Machine Learning HW7 Report

學號:B05705053 系級:資管三 姓名:蔡涵如

1. PCA of color faces:

a. 請畫出所有臉的平均。

b. 請畫出前五個 Eigenfaces,也就是對應到前五大 Eigenvalues 的 Eigenvectors。

c. 請從數據集中挑出任意五張圖片,並用前五大 Eigenfaces 進行 reconstruction,並畫出結果。

d. 請寫出前五大 Eigenfaces 各自所佔的比重,請用百分比表示並四捨五入

到小數點後一位。

排名	1	2	3	4	5
比重	4.1%	2.9%	2.4%	2.2%	2.1%

2. Image clustering:

a. 請實作兩種不同的方法,並比較其結果(reconstruction loss, accuracy)。 (不同的降維方法或不同的 cluster 方法都可以算是不同的方法)

實作兩種的方法皆是用 auto encoder 將code 降到 3,072 維 方式 ,再用 pca降到1100,嘗試過的許多模型最好的方法是用降到越多code越好,但是有一點疑問是 在這個task裡面降到越多為會越好,相較起來gaussian mixture得方法比pca快而且 performace最好。

	Private leaderboard	Public leaderboard	Reconstruction loss(mse)
auto-encoder 3072 +pca + gaussian mixture	0.98743	0.98761	0.0049
auto-encoder 3072 +pca 1100 +k-means	0.98728	0.98754	0.0049

b. 預測 visualization.npy 中的 label,在二維平面上視覺化 label 的分佈。 (用 PCA, t-SNE 等工具把你抽出來的 feature 投影到二維,或簡單的取前兩維2的 feature)

其中visualization.npy 中前 2500 個 images 來自 dataset A,後 2500 個 images 來自 dataset B,比較和自己預測的 label 之間有何不同,準確率達到0.9862,雖然tsne的視覺化效果比較好但是準確率只有0.96,相較之下蛤是PCA的降維方式比較適合kmeans的分類,但是覺化的部分tsne的表現較好。

c. 請介紹你的model架構(encoder, decoder, loss function...),並選出任意 32張圖片,比較原圖片以及用decoder reconstruct的結果。

autoencoder 架構 將model降到3,072,而autoencoder,降維得效果可以發現到其實轉得效果還滿不錯得,基本上reconstruct的能力很好,會有一點模糊的效果:以下圖所示,loss function 採用MSE。

Layer (type) 	Output	Shape	Param #
input_layer (Conv2D)	(None,	32, 32, 256)	7168
max_pooling2d_3 (MaxPooling2	(None,	16, 16, 256)	0
batch_normalization_7 (Batch	(None,	16, 16, 256)	1024
conv2d_7 (Conv2D)	(None,	16, 16, 48)	110640
code_layer (MaxPooling2D)	(None,	8, 8, 48)	0
batch_normalization_8 (Batch	(None,	8, 8, 48)	192
conv2d_8 (Conv2D)	(None,	8, 8, 48)	20784
up_sampling2d_4 (UpSampling2	(None,	16, 16, 48)	0
batch_normalization_9 (Batch	(None,	16, 16, 48)	192
conv2d_9 (Conv2D)	(None,	16, 16, 256)	110848
up_sampling2d_5 (UpSampling2	(None,	32, 32, 256)	0
batch_normalization_10 (Batc	(None,	32, 32, 256)	1024
conv2d_10 (Conv2D)	(None,	32, 32, 3)	771

