WORK REPORT

DYNAMIC BEHAVIORS OF WATER CONFINED IN GRAPHENE FLAKES

ZHUORAN QIAO 2017/12/15 1

CATALOG

- Overview
- ∆Z=9.5 Å: Mechanism of Interlayer Water Transition
- ∆Z=6.5-7.5 Å: Dynamics of Water Clusters& Nucleation
- Challenges and Prospects

OVERVIEW

 When tuning the interlayer spacing, we observed that confined water formed different layer structures after saturation.

Density Distribution along Z axis.

OVERVIEW

■ ∆Z=9.5 Å

■ ∆Z=6.5 Å

ANISOTROPIC ROTATIONAL RELAXATION: OH& DIPOLE

 $\Delta Z = 6.5$ angstrom

 $\Delta Z = 14.5$ angstrom

ANISOTROPIC ROTATIONAL RELAXATION: OH& DIPOLE

ZHUORAN QIAO

MECHANISM OF INTERLAYER WATER TRANSITION

HORIZONTAL DIFFUSION VS. VERTICAL "JUMP"

■ In the ΔZ =9.5 Å system we observed discrete interlayer water transitions along z-axis, in contrast with the relatively continuous diffusion on x-y plane.

IDENTIFICATION OF A SUCCESSFUL JUMPING TRAJECTORY

 Recrossing was precluded by setting narrower cutoff value of transition path length.

TRANSITION TIME DISTRIBUTION

H-BOND DISTRIBUTION

Indicates correlation with H- Bond structure

H-BOND POSITION DISTRIBUTION

$$\rho[z(HB), z'(WAT)] = \frac{\iint \sum_{i} \delta\left(z' - z_{i,O(WAT)}\right) \sum_{j}^{n(HB,i)} \delta\left(z - z_{j,O(HB)}\right) ds}{\iint \sum_{i} \delta\left(z - z_{i,O(WAT)}\right) ds}$$

ZHUORAN QIAO

CORRELATION WITH INTERLAYER TRANSITION

ZHUORAN QIAO 2017/12/16

TIME EVOLUTION: REFERENCE STATE

- Detectable in about 70% of successful jumping trajectories
- Having determined the reference state, we analyzed time evolution of CVs including z-coordinates, H Bonds and bond orientations along the transition path of jumping events.

TIME EVOLUTION: Z

ZHUORAN QIAO

TIME EVOLUTION: H-BOND

Concerted interlayer H-Bond exchange

ZHUORAN QIAO

TIME EVOLUTION: ORIENTATION

- Time Scale:
 - Dipole-- z evolution
 - OH-- H Bond evolution

MECHANISM: SUMMARY

Time evolution of the average dipole projection along the nanotube axis.

Similarity with water in nanotube

CHALLENGES

Correlation with cavity fluctuations

Energy transfer mechanisms

ZHUORAN QIAO 2017/12/16 20

DYNAMICS OF WATER CLUSTERS& NUCLEATION

ZHUORAN QIAO

ZHUORAN QIAO

CLUSTERS IN "ICE-LIKE" WATER

Max cluster size evolution

RADIAL DISTRIBUTION FUNCTION

CLUSTER SIZE DISTRIBUTION

DIFFUSION& ROTATIONAL RELAXATION – H BOND NUMBER

CHALLENGES

No significant difference of relaxation time scale between clusters& free water molecules

Definition of clusters

ZHUORAN QIAO 2017/12/16 27

THANKS FOR YOUR ATTENTION!

ZHUORAN QIAO 2017/12/16 28