CH402 Chemical Engineering Process Design

Class Notes L10

Heat Exchanger Design II

(Solution of 14-16 and Equation 14-91)

(These slides apply to CC v8.1 only)

WPR 1 - L12 - WARNO

Date – 9 February 2024, C&D Hours

Coverage – Lessons 1-11 (Chapters 12 and 14 and Labs 1-3)

- (1) Heat Exchangers CHEMCAD 3-step method
 - Simple mode, including flow rates and exchanger specs
 - Sizing mode, including area, number and length of tubes, resistances, Reynolds numbers, and pressure drops
 - Simulation mode, including outlet temperatures and exchanger costs
 - Three different exchangers, one for each step.
- (2) Pumps and Pipe flow static and dynamic losses, pump characteristics curve, CHEMCAD pipes, pumps, and compressors. Be able to explain static and dynamic head.
- (3) CHEMCAD and textbook costing tools, especially for heat exchangers, pipes, pumps, compressors.

3 problems, 200 points (80/60/60), 55 minutes

Make sure you understand Problem Sets 1-5, especially problems 14-15 and 14-16.

Be prepared to apply equation 14-91.

Problem 14-16

Air used in a catalytic oxidation process is to be heated from 15 to 270 °C before entering the oxidation chamber. The heating is accomplished with the use of product gases, which cool from 380 to 200 °C. A steel one-pass shell-and-tube exchanger with cross-flow on the shell side has been proposed. The average absolute pressure on both the tube side and the shell side is 1010 kPa, with the hot gasses being sent through the tubes. The flow rate for the air has been set at 1.9 kg/s. The inside and outside diameters for the tubes are 0.0191 and 0.0254 m, respectively. The tubes will be arranged in line with a square pitch of 0.0381 m. The exchanger operates for 8000 h/yr. The properties of the hot gases can be considered identical to those of air. The cost data for the exchanger are given in Figure 14-19 (p. 682).

Installation costs are 15% of purchased cost, and annual fixed charges including maintenance are 20% of the installed cost. The energy cost is \$0.12/kWh. Under these conditions, determine the most appropriate tube length and purchased cost for the optimum heat exchanger.

Annual cost of heat exchanger operation

Important!

- C_T Total annual costs, dollars/yr
- A_0 Outside tube area, m^2
- K_F Annual fixed charges factor (maintenance, etc) as a fraction of installed cost, dimensionless
- C_{A₀} Installed cost of the heat exchanger per unit outside tube area, dollars/m²
- m_u Mass flow rate of utility fluid, kg/hr
- H_v Hours of operation per year
- C_u Cost of utility fluid, dollars/kg
- E_i Power loss due to fluid flow inside heat exchanger tubes per unit outside tube area, N·m/s per m²
- C_i Cost of supplying 1 N·m to pump fluid through the inside of the tubes, dollars/N·m
- E_0 Power loss experienced on the shell side per unit outside tube area, N·m/s per m²
- C_0 Cost of supplying 1 N·m to pump fluid through the shell side, dollars/N·m

This will be explored in detail in Lesson 11. Today – CHEMCAD base case

Format Engineering Units:

Common SI

Time - seconds

Pressure – kPa

Enthalpy – J

Work – kJ

Thermophysical Select

Components:

Nitrogen and

Oxygen

(Do not use "Air")

Thermodynamics Wizard: SRK for K and H

Level 1 Flowsheet

Level 1 Specs

Specifications	Misc. Settings Cost Estimations
Tells CHEMCAD to calculate the flow rate of hot gases in stream 1	0 Enter specifications (CHEMCAD simulation) Pressure drop:
Temperature stream Temperature stream 4 Vapor fraction stream Vapor fraction stream Subcooling stream 2 Subcooling stream 4 Superheat stream 2 Superheat stream 4 Heat duty (specified)	270 C Minimum delta temperature C Hot outlet - cold inlet C Hot inlet- cold outlet C C
Help	Area (per shell) m2 Cancel OK

Click "OK" then "Run." Verify that the flow rate of hot gas is 2.6397 kg/s in stream 1. This completes "Level 1" design.

Level 2 Design

In Step 1, CHEMCAD solved mass and energy balances and determined unknown hot gas flow rate.

Step 2 – Copy and Paste

In Step 2, CHEMCAD uses mechanical details to optimize the exchanger in terms of total purchased cost.

Proceed to Sizing -> Shell and Tube, and enter unit 2

General Specs

In the CCTherm tab, in the Configuration Group, click "General," and then enter "5" for the stream entering tube side. This opens the General Specs window.

Heat Curves

It is a good idea to look at the heating-cooling curves. Proceed to CCTherm Configuration Group -> Heat Curve Specification

Design Options

Design Constraints								×	
Design Criteria						Sizing nozzle			
Allowable tube pressure	34.473801		kPa		✓ Tube, inle				
Allowable shell pressure drop		34.473801		kPa	✓ Tube, ou		tlet		
Allowable tube velocity		76.199997		m/sec		✓ Shell, inlet			
Allowable shell velocity		76.199997		m/sec		✓ Shell, outlet			
Prefer tube length/shell diameter ratio		12							
Minimum exce	ss %								
Limits of Design Variables Lower Limits Upper Limits					Increase upper tube length				
Tube Length	0.9	0.91439998		20		m			
Shell Diameter	0.1	0.1524		9		m		Increase shell	
Baffle Cut	15	15		45		Percent of diameter		eter	
Baffle Spacing	0.0	50799999	3	. 175	m				
Optimize number of tube passes									
Help					C	Cancel	ОК		

CCTherm Configuration Group -> General Dropdown -> Design Constraints

Tube Specs

Tube Specifications				×	
Number of tubes *	1396	Г	Given	in pr	oblem
Number of tube passes *	1		stater		oblem
Tube outer diameter	.0254				
Tube wall thickness	.00315	m			
Tube length *		m			
Roughness factor	1.5748e-06	m			
Tube pattem	Square (90) +				
Tube pitch	.0381	m			
Trufin tube code	Plain tube		¥		
Turbulator	No Turbulator		¥		
Tubesheet thickness	.0254	m			
Number of tubesheets	2				
* Field May be r	ecalculated when design calcula	tion is run			
Help	Cance		OK		
rease tubesheet	This is a TEMA	spec o	on tube	shee	t thicknes

thickness to 0.0254 m

Generally, it must match the tube OD.

Shell Specs

Shell Specifications	×								
Shell diameter * 0.99059999 m Calculate tube count									
Number of exchangers in parallel 1									
Number of exchangers in series 1									
Untubed area/OTL area of tube sheet									
Impingement protection Use impingement plates									
Accept all defaults here. We will change these later.									
* Field may be recalculated when design calculation is run									
Help Cancel OK									

Baffle Specs

Design Run

TABULATED ANALYSIS								Slide 16	
Overall Data:									
Area Total	m2		% Excess			2.72			
Area Required	m2		U Calc. W/m2-			19.61			
Area Effective	m2	222.98	U Service W/m2-	-K		19.09			
Area Per Shell	m2	222.98	Heat Duty J/sec	С		5.01E+05			
Weight LMTD C 144	.27 LM	TD CORR Fa	ctor 0.8154 C	ORR LMTI) C	117.63			
Shell-side Data:									1
Film Coef. W/m2-K		24 55	Reynolds No.			1502	Low Reynolds	Number.	
Allow Press. Drop			Calc. Press. Dro		kPa				•
				_		16.32			
Inlet Nozzle Size			Press. Drop/In 1			1.82			
Outlet Nozzle Size	m	0.09	Press. Drop/Out			2.63			
			Mean Temperature		C				
Rho V2 IN kg/m-sec	52	1760.30	Press. Drop (Di	rty)	KPa	27.74			
Tube-side Data:									
Film Coef. W/m2-K		130.72	Reynolds No.			20904			
Allow Press. Drop	kPa	34.47	Calc. Press. Dro	qc	kPa	13.94			
Inlet Nozzle Size	m	0.13	Press. Drop/In 1	Nozzle	kPa	3.72			
Outlet Nozzle Size	m	0.10	Dress Dron/Out	Nozzle	l-Da	2 87			
Interm. Nozzle Size	≘ m	0.00	Resistances:						
Velocity	m/sec	5.06	Shell-side Fil				m2-K/W	0.04073	_
***			Shell-side Fou	ling			m2-K/W	0.00000	
Shell:			Tube Wall				m2-K/W	0.00008	
Shell O.D. m		0.81	Tube-side Foul	ing			m2-K/W	0.00000	
Shell I.D. m		0.79	Tube-side Film	l			m2-K/W	0.00765	
Bonnet I.D. m		0.79	Reference Fact	or (Tota	al ou	tside area/:	inside area base	d on tube II	0) 1.330
Type		AXL							
	Impingem	ent Plate	Pressure Drop D	istribu	tion:				
			Tube Side				Shell Side		
Tubes:			Inlet Nozzle	kPa		3.7201	Inlet Nozzle	kPa	1.8239
Number		288	Tube Entrance	kPa		0.0389	Impingement	kPa	1.1442
Length m		9.75	Tube	kPa		1.0672	Bundle	kPa	0.0136
_		0.005	Tube Exit	kPa		0.0686	Outlet Nozzle	kPa	2.6325
Tube O.D. m			End	kPa		0.0000	Total Fric.	kPa	4.4700
Tube I.D. m		0.019	Outlet Nozzle	kPa		2.8731	Total Grav.	kPa	-0.0713
Tube Wall Thk. m		0.003	Total Fric.	kPa		7.7678	Total Mome.	kPa	11.9172
No. Tube Pass		1	Total Grav.	kPa		0.0559	Total	kPa	16.3159
Inner Roughness m		0.0000016	Total Mome.	kPa		6.1167	TOTAL	AFG	10.3139
Number of tubesheet	ts	2							
			Total	kPa		13.9405			

Create a Copy of Your CCTherm Design

Create a copy of your CCTherm design. This guards against loosing your work through mistakes. In the CCTherm "Select" Group -> Click "Copy CCTherm Case"

Level 3 – Shell and Tube Simulation

Copy and Paste Exchanger 2 (creating exchanger 3)

Change Mode to Simulation

Copy and Paste Exchanger 2 (creating exchanger 3), double-click the exchanger, and change simulation mode to "1 Shell & tube simulation"

Run the Simulation

Checking results shows that outlet streams are slightly off spec based on percent excess safety factor.

What happens to P-drop when we go from 1 to 2 to 3?

This affects cost to push fluids.

Slide 22

Update Cost Index and Run Costing

In the Home tab, in the Results Group, click (property sets)

Questions?