Introduzione Come affrontare l'università e altri consigli utili per lo studio

Tutorato di Fondamenti di Informatica 13/03/2024

Martin Gibilterra

Università di Catania

github.com/w8floosh

Chi sono

1

Informazioni utili sul tutorato

Calendario:

- mercoledì 10:00 11:00 in aula 3
- venerdì 17:00 19:00 in aula 4

CANALE TELEGRAM PER AVVISI Q&A

Presupposti

- il tutorato non è una lezione
- nessuna domanda è scema, ma riflettete prima di farla
- siate liberi di esprimere dubbi

Guida pratica allo studio universitario

https://www.dmi.unict.it/barba/Imparare/index.htm

Chi sei ...e dove sei

Rifletti sul tuo metodo di studio e impara a pianificare il tuo tempo, riservando il giusto spazio per te stesso e ciò che ti piace. Scandisci il tuo ritmo di studio con delle pause!

Che fai

...e cosa puoi fare

Capire come studiare significa imparare ad apprendere. Dedicate una parte del vostro studio a questo. Alcuni consigli:

- rivedi il tuo modo di prendere appunti;
- esercitati nella lettura "top-down": prima dai uno sguardo generale e interrogati sul succo della questione, poi cerca i punti chiave e infine leggi attentamente i dettagli;
- riscrivi in modo più "spicciolo" ciò che hai letto per fissare le idee e rielaboralo per collegare a modo tuo (con logica) i concetti. E rileggi per verificare!

Pensa

prima di sparare

Pensa (o immagina) a uno scenario concreto in cui applicare ciò che hai studiato.

Poniti problemi che nessuno attorno a te vuole porsi, è un buon esercizio:)

IL POST-SCELTO

(perché viene scelto a fine discorso, no?)

...in che senso!?

Usa l'approccio top-down per scomporre il testo nei suoi concetti chiave e prova a fornire una descrizione più semplice e meno formale.

Definizione 2.1 Un sistema formale \mathcal{D} è dato da:

- un insieme numerabile S (alfabeto o riserva di simboli);
- un insieme decidibile $W \subseteq S^*$ (insieme delle formule ben formate (fbf));
- un insieme Ax ⊆ W (insieme degli assiomi); se Ax è decidibile, il sistema formale è detto ricorsivamente assiomatizzato;
- un insieme R = {R_i}_{i∈I}, con R_i ⊆ W^{n_i} con I ed n_i ≥ 2 finiti (insieme finito di regole finitarie).

 $\label{eq:lagrangian} \textit{La coppia} < \textit{S}, \textit{W} > \, \grave{e} \, \, \textit{detta linguaggio formale}.$

In poche parole

Rielabora questo concetto con parole diverse.

Definizione 2.2 Dicesi definizione esplicita la definizione di un termine che viene aggiunto all'alfabeto del linguaggio per significarne un'espressione.

Notazione: se $R \subseteq W^3$ allora scriverò $R(\alpha, \beta, \gamma)$ nella forma $\frac{\alpha - \beta}{\gamma}$.

Attenzione! La semantica è importante tanto quanto la sintassi. Assicurati che il concetto sia lo stesso anche se viene espresso in modo diverso.

Parla come magni

Utilizzando quanto già letto prima, descrivi questa entità in maniera più semplice.

Definizione 2.3 Dato un insieme M di fbf nel sistema formale \mathcal{D} , una \mathcal{D} -derivazione (prova, dimostrazione) a partire da M è una successione finita di fbf $\alpha_1, \ldots, \alpha_n$ di \mathcal{D} tale che, per ogni $i=1,\ldots,n$ si abbia:

- $\alpha_i \in Ax \ oppure$
- $\alpha_i \in M$ oppure
- $\bullet \ (\alpha_{h_1},\ldots,\alpha_{h_{n_j}}) \in R_j \ per \ qualche \ j \in I, \ \alpha_i = \alpha_{h_{n_j}} \ e \ h_1,\ldots,h_{n_j-1} < i.$

Non parlà come magni

Prova a scrivere questa definizione in maniera più formale utilizzando simboli matematici già visti.

Definizione 2.4 Una formula α è derivabile nel sistema formale \mathcal{D} a partire da un insieme di ipotesi M se e solo se esiste una \mathcal{D} -derivazione a partire da M la cui ultima fbf è α . Scriveremo allora $M \vdash_{\mathcal{D}} \alpha$ e leggeremo: M deriva (prova) α nel sistema formale \mathcal{D} .

Se M è vuoto scriveremo $\vdash_{\mathcal{D}} \alpha$ e leggeremo: α è un teorema in \mathcal{D} (o di \mathcal{D}). $M \not\vdash_{\mathcal{D}} \alpha$ se e solo se non vale $M \vdash_{\mathcal{D}} \alpha$.

Per esempio?

Ipotizza da zero un esempio di sistema formale semplice e inserisci una definizione esplicita al suo alfabeto.

Definizione 2.1 Un sistema formale \mathcal{D} è dato da:

- un insieme numerabile S (alfabeto o riserva di simboli);
- un insieme decidibile $W \subseteq S^*$ (insieme delle formule ben formate (fbf));
- un insieme Ax ⊆ W (insieme degli assiomi); se Ax è decidibile, il sistema formale è detto ricorsivamente assiomatizzato;
- un insieme R = {R_i}_{i∈I}, con R_i ⊆ W^{n_i} con I ed n_i ≥ 2 finiti (insieme finito di regole finitarie).

La coppia $\langle S, W \rangle$ è detta linguaggio formale.

Definizione 2.2 Dicesi definizione esplicita la definizione di un termine che viene aggiunto all'alfabeto del linguaggio per significarne un'espressione.

Notazione: se $R \subseteq W^3$ allora scriverò $R(\alpha, \beta, \gamma)$ nella forma $\frac{\alpha - \beta}{\gamma}$.

Sono fortissimo...

Leggi questa definizione e reinterpretala a parole tue, dopodiché fornisci un esempio calzante con il sistema formale ipotizzato precedentemente.

Definizione 2.5 Sia \mathcal{R} l'insieme delle regole di un sistema formale \mathcal{D} ; una regola $R: \frac{\alpha_1, \ldots, \alpha_k}{\alpha_k+1}, R \notin \mathcal{R}$, è detta derivabile in \mathcal{D} se e solo se per tutte le fbf $\alpha_1, \ldots, \alpha_k$ che soddisfano R si ha: $\alpha_1, \ldots, \alpha_k \vdash_{\mathcal{D}} \alpha_{k+1}$.

R è detta ammissibile (o eliminabile) in \mathcal{D} se e solo se da $\vdash_{\mathcal{D} \cup \{R\}} \alpha$ segue $\vdash_{\mathcal{D}} \alpha$, dove $\mathcal{D} \cup \{R\}$ denota il sistema formale ottenuto da \mathcal{D} con l'aggiunta della regola R.

