VLP-16 데이터 패킷으로 X, Y, Z 및 방위각 계산 방법

경기도 수원시 영통구 대학4로 17 에이스광교타워1, 620호

www.lumisol.co.kr

전화 031-216-2155

이메일 lidar@lumisol.co.kr

X, Y, Z 값을 알아보기 전에 먼저 VLP-16의 패킷 구조를 알아야 한다.

단일 리턴 모드에서 데이터 패킷 구조를 살펴보면, 한 패킷에는 12개의 데이터 블록이 있으며 한 개의 데이터 블록은 2개의 발사 시퀀스로 구성되어 있다. 그러므로 총 24개의 발사 시퀀스가 한 패킷에 포함되어 있다 (0~23번).

그림-2 Wireshark를 통해 본 데이터 패킷 구조

```
ff ff ff ff ff 60 76 88 00 00 00 08 00 45 00
04 d2 00 00 40 00 ff 11
                         b4 aa c0 a8 01 c8 ff ff
ff ff 09 40 09 40 04 be
                         00 00 ff ee 40 7e 77 04
02 6d 03 3d 00 00 06 6c
                         03 40 83 03 05 70 03 43
00 00 07 6a 03 3b 8d 03
                         00 6e 03 40 71 03 05 72
03 3b 70 03 13 7a 03 34
                         72 03 2a 82 03 09 75 04
02 71 03 3d 00 00 06 6c
                         03 3f 7e 03 05 74 03 40
00 00 07 6a 03 3b 8d 03
                         00 6f 03 3d 73 03 05 70
03 3d 75 03 14 76 03 34
                         70 03 28 80 03 0a ff ee
68 7e 79 04 02 6e 03 3c
                         00 00 06 68 03 3e 79 03
```

무료 소프트웨어인 Wireshark를 통하여 본 데이터 패킷을 보면 앞의 42바이트 헤더가 끝나면 ffee로 시작되는 Flag가 나타나고 그 뒤로 우리가 필요로 하는 데이터가 나오는 모습을 볼 수 있다. 첫 번째 ffee부터 다음 ffee까지가 데이터 한 블록이 된다.

㈜루미솔 2

표-1 그림-2의 데이터 패킷 해석 방법

바이트	42	2	2	2 + 1 (채널0)	2 + 1 (채널1)	 2 + 1 (채널31)
설명	Header	Flag	방위각	거리 + 반사도	거리 + 반사도	 거리 + 반사도
데이터 예		ff ee	40 7e	77 04 02	6d 03 3d	 80 03 0a

채널이 31까지 있는 이유는 [0~15번 한 시퀀스] + [16번~31번(0번~15번 시퀀스 한 번 더)]로 구성되어 있기 때문이다. 16진수인 데이터 값을 리틀 엔디안으로 계산을 하면 다음 값이 도출된다.

표-2 그림2의 데이터 패킷 해석 방법(2)

	채남	킬 0	채날	₫ 1	채남	클 2				31
방위각	거리	반사도	거리	반사도	거리	반사도	거리	반사도	거리	반사도
40 7e	77 04	02	6d 03	3d	00 00	06	•••	•••	80 03	0a
323.2	1,143	2	1754	61	0	6			896	10

여기서 나타나는 방위각은 채널 0에 대한 방위각이고 채널 1~31까지의 방위각은 달라진다 (추후에 설명). 채널 0의 방위각은 323.2°, 거리 값은 1,143 (입도가 2mm이므로 실제 거리는 2,286mm 또는 2.286m), 반사도는 2로 확인할 수 있다. 한 블록 당 방위각 하나가 표시된다.

채널 별 방위각은 잠시 후에 알아보고, 이제 채널 0의 x, y, z 값을 구해보자. 계산 공식은 다음과 같다.

그림-3 VLP-16 X, Y, Z 계산 방법

X = R*COS(ω)*SIN(α) = 거리*코사인(채널 수직 각도)*사인(방위각)

 $\mathbf{Y} = \mathbf{R}^* \mathbf{COS}(\omega)^* \mathbf{COS}(\alpha) = 거리*코사인(채널 수직 각도)*코사인(방위각)$

Z = R*SIN(ω) = 거리*사인(채널 수직 각도)

 \times VLP-16을 제외한 다른 모델은 수평 보정을 해주는 δ 값이 X와 Y 값에 추가되므로 해당 모델 매뉴얼을 확인해야 한다. 위 공식의 거리 값과 방위각은 데이터 패킷에서 확인할 수 있지만 채널 수직 각도는 데이터 패킷에서 확인할 수 없다. 각 채널에 대한 수직 각도는 채널 ID 별로 고정되어 있으며 다음과 같다.

표-3 레이저 ID 및 모델 별 수직 각도 (ω)

레이저	수직 각도	수직 각도	수직 보정	수직 각도	수직 보정
ID	VLP-16	Puck LITE	(mm)	Puck Hi-Res	(mm)
0	-15°	-15°	11.2	-10.00°	7.4
1	1°	1°	-0.7	0.67°	-0.9
2	-13°	-13°	9.7	-8.97°	6.5
3	3°	3°	-2.2	2.00°	-1.8
4	-11°	-11°	8.1	-7.33°	5.5
5	5°	5°	-3.7	3.33°	-2.7
6	-9°	-9°	6.6	-6.00°	4.6
7	7°	7°	-5.1	4.67°	-3.7
8	-7°	-7°	5.1	-4.67°	3.7
9	9°	9°	-6.6	6.00°	-4.6
10	-5°	-5°	3.7	-3.33°	2.7
11	11°	11°	-8.1	7.33°	-5.5
12	-3°	-3°	2.2	-2.00°	1.8
13	13°	13°	-9.7	8.67°	-6.5
14	-1°	-1°	0.7	-0.67°	0.9
15	15°	15°	-11.2	10.00°	-7.4

이제 이 공식을 이용하여 표-2의 채널 0번에 대한 X, Y, Z 값을 구해보자.

- X = R*COS(ω)*SIN(α) = 거리*COS(채널 수직 각도)*SIN(방위각) = 거리*COS(-15°)*SIN(323.2°)
 - = 2.286*0.965925826289068*-0.599023598515586 = -1.3227m
- Y = R*COS(ω)*COS(α) = 거리*COS(채널 수직 각도)*COS(방위각) = 거리*COS(-15°)*COS(323.2°)
 - = 2.286*0.965925826289068*0.800731370948733 = 1.7681m
- **Z** = R*SIN(ω) = 거리*SIN(채널 수직 각도) = 거리*SIN(-15°)
 - = 2.286*-0.258819045102521 = **-0.5917m**

채널 0의 x, y, z 값은 (-1.3227, 1.7681, -0.5917)이다.

이 값에서 각 채널에 \mathbf{H} -2의 수직 보정 값(채널0=11.2mm)을 z 값에 더해준다. 이것은 라이다 내부의 수직으로 배열되어 있는 다이오드를 센서 원점으로 모아주는 보정이어서 조금 더 정밀한 값을 얻을 수 있게 도와준다. 따라서 최종 x, y, z 값은 (-1.3227, 1.7681, -0.5805)이 된다.

다음은 각 채널 별 방위각을 구하는 방법을 알아보자.

데이터 패킷에는 1블록 당 1개의 방위각 값만 제공을 해주며 이 방위각은 해당 블록의 0번째 채널에 대한 방위각이다. 나머지 채널의 방위각은 직접 계산을 해주어야 한다.

그림-4 Wireshark를 통해 본 데이터 패킷 구조

```
ff ff ff ff ff 60 76 88 00 00 00 08 00 45 00
                         b4 aa c0 a8 01 c8 ff ff
04 d2 00 00 40 00 ff 11
ff ff 09 40 09 40 04 be
                         00 00 ff ee 40 7e 77 04
02 6d 03 3d 00 00 06 6c   03 40 83 03 05 70 03 43
00 00 07 6a 03 3b 8d 03
                         00 6e 03 40 71 03 05 72
03 3b 70 03 13 7a 03 34
                        72 03 2a 82 03 09 75 04
02 71 03 3d 00 00 06 6c  03 3f 7e 03 05 74 03 40
00 00 07 6a 03 3b 8d 03
                        00 6f 03 3d 73 03 05 70
03 3d 75 03 14 76 03 34
                        70 03 28 80 03 0a ff ee
68 7e 79 04 02 6e 03 3c
                         00 00 06 68 03 3e 79 03
```

㈜루미솔 4

첫 번째 블록 채널 0의 방위각은 40 7e → 323.20° 두 번째 블록 채널 0의 방위각은 68 7e → 323.60°이었다면

첫 번째 블록의 [Firing Sequence 1 - 채널 0]의 방위각은 그 중간인 **323.40°로** 계산하여야 한다. 종합해보면 600RPM을 기준으로 같은 채널이 레이저를 쏘고 다시 0.2°가 지난 후 다시 쏜다.

그림-6 단일 리턴 모드에서 타이밍 오프셋 (마이크로 초)

	Data Blocks												
	1	2	3	4	5	5 6 7		8	9	10	11	12	
	Stron	Strongest		Strongest									
Laser Number	1	2	3	4	5	6	7	8	9	10	11	12	
1	0.000	110.592	221.184	331.776	442.368	552.960	663.552	774.144	884.736	995.33	1,105.92	1,216.51	
2	2.304	112.896	223.488		444.672	555.264	665.856	776.448	887.040	997.63	1,108.22	1,218.82	
3	4.608	115.200	225.792	336.384	446.976	557.568	668.160	778.752	889.344	999.94	1,110.53	1,221.12	
4	6.912	117.504	228.096		449.280		670.464	781.056	891.648	1,002.24	1,112.83	1,223.42	
5	9.216	119.808	230.400		451.584	562.176	672.768	783.360	893.952	1,004.54	1,115.14	1,225.73	
6	11.520	122.112	232.704		453.888	564.480	675.072	785.664	896.256	1,006.85	1,117.44	1,228.03	
7	13.824	124.416	235.008		456.192	566.784	677.376		898.560	1,009.15	1,119.74	1,230.34	
8	16.128	126.720	237.312		458.496		679.680		900.864	1,011.46	1,122.05	1,232.64	
9	18.432	129.024	239.616		460.800	571.392	681.984	792.576	903.168	1,013.76	1,124.35	1,234.94	
10	20.736	131.328	241.920		463.104	573.696		794.880	905.472	1,016.06	1,126.66	1,237.25	
11	23.040	133.632	244.224		465.408	576.000	686.592	797.184	907.776	1,018.37	1,128.96	1,239.55	
12	25.344	135.936	246.528		467.712	578.304	688.896	799.488	910.080	1,020.67	1,131.26	1,241.86	
13	27.648	138.240	248.832	359.424	470.016	580.608	691.200		912.384	1,022.98	1,133.57	1,244.16	
14	29.952	140.544	251.136		472.320	582.912	693.504	804.096	914.688	1,025.28	1,135.87	1,246.46	
15	32.256	142.848	253.440		474.624	585.216	695.808	806.400	916.992	1,027.58	1,138.18	1,248.77	
16	34.560	145.152	255.744	366.336	476.928	587.520	698.112	808.704	919.296	1,029.89	1,140.48	1,251.07	
1	55.296	165.888	276.480	387.072	497.664	608.256	718.848	829.440	940.032	1,050.62	1,161.22	1,271.81	
2	57.600	168.192	278.784		499.968	610.560			942.336	1,052.93	1,163.52	1,274.11	
3	59.904	170.496	281.088		502.272	612.864	723.456		944.640	1,055.23	1,165.82	1,276.42	
4	62.208	172.800	283.392		504.576	615.168	725.760		946.944	1,057.54	1,168.13	1,278.72	
5	64.512	175.104	285.696		506.880	617.472	728.064	838.656	949.248	1,059.84	1,170.43	1,281.02	
6	66.816	177.408	288.000		509.184	619.776	730.368	840.960	951.552	1,062.14	1,172.74	1,283.33	
7	69.120	179.712	290.304		511.488	622.080	732.672	843.264	953.856	1,064.45	1,175.04	1,285.63	
8	71.424	182.016	292.608		513.792	624.384	734.976	845.568	956.160	1,066.75	1,177.34	1,287.94	
9	73.728	184.320	294.912	405.504	516.096	626.688	737.280	847.872	958.464	1,069.06	1,179.65	1,290.24	
10	76.032	186.624	297.216		518.400	628.992	739.584	850.176	960.768	1,071.36	1,181.95	1,292.54	
11	78.336	188.928	299.520		520.704	631.296	741.888	852.480	963.072	1,073.66	1,184.26	1,294.85	
12	80.640	191.232	301.824	412.416	523.008	633.600	744.192	854.784	965.376	1,075.97	1,186.56	1,297.15	
13	82.944	193.536	304.128	414.720	525.312	635.904	746.496	857.088	967.680	1,078.27	1,188.86	1,299.46	
14	85.248	195.840	306.432	417.024	527.616	638.208	748.800	859.392	969.984	1,080.58	1,191.17	1,301.76	
15	87.552	198.144	308.736	419.328	529.920	640.512	751.104	861.696	972.288	1,082.88	1,193.47	1,304.06	
16	89.856	200.448	311.040	421.632	532.224	642.816	753.408	864.000	974.592	1,085.18	1,195.78	1,306.37	

㈜루미솔 5

그림-6을 보면 첫 번째 채널의 레이저가 쏘고 난 다음 채널의 레이저가 쏘는데 2.304 마이크로 초의 시간이 걸린다. 600RMP을 기준으로 한 채널이 레이저를 다시 쏘는데 55.296 마이크로 초의 시간이 걸리고, 이때 0.2°가 벌어지므로 55.296 마이크로 초에 0.2°가 벌어지는 것을 확인할 수 있다.

55.296 : 0.2 = 2.304 : X

X= 0.00833333

그러므로 한 채널과 다음 채널의 사이에는 약 0.00833°가 움직이는 것을 확인할 수 있다.

표-4 그림-2의 데이터 패킷 해석 방법

	채널o		채널0 채널1		채널2				채널31	
방위각	거리	반사도	거리	반사도	거리	반사도	거리	반사도	거리	반사도
40 7e	77 04	02	6d 03	3d	00 00	06			80 03	0a
323.2	2286	2	1754	61	0	6			1792	10

이 표에서 채널 0의 방위각이 323.2°였다면, 채널 1의 방위각은 323.20833° 즉, 약 **323.21°**가 된다.

그림-7 벨로뷰의 스프레드시트

azimuth	distance_m	intensity	laser_id	timestamp
32	1.530	76	0	131816656
33	1.426	66	1	131816658
34	1.508	56	2	131816660
35	1.422	100	3	131816662
35	1.508	60	4	131816665
36	1.428	62	5	131816667
37	1.474	59	6	131816669
38	1.412	55	7	131816672
39	1.470	81	8	131816674

벨로뷰의 데이터시트에서 시간 순서대로 확인하기 위해 타임스템프를 기준으로 정렬을 하고, 방위각을 확인해 보면 약 0.01°씩 올라가는 것을 확인할 수 있다 (방위각의 32는 0.32°이다).