

回归问题

主讲人: 龙良曲

Machine Learning

make decisions

going left/right → discrete

increase/decrease → continuous

Continuous Prediction

• $f_{\theta}: x \to y$

- x: input data
- f(x): prediction
- y: real data, ground-truth

Linear Equation

$$y = w * x + b$$

- 1.567 = w * 1 + b
- \bullet 3.043 = w * 2 + b
- w = 1.477
- b = 0.089

Closed Form Solution

With Noise?

$$y = w * x + b + \epsilon$$

•
$$\epsilon \sim N(0,1)$$

$$\bullet$$
 3.043 = w * 2 + b + eps

•

$$Y = (WX + b)$$

For Example

•
$$y = 1.477 * x + 0.089 + \epsilon$$

- w?
- *b*?

Find w', b'

•
$$(WX + b - Y)^2$$

$$loss = \sum_{i} (w * x_i + b - y_i)^2$$

- Minimize loss
- $w' * x + b' \rightarrow y$

Gradient Descent

$$w' = w - lr * \frac{dy}{dw}$$

$$x' = x - 0.005 * \frac{dy}{dx}$$

Gradient Descent

Find w', b'

$$loss = \sum_{i} (w * x_i + b - y_i)^2$$

•
$$w' = w - lr * \frac{\partial loss}{\partial w}$$

•
$$b' = b - lr * \frac{\partial loss}{\partial b}$$

•
$$w' * x + b' \rightarrow y$$

Learning Process

Loss surface

$$loss = \sum_{i=1}^{\infty} (w * x_i + b - y_i)^2$$

Linear Regression

Linear Regression

Logistic Regression

Classification

下一课时

实战Linear Regression

Thank You.