CMPE 257 Machine Learning Spring 2019

HW#2 Due March 11th, 11:59 PM, on Canvas

1. (10 points) Problem 2.1 from the textbook.

Problem 2.1 In Equation (2.1), set $\delta = 0.03$ and let

$$\epsilon(M,N,\delta) = \sqrt{rac{1}{2N} \ln rac{2M}{\delta}}.$$

- (a) For M=1, how many examples do we need to make $\epsilon \leq 0.05$?
- (b) For M=100, how many examples do we need to make $\epsilon \leq 0.05$?
- (c) For M=10,000, how many examples do we need to make $\epsilon \leq 0.05$?

2. (10 points) Problem 2.3 from the textbook.

Problem 2.3 Compute the maximum number of dichotomies, $m_{\mathcal{H}}(N)$, for these learning models, and consequently compute d_{vc} , the VC dimension.

- (a) Positive or negative ray: \mathcal{H} contains the functions which are +1 on $[a, \infty)$ (for some a) together with those that are +1 on $(-\infty, a]$ (for some a).
- (b) Positive or negative interval: \mathcal{H} contains the functions which are +1 on an interval [a,b] and -1 elsewhere or -1 on an interval [a,b] and +1 elsewhere.
- (c) Two concentric spheres in \mathbb{R}^d : \mathcal{H} contains the functions which are +1 for $a \leq \sqrt{x_1^2 + \ldots + x_d^2} \leq b$.

3. (10 points) Problem 2.12 from textbook.

Problem 2.12 For an \mathcal{H} with $d_{\text{VC}} = 10$, what sample size do you need (as prescribed by the generalization bound) to have a 95% confidence that your generalization error is at most 0.05?

4. (10 points) Prove that selecting the hypothesis h that maximizes the likelihood $\prod_{n=1}^{N} P(y_n|x_n)$ is equivalent to minimizing the cross-entropy error

$$E_{in}(\mathbf{w}) = \frac{1}{N} \sum_{n=1}^{N} \ln(1 + e^{-y_n \mathbf{w}^T x_n})$$

5. (10 points) Derive the gradient of the in-sample error $\nabla E_{in}(w(t))$ used in the gradient descent algorithm.

6. (10 points) Exercise 3.13 (a) (b) (c) from textbook

Exercise 3.13

Consider the feature transform $\mathbf{z} = \Phi_2(\mathbf{x})$ in (3.13). How can we use a hyperplane $\tilde{\mathbf{w}}$ in \mathcal{Z} to represent the following boundaries in \mathcal{X} ?

- (a) The parabola $(x_1 3)^2 + x_2 = 1$.
- (b) The circle $(x_1 3)^2 + (x_2 4)^2 = 1$.
- (c) The ellipse $2(x_1-3)^2+(x_2-4)^2=1$.

$$\Phi_2(\mathbf{x}) = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2), \tag{3.13}$$

7. (20 points) Problem 3.1 from textbook. You can use the attached "HW2_3.1.ipynb" as a starting point to generate the data. Feel free to write your own code to generate the data.

Problem 3.1 Consider the double semi-circle "toy" learning task below.

There are two semi circles of width thk with inner radius rad, separated by sep as shown (red is -1 and blue is +1). The center of the top semi circle is aligned with the middle of the edge of the bottom semi circle. This task is linearly separable when $sep \geq 0$, and not so for sep < 0. Set rad = 10, thk = 5 and sep = 5. Then, generate 2,000 examples uniformly, which means you will have approximately 1,000 examples for each class.

- (a) Run the PLA starting from $\mathbf{w} = \mathbf{0}$ until it converges. Plot the data and the final hypothesis.
- (b) Repeat part (a) using the linear regression (for classification) to obtain w. Explain your observations.

8. (10 points) Problem 3.2 from textbook

Problem 3.2 For the double semi circle task in Problem 3.1, vary sep in the range $\{0.2, 0.4, \ldots, 5\}$. Generate 2,000 examples and run the PLA starting with $\mathbf{w} = \mathbf{0}$. Record the number of iterations PLA takes to converge.

Plot sep versus the number of iterations taken for PLA to converge. Explain your observations. [Hint: Problem 1.3.]

9. (20 points) Problem 3.3 from textbook

Problem 3.3 For the double semi circle task in Problem 3.1, set sep = -5 and generate 2, 000 examples.

- (a) What will happen if you run PLA on those examples?
- (b) Run the pocket algorithm for 100,000 iterations and plot $E_{\rm in}$ versus the iteration number t.
- (c) Plot the data and the final hypothesis in part (b).
- (d) Use the linear regression algorithm to obtain the weights w, and compare this result with the pocket algorithm in terms of computation time and quality of the solution.
- (e) Repeat (b) (d) with a 3rd order polynomial feature transform.

10. (10 points) Problem 3.16 from textbook

Problem 3.16 In Example 3.4, it is mentioned that the output of the final hypothesis $g(\mathbf{x})$ learned using logistic regression can be thresholded to get a 'hard' (± 1) classification. This problem shows how to use the risk matrix introduced in Example 1.1 to obtain such a threshold.

Consider fingerprint verification, as in Example 1.1. After learning from the data using logistic regression, you produce the final hypothesis

$$g(\mathbf{x}) = \mathbb{P}[y = +1 \mid \mathbf{x}],$$

which is your estimate of the probability that $y=\pm 1$. Suppose that the cost matrix is given by

$$\begin{array}{c|cccc} & & & \text{True classification} \\ & & +1 \text{ (correct person)} & -1 \text{ (intruder)} \\ \hline \text{you say} & +1 & 0 & c_a \\ & -1 & c_r & 0 \\ \end{array}$$

For a new person with fingerprint \mathbf{x} , you compute $g(\mathbf{x})$ and you now need to de cide whether to accept or reject the person (i.e., you need a hard classification). So, you will accept if $g(\mathbf{x}) \geq \kappa$, where κ is the threshold.

(a) Define the cost(accept) as your expected cost if you accept the person. Similarly define cost(reject). Show that

cost(accept) =
$$(1 - g(\mathbf{x}))c_a$$
,
cost(reject) = $g(\mathbf{x})c_r$.

(b) Use part (a) to derive a condition on $g(\mathbf{x})$ for accepting the person and hence show that

$$\kappa = \frac{c_a}{c_a + c_r}.$$

(c) Use the cost matrices for the Supermarket and CIA applications in Example 1.1 to compute the threshold κ for each of these two cases. Give some intuition for the thresholds you get.

Submission instructions:

- Please read the submission instructions on Canvas for naming conventions. Please use meaningful names for variables and file names.
- Discussions are encouraged, but do not copy your answers from external sources or each other.
- Please cite all the sources you used in your submission.
- For questions on the textbook problems, you can check out the book forum: http://book.caltech.edu/bookforum/