Random Variables and Probability Distributions

by Dr. Mohd. Javed

November 3, 2020

Random Variable

- A Random variable is used to map the outcome of a random process to numbers.
- A Random Variable X takes on a defined set of values with different probabilities.
 - For example, if you roll a die, the outcome is random(not fixed) and there are 6 possible, each of which occur with probability one-sixth.

Event	Probability
--------------	-------------

X	p(x) = P(X = x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Figure: Rolling of a die

Random Variables

It can be discrete or continuous

- **Discrete**: random variables have a countable number of outcomes.
 - For example yes/no, dice, counts etc.
- Continuous: random variables have an infinite continuum of possible values.
 - For example blood pressure, weight, the speed of a car, the real numbers from 1 to 6 etc.

Probability Functions

- A probability functions maps the possible values of x against their respective probabilities of occurrence, p(x)
- p(x) is a number from 0 to 1.0.
- The area under a probability function is always 1.

Probability Density Functions

- A probability density function is most commonly associated with absolutely continuous univariate distributions.
- A random variable X has density f_X , where f_X is a non-negative Lebesgue-integrable function, if:

$$\Pr[a \le X \le b] = \int_a^b f_X(x) \, dx.$$

• If F_X is the cumulative distribution function of X, then:

$$F_X(x) = \int_{-\infty}^x f_X(u) du, \text{ and (if } f_X \text{ is continuous at } x)$$

$$f_X(x) = \frac{d}{dx} F_X(x).$$

Discrete example: roll of a die

Figure: Rolling of a die

Discrete example: roll of a die

Event Probability

X	p(x) = P(X = x)
1	1/6
2	1/6
3	1/6
4	1/6
5	1/6
6	1/6

Figure: Rolling of a die

Cumulative distribution function (CDF)

- The cumulative distribution function of a real-valued random variable X is the function given by: $F_X(x) = P(X \le x)F_X(x) = P(X \le x)$ where the right-hand side represents the probability that the random variable X takes on a value less than or equal to x.
- The probability that X lies in the semi-closed interval (a, b], where a < b, is therefore

$$P(a < X \le b) = F_X(b) - F_X(a)P(a < X \le b) = F_X(b) - F_X(a)$$

Cumulative distribution function (CDF)

Figure: CDF example

Cumulative distribution function (CDF)

Х	$P(x \leq A)$
1	$P(x \le 1) = 1/6$
2	$P(x \le 2) = 2/6$
3	$P(x \le 3) = 3/6$
4	$P(x \le 4) = 4/6$
5	$P(x \le 5) = 5/6$
6	$P(x \le 6) = 6/6$

Table: CDF table

Examples

• What's the probability that you roll a 3 or less?

What's the probability that you roll a 5 or higher?

Examples

- What's the probability that you roll a 3 or less? Ans: $P(x \le 3) = 1/2$
- ② What's the probability that you roll a 5 or higher? Ans : $P(x \ge 5) = 1 P(x \le 4) = 1 2/3 = 1/3$

Practice Problem

• Which of the following are probability functions?

$$f(x) = .25 \text{ for } x = 9,10,11,12$$

$$(x) = (x^2 + x + 1)/25 \text{ for } x = 0,1,2,3$$

Practice Problem

• Which of the following are probability functions?

$$f(x) = .25 \text{ for } x = 9,10,11,12$$
 Ans : Yes

$$f(x) = (3-x)/2 \text{ for } x = 1,2,3,4$$
 Ans : No

•
$$f(x) = (x^2 + x + 1)/25$$
 for $x = 0,1,2,3$
Ans : No

Types of Discrete Distribution

There are a variety of discrete probability distributions that you can use to model different types of data.

- Bernoulli distribution to model binary data, such as coin tosses.
- **Binomial distribution** is SUCCESS or FAILURE outcome in an experiment or survey that is repeated multiple times.
- Poisson distribution to model count data, such as the count of library book checkouts per hour.
- **Uniform distribution** to model multiple events with the same probability, such as rolling a die

Uniform distribution

- Uniform distributions are probability distributions with equally likely outcomes.
- This distribution is defined by two parameters, a and b:
 - a is the minimum.
 - b is the maximum.

The distribution is written as U(a,b).

• The following graph shows the distribution with a = 1 and b = 3:

Uniform distribution

Expected Value and Variance

Expected Value

The expected value (i.e. the mean) of a uniform random variable X is:

$$E(X) = (1/2) (a + b)$$

This is also written equivalently as:

$$E(X) = (b + a) / 2.$$

"a" in the formula is the minimum value in the distribution, and "b" is the maximum value.

Variance

The variance of a uniform random variable is:

$$Var(x) = (1/12)(b-a)2$$

Poisson distribution

 The Poisson distribution is used to model the number of events occurring within a given time interval. The formula for the Poisson probability mass function is

$$p(x;\lambda) = \frac{e^{-\lambda}\lambda^x}{x!} for x = 0, 1, 2, \tag{1}$$

 λ is the shape parameter which indicates the average number of events in the given time interval.

Shape of Poisson Distribution

Figure: Poisson Distribution

Shape of Poisson Distribution

We observe that the Poisson distributions

- are unimodal;
- **2** exhibit positive skew (that decreases as λ increases);
- **3** are centred roughly on λ ;
- have variance (spread) that increases as λ increases.

Poisson distribution

Expected Value and Variance

Expected Value

The expected value (i.e. the mean) of a Poisson random variable X is: $E(X) = \lambda$

Variance

The variance of a Poisson random variable is:

$$Var(x) = \sqrt{\lambda}$$

Bernoulli Distribution

- The Bernoulli distribution is a discrete distribution having two possible outcomes labelled by $\mathsf{n}=0$ and $\mathsf{n}=1$ in which $\mathsf{n}=1$ ("success") occurs with probability p and $\mathsf{n}=0$ ("failure") occurs with probability $\mathsf{q}=1$ -p, where $0<\mathsf{p}<1$.
- It therefore has probability density function

$$p(n) = \begin{cases} 1 - p, & \text{for } n = 0 \\ p, & \text{for } n = 1 \end{cases}$$
 (2)

which can also be written

$$p(n) = p^{n}(1-p)^{1-n}.$$
 (3)

• The performance of a fixed number of trials with fixed probability of success on each trial is known as Bernoulli trial.

Bernoulli distribution

Expected Value and Variance

Expected Value

The expected value (i.e. the mean) of a Bernoulli random variable \boldsymbol{X} is:

$$E(X) = p$$

Variance

The variance of a Bernoulli random variable is:

$$Var(x) = p(1-p)$$

Binomial Distribution

- The binomial distribution gives the discrete probability distribution $P_p(\mathsf{n/N})$ of obtaining exactly n successes out of N Bernoulli trials (where the result of each Bernoulli trial is true with probability p and false with probability $\mathsf{q}{=}1\text{-p}$).
- The binomial distribution is therefore given by

$$P_p(n/N) = {N \choose n} p^n q^{N-n} = \frac{N!}{n!(N-n)!} p^n q^{N-n}$$

where $\binom{N}{n}$ is a binomial coefficient.

Figure: The above plot shows the distribution of n successes out of N=20 trials with p=q=1/2.

Binomial distribution

Expected Value and Variance

Expected Value

The expected value (i.e. the mean) of a Binomial random variable X is:

$$E(X) = np$$

Variance

The variance of a Binomial random variable is:

$$Var(x) = np(1-p)$$

Continuous Distribution

Gaussian Distribution

- Continuous random variables are described with probability density function (pdfs) curves
- Normal pdfs are recognized by their typical bell-shape.

Figure: Age distribution of a pediatric population with overlying Normal pdf.

Gaussian Distribution

• The general form of its probability density function is

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} \tag{4}$$

- The parameter μ is the mean or expectation of the distribution (and also its median and mode), while the parameter σ is its standard deviation.
- The variance of the distribution is σ^2
- A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate.

Gaussian Distribution

Properties of a gaussian distribution

- The mean, mode and median are all equal.
- The curve is symmetric at the center (i.e. around the mean, μ).
- Exactly half of the values are to the left of center and exactly half the values are to the right.
- The total area under the curve is 1.

Gaussian distribution

Expected Value and Variance

Expected Value

The expected value (i.e. the mean) of a Standard Gaussian random variable X is:

$$E(X) = 0$$

Variance

The variance of a Standard Gaussian random variable is:

$$Var(x) = 1$$

The End