TOSHIBA Photocoupler GaAlAs Ired & Photo IC

6N137

Degital Logic Isolation
Tele-Communication
Analog Data Equipment Control

The TOSHIBA 6N137 consist of a high emitting diode and a one chip photo IC. This unit is 8–lead DIP package.

- LSTTL / TTL compatible: 5V Supply
- Ultra high speed: 10MBd
- Guaranteed performance over temperature: 0°C to 70°C
- High isolation voltage: 2500Vrms min.
- UL recognized: UL1577, file no. E67349

Truth Table

Input	Enable	Output
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н

Unit in mm

Weight: 0.54g

Pin Configurations (top view)

- 1: N.C.
- 2 : Anode
- 3 : Cathode
- 4 : N.C.
- 5 : GND
- 6 : Output(Open collector)
- 7 : Enable
- $8:V_{CC}$

Maximum Ratings

	Characteristic	Symbol	Rating	Unit
	Forward current	lF	20	mA
LED	Pulse forward current (Note 1)	I _{FP}	40	mA
	Reverse voltage	V _R	5	V
	Output current	IO	50	mA
L	Output voltage	Vo	7	V
Dete Er	Supply voltage (1 minute maximum)	V _{CC}	7	V
	Enable input voltage (not to exceed V _{CC} by more than 500mV)	V _{EH}	5.5	V
	Output collector power dissipation	PO	85	mW
Operating temperature range		T _{opr}	0~70	°C
Storage temperature range		T _{stg}	-55~125	°C
Lead	solder temperature (10 s) (Note 2)	T _{sol}	260	°C

(Note 1) 50% duty cycle, 1ms pulse width.

(Note 2) Soldering portion of lead: Up to 2mm from the body of the device.

Recommended Operating Conditions

Characteristic	Symbol	Min.	Max.	Unit
Input current, low level each channel	I _{FL}	0	250	μΑ
Input current, high level each channel	I _{FH}	7	20	mA
High level enable voltage	V _{EH}	2.0	V_{CC}	>
Low level enable voltage (output high)	V _{EL}	0	0.8	>
Supply voltage, output	V _{CC}	4.5	5.5	>
Fan out (TTL load)	N	_	8	_
Operating temperature	Та	0	70	°C

Precaution

Please be careful of the followings.

A ceramic capacitor $(0.1\mu F)$ should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length between capacitor and coupler should not exceed 1cm.

2

Electrical Characteristics Over Recommended Temperature ($Ta = 0 \sim 70$ °C unless otherwise noted)

Characteristic		Symbol	Test Condition	Min.	(**)Typ.	Max.	Unit
High level output current		Іон	V_{CC} =5.5V, V_{O} =5.5V I_{F} =250 μ A, V_{E} = 2.0V	_	1	250	μΑ
Low level output voltage		V _{OL}	V _{CC} =5.5V, I _F =5mA V _{EH} =2.0V I _{OL} (sinking)=13mA	_	0.4	0.6	V
High level enable current		I _{EH}	V _{CC} =5.5V, V _E =2.0V	-	-1.0		mA
Low level enable current		I _{EL}	V _{CC} =5.5V, V _E =0.5V	_	-1.6	-2.0	mA
High level supply current		Icch	V _{CC} =5.5V, I _F =0, V _E =0.5V	_	7	15	mA
Low level supply current		I _{CCL}	V _{CC} =5.5V, I _F =10mA V _E =0.5V	_	12	18	mA
Resistance (input-output)	(Note 3)	R_{I-O}	V _I –O=500V, Ta=25°C R.H.≤60%	_	10 ¹²	_	Ω
Capacitance (input-output)	(Note 3)	C_{I-O}	f=1MHz, Ta=25°C	_	0.6	_	рF
Input forward voltage		V _F	I _F =10mA, Ta=25°C	_	1.65	1.75	V
Input reverse breakdown voltage		BV _R	I _R =10μA, Ta=25°C	5	_	_	V
Input capacitance		C _{IN}	V _F =0, f=1MHz	_	45	_	pF
Current transfer ratio		CTR	I _F =5.0mA, R _L =100Ω		1000		%

^(**) All typical values are at V_{CC} =5V, Ta=25°C

⁽Note 3) Pins 1, 2, 3 and 4 shorted together and pins 5, 6, 7 and 8 shorted together.

Switching Characteristics (Ta = 25°C, $V_{CC} = 5V$)

Characteristic	Symbol	Test Circuit	Test Condition	Min.	Тур.	Max.	Unit
Propagation delay time to high output level	t _p LH	1	R_L =350 Ω , C_L =15pF I_F =7.5mA	_	60	75	ns
Propagation delay time to low output level	t _p HL	1	R_L =350 Ω , C_L =15pF I_F =7.5mA	_	60	75	ns
Output rise–fall time (10–90%)	t _r , t _f	_	R_L =350 Ω , C_L =15pF I_F =7.5mA	_	30	_	ns
Propagation delay time of enable from V _{EH} to V _{EL}	^t ELH	2	R_L =350 Ω , C_L =15pF I_F =7.5mA V_{EH} =3.0V V_{EL} =0.5V	_	25	_	ns
Propagation delay time of enable from V _{EL} to V _{EH}	tEHL	2	R_L =350 Ω , C_L =15pF I_F =7.5mA V_{EH} =3.0V V_{EL} =0.5V	_	25	_	ns
Common mode transient immunity at logic high output level	CM _H	3	$\begin{array}{c} V_{CM} = 10V \\ R_L = 350\Omega \\ V_{O(min.)} = 2V \\ I_F = 0mA \end{array}$	_	200	_	V / μs
Common mode transient Immunity at logic low output level	CML	3	$V_{CM}=10V$ $R_{L}=350\Omega$ $V_{O(max.)}=0.8V$ $I_{F}=5mA$	-	-500	_	V / μs

4 2002-09-25

Test Circuit 1.

· C_L is approximately 15pF which includes probe and stray wiring capacitance.

Test Circuit 2.

· C_L is approximately 15pF which includes prove and stray wiring capacitance.

5

Test Circuit 3.

Transient immunity and typical waveforms

6

7

RESTRICTIONS ON PRODUCT USE

000707EBC

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- Gallium arsenide (GaAs) is a substance used in the products described in this document. GaAs dust and fumes
 are toxic. Do not break, cut or pulverize the product, or use chemicals to dissolve them. When disposing of the
 products, follow the appropriate regulations. Do not dispose of the products with other industrial waste or with
 domestic garbage.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other
 rights of the third parties which may result from its use. No license is granted by implication or otherwise under
 any intellectual property or other rights of TOSHIBA CORPORATION or others.

8

• The information contained herein is subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.