AM5650 Lorentz System Problems

Q1) Recreate Lorenz's predicament by writing a computer program to solve the equations in 8-bit arithmetic.

Write a computer program to numerically solve the Lorenz system:

$$\frac{dx}{dt} = \sigma(y - x)$$

$$\frac{dy}{dt} = x(r - z) - y$$

$$\frac{dz}{dt} = xy - bz$$

Implement it using 8-bit floating-point or fixed-point arithmetic instead of higher precision.

Observe how errors accumulate over time and how they affect the system's dynamics.

- **Q2)** For the lorentz system, generate the bifurcation diagram and show regions of stability in the full three-parameter space.
- **Q3)** For each of the values of r given below, use a computer to explore the dynamics of the Lorenz system, assuming $\sigma = 10$ and b = 8/3 as usual. In each case, plot x(t), y(t), and x vs. z.
 - (i) r = 166.3 (intermittent chaos)
 - (ii) r = 212 (noisy periodicity)
- (iii) The interval $145 \le r \le 166$ (period-doubling)
- Q4) (Hysteresis between a fixed point and a strange attractor) Consider the Lorenz equations with $\sigma = 10$ and $b = \frac{8}{3}$. Suppose that we slowly "turn the r knob" up and down. Specifically, let $r = 24.4 + \sin(\omega t)$, where ω is small compared to typical orbital frequencies on the attractor. Numerically integrate the equations, and plot the solutions in whatever way seems most revealing. You should see a striking hysteresis effect between an equilibrium and a chaotic state.
- **Q5)** (Lorenz equations for large r) Consider the Lorenz equations in the limit $r \to \infty$. By taking the limit in a certain way, all the dissipative terms in the equations can be removed (Robbins 1979, Sparrow 1982).
 - (a) Let $\epsilon = r^{-1/2}$, so that $r \to \infty$ corresponds to $\epsilon \to 0$. Find a change of variables

involving ϵ such that as $\epsilon \to 0$, the equations become:

$$\dot{X} = Y$$

$$\dot{Y} = -XZ$$

$$\dot{Z} = XY.$$

- (b) Find two conserved quantities (i.e., constants of the motion) for the new system.
- (c) Show that the new system is volume-preserving (i.e., the volume of an arbitrary blob of "phase fluid" is conserved by the time-evolution of the system, even though the shape of the blob may change dramatically).
- (d) Explain physically why the Lorenz equations might be expected to show some conservative features in the limit $r \to \infty$.
- (e) Solve the system in part (a) numerically. What is the long-term behavior? Does it agree with the behavior seen in the Lorenz equations for large r?
- **Q6)** (Transient chaos) Example 9.5.1 from Strogatz textbook shows that the Lorenz system can exhibit transient chaos for r = 21, $\sigma = 10$, and b = 8/3. However, not all trajectories behave this way. Using numerical integration, find three different initial conditions for which there is transient chaos, and three others for which there isn't. Give a rule of thumb which predicts whether an initial condition will lead to transient chaos or not.