Régression fused Lasso adaptative et application aux données de microarrays CGH

Mohamad GHASSANY

Responsable : Sophie Lambert-Lacroix (LJK - Grenoble)

28 juin 2010

Plan de la présentation

- Régression fused Lasso adaptative
- 2 Algorithme de type "path"
- Résultats numériques
- Conclusion et Perspectives

Plan de la présentation

- Régression fused Lasso adaptative
- Algorithme de type "path"
- Résultats numériques
- 4) Conclusion et Perspectives

Régression linéaire

Soit le modèle de régression linéaire standard

$$y_i = \alpha^* + \mathbf{x}_i^T \beta^* + \epsilon_i, \quad i = 1, \dots, n.$$

Оù

• $y = (y_1, \dots, y_n)^T$ est le vecteur des réponses.

d

$$\mathbf{X} = \begin{pmatrix} \mathbf{x}_{1,1} & \mathbf{x}_{1,2} & \cdots & \mathbf{x}_{1,p} \\ \mathbf{x}_{2,1} & \mathbf{x}_{2,2} & \cdots & \mathbf{x}_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{n,1} & \mathbf{x}_{n,2} & \cdots & \mathbf{x}_{n,p} \end{pmatrix}$$

est la matrice des régresseurs (matrice du plan d'expérience)

- $\beta^* = (\beta_1^*, \dots, \beta_n^*)^T$ sont les coefficients à estimer.
- α^* est une constante (nul si les $\mathbf{x_i}$ sont standardisés).
- $\epsilon = (\epsilon_1, \dots, \epsilon_n)^T$ le vecteur des résidus.

- **But:** Expliquer, avec le plus de précision possible, les valeurs prises par y_i à partir d'une série de variables explicatives x_{i1}, \ldots, x_{ip} .
- \implies Déterminer une estimation des valeurs de β^* .

• **But:** Expliquer, avec le plus de précision possible, les valeurs prises par y_i à partir d'une série de variables explicatives x_{i1}, \ldots, x_{ip} .

 \implies Déterminer une estimation des valeurs de β^* .

Méthode de moindres carrées ordinaires MCO:

Soit β le vecteur des estimateurs des β^* ,

$$f(\beta) = (y - \mathbf{X}\beta)^{T} (y - \mathbf{X}\beta)$$
$$= \sum_{i=1}^{n} \left(y_{i} - \sum_{j=1}^{p} x_{ij}\beta_{j} \right)^{2}$$

Pénalité Lasso

Limites de l'estimation par MCO:

- L'exactitude des prévision, biais faible et variance large.
- Si $n \ge p$ la méthode n'est pas performante.

Pénalité Lasso

Limites de l'estimation par MCO:

- L'exactitude des prévision, biais faible et variance large.
- Si $n \ge p$ la méthode n'est pas performante.

Solution: Fonction de coût sous contraintes.

 \implies Pénalité de type ℓ_1 : le Lasso (least absolute shrinkage and selection operator).

$$f(\beta) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j|$$

Les données microarrays CGH

 Les données de microarrays CGH permettent de décrire l'enchainement du nombre de copies des gènes le long des chromosomes.

Exemple de profil CGH

Les données microarrays CGH

CGH permettent de décrire l'enchainement du nombre de copies des gènes le long des chromosomes.

• Les données de microarrays

⇒ En plus, il faut prendre en compte l'ordre de ces variables.

Exemple de profil CGH

Pénalité fused Lasso

$$f(\beta) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda_1 \sum_{j=1}^{p} |\beta_j| + \lambda_2 \sum_{j=1}^{p-1} |\beta_j - \beta_{j+1}|$$

- $\lambda_1 > 0$ force des coefficients à être nuls.
- $\lambda_2 \geq 0$ force deux coefficients consécutives à être égaux.

Propriété oraculaire

Soit:

- $\hat{\beta}(\delta)$ l'estimateur de β^* par une procédure δ .
- $A = \{1 \le j \le p, \, \beta_j^* \ne 0\}.$
- $\bullet \ \mathcal{A}^* = \{j : \hat{\beta}_j(\delta) \neq 0\}.$

Propriété oraculaire

Soit:

- $\hat{\beta}(\delta)$ l'estimateur de β^* par une procédure δ .
- $A = \{1 \le j \le p, \, \beta_j^* \ne 0\}.$
- $\bullet \ \mathcal{A}^* = \{j : \hat{\beta}_j(\delta) \neq 0\}.$
- $\hat{\beta}(\delta)$ satisfait la propriété oraculaire si:
 - $\hat{\beta}(\delta)$ est consistent en sélection de variables: $\lim_n \mathbb{P}(A^* = A) = 1$.

Propriété oraculaire

Soit:

- $\hat{\beta}(\delta)$ l'estimateur de β^* par une procédure δ .
- $A = \{1 \le j \le p, \, \beta_j^* \ne 0\}.$
- $\mathcal{A}^* = \{j : \hat{\beta}_j(\delta) \neq 0\}.$
- $\hat{\beta}(\delta)$ satisfait la propriété oraculaire si:
 - $\hat{\beta}(\delta)$ est consistent en sélection de variables: $\lim_n \mathbb{P}(A^* = A) = 1$.

Le Lasso ne satisfait pas cette propriété.

⇒ Ajouter des poids dans le modèle.

Lasso adaptative et fused Lasso adaptative

Lasso adaptative:

$$f(\beta) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda_1 \sum_{j=1}^{p} w_j |\beta_j|$$

Où
$$w_j = |\hat{\beta}_j^{mco}|^{-\gamma}, \ \gamma \ge 0.$$

Lasso adaptative et fused Lasso adaptative

Lasso adaptative:

$$f(\beta) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda_1 \sum_{j=1}^{p} w_j |\beta_j|$$

Où $w_j = |\hat{\beta}_j^{mco}|^{-\gamma}, \ \gamma \ge 0.$

Fused Lasso adaptative:

$$f(\beta) = \frac{1}{2} \sum_{i=1}^{n} \left(y_i - \sum_{j=1}^{p} x_{ij} \beta_j \right)^2 + \lambda_1 \sum_{j=1}^{p} w_j^{(1)} |\beta_j| + \lambda_2 \sum_{j=1}^{p-1} w_j^{(2)} |\beta_j - \beta_{j+1}|$$

Où
$$w_j^{(1)}=|\hat{\beta}_j^{mco}|^{-\gamma},\ j=1,\dots,p$$
 et $w_j^{(2)}=|\hat{\beta}_j^{mco}-\hat{\beta}_{j+1}^{mco}|^{-\gamma},\ j=1,\dots,p-1$

FLSA et A-FLSA

Selon le type des données microarrays CGH, $\mathbf{X} = \mathbf{I}$ et n = p.

FLSA et A-FLSA

Selon le type des données microarrays CGH, $\mathbf{X} = \mathbf{I}$ et n = p.

Fused Lasso Signal Approximator (FLSA):

$$f(\beta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_i)^2 + \lambda_1 \sum_{i=1}^{n} |\beta_i| + \lambda_2 \sum_{i=1}^{n-1} |\beta_i - \beta_{i+1}|.$$

FLSA et A-FLSA

Selon le type des données microarrays CGH, $\mathbf{X} = \mathbf{I}$ et n = p. Fused Lasso Signal Approximator (FLSA):

$$f(\beta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_i)^2 + \lambda_1 \sum_{i=1}^{n} |\beta_i| + \lambda_2 \sum_{i=1}^{n-1} |\beta_i - \beta_{i+1}|.$$

Adaptive Fused Lasso Signal Approximator (A-FLSA):

$$f(\beta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_i)^2 + \lambda_1 \sum_{i=1}^{n} w_i^{(1)} |\beta_i| + \lambda_2 \sum_{i=1}^{n-1} w_i^{(2)} |\beta_i - \beta_{i+1}|,$$

Où
$$w_j^{(1)}=|\hat{\beta}_j^{mco}|^{-\gamma},\ j=1,\dots,n$$
 et $w_j^{(2)}=|\hat{\beta}_j^{mco}-\hat{\beta}_{j+1}^{mco}|^{-\gamma},\ j=1,\dots,n-1$

Plan de la présentation

- Régression fused Lasso adaptative
- 2 Algorithme de type "path"
- Résultats numériques
- 4 Conclusion et Perspectives

Avantage des algorithmes de type "path":

Trouver la solution pour n'importe quel valeur de λ .

Avantage des algorithmes de type "path":

Trouver la solution pour n'importe quel valeur de λ .

Soit à trouver

$$\hat{\beta}(\lambda) = \operatorname{argmin}_{\beta \in \mathbb{R}^p} L(y, X\beta) + \lambda J(\beta),$$

Où:

- $L: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$.
- $J: \mathbb{R}^p \to \mathbb{R}$, avec J(0) = 0.

Conditions:

- $\frac{\partial\hat{\beta}(\lambda)}{\partial\lambda}/\|\frac{\partial\hat{\beta}(\lambda)}{\partial\lambda}\|$ est constante par morceaux.
- L est quadratique par morceaux en fonction de β le long du chemin optimal $\hat{\beta}(\lambda)$.
- J est linéaire par morceaux en fonction de β le long du chemin.

Conditions:

- $\frac{\partial\hat{\beta}(\lambda)}{\partial\lambda}/\|\frac{\partial\hat{\beta}(\lambda)}{\partial\lambda}\|$ est constante par morceaux.
- L est quadratique par morceaux en fonction de β le long du chemin optimal $\hat{\beta}(\lambda)$.
- J est linéaire par morceaux en fonction de β le long du chemin.

 $\hat{\beta}(\lambda)$ est linéaire par morceaux en fonction de λ ,

Il existe:

•
$$\lambda^{(0)} = 0 < \lambda^{(1)} < \ldots < \lambda^{(m)} = \infty$$
.

$$\bullet \ \gamma_0, \gamma_1, \ldots, \gamma_{m-1} \in \mathbb{R}^p.$$

tels que,

•
$$\hat{\beta}(\lambda) = \hat{\beta}(\lambda^{(k)}) + (\lambda - \lambda^{(k)})\gamma_k$$
 pour $\lambda^{(k)} \le \lambda \le \lambda^{(k+1)}$.

A-FLSA:

$$\hat{\beta}(\lambda_1, \lambda_2) = \operatorname{argmin}_{\beta \in \mathbb{R}^p} L(y, X\beta) + \lambda_1 J_1(\beta) + \lambda_2 J_2(\beta).$$

A-FLSA:

$$\hat{\beta}(\lambda_1, \lambda_2) = \operatorname{argmin}_{\beta \in \mathbb{R}^p} L(y, X\beta) + \lambda_1 J_1(\beta) + \lambda_2 J_2(\beta).$$

Théorème 1:

Soit $\hat{\beta}(0, \lambda_2)$ la solution pour $\lambda_1 = 0$ et $\lambda_2 > 0$. Alors la solution pour $\lambda_1 > 0$ est

$$\hat{\beta}_{i}(\lambda_{1}, \lambda_{2}) = S(\hat{\beta}_{i}(0, \lambda_{2}), w_{1}^{(i)}\lambda_{1}) \text{ pour } i = 1, \dots, n \\
= sign(\hat{\beta}_{i}(0, \lambda_{2})) (|\hat{\beta}_{i}(0, \lambda_{2})| - w_{1}^{(i)}\lambda_{1})^{+} \\
\text{où } y^{+} = max(0, y).$$

A-FLSA:

$$\hat{\beta}(\lambda_1, \lambda_2) = \operatorname{argmin}_{\beta \in \mathbb{R}^p} L(y, X\beta) + \lambda_1 J_1(\beta) + \lambda_2 J_2(\beta).$$

Théorème 1:

Soit $\hat{\beta}(0,\lambda_2)$ la solution pour $\lambda_1=0$ et $\lambda_2>0$. Alors la solution pour $\lambda_1>0$ est

$$\hat{\beta}_{i}(\lambda_{1}, \lambda_{2}) = S(\hat{\beta}_{i}(0, \lambda_{2}), w_{1}^{(i)}\lambda_{1}) \ pour \ i = 1, \dots, n$$

$$= sign(\hat{\beta}_{i}(0, \lambda_{2})) \ (|\hat{\beta}_{i}(0, \lambda_{2})| - w_{1}^{(i)}\lambda_{1})^{+}$$
où $y^{+} = max(0, y)$.

Fonction de coût:

$$L(y,\beta) = \frac{1}{2} \sum_{i=1}^{n} (y_i - \beta_i)^2 + \lambda_2 \sum_{i=1}^{n-1} w_i^{(2)} |\beta_i - \beta_{i+1}|,$$

Théorème 2:

Soit $\beta_k(0,\lambda_2)$ la solution optimale pour un coefficient k et un certain λ_2 . Si pour un certain k et λ_2^0 on a $\beta_k(0,\lambda_2^0)=\beta_{k+1}(0,\lambda_2^0)$, alors $\forall \lambda_2>\lambda_2^0$, $\beta_k(0,\lambda_2)=\beta_{k+1}(0,\lambda_2)$.

Théorème 2:

Soit $\beta_k(0,\lambda_2)$ la solution optimale pour un coefficient k et un certain λ_2 . Si pour un certain k et λ_2^0 on a $\beta_k(0,\lambda_2^0)=\beta_{k+1}(0,\lambda_2^0)$, alors $\forall \lambda_2>\lambda_2^0$, $\beta_k(0,\lambda_2)=\beta_{k+1}(0,\lambda_2)$.

Notations:

Soit F_i , $i=1,\cdots,n_F(\lambda_2)$, les ensembles des indices des coefficients fusionnés pour λ_2 .

- De la forme: $F_i = \{k | I_i \le k \le u_i\}$
- $\bullet \ \cup_{i=1}^{n_F(\lambda_2)} F_i = 1, \cdots, n.$
- $F_i \cap F_j = \emptyset$, $i \neq j$.
- $\forall k, l \in F_i$ on a $\beta_k(\lambda_2) = \beta_l(\lambda_2)$.
- Si $k \in F_i$, $l \in F_{i+1}$, $\beta_k(\lambda_2) \neq \beta_l(\lambda_2)$.

On écrit $\beta_{F_i}(\lambda_2)$ pour tout $\beta_k(\lambda_2)$ avec $k \in F_i$.

$$L_{F,\lambda_2}(y,\beta) = \frac{1}{2} \sum_{i=1}^{n_F(\lambda_2)} \left(\sum_{i \in F_i} (y_j - \beta_{F_i})^2 \right) + \lambda_2 \sum_{i=1}^{n_F(\lambda_2)-1} \frac{|\beta_{F_i} - \beta_{F_{i+1}}|}{|\hat{\beta}_{\max F_i} - \hat{\beta}_{\min F_{i+1}}|}.$$

$$L_{F,\lambda_2}(y,\beta) = \frac{1}{2} \sum_{i=1}^{n_F(\lambda_2)} \left(\sum_{j \in F_i} (y_j - \beta_{F_i})^2 \right) + \lambda_2 \sum_{i=1}^{n_F(\lambda_2)-1} \frac{|\beta_{F_i} - \beta_{F_{i+1}}|}{|\hat{\beta}_{maxF_i} - \hat{\beta}_{minF_{i+1}}|}.$$

$$\frac{\partial L_{F,\lambda_2}}{\partial \beta_{F_i}} = (\#F_i)\beta_{F_i} - \sum_{j \in F_i} y_j + \lambda_2 \frac{\operatorname{sign}(\beta_{F_i} - \beta_{F_{i-1}})}{|\hat{\beta}_{\max F_{i-1}} - \hat{\beta}_{\min F_i}|} + \lambda_2 \frac{\operatorname{sign}(\beta_{F_i} - \beta_{F_{i+1}})}{|\hat{\beta}_{\max F_i} - \hat{\beta}_{\min F_{i+1}}|}.$$

$$L_{F,\lambda_2}(y,\beta) = \frac{1}{2} \sum_{i=1}^{n_F(\lambda_2)} \left(\sum_{j \in F_i} (y_j - \beta_{F_i})^2 \right) + \lambda_2 \sum_{i=1}^{n_F(\lambda_2)-1} \frac{|\beta_{F_i} - \beta_{F_{i+1}}|}{|\hat{\beta}_{\max F_i} - \hat{\beta}_{\min F_{i+1}}|}.$$

$$\frac{\partial L_{F,\lambda_2}}{\partial \beta_{F_i}} = (\#F_i)\beta_{F_i} - \sum_{j \in F_i} y_j + \lambda_2 \frac{sign(\beta_{F_i} - \beta_{F_{i-1}})}{|\hat{\beta}_{maxF_{i-1}} - \hat{\beta}_{minF_i}|} + \lambda_2 \frac{sign(\beta_{F_i} - \beta_{F_{i+1}})}{|\hat{\beta}_{maxF_i} - \hat{\beta}_{minF_{i+1}}|}.$$

$$\beta_{F_i}(\lambda_2) = \frac{1}{\#F_i} \left[\sum_{j \in F_i} y_j - \lambda_2 \left(\frac{sign(\beta_{F_i} - \beta_{F_{i-1}})}{|\hat{\beta}_{maxF_{i-1}} - \hat{\beta}_{minF_i}|} + \frac{sign(\beta_{F_i} - \beta_{F_{i+1}})}{|\hat{\beta}_{maxF_i} - \hat{\beta}_{minF_{i+1}}|} \right) \right].$$

$$L_{F,\lambda_2}(y,\beta) = \frac{1}{2} \sum_{i=1}^{n_F(\lambda_2)} \left(\sum_{j \in F_i} (y_j - \beta_{F_i})^2 \right) + \lambda_2 \sum_{i=1}^{n_F(\lambda_2)-1} \frac{|\beta_{F_i} - \beta_{F_{i+1}}|}{|\hat{\beta}_{\max F_i} - \hat{\beta}_{\min F_{i+1}}|}.$$

$$\frac{\partial L_{F,\lambda_2}}{\partial \beta_{F_i}} = (\#F_i)\beta_{F_i} - \sum_{j \in F_i} y_j + \lambda_2 \frac{sign(\beta_{F_i} - \beta_{F_{i-1}})}{|\hat{\beta}_{\max F_{i-1}} - \hat{\beta}_{\min F_i}|} + \lambda_2 \frac{sign(\beta_{F_i} - \beta_{F_{i+1}})}{|\hat{\beta}_{\max F_i} - \hat{\beta}_{\min F_{i+1}}|}.$$

$$\beta_{F_{i}}(\lambda_{2}) = \frac{1}{\#F_{i}} \left[\sum_{j \in F_{i}} y_{j} - \lambda_{2} \left(\frac{sign(\beta_{F_{i}} - \beta_{F_{i-1}})}{|\hat{\beta}_{maxF_{i-1}} - \hat{\beta}_{minF_{i}}|} + \frac{sign(\beta_{F_{i}} - \beta_{F_{i+1}})}{|\hat{\beta}_{maxF_{i}} - \hat{\beta}_{minF_{i+1}}|} \right) \right].$$

$$\frac{\partial \beta_{F_i}}{\partial \lambda_2} = -\frac{1}{\#F_i} \left(\frac{sign(\beta_{F_i} - \beta_{F_{i-1}})}{|\hat{\beta}_{maxF_{i-1}} - \hat{\beta}_{minF_i}|} + \frac{sign(\beta_{F_i} - \beta_{F_{i+1}})}{|\hat{\beta}_{maxF_i} - \hat{\beta}_{minF_{i+1}}|} \right).$$

$$h_{i,i+1}(\lambda_2) = \frac{\beta_{F_i}(\lambda_2) - \beta_{F_{i+1}}(\lambda_2)}{\frac{\partial \beta_{F_{i+1}}}{\partial \lambda_2} - \frac{\partial \beta_{F_i}}{\partial \lambda_2}} + \lambda_2 \text{ for } i = 1, \dots, n_F(\lambda_2) - 1.$$

$$h_{i,i+1}(\lambda_2) = \frac{\beta_{F_i}(\lambda_2) - \beta_{F_{i+1}}(\lambda_2)}{\frac{\partial \beta_{F_{i+1}}}{\partial \lambda_2} - \frac{\partial \beta_{F_i}}{\partial \lambda_2}} + \lambda_2 \text{ for } i = 1, \dots, n_F(\lambda_2) - 1.$$

Hitting time:

$$h(\lambda_2) = \min_{h_{i,i+1}(\lambda_2) > \lambda_2} h_{i,i+1}(\lambda_2).$$

Algorithm 1: A-FLSA path algorithm

begin

```
\lambda_2 = 0;

\beta_k = y_k \text{ for } k = 1, \dots, n;

F_i = \{i\} \text{ for } i = 1, \dots, n;

n_F = n;
```

end

while $n_F > 1$ do

Calculate next hitting time $h(\lambda_2)$;

Let $(i_0(\lambda_2), i_0(\lambda_2) + 1) = \operatorname{argmin} h_{i,i+1} > \lambda_2 h_{i,i+1}(\lambda_2)$ be the indices of the sets to be fuse next:

Fuse the two sets $F_{i_0(\lambda_2)}$ and $F_{i_0(\lambda_2)+1}$;

Set: $\lambda_2 = h(\lambda_2)$;

Update the values for $\beta_k(\lambda_2)$, $\frac{\partial \beta_k(\lambda_2)}{\partial \lambda_2}$ and set $n_F=n_F-1$;

end

Plan de la présentation

- Régression fused Lasso adaptative
- 2 Algorithme de type "path"
- Résultats numériques
- 4 Conclusion et Perspectives

Simulations

•
$$\mathbf{X} = \mathbf{I}$$
 et $p = n$,

$$y_i = \beta_i^* + \epsilon_i$$
 $i = 1, \dots, n$.

• $\epsilon_i \hookrightarrow \mathcal{N}(0, \sigma^2)$.

Simulations de β^* , n=1000

Simulations

• $\mathbf{X} = \mathbf{I}$ et p = n,

$$y_i = \beta_i^* + \epsilon_i$$
 $i = 1, \ldots, n$.

• $\epsilon_i \hookrightarrow \mathcal{N}(0, \sigma^2)$.

$$\sigma^2 = \frac{1}{n} \frac{\|\beta^*\|_2^2}{\mathsf{SNR}^2}.$$

- $\|\beta^*\|_2^2 = \sum_{i=1}^n (\beta_i^*)^2$.
- SNR= 3, 5 ou 7.

Simulations de β^* , n=1000

Validation croisée

- **But:**Trouver λ_1 et λ_2 pour lesquels $\hat{\beta}$ est optimale.
- Procédure:

$$y^{(T)} = \{y_i; i = 2k; k = 1, \dots, (\frac{n}{2})\}.$$
$$y^{(L)} = \{y_i; i = 2k + 1; k = 0, \dots, (\frac{n}{2} - 1)\} \Longrightarrow \hat{\beta}_{i_{\lambda_1, \lambda_2}}$$

Validation croisée

- **But:**Trouver λ_1 et λ_2 pour lesquels $\hat{\beta}$ est optimale.
- Procédure:

$$y^{(T)} = \{y_i; i = 2k; k = 1, \dots, (\frac{n}{2})\}.$$
$$y^{(L)} = \{y_i; i = 2k + 1; k = 0, \dots, (\frac{n}{2} - 1)\} \Longrightarrow \hat{\beta}_{i_{\lambda_1, \lambda_2}}$$

$$MSE_{(\lambda_1,\lambda_2)} = \sum_{i=1}^{\frac{n}{2}} (y_i^{(T)} - \hat{\beta}_{i_{\lambda_1,\lambda_2}}^{(L)})^2 \quad \text{pour tout pair } (\lambda_1,\lambda_2).$$

Validation croisée

- **But:**Trouver λ_1 et λ_2 pour lesquels $\hat{\beta}$ est optimale.
- Procédure:

$$y^{(T)} = \{y_i; i = 2k; k = 1, \dots, (\frac{n}{2})\}.$$
$$y^{(L)} = \{y_i; i = 2k + 1; k = 0, \dots, (\frac{n}{2} - 1)\} \Longrightarrow \hat{\beta}_{i_{\lambda_1, \lambda_2}}$$

$$\mathit{MSE}_{(\lambda_1,\lambda_2)} = \sum_{i=1}^{\frac{n}{2}} (y_i^{(T)} - \hat{\beta}_{i_{\lambda_1,\lambda_2}}^{(L)})^2 \quad \text{pour tout pair } (\lambda_1,\lambda_2).$$

$$(\lambda_1, \lambda_2) = \operatorname{argmin}_{(\lambda_1, \lambda_2)} MSE.$$

False Discovery Rate

False discovery rate
$$\left\{ \mathit{FDRi} = \frac{\mathit{FPi}}{\mathit{FPi} + \mathit{TPi}} \right.$$
 $i = 1, 2$

False Discovery Rate

False discovery rate
$$\begin{cases} FDRi = \frac{FPi}{FPi + TPi} & i = 1, 2 \end{cases}$$
 False positives
$$\begin{cases} FP1 = \#\{j: \ \beta_j^* = 0 \ \& \ \hat{\beta}_j \neq 0\} \\ FP2 = \#\{j: \ \beta_j^* = \beta_{j+1}^* \ \& \ \hat{\beta}_j \neq \hat{\beta}_{j+1} \} \end{cases}$$
 True positives
$$\begin{cases} TP1 = \#\{j: \ \beta_j^* \neq 0 \ \& \ \hat{\beta}_j \neq 0\} \\ TP2 = \#\{j: \ \beta_j^* \neq \beta_{j+1}^* \ \& \ \hat{\beta}_j \neq \hat{\beta}_{j+1} \} \end{cases}$$

False Negative Rate

False negative rate
$$\left\{FNRi = \frac{FNi}{FNi + TNi} \mid i = 1, 2\right\}$$

False Negative Rate

False negative rate
$$\begin{cases} FNRi = \frac{FNi}{FNi + TNi} & i = 1, 2 \end{cases}$$
 False negatives
$$\begin{cases} FN1 = \#\{j: \ \beta_j^* \neq 0 \ \& \ \hat{\beta}_j = 0\} \\ FN2 = \#\{j: \ \beta_j^* \neq \beta_{j+1}^* \ \& \ \hat{\beta}_j = \hat{\beta}_{j+1} \} \end{cases}$$
 True negatives
$$\begin{cases} TN1 = \#\{j: \ \beta_j^* = 0 \ \& \ \hat{\beta}_j = 0\} \\ TN2 = \#\{j: \ \beta_j^* = \beta_{j+1}^* \ \& \ \hat{\beta}_j = \hat{\beta}_{j+1} \} \end{cases}$$

Mean Squared Error

$$MSE(\hat{\beta}_k) = Var(\hat{\beta}_k) + (Bias(\hat{\beta}_k, \beta_k^*))^2$$
 pour $k = 1, ..., n$.

Mean Squared Error

$$MSE(\hat{\beta}_k) = Var(\hat{\beta}_k) + (Bias(\hat{\beta}_k, \beta_k^*))^2$$
 pour $k = 1, ..., n$.

$$Var(\hat{\beta}_k) = \frac{1}{Nr} \sum_{nr=1}^{Nr} (\hat{\beta}_k^{nr})^2 - \frac{1}{Nr} \left(\sum_{nr=1}^{Nr} \hat{\beta}_k^{nr} \right)^2 \text{ pour } k = 1, \dots, n.$$

$$(Bias(\hat{\beta}_k, \beta_k^*))^2 = \frac{1}{Nr} \sum_{r=1}^{Nr} (\hat{\beta}_k^{nr} - \beta_k^*)^2 \text{ pour } k = 1, \dots, n.$$

Comparaison

Table: Comparaison des résultats, n=100.

		A-FLSA			FLSA	
SNR	7	5	3	7	5	3
FDR 1	0.03483	0.04457	0.05687	0.06454	0.06647	0.06634
FDR 2	0.48719	0.44719	0.48073	0.42865	0.48213	0.55175
FNR 1	0.3901	0.04457	0.24545	0.10625	0.06647	0.15863
FNR 2	0.02848	0.44719	0.04237	0.02735	0.48213	0.03863
$ar{\lambda}_1$	0.0642	0.0538	0.0538	0.0244	0.0268	0.0458
$ar{\lambda}_2$	0.634	0.782	1.062	0.5016	0.5404	0.6432
MSE	0.05323	0.07095	0.13653	0.03454	0.05153	0.11681

Comparaison

Table: Comparaison des résultats, n=1000.

		A-FLSA			FLSA	
SNR	7	5	3	7	5	3
FDR 1	0.05689	0.05504	0.05029	0.05589	0.05426	0.05195
FDR 2	0.69368	0.73686	0.81771	0.83268	0.83230	0.82899
FNR 1	0.00146	0.05504	0.11707	0.00301	0.05426	0.07479
FNR 2	0.00344	0.73686	0.00542	0.00269	0.83230	0.00465
$ar{\lambda}_1$	0.0002	0.0038	0.0202	0.0028	0.0086	0.0226
$\bar{\lambda}_2$	1.1432	1.9828	4.3256	1.1104	1.5324	2.5496
MSE	0.01173	0.02679	0.08950	0.01012	0.01824	0.04351

Plan de la présentation

- Régression fused Lasso adaptative
- 2 Algorithme de type "path"
- Résultats numériques
- 4 Conclusion et Perspectives

Conclusion et perspectives

- Résultats presque équivalents en cas de X = I et n = p.
- Critère du choix de λ_1 et λ_2 .
- Possibilité de pénaliser le premier terme seulement.
- Adapter un algorithme pour le cas de matrice **X** quelconque.
- Application sur des données réelles.
- Démontrer les propriétés théoriques.

Merci de votre attention