Problem 1. Suppose Y_t is the return on an equity portfolio at month t, and X_t is the market return. Their sample means are, respectively, 0.003 and 0.005. Suppose we run an OLS regression

$$Y_t = a + b X_t + e_t.$$

(a) Find the estimates for a and b given that

$$\sum_{t=1}^{60} X_t Y_t = 0.005; \qquad \sum_{t=1}^{60} X_t^2 = 0.004.$$

- (b) Given that the residual sum of squares (RSS) is 5.8×10^{-5} , compute the t statistic of the a estimate under the hypothesis that $H_0: a=0$. What inference can be drawn?
- (c) Do likewise under the null hypothesis that $H_0: b = 1$. What inference can be drawn?

Problem 2. A student runs the following regression of stock i's return r_{it} on market portfolio return r_{mt} based on the market model:

$$r_{it} = a + br_{mt} + e_{it}$$

where e_{it} is a residual noise that is i.i.d. and independent of r_{mt} .

- (a) Is e_{it} independent of r_{it} ?
- (b) He performs OLS regression and obtains OLS estimates \hat{a} and \hat{b} . He interprets \hat{b} as a parameter estimate that is proportionate to CAPM's notion of systematic risk of stock i, and determines \hat{a} as Jensen's alpha. Comment if his interpretation is sound.
- (c) The student selects all stocks with positive \hat{a} and forms a portfolio. Is this portfolio likely to outperform the market index on average? Provide an explanation for your answer.

Problem 3. Let $X'X = \begin{pmatrix} 6 & 45 \\ 45 & 355 \end{pmatrix}$ and $X'y = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$. The covariance between the intercept estimate and the slope estimate is $-\frac{3}{28}$.

- (a) What is the dimension of matrix X?
- (b) What is the slope of the simple linear regression (as an irreducible fraction, e.g., 11/21)?
- (c) What is the average of the explanatory variable (as an irreducible fraction, e.g., 11/21)?
- (d) What is the unbiased variance of the explanatory variable (as an irreducible fraction, e.g., 11/21)?
- (e) What is the unbiased variance of the residuals (as an irreducible fraction, e.g., 11/21)?
- (f) What is the t statistic of the y-intercept estimate (rounded to 2 decimal places)?
- (g) Suppose a new observation of the explanatory variable is obtained and its value is 1.5.
 - (i) What is the point forecast for *y* (rounded to 2 decimal places)?
 - (ii) What is the upper bound of the prediction interval at the 5% level of significance (rounded to 2 decimal places)? (Hint: You need to set $\mathbf{x} = \begin{pmatrix} 1 & 1.5 \end{pmatrix}'$ and apply your understanding about Slide 31 of S4_2_MLR.pdf)