_{\infty,in})\|}$$
(94)

$$e = e\hat{e} \tag{95}$$

5 B-Plane State to Cartesian State Transformation Jacobian

5.1 Derivatives of Magnitude of B Vector

$$\frac{\partial b}{\partial x_b} = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix} \tag{96}$$

5.2 Derivatives of B-Plane Clock Angle

$$\frac{\partial \theta}{\partial \boldsymbol{x}_b} = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \tag{97}$$

5.3 Derivatives of True Anomaly

With x_b defined as in Eq. (2), the derivatives of true anomaly are

$$\frac{\partial \nu}{\partial \boldsymbol{x}_b} = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \tag{98}$$

5.4 Derivatives of Eccentricity Vector

$$\frac{\partial e}{\partial x_b} = \hat{e} \frac{\partial e}{\partial x_b} + e \frac{\partial \hat{e}}{\partial x_b} \tag{99}$$

5.5 Derivatives of Eccentricity Magnitude

$$\frac{\partial e}{\partial \mathbf{x}_b} = \frac{1}{2} \left(1 + \frac{v_\infty^4 b^2}{\mu^2} \right)^{-\frac{1}{2}} \left[\frac{4v_\infty^3 b^2}{\mu^2} \quad 0 \quad 0 \quad \frac{2v_\infty^4 b}{\mu^2} \quad 0 \quad 0 \right]$$
(100)

5.6 Derivatives of Angular Momentum Vector

$$\frac{\partial \mathbf{h}}{\partial \mathbf{x}_b} = \hat{\mathbf{h}} \frac{\partial h}{\partial \mathbf{x}_b} + h \frac{\partial \hat{\mathbf{h}}}{\partial \mathbf{x}_b}$$
 (101)

5.7 Derivatives of Angular Momentum Magnitude

$$\frac{\partial h}{\partial \boldsymbol{x}_b} = \begin{bmatrix} b & 0 & 0 & v_\infty & 0 & 0 \end{bmatrix} \tag{102}$$

5.8 Derivatives of Angular Momentum Unit Vector

$$\gamma \triangleq \boldsymbol{B} \times \hat{\boldsymbol{S}} \tag{103}$$

$$\frac{\partial \hat{\boldsymbol{h}}}{\partial \boldsymbol{x}_b} = \left(-\frac{1}{\gamma^3} \boldsymbol{\gamma} \boldsymbol{\gamma}^T + \frac{1}{\gamma} \boldsymbol{I} \right) \left(-\left\{ \hat{\boldsymbol{S}} \right\}^{\times} \frac{\partial \boldsymbol{B}}{\partial \boldsymbol{x}_b} + \left\{ \boldsymbol{B} \right\}^{\times} \frac{\partial \hat{\boldsymbol{S}}}{\partial \boldsymbol{x}_b} \right)$$
(104)

5.9 Derivatives of S Unit Vector

$$\frac{\partial \hat{\boldsymbol{S}}}{\partial \boldsymbol{x}_b} = \begin{bmatrix} 0 & -\cos\delta\sin\alpha & -\sin\delta\cos\alpha & 0 & 0 & 0\\ 0 & \cos\delta\cos\alpha & -\sin\delta\sin\alpha & 0 & 0 & 0\\ 0 & 0 & \cos\delta & 0 & 0 & 0 \end{bmatrix}$$
(105)

5.10 Derivatives of B Vector

$$\frac{\partial \sin \nu}{\partial x_b} = \begin{bmatrix} 0 & 0 & 0 & \cos \theta & 0 \end{bmatrix} \tag{106}$$

$$\frac{\partial \cos \nu}{\partial x_b} = \begin{bmatrix} 0 & 0 & 0 & 0 & -\sin \theta & 0 \end{bmatrix} \tag{107}$$

$$\frac{\partial \boldsymbol{B}}{\partial \boldsymbol{x}_{b}} = \sin \theta \hat{\boldsymbol{R}} \frac{\partial b}{\partial \boldsymbol{x}_{b}} + b \hat{\boldsymbol{R}} \frac{\partial \sin \theta}{\partial \boldsymbol{x}_{b}} + b \sin \theta \frac{\partial \hat{\boldsymbol{R}}}{\partial \boldsymbol{x}_{b}} + \cos \theta \hat{\boldsymbol{T}} \frac{\partial b}{\partial \boldsymbol{x}_{b}} + b \hat{\boldsymbol{T}} \frac{\partial \cos \theta}{\partial \boldsymbol{x}_{b}} + b \cos \theta \frac{\partial \hat{\boldsymbol{T}}}{\partial \boldsymbol{x}_{b}}$$

$$(108)$$

5.11 Derivatives of T Unit Vector

The derivatives of \hat{T} cannot be fully defined until the reference vector ϕ is chosen. In this section, the derivatives are left in terms of the derivatives of ϕ .

$$T \triangleq \hat{S} \times \phi \tag{109}$$

$$\frac{\partial \mathbf{T}}{\partial \mathbf{x}_{b}} = -\left\{\phi\right\}^{\times} \frac{\partial \hat{\mathbf{S}}}{\partial \mathbf{x}_{b}} + \left\{\hat{\mathbf{S}}\right\}^{\times} \frac{\partial \phi}{\partial \mathbf{x}_{b}}$$
(110)

$$\boldsymbol{\xi}_2 \triangleq -\frac{1}{T^3} \left(\boldsymbol{T}^T \frac{\partial \boldsymbol{T}}{\partial \boldsymbol{x}_b} \right)^T \tag{111}$$

$$\frac{\partial \hat{T}}{\partial x_b} = \frac{1}{T} \frac{\partial T}{\partial x_b} + T \xi_2^T$$
(112)

5.12 Derivatives of R Unit Vector

$$\boldsymbol{R} \triangleq \hat{\boldsymbol{S}} \times \hat{\boldsymbol{T}} \tag{113}$$

$$\frac{\partial \mathbf{R}}{\partial \mathbf{x}_b} = -\left\{\hat{\mathbf{T}}\right\}^{\times} \frac{\partial \hat{\mathbf{S}}}{\partial \mathbf{x}_b} + \left\{\hat{\mathbf{S}}\right\}^{\times} \frac{\partial \hat{\mathbf{T}}}{\partial \mathbf{x}_b}$$
(114)

$$\boldsymbol{\xi}_2 \triangleq -\frac{1}{R^3} \left(\boldsymbol{R}^T \frac{\partial \boldsymbol{R}}{\partial \boldsymbol{x}_b} \right)^T \tag{115}$$

$$\frac{\partial \hat{R}}{\partial x_b} = \frac{1}{R} \frac{\partial R}{\partial x_b} + R \xi_2^T$$
(116)

5.13 Derivatives of Eccentricity Unit Vector

$$\beta \triangleq \pi - \nu_{\infty,in} \tag{117}$$

$$c_{\beta} \triangleq \cos \beta \tag{118}$$

$$s_{\beta} \triangleq \sin \beta \tag{119}$$

$$\frac{\partial c_{\beta}}{\partial \mathbf{x}_{b}} = s_{\beta} \frac{\partial \nu_{\infty,in}}{\partial \mathbf{x}_{b}} \tag{120}$$

$$\frac{\partial s_{\beta}}{\partial \boldsymbol{x}_{b}} = -c_{\beta} \frac{\partial \nu_{\infty,in}}{\partial \boldsymbol{x}_{b}} \tag{121}$$

$$\boldsymbol{\xi}_1 \triangleq c_{\beta} \hat{\boldsymbol{S}} - s_{\beta} \hat{\boldsymbol{B}} \tag{122}$$

$$\frac{\partial \hat{\boldsymbol{B}}}{\partial \boldsymbol{x}_b} = \frac{\partial \hat{\boldsymbol{B}}}{\partial \boldsymbol{B}} \frac{\partial \boldsymbol{B}}{\partial \boldsymbol{x}_b} \tag{123}$$

$$\frac{\partial \hat{\mathbf{B}}}{\partial \mathbf{B}} = \frac{1}{B} \left(\mathbf{I} - \frac{1}{B^2} \mathbf{B} \mathbf{B}^T \right)$$
 (124)

$$\frac{\partial \boldsymbol{\xi}_{1}}{\partial \boldsymbol{x}_{b}} = \frac{\partial \hat{\boldsymbol{S}}}{\partial \boldsymbol{x}_{b}} c_{\beta} + \hat{\boldsymbol{S}} \frac{\partial c_{\beta}}{\partial \boldsymbol{x}_{b}} - \frac{\partial \hat{\boldsymbol{B}}}{\partial \boldsymbol{x}_{b}} s_{\beta} - \hat{\boldsymbol{B}} \frac{\partial s_{\beta}}{\partial \boldsymbol{x}_{b}}$$
(125)

$$\boldsymbol{\xi}_2 \triangleq -\frac{1}{\xi_1^3} \boldsymbol{x}_1^T \frac{\partial \boldsymbol{\xi}_1}{\partial \boldsymbol{x}_b} \tag{126}$$

$$\frac{\partial \hat{e}}{\partial x_b} = \frac{1}{\xi_1} \frac{\partial \xi_1}{\partial x_b} + \xi_1 \xi_2 \tag{127}$$

5.14 Derivatives of Incoming True Anomaly at Infinity

$$\frac{\partial \nu_{\infty,in}}{\partial \mathbf{x}_b} = \frac{1}{e\sqrt{e^2 - 1}} \frac{\partial e}{\partial \mathbf{x}_b} \tag{128}$$

5.15 Derivatives of Position Vector

The final derivatives of the position vector utilize the derivatives of $\boldsymbol{h},\ \boldsymbol{e},$ and ν :

$$\frac{\partial \mathbf{r}}{\partial \mathbf{x}_b} = \frac{\partial \mathbf{r}}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{x}_b} + \frac{\partial \mathbf{r}}{\partial \mathbf{e}} \frac{\partial \mathbf{e}}{\partial \mathbf{x}_b} + \frac{\partial \mathbf{r}}{\partial \nu} \frac{\partial \nu}{\partial \mathbf{x}_b}$$
(129)

5.15.1 Derivatives of Position Vector with Respect to Angular Momentum Vector

$$\xi_1 \triangleq 2\cos\nu\hat{\boldsymbol{e}}\boldsymbol{h}^T \tag{130}$$

$$\xi_2 \triangleq \frac{\sin \nu}{P} \left[2\mathbf{P}\mathbf{h}^T + h^2 \left(-\mathbf{I} + \frac{1}{P^2} \mathbf{P} \mathbf{P}^T \right) \left\{ \mathbf{e} \right\}^{\times} \right]$$
 (131)

$$\frac{\partial \mathbf{r}}{\partial \mathbf{h}} = \frac{1}{\mu \left(1 + e \cos \nu\right)} \left(\xi_1 + \xi_2\right) \tag{132}$$

5.15.2 Derivatives of Position Vector with Respect to Eccentricity Vector

$$\xi_1 \triangleq \left[\hat{\boldsymbol{e}} \cos \nu + \hat{\boldsymbol{P}} \sin \nu \right] \left[\hat{\boldsymbol{e}}^T \frac{-\cos \nu}{\left(1 + e \cos \nu \right)^2} \right]$$
 (133)

$$\xi_2 \triangleq \frac{1}{1 + e \cos \nu} \left[\frac{\cos \nu}{e} \left(\mathbf{I} - \frac{1}{e^2} e e^T \right) + \frac{\sin \nu}{P} \left(\mathbf{I} - \frac{1}{P^2} \mathbf{P} \mathbf{P}^T \right) \left\{ \mathbf{h} \right\}^{\times} \right]$$
(134)

$$\frac{\partial \mathbf{r}}{\partial \mathbf{e}} = \frac{h^2}{\mu} \left(\xi_1 + \xi_2 \right) \tag{135}$$

5.15.3 Derivatives of Position Vector with Respect to True Anomaly

$$\xi_1 \triangleq \frac{e \sin \nu}{\left(1 + e \cos \nu\right)^2} \left(\hat{\boldsymbol{e}} \cos \nu + \hat{\boldsymbol{P}} \sin \nu\right) \tag{136}$$

$$\xi_2 \triangleq \frac{1}{1 + e\cos\nu} \left(-\hat{e}\sin\nu + \hat{P}\cos\nu \right) \tag{137}$$

$$\frac{\partial \mathbf{r}}{\partial \nu} = \frac{h^2}{\mu} \left(\xi_1 + \xi_2 \right) \tag{138}$$

5.16 Derivatives of Velocity Vector

The final derivatives of the velocity vector utilize the derivatives of $\boldsymbol{h},\,\boldsymbol{e},$ and ν :

$$\frac{\partial \mathbf{v}}{\partial \mathbf{x}_b} = \frac{\partial \mathbf{v}}{\partial \mathbf{h}} \frac{\partial \mathbf{h}}{\partial \mathbf{x}_b} + \frac{\partial \mathbf{v}}{\partial \mathbf{e}} \frac{\partial \mathbf{e}}{\partial \mathbf{x}_b} + \frac{\partial \mathbf{v}}{\partial \nu} \frac{\partial \nu}{\partial \mathbf{x}_b}$$
(139)

5.16.1 Derivatives of Velocity Vector with Respect to Angular Momentum Vector

$$\xi_1 \triangleq -\frac{1}{h^3} \left[\hat{\boldsymbol{e}} \sin \nu - (\boldsymbol{e} + \cos \nu) \, \hat{\boldsymbol{P}} \right] \boldsymbol{h}^T$$
 (140)

$$\xi_2 \triangleq -\frac{e + \cos \nu}{hP} \left[-\left\{ \boldsymbol{e} \right\}^{\times} + \frac{1}{P^2} \boldsymbol{P} \boldsymbol{P}^T \left\{ \boldsymbol{e} \right\}^{\times} \right]$$
 (141)

$$\frac{\partial \mathbf{v}}{\partial \mathbf{h}} = -\mu \left(\xi_1 + \xi_2 \right) \tag{142}$$

5.16.2 Derivatives of Velocity Vector with Respect to Eccentricity Vector

$$\xi_1 \triangleq \frac{\sin \nu}{e} \left(\mathbf{I} - \frac{1}{e^2} \mathbf{e} \mathbf{e}^T \right) \tag{143}$$

$$\xi_{21} \triangleq \hat{\boldsymbol{P}} \hat{\boldsymbol{e}}^T \tag{144}$$

$$\xi_{22} \triangleq (e + \cos \nu) \left(\frac{1}{P}\right) \left[\left\{ \boldsymbol{h} \right\}^{\times} - \frac{1}{P^2} \boldsymbol{P} \boldsymbol{P}^T \left\{ \boldsymbol{h} \right\}^{\times} \right]$$
 (145)

$$\xi_2 \triangleq -(\xi_{21} + \xi_{22}) \tag{146}$$

$$\frac{\partial \mathbf{v}}{\partial \mathbf{e}} = -\frac{\mu}{h} \left(\xi_1 + \xi_2 \right) \tag{147}$$

5.16.3 Derivatives of Velocity Vector with Respect to True Anomaly

$$\xi_1 \triangleq \cos \nu \hat{e} \tag{148}$$

$$\xi_2 \triangleq \sin \nu \hat{\boldsymbol{P}} \tag{149}$$

$$\frac{\partial \mathbf{v}}{\partial \nu} = -\frac{\mu}{h} \left(\xi_1 + \xi_2 \right) \tag{150}$$