Universität Potsdam

Institut für Informatik Lehrstuhl Maschinelles Lernen

Kernel Methods

Tobias Scheffer

Contents

- Feature mappings
 - Representer Theorem
- Kernel learning algorithms
 - Kernel ridge regression
 - Kernel perceptron,
 - Dual SVM
- Mercer map
- Kernel functions
 - Polynomial, RBF
 - For time series, strings, graphs

Review: Linear Models

- Linear models: $f_{\theta}(\mathbf{x}) = \mathbf{x}^{\mathrm{T}}\mathbf{\theta}$
- Regularized empirical risk minimization:

$$\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \sum_{i=1}^{n} \ell(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) + \lambda \Omega(\boldsymbol{\theta})$$

- Choice of loss & regularizer gives different methods
 - Perceptron, SVM, ridge regression, ...

- Models constained to hyperplane in feature space: $H_{\mathbf{\theta}} = \{\mathbf{x} | \mathbf{x}^{\mathrm{T}} \mathbf{\theta} = 0\}.$
- Use mapping ϕ to embed instances $\mathbf{x} \in X$ in higher-dimensional feature space.
- Find hyperplane in higher-dimensional space, corresponds to non-linear surface in feature space.
- Kernel trick: Feature space $\phi(X)$ need not be represented explicitly, can be infinite-dimensional.

• All linear methods can be made non-linear by means of feature mapping ϕ .

 Hyperplane in feature space corresponds to a nonlinear surface in original space.

Instances:

$$\mathbf{X} = \begin{pmatrix} x_{11} & \cdots & x_{1m} \\ \vdots & \ddots & \vdots \\ x_{n1} & \cdots & x_{nm} \end{pmatrix}$$

Feature Mapping:

$$\mathbf{\Phi} = \begin{pmatrix} \phi(\mathbf{x}_1)^{\mathrm{T}} \\ \vdots \\ \phi(\mathbf{x}_n)^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} \phi(\mathbf{x}_1)_1 & \cdots & \phi(\mathbf{x}_1)_{m'} \\ \vdots & \ddots & \vdots \\ \phi(\mathbf{x}_n)_1 & \cdots & \phi(\mathbf{x}_n)_{m'} \end{pmatrix}$$

- Feature mapping $\phi(\mathbf{x})$ can be high dimensional.
 - The size of estimated parameter vector $\boldsymbol{\theta}$ depends on the dimensionality of ϕ could be infinite!
- Computation of $\phi(\mathbf{x})$ can be expensive.
 - ϕ must be computed for each training point \mathbf{x}_i & for each prediction x.
- How can we adapt linear methods to efficiently incorporate high dimensional ϕ ?

Representer Theorem: Observation

Perceptron algorithm:

IF
$$y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$$

THEN $\boldsymbol{\theta} = \boldsymbol{\theta} + y_i \mathbf{x}_i$

- Resulting parameter vector is a linear combination of instances: $\mathbf{\theta}^* = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$
- Sufficient to determine coefficients α_i , independent of dimensionality of feature space.
- Underlying general principle?

Contents

- Feature mappings
 - Representer Theorem
- Kernel learning algorithms
 - Kernel ridge regression
 - Kernel perceptron,
 - Dual SVM
- Mercer map
- Kernel functions
 - Polynomial, RBF
 - For time series, strings, graphs

Representer Theorem

Theorem: If $g(\circ)$ is strictly monotonically increasing, then the θ^* that minimizes

$$L(\mathbf{\theta}) = \sum_{i=1}^{n} \ell(\mathbf{\theta}^{T} \phi(\mathbf{x}_{i}), y_{i}) + g(\|f_{\mathbf{\theta}}\|_{2})$$

has the form $\mathbf{\theta}^* = \sum_{i=1}^n \alpha_i^* \phi(\mathbf{x}_i)$, with $\alpha_i^* \in \mathbb{R}$.

$$f_{\mathbf{\theta}^*}(\mathbf{x}) = \sum_{i=1}^n \alpha_i^* \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x})$$

Inner product is a measure for similarity between instances

Generally θ^* is any vector in Φ , but we show it must be in the span of the data.

Representer Theorem: Proof (Sketch)

 $L(\mathbf{\theta}) = \sum_{i=1}^{n} \ell(f_{\mathbf{\theta}}(\mathbf{x}_i), y_i) + g(\|f_{\mathbf{\theta}}\|_2)$

Orthogonal Decomposition:

•
$$\mathbf{\theta}^* = \mathbf{\theta}_{\parallel} + \mathbf{\theta}_{\perp}$$
, with $\mathbf{\theta}_{\parallel} \in \Theta_{\parallel} = \{\sum_{i=1}^{n} \alpha_i \phi(\mathbf{x}_i) | \alpha_i \in \mathbb{R} \}$
and $\mathbf{\theta}_{\perp} \in \Theta_{\perp} = \{\mathbf{\theta} \in \Theta | \mathbf{\theta}^{\mathrm{T}} \mathbf{\theta}_{\parallel} = 0 \ \forall \ \mathbf{\theta}_{\parallel} \in \Theta_{\parallel} \}$

Representer Theorem: Proof (Sketch)

 $L(\mathbf{\theta}) = \sum_{i=1}^{n} \ell(f_{\mathbf{\theta}}(\mathbf{x}_i), y_i) + g(\|f_{\mathbf{\theta}}\|_2)$

- Orthogonal Decomposition:
 - $\theta^* = \theta_{\parallel} + \theta_{\perp}$, with $\theta_{\parallel} \in \Theta_{\parallel} = \{\sum_{i=1}^n \alpha_i \phi(\mathbf{x}_i) | \alpha_i \in \mathbb{R}\}$ and $\theta_{\perp} \in \Theta_{\perp} = \{\theta \in \Theta | \theta^T \theta_{\parallel} = 0 \ \forall \ \theta_{\parallel} \in \Theta_{\parallel}\}$
- For any training point x_i it follows that

$$f_{\boldsymbol{\theta}^*}(\mathbf{x}_i) = \boldsymbol{\theta}_{\parallel}^{\mathrm{T}} \phi(\mathbf{x}_i) + \boldsymbol{\theta}_{\perp}^{\mathrm{T}} \phi(\mathbf{x}_i) = \boldsymbol{\theta}_{\parallel}^{\mathrm{T}} \phi(\mathbf{x}_i)$$

• Why is $\mathbf{\theta}_{\perp}^{\mathrm{T}} \phi(\mathbf{x}_i) = 0$?

Representer Theorem: Proof (Sketch)

 $L(\mathbf{\theta}) = \sum_{i=1}^{n} \ell(f_{\mathbf{\theta}}(\mathbf{x}_i), y_i) + g(\|f_{\mathbf{\theta}}\|_2)$

- Orthogonal Decomposition:
 - $\bullet \ \theta^* = \theta_{\parallel} + \theta_{\perp}, \text{ with } \theta_{\parallel} \in \Theta_{\parallel} = \{\sum_{i=1}^n \alpha_i \phi(\mathbf{x}_i) \mid \alpha_i \in \mathbb{R}\}$ and $\theta_{\perp} \in \Theta_{\perp} = \{\theta \in \Theta | \theta^T \theta_{\parallel} = 0 \ \forall \ \theta_{\parallel} \in \Theta_{\parallel}\}$
- For any training point x_i it follows that

$$f_{\boldsymbol{\theta}^*}(\mathbf{x}_i) = {\boldsymbol{\theta}_{\parallel}}^{\mathrm{T}} \phi(\mathbf{x}_i) + {\boldsymbol{\theta}_{\perp}}^{\mathrm{T}} \phi(\mathbf{x}_i) = {\boldsymbol{\theta}_{\parallel}}^{\mathrm{T}} \phi(\mathbf{x}_i)$$

- $\sum_{i=1}^{n} \ell(f_{\theta}(\mathbf{x}_i), y_i)$ is independent of $\mathbf{\theta}_{\perp}$.
- because $\theta_{\perp}^{\mathrm{T}} \phi(\mathbf{x}_i) = 0$
- Finally from $g(\|\mathbf{\theta}^*\|_2) \ge g(\|\mathbf{\theta}_{\parallel}\|_2)$, it follows $\mathbf{\theta}_{\perp} = \mathbf{0}$.

$$g(\|\mathbf{\theta}^*\|_2) = g\left(\|\mathbf{\theta}_{\parallel} + \mathbf{\theta}_{\perp}\|_2\right) = g\left(\sqrt{\|\mathbf{\theta}_{\parallel}\|_2^2 + \|\mathbf{\theta}_{\perp}\|_2^2}\right) \ge g\left(\|\mathbf{\theta}_{\parallel}\|_2\right)$$

Since $\mathbf{\theta}_{\perp}^{T}\mathbf{\theta}_{\parallel} = 0$ (Pythagoras' Theorem)

Since g is strictly monotonically increasing.

Representer Theorem

■ The hyperplane θ^* , which minimizes

•
$$L(\mathbf{\theta}) = \sum_{i=1}^{n} \ell(\mathbf{\theta}^{\mathrm{T}} \phi(\mathbf{x}_i), y_i) + \Omega(\mathbf{\theta})$$

can be represented as

$$f_{\mathbf{\theta}^*}(\mathbf{x}) = {\mathbf{\theta}^*}^{\mathrm{T}} \phi(\mathbf{x}) = f_{\mathbf{\alpha}^*}(\mathbf{x}) = \sum_{i=1}^n \alpha_i^* \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x})$$

Primal decision function:

$$f_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta}^{\mathrm{T}} \phi(\mathbf{x})$$

Dual decision function:

$$f_{\alpha}(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x})$$

Primal decision function:

$$f_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta}^{\mathrm{T}} \phi(\mathbf{x})$$

Dual decision function:

$$f_{\alpha}(\mathbf{x}) = \sum_{i=1}^{n} \alpha_{i} \phi(\mathbf{x}_{i})^{\mathrm{T}} \phi(\mathbf{x}) = \mathbf{\alpha}^{\mathrm{T}} \mathbf{\Phi} \phi(\mathbf{x})$$

Illustration:

$$\sum_{i=1}^{n} \alpha_i \phi(\mathbf{x}_i)^{\mathrm{T}}$$

$$= (\alpha_1 \dots \alpha_n) \begin{pmatrix} - & \phi(\mathbf{x}_1)^{\mathrm{T}} & - \\ & \vdots & \\ - & \phi(\mathbf{x}_n)^{\mathrm{T}} & - \end{pmatrix} = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi}$$

Primal decision function:

$$f_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta}^{\mathrm{T}} \phi(\mathbf{x})$$

Dual decision function:

$$f_{\alpha}(\mathbf{x}) = \sum_{i=1}^{n} \alpha_{i} \phi(\mathbf{x}_{i})^{\mathrm{T}} \phi(\mathbf{x}) = \mathbf{\alpha}^{\mathrm{T}} \mathbf{\Phi} \phi(\mathbf{x})$$

Duality between parameters:

$$\mathbf{\theta} = \sum_{i=1}^{n} \alpha_i \phi(\mathbf{x}_i) = \mathbf{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

Illustration:

$$\mathbf{\theta} = \begin{pmatrix} | & & | \\ \phi(\mathbf{x}_1) & \dots & \phi(\mathbf{x}_n) \\ | & | \end{pmatrix} \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix} = \mathbf{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

Primal decision function:

$$f_{\mathbf{\theta}}(\mathbf{x}) = \mathbf{\theta}^{\mathrm{T}} \phi(\mathbf{x})$$

Dual decision function:

$$f_{\alpha}(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x}) = \mathbf{\alpha}^{\mathrm{T}} \mathbf{\Phi} \phi(\mathbf{x})$$

Duality between parameters:

$$\mathbf{\theta} = \sum_{i=1}^{n} \alpha_i \phi(\mathbf{x}_i) = \mathbf{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

- Primal view: $f_{\theta}(\mathbf{x}) = \mathbf{\theta}^{\mathrm{T}} \phi(\mathbf{x})$
 - Model θ has as many parameters as the dimensionality of $\phi(\mathbf{x})$.
 - Good if there are many examples with few attributes.
- Dual view: $f_{\alpha}(\mathbf{x}) = \alpha^{\mathrm{T}} \mathbf{\Phi} \phi(\mathbf{x})$
 - Model α has as many parameters as there are examples.
 - Good if there are few examples with many attributes.
 - The representation $\phi(\mathbf{x})$ can even be infinite dimensional, as long as the inner product can be computed efficiently.

•

Kernel Functions

Dual view of the decision function:

$$f_{\alpha}(\mathbf{x}) = \left(\sum_{i=1}^{n} \alpha_{i} \phi(\mathbf{x}_{i})^{\mathrm{T}}\right) \phi(\mathbf{x})$$

$$= \sum_{i=1}^{n} \alpha_{i} \left(\phi(\mathbf{x}_{i})^{\mathrm{T}} \phi(\mathbf{x})\right)$$

$$= \sum_{i=1}^{n} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x})$$

• Where kernel function $k(\mathbf{x}_i, \mathbf{x})$ calculates the inner product $\phi(\mathbf{x}_i)^T \phi(\mathbf{x})$.

Kernel Functions

- Kernel functions can be understood as a measure of similarity between instances.
- Primal view on data: "what does x look like?"

$$\phi(\mathbf{x}) = \begin{pmatrix} \phi(x)_1 \\ \vdots \\ \phi(x)_{m'} \end{pmatrix} \Rightarrow \text{multiply by } \mathbf{\theta}^{\mathrm{T}}.$$

Dual view on data: "how similar is x to each training instance?"

$$\boldsymbol{\Phi}\boldsymbol{\phi}(\mathbf{x}) = \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}) \\ \vdots \\ k(\mathbf{x}_n, \mathbf{x}) \end{pmatrix} \Rightarrow \text{ multiply by } \boldsymbol{\alpha}^{\mathrm{T}}.$$

Kernel Functions

- Kernel function can be defined for
 - Vectors (linear, polynomial, RBF, ...)
 - Strings
 - Images
 - Sequences, graphs
 - **...**
- Any kernel learning method can be applied to any type of data using a kernel for that type of data.

Contents

- Feature mappings
 - Representer Theorem
- Kernel learning algorithms
 - Kernel ridge regression
 - Kernel perceptron,
 - Dual SVM
- Mercer map
- Kernel functions
 - Polynomial, RBF
 - For time series, strings, graphs

Squared loss:

$$\ell_2(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) = (f_{\boldsymbol{\theta}}(\mathbf{x}_i) - y_i)^2$$

L2 regularization:

$$\Omega_2(\mathbf{\theta}) = \|\mathbf{\theta}\|_2^2$$

Minimize

$$L(\mathbf{\theta}) = \sum_{i=1}^{n} (\mathbf{\theta}^{\mathrm{T}} \phi(\mathbf{x}) - y_i)^2 + \lambda \mathbf{\theta}^{\mathrm{T}} \mathbf{\theta}$$

Minimize

$$L(\mathbf{\theta}) = \sum_{i=1}^{n} (\mathbf{\theta}^{T} \phi(\mathbf{x}) - y_{i})^{2} + \lambda \mathbf{\theta}^{T} \mathbf{\theta}$$
$$= (\mathbf{\Phi} \mathbf{\theta} - \mathbf{y})^{T} (\mathbf{\Phi} \mathbf{\theta} - \mathbf{y}) + \lambda \mathbf{\theta}^{T} \mathbf{\theta}$$

Why?

$$(\mathbf{\Phi}\mathbf{\theta} - \mathbf{y}) = \begin{pmatrix} - & \phi(\mathbf{x}_1)^{\mathrm{T}} & - \\ \vdots & & \\ - & \phi(\mathbf{x}_n)^{\mathrm{T}} & - \end{pmatrix} \begin{pmatrix} \mathbf{\theta}_1 \\ \vdots \\ \mathbf{\theta}_m \end{pmatrix} - \mathbf{y}$$
$$= \begin{pmatrix} \phi(\mathbf{x}_1)^{\mathrm{T}}\mathbf{\theta} - y_1 \\ \vdots \\ \phi(\mathbf{x}_n)^{\mathrm{T}}\mathbf{\theta} - y_n \end{pmatrix}$$

Minimize

$$L(\mathbf{\theta}) = (\mathbf{\Phi}\mathbf{\theta} - \mathbf{y})^{\mathrm{T}}(\mathbf{\Phi}\mathbf{\theta} - \mathbf{y}) + \lambda\mathbf{\theta}^{\mathrm{T}}\mathbf{\theta}$$

By the representer theorem:

$$\mathbf{\theta} = \mathbf{\Phi}^{\mathrm{T}} \boldsymbol{\alpha}$$

Dual regularized empirical risk:

$$L(\alpha) = (\Phi \Phi^{T} \alpha - \mathbf{y})^{T} (\Phi \Phi^{T} \alpha - \mathbf{y}) + \lambda \alpha^{T} \Phi \Phi^{T} \alpha$$

Dual regularized empirical risk:

$$L(\alpha) = (\Phi \Phi^{T} \alpha - y)^{T} (\Phi \Phi^{T} \alpha - y) + \lambda \alpha^{T} \Phi \Phi^{T} \alpha$$
$$= \alpha^{T} \Phi \Phi^{T} \Phi \Phi^{T} \alpha - 2\alpha^{T} \Phi \Phi^{T} y - y^{T} y$$
$$+ \lambda \alpha^{T} \Phi \Phi^{T} \alpha$$

- Define gram matrix (or kernel matrix) as $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^{\mathrm{T}}$. $L(\alpha) = \alpha^{\mathrm{T}}\mathbf{K}\mathbf{K}\alpha - 2\alpha^{\mathrm{T}}\mathbf{K}\mathbf{y} - \mathbf{y}^{\mathrm{T}}\mathbf{y} + \lambda\alpha^{\mathrm{T}}\mathbf{K}\alpha$
- Setting the derivative to zero

$$\frac{\partial}{\partial \mathbf{\alpha}} L(\mathbf{\alpha}) = \mathbf{0}$$

Gives the solution

$$\alpha = (\mathbf{K} + \lambda \mathbf{I})^{-1} \mathbf{y}$$

• Kernel (gram) matrix: $\mathbf{K} = \mathbf{\Phi}\mathbf{\Phi}^{\mathrm{T}}$

$$\mathbf{K} = \begin{pmatrix} - & \phi(\mathbf{x}_1)^{\mathrm{T}} & - \\ \vdots & \ddots & \vdots \\ - & \phi(\mathbf{x}_n)^{\mathrm{T}} & - \end{pmatrix} \begin{pmatrix} | & \dots & | \\ \phi(\mathbf{x}_1) & \ddots & \phi(\mathbf{x}_n) \\ | & \dots & | \end{pmatrix}$$
$$= \begin{pmatrix} k(\mathbf{x}_1, \mathbf{x}_1) & \dots & k(\mathbf{x}_1, \mathbf{x}_n) \\ \vdots & \ddots & \vdots \\ k(\mathbf{x}_n, \mathbf{x}_1) & \dots & k(\mathbf{x}_n, \mathbf{x}_n) \end{pmatrix}$$

 $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$

- Regression method that uses kernel functions
- Works with any nonlinear embedding ϕ as long as there is a kernel function that computes the inner product: $k(\mathbf{x}_i, \mathbf{x}) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x})$.
- Kernel matrix \mathbf{K} of size $n \times n$ has to be inverted, works only for modest sample sizes.
- Solution dependent on $\mathbf{K}_{ij} = k(\mathbf{x}_i, \mathbf{x}_j)$, but otherwise independent of $\mathbf{\Phi}$.
- For large sample size, use numeric optimization (e.g., stochastic gradient descent method).

Contents

- Feature mappings
 - ◆ Representer Theorem
- Kernel learning algorithms
 - ◆ Kernel ridge regression
 - Kernel perceptron,
 - Dual SVM
- Mercer map
- Kernel functions
 - Polynomial, RBF
 - For time series, strings, graphs

Kernel Perceptron

Loss function:

$$\ell_p(f_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) = \max(0, -y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i))$$

- No regularizer.
- Primal stochastic gradient:

$$\nabla L_{\mathbf{x}_i}(\mathbf{\theta}) = \begin{cases} -y_i \mathbf{x}_i & -y_i f_{\mathbf{\theta}}(\mathbf{x}_i) > \mathbf{0} \\ 0 & -y_i f_{\mathbf{\theta}}(\mathbf{x}_i) < 0 \end{cases}$$

Rosenblatt, 1960

Kernel Perceptron

Stochastic gradient update step:

THEN
$$y_i f_{\boldsymbol{\theta}}(\mathbf{x}_i) \leq 0$$

 $\theta' = \boldsymbol{\theta} + y_i \mathbf{x}_i$

$$\theta' = \theta + y_i \phi(\mathbf{x}_i)$$

$$\Leftrightarrow \sum_{j=1}^n \alpha'_j \phi(\mathbf{x}_j) = \sum_{j=1}^n \alpha_j \phi(\mathbf{x}_j) + y_i \phi(\mathbf{x}_i)$$

$$\Leftarrow \alpha'_i \phi(\mathbf{x}_i) = \alpha_i \phi(\mathbf{x}_i) + y_i \phi(\mathbf{x}_i),$$

$$\forall j \neq i : \alpha'_j = \alpha_j$$

$$\Leftarrow \alpha'_i = \alpha_i + y_i$$

■ Dual stochastic gradient update step: $y_i f_{\alpha}(\mathbf{x}_i) \leq 0$ THEN $\alpha_i = \alpha_i + y_i$

Kernel Perceptron Algorithm

```
Perceptron (Instances \{(\mathbf{x}_i,y_i)\})
   Set \mathbf{\alpha}=\mathbf{0}
   DO
   FOR i=1,...,n
   IF y_if_{\mathbf{\alpha}}(\mathbf{x}_i)\leq 0
   THEN \alpha_i=\alpha_i+y_i
   END
   WHILE \mathbf{\alpha} changes
   RETURN \mathbf{\alpha}
```

Decision function:

$$f_{\alpha}(\mathbf{x}) = \boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\Phi} \phi(\mathbf{x}) = \sum_{i=1}^{n} \alpha_{i} k(\mathbf{x}_{i}, \mathbf{x})$$

Kernel Perceptron

- Perceptron loss, no regularizer
- Dual form of the decision function:

$$f_{\alpha}(\mathbf{x}) = \sum_{i=1}^{n} \alpha_i k(\mathbf{x}_i, \mathbf{x})$$

- Dual form of the update rule:
 - If $y_i f_{\alpha}(\mathbf{x}_i) \leq 0$, then $\alpha_i = \alpha_i + y_i$
- Equivalent to the primal form of the perceptron
- Advantageous to use instead of the primal perceptron if there are few samples and $\phi(\mathbf{x})$ is high dimensional.

Contents

- Feature mappings
 - Representer Theorem
- Kernel learning algorithms
 - ◆ Kernel ridge regression
 - ◆ Kernel perceptron,
 - Dual SVM
- Mercer map
- Kernel functions
 - Polynomial, RBF
 - For time series, strings, graphs

Primal:
$$\min_{\boldsymbol{\theta}} \left[\sum_{i=1}^{n} \max(0, 1 - y_i \phi(\mathbf{x}_i)^T \boldsymbol{\theta}) + \frac{1}{2\lambda} \boldsymbol{\theta}^T \boldsymbol{\theta} \right]$$

Equivalent optimization problem with side constraints:

$$\min_{\boldsymbol{\theta}, \boldsymbol{\xi}} \left[\lambda \sum_{i=1}^{n} \xi_i + \frac{1}{2} \boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta} \right]$$

such that
$$y_i \boldsymbol{\phi}(\mathbf{x}_i)^{\mathrm{T}} \boldsymbol{\theta} \ge 1 - \xi_i \text{ and } \xi_i \ge 0$$

Goal: dual formulization of the optimization problem

Optimization problem with side constraints:

$$\min_{\boldsymbol{\theta},\boldsymbol{\xi}} \left[\lambda \sum_{i=1}^{n} \xi_i + \frac{1}{2} \boldsymbol{\theta}^T \boldsymbol{\theta} \right]$$
such that
$$y_i \boldsymbol{\phi}(\mathbf{x}_i)^T \boldsymbol{\theta} \geq 1 - \xi_i \text{ and } \boldsymbol{\xi} \geq 0$$
Lagrange function: $Z(\boldsymbol{\theta},\boldsymbol{\xi}) \geq 0$
Lagrange function: $Z(\boldsymbol{\theta},\boldsymbol{\xi}) - \beta g(\boldsymbol{\theta},\boldsymbol{\xi})$

■ Lagrange function with Lagrange-Multipliers $\beta \ge 0$ and $\beta^0 \ge 0$ for the side constraints:

$$L(\boldsymbol{\theta}, \boldsymbol{\xi}, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}) = \lambda \sum_{i=1}^{n} \xi_{i} + \frac{\boldsymbol{\theta}^{T} \boldsymbol{\theta}}{2} - \sum_{i=1}^{n} \beta_{i} (y_{i} \phi(\mathbf{x}_{i})^{T} \boldsymbol{\theta} - 1 + \xi_{i}) - \sum_{i=1}^{n} \beta_{i}^{0} \xi_{i}$$

Optimization problem without side constraints:

$$\min_{\boldsymbol{\theta},\boldsymbol{\xi}} \max_{\boldsymbol{\beta},\boldsymbol{\beta}^0} L(\boldsymbol{\theta},\boldsymbol{\xi},\boldsymbol{\beta},\boldsymbol{\beta}^0)$$

Lagrange function:

$$L(\boldsymbol{\theta}, \boldsymbol{\xi}, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}) = \lambda \sum_{i=1}^{n} \xi_{i} + \frac{\boldsymbol{\theta}^{\mathrm{T}} \boldsymbol{\theta}}{2} - \sum_{i=1}^{n} \beta_{i} (y_{i} \phi(\mathbf{x}_{i})^{\mathrm{T}} \boldsymbol{\theta} - 1 + \xi_{i}) - \sum_{i=1}^{n} \beta_{i}^{0} \xi_{i}$$

■ Setting the derivative of L w.r.t. (θ, ξ) to zero gives:

$$\frac{\partial}{\partial \boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{\xi}, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}) = \boldsymbol{0} \quad \Rightarrow \quad \boldsymbol{\theta} = \sum_{i=1}^{n} \underline{\beta_{i} y_{i}} \, \boldsymbol{\phi}(\mathbf{x}_{i})$$

$$\frac{\partial}{\partial \xi_{i}} L(\boldsymbol{\theta}, \boldsymbol{\xi}, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}) = 0 \quad \Rightarrow \quad \lambda = \beta_{i} + \beta_{i}^{0}$$

Relation between primal and dual parameters... representer theorem.

$$\mathbf{\theta} = \sum_{i=1}^{n} \beta_i y_i \phi(\mathbf{x}_i)$$
$$\lambda = \beta_i + \beta_i^0$$

$$L(\mathbf{\theta}, \boldsymbol{\xi}, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}) = \frac{1}{2} (\mathbf{\theta})^{\mathrm{T}} (\mathbf{\theta})$$

$$-\sum_{i=1}^{n} \beta_{i} (y_{i} \phi(\mathbf{x}_{i})^{\mathrm{T}} \mathbf{\theta} - 1 + \xi_{i}) - \sum_{i=1}^{n} \beta_{i}^{0} \xi_{i} + \lambda \sum_{i=1}^{n} \xi_{i}$$

$$\mathbf{\theta} = \sum_{i=1}^{n} \beta_i y_i \phi(\mathbf{x}_i)$$
$$\lambda = \beta_i + \beta_i^0$$

$$L(\mathbf{\theta}, \boldsymbol{\xi}, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}) = \frac{1}{2} \left(\sum_{i=1}^{n} \beta_{i} y_{i} \phi(\mathbf{x}_{i}) \right)^{T} \left(\sum_{j=1}^{n} \beta_{j} y_{j} \phi(\mathbf{x}_{j}) \right)$$
$$- \sum_{i=1}^{n} \beta_{i} \left(y_{i} \phi(\mathbf{x}_{i})^{T} \sum_{j=1}^{n} \beta_{j} y_{j} \phi(\mathbf{x}_{j}) - 1 + \xi_{i} \right) - \sum_{i=1}^{n} \beta_{i}^{0} \xi_{i} + \lambda \sum_{i=1}^{n} \xi_{i}$$

$$\mathbf{\theta} = \sum_{i=1}^{n} \beta_i y_i \phi(\mathbf{x}_i)$$
$$\lambda = \beta_i + \beta_i^0$$

$$L(\boldsymbol{\theta}, \boldsymbol{\xi}, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}) = \frac{1}{2} \left(\sum_{i=1}^{n} \beta_{i} y_{i} \phi(\mathbf{x}_{i}) \right)^{T} \left(\sum_{j=1}^{n} \beta_{j} y_{j} \phi(\mathbf{x}_{j}) \right)$$

$$- \sum_{i=1}^{n} \beta_{i} \left(y_{i} \phi(\mathbf{x}_{i})^{T} \sum_{j=1}^{n} \beta_{j} y_{j} \phi(\mathbf{x}_{j}) - 1 + \xi_{i} \right) - \sum_{i=1}^{n} \beta_{i}^{0} \xi_{i} + \lambda \sum_{i=1}^{n} \xi_{i}$$

$$= \frac{1}{2} \sum_{i,j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$$

$$- \sum_{i,j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j}) + \sum_{i=1}^{n} \beta_{i} - \sum_{i=1}^{n} \underbrace{\left(\beta_{i} + \beta_{i}^{0}\right)}_{=\lambda} \xi_{i} + \lambda \sum_{i=1}^{n} \xi_{i}$$

$$\mathbf{\theta} = \sum_{i=1}^{n} \beta_i y_i \phi(\mathbf{x}_i)$$
$$\lambda = \beta_i + \beta_i^0$$

$$L(\boldsymbol{\theta}, \boldsymbol{\xi}, \boldsymbol{\beta}, \boldsymbol{\beta}^{0}) = \frac{1}{2} \left(\sum_{i=1}^{n} \beta_{i} y_{i} \phi(\mathbf{x}_{i}) \right)^{T} \left(\sum_{j=1}^{n} \beta_{j} y_{j} \phi(\mathbf{x}_{j}) \right)$$

$$- \sum_{i=1}^{n} \beta_{i} \left(y_{i} \phi(\mathbf{x}_{i})^{T} \sum_{j=1}^{n} \beta_{j} y_{j} \phi(\mathbf{x}_{j}) - 1 + \xi_{i} \right) - \sum_{i=1}^{n} \beta_{i}^{0} \xi_{i} + \lambda \sum_{i=1}^{n} \xi_{i}$$

$$= \frac{1}{2} \sum_{i,j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$$

$$- \sum_{i,j=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j}) + \sum_{i=1}^{n} \beta_{i} - \sum_{i=1}^{n} \underbrace{(\beta_{i} + \beta_{i}^{0})}_{=\lambda} \xi_{i} + \lambda \sum_{i=1}^{n} \xi_{i}$$

$$= \sum_{i,j=1}^{n} \beta_{i} - \frac{1}{2} \sum_{i=1}^{n} \beta_{i} \beta_{j} y_{i} y_{j} \phi(\mathbf{x}_{i})^{T} \phi(\mathbf{x}_{j})$$

Optimization criterion of the dual SVM:

different classes.

L1-Regularizer of **β** (sparse)

Optimization criterion of the dual SVM:

$$\max_{\beta} \sum_{i=1}^{n} \beta_i - \frac{1}{2} \sum_{i,j=1}^{n} \beta_i \beta_j y_i y_j k(\mathbf{x}_i, \mathbf{x}_j)$$

- Optimization over parameters β.
- Solution found with QP-Solver in $O(n^2)$.
- Sparse solution.
- Samples only appear as pairwise inner products.

 Primal and dual optimization problem have the same solution.

$$\mathbf{\theta} = \sum_{\mathbf{x}_i \in SV} \beta_i y_i \phi(\mathbf{x}_i)$$
 Support Vectors: $\beta_i > 0$

Dual form of the decision function:

$$f_{\beta}(\mathbf{x}) = \sum_{\mathbf{x}_i \in SV} \beta_i y_i k(\mathbf{x}_i, \mathbf{x})$$

- Primal SVM:
 - Solution is a Vector θ in the space of the attributes.
- Dual SVM:
 - The same solution is represented as weights β_i of the samples.

Constructing Kernels

- Design embedding $\phi(\mathbf{x})$, then obtain resulting kernel function $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{x}')$.
- Or: just define kernel function (any similarity measure) $k(\mathbf{x}, \mathbf{x}')$ directly, don't bother with embedding.
- For which functions k does there exist a mapping $\phi(\mathbf{x})$, so that k represents an inner product?

Kernels

Kernel matrices are symmetric:

$$\mathbf{K} = \mathbf{K}^{\mathrm{T}}$$

- Kernel matrices $\mathbf{K} \in \mathbb{R}^{n \times n}$ are positive semidefinite: $\exists \mathbf{\Phi} \in \mathbb{R}^{n \times m} : \mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^{\mathrm{T}}$
- Kernel function $k(\mathbf{x}, \mathbf{x}')$ is positive semidefinite if **K** is positive semidefinite for every data set.
- For every positive definite function k there is at least one mapping $\phi(\mathbf{x})$ such that $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\mathrm{T}}\phi(\mathbf{x}')$ for all \mathbf{x} and \mathbf{x}' .

Contents

- Feature mappings
 - ◆ Representer Theorem
- Kernel learning algorithms
 - ◆ Kernel ridge regression
 - ◆ Kernel perceptron,
 - Dual SVM
- Mercer map
- Kernel functions
 - Polynomial, RBF
 - For time series, strings, graphs

Eigenvalue decomposition: Every symmetric matrix
 K can be decomposed in terms of its eigenvectors
 u_i and eigenvalues λ_i:

$$\mathbf{K} = \mathbf{U}\Lambda\mathbf{U}^{-1}, \text{ with } \Lambda = \begin{pmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{pmatrix} \& \mathbf{U} = \begin{pmatrix} \mathbf{I} & & \mathbf{I} \\ \mathbf{u}_1 & \cdots & \mathbf{u}_n \\ \mathbf{I} & & \mathbf{I} \end{pmatrix}$$

- If **K** is positive semi-definite, then $\lambda_i \in \mathbb{R}^{0+}$
- The eigenvectors are orthonormal ($\mathbf{u}_i^{\mathrm{T}}\mathbf{u}_i = 1$ and $\mathbf{u}_i^{\mathrm{T}}\mathbf{u}_i = 0$) and \mathbf{U} is orthogonal: $\mathbf{U}^{\mathrm{T}} = \mathbf{U}^{-1}$.

Thus it holds:

Eigenvalue decomposition

 $\mathbf{K} = \mathbf{U}\Lambda\mathbf{U}^{\mathrm{T}}$ $= (\mathbf{U}\Lambda^{1/2})(\Lambda^{1/2}\mathbf{U}^{\mathrm{T}})$ $= (\mathbf{U}\Lambda^{1/2})(\mathbf{U}\Lambda^{1/2})^{\mathrm{T}}$

Feature mapping for training data can be defined as

$$\begin{pmatrix} | & | \\ \phi(\mathbf{x}_1) & \cdots & \phi(\mathbf{x}_n) \\ | & | \end{pmatrix} = (\mathbf{U}\boldsymbol{\Lambda}^{1/2})^{\mathrm{T}}$$

 Feature mapping for used training data can then be defined as

$$\begin{pmatrix} | & | \\ \phi(\mathbf{x}_1) & \cdots & \phi(\mathbf{x}_n) \\ | & | \end{pmatrix} = (\mathbf{U}\boldsymbol{\Lambda}^{1/2})^{\mathrm{T}}$$

Kernel matrix between training and test data

$$\mathbf{K}_{test} = \Phi(\mathbf{X}_{train})^{\mathrm{T}} \Phi(\mathbf{X}_{test})$$
$$= (\mathbf{U}\Lambda^{1/2}) \Phi(\mathbf{X}_{test})$$

Equation results in a mapping of the test data:

$$\Phi(\mathbf{X}_{test}) = (\mathbf{U}\Lambda^{1/2})^{-1}\mathbf{K}_{test}$$

$$\Phi(\mathbf{X}_{test}) = \Lambda^{-1/2}\mathbf{U}^{\mathrm{T}}\mathbf{K}_{test}$$

- Useful if a learning problem is given as a kernel function but learning should take place in the primal.
- For example if the kernel matrix will be too large (quadratic memory consumption!)

Contents

- Feature mappings
 - ◆ Representer Theorem
- Kernel learning algorithms
 - ◆ Kernel ridge regression
 - ◆ Kernel perceptron,
 - ◆ Dual SVM
- Mercer map
- Kernel functions
 - Polynomial, RBF
 - For time series, strings, graphs

Kernel Compositions

Kernel functions can be composed:

$$k(\mathbf{x}, \mathbf{x}') = ck_1(\mathbf{x}, \mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = f(\mathbf{x})k_1(\mathbf{x}, \mathbf{x}')f(\mathbf{x}')$$

$$k(\mathbf{x}, \mathbf{x}') = q(k_1(\mathbf{x}, \mathbf{x}'))$$

$$k(\mathbf{x}, \mathbf{x}') = e^{k_1(\mathbf{x}, \mathbf{x}')}$$

$$k(\mathbf{x}, \mathbf{x}') = k_1(\mathbf{x}, \mathbf{x}') + k_2(\mathbf{x}, \mathbf{x}')$$

Kernel Functions

- Polynomial kernels: $k_{poly}(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^p$
- Radial basis functions: $k_{RBF}(\mathbf{x}_i, \mathbf{x}_i) = e^{-\gamma \|\mathbf{x}_i \mathbf{x}_j\|^2}$
- Sigmoid kernels,
- Dynamic time-warping kernels,
- String kernels,
- Graph kernels,

- Kernel function: $k_{poly}(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^p$
- Which transformation ϕ corresponds to this kernel?
- Example: 2-D input space, p = 2.

■ Kernel: $k_{poly}(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^p$, 2D-input, p = 2. $k_{poly}(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^2$ $= ((\mathbf{x}_{i1} \ \mathbf{x}_{i2}) (\mathbf{x}_{j1}^{\mathbf{x}_{j1}}) + 1)^2 = (\mathbf{x}_{i1} \mathbf{x}_{j1} + \mathbf{x}_{i2} \mathbf{x}_{j2} + 1)^2$

Kernel: $k_{poly}(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i^T \mathbf{x}_i + 1)^p$, 2D-input, p = 2. $k_{polv}(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i^{\mathrm{T}} \mathbf{x}_i + 1)^2$ $= \left((\mathbf{x}_{i1} \ \mathbf{x}_{i2}) \begin{pmatrix} \mathbf{x}_{j1} \\ \mathbf{x}_{j2} \end{pmatrix} + 1 \right)^2 = \left(\mathbf{x}_{i1} \mathbf{x}_{j1} + \mathbf{x}_{i2} \mathbf{x}_{j2} + 1 \right)^2$ = $(\mathbf{x}_{i1}^2 \mathbf{x}_{i1}^2 + \mathbf{x}_{i2}^2 \mathbf{x}_{i2}^2 + 2\mathbf{x}_{i1} \mathbf{x}_{i1} \mathbf{x}_{i2} \mathbf{x}_{i2} + 2\mathbf{x}_{i1} \mathbf{x}_{i1} + 2\mathbf{x}_{i2} \mathbf{x}_{i2} + 1)$ $= \left(\mathbf{x}_{i1}^{2}\mathbf{x}_{j1}^{2} + \mathbf{x}_{i2}^{2}\mathbf{x}_{j2}^{2} + 2\mathbf{x}_{i1}\mathbf{x}_{j1}\mathbf{x}_{i2}^{2}\mathbf{x}_{j2}^{2}\right)$ $= \left(\mathbf{x}_{i1}^{2}\mathbf{x}_{i2}^{2}\sqrt{2}\mathbf{x}_{i1}\mathbf{x}_{i2}\right) \sqrt{2}\mathbf{x}_{i1} \sqrt{2}\mathbf{x}_{i2} \qquad 1$ $\phi(\mathbf{x}_{i})^{T}$ All monomials of degree ≤ 2 over input attributes $\begin{pmatrix} \mathbf{x}_{j1}^{2} \\ \mathbf{x}_{j2}^{2} \\ \sqrt{2}\mathbf{x}_{j1}\mathbf{x}_{j2} \\ \sqrt{2}\mathbf{x}_{j1} \\ \sqrt{2}\mathbf{x}_{j2} \\ 1 \end{pmatrix}$

Kernel: $k_{poly}(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i^T \mathbf{x}_i + 1)^p$, 2D-input, p = 2. $k_{polv}(\mathbf{x}_i, \mathbf{x}_i) = (\mathbf{x}_i^{\mathrm{T}} \mathbf{x}_i + 1)^2$ $= \left(\begin{pmatrix} \mathbf{x}_{i1} & \mathbf{x}_{i2} \end{pmatrix} \begin{pmatrix} \mathbf{x}_{j1} \\ \mathbf{x}_{j2} \end{pmatrix} + 1 \right)^2 = \left(\mathbf{x}_{i1} \mathbf{x}_{j1} + \mathbf{x}_{i2} \mathbf{x}_{j2} + 1 \right)^2$ = $(\mathbf{x}_{i1}^2 \mathbf{x}_{i1}^2 + \mathbf{x}_{i2}^2 \mathbf{x}_{i2}^2 + 2\mathbf{x}_{i1} \mathbf{x}_{i1} \mathbf{x}_{i2} \mathbf{x}_{i2} + 2\mathbf{x}_{i1} \mathbf{x}_{i1} + 2\mathbf{x}_{i2} \mathbf{x}_{i2} + 1)$ $=\underbrace{\left(\mathbf{x}_{i1}^{2} \quad \mathbf{x}_{i2}^{2} \quad \sqrt{2}\mathbf{x}_{i1}\mathbf{x}_{i2} \quad \sqrt{2}\mathbf{x}_{i1} \quad \sqrt{2}\mathbf{x}_{i2} \quad 1\right)}_{\phi(\mathbf{x}_{i})^{\mathrm{T}}} \begin{cases} \mathbf{x}_{j1}^{2} \\ \mathbf{x}_{j2}^{2} \\ \sqrt{2}\mathbf{x}_{j1}\mathbf{x}_{j2} \\ \sqrt{2}\mathbf{x}_{j1} \\ \sqrt{2}\mathbf{x}_{j1} \\ \sqrt{2}\mathbf{x}_{j2} \\ 1 \end{cases}$ All monomials of degree ≤ 2 over input attributes $= \begin{pmatrix} \mathbf{x}_i \otimes \mathbf{x}_i \\ \sqrt{2} \mathbf{x}_i \end{pmatrix}^T \begin{pmatrix} \mathbf{x}_j \otimes \mathbf{x}_j \\ \sqrt{2} \mathbf{x}_j \end{pmatrix}$

RBF Kernel

- Kernel: $k_{RBF}(\mathbf{x}_i, \mathbf{x}_j) = \exp(-\gamma ||\mathbf{x}_i \mathbf{x}_j||^2)$
- No finite-dimensional feature mapping ϕ .

Time Series: DTW Kernel

- Similarity of time series
- Idea: Find corresponding similar points in x, x'.
- Correspondence function

$$\pi_{\mathbf{x}}(k) \in [1, T_{\mathbf{x}}], \pi_{\mathbf{x}'}(l) \in [1, T_{\mathbf{x}'}]$$

DTW distance is squared distance between matched sequences:

$$k_{DTW}(\mathbf{x}, \mathbf{x}') = e^{-\left(\min \sum_{k=1}^{T} \left(\mathbf{x}_{\pi_{\mathbf{x}(k)}} - \mathbf{x}'_{\pi_{\mathbf{x}'(k)}}\right)^{2}\right)}$$

Time Series: DTW Kernel

- Efficient calculation using dynamic programming
- Let $\gamma(k, l)$ be the minimum squared distance of corresponding points up to time k and l.
- Recursive update:

$$\gamma(k, l) = (\mathbf{x}_k - \mathbf{x}_l)^2 + \min\{\gamma(k-1, l-1), \gamma(k-1, l), \gamma(k, l-1)\}$$

Algorithm:

```
DTW (Sequences \mathbf{x} and \mathbf{x}^{\epsilon})
   Let \gamma(0,0)=0; \gamma(k,0)=\infty; \gamma(0,l)=\infty
   FOR k=1...T_x
   FOR l=1...T_y
   \gamma(k,l)=(\mathbf{x}_k-\mathbf{x}_l)^2+\min\{\gamma(k-1,l-1),\gamma(k-1,l),\gamma(k,l-1)\}
   RETURN \gamma(T_x,T_y)
```

Strings: Motivation

- Strings are a common non-numeric type of data
 - Documents & email are strings

From: Webmaster Admin < in-foweb@live.co.uk>

To: undisclosed-recipients:;
Reply-to: in-foweb@live.co.uk

Subject: Attention !! Re-activer le service e-mail

Date: Wed, 19 Jan 2011 15:54:21 +0100 (CET)
User-Agent: SquirrelMail/1.4.8-5.el5.centos.10

Votre quota a dépassé l'ensemble quota/limite est de 20 Go Vous êtes en cours d'exécution sur 23FR de fichiers et parce que les fichiers cachés sur votre e-mail.

DNA & Protein sequences are strings

String Kernels

- String a sequence of characters from alphabet Σ written as $\mathbf{s} = s_1 s_2 \dots s_n$ with $|\mathbf{s}| = n$.
 - The set of all strings is $\Sigma^* = \bigcup_{n \in \mathbb{N}} \Sigma^n$

 - Subsequence: for any $i \in \{0,1\}^n$, s[i] is the elements of s corresponding to elements of i that are 1
 - ★ Eg. If s="abcd" s[(1,0,0,1)]="ad"
- A string kernel is a real-valued function on $\Sigma^* \times \Sigma^*$.
 - We need positive definite kernels
 - We will design kernels by looking at a feature space of substrings / subsequences

Bag-of-Words Kernel

 For textual data, a simple feature representation is indexed by the words contained in the string

Bag-of-Words Kernel computes the number of common words between 2 texts; efficient?

Spectrum Kernel

- Consider feature space with features corresponding to every p length substring of alphabet Σ .
 - $\phi(\mathbf{s})_{\mathbf{u}}$ is # of times $\mathbf{u} \in \Sigma^p$ is contained in string \mathbf{s}
- The *p*-spectrum kernel is the result

$$\kappa_p(\mathbf{s}, \mathbf{t}) = \sum_{\mathbf{u} \in \Sigma^p} \phi(\mathbf{s})_{\mathbf{u}}^{\mathrm{T}} \phi(\mathbf{t})_{\mathbf{u}}$$

φ	aa	ab	ba	bb
aaab	2	1	0	0
bbab	0	1	1	1
aaaa	3	0	0	0
baab	1	1	1	0

K	aaab	bbab	aaaa	baab
aaab	5	1	6	3
bbab	1	3	0	2
aaaa	6	0	9	3
baab	3	2	3	3

Spectrum Kernel – Computation

Without explicitly computing this feature map, the p-spectrum kernel can be computed as

$$\kappa_p(\mathbf{s}, \mathbf{t}) = \sum_{i=1}^{|\mathbf{s}| - p + 1} \sum_{j=1}^{|\mathbf{t}| - p + 1} \mathbb{I}[\![\mathbf{s}_{i:i+p-1} = \mathbf{t}_{j:j+p-1}]\!]$$

- This computation is $O(p|\mathbf{s}||\mathbf{t}|)$.
- Using trie data structures, this computation can be reduced to $O(p \cdot max(|\mathbf{s}|, |\mathbf{t}|))$.
- Naturally, we can also compute (weighted) sums of different length substrings

String Kernels

- All-subsequences kernel determines the number of subsequences that appear in both strings
- Fixed-length subsequence kernels
- Gap-weighted subsequence kernels...

Graphs: Motivation

- Graphs are often used to model objects and their relationship to one another:
 - Bioinformatics: Molecule relationships
 - Internet, social networks
 - **...**
- Central Question:
 - How similar are two Graphs?
 - How similar are two nodes within a Graph?

Graph Kernel: Example

- Consider a dataset of websites with links constituting the edges in the graph
 - A kernel on the nodes of the graph would be useful for learning w.r.t. the web-pages
 - A kernel on graphs would be useful for comparing different components of the internet (e.g. domains)

Graph Kernel: Example

- Consider a set of chemical pathways (sequences of interactions among molecules); i.e. graphs
 - A node kernel would a useful way to measure similarity of different molecules' roles within these
 - A graph kernel would be a useful measure of similarity for different pathways

Graphs: Definition

- A graph G = (V, E) is specified by
 - A set of nodes: $v_1, ..., v_n \in V$
 - ♦ A set of edges: $E \subseteq V \times V$
- Data structures for representing graphs:
 - Adjacency matrix: $\mathbf{A} = (a_{ij})_{i,i=1}^n, \ a_{ij} = \mathbb{I}[[(v_i, v_j) \in E]]$
 - Adjacency list
 - Incidence matrix

$$G_{1} = (V_{1}, E_{1})$$

$$V_{1} = \{v_{1}, \dots, v_{4}\}$$

$$E_{1} = \begin{cases} (v_{1}, v_{1}), (v_{1}, v_{2}), \\ (v_{2}, v_{3}), (v_{4}, v_{2}) \end{cases}$$

$$A_{1} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$0 \quad 1 \quad 0 \quad 0$$

- Central Question: How similar are two graphs?
- 1st Possibility: Number of isomorphisms between all (sub-) graphs.

$$G_1 = (V_1, E_1)$$

$$G_2 = (V_2, E_2)$$

Isomorphisms of Graphs

Isomorphism: Two Graphs $G_1 = (V_1, E_1)$ & $G_2 = (V_2, E_2)$ are isomorphic if there exists a bijective mapping $f: V_1 \to V_2$ so that $(v_i, v_j) \in E_1 \Rightarrow (f(v_i), f(v_j)) \in E_2$

$$G_1 = (V_1, E_1)$$

$$G_2 = (V_2, E_2)$$

Isomorphisms of Graphs

■ Isomorphism: Two Graphs $G_2 = (V_2, E_2)$ are isomorphism: Subgraph isomorphism: NP-hard! bijective mapping $f: V_1 \to V_2/V_1$

$$(v_i, v_j) \in E_1 \Rightarrow (f(v_i), f(v_i), f(v_i))$$

$$G_1 = (V_1, E_1)$$

$$G_2 = (V_2, E_2)$$

- Central Question: How similar are two graphs?
- 2nd Possibility: Counting the number of "common" paths in the graph.

$$G_1 = (V_1, E_1)$$

$$G_2 = (V_2, E_2)$$

The number of paths of length 0 is just the number of nodes in the graph.

■ The number of paths of length 1 from one node to any other is given by the adjacency matrix.

Number of paths of length k from one node to any other are given by the kth power of the adjacency matrix.

Number of paths of length k from one node to any other are given by the kth power of the adjacency matrix.

Number of paths of length k from one node to any other are given by the kth power of the adjacency matrix.

Number of paths of length k: $\sum_{i,j=1}^{n} (\mathbf{A}^k)_{ij} = \mathbf{1}^T \mathbf{A}^k \mathbf{1}$

- Common paths are given by product graphs $G_{\otimes} = (V_{\otimes}, E_{\otimes})$:
 - $V_{\otimes} = V_1 \otimes V_2$
 - $E_{\otimes} = \{((v, v'), (w, w')) | (v, w) \in E_1 \land (v', w') \in E_2\}$

$$CP_{\leq 0} = \sum_{i,j=1}^{n} (\mathbf{A}^{0})_{ij} = 6$$

$$CP_{\leq 1} = CP_{\leq 0} + \sum_{i,j=1}^{n} (\mathbf{A}^1)_{ij} = 6 + 6 = 12$$

$$CP_{\leq 2} = CP_{\leq 1} + \sum_{i,j=1}^{n} (\mathbf{A}^2)_{ij} = 12 + 4 = 16$$

$$CP_{\leq 3} = CP_{\leq 2} + \sum_{i,j=1}^{n} (\mathbf{A}^3)_{ij} = 16 + 0 = 16$$

- Similarity between graphs: number of "common" paths in their product graph.
 - With cycles, there can be an infinite number paths!

$$CP_{\leq L} = \sum_{k=0}^{L} \sum_{i,j=1}^{n} (\mathbf{A}^k)_{ij} = \frac{3}{2}L^2 + \frac{15}{2}L + 6 \to \infty$$

- Similarity between graphs: number of "common" paths in their product graph.
 - With cycles, there can be an infinite number paths!
 - ⇒ We must downweight the influence of long paths.
- Random Walk Kernels:

$$k(G_1, G_2) = \frac{1}{|V_1||V_2|} \sum_{k=0}^{\infty} \sum_{i,j=1}^{n} \lambda^k (\mathbf{A}_{\otimes}^k)_{ij} = \frac{\mathbf{1}^{\mathrm{T}} (\mathbf{I} - \lambda \mathbf{A}_{\otimes})^{-1} \mathbf{1}}{|V_1||V_2|}$$
$$k(G_1, G_2) = \frac{1}{|V_1||V_2|} \sum_{k=0}^{\infty} \sum_{i,j=1}^{n} \frac{\lambda^k}{k!} (\mathbf{A}_{\otimes}^k)_{ij} = \frac{\mathbf{1}^{\mathrm{T}} \exp(\lambda \mathbf{A}_{\otimes}) \mathbf{1}}{|V_1||V_2|}$$

■ These kernels can be calculated by means of the Sylvester Equation in $O(n^3)$.

Similarity between Nodes

- Similarity between graphs: number of "common" paths in their product graph.
- Assumption: Nodes are similar if they are connected by many paths.
- Random Walk Kernels:

$$k(v_i, v_j) = \sum_{k=1}^{\infty} \lambda^k (\mathbf{A}_{\otimes}^k)_{ij} = ((\mathbf{I} - \lambda \mathbf{A}_{\otimes})^{-1})_{ij}$$
$$k(v_i, v_j) = \sum_{k=1}^{\infty} \frac{\lambda^k}{k!} (\mathbf{A}_{\otimes}^k)_{ij} = (\exp(\lambda \mathbf{A}_{\otimes}))_{ij}$$

Additional Graph-Kernels

- Shortest-Path Kernel
 - All shortest paths between pairs of nodes computed by Floyd-Warshall algorithm with run time $O(|V|^3)$
 - Compare all pairs of shortest paths between 2 graphs $O(|V_1|^2|V_2|^2)$
- Subtree-Kernel:
 - Idea: use tree structures as indexes in the feature space
 - Can be recursively computed for a fixed height tree
 - Trees are downweighted in their height

Summary

- Kernel function $k(\mathbf{x}, \mathbf{x}') = \phi(\mathbf{x})^{\mathrm{T}} \phi(\mathbf{x}')$ computes the inner product of the feature mapping of instances.
- The kernel function can often be computed without an explicit representation $\phi(\mathbf{x})$.
 - E.g., polynomial kernel: $k_{poly}(\mathbf{x}_i, \mathbf{x}_j) = (\mathbf{x}_i^T \mathbf{x}_j + 1)^p$
- Infinite-dimensional feature mappings are possible
 - Eg., RBF kernel: $k_{RBF}(\mathbf{x}_i, \mathbf{x}_j) = e^{-\gamma \|\mathbf{x}_i \mathbf{x}_j\|^2}$
- Kernel functions for time series, strings, graphs, ...
- For a given kernel matrix, the Mercer map provides a feature mapping.

Summary

- Representer Theorem: $f_{\theta^*}(\mathbf{x}) = \sum_{i=1}^n \alpha_i^* \phi(\mathbf{x}_i)^{\mathrm{T}} \phi(\mathbf{x})$
 - Instances only interact through inner products
 - Great for few instances, many attributes
- Kernel learning algorithms:
 - Kernel ridge regression
 - Kernel perceptron, SVM,
 - **...**