Dataset Files:

Example:

- user.csv: contains user_id, products, reviews.
 Example: 7360263,359,0
- games.csv: contains game metadata like app_id, title, date_release, win, mac, linux, rating, positive_ratio, user_reviews, price_final, price_original, discount, steam_deck.

 $13500, Prince\ of\ Persia:\ Warrior\ Within \verb|^{\'m}, 2008-11-21, true, false, false, Very\ Positive, 84, 2199, 9.99, 9.99, 0.0, true$

recommendations.csv: contains recommendation info with app_id, helpful, funny, date, is_recommended, hours, user_id, review_id.

Example: 975370,0,0,2022-12-12,true,36.3,51580,0

• games_metadata.json: JSON lines file (not a valid JSON array). Each line is a JSON object like:

```
{
  "app_id": 226560,
  "description": "Escape Dead Island is a Survival-Mystery adventure...",
  "tags": [
        "Zombies",
        "Adventure",...
]
}
```

Note: This file is not parsable using the standard json.load() because it's structured as $\{\}\n\{\}\n\{\}$ (one object per line). You must parse it **line by line**.

Functional Requirements:

- 1. Use 80% of the data for training and 20% for testing.
- 2. Implement and compare the following algorithms for recommendation/classification:
 - K-Nearest Neighbors (KNN)
 - K-Means Clustering
 - Naïve Bayes
 - One algorithm of your choice (e.g., Decision Tree, Random Forest, etc.)
- 3. Compare algorithm performance using: F1 Score, Precision, Recall, Accuracy.
- 4. Provide data **visualizations** (matplotlib, seaborn, or Streamlit charts).
- 5. Include a section comparing all algorithms and explain the reason behind the selected algorithm.
- 6. Try different strategies to **improve results** if performance is low (e.g., feature engineering, hyperparameter tuning, etc.).
- 7. Build an interactive Streamlit interface:
 - Allow the user to input a user id and show top game recommendations.
 - Provide summary statistics and visual feedback (ratings distribution, recommendation trends, etc.).

Academic Rubrics to Fulfill:

- 1. Dataset Selection 5 marks
- 2. Classification Implementation 8 marks
- 3. Clustering Implementation 8 marks
- 4. Performance Evaluation (F1 Score, Precision, Recall, Accuracy) 5 marks
- 5. Visualization 5 marks
- 6. Algorithm Comparison and Justification 5 marks
- 7. Efforts to Improve Results 4 marks

Make sure to structure the project clearly with separate modules or functions for:

- Data preprocessing (including parsing games_metadata.json line by line)
- · Feature engineering
- Model training & evaluation
- · Streamlit frontend