第二次作业

2022年9月21日

- 1. 若周期矩形信号 $f_1(t)$ 和 $f_2(t)$ 的波形如题图 2-1 所示, $f_1(t)$ 的参数为 $\tau = 0.5$ μs, T=1μs, E=1 V; $f_2(t)$ 的参数为 $\tau=1.5$ μs, T=3 μs, E=3 V。分别求:
 - (1) $f_1(t)$ 的谱线间隔和带宽 (第一零点位置), 频率单位以 kHz 表示;
 - (2) $f_2(t)$ 的谱线间隔和带宽;
 - (3) $f_1(t)$ 与 $f_2(t)$ 的基波幅度之比;
 - (4) $f_1(t)$ 基波与 $f_2(t)$ 三次谐波幅度之比。

题图 2-1

2. 求题图 2-2 所示半波余弦信号的傅里叶级数。若 E=10 V,f=10 kHz,大致画出该 信号的幅度谱。

题图 2-2

3. 求题图 2-3 (a)、(b) 所示的锯齿脉冲与单周正弦脉冲的傅里叶变换。

题图 2-3

4. 对题图 2-4 所示波形,若已知 $\mathcal{F}[f_1(t)]=F_1(\omega)$,利用傅里叶变换的性质,求 $f_1(t)$ 以 $\frac{t_0}{2}$ 为轴反褶后所得 $f_2(t)$ 的傅里叶变换。

题图 2-4

5. 已知三角脉冲 $f_1(t)$ 的傅里叶变换为:

$$F_1(\omega) = \frac{E\tau}{2} \operatorname{Sa}^2\left(\frac{\omega\tau}{4}\right)$$

试利用有关定理求 $f_2(t)=f_1\left(t-\frac{\tau}{2}\right)\cos\left(\omega_0t\right)$ 的傅里叶变换 $F_2(\omega)$ 。 $f_1(t)$, $f_2(t)$ 的波形如题图 2-5 所示。

题图 2-5

6. 若 f(t) 的频谱 $F(\omega)$ 如题图 2-6 所示,利用卷积定理粗略画出 $f(t)\cos(\omega_0 t)$, $f(t)e^{j\omega_0 t}$, $f(t)\cos(\omega_1 t)$ 的频谱(注明频谱的边界频率)。

