

1. 🞧

- 2. Improving Deep Neural Networks: Hyperparameter Tuning, Regularization and Optimization
- 4. > Hyperparameter tuning, Batch Normalization, Programming Frameworks

 \equiv_{Menu}

Graded Assignment

Hyperparameter tuning, Batch Normalization, Programming Frameworks

Assignment details

Due Attempts

May 18, 11:59 PM +07May 18, 11:59 PM +070 left (3 attempts every 24 hours)

Submitted Time limit

May 13, 5:31 PM +07May 13, 5:31 PM +07 50 minutes per attempt50 min per attempt

Submissions

0 left (1 total within the time limit)

< PreviousNext >

^C Retry

Your grade

To pass you need at least 80%. We keep your highest score.

100%

View submission

See feedback

△Like

√Dislike

Pa Report an issue

Hyperparameter tuning, Batch Normalization, Programming Frameworks

Graded Assignment • 50 min

Question 1

With a relatively small set of hyperparameters, it is OK to use a grid search. True/False?

False

True

1 point

2.

Question 2

In a project with limited computational resources, which three of the following hyperparameters would you choose to tune? Check all that apply.

lphacalpha
mini-batch size
The $\beta\beta$ beta parameter of the momentum in gradient descent.
$\beta_1\beta$ 1 beta, start subscript, 1, end subscript, $\beta_2\beta$ 2 beta, start subscript, 2, end subscript in Adam.
εε∖epsilon in Adam. 1 point
3.
Question 3
Even if enough computational power is available for hyperparameter tuning, it is always better to babysit one model ("Panda" strategy), since this will result in a more custom model. True/False?
False
\circ
True
1 point
4.
Question 4
Knowing that the hyperparameter $\alpha\alpha$ alpha should be in the range of 0.0010.0010, point, 001 and 1.01.01, point, 0. Which of the following is the recommended way to sample a value for $\alpha\alpha$ alpha?
\circ
r = np.random.rand()
alpha = 0.001 + r*0.999
\circ
r = 4*np.random.rand()
alpha = 10**r
r = -3*np.random.rand()
alpha = 10**r
\circ
r = -5*np.random.rand()
alpha = 10**r
1 point
5.
Question 5
Finding new values for the hyperparameters, once we have found good ones for a model, should only be done if new hardware or computational power is acquired. True/False?
\circ
True

False 1 point	
6.	
Question 6	
When using batch normalization, it is OK to drop the parameter $b^{[l]}b[1]b$, start superscript, open bracket, l, close bracket, end superscript from the forward propagation because it is effectively canceled out during the normalization step, where we compute $z_{\text{norm}}^{[l]} = \frac{z^{[l]} - \mu}{\sigma} z_{\text{norm}}[1] = \sigma z[1] - \mu z$, start subscript, start text, o, r, m, end text, end subscript, start superscript, open bracket, l, close bracket, end superscript, equals, start fraction, z, start superscript, open bracket, l, close bracket, end superscript, minus, mu, divided by, sigma, end fraction. True/False?	., n,
\circ	
False	
True	
1 point	
7.	
Question 7	
In the normalization formula $z_{norm}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^2 + \varepsilon}} \text{znorm}(i) = \sigma 2 + \varepsilon$	
z(i)-μz, start subscript, n, o, r, m, end subscript, start superscript, left parenthesis, i, right parenthesis, end superscript, equals, start fraction, z, start superscript, left parenthesis, i, right parenthesis, end superscript, minus, mu, divided by, square root of, sigma, squared, plus, \varepsilon, end square root, end fraction, why do w use epsilon?	
\circ	
To speed up convergence	
\circ	
To have a more accurate normalization	
To avoid division by zero	
\circ	
In case $\mu\mu$ mu is too small	
1 point	
8.	
Question 8	
Which of the following is true about batch normalization?	
\circ	
The optimal values to use for $\gamma\gamma$ gamma and $\beta\beta$ beta are $\gamma = \sqrt{\sigma^2 + \epsilon}\gamma = -\sigma 2 + \epsilon$	
$$ gamma, equals, square root of, sigma, squared, plus, \epsilon, end square root and $\beta = \mu\beta = \mu$ beta, equals, mu.	
\circ	
$z_{norm}^{(i)} = \frac{z^{(i)} - \mu}{\sqrt{\sigma^2}} z_{norm}(i) = \sigma 2$	
$\sqrt{\sigma}$ $\sqrt{z(i)-\mu z}$, start subscript, n, o, r, m, end subscript, start superscript, left parenthesis, i, right parenthesis, end superscript, equals, start fraction, z, start superscript, left parenthesis, i, right parenthesis, end superscript, equals, start fraction, z, start superscript, left parenthesis, i, right parenthesis, end superscript, equals, start fraction, z, start superscript, left parenthesis, i, right parenthesis, end superscript, equals, start fraction, z, start superscript, left parenthesis, in the superscript, equals, start fraction, z, start superscript, left parenthesis, in the superscript, left parenthesis, left parent	eft
parenthesis, i, right parenthesis, end superscript, minus, mu, divided by, square root of, sigma, squared, end square root, end fraction.	/1t

The parameters $\gamma^{[l]}\gamma^{[l]}$ gamma, start superscript, open bracket, l, close bracket, end superscript and $\beta^{[l]}\beta^{[l]}$ beta, start superscript, open bracket, l, close bracket, end

superscript set the variance and mean of $\mathbf{z}^{[l]}\mathbf{z}$

 $[l] z, with, \\ \ \ widetilde, on top, start superscript, open bracket, \\ l, close bracket, end superscript.$

Oo
The parameters $\gamma^{[l]}\gamma[l]$ gamma, start superscript, open bracket, l, close bracket, end superscript and $\beta^{[l]}\beta[l]$ beta, start superscript, open bracket, l, close bracket, end superscript can be learned only using plain gradient descent. l point
9.
Question 9
A neural network is trained with Batch Norm. At test time, to evaluate the neural network we turn off the Batch Norm to avoid random predictions from the network. True/False?
\circ
True
False
1 point
10.
Question 10
Which of these statements about deep learning programming frameworks are true? (Check all that apply)
A programming framework allows you to code up deep learning algorithms with typically fewer lines of code than a lower-level language such as Python.
Even if a project is currently open source, good governance of the project helps ensure that it remains open even in the long term, rather than become closed or modified to benefit only one company.
Deep learning programming frameworks require cloud-based machines to run.
1 point + 6 ⁺
\blacksquare
Beta 0/0 used queries