EEO352 Lab 8 Bipolar Junction Transistors (BJTs)

Pete Mills

November 27, 2023

Copy of Original Assignment

EEO 352 Fall 2023 - Assignment 8 - Bipolar Junction Transistors (BJTs)

Please document each step with snapshots of the built circuit, plots, pictures and your observations. Please include this page.

Fig.1

Fig.2

Fig.3

- 1) Using the npn BJT 2N3904 (pick from npn) as in Fig1 simulate and plot the following (25pts):
 - a) Collector current Ic vs Vce (range 0V to 3V) with parametric Vbe (0.5V to 0.75V, 10mV steps)
 - b) Collector current Ic vs Vbe (range 0.5V to 0.75V) with parametric Vce (0.5V to 3V in 100mV steps)
 - c) Collector current Ic vs Vbe (range 0.5V to 0.75V) at Vce=2V, and extrapolate the Vbe at Ic=1mA
 - d) Derivative (d(.)) of the collector current Ic vs Vbe (range 0.5V to 0.75V) at Vce=2V, and extrapolate the transconductance at Ic=1mA
 - e) Current gain Ic/lb vs Vbe (range 0.5V to 0.75V) at Vce=2V, and extrapolate the gain at Ic=1mA
- 2) Using the npn BJT 2N3904, one $2k\Omega$ resistor at the collector, and one $200k\Omega$ to bias the base, build the amplifier in Fig.2 and simulate and plot the following (**25pts**):
 - a) Response to 50kHz 5mV sinusoidal signal (plot in separate panes) and extrapolate the gain
 - b) Frequency response, extrapolating the gain and -3dB bandwidth without and with a 30pF load
- 3) Using the npn BJT 2N3904, one 100 Ω resistor at the collector and one 10k Ω resistor at the base (between the base and the applied voltage), build and plot (**75pts**):
 - a) Collector current Ic vs Vce (range OV to 3V) with parametric Vbe (see example in Fig.3)
 - b) Collector current Ic vs Vbe (range 0.5 to 0.75V) for Vce>2V, and extract the Vbe and the gm at Ic=1mA
 - c) Gain Ic/Ib vs Collector current Ic (setting as in (b)) and extract the gain at Ic=1mA

Hint1: for (b) use W1 Triangle Amp=0.3V, Off=0.9V at the 10k Ω

Hint2: for (c) use connect C2 across the 10k Ω and add Math Ic/Ib

- 4) Build and measure the amplifier in Fig.2 and plot the following (**75pts**):
 - a) Response to 50kHz 5mV sinusoidal signal and extract the gain
 - b) Frequency response, extracting the gain and the -3dB bandwidth

Hint1: for (b) use the minimum signal amplitude

Summary

In this lab we \dots

1 Simulate and Measure Circuit 1

a)

Figure 1: Collector current Ic vs Vce (range 0V to 3V) with parametric Vbe (0.5V to 0.75V, 10mV steps)

b)

Figure 2: Collector current Ic vs Vbe (range $0.5\mathrm{V}$ to $0.75\mathrm{V}$) with parametric Vce $(0.5\mathrm{V}$ to $3\mathrm{V}$ in $100\mathrm{mV}$ steps)

 $\mathbf{c})$

Figure 3: Collector current Ic vs Vbe (range 0.5V to 0.75V) at Vce=2V, and extrapolate the Vbe at Ic=1mA $V_{be} \text{ is } \approx 655\,\text{mV} \ @\ I_c = 1\,\text{mA}$

d)

Figure 4: Derivative (d(.)) of the collector current Ic vs Vbe (range 0.5V to 0.75V) at Vce=2V, and extrapolate the transconductance at Ic=1mA

The transconductance g_m is found to be $39.042\,\mathrm{m}\Omega$ @ $I_c=1\,\mathrm{mA}$

 $\mathbf{e})$

Figure 5: Current gain Ic/Ib vs Vbe (range 0.5V to 0.75V) at Vce=2V, and extrapolate the gain at Ic=1mA The gain is ≈ 303.3

2 Simulate and Measure Circuit 2

a)

Figure 6: Response to 50kHz 5mV sinusoidal signal (plot in separate panes) and extrapolate the gain

The input amplitude is $5\,\mathrm{mV}$ pp and output amplitude is $1.179\,\mathrm{V}$ pp, centered about $1.77\,\mathrm{V}$, therefore the gain is ≈ 236 .

Figure 7: Frequency response, extrapolating the gain and -3dB bandwidth without and with a $30 \mathrm{pF}$ load

3 Build and Measure Circuit 1

a)

Figure 8: Test Setup

Figure 9: Collector current Ic vs Vce (range 0V to 3V) with parametric Vbe (see example in Fig.3)

Figure 10: Test Setup

Figure 11: Collector current Ic vs Vbe (range 0.5 to 0.75V) for Vce¿2V, and extract the Vbe and the gm at Ic=1mA

 V_{be} is \approx 664 mV @ $I_c=1\,\mathrm{mA}$

Figure 12: Zooming in to calculate $gm=\Delta V/\Delta I$

At $I_c=1\,\mathrm{mA},\,gm\approx25\,\mathrm{m}\Omega$

c)

Figure 13: Gain Ic/Ib vs Collector current Ic (setting as in (b)) and extract the gain at Ic=1mA The gain is found to be ≈ 180

4 Build and Measure Circuit 2

a)

Figure 14: Test Setup

Figure 15: Response to 50kHz 5mV sinusoidal signal and extract the gain

The input amplitude is $5\,\mathrm{mV}$ pp and output amplitude is $0.57\,\mathrm{V}$ pp, centered about $2.4\,\mathrm{V}$, therefore the gain is 114.

b)

Figure 16: Frequency response, extracting the gain and the -3dB bandwidth

Using the Digilent Waveforms Network Analyzer it appears there is a $-3\,\mathrm{dB}$ point at about 900 Hz and another at at about 900 kHz. At the time of writing, I am not sure what this means, but will continue to research to understand.