Lecture 7: Basic Sampling

Professor Ilias Bilionis

Pseudo-random number generators

Pseudo-random number generators

- Computers are deterministic machines and therefore they cannot generate completely random numbers?
- Idea: Are there deterministic sequences of numbers that look random?
- Pseudo-random number generators do exactly that.
- We use statistical tests to see how good they are.

Pseudo-random number generators

How do you generate a uniform random number?

John von Neumann. (Los Alamos)

Los Alamos National Security, LLC (LANS), operator of the Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396 with the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this information. The public may copy and use this information without charge, provided that this Notice and any statement of authorship are reproduced on all copies. Neither the Government nor LANS makes any warranty, express or implied, or assumes any liability or responsibility for the use of this information.

The middle-square method

The first, but it doesn't pass all statistical tests.

Linear congruential generators

Seed x_0

$$x_{i+1} = (0x_i + 0) \mod m$$

Mersenne Twister PRNG

- This is what is inside numpy.random.
- Details beyond the scope of this class.

Lecture 7: Basic Sampling

Professor Ilias Bilionis

Sampling the uniform

PRNG to uniform

- PRNG's generate random integers from 0 to m.
- How can we get samples from the uniform?
- Step 1: Sample a random integer d.
- Step 2: Set:

$$x = \frac{d}{m}$$

PRNG to Uniform

How do we know that the samples are indeed uniform? *\frac{\sqrt{\lambda} \cdot \cdot \lambda \lambda

$$F(x) = P[X \in x] = x$$

We can compare the empirical CDF with the ideal CDF.

But what is the empirical CDF of a bunch of samples $x_{1\cdot N}$?

It is defined as follows:

$$\hat{F}_N(x) = \frac{\text{number of elements in sample } \leq \underline{x}}{\underline{N}}$$

How do we know that the samples are indeed uniform?

Lecture 7: Basic Sampling

Professor Ilias Bilionis

Sampling the categorical

Example: Sampling from the Bernoulli distribution

$$X \sim \text{Bernoulli}(\theta); X = \begin{cases} 1, & \text{w/pr. } \theta \\ 0, & \text{otherwise} \end{cases}$$

To sample from it, we do the following steps:

Sampling discrete distributions

 Consider a generic discrete random variable taking different values, with probability:

$$p(X=k)=p_{k}.$$

$$\sum_{k=1,\,ul\,pr.\,P_{k-1}} \sum_{k=1,\,ul\,pr.\,P_{k-1}} \sum_{k=1,\,ul\,p$$

Sampling Discrete Distributions

• Draw a uniform number $u \sim (0,1)$

• Find *j* such that:

$$\sum_{k=0}^{j-1} p_k \le u < \sum_{k=0}^{j} p_k$$

• *j* is your sample

Sampling Discrete Distributions

Lecture 7: Basic Sampling

Professor Ilias Bilionis

Inverse sampling

Inverse Sampling

- Consider an arbitrary univariate continuous random variable X with CDF F(x), How do you sample from it?
- Draw a uniform number u. ~ U(L), I)
- Set:

$$x = F_1^{-1}(u)$$
inverse of the COF

and you get your sample!

Why does inverse sampling work?

- Let $U \sim U([0,1])$ be a uniform random variable.
- For any CDF F(x) define the random variable:

$$X = F^{-1}(U)$$

The CDF of X is:

$$p(X \le x) = p \left(F'(U) \le x \right) = p \left(F(F'(U)) \le F(x) \right)$$

$$= p \left(U \le F(x) \right) = F_U \left(F(x) \right) = F(x)$$

Example: The exponential distribution

• Take an exponential random variable as an example:

$$X \sim \text{Exp}(r)$$

The CDF is:

$$F(x) = 1 - e^{-rx}$$

The inverse of the CDF is:

$$F^{-1}(u) = -\frac{\ln(1-u)}{r}$$

The Exponential Distribution

Inverse Sampling for Exponential

