Traveling Salesman Problem

Approximation Algorithms

Quotes of the day

"Problem solving is hunting. It is savage pleasure and we are born to it."

Thomas Harris

"Algorithms must be seen to be believed."

Donald Knuth

Outline

- Metric TSP
 - Double-Tree Algorithm
 - Christofides Algorithm
- Euclidean TSP
 - Arora's Algorithm
- Real-world application

Goals of this talk

- o Understand presented approximation algorithms
- Implement presented algorithms to solve real world problems

Metric TSP

$$d(\cdot,\cdot): X \times X \to \mathbb{R}, d(x,y) \mapsto ||x-y||$$

- $d(x, y) \ge 0$, for $d(x, y) = 0 \Rightarrow x = y$
- d(x, y) = d(y, x)
- $d(x,z) \le d(x,y) + d(y,z)$

Instance: A complete graph G with weights $c: E(G) \to \mathbb{R}_+$ such that metric properties hold

Goal: Find Hamiltonian cycle in G of minimum weight

Theorem 1. The Metric TSP is NP-hard

Double-Tree Algorithm

DFS traversal: 1, 2, 3, 2, 4, 2, 1, 5, 1, 6, 1

Instance: An instance (G, c) of the Metric TSP

Goal: A cycle

Theorem 2. The Double-Tree Algorithm is a 2-factor approximation algorithm for the Metric TSP

S: (Multi)-set of edges c(S): Sum of cost of all edges in S $c(H_C^*)$: cost of optimal Hamiltonian cycle

Double-Tree Algorithm

DFS traversal: 1, 2, 3, 2, 4, 2, 1, 5, 1, 6, 1

DFS traversal: 1, 2, 3, 2, 4, 2, 1, 5, 1, 6, 1

$$T \longrightarrow G \longrightarrow G'$$

$$2 \cdot c(T) = c(G) \qquad c(G') \le c(G)$$

$$(1) \Rightarrow c(G') \le 2 \cdot c(T)$$

Instance: An instance (G, c) of the Metric TSP

Goal: A cycle

Theorem 2. The Double-Tree Algorithm is a 2-factor approximation algorithm for the Metric TSP

$$1 \to 2 \to 3 \to 2 \to 4 \to \dots$$

$$1 \to 2 \to 3 \to 2 \to 4 \to \dots$$

$$d(x, z) \le d(x, y) + d(y, z)$$

Double-Tree Algorithm

DFS traversal: 1, 2, 3, 2, 4, 2, 1, 5, 1, 6, 1

DFS traversal: 1, 2, 3, 2, 4, 2, 1, 5, 1, 6, 1

$$\begin{array}{c}
T \\
T \\
2 \cdot c(T) = c(G) \\
\end{array}$$

$$\begin{array}{c}
c(G') \leq c(G) \\
\end{array}$$

$$(1) \Rightarrow c(G') \le 2 \cdot c(T)$$

Instance: An instance (G, c) of the Metric TSP

Goal: A cycle

Theorem 2. The Double-Tree Algorithm is a 2-factor approximation algorithm for the Metric TSP

(2)
$$c(H_G^*) \ge c(H_G^* - e) \ge c(T)$$

$$\Longrightarrow$$
 From (1) and (2) $c(G') \le 2 \cdot c(H_G^*)$

Double-Tree Algorithm - Recap

DFS traversal: 1, 2, 3, 2, 4, 2, 1, 5, 1, 6, 1

2. DFS traversal: 1, 2, 3, 2, 4, 2, 1, 5, 1, 6, 1

3.
$$T \longrightarrow G \longrightarrow G'$$
$$2 \cdot c(T) = c(G) \qquad c(G') \le c(G)$$

$$(1) \Rightarrow c(G') \le 2 \cdot c(T)$$

Instance: An instance (G, c) of the Metric TSP

Goal: A cycle

Theorem 2. The Double-Tree Algorithm is a 2-factor approximation algorithm for the Metric TSP

(2)
$$c(H_G^*) \ge c(H_G^* - e) \ge c(T)$$

$$\Longrightarrow$$
 From (1) and (2) $c(G') \leq 2 \cdot c(H_G^*)$

Some useful concepts and lemmas

Claim: $c(H_S^*) \le c(H_G^*)$

Say $c(H_S^*) > c(H_G^*)$

Perfect Matchings

Eulerian Graph

Christofides' Algorithm

$$c(C) = c(T) + c(M)$$

Duplication argument:

Instance: An instance (G, c) of the Metric TSP

Goal: A cycle

Theorem 3. Christofides' Algorithm is a 3/2-factor approximation algorithm for the Metric TSP

$$\sum_{v_i \in V} d_i = 2 \cdot |E|$$

 $\sum_{v_i \in V}^r d_i \text{ is even, } \forall i = 1, \dots, r : v_i \text{ has even degree}$

$$\sum_{v_i \in V} d_i = \sum_{v_i \in V: \ v_i \text{ even}} d_i + \sum_{v_i \in V: \ v_i \text{ odd}} d_i$$

 \Longrightarrow Number of vertices with odd degree (number of terms in $\sum_{v_i \in V: \ v_i } d_i$) must be even

Christofides' Algorithm

$$c(C) = c(T) + c(M)$$

Duplication argument:

From Double-Tree algorithm: $c(T) \le c(H_G^*)$

From previous lemma: $c(H_S^*) \le c(H_G^*)$

 $M_1 \qquad c(M) \le c(M_1)$

 $C(M) \le c(M_2)$

Instance: An instance (G, c) of the Metric TSP

Goal: A cycle

Theorem 3. Christofides' Algorithm is a 3/2-factor approximation algorithm for the Metric TSP

$$\Rightarrow c(M) \leq \frac{1}{2}(c(M_1) + c(M_2))$$

$$= \frac{1}{2}c(H_S^*)$$

$$\leq \frac{1}{2}c(H_G^*)$$

$$\leq \frac{1}{2}c(H_G^*)$$

$$\Rightarrow c(C) = c(T) + c(M)$$

$$\leq c(H_G^*) + \frac{1}{2}c(H_G^*)$$

$$\Rightarrow c(C') \leq \frac{3}{2}c(H_G^*)$$

Christofides' Algorithm - Recap

2.
$$C \longrightarrow C'$$
 Duplication argument

3. Claim:
$$c(C) = c(T) + c(M)$$

4.
$$M$$
 bounded by H_S^* M_2

Instance: An instance (G, c) of the Metric TSP

Goal: A cycle

Theorem 3. Christofides' Algorithm is a 3/2-factor approximation algorithm for the Metric TSP

5.

$$c(M) \le \frac{1}{2}(c(M_1) + c(M_2))$$

$$c(C) = c(T) + c(M)$$

$$\le c(H_G^*) + \frac{1}{2}c(H_G^*)$$

$$\le c(H_G^*)$$

$$\implies c(C') \le \frac{3}{2}c(H_G^*)$$

Up to this point

Euclidean TSP

$$d(\cdot,\cdot): X \times X \to \mathbb{R}, d(x,y) \mapsto ||x-y||$$

- $d(x, y) \ge 0$, for $d(x, y) = 0 \Rightarrow x = y$
- d(x, y) = d(y, x)
- $d(x,z) \le d(x,y) + d(y,z)$

Instance: Finite set $V \subseteq \mathbb{R}^2$, |V| > 3 with euclidean distances, i.e., d(x,y) = ||x-y||

Goal: Find Hamiltonian cycle in G of minimum weight

Theorem 4. The Euclidean TSP is NP-hard

Definition. (ϵ -nice instances): An instance of euclidean TSP is called ϵ -nice if the following conditions hold:

• Every point has integral coordinates in the interval

$$\left[0, O\left(\frac{n}{\epsilon}\right)\right]^2$$

Any two different points have distances at least 4.

Arora's Algorithm

 $OPT_I \ge 2L \ge L$

Lemma. Let I be an arbitrary instance to euclidean TSP. Let OPT_I denote the length of the optimum tour in I. We can transform I into an ϵ -nice instance I' such that $OPT_{I'} \leq (1+\epsilon)OPT_I$

- Every point has integral coordinates in the respective range since $L = \lceil 8n/\epsilon \rceil \in O(n/\epsilon)$
- Grid spacing is $\frac{\epsilon L}{2n} \ge \frac{\epsilon}{2n} \frac{8n}{\epsilon} \Rightarrow d(x, y) \ge 4$

 $\Longrightarrow I'$ is ϵ -nice

Arora's Algorithm

$$L = \left[\frac{8n}{\epsilon}\right]$$

Mapping points from I to I': distance $\leq \frac{\epsilon L}{2}$

 \Rightarrow Mapping edges from I to I': length edge \leq

Lemma. Let I be an arbitrary instance to euclidean TSP. Let OPT_I denote the length of the optimum tour in I. We can transform I into an ϵ -nice instance I'such that $OPT_{I'} \leq (1 + \epsilon)OPT_{I}$

$$c^{2} = \left(\frac{\epsilon L}{2n}\right)^{2} + 2\left(\frac{\epsilon L}{2n}\right)^{2}$$

$$\Leftrightarrow c = \sqrt{3}\left(\frac{\epsilon L}{2n}\right)^{2} \le \frac{\epsilon L}{n}$$

$$\Leftrightarrow c = \sqrt{3} \left(\frac{\epsilon L}{2n}\right)^2 \le \frac{\epsilon L}{n}$$

Arora's Algorithm

$$L = \left\lceil \frac{8n}{\epsilon} \right\rceil$$

Lemma. Let I be an arbitrary instance to euclidean TSP. Let OPT_I denote the length of the optimum tour in I. We can transform I into an ϵ -nice instance I' such that $OPT_{I'} \leq (1+\epsilon)OPT_I$

Mapping points from
$$I$$
 to I' : distance $\leq \frac{\epsilon L}{2n}$

$$\Rightarrow$$
 Mapping edges from I to I' : length edge $\leq \frac{\epsilon L}{n}$

$$\Rightarrow OPT_{I'} \leq OPT_I + \epsilon L$$

$$\Longrightarrow OPT_{I'} \leq OPT_I + \epsilon L \leq (1 + \epsilon) OPT_I$$

Euclidean TSP

Arora's Algorithm - Recap

1

2

Mapping points from I to I': distance $\leq \frac{\epsilon L}{2n}$

 \Rightarrow Mapping edges from I to I': length edge $\leq \frac{\epsilon L}{n}$

 $\Rightarrow OPT_{I'} \leq OPT_I + \epsilon L$

 $\Longrightarrow OPT_{I'} \leq OPT_I + \epsilon L \leq (1 + \epsilon) OPT_I$

Real world application

Thank you for your attention!

References

- Demaine, E., Devadas, S., & Lynch, N. (2015). Approximation Algorithms: Traveling Salesman Problem. Retrieved from https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-046j-design-and-analysis-of-algorithms-spring-2015/recitation-notes/MIT6_046JS15_Recitation9.pdf
- Svensson Ola (2013). Approxiimation algorithms: Euclidean TSP. Retrieved from https://theory.epfl.ch/osven/courses/Approx13/Notes/lecture4-5.pdf
- Korte, B. H., & Vygen, J. (2010). Combinatorial optimization: Theory and algorithms.
 Berlin: Springer.Korte, B. H., & Vygen, J. (2010). Combinatorial optimization: Theory and algorithms. Berlin: Springer.

Github: https://github.com/juan190199/TravelingSalesmanProblem