Exercice 1 - (Partie entière)

Justifier l'existence et calculer $I = \int_0^\infty t \lfloor \frac{1}{t} \rfloor \mathrm{d}t.$

Exercice 2 - (Partie entière)

Soit
$$\phi(x) = \int_{1}^{+\infty} \frac{dt}{1 + t^x}$$
.

- 1. Déterminer le domaine de définition D de ϕ .
- 2. Démontrer que ϕ est monotone sur D.
- 3. Déterminer la limite de ϕ en $+\infty$

Exercice 3 - (Intégrale à paramètres, pour 5/2)

Soit f continue et intégrable sur \mathbb{R} . On suppose qu'il existe M>0 telle que, pour tout x>0, $\int_{-\infty}^{\infty} \frac{|e^{itx}-1|}{|x|} |f(t)| dt \leq M$

- 1. Montrer que $t \mapsto tf(t)$ est intégrable sur \mathbb{R} .
- 2. Limite en 0⁺ de $h(x) = \int_{-\infty}^{\infty} \frac{e^{itx} 1}{x} f(t) dt$

Exercice 4 - (Limite)

Déterminer $\lim_{a \to \infty} \sum_{n \ge 1} \frac{a}{n^2 + a^2}$.

Exercice 5 - (Comparaison)

Soit
$$n \in \mathbb{N}^*$$
, $I_n = \int_0^{\frac{\pi}{2}} \cos^n(t) dt$.

- 1. Déterminer un équivalent de I_n .
- 2. Nature de la série de terme général $(I_n)^{\alpha}$, pour $\alpha \in \mathbb{R}$.

Exercice 6 - (Intégrale par éclatement)

Soit $\alpha > 0$. Etudier la convergence de $\int_1^{\infty} \ln \left(1 + \frac{\sin(t)}{t^{\alpha}}\right) dt$.

Exercice 7 - (Une transformée)

Soit
$$n \in \mathbb{N}^*$$
, $I_n = \int_0^\infty \frac{e^{-nt} ln(t)}{\sqrt{t}} dt$.

- 1. Etudier la convergence de I_n .
- 2. Déterminer la limite de I_n .
- 3. Déterminer un équivalent de I_n .

Exercice 8 - (Intégrabilité)

- Soit a ∈ ℝ et f une application continue de [a, +∞[dans ℝ, intégrable sur [a, +∞[. Si f admet une limite en +∞, que vaut-elle?
- 2. Soit f de $[0, +\infty[$ dans $[0, +\infty[$ de classe C^1 telle qu'il existe a < 0 satisfaisant $\lim_{x \to +\infty} \frac{f'(x)}{f(x)} = a$. Montrer que f et f' sont intégrables sur $[0, +\infty[$.

Questions de cours

- Définition d'une tribu et d'une probabilité, propriétés (Enoncé)
- Montrer que $x\mapsto \frac{\sin(x)}{x}\notin L^1(\mathbb{R}^{+*})$ mais que $\int_0^\infty \frac{\sin(x)}{x}$ converge.
- Ensemble de définition de Γ , puis $\Gamma(n)$. Déterminer $\Gamma(\frac{1}{2})$ par le calcul.