Running head: TOST VS. SGPV

1

Equivalence Testing and the Second Generation P-Value

Daniël Lakens¹ & Marie Delacre²

- ¹ Eindhoven University of Technology, Eindhoven, The Netherlands
- ² Service of Analysis of the Data, Université Libre de Bruxelles, Belgium

Author Note

5

- All code associated with this article, including the reproducible manuscript, is available
- 7 from https://github.com/Lakens/TOST_vs_SGPV.
- 8 Correspondence concerning this article should be addressed to Daniël Lakens, Den
- Dolech 1, IPO 1.33, 5600 MB, Eindhoven, The Netherlands. E-mail: D.Lakens@tue.nl

Abstract

statistical inference

To move beyond the limitations of null-hypothesis tests, statistical approaches have been 11 developed where the observed data is compared against a range of values that are equivalent 12 to the absence of a meaningful effect. Specifying a range of values around zero allows 13 researchers to statistically reject the presence of effects large enough to matter, and prevents practically insignificant effects from being interepreted as a statistically significant difference. 15 We compare the behavior of the recently proposed second generation p-value (Blume, 16 McGowan, Dupont, & Greevy, 2018) with the more established Two One-Sided Tests 17 (TOST) equivalence testing procedure (Schuirmann, 1987). We show that the two 18 approaches yield almost identical results under optimal conditions. Under suboptimal 19 conditions (e.g., when the confidence interval is wider than the equivalence range, or when 20 confidence intervals are asymmetric) the second generation p-value becomes difficult to 21 interpret as a descriptive statistic. The second generation p-value is interpretable in a dichotomous manner (i.e., when the SGPV equals 0 or 1 because the confidence intervals lies 23 completely within or outside of the equivalence range), but this dichotomous interpretation does not require calculations. We conclude that equivalence tests yield more consistent 25 p-values, distinguish between datsets that yield the same second generation p-value, and 26 allow for easier control of Type I and Type II error rates. 27 Keywords: equivalence testing, second generation p-values, hypothesis testing, TOST, 28

Equivalence Testing and the Second Generation P-Value

To test predictions researchers predominantly rely on null-hypothesis tests. This

30

31

statistical approach can be used to examine whether observed data is sufficiently surprising 32 under the null hypothesis to reject an effect that equals exactly zero. Null-hypothesis tests 33 have an important limitation, in that this procedure can only reject the hypothesis that there is no effect, while scientists should also be able to provide statistical support for 35 equivalence. When testing for equivalence researchers aim to examine whether an observed effect is too small to be considered meaningful, and therefore is practically equivalent to zero. By specifying a range around the null hypothesis of values that are deemed practically equivalent to the absence of an effect (i.e., 0 ± 0.3) the observed data can be compared against an equivalence range and researchers can test if a meaningful effect is absent (Hauck & Anderson, 1984; Kruschke, 2018; Rogers, Howard, & Vessey, 1993; Serlin & Lapsley, 1985; Spiegelhalter, Freedman, & Parmar, 1994; Wellek, 2010; Westlake, 1972). Second generation p-values (SGPV) were recently proposed to as a descriptive statistic 43 that represents "the proportion of data-supported hypotheses that are also null hypotheses" (Blume et al., 2018). The researcher specifies an equivalence range around a null hypothesis of values that are considered practically equivalent to the null hypothesis. The SGPV measures the degree to which a set of data-supported parameter values falls within the interval null hypothesis. If the estimation interval falls completely within the equivalence range, the SGPV is 1. If the confidence interval falls completely outside of the equivalence range, the SGPV is 0. Otherwise the SGPV is a value between 0 and 1 that expresses the overlap of data-supported hypotheses and the equivalence range. When calculating the SGPV the set of data-supported parameter values can be represented by a confidence interval (CI), although other one could also choose to use credible intervals or Likelihood support intervals (SI). When a confidence interval is used, the SGPV and equivalence tests such as the Two One-Sided Tests (TOST) procedure (Lakens, 2017; Meyners, 2012; Schuirmann, 1987) appear to have close ties, because both tests conpare a confidence interval

against an equivalence range. Here, we aim to examine the similarities and differences
 between the TOST procedure and the SGPV.

The TOST procedure also relies on the confidence interval around the effect. In the 59 TOST procedure the data is tested against the lower equivalence bound in the first one-sided test, and against the upper equivalence bound in the second one-sided test (Lakens, Scheel, 61 & Isager, 2018). If both tests statistically reject an effect as extreme or more extreme than 62 the equivalence bound, you can conclude the observed effect is practically equivalent to zero 63 from a Neyman-Pearson approach to statistical inferences. Because one-sided tests are performed, one can also conclude equivalence by checking whether the 1-2*alpha confidence interval (e.g., when the alpha level is 0.05, a 90% CI) falls completely within the equivalence bounds. Because both equivalence tests as the SGPV are based on whether and how much a confidence interval overlaps with equivalence bounds, it seems worthwhile to compare the behavior of the newly proposed SGPV to equivalence tests to examine the unique contribution of the SGPV to the statistical toolbox.

The relationship between *p*-values from TOST and SGPV when confidence intervals are symmetrical

The second generation p-value (SGPV) is calculated as:

73

$$p_{\delta} = \frac{|I \cap H_0|}{|I|} \times \max\left\{\frac{|I|}{2|H_0|}, 1\right\}$$

where I is the interval based on the data (e.g., a 95% confidence interval) and H₀ is the equivalence range. The first term of this formula implies that the second generation *p*-value is the width of the confidence interval that overlaps with the equivalence range, divided by the total width of the confidence interval. The second term is a "small sample correction" (which will be discussed later) that comes into play whenever the confidence interval is more than twice as wide as the equivalence range.

To examine the relation between the TOST p-value and the SGPV we can calculate both statistics across a range of observed effect sizes. In Figure 1 p-values are plotted for the

TOST procedure and the SGPV. The statistics are calculated for hypothetical one-sample t-tests for observed means ranging from 140 to 150 (on the x-axis). The equivalence range is set to 145 ± 2 (i.e., an equivalence range from 143 to 147), the observed standard deviation is assumed to be 2, and the sample size is 30. For example, for the left-most point in Figure 1 the SGPV and the TOST p-value is calculated for a hypothetical study with a sample size of 30, an observed standard deviation of 2, and an observed mean of 140, where the p-value for the equivalence test is 1, and the SGPV is 0. Our conclusions about the relationship between TOST p-values and SGPV in this article are not dependent upon any specific example, as readers can explore for themselves in an online Shiny app:

The SGPV treats the equivalence range as the null-hypothesis, while the TOST procedure treats the values outside of the equivalence range as the null-hypothesis. For ease of comparison we can reverse the SGPV (by calculating 1-SGPV in Figure 2) to make the values more easily comparable. We see that the *p*-value from the TOST procedure and the SGPV follow each other closely.

When the observed sample mean is 145, the sample size is 30, and the standard deviation is 2, and we are testing against equivalence bounds of 143 and 147 using the TOST procedure for a one-sample t-test, the equivalence test is significant, t(29) = 5.48, p < .001.

Because the 95% CI falls completely within the equivalence bounds, the SGPV is 1 (see Figure 1).

On the other hand, if the observed mean is 140, the equivalence test is not significant (the observed mean is far outside the equivalence range of 143 to 147), t(29) = -8.22, p = 1 (or more accurately, p > .999 as p-values are bounded between 0 and 1). Because the 95% CI falls completely outside the equivalence bounds, the SGPV is 0 (see Figure 1).

Figure 1. Comparison of p-values from TOST (black line) and SGPV (dotted grey line) across a range of observed sample means (x-axis) tested against a mean of 145 in a one-sample t-test with a sample size of 30 and a standard deviation of 2.

of SGPV as a uniform measure of overlap

It is clear the SGPV and the p-value from TOST are closely related. When confidence intervals are symmetric we can think of the SGPV as a straight line that is directly related to the p-value from an equivalence test for three values. When the TOST p-value is 0.5, the SGPV is also 0.5 (note that the reverse is not true). The SGPV is 50% when the observed mean falls exactly on the lower or upper equivalence bound, because 50% of the symmetrical confidence interval overlaps with the equivalence range. When the observed mean equals the equivalence bound, the difference between the mean in the data and the equivalence bound is 0, the t-value for the equivalence test is also 0, and thus the p-value is 0.5 (situation A,

Figure 2. Comparison of p-values from TOST (black line) and 1-SGPV (dotted grey line) across a range of observed sample means (x-axis) tested against a mean of 145 in a one-sample t-test with a sample size of 30 and a standard deviation of 2.

115 Figure 3).

123

Two other points always have to overlap. When the 95% CI falls completely inside the equivalence region, and one endpoint of the confidence interval is exactly equal to one of the equivalence bounds (see situation B in Figure 3) the TOST p-value (which relies on a one-sided test) is always 0.025. The third point where the SGPV and the p-value from the TOST procedure should overlap is where the 95% CI falls completely outside of the equivalence range, but one endpoint of the confidence interval is equal to the equivalence bound (see situation C in Figure 3), when the p-value will always be 0.975.

As the observed mean in a one-sample t-test lies closer to the test value (in the plot

Figure 3. Means, normal distribution, and 95% CI for three example datasets that illustrate the relationship between p-values from TOST and SGPV.

below, from situation A to D, the mean gets closer to the test value by 0.1) the difference in the overlap changes uniformly.

For example, the SGPV from A to D is 0.76, 0.81, 0.86, and 0.91. The difference in the percentage of overlap between A and B (-0.05) is identical to the difference in the percentage of overlap between C and D as the mean gets 0.1 closer to the test value (-0.05).

As we move the observed mean closer to the test value in steps of 0.1 across A to D the p-value calculated for normally distributed data is not uniformly distributed. The probability of observing data more extreme than the upper bound of 2 is (from A to D) 0.16, 0.12, 0.08, and 0.06. As we can see, the difference between A and B (0.04) is not the same as the difference between C And D (0.03). Indeed, the difference in p-values is the largest as

Figure 4. Means, normal distribution, and 95% CI for samples where the observed population mean is 1.5, 1.4, 1.3, and 1.2.

you start at p = 0.5 (when the observed mean falls on the test value), which is why the line in Figure 1 is the steepest at p = 0.5. Note that where the SGPV reaches 1 or 0, p-values 135 closely approximate 0 and 1, but never reach these values. ##When are the SGPV and 136 Equivalence Test Unrelated? There are 4 situations where p-values from TOST and SGPV 137 are unrelated. The first two situations were discussed before and can be seen in Figure 1. When the SGPV is either 0 or 1 p-values from the equivalence test fall between 0.975 and 1 139 or between 0 and 0.025. Because p-values approach 0 or 1, but are never exactly 0 or 1, and 140 the SGPV is exactly 0 or 1, the two statistics are completely unrelated within these ranges. 141 The easiest way to see this is by plotting the SGPV against the p-value from the TOST 142 procedure. The situations where the SPGV and p-values from the TOST procedure are

unrelated are indicated by the parts of the curve where there are vertical straight lines at second generation p-values of 0 and 1.

Figure 5. The relationship between p-values from the TOST procedure and the SGPV for the same scenario as in Figure 1.

A third situation in which the SGPV deviates from the TOST *p*-value is whenever the
CI is wider than the equivalence range, and the CI overlaps with the upper *and* lower
equivalence bound. When the confidence interval is more than twice as wide as the
equivalence range the SGPV is set to 0.5. Blume et al. (2018) call this the "small sample
correction factor". However, it is not a correction in the typical sense of the word, since the
SGPV is not adjusted to any "correct" value. When the normal calculation would be
"misleading" (i.e., the SGPV would be small, which normally would suggest support for the
alternative hypothesis, but at the same time all values in the equivalence range are

supported), the SGPV is set to 0.5 which according to Blume and colleagues signal the SGPV is "uninformative". Note that the CI can be twice as wide as the equivalence range whenever the sample size is small (and the confidence interval width is large) or when then equivalence range is narrow. It is therefore not so much a "small sample correction" as it is an exception to the typical calculation of the SGPV whenever the ratio of the confidence interval width to the equivalence range exceeds 2:1 and the CI overlaps with the upper and lower bounds.

We can examine this situation by calculating the SGPV and performing the TOST for a situation where sample sizes are small and the equivalence range is narrow, such that the CI is more than twice as large as the equivalence range.

160

161

162

We can again plot the two statistics against each other to see where they are unrelated 163 (indicated by straight lines in the curve, see Figure 7). We see the SGPV is 0.5 for a range of 164 observed means where the p-value from the equivalence test still varies. It should be noted 165 that in these calculations the p-values for the TOST procedure are never smaller than 0.05 166 (i.e., they do not get below 0.05 on the y-axis). In other words, we cannot conclude 167 equivalence based on any of the observed means. This happens because the TOST p-value is 168 smaller than 0.05 only when the 90% CI falls completely between the upper and lower 169 equivalence bounds. However, we are examining a scenario where the 90% CI is so wide that 170 it never falls completely within the two equivalence bounds, and thus the equivalence test is 171 never significant. As Lakens (2017) notes: "in small samples (where CIs are wide), a study might have no statistical power (i.e., the CI will always be so wide that it is necessarily wider than the equivalence bounds)." None of the p-values based on the TOST procedure are below 0.05, and thus, in the long run we have 0\% power. 175

The *p*-value from the TOST procedure and the SGPV are also unrelated when the CI is wider than the equivalence range (so the precision is low) and overlaps with the upper and lower equivalence bound, but the CI is *not* twice as wide as the equivalence range. For example, in the example below, we see that the CI is only 1.79 times as wide as the equivalence bounds, but the CI overlaps with the lower and upper equivalence bounds. This

Figure 6. Comparison of p-values from TOST (black line) and SGPV (dotted grey line) across a range of observed sample means (x-axis). Because the sample size is small (n = 10)and the CI is more than twice as wide as the equivalence range (set to -0.4 to 0.4), the SGPV is set to 0.5 (horizontal lightgrey line) across a range of observed means.

means the SGPV is not set to 0.5, but it is constant across a range of observed means. 181

183

184

185

186

187

188

If the observed mean would be somewhat closer to 0, or further away from 0, the 182 SGPV remains constant (the CI width does not change, and it completely overlaps with the equivalence range) while the p-value for the TOST procedure does vary. We can see this in Figure 9 below. The SGPV is not set to 0.5, but is slightly higher than 0.5 across a range of means. How high the SGPV will be for a CI that is not twice as wide as the equivalence range, but overlaps with the lower and upper equivalence bounds, depends on the width of the CI and the equivalence range.

Figure 7. The relationship between p-values from the TOST procedure and the SGPV for the same scenario as in Figure 6.

If we once more plot the two statistics against each other to see where they are unrelated (indicated by straight lines in the curve), we see the SGPV is 0.56 for a range of observed means where the p-value from the equivalence test still varies.

189

190

191

To conclude this section, there are four situations where the *p*-value from the TOST procedure is unrelated to the SGPV. In all these situations the *p*-value for the equivalence test differentiates tests with different means, but the SGPV does not. Therefore, as a purely continuous descriptive statistic, the SGPV is more limited than the *p*-value from the TOST procedure.

Figure 8. Example of a 95% CI that overlaps with the lower and upper equivalence bound (indicated by the vertical dotted lines).

The relation between equivalence tests and SGPV when confidence intervals are not symmetrical

So far we have only looked at the relation between equivalence tests and the SGPV when confidence intervals are symmetric (e.g., for confidence intervals around mean differences). For correlations, which are bound between -1 and 1, confidence intervals are only symmetric for a correlation of exactly 0. The confidence interval becomes increasingly asymmetric as the observed correlation nears -1 or 1. For example, with ten observations, an observed correlation of 0 has a symmetric 95% confidence interval ranging from -0.629 to 0.629, while and observed correlation of 0.7 has an asymmetric 95% confidence interval ranging from 0.126 to 0.992.

Figure 9. Comparison of p-values from TOST (black line) and SGPV (dotted grey line) across a range of observed sample means (x-axis). The sample size is small (n = 10), but because the sd is half as big as in Figure 7 (1 instead of 2) the CI is less than twice as wide as the equivalence range (set to -0.4 to 0.4). The SGPV is not set to 0.5 (horizontal lightgrey line) but reaches a maximum slightly above 0.5 across a range of observed means.

The effect of assymetric confidence intervals is most easily noticable at smaller sample sizes, therefore in Figure 11 below we plot the *p*-values from equivalence tests and the SGPV (again plotted as 1-SGPV for ease of comparison) for correlations. The sample size is 30 pairs of observations, and the lower and upper equivalence bounds are set to -0.45 and 0.45, with an alpha of 0.05. As the observed correlation in the sample moves from -1 to 0 the *p*-value from the equivalence test becomes smaller, as does 1-SGPV. The pattern is quite similar to that in Figure 2. The *p*-value for the TOST procedure and 1-SGPV are still identical when

Figure 10. The relationship between p-values from the TOST procedure and the SGPV for the same scenario as in Figure 9.

p-values are 0.975 and 0.025 (indicated by the upper and lower horizontal dotted lines).

There are two important differences, however. First of all, the SGPV is no longer a straight line, but a curve, due to the asymmetry in the 95% CI. Second, and most importantly, the p-value for the equivalence test and the SGPV do no longer overlap at p = 0.5.

218

219

221

222

223

The reason that the equivalence test and SGPV no longer overlap is also because of asymmetric confidence intervals. If the observed correlation falls exactly on the equivalence bound the p-value for the equivalence test indicates that the probability of observing the observed or more extreme data, assuming the equivalence bound is the true effect size, is 50%. In other words, if the true effect size is the same as the equivalence bound, it is equally likely to find an effect more extreme than the equivalence bound, as it is to observe an effect

Figure 11. Comparison of p-values from TOST (black line) and 1-SGPV (dotted grey curve) across a range of observed sample correlations (x-axis) tested against equivalence bounds of r = -0.45 and r = 0.45 with r = 30 and an alpha of 0.05.

that is less extreme than the equivalence bound. However, as can be seen in Figure 12, the two second generation p-values associated with the observed correlations at r = -0.45 and r = 0.45 are 0.58. Because the confidence intervals are asymmetric around the observed effect size of 0.45 (ranging from 0.11 to 0.70) according to Blume et al. (2018) 58.10% of the data-supported hypotheses are null hypotheses, and therefore 58.10% of the data-supported hypotheses are compatible with the null premise.

This example illustrates the difference between a proportion and a probability. There is always a 50% probability of observing a correlation smaller or larger than the true correlation, but the SGPV for this situation depends on how far away the observed

Figure 12. Three 95% confidence intervals for observed effect sizes of r = -0.45, r = 0, and r = 0.45 for n = 30. Only the confidence interval for r = 0 is symmetric.

correlation is from 0. The further away from 0, the larger the SGPV when the observed mean 233 falls on the equivalence bound. The SGPV is the proportion of values in a 95% confidence 234 interval that overlap with the equivalence range, but not the probability that these values 235 will be observed. In the most extreme case (i.e., a sample size of 4, and equivalence bounds 236 set to r = -0.99 and 0.99, with an observed correlation of 0.99) 97.60% of the confidence interval overlaps with the equivalence range, even though in the long run only 50% of the 238 correlations observed in the future will fall in this range. It should be noted that in larger 239 sample sizes the SGPV is closer to 0.5 whenever the observed correlation falls on the equivalence bound, but this extreme example nevertheless clearly illustrates the difference 241 between question the SGPV answer, and the question a p-value answers. The conclusion of

this section on asymmetric confidence intervals is that a SGPV of 1 or 0 can still be interpreted as a p < 0.025 or p > 0.975 in an equivalence test, since the SGPV and p-value 244 for the TOST procedure are always directly related at these values. Although Blume et al. 245 (2018) state that "the degree of overlap conveys how compatible the data are with the null 246 premise" this definition of what the SGPV provides does not hold for asymmetric confidence 247 intervals. Although a SGPV of 1 or 0 can be directly interpreted, a SGPV between 0 and 1 248 is not interpretable as "compatibility with the null hypothesis". Indeed, Blume and 240 colleagues write in the supplemental material that "The magnitude of an inconclusive 250 second-generation p-value can vary slightly when the effect size scale is transformed. 251 However definitive findings, i.e. a p-value of 0 or 1 are not affected by the scale changes." 252

What are the Relative Strengths and Weaknesses of Equivalence Testing and the SGPV?

When introducing a new statistical method, it is important to compare it to existing approaches and specify it's relative strengths and weaknesses. First of all, the SGPV is a descriptive statistic (unlike the *p*-value that is calculated for an equivalence test, which is an inferential statistic) that provides the proportion of overlap of the confidence interval and the equivalence range.

Even though a SGPV of 1 or 0 has a clear interpretation (we can reject effects outside or inside the equivalence range), intermediate values are not as easy to interpret (especially for effects that have asymmetric confidence intervals). In one sense, they are what they are (the proportion of overlap), but in any specific case it can be unclear what this number tells us about the data we have collected. This is not too problematic, since the main use of the SGPV (e.g., in all examples provided by Blume and colleagues) is to examine whether the SGPV is 0, 1, or inconclusive. This interpretation of a SGPV as allowing researchers to reject the null, reject the presence of a meaningful effect, or remaining inconclusive is very similar to the Neyman-Pearson interpretation of combining a null-hypothesis test and an

equivalence test (Lakens et al. (2018)). The difference is that where a SGPV of 1 can be 269 interpreted as p < .025, equivalence tests provide exact p-values, and they continue to 270 differentiate between for example p = 0.048 and p = 0.002. Whether this is desireable 271 depends on the perspective that is used. From a Neyman-Pearson perspective on statistical 272 inferences the main conclusion is based on whether or not $p < \alpha$, and thus an equivalence 273 test and SGPV can be performed by simply checking whether the confidence interval falls 274 within the equivalence range, just as a null-hypothesis test can be performed by checking 275 whether the confidence interval contains zero or not. At the same time, it is recommended to 276 report exact p-values (American Psychological Association, 2010), and exact p-values might 277 provide information of interest to readers about how precisely how surprising the data is 278 under the null model. Equivalence tests combined with null-hypothesis significance tests also 279 allow researchers to conclude an effect is significant and equivalent (i.e., statistically different from zero, but also too small to be considered meaningful). Thus, the SGPV is used to 281 classify results into one of three possible cateogies (with the data falling inside or outside the equivalence range, or being inconclusive), while equivalence tests combined with 283 null-hypothesis tests classify results into four possible categories 284

An important issue when calculating the SGPV is its reliance on the "small sample 285 correction", where the SGPV is set to 0.5 whenever the ratio of the confidence interval width 286 to the equivalence range exceeds 2:1 and the CI overlaps with the upper and lower bounds. 287 This exception to the normal calculation of the SGPV is introduced to prevent misleading 288 values. Without this correction it is possible that a confidence interval is extremely wide, 289 and an equivalence range is extremely narrow, which without the correction would lead to a very low value for the SGPV. Blume et al. (2018) suggest that under such a scenario "the data favor alternative hypotheses", even when a better interpretation would be that there is not enough data to accurately estimate the true effect compared to the width of the 293 equivalence range. Although it is necessary to set the SGPV to 0.5 whenever the ratio of the 294 confidence interval width to the equivalence range exceeds 2:1, it leads to a range of 295

situations where the SGPV is set to 0.5, while the *p*-value from the TOST procedure continues to differentiate (see for example Figure 6). An important benefit of equivalence tests is that is does not need such a correction to prevent misleading results.

As a more extreme example of the peculiar behavior of the "small sample correction" 299 as currently implemented in the calculation of the SGPV see Figure 13 below. In this figure 300 observed correlations (from a sample size of 10) from -1 to 1 are tested against an 301 equivalence range from r = 0.4 to r = 0.8. We can see the SGPV has a peculiar shape 302 because it is set to 0.5 for certain observed correlations, even though there is no risk of a 303 meaningless SGPV in this range. This example suggests that the current implementation of 304 the "small sample correction" could be improved. If, on the other hand, the SGPV is mainly 305 meant to be interpreted when it is 0 or 1, it might be preferable to simply never apply the 306 "small sample correction". 307

Blume et al. (2018) argue that the SGPV has improved error control, in that the 308 conclusion that the 95% confidence interval lies completely outside the equivalence range 309 around zero will necessarily occur less frequently than a Type I error in a null-hypothesis 310 test (where the 95% confidence interval only needs to not overlap with zero). However, the 311 SGPV has a lower error rate than a null-hypothesis test, not a more accurate error rate. In a 312 Neyman-Pearson perspective (which forms the basis of equivalence tests) the goal is not to 313 end up with an error rate that is as low as possible (to achieve that, one simply adjusts the 314 alpha level), but with a decision procedure that, when applied, yields a desired error rate 315 with high accuracy. We show here that the SGPV and equivalence tests are directly related, 316 and so are their error rates. The TOST procedure uses a 90% confidence interval because it is based on two one-sided tests, and thus the confidence interval is $1-2*\alpha$, and because both 318 tests need to be significant to conclude equivalence, no adjustment for multiple comparisons 319 is needed. The TOST procedure always has higher power to declare equivalence than the 320 SGPV, which relies on a 95% confidence interval (but note that there is no reason to always 321 set the alpha level to 0.05). 322

Blume et al. (2018) claim that "Adjustments for multiple comparisons are obviated" 323 (p. 15) and that "second-generation p-values provide a proper scientific adjustment for 324 multiple comparisons". However, this is not correct. With a sufficient number of looks error 325 rates can rise above the nominal alpha level (both when compared to equivalence and 326 minimal effect tests, but even when compared to a null-hypothesis test). When directly 327 comparing equivalence tests and the SGPV, multiple comparisons inflate the probability that 328 one erronously concludes there is no effect, where there is a true effect size that equals the 329 equivalence bound, just as quickly for the SGPV as for equivalence tests, because they are 330 directly related. To conclude, the idea that the SGPV improves error rates does not hold up 331 under closer scrutiny, and the recommendation to ignore adjustments for multiple 332 comparisons has the potential to increase false positives in the literature. Equivalence tests 333 provide and easier and more formal way to control both Type I error rates (by setting the alpha level) and the Type II error rate (by performing an a-priori power analysis). 335

336 Conclusion

We believe that our explanation of the similarities between the TOST procedure and 337 the SGPV provides context to interpret the contribution of second generation p-values to the 338 statistical toolbox. The novelty of te SGPV lies in its use as a descriptive statistic, but this 339 use can be limited when confidence intervals are asymmetrical or wider than the equivalence 340 range. There are strong similarities with p-values from the TOST procedure, and in all 341 situations where the statistics yield different results, the behavior of the p-value from the 342 TOST procedure is more consistent and easier to interpret. We hope this overview of the relationship between the SGPV and equivalence tests will help researchers to make an informed decision about which statistical approach provides the best answer to their question. Our comparisons shows that when proposing alternatives to null-hypothesis tests, it is important to compare new proposals to already existing procedures. We believe 347 equivalence tests achieve the goals of the second generation p-value while allowing users to 348

Figure 13. Comparison of p-values from TOST (black line) and 1-SGPV (dotted grey curve) across a range of observed sample correlations (x-axis) tested against equivalence bounds of r = 0.4 and r = 0.8 with r = 10 and an alpha of 0.05.

more easily control error rates, and while yielding more consistent statistical outcomes.

References

```
American Psychological Association (Ed.). (2010). Publication manual of the American
351
          Psychological Association (6th ed.). Washington, DC: American Psychological
352
          Association.
353
   Blume, J. D., McGowan, L. D., Dupont, W. D., & Greevy, R. A. (2018). Second-generation
354
          p-values: Improved rigor, reproducibility, & transparency in statistical analyses.
355
          PLOS ONE, 13(3), e0188299. doi:10.1371/journal.pone.0188299
356
   Hauck, D. W. W., & Anderson, S. (1984). A new statistical procedure for testing equivalence
357
          in two-group comparative bioavailability trials. Journal of Pharmacokinetics and
358
           Biopharmaceutics, 12(1), 83–91. doi:10.1007/BF01063612
359
   Kruschke, J. K. (2018). Rejecting or Accepting Parameter Values in Bayesian Estimation.
360
          Advances in Methods and Practices in Psychological Science, 2515245918771304.
361
          doi:10.1177/2515245918771304
362
   Lakens, D. (2017). Equivalence Tests: A Practical Primer for t Tests, Correlations, and
363
           Meta-Analyses. Social Psychological and Personality Science, 8(4), 355–362.
364
          doi:10.1177/1948550617697177
365
   Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence Testing for Psychological
366
           Research: A Tutorial. Advances in Methods and Practices in Psychological Science,
367
          2515245918770963. doi:10.1177/2515245918770963
   Meyners, M. (2012). Equivalence tests review. Food Quality and Preference, 26(2), 231–245.
          doi:10.1016/j.foodqual.2012.05.003
370
   Rogers, J. L., Howard, K. I., & Vessey, J. T. (1993). Using significance tests to evaluate
371
          equivalence between two experimental groups. Psychological Bulletin, 113(3),
372
          553–565. doi:http://dx.doi.org/10.1037/0033-2909.113.3.553
373
   Schuirmann, D. J. (1987). A comparison of the two one-sided tests procedure and the power
374
```

approach for assessing the equivalence of average bioavailability. Journal of

375

```
Pharmacokinetics and Biopharmaceutics, 15(6), 657–680.
```

- Serlin, R. C., & Lapsley, D. K. (1985). Rationality in psychological research: The good-enough principle.
- Spiegelhalter, D. J., Freedman, L. S., & Parmar, M. K. (1994). Bayesian approaches to randomized trials. *Journal of the Royal Statistical Society. Series A (Statistics in Society)*, 357–416. doi:10.2307/2983527
- Wellek, S. (2010). Testing statistical hypotheses of equivalence and noninferiority (2nd ed.).

 Boca Raton: CRC Press.
- Westlake, W. J. (1972). Use of Confidence Intervals in Analysis of Comparative
 Bioavailability Trials. *Journal of Pharmaceutical Sciences*, 61(8), 1340–1341.

 doi:10.1002/JPS.2600610845