Busca e otimização de uma função na área de instrumentação industrial

Problema Resolvido

O fenômeno da flexão causa o encurvamento da estrutura, em estruturas unidimensionais e bidimensionais, isto ocorre quando o carregamento é aplicado perpendicularmente ao seu eixo principal ou plano principal.

Para ocorrer o encurvamento, algumas fibras devem sofrer alongamento e outras, encurtamento. Porém, existirá uma fibra que não sofrerá alongamento, nem encurtamento e é chamada de linha neutra. Um tipo de aplicação bastante comum é o da barra engastada de comprimento L e seção coroa-circular, onde atua uma força F (unidade em Newtons) na extremidade (Figura 1).

Figura 1- Barra coroa circular engastada

Objetivo e Descrição do funcionamento

Neste exemplo o algoritmo genético tenta encontrar a melhor solução para minimizar a deformação da barra, de modo que as fibras não venham a se romper mantendo-as na chamada linha neutra onde não ocorre mudança. Para calcular a deformação máxima é utilizado a seguinte formula:

$$\varepsilon = \frac{32 \times F \times L \times D}{E \times \Pi \times (D^4 - d^4)}$$

Passos de funcionamento:

Passo 1: Inicializa os parâmetros que serão utilizados no algoritmo genético.

```
#Individuos e geracao
NumIndividuals = 50
IndividualSize = 22
MaxGeneration = 40

#Taxas
MutationRate = 0.008
```

Jefferson Cleyson Gomes Almeida, Engenharia da computação 10º Período

```
#Diametros
MinD = 51
MaxD = 99
Mind = 1
Maxd = 99
#Precisao e melhor escolha
Target = 0.00005
Elitism = True
```

Passo 2: Inicializa a população que será analisada.

```
self.population = self.problem.initPopulation(population_size)
```

Passo 3: Pega o melhor individuo da população.

```
self.best_fit,self.best_individual = self.__bestFitness()
```

Passo 4: Estrutura de repetição que realiza o processo genético completo. Nesta estrutura ocorre a avaliação do indivíduo.

```
while (np.abs(self.best_fit-last_best_fit) > target) and (generation <
max_generation):</pre>
```

Passo 4.1: Seleção, crossover e Mutação.

```
self.best_fit,self.best_individual = self.__bestFitness()
```

Passo 4.3: Retorna ao passo 4.

Valores dos Parâmetros utilizados

Foi replicado um problema já apresentado por outro artigo [1], para se assemelhar melhor com os resultados obtidos pelo artigo alguns parâmetros foram alterados.

Parâmetros genéticos utilizados:

- Número de indivíduos: 50;
- Tamanho do indivíduo (Cromossomo): 22;
- Taxa de mutação: 0.008;
- Taxa de crossover: 0.65;
- Precisão do melhor indivíduo (Target): 0.00005;
- Máximo de geração: 40;

Parâmetros utilizados para cálculos da Função:

- Força (F): 2000 [Newtons];
- Comprimento da barra engastada (L): 300 [mm];
- Diâmetro maior (D): ...[mm]; ()
 - o Mínimo: 51 [mm];
 - Máximo: 99 [mm];
- **Diâmetro menor** (d): ...[mm];
 - o Mínimo: 1 [mm];
 - o Máximo: 99 [mm];
- Módulo de Young (E): 2.065e5 [mm]

^{***} Parâmetros que variam no algoritmo genético

Análise dos resultados

Apesar do algoritmo genético ter padrões de funcionamento não foi possível chegar no resultado idêntico ao do artigo, porém foi obtido valores semelhantes.

Figura 2 - Resultado 1

Figura 3 - Resultado 2

Referências

- [1] MONTEIRO, Luiz Fernando Ribas; RODRIGUES, Luiz Guilherme Ramos; DE SOUZA LIMA, Rodolfo. Aplicação de Algoritmos Genéticos em Implementações de Controles Industriais. Disponível em: https://www.aedb.br/seget/arquivos/artigos15/30522361.pdf, acessado em 23 de outubro de 2019.
- [2] MORA, Nora Díaz. Apostila de Resistência dos Materiais I. **Universidade Federal de Juiz de Fora. Juiz de Fora**, 2012. Disponível em: http://www.ufjf.br/mac/files/2012/11/Apostila_Res_Mat_outubro_2012-atualizada.pdf, acessado em 20 de outubro de 2019.