Depth-First Search

Subgraphs

- A subgraph S of a graphG is a graph such that
 - The vertices of S are a subset of the vertices of G
 - The edges of S are a subset of the edges of G
- A spanning subgraph of G
 is a subgraph that
 contains all the vertices
 of G

Connectivity

- A graph is
 connected if there is
 a path between
 every pair of
 vertices
- A connected component of a graph G is a maximal connected subgraph of G

Non connected graph with two connected components

Trees and Forests

- A (free) tree is an undirected graph T such that
 - T is connected
 - T has no cycles

This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree
- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Depth-First Search

- Depth-first search (DFS)
 is a general technique
 for traversing a graph
- A DFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

- DFS on a graph with n vertices and m edges takes O(n + m) time
- DFS can be further
 extended to solve other
 graph problems
 - Find and report a path between two given vertices
 - Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

DFS Algorithm

 The algorithm uses a mechanism for setting and getting "labels" of vertices and edges

Algorithm *DFS*(*G*)

Input graph G

Output labeling of the edges of *G* as discovery edges and back edges

for all $u \in G.vertices()$ setLabel(u, UNEXPLORED)

for all $e \in G.edges()$

setLabel(e, UNEXPLORED)

for all $v \in G.vertices()$

if getLabel(v) = UNEXPLOREDDFS(G, v)

```
Algorithm DFS(G, v)
  Input graph G and a start vertex v of G
  Output labeling of the edges of G
    in the connected component of v
    as discovery edges and back edges
  setLabel(v, VISITED)
  for all e \in G.incidentEdges(v)
    if getLabel(e) = UNEXPLORED
       w \leftarrow opposite(v,e)
      if getLabel(w) = UNEXPLORED
         setLabel(e, DISCOVERY)
         DFS(G, w)
      else
         setLabel(e, BACK)
```

Example

A unexplored vertex
visited vertex
unexplored edge
discovery edge
back edge

Example (cont.)

http://www.cs.usfca.edu/~g alles/visualization/DFS.html

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
 - We mark each intersection, corner and dead end (vertex) visited
 - We mark each corridor (edge) traversed
 - We keep track of the path back to the entrance (start vertex) by means of a rope (recursion stack)

Properties of DFS

Property 1

DFS(**G**, **v**) visits all the vertices and edges in the connected component of **v**

Property 2

The discovery edges labeled by DFS(G, v) form a spanning tree of the connected component of v

Analysis of DFS

- \Box Setting/getting a vertex/edge label takes O(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- □ DFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Path Finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- □ We call DFS(G, u) with u as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered,
 we return the path as the contents of the stack


```
Algorithm pathDFS(G, v, z)
  setLabel(v, VISITED)
  S.push(v)
  if v = z
    return S.elements()
  for all e \in G.incidentEdges(v)
    if getLabel(e) = UNEXPLORED
       w \leftarrow opposite(v,e)
       if getLabel(w) = UNEXPLORED
         setLabel(e, DISCOVERY)
         S.push(e)
         pathDFS(G, w, z)
         S.pop(e)
       else
         setLabel(e, BACK)
  S.pop(v)
```

Cycle Finding

- We can specialize the
 DFS algorithm to find a
 simple cycle using the
 template method pattern
- We use a stack S to
 keep track of the path
 between the start vertex
 and the current vertex
- As soon as a back edge
 (v, w) is encountered,
 we return the cycle as
 the portion of the stack
 from the top to vertex w


```
Algorithm cycleDFS(G, v, z)
  setLabel(v, VISITED)
  S.push(v)
  for all e \in G.incidentEdges(v)
     if getLabel(e) = UNEXPLORED
        w \leftarrow opposite(v,e)
        S.push(e)
        if getLabel(w) = UNEXPLORED
           setLabel(e, DISCOVERY)
          pathDFS(G, w, z)
           S.pop(e)
        else
           T \leftarrow new empty stack
           repeat
              o \leftarrow S.pop()
              T.push(o)
           until o = w
           return T.elements()
  S.pop(v)
```