

Elektronika

Auditorne vježbe 3

Gibanje nosilaca u poluvodiču

- Usmjereno gibanje nosilaca električna struja.
- Smjer struje:
 - Jednak smjeru gibanja pozitivnih naboja (šupljina).
 - Suprotan smjeru gibanja negativnih naboja (elektrona).
- Dva osnovna mehanizma:
 - Električno polje DRIFT
 - Nejednolika raspodjela nosilaca DIFUZIJA

Driftno gibanje

• Gibanje nosilaca pod utjecajem električnog polja.

Driftno gibanje

- O čemu ovisi driftno gibanje?
- Iznos i smjer priključenog električnog polja!
- Sposobnost gibanja elektrona i šupljine u poluvodiču POKRETLJIVOST!
- Pokretljivost: μ [cm²/Vs]
 - elektrona μ_n
 - šupljina μ_p
- Pokretljivost ovisi o:
 - gustoći primjesa
 - temperaturi
 - jakosti električnog polja
 - raspršenju i međusobnim sudarima nosilaca i dr.

Pokretljivost nosilaca

• U siliciju na *T*=300 K:

$$\mu = \mu_{\min} + \frac{\mu_{maks} - \mu_{\min}}{1 + \left(\frac{N}{N_{ref}}\right)^{\alpha}}$$

nosilac	N _{ref} [cm ⁻³]	µ _{maks} [cm ² V ⁻¹ s ⁻¹]	μ _{min} [cm ² V ⁻¹ s ⁻¹]	α
elektron	1,12·10 ¹⁷	1430	80	0,72
šupljina	2,23·10 ¹⁷	460	45	0,72

Električna provodnost

- Električna provodnost: σ [S/cm]
- Ukupna provodnost poluvodiča je zbroj provodnosti zbog gibanja elektrona i šupljina:

$$\sigma = \sigma_n + \sigma_p$$

$$\sigma_n = q \cdot n \cdot \mu_n \qquad \sigma_p = q \cdot p \cdot \mu_p$$

Zadatak 8.

- Izračunati električnu provodnost silicija pri temperaturi T=300 K, ako je gustoća primjesa:
 - a) $N_D = N_A = 0$
 - b) $N_D = 10^{16} \text{ cm}^{-3}, N_A = 0$
 - c) $N_A = 10^{16} \text{ cm}^{-3}, N_D = 0$
 - d) $N_D = N_A = 10^{16} \text{ cm}^{-3}$

☑ Rješenje:

- a) $(\mu_p = 460 \text{ cm}^2/\text{Vs}; \mu_n = 1430 \text{ cm}^2/\text{Vs}; \sigma = 3.03 \cdot 10^{-6} \text{ S/cm})$
- b) $(\mu_p=419.9 \text{ cm}^2/\text{Vs}; \mu_n=1228.3 \text{ cm}^2/\text{Vs}; \sigma=1.96 \text{ S/cm})$
- c) $(\mu_p=419.9 \text{ cm}^2/\text{Vs}; \mu_n=1228.3 \text{ cm}^2/\text{Vs}; \sigma=0.67 \text{ S/cm})$
- d) $(\mu_p=397.8 \text{ cm}^2/\text{Vs}; \mu_n=1127.1 \text{ cm}^2/\text{Vs}; \sigma=2.44 \cdot 10^{-6} \text{ S/cm})$

Driftna struja

- Gustoća struje: J [A/cm²]
- Driftno gibanje elektrona:

$$J_{n \, drift} = q \cdot \mu_n \cdot n \cdot E$$

Driftno gibanje šupljina:

$$J_{p drift} = q \cdot \mu_p \cdot p \cdot E$$

Difuzijsko gibanje

- Nejednolika raspodjela nosilaca u volumenu poluvodiča.
- Gibanje nosilaca: iz područja veće u područje manje gustoće.
- Difuzijsko gibanje traje dok se gustoća ne izjednači u cijelom volumenu.
- Difuzijska konstanta: D [cm²/s]
 - elektrona D_n
 - šupljina D_p
- Einsteinova relacija:

$$D_{p,n} = \mu_{p,n} \cdot U_T$$

$$U_T = \frac{k \cdot T}{q} = \frac{T}{11605}$$
 [V] Naponski temperaturni ekvivalent

Difuzijska struja

- Gustoća struje: J [A/cm²]
- Difuzijsko gibanje elektrona:

$$J_n = +q \cdot D_n \cdot \frac{dn}{dx}$$

Difuzijsko gibanje šupljina:

$$J_p = -q \cdot D_p \cdot \frac{dp}{dx}$$

Ukupna struja

$$J_n(x) = q\mu_n n(x)E(x) + qD_n \frac{dn(x)}{dx}$$
 $J_p(x) = q\mu_p p(x)E(x) - qD_p \frac{dp(x)}{dx}$

Generacija i rekombinacija

- Stvaranje nosilaca generacija.
- Nestajanje (poništavanje) nosilaca rekombinacija.
- Vrijeme života vrijeme od nastanka do nestanka.
- Vrijeme života manjinskih nosilaca u Si na T=300 K:

$$\tau_{p} = \frac{\tau_{p0}}{1 + \frac{N_{D}}{N_{0D}}} \qquad \tau_{n} = \frac{\tau_{n0}}{1 + \frac{N_{A}}{N_{0A}}}$$

- τ_{p0} =3,52 · 10⁻⁵ s, N_{0D} =7,1 · 10¹⁵ cm⁻³ τ_{n0} =1,7 · 10⁻⁵ s, N_{0A} =7,1 · 10¹⁵ cm⁻³

Nehomogeni poluvodič

- Gustoća primjesa nejednoliko raspodijeljena -> stalni gradijent gustoće nosilaca.
- Ravnotežno stanje: ukupna struja = 0.
 Za poluvodič n-tipa: $E_C E_F = kT \cdot \ln \left(\frac{N_c}{N_D} \right)$

Zadatak 9.

• Odrediti razliku potencijala između točaka 1 i 2 sa slike ako je u točki 1 gustoća elektrona $n_1=2\cdot10^{14}~cm^{-3}$ i šupljina $p_1=1,5\cdot10^{14}~cm^{-3}$, a u točki 2 je gustoća elektrona $n_2=10^{14}~cm^{-3}$. Koliki je iznos gustoće p_2 ? T=300 K.

☑ Rješenje:

$$p_2=3\cdot10^{14} \text{ cm}^{-3}$$
; $U_2-U_1=-17,92 \text{ mV}.$

pn spoj – poluvodička dioda

• p-tip

• n-tip

• Fermijeva razina mora biti ista u cijelom poluvodiču!!!

Osiromašeno područje (pn barijera)

Osiromašeno područje

$$x_p = \frac{N_D}{N_A + N_D} \cdot d_B \qquad x_n = \frac{N_A}{N_A + N_D} \cdot$$

Kontaktni potencijal

$$U_k = U_T \ln \left(\frac{p_{0p}}{p_{0n}} \right)$$

$$U_k = U_T \ln \left(\frac{n_{0n}}{n_{0p}} \right)$$

$$U_k = U_T \ln \left(\frac{N_A \cdot N_D}{n_i^2} \right)$$

Polarizacija pn spoja

Propusna polarizacija

Nepropusna polarizacija

Polarizacija pn spoja

• Ukupni napon na diodi: $U_{TOT} = U_k - U$

$$U_{TOT} = U_k - U$$

• Širina barijere:

$$d_{B} = \sqrt{\frac{2\varepsilon}{q} \cdot \frac{\left(N_{A} + N_{D}\right)}{N_{A} \cdot N_{D}}} \cdot U_{TOT}$$

- Maksimalna jakost el. polja: $E_{\text{max}} = -\frac{2U_{TOT}}{d_{TOT}}$
- Barijerni kapacitet: $C_T = \varepsilon \cdot \frac{S}{d_p}$

Zadatak 10.

- Silicijski skokoviti pn spoj ima gustoće primjesa: $N_A=10^{15}$ cm⁻³, $N_D=5\cdot10^{16}$ cm⁻³. Izračunati širinu barijere, maksimalnu jakost el. polja i barijerni kapacitet ako je površina pn spoja S=1 mm², temperatura T=300 K i $\epsilon_r=11,7$ kad je:
 - a) U=0
 - b) U=0,6 V
 - c) U=-5 V

☑ Rješenje:

```
U_{\kappa}=0,696 V;
```

- a) $U_{TOT} = 0.696 \text{ V}; d_B = 9.58 \cdot 10^{-5} \text{ cm}; E_{max} = -14.53 \text{ kV/cm}; C_T = 108 \text{ pF};$
- b) $U_{TOT} = 0.096 \text{ V}; d_B = 3.57 \cdot 10^{-5} \text{ cm}; E_{max} = -5.4 \text{ kV/cm}; C_T = 291 \text{ pF};$
- c) $U_{TOT} = 5,696 \text{ V}; d_B = 2,74 \cdot 10^{-4} \text{ cm}; E_{max} = -41,56 \text{ kV/cm}; C_T = 37,8 \text{ pF}.$

Zadatak 11.

• Širina osiromašenog područja skokovitog silicijskog pn spoja pri kontaktnom potencijalu U_k =0,65 V iznosi d_{B1} =0,34 μ m. Odrediti maksimalnu jakost el. polja i širinu barijere pri priključenom naponu U=-6 V.

☑ Rješenje:

 d_{B2} =1,087 µm; E_{max2} =-122,3 kV/cm.

Zadatak 12.

• Silicijska dioda sa širokim stranama ima širinu barijere na n-strani $x_n=2~\mu m$, a na p-strani $x_p=1,2~\mu m$. Na T=300 K kontaktni potencijal iznosi $U_k=0,65~V$. Izračunati ravnotežne gustoće većinskih i manjinskih nosilaca na obje strane diode te napon priključen na diodu.

☑ Rješenje:

```
N_D = 2,23 \cdot 10^{15} \text{ cm}^{-3}; N_A = 3,72 \cdot 10^{15} \text{ cm}^{-3}; n_{0n} = N_D; p_{0n} = 4,48 \cdot 10^4 \text{ cm}^{-3}; p_{0p} = N_A; n_{0p} = 2,69 \cdot 10^4 \text{ cm}^{-3}; U = -10,4 \text{ V}.
```

