Lycée Buffon MPSI

DS5Année 2020-2021

Corrigé du devoir du 28/11/2020

Exercice 1: Soit $f: x \mapsto 2\arctan\left(x + \sqrt{x^2 - 1}\right) - \arctan\left(\sqrt{x^2 - 1}\right)$

1. Déterminer l'ensemble de définition noté \mathcal{D}_f de la fonction f. La fonction arctan étant définie sur \mathbb{R} et la fonction racine étant définie sur \mathbb{R}^+ , on a:

$$\mathcal{D}_f = \{ x \in \mathbb{R} : x^2 - 1 \ge 0 \} =] - \infty, -1] \cup [1, +\infty[.$$

2. Étudier la dérivabilité de f et déterminer sa dérivée aux points de dérivation. La fonction arctan étant dérivable sur \mathbb{R} et la fonction racine étant dérivable sur \mathbb{R}^{+*} , f est dérivable sur $\{x \in \mathbb{R} : x^2 - 1 > 0\} =]-\infty, -1[\cup]1, +\infty[$. Soit $x \in]-\infty, -1[\cup]1, +\infty[$. On a

$$f'(x) = 2\left(1 + \frac{2x}{2\sqrt{x^2 - 1}}\right) \frac{1}{1 + \left(x + \sqrt{x^2 - 1}\right)^2} - \frac{2x}{2\sqrt{x^2 - 1}} \frac{1}{x^2}$$

donc

$$f'(x) = 2 \times \frac{x + \sqrt{x^2 - 1}}{\sqrt{x^2 - 1}} \frac{1}{2x^2 + 2x\sqrt{x^2 - 1}} - \frac{1}{x\sqrt{x^2 - 1}} = 0$$

3. Tracer le graphe de f.

La fonction f est donc constante sur chacun des intervalles $]-\infty,-1[$ et $]1,+\infty[$. Comme f est continue en 1, on a $\forall x \in]1, +\infty[$, $f(x) = f(1) = \pi/2$. De même, comme f est continue en -1, on a $\forall x \in]-\infty, -1[$, $f(x)=f(-1)=-\pi/2$.

Exercice 2 : Soit $f: \mathbb{C} \to \mathbb{C}, z \mapsto z^2 - z + 1$.

Déterminer $f(\mathbb{C})$, $f(\mathbb{C}^*)$, $f(\mathbb{R})$, $f^{-1}(\mathbb{C})$, $f^{-1}(\mathbb{C}^*)$ et $f^{-1}(\mathbb{R})$.

On a $f(\mathbb{C}) \subset \mathbb{C}$ et pour tout $z_0 \in \mathbb{C}$, l'équation $z^2 - z + 1 = z_0$ a au moins une solution complexe donc $\mathbb{C} \subset f(\mathbb{C})$ puis $f(\mathbb{C}) = \mathbb{C}$.

On a $f(\mathbb{C}^*) \subset \mathbb{C}$ et pour tout $z_0 \in \mathbb{C}$, l'équation $z^2 - z + 1 = z_0$ a au moins une solution complexe non nulle car la somme des deux solutions vaut 1 donc $\mathbb{C} \subset f(\mathbb{C}^*)$ puis $f(\mathbb{C}^*) = \mathbb{C}$.

Par définition, $f(\mathbb{R}) = \{x^2 - x + 1, x \in \mathbb{R}\} = \{(x - 1/2)^2 + 3/4, x \in \mathbb{R}\} = [3/4, +\infty[$. Par définition $f^{-1}(\mathbb{C}) = \{z \in \mathbb{C} : z^2 - z + 1 \in \mathbb{C}\} \text{ donc } f^{-1}(\mathbb{C}) = \mathbb{C}.$

Par définition $f^{-1}(\mathbb{C}^*) = \{z \in \mathbb{C} : z^2 - z + 1 \neq 0\} \text{ donc } f^{-1}(\mathbb{C}^*) = \mathbb{C} \setminus \{(1 \pm i\sqrt{3})/2\}.$

Par définition $f^{-1}(\mathbb{R}) = \{z \in \mathbb{C} : z^2 - z + 1 \in \mathbb{R}\}.$

Soit $z \in \mathbb{R}$, on a:

$$z^{2} - z + 1 \in \mathbb{R} \Leftrightarrow z^{2} - z \in \mathbb{R} \Leftrightarrow z^{2} - z = \overline{z}^{2} - \overline{z} \Leftrightarrow (z - \overline{z})(z + \overline{z} - 1) = 0$$

donc
$$f^{-1}(\mathbb{R}) = \mathbb{R} \cup \left\{ z \in \mathbb{C} : \Re(z) = \frac{1}{2} \right\}.$$

Exercice 3: On souhaite démontrer que : $\forall (x,y) \in [0,1]^2, \ x^y + y^x \ge 1.$

1. (a) Prouver que pour tout $x \in \mathbb{R}$, on a $e^x > 1 + x$. On considère $f: x \mapsto e^x - 1 - x$. La fonction f est dérivable sur \mathbb{R} et :

$$\forall x \in \mathbb{R}, \ f'(x) = e^x - 1.$$

Donc f est décroissante sur l'intervalle \mathbb{R}^- et croissante sur l'intervalle \mathbb{R}^+ . Elle admet donc un minimum en 0. Comme f(0) = 0, on en déduit que f est positive puis que : $\forall x \in \mathbb{R}, e^x > 1 + x$.

(b) Soit $a \in \mathbb{R}^{+*}$ fixé. On considère $f_a : t \mapsto t \ln(at)$. Étudier f_a : domaine de définition, de dérivation, variations, limites, valeur

du minimum, tangente au point d'abscisse 1/a et graphe.

La fonction ln étant définie et dérivable sur \mathbb{R}^{+*} , f_a est définie et dérivable $\sup \{x \in \mathbb{R} : ax > 0\} = \mathbb{R}^{+*} \text{ car } a > 0.$

Pour tout $x \in \mathbb{R}^{+*}$, on a $f'_a(x) = \ln(ax) + 1$. La fonction f_a est donc décroissante sur l'intervalle $]0,\frac{1}{ae}[$ et croissante sur l'intervalle $]\frac{1}{ae},+\infty.$ Elle admet donc un minimum en $\frac{1}{ae}$ égal à $\frac{-1}{ae}$.

On a, par croissances comparées, $\lim_{t\to 0} f_a(t) = 0$ et $\lim_{t\to +\infty} f_a(t) = +\infty$.

De plus, f s'annule en 1/a. La tangente au point d'abscisse 1/a a pour équation y = x - 1/a.

- 2. On suppose que $x \in]0,1]$ et que $0 < y \le x$. On pose $a = \frac{y}{x}$.
 - (a) On suppose dans cette question que $e^{-1} < a < 1$.
 - i. Prouver que $x \ln(ax) > -1$ et que $ax \ln(x) > -e^{-1}$. On a $x \ln(ax) = f_a(x) \ge \frac{-1}{ae} \ge -1$ car le minimum de f_a est $\frac{-1}{ae}$ et car

$$e^{-\frac{1}{2}} \le a$$
.
On a $ax \ln(x) = a^2 f_a(x/a) \ge \frac{-a^2}{ac} = \frac{-a}{a} \ge -e^{-1}$ car $a \le 1$.

ii. En déduire au $e^{x^y} + v^x > e^{-1} + e^{-1/e} > 1$. On a $x^y + y^x = e^{y \ln x} + e^{x \ln y} = e^{ax \ln x} + e^{x \ln(ax)} > e^{-1} + e^{-1/e}$. Or, $e^{-1/e} > 1 + (-1/e)$ d'après 1,b, donc $e^{-1} + e^{-1/e} > 1$ puis $x^y + y^x > 1$

- (b) On suppose dans cette question que $0 < a < e^{-1}$.
 - i. Prouver que $x \ln(ax) \ge \ln(a)$ et que $ax \ln(x) \ge -ae^{-1}$.

On a $x \ln(ax) = f_a(x)$. Comme $a < e^{-1}$, $\frac{1}{ae} > 1$ donc f_a est décroissante sur l'intervalle [0, 1]. Son minimum sur [0, 1] est donc $f_a(1) = \ln a$.

Ainsi, comme $x \in]0,1]$, $x \ln(ax) = f_a(x) \ge \ln(a)$.

On a $ax \ln(x) = a^2 f_a(x/a) \ge -ae^{-1}$ car le minimum de f_a vaut -1/(ae).

ii. En déduire que $x^y + y^x \ge 1$.

On a $x^y + y^x = e^{y \ln x} + e^{x \ln y} = e^{ax \ln x} + e^{x \ln(ax)} > e^{-a/e} + e^{\ln a}$.

Donc, en utilisant la question 1b, $x^y + y^x \ge e^{-a/e} + a \ge 1 - a/e + a \ge 1$.

3. Conclure.

On a prouvé le résultat si $x \in]0,1]$ et si $0 < y \le x$. Par symétrie, on a donc prouvé le résultat si x et y appartiennent à]0,1].

Reste à prouver le résultat lorsque x = 0 ou y = 0.

Si x = y = 0, alors $x^y + y^x = 2 \ge 1$.

Si x = 0 et $y \in]0, 1]$, alors $x^y + y^x = 1 \ge 1$.

Ainsi, par symétrie le résultat est prouvé lorsque x = 0 ou y = 0.

On a donc démontré que $\forall (x,y) \in [0,1]^2, \ x^y + y^x \ge 1.$

Pour tout complexe z=a+ib et pour tout réel x strictement positif, on définit l'exponentielle complexe x^z par $x^z=e^{z\ln(x)}=x^a\left(\cos\left(b\ln(x)\right)+i\sin\left(b\ln(x)\right)\right)$.

- 4. Soit $z \in \mathbb{C}$. On note $f_z : \mathbb{R}^{+*} \to \mathbb{C}$, $x \mapsto x^z$
 - (a) Démontrer que la fonction f_z est dérivable sur \mathbb{R}^{+*} et déterminer sa dérivée. Par définition, la fonction f_z est dérivable sur \mathbb{R}^{+*} si, et seulement si, Réf et Imf le sont.

On a Ré $f: x \mapsto e^{a \ln x} \cos(b \ln(x))$. La fonction ln étant dérivable sur \mathbb{R}^{+*} et les fonctions cos et exp l'étant sur \mathbb{R} , Réf est dérivable sur \mathbb{R}^{+*} .

De même, $\operatorname{Im} f$ est dérivable sur \mathbb{R}^{+*} .

Soit $x \in \mathbb{R}^{+*}$. On a

$$(\operatorname{R\acute{e}f})'(x) = e^{a \ln x} \left(\frac{a}{x} \cos(b \ln(x)) - \frac{b}{x} \sin(b \ln(x)) \right)$$

 $_{
m et}$

$$(\operatorname{Im} f)'(x) = e^{a \ln x} \left(\frac{a}{x} \sin(b \ln(x)) - \frac{b}{x} \cos(b \ln(x)) \right)$$

donc

$$f'(x) = (\text{Ré}f)'(x) + i(\text{Im}f)'(x) = e^{a \ln x} \frac{a + ib}{x} (\cos(b \ln(x)) + i\sin(b \ln(x)))$$

c'est-à-dire :

$$f'(x) = \frac{z}{x}x^z = zx^{z-1}.$$

(b) Justifier que f_z admet des primitives sur \mathbb{R}^{+*} et les déterminer. La fonction f_z est continue sur l'intervalle \mathbb{R}^{+*} , elle admet donc des primitives sur \mathbb{R}^{+*} .

Si $z \neq -1$, $x \mapsto \frac{x^{z+1}}{z+1}$ est une primitive de f_z donc les primitives de f_z sur \mathbb{R}^{+*} sont les fonctions de la forme $x \mapsto \frac{x^{z+1}}{z+1} + C$ avec $C \in \mathbb{C}$.

Si z=-1, alors ln est une primitive de f_z donc les primitives de f_z sur \mathbb{R}^{+*} sont les fonctions de la forme $x\mapsto \ln x+C$ avec $C\in\mathbb{C}$.

(c) En déduire une primitive de $f_i: t \mapsto t \cos(\ln(t))$. On a $f = \text{Ré}(f_{1+i})$. Une primitive de f est donc:

$$t\mapsto \mathrm{R}\circ\left(\frac{t^{2+i}}{2+i}\right)=\mathrm{R}\circ\left(\frac{(2-i)t^{2+i}}{5}\right)=\frac{t^2}{5}\left(2\cos\left(\ln(t)\right)+\sin\left(\ln(t)\right)\right)$$

(d) Retrouver ce résultat de deux façons : grâce à un changement de variable puis à l'aide d'intégrations par parties.

La fonction f étant continue sur l'intervalle \mathbb{R}^{+*} une primitive de f est :

$$F: x \mapsto \int_1^x t \cos\left(\ln(t)\right) dt$$

Soit $x \in \mathbb{R}^{+*}$. Déterminons F(x) à l'aide d'un changement de variable. La fonction $u \mapsto e^u$ étant de classe \mathcal{C}^1 sur \mathbb{R} à valeurs dans \mathbb{R}^{+*} , on a :

$$F(x) = \int_0^{\ln x} e^u \cos(u) e^u du = \operatorname{R\acute{e}} \left(\int_0^{\ln x} e^{(2+i)u} du \right) = \operatorname{R\acute{e}} \left[\frac{e^{(2+i)u}}{2+i} \right]_0^{\ln x}$$

Comme
$$\left[\frac{e^{(2+i)u}}{2+i}\right]_0^{\ln x} = \left[\frac{(2-i)e^{(2+i)u}}{5}\right]_0^{\ln x}$$
, on obtient:

$$F(x) = \left[e^{2u} \frac{2\cos u + \sin u}{5} \right]_0^{\ln x} = \frac{x^2}{5} \left(2\cos(\ln(x)) + \sin(\ln(x) - 2) \right)$$

On retrouve qu'une primitive de f est $t \mapsto \frac{t^2}{5} (2\cos(\ln(t)) + \sin(\ln(t)))$.

Soit $x \in \mathbb{R}^{+*}$. Déterminons F(x) à l'aide d'intégrations par parties. Les fonctions $t \mapsto t^2/2$ et $t \mapsto \cos(\ln(t))$ étant de classe \mathcal{C}^1 sur \mathbb{R}^{+*} , on a :

$$F(x) = \left[\frac{t^2}{2}\cos\left(\ln(t)\right)\right]_1^x + \int_1^x \frac{t}{2}\sin\left(\ln(t)\right) dt$$

et, de même :

$$F(x) = \left[\frac{t^2}{2}\cos(\ln(t))\right]_1^x + \left[\frac{t^2}{4}\sin(\ln(t))\right]_1^x - \int_1^x \frac{t}{4}\cos(\ln(t)) dt$$

Ainsi,
$$\frac{5}{4}F(x) = \frac{x^2}{4} (2\cos(\ln(x)) + \sin(\ln(x) - 2)).$$

On retrouve qu'une primitive de f est $t\mapsto \frac{t^2}{5}\left(2\cos\left(\ln(t)\right)+\sin\left(\ln(t)\right)\right)$.

Exercice 4: On considère l'équation différentielle

$$(E): y''' - (4+i)y'' + (1-5i)y' + (2+6i)y = (2+6i)x^2 - 16ix - 9 + 3i - (2+7i)e^x$$

dont on note $\mathcal S$ l'ensemble des solutions sur $\mathbb R$ à valeurs dans $\mathbb C$.

On note (E_0) l'équation homogène associée dont on note S_0 l'ensemble des solutions.

1. Soit $r \in \mathbb{C}$. Prouver que la fonction $t \mapsto e^{rt}$ est solution de (E_0) si et seulement si r est racine du polynôme $P = X^3 - (4+i)X^2 + (1-5i)X + 2 + 6i$. Soit $f: t \mapsto e^{rt}$. Pour tout $t \in \mathbb{R}$, on a:

$$f'''(t) - (4+i)f''(t) + (1-5i)f'(t) + (2+6i)f(t) = P(r)f(t).$$

Comme f ne s'annule pas, on en déduit que f est solution de (E_0) si et seulement si r est racine du polynôme $P = X^3 - (4+i)X^2 + (1-5i)X + 2 + 6i$.

2. Déterminer les racines complexes de P. On les note r_1 , r_2 et r_3 . On pourra remarquer que P possède une racine réelle simple et factoriser

Comme 1 est racine de P on factorise P par X-1:

$$P = (X - 1) (X^2 - (3 + i)X - 2 - 6i)$$

Le discriminant de $X^2 - (3+i)X - 2 - 6i$ est égal à $\Delta = 16 + 30i$. On cherche δ tel que $\delta^2 = \Delta$. Cela implique $|\delta|^1 = |\Delta| = 30^2 + 16^2 = 4 \times 289$. On résout donc le système

$$\begin{cases} a^2 - b^2 &= 16\\ 2ab &= 30\\ a^2 + b^2 &= 34 \end{cases}$$

On prend $\delta = 5 + 3i$. Les racines de P sont donc 1, 4 + 2i et -1 - i.

3. Prouver que $S_0 = \{t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t} + \nu e^{r_3 t}, (\lambda, \mu, \nu) \in \mathbb{C}^3 \}$ Soit $(\lambda, \mu, \nu) \in \mathbb{C}^3$ et $f: t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t} + \nu e^{r_3 t}$. On a

$$f'''(t) - (4+i)f''(t) + (1-5i)f'(t) + (2+6i)f(t) = \lambda P(r_1)e^{r_1t} + \mu P(r_2)e^{r_2t} + \nu P(r_3)e^{r_3t} \neq 0.$$

Donc $\{t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t} + \nu e^{r_3 t}, (\lambda, \mu, \nu) \in \mathbb{C}^3\} \subset \mathcal{S}_0.$

Soit $f \in \mathcal{S}_0$. Posons $g: t \mapsto f(t)e^{-r_1t}$. Pour tout $t \in \mathbb{R}$, on a:

$$\begin{cases}
f(t) = e^{r_1 t} g(t) \\
f'(t) = e^{r_1 t} (g'(t) + r_1 g(t)) \\
f''(t) = e^{r_1 t} (g''(t) + 2r_1 g'(t) + r_1^2 g(t)) \\
f'''(t) = e^{r_1 t} (g'''(t) + 3r_1 g''(t) + 3r_1^2 g'(t) + r_1^3 g(t))
\end{cases}$$

Comme f'''(t) - (4+i)f''(t) + (1-5i)f'(t) + (2+6i)f(t) = 0 et $e^{-r_1t} \neq 0$, on obtient:

$$g'''(t) + (3r_1 - 4 - i)g''(t) + (3r_1^2 - 2(4 + i)r_1 + 1 - 5i)g'(t) + P(r_1)g(t) = 0$$

La fonction g' est donc solution de l'équation différentielle d'ordre 2

$$(E')$$
: $y''(t) + (3r_1 - 4 - i)g'(t) + (3r_1^2 - 2(4+i)r_1 + 1 - 5i)y = 0$

En prenant $r_1 = 1$, on a (E'): y''(t) + (-1-i)g'(t) + (-4-7i)y = 0 L'équation caractéristique associée $r^2 - (1+i)r - 4 - 7i = 0$ a pour discriminant $\Delta = 16 + 30i$. Ses solutions sont 3 + 2i et -2 - i donc il existe $(A, B) \in \mathbb{C}^2$ tel que:

$$\forall x \in \mathbb{R}, \quad g'(x) = Ae^{(3+2i)x} + Be^{-(2+i)x}$$

Il existe donc $(\lambda, \mu, \nu) \in \mathbb{C}^3$ tel que $\forall x \in \mathbb{R}, \quad g(x) = \lambda + \mu e^{(3+2i)x} + \nu e^{-(2+i)x}$ Ainsi, $\forall x \in \mathbb{R}, \quad f(x) = \lambda e^x + \mu e^{(4+2i)x} + \nu e^{-(1+i)x}$

Par conséquent, $S_0 = \{t \mapsto \lambda e^{r_1 t} + \mu e^{r_2 t} + \nu e^{r_3 t}, (\lambda, \mu, \nu) \in \mathbb{C}^3 \}$.

- 4. Démontrer que si $f_p \in \mathcal{S}$, alors $\mathcal{S} = \{f_p + f_0, f_0 \in \mathcal{S}_0\}$ On vérifie que si $f_0 \in \mathcal{S}_0$, alors $f_p + f_0 \in \mathcal{S}$ et que si $f \in \mathcal{S}$, alors $f - f_p \in \mathcal{S}_0$.
- 5. Déterminer S. On cherche une solution particulière de la forme $x \mapsto ax^2 + bx + c + dxe^x$. On trouve a = 1, b = -1, c = 0 et d = 1.

Exercice 5: Pour tout $(p,q) \in \mathbb{N}^2$, on pose $I_{p,q} = \int_0^1 t^p (1-t)^q dt$.

1. Soit $(p,q) \in \mathbb{N} \times \mathbb{N}^*$. Déterminer $I_{p,0}$ et trouver une relation entre $I_{p,q}$ et $I_{p+1,q-1}$.

On a
$$I_{p,0} = \int_{0}^{1} t^{p} dt = \left[\frac{t^{p+1}}{p+1} \right]_{0}^{1} = \frac{1}{p+1}$$
.

Les fonctions $t \mapsto \frac{t^{p+1}}{p+1}$ et $t \mapsto (1-t)^q$ étant de classe \mathcal{C}^1 , on a :

$$I_{p,q} = \left[\frac{t^{p+1}}{p+1}(1-t)^q\right]_0^1 + \frac{q}{p+1} \int_0^1 t^{p+1} (1-t)^{q-1} dt = \frac{q}{p+1} I_{p+1,q-1}.$$

2. Soit $(p,q) \in \mathbb{N}^2$. Proposer une formule pour $I_{p,q}$ et la prouver.

Montrons que
$$I_{p,q} = \frac{q!p!}{(p+q+1)!}$$
.

Pour tout
$$q \in \mathbb{N}$$
, on pose $H(q) = "\forall p \in \mathbb{N}, I_{p,q} = \frac{q!p!}{(p+q+1)!}$ "

D'après l'initialisation H(0) est vraie.

Soit $q \in \mathbb{N}$ tel que H(q) soit vraie.

Soit $p \in \mathbb{N}$, on a $I_{p,q+1} = \frac{q+1}{p+1} I_{p+1,q}$ grâce à la question précédente puis, par

hypothèse de récurrence $I_{p,q+1} = \frac{q+1}{p+1} \frac{q!(p+1)!}{(p+q+2)!} = \frac{(q+1)!p!}{(p+q+2)!}$

Ainsi,
$$\forall (p,q) \in \mathbb{N}^2$$
, $I_{p,q} = \frac{q!p!}{(p+q+1)!}$

- 3. Soit *n* un entier. On pose, $P_n: x \mapsto \frac{(2n+1)!}{(n!)^2} \int\limits_0^x t^n (1-t)^n dt$.
 - (a) Prouver que $P_n(1) = 1$. On a $P_n(1) = \frac{(2n+1)!}{(n!)^2} I_{n,n} = \frac{(2n+1)!}{(n!)^2} \frac{n!n!}{(2n+1)!} = 1$
 - (b) Prouver que $\forall x \in \mathbb{R}$, $P_n(x) + P_n(1-x) = 1$. Que peut-on en déduire sur le graphe de la fonction P_n ?

Soit $x \in \mathbb{R}$. La fonction $u \mapsto 1 - u$ étant de classe \mathcal{C}^1 , on a :

$$\int_{0}^{x} t^{n} (1-t)^{n} dt = \int_{1}^{1-x} (1-u)^{n} u^{n} \times (-1) du$$

donc $\int_{0}^{x} t^{n} (1-t)^{n} dt = -\int_{0}^{1-x} (1-u)^{n} u^{n} du + \int_{0}^{1} (1-u)^{n} u^{n} \times du \text{ Avec la}$ question précédent, on obtient $P_{n}(x) + P_{n}(1-x) = 1$.

On en déduit que le graphe de P_n est symétrique par rapport au point de coordonnées (1/2,1/2).

Exercice 6 : On considère l'équation différentielle (E) : $(4-x^2)y'-(4+x)y=2+x$

1. Déterminer les solutions de l'équation homogène associée à (E) sur I =]-2, 2[.

Sur
$$I =]-2, 2[$$
, on a $(E_0) \Leftrightarrow y' - \frac{4+x}{4-x^2}y = 0$.

Pour tout
$$x \in I$$
, on a $\frac{4+x}{4-x^2} = \frac{x}{4-x^2} + \frac{1}{2-x} + \frac{1}{2+x}$

Une primitive de $x \mapsto \frac{x}{4-x^2} + \frac{1}{2-x} + \frac{1}{2+x}$ est

$$x \mapsto \frac{-1}{2}\ln(4-x^2) - \ln(2-x) + \ln(2+x) = \ln\left(\sqrt{\frac{2+x}{(2-x)^3}}\right)$$

donc
$$S_0 = \{I \to \mathbb{R}, x \mapsto C\sqrt{\frac{2+x}{(2-x)^3}}, C \in \mathbb{R}\}$$

2. Déterminer les solutions de (E) sur I =]-2,2[.

On cherche une solution particulière de la forme $x\mapsto C(x)\sqrt{\frac{2+x}{(2-x)^3}}$ avec C dérivable sur I. On est ramené à primitiver $g:x\mapsto\sqrt{\frac{2-x}{2+x}}$. Comme g est continue sur l'intervalle I, une primitive est $G:t\mapsto\int_0^t\sqrt{\frac{2-x}{2+x}}\mathrm{d}x$. Soit $t\in I$, on a :

$$G(t) = \int_0^t \frac{2 - x}{\sqrt{4 - x^2}} dx = \int_0^t \frac{2}{\sqrt{4 - x^2}} dx - \int_0^t \frac{x}{\sqrt{4 - x^2}} dx$$
Or
$$\int_0^t \frac{2}{\sqrt{4 - x^2}} dx = \int_0^t \frac{1}{\sqrt{1 - (x/2)^2}} dx = \int_0^{t/2} \frac{2}{\sqrt{1 - u^2}} du = [2\arcsin u]_0^{t/2} \text{ et}$$

$$\int_0^t \frac{x}{\sqrt{4 - x^2}} dx = \left[-\sqrt{4 - x^2} \right]_0^t = 4 - \sqrt{4 - t^2} \text{ donc}$$

$$G(t) = 2\arcsin(t/2) + 4 + \sqrt{4 - t^2}$$

Ainsi, $S = \left\{ I \to \mathbb{R}, \ x \mapsto \left(C + 2 \arcsin(t/2) + \sqrt{4 - t^2} \right) \sqrt{\frac{2 + x}{(2 - x)^3}}, \ C \in \mathbb{R} \right\}.$ Remarque : On pouvait aussi procéder à un changement de variable $x = 2 \cos u$ ou $u = \sqrt{\frac{2 - x}{2 + x}}$.

3. Prouver que parmi les solutions de (E), il y en a au plus qui possède une limite finie en 2.

Comme $\lim_{x\to 2} C + 2\arcsin(t/2) + \sqrt{4-t^2} = C + \pi$ et comme $\lim_{x\to 2} \sqrt{\frac{2+x}{(2-x)^3}} = +\infty$, il existe au plus une solution de (E) possédant une limite finie en 2; il s'agit de

$$x \mapsto \left(2\arcsin(x/2) + \sqrt{4 - x^2} - \pi\right)\sqrt{\frac{2 + x}{(2 - x)^3}}$$