Computerlinguistik I

Vorlesung im WiSe 2018/19 (M-GSW-09)

Prof. Dr. Udo Hahn

Lehrstuhl für Computerlinguistik
Institut für Germanistische Sprachwissenschaft
Friedrich-Schiller-Universität Jena

http://www.julielab.de

Informatischer Problemlösungszyklus

Abstraktes (computerlinguistisches) Modell

Datenstrukturen & Operationen

Algorithmus

Programmierspache(n)

Kodierung

Ausführung im Rechner

Informatischer Problemlösungszyklus

Modellbildung

- Abstraktion von allen unwesentlichen
 Details der Problemstellung im Hinblick auf die algorithmische Lösung
- Spezifikation der logischen Abhängigkeiten zwischen problemlösungsrelevanten Objekten
- (computer)linguistisches Wissen

Informatischer Problemlösungszyklus

- Algorithmisierung
 - Übersetzung der modellbezogenen Spezifikation in
 - eine Menge von Objekten (Datenstrukturen) mit bestimmten Eigenschaften und Beziehungen zueinander
 - die erlaubten Operationen auf diesen Objekten
 - Algorithmus: (möglichst präzise) Beschreibung einer Folge zulässiger Operationen auf den Objekten, um das Problem zu lösen
 - Computerlinguistische Kernexpertise

Informatischer Problemlösungszyklus

- Kodierung (Programmierung)
 - Übersetzung der algorithmischen Spezifikation in Konstrukte einer (geeigneten)
 Programmiersprache
- Ausführung des Programms
 - Hier erst Bezug auf konkrete Maschinen (Datenstrukturen und Algorithmen sind abstrakte Konstruktionen)
 - Test-Modifikationszyklus ... Dokumentation !
 - Informatisches Know-How

Morphologische Prozesse: Flexion - Deflexion

- Kombination von Grundformen mit Flexionsaffixen (Kasus, Numerus, Tempus)
 - Deklination
 - Land: Land, Landes, Lande, Länder, Ländern
 - Konjugation
 - landen: lande, landest, landet, landeten, gelandet
- primär syntaktische, nur minimale semantische Information, keine grundlegenden Wortartwechsel

Morphologische Prozesse: Derivation - Dederivation

- Kombination von Grundformen mit Derivationsaffixen
 - Land: landen, verlanden, anlanden,
 - Land: Landung, Verlandung, Anlandung
 - Land: ländlich, verländlichen, Verländlichung
- modifizierende semantische Information, häufig mit Wortartwechsel verbunden

Morphologische Prozesse: Komposition - Dekomposition

- Kombination von Grundformen mit Grundformen (mittels Fugeninfixen)
 - Land: Landnahme, Landflucht, Landgang
 - Land: Heimatland, Ausland, Bauland
 - Land: Landesrekord, Landesverrat, Landsmann
 - Land: Inlandsflug, Landesratspräsidentengattin
- starke semantische Modifikation, fast keine Wortartwechsel
 - ... aber: Rotkehlchen, Weichteile

Lemmatisierung vs. Wort-Parsing

Eingabe	Lemma	Wort-Parse
Töchtern	Tochter	
Hauses	Haus	
sagte	sagen	
Spiegelungen	Spiegelung	
leichter	leicht	
verlängerte	verlängert	
	verlängern	9

Lemmatisierung vs. Wort-Parsing

Eingabe	Lemma	Wort-Parse
Töchtern	Tochter	Tochter [+N, +FEM, +PL, +DAT]
Hauses	Haus	Haus [+N, +NEU, +SG, +GEN]
sagte	sagen	sagen [+V, +SG, {1P,3P}, +PAST]
Spiegelungen	Spiegelung	[Spiegel] _N [ung] _{ds}
leichter	leicht	[+N, +FEM, +PL, {NOM,GEN,DAT,AKK}] leicht [+Adj, +POS, +MAS, +SG, +NOM] [+Adj, +KOM]
verlängerte	verlängert	[ver] _{dp} [[lang] _{Adj} [er] _{ds}] _{Adj} [t] _{ds}
	verlängern	[+Part, {MAS,FEM,NEU}, +SG, + DEF, +NOM] [+Part, {FEM,NEU}, +SG, + DEF, +AKK] [ver] _{dp} [[lang] _{Adj} [er] _{ds}] _{Adj} [n] _{ds} [+V, +SG, {1P,3P}, +PAST]

Automat für Dederivation

NOMEN: hospital, motor, category, ...

ADJEKTIV: moral, concrete, tender, ...

n Anfangszustand

möglicher Endzustand

Automat für englische Zahlen von 1 bis 99

one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen

twenty, thirty, forty, fifty, sixty, seventy, eighty, ninety

one, two, three, four, five, six, seven, eight, nine

n Anfangszustand

• Die Zusammenfassung aller Elemente x, die eine Eigenschaft \mathcal{E} haben, wird als Menge M bezeichnet:

 $M := \{x \mid x \text{ hat die Eigenschaft } \mathcal{E} \}$

```
LAUF := \{x \mid x \text{ ist deutsches Lexem, das mit "LAUF" beginnt }\}
EoR := \{x \mid x \text{ ist deutsches Lexem, das auf "E" oder "R" endet }\}
```

- Seien M_1 und M_2 Mengen. M_1 ist Teilmenge von M_2 , falls aus $\mathcal{X} \in M_1$ stets $\mathcal{X} \in M_2$ folgt; symbolisch: $M_1 \subseteq M_2$.
- Gilt für zwei Mengen, M_1 und M_2 , einerseits $M_1 \subseteq M_2$ und andererseits $M_1 \neq M_2$, dann ist M_1 echte Teilmenge von M_2 ; symbolisch: $M_1 \subset M_2$

```
LAUF* := {Laufbahn, laufen, Lauffeuer, Laufmasche, Laufsteg} \subseteq LAUF 
LAUF \subset LA := {x \mid x ist deutsches Lexem, das mit "LA" beginnt } 
R := {x \mid x ist deutsches Lexem, das auf "R" endet } \subseteq EoR
```

- Gilt für zwei Mengen, M_1 und M_2 , sowohl $M_1 \subseteq M_2$ als auch $M_2 \subseteq M_1$, so folgt: $M_1 = M_2$ (Mengengleichheit).
- Die leere Menge ist die Menge, die kein Element enthält; symbolisch: {} oder Ø.
 - Bemerkung: Ø ist Teilmenge jeder Menge.
- Die Kardinalität einer endlichen Menge M ist die Anzahl ihrer Elemente; symbolisch: |M|

 Wenn M und N Mengen sind, dann charakterisiert die Menge

```
M \cap N := \{x \mid x \in M \text{ und } x \in N \}
den Durchschnitt
M \cup N := \{x \mid x \in M \text{ oder } x \in N \}
die Vereinigung
von M und N
```

```
LAUF*:= {Laufbahn, laufen, Lauffeuer, Laufmasche, Laufsteg}

LAUF* ∩ EoR

= { Lauffeuer, Laufmasche }

{ Lauffeuer, Laufmasche } ∪ { Lauffeuer, Laufpass }

= { Lauffeuer, Laufmasche, Laufpass }
```

- Wenn I = $\{1,...,n\}$ eine nichtleere Indexmenge ist und jedes $i \in I$ für M_i eine Menge charakterisiert, dann gilt als
 - Verallgemeinerung des Durchschnitts

$$\bigcap_{i \in I} M_i := \{x \mid x \in M_i \text{ für alle } i \in I\} = \bigcap_{i=1}^n M_i$$

- Verallgemeinerung der Vereinigung

$$\bigcup_{i \in I} M_i := \{x \mid x \in M_i \text{ f.mind.ein } i \in I\} = \bigcup_{i=1}^n M_i$$

 Die Menge aller Teilmengen einer Menge M heißt Potenzmenge:

$$\mathscr{D}(\mathsf{M}) := \{ \mathsf{N} \mid \mathsf{N} \subseteq \mathsf{M} \} = 2^{\mathsf{M}}$$

```
LAUFS := { Laufschritt, Laufstall, Laufsteg }

2<sup>LAUFS</sup> = { Ø, {Laufschritt}, {Laufstall}, {Laufsteg},

{Laufschritt, Laufstall}, {Laufschritt, Laufsteg},

{Laufstall, Laufsteg}, LAUFS }

| 2<sup>LAUFS</sup>| = 2<sup>3</sup> = 8
```

 Das Kartesische Produkt von endlich vielen Mengen M₁,.., M_n, n≥2, ist die Menge aller n-tupel:

```
M_1 \times M_2 \times ... \times M_n := \{ (m_1,...,m_n) \mid m_i \in M_i, 1 \le i \le n \}
```

```
LAUFB := { Laufbahn, Laufbursche }

LAUFS := { Laufschritt, Laufstall, Laufsteg }

LAUFB x LAUFS = { (Laufbahn, Laufschritt), (Laufbahn, Laufstall), (Laufbahn, Laufsteg), (Laufbursche, Laufschritt), 20 (Laufbursche, Laufsteg) }
```

• Eine (zweistellige) Relation ρ zwischen zwei Mengen M_1 und M_2 ist eine Teilmenge von M_1 x M_2 , d.h. $\rho \subseteq M_1$ x M_2 . Man schreibt auch m ρ n für (m,n) $\in \rho$.

```
GleicheLänge ⊆ DLexeme x DLexeme
GleicheLänge = { (du, da), (da, Ei), (er, es), (Dom, Bor), (Aal, Tor), (Bild, Tier), (Tiger, Sekte),... }
```

- Eine Relation ρ auf einer nichtleeren Menge M heißt Äquivalenzrelation, wenn
 - $m \rho m$ für jedes $m \in M$ (reflexiv)
 - aus $m \rho n$ folgt $n \rho m$ (symmetrisch)
 - aus $k \rho m$ und $m \rho n$ folgt $k \rho n$ (transitiv)

Beispiel:

GleicheLänge ist Äquivalenzrelation:

- (1) reflexiv: (du, du), (da, da), (Ei, Ei), (Aal, Aal), (Tiger, Tiger), ...
- (2) symmetrisch: (Aal, Tor) ⇒ (Tor, Aal), (Tiger, Sekte) ⇒ (Sekte, Tiger), ...
- (3) transitiv: (du, da), (da, Ei) \Rightarrow (du, Ei), (Bild, Tier), (Tier, Rand) \Rightarrow (Bild, Rand), ...

- Ist ρ eine Äquivalenzrelation auf einer Menge M, dann heißt jede Menge $[m] := \{ n \mid m \rho n \}$ für ein $m \in M$ die von m repräsentierte Äquivalenzklasse.
- Jede Äquivalenzrelation auf M bewirkt eine Einteilung von M in paarweise disjunkte (d.h. elementfreie) Äquivalenzklassen.

```
[da] = { Ei, er, es, du, ... }
[Aal] = { Tor, Bor, elf, vom, ... }
[Bild] = { Tier, Rand, grün, hell, ... }
```

- Eine Halbordnung (partielle Ordnung) auf einer Menge M ist eine Relation "<" auf M mit den Eigenschaften
 - aus k < m und m < n folgt: k < n (transitiv)
 - für kein $m \in M$ gilt: m < m (irreflexiv)

• Eine lineare Ordnung (totale Ordnung) auf einer Menge M ist eine Halbordnung "<" auf M, bei der für beliebige m, $n \in M$ entweder m < n oder n < m oder m = n gilt.

• Das Produkt zweier Relationen, ρ und σ auf M, ist festgelegt durch

```
\rho \sigma := \{ (x,z) \mid (x,y) \in \rho \text{ und } (y,z) \in \sigma \text{ f.e. } y \in M \}
```

Für eine beliebige Relation ρ auf M definiert

$$- \rho^0 := \{ (m,m) \mid m \in M \}$$
 die Diagonale,

$$-\rho^1 := \rho$$
 und $\rho^i := \rho^{i-1} \rho$ für $i>1$

$$- \rho^{+} := \bigcup_{i \geq 1} \rho^{i} = \rho^{1} \cup \rho^{2} \cup ... \cup \rho^{n}$$

die transitive Hülle von ρ ,

$$- \rho^* := \bigcup_{i \ge 0} \rho^i = \rho^0 \cup \rho^1 \cup \rho^2 \cup ... \cup \rho^n$$

die reflexive und transitive Hülle von p

Ist_Unterbegriff

```
= { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
(KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
Möbel), (Möbel, Artefakt) }
```

Ist_Unterbegriff

```
= { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
(KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
Möbel), (Möbel, Artefakt) }
```

Ist_Unterbegriff¹ = Ist_Unterbegriff

```
= { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
(KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
Möbel), (Möbel, Artefakt) }
```

```
Ist_Unterbegriff
              = { (VW-Golf, VW-PKW), (<u>VW-PKW</u>, PKW), (PKW, KFZ),
                                       (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
                                       Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff¹ = Ist_Unterbegriff
              = { (\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\textsuperscript{\
                                       (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
                                       Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
              = { (VW-Golf, PKW) }
```

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff¹ = Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ) }
```

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff¹ = Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt) }
```

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff¹ = Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
  (KFZ, Objekt) }
```

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff¹ = Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
  (KFZ, Objekt), (Schreibtisch, Artefakt) }
```

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff¹ = Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
  (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel, Objekt) }
```

Ist_Unterbegriff = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ), (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch, Möbel), (Möbel, Artefakt) } Ist_Unterbegriff² = Ist_Unterbegriff¹ Ist_Unterbegriff = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt), (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel, Objekt) } Ist_Unterbegriff³ = Ist_Unterbegriff² Ist_Unterbegriff = { (VW-Golf, KFZ) }

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
       (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
  (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel, Objekt) }
Ist_Unterbegriff<sup>3</sup> = Ist_Unterbegriff<sup>2</sup> Ist_Unterbegriff
  = { (VW-Golf, KFZ), (VW-PKW, Artefakt) }
```

Ist_Unterbegriff = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ), (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch, Möbel), (Möbel, Artefakt) } Ist_Unterbegriff² = Ist_Unterbegriff¹ Ist_Unterbegriff = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt), (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel, Objekt) } Ist_Unterbegriff³ = Ist_Unterbegriff² Ist_Unterbegriff = { (VW-Golf, KFZ), (VW-PKW, Artefakt), (PKW, Objekt) }

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
  (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel, Objekt) }
Ist_Unterbegriff<sup>3</sup> = Ist_Unterbegriff<sup>2</sup> Ist_Unterbegriff
  = { (VW-Golf, KFZ), (VW-PKW, Artefakt), (PKW, Objekt),
      (Schreibtisch, Objekt) }
```

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
       (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
       Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
  (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel, Objekt) }
Ist_Unterbegriff<sup>3</sup> = Ist_Unterbegriff<sup>2</sup> Ist_Unterbegriff
  = { (VW-Golf, KFZ), (VW-PKW, Artefakt), (PKW, Objekt),
       (Schreibtisch, Objekt) }
Ist_Unterbegriff<sup>4</sup> = Ist_Unterbegriff<sup>3</sup> Ist_Unterbegriff
  = { (VW-Golf, Artefakt) }
```

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
       (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
       Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
  (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel, Objekt) }
Ist_Unterbegriff<sup>3</sup> = Ist_Unterbegriff<sup>2</sup> Ist_Unterbegriff
  = { (VW-Golf, KFZ), (VW-PKW, Artefakt), (PKW, Objekt),
       (Schreibtisch, Objekt) }
Ist_Unterbegriff<sup>4</sup> = Ist_Unterbegriff<sup>3</sup> Ist_Unterbegriff
  = { (VW-Golf, Artefakt), (VW-PKW, Objekt) }
```

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
       (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
       Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
  (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel, Objekt) }
Ist_Unterbegriff<sup>3</sup> = Ist_Unterbegriff<sup>2</sup> Ist_Unterbegriff
  = { (VW-Golf, KFZ), (VW-PKW, Artefakt), (PKW, Objekt),
       (Schreibtisch, Objekt) }
Ist_Unterbegriff<sup>4</sup> = Ist_Unterbegriff<sup>3</sup> Ist_Unterbegriff
  = { (VW-Golf, Artefakt), (VW-PKW, Objekt) }
Ist_Unterbegriff<sup>5</sup> = Ist_Unterbegriff<sup>4</sup> Ist_Unterbegriff
  = { (VW-Golf, Objekt) }
```

```
Ist_Unterbegriff
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
       (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
       Möbel), (Möbel, Artefakt) }
Ist_Unterbegriff<sup>2</sup> = Ist_Unterbegriff<sup>1</sup> Ist_Unterbegriff
  = { (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
  (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel, Objekt) }
Ist_Unterbegriff<sup>3</sup> = Ist_Unterbegriff<sup>2</sup> Ist_Unterbegriff
  = { (VW-Golf, KFZ), (VW-PKW, Artefakt), (PKW, Objekt),
       (Schreibtisch, Objekt) }
Ist_Unterbegriff<sup>4</sup> = Ist_Unterbegriff<sup>3</sup> Ist_Unterbegriff
  = { (VW-Golf, Artefakt), (VW-PKW, Objekt) }
Ist_Unterbegriff<sup>5</sup> = Ist_Unterbegriff<sup>4</sup> Ist_Unterbegriff
  = { (VW-Golf, Objekt) }
Ist_Unterbegriff<sup>6</sup> = Ist_Unterbegriff<sup>5</sup> Ist_Unterbegriff = {}
```

```
Unterbegriff<sup>i</sup> = Ist_Unterbegriff<sup>1</sup> ∪
            Ist Unterbegriff<sup>2</sup> ∪ ... ∪ Ist_Unterbegriff<sup>n</sup>
  = { (VW-Golf, VW-PKW), (VW-PKW, PKW), (PKW, KFZ),
      (KFZ, Artefakt), (Artefakt, Objekt), (Schreibtisch,
      Möbel), (Möbel, Artefakt),
      (VW-Golf, PKW), (VW-PKW, KFZ), (PKW, Artefakt),
      (KFZ, Objekt), (Schreibtisch, Artefakt), (Möbel,
      Objekt),
      (VW-Golf, KFZ), (VW-PKW, Artefakt), (PKW, Objekt),
      (Schreibtisch, Objekt),
      (VW-Golf, Artefakt), (VW-PKW, Objekt),
      (VW-Golf, Objekt) }
                                                          44
```

Grundlagen formaler Sprachen: Alphabet

- Sei Σ ein beliebiges Alphabet, d.i. eine Menge von Symbolen oder Zeichen
 - Beispiele für verbreitete Alphabete:
 - {A,B,C, ..., X,Y,Z}
 - **{1,2,3, ..., 7,8,9, 0}**
 - **{0,1}**
 - { **•** , **·** , **•** }
 - {A[denin], G[uanin],
 T[hymin], C[ytosin]}

lateinisches Alphabet

indisch-arabisches

Zahlensystem

Binärzahlen

internat. Ampelalphabet

Basen-Alphabet der DNA

Grundlagen formaler Sprachen: Wörter

- Seien Wörter (Sätze, Strings, Ketten) über einem Alphabet Σ in der folgenden Weise definiert:
 - 1. ϵ ist ein Wort über Σ (ϵ ist das Leerwort, das keine Symbole hat)
 - 2. falls χ ein Wort über Σ und $\alpha \in \Sigma$ ist, dann ist χ α ein Wort über Σ
 - 3. γ ist ein Wort über Σ genau dann, wenn sein Bildung aus (1) oder (2) folgt

Grundlagen formaler Sprachen: Konkatenation von Wörtern

- Das Wort ω o τ := ω τ := $\omega_1...\omega_m$ τ_1 ... τ_n heißt Konkatenation von ω und τ , falls $\omega = \omega_1...\omega_m$ und $\tau = \tau_1...\tau_n$ (ω_i , $\tau_j \in \Sigma$) Wörter über Σ sind; "o" (sprich: "Kringel") ist der Konkatenationsoperator.
 - Für alle Wörter ω gilt: $\omega \circ \varepsilon = \varepsilon \circ \omega = \omega$

Beispiele für Konkatenationen:

- ABC o X = ABCX
- 24 o 24 = 2424
- wort o stamm = wortstamm

Formale Grundlagen von Automaten: formale Sprache

- Eine (formale) Sprache $\mathcal L$ über einem Alphabet Σ ist eine Menge von Ketten über Σ .
- Sei ferner Σ^* (bzw. Σ^*) die Menge *aller* Ketten über Σ unter Einschluss (bzw. Ausschluss) von ε .
- Dann gilt für jede Sprache $\mathcal L$ über Σ :

$$\mathcal{L} \subseteq \Sigma$$
 *

Beispiele für formale Sprachen

```
• \Sigma = \{A,B,C,...,X,Y,Z,\_\}
   -\mathcal{L}_1 = \{GUTEN\_TAG, GUTEN, TAG\}
          = {GUTEN, GUTEN_TAG, TAG}
   -\mathcal{L}_2 = \{\text{GTNTG}, \text{GTN}, \text{TG}\}
   -\mathcal{L}_3 = \{TNT, TN, T\}
   -\mathcal{L}_{4} = \{GG, GTTG, GGGG, GGTTGG, ...\}
   -\mathcal{L}_5 = \{A, C, G, T, ACCGTG, ...\}
```

Beispiele für formale Sprachen

•
$$\Sigma = \{0,1,2,3,...,7,8,9,+,-,=\}$$

 $-\mathcal{L}_1 = \{5+7=20-8,5+7=5+8,5759=57-59\}$
 $-\mathcal{L}_2 = \{5+=7-2=,+++,1-11782---3\}$
 $-\mathcal{L}_3 = \{3,33,333,3333,33333,...\}$