Nome: PEDRO GIGECK FREIRE

NÚMERO USP: 10737136

DATA: 18/04/2018

02) PARA A DEFINIÇÃO DAS OFERAÇÕES, VAMOS CONSIDERAR QUE CADA ELEMENTO Q E À DEFINE UM conjunto Pa constituído por todos os FATORES PRIMOS DE Q, POR EXEMPLO, a= 15, Pa= (3,5) (FATORAÇÃO 3.5=15).

Assim, Podemos DEFINIR A OPERAÇÃO + como:

$$a_1 + a_2 = a_3$$
 $tal que P_{a_3} = P_{a_1} U P_{a_2}$. POR EXEMPLO;
 $3 + 5 = a_3$, $P_{a_3} = \{3\} U \{5\} \Rightarrow P_{a_3} = \{3,5\} \Rightarrow a_3 = 15$. (MMC_{3,5})

E A OPERAÇÃO . como:

$$a_1 \cdot a_2 = a_3$$
 TAL QUE $P_{a_3} = P_{a_1} \cap P_{a_2} \cdot P_{or}$ EXEMPLO:
 $15 \cdot 10 = a_3 \Rightarrow P_{a_3} = \{3,5\} \cap \{2,5\} = \{5\} \Rightarrow \alpha_3 = 5 \cdot (\text{MDC}_{15,10})$

E A OPERAÇÃO COMO

$$\overline{\Omega}_1 = \Omega_2$$
 TAL QUE $P_{\alpha_2} = P_{\alpha_1}$. POR EXEMPLO:
 $\Omega_1 = 15 \Rightarrow P_{\alpha_1} = \{3.5\} \Rightarrow P_{\alpha_1} = \{2\} \Rightarrow \overline{\alpha}_1 = 2$. (30/15)

As IDENTIDADES DAS OPERAÇÕES SÃO:

(A, +, ·, -, 1, 30)

PODEMOS MOSTRAR QUE É ALGEBRA BOOLEANA, POIS OS 4 AXIOMAN SÃO CONFERIDOS:

SÃO COMUTATIVOS POIS U e A SÃO COMUTATIVOS. A1: 01+ 02

A2:
$$\alpha_1(\alpha_2 + \alpha_3) = \alpha_4$$
, $P_{\alpha_4} = P_{\alpha_1} \cap (P_{\alpha_2} \cup P_{\alpha_3}) = (P_{\alpha_1} \cap P_{\alpha_2}) \cup (P_{\alpha_1} \cap P_{\alpha_3}) \Rightarrow \alpha_4 = \alpha_1 \alpha_2 + \alpha_1 \alpha_3$
 $\alpha_1 + \alpha_2 \alpha_3 = \alpha_4$, $P_{\alpha_4} = P_{\alpha_1} \cup (P_{\alpha_2} \cap P_{\alpha_3}) = (P_{\alpha_1} \cup P_{\alpha_2}) \cap (P_{\alpha_1} \cup P_{\alpha_2}) = \alpha_4 = (\alpha_4 + \alpha_2)(\alpha_4 + \alpha_3)$

e)
$$yx = 3x$$
 \Rightarrow Este caso só ocorre se $y = Z$ ou $y = x$, $z = 1$ ou $y = 1$, $z = x$ ou $y = 0$, $z = \overline{x}$ ou $y = \overline{x}$, $z = 0$.

$$y\bar{x}=3\bar{x}$$
 = Este caso só ocorre se $y=3$ ou $y=x$, $z=0$ ou $y=0$, $z=x$ ou $y=1$, $z=\bar{x}$ ou $y=\bar{x}$, $z=1$.

An unica condição onde ARAS Afirmações São VERDADEIRAS E SE y=3.

08) Sendo a operação do tipo $A^2 \rightarrow A$, A TABELA VERDADE TEM A forma:

		1.	
	9	a	x + ay
0	0	a0+a1	0-
0	1	ão +00	0,
0	a	ão taã	0
0	ā	ãotaa	a
1	0	ā1+a1	1
1	1	ā1+00	ã
1	a	ā1+aā	F -0.7
1	ā	ātraá	d -0.1
a	0	aa+a1	0
a	1	āatad	.0
a	a	āataā	0
a	ā	āataa	O.
ā	0	مقنمه	1
ā	1	āā, 86	$\bar{\alpha}$
, á	0	00,00	ā
ā	ā	55+00	1

A DISTRIBUTIVA

$$f(a,b,c) = (a+b+c)(a+b+c)(a+b+c)(a+b+c)(a+b+c)$$

$$(a+b+c)(a+b+c)$$

00 0 4 1 1 10 XOXO

MAPA DE KARNAUGH [M(0,2,3,6,7,8,9,10,13)

PEORO GIGELLO FREIRE / 10737136

0 = 0000

13= 1101 6 = 0110

7 - 0111

ac+bd+acd é una dos farmos SOP possíveis.

able	00	01	11	10
00	1			1
0 1				
11	T	T		
£ 0	T			

nd que

TM (1,3,4,5,6,7,9,10,11,14,15)

ab 00	00	01	11	10
00		0	0	
01	0	0	0	0
11			0	0
10		0	0	0

Aqui podemos observaro que a forma SOP possui muas portas OR, seis PORTAS AND E CONSEQUENTEMENTE: MAIS ENTRAPAS (VARIAVEIS).

Ja A forma Pos possui quas portas AND E TRÊS PORTAS OR, SENDO mais "Econômica" que a forma SOP.