# Ответы АиГ

Черепанов Илья 26.12.2024

# Содержание

| 1         | Множества и операции над ними.                                                                                 | 8          |
|-----------|----------------------------------------------------------------------------------------------------------------|------------|
| 2         | Плоскость комплексных чисел.                                                                                   | 10         |
| 3         | Комплексные числа в алгебраической форме. Действия над ними.                                                   | 11         |
| 4         | Геометрическая интерпретация операций над комплексными числами. Свойства модуля.                               | 12         |
| 5         | Сопряженные числа и их свойства.                                                                               | 14         |
| 6         | Тригонометрическая форма комплексного числа. Умножение и деление комплексных чисел в тригонометрической форме. | 16         |
| 7         | Формула Муавра. Формулы для синуса и косинуса кратного угла.                                                   | 18         |
| 8         | Извлечение квадратного корня и корня n-й степени из комплексного числа.                                        | 19         |
| 9         | Извлечение корня n-й степени из единицы.                                                                       | 20         |
| 10        | Показательная форма комплексного числа. Действия над комплексными числами в показательной форме.               | 21         |
| 11        | Операции над многочленами и их свойства.                                                                       | 22         |
| <b>12</b> | Деление многочленов с остатком.                                                                                | <b>2</b> 3 |
| 13        | Teopeма о делителе многочлена. Свойства делимости многочлена.                                                  | <b>2</b> 4 |
| 14        | Наибольший общий делитель. Алгоритм Евклида.                                                                   | 28         |
| 15        | Теорема о линейном представлении наибольшего общего лелителя. Следствия из нее.                                | 20         |

| 16         | Теорема Безу и следствия из нее.                                               | 29              |
|------------|--------------------------------------------------------------------------------|-----------------|
| 17         | Схема Горнера.                                                                 | 30              |
| 18         | Основная теорема высшей алгебры. Следствия из нее.                             | 31              |
| 19         | Интерполяционная формула Лагранжа. Формулы Виета.                              | 33              |
| 20         | Teopeма о несократимых дробях. Теорема о неправильной дроби.                   | 34              |
| <b>2</b> 1 | Разложение рациональных дробей в сумму простейших.                             | 36              |
| 22         | Линейные операции над матрицами и их свойства.                                 | 37              |
| 23         | Умножение матриц. Элементарные преобразования над матрицами.                   | 39              |
| 24         | Блочные матрицы и операции над ними. Прямая сумма квадратных матриц.           | 41              |
| <b>2</b> 5 | Определитель. Частный случай теоремы Лапласа.<br>25.1 Теорема Лапласа          | <b>41</b><br>42 |
| 26         | Перечислить свойства определителя.                                             | 43              |
| 27         | Свойство о перестановке двух строк (столбцов) определителя.                    | 47              |
| 28         | Свойство определителя об алгебраических дополнениях.                           | 48              |
| 29         | Свойство определителя треугольной матрицы.                                     | <b>50</b>       |
| 30         | Свойство определителя полураспавшейся матрицы.                                 | <b>50</b>       |
| 31         | Свойство определителя произведения квадратных матриц.                          | 52              |
| <b>32</b>  | Операции над строками матрицы. Линейно зависимые и независимые строки матрицы. | 54              |

| 33        | Ранг матрицы. Теорема о ранге матрицы и следствия из нее.                                                               | 55         |
|-----------|-------------------------------------------------------------------------------------------------------------------------|------------|
| 34        | Утверждения о ранге матрицы. Свойства ранга.                                                                            | 57         |
| 35        | Теорема о приведении матрицы к ступенчатому виду. Элементарные преобразования как умножение матриц.                     | 57         |
| 36        | Обратная матрица и ее свойства. Теорема о существовании и единственности обратной матрицы.                              | 59         |
| 37        | Системы линейных уравнений. Правило Крамера.                                                                            | 61         |
| 38        | Матричный метод решения системы линейных уравнений.                                                                     | 63         |
| 39        | Метод Гаусса.                                                                                                           | <b>6</b> 4 |
| 40        | Теорема Кронекера–Капелли. Следствия из нее. Правило решения СЛАУ.                                                      | 64         |
| 41        | Однородные системы линейных уравнений. Теорема о существовании ненулевых решений системы линейных однородных уравнений. | 64         |
| 42        | Свойства решений однородной системы линейных уравнений.                                                                 | 65         |
| 43        | Фундаментальная система решений. Теорема о фундаментальной системе решений.                                             | 65         |
| 44        | Теорема о связи решений однородной и неоднородной систем.                                                               | 65         |
| <b>45</b> | Проекция вектора на ось и ее свойства.                                                                                  | 66         |
| <b>46</b> | Линейная зависимость и независимость векторов и ее свойства.                                                            | 66         |

| 47        | Базис, разложение вектора по базису. Условия коллинеарности векторов.                                                                     | 67      |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 48        | Скалярное произведение векторов. Свойства и вычисление. Условие ортогональности векторов.                                                 | 67      |
| 49        | Векторное произведение векторов. Свойства и вычисление. Третье условие коллинеарности векторов.                                           | 68      |
| 50        | Смешанное произведение векторов. Свойства и вычисление. Геометрический смысл смешанного произведения. Условие компланарности векторов.    | 69      |
| 51        | Преобразования систем координат: параллельный перенос и поворот осей координат.                                                           | 71      |
| <b>52</b> | Уравнение прямой, проходящей через заданную точку пер-<br>пендикулярно заданному вектору. Общее уравнение пря-<br>мой и его исследование. | -<br>71 |
| 53        | Векторное уравнение прямой на плоскости, параметрическое уравнение прямой. Нормальное уравнение прямой.                                   | 71      |
| 54        | Каноническое уравнение прямой на плоскости. Уравнение прямой, проходящей через две заданные точки. Уравнение прямой в отрезках.           | 71      |
| 55        | Уравнение прямой, проходящей через заданную точку в заданном направлении. Уравнение прямой линии с заданным угловым коэффициентом.        | 71      |
| 56        | Угол между двумя прямыми. Условие параллельности и перпендикулярности прямых на плоскости.                                                | 71      |
| 57        | Расстояние от точки до прямой. Деление отрезка в заданном соотношении.                                                                    | 71      |
| 58        | Общее уравнение плоскости и его частные случаи. Уравнение плоскости, проходящей через заданную точку перпендикулярно заданному вектору.   | 71      |

| 59 | Уравнение плоскости, проходящей через три заданные точ ки. Уравнение плоскости в отрезках. Нормальное уравнение плоскости.                       | -<br>71  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 60 | Угол между двумя плоскостями. Условия параллельности и перпендикулярности двух плоскостей.                                                       | 71       |
| 61 | Расстояние от точки до плоскости.                                                                                                                | 71       |
| 62 | Общие и векторное уравнения прямой в пространстве.                                                                                               | 71       |
| 63 | Канонические и параметрические уравнения прямой в пространстве. Уравнения прямой проходящей через две точки.                                     | -<br>71  |
| 64 | Угол между прямыми в пространстве. Условие параллельности и перпендикулярности прямых.                                                           | 71       |
| 65 | Угол между прямой и плоскостью в пространстве. Условие параллельности и перпендикулярности прямой и плоскости.                                   | 71       |
| 66 | Кривые второго порядка. Окружность. Нормальное и общее уравнения окружности.                                                                     | 71       |
| 67 | Эллипс: определение, вывод канонического уравнения, своства, эксцентриситет, директрисы.                                                         | й-<br>71 |
| 68 | Парабола: определение, вывод канонического уравнения, свойства.                                                                                  | 71       |
| 69 | Гипербола: определение, вывод канонического уравнения, свойства, эксцентриситет, директрисы. Уравнения асимптот гиперболы, построение гиперболы. | 71       |
| 70 | Классификация кривых второго порядка по общему уравнения второй степени.                                                                         | 71       |
| 71 | Поверхности второго порядка. Цилиндрические поверхности.                                                                                         | 71       |

| 72 Поверхности вращения |
|-------------------------|
|-------------------------|

71

73 Конические поверхности.

71

74 Канонические уравнения поверхностей второго порядка (эллипсоид, однополостный гиперболоид, двуполостный гиперболоид, эллиптический параболоид, гиперболический параболоид, конус второго порядка). 71

## 1 Множества и операции над ними.

#### Определение множества.

 ${\it M}$ ножество — совокупность объектов, объединенных по какому-то признаку.

Объекты, из которых состоит множество, нахываются его *элемента-ми*.

Множества принято обозначать заглавными буквами латинского алфавита  $\{A, B, \ldots, X, Y, \ldots\}$ , а их элементы – малыми буквами  $\{a, b, \ldots, x, y, \ldots\}$ . Множество, не содержащее ни одного элемента, называется nycmыm, обозначается символом  $\varnothing$ .

Множество A называется nodмножеством множества B, если каждый элемент множества A является элементом множества B. Обозначается  $A \subset B$ .

Говорят, что множества A и B pавны или cosanadaюm, и пишут A=B, если  $A\subset B$  и  $B\subset A$ . То есть, если множества состоят из одних и тех же элементов.

**Объединением** (или суммой) множеств A и B называется множество, состоящие из элементов, принадлежащих хотя бы одному их этих множеств. Обозначается  $A \cup B$  (илиA + B). Кратко можно записать  $A \cup B = \{x \colon x \in A \text{ или } x \in B\}$ 

**Пересечением** (или произведением) множеств A и B называется множество, состоящее из элементов, каждый из которых принадлежит множеству A и множеству B. Обозначают  $A \cap B$  (или $A \cdot B$ ). Кратко можно записать  $A \cap B = \{x \colon x \in A \text{ и } x \in B\}$ 

## Числовые множества. Множества на прямой.

Множества, элементами которых явлвяются числа, называются число-выми.

Примеры числовых множеств:

 $\mathbb{N} = \{1; 2; 3; \dots; n; \dots \}$  - множество натуральных чисел.

 $\mathbb{Z}=\{\pm 1;\pm 2;\pm 3;\ldots;\pm n;\ldots\}$  - множество целых чисел.

 $\mathbb{Q}=\{\frac{m}{n}\colon m\in\mathbb{Z}, n\in\mathbb{N}\}$  - множество рациональных чисел.

 $\mathbb{R}$  – множество вещественных чисел.

Между этими множествами существует соотношение:

 $\mathbb{N} \in \mathbb{Z} \in \mathbb{Q} \in \mathbb{R}$ 

Действительные числа, не являющиеся рациональными, нызываются up-рациональными.

#### Свойства $\mathbb{R}$ :

- 1. Множество упорядоченное: для любых двух различных чисел а и b справедливо a < b или a > b
- 2. Множество nлотное: между двумя раличными числами a и b содержится бесконечное множество действительных чисел.
- 3. Множество непрерывное. Пусть множество  $\mathbb{R}$  разбито на два непустых класса A и B таких, что каждое действительное число содержится только в одном классе и для каждой пары чисел  $a \in A$  и  $b \in B$  выполнено неравенство a < b. Тогда существует единственное число c, удовлетворяющее неравенству  $a \le c \le b(\forall a \in A, \forall b \in B)$ . Оно отделяет числа класса A от чисел класса B. Число c является либо наибольшим числом в классе A (тогда в классе B нет наименьшего числа), либо наименьшим числом в классе B (тогда в классе A нет наибольшего).

Свойство непрерывности позволяет установить взаимно-однозначное соответствие между множеством всех действительных чисел и множеством всех точек прямой. Это означает, что каждому числу  $x \in \mathbb{R}$  соответствует единственная точка числовой оси и наоборот.

Пусть  $a, b \in \mathbb{R}, a < b$ 

*Числовыми промежсутками* (интервалами) называют подмножества всех действительных чисел, имеющих следующий вид:

$$[a;b] = \{x\colon a \leq x \leq b\} - \text{отрезок};$$
 
$$(a;b) = \{x\colon a < x < b\} - \text{интервал};$$
 
$$[a;b) = \{x\colon a \leq x < b\};$$
 
$$(a;b] = \{x\colon a < x \leq b\} - \text{полуоткрытые интервалы (или полуоткрытые отрезки)};$$
 
$$(-\infty;b] = \{x\colon x < b\};$$

$$(-\infty;b) = \{x\colon x < b\};$$
  $[a;\infty) = \{x\colon x \geq a\};$   $(a;\infty) = \{x\colon x > a\};$   $(-\infty;\infty) = \{x\colon -\infty < x < \infty\} = \mathbb{R}$  — бесконечные интервалы (промежутки);

## 2 Плоскость комплексных чисел.

$$\mathbb{N}\subseteq\mathbb{Z}\subseteq\mathbb{Q}\subseteq\mathbb{R}\subseteq\mathbb{C}$$
 Пусть  $\alpha,\beta,\gamma,\ldots$  — точки плоскости.  $\alpha=(a,b)$   $\beta=(b,c)$   $a,b,c,d\in\mathbb{R}$  Операции:

- 1. Сложение  $\alpha + \beta = (a + c, b + d)$
- 2. Умножение  $\alpha \cdot \beta = (ac bd, bc + ad)$
- 3. Вычитание Пусть (x, y) разность (c, d) + (x, y) = (a, b) (c + x, d + y) = (a, b)  $\begin{cases} c + x = a & \begin{cases} x = a c \\ d + y = b \end{cases} & \begin{cases} y = b d \end{cases}$   $\alpha \beta = \alpha + (-\beta) = (a c, b d)$
- 4. Деление Пусть  $\frac{\alpha}{\beta} = (x, y)$   $(x, y) \cdot (c, d) = (a, b)$

$$(cx - dy, cy + dx) = (a, b)$$

$$\begin{cases}
cx - dy = a \\
dx + cy = b
\end{cases} \begin{cases}
x = \frac{ac + bd}{c^2 + d^2} \\
y = \frac{bc - ad}{c^2 + d^2}
\end{cases}$$

$$\frac{\alpha}{\beta} = \left(\frac{ac + bd}{c^2 + d^2}, \frac{bc - ad}{c^2 + d^2}\right)$$

Построенная плоскость, с введенными на ней операциями называется **комллексной плоскостью**. т.к. точки вида (a,0)являются точками вещественной оси, они являются аналогом  $\mathbb{R}$ .

Ox — вещественная (действительная) ось

Оу – мнимая ось

# 3 Комплексные числа в алгебраической форме. Действия над ними.

 $\alpha = a + bi$  – алгебраическая форма записи  $\alpha$ .

a – действительная часть числа lpha

b — мнимая часть числа lpha

i – мнимая единица  $i^2 = -1$ 

Пусть  $\alpha = a + bi, \beta = c + di$ 

Операции над ними:

• 
$$\alpha + \beta = a + c + (b+d)i$$

• 
$$\alpha - \beta = a - c + (b - d)i$$

• 
$$\alpha \cdot \beta = (a+bi) \cdot (c+di) = ac + adi + bci - bdi^2 = ac - bd + (ad+bc)i$$

• 
$$\frac{\alpha}{\beta} = \frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)(c-di)} = \frac{ac+bd+(bc-ad)i}{c^2+d^2} = \frac{ac+bd}{c^2+d^2} + \frac{(bc-ad)i}{c^2+d^2}$$

# 4 Геометрическая интерпретация операций над комплексными числами. Свойства модуля.

## Геометрический смысл

Пусть

$$\alpha = (a, b) = a + bi$$
$$\beta = (c, d) = c + di$$



• Сложение  $\alpha + \beta$ 





# Свойства модуля

Пусть  $\alpha = a + bi$ 



 $(r, \varphi)$  – полярные координаты

$$\begin{split} r^2 &= a^2 + b^2 \\ r\cos\varphi &= a \\ r\sin\varphi &= b \\ \lg\varphi &= \frac{a}{b} \\ r &= |\alpha| - \mathit{modynb} \ \alpha \qquad \qquad |\alpha \in \mathbb{C} \\ \varphi - \mathit{apzymehm} \ \alpha \qquad \qquad |\alpha \in \mathbb{C} \\ Arg\alpha &= \arg\alpha + 2\pi k \qquad \qquad |k \in \mathbb{Z} \\ \varphi &= \arg\alpha \left\{ \begin{aligned} & \mathrm{arctg} \ \frac{b}{a}, & \alpha \in I,IV \\ & \mathrm{arctg} \ \frac{b}{a} + \pi, & \alpha \in III \\ & \mathrm{arctg} \ \frac{b}{a} - \pi, & \alpha \in III \end{aligned} \right. \\ \varphi &\in [0;2\pi) \end{split}$$

#### Свойства:

- $|\alpha| |\beta| \le |\alpha \pm \beta| \le |\alpha + \beta|$
- $|\alpha| \cdot |\beta| = |\alpha \cdot \beta|$
- $\bullet \ \left| \frac{\alpha}{\beta} \right| = \frac{|\alpha|}{|\beta|}$

# 5 Сопряженные числа и их свойства.

$$lpha = a + bi$$
  $\overline{lpha} = a - bi$  — сопряженное число к  $lpha$ 

Свойства сопряженных чисел:

1. 
$$\alpha + \overline{\alpha} = 2a \in \mathbb{R}$$

$$2. \ \alpha \cdot \overline{\alpha} = a^2 + b^2 \in \mathbb{R}$$

3. 
$$\overline{\alpha + \beta} = \overline{\alpha} + \overline{\beta}$$

Доказательство:

$$\begin{split} &\alpha = a + bi \\ &\beta = c + di \\ &\alpha + \beta = (a + c) + (b + d)i \\ &\overline{\alpha + \beta} = (a + c) - (b + d)i = a - bi + c - di = \overline{\alpha} + \overline{\beta} \end{split}$$

4.  $\overline{\alpha \cdot \beta} = \overline{\alpha} \cdot \overline{\beta}$ 

Доказательство:

$$\frac{\alpha \cdot \beta}{\overline{\alpha} \cdot \overline{\beta}} = (ac - bd) + (ad + bc)i$$

$$\overline{\alpha} \cdot \overline{\beta} = ac - bd - (ad + bc)i$$

$$\overline{\alpha} \cdot \overline{\beta} = (a - bi)(c - di) = ac - bd - (ad + bc)i$$

$$\frac{\Downarrow}{\alpha \cdot \beta} = \overline{\alpha} \cdot \overline{\beta}$$

5. 
$$\overline{\alpha - \beta} = \overline{\alpha} - \overline{\beta}$$

6. 
$$\overline{\left(\frac{\alpha}{\beta}\right)} = \overline{\frac{\alpha}{\beta}}$$

6 Тригонометрическая форма комплексного числа. Умножение и деление комплексных чисел в тригонометрической форме.

Тригонометрическая форма записи.

Пусть  $\alpha = a + bi$ 



 $(r, \varphi)$  – полярные координаты

$$\begin{split} r^2 &= a^2 + b^2 \\ r\cos\varphi &= a \\ r\sin\varphi &= b \\ \lg\varphi &= \frac{a}{b} \\ r &= |\alpha| - \text{модуль } \alpha \qquad \qquad |\alpha \in \mathbb{C} \\ \varphi &= \text{аргумент } \alpha \qquad \qquad |\alpha \in \mathbb{C} \\ Arg\alpha &= \arg\alpha + 2\pi k \qquad \qquad |\kappa \in \mathbb{Z} \\ \varphi &= \arg\alpha \left\{ \begin{aligned} & \arctan\frac{b}{a}, & \alpha \in I, IV \\ & \arctan\frac{b}{a} + \pi, & \alpha \in III \\ & \arctan\frac{b}{a} - \pi, & \alpha \in III \end{aligned} \right. \\ \varphi &\in [0; 2\pi) \\ |0| &= 0 \\ \varphi &= \arg 0 - \text{не определен} \end{split}$$

 $r(\cos \varphi + i \sin \varphi)$  – **тригонометрическая форма** записи  $\alpha$ 

#### Умножение

Пусть 
$$\alpha = |\alpha|(\cos\varphi_1 + i\sin\varphi_1)$$
 
$$\beta = |\beta|(\cos\varphi_2 + i\sin\varphi_2)$$
 тогда 
$$\alpha \cdot \beta = |\alpha| \cdot |\beta|((\cos\varphi_1 \cdot \cos\varphi_2 - \sin\varphi_1 \cdot \sin\varphi_2) + i(\sin\varphi_1 \cdot \cos\varphi_2 + \cos\varphi_1 \cdot \sin\varphi_2)) =$$
 
$$= |\alpha| \cdot |\beta|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$
 то есть 
$$\alpha \cdot \beta = |\alpha| \cdot |\beta|(\cos(\varphi_1 + \varphi_2) + i\sin(\varphi_1 + \varphi_2))$$

### Деление

Пусть 
$$\alpha = |\alpha|(\cos\varphi_1 + i\sin\varphi_1)$$
 
$$\beta = |\beta|(\cos\varphi_2 + i\sin\varphi_2)$$
 тогда 
$$\frac{\alpha}{\beta} = \frac{|\alpha|(\cos\varphi_1 + i\sin\varphi_1)}{|\beta|(\cos\varphi_2 + i\sin\varphi_2)} =$$
 
$$= \frac{|\alpha|}{|\beta|} \frac{(\cos\varphi_1 + i\sin\varphi_1)(\cos\varphi_2 - i\sin\varphi_2)}{(\cos\varphi_2 + i\sin\varphi_2)(\cos\varphi_2 - i\sin\varphi_2)} =$$
 
$$= \frac{|\alpha|}{|\beta|} \frac{\cos\varphi_1 \cdot \cos\varphi_2 + \sin\varphi_1 \cdot \sin\varphi_2 + i(\sin\varphi_1 \cdot \cos\varphi_2 - \cos\varphi_1 \cdot \sin\varphi_2)}{\cos^2\varphi_1 + \sin^2\varphi_2} =$$
 
$$= \frac{|\alpha|}{|\beta|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$
 то есть 
$$\frac{\alpha}{\beta} = \frac{|\alpha|}{|\beta|} (\cos(\varphi_1 - \varphi_2) + i\sin(\varphi_1 - \varphi_2))$$

# 7 Формула Муавра. Формулы для синуса и косинуса кратного угла.

$$\alpha^n = r^n (\cos n\varphi + i \sin n\varphi)$$
 — формула Муавра. 
$$\alpha = r(\cos \varphi + i \sin \varphi)$$
 
$$\alpha^n = r^n (\cos n\varphi + i \sin n\varphi) = r^n (\cos \varphi + i \sin \varphi)^n$$
 
$$\psi$$
 
$$\cos n\varphi + i \sin n\varphi = \underbrace{(\cos \varphi + i \sin \varphi)^n}_{Euhom \ Hbiomoha}$$
 
$$\underbrace{\int_{Buhom \ Hbiomoha}^{cos \ n\varphi} - \text{действительная часть полинома } (\cos \varphi + i \sin \varphi)^n}_{\sin n\varphi}$$
 
$$\frac{1}{\sin n\varphi} = \underbrace{(\cos \varphi + i \sin \varphi)^n}_{\text{полинома } (\cos \varphi + i \sin \varphi)^n}$$

# 8 Извлечение квадратного корня и корня nй степени из комплексного числа.

#### Квадратный корень

Пусть
$$\alpha = a + bi$$

$$\sqrt{\alpha} = \sqrt{a + bi} = x + yi$$

$$a + bi = x^2 + 2xyi - y^2$$

$$\begin{cases} a = x^2 - y^2 & |^2 \\ b = 2xy & |^2 \end{cases}$$

$$(x^2 + y^2)^2 + 4x^2y^2 = a^2 + b^2$$

$$(x^2 + y^2)^2 = a^2 + b^2$$

$$x^2 + y^2 = \sqrt{a^2 + b^2}$$

$$x^2 = \frac{1}{2} \left( a + \sqrt{a^2 + b^2} \right)$$

$$y^2 = \frac{1}{2} \left( -a + \sqrt{a^2 + b^2} \right)$$

#### Корень п-ой степени

Пусть 
$$\alpha = r (\cos \varphi + i \sin \varphi)$$
 
$$\sqrt[n]{\alpha} = \sqrt[n]{r (\cos \varphi + i \sin \varphi)} = R(\cos \psi + i \sin \psi)$$
 
$$R = \sqrt[n]{r}$$
 
$$r (\cos \varphi + i \sin \varphi) = R^n (\cos n\psi + i \sin n\psi)$$
 
$$n\psi = \varphi + 2\pi k, \qquad k \in \mathbb{Z}$$
 
$$\psi = \frac{\varphi + 2\pi k}{n}, \quad k = 0, 1, 2, \dots, n-1$$

$$\sqrt[n]{r(\cos\varphi + i\sin\varphi)} = \sqrt[n]{r}\left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right), k = 0, 1, \dots, n - 1$$

# 9 Извлечение корня n-й степени из единицы.

$$1 = \cos 0 + i \sin 0$$

$$\sqrt[n]{1} = \cos \frac{2\pi k}{n} + i \sin \frac{2\pi k}{n}, k = 0, 1, \dots, n - 1$$

$$\sqrt{1} = \pm 1$$

$$\sqrt[4]{1} = \{\pm 1 \cup \pm i\} = \{1 + i, 1 - i, -1 + i, -1 - i\}$$

$$\sqrt[3]{1} = \cos \frac{2\pi k}{3} + i \sin \frac{2\pi k}{3}, k = 0, 1, 2, 3$$

$$k = 0: \qquad \cos 0 + i \sin 0 = 1$$

$$k = 1: \qquad \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$$

$$k = 2: \qquad \cos \frac{4\pi}{3} + i \sin \frac{4\pi}{3} = -\frac{1}{2} - i \frac{\sqrt{3}}{2}$$

#### Свойства

- 1. Все значения  $\sqrt[n]{\alpha}, \alpha \in \mathbb{C}$  можно получить умножением одного из этих значений на все корни n-ой степени из 1.
- 2. Произведение двух корней n-ой степени из 1 само есть корень n-ой степени из 1.
- 3. Число, обратное корню n-ой степени из 1 само есть такой же корень.
- 4. Всякая степень корня n-ой степени из 1 есть такой же корень n-ой степени из 1.
- 5. Всякий корень k-ой степени из 1 будет также корнем l-ой степени из 1 для всякого l кратного k.

10 Показательная форма комплексного числами. Действия над комплексными числами в показательной форме.

## Формула Эйлера

$$e^{i\varphi} = \cos\varphi + i\sin\varphi$$

## Показательная форма записи

$$\alpha = r (\cos \varphi + i \sin \varphi)$$
$$\alpha = re^{i\varphi}$$

### Умножение

$$\begin{split} \alpha &= re^{i\varphi} \\ \beta &= r'e^{i\varphi'} \\ \alpha \cdot \beta &= re^{i\varphi} \cdot r'e^{i\varphi'} = rr'e^{i(\varphi + \varphi')} \end{split}$$

## Деление

$$\begin{split} \alpha &= re^{i\varphi} \\ \beta &= r'e^{i\varphi'} \\ \frac{\alpha}{\beta} &= \frac{re^{i\varphi}}{r'e^{i\varphi'}} = \frac{r}{r'}e^{i(\varphi - \varphi')} \end{split}$$

# 11 Операции над многочленами и их свойства.

#### Многочлены

**Многочлен** – сумма целых неотрицательных степеней неизвестного числа х, взятых с некоторыми коэффициентами.

Выражение вида  $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$  называется **полиномом (многочленом)** п-ой степени от неизвестного x.

 $\deg f(x) = n$  – степень многочлена.

Многочленами *нулевой* степени являются отличные от 0 комплексные числа.

Число 0 также будет многочленом, степень которого неопределена.

**Два многочлена** f(x) и g(x) **равны**, если равны коэффициенты при одинаковых степенях неизвестного.

#### Операции

Пусть

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, \qquad a_n \neq 0$$
  

$$g(x) = b_s x^s + b_{s-1} x^{s-1} + \dots + b_1 x + b_0, \qquad b_s \neq 0$$

•  $f(x) + g(x) = c_n x^n + c_{n-1} x^{n-1} + \dots + c_1 x + c_0$ , где  $c_i = a_i + b_i$ ,  $i = 0, 1, \dots, n$ , причем при n > s, коэффициенты  $b_{s+1}, b_{s+2}, \dots, b_n$  считаем равными 0. Свойства:

1. 
$$f(x) + g(x) = g(x) + f(x)$$

2. 
$$[f(x) + g(x)] + h(x) = f(x) + [g(x) + h(x)]$$

• 
$$-f(x) = -a_n x^n - a_{n-1} x^{n-1} - \dots - a_1 x - a_0$$

• 
$$f(x) \cdot g(x) = d_{n+s}x^{n+s} + d_{n+s-1}x^{n+s-1} + \dots + d_1x + d_0$$
, где  $d_i = \sum_{k+l=i} a_k b_l$ ,  $i = 0, 1, \dots, n+s-1, n+s$  Свойства:

1. 
$$f(x) \cdot g(x) = g(x) \cdot f(x)$$

2. 
$$[f(x) \cdot g(x)] \cdot h(x) = f(x) \cdot [g(x) \cdot h(x)]$$

- роль единицы в умножении играет число 1.
- f(x) обладает обратным многочленом  $f^{-1}(x)$ , таким что  $f(x) \cdot f^{-1}(x) = 1$ , если f(x) является многочленом 0 степени.

## 12 Деление многочленов с остатком.

 $orall f(x), g(x) \exists ! q(x), r(x)$ :  $f(x) = g(x) \cdot q(x) + r(x)$  Причем  $\deg r(x) < \deg g(x)$  или  $\deg r(x) = 0$ . q(x) – частное от деления f(x) на g(x). r(x) – остаток от деления. Доказательство:

1. ∃

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
  
$$g(x) = b_s x^s + b_{s-1} x^{s-1} + \dots + b_1 x + b_0$$

- (a)  $s > n \Rightarrow q(x) = 0, r(x) = f(x)$  $\deg r(x) < \deg q(x)$
- (b)  $s \leq n$

$$f_1(x) = f(x) - \frac{a_n}{b_s} x^{n-s} \cdot g(x), \qquad \deg f_1(x) = n_1 < n$$

$$n_1 \ge s \colon f_2(x) = f_1(x) - \frac{a_{n_1}}{b_s} x^{n_1 - s} \cdot g(x), \qquad \deg f_2(x) = n_2 < n_1$$

$$n_2 \ge s \colon f_3(x) = f_2(x) - \frac{a_{n_2}}{b_s} x^{n_2 - s} \cdot g(x), \qquad \deg f_3(x) = n_3 < n_2$$

. . .

$$n_{k-1} \ge n_{k-2}$$
:  $f_k(x) = f_{k-1}(x) - \frac{a_{n_{k-1}-s}}{b_s} \cdot g(x)$ ,  $\deg f_k(x) = n_k < n_{k-1}$ 

Сложим  $f_1(x), f_2(x), \dots, f_{k-1}(x)$ :

$$f(x) - \left(\frac{a_n}{b_s}x^{n-s} + \frac{a_{n_1}}{b_s}x^{n_1-s} + \frac{a_{n_2}}{b_s}x^{n_2-s} + \dots + \frac{a_{n_{k-1}-s}}{b_s}\right) \cdot g(x) = f_k(x)$$

$$q(x) = \frac{a_n}{b_s}x^{n-s} + \frac{a_{n_1}}{b_s}x^{n_1-s} + \frac{a_{n_2}}{b_s}x^{n_2-s} + \dots + \frac{a_{n_{k-1}-s}}{b_s}$$

$$r(x) = f_k(x)$$

2. ∃! - Однозначность доказываем от обратного.

Пусть  $\exists \overline{q}(x), \overline{r}(x)$ :

$$f(x) = g(x) \cdot q(x) + r(x) \tag{1}$$

$$f(x) = g(x) \cdot \overline{q}(x) + \overline{r}(x) \tag{2}$$

Из (1) вычтем (2):

$$g(x) \cdot (\overline{q}(x) - q(x)) = r(x) - \overline{r}(x)$$

$$\begin{cases} \overline{q}(x) - q(x) = 0 \\ \overline{r}(x) - r(x) = 0 \end{cases}$$

### Следствие

Если f(x) или g(x) — многочлены с  $\mathbb R$  коэффициентами, то коэффициенты многочленов  $f_1(x), f_2(x), \ldots, f_k(x), g(x)$ , а значит и q(x), r(x) — так же  $\mathbb R$ .

# 13 Теорема о делителе многочлена. Свойства делимости многочлена.

Пусть даны f(x), g(x) с  $\mathbb C$  коэффициентами. Если остаток от деления f(x) на g(x) равен нулю, то говорят, что f(x) нацело делится на g(x) и g(x) – делитель f(x).

$$f(x)$$
: $g(x) \Leftrightarrow \exists h(x) \colon f(x) = h(x) \cdot g(x)$ 

Доказательство:

$$f(x) = g(x) \cdot q(x) + r(x)$$

$$r(x) = 0$$

$$q(x) = h(x)$$

$$f(x) = g(x) \cdot h(x)$$

Замечание:

если g(x) – делитель многочлена f(x), то и g(x) – делитель.

#### Свойства делимости

1. Если f(x):g(x), а g(x):h(x), то f(x):h(x). Доказательство:

$$\begin{split} f(x) & \vdots g(x) \Rightarrow f(x) = g(x) \cdot \varphi(x) \\ g(x) & \vdots h(x) \Rightarrow g(x) = h(x) \cdot \psi(x) \\ f(x) & = [h(x) \cdot \psi(x)] \cdot \varphi(x) = h(x) \cdot [\psi(x) \cdot (\varphi(x))] \\ \Downarrow \\ f(x) & \vdots h(x) \end{split}$$

2. Если f(x): $\varphi(x)$  и g(x): $\varphi(x)$ , то их сумма и разность так же делится на  $\varphi(x)$ 

Доказательство:

3. Если f(x): $\varphi(x)$ , то  $f(x) \cdot g(x)$  так же делится на  $\varphi(x)$  Доказательство:

$$f(x) : \varphi(x) \Rightarrow f(x) = \varphi(x) \cdot \psi(x)$$

$$f(x) \cdot g(x) = [\varphi(x) \cdot \psi(x)] \cdot g(x) = \varphi(x) [\cdot \psi(x) \cdot g(x)]$$

$$\downarrow \downarrow$$

$$f(x) \cdot g(x) : \varphi(x)$$

- 4. Если каждый  $f_1(x), f_2(x), \ldots, f_k(x)$  делится на  $\varphi(x)$ , то на  $\varphi(x)$  будет делиться и многочлен  $f_1(x)g_1(x)+f_2(x)g_2(x)+\cdots+f_k(x)g_k(x)$ , где  $g_1(x), g_2(x), \ldots, g_k(x)$  произвольные многочлены. Доказательство: Следует из 2 и 3 свойств.
- 5. Всякий многочлен f(x) делится на любой многочлен нулевой степени.

Доказательство:

c = const (многочлен нулевой степени)

$$f(x) = c\left(c^{-1}f(x)\right) \Rightarrow f(x):c$$

6. Если f(x): $\varphi(x)$ , то f(x): $c \cdot \varphi(x)$ , где c – произвольное число, отличное от 0.

Доказательство:

$$f(x) = \varphi(x) \cdot \psi(x)$$
  
$$f(x) = c\varphi(x) \left[ c^{-1}\psi(x) \right]$$

7. Многочлены  $cf(x), c \neq 0$  и только они будут делителями многочлена f(x), имеющими такую же степень, что и f(x) Доказательство:

$$f(x) = cf(x) \cdot c^{-1}, c \neq 0$$

$$\exists \varphi(x), \deg \varphi(x) = \deg f(x)$$

$$f(x) \vdots \varphi(x)$$

$$\Downarrow$$

$$f(x) = \varphi(x) \cdot \psi(x)$$

$$\Downarrow$$

$$\deg \psi(x) = 0$$

$$\psi(x) = c \Rightarrow f(x) \vdots cf(x)$$

- 8. f(x):g(x) и g(x): $f(x) \Leftrightarrow f(x) = cg(x), c \neq 0$ Доказательство: Следует из свойства 7.
- 9. Всякий делитель одного из двух многочленов  $f(x), cf(x), c \neq 0$ , будет делителем и для другого многочлена. Доказательство: Следует из свойств 8 и 1.

# 14 Наибольший общий делитель. Алгоритм Евклида.

Многочлен  $\varphi(x)$  будет называться *общим делителем* для f(x) и g(x), если f(x): $\varphi(x), g(x)$ : $\varphi(x)$ 

Замечание:

K числу общих делителей f(x), g(x) принадлежат все многочлены нулевой степени.

**Наибольшим общим делителем** отличных от 0 многочленов f(x) и g(x) называется такой многочлен d(x), который является их общим делителем и, вместе с тем, сам делится на любой другой их общий делитель.

#### Алгоритм Евклида

$$\deg f(x) \geq \deg g(x)$$

$$f(x) = g(x) \cdot q_1(x) + r_1(x), \qquad \deg r_1(x) < \deg g(x)$$

$$g(x) = r_1(x) \cdot q_2(x) + r_2(x), \qquad \deg r_2(x) < \deg r_1(x)$$
...
$$r_{k-3}(x) = r_{k-2}(x) \cdot q_{k-1}(x) + r_{k-1}(x), \qquad \deg r_{k-1}(x) < \deg r_{k-2}(x)$$

$$r_{k-2}(x) = r_{k-1}(x) \cdot q_k(x) + r_k(x), \qquad \deg r_k(x) < \deg r_{k-1}(x)$$

$$r_{k-1} = r_k(x) \cdot q_{k+1}(x)$$

$$r_k(x) - \operatorname{HOД}$$

# 15 Теорема о линейном представлении наибольшего общего делителя. Следствия из нее.

Если d(x) – НОД f(x), g(x), то можно найти такие многочлены u(x), v(x), что:

$$f(x) \cdot u(x) + g(x) \cdot v(x) = d(x)$$

$$\deg f(x) \neq 0; \deg g(x) \neq 0$$

$$\deg u(x) < \deg f(x)$$

$$\deg v(x) < \deg g(x)$$

Следствие:

$$f(x)$$
 и  $g(x)$  – взаимно простые  $\Leftrightarrow \exists u(x), v(x) \colon f(x)u(x) + g(x)v(x) = 1$ 

#### Свойства взаимно простых многочленов

- 1. Если многочлен f(x) взаимно прост с каждым из  $\varphi(x), \psi(x)$ , то он взаимно прост с их произведением.
- 2. Если  $f(x) \cdot g(x)$ : $\varphi(x)$ , но  $\varphi(x)$  и f(x) взаимно простые, то g(x): $\varphi(x)$
- 3. Если f(x): $\varphi(x)$  и f(x): $\psi(x)$ , которые между собой взаимно простые, то f(x): $\varphi(x)\cdot\psi(x)$

### 16 Теорема Безу и следствия из нее.

## Теорема Безу

Остаток от деления f(x) на линейный многочлен x-c равен значению f(c) многочлена f(x) при x=c Доказательство:

$$f(x) = (x - c) \cdot q(x) + r(x)$$
$$\deg r(x) = 0 f(c) = (c - c) \cdot q(c) + r \Rightarrow \boxed{r = f(c)}$$

Следствие:

$$c$$
 – корень  $f(x) \Leftrightarrow f(x)$ : $(x-c)$ 

Таким образом найти корень многочлена  $\Leftrightarrow$  найти его линейный делитель

$$f(x):(ax+b) \Rightarrow f(x):\left(x-\left(-\frac{a}{b}\right)\right)$$

## 17 Схема Горнера.

Пусть

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
  
 $f(x) = (x - c)q(x) + r$   
где:  
 $q(x) = b_{n-1} x^{n-1} + b_{n-2} x^{n-2} + \dots + b_1 x + b_0$   
 $b_n = a_n$   
 $b_{n-1} = cb_n + a_{n-1}$   
 $b_{n-2} = cb_{n-1} + a_{n-2}$   
...  
 $b_1 = cb_2 + a_1$   
 $b_0 = cb_1 + a_0$   
 $r = b_0$ 

| f(x)           | $a_n$ | $a_{n-1}$ | $a_{n-2}$ | <br>$a_1$ | $a_0$ |
|----------------|-------|-----------|-----------|-----------|-------|
| $\overline{c}$ | $b_n$ | $b_{n-1}$ | $b_{n-2}$ | <br>$b_1$ | $b_0$ |

### Кратные корни

Если  $f(x) = (x-c)^k \cdot \varphi(x)$ , где многочлен  $\varphi(x) \not \mid c$ , то число k называется **кратностью корня** c в многочлене f(x), а сам корень c-k-кратным корнем (или корнем кратности k). Если k=1, то говорят, что корень c – простой.

# 18 Основная теорема высшей алгебры. Следствия из нее.

#### Основная теорема алгебры

Всякий многочлен с любыми числовыми коэффициентами, степень которого не меньше 1, имеет хотя бы один корень ( в общем случае комплексный).

$$\forall f(x), \deg f(x) > 1 : \exists c \in \mathbb{C} : f(c) = 0$$

Следствие 1:

Любой многочлен n-ой степени можно разложить единственным образом в произведение n линейных множителей

$$f(x) = a_n \cdot (x - \alpha_1) \cdot (x - \alpha_2) \cdot \dots \cdot (x - \alpha_n)$$

Доказательство:

#### Следствие 2:

Если многочлены f(x) и g(x),  $\deg f(x) \le n$ ,  $\deg g(x) \le n$ , имеют равные значения более чем при n различных значениях неизвестного, то f(x) = g(x)

Доказательство:

$$f(x)-g(x), \deg(f(x)-g(x)) \leq n$$
 при  $x=c_1,c_2,c_3,\ldots,c_n,c_{n+1},\ldots$   $f(c_i)=g(c_i) orall i$   $c_1,c_2,\ldots$  - корни  $\Rightarrow f(x)-g(x)=0$   $f(x)=g(x)$ 

Следствие 3:

Если  $\alpha \in \mathbb{C}$  – корень f(x) с  $\mathbb{R}$  коэффициентами, то корнем f(x) будет и  $\overline{\alpha}$ .

Доказательство:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
  $\alpha$  – корень  $f(x)$   $a_n \alpha^n + a_{n-1} \alpha^{n-1} + \dots + a_1 \alpha + a_0 = 0$   $a_n \overline{\alpha}^n + a_{n-1} \overline{\alpha}^{n-1} + \dots + a_1 \overline{\alpha} + a_0 = 0$   $\psi$   $\overline{\alpha}$  – корень  $f(x)$ 

Следствие 4:

Всякий многочлен f(x) с  $\mathbb R$  коэффициентами можно представить в виде произведения линейных двучленов и квадратных трехчленов (для D < 0), соответствующих парам сопряженных  $\mathbb C$  корней.

Следствие 5:

Многочлен нечетной степени с  $\mathbb R$  коэффициентами всегда имеет хотя бы один  $\mathbb R$  корень.

# 19 Интерполяционная формула Лагранжа. Формулы Виета.

$$f(x) = \sum_{i=1}^{n+1} \frac{c_i(x - a_1) \dots (x - a_{i-1}) (x - a_i + 1) \dots (x - a_{n+1})}{(a_i - a_1) \dots (a_i - a_{i-1}) (a_i - a_{i+1}) \dots (a_i - a_{n+1})}$$

$$f(x) = x^{n} + a_{n-1}x^{n-1} + \dots + a_{2}x^{2} + a_{1}x + a_{0}$$

$$\alpha_{1}, \alpha_{2}, \dots, \alpha_{n} - \text{корни } f(x)$$

$$f(x) = (x - \alpha_{1})(x - \alpha_{2}) \dots (x - \alpha_{n})$$

$$a_{n-1} = -(\alpha_{1} + \alpha_{2} + \dots + \alpha_{n})$$

$$a_{n-2} = \alpha_{1}\alpha_{2} + \alpha_{1}\alpha_{3} + \dots + \alpha_{1}\alpha_{n} + \alpha_{2}\alpha_{3} + \dots + \alpha_{n-1}\alpha_{n}$$

$$a_{n-3} = -(\alpha_{1}\alpha_{2}\alpha_{3} + \alpha_{1}\alpha_{2}\alpha_{4} + \dots + \alpha_{n-2}\alpha_{n-1}\alpha_{n})$$

$$a_{1} = (-1)^{n-1}(\alpha_{1}\alpha_{2} \dots \alpha_{n-1} + \alpha_{1}\alpha_{2} \dots \alpha_{n-2}\alpha_{n} + \dots + \alpha_{2}\alpha_{3} \dots \alpha_{n})$$

$$a_{0} = (-1)^{n}\alpha_{1}\alpha_{2}\alpha_{3} \dots \alpha_{n}$$

Для n = 2 (Формулы Buema):

$$a_1 = (\alpha_1 + \alpha_2)$$
$$a_0 = \alpha_1 \alpha_2$$

Для n=3:

$$a_2 = -(\alpha_1 + \alpha_2 + \alpha_3)$$

$$a_1 = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3$$

$$a_0 = -\alpha_1 \alpha_2 \alpha_3$$

# 20 Теорема о несократимых дробях. Теорема о неправильной дроби.

**Рациональной дробью** или дробно-рациональной функцией называют частное  $\frac{f(x)}{g(x)}$  двух целых рациональных функций, где  $g(x) \neq 0$  Рациональная дробь называется **несократимой**, если её числитель вза-имно прост со знаменателем.

## Теорема о несократимых дробях

Всякая рациональная дробь равна некоторой несократимой дроби, определенной однозначно с точностью до множителя нулевой степени, общего

для числителя и знаменателя.

$$\frac{f(x)}{g(x)} = \frac{h(x) \cdot \varphi(x)}{h(x) \cdot \psi(x)} = \frac{\varphi(x)}{\psi(x)}$$

Доказательство:

$$\begin{split} &(f(x),g(x)) = h(x) - \text{HOД} \ f(x),g(x) \\ &\frac{f(x)}{g(x)} = \frac{h(x) \cdot \varphi(x)}{h(x) \cdot \psi(x)} = \frac{\varphi(x)}{\psi(x)} - \text{несократимая дробь} \\ &\frac{\varphi(x)}{\psi(x)}, \frac{\varphi_1(x)}{\psi_1(x)} \\ &\frac{\varphi(x)}{\psi(x)} = \frac{f(x)}{g(x)} \\ &\frac{\varphi_1(x)}{\psi_1(x)} = \frac{f(x)}{g(x)} \\ &\frac{\varphi_1(x)}{\psi_1(x)} = \frac{f(x)}{g(x)} \\ &(\varphi(x),\psi(x)) = 1 \\ &\psi_1(x) \vdots \psi(x) \\ &(\varphi_1(x),\psi_1(x)) = 1 \\ &\varphi(x) \vdots \varphi_1 \\ &\varphi(x) = c \cdot \varphi_1(x) \\ &\varphi(x) \psi_1(x) = \varphi_1(x) \psi(x) \\ &\underbrace{\text{Чет хуйня-какая-то}} \end{split}$$

Рациональная дробь называется *правильной* если степень числителя больше степени знаменателя. В противном случае дробь *неправильная*.

## Теорема о неправильной рациональной дроби

Всякая рациональная дробь представима (притом единственным способом) в виде суммы многочлена и неправильной рациональной дроби.

$$\frac{f(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)}$$

Доказательство:

$$\deg f(x) \ge \deg g(x)$$

$$f(x) = g(x) \cdot q(x) + r(x)$$

$$\frac{f(x)}{g(x)} = \frac{q(x) \cdot g(x) + r(x)}{g(x)} = q(x) + \frac{r(x)}{g(x)}$$

# 21 Разложение рациональных дробей в сумму простейших.

Правильная рациональная дробь  $\frac{f(x)}{g(x)}$  называется **простейшей**, если ее знаменатель g(x) является степенью неприводимого многочлена p(x).

$$g(x) = p^k(x), k \ge 1$$

, а степень числителя f(x) меньше степени p(x).//  $\alpha \in \mathbb{R}$  – корень g(x):

$$\begin{split} I.\frac{A}{x-\alpha} \\ II.\frac{A}{(x-\alpha)^k}, & k>1 \\ III.\frac{Mx+N}{x^2+px+q}, & D<0 \\ IV.\frac{Mx+N}{(x^2+px+q..)^k}, & k>1 \end{split}$$

## Основная Теорема рациональных дробей

Всякая произвольная рациональная дробь разлагается в сумму простейших дробей.

### 22 Линейные операции над матрицами и их свойства.

#### Общая информация о матрицах

*Матрицей* назыается таблица чисел вида:

$$A_{m \times n} = (a_{ij}) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

, где  $a_{ij}$  – **элементы матрицы**, при этом i – номер строки, j – номер столбца.

Число строк и столбцов матрицы называется ее **размерностью**  $(m \times n)$ . Элементы, стоящие на диагонали, идущей из верхнего левого угла образуют **главную диагональ**  $(a_{11}, a_{22}, \ldots, a_{nn})$ .

Если число строк равно числу столбцов (m=n), матрица называется  $\kappa \epsilon a \partial pamho \check{u}$ , а число строк(столбцов) называется  $nop s \partial \kappa o m$  матрицы. Иначе — матрица прямоугольная.

Матрица, состоящая из одной строки называется *матрицей-строкой*, а из одного столбца – *матрицей-столбцом*.

Квадратная матрица, у которой все элементы, кроме главной диагонали равны нулю, называется  $\partial u$ агональной матрицей.

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{mn} \end{pmatrix}$$

Диагональная матрица, у которой каждый элемент главной диагонали равен 1, называется  $e\partial u h u u h o u$  матрицей. Обозначаается буквой E.

$$E = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

Матрица, все элементы которой равны 0, называется **нулевой**. Обозначается буквой O.

$$O = \begin{pmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

Квадратная матрица называется *треугольной*, есди все элементы, расположенные по одну сторону от главной диагонали равны нулю.

$$A = \begin{pmatrix} a_{11} & 0 & \dots & 0 \\ a_{12} & a_{22} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$
или 
$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{mn} \end{pmatrix}$$

Нижняя труегольная

Верхняя треугольная

Две матрицы A и B называются pавными, если они имеют одинаковую размерность и их соответстсвующие элементы равны.

#### Действия над матрицами

1. Сложение матриц (только для матриц одинаковой размерности). Суммой двух матриц  $A_{m\times n}=(a_{ij})$  и  $B_{m\times n}=(b_{ij})$  называется матрица  $C_{m\times n}=(c_{ij})$ , такая что

$$c_{ij} = a_{ij} + b_{ij}, i = 1, 2, \dots, m; j = 1, 2, \dots, n$$

Свойства:

- 1) A + B = B + A
- 2) A + (B + C) = (A + B) + C
- 3) A + O = A
- 4) A A = 0
- 2. Умножение матрицы на число Произведением матрицы  $A_{m\times n}=(a_{ij})$  на число k называется матрица  $B_{m\times n}=(b_{ij})$ , такая что

$$b_{ij} = a_{ij} \cdot k, i = 1, 2, \dots, m; j = 1, 2, \dots, n$$

Свойства:

- 1)  $1 \cdot A = A$
- 2)  $k \cdot (A+B) = k \cdot A + k \cdot B$
- 3)  $O \cdot A = O$
- 4)  $(k_1 + k_2) \cdot A = k_1 \cdot A + k_2 \cdot A$
- 5)  $k_1 \cdot (k_2 \cdot A) = (k_1 \cdot k_2) \cdot A$

## 23 Умножение матриц. Элементарные преобразования над матрицами.

Операция умножения для двух матриц вводится для случая, когда число столбцов первой матрицы равно числу строк второй матрицы. Произведением  $A_{m\times n}=(a_{ij})$  на  $B_{n\times p}=(b_{jk})$ , называется матрица  $C_{m\times p}=(c_{jk})$ , такая что

$$c_{ik} = a_{i1} \cdot b_{1k} + a_{i2} \cdot b_{2k} + \dots + a_{in} \cdot b_{nk}$$

, то есть элемент i-ой строки k-го столбца матрицы C равен сумме произведений элементов i-ой строки матрицы A на соответствующие элементы k-го столбца матрицы B.

$$A_{m \times \underline{n}} \cdot B_{\underline{n} \times p} = C_{m \times p}$$



Свойства:

1. 
$$A(BC) = (AB)C$$

$$2. A(B+C) = AB + AC$$

$$3. (A+B)C = AC + BC$$

4. 
$$k(AB) = (kA)B$$

Матрицы A и B называются nepecmahoвочнымми если  $A\cdot B=B\cdot A$  Если матрицы A и B перестановочны, то любые их натуральные степени перестановочны

$$(AB)^p = A^p B^p$$

#### Транспонирование

Матрица, полученная из данной заменой каждой ее строки столбцом с тем же номером называется mpahcnohupogahhoù к данной  $(A^T)$ .

#### Элементарные преобразования

- 1. Перестановка местами двух строк (столбцов) матрицы.
- 2. Умножение всех элементов строки (столбца) матрицы на одно и то же число
- 3. Прибавление ко всем элементам одной строки (столбца) матрицы соответствующих элементов другой строки (столбца), умноженных на одно и то же ненулевое число.

Две матрицы A и B называют **эквивалентными**  $A \sim B$ , если одна из них может быть получена из другой с помощью элементарных преобразований.

Матрица A называется cmynenumoŭ, если она имеет вид:

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1r} & \dots & a_{1k} \\ 0 & a_{22} & \dots & a_{2r} & \dots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{nr} & \dots & a_{rk} \end{pmatrix}$$

С помощью элементарных преобразований любую матрицу можно привести к ступенчатому виду.

## 24 Блочные матрицы и операции над ними. Прямая сумма квадратных матриц.

Если матрицу разбить на отдельные прямоугольные блоки, каждый из которых представляет собой матрицу меньшего размераи называется блоком исходной матрицы, то сама матрица называется **блочной**. Прямой суммой  $C = A \oplus B$  двух квадратных матриц называется квадратная блочная матрица C порядка m+n, равная

$$C = \begin{pmatrix} A & O \\ O & B \end{pmatrix}$$

, где O — нулевая матрица соответствующей размерности.

## 25 Определитель. Частный случай теоремы Лапласа.

Определеителем квадратной матрицы A называетя число |A|, полученное по следующему правилу:

а) если 
$$n = 1$$
, то  $A = (a)$  и  $|A| = a$ 

b) если 
$$n=2$$
, то  $A=\left( egin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} 
ight)$  и  $|A|=a_{11}\cdot a_{22}-a_{21}\cdot a_{12}$ 

c) Если 
$$n=3$$
, то  $A=\begin{pmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{pmatrix}$  и  $|A|=a_{11}\cdot a_{12}\cdot a_{13}+a_{12}\cdot a_{23}\cdot a_{31}+a_{13}\cdot a_{32}\cdot a_{21}-\left(a_{13}\cdot a_{22}\cdot a_{31}+a_{12}\cdot a_{33}\cdot a_{21}+a_{11}\cdot a_{23}\cdot a_{32}\right)$ 

**Минором**  $M_{ij}$  элемента  $a_{ij}$  называется определитель, полученный из данного определителя вычеркиванием i-ой строки и j-го столбца на пересечении которых стоит элемент  $a_{ij}$ 

Если 
$$n > 3$$
, то  $A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}$ ,

И

$$|A| = a_{11} \cdot M_{11} - a_{12} \cdot M_{12} + \dots + (-1)^{1+n} \cdot a_{1n} \cdot M_{1n} =$$

$$= \sum_{j=1}^{n} (-1)^{j+1} a_{1j} M_{1j}$$

, где  $M_{1j}$  – минор элемента  $a_{1j}, (j=1,2,\ldots,n)$ 

Алгебраическим дополнением  $A_{ij}$  элемента  $a_{ij}$  называется минор этого элемента взятый со знаком +, если сумма номеров строки и столбца четная, и со знаком -, если сумма нечетная.

$$A_{ij} = \left(-1\right)^{i+j} M_{ij}$$

#### 25.1 Теорема Лапласа

Определитель равен сумме произведений элементов какой-нибудь строки (столбца) на их алгебраические дополнения.

$$|A| = \sum_{j=1}^n a_{ij} \cdot A_{ij}$$
 для i-ой строки

Доказательство (индукция):

1) 
$$n = 2$$
:  
 $|A| = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{21}A_{21} + a_{22}A_{22} = -a_{21}a_{12} + a_{22}a_{11}$ 

2) 
$$n-1$$
 – верно

3) n

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{11}M_{11} - a_{12}M_{12} + \dots + (-1)^{1+n} a_{1n}M_{1n} =$$

$$= a_{11} \sum_{j=2}^{n} a_{ij} M_{ij}^{11} - a_{12} \sum_{j=1, j \neq 2}^{n} (-1)^{i+j} a_{ij} M_{ij}^{12} + \dots + (-1)^{1+n} a_{1n} \sum_{j=1}^{n-1} (-1)^{i+j} a_{ij} M_{ij}^{1n} =$$

$$= \dots + a_{ij} (-1)^{i+j} \sum_{k=1, k \neq j}^{n} (-1)^{1+k} a_{1k} M_{1k}^{ij} + \dots =$$

$$= \dots + a_{ij} (-1)^{i+j} M_{ij} + \dots = \dots + a_{ij} A_{ij} + \dots$$

#### 26 Перечислить свойства определителя.

Свойства определителей:

1. Величина определителя не изменится, если его транспонировать

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{vmatrix}$$

- 2. При перестановке двух строк (или столбцов) определитель изменит знак на противоположный, сохраняя абсолютную величину.
- 3. Общий множитель всех элементов какой-либо строки или столбца можно вынести за знак определителя

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} & \lambda a_{i2} & \dots & \lambda a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \lambda a_{i1} A_{i1} + \lambda a_{i2} A_{i2} + \dots + \lambda a_{in} A_{in} =$$

$$= \lambda (a_{i1}A_{i1} + a_{i2}A_{i2} + \dots + a_{in}A_{in}) = \lambda |A|$$

4. Если все элементы некоторой строки (столбца) равны 0, то и сам определитель равен 0.

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = 0$$

5. Если определитель имеет две одинаковые строки (столбца), то он равен 0.

Доказательство:

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = |A|$$

$$-|A| = |A| \Rightarrow |A| = 0$$

6. Если элементы двух строк (столбцов) пропорциональны, то определитель = 0

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{i1} & \lambda a_{i2} & \dots & \lambda a_{in} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = 0$$

Доказательство:

Следует из п.3 и п.5

- 7. Если каждый элемент строки (столбца) предствляет собой сумму двух слагаемых, то определитель может быть предствлен в виде суммы двух определителей, один из которых в соответствующей строке (столбце) имеет первые из упомянутых слагаемых, а другой вторые; элементы, стоящие на остальных местах у всех определителей одни и те же.
- 8. Если к элементам некоторой строки (столбца) определителя прибавить соответствующие элементы другой строки (столбца), умноженные на одно и то же ненулевое число, то величина определителя не изменится

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} + \lambda a_{k1} & a_{s2} + \lambda a_{k2} & \dots & a_{sn} + \lambda a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \dots & a_{sn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

Доказательство:

Следует из п.6 и п.7

9. Сумма поизведений элементов какой-либо строки (столбца) на алгебраическое дополнение соответствующих элементов другой строки (столбца) равна нулю.

$$a_{k1}A_{l1} + a_{k2}A_{l2} + \dots + a_{kn}A_{ln} = 0$$

Доказательство:

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \dots & a_{ln} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{l1}A_{l1} + a_{l2}A_{l2} + \dots + a_{ln}A_{ln}$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \dots & n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = b_1 A_{l1} + b_2 A_{l2} + \dots + b_n A_{ln}$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{k1}A_{l1} + a_{k2}A_{l2} + \dots + a_{kn}A_{ln} = 0$$

$$(Ceoŭcmeo 5)$$

10. Определитель треугольной матрицы равен произведению элементов главной диагонали

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{mn} \end{vmatrix} = a_{11}a_{22}\dots a_{nn}$$

11. Пусть дан определитель, все элементы которого, стоящие в первых k строках и последних (от k+1 до n) столбцах, равны нулю, тогда этот определитель будет равен произведению двух своих миноров.

$$d = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1k} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} & 0 & \dots & 0 \\ a_{k+1} & a_{k+1} & \dots & a_{k+1} & a_{k+1} & \dots & a_{k+1} & n \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} & a_{nk+1} & \dots & a_{nn} \end{vmatrix}$$

$$d = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{vmatrix} \cdot \begin{vmatrix} a_{k+1} & k+1 & \dots & a_{k+1} & n \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ a_{nk+1} & \dots & a_{nn} \end{vmatrix}$$

12. Определитель произведения матриц n-го порядка равен произведению определителей этих матриц.

$$|AB| = |A| \cdot |B|$$

#### 27 Свойство о перестановке двух строк (столбцов) определителя.

При перестановке двух строк (или столбцов) определитель изменит знак на противоположный, сохраняя абсолютную величину.

Доказательство:

$$|A| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{i1} & a_{i2} & \dots & a_{in} \\ a_{i+1 \ 1} & a_{i+1 \ 2} & \dots & a_{i+1 \ n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix}$$

$$|A| = \sum_{j=1}^{n} a_{ij} A_{ij}$$

$$|A'| = \sum_{j=1}^{n} a_{ij} A'_{ij}$$

$$A'_{ij} = (-1)^{i+1+j} M_{ij}$$

$$A_{ij} = (-1)^{i+j} M_{ij}$$

$$A_{ij} = (-1)^{i+j} M_{ij}$$

$$\Rightarrow -A'_{ij} = A_{ij} \Rightarrow |A'| = -|A|$$

## 28 Свойство определителя об алгебраических дополнениях.

Сумма поизведений элементов какой-либо строки (столбца) на алгебраическое дополнение соответствующих элементов другой строки (столбца) равна нулю.

$$a_{k1}A_{l1} + a_{k2}A_{l2} + \dots + a_{kn}A_{ln} = 0$$

#### Доказательство:

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{l1} & a_{l2} & \dots & a_{ln} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{l1}A_{l1} + a_{l2}A_{l2} + \dots + a_{ln}A_{ln}$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ b_1 & b_2 & \dots & n \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = b_1 A_{l1} + b_2 A_{l2} + \dots + b_n A_{ln}$$

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{vmatrix} = a_{k1}A_{l1} + a_{k2}A_{l2} + \dots + a_{kn}A_{ln} = 0$$

$$(Csoùcmso 5)$$

## 29 Свойство определителя треугольной матрицы.

Определитель треугольной матрицы равен произведению элементов главной диагонали

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{mn} \end{vmatrix} = a_{11}a_{22}\dots a_{nn}$$

Доказательство (по индукции):

1)

$$\left| \begin{array}{cc} a & b \\ 0 & c \end{array} \right| = a \cdot c - b \cdot 0 = ac$$
 — верно

2) n-1 – верно

3)

$$\begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ 0 & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & a_{mn} \end{vmatrix} = a_{11} \cdot \begin{vmatrix} a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots \\ 0 & \dots & a_{mn} \end{vmatrix} = a_{11}a_{22}\dots a_{nn}$$

## 30 Свойство определителя полураспавшейся матрицы.

Пусть дан определитель, все элементы которого, стоящие в первых k строках и последних (от k+1 до n) столбцах, равны нулю, тогда этот

определитель будет равен произведению двух своих миноров.

$$d = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1k} & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} & 0 & \dots & 0 \\ a_{k+1} & a_{k+1} & \dots & a_{k+1} & a_{k+1} & \dots & a_{k+1} & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nk} & a_{nk+1} & \dots & a_{nn} \end{vmatrix}$$

$$d = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \dots & a_{kk} \end{vmatrix} \cdot \begin{vmatrix} a_{k+1} & k+1 & \dots & a_{k+1} & n \\ \vdots & \ddots & \vdots & \vdots \\ a_{nk+1} & \dots & a_{nn} \end{vmatrix}$$

Если квадратную матрицу с помощью горизонтальных и вертикальных линий можно разбить на блоки, где на главной диагонали стоят квадратные матрицы, а по одной стороне от главной диагонали стоит нулевая матрица, то такая матрица называется **полураспавшаяся**. Доказательство (по индукции):

1) 
$$\begin{vmatrix} a & b \\ 0 & c \end{vmatrix} = a \cdot c - b \cdot 0 = ac$$
 – верно

2) n-1 – верно

$$a_{11}A_{11} + a_{12}A_{12} + \dots + a_{1k}A_{1k}$$

$$A_{ij} = \begin{vmatrix} B_j & 0 \\ C_j & D \end{vmatrix} = |B_j| \cdot |D|$$

$$d = a_{11} \cdot |B_1| \cdot |D| + a_{12} \cdot |B_2| \cdot |D| + \dots + a_{1k} \cdot |B_k| \cdot |D| =$$

$$= (a_{11} \cdot |B_1| + a_{12} \cdot |B_2| \cdot + \dots + a_{1k} \cdot |B_k|) \cdot |D| = |B| \cdot |D|$$

## 31 Свойство определителя произведения квадратных матриц.

Определитель произведения матриц n-го порядка равен произведению определителей этих матриц.

$$|AB| = |A| \cdot |B|$$

Доказательство:

$$|A| \cdot |B| = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & \dots & a_{2n} & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} & 0 & 0 & \dots & 0 \\ -1 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1n} \\ 0 & -1 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & b_{n1} & b_{n2} & \dots & b_{nn} \end{vmatrix} = \\ = \begin{vmatrix} 0 & 0 & \dots & 0 & \sum a_{1i} \cdot b_{i1} & \sum a_{1i} \cdot b_{i2} & \dots & \sum a_{1i} \cdot b_{in} \\ 0 & 0 & \dots & 0 & \sum a_{2i} \cdot b_{i1} & \sum a_{2i} \cdot b_{i2} & \dots & \sum a_{2i} \cdot b_{in} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 & \sum a_{ni} \cdot b_{i1} & \sum a_{ni} \cdot b_{i2} & \dots & \sum a_{ni} \cdot b_{in} \\ -1 & 0 & \dots & 0 & b_{11} & b_{12} & \dots & b_{1n} \\ 0 & -1 & \dots & 0 & b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & -1 & b_{n1} & b_{n2} & \dots & b_{nn} \end{vmatrix} = \\ = (-1)^n \cdot \begin{vmatrix} \sum a_{1i} \cdot b_{i1} & \sum a_{1i} \cdot b_{i2} & \dots & \sum a_{1i} \cdot b_{in} & 0 & 0 & \dots & 0 \\ \sum a_{2i} \cdot b_{i1} & \sum a_{2i} \cdot b_{i2} & \dots & \sum a_{2i} \cdot b_{in} & 0 & 0 & \dots & 0 \\ b_{11} & b_{12} & \dots & \sum a_{ni} \cdot b_{in} & 0 & 0 & \dots & 0 \\ b_{21} & b_{22} & \dots & b_{2n} & 0 & -1 & \dots & 0 \\ b_{21} & b_{22} & \dots & b_{2n} & 0 & -1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nn} & 0 & 0 & \dots & -1 \end{vmatrix} = \\ = (-1)^n |A \cdot B| = |A \cdot B|$$

#### 32 Операции над строками матрицы. Линейно зависимые и независимые строки матрицы.

Две строки называются **равными**, если все их элементы равны. Строка e называется **линейной комбинацией** строк  $e_1, e_2, \ldots, e_n$ , если она равна сумме произведений этих строк на произвольные вещественыне числа.

$$e = (\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n)$$

Строки  $e_1, e_2, \ldots, e_n$  называют **линейно-зависимыми**, если существуют такие числа  $\lambda_1, \lambda_2, \ldots, \lambda_n$ , не все равные нулю, что линейная комбинация строк матрицы равна нулевой строке.

$$\lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n = O$$
  
$$O = (0, 0, \dots, 0)$$

Линейная зависимость строк матрицы означает, что хотя бы одна строка является линейной комбинацией остальных Пусть  $\lambda_n \neq 0$ 

$$e_n = \left(-\frac{\lambda_1}{\lambda_n}\right)e_1 + \left(-\frac{\lambda_2}{\lambda_n}\right)e_2 + \dots + \left(-\frac{\lambda_{n-1}}{\lambda_n}\right)e_{n-1}$$

Строки  $e_1, e_2, \ldots, e_n$  называются *линейно-независимыми*, если их линейная комбинация  $\lambda_1 e_1 + \lambda_2 e_2 + \cdots + \lambda_n e_n = O$  равна нулевой строке  $\Leftrightarrow$  все  $\lambda_i$  равны нулю  $\lambda_1 = \lambda_2 = \cdots = \lambda_n = 0$ 

#### Операции над строками матрицы

1. 
$$\lambda e_m = (\lambda a_{m1}, \lambda a_{m2}, \dots, \lambda a_{mn})$$

2. 
$$e_k + e_s = ((a_{k1} + a_{s1}), (a_{k2} + a_{s2}), \dots, (a_{kn} + a_{sn}))$$

## 33 Ранг матрицы. Теорема о ранге матрицы и следствия из нее.

Максимальное число линейно-независимых строк в матрице называется ее *рангом*.

rangA = r

 $r \le$ число строк

 $Mинором \ k$ -го nopя dка матрицы A называется определитель, полученный из элементов, стоящих на пересечении выделенных произвольным образом k строк и k столбцов.

#### Теорема о ранге матрицы

Наивысший порядок отличных от 0 миноров матрицы равен рангу этой матрицы.

Доказательство:

rangA = r

$$A = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1r} \\ \vdots & \vdots & \boxed{D} & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rr} \\ a_{r+1 1} & a_{r+1 2} & \dots & a_{r+1 r} & a_{r+1 r+1} & \dots & a_{r+1 n} \\ \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ a_{s1} & a_{s2} & \dots & a_{sr} & a_{sr+1} & \dots & a_{sn} \\ \end{vmatrix}$$

$$D \neq O$$

$$e_1, \dots, e_r - \text{линейно-независимые строки}$$

$$e_{r+1}, \dots, e_s$$

$$r+1 \leq k \leq s$$

$$1 \leq j \leq n$$

$$M = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1r} & a_{1j} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{r1} & a_{r2} & \dots & a_{rr} & a_{rj} \\ a_{k1} & a_{k2} & \dots & a_{kr} & a_{kj} \\ \end{vmatrix}$$

$$r+1 \leq j \leq n \Rightarrow \text{ минор } A$$

$$1 \leq j \leq r$$

$$M = a_{1j}A_1 + \dots + a_{rj}A_r + a_{kj} \cdot (-1)^{2r+2} \cdot D = 0$$

$$a_{kj} = -\frac{A_1}{D}a_{1j} - \dots - \frac{A_r}{D}a_{rj}$$

$$e_k = -\frac{A_1}{D}e_1 - \dots - \frac{A_r}{D}e_r \Rightarrow e_1, \dots, e_r, e_k - \text{ линейно-зависимые строки}$$

$$\downarrow \downarrow$$

#### Следствия из теоремы о ранге матрицы

1. Максимальное число линейно-независимых столбцов всякой матрицы равно максимальному числу линейно-независимых строк, то есть, равно рангу этой матрицы.

- 2. Определитель n-го порядка тогда и только тогда равен 0, когда между его строками существует линейная зависимость.
- 3. Элементарные преобразования не меняют ранг матрицы.

## 34 Утверждения о ранге матрицы. Свойства ранга.

Свойства ранга матрицы:

- 1. Если  $A_{m \times n}$ , то  $rang A \leq \min(m, n)$
- 2.  $rang A = 0 \Leftrightarrow$  все элементы 0
- 3.  $rangA_n = n \Leftrightarrow |A| \neq 0$
- 4.  $rangA = rangA^T$
- 5. Если добавить e = 0, rangA не изменится.

#### 35 Теорема о приведении матрицы к ступенчатому виду. Элементарные преобразования как умножение матриц.

#### Элементарные преобразования над матрицами

1. Перестановка  $A_{m \times n}$  Для перестановки i-ой и j-ой строки (столбца) нужно умножить

слева (справа) на квадратную матрицу порядка m(n), вида:

$$S_{\text{\tiny JEB}} = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \dots & \dots & \dots & \dots & \dots & \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots & \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots & \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots & \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots & \vdots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ \vdots & \dots \\ 0 & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & \dots &$$

2. Умножение всех элементов строки (столбца) на одно и то же число  $\neq 0$  Для i-ой строки (j-го столбца) умножаем матрицу слева (справа) на матрицу вида:

$$S_{ exttt{ iny MBB}} = egin{pmatrix} 1 & \dots & 0 & \dots & 0 \\ dots & \ddots & dots & \ddots & dots \\ 0 & \dots & \lambda & \dots & 0 \\ dots & \ddots & dots & \ddots & dots \\ 0 & \dots & 0 & \dots & 1 \end{pmatrix} egin{matrix} 1 & \dots & 0 & \dots & 0 \\ dots & \ddots & dots & \ddots & dots \\ 0 & \dots & \lambda & \dots & 0 \\ dots & \ddots & dots & \ddots & dots \\ 0 & \dots & 0 & \dots & 1 \end{pmatrix} \\ 1 & \dots & j & \dots & n \end{array}$$

3. Прибавление к элементам одной i-ой строки (столбца) всех элементов другой j-ой строки (столбца), умноженных на  $\lambda \neq 0$  Нужно умножить  $A_{m \times n}$  слева (справа) на матрицу порядка m(n) вида:

$$S_{\text{\tiny {\it I}BB}} = \begin{pmatrix} 1 & \dots & 0 & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 1 & \dots & \lambda & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 1 & \dots & 0 \\ \vdots & \dots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & \lambda & \dots & 1 & \dots & 0 \\ \vdots & \dots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & \lambda & \dots & 1 & \dots & 0 \\ \vdots & \dots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & \lambda & \dots & 1 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & \lambda & \dots & 1 & \dots & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & \dots & 0 & \dots & 1 \end{pmatrix}$$

## 36 Обратная матрица и ее свойства. Теорема о существовании и единственности обратной матрицы.

Если A – квадратная матрица, от *обратной* к ней называется матрица  $A^{-1}$ , такая что  $A \cdot A^{-1} = E$  и  $A^{-1} \cdot A = E$ 

Hевырож денной матрицей называется квадратная матрица, определитель которой отличен от 0. В противном случае матрица – вырож денная.

### Теорема о существовании и единственности обратной матрицы

Матрица A имеет обратную и при этом только одну тогда и только тогда, когда эта матрица невырожденная.

Доказательство:



$$\exists A^{-1}\Rightarrow A\cdot A^{-1}=E$$
 Пусть  $|A|=0$   $\downarrow$   $|A\cdot A^{-1}|=|A|\cdot |A^{-1}|=0$  противоречие  $|A\cdot A^{-1}|=E=1$   $\downarrow$   $\downarrow$   $|A|\neq 0\Rightarrow A$  – невырожденная

 $\leftarrow$ 

А – невырожденная

 $\tilde{A}$  — союзная матрица (состоит из алгебраических дополнений элементов)

$$A \cdot \tilde{A}^{T} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} A_{11} & A_{21} & \dots & A_{n1} \\ A_{12} & A_{22} & \dots & A_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ A_{1n} & A_{2n} & \dots & A_{nn} \end{pmatrix} =$$

$$= \begin{pmatrix} \sum_{i=1}^{n} a_{1i} A_{1i} & \sum_{i=1}^{n} a_{1i} A_{2i} & \dots & \sum_{i=1}^{n} a_{1i} A_{ni} \\ \sum_{i=1}^{n} a_{2i} A_{1i} & \sum_{i=1}^{n} a_{2i} A_{2i} & \dots & \sum_{i=1}^{n} a_{2i} A_{ni} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} a_{ni} A_{1i} & \sum_{i=1}^{n} a_{ni} A_{2i} & \dots & \sum_{i=1}^{n} a_{ni} A_{ni} \end{pmatrix} =$$

$$= \begin{pmatrix} |A| & 0 & \dots & 0 \\ 0 & |A| & \dots & 0 \\ 0 & 0 & \dots & |A| \end{pmatrix} = |A| \cdot E \Rightarrow A \cdot \frac{1}{|A|} \cdot \tilde{A}^{T} = E$$

$$\downarrow \downarrow A^{-1} = A \frac{1}{|A|} \tilde{A}^{T}$$

Свойства обратной матрицы

1. 
$$|A^{-1}| = \frac{1}{|A|}$$

2. 
$$(A \cdot B)^{-1} = B^{-1} \cdot A^{-1}$$

3. 
$$(A^{-1})^T = (A^T)^{-1}$$

4. 
$$(A^{-1})^{-1} = A$$

#### 37 Системы линейных уравнений. Правило Крамера.

Cucmeмой линейных уравнений, состоящей из m-уравнений с n неизвестными называется система вида:

$$\begin{cases}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\
\dots \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m
\end{cases}$$
(3)

, где  $a_{ij}(i=1,2,\ldots,m;j=1,2,\ldots,n)$  – коэффициенты системы,  $b_i$  - свободные члены.

**Решением** системы (3) называются п значений неизвестных  $x_1 = c_1, x_2 = c_2, \ldots, x_n = c_n$ , при подстановке которых в систему, все уравнения обращаются в верные равенства (тождества).

Система уравнений называется *совместной*, если она имеет хотя бы одно решение и *несовместной*, если ни одного решения нет.

Совместная система называется *определенной*, если она имеет единственное решение и *неопределенной*, если решений множество.

Каждое решение неопределенной системы называется *частным решением*. Совокупность всех частных решений наызывается *общим решением* системы.

Две системы линейных уравнений назыают эквивалентными (равносильными), если каждое решение одной из них является решеним другой и наоборот.

Систему линейных уравнений называют однородной, если все свободные члены равны 0.

Однородная система линейных уравнений всегда совместна, т.к.  $x_1 = x_2 = \cdots = x_n = 0$  является решением системы (тривиальным).

Матричная форма записи:

$$A \cdot X = B$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$

$$B = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

$$(A|B) = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_m \end{pmatrix} - \text{расширенная матрица системы}$$

#### Метод Крамера

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{vmatrix}$$
 
$$\Delta_i = \begin{vmatrix} a_{11} & \dots & b_1 & \dots & a_{12} & \dots & a_{1n} \\ a_{21} & \dots & b_1 & \dots & a_{22} & \dots & a_{2n} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{m1} & \dots & b_1 & \dots & a_{m2} & \dots & a_{mn} \end{vmatrix}$$
 
$$\Delta \neq 0 \colon \text{система определена}$$
 
$$\Delta = 0 \colon \Delta_i \neq 0 \Rightarrow \text{система несовместна}$$
 
$$\Delta_i = 0 \Rightarrow \text{сомнительный случай}$$
 
$$x_i = \frac{\Delta_i}{\Lambda}, i = 1, 2, \dots, n$$

## 38 Матричный метод решения системы линейных уравнений.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \\ A \cdot X = B \qquad | \cdot A^{-1} \text{ (слева)} \\ A^{-1} \cdot A \cdot X = A^{-1} \cdot B \\ & \qquad \qquad \downarrow \\ E \cdot X = A^{-1} \cdot B \\ & \qquad X = A^{-1} \cdot B \end{cases}$$

#### 39 Метод Гаусса.

 $\Rightarrow$ Последовательное исключение неизвестных с помощью элементарных преобразований (приведение матрицы A|B) к ступенчатому виду  $\Leftarrow$  Система раскручивается и находятся все значения.

Если в процессе  $\implies$  появляются строки  $0 = b_i(b_i \neq 0)$ , то СЛУ несовместна.

Если в процессе ⇒ получается система, число уравнений в которой меньше числа неизвестных, то СЛУ совместна и неопределена Если в процессе ⇒ получается система, число уравнений в которой равно числу неизвестных, то СЛУ совместна и определена

## 40 Теорема Кронекера-Капелли. Следствия из нее. Правило решения СЛАУ.

СЛУ совместна  $\Leftrightarrow rangA = rangA|B$ 

#### Следствия:

- 1. Если rang A =числу неизвестных, то  $\exists !$  решение.
- 2. Если rangA < числа неизвестных, то  $\exists \infty$  решений.

# 41 Однородные системы линейных уравнений. Теорема о существовании ненулевых решений системы линейных однородных уравнений.

Однородная система линейных уравнений  $\Leftrightarrow B = O$ 

- 1. Если rangA = n, то нулевое единственное решение (r < n решения, отличные от 0)
- 2. СЛОУ имеет 1 решение  $\neq 0 \Leftrightarrow \Delta = 0$

3. Если число уравнений < числа неизвестных, то  $\exists$  решения  $\neq$  0.

## 42 Свойства решений однородной системы линейных уравнений.

- 1. Если строка  $e_i = (b_{i1}, b_{i2} \dots)$  решение СЛОУ, то  $\lambda e_i$  тоже решение.
- 2. Если  $e_1$  и  $e_2$  решения СЛОУ, то  $(e_1 + e_2)$  тоже решение.

$$\sum a_{ij}(b_j + c_j) = \sum a_{ij}b_j + \sum a_{ij}c_j = 0$$

## 43 Фундаментальная система решений. Теорема о фундаментальной системе решений.

Это всякая максимальная линейно-независимая система решений  $e_1, e_2, e_3, \dots$  СЛОУ (если каждое решение этой СЛУ явлвяется линейной комбинацией решений  $e_1, e_2, e_3, \dots$ )

#### Теорема о фундаментальной системе решений.

Если rangA < числа неизвестных, то всякая другая система решений этой СЛОУ состоит из n-rangA решений.

## 44 Теорема о связи решений однородной и неоднородной систем.

Общее решение S СЛУ с n неизвестных равно сумме общего решения соответствующей ей СЛОУ и произвольного частного решения первоначальной системы

#### 45 Проекция вектора на ось и ее свойства.

Проекция  $\overline{AB}$  на l – это  $\left|\overline{A_1B_1}\right|$ , взятая с +, если  $\varphi$  < 90°, иначе с -. Точки  $A_1$  и  $B_1$  - проекции точек A и B на l.

$$\mathrm{np}_l \overline{AB} = \left(\frac{\overline{a} \cdot \overline{b}}{|\overline{a}|}\right)$$

#### Свойства проекции

- 1.  $\pi p_l \overline{a} = |\overline{a}| \cos \varphi$
- 2. Постоянный множитель можно вынести за знак проекции

3. Проекция суммы весторов равна сумме проекций

$$\operatorname{np}_{l}\left(\overline{a} + \overline{b}\right) = \operatorname{np}_{l}\overline{a} + \operatorname{np}_{l}\overline{b}$$

## 46 Линейная зависимость и независимость векторов и ее свойства.

 $\overline{a_1},\overline{a_2},\ldots,\overline{a_n}$  – **линейно-зависимы**, если  $\exists A_1,A_2,\ldots,A_n$ , такие что:

$$A_1\overline{a_1} + A_2\overline{a_2} + \dots + A_n\overline{a_n} = 0$$

и **линейно-независимы** если  $A_i = 0, i = 1, 2, \dots, n$ 

 $A_1\overline{a_1}+A_2\overline{a_2}+\cdots+A_n\overline{a_n}$  – линейная комбинация векторов.

Векторы линейно-зависимы  $\Leftrightarrow$  один из векторов – линейная комбинация остальных.

#### Свойства ЛЗ и ЛНЗ

- 1. Всякие 3 вектора на плоскости линейно-зависимы.
- 2. Если векторов на плоскости больше 3, то они линейно-зависимы.

- 3.  $\overline{a}$  и  $\overline{b}$  линейно-зависимы  $\Leftrightarrow \overline{a}$  и  $\overline{b}$  коллинеарны.
- 4. 4 вектора в пространстве линейно-зависимы.
- 5. Если векторов в пространстве больше 4, то они линейно-зависимы.
- 6.  $\overline{a},\overline{b},\overline{c}$  линейно-зависимы  $\Leftrightarrow \overline{a},\overline{b},\overline{c}$  коллинеарны в пространстве.
- 7.  $\overline{a}, \overline{b}, \overline{c}$  линейно-независимы  $\Leftrightarrow \overline{a}, \overline{b}, \overline{c}$  некомпланарны.

## 47 Базис, разложение вектора по базису. Условия коллинеарности векторов.

**Базис** – максимальная система линейно-независимых векторов. Линейная комбинация базисных векторов, равная заданному вектору, назыавется **разложением** вектора по базису.

#### Теорема о единственности разложения

Разложить  $\overline{a}$  по базису возможно единственным способом.

#### Условия колинеарности векторов

- 1.  $\overline{a}$  и  $\overline{b}$  коллинеарны, если  $\exists n \colon \overline{a} = n\overline{b}$
- 2.  $\overline{a}$  и  $\overline{b}$  коллинеарны, если отношения координат равны
- 3.  $\overline{a}$  и  $\overline{b}$  коллинеарны, если  $\overline{a} \times \overline{b} = \overline{0}$

## 48 Скалярное произведение векторов. Свойства и вычисление. Условие ортогональности векторов.

Это число:

$$\overline{a} \cdot \overline{b} = |\overline{a}| \cdot |\overline{b}| \cdot \cos \varphi 
\overline{a} \cdot \overline{b} = |\overline{b}| \cdot \operatorname{np}_{\overline{b}} \overline{a} = |\overline{a}| \cdot \operatorname{np}_{\overline{a}} \overline{b}$$
(4)

#### Свойства скалярного произведения

- 1.  $\overline{a} \cdot \overline{b} = \overline{b} \cdot \overline{a}$
- 2.  $\lambda \left( \overline{a} \cdot \overline{b} \right) = (\lambda \overline{a}) \cdot \overline{b}$
- 3.  $\overline{a}(\overline{b} + \overline{c}) = \overline{a} \cdot \overline{b} + \overline{a} \cdot \overline{c}$
- 4.  $\overline{a}^2 = |\overline{a}|^2$

#### Условие ортогональности векторов.

Два ненулевых вектора ортогональны тогда и только тогда, когда их скалярное произведение равно 0.

$$\overline{a} \perp \overline{b} \Leftrightarrow \overline{a} \cdot \overline{b} = 0$$

49 Векторное произведение векторов. Свойства и вычисление. Третье условие коллинеарности векторов.

$$\overline{a}\times\overline{b}=\overline{c}$$

- 1.  $\overline{c} \perp \overline{a}$  и  $\overline{c} \perp \overline{b}$
- $2. \ |\overline{c}| = S_{\square}$
- 3. Векторы  $\overline{a}, \overline{b}, \overline{c}$  образуют правую тройку векторов (если смотреть с конца  $\overline{c}$ , то поворот от  $\overline{a}$  к  $\overline{b}$  будет против часовой стрелки.)

#### Свойства векторного произведения

1. При перестановке меняет знак:

$$\overline{a} \times \overline{b} = -\overline{b} \times \overline{a}$$

- 2.  $\lambda \left( \overline{a} \times \overline{b} \right) = (\lambda \overline{a}) \times \overline{b}$
- 3.  $\overline{a} \times (\overline{b} + \overline{c}) = \overline{a} \times \overline{b} + \overline{a} \times \overline{c}$

50 Смешанное произведение векторов. Свойства и вычисление. Геометрический смысл смешанного произведения. Условие компланарности векторов.

$$\left(\overline{a} \times \overline{b}\right) \cdot \overline{c}$$
 – число

$$(\overline{a} \times \overline{b}) \cdot \overline{c} = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

#### Свойства смешанного произведения

1. 
$$(\overline{a} \times \overline{b}) \cdot \overline{c} = (\overline{b} \times \overline{c}) \cdot \overline{a} = (\overline{c} \times \overline{a}) \cdot \overline{b}$$

2. 
$$-(\overline{a} \times \overline{b}) \cdot \overline{c} = -(\overline{b} \times \overline{c}) \cdot \overline{a} = -(\overline{c} \times \overline{a}) \cdot \overline{b}$$

#### Геометрический смысл смешанного произведения

Смешанное произведение трех векторов с точностью до знака равно объему параллелепипеда, построенного на этих векторах, как на ребрах

$$(\overline{a} \times \overline{b}) \cdot \overline{c} = |\overline{a} \times \overline{b}| \cdot |\overline{c}| \cdot \cos \varphi = \pm V$$



#### Условие компланарности векторов

Для того, чтобы 3 вектора  $\overline{a}, \overline{b}, \overline{c}$  были компланарными, необходимо и достаточно, чтобы их сммешанное произведение было равно нулю.

$$\overline{a},\overline{b},\overline{c}$$
– компланарны  $\Leftrightarrow \left(\overline{a} imes\overline{b}
ight)\cdot\overline{c}=0$ 

Доказательство:

 $\overline{\Leftarrow}\overline{a},\overline{b},\overline{c}$  – компланарны.

$$\overline{a} \times \overline{b} \perp \overline{a}, \overline{a} \times \overline{b} \perp \overline{b} \Rightarrow \overline{a} \times \overline{b} \perp \overline{c}$$
 
$$\downarrow \qquad \qquad (\overline{a} \times \overline{b}) \cdot \overline{c} = 0 \text{ (на основании условий ортогональности)}$$

 $\overline{\Rightarrow} \overline{a} \overline{b} \overline{c} = 0$  Пусть  $\overline{a}, \overline{b}, \overline{c}$  — некомпланарны,  $\Rightarrow V = \left| \left( \overline{a} \times \overline{b} \right) \cdot \overline{c} \right| = 0$  — противоречие  $\Rightarrow \overline{a}, \overline{b}, \overline{c}$  — компланарны.

- 51 Преобразования систем координат: параллельный перенос и поворот осей координат.
- 52 Уравнение прямой, проходящей через заданную точку перпендикулярно заданному вектору. Общее уравнение прямой и его исследование.
- 53 Векторное уравнение прямой на плоскости, параметрическое уравнение прямой. Нормальное уравнение прямой.
- 54 Каноническое уравнение прямой на плоскости. Уравнение прямой, проходящей через две заданные точки. Уравнение прямой в отрезках.
- 55 Уравнение прямой, проходящей через заданную точку в заданном направлении. Уравнение прямой линии с заданным угловым коэффициентом.
- 56 Угол между двумя прямыми. Условие параллельности и перпендикулярности прямых на плоскости.
- 57 Расстояние от точки до прямой. Деление отрезка в заданном соотношении.
- 58 Общее уравнение плоскости и его частные случаи. Уравнение плоскости, проходящей через заданную точку перпендикулярно заданному вектору.