АВТОМАТИЗИРОВАННОЕ ДЕШИФРИРОВАНИЕ И ВЕКТОРИЗАЦИЯ МАТЕРИАЛОВ АЭРОФОТОСЪЕМКИ ПРИ СОЗДАНИИ ТОПОГРАФИЧЕСКОГО ПЛАНА

Береговой Д.В.

Санкт-Петербургский горный университет, Санкт-Петербург, Россия forth08@yandex.ru

Предложена методика автоматизированной классификации ортофотоснимков с использованием цифровой модели. Определена наилучшая модификация алгоритма OBIA. Описана автоматизированная векторизация наиболее популярных объектов местности.

Ключевые слова: автоматизация, дешифрирование, векторизация, OBIA, оцифровка, топографический план, беспилотный летательный аппарат.

В настоящее время большинство предприятий выполняют дешифрирование вручную. При этом оно является важным и самым продолжительным по времени этапом создания топографического плана, поэтому возникает потребность создания автоматизированной методики.

Для проведения тестирования был выбран фрагмент ортофотоплана, выполненный компанией *MAVinci GmbH* (рис. 1A). Расчет процентного соотношения правильно распознанных пикселов к общему числу проводился на основе написанной программы на языке *Python*.

Классификация объектов местности выполнялась статистическими методами без учителя (72 % правильно распознанных пиксела, рис. 1Б) и с учителем (79 %, рис. 1В) [4]. При этом алгоритм *ОВІА*, основанный на методах машинного обучения, показал наилучший результат (87 %, рис. 2А), поэтому для достижения высокой точности классификации был выполнен поиск его оптимальной модификации.

Рис. 1. Результат автоматизированной классификации исходного ортофотоснимка (A) статистическим методом без учителя (Б) и с учителем (В).

Решено в качестве входных данных использовать не только фрагмент изображения, но и цифровую модель (ЦМ) (рис. 2Б), которая является разностью цифровой модели местности (ЦММ) и цифровой модели рельефа (ЦМР) [2]. В результате дешифрирования такого набора данных процент правильно классифицированных пикселов достиг значения 92,7 (рис. 2В).

Алгоритм *OBIA* основан на методах машинного обучения и его принципиальное отличие от статистических заключается в том, что для его работы используются не пикселы по отдельности, а так называемые суперпикселы, которые получаются в результате сегментации изображения [1]. На основе примененных алгоритмов *Felzenszwalb* и «случайный лес», а также постобработки, заключающейся в удалении шумов, удалось получить наилучший результат — 93.5% правильно распознанных пикселов (рис. 2Γ).

Далее производится этап перевода классифицированного изображения в электронный топографический план [3] при помощи геоинформационного программного продукта *ArcMap*. Выполняется разделение изображения на несколько, каждое из которых имеет сегменты одного класса и их конвертирование в векторный вид.

Алгоритм отрисовки полосы древесных насаждений.

Для каждого дерева выполняется поиск его центра. Далее через полученные точки проводится полилиния. Определяется ширина деревьев и расстояние между ними по ортофотоснимку, толщина ствола — по тени, а высота — по цифровой модели. При помощи параллельного переноса оси полосы древесных насаждений отображается его контур.

Рис. 2. Результат классификации ортофотоснимка алгоритмом *OBIA* (A), цифровая модель (Б), классификация с учетом цифровой модели Б (В), классификация с учетом цифровой модели Б и постобработкой (Γ)

Алгоритм отрисовки дорог.

Обычно, полевые дороги имеют достаточно неровный контур, поэтому для него выполняется сглаживание, которое порой необходимо повторить 2-3 раза. Далее производится автоматизированный расчет средней линии. Также, если необходимо задать ширину дороги, то при помощи параллельного переноса ее оси определяется контур, который на конечном этапе закругляют на перекрестках.

Алгоритм отрисовки горизонталей.

На основе предварительно построенной в растровом виде ЦМР выполняется создание изолиний через заданный интервал. Конечный результат получается при помощи их сглаживания, предложенного в алгоритме для векторизации дорог, и удалении небольших, не обладающих важной информацией горизонталей.

Для определения **контура луга** специального алгоритма не требуется, производится лишь небольшая корректировка областей, которые перекрываются с другими объектами местности.

На последнем этапе создания топографического плана векторные объекты приводят в соответствие с принятыми условными знаками (рис. 3) [5].

Рис. 3. Топографический план, созданный на основе предложенного алгоритма

AUTOMATED PHOTOINTERPRETATION AND VECTORIZATION OF AERIAL SURVEY MATERIALS FOR CREATION TOPOGRAPHIC PLANS

Beregovoi D.V.

Saint Petersburg Mining University, Saint Petersburg, Russia forth08@yandex.ru

The method for automated classification of orthophotos using a digital model is proposed. The best modification of the OBIA algorithm is determined. The automated vectorization of the most popular Earth's objects is described.

Key words: automation, photointerpretation, vectorization, OBIA, digitization, topographic plan, unmanned aerial vehicle.

- 1. Blaschke T.. Object based image analysis for remote sensing: ISPRS Journal of Photogrammetry and Remote Sensing, Volume 65, Issue 1, 2010. p. 2-16.
- 2. Tymków P. Application of photogrammetric and remote sensing methods for identification of roughness coefficients of high water flow in the river valleys / Tymków P. Wrocław.: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu, 2009. p. 101.
- 3. Лабутина И.А. Дешифрирование аэрокосмических снимков: Учеб. пособие для студентов вузов / И..А. Лабутинва. М.: Аспект Пресс, 2004. 144-146 с.
- 4. Чандра А.М., Гош С.К. Дистанционное зондирование и географические информационные системы М.: Техносфера, 2008. 130-133 с.
- 5. Условные знаки для топографических планов масштабов 1:5000, 1:2000, 1:1000, 1:500. / Главное управление геодезии и картографии при Совете Министров СССР Москва: Hegpa, 1989. 286 с.