CARLINGFORD HIGH SCHOOL

Year 11 Mathematics

Preliminary Assessment Task 2 Term 2 2018

Solutions

Y11 T2 Maths Test 2018 Page 1

QUESTION 1 (14 marks)

Now $x = 360^{\circ} - \alpha$ (angles at a point) a).

and
$$y = 360^{\circ} - \beta$$
 (angles at a point)

But $\theta = x + y$ (sum of alternate angles on parallel lines)

i.e.
$$\theta = 360^{\circ} - \alpha + 360^{\circ} - \beta$$

 $\therefore \theta = 720^{\circ} - \alpha - \beta$

[3]

[3]

[3]

[2]

i). In $\triangle EBD \& \triangle ECD$ **b**).

$$\angle EDB = \angle EDC = 90^{\circ}$$
 (given)

$$EB = EC$$
 (given)

$$ED = ED$$
 (common side)

So
$$\Delta EBD \equiv \Delta ECD$$
 (RHS)

:. BD = CD(corresponding sides of congruent Δs)

ii). In $\triangle ABD \& \triangle ACD$

$$AD = AD$$
 (common side)

$$\angle ADB = \angle ADC = 90^{\circ}$$
 (given)

$$BD = CD$$
 (proved)

So
$$\triangle ABD \equiv \triangle ACD$$
 (SAS)

AB = AC(corresponding sides of congruent Δs)

c).

Now
$$\frac{AB}{AD} = \frac{AC}{DC} = \frac{BC}{AC}$$
 (Three pairs of matching

sides in proportion)

So
$$\frac{5}{2} = \frac{BC}{5}$$

$$BC = \frac{25}{2}$$

Thus
$$BD = \frac{25}{2} - 2$$

$$=\frac{21}{2}$$
cm

d).

Now $\triangle BPQ \parallel \triangle BCA$ (Three pairs of matching angles

So
$$\frac{BP}{BC} = \frac{PQ}{CA}$$

i.e.
$$\frac{b - PC}{b} = \frac{PC}{a}$$

$$ab - aPC = bPC$$

$$ab = (a+b)PC$$

$$\therefore PC = \frac{ab}{a+b}$$

[3]

Y11 T2 Maths Test 2018

QUESTION 2 (17 marks)

a).	$Now \cot 300^\circ = \frac{1}{\tan 300^\circ}$	[2]
	$=1\div\left(-\frac{\sqrt{3}}{1}\right)$	
	$=-\frac{1}{\sqrt{3}}$	

c). LHS =
$$(\sec^2 \theta - 1)\cos^2 \theta$$

= $\left(\frac{1}{\cos^2 \theta} - 1\right)\cos^2 \theta$
= $1 - \cos^2 \theta$
= $\sin^2 \theta$
= RHS

d). Now
$$\sin x = \cos x$$

then $\tan x = 1$
 $\therefore x = 45^{\circ} \text{ or } 225^{\circ}$

f). i). Now
$$x^2 = 5^2 + 12^2$$

then $x = \sqrt{5^2 + 12^2}$
 $= 13 \text{ cm}$

9 cm

ii). Now
$$\cos \theta^{\circ} = \frac{15^{2} + 9^{2} - 13^{2}}{2 \times 15 \times 9}$$

$$= \frac{137}{270}$$

$$\therefore \quad \theta \approx 59.51^{\circ}$$
15 cm
$$12 \text{ cm}$$
[2]

[1]

g). i). Now
$$\angle OAB = 65^{\circ} + (180^{\circ} - 148^{\circ})$$

= $65^{\circ} + 32^{\circ}$
= 97°

So
$$OB^2 = 100^2 + 80^2 - 2 \times 100 \times 80 \times \cos 97^\circ$$

 $\therefore OB \approx 135.5 \text{ km}$

ii). Now
$$\frac{\sin \angle AOB}{80} = \frac{\sin 97^{\circ}}{135.5}$$
$$\sin \angle AOB = \frac{80 \times \sin 97^{\circ}}{135.5}$$
$$\therefore \angle AOB = 35.9^{\circ}$$

QUESTION 3 (19 marks)

a). i). Now centre
$$=\left(\frac{-2+6}{2}, \frac{4-2}{2}\right)$$

= $(2, 1)$

ii). Now radius =
$$\sqrt{(-2-2)^2 + (4-1)^2} = 5$$
 units

b). i). Now equation of
$$BC$$
: $\frac{y-1}{x-2} = \frac{2-1}{1-2}$
 \therefore the equation in general form is $x+y-3=0$

ii). Now the perpendicular distance of A from
$$BC = \left| \frac{-1 + (-1) - 3}{\sqrt{1^2 + 1^2}} \right| = \frac{5}{\sqrt{2}}$$
 units

iii). Now the area of
$$\triangle ABC = \frac{1}{2} \times \sqrt{(2-1)^2 + (1-2)^2} \times \frac{5}{\sqrt{2}} = \frac{5}{2}$$
 units²

c). Now the equation of the line is
$$(2x + y - 5) + k(x - y + 2) = 0$$

 $2x + y - 5 + kx - ky + 2k = 0$
 $(2 + k)x + (1 - k)y + (2k - 5) = 0$ as required [2]

Y11 T2 Maths Test 2018 Page 4

Now from
$$[1] + [3]$$
 get

$$15x = 0$$

$$\therefore$$
 $x=0$

Thus substitute x = 0 in [2] get

$$3(0) + y - 10 = 0$$

$$\therefore \qquad \qquad y = 10$$

Hence the point P has coordinates (0, 10) which is on the y-axis.

ii). Now the equation of
$$QR$$
 is $\frac{y-1}{x-(-2)} = \frac{-2-1}{4-(-2)}$
 $6(y-1) = -3(x+2)$
 $6y-6 = -3x-6$
 $3x+2y=0$
 $\therefore x+2y=0$

y-1) = -3(x+2) y-6 = -3x-6[2]

iii). Now sketch the region defined by the 3 inequalities $9x - 2y + 20 \ge 0$, $3x + y - 10 \le 0$ and x + 2y > 0.

END OF SOLUTIONS

Y11 T2 Maths Test 2018 Page 5