

North America 2024

Navigating the cgroup Transition: Bridging the Gap Between Kubernetes and User Expectations

Sohan Kunkerkar, Red Hat Inc.

About the Speaker

Sohan Kunkerkar

Senior Software Engineer - Red Hat

- CRI-O maintainer
- Member of SIG-Node
- Love playing the flute
- Enjoy trekking and outdoor activities

Agenda

cgroup and Migration

- Introduction to cgroup
- Transition Path from v1 to v2
- cgroup in Kubernetes
 - Demo
 - Benefits of cgroup v2
- Best Practices for Migration

Impact and Future

- Real-World Experiences
 - Industry Adoption
 - Language/Workload Compatibility
- Impact on Kubernetes Ecosystem
 - Stakeholders Involved
 - Challenges
- Future Outlook
- Conclusion and Q&A

Introduction to cgroup

- A Linux kernel feature for managing system resources.
- Controls CPU, memory, disk I/O, and network bandwidth for processes.

- Impose limits on resource usage.
- Monitor the performance of grouped resources and control their scheduling and prioritization.

- Prevents any single process from monopolizing resources.
- Critical for process isolation, security and performance optimization, especially in multi-tenant environments such as cloud computing and container-based deployments.

cgroup Versions

Transition Path from cgroup v1 to v2

cgroup in Kubernetes

cgroup in Kubernetes

Resource Allocation

Isolation

Monitoring

```
apiVersion: v1
kind: Pod
metadata:
  labels:
    run: webserver
  name: webserver
spec:
  containers:
  - image: nginx
    name: webserver
    resources:
      requests:
        memory: "64Mi"
        cpu: "250m"
      limits:
        memory: "128Mi"
        cpu: "500m"
```

Demo

r,\"propagation\":0',\"selinas_relabel\":true).f\"centainer_gath\":\"/dev/tereination-log\",\"bast_path\":\"/ver/ lib/kubelst/pods/SaTSZoSS-Sdff-4eSb-secS-eSfaSScfcedS/containers/sebasnyer/fSSZoIdS(*,*reados(y),*:false,*recur atve_read_enty\":false_\"prepagation\":8_\"setimux_retabet\":true};4\"container_path\":\"/\ar/tag/nginx\";\"host pathl":\"/var/lifb/kabelet/pads/3a732x83-6dff-4e6b-aec6-e6fa66cfced6/values/Auberartes...fo-eapty-dfr/var-lagl", "readonly\": false_U"recurates_nead_only\": false_U"presseption\":8.\"selinso_relabel\":truel.(\"container_path\" \"/war/rim/secrets/kabernetss,in/servicescopent\",\"host.path\":\"/ver/lib/kabelet/pods/3a732n83-0dff-4e8b-aecD offablicfceds/volumes/kaburretes.fe-projected/kabe-api-access-offaft",\"readesly\"strue,\"recarsive,read.oely\"sf alse, \"prepapation\":#, \"selimux, relabel\":tree\";"fo, kabernetes, crine, Annetations":"{\"lo, kabernetes, containen .hash\":\"SetZabiZ\",\"fio,kabernetes.contsiner.restantCount\":\"#\",\"fo,kabernetes.contsiner.termination#essage Path\":\"/dev\"termination-lag\",\"io.kabernetes.containor.termination#essagePolics\":\"File\",\"fo.kabernetes.po d.terminationGracePeriod(":\"39","),"limx":{"rencercen":("devices":[["alles":felse,"sccess":"renc')),"mesory":{ "limit":134217728,"seep":134217728),"ope":{"shares":255,"gesta":50000,"period":100000),"gRds":["limit":-13,"Yege ogetfelts":[4"page5tge":"2##","5telt":#6.("page5tge":"16#","1telt":#67,"cetffeef":[7memory.seag.mac":"6","memors con.igroup":"1"35,"cgroupsPath":"kabepods-burstable-pod9e732c63,8dff_4e8b.sec6.e6fa86cfced6.s15ce1cr5o:364483d7c c1845ac5b8#9d914897683#92d4#babe8a2f9d584a76b97f65ea4b0","namespaces":[["type":"b/d"],{"type":"netsark","path":" /ver/ron/metro/196a6331-2c6s-4cc5-base-5ebs068692bf%, ("trase":"tac", "path":"/var/man/tpcms/f66ad321-2c6s-4cc9-ba er-Sebaddilligital"),("type":"sty","path":"/war/ranjutana/filliaddil-2c0a-4cc9-base-Sebaddilligib f"),("type":"mount"), "type":"cgroup")),"waakedPatha":["/aroc/asound","/proc/acp?","/proc/kcare","/aroc/keya","/oroc/latancy_statu"," proc/timer_list","/prec/timer_stats","/proc/sched_debug","/proc/acai","/sys/firmeare","/sys/devices/virtusl/powe rcap"],"readon(aflatha?:["/proc/bes";"/proc/fs","/proc/frg","/proc/sys","/proc/sys-g-trigger"];"mountlabe("t"syst m_stobject_r:contoiner_file_t:s8cc339.c5527))_"privileged":folse,"checkpointedAf":"8883-81-83788:68:682","reste rest": Foliach, 1, 1 ACTINESSA PROPERTY SUBARILY plankerk tytust. 🐉 uttiller wie Wielen 🐿 48558765555 1 655578455 per 📣

Benefits of cgroup v2 in Kubernetes

- Memory QoS: Enables fine-grained memory allocation to ensure critical workloads maintain performance.
- Swap Support: Allows effective use of swap space to handle memory overcommitment without crashes.
- CPU Load Protection: Protects critical processes from CPU overcommitment during high-load scenarios.
- Pressure Stall Information (PSI): Provides real-time metrics on resource pressure for informed scheduling decisions.
- eBPF-based Resource Management: Facilitates dynamic and efficient resource monitoring and control.
- **Nested Containers**: Supports better isolation and management in complex applications requiring multiple container layers.
- Pod-Level Resource: Enables setting CPU and memory requests/limits at the pod level,
 which applies to the aggregate of all containers within the pod.

cgroup v2 Migration: Best Practices

cgroup v2 Migration: Best Practices

Infrastructure Adoption

Default Support
Optional Support

Operating Systems

- RHEL 10
- RHEL 9, Ubuntu 22.04 LTS
- SLES 15 SP3+, Amazon Linux 2023
- RHEL 8, Ubuntu 20.04 LTS
- Fedora 31+
- Fedora CoreOS

Kubernetes Distributions

- OpenShift 4.14+
- EKS 1.25+ (with AL2023 nodes)
- GKE 1.26+ (with COS/Ubuntu nodes)
- OpenShift (Pre-4.14)

Other Requirements

- Linux Kernel 5.8+
 (Minimum)
- systemd 237+
- containerd 1.4+
- CRI-O 1.20+
- Docker 20.10+

Adoption in Kubernetes Ecosystem

Language Compatibility

Language	Version Requirements	Configuration Needs	Specific Considerations
Java	• JDK 8u392+ • JDK 11.0.16+ • JDK 17.0.4+ • JDK 19+	Configuration Required	 -XX:+UseContainerSupport -XX:+UseZGC or -XX:+UseG1GC recommended Memory limits need verification
Node.js	• 14.x: Limited support • 16.x+: Full support	Native Support	Automatic memory limit detection V8 heap configuration recommended
Python	• 3.9+: Full support • 3.7-3.8: Limited	Native Support	cgroups module available Memory tracking automatic
Go	• 1.16+: Full support • 1.19+: Enhanced features	Native Support	GOMEMLIMIT awarenessAutomatic resource detectionGOGC configuration optional
.NET	• .NET Core 3.1+ • .NET 5.0+: Enhanced	Version Dependent	GC configuration recommended Server GC considerations

Optimizing Workload Performance

Workload Type	Configuration	Key Considerations
Memory-Intensive	Better memory usage control with <i>memory.high</i> , PSI metrics	Monitor with PSI to detect memory pressure early; optimize memory.high and memory.swap.max.
CPU-Bound	Unified CPU control (cpu.max), better throttling management	Enhanced QoS adherence; adjust cpu.max and cpu.weight to prevent performance dips.
I/O Heavy	Improved I/O prioritization with io.max, io.weight	Use io.max to control I/O bandwidth; monitor for latency-sensitive apps.
ML/Al Workloads	Better hierarchical control over device access and prioritization	Ensure kernel, device compatibility; leverage NUMA-aware scheduling.

Impact on Kubernetes Ecosystem

Challenges

- User-Specific Challenges:
 - Complex Dependencies: Large applications depend on v1-specific behavior, making migration difficult.
 - User Adoption Barriers: Users remain on v1 due to familiarity; they prefer hybrid setups.
 - Behavior Changes on Upgrade:
 - Upgrading clusters to versions where cgroup v2 is default can alter behavior, especially in handling OOM kills compared to cgroup v1.
 - https://github.com/kubernetes/kubernetes/pull/126096
 - Compatibility and Performance Challenges: Applications not optimized for cgroup v2 may face unexpected behavior and performance issues.
- Kubernetes Maintenance Challenges:
 - CI Coverage Requirements: Maintaining equal coverage for cgroup v1 and v2 in Kubernetes CI jobs requires significant resources and investment.
 - Legacy Maintenance: Older Kubernetes versions (< v1.25) are still tied to cgroup v1, requiring constant patching for bugs and CVEs.

Future Outlook

- cgroup v1 Maintenance Mode in Kubernetes 1.31.
 - No new features
 - Security fixes will provided but no assurance on the bugs
- Plan to deprecate cgroup v1 sooner.
 - https://github.com/opencontainers/runtime-spec/is sues/1251
 - https://github.com/systemd/systemd/issues/30852
- Identify stack changes to accelerate the shift.
- Publicize feedback from users transitioning to v2.

Conclusion

- Confident in continued tooling enhancements for cgroup v2.
- Collaboration across Kubernetes projects will continue to refine the integration.
- Expect refinements to boost workload compatibility and observability.

Source image: https://i.kym-cdn.com/entries/icons/original/000/036/770/cover1.jpg

Thank you!

References

- https://thenewstack.io/linux-cgroups-v2-brings-rootless-containers-superior-memory-management/
- https://docs.kernel.org/admin-guide/cgroup-v2.html
- https://blog.kintone.io/entry/2022/03/08/170206
- https://zouyee.medium.com/a-tragedy-caused-by-a-single-kubernetes-command-7b6126b06513
- https://kubernetes.io/blog/2024/08/14/kubernetes-1-31-moving-cgroup-v1-support-maintenance-mode/
- https://www.redhat.com/en/blog/world-domination-cgroups-rhel-8-welcome-cgroups-v2
- https://www.perfectscale.io/blog/cgroups-and-memoryqos-w-bottlerocket
- https://cloud.google.com/kubernetes-engine/docs/how-to/migrate-cgroupv2
- https://kubernetes.io/blog/2024/08/14/kubernetes-1-31-moving-cgroup-v1-support-maintenance-mode/
- https://www.youtube.com/watch?v=dWIeIczbZHc
- https://kubernetes.io/docs/concepts/architecture/cgroups/
- https://martinheinz.dev/blog/91

