MATH 273: Discrete Mathematics 2

Dr. Petrescu

Denny Cao

Final: April 26, 2023

Contents

1	Rel_{i}	ations	3
	1.1	Introduction	3
		1.1.1 Cartesian Products	3
	1.2	Properties of Relations	3
	1.3	Combining Relations	4

1 Relations

1.1 Introduction

1.1.1 Cartesian Products

Definition 1.1.1. Let A and B be sets. The **cartesian product** of A and B is the set

$$A \times B = \{(a, b) \mid a \in A \land b \in B\}$$
 (1)

- $A \times B \neq B \times A$
- Recall there are $2^{|S|}$ subsets of S. These are the amount of relations from A to B (A subset of the cartesian product is a relation). Remember that this includes \emptyset .
- Every function is a relation, but not every relation is a function. When it is a function, it is one-to-one.

Example 1.1.1. Let $A = \{0, 1, 2\}$ and $B = \{a, b\}$. Then $\{(0, a), (0, b), (1, a), (2, b)\}$ is a relation from A to B. This means, for instance, that 0Ra, but that $1 \not Rb$ Relations can be represented graphically. Another way is to use a table:

Definition 1.1.2. A relation on a set A is a relation from A to A

Example 1.1.2. Let A be the set $\{1, 2, 3, 4\}$. Which ordered pairs are in the relation $R = \{(a, b) \mid a \text{ div } b\}$?

• Note that this can be a matrix!

1.2 Properties of Relations

Definition 1.2.1. A relation R on a set A is called **reflexive** if

$$\forall a \in A, (a, a) \in R \tag{2}$$

• If the relation is reflexive, then the main diagonal of the matrix is full

Definition 1.2.2. A relation R on a set A is called **symmetric** if:

$$\forall a \forall b \in A, (a, b) \in R \implies (b, a) \in R \tag{3}$$

A relation R on a set A is called **antisymmetric** if:

$$\forall a \forall b \in A, (a, b) \in R \implies (b, a) \in R \tag{4}$$

- If the relation is symmetric, then **the matrix is symmetric**. This means that $A = A^T$, and can be seen if the upper and lower triangles are the same.
- If the relation is antisymmetric, then **the matrix is antisymmetric** (The main diagonal is empty)

Definition 1.2.3. A relation R on a set A is called **transitive** if:

$$\forall a \forall b \forall c \in A, (a, b) \in R \land (b, c) \in R \implies (a, c) \in R. \tag{5}$$

1.3 Combining Relations

Similar to composing functions. We can combine relations in any way two sets can be combined. You can do everything you can do with sets.

Definition 1.3.1. Let R be a relation from a set A to a set B and S a relation from B to a set C. The **composite** of R and S is the relation consisting of ordered pairs (a, c), where $a \in A, c \in C$, and for which $\exists b \in B \mid (a, b) \in R \land (b, c) \in S$. We denote the composite of R and S by $S \circ R$.

- If there is an A in R that maps to B, and for S there is a B that maps to a C, then the composite $S \circ R$ will map A to C.
- If B maps to multiple C's?, then the composite will map A to multiple C's.

Definition 1.3.2. Let R be a relation on the set A. The powers R^n , n = 1, 2, 3, ... are defined recursively by:

$$R^1 = R \quad \text{and} \quad R^{n+1} = R \circ R^n \tag{6}$$

Definition 1.3.3. The relation R on a set A is **transitive** if and only if:

$$\forall n \ge 1, R^n \subseteq R \tag{7}$$