Functoriality of H.

Simplicial map $f: X \longrightarrow Y$

leme:

$$C_{k}(X) \xrightarrow{\partial_{k}^{X}} C_{k-1}(X)$$

$$C_{k}(f) \qquad C_{k-1}(f) \qquad Connutes \forall k.$$

$$C_{k}(Y) \xrightarrow{\partial_{k}^{Y}} C_{k-1}(Y)$$

Ef 2 cases.

Note that $f(\sigma)$ is a k-simplex iff f is inj on σ . Then it's easy.

if f is not injective on a true $C_k(t)(\sigma) = 0$.

OTOH: $C_k(t)(\mathcal{J}_k^{\times}(\alpha)) = \sum_{k=1}^{\infty} C_k(t)(\{v_0,...,\hat{v}_i,...,v_k\})$ $= 0 \quad (\text{want}).$

Page 1

2 cases: 1: f' is injective on $\{V_0, ..., \hat{V}_j, ..., V_k\}$ for some j.

Wolog, $f(V_0) = f(V_1)$, and $f(V_j) \neq f(V_j)$ for $i \neq j$ otherwise.

then $\forall j \neq 0, 1, we get 0.$ are the 0 & 1 terms cancel.

2: fisn't. Then it's all G.

Theorem: Sp map $f:X \to Y \longrightarrow H_k(f): H_k(X) \longrightarrow H_k(Y)$ Place to $V \in \text{Ker}(\mathfrak{I}_k^{\times})$, define $H_k(f)(V + Im(\mathfrak{I}_{k+1}^{\times})) = C_k(f)(V) + Im(\mathfrak{I}_{k+1}^{\times}).$

Theek: $C_{\kappa}(f)(v) \in \text{Ker}(\partial_{\kappa}^{\gamma})$.

if $V-W \in Im(\partial_{k+1}^{X})$, Then $C_{k}(f)(v)-C_{k}(f)(w) \in Im(\partial_{k+1}^{X})$.

The first trung is thre by the lemma.

The second thing is also thre by the lemma:

Cutegories.

eg:
$$Sim = (0, M)$$
 where $0 = \{Simplicial complexes\}$

$$M = \{Simplicial maps \}$$

$$Vec_F = (0, M)$$
 where $0 = \{V.spaces over F\}$

$$M = \{linear maps \}$$

Top =
$$(0, M)$$
 where $0 = \{ \text{ topological spaces} \}$

$$M = \{ \text{ continuous maps } \}$$

to objects & morphisms to morphisms:

$$f: X \longrightarrow Y$$

$$F(f): F(X) \longrightarrow F(y)$$

BB Theorem: If
$$X$$
, Y are given spectrum with corresponding analyzed spectrum X in Y \Longrightarrow $H_k(X) \cong H_k(Y)$ $\forall k$.