Spring 2022: Numerical Analysis Assignment 6 (due May 2, 2022 at 11:59pm ET)

- 1. [Space of polynomials P_n , 2+2+2pts] Let P_n be the space of functions defined on [-1,1] that can be described by polynomials of degree less of equal to n with coefficients in \mathbb{R} . P_n is a linear space in the sense of linear algebra, in particular, for $p,q\in P_n$ and $a\in\mathbb{R}$, also p+q and ap are in P_n . Since the monomials $\{1,x,x^2,\ldots,x^n\}$ are a basis for P_n , the dimension of that space is n+1.
 - (a) Show that for pairwise distinct points $x_0, x_1, \ldots, x_n \in [-1, 1]$, the Lagrange polynomials $L_k(x)$ are in P_n , and that they are linearly independent, that is, for a linear combination of the zero polynomial with Lagrange polynomials with coefficients α_k , i.e.,

$$\sum_{k=0}^{n} \alpha_k L_k(x) = 0 \text{ (the zero polynomial)}$$

necessarily follows that $\alpha_0 = \alpha_1 = \ldots = \alpha_n = 0$. Note that this implies that the (n+1) Lagrange polynomials also form a basis of P_n .

(b) Since both the monomials and the Lagrange polynomials are a basis of P_n , each $p \in P_n$ can be written as linear combination of monomials as well as Lagrange polynomials, i.e.,

$$p(x) = \sum_{k=0}^{n} \alpha_k L_k(x) = \sum_{k=0}^{n} \beta_k x^k,$$
 (1)

with appropriate coefficients $\alpha_k, \beta_k \in \mathbb{R}$. As you know from basic matrix theory, there exists a basis transformation matrix that converts the coefficients $\boldsymbol{\alpha} = (\alpha_0, \dots, \alpha_n)^T$ to the coefficients $\boldsymbol{\beta} = (\beta_0, \dots, \beta_n)^T$. Show that this basis transformation matrix is given by the so-called Vandermonde matrix $V \in \mathbb{R}^{n+1 \times n+1}$ given by

$$V = \begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^{n-1} & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^{n-1} & x_1^n \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^{n-1} & x_n^n \end{pmatrix},$$

i.e., the relation between α and β in (1) is given by $\alpha = V\beta$. An easy way to see this is to choose appropriate x in (1).

- (c) Note that since V transforms one basis into another basis, it must be an invertible matrix. Let us compute the condition number of V numerically. Compute the 2-based condition number $\kappa_2(V)$ for n=5,10,20,30 with uniformly spaced nodes $x_i=-1+(2i)/n,\ i=0,\ldots,n.$ Based on the condition numbers, can this basis transformation be performed accurately?
- 2. **[Hermite interpolation, 1+2+1+2pts]** We are given distinct interpolation points x_i , $i=0,\ldots,n$. In class we introduced the Hermite interpolation polynomials $H_k(x)$ and $K_k(x)$ as follows:

$$H_k(x) = [L_k(x)]^2 (1 - 2L'_k(x_k)(x - x_k)), \qquad K_k(x) = [L_k(x)]^2 (x - x_k),$$

where L_k are the Lagrange polynomials.

 $^{^{1}}$ MATLAB provides the function vander, which can be used to assemble V (actually, the transpose of V). Alternatively, one can use a simple loop to construct V.

- (a) Show that $H_k, K_k \in P_{2n+1}$, i.e., they are polynomials of degree 2n+1 or lower.
- (b) Show that H_k, K_k as defined above satisfy the following conditions:

$$H_k(x_i) = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k, \end{cases} \quad \text{and} \quad H_k'(x_i) = 0, \quad i = 0, \dots, n.$$

$$K_k'(x_i) = egin{cases} 1 & ext{if } i=k \ 0 & ext{if } i
eq k, \end{cases} \quad ext{and} \quad K_k(x_i) = 0, \quad i = 0, \ldots, n.$$

- (c) Argue that H_k, K_k are the unique polynomials in P_{2n+1} satisfying the conditions in (b).
- (d) Find a (Hermite) polynomial $p_3 \in P_3$ that interpolates $f(x) := 3 \exp(x)$ and f' in $x_0 = 0, x_1 = 1/2$. Give the polynomial p_3 in the Hermite basis, plot f and p_3 in the same graph, and plot the four Hermite basis functions in another graph.

3. [Newton-Cotes Rules, 3+2+2pts]

(a) For $f(x)=x^2+x+1$ on [0,2], we are interested in numerical approximations of the integral $I:=\int_0^2 f(x)\,dx$. By splitting the integral into two,

$$\int_0^2 f(x) \, dx = \int_0^1 f(x) \, dx + \int_1^2 f(x) \, dx,$$

and using the trapezoidal rule on the subintervals [0,1] and [1,2], find an approximation of I (i.e., use the composite Trapeziodal rule for two subintervals). Also, use the Simpson's rule on [0,2] to approximate I. Which of the two approximations is more accurate, and why?

(b) The error estimate for the Simpson's rule is given by

$$|E_2(f)| \le \frac{(b-a)^5}{2880} M_4,$$

where $M_4 = \max_{x \in [a,b]} |f^{(iv)}(x)|$. Here, $f^{(iv)}$ denotes the 4-th derivative of f. Use the error estimate to explain which functions f are integrated exactly by the Simpson's rule.

- (c) Let $f(x) = \frac{1}{4}x^4 + \sin(x)$. According to the error estimate, what is the maximal error you will make when integrating f over $[0,\pi]$? You do not need to calculate the approximate integral.
- 4. [Errors in polynomial interpolation, extra credit, 3pt] Interpolate the function

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0, \end{cases}$$

on the domain [-1,1] using Lagrange polynomials with Chebyshev points.² You can use the following MATLAB function lagrange_interpolant to compute the values of the Lagrange interpolants p_n .

$$x_i = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\left(\frac{i+\frac{1}{2}}{n+1}\pi\right)$$
 for $i = 0, \dots, n$.

²Recall that the Chebyshev points on the interval [a,b] are

```
function y0 = lagrange_interpolant(x, y, x0)
      \% x is the vector of abscissas.
      % y is the matching vector of ordinates.
      \% x0 represents the target to be interpolated
      \% yO represents the solution from the Lagrange interpolation
7 n = length(x);
s \text{ for } j = 1 : n
      t = 1;
      for i = 1 : n
10
           if i~≡i
11
              t = t * (x0-x(i))/(x(j)-x(i));
12
13
14
      y0 = y0 + t*y(j);
15
```

Describe qualitatively what you see for n=2,4,8,16,32,64,128,256 interpolation points. Provide a table of the maximum errors³

$$||p_n - f||_{\infty} = \max_{x \in [-1,1]} |p_n(x) - f(x)|,$$

and the L_2 -errors⁴

$$||p_n - f||_2 = \sqrt{\int_{-1}^{1} (p_n(x) - f(x))^2 dx}$$

for each n=2,4,8,16,32,64,128,256. Do you expect convergence in the maximum norm? How about in the L_2 norm?

5. [Composite trapezoidal and Simpson sum, extra credit, 2+2+2pt] Write codes⁵ to approximate integrals of the form

$$I(f) = \int_{a}^{b} f(t) dt$$

using the trapezoidal and Simpson's rule on the sub-intervals $[x_{i-1}, x_i]$, i = 1, ..., m, where $x_i = a + ih$, i = 0, ..., m with h = (b - a)/m.

$$||p_n - f||_{\infty} = \max_{x \in [-1,1]} |p_n(x) - f(x)| \approx \max_{j=0,\dots,10n} |p_n(\xi_j) - f(\xi_j)|,$$

where $\xi_j = -1 + \frac{2}{10n}j$ for $j = 0, \dots, 10n$.

⁴You can approximate the L_2 -error by evaluating the error p_n-f at a large number of uniformly distributed points, e.g., at $\sim 10n$ points, and computing

$$||p_n - f||_2 = \sqrt{\int_{-1}^{1} (p_n(x) - f(x))^2 dx} \approx \sqrt{\frac{2}{10n} \sum_{j=0}^{10n} (p_n(\xi_j) - f(\xi_j))^2},$$

where $\xi_j = -1 + \frac{2}{10n}j$ for $j = 0, \dots, 10n$.

⁵Ideally, you write functions trapez(f,a,b,m) and simpson(f,a,b,m), where f is a function handle (see http://www.mathworks.com/help/matlab/matlab_prog/creating-a-function-handle.html if you are not familiar with that concept) or f is the vector $(f(x_0), \ldots, f(x_m))$.

³You can approximate the maximum error by evaluating the error p_n-f at a large number of uniformly distributed points, e.g., at $\sim 10n$ points, and determining the difference using the maximum absolute value, i.e.

⁶For these composite rules, see Definitions 7.1 and 7.2 in the book.

(a) Hand in listings of your codes, and use them to approximate the integral

$$\int_{0.1}^{1} \sqrt{x} \, dx.$$

Compare the numerical errors $\mathcal E$ for both quadrature rules (the exact value of the integral is $\frac{2}{3}-\frac{1}{15\sqrt{10}}$). Try different m (e.g., $m=10,20,40,80,\ldots$) and plot the quadrature errors versus m in a double-logarithmic plot.

(b) To numerically study how the errors \mathcal{E} decrease with m, we assume that the errors behaves like Cm^{κ} , with to-be-determined $C, \kappa \in \mathbb{R}$. Applying the logarithm to $\mathcal{E} = Cm^{\kappa}$ results in

$$\log(\mathcal{E}) = D + \kappa \log(m),\tag{2}$$

where $D = \log(C)$. Use the values for m and $\log(\mathcal{E})$ you computed in (a) to find the best-fitting values for D and κ in (2) by solving a least squares problem. Compare your findings for κ with the theoretical estimates for the composite trapezoidal and Simpson's rules.⁷

(c) Repeat steps (a) and (b) using a=0 instead of a=0.1 as lower integration bound. Can the theoretical estimates for the composite rules still be applied and why/why not?

⁷Compare with (7.16) and (7.18) in the book. You can ignore the constants, just compare κ , the exponent of m, with the theoretical results.