Factorization in Integral Domains II

1 Statement of the main theorem

Throughout these notes, unless otherwise specified, R is a UFD with field of quotients F. The main examples will be $R = \mathbb{Z}$, $F = \mathbb{Q}$, and R = K[y] for a field K and an indeterminate (variable) y, with F = K(y).

The basic example of the type of result we have in mind is the following (often done in high school math courses):

Theorem 1.1 (Rational roots test). Let $f(x) = a_n x^n + \cdots + a_0 \in \mathbb{Z}[x]$ be a polynomial of degree $n \geq 1$ with integer coefficients and nonzero constant term a_0 , and let $p/q \in \mathbb{Q}$ be a rational root of f(x) such that the fraction p/q is in lowest terms, i.e. gcd(p,q) = 1. Then p divides the constant term a_0 and q divides the leading coefficient a_n .

Proof. Since p/q is a root of f(x),

$$0 = f(p/q) = a_n \left(\frac{p}{q}\right)^n + a_{n-1} \left(\frac{p}{q}\right)^{n-1} + \dots + a_0.$$

Clearing denominators by multiplying both sides by q^n gives

$$a_n p^n + a_{n-1} p^{n-1} q + \dots + a_0 q^n = 0.$$

Moving the last term over to the right hand side gives

$$-a_0q^n = a_np^n + a_{n-1}p^{n-1}q + \dots + a_1pq^{n-1}$$

= $p(a_np^{n-1} + a_{n-1}p^{n-2}q + \dots + a_1q^{n-1}).$

Hence $p|a_0q^n$. Since p and q are relatively prime, p and q^n are relatively prime, and thus $p|a_0$. The argument that $q|a_n$ is similar.

Clearly, the same statement is true (with the same proof) in case R is any UFD with field of quotients K. Our main goal in these notes will be to prove the following, which as we shall see is a generalization of the rational roots test:

Theorem 1.2. Let $f(x) \in R[x]$ be a polynomial of degree $n \ge 1$. Then f(x) is a product of two polynomials in F[x] of degrees d and e respectively with 0 < d, e < n if and only if there exist polynomials g(x), $h(x) \in R[x]$ of degrees d and e respectively with 0 < d, e < n such that f(x) = g(x)h(x).

We will prove the theorem later. Here we just make a few remarks.

- **Remark 1.3.** (1) Clearly, if there exist polynomials $g(x), h(x) \in R[x]$ of degrees d and e respectively with 0 < d, e < n such that f(x) = g(x)h(x), then the same is true in F[x]. Hence the \iff direction of the theorem is trivial.
- (2) Since a (nonconstant) polynomial in F[x] is reducible \iff it is a product of two polynomials of smaller degrees, we see that we have shown:
- **Corollary 1.4.** Let $f(x) \in R[x]$ be a polynomial of degree $n \ge 1$. If there do not exist polynomials $g(x), h(x) \in R[x]$ of degrees d and e respectively with 0 < d, e < n such that f(x) = g(x)h(x), then f(x) is irreducible in F[x]. \square
- (3) Conversely, if $f(x) \in R[x]$ is irreducible in F[x] but reducible in R[x], then since f(x) cannot factor as a product of polynomials of smaller degrees in R[x], it must be the case that f(x) = cg(x), where $c \in R$ and c is not a unit. A typical example is the polynomial $11x^2 22 \in \mathbb{Z}[x]$, which is irreducible in $\mathbb{Q}[x]$ since it is a nonzero rational number times $x^2 2$. But in $\mathbb{Z}[x]$, $11x^2 22 = 11(x^2 2)$ and this is a nontrivial factorization since neither factor is a unit in $\mathbb{Z}[x]$.
- (4) The relation of Theorem 1.2 to the Rational Roots Test is the following: the proof of Theorem 1.2 will show that, if p/q is a root of f(x) in lowest terms, so that x-p/q divides f(x) in $\mathbb{Q}[x]$, then in fact qx-p divides f(x) in $\mathbb{Z}[x]$, and hence q divides the leading coefficient and p divides the constant term.

2 Tests for irreducibility

We now explain how Theorem 1.2 above (or more precisely Corollary 1.4) leads to tests for irreducibility in F[x]. Applying these tests is a little like applying tests for convergence in one variable calculus: it is an art, not a science, to see which test (if any) will work, and sometimes more than one test will do the job. We begin with some notation:

Let R be any ring, not necessarily a UFD or even an integral domain, and let I be an ideal in R. Then we have the homomorphism $\pi: R \to R/I$

defined by $\pi(a) = a + I$ ("reduction mod I"). For brevity, we denote the image $\pi(a)$ of the element $a \in R$, i.e. the coset a + I, by \bar{a} . Similarly, there is a homomorphism, which we will also denote by π , from R[x] to (R/I)[x], defined as follows: if $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$, then

$$\pi(f(x)) = \sum_{i=0}^{n} \bar{a}_i x^i \in (R/I)[x].$$

Again for the sake of brevity, we abbreviate $\pi(f(x))$ by $\bar{f}(x)$ and refer to it as the "reduction of f(x) mod I." The statement that π is a homomorphism means that $\overline{fg}(x) = \bar{f}(x)\bar{g}(x)$. Note that $\bar{f}(x) = 0 \iff$ all of the coefficients of f lie in I. Furthermore, if $f(x) = \sum_{i=0}^{n} a_i x^i$ has degree n, then either deg $\bar{f} \leq n$ or $\bar{f}(x) = 0$, and deg $\bar{f} = n \iff$ the leading coefficient a_n does not lie in I. We also have:

Lemma 2.1. Let R be an integral domain and let $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ with $a_n \notin I$. If f(x) = g(x)h(x) with $\deg g = d$ and $\deg h = e$, then $\deg \bar{g} = d = \deg g$ and $\deg \bar{h} = e = \deg h$.

Proof. Since R is an integral domain, $n = \deg f = \deg g + \deg h = d + e$. Moreover, $\deg \bar{g} \leq d$ and $\deg \bar{h} \leq e$. But

$$d+e=n=\deg f=\deg \bar f=\deg(\bar g\bar h)\leq\deg \bar g+\deg \bar h\leq d+e.$$

The only way that equality can hold at the ends is if all inequalities that arise are actually equalities. In particular we must have $\deg \bar{g} = d$ and $\deg \bar{h} = e$.

Theorem 2.2. Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in R[x]$ be a polynomial of degree $n \ge 1$ and let I be an ideal in R. Suppose that $a_n \notin I$. If $\bar{f}(x)$ is not a product of two polynomials in (R/I)[x] of degrees d and e respectively with 0 < d, e < n, then f(x) is irreducible in F[x].

Proof. Suppose instead that f(x) = g(x)h(x), where $\deg g = d < n$ and $\deg h = e < n$. Then $\bar{f}(x) = \bar{g}(x)\bar{h}(x)$, where, by Lemma 2, $\deg \bar{g} = d = \deg g$ and $\deg \bar{h} = e = \deg h$. But this contradicts the assumption of the theorem.

Remark 2.3. (1) Typically we will apply Theorem 2.2 in the case where I is a maximal ideal and hence R/I is a field, for example $R = \mathbb{Z}$ and I = (p) where p is prime. In this case, the theorem says that, if the leading coefficient $a_n \notin I$ and $\bar{f}(x)$ is irreducible in (R/I)[x], then f(x) is irreducible in F[x].

For example, it is easy to check that $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{F}_2[x]$: it has no roots in \mathbb{F}_2 , and so would have to be a product of two irreducible degree 2 polynomials in $\mathbb{F}_2[x]$. But there is only one irreducible degree 2 polynomial in $\mathbb{F}_2[x]$, namely $x^2 + x + 1$, so that we would have to have $(x^2 + x + 1)^2 = x^4 + x^3 + x^2 + x + 1$. Since the characteristic of \mathbb{F}_2 is 2,

$$(x^2 + x + 1)^2 = x^4 + x^2 + 1 \neq x^4 + x^3 + x^2 + x + 1.$$

Hence $x^4 + x^3 + x^2 + x + 1$ is irreducible in $\mathbb{F}_2[x]$. Then, for example,

$$117x^4 - 1235x^3 + 39x^2 + 333x - 5$$

is irreducible in $\mathbb{Q}[x]$, since it is a polynomial with integer coefficients whose reduction mod 2 is irreducible.

- (2) To see why we need to make some assumptions about the leading coefficient of f(x), or equivalently that $\deg \bar{f}(x) = \deg f(x)$, consider the polynomial $f(x) = (2x+1)(3x+1) = 6x^2 + 5x + 1$. Taking I = (3), we see that $\bar{f}(x) = 2x + 1$ is irreducible in $\mathbb{F}_3[x]$, since it is linear. But clearly f(x) is reducible in $\mathbb{Z}[x]$ and in $\mathbb{Q}[x]$. The problem is that, mod 3, the factor 3x+1 has become a unit and so does not contribute to the factorization of the reduction mod 3.
- (3) By (1) above, if $f(x) \in \mathbb{Z}[x]$, say with f(x) monic, and if there exists a prime p such that the reduction mod p of f(x) is irreducible in $\mathbb{F}_p[x]$, then f(x) is irreducible in $\mathbb{Q}[x]$. One can ask if, conversely, f(x) is irreducible in $\mathbb{Q}[x]$, then does there always exist a prime p such that the reduction mod p of f(x) is irreducible in $\mathbb{F}_p[x]$? Perhaps somewhat surprisingly, the answer is no: there exist monic polynomials $f(x) \in \mathbb{Z}[x]$ such that f(x) is irreducible in $\mathbb{Q}[x]$ but such that the reduction mod p of f(x) is reducible in $\mathbb{F}_p[x]$ for every prime p. An example is given on the homework. Nevertheless, reducing mod p is a basic tool for studying the irreducibility of polynomials and there is an effective procedure (which can be implemented on a computer) for deciding when a polynomial $f(x) \in \mathbb{Z}[x]$ is irreducible in $\mathbb{Q}[x]$.

The next method is the so-called Eisenstein criterion:

Theorem 2.4 (Eisenstein criterion). Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0 \in R[x]$ be a polynomial of degree $n \geq 1$. Let M be a maximal ideal in R. Suppose that

- 1. The leading coefficient a_n of f(x) does not lie in M;
- 2. For $i < n, a_i \in M$;

3. $a_0 \notin M^2$, in particular there do not exist $b, c \in M$ such that $a_0 = bc$.

Then f(x) is not the product of two polynomials of strictly smaller degree in R[x] and hence f(x) is irreducible as an element of F[x].

Proof. Suppose that f(x) = g(x)h(x) where where $\deg g = d < n$ and $\deg h = e < n$. Then $\bar{f}(x) = \bar{g}(x)\bar{h}(x)$, where, by Lemma 2.1, $\deg \bar{g} = d = \deg g$ and $\deg \bar{h} = e = \deg h$. But $\bar{f}(x) = \bar{a}_n x^n$. so we must have $\bar{g}(x) = r_1 x^d$ and $\bar{h}(x) = r_2 x^e$ for some $r_1, r_2 \in R/M$. Thus $g(x) = b_d x^d + \cdots + b_0$ and $h(x) = c_e x^e + \cdots + c_0$, with $b_i, c_j \in M$ for i < d and j < e. In particular, since d > 0 and e > 0, both of the constant terms $b_0, c_0 \in M$. But then the constant term of f(x) = g(x)h(x) is $b_0c_0 \in M^2$, contradicting (iii).

Remark 2.5. (1) A very similar proof works if we just assume that M is a prime ideal.

(2) For $R = \mathbb{Z}$ and I = (p), where p is a prime number, the conditions read: p does not divide a_n , p divides a_i for all i < n, and p^2 does not divide a_0 .

Example 2.6. Using the Eisenstein criterion with p = 2, we see that $x^n - 2$ is irreducible for all n > 0. More generally, if p is a prime number, then $x^n - p$ is irreducible for all n > 0, as is $x^n - pq$ where q is any integer such that p does not divide q.

For another example,

$$f(x) = 55x^5 - 45x^4 + 105x^3 + 900x^2 - 405x + 75$$

satisfies the Eisenstein criterion for p = 3, hence is irreducible in $\mathbb{Q}[x]$. Note that f(x) is **not** irreducible in $\mathbb{Z}[x]$, since

$$f(x) = 5(11x^5 - 9x^4 + 21x^3 + 180x^2 - 81x + 15).$$

3 Cyclotomic polynomials

Recall that an n^{th} root of unity ζ in a field F is an element $\zeta \in F$ such that $\zeta^n = 1$, i.e. a root of the polynomial $x^n - 1$ in F. As we have seen, the set of all such is a cyclic group of order dividing n. For example, if $F = \mathbb{C}$, the group μ_n of n^{th} roots of unity is a cyclic subgroup of \mathbb{C}^* (under multiplication) of order n, and a generator is $e^{2\pi i/n}$.

Since 1 is always an n^{th} root of unity, x-1 divides x^n-1 , and the set of nontrivial n^{th} roots of unity is the set of roots of $\frac{x^n-1}{x-1}=x^{n-1}+x^{n-2}+$

 $\cdots + x + 1$ (geometric series). In general, this polynomial is reducible. For example, with n = 4, and $F = \mathbb{Q}$, say,

$$x^4 - 1 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1).$$

Here, the root 1 of x-1 has order 1, the root -1 of x+1 has order 2, and the two roots $\pm i$ of x^2+1 have order 4. For another example,

$$x^{6} - 1 = (x^{3} - 1)(x^{3} + 1) = (x - 1)(x^{2} + x + 1)(x + 1)(x^{2} - x + 1).$$

As before 1 has order 1 in μ_6 , -1 has order 2, the two roots of $x^2 + x + 1$ have order 3, and the two roots of $x^2 - x + 1$ have order 6. Note that, if d|n, then $\mu_d \leq \mu_n$ and the roots of $x^d - 1$ are roots of $x^n - 1$. In fact, if n = kd, then as before

$$x^{n} - 1 = x^{kd} - 1 = (x^{d} - 1)(x^{k(d-1)} + x^{k(d-2)} + \dots + x^{k} + 1).$$

In general, we refer to an element ζ of μ_n of order n as a primitive n^{th} root of unity. Since a primitive n^{th} root of unity is the same thing as a generator of μ_n , there are exactly $\varphi(n)$ primitive n^{th} roots of unity; explicitly, they are exactly of the form $e^{2\pi i a/n}$, where $0 \le a \le n-1$ and $\gcd(a,n)=1$.

In case n is prime, we have the following:

Theorem 3.1. Let p be a prime number. Then the cyclotomic polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible in $\mathbb{Q}[x]$.

Proof. The trick is to consider, not $\Phi_p(x)$, but rather $\Phi_p(x+1)$. Clearly, $\Phi_p(x)$ is irreducible if and only if $\Phi_p(x+1)$ is irreducible (because a factorization $\Phi_p(x) = g(x)h(x)$ gives a factorization $\Phi_p(x+1) = g(x+1)h(x+1)$, and conversely a factorization $\Phi_p(x+1) = a(x)b(x)$ gives a factorization $\Phi_p(x) = a(x-1)b(x-1)$.) To see that $\Phi_p(x+1)$ is irreducible, use:

$$\Phi_p(x+1) = \frac{(x+1)^p - 1}{(x+1) - 1} = \frac{x^p + \binom{p}{1}x^{p-1} + \binom{p}{2}x^{p-2} + \dots + \binom{p}{p-1}x + 1 - 1}{x}$$
$$= x^{p-1} + \binom{p}{1}x^{p-2} + \binom{p}{2}x^{p-3} + \dots + \binom{p}{p-1}.$$

As we have seen (homework on the Frobenius homomorphism), if p is prime, p divides each binomial coefficient $\binom{p}{k}$ for $1 \le k \le p-1$, but p^2 does

not divide $\binom{p}{p-1} = p$. Hence $\Phi_p(x+1)$ satisfies the hypotheses of the Eisenstein criterion.

In case n is not necessarily prime, we define the n^{th} cyclotomic polynomial Φ_n by:

$$\Phi_n(x) = \prod_{\substack{\zeta \in \mu_n \\ \zeta \text{ is primitive}}} (x - \zeta).$$

For example, $\Phi_1(x)=x-1$, $\Phi_4(x)=x^2+1$, and $\Phi_6(x)=x^2-x+1$. If p is a prime, then every p^{th} root of unity is primitive except for 1, and hence, consistent with our previous notation, $\Phi_p(x)=\frac{x^p-1}{x-1}=x^{p-1}+x^{p-2}+\cdots+x+1$. Clearly, $\deg \Phi_n(x)=\varphi(n)$, and

$$x^n - 1 = \prod_{d|n} \Phi_d(x),$$

reflecting the fact that $\sum_{d|n} \varphi(d) = n$. We then have the following theorem, which we shall not prove:

Theorem 3.2. The polynomial $\Phi_n(x) \in \mathbb{Z}[x]$ and $\Phi_n(x)$ is irreducible in $\mathbb{Q}[x]$.

4 Proofs

We turn now to Theorem 1.2, discussed earlier and give its proof. Recall the following basic property of a UFD:

Lemma 4.1. Let $r \in R$ with $r \neq 0$. Then r is an irreducible element of R \iff the principal ideal (r) is a prime ideal of R.

Proof. \implies : Note that $(r) \neq R$ since r is not a unit. If $st \in (r)$, then r|st, say st = rx. Factoring s, t and x into products of irreducibles, we see that some irreducible factor of s or t must be an associate of r, so that r|s or r|t. Thus either $s \in (r)$ or $t \in (r)$, so that (r) is a prime ideal.

 \Leftarrow : Note that r is not a unit since (r) is a prime ideal, hence $\neq R$. Suppose that r=st is a factorization of r. Thus $st \in (r)$, and since (r) is a prime ideal one of the factors, say $s \in (r)$. Then s=ru and hence r=rut. Canceling r, which is nonzero by hypothesis, gives 1=ut. Thus t is a unit. So r is irreducible.

For a UFD R, we have already defined the gcd of two elements $r, s \in R$, not both 0, and have noted that it always exists and is unique up to multiplying by a unit. More generally, if $r_1, \ldots, r_n \in R$, where the r_i are not all 0, then we define the gcd of r_1, \ldots, r_n to be an element d of R such that $d|r_i$ for all i, and if e is any other element of R such that $e|r_i$ for all i, then e|d. As in the case i=2, the gcd of r_1, \ldots, r_n exists and is unique up to multiplication by a unit. Since not all of the r_i are 0, a gcd of the r_i is also nonzero. We denote a gcd of r_1, \ldots, r_n by $\gcd(r_1, \ldots, r_n)$. In fact, we can define the gcd of n elements inductively: once the gcd of n-1 nonzero elements has been defined, if $r_1, \ldots, r_n \in R$ are such that not all of r_1, \ldots, r_{n-1} are 0, and $d_{n-1} = \gcd(r_1, \ldots, r_{n-1})$, then it is easy to see that $\gcd(r_1, \ldots, r_n) = \gcd(d_{n-1}, r_n)$. Similarly, we say that $r_1, \ldots, r_n \in R$ are relatively prime if $\gcd(r_1, \ldots, r_n) = 1$, or equivalently if $d|r_i$ for all $i \Longrightarrow d$ is a unit. There are the following straightforward properties of a gcd:

Lemma 4.2. Let R be a UFD and let $r_1, \ldots, r_n \in R$, not all 0.

(i) If d is a gcd of r_1, \ldots, r_n , then $r_1/d, \ldots, r_n/d$ are relatively prime, i.e.

$$\gcd(r_1/d,\ldots,r_n/d)=1.$$

(ii) If $c \in R$, then

$$\gcd(cr_1,\ldots,cr_n)=c\gcd(r_1,\ldots,r_n).$$

Proof. To see (i), if $e|(r_i/d)$ for every i, then $de|r_i$ for every i, hence de divides d, so that e divides 1 and hence e is a unit. To see (ii), if d is a gcd of r_1, \ldots, r_n , then clearly cd divides cr_i for every i and hence cd divides $d' = \gcd(cr_1, \ldots, cr_n)$. Next, since $c|cr_i$ for every i, c divides $d' = \gcd(cr_1, \ldots, cr_n)$ and hence d' = ce for some $e \in R$. Since ce divides cr_i , e divides r_i for every i, and hence e|d. Thus d' = ce divides cd, and since cd divides d', d' = cd up to multiplication by a unit.

Definition 4.3. Let $f(x) = \sum_{i=0}^{n} a_i x^i \in R[x]$ with $f(x) \neq 0$. Then the content c(f) is the gcd of the coefficients of f(x):

$$c(f) = \gcd(a_n, \dots, a_0).$$

It is well defined up to a unit. The polynomial f(x) is a primitive polynomial \iff the coefficients of f(x) are relatively prime \iff c(f) is a unit. By Lemma 4.2(i), every nonzero $f(x) \in R[x]$ is of the form $c(f)f_0(x)$, where $f_0(x) \in R[x]$ is primitive. If $r \in R$ and $f(x) \in R[x]$ with $f(x) \neq 0$, $r \neq 0$, then c(rf) = rc(f), by Lemma 4.2(ii).

We now recall the statement of Theorem 1.2:

Let $f(x) \in R[x]$ be a polynomial of degree $n \ge 1$. Then f(x) is a product of two polynomials in F[x] of degrees d and e respectively with 0 < d, e < n if and only if there exist polynomials $g(x), h(x) \in R[x]$ of degrees d and e respectively with 0 < d, e < n such that f(x) = g(x)h(x).

As we noted earlier, the \iff direction is trivial. The proof of the \implies direction is based on the following:

Lemma 4.4. Suppose that f(x) and g(x) are two primitive polynomials in R[x], and that there exists a nonzero rational number $\alpha \in F$ such that $f(x) = \alpha g(x)$. Then $\alpha \in R$ and α is a unit, i.e. $\alpha \in R^*$.

Proof. Write $\alpha = r/s$, with $r, s \in R$. Then sf(x) = rg(x). Thus c(sf) = sc(f) = s up to multiplying by a unit in R. Likewise c(rg) = r up to multiplying by a unit in R. Since sf(x) = rg(x) and content is well-defined up to multiplying by a unit in R, r = us for some $u \in R^*$ and hence $r/s = \alpha = u$ is an element of R^* .

Lemma 4.5. Let $f(x) \in F[x]$ with $f(x) \neq 0$. Then there exists an $\alpha \in F^*$ such that $\alpha f(x) \in R[x]$ and $\alpha f(x)$ is primitive.

Proof. Write $f(x) = \sum_{i=0}^{n} (r_i/s_i)x^i$, where the $r_i, s_i \in R$ and, for all i, $s_i \neq 0$. If $s = s_0 \cdots s_n$, then $sf(x) \in R[x]$, so we can write $sf(x) = cf_0(x)$, where $f_0(x) \in R[x]$ and $f_0(x)$ is primitive. Then set $\alpha = s/c$, so that $\alpha f(x) = f_0(x)$, a primitive polynomial in R[x] as desired.

Lemma 4.6 (Gauss Lemma). Let $f(x), g(x) \in R[x]$ be two primitive polynomials. Then f(x)g(x) is also primitive.

Proof. If f(x)g(x) is not primitive, then there is a irreducible r which divides all of the coefficients of f(x)g(x). Consider the natural homomorphism from R[x] to (R/(r))[x], and as usual let the image of a polynomial $\underline{p}(x) \in R[x]$, i.e. the reduction of $p(x) \mod (r)$, be denoted by $\overline{p}(x)$. Thus, $\overline{(fg)}(x) = 0$. But, by hypothesis, since f(x) and g(x) are primitive, $\overline{f}(x)$ and $\overline{g}(x)$ are both nonzero. Since (R/(r))[x] is an integral domain, by Lemma 1, the product $\overline{f}(x)\overline{g}(x) = \overline{(fg)}(x)$ is also nonzero, a contradiction. Hence f(x)g(x) is primitive.

We just leave the following corollary of Lemma 4.5 as an exercise:

Corollary 4.7. Let $f(x), g(x) \in R[x]$ be two nonzero polynomials. Then c(fg) = c(f)c(g).

Completion of the proof of Theorem 1.2. We may as well assume that f(x) is primitive to begin with $(f(x) = cf_0(x) \text{ factors in } F[x] \Longrightarrow f_0(x)$ also factors in F[x], and a factorization of $f_0(x) = g(x)h(x)$ in R[x] gives one for f(x) as (cg(x))h(x), say). Suppose that f(x) is primitive and is a product of two polynomials $g_1(x), h_1(x)$ in F[x] of degrees d, e < n. Then, by Lemma 4.5, there exist $\alpha, \beta \in F^*$ such that $\alpha g_1(x) = g(x) \in R[x]$ and $\beta h_1(x) = h(x) \in R[x]$, where g(x) and h(x) are primitive. Clearly, deg $g(x) = \deg g_1(x)$ and deg $h(x) = \deg h_1(x)$. Then $\alpha \beta g_1(x)h_1(x) = (\alpha \beta)f(x) = g(x)h(x)$. By the Gauss Lemma, g(x)h(x) is primitive, and f(x) was primitive by assumption. By Lemma 4.4, $\alpha \beta \in R$ and is a unit, say $\alpha \beta = u \in R^*$. Thus $f(x) = u^{-1}g(x)h(x)$. Renaming $u^{-1}g(x)$ by g(x) gives a factorization of f(x) in R[x] as claimed.

The proof of Theorem 1.2 actually shows the following:

Corollary 4.8. Let R be a UFD with quotient field F and let $f(x) \in R[x]$ be a primitive polynomial. Then f(x) is irreducible in $F[x] \iff f(x)$ is irreducible in R[x].

Proof. \Longrightarrow : If f(x) is irreducible in F[x], then a factorization in R[x] would have to be of the form f(x) = rg(x). Then c(f) = rc(g), and, since f(x) is primitive, c(f) is a unit. Hence r is a unit as well. Thus f(x) is irreducible in R[x].

 \Leftarrow : Conversely, if f(x) is reducible in F[x], then Theorem 1.2 implies that f(x) is reducible in R[x].

Very similar ideas can be used to prove the following:

Theorem 4.9. Let R be a UFD with quotient field F. Then the ring R[x] is a UFD. In fact, the irreducibles in R[x] are exactly the $r \in R$ which are irreducible, and the primitive polynomials $f(x) \in R[x]$ such that f(x) is an irreducible polynomial in F[x].

Proof. There are three steps:

Step I: We claim that, if r is an irreducible element of R, then r is irreducible in R[x] and that, if $f(x) \in R[x]$ is a primitive polynomial which is irreducible in F[x], then f(x) is irreducible in R[x]. In other words, the elements described in the last sentence of the theorem are in fact irreducible. Clearly, if r is an irreducible element of R, then if r factors as g(x)h(x), then deg $g = \deg h = 0$, i.e. g(x) = s and h(x) = t are elements of the subring R of R[x]. Since r is irreducible in R, one of s, t is a unit in R and hence in R[x]. Thus r is irreducible in R[x]. Likewise, if $f(x) \in R[x]$ is a primitive polynomial

such that f(x) is an irreducible polynomial in F[x], then f(x) is irreducible in R[x] by Corollary 4.8.

Step II: We claim that every polynomial in R[x] which is not zero or a unit in R[x] (hence a unit in R) can be factored into a product of the elements listed in Step I. In fact, if $f(x) \in R[x]$ is not 0 or a unit, we can write $f(x) = c(f)f_0(x)$, where $c(f) \in R$ and $f_0(x)$ is primitive, and either c(f) is not a unit or $\deg f_0(x) \geq 1$. If c(f) is not a unit, it can be factored into a product of irreducibles in R. If $\deg f_0(x) \geq 1$, the $f_0(x)$ can be factored in F[x] into a product of irreducibles: $f_0(x) = g_1(x) \cdot g_k(x)$, where the $g_i(x) \in F[x]$ are irreducible. By Lemma 4.5, for each i there exists an $\alpha_i \in F^*$ such that $\alpha_i g_i(x) = h_i(x) \in R[x]$ and such that $h_i(x)$ is primitive. By the Gauss Lemma, the product $h_1(x) \cdots h_k(x)$ is also primitive. Then

$$(\alpha_1 \cdots \alpha_k)g_1(x) \cdots g_k(x) = (\alpha_1 \cdots \alpha_k)f_0(x) = h_1(x) \cdots h_k(x).$$

Since both $h_1(x) \cdots h_k(x)$ and $f_0(x)$ are primitive, $\alpha_1 \cdots \alpha_k \in R$ and $\alpha_1 \cdots \alpha_k$ is a unit, by Lemma 4.4. Absorbing this factor into h_1 , say, we see that $f_0(x)$ is a product of primitive polynomials in R[x].

Step III: Finally, we claim that the factorization is unique up to units. Suppose then that

$$f(x) = r_1 \cdots r_a g_1(x) \cdots g_k(x) = s_1 \cdots s_b h_1(x) \cdots h_\ell(x),$$

where the r_i and s_j are irreducible elements of R and the g_i, h_j are irreducible primitive polynomials in R[x]. Then $g_1(x)\cdots g_k(x)$ and $h_1(x)\cdots h_\ell(x)$ are both primitive, by the Gauss Lemma (Lemma 4.6). Hence c(f), which is well-defined up to a unit, is equal to $r_1\cdots r_a$ and also to $s_1\cdots s_b$, i.e. $r_1\cdots r_a=us_1\cdots s_b$ for some unit $u\in R^*$. By unique factorization in R, a=b, and, after a permutation of the s_i, r_i and s_i are associates. Next, we consider the two factorizations of f(x) in F[x], and use the fact that the g_i, h_j are irreducible in F[x], whereas the r_i, s_j are units. Unique factorization in F[x] implies that $k=\ell$ and that, after a permutation of the h_i , for every i there exists a unit in F[x], i.e. an element $\alpha_i \in F^*$, such that $g_i(x) = \alpha_i h_i(x)$. Since both g_i and h_i are primitive polynomials in R[x], Lemma 4.4 implies that $\alpha_i \in R^*$ for every i, in other words that g_i and h_i are associates in R[x]. Hence the two factorizations of f(x) are unique up to order and units. \square

Corollary 4.10. Let R be a UFD. Then the ring $R[x_1, ..., x_n]$ is a UFD. In particular, $\mathbb{Z}[x_1, ..., x_n]$ and $F[x_1, ..., x_n]$, where F is a field, are UFD's.

Proof. This is immediate from Theorem 4.9 by induction. \Box

5 Algebraic curves

We now discuss a special case which is relevant for algebraic geometry. Here R = K[y] for some field K and hence F = K(y). Thus R[x] = K[x,y]. In studying geometry, we often assume that K is algebraically closed, for example $K = \mathbb{C}$. For questions related to number theory we often take $K = \mathbb{Q}$. By Theorem 4.9, K[x,y] is a UFD. A plane algebraic curve is a subset $K = \mathbb{C}$ of $K^2 = K \times K$, often written as K(y), defined by the vanishing of a polynomial K(y) is a UFD.

$$C = V(f) = \{(a, b) \in K^2 : f(a, b) = 0\}.$$

This situation is familiar from one variable calculus, where we take $K = \mathbb{R}$ and view f(x,y) = 0 as defining y "implicitly" as a function of x. For example, the function $y = \sqrt{1-x^2}$ is implicitly defined by the polynomial $f(x,y) = x^2 + y^2 - 1$. A function y which can be implicitly so defined is called a algebraic function. In general, however, the equation f(x,y) = 0 defines many different functions, at least locally: for example, $f(x,y) = x^2 + y^2 - 1$ also defines the function $y = -\sqrt{1-x^2}$. Over \mathbb{C} , or fields other than \mathbb{R} , it is usually impossible to sort out these many different functions, and it is best to work with the geometric object C.

If f(x,y) is irreducible in K[x,y], we call C = V(f) an irreducible plane curve. Since K[x,y] is a UFD, an arbitrary f(x,y) can be factored into its irreducible factors: $f(x,y) = f_1(x,y) \cdots f_n(x,y)$, where the $f_i(x,y)$ are irreducible elements of K[x,y]. It is easy to see from the definition that

$$C = V(f) = V(f_1) \cup \cdots \cup V(f_n) = C_1 \cup \cdots \cup C_n,$$

where $C_i = V(f_i)$ is defined by the vanishing of the factor $f_i(x, y)$. We call the C_i the irreducible components of C. Thus, the irreducible plane curves are the basic building blocks for all plane curves and we want to be able to decide if a given polynomial $f(x, y) \in K[x, y]$ is irreducible. Restating Theorem 4.9 gives:

Theorem 5.1. A polynomial $f(x,y) \in K[x,y]$ is irreducible $\iff f(x,y)$ is primitive in K[y][x] (i.e. writing f(x,y) as a polynomial $a_n(y)x^n + \cdots + a_0(y)$ in x whose coefficients are polynomials in y, the polynomials $a_n(y), \ldots, a_0(y)$ are relatively prime) and f(x,y) does not factor as a product of two polynomials of strictly smaller degrees in K(y)[x].

Example 5.2. (1) Let $f(x,y) = x^2 - g(y)$, where g(y) is a polynomial in y which is not a perfect square in K[y], for example any polynomial which

has at least one non-multiple root. We claim that f(x,y) is irreducible in K[x,y]. Since it is clearly primitive as an element of K[y][x] (the coefficient of x^2 is 1), it suffices to prove that f(x,y) is irreducible as an element of K(y)[x]. Since f(x,y) has degree two in x, it is irreducible \iff it has no root in K(y). By the Rational Roots Test, a root of $x^2 - g(y)$ in K(y) can be written as p(y)/q(y), where p(y) and q(y) are relatively prime polynomials and q(y) divides 1, i.e. q(y) is a unit in K[y], which we may assume is 1. Hence a root of $x^2 - g(y)$ in K(y) would be of the form $q(y) \in K[y]$, in other words $g(y) = (q(y))^2$ would be a perfect square in K[y]. As we assumed that this was not the case, f(x,y) is irreducible in K[x,y].

(2) Consider the Fermat polynomial $f(x,y) = x^n + y^n - 1 \in K[x,y]$, where we view K[x,y] as K[y][x]. The coefficients of f(x,y) (viewed as a polynomial in x) are $a_n(y) = 1$ and $a_0(y) = y^n - 1$, so the gcd of the coefficients is 1. Hence f(x,y) is primitive in R[x].

Theorem 5.3. If char F = 0 or if char F = p and p does not divide n, then $f(x,y) = x^n + y^n - 1$ is irreducible in K[x,y].

Proof. Note that the constant term $y^n - 1$ factors as

$$y^{n} - 1 = (y - 1)(y^{n-1} + y^{n-2} + \dots + y + 1).$$

We apply the Eisenstein criterion to f(x,y), with M=(y-1). Clearly M is a maximal ideal in K[y] since y-1 is irreducible; in fact $M=\operatorname{Ker}\operatorname{ev}_1$. We can apply the Eisenstein criterion to f(x,y) since $1\notin M$, provided that $y^n-1\notin M^2$, or equivalently $y^{n-1}+\cdots+1\notin M$. But $y^{n-1}+\cdots+1\in M\iff\operatorname{ev}_1(y^{n-1}+\cdots+1)=0$. Now $\operatorname{ev}_1(y^{n-1}+\cdots+1)=1+\cdots+1=n$, and this is zero in $K\iff\operatorname{char} K=p$ and p divides p.

We note that if char K = p and, for example, if n = p, then $x^p + y^p - 1 = (x + y - p)^p$ and so is reducible; a similar statement holds if we just assume that p|n.