《算法设计与分析》期终试卷 2

考生须知

- *若试卷中试题字迹不清,考生可以在审题时举手请求解释,由考务人员加以说明。涉及题意理解问题,则不得提问且考务人员不予解答。
- *考生上机编程时应在指定目录下工作,并请每隔 5 分钟存盘一次。发生机器故障时由考务人员确认补给修复时间,且最长不超过 10 分钟。
 - *对考生答题测试有严格时间限制, 若超时则该测试项判为 0 分。考生应注意优化算法。
 - *考生应严格遵守考场规则,不得违纪。
 - *考试时间为8时30分至11时30分,计180分钟。

试题 1、直线 k 中值问题

★问题描述:

在一个按照南北方向划分成规整街区的城市里, \mathbf{n} 个居民点分布在一条直线上的 \mathbf{n} 个坐标点 $x_1 < \cdots < x_n$ 处。居民们希望在城市中至少选择 1 个,但不超过 \mathbf{k} 个居民点建立服务机构。在每个居民点 x_i 处,服务需求量为 $w_i \geq 0$,在该居民点设置服务机构的费用为 $c_i \geq 0$ 。假设居民点 x_i 到距其最近的服务机构的距离为 d_i ,则居民点 x_i 的服务费用为 $w_i \times d_i$ 。

建立 k 个服务机构的总费用为 A+B。 A 是在 k 个居民点设置服务机构的费用的总和; B 是 n 个居民点服务费用的总和。

★编程任务:

对于给定直线 L 上的 n 个点 $x_1 < \cdots < x_n$,编程计算在直线 L 上最多设置 k 处服务机构的最小总费用。

★数据输入:

由文件 input.txt 给出输入数据。第 1 行有 2 个正整数 n 和 k。n 表示直线 L 上有 n 个点 $x_1 < \cdots < x_n$; k 是服务机构总数的上限。接下来的 n 行中,每行有 3 个整数。第 i+1 行的 3 个整数 x_i, w_i, c_i ,分别表示相应居民点的位置坐标,服务需求量和在该点设置服务机构的费用。

★结果输出:

将计算的最小服务费用输出到文件 output.txt。

输入文件示例	输出文件示例
input.txt	output.txt
9 3	19
2 1 2	
3 2 1	
6 3 3	
7 1 1	
9 3 2	
15 1 6	
16 2 1	
18 1 2	
10 1 1	

试题 2、图形变换问题

★问题描述:

给定 2 个 4×4 方格阵列组成的图形 A 和 B,每个方格的颜色为黑色或白色。方格阵列中有公共边的方格称为相邻方格。图形变换问题的每一步变换可以交换相邻方格的颜色。试设计一个算法,计算最少需要多少步变换,才能将图形 A 变换为图形 B。

★编程任务:

对于给定的2个方格阵列,编程计算将图形A变换为图形B的最少变换次数。

★数据输入:

由文件 input.txt 给出输入数据。前 4 行是图形 A 的方格阵列,后 4 行是图形 B 的方格阵列。0 表示白色,1 表示黑色。

★结果输出:

将计算出的最少变换次数和相应的变换序列输出到文件 output.txt。第 1 行是最少变换次数。从第 2 行开始,每行用 4 个数表示一次变换。例如,1112 表示交换方格(1, 1)和(1, 2)的颜色。

输入文件示例	输出文件示例
input.txt	output.txt
1010	3
0100	1112
0010	2223
1010	2324
0110	
0001	
0010	
1010	

试题 3、无向图的最大割问题

★问题描述:

给定一个无向图 G=(V, E),设 $U\subseteq V$ 是 G 的顶点集。对任意 $(u, v)\in E$,若有 $u\in U$ 且 $v\in V$ -U,就称(u, v)为关于顶点集 U 的一条割边。顶点集 U 的所有割边构成图 G 的一个割。 G 的最大割是指 G 中所含边数最多的割。

★编程任务:

对于给定的无向图 G,编程计算 G的最大割。

★数据输入:

由文件 input.txt 给出输入数据。第 1 行有 2 个正整数 n 和 m,表示给定的图 G 有 n 个 顶点和 m 条边,顶点编号为 1,2,…,n。接下来的 m 行中,每行有 2 个正整数 u,v,表示图 G 的一条边(u,v)。

★结果输出:

程序运行结束时,将计算出的最大割的边数和顶点集 U 输出到文件 output.txt 中。文件的第 1 行是最大割的边数;文件的第 2 行是表示顶点集 U 的向量, x_i , $1 \le i \le n$, x_i =0 表示顶点 i 不在顶点集 U 中, x_i =1 表示顶点 i 在顶点集 U 中。

输入文件示例	输出文件示例
input.txt	output.txt
7 18	12
1 4	1110100
1 5	
1 6	
1 7	
2 3	
2 4	
2 5	
2 6	
2 7	
3 4	
3 5	
3 6	
3 7	
4 5	
4 6	
5 6	
5 7	
6 7	