objective : design a classifier using KNN to predict whether a patient suffers from diabetes or not

Roll no: 1562

In [1]: #Step 1: Import libraries and load the dataset
import pandas as pd

import numpy as np

In [4]: docs=pd.read_csv("C:/1562_AIML/diabetes.csv")
 docs.head()

Out[4]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288

In [10]: #Step 2: perform exploratory data analyis docs.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

200	COTUMNIS (COCUT) COTUMNIS)	•	
#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7) memory usage: 54.1 KB

In [11]: # analyze the data
docs.describe()

Out[11]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	Diabetes
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	_
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

```
In [13]: # plot histogram
           docs.hist(figsize=(20,20))
Out[13]: array([[<AxesSubplot:title={'center':'Pregnancies'}>,
                    <AxesSubplot:title={'center':'Glucose'}>,
                    <AxesSubplot:title={'center':'BloodPressure'}>],
                   [<AxesSubplot:title={'center':'SkinThickness'}>,
                    <AxesSubplot:title={'center':'Insulin'}>,
                    <AxesSubplot:title={'center':'BMI'}>],
                   [<AxesSubplot:title={'center':'DiabetesPedigreeFunction'}>,
                    <AxesSubplot:title={'center':'Age'}>,
                    <AxesSubplot:title={'center':'Outcome'}>]], dtype=object)
                                           175
            200
                                                                           200
                                           150
                                           125
                                                                           150
                                           100
           100
                                                                           100
                                            50
                        7.5
                           10.0
                              12.5
                      SkinThickness
                                                        Insulin
                                           500
            200
                                           400
                                                                           200
           150
                                                                           150
           100
                                           200
                                           100
                   DiabetesPedigreeFunction
                                                                                       Outcome
            300
                                           250
                                                                           400
                                           200
            200
                                           150
           150
                                                                           200
                                           100
                                                                           100
In [14]:
           #show distribution of class labels
           print(docs.Outcome.value_counts())
                 500
           0
           1
                 268
           Name: Outcome, dtype: int64
```

```
In [17]: docs.Outcome.value_counts().plot(kind='bar')
Out[17]: <AxesSubplot:>

500
400
200
100
100
The [19]: # identify the correlation
```

In [19]: # identify the correlation
import seaborn as sns

In [21]: sns.pairplot(docs,hue='Outcome')

Out[21]: <seaborn.axisgrid.PairGrid at 0x2082cdfedf0>

In [23]: # use heat map
import matplotlib.pyplot as plt

In [25]: plt.figure(figsize=(12,10)) sns.heatmap(docs.corr(),annot=True)

Out[25]: <AxesSubplot:>


```
In [26]: #implement z-score normalization
    # sepearte x and y
y = docs.Outcome
x= docs.drop('Outcome',axis=1)
x.head()
```

Out[26]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288

In []:

```
from sklearn.preprocessing import StandardScaler
In [31]:
In [36]:
          sc=StandardScaler()
          x_transform=pd.DataFrame(sc.fit_transform(x),columns=x.columns)
In [34]:
          x.head()
Out[34]:
              Pregnancies
                           Glucose
                                    BloodPressure SkinThickness Insulin BMI DiabetesPedigreeFunction
           0
                        6
                                               72
                                                                         33.6
                                                                                                 0.627
                               148
                                                              35
                                                                       0
            1
                        1
                                85
                                               66
                                                              29
                                                                         26.6
                                                                                                 0.351
            2
                        8
                               183
                                               64
                                                               0
                                                                       0 23.3
                                                                                                 0.672
            3
                        1
                                89
                                               66
                                                              23
                                                                      94
                                                                         28.1
                                                                                                 0.167
                        0
                               137
                                               40
                                                              35
                                                                     168 43.1
                                                                                                 2.288
In [37]:
          x_transform.describe()
Out[37]:
                    Pregnancies
                                      Glucose
                                               BloodPressure SkinThickness
                                                                                  Insulin
                                                                                                   BMI
            count
                   7.680000e+02
                                 7.680000e+02
                                                7.680000e+02
                                                               7.680000e+02 7.680000e+02
                                                                                           7.680000e+02
                   2.544261e-17
                                  3.614007e-18
                                                -1.327244e-17
                                                               7.994184e-17 -3.556183e-17
                                                                                           2.295979e-16
            mean
                   1.000652e+00
                                 1.000652e+00
                                                1.000652e+00
                                                               1.000652e+00
                                                                            1.000652e+00
                                                                                           1.000652e+00
              std
                  -1.141852e+00
                                -3.783654e+00
                                               -3.572597e+00
                                                              -1.288212e+00 -6.928906e-01
                                                                                          -4.060474e+00
             min
             25%
                   -8.448851e-01
                                 -6.852363e-01
                                                -3.673367e-01
                                                              -1.288212e+00 -6.928906e-01
                                                                                           -5.955785e-01
             50%
                   -2.509521e-01
                                 -1.218877e-01
                                                 1.496408e-01
                                                               1.545332e-01 -4.280622e-01
                                                                                           9.419788e-04
             75%
                   6.399473e-01
                                  6.057709e-01
                                                 5.632228e-01
                                                               7.190857e-01
                                                                            4.120079e-01
                                                                                           5.847705e-01
                   3.906578e+00
                                 2.444478e+00
                                                2.734528e+00
                                                               4.921866e+00 6.652839e+00
                                                                                           4.455807e+00
             max
In [39]: # split the dataset into training and test dataset
          from sklearn.model_selection import train_test_split
          x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=.8,random_state=
          x_train.shape
Out[39]: (614, 8)
```

7 of 7