Example 9

 $\triangle ABC$ is a right triangle with $\angle ACB = 90^\circ$. Points D and E are the midpoints on sides AB and AC, respectively. Extend BC to F such that $CF = \frac{1}{2}BC$. Connect CF. Show that $\angle B = \angle F$.

Solution: Draw DC, the median of triangle ABC. Since DC is the median, by Theorem 1.3, DC = BD.

Since $AD = \frac{1}{2}FC$, AD = DN. So that $\angle B = \angle DCB$. Since points D and E are the midpoints on sides AB and AC, $DE = \frac{1}{2}BC = CF$ and DE//BC. Thus DEFC is a

parallelogram. So DC//EF and $\angle DCB = \angle F$. Since $\angle B = \angle DCB, \angle B = \angle F$.