TD 6

Exercice 1:

Donner le dual du primal suivant :

a)

$$\begin{aligned} \operatorname{Max} Z &= 2x_1 + 4x_2 + 3x_3 \\ 3x_1 + 4x_2 + 2x_3 &\leq 60 \\ 2x_1 + x_2 + 2x_3 &\leq 40 \\ x_1 + 3x_2 + 2x_3 &\leq 80 \\ x_1, x_2, x_3 &\geq 0 \end{aligned}$$

b)

$$\min Z = 20x_1 + 24x_2$$

$$x_1 + x_2 \ge 30$$

$$x_1 + 2x_2 \ge 40$$

$$x_1, x_2 \ge 0$$

c)

$$\max Z = 10x_1 + 6x_2$$
$$x_1 + 4x_2 \le 40$$
$$3x_1 + 2x_2 = 60$$
$$2x_1 + x_2 \ge 25$$
$$x_1, x_2 \ge 0$$

Exercice 2 : Soit le programme linéaire :

Max
$$Z = 40 \times x_1 + 50 \times x_2$$

s.c. $5 \times 1 + 4 \times 2 \le 80$
 $x_1 + 2x_2 \le 24$
 $3x_1 + 2x_2 \le 36$
 $x_1, x_2 \ge 0$

- 1- Donner le dual PL* de ce primal PL
- 2- Résoudre le primal PL par le simplexe ou graphiquement
- 3- Déduire la solution du dual PL*

Exercice 3:

Un fabricant produit 2 variétés de biscuit, l'une à la noix de coco et l'autre au chocolat, selon le schéma suivant :

Biscuit		Ingrédie	Prix de vente	
	Farine	Chocolat	Noix de coco	1 11x de vente
A	1	0	3	6
В	1	5	0	5
Disponible	8	22	12	

- a) Formuler le problème comme un PL et trouver un plan de fabrication qui maximise le profit;
- b) Pour quelle variation du prix de vente du biscuit au chocolat, ce plan de fabrication reste optimal?
- c) On annonce une pénurie de chocolat; déterminer la quantité minimale de chocolat nécessaire en stock, pour que ce plan de fabrication ne soit pas compromis;
- d) On étudie la production d'un nouveau biscuit à la noix de coco et au chocolat à raison de 1/3 de noix de coco et 2/3 de chocolat. Ce nouveau produit sera vendu à 8F. Quel est le schéma de production optimal?
- e) Déterminer le dual PL^* de ce primal PL;
- f) En déduire la solution du dual PL^* .

Exercice 4:

Considérons le modèle de programmation linéaire suivant (P) où l'objectif propose la maximisation d'une fonction linéaire et l'origine du plan O=(0,0) n'est pas une solution admissible

$$Max Z = 100x_1 + 200x_2$$

sous les contraintes

$$3x_1 + x_2 \leq 23$$
 Main d'œuvre (jours)
 $5x_1 + 6x_2 \geq 52$ Demande
 $3x_1 - 6x_2 \leq 12$ Gestion de stocke
 $x_2 \leq 7$ Limite produit 2
 $x_1, x_2 \geq 0$

- 1. Tracer sur un graphe cartésien la région admissible de ce modèle linéaire. Calculer les coordonnées de chaque point extrême.
- 2. Évaluer la fonction objectif en chaque point extrême et déterminer la solution optimale de (P).
- 3. Écrire le problème (PLS) et le problème (PLF_I) si nécessaire.
- 4. Établir le problème dual de ce problème.
- 5. Trouver une solution de base réalisable à l'aide de la méthode du simplexe. (le tableau final de la phase 2 est presenté dans le Tableau 1)
- 6. On désire changer le prix de produit 2. En utilisant le tableau optimal de ce problème, déterminer un intervalle dont lequel peut varier le prix du produit 2 sans changer la solution optimale.
- 7. On aimerait diminuer ou augmenter le nombre d'heure associé à la main d'œuvre. Déterminer l'intervalle pour lequel, la solution optimale peut varier et déterminer la solution optimale ainsi que la valeur optimale en fonction de cette variation.

	1	2	3	4	5	6	
2	0	1	-0	0	0	1	7
5	0	0	-1	0	1	7	38
1	1	0	0.33	0	0	-0.33	5.33
4	0	0	1.67	1	0	4.33	16.67
	0	0	-33.33	0	0	-166.67	1933.33

Figure 1 – Tableau final de la méthode du simplexe