

Strong Lottery Ticket Hypothesis with ε -Perturbation

Zheyang Xiong*, Fangshuo Liao*, Anastasios Kyrillidis

April 28, 2023

A randomly initialized, dense neural network contains a subnetwork that is **initialized** such that — when trained in isolation — it can match the test accuracy of the original network after training for at most the same number of iterations.

- Frankle & Carbin (2019, p.2)

- How to find lottery ticket:
 - Train a randomly initialized NN.

- How to find lottery ticket:
 - Train a randomly initialized NN.
 - Prune weights with small magnitude.

- How to find lottery ticket:
 - Train a randomly initialized NN.
 - Prune weights with small magnitude.
 - Rewind remaining weights to initialization & Re-train.

- How to find lottery ticket:
 - Train a randomly initialized NN.
 - Prune weights with small magnitude.
 - Rewind remaining weights to initialization & Re-train.
- If instead of rewinding, we randomly initialize again, the performance is worse.

- How to find lottery ticket:
 - Train a randomly initialized NN.
 - Prune weights with small magnitude.
 - Rewind remaining weights to initialization & Re-train.
- If instead of rewinding, we randomly initialize again, the performance is worse.
- Initialization is important

- The approximation process is
 - We have a target neural network ${\cal F}$

- The approximation process is
 - We have a target neural network ${\cal F}$
 - We have a randomly initialized neural network $\mathcal G$ (much larger)

- The approximation process is
 - We have a target neural network ${\cal F}$
 - We have a randomly initialized neural network $\mathcal G$ (much larger)
 - We can approximate ${\mathcal F}$ by pruning ${\mathcal G}$

$$\eta = \min_{\mathcal{M}} \sup_{\mathbf{x}} \|\mathcal{F}(\mathbf{x}) - (\mathcal{M} \circ \mathcal{G})(\mathbf{x})\|$$

- The approximation process is
 - We have a target neural network ${\cal F}$
 - We have a randomly initialized neural network ${\cal G}$ (much larger)
 - We can approximate ${\mathcal F}$ by pruning ${\mathcal G}$

$$\eta = \min_{\mathcal{M}} \sup_{\mathbf{x}} \|\mathcal{F}(\mathbf{x}) - (\mathcal{M} \circ \mathcal{G})(\mathbf{x})\|$$

• No need for training!

- The approximation process is
 - We have a target neural network ${\cal F}$
 - We have a randomly initialized neural network ${\cal G}$ (much larger)
 - We can approximate ${\mathcal F}$ by pruning ${\mathcal G}$

$$\eta = \min_{\mathcal{M}} \sup_{\mathbf{x}} \|\mathcal{F}(\mathbf{x}) - (\mathcal{M} \circ \mathcal{G})(\mathbf{x})\|$$

- No need for training!
- Easier to prove!

- The approximation process is
 - We have a target neural network ${\cal F}$
 - We have a randomly initialized neural network \mathcal{G} (much larger)
 - We can approximate $\mathcal F$ by pruning $\mathcal G$

$$\eta = \min_{\mathcal{M}} \sup_{\mathbf{x}} \|\mathcal{F}(\mathbf{x}) - (\mathcal{M} \circ \mathcal{G})(\mathbf{x})\|$$

- No need for training!
- Easier to prove!
- But the over-parameterization will be larger.

The Goal

the Strong LTH.

We want to understand the LTH using ideas from

Strong LTH with ε **-Perturbation**

• Treating the weight change during training as general perturbation around initialization

Strong LTH with ε -Perturbation

- Treating the weight change during training as general perturbation around initialization
- Example, consider NN \mathcal{G}_{W}

$$\mathcal{G}_{\boldsymbol{W}} \xrightarrow{\mathsf{Perturb}} \mathcal{G}_{\boldsymbol{W}+\Delta \boldsymbol{W}}$$

Strong LTH with ε -Perturbation

- Treating the weight change during training as general perturbation around initialization
- Example, consider NN \mathcal{G}_{W}

$$\mathcal{G}_{\boldsymbol{W}} \xrightarrow{\mathsf{Perturb}} \mathcal{G}_{\boldsymbol{W}+\Delta \boldsymbol{W}}$$

• Require $\|\Delta W\|_{\infty} \le \varepsilon$, and we can study how varying ε affects the approximation error η

$$\eta = \min_{\Delta \boldsymbol{W}.\mathcal{M}} \sup_{\mathbf{x}} \|\mathcal{F}(\mathbf{x}) - (\mathcal{M} \circ \mathcal{G}_{\boldsymbol{W} + \Delta \boldsymbol{W}})(\mathbf{x})\|$$

How much Over-parameterization Does Strong LTH Need?

Theorem

Assume \mathcal{F} has L layers, and the width of the ℓ th layer is d_{ℓ} for all $\ell \in [L]$. Then if \mathcal{G} has 2L layers, and the width of the $(2\ell-1)$ th layer is d_{ℓ} , the width of the 2ℓ th layer is d_{ℓ} . As long as

$$d_\ell' = O\left(d_{\ell-1}\log\left(\hat{\eta}^{-1}d_\ell d_{\ell-1}L
ight)
ight)$$

then with high probability, we have

$$\min_{\mathcal{M}} \sup_{\mathbf{x}} \|\mathcal{F} - (\mathcal{M} \circ \mathcal{G})(\mathbf{x})\| \leq \hat{\eta}$$

How much Over-parameterization Does Strong LTH Need?

For short:

- if \mathcal{F} has n parameters in total and L layers
- then we need \mathcal{G} to have $(n \log (\hat{\eta}^{-1} nL))$ parameters and 2L layers

The Subset-Sum Problem:

The Subset-Sum Problem:

• Given *n* randomly generated candidate values $\{x_i\}_{i=1}^n$ and a target value z

The Subset-Sum Problem:

- Given *n* randomly generated candidate values $\{x_i\}_{i=1}^n$ and a target value z
- Find the best mask $\delta \in \{0,1\}^n$ to minimize $|\sum_{i=1}^n \delta_i x_i z|$.

The Subset-Sum Problem:

- Given *n* randomly generated candidate values $\{x_i\}_{i=1}^n$ and a target value z
- Find the best mask $\delta \in \{0,1\}^n$ to minimize $|\sum_{i=1}^n \delta_i x_i z|$.

Theoretical Guarantee (Lueker, 1996)

The Subset-Sum Problem:

- Given *n* randomly generated candidate values $\{x_i\}_{i=1}^n$ and a target value z
- Find the best mask $\delta \in \{0,1\}^n$ to minimize $|\sum_{i=1}^n \delta_i x_i z|$.

Theoretical Guarantee (Lueker, 1996)

• Let $\eta = \min_{\delta} |\sum_{i=1}^{n} \delta_i x_i - z|$

The Subset-Sum Problem:

- Given *n* randomly generated candidate values $\{x_i\}_{i=1}^n$ and a target value z
- Find the best mask $\delta \in \{0,1\}^n$ to minimize $|\sum_{i=1}^n \delta_i x_i z|$.

Theoretical Guarantee (Lueker, 1996)

- Let $\eta = \min_{\delta} |\sum_{i=1}^{n} \delta_i x_i z|$
- If $n = O(\log \eta^{-1})$, then w.h.p over $\{x_i\}_{i=1}^n$, all z has an η -approximation

The ε -Perturbed Subset-Sum Problem:

The ε -Perturbed Subset-Sum Problem:

• Still have *n* random candidates $\{x_i\}_{i=1}^n$ and a target z

The ε -Perturbed Subset-Sum Problem:

- Still have *n* random candidates $\{x_i\}_{i=1}^n$ and a target *z*
- Find the best $\mathbf{y} \in [-\epsilon, \epsilon]^n$ and $\delta \in \{0, 1\}^n$ to minimize $|\sum_{i=1}^n \delta_i(x_i + y_i) z|$

The ε -Perturbed Subset-Sum Problem:

- Still have *n* random candidates $\{x_i\}_{i=1}^n$ and a target *z*
- Find the best $\mathbf{y} \in [-\epsilon, \epsilon]^n$ and $\mathbf{\delta} \in \{0, 1\}^n$ to minimize $|\sum_{i=1}^n \delta_i(x_i + y_i) z|$
- Additional freedom of choosing y

The ε -Perturbed Subset-Sum Problem:

- Still have *n* random candidates $\{x_i\}_{i=1}^n$ and a target *z*
- Find the best $\mathbf{y} \in [-\epsilon, \epsilon]^n$ and $\mathbf{\delta} \in \{0, 1\}^n$ to minimize $|\sum_{i=1}^n \delta_i(x_i + y_i) z|$
- Additional freedom of choosing y

Theoretical Guarantee

The ε -Perturbed Subset-Sum Problem:

- Still have *n* random candidates $\{x_i\}_{i=1}^n$ and a target *z*
- Find the best $\mathbf{y} \in [-\epsilon, \epsilon]^n$ and $\mathbf{\delta} \in \{0, 1\}^n$ to minimize $|\sum_{i=1}^n \delta_i(x_i + y_i) z|$
- Additional freedom of choosing y

Theoretical Guarantee

• Let $\eta = \min_{\delta} |\sum_{i=1}^{n} \delta_i (x_i + y_i) - z|$

The ε -Perturbed Subset-Sum Problem:

- Still have *n* random candidates $\{x_i\}_{i=1}^n$ and a target *z*
- Find the best $\mathbf{y} \in [-\epsilon, \epsilon]^n$ and $\mathbf{\delta} \in \{0, 1\}^n$ to minimize $|\sum_{i=1}^n \delta_i(x_i + y_i) z|$
- Additional freedom of choosing y

Theoretical Guarantee

- Let $\eta = \min_{\delta} |\sum_{i=1}^{n} \delta_i(x_i + y_i) z|$
- If $n = O\left(\frac{\log \eta^{-1}}{\log(1+\epsilon)+1}\right)$, then w.h.p over $\{x_i\}_{i=1}^n$, all z has an η -approximation

Approach of Approximation

width
$$= 2n$$

$$u_i = 1$$
 if $i \le n$;
 $u_i = -1$ if $i > n$

$$\mathbf{v} \sim \text{Unif}[-1,1]^{2n}$$

$$\mathbf{s} \in \{0,1\}^{2n}$$

$$\sigma(\cdot) = \max\{0, \cdot\}$$

ε -Perturbed Strong LTH

Theorem

Assume $\mathcal F$ has L layers, and the width of the ℓ th layer is d_ℓ for all $\ell \in [L]$. Then if $\mathcal G$ has 2L layers, and the width of the $(2\ell-1)$ th layer is d_ℓ , the width of the 2ℓ th layer is d_ℓ . As long as

$$d_\ell' = O\left(d_{\ell-1}rac{\log\left(\hat{\eta}^{-1}d_\ell d_{\ell-1}L
ight)}{\log\left(1+\epsilon
ight)+1}
ight)$$

then with high probability, we have

$$\min_{\mathcal{M}, \Delta \mathbf{W}} \sup_{\mathbf{x}} \left\| \mathcal{F} - \left(\mathcal{M} \circ \mathcal{G}_{\mathbf{W} + \Delta \mathbf{W}} \right) (x) \right\| \leq \hat{\eta}$$

ε -Perturbed Strong LTH

For short:

- if \mathcal{F} has n parameters in total and L layers
- ullet then we need ${\cal G}$ to have $\left(n \frac{\log\left(\hat{\eta}^{-1} n L\right)}{\log(1+\epsilon)+1}\right)$ parameters and 2L layers

Question

How to find a good ε perturbation?

GD finds Good ε -Perturbation

- $\bullet \text{ Run projected GD under } \|\Delta \boldsymbol{W}\|_{\text{max}} \leq \varepsilon \qquad \longrightarrow \left\{ \begin{array}{ll} 2 \colon \text{ for } t \in \{0, \dots, T-1\} \text{ do} \\ 3 \colon \quad \hat{\mathbf{W}} \leftarrow \Delta \mathbf{W} \alpha_t \nabla \mathcal{L}(\mathbf{W}_t) \\ 4 \colon \quad \Delta \mathbf{W} \leftarrow \text{sign}(\hat{\mathbf{W}}) \cdot \min\{\text{abs}(\hat{\mathbf{W}}), \varepsilon\} \\ 5 \colon \quad \mathbf{W}_{t+1} \leftarrow \mathbf{W}_0 + \Delta \mathbf{W} \end{array} \right.$
- Finding best pruning with Edge-Popup. -->
- Finding best (sparsity, accuracy) pair.

Algorithm 1 PGD+StrongLTH

Input: Perturbation scale ε , neural network loss \mathcal{L} , initial weight \mathbf{W}_0 , learning rate $\{\alpha_t\}_{t=0}^{T-1}$

- ΔW ← 0

- 6: end for
- 7: $\ell^* \leftarrow \infty$. $\mathcal{M}^* \leftarrow \text{None}$
- 8: **for** pruning level $s \in \{0.1, 0.2, \dots, 0.9\}$ **do**
- 9: $\ell, \mathcal{M} \leftarrow \text{Edge-Popup}(\mathcal{L}, \mathbf{W}_T, s)$
- 10: if $\ell < \ell^*$ then
- $\ell^* \leftarrow \ell \cdot \mathcal{M}^* \leftarrow \mathcal{M}$
- end if
- 13: end for
- 14: **return** Optimal loss ℓ^* , mask \mathbf{M}^* and sparsity level s

Results

	Perturbation Scale $arepsilon$										
Sparsity s	0	10^{-3}	$5\cdot 10^{-3}$	10^{-2}	$2\cdot 10^{-2}$	$3\cdot 10^{-2}$	$4\cdot 10^{-2}$	$5\cdot 10^{-2}$	10^{-1}	$2\cdot 10^{-1}$	$4\cdot 10^{-1}$
0	0.12	0.14	0.25	0.42	0.68	0.84	0.90	0.93	0.96	0.97	0.98
0.1	0.49	0.48	0.65	0.70	0.78	0.82	0.87	0.87	0.94	0.97	0.98
0.2	0.75	0.76	0.77	0.79	0.84	0.86	0.88	0.87	0.93	0.96	0.97
0.3	0.83	0.82	0.82	0.82	0.88	0.88	0.86	0.90	0.92	0.94	0.93
0.4	0.82	0.86	0.88	0.89	0.90	0.89	0.90	0.90	0.88	0.91	0.86
0.5	0.85	0.88	0.86	0.89	0.87	0.88	0.89	0.89	0.90	0.89	0.76
0.6	0.83	0.87	0.87	0.83	0.86	0.88	0.87	0.88	0.87	0.85	0.54
0.7	0.81	0.85	0.84	0.83	0.86	0.82	0.81	0.81	0.79	0.74	0.29
0.8	0.73	0.71	0.71	0.75	0.77	0.75	0.73	0.68	0.77	0.55	0.17

Red: Strong LTH; Blue: SGD without Pruning; Orange: SGD dominates pruning.

Results

Next Steps: Does GD Approximates Single Vector w?

Given a set of input data points $\{\mathbf{x}_i\}_{i=1}^m$, whether solving the optimization problem of $\min_{\mathbf{U}} \sum_{i=1}^m \|\mathbf{1}^\top \mathbf{U} \mathbf{x}_i - \mathbf{w}^\top \mathbf{x}_i\|_2^2$ using gradient descent

$$\mathbf{U}_{t+1} = \mathbf{U}_t - \alpha \frac{\partial}{\partial \mathbf{U}} \sum_{i=1}^m \left\| \mathbf{1}^\top \mathbf{U}_t \mathbf{x}_i - \mathbf{w}^\top \mathbf{x}_i \right\|_2^2$$

will satisfy the descending property

$$\left\|\mathbf{w} - (\mathbf{U}_{t+1} \odot \mathcal{M}_{t+1})^{\top} \mathbf{1}\right\|_{2} < \left\|\mathbf{w} - (\mathbf{U}_{t} \odot \mathcal{M}_{t})^{\top} \mathbf{1}\right\|_{2},$$

where \mathcal{M}_t is the optimal mask in iteration t: $\mathcal{M}_t = \operatorname{argmin}_{\mathcal{M}} \left\| \mathbf{w} - (\mathbf{U}_t \odot \mathcal{M})^\top \mathbf{1} \right\|_2$