Math 435 09/05/2025 Notes

September 5, 2025

Timothy Tarter
James Madison University
Department of Mathematics

Review

Definition 1. A topological space is a pair (X, \mathcal{U}) , (often (X, τ)), where X is a set, and \mathcal{U} is a collection of subsets of X such that

- 1. $\emptyset, X \in \mathscr{U}$
- 2. W is closed under arbitrary union
- 3. \mathcal{U} is closed under finite intersection.

The elements of \mathcal{U} are called open sets. Note: 'open set' here really just means that a set belongs to \mathcal{U} .

Today

• Examples of topologies

Example 1. Let $X = \{a, b, c\}$. What topologies can we put on X?

Topology 1 (the Indiscrete Topology)

 $\{\emptyset, X\}$

Topology 2

 $\{\emptyset, \{a, b, c\}, \{a, b\}, \{b\}\}$

NOT a Topology

 $\{\emptyset, \{a, b, c\}, \{a, b\}, \{b, c\}\}\$, since we don't have $\{b\}$.

Topology 3 (Discrete topology)

 $\{\emptyset, \{a, b, c\}, \{a, b\}, \{b, c\}, \{a, c\}, \{a\}, \{b\}, \{c\}\} = \mathscr{P}(X) = \text{all subsets of X}.$

Definition 2. For any set X, the set $\{\emptyset, X\}$ is a topology called the indiscrete topology.

Definition 3. For any set X, $\mathscr{P}(X)$ is the discrete topology.

Example 2. The collection of all subsets of X such that the complement is either countable or all of X is a topology.

Example 3. Let X be a non-empty set and let $p \in X$. Define \mathscr{U} to be the set of $\{U \subseteq X \mid p \in U\} \cup \{\emptyset\}$. This is a topology on X.

Proof: $p \in X \subseteq X$ and $\emptyset \in \mathscr{U}$ satisfies our first point. Let $\bigcup A_{\alpha}$ be an arbitrary union of elements of U. Then $p \in A_p$ for some $A_p \subseteq \bigcup A_{\alpha}$ implies $p \in \bigcup A_{\alpha} \in \mathscr{U}$. For our final requirement, Let $\bigcap_{i=1}^n A_i$ be a finite intersection of elements of \mathscr{U} . Then $p \in A_i$ for any $i \in 1 \dots n$ implies that $p \in \bigcap_{i=1}^n A_i \in \mathscr{U}$.