Take me home

Land the spacecraft at target pad

Sunil Kumar J S

Human vs Computer

Magnus Carlsen

2864

AlphaZero

4680

Problem Statement

Spacecraft starts at top center with random initial force applied. It needs to be landed between the flags (home) using three engines.

Data: open ai gym

Solution

Deep Q learning Algorithm

Algorithm 1 Deep Q-learning with Experience Replay

```
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
for episode = 1.M do
     Initialise sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
     for t = 1, T do
         With probability \epsilon select a random action a_t
         otherwise select a_t = \max_a Q^*(\phi(s_t), a; \theta)
         Execute action a_t in emulator and observe reward r_t and image x_{t+1}
         Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
         Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
         Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
         Set y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \end{cases}
         Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 according to equation 3
    end for
end for
```

Training Progression

Naive Agent

Fully Trained Agent

Comparison of Training Progression:

