

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Estatística

Disciplina: Probabilidade e Estatística 06/11/2023

Prova 1 Prof^a. Dra. Graziela Dutra Rocha Gouvêa 100pts / peso: 30

Nome:

1. (20 pts) Classifique as variáveis a seguir quanto aos tipos de variáveis estudados na disciplina.

- a) Resposta de um paciente quanto a determinado medicamento (nenhuma melhora, alguma melhora, muita melhora).
- b) Estado civil de dependentes químicos (casado, solteiro, divorciado, viúvo).
- c) Nível de escolaridade (nenhum, fundamental, médio, superior).
- d) Peso, em quilogramas, dos recém-nascidos em certa maternidade da capital mineira.
- e) Número de filhos por domicílio em determinado bairro de Ouro Preto. (0,1,2,...).
- 2. (25 pts) Em bovinos, uma doença, causada por um vírus, conhecida como febre aftosa ataca 2% do rebanho de um estado da Federação. Um determinado teste rápido de sangue consegue identificar corretamente 98% dos animais que possuem a doença e 92% dos que não a possuem.
 - a) Qual a probabilidade de um animal, classificado como positivo no teste, ter efetivamente a doença?
 - b) Qual a probabilidade de um animal, classificado como negativo no teste, não ser portador de febre aftosa?

3. (30 pts) A distribuição de frequência das alturas, em cm, de uma amostra de 100 estudantes é a seguinte:

seguinte.					
CLASSES	$ar{X}_{ m i}$	f_i	f_{ri}	F_A	F_{ri}
151 ⊢	153,5	4			
—		4			
⊢		11			
⊢		33			
\vdash		17			
—		17			
—		9			
⊢ 191		5			

- a) Complete a tabela de frequências.
- b) Calcule a média, a variância, o desvio padrão e o coeficiente de variação. Interprete.
- c) Calcule o 7º decil, 69º percentil e 1º quartil. Interprete.
- 4. (25 pts) Duas bolas serão retiradas de uma urna que contem 2 bolas brancas, 3 pretas e 4 verdes. Qual a probabilidade de que ambas:
- a) Sejam brancas
- b) Sejam da mesma cor

MINISTÉRIO DA EDUCAÇÃO Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Estatística

Formulário:

Medidas de tendência central e dispersão					
Dados brutos	Dados agrupados				
$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$	$\bar{X} = \frac{\sum_{i=1}^{n} \bar{X}_{i} f_{i}}{n}$				
n par: $m_d = \frac{X_{\binom{n}{2}} + X_{\binom{(n+2)}{2}}}{2} e$ se n for impar $m_d = X_{\binom{(n+1)}{2}}$	$m_d = LI_{m_d} + \left[\frac{\frac{n}{2} - F_A}{f_{m_d}}\right] c_{m_d}$				
m_o valor de maior freqüência na amostra	$m_o = LI_{m_o} + \frac{\Delta_1}{\Delta_1 + \Delta_2} \times c_{m_o}$				
$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{n} X_{i}^{2} - \frac{\left(\sum_{i=1}^{n} X_{i}\right)^{2}}{n} \right] \text{ ou}$	$s^{2} = \frac{1}{n-1} \left[\sum_{i=1}^{k} f_{i} \overline{X}_{i}^{2} - \frac{\left(\sum_{i=1}^{k} f_{i} \overline{X}_{i}\right)^{2}}{n} \right]$				
$s^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$					
$s = \sqrt{s^2}$ e $CV = \frac{s}{\bar{X}} \times 100$	$s = \sqrt{s^2} \text{ e}$ $CV = \frac{s}{\bar{X}} \times 100$				
$A = X_{(n)} - X_{(1)}$	$Q_i = LI + c \left[\frac{E_{Q_i} - F_{ant}}{f_{Q_i}} \right]$ $E_{D_i} = \frac{in}{10}$ $E_{C_i} = \frac{in}{100}$ $E_{Q_i} = \frac{in}{4}$				

Probabilidade

- i. Definição Clássica $P(A) = \frac{n(A)}{n(\Omega)}$:
- ii. Se A e B são dois eventos quaisquer, então, $P(A \cup B) = P(A) + P(B) P(A \cap B)$
- iii. Para o evento complementar vale a seguinte relação: $P(A^c) = 1 P(A)$
- iv. Se $A \subset B$, entao, $P(A) \leq P(B)$
- v. Probabilidade condicional $P(A|B) = \frac{P(A \cap B)}{P(B)}$, P(B) > 0.
- vi. Independência de eventos: $P(A \cap B) = P(A)P(B)$ ou P(A|B) = P(A), P(B) > 0.