KOSHA GUIDE X - 56 - 2012

생산시스템 생산단계에서의 리스크 관리지침

2012. 11.

한국산업안전보건공단

안전보건기술지침의 개요

- 작성자 : 사단법인 한국안전학회 충북대학교 안전공학과 임현교
- 제·개정 경과
- 2012년 11월 리스크관리분야 제정위원회 심의(제정)
- 관련규격 및 자료
- NM 87117-5670, Air Force System Safety Handbook, 2000
- DHB-S-001, System Safety Handbook, 1999
- MIL-STD-882D, Standard Practice for System Safety, 1993
- 제조물책임(PL)대응 매뉴얼-전기·전자제품분야, 중소기업청, 2002
- 제조물책임(PL)대응 매뉴얼-화학제품분야, 중소기업청, 2002
- 제품안전경영 시스템 매뉴얼, 한국산업안전공단 산업안전보건연구원, 2006
- KOSHA GUIDE X-1-2011 (리스크 관리의 용어 정의에 관한 지침)
- KOSHA GUIDE X-2-2012 (리스크 관리 절차에 관한 지침)
- KOSHA GUIDE X-3-2012 (리스크 평가 절차에 관한 지침)
- KOSHA GUIDE X-4-2012 (리스크 평가기법 선정에 관한 지침)

○ 기술지침의 적용 및 문의

이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈 페이지 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.

공표일자 : 2012년 11월 29일

제 정 자 : 한국산업안전보건공단 이사장

KOSHA GUIDE X - 56 - 2012

생산시스템 생산단계에서의 리스크 관리지침

1. 목 적

이 지침은 생산시스템의 안전성을 확보하기 위한 방안으로서 생산단계와 관련된 유해위험요인을 효율적으로 감소시키고, 생산단계의 결함으로 인해 발생할수 있는 유해위험요인을 관리하는 데 목적이 있다.

2. 적용범위

이 지침은 원재료나 자재를 제조, 가공하여 제품이나 생산시스템을 생산하는 사업장에 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "생산시스템(이하 "시스템"이라 한다)"이라 함은 사용자에게 판매 후 제품생산을 위해 이용되는 산업기기 및 설비 등, 여러 요소로 구성되는 시스템을 말한다.
- (나) "추적성(Traceability)"이라 함은 생산시스템의 이력, 적용 또는 위치를 추적하기 위한 능력을 말한다.
- (2) 그 밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙, 산업안전보건기준에 관한 규칙 및 KOSHA GUIDE X-1-2011(리스크 관리의 용어 정의에 관한 지침)에서 정하는 바에 의한다.

4. 생산단계에서의 리스크 관리

생산과정을 구성하는 제조 및 가공공정은 투입된 원자재, 부자재 및 부품 등을 대상으로 직접적인 생산활동을 수행하는 과정이므로, 제품의 안전성을 직접적으로 결정짓는 중심 단계이다.

이 단계에서는 제조 및 가공 공정을 통하여 발생할 수 있는 리스크를 저감시키고 관리할 수 있도록 각 분야별 유해위험요인을 분석한 후 대안을 수립, 시행하여야 한다.

4.1 공정 유해위험요인의 분석

- (1) 각 제조 및 가공 공정이 지니고 있는 유해위험요인을 분석한다.
- (2) 유해위험요인을 분석하기 위한 주요 대상 공정을 정한다.
- (3) 공정 특성에 적합한 분석방법을 선정하여 공정 유해위험요인 분석을 실시한다. 일반적인 기법으로는 고장형태와 영향분석(Failure modes and effects analysis, FMEA) 기법이 적절하다.
- (4) 유해위험요인 분석 자료를 평가할 때에는 다음과 관련된 정보에 특히 주의 하여야 한다.
- (가) 생산시스템 사용자 및 관련 취급자의 안전 확보
- (나) 생산시스템의 안전관련 요구사항에 대한 적합성
- (다) 예방조치를 포함하는 공정 및 시스템의 특성과 경향
- (라) 원재료, 부재료 및 부품 공급자의 시스템 안전관리 지침
- (5) 유해위험요인을 분석하여 얻은 자료는 제조 및 가공공정의 리스크를 지속 적으로 관리하는 데 활용되거나, 중점관리공정을 선정하여 관리될 수 있도 록 보존되어야 한다. 이 관리 자료에는 공정 및 시스템 특성의 모니터링이 나 측정 결과로 생성된 자료도 포함된다.

4.2 제조 및 가공 공정

X - 56 - 2012

안전한 생산시스템을 제조하거나, 계약의 안전관련 요구사항들을 충족시키기 위하여, 생산 및 가공 공정에서는 다음과 같은 사항들이 적절하게 고려되어야 한다.

- (1) 생산시스템 안전관리 계획서의 작성
- (2) 생산시스템 안전 달성에 필요한 관리, 공정, 장비(검사 장비 및 시험 장비 포함), 지그·공구, 자원 및 기능의 파악과 확보
- (3) 설계, 생산공정, 설치, 사용, 검사 및 시험절차와 해당문서의 정합성 (Compatibility) 확보
- (4) 필요한 경우 새로운 계측장비의 개발을 포함하는 생산시스템 안전관리, 검 사 및 시험기법의 개발
- (5) 충분한 기간을 두고 개발될 수 있는 기능까지를 포함하여 현존하는 기술 수준을 능가하는 시스템의 안전성과 관련된 모든 측정 항목의 파악
- (6) 적절한 단계에서 적합한 검증의 확인
- (7) 주관적 요소를 포함하는 모든 특성과 요구사항에 대한 합격기준의 명시
- (8) 생산시스템 안전기록의 확인과 작성

4.3 제조 및 가공 설비

- (1) 제조 및 가공설비는 작업자와 함께 생산시스템의 안전성을 결정짓는 중요한 요소이다. 그러므로 안전한 생산시스템을 제조하기 위해서는 사전에 안전보건경영시스템과 관련된 시설, 공정 및 장비 계획서를 개발하고, 각 분야별로 전문가의 자문을 받아 안전성이 확보된 설비가 사용되어야 한다.
- (2) 생산시스템의 안전성을 높이기 위하여 제조 및 가공설비는 다음 사항들과 관련되어 평가되어야 한다.

X - 56 - 2012

- (가) 종합적인 생산시스템 안전관리 지침
- (나) 적절한 자동화
- (다) 인간공학적 요인들
- (라) 작업자의 작업수행도 및 생산 라인의 균형
- (마) 보관 및 완충재고 수준
- (바) 부가 가치 노동 및 안전성 확보 등
- (사) 레이아웃(Layout)
- (3) 사용되는 제조 및 가공설비는 자재이송 및 취급을 최소화하도록 하며, 자재 흐름을 용이하게 하여, 건물과 용지 사용을 통한 부가 가치의 증대가 최대 화되도록 한다.
- (4) 제조 및 가공에 이용되는 설비들은 생산시스템의 안전성을 확보, 유지할 수 있는 수준을 유지하여야 하며, 설비 관리 및 유지보수 활동으로 이를 보장할 수 있어야 한다.

4.4 제조방법 및 작업표준

- (1) 표준 작업방법을 문서화한다.
- (2) 제조설비의 운용자가 과오를 저지르거나 설비가 고장나더라도 시스템의 안 전성을 훼손하지 않도록 풀프루프(Fool proof) 또는 페일세이프(Fail safe) 설계를 한다.
- (3) 제조설비의 기능적 열화를 예방할 수 있도록 노후설비에 대한 안전대책을 수립한다.

X - 56 - 2012

- (4) 작업 지침서는 작업자가 수행하고 있는 업무를 방해하지 않고 필요한 시간 에 이용 가능하도록 작업장 가까운 곳에 비치한다.
- (5) 문서로 기록되어 사후에도 관리되어야 하는 공정감시 및 작업자 지침 관련 사항의 내용은 다음과 같다.
- (가) 공정 기록
- (나) 검사 및 시험실 시험 지침서
- (다) 공정 이동 전표
- (라) 시험절차서
- (마) 작업표준서
- (바) 기타 시스템의 안전성 및 품질관련 정보
- 4.5 생산공정 및 중점관리항목의 관리
 - (1) 생산시스템의 안전성 확보를 위하여 생산 및 공정관리단계에서 수행되는 모든 관리활동은 안전보건경영시스템의 다른 요구사항들과 일관성이 있어야 한다.
 - (2) 생산 프로세스의 운용 방법에 적합한 형태로 문서화되어야 하며, 이 때 참 조되어야 할 사항은 다음과 같다.
 - (가) 공정흐름도에 중요하게 표시된 공정명 및 공정번호
 - (나) 부품명 및 부품번호 또는 부품군
 - (다) 현재의 엔지니어링 수준
 - (라) 필요한 공구, 게이지 및 기타 장비

X - 56 - 2012

- (마) 자재 식별 및 폐기 지침
- (바) 고객 및 공급자가 지정한 특별 특성
- (사) 관련 엔지니어링 및 제조 규격
- (아) 검사 및 시험지침서
- (자) 대응 계획서
- (차) 개정일자 및 확인

4.5.1 중점관리공정

- (1) 공정 중에서 제조상의 결함이 발생할 가능성이 높고 생산시스템의 안전성을 확보하기 위한 조치가 곤란한 공정은 중점관리공정으로 지정하여 특별 관리하여야 한다.
- (2) 특별히 중요한 공정은 관련 장비와 인원을 포함하여 공정 운용에 대한 자격을 부여하는 등의 조치를 할 수도 있다. 이 때, 자격이 부여된 공정, 장비및 인원에 대한 기록은 유지되어야 한다.
- (3) 중점관리공정을 운용하는 작업자의 작업방법은 작업표준으로 명시되고 준수되도록 관리하여야 하며, 공정 능력의 지속적 유지를 보장하기 위하여 적절한 설비유지보수 방안이 강구되어야 한다.

4.5.2 중점관리대상품목

- (1) 공정 중에서 제조상의 결함이 발생할 가능성이 높은 원재료, 부재료 및 부품 등은 중점관리대상품목으로 정하고, 이를 철저히 관리하여야 한다.
- (2) 해당 부품에 대한 로트 관리체계 등 식별관리체계를 강화할 필요가 있을 수도 있다.

X - 56 - 2012

(3) 중점관리대상의 지정 및 관리에 대한 사항은 반드시 기록하여, 최종 사용단계에서 야기될 수 있는 안전상의 문제에 대한 근거자료로 활용한다.

4.5.3 중점관리항목

- (1) 생산시스템의 안전성에 특히 중대한 영향을 미칠 수 있는 시스템의 특성 항목은 중점관리항목으로 지정하여, 중요 공정을 경과할 때마다 특성치가 허용범위내에 유지되고 있는지 관리하여야 한다.
- (2) 중점관리항목의 지정 및 관리에 대한 사항도 반드시 기록하여, 최종 사용단계에서 야기될 수 있는 안전상의 문제에 대한 근거자료로 활용한다.

4.6 검사 및 시험장비

생산시스템의 리스크 관리를 위하여 공급자가 사용하는 검사장비, 측정장비 및 시험장비는 교정, 관리되고 유지되어야 하며, 이에 대한 절차 또한 문서화하여 유지되어야 한다.

4.6.1 교정 및 검정

- (1) 검사장비, 측정장비 및 시험장비의 교정 및 검정은 부여받은 사내 시험실, 자격을 부여받은 상업적, 독립적 시험기관, 또는 고객-승인된 정부 기관에 의해 수행되어야 한다.
- (2) 자격을 부여받은 시험실이 해당 장비를 보유하지 않을 경우, 교정 서비스는 최초장비 제조업자에 의해 수행될 수도 있다.
- (3) 검사장비, 측정장비 및 시험장비에 대해서는 다음에 대한 세부 사항이 정해 져 있어야 한다.
- (가) 장비의 형식
- (나) 고유한 식별

X - 56 - 2012

- (다) 위치
- (라) 점검 빈도
- (마) 점검 방법
- (바) 합격 판정 기준
- (사) 결과가 만족스럽지 못할 때 취해지는 조치 등
- (4) 검사장비, 측정장비 및 시험장비는 교정상태를 나타내도록 적절한 표시 또 는 승인된 식별 기록으로 식별되어야 한다.
- (5) 교정, 검사, 측정 및 시험이 수행되는 환경조건은 이 목적에 적절하다는 것이 보장되어야 한다.
- (6) 하드웨어와 소프트웨어를 포함하여 모든 검사장비, 측정장비 및 시험장비는 교정 상태를 임의로 무효화하거나 조정할 수 없도록 보관, 유지되어야 한다.

4.6.2 검사 및 시험장비 기록

- (1) 모든 게이지, 검사장비, 측정장비 및 시험장비의 교정에 관련된 기록은 유지되어야 한다. 그 기록에는 다음 사항들이 포함되어야 한다.
 - (가) 교정을 위해 접수된 시방을 벗어나는 모든 사항
 - (나) 교정 이후 시방에 적합하다는 내용
 - (다) 해당되는 경우 엔지니어링 변경에 따른 개정
- (라) 의심스런 자재 또는 시스템이 선정되었을 경우 고객에게 통지 등
- (2) 검사장비, 측정장비 및 시험장비가 교정 기준을 벗어났을 경우, 실시한 검

X - 56 - 2012

사 및 시험 결과의 유효성을 평가하고 그 내용은 문서화되어야 한다.

4.7 생산시스템 안전성 승인

4.7.1 중간 검사 및 시험

- (1) 중간검사는 생산 및 가공단계에서 안전한 생산시스템이 지속적으로 생산되고 있는지, 생산시스템의 안전성에 영향을 미치는 특성요인 및 기능들이 허용범위 내에 유지되고 있는지 확인하기 위하여 수행된다.
- (2) 중간검사는 안전보건경영시스템이나 문서화된 절차의 요구에 따라 지정된 공정에서 실시되어야 한다.
- (3) 생산시스템의 명확한 회수절차에 따라 사용될 때를 제외하고는 중간검사가 완료되거나, 필요한 보고서가 접수되어 검증될 때까지 생산시스템이 출하되 지 않도록 관리한다.
- (4) 중간검사는 생산시스템의 결함이나 이상의 탐지보다는, 사전 결함예방을 위한 공정관리 활동의 성격을 지니는 것이 바람직하다.

4.7.2 최종 검사 및 시험

- (1) 최종 검사 및 시험은 완성된 생산시스템이 안전한 시스템이라는 증거를 확 인할 수 있도록 안전보건경영시스템 또는 문서화된 절차에 따라 수행되어 야 한다.
- (2) 최종 검사 및 시험에 대하여 문서화된 절차는, 생산시스템의 구매부터 공정 내에 규정된 모든 검사와 시험이 수행되었다는 것과, 그 결과 생산 또는 가 공된 최종 시스템이 규정된 안전기준을 만족한다는 것을 확인할 수 있어야 한다.
- (3) 발견되지 않은 검사 불합격품 및 부적합품이 최종검사 또는 출하 후에 발견된 경우에는, 사용적합성을 검증받을 때까지 어떠한 품목도 사용자에 의하여 운용되지 않도록 한다.

X - 56 - 2012

4.7.3 불합격품의 처리

- (1) 검사 및 시험 과정을 통하여 발견된 불합격품 및 부적합품은 관리, 개선, 시정조치 및 문제해결 방안 등을 모색하여, 이후 안전성이 결여된 생산시스 템 생산되지 않도록 조치되어야 한다.
- (2) 불합격품의 개선 및 예방조치를 이행하기 위해서는 문서화된 절차가 수립되고 유지되어야 한다.
- (3) 불합격품 및 부적합품은 다음과 같은 방법을 염두에 두고 문서화된 절차에 따라 사후조치가 검토되어야 한다. 검토에는 다음 사항들이 포함되어야 한다.
- (가) 불채택 또는 폐기
- (나) 시스템안전성 평가 결과 안전 기준을 만족하도록 재작업
- (다) 수리 조건부 특채
- (라) 수리 없이 특채 후 모니터링
- (마) 별도의 적용을 위한 재등급 부여
- (4) 불합격품의 잠재 원인을 발견, 분석 및 개선하기 위해서는 다음과 같은 적절한 정보출처가 이용되어야 한다.
- (가) 시스템 안전에 영향을 미치는 공정 및 작업
- (나) 특채
- (다) 검사 및 시험결과
- (라) 감사결과

X - 56 - 2012

(마) 품질기록

4.8 포장

- (1) 포장은 완성된 생산시스템의 안전성을 훼손시키지 않고 소비자에게 전달하기 위한 수단이다.
- (2) 모든 생산시스템은 그 시스템의 안전성을 보장할 만큼 필요한 범위에 걸쳐 적정한 포장이 이루어져야 한다.
- (3) 포장에는 생산시스템의 적재 및 보관, 운송, 시공, 설치, 조립, 장착, 사용 또는 취급하는 모든 과정을 대상으로 하는 주의사항, 경고 라벨 등이 부착되어야 한다.
- (4) 포장·용기는 생산시스템의 안전대책이다. 이를 위하여 고려되어야 할 사항은 다음과 같다.
 - (가) 내용물의 보호기능은 충분한가?
 - ① 물리적 기능 (기밀성, 내한성, 내열성, 내습성, 내압성, 내염소성, 강도 등)
 - ② 생화학적 기능 (내약품성, 내부식성, 차광성, 내광성 등)
 - ③ 이물질 유입방지 대책 등
 - (나) 포장・용기 그 자체는 취급자에게 안전한가?
 - (다) 적절한 표시를 하고 있는가?
 - ① 내용물의 규격・기준
 - ② 내용물의 유해위험요인과 관련한 안전에 관한 주의사항
 - ③ 포장을 열 때의 주의사항

X - 56 - 2012

- ④ 수송·보관시의 주의사항 등
- (라) 포장에 관한 법률·규격 등은 준수하고 있는가?

4.9 보관

완성된 생산시스템은 보관 중에 환경적 영향으로 인하여 안전상의 결함이 발생되지 않도록 관리되어야 한다.

4.10 출하

출하된 생산시스템은 운송 중의 충격으로 인하여 그 시스템의 안전성에 영향을 받지 않도록 조치되어야 한다. 이 경우 시스템자체 뿐만 아니라 포장 위에도 충격을 가하지 말라는 의미의 문구나 픽토그램을 제시하여 충격에 민감한 시스템 임을 취급자나 사용자가 쉽게 알 수 있도록 조치되어야 한다.

4.10.1 출하검사

출하검사에서 발생하는 오류는 사용자에게 직접적인 피해를 줄 수 있으므로 검사일시, 검사방법, 검사자, 검사기록 등의 관계 서류는 반드시 보관되어야 한다. 출하검사시 유의할 사항은 다음과 같다.

- (1) 출하검사서에 따라 안전검사를 실시한다.
- (2) 각종 검사 데이터를 확인한다.
- (3) 계약에 관한 안전사항을 확인한다.
- (4) 출하지시서에 따라 출하내용을 확인한다.
- (5) 검사 기록을 정리하여 보관한다.

4.10.2 출하지시서

X - 56 - 2012

출하지시서에는 생산시스템의 명칭, 수량, 제조일자, 출하일 등을 기재하도록 하여 출하 후에 문제가 발생할 경우 추적성 관리의 자료로 활용되도록 한다. 출 하지시서에 포함되어야 할 내용은 다음과 같다.

- (1) 취급설명서와 구성품은 당해 시스템과 일치하는가?
- (2) 제조번호, 제조일자 등의 표시는 바른가?
- (3) 경고표시는 바르게 부착되어 있는가?
- (4) 포장상태는 양호한가?

4.11 운송

생산시스템은 운송하는 과정 중에서 안전상의 문제가 야기되지 않도록 조치되어야 한다.

5. 추적성 관리

5.1 추적성 관리의 의의

사용자로부터 불만사항이나 클레임이 발생하거나 사고가 발생하였을 경우, 같은 시기에 생산된 생산시스템을 추적하거나 원인을 구명하기 위하여, 모든 생산시스템은 식별될 수 있도록 설계에서부터 생산, 판매 및 설치의 모든 단계를 통하여 적절한 수단이 강구되어야 하고, 문서화된 절차가 수립되고 유지되어야 한다. 추적성 관리를 위하여 다음과 같은 사항들이 고려되어야 한다.

- (1) 설계에서 생산, 공급까지의 식별에 관한 로트 크기, 표시방법 등의 기준에 대하여 절차가 수립되고 유지되어야 한다.
- (2) 추적성은 무엇에 대하여 어디까지 추적이 가능한 것인지 기업이 자체적으로 규정해 두어야 한다.
- (3) 식별표시의 지속성이 확보되어야 하고, 고유 식별 표시에 의한 생산시스템

X - 56 - 2012

추적성이 확보되어야 한다.

5.2 식별 표시

생산시스템은 추적성이 요구될 경우 시스템의 품명, 수량, 로트 번호, 검사 합격유무 등이 식별될 수 있도록 개별 시스템이나 무더기의 포장 단위별로 고유한 식별 표기를 하고, 가능한 수단을 이용하여 관리되어야 한다. 이를 위하여 문서화된 절차가 수립되고 유지되어야 한다. 생산시스템의 식별표시는 다음 사항들이 만족되어야 한다.

- (1) 판독이 가능해야 한다.
- (2) 생산시스템의 성능 및 수명에 영향을 미치지 않아야 한다.
- (3) 분리되는 생산시스템은 각각에 대하여 식별 표시가 되어야 한다.
- (4) 표면처리나 도장에 의하여 지워지지 않아야 한다.
- (5) 식별표시의 손상이나 노화 및 외부 노출로 인하여 변질이 되는 것에 대비하여 식별기록의 유지 또는 교체 방안이 수립되어야 한다.