

 ∞

TEAM 8

Deployment

Understanding

Business Understanding

Data Preparation Modeling

Evaluation

Business Understanding

Location: Portugal

- Lisbon (City Hotel)
- Argarve (Resort Hotel)

Business Understanding

- Industry: Hospitality Hotel
- Performance Metric: RevPAR
 - Revenue per available room
 - Booking cancellations directly affects RevPAR

Sources of Revenue

Problem Translation

Business Problem

How can we decrease the room booking vacancy rate and increase profit?

Data Science Problem

At the time of booking, predict the likelihood of the reservation being cancelled at any time until the corresponding check-in date.

Data Overview

119390 reservations, **32** features

Target Variable: reservation cancellation

Hotels: Resort and City

Types of Variables: Numerical and Categorical

Source: Statista

Data Understanding

When/How long?

Lead time

Arrival date year

Arrival date month

Stays in weekend nights

Stays in week nights

For Whom?

Adults

Children

Babies

Is repeated guest

Country

Customer type

Previous cancels

Booking information

Hotel

Average daily rate

Booking changes

Deposit type

Days in waiting list

Agent

Distribution channel

What do they need?

Reserved room type

Meal

Total of special requests

Required parking spaces

Exploration

Correlation Matrix

No high correlation

- between the predictors and target variable
- Among most of the predictor variables

Price (time-series/Autocorrelation)
Average Daily Rate Mean:

2015: 87.17

2016: 98 2017: 114

Price is increasing each year so we transformed variable to remove inflation

Information Gain

Information gain for each predictor is low (at .10s) Still, we get rank order on which predictors are more informative

Top 3:

- Deposit type
- Average daily rate
- Lead time

	Columns	info_gain
6	deposit_type	0.130952
21	adr	0.121398
12	lead_time	0.083678
11	agent	0.080440
8	country	0.067132
17	previous_cancellations	0.041190
3	market_segment	0.038687
23	total_of_special_requests	0.036600
22	required_car_parking_spaces	0.029941
19	booking_changes	0.019892
4	distribution_channel	0.017106
20	days_in_waiting_list	0.015232
7	customer_type	0.009796
0	hotel	0.009541
18	previous_bookings_not_canceled	0.008935
14	stays_in_week_nights	0.007235
10	is_repeated_guest	0.004130
9	adults	0.003895
5	reserved_room_type	0.002776
1	arrival_date_month	0.002489
2	meal	0.001264
16	babies	0.000660
13	stays_in_weekend_nights	0.000457
15	children	0.000417

	Dropped I	Features
--	-----------	----------

Leakage

Assigned room type: assigned once customer checks in Reservation status: changes to either cancelled or check-out

Reservation status date: used in conjunction with reservation status

Redundancy

Information gained can be acquired from another attribute Arrival date week number Arrival date day of month

Arrival date year

Outliers/High leverage points

E.g. \$5000 room, company trip

Features with too many levels

E.g. Countries

arrival date day of month 31 17 stays in weekend nights stays in week nights 35 adults 14 children babies

distribution channel

previous cancellations

reserved room type

assigned room type

booking changes deposit type

is repeated quest

arrival date week number

is canceled lead time

arrival date year arrival date month

Columns Unique count

479

12 53

178

73 10

12

21

333

352

128

country

18 previous bookings not canceled

23 26

customer type

reservation status date

days in waiting list

required car parking spaces total of special requests reservation status

Country Transformation

Country attribute tells the customer's country of origin There were **178** different categories

To address the large dimensions we imported a country codes index which corresponds sub-regions to each country code

For countries that had less than 500 we remapped their value to corresponding sub-region

For sub-regions less than 500 occurrences we further group them into regions or "others"

We were able to get the country categories down to 28 dimensions

Average Daily Rate Transformation

Normalizing distributions

Lead Time
Stays in Weekend Nights

Regrouped Variables

- Agents
- Children
- Babies
- Adults
- Previous Cancellations
- Previous Bookings Not Canceled
- Days on Waiting List
- Booking Changes
- Required Car Parking Spaces
- Reserved Room Type

Quadratic Features for Linear Models

	children	is_canceled	count
0	0.0	0	0.624601
1	0.0	1	0.375399
2	1.0	0	0.675265
3	1.0	1	0.324735
4	2.0	0	0.574156
5	2.0	1	0.425844
6	3.0	0	0.773333
7	3.0	1	0.226667
8	10.0	1	1.000000

Children

Number of Week Nights

Data Preparation

When/How long?

Lead time

Arrival date year

Arrival date month

Stays in weekend nights

Stays in week nights

24 Features &

Eliminate 500+ Meaningless Dimensions

What do they need?

Reserved room type

Meal

Total of special requests

Required parking spaces

Previous cancels

Distribution channel

Applied Techniques

Supervised Classification
One Hot Encoder
Nested Cross Validation
Standardization
Grid Search

Generalization Performance

Why these models?

Supervised Learning vs Unsupervised Learning

Supervised Learning is appropriate in this context because we have historical data and have a specific target variable for which we want to enhance prediction.

Classification vs Numeric Prediction

Pros and Cons of Linear Models

This is a classification task because the target variable is binary - whether the booking was canceled or not. Therefore, we can choose models that are suitable for classification prediction.

Linear models such as logistic regression and support vector machine can capture nonlinear relationships by incorporating polynomial features. We engineered two quadratic features in our model. A drawback is that with large dataset, these models are not able to capture complexities in the data as much as tree

Pros and Cons of Tree Models

models.

Tree models give flexible representation and are great at capturing high complexities when the dataset is large. Needing a good data size can be a drawback, but we have enough data points in this case.

Learning Curves

Fitting Curve

ROC CURVE

TRUE POSITIVE:

Correctly predicted cancellations

Benefit: price of filling the room

FALSE POSITIVE:

Correctly predicted non-cancellations

Cost: refund room price, pay price difference for customer to find another room

FALSE NEGATIVE:

Predicted customer will cancel but did not

No cost/benefit

TRUE NEGATIVE:

Predicted customer will not cancel but canceled

No cost/benefit

Classification Costs and Benefits

Assumptions:

- If able to identify cancellation, hotel will fill vacancy
- Hotel is fully booked

Back to our business problem..

RevPAR	59.18€ Lisboa	47.85€ R. A. Madeira	46.69€ Algarve	35.05€ Norte	32.26€ R. A. Açores	26.83€ Alentejo	21.15¢
ARR ¹	80.65€	59.67€	63.31€	55.69€	52.52€	54.32€	46.25€
Occupancy rate	72.5%	77.5%	64.9%	60.8%	58.4%	47.1%	43.5%
Lodging capacity (no. of rooms)	30,646	14,280	44,466	21,762	4,615	6,283	21,112
Lodging revenues (000€)	654,482	241,147	666,404	269,071	51,702	58,623	155,060
Overnight stays (000#)	13,146	7,307	18,110	6,884	1,544	1,584	4,942
Guests (000#)	5,643	1,355	4,035	3,806	509	875	2,835
Average stay	2.33	5.39	4.49	1.81	3.03	1.81	1.74

¹ ARR (Average Room Rate) = room revenue / (# rooms x Occ. rate x 365).

Source: TP (turismo de Portugal) - Travel BI, INE (December 2016 data - Report data: March 2017), ATL and Turismo do Porto; Analysis: Deloitte.

© 2017. For further information. contact Deloitte Consultores. S.A.

Deployment Considerations

Sources

Country Code Dataset https://github.com/lukes/ISO-3166-Countries-with-Regional-Codes/blob/master/all/all.csv

Data Source: Kaggle - 'Hotel Booking Demand Dataset' by Nuno Antonio https://www.sciencedirect.com/science/article/pii/S2352340918315191