In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [3]:

```
sample = pd.read_csv('worldometer_data.csv')
sample
```

Out[3]:

s	TotalDeaths	NewDeaths	TotalRecovered	NewRecovered	ActiveCases	Serious,Critical	Cases/1
1	162804.0	NaN	2576668.0	NaN	2292707.0	18296.0	15194
٧	98644.0	NaN	2047660.0	NaN	771258.0	8318.0	13716
٧	41638.0	NaN	1377384.0	NaN	606387.0	8944.0	146€
٧	14606.0	NaN	676357.0	NaN	180931.0	2300.0	5974
٧	9604.0	NaN	387316.0	NaN	141264.0	539.0	9063

1	1.0	NaN	10.0	NaN	2.0	NaN	2604
1	NaN	NaN	7.0	NaN	6.0	NaN	49{
1	NaN	NaN	13.0	NaN	0.0	NaN	3726
٧	NaN	NaN	12.0	NaN	0.0	NaN	14981
٧	1.0	NaN	8.0	NaN	1.0	NaN	17
4	1						•

```
In [4]:
```

```
sample.isnull()
```

Out[4]:

ntry/Region	Continent	Population	TotalCases	NewCases	TotalDeaths	NewDeaths	TotalRecover
False	False	False	False	True	False	True	Fal
False	False	False	False	True	False	True	Fal
False	False	False	False	True	False	True	Fal
False	False	False	False	True	False	True	Fal
False	False	False	False	True	False	True	Fal
False	False	False	False	True	False	True	Fal
False	False	False	False	True	True	True	Fal
False	False	False	False	True	True	True	Fal
False	False	False	False	True	True	True	Fal
False	False	False	False	True	False	True	Fal

⋆ 16 columns

←

In [5]:

```
sample.isnull().any(axis=1)
```

Out[5]:

- 0 True
- 1 True
- 2 True
- 3 True
- 4 True ...
- 204 True
- 205 True
- 206 True
- 207 True208 True
- Length: 209, dtype: bool

In [7]:

```
sample2 = sample[sample.isnull().any(axis=1)]
sample2
```

Out[7]:

Deaths	NewDeaths	TotalRecovered	NewRecovered	ActiveCases	Serious,Critical	Tot Cases/1M pop	Dea
2804.0	NaN	2576668.0	NaN	2292707.0	18296.0	15194.0	
8644.0	NaN	2047660.0	NaN	771258.0	8318.0	13716.0	
1638.0	NaN	1377384.0	NaN	606387.0	8944.0	1466.0	
4606.0	NaN	676357.0	NaN	180931.0	2300.0	5974.0	
9604.0	NaN	387316.0	NaN	141264.0	539.0	9063.0	
	•••			•••			
1.0	NaN	10.0	NaN	2.0	NaN	2604.0	
NaN	NaN	7.0	NaN	6.0	NaN	495.0	
NaN	NaN	13.0	NaN	0.0	NaN	3726.0	
NaN	NaN	12.0	NaN	0.0	NaN	14981.0	
1.0	NaN	8.0	NaN	1.0	NaN	17.0	

In [10]:

```
sns.heatmap(sample.isnull())
plt.title('Heatmap')
```

Out[10]:

Text(0.5, 1.0, 'Heatmap')

In [14]:

```
sns.lineplot(data=sample,x='TotalCases', y='TotalDeaths',hue='Continent')
plt.title('Lineplot')
```

Out[14]:

Text(0.5, 1.0, 'Lineplot')

In [24]:

```
plt.figure(figsize=(15,8))
sns.barplot(data=sample.head(10),x='TotalTests',y = 'TotalCases',hue='Country/Region')
plt.title('Barplot')
```

Out[24]:

Text(0.5, 1.0, 'Barplot')

In [26]:

```
sns.scatterplot(data=sample.head(10),x='TotalRecovered',y='TotalTests',hue='Country/Region'
plt.title('Scatterplot')
```

Out[26]:

Text(0.5, 1.0, 'Scatterplot')

In [32]:

```
sns.catplot(data=sample.head(100),x='ActiveCases',y='Serious,Critical',hue='Continent')
plt.title('Catplot')
```

Out[32]:

Text(0.5, 1.0, 'Catplot')

In [31]:

```
sns.lmplot(data=sample,x='Tot Cases/1M pop',y='Deaths/1M pop',hue='WHO Region')
plt.title('Lmplot')
Out[31]:
Text(0.5, 1.0, 'Lmplot')
                            Lmplot
   1200
   1000
    800
                                                              WHO Region
Deaths/1M pop
                                                             Americas
                                                             South-EastAsia
    600
                                                             Europe
                                                             Africa
                                                             EasternMediterranean
    400
                                                             WesternPacific
```

In [43]:

sns.jointplot(data=sample,x='Population',y='TotalTests',hue='Continent')
plt.title('Joinplot')

Out[43]:

Text(0.5, 1.0, 'Joinplot')

In [41]:

```
sns.relplot(data=sample,x='Population',y='TotalCases',hue='Continent')
plt.title('Rel plot')
```

Out[41]:

Text(0.5, 1.0, 'Rel plot')

In [44]:

```
sns.pairplot(sample)
plt.title("Pairplot")
```

Out[44]:

Text(0.5, 1.0, 'Pairplot')

In [50]:

```
g = sns.PairGrid(sample, hue="Continent", corner=True)
g.map_lower(sns.kdeplot, hue=None, levels=5, color=".2")
g.map_lower(sns.scatterplot, marker="+")
g.add_legend(frameon=True)
g.legend.set_bbox_to_anchor((.61, .6))
```


In [57]:

```
sns.distplot(sample['Serious,Critical'],bins=6)
plt.title('Distplot')
```

C:\Users\Rohith Raj\anaconda3\lib\site-packages\seaborn\distributions.py:255
1: FutureWarning: `distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-l evel function with similar flexibility) or `histplot` (an axes-level function for histograms).

warnings.warn(msg, FutureWarning)

Out[57]:

Text(0.5, 1.0, 'Distplot')

In []: