

I hereby certify that this correspondence (including Exhibits) is being deposited with the United States Postal Service via Express Mail in an envelope addressed to the Commissioner for Patents, P.O. Box 1450, Alexandria, VA 22313-1450, on August 15, 2006 (Express Mail Label No.: ET615079096US).

Natu J. Patel

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of C. Earl Woolfork

Serial No. 10/648,012 : Group Art Unit: 2615

Confirm. No.: 3337 : Examiner: Andrew C. Flanders

Filed: August 26, 2003

For: WIRELESS DIGITAL AUDIO MUSIC SYSTEM

<u>DECLARATION OF APPLICANT REGARDING LIMITED BATTERY LIFE</u> <u>UNDER 35 USC Section 132</u>

I, C. Earl Woolfork, being duly sworn, depose and declare as follows:

- 1. I am the Inventor of the above referenced patent application ("Application"). I have personal knowledge of the following matter and if asked to testify, could and would testify competently, thereto.
- 2. Daphne Burton, my then attorney, conducted the interview with Examiner Flanders and Supervisory Patent Examiner Tran (collectively "Examiners") on June 13, 2006 regarding the pending office action dated May 17, 2006. I participated in that interview.
- 3. During the interview, among other things, we discussed U.S. Patent No. 5,771,441 issued to Altstatt ("Alstatt" or "the 441 Patent") and U.S. Patent No. 5,946,343 issued to Schotz ("Schotz" or "the 343 Patent").
- 4. Examiners requested that I submit evidence in an affidavit under 35 USC Section 132 explaining as to why the combination of Altstatt in view of Schotz is non-operative due to limited battery life.
- 5. I am hereby submitting this affidavit and all the supporting documentation to the Examiners for their consideration.

Docket No.: <u>W003-4000</u> <u>PATENT</u>

6. Altstatt's invention is based on an analog technology and is operated by a battery. Altstatt recites that the maximum value of V is fixed by the battery voltage of 1.5 or possibly 3 volts (Column 8, lines 22-24).

- 7. Schotz' invention is based on digital technology. Schotz's digital wireless speaker system requires 120VAC at 60Hz. Schotz further states that "[b]oth the transmitter 22 and the receiver 24 have respective power circuits (not shown) that convert input power (e.g., 120VAC at 60 Hz) into proper voltage levels for appropriate transmitter and receiver operation." Please refer to Column 14, lines 1-4.
- 8. <u>Exhibit A</u>, attached hereto, lists the commercially available Integrated Chip components ("IC Components") that both Altstatt and Schotz identify in their respective designs. Datasheets identifying electrical current requirements to operate the IC Components are included in <u>Exhibit B</u>.
- 9. Alstatt cannot be combined with Schotz. However, even assuming such a combination is possible, the Altstatt's battery powered analog headphone system will suffer from a significantly reduced playtime due to the power consumption of Schotz's numerous integrated circuit components, as articulated in the calculation spreadsheet attached hereto as Exhibit C.
- 10. The "playtime" is defined as the time the invention can be operated continuously before the battery must be changed or recharged. The playtime calculation consists of simple unit conversions as defined in chapter one, problem 1.5 and solution set of well known Theodore S. Rappaport's Wireless Communications Principles & Practice textbook. The relevant pages from the textbook are attached herewith as Exhibit D.

According to Exhibit D, the formula for the playtime calculation is:

{((60minutes/1hour) x BmA-h)/[(60 minutes/hour x 24 hour/day)(sum of IC currents in mA)]} x (24hour/day)

where B is the battery current capacity.

- 11. As shown in <u>Exhibit C</u>, Altstatt's portable invention will yield a playtime greater than 10 hours when operated with a small battery having a current capacity of 50mA-h (50 milliamp-hours).
- 12. If we were to hypothetically apply the same 50mA-h battery capacity to operate Schotz's invention, <u>Exhibit C</u> further shows that the frequency hopping spread spectrum ("FHSS") system will operate for approximately six minutes, and the direct sequence spread spectrum ("DSSS") system will operate for approximately eleven

Docket No.: W003-4000

minutes before requiring a new battery or a recharged battery. Please note that the FHSS and DSSS system operations are constrained to the lowest device (transmitter or receiver) operation time.

Date: 4/14/06

Respectfully Submitted,

By: C. Earl Woolfork

EXHIBIT A

US Patent Number:5,771,441 Issued to Altstatt

Number	Component Description	Reference	
1	Transmitter,BA1404	column 5, lines 34-37	
2	Receiver, TA7766AF	column 8, lines 54-	
3	Receiver, TA7792F	column 8, lines 54-58	

US Patent Number:5,946,343 Issued to Schotz

1	Digital Signal Processor,DSP56002	column 14, lines 49-50
2	A/D converter,SAA7360	column 7, lines 11-12
. 3	Stereo Filter MPEG,SAA2520	column 14, lines 47-48
4	MPEG,SAA2521	column 14, lines 47-48
5	Modulator,RF2422	column 10, lines 17-18
6	Power Amplifier,TQ9132	column 10, lines 31-32
7	Phase Locked Loop,MC12210	column 10, lines 49-50
8	Voltage Controlled Oscillator,SMV2500	column 14, lines 51-53
. 9	Low Noise Amplifier,MGA86576	column 11, lines 16-18
. 10	Digital Interface Transmitter,CS8402	column 11, lines 31-33
11	Digital to Analog Converter, TDA1305T	column 13, lines 57-59
12	Clock Recovery & Timing,TRU-050	column 12, lines 28-29
13	Demodulator,RF2703	column 12, lines 13-15
14	Microprocessor,PIC16C55	column 6, lines 63-66
15·	DSSS Transmitter, CYLINK SSTX	column 16, lines 62-64
16	DSSS Receiver, CYLINK Part#SPECTRE	column 18, lines 4-5
17	Mixer,IAM81008	column 11, lines 16-18
18	Channel Encoder/Decoder,SRT241203	column 9, lines 25-26
19	Interleaver/De-interleaver,SRT-24INT	column 9, lines 50-52
20	Optical Digital Receiver,HK-3131-01	column 7, lines 40-43
21	Optical Digital Transmitter,HK-3131-03	column 13, lines 15-17
. 22	Voltage Controlled Oscillator,M2 D300	column 8, lines 49-50

EXHIBIT B

US Patent Number:5,771,441 Issued to Altstatt

Item Number 1: Transmitter, BA1404

ROHM CO LTD

40E D = 7828999 0004568 6 = RHM

オーディオ用 IC/ICs for Audio Applications

- BA1404/BA1404F

● ブロックダイアグラム/Block Diagram

T-77-05-05

● 絶対最大定格/Absolute Maximum Ratings (Ta=25℃)

Parameter .	Symbol	Limits	Unit	
電波電圧	Vco .	2.5	V	
許容損失	Pd	· 600 *	mW	
動作速度的囲	Topr	25 ~76	c	
保存温度範囲 Tatg		-60~125 ·	r	

[◆]Ts=25で以上で使用する場合は、1でにつき8mWを減じる

● 推奨動作条件/Recommended Operating Conditions (Ta=25℃))

Parameter	Symbol	Mtn.	Тур.	Max	Unti
看透紅圧	Vco	1	1.25	2.	٧

● 電気的特性/Electrical Characteristics (Ta=25℃, Vcc=1.25V)

Parameter	Symbol	. Min.	Тур.	Max:	Unit	. Conditions
無信号時電流	· Io	0.5	3	5	mA	
入力インピーダンス	ZiN	360	540	720	. ο	fin =1kHz
入力利得	Gγ	30	37	-:	dB	V _{IN} =0.5mV
チャンネルバランス	СВ		_	2	dВ	V _{IN} =0.5mV
MPX最大出力電圧	Vom	200	_	-	mVp-p	THD≤3%
MPX 38kHz&h .	Voo	<u> </u>	1		mV	無信号時
パイロット出力電圧	Vor	460	580	_	mVp-p	無負荷時
チャンネルセパレーション	Sep	25	. 45	_	- dB	基準復規器にて
入力換算錄音電圧	VNIN	-	1		μV _{cms}	S8KHz@jEs> [HF-A
RF部最大出力電圧	Voso	350	600	_	mV _{ma}	_

MHON

1149

US Patent Number:5,771,441 Issued to Altstatt

Item Number 2: Receiver, TA 7766AF

TOSHIBA

TA7766AF

ELECTRICAL CHARACTERISTICS (Unless otherwise specified, To = 25°C. VCC= 1.5V, fm = 1kHz)

CHARAC	TERISTIC	SAIVEOF	TIST CIR- CUIT	1EST CONDITION		MIR.	FYP.	MAX	ukir
Supply Cur	1603.	Ice	-	At lamp off		=	9.6	116	reta
input Resis	tante	Riv	ide	1	:	-	36	-	kí)
Output Re	sistance	- POUR	-	17)			15	-	£23.
Max: Como Signal Inpo		Vin(LANA) (STEREO)	-	LIR = 50%, P= 10%, THD = 5% SW1RLED=50k1) SW2=01PF ON		-	250	:	uiV _{III}
-	***************************************			L - 3 = 9CmVems	I'm = ICCH	_	30	1 -	
Separation		Sep	-	P= (aniVims 5W1-DLED=5Ck1)	fm=ikite	?2	35	-	40
				W.S-IN ON	fm - IUKHZ	-	30	-	
Total	Monautal	(JASUAHOM)		\V _{th} = \text{\text{V}_{tm}} = \text{\text{\text{COmV}_{tm}}} \{SW_3 \rightarrow \text{\tin}\text{\tentin}\text{\texitet{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\texi\tert{\text{\text{\text{\text{\texi}\text{\texitin		-	0.2	13	
Harmonic Distortion	Stereo	THD (STCRCO)	وميدر			-	0,4	-	36
Voltage G	5.51	Gų	(mile)	Vin = 100mV/ms SW1→8LFD=500Ω		-4	-5	,	dü
Channel 0	alance .	CB	i prome-	V _{CD} = ICCmV _{FMs} SW1-RLFD=5CCD			Ü	2,0.	di
NO cine!	Sentitlety.	VL (QN)	7.24.763	Piot 511-4	ED = 50413	_		5	- AA
lamp Off	Sensitivity .	VL (OFF)	-	lingut SWI-I	(FD = SCOI)	7	-	1	TiV PIEN
Steren kan Hystoracis	ip ·	V _H	-	to tam-all from tu	na-on	-	3	-	mVeres
Capture R	yezd	CP.	-	(P=10mivinia		-	23	1 -	15
Corner tea	ık 19kile	CL		L+R=SCmV _{rms} P=10mV _{rms}			30	_	dis
(Nota)	. BBLite			SMI-DIED=SCKIJ.		-	50	1 -	-tur
SCA Reject	tion Ratio	SCA. 3ci	-	P = 10mV _{fms} , L + R = 52mV _{cms} SCA = 10mV _{fms} , fSCA = 67kHz SW ₁ = B ₁ FD = 50kHz		***	70	-	dB
signal to	Nose Ratio	·\$/II	-	SW1-RLED=500	,= 62011		63	_	dB

(Note) Currier feak of 32kHz is only sarries.

2001-06-25

US Patent Number:5,771,441 Issued to Altstatt

Item Number 3: Receiver, TA 7792F

TOSHIBA

MAXIMUM RATINGS (To = 25°C)

CHARACTERISTIC		SYMBOL	BATING	UNIT
Supply Vollage		Vec 1	\$ ·	V
Power Dissipation	TA7792>	Po (Hote)	750	m'A'
	TA7792F .	L'D (spie)	. 350	d union
Operating Tempera	Nuie	· 100	- 25475	°C
Storage Temperatu	itė.	Two I	- 55~150	°C

(Riote) Detated above Ta=25°C in the proportion of 6nav/°C for Ta7792P, and of 2.6m3v/°C for Ta7792F.

	CHARACTERISTIC		: V _{in} = 6088 : V _{in} = 6088 : SYMBOL	COL	TEST CONDINGS	MM.	TYP.	WAX.	Unit
č.,,	iply Current		ICC (FIA)	1	Vigae		:4.0	5.2	
39.0	theil emissis		ICCIAN)	1	Vm - C	,iii.	1.2	1.8	mA
	Input Limiting Voltag	iè.	Yin (Vent	1	- Ida limiting ·	-	10	16	dauv (M
	Total Harmonic Disto	rtion	THO (M)	1	There executives and were To see also place	-	0.23	·	Sime in straight ship
,	Signed To Noise Natio	>	SIN (FM)	1		-	62	***	dŝ
	Quiesteus Sensitivity		05	1	\$/N=30d8	-	12	-	dSalV FM
ЯM	AM Rejection Ratio		AMR	1	MOD - 3046	-	311		dB
	Croffator Voltage	V	Vest	17	TE KOMHZ:	53	90.	135	mV,ms
	Crossator Step Suppl Voltage	5	Vilsa (IM)	1	Vin < - 2000 NV EMP	_	3.85	0,95	٧
1	Recovered Output Vo	liege	(IEI) COV	1		28	43	60	mV.ms.
	Voltage Gain	-	GU	1	Vio #3068 NV EMF	14	25	Australia	Hivers
	Recovered Output Ve	pitage	Von (4M)			25	40	63	12/Alex
AM Squal to Noise Basin		THO (AM)	1		_	1.5	_	- 35	
		SIN (AM)	1	Addition the second second second second	2.00 hadisola	40	********	(1B	
	OsoSetor Stop Suppl Valtage	ý	Vice (AM)	1	V _{in} <−2Cd8 _P V €MF	4	0.85	0.95	٧
An.	put Resistance Fin'S	FM	RolfMI	1	I = 1kHz		1,4	_	
·	that acturates study.	AM	Ro IAM)	1	f = 1kHz	-	8		30

W Vin : Open Diplay

Item Number 1: Digital Signal Processor, DSP56002

Specifications

OC Electrical Characteristics

DC ELECTRICAL CHARACTERISTICS

Table 2-3 DC Electrical Characteristics

Characteristics	Symbol	Mio	Тур	Max	Units
Supply Voltage	Vcc	4.5	3.0	: 5.5	Ÿ
Input High Voltage EXTAL PESET NOOA, MODB, MODG All other inputs	Vinc Vink Vin Vin	40 2.5 3.5 2.0	1111	ું કુકુકુક	>>>>
Input Low Voltage ENTAL - MODA, MODB, MODG - All other taputs	Vac Vam Vil	\$ \$ \$ \$ \$ \$ \$ \$ \$	111	06 20 08	> > > >
Input Leakage Currers EXTAL RESET, MODA/IRQX, MODB/IRQX MODE/SMI, IDE, BR, WI, CKP, PINIT, MCEC, MCECTE, MCCLK, DZNN	tis: .	-1		•	uA
Interate (Off-state) Impus Current (@ 2.4 V/0.4 V)	1751	-10		10	μA
Output High Voltage (IoH = -0.1 m/V)	VoH	2.1	***	`	V
Ostpat Low Voltage (I _{OL} = 20 mA) FIREQ (_{OL} = 6.7 mA, TXD (_{OL} = 6.7 mA	Vol	-	-	G.	٧
Internal Supply Gurrent at 40 MHz ¹ • In Watt mode ² • In Stop mode ²	lees lees	1 1 1	.00 12 2	105 20 95	mA mA
Internal Supply Currers at 66 MHz ¹ • In Wate mode ² • In Stop mode ²	lea leav less	=	95 15 2	190 25 95	Am Am Au
inierna Supply Currerk at 80 MHz ¹ • In Wait mode ² • In Stop mode ²	lect . leev lees	=	115 18 2	100 30 95	mA mA Au
PH. Supply Current ² - 40 MHz - 60 MHz - 60 MHz - 80 MHz		1 1	1,0 1,1 1,2	1.5 1.5 1.8 .	mA mA mA
CKOUF Supply Currers [†] • 40 Milz • 66 Milz • 80 Milz		=	14 28 34	20 35 142	- mA mA - mA
Input Capacitance	C _{IN}	-	10.	-	PΕ

Colliner Considerations describes how to calculate the extendal supply current in order to obtain these results affirmed must be ferminated (i.e., not affected to flow). Values are given for FLL entitled. Values are given for GOUT coabid. Periodically sampled and not 1600 tended.

MOTOROLA

DSP56002/D, Rev. 3

2-3

Item Number 2: A/D Converter, SAA7360

Palips Semiconcurrers

Freever specification

Bitstream conversion ADC for digital audio systems

SAA7360

domnit elek fügició 🕴 eldeT

-ODF2	ODF1	MODE
٥.	¢ .	22
¢	7	format ti
, ¥	. C	365.82
1	4	126

Recei

When an RESET is held LOW indicate outputs are set to zero. The RESET is his operated as-a Goldman traper, enabling a power-on reset function by using an external. Rold draft.

LIMITINO VALUES

In accordance with the Addolline Making im Rating System (IEC 184).

SAWEOF	PARAMETER	CONTRATIONS	MIN.	MAX	UNIT
Vica.	analog supply varage	note 1	-3.5	-5.5	v.
Vi	DG treutocrace		-3.5	-3.5	A.
ic.	DO inputitions current		-	±10	ITA .
Vo.	DC auttot veltaja		-0.3	Ven-es	¥
'n	DO-curble source or slike current		-	±25	mA
ten as les	1212 DO Ven or Vac current	15	-	±0.6	A
Tares	operating a political temperature		-20	-85	10
Tez	socrage temperature		53	-150	10
¥5.	efectostatic handing	note 2	-200	-2333	V.
		note 3	-220	-225	¥

tictes

- 1. All Vac and Vac pind must be externally connected to the same power supply.
- 2. Equivalent to discover the a 400 of capacitix via a 1.5 $\pm\Omega$ setted resistor with a rise time of 65 ns.
- 1. Equivalent widestranging a 200 of capacitor via a 2.5 gH cenes inductor.

CHARACTERISTICS

Voc - 5 V; Tare - 15/10; for - 1556; for - 44.4 (First unless otherwise specified.

SYMBOL	PASAVETER	CONDITIONS	. MIN.	TYP:	MAX.	UMT
twoplles				•		
Year	analeg supply wedge		4.5	3.6	4.6	٧
ken	ana'cy supply durant			43	-	mA.
Veno :	digital supply lightage		4,5.	\$.C	6.5	V
teno	digital supply current		-	3¢	-	574
Peu	fotal power consumption		-	465	-	2017

1935 Ac: 26

Item Number 3: Stereo Filter MPEG, SAA2520

Palips Senseccounters

Prestminary specification

Stereo filter and codeo for MPEG layer 1 audio applications

SAA2520

LIMITING VALUES

in accordance with the Account Mailtrain System (IEC 134).

SYMBOL	Parameter	SHOITIGHO	Mir.	MAX.	URUT
Yca Y	supsyvotage		-3.3	5.3	v ·
¥4	Indunyarage	noze 4	-D.3	Vra + 9.5	V
ks	supply current from Vac		-	160	CA
Če.	supply current in Voc		_	160	r:A
\$	Input current		-to ·	10	CA
6	cutput curect	•	- 2 3	26	CA
P ₆₉ .	rotal power classics		-	550	CH
Ter	storage temperature cange		-53	180	ŧÇ.
Tazz	Coerating ampient temperature range	• '	· 40	65	*C
Yesk	electrosistic nanding	note 2:	-1500	1100	V'
Vec	electrostatic transfing	note 3	-50	76	W

Hotez.

- t. Input voltage should not exceed 5.5 Wattest otherwise specified
- 2. Egylvalant waterharging a 100 of capazites prough a 1.8 kg céries restator
-). Equivalent to distinately a 200 of capacitor through a 0 α ceites resistor.

DC CHARACTERISTICS

 $T_{\rm app} = -40$ to 85 %; $V_{\rm CO} = 3.8$ to 9.3 V unless otherwise specified.

SYMBOL	PARAMETER	CONSTITUTE	MIN.	TYP.	MAX.	VIUT
&cooly	• •					•
¥ra	פנהבה פסבונגע עלכפעם		2.9	3.1	e,e	V.
ko	operating current	V _{CD} = \$ V (note t):	-	62	\$10	CA
ko	operating correct	Vca = 3/8 V (cate 1)	<u> -</u> :	28	80	CA
thouts UR	DA, SBDIR, SBEF, LTCLK, I	LTCHTO, LTHCT9, X22H	1, X24IN			•
Ma	HIGH level input votage		GJVzn	_	-	V
V _{EL}	UDAY to religious voitage		-	-	C.IVen	٧
-3	Input current	V) = 0 V; Taxz = 05.90	-	-	. 155	g.A.
-1	Insia current	V) • 8,6 V; T _{erts} • 35 °C		-	to ·	gΛ
EDUE PI	rown, Ltera				•	
Yea.	Hallevelleut votage		Caven		1-	٧
Vi:	tiOW level instanyo tage		-	-	C.3Vers	4
**	insur corrent.	V ₁ • V ₂₀ ; T _{ext} • 15 °C	45		253	μА

AUCUS: 1253

25

Item Number 4: MPEG, SAA2521

Pages Septembers

Pretminary specification

Masking threshold processor for MPEG layer a audio compression applications

SAA2521

DO CHARACTERISTICS

Van - 1.5 to 5.5 V; Tare - 43 to 65 C; tapleto otherwise specified

SANGOF	PARAVETER	CONDITIONS	MIN.	FYP.	WAXL	UNUT
\$ttpply	·		-			
Ven_	steptly voltage range		3.8	3	3.5	٧
kn	cserating statemat .	Yee = 3.8-V	-	18	10 .	æ∧.
ler,	eperating current	Vac-BV	-	34	90	GA
Cardini	statio-by-quirent is	In pawer conn :	-	100-	-	٣٩
toputt				_		
¥42	LOW levelingut soliage		0	T-	0.2 Vao	A
Vot	HIGHlevelingunvorage		C-7 V33	-	Ves	A.
4	Input current		-	1-	10	gA
Outpute	• • •				•	_
Yes.	LOW level output votage	note 1	-	1-	€.4	V
You	HIGH level output voluge	apre 4	Yes-0.8	-	-	٧
3-ciaio cu	toula			•		
1~	OFF thate dament .	Vy = 6-to 5,5 V]	Ţ-	10	p.s.

tice

AUGUST 1853

^{1.} Manufamical compring lighta, licking, etonido, eteno, etolog, teste, teste, frag, frag, frag. of lightaino = 3 cm.

Item Number 5: Modulator, RF2422

RF2422

Absolute Maximum Railings

Parameter	Rating	Unit
Supply Volume	40.510+75	Vec
Inpit CO and RF Coreb	•10	4Em
Oberating Ambient Temperature	4D15+5\$	10
Eticapa Temporarus	-40 to + :50	*0

Caution ISO sens the divine

The Wild Continue of the Paragraph of the Continue to the Continue of the Cont

3	
39	١
REEK	
S.CO.Y.	١
35	
	٠

Parameter	5	pecification	n	10.14			
Parameter	Mtn.	Тур.	Max.	Unit	Condition		
Carrier Input Erequeter Range Power Level Super VSANA	- 60°	\$1 181 121	25Q3 •0	witz dila	A Dichel A Sound A Sound		
Mcculation input Frequency Range Rafementa Verlage (Ventr) Machinim Michilation (ISC) Calla Asceniate Outstatue Prose Enter Input Hasharite Input Hasharite Input Hasharite	00 20	39 62 3 3	M Verratio	MIC V UB LD LD			
RF Output Catest Nover Catest Nover Catest Nover Catest Nover Editorie Output Editorie Output Editorie Output Editorie Output Editorie Edi	-\$0 25 25 20	60 95.1 1.2.1 1.25.1 -20 95 95	+3	46 C	LOTTORIZ and Action ISO 12 Over Scale ALDIOLETI ALDIOLET		
Brolithand Nasia Flots	25	- 53 -145 -152		da danse danse danse	omine RF signal flavorans signal facilities of the control of the		
Foner Down Tors Origii Tiese PD ländi Rechtere Power Deliner Soft Fower Center Soft	53 LO	1.2	103 2,5	84 60 ∨ ∨	Thimbinis withing Thimbinis withing		
Foner Cupply Versia Cunest	4,5	\$ 45	6.0 50 75	V V MA DA	Bala likeliano Comidine Union Comidine Comidine Power Dama		

s-:0

RevA8-01081

Item Number 6: Power Amplifier, TQ9132

- Product Description

The TOS1323 empirier is an EOC2300 Milk amplifer capable of providing maderable colput power (SO milk) for a wide variety of bacamit and receive applications. The emplifier's input and output are metaled to SO CO with internal circuitry, simultifying inhalaces to SO CO systems. In addition, DO blocking capacitons are included on othip, permitting direct connections to the input and output. Its 6-pin surface around gashage and low cost are we'll suited to many wheless communications applications.

Cleetnest Specifications?

Firatiolar	#Ito	230	Kas.	Units
Gat:	13.5	15		43
Cuzutá dã Galadin pressin	15.8	ų,		c6m
hrut Reaso Loco		12		· 43
Osužitėtis II		:3		¢3
CC Backy Circui)	. 83	100	, the

New 11 Test Condition 1864 - \$4 V, Freq. - \$500 MHJ (\$-20 E.

cini menaca Me were merch. C uist

TQ9132B

DATA SHEET

3V Cellular TDMA/AMPS Power Amplifier IC

Features

- Single 314-87 supply
- Wide frequency range
- ramajuctus min 714 •
- · liqui and culpif matched to 50 Q
- SO-8 ourface mount pleatic package

Applications

- · Faut Ampifer divers
- FCV!!locker.comer amplifiers
- · Machinecour MLAVis
- · CDFD Attackers
- · Bese Sienen reselvers

Par old big is known with a contract specific prices, see car exist to execution in con-

Item Number 7: Phase Locked Loop, MC12210

MC12210

. Parametes	Sy no.	Mit	1,0	Ma.	Unit	Consten
Blyc/y Climet for Voo	100 .	*	હે કે	739	ar	Nime 1
·		-	122	લ્છે		Num2
Engly Classifier Up	41	-	0.7	1.1	Pitt	Sinte 9
		20'	ê9	1.3		Nice 4
Opnication Frontiers (M.E.S. Shoot	Fig	2500		520	A9-C	Nutra 9
Opiniona Fractionary (CECir)	Fese	<u> </u>	12 .	20	RS-L	Criscal Mode.
				40	NI-C	Ertemil Relienta thitis
fiscut Secularity (IN	1964	300 ·	, wie	1373	avic	•
Q£Q'n	Y090	Ľω	-	37/00	€V\$\$	
minhuhvicape CLE, DATA, LE, FO	Yilia	CTYCO		*	¥	
Intention Winds CLR, DATA, LE, FO	Vi.	4	•«	03 VOC	¥	Vocassy
triguite Cit Commit (CATA and CAE)	139	1	:0	- 20 .	6.8	Y00=65V
Special CVC orem (DATA and CUQ	Q1.	*:0	-90	-	Áà	V00=5.5V
Strat Dirinal (CSCs)	łose	1 1	133 -310	-	4.4	GOCH = VOC +7,2 V
Brief (CH Crimit (LE en EFC)	192	i	10	2.0	AA.	
Street LCSS Content (LE word FC)	Ğ1	m <u>.</u> 22	~ € \$)	34.	ıA.	J
Chicoe Pompi Curpot Correct	filtuin.	-2.8	-20	w1.4	Less	VDu=VD2:Vp=27V
South GISW	159,6		-20	+28		V5/2W= V5/2, Vp= 27 V
	Print.	~;5	+	+15	nA	05-V20-Vp-05
блы ненуюць (ДСД СД «Длоуп	Yen .	-4,4	- 30-	-	v.	Y00=50V
		2.4		-	v	VCC=30V
Onsation At 1970 (01'2)	YOL	-	4.	04	٧.	Voc = 50 V
		*	*	0.4	٧	V00=30V
FUCE 50 JPD DESIGNATION OF SOUTH	CH	-: O ·	→.	-	nsA.	
Other ICWCorner (LO, oR, oR, ICAT)	6 5.	1,0	. •	1 -	Au	

^{1,} VCC = 33 V, all capitals com 2, VCC = 5.5 V, all capitals com 5, V2 = 3.5 V, all capital com

Figure 8. Typical External Charge Pump Circuit

Figure 9, Typical Lock Detect Circuit

MOTOROLA REJECTIVOS DATA

na datel fray u end dirken beatilessa deprins po

Item Number 8: Voltage Controlled Oscillator, SMV2500

Item Number 9: Low Noise Amplifier, MBA86576

Absolute Maximum Ratings

Symbol	Parameter	Vaius	Absolute Maximmal ¹
V ₄	Device Vokage, RF-cutput to ground	V	9
V _g	Device Voltage, RF input to ground	V	405 - 1.0
Pp.	CW RF Input Power	dBm	+13
T _{rts}	Channel Temperature	02	150
T _{STG}	Storuge Temperature	*6	-65 to 100

 Thermal Resistancell	ł:
0,5 = 110 CW .	

MGA-86576 Electrical Specifications, $T_c = 25^{\circ}C, Z_s = 10\Omega, V_s = 5V$

Symbol	Paramoters and Test Conditi	ons	Uous	Min.	Typz	Max:
C)	PowerGalo([S ₂₂ [3)	f= 1.5GHz f= 2.5GHz f= 4.0GHz f= 4.0GHz f= 3.0GHz	dB	9	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
NFto	£0 Whotse Figure	f= 1.50Hz f= 2.50Hz f= 4.00Hz f= 2.00Hz	. dB		19 19 19 19 19	20
NF.	Optimum Notic Figure (Input tuned for lowest noise figure)	f= 1.5 CHz f= 2.5 CHz f= 4.9 CHz f= 1.0 CHz f= 8.0 CHz	qB		16 16 16 16 21	
P _{I-4}	Output Power et 1 dB Gain Compression	f= 1.6GHz f= 2.6GHz f= 4.0GHz f= 6.0GHz f= 6.0GHz	dEm		0.4 7.0 6.8 4.6 4.6	
UF)	Third Order Intercept Point	f=4.003lz	dBm		160	├─
VSWR	Inpus VSWR	f= 1.5 CHz f= 2.5 CHz f= 4.0 CHz f= 4.0 CHz f= 4.0 CHz			921 921 921 121 121	861
	Output VSWR	f=1.6GHz f=2.6GHz f=4.9GHz f=0.9GHz f=0.9GHz			22:1 22:1 12:1 12:1 12:1	
L _a .	· Device Current		mA	9	10	22

Item Number 10: Digital Interface Transmitter, CS8402

ABSOLUTE MAXIMUM RATINGS (OND - 3%, all voltages with respect to ground)

Farameter	Symbol	Asia	Max	Units
DO Poster Scroty	VD-		3.6	٧
Tabus Current Any Pin Everet Guddy Note 1	1 _{kg}		±10	204
Statul laxit Veltage	MIND	-0.3	VC	Α.
Ampiers Operating Temperature (power apotes)	.54	નક	129 .	*6
Giorage Temperatire	Terr	Æš	160	₹0

f. Transport coments of up to 100 mA will not course SCR fatchesp.

WARNING: Operation of or beyond these statis may result in permanent camage to the centre Normal operation in any guarantees at these extremes.

RECOMMENDED OPERATING CONDITIONS

Parameter	tympo)	Mia	Typ	Max	Units
OD Veliage	45+	¥3• ≠3		5,3	A
Gupsty Current Note 2	¹ co		1.5	- 8	Ars.
Ambiert Operating Temperature: GS8431/ZA/GP or -CS Note 3 GS8431/ZA/F or -CS	t).) 4)	. 35	70' 85	₹8 40
Forger Consumption Note 2	Po		7,5	26	897

- 3. Enversionen (introdes), The majority of power to bred by the load connected to the differon.
 3. The "OP" and "OS" parts are specified to operate over 3 to 73 TO but are tabled at 25 TO only.
 The "HP" and "HS" parts are tested over the 6t8 440 to 55 TO temperature range.

DIGITAL CHARACTERISTICS

(TA = 25 °C Consumixes 'CP' 6 °CS'. TA = 43 to 85 °C for 'IP' & 'IS'; VD+ = 5V ± 1053

Parameter	foding#	Min	Typ	Max	Units
Elah-Level Igout Voltage	N/IM	2,0		V33-23	٧
towcovel India Voltage	V _E	0.3		0.8	Ą.
High-Level Cutturi Voltage (IIO + 2008A)	Vox	Vppr4.0			W
Constevel Guinti Vanage (In + XimA)	Voc			0,4	٧
input Lessage Current	40		1.0	16:	p.A.
Waster Glock Erequency)	MCK		•	32	M-2 M-2
Waster Cleek Duty Cycle GSS431/2A		45		7.8 EC	8.72

Notes: 4. MCK for the GGS4C1 must be 128, 182, 283, or EB4N the input water rate passes on MC and MS in control regions 2. MCK for the GGS402A must be 1284 the input word rate, except in Transportant Mode where MCK is 2500 me. Input word rate.

Openingations are subject to change without notice.

DSSOFT

Item Number 11: Digital to Analog Converter, TDA1305T

Pattra Servicenceuren

Presentacy specification

Stereo ifs data input up-sampling filter with bitstream continuous dual DAC (SCC-DAC2)

TDA1205T

GUICK REFERENCE DATA

108WAS	Parameter .	CONDETIONS	WIRE.	TYP.	MAX.	UNIT
Ýroo	dami stroy varage.	note 4	3.4.	5.0	₹,\$	¥
Vesi	estatop subcily voltage "	note 1	2.4	6,3	4.2	V
√دين .	operational amplifier	axed	3,6	5.0	5.3	V
pes .	datal suppy current	Vacc = 6 V; atocie OCCC3H	-	33		ms
kea	statoc supply current	V _{30A} = 8 <i>V</i> ? HE330C et 2 ca	- .	5.5	3 .	mA
keo	operating amplifier supply oursets	Vaco = 5 V. at code 00003H	-	6.5	3	mA
Versions	till-scale suspet rollage (PMS value)	Vaca • Vaca • Vaca • 6 V	1,225	1.3	5,571	٧
(ThD + 11)'S	wal rement distraken	al-DicBic(gnaf leve)	-	-90	-31	13
	otter fengle-dr-stren stafe	:	-	9,003	3.339	536
		at -60 c5 signal level	-	-4	 22	45
		<u> </u>	-	2.83.	0,1	14
		at-60 c5 cacallecel;	-	-43	_	13·
		A-Ke'shled	-	0.5	-	54
Sh	signal-to-noise ratio at opogenzero	Arkeighling; at code 30003H	120	133	•	15
5 5 ;•	instrictivate accata input	f. = 48 firs; normal speed		-	3:072	Mais
ER.	routbit rate at cata input	le - 48 Maj double treed		-	6.144	Moto
in	system clock frequency		6.2	1-	18,432	1.1742
TCra ·	tifi state temperature coefficient at againg outputs (VOU and VOR)		•	\$100 × 10**		
T _{ema} .	operating ampliant amparature	• •	-30	-	•\$£ .	86

Neta

). All V_{AB} and V_{AB} are must be connected to the same supply.

1995 Dec 05

Item Number 12: Clock Recovery & Timing, TRU-050

	/ taraninatar	J) Haden	61744	P PARTY	COTT
•	Int WI Co Res	dient	0.539	63.5%	169
•	furly bushing and furl	, ALLESSA	0.303	22.83	19.5
	Kirtabe/Injusy				
is an den inverseus un	ikm t	avi	120	13.5V	132
un den gegrenele digerapar un	Quip2	(42)	A CS	£2.553	this
stof der met yn wire kins te tod seisenswith te opeletisch	Septitions 2	l)en	\$5.	53	8 .
one Santisanos de America.	spharethy-110	100	25	43	nt.
en hannyd ELECTRIC Parines	anarwise to blood of the				
distribution of PAGUIA	(Amilyanda)	¥29	2.5		
Windsperge early	Application!	Va		05	V.
SHA BUIL	Aprecian from 4	9			
Li ntapy mie čeminkie	Children (M. Pop 251)	**	63	- 5	rs.
	latice (25 Vn 03 i)		as	5	
pie 7 dillee des products (gae 7 vistos de robolet freque VII)	· Sanajadajgarā		J 40		- 1
equal decial in grow has rape.	· April	\$14.1	¢)	<i>5</i> 3	
rie in company in solving up	apri2	3,93	· G	.53	% .
profession Of the State of the	Orang Ora	- CIX	49	6)	<u> </u>
son only-tire in project	(m) (in)				
ta depo CIO recon esta a	indicates.	N.	20	1	Ŷ
uid turnicaeanaria	ipilipita.	5	,	29	. 9
First engineering	consupava stak-204	m	52		· 60
er handdaleun er dallin (EU) e	\$68575 K = 10	MAN	545	pe 22	KTV7
restejitu,	las a Squit de de \$	193			
ery a no especia findy	apriority	\$W	25		å
we unpresent to galaky a Pilipan	Acatest 17	. 63		25	y.
	and dealers in the first of the second	- deministrate			- Can saleista
•	Quit .	79.91	35 cm	25 core 1	ensiture to 1

twe I,

MAN

2017

Representation artematical magnifestation

0//12

reactions and appropriate

0.82

Item Number 13: Demodulator, RF2703

RF2703

Absolute Maximum Ratings

Parameter	Rating	Unit
Disply Williage	-0.5 to 7.0	1 You
if trout Level	500	myes
Operating Ambiest Temperature	40 to 105	2.
Slamge Serperature	-40 to +150	1 00

Contient ESD sorrides device.

D'ACTE Descriptione Paleire (Strict Strict S

Parameter		Specification	1	Unit	Condition		
Parameter	Min.	Тур.	Max.	Unit	moteories		
Overell					19251C. V _{CC} =3.04.1F=1001sHz, LC=2008Hz, F _{USD} =5001Hz		
(P Ετσαμείνου Κυτρο		0.1 to 250		NHa	For IF (inquencies below ~2.5MHz) the LO should be a square wayo. IF frequencies lower than 160MHz are also raise all the LO to a square waye and existing the pool footing capacities are tased.		
Paceband Frequency Range		00 00 00	1 . 1	tille	and the same of th		
Togut Impedance		1200 1 (4)	1	U	Each input, single-ended		
to	andionna a sentital energy	Total Control of the		COLUMN TERRORISMENT			
Frequency		en controller de la con			Twice (2x) the IF describer for IF dequations below 2.5 Mile, the LO should be a count when IF describes twee from 10000s are established of the LO is a square water and sufficiently large OC shocking experience are used.		
Leyel		0.06 to 1	1	· Van	***************************************		
input impedance		500 H TOF	1 1	Ω			
Demodulator		1	-	***************************************	Far=2856/2p, LO=200mVpp, 4,040=1000		
Configuration		4	1 1				
Output Ingedance		SO IT TOF		54 .	Each eclasic lour and Cour		
Merimon Culput	:	1,4		Voice	Saturated		
Votage Galo	1	20		:43	Vcc=3.0V		
	22.5	24	25.1	· • • • •	V===5.0V		
Notes Agene		.24		ce ce	Single Siceband, IF Front of device read-		
		.35		63	Single Didebund, Soul start research at if		
frect Third Colley belongs (Nicht)		-22		mStr.	V _{CC} =3 GV, of input of dovice reactively matched		
		VI 1	·	cem ms5	Vot-3.5V. Still even reserve diff incel		
		-19			V _{CC} =5.0V. IF input at dov.co reactively stratefor.		
. 4		-3		àÔm	Von=5 GV, SOOD STUDIES SEEKE ALF TOOM		
		49		4Em	Vcc=56V. IF input of device recraively restored. Zigno=5300.		
00 Ampliaco Balanco		Q1	0.5	dB	The same of the sa		
Ocedeature Phase Error		421	I " I	*			
DC Orthol		600	1	Thur	Vcc=3.0V lour and Courte GND		
	2.0	2.4	2,3	v	Vog=3.0V (out and Dout to CHO		
DC Crises		<to< td=""><td>50</td><td>7716</td><td>Tour ta Ocur</td></to<>	50	7716	Tour ta Ocur		

ATURE CATORS

-

Rev A3 971028

Item Number 13: Demodulator, RF2703 continued

RF2703

Modulator Configuration			Ĭ	·	IF _{g1} =25 mV _{ED} , LØ+250 mV _F D, Z _{COM} =1255Ω
Maximum Output		260		and's	Spanning
Impai Valtege		5)		rai/ro	Sing's Signature, 1cB Gam Compression.
Votogo Gein			1 .	63	Sinda Sidentaria
to Ampitto Ostanco		D.#	1	63	
Charisture Pross Eng.		€±1			
Cárin Suppratoras		25		eDz	Unactuated, Carelar Expension may be opposed further by acquaing the DC offset break backering the A and Hinguis.
Sidetiand Sugaression	تنديمد هميد	55		etto	
Power Supply				i	
/icitage		. 27196:	l .	Y	Cooming limits
Current		8		MA	Vcc=3.0V
	t t	10	. 15	mA	Vcc-50V

7

CUADRATURE

Rev A3 571028

7-25

Item Number 14: Microprocessor, PIC16C55

PIC16C5X

12.1 DC Characteristics: PIC19C54(55/56/57-RC, XT, 10, HS, LP (Commercial)

Pichsosessissist-RC, XT, 10, H3, LP (Section(c)3)			LP Standard Operating Conditions (into action of a contract of a condition of a contract of a contra				
Parera No.	Sýmbol	Charederizia Device	Wila	Typt	Max	Units	Concitions
3331	VED	Buddly Ychage Ficiecex-RC SicieceX-XT FicieceX-13 FicieceX-HS SicieceX-LP	3.0 3.0 4.5 4.5 0.5	-	5.28 5,23 5.6 5.8 5.25	20005	*
2222	Acd	RAM Osis Retention Voltage ⁽¹⁾		1.3"	-	9	Device to GLEEP wicce
3333 .	VPCR	Vero Start Veltage to ensure Fester On Reset		Vss.	-	. 7	See Section 6.1 for details on Power-on Resert
2334	Syco	VED Rice Rate to ensure Posteron Reservation	C'EE,		-	Vimo	See Section 8.4 for details on Foweron Reset
	53	Supply Durrent ⁽⁾ FICTECSENRC ⁽⁾⁾ FICTECSENRC ⁽⁾	111111	1.8 1.4 4.8 4.8 4.0 1.5	13 10 10 10 20 32	mA ma ma ma ma ua	Form = 2 M/2, Voo = 8.5V Form = 2 M/2, Voo = 8.6V Form = 10 M/2, Voo = 8.6V Form = 10 M/2, Voo = 6.6V Form = 30 M/2, Voo = 6.6V Form = 32 M/2, Voo = 8.6V MCT clastice
2023	1:0	Fower-cown Currentill	=	4.0 0.6	12	UA UA	Seldese <i>TON NOA</i> • call celdese <i>TON NOA</i> • call

- These parameters are characterized but don tested.
- g. Catalet Typ' coding its based on character zation results at 2500. Total data to fer design guidance only and its nottested.
- This is the first to which you can be invered in ELEEP mode without locking RAM data.

 The supply current is mainly a function of the operating voltage and theoremsy. Other factor such as our feading, oscillater type, but exec, internal occe electron pagetim and temperature also have an impaction the current conclination.

 a) The test conclination of all tap measurements threative Operation, mode are: OSCI = external square wave, from ratheretic at 800 and instated, ocline to Visa, TECKI = Visa, WOLR = Visa; WDT enable activation as operated.

 - 5) For standing current meetingments, the rend tient are the came, except that the certie to in SLEEP mode. The power-down current in SLEEP mode does not depend on the occitator type.
 - Coes contributes correct treating flats. The turners trough the resister can be estimated by the formula: ID = Voc(Parker (m4) with Rips) in FQ.

Preliminary O 1022 Microdio Pectathay no. Dissolvibergs 65

Item Number 15: DSSS Transmitter, CYLINK SSTX

Item Number 16: DSSS Receiver, CYLINK Part# SPECTRE

Item Number 17: Mixer, IAM81008

Item Number 18: Channel Encoder/Decoder, SRT241203

Item Number 19: Interleaver/De-interleaver, SRT-24INT

Item Number 20: Optical Digital Receiver, HK-3131-01

Item Number 21: Optical Digital Transmitter, HK-3131-03

Item Number 22: Voltage Controlled Oscillator, M2 D300

EXHIBIT C

NOTE: A=Altstatt S=Schotz FHSS=Frequency Hopping Spread Spectrum w=with Tx=transmitter

0		SupplyCurrent			
System	Part	(in mA)	(in inches)	Playtime	Note
	·			ļ	Altstatt's Tx
·- ·			18-pin	Į.	
(Tx)	BA1404	3	0.44 x 0.30		FM Stereo Transmitter
				16+	
				hours	Tx continuous operation time
· - · ·			144-pin		
(Tx w SS)	DSP56002	90	0.78 x 0.78		Schotz FHSS Tx
	>PLL	1	· N/A		PLL located inside DSP56002
	>ckout	14	N/A		ckout located inside DSP56002
		196	44-pin		1
	SAA7360		0.50×0.50	l	A/D converter
	>analog	43			function of the A/D converter
	>digital	50			function of the A/D converter
-			44-pin		
	SAA2520	82	0.55×0.55		Stereo Filter MPEG
			44-pin		
	SAA2521	25	0.55 x 0.55		MPEG
		*.	16-pin		
•	RF2422	45	0.39 x 0.24	1	Modulator
			8-pin		
	TQ9132	85	0.19 x 0.23	. 00	Power Amp
. .			16-pin		
	MC12210	10.2	0.39 x 0.24		PLL
·····	77.		12-pin	· .	
	SMV2500	. 19	0.28 x 0.28		VCO
•	HK-3131-01	no data	no data	 	Optical Digital Rcvr (*)
	M2 D300	no data	no data	 	VCO (*)
- .	SRT241203	no data	no data	<u> </u>	FEC (*)
	SRT-24INT	no data	no data	· ·	Interleaver (*)
	01(1-2411(1	·	110 data		interieaver ()
				0.1 hours	
				or 6+	
· - V		(a a h	V1	minutes	V
1.061	1 1 1 1 1 1 1 1			Illinutes	
(Ty) equation	in hours				
(Tx) equation		a/haur v 0.4 h = ·	=/d=:4\/2== 4\\\\	(24ha.:=/=!) = 40 C h a
ilm-Amucxuoj	nutes)/[(60 minute	s/nour x 24 nou	r/day)(3mA)]} x (∠4nour/day) = 10.6 NOURS
				ļ	
VT	1		•	ļ	
	uation in hours:			<u>.</u>	· · · · · · · · · · · · · · · · · · ·
			4+43+50+82+25	+45+85+10	.2+19mA)]}x(24hr/day)=6.4min
here min – m	inutes and hr =	houre			

NOTE : A=Altstatt S=Schotz FHSS=Frequency Hopping Spread Spectrum w=with Rx=Receiver

System	Part	SupplyCurrent (in mA)	Size (in inches)	Playtime	Note
Cystem	T air	("! "!")	(iii.iiiciies)	Tiayuine	Altstatt's Rx
A(Rx)	TA7792	4	16-pin 0.77 x 0.30		AM/FM Tuner System
	TA7766A	0.8	18-pin 0.44 x 0.30		FM PLL
				10+ hours	Rx continuous operation time
			144-pin		
S(Rx w SS)	DSP56002	90	0.78 x 0.78		Schotz FHSS Rx
(IXX W GG)	>PLL	1	N/A		PLL located inside DSP56002
-	>ckout	14	N/A		ckout located inside DSP56002
	OROUT	' '	4-pin		crout located maide D3F30002
	MGA86576	16	0.20 x 0.07		LNA
	HK-3131-03	no data	no data	 	Optical Digital Tx (*)
	7.11(0.101.00	no data	28-pin	 	Optical Digital 1X ()
•	CS8402	1.5	1.20 x 0.20		Digital Interface Tx
			44-pin		Digital interface 1x
	SAA2520	82	0.55 x 0.55		Stereo Filter MPEG
. /			28-pin		3.5.00 : 20
	TDA1305T	42	0.70×0.40		DAC
			16-pin	T	
•	TRU-050	63	0.80×0.30		Clock Recovery and Timing
			14-pin		
	RF2703	10	0.34 x 0.24		Demodulator
-			16-pin		
	MC12210	10.2	0.39 x 0.24		PLL
	*		12-pin		
	SMV2500	19	0.28 x 0.28		VCO
	SRT241203	no data	no data		FEC (*)
	SRT-24INT	no data	no data	-	De-interleaver (*)
	IAM81008	no data	no data		Mixer (*)
			•	0.14	
	, i			hours or	
•			•	8+	
		,		minutes	
				,	
(Rx) equation		1		9	
(60x50mA-mi	nutes)/[(60 minute	s/hour x 24 hou	r/day)(4.8mA)]} :	x (24hour/da	ay)
				ļ·	
2(Pv w 20) ==	luction in harras	<u> </u>			
	uation in hours:	o/hour v 24 ha	r/dov//over == 10	1.	
(JouxaumA-mi	iiules//[(ou minute	somouf X 24 NOU	ruay)(sum of IC	currents in	mA)]} x (24hour/day)
· .	1	I			

NOTE : A=Altstatt S=Schotz DSSS=Direct Sequence Spread Spectrum w=with Tx=transmitter

		SupplyCurrent	Size		
System	Part	(in mA)	(in inches)	Playtime	Note
		<u></u>	·		Altstatt's Tx
	× .		18-pin		
A(Tx)	BA1404	3	0.44×0.30		FM Stereo Transmitter
				16+	:
				hours	Tx continuous operation time
•			144-pin		
S(Tx w SS)	DSP56002	90	0.78 x 0.78		Schotz DSSS Tx
	>PLL	1	N/A		PLL located inside DSP56002
	>ckout	14	N/A		ckout located inside DSP56002
	• • • • • • • • • • • • • • • • • • • •		28-pin		
	PIC16C55	1.8	1.5 x 0.50		Microprocessor
			44-pin		
	SAA7360	- 00	0.50 x 0.50		A/D converter
	>analog	43			function of the A/D converter
-	>digital	50			function of the A/D converter
	0.3.0.		16-pin		
	RF2422	45	0.39 x 0.24		Modulator
	1112122		16-pin		
	MC12210	10.2	0.39 x 0.24		PLL
·	111012210	10.2	12-pin		
	SMV2500	19	0.28 x 0.28		VCO
	CYLINK SSTS	no data	no data		DSSS Transmitter (*)
	HK-3131-01	no data	no data		Optical Digital Rcvr (*)
	M2 D300	no data	no data		VCO (*)
	1012 0300	i ilo data	no data	0.18	-
				hours or	
		.,		11	
			15 11	minutes	
				minutes	
VT \ 1:					
A(Tx) equation	in nours:		-(- \() ()\() ()	0.41=/	<u> </u>
{(60x50mA-mi	nutes)/[(60 minute	es/hour x 24 hou	r/day)(3mA)]} x (24nour/day	()
·				<u> </u>	
	<u> </u>	<u> </u>		 	· .
S(Tx w SS) eq	uation in hours:	<u> </u>		<u></u>	<u> </u>
{(60x50mA-mi	nutes)/[(60 minute	es/hour x 24 hou	r/day)(sum of IC	currents in	mA)]} x (24hour/day)
•		·· · · · · · · · · · · · · · · · · · ·			
*) = Unable to	locate datashe	et for integrated	I chip (IC) refere	enced by S	chotz

NOTE : A=Altstatt S=Schotz DSSS=Direct Sequence Spread Spectrum w=with Rx=Receiver

Custom	Part	'SupplyCurrent (in mA)	Size (in inches)	Playtime	Note
System	Part T	(in ma)	(iii inches)	Tiayuine T	Altstatt's Rx
	 		16-pin	 	Alistatis IX
(Dv) .	TA7702	1	0.77×0.30]	AM/FM Tuner System
(Rx)	TA7792	4	18-pin	 	AW/FW Tuller System
	TA7766A	0.8	0.44 x 0.30		FM PLL
	I IATTOOA	. 0.0	0.44 × 0.00	10+	TWILE
•				hours	Rx continuous operation time
	-0.			1100110	
			144-pin	,	
(Rx w SS)	DSP56002	90	0.78 x 0.78		Schotz DSSS Rx
(11) 11 00)	>PLL	1	N/A	50	PLL located inside DSP56002
	>ckout	14	N/A		ckout located inside DSP5600
	0.1.0.0.1	*********	28-pin		
7	PIC16C55	1.8	1.5 x 0.50	-	Microprocessor
•	CYLINK	no data	no data		DSSS Receiver
·	<u> </u>		4-pin	1	· · ·
	MGA86576	16	0.20 x 0.07	10.00	LNA
	IAM81008	no data	no data	(9)	Mixer (*)
			28-pin		
	CS8402	1.5	1.20 x 0.20		Digital Interface Tx
	, .		28-pin		
•	TDA1305T	42	0.70 x 0.40		DAC
			16-pin	:	
	MC12210	10.2	0.39 x 0.24		PLL
			12-pin		·
	SMV2500	19	0.28 x 0.28		VCO
	HK-3131-03	no data	no data		Optical Digital Tx (*)
				0.25	
				hours or	
				15	X .
				minutes	
(Rx) equation		- 77			
(60x50mA-m	inutes)/[(60 minut	es/hour x 24 hou	ir/day)(4.8mA)]}	x (24hour/d	ay)
		· ·			·
			·	·	
S(Rx w SS) ed	uation in hours:	<u> Liamente</u>	<u> </u>	1	
{(60x50mA-m	inutes)/[(60 minut	es/hour x 24 hou	ır/day)(sum of IC	currents in	mA)]} x (24hour/day)
		et for integrated	1		

EXHIBIT D

WIRELESS (communications)

Principles (1) Practice

Theodore S. Rappaport

microcellular systems. However, satellite mobile systems offer tremendous promise for paging, data collection, and emergency communications, as well as for global roaming before IMT-2000 is deployed. In early 1990, the aerospace industry demonstrated the first successful launch of a small satellite on a rocket from a jet aircraft. This hunch technique is more than an order of magnitude less expensive than conventional ground-based launches and can be deployed quickly, suggesting that a network of LEOs could be rapidly deployed for wireless communications around the globe. Already, several companies have proposed systems and service concepts for worldwide paging, cellular telephone, and emergency navigation and notification [IEE91].

In emerging nations, where existing telephone service is almost nonexistent, fixed cellular telephone systems are being installed at a rapid rate. This is due to the fact that developing nations are finding it is quicker and more affordable to install cellular telephone systems for fixed home use, rather than install wires in neighborhoods which have not yet received telephone connections to the PSTN.

The world is now in the early stages of a major telecommunications revolution that will provide ubiquitous communication access to citizens, wherever they are [Kuc91], [Goo91], [ITU94]. This new field requires engineers who can design and develop new wireless systems, make meaningful comparisons of competing systems, and understand the engineering trade-offs that must be made in any system. Such understanding can only be achieved by mastering the fundamental technical concepts of wireless personal communications. These concepts are the subject of the remaining chapters of this text.

1.6 Problems

1.1. Why do puging systems need to provide low data rates? How does a low data rate lead to better coverage?

1.2 Qualitatively describe how the power supply requirements differ between mobile and portable cellular phones, as well as the difference between pocket pagers and cordless phones. How does coverage range impact battery life in a mobile radio system?

1.3 In simulcasting paging systems, there usually is one dominant signal arriving at the paging receiver. In most, but not all cases, the dominant signal arrives from the transmitter closest to the paging receiver. Explain how the FM capture effect could help reception of the paging receiver. Could the FM capture effect help cellular radio systems? Explain how.

4 Where would walkie talkies fit in Tables 1.5 and 1.6? Carefully describe the similarities and differences between walkin talkies and cordless telephones. Why would consumers expect a much higher grade of service for a cordless' telephone system?

1.5 Assume a 1 Amp-hour battery is used on a cellular telephone (often called a cellular subscriber unit). Also assume that the phone's radio receiver draws 35 mA on receive and 250 mA during a call. How long would the phone work (i.e. what is the battery life) if the user has one 3-minute call every day? every 6

23

hours? every hour? What is the maximum talk time available on the cellular

phone in this example?

i.6 Assume a CT2 subscriber unit has the same size bottery as the phone in Problem 1.5, but the paging receiver draws 5 mA and the transmitter draws 80 mA during a call. Recompute the battery life for the cases in Problem 1.5, Recompute the maximum talk time for the CT2 handset.

1.7 Why would one expect the CT2 handset in Problem 1.6 to have a smaller bat-

tery drain during transmission than a cellular telephone?

1.8 Why is FM, rather than AM, used in most mobile radio systems today? Inst as many reasons as you can think of, and justify your responses. Consider issues

such as fidelity, power consumption, and noise.

List the factors that led to the development of (a) the GSM system for Europe, and (b) the U.S. digital cellular system. How important was it for both efforts to (i) maintain compatibility with existing cellular phones? (ii) obtain spectral efficiency? (iii) obtain new radio spectrum?

1.10 Assume that a GSM, an 15-95, and a U.S. digital cellular base station transmit the same power over the same distance. Which system will provide the best SNR at a mobile receiver? How much is the improvement over the other two systems? Assume a perfect receiver with only thermal noise is used for each of the three systems.

1.11 Discuss the similarities and difference between a conventional cellular radio system and a space-based cellular radio system. What are the advantages and disadvantages of each system? Which system could support a larger number of users for a given frequency allocation? How would this impact the cost of service for each subscriber?

1.12 Assume that wireless communication services can be classified as belonging to

one of the following four groups:

High power, wide area systems (callular)
Low power, local area systems (cordless telephone and PCS)
Low speed, wide area systems (mobile data)
High speed, local area systems (wireless LANs)

Chasify each of the wireless systems described in Chapter 1 using these four groups. Justify your answers. Note that some systems may fit into more than

one group.

1.13 Discuss the importance of regional and international standards organizations such as ITU-R, ETSI, and WARC. What competitive advantages are there in using different wireless standards in different parts of the world? What disactioning arranges are exactly an advantages are exactly different parts of the world?

1.14 Based on the proliferation of wireless standards throughout the world, discuss how likely it is for IMI-2000 to be adopted. Provide a detailed explanation, along with probable exchanges of services, spectrum allocations, and east.

Solutions Manual to Accompany

Wireless Communications Principles and Practices

FIRST EDITION

Zhigang Rong

Theodore.S. Rappaport

Prentice Hall PTR Upper Saddlo Fliver, New Jersey 07458 Cost'd

infinistructure, complexity, hardware cost are all low.

A cordless talephone, on the

the hand, is a full duplex system. It allows simplearens two-way communication. Transmission and reception is on two different chancels (FDD) although new codess system are using TDD. The courage range; required infinitivative; hardone cost of a conflict phase system are an and the coupleafy is medicate. Here operations are mater for a conflict shappene.

1.5 lf the user has one 3-minute call every him the bottomy life = \frac{60.4000 \(\int_{1.00}\) \(\int_{1.000}\) \(\int_{1.000}\) \(\int_{1.0000}\) \(\int_{1.000000000000000

If the user has one 3-private call every 6 hours
the hottory life = $\frac{60 \times 1000}{(1004-3)\times 15+3\times 150} \times 6 = 27.18$ hours
If the user has one 3-minus call every hour.

he lattery life = $\frac{60 \times 1000}{(60-3)\times 5+3\times 150} = 21.86$ hows

the maximum talk time = $\frac{60 \times 1000}{250} = 240$ minkles = $\frac{4}{2}$ hours

he monimum talk time = \frac{60 \times = \frac{90 \times = \frac{4 \tince + \times = \frac{4 \tince = \frac{4 \times = \frac{4 \times = \frac{

1.6 Cont'd

For 3 minate-all/keur.

bettory life = \frac{600}{(60-3)05.03.050} = 114.29 hours

The maximum talk line = 60 x 1000 = 750 minutes = 125 hours

1.7] Since the Cavarge range of the CT-2 System 25 lower than that of the Callular radio System. In obtain the same Signal-to-acise ratio in the coverage area, a CT-2 houseld requires less transmitted power than a cellular telephone. and thus a Smaller battery drain.

18 FM has several adventages over MM. The most important indientage in FM's superior noise suppression characteristics. Was Correctional AM, the modulating signal is impressed onto the carrier in the form of amplitude variations. However, noise introduced into the system also produces charges in the amplitude of the envolupe. Therefore, the naise cannot be removed from the composite managem militare also removing a partien of the imformation signal. With FM. the imformation is impressed onto the carrier in the form of frequency variations. Therefore, with FM receivers.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.