

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Complementos de Matemática I - 2023

Práctica 3 - Subgrafos

1. Consideremos los siguientes grafos.

- a) ¿Cuántos subgrafos conexos de G tienen 4 vértices e incluyen un ciclo?
- b) Describa el subgrafo G_1 de G como un subgrafo inducido y en términos de la eliminación de vértices de G.
- c) Describa el subgrafo G_2 de G como un subgrafo inducido y en términos de la eliminación de vértices de G.
- d) Trace el subgrafo de G inducido por el conjunto de vértices $U = \{b, c, d, f, i, j\}$.
- e) Sea e la arista cf. Trace el subgrafo $G \setminus e$.
- f) Sean e_1 y e_2 las aristas ac y ad respectivamente. Trace el subgrafo $(G \setminus e_1) \setminus e_2$.
- g) Encuentre un subgrafo de G que no sea un subgrafo inducido.
- 2. Sea G = (V, E) un grafo simple con $|V| \ge 2$ tal que todos los subgrafos inducidos de G son conexos. ¿Es posible identificar al grafo G?
- 3. Determine la máxima cantidad de aristas en un subgrafo bipartito de los grafos P_n , C_n y K_n .
- 4. Sea G=(V,E) un grafo con $|V|=n \ge 2$ y vértices v_1,v_2,\ldots,v_n . Se define el grado promedio de G, denotado por d(G), como

$$d(G) = \frac{1}{n} \sum_{v \in V} d(v).$$

a) Pruebe que $\delta(G) \leq d(G) \leq \Delta(G)$, donde

$$\delta(G) = \min_{v \in V} \{d(v)\}, \qquad \Delta(G) = \max_{v \in V} \{d(v)\}.$$

Sea G un grafo simple y $v \in V(G)$. Determine si las siguientes afirmaciones son verdaderas o falsas.

- b) Si $d(v) = \Delta(G)$, entonces $d(G v) \leq d(G)$. Es decir, borrar el vértice v no puede aumentar el grado promedio.
- c) Si $d(v) = \delta(G)$, entonces $d(G v) \le d(G)$. Es decir, borrar el vértice v no puede aumentar el grado promedio.
- 5. Pruebe que todo subgrafo inducido de un grafo de línea es también un grafo de línea.
- 6. Sea G un grafo simple claw-free. Pruebe que si $\Delta(G) \geqslant 5$, entonces G tiene a C_4 como subgrafo.

- 7. Pruebe que un grafo G es bipartito si y solo si no tiene ningún ciclo impar como subgrafo.
- 8. Pruebe que el n-cubo Q_n es $K_{2,3}$ -free.
- 9. Sea $k \in \mathbb{N}$. Sea G el subgrafo de Q_{2k+1} inducido por el conjunto de vértices para los cuales la diferencia entre la cantidad de ceros y unos es uno.
 - a) Pruebe que G es regular.
 - b) Determine |V(G)| y |E(G)|.
- 10. a) Pruebe que $\alpha(C_n)=\left\lfloor\frac{n}{2}\right\rfloor$ y $\omega(C_n)=\begin{cases}3, & \text{si } n=3,\\2, & \text{si } n\geqslant 4.\end{cases}$
 - b) Pruebe que $\alpha(P_n) = \left\lceil \frac{n}{2} \right\rceil$ y $\omega(P_n) = 2$.
 - c) Pruebe que $\alpha(W_n)=\left\lfloor\frac{n}{2}\right\rfloor$ y $\omega(W_n)=\left\{egin{array}{ll} 4, & \mbox{si } n=3\\ 3, & \mbox{si } n\geqslant 4 \end{array}\right.$
- 11. Consideremos que el conjunto vacío es un conjunto estable de todo grafo. Pruebe que para $n \in \mathbb{N} \cup \{0\}$ la cantidad de conjuntos estables del camino P_n coincide con el (n+1)-ésimo término de la sucesión de Fibonacci. Considere P_0 como el grafo vacío.
- 12. Pruebe que para todo grafo G se tiene $\alpha(G) = \omega(\overline{G})$.
- 13. Sea H un subgrafo inducido de un grafo G. Pruebe que $\alpha(H) \leqslant \alpha(G)$ y $\omega(H) \leqslant \omega(G)$. ¿Se puede concluir lo mismo si H es un subgrafo no inducido?
- 14. Sean G y H dos grafos simples.
 - a) Determine $\alpha(G+H)$ y $\alpha(G\vee H)$ en función de $\alpha(G)$ y $\alpha(H)$.
 - b) Determine $\omega(G+H)$ y $\omega(G\vee H)$ en función de $\omega(G)$ y $\omega(H)$.
 - c) Pruebe que $W_n \cong K_1 \vee C_n$. Utilice esto para dar una demostración alternativa del ejercicio (9.c)
- 15. Sea G un grafo simple. Pruebe que si \overline{G} es no conexo, entonces existen dos subgrafos inducidos G_1 y G_2 de G tal que $G=G_1\vee G_2$.
- 16. a) Dar una descomposición modular de cada uno de los siguientes grafos.

- b) Para cada grafo G del ítem anterior, calcular $\alpha(G)$ y $\omega(G)$ utilizando la descomposición modular.
- c) Un grafo es un cografo si es P_4 -free. Un grafo es un cografo si y solo si los grafos modulares de su descomposición son triviales. Determine si cada uno de los grafos del ítem (a) son cografos. En caso que no lo sean, encontrar un P_4 inducido.

Facultad de Ciencias Exactas, Ingeniería y Agrimensura UNIVERSIDAD NACIONAL DE ROSARIO

Av. Pellegrini 250. S2000BTP Rosario. Sta. Fe

Complementos de Matemática I - 2023

- 17. Dados dos grafos G y H, el producto cartesiano de G y H, denotado $G \square H$, es el grafo con conjunto de vértices $V(G) \times V(H)$, donde dos vértices (g_1, h_1) y (g_2, h_2) son adyacentes si y solo si se verifica una de las siguientes dos condiciones:
 - $g_1 = g_2 \text{ y } h_1 h_2 \in E(H)$,
 - $h_1 = h_2 \text{ y } g_1g_2 \in E(G)$.
 - a) Trace los grafos $K_2 \square K_2$, $P_2 \square P_3$ y $P_3 \square C_4$.
 - b) Determine $|E(G \square H)|$ en función de |E(G)| y |E(H)|.
 - c) Determine $\omega(G \square H)$ en función de $\omega(G)$ y $\omega(H)$.
- 18. a) Pruebe que cada uno de los siguientes grafos es isomorfo a $K_3 \square K_3$.

- b) Pruebe que $K_3 \square K_3$ es autocomplementario.
- 19. Pruebe que para $n \geqslant 2$, el n-cubo Q_n es isomorfo al grafo $Q_{n-1} \square K_2$.