LIS - Everything Counts - Assignment 1

The trees of London

https://github.com/nicc/lis-stats-1

Nic Young

Data is sourced from the Greater London Authority list of maintained trees.

Each row represents a single tree planted in the city of London. There are 817,150 total records, but we have cleaned this to leave 227,020. Note that, whilst this dataset ostensibly represents the entire population, we should treat this as a sample due to gaps in the data. The data set was last updated in July 2021.

Available variables:

variable	description
objectid	record identifier.
borough	The borough of London in which the tree resides.
maintainer	The entity responsible for maintenance of the tree.
gla_tree_name	The display name used for navigating the Greater London Authority tree map.
tree_name	Unsure. This appears to be an uncleaned version of gla_tree_name.
taxon_name	Botanical name. This is the most specific identifier of the "same" tree across records.
common_name	Common name.
age	This variable is messy and not reliable. See age_group below.
age_group	This classifies each tree as being in a specific age range. Options are: 'Young (0-15)', 'Early mature (16-30)', 'Mature (31-80)', 'Over mature (81-150)', and 'Veteran (over 150)'. Some are undefined.
heigh_m	Height in meters. This variable is sparsely populated and inconsistent in format.
spread_m	Canopy spread in meters. This variable is sparsely populated.
canopy_spread_group	This classifies each tree as being in a specific range of canopy spread (in meters). Options are: '00 to 05m', '05

variable	description
	to 10m', '10 to 15m', and '15 to 20m'. Some are undefined.
diameter_at_breast_height	Diameter at breast height in meters. This variable is sparsely populated.
dbh_group	This classifies each tree as being in a specific range of diameter at breast height (in meters). Options are: '21 to 40cm', '41 to 70cm', '11 to 20cm', 'Upto 10cm', and '70cm+'. This variable is sparsely populated.
longitude	The longitudinal location of the tree.
latitude	The latitudinal location of the tree.
condition	The condition of the tree. Options are: 'Reasonable', 'Good', 'Poor', and 'Dead'. Data only available for Kingston Upon Thames
load_data	The date the tree was first recorded.
updated	The date the tree was last updated.

Exploratory analysis

Let's load the data and clean it...

```
In [1]:
        import warnings
        warnings.filterwarnings("ignore")
        import numpy as np
        import pandas as pd
        # load the data
        data_file = './data/Borough_tree_list_2021July.csv'
        raw = pd.read_csv(data_file)
        # remove records that are not identified as species (this includes tree stum
        data = raw[~raw['taxon_name'].str.lower().str.startswith('zz', na=True)].sor
        # strip leading and trailing whitespace from age group values
        data['age_group'] = data['age_group'].str.strip()
        # remove NaN age_group values
        data = data[data['age_group'].notna()]
        # remove 'Undefined' age_group values
        data = data[data['age_group'] != 'Undefined']
        # remove 'Out' from boroughs
        data = data[data['borough'] != 'Out']
```

Let's look at the data

How many of each species is present in each borough?

```
In [2]: # group by borough and species as a matrix
species_matrix = data.groupby(['borough', 'taxon_name']).size().unstack(fill
species_matrix.head(50)
```

Out[2]:

21:									
	taxon_name	Abies	Abies alba	Abies grandis	Abies koreana	Abies lasiocarpa	Abies nordmanniana	Abies procera	Ac
	borough								
-	Barking and Dagenham	0	0	0	0	0	0	0	
	Barnet	0	0	0	0	0	0	0	
	Bexley	0	0	0	0	0	0	0	
	Brent	0	0	0	0	0	0	0	
	Bromley	0	0	0	0	0	0	0	
	Camden	0	0	0	0	0	0	0	
	City	0	0	1	0	0	0	0	
	Croydon	0	0	0	0	0	0	0	
	Ealing	0	0	0	0	0	0	0	
	Enfield	0	0	0	0	0	0	0	
	Greenwich	0	0	0	0	0	0	0	
	Hackney	0	0	0	0	0	0	0	
	Hammersmith and Fulham	0	0	0	0	0	0	0	
	Haringey	0	0	0	0	0	0	0	
	Havering	0	0	0	0	0	0	0	
	Hillingdon	0	0	0	1	0	0	0	
	Hounslow	0	0	0	0	0	0	0	
	Islington	0	0	0	0	0	0	0	
	Kensington and Chelsea	0	0	0	0	0	0	0	
	Kingston upon Thames	0	0	15	0	0	0	0	
	Lambeth	0	0	0	0	0	0	0	
	Lewisham	24	0	0	0	0	0	0	
	Merton	0	0	0	0	0	0	0	
	Newham	1	0	0	0	0	0	0	
	Redbridge	2	0	2	3	0	1	1	
	Richmond	0	0	0	0	0	0	0	
	Southwark	0	10	2	0	2	1	0	

taxon_name	Abies	Abies alba	Abies grandis	Abies koreana	Abies Iasiocarpa	Abies nordmanniana	Abies procera	Ac
borough								
Sutton	0	0	0	0	0	0	0	
Tower Hamlets	0	0	0	0	0	0	0	
Waltham Forest	0	0	0	0	0	0	0	
Wandsworth	0	0	0	0	0	0	0	
Westminster	0	0	0	0	0	0	0	

32 rows × 528 columns

That's looking a bit sparse. Let's sense check a very common species...

```
In [3]: # sycamore and wild cherry
selected_species = ['Acer pseudoplatanus', 'Prunus avium']
print(species_matrix[selected_species])
```

taxon_name	Acer	pseudoplatanus	Prunus avium
borough Barking and Dagenham		85	76
Barnet		61	201
Bexley		23	84
Brent		8	17
Bromley		35	2
Camden		228	146
City		7	11
Croydon		29	26
Ealing		33	38
Enfield		32	18
Greenwich		13	20
Hackney		2	26
Hammersmith and Fulham		0	0
Haringey		15	15
Havering		27	46
Hillingdon Hounslow		823 117	541 119
Islington		8	5
Kensington and Chelsea		3	45
Kingston upon Thames		13	208
Lambeth		8	1
Lewisham		2085	131
Merton		14	43
Newham		740	472
Redbridge		1894	634
Richmond		16	29
Southwark		3475	1892
Sutton		57	45
Tower Hamlets		48	39
Waltham Forest		50	24
Wandsworth		25	2
Westminster		1	0

Okay that's good.

Let's try to visualise diversity across boroughs. It's going to be a big plot...

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sb

plt.figure(figsize=(450, 15))

sb.heatmap(species_matrix, cmap='YlGnBu', linewidths=.2)

plt.title('Distribution of Tree Species Across London Boroughs', fontsize=8)
plt.xlabel('Species')
plt.ylabel('Borough')

plt.show()
```

Okay that's a bit extreme. We have a few outliers and an otherwise fairly even distribution. It's also just way too much information. So it doesn't tell us much.

Let's try to reduce each borough to a value representing its diversity. Starting simple, we'll just count the number of unique species in each borough and plot that on a bar chart.

```
In [5]: # group by borough and species
        species_count = data.groupby('borough')['taxon_name'].nunique()
        print(species_count)
       borough
       Barking and Dagenham
                                  110
                                   61
       Barnet
                                   32
       Bexley
       Brent
                                   24
       Bromley
                                   44
       Camden
                                  184
       City
                                  129
                                   36
       Croydon
       Ealing
                                   45
       Enfield
                                   44
                                   44
       Greenwich
                                   29
       Hackney
                                   19
       Hammersmith and Fulham
       Haringey
                                   35
                                   43
       Havering
       Hillingdon
                                  171
       Hounslow
                                   55
       Islington
                                   31
       Kensington and Chelsea
                                   37
       Kingston upon Thames
                                  274
                                   40
       Lambeth
       Lewisham
                                  159
       Merton
                                   29
       Newham
                                  141
                                  274
       Redbridge
       Richmond
                                   39
       Southwark
                                  274
       Sutton
                                   37
                                  105
       Tower Hamlets
       Waltham Forest
                                   20
                                   42
       Wandsworth
       Westminster
                                   30
       Name: taxon_name, dtype: int64
In [6]: # bar chart
        species_count.plot(kind='bar', figsize=(10, 6))
        plt.title('Number of Unique Species per Borough')
        plt.xlabel('Borough')
        plt.ylabel('Number of Unique Species')
        plt.show()
```


How is that distributed?

```
In I71: # histogram of the number of species per borough
   plt.figure(figsize=(10, 6))
   plt.hist(species_count, bins=10, edgecolor='black')

plt.title('Diversity Across Boroughs')
   plt.xlabel('Number of Distinct Species')
   plt.ylabel('Number of Boroughs')

plt.show()
```


What if we inverted that?

```
In [8]: # count the number of boroughs each species is found in
    species_per_borough_count = data.groupby('taxon_name')['borough'].nunique()

# histogram showing the number of species by number of boroughs
    plt.figure(figsize=(10, 6))
    plt.hist(species_per_borough_count, bins=range(1, species_per_borough_count.

plt.title('Diversity Across Boroughs (inverted)')
    plt.xlabel('Number of Boroughs Containing N Species')
    plt.ylabel('Number of Species')
```


Okay what about sheer number of trees?

```
In [91: # count the records per borough
    tree_count = data.groupby('borough').size()
    print(tree_count)
```

```
borough
        Barking and Dagenham
                                    4574
        Barnet
                                    2250
        Bexley
                                     471
        Brent
                                     259
        Bromley
                                     672
        Camden
                                    5801
        City
                                    1544
                                     954
        Croydon
        Ealing
                                     941
        Enfield
                                    1262
        Greenwich
                                     941
                                     427
        Hackney
        Hammersmith and Fulham
                                     161
                                     512
        Haringey
        Havering
                                    1717
        Hillingdon
                                  20598
        Hounslow
                                    2586
        Islington
                                     506
        Kensington and Chelsea
                                    787
        Kingston upon Thames
                                  18702
        Lambeth
                                     879
        Lewisham
                                  32628
        Merton
                                     516
        Newham
                                  22230
        Redbridge
                                  39996
        Richmond
                                     991
        Southwark
                                  55375
        Sutton
                                   1070
        Tower Hamlets
                                    5552
        Waltham Forest
                                    493
                                    704
        Wandsworth
        Westminster
                                     921
        dtype: int64
In [10]: # bar chart
         tree_count.plot(kind='bar', figsize=(10, 6))
         plt.title('Number of Trees per Borough')
         plt.xlabel('Borough')
         plt.ylabel('Number of Trees')
         plt.show()
```


Okay the number of distinct species is obviously skewed by the variance in sheer number of trees. What if we ascribe a simple, relative diversity score to normalise for totals?

```
In [11]: # unique species / log(total trees)
    relative_diversity = species_count / np.log(tree_count)
    print(relative_diversity)
```

```
borough
        Barking and Dagenham
                                  13.051510
        Barnet
                                   7.902900
        Bexley
                                   5.199145
        Brent
                                  4.319011
        Bromley
                                   6.758564
        Camden
                                  21.232928
        City
                                  17.569829
        Croydon
                                  5.247306
        Ealing
                                   6.572276
        Enfield
                                   6.162074
        Greenwich
                                   6.426225
        Hackney
                                   4.788020
        Hammersmith and Fulham
                                   3.739124
        Haringey
                                   5.610481
        Havering
                                   5.773103
        Hillingdon
                                  17.215431
        Hounslow
                                  6.999354
        Islington
                                  4.978691
        Kensington and Chelsea
                                  5.548700
        Kingston upon Thames
                                  27.855760
        Lambeth
                                  5.900763
        Lewisham
                                  15.298868
        Merton
                                  4.642892
        Newham
                                  14.087043
        Redbridge
                                  25.857510
        Richmond
                                  5.653227
        Southwark
                                  25.087248
        Sutton
                                  5.304345
        Tower Hamlets
                                  12.178271
        Waltham Forest
                                  3.225542
        Wandsworth
                                  6.405585
        Westminster
                                   4.395308
        dtype: float64
In [12]: # bar chart
         relative_diversity.plot(kind='bar', figsize=(10, 6))
         plt.title('Relative Diversity of Tree Species per Borough')
         plt.xlabel('Borough')
         plt.ylabel('Relative Diversity')
         plt.show()
```


Okay that's more interesting.

Now let's look at a different facet of the data: age groups. We'll show the percentage of each age group per borough as a 100% stacked bar chart...

```
In [13]: # number of trees in a given age group by borough, as matrix
    age_group_count = data.groupby(['borough', 'age_group']).size().unstack(fill
    print(age_group_count)
```

age_group borough	Early mature (16-30)		
Barking and Dagenham	61	757	
Barnet	789	498	
Bexley	285	168	
Brent	32	18	
Bromley	265	362	
Camden	118	2506	
City	497	586	
Croydon	310	507	
Ealing	272	92	
Enfield	267 426	221	
Greenwich	186	358 114	
Hackney Hammersmith and Fulham	37	52	
	143	153	
Haringey	832	131	
Havering	18639	192	
Hillingdon Hounslow	874	693	
Islington	283	115	
Kensington and Chelsea	290	255	
Kingston upon Thames	6639	4135	
Lambeth	340	261	
Lewisham	9375	20272	
Merton	201	178	
Newham	2079	2373	
Redbridge	12177	8033	
Richmond	197	499	
Southwark	17091	17213	
Sutton	442	444	
Tower Hamlets	311	2912	
Waltham Forest	144	22	
Wandsworth	337	142	
Westminster	259	472	
age_group	Over mature (81-150)	Veteran (over 150)	Young (0-1
5)			
borough			
Barking and Dagenham	22	0	37
34			
Barnet	3	6	9
54		_	
Bexley	1	0	
17	_	_	_
Brent	0	0	2
09		4	
Bromley	6	1	
38	20	1701	4.2
Camden	38	1781	13
58		0	4
City 61	0	0	4
Croydon	0	0	1
37	V	0	1
Ealing	4	0	5
73	4	V	3
, ,			

Enfield	0	0	7
74 Greenwich	4	0	1
53	7	· ·	-
Hackney	2	0	1
25 Hammersmith and Fulham	0	0	
72			
Haringey 15	1	0	2
Havering	4	4	7
46			
Hillingdon 66	1	0	17
Hounslow	3	2	10
14			
Islington 08	0	0	1
Kensington and Chelsea	0	0	2
42	1200		67
Kingston upon Thames 22	1206	0	67
Lambeth	3	0	2
75 Lewisham	1372	0	16
09	13/2	V	10
Merton	3	0	1
34 Newham	32	1	177
45	32	1	177
Redbridge	4209	283	152
94 Richmond	17	0	2
78			
Southwark	3019	138	179
14 Sutton	5	0	1
79			
Tower Hamlets 28	1	0	23
Waltham Forest	0	0	3
27	4		2
Wandsworth 24	1	0	2
Westminster	0	0	1
90			

```
In [14]: # normalize by total trees in each borough to get percentages
    age_group_percentages = age_group_count.div(age_group_count.sum(axis=1), axi

# reorder columns
    age_group_order = ['Young (0-15)', 'Early mature (16-30)', 'Mature (31-80)',
    age_group_percentages = age_group_percentages[age_group_order]

print(age_group_percentages)
```

age_group \	Young (0-15) Earl	y mature (16–30)	Mature (31-80)
borough			
Barking and Dagenham	81.635330	1.333625	16.550066
Barnet	42.400000	35.066667	22.133333
Bexley	3.609342	60.509554	35.668790
Brent	80.694981	12.355212	6.949807
Bromley	5.654762	39.434524	53.869048
Camden	23.409757	2.034132	43.199448
City	29.857513	32.189119	37.953368
Croydon	14.360587	32.494759	53.144654
Ealing	60.892667	28.905420	9.776833
Enfield	61.331220	21.156894	17.511886
Greenwich	16.259299	45.270988	38.044633
Hackney	29.274005	43.559719	26.697892
Hammersmith and Fulham	44.720497	22.981366	32.298137
Haringey	41.992188	27.929688	29.882812
Havering	43.447874	48.456610	7.629586
Hillingdon	8.573648	90.489368	0.932129
Hounslow	39.211137	33.797370	26.798144
Islington	21.343874	55.928854	22.727273
Kensington and Chelsea	30.749682	36.848793	32.401525
Kingston upon Thames	35.942680	35.498877	22.109935
Lambeth	31.285552	38.680319	29.692833
Lewisham	4.931347	28.732990	62.130685
Merton	25.968992	38.953488	34.496124
Newham	79.824561	9.352227	10.674764
Redbridge	38.238824	30.445545	20.084508
Richmond	28.052472	19.878910	50.353179
Southwark	32.350339	30.864108	31.084424
Sutton	16.728972	41.308411	41.495327
Tower Hamlets	41.930836	5.601585	52.449568
Waltham Forest	66.328600	29.208925	4.462475
Wandsworth	31.818182	47.869318	20.170455
Westminster	20.629750	28.121607	51.248643
age_group	Over mature (81-15	0) Veteran (ove	150)
borough Barking and Dagenham	0.4809	70 0.0	000000
Barnet	0.4609		266667
Bexley	0.1333 0.2123		000007
Brent	0.0000		000000
Bromley	0.8928		148810
Camden	0.6550		701603
City	0.0000		000000
Croydon	0.0000		000000
Ealing	0.4250		000000
Enfield	0.0000		000000
Greenwich	0.4250		000000
Hackney	0.4683		000000
Hammersmith and Fulham	0.0000		000000
Haringey	0.1953	12 0.0	000000
Havering	0.2329	64 0.2	232964
Hillingdon	0.0048	55 0.0	000000
Hounslow	0.1160	09 0.0	077340
Islington	0.0000	00 0.0	000000

```
Kensington and Chelsea
                                      0.000000
                                                           0.000000
Kingston upon Thames
                                      6.448508
                                                           0.000000
Lambeth
                                      0.341297
                                                           0.000000
Lewisham
                                      4.204977
                                                           0.000000
Merton
                                      0.581395
                                                           0.000000
                                      0.143950
Newham
                                                           0.004498
Redbridge
                                     10.523552
                                                           0.707571
Richmond
                                      1.715439
                                                           0.000000
Southwark
                                      5.451919
                                                           0.249210
Sutton
                                      0.467290
                                                           0.000000
Tower Hamlets
                                      0.018012
                                                           0.000000
Waltham Forest
                                      0.000000
                                                           0.000000
Wandsworth
                                      0.142045
                                                           0.000000
Westminster
                                      0.000000
                                                           0.000000
```

```
In [15]: # 100% stacked bar chart
    age_group_percentages.plot(kind='bar', stacked=True, figsize=(10, 6), colorm
    plt.title('Tree Age Group Percentages by Borough')
    plt.xlabel('Borough')
    plt.ylabel('Percentage of Trees')
    plt.legend(title='Age Group', bbox_to_anchor=(1.05, 1), loc='upper left')
    plt.show()
```


We have some interesting data in Kingston Upon Thames that is not available for other boroughs. Let's look at that too...

First up: tree condition...

In [16]: # filter for rows that have the condition property, group by borough and con

A pie chart should suffice here...

```
In [171: # pie chart
    plt.figure(figsize=(8, 8))
    wedges, texts, autotexts = plt.pie(condition_count, autopct='%1.1f%%', start
    plt.legend(wedges, [c for b, c in condition_count.index], title="Condition")
    plt.title('Condition of trees in Kingston Upon Thames')
    plt.axis('equal')
    plt.show()
```

Condition of trees in Kingston Upon Thames

Next up: canopy spread group...

```
In [18]: # filter for rows that have a canopy spread group, group by borough and cano
canopy_spread_count = data[['borough', 'canopy_spread_group']].groupby(['bor
print(canopy_spread_count)
```

borough			canopy_spread_g	roup
Kingston	upon	Thames	00 to 05m	11537
			05 to 10m	5847
			10 to 15m	740
			15 to 20m	51

dtype: int64

```
In [19]: # pie chart again
   plt.figure(figsize=(8, 8))
   wedges, texts, autotexts = plt.pie(canopy_spread_count, autopct='%1.1f%%', s
   plt.legend(wedges, [c for b, c in canopy_spread_count.index], title="Canopy
```

```
plt.title('Canopy spread of trees in Kingston Upon Thames')
plt.axis('equal')
plt.show()
```

Canopy spread of trees in Kingston Upon Thames

Let's see this broken down by age...

In [201: # group by age group and canopy spread group, in a matrix
 canopy_spread_by_age_count = data.groupby(['age_group', 'canopy_spread_group
 print(canopy_spread_by_age_count)

canopy_spread_group	00 to 05m	05 to 10m	10 to 15m	15 to 20m
age_group				
Early mature (16-30)	4174	2227	17	1
Mature (31-80)	740	2919	264	0
Over mature (81-150)	84	629	437	50
Young (0-15)	6539	72	22	0

```
canopy_spread_group 00 to 05m 05 to 10m 10 to 15m 15 to 20m age_group Young (0-15) 98.582843 1.085482 0.331675 0.000000 Early mature (16-30) 65.025705 34.693878 0.264839 0.015579 Mature (31-80) 18.863115 74.407341 6.729544 0.000000 Over mature (81-150) 7.000000 52.416667 36.416667 4.166667
```


This checks out I guess. Older == bigger :D

I think I'll stop here. Next up for assignment 2 will be to interrogate how well this sample represents the population, whether we can form any hypotheses, and whether we can verify them if so.