

Universidade do Minho

Mestrado em Engenharia Informática

Engenharia dos Sistemas de Computação - 2014/2015 Análise de Traçados com strace

14 de Maio de 2015

Resumo

Este trabalho resultará num relatório de desempenho equivalente ao que é produzido diretamente pela aplicação iozone e produzir gráficos que representem os padrões temporais de acesso aos dados, para as operações de leitura/escrita e busca (Iseek).

Índice

Índice	2
Introdução	3
Strace e Parâmetros de teste	4
Estatísticas	5
Tempo	5
Total de Operações E/S	5
Banda utilizada pelo write	6
Tamanho de Blocos de Ficheiros no write	6
Sumário do write	7
Banda utilizada pelo read	8
Tamanho de Blocos de Ficheiros no read	8
Sumário do read	9
Estatísticas dos Ficheiros Criados	9
Conclusão	0

Introdução

O *strace* é uma ferramenta para a depuração de programas cujos traçados quando filtrados e analisados podem também ser usados para estudar o padrão de execução das aplicações. Monitoriza interações entre os programas e o kernel do Linux, como chamadas ao sistema, sinais e mudanças no estado do processo. O trabalho do *strace* só é possível devido ao *ptrace*.

Com a ajuda do ficheiro *refazStFd.py* disponibilizado pelo professor foi possível obter melhores informações sobre a utilização dos vários ficheiros temporários criados pelo *iozone*.

Strace e Parâmetros de teste

Para este trabalho utilizei o strace versão 4.5.19 instalada no cluster. Primeiramente foi necessário utilizar o *strace* da seguinte forma num job:

```
strace -T -ttt -o strace.out /opt/iozone/bin/iozone -R -i0 -i1 -i2 -i5 -g 1G
```

Com o ficheiro output strace.out passei-o pelo refazStFd.py para tratar dos ficheiros temporários.

```
/share/apps/IOAPPS/refazStFd.py < strace.out > ref.rsf
```

O *ref.rsf* já está tratado e então é altura de o passar pelo *strace_analyzer* para gerar algumas estatísticas para melhor compreender o que se passou naquela execução do *iozone*.

```
/share/apps/IOAPPS/strace_analyzer_ng_0.09.pl ref.rsf > stanREF.txt
```

Estatísticas

Tendo já o ficheiro pronto para análise, é possível obter as seguintes informações.

Tempo

O programa na totalidade demorou cerca de 1.32 segundos a concluir, sendo que 65.36% desse tempo foi em operações de E/S ao sistema perfazendo 0.86 segundos.

Elapsed Time for run	1.322435 (secs)
Total IO Time	0.864388 (secs)
Total IO Time Counter	1653
Percentage of Total Time	65.363369%

Total de Operações E/S

As seguintes chamadas ao sistema via operações de E/S foram contabilizadas da seguinte forma:

Command	Count
access	1
Iseek	387
stat	56
unlink	2
open	13
close	15
creat	1
fstat	6
fsync	12
read	519
write	567

Como se trata de um teste de escrita em disco, é normal que os comandos *Iseek*, *read* e *write* sejam os mais utilizados.

Banda utilizada pelo write

Com o histórico da chamada ao sistema write, foi possível gerar o seguinte gráfico onde podemos analisar a quantidade de informação escrita por segundo (*Banda/Bandwidth*) ao longo da execução. Os blocos são de 4096 Bytes.

Tamanho de Blocos de Ficheiros no write

Os ficheiros escritos foram maioritariamente utilizados com tamanhos compreendidos entre 1 KB e 8 KB, nomeadamente os 4096 Bytes (4KB) mencionados no teste acima. O número elevado do primeiro intervalo deve-se a pequenas escritas que ocorrem ao longo da execução.

IO Size Range	Number of syscalls
OKB < < 1KB	183
1KB < < 8KB	384
8KB < < 32KB	0
32KB < < 128KB	0
128KB < < 256KB	0
256KB < < 512KB	0
512KB < < 1000KB	0
1000KB < < 10MB	0
10MB < < 100MB	0
100MB < < 1GB	0
1GB < < 10GB	0
10GB < < 100GB	0
100GB < < 1TB	0
1TB < < 10TB	0

Sumário do write

Concluídas as análises anteriores à chamada *write* é possível tirar uma conclusão geral e algumas estatísticas interessantes com os valores obtidos.

WRITE SUMMARY	
Total number of Bytes written	1,575,255 (1.575255 MB)
Number of Write syscalls	567
Average (mean) Bytes per syscall	2,778.22751322751 (Bytes)
Standard Deviation	1,908.92071764713 (Bytes)
Mean Absolute Deviation	2,093.08630644254 (Bytes)
Median Bytes per syscall	4,096 (Bytes)
Median Absolute Deviation	1,317.77248677249 (Bytes)
Time for slowest write syscall (secs)	0.003611
Line location in file	190
Smallest write syscall size	1 (Byte)
Largest write syscall size	4096 (Bytes)

No total foi escrito 1.575 MB, num total de 567 chamadas ao *write*, como mostra a primeira estatística (*Total de Operações E/S*). Como a maior parte do teste se esteve pelos 4096 Bytes de bloco, então foi essa a Mediana nos Bytes lidos por chamada.

Banda utilizada pelo read

Com o histórico da chamada ao sistema read, foi possível gerar o seguinte gráfico onde podemos analisar a quantidade de informação lida por segundo (*Banda/Bandwidth*) ao longo da execução. Os blocos são de 4096 Bytes.

Tamanho de Blocos de Ficheiros no read

Os ficheiros escritos foram maioritariamente utilizados com tamanhos compreendidos entre 1 KB e 8 KB, nomeadamente os 4096 Bytes (4KB) mencionados no teste acima.

IO Size Range	Number of syscalls
OKB < < 1KB	3
1KB < < 8KB	516
8KB < < 32KB	0
32KB < < 128KB	0
128KB < < 256KB	0
256KB < < 512KB	0
512KB < < 1000KB	0
1000KB < < 10MB	0
10MB < < 100MB	0
100MB < < 1GB	0
1GB < < 10GB	0
10GB < < 100GB	0
100GB < < 1TB	0
1TB < < 10TB	0

Sumário do read

Concluídas as análises anteriores ao *read* é possível tirar uma conclusão geral e algumas estatísticas interessantes com os valores obtidos.

READ SUMMARY			
Total number of Bytes read	2,113,454 (2.113454 MB)		
Number of Read syscalls	519		
Average (mean) Bytes per syscall	4,072.16570327553 (Bytes)		
Standard Deviation	262.594685187763 (Bytes)		
Mean Absolute Deviation	3,809.57101808775 (Bytes)		
Median Bytes per syscall	4,096 (Bytes)		
Median Absolute Deviation	23.8342967244701 (Bytes)		
Time for slowest read syscall (secs)	0.000236		
Line location in file	1435		
Smallest read syscall size	832 (Bytes)		
Largest read syscall size	4096 (Bytes)		

No total foi lido perto de 2.1 MB, num total de 519 chamadas ao *read*, como mostra a primeira estatística (*Total de Operações E/S*). Como a maior parte do teste esteve pelos 4096 Bytes de bloco, então foi essa a Mediana nos Bytes escritos por chamada.

Estatísticas dos Ficheiros Criados

Ao todo foram criados 7 ficheiros temporários e a quantidade de informação utilizada foi a seguinte:

Filename	Read Bytes	Avg. Bytes/sec	Write Bytes	Avg. Bytes/sec
iozone.tmp_0	0	41,386,883.12	524,288	76,985,853.54
iozone.tmp_1	0	0	524,288	59,141,200.83
iozone.tmp_2	528,384	73,521,918.19	0	0
iozone.tmp_3	528,384	99,184,372.43	0	0
iozone.tmp_4	524,288	120,853,261.23	0	0
iozone.tmp_5	0	0	524,288	82,099,558.43
iozone.tmp_6	524,288	108,666,288.41	0	0

Conclusão

Com a ferramenta *strace* foi possível ter uma perspetiva diferente de como o *iozone* trabalha. Analisando de um ponto de vista de chamadas ao sistema via *syscalls* como *lseek*, *write* ou *read*.