Ko-s jutget is suppressed +0. GM mechanism => existence of up-like C querk iij = nidisic عز <u>الناع</u> على المراد عن على المراد عن المراد Vud = cost (u c) (Vod Vos) (d) Vul z Sing. (-Sind Cold) week intercotions us (e y=) (Very Very) (Ve) br leptons week interection: Goldhaberexp. DL, DR

WV experiment 1964 in Kaon Merour. OP a good symm? => No Sp in B mesous 7,002 $\begin{pmatrix} x \\ y \end{pmatrix}$ $\begin{pmatrix} x$ C - Sing a CF not explained in Kasu delays

1973: Kobayashi- Maskewe proposed new querks and their interaction $\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$ 9; ______ Vijgwr/(1-rs)

Cabibbo-Kobeyashi- Maskawa

$$\begin{split} V_{\text{CKM}} &= \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ &= \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \end{split}$$

3 real parameters, I complex parameter.

$$V_{\text{CKM}} = \begin{pmatrix} \sqrt{\omega} & \sqrt{\omega} & \sqrt{\omega} \\ 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ \sqrt{\omega} - \lambda & \sqrt{\omega} & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$A \wedge \ell = \begin{pmatrix} \sqrt{\omega} & \sqrt{\omega} & \lambda & \lambda \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

COID = 1- 1 Sw20

Decay rates measure |Vij | 2 not seasitive to complex phase.

Interference between processes to areasure a complex place.

$$M = M_1 + M_2 = [M_1] + [Me]e^{i\alpha}$$

$$M_1 = M_1^* \qquad M_2 = [Me]e^{i\alpha}$$

$$M_2^* = [Me]e^{-i\alpha}$$

 $|M|^2 = |M|^2 + |M|^2 + |M||M| = i^{\alpha} + |M||M| = i^{\alpha}$ $= \sum_{i=1}^{n} |M_i| |M_i| = i^{\alpha}$

$$\left(egin{array}{cccc} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \ \pi
ightarrow \ell v & K
ightarrow \ell v & B
ightarrow \pi \ell v \ K
ightarrow \pi \ell v & V_{\mathbf{cb}} \ V_{\mathbf{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}} \ D
ightarrow \ell v & B
ightarrow D \ell v \ D
ightarrow \pi \ell v & D
ightarrow K \ell v & B
ightarrow D^* \ell v \ \mathbf{V_{td}} & \mathbf{V_{ts}} & \mathbf{V_{tb}} \ B_d
ightarrow \overline{B}_d & B_s
ightarrow \overline{B}_s \end{array}
ight)$$

ToTe de a Midl2

d Judiz

In general larger hadronic convections in baryous.

=> melons prefered.

$$K^{t} \qquad W^{s} \qquad W^{s$$

My my => phase space similar M(K+) To T+) & Vas Vad M(K+) To T+) & Vas #(K+) To T+) & Vas #(K+) To T+) & IVN12 I Vad12 #(K+) To T+) & IVN12 I Vad12

preferred because only Vus

You can measure | Vnol) with
$$\pi^+ \to \pi^+ \nu$$
 $\pi^+ \to \pi^- \in \mathcal{F}$
 $n \to p \in \mathcal{F}$

Replace decays

Securification (meron, borgon) $\geq \propto |V_{ij}^-|^2$

hadroic decays: $\propto |V_{ij}^-|^2 |V_{K}|^2$
 $\int_{C}^{+} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} |V_{K}|^2$
 $\int_{C}^{+} \frac{1}{\sqrt{2}} \frac{1}{$

$$\left(egin{array}{cccc} \mathbf{V_{ud}} & \mathbf{V_{us}} & \mathbf{V_{ub}} \ \pi
ightarrow \ell v & K
ightarrow \ell v & B
ightarrow \pi \ell v \ K
ightarrow \pi \ell v & V_{\mathbf{cb}} \ V_{\mathbf{cd}} & \mathbf{V_{cs}} & \mathbf{V_{cb}} \ D
ightarrow \ell v & B
ightarrow D \ell v \ D
ightarrow \pi \ell v & D
ightarrow K \ell v & B
ightarrow D^* \ell v \ V_{\mathbf{td}} & V_{\mathbf{ts}} & V_{\mathbf{tb}} \ B_d
ightarrow \overline{B}_d & B_s
ightarrow \overline{B}_s \end{array}
ight)$$

required D Yrb requires B mesons: B° = bd Bt = bu B° -> D- l'he a IVCb12 top decys too quickly. => look at process with virtual top in loops $\frac{1}{4}$ $\frac{1}$ Flevor oscillation Bo- Bo Db=2 $B_o^7 \rightarrow \tilde{B}_o^8$ B°s a 1/4012 1/4612 0 23.1 a (Veb12 |Ved)2 > 22) J of IVuals) rub) 2 ~ 1 23

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

CKM motor for Flavor chansing award weak amount 9: 2 w

Neutral weak current? 1") K"-> ptp- =0 but very smell.

e) K+→1/1/2>> K°→ htgr.

3) Kt TT NV suppressed.

Floror Charping nearfood Onment

Leptonic and sen	nileptonic modes								
($1.582\pm0.007)\times10^{-5}$		247						
(63.56 \pm 0.11)%	S=1.2	236						
(5.07 ± 0.04) %	S=2.1	228						
(3.352±0.033) %	S=1.9	215						
($2.55 \pm 0.04) \times 10^{-5}$	S=1.1	206						
($4.247\pm0.024)\times10^{-5}$		203						
(1.4 ± 0.9) $\times 10^{-5}$		151						
<	3.5×10^{-6}	CL=90%	135						
Hadronic modes									
(20.67 ± 0.08) %	S=1.2	205						
($1.760 \pm 0.023)$ %	S=1.1	133						
($5.583 \pm 0.024)$ %		125						
	((63.56 ± 0.11) % (5.07 ± 0.04) % (3.352 ± 0.033) % (2.55 ± 0.04) $\times 10^{-5}$ (4.247 ± 0.024) $\times 10^{-5}$ (1.4 ± 0.9) $\times 10^{-5}$ < 3.5×10^{-6} Hadronic modes (20.67 ± 0.08) % (1.760 ± 0.023) %	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						

Lepton family number (*LF*), Lepton number (*L*), $\Delta S = \Delta Q$ (*SQ*) violating modes, or $\Delta S = 1$ weak neutral current (*S1*) modes

	$\pi^+\pi^+e^-\overline{ u}_e$	SQ	<	1.3	$\times 10^{-8}$	CL=90%
Γ_{36}	$\pi^+\pi^+\mu^-\overline{ u}_{\mu}$	SQ	<	3.0	\times 10 ⁻⁶	CL=95%
	$\pi^+e^+e^-$	S1	(3.00 ±0.09	$) \times 10^{-7}$	
Γ_{38}	$\pi^+\mu^+\mu^-$	S1	(9.4 ± 0.6	$) \times 10^{-8}$	S=2.6
Γ ₃₉	$\pi^+ u \overline{ u}$	S1	($1.14 \begin{array}{c} +0.40 \\ -0.33 \end{array}$	$) \times 10^{-10}$	

what about flevor conserving weak neutral current?

week near tral convent. GED fo Compere

For rucked sug 92

M = My+ MZ

Direct proof

At low every:

QED dominates. Reptons, qualis:

γ+(-·) → ν+(-·)

nentrinos D= { 20 \$

Indirect proof