SBML Model Report

Model name: "Hermansen2015 - denovo biosynthesis of pyrimidines in yeast"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Brian Mannakee¹ and Ryan Gutenkunst² at December tenth 2015 at 1:40 p.m. and last time modified at December tenth 2015 at 1:40 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	9
events	0	constraints	0
reactions	20	function definitions	20
global parameters	30	unit definitions	2
rules	0	initial assignments	0

Model Notes

Hermansen2015 - denovo biosynthesis of pyrimidines in yeast

This model is described in the article:Characterizing selective pressures on the pathway for de novo biosynthesis of pyrimidines in yeast. Hermansen RA, Mannakee BK, Knecht W, Liberles DA, Gutenkunst RNBMC Evolutionary Biology. 2015, 15:232

¹University of Arizona, mannakee@email.arizona.edu

²University of Arizona, rgutenk@email.arizona.edu

Abstract:

Selection on proteins is typically measured with the assumption that each protein acts independently. However, selection more likely acts at higher levels of biological organization, requiring an integrative view of protein function. Here, we built a kinetic model for de novo pyrimidine biosynthesis in the yeast Saccharomyces cerevisiae to relate pathway function to selective pressures on individual protein-encoding genes. Gene families across yeast were constructed for each member of the pathway and the ratio of nonsynonymous to synonymous nucleotide substitution rates (dN/dS) was estimated for each enzyme from S. cerevisiae and closely related species. We found a positive relationship between the influence that each enzyme has on pathway function and its selective constraint. We expect this trend to be locally present for enzymes that have pathway control, but over longer evolutionary timescales we expect that mutation-selection balance may change the enzymes that have pathway control.

This model is hosted on BioModels Database and identified by: MODEL1512160000.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name time

Definition 3600 s

2.2 Unit substance

Name substance

Definition mmol

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m^2

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	compartment		3	1	litre	Ø	

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name compartment

4 Species

This model contains nine species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
ср	ср	compartment	$\operatorname{mmol} \cdot l^{-1}$	\Box	\Box
ca	ca	compartment	$\operatorname{mmol} \cdot 1^{-1}$	\Box	\Box
dho	dho	compartment	$mmol \cdot l^{-1}$	\Box	\Box
oro	oro	compartment	$mmol \cdot l^{-1}$	\Box	\Box
omp	omp	compartment	$mmol \cdot l^{-1}$	\Box	\Box
ump	ump	compartment	$mmol \cdot l^{-1}$	\Box	\Box
udp	udp	compartment	$\text{mmol} \cdot l^{-1}$	\Box	
utp	utp	compartment	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$		
ctp	ctp	compartment	$\mathrm{mmol}\cdot\mathrm{l}^{-1}$	\Box	

5 Parameters

This model contains 30 global parameters.

Table 4: Properties of each parameter.

Id	Name	4: Properties of SBO	Value		Constant
	Name	360		Unit	Constant
vmax1	vmax1		3.616		
bc	[bc]		1.523		
glu	[glu]		0.546		
$\mathtt{K}_{\mathtt{u}}\mathtt{t}\mathtt{p}$	$K_{-}utp$		1.414		
$K_{-}q$	$K_{-}q$		0.058		
K_bc	K_bc		2.372		
vmax2	vmax2		2.446		
asp	[asp]		0.097		
atp	[atp]		0.151		
$\mathtt{K}_{\mathtt{-}}\mathtt{atp}$	K_atp		1.289		
K_m2	K_m2		2.005		
vmax3	vmax3		28.661		
K_m3	K_m3		1.272		
vmax4	vmax4		91.780		
K_m4	K_m4		0.016		
vmax5	vmax5		5227.497		
K_m5	K_m5		0.020		
prpp	[prpp]		0.182		
vmax6	vmax6		34.972		
K_m6	$K_{-}m6$		20.341		
vmax10	vmax10		6.555		
K_m10	K_m10		0.027		
vmax7	vmax7		5.831		
K_m7	K_m7		0.166		
g_pyr	g_pyr		0.198		
K_Mp	K_Mp		5.487		$\overline{\mathbf{Z}}$
vmax8	vmax8		0.163		
K_m8	$K_{-}m8$		0.004		$\overline{\mathbf{Z}}$
$\mathtt{K}_\mathtt{asp}$	$K_{-}asp$		0.168		$\overline{\mathbf{Z}}$
d	d		0.100		$\overline{\mathbf{Z}}$

6 Function definitions

This is an overview of 20 function definitions.

6.1 Function definition Function_for_r2

Name Function for r2

Arguments K_asp, K_m2, K_utp, asp, vol (compartment), [cp], [utp], vmax2

Mathematical Expression

$$\frac{\underset{\left(1+\frac{[utp]}{K.utp}\right)\cdot(K_m2+[cp])\cdot(K_asp+asp)}{vol\left(compartment\right)}}{vol\left(compartment\right)} \tag{1}$$

6.2 Function definition Function_for_r1

Name Function for r1

Arguments K_atp, K_bc, K_q, K_utp, atp, bc, vol (compartment), glu, [utp], vmax1

Mathematical Expression

$$\frac{\frac{vmax1 \cdot bc \cdot glu \cdot atp}{\left(1 + \frac{[utp]}{K.utp}\right) \cdot (K_atp + atp) \cdot (K_bc + bc) \cdot (K_q + glu)}}{vol\left(compartment\right)}$$

6.3 Function definition Function_for_r3

Name Function for r3

Arguments K_m3, [ca], vol (compartment), vmax3

Mathematical Expression

$$\frac{\frac{\text{vmax} \cdot [\text{ca}]}{\text{K} \cdot \text{m} 3 + [\text{ca}]}}{\text{vol} (\text{compartment})}$$
(3)

6.4 Function definition Function_for_r4

Name Function for r4

Arguments K_m4, vol (compartment), [dho], vmax4

$$\frac{\frac{vmax4 \cdot [dho]}{K \cdot m4 + [dho]}}{vol (compartment)} \tag{4}$$

6.5 Function definition Function_for_r5

Name Function for r5

Arguments K_{m5}, vol(compartment), [oro], prpp, vmax5

Mathematical Expression

$$\frac{\frac{vmax5 \cdot [oro] \cdot prpp}{K_{m5} + [oro] \cdot prpp}}{vol (compartment)}$$
(5)

6.6 Function definition Function_for_r6

Name Function for r6

Arguments K_m6, vol(compartment), [omp], vmax6

Mathematical Expression

$$\frac{\frac{\text{vmax} 6 \cdot [\text{omp}]}{\text{K}_{\text{m}} 6 + [\text{omp}]}}{\text{vol} (\text{compartment})}$$
 (6)

6.7 Function definition Function_for_r10

Name Function for r10

Arguments K_m10, vol (compartment), [ump], vmax10

Mathematical Expression

$$\frac{\frac{vmax10\cdot[ump]}{K_m10+[ump]}}{vol\left(compartment\right)} \tag{7}$$

6.8 Function definition Function_for_r7

Name Function for r7

Arguments K_m7, vol (compartment), [udp], vmax7

$$\frac{\frac{vmax7 \cdot [udp]}{K \cdot m7 + [udp]}}{vol (compartment)}$$
(8)

6.9 Function definition Function_for_utp_degradation

Name Function for utp_degradation

Arguments K₋Mp, vol (compartment), g₋pyr, [utp]

Mathematical Expression

$$\frac{\frac{g.pyr \cdot [utp]}{K.Mp + [utp]}}{vol (compartment)}$$
(9)

6.10 Function definition Function_for_r8

Name Function for r8

Arguments K_{m8}, vol (compartment), [utp], vmax8

Mathematical Expression

$$\frac{\frac{vmax8 \cdot [utp]}{K \text{_}m8 + [utp]}}{vol (compartment)} \tag{10}$$

6.11 Function definition Function_for_ctp_degradation

Name Function for ctp_degradation

Arguments K_Mp, vol (compartment), [ctp], g_pyr

Mathematical Expression

$$\frac{\frac{g_pyr \cdot [ctp]}{K_Mp + [ctp]}}{vol (compartment)}$$
 (11)

6.12 Function definition Function_for_cp_dilution

Name Function for cp_dilution

Arguments vol (compartment), [cp], d

$$\frac{d \cdot [cp]}{vol (compartment)} \tag{12}$$

6.13 Function definition Function_for_ca_dilution

Name Function for ca_dilution

Arguments [ca], vol (compartment), d

Mathematical Expression

$$\frac{d \cdot [ca]}{\text{vol (compartment)}} \tag{13}$$

6.14 Function definition Function_for_dho_dilution

Name Function for dho_dilution

Arguments vol (compartment), d, [dho]

Mathematical Expression

$$\frac{d \cdot [dho]}{vol (compartment)} \tag{14}$$

6.15 Function definition Function_for_oro_dilution

Name Function for oro_dilution

Arguments vol (compartment), d, [oro]

Mathematical Expression

$$\frac{d \cdot [oro]}{vol (compartment)} \tag{15}$$

6.16 Function definition Function_for_omp_dilution

Name Function for omp_dilution

Arguments vol (compartment), d, [omp]

Mathematical Expression

$$\frac{d \cdot [omp]}{vol (compartment)} \tag{16}$$

6.17 Function definition Function_for_ump_dilution

Name Function for ump_dilution

Arguments vol (compartment), d, [ump]

$$\frac{d \cdot [ump]}{vol (compartment)} \tag{17}$$

6.18 Function definition Function_for_udp_dilution

Name Function for udp_dilution

Arguments vol (compartment), d, [udp]

Mathematical Expression

$$\frac{d \cdot [udp]}{vol (compartment)} \tag{18}$$

6.19 Function definition Function_for_utp_dilution

Name Function for utp_dilution

Arguments vol (compartment), d, [utp]

Mathematical Expression

$$\frac{d \cdot [utp]}{vol (compartment)} \tag{19}$$

6.20 Function definition Function_for_ctp_dilution

Name Function for ctp_dilution

Arguments vol (compartment), [ctp], d

$$\frac{d \cdot [ctp]}{vol (compartment)} \tag{20}$$

7 Reactions

This model contains 20 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N₀	Id	Name	Reaction Equation	SBO
1	r1	r1	Ø ttp, utp cp	
2	r2	r2	cp ttp, cp, utp ca	
3	r3	r3	$ca \stackrel{ca}{\rightleftharpoons} dho$	
4	r4	r4	dho dho oro	
5	r5	r5	oro eoo	
6	r6	r6	omp cmp ump	
7	r10	r10	ump <u>ump</u> udp	
8	r7	r7	$udp \stackrel{udp}{\longleftarrow} utp$	
9	$\mathtt{utp_degradation}$	utp_degradation	$\operatorname{utp} \stackrel{\operatorname{utp}}{\rightleftharpoons} \emptyset$	
10	r8	r8	$utp \stackrel{utp}{\Longleftrightarrow} ctp$	
11	$\mathtt{ctp}_\mathtt{degradation}$	ctp_degradation	$\operatorname{ctp} \stackrel{\operatorname{ctp}}{\rightleftharpoons} \emptyset$	
12	$\mathtt{cp_dilution}$	cp_dilution	$\operatorname{cp} \stackrel{\operatorname{cp}}{\longleftarrow} \emptyset$	
13	$ca_dilution$	ca_dilution	$\operatorname{ca} \stackrel{\operatorname{ca}}{\longleftarrow} \emptyset$	
14	dho_dilution	dho_dilution	$dho \stackrel{dho}{\longleftarrow} \emptyset$	
15	oro_dilution	oro_dilution	$oro \stackrel{oro}{\longleftarrow} \emptyset$	
16	$omp_dilution$	omp_dilution	$omp \xrightarrow{omp} \emptyset$	

N₀	Id	Name	Reaction Equation	SBO
17	$\mathtt{ump_dilution}$	ump_dilution	$\operatorname{ump} \stackrel{\operatorname{ump}}{\longleftarrow} \emptyset$	
18	$\mathtt{udp_dilution}$	udp_dilution	$udp \stackrel{udp}{\longleftarrow} \emptyset$	
19	$\mathtt{utp}_{-}\mathtt{dilution}$	utp_dilution	$\operatorname{utp} \stackrel{\operatorname{utp}}{\longleftarrow} \emptyset$	
20	$\mathtt{ctp_dilution}$	ctp_dilution	$\operatorname{ctp} \stackrel{\operatorname{ctp}}{\rightleftharpoons} \emptyset$	

7.1 Reaction r1

This is a reversible reaction of no reactant forming one product influenced by two modifiers.

Name r1

Reaction equation

$$\emptyset \stackrel{\text{utp, utp}}{\longleftarrow} \text{cp}$$
 (21)

Modifiers

Table 6: Properties of each modifier.

Id	Name	SBO
utp utp	utp utp	

Product

Table 7: Properties of each product.

Id	Name	SBO
ср	cp	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol} (\text{compartment}) \cdot \text{Function_for_r1} (K_atp, K_bc, K_q, K_utp, atp, bc, vol (compartment), glu, [utp], vmax1)$$
 (22)

Function_for_r1 (K_atp, K_bc, K_q, K_utp, atp, bc, vol (compartment), glu, [utp], vmax1)

$$= \frac{\frac{\text{vmax1·bc·glu·atp}}{\text{vmax1·bc·glu·atp}}}{\text{vol (compartment)}}$$

$$= \frac{\frac{(1 + \frac{[\text{utp}]}{K.\text{utp}}) \cdot (K_{\text{-}} + \text{glu})}}{\text{vol (compartment)}}$$
(23)

Function_for_r1 (K_atp, K_bc, K_q, K_utp, atp, bc, vol (compartment), glu, [utp], vmax1)

$$= \frac{\frac{v_{max}1 \cdot bc \cdot glu \cdot atp}{\left(1 + \frac{[utp]}{K \cdot utp}\right) \cdot (K \cdot atp + atp) \cdot (K \cdot bc + bc) \cdot (K \cdot q + glu)}}{vol\left(compartment\right)}$$
(24)

7.2 Reaction r2

This is a reversible reaction of one reactant forming one product influenced by three modifiers.

Name r2

Reaction equation

$$cp \xrightarrow{\text{utp, cp, utp}} ca \tag{25}$$

Reactant

Table 8: Properties of each reactant.

Id	Name	SBO
ср	ср	

Modifiers

Table 9: Properties of each modifier.

Id	Name	SBO
utp	utp	
ср	cp	
utp	utp	

Product

Table 10: Properties of each product.

Id	Name	SBO
ca	ca	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol (compartment)}$$
· Function_for_r2 (K_asp, K_m2, K_utp, asp, vol (compartment), [cp], [utp], vmax2)

$$Function_for_r2\left(K_asp, K_m2, K_utp, asp, vol\left(compartment\right), [cp], [utp], vmax2\right) \\ = \frac{\frac{vmax2 \cdot [cp] \cdot asp}{\left(1 + \frac{[utp]}{K_utp}\right) \cdot (K_m2 + [cp]) \cdot (K_asp + asp)}}{vol\left(compartment\right)}$$

$$(27)$$

$$Function_for_r2\left(K_asp, K_m2, K_utp, asp, vol\left(compartment\right), [cp], [utp], vmax2\right) \\ = \frac{\frac{vmax2 \cdot [cp] \cdot asp}{\left(1 + \frac{[utp]}{K_utp}\right) \cdot (K_m2 + [cp]) \cdot (K_asp + asp)}}{vol\left(compartment\right)}$$

$$(28)$$

7.3 Reaction r3

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name r3

Reaction equation

$$ca \stackrel{ca}{\rightleftharpoons} dho$$
 (29)

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
ca	ca	

Modifier

Table 12: Properties of each modifier.

Id	Name	SBO
ca	ca	

Product

Table 13: Properties of each product.

Id	Name	SBO
dho	dho	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol} (\text{compartment}) \cdot \text{Function_for_r3} (\text{K_m3}, [\text{ca}], \text{vol} (\text{compartment}), \text{vmax3})$$
 (30)

$$Function_for_r3\left(K_m3,[ca],vol\left(compartment\right),vmax3\right) = \frac{\frac{vmax3\cdot[ca]}{K_m3+[ca]}}{vol\left(compartment\right)} \tag{31}$$

$$Function_for_r3\left(K_m3,[ca],vol\left(compartment\right),vmax3\right) = \frac{\frac{vmax3\cdot[ca]}{K_m3+[ca]}}{vol\left(compartment\right)} \tag{32}$$

7.4 Reaction r4

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name r4

Reaction equation

$$dho \rightleftharpoons oro$$
 (33)

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
dho	dho	

Modifier

Table 15: Properties of each modifier.

Id	Name	SBO
dho	dho	

Product

Table 16: Properties of each product.

Id	Name	SBO
oro	oro	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol} (\text{compartment}) \cdot \text{Function_for_r4} (\text{K_m4}, \text{vol} (\text{compartment}), [\text{dho}], \text{vmax4})$$
 (34)

$$Function_for_r4\left(K_m4, vol\left(compartment\right), [dho], vmax4\right) = \frac{\frac{vmax4 \cdot [dho]}{K_m4 + [dho]}}{vol\left(compartment\right)} \quad (35)$$

$$Function_for_r4\left(K_m4, vol\left(compartment\right), [dho], vmax4\right) = \frac{\frac{vmax4 \cdot [dho]}{K_m4 + [dho]}}{vol\left(compartment\right)} \quad (36)$$

7.5 Reaction r5

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name r5

Reaction equation

$$oro \stackrel{oro}{\longleftarrow} omp$$
 (37)

Reactant

Table 17: Properties of each reactant.

Id	Name	SBO
oro	oro	

Modifier

Table 18: Properties of each modifier.

Id	Name	SBO
oro	oro	

Product

Table 19: Properties of each product.

Id	Name	SBO
omp	omp	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol} (\text{compartment}) \cdot \text{Function_for_r5} (\text{K_m5}, \text{vol} (\text{compartment}), [\text{oro}], \text{prpp}, \text{vmax5})$$
 (38)

$$Function_for_r5\left(K_m5, vol\left(compartment\right), [oro], prpp, vmax5\right) = \frac{\frac{vmax5 \cdot [oro] \cdot prpp}{K_m5 + [oro] \cdot prpp}}{vol\left(compartment\right)} \quad (39)$$

$$Function_for_r5\left(K_m5, vol\left(compartment\right), [oro], prpp, vmax5\right) = \frac{\frac{vmax5 \cdot [oro] \cdot prpp}{K_m5 + [oro] \cdot prpp}}{vol\left(compartment\right)} \quad (40)$$

7.6 Reaction r6

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name r6

Reaction equation

$$\begin{array}{c}
\text{omp} \\
\text{omp} \\
\text{=} \\
\text{ump}
\end{array} \tag{41}$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
omp	omp	

Modifier

Table 21: Properties of each modifier.

Id	Name	SBO
omp	omp	

Product

Table 22: Properties of each product.

Id	Name	SBO
ump	ump	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{compartment}) \cdot \text{Function_for_r6}(\text{K_m6}, \text{vol}(\text{compartment}), [\text{omp}], \text{vmax6})$$
 (42)

$$Function_for_r6\left(K_m6, vol\left(compartment\right), [omp], vmax6\right) = \frac{\frac{vmax6 \cdot [omp]}{K_m6 + [omp]}}{vol\left(compartment\right)} \quad (43)$$

$$Function_for_r6\left(K_m6, vol\left(compartment\right), [omp], vmax6\right) = \frac{\frac{vmax6 \cdot [omp]}{K_m6 + [omp]}}{vol\left(compartment\right)} \quad (44)$$

7.7 Reaction r10

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name r10

Reaction equation

$$ump \underset{\longleftarrow}{ump} udp \tag{45}$$

Table 23: Properties of each reactant.

Id	Name	SBO
ump	ump	

Table 24: Properties of each modifier.

Id	Name	SBO
ump	ump	

Product

Table 25: Properties of each product.

Id	Name	SBO
udp	udp	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol} (\text{compartment}) \cdot \text{Function_for_r10} (\text{K_m10}, \text{vol} (\text{compartment}), [\text{ump}], \text{vmax10})$$
 (46)

$$Function_for_r10 \left(K_m10, vol\left(compartment\right), [ump], vmax10 \right) = \frac{\frac{vmax10 \cdot [ump]}{K_m10 + [ump]}}{vol\left(compartment\right)} \quad (47)$$

$$Function_for_r10 \left(K_m10, vol \left(compartment \right), [ump], vmax10 \right) = \frac{\frac{vmax10 \cdot [ump]}{K_m10 + [ump]}}{vol \left(compartment \right)} \quad (48)$$

7.8 Reaction r7

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name r7

Reaction equation

$$udp \rightleftharpoons utp \tag{49}$$

Table 26: Properties of each reactant.

Id	Name	SBO
udp	udp	

Table 27: Properties of each modifier.

Id	Name	SBO
udp	udp	

Product

Table 28: Properties of each product.

Id	Name	SBO
utp	utp	

Kinetic Law

Derived unit contains undeclared units

$$v_8 = \text{vol} (\text{compartment}) \cdot \text{Function_for_r7} (\text{K_m7}, \text{vol} (\text{compartment}), [\text{udp}], \text{vmax7})$$
 (50)

$$Function_for_r7\left(K_m7, vol\left(compartment\right), [udp], vmax7\right) = \frac{\frac{vmax7 \cdot [udp]}{K_m7 + [udp]}}{vol\left(compartment\right)} \hspace{0.5cm} (51)$$

$$Function_for_r7\left(K_m7, vol\left(compartment\right), [udp], vmax7\right) = \frac{\frac{vmax7 \cdot [udp]}{K_m7 + [udp]}}{vol\left(compartment\right)} \quad (52)$$

7.9 Reaction utp_degradation

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name utp_degradation

Reaction equation

$$\operatorname{utp} \stackrel{\operatorname{utp}}{\longleftarrow} \emptyset \tag{53}$$

Table 29: Properties of each reactant.

Id	Name	SBO
utp	utp	

Table 30: Properties of each modifier.

Id	Name	SBO
utp	utp	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = vol (compartment) \cdot Function_for_utp_degradation (K_Mp, vol (compartment), g_pyr, [utp])$$
(54)

$$Function_for_utp_degradation\left(K_Mp, vol\left(compartment\right), g_pyr, [utp]\right) = \frac{\frac{g_pyr \cdot [utp]}{K_Mp + [utp]}}{vol\left(compartment\right)}$$

$$(55)$$

$$Function_for_utp_degradation\left(K_Mp,vol\left(compartment\right),g_pyr,[utp]\right) = \frac{\frac{g_pyr\cdot[utp]}{K_Mp+[utp]}}{vol\left(compartment\right)} \tag{56}$$

7.10 Reaction r8

This is a reversible reaction of one reactant forming one product influenced by one modifier.

Name r8

Reaction equation

$$utp \stackrel{utp}{\longleftarrow} ctp \tag{57}$$

Table 31: Properties of each reactant.

Id	Name	SBO
utp	utp	

Table 32: Properties of each modifier.

Id	Name	SBO
utp	utp	

Product

Table 33: Properties of each product.

Id	Name	SBO
ctp	ctp	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol}\left(\text{compartment}\right) \cdot \text{Function_for_r8}\left(\text{K_m8}, \text{vol}\left(\text{compartment}\right), [\text{utp}], \text{vmax8}\right)$$
 (58)

$$Function_for_r8\left(K_m8, vol\left(compartment\right), [utp], vmax8\right) = \frac{\frac{vmax8 \cdot [utp]}{K_m8 + [utp]}}{vol\left(compartment\right)} \tag{59}$$

$$Function_for_r8\left(K_m8, vol\left(compartment\right), [utp], vmax8\right) = \frac{\frac{vmax8 \cdot [utp]}{K_m8 + [utp]}}{vol\left(compartment\right)} \tag{60}$$

7.11 Reaction ctp_degradation

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name ctp_degradation

Reaction equation

$$\cot \frac{\cot p}{\rightleftharpoons} \emptyset \tag{61}$$

Table 34: Properties of each reactant.

Id	Name	SBO
ctp	ctp	

Table 35: Properties of each modifier.

Id	Name	SBO
ctp	ctp	

Kinetic Law

Derived unit contains undeclared units

 $v_{11} = \text{vol}\left(\text{compartment}\right) \cdot \text{Function_for_ctp_degradation}\left(\text{K_Mp}, \text{vol}\left(\text{compartment}\right), [\text{ctp}], \text{g_pyr}\right)$ (62)

$$Function_for_ctp_degradation\left(K_Mp, vol\left(compartment\right), [ctp], g_pyr\right) = \frac{\frac{g_pyr \cdot [ctp]}{K_Mp + [ctp]}}{vol\left(compartment\right)}$$

$$(63)$$

$$Function_for_ctp_degradation\left(K_Mp, vol\left(compartment\right), [ctp], g_pyr\right) = \frac{\frac{g_pyr \cdot [ctp]}{K_Mp + [ctp]}}{vol\left(compartment\right)} \tag{64}$$

7.12 Reaction cp_dilution

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name cp_dilution

Reaction equation

$$\operatorname{cp} \stackrel{\operatorname{cp}}{\rightleftharpoons} \emptyset$$
 (65)

Table 36: Properties of each reactant.

Id	Name	SBO
ср	ср	

Table 37: Properties of each modifier.

Id	Name	SBO
ср	cp	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol} (\text{compartment}) \cdot \text{Function_for_cp_dilution} (\text{vol} (\text{compartment}), [\text{cp}], d)$$
 (66)

$$Function_for_cp_dilution\left(vol\left(compartment\right),[cp],d\right) = \frac{d \cdot [cp]}{vol\left(compartment\right)} \tag{67}$$

$$Function_for_cp_dilution\left(vol\left(compartment\right),[cp],d\right) = \frac{d\cdot[cp]}{vol\left(compartment\right)} \tag{68}$$

7.13 Reaction ca_dilution

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name ca_dilution

Reaction equation

$$ca \stackrel{ca}{\rightleftharpoons} \emptyset$$
 (69)

Table 38: Properties of each reactant.

Id	Name	SBO
ca	ca	

Table 39: Properties of each modifier.

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = vol\left(compartment\right) \cdot Function_for_ca_dilution\left([ca], vol\left(compartment\right), d\right) \tag{70}$$

$$Function_for_ca_dilution\left([ca], vol\left(compartment\right), d\right) = \frac{d \cdot [ca]}{vol\left(compartment\right)} \tag{71}$$

$$Function_for_ca_dilution([ca], vol(compartment), d) = \frac{d \cdot [ca]}{vol(compartment)}$$
 (72)

7.14 Reaction dho_dilution

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name dho_dilution

Reaction equation

$$dho \stackrel{dho}{\longleftarrow} \emptyset \tag{73}$$

Reactant

Table 40: Properties of each reactant.

Id	Name	SBO
dho	dho	

Modifier

Table 41: Properties of each modifier.

Id	Name	SBO
dho	dho	

Kinetic Law

Derived unit contains undeclared units

$$v_{14} = vol\left(compartment\right) \cdot Function_for_dho_dilution\left(vol\left(compartment\right), d, [dho]\right) \quad (74)$$

$$Function_for_dho_dilution (vol (compartment), d, [dho]) = \frac{d \cdot [dho]}{vol (compartment)}$$
 (75)

$$Function_for_dho_dilution (vol (compartment), d, [dho]) = \frac{d \cdot [dho]}{vol (compartment)}$$
 (76)

7.15 Reaction oro_dilution

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name oro_dilution

Reaction equation

$$oro \stackrel{oro}{\rightleftharpoons} \emptyset$$
 (77)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
oro	oro	

Modifier

Table 43: Properties of each modifier.

Id	Name	SBO
oro	oro	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol} (\text{compartment}) \cdot \text{Function_for_oro_dilution} (\text{vol} (\text{compartment}), d, [\text{oro}])$$
 (78)

$$Function_for_oro_dilution (vol (compartment), d, [oro]) = \frac{d \cdot [oro]}{vol (compartment)}$$
 (79)

$$Function_for_oro_dilution (vol (compartment), d, [oro]) = \frac{d \cdot [oro]}{vol (compartment)} \tag{80}$$

7.16 Reaction omp_dilution

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name omp_dilution

Reaction equation

$$omp \stackrel{omp}{=\!\!\!=\!\!\!=} \emptyset \tag{81}$$

Reactant

Table 44: Properties of each reactant.

Id	Name	SBO
omp	omp	

Modifier

Table 45: Properties of each modifier.

Id	Name	SBO
omp	omp	

Kinetic Law

Derived unit contains undeclared units

 $v_{16} = vol(compartment) \cdot Function_for_omp_dilution(vol(compartment), d, [omp])$ (82)

$$Function_for_omp_dilution (vol (compartment), d, [omp]) = \frac{d \cdot [omp]}{vol (compartment)}$$
(83)

$$Function_for_omp_dilution\left(vol\left(compartment\right),d,[omp]\right) = \frac{d \cdot [omp]}{vol\left(compartment\right)} \tag{84}$$

7.17 Reaction ump_dilution

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name ump_dilution

Reaction equation

$$ump \stackrel{ump}{\longleftarrow} \emptyset \tag{85}$$

Reactant

Table 46: Properties of each reactant.

Id	Name	SBO
ump	ump	

Modifier

Table 47: Properties of each modifier.

Id	Name	SBO
ump	ump	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = vol (compartment) \cdot Function_for_ump_dilution (vol (compartment), d, [ump])$$
 (86)

$$Function_for_ump_dilution (vol (compartment), d, [ump]) = \frac{d \cdot [ump]}{vol (compartment)}$$
(87)

$$Function_for_ump_dilution\left(vol\left(compartment\right),d,[ump]\right) = \frac{d \cdot [ump]}{vol\left(compartment\right)} \tag{88}$$

7.18 Reaction udp_dilution

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name udp_dilution

Reaction equation

$$udp \stackrel{udp}{\longleftarrow} \emptyset \tag{89}$$

Reactant

Table 48: Properties of each reactant.

Id	Name	SBO
udp	udp	

Modifier

Table 49: Properties of each modifier.

Id	Name	SBO
udp	udp	

Kinetic Law

Derived unit contains undeclared units

$$v_{18} = vol\left(compartment\right) \cdot Function_for_udp_dilution\left(vol\left(compartment\right), d, [udp]\right) \quad (90)$$

$$Function_for_udp_dilution\left(vol\left(compartment\right),d,[udp]\right) = \frac{d \cdot [udp]}{vol\left(compartment\right)} \tag{91}$$

$$Function_for_udp_dilution\left(vol\left(compartment\right),d,[udp]\right) = \frac{d\cdot[udp]}{vol\left(compartment\right)} \tag{92}$$

7.19 Reaction utp_dilution

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name utp_dilution

Reaction equation

$$\operatorname{utp} \stackrel{\operatorname{utp}}{\longleftarrow} \emptyset \tag{93}$$

Reactant

Table 50: Properties of each reactant.

Id	Name	SBO
utp	utp	

Modifier

Table 51: Properties of each modifier.

Id	Name	SBO
utp	utp	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol} (\text{compartment}) \cdot \text{Function_for_utp_dilution} (\text{vol} (\text{compartment}), d, [\text{utp}])$$
 (94)

$$Function_for_utp_dilution\left(vol\left(compartment\right),d,[utp]\right) = \frac{d \cdot [utp]}{vol\left(compartment\right)} \tag{95}$$

$$Function_for_utp_dilution\left(vol\left(compartment\right),d,[utp]\right) = \frac{d \cdot [utp]}{vol\left(compartment\right)} \tag{96}$$

7.20 Reaction ctp_dilution

This is a reversible reaction of one reactant forming no product influenced by one modifier.

Name ctp_dilution

Reaction equation

$$\cot \frac{\cot \varphi}{\cot \varphi} \emptyset \tag{97}$$

Table 52: Properties of each reactant.

Id	Name	SBO
ctp	ctp	

Table 53: Properties of each modifier.

Id	Name	SBO
ctp	ctp	

Kinetic Law

Derived unit contains undeclared units

$$v_{20} = \text{vol} (\text{compartment}) \cdot \text{Function_for_ctp_dilution} (\text{vol} (\text{compartment}), [\text{ctp}], d)$$
 (98)

Function_for_ctp_dilution (vol (compartment), [ctp], d) =
$$\frac{d \cdot [ctp]}{vol (compartment)}$$
 (99)

$$Function_for_ctp_dilution (vol (compartment), [ctp], d) = \frac{d \cdot [ctp]}{vol (compartment)}$$
 (100)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species cp

Name cp

Initial concentration $3.7 \cdot 10^{-4} \text{ mmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in r2, cp_dilution and as a product in r1 and as a modifier in r2, cp_dilution).

$$\frac{d}{dt}cp = |v_1| - |v_2| - |v_{12}| \tag{101}$$

8.2 Species ca

Name ca

Initial concentration $3.7 \cdot 10^{-4} \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in r3, ca_dilution and as a product in r2 and as a modifier in r3, ca_dilution).

$$\frac{d}{dt}ca = |v_2| - |v_3| - |v_{13}| \tag{102}$$

8.3 Species dho

Name dho

Initial concentration $3.7 \cdot 10^{-4} \text{ mmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in r4, dho_dilution and as a product in r3 and as a modifier in r4, dho_dilution).

$$\frac{d}{dt}dho = |v_3| - |v_4| - |v_{14}| \tag{103}$$

8.4 Species oro

Name oro

Initial concentration $3.7 \cdot 10^{-4} \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in r5, oro_dilution and as a product in r4 and as a modifier in r5, oro_dilution).

$$\frac{d}{dt} \text{oro} = |v_4| - |v_5| - |v_{15}| \tag{104}$$

8.5 Species omp

Name omp

Initial concentration $3.7 \cdot 10^{-4} \text{ mmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in r6, omp_dilution and as a product in r5 and as a modifier in r6, omp_dilution).

$$\frac{d}{dt}omp = v_5 - |v_6| - |v_{16}| \tag{105}$$

8.6 Species ump

Name ump

Initial concentration $3.7 \cdot 10^{-4} \text{ mmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in r10, ump_dilution and as a product in r6 and as a modifier in r10, ump_dilution).

$$\frac{d}{dt}ump = v_6 - v_7 - v_{17}$$
 (106)

8.7 Species udp

Name udp

Initial concentration $0.002886 \text{ } \text{mmol} \cdot l^{-1}$

This species takes part in five reactions (as a reactant in r7, udp_dilution and as a product in r10 and as a modifier in r7, udp_dilution).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{udp} = |v_7| - |v_8| - |v_{18}| \tag{107}$$

8.8 Species utp

Name utp

Initial concentration $0.00666 \text{ mmol} \cdot 1^{-1}$

This species takes part in eleven reactions (as a reactant in utp_degradation, r8, utp_dilution and as a product in r7 and as a modifier in r1, r1, r2, r2, utp_degradation, r8, utp_dilution).

$$\frac{d}{dt}utp = |v_8| - |v_9| - |v_{10}| - |v_{19}| \tag{108}$$

8.9 Species ctp

Name ctp

Initial concentration $3.7 \cdot 10^{-4} \text{ mmol} \cdot 1^{-1}$

This species takes part in five reactions (as a reactant in ctp_degradation, ctp_dilution and as a product in r8 and as a modifier in ctp_degradation, ctp_dilution).

$$\frac{d}{dt}ctp = |v_{10}| - |v_{11}| - |v_{20}| \tag{109}$$

BML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany