OIPE

RAW SEQUENCE LISTING

PATENT APPLICATION: US/10/016,985

DATE: 01/03/2002 TIME: 14:53:27

Input Set : A:\LEX-0273-USA SEQLIST.txt Output Set: N:\CRF3\01032002\J016985.raw

ENTERED

```
4 <110> APPLICANT: Walke, D. Wade
         Maricar, Miranda
 6
         Yu, Xuanchuan (Sean)
 7
         Friddle, Carl Johan
10 <120> TITLE OF INVENTION: Novel Human Kinase and Polynucleotides
         Encoding the Same
13 <130> FILE REFERENCE: LEX-0273-USA
/15 <140> CURRENT APPLICATION NUMBER: US/10/016,985
15 <141> CURRENT FILING DATE: 2001-12-07
15 <150> PRIOR APPLICATION NUMBER: US 60/251,941
16 <151> PRIOR FILING DATE: 2000-12-07
18 <160> NUMBER OF SEQ ID NOS: 3
20 <170> SOFTWARE: FastSEQ for Windows Version 4.0
22 <210> SEQ ID NO: 1
23 <211> LENGTH: 1275
24 <212> TYPE: DNA
25 <213> ORGANISM: Homo sapiens
27 <400> SEQUENCE: 1
                                                                            60
28 atgagegtgg getgeecaga geetgageeg eecegeteee tgaeetgetg tgggeegggg
29 actgcccctg ggcctggtgc cggtgtgccc cttctcactg aagacatgca ggccctgact
                                                                           120
                                                                           180
30 ctccgcacac tggccgccag cgacgtcacc aagcactacg aactagtccg ggagctgggc
31 aaaggcacct atgggaaggt tgacctggtg gtctacaagg gcacaggcac aaaaatggca
                                                                           240
32 ctgaagtttg tgaacaagag caaaaccaag ctgaagaact tcctacggga ggtgagcatc
                                                                           300
33 accaacagee tetectecag eccetteate atcaaggtet ttgaegtggt etttgagaca
                                                                           360
                                                                           420
34 gaggactgct acgtctttgc ccaggagtac gcacctgctg gggacctgtt tgacatcatc
35 cetececage teggeeteee teaggacace etgaageet etgtecagea ettgegeete
                                                                           480
36 gegetggact teatgeaegg geggeagetg gtgeaeegeg acateaagee egagaaegtg
                                                                           540
37 ctgctgttcg accgcgagtg ccgccgcgta aagctggccg acttcggcat gacgcgccgc
                                                                           600
                                                                           660
38 gtgggctgcc gcgtcaagcg cgtgagcggc accatccctt acacggcgcc tgaggtgtgc
                                                                           720
39 caggogggec gogcogacgg gotggoggtg gacacgggcg tggacgtgtg ggccttcggc
40 gtgctcatct tctgcgtgct caccggcaac ttcccgtggg aggcggcgtc gggcgccgac
                                                                           780
41 geettetteg aggagttegt gegetggeag eggggeegee tgeegggget geettegeag
                                                                           840
                                                                           900
42 tggcgccgct tcaccgagcc cgcgctgcgc atgttccagc gcttactggc cctggagccc
43 gagegeegeg geeeageeaa ggaggtgtte egetteetea ageaegaget eaegteegag
                                                                           960
44 etgegeegee ggeeetegea eegegegege aageeeeeeg gggaeegeee geeegeegee
                                                                          1020
45 gggccactgc gcctcgaggc gcctgggccg ctcaagcgga cggtgctgac cgagagcggc
                                                                          1080
46 ageggeteec ggeeegegee eccegeegte gggteggtge cettgeeegt geeggtgeeg
                                                                          1140
                                                                          1200
47 gtgccagtgc ccgtgccggt gcctgtgccc gagcccggcc tagctcccca ggggcccccc
48 ggccggaccg acggccgcgc ggacaagagc aaagggcagg tggtgctggc cacggccatc
                                                                          1260
49 gagatctgcg tctga
                                                                          1275
51 <210> SEQ ID NO: 2
52 <211> LENGTH: 424
53 <212> TYPE: PRT
54 <213> ORGANISM: Homo sapiens
56 <400> SEQUENCE: 2
57 Met Ser Val Gly Cys Pro Glu Pro Glu Pro Pro Arg Ser Leu Thr Cys
```

10

58 1

RAW SEQUENCE LISTING DATE: 01/03/2002 PATENT APPLICATION: US/10/016,985 TIME: 14:53:27

Input Set : A:\LEX-0273-USA SEQLIST.txt
Output Set: N:\CRF3\01032002\J016985.raw

59 60	Cys	Gly	Pro	Gly 20	Thr	Ala	Pro	Gly	Pro 25	Gly	Ala	Gly	Val	Pro 30	Leu	Leu
	Thr	Glu	Asp 35	Met	Gln	Ala	Leu	Thr 40	Leu	Arg	Thr	Leu	Ala 45	Ala	Ser	Asp
	Val	Thr 50	Lys	His	Tyr	Glu	Leu 55	Val	Arg	Glu	Leu	Gly 60	Lys	Gly	Thr	Tyr
65	Gly 65		Val	Asp	Leu	Val 70	Val	Tyr	Lys	Gly	Thr 75	Gly	Thr	Lys	Met	Ala 80
		Lys	Phe	Val	Asn 85	Lys	Ser	Lys	Thr	Lys 90	Leu	Lys	Asn	Phe	Leu 95	Arg
	Glu	Val	Ser	Ile 100	Thr	Asn	Ser	Leu	Ser 105	Ser	Ser	Pro	Phe	Ile 110	Ile	Lys
	Val	Phe	Asp 115		Val	Phe	Glu	Thr 120	Glu	Asp	Cys	Tyr	Val 125	Phe	Ala	Gln
	Glu	Tyr 130	Ala	Pro	Ala	Gly	Asp 135	Leu	Phe	Asp	Ile	Ile 140	Pro	Pro	Gln	Val
75	Gly 145		Pro	Glu	Asp	Thr 150	Val	Lys	Arg	Cys	Val 155	Gln	Gln	Leu	Gly	Leu 160
		Leu	Asp	Phe	Met 165		Gly	Arg	Gln	Leu 170	Val	His	Arg	Asp	Ile 175	Lys
	Pro	Glu	Asn	Val 180		Leu	Phe	Asp	Arg 185	Glu	Cys	Arg	Arg	Val 190	Lys	Leu
	Ala	Asp	Phe 195		Met	Thr	Arg	Arg 200		Gly	Cys	Arg	Val 205	Lys	Arg	Val
	Ser	Gly 210		Ile	Pro	Tyr	Thr 215	Ala	Pro	Glu	Val	Cys 220	Gln	Ala	Gly	Arg
85	Ala 225		Gly	Leu	Ala	Val 230		Thr	Gly	Val	Asp 235	Val	Trp	Ala	Phe	Gly 240
		Leu	Ile	Phe	Cys 245		Leu	Thr	Gly	Asn 250	Phe	Pro	Trp	Glu	Ala 255	Ala
	Ser	Gly	Ala	Asp 260		Phe	Phe	Glu	Glu 265	Phe	Val	Arg	Trp	Gln 270	Arg	Gly
	Arg	Leu	Pro 275	Gly	Leu	Pro	Ser	Gln 280	Trp	Arg	Arg	Phe	Thr 285	Glu	Pro	Ala
93 94	Leu	Arg 290	Met	Phe	Gln	Arg	Leu 295	Leu	Ala	Leu	Glu	Pro 300	Glu	Arg	Arg	Gly
	Pro 305	Ala	Lys	Glu	Val	Phe 310	Arg	Phe	Leu	Lys	His 315	Glu	Leu	Thr	Ser	Glu 320
97 98	Leu	Arg	Arg	Arg	Pro 325	Ser	His	Arg	Ala	Arg 330	Lys	Pro	Pro	Gly	Asp 335	Arg
99 10		Pro	Ala	Ala 340		Pro	Leu	Arg	Leu 34		Ala	Pro	Gly	Pro 350		Lys
10	l Arc	Th		l Lei		Glu	Sei		y Se	-	y Se	r Ar		o Ala		o Pro
10: 10:		a Vai	359 l Gly		r Val	Pro	Leu	360 Pro		l Pro	o Vai	L Pro	365 Val	-	o Vai	l Pro
10	4	370)				375	5				380)			
10	6 385	5			·	390)				39!	5				Pro 400
10	7 Gly	y Arg	Th	r Ası	o Gly	Arg	Ala	a Ası	p Ly	s Sei	r Lys	s Gly	y Glı	n Vai	l Vai	l Leu

RAW SEQUENCE LISTING DATE: 01/03/2002 PATENT APPLICATION: US/10/016,985 TIME: 14:53:27

Input Set : A:\LEX-0273-USA SEQLIST.txt
Output Set: N:\CRF3\01032002\J016985.raw

108		405		410		415							
109	Ala Thr Ala Ile Glu Ile Cys Val												
110	420												
112	<210> SEQ ID NO: 3												
113	<211> LENGTH: 1473												
114	<212> TYPE: DNA												
115	<213> ORGANISM: Homo sapiens												
117	<400> SEQUENCE: 3												
118	ttgcaccccg	gtccatggtc	gtggcgccct	gagcccccgg	ggccgggcag	acgaagaccg	60						
			gccgcggggt				120						
			gagccgcccc				180						
121	cccctgggcc	tggtgccggt	gtgccccttc	tcactgaaga	catgcaggcc	ctgactctcc	240						
122	gcacactggc	cgccagcgac	gtcaccaagc	actacgaact	agtccgggag	ctgggcaaag	300						
123	gcacctatgg	gaaggttgac	ctggtggtct	acaagggcac	aggcacaaaa	atggcactga	360						
124	agtttgtgaa	caagagcaaa	accaagctga	agaacttcct	acgggaggtg	agcatcacca	420						
125	acagcctctc	ctccagcccc	ttcatcatca	aggtctttga	cgtggtcttt	gagacagagg	480						
126	actgctacgt	ctttgcccag	gagtacgcac	ctgctgggga	cctgtttgac	atcatccctc	540						
127	cccaggtggg	gctccctgag	gacacggtga	agcgctgtgt	gcagcagctg	ggcctggcgc	600						
128	tggacttcat	gcacgggcgg	cagctggtgc	accgcgacat	caagcccgag	aacgtgctgc	660						
129	tgttcgaccg	cgagtgccgc	cgcgtaaagc	tggccgactt	cggcatgacg	cgccgcgtgg	720						
130	gctgccgcgt	caagcgcgtg	agcggcacca	tcccttacac	ggcgcctgag	gtgtgccagg	780						
131	cgggccgcgc	cgacgggctg	gcggtggaca	cgggcgtgga	cgtgtgggcc	ttcggcgtgc	840						
132	tcatcttctg	cgtgctcacc	ggcaacttcc	cgtgggaggc	ggcgtcgggc	gccgacgcct	900						
133	tcttcgagga	gttcgtgcgc	tggcagcggg	gccgcctgcc	ggggctgcct	tcgcagtggc	960						
134	gccgcttcac	cgagcccgcg	ctgcgcatgt	tccagcgctt	actggccctg	gagcccgagc	1020						
135	gccgcggccc	agccaaggag	gtgttccgct	tcctcaagca	cgagctcacg	tccgagctgc	1080						
136	gccgccggcc	ctcgcaccgc	gcgcgcaagc	ccccgggga	ccgcccgccc	gccgccgggc	1140						
137	cactgcgcct	cgaggcgcct	gggccgctca	agcggacggt	gctgaccgag	agcggcagcg	1200						
138	gctcccggcc	cgcgccccc	gccgtcgggt	cggtgccctt	gcccgtgccg	gtgccggtgc	1260						
139	cagtgcccgt	gccggtgcct	gtgcccgagc	ccggcctagc	tccccagggg	cccccggcc	1320						
140	ggaccgacgg	ccgcgcggac	aagagcaaag	ggcaggtggt	gctggccacg	gccatcgaga	1380						
141	tctgcgtctg	agtcgcctcc	gccgccctcg	gacccgggag	cagcccgggc	ccgccccgag	1440						
142	ccggtgcccg	gtgcggcggt	agggaatgga	gcc			1473						

VERIFICATION SUMMARY

DATE: 01/03/2002 TIME: 14:53:28

Input Set : A:\LEX-0273-USA SEQLIST.txt Output Set: N:\CRF3\01032002\J016985.raw

PATENT APPLICATION: US/10/016,985

 $\ \, \text{L:15 M:270 C: Current Application Number differs, Replaced Current Application NoL:15 M:271 C: Current Filing Date differs, Replaced Current Filing Date } \\$