MATH 1121 (Calculus for Engineering Technology) Course Outline

1.3 Rectangular Coordinates

- Illustrate the following concepts:
 - rectangular coordinate system,
 - \blacksquare x-axis,
 - \blacksquare y-axis,
 - origin,
 - quadrants,
 - coordinates
- Examples:
 - (Example 1) Plot A = (2, 1) and B = (-4, -3).
 - (Example 3) Three vertices of a rectangle are A = (-3, -2), B = (4, -2), C = (4, 1). What is the fourth vertex?
- HW: 1-9, 15-16, 21-24

2.1 Some Basic Definitions

- Distance Formula
 - $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
 - (Example 2) Find the distance between (3, -1) and (-2, -5).
- Slope Formula
 - $\blacksquare m = \frac{y_2 y_1}{x_2 x_1}$
 - (Example 3) Find the slope of the line joining (3, -5), (-2, -6).
 - (Example 4) Find the slope of the line joining (3,4), (4,-6).
 - $= m = \tan \theta$
 - (Example) Find the slope of the line with inclination 120°.
- Identify parallel/perpendicular lines by slopes.
 - Parallel: $m_1 = m_2$
 - Perpendicular: $m_1 = -\frac{1}{m_2}$

- (Example 7) Prove that the triangle with vertices A = (-5,3), B = (6,0), and C = (5,5) is a right triangle.
- HW: 1-20, 29-36

2.2 The Straight Line

- Point-slope form
 - $y y_1 = m(x x_1)$
 - (Example 2) Find the equation of the line passing through (2,-1) and (6,2).
- Slope-intercept form
 - y = mx + b
 - (Example 4) Find the slope and y-intercept of the straight line with equation 2y + 4x 5 = 0.
- HW: 1-21, 33-40

2.3 The Circle

- Definition
 - A circle is a collection of points equidistant from its center.
- Standard form
 - $(x-h)^2 + (y-k)^2 = r^2$
 - (Example 1) Sketch $(x-1)^2 + (y+2)^2 = 16$.
 - (Example 2) Find an equation for the circle with center (2,1) which passes through (4,8).
- General form
 - $x^2 + y^2 + Dx + Ey + F = 0$
 - (Example 4) Find the center and radius of the circle $x^2 + y^2 6x + 8y 24 = 0$.
 - (Example) Find two functions whose graphs represent the circle with the previous equation.
- HW: 1-32, 37-38

2.4 The Parabola

- Definition
 - A parabola is a collection of points equidistant from a focus point and a directrix line.
 - The vertex of a parabola is the point closest to the focus and directix.
 - (Example 6) Find an equation for the parabola with focus (2,3) and directrix (y=-1)
- Standard forms with vertex at origin and horizontal/vertical directrix
 - $y^2 = 4px$ with directrix at x = -p and focus at (p, 0)
 - $y^2 = -4px$ with directrix at x = p and focus at (-p, 0)
 - $x^2 = 4py$ with directrix at y = -p and focus at (0, p)
 - $x^2 = -4py$ with directrix at y = p and focus at (0, -p)
 - (Example 2) Find an equation for the parabola with focus (-2,0) and directrix (x=2).
 - (Example 4) Find the focus and directrix of the parabola with equation $2x^2 = -9y$.
- HW: 1-22, 25-28

2.5 The Ellipse

- Definition
 - An ellipse is a collection of points where the sum of distances from two fixed points (called foci) is kept constant.
 - The two points furthest/closest apart from each other on an ellipse are the endpoints of the major/minor axis.
 - The sum of distances between each point and the foci is the same as the length of the major axis. The major axis passes through both foci.
- Standard form with center at the origin
 - $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, with foci given by (c,0), (-c,0), where $a^2 b^2 = c^2$
 - $\frac{y^2}{a^2} + \frac{x^2}{b^2} = 1$, with foci given by (0,c), (0,-c), where $a^2 b^2 = c^2$
 - (Example 3) Sketch the ellipse with equation $4x^2 + 16y^2 = 64$, and compute the locations of its foci.

- (Example 5) Find the equation of the ellipse centered at the origin with an end of its minor axis at (2,0) and containing the point $(-1,\sqrt{6})$.
- HW: 1-26

2.6 The Hyperbola

- Definition
 - A hyperbola is a collection of points where the difference of distances from two fixed points (called foci) is kept constant.
 - Hyperbolas are split into two curves. The two closest points on opposite curves are called vertices and give the transverse axis.
- Standard form with center at the origin
 - $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, with foci given by (c,0), (-c,0) and asymptotes $y = \pm \frac{bx}{a}$, where $a^2 + b^2 = c^2$
 - $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1$, with foci given by (0,c), (0,-c) and asymptotes $x = \pm \frac{by}{a}$, where $a^2 + b^2 = c^2$
 - (Example 2) Sketch $\frac{y^2}{4} \frac{x^2}{16} = 1$, labeling its vertices, asymptotes, and foci.
 - (Example 3) Sketch $4x^2 9y^2 = 36$, labeling its vertices, asymptotes, and foci.
- Hypberbola with coordinate axis asymptotes
 - $xy = c^2$, with vertices given by (c, c) and (-c, -c)
 - $xy = -c^2$, with vertices given by (c, -c) and (-c, c)
 - (Example 5) Sketch xy = 4.
- HW: 1-14, 17-24

2.7 Translation of Axes

- Vertical/horizontal translation:
 - Shift right h: replace x with x h.
 - Shift up k: replace y with y k.
 - \blacksquare (Example 1) Give an equation of the parabola with vertex (2,4) and focus (4,4).
 - (Example 2) Sketch the curve with equation $\frac{(x-3)^2}{25} + \frac{(y+2)^2}{9} = 1$.
- HW: 1-36

1.2 Algebraic Functions

- Definition of a function y = f(x).
- Types of functions
 - Polynomials $P(x) = a_0 + a_1x + \cdots + a_nx^n$
 - Rational functions $R(x) = \frac{P(x)}{Q(x)}$ for polynomials P, Q
 - (Example 1) Voltage equals current multiplied by resistance. If the voltage at time t is given by $E(t) = 2t^2 = y + 5$ and the resistance at time t is given by R(t) = 3t + 20, then find a function I(t) which measures the current at time t. Identify it as a polynomial and/or rational function.
- Combinations of functions
 - Addition/Subtraction/Multiplication/Division
 - Compositions $f \circ g$ and $g \circ f$
 - (Example 2) Express f+g, $f \circ g$, and $g \circ f$ for the functions given by $f(x) = 2x^2 3$ and $g(x) = \sqrt{x+2}$.
- Domain/Range
 - The domain of a function is all real numbers which may be plugged into it without causing division by zero, even roots of negatives, or any other undefined operations.
 - The range of a function is all real numbers which may possibly be attained by the function.
 - (Example 5) Find the domain and range of $f(x) = x^2 + 2$ and $g(t) = \frac{1}{t+2}$.
 - (Example 7) Find the domain of $f(x) = 16\sqrt{x} + \frac{1}{x}$.
- Piecewise functions
 - Piecewise functions are defined differently for different parts of their domains.
 - (Example 9) Find the domain for

$$f(t) = \begin{cases} 8 - 2t & 0 \le t \le 4\\ 0 & t > 4 \end{cases}$$

and compute f(3), f(6), f(-1) if possible.

- Exponent laws
 - $a^m a^n = a^{m+n}$

$$(a^m)^n = a^{mn}$$

$$(ab)^m = a^m b^m$$

$$a^0 = 1$$

$$a^{-n} = \frac{1}{a^n}$$

$$a^{1/n} = \sqrt[n]{a}$$

■ Note
$$\sqrt{a^2} = |a|$$
 but $\sqrt[3]{a^3} = a$

■ (Example 4) Simplify

$$f(x) = \frac{(3x^2 - 1)^{1/3}(2x) - (2x^3)(3x^2 - 1)^{-2/3}}{(3x^2 - 1)^{2/3}}$$

• HW: 1-18, 21-34

1.4 The Graph of a Function

- Definition
 - The graph of a function is the collection of all ordered pairs (x, y) such that y = f(x)
 - Graphing Method 1: using Chapter 2
 - \blacksquare Graphing Method 2: using xy chart
 - Vertical line test: the graph of any function hits every vertical line at most once
- Examples
 - (Example 1) Graph f(x) = 3x 5.
 - (Example 3) Graph $f(x) = 1 + \frac{1}{x}$.
 - (Example 4) Graph $f(x) = \sqrt{x+1}$.
 - (Example 6) Graph

$$f(x) = \begin{cases} 2x+1 & x \le 1\\ 6-x^2 & x > 1 \end{cases}$$

• HW: 1-12, 37-40

3.1 Limits

- Limits
 - $\lim_{x\to a} f(x) = L$ means that the value of f(x) approaches L as the value of x approaches a in the domain of f.
 - (Example) Given $f(x) = x^2$, we may write the following chart of values

x	f(x)		
1.9	3.61		
1.99	3.9601		
1.999	3.996001		
2.001	4.004001		
2.01	4.0401		
2.1	4.41		

to infer that $\lim_{x\to 2} f(x) = 4$.

■ (Example) Given

$$g(x) = \begin{cases} x^2 & x \neq 2\\ -5 & x = 2 \end{cases}$$

we have the same chart of values as before, so we assume $\lim_{x\to 2} g(x) = 4$.

- (Example) Since $h(x) = \frac{x^3 2x^2}{x 2}$ equals x^2 for all values of x except 2, we have the same chart of values as before, and we assume $\lim_{x\to 2} h(x) = 4$.
- (Example) By graphing y = f(x), y = g(x), and y = h(x), we can see that the points on the graph approach the point (2,4) in all three cases.
- Continuity
 - A continuous function satsifies the equality $f(a) = \lim_{x\to a} f(x)$ for all numbers a in its domain. (The "just plug it in" rule.)
 - Intuitively: the graph of the function can be drawn without lifting your pencil on the intervals where it is defined
 - FACT: f(x) = x is continuous, and any combination of continuous functions using $+, -, \times, /, \circ$, or powers is continuous (where it is defined).
 - (Example 3) $f(x) = \frac{1}{x-2}$ is continuous for its entire domain, but undefined at its asymptote x = 2.
 - (Example 5) By graphing

$$f(x) = \begin{cases} x+2 & x < 1 \\ -\frac{x}{2} + 5 & x \ge 1 \end{cases} \quad g(x) = \begin{cases} 2x-1 & x \le 2 \\ -x+5 & x > 2 \end{cases}$$

we see that f is continuous except for when x=1, and g is continuous everywhere.

• Limits to $\pm \infty$

- $\lim_{x\to\infty} f(x) = L$ means that the value of f(x) approaches L as the value of x attains arbitrarily large postive values.
- $\lim_{x\to-\infty} f(x) = L$ means that the value of f(x) approaches L as the value of x attains arbitrarily large negative values.
- (Example) Use a chart of values to infer that $\lim_{x\to\pm\infty}\frac{1}{x}=0$.
- (Example 14) Use a chart of values and algebraic manipulation to show that $\lim_{x\to\pm\infty} \frac{x^2+1}{2x^2+3} = \frac{1}{2}$.

• Evaluating limits analytically

- For continuous functions, use the "just plug it in" rule.
- (Example 10) Evaluate $\lim_{x\to 4} x^2 7$
- For limits of the form $\frac{\text{nonzero}}{0}$, the limit is undefined.
- (Example 9) Show $\lim_{x\to 2} \frac{1}{x-2}$ does not exist.
- For limits of the form $\frac{0}{0}$, the limit is indeterminate: use canceling to determine its value.
- (Example 11) Evaluate $\lim_{x\to 2} \frac{x^2-4}{x-2}$.
- HW: 25-44

3.3 The Derivative

- Secant and Tangent Lines
 - The slope of a secant line is given by $\frac{\Delta y}{\Delta x}$.
 - The slope of a tangent line is given by $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$.
 - (Example) Find the slope of a few secant lines for $y = x^2$ about the point (2,4), use this to guess the slope of the tangent line at (2,4), then calculate the tangent slope directly from the limit.

• Derivative

- The derivative f'(x) or $\frac{d}{dx}[f(x)]$ of a function gives the slope of the tangent lines for each point on the graph (x, f(x)).
- $f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) f(x)}{\Delta x}$
- (Example) Show that the derivative of $f(x) = x^2$ is f'(x) = 2x, then use this to find the slope of the tangent line at (2,4).
- (Example 2) Prove that for $y = 6x 2x^3$, $y' = \frac{dy}{dx} = 6 6x^2$.

- (Example 4) Prove that for $g(x) = x^2 + \frac{1}{x+1}$, $g'(x) = 2x \frac{1}{(x+1)^2}$.
- HW: 1-24

3.5 Derivatives of Polynomials

- Derivatives of Constants and Identity
 - $\frac{d}{dx}[c] = 0$
 - (Example 1) Calculate the $\frac{dy}{dx}$ for y = -5.

 - (Example 3) Prove that if y = x then y' = 1.
- Derivatives of x^n
 - (Example) Prove that if $f(x) = x^5$ then $f'(x) = 5x^4$.

 - (Example 2) Find the derivative of $y = x^3$.
 - (Example 4) Find $\frac{dv}{dr}$ where $v = r^{10}$.
- Constant Multiple Rule

 - (Example 5) Find the derivative of $y = 3x^2$.
- Sum/Difference Rule
 - $\frac{d}{dx}[f(x) + g(x)] = f'(x) + g'(x)$
 - (Example 7) Find the slope of a line tangent to the curve $y = 4x^7 x^4$ at the point (1,3).
- HW: 1-18

3.4 The Derivative as an Instantaneous Rate of Change

- Interpretation of $\frac{du}{dv}$
 - The fraction $\frac{\Delta u}{\Delta v}$ represents the change in a variable u as compared to the change in another variable v.
 - Therefore the expression $\frac{du}{dv} = \lim_{\Delta v \to 0} \frac{\Delta u}{\Delta v}$ measures the instantaneous rate of change in u with respect to the rate of change in v.

- In particular, if s is the position of an object and t is the time, then $\frac{ds}{dt}$ is the instantaneous rate of change in position with respect to time, known as its velocity.
- (Example 3) Objects at sea level fall roughly $16t^2$ feet after t seconds from release. Note that after 4 seconds, the object has fallen 256 feet. Use the following chart to approximate the instantaneous downward velocity of the object 4 seconds after release, then compute it exactly using a derivative.

t	3	3.9	3.99	3.999	4
Δt from 4	1	0.1	0.01	0.001	0
$\overline{}$	144	243.36	254.7216	255.872016	256
Δs from 256	112	12.64	1.2784	0.127984	0
$\frac{\Delta s}{\Delta t}$	112	126.4	127.84	127.984	(DNE)

- (Example 5) A spherical balloon is being inflated. Find a formula for the instantaneous rate of change of volume with respect to its radius, then compute it when the radius is 2 meters. (Hint: $V = \frac{4}{3}\pi r^3$.)
- (3.5 Example 8) Suppose the displacement of a piston is $t^3 6t^2 + 8t$ centimeters after t seconds have elapsed. Find the position and velocity of the piston in one second intervals from t = 0 to t = 4.
- HW in section 3.5: 25-32, 38-42

3.6 Derivatives of Products and Quotients of Functions

- Product Rule
 - (Example 2) Find the derivative of the function $p(x) = (x^2 + 2)(3 2x)$.
 - Product Rule: $\frac{d}{dx}[f(x)g(x)] = g(x)f'(x) + f(x)g'(x)$
 - (Example 2 again) Verify the product rule.
 - (Example 3) Find $\frac{dy}{dx}$ where $y = (3 x 2x^2)(x^4 x)$.
- Quotient Rule
 - (Example) Find the derivative of the function $q(x) = \frac{x^2+1}{x}$.
 - \blacksquare Quotient Rule: $\frac{d}{dx}[\frac{f(x)}{g(x)}] = \frac{g(x)f'(x) + f(x)g'(x)}{[g(x)]^2}$
 - (Same Example) Verify the quotient rule.
 - (Example 4) Find the derivative of $h(x) = \frac{3-2x}{x^2+2}$.

- (Example 5) The stress S on a hollow tube with tension T, outer diameter D, and inner diameter d is given by the equation $S = \frac{16DT}{\pi(D^4 d^4)}$. Assume this tube has constant tension T = 10 and constant inner diameter d = 1. Find the rate of change stress increases with respect to an increasing outer diameter when D = 2.
- HW: 1-28, 39-42

3.7 The Derivative of a Power of a Function

- Chain Rule for Power Functions
 - (Example 1) Find the derivative of the function $y = (3-2x)^3$.
 - Chain Rule for Powers: $\frac{d}{dx}[(f(x))^p] = p(f(x))^{p-1}f'(x)$
 - (Example 1 again) Verify the chain rule.
 - (Example 5) Find the derivative of $y = 6\sqrt[3]{x^2}$.
 - (Example 4) Find the derivative of $y = \sqrt{x^2 + 1}$.
 - (Example 8) Evaluate the derivative of $y = \frac{x}{\sqrt{1-4x}}$ when x = -2.
- HW: 1-24, 29-30, 35-38

3.8 Differentiation of Implicit Functions

- Implicit Functions
 - The expression y = f(x) defines an explicit function.
 - An equation with variables x, y may define y as an implicit function of x.
 - (Example 1) Manipulate the equation 3x + 4y = 5 which defines y as an implicit function of x so that y is defined as an explicit function of x.
 - (Example) Give an explicit function which describes the part of the hyperbola centered at the origin with focus (0,5) and vertex (0,3) passing through the point (-16/3,5).
- Implicit Differentiation
 - (Example) Find the slope of the line tangent to the hyperbola from the previous example at the point (-16/3, 5).
 - Implicit functions may be differentiated directly by using the chain rule: differentiate y terms as you would x, but tack on a $\frac{dy}{dx}$ term each time you do.
 - (Example) Find the slope of the line described in Example 1 using both implicit and explicit differentation.

- (Example) Solve the hyperbola problem using implicit differentiation.
- (Example 3) Find $\frac{dy}{dx}$ in terms of x, y where $3y^4 + xy^2 = 6 2x^3$.
- (Example 5) Find the slope of a line tangent to the graph of $2y^3 + xy + 1 = 0$ at the point (-3, 1).
- HW: 1-25, 28-30

3.8 Differentiation of Implicit Functions

- Implicit Functions
 - The expression y = f(x) defines an explicit function.
 - \blacksquare An equation with variables x, y may define y as an implicit function of x.
 - (Example 1) Manipulate the equation 3x + 4y = 5 which defines y as an implicit function of x so that y is defined as an explicit function of x.
 - (Example) Give an explicit function which describes the part of the hyperbola centered at the origin with focus (0,5) and vertex (0,3) passing through the point (-16/3,5).
- Implicit Differentiation
 - (Example) Find the slope of the line tangent to the hyperbola from the previous example at the point (-16/3, 5).
 - Implicit functions may be differentiated directly by using the chain rule: differentiate y terms as you would x, but tack on a $\frac{dy}{dx}$ term each time you do.
 - (Example) Find the slope of the line described in Example 1 using both implicit and explicit differentation.
 - (Example) Solve the hyperbola problem using implicit differentiation.
 - (Example 3) Find $\frac{dy}{dx}$ in terms of x, y where $3y^4 + xy^2 = 6 2x^3$.
 - (Example 5) Find the slope of a line tangent to the graph of $2y^3 + xy + 1 = 0$ at the point (-3, 1).
- HW: 1-25, 28-30

3.9 Higher Derivatives

- Higher Derivatives
 - The derivative of a derivative is its second derivative. The derivative of a second derivative is its third derivative, etc.

- (Example 1) Find all higher derivatives of $y = 5x^3 2x$.
- (Example 3) Find the second derivative of $y = \frac{2}{1-x}$ when x = -2.
- (Example 4) Find y'' for the implicit function defined by $2x^2 + 3y^2 = 6$ in terms of x, y.

• Acceleration

- If s is position defined in terms of t (time), then $s' = \frac{ds}{dt}$ is velocity and $s'' = \frac{d^2s}{dt^2}$ is acceleration.
- (Example) The height of an object launched upward from the ground with an initial velocity of v_0 m/s is roughly $s = -4.9t^2 + v_0t$ meters after t seconds. Find the velocity and acceleration of this object when t = 1 and $v_0 = 10$.
- HW: 1-34, 37-38

4.4 Related Rates

- Related Rates as Implicit Differentation
 - If the variables in an equation are functions of time, then we may use implicit differentiation to compare their rates of change with respect to time.
 - (Example 1) The voltage E of a certain thermocouple may be measured as $E = 2.8T + 0.006T^2$ where T is its temperature in Celcius. If the temperature of the thermocouple is increasing at a rate of 1° C/min, then how fast is the voltage increasing when the temperature is 100° C?
 - (Example 3) A spherical balloon is being filled at a rate of 2 cubic feet per minute. How fast is its radius growing when the radius is 3 feet long?
 - (Example 5) Two ships leave port at noon. Ship A travels west at 12 km/h, and ship B travels south at 16 km/h. Communication systems between the two ships only function when their relative speed is less than 20 km/h. How long after leaving port can the two ships communicate before their relative speed reaches 20 km/h?
- HW: 1-24

4.5 Using Derivatives in Curve Sketching

• Graphical interpretations of derivatives

■ Table of relationships between f' and f'' and the graph of f:

$$f'$$
 | + | + | - | - | - |
Graph of f | increasing | increasing | decreasing | decreasing |
 f'' | + | - | + | - |
Graph of f | concave up | concave down | concave up | concave down

- Graphing polynomials with derivatives:
 - * Find your critical values where f'(x) = 0.
 - * Find your inflection candidates where f''(x) = 0.
 - * Label these on a number line.
 - * Choose numbers between the labeled values and test them in both f' and f''.
 - * Plot the critical values and inflection candidates on the coordinate plane.
 - * Connect the dots using the increasing/decreasing and concavity information from f', f''.
- (Example 4) Sketch the graph of $y = 6x x^2$.
- (Example 5) Sketch the graph of $y = 2x^3 + 3x^2 12x$.
- A maximum point occurs when a graph changes from increasing to decreasing. A minimum point occurs when a graph changes from decreasing to increasing.
- An inflection point occurs when the concavity of a graph changes.
- (Example) Label the maximum points, minimum points, and inflection points on the graph of $y = 2x^3 + 3x^2 12x$.
- HW: 13-28

4.7 Applied Maximum and Minimum Problems

- Optimizing functions
 - The optimal (max or min) value of a function must occur either at a critical value or at an endpoint of its domain.
 - Solving optimization problems:
 - * Draw a picture, labeling with variables.
 - * Model the problem with an equation.
 - * Solve for the variable Q you wish to optimize.
 - * Reduce all other variables to a single variable x.
 - * Determine the domain of x, particularly the least and greatest values of x allowed.
 - * Find all critical values of Q as a function of x; that is, find all values of x where $\frac{dQ}{dx} = 0$.

- * Test all critical values and domain endpoints to determine the value of x which gives the optimal value of Q.
- (Example 3) Maximize the area of a rectangular corral built with 1600 feet of fencing.
- (Example 2) Find the number which exceeds its square by the greatest amount.
- (Example 5) Find the point on the parabola $y = x^2$ closest to the point (6,3).
- (Example 6) A company sells 1000 widgets a month when sold at a price of \$5 per widget. For every \$0.01 reduction in price, the company will sell 10 more units a month. What price should the company set for each widget in order to maximize sales in dollars?
- *HW: 1-18,23-27*

4.8 Differentials and Linear Approximations

- Linear approximations
 - The line tangent to a function approximates the function near that point.
 - L(x) = f(a) + f'(a)(x a) approximates the function f(x) near x = a.
 - (Example 8) Approximate the value of $\sqrt{9.06}$ using the linear approximation of $f(x) = \sqrt{2x+1}$ at x=4.
 - (Example) Use $f(x) = \frac{1}{\sqrt{3+x^2}}$ to show that $\frac{1}{\sqrt{4.21}} \approx 0.4875$. (This is almost the same as what a calculator gives: 0.48737.)
 - (Example) Find a linear function which approximates $g(x) = 3x^3 4x + 7$ near x = 0, then approximate g(0.1).
- HW: 21-24, 32-34

Remaining Topics

- 5.1 Antiderivatives
- 5.2 The Indefinite Integral
- 5.3 The Area Under a Curve
- 5.4 The Definite Integral
- 7.1 The Trigonometric Functions
- 7.2 Basic Trigonometric Relations

- 7.3 Derivatives of the Sine and Cosine Functions
- 7.4 Derivatives of the Other Trigonometric Functions
- 8.1 Exponential and Logarithmic Functions
- 8.2 Derivative of the Logarithmic Functions
- 8.3 Derivative of the Exponentials Function
- 9.1 The General Power Formula
- 9.2 Basic Logarithmic Form
- 9.3 Exponential Form
- 9.4 Basic Trigonometric Forms