Today's Quote -

The man who asks a question is a fool for a minute. the man who does not ask is a fool for life.

S Pen and ?

Content

no. of iterations

- -> Time and Space Complexity
- Assymptotic Analysis
- → Big.o Notation → Tile → Time Limited Greecold-6

1) Sum of first N natural numbers = $\frac{N(N+1)}{2}$.

1 How many nois are there in this range [3, 10]. L 8.

$$[a, b] = b - a + 1$$

$$[a,b) = b-a$$

$$(a, b) = b - a - 1$$

[3,10] = 10-3+1 = 8

3 How many times do we need to divide N by 2 to reduce It to 1?

$$N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$$
 $N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 32 \rightarrow 16 \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=64. \rightarrow 8 \rightarrow 4 \rightarrow 2 \rightarrow 1$
 $N=1024 = 2^{10} \quad No. \quad of \quad sleps \rightarrow 10$

(y)
$$\log_{a} a^{x} = x$$
 $\log_{a} a^{10} = 10$
 $\log_{3} 3^{5} = 5$

Arithmetic Progression

→ difference blw any two concecutive terms is fixed/constant

$$d = \begin{cases} 4, & 10, & 13, & 16, & 19, & --- \\ 3, & 3, & 3, & 3 \end{cases}$$

a a+d a+2d a+3d a+4d --- a+(n-1)d

Sym of N terms of an A:P = $\frac{n}{2}$ [2a+(n-i)d]

 α , αr , αr^2 , αr^3 , αr^4 , - - - - αr^{n-1}

first term = a common ratio = r

 $\begin{bmatrix}
Sum of N + irm of Grif = a [x^n-1] \\
x > 1
\end{bmatrix}$ $= a [1-x^n]$ x < 1

-> {clan-10 NCERT}

Void
$$\int un(Pnt N)$$
 $S = 0$; $\int or(i=1;i \leq N;i+1)$ $S = i:[1,N]$ $\int S = S+i;$ $\int N-X+X = N$ iterations.

$$N=12$$
 $3 \rightarrow 1, 3, 5, 7, 9, 11$

$$N=13$$
 $i \to 1, 3, 5, 7, 9, 11, 13$

$$\frac{12}{2} = 0.67$$
 $7 = \frac{(3+1)}{2} = \frac{14}{2}$

```
void func (int N, int m) \S

for (i=1; i z=N; i+t) \S: 1 \rightarrow [1, N]

\{i, i, 2 = 0\} \{i, M\}

if (iy. 2 = 0) \S

\{i, M\}

\{i, M\}
```

Qu) int fun (int N)
$$\S$$
 $S = 0;$

for $(i = 0; i < = 100; i++)$ $S = 100, 100$

$$S = S + i + i^{2};$$
 $S = S + i + i^{2};$
 $S = S + i^{2};$

Os.) void fun (N)?

$$\int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1}{2} = 1; \frac{1}{2} + 1\right)^{2} = N$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1}{2} = 1; \frac{1}{2} + 1\right)^{2} = N$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1}{2} = 1; \frac{1}{2} + 1\right)^{2} = N$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1}{2} = 1; \frac{1}{2} + 1\right)^{2} = N$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1}{2} = 1; \frac{1}{2} + 1\right)^{2} = N$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1}{2} + 1\right)^{2} = N$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1}{2} + 1\right)^{2} = N$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1}{2} + 1\right)^{2} = N$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} \left(\frac{1}{2} + 1\right)^{2} = N$$

$$\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^$$

iferations	valu of i
1	N/2'
2	N/22
3	N/23
4	N/24
5	N/25
1 (
į	1 -

$$\frac{N}{2} \longrightarrow \frac{N}{2} \longrightarrow \frac{N}{2^2} \longrightarrow \frac{N}{2^3} \longrightarrow \frac{N}{2^4} \longrightarrow \frac{N}{2^5} \longrightarrow ---- 1$$

if 1 == 1, loop will break.

After K iteration, loop will break.

$$3 = 1 = \frac{N}{2^k}$$

$$2^{k} = N$$

$$\log_{2} 2^{k} = \log_{2} N$$

$$= \left[k = \log_{2} N \right]$$

no. of iterations = loga N

$$N \rightarrow N_3 \rightarrow N_9 \rightarrow N_{27} \rightarrow N_{81} \rightarrow --- \boxed{1}$$

After Kikrations, loop will break.

$$1 = \frac{N}{3^k}$$

void fun (int N)?

$$S=0;$$
 $S=0;$
 $S=S+i;$
 $S=S+i;$
 $S=S+i;$
 $S=S+i;$

ikrations	valu of i
1	2
2	22
3	23
4	24
5	25
t (1

if i == N, loop will break.
After & iteration, loop will break.

$$N = 2^{k}$$

$$\log_{2} N = \log_{2} 2^{k} = \log_{2} N = k$$

$$\text{He no. of iterations} = \log_{2} n.$$

Nested loops

#fable.

<u>Q9</u> -)	void fun (int N) s
	for (i = 1; i == 10; i++) {
	print ()

valu of i	j	iterations
1	[1,N]	N
2	[1,N]	V,
3	[1,N]	+
1 (
(6	[1,17]	rt —

A total no. of iteration = 10 N

* table

1	j	Herations
1	[I,N]	Z 2
2 3	[[N]	÷ N
1 1		\
N	[1, 11]	N

H no. of iterations = N*N=N2.

total no. of iterations = N(N+1).

$$\begin{array}{c}
\sqrt{2} \\
\sqrt$$

નં	j	iterations
1	(1, N)	LogzN
2	[1,N)	log_N
3	[1, N)	lost
1	1	1
	1) [
N	(1, n)	loj 2N

total no. of iterations = log N * N = N log 2N .

We would fun (Part N)
$$\S$$
 $\begin{cases}
 \text{for } (i=1; i = N; i + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\
 \text{for } (j=1; j = 2^i; j + i) \\$

total m. of iteration =
$$2' + 2^2 + 2^3 + - - 2^n$$

= $2 \left[2^n - 1 \right]$ = $2 \left[2^n - 1 \right]$
[2-1]

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; 1 > 0; i = i/2)$$

$$\int_{0}^{\infty} \int_{0}^{\infty} (i = N; i = i/2)$$

total no. of iteration =
$$N + \frac{N}{2!} + \frac{N}{2^2} + \frac{N}{2^3} + - - \frac{N}{2^{\log 2^{N}}}$$

$$= N + N \left[\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + - - \frac{1}{2^{\log_{2} N}} \right]$$

$$= N + N \left[\frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + - - \frac{1}{2^{\log_{2} N}} \right]$$

$$S = \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}}$$

$$S = \frac{1}{2} \left[1 - \left(\frac{1}{2}\right)^{3} \right]$$

$$\frac{1 - 1}{2}$$

$$S = \frac{1 - \left(\frac{1}{2}\right)^{2N}}{\left(1 - \frac{1}{2}\right)^{2N}}$$

$$\frac{a[1-L^n]}{[1-L]} \qquad \begin{bmatrix} a=V_2 \\ r=V_2 \end{bmatrix}$$

$$= \begin{bmatrix} v=V_2 \end{bmatrix}$$

$$= \begin{bmatrix} v=V_2 \end{bmatrix}$$

$$S = 1 - \frac{1}{2^{1/2}N} = 1 - \frac{1}{N} = \frac{N-1}{N}$$

$$= \frac{\log a^{x}}{2} = x \Rightarrow \text{ frop mith of log} \qquad \frac{\log 2^{2}}{2} = N$$

$$= \frac{\log 2^{2}}{N} = N$$

$$= \frac{\log 2^{N}}{N} = \frac{\log 2^{N}}{N} \frac{\log 2^{N$$

- 1 Calculate no. of Iterations
- 2 Ignore lower order terms.
- 3 Ignore Constant (co-efficients.

$$f(N) = |0N^2 + |00N' + |0^3N''|$$

$$= |0N^2 + |00N' + |0^3N''|$$

$$= |0N^2 + |00N' + |00|$$

$$= |0N^2 + |00N' + |00|$$

$$\vec{n}$$
 $f(N) = \vec{A}N_5 + 3N_1 + 10_2 N_s$ = $o(N_5)$

$$\int_{X}^{\infty} f(N) = \frac{4N + 3N \log N + 10^6}{\times} \Rightarrow O(N \log N)$$

$$f(N) = 4NlogN + 3NJN + 10^6 = 0(NJN)$$

Assignent/ H.hl quistion.

- fable is the ultimate truth.

- { send me the code.}

$$for(i=1;i=n;i=2)$$
 $for(j=1;j=n;j+1)$
 $for(j=1;j=n;j+1)$

ė	j	iferns
I	[1,40]	2 ~
2	[1/4]	N J
d	[1, N]	N V
8	[1,27]	V,
1		1
(Ŋ	

$$2^{k'} = N$$
 $\log_{2} 2^{k-1} = \log_{2} N$
 $\begin{cases} K = \log_{2} N + 1 \end{cases}$

- All class.