Joint Super-Resolution and Optical Flow Estimation

1 Energy Functional

Let $\Omega_l \subset \mathbb{R}$ be a discretized rectangular domain with $w \times h$ pixels and $\Omega_h \subset \mathbb{R}$ a domain with $W \times H$ pixels. Let $f_1, \dots, f_n : \Omega_l \to \mathbb{R}^k$ be low resolution color input images with k color channels. We seek to jointly estimate high resolution images $u_1, \dots, u_n : \Omega_h \to \mathbb{R}^k$ and optical flow fields $v_1, \dots, v_{n-1} : \Omega_h \to \mathbb{R}^2$ from the low resolution images.

We model the problem in terms of energy minimization of the following functional:

$$E(u,v) = \sum_{i=1}^{n} \alpha ||Au_i - f_i||_1 + \beta TV(u_i) + \gamma \sum_{i=1}^{n-1} \sum_{x \in \Omega_h} ||u_i(x) - u_{i+1}(x + v_i(x))||_2 + TV(v_i^1) + TV(v_i^2)$$
(1)

Here $A:(\Omega_h\to\mathbb{R}^k)\to(\Omega_l\to\mathbb{R}^k)$ is a linear operator which maps a high-resolution image to a low resolution image by blurring it with a gaussian kernel and downsampling it. $TV(u):=\sum_{x\in\Omega}\|\nabla u(x)\|_2$ denotes the TV regularizer.

2 Optimization

Since the energy is hard to minimize jointly in u and v we employ a block-coordinate descent approach:

$$v^{k+1} = \underset{v}{\arg\min} \ E(u^k, v),$$

$$u^{k+1} = \underset{u}{\arg\min} \ E(u, v^{k+1}).$$
 (2)

2.1 Solving the Problem in v (TV-L1 Optical Flow).

For fixed u^k the problem reads:

$$v^{k+1} = \underset{v}{\operatorname{arg\,min}} \ \gamma \sum_{x \in \Omega_h} \sum_{i=1}^{n-1} ||u_i^k(x) - u_{i+1}^k(x + v_i(x))||_1 + TV(v_i^1) + TV(v_i^2)$$
 (3)

For simplicity, we first consider the case n=2:

$$v^{k+1} = \underset{v}{\arg\min} \ \gamma \sum_{x \in \Omega_h} ||u_i^k(x) - u_{i+1}^k(x + v_i(x))||_1 + TV(v_i^1) + TV(v_i^2)$$
(4)

This energy is nonconvex in v, due to the first term. Thus we linearize it using the first order Taylor expansion,

$$||u_i^k(x) - u_{i+1}^k(x + v_i(x))||_1 \approx ||u_1^k(x) - u_2^k(x) - \nabla u_2^k(x)^T v_i(x)||_1,$$

and end up at the following convex problem:

$$v^{k+1} = \underset{v}{\arg\min} \ \gamma \sum_{x \in \Omega_h} ||\underbrace{u_1^k(x) - u_2^k(x)}_{=:-b(x)} - \underbrace{\nabla u_2^k(x)^T v(x)}_{=:(Av)(x)}||_1 + TV(v^1) + TV(v^2), \tag{5}$$

where $v = (v^1, v^2)$.

2.1.1 Primal-Dual Optimization

Since the energy is non-differentiable, a gradient descent based approach does not work. We employ the primal-dual algorithm described in [1, 2] to minimize the energy. First, we rewrite (5) as an equivalent saddle-point problem:

$$\min_{v} \max_{p \in C, q_1 \in D, q_2 \in D} \langle p, Av + b \rangle + \langle q_1, \nabla v^1 \rangle + \langle q_2, \nabla v^2 \rangle$$
 (6)

The update equations for the algorithm then read:

$$p^{k+1}(x) = \underset{C}{\operatorname{proj}}(p^{k}(x) + \sigma_{p}(x)((Av^{k})(x) + b(x)))$$

$$q_{1}^{k+1}(x) = \underset{D}{\operatorname{proj}}(q_{1}^{k}(x) + \sigma_{q}(\nabla v_{1}^{k})(x)),$$

$$q_{2}^{k+1}(x) = \underset{D}{\operatorname{proj}}(q_{2}^{k}(x) + \sigma_{q}(\nabla v_{2}^{k})(x)),$$

$$\bar{p}^{k+1}(x) = 2p^{k+1} - p^{k},$$

$$\bar{q}_{1}^{k+1}(x) = 2q_{1}^{k+1} - q_{1}^{k},$$

$$\bar{q}_{2}^{k+1}(x) = 2q_{2}^{k+1} - q_{2}^{k},$$

$$v^{k+1}(x) = v^{k} - \tau(x)((A^{T}\bar{p}^{k+1})(x) - (\operatorname{div}\bar{q}_{1}^{k+1})(x) - (\operatorname{div}\bar{q}_{2}^{k+1})(x)).$$

$$(7)$$

The sets C and D are defined as

$$C = \{x \in \mathbb{R} \mid |x| \le \gamma\},\$$

$$D = \{x \in \mathbb{R}^{2n_c} \mid ||x||_2 \le 1\},$$
(8)

and the projections proj_C , proj_D can be implemented as an orthogonal projection on a sphere. Only project if you lie outside of the constraint.

The step sizes are chosen according to the scheme described in [2] (see Lemma 2, equation 10, we set $\alpha = 1$):

$$\sigma_{p}(x) = \frac{1}{\sum_{j} |A(x,j)|},$$

$$\sigma_{q} = \frac{1}{2},$$

$$\tau(x) = \frac{1}{2 + 2 + \sum_{i} |A(i,x)|},$$
(9)

where A(x, j) denotes the element in row x and column j.

Allocate memory for the variables $p \in \mathbb{R}^{w*h*n_c}$, $q_1 \in \mathbb{R}^{w*h*2*n_c}$, $q_2 \in \mathbb{R}^{w*h*2*n_c}$, \bar{p} , \bar{q}_1 , \bar{q}_2 , $v \in \mathbb{R}^{w*h*2*n_c}$ as float arrays and implement CUDA kernels for the update equations of the primal-dual algorithm. One kernel should perform the update in p, q_1 , q_2 and do the overrelaxation, the other kernel should do the update in v.

2.2 Solving the Problem in u.

To be discussed at a later point.

References

- [1] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis., 40:120–145, 2011.
- [2] T. Pock and A. Chambolle. Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In *ICCV*, pages 1762–1769, 2011.