Barra Portfolio Risk Model Implementation in KDB+/q

This document provides a detailed implementation of the Barra-style risk model in KDB+/q. It explains each step of the function barraPortfolioRisk and the financial concepts behind them.

Key Concepts and Formulas

1. Total Covariance Matrix

To assess how assets move together, the total risk covariance matrix is computed:

$$\Sigma = X F X' + D$$

- X: matrix of asset exposures to systematic risk factors
- F: factor covariance matrix (correlations and volatilities)
- D : diagonal matrix of asset-specific variances

2. Portfolio Variance and Volatility

This measures overall risk assuming a linear combination of asset variances and covariances:

$$\sigma^2_p = w' \Sigma w$$
, $\sigma_p = sqrt(\sigma^2_p)$

3. Systematic and Specific Risk

The total portfolio variance is decomposed into:

Systematic Risk: from common factors (e.g., market, size, value)

• Specific Risk: unique to each asset, non-factor related

```
Systematic = w' X F X' w, Specific = w' D w
```

4. Factor Contribution to Risk

How much each factor contributes to total portfolio variance:

This shows which factors dominate portfolio risk.

5. Marginal Contribution to Risk (MCR)

Measures how sensitive portfolio risk is to a small increase in asset weight:

$$MCR_i = (\Sigma w)_i / \sigma_p$$

6. Contribution to Risk (CTR)

Total contribution of each asset to risk (MCR scaled by actual holding):

7. Risk Conversion to Dollar and Basis Points

All risk values are reported in:

- **Dollars**: by multiplying by total notional
- Basis Points (bps): by multiplying by 10,000

```
Risk_{s} = Risk * Notional, Risk_bps = Risk * 10,000
```

8. Value at Risk (VaR)

Calculates potential loss under normal market conditions over a 1-day horizon:

```
DailyVol = σ_p / sqrt(252)
VaR_95% = 1.645 * DailyVol * Notional
VaR_99% = 2.326 * DailyVol * Notional
```

Full KDB+/q Function Code

Below is the full implementation with no modifications. It combines all calculations described above into a dictionary output structure.

```
barraPortfolioRisk:{[weights; X; F; specVar; notional]
    w:enlist weights;
    Xmat:flip X;
    Fmat:flip F;
    D:diag specVar;
    systematicCov:Xmat mmu Fmat mmu flip Xmat;
    totalCov:systematicCov + D;
    portVar: w mmu totalCov mmu flip w;
    portVol: sqrt first portVar;
    sysVar: w mmu systematicCov mmu flip w;
    specVarTotal: w mmu D mmu flip w;
    sysPct: first sysVar % first portVar;
    specPct: first specVarTotal % first portVar;
    b: first w mmu Xmat;
    Fb: Fmat mmu enlist b;
    factorContrib: b * first each Fb;
    factorContribPct: factorContrib % first portVar;
```

```
sigmaW: totalCov mmu flip w;
mcr: (first each sigmaW) % portVol;
ctr: weights * mcr;
factorContribUSD: factorContrib * notional;
factorContribBPS: factorContrib * 10000;
sysRiskUSD: first sysVar * notional;
specRiskUSD: first specVarTotal * notional;
portVolUSD: portVol * notional;
sysRiskBPS: first sysVar * 10000;
specRiskBPS: first specVarTotal * 10000;
portVolBPS: portVol * 10000;
mcrUSD: mcr * notional;
ctrUSD: ctr * notional;
mcrBPS: mcr * 10000;
ctrBPS: ctr * 10000;
dailyVol: portVol % sqrt 252f;
z95: 1.645;
z99: 2.326;
var95: z95 * dailyVol * notional;
var99: z99 * dailyVol * notional;
var95bps: var95 % (notional % 10000f);
var99bps: var99 % (notional % 10000f);
(
  `PortfolioVolatility`PortfolioVolatilityUSD`PortfolioVolatility
    ! (portVol; portVolUSD; portVolBPS);
  `SystematicRisk`SpecificRisk`SystematicRiskUSD`SpecificRiskUSD`
    ! (first sysVar; first specVarTotal; sysRiskUSD; specRiskUSD;
```

```
`FactorContribution`FactorContributionUSD`FactorContributionBPS
! (factorContrib; factorContribUSD; factorContribBPS; factorContribUSD`MCRBPS
! (mcr; mcrUSD; mcrBPS);

'CTR`CTRUSD`CTRbps
! (ctr; ctrUSD; ctrBPS);

'VaR_95_USD`VaR_99_USD`VaR_95_BPS`VaR_99_BPS
! (var95; var99; var95bps; var99bps)
)
};
```