10/568670

PCT/EP2004/006090 JAP20 Rec'd FCT/FTO 1 6 FEB 2006

WO 2005/028896

at the

Kugelfestgelenk mit gedrehten Bahnquerschnitten

1

Beschreibung

Die Erfindung betrifft Gleichlaufgelenke in Form von Festgelenken mit den Merkmalen:

ein Gelenkaußenteil, das eine Längsachse L12 und axial zueinander entgegengesetzt liegend eine Anschlußseite und eine Öffnungsseite hat und das äußere Kugelbahnen aufweist,

ein Gelenkinnenteil, das eine Längsachse L13 und Anschlußmittel für eine zur Öffnungsseite des Gelenkaußenteils weisende Welle hat und das innere Kugelbahnen aufweist,

die äußeren Kugelbahnen und die inneren Kugelbahnen bilden Bahnpaare miteinander,

die Bahnpaare nehmen jeweils eine drehmomentübertragende Kugel auf,

jeweils zwei benachbarte Bahnpaare haben äußere Kugelbahnen, deren Mittellinien in zueinander im wesentlichen parallelen Ebenen E1, E2 liegen, und innere Kugelbahnen deren Mittellinien in zueinander im wesentlichen parallelen Ebenen E1', E2' liegen,

ein ringförmiger Kugelkäfig sitzt zwischen Gelenkaußenteil und Gelenkinnenteil und weist umfangsverteilte Käfigfenster auf, die jeweils die drehmomentübertragenden Kugeln zweier benachbarter Bahnpaare aufnehmen,

die Mittelpunkte K1, K2 der Kugeln werden vom Kugelkäfig beim gestreckten Gelenk in der Gelenkmittelebene EM gehalten und bei Gelenkbeugung auf die winkelhalbierende Ebene zwischen den Längsachsen L12, L13 geführt.

WO 2005/028896

u() i

2

PCT/EP2004/006090

Gelenke dieser Art sind beispielsweise aus der DE 44 40 295 C1 bekannt. Bei diesen Gelenken kann Drehmoment jeweils nur von der Hälfte der Kugeln in jeder Drehmomentrichtung übertragen werden.

Gelenke ähnlicher Art sind weiterhin aus der DE 100 33 491 A1 bekannt. Hierbei sind die äußeren Kugelbahnen und inneren Kugelbahnen im Querschnitt durch Kreisbögen definiert, wobei die jeweilige Symmetrieachse der Kugelbahnquerschnitte in den Ebenen liegt, die die Bahnmittellinien enthalten. Dies führt unter Drehmoment abhängig von der Drehmomentrichtung zu ungünstigen Belastungsverhältnissen an den Bahnkanten.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Gelenke der genannten Art vorzuschlagen, die unter Drehmomentbelastung möglichst günstige Belastungsverhältnisse unabhängig von der Drehmomentübertragungsrichtung aufweisen.

Die Lösung hierfür liegt in Gelenken der genannten Art, bei denen die Bahnquerschnitte der äußeren Kugelbahnen und der inneren Kugelbahnen eines jeden Bahnpaares symmetrisch zu Symmetrieachsen ES1, ES2, die mit Ebenen E1, E2, E1', E2' gleich große entgegengesetzt angetragene Winkel φ₁, φ₂ bilden und jeweils einen 🧭 gemeinsamen Punkt M, M' haben. Hierbei ist vorgesehen, daß die Winkel φ1, φ2 im Bereich von 0,8 ... 1,3 φ₀ liegen, wobei 2φ₀ der Mittelpunktswinkel beim gestreckten Gelenk zwischen Radialstrahlen RS1, RS2 durch die Kugelmitten K1, K2 der Kugeln zweier benachbarter Bahnpaare ist. Die Bedeutung dieser Angabe läßt sich wie folgt näher erklären. Wenn φ1, φ2 gleich φ0 sind, ergibt es sich, daß die Bahnquerschnitte der äußeren Kugelbahnen und der inneren Kugelbahnen eines jeden Bahnpaares jeweils symmetrisch zu Radialstrahlen RS1, RS2 von den Längsachsen durch die Kugelmitten K1, K2 der drehmomentübertragenden Kugeln des Bahnpaares sind; wenn ϕ_1 , ϕ_2 ungleich ϕ_0 sind, ergibt es sich, daß die Bahnquerschnitte der äußeren Kugelbahnen und der inneren Kugelbahnen eines jeden Bahnpaares jeweils symmetrisch zu in der Querschnittsebene liegenden Geraden PS1, PS2 sind, die parallel zu den Radialstrahlen RS1, RS2 sind und die sich jeweils in einem gemeinsamen Punkt M' mit Abstand zu den Längsachsen L12, L13 schneiden.

2)

d11

5.

WO 2005/028896

3

PCT/EP20U4/006090

Hiermit wird bei Festgelenken, deren Kugeln in paarweise in im wesentlichen parallelen Ebenen E1, E2, E1', E2' verlaufenden Kugelbahnen geführt werden, wobei zur Erhöhung der Drehmomentbelastbarkeit jeweils zwei Kugeln in einem Käfigfenster aufgenommen werden, eine verbesserte Krafteinleitung in die Kugelbahnen sichergestellt, die unabhängig von der Drehmomentrichtung im wesentlichen gleiche Verhältnisse garantiert. Dies ist durch die symmetrische Ausgestaltung der Bahnquerschnitte jedes Bahnpaares relativ zu den Radialstrahlen RS1, RS2 von der Längsachse L12, L13 durch die Kugelmitten K1, K2 bzw. relativ zu solchen Radialstrahlen parallelen Geraden PS1, PS2 sichergestellt. Hierbei sind geringe Abweichungen von der strengen Symmetrie im Verhältnis zu den einzelnen Radialstrahlen RS1, RS2 zulässig und gegebenenfalls vorteilhaft, insbesondere dann, wenn die Kugelbahnen mit Werkzeugen gefertigt werden, deren Bewegungsablauf auf definierten Ebenen verlaufen soll, wobei die Werkzeugachsen bevorzugt in sich parallel gehalten werden.

Nach einer ersten grundlegenden Ausgestaltungsform ist vorgesehen, daß die Bahnmittellinien M22 der äußeren Kugelbahnen und die Bahnmittellinien M23 der inneren Kugelbahnen in Ebenen E1, E2 liegen, die zueinander parallel und parallel zu den Längsachsen L12, L13 des Gelenks und durch die Kugelmitten der Kugeln zweier benachbarter Bahnpaare verlaufen.

Hierbei wird vorgeschlagen, daß das Gelenk als Twinballgelenk ausgeführt ist, wobei die Öffnungswinkel α_1 , α_2 zwischen den Tangenten an die Grundlinien zweier benachbarter Bahnpaare sich bei gestrecktem Gelenk in der Gelenkmittelebene EM jeweils in die gleiche Richtung, insbesondere zur Anschlußseite des Gelenkaußenteils hin, öffnen.

Nach einer zweiten grundlegenden Ausführungsform wird vorgeschlagen, daß das Gelenk als Gegenbahngelenk ausgeführt ist, wobei die Öffnungswinkel α_1 , α_2 zwischen den Tangenten an die Bahngrundlinien in der Gelenkmittelebene EM zweier benachbarter Bahnpaare sich bei gestrecktem Gelenk in der Gelenkmittelebene EM in entgegengesetzter Richtung öffnen. Hierbei wird insbesondere vorgeschlagen, daß sich die Kugeln zweier benachbarter Bahnpaare bei gestrecktem Gelenk auf

WO 2005/028896

·

PCT/EP2004/006090

verschiedenen Rollkreisradien PCR befinden.

Nach einer hierzu alternativen weiteren grundlegenden Ausgestaltungsform ist vorgesehen, daß die Bahnmittellinien M22₁, M22₂ der äußeren Kugelbahnen in ersten Ebenen E1, E2 verlaufen, die jeweils zueinander parallel und durch die Kugelmitten der Kugeln zweier benachbarter Bahnpaare verlaufen und die vom Gelenkmittelpunkt M gleichen senkrechten Abstand haben, wobei sie mit Parallelen zu den Längsachsen L12, L13 Kreuzungswinkel γ₀ bilden, und daß die Bahnmittellinien M23₁, M23₂ der inneren Kugelbahnen in zweiten Ebenen E1', E2' verlaufen, die jeweils zueinander parallel und durch die Kugelmitten der Kugeln zweier benachbarter Bahnpaare verlaufen und die vom Gelenkmittelpunkt M gleichen senkrechten Abstand haben, wobei sie mit Parallelen zu den Längsachsen L12, L13 Kreuzungswinkel γ₀' bilden . Die Winkel γ₀ und γ₀' sind gleich groß und entgegengesetzt gerichtet, so daß sich ein Kreuzungswinkel γ₀ + γ₀' zwischen den Ebenen E1, E2 der äußeren Bahnen und den Ebenen E1', E2' der inneren Bahnen ergibt.

Im Gegensatz zu der eingangs genannten Ausgestaltungsform, bei der sich die räumlichen Steuerwinkel an den Kugeln abhängig von der Richtung der Drehmomenteinleitung geringfügig verändert, ist es mit der vorstehenden Ausgestaltungsform möglich, die Abhängigkeit der räumlichen Steuerwinkel ϵ_0 , ϵ_0 ' an den Kugeln von der Drehmomentübertragungsrichtung auszugleichen. Hierfür wird insbesondere vorgesehen, daß die Kreuzungswinkel γ_0 , γ_0 ' so gewählt sind, daß die räumlichen Steuerwinkel der Kugelbahnen an den Kugeln bei rechtsdrehendem Drehmoment Kround bei linksdrehendem Drehmoment Klo gleich groß sind.

Hierbei ist weiterhin vorgesehen, daß bei einem Mittelpunktswinkel $2\phi_0$ zwischen den Radialstrahlen RS1, RS2 durch die Kugelmitten der Kugeln zweier benachbarter Bahnpaare sich der Kreuzungswinkel γ_0 nach der Gleichung $\gamma_0 = \epsilon_0$ tan ϕ_0 errechnet, damit die räumlichen Steuerwinkel bei rachtsdrehendem Drehmoment und linksdrehendem Drehmoment am Gelenk gleich groß sind.

Wenn die Bahnmittellinien in den achsparallelen Ebenen E1, E2 liegen, ergeben sich aufgrund der Tatsache, daß die Kontaktwinkel δ für rechtsgerichtetes und linksge-

WO 2005/028896

le

5

PCT/E.P2004/006090

richtetes Drehmoment symmetrisch zum Radialstrahl RS liegen, unterschiedliche räumliche Steuerwinkel für rechtsdrehendes und linksdrehendes Moment. Die räumlichen Steuerwinkel für die rechtsdrehende Belastung bzw. die linksdrehende Belastung sind

$$Kr_0 = \varepsilon_0 \cdot \cos(\delta + \phi)$$

 $Kl_0 = \varepsilon_0 \cdot \cos(\delta - \phi_0)$.

4)

Sie sind wegen des +/- ϕ_0 Einflusses deutlich unterschiedlich.

Durch eine Drehung der Ebenen E1, E2 um eine Hochachse um den Kreuzungswinkel γ_0 kann erreicht werden, daß die räumlichen Steuerwinkel Kr $_0$ = Kl $_0$ gleich werden. Dies ist erfüllt für die Bedingung γ_0 = ϵ_0 · tan ϕ_0 .

In einer ersten Ausgestaltungsform der Bahnquerschnitte ist vorgesehen, daß die Bahnquerschnitte der äußeren Kugelbahnen und der inneren Kugelbahnen durch Parabel- oder Ellipsenabschnitte oder durch Spitzbögen (gotische Bögen) gebildet werden, die jeweils mit den Kugeln in zwei Punkten Kontakt erzeugen.

In einer zweiten Ausgestaltungsform der Bahnquerschnitte ist vorgesehen, daß die Bahnquerschnitte der äußeren Kugelbahnen und der inneren Kugelbahnen durch Kreisabschnitte gebildet werden, deren Krümmungsmittelpunkte mit Abstand zueinander auf dem jeweiligen Radialstrahl RS1, RS2 bzw. der jeweiligen dazu parallelen Geraden PS1, PS2 liegen und deren Krümmungsradius größer als der Kugelradius ist und die mit den Kugeln jeweils Kontakt in nur einem Punkt erzeugen, der bei Drehmomentfreiheit im Bahngrund liegt.

Figur 1 zeigt an einem erfindungsgemäßen Gelenk die erfindungsgemäßen Merkma-

- a) im halben Querschnitt gemäß der Schnittlinie C-C aus Figur 1b
- b) im versetzten Längsschnitt gemäß der Schnittlinie B-B aus Figur 1a;

Figur 2 zeigt ein erfindungsgemäßes Gelenk als Twinballgelenk

WO 2005/028896

6

PCT/EP2004/006090

- a) in Axialansicht
- b) im Längsschnitt gemäß den Schnittebenen A-A, B-B aus Figur 2a;

Flgur 3 zeigt ein erfindungsgemäßes Gelenk als Gegenbahngelenk

- a) im Querschnitt durch die Mittelebene EM
- b) im Längsschnitt gemäß der Schnittebene A-A nach Figur 3a
- c) im Querschnitt gemäß der Schnittebene B-B nach Figur 3a;
- Figur 4 zeigt ein erfindungsgemäßes Gelenk als Gegenbahngelenk in einer alternativen Ausführung
 - a) im Querschnitt durch die Mittelebene EM
 - b) in einem Längsschnitt gemäß der Schnittlinie A-A aus Figur 4a;
- Figur 5 zeigt einen Teilquerschnitt durch ein erfindungsgemäßes Gelenk in einer ersten Ausführung des Kugelbahnquerschnitts gemäß der Schnittlinie C-C aus Figur 1b;
- Figur 6 zeigt einen Teilquerschnitt durch ein erfindungsgemäßes Gelenk in einer zweiten Ausführung des Kugelbahnquerschnitts gemäß der Schnittlinie C-C aus Figur 1b;
- Figur 7 zeigt das Gelenk nach Figur 1 in abgewandelter Darstellungsform
 - a) im halben Querschnitt gemäß der Schnittlinie C-C aus Figur 2b
 - b) im versetzten Längsschnitt gemäß der Schnittlinie B-B aus Figur 2a;
- Figur 8 zeigt einen Teilquerschnitt durch ein erfindungsgemäßes Gelenk unter Bezugnahme auf Figur 7;
- Figur 9 zeigt Winkelverhältnisse nach dem Gelenk gemäß Figur 8 in überhöhter Darstellung.

Die beiden Darstellungen der Figur 1 werden nachstehend gemeinsam beschrieben. In Figur 1 ist ein Gleichlauffestgelenk 11 gezeigt, das ein Gelenkaußenteil 12, ein

WO 2005/028896

Q)

7

PCT/EP2004/006090

Gelenkinnenteil 13, drehmomentübertragende Kugeln 14 und einen Kugelkäfig 16 umfaßt. Jeweils zwei Kugeln 141, 142 sind in einem gemeinsamen Käfigfenster 17 des Kugelkäfigs aufgenommen. Die Kugeln sind in äußeren Kugelbahnen 221, 222 und inneren Kugelbahnen 231, 232 gehalten, wobei die Kugelbahnen benachbarter Kugeln 141, 142, Bahnpaare 221, 231; 222, 232 bilden. Mit RS1 und RS2 sind Radialstrahlen von den Längsachsen L12, L13 durch die Mittelpunkte K1, K2 der Kugeln 14, 14 eingezeichnet. Mit S1 und S2 sind Schnittlinien von Ebenen E1, E2, E1', E2', in denen die Mittellinien der Kugelbahnen liegen, mit der Schnittebene C-C, die annähernd als Querschnittsebene durch das Gelenk angesehen werden kann, eingezeichnet. In diesen Ebenen E1, E2, E1', E2' liegen die Mittellinien der Kugelbahnen. Diese können als zu den Längsachsen L12, L13 parallele Ebenen oder als mit den Längsachsen L12, L13 einen Kreuzungswinkel bildende, zueinander paarweise parallele Ebenen ausgeführt sein. Die Kugelbahnen sind jeweils symmetrisch zu Symmetrieachsen ES1, ES2, die mit Radialebenen R1, R2 gleich große entgegengesetzte Winkel φ_{01} , φ_{02} bilden und die im vorliegenden Fall mit den Radialstrahlen RS1, RS2 übereinstimmen.

Mit ϕ_{01} , ϕ_{02} ist jeweils der halbe Mittelpunktswinkel zwischen den Radialstrahlen RS1, RS2 durch die Mittelpunkte der Kugeln 14₁, 14₂ bezogen auf die Längsachsen L12, L13 bzw. der halbe Öffnungswinkel zwischen den zwei Radialstrahlen RS1, RS2 eingezeichnet.

Ohne daß die Gestaltung der Kugelbahnen hier näher erkennbar wäre, soll diese so sein, daß bei rechtsdrehendem Moment auf das Gelenkinnenteil das Kräftepaar FR unter einem Winkel ö bezogen auf den Radialstrahl RS an der Kugel angreift und bei linksdrehendem Moment auf das Gelenkinnenteil das Kräftepaar FL unter dem gleich großen Winkel ö bezogen auf den Radialstrahl RS an der Kugel angreift. Der Angriffspunkt der Kräfte FR, FL stellt dabei die Kontaktpunkte der Kugelbahnen mit der Kugel unter Drehmoment dar.

In Figur 1b sind zudem Kugelbahnen 22₂, 22₃ mit Bahnmittellinien M22, M23 eingezeichnet, sowie die Tangenten T22, T23 an die Kugelbahngrundlinien in der Ebene C-C.

WO 2005/028896

8

PCT/EP2004/006090

Parallel zu diesen Tangenten T22, T23 an die Bahngrundlinien laufen Tangenten T22', T23' an die Bahnmittellinien M22, M23, die parallel zu den Tangenten T22, T23 verlaufen und die in Ebenen liegen, die nach obenstehendem parallel zu den Längsachsen L12, L13 oder jeweils unter einem Winkel zu den Längsachsen L12, L13 liegen können.

Die Tangenten T22', T23' an die Bahnmittellinien M22, M23 bilden jeweils Bahnwinkel ϵ_0 mit einer Parallelen L' zu den Längsachsen L12, L13, wobei die diese Bahnwinkel bildenden Tangenten T22', T23' im erstgenannten Fall in der Zeichnungsebene liegen und im speziellen Fall gegenüber der Darstellungsebene unter den Winkeln ϕ_0 , ϕ_0 ' verschränkt sind.

Die Figuren 2a und 2b werden nachstehend gemeinsam beschrieben. Es ist ein erfindungsgemäßes Gelenk als Twinballgelenk gezeigt, wobei gleiche Einzelheiten mit gleichen Bezugsziffern wie in Figur 1 belegt sind. Auf die dortige Beschreibung wird insoweit Bezug genommen. Hierbei ist erkennbar, daß die Kugelbahnen 22₁, 23₁ und 22₂, 23₂ zweier benachbarter, in einem gemeinsamen Käfigfenster 17 gehaltener Kugeln 14₁, 14₂ gemäß den Schnittebenen A-A und B-B übereinstimmend gestaltet sind. Der hierbei erkennbare übereinstimmende Bahnverlauf gilt für alle Kugelbahnen des Gelenks. Gelenke dieser Art werden von der Anmelderin als Twinballgelenke bezeichnet. Im dargestellten Maßstab sind die Einzelheiten der Bahnquerschnitte nicht im einzelnen erkennbar.

Die einzelnen Darstellungen der Figur 3 werden nachstehend gemeinsam beschrieben. Es ist ein erfindungsgemäßes Gelenk als Gegenbahngelenk gezeigt. Gleiche Einzelheiten sind mit gleichen Bezugsziffern wie in Figur 1 belegt. Auf die Beschreibung wird insoweit Bezug genommen. Wie anhand der verschiedenen Schnitte zu erkennen ist, weisen die Kugelbahnen 22₁, 23₁ von ersten Kugeln 14₁, die mit zweiten Kugeln 14₂ in einem gemeinsamen Käfigfenster 17 gehalten werden, einen ersten Öffnungswinkel α₁ zur Gelenköffnung und die zweiten Kugelbahnen 22₂, 23₂ dieser zweiten Kugeln 14₂, die mit den ersten Kugeln 14₁ in einem gemeinsamen Käfigfenster gehalten sind, einen zweiten Öffnungswinkel α₂ auf, der zum Gelenkbo-

WO 2005/028896

den hin geöffnet ist.

9

PCT/EP2004/006090

Die hier für die Kugelbahnen eines Bahnpaares gezeigten Verhältnisse gelten entsprechend für alle Bahnpaare jeweils zweier benachbarter Kugeln, die in einem gemeinsamen Käfigfenster gehalten sind. Hierbei wechseln sich erste Bahnpaare und zweite Bahnpaare über dem Umfang abwechseln. Gelenke der hiermit bezeichneten

Art werden von der Anmelderin als Gegenbahngelenke bezeichnet.

Die Darstellungen der Figur 4 werden nachstehend gemeinsam beschrieben. Bezüglich der in Figur 4 dargestellten Einzelheiten wird auf die Beschreibung der Figur 1 Bezug genommen. In Figur 4a ist eine Schnittlinie A-A eingezeichnet, die durch zwei Kugelmitten K1, K2 der Kugeln 14₁, 14₂ zweier benachbarter Bahnpaare verläuft und parallel zu den Längsachsen L12, L13 verläuft. In Figur 4b ist erkennbar, daß die Mittellinien M22 der äußeren Kugelbahnen 22₁, 22₂ in Ebenen E1, E2 liegen, die mit der Längsachse L12 einen Winkel γ₀ bilden, während die Mittellinien M23 der inneren Kugelbahnen (23₁, 23₂) in zueinander parallelen Ebenen E1', E2' liegen, die mit der Längsachse L13 einen gleich großen, entgegengesetzt angetragenen Winkel γ₀' bilden.

In Figur 5 sind zwei benachbarte Bahnpaare 22₁, 23₁; 22₂, 23₂ von zwei in einem Käfigfenster 17 gehaltenen Kugeln 14₁, 14₂ im Querschnitt gezeigt. Die Querschnittsform der Kugelbahnen ist jeweils symmetrisch zu den Radialstrahlen RS1, RS2, die mit den Bahnquerschnittssymmetrieachsen ES1, ES2 identisch sind. Die Kugelbahnmittellinien liegen in den Ebenen E1 und E2, die parallel zu Radialebenen R1 sind. Die Querschnittsform jeder Kugelbahn kann parabelartig oder gotisch (aus zwei Kreisbögen mit versetzten Mittelpunkten zusammengesetzt) sein, wobei in jeder der Kugelbahnen Zweipunktkontakt entsteht. Unabhängig von der Gelenkbeugestellung wird ein vorteilhafter Kraftangriffswinkel der vorher genannten Kräftepaare FR sichergestellt, der sich während der Gelenkbeugung im wesentlichen nicht ändert, so daß kein Auswandern der Kugeln zu den Bahnkanten hin stattfindet.

In Figur 6 sind zwei benachbarte Bahnpaare 22₁, 23₁; 22₂, 23₂ von zwei in einem Kä-figfenster 17 gehaltenen Kugeln 14₁, 14₂ im Querschnitt gezeigt. Die Kugelbahnen

30/03

WO 2005/028896

01

der Bahnpaare 22₁, 23₁; 22₂, 23₂ sind auch hier symmetrisch zu den Radialstrahlen RS1, RS2, die mit den Bahnquerschniftssymmetrieachsen ES1, ES2 identisch sind. Die Kugelbahnmittellinien liegen in den Ebenen E1, E2, die parailel zu Radialebenen R1 sind. Die Querschnitte der Kugelbahnen jedes Bahnpaares werden aus Kreisbögen gebildet, deren Mittelpunkte M1a, M1i; M2a, M2i auf dem jeweiligen Radialstrahl RS1, RS2 liegen, wobei die Radien Ra, Ri deutlich größer als der Kugelradius sind. Hierdurch entsteht bei Drehmomentfreiheit Kontakt der Kugeln 14₁, 14₂ mit den Kugelbahnen 22₁, 23₁, 22₂, 23₂ jeweils im Bahngrund.

Die Darstellungen der Figur 7 werden nachstehend gemeinsam beschrieben. Gleiche Einzelheiten sind mit gleichen Bezugsziffern wie in Figur 1 belegt. Auf die vorangehende Beschreibung wird insoweit Bezug genommen.

In Figur 7a ist der Rollkreisradius PCR nach seinen zwei Komponenten PCRx und PCRy bezüglich der Achsen x senkrecht zur Schnittebene B-B und y parallel zu Schnittebene B-B zerlegt.

In Figur 7b ist die Bewegung der Kugel 14_2 bei einer Abbeugung des Gelenkinnenteils 13 gegenüber dem Gelenkaußenteil 12 nach links um einen Winkel β gezeigt, wobei sich die Kugel in Bezug auf den Mittelpunkt M um einen Winkel $\beta/2$ gegenüber dem Gelenkaußenteil 12 verschiebt. Hierbei sind die Rollkreisradien PCRy(0) bei gestrecktem Gelenk und PCRy($\beta/2$) bei um den Winkel β gebeugtem Gelenk gezeigt. Aufgrund des Bahnverlaufes ist PCRy($\beta/2$) größer als PCRy(0).

Für das nicht gebeugte Gelenk ergibt sich damit

$$PCR_0 = \sqrt{(PCRx_0^2 + PCRy_0^2)}$$

und ein Teilungswinkel ϕ_0 , wobei sich der Teilungswinkel ϕ berechnet aus

$$tan\phi_0 = PCRx_0/PCRy_0$$

und für das gebeugte Gelenk entsprechend

WO 2005/028896

11

PCT/EP2004/006090

$$PCR = \sqrt{(PCRx^2 + PCRy^2)}$$

und ein Teilungswinkel φ, wobei sich der Teilungswinkel φ berechnet aus

Da sich längs der Kugelbahnen PCR und ϕ nur geringfügig ändern, haben auch Bahnen, die mit einem konstanten Winkel ϕ_K gegenüber den Längsebenen durch die Radialstrahlen R1 gefertigt werden, die erfindungsgemäß vorteilhafte Krafteinleitung in die Kugelbahnen.

Je nach Drehstellung des Gelenkes und abhängig vom Beugewinkel befindet sich die Kugel längs der Kugelbahn an anderen Stellungen. Unter der Voraussetzung, daß die Kugelbahnen in zueinander parallelen und zu den Längsachse L12, L13 parallelen Ebenen liegen, ist PCRx hierbei unverändert gleich, während PCRy vanieren kann. Damit ändert sich der Winkel φ zwischen der Mittenebene durch die Längsachsen L12, L13 und die Achse Y und dem Radialstrahl RS aus der Gelenkmitte M durch die Kugelmitte K geringfügig.

Um die erfindungsgemäße Symmetrie der Kugelbahnen exakt aufrechtzuerhalten, müssen die Krümmungsmittelpunkte M1i und M1a bzw. M2i und M2a in Ebenen liegen, die durch die Radialstrahlen RS1, RS2 und die Längsachsen L12, L13 aufgespannt werden.

Gemäß der hier gezeigten Ausführung liegen daher die Mittelpunkt M1i und M1a jeweils in einer Ebene, die parallel zu den Ebenen liegt, die die Bahnmittellinien enthalten. Damit wird zwar die Wirkungslinie (Symmetrieachse des Bahnquerschnittes) nicht mehr in jeder Stellung exakt durch den Gelenkmittelpunkt M gehen, sondern durch einen Mittelpunkt M'. Die Abweichung a zwischen den beiden Ebenen ist hierbei relativ klein. Sie errechnet sich

$$a = (PCRy(\beta) - PCRy(0)) \cdot sin\phi_0$$

WO 2005/028896

12

PCT/EP2004/006090

und die Abweichung der Symmetrieebene des Kugelbahnquerschnittes zum Radialstrahl beträgt

 $\Delta\delta \approx a/PCR[rad.].$

In Figur 8 sind gleiche Einzelheiten wie in Figur 4 mit gleichen Bezugsziffern belegt. Hierbei ist die Auswirkung der in Figur 7b dargestellten Kugelbewegung bei Gelenkbeugung für die Kugel 14₁ übernommen worden. Während die Mittellinien der Kugelbahnen immer in den Ebenen E1, E2 verlaufen, verlagem sich die Symmetrieebenen der Bahnquerschnitte, die nicht mehr durch die zweiten Radialstrahlen RS1, RS2 definiert werden, die sich im Gelenkmittelpunkt M schneiden, sondem durch die dazu parallelen Symmetrieachsen ES₁, ES₂, die sich im Punkt M' in der Radialebene R1 schneiden. Der Bahnmittelpunkt M1₀ verlagert sich in der Ebene E1 in den Bahnmittelpunkt M1. Ein Radialstrahl vom Gelenkmittelpunkt M bzw. der Längsachse durch den Bahnmittelpunkt weicht vom Radialstrahl RS1 um den Winkel Δδ ab. Der Abstand zwischen den Mittelpunkten M, M' und M₁₀, M₁ ist mit ΔPCRy bezeichnet.

In Figur 9 sind die Winkelverhältnisse aus Figur 8 in vergrößerter Einzelheit dargestellt.

WO 2005/028896

13

PCT/EP2004/006090

Kugelfestgelenk mit gedrehten Bahnquerschnitten

Patentansprüche

- 1. Gleichlaufgelenk in Form eines Festgelenkes mit den Merkmalen:
 - ein Gelenkaußenteil (12), das eine Längsachse L12 und axial zueinander entgegengesetzt liegend eine Anschlußseite und eine Öffnungsseite hat und das äußere Kugelbahnen (22₁, 22₂) aufweist,
 - ein Gelenkinnenteil (13), das eine Längsachse L13 und Anschlußmittel für eine zur Öffnungsseite des Gelenkaußenteils (12) weisende Welle hat und das innere Kugelbahnen (23₁, 23₂) aufweist,
 - die äußeren Kugelbahnen und die inneren Kugelbahnen bilden Bahnpaare (22₁, 23₁; 22₂, 23₂) miteinander,
 - die Bahnpaare nehmen jeweils eine drehmomentübertragende Kugel (14₁, 14₂) auf,
 - jeweils zwei benachbarte Bahnpaare haben äußere Kugelbahnen (22₁, 22₂), deren Mittellinien in zueinander im wesentlichen parallelen Ebenen (E1, E2) liegen, und innere Kugelbahnen (23₁, 23₂), deren Mittellinien in zueinander im wesentlichen parallelen Ebenen (E1', E2') liegen,
 - ein ringförmiger Kugelkäfig (16) sitzt zwischen Gelenkaußenteil (12) und Gelenkinnenteil (13) und weist umfangsverteilte Käfigfenster (17) auf, die jeweils die drehmomentübertragenden Kugeln (14₁, 14₂) zweier benachbarter Bahnpaare (22₁, 23₁; 22₂, 23₂) aufnehmen,
 - die Mittelpunkte K₁, K₂ der Kugeln (14₁, 14₂) werden beim gestreckten Gelenk vom Kugelkäfig (16) in der Gelenkmittelebene EM gehalten und bei Gelenkbeugung auf die winkelhalbierende Ebene zwischen den Längsachsen L12, L13 geführt,

WO 2005/028896

14

PCT/EP2004/006090

die Bahnquerschnitte der äußeren Kugelbahnen (22₁, 22₂) und der inneren Kugelbahnen (23₁, 23₂) eines jeden Bahnpaares sind symmetrisch zu Symmetrieachsen (ES₁, ES₂), die mit den Ebenen (E1, E2, E1', E2') gleich große entgegengesetzt angetragene Winkel ϕ_1 , ϕ_2 bilden und jeweils einen gemeinsamen Punkt (M, M') haben.

2. Gelenk nach Anspruch 1,

dadurch gekennzeichnet,

daß die Bahnquerschnitte der äußeren Kugelbahnen (22₁, 22₂) und der inneren Kugelbahnen (23₁, 23₂) eines jeden Bahnpaares jeweils symmetrisch zu Radialstrahlen (RS1, RS2) von den Längsachsen (L12, L13) durch die Kugelmitten K1, K2 der drehmomentübertragenden Kugeln (14₁, 14₂) des Bahnpaares sind.

3. Gelenk nach Anspruch 1,

dadurch gekennzeichnet,

daß die Bahnquerschnitte der äußeren Kugelbahnen (22₁, 22₂) und der inneren Kugelbahnen (23₁, 23₂) eines jeden Bahnpaares jeweils symmetrisch zu in der Querschnittsebene liegenden Geraden (PS₁, PS₂) sind, die parallel zu Radialstrahlen (RS1, RS2) von den Längsachsen L12, L13 durch die Kugelmitten K1, K2 der drehmomentübertragenden Kugeln (14₁, 14₂) des Bahnpaares sind und die sich jeweils in einem gemeinsamen Punkt M' mit Abstand zu den Längsachsen L12, L13 schneiden.

4. Gelenk nach einem der Ansprüche 1 bis 3,

dadurch gekennzeichnet,

WO 2005/028896

15

PCT/EP2004/006090

daß die Winkel ϕ_1 , ϕ_2 im Bereich von 0,8 ... 1,3 ϕ_0 liegen, wobei $2\phi_0$ der Mittelpunktswinkel bei gestrecktem Gelenk zwischen Radialstrahlen (RS1, RS2) von den Längsachsen L12, L13 durch die Kugelmitten K1, K2 der Kugeln (14₁, 14₂) zweier benachbarter Bahnpaare (22₁, 23₁; 22₂, 23₂) ist.

5. Gelenk nach einem der Ansprüche 1 bis 4,

dadurch gekennzeichnet,

daß die Bahnmittellinien (M22) der äußeren Kugelbahnen (22₁, 22₂) und die Bahnmittellinien (M23) der inneren Kugelbahnen (23₁, 23₂) in Ebenen (E1, E2) liegen, die zueinander parallel und parallel zu den Längsachsen (L12, L13) des Gelenks sind und durch die Kugelmitten der Kugeln (14₁, 14₂) zweier benachbarter Bahnpaare (22₁, 23₁; 22₂, 23₂) verlaufen.

6. Gelenk nach einem der Ansprüche 1 bis 4,

dadurch gekennzeichnet,

daß die Bahnmittellinien (M22) der äußeren Kugelbahnen (22₁, 22₂) in ersten Ebenen (E1, E2) und die Mittellinien (M23) der inneren Kugelbahnen (23₁, 23₂) in zweiten Ebenen (E1', E2') verlaufen, die jeweils zueinander parallel sind und durch die Kugelmitten der Kugeln (14₁, 14₂) zweier benachbarter Bahnpaare (22₁, 23₁; 22₂, 23₂) verlaufen und die jeweils vom Gelenkmittelpunkt (M) gleichen senkrechten Abstand haben, wobei sie mit den Längsachsen (L12, L13) gleich große entgegengesetzt gerichtete Kreuzungswinkel (γ₀, γ₀') bilden.

7. Gelenk nach Anspruch 6,

dadurch gekennzeichnet,

WO 2005/028896

16

PCT/EP2004/006090

daß die Kreuzungswinkel (γ_0 , γ_0) so gewählt sind, daß die räumlichen Steuerwinkel (ϵ_0 , ϵ_0) der Kugelbahnen an den Kugeln (14₁, 14₂) bei rechtsdrehender Belastung und bei linksdrehender Belastung gleich groß sind.

8. Gelenk nach Anspruch 7,

dadurch gekennzeichnet,

daß bei einem Mittelpunktswinkel $2\phi_0$ zwischen den Radialstrahlen (RS1, RS2) durch die Kugelmitten K1, K2 der Kugeln (14_1 , 14_2) zweier benachbarter Bahnpaare (22_1 , 23_1 ; 22_2 , 23_2) sich der Kreuzungswinkel γ_0 nach der Gleichung γ_0 = ϵ_0 tan ϕ_0 errechnet, damit die räumlichen Steuerwinkel bei rechtsdrehender Belastung und linksdrehender Belastung am Gelenk gleich groß sind.

9. Gelenk nach einem der Ansprüche 1 bis 8,

dadurch gekennzeichnet,

daß die Öffnungswinkel (α₁, α₂) zwischen den Tangenten an die Grundlinien zweier benachbarter Bahnpaare (22₁, 22₂; 23₁, 23₂) sich bei gestrecktem Gelenk in der Gelenkmittelebene EM jeweils in die gleiche Richtung, insbesondere zur Anschlußseite des Gelenkaußenteils hin, öffnen. (Twinballgelenk)

10. Gelenk nach einem der Ansprüche 1 bis 8,

dadurch gekennzeichnet,

daß die Öffnungswinkel (α₁, α₂) zwischen den Tangenten an die Bahngrundlinien in der Gelenkmittelebene (EM) zweier benachbarter Bahnpaare (22₁, 23₁, 22₂, 23₂) sich bei gestrecktem Gelenk in der Gelenkmittelebene EM in entgegengesetzter Richtung öffnen. (Gegenbahngelenk)

PCT/EP2004/006090

5.

37/03

17

11. Gelenk nach Anspruch 10,

dadurch gekennzeichnet,

+49-2241-367544

daß sich die Kugeln (14₁, 14₂) zweier benachbarter Bahnpaare (22₁, 23₁, 22₂, 23₂) bei gestrecktem Gelenk auf verschiedenen Rollkreisradien (PCR) befinden.

12. Gelenk nach einem der Ansprüche 1 bis 11,

dadurch gekennzeichnet,

daß die Bahnquerschnitte der äußeren Kugelbahnen (22) und der inneren Kugelbahnen (23) durch Parabel- oder Ellipsenabschnitte oder durch Spitzbögen (gotische Bögen) gebildet werden, die jeweils mit den Kugeln in zwei Punkten Kontakt erzeugen.

13. Gelenk nach einem der Ansprüche 1 bis 11,

dadurch gekennzeichnet,

daß die Bahnquerschnitte der äußeren Kugelbahnen (22) und der inneren Kugelbahnen (23) durch Kreisabschnitte gebildet werden, deren Krümmungsmittelpunkte mit Abstand zueinander auf dem jeweiligen Radialstrahl (RS1, RS2) bzw. der jeweiligen dazu parallelen Geraden (PS1, PS2) liegen und deren Krümmungsradius größer als der Kugelradius ist und die mit den Kugeln (141, 142) jeweils Kontakt in einem Punkt erzeugen.