

PROCESS MANAGEMENT 2022/2023

PRESENTED BY

Carlota Franco Eduardo Costa Gonçalo Reis Matilde Simões

PRESENTED TO

Professor Frederico Cruz Professor Joana Neves

TABLE OF CONTENTS

Introduction	1
Theoretical Framework	2
Organizational Structure	3
Process Description	4
AS-IS Model	5
Qualitative Analysis	9
Quantitative Analysis	17
Process Redesign	22
Financial Analysis	27
Conclusion	28

INTRODUCTION

The purpose of this report is to document the **process management** of **Fresh Market**, a Portuguese supermarket, and present **improvements** that were identified during the analysis of the business process.

Online market sales are rapidly growing in the general market context, and **Fresh Market** is no exception. Thus, the scope of this project is to understand, analyze and redesign the **process** of preparing and delivering an order made through the **supermarket website.**

We will start by identifying the process, model the AS-IS business process, perform qualitative and quantitative analysis and purpose a TO-BE process model, with the appropriate improvements.

For this project we will the **methodology** chosen was the **BPM** (Business Process **Management**) lifecycle, which we will detail in the next section.

THEORETICAL FRAMEWORK

Because a large portion of Fresh Market's sales are done through the website, that is the area that the supermarket is focused on improving.

To achieve such improvements, we will follow the **BPM Lifecycle** approach, that is represented in the following image:

Fig.1 - BPM Lifecycle by Dumas, et al.(2013)

In each phase, we will consider events, objects actors, decision points, tasks and the outcomes that are related to the process.

During the process discovery phase, we will resort to the **Business Process Model Notation (BPMN)** to model the process. We will have as a tool the **Bizagi Modeler**, that will also be used during the process analysis.

The expected outcomes are:

- Reduced costs;
- Reduced turnaround times:
- Reduced error rates.

The Process Implementation and Process Monitoring and Controlling phases are outside of this report's scope.

ORGANIZATIONAL STRUCTURE

Fresh Market

The Lisbon-based supermarket is structured in the following way:

- Total number of employees: more than 100;
- Total number of stores: 10;
- Employees to be considered in this study's process:

Fig. 2 - Human Resources

Role	Responsabilities	Monthly Wage	Number of employees
Manager	Order Organization Order Completion	1100 €	1
Staff	Order Picking	850 €	3
Packager	Order Packaging	700 €	2
Cashier	Pick-up Order	750 €	2
Courier	Home delivery Order	750 €	7

PROCESS DESCRIPTION

The **Process Identification** was already achieved and presented in the business case, and it was concluded that the process is:

Preparing and delivering an order made through the supermarket website.

Process description is a part of the **Process Discovery** and is the following:

This process begins with an event, which is an order being received at Fresh Market's website. This is part of the Order organization step, that involves the manager accessing and printing the order description from the website and then distributing the documents through the the staff. The staff proceeds to receive the document, get a shopping cart and collect all the possible items (might deal with missing items) and delivers the shopping cart to a packager. The packager puts the products in plastic bags (paying attention to glass products or liquid content) and prepares the order for delivery. Once the order is ready to deliver, the manager updates the supermarket system, generates and prints the invoice. Now that the order is ready for delivery, the customer chooses between the Pick up order or Home Delivery order. If the customer chooses Pick up order (20% of the cases), the cashier receives the bags and delivers to the customer with the correspondent invoice. Else, the customer chooses Home delivery order (80% of the cases) and the couriers receive the bags, drive to the customer's address and deliver the order with the invoice.

We will consider these five problems that were already identified upfront:

Regarding the customer dissatisfaction:

- 1. Delay of home deliveries;
- 2. Missing products;
- 3. Exact delivery date;

Regarding the staff dissatisfaction:

4. Lack of efficiency because of manual collection of order's items;

Regarding the supermarket:

5. Reducing usage of paper and plastic shopping bags.

Assumption For Model Simplicity:

For client to do a website order, he/she must have a profile account, with email, home address, phone number and fiscal information.

AS-IS MODEL

To complete the BPM's lifecycle's **Process Discovery** we modeled the current process.

The following figure represents the flow of the process's main activities, where each activity is a sub-process with its own activities, gateways and events.

AS-IS Model Level 1

Fig.3 - AS-IS Model Level 1

Order Organization AS-IS Model

Fig.4 - Order Organization Level 2

This is the first sub-process, the manager checks the website for received orders, prints the order description and distributes the according documents through the staff.

Average time per order: 5 minutes

Order Picking AS-IS Model

Fig.5 - Order Picking Level 2

In this sub-process the a member of staff receives the order document, gets a shopping cart, reads the list, goes to the product's corresponding corridors. When picking up the product, checks if there is stock available. If so, adds products to shopping cart and delivers it. Otherwise, checks if the customer chose replacement mode and if so, chooses the substitute product and annotates the new barcode, adds to shopping cart and delivers it. If there is no replacement mode, annotates the missing products and delivers cart.

Average time per order: 15 minutes

Order Packaging AS-IS Model

Fig.6 - Order Packaging Level 2

This sub-process starts with the shopping cart being received by the packager that proceeds to pack the items and put them in plastic bags, while paying extra attention if products need bubble wrap (glass products) and/or adhesive tape (liquid products). When is finished, the order is packaged and ready for delivery.

Average time per order: 7 minutes

Order Completion AS-IS Model

Fig.7 - Order Completion Level 2

The order is prepared, so the manager proceeds to update the order, in case of missing and/or substitute products, and prints the generated invoice. This subprocess ends with the order being ready to be delivered.

Average time per order: 2 minutes

Pick-Up Order AS-IS Model

Fig.8 - Pick-Up Order Level 2

This sub-process happens in case the costumer chooses to Pick-Up order in the store. When the order is ready to be delivered, the cashier receives the bags and delivers the order and corresponding invoice to the customer. If this happens, the customer leaves and the process finishes.

Average time per order: 7 minutes

Home-Delivery Order AS-IS Model

Fig.9 - Home Delivery Order Level 2

This sub-process happens in case the costumer chooses to Home-Delivery order. When the order is ready to be delivered, the Courier receives the bags, drives to the customer's selected address and delivers the order and corresponding invoice to the customer. If this happens, the order is received and the process finishes.

Average time per order: 25 minutes

QUALITATIVE ANALYSIS

Qualitative analysis is a part of the BPM Lifecycle's Approach, that corresponds to the **Process Analysis** phase.

This section's main objectives are:

- 1. To identify and eliminate wasteful steps, through:
 - Value Adding Analysis
 - Waste Analysis
- 2. Understand, organize and prioritize problems, through:
 - Issue Register
 - Root-Cause Analysis Why why diagram

Value Adding Analysis

Here we split the process's main tasks into steps and classify them we can understand which ones are unnecessary and should be eliminated.

The classification has the following logic:

- Value Adding (VA) steps that contribute to positive outcomes;
- Business Value Adding (BVA) steps that do not directly bring value to costumer but are necessary to the overall process;
- Non-Value Adding (NVA) do not add value to the process and can be altered or eliminated.

Fig.10 - Value Adding Analysis

Sub-Process	Steps	Classification	Performer
Order	Take and print order description	NVA	Manager
Organization	Distribution of documents	NVA	Manager
		D) (A	0. "
	Get a shopping cart	BVA	Staff
	Reads the list and goes to the correspondent corridor	NVA	Staff
	Pick up the product	VA	Staff
Order	Check for stock	BVA	Staff
Picking	Check for Replacement Mode	BVA	Staff
	Chooses the substitute product	VA	Staff
	Annotate missing product	BVA	Staff
	Annotates the new barcode to the order document	BVA	Staff
	Adds to the shopping cart	VA	Staff
	B 1 " ") / A	
	Packages the items	VA	Packager
	Put in plastic bags	NVA	Packager
	Pay attention to frozen and fragile products	BVA	Packager
Order	Check for glass products	BVA	Packager
Packing	Put in bubble wrap	BVA	Packager
	Check for liquid products	BVA	Packager
	Put in adhesive tape	NVA	Packager
	Prepare order to delivery	VA	Packager

Fig.10 - Value Adding Analysis (Continuation)

Sub-Process	Steps	Classification	Performer
Order	Update order	BVA	Manager
Completion	Prints the generated invoice	NVA	Manager
	Deliver bags to the cashier	BVA	Cashier
Pick Up Order	Delivery of the order	VA	Cashier
	Delivery of the invoice	VA	Cashier
	Recive plastic bags with items	NVA	Courier
Home Delivery	Drive to the selected address	NVA	Courier
Order	Make the delivery of the order	VA	Courier
	Deliver the invoice	VA	Courier

Waste Analysis

Here we identify the waste that can happen during or between steps and categorize it into three possibilities:

- Move (transportation of objects; motion of resources)
- Hold (inventory instance waiting of resource; waiting resource waiting for instance)
- Overdo (defects- repetition; over-processing unnecessary perfectionism; overproduction - running instances that do not add value to the process)

Fig. 11 - Waste Analysis

Fig. 11 - Waste Analysis								
Process	Activity	Waste Category	Waste Type					
Order Organiza	Take and print order description	N/A	N/A					
tion	Distribution of documents	Overdo	Overprocessing					
			N.A. (2)					
	Get a shopping cart	Move	Motion					
	Reads the list and goes to the correspondent corridor		Overprocessing					
	Pick up the product	Move	Motion					
Order	Check for stock	Overdo	Overprocessing					
Piccking	Check for Replacement Mode	Overdo	Over-production					
1 looking	Chooses the substitute product	Overdo	Over-production					
	Annotate missing product	Overdo	Overprocessing					
	Annotates the new barcode to the order document	Overdo	Overprocessing					
	Adds to the shopping cart	N/A	N/A					
Order Packing	Put items of orders in plastic bags	N/A	N/A					
Order	Update order	Move	Transportation					
Complet ion	Prints the generated invoice	Overdo	Overprocessing					

Fig. 11 - Waste Analysis (Continuation)

Process	Activity	Waste Category	Waste Type
	Deliver bags to the cashier	N/A	N/A
Pick Up Order	Delivery of the order	N/A	N/A
	Delivery of the invoice	Overdo	Overprocessing
	Receive plastic bags with items	N/A	N/A
	Drive to the selected address	N/A	N/A
	Make the delivery of the order	N/A	N/A
	Deliver the invoice	Overdo	Overprocessing
	If order is not successfully delivered:		
	Recive plastic bags with items	N/A	N/A
Home Delivery	Drive to the selected address	N/A	N/A
Order	Try to deliver the order	N/A	N/A
	Drive back to the store	Overdo	Defect
	Store orders not possible to deliver	Overdo	Defect
	On the next day, Recive plastic bags with not possible to deliver orders	Overdo	Defect
	Drive failed deliveries to the selected address	Overdo	Defect
	Deliver the order	Move	Transportation

Issue Register

With this analysis we identify an organize issues that might contribute to the business performance with the objective of prioritizing them.

Fig. 12- Issue Register

		9	issue negisiei		
Issue	Priority	Description	Data and Assumptions	Qualitative Impact	Quantitative Impact (per day)
Incorrect Order		Staff picks incorrect products	45 orders per day where 5% have incorrect products and 50% want refunds with orders having on average 30€ worth of products	Customer dissatisfaction and poor brand reputation	45 * 0.05 * 0.5 * EUR 30 = EUR 33.75
Customer doesn't show up		The customer ends up not coming to pick up the order	45 orders per day where 20% are pick up and 10% of those customers don't show up with orders on average of 30€	Restock the products that weren't picked up causing staff frustration	45 * 0.2 * 0.1 * EUR 30 = EUR 27
Wrong Address		The customer gives the wrong address for the home pick up	45 orders per day where 80% are home pick up and 10% of those customers give a wrong address and 50% want refunds with orders having on average 30€ worth of products. Plus, an average of 10€ worth of gas	Contact the customer to get correct address and then drive there, causing staff frustration customer dissatisfaction, and more costs	45 * 0.8 * 0.1 * 0.5 * EUR 30 + EUR 10 = EUR 64
Non-compliant of Home Delivery		Deliveries sometimes arrive late to some addresses, up to 30 minutes, in some cases there is no one home to receive the goods due to the delay	45 orders per day where 80% are home delivery and only 10% of those customers give a wrong address and 50% want refunds with orders having on average 30€ worth of products. Plus, an average of 10€ worth of gas	Customer dissatisfaction due to the non- compliant of home delivery schedules	45 * 0.8 * 0.1 * 0.5 * EUR 30 + EUR 10 = EUR 64

Fig.12 - Issue Register (Continuation)

Missing Products	Sometimes there are some missing products in the orders	45 orders per day where 5% have missing products and 20% want refunds with orders having on average 30€ worth of products	Customer dissatisfaction and poor brand reputation	45 * 0.05 * 0.2 * EUR 30 = EUR 13.5
Delivery Date Information	Customers would like to be informed about the exact delivery date	N.A.	Customer dissatisfaction	N.A.
Collecting Items of Orders	Staff is dissatisfied with lack of efficiency when collecting products, being very manual and prone to errors	N.A.	Staff dissatisfaction and frustration	N.A.
Invoices and Plastic Bags	Supermarket spends a lot of money in paper and plastic bags and wants to reduce their usage to reduce costs and help the environment	45 orders per day with an average of 3 plastic bags and 1 invoice per order costing on average 0.1€	Helps the environment which increases brand reputation	45 * 0.1 = EUR 4.5

Why-Why Diagram

This type of diagram helps understand and detail whats are the causes of the previously identified issues.

Fig.13 - Why-Why Diagram

QUANTITATIVE ANALYSIS

Quantitative Analysis is also a part of the BPM Lifecycle's Approach, that corresponds to the **Process Analysis** phase.

In this section we use the Bizagi Modeler as a tool to perform a Simulation of different scenarios that could happen within the process.

Data Considered For The Analysis:

• Average number of website orders per day: 45 orders

• Number of of working hours per day: 8 hours

• Percentage of Pick-Up orders: 20%

• Percentage of Home-Delivery orders: 80%

• Mean Arrival per minute (Y) = 45 / (8*60) = 0,09375 clients per minute

• Mean Interval Arrival Time (1/Y) = 1 / 0,09375 = 10,(6) clients every minute

This analysis will provide a quantification of the process's performance.

Simulation

Fig. 14 - Resource Utilization

Resource	Utilization AS-IS	Utilization AS-IS (What If)	Utilization TO- BE	Utilization TO- BE (What if)
Manager	72.19 %	50.46 %	33.87 %	32.92 %
Packager	35.34 %	35.59 %	28.16 %	27.37 %
Cashier	5.80 %	16.96 %	10.22 %	17.00 %
Courier	42.82 %	43.13 %	45.41 %	28.47 %
Staff	51.70 %	52.07 %	35.60 %	34.61 %

AS-IS

In this scenario, our team looked to the times and resources that were available, putting them in the simulation view, making sure everything was according to the project description. With that, we started by creating the process validation, which focused on the start event, where we inputted the Max Arrival Count, which would be the same for every scenario (45).

After that, we focused on the time analysis, where we chose the different types of time analysis. In the start event, the type that was chosen was the Poisson Distribution, where we applied the following formula:

$$Total\ Time = 8*60 = 480$$

$$Mean\,Arrival\,Rate\,(\lambda) = \frac{Max\,Arrival\,Count}{Total\,Time} = \frac{45}{480} = 0.09375$$

Mean Inter – Arrival Time =
$$\frac{1}{\lambda} = \frac{1}{0.09375} \approx 10.67$$

After getting that value, we chose the time analysis types for the tasks, which were almost all the Normal Truncated Distribution, since the mean does not fluctuate too much. Despite, the tasks Order Picking and Home Delivery Order used the Negative Exponential Distribution, since they could present a bigger fluctuation in the mean time than the others.

Lastly, we inserted the resources to each task, according to the project description document.

Fig. 15 - Scenario 1 (AS-IS)

Name	Instances completed	Instances started	Avg. time (m)	Total time (m)	Avg. time waiting for resource (m)	Total time waiting resource (m)
Fresh market	45	45	51.75895864 45154	2329.153139 00319		239.6432748945 43
Order has been made	45					
Exclusive Gateway	45	45				
Order delivered at home	36					
Order Delivered at the store	9					
Order Organization	45	45	5.865299205 2641	263.9384642 36885	0.782698651660 509	35.22143932472 29
Order Picking	45	45	16.72657696 78071	752.6959635 51318	1.050429330059 7	47.26931985268 66
Order Packaging	45	45	7.752354159 55876	348.8559371 80144	0.609639758820 679	27.43378914693 06
Order Completion	45	45	4.778675415 71354	215.0403937 07109	2.565695570727 52	115.4563006827 38
Pick up order	9	9	5.858730393 02912	52.72857353 72621	0	0
Home delivery order	36	36	19.33038352 19576	695.8938067 90475	0.396178496874 004	14.26242588746 41

AS-IS - WHAT IF

After running the AS-IS simulation, we decided to make a couple of change in the time and resource analysis, in order to improve the total time and resource usage, when compared to the AS-IS simulation.

In order to do that, in the tasks entitled Order Organization and Order Completion, we chose another resource, Cashier, to help the manager, which decreased the resource usage of the manager and, with that, also decreased the total time of the process.

Fig. 16 - Scenario 2 (AS-IS What If)

Name	Instances completed	Instances started	Avg. time (m)	Total time (m)	Avg. time waiting for resource (m)	Total time waiting resource (m)
Fresh market	45	45	48.57238776 5008	2185.757449 42536		96.24758531670 69
Order has been made	45					
Exclusive Gateway	45	45				
Order delivered at home	36					
Order Delivered at the store	9					
Order Organization	45	45	5.082600553 60359	228.7170249 12162	0	0
Order Picking	45	45	16.98282070 84945	764.2269318 82252	1.306673070747 13	58.80028818362 09
Order Packaging	45	45	7.774093610 49455	349.8342124 72255	0.631379209756 466	28.41206443904 1
Order Completion	45	45	2.212979844 98602	99.58409302 43708	0	0
Pick up order	9	9	5.858730393 02912	52.72857353 72621	0	0
Home delivery order	36	36	19.18518371 10293	690.6666135 97056	0.250978685945 694	9.035232694044 99

TO-BE

After running the AS-IS What If simulation, we decided to make a couple of change in the time and resource analysis, in order to improve the total time and resource usage, when compared to the AS-IS What If simulation.

In order to do that, we decreased the mean time of the tasks, since, with the technological implementations and elimination of tasks that we propose, this would be more automated and would need less time to be completed.

Fig. 17 - Scenario 3 (TO-BE)

Name	Instances completed	Instances started	Avg. time (m)	Total time (m)	Avg. time waiting for resource (m)	Total time waiting resource (m)
Fresh market	45	45	35.17333124 67157	1582.799906 10221		25.57087627133 63
Order has been made	45					
Exclusive Gateway	45	45				
Order delivered at home	36					
Order Delivered at the store	9					
Order Organization	45	45	2.082600553 60359	93.71702491 21617	0	0
Order Picking	45	45	10.45076509 18316	470.2844291 32421	0	0
Order Packaging	45	45	5.711675675 73269	257.0254054 07971	0.200828873407 145	9.037299303321 53
Order Completion	45	45	2.212979844 98602	99.58409302 43708	0	0
Pick up order	9	9	5.096151816 72921	45.86536635 05629	0.005067209771 70024	0.045604887945 3022
Home delivery order	36	36	17.12009964 652	616.3235872 74719	0.457999224446 375	16.48797208006 95

TO-BE - WHAT IF

Lastly, in the What if scenario of the TO-BE simulation, there was only one change that was made. That change was in the decision of the Level 1, where we altered the percentages of home delivery orders and of the pic up order.

This was change from 20% of pick-up orders to 40%, which happened because of the increase of prices of plastic bags, that were given during home delivery orders. This increase in price made more customers decide to go to the Fresh market, in order to pick up their orders which, subsequently, decreased the total time and resource usage.

Fig. 18 - Scenario 4 (TO-BE What If)

Name	Instances completed	Instances started	Avg. time (m)	Total time (m)	Avg. time waiting for resource (m)	Total time waiting resource (m)
Fresh market	45	45	31.49706924 9846	1417.368116 24307		9.082904191266 83
Order has been made	45					
Exclusive Gateway	45	45				
Order delivered at home	25					
Order Delivered at the store	20					
Order Organization	45	45	2.082600553 60359	93.71702491 21617	0	0
Order Picking	45	45	10.45076509 18316	470.2844291 32421	0	0
Order Packaging	45	45	5.711675675 73269	257.0254054 07971	0.200828873407 145	9.037299303321 53
Order Completion	45	45	2.212979844 98602	99.58409302 43708	0	0
Pick up order	20	20	5.494651920 73912	109.8930384 14782	0.002280244397 26511	0.045604887945 3022
Home delivery order	25	25	15.47456501 40546	386.8641253 51364	0	0

PROCESS REDESIGN

After concluding the **Process Analysis** we purpose the following changes for the future process model:

1. Heuristic 9 - Automation

To automatize a part of the management of the lifecycle of an order, the implementation of a Order Management System with the following features:

- 1.1. Inventory and warehouse management, to avoid missing products;
- 1.2. Tracking system with the various stages of the order, for the client to know the expected delivery date;
- 1.3. Record inventory levels to help predict maintain appropriate stock, thus helping to avoid missing products;
- 1.4. Integration of a customer database, with the client's information and orders, to be accessible to Fresh Market's workers, eliminating the need to print and distribute order descriptions, reducing time and motion wastes and the usage of paper.

2. Heuristic 3 - Triage

Giving the customers the option to bring their own **reusable bags to pick-up** the order at the store, in order to reduce the usage of shopping bags.

3. Heuristic 8 - Communication optimization

Couriers automatically **remind customer by message** (to phone number) when leaving the store with the estimated time of arrival of the destination, so the customer can adjust to the exact time of delivery and remember them to be home, avoiding the need to repeat the process.

4. Heuristic 7 - Resource optimization

Lay-off people: 3 couriers, because the overall TO-BE process's average time significantly decreased, and consequently the home-delivery average time's also decreased, so we concluded even with 3 less couriers, the orders would be delivered more efficiently and with less costs.

5. Heuristic 7 - Resource optimization

Cashiers had the lowest **resource utilization** in the quantitative analysis while the manager had the highest one, therefore one of the cashiers will be available to assist the manager, in case it is necessary.

Assumptions For Model Simplicity:

With the new system, the invoices are sent to the customer's email, instead of being printed and delivered with the order.

All of the website orders are picked from the warehouse.

In a Home-Delivery Order, if the customer is not at home, the courier returns to the supermarket and stores the order, and attempts to deliver the next day.

TO-BE Model

Fig. 19 - TO-BE Model Level 1

The flow of the sub-processes stays the same in the TO-BE model, the differences will happen inside each sub-process.

Order Organization TO-BE Model

Fig. 20 - Order Organization Level 2

The manager opens the system, and it automatically checks his schedule and shares the order details with the staff. The automation of this process saves on average 3 minutes per iteration.

Average time per order: 2 minutes

Order Picking TO-BE Model

Fig. 21 - Order Picking Level 2

The staff gets a shopping cart to put the products of the order, then they pick the products accordingly by going to the correspondent corridor. After reaching the correct corridor they put the product in the shopping cart. The stock is automatically updated when a new order is created or cancelled, this way we can always keep a real time inventory making it easier to manage and eliminating the need to deal with missing products.

Average time per order: 10 minutes

Order Packaging TO-BE Model

Fig. 22 - Order Packaging Level 2

The only difference in this is sub-process from the current one, is that now if the order is not home-delivered the packager puts the items in a box, so the customer can user their own recycling bags.

Average time per order: 7 minutes

Order Completion TO-BE Model

Fig. 23 - Order Completion Level 2

The manager checks the order that was already updated by the new system and send the generated invoice for the customer's email, instead of printing it.

Average time per order: 2 minutes

Pick-Up Order TO-BE Model

Fig. 24 - Pick-Up Order Level 2

The system now checks if the user wants a plastic bag for their products, this way, the company is saving money and also being proactive towards a more environmentally friendly attitude, which increases the brand reputation. Then the cashier puts the products in the bag and delivers the corresponding order.

Average time per order: 2 minutes

Home-Delivery Order TO-BE Model

Fig. 25 - Home-Delivery Level 2

The couriers receive the plastic bags and drive to the correspondent address in order to deliver the order and the invoice. With the new system, the couriers take less time to receive the order, since they will already be ready to departure when the Order Packaging process is done, decreasing the mean time in 3 minutes.

Average time per order: 2 minutes

FINANCIAL ANALYSIS

Annual Costs of TO-BE:

Fig. 26 - Annual Costs in TO-BE

Resource	Quantity	Monthly Wage	Monthly	Annualy	
Manager	1	1100,00 €	1100,00 €	13 200,00 €	
Staff	3	850,00 €	2550,00 €	30 600,00 €	
Packager	2	700,00 €	1400,00 €	16 800,00 €	
Cashier	2	750,00 €	1500,00 €	18 000,00 €	
Couriers	3	750,00 €	2250,00 €	27 000,00 €	
Information System			Monthly	Annualy	
			5834,00 €	70 008,00 €	
			Total per Month	Total per Year	
			14 634,00 €	175 608,00 €	

TO-BE's Hardware costs (only happen on 1st year):

Cost per tablet = 400 €

Total costs = 400*8 = 3200 €

TO-BE's Estimation of Savings in Paper and Plastic:

Fig. 27 - Estimation of savings

5								
Resource	Quantity in AS-IS per day	Variance of quantity per day in TO-BE	Cost per unit	Monthly Savings	Annual Savings			
Paper (% of atm rolls)	7,5	-100%	0,40 €	90,00€	1080 €			
Paper (sheets)	45	-100%	0,05 €	67,50 €	810 €			
Plastic bags	100	-30%	0,04 €	36,00 €	432 €			
				Total per Month	Total per Year			
				193,50 €	2322 €			

CONCLUSION

We believe that we were able to understand and model the process and ultimately approach the process's main problems and inefficients, while proposing a solution more aware of environmental and financial costs.

With this being said there were some limitations found throughout the development of this report.

Limitations:

- Some of the data considered in the Process Analysis and Financial Analysis had to rely on our team's assumptions, as we were not provided with some data such as average value of orders (in €), average number of shopping bags and paper usage, average consumption values of gas in home-delivery (in €), etc;
- It was outside of our team's responsibility to determine which specific Information System should be implemented, as we only determined the functionalities it must have to improve Fresh Market's performance.