

 1
 액셀에서 필드추가

 2
 태블로에서 필드추가

 3
 파이썬에서 필드추가

Part 1, 전처리 - 1.액셀에서 필드추가

Q	R	
이전Lon	이전Lat	
126.9212	37.55611	
126.92101	37.55607	
126.92084	37.55611	
126.92082	37.55724	
126.9195	37.55757	
126.919	37.55759	
126.91895	37.55824	
126.91845	37.55974	
126.91713	37.56123	
126.91571	37.56272	
126.91436	37.56353	
126.91356	37.56404	
126.91307	37.5649	
126.91228	37.56524	
126.91215	37.56577	
126.9136	37.56687	
126.91618	37.56773	
40004740	27.5004	

이전**Lon** 이전**Lat** MAKEPOINT에 사용하기위함.
MAKEPOINT에는 공간데이터를 사용하기때문에, 태블로에서 테이블 함수인 LOOKUP 참조가 불가.
따라서 액셀에서 [Seq]순서로 정렬한 뒤, 바로 위 튜플의 [Lon], [Lat] 참조

NULL

당연히,각[영업일]에대한첫튜플에서는이전[Lon],[Lat]이존재할수없음. 따라서이자리는 Null값으로비움.

Part 1, 전처리 - 2. 태블로에서 필드추가

=⊕ 계산 이전위치Point	=⑪ 계산 현재위치Point	=# 계산 이동거리
null	Point	null
Point	Point	125.46
Point	Point	9.71
Point	Point	119.27
Point	Point	70.68
Point	Point	43.29
Point	Point	69.79
Point	Point	11.49
Point	Point	128.10

이전**Point** 현재**Point** MAKEPOINT([이전Lat],[이전Lon])
앞에서만든[이전Lat]과[이전Lon]필드로이전위치의공간데이터생성.
MAKEPOINT([Latitude],[Longitude])
[Latitude],[Longitude]필드로해당위치의공간데이터생성.
문제 1, 2, 3 해결을 위함

이동거리

DISTANCE([이전위치Point],[현재위치Point],'m') 앞서 만든 두 포인트사이의 거리를 계산. (m단위) 문제 1,2,3 해결을 위함.

Abc 계산 20분 분할 7:40:00 7:40:00

20분 단위분할 STR(DATEPART('hour',[Date Time]))+':'+
STR(DIV(DATEPART('minute',[Date Time]),20)*20)+':'+'00'
[Date Time]의시간부분을 DATEPART로가져오고,
분은 가져온 뒤, DIV를 통해 20으로 나는 결과의 정수부분을 가져온 뒤, 20을 곱해, 20분 단위로 나눌수 있도록함. 문제 3 해결을 위함.

Part 1, 전처리 - 2. 태블로에서 필드추가

=# 계산	=# 계산
Lon 100m	Lat 100m
126.921000	37.5560000
126.916000	37.5610000
127.025000	37.6030000

지한 계산 그리드 100m 37.55599999999997_126.9... 37.561_126.916 37.6030000000000002_127....

Lon 100m Lat 100m

ROUND([Longitude],3) ROUND([Latitude],3) 3째자리까지반올림표시를하여,격자단위필드생성

그리드

 STR([Lat 100m]+"_"+STR([Lon 100m])

 앞서 만든 두 포인트 사이의 거리를 계산. (m단위)

그리드 고유개수 앞서 만든 그리드 **100 m**의 고유갯수를 구하기 위함. 문제 **4** 해결을 위함.

Part 1, 전처리 - 3. 파이썬에서 필드추가(행정동)

함수정의 액셀파일 불러오기

반복문을 통해 지번구하기 덮어쓰기로 저장

```
#의설파일 물건으기
dataset = pandas.read_excel(Taxi_운행기록.xls')
```

```
      Abc

      taxi

      행정동

      서울특별시 마포구 동교동
```

```
서울특별시 마포구 동교동 With pand
서울특별시 마포구 성산동
```

```
for i in range(0,8145):
    print(i+1,'processing')
    latitude = dataset["Latitude"][]
    longtitude = dataset["Longitude"][]
    result = lat_lon_to_addr(longtitude, latitude)
    dataset["지본"][] = result

#poi 지본 보지를 위한 time 지연
    sleep(2)
```

path = 'Taxi_은행기록.xlsx'
with pandas.ExcelVriter(path) as writer:
dataset.to_excel(writer, sheet_name = 'taxi') #taxi 시트이지장

Part 2, 문제해결

STEP 1

4회의 영업중, 운행 거리합계가가 장큰 영업일과가 장작은 영업일구하기

STEP 2

거리과 시속의 시 간대별 시각화를 이중축을 사용하 여만들어보기

>>

STEP 3

문제 2의 시간시 각화를 20분대로 분할하여 시간시 각화하기

STEP 4

첫 영업일(수요일) 의 셀 개수와 고유 개 수, 그 리 고 100m 셀 개수와 고유개수를 각각 계산하기

>>

STEP 5

택시가 방문한 행정동의 개수 계산하기

>>

Part 2, 문제 해결 - Preview

분당까지 갔던 1 일차가 가장 운행거리가 크지않을지?

선이 두꺼운 곳, 즉 [Speed] 가 높게 나오는 곳은 고속도로인 곳이 많음.

전체적으로 선이 고르게 굵게 나오는 편인 4 일차는 도로에 차 가 많지 않은 야간 시간대라고 유추할 수도 있음.

Part 2, 문제해결-STEP1

[이동거리]값을 [Seq]에 따라 누적해간 값으로 그래프로 그림 1,2,3일차의 더이상 증가하지 않는 부분 은영업이 끝난 시점임.

4일차가 운행거리합이 가장 크고 3일차가 가장 작다

Part 2, 문제해결-STEP 2

이번에는 [Seq]가이닌 [시간대구분]/[Date
Time.hour]기준으로[이동거리] 누적 그래프와
별 평균 [Speed]를 그래프로 나타냄.
각 [시간대구분]별 최대값과 최소값을 레이블
링

합계(이동거리)

평균(Speed)

4일차는 늦은 오후부터 새벽까지 운행.

Part 2, 문제해결-STEP 3

이번에는 Part1에서 미리구해둔 [20분분할] 필드기준으로 [이동거리] 누적 그래프와 평균 [Speed]를 그래프로 나타냄. 각측정값별 최대값과 최소값을 레이블링

4일차는 늦은 오후부터 새벽까지 운행.

Part 2, 문제 해결 - STEP 4

그리드 셀 :	고유개수			
영업일	그리드 1km 의 카운트	그리드 1km 고유개수		그리드 100m 고유개수
1st	1,778	148	1,778	973

첫째날기준그리드의셀개수와고유개수계산 그리드의카운트(개수)는 COUNT([그리드 100m]), 그리드의고유개수는 COUNTD([그리드 100m])임.

그리드의 개수는 [Seq]의 최대값과 같으므로 1km, 100m 그리드의 카운트가 같은건 당연한 사실

Part 2, 문제 해결 - STEP 5

행정동 고유개수

영업일	행정동의 카운트	행정동의 고유 카운트
1st	1,778	128
2nd	2,168	146
3rd	1,893	131
4th	2,306	134

지나간행정동의 개수와 고유개수 계산 행정동의 카운트(개수)는 COUNT([행정동]), 행정동의 고유개수는 COUNTD([행정동])임.

Part1에서 카카오API를 이용해 구한[행정동]필드 이용