Quiz 2 Results for Stephen Giang

(!) Correct answers are hidden.

Score for this quiz: 10.5 out of 12

Submitted Oct 14 at 3:11pm This attempt took 26 minutes.

Incorrect Question 2 0 / 1.5 pts

Which of the following statement(s) is (are) true about mapping of an input image f(x,y) to an output image g(x,y)? Assume both input and output image values range between 0 and 255.

Question 3

An 8-bit grayscale image has a perfectly equalized histogram. One pass of mapping with the following transformation (mapping) is applied to the image:

$$g(x,y) = \frac{1}{2}f(x,y)$$
 for $0 <= f(x,y) <= 160$

$$g(x,y) = f(x,y)$$
 for $160 < L <= 255$

Let the moralized output histogram (vertical axis) be denoted by \mathbf{h} , and the greylevel (horizontal axis) be denoted by \mathbf{L} . Which of the following is correct of the normalized histogram of the output image g(x,y).

- h=1/256 for 0<=L<=160; h=1/256 for 160<L<=255
- h=1/256 for 0<=L<=160; h=2/256 for 160<L<=255
- h=1/256 for 0<=L<=160; h=2/256 for 160<L<=255
- h=2/256 for 0<=L<=80; h=0 for 80<L<160; h=1/256 for 160<L<=255</p>

Question 4 1.5 / 1.5 pts

An 8-bit image has a normalized histogram defined by

$$h\left(l
ight) = rac{1}{206} \; for \; 0 \leq l < 100 \; and \; 200 \leq l < 256$$
 $h\left(l
ight) = rac{1}{412} \; for \; 100 \leq l < 200$

Suppose that each pixel is ANDed with 1000 0000, and is set to white if the result of ANDing is non-zero, otherwise is set to black if the result is zero. What is the <u>normalized number of black pixels</u> in the output image? Write the number with 2 decimal points in the box below.

0.55

Question 5

1.5 / 1.5 pts

Suppose that f[x][y] is the image array, and M[j][k] is an m by m mask where M[0][0] is the coefficient at upper left corner of the mask. The following pseudo-code is used to perform the convolution on the pixel located at (x, y) and to stores it in g[x][y].

ConvolutionAlgorithm

```
sum =0;

for k=? to? {

  for j=? to? {

  sum=sum+ f[?][?]*M[?][?]; }}

g[x][y] = sum;
```

In the following answers the question marks (?) are replaced with code. Which of the following is correct for getting convolution

```
 \bigcirc \  \, \text{for k= 0 to m} \,\, \{ \,\, \text{for j=0 to m} \,\, \{ \, \text{sum=sum+ f[} \,\, x][ \,\, y] \,\, ^*\,\, M[ \,\, j+m \,\, ]; \} \}
```

for k = -m/2 to m/2 { for j = -m/2 to m/2 {sum=sum+ f[x+j][y+k] * M[j+m/2][k+m/2];}}

- $\bigcirc \ \, \text{for k= -m/2 to } \, \, \text{m/2} \, \, \left\{ \, \, \text{for j=-m/2 to } \, \text{m/2} \, \left\{ \, \text{sum=sum+ f[} \, \, \text{x+j j[} \, \, \text{y+k } \, \right] \, ^* \, \, \text{M[} \, \text{j][} \, \, \text{k } \, \right];} \right\}$

for k = -m/2 to m/2 { for j = -m/2 to m/2 {sum=sum+ f[x-j][y-k] * M[j+m/2][k+m/2]; }}

Question 6

Below are two gradient images obtained by applying Sobel masks.

A B

Which of the following(s) is (are) correct?

- A is the gradient in y direction and B is the gradient in x direction
- A is the gradient in x direction and B is the gradient in y direction
- A is the gradient magnitude and B is the gradient in x direction
- A is the gradient magnitude and B is the gradient in y direction

Question 7 1.5 / 1.5 pts

Consider the images below, which of the following operation is applied to the left image to obtain the right image?

O Aver	raging filter
○ Edg	e detection
	nt filter where lower and higher values under the mask are discarded and the values are averaged.
Unsl	harp masking

Question 8	1.5 / 1.5 pts		
Which of the following is correct for the median filter of size m by m? In all answers assume less than $\frac{m^2}{2}$ pixels under the mask are corrupted by noise.			
For the median filtering to be effective the image must have only salt or paper not both.	ise, but		
Median filter is not effective for the Gaussian noise.			
Median filter is effective when image has both salt and pepper noise.			
The computation complexity of median filtering is less than average filtering.			

Quiz Score: 10.5 out of 12