MA2:
$$\{\sin(k) \mid k \in \mathbb{Z}\}$$
Tommy Chu

Zadání

Dokažte, že množina $\{\sin(k) \mid k \in \mathbb{Z}\}$ je hustá v [-1, 1].

Pomocná tvrzení

Tvrzení 1

Nechť je M podgrupa $(\mathbb{R}, +)$. Pro M platí právě jedna z následujících vět:

A: Existuje kladné minimum M.

B: M je hustá v \mathbb{R} .

Důkaz: $(A \Rightarrow \neg B)$: Pokud má M kladné minimum m, pak průnik intervalu $(\frac{m}{4}, \frac{m}{2})$ s množinou M je prázdný. M tedy není v \mathbb{R} hustá.

 $(\neg A \Rightarrow B)$: Neexistuje-li kladné minimum M, pak pro libovoné $\varepsilon > 0$ existuje $m \in M$ takové, že $0 < m < \varepsilon$. Pro libovolné $x \in \mathbb{R}$ nutně existuje $k \in \mathbb{Z}$, pro které platí $km \le x < (k+1)m$. Po odečtení km obdržíme $0 \le x - km < m < \varepsilon$, což lze přepsat na $|x - km| < \varepsilon$, tedy pro libovolný interval $(x - \varepsilon, x + \varepsilon)$ existuje $km \in M$, který v něm leží. Množina M je v \mathbb{R} hustá. \square

Tvrzení 2

Uvažujme M z předchozího tvrzení. Pokud M není v $\mathbb R$ hustá, pak $M=\{km\mid k\in\mathbb Z\},$ kde m je kladné minimum množiny M.

Důkaz: Existenci kladného minima m zajišťuje Tvrzení 1, $\{km \mid k \in \mathbb{Z}\} \subseteq M$ plyne z uzavřenosti vůči sčítání. Pro spor předpokládejme, že existuje prvek $r \in M \setminus \{km \mid k \in \mathbb{Z}\}$. Pro tento prvek jistě existuje $k \in \mathbb{Z}$ takové, že km < r < (k+1)m. Po odečtení km obdržíme 0 < r - km < m, kde $r - km \in M$. To je však ve sporu s tím, že m je kladným minimem M.

Tvrzení 3

Uvažujme $M = \{a + 2\pi b \mid a, b \in \mathbb{Z}\}$. M je hustá v \mathbb{R} .

Důkaz: Pro spor předpokládejme, že M není v $\mathbb R$ hustá. Pak podle Tvrzení 1 existuje kladné minimum $m=a_m+2\pi b_m\in M$, kde $a_m,b_m\in \mathbb Z$. Dále z Tvrzení 2 vyplývá, že $M=\{km\mid k\in \mathbb Z\}$. Z toho plyne

$$\mathbb{Z} = \{ a \mid a \in \mathbb{Z} \} \subseteq \{ a + 2\pi b \mid a, b \in \mathbb{Z} \} = M = \{ km \mid k \in \mathbb{Z} \}$$
$$1 \in \mathbb{Z} \implies 1 \in M \implies (\exists k \in \mathbb{Z})(1 = km = k(a_m + 2\pi b_m))$$

Z toho však plyne $\pi=\frac{1-ka_m}{2kb_m}\in\mathbb{Q},$ což je ve sporu s tím, že π je iracionální.

Proto je množina $\{a+2\pi b\mid a,b\in\mathbb{Z}\}$ v \mathbb{R} hustá.

Řešení

Uvažujme libovolné $x \in [-1, 1], \varepsilon > 0$. Chceme ukázat, že existuje $n \in \mathbb{Z}$ takové, že $|x - \sin(n)| < \varepsilon$. Protože $H_{\sin} = [-1, 1]$, existuje $\varphi_x \in \mathbb{R}$ takové, že $x = \sin(\varphi_x)$. Navíc funkce sinus je spojitá, proto platí

$$\lim_{\varphi \to \varphi_x} \sin(\varphi) = \sin(\varphi_x) = x$$

Díky tomu, že je množina $M=\{a+2\pi b\mid a,b\in\mathbb{Z}\}$ v \mathbb{R} hustá, existuje posloupnost $(s_n)_{n=1}^\infty$ prvků z $M\setminus\{\varphi_x\}$ taková, že

$$\lim_{n\to\infty} s_n = \varphi_x$$

Odtud z Heineho věty plyne, že pro limitu posloupnosti $(\sin(s_n))_{n=1}^\infty$ platí

$$\lim_{n \to \infty} \sin(s_n) = x$$

Prvky posloupnosti $(s_n)_{n=1}^{\infty}$ jsou tvaru $a_n + 2\pi b_n$, kde $a_n, b_n \in \mathbb{Z}$. Funkce sinus má ovšem periodu 2π , tedy lze vypustit $2\pi b_n$:

$$x = \lim_{n \to \infty} \sin(s_n) = \lim_{n \to \infty} \sin(a_n + 2\pi b_n) = \lim_{n \to \infty} \sin(a_n)$$

Z toho vyplývá, že pro libovolně zvolené $\varepsilon > 0$ existuje $n \in \mathbb{Z}$ takové, že $|x - \sin(n)| < \varepsilon$.

