Μαθηματική Επαγωγή

Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου

Επιμέλεια διαφανειών: Δ. Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Τεχνικές Απόδειξης

- Εξαντλητική μέθοδος: πεπερασμένος αριθμός περιπτώσεων.
- □ Απόδειξη για p → q:
 - Ευθέως: αιτιολογούμε ότι συμπέρασμα q έπεται από υπόθεση p.
 - Αντιθετοαναστροφή: αιτιολογούμε ότι η άρνηση της υπόθεσης (¬p) έπεται από την άρνηση του συμπεράσματος (¬q).
 - \Box Ιδιότητα $p \rightarrow q ≡ ¬q \rightarrow ¬p$
 - \square Π.χ. αν n^2 περιττός, τότε η περιττός.
 - Απαγωγή σε άτοπο: Υποθέτουμε ότι $\neg(p \rightarrow q) \equiv p \land \neg q$ και αιτιολογούμε αντίφαση.
 - \square Π.χ. το $\sqrt{2}$ είναι άρρητος (Πυθαγόρας).
- Μαθηματική Επαγωγή
 - Εκμεταλλευόμαστε διάταξη με minimal στοιχεία σε ένα σύνολο, και αποδεικνύουμε ιδιότητες για τα στοιχεία του.

Αποδείξεις Ύπαρξης

- Κατασκευαστικές αποδείξεις ὑπαρξης.
 - Αλγόριθμος κατασκευής του ζητούμενου.
- Μη κατασκευαστικές αποδείξεις ὑπαρξης.
 - Αρχή περιστερώνα.
 - Αν m μπάλες σε n κουτιά και m > n,
 υπάρχει κουτί έχει περισσότερες από 1 μπάλες.
 - Πιθανοτική μέθοδος.
 - Αν κάτι έχει θετική πιθανότητα να επιλεγεί από (κατάλληλο) δειγματοχώρο, τότε υπάρχει.
 - Επιχειρήματα ισοτιμίας και καταμέτρησης.
 - Κάθε ακυκλικό κατευθυνόμενο γράφημα έχει ≥ 1 «καταβόθρα» / minimal στοιχείο.
 - Κάθε (μη κατευθυνόμενο) γράφημα έχει άρτιο αριθμό κορυφών περιττού βαθμού.
 - Σε κατευθυνόμενο γράφημα με in-degree ≤ 1 και out-degree ≤ 1, αν ν με in-degree(ν) = 0, τότε υπάρχει κορυφή w με out-degree(w) = 0.

Μαθηματική Επαγωγή

- \square Αποδεικνύουμε ότι «P(n) αληθεύει για κάθε φυσικό $n \ge n_0$ ».
 - **Δομική επαγωγή**: όλα τα στοιχεία (αριθμήσιμα) άπειρου συνόλου που ορίζεται αναδρομικά έχουν ιδιότητα P.

Αρχή Μαθηματικής Επαγωγής

- Έστω P(n) μια πρόταση που εξαρτάται από φυσικό αριθμό n.
- Για νδο P(n) αληθεύει για κάθε φυσικό n ≥ n₀, αρκεί νδο:
 - **Βάση**: το P(n₀) αληθεύει.
 - $\mathbf{B}\dot{\mathbf{\eta}}\mathbf{\mu}\mathbf{a}$: για κάθε $\mathbf{n} \geq \mathbf{n}_0$, $\mathbf{a}\mathbf{v}$ $\mathbf{P}(\mathbf{n})$ αληθεύει, $\mathbf{T}\dot{\mathbf{o}}\mathbf{T}\mathbf{\epsilon}$ $\mathbf{P}(\mathbf{n}+\mathbf{1})$ αληθεύει.

Αρχή Ισχυρής Μαθηματικής Επαγωγής

- □ Για νδο P(n) αληθεύει για κάθε $n \ge n_0$, αρκεί νδο:
 - **Βάση**: το P(n₀) αληθεύει.
 - **Βήμα**: για κάθε $n \ge n_0$, αν P(k) αληθεύει για κάθε $k \in \{n_0, ..., n\}$, τότε P(n+1) αληθεύει.

Όροι Γεωμετρικής Προόδου

- □ Na δείξετε ότι για κάθε $n \ge 0$, $1+2+...+2^n = 2^{n+1} 1$.
 - Πρόταση $P(n) = (1+2+...+2^n = 2^{n+1} 1)$.
 - Βάση: Αληθεύει για n = 0: 2⁰ = 1 = 2 1.
 - Επαγωγική υπόθεση: Έστω ότι για (αυθαίρετα επιλεγμένο) $n \ge 0$, αληθεύει P(n), δηλ. ότι $1+2+...+2^n = 2^{n+1} 1$.
 - Επαγωγικό βήμα: Θδο αληθεύει P(n+1),
 δηλ. ότι 1+2+...+2ⁿ+2ⁿ⁺¹ = 2ⁿ⁺² 1.

 \square Νδο για κάθε r ≠ 1 και n ≥ 0,

$$1 + r + r^2 + \dots + r^n = \frac{r^{n+1} - 1}{r - 1}$$

Αρμονικοί Αριθμοί

- \Box Αρμονικός αριθμός τάξης k: $H_k = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k}$
- □ Να δείξετε ότι για κάθε n ≥ 0, $1 + \frac{n}{2} \le H_{2^n} \le 1 + n$
 - lacksquare Συνεπώς $1+rac{1}{2}\log_2 k \leq H_k \leq 1+\log_2 k$
 - \blacksquare Άνω φράγμα, πρόταση $P(n) \equiv «H_{2^n} \leq 1 + n »$
 - **Β**αση: Αληθεύει για n = 0: $H_1 = 1 = 1+0$.
 - Επαγωγική υπόθεση: Έστω ότι για (αυθαίρετα επιλεγμένο) $n \ge 0$, αληθεύει P(n), δηλ. ότι $H_{2^n} \le 1 + n$

Αρμονικοί Αριθμοί

 \square Επαγωγικό βήμα: Θδο αληθεύει P(n+1), δηλ. ότι $H_{2^{n+1}} \leq 1 + (n+1)$

$$H_{2^{n+1}} = 1 + \frac{1}{2} + \ldots + \frac{1}{2^n} + \frac{1}{2^n + 1} + \ldots + \frac{1}{2^{n+1}}$$

Διαιρετότητα

- □ Na δείξετε ότι για κάθε $n \ge 1$, το n^3+2n διαιρείται από το 3.
 - Βάση: Αληθεύει για n = 1: Το 3 διαιρείται από το 3.
 - Επαγωγική υπόθεση: Έστω ότι για (αυθαίρετα επιλεγμένο) $n \ge 1$, το $n^3 + 2n$ διαιρείται από το 3.
 - Επαγωγικό βήμα: Θδο το (n+1)³ + 2(n+1) διαιρείται από το 3.
 - Πράγματι,

$$(n+1)^3 + 2(n+1) = (n^3 + 3n^2 + 3n + 1) + 2(n+1)$$
$$= (n^3 + 2n) + 3(n^2 + n + 1),$$

όπου και οι δύο όροι διαιρούνται από το 3 (ο 1^{ος} λόγω της επαγωγικής υπόθεσης).

Πληθάριθμος Δυναμοσυνόλου

- Νδο για κάθε (πεπερασμένο) σύνολο Α με η στοιχεία, το δυναμοσύνολο του Α έχει 2ⁿ στοιχεία.
 - Μαθηματική επαγωγή στο n (πληθικό αριθμό συνόλου A).
 - Bἀση: Αληθεύει για n = 0: $P(\emptyset) = {\emptyset}$ και $|P(\emptyset)| = 2^0$.
 - Επαγωγική υπόθεση: Έστω ότι για (αυθαίρετα επιλεγμένο) $n \ge 0$, αληθεύει ότι για κάθε σύνολο A με |A| = n, $|P(A)| = 2^n$.
 - Επαγωγικό βήμα: Θδο ∀ σύνολο A με |A| = n+1, $|P(A)| = 2^{n+1}$.

 - □ Κάθε υποσύνολο του Α είτε περιέχει το χ είτε όχι.
 - Σε κάθε υποσύνολο $S \subseteq A_x$ αντιστοιχούν δύο υποσύνολα του A: το S και το $S \cup \{x\}$.
 - \square 'Apa $|P(A)| = 2 \cdot |P(A_x)| = 2 \cdot 2^n = 2^{n+1}$.

Λάθος Χρώμα!

- Να βρείτε το λάθος στον παρακάτω επαγωγικό συλλογισμό.
- Θδο για κάθε $n \ge 1$, σε κάθε σύνολο n αυτοκινήτων, όλα τα αυτοκίνητα έχουν το ίδιο χρώμα.
 - Bάση: Ισχύει για n = 1.
 - Επαγωγική υπόθεση: Έστω ότι για (αυθαίρετα επιλεγμένο) $n \ge 1$, σε κάθε σύνολο η αυτοκινήτων, όλα έχουν το ίδιο χρώμα.
 - Επαγωγικό βήμα: Θδο σε κάθε σύνολο n+1 αυτοκινήτων, όλα έχουν το ίδιο χρώμα.
 - \square Σύνολο με n+1 αυτοκίνητα: $A = \{a_1, a_2, ..., a_n, a_{n+1}\}$
 - Από επαγ. υπόθεση, τα η πρώτα αυτοκίνητα έχουν ίδιο χρώμα, και η τελευταία αυτοκίνητα έχουν ίδιο χρώμα:

ίδιο χρώμα
$$\{\alpha_1,\alpha_2,\ldots,\alpha_n,\alpha_{n+1}\}$$
 $\{\alpha_1,\alpha_2,\ldots,\alpha_n,\alpha_{n+1}\}$

Αφού σύνολο η πρώτων και σύνολο η τελευταίων αυτοκινήτων έχουν κοινά στοιχεία, όλα τα αυτοκ. στο Α έχουν ίδιο χρώμα!

Λάθος Χρώμα!

- Επαγωγικό βήμα: Θδο σε κάθε σύνολο n+1 αυτοκινήτων, όλα έχουν το ίδιο χρώμα.
 - Σύνολο με n+1 αυτοκίνητα: $A = \{a_1, a_2, ..., a_n, a_{n+1}\}$
 - Από επαγ. υπόθεση, τα η πρώτα αυτοκίνητα έχουν ίδιο χρώμα, και η τελευταία αυτοκίνητα έχουν ίδιο χρώμα:

ίδιο χρώμα
$$\{\overline{\alpha_1,\alpha_2,\ldots,\alpha_n},\alpha_{n+1}\} \qquad \qquad \{\alpha_1,\overline{\alpha_2,\ldots,\alpha_n,\alpha_{n+1}}\}$$

- Αφού σύνολο η πρώτων και σύνολο η τελευταίων αυτοκινήτων έχουν κοινά στοιχεία, όλα τα αυτοκ. στο Α έχουν ίδιο χρώμα!
- Για n = 1, τα δύο σύνολα δεν έχουν κοινά στοιχεία!
- Εδώ ισχύει ότι P(1) και ότι $P(n) \rightarrow P(n+1)$ για κάθε $n \ge 2$.
 - Δεν ισχύει ότι $P(1) \rightarrow P(2)$: αυτό καθιστά συμπέρασμα αβάσιμο!

- Κάποτε χρήσιμο να αποδείξουμε ισχυρότερη πρόταση Ρ'(n).
 - Είναι δυνατό να μην ισχύει ότι P(n) → P(n+1), αλλά να ισχύει $P'(n) \rightarrow P'(n+1)$, για ισχυρότερη πρόταση P'(n).
- Nδο. για κάθε n ≥ 1,

$$S_n = \frac{1}{2} + \frac{2}{2^2} + \dots + \frac{n}{2^n} \le 2$$

- Επαγωγική υπόθεση $S_n ≤ 2$ δεν συνεπάγεται ότι $S_{n+1} ≤ 2$.
- Ευκολότερο νδ (επαγωγικά) ότι για κάθε $n \ge 1$,

$$S_n = \frac{1}{2} + \frac{2}{2^2} + \dots + \frac{n}{2^n} = 2 - \frac{n+2}{2^n}$$

- Κάποτε χρήσιμο να αποδείξουμε ισχυρότερη πρόταση Ρ'(n).
 - Είναι δυνατό να μην ισχύει ότι P(n) → P(n+1), αλλά να ισχύει P'(n) → P'(n+1), για ισχυρότερη πρόταση P'(n).
- Σκακιέρα τάξης n με μαύρο στο κέντρο: τετράγωνη σκακιέρα με 2ⁿ × 2ⁿ τετράγωνα, όλα λευκά εκτός από ένα μαύρο στο κέντρο.
- Ν.δ.ο. για κάθε $n \ge 0$, λευκά τετράγωνα σκακιέρας τάξης n με μαύρο στο **κέντρο** καλύπτονται από πλακίδια σχήματος L (μη επικαλυπτόμενα).

n=0

n=1

Πλακίδιο σχήματος L

- Βάση: P(0) ισχύει (δεν υπάρχουν λευκά τετράγωνα).
- Επαγωγικό βήμα:
 - Σκακιέρα τάξης n+1 με μαύρο στο κέντρο: ένωση 4 σκακιέρων τάξης η με μαύρο στο κέντρο, 3 μαύρα γίνονται λευκά, 1 μαύρο μετακινείται στο κέντρο.

- Βάση: P(0) ισχύει (δεν υπάρχουν λευκά τετράγωνα).
- Επαγωγικό βήμα:
 - \blacksquare P(0) \rightarrow P(1), P(1) \rightarrow P(2): 3 νέα λευκά καλύπτονται με 1 πλακίδιο.
- $\square \quad \mathsf{P}(2) \to \mathsf{P}(3);$
 - Λευκά όχι γειτονικά, μετακινήσεις επηρεάζουν διάταξη πλακιδίων!
 - Χρήση επαγωγικής υπόθεσης όχι προφανής!
- Δυσκολία λόγω περιορισμού ότι μαύρο στο κέντρο!

15

- **Σκακιέρα** τάξης **n**: τετράγωνη σκακιέρα με 2ⁿ × 2ⁿ τετράγωνα, όλα λευκά εκτός από ένα μαύρο (οπουδήποτε).
- N.δ.ο. για κάθε n ≥ 0, λευκά τετράγωνα σκακιέρας τάξης nκαλύπτονται από πλακίδια σχήματος L (μη επικαλυπτόμενα).
 - Πρόταση Ρ'(n) ισχυρότερη από αρχική P(n).
 - Βάση: Ρ'(0) ισχύει τετριμένα.
 - Επαγωγική υπόθεση: για (αυθαίρετα επιλεγμένο) $n \geq 0$, αληθεύει ότι λευκά τετράγωνα οποιασδήποτε σκακιέρας τάξης η καλύπτονται από πλακίδια σχήματος L.

- Σκακιέρα τάξης n+1: 4 σκακιέρες τάξης n (τεταρτημόρια).
 - 1 με μαύρο τετράγωνο σε αντίστοιχη θέση.
 - 3 με μαύρα τετράγωνα σε άκρα, ώστε γειτονικά κεντρικά τετράγωνα σε σκακιέρα n+1.
- Από επαγωγική υπόθεση, λευκά τετράγωνα σε τεταρτημόρια καλύπτονται από πλακίδια L.
- Νέα λευκά τετράγωνα σχηματίζουν L: καλύπτονται με πλακίδιο.

Παράδειγμα Ισχυρής Επαγωγής

- Νδο κάθε τμήμα τουλ. 18 φοιτητών διαμερίζεται σε ομάδες 4 ή 7 φοιτητών.
 - Για κάθε φυσικό $n \ge 18$, υπάρχουν φυσικοί κ_n , λ_n : $n = 4\kappa_n + 7\lambda_n$.
- Bἀση: επαλήθευση για n = 18
- Επαγωγική υπόθεση: για (αυθαίρετα επιλεγμ.) φυσικό η ≥ 18, ισχύει ότι για κάθε φυσικό m, 18 ≤ m ≤ n:
 - Υπάρχουν φυσικοί κ_m , λ_m : $m = 4\kappa_m + 7\lambda_m$.
- Επαγωγικό βήμα: Θδο υπάρχουν φυσικοί κ_{n+1} , λ_{n+1} : $n+1 = 4\kappa_{n+1} + 7\lambda_{n+1}$.
 - Επαγ. υπόθεση για n 3, και $\kappa_{n+1} = \kappa_{n-3} + 1$ και $\lambda_{n+1} = \lambda_{n-3}$:

$$4(\kappa_{n-3}+1)+7\lambda_{n-3}=(4\kappa_{n-3}+7\lambda_{n-3})+4=n+1$$

Αρκεί βάση για n = 18; Γιατί n ≥ 21 στην υπόθεση;

Και Άλλο Λάθος!

- Θδο όλοι οι φυσικοί αριθμοί είναι άρτιοι(;)!
 - Βάση: ισχύει ότι το 0 είναι άρτιος.
 - Επαγωγική υπόθεση: για (αυθαίρετα επιλεγμένο) φυσικό $n \geq 0$, ισχύει ότι για κάθε m, $0 \le m \le n$, το m είναι άρτιος.
 - Επαγωγικό βήμα: Θδο το n+1 είναι άρτιος.
 - Επαγωγική υπόθεση: το η και το 1 είναι άρτιοι.
 - Άρα n+1 άρτιος, ως άθροισμα δύο άρτιων!
- Απόδειξη βήματος **δεν** ισχύει για n = 0!
 - Χρησιμοποιεί ότι το 1 είναι άρτιος χωρίς απόδειξη (στη βάση) και χωρίς να εμπίπτει στην επαγωγική υπόθεση!