Final presentation

Nicolas Alder, Maximilian Kleissl, Til Schniese

Problem

Problem

Does *G* contain a complete subgraph with *k* vertices?

Does *G* contain a subgraph *H*, with *H* being a complete graph with *k* vertices?

Table of Contents

- Problem
- NeuroMatch
- Initial Observations
- Experiments
- Conclusion

NeuroMatch

NeuroMatch - Architecture

NeuroMatch - Prediction Function

$$\mathcal{L}(z_q, z_u) = \sum_{(z_q, z_u) \in P} E(z_q, z_u) + \sum_{(z_q, z_u) \in N} \max\{0, \alpha - E(z_q, z_u)\}, \text{ where}$$

$$E(z_q, z_u) = ||\max\{0, z_q - z_u\}||_2^2$$

$$f(z_q, z_u) = \begin{cases} 1 & \text{iff } E(z_q, z_u) < t \\ 0 & \text{otherwise} \end{cases}$$

NeuroMatch - Sampling & Training

Concepts - Dataset generators (1)

Connected Watts Strogatz graph (WS)

Concepts - Dataset generators (1)

Erdős-Rényi graph (ER)

(c)

Initial Observations

Research Question

Observation

The type of generated graph is important to converge

Research Question

Does the performance differ when limiting the dataset to a specific generator?

Research Objective

Train model on each generator in isolation

Results

Step

6k

5k

Experiments

Research Question

Observation

The structural properties of graphs have influence on the learning process.

Research Question

Which structural properties might have an effect on the learning process?

Research Objective

Examine structural shifts in #nodes, #edges, eccentricity, target graph size on training accuracy.

Experiment Setup

	Our Experiment	NeuroMatch
Target Graph Generation	once	every epoch
Query Graph Generation	every epoch	every epoch
Target Graph Sizes	one size from [11, 18]	mix from [5, 29]
Shift Parameter	[0.55, 0.71, 0.83, 1.0, 1.2, 1.6, 1.8]	1.0

Concepts - Graph Metrics

- Number of nodes
- Number of edges
- Eccentricity
 - minimal: radius
 - maximal: diameter

Modifiying Erdős-Rényi graphs

Original

```
mean = log2(num_nodes) / num_nodes

beta = alpha / mean - alpha

p = random.beta(alpha, beta)

graph = gnp_random_graph(num_nodes, p)
```

Change number of edges

```
mean = (log2(num_nodes) / num_nodes) *
shift_parameter

beta = alpha / mean - alpha

p = random.beta(alpha, beta)

graph = gnp_random_graph(num_nodes, p)
```


Modifiying Erdős-Rényi graphs

Original

```
mean = log2(num_nodes) / num_nodes
beta = alpha / mean - alpha

p = random.beta(alpha, beta)
graph = gnp_random_graph(num_nodes, p)
```

Change number of nodes

```
num_nodes = num_nodes * shift_parameter
mean = (log2(num_nodes) / num_nodes) *
edge_rescale

beta = alpha / mean - alpha

p = random.beta(alpha, beta)
graph = gnp_random_graph(num_nodes, p)
```


Modifiying Watts-Strogatz graphs

Original

```
density_mean = log2(num_nodes) / num_nodes

density_beta = density_alpha / density_mean - density_alpha

k = random.beta(density_alpha, density_beta) * num_nodes

graph = connected_watts_strogatz_graph(num_nodes, k, p)
```


Modifiying Watts-Strogatz graphs

Change eccentricity (and also number of nodes and number of edges)

```
density_mean = log2(num_nodes) / num_nodes * shift_parameter

density_beta = density_alpha / density_mean - density_alpha

k = random.beta(density_alpha, density_beta) * num_nodes

graph = connected_watts_strogatz_graph(num_nodes, k, p)
```

Findings

```
# Planned Experiments = 720
(8 target graph sizes * 10 shift parameters * 3 generators * 3 experiment runs)
# Successful Experiments = 612
```

Result Datasets: ER Nodes, ER Edges, WS Eccentricity, all data combined

Two regression analysis for each result dataset:

- Does the target graph size has influence on training accuracy?
 (independent: target graph size, dependent: training accuracy)
- Does the shift parameter has influence on training accuracy?
 (independent: shift parameter, dependent: training accuracy)

Findings - Target Graph Sizes

	Adj. R-Squared	Coefficient	P-Value	Sample Size
ER Nodes	0.103	-0.0060	0.000	183
ER Edges	0.067	-0.0072	0.000	213
WS Eccentricity	0.015	-0.0046	0.039	216
All Generators	0.037	-0.0061	0.000	612

Findings - Target Graph Sizes

Findings - Shift Parameter

	Adj. R-Squared	Effect Size / Coefficient	P-Value	Sample Size
ER Nodes	0.006	-0.0115	0.144	183
ER Edges	0.066	-0.0390	0.000	213
WS Eccentricity	0.242	-0.0887	0.000	216
All Generators	0.099	-0.0545	0.000	612

Findings - Shift Parameter (WS Eccentricity)

(WS) Shift	0.55	1.0	1.8
Mean Eccentricity	6.2	5.0	3.4
Mean Radius	4.3	3.6	2.6
Mean Diameter	7.7	6.2	4.1

Findings - WS vs. ER

Findings - Shift Parameter

	Adj. R-Squared	Effect Size / Coefficient	P-Value	Sample Size
ER Nodes	0.006	-0.0115	0.144	183
ER Edges	0.066	-0.0390	0.000	213
WS Eccentricity	0.242	-0.0887	0.000	216
All Generators	0.099	-0.0545	0.000	612

Threats to validity

- Experiment repetitions limited
- Experiment duration limited
- Query:target graph size ratio fixed
- Limited expressiveness for heterogeneous composited datasets
 - how do real-world datasets look like
 - o generalization to real-world dataset
- Might not be the main driver of learning
 - o why do real-world datasets are reported easier than synthetic → analyze
- NeuroMatch results are hardly reproducible
- Limitation to NeuroMatch approach

Conclusion and Future Work

- Eccentricity has influence on performance
- We do not know if this is actually the main driver for learning (probably not, more like a factor)
- Graph structure is more than simple number of nodes/edges

Future Work:

- Real-World Datasets
- Influence of the specific NeuroMatch approach on learning characteristics