How do we detect malware? A step-by-step guide

Marcus Botacin

¹botacin@tamu.edu marcusbotacin.github.io

Who Am 17

Introduction

- Assistant Professor (2022) Texas A&M University (TAMU), USA
 - ACES Program Fellowship
- PhD. in Computer Science (2021) Federal University of Paraná (UFPR), Brazil
 - Thesis: "On the Malware Detection Problem: Challenges and new Approaches"
- MSc. in Computer Science (2017) University of Campinas (UNICAMP), Brazil
 - Dissertation: "Hardware-Assisted Malware Analysis"
- Computer Engineer (2015) University of Campinas (UNICAMP), Brazil
 - Final Project: "Malware detection via syscall patterns identification"

How do we detect malware? 2/46TAMU **Topics**

Introduction

●00000000000 Malware

- Introduction
 - Malware
 - Malware Detection
- 2 Academic Contribution

- Examples
- Moving Forward
 - Research Opportunities
- 4 Conclusion
 - Recap & Remarks

Moving Forward

Conclusions

The Malware Problem

How do we detect malware? 4 / 46 TAMU

00000000000

How have we been doing? (Overall)

000000000000

How have we been doing? (Malware Specifics)

Figure:

https://apnews.com/article/europe-ma lware-netherlands-coronavirus-pandem ic-7de5f74120a968bd0a5bee3c57899fed

The bad side

Moving Forward

Figure:

https://thehackernews.com/2021/06/dr oidmorph-shows-popular-android.html

00000000000

Introduction

- Introduction
 - Malware
 - Malware Detection

- Examples
- - Research Opportunities
- - Recap & Remarks

00000000000 Malware Detection

How Do We Detect Malware?

How do we detect malware? 8 / 46 TAMU

The State-of-the-art in Malware Detection & Prevention

Steps

- Collection
- 2 Triage
- Sandbox Analysis
- Threat Intelligence
- **Endpoint Protection**

Distributed Processing

Collection

Cloud Processing

Analysis and Intelligence steps

Limited Processing

Endpoint

TAMU How do we detect malware? 9 / 46

Collection

How to find new malware samples?

- Searching "dark web" forums.
- Crawling software repositories.
- Leveraging honeypots.
- Checking spam traps.
- Downloading Malware repositories.
- Scrapping blocklists.

The result

Moving Forward

Figure: https://www.forbes.com/sites/t homasbrewster/2021/09/29/google-play -warning-200-android-apps-stole-mi llions-from-10-million-phones/

0000000000000 Malware Detection

Why how many new malware samples?

 Variations from the same source code.

Implications

 Increase processing costs and response time.

How to solve this problem?

• Identify and cluster similar samples.

The Statistics

Figure:

https://www.kaspersky.com/about/pres s-releases/2020_the-number-of-new-m alicious-files-detected-every-dayincreases-by-52-to-360000-in-2020

Sandbox Analysis

Goals

 Uncover hidden behaviors.

Method

 Trace sample execution.

Challenge

 Handle evasion attempts.

Solution 1

Figure: https://blog.vir ustotal.com/2019/05/vi rustotal-multisandboxyoroi-yomi.html

Solution 2

Figure: https:

//blog.virustotal.com/ 2019/07/virustotal-mul tisandbox-sndbox.html

Threat Intelligence

Goal

• Identify trends and predict attacks.

How?

 Data analytics over analyzed samples.

Challenges

• Look to a representative dataset.

We should look to:

Figure: https://www.computerweekly.com /news/252504676/Ransomware-attacks-i ncrease-dramatically-during-2021

Endpoint Protection

Goal

Protect customers in their machines.

How?

 Moving the viable analyses to the endpoint.

Challenges

 Performance and usability constraints.

Is there a "best"?

Figure: https://www.av-test.org/en/ant ivirus/home-windows/

Topics

Introduction

- Introduction
 - Malware
 - Malware Detection
- 2 Academic Contributions

- Examples
- Moving Forward
 - Research Opportunities
- 4 Conclusion
 - Recap & Remarks

Examples

Introduction

Enhancing Malware Triage

How do we detect malware? 16 / 46 TAMU

The good side: Separating Code and Data

Figure: Binary Sections Accuracy

Figure: Binary Sections Recall

Source: https://www.sciencedirect.com/science/article/abs/pii/S26662 81721001281

How do we detect malware? TAMU 17 / 46

The bad side: Packed Samples

Figure: The impact of UPX packing. Packing reduces sample's similarity scores.

Figure: Average Packed Sample's Similarity Scheme. Cross-comparisons should be avoided.

Examples

Moving Forward

Conclusions

Enhancing Malware Tracing

How do we detect malware? 19 / 46 TAMU

Software-based Sandbox

Figure: System Architecture.

Link: https://link.springer.com/article/10.1007/s11416-017-0292-8

How do we detect malware? TAMU 20 / 46

Examples

Introduction

Drawbacks: Anti-VM

Technique	Description	Detection
VM Fingerprint	Check for known strings,	Check for known strings
	such as serial numbers	inside the binary
CPUID Check	Check CPU vendor	Check for known CPU
		vendor strings
Invalid Opcodes	Launch hypervisor-specific	Check for specific instrutions
	instructions	on the binary
System Table Checks	Compare IDT values	Look for checks involving IDT
HyperCall Detection	Platform specific feature	Look for specific instructions

How do we detect malware? 21 / 46 TAMU

Hardware-based Sandbox

Monitoring Steps

- Software executes a branch.
- Processor stores branch address in memory page.
- Opening Processor raises an interrupt.
- Kernel handles interrupt.
- Kernel sends data to userland.
- Userland introspects into this data.

Figure: System Architecture.

Key Insight: Branches define basic blocks

Figure: Identified branches and basic blocks...

Source: https://dl.acm.org/doi/10. 1145/3152162

Figure: CFG Reconstruction.

How do we detect malware? 23 / 46 TAMU Examples

Introduction

From Tracing to Threat Intelligence

How do we detect malware? 24/46 TAMU

Brazilian Financial Malware on Desktop

Figure: Passive Banker Malware for Santander bank waiting for user's credential input.

Figure: Passive Banker Malware for Itaú bank waiting for user's credential input.

Link: https://dl.acm.org/doi/10.1145/3429741

Brazilian Financial Malware on Mobile

Figure: BB's Whatsapp chatbot.

Figure: Bradesco's Whatsapp chatbot.

Link: https://dl.acm.org/doi/10.1145/3339252.3340103

How do we detect malware? 26 / 46 TAMU Examples

Introduction

Brazilian Financial Malware Filetypes.

Brazilian malware filetypes.

Varied file formats are prevalent over the years.

How do we detect malware? 27 / 46 TAMU

More about Brazilian Malware

Figure: Source:

https://www.usenix.org/conference/enigma2021/presentation/botacin

How do we detect malware? 28 / 46 TAMU Examples

Introduction

From Threat Intelligence to Endpoint Protection

How do we detect malware? 29 / 46 TAMU

Drawback: Real-time monitoring performance penalty

Figure: AV Monitoring Performance.

Figure: In-memory AV scans worst-case and best-case performance penalties.

Hardware AV Architecture

2-level Architecture

Do not fully replace AVs, but add efficient matching capabilities to them.

Introduction Examples

Performance Characterization

2-Phase HEAVEN CPU Performance

The inspection phase causes occasional, and quick bursts of CPU usage. The AV operating alone incurs a continuous 10% performance overhead.

A first idea: Hardware features as signatures

Figure: Two-level branch predictor. A sequence window of taken (1) and not-taken (0) branches is stored in the Global History Register (GHR).

Figure: Branch patterns coverage.

TAMU How do we detect malware? 33 / 46

Examples

Introduction

Result: Performance penalty reduction

Figure: Performance evaluation when tracking all function calls. Comparison between execution without AV (BASE), execution with software AV, and execution with the proposed coprocessor model.

How do we detect malware? TAMU 34 / 46

Topics

- - Malware
 - Malware Detection

- Examples
- Moving Forward
 - Research Opportunities
- - Recap & Remarks

Research Opportunities

Introduction

Deep Learning: From Images to Binaries

How do we detect malware? TAMU 36 / 46

Malware Binaries as Textures

Figure: Source: https://link.springer.com/chapter/10.1007/978-3-030-30215-3_19

How do we detect malware? 37 / 46 TAMU Research Opportunities

Introduction

Adversarial Machine Learning Detection Bypasses

Adversarial Machine Learning

Adversarial Machine Learning: trend in recent years, as everybody knows

100

x
"panda"
57.7% confidence

 $sign(\nabla_{\boldsymbol{x}}J(\boldsymbol{\theta},\boldsymbol{x},y))$ "nematode"
8.2% confidence

 $x + \epsilon \operatorname{sign}(\nabla_{x}J(\boldsymbol{\theta}, x, y))$ "gibbon"
99.3 % confidence

Figure: Source: https://github.com/marcusbotacin/Talks/tree/master/Waikato

How do we detect malware? 39 / 46 TAMU

Adversarial Malware

Figure: Dropper Strategy.

Figure: Data Appendix Result.

How do we detect malware? 40 / 46 TAMU

MI Evasion Contest

Figure: mlsec.io

Figure: https://cujo.com/machine-learn ing-security-evasion-competition-202 O-results-and-behind-the-scenes/

Research Opportunities

Moving Forward 00000000

Conclusions

Transition to Practice: **Analysis Platforms**

How do we detect malware? 42 / 46 TAMU

A Current Public Malware Analysis Platform

Figure: https://app.any.run

How do we detect malware? 43 / 46 TAMU

Topics

- Introduction
 - Malware
 - Malware Detection
- Academic Contribution

- Examples
- Moving Forward
- Research Opportunities
- 4 Conclusions
 - Recap & Remarks

Summary

Malware Detection

- No definitive solution, but a pipeline of attempts.
- World is better with some approximation of security.

Academic Contributions

- Better Triage with Similarity Hashing
- Better Analyses with new Sandboxes
- Better Threat Intelligence for Brazilian Malware.
- Better endpoint protection with Hardware AVs

Moving Forward

Open research positions. Get in touch!

How do we detect malware? 45 / 46 TAMU Recap & Remarks

Introduction

Thanks!

Questions? Comments?

@MarcusBotacin botacin@tamu.edu marcusbotacin.github.io

How do we detect malware? 46 / 46 TAMU