

June 18, 2022

Yubo Cai

CONTENTS

1																										
	1.1	A																								
	1.2	В																								
	1.3	С																								
	1.4	D				•									•				•	•						
2																										
	2.1	Α																								
	2.2	В																								
	2.3	C																								

1

1.1 A

We take system {M} and ground as initial reference frame. the M is apply by three forces.

Figure 1: The instruction graph of the string

 $\overrightarrow{\overline{F_{s,1}}} \text{ is the force from bottom of string.}$ $\overrightarrow{F_{s,2}} \text{ is the force from top of string.}$

Therefore we get the system of equation

$$\begin{cases} \overrightarrow{F_{s,1}} = -k \left(z_e - l_o\right) \overrightarrow{e_z} \\ \overrightarrow{F_{s,2}} = k \left(L - z_e - l_o\right) \overrightarrow{e_z} \end{cases}$$

Since the system is in equilibrium position, therefore

$$0 = -mg - k (z_e - l_o) + k (L - z_e - l_o)$$

$$\Rightarrow 2kz_e = kL - mg$$

$$\Rightarrow z_e = \frac{L}{2} - \frac{mg}{2k}$$

1.2 B

From the Newton's first law, we get: $m\vec{a} = m\vec{g} + \overrightarrow{F_{s,1}} + \overrightarrow{F_{s,2}}$

The projection on the z-axis:

$$\begin{split} &m\ddot{z}=-mg-k\left(z-l_{o}\right)+k\left(L-z-l_{o}\right)\\ \Rightarrow &m\ddot{z}=-2kz-mg+kL=-2k\left[z-\left(\frac{L}{2}-\frac{mg}{2k}\right)\right]\\ \Rightarrow &\ddot{z}+\frac{2k}{m}\left(z-z_{e}\right)=0 \end{split}$$

1.3 C

We define $u(t) = z(t) - z_e$. From the previous equation, we get $(\ddot{u} = \ddot{z})$:

$$\ddot{u} + \omega_o^2 u = 0$$
, with $\omega_o = \sqrt{\frac{2k}{m}}$

1.4 D

Solutions to the differential equation are of the form $u(t) = A\cos(\omega_0 t + \varphi)$. At initial time t = 0: u(0) = a and $\dot{u}(0) = 0 \Rightarrow A\cos\varphi = a$ and $-A\omega_0\sin\varphi = 0 \Rightarrow A = a$ and $\varphi = 0$. We thus have:

$$u(t) = a \cos \omega_o t$$

$$\Rightarrow z(t) = u(t) + z_e = a \cos \omega_o t + z_e$$

Figure 2: The instruction graph of the tension

2.1 A

We take the system={M} and the frame of reference as ground also considered inertial, the force we have here is weight we have $m\vec{q}$ and tension \vec{T} . From the Newton's first law we have:

$$\overrightarrow{0} = m\vec{g} + \vec{T} \Rightarrow \vec{T} = -m\vec{g} \Rightarrow ||\vec{T}|| = mg$$

2.2 B

Newton's second law:

$$\overrightarrow{ma_v} = \overrightarrow{mg} + \overrightarrow{T} \Rightarrow \overrightarrow{T} = m(a_v + g) \overrightarrow{e_z} \Rightarrow ||\overrightarrow{T}|| = m(a_v + g)$$

The cable is subjected to a higher tension due to the upward acceleration of the load. It feels as if it was lifting a heavier load.

2.3 C

M is stationary with respect to A, then its acceleration $\overrightarrow{a_M} = \overrightarrow{a_A} = a_h \overrightarrow{e_x}$.

From Newton's second law, we have

$$\overrightarrow{ma_M} = \overrightarrow{mg} + \overrightarrow{T}$$

Projection on the x - axis: $ma_h = T \sin \alpha$

Projection on the y - axis: $0 = -mg + T \cos \alpha$

We thus get $T \sin \alpha = ma_h$ and $T \cos \alpha = mg$. yielding $\tan \alpha = \frac{a_h}{q}$