IMPLEMENTATION OF BOOLEAN FUNCTIONS USING MULTIPLEXER

IMPLEMENTATION OF BOOLEAN FUNCTIONS USING MULTIPLEXER

- Set the Number of variables (n) = Number of select lines
- All variables are connected to the select lines
- The desired output is connected to the input line in the same order of MSB to LSB

Example: Implement $f(A,B) = \sum (1,3)$ using MUX

MSB		LSB		
	Α	В	Υ	
mo	0	0	0	
mı	0	1	i	
m ₂	1	0	0	
тз	1	1	1	

IMPLEMENTING FUNCTION KEEPING N-1 VARIABLES AS SELECT LINE MUX

- STEP 1 Draw the truth table for given number of variable function
- STEP 2 Consider one variable as input and another variables as select lines

 From the Implementation table where select lines of mux are columns and one input variable and its components are rows.

- STEP 3 Find AND between rows on the basis of the truth table.
- STEP 4 So the outcome are considered as input lines for MUX.

Example: Implement $f(A,B,C) = \sum (0,1,4,7)$ using 4:1 MUX

	TRUTH TABLE				
	Α	В	С	Y	
0	0	0	0	1	
1	0	0	1	1	
2	0	1	0	0	
3	0	1	1	0	
4	1	0	0	1	
5	1	0	1	0	
6	1	1	0	1	
7	1	1	1	1	

	•• •	$\widetilde{\gamma}_{\mu}$	1 piemertiaus	m lable	
2 Sele	t c AB	00	61	10	11
lines Let A4B are the	ر د د	O A B C	2 ABC OLO	400	410
Beleut time and c is Input Variable	<u></u>	Oot W Bc	3 98c 011	5 ABC 101	711
	Inbut	1	0	9 n	<u>ユ</u>

$$f(ABC) = \sum m(0, \pm, 4, 6, \pm)$$

$$\bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}\bar{B}C + \bar{A}\bar{B}C + \bar{A}\bar{B}\bar{C} + \bar{A}\bar{C} + \bar{A}\bar{C} + \bar{A}\bar{C} + \bar{A}\bar{C} + \bar{$$

STEPS FOR IMPLEMENTING FUNCTION USING MUX

Implement $f(A,B,C) = \sum (0,1,4,7)$ using 4:1 MUX

let A be the input line, B&C be the select line

BC-					
		00	01	10	
Ā	٥	<u>6</u> 006	1001	2 010	3
Ą	7	4	Z 61	6	=======================================
	·	1	Ā	0	A _
		એ °	D,	D_2	D

STEPS FOR IMPLEMENTING FUNCTION USING MUX

Implement $f(ABCD)=\sum m(2,3,4,5,8,9,12)$ using 8:1 MUX

STEPS FOR IMPLEMENTING FUNCTION USING MUX

IMPLEMENTATION OF LOGIC GATES USING MUX

The multiplexer is a universal logic. So we can perform any logical function using the multiplexer

IMPLEMENTATION OF LOGIC GATES USING MUX

NOT Gate using 2:1 Multiplexer

NAND Gate using 2:1 Multiplexer

IMPLEMENTATION OF LOGIC GATES USING MUX

NOR Gate using 2:1 Multiplexer

XOR Gate using 2:1 Multiplexer

Xりナルり XNOR Gate using 2:1 Multiplexer

Consider the circuit shown in the figure.

The Boolean expression F implemented by the circuit is

HALF ADDER USING 4:1 MUX

Α	В	Sum (S)	Carry (C)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

HALF ADDER USING 2:1 MUX

Α	В	Sum (S)	Carry (C)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

HALF SUBTRACTOR USING 2:1 MUX

Α	В	Difference (D)	Borrow (B)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0