THE ALUMINUM SHIP EVALUATION MODEL (ASEM) STATIC TEST RESULTS

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER

Bethesda, Maryland 20084

THE ALUMINUM SHIP EVALUATION MODEL (ASEM)
STATIC TEST RESULTS

by

Robert E. Johnson Jeffrey E. Beach

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STRUCTURES DEPARTMENT RESEARCH AND DEVELOPMENT REPORT

December 1983

DTNSRDC-83/079

DTC FILE COPY

84 02 16 038

MAJOR DTNSRDC-ORGANIZATIONAL COMPONENTS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM								
1. REPORT NUMBER	. 3. RECIPIENT'S CATALOG NUMBER								
DTNSRDC-83/079	AD-A138 176								
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED							
THE ALUMINUM SHIP EVALUATION M	Final								
STATIC TEST RESULTS	6. PERFORMING ORG. REPORT NUMBER								
7. AUTHOR(s)		B. CONTRACT OR GRANT NUMBER(s)							
Robert E. Johnson Jeffrey E. Beach									
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS Program Element 62543%							
David W. Taylor Naval Ship Resear	ch								
and Development Center		Subproject SF43422							
Bethesda, Maryland 20084		Objective No. 150-200							
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE							
Naval Sea Systems Command (NAVSEA	. 05R)	December 1983							
Washington, D.C. 20362		13. NUMBER OF PAGES 318							
14. MONITORING AGENCY NAME & ADDRESS(If differen	t from Controlling Office)	15. SECURITY CLASS. (of this report)							
		UNCLASSIFIED							
		15a. DECLASSIFICATION DOWNGRADING SCHEDULE							
16. DISTRIBUTION STATEMENT (of this Report)		(See reverse side)							
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)									
18. SUPPLEMENTARY NOTES									
19. KEY WORDS (Continue on reverse side if necessary an									
Ship Structure Data Analysis	•	el Finite Element Analysis							
Ship Structure Static Tests		id Vinyl Model							
Large Scale Validation of Ship Mod	els								
Aluminum-Hulled Ships		j							
20. ABSTRACT (Continue on reverse side if necessary and	d de atthe by black number								
The results of selected static structural tests of the Aluminum Ship Evaluation Model are presented. The data are documented in tables and figures. Background history, preliminary preparation, and significant accomplishments leading up to and during the static tests are included.									

DD 1 FORM 1473 FEDITION OF 1 NOV 65 IS OBSOLETE S 'N 0102-1, F-014-6601

UNCLASSIFIED
SECURITY CLASSIFICAT IN OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

	Page
LIST OF FIGURES	ív
LIST OF TABLES	ix
ABSTRACT	1
ADMINISTRATIVE INFORMATION	1
INTRODUCTION	1
STATIC TEST PROCEDURE	3
STATIC TEST LOADING	5
INSTRUMENTATION	6
FINITE ELEMENT ANALYSIS	8
ASEM DEFLECTION	8
HULL-DECKHOUSE INTERACTION	9
FASHION PLATES AND ACCESS HATCH OPENINGS	10
STRAIGHTNESS OF BULKHEAD STIFFENER FLANGES BETWEEN	
MAIN DECK AND 01 DECK	12
SPECIAL CONSIDERATIONS FOR ASEM STATIC TESTING	12
COUPLING OF LOAD FRAMES/STRUCTURALLY REINFORCING LOAD FRAME	13
REDESIGN, FABRICATION, AND FOAM REINFORCEMENT OF	
PARTIAL BULKHEAD 72	13
CONCLUSIONS	15
ACKNOWLEDGMENTS	17
REFERENCES	19
APPENDIX A - CHRONOLOGICAL FOLD-OUT OF ASEM MAJOR EVENTS THROUGH	
STATIC TEST COMPLETION	51
APPENDIX B - STRAIN DATA OF FOUR ANALYZED STATIC TESTS	55
APPENDIX C - STRAIN DATA PLOTS	179

	Page
APPENDIX D - CALCULATED LOADS, MEASURED LOADS AND DEFLECTIONS AND BENDING MOMENT PLOTS	235
APPENDIX E - STRAIN GAGE SPECIFICATIONS AND LOCATION NOMENCLATURE	301
LIST OF FIGURES	
1 - Profile View of Destroyer Escort Design	21
2 - The Aluminum Ship Evaluation Model	22
3 - Typical Load Frame Configuration	23
4 - Load Pad Configuration	24
5 - Lifetime Midship Vertical Wave Bending Moment for a 300-Foot Aluminum Ship	25
6 - Lifetime Midship Vertical Whipping Bending Moment for a 300-Foot Aluminum Ship	26
7 - Lifetime Midship Vertical Wave and Whipping Bending Moment for a 300-Foot Aluminum Ship	27
8 - 100 Percent Sagging Test Loads	28
9 - Rigid Vinyl (PVC) Model of ASEM	29
10 - NASTRAN Finite Element Model of One-Half of ASEM	30
<pre>11 - Keel Vertical Displacement Relative to Stillwater at 80 Percent for Static Test on 9-22-77, with Vertical Load</pre>	31
12 - Keel Vertical Displacement Relative to Stillwater at 80 Percent for Static Test on 10-26-77, Combined 240 Degrees	32
13 - Keel Vertical Displacement Relative to Stillwater at 80 Percent for Static Test on 10-14-77, Combined	33
60 Degrees	34
10-70-11 MIEH DOCCERT DOGGO	, , ,

			Page
15	-	Bulkhead Misalignment at Intersection of Bulkhead 32 and Main Deck	35
16	-	Bulkhead Misalignment at Intersection of Main Deck and Bulkheads Interior to Deckhouse	36
17	-	Areas of High Stresses at Deckhouse Discontinuities	37
18	-	Location of Access Hatch Openings in Deckhouse	38
19	-	Typical Deckhouse Side Access Hatch Opening	39
20	-	Typical Deckhouse Side Access Hatch Opening after Structural Modification	40
21	-	Section Showing Frame 72 As-Built and After Structural Modifications	41
22	-	Location of Syntactic Foam Pouring Holes at Partial Bulkhead 72	42
A.1	-	ASEM Static Tests Major Events	53
C.1	-	Longitudinal Distribution of Longitudinal Bending Strain of the O2 Deck Centerline	189
C.2	-	Longitudinal Distribution of Longitudinal Bending Strain of the Ol Deck Centerline	190
C.3	-	Longitudinal Distribution of Longitudinal Bending Strain of the Ol Deck Starboard Edge (From Frame 54 through Frame 61)	191
C.4	-	Longitudinal Distribution of Longitudinal Bending Strain of the Main Deck Centerline	192
C.5	-	Longitudinal Distribution of Longitudinal Bending Strain of the Main Deck, Port Gunwale	193
С.6	-	Longitudinal Distribution of Longitudinal Bending Strain of the Main Deck, Port, Near Deckhouse Side	194
c.7	-	Longitudinal Distribution of Longitudinal Bending Strain of the Main Deck, Starboard Gunwale	195
c.8	-	Longitudinal Distribution of Longitudinal Bending Strain	194

			Page
C. 9	_	Longitudinal Distribution of Longitudinal Bending Strain of the Platform Deck, Centerline	197
C.10	_	Longitudinal Distribution of Longitudinal Bending Strain of the Inner Bottom Centerline	198
C.11	-	Longitudinal Distribution of Longitudinal Bending Strain of the Keel Centerline	199
C.12	-	Transverse Distributions of Longitudinal Bending Strain at Frame 21	200
C.13	-	Transverse Distributions of Longitudinal Bending Strain at Frame 49	201
C.14	-	Transverse Distributions of Longitudinal Bending Strain at Frame 61	202
C.15	-	Transverse Distributions of Longitudinal Bending Strain at Frame 73	203
C.16	-	Transverse Distributions of Longitudinal Bending Strain at Frame 95	204
C.17		Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 8	205
C.18	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 16	206
C.19	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 24	207
C.20	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 32	208
C.21	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 40	209
C.22	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 48	210
C.23	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 56	211
C.24	-	Plot of 100 Percent Vertical Sensitivity from Test Data	212

		Pa	age
C.25	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 80	213
C.26	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 86	214
C.27	_	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 92	215
C.28	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 98	216
C.29	-	Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 108	217
C.30	-	Maximum Measured Strain, 60 Degree Lag, 01 Deck Hole at Frame 38 1/2, Port Side	218
C.31	-	Maximum Measured Strain, 60 Degree Lag, 01 Deck Hole at Frame 46, Port Side	219
C.32	-	Maximum Measured Strain, 60 Degree Lag, 01 Deck Hole at Frame 52, Starboard Side	220
C.33	-	Maximum Measured Strain, 60 Degree Lag, Main Deck Access Hole at Frame 36, Port Side	221
C.34	-	Maximum Measured Strain, 60 Degree Lag, Main Deck Access Hole at Frame 44, Port Side	222
C.35	-	Maximum Measured Strain, 240 Degree Lag, Main Deck Access Hole at Frame 66 1/2, Starboard Side	223
C.36	-	Maximum Measured Strain, 240 Degree Lag, Main Deck Access Hole at Frame 77 1/3, Starboard Side	224
C.37	-	Maximum Measured Strain, 60 Degree Lag, Main Deck Access Hole at Frame 77 1/3, Port Side	225
c.38	-	Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 33, Port Side	226
C.39	-	Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 39, Port Side	227
C.40	-	Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 41 1/2, Port Side	228

				Page
С.	41	-	Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 46, Port Side	229
C.4	42	-	Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 62 1/2, Port Side	230
С.4	43	-	Maximum Measured Strain, 240 Degree Lag, Deckhouse Side Opening at Frame 76, Starboard Side	231
С.4	44	-	Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 78 1/2, Starboard Side	232
С.	45	-	Maximum Measured Strain, 240 Degree Lag, Deckhouse Side Opening at Frame 87, Starboard Side	233
С.4	¥6	-	Port Corner of Deckhouse at Bulkhead 92, Vertical Sensitivity (9-22-77)	234
D.	1	_	Vertical and Lateral Hog Condition	239
D.	2	_	ASEM Moment Plots of Test 1 (-10 Percent to -80 Percent)	240
D.	3	-	ASEM Moment Plots of Test 2 (10 Percent to 80 Percent)	241
D.	4	_	ASEM Moment Plots of Test 2 (-10 Percent to -80 Percent)	242
D.	5	-	ASEM Moment Plots of Test 3, Vertical Moment (-10 Percent to -80 Percent)	243
D.	6	-	ASEM Moment Plots of Test 3, Vertical Moment (10 Percent to 80 Percent)	244
D.	7	-	ASEM Moment Plots of Test 3, Lateral Moment Corresponding to 10 Percent through 80 Percent Vertical Moment	245
D.	8	-	ASEM Moment Plots of Test 3, Lateral Moment Corresponding to -10 Percent through -80 Percent Vertical Moment	246
			ASEM Moment Plots of Test 4, Lateral Moment Corresponding	247

LIST OF TABLES

			Page
	1 .	Load Cell Channels and Locations	43
	2 ·	ASEM Static Tests and Associated Data Tapes	44
	3 .	Static Tests Selected for Comprehensive Data Analysis	45
	4 -	A 20-Year Spectrum of Vertical Ordinary Wave (OW) Plus Whipping Bending Moment (BM), Hog-Sag (H-S)	46
	5 -	Misalignment of Deckhouse Bulkheads Relative to Hull Bulkheads at Main Deck	47
	6 -	Summary of PVC Model Modifications and Subsequent ASEM Modifications	48
	7 .	Summary of Bulkhead Stiffener Flange Warpage	49
В.	1 -	Statistical Results from ASEM Static Tests with Individual Vertical and Lateral Loading	59
В.	2 -	Statistical Results from ASEM Static Tests with Combined Vertical and Lateral Loading	83
В.	3 -	Strain Sensitivities from Statistical Analysis of ASEM Static Test Data	107
В.	4 .	Test Identification Used in Table B.3	57
В.	5 -	Comparison of ASEM Statistical Analysis Results and Static Test Data from Combined Loading at 60 Degree Lag	131
В.	6 -	Comparison of ASEM Statistical Analysis Results and Static Test Data from Combined Loading at 240 Degree Lag	155
D.	1 .	ASEM Static Test 1Calculated Loads	248
D.	2 ·	ASEM Static Test 2Calculated Loads	250
D.	3 -	ASEM Static Test 3Calculated Loads	252
D.	4 .	ASEM Static Test 4Calculated Loads	257
D.	5 .	ASEM Static Test 1Measured Loads	261
D.	6 -	ASEM Static Test 2Measured Loads	266
		ix and contain	

																				Page
D.	7	-	ASEM	Static	Test	3Measured	Loads	•		•	•		•	•						271
D.	8	-	ASEM	Static	Test	4Measured	Loads		•				•						•	276
D.	9	-	ASEM	Static	Test	1Measured	Deflections		•	•		•	•			•				281
D.	10	-	ASEM	Static	Test	2Measured	Deflections					•	•				•	•		286
D.	11	-	ASEM	Static	Test	3Measured	Deflections	•	•	•	• •	•	•		•				•	291
D	1 2		A C EM	Ctotio	Toot	/ Manaurad	Dofloations													206

ABSTRACT

The results of selected static structural tests of the Aluminum Ship Evaluation Model are presented. The data are documented in tables and figures. Background history, preliminary preparation, and significant accomplishments leading up to and during the static tests are included.

ADMINISTRATIVE INFORMATION

The work described herein was performed by the Ship Structures Division, Code 1730, of the Structures Department, of the David W. Taylor Naval Ship Research and Development Center (DTNSRDC). It was sponsored by the Naval Sea System Command (NAVSEA 05R) as part of the Structures Subproject SF43422 of the Ships, Subs, and Boats Exploratory Development Program Element (62543N). This document fulfills FY83 Milestone No. R10 of Goal and Objective No. 150-200. Overall program management was provided by J. E. Gagorik, NAVSEA 05R26.

INTRODUCTION

With the anticipation of increased use of aluminum in ship structures and an introduction of new ship hull configurations, a need was realized to study the performance of large scale complex structures under realistic controlled load conditions. This need included the validation of structural performance through large scale structural testing, the application of life cycle experimental techniques for naval ships, and the development of a validated technology base of aluminum-hulled, ocean-going ships. To achieve these goals, an all-aluminum ship model was fabricated, and an extensive large scale evaluation program was initiated in the early 1970's. This is the only time the Navy had the benefit of testing a large scale model of a surface ship structure. This method of testing is not unique, since the approach is frequently used by the aerospace industry with considerable confidence and success.

In order to fulfill the primary objective of large scale validation, a number of areas were addressed: (1) a method of applying loads to a large scale model and of obtaining stresses in the structure similar to those in a full size ship at sea; (2) a method to determine the instrumentation required to monitor primary, secondary, and tertiary stresses; (3) simulation of service loads and the effect of the

simulation on the test results; and (4) automatic control of the load, as well as a means of monitoring strains during testing.

A number of supporting technologies were used during the large-scale validation program. Analytical methods such as finite element analysis, rigid vinyl modeling, and crack-growth analysis are three examples. As shown later, comparing the results from these analytical techniques to large scale test results helps verify those methods.

Three major needs existed at the time for obtaining an aluminum technology base for U.S. Naval applications. First, there was a substantial lack of service experience for large aluminum-hulled ocean-going ships. Second, there was a definite interest, at that time, in advanced Navy vehicles (high performance ships) such as planing craft, hydrofoil craft, hover craft, and surface effect ships. In order for this type of ship to successfully perform its mission, it must have light-weight systems. Since one-third to one-half of the ship's weight is in the structural system, the selection of a high-strength, low-weight hull material such as aluminum was reasonable. The third and final reason was the Navy's potential interest in a fast, aluminum destroyer escort (DE) in the 2000-ton, 300-ft size range. This interest was based on an economic advantage of aluminum over steel for life-cycle costs of ships in this size and performance range.

For these reasons (large scale validation and aluminum technology base), an all-aluminum, 85-ft-long model of a destroyer escort was designed and built to be both statically and cyclically tested. * This Aluminum Ship Evaluation Model (ASEM) was originally designed as a 300-ft, 2200-ton all aluminum DE with integral, load-bearing superstructure. Figure 1 shows a profile view of the original design. The 300-ft size was scaled down to one-third size, resulting in a 100-ft long structural scale model, which was further reduced by eliminating 15 ft of nonstructural bow section. For economy, the 03 deck was also eliminated. Figure 2 shows a view of the model prior to load frame installation.

After preliminary design by NAVSEA design personnel, and detail design at Hunters Point Naval Ship Yard, construction began in 1974 by Tacoma Boatbuilding Co., Inc. The model was eventually shipped to the Structural Evaluation Laboratory at

^{*}A complete listing of references is given on page 19.

DTNSRDC for load frame installation, receipt inspection,* and instrumentation.**
All of these were required before testing could start. The planned testing included static tests under various combinations of loads to determine basic load, stress, and deflection behavior; and cyclic testing to determine long-term fatigue behavior.

Static testing began in early 1977 and continued for the remainder of the year. It wasn't until 1979 that cyclic testing was initiated. Testing was completed in November of 1981 after one million load cycles had been applied to the model.

Much time and effort had been expended throughout the duration of the project. It is not the intent of this report to go into the details of all aspects of the ten year project. (Appendix A shows the chronology of ASEM major events up to static test completion.) Rather, the report summarizes the results of static test and strain data analyses. In addition, the "lessons learned" during the test process are highlighted.

Subsequent comprehensive reports will cover material characteristics, structural design, aluminum ship fabrication, and maintenance and repair.

STATIC TEST PROCEDURE

After several years of test preparation, the ASEM static testing began in March 1977 and was completed by December 1978. Testing was in three parts: (1) vertical bending, (2) lateral bending, and (3) combined vertical and lateral bending. The bending moments were applied through 13 load frames along the length of the model. Two load frames, one at Bulkhead 24 and the other at Bulkhead 86, were fixed in space and the remaining 11 load frames were movable (allowed to displace with load). Two double pin joints were used in the connection of the frame, load cells, and hydraulic actuators, thus permitting rotation about three axes. Figure 3 is a typical load-frame configuration. At each load frame, one starboard hydraulic acuator or jack and one or two keel jacks (coupled with closed-loop, feedback system load cells) were used for load application. Table 1 lists the load cell's channel numbers and their location on the model.

^{*}Johnson, R.E., "The Aluminum Ship Evaluation Model (ASEM) Receipt Inspection," reported informally as Enclosure (1) to DTNSRDC 1tr 80-173-22 (15 Feb 1980).

^{**}Johnson, R.E., "The Aluminum Ship Evaluaton Model (ASEM) Instrumentation," reported informally as Enclosure (1) to DTNSRDC 1tr 80-173-158 (17 Oct 1980).

The movable frames mentioned earlier were made up of 2, 3, or 4 semirigid parts depending on the frame location. The frames were held to the ASEM hull by the clamping action of the bolted-together parts against rubber strips that were glued to the hull and deck plating. In addition, small aluminum blocks with steel rollers installed were welded to the hull to prevent fore-and-aft motion of the load frames relative to the model. A pad pressure of approximately 5 psi was developed in the rubber due to the clamping action of the frame. The actual configuration of the rubber padding evolved through a lengthy analytical and experimental process which was aimed at keeping tertiary stresses in the stringers and plating below about 4 ksi under maximum load. The final pad configuration used is shown in Figure 4. The rubber strips were glued to the plating directly outside of the bulkhead plating and longitudinal stringers. These external locations were determined by visually locating plate distortion due to the internal fillet welds. The visual method of locating bulkhead plating centerlines can have an error up to 1/16-in. but is as accurate as other methods, such as ultrasonics.

The static loads were applied in an incremental fashion from 0 up to 80% of maximum positive load (+0.8 P_{max}) in 0.1 P_{max} increments, back to 0 in 0.1 P_{max} increments, to -0.8 P_{max} in 0.1 P_{max} increments, and back to 0 in 0.1 P_{max} increments. This gave a total of 38 load levels for each test part, including the initial zero, final zero, system lock and unlock, and lateral offset.

Each test was performed enough times to establish repeatable linear strain response with load. A complete listing of the static tests is given in Table 2. During each static test, 1800 strain channels were recorded at each of the 38 load level. An instrumentation limitation existed such that only 600 channels could be monitored at any one time. This required switching three banks at each load level to obtain the strain readings. The linearity in load versus strain response and, thus, the basic stress sensitivities (numbers of pounds per square inch per unit load application) were required for the cyclic testing. Next, 600 channels of the 1800 channels recorded during the static test were chosen for the cyclic test. These 600 channels were comprised of crack gages, gages reading high strains due to geometric discontinuities, and gages in the 3/5-length region that would accurately define the combined vertical and lateral midship bending moment as a function of time. More details are provided in a report on the cyclic test results.

After the repeatability between like test conditions was established, one complete set of data from each of the four test conditions (vertical, lateral, 60° combined, and 240° combined) was further analyzed for statistical information (Table 3). Tables describing these data analyses are found in Appendix B; associated strain data plots are found in Appendix C. Vertical-bending response slope, lateral-bending response slope, correlation coefficient, standard deviation, and predicted minimum and maximum strains were calculated for each gage for each test condition. A comparison was also made between bending response slopes for various tests, and the most repeatable gages were identified for the cyclic test.

STATIC TEST LOADING

The incremental loading magnitudes used in the static tests were directly related to those of the cyclic test. In order to better understand how these were determined, a brief explanation of the load spectra is warranted.

The development of a design load spectrum relied on factors which influence a ship response in a seaway. A ship's characteristics determine how that ship will perform for operating and wave environment conditions as defined by the ships's mission. Prediction of ship structural performance under lifetime loading is based primarily on the results of full scale trials on similar ships and related model tests.

The basic spectra to be used for the design of a 300-ft aluminum ship were developed in Reference 7. The spectra are for vertical and lateral (or athwartship) bending moments (BM) defined amidships. The vertical spectrum combines the ordinary wave (OW) or low frequency hog-sag (H-S) BM cycles shown in Figure 5 with the vertical dynamic or whipping BM cycles from Figure 6. Reference 7 discusses the method of combining the high frequency whipping cycles with the OW cycles to develop the vertical lifetime spectrum (Figure 7).

The basic vertical spectrum, in terms of H-S vertical bending moment, is listed in Table 4 as determined from Figure 7. A cycle consists of zero (0) to H (hog) (or S (sag)), through 0 to S (or H), and back to 0. As discussed in Reference 7, the whipping cycles are superimposed onto the OW cycles but only add a significant number of cycles to the high load end of the spectrum. The superimposed whipping

causes the H-S moments at the high end of the cu.vc... be unsymmetrical about zero or stillwater. The basic vertical spectrum was truncated at a BM of 3.75×10^3 ft-tons (1 ton=2240 lb/ft) based on results of fatigue crack growth sensitivity studies.* A total of 24.8×10^6 cycles represents the total cycles for a ship lifetime of 20 years, seven of which are active at sea.

The maximum BM shown in Figure 7 is 80×10^3 ft-tons corresponding to the highest (10° or 1 time) response to waves. The maximum BM for the model is obtained when that value is multiplied by the cube of the model scale. The ASEM bending moment for static testing is simulated by applying test loads as shown in Figure 8. The calculated loads at each hydraulic actuator to be transmitted to the model during each load level are given in Appendix D for the four types of tests completed.

A lateral moment cycle is associated with each vertical moment cycle. Therefore, the number of vertical and lateral cycles are the same. The lateral BM spectrum is assumed to be the same as the vertical, except the maximum lateral BM, 40×10^3 ft-tons, is but one-half of the maximum vertical BM. This is a conservative assumption. Half of the lateral cycles lag the vertical by 60° and the other half lag by 240°. This is so because half the time one side of the ship is assumed to be the weather side and the other the leeward side.

As discussed in Reference 7, the BM spectra, vertical and lateral, are not exactly symmetrical. For most load levels the effect of this mean level is insignificant on structural life. Levels at and above the 90% load level are exceptions to this. The maximum whipping for these conditions combine with the OW bending moment such that the distribution of combined BM is 60% sag and 40% hog.

INSTRUMENTATION

A total of 1800 foil-type strain gages were installed on the ASEM for measuring applied strains (stresses were evaluated from these measured strains) and 28 linear potentiometers were installed for measuring deflections. Decails of the strain and deflection measurements are discussed later. The purposes of the strain gage instrumentation were:

1. To measure stress distributions throughout the hull and superstructure to verify analysis and determine stress gradients.

^{*}Marchica, N. V. and F. F. Borriello, "Fatigue Load Spectrum for the Aluminum Ship Evaluation Mode," Technical Memorandum TM 76-173-25 (Dec 1976).

- 2. To measure stresses arising from the simulation of loads.
- 3. To measure local stress concentrations for input to fatigue and crack growth analyses.

To meet these objectives the following analytical and experimental procedures were used for determining strain gage locations:

- 1. Reproduction of all strain gage locations used for the static evaluation of a rigid vinyl model (RVM) of the ASEM shown in Figure 9. (The ASEM RVM resulted from the modification of an existing RVM of a planing craft with identical hull form. The main deck and deckhouse of the RVM planing craft were replaced with a scaled version of the ASEM structure.)*
- 2. Extension of longitudinal and transverse gage locations from item 1 above to more accurately predict the longitudinal and transverse stress distributions.
- 3. Location of stress concentrations based on engineering judgment for areas of expected maximum stress.
- 4. Utilization of the NASTRAN finite element model (FEM) output to supplement items 2 and 3 above. A discussion of this model is found in the next section.

Appendix E contains details of the strain gage specifications as well as location nomenclature used to locate gages on the model.

Data recording capability was provided by a Xerox 550 computer. Signal conditioning and calibration for each strain gage channel was included in the software of the computer and separate calibration and conditioning was not required. As mentioned earlier, 600 channels were read by the computer at a given time. This meant that, to record the 1800 channels used for the static test, switching was required twice during the test. Each channel was sampled many times per second, a. 'an average was calculated and recorded. Recorded data were stored on magnetic tape for subsequent on-line or remote processing.

^{*}Rodd, James L.; Ford, Harry M.; Johnson, Robert E.; "Rigid Vinyl Model Development of Structural Modifications for the Aluminum Ship Evaluation Model (ASEM)," DTNSRDC Technical Memorandum TM 80-173-1 (Sep 1980).

FINITE ELEMENT ANALYSIS

An elaborate NASTRAN finite element model (FEM) was made of the ASEM (see Figure 10). It was composed of 6000 elements and 7500 degrees of freedom. Because of the great expense involved in running an extensive finite element model, structural symmetry was utilized wherever possible. For simplicity, the stiffeners were "smeared" into the plate elements. The loads for the FEM were applied at grid points which were located along the frames where the actual loads were applied to the ASEM. The hatch openings were not extensively broken up into small elements describing exact geometry. Three types of loading conditions were applied to the FEM of the ASEM: vertical hogging loads (Force 1), vertical sagging loads (Force 2), and lateral loads (Force 3). As might be expected, a large amount of data was produced. Throughout this report, stress values obtained from the FEM analysis supplement many of the figures showing stress plots.

Several generalized findings can be gleaned from examination of the data obtained from Force I loading (corresponding to 80 percent BM loads):

- 1. Between Bulkheads 32 and 48, the main deck exhibits moderate stresses (6 ksi tension) due to longitudinal bending.
- 2. Between Bulkheads 48 and 64, the 01 level longitudinal bending stresses reach 9.3 ksi tension.
- 3. Between Bulkheads 40 and 64, the stresses near the gunwale approach 5.6 ksi tension, and the stresses at the main deck centerline approach 5 ksi tension.
 - 4. The maximum stress at the keel was 7.5 ksi compression at Bulkhead 56.
- 5. Between Bulkheads 16 and 40, the hull above the chine exhibits high shear stresses (5.5 ksi).

ASEM DEFLECTION

Before the static tests were conducted, linear potentiometers were positioned along the length of the ship corresponding to load cell locations. As the model was vertically and laterally loaded for each test, the resulting displacements were monitored. It was important that the structure on which the potentiometers were attached be rigid relative to the model, and that the potentiometers be firmly attached. If this were not the case, the potentiometers could possibly move and cause erroneous deflection readings. Appendix D contains the deflections obtained from the four static tests on which the data analyses are based.

A ship at sea experiences a hogging (or hog) condition when it is positioned on the crest of a wave at midships, thereby causing the forward and aft ends of the ship to displace downward. A sag condition results when the ends of the ship are on the crests of two successive waves, and midships is at the trough. For the ASEM, a vertical hog condition was achieved when the hydraulic actuators near midships were extended. Since the lateral jacks were positioned on the starboard side of the model, a lateral hog condition resulted when the jacks at midships were extended thus causing midships to move to port.

Plots of the model displacements at maximum static test load (80%) for Tests 1, 3, and 4 are shown in Figures 11, 12, and 13, respectively. At the midship keel (near Bulkhead 56) the maximum hog to maximum sag displacement was approximately 1.5 in. Test 2 was the lateral loading test. As seen in Figure 14, at midships (near Bulkhead 56) the displacement from maximum lateral hog to maximum lateral sag was approximately 1 in.

HULL-DECKHOUSE INTERACTION

Normally, a ship is designed based on only the hull longitudinal structure (shell plating, decks, longitudinal bulkheads, etc.) resisting the loads created by the sea invironment. Actually, however, the deckhouse may act as an integral part of the hull in resisting these loads. Depending on the size of the deckhouse and the way it is attached to the hull, the loads or stresses in the deckhouse may be substantial. A long deckhouse of one level with no expansion joint will result in large stresses both on the upper deck and house side. As expansion joints are added to the deckhouse, the magnitude of stresses in the deckhouse will generally decrease. Stress levels in the section near midships will remain about the same. Indeed, deckhouses may be fully or partially effective in resisting bending loads. This reality is becoming more apparent to the Navy as ship classes such as FFG-7 and DD-963 with continuous aluminum deckhouses become older and experience cracking problems due to primary bending loads absorbed by the house.

In the case of the ASEM, the hull and deckhouse were fabricated separately. They were then shipped to the test facility where the deckhouse was welded to the hull. Also, two 3/16-in. thick, 4-in. wide flat bars were welded to the upper surface of the main deck at Bulkheads 32 and 92 (front and rear of the deckhouse).

These flat bars were attached to the deck by fillet welds at both the forward and aft ends (one bar on each end of the deckhouse) (see Figure 15). The attachment locations of these bars were determined by the length dimension of the deckhouse. The distance between Bulkheads 32 and 92 above the main deck was approximately 4-in. greater than the distance between the bulkheads below the main deck. Therefore, the forward-most and aft-most bulkheads that were above the main deck did not exactly line up with those below deck. Also, this type of offset was true for a number of other deckhouse bulkheads. Table 5 summarizes the bulkhead misalignment. Note that the greatest misalignment was at Bulkheads 32, 86, and 92. This was a concern mainly because the model was loaded through the bulkheads. However, as it turned out, this offset did not appear to create any local structural problems such as buckling.

The joint details between the main deck and the bulkheads interior to the deckhouse were somewhat different than those at the front and aft ends of the deckhouse (see Figure 16). The bulkhead plates were fillet welded forward and aft to the upper surface of the main deck where they landed. A 3/16-in.-thick gap was left between the main deck and bulkhead stiffeners (the stiffeners were on either the forward or aft side of the bulkhead). A 3/16-in. thick, 2-in. wide flat bar was then positioned between the stiffeners and deck. The stiffeners were welded to the flat bar and the flat bar was fillet welded to the deck at the accessible edge. Based on inspection of test results, this type of detail proved adequate during testing.

The following section contains a detailed explanation of the hull deckhouse interaction and subsequent high strains.

FASHION PLATES AND ACCESS HATCH OPENINGS

High stresses at the forward and aft ends of the deckhouse and discontinuities near midships can eventually cause fatigue problems. These areas of concern are shown in Figure 17 as A, B, and C (port and starboard). Also, high stresses at access hatch openings are of concern.

The discontinuity at Location A creates high shear forces at the forward end of the deckhouse, and acts as a stress raiser for the local deckhouse structure.

In the case of the ASEM, the integral hull-deckhouse increases the effective moment

of inertia of the hull. Stresses on the order of 15 to 20 ksi for the 80% maximum BM condition were monitored during the static (precyclic) tests. This area as well as other highly stressed areas in the deckhouse were of major concern. It was felt that the high stresses in the as-fabricated structure would eventually cause premature cracking. In April 1977, the decision was made to initiate an extensive study of the stress areas of concern by use of a rigid vinyl (PVC) model of the ASEM. Details of the results of these tests were reported informally.* Basically, a number of structural modifications were made to reduce strains in the PVC model such that similar modifications to the aluminum model would do the same. Table 6 summarizes the PVC test results for a number of stress areas of concern as well as for the eventual ASEM structural modifications. For the most part, side shell doublers and coaming doublers were used at the hatches. Port and starboard fashion plates were used at the intersection of Bulkhead 32 with the main deck, and at the intersection of Bulkhead 56 with the 01 deck. The fatigue performance of these structural modifications are covered in a report on the ASEM cyclic test results.

Most of the access hatch openings in the deckhouse sides were strain gaged to monitor any unusually high strains during the static tests. Since high strains were recorded in some instances, the possibility of premature fatigue failures during the cyclic testing existed. As mentioned earlier, the reduction of strains in the rigid vinyl model hatch opening were examined, with the result that structural modifications to the ASEM were recommended. The locations of the deckhouse side hatch openings are shown in Figure 18. A typical hatch opening is shown in Figure 19.

The decision was made to increase the thickness of the plate material immediately adjacent to the hatch coaming. A doubler plate (equal in thickness to the deckhouse side plating) was plug welded to the existing plate along the stiffeners, as well as fillet welded at the edges of the new doubler plate. The edges were located at the adjacent frame or bulkhead and at the main deck and 01 deck level. The coaming thickness was increased (doubled) by welding an additional coaming of the same thickness and width to the existing coaming. The resulting structural modification to the hatch openings are shown in Figure 20.

^{*}Rodd, James L. et al., "Rigid Vinyl Model Development of Structural Modifications for the Aluminum Ship Evaluation Model (ASEM)," reported informally as Enclosure (1) to DTNSRDC ltr 80-173-158 (17 Oct 1980).

The average stress reading associated with a hatch coaming gage was over 10 ksi; indeed, one reading was as high as 15 ksi. Static tests run after the modifications of adding a doubler plate and coaming doubler indicated lower strains at similar locations. This would certainly indicate that the problem of premature fatigue cracking would be alleviated. The behavior of this type of "fix" relative to fatigue is discussed in another report. 6

In addition to high strains (stresses) at the coamings, the plating adjacent to the coaming also had high strain readings. These areas were not extensively regaged after the doubler plate additions; however, those that were gaged showed a substantial reduction in stress. In an actual design, implementing a fix such as the one completed with the coaming would probably be necessary. However, instead of welding two pieces of coaming together to obtain a certain thickness, a single piece of the desired thickness should be used.

STRAIGHTNESS OF BULKHEAD STIFFENER FLANGES BETWEEN MAIN DECK AND 01 DECK

Since the model was loaded through its bulkheads, the straightness of the bulkhead stiffeners were of concern. Excessive stiffener warpage might have resulted in local or total buckling of the bulkheads during testing. Therefore, a survey of the degree of warpage of the stiffeners relative to vertical was conducted (Table 7). Bulkheads 32, 40, 48, and 80 had the least average warpage of the stiffener flanges, and it was all in the forward direction. Bulkheads 56, 64, 86, and 92 had the greatest average stiffener flange warpage, and here it was all in the aft direction. One stiffener flange on Bulkhead 92 was warped as much as 0.75 in. Additional information can be found in a report on stiffener and bulkhead deformation surveyed during the cyclic testing of the model.

SPECIAL CONSIDERATION FOR ASEM STATIC TESTING

With a test of this physical size and complexity, not all problems could be foreseen. In most instances, with careful thought, potential problems can be averted by modifications to the test fixture, test procedure, or model. When possible, these modifications or changes should be done in such a way as to not adversely

effect the test results. A number of "lessons learned" by the authors relative to how this information can benefit future tests of a similar nature are highlighted next.

COUPLING OF LOAD FRAMES/STRUCTURALLY REINFORCING LOAD FRAME

Originally, the test fixture was designed so that a number of load frames were longitudinally coupled together at the centerline (load frames at Bulkheads 64, 72, and 80). However, this meant that if one of the load frames became displaced fore or aft from the desired plane of loading, the remaining attached load frames would also displace. Lateral buckling of the originally designed load frame couplings caused this kind of problem. The solution was to not have the load frames coupled, and to strengthen the lower section of the load frame by welding steel plates between the edges of the flanges. Thus, the I-Beam effectively became a box beam, thereby inhibiting lateral buckling or tripping of that portion of the load frame.

REDESIGN, FABRICATION, AND FOAM REINFORCEMENT OF PARTIAL BULKHEAD 72

The "as built" frame at Bulkhead 72 was not constructed to carry the 95,000-1b load needed to insure the proper BM through the model during testing. The area between Bulkheads 64 and 80 was designated for the engine room and, therefore, this area was initially open. If the space was to remain as built, the load applied would then buckle and collapse the frame. Therefore, a redesign was required. Because of the restraints imposed by the access to the model, the design took the form of truss-type framework (Figure 21). The redesign was constrained in the sizing of members by (1) the openings built into the model to supply materials into compartments and (2) by allowing the members to carry a maximum of only 6 ksi of stress.

A frame analysis using the computer program STRESS¹⁰ was used in the design of the "framed bulkhead." A final design was determined and construction started in December 1976. Figure 21 shows the framework used in the ASEM at Bulkhead 72, both as originally built and as a redesign.

An additional problem recognized was that the floor at Frame 72 had no access to it, except for two 6-in.-diameter holes, and thus it could not be stiffened by welding on stiffeners. The floor was made of 1/8-in. plate and, unless it was stiffened, it would have buckled under the applied loads.

One solution to this problem was to use syntactic foam and fill the compartments under the innerbottom on both sides of Frame 72 (between Frames 69 1/2 and Frame 74 2/3) as shown in Figure 22. This foam was chosen for its light weight, ease of installation, and ability to sustain compressive loads. A full size wooden model was constructed to evaluate the procedure to fill the compartments with the foam and to determine the temperature produced by the foam as it cured. It was necessary to know the temperature because aluminum can become sensitized above 200°F and is then susceptible to stress corrosion cracking. Thermocouples attached to strip recorders were used to determine the curing temperature and to evaluate the filling procedure. Plexiglas was used on one side to act as a floor.

There were two tests. The first was to fill one side with the syntactic foam, and to pour the necessary resin all in one pour. The temperature given off during this test was approximately 206°F, which was unacceptable.

The second test was similar to the first except that the resin was poured in increments of 5 gallons per day. Three days were necessary to complete the procedure, and four pours were required to fill a compartment on either side of the bulkhead and port or starboard of the Center Vertical Keel (CVK). The maximum temperature was approximately 130°F. Although this temperature was acceptable, there was doubt as to whether a good bond had been made between the different pours. Also, there was a residual film of resin on the upper walls after the resin had settled to the bottom. A line of air pockets could be seen through the plexiglas floor where the different pours had settled.

Therefore, the procedure in the aluminum model was to pour two compartments (which were diagonal to each other) at a time. The resin was to be poured in the hole nearest to the keel. Thermocouples were placed in the compartments filled on the first day. The temperature recorded was below 100°F, which was an acceptable temperature.

Because the foam was poured into the center section, the resin tended to gel before it could spread outward to the outboard section. An attempt was made to fill the outboard sections by pouring resin in the outboard holes. It seems that little resin went into these confined areas and a possibility exists that the floor at Frame 72 may have been unsupported on the outboard edges. This was not a problem, however, since the unsupported depth of floor plating at the sideshell attachments was small enough to insure that no structural damage was sustained during either the static or cyclic tests.

CONCLUSIONS

The initiation, execution, and completion of all research associated with the Aluminum Ship Evaluation Model program has marked a significant milestone in ship structural research. This has been the first and only time that the Navy has had the combined resources for performing extremely large, complex, and controlled laboratory experiments on complete ship structures. Many new technologies were explored and many lessons learned. The proven capability now exists, in terms of facilities, software, hardware, and experienced personnel, to perform future tests of this nature for purposes of specific design validation efforts or advanced development. Future tests should be able to be performed using less time and resources due to the significant experience gained through these ASEM tests.

Specific detailed conclusions regarding the ability of aluminum to perform as a hull material cannot be made in a total sense without examining the results of the cyclic test. From a static standpoint, the aluminum-hull-girder (ASEM) behaved in accordance with beam theory and remained linear throughout the range of loads and stresses applied. Therefore, from this test it can be concluded that aluminum is an acceptable material for hull girders, from a quasi-static load viewpoint, when designed to maximum stress values consistent with those applied to the ASEM. Additional conclusions regarding specific geometric behavior will be left to the reader. This is done to allow the reader to use the vast amount of data presented herein to draw specific conclusions which concern his detailed problem. A summary of the major, more general conclusions follows.

LOADING METHOD

The method used in applying loads to the ASEM is unique in large scale testing. Normally, in the aircraft industry large-scale static tests are performed with distributive pads or bladder loading, and cyclic tests are performed with "wiffle-tree" arrangements. These methods were not feasible for the ASEM tests and, consequently, the load-frame or load-ring arrangement was developed. In spite of some initial problems, this loading method proved very successful. Lateral instability of loading-frame lower-transverse members was easily corrected by making the I-beams into closed cells and this problem could have been avoided if all out-of-plane deflections had initially been considered. Fore-and-aft restraint of the load frames relative to the model was required to maintain their alignment and stability. This became even more apparent the longer the testing progressed, due to rubber-pad aging and creep. Tying the frames to each other proved unsuccessful; however, attaching small local restraints to the hull allowing them to provide unattached stops to the load frames proved very successful. The method of loading through rubber pads into the bulkheads worked well.

COMPUTER CONTROLS AND SAFEGUARDS

For the most part, these sytems also worked well. Initial problems in debugging a new system were technically overcome. Desired loads were achieved within a few percent. Computerized data acquisition and analysis performed well, although long term stability and system noise did present problems. The development of more sophisticated software and hardware as the test program continued, ssentially resolved all earlier problems.

DECKHOUSE BEHAVIOR

A long continuous deckhouse, like the one on the ASEM, is very effective in absorbing primary hull-girder bending loads. This can be beneficial in that it reduces primary hull stresses; however, significant primary stresses are then absorbed by the house. This in itself is not necessarily a problem if the deckhouse is properly designed to withstand those stresses. The ASEM deckhouse, on the other hand, was not properly designed to withstand the magnitude of primary stress that it eventually experienced.

The deckhouse was designed using conventional Navy practice, which, up to the time of the ASEM design, had proven acceptable. At that time, little or no experience existed with long, continuous, integral deckhouses. Structural discontinuities, terminations, transitions, and conventional structural details as originally designed in the ASEM deckhouse proved inadequate. Smaller scale modeling and analysis resulted in structural changes such as fashion plates, inserts, and extended coamings which did significantly reduce high stresses when applied to the ASEM. Many of these changes would not be considered "conventional" Navy practice.

ANALYTICAL AND SMALL MODELING STRAIN PREDICTIONS

A comparison between measured strains on the ASEM, the RVM, and predicted values from the finite element model shows generally excellent agreement. In an overall sense, the behavior of the integral deckhouse can be properly predicted using analytical and small modeling techniques. For local detail stresses at discontinuities and notches, a parallel conclusion cannot be made. The element sizes used for the NASTRAN model and the gage sizes used on the RVM preclude any detail stress comparison. The RVM did, however, more accurately predict stresses in areas of high gradients than did the NASTRAN model used in our analysis.

The extensive amount of data presented in this report can be used for analyzing a large number of related problems. For example, stress gradients around openings and ways of reducing them can be examined utilizing ASEM data. Load/stress sensitivities for many details and local geometries can be examined. Combined stress effects of vertical and lateral bending can also be analyzed. The reader must be careful, however, when using any large-scale test data, to ensure that any local effects due to testing, or anomalies due to load simulation have been taken into account. In the case of the ASEM static tests, these cautions would apply mostly to bulkhead stresses.

ACKNOWLEDGMENTS

The authors thank the numerous individuals and organizations that were involved with the ASEM project throughout the years. We would especially like to thank DTNSRDC's Code 1706 for their assistance, and the many test mechanics and Cooperative Education students who have worked on and contributed to this project.

REFERENCES

- 1. Pohler, C.H. et al., "A Technology Base for Aluminum Ship Structures," Naval Engineers Journal, Vol. 91, No. 5, pp. 33-43 (1979).
- 2. Beach, Jeffrey E. and Robert E. Johnson, "A Guide for the Use of Aluminum Alloys in Naval Ship, Design and Construction, Vol. I. Material Characteristics, Metallurgy and Properties," DTNSRDC Report 83/057 (in preparation).
- 3. Beach, Jeffrey E., Natale S. Nappi, Sr., and Robert A. Sielski, "A Guide for the Use of Aluminum Alloys in Naval Ship, Design and Construction, Vol. II. Design for Shipbuilding," DTNSRDC Report 83/058 (in preparation).
- 4. Beach, Jeffrey E., William A. Palko, and Thomas W. Montemarano, "A Guide for the Use of Aluminum Alloys in Naval Ship Design and Construction, Vol. III. Fabrication," DTNSRDC Report 83/059 (in preparation).
- 5. Beach, Jeffrey E., Robert E. Johnson, and William E. Lukens, "A Guide for the Use of Aluminum Alloys in Naval Ship Design and Construction, Vol. IV. Maintenance and Repair," DTNSRDC Report 83/060 (in preparation).
- 6. Johnson, R.E. et al., "Aluminum Ship Evaluation Model Cyclic Test Results," (in preparation).
- 7. Birmingham, J.T. et al., "Development of a Fatigue Lifetime Load Spectrum for a Large-Scale Aluminum Ship Model," ASTM STP 671, pp. 121-143 (1979).
- 8. Vasta, J., "Lessons Learned from Full-Scale Ship Structural Tests," Society of Naval Architects and Marine Engineers (SNAME) Trans. (1958).
- 9. Sikora, J.P. and A.D. Swanek, "A Distortion Survey of an Aluminum Ship Model," Proceedings of the 1982 Joint Conference on Experimental Mechanics, Hawaii, pp. 483-487 (1982).
- 10. Massachussetts Institute of Technology, Department of Civil Engineering, "STRESS: A User's Manual, A Problem-Oriented Computer Language for Structural Engineering," the MIT Press (1964).

Figure 1 - Profile View of Destroyer Escort Design

Cieure 2 - Fle Muminum Ship Fvaluation Todel

Figure 3 - Typical Load Frame Configuration

Figure 4 - Load Pad Configuration

Figure 5 - Lifetime Midship Vertical Wave Bending Moment for a 300-Foot Aluminum Ship

Figure 6 - Lifetime Midship Vertical Whipping Bending Moment for a 300-Foot Aluminum Ship

Figure 7 - Lifetime Midship Vertical Wave and Whipping Bending Moment for a 300-Foot Aluminum Ship

0 6.67 13.33 20 26.67 33.33 40 46.6753.33 60 65 70 75 83.33

Figure 8 - 100 Percent Sagging Test Loads

29

Figure 10 - SYSTRAN Finite Dlement Model of One-Half of ASEM

Star Figure 11 - Keel Vertical Displacement Relative to Stillwater at 80 Percent to Test on 9-22-77, with Vertical Loads

Figure 12 - Reel Vertical Displacement Relative to Stillwater at 80 Percent for Static Test on 10-26-77, Combined 240 Degrees

Figure 13 - Reel Vertical Displacement Relative to Stillwater at 80 15 reent for Static Fest on 10-14-77, Combined 60 Degrees

Figure 14 - Gunwale Lateral Displacement Relative to Stillwater at 40 Percent and 80 Percent for Static Test on 10-28-77, with Lateral Loads

Figure 15 - Bulkhead Misalignment at Intersection of Bulkhead 32 and Main Deck

Figure 16 - Bulkhead Misalignment at Intersection of Main Deck and Bulkheads Interior to Deckhouse

Figure 17 - Areas of High Stresses at Deckhouse Discontinuities

*HATCH IN BHD 92 NOT SHOWN

Figure 18 - Location of Access Batch Openings in Beckleuse

Figure 19 - Typical Deckhouse Side Access Hatch Opening

Figure 20 - Typical Deckhouse Side Access Hatch Opening after Structural Modification

Figure 21 - Section Showing Frame 72 As-Built and after Structural Modifications

NOTE: RESERVOIRS (I.E. A GALLON CAN) SHOULD BE USED OVER OPENINGS A., A., B. & B., TO INSURE MAXIMUM INFILTRATION. CONTINUE INFILTRATING UNTIL THE RESERVOIRS AT B. & B., ARE FULL. AS THE FINAL STEP. REMOVE APPROXIMATELY 3.4's OF THE SYNTACTIC FOAM FROM EACH OF THE RESERVOIRS.
WOODEN MODEL SIMILAR

Figure 22 - Location of Syntactic Foam Pouring Holes at Partial Bulkhead 72

TABLE 1 - LOAD CELL CHANNELS AND LOCATIONS

Channel	Load	i Cell (Frame	No.)	n	Notes
Number	Stbd		Keel		
		East	<u>~</u>	West	
5	108		-	}	1
6			108		1
7	98				1
8		98	-		}
9	_	 —		98	i
10	92				ł
11			92		
12	86		-		Fixed*
13			86		Fixed*
14	80		-		Ì
15	-		80	[ļ
16	72				1
1.7			7.2	-	1
13	64		_	-	
19		64	-		
20] —	1 —	64	, }
21	56	-			
22		56			}
23) —		56	i
24	48) —	-		
25	-		48		
26	40		-		
27			40	_	
28	24		-		Fixed*
29	}	24	1 -	-	Fixed*
30	-	-	-	24	Fixed*
31	16	\	-		(
32		16	-		1
33	-			16]
34	8	-	-		
35	-		8		
36					8-Surge**

^{*}A nonmovable location.

^{**}Monitors fore and aft.

TABLE 2 - ASEM STATIC TESTS AND ASSOCIATED DATA TAPES

Date	Loading Co	ond it ion	Max Load Achieved	Comments
	Туре	Direction	During Test (% of P _{SEX})	
3-24-77	Vert	Sag	20	First static test
3-25-77	Vert	Sag	80	First major test, with people, stopped at 60. Sag
6-21-77	Vert	Hog	30	First Hom test, stopped at 30° Hog
6-22-77	Vert	Hog	70	Stopped at 70* Hog
7-29-77	Vert	Hog	80	Stopped at 80 Hog
8-09-77	Vert	Sag	80	Complete
8-17-77	Vert	Sag-Hog	80-80	First Sag-Hog. Complete, but missing 50, 60, 70* Sag
9-22-77	Vert	Sag-Hog	80-80	Complete
9-22-77	Vert (Sorted)	Swi-Hoy	₹0+80	Complete, similar to previous tape for same date
9-23-77	Lat	Sag	40	Complete
9-26-77	Lat	Sag	ð0	Complete
9-27-77	Lat	Hog	80	Complete
10-03-77	Lat	Sag-Hog	80~80	Complete
10-07-77	Combined 60°	Sag-Hog	80-70	Stopped at 70f Hog
10-14-77	Combined 60°	Sag-Hog	80-80	Complete
10-17-77	Combined 240°	Sag-Hog	80-80	Complete
10-26-77	Combined 240°	Sag-Hog	80-80	Complete
10-28-77	Lat	Hog-Sag	80-80	Complete
2-22-78	Combined 240°	Sag-Hog		Initial Abort
3-01-78	Combined 240°	Sag-Hog	70 Sag	240 channels operative
4-12-78	Combined 240°	Sag-Hog	30 Hog	Software problem, overload at Bulkhead 16
6-09-78	Combined 240°	Sag-Hog	40 Hog	Software problem
6-27-78	Combined 240°	Sag-llog	80-80	Complete test

TABLE 3 - STATIC TESTS SELECTED FOR COMPREHENSIVE DATA ANALYSIS

Test Number*	Date of Test	Time of Day	Type of Test
1	9-22-77	1130 - 1700	Vertical loads only
2	10-28-77	0830 - 1100	Lateral loads only
3	10-14-77	0930 - 1400	Vert. and Lat. loads, 60° Lag
4	10-26-77	0900 - 1200	Vert. and Lat. loads, 240° Lag

^{*}To be referred to throughout report.

TABLE 4 - A 20-YEAR SPECTRUM OF VERTICAL ORDINARY WAVE (OW) PLUS WHIPPING BENDING MOMENT FOR THE TOTAL (F-2)

BM · 10 ³ (ft-long-tons)	Cycles Equal to or Passeeding, in
80	1
75	7
74	1.0
70	4.5
65	3.6 5 10
61	$2.0 \cdot 10^3$
58	5.5×10^3
53	5.0 × 10 ⁴
50	8.3 × 10 ⁴
45	1.6 · 10 ⁵
40	2.9 < 10 ⁵
35	5.0 × 10
30	8.5×10^5
25	1.5 × 10 ⁶
20	2.6×10^{6}
15	4.9×10^{6}
10	1.0×10^{7}
5	2.3×10^{7}
3.75	2.48×10^{7}

TABLE 5 - MISALIGNMENT OF DECKHOUSE BULKHEADS RELATIVE TO HULL BULKHEADS AT MAIN DECK

	Misalignment (in.)									
Bulkhead Location	F	ort.	Cent	erline	Starboard					
20022311	Offset*	Direction**	Offset	Direction	Offset	Direction				
32	0.5	Fwd	2.1	Fwd	1.2	Fwd				
40	1.2	Fwd	1.62	Fwd	0.65	Fwd				
48	1.0	Fwd	1.57	Fwd	0.38	Fwd				
56	0.9	Fwd	0.75	Fwd	0.21	Fwd				
64	0.86	Fwd	0.15	Fwd	0.1	Fwd				
80	0.0		0.23	Aft	0.3	Fwd				
86	1.2	Aft	2.14	2.14 Aft		Aft				
92	1.0	Aft	1.66	1.66 Aft		Aft				

*Port and starboard offset readings taken near respective deckhouse side.

^{**}Direction is of deckhouse bulkhead relative to hull bulkhead.

TABLE 6 - SUMMARY OF PVC MODEL MODIFICATIONS AND SUBSEQUENT ASEM MODIFICATIONS*

High Stress	Average (k	Stress*** si)	Type of
Area (Frame Location)**	Prior to Modification (PVC/ASEM)	After Modification (PVC/ASEM)	Modification
32 port deckhouse corner	12/8	5/ t)	Fashion plate, close-off hatch, side shell doubler
32 stbd deckhouse corner	13/16	7/5	Fa: 'On plate sic, shell doubler
38 port hatch	14/15	9/5	Side shell doubler, coaming doubler
38 stbd hatch	12/	10/	Side shell doubler, coaming doubler
Port - behind 56/01 deck	8/7	6/6	Fashion plate
Stbd - behind 56/01 deck	11/13	8/6	Fashion plate
62 port hatch	12/12	/4	Side shell doubler, coaming doubler
62 stbd hatch	16/3	9/4	Side shell doubler, coaming doubler
79 stbd hatch	15/14	8/4	Side shell doubler, coaming doubler, cross-member
87 stbd hatch	4/14	5/5	Side shell doubler, coaming doubler
92 stbd deckhouse corner	5/6		Side shell doubler

*Rodd, James L. et al., "Rigid Vinyl Model Development of Structural Modification for the Aluminum Ship Evaluation Model (ASEM)," DTNSRDC Technical Memo 80-173-1 (Sep 1980).

**Side shell doublers and coaming doublers were also used at 42 port hatch, 47 port and stbd hatch, 76 stbd hatch, 87 port hatch, 92 centerline hatch, and 92 port deckhouse corner.

***PVC stresses are scaled stresses, and ASEM stresses are determined from test strain data. Both are sag condition, compressive stresses.

TABLE 7 - SUMMARY OF BULKHEAD STIFFENER FLANGE WARPAGE (BETWEEN 01 DECK AND MAIN DECK)

Bulkhead	Average Warpage (in.)	Average Direction of Warpage	Maximum Warpage (in.)
32	0.02	Forward	0.05
40	0.05	Forward	0.125(A)
48	0.06	Forward	0.125
56	0.08	Aft	0.125
64	0.04	Aft	0.125
80	0.04	Forward	0.075
86	0.07	Aft	0.15
92	0.14	Aft	0.75

APPENDIX A

CHRONOLOGICAL FOLD-OUT OF ASEM MAJOR EVENTS THROUGH STATIC TEST COMPLETION

This appendix contains a chronological summary of the major events concerning the Large Scale Validation Program with the main emphasis on those items which affected the ASEM (see Figure A.1). The chronology begins with the preparation of the preliminary design by NAVSEA personnel in late 1972; then the construction period and delivery of the ASEM in 1974; the load frame and gage installation spanning from 1975 to 1977; the first static test in March 1977; and, (finally) static test completion in late 1977. Preparations for the cyclic tests were begun in early 1978 (a similar chronological summary is found in the report which includes the results of the cyclic tests run from 1978 to 1981).

SEPT. 19, 77
COMPLETION OF SEPT. 20, 77
STRUCTURAL ATTEMPT AT SEPT. MODIFICATIONS 80% NOG SAG 80% SAG 1EST (SOFTWARE PROBLEMS)

Figure A.1 - ASEM Static Tests Major Events

7

APPENDIX B

STRAIN DATA OF FOUR ANALYZED STATIC TESTS

GENERAL

During the static tests conducted on the ASEM, data were stored on magnetic tape for future computer data analysis. After preliminary analysis of the data, four tests with the "best behaved" data were chosen for extensive statistical analyses. Tables B.1 through B.4 summarize the results of these analyses. Throughout the analyses, the assumption is made that a linear relationship exists between load and resultant strain. To aid in interpreting the tables, an explanation of each table is given with emphasis on the explanation of column headings.

Prior to static testing, a system was devised which assigned an alphanumeric character to gages based on the gage location on the model.* In order to better understand gage locations described by the alphanumeric character used in Tables B.1 through B.4, the relevant portions of an informal report were extracted and included in Appendix E for referral.

The first three columns of Tables B.1 through B.4 are all exactly the same. The first column, titled GAGE NUMBER, is a number 1 through 1800 referring to a unique channel and, therefore, to a unique strain gage. As mentioned previously, GAGE NAME refers to the alphanumeric character used to describe the strain gage location. The third column, POSITION, is comprised of three values. The first value is the number associated with one of ten strain bridge completion panels located beneath the model on the test bed floor. The second value is the particular bank (blank, A or B) in each panel. The third value is the strain channel associated with each panel and each bank. This number varies from 1 to 60. Thus, for any one specific strain channel, the GAGE NUMBER, GAGE NAME, and POSITION are individually unique but all three represent one particular strain channel.

^{*}Johnson, R.E., "The Aluminum Ship Evaluation Model (ASEM) Instrumentation," reported informally as Enclosure (1) to DTNSRDC 1tr 80-173-158 (17 Oct 1980).

TABLE B.1 - STATISTICAL RESULTS FROM ASEM STATIC TESTS WITH INDIVIDUAL VERTICAL AND LATERAL LOADING

The statistical analysis of the strain gage data obtained from the test on 22 September 1977 is presented under the portion of Table B.1 entitled VERTICAL LOADING ONLY. The data analysis of the test on 28 October 1977 is under LATERAL LOADING ONLY. As they imply, only vertical loads were applied to the model on 22 September and only lateral loads were applied on 28 October.

The SENSITIVITY/100% is the number obtained from performing linear regression analyses on the data and extrapolating the strain at 100% maximum BM. In this case, the load and temperature are the two independent variables in the analyses. Thus, multiplying this number by a fraction representing a particular load level will give the strain for that particular load level. In actuality, since no load greater than 80% maximum BM was applied to the model during the static tests, the factor will be no greater than 0.8.

The DRIFT is an indication of the variation in the data from the theoretical straight line plot due to temperature effects over time. The results of the linear multiple regression analysis used in determining the DRIFT is in micro inches per hour of apparent strain due to thermal effects on the lead wire resistance.

In this study, the ERROR OF ESTIMATE (EOE) is the standard deviation of the variation between measured data and predicted values. In general, the smaller this number, the better behaved are the data. However, unless the change in strain resulting from change in applied load is of significant magnitude (>50 $\mu\epsilon$), the EOE is not a good measure of data validity.

The CORRELATION COEFFICIENT is the quantitative measure of association between the strain and load variables, or how well a curve (straight line in this case) fits the test data. This value ranges from 0 to 1. As it approaches 1, the correlation between the data and the theoretical straight line will improve. Because of the definition of the correlation coefficient, a saturated (bad) channel will have a data value of zero (thus fitting a horizontal straight line perfectly). In this case, the correlation coefficient will have a meaningless value of 1.0.

TABLE B.2 - STATISTICAL RESULTS FROM ASEM STATIC TESTS WITH COMBINED VERTICAL AND LATERAL LOADING

Whereas Table B.1 presented the results of the analysis of the data from the vertical-loads-only test and the lateral-loads-only test, Table B.2 presents the data analysis of the combined vertical and lateral loading test with a 60° phase lag and the combined loading test with a 240° phase lag. The ERROR OF ESTIMATE and CORRELATION COEFFICIENT are determined in the same manner as discussed previously. However, for the combined loading tests, the SENSITIVITY/100% values are obtained for the two independent variables, VERTICAL loads, and LATERAL loads.

TABLE B.3 - STRAIN SENSITIVITIES FROM STATISTICAL ANALYSIS OF ASEM STATIC TEST DATA

This table is a compilation of the "best" data selected from Tables B.1 and B.2. The first three columns are the same as in the previous two tables. The fourth column, ASSUMED CAL identifies whether the calibration (cal) value recorded during testing was used in the analysis, or whether an assumed value was used. The strain computations are based on calibration values derived from the statistical evaluation of nine separate values. The assumed calibration value (indicated by a YES) was the average of all of the valid calibration values. For the data analyses, this was -536.9 counts per 1000µE.

The criteria of "best" data is based on the lowest error of estimate. For VERTICAL LOADING ONLY the VERTICAL SENSITIVITY, ESTIMATE OF ERROR, and CORRELATION COEFFICIENT were selected from Tests 1, 3, and 4 (see Table B.4).

TABLE B.4 - TEST IDENTIFICATION USED IN TABLE B.3

Test	Type Loading	Date
1	Vertical	9-22-77
2	Latera1	10-28-77
3	Combined at 60° Lag	10-14-77
4	Combined at 240° Lag	10-26-77

For LATERAL LOADING ONLY the LATERAL SENSITIVITY and associated ERROR OF ESTIMATE and CORRELATION COEFFICIENT were selected from Tests 2, 3, or 4. The majority of the data in Table B.3 came from Tests 1 and 2. Apparently the temperature effects for these two tests were minimized.

TABLE B.5 - COMPARISON OF ASEM STATISTICAL ANALYSIS RESULTS AND STATIC TEST DATA FROM COMBINED LOADING AT 60 DEGREE LAG

This table compares the theoretical data obtained from the data analysis with the actual test data for the test of combined loading with a 60° lag. The first four columns are the same as in the previous tables. The fifth column is the maximum positive measured value of strain and the sixth column is the vertical and lateral loads at which the maximum positive measured strain occurred. The seventh column, PREDICTED STRAIN, is the strain value which would have been predicted using the moment condition of the previous column. This strain value is determined by first dividing the two numbers in the previous column associated with vertical and lateral moment by 100; then multiplying by each appropriate sensitivity from Table B.3 and finally summing the two values.

The last three columns are the MAXIMUM PREDICTED STRAIN, the MOMENT condition at which it occurs and the actual MEASURED STRAIN at that MOMENT condition. When the MAXIMUM PREDICTED STRAIN and the MEASURED STRAIN are determined to be the same, the characters SAME are used to prevent repetition.

TABLE B.6 - COMPARISON OF ASEM STATISTICAL ANALYSIS RESULTS AND STATIC TEST DATA FROM COMBINED LOADING AT 240 DEGREE LAG

This table is similar to Table B.5 except that the comparison of the theoretical and actual data is for the test for combined loading with a 240° phase shift in the lateral and vertical loads.

TABLE B.1 - STATISTICAL RESULTS FROM ASEM STATIC TESTS WITH INDIVIDUAL VERTICAL AND LATERAL LOADING

				VERTICAL	LOADING ON	ILY	LATERAL LOADING ONLY			
GAGE Number	GAGE	POSITION	SENSITIVI Vertical	TY/100% DRJFT	ERROR OF Estimate	CORRELATION COEFFICIENT	SENSITI: DRIFT	LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1 2 3	8 & C O MMP 8 & P 4 MMP 8 & P 7 MMP	9 · · 1 9 · · 2 9 · · 3	6 6 5 7 - 6	1 1 7 9 0	7 13 38	9470 8344 .2464	· 6 • 6	· 2 37 11	6 2 2 2 5	5645 5995 2030
4 5 6	BBCOMFP BBP2MFP BBS4MFP	9 - · 4 9 - · 5 9 - · 6	0 - 5 6 7 3	0 13 2	<i>o</i> 5 15	1.0000 9929 9023	- 5 1 10 - 4 4	90 44 15	2 6 5 8 2	7454 9817 0603
, 4	8857MMP 8852MFP 86CQHHRH	9 - · 7 9 - · 8 9 - · 9	1 4 - 5 0 - 2 9	14 22 110	2 4 121	9940 9975 8079	9 1 & 0	- 1 4 - 4 2 0	1 4 6	9571 9705 1 0000
10	BSCOMMRO BSCOMMRV BSP1[]RV	9 10 9 11 9 12	-361 54	23 17	26 11	9908 8629 2132	1 6 9 0	13 · 6	2 2 0	989C 848 <i>2</i> 1149
13 14 15	88P1:1RD 88P1:1RH 88PSFFRV	9 13 9 14 9 15	257 - 21 87	24 23	15 4 4	9881 9944 9921	17 20	- 77 - 12 186	3 4 3	9941 8977 9996
16	88P5FFRD 88P5FFRH 885111RH	9 16 9 17 9 18	157 - 155 - 84	24 6 12	5 4 6	9956 9985 9934	22 - 15	80 -90 -10	3	9973 9739 8276
19 20 21	88511180 885111RV 8855FFRH	9 19 9 20 9 21	0 59	0 19 16	0 13 7	1 0000 8464 9952	8	0 24 97	e 4	9 0000 9720 9806
: 2 : 3 2 4	8855FFRD 8855FFRV 88CDMMS	9 22 9 23 9 24	206 -7 -272	25 15 18	8 6 3 6	6355 9903 9993	28 20	-141	28 12 4	8279 9964 893:
25 26 27	BBP4MMS BBP7MMS BBCOMFS	9 25 9 26 9 27	- 103	0 14 3	0 3 3	1 0000 9990 8058	, c 1 4 7	6 7	c 4	9313 9313
2 F 2 9 3 0	88P2MFS 8854MMS 8857MMS	928 929 930	9 - 234 0	14	5 3 c	9644 9996	18	- 14 - 37	4 3 c	8696 9759
3 ; 3 2 3 3	8852MFS M9COS M9P11P	9 3 1 9 3 2 9 3 3	- 10 - 31 40	13 14 14	6	9706 9991 9783	13 12 13	4 - 9 - 10	2 3 6	9806 8319 6763
34 35 36	M9511F M11COS M11S11F	9 34 9 35 9 36	40	17	2 0 6	5920 1 0000	8 0	9 0	3 0	9408 1 0000 9701
37 38 39	M13005 M13P12P M13S12P	9 · · 37 9 · · 38 9 · · 39	- 62 O - 19	9	4 0 3	9943 1 0000	4	· 3 0 27	4 0	2890 1 0000 9768
40 41 42	M15COS M15S13P M17COS	9 40	-91 -80 -104	14	4 5 3	9981 9960 9987	1 6 2 C	0 17	•	9 2 6 3 9 7 7 4 8 0 6 9
43 44 45	M17P13P M17S13P M19COS	9 · · 43 9 · · 44 9 · · 45	- 38 - 33 - 141	15 15 12	4 4 2	9947 9937 9997	8 13	- 32 42 - 6	6 3 3	9055 9920 8157
4 6 4 7 4 8	M:95:3P M23COS M23S13 9P	9 46 9 47 9 48	- 25 - 141 - 188	15	3 2 3	9939 9997	19 15	8 1 4 10 6	12 5	9682 9004 9968
49 50 51	M25P13P M25S13P M27COS	9 49 9 50 9 5!	- 179 - 175 - 125	13 10 15	3 2 21	9994 9997 9614	10 7 - 15	- 123 178 46	3 2 72	7985 9995 1023
5 2 5 3 5 4	M27514P M29COS M29P14P	9 52 9 53 9 54	· 199	0 0	0 0	9935	1 0	173	18	9770 1 0000 1 0000
55 \$6 \$7	M295+4P M31CD5 M31S14P	9 5 5 9 5 6 9 5 7	· 237 · 322 · 347	9 21 15	3 2 2	9996 9999 9999	12 23	1## :3 212	3 \$	9994 9312 9998
54 59 60	H24.1S20P(C) F954P(C) H36P18.S(D)	9 5 8 9 5 9 9 60	-214	12	2 2 1	9953 9959 9998	11 12	119	2 2 2	9995 9991 8140
6 r 6 2 6 3	8 7 6 C O MMP 8 1 6 C D MMS 8 1 6 P 4 MMP	9-a- 1 9-a- 2 9-a- 3	178 - 272 189	26	1 ; 33	7896 9780 9784	- 3 16 - 2	· 12 172 42	8 257 15	6318 2201 7843
64 65 66	B 1 & P 4 MMS B 1 & P 8 PMP B 1 & P 8 MMS	9 · Δ · 4 9 · Δ · 5 9 · Δ · 6	8 202 - 21	4 7	10 31 26	2641 8420 2343	0 - 36 - 16	0 68 73	0 40	1 0000 4469 8313
67 68 69	B16COMPP B16COMPS B16P3MPP	9-A- 7 9-A- 8 9-A- 9	86 103 - 15	15	13 # 42	9274 9708 0870	å 16	2 . 6 8 3	# # 37	5544 9073 5946
70 71 72	B16P3MFS B16CDF1P B36CDF1S	9-A-10 9-A-11 9-A-12	245 109 3	6 6 2	31 12 5	9652 9654 2038	4 7 0	17	22	3366 7552 4893
73 74 75	B16P2F1P B16P2F1S B16S4MMP	9-A-13 9-A-14 9-A-15	129 - 22 143	8 20 8	11 10 16	9771 1648 9624	13	18 4 -18	10	769 1 5525 5504

TABLE B.1 (Continued)

				VERTICAL	LDADING ON	1 L Y	LATERAL LOADING ONLY			
GAGE Number	GAGE Name	POS1110%	SENSITIVI VERTICAL	TY/100% DR1FT	ERROP OF	CORRELATION COEFFICIENT	SENSIT! V DRIFT	ITY/100%	ESTIMATE	CORRECATION COEFFICIENT
76 77 78	81654MMS 81658MMP 81658MMS	9 - A - 1 6 9 - A - 1 7 9 - 4 - 1 8	- 154 154 9	1 6 4 : 7	13 16 23	9902 9728 6656	- 1 1 - 5	· 18 · 47 · 5 1	5 1 1 1 3	755C 9:11 8599
79 80 81	81653MFP 81653MF5 81652F1P	9 - A - 19 9 - A - 20 9 - A - 21	· 6 2 1 3 1 5 9	· 3 · 3 1 3	7 40 17	264 1 9307 9814	0 - 2 1 8	0 -38 -12	· 9 1 4	. 0000 6~.7 4289
8 2 8 3 8 4	8:652F15 8:652FHRH 8:650HHRD	9 - A - 22 9 - A - 23 9 - A - 24	· 114 · 25 · 70	16	· 5 2 3 2 5	9770 7165 8781	10 16 14	-33 -16	20 6 4	2 8 0 5 8 5 5 5 9 6 3 3
8 5 8 6 8 7	#16COMHRY #16P311RV #16P311RD	9 - A - 25 9 - A - 26 9 - A - 27	9 127 147	5 1 4 1 5	1 2 1 2 7	2641 5704 9911	1 5 1 8	23 -10	c 5 6	1 0000 5656 7944
8 8 8 9 9 0	816P311RH 816P7 5FFRV 816P7 5FFRD	9 - A - 28 9 - A - 29 9 - A - 30	- 2 1 5 8 5 9 - 5	15 15 · 3	1 1 4 8 7	9953 9922 2642	4	3	20 19 C	7055 8839 1 0000
9 ! 9 2 9 3	816P7 5FFRH 816S311RH 816S311RC	9 - A - 3 1 9 - A - 3 2 9 - A - 3 3	· 390 · 188 - 721	15	10	9988 9954 9954	25 6 14	44 - 42 45	17	7639 7068 9261
94 95 96	8165311RV 81657 5FFRH 81657 5FFRD	9 - 4 - 3 4 9 - 4 - 3 5 9 - 4 - 3 6	2 6 404	15 - 3 9	1 2 9 3 4	9912 2641 9824	15 3 33	· t - 13 - 125	20 37	5083 0383 7762
9 7 9 8 2 9	81657 3FFRV F9CON4 F13CON4	9 · A · 37 9 · A · 38 9 · A · 39	653 · 4 · · 30	5 7 0	5 0 1 C 3	986A 9361 9930	- 2 6 6	· 133	1 7 4	980c 5592 6130
100	1:760P :21 300P F2500NA	9 - A - A O 9 - A - A ' 9 - A - A Z	218 176 -42	15	; 6 6 3	9993 9955 8762	17 2c · 3	1 • 4 • 2	4 7 1 [‡]	9258 8195 0746
103 104 105	F 29 C D N 4 19 C C P 11 3 C C P	9 - 4 - 4 3 9 - 4 - 4 4 9 - 4 - 4 5	· 2 4 3 •	1 9 2 1 1	8 5 4	9784 2643 9410	17 0 15	8 C · 10	4 C 4	9602 1 0000 8743
106	F:7CONA FZ: 3CONA M9COP	9 - A - A 6 9 - A - A 7 9 - A - A 5	38 32	1 6 2 2 5	4 33 8	9909 4920 9563	11 13 13	0 - 1 5 - 1	3 1 6 5	8361 2768 8929
109	H11COP H13COP H15COP	9 - 2 - 4 + 9 - 2 - 5 0 9 - 2 - 5 1	76 · 7	17 3 12	28 9 41	6379 2642 3369	13 0 · · 7	2 0 4	c z	7219 1 0000 3262
112 113 114	H 17COP H 19COP H 23COP	9 - 4 - 5 2 9 - 4 - 5 3 9 - 4 - 5 4	10 190	1 8 5 1 4	5 & 1 3 5	4929 2641 9981	5 6 0 1 6	33	1 1 8 0 5	2687 1 0000 8799
115 116 117	#2552P #2750P # 29 50P	9 - 2 - 5 5 9 - 4 - 5 6 9 - 4 - 5 7	247 371 449	14 19 13	4 4 3	9994 9937 9995	12 24 12	- 4 2	3 5 2	9390 9317 9535
115	M3100F H4700F H1255 5 D	9 - A - 5 E 9 - A - 5 9 9 - A - 6 C	5 3 4 6 9 6 · 3	1 2 1 1 1 0	6 5 4	9997 9999 9687	1 4 8	- 3 - 2 - 1	3 3 3	795& 9319 7668
121	824CDMMP 824CDMMS 82454MMP	9 - 8 · · · · · · · · · · · · · · · · · ·	303	7 1 9 8	8 5 1 1 0	9828 9526 8773	- 14 140 11	· 2 · 5 1 - 1 6	12 288 7	592° 1016 5759
124 125 126	8 2 4 F 4 MMS 8 2 4 5 TMMP 8 2 4 5 TMMS	9 - B - 4 9 - P - 5 9 - B - 6	0 43 -43	1 1	3	1 .0000 9783 7984	° 3 - 6	7 8.8	12	10000 7270 9563
127 128 128	824:0MFP 824:0MFS 82454MFP	9 · B · 7 9 · B · 8 9 · B · 9	4.8 - 1.2 - 4	1 1 1 5 1 8	6 5 6	923! 9848 9697	13 -8 22	- 3 - 9 1 8	3 8 4	9007 6775 9019
130 13 137	8/4P5MP5 8/4C0F1P 8/4C0F15	9 - B - 10 9 - B - 11 9 - 8 - 12	149 50 1	1 1 9 0	2 2 8 1	9339 9360 2459	5 8 0	45 8 0	: 3 &	8678 8983 2528
: 37 : J4 : 35	8745JF[P 824P3F15 824P4MMP	9 · 8 · 1 3 9 · 8 · 1 4 9 · 8 · 15	601 48 82	· 55 20 11	2 5 9 8 9	6465 9871 9504	14 16 2	- 18 27 19	4 6 5	8399 9626 8664
136 - 27 + 38	87454MMS 82487MMP 82457MMS	9 - 8 - 1 6 9 - 8 - 1 7 9 - 3 - 1 8	· 171 99 - 44	18 5 13	6 4 1 6	9982 9952 8963	20 `4 •	-52 3 -51	5 5 9	955 I 1945 9269
139	824P5MFP 82454MFS 824P3F (P	9 - 8 - 1 y 9 - 8 - 2 0 9 - 8 - 2 1	C 64 88	0 1 2 1 2	0 15 12	1 000 <i>0</i> 8181 9334	° 3	· 11	10	1 0000 2701 9384
142	87453FIS 82450HHRH 87413HHRD	9 - B - 7 2 9 - B - 23 9 - B - 24	- 4.2 - 20 1 - 90	1 6 1 5 1 8	9 1 6 9	9725 9899 9898	10	- 15 31 28	6 8 8	6056 9181 8844
1 4 5 1 4 6 1 4 7	E / 4 C O H H R V B 2 4 P 4 1 1 R H B 2 4 P 4 1 1 R D	9 - 8 - 25 9 - 8 - 26 9 - 8 - 27	0 - 363 - 116	0 14 14	0 1 6 8	1 0000 9964 9929	0 6 8	0 8 8 4 7	, ;	1 0000 9714 9515
148 149 150	824P4:1RV 824P9FFRV 824P9FFRD	9 - 8 - 28 9 - 8 - 29 9 - 8 - 30	408	13	2 6 0	9807 9887 1 0000	9 5 0	12 142 0	19	8403 9628 10000

TABLE B.1 (Continued)

				VERTICAL	LOADING ON	16.4		LATERAL	LOADING ON	16.4
GAGE Number	GAGE	POSITION	SENS TIV!	TY/100%	ERROR OF	CORRELATION COEFFICIENT	SENSITIE DRIFT	COUNTY LA	ERROR OF	CORRELATION COEFFICIENT
151 152 153	824P9FFRH 824S411RH 824S411RD	9 - 8 - 3 1 9 - 8 - 3 2 9 - 8 - 3 3	- 227 - 369 0	16 13	1 2 1 6 0	9955 9965 1 0000	1 4 - 1 - 7	7 - 7 7 - 3 9	1 7 1 2 5	4943 9487 9414
154 135 156	#245411RV #2459FFRH #2459FFRD	9 - 8 - 34 9 - 8 - 35 9 - 8 - 36	82 -171 111	13 15 16	7 7 9	9654 9977 9721	15 3 19	- 13 - 36 - 41	6 1 3 9	7079 7561 8445
157 158 159	82459FFRV 125CDP 129CDP	9 - 6 - 3 7 9 - 6 - 3 8 9 - 6 - 3 9	258 342 292	9 1 3 9	17 3 2	9887 9997 9999	1 6 - 1 - 6	- 3 & - 6 - 1	1 2 6 6	7 '6C 4 2 2 2 2 0 8 2
160	832CQ.1MZP[C] M31 9CDP[C] M22 559 5P[C]	9 - 8 - 4 0 9 - 8 - 4 1 9 - 8 - 4 2	- 244 - 563 - 268	1 2 1 6 1 C	4 3 5	9994 9999 9994	· 6	5 6 3	4 4 8	9 4 2 2 9 6 8 5 9 6 9 9
163 164 165	M23P 3P(C) M22 SP 3P(C) M12 SP 4P(C)	9 - 8 - 43 9 - 8 - 44 9 - 8 - 45	- 186 - 182 - 48	1 2 1 2 1 5	3 3	9998 9994 9976	13 15 15	· 35 · 13 · 15	3 3 7	9625 87&1 6497
166 167 168	M12 5P 5P(C) M12 5P4P(C) 824P11 6P(SC)	9 - g - 4 6 9 - g - 4 7 9 - g - 4 8	- 49 - 69 129	13 13	2 3 12	9 9 5 8 9 9 5 4 9 7 0 5	10	- 6 - 17 47	2 3 6	8995 8468 9719
169	H23 958 5P(HSL H23 958 5P(HSU H23 9P8 5P(HSL) 9·8·50	· 292 392 · 320	13	4 4 27	9997 9998 9842	0 4 - 4	: C & - 2 & - 7 9	30	9955 8644 7786
172 173 174	H23 9P8 SP(HSU M60S9P(C) M48 1P8P(C)		319 0 - 336	3 0 13	13 0 5	9961 1 0000 9995	o 9	6 1 0 - 133	6 S 4	9806 1 0000 9974
175 176 177	84855MMS(BM) 84855MZP(BM) 84855MZS(8M)	9 - 8 - 5 5 9 - 8 - 5 6 9 - 8 - 5 7	59 -137 -97	8 13 7	17 26 36	7762 9509 822:	8 2 3 1 6	26 37 24	2 3 7	9884 9955 5417
178	B4855 1MZP(BM) M49 559P(IF) H28P17 5(D)	9 - 8 - 5 8 9 - 8 - 5 9 9 - 8 - 6 C	- 4 7 O 1	6 0	0 2	8970 1 0000 1205	2 1 6 3 - 7	- 873 160 3	1356	2 9 6 4 9 9 9 2 6 3 7 5
181	840C0TTP 840C0TTS 840C4TTP	8 · · · · · · · · · · · · · · · · · · ·	• 1	0	† 1	20:9 35:20 257'	0	0		0328 1596 2316
184 185 186	B40P4TTS B40P8TTP B40P8TTS	8 · · 4 8 · · 5 5 · · 6	0	0 0	0 G	2976 2976 6649	0	o 0		2343 1 0000 1715
187 188 189	840C0ZTP 840C0ZTS 840C9ZTP	8 7 8 8 8 9	0	0	0	2976 1 0000 5101	0	0	0	1929
190 191 192	B4QP4ZTS B4QP8ZTP B4QP8ZTS	8 10 8 11 8 12	0 0 - 1	. 4 0	0 2	3830 9516 4707	- 1 4 0	0 · 1 0	2	5011 7209 1284
193 194 195	840C0MZP 840C0MZ5 840C0MFP	813 814 815	o o	0	1 0 1	6857 2976 3123	0 0 2	o o 1	°. 2	0000 0236 5741
196 197 198	840CDMFS 840P7MFP 840P7MFS	816 817 818	- (- 1 - 1	· , o o	1 1	6631 5030 4598	0 0	0	c c 0	0000
199 200 201	840C0F1P 840C0F1S 840P6F1P	819 820 821	0	°	0	1 0000 1262 6452	0 0 0	0	0	. 0000 2011 0427
202 203 204	B40P6F1S B40S4TTP B40S4TTS	8 22 8 23 8 24	- 1 1 0	0	1	3672 0822 1 0000	0	0	1	07:7 1848 1 0000
265 206 207	84058TTP 84058TTS 84054ZTP	8 - · 25 8 - · 26 8 - · 27	- 1 0	0 0	0	1 0000 5882 1 0000	0	0 0	0 1 0	. 0000 2346 1 0000
208 209 210	84Q\$4ZT\$ 84Q\$8ZTP 84Q\$8ZT\$	8 28 8 29 8 30	0	0 0	1	1523 2279 1162	0	0	9 1	1977 2421 1 0000
211 212 213	84054MFP 84054MFS 84056F1P	6 · · 31 8 · · 32 8 · · 33	0	0	1 0	1 599 1 . 0000 4053	0	0 0 0	0	2543 1 0000 0499
214 215 216	84056F15 840C0HHRH 840C0HHRD	8 34 6 35 4 36	1 1 2	0	!	4222 4819 4259	0	0	0 0	1 0000
217 218 219	840C0HHRY 840P6ITRH 840P6ITRD	837 838 839	i 0 1	0	1 1 1	. 2684 2364 3833	,	· 1 • •	1 1	3146 2181 1675
220 221 272	840P#[]RV 840P#F]RV 840P#F]RD	8 40 8 41 8 42	· 1 - 1 · 1	0	† † 1	2409 3708 3083	0 0	0	0	1791 2158 1 0000
223 224 226	840P9F1RH 840F12FFRV 840F12FFRD	8 - 43 4 - 44 8 - 45	• 1 • 2 • 1	- 1 0 0	1 2 1	3661 . 2005 . 2738	0 0	0	1	1 0000 2412 1 0000

TABLE B.1 (Continued)

				VERTICAL	LOADING DE	LATERAL LOADING CHLY				
SAGE	GAGE RAME	*05:1:0N	SENSITIVI VERTICAL	TV 100%	ERROR CF ESTIMATE	CORRELATION COEFFICIENT	SENSITIV DRIFT	171/100% LATERAL	TRROR OF	CORRELATION COEFFICIENT
226 227 228	840913888H 8405611R± 8405611R0	8 · · 46 8 · · 47 8 · · 48	. 1	000	1	0#00 3393 2219	c 0	000	000	1 0000
230	840561 RH 840594 RH 840594 RD	a · · · 4 9 8 · · · 5 0 4 · · · 5 ·	° °	0	• •	1014 1657 2182	c 0	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	c F	' 0000 '500 3404
232 233 234	84059F1RV 840512FFRH 841512FFRD	8 - 53 8 - 54	• :	o	o	1 0000 1241 0355	c c c	ç c	c c	1 0000 1536
225 236 237	8405 12FFR y 8480 CMMP 84858 4MFR y	8 55 8 - 56 8 - 57	c 1	000	1	0002 1003 2 10	ć. •	0 - 1 - c	c	0000 4365 0000
736 239 240	84858 AMPRO 84858 AMPRH W46P727 C	8 - 58 8 - 59 8 - 60	1 1 0	o c	:	3475 2872 2497	° c	¢ 1	: 1 C	1633 1944 1000
24 1 24 2 24 1	8481077P 84810775 8478477P	1 - A - 5 2 - A - 5 3 - A - 5	. 1	0	1	332 ' 3770 5078	0	. !	, o c	1874 2288 224
244 245 245	#48P4**5 846P8**P 846P8**5	4 · 4 · 4 · 5 · 6 · 6 · 6	, , e	0 0	,	3529 2245 6808	ε 0	¢ c		2359 2549 1704
245 245 249	8481017F 84800775 8488417F	8 - A - 7 8 - A - 8 8 - A - 9	, . c	6 6	1	2283 2324 4902	0	0	0 3 c	· 0000 · 0000
26. 75.1 26.2	845P4115 848P87*P 848P87*S	8 - A - C 8 - A - 1 - C 8 - A - 1 - 2	• · · • • • • • • • • • • • • • • • • •	- † •	. 0	5899 1594 557			1	3985 2627
253 254 255	848COM2P 848COM2S 843COMEP	6 - A - 7 3 8 - A - 1 4 8 - A - 1 5	 c	0		4259 1673 2324	0	0	0 1 0	C918 1576
256 257 258	648:0MF5 848P6WFP 848P6WFS	8 - A - 1 6 8 - A - 1 7 8 - A - 1 8	° .	0	: 6 6	1714 1030 3213	0	0	0	' 0000 ' 0000
25 9 16 0 26 '	#48CDF:P #48CDF:S #48P6F:P	8 - 4 - 1 9 8 - 4 - 2 < 8 - 4 - 1 !	0 /-	0 0	c 0	1 0000 0531 8262	0	c - 1	0	1 000C 2264
262 263 164	848P6F1S 848S4TTP 848S4TTS	8 · 6 · 2 2 8 · A · 2 3 8 · A · 2 4	0 0	0 0	,	3328 1823 1 0000	. 1		,	1480 1731
265 166 167	84358779 84858775 84854774	8 - A - 75 8 - A - 76 8 - A - 27		c 0	° .	* 0000 4627 * 0000	0	0 0	0	2666 2666
268 269 276	84814215 8485821P 84858215	8 - 4 - 2 8 8 - 4 - 2 9 8 - 4 - 3 C	c o	· 1 0 0	1 C	6837 1 0000 0856	0	c 0	0	2443
27. 27. 273	84856MFF R4856MFS 84856F'P	8 A - 3 6 - 4 - 3 2 8 - 4 - 3 3	0	c 0	0	3563 1 0000 0763	0	0	0	2022
274 275 276	84356F15 848C0-HRH 848C0HHRD	8 · A · 34 8 · A · 35 8 · A · 36	o o	0	1 1	2222 2575 2222	0 0	0	1 1	2055 0309 1966
278	84820HHRV 84897,18V 84897;180	a · A · 37 8 · A · 33 8 · A · 39	0	0	1 1	3559 1551 3407	0	0	1 1	1866 1941 0496
286 281 282	#4587;;RH 8489105[84 8489105[80	6 - 4 - 4 0 8 - 4 - 4 1 8 - 4 - 4 2	9 0	0 0	1	2052 2120 1814	0	0	0	2220 2057 1 0000
283 284 285	846P10F1PH 848P12FFRY 848P12FFRD	8 - A - 4 3 8 - A - 4 4 8 - A - 4 5	0 1 1	0	1 1	1526 1512 1310	0	o !	0 - 0	1 0000 2394 1 0000
786 287 288	848F12FFRH 84857;1RH 84857;1RD	8 - A - 4 6 8 - A - 4 7 8 - A - 4 8	0	•	1 1	2531 2035 2133	0	0	0	1 0000 7549 2464
295 295 285	84857/1RV 848510F[RH 848510F]RD	8 - A - 49 8 - A - 50 8 - A - 5 1	• 1 • 0	0	1	1398 1152 0888	o o	0	0	1 0000
291 293 294	848510F1PV 84851211RH 84851211RD	8 - A - 5 2 8 - A - 5 3 8 - A - 5 4	• 1 • 1	0 0 · 1	1 1	1 0000 0118 2512	0	1	0 1	1 0000 2886 1858
295 296 297	8485121[87 H48 152CP(C) 8485:3MMS(C)	8 · A · 5 5 8 · A · 5 6 8 · A · 5 7	0 1 6 0	· 5	•	1 0000 8428 1543	0 4 0	. 3	0	1 0000 5110 1869
298 299 300	85655][F[C: 856P4MMS[C] 840P1[DK]	6 - A - S 6 8 - A - S 9 8 - A - 60	o 0	6 0 0	; ;	34 / / 1339 2025	<i>o</i> 3 0	- 4	0 3 0	3335

TABLE B.1 (Continued)

			VERTICAL LOADING ONLY			LATERAL LOADING ONLY				
GAGE NUMBER	GAGE NAME	POS 1 T 1 D N	SENSITIVIT VERTICAL	TY/100%	ERROR OF Estimate	CORRELATION COEFFICIENT	SENSITIVI'	TY/100% LATERAL	ERROR OF ESTIMATE	CORRESATION COEFFICIENT
301 302 303	M30 4P10W M30 4P10 5P M30 4P11W	8 - 8 - 1 8 - 8 - 2 8 - 8 - 3	- 1 - 2 - 0	0	t 1 2	2775 5782 2300	- 1 • 1	0	0	2467 1 0000 4375
304 305 306	M30 4P11 5P M30 4P12W M30 4P13W	8 - 8 - 4 8 - 8 - 5 8 - 8 - 6	0 0	0	1 1 1	. 2571 2574 4441	0 0 0	0 C	C 1	1667 1642 2559
307 308 309	M31 2P10W M31 2P10 SPRL M31 2P10 SPRD	8 · 8 · 7 8 · 8 · 8 8 · 8 · 9	0	0	1 1	2078 2571 4314	0	0	o c c	1 0000 1 0000 2569
310 311 312	M31 2P10 5PRH M31 2P11W M31 2P11 5P	8 - 8 - 10 8 - 8 - 11 8 - 8 - 12	1 1 0	0	, , ,	1397 4067 1207	• • 1 •		1	0260 2202 1272
313 314 315	M31 2P12W M31 2P13W M31 2P14W	8 - 2 - 13 8 - 8 - 14 8 - 8 - 15	0 0	0	1 1 5	5997 0458 4096	· 1 0 0	•	1 1 C	0781 4189 1 0000
316 317 318	840P&MMRH(88) 832P10MMP 840P&MMRO(88)	8-8-16 8-8-17 8-8-18	. 1	· 2 c c	1 1 2	9 1 9 1 3 4 1 4 2 8 7 9	0	0	; C	1474 0635 1369
319 320 321	832P10 5MMP 840P&MMRY[88] M31 8P11 2PRH	8 - 8 - 19 8 - 8 - 20 8 - 8 - 21	o o	0	0 6 1	1 0000 0785 .6102	. 1	¢	100	2055 2056
322 323 324	M31 8P11 2PRD M31 8P11 2PRL M31 8P11 5P	8 - B - 2 2 8 - B - 2 3 8 - B - 2 4	0	0	1 0 0	3647 4181 ' 0000	°	0		1898
325 326 327	M31 8P12W M31 8P13W M31 8P14W	8 - 8 - 2 5 8 - 8 - 2 6 8 - 8 - 2 7	0 - 1 0	0	0 1 0	1 0000 3847 1 0000	° °	0	° °	· 0000 0567 · 0000
328 329 330	M32 4P10W M32 4P10 5P M32 4P10 7P	8 - 8 - 28 8 - 8 - 29 8 - 8 - 30	o o	0	0	5324 0785 0785	° °	0	•	4165 1 0000 1 0000
33 ! 33 2 33 3	M32 4P11 1P M32 4P11 3P M32 4P11 5PRH	8 - 8 - 3 1 8 - 8 - 3 2 8 - 8 - 3 3	° °	0	0	0785 1 0000 6225	° °	0	c	1356 1 0000 1907
334 335 336	M32 4P11 SPRD M32 4P11 SPRL M32 4P12W	8 · 8 · 3 4 8 · 8 · 3 5 8 · 8 · 3 6	c 0	0	•	0955 2569 246'	0 0	0	с 0	1 0000 . 2697 1 0000
337 338 339	M32 4P13W M32 4P14W M31 2511W	8 · B · 37 8 · B · 38 8 · B · 39	0	0	1 0	2833 1,0000 5451	0	0	1	2445 2199 1940
340 341 342	M31 2512W M31 2513W M31 2514W	8 - 8 - 4 0 8 - 8 - 4 1 8 - 8 - 4 2	0	0	1 1	1467 4061 0835	0	• •	:	2394 1349 1 0000
343 344 345	M31 8511W M31 8511 2PRL M31 8511 2PRD	8 · 8 · 43 8 · 8 · 44 8 · 8 · 45	o o	0	1 1	1207 2550 6103	0 0 - 1	00,	1	1531 2897
346 347 348	M31 8511 2PRH M31 8512W M31 8513W	8 - 8 - 4 6 8 - 8 - 4 7 8 - 8 - 4 8	o o	0	1 7 1	. 2494 . 2418 . 3801	0 0	000	0	1 0000
349 350 351	M31 8514W M32 6510W M32 6510 7P	8 - 8 - 4 9 8 - 8 - 5 0 8 - 8 - 5 1	0 0	0	1	1595 1229 2492	o o	0	0	1 0000
352 353 354	M32 6511 3P M32 6512W M32 6513W	8 · B · 5 2 8 · B · 5 3 8 · B · 5 4	0	o o	1	1 0000 2191 1942	• 1	0 1	0	1 0000 2099 1049
355 356 357	M32 6514W H24 1517 5P[H5 H24 1517 5P[H5	8 - 8 - 5 5 5 L 8 - 8 - 5 6 5 U 8 - 8 - 5 7	0 0 . 1	• 1 •	1	1.0000 .6554 .2739	0 4 - 1	• 2 • 1	2 1	1 0000 5226 1548
358 359 360	H24 ZSZO SP{H: H24 ZSZO SP[H: WSZPZZT[D]	SL 18 - 8 - 58 SU 8 - 8 - 59 8 - 8 - 60	0 0	0	1 1 1	1987 .2478 .2462	. 2 0	0	2 !	7558 5687 2982
361 362 363	M21P13 SP M21P12W M21P6W	7· · 1 7· · 2 7· · 3	0 · 6 · 206	6 17	13	1 0000 6379 9993	15 29 16	- 2 - 50	23	9916 5600 9005
364 365 366	M21P2W M21COW M21S2W	7 - · 4 7 · · 5 7 · · 6	- 200 0 - 192	13 0 -8	3 0 29	9996 1.0000 9413	16 0 -39	- 32 0 27	0 22	9493 1 0000 \$576
367 368 369	M2154W M2156W M2158W	7· · 7 7· · 8 7· · 9	- 241 - 186 - 191	16 10 7	2 3 8	.9999 .9994 9962	1 9 6 - 1	73 81	4 2 4	9890 9983 9947
370 371 372	M21510W M21511 5P M21512W	7 10 7 11 7 12	- 158 - 147 - 93	13 4 8	3 4 2	9993 9987 9995	! 5 - 2 - 7	# 6 79 # 6	3 2	9978 9962 9994
373 374 375	M21512 SP M21513W H21513 SP	7 13 7 14 7 15	- 75 - 110 - 47	17 12 8	3 3 4	9188 9188 9129	21 14 6	72 86 100	•	9961 . 8980 9974

TABLE B.1 (Continued)

			VERTICAL LOADING ONLY			LATEPA. LDADING ONLY				
GAGE Number	CASE	POSITION	SENSITIVI VERTICAL	TY/ FOCT. DRIFT	ERROP OF ESTIMATE	CORRELATION COEFFICIENT	SENSITI DRIFT	VITY/100%		CORRELATION COEFFICIENT
376 377 378	H16 2515P(CU) H21CCA H2152W	7 · · 16 7 · · 17 7 · · 18	- 134 170 169	8 1 9 1 C	3 7 8	9989 9934 9933	16	50 8 26	3 7 7	9945 8529 9113
3 ' 9 3 8 0 3 8 1	H2185W H2185W H2187W	7 - 19 7 - 20 7 - 21	17 147 103	6 7	6 2 2	997; 9895 9987	- 15 5 3	· 25 29 39	4 2 2	9733 9 \$3 7 9933
382 381 384	H21P7W H21S9W H21S1.W	7 22 7 13 7 24	79 67 132	16	8 1 1	5523 4589 9498	1 4 2 - E	- 3 o 5 : 8 5	1 1	6775 9982 9 98 9
385 386 347	H21P11W H21S13W H21S13 5P	7 · · · 25 7 · · · 26 7 · · · 27	74 60 7	1 1 6 3	2 3 2	9964 9962 7446	9 · 5 · 7	- 5 6 6 3 7 7	3 4 4	9929 9887 9934
388 389 390	#21813 SP #215 4# #215 6#	7 · · · 28 7 · · · 29 7 · · · 30	- 15 27 - 78	\$ 4¢	3 7 2	9895 8014 9991	6 2 5	- 84 135 80	5 2 t	9990 1415 9990
39. 39.	H. F &K H. 1518W H. 168	7 · 3 · 7 · - 3 · 7 · 3 3	- 115 66 - 172		2 3 23	9994 9955 9596	- 2	· 78 56 - 43	4 4	9993 9902 9935
314 395 396	13300# 13500# 1310#	7 - 34 7 - 35 7 - 36	- 4.7 3.2 2.6	2 8 28	13 47	968C 6146 5429	- 18 - 2C - 45	- 1 2c - 18	4 23 45	9337 2365 5616
397 198 199	*3930% *4:20% *4306%	7 - 37 7 - 38 7 - 39	- 3 - 1 5	· 2 · 7 8	45 25	09 15 37 2 8 9 9 7 4	27 -11 5	2 & 1 5 • 1	7 E 2 ' 2	2331 3130 2708
475 47 471	74500W 74700W 23300W	7 40 7 4 ' 7 42		5 8 3	2 2 3	9797 9878 9862	- 3 4 - 2	· ·	2	629 <u>8</u> 7152 7644
4 0 3 4 0 4 4 0 5	7350 0 % 73700% 73900%	7 - 43 7 - 44 7 - 45	- 50 - 122 - 128	8 3 5	2 2 2	9 9 8 5 9 9 9 6 9 9 9 7	- 5 7	3 - 2 1	; 1 2	9075 9149 8966
40 f 40 7 40 8	74:00W 24300W 24500W	7 4 6 7 4 7 7 4 8	- 2 2 4 - 2 8 1 - 3 r	4 6 7	2 3 3	9997 9997 9999	- 2	• 4	0 7 2	1 0000 .8466 7293
469 410 411	24700W M3300W M3500W	7 - 4 = 7 - 5 C 7 - 5 I	- 4 4 C - 2 8 4 - 4 0 2	6 1 2 5	20 16 2	9956 9936 9988	· 3 13 0	19 12 7	25 11 7	0553 7105 3426
4 1 2 4 1 3 4 1 4	M3760W M3960W M4160W	752 753 754	c c	c 0	0	1 0000	0	с 0 с	000	1 0000 1 0000 1 0000
4 : 5 4 : 6 4 : 7	M4300W W4500W W0070PM	7 - 55 7 - 56 7 - 57	0 0 0	c 6	° °	1 0000 1 0000 1 0000	o o	0	0	1 0000 1 0000
4 1 8 4 9 4 . 0	84058MMW:C; 8405:2MMP!C; 8169:21081	7 - 58 7 - 59 7 - 60	o o	o o	0	1 0000 1 0000 1 0000	0	c c	0	1 0000
4.1 4.1 4.23	4000 EE. 4000F 4000F	7 A 2	248 380 408	1 1 3 16	1 T 9 1 1	9942 9987 9981	4 18 24	- 9 - 5 - 2	' 7 9 8	1803 6611 8646
425 426 416	145 300P F33 310W F3700W	7 4 5 7 4 6	377 - 27 - 17	11	4 3 2	9997 9956 9952	15 14 7	2 0	6 3 2	8299 9517 8573
4:5 4:5	FA1COW F45 3COW H13COP	7 - A · 7 7 - A · 8 7 - A · 9	- 13 - 9 605	15 9 4	4 2 5	9895 9942 998	1 1 1 0 1	3 0 . 6	1 1 3 6	5 1 2 5 9 0 1 6 2 0 4 3
430 471 432	H3510P H3710P H3910P	7 - 4 - 10 7 - 4 - 11 7 - 4 - 12	0 555 602	o 5 9	0 4 1 2	1 0000 9998 9990	• • 4 • 5	0 8 5	0 8 <u>5</u>	1 0000 2219 6845
433 434 435	H4120P H4320P H45CQP	7 - A - 13 7 - A - 14 7 - A - 15	667 0 0	0 0	9 0	9996 1 0000 1 0000	1 8 0 0	2 0 0	1 1 C	6819 1 0000 1 0000
436 437 438	H21COP M335'1 1P M33P11 1P	7 - A - 16 7 - A - 17 7 - A - 18	0 - 314 - 269	13	0 6 14	9992 9958	0 13 17	0 143 -117	0 4 15	1 0000 9984 9566
439 440 441	M355'1 1P M375'' 1P M37P'! 1P	7 - A - 19 7 - A - 20 7 - A - 21	- 360 - 344 - 399	- 5 1 - 2	8 17 22	9589 .9941 9929	- 10 16 - 9	162 174 -160	8 20 35	9934 9736 9112
442 443 444	M39511 10 M41511 1P M41P11 1P	7 · A · 22 7 · A · 23 7 · A · 24	-46 -356 -449	· 36 3 13	35 3 10	.7319 9999 9989	- 29 - 1 - 5	91 157 -164	275 3 2	2257 9991 9997
445 446 447	M43511 1P M45511 1P M45P11 1P	7 - a · 25 7 · a · 26 7 · a · 27	366 - 380 - 480	1 2 6 3	2 3 3	9999 9999 9999	15	192 213 -241	2 3 2	9997 9995 9999
442 449 450	M47511 1P M33514P M33P1+P	7 - A - 28 7 - A - 29 7 - A - 30	- 207 - 378 0	1 1 6 0	5 2 6 0	9991 9901 1 0000	- 4 78 0	204 139 0	9 3 0	9997 7291 1 0000

TABLE B.1 (Continued)

			VERTICAL LOADING ONLY				LATERAL LOADING ONLY			
CAGE Number	GAGE Name	POSITION	SENSITIVI VERTICAL	TY/100% DRIFT	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITI Drift	VITY/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
451 452 453	M35514P M37514P M37P14P	7-A-31 7-A-32 7-A-33	- 394 - 356 0	5 0	5 5 0	.9996 .9996 1.0000	12 - 8 13	231 227 -249	7 9 5	.9982 .9958 .9989
454	M39514P	7 - A - 34	- 300	- 8 4	29	.9757	+46	254	103	.6886
455	M41514P	7 - A - 35	- 267		128	.5557	14	122	334	.1684
456	M41P14P	7 - A - 36	- 276		21	.9869	8	-122	71	.5775
457	M43514P	7 · A · 37	- 163	-81	199	.3084	-335	22	294	5017
458	M45514P	7 · A · 38	- 374	-7	12	9975	-42	274	22	9822
459	M45P14P	7 · A · 39	C	0	0	1 0000	0	0	0	1 0000
460	M47514P	7 - A - 40	-404	8	14	.9973	6	286	9	9976
461	W32 ISMZO.1RV	7 - A - 41	149	8	36	.8620	5	-58	4	9869
462	W32,1SMZO.1RD	7 - A - 42	-714	10	10	.9996	- 1	129	4	9979
463	W32 15MZO 1RL	7 - A - 43	-407	- 7	14	.997;	6	147	17	.9997
464	W32 15ZTO 1P	7 - A - 44	16	- 12	34	.6271	0	- 35		.6967
465	W35SMZO.5P	7 - A - 45	-414	1	8	9991	14	175		.9989
466	W355MZ2W	7 · A · 4 6	- 303	-4	6	, 9991	- 2	78	•	9703
467	W355ZM3.9P	7 · A · 4 7	- 357	7	5	9996	- 5	62	•	9914
468	W355ZYO 1P	7 · A · 4 8	- 291	10	4	, 9996	4	55	3	9937
469	W35\$ZT2W	7 - A - 49	- 108	· 5	2 7	9033	3	22	2 1	4280
470	W35\$TZ3 9P	7 - A - 50	- 121	10	4	.9980	4	13	6	8066
471	M49 \$5\$P[FD]	7 - A - 51	- 348	12	1 8	.9950	10	150	1 7	9737
472	M49 559P(A0)	7 · A · 5 2	- 3&2	7	13	9976	2	166	8	995 1
473	84852MMW[C]	7 · A · 5 3	- 127	10	14	9818	6	14	5	89 1 4
474	856510 1MMP(C)	7 · A · 5 4	- 77	7	15	9435	1	27	1 2	7 1 0 2
475	84053MM5(8M)	7 - A - 5 5	- 27	- 2	14	,5764	3	- 17	5	.8068
476	84053MMP(8M)	7 - A - 5 6	- 149	6	3	9991	6	6	3	.8855
477	84053MZS	7 - A - 5 7	- 103	5	4	9966	3	1	2	7014
478 479 480	84053MZP 84855MMP H44519(D)	7-A-58 7-A-59 7-A-60	- 97 - 102 - 80	0 1 7	7 & 3	.9892 .9854 .9982	3 9 4	- 1 1 2 7	3	5359 9443 8520
481	T49P10W	7-8- 1	- 319	1 C	9	9983	1 2	· 8 6	7	9791
482	T49P6W	7-8- 2	- 87	1 O	12	9728	1 0	- 2 5	5	8718
483	T49CDW	7-8- 3	- 8	1 7	9	#508	2 6	- 4	6	9422
484 485 486	T 4 9 S 2 W T 4 9 S 4 W T 4 9 S 6 W	7-8- 4 7-8- 5 7-8- 6	- 23 - 16 - 67	1 1 1 2 7	4 4 2	. 9849 9849 9980	1 1 1 4 •	14	4 3 0	.9353 .9786 1 0000
487	T4958W	7-8- 7	- 182	1 2	6	99&2	10	57	7	9727
488	T49510W	7-8- 8	- 304	6	3	9997	5	88	3	9973
489	749510 5P	7-8- 9	- 414	2	6	9996	4	108	5	9946
490	T49510 9P	7 - B - 10	- 465	8	1 0	.9990	15	125	3	9986
491	Z49P10W	7 - B - 11	- 541	7	6	9997	- 1	-160	7	9956
492	Z49P6W	7 - B - 12	- 376	9	2	.9999	4	-103	4	9960
493	249COW	7 - 8 - 13	0	0	•	1 0000	0	0	o	1.0000
494	249S2W	7 - 8 - 14	- 4 1 2	7		.9998	10	23	4	9712
495	249S4W	7 - 8 - 15	- 4 7 3	9		.9999	1	65	3	9963
496	24956W	7-8-16	- 5 4 4	1 1	5 6	9998	10	8 8	5	.9947
497	24958W	7-8-17	- 3 0 6	1 4		9999	10	8 3	2	.9989
498	249510W	7-8-18	- 4 6 9	6		9999	5	1 6 4	2	9998
499 500 501	749510 5P 249510 9P W495M22W	7-8-19 7-8-20 7-8-21	-488 -486 -152	0 2	5 5	.9997 .9996 9976	- 10 0 3	179 184 132	4 3 2	. #### 9994 9996
502	W4952M3 9P	7-8-22	-517	- 2	1 1	.9968	10	181	1 0	9934
503	W495MZO 1RL	7-8-23	-376	7	2	.9999	4	220	1	9999
504	W495MZO 1RD	7-8-24	-412	12	7	.9994	-5	116	2	9989
505	W495MZO 1RV	7 - 8 - 25	306	7	6	9991	1 2	- 101	4	9946
506	W495ZTZW	7 - 8 - 26	-466	0	4	.9999	- 9	139	2	9993
507	W495TZ3 9P	7 - 8 - 27	-455	5	6	.9997	0	119	2	9995
508	W4952TO IRL	7-8-28	-472	· 2	5	.9997	- 2	174	1	999&
509	W4952TO IRD	7-8-29	42	10	8	.8611	1 7	24	3	- 9449
510	W4952TO IRV	7-8-30	171	9	3	.9968	5	-9	2	7807
\$11 \$12 \$13	M49P14W M49P13W 5 M49P15 1P	7 - 8 - 31 7 - 8 - 32 7 - 8 - 33	0 - 436 - 394	0 -5 13	0 8 6	1.0000 .9993 .9996	0 2 5	- 155 - 215	0 1 8 1 2	1.0000 9700 9928
514	M49P10W	7-8-34	- 356	0	31	9994	- 13	- 199	5	7989
515	M49P6W	7-8-35	- 353	5		9834	0	- 120	1 9	9442
516	M49P2W	7-8-36	- 438	16		9992	14	- 40	7	8814
517 518 519	M49CDW M49SZW M49S4W	7 - B - 37 7 - B - 38 7 - B - 39	- 345 - 503 - 479	1 9 11	5 8 10	9994 .9994 .9991	· 13 · 3	2 38 84	4 3 3	8479 9820 9980
520 521 522	M4956W M4958W M4959,5P	7-8-40 7-8-41 7-8-42	- 384 - 366 - 376	9 10 5	4 5 5	.9998 .9996 .9996	- 1 6 0	108 157 164	3 3 2	9993 9998
523	M49510W	7 - 8 - 43	- 357	10	\$	9996	7	199	2	1116
524	M49510 5P	7 - 8 - 44	- 388	3	\$	9997	- 3	209	\$	1145
525	M49510 9P	7 - 8 - 45	- 374	9	3	9999	11	225	2	1111

TABLE B.1 (Continued)

				VERTICAL	LOADING ON	ILY	LATERAL LOADING ONLY			
GAGE Number	GAGE Name	POSITION	SENSITIVI VERTICAL	TY/100% DR1FT	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITI ORIFT	LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
526 527 528	M49512W M49512 6P M49513W	7 - 8 - 4 6 7 - 8 - 4 7 7 - 8 - 4 8	-379 -370 -416	* * * * * * * * * * * * * * * * * * * *	5 4 7	9995 9997 9995	- 1	252 240 244	4 2 3	9995 9998 9998
\$ 29 \$ 30 \$ 31	M49513 SP M49514W M49511 1P	7-8-49 7-8-50 7-8-51	- 3 4 4 - 3 8 6	0 1 i 2	0 4 13	1 0000 9997 9976	0 1 8 1 2	291 213	0 6 22	' 0000 9990 9779
\$32 \$33 \$34	848COMMS(C) 23853 SP(C) 23353 SP(C)	7-8-52 7-8-53 7-8-54	- 180 - 248 - 176	\$ 9 5	29 4 4	9499 4995 9987	· 2 6 1 6	- 1 - 4 - 27	2 7 4 8	2482 5697 7440
\$35 \$36 537	13353 SP(C) 243P3 SP(CO) 243P3 SP(CI)	7 · 8 · 5 5 7 · 8 · 5 6 7 · 8 · 5 7	- 176 - 321 - 294	- 1 7 6	4 2 2	9986 9999 9999	· 7 6 3	- 16 - 41 - 40	5 3 2	879: 9855 9937
538 539 540	253P3 5P1C1) 253P3 5P1C01 H52518(01	7 - 8 - 5 8 7 - 8 - 5 9 7 - 8 - 60	- 403 - 442 - 169	2 5	5 2 2	9996 9999 9997	1 7 6	· 60 · 60 · 19	2 3 3	9966 9934 9096
541 56. 543	H16 2515P(CL) H89P3W H19P7W	6 1 6 2 6 3	C 616 502	0 10 11	0 2 4	1 0000 9999 9998	0 10	64 14	0 3	9944 9976
\$44 \$45 \$46	H49P10W H49P12W H49P15 5P	6 - · 4 6 - · 5 6 - · 6	370 290 6	11	5 8 2	9995 9978 9957	\$ \$ 1.8	- 205 - 233 - 262	3 5 3	9993 9987
547 548 549	H49P 8W H49S \W H49S 3W	6 - 7 6 - 8 6 - 9	690 603	0 9 7	2 2	282 t 9999 9999	13	26	0 2	9995
550 551 552	H4955W H4957W H4959W	610 611 612	546 532 447	1 t - 4 - 3	2 5 2	999 9993 9999	1 & - 1 0 - 7	100	2 6 2	9993 9990 9955
\$ 5 3 5 5 4 5 5 5	H49510W H49511W H49512W	6 13 6 14 6 15	377 328 284	1 4 8 8	3 2 2	998 999 9999	20 11	205 214 232	2 2 2 2	9996 9998 9999
556 \$57 \$58	н495:3ф Н495:5 Н495:6ф	6 1 6 6 1 7 6 1 8	196 - 10 - 90	1 C 9 6	2 3 10	9997 .9839 .9781	12	247 267 213	2 4 45	9998 9999 9994
559 560 561	H49518W H49519W H45511,5P	6 19 6 20 6 21	C - 359 276	0 13 12	0 3 2	1 000C 9999 9999	0 12 18	0 305 224	0 2 2	1 0000
5 6 2 5 6 9 5 6 4	H45516 SP T46510.9P T4657W	6 22 6 23 6 24	- 33 - 346 - 140	10 16 9	5 6 2	9845 9995 9997	20	238 29 44	4 3 2	9996 9986 9987
\$ 65 \$ 6 6 \$ 6 7	139510 9P 13957W 136510 9P	6 - 25 6 26 6 27	- 295 0 - 185	9 0 14	1 0 3	9999 1.0000 9997	i 1 0 12	75 0 45	; ;	9989 1 0000 9957
568 569 570	73657W M4658W M6354W	6 · · · 28 6 · · · 29 6 · · · 30	- 49 - 371 - 371	1 1 1 5 1 2	2 3 2	9984 9999 9999	13 12 8	33 134 133	2 2 2	9951 9996 9997
57° 572 573	M435&W M3957W M395&W	6 1 6 32 6 13	· 338 · 338	1 2 0 1 9	3 0	9999 1 0000 9981	10 12 17	\$0 97	1 2 8	9992 9992 9929
574 575 576	M30511W M3058W M3751'W	6 · · · 3 · · · 3 · · · · 3 · · · · 3 · · · · 3 · · · · 3 · · · · · 3 ·	- 219 - 301 180	18 - 3 - 16	29 56 102	.9738 9243 6915	2 - 8 1 7 4	142 99	18 114 190	9666 1808 1528
577 576 579	MT758W H555:34 H550:6 50	6 - 37 6 - 38 6 - 39	- 224 0 - 54	13 0 15	47 0 4	9271 1 0000 9968	- 75 0 18	48	141	1151 1 0000 8965
540 541 587	15487W 1546 J. 98 15487W	6 - 40 6 - 41 6 - 42	- 29 - 263 - 29	14 - 32 6	4 55 6	9916 8612 9557	1 8 5 2	329 - 29 14	5 1 4 6	9994 6224 7589
5 8 3 5 8 4 5 8 5	754P10 SP M5458 SP H55CDT	6 - 43 6 - 44 6 - 45	37 '	13 8 0	17 3 0	9822 9998 1 0000	· 3 1 0	\$3 165 0	21	729 I 998 4
586	H 5 7 . D P H 5 7 5 1 3 W H 5 5 C D P	6 - 46 5 - 67 6 - 48	0 0	9 0 0	7 0 0	9998 1 0000 1 0000	23 11 4	· 3 282 22	6 3 23	8857 9997 4281
589 590 19	HSJUDP HS3P13m HS3C-1m	6 90 6 50	0 316 338	•	0 2 26	1.0000 9999 9848	0 12 15	0 · 253 250	0 2	1 0000 9998 9944
59. 593 594	HS15:4# 152:500P	6 · 53 5 54	0 - 144 - 185	0 12 12	0 6 29	1 0000 1996 9884	0	294	0 3	1 0000 9997 1227
595 596 547	1570P F4900W F57 SCOW	6 · · · · · · · · · · · · · · · · · · ·	1 3	0 1 2 1 \$	0 2 3	1 0000 9945 9915	14 14 17	1	3 3	9122 9485 9409
598 599 600	PS7COW H54 B521P(C) H70S13 SP(D)	6 · · · · · · · · · · · · · · · · · · ·	- 37 5	10	0 6 2	1 0000 9995 9947	14	2 \$ 5 0	13	1 0000 9942 9610

TABLE B.1 (Continued)

	VERTICAL LOADING ONLY				LATERAL LOADING ONLY					
GAGE NUMBER	G A G E N A M E	P051710N	SENSITIVI VERTICAL	TY/100% DR1FT	ERROR OF	CORRELATION CDEFFICIENT	SERSITI) DRIFT	ITY/100% LATERAL	ESTIMATE	CORRELATION COEFFICIENT
601 602 603	751COW 753COW 754COW	6-A- 3	0 - 9 - 4 9	0 12 - 13	3 0	1 0000 9915 4338	0 17 -22	. 3	6 5 20	1 000C 9178 5220
604 605 606	T55CDW 260510.9P 26056W	6-A- 4 6-A- 5 6-A- 6	32 - 1540 - 897	9 -57 18	35 61	.1628 9958 9997	-\$2 1 -1	409 133	74 6 30	3378 9995 8980
\$07 \$08 \$09	260COW 259\$10 9P 259COW	6 - A - 7 6 - A - 8 6 - A - 9	- 1 2 2 4 - 6 7 2	· 33	1 19 5	3483 9974 9999	0 1 5 7	328	4 7	C 4 2 6 9 9 9 6 4 4 4 7
610 611 612	258510 9P 25856w 258CDW	6-A-10 6-A-11 6-A-12	-943 -611 -639	- & 1 - & - 1	4.6 5 1.4	9933 9998 9988	1 8 - 8 - 29	261 112 -8	4 5 5 3	9995 9949 2676
613 614 615	257COW 257S10.9P 256.2P10.9P	6-A-13 6-A-14 6-A-15	- 630 - 636 - 717	22 -53	5 5 6 8	9999 9742 9997	2 · 8 - 5	- ! ! 9 & - 2 2 6	5 5 14	9163 9986 5913
616 617 618	256.2COW 256.2P6W 256.256W	6-A-16 6-A-17 6-A-18	- 65 E - 640 - 675	15 11 14	7 5 5	9998 999 9999	- 6 4 13	122 -6 131	5 2 2	1964 7432 1993
619 620 621	256.2510 9P 25500W 255510 9P	6 - A - 19 6 - A - 20 6 - A - 21	-829 -585 -759	14	10	9999 9994 9999	- 2 8 19	350 3 216	6 2 6 5	9337 6397 9989
622 623 624	754COW 75556W 754510 9P	6 - A - 22 6 - A - 23 6 - A - 24	- 588 - 629 - 727	14 21	4 3 7	9999 9999 9998	19 22	2 140 220	3 4 3	9650 9989 9997
625 626 627	253COW 251COW M51COW	6 - A - 25 6 - A - 26 6 - A - 27	-551 0 0	11	\$ 0 0	. 9998 1 0000 1 0000	9 0 0	- 1 0 0	o 3	8634) 0000 1 0000
628 629 630	MS1S11.1P 149C0P MS3C0W	6-A-28 6-A-29 6-A-30	-393 411 0	1 0 1 2 0	7 4 0	.9999 .9998 1 0000	14	. 3 5 3 0	3 3 0	9997 8806 1 0000
631 632 633	MS3S11.1P MS3S14P MS3P11 1P	6-A-31 6-A-32 6-A-33	-355 -427 -396	11	2 3 5	9958 . 9959 . 997	1 2 1 6 1 2	231 303 - 224	2 3 5	9998 998 9989
634 635 636	M53P14 M55COW M55S11.1P	6 · A · 34 6 · A · 35 6 · A · 36	0 - 39 1 344	0 1 1 - 8	0 4 1 2 2	1,0000 .9779 .9913	1 1 1 8 - 1	- 294 8 - 237	8 34 17	99&1 089& 9&&
637 638 639	M55514F M57COW M57S11 1P	6-A-37 6-A-38 6-A-39	- 490 - 433 - 468	9 9 2 2	26 15 3	.9940 .9973 .9999	0 20	33 ! 0 33 !	15 0 5	9953 1 0000 9995
640 641 642	M57514P M57P14 M57P11,1P	6 - A - 4 0 6 - A - 4 1 6 - A - 4 2	- 326 0 - 499) 6 0 1 1	3 0 4	.9998 1.0000 .9999	17 C -6	230 0 -326	\$ 0 5	9992 1 0000 9995
643 644 645	M59COW M59514P M59511 1P	6 - A - 43 6 - A - 44 6 - A - 45	0 - 441 - 344	8 1	0 3 4	1 0000 . 9999 . 9997	· 1 · 32	0 315 230	0 4 25	1 0000 9997 9668
646 647 648	WSS 9SMZO 1RV WSS 9SMZO 1RD WSS 9SMZO 1RL	6 - A - 4 6 6 - A - 4 7 6 - A - 4 8	- 140 126 - 313	† 2 8 - 8	26 25 28	.9503 .8995 .9792	20 4 ·5	222 259 160	24 18 22	9777 5898 9569
649 650 657	WSS 95720 1RV WSS 95720 1RD WSS 95720 1RL	6 - A - 49 6 - A - 50 6 - A - 51	210 -211 -756	19 13 2	9 34 20	9933 9560 9983	7 3 7	- 69 11 285	9 5 45	9515 7711 9489
652 653 654	WSS 952M3 9RV WSS 952M3 9RD WSS 952M3 9RL	6 - A - 5 2 6 - A - 5 3 6 - A - 5 4	225 - 336 - 792) 6 ! S 6	23 12 6	.9670 9977 .9989	7 7 13	103 234	7 & 5	9609 9953 9989
655 656 657	W56 152M3 9RL W56 152M3 9RD W56 152M3 9RV	6 - A - 5 5 6 - A - 5 6 6 - A - 5 7	- 4 14 - 9 8	· 4 · 2 13	19 18 29	.0900 4191 .8984	- 2 10 24	- 1 9 - 3	5 8 1 &	1850 7387 5576
658 659 660	H58 3P20P RESISTOR W5252M2(0)	6 - A - 58 6 - A - 59 6 - A - 60	203 · 3 · 2	1	4 4 5	.9986 .4787 .9549	23 -8 14	-217 3 -4	* 7 5	9989 4178 7993
661 682 663	#56COTTP #56COTTS #86P4TTP	6 · 8 · 1 6 · 8 · 2 6 · 8 · 3	- 444 - 31	0 1 6 1 4	6 17	1.0000 .9994 .803	• •	0 - 1 # - 7 2	6 18	1 0000 7103 9231
564 465 661	856P4TTS 856P8TTP 856P8TTS	6 - 8 - 4 6 - 8 - 5 6 - 8 - 5	-389 -202 -174	8 9 1 2	13 61 11	9978 8594 9936	· 2 · 5 1 0	- 105 - 151 - 30	39	9820 8765 9026
557 668 669	#56C02TP #56C02T5 #56P42TP	6 - 8 - 7 6 - 8 - 8 6 - 8 - 9	- 1 - 90 - 197	0 1 5 9	1 7 32	1508 9938 9533	0 12 -5	· 1 · 1 2 1	1 7 2 1	0892 6760 9409
670 671 672	856P42TS 856P82TP 856P82TS	6 - 8 - 10 6 - 8 - 11 6 - 8 - 12	- 17 - 180 - 109	17 · 2 2	4 6 1 7	9853 8683 9800	14 - 1 - 5	- 26 - 121 - 68	4 3 1 1 0	8904 8777 9569
673 674 675	856COMZP 956COMZS 856COMFP	6-8-13 6-8-14 6-8-15	- 131 - 79 - 42	18 12 13	27 24 18	9477 .9012 8878	2 2 5 2	- 35 - 29 - 29	3 14	9022 9683 6822

TABLE B.1 (Continued)

				VERTICAL	LOADING ON	IL V	LATERAL LOADING ONLY			
GAGE NUMBER	GAGE NAME	P051710N	SENSITIVI VERTICAL	TY/100% DR1FT	ERROR OF	CORRELATION COEFFICIENT	SENSIT!	LATERAL	ERROP OF ESTIMATE	CORRELATION COEFFICIENT
676 677 678	856COMFS 856P8MFP 856P8MFS	6-8-16 6-8-17 6-8-18	· 9 · 27 5	1 1 9 16	9 8 40	8954 9448 4258	4 5 17	- 5 - 24 - 89	4 3 1 8	3202 9454 8903
679 680 681	856C0F1P 856C0F1S 856P6F3P	6 - 8 - 19 6 - 8 - 20 6 - 8 - 21	*45 *47 31	9 1 1 1 3	13 5 14	9206 9958 6725	10 14 19	74 · 6 - 27	6 2 3 4	4981 9092 9026
682 683 684	856P6F1S 85654TTP 85654TTS	6 - B - 2 2 6 - B - 2 3 6 - B - 2 4	36 - 103 - 311	12 27 11	31 11	8768 9308 9976	20 34 19	· 17 41 78	1 4 1 7	9 1 1 8 9 2 6 C 9 3 7 C
685 686 687	8 16P21 W(C) 856S8TTS 856S4ZTP	6 · 8 · 2 5 6 · 8 · 2 6 6 · 8 · 2 7	· 25 0 - 143	7 0 1 5	1 6 0 2 9	7643 1 0000 9431	0 21)) 0 35	6 0 8	9386 1 0000 9551
688 689 690	#56542TS #56582TP #56582TS	6-8-28 6-8-29 6-8-30	- 140 - 97 - 41	14 8 11	14 30 10	9862 8747 9552	2 1 1 9 1 0	50 61 33	15 9 3	9066 9721 9856
691 692 693	85658MFF 85658MFS 85656F1F	6 - 8 - 3 : 6 - 8 - 3 2 6 - 8 - 3 3	- 5 5 4 9 3	6 20 13	4 40 16	.9917 .3876 6007	0 19 22	37 4	9 3	1 0000 945: 9820
694 695 696	85656F15 856CCHHRH 856CCHHRD	6 · B · 3 4 6 · B · 3 5 6 · B · 3 6	46 -192 139	7 15 • 9	5 8 10	9496 9968 9918	15 12 3	9 6 · 1 7	1 0 5	9376 6560 7779
693 698 699	856COMMRV 856P7:1RV 856P7:1RE	6 - 8 - 37 6 - 8 - 38 6 - 8 - 39	8 2 7 3 7 6	13 9 12	20 22 8	8127 7578 9538	0 2	0	0 9	7044 1 0000 2038
70; 701 702	856P7:1RH 856P11!FRV 856P11!FRD	6 - H - 4 C 6 - H - 4 1 6 - H - 4 Z	141	6	13 12 12	9696 3883 9978	26 12 7	- 27 11 65	8 6 4	7843 8718 9911
703 704 705	856P13]FRM 856P13FFRV 856P13FFRC	6 · B · 43 6 · B · 44 6 · B · 45	- 30 - 13 - 150	1 6 4 5	6 8 7	9876 4229 9952	25 1 - 2	3 3 ! 63	7 2 6	9 8 2 5 9 8 0 5
706 767 708	856P13FFRH 8565711RH 8565711RD	6-B-46 6-B-47 6-B-48	7 64 · 84	1 S 7 - 1 5	4 6 4 1	9755 .9671 5353	2 2 8 - 3	- 5 8 O 4	14 4 27	8200 7371 2519
70° 710 71:	8565711RV 8565111FRH 8565111FRD	6 - 6 - 4 9 6 - 8 - 5 0 6 - 8 - 5 1	45 202 392	10	17 8 19	6194 9960 9939	13 7 15	9 5 3 5 6	3 8 10	7763 9564 9531
7 · 2 7 · 3 7 · 4	856511[FRV 856513FFRH 856513FFRD	6 - 8 - 5 3 6 - 8 - 5 4	· 63 - 9 8	1 3 8 1 0	7 4 8	9868 9563 8421	13 2 9	· 25 118 - 29	2 2 4	9295 9319 9384
715 716 717	856513FFRY M36 '54PIC, M3654PIC!	6 - 8 - 5 5 6 - 8 - 5 6 6 - 8 - 5 7	- 193 48 - 6 12	8 13 23	10 4 6	. 9949 . 9667 . 998	8 1 1 1 7	- 5 9 2 8 1	8 5 5	9469 8318 9940
7 ! 8 7 ! 9 7 2 C	M32 159P(C- M32 1P 5P1C- RESISTOR	6 · 8 · 5 8 6 · 8 · 5 9 6 · 8 · 60	-344 -369 103	10 14 12	9 4 6	.9986 9998 9884	20 30 10	1 8 5 1 2 5	6 7 8	9983 9285 8973
72: 72: 723	ДРММ36С1РД ДРММ36С2РД ДРММ36С3РД	5 · · · · · · · · · · · · · · · · · · ·	- 199 -896 -985	1 4 6 9	22 40 19	9794 9954 9992	- 36 - 18 - 1	176 - 17 - 219	102	5299 8261 9911
724 725 7 26	4 PMM 3 6 C 4 P A 4 PMM 3 6 C 5 P A 4 PMM 3 6 P 3 P A 4	5 · · 4 5 · · 5 5 · · 6	-360 -426 -404	· 26	17 29 6	9926	11	- 149 - 140 - 180	1 6 2	9981 9659 9995
727 728 729	4PMM36C1PF 4PMM36C2PF 4PMM36C3PF	5 - · · · · · · · · · · · · · · · · · ·	-357 -407 -719	11	6 4 8	9995 9998 9997	1 15 - 19	-214 -251 -504	6 5 7	9 9 8 4 9 9 9 2 9 9 9 6
730 73: 732	4PMM36C4PF 4PMM36C5PF 4PMM36P1PFC 5	510 511 512	-551 31 -437	1 1 8 7	6 5	9995 8457 9997	20 10 11	- 5 6 9 - 2 9 3 - 2 5 8	5 2 3	9998 9998 9997
723 734 735	APMM36P3PFO 5 APMM36P5PFO 5 APMM36R(PF	513 514 515	- 4 6 6 - 6 1 4 - 6 7 9	1 2 7 1 2	5 4 5	1998 1999 1999	1 4 8 15	-273 -360 -438	4 3 5	9995 9998 9997
736 737 736	ДРММЗБЯДРЯ Дрммзбянря Дрммзбязря 2	\$16 \$17 \$18	· 283 326 - 445	1 1 1 7 6	4 12 35	9995 9958 9865	1 1 9	- 29 4 - 4 - 23 1	20 19	9996 0548 9832
739 740 741	APMM36F3PF4 M35 3P11 1P M35 3F11 5P	\$ 19 \$ 20 \$ 21	-428 -394 -417	1 6 1 8	13 6 26	9980 9994 9924	14 11	-216 -199 -178	5 4 7	9985 9990 9964
742 743 744	M35 3P17P M38 6P11 7P APM733C315	5 · · · 22 5 · · · 23 5 · · · 24	- 278 - 204 - 23	1 1 2 1 5	30 3 5	9738 9996 9890	· 24	- 201 - 199 - 16	77	7957 9999 9070
745 746 747	APM133C308 APM133C30C(R) APM133C293	5 · 25 5 · 26 5 · 27	760 - 731	· 4 · 3 29	2 2 2 2	.9979 9051 9983	· 10 · 13	13 2 - 124	3	9897 7994 9980
741 749 750	MMVRESSMEA MMURESSMEA MMJREELMEA	5 · · · 28 5 · · · 29 5 · · · 30	1 1 - 1 - 2 2 5	- 7 0 13	13 2 4	4841 2064 9993	0 15	26 0 108	0	1 0000 1 9567

TABLE B.1 (Continued)

				VERTICAL	LDADING DN	12.4		LATERAL	LOADING ON	LY
GAGE	GAGE	POSITION	SENS!TIV!	TY/100%	ERROR OF	CORRELATION	SENSITI	VITY, 100%	ERROR DE	CORRELATION
NUMBER	NAME		VERTICAL	OR(FT	Estimate	COEFFICIENT	DRIFT	LATERAL	Estimate	COEFFICIENT
751 752 753	APMIZZRLMA AMMIZZRMA AMVREZZMQA	5 · · · 31 5 · · · 32 5 · · · 33	· 672 · 40	0 2 2 2 0	1 1 4 9	2563 9992 9785	0 1 0	· 144 36	0 2 6	1 0000 9997 9344
754 755 756	AP 2 2 3 8 C 2 P A AP 2 2 3 8 C 3 P A AP 2 2 3 8 C 4 P A	5 · · 34 5 · · 35 5 · · 36	- 1664 0 0	3 0 0	7 0 0	9999 1 0000 1 0000	- 1 & 0 0	- 49 C	8 0 0	9631 1 0000 1 0000
757	AP2238P3PA S	5 · · 37	- 659	9	7	9998	8	- 7 a	3	9951
754	AP2238P3PA2	5 · · 38	- 48 <i>0</i>	10	1 4	9981	7	- 102	1 2	9649
759	AP2238P3PA4	5 · · 39	- 396	8	8	9990	9	- 102	2	9990
760	APZZ38RHPA	5 40	1 f	13	5	9567	0 . 1	76	2	9980
761	APZZ38RDPA	5 41	0	0	0	' 0000		6	0	! 0000
762	APZZ38RLPA	5 42	- 1 1 5 5	8	5	9995		- 12 '	2	9996
763	APMI39C315	5 · - 43	-635	4	1 1	9993	1 8	- 5 9	5	9757
764	APMI39C308	5 · - 44	-617	1 2	1 0	9994	1 6	- £ 2	4	9829
765	APMI39C300	5 · - 45	-600	2 1	2 2	9974	7	- 7 4	4	9906
765	APM2390293	5 · - 46	- 744	5 6	4.4	9947	1 2	- 1 1 0	3	9972
767	APM2420315	5 47	- 639	7	6	9998	2 0	- 6 7	6	9666
768	APM2420308	5 48	- 597	- 1 4	1.1	9991	5	- 8 1	3	9970
769	APMZ42C300(R)	5 49	23	- 10	4 4	4276	· 19	5 C	6 8	148!
770	APMZ42C293	5 50	· 627	5	8	9996	&	- 1 2 3	5	9960
771	615P3MMRH	5 51	82	10	1 1	9333	7	3 9	7	9485
772	816P3MMRD	552	125	1 2	19	9 2 9 2	12	12	15	601E
773	816P3MMRV	553	10	- 7	114	2 5 0 2	- 40	-1	54	3303
774	H23P17MFP(U)	554	149	1 1	31	9 3 3 3	32	-143	30	8766
775 776 777	H23 9P16MFP{HSU H23 9P16MFP{HSU B24P10 SMMRH		478 ·536 ·6	13	6 7 4	9996 9996 9674	10 3 6	-57 -9 19	5 5 3	9752 4669 9586
778	824P10 5MMRD	5 · · · 5 8	144	1 6	7	9914	15	16	4	9701
779	824P10 5MMRY	5 · · · 5 9	124	8	1 3	9694	3	15	8	7100
780	W36P2MZ(D)	5 · · · 6 0	- 4	1 1	3	9825	7	1	2	9278
781 782 783	ДРММ4 4 С 1 РД ДРММ4 4 С 2 РД ДРММ4 4 С 3 РД	5-A- 1 5-A- 2 5-A- 3	- 1050 - 1054	0 1 9 1 7	0 1 4 7	1 0000 . 9996 . 9999	• 4 • 1	0 - 250 - 347	2 2 8	1 0000 9824 9988
784	ДРММ44С4РД	5 - A - 4	· 5 6 7	5	1 9	9976	· 1	315	2 9	9804
785	ДРММ44С5РД	5 - A - 5	· 4 8 1	14	2	9999	15	- 191	4	9990
786	ДРММ44РЗРД4	5 - A - 6	· 4 6 3	7	8	9993	· 2	- 234	1 0	9954
787	APMM44C1PF	5 · A · 7	· 431	8	4	9998	3	- 248	5	9992
788	APMM44C2PF	5 · A · 8	· 463	1 4	2	9999	17	- 287	6	9988
769	APMM44C3PF	5 · A · 9	· 773	6	7	9998	- 23	- 519	9	8994
790	APMM44C4PF	5 - A - 10	- 630	1 6	4	9 9 9 9	25	- 609	8	9996
791	APMM44C5PF	5 - A - 11	1	9	4	9 5 5 4	12	- 255	5	9988
792	APMM44P1PFO 5	5 - A - 12	- 468	1 3	3	9 9 9 9	9	- 277	6	9989
793	DPMM44P3PF0 5	5 - A - 13	-505	16	4	9 99	14	· 299	\$	9992
794	DPMM44P5PF0 5	5 - A - 14	-654	11	2	9 99	10	- 394	3	9998
795	DPMM44RLPF	5 - A - 15	-722	17	2	99 9	17	- 482	4	9998
796	ДРММ4 4 R O P F	5 - A - 16	- 262	12	2	9999	1 1	- 282	5	9993
797	ДРММ4 4 R H P F	5 - A - 17	0	0	0	1.0000	- 5 0	67	161	2106
798	ДРММ4 4 P 3 P F 2	5 - A - 18	- 96	12	180	2004	3 5	- 289	18	5870
799 800 801	ДРММ44РЗРF4 M43.3P11 1P M43.3P11 5P	5 - A - 19 5 - A - 20 5 - A - 21	-461 -476 -426	1 3 1 7	2 2 1 5 1 6	9951 9979 9972	8 32 19	· 246 · 238 - 229	13 22 6	9934 9757 9981
802	M43 3P12 OP	5 · A · 22	-438	· 3	32	.9870	24	- 25 1	2 8	9679
803	M4: 4P11 7P	5 · A · 23	-526	1 2	8	9995	9	- 219	4	9993
804	APM246C292	5 · A · 24	-734	2 0	25	9977	13	- 142	6	9908
805	ДРМІ 46С 285	5 · A · 25	0	0	0	1 0000	- 13	- 109	1 O	9857
806	ДРМІ 46С 277	5 · A · 26	- 545	1	1 1	. 999 1	- 2	- 166	2	9986
807	ДРМІ 46С 270	5 · A · 27	- 432	- 6	1 1	9985	16	- 204	6	9974
808	APZZ46C3PA	5 - A - 28	- 1492	10	5	9999	- 3	- 183	3	9992
809	APZZ46C3PF	5 - A - 29	O		2	1284	0	0	1	2557
810	APZZ52C3SF	5 - A - 30	- 696		8	9997	15	336	6	9993
511	AS 275 2C 35A	5 · A · 31	- 1	0	1	. 1538	0	0	1	1921
812	APM 26 2C 1O 1	5 · A · 32	- 471	7	17	. 9971	6	- 175	5	9981
813	APM 26 2C 094	5 · A · 33	- 409	11	30	9889	3	- 187	6	9969
814 815 816	APM162C086(R) APM162C078 APM162RL1A	5 · A · 34 5 · A · 35 5 · A · 36	- 1 •	10 0	40 0	2787 1 0000 1 0000	- 4 0 0	2 0 0	13	0748
817	APMIEZRDIA	5 · A · 37	35	19	34	4649	28	· 47	24	5145
818	APMIEZRHIA	5 · A · 38	52	18	36	4027	28	· 40	16	5696
819	ASMMEECISP	5 · A · 39	-729	18	6	9999	10	67	4	9934
8 2 0	43MM66C2SF	5 - A - 40	-943	24	6	9939	10	163	4	9986
8 2 '	45MM66C35F	5 - A - 41	-968	16	7	9939	5	219	6	9982
8 2 2	45MM66C4SP	5 - A - 42	-613	16	63	. 9788	21	159	33	8919
823	ASMM66C55F	5 - A - 43	- 569	2 2	5	. 5799	2 2	154	6	8977
824	M59 5P 5P(AC)	5 - A - 44	- 471	1 7	3	. 7799	1 1	- 1 1	4	7658
825	M59 5P 5P(FCO)	5 - A - 45	- 267	1 3	2	. 7799	6	- 9	2	7925

TABLE B.1 (Continued)

	VERTICAL LOADING ONLY RGE GAGE POSITION SENSITIVITY/100°. ERROR OF CORRELATION					16.4	LATERAL LOADING ONLY				
GAGE Number	GAGE NAME		SENSITIVI VERTICAL	TY/100% DRIFT	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSIT!! DRIFT	LATERAL	ERROR OF Estimate	CORRELATION COEFFICIENT	
626 827 828	M59.9P SP(FC1) M4855w(BM5u) B56P8MM5(BM)	5 - A - 4 6 5 - A - 4 7 5 - A - 4 8	- 322 60 - 44	14 19 12	3 30 15	9999 5327 9143	3 7 7	8 4 3 1	3 3 7 7	7101 757: 9327	
829 830 831	M4855W(BMSL) B56P8MZS(BM) B40S9MMP(C)	5 - A - 49 5 - A - 50 5 - A - 51	0 - 106 586	9 17	0 4 (5	1.0000 8:77 998	0 8 19	- 1 1 5 5 7	0 2 4 5	1 0000 9007 9905	
832 833 834	864P8MMS(8M) H23 9\$195 B2459 SMMRV(C)	5 - A - 5 2 5 - A - 5 3 5 - A - 5 4	5 1 1 2 5 - 8 2	2 1 1 5 1 7	1 1 10 6	8838 9781 9939	3 1 3 9	5 · 30 · 34	10 7 3	8936 8755 9742	
835 836 837	B2459 \$MMRD(C) B2459 \$MMRH(C) H23 9516P(HSU)	5 - A - 5 5 5 - A - 5 6 5 - A - 5 7	* 8 9 1 2 35 1	1 5 1 1 1 1	6 6 4	9949 8945 9997	6 8 9	- 28 - 35 80	5 4 7	889C 9668 9857	
838 839 840	H23.9516P[HSL] H23P17MFP[L] W44P2M2[D]	5 - A - 5 8 5 - A - 5 9 5 - A - 6 0	-613 -134 -1	17 12 12	9 3 6	9996 9990 . 9536	7-4 9 4	30 - 97	7 3 4	9373 9980 7153	
841 842 843	M23 954 5P(HS0) M23 954 5P(HS1) H24 1P8 5P(HSL)	5 - 8 - 2	- 122 6 494	14 12 - 2	5 27 102	. 9981 4761 9135	10 · 22 3	-111 145 66	4 31 47	9961 8618 5343	
844 845 846	H24 (P8 5P(HSU) H24 (P13 9P(C) H29 3P(7 8RH	5-8 4 5-8 5 5-8 6	-515 19 36	5 1 6 6	7 4 6	. 9996 9710 . 8995	7 15	- 167 36 40	3 4 6	9994 9857 9605	
847 848 849	H29 3P17 8RD H29 3P17 8RL H31 9P14S(C)	5 · B · 7 5 · B · 8 5 · B · 9	-875 -161 -47	5 19 11	4	9999 9990 9936	5 18 - 21	-92 -183 -121	3 5	9978 9981 9933	
850 851 852	832P5F1RH(C) 832P6F(RD(C) 832P6F1RV(C)	5 - 8 - 10 5 - 8 - 11 5 - 8 - 12	56 -60 -158	16 13 11	5 3 5	9697 9982 9986	2 2 9 7	22 - 16 - 4	6 3	9643 8458 7577	
853 854 855	M31 8P11W M31 8P10 5P H37P2CP	5 - 8 - 13 5 - 8 - 14 5 - 8 - 15	- 255 - 301 - 251	8 20 17	6 : 3	9 968 9983 9997	8 10 15	-74 -149 -225	4 3 4	9919 9992 9991	
856 857 858	H37520P(CU) H37520P(CL) H37519P(C)	5 - 8 - 1 6 5 - 8 - 1 7 5 - 8 - 1 8	- 221 - 179 - 190	1 2 20 1 7	3 8 3	9997 9969 9996	5 27 21	215 205 216	6 9 9	9983 9964 9967	
859 860 861	H37 4520P(C) 84058 5MFRV(88) 84058 5MFR0(88)	5 - 8 - 1 n 5 - 8 - 2 0 5 - 8 - 2 1	-22: 38 -124	15 13 13	& & &	9975 8588 9935	7 10 22	227 27 76	7	9 \$ 7 9 8 4 8 4 9 \$ 8 6	
862 863 864	840\$8 5MFRH[88] H44\$20P[[P] H45 4521P[C]	5 - B - 22 5 - B - 23 5 - B - 24	-198 -178 -387	17	11	9951 .9945 .998	20 . 8	44 273 308	8 12 3	9621 9655 9998	
865 866 867	H45 4521F101 H41F2OFEC: H47 9F9F1C!	5 · 8 · 25 5 · 8 · 26 5 · 8 · 27	-388 12 476	15 5 12	5 6 5	9997 6467 .9997	8 - 7 14	301 84 -192	6 e	9991 9764 9953	
865 869 376	846P6 2MMRY(88] 848P8 2MMRD(88) 848P8 2MMRH(88)	5 - 8 - 2 9	· 72 · 1 52	8 0 20	14 3 10	9479 2175 8997	3 0 2:	- \$ 0 - 45	8 0 7	1614 1 0000 8941	
877 872 803	HAI 6P20FICI BABP17MMP[Ci] BABP12MMP[CO;	5 - 8 - 3 1 5 - 8 - 3 2 5 - 8 - 3 3	63 82	- 1 - 4	2 1 1 1 9	. 1457 9139 8754	0	0 13 23	7 2	368 / 6702 9887	
874 875 576	848CDIP(C) 155 9P2PFC: H48 5P10P(C)	5 - B - 34 5 - B - 35 5 - B - 36	4 7 0 0	4 0 0	0	7485 1 0000 1 0000	- 6 • •	- 3	7 C O	5 1 3 2 1 0000 1 0000	
877 878 874	H5 (F) 4P (CU) (5 1P (4P (CL)) H48P (8P) (2	5 - B - 3 * 5 - B - 3 8 5 - B - 3 9	149 366 -221	13 12 15	3 4	9982 9997 9996	7 10 15	- 287 - 244 - 306	4 3 3	9996 9997 9997	
880 681	M51P18P[C] M56P8W(BM5UD) M56P8W(BM5UD)	5 - 8 - 40 5 - 8 - 41 5 - 8 - 42	- 19¢ - 165 - 8¢	1 8 2 1 - 5	4 41 39	9993 9259 6245	1 1 63 -61	- 273 - 61 - 80	3 37 34	9997 5484 8898	
8 8 1 8 # 4 8 # 5	MSAPAW (BMSUD) MSAPAW (BMSUD) #ESISTOP	5 - 8 - 4 3 5 - 8 - 4 4 5 - 8 - 4 5	· 158 O · 2	4 & 0 - 3	19 0 4	9892 1 0000 6499	6.5 0 - 8	- 9 & 0 4	30	7665 1 0000 4923	
8 8 8 8 8 7 8 8 8	M40SIWIBMSUI 856P&MMP(&M) M68SSW:BMSUI	\$ -8 -46 5 -8 -47 5 8 -48	- 30a - 99	12	36 45 0	9743 8217 1 0000	10 22 0	- 44 - 133 0	\$ 21 0	9706 9770 1 0000	
8 8 9 8 9 0 8 9 1	856P8M2P[8M] M31 8P10M H16512P(0U)	5 - 8 - 4 9 5 - 8 - 5 0 5 - 8 - 5 1	-50 -327 -60	4 15 75	23 21 5	7594 9924 9945	- 6 12 10	-53 -159 56	12	9127 9995 9938	
897 893 894	H16512010M1 H16512P(CL) H16512P(C)	5 - 8 - 5 2 5 - 8 - 5 3 5 - 8 - 5 4	- 60 - 9 8 - f	19 10 14	\$ 23 3	9948 9239 9862	20 16	54 51 -13	7 10	9796 9539 7487	
895 896 897	HIR 6585/C(HIZPI4P(C) H ZPI4P(C)	\$ - P - 55 \$ - B - 56 \$ - B - 57	6 9 3 3 · 3	16 15	5 3 4	9934 9963 9842	8 1 1 7	33 - 19 - 18	3 3	9908 8719 9298	
***	#16P8P1C H23520P1C) RESISTOR	\$ - 8 - \$ 8 \$ - 8 - 5 9 \$ - 8 - 6 0	138 157 0	1 6 1 2 0	4 3 4	9964 9994 2562	17 6 - 4	107	1 3	8398 9997 5125	

TABLE B.1 (Continued)

		VERTICAL LOADING ONLY					LATERAL LOADING ONLY				
GAGE Number	GAGE	POSITION	SENSITIVI VERTICAL	TY/100% DRIFT	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SEMSITIV: Drift	TY/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	
901 902 903	864CGIIP 864CGIIS 864P4IIP	4 · · ! 4 · · 2 4 · · 3	-51 -74 0	17 7 0	20 11 0	.9131 9698 1 0000	13 9 7	· 9 · 10 · 38	3 ! 4	8389 9317 9681	
904 905 906	864P4ZZS 864P8ZZP 864P8ZZS	4 · · 4 4 · · 5 4 · · 6	-219 -107 -121	8 8 7	1 & 1 1 2 2	.9867 .9831 9458	5 8 2	- 5 2 - 5 2 - 3 9	3 4 9	9906 9794 8799	
907 908 909	B64COMZP B64COMZS B64P4MZP	4 · · 7 4 · · 8 4 · · 9	- 120 - 42 - 112	8 9 10	25 4 21	9333 9930 9496	1 2 5 5	- 2 1 8 - 3 3	3 3 4	9070 9189 9647	
910 911 912	864P4MZS 864P8MZP 864P8MZS	4 10 4 11 4 12	- 146 - 12 - 140	4 9 7	2 1 2 1 6	9584 6311 9964	5 6 6	- 50 - 31 - 62	5 5 4	9752 9344 9877	
913 914 915	864COMFP 864COMPS 864P2MFP	4 13 4 14 4 15	- 27 - 65 - 149	7 1 3 2 4	13 20 116	.8369 9125 .6256	4 (4 8	-6 -8 -10	2 5 2	7032 7567 9106	
916 917 918	864P2MF5 864C0F1P 864C0F1S	4 16 4 17 6 18	· 68 - 59	0 7 8	2 10 5	1842 9696 9889	0 9 6	• 6 • 2	: 3	2136 9437 6058	
9 1 9 9 2 0 9 2 1	864P6F1P 864P6F1S 864S42ZP	4 19 4 20 6 21	38 10 -98	6 4 6	13 10 16	.6794 3456 9541	8 4 11	- 15 - 41 - 5	6 3 3	6098 9874 9338	
922 923 924	86454275 8645827P 86458275	4 - · · · · · · · · · · · · · · · · · ·	- 115 - 125 - 64	9 10 8	5 9 16	.9968 9910 9249	1 1 15 4	28 43 16	3 5 7	.9860 .9841 8089	
925 926 927	# 6 4 5 4 M Z P # 6 4 5 4 M Z S # 6 4 5 8 M Z P	4 25 4 26 4 27	- 9 2 - 1 9 0 - 8 3	45 6 73	9 1 2 3 3 0 0	7312 9723 .3531	7 7 12	10 20 24	5 3 4	8716 9678 9693	
928 929 930	8	4 · · · · · · · · · · · · · · · · · · ·	- 122 - 88 - 80	64 66 14	211 218 23	5202 4679 .9179	1 2 8 8	39 9 12	2 3	9887 9619 9629	
931 932 933	#\$456F1P #6456F15 #84CDHHRH	4 31 4 32 4 33	-50 -20 17	43 113 12	122 379 5	5232 .3482 .9361	10	9 25 - 5	3 3 3	9166 9850 8275	
934 935 936	B64CDHHRD B64COHHRV B64P71IRV	4 - · 34 4 - · 35 4 - · 36	·3 21 50	1 1 9 6	6 7 14	.9500 .7874 7845	6 7 10	8 5 - 27	2 3 4	9375 8972 9227	
937 938 939	864P71IRD 864P71IRH 864P11FIRY	4 · · · · · · · · · · · · · · · · · · ·	23 140 -435	5 - 1 10	14 11	8000 9779 9988	2 8 4	- 2 29 91	6 3 2	2053 9823 9990	
940 941 942	BS4P11FIRD BS4P11FIRH BS4P13FFRV	440 441 442	- 168 - 23	· 35	12 37 11	9432 .8250 .7588	7 - 1 1 3	-32 -45 97	2 1 4 4	9805 8693 9963	
943 944 945	864P13FFRD 864P13FFRH 864S7IIRH	443 444 445	-272 13 78	1 3 7	4 6 6 9	9453 9229 9524	1 0 2	116 -3 8	1 6 8 4	9598 1892 .7627	
946 947 948	8645711RD 8645711RV 864511F1RH	4 46 4 47 4 48	77 - 1 65	16 11 10	13	8781 8784 .9868	13	9 - 14 111	6 7 14	5269 6023 9662	
949 950 951	864511FTRD 864511FTRV 864513TTRH	449 450 451	-424 -34 0	12	16	.9972 .9463 1 0000	· 3 0	· \$ 2 · \$ 2 0	5 7 0	9788 9747 1 0000	
952 953 954	86451311RD 86451311RV H61,2520P(CU)	452 453 454	- 210 - 14 - 443	25 9 13	46 13 8	9384 8117 9993	- 1 - 5 - 4	-11 -5 330	1 2 4 4	3841 7534 9997	
955 956 957	M5958P(C) APM146C112 APM146C105	4 · · · · · · · · · · · · · · · · · · ·	- 406 - 418 - 381	13 -10 -17	9 17 15	9990 , 9960 , 9954	. 9 . 1	202 -83 -106	3 8	9997 9967 9860	
958 959 960	APM146C97 APM146C90 H60P19(D)	4 5 8 4 5 9 4 6 0	-516 -127 -2	- 32 11	31 27 6	.9921 8281 .9367	10 9 12	-145	16	9704 9964 9547	
961 962 963	M61P14P(G) M61P11.1P M61P10W	4-A- 1 4-A- 2 4-A- 3	0 - 449 - 408	17	o 5 3	1 0000 9998 , 9999	o 5 7	- 268 - 220	0 2 3	9999	
764 765 766	ME 1 P EW ME 1 P 2W ME 1 C DW	4 · A · A 4 · A · S 4 · A · S	- 394 - 347 0	12 15 0	3	. 9996 . 9999 1 . 0000	9 8 0	-127	2 2 0	9992 9881 1 0000	
967 968 969	M6 15 2W M6 15 4W M6 15 6W	4 · A · 7 4 · A · 8 4 · A · 9	- 372 - 310 - 422	13 11 15	3 4 3	9999 9997 9999	6 7 - 18	29 63 127	12	9858 9961 9738	
970 971 972	M6158W M6159.5P M61510W	4 - A - 10 4 - A - 11 4 - A - 12	-358 -372 -366	11	:	9997 9996 9998	1 8 5	150 185 205	3	9996	
973 974 978	M61510.5P M61511 1P M61512W	4-A-13 4-A-14 4-A-15	- 282 - 394 - 420	15 -57 13	73	.8340 .8790 .9997	- 11 - 1 - 7	217 267 268	4 8 7	9962 9978 9946	

TABLE B.1 (Continued)

GAGE GAGE POSITION			•	ERTICAL	LOADING ON	ILY	LATERAL LOADING ONLY			
CAGE Number	CACE	POSITION	SENSITIVIT VERTICAL	Y/100% DRIFT	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITI Drift	VITY/100% LATERAL	ERROR OF EST: MATE	CORRELATION COEFFICIENT
976 977 978	M61512 5P M61513W M61514P	4 - A - 16 4 - A - 17 4 - A - 18	- 1 - 45 i - 44 i	0 3 10	1 2 2 6	2301 .9984 9958	. 2 3	283 286	11	1145 9967 9968
979 986 981	261CDW 261S2W 261S4W	4 - 4 - 19 4 - 4 - 20 4 - 4 - 21	- 8 4 6 - 4 4 5 - 5 2 3	1 2 1 1 1 0	9 3 4	9398 9999 9999	5 2 8	5 23 59	2	5614 5895 9883
9 8 2 9 8 3 9 8 4	76156W 20158W 26159W	4 - 6 - 2 2 4 - 6 - 2 3 4 - 6 - 2 4	- 3057 - 862 - 495	13	15 7 8	9995 9999 9998	2 9 1	177 182 210	3 5 3	9994 9581 9991
985 986 987	261510W 261510 5P 261510 9P	4 - A - 25 4 - A - 26 4 - A - 27	- 1245 - 1569 - 1450	3 ' 5 - 16	34 77 65	9985 9946 9952	6 4 . 9	292 353 345	3 3 3	9997 998 998
988 989 390	26196W WO19131 99 EMIZIOW	4 - A - 28 4 - A - 29 4 - A - 30	-1198 -1270 -1564	15 38 24	4 1 35 49	9975 9984 9978	- 7 3 3	120 82 361	8 5 3	9 8 6 6 9 9 1 8 9 9 9 8
991 992 953	W615M2O 1P H56 1521P H6153W	4 - A - 3 : 6 - A - 3 2 4 - A - 3 3	- 1027 - 1074 675	3 6 10	4 0 4 8 4	9965 9954 9999	- 9 10 3	309 357 60	3 8 7	9998 9948 9735
994 995 996	H 6 1 P 5 W H 6 1 S 5 W H 6 1 S 7 W	4 - A - 34 4 - A - 35 4 - A - 36	6 6 6 8 0 5 5 · 9	6 3 7	4 9 2	9999 9995 9999	2 1 6	104 147	4 4 2	9903 9970 9997
997 998 949	H61PTW H6159W H61511W	4 - 6 - 37 4 - 6 - 38 4 - 6 - 39	139 - 195 436	1 3 5	2 4 3	9993 9989 9999	0 2	4 2 309 - 2 2 4	3 3	9886 9997 9998
1000	#61911W #61513W #61514W	4 · A · 4 C 4 · A · 4 · 4 · A · 4 ?	5 5 3 5 2 2 8 4	7 0 7	\$ 1 6 4	9998 9953 9995	0 3 2	- 150 255 281	2 6 2	9995 9986 9995
1003	H61914W H615'5W H61516 5P	4 · A · A 3 4 · A · A 4 4 · A · 4 5	2 6 9 1 4 9 - 2 1	, . , :	7 3 4	9982 9985 9887	2 ° 4 6	- 272 292 272	* 2	9991 9998 995
1006 1007 1008	M61916 SP H61518W H61520W4	4 · <u>6</u> · 4 6 4 · <u>6</u> · 4 7 4 · <u>6</u> · 4 8	0 37 371	297 11	0 4 % 1 7	1 0000 5509 9999	9 5 6 3 1 3	· 267 · 856 316	407 7	9 9 9 3 5 4 3 6 9 9 8 9
1009	H61P2OWL H57 #P9\$(C) B56P8)[P(C)	4 £ 4 5 £ 4 5 £ 4 5 £ 5 £ 5 £ 5 £ 5 £ 5	398 150 101	15	3 1 8 1 4	9999 9529 9272	6 6 1 1	· 327 - 120 - 34	3 8 8	9998 9893 8365
1012	ASM276C098 ASM276C105 ASM276C112	4 - A - 5 2 4 - A - 5 3 4 - A - 5 4	4 & · 5 9 § 6 8 J	5 1 6 0 5 8	37 39 70	9912 9935 9863	6 3 2	126 114 0 93	1 3 4 2	9794 9972 9991
1015	45MM66C554 45MM66C454 45MM66C354	3 · 4 · 5 5 4 · 4 · 5 6 4 · 4 · 5 7	860 771 768	5 8 15	5 5 6	9999 9999 9999	- 2 3 8	488 517 464	8 6 4	5994 556 5998
1018	ASMMESCISA ASMMESCISA WEBS.MZIDI	4 - A - 5 8 4 - A - 5 9 4 - 4 - 6 0	525 -524 0	8.8 1.1 9	1 (2 0 5 4	1990 1998 9664	18 8 10	-376 290	673 2 4	0265 9995 7927
1027	872COMMRH 872COMMRD 872COMMRV	4 · 8 · 2 4 · 8 · 3	- \$ 5 - 6 1 - 1 0 5	9 11 11	10 6 3	9594 9884 9987	6 6 9	4 9 5	3 2 2	\$430 9683 9712
1024	872P12 SFIRV 872P12 SFIRD 872P12 SFIRH	4 · B · 4 4 · B · 5 4 · B · 6	140 147 92	7 14 8	3 5 5	9989 9981 9895	9 2 3	- 9 2 4 3 - 2 4	8 3 3	9888 9888 9668
1028	872512 SFIRH 872512 SFIRD 872512 SFIRV	4 · B · 7 4 · B · 8 4 · B · 9	106 - 236 - 33	10	6 3	9799 9988 9931	3 10 -25	9 1 1 0 7 - 4 3	7 6 6	9854 9905 9848
1030	262 500w 26500w 26700w	4 · 8 · 10 4 · 8 · 1 · 4 · 8 · 1 ·	686 623 627	7 8 10	7	9997 9997 9999	° 7	- 2 2 2	1 1 2	2966 9611 7342
1033	269CQw 271CDw 263S6w	4 - 8 - 13 4 - 8 - 14 4 - 8 - 15	- 653 - 601 - 714	6 f 4 1 1	; ;	9995 9993 9999	8 8 6	124	2 2 2	9374 9038 9997
1036	7835'1W M63CDW M63S'1 1P	4 - 8 - 1 6 4 - 8 - 1 7 4 - 8 - 1 8	1 0 1461	0 0 2 4	2 0 1 2	2598 1 0000 9987	· 1 · 5	0 2 2 5 7	1 5 2	4192 3722 9998
1039	M63514P M6500w M655'' IF	4 - 8 - 1 9 4 - 8 - 2 0 4 - 8 - 2 1	- 504 - 414 - 451	14	4 6 11	9994 9995 9987	2 0 8	321 5 268	3 4 3	9998 4582 9998
1042	M655'4P M65P'4P M65P'1P	4 · 8 · 2 2 4 · 8 · 2 3 4 · 8 · 2 4	· 557 · 509 · 466	0 1 4 3	20 4 8	9971 9998 9994	· 7 18 4	333 -316 -272	6 5 7	***2 ***5 ****
1045	M67CDW M67511 1P M67514P	4 · 8 · 25 4 · 8 · 26 4 · 8 · 27	0 - 430 - 762	0 6 -140	0 7 249	1 0000 9995 6967	° 4 3	0 250 282	° 7 8	1 0000 7979 9981
1048	M69CDW M69S11 IP M69S14P	4 - 8 - 28 4 - 8 - 29 4 - 8 - 30	C - 438 - 335	0 5	0 53 79	1 0000 9697 9434	0 25 - 10	0 243 273	° 5	1 0000

TABLE B.1 (Continued)

				VERTICAL	LOADING ON	LY	LATERAL LOADING DNLY			
GAGE NUMBER	GAGE NAME	POSITION	SENSITIVI VERTICAL	TY/100% DRIFT	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENS!T!V! DRIFT	11/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1051 1052 1053	M69P11,1P M69P14P M71COW	4 - 8 - 3 1 4 - 8 - 3 2 4 - 8 - 3 3	- 4 6 2 0 - 3 8 2	0 0 15	31	9897 1 0000 9999	- 2 6 1	0	3 0 2	8087 1 0000 0777
1054 1055 1056	M71510 1P M71513P M6358.5P	4 - B - 34 4 - B - 35 4 - B - 36	-382 -507 -377	10 11 13	4 3 4	9998 9999 9998	2 9 5 3	233 351 141	2 2 5 3	9999 9928 8993
1057	169COP 168COP F68CONA	4 - 6 - 37 4 - 8 - 38 4 - 8 - 39	3.6 · 5	1 0 0	5 4 0	9933 5103 1 0000	0	· 5 o c	6 3 0	3201 2546 1 CODO
1060 1061 1062	H63CDP H65CDP H65S13W	4 + 8 + 4 0 4 - 8 - 4 1 4 - 8 - 4 2	426 882 325	6 2 4 5	6 9 7 4	9995 9693 9996	- 3 1 4 8 1	150 233	63 2	6423 9149 9998
1063 1064 1085	H67COP H69P13W H69COP	4 · 8 · 4 3 4 · 5 · 4 4 4 · B · 4 5	315	0 8 0	•	1 0000 9997 1 0000	0 2 0	- 226 0	0 1 0	1 0000
1066 1067 1068	H69513W H71COP 161COP	4 - 6 - 4 6 4 - 8 - 4 7 4 - 8 - 4 8	345 608 425	8 15 9	3 4 5	9997 9999 9997	0 1 2 1 2	. 7 3	6 4 8	1 0000 7414 6862
1069	F61CON2 86458 5MMRV 86458 5MMRD	4 - B - 4 9 4 - B - 5 0 4 - B - 5 '	· 14 · 42 · 119	1 0 7 1 3	3 7 7	9925 9715 9955	4 5 5	2 23 22	4 8 5	5524 8413 9200
1072	86458 5MMRH H65520P(CU) H65520P(ACL)	4 · 8 · 5 2 4 · 6 · 5 J 4 · 8 · 5 4	-318 -311 -291	- 2 6 9 1 1	157 7 3	5989 9990 9998	2 4 6 · 2 · 2	- \$ 345 320	255 5 3	4431 9996 9989
1075	H65520P[FCL] ASM276C090 ASM262C65	4 - 8 - 5 5 4 - 8 - 5 6 4 - 8 - 5 7	- 268 - 357 - 602	. 6 34	4 10 15	9995 9980 9988	C 4 9	289 133 -186	2 2	9999 9996 9996
1078	ASMZ62C60 ASMZ62C55 H68519P{D}	4 - 11 - 5 8 4 - 18 - 5 9 4 - 18 - 60	499 · 428 3	131 -16 -13	413 20 5	2859 9940 9692	260 E 13	- 246 - 144 - C	65 ! 2 2	1937 9995 9610
1081	B&OCOZZP B&OCOZZS B&OPZZZP	2 · · · ! 3 · · · 2 3 · · · 3	· 130 273 - 93	1 2 4 5	4 3 4	9988 9997 9968		° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	2 1 2	9038 5907 4215
1084 1085 1086	BBOP3775 BBOP877P BBOP8775	3 · · 4 3 · · 5 3 · · 6	174 -50 84	3 2 8	3 4 2	9990 9886 9977	,	- 6 - 1 1 - 20	3	8919 8716 9968
1087 1088 1089	BBOCOMIP BBOCOMIS BBOP3MIP	3 · · · · · · · · · · · · · · · · · · ·	- 25 38 - 40	12	1 6 6 2	8927 8927	- 16 10 8	· 7 · 7 · 9	8 3 3	8252 8306 7899
1090	BBOP3MIS BBOPBMIP BBOPBMIS	310 311 312	94 19 33	6 4 5	3 2 4	9977 9395 9358	4 1 - 3	1 0	2 3 5	6667 1485 1599
1093 1094 1095	880COMFP 880COMFS 880P9MFP	3 13 3 14 3 15	o - t 4 1	0 15 3	o 4 9	1 0000 9872 8622	25 - 3	- 17 11	40	1 0000 0418 6735
1096 1097 1098	BBOCOFIP BBOCOFIS	3 16 3 17 3 18	- 2 1 5 9 - 1 4 7	· 10 7 9	13 1 3	5930 9977 9993	- 176 4 - 1	- 6 8 O - 3	136	6649 9384 3708
1099	880P6F1P 880P6F1S 8805472P	3 - 19 3 - 20 3 - 21	45 38 - 111	1 2 9	2 2 3	9896 9890 9991	7 8 6	- 1 3 5	2 2 2	9095 8802 9753
1102	88054225 8805822P 88058275	3 22 3 23 3 24	243 - 73 159	2 9 - 5	3 5 19	9997 9948 9736	6	-3 -13 -17	2 1 7	6231 9854 6602
1105	88054MZP 88054MZS 88058MZP	3 - · 25 3 - · 26 3 - · 27	- 30 40 12	6 4 2	2 2 4	9960 9925 6794	3	13	3 2 2	0869 9731 6772
1108	88058MZS 88057MFP 88057MFS	3 · · · 2 8 3 · · · 2 9 3 · · · 3 0	\$0 6 - 17	3 2 10	2 1 5	9955 8994 9766	. 5	· 3 · 1 17	1 1 2 4	1776 1252 9572
1111	BBOS 6 F I P BBOS 6 F I S BBOCOMMRM	3 3 1 3 3 2 3 3 3	34 48 - 3	0 1 6	7 27 10	9061 5949 6729	1 1 3 3	- 14 9 - 41	9 14 34	4654 2763 4259
1114		3 · · · 34 3 · · · 35 3 · · · 36	- 1 1 & - 6 4 - 7 &	5	2 3 2	9992 9963 9573	1 • \$ 1	- t •	4 2	9530 5427 3836
1117	880P711RD 880P711RH	2 · · 37 3 · · 38 3 · · 39	- 9 - 72 28	1 O 3	3 7 5	9861 9845 8746	4 2 4	11	4 4 5	8634 9254 6861
1120	880P11F1RD 880P11F1RH	340 341 342	• 1.4 O	17	4	9851 8795 1 0000	17 - 1 0	- 35 - 49 0	5	7376 9953 1 0000
1123	880P12FFRD 880P12FFRH	3 · · 43 3 · · 44 3 · · 45	16 - 17 - 94	1 0 8	3	9769 9885 9988	10	27 - 8 - 10	, 4 2	9928 6919 8808

TABLE B.1 (Continued)

GACE GACE POSITION				LOADING ON	11.7	LATERAL LDACING ONLY				
SAGE Number	GACE	POS1110N	SERS) T] V I VERT I CAL	DRIFT	ERROP OF	CORRELATION COEFFICIENT	SENSITI: Drift	LATERAL	ERROR OF EST, MATE	CORPELATION CUEFFICIENT
1126	8805711RD 8805711RV 880511F[RH	3 - 46 3 - 47 3 - 48	0 4 1 1 5	0 1 0 - 2	6 6 10	1 0000 9801 0689	- 6	0 2 9 5	0 1 2 3	1 0000 6425 5885
1129	8805:1F1RD 8805:1F1RV 8805:2FFRH	3 49 3 50 3 51	12 23 15	13	3 6 7	9966 5771 8855	8 2	· 43 · 49 · 13	÷	9976 9525 9801
1132	BBDS12FFRD BBOS12FFRV HB4 SSZIPICUI	3 52 3 53 3 64	- 3 - 25 - 284	7	4 5 6	0677 9756 9591	0 7 6	- 28 179	1 2 2	1566 9857 5791
1:35 1:36 1:37	H101P20P1UCI H100P20P1ACI B98COMMPICI	3 5 5 3 5 6 3 5 ?	- 6 1 - 5 2 - 5 a	13	6 9 €	5 ; · · 1 6 · 6 9 4 5 &	8 1 7	- 22 - 27 - 8	; 2 3	9 6 5 6 9 5 1 5 9 1 2 8
1138	M:0: 300W(C) M:0: 300W(C) B800WF(D)	3 · · 5 8 3 · · 5 9 3 · · 6 0	- 1 2 3 - 2 - 1	16	6 4 4	9965 9296 9284	9 4	0 - 1 6	3	8920 7944 9434
1142	M73P13P M73P12W M73P1C 1P	3 - 4 - 1 3 - 4 - 2 3 - 4 - 3	354 - 450 - 391	15	4 4 5	998 999 9996	6 · 2 - 7	63 263 202	2 2 2	9 5 5 ° 9 5 6 ° 9 9 8 °
145	M73P8W M73P6W M73P2W	3 - A - 4 3 - A - 5 3 - A - 6	383 -374 -384	6 3 8	8 4	9996 9989 998	- 24 - 11 - 1	104	ç 6	9827 9549 5467
1147	M73COW M7752A M7354W	3 · A · 7 3 · A · 8 3 · A · 9	- 397 - 347 - 463	10	4 4 4	9998 998	2 4 7	0 26 276	2 2 2	5633 9890 9997
1150	M1356N M1358W M1259W	3 - A - 1 C 3 - A - 1 C 3 - A - 1 Z	-346 -360 -381	9 3 7	3 3 3	9996 9999 9998	- 1 4 c	98 111 134	2 4	9989 5956 9997
1153	M7359 5P M73510 1P M73511W	3 · A · 1 3 3 · A · 1 4 3 · A · 1 5	0 - 377 - 433	0 1 2 5	8	: 0000 9991 9995	0 4 - 4	0 201 246	0 2 3	9 9 9 ° 9 9 5 ° 9 0 0 0 °
1156 1157 1158	M73511 5P M73512P M13512 5P	3 · A · 16 3 · A · 17 3 · A · 18	389 430 -467	9 1 2	4 2 5	9998 9999 9997	0 2 4	236 273 287	2 3 2	9 9 9 5 9 9 9 7 9 9 5 8
1159	M73513P 273C0W 27352W	3 · A · 19 3 · 4 · 20 3 · A · 2 ·	- 4 8 6 - 5 8 7 - 6 2 2	9 1 ' 1 0	4 6 5	9998 9998 9999	3 8 6	295 1 43	3	9 9 9 9 8 2 4 5 9 9 5 6
1162 1163 1164	27354W 27356W 27358W	3 · 4 · 22 3 · 4 · 23 3 · 4 · 24	- 555 - 743 - 777	3 3 7	3 32 16	9999 9958 9990	- 2 3 1	64 115 179	3 3 2	9947 9987 9994
1 6 6 6 1 1 6 7	27359W 27359 5P 273510W	2 · A · 2 5 3 · A · 2 6 3 · A · 2 7	- 744 - 716 - 902	5 13 - 2	4 3 4 9	9999 9952 9997	2 6 • 6	189 206 218	, c 5	9 5 · 6 9 9 8 3 9 9 9 4
. 168 : 169 1: 70	2735 * * F 273P 6# 273P 10W	3 A - 28 3 - 4 - 29 3 - 4 - 3 c	- 868 - 734 - 704	· 3 3 3 2	8 6 1 4 1 2	9730 9992 9994	0	325 -118 -167	387	286 1 997 7 5975
1177	#735MZ0 1P #735MZ2 0# #735E7#	3 · 4 · 3 · 3 · A · 3 · 3 · A · 3 3	- 430 - 361 - 790	5 · 3 !	2 16 5	999 995 9999	3 · 3 4	194 169 217	7 1 & 5	9972 9731 9988
1174	H78S2DP1C. H73S3W H73S3W	3 · 4 · 34 3 · 4 · 35 3 · 4 · 36	- 244 528 486	3 - 1 2	4 4 5	995 9999 9997	0 · 2 · 9	213 16 44	3 5 9	9995 7759 8822
1179	н73Р3ф и7355ф н7357ф	3 · A · 37 3 · A · 38 3 · A · 39	572 432 433	1 1 4 4	5 3 4	9998 9999 9998	• 5	- 25 72 117	3 \$ 3	9 4 8 8 9 8 6 7 9 9 6 9
1180	H73P7W H73S9W H73S11W	3-A-40 3-A-41 3-A-42	356 375 0	1 1 4 0	3 3 0	9998 9998 1 0000	8 3 0	- 13E 144 0	3 !	9983
1183	H73512W H73512W H73513W	3 · A · 43 3 · A · 44 3 · A · 45	333 355 334	2 1 3 8	3 5 5	9998 9994 9994	· 1 7 - 5	- 179 201 220	; 3 5	9998 995 9986
1186 1187 1188	H73R13W H73S14W H73S15W	3 · A · 46 3 · A · 47 3 · A · 48	342 238 118	2 9 4	6 3 4	9993 9995 9966	· 1 7 · 2	- 228 226 241	4 2 2	9994 9998 9998
1169	H73P15W H73S16 SP H73P16 SP	3 · A · 49 3 · A · 50 3 · A · 5 ·	112 - 39 - 36	· \$? 3	8 9 1 2	9904 9508 8653	- 6 6 2	- 243 258 - 237	5 3 3	9992 9997 9996
1192	H735:8W H73420W H73920W	3 · 4 · 5 2 3 · A · 5 3 3 · A · 5 4	3 - 313 - 31	12 2	4 5	3887 9997 9990	0 7 - 4	280 - 274	0 1 3	1 0000 9889 9897
1195 1196 1197	H79 SS18P(AC) 198 100P(C) 89856MMP(C)	3 - 4 - 5 5 3 - 4 - 5 6 3 - 4 - 5 7	59 - 126 262	7	4 6	9753 9927 9974	7 0 6	- 5 1 - 6 - 2 1	2 4 2	9944 5257 96 9
1198 1199 1200	H:7517W(C) RESISTOR H76519(0)	3 · A · S 8 3 · A · S 9 3 · A · 6 0	4 0	40 10 15	21 18 6	9594 5447 9575	7 · 5 · 12	2 6 • 4 • 2	7 4 6	9933 6797 7047

TABLE B.1 (Continued)

				LABITESV	LOADING ON	. *	LATERAL LOADING ONLY				
GACE NUMBER	GAGE Name	POSITION	SENSITIVI VERTICAL	TY/100% DRIFT	ERROR OF	CORRELATION COEFFICIENT	SENS:TIV Drift	:TY/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	
1201 1202 1203	275CDW 177COW 179COW	3 · 8 · 3 3 · 8 · 5 3 · 8 · 1	-533 -512 -420	1 2 4 5	4	, 9999 9998 , 9998	8 2	o 3	2 1 2	9213 5577 7582	
1204 1205 1206	179 5COW 183COW 185COW	3 - 8 - 4 3 - 8 - 5 3 - 8 - 6	0 ·363 ·240	0 1 4	0 6 5	1 0000 .9994 .9990	· 10	C 1 4 6	0 4 2	1 0000 7918 8151	
1207 1208 1209	WASPIMS 9P 183P6W RESISTER	3 - 8 - 7 3 - 8 - 8 3 - 8 - 9	- 346 - 396 - 1	9 8 0	4 3 2	9997 9999 4465	4 3 0	-111 -62 -C	2	9956 9984	
1210 1211 1212	18356W 179 556W 179 559 9P	3-8-10 3-8-11 3-8-12	-338 -475 -537	9 9 6	4 3 5	9997 9999 9998	5 · 2 · 5	65 77 148	2 3 2	99&C 9975 9994	
1213 1214 1215	W835MZO 1P W835MZ2 ON W835ZM3 9P	3 - 8 - 13 3 - 8 - 14 3 - 8 - 15	0 · 199 O	0 1 1 0	0 3 0	1 0000 9996 1 0000	c 6 0	9 4 C	5 6	9989	
1216 1217 1218	M75COM M75S10 1P M75S13P	3-8-16 3-8-17 3-8-18	-311 -411 -410	6 1.4 1.1	10	999 7 9989 9998	2 0 5	13C 205 277	? ? ?	999~ 3998 9999	
1219 1220 1221	M77COW M77S10 1P M77S13P	3 - 8 - 19 3 - 8 - 20 3 - 8 - 21	- 4 1 1 - 469 - 335	10 3	2 5 3	9999 9998 9998	4 1 1 2	1 192 244	2 3 3	8536 9995 9998	
1222 1223 1224	B80P6]]W{C} M77P13P M79COW	3 - E - 22 3 - B - 23 3 - B - 24	· 3 4 O · 3 5 9	3 0 8	3 0 3	9879 1 0000 9999	· 5 0 - 1	2 0 - 3	4 0 2	5 2 8 4 7 0000 6 8 0 5	
1225 1226 1227	M79510 1P M79513P M85COW	3 - 8 · 25 3 - 8 · 26 3 - 8 - 27	· 3 1 6 - 2 4 9 - 2 8 4	6 4 6	3 3 2	9999 9997 9995	- 1 o 2	147 175 0	3 5 2	9992 9976 3841	
1228 1229 1230	M81510 1P M81513P M81P10 1P	3 - 8 - 28 3 - 8 - 29 3 - 8 - 30	- 262 - 290 - 726	- 1 2 10	5 2 2	9993 9 9 99 9 9 99	· 4 3 6	151 161 -147	3 2 4	9 9 9 1 9 9 9 5 9 9 8 4	
123 · 1232 1233	M81P13P M83COW M83S10 1P	3 - 8 - 3 1 3 - 8 - 3 2 3 - 8 - 3 3	· 325 0 · 214	5 C	3 0	9998 1 0000 9998	2 C - 3	- 154 0 144	5 0 2	9973 • 0000 9994	
1234 1235 1236	M83513P M8150W M85510 1P	3 - 8 - 34 3 - 6 - 35 3 - 8 - 36	- 346 - 348 - 248	3 8 4	2 3 3	9999 9999 9997	- 2 - 1 c	195	1 2	9999 : 343 9948	
1237 1238 1239	M855:3P M85P10 1P M85P13P	3 - 2 - 37 3 - 5 - 38 3 - 5 - 39	195 125 209	1 1 4 3	2 3 3	9998 9998 9995	6 0 5	133 -92 -124	3 2 2	9988 9993 9995	
1240 1241 1242	F81 55(41NS 1B) M81S5 SP M83S5 5P	3 - 8 - 4 C 3 - 8 - 4 1 3 - 8 - 4 2	12 · 373 0	9 6 0	2 3 0	9842 9999 1 0000	٤ ١ ٥	- 5 £ 3 & 0	3 .	9896 9969 10000	
1 2 4 3 1 2 4 4 1 2 4 5	M83P10 1P M83P13P [73C0P	3 - 8 - 43 3 - 8 - 44 3 - 8 - 45	- 287 0 196	3 0 10	3 0 4	9997 1 0000 9988	· 3 c 5	- 1 3 3 0 2	o 2	9997 1 0000 8907	
: 246 1247 1248	17700P 18100P F8100NA	3 - 8 - 4 6 3 - 8 - 4 7 3 - 8 - 4 8	272 256 - 22	5 1 2 5	3 3 \$	9997 9995 9483	10	- 1 - 4 - 5	2 3	1136 855C 7564	
1249 1250 1251	F85CONA B8GP8MMPH B8OP8MMRC	3 - 8 - 4 9 3 - 8 - 5 C 3 - 8 - 5 1	- 5 7 3 - 4 2	3 9 6	6 4 5	9 & 2 6 9 3 5 5 9 8 2 8	- 13 7 - 1	- 2 1 - 20	3	9292 9160 9939	
1252 1253 1254	8 8 0 P 8 MMR 4 8 8 0 P 9 MF R H 8 8 0 P 9 MF R O	3 - 8 - 5 2 3 - 8 - 5 3 3 - 8 - 5 4	0 · 70 · 77	9 2	4 4 3	2534 9956 9963	1 5 - 5	· 22 - 22	1 1 2	2361 9850 9802	
1255 1256 1257	BBOP9MFRV B5COP RES STOR	3-8-55 3-8-56 3-8-57	13 319 1	2 0	5 7 1	9320 9990 3107	3 0 c	· 2 3 c	3	4655 3756 . 000c	
1258 1259 1260	RESISTOR RESISTOR H83P19(D)	3 - 8 - 5 8 3 - 8 - 5 9 3 - 8 - 6 0	5 4 2 5 - 2	2 176 10	2 8 7 3	4045 8228 9759	- 5 8 2 9 1	- 379 4	1 2 8 5 2	38 12 1460 7603	
1261 1262 1263	886C077P 886C077S 886P377P	2 · · · 1 2 · · · 2 2 · · · 3	114 -398 70	1 0 7 3	4 3 5	9961 9999 9850	6 3 0	- 1 8 7	1 2 1	9338 9338	
1264 1265 1266	886P3775 886P877P 886P8775	2 · · 4 2 · · 5 2 · · 6	- 267 68 - 183	1 9 7	3 3 1	9998 .9889 9899	· 3 14 3	· 2 · 2 3	3 4 3	6356 8868 7161	
1267 1268 1269	BS6COMIP BS6COMIS BS6P3MIP	2 · · 7 2 · · 8 2 · · 9	5 · 78 37	7 4 - 2	2 5 20	9646 9919 5864	; 3 3	2 3 - 2	2 3 11	5318 6440 2267	
1270	886P3MZS 886P8MZP 886P8MZS	2 · - 10 2 · - 11 2 · - 12	· 5 6 2 2	5 5 6	5 2 2	85 1 1 9 1 8 3 9 9 3 0	• † 1	10	2 2 2	8758 9183 9561	
1273 1274 1275	8 6 6 C Q M F P 8 6 6 C Q M F S 8 8 6 P 9 M F P	2 13 2 14 2 15	3 - 184 - 24	4 4 5	2 2 7	9094 9986 9296	2 0 2	5 6 4	3 2 2	7488 8252 6926	

TABLE B.1 (Continued)

			,	VERTICAL	LOADING DN			LATERAL	L DADING DM	, Y
GAGE NUMBER	GAGE MAME	P051*10N	SENSITIVIT VERTICAL	71.100% DRIFT	ERROR OF ESTIMATE	CORRELATION	SENSITIV! DRIFT	TY/100%	ERROR OF ESTIMATE	
1276	Baspamps Bascop P Bascop S	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	49	1 2 4 2	4 2 2	9930 9906 9378	7 6 · 2	3 6 3 5	3 1 2	9877 8053 6916
180	##### : P ##### : S ###### : S	2 19 2 20 7 21	27 - 43 - 34	6 5 9	4 2 2	9824 9962 9867	. 1 . 2 . c	. 1 . 1	2 2 2	9 4 1 5 5 4 4 1 1 1 2 2
1281	# 6 6 5 4 2 7 5 # 8 6 5 4 2 2 P # 8 6 5 # 2 7 5	2 21 2 23 2 24	- 200 16 182	1 2 7 9	2 1 2 1	9 <i>996</i> 9390 9357		22 · 1 · 8	6 2 2	7 6 6 5 2 2 9 8 8 6 4 8
1485	8 a 5 a m Z P 8 a 5 a m Z S 8 a 6 5 a m Z P	2 25 2 20 2 27	7 87 14	1 2 3 c	3 2 2	9850 9586 9689	8 0 · 4	• •	2	9 1 2 £ 8 7 5 ° 9 2 % "
288 1289 1290	##5###25 ##652### ##652##5	2 24 2 29 2 30	19 37 16	· 2 o 8	5 2 6	7844 9944 7569	· 5 · 1 3	- 1 7 5 8	5 3	9 C 3 B 6 2 9 · 9 5 · 5
2.0	83656F 6 88656F 5 84670MMRM	3 33 5 35 5 3.	19 -45 -5	9 2 6	2 3 2	5922 9892 9549	8 7 2	- 1 1	3	843 4078 8573
293 293	BBBITHHEC BBBITHHEV BBBPI BY	2 34 2 35 2 36	. 7	6 1 0 - 1	3	9895 9976 8936	4 - 7	¢ ¢	2 2 3	90:4 7:45 68:3 9783
250	\$25F # F # F # F # F # F # F # F # F # F #	2 -37 2 34 2 39	1 9 - 5 7 - 9	7 8 0	, ,	9 1 5 4 9 9 9 6 2 4 1 7	5 12	2 6 9 2 3	3 , 8	9778 9016
10	886P F RN 886P F 85 886P 28884	2 · · 4 C 2 · 4 · 2 · 4 ·	6 3 · 5	7	0 3 2	2401 9966 9778	; 10	2 2 2	2 2	9243 9874
303 304 1316	866P : 2F # BC 866P : 2F # BH 8665 7 (2 + 43 2 + 44 2 + 45	3 7	1 0 0 8	3 3 3	9957 9780 9993	. 2 . 2	2 2 6 - 3	5 4 2	9 C & 5 4 6 8 3 8 2 9 5
304 1301 1308	#8657. HL 88657: RV 8865: FT:RH	2 46 2 47 7 48	. 7	10 8 12	3 8 3 4	9988 8760 9700	. 2	6 - 2 1 - 2 2	3 5 1 €	9015 8319 5435
109 109	8865 1F182 8865 F184 8865 2FF8H	2 14 2 5 2 5	- 3 7 - c	5 4 3	: 3 5	9983 8629 7153	° 3 °	- 7 - 3 3 - 5	2 2	9356 9925 7880
1314	886512FFRD 886512FFRV -88-5521F1CM;	2 52 2 51 2 54	54 56 - 236	3 5	\$ 4 5	9725 9818 9990	· 2	- 23 - 34 173	- 2 3	97 <u>5</u> 9 9922 9990
1 5 3 · •	**4 55. P T. #65 570# #65 570#	2 55 2 56 2 57	255	· 5 - 6	3 4 8	9978 8658 6695	· 5 · 13 · · 1	179 2 7	4 2	9988 8832 9218
3 9	#85 570H #85 570H #14P3M2 .	2 · 54 2 · 54 2 · 61	3 2 6	- 9 - 7 15	6 3 4	9108 9569 9777	- 10	3 3 . 4	3	7433 8516 8186
13.	#92102ZP 89100ZZS 89284ZZP	2 · 4 · 2 · 2 · 2 · 3 · 3	403	9 7 7	17 S 7	9736 9997 9307	13 4 - 3	5.4 2.8 1.9	4 3 4	9919 984" 8844
11.4	892P42IS 892P62IP 892P82IS	2 A 4 2 A 5 2 A 6	205 197 59	27 11	12 41 22	9924 8574 6546	12	2 6 1 8 2 4	2 7 8	9829 9053 8271
1327	892CUMIP 892CCM75 892P8MIP	2 - A - 7 2 - A - 8 2 - A - 9	24 - 17 33	7 4 9	16 12 5	3988 7344 8946	9 1 6	21 14 30	3 3 5	9696 9305 9550
1337 133 1332	847P4MZS 847P8MZP 842P8MZS	2 · A · 10 2 · A · 11 2 · A · 12	- 26 - 38 - 50	7 9 16	1 8 1 9 1 8	7426 8217 9231	- 14 1 8	10 55 22	1 2 3 6	3972 9918 9241
1333 1334 1335	872COMFP 892COMFS 892P&MFP	2 · A · 1 3 2 · A · 1 4 2 · A · 1 5	6 - 168 - 100	3 4 •	14 3 7	1249 9991 9917	4 3 5	3 26	5 2 2	8101 8314 9847
1336 1337 1338	892P8MFS 892C0FLF 892C0F1S	2 - A - 1 6 2 · A - 1 7 2 · A - 1 8	- 145 2 11	14 12 - 2	6 49 21	9978 2090 2121	9 198 5	- 19 - 118 - 6	289	5590 1507 4743
1339 1340 134	892P6F1P 892P6F1S 892S42ZP	2 - A - 19 2 - A - 20 2 - A - 21	- 5 8 - 4 5 1 7	5 8 17	13 2 16	9226 9969 7590	16 7 16	6 0 - 4 6	9 2 4	7914 8655 9698
1342 1343 1344	89254215 8925822P 8925822S	2 - A - 22 2 - A - 23 2 - A - 24	- 228 112 80	1 2 9 9	49 23 20	9235 8854 9201	. 19 4 -53	65 - 29 - 3	2.6 4 1.7	6270 9432 8671
1345 1346 1347	89254M2P 89254M2S 89258M2P	2 · A · 25 2 · A · 26 2 · A · 27	3 57 - 45	17 3 5	8 11 12	9488 8967 9083	1 9 2 1	· 13 · 44 · 37	13 4 3	5075 975' 9874
1348 1349 1350	89258M25 89252MFF 89252MF5	2 - A - 28 2 - A - 29 2 - A - 30	-30	- 1 2 6	23 6 8	8623 2860 9274	- 1 1	- 1 2 - 1 - 6	6 2 2	1850 1832 1864

TABLE B.1 (Continued)

	SAGE GAGE POSITION			LOADING ON	LY	LATERAL LOADING ONLY				
GAGE NUMBER	GACE	POSITION	SENSITIVI VERTICAL	TY/100'. DR1FT	ERROR OF	CORRELATION CDEFFICIENT	SENSITI: Drift	LATERAL	EPROR OF ESTIMATE	CORRELATION COEFFICIENT
1351	89256F1P	2 · A · 3 ·	- 68	1 1	6	9909	- 1	- 5	5	4267
1352	89256F15	2 · A · 3 ·	- 49	8	4	9908	2	1 0	4	7810
1353	892P ZHARH	2 · A · 3 ·	- 54	6	6	98:6	- 4	2 8	15	5883
1354 1355 1356	892P 2HHRD 892P 2HHRY 892P711R4	2 - A - 34 2 - A - 35 2 - A - 36	· 83 · 9	7 1 1 - 3	5 3 2	9952 9892 865 '	1 C - 2	1 D 4 C	3 2 1	8539 9544 8083
1357 1358 1359	892P71 (RD 892P71 (RH 892P1 (FIRV	2 - A - 37 2 - A - 38 2 - A - 39	- 9 1 - 8 6 - 4	E 10	6 4 3	9930 997' 9714	- 1 - 2 - 3	- 1 & 2 1 9	4 3 3	\$786 1516 9538
1360 1361 1362	892P11F1R0 892P11F1RH 892P11 9FFRV	2 - A - 40 2 - A - 41 2 - A - 47	0 - 65 22	9	5 4	2312 9922 9242	o 2 5	o 8 29	! 6 5	1045 5541 9429
1363 1364 1365	892PII 9FFRD 892PII 9FFRH 892S711RH	2 · A · 43 2 · A · 44 2 · A · 45	49 17 - 67	1 2 3 1 2	3 3	9794 8485 9971	13 · 4 2	13 40 -2	3 7 4	9665 9309 0773
1366	8925711RD	2 - 4 - 4 6	· 20	10	8	9322	6	8	5	7920
1367	8925711RV	2 - 4 - 4 7	· 40		4	9928	9	- 18	4	8395
1368	892511F1RH	2 - 4 - 4 8	· 70		4	9959	7	- 28	5	9131
1369	897511F1RC 892511F1RV 892511 9FFRH	2 - 4 - 4 9 2 - 4 - 5 0 2 - 4 - 5 1	- 1 - 187 14	\$ - 1 4	5 253 5	8083 2237 6643	3 2 - 1 1	- 3 - 4 2	6 3 1 4	7615 2013 8586
1372	892511 9FFR0	2 - A - 5 2	34	1	5	9523	1	· 32	4	9589
1373	892511 9FFR4	2 - A - 5 3	28	7	5	8875		· 18	5	8584
1374	F91511 9P(88)	2 - A - 5 4	155	2	7	9945		· 86	6	9894
1375 1376 1377	M87 SPIOS(PST) RESISTOR RESISTOR	2 - A - 55 2 - A - 56 2 - A - 57	- 264 19 - 239	· 3 · 28	1 1 2 1 3 2 6	9959 4639 0890	· 1 6	- 8.5 - 4 - C	3 6 0	9970 8628 1 0000
1378	RESISTOR	2 - A - 58	• 4	- 6	8	6544	· 9	· 2	6	7038
1379	RESISTOR	2 - A - 59	• 0	7	1 2	1491	•	c	0	1 0000
1380	M79 5CO(D)	2 - A - 60	• 5	1 4	5	9733	9	- 5	4	7025
1381	M93 6P8W	2 - 8 - 1	-299	1 2	4	9997	7	- 6 6	2	9973
1382	M93 6P8 5P	2 - 8 - 2	-298	9	3	9998	4	- 6 5	2	9972
1383	M93 6P9W	2 - 8 - 3	-297	4	4	9996	6	- 8 1	2	9987
7384	M93 6P9 5P	2 - 8 - 4	- 215	- 5	4	9932	· 2	- 49	2	9963
1385	M93 6P10W	2 - 8 - 5	- 303	1 8	3	9998	17	- 87	4	9929
1386	M93 6P11W	2 - 8 - 6	- 259	7	1	9999	5	- 81	1	9994
1387	M92 8PBW	2 - 8 - 7	- 89	10	\$	9945	g	-85	3	9976
1388	M92 8P8 5RH	2 - 8 - 8	174	6	2	.9997	1	44	3	9915
1389	M92 8P8 5RD	2 - 8 - 9	18	10	2	9779	10	-127	3	9986
1390	M92 8P8 5RL	2-8-10	- 399	12 6	2	9 9 9 9	9	- 78	2	9986
1391	M92 8P9W	2-8-1	- 362		2	9 9 9 9	5	- 85	2	9990
1392	M92 8P9 5P	2-8-12	- 232		5	. 9 9 9 0	6	- 61	1	9987
1393 1394 1395	M92 8P10W M92 8P11W M92 8P12W	2 - 8 - 13 2 - 8 - 14 2 - 8 - 15	·312 ·201 ·232	5 6	3 2 3	. 9998 9998 . 9997	6 6 7	- 8 2 - 9 1 - 8 9	3 1	996 <i>8</i> 9993 9996
1396	M92 2P8W	2-8-16	-52	1 2	7	9827	1 3	- 9 9	4	9964
1397	H85 9P17P[LP]	2-8-17	2	1 0	4	9544	5	- 1 3 8	3	9997
1398	M92 2P8 5P	2-8-18	137	- 5	27	9312	2	- 1 4 1	4	9984
1399 1400 1401	892P7MM5(C) M92 3P95 M92 3P9.2RH	2-8-19 2-8-20 2-8-21	- 180 - 322 52	9 7 1 1	9 7 5	.9951 .9991 9644	9 8 ! 4	- 20 - 96 49	3 3	9187 9980 9945
1402	M92 3P9 2RD	2 · 8 · 2 2	106	1 8	9	. 9681	7	- 9 6	2	.9984
	M92 3P9 2RL	2 · 8 · 2 3	- 398	3	2	999	3	- 80	3	.9976
	M92 3P9 5P	2 · 8 · 2 4	- 510	8	23	. 9956	- 4	- 9 7	3	9982
1405	M92 3P105	2 - B - 25	- 299	1 4	3	9999	13	- 89	2	9978
1406	M92 3P115	2 - 8 - 26	- 219	5	2	9999	6	- 103	2	9993
1407	M92 3P125	2 - 8 - 27	- 261	1	2	9999	3	- 72	3	9953
1408	M91 6P85	2 - 8 - 2 8	-411	6	10	. 9986	* 1	- 39	9	.8888
1409	M91 6P8 2P	2 - 8 - 2 9	-242	3	2	. 9998	4	- 86	2	.9987
1410	M91 6P8 5P	2 - 8 - 3 0	-273	6	4	9994	1	- 72	6	9853
1411 1412 1413	M91 6P9W M91 6P9 5P M91 6P9 7RL	2 · 8 · 3 1 2 · 8 · 3 2 2 · 8 · 3 3	- 16 ! - 226 - 216	1 A 9 - 1	30 3 11	9546 9997 9936	13 10 27	- 80 - 93 - 89	3 3	9959 9974 8064
1414	M91 6P9 7RH	2 - 8 - 14	455	· 5	25	.9835	+ 4.8	* # 4	2 1	9472
1415	M91 6P9 7RD	2 - 8 - 35	66	10	2	.9845	- 6	\$ 2	3	9939
1416	M91 6P10W	2 - 6 - 36	-4	· 4	2	.8700	- 2	0	2	4851
1417	M91 SP11W	2 - 8 - 37	- 259	2	10	9974	- 7	- 90	\$	9948
1418	M91 SP12W	2 - 8 - 38	- 269	6	6	9990	6	- 88	2	9984
1419	M86 1P19P[MSU]	2 - 8 - 39	- 681	9	3	9999	7	- 56	3	.9941
1420 1421 1422	H&& 1P19P[HSL] ##45 1MMP[CUST H71 9P15P[C]	2-8-40) 2-8-41 2-8-42	0 5 263	9	2 1 3 5	. 2242 6477 . 9992	0 - £ 4	· 17 · 277	0 4 3	1 0000 9208 9992
1423	H71P9P(C)		312	- 1	10	9978	•	- 167	4	9987
1424	864P8 SMFRV(88		-63	- 7	13	8666	• 5	- 22	3	9742
1425	864P8 SMFRD(88		-195	1 4	10	9959	•	- 34	3	9859

TABLE B.1 (Continued)

			,	VERTICAL	LOADING DM	L Y		LATERAL	LOADING ON	L ¥
GAGE NUMBER	GAGE	POS 1 0 N	SENS!TIVI' VERTICAL	TY/100% DR1FT	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITI: Drift	LATERAL	ERROR OF	
1426 1427 1428	864P8 SMFRH(88) M80595(5U: M80595(5U)	2 · B · 4 6 2 · B · 4 7 2 · B · 4 8	9 4 8 5 - 8 4	14 0 21	16	9662 9843 9865	5 6 7	10 98 33	9 2 4	5 8 5 5 9 9 8 8 9 8 C 8
1429	N79 SSIBP(FE) H79520P(CU) RESISTOR	2 8 49 2 8 50 2 8 51	4.6 - 1.6.6 - 8	3 4 · 2	2 4 10	9922 9985 5508	. 1 3	- 5 2 2 1 9 4	: 2 6	9989 9958 6642
1432 1433 1434	RESISTOR RESISTOR RESISTOR	2 · 8 · 5 2 2 · 8 · 5 3 2 · 8 · 5 4	2 23 72	13	2 6 2 5	4647 3894 3907	0 0	0 0	0	1 6065
1435 1436 1437	RESISTOR RESISTOR RESISTOR	2 · 8 · 5 5 2 · 8 · 5 6 2 · 8 · 5 7	3 2	6 5 - 2	4 4 5	9285 8902 6754	- 13 - 12 - 12	4 4	4 4 6	821C 85:3 6571
1438 1439 1440	RESISTOR RESISTOR H89P19 (2 - 8 - 5 8 2 - 8 - 5 9 2 - 8 - 6 0	· 1 4	- 6 - 8 1 7	4 1 6 6	, 9 1 5 5 , 3 8 9 6 9 6 4 6	· 8 · 0 · 1 2	6 C	6 3	6732 1 0000 8983
144 1442 1447	28700# 28900# 29100#	1 - · · · · · · · · · · · · · · · · · ·	- 183 - 183 - 55	8 4 1 3	6 3 4	9977 9994 9961	4 0 8	0 1 4 - 2	2 2	7833 9521 8649
1441 1440	w9: 95M20 1RL w4: 95M20 1RD w9: 95M20 1RV	1 - 4 1 - 5 1 - 6	· 23 · 1024 44	0	5 23 17	9813 9988 6302	11	25 87 -51	2 3 2	9902 9976 9947
1447 1448 1449	M8700W M8755 IF M875 2	1 · · · 7 1 · · · 8 1 · · 9	· 330 · 298 · 228	6 0 2	17 12 5	9941 9964 9990	- 45 - 1 - 6	12 97 105	3 2 2 3	5 4 2 1 9 8 2 4 9 9 7 5
1450 1451 1452	M5910W M8959 1P M89512	1 10	255 0	0 3 0	0 4 0	9995	0 0	9 6 0	c 2 c	1 0000 9994 1 0000
1453 1454 1455	M89P9 1P M89P12 M91COW	1 13	- 228 0 - 224	1 C C - , 9	3 0 46	9997 1 0000 8790	3 0 - 65	- 102 C - 18	3 c 4 1	9972 1 0000 7259
1456 1457 1458	M9159 1P M91512 M93COW	1 · - 16 1 · - 17 1 18	260 -188 	7 2 0	23 2 0	9847 9999 1 0000	2 4 C	67 104 0	7 1 0	9756 9998 10000
1459 1460 1461	M93512 M93P:2 M974GW	1 - 20	· · • ÷ • • 159	1 A Q A	2 0 2	9999	9 0 1	91	3 0 2	9981
1462 1463 1464	M975:2 M97P12 M99COW	1 · · · 22 1 · · · 23 1 · · · 24	- 4 7 - 6 7 15 3	6 10 5	3	. 9986 . 9968 9992	9	63 - 49 - 0	3 2 2	9955 9961 2353
1465 1466 1467	M995:2 M:7 COM M10:5:2	1 · 25 1 · 26 1 · 27	+54 +26	5 1 4	3 3 4	9938 9994 9978	. 1 15 . 9	34 - 4 41	2 3 2	9919 9395 9890
1465 1469 1470	M 10 3 1 0 M M 10 3 1 0 M M 10 3 5 1 1	7 · · · 28 1 · · · 29 1 · · · 30	6	0 8	o c 5	1 0000 1 0000 . 9968	· 1 • 5	. 1	0 2 5	1 0000 3838 9640
147 147 1473	#15550# # 05511 #105P11	1 - 21 1 - 32 1 - 33	- 130	13	4	9985 9991 1 0000	7 13 0	· 2 2 6 0	3	5674 988: 1 0000
1474	M10751+ M10750# 63900%4	1 · · · 3 4 7 · · · 3 5 1 · · · 3 6	· 9 3 · 20 3 · 4	8 7 4	2 5 3	9991 9988 9250	- 1	3 2 · 1 · 2	2	9970 4514 2303
1477 1478 1479	497.08 F + ZEDNA , 9300P	1 - 37 1 - 38 1 - 39	184 65 O	7	2 3 0	. 9996 9916 1 0000	4 2 0	· 2 0 0	2 2 0	6969 4545 1 0000
1480 1481 1482	F9700NA 5700P F (U100NA	1 · · 40 1 · · 41 1 · · 42	5248 152 197	504 9 14	2777 4 5	.5373 .9980 .9983	\$ 4 0	- 4 - 1 - 2	3 2 2	6203 7855 0891
:433 :484 :485	. 101EDP F105CONA 1105COP	1 - 43 1 - 44 1 - 45	31 144 -51	6 1 1 4	15 39 8	5228 .8602 .9802	- 10 17 8	· 20 · 6	1 2 8 3	3029 6562 7082
1486 1487 1488	45M279C120 45M279C112[RES 45M287C375	1 46 1 1 47 1 48	- 706 - 452 - 1744	77 27 -4	67 32 9	.9873 9910 999	1 2 141	80 82 59	2 1 180	9988 9993 4548
1489	ASMZ&7030F ASMZ&70306 ASMZ&70306	1 · · 49 1 · · · 50 1 · · 51	- 1848 - 1654 - 1414	· 7 0 9	7 7 6	9999 9999 9999	- 340 20 7	284 195 183	95 7 3	8 1 9 2 9 9 7 7 9 9 9 6
1492 1493 1494	A 3 M Z R 7 H V M F A 5 M Z R 7 H D M F A 5 M Z R 7 H L M F	1 52 1 53 1 54	344 225 163	7 10 14	3 3 5	9999 9995 9971	9 1	98 139 - 12	1 15 4	9996 9907 7092
1495 149c 1497	89257MZP(8M) 89257MZS;BM1 RESISTOR	1 · · · 55 1 · · · 56 1 · · · 57	3 1 6 3 6	9 6 3	12 16 5	9036 9808 5004	- & - 7	-50 -11 1	5 10 6	9690 6337 5014
1498 1499 1500	RESISTOR RESISTOR M92P1(D)	1 · · 58 1 · · 59 1 · · 60	5 2	7 0 1 1	\$ 0 2	8497 1.0000 .9850	1 3	, ,	4 0 3	1512 1 0000 9210

TABLE B.1 (Continued)

				VERTICAL	LOADING ON	ILY		LATERAL	LOADING ON	LY
SAGE Number	GAGE	POSITION	SENSITIV VERTICAL		ERROR OF ESTIMATE	CORRELATION COEFFICIEN?	SENSITIV Drift	ITY/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1501 1502 1503	898CDMMS 898CDMMP 898P4MMP	1 - A - 1 1 - A - 2 1 - A - 3	-486 243 47	6 3 1 2	1 4 1 1 6	. 9981 9548 . 9366	· 2 5	7 4 8	3	909 t 3130 8777
1504	898P4MMS 898P9MMP 898P9MMS	1 - A - 4 1 - A - 5 1 - A - 6	0 - 159 - 161	0 • 1 9	0 9 1 2	1.0000 9922 .9897	0 0 12	0 10 - 24	0 4 7	1 0000 7103 7211
1507	858COMFP	1 - A - 7	9 1	1 0	17	.8881	2	- 49	27	6127
1508	898COMFS	1 - A - 8	- 6 2	6	32	7327	3	2	1	9180
1509	898P5MFP	1 - A - 9	- 3 9	2	21	6013	- 10	15	5	6671
1510	898P5MF5	1 - A - 10	1 2 S	9	24	8977	0	4 2	6	9564
1511	898P6F1P	1 - A - 11	- 1 9	6	15	7149	· 3	2 8	4	9530
1512	898C0F15	1 - A - 12	O	0	0	1 0000	0	0	0	1 0000
1513 1514 1515	898CDF1P 898P6F1S 89854MMP	1 - A - 13 1 - A - 14 1 - A - 15	5 · 5 5 8 2	1 1 6	9 1 1 1 2	8321 9241 9364	- 25 1	. 3 . 4	1 10 3	9677 8399 4242
1516	89854MMS	1 - A - 1 6	- 130	1 1	20	9634	- 9 0	5 8	30	7812
1517	89878MMP	1 - A - 1 7	80	6	11	9461	3	2 4	5	9368
1518	89858MMS	1 - A - 1 8	- 34	2	15	6832	4	- 5 9	8	9594
1519	89853MFP	1 - A - 19	· 9	15	10	9277	10	3	3	8860
1520	89854MFS	1 - A - 20	34	2	11	7682	0		6	4305
1521	89856F1P	1 - A - 21	· 12	3	9	7183	- 7		3	7492
1522 1523 1524	89856F15 898P 2HHRH 898P 2HHRD	1 - A - 2 2 1 - A - 2 3 1 - A - 2 4	104 82	1 3 7	32 17 15	1478 9667 9052	· 7 4 · 17	20 6 3	2 4 4	9622 7462 9211
1525	898P.2MHRV	1 · A · 25	- 10	5	10	7438	- 7	9	3	6570
1526	898P711RD	1 - A · 26	- 84	15	11	9808	1 6	32	5	9773
1527	898P711RV	1 - A · 27	7	164	174	7970	- 1	- 10	3	8765
1528	898P7 RH	1 - A - 28	- 142	1 6	6	9975	1 7	! 8	6	9337
1529	898P11 55 Ry	1 - A - 29	41	- 1 1	23	8142	2	- 7	3	5830
:530	898P11 55 RD	1 - A - 30	241	10	16	9871	3	- 32	5	9464
1531 1532 1533	898P11 5F1RH 898P11 9FFRV 898P11 9FFRD	1 - A - 3 1 1 - A - 3 2 1 - A - 3 3	- 175 14 248	15 12 12	19 11	9810 7640 9947	9 1 2 5	56 55 13	6 5 4	9790 9867 8930
1534	898P11 9FFRH	1 - A - 3 4	1 8	\$	10	4847	· 17	50	10	9272
1535	898\$711RH	1 - A - 3 5	- 3 7	7	4	9974		· 3	5	9033
1536	898\$711RD	1 - A - 3 6	- 5 0	5	14	8938		40	6	9507
1537 1538 1539	89857[[RY 89851] <i>5F[RH</i> 89851] <i>5F[</i> RD	1 - 4 - 37 1 - 4 - 38 1 - 4 - 39	- 16 - 356 175	5 8 6	15	6737 9940 9719	. t - 63	- 32 - 64 51	3 8 6?	9757 9639 .3105
1540 1541 1542	898511 5F LRV 898511 9F FRH 898511 9F FRD	1 - A - 4 O 1 - A - 4 1 1 - A - 4 2	- 194 19 258	- 135 10 12	206 4 7	5446 9139 .9981	0 1 2 7	- 104 24	1 6 4	9403 9634
1543	898511 9FFRV	1 - A - 4 3	30	7	13	. 5888	7	- 29	12	9822
1544	898510MF5	1 - A - 4 4	123	6	37	8046	7	- 139		9805
1545	898510MFP	1 - A - 4 5	64	14	14	. 8251	12	- 73		9589
1546	H 100P 20P (FC)	1 - A - 4 6	- 499	6	10	9991	. 4	430	6	9996
1547	A5MM77C 15F	1 - A - 4 7	- 1022	19		.9998	. 4	-53	5	9834
1548	A5MM77C 25F	1 - A - 4 8	- 35	3		.8852	5	-20	5	8293
1549 1550 1551	ASMM77C3SF ASMM77C4SF ASMM77C5SF	1 - A - 49 1 - A - 50 1 - A - 51	- 264 - 250 - 587	1 & 1 2 1 7	15 21 8	9943 9867 9996	- 3 17 6	206 316 99	1 1 2 3	9966 8037 9978
1552 1553 1554	ASMM77C1SA ASMM77C2SA ASMM77C3SA	1 - A - 5 2 1 - A - 5 3 1 - A - 5 4	-350 -351 -84	9 1 1 - 2	\$ 21	9993 9986 8734	36 9 - 27	262 267 9	3 3 25	9998 9998 4155
1555	ASMM?7C4SA	1 - A - 55	-495	10	13	9986	- 4	513	9	998 1
1556	4SMM?7C5S4	1 - A - 56	-312	- 38	129	6386	- 6	364	6	9993
1557	ASMM?7P3SAO 5	1 - A - 57	-931	21	21	9990	- 3	100	3	9993
1558	ASMM77P3SA1 5	1 - A - 5 8	· 613	19	2 8	.9958	4	9 1	3 0 2	9969
1559	ASMM77P3SA3 0	1 - A - 5 9	6	0	0).0000	0	0		1.0000
1560	H103S19[D]	1 - A - 6 0	· 277	21	1 1	8975	3	149		9997
1561	8108PSMFP	1 - 8 - 1	· 1 & 2 4 · 5 9	\$	3	9953	· 4	13	2	9317
1562	8108CDMMS	1 - 8 - 2		3	2	.8485	· 3	5	2	5047
1563	8108P4MMP	1 - 8 - 3		13	5	.9978	· 3	10	7	4069
1564 1565 1566	8108P4MMS 8108P8MMP 8108P8MMS	1 - 8 - 4 1 - 8 - 5 1 - 8 - 6	· 37 · 39	0 9 8	4	1.0000 .9887 .9914	· 13	9	0 4 3	1 0000 7607 9569
1567	RESISTOR	1 · B · 7	· 2	2	12	1309	1 6	5 1	25	7453
1568	BIOSCOMFS	1 · B · B	- 5 8	3	12	8980	- 2	8	3	5519
1569	BIOSPAMFP	1 · B · 9	- 5 7	6	4	9922	- 8	20	4	8683
1570 1571 1572	8108P4MFS RESISTOR 8108C0F1S	1-8-10 1-8-11 1-8-12	0 0	1 2 - 5 0	3 5 0	9957 ,82;6 1 0000	· 17	18	2 6 0	9880 7885 1 0000
1573	8108P6FIP	1-8-13	· 22	12	2	9960	· 3	12	4	7269
1574	8108P6FIS	1-8-14	6	7	2	9781	· 1	-6	2	8388
1575	8108S4MMP	1-8-15	· 65	10	3	9981	· 2	-1	2	5326

TABLE B.1 (Continued)

			VERTICAL LOADING ONLY TION SENSITIVITY/100°. ERROR OF CORRELATION				LATERAL LOADING ONLY			
G 1GE Number	GAGE	POSITION	SENSITIVI VERTICAL	TY/100% DRIFT	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITII Drift	LATERAL	ERROR OF	CORRELATION COEFFICIENT
1576 1577 1578	E 10454MMS B 10858MMP B 10858MMS	1 - 0 - 16 1 - 8 - 17 1 - 9 - 18	- 5 2 - 4 0 - 2 7	1 2 9 • 6	2 1 3	9982 9988 9395	9 0	. (5	2 1 2	9763 1936 7084
1579 1580 1581	#10854MFP #10854MF5 #10856F1P	1 - 8 - 19 1 - 8 - 20 1 - 8 - 21	- 5 2 8 8 - 3 1	1 9 4 6	3 4 1	9982 9940 9981	- 1 • 0	11 9 -3	2 2 2	9797 8335 6476
1582 1583 1584	BIOSSEFIS BIOSP ZHARA BIOSP ZHARC	1 - F - 22 1 - B - 23 1 - B - 24	34 -531 -595	0 13 11	4 2 1	9580 5595 9573	- 6 6 2	· 2 · 25 6	8 2 2	4465 9765 8753
1585 1586 1567	BIOSP 2HHRV BIOSP711RV BIOSP711RD	1 - 8 - 25 1 - 8 - 26 1 - 8 - 27	6 4 1 1	15	0 2 3	1 0CC0 9343 7993	12 - 10	0 2 · 35	0 2 3	1 0000 9667 9904
1588 1589 1590	8108P711RH 8108P10 5F1RV 8108P10 5F1RD	1 - 8 - 28 1 - 8 - 29 1 - 8 - 30	160 349	14	4 3 3	9997 9993 9998	19 C 3	· 3 · 23	4 3 1	9383 42 · 1 9942
1591 1592 1593	BIOSPIO SFERV BIOSPIO SFERV BIOSPIO SFERC	1-8-3: 1-8-32 1-8-33	· 75 · 15 265	1 2 1 2 1 5	4 2 3	9974 9943 9996	o 3	. 7 33 14	5 3 3	4559 9856 9387
1594 1595 1596	8108P10 9FFRH 8108S711RH 8108S711RD	1 - B - 34 1 - B - 35 1 - B - 36	18 - 256 33	7 7 7	2 3 2	9690 9998 9744	232	- 12 - 36 19	9 C 3 3	9423 9918 9180
1597 1598 1599	81085711RV 8108510 5FIRH 8108510 5FIRD	1-8-37 1-8-38 1-8-39	56 -212 201	7 9 11	2 3 2	9950 9996 9998	· 2	- 25 69	1 2 2	6231 9845 9978
160° 160°	8108510 SFIRV 8108510 SFFRH 8108510 SFFRD	1-8-40 1-8-41 1-8-42	293 - 18 65	1 1 0 9	25 3 6	9826 9898 975 1	- 24 1 3 4	197 -84 -156	107 4 6	6597 9939 9958
1603 1604 1605	B108S10 SFFRY B108P9MFS APMM77C1PA	1-8-43 1-8-44 1-8-45	12 -71 -427	C 7 12	2 ? 4	9375 9993 9998	4 0 2 3	- 126 - 4 - 469	1 4 3	9546 9307 9999
1606	АРММ77С2РА АРММ77С3РА АРММ77С4РЬ	1 - B - 4 6 3 - B - 4 7 1 - B - 4 8	- 5 4 9 - 5 2 0 - 1 0 0 1	7 5 8	2 2 4	999 9999 9999	- 1 - 2 - 4	-507 -615 -78	2 2 14	9999 9999 9346
1609	APMM77C5PA APMM77P3PAC 5 APMM77P3PA1 5	1 - 8 - 4 9 1 - 8 - 5 0 1 - 8 - 5 1	- 293 - 360 - 311	7 8 13	4 2 4	9996 9999 9997	6 15 7	· 179 - 237 - 225	4 6 3	9984 9982 9997
1612 1613 1614	APMM77P3PA3 O APMM77C1PF APMM77C2PF	1 - 8 - 5 2 1 - 8 - 5 3 1 - 8 - 5 4	- 308 - 5 6 0 - 5 8 4	1 2 1 1	3 4 6	9998 9999 9998	1 4 2	- 165 - 86 - 76	1 2 4	999£ 998; 994£
1615 1616 1617	45MM77C3FF 45MM77C4FF 45MM77C5FF	1 · P · 5 5 1 · B · 5 6 1 · Ø · 5 7	872 · 368 · 939	13 2 - 21	5 5 2 4	9999 9996 9983	· 4 · 8 · 5	79 266 51	3 7 3	9967 9986 9950
1618 1619 1620	ASM279C135 ASM279C127 H108CFF(D)	1 - 8 - 5 8 1 - 8 - 5 9 1 - 8 - 6 0	- 881 p 0	39 0 13	4 6 0 2	9949 1 0000 9955	6 0 8	2 4 0 2	3 0	9715 1 0000 9198
162 1622 1623	M95P10W M95P7W M95P2W	0 2 0 3	- 150 - 253 - 176	1 2 1 4 1 4	2 2 2	9998 9998 9998	1 1 1 2 1 4	- 53 - 26 - 4	2 2 2	9946 9728 9594
1624 1625 1626	M95C DW M9552w M9554w	0 · · · · · · · · · · · · · · · · · · ·	0 -181 -162	0 14 14	o 4 3	1.0000 9992 9994	0 15 15	0 8 13	3 0	1 00C0 9664 9796
1627 1628 1629	M9356# M9558# M95510W	0 - 7 0 - 8 0 - 9	- 2 1 1 - 2 6 7 9	13 14 6	8 2 5	9974 9999 7712	1 1 1 4 7	37 35 27	6 2 4	9657 9955 9756
1630 1631 1632	M95510 5P M955114 M95511 5P	0 10 0 11 0 12	- 3 1 - 3 2 - 6 1	9 1 9 1 5	6 9 9	9735 9735 9801	9 2 0	38 34 34	3	9919 9709 9636
1633 1634 1635	M95512W 892P9 SP18R) H95S1W	0 · · 13 0 · · 14 0 · · 15	- 23 29 167	a 3 15	5 1 4 3	9667 5757 9990	9 1 2 1 2	42 7 3	3	9930 9110 9398
1636 1637 1638	H 9 5 5 4 W H 9 5 P 4 W N 9 5 5 S W	0 + 6 0 17 0 18	157 145 137	10	6 2 3	9957 9991 9984	1 1 1 1 10	11 - 24 21	4 2 2	9458 9677 9940
1639 1640 1641	H9557W H95P7W H9589W	0 · · 19 0 · · · 20 0 · · · 21	141 137 104	1212	2 1 2	9990 9996 E888	1 2 1 2 1 1	29 - 32 34	5 5 5	9955 9800 9971
1642 1643 1644	H95511W H95P11W H95512W	0 · · · 2 2 0 · · · 2 3 0 · · · 2 4	0 8 1 8 5	0 9 1 1	0 3 2	1 0000 9946 9967	0 12 10	- 4 5 4 8	5 0	1 0000 9920 9977
1645 1645 1647	H955°3W H95P13W H95\$15W	0 · · 25 0 · · 26 0 · · 27	7.8 0 6	1 1 0 1 6	3	9949 1 0000 .9901	9 6 9	47 0 56	2 0 2	9978 1 0000 9985
1648 1649 1650	H95516 5P H95P16 5P H95517W	0 - · 78 0 - · 29 0 - · 30	-56 35 -57	1 6 1 2 1 1	4 2 2	.9969 9974 .9980	† † † 10	6 1 - 6 2 - 6 0	3 2 2	**** ****

TABLE B.1 (Continued)

			VERTICAL LOADING ONLY				LATERAL LOADING ONLY				
GAGE Number	GAGE Name	POSITION	SENS!TIV! VERTICAL		ERROR OF	CORRELATION COEFFICIENT	SENS IT 11 DRIFT	LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	
1651 1652 1653	H95517W H95519W M80595(BMSU)	0 · - 31 0 · - 32 0 · - 33	- 1 1 2 - 1 2 f - 1 5 1	13	3 4 5	9991 9986 9980	10 -50	63 -61 66	2 2 5 2	9974 9979 3401	
1654 1655 1656	8925MM7 (8MSL) H49CDP H61CDP	0 · · 34 0 · · 35 0 · · 36	- 5 8 5 O O	2 0 0	7 0 0	9996 1 0000 1 0000	9 0	- 77 0 0	3 0 0	9941 1 0000 1 0000	
1657 1658 1659	H73COP H75COP H77COP	0 37 0 38 0 39	0 600 0	0 7 0	1 8	1 0000 9979 1 0000	17	- 3 6 0	26 2	3523 0000	
1660 1661 1662	H79COP H81COP H83COP	0 40 0 41 0 42	504 456 0	14 9 0	5	9998 9999 1,0000	1 4 5 0	· 10 · 7 0	4 3 0	8403 5849 - 0000	
1 6 6 3 1 6 6 4 1 6 6 5	H85COP H87COP H91COP	0 43 0 44 0 45	406 335 306	8 10 10	8 3 26	9990 9998 9805	8 6 8	· 6 · 1 · 5	13 3 4	0970 7860 5993	
1666 1667 1668	H93COP H95COP H97COP	0 4 6 0 4 7 0 4 8	229 604 0	13 30 0	3 35 1 0	9993 5565 1 0000	8 1 4 0	- 10 - 4 - 0	7 4 0	4104 8281 1 0000	
1669 1670 1671	Н99СОР Н101СОР Н103СОР	0 49 0 50 0 51	4 8 6 9 0	1 2 9 0	8.0	9705 9452 1 0000	6 9 0	· 2 - 1 9 0	3 1 1 C	7127 4323 1 0000	
1672 1673 1674	H 105CDP H 107CDP H 89COP	0 · · 52 0 · · 53 0 · · 54	55 - 22 C) ! 6	4 8 0	9769 8966 1 0000	9 7 0	4	2 0	9722 9449 1 0000	
1675 1676 1677	H86SFF(C) B80PMMRH B80PMMRD	0 5 5 0 5 6 0 5 7	- 13 13 55	9 1 2 1 2	3 2 3	9896 9934 9845	8 9 6	196 · 5 58	2 2 3	9997 8986 9978	
1678 1679 1680	680PMMRY 880P19@18(FC) H96519(D)	0 58 0 59 0 60	- 263 - 210 - 4	8 8 17	4 2 4	9995 9998 9881	9 7 1 7	4 E - 20 1 - 2	2 2 3	9955 9998 9472	
1681 1682 1683	892P7MMS 892P7MMP 892S8MMS	O-A- 1 O-A- 2 O-A- 3	- 256 - 86 - 313	15 7 18	15 10 26	9940 9765 9873	5 1 1 7	6 55 - 84	? ? 5	9491 9973 9917	
1684 1685 1686	89258MMP 886C0MMP 886C0MMS	0-4- 4 0-4- 5 0-4- 6	0 - 157 172	11	0 3 4	9996 9983	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	6 7	0 3 3	1 0000 9313 9105	
1687 1688 1689	886P7MMP 886P7MMS 880P1MMS	O-A- 7 O-A- 8 O-A- 9	· 126 93 · 63	5 13 -3	4 3 7	9978 9968 9827	0 8 - 3	. € 19	4 2 3	2097 8245 9137	
1690 1691 1692	880P1MMP F82P11M H80P17[LF]	0-A-10 0-A-11 0-A-12	19 - 107 - 95	9 14 13	6 12 12	8103 9833 9789	. t - 5	13 -55 -89	2 5 4	9726 9839 9963	
1693 1694 1695	886P2D(C) 886P11MMRH 886P11MMRD	0-4-13 0-4-14 0-4-15	14 22 31	\$ 2 9	6 13 4	6478 4754 9425	10 8	33 17 32	5 4 3	9652 9440 9900	
1696 1697 1698	BBSP1:MMRV BBSP1:MP(HSU) BBSP1:MP(HSL)	0-A-16 0-A-17 0-A-18	· 2 28 · 20	6 1 1 1 0	1 4 3	9367 5763 9930	8 6 4	22 31 22	3	9823 9890 9647	
1699 1700 1701	F86P11P(C) B80P11F1P(BB) H80P1S@14P(LF	0 - A - 19 0 - A - 20 1 0 - A - 21	- 28 9 1 140	10 10 3	2 2 2	9956 9984 9994	0 7 5	· 9 22 · 2 · 6	2 2 2	8919 9519 9998	
1702 1703 1704	586P9w(C) 886P8 SP(88) 180P2p(C)	0 - A - 27 0 - A - 23 0 - A - 24	0 - 6 - 4 8	10	3 2 3	1 0000 9882 9950	7	. 2 22	2 2	1 0000 8984 9934	
: 705 1706 1707	88657MMP(C) H85.9519P[C] 88059,5MFRH	0 - A - 25 0 - A - 26 0 - A - 27	- 15 0 - 22	9 0 8	3 0 7	9846 1 0000 .9530	0	- 15 0 19	4 C 8	\$300 1 0000 7392	
1708 1709 1710	88059 SMFRD 88059 SMFRV 8925MM7(8MSU)	0 - A - 28 0 - A - 29 0 - A - 30	· 23 52 72	1 1 9 8	5 2 3	.9817 .9909 .9924	6 6	- 1 1 - 4 6	5 7 2	8577 9005 9856	
1711 1712 1713	MBOS%S(SL) HB5.%S6.SP(HS HB5.%S6.SP{HS	0-A-31 U) 0-A-32 L) 0-A-33	0 - 8 0 4 0 0	9	0 2 5	9988	o 5 3	0 145 -37	2	9997 9856	
1714 1715 1716		0-A-34 0-A-35 1) 0-A-36	0 -98 -61	- 4 6 6	1 4 2	1.0000 .9528 .9983	- 5 6 3	0 25 110	0 15 2	1 0000 8626 9994	
1717 1718 1719		0 0 - A - 37 0 - A - 38 0 - A - 39	- 187 23 83	12 6 -47	6 5 61	9945 8313 8173	2 9 1 2	· 85 · 8 · 31	5 7 9	9919 4258 7486	
1720 1721 1722	H86.1517.5P(H	0-A-40 ISU 0-A-41 ISL 0-A-42	70 702 - 749	12 \$ 10	3 3 7	.9920 9999 9998	8 2 6	- 8 5 8 7 2	3 3 5	7850 9955 9897	
1723 1724 1728	M66. 136. SP(MS	L) 0-4-44	366 - 235 - 176	10 9	3 4 3	9998 9994 9994	7	- 52 116 126	3	9990 9989 9983	

TABLE B.1 (Continued)

			VERTICAL LOADING ONLY ION SENSITIVITY/100°. ERROR OF CORRELATION			L Y	LATERA. LOADING ONLY				
GAGE NUMBER	GAGE NAME	POSITION	SENSITIVIT VERTICAL	Y/100'. DRIFT	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENS (TI	LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	
1726 1727 1728	H&& 5519P(CL) M&6 1565(U) M&6 1565(L)	O-A-46 O-A-47 O-A-48	- 102 - 242 - 299	4 1 1 9	1 O 4 7	9824 9994 9988	0 0 - 4	123 52 75	9 2 7	9827 9948 9774	
1729 1730 1731	H&6 1P8 5P(HSU) H&6 1P8 5P(HSL) B9257MZS(BM)		322 -220 -148	1 0 9 1 3	3 3 15	9998 .9997 .9837	- 2 9 4	64 - 138 - 36	4 1 3 5	9932 985 9528	
1732 1733 1734	89257MZP[8M] 86653MMP[8M; 88653MM5(8M)	0-A-52 0-A-53 0-4-54	10 - 7 1 9 9	1 1 9 1 3	6 3 5	9 1 9 9 9 9 7 8 9 6 8 1	3 · 2 · 2	• • • • • • • • • • • • • • • • • • •	3 - 5	799: 67: 1647	
1735 1736 1737	M8 92ME 2688 M8 92ME 2688 M8 8MM 2088	0 · A · 5 5 0 · A · 5 6 0 · A · 5 7	2 · 76 · 39	10	2 2 2	9905 9992 9985	4 4 9	4 2 · 10	2 2 3	8799 8521 8268	
1738 1739 1740	88059MMP(8M) 88059MZS(8M) W89PZMZ:0'	O · A · S 8 O · A · S 9 O · A · 6 0	154 · 72 59	9 9 4 1 3	1 1 1 2 4 4	9847 7876 9803	- 3 4 5	4.4 - 8 - 1	4 2 9	975C 7979 2511	
1741 1742 1743	H78520P(CU) H79520P(CL) B80511MMP(C)	0 - 8 - 1 C - B - 2 D - B - 3	· 227 - 214 - 48	10	3	9995 9995 9973	; 5 9	2 1 3 2 1 8 5	2 2 2	9999 9998 9548	
1744 1745 1746	M&GS11P(C) H79 5520P(FC) H79 5520P(AC)	0 - B - 4 C - B - 5 C - B - 6	° - 153 - 80	12	o 3 2	1 0000 999' 988	0 1 4 1 1	6 2 - 5 *	6 4 2	1 0000 9886 9926	
1747 1748 1749	M79 SSZCP[ACL] 864COMMP!C: 85658 SMFRV[B8]	0-8- 7 0-8- 8 0-8- 9	- 5 8 - 2 3 - 6	1 2 - 2	3 1 ' 1 7	9955 9145 2257	13 3	- 5 9 - 7 - 1 0	4 3 5	9897 9045 6095	
1750 1751 1752	85658 5MFRD(BB) 85658 5MFRH (BB) 856P8 5MFRY(BB)) O - B - 1 1	- 4 3 - 3 2 - 2 9	6 1 4 1 2	9 15 23	9499 9079 7654	4 · 5 · 1	14 - 21 - 51	5 5 5	867: 9383 9766	
1753 1754 1755	856P8 5MFRD(88) 856P8 5MFRH(88) M64P85(5UA)	0 · 8 · 1 3 0 · 8 · 1 4 0 · 8 · 1 5	- 4.9 - 2.2 8.4	3 3 2	1 1 2 7	9121 7694 8043	3 & 6	· 5 & · 3 ¢ · 6 6	5 5 5	9845 9199 9837	
1756 1757 1758	M64P85(SLA) M64P85(SUF) M64P85(SUF)	0-8-16 0-5-17 0-8-18	- 67 - 25 - 149	16	4 15 13	9952 8434 9892	8 - 1 6	· 28 · 28 · 12	3 3	9582 9731 7919	
1759 1760 1761	864P11F1P(CU) 864P11F1P(CL) 961 2520P1CM)	0 - B - 1 9 C - B - 2 C O - B - 2 1	53 134 - 446	11	1 1 6 5	8651 9924 9997	10 - 2	9 · 5 335	5 2 4	8423 8990 9997	
1762 1763 1764	N6: 2520P(CL; M60P9 5P(C: N58 6P20P(C)	0 - 8 - 22 0 - 8 - 23 0 - 8 - 24	c · 357 · 263	0 1 6 1 4	o 3 5	1 0000 9998 , 9993	6 8 7	. 152 - 337	o z 2	1 0000 9997 9959	
7765 1766 1767	H6: 3P20F(C H58 6P20P(CU) H58 6P20P(CL)	C · B · 25 C · B · 26 C · B · 27	7 6 7 O 3 6 5	1 C 0 5 4	3 6 5 3	9998 1 0000 9755	0	· 3 · 9	2 0 2	9 9 9 9 9 9 9 9	
1768 1769 1770	M59 SPEPIC! B&OS9MZP[8M] 864P&MMP!8M;	C-8-28 O-8-29 C-8-30	33 25 4	13 9 210	4 3 6 7	9935 9636 9742	9 4	. 5 . 4 !	8	8635 7822 9243	
1771 1772 1773	M7455P1C M7355P(C. M6755P(C)	0 - 8 - 3 2 0 - 8 - 3 3	- 36 ° - 38 6 - 5 1 2	15	4	9998 9998 9999	7 6 3	103	6 2 1	9932 9972 9998	
1774 1775 1776	M67P5P(UC! M67 2P5F(UC) M69P5P(LP)	0 · B · 34 0 · B · 35 0 · B · 36	-407 -432 -71	7 15 7	6 4 6	9995 9998 9718	- 5 3 2	- 103 - 109 44	2 2 2	9993 9994 9963	
1777 1778 1779	M60P6P'C1 H945Z0P(FC) M77P10 1P	0 · 8 · 37 0 · 8 · 38 0 · 8 · 39	- 452 - 7 - 502	17 12 11	5 4 4	9998 9825 9999	\$ 9 7	- 140 - 22 - 180	2 3 :	9998 9457 9998	
1780 1781 1782	H94520P(AC) H94516 SP(CU) H94516 SP(C)	0 - 8 - 4 0 0 - 8 - 4 1 0 - 8 - 4 7	4 2 3 - 3 5	13 9 13	3 7 3	9714 9858 9942	9 - 2 8	- 2 1 - 6 - 17	3 2 3	9376 8239 8716	
1783 1784 1785	H91P19P(C) M7958 5P B86P91IP	0 · 8 · 43 0 · 8 · 44 0 · 8 · 45	- 5 - 2 1 1 - 8 3	13 14 13	4 3 3	9851 9996 9979	10	2 1 1 7 2 0	2 2 3	9896 9997 8537	
1785 1787 1788	H91P19P(AC) H91P19P(FC) H97 9P14P1LF)	0 · B · 4 6 0 · B · 4 7 0 · B · 4 8	53 8 32	12 14 14	3 6 4	9875 9457 9591	7 8 3	35 - 31 35	2 2 5	9923 9868 9635	
1789	HIG1P2OP(AC) H8DP19@181FC) H79 5P18P(CUI	0 - 8 - 49 0 - 8 - 50 0 - 8 - 51	· 8 8 · 2 4 2 · 5 8	10	4 2 3	1969 1998 1966	4 5 6	- 19 - 209 - 212	3 2 2	9382 9998 9998	
1792 1793 1794	H79 SP18P(CL) M63 SP13S1C) H79 SP15P1C)	0-8-52 0-8-53 0-8-54	· 72 · 374 28	11 10 12	2 8 3	9991 9990 9734	3 8	- 216 - 75 - 700	2 4 2	9998 9914 9996	
1795 1796 1797	R64P12 9P(LP) 864P12 9P(SC) H65P27P(C)	0 · 8 · 5 5 0 · 8 · 5 6 0 · 8 · 5 7	- 110 72 68	12 9 0	6 4 7	9959 9903 9778	· 1 2 · 1 1	-99 18 38	1 7 4 7	9688 9317 9032	
1798 1799 1800	864P 1MMP(C! 864S 1MMP(C) 8108P1MMP(D)	0-8-58 0-8-59 0-8-60	- 70 8 - 1	144 4 19	82 14 3	9426 5423 9943	6 7 10	· 4 · 27 · 4	5 2 3	4321 9862 8876	

TABLE B.2 - STATISTICAL RESULTS FROM ASEM STATIC TESTS WITH COMBINED VERTICAL AND LATERAL LOADING

COMBINED LOADING P SO DEGREE LAG COMBINED LOADING P 240 DEGREE LAG										
GAGE Number	GAGE NAME	POSITION	SENSITIVI VERTICAL	TY/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITIV VERTICAL	LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1 2 3	ESCUMMP ESP4MMP ESP7MMP	9 · · 1 9 · · 2 9 · · 3	68 21 1	12 29	6 14 35	.9632 .6494 .1962	65 46 57	2 1 2 7	6 14 53	8116 3704
4 5 6	BBCDMFP BBPZMFP BBSAMFP	9 · · 4 9 · · 5 9 · · 6	0 - 79 48	43 -24	•	1,0000 .9674 ,3830	- 77 122	0 5 1 2 2	0 6 78	1 0000 EEEE 1 1 9 1 3
7 8 9	BBSTMMP BGS2MFP BBCOHHRH	9· - 7 9· - 8 9· - 9	· 63	- 10 - 4 4 0	6 7 0	.6839 9873 1.0000	- 73 0	- 16 - 38 - 0	7 9 0	7933 9610 1 0000
10 11 12	BSCOHHRD BSCOHHRY BSPILIRY	910 911 912	- 384 44 0	· 35 · 15	20 10 1	.9939 .869 <i>2</i> .3765	- 380 36 0	55 0 0	26 11 0	9906 .8316 1 0000
13 14 15	BSP111RD BSP111RH BSP5FFRY	913	228 - 36 70	- 9 : 0 183	1 & 8 5	.9870 .8835 .9992	219 -43 86	-55 -10 193	1 & 1 2 9	.9876 8394 9968
16	BBPSFFRD BBPSFFRH RBS111AH	9 - 16 9 - 17 9 - 18	137 - 155 - 86	81 -92 3	6 5 6	.9978 .9986 .9896	143 - 158 - 89	93 -91 -23	1 1 8	.9478 9944 9796
1 8 1 9 20	8851 F I RO 885 1 1 1 R V	919	0 38	0	0 1 2	1.0000	0 4 2	0 4 2	0	1 0000
2 1 2 2 2 3	88\$5FFRH 8855FFRD 8855FFRY	9 21 9 22 9 23	- 142 164 4	84 - 135 - 322	9 2 5 9	. 9905 . 9613 . 9990	- 132 217 - 26	119 - 150 - 332	17 55 9	9885 9425 9990
24 25 26	BBCOMMS BBP4MMS BBP7MMS	9 24 9 25 9 26	- 280 0 - 105	- 1 \$ 0 8	6 0 2	. 9989 1 . 0000 . 9986	- 29 1 0 1 1 5	13 0 7	9 0 7	9976 1.0000 9911
27 28 29	# B C D M F S B B P 2 M F S B B S 4 M M S	9 27 9 28 9 29	2 7 - 237	2 0 - 3 6	3 5 5	.4934 .4724 .9992	- 5 - 1 - 242	- 1 - 20 - 29	9	3672 7824 9955
30	8857MM5 8852MF5	930	- 17	21	7	1.0000	- 20	. 4 . 4	7 5	1 0000 7465 9574
32 33 34	M9C0S M9P11P M9S11P	9 32 9 33 9 34	-40 30 22	- 1 - 4 9	5 6 7	.9700 .9149 .8834	29 33	- 9 9	6	9363
35 36 37	M11CO\$ M11S1IP M13COS	9 35 9 36 9 37	.74	0 23 · 2	•	1.0000 .8767 .9637	0 6 - 6 2	0 22	0 7 8	1 . 0000 8627 9588
38 39	M13F12P M13S12P M15COS	9 38 9 39 5 40	. 102	31 6	0 6	1,000 ,9408 ,9802	- 22 - 101	0 29 - 2	o 5	1.0000 9774 9852
4 1 4 2	M1551JP M17COS	942	-92 -108	0	7 6	.9818 .9936	-90 -112 -37	18 0 -24	11 7	9718 .9898 8922
43 44 45	M17P13P M17S13P M19COS	9 43 9 44 9 45	-43 -37 -149	-28 41 -5	7	.9716 .9655 .9966	- 46 - 152	40 · 5	7	. 9718 9953
4 6 4 7 4 8	M19513P M23COS M23S13,9P	9 · - 4 5 9 · - 4 7 9 · - 4 6	- 35 - 146 - 190	87 8 105	, 6 6	.9484 .9951 .9979	- 36 - 147 - 195	77 7 110	10 7 8	.9844 9947 9979
49 50 51	M25P13P M25S13P M27COS	9 49 9 50 9 51	- 184 - 175 - 139	- 121 128 5	4 5 33	.9995 .9983 .8787	- 185 - 180 - 123	-122 129 31	6 42	9962 9988 8386
5 2 5 3 5 4	M27514P M29CDS M29P14P	9 52 9 53 9 54	· 213 0 0	170	0	.9952 1.0000 1.0000	- 220	163	0	1 0000
5 5 5 6 5 7	M29514P M31COS M31514P	9· ·55 9· ·56 9· ·57	- 249 - 338 - 355	189 2 213	7 10 7	.9983 .9978 .9991	- 25 t - 34 t - 354	186 -1 213	1 0 1 4 9	9986 9958 9993
5 8 5 P 6 O	H24 1S20P(C) P954P(C) H36P18 5(D)	9 · · 58 9 · · 59 9 · · 60	- 2 2 6 - 3 4 - 9	123 77 1	6 6	. 1165 . 1896 . 1983	- 220 - 44 - 15	126	:	9983 9890 6254
6 1 6 2 6 3	B 16COMMP B 16COMMS B 16P4MMP	9 - A - 1 9 - A - 2 9 - A - 3	168 - 251 193	- 2 - 5 43	7 37 19	.9962 .9501 .9827	173 - 261 197	- 14 70 20	10 66 18	9929 9019 9824
64 65 66	8 1 6 P 4 MMS 8 1 6 P 8 MMP 8 1 6 P 8 MMS	9-A- 4 9-A- 5 9-A- 6	0 198 -42	0 5 6 4 2	0 33 21	1.0000 .9845 .7661	228 3	0 29 15	0 31 20	7 0000 1832 3485
6.7 6.8 6.9	8 1 6 C OMP P 8 1 6 C OMP S 8 1 6 P 3 MF P	9 - A - 7 9 - A - 8 9 - A - 9	76 92 · 28	10 7 59	11 10 31	.9597 .9764 7240	78 83 -44	· 8 · 8	10	9624 9681 7869
70 71 72	81673MFS 816COFIP 816COFIS	9 - A - 10 9 - A - 11 9 - A - 12	287	17	38 14	.9612 .9614	269 96 0	- 23 - 2 0	27 15	9764 9624 1149
73 74 75	#16P2FIP #16P2FIS #16S4MMP	9-A-13 9-A-14 9-A-15	103 - 44 137	26	18 14 12	.9670 7612 .9824	125 -34 127	22 \$ - 24	16 13 18	#854 7722 9774

TABLE B.2 (Continued)

			COMB	INED LOAD!	NG # 60 DE	GREE LAG	COMBINED LOADING & 240 DEGREE LAG			
GAGE	GAGE	P0\$1710N	SENSITIV	ITY/100%	ERROR OF	CORRELATION	SENSITIV	ITY/100%	ERROR OF	CORRELATION
Number	Name		VERTICAL	LATERAL	ESTIMATE	COEFFICIENT	VERTICAL	LATERAL	ESTIMATE	COEFFICIENT
76	B 1 6 S 4 MMS	9 - A - 16	- 153	- 29	7	9958	- 179	· 24	20	\$671
77	B 1 6 S 8 MMP	9 - A - 17	172	- 31	20	9648	175	· 49	24	9678
78	B 1 6 S 8 MMS	9 - A - 18	- 19	- 20	17	6987	- 4	· 49	25	7476
79 80 81	81653MFP 81653MF5 81652FlP	9 - A - 19 9 - A - 20 9 - A - 21	0 233 151	- 10 - 1	0 29 15	1.0000 9616 .9751	231 140	0 - 4 4 - 20	0 40 22	1 0000 9453 9531
82	81652FlS	9 - A - 22	- 108	· 29	15	9675	- 123	- 24	15	9602
83	816C0HHRH	9 - A - 23	- 16	· 23	32	4599	- 47	- 28	37	4666
84	816C0HHRD	9 - A - 24	- 73	26	30	7037	- 79	27	34	7859
85 86 87	# 16CDHMRV B 16P3 1 i RV B 16P3 1 I RD	9 - A - 25 9 - A - 26 9 - A - 27	95 117	0 47 17	0 24 28	1 0000 9276 .8989	0 115 137	0 35 · 2	0 28 25	1 00CC 8623 9278
88 89	814P311RH B16P7 SFFRV B16P7 SFFRC	9 - A - 28 9 - A - 29 9 - A - 30	-215 894 0	23 93 0	17 64 0	.9838 .9888 1.0000	-226 789	31 -24 0	19 45 0	\$850 \$923 1 0000
9 1	816P7 SFFRH	9 - A - 3 :	- 394	44	1 G	9953	-359	89	24	9919
9 2	B16S311RH	9 - A - 3 2	- 186	-44	1 4	.9892	-206	- 38	15	9766
9 3	B16S311RD	9 - A - 3 3	230	54	2 6	.9778	218	28	40	9180
94	B165311RV	9 - A - 34	222	- 1	30	. 9571	190	- 33	3 ē	9264
95	91657.5FFRH	9 - A - 35	-339	- 76	29	. 9861	343	- 15	2 4	9878
96	B1657.5FFRD	9 - A - 36	368	- 41	36	. 9743	421	- 90	7 2	9479
97 98 99	BIGST.SFFRY F9CONA F13CONA	9 - A - 3 7 9 - A - 3 8 9 - A - 3 9	619 -57 -38	- 38 13 5	54 14	.9810 .8672 .9757	660 - 20 - 34	- 139 6 - 2	83 14 6	9712 5985 9310
100	117COP	9 - 5 - 8 O	205	7	10	9945	200	- 3	10	9934
	121 3COP	3 - 5 - 6 1	149	- 3	20	9587	153	- 4	14	9797
	F25CONA	9 - 5 - 4 2	-51	6	14	8295	- 27	- 5	8	1539
103	F 29 C O N A 19 C O P 1 1 3 C O P	9 - L - 43 9 - L - 44 9 - L - 45	-37 0 36	12	6 0	9413 1 0000 . 9702	- 4 2 C 2 2	6 0 - 4	0 7	8783 1 0000 8445
106	F17CONA	9 A-46	· 2 !	1	5	.8577	· 25	- 1	8	8022
	F21 3CONA	9-A-47	- 2 9	5	10	.7536	· 22	- 5	15	5918
	H9COP	9-A-48	6 ?	17	8	.9726	· 5	- 1 6	42	1051
109	H 1 1 C D P H 1 3 C O P H 1 5 C O P	9-A-49 9-A-50 9-A-51	76	7 0 5	15 0 21	9212 1.0000 .2110	66 0 · 13	- 1 O 15	1 5 0 2 2	8927 1 0000 4678
112	H17COP	9 - A - S 2	13	6	5 6	1996	96	6 0	6 1	5449
113	H19COP	9 - A - S 3	0	0	O	1 0000	0		C	' 0000
114	H23COP	9 - A - S 4	174	4	8	.9953	177		1 C	9920
115 116 117	H25C0P H27C0P H29C0P	9 · A · 5 5 4 · A · 5 6 9 - A - 5 7	233 349 433	6 1	7 10 6	9979 9978 9995	230 342 431	- 1 - 6	8 1 4 9	9969 9959 9990
118 119 120	H31COP H47COP H1259 5(0)	9 · A · 5 8 4 · A · 5 9 9 · A · 60	5 f 8 685	3 - 1 1	7 6 8	9996 9998 5102	513 684 -10	· 2 · 3 •	8 8 6	9994 9996 6242
171	B 2 4 C 0 MMP	9 - 8 - 1	98	4	7	9883	105	- 8	6	9925
	B 2 4 C 0 MMS	9 - 8 - 2	- 290	24	43	9450	- 329	50	73	9104
	B 2 4 S 4 MMP	9 - 8 - 3	56	0	8	9484	44	- 15	6	9695
1 2 4	8 2 4 F 4 MMS	9 - B - 4	0	0	0	1.0000	0	0	0	1 000C
1 2 5	B 2 4 S 7 MMP	9 - B - 5	36	13	7	9526	17	7	1 C	5823
1 2 6	B 2 4 P 7 MMS	5 - B - 6	- 60	85	14	.9598	-7	70	1 6	9394
127	824CCMFP	9-8- 7	39	\$	9	8966	43	- 6	6	9615
	824CCMFS	9-8- 8	- 30	7	8	8390	-31	- 2	8	8468
	82454MFP	9-8- 9	- 10	• 10	13	5584	-25	- 24	12	7801
130 13: 132	824P5MF5 824C0F1P 824C0F15	9-8-10 9-8-11 9-8-12	136 46 0	74 13 0	23 9 0	.9666 .9395 1 0000	169 46 0	37 3 0	25 9	9437 9048 1198
133	82453FIP	9 - 8 - 1 3	70	- 12	13	9191	47	· 27	1 2	9332
134	824P3F15	9 - 8 - 1 4	-65	31	8	9593	-52	22	1 2	9347
135	824P4MMP	9 - 8 - 1 5	68	19	7	9796	80	7	7	9795
136	82454MMS	9 - # - 1 &	- 173	- 45	5	.9955	· 192	- 5 5	10	9928
137	82477MMP	9 - 8 - 1 7	94	9	5	.9940	112	1	6	9932
138	82457MMS	9 - 8 - 1 8	- 24	- 52	21	8711	- 48	- 8 2	23	8908
139	824P5MFP	9 · 8 · 19	0	0	0	1.0000	0	- 10	0	1 0000
740	82454MFS	9 · 6 · 20	68	- 2	9	9549	55		9	9496
141	824P3F1P	9 · 8 · 21	72	27	13	.9548	73		12	9290
142	82453F15	9 - 8 - 2 2	· 44	- 17	7	.9601	· 59	· 23	8	9505
143	824CDHHMH	9 - 8 - 2 3	· 207	25	9	9945	· 219	25	17	9877
144	824COHHMRD	9 - 8 - 2 4	· 94	20	12	.9592	· 99	23	14	9663
145	874CQHMRY	9 8-25	0	0	0	1 0000	0	0	0	1 000C
146	824P411RH	9-8-26	- 354	72	1 2	9968	- 350	89	15	9968
147	824P411RD	9-8-27	- 114	39	6	9916	- 121	43	12	9845
148 149 150	#24P4 1RV #24P#FFRV #24P#FFRD	9 · 8 · 28 9 · 8 · 29 9 · 8 · 30	97 366 0	2) 1 7 8 C	1 4 2 9 0	9627 9919 1 0000	100 441 0	137 0	33	9671 9843 1 0000

TABLE B.2 (Continued)

			C DMB	INEL LOAD!	NG P 60 DE	GREE LAC	COMBINED LOADING & 240 DEGREE LAC			
GAGE Number	GAGE Name	POSITION	SENSITIVI VERTICAL	TY/100°. LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENS!TIV VERTICAL	ETT/100% LATERAL	ERROR OF	CORRELATION COEFFICIENT
157 152 153	824P9FFRH 824S411RH 824S411RD	9 - 8 - 3 1 9 - 8 - 3 2 9 - 8 - 3 3	- 199 - 353 - 86	- 8 9 - 8 4	15 15 11	9865 9969 9815	242 274 108	3 - 78 40	1 1 2 1 6	9945 9912 9856
154 155 156	8245411RV 82459FFRH 82459FFRD	9 - 8 - 34 9 - 8 - 35 9 - 8 - 36	81 -181 -110	· 6 · 33 · 34	15 13 16	9144 9904 9451	66 165 92	2 d - 1 6 - 5 b	75 20 16	9109 9624 8702
157 158 159	B2459FFRY 125CDP 129COP	9-8-37 9-8-38 9-8-39	287 334 279	- 4 0 - 5 - 6	6	9737 9493 9995	230 340 285	9 2 8 c	33 5 3	9707 9994 9996
160 161 162	832C0 1M2P(C) M31 9C0P(C) M22,559.5P(C)	9 - B - 40 9 - B - 41 9 - B - 42	- 25 1 - 5 6 4 - 27)	19 71	7	9974 9997 9987	760 572 260	. c . 3 . 2	•	997; 9994 9980
163 164 165	M23P.3P(C) M22.5P.3P(C) M12.5P.4P(C)	9-8-43 9-8-44 9-8-45	- 186 - 184 - 49	-31 -11 -4	4 7 4	9990 9971 9852	· • • • • • • • • • • • • • • • • • • •	32	4 6 7	9953 9954 9547
166 167 168	M12.5P.5P(C) M12.5P4P(C) 824P11.6P(SE)	9 - B - 4 6 9 - B - 4 7 9 - B - 4 8	-50 -73 116	· 3 · 15 58	\$ \$ 13	9782 9897 9840	••	6 5 6 c		9654 9712 9642
169 170 171	H23.958.5P(HSL H23.958.5P(HSU H23.9P8.5P(HSL)	9-8-50	- 299 371 - 294	104 -21 -87	10	9994 9982 9941	212 187 418	· .	\$	9990 9996 9931
172 173 176	H23,9P8.5P(HSU' M60S9P(C) M48 1P8P(C)	9 - B - 5 2 9 - B - 5 3 9 - 8 - 5 4	328 0 -344	6 I O - 128	; ; 0 14	9978 1 0000 9974	345 C 357	6.1 C	1 G C	9978 1 0000 9944
175 176 177	84855MM5[BM] 84855MZP(BM) 84855MZ5[BM]	9 - 8 - 5 5 9 - 8 - 5 6 9 - 8 - 5 7	51 -145 -104	15 22 4	24 35	8403 5327 7950	127	32 56 54	2 % 2 %	8505 9466 8228
178 179 180	84855.1MZP(BM) M49.5S9P(1F) H28P17.5(D)	9 · 8 · 5 8 9 · 8 · 5 9 9 · 8 · 60	·53 ·393 ·9	17 161 - 1	13	8599 999 : 55 16	36 397 -2	37 155 C	1 3 8 2	9164 9993 2484
151 182 183	840COTTP 840COTTS 840P4TTP	8 · · 1 8 · · 2 8 · · 3	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	; ;	1 1	5892 3710 3055	0	0	; ;	0340 1669 1269
184 185 186	840P4TTS 840P8TTP 840P8TTS	8 · · 4 8 · · 5 8 · · b	0	0	Q Q 1	1 0000	° °	o o	• •	2471 1 0000 1 0000
187 188 189	840C02TP 840C02TS 840P42TP	8 · · 7 8 · · 8 8 · · 9	1 1 0	1	1 1 0	2596 6100 1 0000	• 1 • 1	• •	•	1447 2966 1 0000
190 191 192	840P4275 840P827P 840P8275	8 10 8 11 8 12	. 1	0	5	3012 1010 1 0000	0 6 0	• •	6	2058 5380 1 0000
193 194 195	840C0MZP 840C0MZ5 840C0MFP	8 13 8 14 8 15	0 0 • 4	0 0	0 1	1 0000 2085 5196	0	0 0	0 0 2	1 0000 1 0000 3677
196 197 198	840CDMFS 840P7MFP 840P7MFS	8 16 8 17 8 18	0	0	0	1 0000 1 0000 3524	0	• •	1 1	2177 3526 2234
199 200 201	840C0F1P 840C0F1S 840P6F1P	8 · · · 19 8 · · · 20 8 · · · 21	° °	0	0	1 0000 1 0000 1 0000	0	•	0	1 0000 3275 1129
202 203 204	840P6F1S 840S4TTP 840S4TTS	8 · · · 2 · 2 · · · 2 · 3 · · · · 2 · 4	0 0	0 0	0	0981 1 0000 1 0000	0 0	0	0	1 0000 . 2339 1 0000
205 206 207	84058TTP 84058TT5 84054ZTP	8 · · 25 8 · · 26 8 · · 27	0	° °	1 0	1 0000	0	• •	0	1 0000
208 209 210	84054275 8405427P 84058275	8 · · · 28 4 · · · 29 8 · · · 30	0	0 0) 0	1867 1 9000 2046	o o	•	1	.2513 2119 .2419
211 212 213	34054MFP 84054MF5 84056F1P	8 31 6 32 8 33	0	0 0	1 0	1135 1 0000 0981	• •	0	• •	1598 1 0000 2385
214 215 216	84056FIS 840C0HHRH 840C0HHRD	4 · · · 34 4 · · · 35 4 · · · 26	0	• •	1 0	1 0000 2045 1 0000	1 0 0	0	1 1 1	2917 1228 1839
217 218 219	840COHMRV 840P6!lRM 840P6!IRD	4 27 4 24 4 39	0	o o	0	1 0000 0852 1758	o o	0	o o ,	1 0000 1683 2216
220 221 222	840P611RV 840P9F1RV 840P9F1R0	8 - 40 8 - 41 8 - 42	* 1 * 0 * 0	1 0 1	1	1773 0388 2660	· 1 0 0	0	1 0	9901 1 9990 1 9990
223 224 225	840P9F1RH 840P12FFRV 840P12FFRD	3 · · 42 3 · · 44 5 · · 45	0 0	0	0	1842 1 0000 1 0000	o o 1	• •) 0	2966 1683 2049

TABLE B.2 (Continued)

	COMBINED LOADING & 60 DEGREE LAG COMBINED LOADING & 240 DEGREE LAG GAGE GAGE POSITION SENSITIVITY/100". ERROR OF CORRELATION SENSITIVITY/100". ERROR OF CORRELATION										
GAGE Number	GAGE Name	POSITION	SENSITIVI VERTICAL	TY/100°. LATERAL	ERROR OF	CORRELATION COEFFICIENT	SENSITIVI VERTICAL	TY/100%	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	
226 227 228	840P12FFRH 840S611RV 840S611RD	8 4 6 8 4 7 8 4 8	o o	1 0 0	1 1 1	3674 2292 1945	0	0	o o c	6981 1 0000 1 0000	
229 230 231	84056; IRH 84059F;RH 84059F;RD	8 49 8 50 8 51	0 0 · 1	0	1 0 1	1833 0819 .3723	0	0	c 1	1 0000 1551 1 0000	
232 233 234	84059F1RV 840512FFRH 840512FFRD	8 · - 5 2 8 · - 5 3 8 · - 5 4	0 0 0	0	o o	1 0000 1 0000 2087	0	0	0 1	1 0000 0240 1552	
235 236 237	B40512FFRY B48COMMP +3858 54FRY	8 - · 55 8 - · 56 8 - · 57	o o	c •	0 1 1	1 0000 1286 3082	o t o	0 0 0	1 0	1 0000 3500 0471	
238 239 240	84858 4MFRD 84858 4MFRH W46P2ZT(D)	858 859 860	3 0 0	0	0	1 0000 1 0000 2259	· · · · · · · · · · · · · · · · · · ·	0	0	2213 1 0000 1 0000	
241 242 243	848CCTTP 848CCTTS 848P4TTP	8 - A - 1 8 - A - 2 8 - A - 3	o o	1	1 1	2885 2833 1062	0 1 0	0	, c	2453 4256 : 0000	
244 245 246	848P4TTS B48P8TTP B48P8TTS	8-A- 4 8-A- 5 8-A- 6	c c	0 0	0	1 0000 .098: 2582	· 1	0	0	1517	
247 248 249	B48CCITP B48CDITS B48P4ITP	8 · A · 7 8 · A · 8 8 · A · 9	0	0 1 0	0 1 0	1 0000 3921 1 0000	0 0	° °	0	0481 1 0000 1 0000	
250 251 252	84894775 84898779 84898775	8 - A - 10 8 - A - 1 ' 8 - A - 12	1 0 0	o o	† 0 0	0589 1 0000 1269	o o · 1	o o	0	1 0000	
253 254 255	848COM2P 848COM2S 848COMEP	8 - A - 13 8 - A - 14 8 - A - 15	с 0 0	c •	0	1 0000 . 2116 1.0000	o o	0	, 0	0104 1 0000 1350	
256 257 258	848CDMFS 848P6MFP 848P6MFS	8 - A - 16 8 - A - 17 8 - A - 18	o o	0	0	1 0000 1 0000 1001	o o	0	•	2494 1002 1 0000	
259 260 261	B48COFIP B48CDF1S B48P6F1P	8 - A - 19 8 - A - 20 8 - A - 21	, 0	0	0	1 0000	o o	0	0 0	1 0000 1236 1598	
262 263 264	848P6# S 848S4TTP 848S4TTS	8 - A - 22 8 - A - 23 8 - A - 24	o o o	o o	0	1 0000	o o	o o	0	0924 2832 1 0000	
265 266 267	8485877P 84858775 8485427P	8 - A - 25 8 - A - 26 8 - A - 27	o o c	0	0	1 0000 1767 1,0000	o - 1 0	0	0	1 0000 3483 1 0000	
268 269 270	84854275 8485827P 84858275	8 - A - 28 8 - A - 29 8 - A - 30	c 0	o o	0	1 0000 .2192 1847	. 1 0	0 0	;	2435 3458 2417	
271 272 273	84856MFP 84856MFS 64856F1P	8 A - 3 I 8 - 4 - 3 2 8 - 4 - 3 3	o o	o o	0	2294 1 0000 1 0000	o o	0	o o	1 0000	
274 275 276	84856F15 848C0HHRH 848C0HHRD	8 - A - 34 8 - A - 35 8 - A - 36	0 0	0	1 0 1	2322 1 0000 2336	• •	0	1 3	1847 3505 2081	
277 276 279	848COHHRY 848P711RV 848P711RO	8 - A - 37 A - A - 38 8 - A - 39	0 0 0	0	° °	1 0000 0852 1349	o o o	° °	, o o	1684 2428 1236	
280 281 282	848P711RH 848P10F1RV 848P10F1RD	8 - A - 4 0 8 - A - 4 1 8 - A - 4 2	· 1	1 0	0 1 0	1 0000 4339 1708	o o	0 0	0	1 0000	
283 284 285	848P10F1RH 848P12FFRV 848P12FFR9	8 - A - 4 3 8 - A - 4 4 8 - A - 4 5	0	0	1 0 1	.0779 1.0000 .2175	0	o o	0	1 0000 0713 2285	
286 287 288	848P12FFRH 848S71[RH 848S71[RD	8 - A - 4 6 8 - A - 4 7 8 - A - 4 8	0	1 0 0	1 1 0	3493 2428 1 0000	0	0	0	1031	
289 290 291	84857118V 84851DF18H 84851DF18D	8 - A - 49 8 - A - 50 8 - A - 5 '	0	o o	1 0	2895 1 0000 1169	0	0	0 1	1 0000 1593 1 0000	
292 293 294	848510F1RV 848512[[RH 848512[]RD	8 - A - S 2 8 - A - S 3 8 - A - S 4	0	0 0 1	0 0 1	1.0000 1.0000 3892	o •	° °	0	1 0000 1965 5747	
295 296 297	848512[]RV H48 1520P[C] B48513MMS[C]	8 - A - 5 5 8 - A - 5 6 8 - A - 6 7	0	1	2	1 0000 3445 3685	. 4 0	0	o 5 0	1 0000 7320 2214	
298 299 300	#565911P(C) #56P4MM5(C) #40P1(DK)	8-A-S8 8-A-S9 8-A-60	0	0	1 3 1	2157 3704 0253	· · · · · · · · · · · · · · · · · · ·	0 2 0	3	0885 2491 1 0000	

TABLE B.2 (Continued)

			COMB	INED LOAD!	NG (P 60 DE	GREE LAG	COMBI	NED LOADIN	IG Ø 240 DE	GREE LAG
GAGE NUMBER	GAGE NAME	POS!710N	SENS]TIV VERTICAL	LATERAL		CORRELATION COEFFICIENT	SENSITIV VERTICAL	TTY/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
303 303	M30 4P10W M30 4P10 5P M30 4P11W	8-8 1 8-8 2 8-8 3	o o	o o	1	2476 0931 1890	· 1	0	,	3269 2685 1 0000
304 305 306	M30 4P1: 5P W30 4P12W WEI94 OEM	8 - 8 - 4 8 - 8 - 5 8 - 8 - 6	o o	° °	1 1 1	1373 1911 0982	• •	0	0	1 0000 2672 1897
307 308 309	M31 2P10W M31 2P10 5PRL M31 2P10 5PR0	8-8- 7 8-8- 8 8-6- 9	· 1	0	1 1	1397 1783 1812	° °	0	; c	2852 1267 2116
310 311 312	M31 2P10 5PRH M31 2P11W M31.2P11 5P	8 - B - 10 8 - B - 17 8 - B - 12	0 1	0 0	1	2217 1234 1393	c. 0	0	c c	0924 * 958 050#
313 314 315	M31 2P12W M31 2P13W M31 2P14W	8 - 8 - 13 8 - 8 - 14 8 - 8 - 15	1 0 0	0	3 0 1	1601 2044 2450	, c	0	0	3037 1 0000 3437
316 317 318	B4QP8MMRH(88) B32P10MMP B4DP8MMRD(88)	8 - 8 - 1 6 8 - 8 - 1 7 8 - 8 - 1 8	0	o o o	1 2 1	0885 0719 2122	1	0 0	2 1	4668 3174 1981
319 320 321	832P10.5MMP 840P8MMRV(88) M31.8P11.2PRH	8-8-19 8-8-20 8-8-21	0	o o	o ; 2	1 0000 0750 1999	° ° °	C C	c c	1 0000 1683 2594
322 323 324	M31 8P11 2PRD M31 8P11 2PRL M31 8P11 \$P	8 - 8 - 2 2 8 - 8 - 2 3 8 - 8 - 2 4	o o	0	0 1 0	1236 1876 1 0000	° °	0	c	175 0714 1 0000
325 326 327	M31 SP12W M31 SP13W M31,8P14W	8 - B - 25 8 - C - 26 8 - B - 27	· 2 •	o o	0 2 0	1 0000 4559 1 0000	• 1 •	0	· ·	1 0000 8194 1 0000
328 329 330	M32 4P10W M32 4P10 5P M32,4P10,7P	8-8-28 6-8-29 8-8-30	0	0 0	0	2500 2061 1129	0	0	C 1	0713 0489 2115
331 332 333	M32 4P11 1P M32.4P11 3P M32 4P11 5PRH	8 - 8 - 3 1 8 - 8 - 3 2 8 - 8 - 3 3	0 0 1	o o	1 0 1	1272 1 0000 3917	0	0 0	0	3875 1 0000 1129
334 335 336	M32 4P11.5PRD M32 4P11 5PRL M32,4P12W	8 · 8 · 3 4 8 · 8 · 3 5 8 · 8 · 3 6	0	o o o	1 0 1	1497 148? 1400	0 0	0	1	1306 2033 2287
337 336 339	M32 4P13W M32 4P14W M31.2511W	8 · 8 · 37 8 · 6 · 38 8 · 8 · 39	0 - 1 0	° °	1 1 1	1771 2852 1601	o o o	0	0	1 0000 1 0000 1 0000
340 341 342	M31 2512W M31 2513W M31,2514W	8 - 8 - 40 8 - 8 - 41 8 - 8 - 42	0 1 0	o o	1	1 0000 0737 2617	o o	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 c	1129 1 0000 0857
343 344 345	M31 8511W M31 8511 2PRL M31 8511 2PRD	8 · B · 4 3 8 · B · 4 4 8 · B · 4 5	· 1	o o o	2 2 0	2321 0537 1820	o o o	0 0	° ° °	1 0000 1347 1981
346 347 348	M31 8511 2PRH M31 8512# M31 8513#	8 · 8 · 4 6 8 · 8 · 4 7 8 · 8 · 4 8	0	0 0	1 1 1	2208 1762 1801	• •	, c o	c c	2473 1 0000 1 0000
349 350 351	M31 8514W M32 6510W M32 6510 7P	8 - B - 4 9 8 - B - 5 0 8 - B - 5 1	. 3	· 1	7 4	1299 1711 1244	o o o	0	0 1 0	1022 2077 1 0000
352 353 354	M32 6511.3P M32 6512W M32 6513W	6 - 8 - 5 2 8 - 8 - 5 3 8 - 8 - 5 4	0 0 1	0 0	1	1 0000 1558 3576	• 1	0	1	1 0000 1405 4600
355 356 357	M32 6514W H24 1517 SP(H5 H24 1517 SP(H5	8-8-55 	0 0 2	0 1 - 1	2	1 0000 0537 4266	• 4 • 2	0 - 1 0	2	1 0000 7042 5212
358 359 360	H24 .7520 SP(HS H24 2520 SP(HS W52PZZT(O)		- 3 0 0	1 0 0	1 5 5	5884 2387 2116	· 3 1 0	0	2 2 1	5710 0900 2445
361 362 363	M21P13 SP M21P12W M21P6W	7 · · · 1 7 · · · 2 7 · · 3	· 502 · 9 · 226	34 2 - 62	12	9996 1865 9974	-489 -5 -219	37 0 -63	10 10 15	9991 0636 9863
365 365 366	M21P2W M21C0W M21S2W	7 · · 4 7 · · 5 7 · · 6	· 207 0 · 207	· 33 0 20	6 0 32	9983 1 0000 9409	- 214 0 - 224	- 3 1 0 2 9	9 0 45	9954 1 0000 9215
367 368 369	M2154W M2156W M2158W	7· · 7 7· · 8 1· · 9	· 253 · 192 · 193	3 1 7 2 7 6	7 3 4	9977 9997 9991	- 254 - 190 - 194	2 1 7 3 7 7	• 5 3	9970 9991 9996
370 371 372	M21510W M21511 5P M21512W	7 · · 10 7 · · 11 7 · · 12	- 161 - 144 - 97	84 73 84	6 2 3	9960 9994 9982	· 169 · 163 · 97	8 1 8 2 8 2	6 6 4	997 t 9980 9988
373 374 378	M21512 SP M21513W H21513 SP	7 · · 13 7 · · 14 7 · · 15	-89 -117 -62	70 88 101	4 7 9	9861 9928 9884	- 9 4 - 1 2 1 - 5 6	64 83 96	13 8	9425 9964 9965

TABLE B.2 (Continued)

		COMBINED LOADING & 60 DEGREE LAG					COMBINED COADING @ 240 DECREE CAG			
GAGE NUMBER	GACE NAME	P0517:0N	SENSTITE VERTICAL	ITY/100°. LATERAL	ERROH OF Estimate	CORRELATION COEFFICIENT	SENSITIV VERTICAL	ITY 100% LATERAL	ERRCR OF ESTIMATE	CORRELATION COEFFICIENT
376 377 378	N16 2515P(CU) H21CDA H2152W	7 1 6 7 1 7 7 1 8	- 130 160 163	4 8 4 2 6	7 10 11	9925 9927 9904	138 154 164	5 1 0 2 1	10 14 10	952 ° 9805 9893
379 380 381	H2192W H2195W H2157W	7 : 9 7 : 20 7 : 21	167 144 101	- 25 32 36	2 2	9985 9996 9997	170 139 97	2 2 3 3 3 6	t 4 3	9574 9578 9981
382 383 384	H21P7A H2159A H21511W	7 - 72 7 - 23 7 - 24	110 66 -132	- 3 2 5 2 6 1	1 2 2 2	9 6 6 4 5 5 7 2 9 4 7 4	76 64 128	- 3 1 5 2 6 3	13	9556 987. 994
385 386 387	H218:1W H215:3W H215:13:5P	7 - 25 7 - 26 7 - 27	6 8 6 3	- 5 6 6 4 8 0	4 3 3	9 9 4 3 9 9 6 9 9 9 7 9	67 67 9	- 5 9 6 9 8 1	6 4 3	9 9 3 1 9 9 5 5 9 9 7 6
388 389 390	H21P13 SP H21S14W H21S 6W	7 · · · 26 7 · · · 29 7 · · · 30	- 16 - 56 - 78	- 8 6 6 7 7 7	1 4 5 3	9994 1136 9980	· · · · · · · · · · · · · · · · · · ·	- 86 174 72	2 2 3 4	5990 3842 9986
3 \$ 3 9 3 3 9 3	1218 56 1218 56 1218186	7 · · · 3 · 7 · · · 3 · 7 · · · 3 ·	* 1 C E - 3 - 4 S B	- 7 e 60 - 7 9	3 19 4	9995 9997 9997	94 163	- 7.8 5.9 - 8.2	• • •	9994 4474 995
395 396	73370W 73500W 73707ET	7 · 34 7 · 35 7 · 36	39 -1 -52	74	3 1 4 8 8	9873 2360 3798	* 3 2 6 3	3 2	 6 6	883¢ 2161 2488
397 398 399	13 / 12 K 14 · C. A 1431 DW	7 · · 3 e 7 · · 3 9	° 6 • 24	23 32 3	6 6 3 4 4	1290 4229 9422	35 3 -21	7 6 2	5 ° 3 7 4	1643 2015 9249
400 401 402	74:23W 74700W 2330JA	7 - 40	. · · ·	2 2	2 2 3	9053 908E 9″88	6 - 1 2 - 3 3	· ·	2 2 2	6368 8265 987
403 404 405	73510W 73750W 73950#	7 · · 43 7 · · 44 7 · · 45	1 5 2 1 1 9 1 8 4	7 · 2 5	3 2 3	9 9 9 6 9 9 9 1	- 5 4 - 1 1 9 - 1 8 6	•	3	9877 9989 9983
405 407 408	Z4100W Z4300W Z4500W	7 · 46 7 · 47 7 · 48	0 - 2.6 d - 3.5 g	· 2	° 2 3	1 0000 9998 9998	C - 28 : - 35 C	, ° ¢	3 2 3	888 888 . 0000
409 410 411	747C0W M33C0W M35CDW	7 44 7 45 7 -51	- 4 0 1 - 3 0 0 - 4 0 6	2 5 6	3 ' 2 9 1 4	9 % 5 7 9 7 6 3 9 9 7 °	- 357 - 288 - 413	23	3 2	981. 9977 9982
412	M3700W M3900W M4100W	7 - 53 7 - 54	0 0	0	000	1 0000	<i>c</i> 0 0	c c	¢ :	, eccc , eccc , eccc
4 . 5	M4 17 0 W M4 5 0 0 W M4 7 C D W	7 . S.C. 7 . S.C. 7 . S.7	¢ 0 2	0	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	1 0000	0	° c	0	0000
418 419 420	84058MMW () 8405 2MMF:5 8 4012108	7 58 7 59 7 67	° • •	c c o	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	1 0000	с 0 0	c c	0 0	0000
4 2 4 2 2 4 . 3	. 19 - 100 B 	- Δ	230 371 384	9 7 11	1 2 5 1 2	9936 9996 9976	255 379 387	- 7 1 - 4	13	9938 9994 9966
426 426	145 300P 733 370W 537/DW	7 : L : - 4 7 : L : - 5 7 : L : - 6	365 37 22	2	5 5 4	9996 9552 9140	359 - 36 - 22	- 3 - 4	9 6	9 9 8 5 8 7 0 6 8 6 8 0
427 427 429	F4150W F45 300W H3300°	7 A · 7 7 · A · 8 7 A · 9	- 30 - 17 596	0 3 · 5	4	7663 8601 9999	- 29 - 19 59 1	+4 +1 +12	6	7384 8157 9997
430	HUSSOP H1720P H2410P	7 · 4 · 1 C 7 · 4 · 1 1 7 · 4 · 1 2	556 606	11	8	9995 9997	552 579	6 - 1	19	' 0000 9970 9995
123 434 435	H430DP H450DP	7 - A - 1 4 7 - A - 1 4 7 - A - 1 5	640 C	• 1 • • •	8 0 0	9987 1 0000 1 0000	645 0 0	0	0	9993
436 417 438	+2100F M335'' 1P M33F' 1P	7 - A - 1 6 7 - A - 1 7 - A - 18	916 273	0 14 ! - 83	0 9 21	1 0000 9978 9902	- 313 - 267	140	, 1 , 0	9986 9937
439 440 441	M35511 'P M37511 IP M37011 IP	7 - A : 9 7 - A : 20 7 - A : 21	356 349 424	170 179 201	13 9 28	9963 9983 9942	337 348 409	175 183 -183	12 13 24	9964 9984 9911
442 442 444	M395 (* 12 M415 (2) M415 (1)	7 · A · 2 2 7 · A · 2 3 7 · A · 2 4	3 ° 8 4 4 4	16 155 171	1 1 6 2 4	2165 9999 9999	106 - 352 - 450	158	2 6 °	1205 9999 9999
445 446 447	M435!! 1P M155!! 1P M45P1! IP	7 - A - 25 7 - A - 26 7 - A - 27	370 385 434	193 212 -239	4 2 3	9997 9999 9999	-375 -374 479	191 216 -237	2 2	9993 9999 9999
4 4 8 4 4 9 4 5 0	M675!! IP M335!4P M339!4P	7 - A - 28 7 - A - 29 7 - A - 30	103 38 0	204 224 0	13	9999 9970 1 0000	- 200 - 421 0	208 120 0	345 0	9999 5214 1 0000

TABLE B.2 (continued)

			CDMB	INED LOAD!	NG @ 60 DE	GREE LAS	COMBINED LOACING & 240 DEGREE LAC				
GAGE NUMBER	CAGE	POS: T10N	SENSITIV: VERTICAL	TY/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITIVI VERTICAL	TY 100% LATERAL	EPROR OF ESTIMATE	CORRELATION COEFFICIENT	
45 1	M35514P	7 - A - 3 1	-385	230	3	9999	- 383	232	4	9989	
45 2	M37514P	7 - A - 3 2	-385	237	17	9958	- 318	235	5 6	9978	
45 3	M37P14P	7 - A - 3 3	-381	-236	11	9991	- 384	- 251	9	9989	
454	M39514P	7 · A · 34	- 293	178	88	8350	· 137	223	382	3436	
455	M41514P	7 · A · 35	- 96	145	149	4408	46	376	303	5656	
456	M41P14P	7 · A · 36	- 301	- 200	56	9668	- 253	-200	69	8840	
45°	M43514P	7 · A · 37	· 230	306	242	5640	-349	279	133	#769	
458	M45514P	7 · A · 38	· 329	285	14	9972	-311	296	21	9967	
459	M45P14P	7 · A · 39	c	0	0	1 0000	0	C	c	0000	
460	M47514P	7 - A - 40	· 396	291	13	9980	· 390	295	13	999	
461	W32 15MZO 1RV	7 - A - 41	258	-53	11	9953	259	158	8	998(
462	W32 15MZO 1RD	7 - A - 42	· 682	128	9	995	- 665	135	13	9992	
463	W32 15MZO 1RL	7 - A - 43	-452	149	7	9994	-452	149	9	9993	
464	W32 15ZTO 1P	7 - A - 44	13	43	35	6194	-4	18	2 2	4189	
468	W355MZO 5P	7 - A - 45	-416	181	5	9996	-422	171	1 C	9992	
465	W355MZ2W	7 - 4 - 4 6	- 3 1 7	8 1	6	9990	-305	76	6	9972	
467	W3552M3 SP	7 - 4 - 4 7	- 3 6 3	65	5	9995	-353	66		9995	
468	W3552TO 1P	7 - 4 - 4 8	- 2 9 7	55	3	9998	-293	54		9997	
469	#355272#	7-4-49	101	35	6	9694	· 74	5 1	1 8	9477	
470	#355723 9P	7-4-50	- 136	13		9952	- 129	1 4	8	9969	
471	#49 559P[F0]	7-4-51	- 367	162		9943	- 347	1 6 5	2 '	9952	
472	M49 \$59P(AD)	7 - A - 5 2	- 376	164	5	9995	- 376	163	6	5997	
473	84852MMW(C)	7 - A - 5 3	- 128	10	10	9831	- 121	18	1 Z	3799	
474	856510 1MMP(C)	7 - A - 5 4	- 97	23	. 3	9513	- 72	31	1 2	4616	
478 476 477	84053MM5(8M) 84053MMP(8M) 84053MIS	7 - 4 - 5 5 7 - 4 - 5 6 7 - 4 - 5 7	- 32 - 152 - 101	- 1 E 9 1	1 2 5 4	8614 997: 9968	- 13 - 744 - 101	- : 	1 3 5 3	3397 9974 9980	
47e 47g 480	84053MZP 84855MMP H44519(D)	7 - A - 58 7 - A - 59 7 - 4 - 60	96 - 107 - 78	1 1	5 8 4	9907 9867 9938	- 89 - 90 - 76	9 2 4 5	4 9 5	9957 9236 9918	
481 482 483	T49P1OW T49P6W T49COW	7 - 8 - 1 7 - 8 - 2 7 - 8 - 3	-330 -97 -28	· 83 · 22	5 4 8	.9995 9962 8414	- 127 - 96 - 27	- 8¢ - 25 - 0	6 6 1 1	9989 9893 7425	
484 485 486	T 4 9 S 2 W T 4 9 S 4 W T 4 9 S 6 W	7-8- 4 7-8- 5 7-8- 6	· 32 · 23 · 3	1 1 1 6 0	7 5 0	8772 9054 1.0000	· 37 · 21 · 0	5 1 4 0	9 ?	8999 9073 1 0000	
487 488 489	T4958W T4951QW T4951Q 5P	7 · 8 · 7 7 · 8 · 8 7 · 8 · 9	- 203 - 317 - 419	59 87 108	9 5 6	9949 9994 9994	-199 -315 -416	5 6 8 6 1 1 4	1 2 5 7	9996 9996	
490	749510 9P	7-8-10	- 484	126	1	9996	- 485	123	9	9994	
491	749P10W	7-8-11	- 55)	-153	3	9993	- 556	- 162	4	9998	
492	249P6W	7-8-12	- 379	-103	5	9993	- 377	- 104	5	9998	
493	249COW	7-8-13	0	0	o	1 0000	0	0	0	9999	
494	24952W	7-8-14	- 434	2 8	8	9992	-436	2 2	8	9992	
495	24954W	7-8-15	- 475	6 2	5	9997	-475	6 2	4	1 0000	
496	24956W	7 - 8 - 16	· 545	92	7	9995	-548	88	9	9995	
49	24958W	7 - 8 - 17	· 313	81	4	9995	-314	77	6	9994	
496	249510W	7 - 8 - 18	· 474	164	3	9999	-470	165	2	9999	
499	749510.5P	7 - 8 - 19	-496	176	6	9996	- 4 8 4	181	\$	9998	
500	749510.5P	7 - 8 - 20	-493	184	3	9999	- 4 8 4	185	4	9999	
501	W495M72W	7 - 8 - 21	-163	130	2	9997	- 1 \$ 6	128	3	9997	
502	W4952M3 9P	7 · B · 22	-539	193	1 4	9982	- 5 2 8	193	, ,	9994	
503	W495M20 1RL	7 · B · 23	-381	220	2	9999	- 3 7 3	223	3	9999	
504	W495M20 1RD	7 · B · 24	-422	197	4	9998	- 4 0 4	115	7	9995	
\$05 \$06 \$07	W495MZO 1RV W495ZTZW W495ZZJ 9P	7 · 8 · 25 7 · 8 · 26 7 · 8 · 27	299 -465 -462	- 9 6 1 3 6 1 1 9	4 3 3	9995 9999 9999	293 -459 -450	- 113 139 124	1 4 5 3	9999 9965	
\$08	W49SZTO IRL	7 - 8 - 28	- 480	171	2	9999	-475	171	3	9999	
\$09	W49SZTO IRD	7 - 8 - 29	21	25	6	9651	16	14	1 1	6325	
\$10	W49SZTO IRV	7 - 8 - 30	161	- 13	4	9986	169	-9	6	9969	
511 512 513	M49P14W M49P13W M49P11 1P	7 - 8 - 3 1 7 - 8 - 3 2 7 - 8 - 3 3	0 0 - 388	0 0 - 200	, 3 0 0	1 0000 1 0000 .9987	0 - 12 - 35 1	0 - 6 - 2 1 1	6 10	1 0000 6586 9985	
514	M49P10W	7 - 0 - 34	- 349	- 208	6	9996	- 351	- 197	7	9591	
515	M49P6W	7 - 0 - 35	- 386	- 122	28	9914	- 369	- 117	33	9763	
516	M49P2W	7 - 0 - 36	- 435	- 43	11	9986	- 446	- 34	11	9764	
517	M49CDW	7 - 8 - 37	- 337	74	6	9991	- 326	2	9	9982	
518	M49S2W	7 - 8 - 38	- 489	31	8	9993	- 450	43	8	9994	
519	M49S4W	7 - 8 - 39	- 477	80	10	-9987	- 475	90	10	9991	
\$20	W4 9 5 EW	7-8-40	- 382	106	3	9992	- 377	109	4	7774	
\$21	W4 9 5 BW	7-8-41	- 364	155	6	9994	- 360	162		7776	
\$22	M4 9 2 P	7-8-42	- 378	182	8	9996	- 370	185		7737	
523 524 525	M49510W M49510.5P M49510.9P	7 - 8 - 43 7 - 8 - 44 7 - 8 - 45	- 36 1 - 344 - 375	197 209 224	4 2 3	1118 1111 1112	- 354 - 380 - 373	202 212 225	5 6	**** **** ****	

TABLE B.2 (Continued)

	GE GAGE POSÍTION		C D ## 8	COMBINED LOADING # 60 DECREE LAG			COMBINED LOADING P 240 DEGREE LAG			
CAGE Number	GAGE NAME		SENSITIV VERTICAL	ITY/100% LATERAL	ERROR OF	CORRELATION COEFFICIENT	SENSITIV VERTICAL	LATERAL	ERROF OF ESTIMATE	CORRELATION COEFFICIENT
526 527 528	M49512# M49512 5P M49513W	7 · 8 · 46 7 · 8 · 47 7 · 8 · 48	- 375 369 -417	250 243 283	4 3 3	9997 9998 9999	-372 -364 -412	256 243 287	3	**** **** ****
529 530 531	M495:3 5P M49514# M49511 1P	7 - 8 - 49 7 - 8 - 50 7 - 8 - 51	- 397 - 399 - 403	294 296 218	11 6 14	9984 9995 9970	0 - 384 - 357	0 297 235	o 5 2 4	7 0000 9998 9973
532 533 534	848CDMM5;C; 23853 SP(C) 23353 SP(C)	7 - B - 5 2 7 - B - 5 3 7 - B - 5 4	- 202 - 258 - 186	10 - 2 - 18	30 7 6	9469 9984 9578	- 167 - 253 - 174	· 1 · 7 - 14	2 6 5 3	9446 9989 9952
535 536 537	23353 SP(C) 243P3 SP(CO) 243P3 SP(C)	7 · 8 · 5 5 7 · 8 · 5 6 7 · 8 · 5 7	-:78 -324 -295	- 15 - 41 - 40	5 4 3	9943 9996 9997	- 171 - 323 - 295	- 18 - 42 - 39	3 4 2	999' 9997 9998
538 539 540	253P3 5P(C1) 253P3 5P(C0) H525!8:C:	7 - 8 - 5 8 7 - 8 - 5 9 7 - 8 - 60	-399 -464 - 171	- 5 9 - 6 4 - 2 2	6 13 4	9996 9983 9989	- 40 t - 47 t - 173	· \$ 7 · 5 4 · 2 2	4 12 4	9997 998: 9983
541 542 543	н16 2515Р:СLI н45 ⁹ 3ф н49Р7 ж	6 · · · · 2 6 · · · 3	0 E03 784	- 65 - 138	0 1 1	1 0000 .9997 .9994	0 5 9 8 4 8 0	- 68 - 15 1	c 7 &	9957 9957
545 545 545	н а9 Р10 % на9Р12 ж на9Р15 5Р	6 · · · 5 6 · · · 6	355 253 :3	· 202 · 236 · 259	6 1 2 6	9969 9988	350 202 - 12	- 208 - 260 - 263	5 25 8	9997 9929 9987
54 E 54 9	H4953W	6 - 7 6 - 8 6 - 9	677 592	0 28 61	4	2624 9999 9999	C 676 589	0 23 59	e 7	1384 9997 9996
150 551 552	H 4 9 5 5 W H 4 9 5 7 W H 4 9 5 9 W	6 - 12 6 12 6 12	53 ' 529 44?	102 157 188	4 6 4	9999	530 540 452	96 143 191	10 5 3	9991 9998 9995
553 554 555	H495 OW H495 IA H495 ZW	6 · · · 13 5 · · · 14 6 · · · 15	255 313 264	204 218 231	8 4 5	9995 9998 9997	360 317 277	199 213 230	3	9975 9989 9583
555 557 558	H49513W H495:5 5P H495 6W	6 - 16 6 - 17 6 - 18	1 8 2 - 2 5 1 8	249 267 245	•	9998 9997 9604	183 - 16 - 93	243 266 317	\$ 5	9987 9995 8775
560 56'	H49518A H49579W H45577 SP	6 20	· 366 257	0 308 223	3	1 0000 9999 9998	- 363 265	304 220	9 9	9980 9980
562 563 564	#45\$16 5F T46\$10 9P T46\$7W	6 - 22 6 - 23 6 - 24	#2 370 -149	243 99 46	7 8 4	9986 9986 9983	- 34 - 368 - 149	237 95 43	12	999C 99&C 9978
565 566 567	139510 9P 13957W 136510 9F	6 - 25 6 - 26 6 - 27	· 304 c 195	75 0 45	4 0 6	9996 1 0000 9972	- 302 0 - 198	7.6 C 4.1	, o 8	999C 1 0000 .9970
568 569 570	*11657w Mae,5w Ma254w	6 - 28 6 - 29 6 - 30	-56 -380 -374	36 135 134	3 4 3	9939 9997 9998	-59 -381 -374	3 t 132 133	6 ? 6	9882 9994 9996
67. 57. 573	M4358W M3957W M3978W	6 · 33	- 339 - 355 - 331	63 100 117	3 3 5	9998 9998 9994	- 343 - 359 - 344	6 1 9 5 1 1 9	6 8 1 2	9994 . 9992 5981
5.74 5.75 5.76	M30511W M3058W M37511W	6 · 35 6 · 36	- 180 - 238 - 215	133 95 -47	34 74 128	9358 8006 5519	· 240 · 364 338	131 108 -135	30 63 162	987 1 9527 7665
5 7 8 5 7 9	M1758W H555 3W H55P16 5P	6 37 6 38 6 39	. 253	5 8 0 - 2 2	27 0 6	9682 1.0000 9894	- 2 6 3 0 - 8 1	89 0 - 21	53 0 10	9411 9 0000 9619
580 581 582	15467W 154610 98 15467W	6 · · 40 6 · · 41 6 · · 42	39 - 183 - 42	327 -17 -11	6 4 8 8	.9995 8708 .9099	- 3 1 - 1 8 7 - 3 6	327 • 42 • 10	35 8	9988 9125 9344
583 584 585	TS4F1C 9P M54S8 5P H59CQP	6 - 43 6 - 44 6 - 45	· 165 · 370 •	35 160 0	20 4 0	9616 9997 1 0000	- 182 - 366 0	35 163 0	3 6 4 0	9317 9999 1 0000
586 587 588	M5700P M57513W M5570P	6 · - 4 6 6 · - 4 7 6 · - 4 8	806 328 810	- 7 265 15	9 5 53	9997 9998 9899	797 327 915	-5 245 15	13 7 65	9993 9992 9876
589 590 591	H\$300P H\$3013\ H\$3512\ H\$3512\	6 · · 45 6 · · · 50 6 · · · 51	0 307 3'8	0 · 252 244	6	1.0000 9994 9990	301 331	- 255 252	6 1 2	1 0000 9997 9974
592 593 594	M51007 M515 4P 152 SCDP	6 · · · 5 2 6 · · · 5 3 6 · · · 5 4	0 - 385 409	0 294 · 8	3	1 0000 9999 9982	- 349 417	292 4	6 1 2	1 0000 9998 9979
595 59E 597	-57CDP #49COW F52 SCOW	6 · · 5 5 6 · · 5 6 6 · · 5 7	333 - 23 - 15	2	7 5 9	9990 9043 5682	333 - 24 - 17	. 3 •	8 8 1 1	9986 7833 6085
598 599 600	F57COW H54 8521P(C) H2OS13 5P(D)	6 - 58 6 - 59 6 - 60	379	249	14	1 0000 9969 . 5956	- 377 - 13	259	19	1 0000 9977 6337

TABLE B.2 (Continued)

			COMBINED LOADING # 60 DEGREE LAG COMBINED LOADING # 240 DE					GREE LAG		
GAGE Number	GAGE NAME	POSITION	SENSITIVI VERTICAL	TY/100% LATERAL	ERROR OF	CORRELATION COEFFICIENT	SENSITIV VERTICAL	ITY/100°. LATERAL	ERROR OF EST:MATE	CORRELATION COEFFICIENT
601 602 603	TS1COW TS3COW TS4COW	6-A- 1 6-A- 2 6-A- 3	0 · 2 2 · 1 6	0 1 10	0 7 15	1 0000 .7984 4182	- 2 i	. 3 5	0 7 20	7 0000 7930 2063
604 605 606	758CDW 260510.9P 26056W	6-A- 4 6-A- 5 6-A- 6	1 - 1592 - 868	13 401 167	20 16 22	3226 9997 9982	· 54 - 1629 - 872	17 438 185	54 33 21	4444 9993 9989
607 608 609	260CQW 259510.9P 259CQW	6-A- 7 5-A- 8 5-A- 9	1 -1271 -670	323 4	1 & 6	5518 9 999 9998	0 -1261 -671	333	1 & E	1821 5999 9998
619 611 612	258510 9P 25856W 258COW	6-A-10 6-A-11 6-A-12	-994 -603 -650	262 103 -5	11 10 33	9997 9992 9936	- 994 - 607 - 667	264 114	1 1 6 49	9998 9998 986 9
613 614 615	257CQW 257510 9P 256 2P+0 9P	6-A-13 6-A-14 6-A-15	-638 -688 -738	0 198 - 204	9 7 13	. 9995 9997 . 9995	- 653 - 698 - 733	1 1 9 5 - 2 1 5	16 9 24	9985 9997 9969
616 617 618	256 2COW 256 2P6W 256 2S6W	6-A-16 6-A-17 6-A-18	-650 -641 -677	· 133 - 6 128	7 7 6	9998 9997 9997	- 65 1 - 64 2 - 67 6	- 123 0 135	7 5	9996 9992 9998
619 620 621	256 2510 9P 255000 255510 9P	6 - A - 19 6 - A - 20 6 - A - 21	- 797 - 392 - 769	201	36 7 4	9943 9997 9999	-930 -582 -777	230 7 221	131	9658 9996 9998
622 623 624	254CQ+ 25556+ 254510 9>	6 - A - 22 6 - A - 23 6 - A - 24	-589 -641 -727	4 136 217	4	9999	-594 -643 -732	136	9 1 2	. 9 9 4 9 9 9 4 . 9 9 9 7
625 626 627	753C0W 751C0W M51C0W	6 · A · 25 6 · A · 26 6 · A · 27	- \$53 0 0	0	5 0 0	9998 1.0000	- 5 5 8 C	0	7 0	9996
628 629 630	MS1511 1P :49COP MS3COW	6-A-28 6-A-29 6-A-30	· 399 394 0	234	3 6 0	9999 9994 1 0000	- 400 394	233	8 9	9996 9988 1.0000
631 632 633	M\$3\$11 1P M\$3\$14P M\$3P11 1P	6 - A - 3 1 6 - A - 3 2 8 - A - 3 3	- 361 - 429 - 405	232 307 -221	3 3	9998 9999 9992	-358 -432 -401	230 305 223	6 9	9997 9996 9970
634 636 636	M53P14 M55COW M55S11.1P	6 - A - 3 4 6 - A - 3 5 8 - A - 3 6	-397 -358 850	- 29 1 - 5 - 654	10 27 476	9994 9865 6618	-401 -403 -3	· 293 · 20	11 26 130	9985 9895 5675
637 638 639	M\$5514P M\$7CDW M\$7511.1P	6 · A · 37 6 · A · 38 6 · A · 39	-465 0 -489	315	15 0	9976 1 0000	-463 0 -475	327 0	12	.9993 1 0000
640 641 642	MS7514P MS7P14 MS7P11.1P	6-A-40 6-A-41 6-A-42	-336 0 -521	233	6 0 25	9993 1 0000 9976	· 333	232	10	.9991 1 0000 9994
643 644 645	M59CDW M59514P M59511 1P	6-A-43 6-A-44 6-A-45	0 - 445 - 342	0 318 227	0 5	1 0000 9998 9998	0 • 436 • 322	0 315 231	0 5	1 0000 9999 9991
646 647 648	WSS 95M20 2RV WSS.95M20 1RD WSS 95M20.1RL	5 - A - 4 5 6 - A - 4 7 6 - A - 4 8	- 158 113 - 310	170 225 171	22 19 23	9766 9938	· 130 147 - 305	255 288 167	36 29 21	9812 9842 9943
649 650 651	WSS.95720 1RV WSS 95720 1RD WSS.95720 1RL	6-8-49 6-8-80 6-8-51	204 - 266 - 774	· 88 4 245	7 29 13	9966 9707 9991	212 -232 -780	· 72	13 52 33	9944 892~ 9970
652 653 654	W55 95ZM3 9RV W55 95ZM3 9RD W55 95ZM3 9RL	6-A-52 6-A-53 6-A-54	205 - 325 - 402	- 79 96 243	15 11	9456 9964 9997	202 -324 -796	-61 111 238	15	9931 .9984 9998
625 626 627	W\$6.157M3.9RL W\$6.157M3.9RD W\$6.157M3.9RV	6 - A - \$5 6 - A - \$6 6 - A - \$7	19 - 19 17	34 11 -52	28 18 53	8553 3840 4460	9 1 - 29 - 103	3 13 21	23 19	8644 6739 7920
658 659 660	HSS:3P20P RESISTOR WS2\$2MZ(0)	6 - A - S 8 6 - A - S 9 6 - A - 60	186 - 7 - 10	- 293 1 2	12 6 6	9976 4034 8294	190	-302 10	14 12 7	.9942 .3831 5071
661 662 663	BS&COTTP BS&COTTS BS&P&TTP	6-8- 1 6-8- 2 6-6- 3	0 - 45 1 - 30	0 - 1 - 77	0 16 22	1.0000 9959 9227	0 -450 -26	0 · 9 · 65	13	1,0000 9979 8873
664 665 666	BS6P4TTS BS6P8TTP BS6P8TTS	6-8- 5 6-8- 5	- 35% - 176 - 172	-75 -186 -12	18 59 13	9982 9378 9866	-377 -193 -194	- 96 - 153 - 35	20 49 13	9919 8991
667 668 669	856C0ZTP 856C0ZTS 854P4ZTP	6-8- 7 6-8- 8 6-8- 9	0 -99 -161	0 13 -126	13	1492 9549 9602	0 - 107 - 184	0 0	1 12 28	.1583 9713 9448
670 671 672	856P4ZTS 854P8ZTP 854P8ZTS	6-8-10 6-8-11 6-8-12	- 29 - 130 - 68	- 1 - 1 6 7 - 7 3	11 46 15	. 7862 . 9448 . 9721	-33 -143 -86	- 32 - 108 - 55	10 31	8872 9164 9254
673 674 678	SSSCOMIP SSCOMIS SSCOMPP	6 - 8 - 13 6 - 8 - 14 6 - 8 - 15	-123 -67 -52	- 4 1 - 30 - 32	31 25 23	.9104 8165 .8373	· 133 · 72 - 42	- 14 - 17 - 20	27 21 33	9051 8140 8406

TABLE B.2 (Continued)

			COMB	INED LOAD!	ING & 60 DE	GREE LAG	COMBINED LOADING @ 240 DEGRÉE LAG			
CAGE Number	SAGE	POSITION	SENSIT!V VERTICAL	ITY'100°. LATERAL	ERROR OF	CORRELATION COEFFICIENT	SENSIYIY VERTICAL	ITT/100% LATEPAL	ERROR DF ESTIMATE	CORRELATION COEFFICIENT
676 677 678	856COMFS 856P8MFP 856P8MFS	6 · 8 · 1 · 6 6 · 8 · 1 · 7 6 · 8 · 1 · 8	0 - 2 8 4 0	-8 -29 116	1 : 8 34	3467 9568 8856	- 1 1 - 37 20	0 - 13 - 67	32	3486 7997 8134
679 680 681	856CDF;¤ 856C0F;5 856P6F;p	6 - 8 - 1 9 6 - 8 - 2 0 6 - 8 - 2 1	· 3 · 9 2 3 9	- 6 9 - 4 - 3 4	45 8 14	6708 9836 8371	- 158 - 93 - 29	- 25 - 1 - 25	10	4224 9734 8097
682 683 684	856P6F15 85654***P 85654***5	6 · 8 · 2 2 6 · 8 · 2 3 6 · 8 · 2 4	34 - 112 - 302	- 14 28 7 1	6 4 1 1 8	9:32 74;7 9905	2 & - 1 : 2 3 : 2	- 1 6 5 8 6 7	10 33 21	£15.6 5 00 9903
685 686 687	816P2 # 5 856S8TTS 856S42TP	6 - 8 - 25 6 - 8 - 26 6 - 8 - 27	· 16 0 - 131	0 23	' 5 0 35	5903 1 0000 8417	- 34	25 0	1 & O	£091 1 0000
6 8 8 6 8 9 6 9 0	85654715 8565871P 85658715	6 - B - 2 8 6 - B - 2 9 6 - B - 3 0	-134 -70 -43	4 6 2 4 3 2	2 6 2 8	905 1 7197 9239	99	5.2 8.3 3.8	15 32	9 8 2 2 9 2 4 C
691 59: 693	85658MFT 85658MF5 85656F1P	6 · 8 · 3 3 6 · 8 · 3 2 6 · 8 · 3 /	e 8 ' 3 4	6 3 · 1	0 4 † 20	1 0000 6594 5817	C 67 27	0 60	7 0 34	9812
696 695	85-146F1S 85-500-4484 85-600-480	6 · 8 · 3 4 6 · 8 · 3 5 6 · 8 · 3 6	44 · 275 163	1 6 20 - 3 3	7 10 12	9651 9944 9848	47 - 209 - 49	17	6 12	5327 9289 9906
697 598 699	85600HHR+ 856P7 .RV 856P7.!RD	6 - 8 - 3 7 6 - 8 - 3 8 6 - 8 - 3 9	8 1 C 5 7	- & O 3	14	9253	80 0 73	- 10	' 6	9769 9452 1 0000
700 701	856P7 (RH P55P1 (FR) 855P1((FR)	6 - 8 - 4 0 6 - 8 - 4 1 6 - 8 - 4 2	'05 '3 '379	- 9 1 8 80	1 C 1 2 1 S	9772 7687 9953	153 40 375	. 9 30 65	, 3	9272 9792 8250
703 704 705	856P11]FRH 856P 3FFRY 856P13FFRD	6 - 8 - 4 3 6 - 8 - 4 4 6 - 8 - 4 5	38 11 156	- 1 2 1 5 7)) E 13	8465 8824 9804	75 25	- 10 40 82	9 .5 .9	9985 9035 9288
706 707 708	856P:7FFRH 856S7:1RH 856S7:1RD	6 - B - 4 6 6 - B - 4 7 6 - B - 4 8	; 5 b : 6 9	80 5 - 13	1 &	9314 .9296 8773	· 26	- 68 - 5 37	. 4 . 8	9880 9391 9540
709 710 711	85657.[PV 85651*[FRH 85651*[FRD	6 - 8 - 4 c 6 - 8 - 5 c 6 - 8 - 5 t	6 1 - 8 6 4 0 0	4 4 6 5 2	2 E ! 3 ! 7	7017 9912 9960	47 206 392	22 39 56	26	6656 6432 9963
712 713 714	85651:1FPV 856513FFRH 856513FFPC	6 - 8 - 5 2 6 - 8 - 5 3 6 - 8 - 5 4	5 £ 2 2 9	· 28 !04 - 39	., 19	9544 9541 8625	· 74 5	· 24 · 26 · 19	1 8 9 2 4 9	9942 9616 9540
715 716 717	855513#FRV M36-154P-2 M3654P-2	6 - 8 - 5 5 6 - 8 - 5 6 6 - 8 - 5 7	184 36 627	- 9 1 2 8 2	1 9 5 1 0	986 · 954 9 999 3	- 192 35 - 623	- 34 - 4 - 8 3	15.	833; 9838 8981 9994
718 719 720	M32 159- 5 M32 18 5815) RESEATOR	6 * 8 * 5 8 6 * 8 * 5 9 6 * 8 * 6 0	- 358 - 435 - 84	181 14 34	8 18 11	9967 9959 9773	- 35 B - 500	187 - 14 25	28 13	9983 9922 9422
711	ДРММ 160 - РД ДРММ 360 2 P Д ДРММ 360 3 P Д	5 - 2 5 - 3	- 183 - 888 - 1010	192 - 42 - 206	67 24 30	5618 9983 9982	· 230 · 896 · 971	160 - 68 - 202	5 1 1 7 2 1	9555 9990 9987
724 725 726	Town360364 Town360364	5 - 4 5 5 5 6	- 404 - 411 - 401	- 157 - 135 - 179	15 21 3	9981 9957 9999	-401 -427 -411	- 146 - 149 - 182	4 8 6	9998 9952 9993
727 728 729	ДРММ3-{C - РГ ДРММ3-6C2-РГ ДРММ3-6C3-РГ	5 · · · · · · · · · · · · · · · · · · ·	· 364 · 4:7 · 724	· 205 · 243 · 512	6 7 7	9996 9997 9999	- 366 - 421 - 724	- 206 - 250 - 510	5 1 1 6	9996 9984 9998
710 71 712	APMM36C4PF Arww36_Spr O O O O O O O O O O O O O O O O O O O	5 - 10 5 - 11 5 - 12	· 5 4 7 2 0 - 4 3 8	-558 -287 -251	6 5 3	999 9996 9999	-572 16 -448	-570 -29' -255	12	9993 9992 9994
733 734 735	APMM36P3PFO 5 APMM36P5PFO 5 APMA36R4PF	5 13 5 14 5 15	· 469 · 6· * · 682	- 270 - 357 - 438	3 3 4	9999 9999 9999	- 483 - 627 - 698	- 273 - 357 - 436	9 6	9991 9997 9994
736 737 738	784545EWH0E 784746PH0E	5 - 16 5 - 17 5 - 18	· 29 1 303 · 435	· 285 7 · 230	3 14 11	9999 9948 9992	-301 310 -458	· 29 1 · 6 · 234	9 .5 22	9987 9848 9942
739 740 741	ДРММ36Р3РF4 M35 3P'' IP M35 3P'' 5P	5 · · 19 5 · · 20 5 · · 21	- 431 - 392 - 412	-209 -191 -181	6 4 8	9998 9998 9995	-437 -404 -418	-216 -198 -181	8 9	9990 9987 9971
742 743 244	M35 37 1P M38 6P11 7P APM/2332315	5 22 5 23 5 24	328 -208 -25	- 190 - 198 - 12	6 2 4 5	9622 9998 9618	- 324 - 216 - 33	- 185 - 200 - 15	44	9580 9992 9018
745 746 747	APM733C308 APM233C300(R) APM233C293	5 - 25 5 - 26 5 - 27	254 2 704	37 - 2 - 125	3 2 7	9997 6261 9998	250 6 -718	30 - 1 - 128	7	9980 5387 9994
748 749 750	LPM233RVMM APM233RUMM APM233RUMM	5 · · 28 5 · 29 5 · 30	4 C - 245	30 0 - 103	3 1 5	9895 0828 9993	- 4 0 - 255	25 0 - 105	2 0 1 C	9944 1 0000 1954

TABLE B.2 (Continued)

	COMBINED LOADING # 60 DEGREE LAG GE GAGE POSITION SENS'TIVITY/100°. ERROR OF CORRELATION						COMBINED LOADING P 240 DEGREE LAC				
GAGE NUMBER	GAGE HAME	POSITION	SENS'TIV	LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITIV VERTICAL	ITY/100% LATERAL	ERROR OF	CORRELATION COEFFICIENT	
75 1 75 2 75 3	APMIZZRUMA APMIZZROMA APMIZZRYMA	5 3 1 5 3 2 5 3 3	· 662	- 147 30	1 3 8	9369 9369	- 668 - 45	· 142 26	3	1967 9999 9573	
754 755 756	APZZ3&C2PA APZZ3&C3PA APZZ3&C4PA	5 - · 34 5 - · 35 5 - · 36	-1662 0 0	- 4 8	9 0 0	9999 1 0000 1 0000	- 1652 0 0	- 36	12 0 0	9999 1 0000 1 0000	
757 758 759	APIZJEPJPA S SAPIZJEPJPA PAPEPBELLQA	5 · · · · · · · · · · · · · · · · · · ·	-653 -485 -411	- 80 - 92 - 97	5 7 5	9999 9986 9997	-658 -478 -410	-76 -96 -111	13	9 9 9 8 9 9 7 9 9 9 8 4	
760 761 762	APIIJBRHPA APIIJBRDPA APIIJBRLPA	5 40 5 41 5 42	30 0 -1150	56 0 -124	14 0 7	9422 1 0000 9999	- 2 0 - 1 1 6 0	69 0 -116	9 0 6	9782 1 0000 9999	
763 764 765	APMI39C315 APMI39C308 APMI39C300	5 · · 43 5 - · 44 5 · · 45	-639 -615 -582	- 4 2 - 4 9 - 6 6	7 \$ 5	9597 9998 9999	- 670 - 638 - 592	- \$ 5 - 6 7 - 7 2	, , 8 4	9984 9996 9999	
766 767 768	APMI39C293 APMI42C315 APMI42C308	5 - 46 5 - 47 5 - 48	-692 -626 -608	- 110 - 54 - 69	5 8 6	9999 9997 9998	- 704 - 669 - 633	- 1 1 3 - 7 2 - 8 2	\$ 12 6	9988 9991 9997	
769 770 771	APMI41C300(R) APMI41C293 B16P3MMRH	5 49 5 50 5 51	26 -624 81	· 29 - 123 45	20 4 10	6427 9999 9811	- 642 88	·5 ·126 35	34 6 10	1633 9997 9644	
772 773 774	5:6P3MMRD 6:6P3MMRV H23P17MFP(U)	5 · · · 5 2 5 · · · 5 3 5 · · · 5 4	119 46 - 186	26 - 102 - 94	17 75 41	9628 5862 9449	104 11 -142	1 4 - 106	22 100 37	9031 2450 #890	
775 776 777	H23 9P16MFP[HS: H23 9P16MFP[HS 824P10 SMMRH		473 -572 -6	-58 -10 17	8 7 6	99 <i>97</i> 9997 8393	459 -551 -21	- 5 7 - 1 4 - 1 4	& 9 5	9994 9993 9441	
778 779 780	824P10 5MMRD 824P10 5MMRV w35P2M2(D)	5 5 8 5 5 9 5 60	120 113 -11	2 8 3 2 3	9 15	9896 9689 7727	134 146 -11	12	19 17 7	9501 9671 5655	
781 782 783	APMM4 4C 1PA APMM4 4C 2PA APMM4 4C 3PA	5-A- 1 5-A- 2 5-A- 3	0 -1057 -1051	0 - 250 - 348	0 17 ¶	1 0000 .9995 9999	0 - 1045 - 1078	0 - 250 - 347	0 27 12	1 0000 9981 9995	
784 785 786	APMM44C4PA APMM44C5PA APMM44P3PA4	5 · A · 6 5 · A · 5 5 · A · 6	·562 ·474 ·464	316 -188 -228	20 4 8	9969 9999 9996	- 567 - 496 - 474	327 -192 -231	17 7 9	9990 9995 9990	
787 788 789	APMM44C1PF APMM44C2PF APMM44C3PF	5 · A · 7 5 · A · 8 5 · A · 9	- 437 - 466 - 772	- 24 (- 273 - 530	? 4 7	9997 7999 1999	-435 -476 -774	- 245 - 279 - 525	\$ 8 5	1954 7 993 1999	
790 791 792	APMM44C4PF APMM44C5PF APMM44P1PFO S	5 - A - 10 5 - A - 11 5 - A - 12	- 630 - 5 - 468	-599 -257 -271	\$ \$	9999 9994 9999	-652 -15 -479	-604 -255 -276	13	9994 9981 9994	
793 794 795	APMM44P3PFO 5 APMM44P5PFO 5 APMM44R_PF	5 - 4 - 1 3 5 - 4 - 1 4 5 - 4 - 1 5	- 504 - 654 - 724	- 292 - 390 - 481	5 3 4	1999 1999 1999	-518 -663 -739	- 29 6 - 39 0 - 48 1	å 5	9994 9999 9 99 7	
796 797 798	APMM44RDFF APMM44RHPF APMM44P3PF2	5 - A - 16 5 - A - 17 5 - A - 18	- 262 349 - 483	· 277 6 · 245	4 37 14	9998 9742 9990	-274 355 -502	-278 44 -261	8 62 22	9988 9261 9951	
799 800 801	APMM44P3PF4 M43 3P11 1P M43 3P11 5P	5-A-19 5-A-20 5-A-21	· 476 · 465 · 429	- 235 - 217 - 224	117	.9996 9993 9997	-457 -462 -441	- 24 i - 22 2 - 23 6	15 14	9971 9974 9988	
802 803 804	M43 3P12 OP M41 4P11 7P APM246C292	5 - A - 22 5 - A - 23 5 - A - 24	- 421 -516 -696	- 244 - 220 - 127	1 2 4 6	9991 9999 9998	- 403 - 526 - 726	- 244 - 221 - 141	1 6 5 8	9955 9997 9997	
805 806 807	APM246C285 APM246C277 APM246C270	5 - A - 25 5 - A - 26 5 - A - 27	-717 -536 -450	- 121 - 16\$ - 215	51 7 16	9899 9997 9984	-638 -536 -455	-141 -168 -208	27 5 8	9942 9994 9991	
808 809 810	AP2246C3PA AP2246C3PF AP2252C3SF	5 - A - 28 5 - A - 29 5 - A - 30	- 1488 0 - 702	- 186 - 0 - 336	7 0 6	9999 1982 . 9998	-1491 0 -715	- 179 - 1 329	6 1	9999 3287 9994	
811 812 813	AS 2252035A APM2620101 APM262094	5 - A - 3 1 5 - A - 3 2 5 - A - 3 3	0 -491 -446	0 - 172 - 154	0 6 15	2580 9998 9982	0 - 49 4 - 45 7	- 172 - 158	1 7 14	2195 9995 9973	
814 815 816	APM262CD86(R) APM262CD78 APM262RLZA	5 - A - 34 5 - A - 35 5 - A - 36	25 0 0	13	44 0 0	2516 1 0000 1 0000	25 0 0	• 1 • • •	35 0 0	2220 1 0000 1 0000	
817 813 819	APMZ 62RDZA APMZ 62RHZA ASMM66C 1\$F	5 - A - 37 5 - A - 38 5 - A - 39	11 3 -734	4 9 2 6 6 5	46 38 11	\$546 4821 9994	· 23 · 18 · 736	16 16	27 22 11	4828 5197 995	
820 821 822	ASMM&6C2SF ASMM&6C3SF ASMM&6C4SF	5 - A - 40 5 - A - 41 5 - A - 42	- 9 4 9 - 9 6 9 - 6 2 8	165 224 153	10	9997 9997 9978	- 94 (- 946 - 599	144 221 145	;	9999 9999 9996	
823 824 825	ASMM66CSSF MS9 SP SP[AC] MS9 SP SP[FCQ]	5 - A - 43 5 - A - 44 5 - A - 45	- 5 6 9 - 4 7 2 - 2 6 7	184	:	9994 9996 9996	-578 -479 -270	167 -10 -3	1 q 8 3	9990 9993	

TABLE B.2 (Continued)

			COMB	GREE LAC	COMBINED LOADING @ 240 DEGREE LAG					
CAGE NUMBER	GAGE Name	P05:110N	SENSITIV VERTICAL	TY/100%	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITIV VERTICAL	TY/100'. LATERAL	ERROP OF ESTIMATE	CORRELATION COEFFICIENT
826	M59 9P \$P;FC1	5 · A · 4 6	· 326	· \$	4	9996	327	- 10	7	559C
827	M4855W(BM5U;	5 · A · 4 7	36	85	28	9031	4	30	3 a	3952
828	B56PBMM5(BM'	5 · A · 4 8	- 65	54	14	9235	68	30	1 1	8626
829 830 831	M4855W BM52 B56P8MZ5(BM) B4D59MMP[C]	5 - A - 4 9 5 - A - 5 0 5 - A - 5 1	0 - 68 575	- 154 64	0 8 5	1 0000 9436 9999	c - 8 C 5 6 4	6 2	3 C	1 000C 8808 9977
832 833 834	864P8MMS (8M1 H23 95195 82459 5MMR V 0 ;	5 · A · 5 2 5 · A · 5 3 5 · A · 5 4	26 98 - 70	2 - 26 - 21	† 2 1 5 5	6929 9424 9700	·3 113 ·100	18	16	1727 976u 9738
835 836 837	87459 5MMRD(C) 87459 5MMRH(C) H23 9516P(MSU)	5 · A · 5 6	9 362	- 19 - 36 72	9 9 9	5 f B B 5 13 L 9 5 B B	· 95 7 234	- 45 53	2 C 9 7	9034 9420 9987
538	H23 9516P(HS.)	5 - A - 5 8	-613	17	1 1	9992	- 628	16	1 4	9988
539	H23P17MFP(.)	5 - A - 5 9	-141	-97	6	9982	- 145	- 100	5	9970
840	W44P2MZ(D1	5 - A - 60	-19	0	8	7390	- 11	- 3	8	4468
847 847	M23 954 5P1H50 M23 954 5P1H51 H24 1P8 5P1H51	· 5 · 0 · 2	- 127 13 289	· 106 129 89	5 19 76	9985 9739 9004	-128 -12 412	142	2 c 8 2	9938 9759 9073
F 4 4	H24 1P8 \$P[H50		-500	- 153	9	9994	5 · 3	- 162	3	999 \$
F 4 5	H24 1P13 9P[C]		-7	44	5	9888	5	40	1 C	5 * 2 C
8 4 6	H29 3P17 BRH		25	45	8	9730	13	41	9	9 2 7 9
847	H29 3P17 8R0	5 - B - 7	- 8 7 2	- 9 2	5	9999	-885	- 95	3	5999
848	H29 3P17 8R,	5 - B - 8	- 1 7 0	- 1 7 6	6	9992	-171	- : 79	8	5974
649	H3: 9P145(;;	5 - 8 - 9	- 4 9	- 1 3 1	7	9970	-52	- 134	5	9976
850	832P8F1RH-11	5 - 8 - 10	54	35	6	9859	35	23	12 7	8257
851	832P8F1RD.C1	5 - 8 - 11	- 60	- 13	4	9928	- 69	- 16		9725
357	832P8F1RV(C)	5 - 8 - 12	- 155	- 8	4	9984	- 166	- 6		9958
853	M31 BP11W	5 - 8 - 13	- 247	-63	5	9993	· 256	- 75	1 2	9939
854	M31 BP10 SP	5 - 8 - 14	- 293	-142	5	9996	- 298	- 154	E	9990
855	H37520P	5 - 8 - 15	- 256	221	4	9998	- 265	- 227	&	9984
856	H37520P[CU]	5 - 8 - 1 6	- 220	2 8	4	.9996	- 221	214	7	5993
857	H37520P[CU]	5 - 8 - 1 7	- 146	2 6	7	9984	- 203	207	14	9971
858	H37519P[C'	5 - 8 - 1 8	- 182	230	9	9977	- 208	214	15	9966
859	H37 4520P1C1	5 8 - 1 4	243	228	7	9988	- 235	222	9	9989
860	84058 5MFRV(88	8] 5 - 8 - 2 C	4	37	12	8568	36	32	12	8593
861	84058 5MFRD(88	8] 5 - 8 - 2 C	-144	83	11	9862	- 143	68	13	9898
862	84058 SMFRH[8]	8) 5-8-22	- 186	63	8	9949	- 213	45	13	9975
863	H445200[[P	4-8-23	- 18 -	267	14	9959	- 180	262	13	9980
864	H45 4521P[C]	4-8-24	- 395	312	4	9998	- 393	308	8	9956
8 6 5 8 6 7	НАБ 452°Р°С° НАТР20Р{С° НАТ 9Р9Р(С°	5 E 25 5 E 26 5 B 27	399 2 459	302 79 -186	6 6	996 9925 9995	-401 8 451	293 78 - 199	10	9994 9885 9993
8 6 8 8 6 9 8 7 0	848F6 ZMMRV188 848F8 ZMMRD181 848F8 ZMMRH181	8 - 5 8 - 29	· 8 6 C 6 6	17 0 -42	0 14	9204 1982 9119	- 75 0 16	· 3 0 · 38	1 2 1 1 3	9369 2004 7993
8 1 1 8 1 3	H42 6P20P1C1 848P12MMP1C11 84RP12MMP1C21	5 · 8 · 3 · 1 5 · 8 · 3 · 1 5 · 8 · 3 · 3	5 5 9 8 3	. 4 - 35	1 10 24	2002 9287 8213	0 50 98	0 3 19	10	2500 9143 9607
874 875 576	848201P.C1 .55 9F2P.C H48 5P10P(G0)	5 8 34 5 8 35 5 8 36	50 0 0	· 3	1 8 0 0	7772 1 0000 1 0000	67 0 0	6 0 0	0	8239 1 0000 1 0000
877	H51P14P1CU1	5 · 8 · 37	150	· 288	5	9994	131	- 294	8	9993
878	H51P14P.CL1	5 · 8 · 38	364	· 243	4	9597	350	- 249	6	9997
879	H49P19P4C1	5 · 8 · 39	-241	· 296	11	9990	-232	- 304	8	9990
880	H5 1P 1&P 1 C	5 - 8 - 4 0	· 196	· 272	5	9997	- 209	· 275	7	9991
881	H5 6P 8H (BMS U 0)	5 - 8 - 4 1	· 133	· 66	5 1	8495	- 150	· 70	45	8175
880	M5 6P 8H (BMS L 0)	5 - 8 - 4 2	· 99	· 90	5 1	8465	- 88	· 60	39	7321
684 885	W56P8W(BMSU01 W56P8W(BMS:0) Af515*0R	5 · B · 43 5 · B · 44 5 · B · 45	· 105 0 5	- 67 O 1	23 0 9	9532 1 0000 1386	- 205 C 5	. 8 6	46	8844 1 0000 2557
8 8 8 8 8 8	M4053W/BMSU 856PBMMP(BM) M4855W/BMSU	5 - 8 - 4 6 5 - 8 - 4 7 5 - 8 - 4 8	- 292 - 51 - 0	-67 -164 	35 39 0	9744 9407 1 0000	· 294 · 82 0	- 18 - 114 - 0	34 36 0	9665 8720 1 0000
8 8 9	856P8MZP18M*	5 - 8 - 4 9	- 34	-71	22	9185	- 35	-41	17	8071
8 9 0	M31 8P10±	5 - 8 - 5 0	- 265	-143	10	9986	- 293	-156	8	9979
8 9 1	H1651ZP[CU*	5 - 8 - 5 1	- 61	53	5	9908	- 71	51	10	9634
892	H16512P:CM;	5 8 52	- 100	\$7	5	9888	- 84	55	13	9749
893	H:6512P:CLT	5 8 53		60	20	9139	- 114	59	14	9810
894	H:4512PECT	5 8 54		- 14	5	8684	- 6	- 17	7	7971
895	H10 6585(C)	5 - 8 + 5 5	- 77	24	7	.9759	- 86	40	:	9893
896	H1251491C;	5 - 8 + 5 6	42	- 18	3	9910	- 48	- 23		9338
897	H129149(C)	5 - 8 - 5 7	- 15	- 21	4	9654	- 20	- 25		9607
898	816P8P C1	5 8 5 8	172	· 5	5	9959	124	· 15	1 1	9836
798	H73S2OP1C	5 - 8 - 5 9		104	4	9987	-170	102	6	9984
100	PESISIOR	5 - 8 - 6 0		0	5	0668	2	1	3	2587

TABLE B.2 (Continued)

								NED COADIN	G # 240 DE	CHEE LAG
GAGE Number	GAGE NAME	P051710N	SENSITIV! VERTICAL	LATERAL	ERROR OF	CORRELATION COEFFICIENT	SENSITIA:	ITY/100°. LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
901	864CDZZP	4 · · · 1	- 87	-3	2 1	.8869	- 8 7	1 2	15	.9418
902	864CDZZS	4 · · · 2	- 85	-11	1 1	.9639	- 7 4	8	13	9336
903	864P4ZZP	4 · · · 3	- 44	-47	1 5	9386	- 5 8	- 2 9	19	7510
904	864P4225	4 · · 4	- 212	- 6 1	1 9	9868	-227	-42	22	9753
905	864P822P	4 · · 5	- 101	- 6 1	9	9906	-125	-47	15	9631
906	864P8225	4 · · 6	- 105	- 70	1 9	9694	-96	-34	22	8780
907	B64COMZP	4 · · 7	-131	- 25	25	9360	-115	8	2 &	8828
908	B64COMZS	4 · · 8	-50	14	7	9448	-46	12	8	9529
909	B64P4MZP	4 · · 9	-104	- 46	19	9573	-116	-23	2 3	4068
910	864P4MZS	4 · · · 10	- 136	- 6 2	17	9797	- 15 1	- 35	2 6	5 2 2 4
911	864P8MZP	4 · · · / 1	- 7	- 3 9	20	7653	- 20	- 25	2 2	5 2 9 1
912	864P8MZS	4 · · · 12	- 132	- 7 1	8	9 9 59	- 149	- 54	9	9 8 9 5
913	864COMFP	413	-46	-3	1 6	7886	· 27	3	14	##32
914	864COMFS	414	-126	-6	2 9	8934	· 62	2	15	##32
915	864P2MFP	415	-65	-14	1 5	9112	· 41	· 3	12	6663
916 917 918	864P2MF5 864C0F1P 864C0F15	416 417 418	0 · 78 · 77	· 9 · 3	0 1 1 9	1.0000 9584 .9674	· 70	0 2 - 3	: 12 10	1225 9347 9547
919 920 921	864P6F1P 864P6F1S 86454ZZP	4 19 4 20 4 21	35 30 -111	- 13 - 49 - 4	15 18 20	6859 8395 9268	3 i 3 8	- 17 - 28 - 28	17 16 17	7501 6736 9425
922	86654775	4 · · · 2 7	- 134	19	17	9594	- 105	35	10	9855
923	8645877P	4 · · · 2 3	- 142	44	16	9654	- 124	64	13	9874
924	8645877S	4 · · · 2 4	- 63	- 1	16	8672	- 36	38	14	9207
925	86454MZP	4 25	-140	18	2 2	9361	-114	35	1 8	9591
926	86454MZS	4 26	-202		2 2	9692	-175	43	2 3	9696
927	86458MZP	4 27	-123		2 8	8824	-115	41	2 2	9482
928	B 6 4 5 8 M Z S	4 28	-171	34	18	9715	- 150	59	1 5	9463
929	B 6 4 5 4 M F P	4 29	-131	13	18	9539	- 168	27	2 1	9343
930	B 6 4 5 4 M F S	4 30	-106	13	22	8974	- 73	38	2 2	8997
931	86456F1P	4 31	- 8 8	1 c	1 &	8971	- 48	24	19	8964
932	86456F1S	4 32	- 1 0 4	3 1	1 6	9383	- 40	43	17	9479
933	864COHHRH	4 33	- 5	- 5	9	1968	9	0	7	4808
934	B64COHHRD	4 · - 3 4	· 8		8	4868	0	10	9	5487
935	B64COHHRV	4 · - 3 5	· 2	4	6	7730	22	4	7	7684
936	B64P7(1RV	4 · - 3 6	7 4	- 3 3	12	9361	5 1	- 24	20	8368
937 938 939	864P7 RD 864P7 RH 864P F RY	6 · · 37 4 · · 38 4 · · 39	7 .26 .448	- 1 29 102	3 22 16	7	15 195 -457	43 98	5 2 4 1 0	8199 .9562 .9990
940	864P11F[RD	440	67	- 9	10	9437	119	· 26	18	9590
941	864P11F[RH	441	- 13	66		2541	-233	· 55	109	6534
942	864P13FFRY	442	- 18	83		9878	-4	101	13	9765
943 944 945	864P13FFRD 864P13FFRH 8645711RH	4 - 44 4 4 4 4 4 5	-240 29 117	116 -30 7	22 14 10	97 9 2 7943 9623	- 199 7 59	139 1 -18	12	9882 0747 9788
946	86457 RD	4 · · 46	9 1	8	28	8378	5 É	- 12	1 1	9370
947	86457 RV	4 · · 47	- 4 2	- 14	10	9126	1 1	3	10	3334
948	8645 F RH	4 · · 48	2 2	106	30	9167	1 0 6	97	24	9282
949 950 951	864511F1RD 864511F1RY 86451311RH	4 · · · 49 4 · · · 50 4 · · · 51	· 489 - 10	· 37 · 66 o	27 73 0	.9933 8698 1 0000	- 431 - 60 - 0	- 47 - 65 0	29 12 0	9679 9552 1.0000
952	86451311RU	4 5 2	·239	- 14	24	9775	· 225	330	2 1	9800
953	86451311RV	4 5 3	·38	- 15	10	9060	· 27	0	6	8940
954	M61.2520P(CU)	4 5 4	·457	331	8	9994	- 450	1	9	9996
955 956 957	M5958P(C APM746C112 APM246C105	4 35 4 56 4 57	-438 -439 -420	203 -95 -112	6 6 1 4	9995 9997 9979	-42 · - 420 -411	206 -71 -112	1 1 8	9999 9982 9988
958	APM246C97	4 5 B	-486	- 142	14	.9985	-485	- 152	1 5	9974
959	APM246C90	4 5 9	-145	- 138	23	9831	-179	- 116	9	9949
960	H60P19(D)	4 6 O	-16	- 5	7	6485	-12	- 1	6	6584
961 962 963	ME (PIEP(Q) ME (PI) 1P ME (PI)W	4 · A · 1 4 · A · 2 4 · A · 3	0 -452 -412	· 263 - 223	0 5 10	9993 1 0000	· 458 · 425	· 266 - 224	0 5 8	1 0000 9997 9992
964 965 966	M61P6W M61P2W M61COW	4 - A - 4 4 - A - 5 4 - A - 6	-403 -394 0	-126 -29 0	9 8 0	.9991 9991 1 0000	- 394 - 0	- 122 - 32 0	7 7 0	9992 9992 1 0000
967	M6152W	4 - A - 7	-380	3 1	5	9995	-386	31	7	9981
968	M6154W	4 - A - 8	-314	67	6	9990	-310	66	7	9981
969	M6156W	4 - A - 9	-435	12 1	2 2	9924	-386	144	2 1	9986
970	M6158W	4 - A - 10	- 365	152	4	9997	:361	152	\$	9997
97:	M6159 5P	4 - A - 11	- 386	186	3	9994	:371	191	4	9999
972	M61510W	4 - A - 12	381	207	6	9994	:376	206	7	9996
973	MS1510 SP	4 - A - 13	- 372	201	17	9945	-349	219	178	9993
974	M61511 1P	4 - A - 14	- 395	259	6	9994	-628	- 11		8418
975	M61512W	4 - A - 15	- 429	272	9	9989	-421	273		9995

TABLE B.2 (Continued)

			COMB	INED LOAD!	NG 9 60 CE	GREE LAG	COMBINED LOADING P 240 DEGREE LAG			
GAGE Number	GAGE	PQS 1 T 1 ON	SENSITIV VERT; CAL	LATERAL	ERROR OF	CORRELATION COEFFICIENT	SENSITIV VERTICAL	ITY/100% LATERAL	ERHOR OF ESTIMATE	CORRELATION COEFFICIENT
976 977 978	M61512 SP M61513W M61514P	4 - A - 1 6 4 - A - 1 7 4 - A - 1 8	· 469 - 422	0 269 306	3 1 2 1	1113 9856 9953	- 4 2 5 - 4 3 6	29 1 29 9	38	2985 9923 9995
979 980 981	261COW 261S2W 261S4W	4 - A - 19 4 - A - 20 4 - A - 21	- 8 5 4 - 4 5 2 - 5 2 5	3 25 63	1 0 5 6	9997 9996 9996	+849 +452 +522	23 6:	9 5 8	9 9 9 ° 9 9 9 ° 9 9 9 °
942 943 984	26156W 26158W 26159W	6 - A - 22 6 - A - 23 6 - A - 24	- 1048 - 859 - 893	177 186 208	1 4 6 6	5 9 4 5 4 9 9 9 4 6 0 0	- 1050 - 857 879	182 191 216	1 6 8 6	9 9 9 5 9 9 9 2 9 9 9 9
945 946 947	261510W 261510 SP 261510 SP	4 - A - 25 6 - A - 26 6 - A - 27	-1164 -1370 -1336	274 303 313	50 103 55	9548 954 997	-1-69 -1398 -1345	360 360	1 9 3 7 2 5	9995 5587 5394
948 949 890	261P6W 261P10W W61SZM3 9P	4 - A - 28 4 - A - 29 4 - A - 30	-942 -1183 -1398	109 55 329	127 53 67	9534 9948 9944	1080 1185 -1475	9 2 9 7 3 7 0	2 9 2 2 2 4	5 5 8 5 9 9 9 3 9 9 9 4
991 992 993	W615MZO 1P M56 1521P M6153W	4 - 4 - 3 1 4 - 4 - 3 2 4 - 4 - 3 3	- 9 7 4 - 9 7 7 6 5 8	287 339 66	5 1 5 1	9915 9923 9997	- 9 2 8 - 9 8 4 - 6 6 :	318 365 65	2 · 2 · 1 0	5 9 5 2 5 9 9 3 5 9 9 4
994 995 996	H 6 1 P 5 W H 6 1 S 5 W H 6 1 S 7 W	4 - A - 34 4 - A - 35 4 - A - 36	645 588 508	-68 103 145	5 7 2	9958 9957 9999	654 601 517	102 150	5 7 5	9 9 9 9 9 5 9 7 9 9 8 7
997 998 499	H6157W H6159W H615 - W	4 - 4 - 37 4 - 4 - 38 4 - 4 - 39	69 - 192 427	24 310 -222	, 6 4	9996 9995 9998	106 184 425	310 -224	3 3 4	997 <u>8</u> 9999 9999
1000	H6 '01 tW H6 15 13 W H6 15 14 W	4 - A - 4 C 4 - A - 4 1 4 - A - 4 7	504 346 270	- 15 1 257 279	, 4	9998 9991 9 9 99	501 358 280	- 150 266 278) 3 4	9999 9975 9997
1003 1004 1005	H6:P14W H61515W H61516 SP	4 - A - 43 4 - A - 44 4 - A - 45	255 137 -35	268 289 276	9	9985 9998 9991	220 140 -26	- 264 293 273	2 2 5 6	9947 9995 9994
1005 1007 1005	M6:P16 SP M6 518W H61520WL	4 - A - 46 4 - A - 47 4 - A - 48	+ 2 6 + 8 2 + 3 8 5	264 777 316	7 7 7 6 5	9991 5142 9997	- 20 884 - 376	- 265 3 16 3 16	453	9996 6
1009	H6:P2OWL H57 9P9S[C] B56P8TIP[C]	4 - A - 49 4 - 4 - 5 - 5 4 - A - 5 - 1	- 40° 138 98	-333 -118 -45	13 15 16	9991 9809 9325	-400 124 76	- 326 - 130 - 20	3 1 2 1 5	9999 9945 9362
1012 1013 1014	ASM1760098 ASM1760105 ASM1760112	4 - A - 5 2 4 - A - 5 3 4 - A - 5 4	· 5 0 9 · 5 4 4 · 6 \ 5	143 103 90	1 8 9 7	##64 .9992 .9996	-47) -540 -612	137 104 97	1 O 9 8	9992 9994 9996
1015	ASMM66CBSA 45mm66C454 ASMM66C3S4	4 - A - 55 4 - A - 56 4 - A - 57	-684 789 -77e	476 507 455	8 6 1 1	. 9 9 9 7 9 9 9 5 9 9 9 5	- 660 - 782 - 772	498 525 469	* 9 7 6	9998 9999 9999
1018	45MM66C1SA 45MM66C1SA W6452MZ(D)	4 - A - 5 8 4 - A - 5 9 6 - A - 6 0	1012 -536 -8	287 288	1707 6 5	.0489 9997 5049	104 · 528 · 7	10 294 -2	878 6 5	2440 5999 4437
1021	B72COHHRH B72COHHRD B72COHHRY	4 · 8 · 1 4 · 8 · 2 4 · 8 · 3	- 55 - 79 - 11€	, ° 4	, 8 , 5	9537 9515 9945	-60 -65 -121	6 8 4	1 0 1 2 7	9417 9305 9926
1025	872F12 SF1RV 872F12 SF1RD 872712 SF1RH	4 - B 4 4 - B 5 4 - B 6	147 -163 44	- 106 47 - 20	1 1 10 13	9884 9899 .8168	127 188 112	. 97 34 - 10	1 3 7 8	9911 9570 9875
027	872512 SFIRH 877512 SFIRO 872512 SFIRV	4 · 8 · 7 4 · 8 · 8 4 · 8 · 9	65 - 263 - 31	90 -95 -51	19 10 35	9642 9976 7334	108 - 235 - 0	#4 - 104 - 41	14 10 35	9679 9949 5553
1030	782 500W 78500W 78100W	4 - B - 1 C 4 - B - 1 1 4 - B - 1 2	- 688 - 623 - 627	0 1 0	•	9994 9997 9999	-691 -613 -631	4 € · 3	6 5 6	9998 9998 9997
1033 1034 1035	16900W 27100W 26356W	4-8-13 4-8-14 4-8-15	-640 -611 -721	· 9 - 8 1 2 5	13 7 6	9990 9997 9998	-644 -610 -711	129	5 6 6	9999 9998 999
1036 1037 1038	263511W M63CDW M63S11 IP	4 - B - 1 6 4 - B - 1 7 4 - B - 1 8	- 4 2 8 - 4 7 0	· 1 · 20 25#	1 6 7	0572 1966 1994	0 - 403 - 453	0 1 261	0 5 3	' 0000 9996 9999
1039 1040 1041	M63514P M65COM M655:1 !P	4 - 8 - 19 4 - 8 - 20 4 - 8 - 21	- 5 2 1 - 4 0 2 - 4 5 0	32 - 2 258	11	9990 9983 9991	-505 -606 -388	325 7 274	4 4 32	9999 9997 9938
1042 1043 1044	M\$\$\$14P M5\$P14P M6\$P1' 1P	4 - 0 - 2 2 4 - 8 - 2 3 4 - 8 - 2 4	-523 -515 -453	314 -326 -279	2 2 1 4 9	.9957 9992 9996	- 535 - 534 - 461	333 -313 -271	8 10 2	1998 1992 1999
1045	M67CDW M675'' 1P M67514P	4 - 6 25 4 - 8 - 26 4 - 8 - 27	- 425 - 240	2 4 6 8 2	0 8 364	1.0000 9991 1322	0 - 427 - 445	25 1 285	0 4 30	1 000C 9999 9953
1048	M69CDW M69S11 TP M69S14P	4 · 8 · 2 8 4 · 8 · 2 9 4 · 8 · 3 0	0 - 5 0 2 - 5 6 0	3 / 3 3 / 9	0 125 218	1 0000 .8805 .7724	0 - 4 7 7 - 4 3 4	0 245 267	0 5 1 5	1 0000 9998 9988

TABLE B.2 (Continued)

COMBINED LDADING @ 60 DEGREE LAG					COMBINED LOADING P 240 DEGREE LAG					
SACE Number	SAGE NAME	POSITION	SENSITIV VERTICAL	ITY/100% LATERAL	ERROR OF	CORRELATION COEFFICIENT	SENSITIV Vertical	LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1051 1052 1053	M65P11 15 M65P16P M7:COW	4 · 8 · 3 · 1 4 · 8 · 3 · 2 4 · 8 · 3 · 3	- 468 0 - 394	4 1 0 7	5 1 0 7	9693 1.0000 .9993	- 435 0 - 394	2 1 0 1	0	9993 1 0000 9995
1054 1055 1056	M71510 1P M71513P M6358 5P	4 - 8 - 3 4 4 - 8 - 3 5 4 - 8 - 3 6	- 397 3432 - 376	227 -1341 141	1207	9991 .7625 9997	-386 -480 -370	237 208 145	990 5	999 <i>8</i> 1575 9997
1057 1058 1059	169COP 165COP F55CONA	4-8-37 4-8-34 4-8-39	42 -6 0	3	3 4 0	. 9906 . 5059 1.0000	67 5 0	3 3 0	5 3 c	9852 6437 1 0000
1060 1061 1062	N 6 3 C D P N 6 5 C C P N 6 5 S 1 3 W	4 - 8 - 4 0 4 - 8 - 4 1 4 - 8 - 4 2	427 840 320	· 6 · 5 234	1 5 3 3	.9995 .9256 9999	427 734 328	·3 ·107 235	1 4 6 6	9997 9261 9997
1063 1064 1065	Н67СОР Н69Р13₩ Н69СОР	4 - 8 - 43 4 - 8 - 44 4 - 8 - 45	307	· 225	0 4 0	1.0000 .9997 1.0000	303	- 226 0	3	1 0000
1066 1067 1068	H69513W H71COP !61COP	4 - 8 - 4 6 4 - 8 - 4 7 4 - 8 - 4 8	0 604 427	. 2 - 8	0 10 5	1 0000 9993 9997	599 420	. \$. \$	10	1 000G 9992 9991
1069	F61CONA 86458 5MMRV 86458 5MMRC	4 - B - 49 4 - B - 50 4 - B - 51	- 22 - 40 - 136	2 23 18	7 16 10	8225 7473 9841	-16 -48 -130	2 30 25	12 12 2	8630 9039 9801
1072 1073 1074	8645& 5MMRH H65520P!CU] H65520P!ACL)	4 - 8 - 5 2 4 - 8 - 5 3 4 - 8 - 5 4	-74 -321 -297	· 26 336 313	262 8 7	1851 1993 1992	- 6 6 4 - 3 1 3 - 2 9 8	-214 345 323	2 6 3 9 8	7 1 6 9 9 9 9 6 9 9 9 6
1075 1076 1077	H65S2OP(FCL) ASMZ76C090 ASMZ62C65	4 • 8 • 5 5 4 • 8 • 5 6 4 • 8 • 5 7	- 266 - 374 - 578	286 133 183	3 3 7	. 9 9 9 9 . 9 9 9 8 . 9 9 9 8	· 256 - 367 - 576	294 134 - 182	3 3 4	9999 9999 9998
1078	ASM262060 ASM262055 H68519P(D)	4 - 8 - 5 8 4 - 8 - 5 9 4 - 8 - 6 0	380 - 452 3	-1119 -124 -7	1434 9 5	2369 9993 6114	189 - 457 - 38	1 C - 1 4 3 - 1 8	1641 4 15	2442 9997 7294
1081 1082 1083	880C077P 880C0775 880P327P	3 · · · · · · · · · · · · · · · · · · ·	- 162 280 - 91	7 - 4 - 6	15 7 4	.9780 9983 .9958	- 143 272 - 96	- 6 1	9 2 2	9914 9599 9991
1084	880P3275 880P827P 880P8275	3 · · 4 3 · · 5 3 · · 6	164 · 29 94	· 8 · 22 · 25	, 4 , , 7	.9986 8949 .9823	166 - 49 84	- 10 - 14 - 24	3 t 2	9994 9976 9989
1087	BBOCOMZP BBOCOMZS BBOP3MZP	3 · · 7 3 · · 8 3 · · 9	· 29 7 · 67	6 4 0	20 12 13	4978 3082 9159	· & 25 -47	8 1 - 5	5 8 4	7950 8081 9793
1090	SAMEROBB Rimbrobb Simbrobb	3 10 3 11 3 12	103 33 28	-10 -7 -4	1 6 8 6	9411 .8546 9046	87 14 34	- 2 - 1 - 3	3 2 6	9975 9673 9253
1093	880C0M*P 880C0M*S 880P9M*P	313 314 315	· 62	0 15 4	3 4 6	1 0000 5824 9638	· 20 39	· 8 9	0 20 5	1 0000 3178 9635
1096	BAOP9MFS BAOCOF1P BAOCOF1S	3 · · 16 3 · · 17 3 · · 18	- 1 1 5 4 - 178	-51 -3	25 4 18	.7912 .9830 .9750	266 53 - 156	36 · 1 · 1	150 4 7	5824 9851 9952
1099	880P6F1P 880P6F1S 880S4ZZP	3 19 3 20 3 21	33 · 4 · 137	4 3 14	5 21 10	9552 2292 9859	38 24 -114	- 12 8	5 7 7	9553 8974 9914
1102	88054725 8805872P 88058725	3 · · 22 3 · · 23 3 · · 24	258 -82 171	- 1 1 12 - 5	15 4 13	. 9911 9945 . 9845	245 -84 174	- 8 1 4 0	3 4 8	9997 9949 9954
1105	88054M2P 88054M2S 88058M2P	3 25 3 26 3 27	- 39 52 16	- 2 - 4 - 7	13 7	9426 .8761 .6841	- 29 4 1 1 0	2 14 4	6 2 4	9033 9904 7340
1108 1109 1110	880\$8MZ\$ 880\$7MFP 880\$7MF\$	3· -28 3· -29 3· -30	1380 15 -55	- 740 - 10 34	1710 8 20	2570 6422 .7750	5 1 5 · 23	- 16 - 2 12	\$ 2 11	9839 8411 7992
1111	BBDS6FIP BBDS6FIS BBDCONNRH	3 · · 31 3 · · 32 3 · · 33	38 70 18	- 10 6 - 20	4 16 21	9720 8948 4385	34 59 -48	- 1C 21 - 3	4 14 39	9721 8724 4345
1114 1115 1116	BBOCOMHRD BBOCOMHRY BBOP71:RV	3· ·34 3· ·35 3· ·36	-114 -65 21	5 · 4 · 5	•	. 9935 9809 8751	- 121 - 68 - 12	5 0 2	3 6 3	9986 9823 8485
1117 1118 1119	850P71[RD 850P71]RH 850P11F[RV	3· ·37 3· ·38 3· ·39	- 2 & - 6 7 - 4 1	17	1 1 7 \$	7708 9670 9712	- 23 - 74 - 45	16	3	8571 9902 8961
1120 1121 1122	880P11F1RH	3 · · 40 3 · · 41 3 · · 42	- 3 ¹ - 1 3 - 0	- 24 - 55 0	3 t 6	5902 9855 1 0000	- 10	·33 ·51 0	4	9045 9908 1 0000
1123	BSOP12FFRH	3 · · 43 3 · · 44 3 · · 45	19 - 37 - 104	21 0 -10	13 1	9348 7748 9915	17 -36 -101	26 - 10 - 11	3 7 5	9850 4910 9924

TABLE B.2 (Continued)

			COMBINEC LOADING & 60 DEGREE LAG			COMBINED LOADING # 240 DECREE LAG				
GAGE NUMBER	G A C E N A M E	P05!T10N	SENSITIV VERTICAL	ITY/100% LATERAL	ERROR DF ESTIMATE	CORRELATION COEFFICIENT	SENSITIV VERTICAL	ITY/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1126 1127 1128	8805711RD 8805711RV 880511FIRH	3 - 46 3 - 47 3 - 48	· 7 1 2	0 34 - 1	0 28 12	1 0000 7403 2335	0 24 · 9	9	0 76 10	1 0000 2058 8083
1129	880511FIRD 880511FIRV 880512FFRH	3 · · 49 3 · · · 50 3 · · · 51	-72 -53 -19	- 4 6 - 4 1 9	11	9891 9617 9031	- 79 - 48 - 19	- 4 2 - 4 8 1 2	4 8 3	9937 9674 9813
1132	880512FFRD	3 · · 52	C	0	1	1887	0	0	1	1973
	880512FFRV	3 · · 53	-34	- 23	7	9583	-30	- 29	6	9499
	H84 5521P(CU)	3 · · 54	-272	168	1 1	9964	-279	182	3	9998
1135	H101P20P(UC)	3 · · 55	- 80	- 1 E	1 O	9702	-71	- 20	6	9816
	H100P20P(AC)	3 · · 56	- 52	- 2 B	8	9754	-55	- 25	2	9962
	B98C0MMP(C)	3 · · 57	22	1 9	1 O	85 9 5	31	5	8	8496
1:36	M101 3CDW(C)	3 · · 58	- 1 4 8	10	13	9800	- 1 1 8	2	7	9933
	M101 3COW(C)	3 · · 59	- 1	· 3	6	2512	- 6	· 1	3	6794
	B80CMF(D)	3 · · 60	- 1 3	2	5	6977	- 6	o	4	5604
1142	M73P13P	3 · A · 1	-386	71	15	9950	· 364	64	8	999 1
	M73P12W	3 · A · 2	-450	-281	11	9993	· 458	- 263	2	9999
	M73P10 1P	3 · A · 3	-410	-208	13	9987	· 361	- 200	2 5	9880
1145	M73P8W	3 · A · 4	- 39 1	-112	7	9995	· 394	- 117	7	9992
	M73P6W	3 · A · 5	- 35 5	-118	9	9990	· 368	- 107	7	9990
	M73P2W	3 · A · 6	- 38 4	-14	7	9992	· 389	- 10	2	9999
1147	M73CDW M7352W M7354W	3 · 4 · · 7 3 · 4 · · 8 3 · 4 · · 9	-409 -370 -480	4 40 - 274	8 1 2 9	9931 9972 9996	- 401 - 349 - 475	4 30 - 277	•	9997 9998 9988
1150	M7 35 6W	3 - 4 - 10	- 330	88	14	9950	- 349	96	4	9998
	M7 35 8W	3 - 4 - 11	- 336	93	11	9967	- 355	114	6	9996
	M7 35 9W	3 - 4 - 12	- 382	129	5	.9995	- 385	133	3	9999
1153	M7359 5P	3 · A · 13	0	0	0	1 0000	0	0	o	1 0000
1154	M73510 1P	3 · A · 14	- 4 4 5	219	2 8	9898	- 402	207	7	9996
1155	M73511W	3 · A · 15	- 4 4 3	238	4	.9998	- 433	250	3	9999
1156	M73511 5P	3 - A - 16	- 377	225	10	9984	- 384	237	2	9 9 9 9
1157	M73512P	3 - A - 17	- 441	265	4	9998	- 436	269	5	9 9 9 9
1158	M73512 5P	3 - A - 18	- 503	286	15	9978	- 469	290	5	9 9 9 9
1159	M735 13P	3 - A - 19	- 497	292	\$	9998	- 485	298	3	5555
	27350W	3 - A - 20	- 621	19	2 1	.9971	- 593	0	7	5557
	27352W	3 - A - 21	- 635	47	1 0	.9994	- 627	40	6	5558
1162	27354w	3 - A - 22	-532	58	13	9983	-551	66	4	9999
	27356w	3 - A - 23	-720	118	27	9950	-729	127	36	9950
	27358w	3 - A - 24	-764	170	11	9994	-775	187	21	9967
1165	27359W	3 · A · 25	- 752	177	5	999	-747	186	9	9997
	27359 5P	3 · A · 26	- 755	188	3 2	9948	-694	197	80	9912
	273510W	3 · A · 27	- 901	204	6	9999	-909	222	10	9998
1168	273511P	3 - A - 28	\$01	+451	1647	1747	-878	226	39	9965
	273P6W	3 - A - 29	-714	+118	14	19992	-729	- 113	12	9992
	273P10#	3 - A - 30	-738	-145	21	1985	-704	- 157	10	9994
1171	W735MZO 1P W735MZ2 OW W735ZM3 9P	3 A - 3 2 3 · A - 3 3	- 441 - 352 - 801	193 151 212	5 1 8 6	9997 9926 9998	-430 -334 -797	200 148 224	2 2 2 5	.9999 9943 9999
1174	H78570P°CL)	3 · A · 34	- 242	208	4	9995	·239	217	3	9999
	H7351W	3 · A · 35	527	17	5	9998	523	13	5	9998
	H7353W	3 · A · 36	491	40	11	.9988	485	36	11	9987
1177	H73P3W	3 - A - 37	547	-9	9	. 9994	560	- 32	8	. 9995
	H73\$5W	3 - 2 - 38	426	71	7	. 9994	424	66	3	9998
	H73\$7₩	3 - A - 39	424	117	6	. 9996	422	114	3	9998
1150	H73P7W	3 - A - 4 0	335	- 127	1 2	9962	330	- 138	8	9991
	H*359W	3 - A - 4 1	370	144	3	9999	373	144	3	9998
	H73511W	3 - A - 4 2	0	0	0	1.0000	0	0	0	1 0000
1183	H73P11W	3 · A · 43	335	- 160	6	.9993	329	- 180	2	9999
	H73S12W	3 · A · 44	328	208	1 3	.9984	339	200	6	9991
	H73S13W	3 · A · 45	314	223	6	.9997	323	219	5	9995
1186	Н73 Р13W Н73514W Н73515W	3 · A · 46 3 · A · 47 3 · A · 48	340 222 114	- 230 230 236		.9947 .9990 .9998	349 223 114	- 236 228 245	5 8 7	9998 9982 9988
1189	H73P15W	3 · A · 49	125	- 247	13	9954	122	- 243	7	9993
	H73S16 5P	3 · A · 50	- 50	256	9	9982	· 44	258	6	9994
	H73P:6 5P	3 · A · 5 ·	- 36	- 236	4	9986	- 34	- 237	3	9997
1192	H73518W H73520W H73 P20W	3 · A · S 2 3 · A · S 3 3 · A · S 4	0 -413 -381	0 281 - 279	9	1.0000 9989 .9994	- 384 - 386 0	0 283 - 272	o 5 3	1 0000 9398 9399
1195	H79 5518P(AC) 198 1COPIC) 89856MMP(C)	3 - 4 - 5 5 3 · 4 - 5 6 3 · 4 - 5 7	4 1 121 245	-43 -9	8 9 12	9561 9872 9939	47 - 124 254	-48 11 -24	\$ 5 7	9923 9970 9985
1198	H17517W[C]	3 - A - 5 8	- 5 &	29	10	.9281	-63	3 1	6	9870
1199	RESISTOR	3 - A - 5 9	- 8	- 1	17	0460	23	7	20	3721
1200	H76519(D)	3 - A - 60	1 & 7	- 269	309	.3947	57	7	81	1778

TABLE B.2 (Continued)

	GAGE GAGE POSITION			NEC LOAD!	NG & 60 DE	GREE LAG	COMBINED LOADING # 240 DEGREE LAG			
GAGE NUMBER	GAGE	POSITION	SENSITIVI VERTICAL	TY/100% LATERAL	ERROR OF ESTIMATE	CORRECATION COEFFICIENT	SENS!?!V VERTICAL	ITY/100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1201	275COW 277COW 275COW	3 · 8 · 1 3 · 8 · 2 3 · 8 · 3	-563 -505 -414	1 2 - 2 - 5	1 4 6 4	9964 9997 9998	-544 -508 -421	0 2 - 1	3	995 9959 9999
1204 1205 1206	279 5COW 283COW 285COW	3 · 8 · 4 3 · 8 · 5 3 · 8 · 6	0 - 337 - 232	6 10	0 1 1 7	1.0000 9971 9979	0 - 348 - 239	0 5 · 3	0 7 2	9990 9999
1207 1208 1209	W83PZM3.9P Z63P6W RES1STOR	3 · 8 · 7 3 · 8 · 8 3 · 8 · 9	-355 -414 0	-112 -53 0		9991 9987 10000	-345 -396 O	- 103 - 60 0	¢ 2	9957 9995 1 0000
1210	28356W 279 556W 279 559 9P	3-8-10 3-8-11 3-8-12	· 324 · 460 · 536	6 C 8 6 1 4 2	15 11	9939 9984 9994	-342 -534 -537	63 87 148	3 3 1 5	999 & 953: 999 &
1213 1214 1215	W835M20 1P W835M22 OW W835ZM3 9P	3-8-13 2-8-14 3-8-15	0 - 252 0	111	0 2 6 0	9725 1 0000	· 2 1 1 6	100	0 7 0	1 0000 9986 1 0000
1216 1217 1218	M75COW M75S10 1P M75S13P	3-8-16 3-8-17 3-8-18	- 302 - 404 - 434	117 196 283	1 2 3 1 3	9959 9998 9981	-314 -391 -407	135 212 282	•	9 9 9 8 9 9 5 9 9 9 5
1219	M77COW M77S10 1P M77S13P	3-8-19 3-8-20 3-8-21	-417 -511 -354	1 207 249	4 1 & 8	. 9958 . 9965 . 9988	4 : 8 - 4 8 5 - 3 3 7	3 202 25:	4 6 5	9998 9997 9998
1222 1223 1224	880P6]]W[C] M77P13P M79COW	3 - 8 - 22 3 - 8 - 23 3 - 8 - 24	· 6 0 · 354	- 5 C - 10	2 2 C 7	1089 1 0000 9990	- 2 C C - 3 6 3	13	8 0 3	8521 1 0000 998
1225 1226 1227	M79510 1P M79513P M85CQW	3 - 8 - 25 3 - 8 - 26 3 - 8 - 27	-319 -233 -270	146 160 - 7	2 13 7	9999 9936 . 9985	·3·3 ·246 ·283	157 176 3	3 3 2	9999 9999 9995
1228 1229 1230	9 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3-8-28 3-8-29 3-8-30	-241 -276 -262	133 151 -138	15 8 20	9907 9977 9931	- 264 - 285 - 234	154 164 147	5 2 6	9996 9999 9987
1231	M81P13P M83CDW M83S10 1P	3-8-31 3-8-32 3-8-33	-327 0 -271	- 150 0 136	3 c 5	9999 1 0000 9990	- 323 0 - 271	- 14 1 O 14 9	3 0 2	9958 ' 0000 9995
1234 1235 1236	M83513P M8100W M85510 1P	3 - 8 - 34 3 - 8 - 35 3 - 8 - 36	-343 348 -253	188 - 3 97	5 4 5	. 9995 9997 . 9989	- 345 - 352 - 250	198	4 3 3	9998 9999 9998
1237 1238 1239	M85513P M85P10 1P M85P13P	3-8-37 3-8-38 3-8-39	- 3 1 9 - 2 0 2	133 -98 -128	9 6 4	9960 9995 9995	- 208 - 329 - 210	136 -92 -121	9 2 2	9982 999 9997
1240 1241 1242	F81 55(41M5 18) M8155 5P M8355 5P	3-8-40 3-8-41 3-8-42	371	· 4 8 3 3 0	13	9100 9998 1 0000	- 374 0	· 60 39 0	7 3 0	9805 9999 1 0000
1243 1244 1245	M83P10.1P M83P13P 173C0P	3 · 8 · 4 5 3 · 8 · 4 4 3 · 8 · 4 5	- 282 0 180	- 138 0 6	5 0 7	9996 1 0000 . 9964	- 293 0 187	- 130 0	3 0 6	9997 1 0000 9977
1246 1247 1248	177COP 181COP F81CONA	3 - 8 - 4 6 3 - 8 - 4 7 3 - 8 - 4 8	268 241 -20	· 2 • 2	5 10 3	9992 9954 9320	272 229 - 26	- 4 - 4 1 0	2 9 8	9998 9963 8933
1249 1250 1251	FRSCONA Broprmmrh Broprmmpd	3 · 8 · 49 3 · 8 · 50 3 · 8 · 51	- 5 7 - 1 4 - 4 8	-3 -17 -23	5 1 1 2	9795 7679 9969	-50 -6 -46	5 · 22 - 21	5 5 2	9768 9300 9945
1252 1253 1254	VAMMB9088 Haime9088 Caime9088	3 · 8 · 5 2 3 · 8 · 5 3 3 · 8 · 5 4	0 - 8 2 - 8 0	0 - 20 - 29	0 7 8	1349 .9449 9463	· 73 · 71	0 - 2 1 - 1 9	1 4 6	0895 9935 9786
1255 1256 1257	BBOP9MFRV 185COP RESISTOR	3 · 8 · \$5 3 · 8 · 5 6 3 · 8 · 5 7	· 5 323 0	- 4 •	8 7 0	0376 9988 1 0000	3 1 4 0	· 2 3 0	3 4 0	6792 9996 1 0000
1258 1259 1260	RESISTOR RESISTOR H83P19(D)	3 · 8 · 5 8 3 · 8 · 5 9 3 · 8 · 6 0	-10 -214 -10	- 159 2	10 266 \$	3659 4788 6559	3 - 1284 - 8	- 284 1 O	1490 6	1522 7212 5254
1261 1262 1263	886C0IIP 886C0IIS 886P3ZIP	2 · · · 1 2 · · · 2 2 · · · 3	103 -404 71	9 6 10	3 2	9950 9999 9977	107 - 406 71	* 6 15 1	5 5 1	9940 9997 9990
1264 1265 1266	886P3775 886P877P 886P8775	2· · 4 2· · 5 2· · 6	- 267 45 - 189	· 8 9 5	3 14 6	9997 8500 9979	- 266 52 - 185	3 1 2	3 11 4	1997 4996 9986
1267 1268 1269	886COMZP 886COMZS 826P3MZP	2 - · 7 2 · · 8 2 · · \$. 85 - 20	8 5 14	3 6 11	. 2 6 0 8 . 9 8 8 6 6 3 2 8	- 8 6 - 1 8	2	3 5	5354 9905 6381
1270 1271 1272	BESPIMIS Bespamir Bespamis	2 10 2 11 2 12	- 10 5 - 24	15 11 22	7 2 4	.7553 .9568 .9581	· 6 5 · 2 1	- 1 9 19	4 2 6	4586 9780 9 627
1273 1274 1275	#86COMFP #86COMFS #86P9MFP	2 13 2 14 2 15	6 - 188 - 35	4 2 5	4 2 5	7288 .9997 .9544	· 190 · 34	3 4 9	? ? 4	6783 9994 9752

TABLE B.2 (Continued)

	COMBINED LOADING # 60 DEGREE LAG COMBINED LOADING # 240 (G & 240 DE	GREE LAG				
CACE NUMBER	CASE	POSITION	SENSITIV VERTICAL	ITY, 100% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	SENSITIV: VERTICAL	TY/100%	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1276 1277 1278	88679MF5 886COF 1P 886COF 15	2 16 2 17 2 - 18	- 63 - 26 - 15	43	2 2 2	9282 9799 9613	- 5 6 - 25 1 8	0	6 2 2	9824 9806 9779
1279 1280 1281	886P6515 886P651S 886S477P	2 19 2 20 2 2 4	- 34 - 47 20	0 5	3 4 9	9825 9826 7384	- 33 · 5 1 27	. 5 . 4	4 4 5	9757 5864 5363
1282 1283 1284	88654725 8665477P 88658275	2 - 2 2 2 - 2 3 2 - 2 4	-2+9 80 -183	19 · 6 · 5	1 2 6 5	9922 4844 4583	- 207 - 76 - 183	1 G - 3 6	6 4 5	6 9 8 1 9 5 7 1 9 5 8
1285 - 286 1287	88654MZP 88654MZS 88658MZF	2 · - 25 2 · - 26 2 · - 27	- 12 - 87 - 16	8 3 - 13	1 1 3 5	4 1 9 5 9 ± 7 8 4 3 6	- & - 9 0 - 1 1	· 4 2 · 12	6 2 2	47~6 99£~ 482¢
1288 1289 1290	88558M75 88657M1P 88657MF5	2 · · · 2 8 2 · · · 2 9 7 · · 3 ©	37 33	· 20 2 20	7 3 7 4	8973 9735 6768	: 4 - 3 f 2 3	- 1 4 6 1 1	3	8339 5896 6750
1291	#865615 8865615 886004484	2 · · · 3 · · · 3 · · · · · · · · · · ·	- 3 4 - 5 C	· 4 • 5	6 3 3	9374 9912 9159	- 3 ! - 4 9 - 1 2	- 8 4 6	4 3 5	9 4 9 6 9 5 1 1 7 2 7 C
1294 1251 1291	88660HHRD 88600HHRY 8867711RY	2 + 34 2 + 35 2 + 36	6 C 2	2 4 0	2 4 1	8877 9928 4162	- 1 C - 8 3 1	6 - 2 0	2 6 2	942C 98E5 2755
1297 1298 1299	8862 PC 8862 CH 8862 FIRV	2 - · 37 2 - · 33 2 - · 29	· 6 5 5	3 7 1 2 2 5	6 4 5	9738 9896 8665	2 8 8 3	23 8 26	5 5 9	9344 9889 8726
1300	#8:P 'FIRH #86% 'FIRD #86%17FFRY	2 · · 4 · · · · · · · · · · · · · · · ·	· - 8	0 7 24	3	995 9663	· 7 :	5.3 6	6	1 0000 9838 8858
1303 1304 1305	8848 - 25582 9868 1 25584 88657 - 184	2 · · 4] 2 · · 4 4 2 · · 4 5	79 27 - 134	2 ' 5 · 3	5 4 6	9940 961: 9960	66 39 -137	2 6 5	4 5	9261 9677 9969
1306 1307 1308	8165711R0 8675711RV 8585 FIRM	2 · · 4 6 2 · · 4 7 2 · · 4 8	- 129 - 14 - 11		5 8 30	9 9 5 9 8 8 4 4 8 6 2 9	25 96	- 1 6 4	? ? 25	9943 2737 8641
1309 1310 1311	886511F1RC 886511F1RV 886512FERM	2 · · · 4 · 9 2 · · · 5 · 0 2 · · · 5 · 1	4 . · 6 · 5	- 9 - 3 4 - 6	4 3 4	9834 9882 8392	· 3 · 0	-10 -35 -8	6 3 2	9478 9917 8982
1312	8865:2FFRC 8865:4FFRV H84-5521P(CM)	2 · · · 6 2 2 · · · 5 3 2 · · · 5 4	• 52 • 49 • 241	· 26 · 41 162	4 3 5	9877 9937 9992	5 # 5 0 - 2 2 5	· 24 · 38 175	3 2 2	9 9 7 2 9 9 7 9 9 9 9 9
17:5 12:6 3:7	HS\$ 5521510. 4,1,5139 4ES:5104	2 - 56 2 - 57	244 6 0	1 7 7 0 - 2	1 5 5 4	9928 4631 2096	· 258	183	1 C	4 9 9 C 6 O B 4 5 4 C 1
310 3.8	RESISTOR RESISTOR WITHPIFFE DI	20 008 20 50 10 00	7 2 4	· 3	4 5 1 9	2067 4672 4231	10 10 - 15	° ° °	5 6 8	6352 5811 6089
37.	9541027P 90725 9 .7P472P	2 · 8 · · · · · · · · · · · · · · · · ·	156 408 45	6 9 1 4 8	10	976C 9985 9364	190 -395 23	2 2 3 5 1 4	1 c 5 1 c	9926 9996 7187
:::4 :::4 :::6	##1P4715 3°25 811P 8°47 8175	2 6 4 2 4 5 2 4 6	198 192 86	7 • 16 5 •	6 2 9 2 5	9975 9432 9153	- 192 130 45	4 6 7 6 0	5 : 5 : 7	9985 9212 7612
1321 1324 1329	847.0W12 847.0W12 8431.0W16	2 - A - 7 2 - A - 8 2 - A - 9	' 6 ' 8 ' 6	44 20 39	1 3 8 9	9195 8180 9537	23 - 8 22	· 13 · 9 23	7 6 9	9157 6531 8360
1234	#97P&M25 892P&M2P 89.F8M25	2 - A - 1 C 2 - A - 1 1 2 - A - 1 2	- 30 - 75 29	4.4	1 5 2 0 8 5	85 15 7886 1939	· 29 - 63 - 56	- 34 74 49	19 14 14	7088 9747 9563
1333 1334 135	8-3-2-2-2-3-4-5-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	2 - 6 - 1 3 2 - 6 - 1 4 2 - 6 - 1 5	168 103	9 1 2 7	3 8	20 1 8 9990 9836	- 175 - 114	- 15 - 3 33	• r 6 8	6160 9968 9913
1336 1337 1338	897PAMES 893COF (# 393COF (\$	2 - 4 - 1 6 2 - 4 - 1 7 2 - 4 - 1 6	153	46 35	182	9699 1281 3911	- 174 133 27	· 4 · 45 · 1	12 350 23	9886 1192 3963
1339 1340 1341	892P6F1P 892F6F15 8925472F	2 - A - 1 4 2 - A - 2 C 2 - A - 2 '	6 b 6 5	4 4 4 7	10	9702 9407 8774	- 74 - 57 1	1 1 - 2 - 1 8	9 6 15	9711 9713 5739
1342 1343 1344	89254775 89254778 89253775	2 A 22 2 A 22 2 A 24	25.5 5 29	3 42 21	75 14 14	8274 9429 9774	- 207 107 - 53	5 2 · 2	33 18 31	9557 9370 5839
1345 1346 1347	89254MZP 89254MZC 89258MZP	2 4 25 2 4 16 2 4 17	7 ; 4 1 6 ;	4.6	1 ·	3530 8997 9880	- 5 0 6 3 - 4 2	- 16 - 69 - 25	3 6 7	4754 9926 8730
1342 1349 1350	89258WIS 89752MFP 89752MFS	1 - 2 - 28 2 - 2 - 29 2 - 4 - 30	4.6	34	4 7	9609 3339 9481	· 5 1 O - 4 0	- 20 - 18 - 13	1 4 5 6	8443 9069 935?

TABLE B.2 (Continued)

			5048	HER 0401	NC # 60 DE	GREE LAG	COMBINE	0 LUACIN	C @ 240 DE	GREE LAC
GAGE	GAGE	POSITION	SENSITIV VERTICAL		ERROR OF	CORRELATION COEFFICIENT	SENSITIVIT VERTICAL	1 / 100% LETERAL	ERROR OF ESTIMATE	
NUMBER	NAME #9256FIP #9256FIS	2-A-31 2-A-32	- 85 - 56	. 4	9 4 19	9749 9828 7456	- 8 6 - 6 8 - 6 8	- 7 9 8	1 1 6 1 6	9564 9820 8978
1352 1353 1354	892P.2HHRH 892 <i>P. Zhhrd</i>	2 · A · 33 2 · A · 34	- 43 - 85 - 20	. 7 3 7	4 6	9936 2106	- 8 3 - 2 5	13 2 c	3 9 1	9970 7876 2348
1355	852P. ZHHRV 892P711RV	2 - A - 35 2 - A - 36	2	۰	2	2418 9870	- 103	- 14	4	9964
1357 1358 1359	892P711RD 892P711RH 892P11F1RV	2 · A · 37 2 · A · 38 2 · A · 39	- 102 - 98 - 10	- 21 - 3 19	3 1 1	9970 6805	- 9 · 2	23 c	10	E 0 1 8
1360 1361 1362	892P11F1RD 892P11F1RH 892P11 9FFRV	2 - A - 40 2 - A - 41 2 - A - 42	- 76 11	0 3 24	8 5	1971 9748 9602	. 7 '	2 9	12 11	9556 8201 8366
1343	892P11 9FFRO 892P11 9FFRH 89257[]RH	2 - A - 43 2 - A - 44 2 - A - 45	50 1	25 42 · 2	5 10 5	9294 9336 9904	3 1 2 7 - 7 5	• •	6	9566 5830 9266
1366	8975711RD	2 · A · 4 6 2 · A · 4 7 2 · A · 4 8	- 45 - 55 - 76	21 -11 -36	4 6 7	9794 9768 9875	- 5 £ - 5 2 - 9 6	12 - : 4 - 25	10	9 4 6 E 9 6 5 I
1368	892511F1RH 892511F1RD 892511F1RV	2 - 4 - 4 9 2 - 4 - 50	¢ 3 · 3	9 - 10 - 54	3 19 14	8450 1822 9078	- 1 - 4 - 1	- 55	, o	2 167 4868 9315
1371	8925 11 8FFRN 8925 11 8FFRD 8925 1 8FFRY	2 - A - 5 7 2 - A - 5 7 2 - A - 5 3	40	- 24 - 22 - 94	5 6	9670 9370 9820	48 33 159	- 34 - 15 - 84	6 9 , ;	9 6 4 5 9 0 7 7 9 9 4 2
1374	# 4 15 11 9P188 . MRT 5P1CS PST RESISTOR	2 · A · S 4 2 · A · S 5 2 · A · S 6	:54 -253 10	· 89 · 5	2 8	9999 4465	· 245 25 0	· & 3 & C	16	9986 5100 - 0000
1376	RESISTOR	2 · A · 5 ? 2 · A · 5 8 2 · A · 5 9	c c	. s	· 4	0443	9 0 - 1 4	- 4 C	13	339" - 000C 5754
1389	M43 P684 M44 PCC D	2 · A · 60	309 302	. 64 - 69	9 6 3	5389 9994 9998	-310 -307	- 63 - 68 - 80	5 6 5	9 5 9 2 9 9 5 ° 9 9 9 3
1382	M93 6P8 6 M93 6P90 M93 6P90	2 · 6 · 2 2 · 6 · 3 2 · 6 · 4	- 29 e 22 2	4.4 - 4.5 - 7.7	2 . 5	9999 9998 9961	- 303 - 274 - 322	· 5 2 - 8 5	. 3 5	9998 9955 9985
1385	M83 65 .W		375 254 - 164	- 79 - 85	9	9999 9937 9996	- 264 - 99 171	- 79 - 90 4 1	8 5	99C ' 9978 9955
1387	M+2 8884 M = 888 584 M+ 8 5 50.			- 122	8	9942	11	129	e 9	9988
1300	M9 2 A P 9 m	2 • 10 2 • 1	3 h 2 h 2 h o	- 75 - 87 - 52	9 2 9	9990 9999 9976	- 369 - 261	- 8 4 - 6 4	4 5	9 9 9 7 9 9 9 3 9 9 9 2
· 392 · 393 · 394	M92 8P 5W	2 0 3 2 9 4 2 8 5	306 206 - 234	-86 -93 -67	2 3 4	999 9998 9996	- 318 - 212 - 237	- 8 1 - 9 3 - 8 9	6 5	9962 9987 9827
1395	M92 2PBW HE5 8P-7P' P	2 - 8 - 1 6	- 69 7 139	-85 -140 -105	19 3 25	9646 9992 9417	-66 -14 128	- 138 - 156	6 37	9973 9 595
· 391	992 2P8 SP	7 - 8 - 19 2 - 8 - 20	· 186 · 327	- 30 - 92 48	9 12 11	9955 9977 9655	- 183 - 325 39	· 3 · 8 9 5 4	7 15 10	9968 9936 9524
140	M92 3P9 2RH	2-8-21 2-8-22 2-8-23	82 - 382	- 9 0 - 8 9	8 7 5	9878 9994 9998	78 - 397 - 511	- 98 - 79 - 10 '	1 2 4 4	9889 9998 9998
140	4 M92 3P9 5P	2 · 8 · 24 2 · 8 · 25 2 · 8 · 26	-501 -319 -225	107 -85 -107	, ,	9978 9998 9983	- 320 - 230 - 262	-87 -105 -74	'o 5 3	9973 9988 9996
140	7 M92 3P12S 8 M91 6P8\$	2 - 8 - 27 2 - 8 - 28 2 - 8 - 29	- 255 - 406 - 240	-75 -51 -67	t 1 3	9984 9998	- 4 1 5 - 2 4 5 - 2 7 6	- 29 - 9 1 - 8 3	13 5 8	9976 9990 9979
141	O M91.6P8 SP	2-8-30	- 276 - 204	- 77 - 83 - 88	5 27 4	9993 9758 9996	- 215 - 237	- 9 3 - 9 6 - 8 8	35 7 12	9329 9978 9928
141	2 M91 6P9 SP 3 M91 6P9 7RL		-232 -216 385	- 63	33	.9979 9796 .9976	- 23 1 607 53	27 \$0	198	7988 9823 0825
141	5 M91 6P9 7RD 16 M91 6P10W		60 2 - 307	52 0 .94	3	5142 9998	1 - 316 - 276	- 88 - 91	2 8 7	9982 9983
14	18 M91 6P12W 19 H86 1P19P{}	2-8-38 ISU] 2-8-39	246 665	- 54	24	1,0000	664	- 5.8 0 - f.1	0 20	1 0000 \$377
14: 14: 14	21 B645 1MMP (ISL1 2-8-40 (UST) 2-8-41 () 2-8-42	306	· 24 · 300	. 15	5990	31 253 311	· 284 · 155	5	9998 9995 8982
14		2-8-43 V(BB) 2-8-44 D(BB) 2-8-45	323 · 48 · 207	- 147 - 21 - 28	•	9812	-44 -217	- 19 - 25		9952

TABLE B.2 (Continued)

			COMB	INED LOAD!	NC & 60 CE	GREE . AC	COMBI	MED . 040;	S & 240 DE	GREE LAS
GAGE Humper	CAGE Name	P051710N	SENSITIV VERTICAL	LTV 100% LATERAL	ERROP OF	CORRELATION COEFFICIENT	SENSITIV VERTICA.	LATERAL	ERROR OF EST: MATE	CORRELATION COEFFICIENT
1426	864P8 5MFRH 88 M805951501 M80595,511	2 - 8 - 4 6 2 - 8 - 4 7 2 - 8 - 4 8	- 8 1 6 - 8 9 - 1 C 4	43 97 32	2 · 5 5	9 * & 4 9 9 6 5 9 9 3 0	* 2 c * 8 5 * * 1 D 6	6 9 9 3 3	* 2 4 8	9784 9985 9917
429 430 43	-79 55-8P FC1 H79520P1CUJ RES 570R	2 - 8 - 4 9 2 - 8 - 5 C 2 - 8 - 5 T	47 - 165 - 1	-55 216 2	3 3 9	996 9996 1643	4.6 - 1.5.8 - 1.4	- 5 4 2 2 : 3		9986 999 47CE
1432 1433 1434	RESISTOR RESISTOR RESISTOR	2 B / 52 1 R 53 2 E 54	5	о с с	• c		¢ : c	c c	c c	0000 1 0000 1 0000
1435 436 437	RES.STOF RES.STOR RES.STOR	2 B 55 2 B 56 2 B 57	6	c 2	5 6 8	6934 78.5 .6 1	2.2 . 4 8	5 5 2	2	53 7 5233 3574
1438 1439 440	RESISTOR RESISTOR WAREIN D	2 - B - 5 & 2 - B - 5 9 2 - B - 6 C		c c	5 0 8	145E 1 000G 5368	6 C	e	€ C £	5057 0000 6466
1441 441 443	217000 21900 2100	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	- 20 1 18 7 - 68	9 1 ° - 6	4 4 6	9988 9990 9702	189 184 163	- 14	5 5	9982 9985 9670
444	#9 95M22 1R2 #1 95M22 1R2 #9 95M20 1R3		- 29 956 4-	29 74 5	2 1 1 2	2752 452 - 84 - E	- 9 & - 9 9 C - 8 -	2 '' 5 4 - 4 8	· &	9574 9453 9481
4.4 6	M8700% M8759 - P M875 -	· 1	319 315 211	: ! ~ 9 &	: 6 : 3 - 4	9985 995 9936	377 377	- 6 1 1 C	7.5	982 · 9975 9989
45	M8972A M8954 P M895 T		- 25 E	c 9 c	c :	9598 9600	C - 25 & C	c 9 9	c 3 c	1 0000 95% 1 0000
457	M8 9 P 9 P P P P P P P P P P P P P P P P	1 - 13	- 258 - C - 195	- 1 C € C - 1 6	. 3 . 3	9965 1 0000 9735	2\$ C 76C	- 9 6 C 1 3	, (, (9982 1 0000 9185
456	#6184 IP M9181↑ M9300#	1 16	- 259 - 265 - C	7 · 1 z · 0	:	ବ୍ୟଞ୍ଚ ବୃତ୍ତ - ୧୯୧୯	- 265	# 3 " 0 : C	8 3 0	9985 9998 - 0000
1459 1460 1461	M8350W M835.1 M835.1	1 - 1 9 1 - 2 0 1 - 2 1	- 17 - C - 158	9 6 C - 2	' c o 3	. 0000 4945	225	g - C &	c 3	9966 ' 0000 9993
1462	M475 : 2 M478 : 2 M4980W	7: 22 1: 23 - 24	- 4 5 7 5 1 5 3	5 \$ - 4 t - 4	3	9933 991 492F	- 4 6 - 7 ¢ - 1 5 4	5 T	4 £ 3	9967 9720 9989
: 465 456 467	M995 2 M 2100W M C1512	14 25 26 14 2 7	- <u>5 6</u> - 1 3 2 - 1 1 4	3 î 1 3 4	3	9954 9912 9974	- 5 6 - 4 1 1	3 4 © 4 2	· ĉ	9990 9889 9983
468	M 01812 M163 3W M363 4	7.6 2.3 1. 3.5	· c. · 131	. 5 3 8	¢ ; 7	- 0000 9989 9913		° • 4 34	c 2 6	' 0000 9994 995"
472	# 17 E , D# # - 7 U ! # 1 E S P ! !	3 3	- 128 - 159 - C	2 9 C	7 E 0	4942 9956 1 0000	16.	3,	6 8 0	9956 9957
4 1 4 4 1 5 4 1 6	#1975 # 2773# 28425##	3 4 1 3 5 1 3 6	9 6 · 20 8 · 5	3 3 2 3	3 3 2	99"" 9996 8478	94 201 8	33 	2 4 3	9995 9991 7938
1677	189_0F F971D42 9770F	1 . 37	183 57 0	- 3 0 0	3 3 c	9993 9920 1 0000	: 7 & 6 C C	2 2 c	4 4 C	9987 9886 1 0000
1480 1421 461	7975384 97504 F16 CONA	1 - 40	5 9 1 3 3 1 7 3	, °	, e , .	9690 9905 9904	64 143 176	- 3 - 4 - 5	6	9802 9953 9955
483	1 0150P F 0500NA 10510P	t 43 t 44 t 45	- 1 2 1 7 5 - 6 9	15 · 8 · 10	3 · 1 6 7	1472 9843 9770	25 177 174	· · · · · · · · · · · · · · · · · · ·	•	4829 9939 9567
1456	45M179C120 45M179C112(#E5 45M287C315	1 - 46	-660 462 -1868	79 79 108	7 3 122	9997 9999 9890	- 65 f - 45 b - 2027	4 6 4 5 9	4 3 225	9999 9999 9710
449 490 497	ASM1870308 ASM1870300 ASM18703797	1 - 49 1 - 50 1 - 51	-1725 -1652 -1411	208 182 184	180	9715 9999 9999	- 1765 - 1659 - 1420	246 172 177	69 13 17	5568 5555 7575
1497 1497 494	ASMZBTNYMF ASMZBTNDDMF ASMZBTRLMF	5 2 1 5 3 - 5 4	- 352 248 145	95 12 ° - 7	2 3 7	9997 9892 9942	· 352 264 142	107	1 6	9997 9880 9953
1495 1496 1497	89297MZP18M; R9257MZ518M RES.57DR	: · · 5 \$ · · · 5 6 · · · 5 7	74 - 186 - 4	2 6 - 7 8 - 3	19 1: 4	9133 9925 5367	- 4 1 - 150 - 2	· 76	, 20 3	9784 9549 3029
1498 1499 1500	PES.STOR PESISTOR M97P1(01	5 8 1 5 9 1 60	¢	4 0 3	9, 0 8	6690 1 0000 5777	- 8 - 0 - 1 5	. 1 C . 2	6 0 9	6587 1 0000 6043

TABLE B.2 (Continued)

			COMB	INED LOAD!	ING P 60 DE	GREE LAG	C DMB ;	MED LOACIE	IC & 240 DE	GREE LAG
GAGE Number	GAGE MAME	POSITION	SENSITI V VERTICAL	LATERAL	ERROR OF	CORRELATION COEFFIC:ENT	SENSITIV VERTICAL	ITT/190% LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1501	B98COMMS	1 - 4 - 1	- 469	5	4	9998	497	5 5	6	9996
1502	B98COMMP	1 - 4 - 2	246	- 1	16	9891	246		14	9922
1503	B98P4MMP	1 - 4 - 3	37	- 6	10	8720	42		10	8753
1504	8 \$ \$ P 4 MMS	1 · A · 4	C	0	0	1 0000	0	0	22	1 0000
1505	\$ 9 8 P 9 MMP	2 · A · 5	- 147	14	1 2	9830	- 149	13		9854
1506	8 9 8 P 9 MMS	1 · A · 6	- 160	- 35	2 2	9660	- 159	3\$		9514
1507	898COMFP	1 - A - 7	56	- 5	24	69 85	5 7	27	15	8 S.E.*
1508	898COMFS	1 - A - 8	· 70	- 1	31	7098	- 7 3	:	30	7 2 d q
1509	898P5MFP	1 - A - 9	35	- 6	10	9070	3 2	3	&	8 S.9 *
1510 1511 1512	898P5MF5 898P6F1P 898C0F15	1 - A - 10 1 - A - 1 - 1 - A - 1 2	116 122	4 2 20 0	2 1 8 C	9507 8332 1 0000	126	21 22 0	2 7 1 ' c	1975 8289 1 0000
1513 1514 1515	898COF1P 898P8F1S 898S4MMP	1 - A - 13 1 - A - 14 1 - A - 15	- 13 - 29 74	. 3 . 1	10 9	434 ' 8289 5499	15	3 · · 2 · 4	 18 8	0865 3946 9724
1516	E9654M45 B9878MM7 B9858MM5	1 - A - 16 1 - A - 17 1 - A - 18	· 203 73 46	7 25 - 71	27 16	9577 9273 6636	- 154 76 20	. 1 24 . 70	: e : 2 2 C	5669 9342 888
1519 1520 1521	89853MFP 89854MFS 89856F1P	1 - A - 19 1 - A - 20 1 - A - 21	- 26 48 - 18	6 3 - 1	1 1 1 4 1 3	68 · 3 8489 5343	- 3¢ 42 - 28	9	17	7390 78 1 1 7188
1522	89856FIS	1 - 4 - 22	- 18	15	8	7772	· 7	20	9	8367
1523	898P 2MMRH	1 - 4 - 23	- 134	4	8	9913	· 124	10	8	9902
1524	898P 2MMRD	1 - 4 - 24	57	25	12	9428	77	2	16	9109
1525 1526 1527	1987 ZHHRV 1987 11Rb 1987 11Rv	1 - A - 25 1 - A - 26 1 - A - 27	16 - 108 - 130	33 33	9 13 39	65 1 1 95 95 86 9 4	· 6 · 9 9 · ' 7 1	38 - 21	10 17 15	3022 9594 9795
1528	898P7; IRH	1 - 4 - 28	- 159	24	1 ;	986'	- 144	17	10	9899
1529	898P1: 5F1RV	1 - 4 - 29	64	- 27	2 1	7899	8C	- 19	12	96:5
1530	898P: 1 5F1RD	1 - 4 - 30	231	- 35	9	9956	255	- 25	9	9972
1531 1532 1533	898P11 SF[RH 898P11 9FFRV 898P11 9FFRD	(- 4 - 3 ? 1 - 4 - 3 2 1 - 4 - 3 3	201	5 1 5 7 1 5	1 0 7	993 1 9786 9958	- 192 - 1 251	63 55	13 8	9927 9717 9960
1534	898P1: 9FFRH	1 · 4 · 34	1.2	53	13	9371	28	55	9	9608
1535	898S7: JRH	1 · 4 · 35	- 1.45	· 38	29	9341	-136	- 9	25	9222
1536	898S7: JRD	1 · 4 · 36	- 5.6	• 0	12	9080	-48	50	13	9590
1537	89857! Rv	1 - 4 - 37	- 26	- 35	1 2	9174	- 27	· 28	12	8023
1538	8985! SFIRH	1 - 4 - 38	- 184	- 74	2 5	9742	- 184	· 53		3879
1539	8985! SFIRD	1 - 4 - 39	- 157	- 26	1 5	9828	- 147	· 2		8940
1540 1541 1542	898511 5F1RV 898511 9FFRH 898511 9FFRD	1 - A - 4 0 1 - A - 4 1 1 - A - 4 2	0 17 240	0 - 1 <i>0</i> 4 39	, , , , ,	1 0000 9642 9976	0 2 2 4 7	0 - 1 1 5 1 2	20	1 0000 9618 9957
1543	8985 1 9FFRY	1 - A - 43	18	- 29	å	8883	20	- 25	8	9241
1544	8985 10MFS	1 - A - 44	111	- 136	10	9326	'02	- 141	35	9547
1545	8985 10MFP	1 - A - 45	34	85	24	9279	54	80	24	8822
1546	H100P20P[FC]	1 - 4 - 4 6	· 5 1 3	420	6	9998	- 488	436	8	9998
1547	ASMMT7C:SF	1 - 4 - 4 7	· 8 3 6	15	83	9763	- 1001	-54	1 0	9998
1548	ASMMT7C2SF	3 - 4 - 4 8	· 2 8	- 24	10	9094	- 18	-11	1 4	4657
1549 1550	ASMMT7C3SF ASMMT7C4SF ASMMT7C5SF	1 - A - 49 1 - A - 50 1 - A - 51	-312 -311 -589	232 140 97	3 1 8 1 4	9810 8534 .9999	- 274 - 276 - 596	204 175 99	20 27	9953 9904 9997
1552	ASMM77015A	1-A-52	-433	294	45	9778	-346	244	8	9995
1553	ASMM77025A	1-A-53	-359	263	6	9994	-351	272	4	9999
1554	ASMM77035A	1-A-54	-86	· 23	15	9499	-139	- 89	70	6735
1555	ASMM77C4SA	1 - A - 5 5	-508	502	8	9996	-473	532	13	9996
1556	ASMM77C5S4	1 - A - 5 6	-284	347	9	.9991	-267	358		9996
1557	ASMM77P3SAO 5	1 - A - 5 7	-935	90	5	9999	-937	102		9999
1558	15MM77P3581 5	1 - A - 58	- 629	87	5	, 9998	· 636	93	8	9997
1559	6 6 6 6 7 7 MM28	1 - A - 59	0	0	0	1 0000	0	0	0	1 0000
1560	10 19 10 10 10 10 10 10 10 10 10 10 10 10 10	1 - A - 60	- 276	106	16	9907	· 283	151	10	9985
1561 1562 1563	8108P9MFP 8108CGMMS 8108P4MMP	1 · 8 · 1 1 · 8 · 2 1 · 8 · 3	- 16 25 -57	1 0 2 8	2 2	9494 9014 9419	- 19 24 -42	16 5 16	3 5 1 1	9835 8481 9059
1564	# 7 0 8 P 4 MMS	1 - 8 - 4	0	0	0	1 0000	0	0	0	1 0000
1565	8 1 0 8 P 8 MMP	1 - 8 - 5	. 37	8	3	1806	· 3 !	10	4	.9719
1566	# 1 0 8 P 8 MMS	1 - 8 - 6	. 28	1	8	8338	· 7	12	15	4626
1567	RESISTOR	1 - B - 7	· 23	.7	4 1	1889	- 6	34	2 2	6935
1568	B'OBCOMFS	1 - B - B	· 46	12	8	9283	- 40	7	4	977 1
1569	Blospampp	1 - E - 9	· 52	71	5	9779	- 53	22	2	9980
1570 1571 1572	8108PAMFS RES/51QR 8108CQF1S	1 - 8 - 1 0 1 - 8 - 1 1 1 - 8 - 1 2	72 4 0	15	6 9 0	9868 1803 7 0000	71 17 0	1 6 6	11	9777 4939 1 0000
1573	8108P6F1P	1-8-13	- 17	13	4	8903	· 20	19	1 2	9763
1574	8108P6F1S	1-8-14	- 4	12	2	5440	3	- 5		9308
1575	8108S4MMP	1-8-15	- 70	1	4	9930	· 68	- 1		9978

TABLE B.2 (Continued)

			: 0 M B	:NEC LOAS	! N.C. 69 60 0#	EGREE LAG	COMB:	NEC . 040.)	. € (P. 24 € DE	GREE LAS
GAGE NUMBER	GASE	POSITION	SERS TIV VERTICAL	TYTIOOT.		CORRELATION COEFFICIENT	SENSITIV VERTICAL	THE FOR	FRAGE OF	CORRELATION COEFFICIENT
1576 1577 1578	F10854MMS B10856MMP B10858MMS	7 9 1 b	6 6 4 7 3 .	0 7	7 2 4	9627 9295 9609	- 6 1 - 4 2 - 2 6	• : c •	6 2 2	9 6 0 7 5 4 4 4 5 - 3
1579 1582 1581	8:1854MFP 8:3854MFS 8:3856F1P	1 · B · 1 9 1 · B · 2 0 1 · B · 2	7 (8 8 - 2 8	1 E 7 - 3	1 C 4 7	9476 9956 5461	9 5 - 2 5	1 C 7 2	• • • • • • • • • • • • • • • • • • •	9587 9922 9889
1582 1583 1584	BIDBS 6FIS BIDBF DHHRH BIDBP ZHHRT	8 22 8 24	39 53e 58e	8 · 2 † 2 7	16	€ 3 3 4 = 5 5 = 5	23 · 546 596	1: 3: 4:5	4 9	+1.43 +1.67 +1.64
1586 1587	BIDSET INHRV BIDSETT (RV BIOSET IRD	- 0 - 2 - 1 - 2 - 2 6 - 8 - 2 1	6 4 8 2 2	5 - 43	0 6 7	€ + + b € + - +	° 5 6 2 8	.3€	¢ 	* C.OS 9898 9385
1588 1584 1592	#108911 RH # 088 0 \$5189 # 188 0 \$-180	1 - B - 2 6 1 - B - 2 6 1 - B - 3 c	308 150 341	. 23	3 2	5989 9993 9994	+ 9 N S + 5 4 3 4 3	5 1 - 2 6	6 4 :	9 9 9 9 9 9 9 8 2 9 9 9 9
19. 19.	B 241-2 95584 6-141-2 95584 6-145-2 95582	P 3 \ # - 3 2 # - 3 3	8 2 1 2 2 5	1 C 3 5 1 8	3 3 5	9977 9857 9940	· 9 C 25 &	· 6 2 7 1 4	5 4 4	9 5 6 3 5 7 7 7 9 5 9 3
4 9 5 4 9 5 4 9 6	변 24년 7 북리로워버 라 (857) 워크 B (857) 워크	6 34 6 35 8 36	256 - 4	31 128	7 2 8	9 3 5 1 9 9 9 8 6 5 6 2	- 75 J 4 E 3	· : c	2 : 2 4	9 5 5 E E 6 0 4
- 6 9 4 - 6 9 4	Biresi by Bires 551RH Bires 551RD	1 - 8 - 3 * 1 - 8 - 3 £ 1 - 8 - 3 9	5 - 2 ! 1 9 a	3 27 65	3 4	9522 9697 9698	54 205 198	- 2 6 7 0	2 3 4	9 5 6 5 5 5 9 5 5 5 9 0
60. 60:	8 245 0 56194 81264 2 9668H 81285 (9668)	1 - 8 - 4 C 1 - 8 - 4 1 1 - 8 - 4 2	324 15 74	- 45 92 174	4	8025 9977 5976	: 7 ; : 3 3 6 8	- 27 89 - 185	9 ; 6 6	6648 5940 9587
603 604 605	B CBS11 GFFRY B103PGMFS 4PMM71C1PA	1 - 8 - 4 3 1 - R - 4 4 - g - 4 5	39 7 : 4 3 c	139 4 -476	1 4 2 5	9 8 5 3 9 4 7 5 9 9 8	6 - 7 3 - 450	- 12 - 5 - 47 f	3 9	9 9 9 3 9 5 6 6 9 3 9 5
1608 1608	APMMETT BPA APMMETT BPA	1 8 45 1 8 47 1 8 48	- 547 - 51 - 62 *	5 1 6 - 4 2 2 - 5	6 5 4 5	9 9 9 9 9 9 9 9 9 4 2	-564 -523 -105c	-507 -4:2 -19	6 3 34	5 5 5 6 9 5 9 9 5 5 7 4
6 C	ДРММТ 105PA ДРММТ 1P3PAO S ДРММТ 1P3PAI S	8 4 - 1 - 8 5 c 1 - 8 - 5	10% 35% -318	153 253 226	4 5 5 5	9 & C 5 9 9 9 & 9 9 8	-324 -365 -377	- 186 - 248 - 275	4 6	9976 9998 9997
1612 1613 1614	APMMTTEBPAS C APMMTTE 1PE APMTTEBPE	T - R - S L T - B - K N - B - S 4	- 3 * 0 - 5 * - 5 * c	- 167 78 71	3 8 8	9999 9995 9996	- 3 1 4 - 5 6 9 - 5 9 8	- 164 - 79 - 72	2 6 6	9 9 9 9 9 9 9 7 9 5 9 7
6 1 6	2FMM17C3F4 2FMM17C4F4 2FMM17C5F6	9 55 1 8 57	1872 358 1037	77 -274 53	9	9 5 9 7 9 5 9 6 9 5 9 7	- 279 - 355 - 1003	· 73 - 262 - 58	4 2 7	4 4 4 5 5 5 9 C 5 5 9 5
1675	ARM2791:35 ASM2791:27 H	数:5 B 1 B : 5 B - B : 6 C	6.85 c 9	2 2 3 4	8 0 5	9998 1 0000 6080	- 8 8 C - C 	2 B C 1	6 0 6	9599 * 0000 4546
622 623	MASETYM MASETYM	· · · · · · · · · · · · · · · · · · ·	264 288	- 5 0 2 5 - 2	6 7 8	9978 9987 9958	- 165 - 272 - 190	- 5 2 - 2 4 - 5	9 1 C 1 C	9 5 5 4 9 5 2 6
1624 625 1626	M 6 5 1 7 W M 9 5 3 2 W M 9 5 5 4 W	C · · · · · · · · · · · · · · · · · · ·	. 192 - 172	6 13	0 9 8	9942 9943	- 198 - 177	8 17	13	1 1000 1506 9922
6 2 8 6 2 8 1 6 2 9	M4556w M9558w M95510w	0 · · 7 0 · · 8 0 · · 9	- 2 3 2 - 2 8 2 2	5 0 3 5 2 9	15 9 10	9 & & O 9 9 7 5 8 7 4 &	- 7 2 6 - 2 7 9	43 44 27	13	954C 9972 9444
1632	M95511 5P M95511 5P	0 - 10 0 - 11 0 12	- 44 5 - 33	39 35 35	111112	9075 8767 8552	- 4 2 - 1 1 - 4 1	3 (3 4 3 5	,	9634 926£ 957¢
1633 1634 1635	M95512W 892P4 SP(88) H9551W	0 - 13 0 - 14 0 - 15	- 33 27 142	43 7 12	11 22 10	9057 5098 9890	- 3 2 1 8 1 4 4	6 2	9 1 2 9	5 t 1 5 4 9 0 6 9 8 9 6
1636 1637 1638	#9554W #9504W #9555#	0 - 15 0 - 17 0 - 18	126	18 - 17 27	9 9	9877 9472 9485	137 127 120	11 20 23	7 8 8	9923 9912 9890
1639 1640 1641	н955 7 W н95Р 7 W н955 9 W	0 19 0 20 0 21	122 124 67	31 30 40	7 7 7	9944 9900 9909	127 123 92	29 - 32 35	8 8 8	9882 9929 9790
1647 1643 1644	Н95511W Н96Р11W Н955—2W	0 - 22 0 - 23 0 - 24	C 73 69	0 - 4 1 5 2	o 5 7	9 8 8 5 9 9 9 6	0 7 2 7 0	0 45 47	6	1 0000 4528 9718
1645 1646 1647	м955 13W м950 13W м955 15W	0 · 25 0 · 26 0 · 27	6.1	4 9 0 5 9	6 0 7	9922 1 0000 9821	6 9 0	50 0 54	5 c 7	9874 ' 0000 9795
1648 1649 1650	H955'6 5P H955'6 5P H955'7W	0 28 0 29 0 30	7 · - 5 £ 7 ·	66 -54 63	10 7 7	9729 9487 9857	- 70 - 49 - 69	63 - 60 58	•	9883 9831 9932

TABLE B.2 (Continued)

			COMB	MED LOAD!	NG P 60 DE	GREE LAG	COM8 11	ED LOADIN	G # 240 DE	GREE LAG
GAGE NUMBER	GAGE NAME	POS 1 T LON	SENSITIV.		ERROR OF	CORRELATION COEFFICIENT	SENSITIV VERTICAL	LATERAL	ERROR OF ESTIMATE	CORRELATION COEFFICIENT
1651	H95517W H95519W	0 · · 31 0 · · 32 0 · · 33	- 128 - 128 - 166	63 -58 44	6 3 8	. 9952 . 9991 . 9931	- 121 - 126 - 180	63 -59 37	6 3 24	9971 9985 9666
1653 1654 1655	M8DS95(8M5U) 892SMM7(8MSL) H49COP	034 035 036	- 645	- 4 B O	20 0 0	.9978 1.0000 1.0000	- 575 0 0	- 9 6 0 0		9994 1 0000 1 0000
1656 1657 1658	H61E0P H73C0P H75C0P	0 37	568	0 - 12 0	13	1.0000 .9987 1.0000	5.8.1 O	- a	0 15 0	1 0000
1659 1660 1661	H77COP H79COP H81COP	0 - 40	497	· 10	6 4 0	9996 9998 1.0000	491 438 0	- 6 - 12 - 0	9 7 0	9992 9993 1 000C
1662 1663 1664	H83COP H85COP H87COP	0 - 43 0 - 44 0 - 45	404 314 247	1 1	10	9990 9974 9990	431 321 255	22 3 · 1	1 & 1 2 6	9963 9986
1666	H91COP H93COP H95COP	046	203	- 103 0	20 321	9772 6340 1 0000	225 628 0	- 10 194 0	32 246 0	9561 7201 1 0000
1668 1669 1670	Н97СОР Н99СОР Н101СОР	0 49 0 50 0 51	37 65	· 3	8 5	. 8926 9849 1 0000	36 35 0	· 2 5 0	1 4	8111 7206 1 9000
1671 1672 1673	H103C0P H105C0P H107C0P	0 \$2 0 \$3 0 \$4	41 -24	7 22 0	6 4 0	9587 9630 1.0000	38 - 23 0	· 2 - 10 0	7 4 0	9279 9394 1 0000
1674 1675 1676	H&SFF(C) B&DPMMRH	0 · · \$5 0 · · \$6 0 · · \$7	-21 -3 44	196 - 1 58	7 7 6	.9983 .0882 9908	· 18 0 43	197 · 5 56	6 7 7	9987 2955 9739
1677 1678 1679	880PMMRV 880PMMRV 880P19@1&{FC}	0 58	- 262 - 217	42 - 205 11	6 5 20	.9983 .9996 .7123	- 260 - 220 - 22	53 - 206 11	6 4 20	9990 9995 5485
1681 1682	H96519(D) B92P7MM5 B92P7MMP	0 · A · 1 0 · A · 2 0 · A · 3	· 275 · 67 · 373	- 10 76 - 122	14 33	.9978 9566 9877	-311 -101 -343	37 45 -60	1 6 8 1 9	9940 9924 9917
1683 1684 1685	89258MMS 89258MMP 886C0MMP	0-A- 4 0-A- 5 0-A- 6	0 - 165 166	0 8 13	0 6 4	1 0000 9960 9986	0 - 164 164	0 2 · 4	o 9 5	1 0000 9925 9978
1686 1687 1688	886C 0 MMS 886P 7 MMP 886P 7 MMS	0-A- 7 0-A- 8 0-A- 9	- 123 79 - 66	7 0 11	5 5 10	9956 9900 9436	- 129 80 - 53	7 • 4 21	5 6 5	9969 9869 9847
1689 1690 1691	880P1MMS 880P1MMP F82P11M H80P17(LF)	0-A-10 0-A-11 0-A-12	- 8 6 - 7 6	13 -54 -90	12 13 15	5843 9769 9808	1 1 - 8 2 - 7 5	13 -52 -88	5 5 6	8158 9932 9939
1692 1693 1694 1695	886P20(C) 886P11MMRH 886P11MMRD	0-A-13 0-A-14 0-A-15	· 3 9 10	32 16 37	12 23 9	8323 4140 9440	12 17 23	3 1 2 2 3 5	4 6 5	9767 9174 9738
1696 : 697	886P11MMRV B86P11MP[HSU] B86P11MP[HSL]	0 - A - 1 6 0 - A - 1 7 0 - A - 1 8	- 17 26 - 38	26 27 22	13 5	8856 8722 9637	- 1 1 55 - 32	23 41 20	5 1 7 7	9630 8525 9523
1699 1700 1701	F86P11P(C) B80P11F1P(BB) H80P15F14P(LF	0-A-19 0-A-20	- 46 82 133	- 9 22 - 214	9 5 4	9295 9941 9995	-49 81 128	- 8 19 - 222	10 7 5	8978 9772 9996
1702	886P9W(C) 886P8 5P(88) (80P2P(C)	0 · A · 22 0 · A · 23 0 · A · 24	0 - 7 - 63	0 2 25	0 4 6	1.0000 5655 9742	. 12 - 60	· 3 22	0 5 6	1 0000 6930 9852
1705	88657MMP(C) H85 9519P(C) 88059 SMFRH	0 - A - 25 0 - A - 25 0 - A - 27	· 26 0 · 21	- 1 & - 0 1 \$	6 0 10	.9582 1 0000 6915	· 10 0 · 11	· 13 0 24	, s	8450 1 0000 7366
1708	88059 5MFR0 88059 5MFRV	0 - A - 28 0 - A - 29 0 - A - 30	- 29 40 63	14 -11 81	5 3 4	9403 9854 9967	- 24 39 67	16 -11 51	8 5 3	9044 9750 9952
1711	MB0595(SL) HB5.956 5P(HS	0-A-31 (U) 0-A-32 (L) 0-A-33	0 - 8 6 399	0 143 -31	0 4 \$	9987	0 - 62 400	0 144 - 35	0 5 4	9988
1714	M86535(\$U) M86535(\$L)	0 - A - 34 0 - A - 35	- 57 - 65	111	17	1,0000 8078 ,9988	- 21 - 67	0 18 108	0 35 6	3595 9976
1717	886511.9MMRH	0-A-37 0-A-38 0-A-39	- 199 15 91	-91 -14 -26	, 5 , 7	9984 8720 9152	- 197 26 108	- 36 - 25 - 8	14	9562 9701 9566
172 172 172	1 HAS 1517 SP(0-8-40 HSU)0-8-41 HSL)0-8-42	62 695 - 755	* 8 7 8 7	\$ \$ 1	9796 9999 9997	56 694 -754	56 67	11	9999 9996
172: 172: 172	4 HEG 156.5P[H	5L) 0-A-44	358 - 248 - 183	- 49 112 124	:	9997 9985 9983	357 - 247 - 186	119	•	9993

TABLE B.2 (Continued)

			COMB	IMED LOADI	NG & 60 DE	GREE LAG	COMBI	NED LOAD:	IG & 240 DE	GREE LAG
GAGE NUMBER	GAGE NAME	POSITION	SENS: TIV VERTICAL	ITY/100% LATERAL	ERROR OF	CORPELATION COEFFICIENT	SENSITIV VERTICAL	ITY/100", LATERAL	ERROR DF EST!MATE	CORRELATION COEFFICIENT
1726	H88 5519P(CL)	0 - A - 4 5	- 100	109	9	9899	- 95	125	9	9958
1727	H86 1565(U;	0 - A - 4 7	- 263	51	8	9975	254	55	4	9995
1728	H86 1565(L)	0 - A - 4 8	- 305	61	15	9936	- 287	59	14	9954
1729 1730 1731	H86 1P8 SP(HSU) H86 1P8 SP(HSL) B92S7MIS(BM)		3 ! 3 - 2 2 8 - 1 9 6	59 -120 -47	7 , 7	9997 9990 9858	316 -239 -141	5 2 - 1 1 3 - 2 2	\$: 9 1 8	9994 983: 9560
1732	89257MZP(BM;	0-A-52	- 10	- 5	6	7:77	8	- 16	5	5076
1733	88653MMP(BM;	0-A-53	76	6	5	5882	- 7 9	3		9900
1734	88653MMS(BM)	0-A-54	90	1	14	9:72	- 0 9	9		55.7
1736	86653MZP (BM)	0 - A - \$ 5	- 6	6 6 . 7	7	4136	- 5	1	4	4421
1736	88653MZS (BM)	0 - A - 5 6	- 84		6	5876	- 8 3	1	5	9902
1737	88059MMS BM	0 - A - 5 7	- 45		8	9453	- 5 0	- 9	8	9376
1738 1739 1740	BBOS9MMP(BM) BBOS9MZS(BM) WB9P2MZTO)	0 · A · 58 0 · A · 59 0 · A · 60	324 72 47	- 10 - 5	6.2 7 1.5	9210 9778 8021	172 -24 44	37 - 5 5 - 2	2 1 5 3 1 3	9598 4735 8380
1741 1742 1743	H78520P[CU] H79520P[CL] B80511MMP[C]	0 · 8 · 1 0 · 8 · 2 0 · 8 · 3	- 229 - 213 - 54	209 213 6	6 4 6	9990 9996 9752	· 226 · 213 · 62	213 220	6 5	999. 9996 9615
1744 1745 1746	M80511P(C) H79 5520P(FC) H79 5520P(AC)	0 · 8 · 4 0 · 8 · 5 0 · 8 · 6	0 -167 -85	. 62 . 53	o 7 5	1 0000 9872 9969	- 169 - 90	0 - 6 5 - 5 3	· c	· 0000 9906 9847
1747 1748 1749	H79 5520P(ACL) 864CGMMP(C: 85658 5MFRV188)	0-8- 7 0-8- 8 0-8- 9	· 64 · 33	· 5 8 · 9 · 3 2	4 1 1 2 4	9968 8373 5826	- 65 - 33 12	· 5 3 0	4 12 15	9922 7348 2749
1750 1751 1752	85658 5MFRO(88) 85658 5MFRH (88 856P8 5MFRY(88)	10-8-11	-53 -11 -4	5 - 2 1 - 6 0	18	7878 5980 7609	· 4 4 · 2 · 1 2	: 5 - 2 4 - 4 2	1 1 1 1 1 9	9087 7981 8192
1753	856P8 SMFRD(88)	0-8-13	· 49	- 68	19	9431	- 4 6	- 5 4	1 2	93¢3
1754	856P8 SMFRH(88)	0-8-14	· 30	- 35	37	6364	- 1 4	- 2 8	1 2	8¢19
1755	M64P8S(SUA)	0-8-15	93	- 83	26	8957	8 7	- 5 7	2 8	9068
1756	M64P8S(SLA)	0-8-16	-79	- 2 6	10	9744	-71	- 25	6	9792
1757	M64P8S(SUF)	0-8-17	-19	- 3 4	14	8685	-29	- 21	19	5831
1758	M64P8S(SLF)	0-8-18	-171	- 2	15	9816	-168	- 15	13	9841
1759	864P11F1P(CU)	0-8-19	43	4	1 O	8885	74	14	1 4	9 ' 2 6
1760	864P11F1P(CL)	0-8-20	125	. 9	8	9903	129	- 11	9	9 8 6 6
1761	H61.2520P(CM)	0-8-21	-467	338	8	9995	-424	339	9	9 9 9 6
1762 1763 1764	H61 2520P(CL) M60P9.5P(C) H58 6P20P(C)	0 · 8 · 22 0 · 8 · 23 0 · 8 · 24	0 - 3 6 9 - 2 7 2	· 193 · 336	6 8	1 0000 9994 9996	0 - 37 1 - 276	0 - 192 - 341	0 6 5	· 0000 9993 9997
1765 1766 1767	H61 3P20P(C) H58 6P20P(C) H58 6P20P(C)	0 · 8 · 25 0 · 8 · 26 0 · 8 · 27	· 263 0 · 278	-319 0 -310	7 0	9996	· 26 ~ 0 · 280	-316 0 -314	4 0 6	9998
1768 1769 1770	M59 SP6P(C) B8DS9MZP(BM) B64PBMMP(BM)	0-8-28 0-8-29 0-8-30	· 43 · 8 · 6	· 3 · 4 · 64	8 5 20	9227 8417 8771	- 4 1 2 1 - 2	. \$ - 5 0	7 5 2 4	9318 9238 7700
1771	M7455P(C)	0 - 8 - 3 1	-370	102	9	. 9984	-374	106	9	9990
1772	M7355P(C)	0 - 8 - 3 2	-395	102	7	9991	-393	97	5	9997
1773	M6755P(C)	0 - 8 - 3 3	-517	122	5	. 9997	-510	126	5	9999
1774	M67P5P(UC)	0 · 8 · 34	- 407	- 102	3	9999	- 403	- 105	2	9 9 9 9
:775	M67 2P5P(UC)	0 · 8 · 35	- 438	- 109	7	9996	- 439	- 109	2	9 9 9 2
1776	M65P5P(LP)	0 · 8 · 36	- 58	- 44	4	9951	62	- 44	5	9 8 8 3
1777	M60P6P(C)	0-8-27	-461	· 141	7	.9996	-460	-139	8	# # # # 2
1778	H94\$20P(FC)	0-8-38	-20	- 24	4	9743	-22	-19	7	8 5 7 9
1779	M77P10 1P	0-8-39	-500	- 180	4	9999	-507	-175	7	9 9 9 5
1780	H94520P(AC)	0 - 8 - 4 0	37	- 22	6	9383	29	- 1 9	3	8960
1781	H94516 SP(CU)	0 - 8 - 4 1	• 3	- 13	4	8954	- 1	- 9		8442
1782	H94516 SP(CL)	0 - 8 - 4 2	• 43	- 19	5	9811	- 48	- 1 7		9396
1783	H91P19P(C)	0 · 8 · 43	- 19	22	\$	9279	· 26	20	***	9406
1784	M79S& 5P	0 · 8 · 44	- 231	170	7	9984	· 230	175		9984
1785	886P9T1P	0 · 8 · 45	- 65	4	6	9862	· 85	2		9911
1766	H91P19P[AC]	0-8-46	38	35	4	9902	41 4 24	37	6	9678
1767	H91P19P[FC]	0-8-47	- 1	- 34	6	9608		-34	6	9644
1788	H97 9P14P[LF]	0-8-48	- 3	49	1 5	8930		41	8	9492
1789	H101P20P(AC)	0-8-49	- 94	- 16	7	.9486	·93	- 19	5	9917
1790	H80P19@18(FC)	0-8-50	- 250	- 205	5	9996	·257	- 204	6	9990
1791	H79 SP18P(CU)	0-8-51	- 63	- 211	6	.9991	·64	- 211	9	9991
1792 1793 1794	H79 SP18P(CL) M63 9P13S(C) H79 9P15P(C)	0-8-52 0-8-53 0-8-54	- 84 - 369 14	-215 -88 -198	6 7 7	.9992 9993 .9981	- 43 - 380 12	- 214 - 7 · - 200	4 6	9994 9994 9980
1795	#64P12 #P[LP]	0-8-55	· 108	-116	19	9817	- 143	- 101	1 &	9679
1796	#64P12.#P(SC]	0-8-56	63	11	7	9749	59	15	6	9783
1797	#68PZZP(C)	0-8-57	73	19	15	,9321	66	33	9	9577
1798 1799 1800	864P.1MMP(C) 864S.1MMP(C) 8108P1MMP(D)	0 · 8 · 58 0 · 8 · 59 0 · 8 · 60	- 1 1 9 - 5 - 1 5	- 2 3 4	14	.9972 7126 .5128	- 1 1 B - 7 - 1 B	- 1 6 - 1	, 2 , 9	9990 3704 6395

TABLE B.3 - STRAIN SENSITIVITIES FROM STATISTICAL ANALYSIS OF ASEM STATIC TEST DATA

			VERT	CAL LOADIN	G ONLY		Ĺ	ATERA CA	DING DMLY	
GAGE Number	GAGE NAME	GAGE ASSUMED	VERTICAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM	LATERAL SENSITIVITY		CORRELATION COEFFICIENT	FR0# 7857
1 2 3	8 S C GMMP 8 S P 4 MMP 8 S P 7 MMP	9 · · · · 2 9 · · · 3	65 57	6 13 35	9820 8344 1982	4 1 3	2 1 1 1	6 1 4 2 5	5665 8116 2030	2 4 :
4 5 6	BBCOMFP BBP2MFP BBS4MFP	9 · · · 4 9 · · · 5 9 · · · 6	- 5 6 7 3	0 5 15	1 0000 9929 9023	1	9 C 4 4 - 2 4	7 E 5 4 4	7454 98:7 3830	3 5 5
, ,	B&S7MMP B&S2MFP B&COHHRH	9 · · 7 9 · · 8 9 · · 9 YES	14 - 50 - 29	2 4 121	9 94 0 4975 079	;	· 14 · 42 · 6	4 6	9512 9705 1 0000	2 2
10	88C DHHRD 88C DHHRV 88P 1 1 1 P V	9 - 10 9 11 9 - 112 YES	- 384 44 0	10	9939 8692 3765	3 3 3	6	2 2 0	9690 8482 · · 49	3
13 14 15	88P1[]RD 88P1]]RH 88P5FFRV	9 13 9 14 9 15	257 - 21 87	1 5 4 4	9881 9944 9921	1 1	- 77 - 12 186	3	994 1 8977 9996	2
16 17 18	Bapsffrt Bapsffrh Basilirh	9 - 16 9 - 17 YES 9 - 18 YES	157 · 155 · 86	5 4 6	9956 9985 9896	:	\$0 -92 -10	3 5 2	9973 9986 8276	3 2
19 20 21	BAS111RD EBS111RV BASSFFRH	9 19 YES 9 20 9 21	0 42 -121	10	9 9 9 5 2	•	2 4 8 4	0 4 9	9720 9720 9905	3
2 2 2 3 2 4	B&SSFFRO B&SSFFRY B&COMMS	9 · · 27 9 · · 23 9 · · 24	164 -7 -272	2 S 3 6	9613 9903 9193	3	- 135 - 332 - 2	7 6 9 4	9613 9990 8931	3 4 7
25 26 27	B&P4MMS B&P7MMS B&COMFS	9 · · 25 · · YES 9 · · · 26 9 · · · 27	- 105 0	3	1 0000 9986 8058	: 3 1	8	2	9986 9173	; ;
2 £ 2 9 3 C	B 8 P 2 MF S B 3 S 4 MM S B 3 S 7 MM S	9 28 9 29 9 30 YES	9 - 234 0	3 0	9644 9996 1 0000	:	37 c	3	8596 9759 0000	2 2
3 1 3 2 3 3	88\$2MF\$ M9CO\$ M9P1!P	9 3 ¹ 9 3 2 9 3 3	1 C - 3 1 4 O	6 1 3	9706 9991 9783	1	- 4 - 4	2 3 6	9806 8319 9149	2
34 35 36	M9511P M11COS M11511P	9 · · 34 9 · · 35 YES 9 · · 36	4 ¢ ¢ 2 <i>i</i>	2 0 6	5920 0000 9305	1	9 C 1 8	3 0 4	9408 1 0000 9701	2 2
37 35 39	M13COS M13P12P M13S12P	9 37 9 38 YES 9 39	· 6 Z O - 1 9	o 3	9903) 0000 9943	1	· 3 0 27	6 3	2890 1 0000 9768	2 2 2
40 41 42	#1505 415813P 7005	9 4 C 9 4 I 9 # 2	. 9 1 - 8 0 - 1 0 4	4 5 3	998 · 9960 9987	1	. T - 1	4	9263 9724 8069	2 2
43 44 45	M17P13P M17S13P M19COS	9 · · 43 9 · · 44 9 · · 45	- 38 - 33 - 141	4 4 2	9947 9937 9997	1	+32 42 -6	3 6	9055 9920 8157	2 2 2
4 6 4 7 4 8	M19\$13P M23COS M23S13 9P	9 · - 46 9 · - 47 9 · - 48	- 25 - 14 - 188	3 2 3	9939 9997 9995	,	87 4 104	7 5 4	9888 9004 9968	3 2 2
49 50 51	M25P13P M25513P M27C05	9 · · 49 9 · · 50 9 · · 51	- 179 - 175 - 125	3 2 2 1	9956 9957 9614	1	- 123 128 5	3 2 33	9985 9995 8787	3
5 2 5 3 5 4	M27514P M29C05 M29P14P	9 52 9 53 YES 9 54 YES	- 2 1 3 C	0	9957 1 0000 1 0000	1	170	0	9952	2 2
5 5 5 6 5 7	M29514P M31505 M31514P	9· ·55 9· ·56 9· ·5*	- 237 - 322 - 347	3 2 2	1996 1999 1999		1 8 8 -: 3 2 1 2	3 5 2	9994 9312 998	2
5 8 5 9 6 C	H24 1520P(C) F954P(C) H36P18,5(D)	9 58 9 59 9 60	214 30	2 2 1	9998 9959 9953	1	1 1 9 80	2 2 2	9995 9991 9180	2 2 2
6 1 6 2 6 3	BISCOMMP BISCOMMS BIGPAMMP	9 - A - 1 9 - A - 2 9 - A - 3	168 · 272 197	7 33 16	9962 9780 9824	1	· 2 - 5 4 2	37 15	9962 9501 7843	3 2
64 65 66	8 1 6 P 4 MMS 8 1 6 P 8 MMP 8 1 6 P 8 MMS	9-A- 4 YES 9-A- 5 9-A- 6	8 2 0 2 3	31	2641 9420 3455	•	29 73	31	1 0000 9532 8313	2 4 2
67 68 69	B:SCOMFP B:SCOMFS B:SPJMFP	9 · A · 7 9 · A · 8 9 · A · 9	78 103 - 28	10 9 31	9674 9708 7240	3	2 - 4 5 9	8 4 1 C	5544 9073 7240	2 2 3
70 71 72	B16P3MFS B16C0#1P B16C0F1S	9-A-10 9-A-11 9-A-12 VES	269 109 0	27 12 1	9784 9654 1149	4	17 6 0	22 5	3366 7552 1149	2 2 4
73 74 75	8:6P2FIP 8:6P2FIS 8:6\$4MMP	9 - A - 13 9 - A - 14 9 - A - 15	129 -22 137	1 1 1 0 1 2	9771 9648 9824	3	18 4 -18	13	7691 5525 5504	2 2

TABLE B.3 (Continued)

				VERT	CAL LOADIN	G 0NL+		·	ATERAL LOA	DINC ON. 1	
GAGE NUMBER	GACE	P05 1 0 %	ASSUMED CAL	VERTICAL SERSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST	LATERA. SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST
76 77 78	8 1 6 5 4 MMS 8 1 6 5 8 MMP 6 : 6 5 3 MMS	9 - A - 1 6 9 - A - 1 7 9 - A - 1 8	Y E S	- 153 154 - 19	7 1 6 1 7	9958 9728 6987	3	- 18 - 47 - 51	5 11 13	7550 917: 8595	:
79 80 81	81653MFP 81653MF5 81652F1P	9 - A - 19 9 - A - 20 9 - A - 21	v E S	- 6 233 159	7 29 12	264 ° 9616 9214	3	C - 3 6 - 1 2	C 19 14	- 0000 6717 4289	:
8 2 8 3 8 4	8 1652F (\$ 8 16CQHHRH 8 16CQHHRD	9 · A 22 9 · A 23 9 · A 24		- 122 - 25 - 70	15 23 25	9 € ○ ₹ 7 8 € ₹ 8 7 8	4	- 24 32 16	15 £ 4	96C8 8555 9633	2
8 5 8 6 8 7	В 16СОННRV В 16Р31; RV В 16Р31; RD	9 - A - 25 9 - A - 26 9 - A - 27	1 E S	9 1 2 7 1 4 7	12	764 5762 9 9.	•	23 - 10	0 5	1 cocc 9596 7944	2
8 8 8 9 9 0	816P31[RH 816P7 SFFRY 816P7 SFFRG	9 - A - 28 9 - A - 29 9 - A - 3 C	Y E S	- 215 789 - 5	1 1 4 5 7	9953 9923 2642		2: 7.1 6	17	9838 8835] ; 2
9 : 9 2 9 3	81697 SFFR4 81653118H 816531180	9 - A - 3 1 9 - A - 3 2 9 - A - 3 3		-390 -188 221	10	9988 9954 9954	;	44 - 44 49	16	5953 5892 9261	3 3 2
94 95 96	816531;RV 81657 5FFRD 81657 5FFRD	9 - A - 3 4 9 - A - 3 5 9 - A - 3 6		216	1 2 9 3 4	9912 264 9824	•	· & · ! <u>3</u> - 4 !	1 6 2 6 3 6	5083 0383 9743	2 2 3
9 ° 9 8 9 9	8:657 SFFRY F9CONA F13CONA	9 - A - 37 9 - A - 38 9 - A - 39		653 -41 -30	50 10 3	9864 936 9930	:	- 133 13 - 2	12	9 & C C 8 6 7 2 6 1 3 C	3
100 101 102	11700P 111 300P F1500NA	9 - A - 4 C 9 - A - 4 1 9 - A - 4 2		218 176 - 27	3 6 8	9993 9955 8570	:	• 4 •	4	9258 8195 8539	2 2 4
104	F0900N4 1900P 1:300P	9 - A - 43 9 - A - 44 9 - A - 45	∀E S	- 3 T 4 3 6	6 5 4	9413 2643 97CT	3 3	8 C	4 c	96C2 0C0C 8743	2 2 2
106 107 108	F17CON4 F21 3CON4 H9COP	9 - A - 46 9 - A - 47 9 - A - 48		29 72	1 C 8	9909 7536 9563	3	c 5	3 . o 5	8929 7538 8361	: 3
1 + O 1 + 1	H11COP H13COP H15COP	9 - 4 - 4 9 9 - 4 - 5 0 9 - 4 - 5 1	` E \$	6 E 7	15 9 21	8927 2647 2110	• : 3	- -	7 0 2 1	7219	2 2 2 2
113	H:70P H:900P H2300P	9 · 4 · 5 2 9 · 4 · 5 3 9 · 4 · 5 4	* E S	*3 *0 *90	5 6 3 5	1996 264 1 998 1	3	6 C	5 6 O S	1996 1996 1999	2 2
1 1 5 1 1 7	M25CQP H27CQP H29CQP	9 - 6 - 5 ⁶ 9 - 4 - 5 ⁸		7 4 7 3 7 4 4 9	4 4 3	9954 9957 9999		1 4	3 5 2	9392 9317 9535	2 2 2
118	H3100P H4700P H1259 510)	9 - A - 5 8 9 - A - 5 9 9 - A - 6 0		5 3 4 6 9 6 3	6 <u>5</u> 4	9997 9999 9687	1 f	· 3 · 2	3 3 3	7958 9219 7688	2 2 2
121	824COMMP 824COMMS 824S4MMP	9 8 1 9 8 2 9 R 3		105 - 790 44	6 4 3 6	9925 9450 9695	4 3 4	- 8 2 4 - 1 5	6 4 3 6	9925 945 <i>0</i> 9695	4 3
2 5 2 5	82457MM5 82457MM5 82497MM5	9 · 8 · 4 9 · 8 · 5 9 · 8 · 6	Y E S	0 4 3 · 6 0	0 3 14	1 0000 9763 9596	: :	6.6	0 7 1 2	1 0000 2270 9563	2 2 2
17 128 129	824COMFP 824COMFS 824S4MFF	9 - 8 - 7 9 - 8 - 8 9 - 8 - 9		43 - 12 4	6 5 6	9615 9848 9697	1	3 - 1 8	3 8	9007 8390 9019	2 3 2
130	82410515 82410515 82410515	9 8 - 1 C 9 - 8 - 1 1 9 - 8 - 1 2	, E S	1.4.9 6.0 0	2 2 8	9339 9360 198	1	4 5 8 c	13	8678 8983 1198	2 2 4
133 134 135	82453F1P 824P3F15 824P4MMP	9 - 8 - 13 9 - 8 - 14 9 - 8 - 15		4 7 - 4 8 8 0	2 8	9332 9871 9795	•	- 18 27 19	4 6 5	8399 9626 8664	2 2 2 2
136 137 138	82454MM5 824P7MMP 82457MM5	9 - 8 - 1 6 9 - 8 - 1 7 9 - 8 - 1 8	Y E S Y E S	- 171 99 - 44	6 4 1 8	9962 9952 8963	1	- 5 2 9 - 5 1	5 5 9	9551 9940 9769	2 3 2
139 146 141	82454MFS 82454MFS 82493F1P	9 B - 19 9 - 8 - 20 9 - 8 - 21	**\$	0 5 5 8 8	, , ,	9000 9496 9334	† 4	0 - 10 20	0 9 5	1 0000 9496 9364	2 4 2
143	H2453F.5 B24COMHRH B24COMHRO	9 · 8 · 22 9 · 8 · 23 5 · 8 · 24		- 44 - 207 - 90	7 9 9	9601 9945 9898	3 3 1	- 15 31 26	6 8 8	6056 9181 8844	2 2 2 2
145 145 147	824COHHRY 824P42JRH 824P411RD	9 · 8 · 25 9 · 8 · 26 9 · 8 · 27	YES	55.4 - 11.4	12	1 0000 9968 9916	, 3 3	0 88 39	0	1 0000 9714 9916	2 2 3
148	824P4: IRV 824P9FFRV 824P9FFRD	9 - 8 - 28 9 - 8 - 29 9 - 8 - 30	Y E 5	1 1 7 4 0 8 0	8 2 6 0	9807 9887 1 0000	: 1	1 2 1 4 2 0	, 6 , 9	8403 9628 10000	2 2 2 2

TABLE B.3 (Continued)

			INDL	L D.J	Continue	1)						
	VERTICAL LOADING ONLY LATERAL LOADING ONLY GAGE GAGE GAGE ASSUMED VERTICAL ERROR OF CORRELATION FROM LATERAL ERROR OF CORRELATION FROM UMBER NAME POSITION CAL SEMSITIVITY ESTIMATE COEFFICIENT TEST SEMSITIVITY ESTIMATE COEFFICIENT TEST											
GAGE NUMBER	GAGE NAME	POSITION CAL	VERTICAL SENSITIVITY			FROM TEST	LATERAL SEMSITIVITY		CORRELATION	FROM TEST		
151 157 153	92479FFRH 8245411RH 8245411RD	9 · 8 · 3 1 9 · 8 · 3 2 9 · 8 · 3 3	- 242 - 353 0	1 1 1 5 0	9945 9969 1 0000	4 3 1	· 77 · 39	11	9945 9487 9414	4 2 2		
154 155 156	82454 1RV 82459FFRH 82459FFRU	1 - 0 - 34 9 - 0 - 35 9 - 0 - 36	82 -171 111	7 7	.9654 9977 9721	1	- 13 - 33 - 41	6 1 3 9	7079 9904 8445	3 3 5		
157 154 159	02459FFRV 125COP 129COP	9 - 8 - 37 9 - 8 - 38 9 - 8 - 39	256 342 292	17 3 2	9887 9997 9999	1 1	· 38 · 8	1 2 5 3	7160 9994 9996	2 4 4		
160 161 162	#32C0 1M2P(C) M31 9C0P(C) M22 \$59 5P(C)	9 - 8 - 40 9 - 8 - 41 9 - 8 - 42	- 244 - 563 - 268	4 3 5	9994 1 0000 19994	1	5 11 71	4 4 7	9422 9685 9982	2 2 3		
163 164 165	M23P 3P[C] M22,5P 3P[C] M12,5P 4P[C]	9 - B - 43 9 - B - 44 9 - B - 45	- 186 - 182 - 48	2 3 3	.9998 9994 9976	1	- 35 - 13 - 4	3 4	9625 8781 9852	2 2 3		
166 167 168	M12.5F 5P(C) M12.5P4P(C) 824P11 6P(SC)	9 - 8 - 4 6 9 - 8 - 4 7 9 - 8 - 4 8	- 49 - 69 129	2 3 12	.9988 9984 .9705	† †	· 6 · 17 47	3 5	.8995 846d 9719	2 2 2		
169 170 171	H23 958 SP(HSL) H23 958 SP(HSU) H23 9P8 SP(HSL)	9-8-50	- 292 392 - 298	4 4 15	9997 9998 9931	1 1 4	104 - 17 - 73	4 5 15	9994 9996 9931	3 4 4		
172 173 174	H23 9P8 \$P(HSU) M60\$9P(C) M48 1P8P(C)	9-8-52 9-8-53 YES 9-8-54	345 0 · 336	10 0 5	9978 1 0000 9995	4	61 0 - 133	6 0 4	9806 1 0000 9974	2 2 2 2		
175 176 177	#4855MMS(BM) #4855MZP(BM) #4855MZS(BM)	9 - 8 - 5 5 9 - 8 - 5 6 9 - 8 - 5 7	60 -145 -104	16 24 35	8505 9327 7950	4 3 3	26 37 24	? 3	9884 9955 9417	2 2 2		
178 179 180	84855 1M2P(BM) M49 559P(1F) H28P17 5(0)	9 - 8 - 5 8 9 - 8 - 5 9 9 - 8 - 60	· 5 3 0 1	13 0 2	. 8599 1 0000 1205	3 1 1	17 150 0	: 3 3 2	8599 9993 2484	3 2		
181 182 183	840C0TTP 840C0TTS 840P4TTP	8 · · 1 YES 8 · · 2 YES 8 · · 3 YES	0 1	1 1 0	. 2019 1669 . 1269	1	1 0 0	! 0 0	5892 1596 1269	3 2 4		
184 185 186	BAQPATTS BAQPETTP BAQPETTS	8 4 YES 8 5 YES 8 6 YES	0	0	. 2976 . 2976 6649	1 1 1	• •	0	2343 1 0000 1715	2 2 2		
187 188 189	840C02TP 840C02TS 840P42TP	8 7 YES 8 8 YES 8 9 YES	° °	0	. 2975 1 0000 .5101	1 1	o o	o o	1 929 1 0000 1 0000	2 2 2		
190 191 192	BAGPAZTS BAGPAZTP BAGPS:TS	810 YES 811 YES 812 YES	0	0 2 1	3830 9516 4707	1	0	0 2 1	2058 1010 1284	4 3 2		
193 194 195	840C0MIP 840C0MIS 840C0MPP	813 YES 814 YES 815 YES	• •	1 0 1	.6857 2976 3123) 1 1	0	o ! 2	1 0000 2088 5741	2 3 2		
196 197 198	840C0MF5 840P7MFP 840P7MFS	816 YES 817 YES 818 YES	- t O - 1	1 1	6631 3526 4598	1 4	0 0 0	• •	1 0000 1 0000 1 0000	2 2 2		
195 200 201	849C0F1P 849C0F1S 849P6F1P	819 YES 820 YES 821 YES	° °	0	1 6000 1262 .1129	; ;	o o	o o	1 0000 3275 1129	2 4 4		
202 203 204	840P6F1S 840S4TTP 840S4TTS	8 22 YES 8 23 YES 8 24 YES	• •	0	0981 2339	3 4 1	o o	o 0	0981 2339 1 0000	3 4 2		
205 206 207	84058TTP 84058TTS 840542TP	825 YES 826 YES 827 YES	- 1 •	0	1 0000 . \$862 1 0000	1	o c o	0 1 0	1 0000 2346 1 0000	2 2 2		
208 209 210	#40\$42TS #40\$82TP #40\$#2T\$	8 26 YES 8 29 YES 8 30 YES		0 1	.1523 .2119 .2046	1 4 3	o o	0	2513 2119 1 0000	4 2		
211 212 213	84054MFP 84054MFS 84056FTP	8 31 YES 8 32 YES 8 33 YES	0	o o	, 1598 1 0000 0981	1 3	c 0	0	1598 1 0000 0981	4 2 3		
214 215 216	#4056FJS #40COHHRH #40COHHRD	834 YES 835 YES 836 YES	0	1 1 1	. 2917 1228 1839	:	° °	0	1 0000	2 2 2		
217 218 219	840COMMRY 840P611RH 840P611RD	8 37 YES 8 38 YES 8 39 YES	1 0 0	1 0 1	. 2684 1683 . 2216	4	· 1 • •	0	3145 1663 2216	2 4 4		
220 221 222	840P61IRV 840P9FIRV 840P9FIRD	840 YES 841 YES 842 YES	- 1 0 0	1 1	.2409 .0388 .2660	1 3 3	° °	0	0901 2168 1 0000	2 2		
223 224 225	#4GP#FIRH #4GP12FFRV #4OP12FFRD	843 YES 844 YES 845 YES	o o 1	1 0 1	2049 1683 2566	•	o o o	0 0	1 0000 1683 1 0000	2 4 2		

TABLE B.3 (Continued)

				VERT :	CA. LOADIN	C ONLT			ATERAL LOA	CING ON. T	
GAGE Number	GAGE NAME	GACE A	CAL	VERT CAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM	LATERAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST
226 227 228	840912FFRH 84056[18V 84056[18D	8 · · 46 8 · · 47 8 · · 48	YES YES YES	. · •	c 1	0981 3393 1945	1 3	0	¢ ¢	. 0000 . 0000	:
229 230 231	8405611RH 84059FIRH 84059FIRO	8 49 8 5 <i>0</i> 6 51	Y E S Y E S Y E S	• •	0	10 · 4 08 19 3723	3	0 0	c o	0000 0819 3404	2 7 1
232 233 234	84059FlRV 840512FFRH 840512FFRD	8 - · 52 8 - · 53 8 - · 54	Y E S Y E S Y E S	o o	• • •	1 0000 224. 2061	1 4 3	ق د د	c c	: 0000 7534 1371	:
235 236 237	B40512FFRY B48COMMP B48S8 4MFRY	8 · · 55 8 · · 56 8 · · 57	7 E S 7 E S 7 E S	0	0 1	1 GOC. 3500 048		0	c 1	1 0000 3520 1 0000	4
238 239 240	84858 4MFRD 84858 4MFRH W46P2ZT(D)	8 - 58 8 - 59 8 - 60	Y E S Y E S Y E S		1	2213 2872 2497	1	<u>e</u> 	,	22:3 :944 : 0600	4 3
241 242 243	848CDTTP 848CDTTS 848P4TTP	8 - A - 1 8 - A - 2 8 - A - 3	YES YES YES	,	:	2885 4756 1067	3 4	0	, ,	274 2768 274	2
244 245 246	848P8TTS 848P8TTP 848P8TTS	8 - A - 4 8 - A - 5 8 - A - 6	YES YES YES			2529 00# 580#	3	:	•	15 17 09 8 1 25 6 2	4 3 3
247 248 249	848CDITP 848CDITS 848P4ITP	8 - L - 7 8 - L - 8 8 - L - 9	YES YES YES	o c	0 1	0481 2374 4907	4	e	0	1 6500 1 0000 1 0000	2 2
250 251 252	B48P42TS B48P82TP B48P82TS	8 - A - 10 8 - A - 11 8 - A - 12	YES YES YES	- :	c c	\$899 1594 1269	: :	c		3985 1617 10000	: :
253 4 255	848CDMZP 848CDMZS 848CDMFP	8 - A - 13 8 - A - 14 8 - A - 15	YES YES YES	c c		0.04	4	6	0	0918	2 3
256 257 258	848COMFS 848P6MFP 848P6MFS	8 - A - 16 8 - A - 17 8 - A - 18	YES YES YES	(0	¢	1714 1070 1001		0	° °	0000	:
259 260 261	848COF 1P 848CDF 1S 848P6F 1P	8 - A - 19 8 - A - 20 8 - A - 21	Y E S Y E S	0	: c c	1236 1598	1	c	c 6	0000 1236 : 0000	3 2 4
262 263 264	84896F1S 848S4TTP 848S4TTS	8 - 4 - 22 8 - A - 23 8 - A - 24	7ES 7ES 7ES	000	9 1	0924 2832 1 0000	4	ø c	000	0924 1731	2 2 2
265 268 267	8485877P 84858775 8485427P	8 A 25 8 A 26 8 A 27	VES VES	0	c .	1 0000 3483 1 0000	1 4	0 0	0 - 0	7 0000 3483 1 0000	1 1 4 2
268 269 270	84854275 84858270 84858275	8-A-28 8-A-29 8-A-70	YES YES YES	0	· •	2435 1 0000 9856	4	0		2435	4 2 2
27: 272 273	84856MFP 84856MF5 84856F1P	8 - A - 3 1 8 - A - 3 2 8 - A - 3 3	* E S * E S * E S	0	0	3563 1 0000 0763	1	0	1 C	2022	2
274 275 276	54856F15 548CGMMRH 544CDMMRD	8 · 4 · 34 8 · 4 · 35 8 · 4 · 36	YES YES YES	. 1	, t	1847 3505 2336	4 4 3	0	;	2055 0309 1966	2 2
277 278 279	848COMHRV 848P711RV 848P711RD	8 - 4 - 37 8 - 4 - 38 8 - 4 - 39	YES YES YES	c c	•	. 1684 0852 1349	4 3	0		1684 0852 1349	4 3 3
280 281 281	848P711RH 848P10F1PV 848P10F1PD	8 - A - 40 8 - A - 41 8 - A - 42	YES YES YES	o c o	:	2052 2120 1708	! 1	o o	: 0	2220 2057	2 2 2
283 284 285	848P10F1RH 848P12FFRV 848P12FFRD	8 - A - 4 3 8 - A - 4 4 8 - A - 4 5	YES YES YES	0	1 0 1	0779 0713 2175	3 4 3	0	0	1 0000	: 4 2
286 287 288	848F12FFRH 848\$711RH 848\$711RD	8 - A - 4 8 8 - A - 4 7 8 - A - 4 8	YES YES YES	0) 1	1031 2035 2133	4 3	0	0	' 0000 2549 7464	2 2 2 2
289 290 291	84857[]RV 848510F]RH 848510F]RD	8 - A - 49 8 - A - 50 8 - A - 51	Y E S Y E S Y E S	0 · 1	0	1395 1152 1169	1 1 3	0	0	1 0000 1 0000 1 0000	2 2 2
292 293 294	848510F[RV 848517:18H 848512:18D	8 · A · 5 2 8 · A · 5 3 8 · A · 5 4	Y E S Y E S Y E S	C O	0 1	1 0000 1965 5747	1	0	0	1 0000 1965 5747	2 4 4
295 296 297	848512[[RV H48 1520P[C] 848513MM5[C]	8 - A - 5 5 8 - A - 5 6 8 - A - 5 7	* E S * E S * E S	0 • 4	0 2 0	1 0000 7320 .2214	1	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	° 2	1 0000 7320 2214	2
298 299 300	856591[P(C) 856P4MM5(C) 840P1(DK)	8 - A - 5 8 8 - A - 5 9 8 - A - 6 0	YES YES YES	o o	o 1 1	3411 1339 2025	9 1 1	0 0	0 3 0	1 0000 3704 1 0000	2 3 7

TABLE B.3 (Continued)

				LATERAL LOADING DNLY						
GAGE NUMBER	5 4 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	GAGE ASSUMED	VERTICAL SENSITIVITY		CORRELAT ON COEFFICIENT	FROM TEST	LATERAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST
301 302 303	M30 4P10W M30 4P10 5P M30 4P11W	8-8- 1 YES 8-8- 2 YES 8-8- 3 YES	· 1 ·	† 1	3269 2685 1890	4 4 3	0	0	2407 0000 4379	2 2 2
304 305	M30 4P11 5P M30 4P12W	8 - 8 - 4 - YES 4 - 8 - 5 - YES	0	1	2671 2672 1897	:	•	0 1	1607 1642 1897	2 2 4
306 307 308	M30 4P13W M31 2P10W M31 2P10 SPRL	8-8- 6 YES 8-8- 7 YES 8-8- 8 YES	0	!	2078	1	0	0 0	1 0000	2 2 4
309	M31 2910 5PRD	8-8- 9 YES	o	•	2116	•	0	0	0924	4
310 311 312	M31 2P10 5PRH M31 2P11W M31 2P11 5P	8-8-10 YES 8-8-11 YES 8-8-12 YES	0	0	19 ° B 05 0 8	:	c o	0	1958	•
313 314 315	M31 2912W M31 2913W M31 2914W	8-8-13 YES 8-8-14 YES 8-8-15 YES	° °	1 0 1	5997 2044 2450	3	o o o	0	2044	2 3 2
316	840784MRH(RE)	8-8-16 YES	1	;	0885 3174	3	0	0	1474	2
318	837PIOMMP 840PEMMRD(RE)	8-8-17 YES 8-8-18 YES	• 1	,	2879	1	•	•	1369	:
3 1 9 3 2 0 3 2 1	832P10 SMMP 840P8MMRV(\$81 M31 8P11 2PRH	8-8-20 YES 8-8-21 YES	0	0	1683	4	c	0	1 663	2
322	M31 8P11 2PRD	8 · 8 · 22 YES 8 · 8 · 23 YES	0	0	1236	3	°	0	1236 0714	3
323 324	M31 8P11 2PRL M31 8P11 5P	8-8-24 YES	ò	•	, 0000		0	0	1 0000	2
325 326 327	M31 8P12W M31 8P13W M31 8P14W	8-8-25 YES 8-8-26 YES 8-8-27 YES	. 1	0	1 0000 3847 1 0000	1	0	0	8 94	2
326	M32 4P10W	8-8-28 YES	0	0	0713	4	0	0	0000	4 2
329	M32 4P10 5P M32 4P10 7P	8-8-29 YES 8-8-30 YES	0	č	1129	3	•	1	3875	4
331 332 333	M32 4P11 1P M32 4P11 3P M32 4P11 5PRH	8-8-31 YES 8-8-32 YES 8-8-33 YES	0 0	0	1 0000	•	0	o e	1 29	4
334	M32 4P11 5PR0 M32 4P11 5PRL	8-8-34 YES 8-8-35 YES	0	0	0955	1 3	0	0	1 0000 2697 1 0000	2 2 2
336	M32 4P12W	8-8-36 YES	•	0	2461	1	•	1	1771	3
337 338 339	M32 4P13W M32 4P14W M31 2511W	8-8-37 YES 8-8-38 YES 8-8-39 YES	0	0	1 0000	3	0	1	2199 1601	3
340 341	M31 2512W M31 2513W	8-8-40 YES 8-8-41 YES	0 0	,	1129 4061 0857	1	0 - 1 0	0	1129	1 2
342	M31.2514W	8-8-42 YES 8-8-43 YES	•	,	1207	,	0	0	1 0000	2
343 344 345	M31 8511W M31 8511 2PRL M31 8511 2PRD	8 - 8 - 44 YES	0	0	1947	:	0	0	1961	
346 347 348	M31 8511 2PRH M31 8512W M31 8513W	8-8-45 YES 8-8-47 YES 8-8-48 YES	o o	1	2494 2416 1801	: 3	0	0	1 0000	2 3
349	M31 8514W	8-8-49 YES	0	0	1022	•	0	o c	2257	2 2
350 351	M32 6510W M32 6510 7P	8-8-50 YES 8-8-51 YES	•	1	2492	,	•	•	1 0000	2 2
352 353 354	M32 6511 3P M32 6512W M32 6513W	8-8-52 YES 8-8-53 YES 8-8-54 YES	· 1	1	1 0000 1405 4600		0	0	2099 4600	2
355 356	M32 65144 H24 1517 5PIF	8-8-55 YES (SL)8-8-56 YES	0	0	1 0000 6554 2739	;	0 • 1 • 1	2	1 0000 7042 4266	2 4 3
357 358	H24 (S17 SP{F		0	;	1987	1	0	2 1	7558 5687	2 2
359 360	H24 2520.5P(F W52P22T(D)	8-8-60 YES	•	;	1 0000	1	31	1	2445 9916	2
361 362 363		7 1	- 5	10	9993	1	- 60	10	9005	,
364 365	M21COW	7 4 7 5 YES 7 6	· 200 0 - 192	3 0 29	9996 1 0000 .9413	1 1 1	- 32 0 27	4 0 22	9493 1 0000 5576	2 2 2
367 368	M2154W	7· · 7 7· · \$	- 241 - 152	2	9999	3	34 73	4 2 3	9890 9983 9996	2 4
369	M2158W	7 9	- 194 - 158	3	, 9996	4	77	3	9975	
370 371 372	M21811.5P	710 711 712	- 158 - 144 - 93	2	1114 1115	3	73 86	5 5	****	3
373 374 379	M21513W	713 714 715	· 75 - 110 - 47	3 3 4	9988 9988 9929	•	72 86 100	3	9961 9980 9974	2 2 2

TABLE B.3 (Continued)

			YERT	CAL LOAD:	5 ONLY		·	ATERAL LOA	CINC ONL+	
GAGE Number	G4 C E N 4 M E	GACE ASSUMED POSITION CA.	VERTICAL SENSITIVITY	ERROR OF	CORRELATION COEFFICIENT	FROM	LATERAL SENS!TIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST
376 377 378	H16 2515P[CU] H21CQW H2152W	7 16 7 - 17 7 - 18	· 134 170 169	3 7 8	9989 9934 9933	1	5 C 8 2 6	3 7 7	9945 8529 9113	? ? ?
379 380 381	H21P2m H215\$m H2157m	7 · · · 19 7 · · · 26 7 · · · 2 '	167 147 103	4 2 2	9985 9995 9987	3 1	· 25 29 36	4 2 2	9985 9937 9952	3 2 3
382 383 384	H 2 1 P 7 W H 2 1 S 9 W H 2 1 S 1 I W	7 - · · · · · · · · · · · · · · · · · ·	79 67 - 132		9523 9989 9994	1	· 30 5 1 8 5	1 :	€735 9988 9989	:
385 386 387	H21P11W H21S13W H21S13.5P	7 · · · 25 7 · · · 26 7 · · · 27	60 7	2 3 2	9964 9951 7446	1	· 5 6 6 4 8 1	3 3 2	99.9 9985 9979	: 3
3 8 8 3 8 9 3 9 C	H21P13 5P H21514w H21516w	7 28 7 29 7 30	- 16 22 - 78	3 7	9994 8014 9991	3 f	- 84 67 80	145	9990 1136 9990	3
391 391 393	H21P16W H21518W H21P18W	7 · · 3 · 7 · · 32 7 · · 33	- : 'S 66 - 158	2 3 4	9994 9959 9992	1 1 3	67 - 66 - 83	4	9993 9902 9935	2
394 395 396	733COW 735COW 737COW	7 - 34 7 - 35 7 - 36	3 5 3 7 3 8	3 13 47	9873 6'46 5429	3	5 2	3 14 45	9873 2360 5616	3
197 398 399	13900W 14100W 14300W	7 · · 37 7 · · 38 7 · · 39	22 - 37 - 15	4 5 2 5	0915 3728 9974	1 1	7 15	5 : 2 :	1543 0613 8073	4 2
401	14500W 14700W 23300W	740 741 742	- 8 - 1 - - 3 3	2 2 2	9053 9056 987	3 3 4	: 2 2	2 2	6298 9086 7644	2
40 3 40 4 40 5	23500w 23700w 23900w	7 · · 43 7 · · 44 7 · · 45	- 5 C - 1 (9 - 1 7 8	2 2 2	9985 9996 9997	1 3	3 2	2	9079 9149 8966	:
406 407 408	24100w 24300w 24500w	7 · · 46 7 · · 47 7 · · 48	· 274 - 28 · - 35 ·	2 2	9997	:	• • • • • • • • • • • • • • • • • • •	0 2 2	* 0000 846£ 7293	:
4 C 9 4 ' O 4 : 1	747C0w M33C0w M35C0w	749 75 c 75 i	- 4 4 7 - 2 8 8 - 4 0 2	2 C 9 9	9956 9977 9988	1	1 9	2 9 9 7	0553 9977 3426	2 4 2
413	M37C0w M39CCw M41C0w	7 52 YES 7 53 YES 7 - 54 YES	o c c	0	1 0000	, 1	0 0	0	: 0000	2 2 2 2
4 1 5 4 6 4 : 7	M43CDW M45CDW M47CDW	7 - 55 YES 7 - 56 YES 7 - 57 YES	o	° ° °	1 0000 1 0000	1 .	0	0	1 0000	2 2 2 2
418 419 420	84058MMW(C 840512MMP.C) 816P12(D8)	7 58 YES 7 - 59 HES 7 60 YES	c 0 0	c 0	1 0000 1 0000 1 0000	1	0	0 0	1 0000	2 2 2
421 477 423	133 3COP 137COP 141COP	7 · A · · · · · · · · · · · · · · · · ·	248 37, 408) ; 5 ;)	9942 9996 9981	; 3	9 7 • 2	12 5	9736 9996 8646	3 3 2
424 423 426	145 3COP 533 3COW 537COW	7 - A - 4 7 - A - 5 7 - A - 6	377 - 27 - 17	4 3 2	9997 9956 9952	1 1 ,	4 2 0	5 3 2	9996 5517 8573	3 2
4 2 7 4 2 8 4 2 9	F4:COW F45 3COW H33COP	7 · A · 7 7 · A · 8 7 · A · 9	- ! 3 - 9 5 9 6	4 2	9895 9942 9995	1 1 3	3 0 · 5	* 1 3 4	5 1 2 5 9 0 1 6 9 9 9 9	2 2 3
430 431 432	H35C0P H37C0P H39C0P	7-A-10 YES 7-A-1 7-A-12	0 855 579	0 4 9	1 0000 9998 9995	1	0 1 t 5	6 8 5	1 0000 9995 6845	2 3 2
433 434 435	H4 CDP H43COP H45COP	7 - A - 13 7 - A - 14 YES 7 - A - 15 YES	640 0 0	8 C	9997 1 0000 1 0000	3 1	· 1	8 0 0	9997 1 0000 1 0000	3 2 2 2
436 437 438	H21CQP M33S11 1P M33P11 1P	7-A-16 YES 7-A-17 7-A-18	0 - 3 8 - 267	6 13	1 0000 9992 9937	1	0 143 -100	0 4 13	1 0000 9984 9937	2 2 4
439 440 441	M35511 1P M37517 1P M37P11 1P	7 - A - 19 7 - A - 20 7 - A - 21	- 360 - 349 - 399	8 9 2 2	9989 9983 9929	1 3 1	162 179 - 183	8 9 24	9934 9983 9911	2 3
442 443 444	M39511 1P M415'1 1P M41P11 1P	7 - A - 22 7 - A - 23 7 - A - 24	· 46 · 358 · 450	35 2 3	7319 9999 9999	1 3 4	16 155 - 164	116	2165 9999 9997	3 3 2
445 446 447	M43511 1P M45511 1P M45P11 1P	7 · A · 25 7 · A · 26 7 · A · 27	· 366 · 374 · 479	2 2 2	9999 1 0000 1 0000	1 4	192 216 -241	2 2 2	9997	2 4 2
448 449 450	M47511 1P M33514P M33P14P	7 - A - 28 7 - A - 29 7 - A - 30 YES	· 203 · 38 ·	13	9999 9970 1 0000	3	204 224 0	1 3	9999 9970 1 0000	3 3 2

TABLE B.3 (Continued)

				VERTI	CAL LOADIN	G ONLY		ı	ATERAL LOA	DING ONL'	
GAGE Number	GACE NAME	CAGE A		VERTICAL Sensitivity	ERROR OF ESTIMATE	CORRELATION Coefficient	FROM TEST	LATERAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST
451 452 453	M35514P M37514P M37P14P	7 - A - 3 1 7 - A - 3 2 7 - A - 3 3		- 385 - 356 O	3 5 0	9999 9996 1 0000	3 1	230 227 - 249	3 \$ \$	9999 9958 9989	3 2 2
454 455 456	M395 4P M4 15 14P M4 1P 14P	7 · A · 34 7 · A · 35 7 · A · 36		- 300 - 267 - 276	29 128 21	9757 5557 9869	1 1	178 145 - 200	88 149 56	8350 4408 9668	3 2 3
457 458 459	M43514P M45514P M45P14P	7 - A - 37 7 - A - 38 7 - A - 39	YES	-349 -374 0	133 12 0	8769 6975 1 0000	1 1	229 285 C	133	8769 9977 1 0000	4 3 2
460 461 462	M47514P W32 15MZO 1RV W32 15MZO 1RD	7 - 4 - 4 0 7 - 4 - 4 1 7 - 4 - 4 2		- 396 259 - 682	13 8 9	9980 4980 9995	3 4 3	286 · 58 129	*	9976 9869 9979	:
463 464 465	#32 ISMZO TRL #32 ISZTO IP #358#ZO SP	7 - A - 43 7 - A - 44 7 - A - 45		- 452 - 4 - 416	7 2 2 5	9994 4189 9996	3	147 · 36 175	2 1 7 4	9997 6967 9989	2 2 2
466 467 468	#355M274 #3552M3 9P #3552TO 1P	7 - 4 - 4 6 7 - 4 - 4 7 7 - 4 - 4 8		- 303 - 357 - 297	f 5 3	9991 9996 9998	1 1	8 1 6 2 5 5	€ 4 3	9950 9914 998	3 7 3
469 470 471	W3552T2* W355T23 9P M49 559P[F0]	7-4-49 7-4-50 7-4-5		- 101 - 121 - 367	1 1 4 17	9694 9980 9943	3 ! 3	25 13 167	1 1 6 t 7	9694 9952 9943	3
472 473 474	M49 559P{AQ B4852MMW!C} B56510 1MMP{C!	7 - A - 5 2 7 - A - 5 3 7 - A - 5 4		- 37 E - 128 - 72	5 1 0 1 2	9996 9831 9616	3 3 4	164 14 31	5 5 12	9996 8914 9616	3 2 4
475 476 477	B4053MM5 (BM) B4053MMP (BM) B4053MZS	7 - A - 5 5 7 - A - 5 6 7 - A - 5 7		-32 -149 -101	1 2 3 3	8614 9991 9980	3 1 4	- 1 7 6 1	5 2 2	8068 8855 7014	2 2 7
478 479 480	84053MZP 84855MMP H44519(C)	7 - A - 5 8 7 - A - 5 9 7 - A - 6 0		- 89 - 107 - 80	4 8 3	9957 9867 9982	4 3 1	· 1 · 2 7	3 3 3	5359 9443 8520	2 2 2
481 482 483	149P10W 149P6W 149C0W	7 - 8 - 1 7 - 8 - 2 7 - 8 - 3		- 33¢ - 97 - 28	5 4 8	.9995 9962 8414	3 3 3	-63 -22 4	5 4 6	9995 9962 9422	3
484 485 486	14952W 14954W 14956W	7 · P · 4 7 · B · 5 7 · B · 6		- 23 - 16 - 67	4 4 2	9884 9849 9980	1 1	14 18 0	4 3 0	9353 9786 1 0000	2 2 2
467 468 469	14958W 149510W 149510 SP	7 - 8 - 7 7 - 8 - 8 7 - 8 - 9		- 182 - 304 - 414	6 3 6	9982 9997 9996	1 1	57 88 108	7 3 5	9727 9973 9946	2 2 2
490 491 492	749510 9P 749P10W 749P6W	7-8-10 7-8-11 7-8-12		-484 -551 -376	7 3 2	9993 9999	3	125 -163 -103	3 3 4	9986 9999 9960	2 3 2
493 494 495	749COW 249S2W 249S4W	7 - 8 - 13 7 - 8 - 14 7 - 8 - 15	YES	0 -412 -473	•	9998	1 1	23 65	0 4 3	1 0000 9712 9963	2 2
496 497 498	74956W 74958W 749510W	7 · 8 · 16 7 · 8 · 17 7 · 8 · 18		-544 -306 -470	6 2 2	.9998 .9999 1 0000	1 1	88 83 . 65	5 2 2	9947 9989 1 0000	2 2 4
499 500 501	249510 5P 249510 9P W495M22W	7 - 8 - 19 7 - 8 - 20 7 - 8 - 21		-488 -493 -163	\$ 3 2	9997 9999 9997	3	179 164 132	4 3 2	9948 9999 9996	2 3 2
502 503 504	W495ZM3 9P W495MZO 1RL W495MZO 1RC	7 · 8 · 22 7 · 8 · 23 7 · 8 · 24		- 5 2 8 - 3 8 1 - 4 2 7	1 1 2 4	9994 9999 9998	4 3 3	181 220 116	1012	9934 9999 9989	2 2 2
505 506 507	W495MZO 1RV W495ZTZW W495TZ3 9P	7 - 8 - 25 7 - 8 - 26 7 - 8 - 27		299 - 465 - 450	4 3 3	9995	3 4	-96 139 119	4 2 2	9995 9993 9995	3 2 2
508 509 510	#495270 1RL W495270 1RD W495270 1RV	7 - 8 - 28 7 - 8 - 29 7 - 8 - 30		- 480 21 171	2 6 3	1 0000 9651 9988	3	174 24 · 9	3 2	9998 9889 7807	2 2 2
5 1 1 5 1 2 5 1 3	M49P14W M49P13W M49P11 1P	7 - 8 - 3 1 7 - 8 - 3 2 7 - 8 - 3 3	YES	0 - 12 - 39 4	6	1 0000 .6586 9996	1	• • • • • • • • • • • • • • • • • • •	6 10	1 0000 6586 9985	2 4 4
\$14 \$15 \$16	M49P10W M49P6W M49P2W	7 · 8 · 34 7 · 8 · 35 7 · 8 · 36		- 35 6 - 38 6 - 438	2 8 9	9994 9914 9992	3	- 199 - 120 - 40	\$ 1 9 7	9989 9442 8814	2 2 2
\$17 \$18 519	M49CDW M49S2W M49S4W	7 · B · 37 7 · B · 38 7 · B · 39		- 345 - 490 - 479	5 8 10	9994 9994 9991	1	2 38 84	4 3 3	8479 9820 9980	2 2 2
520 521 522	M4956# M4958# M4959 5P	7 - 8 - 40 7 - 8 - 41 7 - 8 - 42		- 362 - 366 - 370	3 6 4	9996 9996 9999	3 1 4	108 157 184	3 2	9984 9993 9996	2 7 2
\$ 2 J \$ 2 4 \$ 2 5	M49510W M49510 5P M49510 9P	7 - 8 - 43 7 - 8 - 44 7 - 8 - 45		- 36) - 380 - 374	2	9998 1 0000 9999	3 4 1	199 212 225	2 2 2	9994 1 0000 9999	2 4 2

TABLE B.3 (Continued)

			V E P * :	541 .0A0.	. DN			47443.2	* ·	
GAGE Number	CAGE NAME	CAGE ASSUMED POSITION CAL	VERTICAL SENSITIVITY		COFRE, A1 ON COEFF. CIENT	FRCM TEST	. 41882 5895. 1 . v 11	EDUCE	TERRE L'AND NO.	F & C = 7 E 5
526 527 528	M495124 M49512 5P M49513W	7 - 8 - 4 t 7 - 8 - 4 7 7 - 8 - 4 f	374 364 417	2 3	9999 444 9944	4 4 7	25 284 284	:	,,,,, ,,,,,	:
529 530 531	M495:3 5P M495:46 M495:1 1P	7 - 8 - 49 7 - 8 - 5 C 7 - 8 - 5 !	C 384 388	13	965. 965.		1 9 ° 1 1 9	* •	5 C - 1 4 4 5 g 5 5 7 C	1 4 2
532 533 534	848COMMS[27 73853 5P[C7 73353 5P[C]	7 - 8 - 5 2 7 - 8 - 5 3 7 - 8 - 5 4	2 4 8 2 7 4	2 E 4 3	9 & & . 9 4 4 .	•	;	•	* * * r * * c = * * c =	:
535 536 537	23353 5P(C) 243P3 5P(CO) 243P3 5P(C)	7 - 8 - 5 5 7 - 8 - 5 6 7 - 8 - 5 7	131	:	6 9 % 6 7 9 9	ć	4 4		666 685 6537	:
538 539 540	153P3 SP(C1) 253P3 SP(C0) H52S(8)	7 - 8 - 5 8 7 - 6 - 5 9 7 - 8 - 6 C	- 40 442 164	:	4 6 6 ° 9 7 9 ° 9 4 9 °	•	• ·	3	9462 5534 5052	:
547 543	H16 2515PICL! H49P3W H49P7W	6 · · · 1 · · · · · · · · · · · · · · ·	6 1 6 5 C Z	•	0000 0000 996		* 4		4000 6444 4674	:
5 4 4 5 4 5 5 4 è	H49P1ON H49P12W H49P15 5P	6 - · · · · · · · · · · · · · · · · · ·	376 290 E	5 8 7	9 4 4 5 9 4 7 8 9 5 7		. v 5 7 4 7 . v .		ର୍ବର୍ଥ ବ୍ୟକ୍ଷ ବ୍ୟକ୍ଷ	:
547 548 549	H49P18W H49S1W H49SJM	6 · · · 7 · E5 6 · · · 8 6 · · · 9	690 603	:	2111		: •	-	9993	2 2 2
55C 551 552	H4555M H4957M H4959M	6 1 C 6 1 ' 6 1 2	5 4 6 5 3 2 4 4 7	•	5635 9 98 6536		100 143 141	۽ و	9996 9996	•
553 554 555	H495104 H495114 H495124	6 · · 13 6 · · 14 6 · · 15	377 378 ,84	3 2 2	9 9 9 4 9 9 9 8 9 9 8	:	205 214 13.	÷	334 g 3394 4431	:
556 557 558	H495:3W H49515 5P H49516W	6 · - 1 6 6 · - 1 7 6 · - 1 8	196 - 10 - 90	; 3 'c	9997 9839 978	:	247 267 245	4 4	9995 9997 9604	1 3 3
559 560 561	M49518W M49519W M45511 SP	6- /19 YES 6- 20 6- 2/	0 36€ 276	o 3 2	9995 9995	3	6 305 224	c 2 2	9998	: 2 7
562 563 564	H45516 5P 746510 9P 74657W	6 · · · 2 · 2 · 3 · 6 · · · · 2 · 4	33 :346 -140	5 6 2	9845 9995 9997	1 1	238 99 44	4 3 2	9994 9986 9977	2 2
565 566 567	139510 9P 13957W 136510 9P	6 · · · 25 6 · · · · 26 YES 6 · · · · 27	· 295 0 - 85	0 3	9999 0002 9997	1 1	75 c 45	? 0 2	9 4 8 4 COCO 5 9 5 7	2 2 2
568 569 570	13657% M4658W M4358%	6 · · 2 6 6 · · 2 9 6 · · 3 0	- 49 - 371 - 371	2 3 2	9984 9999 9999	1 5	33 134 133	2 2 2	9 9 5 ° 9 9 9 6 9 9 9 7	2 2
57: 572 573	M4358W M3957W M3958W	6 3 2 6 3 3	· 339 0 · 331	3 c 5	9998 1 0000 9994	1 3	60 97 1 (?	1 2 5	9992 9992 9994	2 2 3
574 575 576	M305:1W M3058W M375:1W	6 - 34 6 - 35 6 - 36	-219 -301 -180	29 56 107	9738 9243 6915	1	147 108 - 47	18 63 128	9666 9527 5519	2 6 3
577 578 579	M2758W H55513W H55P16 5P	6 · · 37 6 · · 38 YES 6 · · 39	· 253 0 · 64	27 0 4	9682 1 0000 9968	3 1 1	5 8 0 - 20	27 0 4	9682 1 0000 8965	3 2 2
580 581 582	T54PTW T54P10 9P T54PTW	6 40 6 41 6 42	- 23 - 187 - 29	35 6	9916 9125 9557	•	329 · 29 14	5 1 4 6	9 9 9 A 6 2 2 A 7 5 8 9	2 2 2
583 584 585	T54P10 9P M5458 5P H59CDP	6 42 8 44 6 45 YES	- 157 - 371 0	17 3 0	9822 9998 1 0000	1	35 163 0	20 4 0	9616	3 4 2
586 587 588	M57COP M57513\ M55COP	6 - 46 6 - 47 6 - 48	821	7 0 0	9998 1 0000 1 0000	1	· 3 25 2 22	6 3 23	8857 9997 4281	2 2 2
589 590 591	H53COP H53P13W H53S13W	649 YES 650 651	316 318	0 2 1 '	1 0000 9999 9990	1 1 3	0 - 253 244	2	1 0000 9998 9990	2 2 3
592 593 594	H51COP M51S14P 152 SCOP	6 - 52 YES 6 - 53 6 - 54	0 - 385 409	0 3 11	1 0000 9999 9982	3	0 294 · a	3	9999 9982	2 3 3
595 596 897	157C0P F49C0W F52 SCOW	6 · · 5 5 6 · · 5 6 6 · · 5 7	· 13	0 2 3	1 0000 9965 9915	1	- 1 - 1 - 4	3 3 4	9122 9885 9409	2 2 2
598 599 600	FS7COW H54 #\$21P(C) H20\$13 \$P(D)	688 YES 659 660	· 375	0 6 2	1 0000 9995 9947	1	255 0	0 13 2	1 0000 9947 9610	2 2

TABLE B.3 (Continued)

					RTICAL LOADING ONLY			LATERAL LOADING ONLY			
GASE NUMBER	GAGE	GAGE A	SSUMED CAL	VERTICAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TES1	LATERAL SENSITIVITY	ERROR OF ESTIMATE		FROM TEST
601 602 603	T S 1 C DW T S 3 C DW T S 4 C DW	6 - A - 1 6 - A - 2 6 - A - 3	Y E S	0 - 5 - 16	0 3 15	1.0000 9915 4182	1 2 3	0 4 10	0 5 15	1 0000 9178 4182	2 2 3
604 605 608	T55COW 260510 9P 26056W	6 · A · 4 6 · A · 5 6 · A · 6		1 - 1592 - 897	20 16 11	3226 9997 9997	3 3 1	13 409 185	20 6 21	3226 9995 9985	2
607 608 609	160COW 159510 9P 259COW	6 - A - 7 6 - A - 8 6 - A - 9	YES	- 1 2 6 1 - 6 7 2	\$ 5	3483 9999 9999	•	0 328 3	4 2	0426 9996 9442	1 2
610 611 612	758510 9P 758560 75800	6 - A - 10 6 - A - 11 6 - A - 12		-994 -611 -639	1 1 5 14	9997 9998 9988	3	26 ' 112 -5	4 5 33	1995 1949 1936	3
613 614 615	257C0W 257510 SP 256 2P10 SP	6 - A - 13 6 - A - 14 6 - A - 15		-630 -688 -717	5 7 8	9999 9997 9997	, 3 1	. 1 198 - 204	5 5 13	9986 9986 9995	3 3
616 617 618	756 2COW 756 2P6* 256 256*	6 - A - 16 6 - A - 17 6 - A - 18		- 656 - 640 - 675	7 5 5	9938 9999 9999	1 1	- (22 - 6 131	2 2	9964 7432 4993	:
619 620 621	IS6 2510 9P ISSEØW ISSS10 9P	6 - A - 19 6 - A - 20 6 - A - 21		-829 -597 -769	7	1 0000 9997 9999	3	201 3 220	3 6 6 4	9943 6397 9999	3
622 623 624	754CDW 75556W 754510 9P	6 - A - 2 2 6 - A - 2 3 6 - A - 2 4		- 5 8 9 - 6 2 9 - 7 2 7	4 3 6	9 9 9 9 9 9 9 9 9 9 9 8	3	2 140 220	3 4 3	9650 9989 9997	2
625 626 827	25300W 25100W M5100W	6 · A · 25 6 · A · 26 6 · A · 27	YES YES	· 553 0 0	5 0 0	9998 1 0000 1 0000	3	0	3 0 0	8634 1 0000 1 0000	2 2
628 629 630	MS 1S 1: 1P 14900P MS 300W	6 · a · 28 6 · a · 29 6 · a · 30	YES	-393 411 0	2 4 0	9999 9938 1 0000	,	230 - 3 0	3	9997 8806 1 0000	2 2
631 632 633	M53511 1P M53514P M53P11 1P	6 - 4 - 3 1 6 - 4 - 3 2 6 - 4 - 3 3		· 355 - 429 - 396	2 3 5	9999 9999 9997	1 3 1	231 307 -224	2 3 5	9992 9999 9989	3 -
634 635 636	M53P14 M55COW M55S11 1P	6 · A · 34 6 · A · 35 6 · A · 36		- 403 344	0 26 27	9895 9813	: 4 1	· 294 · 20 · 237	8 26 17	998' 9895 9884	4 2
637 638 639	M55514P M57COW M57511 1P	6 · A · 37 6 · A · 38 6 · A · 39		- 4 6 3 - 4 3 3 - 4 6 6	12 15 3	9993 9973 9999	1	327 0 331	1 2 0 5	9993 1 0000 9995	2 2
640 641 642	M57514P M57P14 M57P11 1P	6 - A - 4 C 6 - A - 4 F 6 - A - 4 Z	₹ E S	· 326 0 - 499	3 0 4	9998 1 0000 9999	1	230 0 -326	\$ 0 5	9992 1 0000 9995	2 2
643 644 645	M59COW M59514P M59511 1P	6 - A - 4 3 6 - A - 4 4 6 - A - 4 5	YES	0 -441 -342	3	1 0000 9999 9998	1 3	3 1 5 2 2 7	4	1 0000 9997 9998	2 2 3
646 647 648	WSS 95M20 1RV WSS 95M20 1RD WSS 95M20 1RL	6 - A - 4 6 6 - A - 4 7 6 - A - 4 8		- 158 - 113 - 305	2 2 1 9 2 1	9766 9935 9943	3	170 259 167	2 2 1 8 2 1	9766 9898 9943	3 2 4
649 650 651	WSS 9STZO 1RV WSS 9STZO 1RD WSS 9STZO 1RL	6 · A · 49 6 · A · 50 6 · A · 51		204 - 266 - 774	7 29 13	9966 9707 9991	3 3 3	- 88 11 245	7 5 13	9966 7711 9981	3 2 3
652 653 654	WSS 952M3.9RV WSS 952M3.9RD WSS 952M3.9RL	6 · A · 5 2 6 · A · 5 3 6 · A · 5 4		202 - 324 - 792	10	. 99 1 1 9984 . 999	4	· 60 103 234	7 5 5	9609 9953 9989	2 2 2
655 656 657	W56 152M3 9RL W56 152M3 9RD W56 152M3 9RV	6 - 4 - 5 5 6 - 4 - 5 6 6 - 4 - 5 7		· 4 14 · 98	19 18 29	0900 4191 .8384	1	9 . 3	5 8 1 8	1850 7387 5576	2
65 B 63 9 660	HS8 3P20P RE\$1510R W5287MI(D)	6 - A - 5 8 6 - A - 5 9 6 - A - 6 0		203 · 3 · 2	4 4 5	9986 4787 9549	1	- 297 1 - 4	6 6 5	9989 4034 7993	2 3 2
661 662 663	856CDTTP 856CDTTS 856P4TTP	6 · B · 1 6 · B · 2 6 · B · 3	7 E S	· 444 · 31	8 17	1 0000 9994 .8803	1	0 - 18 - 72	0 6 15	1 0000 7103 9231	2 2 2
6 6 4 6 6 5 6 8 8	BS6P4TTS BS6P8TTP BS6P8TTS	6 - 8 - 4 6 - 8 - 5 6 - 8 - 6		· 389 - 193 - 174	13 49 11	.9978 .8991 .9936	4	- 105 - 151 - 30	10 39 5	9820 8765 9026	2 2
667 668 669	BS6COZTP BS6COZTS BS6P4ZTP	6 · B · 7 6 · B · 8 6 · B · 9	YES	· 90 · 184	1 7 26	1492 9938 9448	3 1 4	- 121	1 7 21	1492 6760 9409	3 2 2
670 671 672	856P42TS 856P82TP 856P82TS	6 - B - 10 6 - B - 11 6 - B - 12		- 17 - 143 - 68	8 11 15	9653 9164 9721	3	- 26 - 121 - 68	31 10	8908 8777 9569	2 2
673 674 675	856COM2P 856COM2S 856COMFP	6 - 8 - 13 6 - 8 - 14 4 - 8 - 15		- 133 - 72 - 42	27 21 18	9051 8140 ,8878	•	· 35 · 29 · 29	5 3 14	9022 9683 6822	2 2 2

TABLE B.3 (Continued)

		VERTICAL LOADING ONLY GAGE ASSUMED VERTICAL ERROR OF CORRELATION FROM					LATERAL LOADING ONLY				
GAGE NUMBER	GAGE NAME	GAGE A		VERTICAL SENSITIVITY	ERROR OF	CORRELATION COEFFICIENT	FROM	LATERAL Sensitivity	ERROR OF	CORRELATION COEFFICIENT	FROM TES*
676 677 678	BS6COMFS BS6P8MFP BS6P8MFS	6 - B - 1 6 6 - B - 1 7 6 - B - 1 8		- 9 - 28 - 20	9 & 32	8954 9568 8134	3	- 5 - 24 - 89	3 : 8	3202 9454 8903	2 2 2
679 680 681	856C0F1F 856C0F15 856P6F1P	6 - 8 - 19 6 - 8 - 20 6 - 8 - 21		-45 -47 29	13 5 14	9206 995 P 837	1 3	- 6 9 - 6 - 2 7	4 5 3 4	6708 9092 9026	3 2 2
682 683 684	856P6F15 85654TTP 85654TTS	6 / B · 2 2 6 · B · 2 3 6 · B · 2 4		34 103 1311	6 3 ! 1 1	9132 9308 951:	3	- t7 4: 76	14	9 · 1 8 9 2 6 0 9 3 7 0	:
685 686 687	816P21LW(C' 85658TTS 85654ZTP	6 - 8 - 25 6 - 8 - 26 6 - 8 - 27	rES	- 16 	15 0 29	5967 2 0066 9494	3 . 4	, , c 35	4 C £	9386 1 0000 9551	3 3
688	85654275 8565827P 85658275	6 - 8 - 28 6 - 8 - 29 5 - 8 - 30		- 140 - 70 - 38	1 4 2 8	9862 7197 9812	1 3 4	5 C 6 4 3 3	15 9 2	9066 972 : 9856	:
691 692 693	85658MFP 85658MFS 85656F1P	6 · 8 · 3 1 6 · 8 · 3 2 6 · 8 · 3 3	rES	· 55 57 31	4 34 ' 6	9917 7110 6007	4	3 ~ 4	o \$ 3	1 0000 945 9876	3 3
694 695 696	85656F15 856COHHRH 856COHHRC	6 · 8 · 3 4 6 · 8 · 3 5 6 · 8 · 3 6		46 - 192 139	8 10	9 4 9 6 9 9 6 6 9 9 ` E		5 6	4 1 C 5	9376 6560 7779	2 2
697 698 699	856C0HMRV 856P71;RV 856P71;RD	6 - 8 - 3 8 6 - 8 - 3 8 6 - 8 - 3 9		80 ~3 7e	· 3	9452 7578 9538	1	10 c	C 9	7044 1 0000 2038	2 2 2
700 701 702	856P711RH 856P111FRV 856P111FRD	6 - 8 - 4 - 6 - 8 - 4 - 2		105 13 -375	10 17 9	9772 7687 9989	3 7 4	- 27 11 65	8 6 4	7843 8718 9911	2 2 2
703 764 705	856P111FRH 856P13FFRV 856P13FFRD	6 · 8 · 43 6 · 8 · 44 6 · 8 · 45		- 30 - 3 - 5 c	6	9 & 7 6 4 2 2 9 9 9 5 2	1	9. 3.	2 6	9176 9921 9805	2 2 2
706 707 708	856P13FFRH 856\$711RH 856\$711RD	6 - B - 4 6 6 - B - 4 7 6 - B - 4 8		7 6 4 6 9	4 6 19	9755 967 8773	;	- 5 è 0 - 1 3	1.4 1.9	8200 7371 8773	2 2 3
709 710 711	856571 TRV 856511 TRRH 856511 FRD	6-8-49 6-8-50 6-8-51		45 206 400	17	6 1 9 4 9 9 6 3 9 9 6 C	1 4 3	9 3 9 5 6	9 7 10	7763 9963 9531	2 4 2
712 713 714	856511:FRV 856513FFRH 856513FFRD	6 - B - S 2 6 - B - S 3 6 - B - S 4		· 63 · 9 8	7 4 8	9 & 6 8 9 5 6 3 8 4 2 1	1	· 25 104 - 29	3 1 9 4	9295 9541 9384	2 1 2
715 716 717	856513FFRV M36 154F[[] M3654F[[]	6 - 8 - 5 5 6 - 8 - 5 6 6 - 8 - 5 7		- 192 48 612	1 O 4 6	9949 9667 9998	1	- 5 9 - 2 - 3	8 5 5	9469 8318 9940	2 2 2
718 719 720	M32 159P1C1 M32 1P 5P.C1 RESISTOR	6 · B · 5 8 6 · B · 5 9 6 · B · 60		· 758 · 369 · 103	8 4 6	9987 9998 9884	3 1	* 5 &	6 - 8	9983 9285 8973	2 7
72 · 722 723	44136CMM44 44236CMM44 44C36CMM44	5 5 2 5 3		- 199 - 896 - 985	2 2 1 7 1 9	9794 9990 9992	4	160 17 -219	5 1 1 1 7 4	9555 826 ' 99 1	4 2 2
724 725 726	APMM36C4P1 APMM36C5P4 APMM36P3A4	5 · · 4 5 · · 5 5 · · 6	v E S	- 40 1 - 427 - 40 1	1 & 3	9998 9952 9999	4 4 3	- 146 - 140 - 180	4 1 6 2	1111 1659 1115	4 2 2
727 728 729	APMM36C 1PF APMM36C 2PF APMM36C 3PF	5 · · · · 8 5 · · · 9		-366 -407 -724	5 4 6	9996 9998 9998	1	- 206 - 251 - 510	5 5 6	9996 9992 9998	4 2 4
730 73: 732	APMM36C4PF APMM36C5PF APMM36P1PFO S	5 · · · 10 5 · · · 11 5 · · · 12		- 547 20 - 436	8 5 3	9999 9996 1 0000	3 3 3	- 5 6 9 - 2 9 3 - 2 5	5 2 3	9998 9998 1 0000	2 3
731 734 735	APMM35P3PFO S APMM36P5PFO S APMM36RLPF	513 514 515		-469 -617 -682	3 3 4	1 0000	3	- 270 - 357 - 438	3 3 4	1 0000	3
736 737 738	APMM36RDPF APMM36RHPF APMM36P3PF2	\$ 16 \$ 17 \$ 18		- 29 1 32 6 - 43 5	3 12 11	9999 9958 9992	3 1 3	- 285 - 230	3 14 11	9999 9948 9992	3
739 740 741	APMM36P3PF4 M35 3P11 1P M38 3P11 6P	\$19 \$20 \$21		-431 -392 -412	6 4 8	9998 9998 9995	3	-216 -199 178	\$ 4 7	9945 9990 9964	2 2 2
742 743 744	M35 3P)2P M38 6P!! 7P APM233C315	3 · ·22 5 · ·23 5 · ·24		· 276 · 204 · 23	30 3 5	9738 9996 9890	1	- 185 199 - 16	1 2	9550 9999 9070	4 2 2
745 746 747	APM733C308 APM733C300[R] APM733C293	5 · · 25 5 · · 26 5 · · 27		254 2 704	3 2 7	9997 9051 9994	3	33 · 2 · 124	3 ? 3	9897 6261 9980	2 3 2
748 749 750	APM233RYMM APM233ROMM APM233RLMM	5 28 5 29 5 30	YES	0 225	2 1 4	9944 0828 9993	3	26 0 - 108	0	9948 1 0000 9967	2 2

TABLE B.3 (Continued)

				VERTICAL LOADING DNL+				LATERAL LOADING CHLY			
GACE Number	CAGE Name	GAGE A		VERTICAL SENSITIVITY	FR608 05	CORRELATION COEFFICIENT	F # D W T E S T	LATERAL SENSITIVITY		CORRELATION COEFFICIENT	# # O ₩ 7 £ 5 *
75 1 75 2	AM2388LMA AM03380MA AMV8000MA	5 · · · 3 · · · · 3 · · · · · 3 · · · ·	YES	0 - 6 6 8 - 4 4	0 3 8	1982 9999 9369	3	0 - 144 36	5 6	1 000C 9997 9344	2
753 754 755	APZZIBCZPA APZZIBCIPA APZZIBC4PA	5 · · 34 5 · · 35 5 · · 36	1 E S 1 E S	- 1 6 6 4 0 0	7 0 0	1 0000	1 1	- 4 9 C O	6 C	9631 1 0000 1 0000	2 2 2
756 757 758	APIIJBEAPA 5 APIIJBP3PA 5 APIIJBP3PA 2 APIIJSP3PA4	5 · · 37 5 · · 38 5 · · 39		- 653 - 485 411	\$ 7 5	9 4 9 9 3 4 9 6 4 3 7	3 3 2	- 7 8 - 9 8 - (⊅ 0	3 7 2	995 · 9996 999c	2 3 2
759 760 761	APIZJBRHPA APIZJBRDPA APIZJBRLPA	5 - 40 5 - 41 5 - 42	₹ E S	.1.55	5 0 5	9567 1 0000 0000	1	76 6 - 121	2 C 2	998C . COCC 9996	2
762 763 764 765	APMZ39C315 APMZ39C308 APMZ39C300	5 43 5 44 5 45		- 639 - 615 - 592	7 5 4	9991 9992 9999	3 3 4	- 5 9 - 6 2 - 7 2	5 4 4	9757 9829 9995	2 4
766 767 768	ДРМ239C293 ДРМ242C3'5 ДРМ142C3O8	5 · 46 5 · 47 5 · 48		- 692 - 639 - 633	5 £ 6	9 9 9 9 9 9 9 9 9 9 9 9	3	- 6 7 B 1	3 f 3	9972 9666 9970	2 2 2
769 770	APMZ42C300!R' APMZ42C293 8:6P3MMRH	5 - 49 550 551		26 -624 88	20 4 10	6427 9999 9644	3 3 4	25 - 123 39	7 C 4	6427 9599 9485	2 2
772 773 774	8 1 6 P 3 MMR D 8 1 6 P 3 MMR V H2 3 P 1 7 MF P (U.)	5 5 2 5 5 3 5 5 4		: 19 46 - 149	· 7 75 3 !	9628 5862 9333	3	- 143	1 5 4 3 C	6018 3303 8766	2 2
775 776 777	H23 SP16MFP[H5 H23 SP16MFP[H5 B24P10 SMMRM	501555 511556 557		478 -572 -6	6	9996 9997 9674	3	- \$ T - 8 1 9	5 5 3	9 15 2 4 6 6 9 9 5 8 6	2 2 2
775 779 780	824P10 5MMRD 824P10 5MMRV w36P2MZ(D)	5 5 8 5 5 9 5 60		144 - 24 - 4	7 1 3 3	9914 9694 9825	*	16	4 2 2	7100 9278	2 2
78 ° 78 ° 78 3	APMM4401PA APMM4402PA APMM4403PA	5 · A · 1 5 · A · 2 5 · A · 3	V E S	- 1050 - 1054	1 4	9 9 9 9 9 9 9 9	1	- 250 - 347	0 17 8	9995 9988	3 2
784 785 786	ΔΡΜΜ44C4PL ΔΡΜΜ44C5PΔ ΔΡΜΜ44P3PΔ4	5 A 4 4 5 A 5 5 A 6	YES	- 5 6 7 - 4 8 1 - 4 6 4	1 7 2 8	999 <i>0</i> 9999 9996	1	327 - 191 - 228	17 4 8	999C 9996	3
787 788 789	<u>APMM44C1PF</u> APMM44C2PF APMM44C3PF	5 · A · 7 5 · A · 8 5 · A · 9		- 431 - 463 - 774	4 2 5	9998 1 0000 9999	1	- 248 - 273 - 525	4 5	9999	3 4
790 791 792	ДРММ44С4РЯ Дрмм44С5РЯ Дрмм44Р1РЯС 5	5 - A - 10 5 - A - 11 5 - A - 12		- 630 1 - 468	4 4 3	9999 9554 9995	1	- 5 9 9 - 2 5 7 - 2 7 7 - 2 9 2	5 4 5	9994 9999 9999	3
793 794 795	ДРММ44РЗРГО S Дрмм44Р5РГО S Дрмм44RLPF	5 - A - 13 5 - A - 14 5 - A - 15		-505 -654 -722	4 2 2	9999 1 0000 1 0000	1	- 292 - 394 - 481 - 277	3	9998 1 0000 9998	2 2
796 797 397	APMM44RDPF APMM44RHPF APMM44P3PF2	5 - 4 - 16 5 - 4 - 17 5 - 4 - 18		· 262 0 · 483	2 0 14	9999 1 0000 9990	; 1 3	- 245 - 235	37 14	9742 9990 9996	3 3
799 800 801	APMM44P3PF4 M42 3P11 1P M43 3P11 5P	5 - A - 19 5 - A - 20 5 - A - 21		- 476 - 465 - 429	9 1 1 7	9996 9993 9997	3 3	· 235 · 217 · 229	1 1 6 1 2	9993 9981 9991	3
802 803 804	M43 3P12 OP M41 4P11 7P APMZ46C292	5 - A · 22 5 · A · 23 5 - A · 24		- 42 1 - 5 1 6 - 6 9 6	1 2 4 6	9991 9999 9998	3 3 3	219	4 6	9993 9998 9857	2 3
805 806 807		5 - A - 25 5 - A - 26 5 - A - 27		. 536 - 455	0 5 8	9998	•	- 166 - 204 - 183	? 6	9	2 2
808 809 810	APZZ46C3PF	5 · A · 2 8 5 · A · 2 9 5 · A · 3 0	YES	- 1492 0 - 702	5 0 6	1 0000 1982 9998	3 3	336	6	1982 9993 2580	3 2
8 t 8 1 2 8 1 2	APMZ620101	5 - A - 3 1 5 - A - 3 2 5 - A - 3 2	!	-491 -457	0 6 14	2580 9998 9973	3	- 175 - 157 - 2	5 6	9981 9969 0748	2 2
8 1 4 8 1 1 8 1	5 APM262C078	5 · A · 3 9	YES	2 5 0 0	35	2 2 2 0 1 0 0 0 0 1 0 0 0 0 4 8 2 8	•	- 47	0 0	1 0000 1 0000 \$145	2 2
8 1 8 1 8 1	B APMIGERHIA	5 - A - 3' 5 - A - 3'		· 23 · 18 · 729	27 22 6	4828 5192 9999	•	- 60 67	18	\$696 9934 9986	2 2
8 2 8 2 8 2	1 ASMM66C3SF	5 - A - A - 4 5 - A - 4 5 - A - 4	1	-941 -968 -599	8 7 9	9999	1	219 165	6	9982 9996 9977	2 4 2
8 2 8 2	4 M59 SP SP (A	5 · A · 4 5 · A · 4	4	- 5 6 9 - 4 7 1 - 2 6 7	5 3 2	9999 9999 9999	1	• 1 1	4 2	7658 7925	2

TABLE B.3 (Continued)

		VERTICAL LOADING ONLY GAGE GAGE ASSUMED VERTICAL FRENCH OF CORRELATION FROM						LATERAL LOADING ONLY				
GACE Number	GAGE	GAGE POSITION		VERTICAL SENS'TIVITY	ERROR OF	CORRELATION COEFFICIENT	FROM TEST	LATERAL SENSITIVITY	ERROR DF ESTIMATE	CORRELATION CDEFFICIENT	FROM TEST	
826 827 828	MS9 9P SP'FC[] M48S5W[BMSU: BS6P8MMS;BM]	5 · A · 46 5 · A · 47 5 · A · 48	Y E 5	322 36 -68	3 28 11	9999 9031 9626	1 3 4	- 9 2 8 3 1	3 2 8 7	7101 9031 9327	2 3 2	
83 t 83 c 83 9	M4855% BMSL B56P8MZS BM) B4059MMP(C)	5 - A - 4 9 5 - A - 5 0 5 - A - 5 1	Y E S	- 80 \$75	3 C 5	1 0000 8808 9999	4	0 - 115 64	0 2 4 5	7 0000 9007 9999	; ;	
637 633 634	864P8MM5(8M) H23 95195 82455 SMMRV(C)	5 - A - 5 2 5 - A - 5 3 5 - A - 5 4		5 1 7 2 5 7 8 2	1 1 1 0 6	8636 978 : 9935	1	\$ - 30 - 34	' o	8938 8755 9742	?	
835 836 837	82459 SMMR0(C) 82459 SMMRH1C) H23 9516P;H5U)	5 - 4 - 5 5 5 - 4 - 5 6 5 - 4 - 5 7		· 8 9 1 2 35 1	6 4	9 9 4 9 2 9 3 5 9 9 9 7		- 28 - 35 80	5 4 7	8890 9668 9857	2 2 2	
838 839 840	H23 9516P/HSL, H23P17MFP(_) W44P2MZ(D	5 · A · 5 8 5 · A · 5 9 5 · A · 60		-613 -134 -1	9 3 6	9996 9990 9536	1 1	30 - 9 1 4	7 3 4	9373 9880 7153	2 7 2	
84 ° 84 2 84 3	M23 954 5P:HS0 M23 954 5P:HS1 H24 1P8 5P!HS.	5 · 8 · 2		121 13 289	5 1 9 7 6	9981 9739 9004	3 3	- († † 129 66	19	9961 9739 5343	2 3 2	
8 4 4 8 4 5 8 4 6	H24 1P8 5P[H5] H24 1P13 9P1C1 H29 3P17 8RH		Y E 5	· \$ 1 3 1 9 3 6	3 4 6	9999 9710 8995	4	36 40	2 4 6	9994 9857 9605	2 2 7	
847 848 849	H29 7P:7 8RD H29 3P:7 8RC H3: 9P:45.C;	5 · 8 · 7 5 · 8 · 8 5 · 8 · 9		- 885 161 - 47	3 4 4	1 0000 9990 9936	4	-92 -183 -134	3 5 5	997£ 9987 9976	2 2 4	
850 851 852	832P8F[RH.C] 832P8F[RO.C] 832P8F[RV[C]	5 - 8 - 10 5 - 8 - 1 - 5 - 8 - 1 -		5 6 6 0	\$ 3 4	9697 9982 9984	1 1 3	- 1 6 - 1 6	6 3 4	9643 6458 9984	2 2 3	
853 854 855	M31 8P'1W M31 8P'0 5P K37P2OP	5 - 8 - 13 5 - 8 - 14 5 - 8 - 15		747 793	<u>s</u> 5	9993 9996 9997	3	- 74 - 149 - 228	3	9919 9992 9991	2 2 2	
856 857 858	N37520P(CU) N37520P[CL; N37519P[C)	5 - 8 - 1 6 5 - 8 - 1 7 5 - 8 - 1 8		- 22 1 - 19 6 - 19 6	3	9997 9984 9996	1 3 1	218 216 230	4 7 9	9996 9984 9977	3 3 3	
859 850 861	N37 4520P(C) 84058 5MFRV(88) 84058 5MFRD(88)			743 38 -124	* 8	9988 8588 9935	3	228 27 83	7 1 1 1 1 1	9948 8484 9867	3 2 3	
862 663 864	84052 SMFRH(88) M44520P(LP) M45 4521P(C)	5 · 8 · 2 2 5 · 8 · 2 3 5 · 8 · 2 4		186 178 387	8 1 0 4	9949 9945 9998	3	63 273 308	, e , 2 3	9949 9955 9998	3 2 2	
865 866 867	N45 4521P[C] N41P2OP1C N47 9P9P1C1	5 - 8 - 25 5 - 8 - 26 5 - 8 - 27		· 188 · 2 476	5 6 5	9997 6467 9997	;	302 79 -186	6 6	9996 9925 9995	3	
8 6 8 8 6 9 8 7 0	848P8 2MMRV(88) 848P8 2MMRD(88) 848P8 2MMRH(88)	5 - B - 29	Y E S	75 0 52	0	9369 1982 8997	4 3 1	· \$ ◇ · 45	8 0 7	1514 10000 8941	2 2 2	
871 872 573	H47 6P20P-C] B48P12MMP[C]1 B48P12MMP[C0]	5 - 8 - 3 : 5 - 8 - 3 3	YES	50 98	1 0 1 2	2002 9143 9607	3 4 4	0 13 23	7 7	3681 6702 9887	2 2 2	
874 875 876	848C01P[C1 155 9P2P(C: N48 SP10P(G0)	5 · 8 · 34 5 · 8 · 35 5 · 8 · 36	YES YES	6 7 O	14	8939 1 0000 1 0000	1	. 3	7 0 0	5132 1 0000 1 0000	2 2 2	
877 878 879	HS1P14P(CU1 HS1P14P(CL1 H49P19P(C)	5 · 8 · 37 5 · 8 · 38 5 · 8 · 39		1 4 9 3 6 6 - 2 2 1	3 4 4	9982 9997 9996	1 1 1	- 287 - 244 - 306	4 3 3	9996 9997 9997	2 2	
8 6 0 8 6 1 8 8 2	H51P18P(C) M56P8W(8MSUQ) M56P8W(8MSLQ)	5 - 8 - 4 0 5 - 8 - 4 - 5 - 8 - 4 2	YES	- 190 - 165 - 88	4 4 1 3 9	9993 9259 7321	4	- 273 - 61 - 80	3 37 34	9997 5484 8898	2 2 2	
8 8 3 8 8 4 8 8 5	MS6P8W(BMSUD) MS6P8W(BMSLD) RESISTOR	5 - 8 - 4 3 5 - 8 - 4 4 5 - 8 - 4 5	YES	- 158 0 - 2	1 9 0 4	9892 1 0000 6499	1 1	· 67 0	23 0 5	9532 1 0000 4923	3 2 2	
8 8 6 8 8 7 8 8 8	M4053W(BM5U) 856P8MMP(BM) M4855W(BM5U)	5 - 8 - 4 6 5 - 8 - 4 7 5 - 8 - 4 8	YES	· 294 · 82 0	34 36 0	9865 8720 1 0000	4	-44 -133 0	5 2 1 0	9706 9270 1 0000	2 2 2	
889 890 891	856P8MZP(8M) M31 8P10w H16512P(CU)	5 - 8 - 4 9 5 - 8 - 5 0 5 - 8 - 5 1		- 35 293 - 61	17 8 5	8071 9979 9908	4 4 3	- 5 3 - 1 5 9 - 5 6	1 2 2 3	9127 9995 9938	2 2 2	
892 893 894	H16512P(CM) H16512P(CL) H14512P(C1	5 · 8 · 5 2 5 · 8 · 5 3 5 · 8 · 5 4		- 6 O 1 1 4 6	5 14 3	9948 9810 9862	1	57 51 -13	5 10 4	9888 9529 7487	3 2 2	
895 896 897	H10 6585[C] H12P14P[C] H12P14P[C]	5 · 8 · 5 5 5 · 8 · 5 6 5 · 8 · 5 7		- 6 9 + 3 3 + 3	6 3 4	9938 9963 9842	1 1	33 - 19 - 18	3 3 3	9908 8719 9298	2 2 2	
898 899 900	#16P8P1C} H2352OP(C! RESISTOR	5 - 8 - 5 8 5 - 8 - 5 9 5 - 8 - 6 0		138 - 157 - 2	4 3 3	9964 9994 2567	1	- 5 102 1	5 1 3	9959 9997 2587	3 ? 4	

TABLE B.3 (Continued)

			VERTI	CAL LOADIN	G ONLY		ı	ATERAL LDA	DING ONLY	
GAGE Number	GAGE NAME	GAGE ASSUMED POSITION CAL	VERTICAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST	LATERAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST
901 902 903	864C0ZZP 864C0ZZS 864P4ZZP	4 · · · 1 4 · · · 2 4 · · · 3	-87 -74 0	# 5 1 1 0	94 18 96 98 1 0000	1 1	· 10	3 1	8389 9317 9681	2 2 2
904 905 906	864P4ZZS 864P8ZZP 864P8ZZS	4 · · 4 4 · · 5 4 · · 6	- 219 - 101 - 105	1.8 9 1.9	9467 9906 9694	3	- 5 2 - 5 2 - 3 9	3 4 9	9906 9794 8799	2 2 2
907 908 909	864CQMZP 864CQMZS 864P4MZP	4 · · · · · · · · · · · · · · · · · · ·	- 120 - 42 - 104	25 4 19	9933 9930 9573	1 1 3	- 2 1 6 - 3 3	2 3 4	9070 9189 9647	? 2 2
9 1 0 9 1 1 9 1 2	864P4M7S 864P8M7P 864P8M7S	4 10 4 11 4 12	· 136 -7 -140	17 20 6	9797 7653 9864	3 7	- 5 0 - 3 1 - 6 2	5 4	9752 9344 9877	2 2 7
913 914 915	864COMFP 864COMFS 864P2MFP	4 13 4 14 4 15	- 27 - 62 - 41	13 15 12	8369 8835 8180	•	- 6 - 8 - 10	2 5 1	7032 7567 9106	; 2 ?
916 917 918	864P2MFS 864CDF1P 864CDFIS	4 16 YES 4 17 4 18	O - 6 8 - 5 9	1 1 O 5	1725 9696 9889	4 (1	0 6 2	1 1 2	2136 9437 6058	; ;
919 920 921	864P6F1P 864P6F1S 864S4Z2P	4 19 4 20 4 21	3 & 1 O - 9 &	13	6794 3456 9541	1 1 1	- 15 - 4 1 - 5	6 3 3	6098 9874 9338	2 2 2
922 923 924	86454775 8645877P 86458775	4 · · · · · · · · · · · · · · · · · · ·	- 115 - 125 - 36	5 9 1 4	9968 9910 9207	1 1 4	2 & 4 3 1 6	3 5	986 <i>C</i> 9841 8089	2 2 2
925 • 26 927	86454MZP 86454MZS 86458MZP	4 - · 25 4 · · 26 4 · · 27	- 1 1 4 - 2 C Z - 1 1 5	1 8 2 2 2 2	9591 9692 9482	4 3 4	1 0 2 0 2 4	5 3 4	6716 9678 9692	2 2 2
978 929 930	86458M75 86454MFP 86454MF5	4 - · 2 8 4 - · 2 9 4 - · 3 0	- 150 - 131 - 166	15 18 21	9863 9539 8974	3 3	3 9 9 1 2	4 2 3	9887 9619 9629	2 2 2
931 932 933	86456F1P 86456F15 864COMMRH	4 3 1 4 3 2 4 3 3	- 8 2 - 1 C 4 - 1 7	1 8 1 6 5	8971 9383 9361	3	9 2 5 · 5	3	9 1 6 6 9 8 5 0 6 2 7 5	2 2
934 935 936	864CDHMRD 864COHMRY 864P711RY	4 · · · 3 4 4 - · · 3 5 4 - · · 3 6	· 3 1 2 7 4	6 6 1 2	9500 7730 9361	3	8 5 · 2 7	2 3 4	9375 8972 9227	2
937 938 939	864P711RD 864P711RH 864P11F[RV	4 · · 37 YES 4 · · · 38 4 · · · 39	7 140 -457	3 14 10	7184 9779 9990	1 4	29 91	3 3 2	7184 9823 9990	3 2 2
940 941 942	864P11F1RD 864P11F1RH 864P13FFRY	4 4 0 4 4 1 4 4 2	67 - 168 - 18	10 37	9 4 3 7 8 2 5 0 9 8 7 8	3	- 32 - 45 - 97	2 1 4 4	9805 8693 9963	3
943 944 945	864P13FFRD 864P13FFRH 864S711RH	4 43 4 44 4 45	- 240 19 59	2 2 6 7	9792 9229 9788	3 1 4	1 1 6 - 3 - 6	1 6 8 4	9598 1892 7627	5 5 5
946 947 948	86457 RD 86457 RV 86451 F RN	4 · · 46 4 · · 47 4 · · 48	5 6 · 1 6 5	1 1 9 4	9370 8784 9868	1	9 - 14 111	6 7 1 4	5 2 6 9 6 0 2 3 9 6 6 2	2 2 7
949 950 951	864511F1RD 864511F1RV 86451311RH	4 49 4 50 4 51 YES	· 4 2 4 · 3 4 · 0	16	9972 9463 1.0000	1	-52 -62 0	5 7 0	9788 9747 1 0000	2 2 2
952 953 954	86451311RD 8645/311RV H61 2520P[CU]	4 5 2 4 5 3 4 5 4	- 225 - 27 - 457	2 1 6 8	9800 8940 9994	4 4 3	- 1 1 - 5 330	1 2 4 4	3841 7534 9997	2 2 7
955 956 957	MS958P(C) APM246C112 APM246C105	4 5 5 4 5 6 4 5 7	-421 -439 -411	4 6 8	9999 9997 9988	4 3 4	202 -83 -106	2 3 8	9997 9967 9880	? ? ?
958 959 960	APMI46C97 APMI46C90 H6DP19(D)	4 58 YES 4 59 4 60	-485 -179 -12	1 4 9 6	9985 9949 6584	3 4 4	- 1 4 2 - 1 1 6 - 1	1 4 4 2	3985 3964 3547	3 2 2
961 962 963	M61P14P[G] M61P11 1P M61P10w	A-A- 1 YES A-A- 2 A-A- 3	0 - 4 4 9 - 4 0 8	s 3	1.0000 3998 .9999	1 1	- 268 - 220	0 2 3	1 0000 3339 3336	2 2 2
964 965 966	M6 1 P 6 W M6 1 P 2 W M6 1 C O W	4 - A - 4 4 - A - 5 A - A - 6 YES	- 394 - 387 0	6 3 0	9996 9999 1 0000	1 1	- 127 - 35 0	5	9992 9881 1 0000	2 2 2
967 968 969	M6152W M6154W M6156W	4 - A - 7 4 - A - 8 4 - A - 9	- 372 - 310 - 422	3 4 3	9999 9997 9999	1	29 63 127	3	9858 9961 9738	2 2
970 971 972	M6158W M6159 SP M61510W	4-A-10 4-A-11 4-A-12	- 365 - 386 - 366	4 3 4	. 9997 9998 . 9998	3 3 1	150 185 205	3	9993 9996 9994	2 2 2
973 974 975	M61510.5P M61511 1P M61512W	4 · A · 13 4 · A · 14 4 · A · 15	- 349 - 395 - 420	, 6 5	9993 9994 9997	3	217 259 268	•	9962 9994 9986	2 3 2

TABLE B.3 (Continued)

				VERTI	CAL LOADIN	G ONLY		ı	LATERAL LOADING ONLY		
GAGE Number	SASE Name	GAGE A	CAL	VERTICAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION CORFFICIENT	FROM TEST	LATERAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM Test
976 977 978	M61512.5P M61513W M61514P	4 - A - 15 4 - A - 17 4 - A - 18	YES	0 - 45 1 - 436	12	1113 9984 9995	3 1 4	0 243 299	0 1 1 9	1149 9962 9995	2 2 4
979 980 981	261COW 261S2W 261S4W	4 - A - 19 4 - A - 20 4 - A - 21		-849 -445 -523	, 3 4	9997 9999 9999	1	5 23 59	2 2	9614 9499 9983	2 2 2
982 983 984	76156W 76158W 76159W	4 · A · 22 4 · A · 23 4 · A - 24		- 1048 - 859 - 893	1 4 6 6	9 2 9 5 9 9 9 9 9 9	3 3	177 182 216	3 5 3	9994 9981 9995	2 2 :
985 986 987	26151gw 261510 5P 261510 9P	4 - A - 25 4 - A - 26 4 - A - 27		- 1169 - 1398 - 1345	19 37 25	9995 9987 9994	4	292 353 345	3 3 3	9997 9994 9994	2 2 2
988 989 990	261PEW 261P10W W6152M3 9P	4 · A · 28 4 · A · 29 4 · A · 30		- 1080 - 1185 - 1425	29 22 24	9985 9993 9995	*	120 82 361	4 6 3	9888 9918 9998	2 2 2
991 992 993	W615MZO, 1P H54 7527P H6153W	4 - A - 3 1 4 - A - 3 2 4 - A - 3 3		- 9 2 8 - 9 8 4 6 7 9	2 1 2 1 4	9992 9993	4	309 357 60	3 & 7	9998 9988 9735	2 2 2
994 995 996	H61P\$W H61\$\$W H61\$7W	4 · A · 34 4 · A · 35 4 · A · 36		666 601 519	4 7 2	9999 9997 9999	1 4	- 70 104 147	4 4 2	9903 9970 9997	2 2 2
997 998 199	H61P7W H61S9W H61S11W	4 - A - 37 4 - A - 38 4 - A - 39	YES	69 - 184 436	3 3	9996 9999 9999	3 4	28 310 -224	3 2	9996 9999 9998	3 4 2
1000	H61P11W H61513W H61514W	4 - A - 4 0 4 - A - 4 1 4 - A - 4 2		501 346 270	3 1 1 4	9999 9991 9999	3	- 150 255 281	2 6 2	9955 9986 9999	2 2 2
1003	H&1P14W H&1515W H&151& 5P	4 - A - 4 3 4 - A - 4 4 4 - A - 4 5		269 149 -21	7 3 4	9982 9985 9887	1 1	- 272 292 272	4 2 4	9994 9998 9995	2 2 2
1006 1007 1008	H61916 5P H61518W H61520WL	4 - A - 4 6 4 - A - 4 7 4 - A - 4 8		884 - 376	0 453 2	1 0000 6173 9999	1 4	- 267 - 856 316	5 407 5	9993 5438 9997	2 2 3
1009	H61PZOWL H57 BP95{C} B56P&[1P{C}	4 - A - 49 4 - A - 50 4 - A - 51		- 400 124 101	3 1 2 1 4	9999 9945 9272	4	-327 -120 -34	3 8 8	9998 9893 8345	2 2 2
1012 1013 1014	ASM276C098 ASM276C105 ASM276C112	4 - A - 5 2 4 - A - 5 3 4 - A - 5 4		- 471 - 540 - 615	10 9 7	9992 9994 9996	4 4 3	137 114 93	1 C 4 2	9992 9972 9991	4 2 2
1015	ASMM66CSSA ASMM66C4SA ASMM66C3SA	4 - A - 5 5 4 - A - 5 6 4 - A - 5 7		- 550 - 771 - 768	5 5 6	9999 9999 9999	1	476 507 464	8 6	9557 9959 9958	3 3 2
1018 1019 1020	ASMM66C 1SA ASMM66C 1SA W68S 2MZ (D)	4 - A - 5 8 4 - A - 5 9 4 - A - 6 0	YES	104 -524 0	878 5 4	2440 9998 9664	•	· 376 290	673 2	0265 9999 7927	2 2 2
1021	872COHHRH 872COHHRD 872COHHRY	4 · B · 1 4 · B · 2 4 · B · 3		-55 -61 -105	8 6 3	9537 9884 9987	3 1	4 9 5	3 2 2	8430 9683 9712	2 2 2
1024	872P12 SF1RV 872P12 SF1RD 872P12 SF1RH	4 · 8 · 4 4 · 8 · 5 4 · 8 · 6		140 -147 92	3 5 5	9989 9981 9895	1	+ 9 2 4 3 - 2 4	8 3 3	9803 9888 9668	2 2 2
1027 1028 1029	B72512 SFIAN B72512 5" IRD B72512 SFIRV	4 - B - 7 4 - B - 8 4 - B - 9		106 - 236 - 33	6 3	9799 9988 9931	1	91 -107 -43	7 6 6	9854 9905 9848	2 2 2
1030	262 SCOW 265COW 267COW	4-8-10 4-8-11 4-8-12		-688 -613 -627	6 5 4	7978 7778 7779	3 4	2 2 3	2	2966 9611 7342	2 2 2
1033 1034 1035	269COW 271COW 263S6W	4 - 8 - 13 4 - 8 - 14 4 - 8 - 15		- 644 - 610 - 714	5 6 4	9999 9998 9999	•	- 1 0 124	2 2 2	9374 9038 9997	2 2 2
1036 1037 1038	263511W M63COW M63S11 1P	4 - 8 - 1 6 4 - 8 - 1 7 4 - 8 - 1 8	Y & S	1 0 - 45 3	2 0 3	2598 1 0000 9999	1	0 1 257	5 2	4192 9996 9998	2 4 2
1039	M63\$14P M65COW M65\$11 1P	4 - 8 - 1 9 4 - 8 - 20 4 - 8 - 2 1		505 -406 -450	•	9999 9997 9991	4 4 3	321 5 268	3 4 3	9938 4582 9998	2 2 2
1042	M65514P M65P14P M65P11 1P	4 - 8 - 2 2 4 - 9 - 2 3 4 - 8 - 2 4		·535 ·509 ·461	8 4 2	9994 9998 9999	1	233 -316 -272	6 5 2	1992 1995 1999	2 2 2
1045	M67COW M67S11 1P M67S14P	4 · 8 · 2 \$ 4 · 8 · 2 6 4 · 8 · 2 7	YES	0 - 427 - 445	0 4 30	1 0000 9999 9953	:	0 250 282	0 2 6	1 0000 9999 9981	2 2 2
1048 1049 1050	M69COW M69S11 1P M69S14P	4 · 8 · 28 4 · 8 · 29 4 · 8 · 30	vES	0 - 4 2 2 - 4 3 4	0 5 15	1 0000 9998 9988	4	245 273	0 5 4	1 0000 9998 9994	2 4 2

TABLE B.3 (Continued)

	VERTICAL LOADING ONLY						LATERAL LDADING DNL"				
GAGE	GACE	GAGE ASSUMED	VERTICAL SENSITIVITY		CORRELATION COEFFICIENT	FROM TES?	LATERAL SENSITIVITY	ERROP OF ESTIMATE	EDRRELAT: ON COEFFICIENT	FROM TEST	
1051 1052	NAME M69711 1P M69714P	4 · 8 · 3 1 4 · 8 · 3 2 YES	-435 0 -382	8 0 3	9993 1 0000 9999	* '	0	3 0 2	808" 1 0000 0777	2 2 2	
1053 1054 1055	M71510 1F M71513P	4-8-33 4-8-34 4-8-35 4-8-36	·382 ·507 ·377	4 3 4	9998 9999 9998	1	233 351 141	2 2 5 3	9 9 9 3 9 9 9 3	2 2 2	
1056	M6358 SP 169COP 165COP P65CONA	4-8-37 YES 4-8-38 4-8-39 YES	4 2 5 0	3 3 0	9906 + 637 1 1000	3 4 ,	3 c	3	9908 6437 10000	3 4 2	
1059 1060 1061 1062	N63CDP N65CDP N65S13W	4 - 8 - 40 4 - 8 - 41 4 - 8 - 42	427 882 320	5 9 7 3	8 8 8 4 8 8 8 4 8 8 8 4	1 2	150 232	63	6423 9149 9998 1 0000	2 2 3	
1063 1064 1065	H67CDP H69P13W H69COP	4-8-43 YES 4-8-44 4-8-45 YES	COE	0 3 0	1 0000	•	· 226	0 3 0	9996	2 2 2	
1066	M69513W M71COP 161COP	4 - 8 - 4 5 4 - 8 - 4 7 4 - 8 - 4 8	345 608 425	2 4 5	9997 9999 9997	1	0 -7 -8	5	7414 9997 5524	2 3 2	
1069	F61CDHA B6858 5MMRV B6458 SMMRD	4 - 8 - 49 4 - 8 - 50 4 - 3 - 51	- 14 - 42 - 119	3 7 7	9925 9715 9955	1	23 22 · 5	255	84'3 9700 443'	ž 2	
1072 1073 1074	86458.5MMRH H65520P(CU! H65520P(ACL)	4 - 8 - 5 2 4 - 8 - 5 3 4 - 8 - 5 4	- 318 - 311 - 291	7 3	5989 9990 9998	1	345 320 289	3	9996 999 9 9999	2 2	
1075	H65520Þ{FCL: ASM176C090 ASM162C65	4 · 8 · 5 5 4 · 8 · 5 6 4 · 8 · 5 7	· 256 · 374 · 576	3 3 4	9999 9998 9998	3	133 - 186 - 246	2 2 65	9996 9996 1937	2 2	
1078	ASM262C50 ASM262C55 H68519P(D)	4 - 8 - 58 YES 4 - 8 - 59 4 - 8 - 60	499 -457 3	4 1 3 4 5	2859 9997 9692	1	-144	2 2 2	9995 9610 9038	2 2	
1081	880C077P 880C077S 880P372P	3 · · · · · · · · · · · · · · · · · · ·	- 130 277 - 96	2 2	9988 9999 999'	4	c 1	:	5907 999 1 8919	2 4 2 4	
1084 1085 1086	880P3225 880P822P 880P8225	3 · · · 6 3 · · · 5 3 · · · 6	1 6 6 - 4 9 8 4	3 1 2	9976 9989 7950	4	- 14 - 20 8	•5 •3	9976 9966 7950	2 4 2	
1087 1088 1089	BBOCOMIP BBOCOMIS BBOP3MIP	3 · · · 7 3 · · · 8 3 · · · 9	- 6 3 6 - 4 0	5 6 2	8927 9969 9977	1	- 7 - 9 - 2	3	8306 7899 6647 9673	2	
1090	BBOP3MIS BBOP8MIP BBCP8MIS	3 13	94 14 33	2 4	9673 9358	1	•	5	1599	2	
1093	BBOCOMFP BBOCOMFS BBOP9MFP	3 -13 YES 3- 14 3 -15	0 -1 19	13	9872 9635 5930	1	- 8 1 1 - 5 1	20 4 25	6735 7912 9384	3 2	
1096 1097 1098	840P9MFS 880L0F1P 880C0F1S	3 · · · · · · · · · · · · · · · · · · ·	- 21 59 - 141	3	9977 9993 9896	1	.3	3	3708 9095 8802	2 2 2	
1099	88096515	319 320 321	45 38 -111 243	3	9890 9991 9997	1	- 13 5	2 2	9753 6231 9854	2 2	
110	8805821P 88058215	3 · · · 2 2 3 · · · 2 3 3 · · · 2 6	- 82 174 - 30	8 2	9945 9954 9960	3	13	, , ,	6607 0869 973	2 2	
1101	88054MZS 88058MZP	3 · - 25 3 · - 26 3 · - 27	40 10	2 4 2	9925 7340 9955	•	13 0 - 15	5	6772 9839 8411	4	
110	88057MF5	3 · · 29 3 · · 29	6 - \7	5	8994 9765 9720	3	-10	4	9572 9720 8724	2 3 4	
111	2 BAOSSFIS 3 BAOCOHHRH	333	\$9 -3 -118	14	A724 6729 9992	1	· 20	21	4385 9530 5427	3 2 2	
;;; 1;1 1;1;	5 840COMMRY 6 830P711RV	3 · · · 3 4 3 · · · 3 5 3 · · · 3 6	18	3 2	9963 9573 9861	1	11	4	3836 8634 9254	2 2 2	
111	8 880P7 RH 9 880P11FIRV	3 - 37 3 - 28 2 - 39	-74 41	5 5 4	9902 9712 9851	3	19 6 -33 -49	9 2	9717 9045 9953	3 4 2	
112	1 880P11FTRH 2 880P12FFRV	3 - 140 3 - 141 3 - 142 - YE	20	4 0	9908 1 0000 9769	1	27	٥	1 0000 9928 6919	2 2 2	
11; 11;	4 BAGF12FFRH	3 - 43 3 - 48 3 - 45	- 17	3	9885	,	.10	2	8808	2	

TABLE B.3 (Continued)

				VERT	CAL LOADIN	G ONLY		ı	ATERAL LOA	DING QNLY	
GAGE Number	G A G E N A M E	GAGE A	SSUMED CAL	VERTICAL SENSITIVITY		CORRELATION COEFFICIENT	FROM Test	LATERAL SENSITIVITY	ERROR OF ESTIMATE	COEFFICIENT	FROM TEST
1126	84057(180 8805711RV 880513F1RH	3 · · 46 3 · · 47 3 · · 48	YES	- 4 ? - 5	0 6 10	9801	1	0 2 9 5	0 1 2 3	1 0000 6425 8885	2 2 2
1129	8#D\$31FIRQ 8#0511FIRV 8#0512FFRH	3 · · 49 3 · · 50 3 · · 51		- 72 - 23 - 19	3 6 3	9966 977; 9813	1	- 43 - 49 13	1 2 1	9979 9925 8861	2 2 2
1133	880512FFRD 880512FFRV 884 5521P(CU)	3 · · 52 3 · · 53 3 · · 54	YES	0 · 25 · 279	1 5 3	1973 9756 9992	4 1 4	- 26 179	2 2	1973 9892 9996	4 2 2
1136	H101P20P(UC) H100P20P(AC) B98C0MMP(C)	3 · · 55 3 · · 56 3 · · 57		- 7 1 - 5 5 5 6	6 2 6	9816 9962 9458	4	· 22 · 27	2 2 3	9656 9915 9128	2 2 2
1138	M101.3COW(C) M101.3COW(C) B80CMF(D)	3 5 8 3 5 9 3 6 0		- 1 2 3 - 6 - 6	6 3 4	9965 6794 5604	4	- 1 0	3	8920 2944 9434	2 2 2
1141	M73P13P M73P12W M73P10 1P	3 · A · 1 3 · A · 2 3 · A · 3		- 354 - 458 - 39 :	4 2 5	9998 9999 9996	4	63 - 263 - 202	2 2 3	994 (9995 9995	2 2 2
1144	M73P6W M73P6W M73P2W	3 · A · 4 3 · A · 5 3 · A · 6		- 368 - 389	5 7 2.	9996 9990 9999	4	- 1 1 7 - 109 - 5	6	9992 9949 9467	4 2 2
1147 1148 1149	M73COW M73S2W M73S4W	3 · A · 7 3 · A · 8 3 · A · 9		· 397 · 349 · 463	4	9998 9998	4	0 26 - 276	2 2 3	5633 9890 9997	2 2 2
1150 1151 1152	M7356W M7358W M7359W	3 - A - 10 3 - A - 11 3 - A - 12		- 346 - 360 - 385	3 3 3	#998 #999 9999	1 1 4	98 111 134	2 4	9989 9956 9997	2 2 2
1153 1154 1155	M7359 5P M73510 1P M73511W	3 - A - 13 3 - A - 14 3 - A - 15	Y E 5	· 402 · 433	0 7 3	1 0000 9996 9999	4	201 246	3	1 0000 9995 9997	2 2 2
1156 1157 1158	M73511 SP M73512P M73512 SP	3 - A - 16 3 - A - 17 3 - A - 18		- 384 - 430 - 469	2 2 5	1 0000 9999 9999	1	238 273 287	3 3	9998 9997 9998	2 2 2
1159 1160 1161	M73513P 173COW 17352W	3 - A - 19 3 - A - 20 3 - A - 21		- 485 - 587 - 672	3 6 5	9999 9998 9999	1	295 1 43	3 2	9999 8245 9956	2 2 2
1162 1163 1164	17354W 17356W 17358W	3 · A · 2 2 3 · A · 2 3 3 · A · 2 4		- \$55 - 720 - 764	3 27 11	9999 9960 9994	3	64 115 179	3 3	9947 9982 9994	2 2 2
1165 1166 :167	17359W 17359 SP 273510W	3 · A · 25 3 · A · 26 3 · A · 27		- 744 - 755 - 901	3 2 6	9999 9948 9999	1 3 3	177 206 218	5 5 4	**** **** ****	3 2 2
1168 1169 1170	273511P 273P6W 273P10W	3 - A - 28 3 - A - 29 3 - A - 30		- 678 - 729 - 704	39 12 10	9965 9992 9994	:	226 - 118 - 162	39 4 5	9965 9977 9975	4 2 2
1171	W735MZO 1P W735MZ2 OW W735ZM3 9P	3 - A - 3 1 3 - A - 3 2 3 - A - 3 3		- 430 - 361 - 790	2 1 6 5	1 0000 9951 9999	1	200 169 224	2 1 & 5	1 0000 9731 9999	4 2 4
1174 1175 1176	H78520P(CL) H7351W H7353W	3 - A - 34 3 - A - 35 3 - A - 36		- 239 528 486	3 4 5	9999 9999 9997	1	217 17 44	3 5	9999 9998 8822	4 3 2
1177 1178 1179	M73P3W M73S5W M73S7W	3 - A - 37 3 - A - 38 3 - A - 39		572 424 422	5 3 3	9998 9998 9998	4	- 25 66 117	3 3	9446 9994 9989	2 4 2
* 1 8 C 1 1 8 1 1 1 8 Z	N73P7W H73S9W H73S11W	3 - 4 - 4 0 3 - 4 - 4 1 3 - 4 - 4 2	YES	356 373 0	3 3 0	3998 8666 1 0000	1 4 1	- 136 144 0		9983 9999 1 0000	2 2 2
1183 1184 1185	H73P11W H73S12W H73S13W	3 - A - 43 3 - A - 44 3 - A - 45		329 355 323	2 5 5	1 0000 9994 9995	4	- 179 201 219	2 3 5	9998 9995 9995	2 2 4
1186 1187 1188	H73P13W H73514W H73515W	3 · A · 46 3 · A · 47 3 · A · 48		349 238 114	5 3 4	9998 9995 9998	4 1 3	- 228 226 241	4 2 2	9994 9998 9998	2 2
1189 1190 1191	H73P1SW H73S16 SP H73P16 SP	3 · A · 49 3 · A · 50 3 · A · 51		122 -44 -34	7 6 3	9993 9994 9997	:	- 243 258 - 237	5 3 3	9992 9997 9996	5 5 5
1192 1193 1194	H735 8W H735 20W H73P 20W	3 - A - 5 2 3 - A - 5 3 3 - A - 5 4	YES	- 293 - 384	4 5 3	3982 9997 9999	1	280 - 272	o 1 3	1 0000 9999 9999	? 2 4
1195 1196 1197	H79 5518P(AC! 198 1COP(C) 89856MMP(C)	3 - A - 5 5 3 - A - 5 6 3 - A - 5 7		59 -124 254	4 5 7	9763 9970 9985	4	- 5 1 6 - 2 1	2 4 2	9944 5257 9629	2 2 2
1198 1199 1200	H:7517W[C] RESISTOP H76519(D)	3 - A - S 8 3 - A - S 9 3 - A - S 0		- 61 - 6 0	, 6 , 7 6	9870 0680 9875	3	2 8 · 4 2	2 4 6	9933 6797 7047	2 2

TABLE B.3 (Continued)

			VERTICAL LOADING ONLY					LAYERAL LOADING ONLY			
GAGE NUMBER	GACE NAME	GAGE ASSUMED POSITION CAL	VERTICAL SENSITIVITY	FRROR OF	CORRELATION COEFFICIENT	FROM TEST	LATERAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST	
1201	775COW 277EOW 279COW	3 · 8 · 1 3 · 8 · 2 3 · 8 · 3	- 533 - 508 - 421	4 3 2	9999 9999 9999	1	, c a	2	9213 5577 7582	2 2 7	
1204 1205 1206	279 5COW 283COW 285COW	3-8-4 1ES 3-8-5 3-8-6	· 363 · 239	0 6 2	1 0000 9934 9999	1	0 1 4 6	c 4 -	1 0000 7918 8151	2 2 2	
1207	W83PZM3 9P Z83P6W RESISTOR	3 - 8 - 7 3 - 8 - 8 3 - 8 - 9 - 1 E S	- 345 - 396 1	4 2 2	445 4465	•	- i 1 i - 6 2 - 0	2	9996 9984 1 0000	?	
1210	783564 279 5564 279 559 92	3 - 8 - 10 3 - 8 - 11 3 - 8 - 12	- 342 - 475 - 537	3 3 5	999c 9999 9958	1 1	65 77 148	2 3 2	9980 9975 9 994	2 2	
1213 1214 1215	91 CIMEESW WO SIMEESW 92 EMISESW	7-8-13 YES 3-8-14 3-8-15 YES	· 199	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	1 0000 9996 1 0000	1	9 4	ç •	1 0000 9989 1 0000	2 2 2	
1216 1217 1218	M75COM M75S10 (P M75S13Þ	3 - 8 - 1 6 3 - 8 - 1 7 3 - 8 - 1 8	- 3 1 1 - 4 0 4 - 4 1 C	4 3 4	9997 9998 9998	3	13C 20S 277	2 2	9997 9992 9999	? : ?	
1119	M77COW M77S10 1P M77S13P	3 - 8 - 19 3 - 8 - 20 3 - 8 - 21	- 4 1 1 - 4 6 9 - 3 3 5	2 5 3	9 9 9 9 9 9 9 8 9 9 8	· !	191	: 3 3	853£ 9995 9996	:	
1222	880P6[]W[C] M77P13P M78CD#	3 · 8 · 2 2 3 · 8 · 2 3 YES 3 · 8 · 2 4	- 34 0 - 359	3 0 3	9879 - 0000 9944	1	; c	4 C	5 2 8 4 0 0 0 0 6 8 0 5	2 2 2	
225 1226 1227	M79510 1P M79513P M85COW	3 · 8 · 25 3 · 8 · 26 3 · 8 · 27	-319 -249 -283	2 3 2	9999 5447 9997	4	146 176 3	2 2	9999 9999 9999	4	
1228 1229 1230	M&1510 1P M&1513P M&1P10 1P	3 - E - 2 & 3 - B - 2 9 3 - B - 3 0	262 290 - 726	5 2 2	9993 9993 9993	:	151 164 - 147	3 2 4	9991	2 4 2	
1231	M81P13P M83COW M83S1C 1P	3:8:31 3:8:32 YES 3:8:33	- 323 c 271	2 0 3	9998 · 0000 9999	1	- 141 - 0 149	3 6 2	9998	2	
1 2 3 4 1 2 3 5 1 2 3 6	M&3513P M&100W M&5510 1P	3 - 8 - 3 4 3	346 -348 -248	2 3 3	9999 9999 9997	1 1	195	7	1343 9988	2 2	
1237 1238 1239	M85813P M85P10 1P M85P13P	3 · 8 · 3 ? 3 · 8 · 3 & 3 · 8 · 3 9	195 329 - 210	2 2 2	9998 9999 9997	4	133 97 - 174	3 2 2	9973 9975 9896	2 2	
1240 1241 1242	F81 55141NS [M6155 5F M8355 5P	8: 3-8-40 3 # 4" 3-8-42 YES	373 0	2 3 0	9842 9999 1 0000	1	. 5 6 3 8 C	3 c	9969 1 000C	2 2 2	
1243 1244 1245	M83P10 IP M83P13F :73CQP	3 · B · 43 3 · B · 44	· 293 O 196	3 0 4	9997 1 0000 9988	1	· 133		1 0000	2 2	
1246 1247 1748	:77CQP & CQP # 8 CQNA	7 8 46 J·B·4" 3·B·48	272 256 - 20	3 3	9998 9995 9320	3	- 1 - 4 - 5	2 3 2	8550 7564	2 2	
1249 1250 1251	F&SCONA B&OP&MMRH B&OP&MMRC	3 · 8 · 49 3 · 8 · 50 3 · 8 · 5 ·	· 50 3 · 46	5 4 7	9768 9355 9945	1	- 2 t - 2 o	3	9160 9939	? 2 3	
1252 1252 1254	B 8 OP 8 MMR Y B 8 OP 9 MF R N B 8 OP 9 MF R C	3-8-52 YES 3-8-53 3-8-54	· 73	4	1349 9935 9963	3 4 1	. 22	2	9850 9802 4655	2 2	
1255 1256 1257	BBOPPMFRV 85COP RESISTOR	3-8-55 3-8-56 3-8-57 YES	314	3	6792 9996 3107	4	3	9	3756	2 2 2	
1258 1259 1260	RESISTOR Resistor Noireeau	3 · 8 · 5 8 3 · 8 · 5 9 3 · 8 · 60	5 - 2 1 4 - 2	4 266 3	4045 4788 9759	3	- 159 4	266 2	3812 4788 7603	3 2	
1261 1262 1263	886C077P 886C077S 886P377P	2 · · · 1 2 · · · 2 2 · · 3	114 -404 71	4 3 1	9961 9999 9990	3	- 1 8 7	2	9338 9220 9028	2 2	
1268 1265 1766	884F3715 886F871F 886F8115	2 · · 4 2 · · 5 2 · · 6	- 267 - 68 - 183	3	9998 9889 9999	1	- 8 - 2 3	3 4 3	9997 8848 7161	3 5 3	
1267	88600MIP 84600MIS 886P3MIP	2 · 7 2 · 8 2 · 9	5 7 8 1 8	2 5 11	9686 9919 6381	4	2 3 - 2	2 3 11	\$318 6440 2267	3	
1270	8 8 6 P 8 M 7 P	2 · 10 2 · 11 2 · 12	5 22	2 2	4586 9260 9930	4	4 10 16	2 2 2	8758 9183 954	2 2	
(273 1274 1275	B 8 6 C D M * S	2 14 2 15	0 - 188 - 34	2 2 4	6783 9997 9752	3	3 6 4	? ? ?	6783 8252 6926	2 2	

TABLE B.3 (Continued)

			VERT1	CAL LOADIN	C GALY			A'ERAL , DA	CINC ON. +	
CAGE NUMBER	GAGE	GAGE ASSUMED POSITION CAL	VERTICAL SENSITIVITY		CORRELATION COEFFICIENT	FROM TEST	LATERAL	EPPCS OF	CORRELATION COEFF (FRT	F P O M
1276 1277 1278	B&6P9MF5 B&6CDF1P B&6COF15	2 · · 16 2 · · 17 2 · · 18	· 4 9 · 19 · 18	4 2 2	9930 9906 9775	1 1	3 6 3 5	3 1 2	9 6 7 7 8 0 5 1 6 9 1 C	2 2
1279 1280 1281	Ba6P6F1P BE6P6F1S Ba65422P	2 · · · 19 2 · · · 20 · · rES 2 · · · 21	- 34 - 43 - 34	3 2 2	9829 9962 9867	3 1	8 • 1 • 1	2 2 2	941F 5441 1122	:
1282	88654775 8865877P 88658775	2 2 2 2 2 3 2 2 4 YES	200 76	2 1 5	9998 9990 990	1 4	22 - 1 - 8	6. 2	7885 2298 8848	:
1285 1286 1287	88654MIP 88654MIS 88658MIP	2 · · · 2 5 2 · · · 2 6 2 · · · 2 7	9 0 1 4	3	9 & ⁶ C 9 9 3 7 9 6 & 9	1 4	1 6 - 1 2	; ;	9:16 879: 9820	3
1288 1289 1290	8 & \$ \$ \$ \$ \$ # \$ \$ 8 & \$ \$ \$ 2 m F F 8 & \$ \$ 2 m F \$	2 28 2 29 2 30	19 - 37 16	\$? 6	7844 9944 7565	; 1	- 1 7 5 8	5 2 2	9038 829 1 95 15	2 2 2 2
29 297 293	88656F;P 88656F;S 886CQHHRN	2 3 1 2 3 2 2 3 3	· 19 · 50 15	3 2	9532 9912 9545	1 3 1	· 1 1 7 7 7	: 3 3	8431 9912 8523	: 3 7
296 1796	856COHHR: P66COHHR: 886P7::PV	2 34 2 · · 35 2 · · 36 YES	- 9 7 ! 1	2 3 1	9845 9976 8936	1 1	ь с	2	90 14 7 : 45 6 (. 3	:
1297	886P71.RD 8-6P71.RH 856P11F1P4	2 · · · · · · · · · · · · · · · · · · ·	1 9 - 5 7 3	3	9 1 5 4 9 9 9 6 8 7 2 6	1	2 € 9 2 3	3	9783 9778 9017	1 1
1300	886P11F1RH 886P11F1RD 836P12FFRY	2 4 C YES 2 4 1 2 4 2	6 63 15	o 3 2	240 · 9966 5~76	; 1	c 2 21	c 2 2	9 G G G 9 G G G 9 G G G	:
1303	886P12FFRD 886P12FFRH 886S71:RH	2 - · 43 2 · · 44 2 · · 45	5 ! 30 - 127	3 3	9957 9780 9993	1	2 1 6 - 3	5 4 2	9940 4682 8245	3 : :
1306	886\$71:RD 866\$7!1Rv 886\$11F!Rm	2 4 6 2 4 7 2 4 8	- 117 - 25 - 89	3 7 1 4	9988 8737 9700	1	6 - 21 - 22	3 5 1 6	9215 83:9 5435	: ? :
1310	886\$11F(RD 886\$11F1RV 886\$12FFRH	2 49 2 50 2 61	· 37 0 0	3 2	9983 9917 8982	1	· 7 · 33 · 5	1 2 2	935+ 9975 7880	:
1313	886512FFRD 886512FFRV 484 5521F(CM)	2 · · · 5 ? 2 · · · 5 3 2 · · 5 4	56 50 - 229	3 2 2	9972 9979 9999	:	23 - 34 175	5 5 5	9756 5071 9994	:
1315	HS4 SS2TP+C. T PESISTOR RESISTOR	2 * + 5 \$ 1	- 250 · ! 0	•	9978 8658 2096	1 1 3	179 2 2	4 4 7	9988 861. 9218	:
1319 1326	RESISTOR RESISTOR #78P3M1 D'	2 · · · 5 E 2 · · 5 9 2 · · 6 C	1 3 3	4 3 4	2067 9569 9777	3	3 3 - 4	3 3 4	7433 8511 8 86	:
32.	8:2COZZF 8:2COZZS 8:92P4ZZP	2 4 2 2 4 3	190 403 49	1 0 5 7	9926 9997 9307	4 1 1	5 4 2 8 1 9	4 3 4	9 c 1 c 9 f 4 7 8 f 4 6	:
124 325 126	892P422S 892P822P 892P822S	2 A 4 2 A 5 2 A 6	130 45	5 2 5 1 7	9985 9212 7612	:	2 6 ' 8 2 4	2 7 8	9 & 7 9 9 C S 7 8 7 7 .	:
327 1328 1329	892CUMIR 892CUMIS 89204MIR	2 · A · · · 8 2 · A · · · 9	23 : 8 33	7 6 5	9157 6531 8946	•	21 14 30	3 3 5	9696 9205 9550	2 7 2
330 33 132	83568W12 B0568W16 B0564W12	2 A - 1 C 2 · A - 1 1 2 · A - 1 2	- 30 63 - 56	15 14 14	8515 9747 9563	3 4 4	10 55 22	3 6	3977 9918 974	2 2 7
1334 1335	892COMF 5 892COMF 5 892#8MF b	2 · A · 13 2 · A · 14 2 · A · 15	- 1 1 - 1 6 6 - 1 0 0	3 7	6160 9990 9917	3	1 1 3 26	5 2 2	810° 8314 9847	2 2
1336	892COF15 892COF15	2 - A - 16 2 - A - 17 2 - A - 18	- f 4 5 2 1 1	6 4 9 2 1	9978 2090 2121	1 1	- 19 - 46 6	1 8 2 9	5590 1281 4743	2 3 2
1319 1340 1341	892P&FP 892P&F!K 89254Z7F	2 · A · 19 2 · A · 20 YES 2 · A · 21	- 6 6 - 4 5 - 1	7 2 15	9702 9969 5739	3 1 4) 4 0 46	7 2 4	970: 8655 9698	3 2 7
1342 1343 1344	89254775 8925877P 89758275	2 · A · 22 2 · A · 23 2 · C · 24 YES	· 207 9 1 · 179	33 14 14	9557 9829 9774	4 3 3	65 - 29 - 29	2 6 4 1 4	627¢ 943: 9174	3 2 2
1345 1346 1347	8 ⁴ 25 4 M 7 P 8 9 25 4 M 7 S 8 9 25 4 M 7 P	2 - A - 25 2 - A - 26 2 - A - 27	3 63 · 62	8 7 7	9468 9926 9880	4 3	· 13 · 44 · 37	13	\$075 975 · 9874	2 2
1348 1349 1350	89258M25 89252MFP 85752MF5	2 · A · 28 2 · 4 · 29 2 · A · 30	68 C -40	1 2 4 6	9609 3339 9352	3 3 4	- 1 2 1 6	6 2 2	8850 1531 9564	: :

TABLE B.3 (Continued)

VERTICAL LOADING ONLY							ı	ATERAL LOA	DING ONLY	
GACE	GAGE	GAGE ASSUMED POSITION CAL	VERTICAL SENSITIVITY	ERROR OF	CORRELATION	FROM TEST	LATERAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST
HUMBER	HAME		- 61	6	3909	1	- 5	5	4267 7810	5
1351	89256F1P 89256F15	2 - A - 3 1 2 - A - 3 2	- 49 - 54	:	990\$ 9816	1	2 Å	15	5883	3
1253	892P 2HHRH	2 - 4 - 33		3	9970	•	10	3 2	8539 9544	3
1354	192P 2HHRD	2 - 4 - 34 2 - 4 - 35	- 8.3	1	9692 2348	1	•	;	8083	3
1355	892P711RV	2 - 4 - 36 YES	1		3964		- 1.4	4	8786	2 2
1357	892P711R2	2 - 4 - 37	- 103 - 98	3	9970	3	, 2	3 3	1516 9538	2
1356	892P7 RH 892P1 F1RV	2 · A · 38 2 · A · 39	4	3	5718	3	0	,	1971	2
1360	##2P:1FIRD	2-A-40 YES	- 65	5	1971	,	2 4	6 5	9502	3
1361	892P11F1RH 892P11 9FFRY	2 · A · 4 1 2 · A · 42	2 2	4	9242	•		3	9665	2
	892P11 9FFRD	2 · A · 43	49	3	9794 8485	,	13	7	9309 0773	2
1363	892P(1 9FFRH 892S7(18H	7 - A - 4 & 2 - A - 45	17 - 67	3	9971	١	^ 2	-	9794	3
1365		2 - A - 4 6	- 45	4	9794 9928	3	21	•	8395 9131	2 2
1366	8925711RD 8925711RV	2 - A - 47 2 - A - 48	- 40 - 70	:	9959	1	- 2 8	5		3
1368	892511FIRH	2 . 4 . 4 9	c	3	8450	3	9 - 3	3	8450 2013	ã
1369	8925:1F1RD 8925:1F1RV	2 · A · 5 0	- 14	10	6643	7	- \$ 5	'4	9315	
. 371	892511 9FFRH	2 · A · 5 1	34	5	9523	1	· 32 - 18	4 5	9589 8584	2 2
1372	892511 9FFRD 892511 9FFRY	2 · A · S 2 2 · A · S 3	28 155	5 7	8875 9945	1	- 8.6	6	9894	2
374	F91511 9P[881	2 - 4 - 54		2	9999	3	- 8.9	7 6	9999 8828	3 2
1375	MB7 SPIOSIPST RESISTOR	2-A-55	. 253	8 326	4465 0890	ž	0	ŏ	1 0000	2
1376	RESISTOR	2-A-57 YES	- 239	8	6544	1	- 2	6	7035	2 2
1378	RESISTOR	2 - A - S B 2 - A - S 9 Y E S	• 6 10	12	1491	1	· 5	4	7025	2
1379	RESISTOR M79 SCC(D)	2 - A - 60	. 5	5	9997	1	- 6 6	:	9973	2 2
1381	M93 6P8#	2 - 8 · 1 2 · 8 · 2	299	4	9998	1 3	- 65 - 81	2 2	9972 9987	2
1383	M93 6P8W	2 8 3	- 298	2	9999		-52	2	9998	•
1386	M93 6P9 5P	2 - 6 - 4	- 224 - 303	2 3	9998 9998	1	- 8 7 - 8 1	4	9929 9994	2 2
1385	M93 6P10W	2-B· 5 2-B· 6	- 259	1	9999	,		3	9976	2
1387	M92 8P8W	2 - 8 - 7	- 8 9	5 2	9945 9997	,	46	3	9996 9986	2
1388		2 · 8 · 8 2 · 8 · 9	174 18	2	9779	,	- 127	2	9986	2
1389		2 - 8 - 10	- 399	2 2	1 0000	3	- 7 6 - 8 5	2	9990	2 2
1390	M92 8P9W	2 - B - 1 1 2 - B - 1 2	- 36 1 - 26 1	i	9993	4	- 6 1	2	9999	3
1392		2 - 8 - 13	-306	2	9999	3	- 86 - 91	ì	9993 9996	2 2
1393	M92 8P1'W	2 - 8 - 1 4 2 - 8 - 15	- 201 - 232	3	9997	,	- 6.9		9964	2
1395		2-8-16	- 52	7	9827	1 3	- 9 9 - 1 3 8	1	9997	2 2
1391	, HAS 9P17P(L)	7 1 2 - 8 - 17	· 7 139	3 25	9952 9417	3	- 141	•	9984	2
139	M92 2P8 SP	2 - 8 - 1 6	- 183	7	9968	4	- 20 - 3 6	3	9187 9980	2
139	~ M07 3P95	2 - 8 - 19 2 - 8 - 20	· 322 52	7 5	9991 9644	;	44	3	9945	2
140		2 - 0 - 2 1	82	8	9878	3	- 9 6 - 8 0	2	9984 9976	2
140	7 Mg2 1P9 7RL	2-8-23	. 398	2	1 0000	4	. 9 7	3	9982	2
140		2-8-24 YES	299	3	9999	1	- 8.9	2 2	5978 5993	3 3
140		2 - B - 25 2 - B - 26	- 219	2 2	9995	1	- 103	ŝ	8952	3
140		2 - 8 - 27	- 261	10	9986	1	- 39	,	8 8 8 8 9 9 8 7	3
140		2 - 0 · 2 8 2 - 0 · 2 9	-411 -242	7	9998	1	- 8 6 - 7 7	2 5	9993	3
140		2 - 8 - 30	. 273		9758	3	-80	3	9959	3
141		2 · B · 3 ¹ 2 · B · 3 2	· 204 - 226	27	9997	1	.93	3	9974 9979	j
14			- 216	9			-84	21		1 2
14	14 M91 699 7R	2 · 8 · 3 4 2 · 8 · 3 5	455	25	9945	. 1	52	3 2		3
14	15 M91 6P5 7R	2 · 8 · 3 6 YE		2			- 9.6	3	9998	3
14	. 7 M91 6P11W	2 - 8 - 37	- 307 - 269	3	9990	, 1	- 8 8 - 5 6	2	9984	2 2
14	18 M91 6P12W	2-8-38 HSU) 2-8-39	68)	:					1 0000	
		uet 1 2-8-40 YI	: S O	1	647	7 1	- 17 - 284		1208	
14	21 8645 1MMP L 22 H71 9P15P1	CUST) 2-8-41	263	Ţ,	• • • • •				9981	2
	uzineP(C)	2 - 8 - 43	323		6 9991 6 981	2 3	- 22	:	9742	
1.4	S. BEADE SMFR	V(88) 2-8-44 D(88) 2-8-45	- 48 - 217		995		- 34		-	

TABLE B.3 (Continued)

				VERTI	CA: LOADIN	C 084.		L	ATERAL LOA	DING ON. T	
GAGE NUMBER	G & G E N A M E	POSITION	S S U M E D C A L	VERTICAL SENSITIVITY		CORRELATION COEFFICIENT	FROM TEST	LATERAL Sensitivity	ERROR OF	CORRELATION COEFFICIEN*	FROM 165
1426 1427 1428	864P8 SMFRH(88 M80595[5U] M80595[5L]	2 - 8 - 4 6 2 - 8 - 4 7 2 - 8 - 4 8		- 120 - 85 104	1 2 4 5	9784 9985 9930	4 4 3	9 & 3 3	9 2 4	5 6 5 5 9 9 6 6 9 8 0 3	2
1429 1430 1431	H79 5518P(FC) H79SZOP(CU) RESISTOR	2 - 8 - 49 2 - 8 - 50 2 - 8 - 51		46 158 2	2 2 9	9922 1 0000 1643	1 4 3	-52 221 4	1 2 6	5989 1 0000 6642	:
1432 1433 1434	RESISTOR RESISTOR RESISTOR	2 - 8 - 5 2 2 - 8 - 5 3 2 - 8 - 5 4	YES YES	· 23 · 23	1 2 6 2 5	4647 3894 3907	1 1	o c o	0 0	1 0000	2
1435 1436 1437	RESISTOR RESISTOR RESISTOR	2 · 8 · 5 5 2 · 8 · 5 6 2 · 8 · 5 7		3 1 2	4 4 5	9285 8902 6254	1 1 1	4 4 4	4 6	821C 8513 657;	
1438	RE\$15 OR RE\$15 OR M&9P19(0)	2 · 8 · 5 8 2 · 8 · 5 9 2 · 8 · 6 0	Y E 5	· 14 2	1 6 6	9155 3896 9646	1 1	4 0	4 0 3	6732 0000 8983	2 4 1
1461 1442 1443	28700W 28900W 29100W	1 1		- 201 - 183 - 55	4 3 4	9988 9994 7961	3 1	C 14 - 2	2 2 2	7833 953 ° 8649	; ; ;
4 4 5	W91 95MZG 1RL W91 95MZG 1RD W91 95MZG 1RV	1 · · 4 1 · · 5 1 · · 6	YES	- 23 - 99 c 5 7	5 1 8 1 5	9813 9993 9486	4	25 87 .5	3 5	9902 997: 9947	2 2 2
1448 1448 1449	M8720w M8759 1P M87512	1 - 7		-319 -270 -226	1 6 1 1 2	9939 9975 9999	3 4 4	97 110	1 6 8 2	9939 9824 9999	3 2 4
1450 1451 1452	M89CO+ M89S9 1P M89S12	1 10	Y E S	· 256	2	1 0000 9998 1 0000	1 3 1	° 6 ° 0	0 2 0	1 0000 9994 1 0000	: : 2
1453 1454 1455	M89P9 1P M89P12 M91COW	1 13 1 14 1 15	YES	- 728 C - 195	3 0 2 2	9997 1 0000 9735	1 1 3	- 102 0 - 16	3 0 22	9972 1 0000 9735	2 2 3
1456 1457 1458	M9159 1P M91512 M93COW	1 16 1 17 1 18	Y E S	- 259 - 285 - 0	2 0	998C 9999 1 0000	3 3 1	7 1 1 0 4 0	7 1	998C 9998 1 000C	3
1459 1460 1461	M93512 M93P12 M97COW	1 19 1 20 1 21	YES	· 199 O - 189	2 0 2	9999 1 0000 9996	1 1 1	9 ·	5 0 3	9981 1 0000 1932	2 2 2
1462 1463 1464	M\$7512 M\$7912 M\$9COW	1 · · · 2 2 1 · · · 2 3 1 · · · 2 4		- 42 - 67 - 153	1 3 3	9986 9968 9992	1	63	3 2 2	9955 9961 2353	2 2 2
1465 1466 1467	M99512 M101COW M101S12	1 25 1 26 1 27		- 5 6 - 1 2 6 - 1 1 4	2 3 3	9990 9994 9574	4 1 3	34 - 4 4 1	2 3 2	9990 9395 9890	4 7 2
1468 1469 470	M101P12 W103C0W 10351:	1 - · 28 1 - · 29 1 - · 30	YES	0 0 116	o o s	1 0000 1 0000 9968	1 1	C - 4 3 6	o 2 5	1 000C 9994 964C	2 4 :
1471	M10500W M105511 M105P11	1 32	YES	130	4	9985 9991 1 0000	1 1 1	2 6 0	4 3 6	5674 988	? ? :
. 474 : 475 : 476	M10751' M107COW F89CONA	1 -34 1 -35 1 - 36		- 9 4 - 20 8 - 5	2 3 2	9995 9996 8478	4 3 3	37 · 1 · 2	1 2 1	9570 4514 2303	? 2 2
1477 1478 1479	189CDP F93CDNA 193CDP	1 37 1 38 1 39	YES	184 65 0	2 3 c	9996 9916 1 0000	1 1	0 0	5 5	6969 4545 1 0000	2 2 2
1480 1481 1482	F97CONA 197COP F'01CONA	1 - 40		64 152 197	6 4 5	9802 9980 9983	1	• 4 • 1 • 2	3 2	6203 7855 0891	2 2 2
1483 1484 1485	I 101COP F105CONA T105COP	143		31 177 -69	15 9 7	5228 9939 9770	4 3	2 20 -6	12 8 3	3024 6562 7082	2 2 :
1486 1487 1488	ASM279C120 ASM279C112[RES] ASM287C315	1 - 46		- 65 1 - 46 2 - 1744	4 3 9	9 9 9 9 9 9 9 9 9 9 9 9	4 3 1	80 82 108	1 2 2	9 9 8 8 9 9 9 3 9 8 9 C	2 2 3
1489 1490 1491	ASM2870308 ASM2870300 ASM2870293	1 49		- 1648 - 1654 - 1414	7 7 6	1 0000 1 0000 1 0000	1 1	246 195 183	69 7 3	9968 9977 9996	4 2 2
1492 1493 1494	ASMZETRYMF ASMZETRDMF ASMZETRLMF	1 - · 52 1 - · 53 1 - · 54		- 344 275 163	3 3 5	9999 9995 9971	1	98 139 - 12	19	9996 9907 7092	:
1495	89257MZP[8M] 89257MZS[8M] RESISTOR	1 · · 55 1 · · 56 1 · · 57		- 4.1 - 1.8.6 - 2	9 11 3	9784 9925 3029	3	- 5 C - 1 1 - 1	5 10 3	9690 6337 3029	2 2 4
1498 1499 1506	RESISTOR RESISTOR H92P1[D]	1 58 1 59 1 60	YES	- 8 O 2	4 0 2	6587 1 0000 9950	1	2 6	4 6 3	1512 1 0000 9216	2 2 2

TABLE B.3 (Continued)

	VERTICAL LOADING ONLY LATERAL LOADING ONLY						DING ONLY				
GAGE Number	GAGE NAME	GAGE A		VERTICAL SENSITIVITY	ERROR OF ESTIMATE	CORRELATION CDEFFICIENT	FROM TEST	LATERA; SENSITIVITY	ERROR OF	CORRELATION COEFFICIENT	FROM TEST
1501 1502 1503	8 9 8 C DMMS 8 9 8 C DMMP 8 9 8 P 4 MMP	1 - A - 1 1 - A - 2 1 - A - 3		- 489 243 47	4 1 1 6	9998 9948 9366	3 1	7 4 8	2 3 3	9091 3130 8777	2 2 2
1504 1505 1506	898P4MMS 898P9MMP 898P9MMS	1 - A - 4 1 - A - 5 1 - A - 6	Y & S	0 - 149 - 161	0 7 12	1 0000 9954 9897	1 4	0 10 24	0 4 7	1 0000 7103 7211	2 2 2
1507 1508 1509	898COMFP 898COMFS 898PSMFP	1 · A - 7 1 · A - 8 1 · A - 9		57 - 73 32	15 30 8	8581 1245 8591	4	27 2 15	• e • 1 • 5	8581 9183 667	4 2 1
1510 1511 1512	898P5MF5 898P6F1P 898C0F15	1 - A - 10 1 - A - 11 1 - A - 12	YES	1 1 6 - 2 2 0	2 1 & O	9507 8332 1 0000	3	42 28 0	6 4 C	9564 9530 0000	2 7 2
1513 1514 1515	898CUF1P 898P6F15 89854MMP	1 - A - 13 1 - C - 14 1 - A - 15		5 · 29 75	9 9 8	8321 8289 9724	1 3 4	8 - 3 - 4	e E	9677 8289 4242	2 3 2
1516 1517 1518	8 9 8 5 4 MMS 8 9 8 P 8 MMP 8 9 8 5 8 MMS	1 - 4 - 1 6 1 - 4 - 1 7 1 - 4 - 1 8		154 80 - 34	1 8 1 1 1 9	9669 9461 6832	1 1	· 7 24 · 59	, s	9669 9368 9594	•
1519 1520 1521	89853MFP 89854MFS 89856F1P	1 - A - 19 1 - A - 20 1 - A - 21		- 9 34 - 12	10	9277 7682 7183	1 1	2 7 3	3 6 3	8860 4305 7492	2 2 2
1522 1523 1524	898\$6F15 898P 2HHRH 898P 2HHRO	1 - A - 22 1 - A - 23 1 - A - 24		- 18 - 134 57	8 1 2	7772 9913 9428	3	20 6 3	4	9622 7462 92''	2
1525 1526 1527	898P 2HHRV £98P7!!RD 898P7!!RV	1 - A - 25 1 - A - 26 1 - A - 27		· 16 · 84 · 171	9 1 1 1 5	6911 9808 9795	3 1	9 32 - 10	3 5 3	6570 9773 8765	2 2 2
1528 1529 1530	858P7:IRH 898P1: 5FIRV 898P1: 5FIRO	1 - A - 28 1 - A - 29 1 - A - 30		* 142 86 255	6 1 2 9	9975 9615 9972	4	18 -7 -32	6 3 5	9337 5830 9464	2 7 2
1531 1532 1533	898P11 SFIRH 898P11 SFFRV 898P11 SFFRD	1 · A - 3 1 1 · A - 3 2 1 - A - 3 3		- 201 - 7 251	10 7	. 9931 9786 9960	3	56 55 13	6 5 4	9790 9887 8930	2 2
1534 1535 1536	898P1: 9FFRH 898S7[[RH 898S7][RD	1 - A - 34 1 - A - 35 1 - A - 36		28 - 97 - 55	9 4 1 2	9608 9974 9080	1 3	5 5 - 3 4 0	5 6	9608 9033 9507	4 2 2
1537 1538 1539	89857; IRV 898511 5F JRH 898511 5F JRD	1 - A - 37 1 - A - 38 1 - A - 39		- 26 - 166 157	1 2 9 1 5	9174 9940 9828	3 1 3	· 3 2 · 6 4 2 6	2 8 15	9757 9639 9828	2 2 3
1540 1541 1542	898511 5F1RV 898511 9FFRH 898511 9FFRD	1 · A · 40 1 · A · 41 1 · A · 42	YES	- 194 19 258	206 4 7	5446 9139 9981	1	· 104 24	, c	9403 9634	2 2 2
: 543 1544 1545	898511 9FFRV 898510MFS 898510MFP	1 - A - 4 3 1 - A - 4 4 1 - A - 4 5		20 111 64	30 14	9241 9326 8251	4 3 1	· 29 · 139 73	, 2 , 2 , 2	9 <i>822</i> 9805 9589	2 2 2
1546 1547 1548	H100P20P(FC) ASMM77C1SF ASMM77C2SF	1 - A - 4 6 1 - A - 4 7 1 - A - 4 8		-513 -1001 -28	10	9998 9998 9094	3 4 3	420 ·53 ·20	6 5 5	9998 9834 8293	3 2 2
1549 1550 1551	ASMM77C3SF ASMM77C4SF ASMM77C5SF	1 - A - 49 1 - A - 50 1 - A - 51		- 264 - 250 - 589	15 21 4	9943 9867 9999	1 1 3	206 175 99	2 7 3	9966 9904 9978	2 4 2
1552 1553 1554	45MM77E154 45MM77E254 45MM77E354	1 · A · 5 2 1 · A · 5 3 1 · A · 5 4		- 350 - 351 - 86	6 4 15	9993 9999 9499	1 4 3	262 267 · 23	3 3 15	9998 9998 9499	2 2 3
1555 1556 1557	ASMM77C4SA ASMM77C5SA ASMM77P3SAO S	1 - A - S 5 1 - A - S 6 1 A - S 7		· 508 · 267 · 935	8 8 5	9996 9996 9999	3 4 3	502 364 100	6 3	9996 9993 998:	3 2 2
1558 1559 1560	45MM77P3SA1 5 45MM77P3SA3 0 H193519(D)	1 · A · 5 8 1 · A · 5 9 1 · A · 60	YES	· 629 • • 283	5 0 10	9998 1.0000 9985	3 1	9 1 © 1 4 9	3 0 2	9969 1 0000 9997	2 2 2
1561 1562 1563	8108P9MFP 8108C0MMS 8108P4MMP	1 - 8 - 1 1 - 8 - 2 1 - 8 - 3		- 18 - 24 - 59	2 5 3	9953 8485 9978	1	13 \$	2 2 7	9317 6047 4069	2 2 2
1564 1565 1566	8 1 0 8 P 4 MMS 8 1 0 8 P 8 MMP 8 1 0 8 P 8 MMS	1 - B - 4 1 - B - 5 1 - B - 6	YES	0 - 37 - 39	0 3 4	1 0000 9806 9914	1 3 1	8 7	3	1 0000 9806 9569	2 3 2
1567 1568 1569	RESISTOR BIOBCOMFS BIOBPAMFP	1 - 8 - 7 1 - 8 - 8 1 - 8 - 9		- 2 - 40 - 5 J	1 2 4 2	1309 9771 9980	:	34 8 22	2 ? 3 2	6935 6519 9980	4 2 4
1570 1571 1572	B108P4MF5 RESISTOR B108C0F1S	1 - 8 - 10 1 - 8 - 11 1 - 8 - 12	YES	6 o	3 5 0	9957 8216 1 0000	† †	1 & 5 0	6	9880 7885 1 0000	2 2 2
1573 1574 1575	8 108 P 6 F 1 P 8 108 P 6 F 1 S 8 108 S 4 MMP	1 - 0 - 13 1 - 0 - 14 1 - 0 - 15		- 2 2 3 - 6 8	2 1 2	9960 9308 9978	1 4	19 -5 1	1 2	9763 9308 9978	4

TABLE B.3 (Continued)

	VEPTICAL LOADING ONLY LATERAL LOADING ONLY									
GACE Number	GAGE Name	GALE ASSUMED POSITION CAL	VERTICA. SENSITIVITY	ERPOR OF	CORRELATION COEFFICIENT	FROM TEST	LATERAL SENSITIVITY	ERROP CF ESTIMATE	CORRELATION COEFFICIENT	FROM TES*
1576 1577 1578	810854MM5 810858MMP 810858MM5	1 - 0 - 1 6 1 - 5 - 1 7 1 - 6 - 1 8	5.7 4.0 - 2.6	2 1 2	9982 9988 9913	•	7	: 1 2	9763 1936 9913	2 2 4
1575	810854MFP 810854MFS 810856F P	1 8 19 1-8 20 1 8 21	5 2 8 8 3 1	3 4 1	9982 9956 9981	1 3 1	, . 9 · 3	2 2 2	979~ #335 6476	2 2 2
1582 1581 1584	810856F1S 8108F 2HHRH 8108F 2HHRT	1 8 22 1 8 23 1 8 24	23 531 546	4 7	9343 9999 99%	1 3	1 2 - 25 - 6	4 :	9343 9769 9153	•
585 586 1581	8105F 2HHRY 8105FT IRY 8105FT IRD	1 8:25 165 1 8:26 1 8:27	¢ • 4 : `	o : 3	1 000 994 7553	!	c 2 - 3 5	c 2 3	1 0000 9667 9904	2 2
1584 1589 1590	8108P711RH B108R10 5F1RV 8138P1C 5F1RD	1 8 28 1 8 29 1 8 30	307 150 341	4 3 2	999" 9993 9999	3	- 23	3	9383 9993 9942	2 3 2
159 1592 1593	BIOSPIC SFIRM BIOSPIC SFRV BIOSPIC SFRR	1 - 0 - 3 - 1 - 0 - 3 - 1 - 0 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	- 8.7 - 15 2.65	3 2 3	9973 9943 9995	3 1	- 10 33 14	3 3	9973 9856 9387	3 2 1
554 595	8:08FIC 4FFRH 8:0857:19H 8:0857;18C	* 8:34 * 8:35 \:8:36	. 8 253 33	2 2 2	9690 9998 9744	4	- +3 -30 19	; 60	9752 99:8 9:80	3 2 2
1597 1598 1599	810857.18V 810857. 5518H 8108510 5519D	1-8-37 1-8-3a 1-8-39	5 4 - 2 1 1 2 0 1	2 3 2	9965 9997 9998	•	: - 25 69	1 2 2	623 · 9845 9978	; ? 2
1601	9:08510 SF RV 8:08510 SFFRH 8:08510 SFFRD	1 - B - 40 1 - B - 41 1 - B - 42	293 · ' 8 69	2 S 3 6	9 ± 2 6 9 ± 9 ± 9 7 5 :	· 1	- 27 - 9.2 - 185	9 2 4 6	6648 9977 9987	4 3 4
1604 1605	810851C 4FFRS 810889MFS APMM7751PA	1 0 43 1-8-44 1 8-45	2 . 7 1 4 2 7	2 2 4	9375 9993 9998	: 1	- 12 ' 4 - 469	3 1 3	9993 9307 9999	4 2 2
160 × 160 7 160 8	APMMTTC:PA APMMTTC:3PA APMMTTC:3PA	1 - 8 - 46 1 8 47 1 8 - 48	- 5 4 9 - 5 2 0 - 1 0 0 1	2 2 4	1 0000	1	- 507 - 415 - 78	2 2 14	9999 9999 9346	2 2 2
1610 1611	4PMM77C5PA 4PMM77P3P40 5 4PMM77P3P41 5	1 - 8 - 4 5 1 - 8 - 5 0 1 - 8 - 5 1	293 360 - 311	4 2 4	9996 9959 9947	1	- 175 - 248 - 225	4 4 3	9984 9998 9997	2 4 2
1612 1613 1614	APMMTTP3P43 C APMMTTC1PF B APMMTTC2PF	1 8 52 1-8 53 1 8 54	- 314 -560 -584	2 4 6	9999 9999 9998	4	- 165 - 86 - 76	1 2 4	9998 9981 9948	2 2 2
1615	4PMM7763PF / PMM7764F > 4PMM7765PF	4 0 5 5 5 1 B 5 7	879 368 1003	4 5 7	9 9 9 9 9 9 9 6 9 9 9 5	1	- 79 - 266 5 1	3	9963 9950 9950	2 2 2
.618 1619 1620	ASM2790135 ASM2790127 H1080FF10.	1 B 58 1 E 54 YES 1 E 60	8.8.C 0 2	6 0 2	9999 1 0000 9955	4 ,	2 4 C 2	3 c 2	9715 1 0000 9198	2 2 2
1621	M95P104 M95P74 M95P24	0 .	150 253 176	2 2 2	9998 9998 9998	1 1	- 5 3 - 2 6 - 4	2 2 2	9948 9728 9594	2 2 2
1674 1625 1626	M95COW M95S2W M95S4W	0 · a · ¥ £ 5 0 · 6	181 - 162	0 4 3	1 0000 9992 9994	;	e 8 1 3	0 3 3	9 000C 9664 9796	? ? ?
1627	M9556W M5558W M95510W	0 - 7 0 - 8 0 - 9	- 2 ! 1 - 2 6 7 - 9	8 2 5	9974 9999 7712	1	37 35 27	6 2 4	9652 9955 9756	2 2 2
1632	M95510 5P M95517W M95511 5P	0 · · · 10 0 · · · 11 0 · · · 12	31	6 9 9	9735 9266 9801	1 4 1	3 8 3 4 3 4	3 4 4	9919 9709 9636	2 2 2
1633 1634 1635	M95512W 892P9 5P(88) H9551W	0 · 13 0 · 14 0 · 15	· 23 18 167	5 1 2 3	9667 490£ 9990	1	4 2 7 3	3 4 3	9930 9110 9398	2 2 2
1636 1637 1638	M9554W M95P4W M95S5W	0 · · · · · · · · · · · · · · · · · · ·	157 145 137	6 2 3	9957 9991 9984	1	1 1 - 2 4 2 1	4 2 2	9458 9677 9940	2 2 2
1639 1640 1641	H9557W H95P7W H95S9W	0 · · · · · · · · · · · · · · · · · · ·	141 137 104	2 1 2	9990 9996 9983	1 1	29 · 32 34	2 2 2	9955 9800 9971	2 2
1642 1643 1644	H95511W H95P11W H95S12W	0 · ·22 YES 0 · ·23 0 · ·24	0 8 :	3	1 0000 9946 9967	1	0 4 6 4 8	5 0	1 0000 4920 5977	2 2 2
1645 1646 1647	H95513W H95P\3W H95515W	0 · · 25 0 · · 26 YES 0 · · 27	7 8 C 6	3 0 3	9949 1 0000 9901	1 1	4 7 0 5 6	2 0	9978 1 0000 9985	2 2 2
1648 1649 1650	H95516 SP H95P16 SP H95S17W	0 - 28 0 - 29 0 - 30	· 5 6 · 3 5 5 7	4 2 2	9969 9974 9980	1	6 f - 6 2 6 0	3 2 2	9968 9958 9986	2 2 2

TABLE B.3 (Continued)

		VERTICAL LOADING ONLY LATERAL LOADING ONLY									
GACE NUMBER	CAGE NAME	CAGE A		VERTICAL SENSITIVITY	ERROR OF	CORRELATION COEFFICIENT	FROM TES?	LATERA. SENSITIVITY		CORRELATION COEFFICIENT	F#C# *E\$*
1651 1652 1653	М95517 н М95515 н М80555(BMSUl	0 - 31		- 1 1 2 - 1 2 6 - 1 5 1	3 5 5	9991 9985 99 <i>80</i>	1	63 · 6 · 44	÷ 8	9974 9975 9931	3
1 6 5 4 1 6 5 5 1 6 5 6	8925MM7; BMSL : H49CDP H61CDP	0 · · · 34 0 · · · 35 0 · · · 36	Y E S Y E S	- 5 8 5 O	7 C	9996	1 1 1	- 77 G G	c c	9941 ' 0000 ' 0000	: :
1657 1652 1659	H73CDP H75COP H77COP	0 38	YES	5 6 8 C	13	9987 9987 9000	3	- 13 C		7300 f 7888 7300	3
1660 1661 1662	H79COP H8:COP H83COP	0 40 0 41 0 42	1 E S	504 456 0	5 2 0	9999 9999 10000	• •	· 10	4 2 c	8403 5849 1 0000	:
1663 1664 1665	H85 <i>CDP</i> H87CDP H91CDP	0 - 43 0 - 44 0 - 45		406 335 248	8 3 5	998C 998 999C	; ;	. ,	8 3 4	9950 7860 5953	2
1666 1667 1668	H93COP H95COP H97COP	0 46 0 47 0 48	YES	2 2 9 6 2 8 ©	3 24 € 0	9993 7201 1 0000	f 4	, c - 4 - 0	- - -	4 1 0 4 8 2 8 1 1 20 2 0	: : : : : : : : : : : : : : : : : : : :
1669 1670 1671	H99CDP H101CDP H103CCP	0 - 49	YES	4.8 6.5 ©	4 5 0	9705 9849 1 0000	3	? c	3 6 c	9 8 4 9 9 6 0 0 0	3
1672 1673 1674	H 105 C G P H 107 C G P H 89 C D P	0 · · 5 2 0 · · 5 3 0 · · 5 6	Y E S	55 - 23 C	4 0	9769 9294 : 0000	1 4 1	4	; e	9722 9449 1 COOC	;
1675 1676 1677	H & 65 F F L C B & D P M M R H B & D P M M R C	0 55		- 13 13 55	3 ? 3	989E 9934 9845	*	196 - 5 58	2 :	9997 8986 9978	ī 7
1678 1679 1680	E&DPMMRY 8&QP!9@1&(FC! 496519(D)	0 58 0 59 C 60	Y E S	- 263 - 210 - 4	4 2 4	9995 5998 988 1	1 1	4 6 - 207 - 2	2 2 3	9955 998 5472	:
1681 1682 1683	892P7MMS 892P7MMP 89258MMS	0 · A · 1 0 · A · 2 0 · A · 3		75 - 1 - 1 - 343	8 8 19	9978 9924 9917	3 4 4	£ 55 -84	2 2 5	9 4 5 ° 9 9 7 3 9 9 1 7	:
1 685 1 685 1 686	8 9 2 5 8 MMP 8 8 6 C 0 MMP 8 8 6 C 0 MMS	Q - A - 4 Q - A - 5 Q - A - 6	v E S	157	0 3 4	9996	1 1	6 7	c : :	9313 9105	; ;
1687 1688 1689	88677MMP 88677MMS 88071MMS	0 · A · 7 0 · A · 8 0 · A · 9		93 -53	4 3 5	9978 9968 9847	1	. 6 1 9	3	2097 8245 9:27	; ; 2
1690 1691 1692	880° 1MMP F82P11M H80P17(LF)	0 - A - 10 0 - A - 11 0 - A - 12		8 2 7 5	5 5 6	8 1 5 8 9 9 3 7 9 9 3 9	4 4	-52 -52	÷	9726 9932 9963	: 4 :
1693 1694 1695	886P20(C1 886P11MMRH 886P11MMRD	0 - A - 13 0 - A - 14 0 - A - 15		12 17 31	4 6 4	9767 9174 9425	4	3 1 1 7 3 2	4 4 3	9767 9440 9900	:
1696 1697 1698	B&6P11MMRV B&6P11MP(HSU) B&6P11MP(HSU)	0 · A · 16 0 · A · 17 0 · 4 · 18		· 2 26 · 20	1333	9367 8727 9930	3	2 2 3 1 2 2	3 3	9823 9890 9647	:
1699	F&6P11 C1 880P11+1P(88) H80P15@14P(LF)	0-4-19 0-4-20 0-4-21		- 28 9 \ 140	2 2 2	9956 9984 9994	1 1	· 9 22 - 216	5 5 5	89 19 99 19 99 98	? ? ?
1702	886P9W(C) 886P8 5F(88) 180P2P(C)	0 - A - 22 0 - A - 23 0 - A - 24	YES	0 - 6 - 4 8	0 2 3	1 0000 9882 9950	1 1	5.2 0 0	3	1 0000 8984 9934	2 2 3
1705	Ba6S7MMP(C) Ha5 9S19PIC) Bads9 5MFRH	0 - A - 25 0 - A - 26 0 - A - 27	YES	· 15 0 · 22	3 0 7	9846 1 0000 9530	1 1	- 15 0 19	4 0 8	\$300 '0000 7392	2 2 2
1708	BBOS9 SMFRD BBOS9 SMFRV B92SMM7(BMSU)	O-A-28 O-A-29 O-A-30		- 29 52 72	5 2 3	9403 9909 9924	3	14 -11 46	5 2 2	9403 900f 9956	3 2 2
1711 1712 1713	M80595[SL] H85 956 5P1H5U H85 956 5P1H5L	0-4-31 0-4-32 1 0-4-33	YES	0 - 8 0 4 0 0	0 2 4	1 0000 9988 9997	1	0 145 - 37	c 2 3	9997 9856	5 5 5
1714 1715 1716	M86535(5U) M86535(\$L) M86 153 5P H5]	0-A-34 0-A-35) 0-A-36	YES	- 9 d - 6 1	0 14 2	1 0000 9528 9983	1	0 25 110	15	· 0000 8676 9994	2 2 2
1717 1718 1719	M86 153 5P(HSO 886511 9MMRH 886511 9MMRD	0 · A · 37 0 · A · 38 0 · A · 39		- 187 26 108	\$ 4 14	9985 9562 9701	1 4 4	- 85 - 9 - 31	5 4 9	9919 9562 7466	; 4 2
1720	886511 9MMRV H86 1517 5P[H5 H86 1517 5P[H5			70 702 - 749	3 3 7	9920 1 0000 9998	1 1 3	- 8 58 72	3 3 5	7850 9955 9897	3 3
1723 1724 1725	H&& 156 5P(HSU H&& 156 5P(HSU H&&,5519P(CU)) O-A-44		366 - 235 - 176	3 4 3	9994 9994	1	- 52 116 126	2 3 3	9953 9989 9990	3 3

TABLE B.3 (Continued)

		VERTICAL LOADING ONLY					LATERAL LOADING DNLY				
GAGE	CAGE	GAGE ASSUMED POSITION CAL	VERTICAL SENSITIVITY		CORRELATION	FROM	LATERAL CENSITIVITY	ERROR OF ESTIMATE	CORRELATION COEFFICIENT	FROM TEST	
1725 1727	H&& \$519F(CL) M&& 1565(U)	0 - A - 46 0 - A - 47	· 95 - 242 - 299	9 6 7	9958 9994 9984	1	123 52 75	2	9887 9948 9774	2	
1728	M&& 1565(L) H&& 1P& 5P(HSU) H&& IP& 5P(HSL)	0.A.SO	322 - 220 - 148	3 3 15	9998 9997 9837	1 1	- 120 - 36	4 7 5	9932 9990 9528	2 3 2	
1731 1732 1733	89257MZ5(8M) 89257MZP(8M) 88653MMP(8M)	0-A-51 0-A-57 0-A-53	- 1 • • • - 7 1 • 9 9	5 3 5	9078 9978 986	4 !	- 1 1 5 2	3 2 5	7997 6711 1647	2 2 2	
1734 1735 1736	B&6S3MMS(BM) B&6S3MZP(BM) B&6S3MZS(BM)	0 - A - 54 0 - A - 55 0 - A - 56	2 - 76 - 39	2 2 2	9905 9992 9985	1 1	4 2 - 10	2 2 3	8799 8521 8268	2 2 2	
1737	88059MM5(8M) 88059MMP(8M) 88059MZ5(8M)	0 - A - 58 YES 0 - A - 58	154 72 59	7 7	9847 9778 9803	3	4 4 - 6 - 1	4 2 9	9750 7979 2511	2 2 2	
1740 1741 1742	##5P2M2(D' #78520P1CU #79520P1CL'	0-4-60 0-8-1 0-8-2	-222 -214 -48	3 3 3	9995 9995 9973	1	2 1 3 2 1 8 5	2 2 2	9 7 9 8 9 9 8 9 5 4 8	2 2 2	
1741	850511MMP1C1 M80511P1C: H79 5520P(FC)	0 · B · 3 0 · B · 4 · YES 0 · B · 5	C - 153	o 3 2	1 2000 9991 9989	;	c - 6 7 - 5 1	6 4 1	1 0000 9886 9926	2 2	
1746 1747 1746	H79 5520P!AC) H79 5520P!ACL) B64CDMMP(C)	0-8 8	- \$8 - 23	3 1	9955 9145 2749	1	- 5 9 - 1 0	4 3 5	9897 9049 6095	2 2 2	
1749	85658 5MFRVIRB 85658 5MFRD:88 85658 5MFRH 18	13 0-8-10 1810-8-11	-43 -2 12	9	9499 7981 8192	1 4	1 4 - 2 † - 5 †	<u>\$</u> \$	867 ° 9383 9766	2 2 2	
1752 1753 1754	856P8 SMFRV(88 856P8 SMFRD(88 856P8 SMFRH(88	1) 0-8-13 1) 0-8-14	- 49 - 23 - 93	1 1 1 1 2 6	9121 7694 8957	1	· 5 8 · 3 0 · 6 6	5 5 5	9845 5 \ 99 9837	2 2 2	
1755 1756 1757	M64P85 (SUA) M64P85 (SUA) M64P85 (SUF)	0-8-15 0-8-16 0-8-17	- 6 7 - 1 9 - 1 4 5	4 14 13	9952 8685 9892	3	- 28 - 28 - 12	3 3	9582 9731 7919	2 2	
1758 1759 1760	M64P85.SLF) 864P11F1P1CU1 864P11F1P1CL1	O-8-18 YES O-8-19 O-8-20	43 134 -446	10 6 5	8885 9924 9997	3 1 1	9 · 5 335	5 2 4	8423 8990 9997	2 2 2	
1761 1762 1763	HET 2520P[CM] HET 2520P[CL] MEOPS SP[C]	0-8-21 0-8-22 YES 0-8-23	0 - 357 - 276	0 3 5	1 0000 9998 9997	1	- 192 - 337	c 2 2	1 0000 9997 9999	2 2 2	
1764 1765 1766	H58 6P2OP(C) H51 3P2OP(C) H58 6P2OP(C)	O-8-25 C-8-25 O-8-26 YES O-8-27	· 267	3 0 6	9998 1 0000 9995	4	- 3 1 9 0 - 3 1 2	2 0 2	9999	2 2 2	
1768	HSS 6P20P1C.1	0-8-78 0-8-79 0-8-30	· 33 25 6	4 3 20	9935 9636 8771	3	2 - 5 - 4 1	1 8	8636 7822 9243	2 2 2	
1770	866P8MMP(8M) M7455P[C] M7355P(C)	0 - B - 3 1 0 - B - 3 2 0 - B - 3 3	-362 -386 -512	•	999¢ 9998 9999	1 1	103 102 123	6 2 1	9532 9992 9998	2 2 2	
1773	MET ZPSPIUCI	0 - B - 34 0 - B - 35 0 - B - 36	· 403 · 432 58	2 4 4	9999 9998 995:	1 3	- 105 - 109 44	2 2	9999 9994 9963	2 2	
: 776 1777 :778 :778	M60P6P[C] H94520P1FC]	0 - B - 37 0 - B - 38 0 - B - 39	- 452 - 7 - 502	5 4 4	9998 9825 9999	1 1 1	- 140 - 22 180	2 3 2	9996 9457 9998	2 2 2	
1780	H94520P(AC)	0-8-40	4 2 3 - 3 5	3 2 3	9714 9858 9942	1	- 2 1 - 6 - 1 7	3 2 3	9376 8239 8719	2 2 2	
1781 1781 1781	1 H91P19P(C) 4 M7958 5P	0 - 8 - 4 3 0 - 8 - 4 4 0 8 - 4 5	-5 -211 -83	4 3 3	9451 9996 9979	1	71 172 0	2 2 3	9896 9997 6537	2 2 2	
178	HS (P19P(AC) T HS (P19P(FC)	0-8-46 0-8-47 0-8-48	\$3 4 37	3 6 4	9875 9644 9591	1	35 - 3 1 35	2 2 5	9923 9868 9636	5 5 2	
178 179	9 HIGIPZOP(AC) 0 H80P19@18(FC	0-8-49	· 8 8 - 2 4 2 - 5 8	4 2 3	9969 9996 1966	1	· 19 · 209 · 212	2 2	9382 9998 9998	3 3 3	
179	2 H79 SP18P[CL 3 M63 9P13S[C]	0-8-52	· 72 · 380 28	2 6 3	9991 9994 9734	1	· 216 · 75 - 200	2 4 2	9998 9914 9996	2 2 2	
179 179 179	5 864P12 9P(LP 6 864P12 9P(SC	1 0-8-55	- 110 72 68	6 6 7	9959 9903 9778	1	· 9 9 1 8 3 8	12 4 7	9688 9317 9032	2 2 2	
179 179 180	8 864P 1MMP(C)	0.8.89	• •	2 14 3	9990 5423 9943	1	- 27 - 4	2 2 3	9990 9863 8876	2 2	

TABLE B.5 - COMPARISON OF ASEM STATISTICAL ANALYSIS RESULTS AND STATIC TEST DATA FROM COMBINED LOADING AT 60 DEGREE LAG

			P MAR!	MUM MEASURES	STRAIN	1 x a M 9	MUM PREDICTED	STRAIN
GAGE Number	GAGE NAME	GAGE ASSUMED POSITION CAL	MEASURED Marimum	P MOMENT EVERY LAT	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT	MEASURED
1 2 3	8 8 C 0 MMP 8 8 P 4 MMP 8 8 P 7 MMP	9 · · 1 9 · · 2 9 · · 3	59 50 123	60 76; 0 0	5 : 5 c 0	5 4 9	SAME (70 69 . (40 80	26
4 5 6	BBCOMFP BBP2MFP BBS4MFP	9 · · 4 9 · · 5 9 · · 6	C 58 2C4	(0 0) 1-50 291 1-20 -77;	0 4 t 4	7 2 5 0	(40 80 SAME (76 1)	c 34
7 8 9	8857MMP 8852MFP 88C0HHRH	9 7 9 8 9 9 1 ES	· 8 6 9 0	0 - 6 - 1 1 - 70 - 6 - 1 C	10 64 C	23	40 -40 SAME -80 40	د
10	BSCOMMRD BSCOMMRV BSP111RV	9 10 9 11 9 12 YES	289 34 2	1 80 45 1 70 . 1 20 77	3c ? 3	2 3	SAME 1 80 40 1 80 40	2 £
13 14 15	BBP111RC BBP111RH BBP5FFRV	9 · - 13 9 · - 14 9 · - 15	16C 33	1 70 1; 1 70 -69 1 1 60 761	179 23 193		SAME SAME SAME	
1 6 1 7 1 8	BBPSFFRD BBPSFFRH BBS111RH	9 16 9 17 YES 9 18 YES	1 4 9 1 6 9 7 4	. 70. 69. (-70. 69, (-80. 40)	164 172 73		SAME SAME SAME	
19 20 21	885111RC 885111AV 8855FFRH	9 19 + ES 9 20 9 21	c 29 103	0 0 1 1 50 -301 70 1	0 1 A 8 4	4 6 8 6	SAME 70, 69° -60 16.	2 ? 8 ~
22 23 24	8855FFRU 8855FFRV 88COMMS	9	2 6 4 2 1 9	[0, 69] [-30 - 79] [-80 -40]	94 265 218	122 269	: 50 -30: 1-40 -80: SAME	109 266
25 26 27	BBP4MMS BBP7MM5 BBCOMFS	9 25 YES 9 26 5 27	8 .	0 01 1-80 -40) - 30 791	8 .		SAME SAME	3
28 29 30	8 & S & MMS 8 & S & MMS 8 & S 7 MMS	9 · · · 28 9 · · · 29 9 · · · 30 · · · £5	20° 0°	- 20 77' -80, 40 - 0, 0	2 ¢ ;	1 ¢	10 - 64 Same Same	. (
3 · 3 2 3 3	852MF5 M9COS M9P11P	9 3 - 3	3¢ 3°	70 - 69 . 70 - 69 .	C 2 & 2 &	28 31	80 -40 80 -40	2 e 2 3
34 35 36	M9511P M11C05 M115:1P	9 34 9 35 - 165 9 36	2 6 C 3 3	50, 401 50, 791	36 0 25	2 ~	SAME SAME . 70 69	2 ·
37 38 39	M13COS M13P12P M13S12P	9 37 9 38 - +ES 9 39	5 å c 3 3	(-80,-40) (-0,-0) (-20-57)	5 1 0 1 9		SAME SAME SAME	
40	M15COS M15S:3P M17COS	9 - 40 9 - 41 9 - 42	80 68 80	[-80 -40] [-80 -40] [-80 -40]	73 57 83		5 4 M E 5 4 M E 5 4 M E	
4 3 4 4 4 5	M:7P:3P M:75:3P M:9C05	9 · · 41 9 · · 44 5 · · 45	48 31 114	(-70 -69) (-10 -64) (-80 -40)	48 30 116	3 1	SAME 1-20 57 SAME	3 1
4 6 4 7 4 8	M195'3P M23C05 M235'3 9P	9 4 6 9 4 7 9 4 8	63 109 128	1 0, 691 1-80,-601 (-70 -r)	112 130	6 2	1 20 771 SAME SAME	5 7
49 50 51	M25P:3P M255:3P M27COS	9 - 49 950 951	208 126 119	(-60, 16) (-60, 16) (-10, 74)	209 125 -9	96	5 AME 5 AME - 80 - 40:	113
5 2 5 3 5 4	M27514P M29005 M29P14P	952 953 YES 954 YES	0 0	1 - 60 , 161	154	156	SAME SAME	127
5 5 5 6 5 7	M29514P M31005 M31514P	955 956 957	177 266 245	[-40, 40] [-80 -40] [-60, 16]	170 259 242	. 73	SAME	,
58 59 60	H24 1520P(C) F954P(C) H36P18 5(D)	9 · · · 6 6 9 · · - 5 9 9 · · - 6 0	159 57 8	[• 70, -1] [0, 69] [• 30, -79]	5 6 0	56	SAME [10 74) [70, 11	5 1 - 4
6 1 6 2 6 3	816COMMP 816COMMS 816P4MMP	9 - A - 1 9 - A - 2 9 - A - 3	121 203 134	[80 . 40] [-60, -76] [80 . 40]	133 167 174	219	(-80, -80) SAME	155
6 4 6 5 6 6	8 1 6 P 4 MMS 8 1 6 P 8 MMP 8 1 6 P 8 MMS	9 - A - 4 YES 9 - A - 5 9 - A - 6	0 147 71	(0, 0) (80, 40) (-30, 49)	173 35	6 59 63	SAME [40, 80)	6
67 68 69	816COMFP 816COMFS 816P3MFP	9 - A - 7 9 - A - 8 9 - A - 9	5 9 1 2 6	[50, 79] [80, 40] [-20, 57]	81 40	41 222	SAME (0, 59)	\$4 1\$4
70 71 72	816P3MFS 816C0F1P 816C0F1S	9-A-10 9-A-11 9-A-12 YES	164 64 0	[50, -30] [70, 69] [0, 0]	80	90	[80, 40] [80, 40] [70, 59]	90
73 74 75	816P2F1P 616P2F1S 816S4MMP	9 - A - 13 9 - A - 14 9 - A - 15	102 39 85	[70, 69] [-20,-77] [80, 40]	103	110	(80, 401 [-80,-40] SAME	10

TABLE B.5 (Continued)

			(P. MAK)	MUM MEASURED	STRAIN	P MAX	IMUM PREDICTED	STRAIN
SAGE Number	GAGE NAME	CAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	# MOMENT (VERT LAT)	PREDICTED STRAIN	PREDICTED Maximum	@ MOMENT	MEASURES STRAIN
76 77 78	# 1 65 4 MMS # 1 65 8 MMP # 1 65 8 MMS	9 - 4 - 16 9 - 4 - 17 YES 9 - 4 - 18 YES	132 94 47	(-80, -40) (50 -30) (-30, 79)	13¢ 91 46	107	SAME (70 - 76)	8 6 2 5
79 80 81	B:653MFP B:653MFS B:652F1P	9-4-19 YES 9-4-20 9-4-21	0 1 2 9 9 2	(0 0) (60 76! (70 1)	5 11: 11:	171	80,40; 80,40; 80,40;	0 117 88
8 2 8 3 8 4	B 1652F15 B 16COHHRH B 16COHHRC	9 - A - 22 9 - A - 23 9 - A - 24	102 47 50	(- 80 - 40) (0 - 65) (- 20 - 57	108 23 23	40 50	SAME 1 70 169 1 1 80 140 1	5
85 86 87	816COHHRV 816P311RV 816P311R0	9 - A - 25 YES 9 - A - 26 9 - A - 27	0 117 124	1 40 80 i 1 70 69 ;	C 6 9 9 6	111	8C 4C; ; 8C; 4O; ; 8C 4O;	2 8 5 1 0 8
8 8 8 9 9 0	816P311RH 816P7 SFFRV 816P7 SFFRC	9 A - 28 9 - A - 29 5 - A - 30 YES	166 8E3	1 80 40	1 5 ± 6 6 1 0	1.6.3	(BC - 40)	1 5 6 C
9 1 9 2 9 3	8168311R# 8168311R# 8168311RD	9 - 4 - 3 1 9 - 4 - 3 2 9 - 4 - 3 3	318 172 176	(-80 -40) (-80 -40) (-80 -40)	295 168 196		SAME SAME SAME	
9 4 9 5 9 6	8165311RV 81657 5FFRH 81657 5FFRD	9 - £ · 34 9 - £ - 35 9 - £ - 36	158 316 219	(-80 -40' (-60 -16)	151 11 249	170 14 307	60 491 [-60 -76 80 40]	135 231 213
9 7 9 8 9 9	BI6ST SFFRY F9CONA F13CONA	9 - A - 3 " 9 - A - 3 8 9 - A - 3 5	412 50 26	(80 40) (-80, -40) (-70 -1)	4 6 9 2 8 2 1	2 9 2 4	SAME { 70 - 11; { 80 - 40 -	4 £ 2 6
107	11750P 121 360P F2500NA	9 - A - 4 C 9 - A - 4 ' 5 - A - 4 T	17: 129 56	(80 40) (80 40) (0 0)	· 75 · 39 o	۱ 9	SAME SAME 	45
103	F 29 C D N A 19 C D P 1 1 3 C D P	9 - 4 - 4 3 9 - 4 - 4 4 - + ES 9 - 4 - 4 5	24 0 29	1 0 01	27 0 25	3 25	5.4ME F - 8C - 40 ' E - 7C 1	c 25
106	F 1700NA F 2 1 300NA H 900P	9 - A - 4 6 9 - A - 4 7 9 - A - 4 8	3 3 6 5	1-70 -691 1-70 -691 1-80 -401	8 17 57	÷ .	1 - 8 C - 4 C '	, 5
109	H1120P H1300P H1500P	5 - 2 - 45 5 - 2 - 50 YES 9 - 2 - 5 1	76 0 64	1 70 69;	4 1 0 0	3 5 5 2	(70, 69)	59 0 - 1 '
112	H1700P H1900P H2300P	9 - A - 52 9 - A - 53 YES 9 - A - 54	255 0 142	[50 - 30] [0 0 0] [80 40]	152 199	8	SAME	ő
115	H 25 C O P H 27 C O P H 29 C O P	9 - 4 - 5 f 9 - 4 - 5 f 9 - 4 - 5 7	193 289 355	(80 40) (80 40)	295 360 426		SAME SAME	
120	H3100P H4700P H1259 5(3)	9 - 4 - 5 E 9 - 4 - 5 5 9 - 4 - 6 0	422 545 12	(80, 40) (80, 40) (-10, -74)	\$5.6 1	3	SAME 1-70 -65	6
121	8 2 4 C C C MMF .B 2 4 C C MMS P 2 4 5 4 MMP	9 · 8 · · · · · · · · · · · · · · · · ·	69 235 35	(70 - 69) (70 - 1!	186	222	(- EC - 4C) SAME	188
125	824P4MMS 82457MMP 824P7MMS	9 8 4 YES 9 8 5 9 8 6	0 46 77 24	1 0 01 , 70 69} 1 10 64}	35 62 28	37 62 33	80, 401 (-20 57)	36 75
127	824COMFP 824COMFS 824S4MFP	9 - 8 - 7 9 - 8 - 8 9 - 8 - 9	19 32	1 0 691	• • • • • • • • • • • • • • • • • • •	137	(-60 161 (-30 -79]	1 · 2 2
130	824P5MFS 824COFTP 824COFTS	9 - 8 - 10 9 - 8 - 11 5 - 8 - 12 YES	49	(70 69 ! (70 0)	47 0	51	80 401 80, 401	33
133	82453F1P 824P3F1S 824P4MMP	9 - 8 - 13 9 - 8 - 14 9 - 8 - 15	3 6 5 4	1-40, 40 1-80, 401	30 72	23	[-70, -1] SAME	36
136 137 138	B 2 4 5 4 MMS B 2 4 P 7 MMP B 2 4 S 7 MMS	9-8-16 9-8-17 YES 9-8-18 YES	142 67 70	(-80 -40) (-80 -40) (-30 -79)	157 83 54	6.6	SAME (-70,-69)	34
139	824F5MFP 82454MF5 824P3F1P	9-8-19 YES 9-8-20 9-8-21	0 67 87	(0 0) (80 40) (80 40)	40 78		SAME SAME SAME	
142 143 144	82453F15 824C0HHRH 824C0HHRD	9 - 8 - 2 2 9 - 8 - 2 3 9 - 8 - 2 4	34 148 77	(-70, -691 (-80, -401 (-70 -1)	62		SAME SAME SAME	
145 146 147	824COHHRY 824P4![RH 824P4!]RD	9 - 8 - 25 YES 9 - 8 - 26 9 - 8 - 27	25 4 8 1	1 0 0 1 1 1 1 - 70 - 1 1 1 - 70 - 1 1	247	248	[-80,-401 SAME	250
148 149 150	824P4 RV 824P9FFRV 824P9FFRD	9 · B · 28 9 · B · 29 9 · B · 30 YES	9 1 3 2 7 0	[70 69] [70 69] [0. 0]	383	383	[80, 60) [80 40] SAME	79 315

TABLE B.5 (Continued)

			P MAX	IMUM MEASURED	STRAIN	⊕ MAK)	MUM PREDICTED	STRAIN
GAGE NUMBER	GACE	CAGE ASSUM			PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT (VERT, LAT)	MEASURED Strain
151 152 153	824P9FFRH 824541 RH 824541 RD	9 - 8 - 3 1 9 - 8 - 3 2 9 - 8 - 3 3	175 321 79	[-80,-40] [-80,-40] [-80,-40]	195 313 16	31	SAME SAME [-40,-80]	61
154 155 156	82454!!RY £2459FFRH 82459FFRC	9 · 8 · 34 9 · 8 · 35 9 · 8 · 36	5 6 1 6 4 5 9	(70, 13 [-80,-40] [70, 1]	57 151 77	60	(80, 40) Same Same	36
157 158 159	B24S9FFRV 175COP 129COP	9 - 8 - 3 7 9 - 8 - 3 8 9 - 8 - 3 9	180 267 225	[80, 40] [80, 40] [80, 40]	191 271 234		S AME S AME S AME	
160 161 162	832CO 1MZP[C] M3: 9COP[C] M22 559 5P[C]	9 - 8 - 4 0 9 - 8 - 4 1 9 - 8 - 4 2	199 438 191	[-80 -40] [-80,-40] [-70,-1]	193 446 187		SAME SAME SAME	
163 164 165	M23P 3P(C) M22 SP 3P(C) M12 SP 4P(C)	9 - 8 - 4 J 9 - 9 - 4 4 9 - 8 - 4 5	159 146 41	[-80,-40] [-80,-40] [-80,-40]	163 151 40		SAME SAME SAME	
166 167 168	M12 SP SP(C) M12 SP4P(C) 824P(1 6P(SC)	9 - 8 - 4 6 9 - 8 - 4 7 9 - 8 - 4 8	39 63 101	(-80,-40) (-70 -69) (-80, 40)	4 1 6 0 1 2 2	62	SAME [-80 -401 [70, 69)	6 1 9 5
169 170 171	H23 958 SP[H5L] H23 958 SP[H5U] H23 9P8 SP[HSL]	9 - 8 - 50	198 295 266	[-60, 16] [-80, 40] [-70, -69]	192 306 259	203 268	(-70, -1) SAME (-80, -40)	198
172 173 174	H23 SP8 SP(HSU M6D59P(C) M48 1P8P(C)	9 - 8 - 5 2 9 - 8 - 5 3 YE: 9 - 8 - 5 4	287 0 339	[80, 40] [0, 0] [-70,-69]	300 C 327		SAME SAME SAME	
175	84855MMS (8M) 84855MZP (8M; 84855MZS (8M)	9 - 8 - 5 5 9 - 8 - 5 6 9 - 8 - 5 7	40 67 60	(50, 79) (-50, 29) (6 0)	5 1 8 3 0	60 102 74	1 70, 69) 1-80, 401 1-80, 401	27 62 18
178 179 180	#4855 HZP(BM) M49 559P[]F; H28P17 5(D)	9 - 8 - 5 8 9 - 8 - 5 9 9 - 8 - 6 0	30 275 `2	1 · 20 . 57 } [· 70 . · 1 } [· 20 . · 77]	2 1 - 2 0	37 128 1	(-70, -1) 1 40, 80) 1 70, 69)	1 8 - 2 7 - 5
181 182 183	840CQT*P 840CQTTS 840P4TTP	81 YES	5 1	(0 -69) (0 0) (20 77)	0	1 0	(30, 79 (70 1) (-60, -76)	- 1
184 185 186	840P4TTS 840P8TTP 840P8TTS	8 - 4 YE 8 - 5 YE 8 - 6 YE	. 0	(0 01 (0 0) (0 0)	c 0 0	0 0 1	[70, 69] [80, 40] [80, 40]	o o
187 188 189	840CD2TP 840C02TS 840P42*P	8 - 7 YE 8 - 8 YE 8 - 9 1E	S i	(0, 0) (0, 0)	0	o o	(60,-161 SAME (-80,-40)	o c
190 191 192	840P82TP 840P82TS	8 - 10 YE	5 4	(0 69) (0 69)	0	0	-60	4
193 194 195	840C0MZP 840C0MZS 840C0MFP	8 12 YE 8 14 YE 8 15 YE	S 2	[0, 0) [60, 16] [0, 69]	0 0 1	o c	(80, 40) (-70, -1) SAME	0
: 96 197 198	840C0MFS 840P7MFP 940P7MFS	816 YE 817 YE 818 YE	5 0	(0, 0)	0	† ©	[-80, -40] [80, 40] [-80, -40]	0 0 0
199 200 201	840C0F1P 840C0F1S 840P6F1P	8 · · 19 YE 8 · · 20 YE 8 · · 21 YE	s o	(0, 0) (0, 0)	0	0	SAME { 80 40 { 70 69 }	0
202 203 204	840P6F1S 840S4TTP 840S4TTS	8 - 22 YE 823 YE 824 YE	5 0	1 0, 741	0	0	[20 77] [-80,-40] SAME	0
205 206 207	84058TTP 84058TTS 84054ZTP	8 25 YE 8 26 YE 8 27 YE	S 2	[0, 0] [50, 79] [0, 0]	0	1	SAME [-80; -40; SAME	o
208 209 210	84054275 8405827P 84058275	8 28 YE 8 29 YE 8 30 YE	s o	[0, 69] [0, 0] [0 0]	0	0	[70, 69] [20,-57] [80, 40]	0
211 212 213	84054MFP 84054MFS 84056F1P	8 31 YE 8 32 YE	s o	{ 50 -30] { 0, 0] { 10, 74]	0	•	1 BO 40) Same (20, 77)	2 0
214 215 216	84056F1\$ 840C0HHRH 840C0HHRU	8 34 YE 8 35 YE 8 36 YE	s o	(0, 0) [0, 0] [0, 0]	0	0	[80, 40] [80, 40]	0
217 218 219	8402611RH 8402611RH 8402611RD	8 37 YE 8 38 YE 8 39 YE	S 2 S 1	(0, 0) 1-20, 571 (30, -49)	0	0	[30, -49] [80, 40] [50 79]	. 1
220 221 222	840P6 RV 840P9F RV 840P9F RD	8 - 40 YE 8 - 41 YE 8 - 42 YE	S 1	[0, 0] [0, 0] [0, 0]	0	1	(-80,-40) [70, 69] [-80,-40]	- 1 - 1
223 224 225	840P9F;RH 840P12FFRY 840P12FFRD	8 - 43 YE 8 - 44 YE 8 - 45 YE	s 0	(10,-64) (0 0) (0 0)	o o	0	[80 40] [80, 40] [80, 40]	0

TABLE B.5 (Continued)

			P MAXI	MUM MEASURED	STRAIN	€ MEX!	MUM PREDICTED	STRAIN
GAGE NUMBER	CACE NAME	GAGE ASSUMED POSITION CAL	MEASURED Max I Mum	& MOMENT LVERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	@ MOMENT [VERT_LAT]	MEASURED STRAIM
226 227 228	840P12FFRH 840S611RV 840S617RD	846 YES 847 YES 848 YES	0 2	(0 0 1 (0 -69)	с 0 6	o o	- 60 , - 40 - 80 - 40 - 70 - 69	0
229 230 231	8405611RH 84059F1RH 84059F1RD	8 - 49 YES 850 YES 851 YES	2 2 2	(60 -16; 60 -16; 0 0;	с 0 с	с 0 0	80 40) 1 70 -11	2 0 0
232 233 234	84059F1RV 840512FFRH 840512FFRD	8 5 2 YES 8 5 3 YES 8 5 4 YES	c c	(0 0	о с с	¢	SAME : 80 40) : 10 -34;	c s
235 236 237	840512FFRV 848CDMMP 84858 4MFRV	8 55 YES 8 56 YES 8 57 YES	c , 2	(30 -45. (50 -30	° °	c	SAME 70 69. (-80,-40)	. · c
238 235 240	84858 &MFRD 84858 &MFRH W46P2ZTiD1	8 58 YES 8 59 YES 8 6C YES	0	1 0 01	0 0	0	70, 1; ; 40 -40 :-80 -401	c c
241 242 243	848COTTP 848COTTS 848P4TTP	8 - A - 1 YES 8 - A - 2 YES 8 - A - 3 YES	2	1 0 -641	0 0 c	1 0	60 - 76 70 1 70 1	c c
244 245 246	848P4TTS 848P8TTP 848P8TTS	8 - A · 4 · V E S 8 - A · S · V E S 8 - A · 6 · V E S	2	1 0 0 0 1	° °	c 1	80 -40 - - 20 -77 - 76 - 1	c c
245 248 249	848CD2TP 848CD2TS 848P42TP	8-A- 7 1ES 8-A- 8 1ES 8-A- 9 1ES	°.	1 0 01	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	° °	- 80 - 40 - - 80 - 40 - - 80 - 40 -	c c
250 251 252	848P42TS 848P82TP 848P82TS	8 - A - 10 YES 8 - A - 11 YES 8 - A - 12 TES	c	1 C C1	c c	c	1 - 50 29 1 1 70 - 69 1 1 - 80 - 40 i	c c
253 254 255	848COMZP 848COMZS 848COMFP	8-4-13 1ES 8-4-14 1ES 8-4-15 YES	¢	: 0 0) . 10 74, 0 C)	0	0	7C 65 -10 64 1-80 -40;	c c
256 257 258	848COMFS 848P6MFP 848P6MFS	8-A-16 YES 8-A-17 YES 8-A-18 YES	¢ ¢ 2	0 01	0	0	- 8 C - 6 C - 8 C - 8 C - 6 C .	c c
259 260 261	848COF1P 848COF1S 848P6F1P	8 - A - 19 YES 8 - A - 20 YES 8 - A - 21 YES	0	1 0 0 1	0	c c	SAME 70 691 80 401	. 2
262 263 264	84454TTP 84454TTS	8 - A - 22 YES 4 - A - 23 YES 8 - A - 24 YES	000	[0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	c c o	0	1 - 70 - 69 2 - 80 - 40 5 AME	0
265 266 267	8485877P 84858775 8485427P	8-A 25 YES 8-A-26 YES 8-A-27 YES	0 0	f 0 0:	e c c	c	SAME 1-80 -401 SAME	¢
268 209 270	848542TS 848582TP 848582TS	8 - 4 - 28 YES 8 - 4 - 29 YES 8 - 4 - 30 YES	0	[0 0] [0 0]	0	0	70 69 SAME	° c
271 272 273	84856MFP 84856MFS 84856FJP	8 - A - 3 1 YES 8 - A - 3 2 YES 8 - A - 3 3 YES	0	(0 0)	0	1	70 -69. SAME (-80 -40)	,
274 275 276	84856F1S 848CDHMRH 848COHMRD	8 · A · 3 4 Y E S 8 · A · 3 5 Y E S 8 · A · 3 6 Y E S	0	t 0 -691 t 0 01 t 0 01	0	0	1 70 69 J 1 70 69 J 1 - 60 - 76 J	; 0
277 278 279	848CONHQV 848P711RV 848P711RD	8 · A · 37 YES 8 · A · 38 YES 8 · A · 39 YES	0 2 2	(0, 0) (-20, 57) (60 76)	0	0	[70, 69] (40, 40] (70, 69]	0
280 281 282	848P7 RH 848P10F RV 848P10F RD	8 - A - 4 0 Y E S 8 - A - 4 1 Y E S 8 - A - 4 2 Y E S	1 2	1 0, 0) { 0,-69] { 0,-69]	0	° °	1 20 771 1 70 691 1 80 401	
283 284 285	848710F1RH 848712FFRV 848712FFRD	23Y E4·A·8 23Y 44·A·8 23Y 24·A·8	2 0 0	[50,-30] [0, 0] [0, 0]	•	0 0	[80, 40] [40, 40] [-80, 40]	0
286 287 288	848F12FFRH 8465711RH 8485711RD	8 · A · 46 YES 8 · A · 47 YES 8 · A · 48 YES	0	[0, 0] [0, 69] [0, 0]	0	o o	[-80,-40] [-80,-40] [-60,-76]	· 1
289 290 291	8485711RV 848510F(RH 848510F1RD	8-A-49 YES 4-A-60 YES 8-A-51 YES	2 0 2	[20, 77] [0, 0] [0 -69]	o o	0 1 0	[80, 40] [-80,-40] [-80 -40]	•
292 293 294	848510F!RV 84851211RH 84851211RD	8-A-52 YES 8-A-53 YES 8-A-54 YES	0	(0 0)	0	c 1	SAME [-10,-74] [-80,-80]	0
295 296 297	#4851211RV H48 1520P[C] #48513MMS[C]	8 - A - 55 YES 8 - A - 56 YES 8 - A - 57 YES	3	(0, 0) (50 -30) (0, 0)	· 2	3	SAME {-80,-40} {-80,-40}	• ;
298 299 300	#8659 P{C} #86594MM5{C] #40P1(DK)	8-A-58 YES 8-A-59 YES 8-A-60 YES	0 4 1	[0,-69] [0,-69] [10 -64]	o o	0 1	(80 -40) (70, 69) (80, 40)	• 4 • 1

TABLE B.5 (Continued)

			₽ MAXI	MUM MEASURED	STRAIN	P MAXI	MUM PREDICTED	STRAIN
GAGE NUMBER	GAGE	GAGE ASSUMED POSITION CAL	MEASURED Maximum	@ MOMENT {VERT,LAT}	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT (VERT, LAT)	MEASURED Strain
301 302 303	M30 4910# M30 4910 5P M30 4911#	8 · 8 · 1 YES 8 · 8 · 2 YES 4 · 8 · 3 YES	8 1 2	[-20,-77] [-20,-\$7] [-10,-64]	0 0 0	0	[-80,-40] [-80,-40] [-50,-29]	- 1 0
304 305 306	M30 4P11 SP M30 4P12W M30 4P13W	8 · 8 · 4 YES 8 · 8 · 5 YES 8 · 8 · 6 YES	2 : 0	{ 30, 491 [10, 44] [0, 0]	0 0 0	1 0	[-20	0
307 308 309	M31 2P10W M31 2P10 SPRL M31 2P10.SPRD	8 · 8 · 7 YES 8 · 8 · 8 YES 8 · 8 · 9 YES	2 5 2	[30, 49] 1-50, 291 [70, 1]	° °	0 0	[80, 40] [-80, -40] [60, 76]	· 2 · 1 · c
310 311 312	M31 2P10 SPRH M31 2P11W M31 2P11 SP	8-8-10 YES 8-8-11 YES 8-8-12 YES	2 2	1 30,-49; { 0,-69; [40, 80]	o o	0	[70, 69] [70, 69] [10, -64]	; o c
313 314 315	M31 2P17W M31 2P13W M3: 2P14W	8-8-13 YES 8-8-14 YES 8-8-15 1ES	1 2 2 0	(80, 40) (30, -49) (0, 0)	0	0 0 0	1 20, 771 1 80, 601 1 80, 401	0
316 317 318	\$60°8MMRH{\$8} 832°10MMP 840°8MMRU(\$8)	8-8-16 YES 8-8-17 YES 8-8-18 YES	2 8 1	0, 0 -20,-771 20,-571	0	1 0 1	[70, 69] [60, 40] [-70, -1]	2 0 1
319 320 321	832910 5MMP 84098MMRV(88) M31 8911 29RH	8 - 8 - 19 YES 8 - 8 - 20 YES 8 - 8 - 21 YES	o o 5	[0, 0] [0, 0] [30, 79]	0	0	SAME [-80]-40] [-80]-40]	0
322 323 324	M31 8P11 ZPRD M31 8P11 ZPRL M31 8P11 5P	8-8-22 YES 8-8-23 YES 8-8-24 YES	6 0	1 0, 01 1-20, -771 1 0 01	0	0	[20, 77] [-60, 40] SAME	0
325 326 327	M31 8P12W M31 8P13W M31 8P14W	8 - 8 - 25 YES 8 - 8 - 26 YES 8 - 8 - 27 YES	0 \$ 0	[-50, 29] [-50, 0]	0 1 0	1	SAME [-20 57] SAME	- 3
328 329 330	M32 4P10W M32 4P10 5P M32 4P10 7P	8 · 8 · 28 YES 8 · 8 · 29 YES 8 · 8 · 30 YES	2 0 0	(0. 0) (0. 0) (0. 0)	o o	o o	i 40,-40) i 80, 401 [-80,-40]	o o
33 ¹ 33 ² 33 ³	M32 4P11 1P M32 4P11 3P M32 4P11 5PRH	8-8-31 YES 8-8-32 YES 8-8-33 YES	0 2	[10, -64] [0, 0] [30, -49]	o o	0	(70, 69) SAME (70, 69)	c ·
334 335 336	M32 4P11 5PRD M32 4P11 5PRL M32 4P12W	8-8-34 YES 6-8-35 YES 8-8-36 YES	0 0 2	[0, 0] [0, 0] [70, 1]	o o	o o	{ 80, 40 } { 70 69 } { 80, 40 }	0 0
337 338 339	M32 4P13W M32 4P14W M31 2511W	8-8-37 YES 8-8-38 YES 8-8-39 YES	2 3 2	[30, 79] [-50, 29] [60, 76]	c 0 0	o o	{ 40, 80} [-40, -80] [-70, 69]	• 1 • 0
340 341 342	M31 2512W M31 2513W M31 2514W	8-8-40 YES 8-8-41 YES 8-8-42 YES	0 1 2	[0, 0] [10,-64] [60,-16]	o o	o o	[70, 69] [20 -57] [80, 40]	• i • i
343 344 345	M31 8511W M31 8511 2PRL M31 8511 2PRD	8-8-43 YES 8-8-44 YES 8-8-45 YES	3 8 0	[70, 1) [50, 29] [0, 0]	o o	o o	(80, 40) (70, 69) (80, 40)	- 7 C O
346 347 348	M3: 8511 2PRH M3: 8512W M3: 85:3W	B · B · 46 YES B · B · 47 YES B · B · 48 YES	0 5 2	{ 0, 0} { -20, -77} [70, 1]	o o	o o	(-80 -40) (-80,-40] (-70 69)	° .
349 350 351	M31 8514W M32 6510W M32 6510,7P	8 · 8 · 49 YES 8 · 8 · 50 YES 8 · 8 · 51 YES	16 17 2	[-20,-77] [-50, 29] [-80, 40]	o o	0	[-80,-40] [-70,-69] SAME	C . 1
352 353 354	M32 651: 3P M32 6512W M32 6513W	8-8-52 YES 8-8-53 YES 8-8-54 YES	0 2 1	(0, 0) (0,-69) (30,-49)	o o o	0	SAME [80, -40] [80, 40]	• 1
355 356 357	M32 6514W H24 1517 SP(HS H24 1517 SP(HS		3	(0, 0) (70, 1) (40, 80)	0 0 - 1	1	SAME 1-50, 791 1-70,-691	. 1
358 359 360	H24 2520.5P(HS H24 2520 5P(HS W52P27T(D)	U)8-B-59 YES	4	[-50, 29] [-60, -40] [-6, 0]	0 0 0	o o	[-70, -1] [-60,-76] [-30,-79]	6 0 1
361 362 363	M21P13 5P M21P12W M21P6W	7 · · 1 7 · · 2 7 · · 3	390 40 205	[-80,-40] {-40,-80] [-70,-69]	12 2 179	25 4 186	[40, 80] [-80,-40] [-80,-40]	· 173 2 203
364 365 366	M21P2W M21CDW M21S2W	7· · 4 7· · 5 YES 7· · 6	171 0 154	[-80, -40] [0, 0] [-50, -79]	173 0 75	143	SAME SAME [-80,-40]	135
367 368 369	M2 15 4W M2 15 6W M2 15 8W	7· · 7 7· · 8 7· · 9	187 133 132	[-80,-40] [-70,-1] [-70,-1]	179 133 135		S A ME S A ME	
370 371 372	M21510W M21511 5P M21512W	7 10 7 11 7 12	106 100 73	[-60, 16] {-70, -1} [-40, 40]	108 100 71	109	[- 70 , - 1 Same Same	104
373 374 375	M21512 SP M21513W H21513 SP	7 13 7 14 7 15	64 82 94	[-50, 16] [-40, 40] [-20, 57]	56 78 67	\$ 9 \$ 0 7 0	[•40, 40] [•50, 29] [0, 69]	60 82 64

TABLE B.5 (Continued)

			P MAX	MUM MEASURED	STRAIN	P MAX	IMUM PREDICTED	STRAIN
GAGE Number	GAGE Name	GAGE ASSUMED POSITION CAL	MEASURED Maximum	D MOMENT	PREDICTED STRAIN	PREDICTED Maximum		MEASURED STRAIN
376 377 378	H16.2515P(CU) H21COW H21S2W	7 · -16 7 · -17 7 · -18	96 142 152	[-70, -1] [80, 40] [80, 40]	93 139 146		SAME SAME SAME	
379 380 381	H21P2W H21S5W H21S7W	7 19 7 20 7 21	123 127	[80, 40] [80, 40] [70, 69]	124 130 97	97	SAME SAME (&O, 40)	9 6
3&2 3&3 3&4	H21P7W H21S9W H21S11W	7· -22 7· -23 7· ·24	8 3 9 3	{ 60, -16} { 70, 69} { -70, -1}	5 2 8 2 9 1	5 5 9 2	{ 70 1 } SAME -60, 16 }	69 91
385 386 387	H21P11W H21S13W H21S13.SP	7 · - 2\$ 7 · - 26 7 · - 27	50 91 67	[60	53 86 67	5.4	(50,-30) SAME SAME	4.6
344 349 390	H21P13 SP H21S14W H21S16W	7· ·28 7· ·29 7· ·30	75 424 64	(-50,-79) (-40, 40) (-30, 49)	74 18 42	64 63	SAME (50, 76) (-40, 40)	17 5 å
391 392 393	H21P16W H21S18W H21P18W	731 732 733	130 78 165	[-70,-69] [-50, 79] [-70 -69]	134 78 167	8.5	SAME 70 69 1 SAME	72
394 395 396	733C0W 735C0W 737C0W	7 · · 34 7 · · 35 7 · · 36	34 30 300	1-80,-401 [-50,-791 [-10,-74]	- 18 - 11	27 18	SAME (80 401 (60 - 16)	32
397 398 399	T39CDW T41CDW T43CDW	737 738 739	296 118 16	[0, 0] [30, 79] [-70, -1]	1 10	20 26 12	(80 40) (-70, -1) (-80 -40)	74 - 18 - 16
400 401 402	T45COW T47COW Z33COW	740 741 742	7 7 25	(-70, -69) (-70, -1) [-80, -40]	5 8 27	6 8	(-80 -40) (-60,-40) SAME	5 7
403 404 405	135CDW 237CDW 239CDW	7 43 7 44 7 45	38 94 143	(-80,-40) (-80,-40) (-80,-40]	38 96 142		SAME SAME SAME	
406 407 408	741CDW 243CDW 245COW	746 747 748	0 224 283 415	(0, 0) (-80,-40) (-80,-40)	0 227 283 344	179	SAME SAME	٥
409 410 411	247CQW M33CQW M35CQW	749 750 751 752 YES	266 304	(-80,-40) (-80,-40) (-80,-40)	226		SAME SAME SAME	
412 413 414	M37COW M39COW M41COW M43COW	753 YES 754 YES 755 YES	0	(0, 0) (0, 0) (0, 0)	•		SAME SAME SAME	
416	M45CDW M47COW 84058MMW(C)	756 YES 757 YES 758 YES	0	(0, 0)	0		SAME SAME	
419 420 421	840512MMP(C) 815P12(DR) 133 3CDP	759 YES 760 YES	190	(80, 40)	202		S AME S AME	
422 423	137COP 141COP	7-A- 2 7-A- 3	308 323 296	[80, 40] (80, 40]	299 326		SAME SAME SAME	
425 426 427	F33 3COM F37COW	7-A- 5 7-A- 6 7-A- 7	28 22	[-60, 16] [-70,-69]	16 12 - 2	2 1 1 4	[-80 -40] {-80,-40]	2 6 1 6
428 429 430	F45.3COW H33COP	7-A- 8 7-A- 9	13	[80 40] [80, 40]	475	•	S AME S AME	••
431 432 433	H37CDP H39CDP	7-A-11 7-A-12 7-A-13	447 472 \$15	(80, 40) (80, 40)	448 465 511		S AME S AME S AME	
434 435 436	H43COP H45COP	7-A-16 YES 7-A-15 YES 7-A-16 YES	0	(0, 0)	0		SAME SAME SAME	
427 438 439	M33511.1P M33F11.1P M35S11.1P	7-A-17 7-A-18 7-A-19	232 250 253	(0, 0) (70, -1) (80, -40)	220 284 280	256	SAME [- 70 - 69] SAME	280
440 441	M37811 1P M37P11 1P	7-A-20 7-A-21 7-A-21	249 432 366	(+70, +1) [+70, +1] [+60, +76]	242 378 25	404	\$AME (-70 -69)	390
443 444	M41511 1P M41P11 1P M43511 1P	7-A-23 7-A-24 7-A-25	249 431 258	{ · 70 , · 1 } { · 70 , · 6# } [· 70 , · 1]	248 428 254	**	SAME SAME	••
446	M45511 1P	7 · A · 24 7 · A · 27	243 501	[-70, -1] [-70, -69]	289 800		S A M E S A M E	
444	M47511 1P M33514P M33714P	7 - A - 28 7 - A - 29 7 - A - 30 YES	269	(-40, 40) (-70, -1) (-6, 0)	163 263 0	264	SAME {-60 *6} Same	25.6

TABLE B.5 (Continued)

			P MAR!	MUM MEASURED	STRAIN	ge MΔ×į	MUM PREDICTED	STRAIN
GAGE NUMBER	GAGE Name	GAGE ASSUMED POSITION CAL	MEASURED Maximum	& MOMENT [VERT,LAT]	PREDICTED STRAIN	PREDICTED MAXIMUM	P MCMENT [VERT,LAT]	MEASURED STRAIN
45 1 45 2 45 3	M35514P M37514P M37P14P	7 - A - 31 7 - A - 32 7 - A - 33	269 267 436	(- 60 , 16) (- 50 , 29) (- 70 , - 69)	267 244 170	249 199	SAME (-60, 16) (-40-80)	265 361
454 455 456	M39514P M41514P M41P14P	7 · A · 3 6 7 · A · 3 5 7 · A · 3 6	316 49: 347	[-40, 40] [0, 0] [-10,-74]	191 0 175	208 185 330	[-60 6] [-70 1] [-70 69]	117 18 297
457 458 459	M43514P M45514P M45P14P	7-A-37 7-A-38 7-A-39 YES	744 260 0	(-60, 16) (-40, 40) (-0, 0)	246 263 0	270	5 AME (- 5 C - 29 } 5 AME	254
460 461 462	M47514P W32 15MZO 1RV W32 15MZO 1RD	7 - A - 40 7 - A - 41 7 - A - 42	309 175 500	[-40, 40] [-60,-16] [-80,-40]	273 185 494	283	(-60 161 1 80, 40) SAME	276 145
463 464 465	W32 ISMZO IRL W32 ISZTO IP W355MZO SP	7 - A · 43 7 - A · 44 7 - A · 45	324 121 285	(-70, -1) (-70, -1) (-70, -1)	314 - 25 288	3 1	SAME (-50 79) SAME	- 3 1
4 6 6 4 6 7 4 6 8	#355MZ2# #3552M3 9P #3552T0 1P	7 · A · 46 7 · A · 47 7 · A · 48	235 261 214	{-70, -1; [-80, -40] [-80, -40]	211 261 215		SAME SAME	
469 470 471	W355772W W355773 9P M49 559P(F0)	7 - A - 49 7 - A - 50 7 - A - 51	90 106 260	[-80 -40] [-80 -40] [-50, 29]	67 92 23	70 255	1 - 70 - 1 5 AME 1 70 - 1 1	237
472 473 474	M49 559P(AD) 8485ZMMW(C) 8565:0 1MMP(C)	7 · A · 5 2 7 · A · 5 3 7 · A · 5 4	264 81 75	[-70	261 97 45	50	SAME SAME (-70 -1)	67
475	840\$3MM\$(8M) 840\$3MMP(8M) 840\$3MZ5	7 - A - SS 7 - A - S 6 7 - A - S 7	38 111 75	[-30,-79] [-80,-40] [-80,-40]	23 117 80	34	(-70 -69) Same Same	34
478 479 480	840\$3MIP 848\$5MMP H44\$19(D)	7 - A - S 8 7 - A - S 9 7 - A - 60	6.4 6.7 6.1	(-80,-40) (-80,-40) (-80,-40)	7 1 8 1 6 1		S AME S AME S AME	
481 482 483	T49P:0W T49P5W T49COW	7 - 8 - 1 7 - 8 - 2 7 - 6 - 3	300 86 23	(-80,-40) (-80,-40) (-80,-40)	297 87 21		SAME SAME SAME	
4 8 4 4 8 5 4 8 6	14952W 14954W 14956W	7-8- 4 7-8- 5 7-8- 6	27 18 0	(-50, 29) (-50, 0)	13	1 6 1 4 5 3	(-60 16) (-30, 49) (-80,-60)	17
487 488 489	T4958W T49510W T49510 5P	7 - 8 - 7 7 - 8 - 8 7 - 8 - 9	145 220 292	[-70, -1] [-80, -40] [-80, -40]	208 288 288	2 1 2 2 8 8	(- 70 - 1) (- 70 - 1)	2 1 6 2 8 8
490 491 492	149510 9P 249P10W 249P6W	7-8-10 7-8-11 7-8-12 7-8-13 YES	331 505 338	[-80,-40] [-80,-40] [-80,-40]	506 342		SAME SAME SAME	
493 494 495	74950W 24952W 24954W 24956W	7-8-13 7-8 7-8-14 7-8-15	331 354 388	(-80,-40) (-80,-40) (-80,-40)	321 352		SAME SAME	
496 497 498	24956W 24958W 249510W 249510 5P	7-8-16 7-8-17 7-8-18	219 328 345	[-80, -40] [-70, -1]	2 1 2 3 2 6	213	SAME	217
\$00 \$0'	249510 9P 249510 9P W495MZ2W W495ZM3 9P	7-8-20 7-8-21	346 120 389	(-70, -1) (-50, 29)	343 120 367		SAME Same Same	
502 503 504	W495MZO 1RL W495MZO 1RD W495MZO 1RV	7 · 8 · 23 7 · 8 · 24	265 298 210	(-70, -1) (-70, -1)	263 294 208		S AME S AME S AME	
506 507	W495ZT2W W495TZ3.9P	7 - 8 - 26 7 - 8 - 27 7 - 8 - 28	322 321 337	{ 70, 1} {-70, -1} {-70, -1}	323 313 333		SAME SAME Same	
509 510	W4952TO 1RU W4952TO 1RV M49914W	7 · 8 · 29 7 · 8 · 30 7 · 8 · 31 YES	37 126 0	(70, 1) (70, 69) (80, 40)	133		SAME Same Same	
511 512 513	MASPIGM	7 - 8 - 32 7 - 8 - 33 7 - 8 - 34	0 414 381	(0, 0) (0, 0) (-70,-69)	0 420 386	13	(- 70 - 69) SAME SAME	o
5 1 5 5 1 6	M49P6W M49P2W M49CDW	7-8-35 7-8-36	361 367 276	[-70,-69] [-80,-40]	352 366 275	357	1 - 80 - 40) SAME SAME	345
517 518 519	M4952W M4954W	7 - 8 - 3 8 7 - 8 - 29 7 - 8 - 40	366 330 268	[-80,-40] [-80,-40] [-70,-1]	377 349 266		SAME SAME SAME	
520 521 522	M4956W M4958W M4959 5P	7 - 8 - 4 1 7 - 8 - 4 2	246 260 246	[-70, -1]	254 256 250		SAME SAME	
523 524 525	M49510W M49510.9P M49510.9P	7 - 0 - 43 7 - 0 - 44 7 - 0 - 45	267 259	(-70, -1) (-70, -1) (-60, 16)	263 260		SAME	

TABLE B.5 (Continued)

			E MAXIMUM MEASURED STRAIN			(P MAXIMUM PREDICTED STRAIN		
GAGE Number	GACE Name	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM		PREDICTED	PREDICTED MAX! MUM	P MOMENT [VERT.LAT]	MEASURED STRAIN
5 2 6 5 2 7	M49512# M49512 5P M49513#	7 - 8 - 4 6 7 - 9 - 4 7 7 - 8 - 4 5	264 268 293	(-50, 29) (-50, 29) (-60, 16)	259 252 295	263 256	(-60, 16) (-60, 16) SAME	260 258
5 2 6 5 2 9 5 3 0	M49513 5P M49514W	7 - 8 - 49 7 - 8 - 50 7 - 8 - 5 !	319 297 284	[-60 16] [-50	0 279 258	268	1 0. 0) SAME 1-70 -1)	· 15
531 532 533	M49511 1P Beacomms(C1 23853 5P(C)	7-8-52 7-8-53 7-8-54	2 1 0 208 1 4 9	(-70, -1) (-80, -40) (-70, -9)	1 1 7 200 1 35	134	[-80 -40] SAME (-80 -40)	164
534 535 536	23353 SP(C) 23353 SP(C) 243P3 SP(CO)	7 - B - 55 7 - B - 56 7 - B - 57	147 214 252	[-80 -45; [-80, 40; [-80, 40;	144 273 251		S AME S AME S AME	
537 538 539	243P3 SP(C1) 253P3 SP(C1) 253P3 SP(C0)	7 - 8 - 5 / 7 - 8 - 5 9 7 - 8 - 6 0	35: 403 147	[-80,-40] [-80,-40] [-80,-40]	345 377 143		S AME S AME S AME	
540 541 542	H52518[D] H16 2515P[CL] H49P3W		C 459 345	1 0 0} 1 80, 401 { 70, 11	0 4 6 7 3 5 C		S AME S AME S AME	
543 544 545	H49P1OW H49P1OW	6 · · 4 6 · · S	249 198 216	[70 1] (50 30) [40 80]	256 214 207		SAME SAME SAME	
546 547 548	H49P15 SP H49P18W H49S1W	6 · · · · · · · · · · · · · · · · · · ·	550 499	1 10 641 1 80 401 1 80 401	0 562 507	t	(-8C, -4O) SAME SAME	- 1
549 550 551	H4953W H4955W H4957W	6 · · · 9 6 · · · 1 O 6 · · · 1 ·	467 481 439	{ 80 40; { 80.40} { 70.69}	#77 #83 #44		S AME S AME S AME	
552 553 554	H4959W H4951QW H49511W	6 - 13 6 - 14	387 368 341	[70 69] [70 69] [70 69]	404 376 358		S AME S AME S AME	
\$5 ° 55 6 55 7	н49512W н495'3W н49515 5P	616 617	299 204 202	(70, 69) (40, 80) (70, 63)	307 209 105	172	SAME SAME [10 74]	180
558 559 560	M49516W M49518W M49519W	615 619 YES 620	C 273 332	t 0 Cl (-50 29 I (-70, 69 !	272 346		SAME SAME SAME	
561 562 563	H45\$11 5P H45\$16 5P [®] T46\$10 9P	6 · · · 2 · · · · · · · · · · · · · · ·	185 255	[20, 77] [-70, -1] [-70, -1]	177 241 97	.79	(30 79 SAME SAME	٠ 7 9
\$ 6 4 5 6 5 5 6 6	139510 9P 139574	6 24 8 25 6 26 - 785 6 27	211	-80, -40 0 0 -80, -40	206		S AME S AME S AME	
567 568 569	M 4 E S 8 W	6 · 28 6 · 29 6 · 30	39 265 260	-60 16 -70 -1 -70 -1	34 258 258		S AME S AME S AME	
570 571 572	MA 358W M3957W	6 - 3 · 6 · 3 2 · 6 · 3 3	248 249 236	[-80,-40] [-70,-1]	287 -1 230	78	SAME L AO BO SAME	- 67
573 574 575	W1 / 20EM	6 · · · 34 6 · · · 35 6 · · · 36	172 228 357	(-70, -11 (-60, 16) (-70, 1)	151 198 125	154 209	[-60 16] [-70, -1! SAME	156
576 571 578	7 M2758# 6 H555:3N	6 · · · · · · · · · · · · · · · · · · ·	187 0 63	(-80,-401 (-0,-01 (-70,-691	179 0 59	59	SAME SAME (-80,-40)	61
5 7 9 5 8 9 5 8 9	0 T54P7W 1 T54P10 9P	6 - 40	246 162 36	[30, 79] [-70 -69] [-60 -76]	25 4 15 1 7	254 161 20	40, 80; -80-40; -70-11	244 131 30
5.8 5.8 5.8	3 154P10 9P	6 - 43 6 - 48 6 - 45 TES	117 256	(-70 , -1) (-70 , -1) (-0 , -0)	109 257	111	(-80 -401 5AME \$AME	107
58 58 58	6 H57COP 7 H57S:3W	6 · · 4 6 6 · · 4 7 6 · · 4 8	645 605 677	1 80 401 1 70 691 1 70 691	656 173 15	201	\$AME [40 80] [40 80]	333 289
58 59 59	9 H53COP 0 H53P13W	\$ - 49 YES 5 - 50 5 - 51	0 226 385	(0, 0) { 50, -30] { 70, 69]	233 390		; ame Same Same	
59 59 59	2 H51CQP 3 M51S14P	6 - 52 - 785 653 654	283 316	; 0. 0) {-50. 291 (ao. 401	0 278 324		s a me s a me s a me	
59 59 59	5 157COP	6 · · · · · · · · · · · · · · · · · · ·	272 18	(80, 40) 1-70 -691 1-20, 571	•	10	(40 - 80) (-80 - 40) (20 - 77)	14
5 9	18 F57COW	6 - 58 YES	254 3	(0, 0 {-50, 29} (-40, -80]	2 6 2 0	266	SAME (-60 16) (-60, 40)	2 5 2

TABLE B.5 (Continued)

			P MAXIMUM MEASURED STRAIN		P MAKIMUM PREDICTED ST		STRAIN	
GAGE NUMBER	SASE Name	GAGE ASSUMED	MEASURED MAX 1 MUM	P MOMENT LVERT, LATI	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT (VERT, LAT)	MEASURED STRAIN
601 602	15100w 15300w	6-A- 1 YES 6-A- 2 6-A- 3 YES	0 1 8 2 5	[0, 0] [-70,-69] [-40, 40]	0 4 10	6	\$AME [-70, -1] [-60 16]	14
604 605	T54CDW T55COW 260510 9P	6-A- 4 6-A- 5 6-A- 6	5 t 109 t 632	(10, 74) (-80,-40) (-80,-40)	10 1110 644	11	1 50 791 SAME SAME	- 15
506 607 608	26056W 26000W 259510 9P	6-A- 7 YES	1 884 526	(10, -64) (-70, -1) (-80 -40	0 278 536	1	1-80 -401 SAME SAME	- 1
610 611	259CDW 258S10 9P 258S6W	6 - 4 - 9 6 - 4 - 10 6 - 4 - 11	693 435 475	[-70, -1] [-80,-40]	692 444 5:3		S AME S AME S AME	
612 613 614	258COW 257COW 257510 9P	6 - A - 12 6 - A - 13 6 - A - 14	500 482	(-80,-40) (-70,-1) (-80,-40)	504 479 655		SAME SAME SAME	
615	256 2P10 9P 256 2CG#	6 - A - 15 6 - A - 16 6 - A - 17	663 562 502	(-80,-40) (-80,-40)	574 514		S A ME S A ME	
6 1 7 6 1 8 6 1 9	256 286W 256 286W 256 2810 9P	6 - A - 1 8 6 - A - 1 9	482 555	(-80,-40)	487 577 473	5 6 3	SAME SAME SAME	520
620 621 622	255COW 255510 9P 254COW	6 - A - 20 6 - A - 21 6 - A - 22	467 533 467	[-80,-40] [-70,-1] [-80,-40]	535		SAME SAME SAME	
623	25556W 254510 9P	6 - A - 23 6 - A - 24	\$51 \$00 433	(+80 -40) (+70, -1)	447 506 443		SAME SAME	
525 626 627	25300W 25100W M5100W	6 - A - 25 6 - A - 26 YES 6 - A - 27 YES	0	1 0, 01	272		S A M E S A M E S A M E	
628 629 630	MS 15 11 1P 149COP M53COW	6 - A - 28 6 - A - 29 6 - A - 30 YES	276 322 0	80, 401	328 C		SAME SAME SAME	
631 632 633	M53511.1P M53514P M53911.1P	6 - A - 3 1 6 - A - 3 2 6 - A - 3 3	252 364 423	1 - 60 16) 1 - 50, 291 1 - 70 - 691	249 304 431	306	1-60 16; SAME	304
634 635 636	M53P14 M55COW M55S11,1P	6 - 4 - 3 4 6 - 4 - 3 5 6 - 4 - 3 6	476 294 1554	1-70 -69: 1-80,-40! 1-10,-74!	202 330 141	235	[-40 -80] SAME (-60 -16)	393 230
637 638 639	MSSS14P MS7C0W M57S1: 1P	6 · A · 37 6 · A · 38 6 · A · 39	370 0 343	(-50, 29) (-60, 16)	327 0 333	329 346	1-60 16) (-80,-401 SAME	319
640 641	M57514P M57P14 M57P11 1P	E · A · 40 6 · A · 41 YES 6 · A · 42	234 0 586	(-50 29) (-6 0) (-70,-69)	230 C 572	232	(+60, 16) Same Same	232
642 643 644 645	M59COW M59514P M59511 1P	6 - A - 43 (ES 6 - A - 44 6 - A - 45	0 315 241	(0, 0) (-50, 29) (-50, 29)	0 312 237	314 241	SAME [- 60 16 [- 60 16	3 \ 3 24 !
646 647 648	WSS 95MZO 1RV WSS 95MZO 1RD WSS 95MZO 1RL	6 - 4 - 4 7	144 231 287	(-20, 57) [50, 79] [-60, 16]	129 262 209	131 265 211	[40 40] [60 76] [70 1]	136 223 223
649 650 651	WS\$ 95720 1RV WS\$ 95720 1RD WS\$ 95720 1RL	6 - A - 4 9 6 - A - 5 0	138 252 548	(70 11 [-80,-40] (-70, -11	142 208 536		SAME SAME SAME	
657 653 654	W55 952M3 9RV	6 - A - 5 2 6 - A - 5 3	129 211 555	[70, 1] (-70, -1] [-70, -1]	141 225 551		SAME SAME SAME	
655 656	W56 152M3 9RL W56 152M3 9RC	6-A-55 6-A-56	73 31 138	(C, 69) (C, 69) (70, 1)	- 1 - 69	4 1 5 8 0	(-80 -40) 70 -59 -80 -40	- 5 2 2 - 1 7
657 658 659	HSB 3P2OP RESISTOR	6 - A - 5 8 6 - A - 5 9 6 - A - 60	216 13 14	[-10 -74] [-70,-69] [-60,-76]	199 2 4	210	[20 - 57] [-80 - 60] SAME	187 5
661 662 663	856COTTP 856COTTS	6-8-1 YES 6-8-2 6-8-3	0 334 85	(0 0) (-80,-40) (0,-69)	0 362 50	73	SAME SAME (=60,+76]	36
664 665 666	856P4TT5	5 * 8 * 4 6 * 8 * 5 6 * 8 * 6	277 184 146	(-80,-40) (-10,-54) (-80,-80)	353 77 151	236	SAME { - 70 - 69 } SAME	131
667 668	856C02TP 856C02TS	4-8- 7 YES 6-8- 8 6-8- 9	2 53 136	[10, -84] [-80, -40] [-30, -79]	72	0 212	[70, 1] SAME [-70 -69]	128
669 670	B56P42TS B56P82TP	6-8-10 6-8-11 6-8-12	23 167 80	[-8040] { 0,-69} (-4080)	24 84	30 183 94	(-60 -76) (-70,-69) (-70 -69)	21 124 72
672 672 674	3 BESCOMEP BESCOMES	6-8-13 6-8-14 6-8-15	93 64 95	(- 10 , - 74) [- 10 , - 74] [- 70 , - 69]	39 29	121	[-80 -40] [-70 -69] SAME	16

TABLE B.5 (Continued)

			g MAXIMUM MEASURED STRAIN			@ MAXIMUM PREDICTED STRAIN		
GAGE Number	GAGE NAME	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	P MOMENT (VERT, LAT)	PREDICTEO STRAIN	PREDICTED MAXIMUM	@ MOMENT (VER*, LAT)	MEASURED Strain
676 677 678	856COMFS 856P8MFP 856P8MFS	6-8-16 6-8-17 6-8-18	23 40 123	{-10,-74} [-10,-74] [-0,-69]	4 21 61	10 37 64	[-70,-69] [-70,-69] [-20,-77]	- 13 30 91
679 680 681	#56COFIP #56COFIS #56P6FIP	6-8-19 6-8-20 6-8-21	120 66 46	[-10,-74] [-80,-40] [-0,-69]	5 5 7 2 1 8	80 27	(-60 -75) SAME (60,-16)	3
682 683 684	856P6F1S 856S477P 856S4TTS	6 - 8 - 22 6 - 8 - 23 6 - 8 - 24	2 1 6 7 2 2 5	{ 10, -64; [0, 0) [-80, -40;	14 0 217	23 71	[70, 1] [-70, -1] SAME	1 O 1 &
685 686 687	B:6P211W(C) 85658775 8565427P	6 · 0 · 25 6 · B · 26 YES 6 · B · 27	33 0 55	[0, -69] [0, 01 [0, 01	· 8	12	(~60, 16) SAME {~80,~40}	- & 31
688 689 690	85654275 8545827P 85458275	6 - 8 - 28 6 - 8 - 29 6 - 8 - 30	6 2 3 5 3 2	[10, 74] [0, 0] [10, 74]	23 0 20	97 54 29	(-70, -1) (-50, 29) (-50, 29)	5 2 1 7 2 2
691 692 693	85658MFP 85658MFS 85656F1P	6-8-31 YES 6-8-32 6-8-33	0 5 8 3 0	[0, 0] [40, 80] [20, 77]	0 5 2 9	4 4 6 5 2 7	[-80, -40] [70, 69] [80, 40]	0 12 - 10
694 695 696	85656F IS 856COMMRH 856COMMRD	6 - B - 34 6 - B - 35 6 - B - 36	38 193 114	[70 69] [-80 40] [80 40]	38 151 104	40	(80, 40) Same Same	34
697 698 699	856COHHRY 856P71]RY 856P71]RD	6 - 8 - 3 7 6 - 8 - 3 5 6 - 8 - 3 9	72 0 45	[80, 40] 0, 0; [80, 40]	6.8 O 6.1	5 8	SAME (80 40) SAME	٥
700 701 702	856P711RH 856P111FRV 856P111FRO	6 - 8 - 40 6 - 8 - 41 6 - 8 - 42	8 1 2 8 3 0 7	(80, 40) (50 79) (-80, -40)	73 16 274	73 17	(70 1! (70, 69) SAME	73 6
703 704 705	856P11]FRH 856P13FFRV 856P13FFRD	6-8-43 6-8-44 6-8-45	35 31 106	[-80,-40] [-40,-80] [-70,-1]	23 30 104	3 1	SAME (60. 76) SAME	23
706 707 708	856P13FFRH 856S711RH 856S711RD	6 - 8 - 4 6 6 - 8 - 4 7 6 - 8 - 4 8	6 1 3 7 7 5	[069] [80, 40] [-50,-79]	40 51 44	44 60	{-30, -79} SAME {-80, -40}	53 40
709 710 711	85657 RV 85651! FRH 8565 IFRD	6 - 8 - 4 9 6 - 8 - 5 0 6 - 8 - 5 1	39 160 314	[30, 79] [80, 40] [80, 40]	20 181 342	39	(80, 401 SAME SAME	- 1
712 713 714	8565:11FRV 8565:13FFRH 8565:13FFRD	6 · 8 · 5 2 6 · 8 · 5 3 6 · 8 · 5 4	60 67 47	{-50,-79} {-0,69} {-30,-79}	5 1 7 2 2 1	6 1 8 0 2 3	[70 . 69] [30 . 79] [20 . 77]	5 2 5 5 4 3
715 716 717	856513FFRV M36 154F(C) M3654P[C]	6 - 8 - 5 5 6 · 8 - 5 £ 6 · 8 · 5 7	182 34 462	{ -70 -69; { 70, 1} { -80, -40}	175 34 457	178 39	(-80,-40) [80 40] SAME	157
718 719 720	M32 159P(C1 M32 1P 5P(C) RESIS [*] OP	6 - 8 - 5 8 6 - 8 - 5 9 6 - 6 - 6 0	25 i 338 8 i	{-60, 16} {-80,-40} {-70,-69}	244 295 89	248	[-70, -1] SAME [80 40]	237 67
721 722 723	ДРММЗ6С : РД ДРММЗ6С 2РД ДРММЗ6С 3РД	5 · · · 1 5 · · · 2 5 · · · 3	296 744 885	[0, 0] [-80,-40] [-70,-69]	723 839	146 876	[-50 29] SAME [-80]-40]	127 843
724 725 726	APMM36C4PA APMM36C5PA APMM36P3PA4	\$ - 4 YES 5 - 5 5 - 6	400 384 402	(-70, -69) [-80, -40] [-70, -69]	380 398 404		SAME SAME SAME	
727 728 729	ДРММ] 6С 1 PF ДРММ] 6С 2 PF ДРММ] 6С 3 PF	5 · · 7 5 · · 8 \$ · · 9	391 456 850	[-70, -69] [-70, -69] [-70, -69]	397 457 856		SAME Same Same	
730 731 732	APMM36C4PF APMM36C5PF APMM36P1PFO 5	5 - / 10 5 - / 1 t 5 - / 12	7 8 5 2 2 2 4 8 3	[-70	773 226 479		SAME Same Same	
733 734 735	Z OTTETAEMMAA S OTTETAEMAA S OTTETAEMAA	5 14	517 675 776	[-70,-69] [-70,-69] [-70,-69]	513 677 777		SAME Same Same	
736 737 738	APMM36RDPF APM36RHPF APM36P3PF2	\$ 16 \$ 17 \$ 18	402 243 466	[-70 -69] [80, 40] [-70,-69]	399 264 462		SAME SAME Same	
739 740 741	APMM36P3PF4 M35 3P11 1P P8 11 9E 3EM	5 19 5 20 5 21	444 407 414	[-70,-69] [-70,-69] [-70,-69]	450 410 410		SAME SAME SAME	
742 743 744	M35 3P12P M38 6P11 7P APM233C315	5 · · · 22 5 · · · 23 5 · · 24	472 288 32	[-30,-79] [-70,-69] [-70,-69]	230 279 27	322	[- 70 , -69] Same Same	364
745 746 747	APM233C308 APM233C300(R) APM233C293	5 - · 25 5 - · 26 5 - · 27	216 8 600	[80, 40] { 0, 0} (-80,-40)	216 0 613	2	SAME 20 -57 SAME	2
748 749 750	APM233RVMM MMG383R9A MM J9887M9A	5 · · 26 5 · · · 25 YES 5 · · · 30	24 0 247	(20, 77) (0 0) (-70, -69)	19 0 231	50	(30, 79) [-80 -40] SAME	22

TABLE B.5 (Continued)

			I X AM · ·	MUM MEASURED	STRAIN	P MAXIMUM PREDICTED		ED STRAIN	
GAGE Number	GAGE NAME	CAGE ASSUMED POSITION CAL	MEASURED MAX 1 MUM	# MOMENT {VERT,LAT}	PREDICTED STRAIN	PRED:CTED MAXIMUM	# MOMENT (VERT, LAT)	MEASURED STRAIN	
751 752	APMZJJRLMA APMZJJRDMA APMZJJRVMA	5 31 YES 5 32 5 33	584 39	1 0. 0) (-80, -40) (-30, 49)	592 31	o 32	[80, 40] SAME [-50, 29]	o 33	
753 754 755	APZZZBCZPA APZZZBCZPA	5 - 34 5 35 YES 5 36 YES	* 339 0 0	[-80,-40] [-0,-0]	1351		SAME SAME SAME		
756 757 758	APII38C4PA APII38P3PA 5 APII38P3PAI	5 · · 37 5 · · 38	552 426 370	[+80,-40] [+80,-40] [+80,+40]	553 427 369		SAME SAME SAME		
759 760 761	APZZ38P3PA4 APZZ38RHPA APZZ38RDPA	5 39 5 40 5 41 YES	59 0 976	[40, 80] [6, 0] [-80, 40]	60 0 972	6 1	(50, 79) SAME SAME	53	
762 763 764	APZZ38RLPA APMZ39C315 APMZ39C308	S42 S43 S44	515 503	(-80,-401 [-80,-40]	535 516 503		SAME SAME SAME		
765 766 767	0063965M9A 6653965M9A 616355M9A	5 - 45 5 - 46 5 - 47	487 599 520	(-80,-40) (-80,-40) (-80,-40)	597 538		SAME SAME SAME		
768 769	APMZ42C308 APMZ42C300(R)	5 48 5 49 5 50	510 71 553	(-80,-40) (-20,-57) (-80,-40)	539 22 548	2 2	(30,-49) SAME	4.6	
770 771 772	APMZ42C293 B16P3MMRH B16P3MMRD	551 552	80	{ 50, 79} { 70, 69}	75 92 1	88 100 36	{ 70, 69 } { 80, 40 } { 80, 40 }	70 76 - 4	
773 774 775	B 16P3MMRV H23P17MFP(U) H23 9P16MFP(H5	553 554 su)555	297 273 367	(-50, -79) (-50, -79)	187 359	207	(+70,+69) SAME SAME	251	
776	H23 9P16MFP[H3 B24P10 SMMRH B24P10 SMMRD	51)556 557 558	453 14	(80, 40)	122	14	1 20 77; SAME	12	
779 780	824P10 5MMRV W36P2M2(D)	5 · · · 5 9 5 · · · 6 0	8 2 8	[70, 1] (-30, 49) (0, 0]	87 !	106	(80, 40) (80 -40) SAME	6	
781 782 783	ДРММ44С1РД Дрмм44С2РД Дрмм44С3РД	5-A- 1 YES 5-A- 2 5-A- 3	932 981	[80,-40] [-80,-40]	940 9#2 379	397	SAME SAME (-70, -1)	380	
784 785 786	ДРММ44С4РА Дрмм44С5РА Дрмм44Р3РД4	S-A- 4 YES S-A- 5 S-A- 6	4 1 0 4 6 3 4 8 0	[-50, 29] [-70, -69] [-70, -69]	467 481 472		SAME SAME SAME		
787 788 789	ДРММ44С1РF ДРММ44С2РF ДРММ44С3РF	5 - A - 7 5 - A - B 5 - A - 9	464 518 902	(-70,-89) (-70,-69) (-70,-69)	902		SAME		
790 791 792	APMM44C4PF APMM44C5PF APMM44P1PFO 5	S-A-10 S-A-11 S-A-12	859 199 522	(-70,-69) (-50,-79) (-70,-69)	85 1 202 513	205	SAME (-40,-80) SAME	199	
793 794 795	APMM44P3PFO.S APMM44P5PFO.S APMM44RLPF		554 724 832	(-70,-69) (-70,-69) (-70,-69)	553 728 835		S AME S AME S AME		
796 797 798	APMM44RDPF APMM44RHPF APMM44P3PF2	5 - A - 16 5 - A - 17 5 - A - 18	375 284 511	(-70, -69) (80, 40) (-70, -69)	373 3 506	5	SAME [40, 80) Same	140	
799 800 801	ДРММ44РЗРF4 M43 3P11 1P M43 3P11 5P	5 - A - 19 5 - A - 20 5 - A - 21	494 475 450	[-70 , -69] [-70 , -69] [-70 , -69]	494 474 457		SAME SAME SAME		
802 803 804	M43.3P12.0P M41.4P11.7P APMZ46C292	5 - A - 22 5 - A - 23 5 - A - 24	457 512 606	[-70,-69] [-70,-69] [-80,-40]	462 512 608		SAME SAME SAME		
805 806	ДРМZ46C285 ДРМZ46C277	5 - A - 25 5 - A - 26 5 - A - 27	622 502 468	(-80, -40) [-80, -40] [-70, -69]	4 4 4 9 6 4 5 9	87	[- 40 , - 80 } SAME SAME	427	
808	APZZ46CJPA APZZ46CJPF	5 - A - 28 5 - A - 29 YES	1258 0 477	[-80,-40] [0, 0] [-70, 1]	1267 0 466	o	SAME (-80,-40) SAME	0	
811	AS 2252C35A APM262C101	5-A-31 YES 5-A-32	2 462 427	(-40, 40) (-70,-69) (-80,-40)	463	0	[-70, -1] SAME SAME	•	
814 815	APM162C086[R APM162C078) 5-A-34 5-A-35 YES	9.8	(60, -16)	15	19	(80, 40) Same Same	**	
817	APMISZRDIA APMISZRHZA	5-A-37 5-A-38	148	(0. 69)	.33	5 <i>0</i> 4 1	[-60,-76] [-60,-76] SAME	- 20 - 17	
819 820 821	ASMM66C2SF	5 - A - 40 5 - A - 41	682 667	(-80, -40 1 -80, -40	688	417	SAME SAME	427	
822 823	ASMM66C48F ASMM66C5SF MS9 SP SPIAC	5-A-42 5-A-43) 5-A-44	288 376	1-70, -7	396	•••	SAME SAME		
797 798 799 800 801 802 803 804 805 806 807 808 810 811 812 813 814 815 816 822 822	APMM64RHPF APMM44P3PF2 APMM44P3PF1 M43 3P11 1P M43 3P11 2 OP M41 4P11 7P APMZ66C292 APMZ66C292 APMZ66C296 APMZ66C296 APMZ66C3PF APZZ52C35F APMZ62C101 APMZ62C036 APMZ6C23F APMZ6C	5 - A - 17 5 - A - 19 5 - A - 20 5 - A - 21 5 - A - 22 5 - A - 23 5 - A - 24 5 - A - 25 5 - A - 27 5 - A - 27 5 - A - 28 5 - A - 29 5 - A - 30 5 - A - 31 5 - A - 32 5 - A - 33 5 - A - 34 5 - A - 35 5 - A - 36 5 - A - 37 5 - A - 38 5 - A - 39 5 - A - 34 5 - A - 36 5 - A - 37 5 - A - 38 5 - A - 39 5 - A - 36 5 - A - 37 5 - A - 38 5 - A - 39 5 - A - 30 5 - A - 31 5 - A - 34 5 - A - 36 5 - A - 37 5 - A - 38 5 - A - 39 5 - A - 30 5 - A - 31 5 - A - 32 5 - A - 34 5 - A - 37 5 - A - 38 5 - A - 38 5 - A - 39 5 - A - 30 5 - A - 40 5 - A	284 511 494 475 450 457 512 806 522 502 468 1258 0 477 2 462 427 98 0 0	\ ao. 40\\ \(\begin{array}{cccccccccccccccccccccccccccccccccccc	3 506 494 474 457 462 512 608 444 496 459 1267 0 465 453 424 15 0 0 .3328 556 686 686 686 687 413	87 0 0	SAME SAME SAME SAME SAME SAME SAME SAME	427 0 0 78	

TABLE B.5 (Continued)

				P MAX	MUM MEASURED	STRAIN	p max i	MUM PREDICTED	STRAIN
GAGE Number	GAGE	GAGE POSITION	ASSUMED	MEASURED MONIKAM	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT	MEASURED STRAIN
826 827 828	M59 \$P SP(FC); M4855w(BM5u) B56P8MM5(BM)	5 - A - 4 6 5 - A - 4 7 5 - A - 4 8	YES	261 111 41	[80, 40] [80, 40] [10 64]	26 1 6 3 2 7	8 6 4 7	SAME { 60 76 } (-70, -1)	106
829 830 831	84023WWb[C] 82658WZ2(BW] W4822M1BWZT]	5 - A - 49 5 - A - 50 5 - A - 51	YES	0 152 487	t 0 01 t 0691 [80 40]	0 80 486	135	SAME (-60 -761 SAME	9 4
832 833 834	864P8MM5(8M) H23 95195 82459 SMMRV[C]	5 - A - 5 2 5 - A - 5 3 5 - A - 5 4		2 1 6 4 6 C	1-10, -74} [70, -11 [-80 -40	- 9 8 7 7 9	43 88 80	{ 80 40 ; f 80 40 ; i 70 -69 }	3 5 6 5 6
835 836 837	82459 SMMRD(C) 82459 SMMRH(C) H23 9516P(HSU)	5 · A · 5 6		110 40 321	(+80 -40 (-30 -79 (-80, 40	82 24 313	24	SAME (· 10 · 74) SAME	3.8
838 839 840	H23 9516P[HSL] H23P17MFP[L] W44P2M2[D]	5 · A · S 8 5 · A · S 9 5 · A · 60		475 168 22	[- 80 - 40] [- 70 - 69] [- 60 - 76]	478 16c - 3	3	SAME SAME . 20 771	7
841 842 843	M23 9\$4 \$P(H\$C) M23 9\$4 \$P(H\$1) H24 1P8 \$P(H\$L)	5 8 2		160 134 339	1 - 70 - 69 [60 76 [80 40]	162 105 258	108	SAME { 50 79 } SAME	6
844 845 846	H24 1P8 5P(HSU) H24 1P13 5P(C) H29 3P17 8RH	5 - 8 - 4 5 - 8 - 5 5 - 8 - 6	Y E S	4 4 8 4 7 5 4	(-80 -40) (-30 79) (-30 79)	477 35 43	39 53	SAME 1 60 761 1 70 691	39 48
847 848 849	H29 3P17 8RD H29 3P17 8RL H31 9P14S[C]	5 · 8 · · · · · · · · · · · · · · · · ·		734 248 133	[-80]-40] [-70]-69] [-50]-79]	745 238 130	:30	SAME SAME [-60 -76]	* 3 1
850 851 852	832#8F1#H(C) 832#8F1#D(C) 832#8F1#V(C)	5 - 8 - 10 5 - 8 - 11 5 - 8 - 17		60 55 128	1 70 69 1 1 - 80 - 40 1 1 - 80 - 40 1	5 4 5 4		S A M E S A M E S A M E	-
853 854 855	M31 8P11W M31 8P10 SP H37P2OP	5 - 8 - 13 5 - 8 - 14 5 - 8 - 15		223 309 336	(80 -40) (70 -69) (70 -69)	227 307 33c		5 A M E 5 A M E 5 A M E	
856 857 858	H37520P!CU) H37520P!CL) H37519P!C)	5 - 8 - 1 6 5 - 8 - 1 7 5 - 8 - 1 8		181	1-40 40! 1-40 40!	176 165 159	165	SAME 1-30 491 1-30 491	163 161
859 860 861	H37 4S20P(C) 840S8 SMFRV(88) 840S8 SMFRD(88)			212 47 118	[-40, 40] [-20, 77] [-20, 57]	188 29 32	45	SAME (70 , 69) (60	16
862 863 864	84058 SMFRH(88) H44520P(LP) H45 4527P(C)	5 · 8 · 22 5 · 8 · 23 5 · 8 · 24		141 208 294	1-70 -11 1-50 291 1-50 291	129 169 283	192	5 AME 'O 6 4 S AME	172
865 866 867	H45 4521P(C) H41P2OP(C) H47 9P9P(C)	5 - 8 - 2 5 5 - 8 - 2 6 5 - 8 - 2 7		7 9 0 7 1 3 1 6	(-40 40) (70 1)	276 64 330	2 8 2 6 9	(-50 29) (-50 79) SAME	190 65
868 869 870	848P8 ZMMRV(88) 848P8 ZMMRD(88) 848P6 ZMMRH(88)	5 · B · 29	23 Y	8 4 0 4 4	(-80, -40) (0 0) (0, -69]	6 2 0 3 1	o 39	SAME [-80]-401 [-50-30]	¢ 2¢
871 872 873	H42 6P2DP(C1 848P12MMP(C1) 848P12MMP(C0)	5 · 8 · 3 1 5 · 8 · 3 2 5 · 8 · 3 3	YES	2 4 6 9 0	[0 - 69] [80 40} [50 - 30]	C 45 42	c 8.8	: 50 79; SAME 1 80 401	c 1 9
874 875 876	848ED(P(C) 155 9P2P(C) H48 5P10P(GO)	5 · 8 · 3 4 5 · 8 · 3 5 5 · 8 · 3 6	Y E S Y E S	4 2 0	1 0 691	- 2 0 C	\$3	. 80 40; Same Same	2.2
877 878 879	M51P14P(CU) H51P14P(CL) H49P19P(C)	5 · 8 · 37 5 · 8 · 38 5 · 8 · 39		211 253 373	[-10 , -74] [-60 , -16] [-60 -76]	196 258 365	199	0 - 69 - Same Same	195
880 881 882	H51P18P(C) M56P8W(8MSUU) M56P8W(8MSLU)	5 - 8 - 4 0 5 - 8 - 4 1 5 - 8 - 4 2	YES	327 179 161	[-60 -76] [-50 - 29] [-70 -69]	32 1 65 116	157	SAME - 70 - 69 1 SAME	90
883 884 885	MS6P8W(8MSU0) MS6P8W(8MSL0) RESISTOR	5 · B · 43 5 · B · 44 5 · B · 45	YES	139 0 23	1-70,-691 1 0, 0; 1 0, 691	1 \$ 7 0 3		SAME SAME SAME	
887	(U 2MB) WE 20 AM MB) 9MM 8 9 BB U 2MB W 2 2 8 AM	5 8 - 4 6 5 - 8 - 4 7 5 - 8 - 4 8	YES	210 162 0	[-70, -69] [0, -69] [0 0]	23 <i>8</i> 92 0	254 150	1-80;-40; [-60 -76] SAME	192 93
690	BS6P8MIP(8M) MII BP10W H16S12P(CU)	5 · 8 · 4 9 5 · 8 · 5 0 5 · 8 · 5 1		79 314 47	[0 -69] [-70 -69] [-60, 16]	36 314 45	61	1-60 -76) SAME (-40, 40)	36 45
893	H16S12P(CM) H16S12P(CL) H14S12P(C)	5 - 8 - 5 2 5 - 8 - 5 3 5 - 8 - 5 4		53 78 20	[-70 -1] [-70 -1] [-10 -74]	4 1 7 9 9	47	1 - 40 40] SAME [0 - 69]	49
896	H10 6585(С) H12P14P[С) H12P14P(С)	5 · 8 · 5 5 5 · 8 · 5 6 5 · 8 · 5 7		5 0 4 2 2 7	[-50 29] {-80,-40} [-60,-76]	44 34 16	4 8 3 6 1 6	[-70 -1] [-70 -69] [-50 -79]	4 B 4 C 2 S
499	BIGPAP(C) H23S2OP(C) RESISTOR	5 · 8 · 5 8 5 · 8 · 5 9 5 · 8 · 6 0		92 118 9	(80 40) (-60 16) (0 69)	109	2	SAME SAME (70 69)	. •

TABLE B.5 (Continued)

			O MAXIMUM MEASURED STRAIN			P MAXIMUM PREDICTED STRAIN			
GAGE NUMBER	GAGE	GAGE ASSUMED POSITION CAL	MEASURED Maximum	@ MDMENT [VERT.LAT]	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT (VERT, LAT)	MEASURED Strain	
303 305 301	864C022P 864C022S 864P422P	4 · · · · · · · · · · · · · · · · · · ·	66 57 53	[-50, 29] [-80,-40] [-20,-77]	4 1 6 3 2 9	73 30	(-80 , -40) SAME (-40 -80)	41	
904 905 906	864P4ZZS 864P8ZZP 864P8ZZS	4 · · 4 4 · · 5 4 · · 6	159 98 97	(-80 -40] [-70,-69] [-40,-80]	196 107 73	100	5 AME 5 AME (- 70) - 69 [8 5	
907 908 909	864COM2P 864COM2S 864P4M2P	4 · · 7 4 · · 8 4 · · 9	78 33 76	[-60, -76] [-40, 40] [-60 -75]	8 8 2 C 8 £	104 30 97	(-80,-40) (-80,-40) (-80,-40)	7 C 7 7 6 E	
910 911 912	864P8MZS 864P8MZP 864P8MZS	4 10 4 11 4 12	1 1 2 5 5 1 3 9	(- 70 - 69 . L - 10 74 - 70 , - 69	129 24 140	2 8	SAME 50, -79! SAME	2 6	
913 914 915	864COMFP 864COMFS 864P2MFP	413 414 415	36 152 73	[-30,-79] [-80,-40] [-70,-69]	13 53 36	24 37	(-80 -40) SAME (-80 -40)	15	
9 1 6 9 1 7 9 1 8	864P2MF5 864CGF!P 864CGF!S	4 16 YES 4 17 4 18	50 57	[0, 0] [-80,-40] [-80,-40]	C 5 6 4 8	o	:-50 -79 Same Same	c	
921 920 919	864P6F1P 864P6F1S 864S472P	4 · · · · · · · · · · · · · · · · · · ·	30 79 55	[46 80] [0 -69] [-70 -1]	3 29 68	3 C 7 7	1 70 11 1-20,-77! 1-80 -401	2 1 4 9	
922 923 924	86454775 8645877P 86458775	4 · · · · · · · · · · · · · · · · · · ·	118 88 37	(-80, -40, (-60 16) (-10, -74)	8 1 8 2 - 8	87 25	SAME 7011	7 p	
925 926 927	8 6 4 5 4 M Z P 8 6 4 5 4 M Z 5 8 6 4 5 8 M Z P	4 · · · 25 4 · · · 26 4 · · · 27	80 178 66	(-80 -40) (-80 -40)	87 154 83		\$		
928 929 930	86458MZS 86454MFP 86454MFS	4 · · · 2 8 4 · · · 2 9 4 · · · 3 0	101 72 51	[-70, -1] [-70, -1] [-50, 29]	9 2 5 6	102	(+80 -40) (+80 -40) (+80 -40)	95 72 43	
93) 932 933	86456F1P 86456F15 864COHHRH	431 432 433	4 6 5 4 1 y	[-40, 40] [-70, -1] [-20, -77]	39 72 c	67 73 : 2	-80 -40; -80 -40; 70 -1;	30 4 & 3	
934 935 936	B64COHHRD B64COHHR4 B64P711RV	4 · · · 34 4 · · · 35 4 · · · 36	2 1 1 6 4 C	(-40 40) (0 0) (30 -49)	4 C 35	\$ 12 51	10 74) 70 69)	10	
937 938 939	864P711RD 864P711RH 864P11F1RV	4 - · · · 37 · · · ES 4 - · · 38 4 · · · 39	80 326	[70, 1] [70, 1] [-80,-40]	5 9 E 3 2 9	123	(80, 40; ! 80, 40; Same	6 76	
940 941 942	864P11F1RD 864P11F1RH 864P13FFRY	# 40 # 41 # #2	4 2 2 1 1 6 4	1 70 691 1-10 647 1 40 801	24 - 12 70	46 152 71	76 . 1. (-80,-40) (-30,-79)	30 22 64	
943 944 945	864P13FFRD 864P13FFRH 86457]]RH	4 - 43 444 445	142 46 86	[-70, -1] [-60,-16] [-80,-40]	1 6 7 1 2 5 0	14	SAME : 80, 40) SAME	30	
946 947 948	8645711RD 8645711RV 86451'FIRH	4 46 4 47 4 48	85 36 80	[40, 80] [-30 -79] [80, 40]	30 17 96	48 12 123	80 40 -40 -801 60 76	34 34 66	
949 950 951	864511FIRD 864511FIRV 86451311RH	449 450 451 YES	452 86 0	[-80,-40] [-60,-76] [-0,-0]	360 67 0		SAME SAME SAME		
952 953 954	86451311RC 86451311RV H6: 2520P(CU)		181 40 325	{-80,-40} (-50,-79} [-50, 29]	184 18 324	23 326	SAME [-80 -40] [-60] -61	2 2 3 2 1	
955 956 957	M5958P(C) APMZ48E112 APMZ48E105	4 55 4 56 4 57	296 386 371	[-70, -1] [-80,-40] [-70,-69]	292 384 360	371	SAME SAME (-80 -40)	169	
958 959 960	APM248097 APM248090 H60P19(D)	4 58 YES 4 59 4 60	432 239 14	(-70,-69) (-70,-69) (-20,-77)	438 205 3	10	[-80,-40] SAME 80 -40]	4 2 8	
961 962 963	M61P14P(G) M61P11 1P M61P10W	4-A- 1 YES 4-A- 3 4-A- 3	491 443	(0, 0) (-70,-69) (-70,-69)	0 498 437		S AME S AME		
964 965 966	M61P6W M61P2W M61CDW	4 - A - 4 4 - A - 5 4 - A - 6 YES	35 A 320 0	(-70, -69) (-80, -40) (0, 0)	363 324 0	366	(-80 -40) SAME SAME	356	
967 968 969	M6 15 2W M6 15 4W M6 15 6W	4 · A · 7 4 · A · 8 4 · A · 9	289 224 301	[-80,-40] [-80,-40] [-60,-16]	246 223 273	294	SAME SAME (-70 -1)	292	
470	M6158W M6159 'P M61510W	4 - A - 10 4 - A - 11 4 - A - 12	248 263 258	[-70, -1] [-70, -1] [-70, -1]	254 267 253		SAME Same Same		
973 974 975	M61510 SP M61511 1P M61512W	4 - A - 13 4 - A - 14 4 - A - 15	267 283 289	[-50, 29] [-60, 16] [-40, 40]	238 278 275	244 294	(-60, 16) SAME (-60, 16)	263	

TABLE B.5 (Continued)

			@ MAXIMUM MEASURED STRAIN		STRAIN	IN GE MAXIMUM PREDICTED 53		
GAGE Humber	SAGE RAME	CAGE ASSUMED POSITION CAL	MEASURED Maximum	G MOMENT	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT (VERT LAT)	MEASUREE STRAIN
976 977 978	M61512 SP M61513W M61514P	4 - A - 16 YES 4 - A - 17 4 - A - 18	0 398 33:	(0 0) 1-60 (6) 1-50 - 29	0 3 1 6 3 0 5	c 309	SAME 1-60, 16,	0 280
979 980 981	261000 261520 261540	4 - A - 19 4 - A - 20 4 - A - 21	6 6 2 3 5 3 3 9 8	(80 - 40) (80 - 40) (80 - 40)	677 347 395		SAME SMA 2 SMA 5	
982 983 984	261564 261584 261594	4 - A - 22 4 - A - 23 4 - A - 24	739 606 627	1 - 8C - 4C - 4C - 1 - 8C - 4C - 4C - 1	768 615 631		5 A M E 5 A M E 5 A M E	
945 986 987	261510 SF 261510 SF 261510 9P	4 - 4 - 25 4 4 - 26 4 - 4 - 27	831 994 947	1 - 76	8 1 4 9 7 4 9 3 7	8 19 977 938	! &C -4C 80 -40 1-80 4C	776 684 686
988 989 990	761P6W 261P10W W61S2M3 9P	4 - A - 28 4 - A - 29 4 - A - 30	762 674 987	[-80 -40] [-80,-40] [-70 -1]	£16 915 992	995	SAME SAME 80 - 40,	93'
991 992 993	W615M20 1P H56 1521P H6153W	4 - A - 3 1 4 - A - 3 2 4 - A - 3 3	6 6 2 7 0 2 5 4 5	70 11 1.70 1.80 40	645 683 567		SAME SAME SAME	
994 995 996	H 6 1 P 5 A H 6 1 S 5 A H 6 1 S 7 W	4 - 4 - 3 4 4 - 4 - 3 5 4 - 4 - 3 6	494 5: 1 464	80 40; 80 40;	505 522 474		S A M E S A M E	
95" 928 999	н Б 1 Р 7 М н Б 1 5 9 М н Б 1 5 1 1 М	4 - 4 - 3 7	67 217 294	1 76 69 10 74 1 70	67 210 301	2 . €	SAME 1-10 641 SAME	217
1000	H61911# H61513# H61514#	4 - 4 - 4 0 4 - 4 - 4 1 4 - 4 - 4 2	349 43: 382	70 1 10 69 70 69	349 4 · 7 382		S AME S AME	
1003	H61P14W H61515W H61516 5P	4 · 4 · 4 · 2 4 · 4 · 4 · 4 4 · 4 · 4 · 5	106 297 112	50 -30 50 76; 40 80)	2 1 6 2 1 1 2 1 0	217	. 4C -4C: Same Same	· 9 é
1006 1007 1008	H61P16 5F H6151&+ H61520₩L	4 - A - 4 6 4 - A - 4 6 4 - A - 4 8	232 1071 283	80 80 80 40 1-40 40	214 365 277	697 280	5AME . 50 -30. 1-50 -29.	· 2 · 2 8 3
1005	H6 1P2OWL H57 9P9S[C B56P8I1P[C]	4 - A - 4 9 4 - A - 5 0 4 - A - 5 1	5 1 4 102 65	(-70 -69) (-50 -30, (-60 -16)	505 98 66	7 C	SAME SAME (7C 1:	• •
1012 1613 1014	ASM276C098 ASM276C105 ASM276C112	4 · A · 5 2 4 · A · 5 3 4 · . · 5 4	345 363 446	1-80,-40, 1-70,-11 (-80,-40)	321 376 455	326 386	(-80 -60) (-80 -60) SAME	343 379
1015	ASMM66C5SA ASMM66C4SA ASMM66C3SA	4 - A - 5 5 4 - A - 5 6 4 - A - 5 7	486 555 530	(- 60	471 543 531	634	SAME SAME !-60 16]	5.28
10:9	45 MM 6 6 6 1 5 A 45 MM 6 6 6 1 5 A W 6 8 5 2 M 7 I D 1	4 - A - 5 8 Y E S 4 - A - 5 9 4 - A - 6 0	5294 367 :1	[-10,-74] [-70,-1] [-0,-69]	267 363 0	269 C	1 20 -771 SAME 1 0 691	729
1671	672CDHHRH 672CDHHRD 672CGHHRY	4 - B - 1 4 - B - 2 4 - B - 3	33 59 51	1 - 80 - 40 - 1 - 70 1 1 - 80 - 40	4 2 4 3 6 2	45	SAME (-80 -40) SAME	47
1024 1025 1076	872912 5F1RV 872912 5F1RD 872912 5F1RH	4 - 8 - 4 4 - 8 - 5 4 - 8 - 6	123	[70 11 [80 40] [-10 -74]	97 10: 8	99 903 64	[60 -16; [-70 -1] [60 -60]	· 15 107 27
1027	872512 5F1RH 872512 5F1RC 872512 5F1RV	4 · 8 · 7 4 · 8 · 8 4 · 8 · 9	100 259 144	(80 401 1 - 80 - 401 0 01	232	137 239 53	[70 69] [-70 -69] [-70 -69]	94 259 37
1030	167 5CGM 165CGW 167CGW	4 - 8 - 10 4 - 8 - 11 4 - 8 - 12	5 3 9 4 8 5 4 9 8	1-80 -401 1-80 -401 (-80 -401	550 490 502		SAME SAME SAME	
1034	269CQW 271CQW 26356W	4 - 8 - 13 4 - 8 - 14 4 - 8 - 15	510 487 520	[-80,-40] [-80,-40] [-80,-40]	516 488 521		SAME SAME SAME	
1036	263511W M63CQW M63511,1P	4-8-16 YES 4-8-17 4-8-18	338 320	[20 -57] [-80,-40] [-70, -1]	314	,	1 40 801 SAME	. 174
1039	M63514P M65COW M65511 1P	4 · 8 · 19 4 · 8 · 20 4 · 8 · 21	361 317 307	[-60, 16] [-80, -40] [-60, 16]	354 323 313		SAME SAME SAME (-60 16)	***
1042	M65514P M65P14P M65P11 1P	4 · 8 · 2 2 4 · 8 · 2 3 4 · 8 · 2 4	365 587 506	[-701] [-7069] [-70-69]	369 573 509	נינ	SAME	363
1045 1046 1047	M67COW M67S11 1P M67S14P	4 - 8 - 25 YES 4 - 8 - 26 4 - 8 - 27	295 242	[0, 0] [-70, 1] [20 57]	0 295 - 250	296 311	SAME (-60, 16) (-60, 16) SAME	29 1 224
1048	M69CDW M69S11 1P M69S14P	4 · 8 · 28 YES 4 · 8 · 29 4 · 8 · 30	334 356	[0, 0] [-50, 29] [-70, -1]	300 282	303 292	1-60 16! 1-60, 16!	322 353

TABLE B.5 (Continued)

			P MAXIMUM MEASURED STRAIN			# MAXIMUM PREDICTED STRAIN			
GAGE NUMBER	CAGE	GAGE ASSUMED Position cal	MEASURED Maximum	P MOMENT LVERT LAT!	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT (VERY, LAT)	MEASURED STRAIN	
10\$1 10\$2 10\$3	M69P11 1P M69P14P M71COm	4-8-31 4-8-32 YES 4-9-33	358 0 312	(-80,-40) (-0 0) (-80,-40;	344 0 306		SAME SAME SAME		
1054	M71510 1P M71513P M6358 5P	4 * B + 34 4 * B + 35 4 * B + 36	269 1389 260	(0, 0) (70, -1)	266 0 262	360	\$AME (-60, 16) Same	- 3226	
1057	I 69COP I 65COP F 65CONA	4-8-37 YES 4-8-38 4-8-39 YES	35 10 0	(&c &c .	34 0 0	6	SAME (70 69) Same	-4	
1060	H63COP H65COP H65513W	4 - 8 - 4 0 4 - 8 - 4 1 4 - 8 - 4 2	334 755 383	(80 40 (80 40 (70 69	34 ¹ 765 384		S AME S AME S AME		
1063	МБ 7 СОР МБ 9 Р 1 3 М МБ 9 С D Р	4-8-43 TES 4-8-44 4-8-45 YES	217	(0 0) (60 · 161 (0 0)	2 1 8 C	2 1 9	SAME { 5030} SAME	215	
1066	H69513% H71COP 161COP	4 · 8 · 4 6 4 · 8 · 4 7 4 · 8 · 4 8	0 4#2 334	(0 0: 80 40: 80 40:	663 337	276	[80 40] Same Same	٥	
1069	F61CDNA 86458 SMMRY 86458 SMMRD	4 - 8 - 4 9 4 - 8 - 5 0 4 - 8 - 5 1	13 36 107	1-60 16 1-10, 64, 1-70 -11	9 9 E &	29 8 6	(-80 -40) (-70 -1) (-80 -40)	13 4 99	
1072	86458 SMMRH H65520P(CL) H65520P(ACL)	4 · 8 · 5 2 4 · 9 · 5 3 4 · 9 · 5 4	508 276 246	30 40 30 49 40 60	257 263 244	257 245	[-80,-40] SAME [-30 49]	- 75 242	
1075	H65520P(FCL) ASM276C09C ASM262C65	4 · 8 · 5 5 4 · 8 · 5 6 4 · 8 · 5 7	226 260 532	7-40 40 1-70 1 1-80 -40	2 1 8 2 6 ¢ 5 3 5	219	(-3C 49) Same Same	224	
1078	ASM262060 ASM262055 H68515P1D1	4-8-58 YES 4-8-59 4-8-60	5357 394 10	30 49 1 80 40 , 0 0 .	27C 423 0	345	SAME (80 40)	2298	
1081	BECCCIP BECCIPS BECPSIP	3 3	. : c	: 80 -40 } : 80 -40 ! : 80 -40 .	104 218 76		S AME S AME S AME		
1084	88093175 8809877P 8806877S	3 · 4 3 · 5 3 · 6	40 85	80 40 i 70 69 i 50 30:	130 44 48	4 5 6 0	\$AME (-80 -40) (-80, 40)	38 56	
1087	##0C0MZP ##0C0MZS ##0P3MZP	3 · 7 3 · 4 3 · 9	6 C 2 1 4 Z	(-70 -69) 1 -70 -69 (1 -80 -80	0 22 35	2 8	1-40 401 1-40 401 SAME	7.5	
1090	880P3M25 880P8M2P 880P8M25	3 · · · · · · · · · · · · · · · · · · ·	52 31	1 50 30 50 30 (50 30	1 6	7 4 7 7 2 6	[80 40] [80 40]	76 18 19	
1093	88000MFP 88009MFP	3 13 - +E\$ 3 14 3 15	6 2 3 7	1 70 77 1 50 30	C + 1 &	7 36	SAME 50 - 79 80 40	3¢ 33	
1096	BBOPSMES BBOCOFIP BBOCOFIS	3 · · · 16 3 · · · 17 3 · · · 10	39 129	1-60 -76; (80 -60; (80 -60)	47		S AME S AME S AME		
1099	88096F19 88096F1S 8805427P	3 · · · · · · 9 3 · · · · 20 3 · · · - 21	32 30 94	(0 -69 . (0 -69 . (0 -60)	26 9 87	26	SAME { 70	. 2	
1102	88054775 8805877P 88058775	3 · · · 22 3 · · · 23 3 · · · 24	198 63 148	(50 -30) (60 -60) (80 -60)	122 61 132	193	(80, 40) SAME SAME	196	
1107	88054MIP 88054MIS 88058MIP	3 · · · 25 3 · · · 26 3 · · · 27	36 43 36	(50 - 30) (50 - 30)	19 14 5	25 37 8	(80 - 40) (80 - 40) (80 - 40)	30 36 8	
1108	88058M25 88057MFP 88057MF5	3 · · · 28 3 · · · 29 3 · · · 30	9077 47 43	(50301 { 5030} {-10.64}	30 -4 12	35 4 14	[70, 1] [70, 1] [-40, 40]	· 339 9 35	
1111	88056FIP 88056FIS 880C0HHRH	3 · · · 31 3 · · · 32 3 · · · 33	3 1 76 86	(\$0 -30) (\$0 -30)	22 23 4	27 56 17	[70, 1] [70, 69] [-50,-79]	9 34 -4	
1116	880C0HHRC 880C0HHRV 880P7[]RV	3 · · · 34 3 · · · 35 3 · · · 36	87 83 32	(-80,-40) (-80,-40) (-50-30)	9 1 5 7	15	SAME SAME (80 40)	12	
1117	8809711R0 8809711PH 880911FIRY	3 · · · 37 3 · · · 38 3 · · · 39	2 1 4 8 3 7	[-20, 67] [-50 29] [-70, 1]	8 # 2 2 9	8 5 1 3 5	{-30, 49} {-80, -40} {-80, 40}	21 44 31	
1120	880F11F1R0 880F11F1RH 880F12FFRV	340 341 342 YES	79 5 a 0	(-20 - 77) (0 0)	16	2 3 4 9	1-20 -77) 1-80 -76) SAME	63 42	
1123	880P12FFR0 880P12FFRH 880S711RH	3 · · 43 3 · · 44 3 · · 45	32 23 82	[\$0, -30] {-80, -40} [-80, -40]	0 17 79	17	[60 76] [-70 -89] SAME	26 23	

TABLE B.5 (Continued)

			P MAXIMUM MEASURED STRAIN			P MAXIMUM PREDICTED STRAIN		
GAGE NUMBER	GAGE	GAGE ASSUMED Position Cal	MEASUREC MAXIMUM		PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT	MEASURED STRAIN
1126 1127 1128	8805711R0 8805711RV 880511F1RH	346 YES 347 348	0 67 32	(0 0) (10 64) (50 -30)	0 23 · 4	2 S 4	SAME (-EC, 16) (-50, 25)	49 15
1129 1130 1131	860511F1R0 860511F1R4 880512FFRH	3 · -49 3 · -50 3 · -51	77 63 16	(-80, -40) [-70, -69] [-60 16]	74 50 14	79 5 1	(- 70 - 69) (- 60 - 76) SAME	7 7 6 3
1132 1133 1134	BB0512FFRD B80512FFRV H84 5521P(CU)	3 · · · 5 2 YES 3 · · · 5 3 3 · · · 5 4	1 40 197	(0, -69 ¹ (-50 -79) (-60 16)	C 34 196	36	1 40, 401 . 70, -691 SAME	- 1 36
1135	H101P20P(UC) H100P20P(AC) #98CUMMP(C)	3 · · · 55 3 · · · 56 3 · · · 57	64 53 43	1-70 -691 1-80 -691 1-80 -601	64 55 48	6 5 5 7	1-80;-40; 1-70;-69; SAME	67 53
1138	M101 3CDW(C) M101 3CGW(C) 88DCMF(D)	3 · · 58 3 · · 59 3 · · 60	104 25 10	{ -80 -40 { 50 -30 } [-10 -74]	3 9 1	6 5	SAME -80 -40 -80 -40	? &
1141 1142 1143	M73P13P M73P12W M73P10 1P	3 · A · 1 3 · A · 2 3 · A · 3	268 512 427	(-80,-40) (-70,-69) (-70,-69)	258 501 412		S AME S AME S AME	
1144 1145 1146	M73P8W M73P6W M73P2W	3 · A · 4 3 · A · 5 3 · A · 6	347 330 310	[-80,-40] [-80,-40] [-80,-40]	353 338 315		S AME S AME S AME	
1147 1148 1149	M73COW M73S2W M73S4W	3-A- 7 3-A- 8 3-A- 9	318 270 510	[-80,-40] [-80,-40] [-70,-89]	318 269 514		SAME SAME SAME	
1150 1151 1152	M7356W M7358W M7359W	3 - A - 10 3 - A - 11 3 - A - 12	236 238 264	[• 70 , • 1] [• 70 , • 1] [• 70 , • 1]	242 25' 267		SAME SAME SAME	
1153 1154 1155	M7359 SP M73510.1P M73511W	3-A-13 YES 3-A-14 3-A-15	0 287 306	[0, 0] [-70, -1] [-60, 16]	0 279 299	299	SAME SAME [-70 -1]	304
1156 1157 1158	M73511.5P M73512P M73512.5P	3 - A - 16 3 - A - 17 3 - A - 18	272 307 336	[-60, 16] [-60, 16] [-70, -1]	268 301 324	327	SAME SAME (-60, 16)	332
1150	M73513P 17300W 17352W	3 - A - 19 3 - A - 20 3 - A - 21	346 467 474	(-60, 16) (-80, -40) (-80, -40)	338 469 480		SAME Same Same	
1162 1163 1164	17354W 17356W 17358W	3 · A · 22 3 · A · 23 3 · A · 24	410 487 531	[-80,-40] [-80,-40] [-80,-40]	418 530 540		S A ME S A ME S A ME	
1165 1166 1167	27359W 27359.5P 273510W	3-A-25 3-A-26 3-A-27	5 2 4 5 5 5 6 3 4	{-80,-40} {-80,-40] [-80,-40]	\$ 2 \$ \$ 2 7 6 3 4	5 2 6	SAME SAME	\$ 5 2
1168 1169 1170	173511P 173P6W 173P10W	3 · A · 28 3 · A · 29 3 · A · 30	8240 589 620	(-80,-40) (-80,-40)	- 50 E 630 62 B	6 1 2	[- 80] - 40] Same Same	220
1171 1172 1173	W73SMZO IP W73SMZZ OW W73SZM3 9P	3 - A - 3 1 3 - A - 3 2 2 - A - 3 3	305 261 557	[-70, -1] [-60, 16] [-80, -40]	298 243 542	250 550	SAME {-70, -1} [-70 -1]	245 555
1174 1175 1176	H78S2OP[CL] H73S1W H73S3W	3 · A · 3 A 3 · A · 3 5 3 · A · 3 6	183 436 417	[50, 29] [80, 40] [80, 40]	183 429 406		S AME S AME S AME	
1177 1178 1:79	H73P3W H73\$\$W H73\$7W	3 · A · 37 3 · A · 38 3 · A · 39	441 368 382	(80, 40) (80, 40) (80, 40)	447 365 385		S A M E S A M E S A M E	
1180 1181 1182	H73P7W H73S9W H73S1IW	3 · A · 40 3 · A · 41 3 · A · 42 YES	233 356 0	[70	360		5 AME 5 AME 5 AME	
1183 1184 1185	H73P11W H73S12W H73S13W	3 · A · 43 3 · A · 44 3 · A · 45	241 377 378	[50, -30] [70, 59] [70, 69]	218 386 376	228	(70, 1) SAME SAME	237
1186	H73P13W H73S14W H73S15W	3 - A - 4 6 3 - A - 4 7 2 - A - 4 8	262 122 247	[50,-30] [70, 69] [60, 76]	243 321 251	745	[6016] SAME SAME	242
1189	H73P1SW H73S16 SP H73P16 SP	3-A-49 3-A-50 3-A-51	207 193 204	[-20, -77] [40, 80] [-60, -76]	500 189 183	169 192 204	[0,-69] [30, 79] [-50,-79]	146
1192 1193 1194	H735 5W H735 2 DW H73P 2 DW	3-A-52 YES 3-A-53 3-A-54	0 285 451	(0, 0) (-60, 16) (-70, -69)	0 280 455	2	[80, 40] Same Same	٥
1195 1196 1197	H79.3518P[AC] 198 1COP[C] 89856MMP[C]	3 · A · 5 5 3 · A · 5 6 3 · A · 5 7	42 92 184	[0,-69] [-80,-40] [80 40]	36 97 195	45	(50, ·30) Same Same	4
1198	H17817W(C) RESISTOR H76819(D!	3-A-58 3-A-59 3-A-60	36 37 1494	[-70, -1] [0, 0] [20, -57]	4.4 O - 1	8 2	SAME [-70]-69] [-80]-80]	300

TABLE B.5 (Continued)

				P MAXIMUM MEASURED STRAIN			P MAXIMUM PREDICTED STRAIN		
GAGE NUMBER	GAGE	GAGE ASSUMED POSITION CAL	MEASURED Maximum	P MOMENT	PREDICTED STRAIN	PREDICTED MAXIMUM		MEASURED STRAIN	
1201 1202 1203	275CDW 277COW 279COW	3 · 8 · 1 3 · 8 · 2 3 · 8 · 3	429 400 327	[-80 -40] [-80 -40] [-80,-40]	426 406 335		SAME SAME SAME		
1204 1205 1206	279 5COW 283COW 285COW	3·8· 4 YES 3·8· 5 3·8· 6	270 183	[0, 0] [-80,-40] [-80,-40]	284 149		SAME SAME SAME		
1207	W83PZM3 9P Z83P6W RES!570R	1-8- 7 3-8- 8 3-8- 9 YES	324 344 C	1 70, -89) 1-80 -401 1 0 0	3 1 8	3:0	1 8C -40; SAME 1 8C -40	322	
1210	28356# 279 556# 279 559 9P	3 · 8 · 10 3 · 8 · 11 3 · 8 · 12	240 331 387	(-80,-40) (-80,-40) (-70,-1)	247 349 374		SAME SAME SAME		
1213 1214 1215	W835M20 1P W835M22 OW W835ZM3 9°	3-8-13 YES 3-8-14 3-8-15 YES	159	1 0 01	138		SAME SAME SAME		
1216 1217 1218	M75COW M75S1C 1P M75S13P	3 - 8 - 16 3 - 8 - 17 3 - 8 - 18	220 280 294	1-70, -1; 1-70, -1; 1-60, 16;	216 280 290		SAME SAME SAME		
1219 1220 1221	M77COW M77S10.1P M77S13P	3 · 8 · 19 3 · 6 · 20 3 · 8 · 21	326 339 247	1-80 -401 1-70, -11 1-50, 291	32° 3 239	240	SAME SAME (+60 16)	245	
1222 1223 1224	880P611W(C) M77P13P M79CDW	1 - B - 22 3 - B - 23 YES 1 - B - 24	5 å 0 2 8 9	1 50 301	- 18 0 288	2 7	SAME SAME	• 7	
1225	M79510 1P M79513P M85CDW	3 · B · 2 · 5 3 · B · 2 · 6 3 · B · 2 · 7	220 174 224	[-70] -1! [-60 16] [-80 -40]	221 177 225		SAME SAME		
1228 1229 1230	M81510,1P M81513P M81910 1P	3 - 8 - 2 8 3 - 9 - 2 9 3 - 8 - 3 0	178 196 273	[-70 -1] [-60 16] [-70 -69]	1 & 1 2 0 0 2 5 9	201	SAME 7C SAME	192	
1231 1232 1233	M& 1 P 13 P M& 3 C DW M& 3 S 10 I P	3 - 8 - 3 1 3 - 8 - 3 2 YES 3 - 8 - 3 3	33 0 190	(-70,-69) (-0,-0) (-70,-1)	323 0 187		SAME SAME SAME		
1234 1235 1236	M&35/3P M&1COW M&5510 1P	3 - 8 - 3 4 3 - 8 - 3 5 3 - 8 - 3 6	239 280 174	[-60] 16] [-80] -40] [-70] -1]	238 278 172	234	SAME SAME	239	
1237 1238 1239	M85513P M85P10 1P M85P13P	3 - 8 - 37 3 - 8 - 38 3 - 8 - 39	294 229	(- 60 16) (- 80 - 40 (- 70 - 69	138 300 232		S A M E S A M E S A M E		
1240 1241 1242	F8: 55[4]NS [8 M8:55 SP M8:355 SP	11 3-8-40 3-8-41 3-8-42 YES	4 8 2 8 2 0	1 20 -571 (-80 - 40 (0 0)	35 283 0	& 1	SAME SAME	44	
1243 1244 1245	M83P10 1P M83P13P 173C0P	3 - 8 - 43 3 - 6 - 44 rES 3 - 8 - 45	292 0 157	(.70 . 69) (0 0) (80 40 ;	296 0 158		S AME S AME S AME		
1246 1247 1248	17700P 18100P F8100NA	3 - 8 - 4 6 3 - 8 - 4 7 3 - 8 - 4 8	210 193 15	[80	217 203 14	1.4	\$4#E \$4#E [-70] -11	13	
1249 1250 1251	F85CONA B80P8MMRH B80P8MMR0	3 - 8 - 49 3 - 8 - 50 3 - 8 - 51	45 17 50	[-80,-40] [-30,-79] [-70-69]	38 16 46		5 A M E 5 A M E 5 A M E		
1252 1253 1251	880P8MMRV 880P9MFRM 880P9MFRD	3·8·52 YES 3·8·53 3·8·54	2 7 † 8 1	(60, 76) [-70,-69] [-70,-69]	6 6 6 7	67 70	1 - 80 - 40 1 1 - 80 - 40 1	67 79	
1255 1256 1257	BBDP9MFRV 185CDP RESISTOR	3 · 8 · 5 · 5 3 · 8 · 5 · 6 3 · 8 · 5 · 7 · YES	10 257 0	(-20,-77) [80, 4c] [0, 0)	252	1	. 7C 11 SAME (8C, 40)	0	
1258 1259 1260	RESISTOR RESISTOR H83P19[D]	3 · 8 · 5 & 3 · 8 · 6 O	25 657 10	(0, 69) (-10 -74) (-20 -77)	(34 -3	25 6 3	1 70, 691 1-70, 691 1-10 641	2 8 9 8	
1261 1262 1263	8&6C027P 8&6C027S 8&6P377P	2 · · · 1 2 · · · 2 2 · · · 3	84 316 59	[80 401 [80 -40] [80 40]	9 1 3 2 0 5 9		S AME S AME S AME		
1264 1265 1266	86673275 8357622P 83578275	2 · · 4 2 · · \$ 2 · · 6	212 41 145	{ -80 , -40 } { -70 , -1 } { -80 , -40 }	217 48 145	\$4	SAME (80, 40) SAME	4.	
1267	8 6 C OM Z P 8 8 6 C OM Z S 8 8 6 P 3 M Z P	2· · 7 2· · 8 2· · 9	6 60 25	(80, 40) (-80, 16) (-10, 64)	\$ 47	\$ 62 15	1 -80 -401 1 -80 -401	5 6 3	
1270	886P3MZS 886P8MZP 886P8MZS	2 · · · 10 2 · · · · 11 2 · · · · 12	18 12 24	(-10, 64) 40, 80 -20, 87	3 10 14	4 1 0 1 \$	1-50, 291 1-60, 761 1-60, 161	10	
1273 1274 1275	B&6COMFF B&6COMFS B&6P9MFP	2 13 2 14 2 15	10 148 31	[-80,-60] [-80,-60]	148	5	1 40, 80 I Same Same	٠	

TABLE B.5 (Continued)

			P MAXIMUM MEASURED STRAIN		₽ MAX1	STRAIN		
GACE HUMBER	GAGE Name	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT	MEASURED STRAIN
1276 1277 1278	Ba6P9MFS Ba6COF1P Ba6COF1S	2 16 2 17 2 18	47 22 13	1-20, 57) [-80,-40] [-70, 69]	30 14 16	35 17	1-60 16; SAME (80 40)	43
1279 1280 1281	B 8 6 P 6 F 1 P B 8 6 P 6 F 1 S B 8 6 S 4 7 2 P	2 · · · · · · · · · · · · · · · · · · ·	23 35 21	l - 70 , - 1 l - 80 , - 40 } j - 70 , - 1 }	2 4 3 5 2 4	24 27	(-80 -40) SAME - 80 40;	19
1282 1283 1284	88654225 8865827P 88658225	2 · · · 2 2 2 · · · 2 3 2 · · · 2 4 YES	153 58 143	{-80, -40} 80 40} -80, -46}	15 ! 6 1 14 3		S A M E S A M E	
1285 1286 1287	88654MZF 88654MZS 88658MZP	2 · · · 25 2 · · · 26 2 · · · 27	1 2 6 4 2 2	(-10, 64, (-80, 40) (-10, -64)	70 9	6	80 40 SAME (50 -30)	: 3
1288 1289 1290	88658MZS 88652MFP 88652MFS	2 - · · 28 2 - · · 29 2 - · · 30	23 22 76	[-30,-79] [-70,-1] [-60,-16]	1 9 2 6 8	25 28 17	[-70 -69] [-80 -40] [70 69]	1 1 2 2 1 3
1291 1292 1293	88656F1P 88656F1S 886COHHRH	2 3 i 2 3 2 2 3 3	28 33 14	(-50,-79) (-80,-40) (-80,-40)	1 <i>8</i> 37 15	2 1	: 70 -69" Same 70 69"	2 Z
1294 1295 1296	BS6COMHRD BS6COHHRV B86P7:IRV	2 · · · 3 4 2 · · · 3 5 2 · · · 3 6 YES	7 6 2 2	[-50, 29] [-80, -40] [-0, 0]	5 ~ 0	t	SAME SAME 170 69.	o
1297 1298 1299	886P711RD 886P711RH 886P11F1RV	2 37 2 38 2 39	33 48 41	(40, 80 ((-80, -40) (40, 80)	29 42 20	32	5AME 50 79:	31
1300 1301 1302	886P11F1RH 886P11F1RD 886P12FFRV	2 40 YES 2 41 2 42	0 5 2 2 5	[0, 0] [-80, -40] [40, 80]	0 49 23	25	80 40: SAME 60 76:	o 2 3
1303 1304 1305	886P12FFRD 886P12FFRH 886S711RH	2 · · 4 3 2 · · 4 4 2 · · 4 5	75 26 105	[80, 40] [70, 69] [-80,-40]	73 25 103	26	SAME 8G 4C; Same	2 2
1306 1307 1308	8565711RC 8865711RV 886511F1RH	2 - · 46 2 - · 47 2 - · 48	93 36 103	[-80,-40] [-20,-77] [-20,-77]	9 1 2 1 35	32 80	SAME [-70]-69 [-80]-40]	1 4 7 3
1309 1310 1311	886511F1RD 886511F1RV 886512FFRH	2 49 2 50 2 51	37 33 14	[-80 -40] [-30,-79] [-60,-75]	33 27 4	27	SAME (-40 -80) (-30 -79)	3 1 1 C
1312	886512FFRD 886512FFRV H84 5521P(CM)	2 5 2 2 5 3 2 5 4	40 38 172	[60,-16] [30,-49] [-50, 29]	37 32 165	39	[70, 1) [60 -16] SAME	36
1315	H84 5521P(CL) PESISTOR RESISTOR	755 256 257	178 14 11	(-50, 29) (-50, 0) (-50, 0)	177 0 C	176 2 2	1 60 161 [10, 74] [50, 79]	178 - 4 - 3
1318 :3:9 :320	RESISTOR RESISTOR W78P3MZ(0)	7 · 58 7 · -59 7 · -60	9 17 47	(0, 0) (0, 0) (30, 79)	o c · z	3 4 3	1 60 761 1 70 691 1 20 -571	3
1321	892C027P 892C0275 892P42ZP	2 · A · 1 2 · A · 2 2 · A · 3	179 315 30	[70, 69] {-80,-40} [60,-16]	170 311 27	173	1 80 401 SAME 1 70, 691	169
1374	892P472S 892P822P 892P872S	2 · A · 4 2 · A · 5 2 · A · 6	149 126 77	[70, 1] [50, 79]	144 91 42	111	SAME (80 40) [70 69]	114
1321	892COMIP 892COMIS 892P4MIP	2 · A · 7 2 · A · 8 2 · A · 9	5 8 2 4 4 1	[60, 76] [30, 79] [30, 79]	30 9 34	3 1 1 0 4 4	[70	50 4 33
1330	892P4M2S 892P8M2P 892P8M2S	2 · A · 10 2 · A · 11 2 · A · 12	64 57 344	[-10, 64] [-10, 64] [-0, 0]	9 4 1 0	2 1 6 7 3 9	(-70 -1) [-50 29] [-70 -1]	- 3 2 : - 4 9
1334	892COMFP 892COMFS 892P8MFP	2 - A - 13 2 - A - 14 2 - A - 15	5.9 1.2.6 6.1	[0, 0] [-80,-40] [-60, 16]	133 64	70	1-40 401 SAME 1-80 401	- 2 5 6
1336 1337 1338	B92PAMFS B92COFIP B92CDFIS	2 - A - 16 2 - A - 17 2 - A - 18	113 997 173	(-70,-59) [-10,-74] [-0,-69]	114 34 +4	123 36 12	[-80 -40] [-40 -80] [-70 -69]	107 - 24 - 21
1339 1340 1341	892P6F1P 892P6F1S 892542ZP	2-A-19 2-A-20 YES 2-A-21	39 43 64	{-70, -1] {-70, -69} [-30, -79}	46 32 37	47 36 37	[-80,-40] [-80,-40] [-40,-80]	33 41 54
1342 :343 !344	#9254225 #925822P #9258225	2 · A · 2 2 2 · A · 2 3 2 · A · 2 4 YES	200 51 105	[10, 64] [50, 30] [10, 76]	62 54 100	144 63 115	[-70, -1] [-70, 1] [-80,-40]	107 43 65
1345 1346 1347	89254MZP 89254MZ5 89258MZP	2 · A · 25 2 · A · 26 2 · A · 27	73 30 74	[-30, -79] [0, -69] [-70, -69]	9 30 68	.:	[-20]-77] [-60]-16] SAME	73 21
1348 1349 1350	89258MZS 89252MFP 89252MFS	2 · A · 28 2 · A · 29 2 · A · 30	67 8 25	(-40, -80) (-0, -69) (-50, -29)	37 1 21	60 1 29	1 - 80 - 60 1 1 - 40 - 80 1 [- 80 - 40]	40 - 4 17

TABLE B.5 (Continued)

			@ MARI	MUM MEASURED	STRAIN	P MARI	MUM PREDICTED	STRAIN
GAGE NUMBER	GAGE Name	GAGE ASSUMED POSITION CAL	MEASURED Maximum	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED Maximum	P MOMENT (VERT, LAT)	MEASURED STRAIN
1351 1352 1353	89256F1P 89256F15 892P 2MMRM	2 - A - 3 1 2 - A - 3 2 2 - A - 3 3	5.6 33 39	(-70 -69) (-60 16) (-20, 57)	5 1 3 1 2 8	5 6 3 6 4 0	[-80,-40] [-80,-40] [-70,-1]	54 33 37
1354 1355 1356	B92P 2HHRV B92P 2HHRV B92P7[]RV	2 - A - 34 2 - A - 35 2 - A - 36 YES	63 13 5	[-80, -40] (-70, -1) [0, 0)	62 6 0	١	SAME SAME (70, 1)	1
1357 1358 1359	892P711R0 892P711RH 892P11F1RV	2 - A · 37 2 · A · 38 2 · A · 39	84 74 26	(- 80 , - 40 ' (- 80 , - 40 (- 30 , - 49	8 8 7 7 8	1.6	SAME SAME 50, 79)	10
1360 1361 1362	892P11F1RD 892P11F1RH 892P11 9FFRY	2 - A - 4C 1ES 2 - A - 41 2 - A - 42	0 5 7 2 4	[0 0 0 1 1 7 0 1 6 9 1 1 7 0 1 6 9 1	0 40 32	4 8	60 76) 1-80 -40) SAME	53
1363 1364 1365	B97P11 9FFRD B92P11 9FFRH B92571;RH	2 · A · 4 3 2 · A · 4 4 2 · A · 4 5	55 30 59	[70	43 29 54	4.4	1 80, 401 1 60, 761 SAME	4 9 2 4
1366 1367 1368	8925711R0 8925711RV 8925:1F1RH	2 - A - 4 6 2 - A - 4 7 2 - A - 4 8	32 45 74	{-60 16} {-70,-69} {-80,-40}	30 60 67	3) 68	1-70 -11 SAME 1-70,-691	30 68
1369 1370 1371	8925	2 - A - 49 2 - A - 50 2 - A - 51	1 1 5 8 4 9	(50 79) (c 0) (0,-69)	7 0 3 a	7 12 39	1 40 80 1 1 80 - 40 1 1 20 - 77 1	5 5 2 &
1372 1373 1374	892511 9FFRC 892511 9FFRV F91511 9P(88)	2 - A - 5 2 2 - A - 5 3 2 - A - 5 4	35 25 108	[70	23 17 97	27 20 107	50 -301 [60 - 16] [70 1]	28 12 56
1375 1376 1377	M87 SPIOS(PST) RESISTOR RESISTOR	2 · A · 55 2 · A · 56 2 · A · S ? YES	236 28 0	[0, 0] [0, 0]	236	7 191	5AME [70, 1] [-80 -40]	?
1378 1379 1380	RESISTOR RESISTOR M79 5CO(D)	2 - A - 58 2 - A - 59 YES 2 - A - 60	47 0 15	[0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0	0 0 6	4 8 6	(-70 -69) (80 40) (-70 -69)	6 7
1381 1382 1363	M93 6P8W M93 6P8 5P M93 6P9W	2 · 8 · 1 2 · 8 · 2 2 · 8 · 3	269 263 270	[-80,-40] [-80,-40] [-80,-40]	266 265 271		S AME S AME S AME	
1384 1385 1386	M93 6P9 5P M93 6P10W M93 6P11W	2 - B - 4 2 - B - 5 2 - P - 6	196 279 236	[-80,-40] [-70,-69] [-80,-40]	200 271 240	277	SAME (-80 -40) SAME	276
1387 1388 1389	M92 8P8 5RH M92 8P8 5RH M92 8P8 5RD	2 · 8 · 7 2 · 8 · 8 2 · 8 · 9	136 154 102	(-70,-69) (-80,-40] (-40,-80)	121 158 94	95	SAME SAME (-30,-79)	102
1390 1391 1392	M92 8P8 5PL M92 8P9w M97 8P9 5P	2 - 8 - 1 0 2 - 8 - 1 1 2 - 8 - 1 2	349 321 226	(-80 -40) (-80 -40) (-80 -40)	350 323 233		SAME SAME SAME	
1393 1394 1395	M92 8P10A M92 8P11W M92 8P12W	2 · 8 · 13 2 · 8 · 14 2 · 8 · 15	277 207 223	{-80,-40} [-70,-69] [-70,-69]	279 203 223		S AME S AME S AME	
1396 1397 1 398	M92 2P84 H85 9P17P[LP] M92 2P8 SP	2 - 8 - 1 6 2 - 8 - 1 7 2 - 8 - 1 8	119 114 104	[-50,-79] [-40,-80] [-50,-30]	104 113 111	106	(-60 -761 SAME (40, -40)	96
: 399 1400 1401	B92P7MMS(C) M92 3P95 M97 3P9 2RH	2 - 8 - 19 2 - 6 - 20 2 - 6 - 2 i	154 284 64	(-80,-40) (-70,-69) (-70,-69)	155 291 70	296	SAME 1-80,-401 SAME	280
1402	M92 3P9 2R0 M92 3P9 2RL M92 3P9 5P	2 · 8 · 22 2 · 8 · 23 2 · 8 · 24 YES	76 341 439	[0, -69] [-80 -40] [-80, -40]	66 350 448	72	[30 -49] SAME SAME	6 1
1405	M92 3P10S M92 3P115 M92 3P12S	2 - 8 - 25 2 - 8 - 26 2 - 8 - 27	280 229 238	[-80 -40] [-70 -59] [-80 -40]	275 224 238		S AME S AME S AME	
1408	M91 6P85 M91 6P8 2P M91 6P8 5P	2 · B · 2A 2 · B · 29 2 · B · 30	327 226 242	[-80,-40] [-70,-69] [-70,-69]	344 229 244	249	SAME SAME (-80,-40)	240
1411 1412 1413	M91 6P9W M91 6P9 5P M91 6P9 7RL	2 - 8 - 3 1 2 - 8 - 3 2 2 - 8 - 3 2	219 224 211	[-80,-40] [-70,-69] [-70,-69]	195 222 218	198	[-70,-69] SAME SAME	219
1414 1415 1416	M91 6P9 7RH M91 6P9 7RD M91 6P10W	2 · B · 34 2 · B · 35 2 · B · 36	264 76 3	1 70, 11 [70, 69] { 30, 49]	317 82 0	330	[80, 40] SAME 80, 40]	25 6 3
1417	M91 6P11W M91 6P12W H86 [P[9P[HSU]	2 - 8 - 37 2 - 8 - 34 2 - 8 - 29	280 258 508	[-80,-40] [-70,-69] [-80,-40]	284 249 522	260	SAME {-80,-40} SAME	234
1420	H&G TP19P(HSL) B645 1MMP(CUST H71.9P18P(C)		0 49 261	[0 0] [10 -64] [40 -40]	0 11 219	12	[60, 40] [-20, -77] SAME	34
1423 1424 1425	H71P9P(C) 864P8 SMFRV(88 864P8 SMFRD(88		231 49 188	(70 1] [-60]-76] [-80]-40]	224 45 187	**	SAME [-70 -69] SAME	47

TABLE B.5 (Continued)

				P MAXIMUM MEASURED STRAIN			P MAXIMUM PREDICTED STRAIN		
GAGE Number	GAGE Name	GAGE AS		MEASURED MAXIMUM	# MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT [YERT,LAT]	MEASURED STRAIN
1426 1427 1428	#64P8.5MFRH(88) M80595(5U) M80595(5L)	2 - 8 - 4 6 2 - 8 - 4 7 2 - 8 - 4 8		85 76 67	[-80,-40] [-40, 40] [-50, 16]	9 2 7 3 6 8	74 72	SAME (-30, 48) (-70, -1)	74 67
1429 1430 1431	H79 SSIBP(FC) H79S2OP(CU) RESISTOR	2 - 8 - 4 9 2 - 8 - 5 0 2 - 8 - 5 1		44 159 28	{ 40, -40; (-20, 57) (0, 69)	39 158 3	4 0 5	[30,-49] SAME [60 76]	40
1432 1433 1434	RESISTOR RESISTOR RESISTOR	2 - B - 5 2 2 - B - 5 3 2 - B - 5 4	4 E S	1 \$ 0 0	(0, 691 (0, 0)	0	2 1 8 1 7	[-80 -40] [-80 -40] [-80 -40]	· 1 c
1435 1436 1437	RESISTOR RESISTOR RESISTOR	2 - 8 - 5 5 2 - 8 - 5 6 2 - 8 - 5 7		13 14 25	(c, c. (c o: (c, 65)	o c 3	5 3 4	60, 761 50, 791 60, 761	. 3 . 3
1435	RESISTOR RESISTOR Hagpig(D)	2 - 8 - 5 8 2 - 8 - 5 9 2 - 8 - 6 0	YES	1 2 0 1 4	[0, 69] [0, 0] [-20,-77]	2 0 0	3 1 1 2	{ 40, 80} { 80, 40} { 70, 1}	- 10
1441 1442 1443	28700W 28900W 29100W	1 · · 1 1 · · 2 1 · · 3		157 149 51	[-8040] [-8040] [-8040]	161 141 45		SAME SAME SAME	
1444 1445 1446	W91 95MZO 1RL W91 95MZO 1RD W91 95MZO 1RY	1 · · 4 1 · · 5 1 · · 6	4 £ 2	30 730 66	(-20 57) [-80,+40] [-0,-69]	19 757 35	19	(-40 40) SAME (50 -30)	2 6 4 8
1447 1448 1449	M87COW M87S9 1P M87S12	1 7 1 8 1 9		256 241 152	[-80,-40] [-60, 16] [-70, -1]	255 177 157	187	SAME [-70, -1] SAME	231
1450 1451 1452	M89COW M89S9 1P M89S12	1 10 1 11 1 12	Y & S Y & S	173	(0 0) (·70, -1) (0, 0)	7 7 8 0		S A ME 5 A ME 5 A ME	
1453 1454 1455	M29P9 1P M89P12 M91CDW	113	YES	259 0 172	(-70,-69) [0, 0] (-70, -1)	230 0 137	162	SAME SAME (-80 -40)	162
1456 1457 1458	M9159 1P M91512 M93COW	1 16 1 17 1 18	YES	162 198 O	(-70 -1) (-70 -1) (-0, 0)	180 198 0		S A M E S A M E S A M E	
1459 1460 1461	M935!2 M93P!2 M97COW	1 - 19	+ES	151	[-70, -11 [0 0] [-80, -40]	136 0 127		5 A M E 5 A M E 5 A M E	
1462 1463 1464	M97512 M97P12 M99CQ#	1 · · · 2 2 1 · · · 2 3 1 · · · 2 4		40 83 116	(-10 64) (-70 -59) (-80 -40)	44 80 123	4.4	1-20 571 Same Same	4 ¢
1465 1466 1467	M99517 M101COW M10TS12	1 · · 25		39 102 78	[-50 29] [-80 -40] [-70, -1]	38 103 79	39	(+60, 16) Same Same	37
1468 1469 1470	M101P12 W02E01M 112E01M	1 29	YES	4 3 8 5	(0, 0) (-80, 40) (-70, -1)	0 2 81	3	SAME -40 -80 SAME	45
1471	M105COW M105SII M105PII	1 3 : 3 : 3 : 3 : 3 : 3 : 3 : 3 : 3 :	YES	111	(-80,-40) (-80,-40) (-0,-0)	104		SAME Same Same	
1474 1475 1476	M107511 M107COW F89CONA	1 34 f 35 1 36		63 159 8	[-70, -1] [-80,-40] [-50,-79]	66 167 4	5	SAME SAME [-80 -40]	•
1477 1478 1479	189COP F93CONA 193CGF	1 · · · 37 1 · · · 38 1 · · · 39	YES	144 48 0	(80, 40) (80, 40) (0, 0)	147 52 0		S AME S AME S AME	
1450 1451 1462	F97CQNA 97CDP 101CQNA	1 40 1 41 1 42		51 119 147	[80 40] [80 40] [80, 40]	49 121 157		SAME Same Same	
1483 1484 1485	1101CDP F105CDNA 1105CDP	1 43		70 155 53	[80, 40] [80, 40] [-80, 40]	· 26 134 57	26	(80 40) Same Same	35
1486	ASM279C120 ASM279C112(RES ASM287C315	146 1147 1148		494 334 1362	(-80,-40) (-80,-40) (-80,-40)	489 337 1352		SAME SAME SAME	_
1459	ASM287C308 ASM287C300 ASM287C293	149		1340 1244 1050	[-70, -1] [-80,-40] [-80,-40]	1290 1246 1058	1380	(-80 -40) SAME SAME	1749
1497 1493 1494	ASMZBTRYMF ASMZBTRDMF ASMZBTRLMF	1 52 1 53 1 54		244 250 119	[-70, -1] [70 69] [80, 40]	239 253 126		S AME S AME S AME	
1495 1496 1497	89257M2P(8M) 89257M25(8M) RESUSTOR	1 55 1 56 1 57		102 152 6	[-70,-69] [-70,-89] [-20 57]	63 138 - 1	153	SAME [-80 -40] [-70]]	143
1498	RESISTOR RESISTOR H92P1(0)	1 - 58	ves	1 0 0 1 6	[-70, -1] [0 0] [-20 -77]	6 0	• ,	(+80 +40) SAME 1 70 1)	- 6

TABLE B.5 (Continued)

			# MAXIMUM MEASURED STRAIN		P MAXIMUM PREDICTED STRAIN			
SAGE NUMBER	GAGE NAME	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	@ MOMENT {VERT,LAT)	PREDICTED STRAIN	PREDICTED Maximum	@ MOMENT (VERT, LAT)	MEASURED STRAIN
1501 1502 1503	898COMMS 898COMMP 898P4MMP	1 - A - 1 1 - A - 2 1 - A - 3	396 170 30	(-80,-40) (-80,-40) (-70,-69)	389 196 38	41	SAME SAME (80, 40)	24
1504 1505 1506	898P4MMS 898P9MMP 898P9MMS	1 - A - 4 - YES 1 - A - 5 1 - A - 6	0 124 139	(0, 0) (-80,-40) (-60,-76)	0 1 15 1 15	139	SAME SAME (-80 -40)	106
1507 1508 1509	B98COMFP B98COMFS B98P5MFP	1 - A - 7 1 - A - 8 1 - A - 9	5 8 5 1 4 0	[0, 0] [-10, -74] [0, 0]	6	5 a 5 7 3 3	[70 69 [80 -40] [70 69]	5 6 • 4 3 8
1510 1511 1512	898P5MFS 898P6F1P 898C0F1S	1 - A - 10 1 - A - 11 1 - A - 12 YES	66 23 0	(50, 79) (-10, 64) (0, 0)	9 1 20 0	110	(70 69) (-30, 49) SAME	78
1513 1514 1515	898COF1P 898P6F1S 89854MMP	1 - A - 13 1 - A - 14 1 - A - 15	20 29 41	[-30,-79] [-80,-40] [-80,-40]	. 7 24 56	9	[60 , 76] Same Same	- 5
1516 1517 1518	89854MMS 898P8MMP 89858MMS	1 - A - 16 1 - A - 17 1 - A - 18	:36 53 137	{ -80, -40} (70, 69] (0, 0)	126 72 0	73 65	SAME [80 40 ! [60 - 76]	43
1519 1520 1521	89853MFP 89854MFS 89856F1P	1 - A - 19 1 - A - 20 1 - A - 21	23 31 20	[-20, -77] [40, 80] [0, 0]	1 a 0	7 30 6	[-80,-40] [-80,-40] [-70,-1]	9 9 - 5
1522 1523 1524	89856F15 898P.2HMRH 898P.2HMRD	1 · A · 22 1 · A · 23 1 · A · 24	20 98 68	[-10, 64] {-80,-40} [-80, 40]	14 104 47	15	(-40, 40) Same Same	1.1
1525 1526 1527	B98P 2HMRV B98P711RD B98P7[[RV	1 - 4 - 25 1 - 4 - 26 1 - 4 - 27	26 69 117	(-20, -77) (-40, 40) (-40, -40)	- 4 47 - 64	1 5 5 8 1 4 0	[-80, 16] [-70, -1] [-80, -40]	53 1 1 1
1528 1529 1530	B98P7 RH B98P1 SFIRV B98P1 SFIRC	1 - A - 28 1 - A - 29 1 - A - 30	117 88 176	[-\$0, 29] [-0, 0] [-80 40]	76 0 191	106 61	(-80,-40) (-80,-40) SAME	105
1531 1532 1533	898P11 SFIRM 898P11 SFFRY 898P11 SFFRD	1 - A - 31 1 - A - 32 1 - A - 33	1 6 9 4 2 2 1 2	[-80 -40] 1 10 74] [80 40]	138 40 206	140	(-70, -1) (-30, 79) SAME	147
1534 1535 1536	898P11.9FFRH 898S711RH 898\$71[RD	1 - A - 34 1 - A - 35 1 - A - 36	41 161 47	[80, 40] [-70,-69] [-20, 57]	44 70 34	5 8 7 9 3 9	{ \$0, 76} {-80, 40} {-60, 16}	37 153 37
1537 1538 1539	89857; JRY 898511 5F1RH 898511 5F1RD	t - a - 37 1 - a - 38 1 - a - 39	44 153 142	[-30, -79] [-80 -40] [-80, 40]	33 159 136	160	[• 70 . • 69] { • 70 . • 69 } SAME	142
1540 1541 1542	898511 5F1RV 868571 9FFRH 898511 9FFRD	1 - A - 40 YES 3 - A - 41 1 - A - 42	0 73 207	(0 01 (-40 -80) (80, 40)	0 75 216	155 76	[-80,-40] [-30,-79] SAME	67
1543 1544 1545	898511 9FFRV 898510MFS 898510MFP	1 - 4 - 4 3 1 - 4 - 4 4 1 - 4 - 4 5	3 ! 1 2 4 9 6	(0, 69) [0, 69] [30, 79]	20 96 77	2 / 1 0 2 9 5	{ 2057} { 30,-49} { 70, 69}	103 62
1546 1547 1548	H100P20P1FC) A5MM77C15F A5MM77C25F	1 - A - 4 6 1 - A - 4 7 1 - A - 4 8	376 634 45	[-50, 29] [-70,-69] [-40,-80]	379 737 27	822 33	SAME (-80,-40) (-70,-69)	670 25
1549 1550 1551	ASMM77C35F ASMM77C45F ASMM77C55F	1 - A - 49 1 - A - 50 1 - A - 51	247 227 428	[-80, 16] [-70, -1] [-80,-40]	191 173 432	192 178	[-50, 29] -60, 16] SAME	213 215
1552 1553 1554	ASMM77C 1SA ASMM77C 2SA ASMM77C 3SA	1 - A - 5 2 1 - A - 5 3 1 - A - 5 4	287 258 77	[-60, 16] (-50, 29] [-80, -40]	252 253 78		S AME S AME S AME	
1555 1556 1557	ASMM77E4SA ASMM77E8SA ASMM77P3SAO 5	1 · A · 55 1 · A · 56 1 · A · 57	397 262 705	[-30, 49] [-40, 40] [-80,-40]	400 252 708	404 261	[-40, 40] [-20 \$7] SAME	397 252
1558 1559 1560	ASMM77P3SA1 5 ASMM77P3SA2 0 H103S19[D]	1-A-SA 1-A-S9 YES 1-A-60	199	[-80, -40] [0, 0] [-70, -1]	467 0 196		S AME S AME S AME	
1561 1562 1563	8108P9MFP 8108C0MMS 8108P4MMP	1-8- 1 1-8- 2 1-8- 3	13 23 45	(0, 69) (80, 40) (-80, -40)	9 21 43	13	{-60, 16} Same Same	•
1564 1565 1566	BIOSPSMMS BIOSPSMMP BIOSPSMMS	1 · 8 · 4 · YE\$ 1 · 8 · 5 1 · 8 · 6	23 25	[0, 0] [-70, -1] [0, 0]	0 2 6 0	2 6 2 9	SAME [-80]-40] [-80]-40]	23 21
1567 1568 1569	RESISTOR BIOSCOMPS BIOSPAMPP	1-8- 7 1-8- 8 1-8- 9	136 37 32	[0, 0] [-40, 40] [-80, 29]	0 19 33	26 29 37	[40, 80] [+80,-40] [+70, -1]	- 1 \$ 2 2 3 2
1570 1571 1572	BIOSPAMPS RESISTOR BIOSCOFIS	1-8-10 1-8-11 1-8-12 YES	6 1 2 6 0	[80, 40] [0, 69] [0, 0]	74 1 0	•	SAME (\$0 79) Same	. 2
1673 1674 1875	#104P6F1P #104P6F1S #10854MMP	1 - 8 - 13 1 - 8 - 14 1 - 8 - 15	5 8 6 5 1	-10 64 60,-16 -80,-40	14 3 54	16	(-50, 29) (-10,-64) SAME	10

TABLE B.5 (Continued)

			P MAXIMUM MEASURED STRAIN			P MARIMUM PRECICTED STRAIN		
GAGE NUMBER	G A G E N A M E	CAGE ASSUMED POSITION TAL	MEASURED Maximum	O MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	@ MOMENT (VERT, LAT)	MEASUREC Strain
:576 :577 1578	810854MMS 810858MMP 810858MMS	1 - B - 16 1 - B - 17 1 - B - 18	4 2 3 1 2 4	(-80,-40) [-80,-40] [-70, -1]	38 33 18	19	SAME SAME [-80,-40]	2.2
1579 1580 1587	B10854MFP B10854MFS B10856F1P	1 - 8 - 19 1 - 8 - 20 1 - 8 - 21	47 69 21	[-80,-40] [-80,-40] [-80,-40]	37 14 26		SAME SAME SAME	
1582 1583 1584	810856F15 8108P 2HHRH 8108P 2HHRD	1 - 8 - 2 2 1 - 8 - 2 3 1 - 8 - 2 4	31 440 486	[80, 40] [80, -40] [80 -40]	23 435 466	24	TO: 691 SAME SAME	25
1586 1586 1587	8:08P 2HHRV 8:08P711RV 8:108P711R0	1 - 8 - 25 ¥ E S 1 - 8 - 26 1 - 8 - 27	0 45 43	[0 0] [80, 40] [0 -69]	0 52 24	24	SAME SAME [-20]-77]	21
1588 1589 1590	8108P711RH 8108P10 5F1RV 8108P10 5F1RD	1 - 8 - 2 8 1 - 8 - 2 9 1 - 8 - 3 0	240 126 267	[80 -40] [80 40] [80 40]	243 120 264		SAME SAME SAME	
1591 1592 1593	BIOSPIO SFIRM BIOSPIC SFFRE BIOSPIC SFFRE	1 - 0 - 3 t 1 - 0 - 3 2 1 - 0 - 3 3	70 28 212	[-80 -40] {-40, 40} {-80, 40]	70 19 217	23	SAME 1 0, 693 SAME	22
1594 1595 1596	8:08F10 9FFRH 8:108571 [RH 8:108571 [RD	1 - 8 - 3 4 1 - 8 - 3 5 1 - 8 - 3 6	12 214 143	[10 -64] [-80 -40] [70 69]	10 215 36	13	[50, -301 SAME SAME	12
1597 1598 1599	81085711RV 8108510 5F1RH 8108510 5F1RD	1 - 8 - 37 1 - 8 - 38 1 - 8 - 39	38 178 183	[80	42 179 189		SAME SAME SAME	
1600 1601 1602	8108510 5F1RV 8108510 9FFRH 8108510 9FFRD	1 - 8 - 40 1 - 6 - 4 i 1 - 8 - 42	216 83 131	[80, 40} {-50,-79} [0,-69]	224 82 128	136	SAME SAME (-10 -74)	129
1603 1604 1605	BIOBSIO SFFRY BIOBPSMFS APMM77CIPA	1 - 6 - 43 1 - B - 44 1 - 6 - 45	123 53 621	(0 -69) [-80,-40] [-70,-69]	84 55 620	9 2	{ -3079 } SAME SAME	3 6
1606 1607 1608	ДРИМ77С2РД Дрим77С3РД Дрим77С4РД	1 - 8 - 4 6 1 - 8 - 4 7 1 - 8 - 4 8	726 641 792	{ -70 -69 } { -70 -69 } (-80 -40 }	73 649 832		SAME SAME SAME	
1609 1610 1611	ДРММ77С5Р4 ДРММ77Р3Р40 5 ДРММ77Р3Р41 5	1 - 8 - 4 9 1 - 8 - 5 0 1 - 8 - 5 1	378 423 374	(- 70 , - 69) (- 70 - 69) (- 70 - 69)	328 422 372		SAME SAME SAME	
1612 1613 1614	APMMTTP3PA3 O APMMTTC1PF APMMTTC2PF	1 - 8 - 5 2 1 - 8 - 5 3 1 - 8 - 5 4	332 482 504	[-70 -69] [-80,-40] [-80,-40]	333 482 497		5 <i>ame</i> 5 ame 5 ame	
1615 1616 1617	APMM77C3PF APMM77C4PF APMM77C5PF	1 - 8 - 5 5 1 - 8 - 5 6 1 - 8 - 5 7	719 432 775	[-80 , -40] [-70 , -69] [-60 , -40]	734 440 762		SAME SAME SAME	
1618 1619 1620	ASM279C135 ASM279C127 H108CFF(D)	1 - B - 5 8 1 - B - 5 9 Y E S 1 - B - 6 0	703 0 7	[80, 40] [0, 0] [0, 69]	695 O 1	1	SAME SAME 1 30, 79!	\$
1621 1622 1623	M95P10W M95P7W M95P2W	0 · · 1 0 · · 2 0 · · 3	143 215 143	(-60,-40) (-60,-40) (-80,-40)	141 213 142	141	(- 70 , - 69 Same Same	143
1624 1625 1626	M95COW M95\$2W M95\$4W	0 · · 4 · VES 0 · · · 5 0 · · · 6	0 142 131	[0, 0] [-80,-40] [-80,-40]	0 141 124		S A M E S A M E S A M E	
1627 1628 1629	M9556W M9558W M95510W	0 · · 7 0 · · 8 0 · · 9	187 207 31	[-80,-40] [-80,-40] [-60,-76]	154 200 26		SAME SAME SAME	
1630 1631 1632	M95510 5P M95511W M95511 5P	0 10 0 11 0 12	4 2 3 7 4 2	[-40, 40] [-20, 57] [-20, 57]	28 22 32	2 £ 2 4 4 2	(-30 49; 20 77) [-70 -1]	3 ł 9 2 3
1633 1634 1635	M95\$12W 892P9 5P(88) H95\$1W	0 - 13 0 - 14 0 - 15	46 32 118	[20, 57] [40, 80] [80, 40]	29 13 135	29 17	(0 69) [70, 69) SAME	36 28
1636 1637 1638	H 9 5 5 6 W H 9 5 P 6 W H 9 5 5 5 W	016 017 018	107 96 106	[80, 40] [80, 40] [80, 40]	130 106 118		S A ME S A ME S A ME	
1639 1640 1641	H 9 5 5 7 W H 9 5 P 7 W H 9 5 5 9 W	0 - 19 0 - 20 0 - 21	116 91 90	[80, 40] [70, 1] [70, 69]	124 96 96	97 97	SAME [80 40] [80 40]	9 1 8 6
1642 1643 1644	H95511W H95P11W H95512W	0 22 VES 0 23 0 24	55 87	[0, 0] [70, 1] [70, 69]	0 56 92		S AME S AME S AME	
1645 1646 1647	H95513W H95913W H95518#	0 - · 25 0 - · 26 YE\$ 0 - · 27	80 0 46	[70 69] [0. 0] [20, 77]	87 0 44	**	SAME SAME ; 50, 791	41
1646 1649 1650	H98516 SP H98P16.SP H88S17W	0 · · · 28 0 · · · 29 0 · · · 30	57 78 63	(-30, 44) (-70, -69) (-30, 49)	47 67 46	68 47	SAME (-60 -76) (-40, 40)	78 93

TABLE B.5 (Continued)

			P MAKIMUM MEASURED STRAIN		B MAXIMUM PREDICTED STRAIN			
GAGE NUMBER	GACE Name	GAGE ASSUMED POSITION CAL	MEASURED Maximum	@ MOMENT (VERT LAT)	PREDICTED STRAIN	PREDICTED MAKIMUM	P MOMENT (VERT, LAT)	MEASURED Strain
1651 1652 1653	Н95517₩ Н95519₩ M80595(BMSU)	0 · - 31 0 · - 32	86 122 112	(- 70 , - 1) (- 80 , - 40) (- 70 , - 1)	78 125 105	130	SAME 1-70 -69; SAME	. 22
1654 1655 1656	8925MM7(BM5L) H49CDP H61CDP	0 · - 34 0 · - 35 YES 0 · - 36 YES	537 0 0	1 - 80 - 40	4 9 9 0 0		SAME SAME SAME	
1657 1658 1659	Н73СОР Н75СОР Н77СОР	037 YES 038 039 YES	451 0	[0, 0] [80, 40] [0 0]	450		SAME SAME SAME	
1660 1661 1662	H79COP H81COP H83COP	0 40 0 41 0 42 YES	406 360 0	80	2 6 2 3 9 9		S AME S AME S AME	
1663 1664 1665	H85COP H87COP H91COP	0 43 0 44 0 45	324 257 200	[80 40] [80, 40] [80, 40]	325 269 197		SAME SAME SAME	
1666 1667 7668	H93CDP H95CDP H97CDP	0 46 0 47 0 48 YES	265 591 0	(80, 40) (60,-16) (0, 0)	179 377 C	501	5AME + 80 40! SAME	589
1669 1670 1671	H99CDP H101CDP H103CDP	0 49 0 50 0 51 YES	3 ! 5 2 0	[80, 40] [70, 1] [0 0]	3 a 4 5 0	5 2	SAME (80 401 SAME	5 0
1672 1673 1674	H105COP H107COP H89COP	0 52 0 53 0 54 YES	3 9 1 9 0	(80, 40) (10, 64) (0, 0)	4.4 5 0	17	SAME (- 80 - 40) SAME	15
1675 1676 1677	H865FF(C) B80PMMRH B80PMMRD	0 - · 55 0 - · 56 0 - · 57	154 15 74	[30, 79] [-10,-74] [70, 69]	15 1 2 79	152	1 40, 801 1 70, 11 SAME	146
1678 1679 1680	880PMMRV 880P19@18(FC) H965:9(D)	0 58 TES 0 59 0 60 YES	187 288 31	(-80 -40) (-70 -69) (-30, -79)	:92 289 2	•	SAME SAME 1 - 70 - 69	2 2
1681 1682 1683	892P7MMS 892P7MMP 892S8MMS	O-A- 1 O-A- 2 O-A- 3	224 78 388	[-80,-40] [-10, 64] [-70,-69]	218 45 297	70 308	SAME { -70, -11 { -80, -40 }	3 ? 3 7 6
1684 1685 1686	89258MMP 886CDMMP 886CDMMS	0-A- 4 YES 0-A- 5 0-A- 6	0 121 137	[0, 0] [-80,-40] [80, 40]	123		SAME SAME SAME	
1688 1688 1689	88597MMP 88697MMS 88091MMS	O-A- 7 O-A- 8 O-A- 9	86 67 57	[-80,-40] [-80,-40] [-70,-1]	100 72 37		S A M E S A M E S A M E	
1690 1691 1692	B&DP MMP F&2P 1 M H&GP 7 { LF }	0 - A - 10 0 - A - 11 0 - A - 12	24 96 120	(30, 79) (50, 76) (50, 79)	14 89 107	17 93 113	[-70	2 2 6 9 8 6
1693 1694 1695	886P2O(C) 886P11MMRH 886P11MMRD	0-A-13 0-A-14 0-A-15	45 47 41	(30, 79) (30, 79) (30, 79)	28 19 35	30 24 44	(70 69)	37 37
1696 1698	886P11MMRV 886P11MP[H5U] 886P11MP[H5L]	0 - A - 16 0 - A - 17 0 - A - 18	22 4 1 3 3	[30, 79] [50, 79] [-30, 49]	17 38 17	17	(40, 80) (70, 69) Same	2 C 3 7
1699 1700 1701	F86P11P(C' B80P11FIP(BB) H80P15@14P(LF)	0 - A - 19 0 - A - 20 0 - A - 21	41 76 155	[80, 40] [80, 40] [0, 69]	26 81 150	152	SAME SAME (10 - 64)	145
1702	885P9W(C 885P8 5P(88) 8QP2P(C	0 - A - 22 YES 0 - A - 23 0 - A - 24	0 7 41	[0, 0] [-30, 49] [-60, 16]	0 1 32	6 33	SAME (-70 -69) [-70 -1]	\$ 3 1
1705	88657MMP(C) H85 9519P(C) 88059 5MFRH	O-A-25 O-A-26 YES O-A-27	3 1 0 2 8	[-60 , -76] [0 , 0] [0 , 0]	2 1 0 0	17	[-70,-69] SAME [-50, 29]	29
1708	88059 SMFRD 88059 SMFRV 8925MM7[#MSU]	0 · A · 28 0 · A · 29 0 · A · 30	2 2 3 0 8 4	[-30, 49] [80, 40] [70, 69]	16 37 81	20	[- 70 , - 1] SAME SAME	15
1711 1712 1713	M80595(SL) H85 956 5P(HSU H85,956 5P(HSL	0-A-31 YES 1 0-A-32 1 0-A-33	100 309	[0, 0] [0, 69] [80, 40]	0 100 305		SAME SAME SAME	
1714 1715 1716	M86535(SU) M86535(SL) M86 153 5P(H5)	0 · A · 34 YES 0 · A · 35 1 0 · A · 36	67 76	(0, 0) [-80,-40] [-10, 64]	69 76	76	SAME SAME (O 69)	72
1717 1718 1713	M86 153 5P HS0 B86511 9MMRH B86511 9MMRD	0 - A - 37 0 - A - 38 0 - A - 39	204 18 74	(- 70 , - 69) [- 20 , - 77] [- 70 , - 69]	149 2 54	1 B 75	SAME (70 1) 1 70 1)	10 5 8
1720 1721 1722	8865 11 9MMRV H86 1517 5P[HS H86 1517 5P[HS		4 8 5 8 1 5 7 2	(80, 40) (80, 40) (-80, 40)	53 584 570		SAME SAME SAME	
1723 1724 1725	M86 156 5PIMSU M86 156 5PIMSU M88 5S19P{CU}	1 0-A-44	270 168 127	[80, 40] [-70, -1] [-50, 29]	272 163 124	125	SAME SAME [-60 16]	127

TABLE B.5 (Continued)

				@ MAXIMUM MEASURED STRAIN			P MAXIMUM PREDICTED STRAIN		
GAGE Number	G A G E N A M E	GAGE AS		MEASURED MAXIMUM	@ MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED Maximum	# MOMENT (VERT, LAT)	MEASURED Strain
1726 1727 1728	H88 5519P(CL) M86 1565(U) M86 1565(L)	O · A · 46 O · A · 47 O · A · 48		85 182 207	(-10, 64) (-80 -40) (-70, -1)	8 6 1 7 3 2 0 8	89 209	[-20] 57] SAME [-80 -40]	85 205
1729 1730 1731	H86 1P8.5P[HSU] H86 1P8 5P{HSL} 89257MIS(8M)			275 239 172	[80, 60] [-70 -69] [-70,-69]	283 236 128	133	SAME SAME [-80 -40]	142
1732 1733 1734	89257MZP(8M) 88653MMP(8M) 88653MM5(8M)	0 · A · 5 2 0 · A · 5 3 0 · A · 5 4		17 57 81	(-40, 80) (-80, -40) (-80, 40)	6 5.4 8.0	ŧ	1 2C -57; Same Same	+ 1 0
1735 1736 1737	B86S3MZP(BM) B86S3MZS(BM) B80S9MMS(BM)	0 - 4 - 5 5 0 - 4 - 5 6 0 - 4 - 5 7		7 5 6 4 2	. 30, 79 1-80 -40! 1-60,-76!	3 6 c 3 1	4 35	1 60 761 54ME 1 80 -40	4¢
1738 1739 1740	88059MMP(8M) 88059MZ5(8M) w89P2MZ(D)	O - A - 5 8 O - A - 5 9 O - A - 6 O	YES	215 52 37	(70 69) (80 40) (70 69)	138 54	14:	(80, 40) SAME (80, 40)	269
1741 1742 1743	H78520P(CU) H79520P(CL) B80511MMP(C)	0 B · 1 0 · B · 2 0 · B · 3		173 172 38	1 · 30 · 49 ! 1 · 30 · 49 ! 1 · 80 · 40 !	171 171 36	174 173	1-40 40: 1-40 40: SAME	: 73
1744 1745 1746	M80511P[C] H79 5520P[FC] H79 5520P[AC]	0 · 8 · 4 0 · 8 · 5 0 · 8 · 6	YES	0 159 96	0 0; -70 -69; -70 -69;	C 15C 91		SAME SAME SAME	
1747 1748 1749	H79 5\$20P(ACL) B64COMMP(C) B56S8 SMFRV(BB)	0 - 2 - 8		83 30 54	[-70 -69] [-40 -80] [-0 0]	8 1 1 5 0	2 1 9	SAME [80 . 40] [50 -30]	å 10
1750 1751 1752	85658 5MFRD(88) 85658 5MFRH [88 856P8 5MFR+(88)	10-B-11		4 1 3 6 7 4	0, 0; 10,-64 10-69	c 13 35	3 C 1 & 3 7	[-70, -1] [-50, -75] [-20 -77]	39 13 40
1753 1754 1755	856P8 5MFRD(88) 856P8 5MFRH(88) M64P85(SUA)			8 4 7 t 8 6	(-30 -79) (-40 -80) (-0,-69)	60 34 45	74 37 66	[-70,-69; [-70,-69] [-60,-16]	5 6 7 4 8
1756 1757 1758	M64P8\$(SLA) M64P8\$(SUF) M64P8\$(SLF)	0-8-16 0-8-17 0-8-18	YES	66 50 149	(-70,-69) (-10,-74) (-80,-40)	66 23 124	33	SAME [- 60] - 76 : SAME	2 ~
1759 1760 1761	864P11F1P(CU) 864P11F1P(CU) H61 2S2OP(CM)	0 - 8 - 19 0 - 8 - 20 0 - 8 - 21		28 90 337	1 70 11 1 70 11 1 60 161	30 94 321	3 ē 105	[80, 40] [80, 40] SAME	20 86
1752 1763 1764	H61 2520P(CL) M60P9 5P(C) H58 6P20P(C)	0 · 8 · 2 2 0 · 8 · 2 3 0 · 8 · 2 4	YES	0 39 ! 4 ! 9	[0, 0] [-70,-69] [-70,-69]	0 387 424		S AMÉ S AMÉ S AME	
1765 1766 1767	H61 3P2OP(C) H56 6P2OP(C) H58 6P2OP(C)	0-8-25 0-8-26 0-8-27	YES	401	[-60,-76] [-0,-0] [-70,-69]	402 C 410	405	- 70 , - 69 SAME SAME	399
1768 1769 1770	M59	0 · B · 28 0 · E · 29 0 · B · 30		34 16 79	(70, 1) (10, 64)	25 17 26	18	SAME (80, 40) (-30 -79)	1 & 6 1
1771	M7455P1C1 M7355P1C+ M6755P1C+	0 · 8 · 3 1 0 · 8 · 3 2 0 · 8 · 3 3		256 268 359	-76 -1 -70 -1 -80 -40	252 269 360		5 A ME 5 A ME 5 A ME	
1774 1775 1776	M67PSP(UC) M67 2PSP(UC) M69PSP(LP)	0 · 8 · 34 0 · 8 · 35 0 · 8 · 36		366 389 72	[-80,-40] [-80,-40] [-70, 69]	364 390 71		SAME SAME SAME	
1777 1778 1779	M60P6P(C) H94\$20P(FC) M77P10 1P	0 · 8 · 37 0 · 8 · 36 0 · 8 · 39		416 33 470	(-80,-40) (-40,-80) (-70,-69)	417 21 474	2 1	5AME (- 60 - 76) SAME	3 1
1780 1781 1782	H94520P(AC) H94516 SP(CU) H94516 SP(CL)	0 - 8 - 4 0 0 - 8 - 4 1 0 - 8 - 4 2		29 20 39	[70, 1] [-10,-74] [-60,-76]	29 4 34	4 36	SAME (069) (-70,-69)	6 37
1783 1784 1785	H91P19P(C) M79S& SP 886P9 P	0 - 8 - 43 0 - 8 - 44 0 - 8 - 45		1 9 1 6 2 5 9	[-20, 57] [-40, 40] [-80, -40]	13 153 66	15 155	[20 77] [-50, 29] SAME	11
1786 1787 1788	H91P19P(AC) H91P19P(FC) H97 9P14P(LF)	0 - 8 - 46 0 - 8 - 47 0 - 8 - 48		53 37 72	{ 70, 69] {-30 -79] {-20, 57]	6 1 2 3 1 4	46	SAME SAME (70, 69)	34
1789 1790 1791	H101P20P(AC) H80P19P18(FC) H79 SP18P(CU)	0 - 8 - 49 0 - 8 - 50 0 - 8 - 51		78 314 201	[-80,-40] [-70,-69] [-60,-76]	78 312 195	197	SAME SAME (-50, -79)	201
1792 1753 1794	H79 5P18P{CL} M63 9P13S[C] H79 9P15P{C}	0 - 8 - 5 2 0 - 8 - 5 3 0 - 8 - 5 4		215 325 165	[-6076] [-8040] [-3079]	207 334 150		SAME SAME Same	
1795 1796 1797	864P12 9P(LP) 864P12 9P(SC) H65PZZP(C)	0 - B - 5 5 0 - B - 5 6 0 - B - 5 7		158 53 63	[70, -69] [70, 1] [70, 1]	145 50 48	64 74	SAME [80, 40] [70, 69]	53 55
1798 1799 1800	8649 1MMP(C) 8645 1MMP(C) 810891MMP(D)	0 · 8 · 5 8 0 · 8 · 5 9 0 · 8 · 60	YES YES	9 6 4 0 1 6	[· 40 , · 40] [· 10 , · 74] [· 20 , · 77]	94 21 3	2 5	SAME [-50, -79] [-50, -79]	2 1 8

TABLE B.6 - COMPARISON OF ASEM STATISTICAL ANALYSIS RESULTS AND STATIC TEST DATA FROM COMBINED LOADING AT 240 DEGREE LAG

			@ MAX:MUM MEASURED STRAIN		@ MAXIMUM PREDICTED STRAIN			
CAGE NUMBER	GAGE Name	GAGE ASSUMED Position cal	MEASURED Makimum	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT	MEASURED STRAIN
2 3	8 & C D MMP 8 & P 4 MMP 8 & P 7 MMP	9 · · · 1 9 · · · 2 9 · · · 3	58 75 134	{ 80, -40} { 50, 30} { 40, 40}	53 35 5	40	SAME (70, -1) (-40, 80)	30 - 43
4 5 6	BBCOMFP BBP2MFP BBS4MFP	9 - 4 9 - 5 9 - 6	8 2 2 2 4	(0, 0) (-70 69) (0 0)	6 9 0	72 68	(- 4C & 6C) - 5AME (8C & 6C)	· 26
7 8 9	BBS 7MMP BBS 2MF P BBCOHHRH	9 7 9 8 9 - 9 YES	; 6 4 9 0	1 50 -79; 1-60;-16; 1 0; 0;	1 8 3 7 0	20 37 23	[70 - 59] [50 - 29] [80 - 40]	14 47 c
10	BBCOHHRD BBCOHNRY BBP111RY	9 10 9 11 9 12 YES	293 3: 0	[-80 40] [-80-40] [-0-0]	313 37 e	c	SAME SAME (-80, 60)	c
13 14 15	86P111RD 88P111RH 88P5F#RV	9 · · · 13 9 · · · 14 9 · · · 15	194 33 149	[80, 40] [-80, 40] [-10 74]	237 12 128	1 4 1 2 9	SAME [-60 -16] [0 69]	2 S
16 17 18	BBP5FFRD BBP5FFRH BBS!119H	9: -16 9: -17 YES 9: -18 YES	101 126 71	1 60 16) -70, 11 -80 40)	107 107 65	109	(70 1) (60 - 161 54ME	2
1 9 20 2 1	885111R0 885111RV 8855FFRH	9 19 YES 9 20 9 21	0 39 229	[0 0] [-10 74] [-60 76]	1 4 1 3 6	29 142	SAME [70 - 1 ; [70 - 69]	2.7 11.5
22 23 14	BBSSFFRV BBCDMMS	9 · · · 22 9 · · · 23 9 · · · 24	4 ' 9 25 2 22 7	[70 -1] [40 -80] [-80, 40]	117 263 217	208	1 70 -69! 54ME 54ME	227
25 26 27	BBP4MMS BBP7MMS BBCOMFS	9 25 YES 9 26 9 27	0 93 10	(0 0 0 1 (80 40) (0 0)	67 67	•	SAME SAME (-60 76)	•
28 29 30	88P2MF5 8854MM5 8857MMS	9 28 9 29 9 30 YES	27 176 0	[50, -79] [80 40] [0, 0]	15 172 0	1.6	1 60 .761 SAME SAME	<u>;</u> 1
33 31	BBS2MFS M9COS M9P'1P	9 3 1 9 3 2 9 3 3	30 30	1 - 80 401 (- 80 401 (80 - 401	1 C 2 1 3 4	10	7 - 70 69 1 1 - 70 f j SAME	16
34 35 36	M9511P M11505 M11511P	5 - 24 5 - 25 YES 9 - 26	25 0 30	[70 · 1] [0 0] [0 £9]	2 8 C	29 16	80 40 SAME 50 30	12
3 7 3 8 3 9	M13005 M13012P M13512P	9 37 \$ - 38 YES 9 - 39	\$ 2 0 4 2	t 80 40) (0 0) (60 76)	4 8 0 3 2		5 A ME 5 A ME 5 A ME	
40 41 42	M 5005 M15513P M17005	9 40 9 4 9 42	72 76 87	1 - 80 401 1 - 70 691 1 - 80 401	73 68 87	71	SAME (· BC AC , SAME	7:
43 44 45	M:7713P M:75134 M:9005	9 · • 4] 9 · • 4 6 9 · • 4 5	28 61 114	(-60 -36) (-60 -76) (-80 -40)	28 52 110	2 8 5 2	(-50 -29) (-70 -69) SAME	26 57
4 6 4 7 4 8	M19513P M23005 M23513 FP	9 · 46 9 · - 47 9 · - 48	90 114 209	(-60, 76) (-80, 40) (-70, 65)	8 1 1 1 5 2 0 3	8 '	[· 50 79 ; SAME SAME	8 €
49 50 51	M25P13P M25513P M27C05	9 · - 49 9 · - 50 9 - · 51	128 213 198	(-50, ·29) (-70, 69) (-0, 69)	125	127	(- 60 , - 16) SAME (- 80 40)	113
5 1 5 7 5 4	M27514P M29005 M29P14P	9 · · · 5 · 2 9 · · · 5 · 3 · · · · E · S 9 · · · 5 · · · · · · · · · · · · · · ·	260 0 0	[-70, 69] [0, 0] [0, 0]	265 0		SAME SAME SAME	
5 5 5 6 5 7	M29514P M31005 M31534P	9 · - 5 5 9 · - 5 6 9 · - 5 7	304 264 392	(-70, 69) (-80, 40) (-70, 69)	294 257 388		S A ME S A ME	
5 8 5 9 6 0	H24 1520P(C) F954P(C) H36P18 5(D)	9 · · · 5 ē 9 · · · 5 9 9 · · · 6 O	242 94 15	(-70, 69) (-60 76) (-10, 74)	231 79 - 1	,	SAME SAME 70691	. 6
6 1 6 2 6 3	8 1 6 C O MMP 8 1 6 C O MMS 8 1 6 P 4 MMP	9 · A · 1 9 · A · 2 9 · A · 3	123 372 120	[80 - 40] [70	135 190 137	216	54ME (-80 40) (-80 -40)	244 107
6 4 6 5 6 6	81694MM5 81698MMP 81698MM5	9-A- 4 YES 9-A- 5 9-A- 6	178 42	[0, 0] [70, -1] [0, 69]	0 141 50	5 150 57	{ 80 . 40 } { 80 . 40 } { 40 . 80 }	9 6 - 2 4
67 68 69	616COMFP B16CDMFS B16P3MFP	9 · A · 7 9 · A · 8 9 · A · 9	46 52 138	{ 5079 } { 701 } (-10. 74 }	37 72 47	6 t 6 T	[80,-40] [80,-40] [-60, 76]	4 C 5 2 6 d
70 71 72	816P3MF5 816C0F1P 816C0F1S	9 - A - 10 9 - A - 11 9 - A - 12 YES	174 58 0	(60,-76) (40 -80) (0, 69)	148 39 0	206 85 0	[80 -40] [80 -40] [30 49]	47
73 74 75	816P2F1P 816P2F1S 816S4MMP	9 - A - 1 3 9 - A - 1 4 9 - A - 1 5	8 2 4 5 9 0	[60 16] [0, 0] [80, 40]	80 0 117	30	(80. 40) (80. 40) SAME	60 18

TABLE B.6 (Continued)

			(P MAx1	O MAXIMUM MEASURED STRAIN		P MAXIMUM PREDICTED STRAIN		
GAGE Number	GAGE NAME	GAGE ASSUMED POSITION CAL	MEASURED Mailmum	P MDMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	@ MOMEN! (VERT .&T)	MEASUREC STRA!N
76 77 78	B 1 6 S 4 MMS B 1 6 S 8 MMP B 1 6 S 8 MMS	9 - A - 16 9 - A - 17 YES 9 - A - 18 YES	143 123 64	[80 40] [80 40] [10 74]	115 142 36		S A ME S A ME S A ME	
79 80 81	81653MFP 81653MFS 81652F1P	9-A-19 YES 9-A-20 9-A-21	0 141 119	! 0 0] [30, 49] [70, 69]	5 1 1 2 0	70 ' '32	80 40 80 40 80 40	. 15 85
\$ 2 5 3 8 4	81652F15 816COHHRH 816COHHRD	9 - A - 22 9 - A - 23 9 - A - 24	9 6 5 4 5 6	1 70 11 1 20 771 1 50 74	8 6 2 0 4 8	8 9 2 4 6 7	-80 40 -20 -57 -80 40	9 6 3 4 3 c
85 86 87	816COHHRV 816P31TRV 816P31TRD	9 - A - 25 YES 9 - A - 26 9 - A - 27	98 107	(0 0) (40 -0) (70,	60 103	7 9 2 1 2 2	80 -40 80 -40 80 -401	C 4 5 9 5
8 8 8 9 9 0	B16P3 RH B16P7 SFFRV B16P7 SFFRD	9 · A · 28 9 · A · 29 9 · A · 30 YES	204 563 0	[-80 40] [-80,-40] [-0,-0]	602	4	SAME SAME ! 80 40:	ć
9 1 9 2 9 3	B16P7 SFFRH B165311RH B165311RD	9 - A - 3 1 9 - A - 3 2 9 - A - 3 3	332 154 188	[-80, 40] [-70 - 1] [-70,-69]	330 131 121	:33	5 AME 1 - 8C - 40 ! 1 8C - 40 !	: 4 & · 6 ,
9 4 9 5 9 6	816531!RV 81657 5FFRH 81657 5FFRD	9 · A · 3 4 9 · A · 3 5 9 · A · 3 6	192 284 268	i 70 -69) i-80 401 i 80 -401	157 0 340	176	86 -451 C -69: SAME	152
97 98 99	B16S7 SFFRV F9CONA F13CONA	9 · A · 3 7 9 · A · 3 8 9 · A · 3 9	462 39 26	[80, -40] 1-40 80] 1-80 40]	575 27 23	38	SAME {-8C 4C; SAME	20
100	117COP 12' 3COP F25CONA	9 - A - 4 0 9 - A - 4 1 9 - A - 4 7	169 117 30	i 80,-40) i 70,-69) i-50, 79)	174	143 22	SAME [80 -401 [-80, 40]	· · 3 28
103	F29C0N4 19C0P	9 - A - 43 9 - A - 44 YES 9 - A - 45	37 0 23	[-40 80] [0 0] [60,-76]	2 1 0 2 9	33 3 33	{-80 40} [-80 40] [-80 -40]	34 c 19
106 107 108	F17CONA F2: 3CONA H9COP	9 - A - 4 6 9 - A - 4 7 9 - A - 4 8	2 C 4 4 7 5	1-50, 791 1-10 741 1 0 01	5	9 25 5 8	[-80 40] [-80 40] [-80 -40]	1 6 2 C
109	H11COP H13COP H15COP	9 - A - 49 9 - A - 50 YES 9 - A - 51	86 0 70	[70 -69] [0 0] [-20, 77]	4 4 C 3	5 2 5 4	(80 - 40) (-80 40) (-60 76)	0 - 3
112113	H17COB H19COP H23COP	9-A-52 9-A-53 YES 9-A-54	215 0 153	(\$0, 30) (c. o) (80,-40)	8 0 152	9 8	1 70 1) 1 80, 401 SAME	5
115	H25COP H27COP H29COP	7 - A - 5 5 9 - A - 5 6 9 - A - 5 7	187 286 351	[80, -40] [80, -40] [80, -40]	197 298 358		S AME S AME S AME	
118	H31CDP H47COP H1259 51D]	9 - A - 5 8 9 - A - 5 9 9 - A - 6 0	416 543 12	[80, -40] [80, -40] [-20 77]	4 2 8 5 5 8 0	2	SAME SAME (-70 11	٠
121	B 2 4 C O MMP B 2 4 C D MMS B 2 4 S 4 MMP	9 · 8 · 1 9 · 8 · 2 9 · 8 · 3	406 39	(80 -40) (-60 76) (60, -76)	87 192 37	242 41	SAME [80 40] [80 -40]	143
124 125 126	B 2 4 P 4 MMS B 2 4 S 7 MMP B 2 4 P 7 MMS	9-8-4 YES 9-8-5 9-8-6	20 70	(0, 0) (80, 40] (20, 77)	3 2 8 0	103	SAME SAME (-60 761	• c
127 128 129	B 24C 0MFP B 24C 0MFS B 24S 4MFP	9 - B - 7 9 - B - 8 9 - B - 9	29 24 31	[80, 40] [9, 9] [0, 0]	3 6 0	13	SAME 70 69 50 79	1.4
130	824F5MF5 824C0F1P 824C0F1S	9-8-10 9-8-11 9-8-12 YES	83 27 0	(40, 40) (80, -40] (0 0)	45	0	1 70 1) SAME (80 -40)	
133	82453F1P 824P3F1S 824P4MMP	9 - B - 13 9 - B - 14 9 - B - 15	55 44 60	[60, -76] [0, 0] [70, -1]	4 2 0 5 6	45 52 57	1 70 691 1 70 691 1 80 -401	5 3 3 ' 4 7
136 137 138	82454MMS 824P7MMP 824\$7MMS	9-8-16 9-8-17 YES 9-8-18 YES	126 77 85	[• 70 1] [80 . • 40] [• 20 . • \$7]	119 76 38	24	SAME SAME (-30,-49)	79
139 140 141	824PSMFP 824S4MFS 824P3F!P	9-8-19 YES 9-8-20 9-8-21	5 2 4 9	[0, 0] [50, 79] [50, 30]	0 35 50	4 8 6 2	SAME [80 -40] [80,-40]	34 35
142 143 144	82453F15 824Cühhrh 824Cühhrd	9 - 8 - 2 2 9 - 8 - 2 3 9 - 8 - 2 4	38 155 84	(-70, 1) (-80, 40) (-80, 40)	30 178 83		S AME S AME S AME	
145	824CQHHRV 824P4 RH 824P4 RD	9 - 8 - 25 YES 9 - 8 - 26 9 - 8 - 27	308 102	[0, 0] [-80, 40] [-80, 40]	319 107		S A ME S A ME S A ME	
148 149 150	824P4 PV 824P3FFRV 824P3FFRD	9-8-28 9-8-29 9-8-30 YES	7 t 260 0	[70, -1) [70, -1] [0, 0]	8 2 2 8 3 0	41	(80 -401 Same Same	6.1

TABLE B.6 (Continued)

			@ MARIMUM MEASURED STRAIN			P MAXIMUM PREDICTED STRAIS		
GAGE NUMBER	GAGE Name	CAGE ASSUMED POSITION CAL	MEASURED Maximum	B MOMENT	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT	MEASUREG S*R4; N
151 152 153	824P9FFRH 824S4 1RH 824S4 IRD	9 · 8 · 3 1 9 · 8 · 3 2 9 · 8 · 3 3	208 279 75	[-80, 40] [-70, 1] [-70, 1]	193 246 - 1	252 31	SAME [-80 40] [-80 -80]	251
154 155 156	82454:1RV 82459FFRH 82459FFRO	9 · 8 · 3 4 9 · 8 · 3 5 9 · 8 · 3 6	61 157 108	(60 - 76 [-80 - 40 ! [60 - 76	59 124 98	76	80 -40 SAME 70 -691	4 9 8 4
157 158 159	82459FFRV (25COP (29COP	9 · 8 · 3 ? 9 · 8 · 3 8 9 · 8 · 3 9	184 270 232	80,-40; 80-40- 80,-40-	22' 277 233		\$ AME 5 AME 5 AME	
160	E32CC !MZP:C; M31 9COP(C) M22 SS9 SP1C;	9 · 8 · 4 Ø 9 · 8 · 4 1 9 · 8 · 4 2	205 455 233	[-80, 40] [-80, 40] [-80, 40]	197 455 243		SAME SAME SAME	
163 164 165	M23P 3P(C) M22 5P 3P(C) M12 5P 4P(C)	9 8 4 4 3 9 × 8 + 4 4 9 - 8 + 4 5	134	[-80, 40] [-80, 40] [-80, 40]	135 140 37		SAME SAME SAME	
165	M12 5P 5P[C1 M12 5P4P(C) B24P11 6P[SC	9 · 8 · 4 6 9 · 8 · 4 7 9 · 8 · 4 &	4 4 6 0 7 =	(-80, 40) (-70, 1 (-80, 40)	3 7 4 8 8 5	45 90	SAME - 80 401 - 70 - 1	\$ C-
169 170 17	H23 956 SP(HSL H23 958 SP(HSU H23 9PE SP(HSL	1 9 - 8 - 5 0	269 317 217	[-70	276 320 209		SAME SAME SAME	
172 173 174	H23 9P8 5P(H5U M60S9P(C) M48 (P8P(C)	1 9-8-51 9-8-53 YES 9-8-54	253 0 252	(80, -40) (0, 0) (-70, 1)	533 0 55;		S AME S AME S AME	
175 176 177	84855MM5!8M 8485 47P(8M 84855M75!8M	9 - 8 - 5 5 9 - 8 - 5 6 9 - 8 - 5 7	5 0 1 0 1 8 2	0 69 1 30 79 (-10 74	1 5 7 3 2 8	4 2 1 3 1 9 3	1 70 -11 1-80 40, 1-80 401	. e . e
178 179 180	84855 (MZP(8M) M49 \$59P(1F) H28P17 \$101	9 - 8 - 5 8 9 - 8 - 5 9 9 - 8 - 6 0	5 8 3 8 6 7	7 - 2 C	24 109 0	49 128 0	[-80 40, [-40, 20] [70 -1]	25 25 C - 4
181	BADCOTTP BADCOTTS BADPATTP	8 1 YES 8 2 TES 8 3 TES	:	(C 0: (C 64) (C 0)	0	1 1 0	[-40, 80; [70, -69] [0, -69]	2
154 155 185	840P4TTS 840P8TTP 840P8TTS	8 - 4	° °	1 0. 01	0	0 0	(70 - 1 80, -40) 80, -40)	: c c
187 188 189	840CCZTP 840C0Z*S 840P4ZTP	8 - 7	; ;	0 69 1 0 0 1 0 0	c o	c o	1 70 -691 SAME [-80 40]	r c
190	840P42T5 840P82TP 840P82TS	810 YES 811 YES 812 YES	100	0, 691	o c o	0	1 - 70 69 1 - 60 76 (- 70 1]	. 4 0
193 194 195	640C0MZF 840C0MZS 840C0MFP	8 - 17 YES 8 - 14 YES 8 - 15 YES	0	(0, 0)	0	o •	(80 -40) (-70 69) (-60 76)	, 3
196 197 196	840CCMFS 840P7MFP 840P7MF5	E 16 YES E17 YES 818 YES	1 6 1	(0, 0)	° °	0	(-80 40° 1-80 40°	Ċ
20: 199	840COFIP 840COFIS 840P6FIP	8 19 YES 8 - 20 YES 8 27 YES	0 2 2	(0 01 (-80, 40) (20, 57)	o o	o o	SAME (70 -1) (40 40)	0
201 204	84096FIS 84054779 84054775	8 22 YES 8 22 YES 8 24 YES	0 20	(0, 01 1 20 571 (0, 0)	0	с 0	(-50 79; 1-80, 40) SAME	°
205 206 207	84058TTP 84058TTS 84054ZTP	8 - 25 YES 8 - 26 YES 8 - 27 TES	0	0. 01	o o	e	SAME (-80 40) SAME	c
208 209 210	84054275 8405827P 84058275	8 78 YES 8 29 YES 8 30 YES	2 0 2	{ 30, 49 } { 0, 0 } { 20, 57 }	o o	o o	1 40 40 1 70 -69 1 80 -40	0
2 1 1 2 1 2 2 1 3	84054MFP 84054MFS 84056F1P	831 YES 832 YES 833 YES	2 0 0	[70, -1] [0, 0] [0, 0]	o o	o	t 80, 401 Same (-50, 79)	• 2
214 215 216	84056F1S 840C0HMPH 840C0HHRD	8 · · 34	2 1	[0, 0] [50, 79] [20, 57]	o o	1 0 0	[80 - 40] [80 - 40]	• 1
217 218 219	640COMMRY 840F6 1RM 840F6 1RD	8 · · 37 · FES 8 · · 38 · · FES 8 · · 39 · r ES	o o ?	(0, 0) { 0, 0} { 20, 57}	o o	: •	[70 -69] [70 -1] [-20 77]	o 0
22° 22° 222	840P611RV 840P9F1PV 840P9F1PD	8 40 YES 8 41 YES 8 42 YES	0	(\$0, 30) (0, 0) (0, 0)	0	0	[-80, 40] [-30 49] [-80 40]	0
223 224 225	840P9F RH 840P12FFRV 840P12FFRD	8 - 43 - 7ES 8 - 44 - 7ES 8 - 45 - 7ES	2 0 1	(0, 0) (0, 0)	0	0	[80 -40] [70 -1] [80,-40]	0 0

TABLE B.6 (Continued)

			@ MAXIMUM MEASUREC STRAIN			P MAXIMUM PREDICTED STRAIN			
CAGE NUMBER	CAGE	CAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	P MOMENT LVERT LATE	PREDICTED STRAIN	PREDICTED MAXIMUM	G MOMENT (VERT LAT)	MEASURED Strain	
226 227 228	840P12FFRH 840S61 [RV 840S61 [RD	8 - 46 TES 8 - 47 TES 8 - 48 TES	2 0 0	1 0 01	° °	° °	(-80, 40) (-80, 40) (-30, 49)	0	
229 230 231	8405611RH 84059F1RH 84059F1RD	8 - /49 YES 8 - /50 YES 8 - /51 YES	o o o	0 01	0	0	[-80, 40] 80 -40] -70 69]	0	
232 233 234	84059F:R+ 840512FFRH 840512FFRL	8 - 152 TES 8 - 153 YES 8 - 154 TES	o	1 0 67	0	c 0	SAME [80 -40] [60 76]		
235 236 237	8405:2FFR# 84850MMP 84858 &MFRY	8 55 YES 8- 156 YES 8- 157 YES	2 2 2	1 0 4 2 2 5 5 5 1 4 6 4 2 .	000	c	SAME 1 70 -13 1 80, 401	2 0	
238 239 240	84858 4MFRC 84858 4MFRH W46P2ZYICI	8 - 58 TES 8 - 59 TES 8 - 60 YES	2 0 0	1 20 57;	(0 0	c •	70 691 70 -691 -80, 40	0 C C	
2 A 1 2 A 2 2 A 3	E48CC***F B48CC**** B48C4***F	8 A - 1 YES 8 - A - 2 YES 8 - A - 3 YES	1	0 01	600	c 1 0	(60 - 60) (60 - 60)		
244 245 246	848P4**5 848P6**P 848P6**S	8 - A - 4 YES 8 - A - 5 YES 8 - A - 6 YES	c c	0 0	0 0 0	c !	(-80 40) (-50 75) (-80 40)	0	
247 248 249	848C02*P 848C02*5 848P42*P	8 - A - 7 - YES 8 - A - 8 - YES 8 - A - 9 - YES	c 0	1 0 C1	0 0	о С	[-80, 40] [-80, 40]	0	
250 251 252	848P42TS 848P82TP 848P82T5	8 - A - 1C YES 8 - A - 1 'ES 8 - A - 12 YES	c 0 1	. 0 0	o c o	c 0	1-70 65) (-60 16] [-80 40]	0	
253 254 255	848COM2P 848COM25 848COMFF	8 - 4 - 13 YES 8 - 4 - 14 YES 8 - 4 - 15 YES	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 0	¢ •	c 6	1 60 161 (-60, 761 (-80 40)	c 0	
25 6 25 7 25 8	848COMFS 848P6MFP 848P6MF5	8 - A - 16 YES 8 - A - 17 YES 8 - A - 18 YES	0 c	. 6 61	° °	c c	. 80 40; 80 40; -60 40;		
259	848COF15 848COF15 848P6F1F	E - A - 14 YES 8 A - 27 YES 8 - A - 27 YES	c 2 2	1 10 64; 1 70 -11	0	0	SAME [20 57] / 80 -40;	0	
261 263 264	848P6F1S 848S4*TP 848S4TTS	8 - A - 27 YES 8 - A - 23 YES 6 - A - 24 YES	0 2 c	(· 7c 1 1 0 0	0	c	5 5 ME 5 4 ME	۰	
265 265 267	8485877P 84858777 84854275	E - A - 25 YES E - A - 26 + ES E - A - 27 + ES	• •	1 0 01	° °	c	SAME	c	
268 269 270	84854775 648587*F 84858775	2 - A 28 YES 8 - A 29 - ES 8 - A - 30 YES	0 1 2	[10 64] [70 -1 :	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0	1 40 401 1 0 01 1 80 401	- 2 - 1 0	
27 · 272 273	94856MFP 84856MF5 84856F;P	8 - A - 31 TES 8 - A - 32 TES 8 - A - 33 TES	o o	i o ol	o o o	0	(-40 -40) SAME (-80 40)	0	
274 275 276	84856F15 848COHMRH 848COHMRD	8 - A - 3 4 YES 8 - A - 3 5 YES 8 - A - 3 6 YES	1 1 2	(30 49) (0, 69) (30 49)	o o	0 1 0	{ 50, 30} (-70, 1) (-10 -74)	1 0	
271 278 279	848COHHRV 848P7 PV 848P7 RC	8 · A · 3 7 VES 8 · A · 3 8 VES 8 · A · 3 9 VES	0 0 2	1 0 0	•	° °	[2C 57] [-70 69] [60 16]	0	
280 281 262	##8P71!RH ##8P10F1RV ##8P10FIRU	8 - A - 4 0 YES 8 - A - 4 1 YES 8 - A - 4 2 YES	0 0	0 0	0	° °	[-50, 79] [-40, 40] [-80, -40]	0	
283 284 285	848P10F1RH 848P12FFRV 848P12FFRD	8 - A - 43 YES 6 - A - 44 YES 8 - A - 45 YES	0	(0, 0] (0 0) (10, 64)	0	0	[80, 40] [70, 69] [-80, 40]	0	
286 287 288	848P12FFRH 84457[[RH 84857]18D	8-A-46 YES 8-A-47 YES 8-A-48 YES	7 0 0	(-20 -57) (0, 0) (0, 0)	0	0	[-80, 40] [-80, 40] [-10, 74]	0	
289 290 291	84857 RV 8485 DF RH 8485 DF RD	8 - A - 89 YES 8 - A - 50 YES 8 - A - 51 YES	1	(0 0) (0 65) (0 0)	o o	1	[80 -40] [80 -40] [80 -40]	• 1 •	
292 243 294	84851211RH	8 - A - S 2 Y E S 8 - A - S 3 Y E S 8 - A - S 4 Y E S	o o 1		o o	0,	SAME [60 - 76] [80 - 40]	0	
295 296 297	H48 1520P(C)		0 3 0	[0 0] [40 -80] [0 0]	· 1	3	SAME [-80, 40] [-80, 40]	3	
298 299 300	BSSPAMMS C	8 - A - S 8 VES 8 - A - S 9 VES 8 - A - 6 0 VES	2 5 0	[0 0] [0 0] [0 0)	o o o	0	(-80, 40) (-60, 16) (-80, -40)	0 3 0	

TABLE B.6 (Continued)

			D MEXIMUM MEASURED STRAIN			& MAXIMUM PREDICTED STRAIN		
CAGE Number	G A G E 14 A M E	CAGE ASSUMED	MEASURED Marimum	@ MOMENT [VERT_LAT]	PREDICTED Strain	PREDICTED MAXIMUM	P MOMENT	MEASURED STRA!N
302 303	M30 4P10W M30 4P10 5P M30 4P11W	8 - 8 - 1 YES 8 - 8 - 2 YES 8 - 8 - 3 YES	1 2 C	1 20, 571	c c	0	1-80, 40; 1-80, 401 1-70, 691	c o
304 305 306	M30 4P11 5P M30 4P12W M30 4P13W	8 8 4 YES 8 8 5 YES 8 8 6 YES	c 2	1 C, 01 1 O C' 1-30 79:	c c	0 C	1 40 -79 1 1 40 -401 -50 -79 1	о с
307 30£	M31 2P10W M31 2P10 5PRL M31 2P10 5PRD	a B 7 YES a B 6 YES a B 6 YES	;	: 2C 571 6 10 64 1 0 C.	¢ ¢ ¢	c c o	1 80 -40, 1 80 -40; 20, 57)	c c
3 0 9 3 1 0 3 1 1	M31 2P1C 5PRH M31 2P1TM M31 2P1T 5P	8-8-10 VES 8-8-11 VES 8-8-12 VES	2 C	30, 49	c c	c c	50 301 50 301 50 76	0
313 314	M31 2P12# M31 2P13W	e 8 - 13 YES e e - 14 YES 8 - 8 - 15 YES	c	1 0. 01	000	° °	80 40 1 80 40	
316 317 318	M31 2P14W 840P8MMRH (881 832P (0MMP 840P8MMRD(881	8 - 8 - 16 YES 8 - 8 - 17 YES 8 - 8 - 18 YES	4 c	30, 491 1 0 01 1 0 01	ç ;	c c	1 60 16 1 80 40 1-80 40	Ċ
319	832P/C 5MMP 840P8MMRV/88 M31 8P11 2PRM	g · g · 15 · 15 S g · g · 20 · 75 S g · g · 21 · 76 S	0 2 5	0, 01	¢ 6	c	5 4 ME 5 4 C 1 8 C - 4 C	¢
322	M31 8P11 2PRC M31 8P11 2PRL M31 8P11 5P	8 · 8 · 2 2	2 : c	. 20, 571 1-50, 791 1 0 0,	ن د	C U	' 50 T9; (+70 69) SAME	° c
324 325 326	M31 8P12W M31 8P13W M31 8P14W	8 - 8 - 75	c 3 c	C. 0 -50 79, C 0,	° '	•	SAME : -60 76 SAME	
327 328 329	M32 4P104 M32 4P10 5P	8-8-28 YES 8-8-29 YES 8-8-30 YES	c	0. 0.	0	o c	1 70 -69 1 80 -401 1 80 401	c
330	M32 4P10 7P M32 4P11 1P M32 4P11 3P	8-8-31 YES 8-8-32 YES	: :	1 0. 01 1 0. 0: 1 20, 57;	0	0	50 301 SAME (40,40)	0
332 234 335	M32 4P11 5PRH M32 4P11 5PPD M32 4P11 5PR	8-8-34 YES 2-8-35 YES	2 1	[20, 57] [0, 0] [10, 64]	0 0	c 0 0	1 80 -401 1 30 451 . 80 -401	. 1
336 337 338	M32 4P12W M32 4P13W M32 4P14W	8-8-36 YES 8-8-36 YES 8-8-36 YES	¢	[C. O.]	c 0	0	[-40	o c
339 340 341	M31 2511W M31 2512W M31 2513W	8 · 8 · 40 VES 8 · 8 · 40 VES 8 · 8 · 4 · VES	:	: 20 571 1 C. 0;	c 0	¢ 1	1 40 40 1 70 -69 1 80 -40	° °
343 344	M3: 2514W M3: 8511W M3: 8511 2PRL M3: 8511 2PPD	8 · 8 · 43 · 45 8 · 8 · 44 · 45 8 · 8 · 45 · 45 8 · 8 · 45 · 45	o c o	(0, 0) 0, 0) 0, 0) 0, 0)	0	° ° °	80 -40: 1 70, -11 1 80,-601	c 0
345 346 347 348	M3: 85:1 2PRH M3: 85:1 2PRH M3: 85:2W M3: 85:3W		2 0	(10, 64) (0, 0) (0, 0)	0	o c o	[-80, 40] -80, 40] 50, 30]	c 0 0
349 350	M31 8514W M32 6510W M32 6510 7P	8 - 8 - 4 9 TES 8 - 8 - 5 C TES 8 - 8 - 5 T TES	2	[0, -69] [0, 0] [0, 0]	0 0	° °	8c. 40) [70, -1) [80 -40]	1 0
351 352 353	M32 6511 3P M32 6512W M32 6513W	8 · 8 · 5 2 · 7 E 5 8 · 8 · 5 2 · Y E 5 8 · 8 · 5 4 · Y E 5	• •	(0, 0) [0, 0]	° °	1	SAME 1-80 401 1-70 -1	• 1
354 356 356	M32 6514W	8-8-55 VES HSL18-8-56 VES	c 4	(0, 0) (10, 74) (-70, 69)	0 1	1	SAME 30 - 79; -50 - 29;	0 7
357 358 359 360	H24 2520 SP[1 H24 2520 SP[1	HSL18-8-58 YES	5 3 2	(0, \$9) (0 691 (0, 0)	o o c	0	[-70 69] [-10,-64] [-50 79]	- 1
361	M21P13 5P M21P12W	7 · · · 1 7 · · · 2 7 · · · 3	409 27 150	{-60, 40} { 30, 79} {-70, 1}	12 · 1 143	25 4 144	(-40, 801 (-80, 401 (-80, 40)	235 6 140
363 364 365	M21P2W M21COW	7 · 4 7 · 5 · YES 7 · 6	151 0 287	(-80, 40) (-0, 0) (-70, 69)	147 0 153	165	SAME SAME {-80, 40}	149
366 367 366	M2154W M2156W	7· · 7 7· · 8 7· · 9	209 185 186	(-80, 40) (-70, 69) (-70, 69)	20€ 185 188		S A M E S A M E S A M E	
369 370 371	M21510W 1 M21511.5P	7 - 10 7 11 7 12	172 164 122	[-70, 69] [-70, 69] [-70, 69]	170 151 124		S A ME S A ME S A ME	
372 373 374 375	3 M21512.5P 4 M21513W	7 - 12 7 - 13 7 - 14 7 - 15	110 142 112	[-70, 69] [-70, 69] [-70, 69]	102 135 101	104	SAME SAME (-60, 76)	112

TABLE B.6 (Continued)

			P MAXIMUM MEASURED STRAIN		P MAXIMUM PREDICTED STRAIN			
GAGE Number	CAGE Name	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED Maximum	# MOMENT (YEST, LAT)	MEASURED Strain
376 377 378	H16.2S15P(CU) H21COW H21S2W	7 - 16 7 - 17 7 - 18	148 136 123	[70, 69] [70, 69] [80, 40]	129 114 125	133	SAME { BO, -40} SAME	125
379 380 381	H 2 1 P 2 W H 2 1 S 5 W H 2 1 S 7 W	719 720 721	139 101 65	[80, -40] [80, -40] [70, -1]	144 106 72		SAME SAME SAME	
3 & 2 3 & 3 3 & 4	H21P7W H21S9W H21S11W	7 · · · 22 7 · · · 23 7 · · · 24	# 7 4 8 1 5 1	[70, -69; [60, 16] [-70, 69]	76 48 150	49	SAME { 50, 30 } SAME	4.6
3 8 5 3 8 6 3 8 7	H21P11W H21S13W H21S13 SP	7 · · · 25 7 · · · 26 7 · · · 27	89 67 64	[70 -69] [30, 49] [-40, 80]	9 0 5 0 6 2	5 0 6 2	SAME [40, 40] [-30, 79]	5.4 60
3 8 8 3 8 9 3 9 0	H21P13 SP H21S14W H21S16W	7 · · 28 7 · · 29 7 · · 30	63 724 113	1 40, 40) 1 0, 69) 1 70, 69)	60 46 109	61 47	[30, -79] [-10, 74] SAME	63 711
391 392 393	H21P16W H21S18W H21P18W	731 732 733	7 8 8 0 1 1 4	[50, -29] [20, 57] [70, 1]	80 45 105	8 1 5 0	(-60,-16) (-50,-16) SAME	7 6 6 9
394 395 396	133C0w 135C0w 137C0w	734 735 736	33 42 238	[80 40] [20, 57] [50, 79]	29 · 8 · 27	25 31	SAME 80,-40) 70,-69]	- 16
397 398 399	739COW 741COW 743COW	7: -37 7: -38 7: -39	180 128 14	[70, -1] [0 01 [60, -16]	15 0 9	36 11	SAME [-70, 69] [-80, 40]	45 14
400 401 402	745COW 747COW 233COW	740 741 742	7 10 24	1 60 761 1 60 761 (70, 1)	5 & 23	7 10 26	(-80, 40) (-80, 40) (-80, 40)	3 2 2 4
403 404 405	235CQW 237CQW 239CQW	743 744 745	39 93 145	[-80, 40] [-80, 40] [-80, 40]	41 94 142		SAME SAME SAME	
406 407 408	241COW 243COW 245COW	7 · · 46 7 · · -47 7 · · -48	0 221 273	[0 0] [-80, 40] [-80, 40]	223 279	179	[-80, 40] Same Same	۰
409 410 411	147CQW M33CQW M35CQW	7 49 7 50 7 51	312 237 309	[-70, 69] [-80, 40] [-80, 40]	321 234 325	359	I-80, 40) Same Same	299
412 413 414	<i>M37EDW</i> M39CDW M41CQW	7 · 52 YES 7 · · 53 YES 7 · · 54 YES	o o	(o, o)	0		SAME SAME SAME	
415 416 417	M43CQW M45CQW M47CQW	755 YES 756 YES 757 YES	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	0 01	, o o		SAME Same Same	
418 419 420	#4058MMW(C) #40512MMP(C) #16P12(D#)	758 YES 759 YES 760 YES	0 0	[0, 0] [0, 0] [0, 0]	0		SAME SAME SAME	
4 2 1 4 2 2 4 2 3	133 3COP 137COP 141COP	7 · A · 1 7 · A · 2 7 · A · 3	203 307 308	[80,-40] [80,-40] [80,-40]	195 294 327		SAME SAME SAME	
424 425 426	145 3COP F33 3COW F37COW	7 · A · 4 7 · A · 5 7 · A · 6	289 25 26	[80, 40] [-80, 40] [-70, 69]	300 22 12	14	SAME SAME (-80, 40)	13
427 428 429	F41COW F45 JCOW HJJCOP	7 · A · 7 7 · A · 8 7 · A · 9	34 23 478	[0, 0} [-80 40] [80,-40]	0 7 479	. 11	(80, 40) Same Same	28
430 431 432	Н35С0Р Н37С0Р Н39С0Р	7-A-10 YES 7-A-11 7-A-12	430 469	[80 -40] [80 -40]	439 461		SAME SAME SAMÉ	
433 434 435	H41COP H43COP H45COP	7 · A · 13 7 · A · 14 YES 7 · A · 15 YES	5 1 0 0 0	[80, 40] [0, 0] [0 0]	512 0		SAME SAME SAME	
436 437 438	H21COP M33S11 1P M33P11 IP	7-A-16 YES 7-A-17 7-A-18	0 315 191	[0, 0] [-70, 69] [-70, 1]	321 186		SAME SAME SAME	
439 440 441	M35511 1P M37511 1P M37P11 1P	7 - A - 19 7 - A - 20 7 - A - 21	349 364 298	[-70, 69; [-70, 69; [-70, 1]	363 367 276		SAME SAME SAME	
442 443 444	M39511 1P M41511 1P M41P11 1P	7 - A - 22 7 - A - 23 7 - A - 24	1238 353 311	{ 40, 40} { · 70, 69} { · 70, 1}	- 12 357 313	43	1-70 89} Same Same	28
445 446 447	M43511 1P M45511 1P M45P11 1P	7 • A • 25 7 • A • 26 7 • A • 27	392 409 333	[-70, 69] [-70, 69] [-70, 1]	388 410 332		SAME SAME Same	
448 449 450	M47511 1P M33514P M33P14P	7 - A - 28 7 - A - 29 7 - A - 30 YES	283 1461 0	[-70 69 } [10 -74] [0 0]	242 · 203 0	420	SAMÉ (-70 59) Same	427

TABLE B.6 (Continued)

			P MARIMUM MEASURED STRAIN			B MEXIMUM PREDICTED STRAIN		
GAGE NUMBER	SAGE MAME	GAGE ASSUMED POSITION CAL	MEASURED Maximum	# MOMENT (vert, Lat)	PREDICTED STRAIN	PRED; CTED Maximum	P MOMENT [VERT, LAT]	MEASURED STRAIN
451 452 453	M35514P M37514P M37914P	7 - A - 3 / 7 - A - 3 2 7 - A - 3 3	431 392 269	[-70	427 404 72	199	SAME SAME [40 80]	39
454 455 656	M39514P M41514P M41P14P	7 - A - 34 7 - A - 35 7 - A - 36	1568 1105 281	[40, -80] [0, 0) [-70, 1]	-263 0 190	332 286 197	[-70, 69] [-70, 69] [-60,-16]	239 65 143
457 458 459	M43514P M45514P M45P14P	7 - A - 37 7 - A - 38 7 - A - 39 YES	470 417 0	[-40, 85] [-70, 65] [-0, 6]	323 457 0	401	[• 7 C 6 9] 5 AME S AME	374
460 461 462	M47514P W32 15M20 1RV W32 15M20 1RD	7 - A - 4 0 7 - A - 4 1 7 - A - 4 2	467 213 608	(-70, 69) (-70, 69) (-80, 40)	473 221 597	231	SAME (80 -40) Same	207
463 464 465	W32 15MZO 1RL W32 15ZTO 1P W35SMZO 5P	7 - A · 4 3 7 - A · 4 4 7 - A · 4 5	428 82 414	{-80, 40} { 0 0} {-70, 69}	421 0 411	2.8	SAME (3079) SAME	- 14
466 467 468	W355M22W W3552M3 9P W3552TO 1P	7 - A × 4 6 7 - A × 4 7 7 - A × 4 8	293 3'2 255	(-80, 40) (-80, 40) (-80, 40)	275 310 260		SAME SAME SAME	
469 470 471	W3552T2W W355TI3 9P M49 559P(F0)	7 · A · 4 9 7 · A · 5 0 7 · A · 5 1	101	[-80 40] 1-80, 40] [-70, 69]	95 102 368		S A ME S A ME S A ME	
472 473 474	M49 \$59P(A0) 84852MMW(C) 856510 1MMP(C)	7 - A - 5 2 7 - A - 5 3 7 - A - 5 4	372 89 65	[-70, 69] [-80, 40] [-80, 40]	376 108 70	72	SAME SAME 1-70_ 691	49
475 476 477	84053MMS(8M) 84053MMP(8M) 84053MZS	7 - A - 5 5 7 - A - 5 6 7 - A - 5 7	25 122 81	(-10 -64) (-80, 40) (-80, 40)	1 4 1 2 2 8 1	22	1 - 7 C 1 SAME SAME	· £
478 479 480	B4053MZP B4855MMP M44519 (D)	7 - A - S 8 7 - A - S 9 7 - A - S 0	70 76 68	[-80, 40] [-80, 40] [-80, 40]	7 1 9 1 6 7		S A ME S A ME S A ME	
481 482 483	T49P10W T49P6W T49C0W	7 - 6 - 1 7 - 8 - 2 7 - 8 - 3	231 68 20	[-70, 1] [-70, 1] [-60, 76]	230 68 20	231 69 24	[-80, 40] [-80, 40] [-80, 40]	221 60 18
484 485 486	T 4 9 5 2 W T 4 9 5 4 W T 4 9 5 6 W	7-8- 4 7-8- 5 7-8- 6	33 30 0	[-80, 40] [-80, 76] [-0, 0]	24 23 0	25 23 53	[-70 69] [-70 69] [-80, 40]	5 2 3 v
487 488 489	74953W 749510W 749510 SP	7 · 8 · 7 7 · 8 · 8 7 · 8 · 9	197 284 369	(-70, 69) (-80, 40) (-80, 40)	166 276 374	168	(-80, 40) \$AME Same .	161
490 491 492	T49510 9P 749P OW 749PEW	7 - 8 - 10 7 - 8 - 11 7 - 8 - 12	436 388 258	[-80, 40] [-70, 1]	437 384 262		S AME S AME S AME	
493 494 495	Z 4 9 C DW Z 4 9 S 2 W Z 4 9 S 4 W	7-8-13 YES 7-8-14 7-8-15	348 401	(0, 0) (-80, 40) (-80, 40)	0 339 404		S A ME 5 A ME 5 A ME	
496 497 498	24956W 24958W 249510W	7-8-16 7-8-17 7-8-18	454 281 443	[-80, 40] [-80, 40] [-70, 69]	470 278 442		SAME SAME SAME	
499 500 501	249510.5P 249510.9P W495MZ2W	7-8-19 7-8-20 7-8-21	465 465 199	(-70, 69) (-80, 40) (-70, 69)	464 468 204	471	SAME [-70, 69] Same	465
502 503 504	W4952M3 9P W495MZO IRL W495MZO IRD	7-8-22 7-8-23 7-8-24	516 413 377	(-70, 69) (-70, 69) (-80, 40)	494 417 384	495	[-80, 40] Same Same	502
505 506 507	w495MZO 1RV w495ZT2W w495TZ3.9P	7-8-25 7-8-26 7-8-27	300 420 406	[7069] [-80, 40] [-80, 40]	275 428 407	278	SAME SAME	288
508 509 510	W49SZTO IRL W49SZTO IRD W49SZTO IRV	7 - 8 - 28 7 - 8 - 29 7 - 8 - 30	454 24 151	[-70, 69] [-80,-40] [-80,-40]	455 7 141	1.8	SAME [30, 49] Same	1
511 512 513	M49P14W M49P13W M49P11 IP	7-8-31 YES 7-8-32 7-8-33	0 27 286	(0, 0) (-70, 1) (-70, 1)	0 9 273		SAME SAME	
\$14 \$15 \$16	M49P10W M49P6W M49P2W	7 · 8 · 3 4 7 · 8 · 3 5 7 · 8 · 3 6	241 265 327	(-60,-16) (-70, 1) (-80, 40)	24\$ 268 334	247	SAME SAME	241
517 518 519	M49COW M49S2W M49S4W	7 · 8 · 37 7 · 8 · 38 7 · 8 · 39	261 394 399	[-80, 40] [-80, 40] [-80, 40]	277 407 416		SAME Same Same	
520 521 522	M4956W M4958W M4959 5P	7 · 8 · 40 7 · 8 · 41 7 · B · 42	347 359 392	[-80, 40] [-70, 69] [-70, 69]	349 363 385		s a me s a me	
523 524 525	M49510W M49510 5P M49510 9P	7 - 8 - 43 7 - 8 - 44 7 - 8 - 45	387 416 416	[+70, 60] {+70, 69] (+70, 69]	369 411 416		same same same	

TABLE B.6 (Continued)

			I KAM 19	MUM MEASURED	STRAIN	P MAX1	MUM PREDICTED	STRAIN
GAGE Number	CAGE	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	P MOMENT	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT (VERT, LAT)	MEASURED STRAIN
526 527 528	M49512W M49512 5P M49513W	7 · 8 · 4 6 7 · 8 · 4 7 7 · 8 · 4 8	430 419 486	(· 70, 69) (· 70, 69) (· 70, 69)	433 419 486		SAME Same	
529 530 531	92 E1200M W61200M 91 11200M	7 - 8 - 49 7 - 8 - 50 7 - 8 - 5 1	0 472 410	(0, 0) {-70, 69] [-70, 69]	0 473 421		SAME SAME SAME	
\$32 \$33 \$34	848COMMS(C) 23853 5P(C) 23353 5P(C)	7 · 8 · 5 2 7 · 8 · 5 3 7 · 8 · 5 4	144 193 126	[-60 -16] [-80 -40] [-80 -40]	100 196 132	133	(-80, 40) Same Same	174
535 536 537	23353 SP(C) 243P3 SP(C) 243P3 SP(C)	7 - 8 - 5 5 7 - 8 - 5 6 7 - 8 - 5 7	131 241 221	(80, 40) (80, 40) (80, 40)	130 240 219		SAME SAME SAME	
538 539 540	253P3 SP(C1) 253P3 SP(C0) H52S18(D)	7 - 8 - 5 8 7 - 8 - 5 9 7 - 8 - 6 0	303 355 128	{ -80, 40} { -80, 40} [-80, 40]	29 ° 329 127		SAME SAME SAME	
541 542 543	H16,2\$15P(CL) H49P3W H49P7W	6 - · · · · · · · · · · · · · · · · · ·	5 0 8 4 4 2	(80, 40; (80, 40)	0 5 i a 4 5 a		SAME SAME SAME	
5 4 4 5 4 5 5 4 6	H49P10W H49P12W H49P15 SP	6 - 4 6 - 5 6 - 6	389 329 205	[70 - 69 [70 - 69 [40 - 80]	399 363 212		S AME S AME S AME	
547 548 549	H49P'8W H49S1W H49S3W	6 - · 7 YES 6 - · 8 6 - · 9	533 451	[0, 0] [80,-40] [80,-40]	0 542 458	1	L BO AO! SAME SAME	1
550 551 552	H4955W H4957W H4959W	6 10 6 11 6 12	390 370 311	{ 80,-40} [70, -1] [70 -1]	397 371 310		SAME SAME SAME	
553 554 555	H49510W H49511W H49512W	6 13 6 14 6 15	249 220 200	[70, -1: [60, 16] [50, 30]	261 230 211		SAME SAME SAME	
5 5 6 5 5 7 5 5 8	H49513W H49515 5P H49516W	6 1 6 6 1 7 6 1 8	181 223 499	[0, 69] [-40, 80] [-60, 76]	17: 218 240	181	SAME SAME	167
559 550 561	H49518W H49519W H45511 5P	619 FES 620 621	0 462 192	(0, 0) (-70, 59) (60, 16)	0 465 201	205	SAME SAME (50 30)	190
562 563 564	H45516 5P T46510.9P T4657W	6 · · · 2 · 2 · 3 · 6 · · · 2 · 4	210 328 134	(-50, 79) (-80, 40) (-80, 40)	205 317 130		SAME SAME SAME	
565 566 567	T39510 9P T3957W T36510 9P	6 · · · 25 6 · · · 26	270 0 170	(-80, 40) (-80, 40)	266 0 166		SAME SAME SAME	
568 565 570	73657W M4658W M4354W	6 · · · 2 8 6 · · · 2 9 6 · · · 3 0	63 359 354	(-70, 69) (-70, 69) (-70, 69)	57 351 351		SAME SAME SAME	
571 572 573	M43584 A39574 W826EM	6 · · · 3 1 6 · · · 3 2 6 · · · 3 3	298 327 322	(-80, 40) (-80, 40) (-80, 40)	295 39 312	7 & 3 1 2	SAME [-40, 80] [-70, 69]	226 322
574 575 576	M30511W M3058W M37511W	6 - · · 3 4 6 · · · 3 5 6 · · · 3 6	325 318 434	(-60, 76) [-70, 1] (-70,-69]	239 212 158	25 1 285 163	[-70, 69] [-70, 69] [-80,-40]	302 313
577 578 579	M2758W H55513W H55P16 5P	6 · · 37 6 · · · 38 YES 6 · · · 39	290 0 52	(-50, 79) (-0, 0) (-70, 1)	172 0 44	226	1-80, 401 SAME SAME	227
\$80 \$81 582	T54P7W T54P10 9P T54P7W	6 - 40 6 - 41 6 - 42	282 132 37	[-40, 80] [-70, 1] [-80, 40]	272 131 28	138 30	SAME [-80 40] [-70, 65]	105
583 584 585	T\$4P10.9P M\$4\$8 \$P M\$9COP	6· · 43 6· · 44 6· · 45 YES	173 368 0	[-80, 40] [-70, 69] [-0, 0]	372 0		SAME SAME SAME	
586 587 588	H57CGP H57\$13W H55CGP	6 46 6 47 6 48	641 237 911	[80, -80] [50, 30] [70, -1]	658 75 0	201 18	SAME [-40 80] [-40 80]	73 ·376
589 590 591	H53COP H53P13W H53S13W	6 - 49 YES 650 651	0 386 248	[0, 0} [70, 69] [60, 16]	0 395 229	232	\$ AME \$ AME { 50 30}	214
592 593 594	H51CDP M51S14P 152.5CDP	6 · · · 5 2 Y E S 6 · · · 5 3 6 · · · 5 4	0 472 322	[0, 0] [-70, 69] [80, 40]	471 33'		SAME SAME SAME	
595 596 597	57COP 	655 656 657	277 19 27	[80,-40] [-20, 77] [-20, 77]	0 3 4	10	(40 -80) [-80, 40] [-50, 79]	141 13 13
598 599 600	F57CDW H54_8\$21P(C) H20S13.5P(D)	6 - 58 YES 6 - 59 6 - 60	451 14	[0, 0] {-70, 69} [-30, 79]	437	1	SAME SAME (80 -401	. 7

TABLE B.6 (Continued)

			P MAXI	MUM MEASUREC	STR41N	₽ MAXI	MUM PREDICTED	STRAIN
GAGE NUMBER	CAGE NAME	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	@ MOMENT (VERT_LAT)	MEASURED Strain
601 602 603	751CDW 753CDW 754COW	E · A · \ YES 6 · A · 2 6 · A · 3 YES	0 15 46	(0, 0) (-80, 40) (-50, -29)	o 9 5	9	SAME [-70 69] [-70 69]	15 - 3
604 605 606	155CDW 260510 9P 26056W	6 - A - 4 6 - A - 5 6 - A - 6	159 1434 775	[-60, 76] [-80, 40] [-80, 40]	9 1437 792	10	(-30 79) Same Same	1.4
607 608 609	260E0# 259510 9P 259C0#	6 · A · 7 YES 6 · A · 8 6 · A · 9	1 1 3 7 5 2 8	[0, 0] [-80, 40] [-80, 40]	0 1140 538	1	: -80 . 40 54ME 54ME	,
610	758510 9P 25856W 758COW	6 - A - 10 6 - A - 11 6 - A - 12	8 8 9 5 3 9 4 8 2	(-80 40) (-80, 40) (-80, 40)	899 534 509		SAME SAME SAME	
613 614 615	15700W 157510 9P 156 2P10 9P	6-4-13 6-4-14 6-4-15	5 1 5 6 3 4 4 9 2	[-80, 40] [-80 40] [-70 1]	503 629 499		SAME SAME SAME	
616 617 618	156 200W 156 206W 156 256W	6 - A - 16 6 - A - 17 E - A - 18	462 507 585	[-80, 40] [-80, 40] [-80, 40]	476 509 592		SAME SAME SAME	
619 620 621	256 2510 9P 25500# 255510 9P	6 - A - 19 6 - A - 20 6 - A - 21	901 462 702	[-80 40] [-80 40]	744 475 703		SAME SAME SAME	
622 623 624	75400W 75556W 75451C 9P	6 - A - 2 2 6 - A - 2 3 6 - A - 2 4	469 560 661	[-80, 40] [-80, 40] [-80, 40]	472 559 670		SAME SAME SAME	
625 626 627	153COW 25'COW W51COW	6 - A - 25 6 - A - 26 YES 6 - A - 27 YES	0 0	[80 40] [C C] [O O]	442 0 0		5 AME 5 AME 5 AME	
628 629 630	M51511 1P 149COP M53COW	6 - A - 28 6 - A - 29 6 - A - 30 YES	441 326 0	(-70 69) (-80 -40) (-0, 0)	432 330 0		S AME S AME S AME	
63: 63:	M53511 1P M53514P M53P11 1P	6 · A · 3 1 6 · A · 3 2 6 · A · 3 3	407 5 · 1 293	(-70 69) (-70 69) (-60 -16)	407 511 273	274	SAME SAME (-70, 1)	273
634 635 636	M53P14 M55COW M55S11 1P	6 - A - 3 4 6 - A - 3 5 6 - A - 3 6	281 328 257	(+50, -29) (+80, 40) (+20, -57)	86 314 67	235 403	(40,-80) SAME (70,-69)	180
637 638 639	M55514P M57COW M57SI' 1P	6 - A - 37 6 - A - 38 6 - A - 39	533 0 555	[-70, 69] [0 G] [-70, 69]	5 4 8 0 5 5 5	346	\$4ME [-80, 40] \$4ME	0
640 641 642	M57514P M57P14 M57P11 1P	6 - A - 4 2 6 - A - 4 2	387 0 357	(-70 69) (-0 0) (-60,-18)	386 0 351		SAME SAME Same	
643 644 645	M59COW M59S14P M59S1: 1P	6 · A · 4 3 YES 6 · A · 4 4 6 · A · 4 5	5 2 2 3 9 4	(0, 0) (70 69) (70 69)	5 2 5 3 9 5		SAME SAME SAME	
646 648	W55 95MZO 1RV W55 95MZO 1RD W55 95MZO 1RL	6 - 4 - 4 7	221 219 341	(-50 79) [40, 40] (-70, 69)	2:4 149 328	180	[-70, 69] ,-10, 74] Same	210
649 650 651	455 95720 1PV 455 95720 1RD 455 95720 1RL		212 262 771	(-80, 40) (-70, 69)	199 217 710	717	(70, 69) SAME (-80, 40)	704
652 653 654	#55 952M3 9RV #55 952M3 9RD #55 952M3 9RL	6 · A · 5 2 6 · A · 5 3 6 · A · 5 4	1 65 2 8 9 7 2 8	(80, -40) (-80, 40) (-80, 40)	186 300 727		SAME SAME SAME	. 66
655 656 657	W56 152M3 9RC W56 152M3 9RD W56 152M3 9RV	6 · A · 5 &	13 43 90	[30, 49] (-60 76) (0 69)	- 2 - 2 - 2	1 0 7 7	(-80, 40) (-60, 16) (-80, 40)	20
658 659 660	HS8 3P20P RESISTOR WS2S2MZ(D)	5 · A · 5 8 5 · A · 5 9 8 · A · 5 0	346 31 17	[60 - 76] [20 57] [60 76]	347 0 · 2	3	SAME (-80 40) (-10,-74)	. 1
661 662 663	856COTTP 856COTTS 856P4TTP	6 · 8 · 1 YES 6 · 8 · 2 6 · 8 · 3	339	[0 0] [40 40]	0 348 45	50	SAME SAME (10,-74)	71
664 665 666	856947TS 85698TTP 856987TS	6 - 8 - 4 6 - 8 - 5 6 - 8 - 6	244 145 135	(-70 30,-79 -70,	271 62 121	140	SAME [-50,-29] [-80, 40]	78 121 2
667 668 669	856C02TP 856C02TS 856P42TP	6 · B · 7 YES 6 · B · B 6 · B · 9	2 67 101	{ 30 49} {-80, 40} {-10,-64}	76	130	SAME (-60 -161	2 83 23
670 677 672	856P42TS 856P87TP 856P82TS	6 - 8 - 1 0 6 - 8 - 1 1 6 - 8 - 1 2	97 92 67	(10 · 74) (10 · 74) (-10 · 64)	17 75 80	18 107 54	1-10,-641 1-50,-291 1-40,-401	7 1 5 3
673 674 675	856C0MZP 856C0MZS 856C0MFP	6 - 8 - 1 3 6 - 6 - 1 4 6 - 8 - 1 5	64 47 101	(-50,-29) [0 0] [0 69]	77 0 20	30 30	(· 70 , 1) (· 70 , 1) (· 60 , · 16)	6.7 2.9 5

TABLE B.6 (Continued)

			P MAXIMUM MEASURED STRAIN			@ MAXIMUM PREDICTED STRAIN		
GACE Number	GAGE Name	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	(P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED Maximum	@ MOMENT (TALL)	MEASURED STRAIN
676 677 678	856COMFS 856P8MFP 856P8MFS	6 - B - 1 6 6 - B - 1 7 6 - B - 1 8	3 1 3 6 8 8	(0, 01 (0, 0) (20, 77)	0 0 72	6 2 1 8 0	(-70 1) (-50,-25) (-50,-79)	: 5 1 6 6 C
679 680 681	856COF1P 856COF1S 856P6F1P	6 · 8 · 19 6 · 8 · 20 6 · 8 · 21	1 6 4 6 3 4 0	[-80, 40] [-80, 40] [-0, 0]	9 67 0	4 9 4 5	(-10,-64) SAME [70,-69]	26
682 683 684	856P6F1S 856S4TTP 856S4TTS	6 - 8 - 2 2 6 - 8 - 2 3 6 - 8 - 2 4	26 107 287	(70 -69) (C 64) (-80, 40)	35 28 280	100	SAME [-70 69] SAME	5 e
685 686 687	816P2LIW(C) 856S8TTS 856S4ZTP	6 · 8 · 25 6 · 8 · 26 YES 6 · 8 · 27	43	(C C) (O, C) (-10, 74)	0 ¢ 4 1	19	(-70, 69; SAME [-80, 40]	& 8 5
688 689 690	856542TS 856582TP 856582TS	6 · 8 · 2 8 6 · 8 · 2 9 6 · 8 · 3 C	113 90 49	(- 70 . 69) (- 10 . 74) (- 30 . 79)	132 54 37	93 49	SAME 1-70 691 (-70, 69)	67 43
691 692 693	85658MFP 85658MFS 85656F1P	6 - 5 - 3 1 YES 6 - 8 - 3 2 6 - 8 - 3 3	9 C 3 9	(0, 69) (0, 69)	0 25 3	4 4 4 0 2 2	1 - 80 40 1 1 60 16 3 1 80 - 40 1	C 34 -13
694 695 696	85656F15 856CDMMRH 856COMMRD	6 · 8 · 3 4 6 · 8 · 3 5 6 · 6 · 3 6	33 179 113	[40 . 40] [70 . 69] [80 . 40]	22 138 118	33 156	80 -40 -80 40 SAME	23 175
697 698 699	856COHNRY 856P711RV 856P711RO	6 · B · 3 7 6 · B · 3 8 6 · B · 3 9	5 2 0 5 0	[6076] [0. 0] [30,-79]	4 C	60 58 61	1 &0 -40] 1 &0 -40] 1 &0 -40]	50 0 44
700 701 702	856P711RH 856P111FRV 856P111FRC	6 - B - 4 O 6 - B - 4 1 6 - B - 4 2	107 34 336	[80, -40] [C 0] [-80, 40]	95 0 326	10	3MA2 ; OE O? . 3MA2	3¢
703 704 705	856P111FRH 856P13FFRV 856P13FFRD	6 - 8 - 4 3 6 - 8 - 4 4 6 - 8 - 4 5	6 6 3 9 1 3 6	[-80, 40] [-20, 57] [-70, 69]	25 20 149	2 1	\$AME (-10 74) SAME	33
706 707 708	856P13FFRH 8565711RH 8565711RD	6 - 8 - 4 - 6 6 - 8 - 4 - 7 6 - 8 - 4 - 8	4 1 4 4 8 2	[30 -79] [70, -69] [0, 69]	4 8 4 5 - 9	4 9 5 1 5 0	50,-791 [80,-40] [-80, 40]	39 42 - 20
709 710 711	8565711RV 8565111FRH 8565111FRC	6 - 8 - 4 9 6 - 8 - 5 0 6 - 8 - 5 1	53 148 276	[+20 , 77] [70 , +1] [80 , -40]	· 2 144 297	32 149	E 80 -40) I 80 -40) SAME	14E
712 713 714	8565111FRV 856513FFRM 856513FFRD	6 - 8 - 5 3 6 - 8 - 5 3 6 - 8 - 5 4	4 9 £ 4 2 9	(-60 -16) (-20, 77) [40, 80)	47 82 27	44 87 27	(-40 80) (-50 -79)	47 76 27
7 1 5 7 1 6 7 1 7	856513FFRV M3E 154P(C) M3654P(C)	f - B - 5 5 6 - B - 5 6 6 - 0 - 5 7	177 35 519	[-60 -161 [-80,-40] [-80,-40]	125 35 527	134	(-70, 1) SAME SAME	125
7 · 8 7 · 9 7 7 0	M32 159P[C] M32 1P 5P[C] RESISTOR	6 · B · 5 B 6 · B · 5 9 6 · B · 6 O	373 383 58	[-70	377 295 66	73	SAME SAME (80 -40)	40
721 722 723	APMM36C1PA APMM36C2PA APMM36C3PA	5 · · 3	373 680 706	[-70, 69] [-80, 40] [-80, 40]	249 710 701		S AME S AME S AME	
724 725 726	APADSEMMAA APACSEMMAA AAREPSEMMAA	5 · · 4 · · YES 5 · · · 5 5 · · · 6	278 323 279	-70 1 -70 1 -70 1	278 297 278		5 A M E 5 A M E 5 A M E	
727 728 729	APMM36CIPF APMM36C2PF APMM36C3PF	5 · · 7 5 · · 8 5 · · 9	249 292 514	(-70, 1) (-70, 1) (-60,-16)	253 281 515	284	SAME (- 60 , - 16) SAME	280
730 731 732	APMM36C4PF APMM36C5PF APMM36P1PFO 5	5 - 10 5 11 5 12	457 239 309	(+40,+40) [-40,+80] [+60,+16]	446 242 303	303	SAME SAME 1-70, 11	307
733 734 735	APMM36P3PFO 5 APMM36P5PFO 5 APMM36RLPF	5 · · · · · · · · · · · · · · · · · · ·	331 431 486	-70	324 427 478		SAME SAME SAME	
736 737 738	APMM36ROPF APMM36RHPF APMM36P3PF2	5: -16 5: -17 5: -18	234 246 320	[80, -40] [80, -40] [50, -29]	230 258 284	301	SAME SAME (-70, 1)	314
739 740 741	APMM36P3PF4 M35 3P11 1P M35 3P11 5P	5 19 5 20 5 21	297 273 284	[-70, 1] [-70, 1] [-70, 1]	298 271 286		SAME SAME SAME	
742 743 744	M35 3P12P M38 6P11 7P APMZ33C315	5 · · · 2 2 5 · · · 2 3 5 · · · 2 4	240 168 20	(-60,-16) (-40,-40) (-40,-40)	196 161 16	17	SAME SAME - 60 - 16	20
745 746 747	SOCICEMAN {	5 · · 25 5 · · 26 5 · · 27	1 8 8 8 5 0 8	[80, -40] [0, 0] [-80, 40]	190 0 513	3	SAME 1 60 - 761 SAME	2
748 749 750	MMYREZMAA MMGREZMAA MMJREZZMA	5 - 28 5 - 29 - YES 5 - 30	24 0 174	(-60, 76) (0, 0) (-70, 1)	23 0 186	23	1-50 791 1-60, 401 SAME	22

TABLE B.6 (Continued)

			IXAM 43	MUM MEASURED S	TRAIN	I KAM 9	MUM PREDICTED	STRAIN
GAGE Number	GAGE NAME	CAGE ASSUMED POSITION CAL	MEASURED Maximum	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED Maximum	# MOMENT (VERT,LAT)	MEASURED STRAIN
75 1 75 2 75 3	AMIREZMAA Amorezmaa Amvrezmaa	531 YES 532 533	0 472 55	[0, 0] [-80, 40] [-70, 69]	0 477 55	٥	(80, -40) Same Same	o
754 755	AP	5 34 5 35 YES 5 36 YES	1312	(-80, 40) (0, 0) (0, 0)	1311		SAME SAME SAME	
756 757 758	APII38C4PA APII38P3PA 5 APII38P3PA2 APII38P3PA4	5 · · · 37 5 · · · 38 5 · · · 39	494 347 285	(-80, 40) (-70, 1) (-70, 1)	491 338 286	349 288	SAME [-80, 40] (-80, 40]	335
759 760 761	AP	540 541 YES 542	67 0 884	(-30, 79) (-0, 0) (-80, 40)	52 0 876		SAME SAME SAME	
762 763 764	AP2238RLPA APM239C315 APM239C308	5 · · 43 5 · · 44 5 · · 45	498 479 439	(-80, 40) (-80, 40) (-80, 40)	488 467 445		SAME SAME SAME	
765 766 767	APMZ39C300 APMZ39C293 APMZ42C315	S 4 6 S 4 7	515 501 472	(-80, 40) (-80, 40) (-80, 40)	509 484 474		SAME SAME SAME	
768 769 770	APM742C306 APM742C300(R) APM742C293	548 549 550	9 4 4 6 5 5 9	(-70, 1) (-80, 40) (-30, 49)	- 19 450 46	38	[70]-69} SAME [70] -1]	5) 4 7
771 772 773	8 1 6 P 3 MMR D 8 1 6 P 3 MMR D 8 1 6 P 3 MMR V	5 - · 5 1 5 - · 5 2 5 · · 5 3	93 322	(50, -79} (0, 0] (-30, -49)	50	90 37	[80,-40] [80,-40] [-40,-40]	5.3 & 1.3.8
774 775 776	H23P17MFP{U} H23 9P16MFP(HS H23 9P16MFP(HS	il 15 · · 56	192 401 429	(80 -40) (-80, 40) (-80, 40)	405 454	1.6	SAME SAME (-50, 79)	22
777 778 779	B24P10 SMMRH B24P10 SMMR0 B24P10 SMMRV	5 · · 5 7 5 · · 5 8 5 · · 5 9	28 112 93	(80, -40) (80, -40) (80, -40) (-20, 77)	109	3	SAME SAME (-80, 40)	5
780 781 782	436P2M2{D} APMM44C1PA APMM44C2PA	5 60 5 - A - 1 YES 5 - A - 2	1 3 C 7 2 6	(0, 0) (-70, 1) (-70, 1)	731	741	SAME (-80, 40) SAME	720
783 784 785	ДРММ44СЗРА ДРММ44С4РА ДРММ44С5РА	5 · A · 3 5 · A · 4 · YES 5 · A · 5	73 t 6 t 3 346	(-70, 1) (-70, 69) (-70, 1) (-60, -16)	733 621 334		SAME SAME [-70, 1]	320
786 787 788	APMM44P3PA4 APMM44C1PF APMM44C2PF	5 · A · 6 5 · A · 7 5 · A · 8	327 307 378	(-60,-16) (-70, 1) (-60 -16)	314 298 321	321	SAME SAME SAME	3.0
789 790	APMM44C3PF APMM44C4PF APMM44C5PF	5 - A - 9 5 - A - 10 5 - A - 11	550 497 208	(-60,-161 (-40,-40) (-20,-77)	547 491 198	206	SAME (40, -80)	202
791 792 793	APMM44P1PFO 5 APMM44P3PFO 5 APMM44P5PFO 5	5 - A - 12 5 - A - 13	330 354 458	(-60,-16) (-70, 1) (-60-16)	324 349 455	349	SAME (-60 - 161 SAME	35 c
794 795 796	APMM44RLPF APMM43RDPF APMM44RHPF	5 · A · 15 5 · A · 16 5 · A · 17	5 1 5 2 2 0 2 6 3	(-60 -16) (-40,-40) (-0,-69)	509 216 4	5	SAME SAME 140, 80]	- 176
797 798 7 9 9	ΔΡΜΜ44P3P*2 ΔΡΜΜ4&P3PF4	5 - A - 18 5 - A - 19	357 326 321	(-60,-16) (-70, 1) (-60,-16)	329 330 313	335	(- 70	340
800 801 807	M43 3P11 1P M43 3P11 5P M43 3P12 OP	5 - A - 20 5 - A - 21 5 - A - 22	307 321 365	(- 70 , 1) (- 50 , - 29)	297 282 358	291	SAME (-60 -161 SAME	290
803 804 805	M4: 4P1: 7P APMZ46C292 APMZ46C285	5 · A · 23 5 · A · 24	522 436 374	(-70, 1) (-80, 40)	506 · 2 373	87	SAME (40 -80) SAME	- 160
806 807 808	ДРМ246С277 ДРМ246С270 Др2246С3РА	5 - A - 26 5 - A - 27 5 - A - 28	313	(-70, 1) (-70, 1) (-80, 40)	1120	•	SAME SAME 1-80, 40;	. 1
809 810 811	AP 2 2 4 6 C 3 P F AP 2 2 5 2 C 3 S F AS 2 2 5 2 C 3 S A	5-A-29 YES 5-A-30 5-A-31 YES	717	(0, 0) (-70, 69) (0, 0) (-70, 1)	721	•	SAME (-80, 40) SAME	· 2
812 813	APM262C101 APM262C094	5 - A - 3 2 5 - A - 3 3 5 - A - 3 4	350 321 93	(40, -16) (80, -40)	341 299 21	316	(-70, 1) SAME SAME	215
819 815 816	APMI62CO78 APMI62RLIA	5-A-35 YES 5-A-36 YES 5-A-37	100	(0, 0)	0	33	SAME [0 -691	· 24
8 1 8 5 1 9	APM 2 6 2 R H 2 A A 5 MM 6 6 C 1 S F	5 - A - 38 5 - A - 39 5 - A - 40	84 600 805	(0, 0) [0, 0) [-80 40]	610	2.8	SAME SAME	- 21
8 2 0 8 2 1 8 2 2	ASMM66C3SF ASMM66C4SF	6 - A - 4 1 5 - A - 4 2	836 543	(-80, 40) (-80, 40)	862 545 517		S AME S AME S AMT	
823 824 825	MS9 SP SPIAC	5 - A - 43 1	375 208	(-80, 40) (-80, 40) (-80, 40)	372 210		SAME	

TABLE B.6 (Continued)

				Ø MAXI	MUM MEASURED	STRAIN	P MAXI	MUM PREDICTED	STRAIN
GAGE Number	GAGE NAME	GACE POSITION	ASSUMED CAL	MEASURED MAXIMUM	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT	MEASURED STRAIN
826 827 828	M59 PP SP(FC1) M4855W(BMSU) B56P8MMS(BM)	5 · A · 46 5 · A · 47 5 · A · 48	YES	25 1 9 4 7 4	[-80, 40] [-80, 40] [-80, 40]	254 5 67	5 9 6 9	SAME (-10, 74) (-70, 69)	15 66
829 830 831	M4855W(BMSL) B56P&MZS(BM) B40S9MMP(C)	5 - A - 49 5 - A - 50 5 - A - 51	YES	96 442	[0, 0] [30 -79] [80 -40]	67 435	42	\$AME (-20 -57) \$AME	6.8
832 833 834	864P8MMS(8M) H23 95195 B2459 5MMRV(C)	5 · A · 5 2 5 · A · 5 3 5 · A · 5 4		35 83 76	[-10 74] [-80,-40] [-70 1]	· 1 1 1 2 5 7	39	1 80,-40) \$ AME \$ AME	• 5
835 836 837	B24S9 SMMRD(C) B24S9.5MMRH(C) H23.9S16P(HSU)	5 - A - 5 6		9 1 3 7 2 4 5	(-80, 40) (20, -77) (80, -40)	60 29 249	6 2 3 3	[-70, 1) [-60,-76] SAME	5 8 2 9
838 839 840	H23.9516P[HSL] H23P17MFP{L} W44P2MZ{0}	5 - A - 5 8 5 - A - 5 9 5 - A - 60		490 103 19	[-80, 40] [-50, -29] [-0, 69]	502 95 3	9.6 4	SAME { - 60 , - 16 } { - 50 , - 79 }	103
841 842 843	M23 954.5P(HSD) M23.954.5P(HS1) H24 1P8.5P(HSL)	5 - B - 2		9 1 1 4 5 3 7 7	[-20,-57] [-10, 74] [-40,-80]	8 8 9 4 6 3	93 98 205	[-\$0,-29] [-30,-79] [-80,-40]	9 1 1 1 5 30 6
844 845 846	H24 1P8.SP[HSU] H24 1P13.SP(C) H29 3P17.8RH	5 · B · 4 5 · B · 5 5 · B · 6	v € S	359 51 52	[-70, 1] [0, 69] [-20, 77]	357 25 24	25 3 :	SAME { 0, 69; { 30, 49}	1 i 24
847 848 849	H29 3P17, ARD H29, 3P17, ARL H31 9P14\$(C)	5 · B · 7 5 · B · 8 5 · B · 9		669 138 95	[-80, 40] [-20,-57] [-20,-77]	671 137 94	139	SAME (-30,-49) (-10-74)	138 95
850 851 852	B32P8FIRH(C) B32P8FIRO(C) B32P8FIRV(C)	5-8-10 5-8-11 5-8-12		37 49 133	[-10, 74] [-70, 1] [-80, 40]	10 42 127	39	I 70 -1] Same Same	3 '
853 854 855	M31 8P11W M31 8P10,5P H37P2OP	5 · 8 · 13 5 · 8 · 14 5 · 8 · 15		176 211 196	[-70, 1] [-70, 1] [-40,-40]	172 203 191	191	\$AME \$AME {-\$029}	196
856 857 858	H37520P(CU) H37520P{CL} H37519P(C)	5 - B - 16 5 - B - 17 5 - B - 18		299 297 291	[-70, 69] [-70, 69] [-70, 69]	304 286 291		S AME S AME S AME	
859 860 861	H37 4570P(C) B4058 5MFRY(BB) B4058.5MFR0(BB)			324 50 156	[-70, 69] [-10, 74] [-80, 40]	326 16 132	27 144	SAME (50, 30) (-70, 69)	1 1 1 5 2
862 863 864	B4058.5MFRH(BB) H44520P[LP] H45.4521P[C]			199 307 490	[-80, 40; [-70, 69] [-70, 69]	174 312 482	314	SAME (-60 76) Same	30 1
865 866 867	H45 4521P[C] H41P2OP[C] H47 9P9P[C]	5 - 8 - 25 5 - 8 - 26 5 - 8 - 27		489 65 462	[-70, 69] [-10, 74] [-70,-69]	478 57 460	5 9	SAME {-30, 79} Same	5.9
868 869 870	848P8 2MMRV(88) 848P8 2MMRO(88) 848P8 2MMRH(88)	5 - 8 - 29	YES	83 2 54	[-80, 40] [0 0] [10, -74]	5 8 0 3 8	0 67	SAME {-80, 40} (-70,-69}	2 1 4
871 872 873	H42 6P20P[C] 848P12MMP[C] 848P12MMP[CO]		YES	1 45 60	(0, 0] (80 -40) (70, -69)	0 35 53	0 35 69	[20 . 77] [701] [8040]	- 1 37 42
874 875 876	848C01P(C) 155 9P2P(C) H48 SP10P(G0)	5 - 8 - 34 5 - 8 - 35 5 - 8 - 36	YES	4.4 0 0	[50, 30] [0, 0] [0, 0;	13 0 0	\$ \$	\$ 4040} SAME SAME	26
877 878 879	H51P14P[CU] H51P14P[CL] H49P19P[C]	5 · 8 · 37 5 · 8 · 36 5 · 8 · 39		303 411 221	[60, -76] [70, -69] [-30, -49]	307 423 217	219	SAME (-20 -57)	217
880 881 882	M56P8W(BMSUD) M56P8W(BMSUD)	5 - 8 - 40 5 - 8 - 41 5 - 8 - 42	YES	200 117 128	(-30, -49) (-70, 1) (-0, 0)	191	194	(20, 57) \$AME [50, 29]	196
883 884 885	MS 6 P 8 W { 8 MS U O } MS 6 P 8 W { 8 MS L O } RES 1 S T O R	5 · 8 · 44 5 · 8 · 45	YES	0 26	(-70, 1) (0, 0) (0, 0)	110	4	SAME SAME (-60, 76)	• 4
886 887 888	M4053W(BMSU) B56P8MMP(BM) M485SW(BMSU)	5 - 8 - 4 6 5 - 8 - 4 7 5 - 8 - 4 8	YES	171 114 0	[-70, 1] [-10,-74] [-0, 0]	205 90 0	216 93	(*80, 40) [*10, 64] SAME	167 95
889 890 891	856P8MZP[8M] M21 8P10W H16512P[CU]	5-8-49 5-8-50 5-8-51		45 195 99	[20, ·77] [-60, ·16] [-70, 69]	34 201 81	37 203	(-10,-64) [-70, 1) SAME	195
893 894	H16512P(CM) H16512P(CL) H16512P(C)	5 · 8 · 8 2 5 · 8 · 8 3 5 · 8 · 8 4		108 135 21	[-70, 69] [-70, 69] [-10,-64]	81 115 8	14	SAME SAME (50 - 76)	7
895 896 897	H12P14P(C)	5-8-55 5-8-56 5-8-57		83 30 20	{-70, 69} [-80,-16] [-10,-74]	7 1 2 3 1 3	23	\$AME [-70 1] [-30,-79]	30
898 899 900	816P8P(C) H23520P(C) RESISTOR	5 · 8 · 5 9 5 · 8 · 5 9 5 · 8 · 60		98 190 6	[80 -40] [-70, 69] [0, 0]	113 180 0	i	SAME SAME (BO, BO)	· 2

TABLE B.6 (Continued)

			P MAXIMUM MEASURED STRAIN			& MAKIMUM PREDICTED STRAIN		
GAGE Number	GAGE Name	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED Makimum	P MOMENT (VERT, LAT)	MEASURED STRAIN
901 902 903	864C0ZZP 864C0ZZS 864P4ZZP	4 · · · · · · · · · · · · · · · · · · ·	8 1 4 1 4 2	(-60, 76) (-70, 1) (-10,-64)	46 51 24	66 55 30	(-80, 40) (-80, 40) (-40, -80)	57 41 0
904 905 906	864P4ZZS 864P8ZZP 864P8ZZS	4 · · 4 4 · · 5 4 · · 6	131 72 58	[-70, 1] [-60,-16] [-30,-49]	152 69 53	154 70 73	(-80, 40) (-70, 1) (-70, 1)	125
907 908 909	B64CDMZP B64COMZS B64P4MZP	4 · · 7 4 · · 8 4 · · 9	5 6 4 5 5 7	(-60,-16) (-70,-69) (-50,-29)	75 35 62	87 37 72	[-80 40] [-80 40] [-70, 1]	43 41 57
910 911 912	B64P4MZS B64P8MZP B64P8MZS	410 411 412	85 46 99	[-60,-16] [-10,-64] [-70, 1]	89 21 97	9 4 2 2	1 - 70 . 1 20 - 77 SAME	35
913 914 915	864COMFP 864COMFS 864P2MFP	4 13 4 14 4 15	42 39 19	[-30, 79] [-50,-29] [-50,-29]	3 33 24	19 47 29	{-80, 40} [-80, 40] [-80, 40]	27 11
916 917 918	864P2MFS 864C0F1P 864C0F1S	416 YES 417 418	3 8 4 2	[0, 0] [-80, 40] [-70, 69]	5 2 4 0	47	1 30, 79) SAME (180, 40)	40
9 1 9 9 2 0 9 2 1	864P6F1P 864P6F1S 864S4ZZP	419 420 421	32 37 60	[20, -77] [0, 0] [-40, 80]	19 0 43	37 38 80	(70 - 69) (50 - 79) (-80 - 40)	2 3 5 0
922 923 924	#6454225 #645822P #6458225	4 · · · 22 4 · · · 23 4 · · · 24	104 131 43	[-80, 40] [-60, 76] [-10, 74]	103 107 15	117 36	SAME 1-80, 40) 1-70 69]	109
925 926 927	86454M2P 86454M2S 86458M2P	4 25 4 26 4 27	78 118 63	[-70, 69] [-80, 40] [-80, 40]	87 170 101	95	1-80 40) 5ame 5ame	68
928 929 930	86458M25 86454MFP 86454MFS	4 · - 28 4 · - 29 4 · - 30	124 81 66	[-80, 40] [-50, 79] [-30, 79]	135 73 41	109 89	SAME (-80, 40) (-80, 40)	57 30
931 932 933	86456F1P 86456F1S 864COHHRH	43: 43: 43:	5 1 7 2 1 4	(-50, 79) (-40, 80) (-80,-40)	5 1 6 1 1 6	74 93	(-80, 40) (-80, 40) SAME	27 5:
934 935 936	864COHHRD 864COHHRY 864P711RV	4 · - 34 4 · - 35 4 · - 36	1 8 1 8 4 4	(-50, 79) (0, 0) (30, -79)	8 0 43	8 8 70	[-60, 76] [-70, -1] [-70, -69]	1 3 8 20
937 938 939	864P71[RD 864P71]RH 864P11F1RV	437 YES 438 439	15 99 417	[40, 40] [80, 40] [-80, 40]	100 402	6	[80 40] Same Same	9
940 941 942	864P11FIRD 864P11FIRH 864P13FFRY	4 40 4 41 4 42	7 1 4 2 0 9 3	[60, 16] [0, 0] [-30, 79]	3 \$ 0 8 2	69 117 86	1 70,-691 1-70, 11 1-50 791	63 261 83
943 946 945	B64P13FFRD B64P13FFRH B64S711RH	4 43 4 44 4 45	214 34 59	(-70, 69) 0, 0) 70,-69	248 0 35	17 44	SAME (80, 401 (80, 40)	2 2 5 4
946 947 948	8645711RD 8645711RV 864511F1RH	4 · · · 4 6 4 · · · 4 7 4 · · · 4 8	50 19 83	[60, -76] [0, 69] [70, -1]	27 - 10 44	4 1 1 1 7 7	1 80, 401 1 40, 801 1 10 641	2 E 1 1 4 7
949 950 951	8645)1FJRD 864511FLRV 8645131TRH	449 450 451 YES	352 68 0	(-80, 40) (-30, -49) (-0, 0)	318 41 0	43	5 AME (0, -69) 5 AME	5.2
952 953 954	86451311RD 86451311RV H61 2520P(CU)	4 · · · 5 2 4 · · · 5 3 4 · · · 5 4	148 23 546	(-70, 69) (-60, -16) (-70, 69)	150 17 546	175	(-80 40) (-80, 40) SAME	146
955 956 957	M5958P(C) APM246C112 APM246C105	455 456 457	433 308 291	(-70, 69) (-80, 40) (-70, 1)	433 318 286	286	5AME 5AME (-80, 40)	283
958 959 960	APM248697 APM246690 H60P19(D)	458 YES 459 460	330 129 11	[-70, 1] [-30,-49] [-50, 79]	338 111 5	126	SAME (-60,-16) (-80, 40)	129 5
961 962 963	M61P14P(G) M61P11 1P M61P10W	4-A- 1 YES 4-A- 2 4-A- 3	0 314 294	(0, 0) (-60,-16) (-60,-16)	312 280	282	SAME SAME [-70, 1]	292
964 965 966	M6 1 F 6 W M6 1 F 2 W M6 1 C O W	4-A- 4 4-A- 5 4-A- 6 YES	271 295 0	(-70, 1) [-80, 40] [0, 0)	274 296 0		SAME SAME SAME	
947 964 969	M6152W M6154W M6156W	A - A - 7 4 - A - 8 4 - A - 9	309 277 370	(+80, 40) (-80, 40) (+70, 69)	310 274 383	386	SAME SAME (-80 40)	366
970 971 972	M& 158W M& 159 , SP M& 1510W	4 - A - 10 4 - A - 11 4 - A - 12	359 388 410	[-70, 69] [-70, 69]	358 397 397		SAME SAME SAME	
973 974 975	M61510 SP M61511 1P M61512W	4 · A · 13 4 · A · 14 4 · A · 15	395 451 488	(-70, 69) (-70, 69) (-70, 69)	393 454 477		SAME SAME SAME	

TABLE B.6 (Continued)

			₽ M&X	IMUM MEASURED	STRAIN	P MAXI	MUM PREDICTED	STRAIN
GAGE NUMBER	GAGE Name	GAGE ASSUMED POSITION CAL	MEASURED Maximum	P MOMENT (VERT_LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	@ MOMENT (VERT,LAT)	MEASURED STRAIN
976 977 978	M61512 SP M61513W M61514P	4-4-16 YES 4-4-17 4-4-18	2 5 2 4 5 0 9	[0 0 (-\$0, 79 1-70, 69)	6 450 510	510	1-80, 40; 1-70, 691 SAME	499
979 980 981	26150W 26152W 26154W	4-A-15 4-A-20 4-A-21	660 371 444	1-80, 401 1-80 401 1-80 401	68 \ 365 442		SAME SAME SAME	
982 983 984	26'56W 26'58W 26159W	4 - A - 22 4 - A - 23 4 - A - 74	879 750 776	(-80 40 1 (-80 40) (-80 40)	909 760 799		SAME SAME SAME	
985 986 987	261510 % 261510 SP 261510 9P	4 · A · 25 4 · A · 26 4 · A · 27	1033 1719 1172	(-80 4 (-80, 40) (-80 45)	1057 1260 1214		S AME S AME S AME	
988 989 990	261P6W 261P10W W61S2M3 9P	4 - A - 2 & 4 - A - 2 9 4 - A - 3 O	914 955 1246	1 80 40 1 80 40 1 80 40	9 1 2 9 8 1 1 2 8 4		SAME SAME SAME	
99: 992 993	W615MZO 1P H56 1521P H6153W	4 - A - 3 1 4 - A - 3 2 4 - A - 3 3	847 906 513	[&0 40] &0 40] &0 40]	866 930 519	933	SAME [-70, 69] SAME	896
9 9 4 9 9 5 9 9 F	N 6 1 P 5 W N 6 1 S 5 W N 6 1 S 7 W	4 · A · 3 4 4 · A · 3 5 4 · A · 3 6	560 444 359	[80 -40] [80 -40] [70 -1]	56 ' 439 36 t		SAME SAME SAME	
997 998 99 9	N6 1 P 7 M N6 1 S 9 W N6 1 S 1 1 W	4 · A · 37 YES 4 · A · 38 4 · A · 39	73 344 451	{ 70, -1} (-70, 69) (-70,-69)	48 341 459	345	5 AME (- 60 , 76) S AME	344
1000	H61513W H61513W H61514W	4 - A - 4 C 4 - A - 4 ' 4 - A - 4 2	462 259 217	1 80 -401 1 50, 301 1 40 401	46 ° 249 220		S A ME S A ME S A ME	
1003	M61P14W M61515W M61516 5P	4 · 4 · 4 3 4 · A · 4 4 4 · A · 4 5	298 212 236	[70,-69] [0, 69] [-40 80]	375 203 226	203	SAME 0, 69 SAME	196
1006	H61P16 SP H61S18W H61S2OWL	4 · C · 4 6 4 · A · 4 7 4 · A · 4 8	205 678 479	1 20 -77] [0 0] [-70 69]	206 0 480	214 1206	40,-801 (70,-691 SAME	199 513
1009	H6:P2OW, H57 9P9S(C) B56P811P(C)	4 A · 5 · 4 · A · 5 · .	296 192 64	(-\$0 -29) (-70,-69) (-60 -76)	295 169 87	9.4	SAME SAME [80, -40]	25
1012	ASM276C098 ASM276C105 ASM276C112	4 · A · 5 2 4 · A · 5 3 4 · A · 5 4	438 463 527	[-80, 40] [-80, 40] [-80, 40]	432 477 530		S AME S AME S AME	
1015	ASMM66C5SA ASMM66C4SA ASMM66C3SA	4 · A · 5 5 4 · A · 5 6 4 · A · 5 7	798 902 856	('70	788 827 856		SAME SAME SAME	
1018	45MM64C1SA 45MM66C1SA W68S2M7(D1	4 - A - 58 YES 4 - A - 59 4 - A - 60	3423 573 10	[40 4c] [70 69] [40 40]	· 109 566 0	349	[\$0,-79 \$AME [-60, 76	1077
1021	872E0HHRH 872E0HHR0 872EDHHRV	4 - 8 - 1 4 - 8 - 2 6 - 8 - 3	39 62 98	1-70 691 1-70, 693 (-80, 401	4 1 4 9 8 6	45 53	[-80, 40] [-80, 40] SAME	35 57
1024	B72P12 SFIRV B72P12 SFIRD B72P12 SFIRH	4 - 8 - 4 4 - 8 - 5 4 - 6 - 6	156 165 82	(80 -40) (80 -40) (80 -40)	149 135 83	161	L 70, -691 Same Same	144
1027	872512 SFIRH 872512 SFIRD 872512 SFIRV	4 - 8 - 7 4 - 8 - 8 4 - 8 - 9	105 149 100	[70	73 164 0	3 1	(50, 30) SAME (-20,-57)	12
1030	262 500W 26500W 26700W	4 - 8 - 10 4 - 8 - 11 4 - 8 - 12	539 482 498	(80, 40) (80, 40) (80, 40)	551 492 501		3 A ME 5 A ME 5 A ME	
	769COW 271COW 263S6W	4 - 8 - 13 4 - 8 - 14 4 - 8 - 15	506 477 615	(-80, 40) (-80, 40)	5 1 5 48 8 6 2 1		S AME S AME S AME	
1036	763511W M63COW M63511 1P	4 · B · 16 YES 4 · B · 17 4 · B · 18	322 495	[0, 0] [-80, 40] [-70 69]	494	;	[70, -1} [-40, 80] SAME	162
1040	M63514P M65COW M65511 1P	4 - 8 - 19 4 - 8 - 20 4 - 9 - 21	573 321 465	[-70 69] [-80, 40] [-70, 69]	574 327 499		S AME S AME S AME	
1042	M655 (4P M65P (4P M65P (1) 1P	4 · 8 · 22 4 · 8 · 23 4 · 8 · 24	593 368 318	1-70, 69) 1-60,-16] 1-60,-16}	602 356 320		SAMÉ SAMÉ SAME	
1045	M67COW M67S11 1P M67S14P	4 - 8 - 25 YES 4 - 8 - 26 4 - 8 - 27	0 4 6 5 4 8 9	[0, 0] [-70, 69] [-70, 69]	0 470 504		S AME S AME S AME	
1048	M69CDW M69S11 1P M69S14P	4-8-28 YES 4-8-79 4-8-30	455 491	(0 0) (-70 69) (-70 69)	463 490		5 A ME 5 A ME 5 A ME	

TABLE B.6 (Continued)

			MIARTE STRAIN			@ MAXIMUM PREDICTED STRAIN		
GAGE Number	GAGE	GAGE ASSUMED POSITION CAL	MEASURED Maximum	@ MOMENT (VERT,LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT	MEASURED STRAIN
1051 1052 1053	M69P1: IP M69P14P M71CDW	4 - 8 - 3 1 4 - 8 - 3 2 YES 4 - 8 - 3 3	345 0 309	(80 40) (0, 0) (80, 40)	352 0 305		SAME SAME SAME	
1054	M71510 1P M71513P M6358 5P	4 - 8 - 34 4 - 8 - 35 4 - 8 - 36	427 3857 357	(-70, 69) (0 0) (-70, 69)	427 0 360	596	\$4ME [-70 65] \$4ME	424
1057 1058 1059	169COP 165COP F65CONA	4-8-37 YES 4-8-38 4-8-39 YES	5 ? 9 0	[80, -401 [10, 641 [0, 01	33 6	4	SAME (6C 16; Same	5
1060	M63COP 903234 Wei8234	4 - 8 - 40 4 - 8 - 41 4 - 8 - 42	337 811 228	[80, +40] [80 +40] [60, 16]	342 645 229	230	SAME SAME 1 50 30)	224
1063	M67COP M69P13W M69COP	4-8-43 YES 4-8-44 4-8-45 YES	369 0	1 C. 01 1 70 -69] 1 O. 01	3 6 7 0		5 A ME 5 A ME 5 A ME	
106€ 1067 1063	+ 69513# H7 'COP 161CDP	4 · B · 4 6 4 · B · 4 7 4 · B · 4 8	0 485 347	(0, 0) (80,-40) (80 -40)	c 489 343	276	(80 40 ; SAME SAME	r
1069	F61CDN4 86458 5MMRY 86458 5MMRD	4 · # · 49 4 · 8 · 50 4 · 8 · 51	14 59 128	(70, 69) (60, 76) (70, 69)	4 3 9 8	12 45 104	1 - 80 40 1 - 80 40	10 51 124
1072	86458 5MMRH H65520P[CL] H65520P[ACL]	4-8-52 4-8-53 4-8-54	595 455 430	[-80, 40] [-70, 69] [-70, 69]	253 455 423		5 A M E 5 A M E 5 A M E	
1075 1076 1077	H65520P(FCL) A5M176C090 A5M162C65	4 - 8 - 5 5 4 - 8 - 5 6 4 - 8 - 5 7	379 350 401	1 - 70 691 1 - 70 691 1 - 70 11	377 353 400		5 A M E 5 A M E 5 A M E	
1078	ASM262C60 ASM262C55 H68S19P(D)	4 · B · 5 B	5574 316 31	(0 69 1 (70 1) (0 0)	- 170 318 0	517	(70 -69) SAME (80 -40)	- 1145
1081 1082 1083	880C012P 880C072S 880P322P	3 · · · · · · · · · · · · · · · · · · ·	110 220 74	1 80 401 (80, 401 (80, 401	104 218 77		S A M E S A M E S A M E	
1084	8	3 · · 4 3 · · 5 3 · · 6	139 36 72	{ 80, 40} (-80, 40) (80, 40)	135 34 75	34	SAME (- 70 1) SAME	34
1087	BBOCOMIP BBOCOMIS BBOP3MIP	3 · · · · · · · · · · · · · · · · · · ·	1 8 2 5 3 1	[10, 74] [70, 69] [70, 1]	32 28	11 34 28	(-70 69) (60 - 40) (-60 40)	8 2 1 2 9
1090	880P3M25 880P8M2P 880P8M25	3 10 3 11 3 12	74 10 28	(80 -40) (70, -1) (70, -1)	76 10 23	12	SAME (60, -40) (60, -40)	2 2
1093	880C0MFP 88CC0MFS 880P9MFP	3 13 YES 3 14 3 15	43 30	[0, 0] [0,-69] [30, 49]	0 6 1 7	£ 27	\$4ME (30 - 791 (70 - 1)	· 2 2 2
1096	BEOPPMES BEOCOFIP BEOCOFIS	3 · · · 16 3 · · · 17 3 · · · 18	511 41 115	[30 . 49] [80 . 40] [-80 . 40]	44 112	35	(10, -74) SAME SAME	9.6
1099	8 8 0 P 6 F 1 P 8 8 0 P 6 F 1 S 8 8 C S 4 Z 2 P	3 19 3 20 3 21	3 † 2 9 9 2	(70, -69) (70, -69) (-80, 40)	30 36 91	35 36	[80 - 40] [80 - 40] SAME	2 9 2 5
1102	88054725 8805872P 88058225	3 · · · · · · · · · · · · · · · · · · ·	197 73 136	[80, -40] [-80, 40] [80, -40]	195 71 146		S A M E S A M E S A M E	
1105	88054MZP 88054MZS 88058MZP	3 · · 2 § 3 · · · 2 6 3 · · · 2 7	22 27 11	[70, 1] [70, 1] [40, 40]	2 1 2 8 4	23	[8C 4C) 5AME [80 -40]	2 2 3
1108	BBOSBMIS BBOS7MFP BBOS7MFS	3 - · 28 3 · · 29 3 · · 30	\$ 5 5 3 3	[70, -69] [70, -69] [-50, 79]	4 6 5 2 2	46 6 23	(80 -40) (80 -40) (70 69)	5 1 3 2 6
1111	BBCS6F1P B80S6F1S B80CQHMRH	3 33 3 33 3 33	34 52 154	(80, -40) (0, 69) (-70, 1)	35 15 2	41 15	5 AME [701] [30 -79]	2 6 - 3 7
1115	BBOCCHHRO BBOCCHHRY BBDP7[]#Y	3 · · 34 3 · · 35 3 · · 36	96 52 10	(-80, 40) (-80, 40) (-80, -40)	9 8 5 1 1 4		S A ME S A ME S A ME	
1117 111E 1119	880P711RD BSCP711RH 860P11F1RV	3: :37 3: :36 3: :39	28 63 42	{-30, 791 (-80, 40) (-20, 571	1 1 6 6 1 2	30	(-70 69) SAME : 80,-40)	27 34
1120	BSOP11FIRD BSOP11FIRH BSOP12FFRV	340 341 342 YES	37 35 0	[10 - 74] [40 - 80] [0 0]	25 31 0	30 34	[50. 79] [10. 74] SAME	25 35
1123 1124 1125	880P12FFRD 880F12FFRH 880S711RH	3: -43 3: -44 3: -45	24 23 72	[0, 69] [-60,-16] [-60, 40]	19 12 71	19	(10 641 [-70, 1] SAME	16 23

TABLE B.6 (Continued)

			P MAXIMUM MEASURED STRAIN			P MAXIMUM PREDICTED STRAIN		
GAGE NUMBER	GAGE HAME	GAGE ASSUMED POSITION CAL	MEASURED Maximum	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	# MOMENT (VERT,LAT)	MEASURED STRAIN
1126 1127 1126	8805711RD 8805711RV 880511F1RH	3· ·46 YES 3· ·47 3· ·46	0 267 32	(0, 0) (0, 0) (10, 64)	0 0 2	49	\$AME [-70, 69] [-70, 69]	18
1129	880511F1RD 880511F1RV 880512FFRH	3· -49 3· -50 3· -51	53 37 20	(-60,-16) (-30,-49) (-80,-40)	5 0 3 1 2 1	3 4 2 2	SAME (0, 69) (-70, 69)	33 20
1132 1133 1134	880512FFRD 880512FFRV H84 \$521P[CU]	3 · ·52 YES 3 · ·53 3 · ·54	0 22 323	(0 0) (-30, -49) (-70, 69)	0 21 318	۰	1 70 -691 Same Same	•
1135	H101P20P(UC! H100P20P(AC) B98CQMMP(C)	3 · · · 5 5 3 · · · 5 6 3 · · · 5 7	4 6 4 0 3 5	1-70 II 1-70 II 1-80 -401	4 9 3 8 4 1		S AME S AME	
1138 1139 1140	M101 3CDW(C) M101 3CGW(C) B8DCMF(D)	3 · · · · · · · · · · · · · · · · · · ·	106 6 7	[-80, 40] [-40, 80] [-30, 79]	9 8 1 2	4 5	SAME (-40 40) (-40, 40)	4
1141	M73P13P M73P12W M73P10 1P	3 - A - 1 3 - A - 2 3 - A - 3	3 1 6 3 1 9 2 7 0	[10, 40] [70, 1] [70, 1]	308 317 271		S AME S AME S AME	
1144	M73P8W M73P6W M73P2W	3 · A · 4 3 · A · 5 3 · A · 6	274 253 304	[70	267 256 308		SAME SAME SAME	
1148	M7350W M7352W M7354W	3 · A · 7 3 · A · 8 3 · A · 9	318 287 330	[-80 40] [-80 40] [-70 1]	318 289 320	322	SAME SAME [-60 -16]	328
1150	M7356W M7358W M7359W	3 - A - 10 3 - A - 11 3 - A - 12	317 324 357	(-80, 40) (-80, 40) (-70, 69)	3:1 333 36:	361	SAME SAME (-86, 40)	355
1153 1154 1155	M7359 5P M73510 1P M73511W	3-4-13 YES 3-4-14 3-4-15	420 471	(0, 0 f (70, 69 f (70, 69 f	0 420 472		SAME SAME SAME	
1156 1157 1158	M7351 5P M73512P M73512 5P	3 - A - 16 3 - A - 17 3 - A - 18	433 488 521	[70 69] [70 69] [70 69]	432 488 524		5 A M E 5 A M E 5 A M E	
1159	M735:3P 273COW 273S2W	3 - A - 19 3 - A - 20 2 - A - 21	542 463 507	[-70 69] [-80, 40] [-80, 40]	542 470 515		SAME SAME SAME	
1162 1163 1164	27354W 27356W 27358W	3 - A - 22 3 - A - 23 3 - A - 24	461 581 662	[-80, 40] [-80, 40] [-80, 40]	470 622 683		SAME SAME SAME	
1165 -166 1167	27359W 27359 SP 273510W	3 · A · 2 · 5 3 · A · 2 · 6 3 · A · 2 · 7	688	1-80, 401 1-80, 401 (-80, 401	666 687 808		SAME SAME SAME	
1168	2735:1P 273P6# 273P10W	3 · A · 28 3 · A · 29 3 · A · 30	744 511 485	(-80, 40) (-80, 40) (-80, 40)	793 536 498		5 AME 5 AME 5 AME	
1171	M735MZO 1P W735MZZ ON W735ZM3 9P	3 · A · 3 · 3 · A · 3 · 3 · A · 3 ·	440 345 719	[-70, 69] [-70, 69] [-80, 40]	438 369 722		SAME SAME	
1174	H78520P[C.] H7351W H7353W	3 - A - 3 4 3 - A - 3 5 3 - A - 3 6	318 416 379	[70	316 416 371		SAME SAME	
1178	H73P3W H7355W H73S7W H73P7W	3 · A · 38 3 · A · 39	466 319 295	[80, -40] [80, -40] [70 -1]	467 312 294		SAME SAME	
1180	H7359W H73511W	3 - 4 - 4 1 3 - 4 - 4 2 YES	331 259 0	[70, -69] [70, -1] [0, 0]	342 259 0		SAME SAME SAME	
1183	H73P11W H73512W H73513W	3 - A - 4 3 3 - A - 4 4 3 - A - 4 5	354 237 238	[70, -69] [70 -1] [60, -16]	353 245 228		SAME SAME	
1186	H73P13W H73514W H73515W	3 - A - 46 3 - A - 47 3 - A - 48	410 176 184	[70, -69] [50, 30] [0, 69]	401 186 167	167	SAME SAME (0, 69)	761
1190	H73P15W H73S16 SP H73P16 SP	3-4-49 3-4-50 3-4-51	260 228 180	[60 -76] [-40 80] [20 -77]	258 224 176	226 178	SAME 50, 79 30 79	222 176
1192	H73518W H73520W H73P20W	3 · A · S 2 YES 3 · A · S 3 3 · A · S 4	0 469 274	(0 C) (-7C, 69) (-60, -16)	0 467 273	2	SAME	•
1195 1196 1197	H79 \$518P[AC) 198 (COP(C) 89856MMP(C)	3 · A · \$5 3 · A · 56 3 · A · \$7	72 96 200	[70, 69] [-80, 40] [80, 40]	76 102 212		S A ME S A ME S A ME	
: 198 : 199 : 200	H17517W(C) RESISTOR H76519(D)	3 - A - 58 3 - A - 59 3 - A - 60	65 51 201	(-70, 69) (-0, 69) (-10, 64)	63 · 3 ?	š 2	SAME [-70 1] [-40, 80]	- 4 - 8 2

TABLE B.6 (Continued)

			P MAXIMUM MEASURED STRAIN			@ MAXIMUM PREDICTED STR		TRAIN
GAGE NUMBER	GAGE Name	GAGE ASSUMED POSITION CAL	MEASURED MAXIMUM	E MOMENT	PREDICTED STRAIN	PREDICTED MAXIMUM	IVERT LATI	MEASURED STRAIN
1201 1202 1203	275COW 277COW 279COW	3-8- 1 3-8- 2 3-8- 3	428 400 332	(-80, 40) (-80, 40) (-80, 40)	427 406 338		5 A M E 5 A M E 5 A M E	
1204 1205 1206	279 SCOW 283COW 285COW	3-8-4 YES 3-8-5 3-8-6	0 282 187	(0, 0) (-80, 40) (-80, 40)	0 296 194		S A ME S A ME S A ME	
1207	WABPIMB 9P 183P6W RESISTOR	3-8-7 3-8-8 3-8-9 YES	238 292 0	1-70. 11 1-80. 401 1 0, 0,	240 292 0	1	SAME SAME 1-80, 401	c
1210	28356W 279 556W 279 559 9P	3 · 8 · 10 3 · 8 · 11 3 · 8 · 12	297 463 490	(-80, 40) (-80, 40) (-80, 40)	299 411 489		SAME SAME SAME	
1212 1213 1214 1215	W835MZO 1P W835MZZ OW W835ZM3 9P	3-8-13 YES 3-8-14 3-8-15 YES	219	[0 0 0] [0 0]	204		S AME S AME S AME	
1216 1217 1218	M75COW M75S10 1P M75S13P	3 · 8 · 16 3 · 8 · 17 3 · 8 · 18	320 417 476	(-70, 69) (-70, 69) (-70, 69)	307 A23 A77		SAME SAME SAME	
1219	M77COW M77S10 1P M77S13P	3 · 8 · 19 3 · 8 · 20 3 · 8 · 21	333 478 408	[-80, 40] [-70, 69] [-70, 69]	379 460 402		5 A M E 5 A M E 5 A M E	
1222	880P6[!w(C) M77P13P M79COW	3 - 8 - 22 3 - 8 - 23 YES 3 - 8 - 24	30 0 288	(0, 01 (0, 01 (80, 40)	0 286	2.6	(-80, 40) Same Same	: 8
1225 1226 1227	M79510 1P M79513P M85COW	3-8-25 3-8-26 3-8-27	327 293 226	(- 70 . 69) ! - 70 . 69] ! - 80 40 }	324 295 228		S A M E S A M E	
1228	M81510 1P M81513P M81910 1P	3-8-28 3-8-29 3-8-30	295 310 162	(-70, 69) (-70, 69) (-60,-16)	287 316 159		5 A ME 5 A ME 5 A ME	
1231	M81P13P M83COW M83S10 1P	3 · 8 · 3 · 3 · YES	725 5 291	(- 70 1) (0. 0) (- 70 69)	224 C 292		5 A M E 5 A M E 5 A M E	
1234 1235 1236	9513E M61COW M65S10.1P	3 - 8 - 34 3 - 8 - 35 3 - 8 - 3 6	379 279 250	(-70, 69) (-80, 40) (-70, 69)	376 278 244		SAME SAME SAME	
1237 1238 1239	M85513P M85P10 1P M85P13P	3 - 8 - 3 7 3 - 8 - 3 6 3 - 8 - 3 9	241 227 144	[-70, 69] [-70, 1] [-60,-16]	227 229 146		S A M E S A M E S A M E	
1240	F81 55(41NS M8155 5P M8355 5P	181 3-8-40 3-8-41 3-8-42 YES	48 312 0	[40, -80] [-80, 40] [0, 0]	50 314 0	5 1	SO, 791 SAME SAME	4.4
1243	M83P10 1P M83P13P 173C0P	3 - 8 - 43 3 - 8 - 44 YES 3 - 8 - 45	203 0 157	[-70, 1] [0, 0] [80, -40]	203		SAME SAME SAME	
1246 1247 1248	177COP 181COP F81CONA	3 - 8 - 4 6 3 - 8 - 4 7 3 - 8 - 4 8	2 1 9 1 8 8 3 2	[80, -40] [80, -40] [-50, 79]	218 207 14	18	SAME 54ME (-20 40)	20
1249 1250 1251	FSSCONA SSOPSMMRH BSOPSMMRD	3 - 8 - 4 9 3 - 8 - 5 0 3 - 8 - 5 1	46 17 32	[-80, 40] [-60, -76] [-70, 1]	4 2 1 8 3 2	18	SAME (50 - 79) SAME	: 7
1252 1253 1254	BSCPSMMRY SSCPSMFRH SSCPSMFRD	3-8-52 YES 3-8-53 3-8-54	1 47 50	(0, 0) [-70, 1] [-60,-16]	5 1 5 0	o 54	(60 16 1 SAME (- 70 1)	50
· 255 1256 1257	185000	3 - 8 - 55 3 - 8 - 56 3 - 8 - 57 YES	7 257 0	(80, -40) (80, -40) (0, 0)	\$ 250 0	1	SAME SAME (80, -40)	0
1258 1259 1260	RES:STOR	3 - 8 - 5 8 3 - 8 - 5 9 3 - 8 - 60	15 7637 10	{ 0. 0} { 1074} (-30. 79)	9 6 4	153 4	(70 -11 1-50 -161 [-60 75]	359 4
1261	88600275	2 · · · 1 2 · · · 2 2 · · 3	90 329 56	(80, -40) (-80, 40) (80, -40)	327		SAME SAME SAME	
1264 1265 1266	886P32ZS 886P8ZZP	2 - · 4 2 - · 5 2 - · 6	209 50 144	[-80, 40] [-80,-40] [-80, 40]	5 5		SAME SAME SAME	
126	7 886COMZP 8 886COMZS	2 · · 7 2 · · 8 2 · · 9	6 6 3 2	(70 - 1) (-70 - 69) (-40 - 80)	57	64 14	\$AME (-80, 40) (-80, 40)	63
127 127 127	1 886 P B M Z P	2- 10 2- 11 2- 12	7 9 29	(-60, 76) [-10, 74] (-70, 69]	, 7	7	(70 691 (0 491 Same	3 5
127 127 127	3 886COMFP 4 886COMF5	2 13 2 14 2 15	6 150 29	(-10, 74) (-80, 40) (-80, 40)	152	•	I-40 801 SAME SAME	2

TABLE B.6 (Continued)

			G MAKIMUM MEASURED STRA			STRAIN P MAXIMUM PREDICTED STRAIN			
GAGE		CAGE ASSUMED Position cal	MEASURED Max: Mum	P MOMENT EVERT, LATI	PREDICTED STRAIN	PREDICTED Maximum	@ MOMENT	MEASURED STRAIN	
1276	##620F1P ##620F1S	2 16 2 17 2 18	69 19 15	(-70 69 1-80, 40 1-80, 40	59 17 13	13	SAME SAME . 701;	13	
1275	88696F15 88696F15 88654ZZP	2 19 2 20 YES 2 21	28 38 26	(- 70 69) [- 80 , 40) [80 , - 40]	30 34 24	31	(-80 40) Same Same	24	
1287	88654775 8865877P #6658775	2 22 2 23 2 24 YES	171 60 150	1-80 401 1-80,-40 ,-80 40,	169 62 150		SAME SAME SAME		
1285 1286 1287	88654MZP 88654MZS 88658MZP	2 25 2 26 2 27	70 16	(-30 79 (-80 40) (-70 -691	* 1 7.4 - 8	s	SAME	¢	
1288 1289 1290	##65#MZ5 ##652MFP ##652MF5	2 · · · 28 2 · · · 29 2 · · 36	7 7 2 7 4 7	(-20 -57) (-80, 40) (-0, 69)	†3 31 6	r4	(-50 -25) SAME (-70 -1)	15	
1291	88 65 6F 1P 88 65 6F 15 88 6 C D H H R H	2 3 2 32 2 31	20 38 13	1-60, -16; 1-80 401 1-70, -1;	13 43 10		SAME SAME SAME		
1294 1295 1296	88600HMRD 88600HMRV 866P71,8V	7: 34 1: 35 2: 36 YES	1 2 6 7 4	1 - 70 . 69 l 1 - 80 40 l 1 0 . 69 l	: 2 5 7	1	SAME SAME 1 40, 40;	c	
1297	#86P7;;RD #86P7[1RH 886P11F1RV	2 - 37 2 - 38 2 - 39	27 54 28	1-20 77) 1-80, 40; 6-60, 761	1 6 4 9 1 6	19	' 20 57) SAME 1-30 79)	5 1 €	
1301	2669:1718H 886911518D 886912FFRY	2: -40 +E5 2: -4: 2: -42	0 5 4 2 9	1 - 50 - 40 ; 1 - 30 - 79]	6 5 1 1 3	0	80 -40! Same 20 57	o 3	
1303	886P:2FFRD 886P:2FFRH 886571;RH	2 · 43 2 · 44 2 · 45	55 29 106	[70 -1, [70 -1] [80 40]	5 6 2 1 100	2:	54ME [80 -40] S4ME	25	
1304	88657: RD 88657: RM 88657: FIRM	2 46 2 47 2 48	104 23 87	(-80 40 i 1-10 -64) 1 0 0)	9 6 1 6 0	19 63	SAME 1-50 - 29 ! 1-80 - 40]	17 63	
1310	8865 1 1 1 1 RC 8865 1 1 F 1 RV 8865 1 2 F F RH	2: :49 2: :50 2: 5:	32 29 9	(-80 40) (-70,-69) (-10,-74)	27 23 4	2 7 4	SAME [40 -80] [40 -80]	2 9	
1312	866512FFRD 8665 2FFRV H84 5521F1CM1	2: (52 2: (53 2: 54	5 8 6 1 2 8 5	80 -40 1 70 -69 1 -70 -69	5 4 5 9 2 8 0	5.5	70 -69; Same Same	5 8	
13 12	#84 \$521P(CL) 4E5(STOR #ESISTOR	2 55 7: 56 2: 57	3c 2 22 19	1 - 70 69 1 1 C 69 1 1 20 57 1	29 & 2	2	SAME 1-60, 761 1-30, 781	. 14	
1318	# E S S * D P # E S S * D R # * 8 P] M Y (D .	2 · 58 2 · · 59 7 · · 60	1 1 1 3 1 8	i 0 01 1 20 57! 1 0 01	0	2 2 5	1-10 741 1 30, 491 1 70 -691	- 1 1 7 - 8	
1321 1322 1323	897CCZZP 892CCZTS 892P4ZZP	2 A · 1 2 A · 2 2 · A · 3	14 · 326 29	1 70 1 1 80 401 1 10 741	132 333 9	34	SAME SAME 1 70 - 11	7	
1324	#92P411S #97P#11P #97P#11S	2 · A · · · 4 2 · A · · · 5 2 · A · · · 6	168 84 23	1-80 401 1 0, 593 1 40,-801	164 12 - 1	9 7 3 1	SAME (80, -40) (70 -1)	66 19	
1327 1378 1329	892COMIP 892COMIS 892P4MIP	2 · A · · · 7 2 · A · · · · · · · · · · · · · · · · ·	25 16 37	1 50 -791 1 40 -401 1 10 741	· 5 · 2 1 9	1 & 1 5 2 5	1 50 303 1-60, 763 1 50 303	13 -12 16	
1331	89294MZS 89298MZP 89298MZS	2 - A - 10 2 - A - 11 2 - A - 12	57 98 102	[40 -80] [-50, 79] [-50, 79]	· 20 74 45	2 6 4 1 5 4	[-80 40] [-70 69] [-70, 69]	- 10 70 \$2	
1233	892COMFP 892COMFS 892P8MFP	2 - A - 1 3 2 - A - 1 4 2 - A - 1 5	27 132 92	1 - 20 , -57 1 - 80 , 40 ! 1 - 70 65 i	135 48	15 90	1-70, 69) SAME 1-80 401	· 24	
1236	872P8MF5 B92CGF1P B92COF1S	2 · A · 16 2 · A · 17 2 · A · 18	117 10 70	[-80, 40] [-0, 0] [-70, -1]	108	ינ	SAME (40,-80) SAME	- 172	
1339 1340 1341	892P6F1P 892P6F1S 89254ZZP	2 · A · 19 2 · A · 20 YES 2 · A · 2 ·	50 37 32	[-70, 49] [-70, 1] [-70,-69]	\$6 32 31	58 36 36	1-80 401 1-80, 401 1-40-801	46 37	
1342 1343 1344	89284225 8928822P 89258225	2-A-22 2-A-23 2-A-24 YES	68 55	1 50 79) [80 40] [0 0]	155 85 0	92	(-80 40) SAME (-80, 40)	135	
1345 1346 1347	89254MIP 89254MIS 89258MIP	2 · A · 25 2 · A · 26 2 · A · 27	80 92 34	(0, 0) (50, -79) (-20, -57)	0 66 33	1 2 7 4 4 3	1 50 -791 1 70 -69; 1-60;-161	- 14 86 24	
1348 1349 1350	##25 8MZS ##28 2MFP ##28 2MFS	2 · A · 24 2 · A · 24 2 · A · 30	40 21 25	(-40 -40) [60 -76] [-50 -29]	32 t 15	\$0 1 34	1 - 80 - 40] 1 - 40 - 80]	7 17 16	

TABLE B.6 (Continued)

				WATIMUM MEASURED STRAIN		P MAXIMUM PREDICTED STRAL		STRAIN	
CASE Number	CACE NAME P	GAGE AS OSITION	SUMED Cal	MEASURED MAXIMUM		PREDICTED STRAIN	PREDICTED Maximum	P MOMENT (VERT, LAT)	MEASURED STRAIN
1351 1352 1353	89256F1S	2 - A - 3 1 2 - A - 3 2 2 - A - 3 3		5 1 5 3 5 1	[-60 -16] [-60 - 76] [-70 - 1]	4 1 3 7 4 1	5.2 4.3 6.0	(-80, 80) (-80, 40) (-70, 69)	47 51 25
1354 1355 1356		2 · A · 34 2 · A · 35 2 · A · 36	1 E S	65 21 3	(-80 40) (-60, 75) (-20 57)	70 9 0	•	SAME [-70, 69] 70, 69]	19
1357 :358 1359		2 - A - 37 2 - A - 38 2 - A - 39		79 73 32	-80 40 -80 40 -60 76	77 79 12	14	SAME SAME 1-30, 791	30
1360	892P11F1RD 892P11F1RH 892P11 9FFRV	2 A - 40 2 - A - 41 2 - A - 42	r E S	6 2 6 7	[0 0] [-80, 40] [10, 64]	0 55 18	19	1 10 64; SAME (30, 49)	· 2 7
1363	892P11 9FFRE 892P11 9FFRE 892P11 9FFRH 892S7119H	2-A-43 2-A-44 2-A-45		25 37 63	(70, -1) (60 16) (-80 40)	34 16 53	28	SAME 1-10, 741 SAME	2 1
1366	8925711RC 8925711RV 892511F1RH	2 - A - 4 6 2 - A - 4 7 2 - A - 4 8		5 3 3 0 7 '	(-70 69) (-50 -29) (-80 40)	4 6 2 5 4 4	2 8 4 8	SAME 1 - 70 11 1 - 70 11	2 6 6 7
1369	892511F1RD 892511F1RV 892511 9FFRH	2 - 4 - 4 9 2 - 4 - 5 C 2 - 4 - 5 1		1 1 2 4 4 2	1 60 -761 1 0 0) 1 70 -11	- 7 0 1 1	10 50	(-40, 80) (-80, 40) (-50, 79)	32
: 372 : 373 : 374	892511 9FFRD 892511 9FFRV F91511 9P(88)	2 - 4 - 5 2 2 - 4 - 5 3 2 - 4 - 5 4		56 30 161	1 70 -69] (60 -76] (70 -69)	46 30 168	32	SAME (70 : 691 SAME	28
1375	MET SPIOS(PST; RESISTOR RESISTOR	2 - A - 5 5 2 - A - 5 6 2 - A - 5 7	+ E S	170 48 0	[-70 1] [0 0]	† 7 6 O	9 191	SAME [70, -69] [-80, 40]	7 0
1378	RESISTOR RESISTOR M79 SCOID!	2 - A - 5 8 2 - A - 5 9 2 - A - 6 C	• £ S	3 1 0 1 7	(20 -77) (0 0) (-20, 77)	. 3	2 \$ 4	[70	· 16
1381	M93 \$P8W M93 6P6 \$P M93 £P9W	2-8-7 2-8-2 2-8-3		2 1 9 2 1 5 2 0 7	(-80 40) (-80 40) (-70 1)	2 1 3 2 1 2 2 0 7		SAME SAME	
1384 1385 1386	M93 6P9 5P M93 6P10W M93 6P11W	2 · 8 · 4 2 · 8 · 5 2 · 8 · 6		158 219 182	(-80, 40) (-80, 40) (-70, 1)	159 208 180	211	SAMÉ (-70_ 11 SAMÉ	2 1 7
1387 1388 1389	M92 8P8W M92 8P8 5RH M92 8PE 5RD	2 - 8 · 7 2 - 8 · 8 2 · 8 · 9		74 122 112	(-50 -29 (7C -11 (50 -79)	69 121 109	70	[-40	72
1390 1391	M92 8P8 5RL M92 8P94 M92 8P9 5P	2 - 8 - 1 C 2 - 8 - 1 C 2 - 8 - 1 2		294 258 132	(-80 40) (-80 40) (-80 40)	288 255 184		S A ME S A ME S A ME	
1393	M92 8P10W M92 8P11W M92 8P12W	2 - B - 13 2 - B - 14 2 - 8 - 15		219 145 164	[- 70	213 139 161		SAME Same Same	
1396	M97 2P8W H85 9F17P [P] M92 2P8 5P	2 - 8 - 1 6 2 - 8 - 1 7 2 - 8 - 1 8		79 111 210	\$ 0 -691 { 40 -801 { 70 -691	69 107 194		SAME SAME SAME	
1399	89707MM5121 M92 3095 M92 3095	2 - 8 - 19 2 - 8 - 20 2 - 8 - 21		1 6 1 206 5 3	{-80 40} {-70, 1} [0 69}	139 224 34	41	SAME SAME (50, 30)	33
1402	M92 300 280 M92 309 280 M92 309 50	2 8 · 22 2 · 8 · 23 1 6 · 24	- ë S	131 283 365	[70 -69] [-80 40] [-80 40]	123 286 370		5 AME 5 AME \$ AME	
1405	M92 3P105 M92 3P125 M92 3P125	2 · 8 · 25 2 · 8 · 26 2 · 8 · 27		217 155 183	(-70 1) (-70 1) (-70 1)	208 152 182		SAME SAME SAME	
1408	M91 8P85 M91 6P8 2P M81 6P8 5F	2 · 8 · 2 8 2 · 8 · 2 9 2 · 8 · 3 0		295 165 183	(-80 40) (-70 1)	313 158 190		S AME S AME S AME	
1411 1412 1413	M91 6P9 5P	2 · 8 · 3 t 2 · 8 · 32 2 · 8 · 33		168 165 166	[· 70 1] [· 70 1] [· 70 1]	142 157 150		S AME S AME S AME	
1414 1415 1416	M91 6P9 7RD	2 · 8 · 34 2 · 8 · 35 2 · 8 · 36	YES	639 44 3	1 0, 691 1 0, 691 1 0, 691	- 5.6 3.6 0	378	[80, -40] [50, 30] [60, -40]	25 1 40 - 1
1417 1418 1419	M91 6P11A M91 6P12W	2 · B · 3 7 2 · B · 3 8 2 · B · 3 9		215 188 554	[-70. 1] [-70 1] [-80 -40]	214 187 567		SAME SAME SAME	
1420	H86 'P19P[HSL]	2 - 8 - 4 0 2 - 8 - 4 1 2 - 8 - 4 2	v & S	0 47 363	{ 0, 0} { 30, 791 { 70 -69}	0 15 379	16	[80,-40] [50,-79] SAME	0 3 1
1424 1424	BEAPS SMFRYIB	2-8-43 11 2-8-44 1) 2-8-45		323 28 159	[70, 69] {-10 -64} [-80, 40]	330 19 160	33	SAME (-70, 1) Same	26

TABLE B.6 (Continued)

				& MAXIMUM MEASURED STRAIN		@ MAXIMUM PREDICTED STRA		STRAIN	
GAGE NUMBER	GAGE Name	G4GE Position	ASSUMED CAL	MÉASURED Maximum	@ MOMENT (VERT,LAT)	PREDICTED STRAIN	PREDICTED Maximum	P MOMENT (VERT, LAT)	MEASURÉD Stráin
1426 1427 1428	864P8 SMFRH(88) M80595(5U) M80595(5L)	2 · 8 · 4 6 2 · 8 · 4 7 2 · 8 · 4 8		9 8 1 2 7 9 7	[-80 40] [-60 76] [-70 69]	100 125 95	1 2 6 9 6	SAME (-70 69) (-80, 40)	125
1429 1430 1431	H79 5518P(FC) H7952OP(CU) RESISTOR	2 - 8 - 4 9 2 - 8 - 5 0 2 - 8 - 5 1		7 1 263 32	[70, -69] [-70, 69] [0, 0]	68 262 0	267 3	SAME [-60 76] [0.69]	263 26
1432 1433 1434	RESISTOR RESISTOR RESISTOR	2 · 8 · 5 2 2 · 8 · 5 3 2 · 8 · 5 4	Y E S Y E S	0 0	1 0 01	0	2 1 8 1 7	[-80 40] [-80 40] [-80,-40]	0 0 0
1435 1436 1437	RESISTOR RESISTOR RESISTOR	2 - 8 - 5 5 2 - 8 - 5 6 2 - 8 - 5 7		3 8 3 8 2 3	1 0 01	0	3 3 3	(23 57) (-30, 79) (10 64)	2 8 - 1 5 - 1 1
1438	RESISTOR RESISTOR H89P19(D)	2 - 8 - 5 8 2 - 8 - 5 9 2 - 8 - 6 0	YES	* C 18	[0, 0] [0, 0] [0, 0]	0	3 1 1 2	[-40 80] 1 -80 40] 1 70 -69]	- 8 - 8
1447	28700W 28900W 29100W	1 2		1 4 4 1 5 2 4 6	[-80, 40] [-80, 40] [-80, 40]	161 152 43		SAME SAME SAME	
1444	W91 95MZO 1RL W91 95MZO 1RD W91 95MZO 1RV	1 4	∀ E S	8 0 S 7 B	[-50 79] [-80 40] [-50,-79]	3 1 827 69	33 75	(70 - 69) SAME (70 - 69)	3 9 5 7
1447	M8700W M8759 1P M87512	1 7		251 271 235	(-80, 40) (-80, 40) (-70, 69)	256 254 234	255	SAME {-70, 69} Same	263
1450 1451 1452	M&9COW M&9S9.1P M&9S1Z	1 10	YES	2 4 5 c	0, 01 (-80, 40)	243	245	SAME (-70 69) SAME	245
1453 1454 1455	M89P9 1P M89P12 M91COW	1 13	YES	173 0 299	(-60,-16) (-0,-0) [-80,-40]	153 0 149	158	(- 70 , 1) SAME SAME	171
1456 1457 1458	M9159 1P M91512 M93COW	1 16	Y E 5	254 273 c	[-80, 40] [-70, 69] [-0, 0]	236 271 0		SAME SAME SAME	
1459 1460 1461	M93512 M93P12 M97COW	1 19	+ E S	22 ' G 122	[-70, 69] [-0, 0] [-80, 40]	201		S A ME S A ME S A ME	
1462	M97512 M97P12 M99COW	122		73 53 117	[-50, 76] [-50, -29] [-80, 40]	73 48 123	4.8	SAME (- 60 , - 16) SAME	5 1
1465 1466 1467	M99512 M10:00 M10:512	1 - · 25 1 - · 26 1 - · 27		6 1 1 0 6 2 0 4	[-70, 69] [-80, 40] [-80, 40]	63 99 107	108	SAME SAME 1-70 691	104
1468 1469 1470	M101P12 M103C0W M103S11	1 28	YES	78 115	[0, 0} {-80, 40} (-70, 69)	. 2 . 0 6	3 107	SAME : 40 -80; (-80, 40)	· 38
1472	M10500W M10551 M105P11	1 31	YES	1 1 3 1 3 6 0	(-80, 40) (-80, 40) (-0, 0)	131		S AME S AME S AME	
1474 1475 1476	M107511 M10760W F8960NA	1 34		90 167 7	(-80, 40) (-80, 40) (-30, 49)	8 8 7 6 6 2	4	SAME SAME (-70, 1)	3
1477	189COP F93CONA 193COP	1 37	∀ € S	143 49 c	[80,-40] [80,-40] [0, 0]	148 52 0		SAME SAME SAME	
1480	F97CONA 197COP F101CONA	1 40		54 124 146	{ 80,-40} { 80,-40} { 80,-40}	52 122 158		SAME SAME SAME	
1483 1484 1485	1101CDP F105CONA 1105CDP	1 43		55 143 57	[50, 30] { 70, -69} [-80, 40]	16 137 53	149	{ 80,-40} { 80,-40} SAME	37 141
1486	ASM279C120 ASM279C112(RES) ASM287C315	148		551 399 1654	[-80, 40] [-80, 40] [-80, 40]	553 402 1438		SAME SAME SAME	
1489	A5M187C308 A5M187C300 A5M187C293	149 150 151		1578 1399 1208	[-80, 40] [-80, 40] [-80, 40]	1577 1401 1205		SAME SAME SAME	
1493 1494	ASMZETRVMF ASMZETROMF ASMZETRUMF	1 · · 52 1 · · 53 1 · · 54		32' 173 127	(-80, 40) [60, 16] [80,-40]	315 157 135		SAME SAME SAME	
1495 1496 1497	89257MIP(BM) 89257MIS(BM) RES(STOR	1 55 1 56 1 57		5 1 9 7 5	(20 -77) (-70, 1) (50, 30)	130	37 144 2	[-30,-49] [-80,-40] [-80,-40]	47 44 3
1498 1499 1500	RESISTOR RESISTOR H92P1(D)	1 58 1 59 1 60	YES	7 0 14	[30, 79] [0, 0] [40, 80]	4 0 - 1	7 2	[-80, 40] SAME [-70,-69]	. a

TABLE B.6 (Continued)

			& MAXIMUM MEASURED STRAIN			P MAXIMUM PREDICTED STRAIN		
GAGE	GAGE	GAGE ASSUMED	MEASURED	IMUM MEASURED S @ MOMENT [VERT.LAT]	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT	MEASURED STPAIN
1501	NAME B98COMMS	POSITION CAL	MAX 1 MUM 407 174	[-80, 40] [-80,-40]	394 192		\$AME \$AME [8040]	16
1502	B98CQMMP B98P4MMP B98P4MMS	1-A- 2 1-A- 3 1-A- 4 YES	27	(60, 16) (0, 0) (-60, 60)	30 0 123	35	SAME SAME	
1505	8 9 8 P 9 MMP 8 9 8 P 9 MMS	1 - A - 5 1 - A - 6	129	(-40,-40)	74	119	(-80, 40)	5.8
1507 1508 1509	BBSCOMFP BBSCOMFS BBSP5MFP	1 - A - 7 1 - A - 8 1 - A - 9	48 51 39	[-10, 74] [-10, 74] [-50,-79]	1 4 9 4	39 59 22	(70 - 1) (80 - 40) (70 - 1)	- 2 15
1510 1511 1512	898PSMFS 898P6F1P 898C0F1S	1 - A - 10 1 - A - 11 1 - A - 12 YES	68 29 0	[20, 57] [-10, 74] [0, 0]	47 23 0	34	[70, 1] [-70, 69] SAME	5
1513 1514 1515	898COF LP 898P6F1S 898S4MMP	1-A-13 1-A-14 1-A-15	25 43 49	[0.69] [069] [70,-69]	5 ? 5 5	5 2 2 6 1	[10, 64] [-80, 40] [80, 40]	6 45
1516	89854MMS 89898MM 89858MMS	1 - A - 16 1 - A - 17 1 - A - 18	1 1 1 3 6 7 1	(-80, 60) (-20, 57) (-20, -57)	120 29 40	5 6 4 1	SAME [70 -11 [-10]-64]	3 2 6 3
1518	89853MFP 89854MFS	1 - A - 19 1 - A - 20 1 - A - 21	26 37 22	(-40, 80) (-0, 69) (-20, 77)	5 5 5	E 24 11	(-80 -40; (80, -40; (-80, 40)	1 6 3 · 1
1521 1522 1523	89856F1P 89856F1S 898P 2HHRH	1 - A - 2 7 1 - A - 2 3 1 - A - 2 6	33 93 82	(0, 69) [-80 40] [-80 -40]	14 109 44	26	(- 7C , 65) Same Same	7
1524 1525 :526	898P ZNHRD 898P ZNHRV 898P7 IRD	1 - A - 25 1 - A - 26	18 76	{ 20, 57} [-30, 79] [-70, 1]	2 5 1 1 1 9	17 81 133	[-70, 69] [-70, 69] [-80, 40]	112 59
:527 :528 :529	898P711RV 898P711RH 898P11 5F1RV	1 - A - 27 1 - A - 28 1 - A - 29	1 1 9 7 8	[-80, 40] [-60, -76] [-70, -40]	121 53 217	6 6	SAME { 80,-40} SAME	53
1530 1531 1532	898911 5F1RO 898911 5F1RM 898911 9FFRV	1 - A - 3 0 1 - A - 3 1 1 - A - 3 2	220 174 54	[-80, 40] [-20, 77] [-80, -40]	183 44 196	47	SAME -50, 79 SAME	42
1533 1534 1535	898P\1 9FFRD 898P\1 9FFRH 89857JJRH	1 - A - 33 1 - A - 34 1 - A - 35	209 37 92	1 40, 40)	33 40 59	38 76 66	(C. 69) (-80, 40) (-70, 69)	27 70 64
1536	8585711RD 8985711RV 898511 5F1RH	1 - A - 36 1 - A - 37 1 - A - 38	74 36 127	(-50, 79) (-10,-64) (-80, 40)	23 108 92	24 116 115	(-30 -49) (-70 1) (80,-40)	32 119 91
1538 1539 1540	898511 SFIRO 898511 SFIRO 898511 SFIRO	1-A-39 1-A-40 YES 1-A-41	167 0 75	(0, -69) (0, 0) (30, -79)	o 8.8	155 92	(-80, 40) (-50,-79) SAME	c 69
1541 1542 1543	8985: 9FFRD 8985: 9FFRD	1 - A - 42 1 - A - 43	196	(80,-40)	197 29 143	34 173	(60 . 76) (70 69)	25 111
1544	898510MFP	1 - A - 4.4 1 - A - 4.5	132 89 630	[30, -79] (-10, 74] [-70, 69]	47 647	55	[30 , 49] Same	39
1545 1547 1548		1-4-48	779 25	[-70, 69] [-80, 40] [-0,-69]	780 14 326	20	SAME (- 60 , - 16 l SAME	13
1549 1550 1551	ASMM 77CASF	1 - A - 49 1 - A - 50 1 - A - 51	330 307 513	(-80, 40)	295 510 425		S AME S AME S AME	
1552 1553 1554	ASMM 7025A	1 - A - 5 2 1 - A - 5 3 1 - A - 5 4	410 431 210	[-70, 69] [-70, 69] [-60, -16]	429 55	••	SAME (- 70 , 1) SAME	109
·555 1556 1551	ASMMT7C5SA	1 - A - 55 1 - A - 56 5 1 - A - 57	695 435 784	(-70, 69) (-60, 76) (-80, 40)	700 436 788	436	[-70 69] Same Same	433
1558	EASE977PMZA	5 1-A-58 0 1-A-59 YES 1-A-60	540 0 307	(-80 40) (0, 0) (-70, 69)	539 0 300		SAME Same	
156 156 156	1 8108P9MFP 2 8108C0MMS	1-8- 1 1-8- 2 1-8- 3	2 2 2 5 5 4	(-70, 69) (80, -40) (-70 69)	22 17 48	51	SAME SAME [-80, 40]	4 6
156 156	4 8108P4MMS 5 8108P8MMP	1-8- 4 YES 1-8- 5 1-8- 6	0 31 42	(0, 0) [-80, 40] [0, 0]	33	34	SAME SAME [-80, 40]	17
: 5 E 1 5 G	7 RESISTOR 8 BIOSCOMFS	1 - 8 - 7 1 - 6 - 6 1 - 9 - 9	49 35 53	(10, 54) (-60, 76) (-80, 40)	30	28 35 52	{-40, 80} {-80, 40} {-7c, 69}	31
156 157 157	O BIOSPAMFS I RESISTOR	1-8-10 1-8-11 1-8-12 YES	50 38 0	(80,-40) (0, 0) (0, 0	۰	3	SAME (-3c, 79) Same	- 14
157 157 157 157	3 8108P6F1P	1 - 8 - 13 1 - 9 - 14 1 - 8 - 15	29 8 54	{-60, 76; (-60, 76; (-80, 40)	27 6 54	28	[-70, 693 Same Same	21

TABLE B.6 (Continued)

			(P M∆X I	MUM MEASURED	STRAIN	P MAXIMUM PREDICTED STRAIN		
GAGE NUMBER	GAGE	GAGE ASSUMED POSITION CAL	MEASURED Maximum	P MOMENT (VERT, LAT)	PREDICTED STRAIN	PREDICTED MAKIMUM	& MOMENT [VERT_LAT]	MEASURED STRAIN
1576 1577 1578	8 10854MMS 8 10858MMP 8 10858MMS	1 · 8 · 1 6 1 · 8 · 1 7 1 · 8 · 1 8	5 2 3 4 2 1	[70, 69} (-80, 40] [-80, 40]	4 : 32 22	44	1-80 401 Same Same	\$ C
1579 1580 1581	810854MFP 810854MF5 810856F1P	1 - B - 19 1 - B - 2C 1 B - 21	6 2 6 4 1 9	[-80, 40] [-80, -40] [-70, 1]	4.6 6.7 2.1	23	\$AME \$AME [-80 40]	1 9
1582 1583 1584	810856F15 8108P 2NHRH 8108P 2HHRE	1 - B - 2 2 1 - B - 2 3 1 - B - 2 4	13 424 500	[0 69 1 (-80 46 1 (-80 46)	8 8 1 5 4 7 1	۱ 6	SAME SAME	•
1585 1586 1587	8108P 2HHRV 8108P711RV 8108P711RD	1 - 6 - 2 S YES 1 - 8 - 7 6 1 - 8 - 2 °	0 4 1 4 3	0 C. 80.43 50.45	3.3 5.1 C		5 AME 5 AME 5 AME	
1588 1589 1590	BIOSPIJIRH BIOSPIG SFIRY BIOSPIG SFIRD	1 · B · 2 8 1 · B · 2 9 1 · B · 3 0	2 4 2 1 2 4 2 6 8	1-80 401 1-80 -401 1-80 -401	24 \ 126 282		SAME SAME	
1591 1592 1593	BIOSPIC SFIRM BIOSPIC SFERV BIOSPIC SFERD	1 · B · 3 · 1 · B · 3 2 1 · B · 3 3	65 32 206	[-70] 1; 10 64; 180 -40	58 19 206	6 2 3 4	1-80 401 - 60 761 Same	3 c 6 5
1594 1595 1596	8108P10 9FFRH 8108S711RH 8108S711RD	1 - 8 - 3 4 1 - 8 - 3 5 1 - 8 - 3 6	27 :96 375	; 70 -69; (-80, 401 (-30, 49)	72 19 i 19	23	SAME SAME 1 60 161	361
1597 1598 1599	81085711RV 8108510 5FIRM 8108510 5FIRD	1 - 8 - 3 7 1 - 8 - 3 8 1 - 8 - 3 9	38 15 1 14 C	[70 -1] [-80 40] [70 1]	37 159 140	43	1 80 -401 Same Same	38
1600 1601 1602	8103510 5#1RV 8:08510 9#### 81085:0 9###D	1 - B - 4 0 1 - B - 4 1 1 - B - 4 2	279 63 184	(70, -69) (30, 79 ; (60, -76 ;	224 67 181	245	80,-40) 54me 54me	162
1603 1604 1605	B108\$10 9FFRY B108P9MFS APMM77C1PA	1 - 8 - 43 1 - 8 - 44 (- 8 - 45	100 60 366	[50 -75; (-80, 40; (-40, -40)	101 59 358	359	SAME SAME [+30]-49]	362
1606 1607 1608	&PMM7752PA &PMM7713PA &PMM7764PA	1 - 8 - 4 6 1 - 8 - 4 7 1 - 8 - 4 8	427 380 781	[-50, -29] [-50 -29] [-80, 40]	422 381 770	422	(- 40 - 40) Same Same	425
1609	ДРММ77С5РД ДРММ77РЗРДО 5 ДРММ77РЗРД1 5	1 - B - 49 1 - 3 - 5 0 - B - 5 1	221 261 232	(-60,-16) (-60,-16) (-60,-16)	204 255 222		SAME SAME SAME	
#612 1613 1614	APMM17P3PA3 0 APMM17C:PF APM177TMM4A	1 - 8 - 5 2 1 - 8 - 5 3 1 - 8 - 5 4	218 414 441	[-70, 1] [-80, 40] [-80, 40]	218 413 437		SAME SAME SAME	
1615	ДРММ"703PF ДРММ"7754PF ДРММ"7705PF	1 - B - 5 5 1 - B - 5 6 c - B - 5 7	663 263 814	(-80, 40) (-60, -16) (-80, 40)	67' 263 823		SAME SAME SAME	
1618	A5M2790135 A5M2790127 H:08"FF!D!	1 · 8 · 5 8 1 · 8 · 5 9 YES 1 · 8 · 6 9	714	[-80, 40] [-0, 0] [-2c, 77]	714 0	1	SAME SAME (+50 79)	8
1621 1622 1623	M95P10W M95F7W M95P7W	0 · · · · · · 2 0 · · · · 3	110 201 143	(-70, 11 (-80, 40) (-80, 40)	104 192 139		SAME SAME SAME	
1624 1625 1626	M95C0W M9532W M9534W	0 - 4 YES 0 - 5 0 - 6	0 154 144	(0, 0) (-80, 40) (-80, 40)	0 148 135		SAME SAME SAME	
1627 1628 1629	M9556W M9558W M95510W	0 · · · 7 0 · · · 8 0 · · · 9	193 235 30	(-70, 69) (-80, 40) (-20, 77)	173 227 19	184	[80, 40} SAME [10, 74}	189
1630 1631 1632	M95510 5P M95533W M95511 5P	0 - 10 0 - 11 0 - 12	5 & 4 5 5 4	[60, 75] [0, 69] [70, 69]	47 24 66	33	1-70, 691 [-50, 791 SAME	54 39
1633 1634 1635	M95512W 892P9 5P(88) H9551W	0 - 13 0 - 14 0 - 15	56 *) 116	(-40, 80) (-0, 69) (-80, -40)	43 5 132	4 6 1 2	[-60, 76] { 70 -1} SAME	5 2 4
1636 1637 1638	Н9554W Н95Р4W Н9555W	016 017 018	106 113 90	[80, -40] [80, -40] [80, -40]	121 125 101		S AME S AME S AME	
1639 1640 1641	Н9557W Н95Р7W Н9559W	0 19 0 20 0 21	94 114 67	[80,-40] [80,-40] [70, -1]	101 123 72		SAME SAME SAME	
1642 .643 1644	H955 TW H95P TW H955 ZW	O 22 YES O 23 O 24	0 25 5 1	(0, 0) (70, -69) (70, -1)	0 8 9 5 9		S D ME S D ME S D ME	
1645 1646 1647	H95513W H95P13W H95515W	0 25 0 26 YES 0 27	50 0 55	(70, -1) (0, 0) (-30, 79)	5.4 0 4.2	5.4	1 60, 161 Same Same	41
1648 1649 1650	H95516 5P H95816 5P H95517W	0 - 28 0 - 29 0 - 30	93 45 89	[-60, 76] [-10,-64] [-70, 69]	80 43 81	• •	(-70, 69) Same Same	9 1

TABLE B.6 (Continued)

						P MAXIMUM PREDICTED STRAIN		
				MUM MEASURED	STRAIN PREDICTED	P MAX:	& MOMENT	MEASURED
GAGE Number	GAGE NAME	GAGE ASSUMED POSITION CAL	MEASURED Max I Mum	IVERT, LATI	STRAIN 122	MAXIMUM	(VERT, LAT)	STRA!N
1651 1652 1653	H95517W H95519W M80595[BMSU]	0 · · 31 0 · · · 32 0 · · · 33	126 86 158	[-70, 69] [-70, 1] [-80, 40]	87 138		S AME S AME	
1654	8925MM7(8MSL) H49CDP	034 035 YES 036 YES	417	[80, 49] [0, 0] { 0, 0;	438		\$	
1656	H61COP	0 · 37 YES	0 468	1 0 01	460		S A M E S A M E S A M E	
1658 1659 1660	М78СОР Н77СОР Н79СОР	0 -39 YES	404	1 0, 0;	407 368		S A M E S A M E	
1661	H83CDP	081 062 YES	364	1 80, -401 1 0, 01	325		SAME	
1663 1664 1665	H85CDP H87CDP H91CDP	043 044 045	250	(80,-40)	268	187	SAME SAME	253
1666	Н93СОР Н95СОР Н97СОР	0 - 46 0 - 47 0 - 48 YES	259 347 0	80 -401 0 01	167 504 C	10,	SAME SAME	
1668 1669 1670	H99CDP	0 - 49 0 - 50 0 - 51 YES	3? 3#	(80, -40) (0, 69) (0, 0)	39	5 1	SAME 80 -401 SAME	29
1672	H103C0P H105C0P H107C0P	0 52 0 · - 53	<i>35</i> 21	(80, -40) (-80, 40)	43 20 0		SAME SAME SAME	
1673	HBSCOP HBSSFF(C)	0 54 YES	0 172 14	(0 0) (-40 80)	162	1.2	5 AME 1 70 - 69 1	4 29
1676 1677	8 8 0 P M M R D 8 8 0 P M M R D	0 56 0 57	55 225	(0, 0) (0, 69) (-80, 40)	40 228	45	- 40, 401 Same Same	27
1678 1679 1680	880PMMRV 880P19@18(FC) H96519(D)	• ••	176	(-40,-40)	167	3	1-70. 11 SAME	o
1681 1642 1643	892P7MMS 892P7MMP 89258MMS	0-A- 1 0-A- 2 0-A- 3	273 96 263	[-60, 40] [-60, 76] [-70, 1]	103	109	[-70, 69] [-80, 40]	9 Z 2 6 †
1684 1685 1686	89258MMP 886CDMMP 886CDMMS	0-A- 4 YES 0-A- 5 0-A- 6	0 131 132	(-80, 40) (-80, -40)	0 128 134		S A M E S A M E	
1687	8 & 6 P 7 MMP 8 & 6 P 7 MMS	0-4- 7 0-4- 8 0-4- 9	102 72 56	[*80, 40] { 80, 40] (*80, 40]	101 77 56	50	SAME SAME (-70 69)	5 4
1689 1690 1691		0-A-10 0-A-11	21 57	(0, 69) (-40 -40) (-20, -57)	9 5 4 6 \$	10 57 56	(30 491 [-60]-161 [-30 -49]	5 5 3 6 7
1692	#80P17(LF)	0 - A - 12 0 - A - 13 0 - A - 14	67 25 23	(0, 69) (0, 69) (0, 69)	21	2 1 1 4 2 5	(-10 741 1 40, 401 1 40, 401	23 17 22
1694 1695	BESPITHMED	0 · A · 16	34 28	1-60. 761	23 17 21	18 23	[40, 80] [30, 49]	26 26 35
1697 1698	886P11MP(HSL 886P11MP(HSL	. 1 O-A-18	94 39	(0, 69) (-60, 76) (-70, 1)	19	29	5 AME 5 AME	3,5
1699 1700 :70	680PITE P 86	0-4-19 3) 0-4-20 (F) 0-4-21	60 245	(80.140) (50,176)	64 248		SAME	
1702	2 886P8 5P 88	0-A-22 YES 0-A-23 0-A-24	0 12 54	(0. 0) (0. 0) (-70. 69)		•	(*70, 11 SAME (*40,*401	10
170	6 HB5 9519P(C) 0.4.36 165	14 0 40	(0, -69) (0, 0) (0, 69)	1 13	12	SAME (-70 69)	34
170 170 170	8 88059 5MFRD	O-A-28 O-A-29	36 40 50	(60 . 76 (80 . 40 (60 . 16	1 46	30	(-70, 69) Same Same	32
171: 171 171	0 ##25MM7(8M5 1 M80595(5L)	0-A-31 YES	0 162 336	(0, 0 (-50, 76 (50, -40) 0] 158		SAME SAME SAME	
171	3 HES 956 SP(0-A-34 YES 0-A-35	92	(0, 0 (0, 0 (-70, 69) 0	88 120	SAME (-80, 40) (-60, 76)	40 124
171	6 M86 (S3 SP)	7E-A-0 (12H 12-A-0 (02H 14-0 H	124 134 27	(- 70 , 1 (- 70 , - 69	1 130	2 4	SAME SC 60 SAME	
171	9 886511 9MM	D 0-A-39	117 48 534	(8040 (8040 (8040	59 1 538		S A ME S A ME	
172	11 HES (517 S) 22 HES 1517 SI	F. ASU) 0 - A - 4 1 F [NS. 30 - A - 4 2	634	(+80, 40 (-80,-40	i 628 o) 314		S AME S AME S AME	
17; 17; 17;	24 H&6 156 5P	(MSU) 0-A-43 (MSL) 0-A-44 CU) 0-A-45	250 216	(-70, 69 (-70, 69	244		SAME	

TABLE B.6 (Continued)

				EXAM 9	P MAXIMUM MEASURED STRAIN		P MAXI	STRAIN	
GAGE NUMBER	GAGE	GAGE AS: Position		MEASURED MAXIMUM	@ MOMENT [VERT, LAT)	PREDICTED STRAIN	PREDICTED MAXIMUM	P MOMENT [VERT,LAT]	MEASURED STRAIN
1726 1727 1728	H88 5519P(CL) M86 1565(U) M86 1565(L)	0-A-46 0-A-47 0-A-48		167 224 243	(-70, 69) (-80, 40) (-80, 40)	151 215 269		SAME SAME SAME	
1729	H86 1P8 5P[HSU] H86 1P8 5P[HSL] 89257MZS(BM)			230 159 89	{ 80 - 40 } { - 60 - 16 } (- 70 - 1]	237 151 103	152	SAME (-70, 1) (-80, 40)	159 66
1732 1733 1734	89257M2P(8M) 88653MMP(8M) 88653MMS(8M)	O-A-52 O-A-53 O-A-54		18 59 105	(0691 (-80 401 (-80 -401	8 5 9 7 8	13	(60 -76) Same Same	12
1735 1736 1737	88653MZP[8M] (M8)25ME2888 (M8)26MP2088	O-A-55 O-A-56 O-A-57		8 63 33	(-50, 79) 1-80, 40] 1-70, 1)	6 2 2 7	2	[0, 69] Same Same	- 10
1738 1739 1740	88059MMP(8M) 88059MZS(8M) W89P2MZ(D)	0 - 4 - 5 8 0 - 4 - 5 9 0 - 4 - 6 0	YES	104 73 44	(50, 30) (70, -69) (70, -1)	90 56 41	107 61 48	[70, -1] { 80, -40} [80, -40]	104 53 31
1741	H78\$20P(CJ) H79\$20P(CL) B80\$!!MMP(C)	0-8- t 0-8- 2 0-8- 3		303 298 49	(· 70 69) (· 70 69) (· 70 69)	30 1 299 37	40	5AME 5AME (-80, 40)	47
1744 1745 1746	M8051:P[C] H79 5520P[FC] H79 5520P[AC]	0-8- 4 0-8- 5 0-8- 6	YES	0 1 1 7 6 2	[0, 0] [-7c	0 106 56		S A M E S A M E S A M E	
1747 1748 1749	H79 5520P(ACL) 864COMMP(C) 856S8 5MFRV(BB)	0-8- 7 0-8- 8 0-8- 9		5 1 3 5 2 6	(0, 0) (0, 0)	0	47 16 15	{ -40, -40} { -70, -1} 1 70, -69]	4.7 g - 1.2
1750 1751 1752	85658 SMFRD(88) 85658 SMFRH (88 85698 SMFRV(88)	10-8-11		45 31 56	[-70, 69] (50 -79) (20 -77]	4 C 1 6 4 2	4 C 1 6 4 7	80, 40; 30, 75; 50 -791	35 31 45
1753 1754 1755	856P8 SMFRD(88) 856P8 SMFRH(88) M6478S(SUA)			5.7 3.1 10.1	[0 -69] [20 -77] [30, -79]	40 19 80	43 22 110	[· 30 , -49] [· 20 , -57] [70 · 69]	4 1 2 9 5 7
1756 1757 1758	M64P8S(SLA) M64P8S(SUF) M64P8S(SLF)	0-8-15 0-8-17 0-6-18	· ES	43 33 144	[-70, 1] - 10, -74] [-80, 40]	47 19 114	20	SAME (- 10 - 64) SAME	3 1
1759 1760 1761	864P11F1P(CU) 864P11F1P(CL) H61.2S2OP(CM)	0-8-19 0-8-20 0-2-71		36 101 543	[50, 30] [80,-40] [-70, 69]	24 109 542	3,	{ 80, -40} SAME SAME	2.6
1762 1763 1764	H61 2520P(CL) M60P9 5P(C) H58.6P20P(C)	0 · 8 · 22 0 · 8 · 23 0 · 8 · 24	Y E S	255 250	{ 0, 0} [-60,-16} [-20,-57]	0 245 248	247 249	SAME (-70, 1) (-30,-49)	255 250
1765 1766 1767	H61 3P2OP(C) H58 6P2OP(C) H58 6P2OP(C)	0 · B · 27	YES	234 0 240	(-30,-49) (-30,-49)	237 0 238		SAME SAME SAME	
1768 1769 1770	M59 5P6P(C) B80S9MZP(BM) B64P8MMP(BM)	0-8-28 0-8-29 0-8-30		33 21 78	[-80, 40] [-70, -69] [-0-69]	27 21 28	2 2 3 5	SAME [80, -40] [50, -79]	19 64
1771	M7455P(C) M7355P(C) M6755P(C)	0-8-33		347 456	[-80, 40] [-80, 40] [-80, 40]	331 350 459		SAME SAME SAME	
1774 1775 1776	M67P5P(UC) M67 2P5P(UC) M69P5P(LP)	0 - 8 - 34 0 - 8 - 35 0 - 8 - 36		283 307 48	[+80, 40] [+80, 40] [-70, -1]	280 302 40	280	[-70 1} SAME [50, 30]	42
1777 1778 1779	M60P6P(C) H94S20P(FC) M77P10 IP	0-8-37 0-8-38 0-8-39		316 19 351	(- 70 , 1) (- 60 , - 16) (- 70 , 1)	314 8 349	16	SAME (20, -77) SAME	11
1780 1781 1782	H94520P(AC) H94516 SP(CU) H94516 SP(CL)	0-8-40 0-8-41 0-8-42		12 30	(70, -69) (-30, -49) (-50, -29)	44 2 23	6 24	SAME (60,-76) f 70, 1)	30
1783 1784 1785	M91P19P[C] M7958 5P 886P9[]P	0 · 8 · 43 0 · 8 · 44 0 · 8 · 45		35 280 65	[-70, 69] [-70, 69] [-80, 40]	13 265 66	70	(-50 79) SAME SAME	35
1786 1787 1788	H91P19P[AC] H91P19P[FC] H97 9P14P(LF)	0-8-46 0-8-47 0-8-48		34 31 42	[0, 69] [60, 76] [-20, 77]	24 26 21	37 26 27	[60 16) [50,-79] [30, 49]	33 29 21
1749 1790 1791	H101P20P(AC) H80P19Ø18(FC) H79 SP18P(CU)	0-8-49 0-8-50 0-8-51		63 188 152	(-80, 40) (-50,-29) (-20,-77)	63 182 152		S A ME S A ME S A ME	
1792 1793 1794	H79 SPISP[CL] M63 9PI3S[C] H79 9PISP[C]	0 - 8 - 5 2 0 - 8 - 5 3 0 - 8 - 5 4		150 265 169	[20 - 77] [-80 40] [40 - 80]	152 274 17;	152	[10, 74] SAME (50, -79)	150
1795 1796 1797	#64P12 9P(LP) #64P12 9P(SC) H65PZ2P(C)	0 · 8 · 5 5 0 · 8 · 5 6 0 · 8 · 5 7		120 50 53	[60 - 16] [80 - 40] [10 - 64]	8 1 50 3 1	84 47	(50 -29) SAME (70 -1)	114 37
1798 1799 1800	BEAR IMMP[C] BEAS IMMP[C] BIGSPIMMP[D]	0-8-59	Y & S	95 32 16	1 80 40) 1 10 74) 1 80 79)	9.4 1.9 - 2	19	SAME [20 -77] (20 -77;	30

APPENDIX C STRAIN DATA PLOTS

The following is a discussion of the plots of strain data for several specific structural sections of the model. Appropriate strain data from rigid vinyl model tests, the finite element analysis, and beam bending theory are included for comparative purposes.

There are five basic categories of strain data plots. These are:

- 1. Longitudinal distributions of longitudinal bending strain.
- 2. Transverse distributions of longitudinal bending strain.
- 3. In-plane stress concentrations and misalignment strain in the bulkheads.
- 4. Stress concentrations due to openings in the Main Deck and Ol Deck.
- 5. Stress concentrations in the superstructure hull due to openings and discontinuities.

LONGITUDINAL DISTRIBUTION OF LONGITUDINAL BENDING STRAINS

Probably the most dramatic and revealing and yet well-behaved strain-data plots are those of longitudinal distributions of longitudinal bending strains. Where applicable, the plots include finite element data and rigid vinyl model data.*

Figure C.1 shows small magnitudes of strain along the centerline of the O2 Deck. Since these gages are at the centerline (on the web of the centerline stiffener), lateral loading has little effect on the strains. Included on this plot are strains at gage locations off the centerline. A quick look shows considerably higher strains further off the centerline (outboard) and, as will be shown later, plots of transverse distributions indicate this same phenomena. These low centerline strains are probably due to the relatively short length of the O2 Deck even though it is near midships. Shear in the deckhouse sidewalls caused the strain values in the O2 Deck to increase nearer the house wall.

In general, the strains measured by the gages on the webs of the Ol Deck center-line stiffeners are well behaved and the magnitudes are predictable. Midship strains at 80% maximum BM are nominally 500µin./in. as shown in Figure C.2. However, the

^{*}Rodd, James L. et al., "Rigid Vinyl Model Development of Structural Modification for the Aluminum Ship Evaluation Model (ASEM)," reported informally as Enclosure (1) to DTNSRDC ltr 80-173-158 (17 Oct 1980).

gage at Frame 61 indicates a value about 25% higher than would be expected. At first glance, this data point might be neglected; however, upon looking at other gages in this area (as in Figure C.3) strains are indeed higher than would be expected. Strain readings from Tests 1, 3, and 4 were of similar magnitude, since lateral moments of Tests 3 and 4 have little effect on centerline gage strain readings.

The Main Deck centerline gages, which are located on the web and near the neutral axis of the centerline stiffener, indicate strains of near 300µin./in. near midships at 80% maximum BM (see Figure C.4). A slight increase in strain reading over what might be expected in the vicinity of Bulkhead 32 was noted. Also, the strains increased aft of Frame 103 rather than approach zero as would be anticipated. This may be related to a shift in the neutral axis location of the model due to the effect of longitudinal bulkheads in the aft end of the model. This is even more evident in the plot of the platform deck strains at the centerline.

The longitudinal strain distributions due to longitudinal bending stresses near the gunwales and under the deckhouse side wall are not as well behaved as might be expected. Figures C.5 through C.8 show strain data plots at the following locations: (1) at the port gunwale, (2) along the length of the port deckhouse side wall, (3) at the starboard gunwale, and (4) along the length of the starboard deckhouse side wall, respectively. The gages along the deckhouse side wall are located 1 in. outboard of the wall, and on the underside of the main deck (a longitudinal girder is located directly beneath the wall.) The gunwale gages are on a 2-in. wide, 1/4-in. thick doubler that is welded to the deck and side shell. The 2-in. length dimension of the doubler is vertical relative to the main deck.

The longitudinal distributions of longitudinal bending strain data at the platform deck centerline is shown in Figure C.9. The platform deck is near the neutral axis of the model and, subsequently, the strain readings at 80% maximum BM are nominally less than 50μ in./in. An increase in strain aft of Frame 80 is evident and is due to a shift in the neutral axis of the model. With the addition of longitudinal bulkheads, the neutral axis shifted below the platform deck level thus causing strains to increase as high as 150μ in./in.

The inner bottom strain values for the longitudinal distribution at 80% maximum BM is shown in Figure C.10. The actual strains along the length are erratic relative to a smooth curve drawn through the data. This may be due in part to lower strains for gages located above transverse bulkheads (floors). Also, the portion of the inner bottom between Frame 69 1/3 and 74 2/3 was reinforced with syntactic foam, thereby partially explaining the very low strain reading at Frame 73. Near midships the maximum strain values during the static tests were about 300 µin./in.

Probably the most well behaved data of the longitudinal distributions are at the keel centerline. The gages were placed on the exterior of the flat bar keel and protected with a waterproof coating. At 80% maximum BM, strains near Bulkhead 32 are slightly higher than expected. At midships, the strain value appears to peak slightly above $600~\mu in./in.$ (see Figure C.11).

TRANSVERSE DISTRIBUTION OF LONGITUDINAL BENDING STRAINS

Five locations along the length of the model were chosen to show transverse distributions of longitudinal bending strains (these are often called "belts" throughout this report). The belts were at Frames 21, 45, 61, 73, and 95. If the model were longitudinally sectioned into eights, Frame 21 would be about 1/8 the model length from Bulkhead 8. Frame 45 is about 3/8 the model length from Bulkhead 8; Frame 61 about 1/2 or near midships; Frame 73 about 5/8 and Frame 95 about 7/8 the model length. The sections at Frames 21 and 95 include only the main deck and hull. The section at Frame 45 includes the hull and both the 02 and 01 levels of the deckhouse. The sections at Frames 61 and 73 include the hull and 01 deck level (the 02 deck terminates at Bulkhead 56).

In general, for the instances of 80% maximum BM, the magnitude of strains for the 60° lag case and the 240° lag case increased near the edge of a deckhouse external deck. In most instances, the 60° lag condition created higher relative strains on the port side than did the 240° lag condition. Alternately, the 240° lag condition created higher relative strains on the starboard side. This was due to the relative phase shift in the vertical and lateral load components.

Belt 21

The strain distribution across the main deck noticeably dropped off near the starboard gunwale (see Figure C.12). Because of the lack of data for the port side,

a similar comparison could not be made for that side. However, upon examining the longitudinal distributions for the port and starboard gunwales, the order of strain magnitudes of gages in these two areas support this drop in strain. The strain distribution in the hull is linear except near the platform deck. The drop off in strain may be due to the V-shape of the hull at this section of the model. Since the neutral axis has probably shifted up, the stresses at the deck are less than at the keel. Also, there is a substantial decrease in the section near the gunwale. This phenomenon does not occur further aft where the model sections are more box-like.

Belt 49

The section of the model at Frame 49 includes both the 01 and 02 decks. As seen in Figure C.13, there is a noticeable drop in strain as the center of the 02 deck is approached. This is due to the short deck length and the shear in the deck-house wall. The strain distributions at the main deck and 01 deck are linear and averaged about 350 μ in./in. and 450 μ in./in. respectively. Of special interest is the strain distribution from the keel to the 02 deck. It is relatively linear from the keel to the main deck, with the lowest strain readings monitored at the platform deck level. It is obvious that the deckhouse is partially effective in picking up a portion of the load in the hull. Of questionable validity is the data point midway between the 01 deck and main deck. The drop in strain may be due to the effect of the access hatch opening immediately aft of the gage. The aftmost edge of the hatch coaming was located 21 in. forward of the gage. Also, Bulkhead 48 is located between the access hatch opening and gage.

Belt 61

The section at Frame 61 has the 01 deck as the uppermost deck, since the 02 deck terminates 50 in. forward of Frame 61 at Bulkhead 56. Both the 60° and 240° lag data at the 01 deck show similar characteristics (see Figure C.14). As the starboard or port edges of the 01 deck are approached, the strain increases significantly and strain data from gages located on the deeper girders (centerline, sixth port and starboard stiffeners outboard) were noticeably higher than for the remaining

stiffeners. The gage positioning probably resulted in the apparent discontinuities. The girders are 3 3/8-in, deep and the stiffeners are 1 3/8-in, deep with the long-tudinal gages positioned about 1/2 to 3/4 in, below the bottom surface of the 01 deck for both girders and stiffeners. The gages on the girders were a good distance from the assumed neutral axis (N.A.) and the gages on the stiffeners were probably very close to the local N.A. Secondary bending effects may have resulted in higher strains in the deeper girders. Mentioned earlier were the very high strain readings near the 01 deck edges. This order of magnitude of strain (~1500 pc at 80°) is also seen in a deckhouse side gage near the 01 deck.

Be1t 73

The transverse distributions due to longitudinal bending at Frame 73 are similar to previously discussed belt data. The 01 deck strains are higher near the edges as shown in Figure C.15. The strain reading of the gage near the top of the star-board deckhouse sidewall is similar to strain readings at the 01 deck edge; and there is a significant drop off in strain results going down the wall to the main deck. The low strain reading midway down the wall may be due to the access hatch opening being just 30 in. aft of the gage. The main deck gages show predictable strain readings, with a slight increase in strain at the starboard edge.

Belt 95

As with Frame 21, this section of the model does not contain deckhouse structure. The strain gradients at the main deck are not as well behaved as they are for other belts (see Figure C.16). However, as expected, strains at maximum BM were no more than 200 µs.

IN PLANE STRESS CONCENTRATIONS

The majority of transverse bulkheads in the hull and deckhouse superstructure were extensively strain gaged to monitor any in-plane stress concentrations and any misalignment strains in the bulkheads during static testing. A substantial amount of data was obtained for Bulkheads 8, 16, 24, 56, 64, 80, 86, 92, 98, and 108.

The instrumentation associated with Bulkheads 32, 40, and 48 was malfunctioning during the static tests; subsequently no strain data were obtained. The bulkheads are the only component of the model not scaled by one-third. The scaled thickness was doubled to prevent premature buckling.

The majority of bulkhead strain gages read only low to moderate strain values during the tests. Excluding the channels associated with Bulkheads 32, 40, and 48, only a few were open, shorted, or erratic. Bulkhead strain data are shown plotted in Figures C.17 through C.29.

BULKHEAD INSTRUMENTATION

Bulkhead instrumentation was located to basically monitor two types of structural phenomena. Gages were located on the flanges of selected stiffeners and on the plating on the opposite side of the selected stiffeners. A major discrepancy in the magnitude of strain would imply local bending was occurring at that location. If a number of channels indicated a major discrepancy, then overall buckling of the bulkhead could have been occurring.

Gages were also located at the "hard points" on the bulkheads near the hull plating (port and starboard). This included gages at the platform deck level (upper chine), near the lower chine, near the inner bottom level, and at the keel.

The strain patterns and distribution in the bulkheads were largely a reflection of the method used to apply the loads to the model. That is, loads were directly transferred from the moveable load frames, through the rubber pads surrounding the bulkheads and then into the bulkhead plating and stiffeners.

In almost all instances, gages near the deck/rubber pad intersection read higher than those nearer the center of the bulkhead. Also, these gages showed somewhat higher strains in the stiffeners than the plate, as might be expected, since a portion of the load is also going through the plate material between stiffeners. Of the gages near the deck, the centerline gage often read the highest strain.

The strain gage rosettes located at the hard points were moderate-to-high in magnitude at the forward and aft ends of the model. The high strains in the forward bulkheads are probably related to the soft chine and high deadrise in the hull.

Except at Bulkhead 108, from Bulkhead 80 and aft, the strains at the rosette locations were quite low. The shape of the hull is much more "boxlike" along this portion of the model with two hard chines and a low deadrise. The higher strains at the hard points on Bulkhead 108 may be due to the method of loading since the load frame is bolted directly to the model. Also for Bulkhead 108, the strains near the uppermost exterior deck are quite small, which is not the case for most other bulkheads.

In general, no major bulkhead structural problems were detected as the result of the static tests. The loads were transferred into the hull through the load frames and bulkheads as expected.

STRESS CONCENTRATIONS AND DISCONTINUITIES

A number of areas in the hull and deckhouse were instrumented as areas of stres concentrations and locally high strains during the static tests. Any strain readings corresponding to a stress of $20~\rm ksi$ or more at the 80° load level could potentially create early fatigue cracking problems during the model's cyclic testing. The model sections which were inscrumented included numerous access holes in the deckhouse sides (both port and starboard), $01~\rm deck$ access holes, main deck access holes, the port-aft corner of the deckhouse (Bulkhead 92 below the main deck) and the forward corners of the deckhouse (Bulkhead 32).

There are three access holes in the O1 deck and all three were instrumented with gages positioned on the outboard portion of the coaming. In addition, the access hole at Frame 38 1/2 had a rosette and three additional gages adjacent to the rosette. The strain in the O1 deck at Frame 38 1/2 is nominally 150 $\pm c$; however, the gage at the aft outboard corner indicates a significantly higher strain (see Figure C.30). Also, the strain gradient drops off in magnitude as the deckhouse side is approached. Figure C.31 shows high strains in the corner of the access hole coaming at Frame 46. Nominal strains at Frame 46 are about 300 $\pm c$ at 80%; however, a value of over 1200 $\pm c$ was measured during the cyclic testing. The gage at the corner of Frame 52 access hole indicates a strain only slightly more than the nominal strain of 400 $\pm c$ (see Figure C.32, locations A and B).

Five of the seven access holes in the main deck were instrumented to varying degrees. The following hatch openings were instrumented: Frame 36 port, Frame 44 port, Frame 66 1/2 starboard, and Frame 77 1/3 port and starboard.

One of the more thoroughly instrumented main deck openings was at Frame 36 port. A series of five gages were placed on both the forward and aft outboard corners of the opening (see Figure C.33). The nominal strain in this area of the main deck at the 80% load during the 60° lag test is about 400 $\mu\epsilon$. Gages adjacent to the coaming read between 500 $\mu\epsilon$ and 800 $\mu\epsilon$, and gages at the curved portion of the coaming increased to 900 $\mu\epsilon$ as shown in Figure C.33. A drop in strain occurred on the straight portion approaching the curved section of coaming and where the coaming became transverse to the primary stress direction.

The opening at Frame 44 port was instrumented similar to the opening at Frame 36 (see Figure C.34). The strain distributions are also similar. The nominal strains near Frame 44 are slightly higher (450 to 500 $\mu\epsilon$) than at Frame 36, and the strains at the curve in the coaming are near 1000 $\mu\epsilon$, as shown in Figure C.34.

There are four access holes in the main deck immediately above the engine room compartment. Unlike the two previous square openings, these are elongated in the longitudinal direction. Gages were placed only on the outboard corners of the coaming of the opening at Frame 66 1/2 starboard (see Figure C.35). Again, gages placed on the straight portion of the coaming showed strain readings which were close in magnitude to the nominal strains in that area of the main deck, as seen in Figure C.35. A sizeable increase in strain occurred in the curved portion of the coaming corner.

Gages were placed on the two outboard corners of the opening at Frame 77 1/3 starboard (see Figure C.36). The strain data are not as well behaved as those of previously discussed openings, as can be seen in Figure C.36. The data may be suspect since this opening was utilized both as a pathway for permanently installed instrumentation wiring and as access to the interior of the hull. Gages were also placed in the opening at Frame 77 1/3 port (see Figure C.37). An irregularity appears in the second gage in both series of 5 gages at each corner. If it were not for this irregularity, both distributions would be similar to what has been shown before. It is possible that instrumentation wiring was reversed for these two gages.

A number of gages were placed on or near the coamings of most of the access holes in the deckhouse side between the main deck and the Ol deck. Gages were placed on openings at Frames 33, 39, 41, 46, and 62 1/2 on the port side, and at Frames 76, 78 1/2, and 87 on the starboard side. This involved at least a series of 4 gages per coaming, placed on the center of a curved section of the 2-in. wide, 3/8-in, thick coaming. The exact positions of the gages are shown as well as the strain gradients from the static tests in Figures C.38 through C.45. As a result of high strains in many access hole coamings measured during preliminary static tests (i.e., testing prior to the four tests examined for this report), structural modifications were completed. These entailed doubling the thickness of the original 3/16-in. coaming and adding a doubler plate to the deckhouse side adjacent to the opening, as discussed in the main text of this report. The additional coaming piece was welded completely around the existing coaming at both inboard and outboard edges. In addition to the previously mentioned modifications, a closure plate was used at Frame 33 port access hole in the deckhouse. The gages originally placed on the coaming were repositioned when the closure plate was installed. The gages formed a rosette near the upper forward corner of the opening. The remaining gage was placed at the lower forward corner on the doubler plate (a strain reading of 560 $\mu\epsilon$ was measured at 80% load). Also, fashion plates were added to the structure forward of Bulkhead 33.

Figure C.45 is a plot of the strain gradients (due to 80° BM) near the intersection of the port deckhouse corner at Bulkhead 92 and the main deck.

Figure C.1 - Longitudinal Distribution of Longitudinal Bending Strain of the O2 Deck Centerline

Figure C.2 - Longitudinal Distribution of Longitudinal Bending Strain of the Ol Deck Centerline

Figure C.3 - Longitudinal Distribution of Longitudinal Bending Strain of 01 Deck Starboard Edge (From Frame 54 through Frame 61)

Figure C.4 - Longitudinal Distribution of Longitudinal Bending Strain of the Main Deck Centerline

Figure C.5 - Longitudinal Distribution of Longitudinal Bending Strain of the Main Deck, Port Gunwale

Figure C.6 - Longitudinal Distribution of Longitudinal Bending Strain of the Main Deck, Port, Near Deckhouse Side

Figure G.7 - Longitudinal Distribution of Longitudinal Bending Strain of the Main Deck, Starboard Gunwale

Figure C.8 - Longitudinal Distribution of Longitudinal Bending Strain of the Main Deck, Starboard, Near Deckhouse Side

Figure C.9 - Longitudinal Distribution of Longitudinal Bending Strain of the Platform Deck, Centerline

Figure C.10 - Longitudinal Distribution of Lougitudiant Bending Street, of the Inner Bestom Centerline

Figure C.11 - Longitudinal Distribution of Longitudinal Sending Strain of the Keel Centerline

Figure C.12 - Transverse Distributions of Longitudinal Bending Strain at Frame 21

Figure C.13 - Transverse Distributions of Longitudinal Rending Strain at Frame 49

Figure C.14 - Transverse Distributions of Longitudinal Bending Strain at Frame 61

Figure C.15 - Transverse Distributions of Longitudinal Bending Strain at Franc 73

Figure C.16 - Transverse Discributions of Langitudinal Benther Strain at Frame as

Figure C.17 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 8

Figure C.18 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 16

Figure C.19 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 24

NO DATA

Figure C.20 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 32

Figure C.21 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 40

NO DATA

Figure G.22 - Plot of 100 Percent Vertical Sensitivity from Test bata of 9-22-77 for Bulkhead 48

Figure C.23 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 56

Figure C.24 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 64

Figure C.25 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 80

Figure C.26 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 86

Figure C.27 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 92

Figure C.28 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 98

Figure C.29 - Plot of 100 Percent Vertical Sensitivity from Test Data of 9-22-77 for Bulkhead 108

Figure C.30 - Maximum Measured Strain, 60 Degree Lag, 01 Deck Hole at Frame 38 1/2, Port Side

Figure C.31 - Maximum Measured Strain, 60 Degree Lag, 01 Deck Hole at Frame 46, Port Side

Figure C.32 - Maximum Measured Strain, 60 Degree Lag, 01 Deck Hole at Frame 52, Starboard Side

Figure C.33 - Maximum Measured Strain, 60 Degree Lag, Main Deck Access Hole at Frame 36, Port Side

Figure C.34 - Maximum Measured Strain, 60 Degree Lag, Main Deck Access Hole at Frame 44, Port Side

Figure C.35 - Maximum Measured Strain, 240 Degree Lag, Main Deck Hole at Frame 66 1/2, Starboard Side

Figure C.36 - Maximum Measured Strain, 240 Degree Lag, Main Deck Access Hole at Frame 77 1/3, Starboard Side

Figure C.37 - Maximum Measured Strain, 60 Degree Lag, Main Deck Access Hole at Frame 77 1/3, Port Side

Figure C.38 - Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 33, Port Side

Figure C.39 - Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 39, Port Side

Figure C.40 - Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 41 1/2, Port Side

Figure C.41 - Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 46, Port Side

Figure C.42 - Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 62 1/2. Port Side

Figure C.43 - Maximum Measured Strain, 240 Degree Lag, Deckhouse Side Opening at Frame 76, Starboard Side

Figure C.44 - Maximum Measured Strain, 60 Degree Lag, Deckhouse Side Opening at Frame 78 1/2, Starboard Side

Figure C.45 - Maximum Measured Strain, 240 Degree Lag, Deckhouse Side Opening at Frame 87, Starboard Side

_ ._......

Figure C.46 - Port Corner of Deckhouse at Bulkhead 92, Vertical Sensitivity (9-22-77)

APPENDIX D

CALCULATED LOADS, MEASURED LOADS AND DEFLECTIONS, AND BENDING MOMENT PLOTS

This appendix contains, in tabular form, summaries of (1) the calculated loads which were to be applied to the ASEM, (2) the loads as recorded during the four tests chosen for data analysis, (3) moment plots derived from the recorded loads of the four tests, and (4) measured deflections which were recorded during the four tests.

The vertical loads are given in Table D.1. Both vertical hog and sag loads at each load increment are given. Note the hog or sag STILLWATER + ZERO STRESS values are at the same offset from ZERO STRESS. Also, for example, at 40 keel, even though the load at 80% was 11,090 lb in the sag condition and was -54,906 lb in the hog condition, the change (Δ) in load from zero + stillwater is equal (32,998 lb). The 90 or 100% loads are not included since the ASEM was not loaded to these magnitudes during the static tests. Also note that the rows associated with starboard LOAD CELL(s) are blank because no loads were applied during the vertical-loads-only tests.

The lateral loads are given in Table D.2. Both lateral hog and sag loads at each increment are given. The sag and hog load values at each load increment are equivalent in magnitude and opposite in sign. A lateral sag and hog condition is defined such that a hydraulic actuator/load cell arrangement will produce the same sign on the "readout" as would a vertical hog or sag condition (see Figure D.1). The rows associated with vertical load cells are left blank after the zero and stillwater loads are given. When lateral loads only were applied to the model, it was loaded vertically until the stillwater condition was reached and then lateral loads were applied.

Table D.3 summarizes the calculated loads to be applied to the model for the combined vertical and lateral loading test with a 60° phase shift. Loads are applied in a sinusoidal fashion (necessary for the cyclic tests), thus allowing the phase shift. The zero, stillwater, and vertical incremental loads are the same as the

vertical loading test but the lateral loads are derived from the equation $P_2 \approx P_{\text{max}}/2 \sin (\omega t - 60^\circ)$. That means, when a vertical load is applied at a particular load frame and load level (10%, 20%, etc.), a corresponding lateral load is applied whose magnitude is determined from the above relation.

Table D.4 is a summary of the loads for the combined vertical and lateral loading test with a 240° phase shift. The explanation of this table is similar to that of Table D.3. Basically, the maximum lateral loads do not occur at the same time as the maximum vertical loads.

Tables D.5, D.6, D.7, and D.8 are tabular summaries of the loads which were monitored and recorded during the vertical test of 9/22/77, the lateral test of 10/28/77, the 60° combined loading test of 10/14/77, and the 240° combined loading test of 10/26/77, respectively. The UNLOCK load readings are obtained with the hydraulic system depressurized. Except for fixed support loads, these values will nominally be low. The system is then pressurized; next, ZERO and/or ZERO TEST conditions are read. The lateral loads should have been close to zero in magnitude; if not, they were adjusted accordingly and then recorded. Loads were then applied to produce a stillwater BM in the model. Up to this point, the loads for Tables D.5 through D.8 were similar in magnitude. However, the remainder of the loading conditions of the four tests were different. Table D.5 shows the loads read on all channels during the vertical-only-loading test. The lateral loads were nominally

near zero, and only the vertical readings showed significant changes. Table D.6 shows the loads read on all channels during the lateral-only-loading test. The vertical readings were nominally near the stillwater readings throughout the test, and the lateral readings indicated the load increments associated with load levels. There are a total of 30 load conditions, not including the stillwater load condition.

Tables D.7 and D.8 are probably the most significant in that the loads shown here are the same as those during the cyclic tests. The load values recorded in the lateral offset column require a brief explanation. The vertical loads are similar to loads of the vertical test, and the lateral test stillwater loads. However, the lateral loads are now representative of the phase shift discussed earlier. During the test, as the model was loaded, any load magnitude adjustment (if required) was done at that time.

Figures D.2 through D.9 are ASEM moment plots derived from the loads applied to the model during the associated tests. The magnitude of the maximum moment of the lateral-loads-only test (Figures D.3 and D.4) is one-half that of the vertical-loads-only test (Figure D.1) $(4.3\times10^6 \text{ ft-lb versus } 2.1\times10^6 \text{ ft-lb})$. In general, the applied BM were very close to the calculated bending moments as seen in Figure D.1.

Tables D.9 through D.12 are compilations of the absolute deflections as measured during Tests 1 through 4, respectively. The deflection plots in Figures 11 through 14 are deflections relative to stillwater. During Test 1, only vertical loads were applied, thus deflection readings of the starboard linear potentiometers showed little or no change at each load increment. During Test 2, after the stillwater loads were applied to the model, only lateral loads were subsequently applied, thus deflection readings of the keel linear potentiometers showed little or no change at each load increment. The deflections in Tables D.11 and D.12 were continuously changing as both lateral and vertical laods were applied to the model. Any deflection position, other than at Bulkheads 24 and 86, which showed little or no change in displacement during these two tests, was an indication that the instrumentation was probably malfunctioning.

MIDSHIP VERTICAL ACTUATOR PUSHING UP -77 kips AT 80%

MIDSHIP LATERAL ACTUATOR PUSHING TO PORT -38 kips AT 80%

Figure D.1 - Vertical and Lateral Hog Condition

Figure D.2 - ASEM Moment Plots of Test 1 (-10 Percent to -80 Percent)

Figure D.3 - ASEM Moment Plots of Test 2 (10 Percent to 80 Percent)

Figure D.4 - ASEM Moment Plots of Test 2 (-10 Percent to -50 Percent)

Figure D.5 - ASEM Moment Plots of Test 3, Vertical Moment (-10 Percent to -80 Percent)

Figure D.6 - ASEM Moment Plots of Test 3, Vertical Moment (10 Percent to 80 Percent)

Figure D.7 - ASEM Moment Plots of Test 3, Lateral Moment Corresponding to 10 Percent through 80 Percent Vertical Moment

Figure D.8 - ASEM Moment Plots of Test 3, Lateral Moment Corresponding to -10 Percent through -80 Percent Vertical Moment

Figure D.9 - ASEM Moment Plots of Test 4, Lateral Moment Corresponding to 10 Percent through 80 Percent Vertical Moment

TABLE D.1 - ASEM STATIC TEST 1--CALCULATED LOADS

				Pa	Part A Load	cond i cono	, SAG (10)				
RATCO	, co	0.00	Still Water +				Percent Load	t Load			
No.	Ce 11	Stress	Stress	107 +	20% +	30% +	40%+	50% +	+ 209	762 +	80% +
5	108 Stbd										
9 ~	108 Keel 98 Stbd	-3,372	4,139	-1,879	-7,897	-13,920	-19,934	-25,952	-31,979	-37,983	900, 24-
∞		-5,986	-881	-4,971	-9,062	-13,155	-17,242	-21,332	-25,429	-29.509	-33.603
6	98 West	-5,986	-881	-4,971	-9,062	-13,155	-17,242	-21,332	-25,429	-29,509	-33,603
01	92 Stbd										
11	92 Keel	-11,547	-6,726	-10,589	-14,451	-18,317	-22,177	-26,039	-29,908	-33,761	-37,627
13		-12,144	-10,371								
14	80 Stbd	12 603	200	636.71	1000	9	0		ì		
<u> </u>		-13,093	-10,203	-14,352	706,21-	110 . 01-	-8,801	-6,950	-5,096	-3,250	-1,398
16											
1 ₇	72 Keel 64 Stbd	-13,319	-21,029	-14,851	-8,674	164.6-	3,682	9,859	16,046	22,209	28,392
19			-12,735	-8,235	-3,736	768	5,264	6,764	14,270	18,759	23,263
20	64 West	-7,120	-12,735	-8,235	-3,736	268	5,264	6,764	14,270	18,759	23,263
21	56 Stbd										
22		069.7-	-13,693	-8,883	74,074	739	5,546	10,355	15,172	19,970	24,784
23 24	56 West		-13,693	-8,883	-4,074	739	5,546	10,355	15,172	026,61	24,784
25	48 Keel	-14,412	-24,202	-16,357	-8,513	799-	7,1,7	15,022	22,878	30,704	38,556
26	40 Stbd										
27		-16,760	-21,908	-17,783	-13,659	-9,531	-5,409	-1,284	7,847	6,962	11,090
28											
30	24 East	-5,885	-2,024								
2		00.0	+70.7-								
31	16 Stbd										
32	16 East	-4,536	757	-3,484	-7,775	-11,969	-16,207	-20,448	-24,695	-28,926	-33,171
33		-4,536	757	-3,484	-7,725	-11,969	-16,207	-20,448	504,55-	9.0.80-	-33,151
35.4	8 Stbd 8 Keel	-2,790	2,783	-1,683	-6.148	-10.617	-15,079	-19.545	-10.21-	C _ 7 & C _ 2	129 (5-
76	0			,							7

TABLE D.1 (Continued)

		-									
			Still Water +				Percer	Percent Load			
BAFCO No.	Load Cell	Stress	Stress	10%	20% +	302 +	¥ %07	50% ↑	+ %09	7 %07	80%
5	108 Stbd				} { }		,				
۷ ۲	108 Keel	-3,372	4,139	10,157	16,175	22,198	28,212	34,230	40,257	46,261	52,284
- oc	98 East	-5.986	-881	3,209	7 , 300	11,393	15.480	19.570	23.667	77.747	31.84)
. 6		-5,986	188	3,209	7,300	11,393	15,480	19,570	23,667	27,747	31,841
10	92 Stbd										
11		-11,547	-6,726	-2,863	666	4,865	8,725	12,587	16,456	20,309	24,175
2.5	86 Keel	-12.144	-10.371								
14											
15		-13,893	-16,203	-18,054	-19,904	-21,756	-23,606	-25,456	-27,310	-29.156	-31,008
16	72 Stbd										
71		-13,319	-21,029	-27,207	-33,384	-39,567	-45,740	-51,917	-58,104	-64,267	-70,450
× 5	64 Stbd	7 120	10 706	17 235	307 10	966 36	, לכני טני	766 36	376	766	, ,
20	64 West	-7,120	-12,735	-17,235	-21,735	-26,238	-30,734	-35,234	-39,740	-44,229	-48,733
21	56 Stbd										
22	56 East	069'1-	-13,693	-18,503	-23,312	-28,125	-32,932	-37,741	-42,558	-47,356	-52,170
23	56 West	-7,690	-13,693	-18,503	-23,312	-28,125	-32,932	-37,741	-42,558	-47,356	-52,170
24	48 Stbd	-17, 412	27, 202	270 62	678 01-	672 27	195 55	767 63	71 787	20 100	070 98
		711.6	707*17	15040	740 66	74/1/4	100 100	378.00	79711/-	001.67	-00,30
56							,				
27 28	40 Keel 24 Sthd	-16,760	-21,908	-26,033	-30,158	-34,285	-38,407	-42,532	-46,663	-50,778	-54,906
29		-5 885	-2 026								
30	24 West	-5,885	-2,024								
31	16 Stbd										
32	16 East	-4,536	757	866,4	9,239	13,483	17,721	21,962	56,209	30,440	34,685
33		4,536	757	866.7	9,239	13,483	17,721	21,962	26,209	30,440	34,685
34		7		i					0	,	0
\$\$	Xec	061.7-	2.783	67%	717	×××	2000		0	7 7 7	200

TABLE D.2 - ASEM STATIC TEST 2--CALCULATED LOADS

					Part A L	Load Condition,	ition, SAG	(1b)				
			Still Water +					Percent Load	Load			
No.	Cell	Stress	Stress	Test	102	20%	30%	40%	20%	209	70%	80%
٠ ک		0	0 ;		3,009	6,018	9,027	12,036	15,045	18,054	21,063	24,073
4	108 Keel 98 Stbd	-3,3/2	0 0	069.1-	060.7	8,180	12,271	16,361	20,451	24,542	28,632	32,722
ж о	98 East 98 West	-5,986	-881	-2,993 -2,993								
10	92 Stbd	0	0	- -	1,931	3,863	5,794	7,725	9,656	11,588	13,519	15,450
1 1	92 Keel 86 Sthd	-11,547	-6,726	-5,774								
13		-12,144	-10,371									
14	80 Stbd	0	0 71-	-6 97.7	- 925	-1,851	-2,776	-3,702	-4,677	-5,552	-6,478	- 7,403
9 9 9		0	0) () () () () () () () () () (-3,089	-6,178	-9.266	-12,355	-15,444	-18,533	-21,621	-24,710
11		-13,319	-21,029	-6,660	`		•		•	•	•	
8 6	64 Stbd 64 Fast	0 -7	0 -12 735	-3 560	-4,500	000,6-	-13,500	-18,000	-22,499	676 4:-	-31,498	-35,998
20		-7,120	-12,735	-3,560								
21		0	0		-4,810	619.6-	-14,479	-19,238	-24,048	-28,857	-33,667	-38,476
22 23	56 Fast 56 West	069,7-	-13,693	-3,845								
24 25	48 Stbd 48 Keel	0	-24,202	-7,206	-3,922	-7,845	-11,767	-15,690	-19,612	-23,534	-27,457	-31,379
26	40 Stbd	c	С		-2,062	-4,125	-6,187	025.8-	-10,312	-12,374	-14,437	-16,499
27		-16,760	-21,908	-8,380								
29	24 East	-5,885	-2,024									
30	24 West	-5,885	-2,024									
31	16 Stbd	0	С		4,241	8,482	12,723	16,964	21,205	25,446	29,687	33,923
37	16 East	-4,536	757	-2,268								
34	8 Stbd	0	0	20267	2,233	4,466	6,693	8,931	11.164	13,397	15,629	17,862
35		-2,79	2,783	-1,395								
39	8 Surge					 		1				

TABLE D.2 (Continued)

			Part	B Load	Condition, HOG	HOG (1b)				
						Percent Load	Load			
No. Cell	Stress	s Stress	10%	20%	30%	707	20%	60%	70%	80%
108			-3,009	810,9-	-9,027	-12,036	-15,045	-18,054	-21,063	-24,073
7 98 St 8 98 Ea 9 98 Ea	Stbd - 5,972 Stbd - 5,986 West - 5,986	4,139 	060,4-	-8,180	-12,271	-16,361	-20,451	-24,542	-28,632	-32,722
92 92 86		············	-1,931	-3,863	-5.794	-7,725	-9,656	-11,588	-13,519	-15,450
86 80 80 80	Keel -12,144 Stbd 0 Keel -13,893	-10,371 0 -16,203	925	1,851	2,776	3,702	4,627	5,552	6,478	7,403
72			3,089	6,178	9,266	12,355	15,444	18,533	21,621	24,710
	Stbd -13,319 Stbd 0 East -7,120 West -7,120	-21,029 0 -12,735 -12,735	4,500	000,6	13,500	18,000	22,499	26,999	31,498	35,998
36 56	Stbd 0 East -7,690		4,810	9,619	14,429	19,238	24,048	28,857	33,667	38,476
24 48 St 25 48 Ke	Stbd -/,690 Keel -14,412	-13,693 0 -24,202	3,922	7,845	11,767	15,690	19,612	23,534	27,457	31,379
26 40 St 27 40 Ke 28 24 St 29 24 Ea	Stbd -16,760 Stbd -5,885	-21,908 0 -2,024	2,062	4,125	6,187	8,250	10,312	12,374	14,437	16,499
16 16 16			-4,241	-8,482	-12,723	-16,964	-21,205	-25,446	-29,687	-33,923
6 8 8 8 8	- Cu	2,	-2,233	-4,466	-6,698	-8,931	-11,164	-13,397	-15,629	-17,862

TABLE D.3 - ASEM STATIC TEST 3--CALCULATED LOADS

			Load Condition,		60 Degree Lag (1	(1b)		
RATICO	700	Zoro	Still Water +	80% Max	[atora]	P	Percent Load	
No.	Cell	Stress	<u></u>	Lateral	Offset	++10%	4+20%	++30%
2	108 Stbd	0	0	-24,073	20,848	19,180	17,177	14,813
9	108 Keel	-3,372	4,139	-		-1,879	-7,897	-13,920
7	98 Stbd	0	0	-32,722	28,338	26,071	23,348	20,135
&	98 East	-5,986	-881			-4,971	-9,062	-13,155
6	98 West	-5,986	-881	-, -		-4,971	-9,062	-13,155
10	92 Stbd	0	0	-15,450	13,380	12,310	11,024	9,507
11	92 Keel	-11,547	-6,726			-10,589	-14,451	-18,317
12		С	0					
13		-12,144	-10,371					
14		0	0	7,403	-6,411	-5,898	-5,282	-4,555
15	80 Keel	-13,893	-16,203			-14,352	-12,502	-10,650
16	72 Stbd	0	0	24,710	-21,399	-19,687	-17,631	-15,205
17	72 Keel	-13,319	-21,029			-14,851	-8,674	-2,491
18		0	0	35,998	-31,175	-28,681	-25,685	-22,151
19	64 East	-7,120	-12,735			-8,235	-3,736	892
20	64 West	-7,120	-12,735			-8,235	-3,736	168
21	56 Stbd	0	0	38,476	-33,321	-30,655	-27,454	-23,675
	56 East	-7,690	-13,693			-8,883	-4,074	739
23		-7,690	-13,693		-	-8,883	-4,074	739
24		0	0	31,379	-27,175	-25,001	-22,390	-19,308
25	48 Keel	-14,412	-24,202			-16,357	-8,513	-662
26	40 Stbd	0	0	16,499	-14,289	-13,145	-11,772	-10,152
27	40 Keel	-16,760	-21,908			-17,783	-13,659	-9,531
28		0	0					
29	24 East	-5,885	-2,024					
30	24 West	-5,885	-2,024					
31	16 Stbd	0	0	-33,928	29,382	27,032	24,208	20,877
32		-4,536	757			-3,484	-7,725	-11,969
33		-4,536	757			-3,484	-7,725	-11,969
34		0	С	-17,862	15,469	14,231	12,745	10,991
35	8 Keel	-2,790	2,783			-1,683	-6,148	-10,617
36	8 Surge							

TABLE D.3 (Continued)

			Load Con	Condition, 60 D	Degree Lag (1	(1b)		
BAFCO	Load			Perc	Percent Load			
No.	Cel1	4+40%	4+50%	4+60%	4+70%	4+80%	%0Z+↑	+%09+
2	108 Stbd	12,037	8,752	4,762	-439	-12,037	20,62	-22,817
9	108 Keel	-19,934	-25,952	-31,979	-37,983		~	-31,979
7	98 Stbd	16,361	11,896	6,473	59	-16,361	03	-31,015
∞	98 East	-17,242	21,	-25,429	29,50		9,50	-25,429
6	98 West	-17,242	-21,332	25,42	9,50		9,50	25,42
10	92 Stbd	,72	,61	,05	8	7,7	3	9,4
11	92 Keel	-22,177	-26,039	-29,908	-33,761	-37,627	9/	-29,908
12	86 Stbd							
7 7		-3,702	9	-1.464	135	70	78	7.017
15		-8,801	6,	Ŝ	-3,250	-1,398	-3,250	-5,096
16	72 Stbd	-12,355	•	-4,888	451		21,171	3.4
17	72 Keel	`ຕົ		16,046	22,209	~	22,209	16,046
18		-17,999	-13,087	-7,121	9	17,999	30,842	4,1
19	64 East	5,264	•	14,270	18,759		18,759	14,270
20	64 West	5,264	•	4,	8,75		18,759	14,270
21	56 Stbd	-19,238	-13,988	7,61	702	9	•	97,
22		5,546	10,355	5,17	ę,	4,7	٠.	5,17
23		r)	10,355	15,172	٥,	4,7	76,6	5,17
24	48 Stbd	-15,690	-11,408	-6,207		2	26,884	29,742
25	48 Keel	7,177	15,022	2,87	30,704	5	0,70	2,87
26		-8,250	2	-3,264	0	•	•	15,638
27		-5,409	• 2	,84	6,962	11,090	6,962	,84
07	24 Stbd							
30								
31	16 Stbd	16,964	2,3	,71	-619	-16,964	637	-32,158
32	16 East	-16,207	2	24,69	ထ	-33,171	CX:	-24,695
33	16 West	-16,207	0,4	-24,695	-28,926	-33,171	-28,926	-24,695
34		8,931	767,9	~	-326	-8,931	-15,304	-16,930
35		-15,079	-19,545	-24,017	-28,472	-32,941	-28,472	-24,017
36	8 Surge							

TABLE D.3 (Continued)

		Lc	Load Condition,	60 Degree Lag (1b)	(1b)		
BAFCO	Load			Percent Load			
No.	Ce11	+20%+	+ %07+	+30%+	+20%+	+10%+	-10%+
2	108 Stbd	-23,797	-24,073	-23,840	-23,195	-22,189	-19,180
ę	108 Keel	-25,952	-19,934	-13,920	-7,897	-1,879	10,157
7	98 Stbd	-32,347	-32,722	-32,405	-31,528	-30,161	-26,071
œ	98 East	-21,332	-17,242	-13,155	-9,067	-4,971	3,209
6	98 West	-21,332	-17,242	-13,155	-9 ,067	-4,971	3,209
10	92 Stbd	-15,273	-15,450	-15,301	-14,886	-14,241	-12,310
11	92 Keel	-26,039	-22,177	-18,317	-14,451	-10,589	-2,863
12	86 Stbd						
13	86 Keel						
14	80 Stbd	7,318	7,403	7,331	7,133	6,824	5,898
15	80 Keel	-6,950	-8,801	-10,650	-12,502	-14,352	-18,054
16	72 Stbd	24,427	24,710	24,471	23,809	22,776	19,687
17	72 Keel	6,859	3,682	-2,491	-8,674	-14,851	-27,207
18	64 Stbd	35,585	35,998	35,650	34,685	33,181	28,681
19	64 East	6,764	5,264	768	-3,736	-8,235	-17,235
20	64 West	6,764	5,264	168	-3,736	-8,235	-17,235
21	56 Stbd	38,035	38,476	38,104	37,073	35,465	30,655
2.2	56 East	10,355	5,546	739	-4,074	-8,883	-18,503
23		10,355	5,546	739	-4,074	-8,883	-18,503
24	48 Sthd	31,019	31,379	31,075	30,234	28,923	25,001
25	48 Keel	15,022	7,177	-662	-8,513	-16,357	-32,047
76	40 Stbd	16,310	16,499	16,339	15,897	15,208	13,145
27		-1,284	-5,409	-9,531	-13,659	-17,783	-26,033
28	24 Stbd						
29							
30	24 West						
31	16 Stbd	-33,539	-33,928	-33,600	-32,690	-31,273	-27,032
32	16 East	-20,448	-16,207	-11,969	-7,775	-3,484	7,998
33	16 West	-20,448	-16,207	-11,960	-7,725	-3,484	866,4
34	8 Stbd	-17,657	-17,862	-17,689	-17,210	-16,464	-14,231
35		-19,545	-15,079	-10,617	-6,148	- 1,683	7,249
36	8 Surge						:

TABLE D.3 (Continued)

:			Load Cor	Condition, 60 D	Degrees Lag ((1b)		
BAFCO	Load			Per	ercent Load			
No.	Ce11	-20%+	-30% +	† %0 7 -	-50% ↓	↑ %09-	↑%0/-	+%08−
5	108 Stbd	-17,177	-14,813	-12,037	-8,752	-4,762	439	12,037
9		16,175	5,19	28,212	34,230	40,257	46,261	52,284
7	98 Stbd	-23,348	-20,135	-16,361	-11,896	-6,473	265	16,361
œ	98 East	7,300	11,393	15,480	19,570	23,667	۲,	31,841
6	98 West	7,300	11,393	15,480	19,570	23,667	27,747	31,841
10	92 Stbd	-11,024	,50	,72	5,61	,05	282	,72
11	×	666	4,865	8,725	12,587	16,456	20,309	24,175
7.	86 Stbd							
I 3				,				
14		5,282	4,5	3,702	2,	1,464	ī	3
15	80 Keel	-19,904	,75	-23,606	,45	-27,310	S	-31,008
16	72 Stbd	17,631	15,205	12,355	•	4,888	-451	ഹ
17	72 Keel	-33,384	-39,567	-45,740	-51,917	-58,104	-64,267	7
18	64 Stbd	25,685	22,151	17,999	13,087	7,121	-656	•
19	64 East	-21,735	-26,238	-30,734	•	-39,740	-44,229	/
20	64 West	-21,735	-26,238	۲,	5,23	7,	22	7,
21	56 Stbd	7	(*)	9,2	13,988	7,611	-702	-19,238
22	56 East	-23,312	-28,125	-32,932	-37,741		-47,356	-52,170
23			-28,125	-32,932	-37,741	-42,558	-47,356	-52,170
24	48 Stbd	22,390	S	15,690	0	•	-572	-15,690
25	48 Keel	σ.	-47,742	5,5	-63,426	-71,282	-79,108	-86,960
26		11,772	0,1	8,250	66	97	-301	8,2
27	40 Keel	,15	-34,285		-42,532	-46,663	-50,778	-54,906
28								
29								
30	24 West							
31		-24,208	-20,877	-16,964	-12,334	-6,712	619	16,964
32	16 East	9,239	13,483	17,721	21,962	26,209	30,440	34,685
33		9,239	13,483	17,721	21,962	26,209	30,440	34,685
34		-12,745	-10,991	-8,931	767,9-	-3,533	326	8,931
35	8 Keel	11,714	16,183	20,645	25,111	29,583	34,038	38,507
36						:	1	

TABLE D.3 (Continued)

! !			Load Cor	Load Condition, 60 Degree Lag (1b)	egree Lag (
BAFCO	1.0ad			1 !	Percent Load			
No.	Cell	-70% ↑	+ 709-	-50% +	-40% +	-30% +	-20% +	-10% +
5	108 Stbd	20,625	22,817	23,797	24,073	23,840	23,195	22,189
9	108 Keel	46,261	40,257	34,230	28,212	22,198	16,175	10,157
7	98 Stbd	28,035	31,015	32,347	32,722	32,405	31,528	30,161
&	98 East	27,747	23,667	19,570	15,480	11,393	7,300	3,209
6	98 West	27,474	23,667	19,570	15,480	11,393	7,300	3,209
10	92 Stbd	13,237	14,644	•	15,450	15,301	14,886	14,741
11	92 Keel	20,309	16,456	12,587	8,725	4,865	666	-2,863
12	86 Stbd							
13								
14	80 Stbd	-6,343	-7,017	-7,318	-7,403	-7,331	-7,133	-6,824
15	8c Keel	-29,156	-27,310	-25,456	-23,606	-21,756	-19,904	-18,054
16	72 Stbd	-21,171	-23,421	-24,427	-24,710	-24,471	-23,809	-22,776
17	72 Keel	-64,267	-58,104	-51,917	-45,740	-39,567	-33,384	-27,207
18	64 Stbd	-30,842	-34,120	-35,585	-35,998	-35,650	-34,685	-33,181
19	64 East	-44,229	-39,740	-35,234	-30,734	-26,238	-21,735	-17,235
20	64 West	-44,229	-39,740	-35,234	-30,734	-26,238	-21,735	-17,235
21	56 Stbd	-32,965	-36,468	-38,035	-38,476	-38,104	-37,073	-35,465
22	56 East	-47,356	-42,558	-37,741	-32,932	-28,125	-23,312	-18,503
23	56 West	-47,356	-42,558	-37,741	-32,932	-28,125	-23,312	-18,503
77	48 Stbd	-26,884	-29,742	-31,019	-31,379	-31,075	-30,234	-28,923
25	48 Keel	-79,108	-71,282	-63,426	-55,581	-47,742	-39,892	-32,047
26	40 Stbd	-14,136	-15,638	-16,310	-16,499	-16,339	-15,897	-15,208
27		-50,778	-46,663	-42,532	-38,407	-34,285	-30,158	-26,033
28	24 Sthd							
29	24 East							
30	24 West							
31	16 Stbd	29,068	32,158	33,539	33,928	33,600	32,690	31,273
32	16 East	30,440	26,209	21,962	17,721	13,483	6,739	866.4
33	16 West	30,440	26,209	21,962	17,721	13,483	9,239	866, 4
34		15,304	16,930	17,689	17,862	17,696	17,210	16,464
35		34,038	29,583	25,111	20,645	16,183	11,714	7,249
36	8 Surge					•		

TABLE D.4 - ASEM STATIC TEST 4--CALCULATED LOADS

Load Condition, 240 Degree Lag (1b)	Zaro Water+Zaro 80% May [atera]	Stress Stress Lateral	0 0 -24,073 -20,848 -19,180 -17,777 -14,813 -12,037 -3 372 4,139 -13,037 -1897 -13,920 -19,934	0 -32,722 -28,338 -26,071 -23,348 -20,135 -16,361	ast -5,986 -881 -4,971 -9,062 -13,155 -17,242 -21,332	201 15 15 0 10 10 11 010 11 0 10 11 0 10 11 0 10 1	-11.547 -6.726		-12,144 -10,3/1 7.403 6.411 5.898 5.282	-13,893 -16,203 -14,352 -12,502 -10,650 -8,801 -	0 0 24,710 21,399 19,687 17,631 15,205 12,355	-13,319 -21,029 -14,851 -8,674 -2,491 3,682	0 0 35,998 31,175 28,681 25,685 22,151 17,999 1	-7,120 -12,735 -3,736 768	-7,120 -12,735 -3,736 768 5,264	0 0 38,476 33,321 30,655 27,454 23,675 19,238	-7,690 -13,693 -4,074 739 5,546	-7,690 -13,693 -4,074 739 5,546	0 31,379 27,175 25,001 22,390 19,308 15,690	-14,412 -24,202 -662	0 0 16,499 14,289 13,145 11,772 10,152 8,250 5,9	-16,760 -21,908 -9,53	0	-5,885 -2	-5,885	0 0 -33,928 -29,382 -27,032 -24,208 -20,877 -16,964 -12	-4,536 757 -3,484 -7,725 -11,969 -16,207	-4,536 757 -11,969 -16,207 -	0 -17,862 -15,469 -14,231 -12,745 -10,991 -8,931	-2,790 2,783 $ -1,683 $ -6,148 -10,617 -15,079 -	1186
	7010	Stress	~	7	ഗഗ)	r.		Ţ	3,8	0	3,31		7,12	7,12	0	69,	69,	0	-14,412	0	,76	С	5,88	5,88	0	-4,536	-4,536	0	2,79	
	700	Cell	108 Stbd		98 East		92 Keel		80 Stbd		72 Stbd	72 Kee1	64 Stbd	64 East	64 West	56 Stbd	56 East			48 Keel	40 Stbd			24 East	24 West	16 Stbd	16 East	16 West		8 Keel	Surg
	BABCO	No.	10 4	7	∞ σ	` -	2 7	12	13	15	91	17	18	19	70	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36

TABLE D.4 (Continued)

			Load	ad Condition	in, 240 Degree	Lag	(1b)			
BAFCO No.	Load Cell	209++	++70%	4+80%	Percent +70% ↓	ent Load +60%↓	+ 20% +	+ %07+	+30%+	+20% +
ư	108 C+bd	· ·	7, 30	12 037	20 625	718 66	797 50	27, 073	078 87	23 105
٠,	000	2 1	1	15,037	620,02	110,22	161,62	0 10 6 47	0,00,00	761,67
١٥		_	-37,983	-44,006	-37,983	-31,979	-25,952	-19,934	-13,920	7.887
7	Stb	\sim		16,361	28,035	31,015	32,347	32,722	32,405	31,528
∞	98 East	-25,429	-29,509	\sim	-29,509	-25,429	-21,332	-17,242	-13,155	-9,062
6	98 West	2	6	-33,603	-29,509	-25,429	-21,332	-17,242	-13,155	-9,062
10	92 Sthd	9	282	77		14.644	5.27	ഗ	15,301	$-\infty$
11	Kee	-29,908	-33.761	-37,627	-33,761	-29,908	-26.039	-22,177	-18,317	-14.451
12	86 Stbd		•		•				•	•
13										
14	Stb	1,464	-135	-3,702	٣,	-7,017	-7,318	-7,403	-7,331	-7,133
15	×	960*5-	-3,250	_	-3,250	960,5-	-6,950	-8,801	-10,650	-12,502
16	72 Stbd	4.888	-451		_	-23.421	7	•		-23.809
17	×	16,046	22,209	_	$\frac{1}{2}$	16,046	6	~	-2.4	
18	64 Stbd	7,121		-17,999	-30.841	-34.120	-35,585	-35,998	-35,650	-34,685
19		14,270	α		\sim	14,270	7,6	`	,	-3,736
20	We	14,270	18,759	23,263	_	14,270	7.	•	768	-3,736
21	56 Stbd	7,611	-701	σ.	-32,965	94.	\sim		-38,104	-37,073
22		7	6,6	` _ ^	9	5,17	10,355	5	, _	-4,074
23	56 West	15,172	19,970	24,784	19,970	15,172	10,355	5,546	739	-4,074
24	Stb	6,20	-572	ı.Ĉ	-26,884	47.6	-31,019	-31,379	-50,882	-49,505
25	48 Keel	7	30,704	38,556	\circ	,87	15,022	•	-662	-8,513
26	40 Stbd	3,264	-301	-8,250	-14,136	-15,638	-16,310	-16,499	-16,339	-15,897
27		∞	6,962	0	6,962	œͺ	-1,284	-5,409	-9,531	99
28										
29	S									
20	3									
31	6 Stb	-6,712	619	16,964	29,068	32,158	33,539	33,928	33,600	0
32	16 East	$\overline{}$	28,	-33,171	or:			-16,207	96	,72
33		\sim	œ	-33,171	¢4 ∞			-16,207	96	,72
34	Stb	~	326	8,931	15,304			17,842	17,689	17,210
35	ee		-28,472	-32,941	-28,472	-24,017		-15,079	-10,617	, 14
36	8 Surge									

TABLE D.4 (Continued)

	 		Load Co	Condition, 24	240 Degree L	Lag (1b)			
BAFCO	Load				ادا				
No.	Cell	+10% +	-10% ↓	-20% →	+ %0€-	↑ %0 7 -	-50%↓	↑ %09-	-70%↓
2	108 Stbd	22,189	19,180	17,177	14,813	\sim	8,752	4,762	-439
9		-1,879	10,157	16,175	22,198	ထ	34,230	40,257	46,261
7	98 Stbd	30,161	26,071	23,348	20,135	v.	11,896	6,473	-597
∞	98 East	-4,971	3,209	7,300	11,393	15,480	19,570	23,667	27,747
σ,	98 West	-4,971	3,209	7,300	11,393	r,	19,570	23,667	27,747
10	92 Stbd	14,241	,31	11,024	.50	.72	.61	.05	-282
11		-10,589	-2,863		7,865	8,725	12,587	4	20,309
12	86 Stbd								
13									
14		ç	וש	-5,282	4,	-3,702	7	-1,464	
15	80 Keel	4,35	-18,054	-19,904	1,75	-23,606	,45	-27,310	-29,156
16	72 Stbd	-22,776		,63	-15,205	-12,355	-8,983		451
17	72 Keel	-14,851		3,38	9,5	-45,740	-51,917	-58,014	-64,267
18	64 Stbd	-33,181	-28,681	5,6	-22,151	-17,999	-13,087	-7,121	959
19	64 East	-8,235		1,73	-26,238	-30,734	-35,234	-39,740	•
20	64 West	-8,235		1,73	6,2	-30,734	-35,234	-39,740	-44,229
21	56 Stbd	-35,465	-30,655	,454	-23,675	-19,238	-13,988	œ	701
22	56 East	-8,883	-18,503	3,312	-28,125	-32,932	-37,741	-42,558	-47,356
23			-18,503	,312	-28,125	-32,932	-37,741	S	•
54		-47,358	S	2,390	-19,308	-15,690	40	\sim	572
25	48 Keel		-32,047	9,892	-47,742	-55,581	-63,426	2,	-79,108
26	40 Sthd	-15,208	-13,145	-11,772	-10,152	-8,250	66	-3,264	301
27	40 Keel	-17,783	یٰ ا		. 2	8,4	2	ِ ح	-50,778
28	24 Stbd								
29	24 East								
30	24 West								
31	9	31,273	27,032		37	16,964	12,334	6,712	-619
32	16 East	~	4,998	•	\$	17,721	21,962	26,209	30,440
33	9	(T)	866, 5	•	3,48	17,721	21,962	26,209	30,440
34		16,464	14,231	12,745	166,01	8,931	6,494	3,533	-326
35	8 Keel		7,249	•	18	20,645	25,111	29,583	34,038
36	8 Surge							!	

TABLE D.4 (Continued)

			Load Co	Condition, 24	240 Degree Lag	ag (1b)			
BAFCO	Load				Percent Lo	Load			
No.	Ce11	+ %08-	-70% +	+ %09-	-50%	-40% +	-30% +	-20% +	-10% +
2	108 Stbd	-12,037	-20,625	-22,817	€.	-24,073	-23,840	-23,195	-22,189
y	108 Keel	52,284	46,261	40,257	34,230	28,212	22,198	16,175	10,157
7	98 Stbd	•	-28,035	-31,015	-32,347	-32,722	-32,405	-31,528	-30,161
∞	98 East	31,841	27,747	23,667	19,570	15,480	11,393	7,300	3,209
6	98 West		27,747	23,667	19,570	15,480	11,393	7,300	3,209
10	92 Stbd	7	-13,237	,64	,27	1	-15,301	-14,886	•
Ξ	92 Kee1	24,175	20,309	16,456	2,5	8,725	4,865	666	-2,863
12	86 Stbd								
13									
14			6,343	7,017	7,318	7,403	$\tilde{\omega}$	7,133	,82
15	80 Keel	-31,008	-29,156	-27,310	-25,456	•	-21,756	-19,904	-18,054
16	72 Stbd	12,355	21,171	23,421	24 427	24,710	24,471	23,809	22,776
17	72 Keel	-70,450	-64,267	-58,104	-51,917	5,7	-39,567	-33,384	-27,207
18	64 Stbd	17,999	30,841	34,120	35,585	35,998	35,650	34,685	33,181
19	64 East	-48,733	-44,229	-39,740	-35,234	/	-26,238	-21,735	-17,235
20	64 West	-48,733	-44,229	-39,740	-35,234	-30,734	-26,238	-21,735	-17,235
21	56 Stbd	19,238	32,965	36,468	38,035	•	38,104	37,073	35,465
22		-52,170	-47,356	-42,558	-37,741	-32,932	-28,125	3,31	-18,503
23	56 West	-52,170	-47,356	-42,558	-37,741	•	-28,125	-23,312	-18,503
24	48 Stbd	S	26,884	29,742	31,019	•	50,882	49,505	47,358
25	48 Keel	-86,960	-79,108	-71,283	-63,426			-39,892	-32,047
26	40 Stbd	8,250	14,136	15,638	16,310	16,499	16,339	15,897	,20
27	40 Keel	-54,906	-50,778	-46,663	-42,532	-38,407	8	-30,158	-26,033
28									
53	24 East								
30	24 West	•••							
31		-16,964	-29,068	-32,158	-33,539	-33,928	-33,600	-32,690	-31,273
32	16 Fast	34,685	30,440	26,209	21,962	17,721	13,483	9,239	4,998
33	9	34,685	30,440	26,209	21,962	17,71	13,483	9,239	4,998
34	8 Stbd	767,9-	-15,304	-16,930	-17,657	-17,682	-17,689	-17,210	-16,464
35		38,507	34,038	29,583	25,111	20,645	16,183	11,714	7,249
36	8 Surge								

TABLE D.5 - ASEM STATIC TEST 1--MEASURED LOADS

			Load	d Condition,	HOG-SAG	(1b)			
RAFCO	Pac I			7000	Still Water+7ero		Percen	Percent Load	
No.	Cell	Unlock	Zero	Stress	Stress	+10% +	+20% +	+30%+	+707+
5	108 Stbd	-1,050	-1,060	0	0	0	0	0	0
9			-3,230	-3,332	4,230	-1,840	-7,910	-13,960	-20,050
7	98 Stbd	-20	09-	09-	08-	-80	-80	-80	-70
80	98 East	70	090,9-	-6,050	-870	-5,020	-9,180	-13,330	-17,500
6	98 West	130	-6,020	000.9-	078-	-4,980	-9,120	-13,240	-17,370
10	92 Stbd	-280	-150	30	70	09	06	100	100
11	92 Keel	-350	-11,480	-11,510	-6,830	-10,590	-14,320	-18,060	-21,820
12	86 Stbd	2,350	2,380	0	-20	140	-100	С	-220
13		-41,780	-12,980	-14,390	-12,500	-13,810	-15,500	-17,220	-18,800
14		0	0	0	0	0	0	0	0
15	80 Keel	-580	-4,550	-13,890	-16,230	-14,360	-12,460	-10,570	-8,720
16	72 Stbd	-1,150	-1,160	0	0	10	20	10	C
17	72 Kee1	-1,040	-14,060	-13,330	-20,830	-15,030	078,8-	-2,830	3,250
18		0	0	0	0	0	0	0	0
19	64 East	0	-7,050	-7,050	-12,630	-8,180	-3,700	750	5,190
20	64 West	-310	-7,500	060,7-	-12,740	-8,230	-3,750	800	5,220
21	56 Stbd	009-	70	40	50	-580	50	-580	07
22	56 East	220	-7,700	-7,720	-13,840	-8,970	-4,060	930	5,780
23	56 West	270	-7,600	009,7-	-13,700	-8,800	-3,950	1,020	5,930
77		0				0		0	0
25	48 Keel	280	-14,320	-14,340	-24,220	-16,290	-8,430	-510	7,460
56	40 Stbd	30	07	20	50	50	50	50	50
27		850	-16,600	-16,580	-21,900	-17,650	-13,400	-9,150	-4,880
28		1,230	1,800	280	240	086	630	006	260
29		_	-2,030	-3,650	370	-3,130	-6,200	-9,350	-12,600
30	24 West	-15,070	-8,530	-13,250	-9,120	-12,680	-15,620	-18,100	-21,080
31	16 Stbd	0	-20	0	0	0	0	0	C
32	16 East	-2,180	-6,170	-4,550	100	-2,960	-7,230	-11,710	-15,700
33		190	-4,360	-4,520	820	-3,450	-7,800	-12,190	-16,560
34		-1,070	-1,060	-10	-10	C	С	C	0
35	8 Keel	-3,000	-5,900	-2,880	3,030	-1,800	-6,330	-11,000	-15,690
36	8 Surge	-1,480	1 -980	-1,030	1 -790	076-	-1,180	-1,500	-1,750

TABLE D.5 (Continued)

			Lo	Load Condition	Condition, HOG-SAG (1b)	(1b)			
BAFCO	Load				Percent Load				
No.	Ce11	+50%+	+ %09+	+70%+	+80%+	+20%+	↑ %09+	+20% +	+%07+
5	108 Stbd	0	0	0	0	0	0	0	0
9	108 Keel	-26,100	-32,180	-38,240	-44,300	-38,240	-32,160	-26,100	-20,040
7		-80	-80		-80	-70	-70	-80	-70
œ		-21,650	-25,820	-29,980	-34,150	-30,000	-25,830	-21,680	-17,510
σ.	98 West	-21,530	41	-29,770	-33,900	-29,770	-25,620	-21,480	-17,330
10	92 Stbd	06	100	100	06	06	06	100	06
11	92 Keel	-25,900	-29,640	-33,380	-37,120	-33,380	-29,630	-25,870	-22,130
12	86 Stbd	-40	-330	-130	-160	-160	-420	-120	-350
		-20,030	-21,650	-22,760	-24,580	-23,040	-21,530	-20,150	-18,720
14		0	0	0	0	0	0	0	0
	80 Kee1	-6,840	-4,990	-3,090	-1,240	-3,120	-5,000	-6,870	-8,730
16	72 Stbd	10	0	0	0	0	0	0	0
17		089,6	15,660	21,670	28,200	22,220	16,210	10,220	4,210
18	64 Stbd	0	0	0	0	0		0	0
19		099,6	14,120	œ	23,050	18,600	4,1	099,6	5,180
20	64 West	9,730	√ 7	•	3	18,310	13,740	9,370	4,940
21	56 Stbd	-560	50	-590	-580	-580	50	580	50
22		10,680	15,550	20,420	25,300	20,430	15,540	10,640	5,760
23	56 West	10,800	15,660	19,890	24,620	19,920	15,180	10,460	5,730
24		0	0	0	0	0	0	0	0
2.5	48 Keel	15,350	23,240	31,130	39,030	31,150	23,240	15,340	7,450
26	40 Stbd	20	50	50	50	50	50	50	50
27	40 Keel	-1,020	3,480	7,880	12,290	7,900	3,500	-1,020	-5,430
28		840	410	610	550	049	410	770	520
59	Б	-16,000	9,3	3,	7,	-23,320	-19,750	5,3	-12,810
30	24 West	-23,870	-26,890	-29,820	-32,730	-29,620	-26,730	-23,730	-20,990
31	16 Stbd	0	0	0	0	-10	-10	-10	-10
32	16 East	-20,330	-24,450	-28,590	-32,700	∞	-24,430	-20	-16,180
33	e Wes	-20,870	-25,260	-28,950	-33,200	-28,940	-24,690	١	-16,190
34		0				0	0		
35	-		4,0	ထ်င	C (~ .	4,1	-19,610	u 1 (
36	8 Surge	066-1-	-2,250	-2,510	-2,760	-2,820	-2,7/0	-2,600	-2,190

TABLE D.5 (Continued)

Load Condition, HOG-SAG (1b) Percent Load Still Load Condition HOG-SAG (1b) Still Load Load Condition HOG-SAG (1b) Still Load Lo							
+20%							
6							
5							
-14							
1							
}							
-7,910							
50							
γ α							
101							
50							
570							
-5,790							
-15,210							
-1,360							

TABLE D.5 (Continued)

			ĭ	דחשת בחוות דרדו	condition, noc-sac (10)	(01)			
BAFCO	Load				Percent Load	oad			
No.	Ce11	-50% ↓	+ %09-	+ %0∠-	+ %08-	-70% +	+ %09−	-50% ↑	-40% +
5	108 Stbd	0	0	0	0	0	0	0	0
9		34,460	40,500	46,550	52,580	46,510	40,450	34,380	28,310
7	98 Stbd	09-	09-	09-	09-	-70	-70	-70	-70
œ	98 East	19,860	24,020	28,190	32,320	28,170	24,020	19,860	15,700
6	98 West	19,900	24,050	28,200	32,330	28,190	24,040	19,890	15,730
10	92 Stbd	130	100	110	100	100	100	100	06
11	92 Keel	12,380	16,120	19,880	23,580	19,850	16,120	12,360	8,630
12	86 Stbd	230	620	400	160	350	260	180	340
13	86 Keel	-6,150	-4,250	-2,300	096-	-2,530	-3,840	-5,490	-6,510
14	80 Stbd	0	0	0	0	0	0	0	0
15	80 Keel	-25,740	-27,630	-29,510	-31,400	-29,530	-27,630	-25,760	-23,890
16	72 Stbd	0	0	0	0	0	0	0	0
17	72 Keel	-51,270	-57,278	-64,100	-70.120	-64,130	-58,120	-52,100	-46.090
18		0	0	0			0	١.	0
19	64 East	-35,160		-44,100	-48,580	-44,130	-39,640	-35,190	-30,690
20	64 West		-39,580	-43,920	-48,290	-43,620	-39,290	-34,960	-30,620
21	56 Stbd	50	-570	50	-580	07	-580	40	-570
22		-37,800	-42,590	-47,380	-52,220	-47,410	-42,600	-37,820	-32,990
23	56 West	•	-42,780	-47,630	-52,510	-47,670	-42,790	-37,950	-33,040
24	48 Stbd	0	0	C		0	0	0	C
25	48 Keel	-63,790	-71,690	-79,600	-87,510	-79,620	-71,700	-63,800	-55,870
26	40 Stbd	07	07	40	30	30	30	30	30
27	40 Keel	-42,840	-47,030	-51,200	-55,400	-51,240	-47,040	-42,860	-38,650
28	24 Stbd	1,180	1,580	1,400	1,780	1,340	1,460	1,040	1,180
29	24 East	16,860	20,500	24,000	27,170	23,880	20,400	17,120	13,650
30	24 West		6,380	8,970	11,720	8,970	6,540	3,890	1,470
31	16 Stbd	-20	-10	0	20	-30	-20	-30	-20
32	16 East	2,	26,320	30,670	34,990	30,640	26,300	•	17,630
33	16 West	21,980	26,240	30,490	34,730	30,460	26,210	21,950	17,700
34	8 Stbd	0	0	0	0	0	0	0	C
35		25,400	29,890	34,400	38,890	34,390	29,890	25,400	20,890
36	8 Suroe	300	580	830	1.020	078	260	000	•

TABLE D.5 (Continued)

1			Load Condition,	ion, HOG-SAG (1b)	1b)		
RAFCO	Tood.		Percent Load	pe	Still Still Water + Zero		
No.	Ce 11	-30%+	-20%	-10%+	ess	Zero	Unlock
2	108 Stbd	0	0	0	0	0	0
9		22,230	16,160	10,110	4,070	-3,520	-130
7	98 Stbd	-70	-70	-70	-20	-70	-70
∞	98 East	11,550	7,390	3,240	-910	-6,100	-30
6	98 West	11,590	7,460	3,320	-820	000,9-	20
10	92 Stbd	100	06	100	06	100	100
11		4,880	1,140	-2,610	-6,340	-11,040	160
12		-130	0	0	-220	06-	
13	86 Keel	-7,830	-9,230	-10,630	-11,970	-13,580	-45,480
14	80 Keel	-22.000	-20,100	-18,220	-16,330	-14.020	-20
71	72 6443	`					c
10	72 VCC1	001 07	000 %	0 0 0 0 0	0 0 0 0	0 25 71	1 530
<u>.</u> 81		001.04	060,40	0/0.02-	000,77-	t	000,17
19		-26,240	-21,620	-17,150	-12,670	-7,110	-50
20	64 West	-26,260	-21,930	-17,580	-13,200	-7,750	-770
21	56 Stbd	70	-570	-570	07	40	-580
22		-28,170	-23,360	-18,560	-13,750	-7,760	30
23		-28,240	-23,350	-18,490	-13,640	-7,600	280
24		0 ;	0		7	0	0 0
52	48 Keel	-48,010	-40,090	-32,160	077,47-	-14,360	740
56		30	20	30	30	30	30
27	40 Keel	-34,490	-30,300	-26,120	-21,920	-16,730	370
28		510	770	800	540	069	840
29		088'6	6,530	3,500		-3,020	-13,630
30	24 West	-290	-3,220	060*9-	-9,120	-12,860	-18,760
31	16 Sthd	-30	-30	-20	0:-	-30	-30
32		13,300	8,970	4,620	300	-5,130	-480
33		13,450	9,200	4,930	089	-4,540	06-
34		0	0	0	0	0	0
35	8 Keel	16,370	11,880	7,370	2,870	1.750	
20	agine o	1-290	076-	01/1	1 -210	1,001,	000,7-

TABLE D.6 - ASEM STATIC TEST 2--MEASURED LOADS

			Ľ	Load Condition,	on, HOG-SAG	(1b)			
BAECO	1000			70.00	Still Water+7ero		Percent	Load	
No.	Cell	Unlock	Zero	Stress	Stress	+10% +	+20%+	+30%+	+40%+
5	108 Stbd	10	-10	-10	-20	2,930	5,930	-8,950	11,950
9	108 Keel	140	-3,200	-3,230	4,210	4,210	4,200	4,200	4,200
7	98 Stbd	7490	0	30	07	4,120	8,200	12,310	16,390
&	98 East	-1,190	-7,120	-5,960	-870	-870	-870	098-	-850
6	98 West	290	-5,860	-5,870	-780	-760	-760	-780	-760
10	92 Stbd	110	0	-10	-20	1,850	3,790	5,730	7,660
11	92 Keel	1,050	-9,900	-11,520	096*9-	-6,730	-6,730	-6,730	-6,730
12	86 Stbd	049	097	-650	-770	-180	7 4 90	1,240	2,000
13		-50,790	-14,700	-14,620	-12,460	-12,600	-12,460	-12,350	-12,190
14		0		9	9	-930	-1,860	-2,790	-3,700
15	80 Keel	-240	-13,930	-13,930	-16,260	-16,220	-16,200	-16,190	-16,200
16	72 Stbd	0	-50	0-	0	-2,970	-6,040	-9,150	-12,200
17	72 Keel	-250	-3,558	-13,330	-20,970	-20,980	-20,990	-21,000	-21,000
18	64 Stbd	06	0	9	0	-4,450	-8,940	-13,460	-17,950
19	64 Fast	40	-7,080	060,7-	-12,700	-12,730	-12,700	-12,730	-12,720
20	64 West	120	-1,120	-7,140	-12,810	-12,830	-12,830	-12,840	-12,840
21	56 Stbd	С	-20	-10	9	-4,760	-9,580	-14,390	-19,230
22	56 East	130	-7,830	-7,690	-13,690	-13,690	-13,690	-13,700	-13,700
23		-300	-7,960	-7,730	-13,680	-13,670	-13,660	-13,660	-13,660
54		0	07-	-30		-3,920	-7,650	-11,800	-15,710
25	48 Keel	40	-14,430	-14,450	-24,260	-24,240	-24,230	-24,240	-24,220
26	03	70	0	0-	0-	-2,100	-4,160	-6,220	-8,300
27	40 Keel	10	-16,830	-16,830	-22,000	-22,000	-22,000	-22,010	-21,980
28	24 Stbd	-1,180	-360	110	160	3,200	6,310	9,370	12,460
29	24 East	-16,230	-3,840	000,4-	-50	300	820	1,350	1,850
30	24 West	-20,830	-12,580	-12,770	-9,120	-9,450	096,6-	-10,470	-10,970
31	16 Stbd	750	049	10	0	4,230	8,490	12,750	17,000
32	16 East	160	077,7	-4,450	820	810	820	820	830
33	.3	-260	-4,700	-4,560	099	099	099	099	099
34	(C)	100	С	C	0	2,240	4,470	6,700	8,950
35	eel		-2,590	-2,810	2,680	2,680	2,690	2,690	2,690
36	8 Surge	1 -2,560	1,100	-1,110	-810	-/6()	-/60	-/60	-760

TABLE D.6 (Continued)

			ľ	Load Condition,	on, HOG-SAG	(1b)			
BAFCO	Load	, ,		d b	ercent Load	80	1,800		1 80 7
No.	Cell	+202+	± 209+	+ 707+	+808+	÷ %0/+	+209+	+202+	+40%+
5	108 Stbd	14,970	17,960	20,980	23,980	21,000	17,980	14,990	11,960
9	108 Keel	4,180	4,170	4,170	4,160	4,180	4,160	4,180	4,170
7	98 Stbd	20,490	24,580	28,680	32,770	28,690	24,600	20,500	16,390
&	98 East	098-	-870	-880	-880	-870	-870	-870	-870
6		-260	-760	-760	-760	-760	-760	-770	-770
10	92 Stbd	9,590	11,520	13,460	15,400	13,470	11,530	009,6	7,670
11	92 Keel	-6,730	œ	9	-6,730	-6,730	-6,710	-6,720	-6,720
12	86 Stbd	2,710	3,480	4,190	4,970	4,470	3,910	3,260	2,660
13		-12,070	-11,960	-11,850	-11,750	-11,840	-11,920	-12,130	-12,270
14	80 Stbd	-4,610	-5,560	-6,500	-7,400	067,9-	-5,560	-4,630	-3,710
15	80 Keel	-16,180	-16,170	-16,150	-16,110	-16,100	-16,170	-16,210	-16,220
16	72 Stbd	-15,320	-18,360	-21,470	-24,700	-21,620	-18,530	-15,460	-12,370
17	72 Keel	-21,000	•	-21,000	-21,010	o,	ó	-21,000	•
18		-22,470	-26,980	-31,480	-35,980	-31,470	-26,980	-22,460	-17,940
19		-12,710	7.	-12,700	-12,690	. 4	~	-12,700	-12,700
20	64 West	-12,830	-12,830	-12,840	-12,840	-12,810	-12,790	-12,760	-12,760
21	56 Sthd	-24,020	-28,870	-33,680	-38,500	-33,660	-28,850	-24,000	-19,200
22	56 East	-13,690	-13,690	-13,690	-13,700	-13,700	-13,700	-13,710	-13,710
23		-13,660	-13,660	-13,660	-13,670	-13,660	-13,690	-13,690	-13,690
54	48 Stbd	-19,660	-23,610	-27,560	-31,490	7,5	3,6	-19,700	-15,700
25	48 Keel	-24,230	-24,220	-24,240	-24,230	-24,200	-24,220	-24,210	-24,220
56	40 Stbd	-10,330	-12,390	-14,460	-16,500	-14,410	-12,390	-10,340	-8,290
27	40 Keel	-22,000	-22,000	-22,020	-22,020	-22,010	-22,000	-22,010	-22,020
28	24 Stbd	15,490	18,590	21,680	24,800	22,090	19,290	16,240	13,270
29	24 East	2,360	2,870	3,410	3,920	4,150	۳,		3,660
30	24 West	-11,470	-11,990	-12,520	-13,050	-13,260	-13,290	-13,150	-12,920
31		21,250	25,500	29,760	34,020	29,780	25,500	21,250	16,990
32	16 East	∞	820	830	810	810	820	830	820
33	16 West	0/9	099	059	650	650	099	099	099
34		11,190	13,410	15,660	17,900	15,650	13,410	11,170	8,940
35		2,700	9,	2,690	2,690	2,690	069°7	2,700	•
36	8 Surge	-790	-820	-870	-910	-930	-940	076-	-930

TABLE D.6 (Continued)

			1	oad Conditi	Load Condition, HOG-SAG ((1b)			
BAFCO	Load				Percent Load				
No.	Ce11	+30%+	+30%+	+10%+	Still Water	-10%	-20%+	+%0€-	↑ %07-
2	108 Stbd	8,950	5,940	2,920	-30	-3,050	-6,050	060,6-	-12,060
9	108 Keel	4,160	4,160	4,150	4,140	4,140	4,150	4,140	4,130
7	98 Stbd	12,320	8,210	4,120	20	-4,000	-8,100	-12,180	-16,280
∞	98 East	-870	-870	-870	-870	-870	-860	-860	098-
6	98 West	-770	-770	-160	-760	-760	-760	-760	-750
01	92 Stbd	5,750	3,800	1,870	0-	-1,940	-3,870	-5,800	-7,750
11	92 Keel	-6,720	-6,730	-6,730	-6,740	-6,750	-6,750	-6,770	-6,770
12	86 Stbd	1,990	1,400	610	20	-580	-1,310	-2,200	-2,970
13	86 Keel	-12,430	-12,570	-12,660	-12,660	-12,660	-12,740	-12,910	-13,090
14	80 Stbd	-2,770	-1,850	-930	0	880	1,800	2,730	3,660
15	80 Keel	-16,190	-16,180	-16,200	-16,260	-16,280	-16,300	-16,280	-16,250
16	72 Stbd	-9,270	-6,190	-3,100	-70	2,940	6,030	9,280	12,370
17	72 Keel	-20,990	-21,000	-21,020	-21,020	-21,010	-21,020	-21,000	-21,000
18	64 Stbd	-13,420	-8,930	-4,430	0	4,490	9,010	13,520	18,020
19	64 East	-12,690	-12,680	-12,690		-12,720	-12,700	-12,700	-12,700
20	64 West	-12,750	-12,740	-12,700		-12,740	-12,740	-12,740	-12,740
21	56 Stbd	-14,380	-9,560	-4,740	-10	4,730	9,540	14,370	19,180
22	56 East	S.	-13,700	-13,720	-13,700	-13,710	-13,720	-13,720	-13,710
23	56 West	-13,690	-13,690	-13,680	-13,690	-13,690	-13,660	-13,660	-13,660
24		-11,550	-7,430	-3,890	0	3,900	7,830	11,770	5,
25	48 Keel	-24,210	-24,210	-24,210	-24,220	-24,210	-24,220	-24,210	-24,220
26	40 Stbd	-6,210	-4,170	-2,100	0-	2,020	4,080	6,130	8,180
27	40 Keel	-22,030	-22,010	-22,010	-22,010	-22,010	-22,030	-22,020	-22,010
28	24 Stbd	0	7,280	4,030	006	-2,120	-5,200	-8,340	-11,410
59	24 East	3,360	2,960	2,450	1,830	1,120	240	130	-280
20	24 West	-12,640	-12,240	-11,700	-11,040	-10,310	-9,720	-9,300	-8,930
31	16 Stbd	12,750	8,470	4,230	0-	-4,240	-8,490	-12,740	-17,000
	16 East	820	820	820	820	830	820	820	800
		099	650	059	099	099	099	099	650
34		6,710	4,470	2,223	C	-2,180	-4,410	059,6-	-8,890
35	8 Keel	2,710	-2,710	-2,720	-2,710	-2,710	2,710	-2,720	-2,700
36	8 Surge	-910	006-	-880	-820	-790	-820	-850	-880

TARLE D.6 (Continued)

			LC	Load Condition	Condition, HOG-SAG	(1b)			
BAFCO	Load				Percent Load	p			
No.	Ce11	+%05-	↑ %09-	+ %01-	+%08−	+ %02−	+%09-	-50% +	+707-
S		-15,090	-18,090	-21,120	-24,110	-21,110	-18,100	-15,100	-12,080
9		4,120	4,120	4,110	<+ □	4,130	√ 7	4,120	4,130
~ °		-20,370	-24,450	-28,540	-32,630	-28,240	-24,460	-20,370	-16,290
∞ σ	98 East	-860	-860	-860	-860 -780	-860 -780	-8/0	-8/0	-860
		20 /	00/-	00/1	20/1	00/1	001	-	0 1
10	92 Stbd	-9,670	-11,610	-13,540	-15,480	-13,470	-11,620	089,6	-7,740
11		0/2/9-	-6,750	-6,760	-6,750	-6,750	-6,760	-6,760	-6,750
12		-3,750	-4,530	-5,300	-6,070	-5,650	-5,050	-4,350	-3,620
13		-13,200	-13,300	-13,380	-13,500	-13,490	-13,410	-13,260	-13,100
14		4,580	5,510	6,430	7,350	6,430	51	4,590	3,670
15	80 Keel	-16,260	-16,290	-16,370	-16,370	-16,310	-16,270	-16,260	-16,250
16	72 Stbd	.15,450	18,550	21,620	24,710	21,660	18,570	15,470	12,400
17	72 Keel	-21,000	-21,000	-21,020	_	-21,000	-21,020	-21,036	-21,020
18	64 Stbd	22,520	27,040	31,560	36,050	31,610	27,090	22,550	18,030
19	64 East	-12,690	\circ :	-12,710	-12,700	-12,700	-12,700	-12,690	-12,700
20	64 West	-12,720	-12,790	-12,730	-12,730	-12,730	-12,790	-12,830	-12,820
21	56 Stbd	23,970	28,800	33,630	38,420	33,640	28,830	23,970	19,180
22	56 East	-13,700	-13,710	-13,720	-13,720	-13,720	-13,730	-13,730	-13,730
23		-13,660	-13,680	-13,700	-13,670	-13,660	-13,660	-13,630	-13,630
54		19,650	23,580	27,510	31,420	27,510	23,590	19,650	15,710
25	48 Keel	-24,220	-24,220	230	-24,220	-24,240	-24,220	-24,230	-24,230
36	40 Stbd	10,230	12,290		16,390		12,300	10,250	8,180
27	40 Keel		-22,020		-22,020	•	-22,030	-22,010	-22,040
28	24 Stbd	-14,480	-17,600		-23,650		-18,140	-15,140	-12,120
29	24 Fast	-790	-1,250	089,	-2,110	-2,	-2,360	-2,170	-1,930
30	24 West	-8,450	-8,020		-7,240	ı	006,9-	-7,000	-7,190
31	16 Stbd	-21,250	-25,490	-29,750	-34,020	-29,770	-25,510	-21,280	-17,020
32	16 East	800	800	810	810	810	810	810	810
33	16 West	059	099	099	099	660	099	099	650
34		-11,130	-13,370	-15,600	-17,850	-15,600	-13,360	-11,130	-8,890
35	8 Keel	2,700	•	2,710	7.	2,710	2,700	2,700	2,700
36	8 Surge	-910	-920	076-	050-	-030	0.0	-910	-880

TABLE D.6 (Continued)

			Load Cendition,	on, HOG-SAG (1b)			
BAFCO	Load		Percent Lead		Still Water +	 	
No.	Ce11	-30%+	-20%	-10% +	Zero Stress	Zero	Unlock
5	108 Stbd	-9,100	050,4-	-3,050	-30	-40	07-
9	108 Keel	4,130	4,140	4,140	4,130	-2,340	c
7	98 Stbd	-12,190	-8,110	-4,010	01	20	20
œ	98 East	-850	-870	-860	098-	-5,970	С
6		-750	-770	-770	-760	-5,900	120
10	92 Stbd	-5,810	-3,880	-1,940	0-	C	c
11		-6,760	-6,750	-6,740	-6,730	-11,300	-330
12	86 Stbd	-2,880	-2,190	-1,450	-790	-720	-1,490
13	86 Keel	-12,920	-12,780	-12,740	-12,720	-14,720	-50,190
14		2,730	1,800	870	0-	0-	0
15	80 Keel	-16,280	-16,260	-16,200	-16,170	-13,880	-120
16	72 Sthd	9,290	6,210	3,130	05	07	70
17	72 Keel	-21,020	-21,020	-21,030	-21,030	-13,420	-110
18	64 Stbd	13,540	9,020	4,510	0	0	0
19	64 East	-12,700	-12,700	-12,680	-12,690	-7,070	07
20	64 West	-12,820	-12,830	-12,830	-12,820	-7,180	110
21	56 Stbd	14,360	9,540	4,740	0-	0	c
22	56 East	-13,740	-13,730	-13,720	-13,730	-7,740	220
23		-13,630	-13,650	-13,650	-13,650	-7,700	10
24	48 Stbd	11,770	7,830	3,900	0	0	0
25	48 Keel	-24,230	-24,230	-24,230	-24,220	-14,420	09
26	40 Stbd	6,130	4,080	2,020	0-	С	0
27		-22,030	-22,050	-22,030	-22,030	-16,880	-30
28	24 Stbd	-9,100	-6,070	-2,990	70	70	025-
29	24 East	-1,620	-1,220	-720	-140	-3,870	-16,960
30	24 West	-7,470	-7,850	-8,380	010.6-	-12,930	-19,830
31	16 Stbd	-12,760	-8,480	-4,230	С	С	c
32	16 East	830	820	820	800	-4,500	90
33		099	059	059	059	-4.560	-110
34		099,9-	-4,420	-2,180	5	C	0
35	8 Keel	2,700	2,700	2,700	2,700	-2,800	07-
36	8 Surge	-850	-800	-780	-800	970	2,460

TABLE D.7 - ASEM STATIC TEST 3--MEASURED LOADS

Std Unlock Stress Zero Stress Stbd -250				Load	Condition,	60 Degree	Lag (1b)			
108 Stbd		7		7000	Still Water +	Tatoral		Percent Load	Load	
108 Stbd	3	11	Unlock	Stress	ero	Offset	+10%	+20%+	+30% +	+40%+
108 Keel		Stbd	-250	0	С	20,750	19,100	17,120	14,750	11,950
98 Stbd	108	Keel	06-	-3,460	7,060	4,070	-1,900	-7,890	-13,900	-19,920
98 East 0	86	Stbd	140	0	10	28,330	26,060	23,350	20,120	16,350
98 West 90 -5,940 -1,000	86	East	c	-5,940	-810	-800	-4,900	000 , 6-	-13,090	-17,180
92 Stbd	86	West	06	-5,940	-1,000	-860	-4,950	-9,050	-13,150	-17,300
92 Keel		Stbd	230	02	O	13,350	12,280	11,000	9,450	7,690
86 Stbd	92	Kee1	-470	-11,000	-6,880	068,9-	-10,620	-14,380	-18,090	-21,810
86 Keel		Stbd		С	009-	3.680	3,190	2,200	1,940	1,440
80 Stbd 0 -30 0 0 80 Keel		Kee1	5	-13,900	-11,780	-11,150	-13,380	-15,520	-17,710	-19,720
80 Keel	80	Stbd	0			-6,370	-5,860	-5,250	-4,520	-3,680
72 Stbd	80	Keel	-80	ć.		-16,080	-14,240	-17,400	-10,510	-8,620
72 Keel		Stbd	140	0	0	-21,350	-19,640	-17,570	-15,120	-12,270
64 Stbd 790 20 30 -12,700 64 East 120 -7,070 -12,700 -12,700 -12,610 -7,060 -12,610 -7,060 -12,610 -7,060 -12,610 -7,630 -13,920 -7,570 -13,920 -7,570 -13,920 -7,570 -13,920 -24,160	72	Keel	-210	\sim	•	-21,160	-15,030	-8,940	-2,760	3,630
64 East 20 -7,070 -12,700 -64 West 120 -7,060 -12,610 -56 Stbd 840 0 -7,630 -13,640 -56 East 550 -7,570 -13,920 -48 Keel 100 0 -24,160 -24,160 -40 Keel 3,000 -16,750 -22,040 -24,160 -24 Keel 13,000 -16,750 -22,040 -24,160 -24 Keel 11,120 990 400 780 24 East -14,030 -3,980 780 24 West -19,340 -12,630 -8,900 -16,750 16 East 20 -4,510 770 8 Keel -11,000 8 Keel -2,840 2,760	99	Stbd	790	20	30	-31,100	-28,600	-25,630	-05,040	-17,900
56 Stbd 840 -7,060 -12,610 -56 Stbd 840 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79	East	20	-7,070	-12,700	-12,680	-8,200	-3,690	800	5,330
56 Stbd 840 0 0 0 0 56 East 400 -7,630 -13,640 -56 West 550 -7,570 -13,920 -0,48 Keel 100 0 0 -24,160 -24,160 -24,160 -24,160 -24,160 -24,160 -24,160 -24,160 -24,120 990 400 24 East -14,030 -12,630 -8,900 -15,550 -22,040 -12,630 -8,900 -15,550 -2,840 -4,550 640 8 Keel -2,840 -2,840 2,760 8 Keel -2,840 -2,840 2,760	9	West	120	-7,060	-12,610	-12,650	-8,220	-3,720	850	5,310
56 East 400 -7,630 -13,640 - 56 West 550 -7,570 -13,920 - 13,920 - 48 Keel 270 0 0 -24,160 - 24,160 - 24 Keel 3,000 -16,750 -22,040 - 24 Keel -14,030 -3,980 780 24 West -19,340 -12,630 -8,900 - 16 Keel -360 -4,510 8 Keel -11,000 - 10,000	99	Stbd	840	0	0	-33,300	-30,620	-27,420	-23,580	-19,150
56 West 550 -7,570 -13,920 - 48 Stbd 270 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	99	East	007	-7,630	-13,640	-13,610	-8,800	0/0.4	1,060	5,830
48 Stbd 270 0 0 0 48 Keel 730 -14,400 -24,160 -40 Keel 3,000 -16,750 -22,040 -24,504 400 24 East -14,030 -3,980 780 24 West -19,340 -12,630 -8,900 -16 East -360 -4,510 770 16 East -360 -4,550 640 8 Keel -1100 -2,840 2,760 8 Keel -12,840 2,760	26	West	250	-7,570	-13,920	-13,940	-8,590	-3,470	1,560	6,230
48 Keel 730 -14,400 -24,160 - 40 Stbd 100 0 0 0 40 Keel 3,000 -16,750 -22,040 - 24 Stbd 1,120 990 780 780 24 West -19,340 -12,630 -8,900 - 16 Stbd -930 0 10 10 10 16 West 20 -4,510 770 8 Stbd -2,840 2,760 8 Keel -10,000 -1	8 7	Stbd	270		С	-26,140	-24,060	-21,540	-18,560	-15,760
40 Stbd 100 0 0 0 24 Keel 3,000 -16,750 -22,040 -24 Stbd 1,120 990 400 24 East -14,030 -3,980 780 24 West -19,340 -12,630 -8,900 -16 East 20 -4,510 770 16 West 25 C 0 0 0 8 Keel -10 0 2,760 8 Keel -2,840 2,760 8 Keel -2,840 2,760		Kee]	730	•	-24,160	-24,140	-16,300	-8,450	-610	7,320
40 Keel 3,000 -16,750 -22,040 -24 Stbd 1,120 990 400 24 East -14,030 -3,980 780 24 West -19,340 -12,630 -8,900 -16,510 16 East 20 -4,510 770 16 West -360 -4,650 640 8 Stbd C C 0 0 0 8 Keel -1100 -2,840 2,760 8 Strae -2,840 2,760	40	Stbd	100	С	C	-14,250	-13,110	-11,750	-10,110	-8,230
24 Stbd 1,120 990 400 24 East -14,030 -3,980 780 24 West -19,340 -12,630 -8,900 - 16 Stbd -930 0 10 10 16 East 20 -4,510 770 16 West -360 -4,650 640 8 Stbd C 0 0 0 8 8 Keel -110 -2,840 2,760	70	Kee1	3,000	-16,750	-22,040	-22,050	-17,830	-13,580	-9,350	-5,140
24 East -14,030 -3,980 780 24 West -19,340 -12,630 -8,900 - 16 Stbd -930 0 10 10 16 East 20 -4,510 770 16 West -360 -4,650 640 8 Stbd C 0 0 0 0 8 Keel -110 -2,840 2,760	54	Stbd	1,120	066	7 7 7	20,940	19,370	17,580	15,190	000.11
24 West -19,340 -12,630 -8,900 -16 East 20 -4,510 770 16 West -360 -4,650 640 8 Keel -110 -2,840 2,760 8 Keel -2,840 2,760		East		-3,980		3,800	3,70	11.950	0.2.5-	-a,540
16 Stbd -930 0 10 16 East 20 -4,510 770 16 West -360 -4,650 640 8 Stbd C 0 0 0 8 Keel -110 -2,840 2,760	24	West	_	-12,630	•	-11,980	-15,180	10.1		060**;-
16 East 20 -4,510 770 16 West -360 -4,650 640 8 Stbd C 0 0 0 8 Keel -110 -2,840 2,760 8 Curse -2,840 2,760	16	Stbd	-930	С	10	σ	050.70	01. 57	Open Or	066
16 West -360 -4,650 640 8 Stbd 6 0 0 0 0 8 Keel -110 -2,840 2,760 8 Surge -2,840 -1,000		East	20	-4,510	770	780	- 3,5()('	0.4	: 3.	0.1.4.
8 Keel -110 -2,840 2,760	91	West	-360	-4,650	640	760	-3,400	19	974	- 16 CO
8 Keel -110 -2,840 2,760	∞	Stbd	U	0	c	15,460	14,250			ē.
8 Surae -2 840 -1 470 -1 000	∞	Keel	-110	-2,840	2,760	7,790				:
0,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	œ	Surge	1 -2,840	-1,470	,000	-1,060	· · · ·	•	٠	

TABLE D.7 (Continued)

			Load	Condition,	60 Degree Lag	Lag. (1b)			
BAFCO	Load				Percent L				
No.	Cell	+20% +	+ %09+	+ 70% +		↑ %0 <i>L</i> +	+ %09+	+20%+	+%05+
5	108 Stbd	8,700	7,690	-4,400	-12,050	-20,600	-22,840	-23,800	-24,070
9		-25,930	-31,920	-37,920	-43,920	-37,900	-31,900	-25,910	-19,940
7	98 Stbd	11,900	6,470	-550	-16,300	-27,960	-30,940	-32,260	-32,610
∞	98 East	-21,290	-25,400	-29,490	-33,580	-29,470	-25,380	-21,300	-17,180
6	98 West	-21,400	-25,490	-29,600	-33,780	-29,640	-25,520	-21,420	-17,290
10	92 Stbd	5,580	3,010	-290	-7,740	-13,200	-14,700	-15,300	-15,400
11		-25,600	-29,780	-33,530	-37,200	-33,840	-30,120	-26,400	-22,250
12		720	04-	-1,010	-3,190	-5,140	-5,600	-5,910	-6,040
13	86 Keel	-21,210	-22,220	-23,780	-24,800	-22,670	-20,750	-19,300	-18,100
14		-2,670	-1,450	80	3,640	54	٥,	7,	7,280
15	80 Keel	-6,770	-4,880	-3,020	-1,140	-2,970	-5,100	-6,950	-8,860
16	72 Stbd	-8,900	-4,800	450	12,390	21,230	23,500	24,520	24,790
17	72 Keel	9,750	15,900	22,000	28,140	22,270	9		3,910
18		-12,990	-7,000	710	18,090	30,980	34,260	35,740	36,130
19	64 East	9,850	14,360	18,890	3,4	∞	4,3	098,6	5,340
20	64 West	09,46	14,220	18,690	23,120	18,670	14,240	9,780	5,330
21		-13,940	-7,550	079	19,190	32,930	36,420	38,010	38,430
22		10,350	15,110	19,940	~	6	15,110	10,340	5,510
23	56 West	050,11	15,510	20,330	25,080	19,770	14,720	0,6,6	5,000
54		-11,680	-6,410	09	15,090	6,	Q.	31,030	31,360
25	48 Keel	15,150	23,020	30,850	38,670	30,840	23,000	15,160	7,330
26		000,9-	-3,270	300	8,210	14,070	15,570	16,240	16,420
27	40 Keel	-1,270	3,090	7,310	10,970	6,970	2,960	-1,180	-5,210
28		9,770	5,800		-10,090	-19,070	Ξ,	-22,730	-23,260
59	24 East	-13,100	-17,000	_	ŝ		•	-19,600	•
30	24 West	-26,210	-28,270	-29,910	-29,500	-24,850	-21,360	-18,320	-15,520
31	9	12,350	6,720	-550	-16,910	-29,020	-32,090	-33,490	-33,850
32		-20,410	-24,630	-28,860	-33,100	-28,860	-24,610	-20,340	-16,160
33	9	-20,330	-24,590	-28,840	-33,110	-28,840	-24,600	-20,360	-16,080
34		6,510	3,540	-270	-8,890	5,	-16,910	-17,650	-17,840
35	8 Keel	-19,540	-24,020	-28,470	-32,940	-28,470	-24,000	-19,560	-15,070
36	8 Surge	-2,230	-2,440	-2,690	-3,020	-3,180	-3,170	-3,040	-2,760

TABLE D.7 (Continued)

			Load	Condition,	, 60 Degree Lag	Lag (1b)			
BAFCO	Load				Percent Load				
No.	Ce11	+30% ↑	+20% +	+10%+	Still Water	-10%	-20%↓	-30%+	+%05-
5		-23,800	-23,200	-22,200	-20,820	-19,170	-17,190	-14,810	-12,020
9			-7,940	-1,940	4,060	10,050	16,040	22,050	28,060
7		-32,300	-31,500	-30,100	-28,280	-26,030	-23,300	-20,060	-16,300
∞ •			066'8-	•	-810	3,280	7,370	11,460	15,550
6	98 West		080,6-	-4,980	-860	3,240	7,360	11,460	15,580
10	92 Stbd	-15,300	-14,910	-14,100	-13,400	-12,300	-11,030	-9,500	-7,730
		-18,500	-14,800	-10,840	-7,040	-3,500	650	4,500	8,660
12	86 Stbd	-6,100	000*9-	-5,850	-5,780	-5,800	-5,520	-5,110	-4,530
13		-16,540	-14,520	-13,450	-12,150	-10,400	-9,170	-7,770	-6,450
14		7,220	_	6,	6,310	•	LC)	4,470	~
15	80 Keel	-10,740	-12,600	-14,470	-16,340	-18,210	-20,090	-21,990	-23,900
16	72 Stbd	24,540	23,900	22,850	21,460	19,760	17,700	15,240	12,380
17		Ġ	-8,660	-14,780	-20,910	-27,070	-33,160	-39,300	-45,430
18		35,780	34,840	33,330	31,320	28,850	25,860	22,260	18,100
19	64 East	840	-3,640	-8,160	•	-17,160	$\overline{}$	-26,340	-30,900
20	64 West	006	-3,700	-8,150	-12,610	-17,100	-21,670	-26,050	-30,520
21		38,040	37,040	35,420	33,280	30,630	27,440	23,610	19,200
22	56 East	240	-4,330	-8,870	-13,690	-18,430	-23,310	-28,000	-32,800
23			-4,940	-9,620	-14,020	-18,760	-23,780	•	-33,180
24	48 Stbd	31,050	30,240	28,920	27,170	oʻ.	22,400	19,300	<u>ດ</u> :
25	48 Keel	-640	-8,410	-16,280	-24,100	-31,950	-39,800	-47,640	-55,500
26		16,250	15,830	15,150	14,230	13,100	11,750	10,120	8,230
27	40 Keel	-9,220	-13,660	-17,860	-21,990	•	-30,320	-34,480	-38,640
87.		-23,290	-22,/60	-21,940	•	-19,400	-17,500	-15,210	-12,600
29		_	-9,470	7,	•		3,400	6,630	•
30	24 West		-10,300	-7,890	-5,370	-2,340	250	2,900	5,830
31		-33,530	-32,650	-31,120	-29,300	-26,960	-24,150	-20,800	-16,920
32		-11,890	-7,690	-3,460	800	5,030	9,260	13,490	17,720
33	Wes	-11,840	-7,590	-3,340		2,090	9,330	13,580	17,840
34		-17,670	-17,200	-16,470	-15,440	-14,210	-12,730	-10,950	-8,880
35		-1,059	-6,120	-1,640	•	7,320	11,800	16,270	20,740
2	8 Surge	-2,410	-2,040	-1,700	-1,410	-1,120	-1,000	00/-	-300

TABLE D.7 (Continued)

			Load	Condition,	60 Degree	Lag (1b)			
BAFCO	Load			P6	ercent Load				
No.	Ce11	-50%↓	+%09-	+%0/-	-80%+	-70%+	+%09-	-50%+	+%05-
5	108 Stbd	-8,780	-4,780	350	11,930	20,520	22,700	23,700	23,960
9		34,060	40,040	46,050	52,040	46,050	40,050	34,050	28,040
7	98 Stbd	-11,870	-6,440		16,350	28,040	31,020	32,350	32,710
∞	98 East	19,640	23,730	27,830	31,930	27,850	23,770	19,670	15,580
6		19,700	23,810	7	32,090	27,980	23,850	19,720	15,640
10	92 Stbd	'n	-3,060	220	•	13,180	•	15,230	15,400
11	92 Keel	ζ,	16,110	20,170	23,930	0	16,470	12,730	9,010
12	86 Stbd	-3,750	-2,630	-1,070	2,880	2	5,700	5,980	5,820
13	86 Keel	<u>_</u>	-2,600	-1,080	1,750	650	-910	-2,740	-4,620
14	80 Stbd	2,650	1,420	-1	-3,660	-6,300	-6,980	-7,260	-7,340
15	80 Keel	-25,730	-27,600	-29,200	-31,050	σ̂.	-27,320	-25,480	-2,363
16	72 Stbd	9,020	4,900	-350	-12,300	-21,150	-23,400	-24,430	-24,700
17	72 Kee1	-51,570	-58,060	-64,170	-70,290	-64,180	-58,060	-51,940	-4,581
18		13,200	7,200	-520	-17,910	-30,740	-34,020	-35,500	-35,900
19	64 East	-35,400	-39,920	-44,410		-44,410	-39,880	-35,370	-30,860
20	64 West	-34,900	-39,450	-44,220	-48,730	-44,230		-35,270	-30,770
21	56 Stbd	13,970	7,570	-630	-19,190	-32,960	-36,450	-38,040	-38,460
22	56 East	-37,700		-47,290	-52,060	-47,280	-42,450	-37,700	-32,800
23		-38,120	-42,600	-47,510	-52,410	-47,510	•	-37,720	-32,810
77		11,430	, 2	-500	5,60	4,4	-29,290	-31,040	-31,400
25	48 Keel	-63,340	-71,190	-79,040	-86,880	-78,920	-71,060	-63,220	-55,380
26	40 Stbd	000.9	3,280	-300	-8,220	-14,070	-15,600	-16,260	-16,400
27	40 Keel	-42,800	-46,950	-50,780	-54,950	-50,780	-46,640	-42,490	-38,310
28		-9,420	-5,470	-300	11,600	20,700	23,000	24,420	24,750
29	24 East	13,150	16,580	0,0	25,070	23,550	20,960	18,440	
30	24 West	8,600	11,240	13,850	15,360	11,170	7,610	4,020	260
31		-12,280	-6,670	610	16,940	28,980	32,060	33,440	33,830
32	16 East	21,950	26,170	30,400	34,630	30,400	26,150	21,920	17,700
33		22,080	26,330	30,580	34,830	30,570	26,320	22,070	17,820
34	8 Stbd	-6,450	(-)		8,950	5,3	16,960	17,700	17,900
35		25,230	29,690	34,160	∞	34,120	9,6	75,200	20,730
36	8 Surge	50	420	710	970	470	370	110	-110

TABLE D.7 (Continued)

		 	Load Cor	Load Condition, 60 D	60 Degree Lag ((1b)		
00240	7		Percent Load	ръ	1040401	Still		
No.	Cell	-30% +	-20%↑	-10%	Offset	Stress	Zero	Lock
5	108 Stbd	23,710	23,100	22,100	20,750	-10	-10	0
9	108 Keel	22,060	16,050	10,070	4,100	4,070	-3,400	50
7	98 Stbd	32,400	31,550	30,160	28,330	C	0	0
œ	98 East	11,460	7,400	3,300	-800	-800	-5,900	80
6	98 West	11,490	7,390	3,250	-840	098-	-5,980	10
10	92 Stbd	15,240	14,850	14,200	13,340	0	0	0
11		5,270	1,180	-2,580	-6,580	009*9-	-11,280	-100
12	86 Stbd	5,410	5,090	4,610	4,130	-170	-180	-20
13		-6,530	-8,170	-10,160	-11,660	-12,270	-14,310	-47,970
14		-7,270	-7,080	-6,770	-6,350	0	0	0
15	80 Keel	-21,740	-19,870	-18,020	-16,170	-16,220	-13,840	09-
16	72 Stbd	-24,440	-23,790	-22,760	-21,360	0	0	0
17	72 Keel	-39,660	-33,530	-27,410	-21,280	-21,270	-13,670	-380
18	64 Stbd	-35,550	-34,600	-33,100	-31,070	06	06	100
19	64 East	-26,360	-21,670	-17,230	-12,670	-12,660	-7.040	20
20	64 West	-26,270	-21,730	-17,260	-12,730	-12,650	-7,050	120
21	56 Stbd	-38,070	-37,070	-35,450	-33,290	C	0	0
22	56 East	-27,990	-32,080	-18,450	-13,700	-13,690	-7,700	250
23	56 West	-27,950	-23,070	-18,180	-13,540	-13,570	-7,340	750
77	48 Stbd	-31,080	-30,260	-28,940	-27,160	330	0	0
25	48 Keel	-57,530	-39,700	-31,870	-24,040	-24,000	-14,220	260
26	40 Stbd	-16,260	-15,840	-15,150	-14,220	20	10	10
27	40 Keel	-34,170	-30,030	-25,860	-21,700	-21,700	-16,520	480
28	24 Stbd	24,600	24,040	23,110	21,800	730	780	240
29	24 East	12,700	098,6	0,669	4,020	190	-2,450	-16,760
30	24 West	-2,520	-5,970	-9,280	-12,440	-10,510	-13,410	-19,540
31	16 Stbd	3,348	32,600	31,170	29,270	-30	-20	-20
32	16 East	13,480	9,250	5,020	810	800	067,4-	09
33		13,600	9,330	5,080	840	840	-4,370	80
34		17,710	1,725	16,500	15,490	0	c	0
35	OC	16,260	11,790	7,320	2,840	2,840	-2.740	30
36	8 Surge	-350	-530	-790	-1,040	-1,040	-1,280	-2,760

TABLE D.8 - ASEM STATIC TEST 4--MEASURED LOADS

			Load	Load Condition,	240 Degree	Lag (1b)			
RAFCO			70.00	Still 'Still'	latoral		Percent Load	Load	
No.	Ce11	Unlock	Stress	Stress	Offset	+10%+	+20% +	+30% +	+ %05+
5	108 Stbd	-1,030	0	-30	-20,860	-19,200	-17,200	-14,830	-12,060
9	108 Keel	-170	-3,500	4,110	4,080	-1,900	-7,930	-13,920	-19,940
7	98 Stbd	0	0	0	-28,320	-26,070	-23,350	-20,110	-16,360
&	98 East	-2,200	-5,980	-870	-870	-4,970	-9,050	-13,180	-17,230
6	98 West	130	060*9-	-970	066-	-5,050	-9,170	-13,260	-17,290
10	92 Stbd	0	-30	-20	-13,400	-12,400	-11,070	-9,530	-7,760
11	92 Keel	069-	-11,640	-7,060	-6,720	-10,400	-14,050	-18,130	-21,780
12		2,510	-110	-420	-6,050	-4,780	-4,250	-3,510	-2,840
13		-49,110	-13,780	-11,790	-12,940	-14,330	-15,650	-17,270	-18,870
14		-1,890	0		6,350	5,840	5,230	4,500	3,660
15	80 Keel	320	-13,890	-16,240	-16,280	-14,400	-12,510	-10,650	-8,780
16	72 Stbd	-150	0	9	21,320	19,630	17,580	15,130	12,300
17	72 Kee1	-100	-13,480	-21,170	-21,190	-15,050	-8,930	\sim	3,640
18	64 Stbd	07	30	30	31,270	28,790	25,800	22,200	18,060
19	64 East	08	-7,020	-12,650	-12,650	-8,160	-3,640	840	5,340
20	64 West	180	-7,000	-12,690	-12,690	-8,180	-3,660	920	2,400
21	56 Stbd	0	0	9	33,280	30,640	27,460	23,620	19,190
22	56 East	4,390	-7,680	-13,670	-13,680	-8,870	-4,090	970	5,740
23	56 West	180	079,7-	-13,610	-13,640	-8,860	-4,090	770	5,540
24	48 Stbd	0			29,530	25,000	22,400	19,300	15,680
25	48 Keel	-200	-14,400	-24,220	-24,180	-16,340	-8,510	-680	7,240
56	40 Stbd	09	0	9	14,220	13,090	11,750	10,110	8,220
27		420	-16,740	-21,940	-21,920	-17,800	-13,690	-9,560	-5,430
28		120	700	280	•	-19,040	-17,160	-14,820	-12,160
29	24 East	16,370	3,240	-620	1,540	5,390	8,900	12,030	14,980
30	24 West	-20,540	-12,610	-9,130	-7,100	-9,120	-11,460	-14,590	-17,710
31		-120	0	0	-29,370	-27,040	-24,220	-20,860	-16,950
32	16 East	-10	-4,630	650	079	-3,600	-7,860	-12,110	-16,310
33		-240	-4,650	510	067	-3,690	-7,920	-12,190	-16,470
34		0	0	0	-15,430	-14,200	-12,710	-10,940	-8,890
35	8 Keel		-2,820	2,690	2,700	-1,730	-6,140	-10,560	-14,980
36	8 Surge	-4,560	-1,400	-950	-1,040	-1,220	-1,370	-1,500	-1,680

TABLE D.8 (Continued)

			Load	Condition,	240 Degree	Lag (1b)			
BAFCO	Load				Percent Loa	ad			
No.	Ce11	+20%+	+809+	+70%+	li	+ 202+	↑%09+	+20%+	↑ %07+
5	108 Stbd	-8,800	-4,790	330	11,920	20,520	22,700	က်	23,960
9	108 Keel	-25,930	-31,940	-37,920	~	-37,920	-31,920	-25,940	-19,940
7	98 Stbd	-11,900	-6,470	530	16,300	27,990	30,970	•	32,670
œ	98 East	-21,320	-25,460	•		-29,520	-25,430	-21,300	-17,250
6	98 West	-21,400	-25,500	6	3	9,6	-25,510	-21,400	-17,320
10	92 Stbd	-5,660	-3,090	200	9	13,180	14,580	15,220	15,390
11		-25,880	-29,700	-33,390	-37,420	ς,	11,	-26,420	2,
12	86 Stbd	-2,100	•	-470	1,340	2	3,470	3,830	4,050
13		-20,010	-21,470	-23,360	-25,030	-23,660	-21,960	-20,210	-18,690
14	80 Stbd	2,660	1,430	-120	-3,660	•	-6,970	-7,280	-7,360
15	80 Keel	026,9-	-5,090	-3,210	-1,390	-3,180	-5,080	-6,930	-8,810
16	72 Stbd	8,940	4,850	-370	-12,260	-21,050	-23,300	-24,310	-24,580
17	72 Keel	9,780	15,940	22,030	28,180	22,080	15,980	9,810	3,660
18	64 Stbd	13,140	7,120	-580	-17,950	-30,810	-34,100	-35,580	-35,970
19		9,850	3	8,8	•	18,870	14,380	85	5,340
20	64 West	9,870	14,350	18,850	23,300	18,820	14,340	9,910	5,390
21		13,970	-7,560	-630	-19,190	-32,950	-36,460	-38,060	-38,470
22	56 East	10,560	15,110	19,970	24,700	19,940		10,360	5,510
23		10,350	15,080	6	24,640	9,6		10,340	5,
24	48 Stbd	11,400	6,190	5.	-15,670	9	-29,730	-31,030	-31,360
C7	40 Keel	0/0,61	77,900	30,,00	38,590	`.		15,100	7,240
92	40 Stbd	5,990	3,250	-330	-8,250	-14,100	-15,610	-16,300	-16,490
27		-1,320	2,910	7,060	11,150	۲,	2,920	-1,320	5,
28		-6,030	-5,220		10,700	9,5	ζ,	23,460	24,090
59		17,920	20,580	22,970	,41	ć.	4,9	0,	^
30	24 West	-21,140	-24,660	-28,540	-33,550	-33,070	-31,390	-29,300	-26,810
31	9	-12,330	-6,700	290	16,980	6	32,210	33,610	3,
32		-20,550	-24,800	-29,040	-33,290	-29,040	-24,780	-20,550	6,
33	9	-20,480	-24,730	8,99	3	œ.	-24,720	-20,500	-16,260
34		-6,450	-3,490		8,940	5,3	16,950	17,680	7,
35	8 Keel	-19,430	-23,840	α, ,	6	CÎ.	-23,850	-19,440	•
36	8 Surge	-1,850	-2,100	-2,450	-2,650	-2,780	-2,800	-2,670	-2,380

TABLE D.8 (Continued)

			Load	Condition,	240 Degree	Lag (1b)			
BAFCO	Load	- %UCT	1 %000 T	P P	ercent	10%	. %00	800	, 60°,
	21		**07.	A #01	טט שנפו	* 000 of	* 071 110	* % 00-	*%O#-
n v		02,62	23,090	060,22	000,02	19,090	17,110	14,700	11,940
0 r		13,950	7,960	-1,9/0	す 0	10,010	, כ	21,990	28,020
~ 0	90 5100	32,340	31,500	30,140	28,310	090,97	23,330	20,090	16,320
o ·		-13,160	0/0,6-	14,990	068-	3,200	7,290	11,380	15,460
6	98 West	-13,260	-9,180	-5,090	-1,000	3,100	7,210	11,300	15,390
10	92 Stbd	15,240	14,830	14,180	13,330	12,270	10,980	9,450	•
11	92 Keel	œ	-14,620	-10,930	•	-3,240	810	7,490	8,560
12	86 Stbd	4,260	4,300	4,240	4,240	4,280	4,290	4,130	3,740
13	86 Keel	-16,870	-14,970	-13,040	-11,710	-9,820	-8,500	-6,660	-5,480
14	80 Stbd	-7,290	-7,090	-6,780	-6,370	-5,860	-5,250	-4,510	9
15	80 Keel	-10,600	-12,500	-14,360	-16,190	-18,100	-19,890	-21,820	(T)
16	72 Stbd	-24,330	-23,680	-22,650	-21,270	-19,580	-17,530	-15,090	-12,250
17	72 Keel	2	-8,640	-14,780	-20,900	΄.	3,1	-39,340	-45,470
18		-35,620	-34,690	-33,180	-31,150	-28,640	-25,660	-22,090	-17,950
19	64 East	830	-3,700	-8,190	-12,690	-17,200	-21,690	-26,340	-30,860
20	64 West	920	-3,790	-8,290	-12,790	-17,290	•	-26,300	-30,750
21	56 Stbd	-38,090	-37,090	-35,470	-33,300	-30,640	-27,440	-23,600	-19,180
22	56 East	740	-4,340	-9,110	ີຕໍ	7,	3,340	S	-32,950
23	56 West	820	-4,040	-8,810	3,5	-18,350	,130	Ţ	-32,750
24		-31,050	-30,220	-28,920	-27,100	-24,990		-19,290	-15,620
25	48 Keel	029-	-8,530	-16,390	-24,220	-32,070	890	7	0 -55,540
26	40 Stbd	-16,320	-15,880	-15,190	•	-13,140	-11,770	-10,150	-8,270
27		-9,580	\sim	-17,860	•	-26,120	-30,240	-34,370	-38,500
28		24,170	23,780	22,990	21,870	20,510	18,890	16,860	14,380
53	24 East	3	650	•	•	-8,900	-12,470	•	-19,390
30	24 West	-24,090	-20,960	-17,800	•	-12,060	•	-6,860	-4,070
31	16 Stbd	33,640	32,760	31,340	29,	27,090	24,280	20,900	17,000
32	16 East		-7,870	-3,650	610	7,830	9,070	13,290	17,530
33		-11,980	-7,740	-3,470		4,910	9,170	13,420	17,670
		17,700	17,230	16,480		14,240	12,760	10,990	8,940
35		-10,580	-6,150	-1,740	2,	4,090	•	15,930	20,350
36	8 Surge	-2,010	-1,670	-1,340	-1,090	-940	-870	-640	-290

TABLE D.8 (Continued)

			Load	Condition,	240 Degree Lag	Lag (1b)] !
BAFCO	Load				الدا	Load			
No.	Cell	-20%+	+%09-	+ %0∠−	+ %08−	-70%	-60% t	-50% +	+ 205−
2	108 Stbd	8,660	7,660	-480	-12,090	-20,690	-22,860	-23,840	-24,090
9	108 Keel	34,000	40,250	46,260	52,230	46,240	40,240	34,240	28,250
7	98 Stbd	11,870	6,440	-590	-16,340	-28,010	-31,000	-32,330	-32,690
œ	98 East	19,580	n	27,750	31,820	27,740	23,640	19,550	15,450
6		19,470	23,590	27,670	31,750	27,710	23,610	19,530	15,450
10	92 Stbd	5,570	3,010	-270	-7,730	-13,320	-14,680	-15,360	-15,490
11	92 Keel	12,390	16,260	19,940	23,980	20,360	16,690	•	8,910
12		3,090	2,230	800	-3,170	-5,990	-6,580	-6,750	-6,640
13	86 Keel	-3,900	-2,980	-1,660	-1,430	-3,880	-5,450	009,9-	-7,910
14		-2,660	-1,440	110	3,660	6,290	096,9	-7,250	7,350
15	80 Keel	-25,500	-27,380	-29,250	-31,070	-29,220	-27,320	-25,530	-23,670
91	72 Stbd	-8,910	-4,810	410	12,290	21,100	25,340	24,350	24,610
17	72 Kee1		-57,980	-64,090	-70,240	-64,120	-58,010		-45,730
18	64 Stbd	-13,030	-7,030	650	18,040	30,930	34,200	35,690	36,070
19	64 East		ω	-44,410	6,	-44,400	-39,900	-35,400	-30,870
20	64 West	-35,150	-39,580	-44,070	-48,520	-44,020	-39,500	-35,100	-30,600
21	56 Stbd	-13,940	-7,560	630	19,190	32,950	36,440	38,020	38,450
22	56 East	-37,790	-42,520	-47,350	-52,150	-47,370	-42,510	-37,790	-32,900
23	56 West	-37,590	-42,520	-47,300	-52,100	-47,300	-42,520	-37,810	•
24		-11,340			15,700	26,920	29,790	ó	31,410
25	48 Keel	-63,400	-71,240	-79,090	-86,940	-79,090	-71,260	-63,450	-55,570
26	40 Stud	-6,030	-3,290	270	8,200	14,070	15,570	16,250	16,430
27	40 Keel	-42,620	-46,750	-50,890	-55,010	-50,890	-46,750	-42,650	-38,490
28	24 Stbd	11,300	7,480	2,260	-9,770	-18,990	-21,530	-22,800	-23,300
29	Бa	-22,260	-25,410	-27,660	-28,380	-23,270	٥,	-14,860	-11,070
30	24 West	-1,270	1,730	2,600	10,330	9,380	7,820	2,990	3,820
31	16 Stbd	12,360	6,730	-570	-16,940	-29,080	-32,160	-33,550	-33,920
32	16 East	21,750	25,970	30,200	34,690	30,450	26,210	22,000	17,740
33	Wes	_	26,150	30,400	34,660	ó	26,120	21,890	17,640
34	Stb	005,9	ć,	1	•	5	-16,900	17,640	-17,820
35	8 Keel	25,090	29,520	33,940	38,370	33,960		75,130	20,690
36	8 Surge	30	7460	920	096	720	6.70	06.	C

TABLE D.8 (Continued)

			Load Condition,	1	240 Degree Lag	(1b)		
RAFCO	, pa		Percent Load		Tatoral	Still Water+7ero		
No.	Ce11	-30% ↑	-20% +	-10% +	Offset	Stress	Zero	Unlock
5	108 Stbd	-23,890	-23,270	-22,240	-20,890	-50	09-	07-
9	108 Keel	22,240	16,210	10,260	4,250	4,250	-3,190	120
7	98 Stbd	-32,370	-31,500	-30,150	-28,300	9	0	0
œ	98 East	11,370	7,290	3,200	006-	-890	000,9-	-20
6	98 West	11,370	7,240	3,120	-970	-920	060,9-	-100
10	92 Stbd	-15,390	-14,910	-14,290	-13,400	9	0-	0
11		5,230	1,140	2,550	-6,500	-6,540	-11,150	-150
12	86 Stbd	-6,400	-6,250	-5,790	-5,240	-710	069-	-1,500
13	86 Keel	-9,410	-10,500	-11,900	-13,010	-12,500	-14,340	-52,600
14	80 Stbd	7,270	7,090	6,790	6,370	0	0	0
15	80 Keel	-21,760	-19,890	-18,120	-16,230	-16,130	-13,900	-130
16	72 Stbd	24,370	23,740	22,720	21,350	9	0	0
17		-39,590	-33,440	-27,340	-21,160	-21,160	-13,550	-250
18	64 Stbd	35,730	34,800	33,290	31,290	0	30	20
19	64 East	-26,370	-21,690	-17,190	-12,690	-12,650	-7,040	06
20	64 West	-26,150	-21,690	-17,190	-12,640	-12,740	-7,120	120
21	56 Stbd	38,070	37,070	35,470	33,300	0-	0-	0
22		-28,150	-23,370	-18,530	-13,770	-13,770	-7,790	180
23		-28,150	-23,400	-18,610	-13,860	-13,820	-7,890	-150
54	48 Stbd	31,110	30,290	28,970	27,210		0	0
25	48 Kee1	-47,740	-39,890	-32,040	-24,200	-24,190	-1,440	06
56	40 Stbd	16,270	15,840	15,140	14,220	0	0	0
27	40 Keel	-34,380	-30,230	-26,130	-21,990	-21,990	-16,830	07
28	24 Stbd	-23,260	-22,980	-22,060	-20,790	80	140	029-
53	24 East	-7,450	-3,290	-160	3,000	220	4,020	17,160
30	24 Wes'	1,450	-250	-3,120	000,9-	-010.6-	-12,810	-21,280
31	16 Stbd	-33,590	-32,720	-3,130	-29,400	0	0	0
32	16 East	13,500	9,280	5,070	850	830	-4,450	06
33		13,400	9,130	4,900	630	640	-4,590	-140
34		-17,650	-17,180	-16,440	-15,430	0	С	0
35	Keel	16,270	11,850	7,440	3,000	2,980	-2,520	
2	8 Surge	-210	-4/1)	-680	-850	1 -820	066-	0/9.7-

TABLE D.9 - ASEM STATIC TEST 1--MEASURED DEFLECTIONS

				Load Con	Condition (in)				
Pos.	Load			Zero	Still		Percent	Load	
No.	Cell	Unlock	Zero	Stress	Water	+10%+	+20%+	+30%+	+ 707+
1	108 Stbd	038	020	.038	.043	.028	.043	070.	.052
7	108 Keel	003	003	003	003	0	С	0	0
3		.527	.527	.527	.527	.527	.527	.527	.527
7	98 East	.320	.145	.136	.230	.153	.083	.014	055
5	98 West	720.	049	053	.019	041	099	156	214
9	92 Stbd	053	035	003	0	009	0	0	600.
7	92 Keel	.067	026	028	0	026	045	064	084
∞	86 Stbd	009	009	600	009	009	009	009	600
6		005	005	005	005	005	900	900	900*-
10	80 Stbd	049	037	012	005	017	010	014	009
11	80 Keel	.250	.189	.191	.148	.181	.214	.248	. 281
12	72 Stbd	065	059	016	005	018	015	023	022
13	72 Keel	3.394	3.345	3.350	3.277	3.334	3.392	3.451	3.510
14	64 Stbd	036	025	900*-	0	008	-,005	014	015
15		121	161	157	276	183	088	910.	.138
16	64 West	010	048	045	143	065	.013	.092	.172
17	56 Stbd	767	510	965	525	511	476	447	408
18	56 East	424	456	443	502	464	406	342	275
19	56 West	185	224	218	329	241	154	067	.019
20		075	065	052	039	054	056	068	074
21	48 Keel	039	086	- 020	180	860	020	.055	.133
	40 Stbd	.541	.541	.559	.556	.547	.547	.539	.537
23	40 Kee1	.018	029	025	110	042	.023	680.	.156
		900	004	003	- .004	U	С	C	600.
	16 East	004	053	033	030	030	041	052	062
	16 West	060.	810	.005	101.	.020	020	071	126
		.271	.269	.288	.291	.288	.287	.285	. 285
28	8 Keel	-1.285	-1.306 J	-1.290	-1.327	-1.307	-1.768	-1.232	-1.188
29	No name	.193	.138	.168	.243	. 182	.137	060.	.044

TABLE D.9 (Continued)

				Load Con	Load Condition (in)				
Pos.	Load				Percent Load	Pt.			
No.	Ce11	+20%+	+80%+	+70%+	+80%+	↑%0/+	† %09+	+20%+	+ 40%+
-1	108 Stbd	.050	.058	.057	.058	.058	.061	950.	.058
2	108 Keel	0	0	0	003	С	0	0	003
က	98 Stbd	.527	.527	.527	.527	.527	.527	.527	.527
4	98 East	127	195	264	329	270	207	143	076
2	98 West	274	332	391	674	392	334	277	219
9	92 Stbd	800.	.015	.015	.018	.016	.018	.013	.014
7	92 Keel	105	125	145	164	144	124	104	084
œ	86 Stbd	600	009	009	600	009	009	600	009
6	86 Port	900	900-	900-	900	006	900	006	006
10	80 Stbd	014	010	013	014	013	010	011	008
11	80 Keel	.315	.348	.381	.416	.385	.352	.321	.287
12	72 Stbd	031	033	044	051	046	038	035	027
13	72 Keel	3.568	3.626	3.683	3.742	3.688	3.633	3.577	3.520
14		026	029	041	670	043	032	028	017
15		.246	.358	.470	.581	.487	.382	.276	.171
16	64 West	.251	.386	.411	.497	.418	.341	.263	.185
17	56 Stbd	388	349	328	297	327	345	382	403
18	56 East	223	155	660	031	092	145	211	262
19		.107	.194	.281	.370	.288	.204	.120	.034
20		089	098	116	129	121	107	097	082
21		.211	.290	.368	977.	.375	.301	.226	.150
22		.528	.524	.514	.508	.513	.521	.522	.529
23	40 Keel	.225	.291	.360	.428	.368	.306	.243	.176
24		.012	.019	.021	.026	.023	.020	.013	.010
25	16 East	072	084	093	105	084	066	050	037
56		180	229	268	307	274	234	188	137
27	8 Stbd	.282	.284	.281	.281	.281	.282	.282	. 284
28		-1.164	-1.121	-1.096	-1.060	-1.094	-1.117	-1.159	-1.183
29	No name	0	047	093	141	089	038	.008	.055

TABLE D.9 (Continued)

				Load Co	Load Condition (in)				
Pos.	Load				Percent Load	þ			
No.	Ce11	+30%+	+20%+	+10%+	Still Water	-10%↓	-20%↓	-30%↓	↑%0 + -
-	108 Stbd	870.	.050	.034	.047	.033	.029	.032	.012
7	108 Keel	003	003	003	003	0	0	0	0
က	98 Stbd	.527	.527	.527	.527	.527	.527	.527	.527
4		007	.061	.135	.223	.318	.394	.471	.560
2	98 West	161	102	044	.016	9/0.	.135	.194	.263
9	92 Stbd	500.	.007	004	003	007	011	008	025
7	92 Keel	790'-	045	026	-,006	.011	.030	.049	.073
œ	86 Stbd	600	009	009	-,009	009	009	600	009
6	86 Port	900	006	900	900	006	006	900	900
10		012	007	015	004	011	010	005	016
11	80 Keel	.254	.218	.184	.147	.112	8/0.	.041	.007
12	72 Stbd	027	020	024	600	012	-,008	0	006
13		3.461	3.401	3.342	3.279	3.219	3.160	3.098	3.039
14	64 Stbd	061	005	007	900.	900.	.010	.019	.013
15	64 East	.050	056	157	266	369	46]	561	657
16	64 West	.107	.025	054	140	220	297	377	458
17	56 Stbd	442	472	509	525	552	567	576	593
18	56 East	327	393	455	667	544	571	588	607
19		051	140	229	326	417	503	597	691
20		076	063	059	043	040	033	022	025
21	48 Keel	.071	007	087	176	259	336	419	507
	40 Stbd	.530	.537	.537	.547	.547	.548	.554	.547
		.107	.035	029	110	185	252	326	407
77	16 Stbd	003	002	003	004	008	012	016	025
	16 East	027	021	016	025	025	018	013	022
56		084	033	900.	160.	.134	.176	.219	.240
	8 Stbd	. 284	.286	.289	.292	.295	. 296	.298	.236
28	8 Kee1	-1.226	-1.262	-1.305	-1.327	-1.365	-1.392	-1.412	-1.450
	No name	.100	.143	.185	.242	.283	.327	.372	398

TABLE D.9 (Continued)

!				Load Con	Load Condition (in)			<u> </u>	
Pos.	Load				Percent Load	Pt		-	
No.	Ce11	-50% ↓	↑ %09-	+%01-	1 %08−	-70%+	+ 209-	-50% +	-40%+
~	108 Stbd	.011	0	0	0	0	0	.011	.013
2	108 Keel	0	Û	0	0	0	0	0	0
٣	98 Stbd	.527	.527	.527	.527	.527	.527	.527	.527
7		749.	.722	797.	.870	.801	.728	.651	.574
5	98 West	.326	.385	.441	867.	044.	.381	.321	.261
9	92 Stbd	027	033	036	042	038	036	029	028
7	92 Kee1	.093	.111	.126	.142	.122	.103	.083	.063
œ	86 Stbd	009	- 000	009	009	009	600	009	-,009
6	86 Port	006	006	006	006	006	900	900	006
10	80 Stbd	013	015	013	014	013	015	012	014
11	80 Keel	028	064	103	140	-109	077	044	010
12	72 Stbd	±.003	С	0	0	0	С	0	0
13	72 Keel	2.977	2.917	2.852	2.792	2.845	2.901	2.958	3.015
14	64 Stbd	.020	.020	.026	.027	.027	.022	.022	.017
15	64 East	759	854	952	-1.042	964	880	793	704
16		542	621	705	787	713	638	563	486
17	56 Stbd	602	612	619	628	620	614	604	597
18	56 East	618	629	637	646	638	631	621	612
19		786	877	973	-1.064	982	897	811	723
20	48 Stbd	018	017	009	007	009	910	017	025
21	48 Kee1	593	675	760	838	768	692	616	538
22	40 Stbd	.550	.548	.552	.550	.550	.547	.548	.544
23	40 Keel	485	556	632	704	642	574	505	434
24	16 Stbd	026	031	030	035	031	031	028	027
25	16 East	025	021	018	010	023	033	041	047
56	16 West	.269	.298	.327	.359	.330	.301	.271	.239
27		. 299	.298	.302	300	.301	.298	. 299	. 296
28	8 Keel	-1.473	-1.505	-1.526	-1.558	-1.530	-1.511	-1.481	-1.461
29	No name	.434	.474	.516	.560	.518	.475	.433	.392

TABLE D.9 (Continued)

			Load Condition	dition (in)			
Pos.	Load		Percent Load		Still		
No.	Ce11	-30%↑	+%UC-	-10%+	Water	Zero	Unlock
1	108 Stbd	.036	.031	.035	.049	.046	900.
2	108 Keel	0	C	003	C	0	0
e	98 Stbd	.527	.527	.527	.527	.527	.527
7	98 East	167.	.414	.335	.235	.134	.329
2	98 West	.198	.137	.077	.018	056	.087
9	92 Stbd	600	013	600	0	0	033
7	92 Keel	.043	.023	С	014	040	.071
&	86 Stbd	009	600	600	600	600	009
6	86 Port	900*-	900*-	-`000	900	006	900
10	80 Stbd	С	008	009	003	600	037
11	80 Keel	.022	950.	060.	.124	.168	.249
12	72 Stbd	0	0	006	005	015	039
13	72 Keel	3.074	3.133	3,192	3.250	3.325	3.396
14	64 Stbd	.024	.015	010.	.011	0	029
15	64 East	613	520	-,425	330	00	143
16	64 West	907	328	248	170	890	013
17	56 Stbd	581	572	558	534	508	967
18	56 East	595	580	-,558	521	464	431
19		631	543	454	365	251	196
20		021	031	038	041	054	920
21	48 Keel	454	374	293	213	108	044
22	40 Stbd	.551	.545	.542	.542	.536	.526
23	40 Keel	357	285	215	144	054	800.
24	16 Stbd	020	018	014	600	004	014
25	16 East	042	045	048	052	048	.013
26		.220	.185	.144	.101	0	.117
2.7		. 299	. 296	.294	.292	.288	.286
28		-1.423	-1.404	-1.378	-1.341	-1.306	-1.290
29	No name	.365	.325	. 284	.242	1 .173	.255

TABLE D.10 - ASEM STATIC TEST 2--MEASURED DEFLECTIONS

				Load Con	Load Condition (in)				
Pos.	Load			Zero	Still		Percent	Load	
No.	Ce11	Unlock	Zero	Stress	Water	+10%+	+20%+	+30%+	+40%+
-	108 Stbd	2.840	2.858	2.867	2.869	2.910	2.923	2.960	2.999
7	108 Keel	231	448	675-	271	271	273	274	276
က	98 Stbd	.270	.251	.254	.247	.251	.262	.250	.253
7	98 East	.326	.168	.162	.258	.257	.255	.252	.248
2	98 West	.119	017	023	.047	.047	.045	.044	.042
9	92 Stbd	045	030	026	025	±.003	±.003	.016	.036
7	92 Keel	780.	022	028	900*-	900	008	600	010
∞	86 Stbd	600	600	600	009	009	009	009	009
6	86 Port	600	006	900	006	006	900	-,006	006
10	80 Stbd	026	013	014	011	039	071	089	106
11	80 Keel	.259	.171	.172	.126	.126	.126	.126	.127
12	72 Stbd	020	012	016	010	.074	129	175	222
13	72 Keel	3,335	3.254	3.255	3.179	3.178	3.178	3.178	3.178
14		010	.003	004	±.003	060	126	184	242
15		147	224	223	346	-,350	350	-,351	352
16	64 West	058	128	128	227	227	228	228	228
17	56 Stbd	445	477	484	514	-,559	592	613	629
18	56 East	393	445	450	508	546	576	596	614
19	56 West	448	518	519	630	633	634	634	634
20	48 Stbd	038	027	039	032	098	167	233	300
21	48 Keel	467	542	545	642	7797-	644	644	644
22	40 Stbd	.575	.578	.562	.563	767.	.438	.385	.329
23		800.	057	054	147	147	144	141	141
54		.055	990.	.026	.016	.055	.088	.116	.141
25	16 East	.047	· 004	004	₹.002	006	007	008	-,009
79		.122	950.	970.	.140	.135	.134	.136	.139
27	8 Stbd	.349	.353	.326	.323	.327	.326	.318	. 307
28	8 Keel	-1.238	-1.273	-1.282	-1.321	-1.382	-1.445	-1.502	-1.562
29	No name	.302	.237	.235	.309	.304	.303	.303	. 302

TABLE D.10 (Continued)

				Load Con	Condition (in)				
Pos.	Load				Percent Load	pı			
No.	Ce11	+20%+	+60%+	+70%+	+80%+	+%0/+	+%09+	+20%+	+%05+
-	108 Sthd	3.038	3.077	3,118	3,155	3,126	3.092	3.056	3,019
2	108 Keel	277	279	279	. 28	279	280	280	280
e	98 Stbd	.253	.250	.250	.252	.255	.253	.251	.254
4	98 East	.245	.241	.237	.234	.233	.234	.235	.236
2	98 West	.040	.039	.037	.036	.036	.036	.036	.037
9	92 Stbd	.057	620.	.101	.122	.110	960.	.075	.056
7	92 Keel	011	011	012	-,013	013	013	013	013
∞	86 Stbd	600	009	009	600	-,009	600	009	009
6,	86 Port	900-	006	900	900	006	006	006	006
10		123	140	157	175	167	152	137	123
11	80 Keel	.127	.128	.128	.128	.128	.128	.129	.129
12	72 Stbd	268	315	360	405	378	347	312	273
13	72 Keei	3.178	3.178	3.178	3.178	3.178	3.178	3.179	3.181
14		300	359	417	474	438	398	354	307
15	64 East	352	353	354	356	357	357	357	357
16	64 West	228	728	228	228	228	227	225	224
17	56 Stbd	644	657	699	681	675	667	657	646
18	56 East	628	642	654	666	659	651	642	631
19	56 West	634	634	634	634	631	626	620	615
20	48 Stbd	367	437	505	574	535	489	436	381
21	48 Keel	644	644	644	644	642	640	635	631
22	40 Stbd	.274	.215	.158	.100	.133	.172	.216	.262
23	40 Keel	139	138	138	138	142	142	141	142
24	16 Stbd	.166	.187	.206	.222	.208	.190	.170	.146
25	16 East	011	014	018	024	021	017	012	009
56	16 West	.141	.142	.142	.140	.144	.148	.151	.152
27	8 Stbd	.295	.281	.268	.253	.249	.248	.251	.255
28	8 Keel	-1.622	-1.688	-1.755	-1.826	-1.784	-1.738	-1.687	-1.632
29	No name	.301	299	.295	.290	292	.294	.297	. 299

TABLE D.10 (Continued)

No. No. 1 1 2 2 1 2 3 4 4 5 5	Load Cell								
	Ce11				Percent Load	ad			
		+30%+	+20%+	+10%+	Still Water	-10% ↓	-20%	-30% ←	+ %05-
	108 Stbd	2.982	2.944	2.905	2.872	2.821	2.785	2.750	2.714
	108 Keel		278	277	277	275	274	273	273
	98 Stbd	.250	.256	.256	.256	.253	.244	.250	.254
	98 East	.239	.241	.245	.246	.248	.251	.253	.257
	98 West	.038	.039	.040	.041	.041	.042	.043	.043
	92 Stbd	.037	.016	₹.003	025	041	059	071	095
7	92 Keel	012	012	011	011	011	010	010	008
	86 Stbd	009	009	009	009	600	009	600	009
		900	006	900	900	900	900	006	006
	80 Stbd	108	092	073	040	₹.002	.018	.037	.054
11	80 Keel	.128	.128	.127	.126	.125	.124	.123	.123
12	72 Stbd	232	189	143	070	±.002	.046	.095	.143
	72 Keel	3.183	3,183	3.181	3.180	3.178	3.176	3.175	3.175
14	64 Stbd	255	201	142	061	.031	.092	.155	.217
	64 East	•	356	356	357	357	357	356	-,354
16	64 West	226	228	230	233	237	240	242	243
17	56 Stbd	634	619	599	567	496	440	381	325
18	56 East	618	603	584	554	495	450	402	355
		619	623	619	626	619	633	-,633	634
	48 Stbd	322	263	194	119	007	.062	.134	.205
21	48 Keel	629	627	625	624	574	646	643	639
2	40 Stbd	.309	.357	.411	. 484	.574	.630	.684	. 738
3		142	144	147	150	153	156	156	159
24		.118	980.	.053	±.003	011	042	071	099
25		.007	005	005	005	900-	007	900	₹.003
26	16 West	.152	.150	.147	.145	.146	.148	.153	.160
27		.259	. 264	.272	.267	.287	. 294	.301	.307
28	8 Keel	-1.577	-1.520	-1.463	-1.394	-1.300	-1.241	-1,182	-1.127
9	No name	.301	.302	.362	.301	.300	. 299	. 299	.302

TABLE D.10 (Continued)

Pos. Load Percent Load Fercent Load 1 108 Stbd 2.678 2.641 2.667 -256 -256 -259 2.647 -267 -267 -264 -267 -269 -269 -269 -269 -269 -269 -269 -269 -269 -269 -269 -269 -006 -00	1				Load Con	Condition (in)				
Cell	Pos.	Load				Percent Lc	nad			
108 Stbd	No.	Ce11	50%	+%09−	+%01-	+%08−	1 1	+%09−	-50%+	+205-
108 Keel	-		•	2.641	2.605	2.568	2.598	2.632	2.666	2.701
98 Stbd	7		•	270	267	264	264	267	270	272
98 East	က		.252	.255	.261	.252	.255	.249	.252	.250
98 West .044 .046 .047 .048 .049 .049 .049 92 Stbd114133151168157142 92 Keel008007006005005006006 80 Stbd009009009009009009009009009009009009009009009009009006007251251251252252253253253253255255259257256187143181143181143181168164664664664664664664664664664664664664664664664664664664666668668675676676668676676676676676676688675676676676183181163117168183167020017168164166183167020017018006017015021022021021022022	4		.260	.262	.265	.268	.268	.267	.264	.262
92 Stbd114133151168157142 92 Keel008007006005005006 86 Stbd009009009009009009 87 Stbd006006006006006006006 88 Stbd007006006006006006006 89 Stbd007090009009009009 72 Keel .102121119118119119 72 Keel 3.173 3.170 3.168 3.166 3.165 3.165 64 Ket 2.28 .349413478443396 64 East355356358350259257 55 Stbd267257255259259257 56 Stbd267267267163113143181 56 West247267267668661666 40 Stbd278354431507468417 48 Keel645666668675676676 40 Stbd162168174180171168 16 Stbd124146166183169153 16 East006011015021020017 16 West1020970922951988	2		.044	970.	.047	.048	670.	670.	.048	.045
92 Keel	9		114	133	151	168	157	142	126	109
86 Stbd 009 009 009 009 009 009 86 Port 006 006 006 006 009 009 009 80 Stbd 006 -	7		008	007	006	005	005	006	900	007
86 Port006006006006006006006 80 Stbd072090108126116103	œ		009	600	009	009	009	009	600	600
80 Stbd .072 .090 .108 .126 .116 .103 80 Keel .122 .121 .119 .118 .119 .119 72 Stbd .192 .242 .291 .342 .315 .278 72 Keel 3.173 3.170 3.168 3.166 3.166 3.165 64 Stbd .282 .349 .413 .478 .443 .396 64 East .247 .250 .255 .259 .257 56 Stbd .247 .250 .255 .259 .257 56 Keel .247 .267 .255 .187 .240 56 West .247 .267 .256 .187 .240 56 West .248 .267 .267 .187 .267 64 West .269 .267 .968 .661 .661 65 Keel .162 .168 .174 .180 .171 .168 66 Keel .1072 .1020 .977 .377 .349 67 Keel .1072 .1020 .977 .377 .377 68 Keel .1072 .1020 .297 .287 .280	6		900	900*-	006	-,006	900	006	006	006
80 Keel .122 .121 .119 .118 .119 .119 .119 .119 .115 .125 .242 .242 .291 .342 .315 .278 .278 .245 .349 .413 .478 .443 .396 .3165 .3165 .3165 .3165 .248 .349 .413 .478 .443 .396 .396 .282 .349 .413 .478 .443 .396 .396 .284 .287 .287 .287 .289 .287 .289 .287 .289 .287 .289 .289 .289 .289 .289 .289 .289 .289	10		.072	060.	.108	.126	.116	.103	.088	.073
72 Stbd	11		.122	.121	.119	.118	.119	.119	.119	.119
72 Keel 3.173 3.170 3.168 3.166 3.165 3.165 64 Stbd .282 .349 .413 .478 .443 .396 .396 64 East .282 .349 .413 .478 .443 .396 .355 64 West .247 .250 .255 .259 .257 .259 .257 .259 .257 .269 .269 .257 .259 .257 .269 .257 .269 .257 .269 .267 .267 .266 .266 .266 .266 .266 .266	12		.192	.242	.291	.342	.315	.278	.236	.193
64 Stbd	13		3.173	3.170	3.168	3.166	3.166	3.165	3.165	3.165
64 East	14		.282	.349	.413	.478	.443	.396	.343	.286
64 West247250255259257257 56 Stbd269215163113143181 56 East311267267256187210240 56 West645640654656661661660 48 Stbd278431507468417639666668667676675676168174180171168174180171168153164166183169153163164165021020017020017020017020017020017020017020017020017020017020017020021021020017020021022951988293287287289289	15		355	356	358	360	358	355	353	352
56 Stbd 269 215 163 113 143 181 56 West 311 267 226 187 210 240 56 West 645 640 654 656 661 660 48 Stbd .278 .354 .431 .507 .468 .417 48 Keel 639 666 668 675 676 676 40 Keel .793 .850 .909 .967 .936 .896 40 Keel 162 168 174 168 168 16 Stbd 124 146 166 183 169 153 16 West .163 .165 .167 .169 153 163 16 West .163 .165 .167 169 169 169 16 West .163 .327 .337 .349 355 984 No name 7.298 .293 .287 .279 .289 .284	16		247	250	255	259	259	257	257	257
56 East 311 267 226 187 240 56 West 645 640 654 656 661 660 48 Stbd .278 .354 .431 .507 .468 .417 48 Keel 659 666 668 675 676 676 40 Keel 793 .850 .909 .967 .936 .896 40 Keel 162 168 174 180 171 168 16 Stbd 124 146 183 169 153 16 East 006 011 015 021 020 017 16 West .163 .327 .349 .355 .355 8 Keel -1.072 -1.020 970 921 951 988 No name 7.298 .293 .287 .279 .279 .284	17		269	215	163	113	143	181	223	268
56 West645640654656661660 48 Stbd .278 .354 .431 .507 .468 .417 48 Keel639666668675676676 40 Stbd .793 .850 .909 .967 .936 .896 40 Keel162168174180171168 16 Stbd124146166183169153 16 East .006011015021020017 16 West .163 .165 .166 .167 .166 .163 8 Stbd .316 .327 .337 .349 .355 .355 8 Keel -1.072 -1.020970951988931 No name 7 .298 .293 .287 .279 .280	18		311	267	226	187	210	240	273	309
48 Stbd .278 .354 .431 .507 .468 .417 48 Keel639666668675676676676 40 Stbd .793 .850 .909 .967 .936 .896 16 Stbd124146166183169153 16 East006011015021020017 16 West .163 .165 .166 .167 .166 .163 8 Stbd .316 .327 .337 .349 .355 .355 .355 No name 1 .298 .293 .287 .279 .280 .284	19		645	640	654	656	661	660	099	660
48 Keel639666668675676162162171168153165166183169153153166011015021020017015021020017016163165165166163165166163165166163165166167970922951988 -1988 -1298287280280284	20		.278	.354	.431	.507	897.	.417	.358	. 296
2 40 Stbd .793 .850 .909 .967 .936 .896 3 40 Keel162168174180171168 4 16 Stbd124146166183169153 5 16 East006011015021020017 6 16 West .163 .165 .166 .167 .166 .163 7 8 Stbd .316 .327 .337 .349 .355 .355 8 Keel -1.072 -1.020970922951988 -1. 9 No name [.298 .293 .287 .287 .284	21		639	666	668	675	676	676	9/9'-	9/9'-
3 40 Keel162168174180171168 4 16 Stbd124146166183169153 5 16 East006011015021020017 6 16 West .163 .165 .166 .167 .166 .163 7 8 Stbd .316 .327 .337 .349 .355 .355 . 8 Keel -1.072 -1.020970922951988 -1. 9 No name .298 .293 .287 .287 .289	22		.793	.850	606.	.967	.936	968.	851	.803
4 16 Stbd 124 146 166 183 169 153 5 16 East 006 011 015 021 020 017 6 16 West .163 .165 .166 .167 .163 7 8 Stbd .337 .349 .355 .355 8 8 Keel -1.072 -1.020 970 922 951 988 -1. 9 No name 1 .293 .287 .279 .280 .284	23		162	168	174	180	171	168	165	160
5 16 East006011015021020017 6 16 West .163 .165 .166 .167 .166 .163 . 7 8 Stbd .316 .327 .337 .349 .355 .355 . 8 8 Keel -1.072 -1.020970922951988 -1. 9 No name .298 .293 .287 .279 .280 .284 .	24		124	146	166	183	169	153	135	113
6 16 West .163 .165 .166 .167 .166 .163 . 7 8 Stbd .316 .327 .337 .349 .355 .355 .355 . 8 8 Keel -1.072 -1.020970922951988 -1. 9 No name (.298 .293 .287 .287 .280 .284 .	25		900	011	015	021	020	017	015	012
7 8 Stbd .316 .327 .337 .349 .355 .355 .359 .859 .951988 -1.072 -1.020970922951988 -1.090 .298 .293 .287 .279 .280 .284	56		.163	.165	.166	.167	.166	.163	.161	.159
8 8 Keel -1.072 -1.020970922951988 -1 9 No name (.298 .293 .287 .279 .280 .284	27		.316	.327	.337	.349	.355	.355	.353	.349
9 No name 298 293 287 289 286 284	28		.:		970	922	951	988	-1.030	-1.074
	29	- 1	. 298	.293	.287	.279	.280	.284	.287	.291

TABLE D.10 (Continued)

			Load Cor	Load Condition (in)			
Pos.	Load		Percent Load		Still		
No.	Ce11	-30%↑	-20%+	-10%+	Water	Zero	Unlock
_	108 Stbd	2.736	2.772	2.807	2.868	2.876	2,853
2	108 Keel	275	278	280	280	461	242
က	98 Stbd	.242	.252	.250	.243	.243	.247
4	98 East	.260	.257	.254	.251	.151	.344
5	98 West	.043	.041	.039	.038	035	.106
9	92 Stbd	091	073	055	027	022	038
7	92 Kee1	008	009	010	010	035	920.
œ		600	009	009	600	600	009
6	86 Port	900	900	006	900	900	900
10		.057	.040	.023	.001	003	016
11	80 Keel	.120	.121	.122	.122	.165	.254
12	72 Stbd	.150	.105	.060	900.	004	010
13	72 Keel	3.165	3,165	3.165	3.165	3.234	3.316
14	64 Stbd	.227	891.	.109	.035	.018	.003
15	64 East	350	349	348	350	230	154
16	64 West	257	256	256	256	162	091
17	56 Stbd	317	368	424	505	483	445
18	56 East	348	-,389	-,433	500	452	393
19		099	660	099	099*-	560	486
20		.231	.165	.097	£.002	020	027
21	48 Keel	676	676	676	676	809	532
22		.754	.704	.652	.577	.559	995.
23	40 Keel	154	151	147	147	.058	600.
24		088	059	026	.007	.008	.019
25	16 East	010	۰.008	007	008	.015	970.
26		.156	.153	.149	.143	.035	.148
27		.344	.338	.333	.330	.316	.331
28		-1.121	-1.172	-1.226	-1.311	-1.282	-1.238
67	No name	.295	.298	.300	. 299	.222	.301

TABLE D.11 - ASEM STATIC TEST 3--MEASURED DEFLECTIONS

				Lnad Con	Condition (in)				
Pos.	Load		Zero	Still	Lateral		Percent Load	t Load	
No.	Ce11	Unlock	Stress	Water	Offset	+10%+	+20% +	+30%+	+40%+
	108 Stbd	027	021	.017	.068	.243	.229	.201	.175
7	108 Keel	±.031	±.028	±.028	±.026	±.027	±.028	±.028	±.028
က	98 Stbd	.201	.204	.230	.231	.236	.233	.230	. 235
7	98 East	.324	.149	.231	.220	.140	.072	₹.004	061
5	98 West	680.	042	.022	.015	041	098	154	210
9	92 Stbd	036	020	010	.106	.106	.100	.091	620.
7		.065	034	017	021	041	059	076	093
∞	86 Stbd	009	600	600	600	600	009	009	009
6		005	005	005	005	005	005	005	005
10	80 Stbd	034	020	007	-,143	139	132	120	110
11	80 Keel	.248	.178	.129	.129	.164	.199	.235	.269
12	72 Stbd	015	005	.012	307	303	288	266	245
13		3.376	3.314	3.234	3.232	3.289	3.350	3.411	3.472
14	64 Stbd	011	₹.003	.021	368	-3.580	338	309	279
15		145	192	320	324	231	129	020	. 104
16	64 West	033	081	186	175	960*-	013	.065	.143
17	56 Stbd	474	500	523	699	662	652	636	617
18	56 East	416	458	510	653	641	621	584	523
19		218	266	382	382	294	202	110	023
20	S	065	054	037	995	457	435	405	377
21	48 Keel	100	154	262	263	184	660	017	.059
22	40 Stbd	.525	.530	.548	.182	.193	.216	248	.282
23		800.	041	134	128	063	900.	.075	.143
77		043	038	012	.186	.189	.178	951.	.128
25		.034	007	013	031	039	037	043	051
56	16 West	.108	.039	.105	.102	.033	007	067	127
27	S	.272	•	.288	692.	.270	.272	.276	.275
28	∞ ∞	-1.267	-1.296	-1.325	-1.720	-1.683	-1.630	-1.558	-1.488
29	No name	.265	.217	. 282	.270	.201	.171	.127	.080

TABLE D.11 (Continued)

				Load Con	Condition (in)				
Pos.	Load				Percent Load	ad			
No.	Ce11	+20%+	+209+	+70%+	+80%+	+20%+	+209+	+20%+	+40%+
	108 Stbd	.153	160.	.024	124	223	248	265	272
7	108 Keel	±.028	±.029	±.028	±.027	±.027	±.028	±.027	±.027
က	98 Stbd	.245	.237	.238	.243	.248	. 244	.252	. 245
4		126	194	257	319	257	194	129	061
2	98 West	266	324	381	436	378	322	264	205
9	92 Stbd	.062	.051	.012	072	129	146	155	160
7		112	133	152	171	152	133	133	092
œ	86 Stbd	600	600	009	600	009	009	009	009
6	86 Port	005	005	005	005	005	005	005	005
10	80 Stbd	095	065	016	.048	860.	.114	.123	.129
11	80 Keel	.302	.333	.366	.395	.361	.327	.293	.260
12	72 Stbd	213	155	055	.127	.277	.323	.351	.368
13	72 Keel	•	3.586	3.642	3.693	3.635	3.576	3.518	3.460
14		•	168	048	.185	.375	.435	.472	.495
15	64 East	.214	.326	.437	.541	.437	.332	.228	.123
16	64 West	.217	.292	.366	.437	.352	.073	.194	.115
17	56 Sthd	586	504	331	850	850	851	852	853
18	56 East	423	295	116	830	833	836	839	842
19		950.	.140	.223	. 298	. 208	.120	.034	052
20	48 Stbd	328	251	147	.124	.340	607.	.452	.482
21		134	. 209	.283	.354	.270	.193	.116	.039
22		.327	.386	.491	.711	.871	.922	.954	.975
23	40 Keel	.206	.270	.333	.391	.322	.255	.190	.120
24	16 Stbd	.104	.077	.019	021	075	095	1111	129
25	16 East	060	690	078	085	065	049	039	032
56		180	226	266	298	254	211	165	110
27		.275	.273	.250	.265	.266	.274	.285	. 299
28	8 Keel	-1.399	-1.281	-1.099	-3.582	-3.583	-3.582	-3.582	-3.583
29	No name	.031	016	067	116	-,066	019	.024	.065

TABLE D.11 (Continued)

				Load Co	Condition (in)				
Pos.	Load				Percent Load	P			
No.	Ce11	+30%+	+20%+	+10%+	Still Water	-10%+	-20%↓	-30%↓	↑ %07-
-	108 Stbd	276	270	270	250	247	230	209	191
7	108 Keel	+.027	±.028	±.027	±.027	±.027	±.027	.027	.027
ന	98 Stbd	.250	.245	.252	.257	.254	.264	.255	.265
4	98 East	900.	920.	150	.240	.332	.412	.492	.571
2	98 West	147	089	030	.027	980.	.148	. 208	. 268
9	92 Stbd	162	162	159	155	148	141	132	120
7	92 Keel	073	055	035	015	±.003	.022	.041	090.
∞	86 Stbd	009	009	009	600.~	009	009	009	009
6	86 Port	005	005	005	004	005	005	004	004
10	80 Stbd	.131	.132	.131	.129	.125	.119	.110	860.
1.	80 Keel	.225	.189	.156	.122	980.	.050	.014	019
12	72 Stbd	.378	.383	.381	.376	.366	.349	.325	.294
13		3.400	3.339	3.281	3.221	3.161	3.099	3.040	2.981
14	64 Stbd	.508	.513	.510	.504	.490	.468	.437	.397
15		.004	104	202	302	401	499	595	689
16	64 West	.035	047	125	204	285	367	445	522
17	56 Stbd	854	856	857	858	859	861	862	863
18	56 East	844	848	850	852	-,854	856	858	860
19		142	234	321	410	501	596	686	774
20		.502	.513	.514	.512	.501	.481	.451	.413
21	48 Kee1	039	121	199	280	-,364	452	534	609
22	40 Stbd	886.	.994	.992	.987	.975	.956	.930	.897
23		.050	020	089	157	230	312	384	456
54		152	158	159	157	150	141	130	115
25		027	024	020	018	022	034	038	035
56		045	003	.037	.111	.166	.185	.211	.241
27	8 Stbd	•	.334	•	•	.385	.400	.41	.427
58	8 Kee	-3.583	-3.583	-3.583	-3.584	-3.584	-3.584	-3.583	-3.584
29	No name	.105	.146	.189	.258	. 296	.323	.359	.400

TALLE D.11 (Continued)

108 Stbd	 				Load Con	Load Condition (in)				
108 Stbd	Pos.	Load				Percent Lc	ad			
108 Stbd154105033 .110 .227 .256 .266 .98 Stbd .271 .262 .265 .265 .265 .265 .265 .265 .265	No.	Ce11	-50%↓	+%09-	+%0∠-	+%08-	1 1	+%09-	-50%↑	-40%+
108 Keel	-		154	105	033	.110	.227	.256	.267	.282
98 Stbd	7		.028	.028	.027	.027	.027	.027	.027	.027
98 East	က		.271	.262	.265	.265	. 265	.266	. 268	.265
98 West	4		649.	.721	.792	.817	.741	869.	.625	.550
92 Stbd106087046 .009 .077 .100 92 Keel .076 .090 .105 .084 .063 .073 86 Stbd009009009008009009 87 Stbd004004004004004004004 88 Stbd083 .062 .020092148162 89 Stbd055092129159102 72 Stbd .251 .193 .098129129139102 72 Keel .2921 2.861 2.802 2.721 2.774 2.850 64 East864879972 -1.086 -1.009909 64 West600678972 -1.086 -1.009909 65 Stbd864865868811871871 78 Keel862950 -1.036 -1.134 -1.046947 79 Stbd274377432 70 Stbd661734665590 70 Stbd688769848930848 70 Stbd950010 70 Stbd097073018077146165 71 Stbd097073018077146165 71 Stbd097073018077146165 71 Stbd097073018077146165 71 Stbd35843.5843.5843.5723.573368 72 Stbd35843.5843.5843.5843.5723.573485 72 Stbd3.5843.5843.587550	2		.324	.378	.431	.442	.381	.355	. 299	.241
92 Keel .076 .090 .105 .084 .063 .073 .86 Stbd .009004004004004004004004004004004004004004004005009009009009009128159162055092129	9		106	087	970-	600.	.077	.100	.113	.122
86 Stbd009009008009009 86 Stbd0040040040040004 87 Stbd00400400400400040004 88 O Stbd083062020092148162 89 Stbd055092129159159102 72 Keel 2.921 2.861 2.802 2.721 2.774 2.850 64 East600684866868871871871 55 Stbd864866868871871871 56 East862950 -1.036 -1.036947 57 Keel 3.59950 -1.0361009909 58 Stbd862950 -1.036 -1.134 -1.046947 59 Stbd863865865867867 50 West862950 -1.036 -1.134 -1.046947 50 Stbd950 -1.036 -1.134 -1.046947 50 Stbd950 -1.036 -1.036337432 50 Stbd950 -1.0361046947 50 Stbd950 -1.0361046947 50 Stbd950073018037055590 50 Stbd951952661734665590 50 Stbd9529539617349559619659919	7		920.	060.	.105	.084	.063	.073	.056	.039
86 Port 004 102 72 Stbd 251 2.861 2.802 2.721 2.774 2.850 64 West 784 879 972 -1.086 374 373 64 West 600 678 972 -1.086 767 675 56 East 864 868 866 868 866 866 56 West 862 868 865 868 867 866 56 East 862 988 769 134 </th <th>œ</th> <th></th> <th>009</th> <th>009</th> <th>009</th> <th>008</th> <th>009</th> <th>600</th> <th>009</th> <th>009</th>	œ		009	009	009	008	009	600	009	009
80 Stbd .083 .062 .020092148162 80 Keel055092129192159102 72 Keel 2.921 2.861 2.802 2.721 2.774 2.850 64 Stbd 3.45 .274 .151135324373 64 West600678972 -1.086 -1.009909 64 West864865865865865864865865865865865865865865865865950 -1.036 -1.009909 64 West862863865863865865865865865865865865865865865865865865865865950 -1.036134 -1.046947927432 48 Keel863769848930930930930930930946937432 40 Keel525595661734665590961937948937948937948938307948 Stbd09707301807714616559007301807703104695896633830794835843584358435843584358435843587353485353485353485353	6		004	004	004	004	004	004	004	004
80 Keel055092129192159102 72 Stbd251193098128272311 72 Keel 2.921 2.861 2.802 2.721 2.774 2.850 64 Stbd345274151135324373 64 East600678755846767675 56 Stbd864866868871871870 56 East862863865867867 56 West862950 -1.036 -1.134 -1.046947 48 Stbd359283153166377432 40 Keel688769961737207163 40 Keel525595661734665590 16 East033030026015031046 16 West033330026015031046 16 West3543584358435723573888 8 Keel35843584358435573573485	10		.083	.062	.020	092	148	162	172	175
72 Stbd . 251 . 193098128272311 72 Keel 2.921 2.861 2.802 2.721 2.774 2.850 64 Stbd .345 .274 .151135324373 64 East784879972 -1.086 -1.009909 65 Stbd864866868871871870 56 East862950 -1.036 -1.134 -1.046947 48 Stbd862950 -1.036 -1.134 -1.046947 48 Stbd .359 .283 .153166377432 40 Stbd .853 .793 .674 .377 .207 .163 40 Keel525595661734665590 16 Stbd097073018 .077 .146 .165 16 West .270 .300 .329 .366 .338 .307 8 Stbd .433 .432 .439 .286 .335 .485 8 Keel584 -3.584 -3.584 -3.584 -3.572 -3.573800 8 Keel .447 .483 .527 .580 .535 .485	11		055	092	129	192	159	102	067	030
72 Keel 2.921 2.861 2.802 2.721 2.774 2.850 64 Stbd 345 .274 .151135324373 64 East784879972 -1.086 -1.009909909 64 West600678755846767675675 56 Stbd864865868871871870975 56 West862950 -1.036134 -1.046947947 48 Stbd950 -1.036 -1.134 -1.046947765 40 Keel588769948930848765590 16 Stbd955661734665590 16 Stbd097073018 .077 .146 .165 16 West .270 .300 .329 .366 .338 .307 8 Stbd3584358435843584358435723573800 .535 .485	12		.251	.193	860.	128	272	311	337	350
64 Stbd	13		2.921	2.861	2.802	2.721	2.774	2.850	2.907	2.966
64 East	14		.345	.274	.151	135	324	373	405	421
64 West600678755846767675 56 Stbd864866868871871870 56 East862863865868867866 56 West862950 -1.036 -1.134 -1.046947 48 Stbd .359 .283 .153166377432 40 Stbd .853 .793 .674 .377 .207 .163 40 Keel525595661734665590 16 Stbd097073018 .077 .146 .165 16 West .270 .300 .329 .366 .338 .307 8 Stbd -3.584 -3.584 -3.584 -3.572 -3.573886 No name .447 .483 .527 .580 .535 .485	15		784	879	972	-1.086	-1.009	909	823	734
56 Stbd 864 866 868 871 870 56 East 862 863 865 868 867 866 56 West 862 950 -1.036 -1.134 -1.046 947 48 Stbd 950 -1.036 -1.166 377 432 40 Keel 688 769 848 930 848 765 40 Keel 853 .793 .674 .377 .207 .163 40 Keel 525 595 661 734 665 590 16 Stbd 097 073 018 .077 .146 .165 16 West .270 .300 326 015 031 046 8 Stbd 354 354 3584 3572 3573 368 8 Keel 354 3584 355 485	16		600	678	755	846	767	675	597	517
56 East 862 863 865 868 867 866 56 West 862 950 -1.036 -1.134 -1.046 947 48 Stbd .359 .283 .153 166 377 432 40 Keel 688 769 848 930 848 765 40 Keel 853 .793 .674 .377 .207 .163 40 Keel 525 595 661 734 665 590 16 Stbd 097 073 018 .077 .146 .165 16 West .270 .300 326 015 031 046 8 Stbd 433 .432 .439 .286 .230 .218 8 Keel 3584 -3.584 -3.572 -3.573 -3.573 -3.573 No name .447 .483 .527 .580 .535 .485	17		864	866	868	871	871	870	870	869
56 West862950 -1.036 -1.134 -1.046947 48 Stbd .359 .283 .153166377432 48 Keel688769848930848765 40 Stbd .853 .793 .674 .377 .207 .163 40 Keel525595661734665590 16 Stbd097073018 .077 .146 .165 16 West .270 .300026015031046 8 Stbd .433 .432 .439 .286 .230 .218 8 Keel -3.584 -3.584 -3.584 -3.584 -3.572 -3.573 -	18		862	863	865	868	867	866	865	863
48 Ktel	19		862	950	-1.036	-1.134	-1.046	947	861	772
48 Keel688769848930848765 40 Stbd .853 .793 .674 .377 .207 .163 40 Keel525595661734665590 16 Stbd097073018 .077 .146 .165 16 East033 .030026015031046 16 West .270 .300 .329 .366 .338 .307 8 Stbd .433 .432 .439 .286 .230 .218 8 Keel -3.584 -3.584 -3.584 -3.584 -3.572 -3.573 -	20		.359	.283	.153	166	377	432	475	498
40 Stbd .853 .793 .674 .377 .207 .163 40 Keel 525 595 661 734 665 590 16 Stbd 097 073 018 .077 .146 .165 16 West .270 .300 .329 .366 .031 046 8 Stbd .433 .432 .439 .286 .230 .218 8 Keel -3.584 -3.584 -3.572 -3.573 - No name .447 .483 .527 .580 .535 .485	21		688	769	848	930	848	765	069	611
40 Keel 525 595 661 734 665 590 16 Stbd 097 073 018 .077 .146 .165 16 East 033 .030 026 015 031 046 16 West .270 .300 .329 .366 .338 .307 8 Stbd .433 .432 .439 .286 .230 .218 No name .447 .483 .527 .580 .535 .485	22		.853	.793	.674	.377	.207	.163	.134	.120
16 Stbd 097 073 018 .077 .146 .165 16 East 033 .030 026 015 031 046 16 West .270 .300 .329 .366 .338 .307 8 Stbd .433 .432 .439 .286 .230 .218 8 Keel -3.584 -3.584 -3.572 -3.573 - No name .447 .483 .527 .580 .535 .485	23		525	595	661	734	665	590	520	449
16 East 033 .030 026 015 031 046 16 West .270 .300 .329 .366 .338 .307 .307 8 Stbd .433 .432 .439 .286 .230 .218 8 Keel -3.584 -3.584 -3.572 -3.573 -3. No name .447 .483 .527 .580 .535 .485	54		097	073	018	.077	.146	.165	.175	.181
16 West .270 .300 .329 .366 .338 .307 . 8 Stbd .433 .432 .439 .286 .230 .218 . 8 Keel -3.584 -3.584 -3.584 -3.584 -3.572 -3.573 -3. No name .447 .483 .527 .580 .535 .485 .	25		033	.030	026	015	031	046	055	061
8 Stbd .433 .432 .439 .286 .230 .218 . 8 Keel -3.584 -3.584 -3.584 -3.572 -3.573 -3. No name .447 .483 .527 .580 .535 .485 .	5 6	9	.270	300	.329	.366	.338	.307	.279	.252
8 Keel -3.584 -3.584 -3.584 -3.584 -3.572 -3.573 -3. No name .447 .483 .527 .580 .535 .485 .	27		.433	.432	.439	.286	.230	.218	. 208	. 203
No name 447 .483 .527 .580 .535 .485	28		-3.584	-3.584	-3.584	•	-3.572	-3.573	•	-3.572
	29	- 1	.447	.483	.527	.580	.535	.485	.440	.399

TABLE D.11 (Continued)

			T	Load Condition	on (in)			
Pos.	Load	-	Percent Load		Lateral	Still		
No.	Ce11	-30% ↑	-20% +	-10%+	Offset	Water	2ero	Unlock
1	108 Stbd	.299	.288	.281	.267	.040	.029	018
2	108 Keel	.027	.028	.027	027	.027	.027	.027
٣	98 Stbd	.269	.268	.268	.261	.272	.265	.266
7	98 East	.471	.394	.317	.221	.226	.129	.331
∨	98 West	.181	.123	990.	.007	.010	090	.087
9	92 Stbd	.128	.132	.132	.131	004	003	033
7	92 Keel	.021	003	013	032	030	053	.064
œ	86 Stbd	008	009	008	600	008	009	600
6	86 Port	004	004	004	004	004	004	004
10	80 Stbd	174	172	167	161	025	023	970
11	80 Keel	.005	.040	.077	.112	.113	156	.249
12	72 Stbd	355	355	349	339	014	011	029
13	72 Kee1	3.025	3.084	3.143	3,203	3.209	3.284	3.371
14	64 Stbd	426	426	418	404	007	005	027
15	64 East	643	552	457	362	354	226	146
16	64 West	435	356	276	-,196	200	100	027
17	56 Stbd	698	869	868	866	862	860	858
18	56 East	862	861	859	857	854	851	848
19		681	592	502	412	408	295	219
20	48 Stbd	511	518	514	503	090-	068	081
21	48 Keel	527	446	365	.281	277	177	094
22	40 Stbd	.116	.119	.129	.148	.518	.523	.528
23	40 Keel	372	302	227	155	155	065	.011
24	16 Stbd	.185	.188	.190	.194	015	018	017
25	16 East	056	060	062	061	032	670	.034
5 6		.237	.207	.174	.118	.118	.029	.116
27		.202	.202	.207	.216	.258	.261	.271
28		-3.576	-3.579	-3.579	-3.579	-3.567	-3.566	-3.554
29	No name	. 369	.322	. 289	.251	.277	504	.279

TABLE D.12 - ASEM STATIC TEST 4--MEASURED DEFLECTIONS

				Load Cor	Condition (in)				
Pos.	Load		Zero	St 111	Lateral		Percent	Load	
No.	Ce11	Unlock	Stress	Water	Offset	+10%+	+20%+	+30%+	+707+
-	108 Stbd	106	015	006	273	256	232	203	171
7	108 Keel	.027	±.027	±027	±.027	1.027	±.027	±.027	±.028
e	98 Stbd	.265	.257	.245	.253	.251	.253	.257	.262
4	98 East	.319	.159	.247	.269	.196	.125	.053	016
5	98 West	.121	017	.053	.065	.007	051	111	170
œ	92 Stbd	085	034	027	152	149	140	128	113
7	92 Keel	080.	028	005	₹.003	020	041	062	081
œ	86 Stbd	009	600	009	600	600	009	009	600
6		900	900	900	900	006	006	006	006
10		093	030	021	0110	.100	680.	.075	650.
11	80 Keel	.256	.166	.122	.115	.148	.181	.215	.250
12	72 Stbd	058	023	011	309	.288	.260	.222	.179
13	72 Keel	3.356	3.274	3.199	3.185	3.241	3.298	3.358	3.417
14	64 Stbd	045	011	±.003	.430	.402	.364	.316	.258
15	64 East	154	227	350	362	267	171	060	650.
16	64 West	037	107	207	232	156	077	.005	.087
17	56 Stbd	478	501	529	152	144	140	131	142
18	56 Fast	416	997	521	616	188	156	110	086
19		312	384	497	578	445	359	273	191
20		064	045	031	987.	.435	.391	.336	.272
21	48 Keel	255	328	431	463	387	309	230	152
22	40 Stbd	.540	.546	.552	.943	:16.	878.	.836	.787
23		.010	060	151	188	113	043	.028	.097
24	16 Stbd	013	012	014	140	140	-, 124	102	071
25		.058	600.	900.	017	023	030	036	042
		.126	.052	.122	.134	590.	.023	022	083
27	8 Stbd	.320	.304	.308	.373	.361	.353	.345	.340
28	∞	-1.270	-1.297	-1.335	959	947	937	921	926
29	No name	_	.255	.321	. 291	.224	.185	.144	.101

TABLE D.12 (Continued)

				Load Con	Condition (in)				
Pos.	Load				Percent Lo	Load			
No.	Ce11	+20%+	+60%+	+70%+	+80%+	+%0/+	÷%09+	+205+	+40%+
1	108 Stbd	132	082	1001	.130	.233	.267	.276	. 281
C1	108 Keel	±.027	±.027	±.027	±.027	±.028	±.028	±.027	029
٣	98 Stbd	.262	.247	.250	.252	.250	. 248	.245	.248
4	98 East	089	161	231	307	254	196	136	073
2	98 West	232	292	351	413	360	305	250	193
9	92 Stbd	093	690	023	.048	109	.128	.135	.138
7	92 Keel	103	123	143	164	145	127	_	089
œ	86 Stbd	600	009	009	009	600	009	009	009
6	86 Port	006	006	006	006	006	006	006	900*-
01	S	.041	+.018	020	173	156	168	174	176
11	80 Keel	.285	.320	.357	.396	.369	.337	.304	.271
12	72 Stbd	.129	.067	030	247	370	404	418	454
13	72 Keel	3.475	3.533	3.589	3.638	3.601	3.549	3.492	3.435
14	64 Stbd	.193	.111	018	281	429	470	067	500
15	64 East	.173	. 289	.410	.541	677.	.342	.232	.120
16	64 West	.169	.252	.337	.422	.358	.285	.210	.132
17	56 Stbd	162	202	304	550	633	650	099	666
18	56 East	068	063	105	264	475	562	601	623
19		111	032	.042	.100	.048	031	115	201
20	48 Stbd	.194	060.	067	362	530	574	595	604
21	48 Kee]	077	026	.015	.019	030	101	175	251
22	40 Stbd	.728	.657	.539	.304	.157	.117	760.	.087
23	40 Kee1	.165	.243	.314	.397	.342	.281	.220	.154
24	16 Stbd	038	004	.061	.116	.168	.183	.195	.206
25		048	056	067	080	064	048	034	021
5 6		142	196	248	300	268	228	180	125
27	S	.335	.332	.353	.331	.329	.322	.313	. 303
28	8 Keel	942	977	-1.075	-1.334	-1.560	-1.643	-1.695	-1.731
29	No name	.058	.012	035	080		.019	.067	.113

TABLE D.12 (Continued)

				Load CC	Load Condition (in)				
Pos.	Load				Percent Load				
No.	Ce11	+30%+	+20%+	+10%+	Still Water	-10% +	-20%↓	-30%+	+ %07-
-	108 Stbd	.280	.278	.266	.252	.233	.210	.181	.146
7		±.028	±.027	027	±.027	±.027	±.027	±.027	±.027
ന	98 Stbd	.251	.253	.249	.249	.248	.248	.260	.249
4	98 East	600	.057	.125	. 205	.307	.387	997.	.549
2	98 West	137	080	022	.036	00.	.155	.214	.276
9	92 Stbd	.136	.132	.126	.116	.103	.088	.072	.052
7	92 Keel	071	052	034	014	±.003	.023	.041	090.
∞	86 Stbd	009	009	009	009	009	009	-,009	009
6		900	900	006	006	900	006	006	006
10	80 Stbd	176	174	170	165	160	152	142	-1.300
11	80 Keel	.236	.201	.164	.130	760	.059	.022	012
12	72 Stbd	423	417	407	394	377	355	327	291
13	72 Kee1	3.376	3.316	3.254	3.196	3.136	3.075	3.013	2.952
14	64 Stbd	500	765	481	797	442	414	377	330
15	64 East	.003	118	229	334	435	534	634	730
16	64 West	.054	026	110	190	271	353	435	-,517
17	56 Stbd	671	676	678	679	679	678	676	672
18	56 East	637	650	658	663	667	699*-	670	670
19		287	378	474	565	658	753	678	944
20		604	597	583	564	539	508	466	415
21	48 Keel	328	408	493	574	657	741	826	912
22	40 Stbd	.085	.088	960.	.107	193	.144	.174	.212
23	40 Keel	980.	.017	056	130	203	280	353	430
24		.215	.222	.217	.205	.189	.170	.149	.128
25	16 East	010	±.003	±.003	±.003	.007	800.	.010	.012
		067	003	.045	.130	.190	.228	.264	.298
27		.292	.280	.268	.253	.738	. 224	.214	.208
	8 Keel	-1.756	-1.779	-1.790	-1.793	-1.792	-1.784	-1.770	-1.747
29	No name	1.159	.203	.238	.309	.352	.392	.433	.472

TABLE D.12 (Continued)

				Load Con	Load Condition (in)				
Pos.	Load				Percent Load				
No.	Ce11	-50% ↓	↑ %09-	-70%+	+ %08-	-70% +	+ %09-	-56%↑	-40%+
-	108 Stbd	.104	670.	042	189	290	316	327	330
2	108 Keel	+.027	±.027	±.027	±.027	1.027	±.027	±.027	±.027
က		.251	.250	.246	.260	. 244	.253	.246	.250
7	98 East	.632	.723	908.	.897	.842	.774	.701	.624
5	98 West	.337	.403	.463	.529	.482	.428	.370	.311
9	92 Stbd	030	±.002	049	109	155	167	174	177
7	92 Keel	.078	.101	.119	.140	.126	.109	680.	.070
œ	86 Stbd	600	009	600	009	009	600	600	009
6		900	900	900	006	006	900	006	900
01	80 Stbd	112	060	040	890.	.123	.136	.142	.143
11	80 Keel	050	088	127	166	135	103	071	038
12	72 Stbd	244	184	071	.160	.303	.341	.361	.370
13	72 Keel		2.825	2.761	2.695	2.743	2,799	2.854	2.910
14	64 Stbd	269	190	046	.250	.436	.482	.506	.515
15	64 East	828	924	-1.020	-1.118	-1.039	955	870	781
16	64 West	009	689	776	870	-,805	732	659	583
17	56 Stbd	666	657	636	551	-,399	335	286	245
18	56 East	667	663	651	617	562	510	454	401
19		-1.041	-1.146	-1.243	-1.351	-1.278	-1.197	-1.113	-1.028
20	48 Stbd	348	261	118	.223	.426	.478	.505	.518
21	48 Keel	666	-1.094	1.184	-1.281	-1.207	-1.132	-1.056	979
22	40 Stbd	.263	.331	.457	.754	.915	.956	776.	.987
23	40 Kcel	504	588	670	757	707	644	580	515
77	16 Stbd	.105	.077	.011	094	148	160	165	166
25	16 East	.015	±.003	.002	900	028	041	053	062
5 6		.332	.345	.370	.395	.367	.336	.305	.275
27		.208	.216	.225	.375	.417	.425	.428	.429
	8 Keel	-1.715	-1.671	-1.583	-1.396	-1.240	-1.175	-1.123	-1.078
29	No name	.514	.536	.570	.596	.546	965.	677.	.405

TABLE D.12 (Continued)

I				Load Condition	on (in)			ı I
Pos.	Load		Percent Load	1	Lateral	Still		
No.	Ce11	-30% +	-20% +	-10% +	Offset	Water	Zero	Unlock
-	108 Stbd	327	318	305	288	008	100.1	026
7	108 Keel	±.027	±.026	±.027	±.027	±.027	±.027	±.027
e	98 Stbd	.247	.257	.256	.248	.240	.244	.245
4	98 East	.548	.465	.388	.282	.254	.159	.363
2	98 West	.251	.186	.126	.062	.044	028	.123
9	92 Stbd	177	175	171	166	034	028	044
7	92 Keel	.051	.030	.010	600	015	040	.082
∞	86 Stbd	009	009	009	600	600	600	009
6	86 Port	900-	006	900-	006	900	900*-	006
10	80 Stbd	.141	.138	.130	.120	₹.002	₹.002	017
11	80 Keel	004	.029	* 90 *	.100	.109	.152	.256
12	72 Stbd	.369	.363	.348	.328	.011	±.003	010
13	72 Keel	2.969	3.027	3.086	3.148	3.150	3.219	3.317
14		.512	.504	.484	.458	.041	.021	900.
15	64 East	689	594	498	395	372	-,250	150
16	64 West	506	426	347	263	249	152	064
17	56 Stbd	211	181	-,158	140	506	486	440
18	56 East	351	303	-,260	218	508	459	389
19		941	851	763	0.9-	699	570	478
20	48 Stbd	.519	.513	967.	. 473	641	033	031
21	48 Keel	900	815	-,734	647	.565	569	483
22	40 Stbd	.988	.982	996.	.943	167	.547	.570
23	40 Keel	446	368	291	211	.013	082	.003
24	16 Stbd	165	162	-,159	155	023	.017	.032
25	16 East	068	062	-,064	057	.133	025	.044
	16 West	.244	.227	.196	.150	.342	+.029	.130
27		.428	.425	.417	707	906	.326	.346
28	8 Keel	-1.039	-1.004	976	952	-1.372	-1.285	-1.234
29	No name	.362	.333	.295	.264	.256	.226	.312

APPENDIX E

STRAIN CAGE SPECIFICATIONS AND LOCATION NOMENCLATURE

A brief summary of the specifications of the strain gages and the lead wires used to obtain the strain data follows. Almost all gages were either Micro-Measurements single arm gages or rosettes (0°-45°-90°) type CEA-13-250UW-120 or CEA-13-250UW-120, respectively. These are general purpose constantan strain gages with a fully encapsulated gird having exposed solder tabs. The manufacturer recommends that they be used on aluminum material in a temperature range of -100°F to 400°F (test temperatures were well within this range). The active gage length for them is 0.25 in, with a gage resistance of 120 ohms. The nominal gage factor (G.F.) was 2 to 2.1%. The cement used for bonding them to the model was M-M Certified M-Bond 200 and waterproofing was also applied. At the completion of static and cyclic testing, the majority of the original gages were still functioning properly, approximately 5 years after they were installed.

The lead wires which ran from the strain gages on the model to completion panels below it were either Belden 8919, Style 1015 600V-105°C lead wire, or Military Specification type 7003 lead wire. Both are 10 strand AWG 20 gage wire with insulation thicknesses of 3/32 in. 0.D. for Belden and 2/32 in. for type 7003. The lead wire length ranged from 50 to 150 ft, depending on where the gage was located on the model. Gages internal to the hull generally required longer lead wires than exterior gages.

An alphanumeric numbering system for the strain gages was developed to locate them on the ASEM and to facilitate data analysis. The following is an explanation of the strain gage location nomenclature used in the tables of analyzed static test data in Appendix B.

First Character

B8COMMP

Gage is on a bulkhead

Generalized ship section where gage is located

"B" - Bulkhead

"H" - Hull

"F" - Platform Deck

"M" - Main Deck

"T" - 02 Deck

First character

Generalized ship section where gage is located

"¢" or "Z" - 01 Deck

"W" - Deckhouse Wall

"A" - Access Hole (Gage nomenclature different, see additional example for explanation)

Second Character

Specific frame or bulkhead location (may be 3 digit character)

B8 COMMP

Gage is on Bulkhead 8

Third Character

Indicates gage location relative to port or starboard side of ship:

B8COMMP

On Bulkhead 8

At Centerline

"S" - Starboard

"P" - Port

"C" - Centerline plane of ship

Fourth Character

в8соннкн

Gage is on Bulkhead 8 and it is located zero stiffeners P or S from Centerline

B8S2MFP

Gage is 2 stiffeners starboard of the Centerline on Bulkhead 8 Specific location of gage relative to Centerline of ship (usually refers to the number of stiffeners the gage is Port or Starboard off the Centerline). If the gage is located between two stiffeners the character is a decimal number. The number to the right of the decimal is the percent distance the gage is between the two stiffeners and the number to the left of the decimal is the number of the inboard most stiffener. If the strain gage is on a bulkhead, deck or hull, then the bulkhead, deck or hull stiffeners, respectively, are used as reference numbers.

Fourth Character

B8S2.5MFP

Gage is midway between 2nd and 3rd stiffener, starboard of the Centerline on Bulk-head 8

Fifth and Sixth

Character

B8S2MFP

Gage is located on Bulkhead 8; 2 stiffeners starboard of Centerline and between the Main Deck (M) and Platform Deck (F)

Combination of two characters (see First Character for listing) gives approximate vertical location of gage. If the gage is located on a deck, these characters are omitted. If fifth and sixth characters are "NA", gage is near the N.A. of ASEM.

Seventh Character

(If not a Rosette)

B8S2MFP

Gage is on the nonstiffened or plate side of Bulkhead 8

Indicates whether the gage is on plate or stiffener. If the gage is on the plate, it may be on the stiffened or the nonstiffened side of the panel. If the fourth character is a decimal number, then it is positioned between two stiffeners, usually on the stiffened side of the structure

"P" - Plate

"S" or "W" - Stiffener (specifically the Web)

Seventh Character

(If a Rosette)

B8P5FFRD

Gage is one arm of a rosette

Indicates the channel is one of three arms of a rosette.

Eighth Character

(If a Rosette)

B8P5FFRD

Diagonal arm of a rosette on

Bulkhead 8 near the Platform

Deck

Indicates the direction of rosette arms:

"H" - If plane of the rosette is vertical, arm

is horizontal

"L" - Arm is longitudinal

"D" - Arm is 45° arm relative to "L" or "V" $\,$

"V" - Arm is vertical

A slightly different system is devised for describing the location of gages near access holes:

First Character

Indicates access hole, "A"

APMM36Cls

Gage is near or on an

access hole

Second Character

APMM36C1S

Access hole on port side

of ship

Gage location relative to port or starboard side of ship.

"S" - Starboard

"P" - Port

"C" - Centerline plane of ship

Third and Fourth

Character

APMM36C1S

Port access hole is on

the main deck

Defines level the access hole is on;

"MM" - On Main Deck level

"M ϕ " - Between Main Deck and Ol deck level,

on deckhouse side

" $\phi\phi$ " - on 01 Deck level

"TT" or "ZZ" - on 02 Deck level

"ot" or "oz" - Between 01 and 02 Deck level

Fifth Character

APMM36CLS

Port access hole is at Frame 36 on the Main Deck

Specific frame or bulkhead location (may to a 3-digit character);

Sixth Character

APMM36C1S

Gage is on the coaming of the port access hole at Frame 36 on the Main Deck Indicates if the gage is on the coaming, "C", of the access hole or the plate, "P", adjacent to the access hole or if a rosette, "R", is on the plate adjacent to the access hole;

Seventh Character

APMM36CIS

Port Main Deck access hole at Frame 36, the gage is the first of a series of gages on the coaming

Gage number for a sequence of gages

- a) For coaming and plate gage: this number increases going clockwise (looking down) with #3 gage at end of corner radius (1, 2, 3, 4 or 5) for square opening.
- b) For rosette: orientation of (V, L, D or H) rosette arm
- c) For oval (not square) holes: this gage number is omitted (see Eighth Character for oval holes).

Eighth Character

APMM36C1PA

Port Main Deck access hole at Frame 36, the gage is the first of a series on the port aft corner of the coaming (port relative to centerline of coaming) Locates corner of access hole gage is located on. For coaming gage:

- a) For square access holes, the corner is denoted by 2 letters
 - "P" Port or "S" Starboard
 "F" Forward or "A" Aft
- b) For oval holes, counterclockwise angle is degrees to gage with 3 o'clock being 0° (looking inboard)

Eighth Character

APMM36P1PF0.5

Port main deck access hole at Frame 36, the gage is near the port forward corner of the port section of coaming and lines up with the first of a series of gages on the coaming. It is 0.5 in. from the coaming.

Plate gage:

The coaming gage that lines up with the plate gage is identified and then the distance from the coaming is identified as the 11th, 12th and 13th character.

Rosettes:

The corner of the hole is identified

"P" - Port or "S" - Starboard and

"F" - Forward or "A" - Aft

"or" - 01 Level (top of hole)

"M" - Main Deck Level (bottom of hole)

INITIAL DISTRIBUTION

Copies		Copies	
1	DDR&E/Lib	1	NAVSHIPYD PEARL
1	CNO/OP 098T	1	NAVSHIPYD PHILA
3	ONR	1	NAVSHIPYD PTSMH
	1 Code 432 (Dr. Basdeka) 1 Code 432 (Dr. Rajapakse)	1	NAVSHIPYD NORVA
	1 Code 474	1	NAVSHIPYD MARE
4	CHNAVMAT 1 071	12	DTIC
	1 0714 1 MAT 08T23	3	U.S. COGARD
1	1 Lib		1 Naval Eng Div.1 Merchant Marine Tech Div.1 Ship Structures Comm
1	USNA	1	•
1	NAVPGSCOL	1	Lib of Congress
1	USNROTCU & NAVADMINU MIT	2	MARAD 1 Div. of Ship Design
1	DNL		1 Off of Res and Dev
1	NRL Tech Lib	1	NSF Engr Div Lib
16	NAVSEA 1 SEA 05B	1	Univ of California, Berkeley Dept of Naval Arch
	1 SEA 05R1 SEA 05R25 (Vanderveldt)1 SEA 05R26 (Gagorik)	1	Catholic Univ Dept of Mech Engr
	1 SEA 55 1 SEA 55Y (O'Brien) 1 SEA 55Y1 (Arntson)	1	George Washington Univ School of Engr & Applied Sci
	1 SEA 55Y1 (Sielski) 1 SEA 55Y1 (Gallagher) 1 SEA 55Y1 (Packard)	1	MIT Dept Ocean Engr
	1 PMS 300 1 PMS 303 1 PMS 377	1	Univ of Michigan Dept NAME
	1 PMS 399 1 PMS 400	1	Webb Inst
1	NAVSHIPYD BREM	2	National Academy of Sci 1 National Res Council
1	NAVSHIPYD CHSN		1 National Res Council 1 Ship Hull Res Comm
1	NAVSHIPYD LONG BEACH		

Copies

- 1 SNAME
- 1 American Bureau of Shipping

CENTER DISTRIBUTION

Copies	Code Name
1	11
1	1605
1	17
1	1702
2	1706 (m)
1	1720
1	1730
1	1730.1
1	1730.2
1	1730.5
20	1730.6
1	1740
1	1750
1	1770
2	1770.7 (m)
1	185
1	281
10	5211.1 Reports Distribution
1	522.1 Unclassified Lib (C)

522.2 Unclassified Lib (A)

DTNSRDC ISSUES THREE TYPES OF REPORTS

- 1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECHNICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.
- 2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIMINARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.
- 3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION OF LIMITED USE AND INTEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR INTERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE NUMERICAL CODE OF THE ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE BY CASE BASIS.