

Activity (Moderate Learner) – With Solution

Context

You have been given the following unnormalized table representing a student enrollment system:

Student_Course(Student_ID, Student_Name, Course_ID, Course_Name, Instructor, Instructor_Office)

Task 1

Normalize the table step-by-step through 1NF, 2NF, 3NF, and BCNF, clearly identifying functional and transitive dependencies at each step.

Solution

Step 1: Identify Anomalies (Unnormalized Relation)

- Insertion Anomaly: Cannot insert instructor details without student enrollment.
- Deletion Anomaly: Deleting student records might lose instructor details.
- Update Anomaly: Instructor details repeated, causing inconsistencies if updates occur.

Step 2: First Normal Form (1NF)

- The table is already in 1NF since there are no repeating groups.

Step 3: Second Normal Form (2NF)

- Identify partial dependency:

Student ID → Student Name

Course ID → Course Name, Instructor, Instructor Office

- Create separate tables:

Students(Student_ID, Student_Name)

Courses(Course_ID, Course_Name, Instructor, Instructor_Office)

Enrollment(Student_ID, Course_ID)

Step 4: Third Normal Form (3NF)

- Identify transitive dependency:

Course $ID \rightarrow Instructor \rightarrow Instructor Office$

- Further split the Courses table:

Courses(Course_ID, Course_Name, Instructor)

Instructors(Instructor, Instructor_Office)

Step 5: Boyce-Codd Normal Form (BCNF)

- Check BCNF:

Each determinant is a candidate key in all tables.

- All resulting tables satisfy BCNF.

Final Normalized Tables:

- Students(Student_ID, Student_Name)
- Courses(Course_ID, Course_Name, Instructor)
- Enrollment(Student_ID, Course_ID)
- Instructors(Instructor, Instructor_Office)

Task 2: Verify Normal Form of Another Relation

Task 6: Consider another relation below with the given dependencies. Determine the highest normal form (1NF, 2NF, 3NF, BCNF) satisfied by the relation. Justify.

Relation:

Employee_Project(Emp_ID, Emp_Name, Project_ID, Project_Name, Project_Manager)

Functional Dependencies:

- Emp ID \rightarrow Emp Name
- Project ID → Project Name, Project Manager
- Project Manager → Project ID

Solution for Task 2

Step-by-step Analysis:

Step 1: Check 1NF

- Attributes are atomic; thus, relation is in 1NF.

Step 2: Check 2NF

- Relation has composite primary key (Emp_ID, Project_ID).
- Partial dependencies exist:

Emp ID \rightarrow Emp Name (depends only on Emp ID)

Project ID → Project Name, Project Manager (depends only on Project ID)

- Thus, the relation is NOT in 2NF.

Therefore, the highest normal form currently satisfied by this relation is **1NF**.

Recommendation for 2NF:

Split the relation into separate tables:

- Employee(Emp_ID, Emp_Name)
- Project(Project_ID, Project_Name, Project_Manager)
- Employee_Project(Emp_ID, Project_ID)

This decomposition removes partial dependencies, achieving 2NF and subsequently checking higher forms:

- Project_Manager → Project_ID indicates a further transitive dependency. This must be resolved for 3NF.

For Moderate Learners (Intermediate)

Task 3: Identify Functional Dependencies

Question:

From the following data, identify any functional dependencies:

EmpID	EmpName	DeptID	DeptName
101	Alice	D1	Sales
102	Bob	D2	HR
103	Charlie	D1	Sales

Answer:

- EmpID \rightarrow EmpName
- DeptID \rightarrow DeptName

Task 4: Find Candidate Keys

Question:

Given relation R(A,B,C) with FD:

- $A \rightarrow B$
- $B \rightarrow C$

What are the candidate keys?

Answer:

- Closure of A: $A^+ = \{A,B,C\}$ (since $A \rightarrow B$ and $B \rightarrow C$)
- So A is a candidate key.

- $B^+ = \{B,C\}$ (not all attributes)
- Candidate key: A only.

Task 5: Determine Normal Form

Ouestion:

Relation R(A,B,C) with FD:

- $A \rightarrow B$
- $B \rightarrow C$

What is the highest normal form of R?

- Answer:
- R is in 2NF becaUse no partial dependencies.
- It is not in 3NF Due to transitive dependency $A \rightarrow B \rightarrow C$.
- The highest normal form is 2NF.

Task 6: Decompose into 3NF

Question:

Normalize R(A,B,C) with FD:

- $A \rightarrow B$
- $B \rightarrow C$ into 3NF.

Answer:

- Decompose into:
 - \circ R1(A,B) with A \rightarrow B
 - \circ R2(B,C) with B \rightarrow C
- Both satisfy 3NF.

Task 7: Explain Transitive Dependency

Question:

What is transitive dependency? Give an example.

Answer:

- A transitive dependency exists if $A \to B$ and $B \to C$, so $A \to C$ indirectly.
- Example: In R(A,B,C), if A \rightarrow B and B \rightarrow C, then C is transitively dependent on A.