Министерство науки и высшего образования Российской Федерации ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Факультет безопасности информационных технологий

Дисциплина:

«Теория информационной безопасности и методология защиты информации»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №1

«Исследование баз данных угроз и уязвимостей. Калькулятор уязвимостей»

	Выполнил:
	студент группы N3246,
	Суханкулиев Мухаммет
	Aberl
	(подпись)
	Проверила:
Корж	кук Виктория Михайловна,
доцент (квалификационная катего	ррия "ординарный доцент")
	(отметка о выполнении)
	(подпись)

Санкт-Петербург 2024 г.

СОДЕРЖАНИЕ

Введе	ние		3
1	Иссле	едование баз данных угоз и уязвимостей	4
1.1	ФС	ТЭК	4
	1.1.1	Банк данных угроз безопасности информации ФСТЭК	4
1.2	CV	E (NVD)	6
	1.2.1	Основные компоненты CVE:	6
1.3	Vu	lners	7
	1.3.1	Основные возможности Vulners:	7
1.4	Exp	ploit-DB	8
	1.4.1	Основные возможности Exploit-DB:	8
1.5	X-l	Force	9
	1.5.1	Основные возможности X-Force:	9
2	Калы	сулятор CVSS. Метрики	11
2.1	Оц	енка уязвимости по базовым метрикам (в)	11
2.2	Оц	енка уязвимости по временным метрикам (в)	11
2.3	Оц	енка уязвимости по контекстным метрикам (в)	11
2.4	От.	личия CVSS v3 и v4	12
Заклю	чение		13
Списо	к испо	ользованных источников	14

ВВЕДЕНИЕ

Цель работы – получить знания и навыки работы с различными базами данных угроз и уязвимостей. Изучение принципов оценки уязвимостей с использованием калькулятора CVSS.

Для достижения поставленной цели необходимо решить следующие задачи:

- Ознакомиться с обязательным материалом, представленным в задании к лабораторной работе.
 - Изучить и проанализировать пять баз данных угроз и уязвимостей.
 - Провести расчет оценки уязвимостей с использованием калькулятора CVSS.

1 ИССЛЕДОВАНИЕ БАЗ ДАННЫХ УГОЗ И УЯЗВИМОСТЕЙ

Банк данных угроз безопасности — это сведения об основных угрозах и уязвимостях, которые характерны для автоматизированных систем управления, государственных информационных систем, а с недавних пор применимы и для информационных систем персональных данных.

1.1 ФСТЭК

ФСТЭК (Федеральная служба по техническому и экспортному контролю) России занимается защитой государственной информации и контролем за экспортом технологий и продукции, которые могут быть использованы в военных целях. ФСТЭК России взаимодействует с государственными и частными организациями, международными структурами, научными и образовательными учреждениями, а также общественными и профессиональными организациями. Это позволяет эффективно координировать действия по обеспечению информационной безопасности и адаптироваться к новым киберугрозам.

1.1.1 Банк данных угроз безопасности информации ФСТЭК

База данных ФСТЭК России включает несколько ключевых блоков информации, которые обеспечивают комплексный подход к анализу и управлению угрозами и уязвимостями в информационных системах:

- 1. Угрозы (на данный момент 222 шт.)
 - а. Описание угрозы
 - b. Источники угрозы. (Тип нарушителя и его минимально необходимый функционал (потенциал))
 - с. Объект воздействия
 - d. Последствия реализации угрозы
- 2. Уязвимости (на данный момент 60210 шт.)
 - а. Описание уязвимости
 - b. Компания, ПО в котором обнаружена уязвимость
 - с. Тип ошибки и класс уязвимости, обнаруженной в программном обеспечении
 - d. Уровень опасности уязвимости
 - е. Возможные меры по устранению уязвимости
 - f. Информация об устранении

g. Прочая информация...

3. Тестирование обновлений

Раздел, в котором предоставляется информация о тестировании обновлений различного ΠO .

- а. Информация о тестируемом объекте
- b. Результаты тестирования

4. Документы

В этом разделе собраны различные нормативные акты, инструкции, методические указания, технические стандарты и другие официальные документы, которые регламентируют деятельность в области защиты информации.

Рисунок 1 — Скриншот главной страницы bdu.fstec.ru

Так же стоит учесть некоторые проблемы ФСТЭК, среди которых выделяются:

- 1. **Спорная легитимность**: Методика ссылается на устаревшие постановления, что ставит под сомнение её актуальность.
- 2. **Привязка к персональным данным**: Методика ориентирована только на системы, работающие с персональными данными, что затрудняет её применение для ГИС и других систем.
- 3. **Отсутствие связи с БДУ ФСТЭК**: это приводит к несоответствиям с современными нормативными актами.

1.2 CVE (NVD)

Миссия программы **CVE** (Common Vulnerabilities and Exposures) ® заключается в выявлении, определении и каталогизации публично раскрытых уязвимостей кибербезопасности. Каждой уязвимости присваивается уникальный идентификатор CVE, который упрощает процесс их идентификации и поиска информации.

На основе базы CVE формируется **NVD** (National Vulnerability Database) — это национальная база уязвимостей, управляемая Национальным институтом стандартов и технологий США (NIST).

1.2.1 Основные компоненты CVE:

- Уникальные идентификаторы для уязвимостей (CVE-идентификаторы);
- Краткое описание уязвимости;
- Дата публикации и исправления;
- Оценка по CVSS (Common Vulnerability Scoring System).

Рисунок 2 — Скриншот главной страницы www.cve.org

Рисунок 3 — Скриншот главной страницы <u>nist.gov</u>

1.3 Vulners

Vulners — это платформа для поиска и анализа уязвимостей, которая собирает и агрегирует данные из множества различных источников

1.3.1 Основные возможности Vulners:

- Позволяет искать уязвимости по ключевым словам, CVE-идентификаторам и другим параметрам.
- Система может быть интегрирована с решениями для управления событиями информационной безопасности (**SIEM**), что помогает автоматизировать процесс управления уязвимостями.
- Предоставляет информацию о метриках CVSS для более точной оценки уровня опасности уязвимостей.
- Предоставляет информацию о доступных эксплойтах для обнаруженных уязвимостей, что позволяет оценить вероятность и способы их эксплуатации.
- Платформа имеет АРІ для автоматизированного сбора данных и интеграции с другими системами безопасности.

Рисунок 4 – Скриншот главной страницы vulners.com

1.4 Exploit-DB

Exploit-DB — это публичная база данных эксплойтов, которая предоставляет пользователям доступ к информации о готовых эксплойтах, используемых для эксплуатации известных уязвимостей.

1.4.1 Основные возможности Exploit-DB:

- Включает тысячи проверенных эксплойтов для программного обеспечения и операционных систем.
- Позволяет искать эксплойты по ключевым словам, категориям и CVEидентификаторам.
- Exploit-DB тесно интегрирован с фреймворком Metasploit, что делает возможным автоматическое использование эксплойтов для тестирования безопасности.
- Эксплойты классифицируются по типам уязвимостей (например, переполнение буфера, SQL-инъекции), что упрощает их поиск и анализ.

Информация из официального сайта: SearchSploit – Руководство

В наш репозиторий Exploit Database на GitLab включен searchsploit, инструмент поиска из командной строки для Exploit-DB.

Рисунок 5 – Скриншот главной страницы exploit-db.com

1.5 X-Force

IBM® X-Force Exchange — это облачная платформа для обмена информацией об угрозах, с помощью которой можно быстро исследовать новейшие глобальные угрозы безопасности, собирать полезную информацию, консультироваться с экспертами и сотрудничать с коллегами.

1.5.1 Основные возможности X-Force:

- Обширная библиотека угроз: Включает сведения о тысячах известных киберугроз и уязвимостей.
- Платформа предоставляет актуальные данные и аналитику о новых и появляющихся угрозах.
- Платформа может быть интегрирована с другими продуктами IBM для защиты информации, такими как QRadar и IBM Resilient.
- Пользователи могут совместно обсуждать и анализировать угрозы, обмениваясь информацией с другими специалистами по безопасности.
- X-Force предоставляет API для доступа к данным об угрозах и их автоматизированного использования в системах безопасности.

Рисунок 6 – Скриншот главной страницы <u>ibmcloud.com</u>

2 КАЛЬКУЛЯТОР CVSS. МЕТРИКИ

Common Vulnerability Scoring System — открытый стандарт, используемый для

расчета количественных оценок уязвимости в безопасности компьютерной системы,

обычно с целью понять приоритет её исправления.

2.1 Оценка уязвимости по базовым метрикам (в)

Ситуация: Атака высокой сложности будет проводиться на физический уровень

системы, при этом оказывается влияние на другие компоненты системы. Однако атака

приводит только к нарушению всех свойств ИБ низкого уровня. Взаимодействие с

пользователем не требуется, а уровень привилегий - низкий.

Базовая оценка (BS): 4.5

2.2 Оценка уязвимости по временным метрикам (в)

Ситуация: Предполагается, что есть РоС-код для средств эксплуатации, не

определена доступность средств устранения и подтверждена степень доверия к источнику

информации об уязвимости.

Временная оценка (TS): 4.3

2.3 Оценка уязвимости по контекстным метрикам (в)

Ситуация: К уровню обеспечения КЦД заданы высокие требования, влияние на них

также оказывается высоким. При этом проводится атака низкой сложности на локальный

уровень системы. Уровень привилегий в данном случае - высокий, взаимодействия с

пользователем не происходит. Оказывается ли влияние на другие компоненты системы -

неизвестно.

Контекстная оценка (ES): 7

Вектор CVSS v3:

(AV:P/AC:H/PR:L/UI:N/S:C/C:L/I:L/A:L/E:P/RL:X/RC:CCR:H/IR:H/AR:H/MAV:L/M

AC:L/MPR:H/MUI:N/MC:H/MI:H/MA:H)

11

2.4 Отличия CVSS v3 и v4

CVSS 4.0 имеет более тонкую детализацию, достигаемую за счет введения новых базовых метрик и значений, которые позволяют улучшить систему оценки: чем больше метрик используется для оценки уязвимости, тем качественнее она будет.

Одним из ключевых улучшений CVSS v.4.0 является внедрение более точной детализации в ее базовых метриках.

- 1. Новая базовая метрика "**Требования к атаке (AT)**", которая разделяет предыдущую метрику "Сложность атаки (AC)" на две.
- 2. В CVSS v4.0 показатель "Взаимодействие с пользователем (UI)" теперь имеет показатели: **None (N)**, **Passive (P)**, **Active (A)**.
- 3. Показатель "Область применения (S)" был отменен в пользу двух наборов показателей воздействия, которые отражают дополнительные аспекты риска, такие как:
 - Влияние уязвимости на систему конфиденциальность (VC), целостность (VI), доступность (VA).
 - Влияние на последующую систему (системы) конфиденциальность (SC), целостность (SI), доступность (SA).
- 4. С новой версией CVSS произошли изменения в названии группы временных метрик.
- 5. В CVSS v.4.0 внесена новая необязательная группа показателей, называемая "Дополнительная группа метрик". Группа включает в себя показатели, которые описывают и измеряют дополнительные внешние атрибуты уязвимости: Безопасность (S), Возможность автоматизации (AU), Восстановление (R), Контроль над ресурсами (V), Усилия по реагированию (RE), Срочность устранения уязвимости (U).

ЗАКЛЮЧЕНИЕ

В ходе работы были изучены различные базы данных угроз и уязвимостей, а также проведен расчет оценки уязвимостей с использованием калькулятора CVSS. Это позволило получить и закрепить навыки работы с базами данных угроз и уязвимостей, а также понять принципы оценки уязвимостей и приоритезации их исправления.

Полученные знания и навыки будут полезны для дальнейшей учебы в области информационной безопасности.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Google-диск 24/25 ТИБиМЗИ Ретроспективный анализ подходов к формированию множества угроз информации https://drive.google.com/file/d/11fXC8dlwv-krVRNaloXpFFVb6ZRS7q5_/view?usp=sharing (дата обращения: 11.09.2024)
- 2. Google-диск 24/25 ТИБиМЗИ Методический документ: Методика оценки угроз безопасности информации https://drive.google.com/file/d/12hfnnuQpKGi85KcCYPZX87DfLrLCGXbO/view?usp=sharing (дата обращения: 11.09.2024)
- 3. <u>Проблемы действующей методики определения актуальных угроз от ФСТЭК / Хабр</u> (habr.com) (дата обращения: 09.09.2024)
- 4. <u>Что такое банк угроз ФСТЭК? | RTM Group (rtmtech.ru)</u> (дата обращения: 09.09.2024)
- 5. bdu.fstec.ru/threat (дата обращения: 09.09.2024)
- 6. <u>Оценка уязвимостей CVSS 3.0 / Хабр (habr.com)</u>, (дата обращения: 10.09.2024)
- 7. <u>Сравнение CVSS v.3.1 и v.4.0 / Хабр (habr.com)</u> (дата обращения: 10.09.2024)
- 8. <u>Common Vulnerability Scoring System Википедия (wikipedia.org)</u> (дата обращения: 10.09.2024)
- 9. <u>Common Vulnerability Scoring System Version 4.0 Calculator (first.org)</u> (дата обращения: 10.09.2024)
- 10. <u>Меряем уязвимости: классификаторы и метрики компьютерных брешей Хакер (хакер.ru)</u> (дата обращения: 23.09.2024)
- 11. Overview | CVE (дата обращения: 23.09.2024)
- 12. NVD Home (nist.gov) (дата обращения: 23.09.2024)
- 13. <u>Vulners Гугл для хакера. Как устроен лучший поисковик по уязвимостям и как им</u> пользоваться / Хабр (habr.com) (дата обращения: 23.09.2024)
- 14. <u>CVE Database Security Vulnerabilities and Exploits | Vulners.com</u> (дата обращения: 23.09.2024)
- 15. Exploit Database Exploits for Penetration Testers, Researchers, and Ethical Hackers (exploit-db.com) (дата обращения: 23.09.2024)
- 16. IBM X-Force Exchange (ibmcloud.com) (дата обращения: 23.09.2024)