Empirical Analysis of the Role of Energy in Economic Growth

Caleb Reese^a, Lucas Timmer^a, Matthew Kuperus Heun^{a,*}

^aEngineering Department, Calvin College, Grand Rapids, MI 49546, USA

Abstract

****** Add abstract ******

Keywords: economic growth, energy, cobb-douglas, CES, LINEX

Caleb, put your LaTeX code here.

1. Cobb-Douglas Without Energy

Email address: mkh2@calvin.edu, tel: +1 (616) 526-6663, fax: +1 (616) 526-6501 (Matthew Kuperus Heun)

a)

 $^{{\}rm *Corresponding\ author}$

Figure 1: Indexed GDP (y), capital stock (k), labor (l), thermal energy (q), exergy (x), and useful work (u) for all economies. (China's indexed GDP and indexed capital stock rise to y=7.3 and k=9.2 in 2011.)

Table 1: Cobb-Douglas parameters for 1980-2011 (US, UK, JP) or 1991-2011 (others). (Parameter estimates beneath symbol. 95% confidence interval bounds to left and right.)

		λ			α			β	
US	0.0087	0.0102	0.0116	0.21	0.27	0.34	0.66	0.73	0.79
UK	-0.0066	0.0097	0.0215		0.44		-0.13	0.56	1.24
JP	0.0021	0.0052	0.0082	0.44	0.52	0.59	0.41	0.48	0.56
CN	-0.0021	0.0188	0.0688	0.11	0.71		-0.32	0.29	0.89
ZA	-0.0007	0.0008	0.0022	0.46	0.60	0.73	0.26	0.40	0.54
SA	-0.0159	-0.0123	-0.0087	0.21	0.45	0.68	0.32	0.55	0.78
IR	0.0032	0.0039	0.0045	0.49	0.60	0.70	0.30	0.40	0.51
TZ	-0.0039	0.0015	0.0068	0.50	0.73	0.95	0.05	0.27	0.50
ZM	0.0154	0.0174	0.0191	0.93	1.00		-0.25	0.00	0.25

2. Cobb-Douglas With Energy

We can force α , β , and γ to be in [0,1] by a reparameterization:

$$a \in [0,1], b \in [0,1], \alpha = \min(a,b), \beta = |b-a|, \gamma = 1 - \max(a,b)$$

Figure 2: Cobb-Douglas (without energy) model parameters. Vertical bars indicate 95% confidence intervals.

- 2.1. Cobb-Douglas with Q
- 2.2. Cobb-Douglas With X
- 2.3. Cobb-Douglas With U
- 3. CES
- 3.1. CES with Q

Figure 3: Cobb-Douglas (without energy) results.