Systèmes dynamiques Feuille d'exercices 12

Exercice 1. Quelques propriétés des groupes topologiques

Soit G un groupe topologique localement compact.

- 1. Soit Γ un sous-groupe discret de G. Montrer que Γ est un sous-groupe fermé.
- 2. On munit G de sa mesure de Haar, montrer que l'espace des fonctions continues à support compact $C_c(G)$ est dense dans $L^1(G)$.
- 3. On suppose que $e \in G$ possède un système dénombrable de voisinage. Soit H un sous-groupe fermé de G. On suppose que H et G/H sont deux espaces compacts. Montrer que G est alors compact. Indication: on pourra montrer que la projection naturelle $\pi: G \to G/H$ est une application "parfaite", i.e continue, fermée et à fibres compactes.

Exercice 2. Critère d'existence d'une mesure invariante sur les espaces homogènes.

Soit G un groupe localement compact, et soit H un sous-groupe fermé. On rappelle que G/H est alors un espace localement compact. On notera $\pi: G \to G/H$ la projection naturelle, ainsi que dg (resp. dh) une mesure de Haar sur G (resp. H). Pour $f \in C_c(G)$, on note

$$f^H(x) := \int_H f(xh) \, dh.$$

- 1. Montrer que f^H appartient á $C_c(G/H)$ et que son support est contenu dans $(\sup(f)H)/H$.
- 2. Soit C un compact de G/H, montrer qu'il existe K compact de G tel que $C \subset \pi(K)$.
- 3. Montrer que l'application $f \in C_c(G) \mapsto f^H \in C_c(G/H)$ est surjective.

Le but des questions suivantes est de montrer le résultat suivant:

Théorème. Il existe une mesure de Radon $\nu \neq 0$ sur le quotient G/H invariante par l'action de G si et seulement si les fonctions modulaires Δ_G et Δ_H coincident sur H. De plus dans ce cas, une fois fixées des mesures de Haar sur G et H, ν est l'unique mesure de Radon satisfaisant: pour tout $f \in C_c(G)$,

$$\int_G f(g) \, dg = \int_{G/H} \int_H f(xh) \, dh \, d\nu(x).$$

- 4. Supposons qu'il existe une mesure de Radon ν sur G/H invariante par G. Montrer que $\Delta_G \upharpoonright_H = \Delta_H$.
- 5. On suppose désormais la condition sur les fonctions modulaires satisfaites. Soit $f \in C_c(G)$ telle que $f^H = 0$. Montrer que $\int_G f(x) dx = 0$.
- 6. En déduire la deuxième implication du théorème.
- 7. On suppose que G est σ -compact. Montrer que la formule intégrale est toujours valide pour $f \in L^1(G)$.

Exercice 3. Le groupe de Heisenberg

On considère le groupe de Heisenberg discret $\Gamma := H_3(\mathbf{Z})$ dans le groupe de Heisenberg $G := H_3(\mathbf{R})$:

$$H_3(\mathbf{Z}) := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbf{Z} \right\}$$

$$H_3(\mathbf{R}) := \left\{ \begin{pmatrix} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{pmatrix} \mid x, y, z \in \mathbf{R} \right\}$$

1. Montrer que le sous-groupe Z < G défini par

$$Z := \left\{ \begin{pmatrix} 1 & 0 & z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \mid z \in \mathbf{R} \right\}$$

est égal au centre de G.

- 2. Montrer que $\Gamma Z < G$ est un sous-groupe fermé et que $\Gamma Z/Z < G/Z$ est une réseau uniforme.
- 3. En déduire que $\Gamma < G$ est un réseau uniforme.

Exercice 4. Réseaux et groupes nilpotents

Soit G un groupe localement compact à base dénombrable de voisinages de $\{e\}$. On suppose que G est un groupe nilpotent, i.e la suite centrale descendante de G définie récursivement par $C^1(G) = G$ et $C^{n+1}(G) = [G, C^n(G)]$ est stationnaire égale à $\{e\}$ à partir d'un certain rang. Sa classe de nilpotence est le plus petit entier n tel que $C^{n+1}(G) = \{e\}$.

Soit H un sous-groupe fermé, on suppose que G/H admet une mesure de probabilité régulière invariante par l'action de G. Le but de cet exercice est de montrer que G/H est alors compact. En particulier, tout réseau d'un groupe nilpotent est uniforme.

- 1. Montrer que les groupes localement compacts nilpotents sont unimodulaires.
- 2. Montrer que si G est abélien ou H est un sous-groupe distingué, alors G/H est compact.
- 3. Soit H_1 et H_2 deux sous-groupes fermés tels que $H_2 \subset H_1$. On suppose que G/H_2 admet une mesure régulière finie, montrer que c'est alors également le cas de G/H_1 et de H_1/H_2 .

On note Z le centre de G et I la fermeture de ZH. On remarque que I est alors un sous-groupe fermé.

- 4. Montrer qu'il suffit de montrer que G/I et I/H sont compacts.
- 5. Montrer que I/H est compact.
- 6. Montrer, par induction sur la classe de nilpotence, que G/I est compact. Conclure.

Exercice 5. Groupes d'automorphismes d'arbres

Soit T=(V,E) un arbre, i.e un graphe connexe sans cycle, dont l'ensemble des sommets est V, supposé au plus dénombrable, et l'ensemble des arêtes $E\subset V\times V$. Il existe deux applications $o:E\to V$ et $t:E\to V$ telles que pour tout $e\in E,\ e=(o(e),t(e))$. On note $G=\operatorname{Aut}(T)$ le groupe des automorphimes de l'arbre T. On notera simplement par $1\in G$ l'identité. On munit G de la topologie de la convergence simple sur les sommets de V: pour toute suite $(g_n)_{n\in\mathbb{N}}$ de G, on a convergence $g_n\to 1$ si et seulement si pour tout $v\in V$, il exsiste $n(v)\in\mathbb{N}$ tel que, pour tout $n\geq n(v)$, on a $g_n(v)=v$.

1. Pour tout $g \in G$ et pour tout sous-ensemble non-vide fini $\mathcal{F} \subset V$, on pose

$$U(q, \mathcal{F}) = \{ h \in G \mid h(v) = q(v), \forall v \in \mathcal{F} \}.$$

Montrer que $U(g, \mathcal{F}) \subset G$ est ouvert.

2. On suppose que G agit transitivement sur V. Montrer que la famille $(U(g,\mathcal{F}))_{g,\mathcal{F}}$ forme une base dénombrable pour la topologie de G.

On suppose désormais que T est localement fini, i.e pour tout $v \in V$, le sous-ensemble

$$E(v) := \{ e \in E \mid o(e) = v \}$$

est fini.

- 3. Pour tout $v \in V$, on note $G_v = U(1, \{v\})$. Montrer que $G_v < G$ est un sous-groupe compact ouvert. En déduire que G est un groupe localement compact à base dénombrable d'ouverts totalement discontinu.
- 4. Soit $\Gamma < G$ un sous-groupe fermé agissant transitivement sur V et tel que $\Gamma \cap G_v$ est fini pour un certain $v \in V$. Montrer que $\Gamma < G$ est un réseau uniforme.