Lista 9

Zadanie 1. Niech \mathbb{V} będzie przestrzenią Euklidesową, zaś A jej bazą. Pokaż, że jeśli baza B powstaje z bazy A przez ortonormalizację Grama-Schmidta, to M_{BA} i M_{AB} są macierzami górnotrójkątnymi.

Zadanie 2. Niech \mathbb{V} : przestrzeń liniowa z iloczynem skalarnym, B: baza \mathbb{V} , a $F: \mathbb{V} \to \mathbb{V}$: przekształcenie liniowe. Pokaż, że F jest izometrią wtedy i tylko wtedy, gdy

$$\forall_{\vec{u}.\vec{v}\in B} \langle F(\vec{u}), F(\vec{v}) \rangle = \langle \vec{u}, \vec{v} \rangle$$
,

tj. gdy F zachowuje iloczyn skalarny wektorów z bazy.

Zadanie 3. Pokaż, że następujące przekształcenia są izometriami.

- obrót o kat α na płaszczyźnie
- zamiana jednej ze współrzędnych (w bazie ortonormalnej) na przeciwną. (Przez "współrzędne" rozumiemy standardowe współrzędne \mathbb{R}^n .)
- symetria względem podprzestrzeni Przypomnienie: symetria względem \mathbb{W} wyraża się jako $2P_{\mathbb{W}}$ – Id, gdzie $P_{\mathbb{W}}$ to rzut na \mathbb{W} .

Zadanie 4 (Nierówność Hadamarda). Niech M będzie macierzą kwadratową a C_1, \ldots, C_n jej kolumnami. Pokaż, że jeśli C_1, \ldots, C_n jest układem ortogonalnym, to

$$|\det(M)| = \prod_{i=1}^{n} ||C_i|| ,$$

gdzie $\|\cdot\|$ to długość w standardowym iloczynie skalarnym.

Następnie pokaż, że w ogólności (tzn. bez założenia, że C_1, \ldots, C_n są układem ortogonalnym) zachodzi

$$|\det(M)| \le \prod_{i=1}^n ||C_i|| .$$

i przeprowadż ortonormalizację. Co się dzieje ze stronami nierówności?

Wskazówka: W pierwszym punkcie: ile wynosi det M? W drugim: potraktuj kolumny M jako wektory

Zadanie 5. Sprawdź, czy podane poniżej macierze są dodatnio określone:

$$\begin{bmatrix} 1 & 2 & 0 \\ -2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 2 & 0 \\ 2 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 6 & 2 & 4 \\ 2 & 1 & 1 \\ 4 & 1 & 5 \end{bmatrix}, \begin{bmatrix} 6 & 7 & 3 & 3 \\ 7 & 15 & 7 & 3 \\ 3 & 7 & 11 & 1 \\ 3 & 3 & 1 & 2 \end{bmatrix}.$$

Zadanie 6 (Algorytm Cholesky'ego). Wiemy, że macierz dodatnio określoną $M=(m_{ij})_{i,j=1,...n}$ można przedstawić jako iloczyn A^TA , gdzie $A=(a_{i,j})_{i,j=1,...,n}$ jest macierzą górnotrójkątną.

Podaj algorytm obliczania A korzystający z tego rozkładu. Jaki jest jego czas działania?

Wskazówka: Obliczaj A kolejnymi kolumnami, od lewej do prawej i z góry na dół.

Zadanie 7. Przedstaw poniższe macierze dodatnio określone w postaci B^TB .

$$\begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 9 \end{bmatrix}.$$

.sas A: baza ortonormalna.

Wskazówka: Dla przypomnienia: jako macierz B możesz wziąć macierz M_{EA} , gdzie E to baza standardowa,

Zadanie 8 (Nie liczy się do podstawy). Pokaż, że symetryczna macierz $n \times n$ liczb rzeczywistych jest dodatnio określona wtedy i tylko wtedy, gdy ma same dodatnie wartości własne.

n. Rozpatrz macierz Grama dla bazy ortogonalnej.

Wskazówka: Wiemy, że dla macierzy symetrycznej suma krotności geometrycznych jej wartości własnych to

Zadanie 9. Na podstawie poniższych tabel działań określ, który zbiór z działaniem jest grupą.

Zadanie 10. Podaj tabelkę działań grupy obrotów i symetrii kwadratu.

Zadanie 11. Rozważamy trzy grupy:

- 1. grupą symetrii trójkąta równobocznego (trzy obroty i trzy symetrie osiowe);
- 2. grupą obrotów sześciokąta foremnego;
- 3. grupą $(\mathbb{Z}_6, +_6)$ (czyli z dodawaniem mod 6).

Przedstaw ich tabelki działań. Które z tych grup są izomorficzne?