30.05.22

Note 1

6fdd3ac4h4f644cea3704hcc79918836

Под Группой (G,\circ) называется при непустое множество G с заданной на нём бинарной операцией $\circ:G\times G\to G$, удовлетворяющей аксиомам группы.

Note 2

827b57c3950c42b28e381d37a49ddf39

Сколько утверждений представлено в наборе аксиом из определения группы (G, \circ) ?

Три.

Note 3

f526d0257921478ca77a37b97abb9d06

Какова первая аксиома в наборе аксиом из определения группы (G, \circ) ?

Операция о ассоциативна.

Note 4

ce2298302937453e87e0cf850f17af90

Какова вторая аксиома в наборе аксиом из определения группы (G, \circ) ?

Для операции ∘ существует нейтральный элемент.

Note 5

9f917456f2bf4fe6bf4e35f8042c9499

Нейтральный элемент из определения группы (G,\circ) обычно обозначают (сы. e.)

Note 6

3a8f693c011348fd9e88038d036a5b42

Пусть (G,\circ) — группа, $\{\{c4: a\in G.\}\}$ $\{\{c2: \exists n \in G\}\}$ называется $\{\{c3: \exists n \in G\}\}$ называется $\{\{c3: \exists n \in G\}\}$ называется $\{\{c4: a\in G\}\}$ назы

$$a \circ \tilde{a} = \tilde{a} \circ a = e.$$

}}

Какова третья аксиома в наборе аксиом из определения группы (G,\circ) ?

 $\forall a \in G$ существует обратный к a элемент.

Note 8

ha5e27ac8a9481eac4302c3159a6596

Пусть (G, \circ) — группа, $a \in G$. «СанОбратный элемент к a» обычно обозначают «Сан a^{-1} .»

Note 9

9f4da30e71b1403a998b7c3fdf192252

 $\{(c)\}$ Множество всех невырожденных $n \times n$ матриц над полем $F_{\|}$ вместе с $\{(c)\}$ операцией умножения $\{(c)\}$ называется общей линейной группой. $\{(c)\}$

Note 10

27a09e6a00d14e859d7ad1d78a4f74a3

 ${}_{\text{{}}}$ Общая линейная группа из n imes n матриц над полем $F_{\mathbb{H}}$ обозначается ${}_{\mathbb{H}}$ спостои ${}_{\mathbb{H}}$

Note 11

809c8a8f790e4a2a998a4a8038c03971

Группа (G, \circ) называется (са абелевой,)) если (са операция \circ коммутативна.)

Note 12

e59ac970ec54461083354dae9eeb4047

Может ли группа иметь несколько нейтральных элементов?

Нет, нейтральный элемент единственен.

Note 13

13fee55238844118889a790b6e0c7e37

Пусть (G,\circ) — группа. Тогда если e и e' — нейтральные элементы для \circ , то e=e'. В чём основная идея доказательства?

Рассмотреть $e \circ e'$.

Пусть (G,\circ) — группа, $a\in G$. Может ли в G существовать несколько элементов, обратных к a?

Нет, обратный элемент единственен.

Note 15

9f4dcde939af46639169bda602d721c5

Пусть (G, \circ) — группа, $a \in G$. Тогда если a^{-1} и \tilde{a} — обратные элементы к a, то $\tilde{a} = a^{-1}$. В чём основная идея доказательства?

Представить \tilde{a} как $\tilde{a} \circ (a \circ a^{-1})$.

Note 16

3db3d03590c84407bfb64b2a80b0e1c

Пусть
$$(G,\circ)$$
 — группа, $\{(ca)(a,b)\in G,\}\}$ Тогда
$$(a\circ b)^{-1}=\{(ca)(b^{-1}\circ a^{-1},)\}$$

Note 17

10144a83e52a4f5cbf0f96c818e229a5

Пусть (G,\circ) — группа, (G,\circ) — Тогда (G,\circ) называется (G,\circ) подгруппой группы (G,\circ) если (G,\circ) является группой.

Note 18

9de4580c8d2545bcad2c525fe42930ec

Пусть (G,\circ) — группа, $H\subset G$. Выражение " (H,\circ) является подгруппой (G,\circ) " обозначается

$$(H, \circ) \leqslant (G, \circ).$$

Note 19

od4835b2c522436fac41030bf6b13a66

Пусть (G,\circ) — группа, {{c4::}} $a\in G$,}} {{c3::}} $n\in\mathbb{N}$.}}

$$\{\{\operatorname{c2::}a^n\}\} \stackrel{\mathrm{def}}{=} \{\{\operatorname{c1::}\underbrace{a \circ \cdots \circ a}_{n \text{ pas}}.\}\}$$

Пусть (G, \circ) — группа, {{c2::} $a \in G$.}}

$$a^0 \stackrel{\text{def}}{=} \{\{c1::e.\}\}$$

Note 21

2cfa92bf39b847d4aa21d381a0d2c428

Пусть (G, \circ) — группа, $a \in G, n \in \mathbb{N}$.

$$\{\{c2::a^{-n}\}\} \stackrel{\text{def}}{=} \{\{c1::(a^{-1})^n.\}\}$$

Note 22

3994ad9b38154ec081e7042011939b50

Пусть (G,\circ) — группа, $\{e^{a}:a\in G.\}$ $\{e^{a}$ Порядком элемента a называется $\{e^{a}$ либо \min $\{n\in\mathbb{N}\mid a^n=e\}$, либо ∞ , если таких n не существует.

Note 23

78e264e39e824819ace538828da51d7c

Пусть (G, \circ) — группа, $a \in G$. Порядок элемента a обозначается полоте a порядок элемента a

Note 24

2e3b057efc1e40b1843700b41b2052b9

Пусть (G,\circ) — группа, (св. $a\in G$.)) (св. Множество $\{a^k\mid k\in\mathbb{Z}\}$ с операций \circ)) называется (св. подгруппой (G,\circ) , порождённой элементом a.))

Note 25

fd96a89fdb1b45559782a7213101e400

Пусть (G, \circ) — группа, $a \in G$. «са Подгруппа (G, \circ) , порождённая элементом a, обозначается (ста $\langle a \rangle$.)

Note 26

54a6a6775d1940b09be51518008fabdc

Пусть (G,\circ) — группа, $a\in G$. Тогда если $\{(c2): \text{ord } a<\infty,\}\}$ то

{{c3::
$$\langle a \rangle$$
}} \simeq {{c1:: $\mathbb{Z}_{\operatorname{ord} a}$.}}

Пусть
$$(G,\circ)$$
 — группа, $a\in G$. Тогда если ((c2) ord $a=\infty$,)) то
$$\text{((c3):}\langle a\rangle\text{))}\simeq\text{((c1):}\mathbb{Z}.\text{))}$$