EJERCICIO 3:

[U214974@ohpc 3_primes]\$ export OMP_NUM_THREADS=1 [U214974@ohpc 3_primes]\$./primes

Number of processors available = 40 Number of threads = 1

		Default	Static	Dyna	amic	
Ν	Pi(N)	Tim	e Ti	me	Time	
1	0	0.00000	7 0.00	0001	0.000001	
2	1	0.00000	0.00	0000	0.000001	
4	2	0.00000	0.00	0000	0.000000	
8	4	0.00000	0.00	0000	0.000001	
16	6	0.00000	0.0	00001	0.000001	
32	11	0.0000	0.0	00001	0.000001	
64	18	0.0000	0.0	00003	0.000003)
128	31	0.0000	0.0	000007	0.00000	7
256	54	0.0000	0.0	000020	0.00002	1
512	97	0.0000	0.0	000069	0.00007	7
1024	1 17	2 0.000	0237 0	.000237	0.00024	40
2048	3 30	9 0.000	0838	.000835	0.00084	43
4096	56	4 0.003	3074 0	.003041	0.0030	76
8192	2 102	28 0.01	1011 (0.010999	0.0110	31
1638	4 19	00 0.04	40839	0.040845	0.0410) 98
3276	8 35	12 0.15	50577	0.150611	0.1525	572
6553	6 65	42 0.56	62433	0.562411	0.5636	353
export	13107	2 1225	1 2.114	1725 2	2.114760	2.116249

[U214974@ohpc 3_primes]\$ export OMP_NUM_THREADS=2 [U214974@ohpc 3_primes]\$./primes

Number of processors available = 40 Number of threads = 2

		Default	Static Dy	namic
Ν	Pi(N)	Time	Time	Time
1	0	0.000049	0.000002	0.000004
2	1	0.000001	0.000001	0.000002
4	2	0.000001	0.000001	0.000001
8	4	0.000001	0.000001	0.000002
16	6	0.000001	0.000001	0.000002
32	11	0.000002	0.000002	0.000003
64	18	0.000002	0.000002	0.000004
128	31	0.000006	0.000004	0.000006
256	54	0.000015	0.000012	0.000015

512	97	0.000054	0.000038	0.000041
1024	172	0.000174	0.000120	0.000128
2048	309	0.000602	0.000430	0.000437
4096	564	0.002206	0.001543	0.001550
8192	1028	0.007973	0.005502	0.005568
16384	1900	0.029786	0.020524	0.020553
32768	3512	0.109788	0.075521	0.075856
65536	6542	0.413548	0.281702	0.281638
131072	12251	1.552137	1.062577	1.059529

[U214974@ohpc 3_primes]\$ export OMP_NUM_THREADS=4 [U214974@ohpc 3_primes]\$./primes

Number of processors available = 40 Number of threads = 4

		Defau	ult	Stat	ic	Dyr	nam	ic		
Ν	Pi(N)	-	Time		Time	•	Ti	me		
1	0	0.000	0122	0.0	0000)2	0.0	00000)3	
2	1	0.000	0002	0.0	0000)1	0.0	00000)2	
4	2	0.000	0002	0.0	0000)2	0.0	00000)3	
8	4	0.000	0002	0.0	0000)2	0.0	00000)3	
16	6	0.00	0002	0.	0000	02	0.	0000	03	
32	11	0.00	00002	0	.0000	002	0	.0000	04	
64	18	0.00	00002	0	.0000	002	0	.0000	004	
128	31	0.0	00003	(0.000	003	(0.000	006	
256	54	0.0	00009	(0.000	007	(0.000	010	
512	97	0.0	00030	(0.000	024	(0.000	025	
1024	172	0.	.00009	6	0.00	0063	3	0.00	0077	
2048	309	0.	.00034	2	0.00	0220)	0.00	0223	
4096	564	. 0.	.00127	0	0.00	0793	3	0.00	0804	
8192	1028	8 0	.00474	! 7	0.00)284	9	0.00	2798	j
16384	190	0 (0.0175	82	0.0	104	15	0.0	1044	1
32768	351	2 (0.0641	42	0.0	4837	70	0.0	41458	3
65536	654	.2 (0.2395	64	0.1	6444	16	0.1	44253	3
131072	122	251	0.895	219	0.	5398	386	0.	54089	96

- 1. Run the code with 1, 2, and 4 threads. Which scheduling technique scales the best?
- 2. Why? Discuss the results.

La tècnica per defecte no sembla escalar eficientment quan augmentem el nombre de threads. A mesura que augmentem la N, el temps d'execució s'incrementa de manera significativa. Això es deu ja que, aquesta tècnica no distribueix de manera òptima la càrrega de treball entre els threads.

D'altra banda, la tècnica estàtica sembla que té un major rendiment que la tècnica per defecte. Igual que abans, observem que a mesura que augmentem la N, el temps d'execució també ho fa. Però aquest increment és més progressiu i controlat, fet que indica una millor distribució de la càrrega de treball. Això es deu al fet que la programació estàtica divideix les iteracions en fragments de mida igual on comença el paral·lelisme, per això veiem un rendiment millor que la programació per defecte però pitjor que la dinàmica la qual té en compte la càrrega de treball variable.

Finalment, la tècnica dinàmica sembla que escala de manera més eficient els resultats en comparació amb les altres dues tècniques. Això ho veiem en la forma en què el temps d'execució augmenta de manera més suau a mesura que la N augmenta. Aquesta tècnica és més eficient quan treballem amb càrregues de treball variables, ja que distribueix la càrrega de treball de manera més equitativa entre threads. En el nostre cas la càrrega de treball varia en funció de l'entrada (N), llavors la tècnica dinàmica ens proporciona un major rendiment doncs una millor escalació.