CS 545

Finding the closest pair of points

Alon Efrat

Samir Khuller, <u>Yossi Matias</u>: A Simple Randomized Sieve Algorithm for the Closest-Pair Problem <u>Inf. Comput. 118(1)</u>: 34-37 (1995)

Problem definition

Given: A set $S = (p_1, ..., p_n)$ of n points in the plane Problem: Find the pair $p_i p_j$ that minimizes $d(p_i, p_j)$, where $d(p_i, p_j)$ is the Euclidean distance between p_i and p_j .

 $O(n^2)$ time algorithm – trivial $\Omega(n \log n)$ bound for any deterministic algorithm.

In this talk – a randomized algorithm whose expected running time is O(n)

Notation

Let $S_i = \{p_1, p_2, \dots p_i\}$ Let $d(S_i)$ denote the distance between the closest pair in S_i

Clearly $d(S_2) \ge d(S_3) \ge d(S_4) \ge \dots \ge d(S_n)$

Idea – incremental algorithm – compute $d(S_{i+1})$ from $d(S_i)$

Let $\Gamma(S_i)$ denote an axis-parallel grid, where the edge-length of each grid-cell is $d(S_i)/2$, and one of its corner is on the point (0,0)

Properties of $\Gamma(S_i)$.

Claim 1: there is at most one point of S_i inside every cell of $\Gamma(S_i)$.

Proof – if there are two, then the distance between them is smaller than the length of the diagonal of the cell, which is $(\sqrt{2})d(S_i)/2 = d(S_i)/\sqrt{2} < d(S_i)$

Locating points.

 $d(S_3)/2=d(p_1, p_2)/2$

Claim 2: given $d(S_i)$ we can place all points of S_i in a data structure $H(S_i)$, such that we can (in O(1) expected time)

- 1) insert a new point p_j 2) Given a query point q find if there is a point of S_i in the cell of $\Gamma(S_i)$ containing q.

The structure $H(S_i)$ is described in HW2 Question 7.

Algorithm - version 2

Create random permutation of the points of S before calling the algorithm of version 1.

Assumption: the closest pair is unique.

Claim 3: The probability that $d(S_i) > d(S_{i+1})$ is 2/(i+1). **Proof:** There are i+1 points, two are special (determining the closest pair). All permutations are equally likely, so the probability that one of the special pair appears last in the permutation is 2/(i+1).

Finishing the analysis

So in the i'th stage we are spending O(1) time with probability (i-1)/(i+1), and O(i) time with probability 2/(i+1), so the expected work in this stage is $O(i) \ 2/(i+1) = O(1)$.

Hence the total expected time is $\mathrm{O}(n)$.

Expected time

Let T_i denote the expected time at stage i. Then $T_i = l$ with probability (i-2)/i and $T_i = i$ with probability 2/i

$$E(T_i) = \sum_{j=1}^{\infty} j \Pr(T_i = j) = 1 \Pr(T_i = 1) + i \Pr(T_i = i) = 3$$

Hence the expected total time is

$$E(\sum_{i=3}^{n} (T_i)) = \sum_{i=3}^{n} E(T_i) = \sum_{i=3}^{n} 3 = O(n)$$