Exercises

1. Calculate g_m , r_e and r_{be} when I_C = 10 μA and when I_C = 0.25 mA. Comment on the values (β_o = 200)

$$g_m = 40I_C$$
 $r_e = 1/g_m$ $r_{be} = \beta_o/g_m$

$\mathbf{I}_{\mathbf{C}}$	$\mathbf{g}_{\mathbf{m}}$	r _e	\mathbf{r}_{be}
10μΑ	0.4 mA/V	2.5kΩ	500kΩ
0.25mA	10mA/V	0.1kΩ	$20 \mathrm{k}\Omega$
1mA	40mA/V	0.025kΩ	5kΩ

- 2. Why is the small-signal equivalent circuit of a battery (d.c. voltage source) taken to be a short circuit?
- 3. What would be the small signal equivalent circuit of an ideal current source?
- 4. What are the equivalent circuit parameters for a transistor whose β_o = 200 and whose Early voltage is 150V when it is operating at I_C = 0.1mA and V_{CE} = 5V?

4 mA/V 1.55MΩ 50kΩ

5. Calculate the values of I_C , I_E and I_B of a transistor in the common emitter configuration, when $V_{CE} = 8V$ and $V_{BE} = 0.63V$; given that $I_S = 10^{-13}$ A at $V_{CE} = 5V$, $\beta = 200$ and VA = 150V.

$$I_C = I_{CO} \left[1 + \frac{V_{CE}}{V_A} \right]$$
 Where $I_{CO} = I_S \exp \left(\frac{V_{BE}}{V_T} \right)$

so when $V_{BE} = 0.63V$, $I_S = 10^{-13} A$; $I_{CO} \sim 9n$

(note that I_C at $V_{CE} = 5V$ is given by $I_C = 9mA \left[1 + \frac{5}{150} \right] = 9.1 \text{ mA}$

We need to find I_C , I_B and I_E at $V_{CE} = 8V$

• we're on the same V_{BE} characteristic so I_{CO} is the same.

Therefore
$$I_C = 9mA \left[1 + \frac{8}{150} \right] \sim 9.3 \text{ mA}$$

$$\beta = \frac{I_C}{I_B} = 200 \qquad \text{so} \qquad \mathbf{I_B} \sim \mathbf{50} \ \mu \mathbf{A}$$

$$I_E = I_C + I_B$$

so $I_E \sim 9.35 \text{ mA}$

6. What is the output resistance of the transistor at the operating point in 5 above?

Operating point is $V_{CE} = 8V$, $I_{C} = 9.3mA$

$$r_{ce} = \frac{V_A + V_{CE}}{I_C}$$

$$r_{ce} = \frac{150 + 8}{9.3 \cdot 10^{-3}} = \frac{17 \text{ k}\Omega}{10^{-3}}$$

or

$$r_{ce} = \frac{V_A}{I_{CO}}$$

$$r_{ce} = \frac{150}{9 \cdot 10^{-3}}$$
 =17 k Ω