Ch 5.1.5: *k*-fold Cross-Validation for Classification Lecture 15 - CMSE 381

Prof. Elizabeth Munch

Michigan State University

::

Dept of Computational Mathematics, Science & Engineering

Mon, Oct 9, 2023

Announcements

Last time:

k-fold CV

This lecture:

CV for classification

Announcements:

- Homework #4 is posted, Due tonight
- Grades

Percent	Convert
≥ 90%	4.0
≥ 85%	3.5
≥ 80%	3
≥ 75%	2.5
≥ 70%	2
≥ 65%	1.5
≥ 60%	1
< 60%	0

Section 1

Last time

Approximations of Test Error

Or. Munch (MSU-CMSE) Mon, Oct 9, 2023 4/16

Definition of k-fold CV

- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold U_i and reserve for testing.
- Train the model on remaining points
- Calculate $\mathrm{MSE}_i = \frac{1}{\ell} \sum_{(\mathsf{x}_i, y_i) \in U_i} (y_j \hat{y}_j)^2$
- Rinse and repeat

Return

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \mathrm{MSE}_{i}$$

Dr. Munch (MSU-CMSE)

Section 2

CV for Classification

r. Munch (MSU-CMSE) Mon, Oct 9, 2023

Setup: LOOCV

- Remove *i*th point (x_i, y_i) and reserve for testing.
- Train the model on remaining points
- Calculate $\operatorname{Err}_i = \operatorname{I}(y_j \neq \hat{y}_j)$
- Rinse and repeat

Return

$$CV_{(n)} = \frac{1}{n} \sum_{i=1}^{n} \operatorname{Err}_{i}$$

Dr. Munch (MSU-CMSE)

Setup: *k*-fold

- Randomly split data into k-groups (folds)
- Approximately equal sized. For the sake of notation, say each set has ℓ points
- Remove *i*th fold U_i and reserve for testing.
- Train the model on remaining points
- Calculate $\operatorname{Err}_i = \frac{1}{\ell} \sum_{(x_j, y_i) \in U_i} \operatorname{I}(y_j \neq \hat{y}_j)$
- Rinse and repeat

Return

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{Err}_{i}$$

Dr. Munch (MSU-CMSE

Example on simulated data: Linear

Degree=1

- Purple: Bayes decision boundary.
 - ► Error rate: 0.133
- Black: Logistic regression
 - $\log(p/(1-p)) = \beta_0 + \beta_1 X_1 + \beta_2 X_2$
 - ► Error rate: 0.201

Example on simulated data: Quadratic logistic regression

Degree=2

• Purple: Bayes decision boundary.

► Error rate: 0.133

• Black: Logistic regression

▶
$$\log(p/(1-p)) = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_2 + \beta_4 X_2^2$$

► Error rate: 0.197

Example on simulated data: all the polynomials!

- Purple: Bayes decision boundary.
 - ► Error rate: 0.133
- Black: Logistic regression
 - Deg 1 Error rate: 0.201Deg 2 Error rate: 0.197
 - ▶ Deg 3 Error rate: 0.160
 - ▶ Deg 4 Error rate: 0.162

Decide degree based on CV

- Test error (brown)
- Training error (blue)
- 10-fold CV error (black)

12 / 16

. Munch (MSU-CMSE) Mon, Oct 9, 2023

Similar game for KNN

- Test error (brown)
- Training error (blue)
- 10-fold CV error (black)

13 / 16

r. Munch (MSU-CMSE) Mon, Oct 9, 2023

Coding - k-fold for penguin classification section

r. Munch (MSU-CMSE) Mon, Oct 9, 2023

TL;DR

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \text{MSE}_i$$

Use k = 5 or 10 usually

k-fold CV for classification

$$\mathrm{Err}_i=\mathrm{I}(y_j\neq\hat{y}_j)$$

$$CV_{(k)} = \frac{1}{k} \sum_{i=1}^{k} \operatorname{Err}_{i}$$

Dr. Munch (MSU-CMSE)

Next time

12	Mon	Oct 2	Leave one out CV	5.1.1, 5.1.2	
13	Wed	Oct 4	k-fold CV	5.1.3	
14	Fri	Oct 6	More k-fold CV,	5.1.4-5	
15	Mon	Oct 9	k-fold CV for classification	5.1.5	HW #4 Due
16	Wed	Oct 11	Resampling methods: Bootstrap	5.2	
17	Fri	Oct 13	Subset selection	6.1	
18	Mon	Oct 16	Shrinkage: Ridge	6.2.1	
19	Wed	Oct 18	Shrinkage: Lasso	6.2.2	
	Fri	Oct 20	Review		
	Mon	Oct 23	No class - Fall break		
	Wed	Oct 25	Midterm #2		
20	Fri	Oct 27	Dimension Reduction	6.3	

Or. Munch (MSU-CMSE) Mon, Oct 9, 2023