

Preparación e instalación de herramientas de ciencia de datos

Gabriel Rengifo

Recomendaciones de hardware

Duración estimada de la instalación: 60–90 minutos (dependiendo del sistema operativo y privilegios de usuario).

Requisitos mínimos de hardware:

•CPU moderna (2+ cores). 8+ GB RAM recomendado para trabajar con datasets medianos.

•Espacio en disco: 10 GB libre mínimo.

Sistemas operativos: Windows 10/11, macOS (10.15+), Linux

(Ubuntu/Debian/CentOS).

Nota sobre seguridad: si trabajas con datos sensibles de la Armada, **no** uses Google Colab para esos datos; usa entornos locales con cifrado y repositorios privados en GitLab/GitHub Enterprise.

CPU vs GPU vs NPU vs TPU The Real Differences for Al/ML

CPU

The classic processor in every computer,
CPUs can run any sorware, plurring Al models, but are slower for deep learning due to fewer parallel cores.

Best for:

- Traditional machine learning (sckit-learm XGBoost)
- General-pmall models or prototypes

GPU

GPUs are built for parallel processing. They are the backbone of modern deep learning, perfect for training and inference of models like CNNs, RNNs. and transformers (GPT, BERT)

Best for

- Training and running large deep learning models
- Flexible for many Al workloads

NPU

NPUs are specialized chips designed only for neural network operations. often embedded in smartphones and IoT devices They run efficient models for vision, speech, and edge

Best for

- On-device, real-time Al (face unlock language translation)
- Lightweight fly AI in mobile and IoT

TPU

TPUs are Google's custom
Al accelerators, tuned for
Tensor Flow and massssive neural networks. Ild
for training and deploying
large models at cloud scale

Best for

- Scalable deep learning in Google Cloud
- Training and inference for big models (BERT. GPT-2, EfficientNet)

Hoja de Ruta

Objetivo de la Sesión

Instalación y Configuración

Herramientas base para ciencia de datos.

2

Validación del Ecosistema

Python y librerías esenciales en funcionamiento.

3

Introducción a Git

Buenas prácticas para trabajo colaborativo.

El Corazón de tu Proyecto

El Ecosistema del Científico de Datos

1

1. Recolección

Obtener los datos necesarios.

2

2. Limpieza y Preparación

Transformar datos crudos en utilizables.

3

3. Análisis y Modelado

Construir y entrenar modelos.

4

4. Evaluación

Medir el rendimiento del modelo.

5

5. Despliegue

Poner el modelo en producción.

P Sin un entorno bien configurado, este ciclo virtuoso se rompe y los proyectos pueden estancarse.

Tu Caja de Herramientas

Herramientas Esenciales

Core

- Python 3.x: El lenguaje base para todo desarrollo en ML y PLN.
- Anaconda / Miniconda: Gestores de entornos para aislar proyectos y evitar conflictos de dependencias.
- Google Colab: Una alternativa poderosa en la nube, ideal para experimentación rápida y uso de hardware avanzado.

Entornos de Desarrollo

 Jupyter Notebook / VSCode: Tus espacios interactivos para codificar, documentar y visualizar resultados.

Librerías Clave

- Numpy: Computación numérica de alto rendimiento.
- Pandas: Manipulación y análisis de datos.
- Matplotlib / Seaborn: Visualización de datos.
- Scikit-learn: Algoritmos de Machine Learning listos para usar.

Manos a la Obra

Instalación Paso a Paso (Usando Conda)

- 1. Instalar Anaconda/Miniconda: Descarga la versión adecuada para tu sistema operativo desde su sitio oficial.
- **2. Crear un Entorno Virtual:** Utiliza los siguientes comandos en tu terminal. Esto crea un espacio aislado para tu proyecto.

conda create -n diplomado python=3.10conda activate diplomado

• 3. Instalar Librerías Esenciales: Ya dentro de tu entorno, instala las herramientas que usarás.

pip install numpy pandas matplotlib seaborn scikit-learn jupyter

• 4. Validar la Instalación: Abre un intérprete de Python o un Jupyter Notebook y ejecuta:

import pandas as pdprint(pd.__version__)

Este proceso garantiza un entorno limpio y reproducible para todos tus proyectos de Machine Learning.

Alternativa: Google Colab

• **Cero Instalación:** Acceso instantáneo a un entorno de desarrollo Python en la nube, sin configuraciones locales complejas.

 Hardware Potente: Permite el uso de GPUs y TPUs gratuitas, ideal para entrenar modelos complejos de Machine Learning y PLN.

• Integración con Google Drive: Facilita la carga y descarga de datasets, así como el guardado de tus notebooks y resultados.

¡Atención! No utilizar datos sensibles ni clasificados de la Armada en Google Colab, ya que es un servicio externo. Para estos casos, siempre usar entornos locales o plataformas aprobadas.

Notebook "Mi Primer Análisis Naval"

Objetivo:

Realizar un análisis exploratorio simple de un conjunto de datos y visualizarlo, demostrando que tu ecosistema está funcionando.

```
from sklearn.datasets
import load_irisimport pandas as pd
import matplotlib.pyplot as plt
# Cargar el dataset de Iris (ejemplo clásico)
iris = load_iris(as_frame=True)df = iris.frame
# Mostrar las primeras filas y estadísticas descriptivasprint("Primeras 5 filas del dataset:")print(df.head())print("\nEstadísticas descriptivas:")print(df.describe())# Generar un gráfico
simpleplt.figure(figsize=(8, 6))plt.scatter(df['sepal length (cm)'], df['sepal width (cm)'], c=df['target'], cmap='viridis')plt.xlabel('Longitud del Sépalo (cm)')plt.ylabel('Ancho del Sépalo
(cm)')plt.title('Diagrama de Dispersión de Longitud vs. Ancho del Sépalo')plt.colorbar(label='Especie de Iris')plt.grid(True)plt.show()
```

[👉] Este ejercicio valida tu instalación y te da confianza para proyectos más complejos.

Claves del Éxito

Buenas Prácticas en Ciencia de Datos

Usar Entornos Virtuales

Aíslan las dependencias de cada proyecto, evitando conflictos y facilitando la reproducibilidad.

Documentar Notebooks

Un código claro y bien documentado es fundamental para la comprensión y el mantenimiento futuro.

Versionar con Git

Permite un control de cambios exhaustivo y facilita la colaboración en equipo.

Seguridad y Confidencialidad

Manejar los datos con la máxima responsabilidad, especialmente en entornos críticos como la Armada.

Tu Aliado Colaborativo Introducción a Git

¿Qué es Git?

- Un Sistema de Control de Versiones distribuido y de código abierto.
- Permite a múltiples desarrolladores trabajar en el mismo proyecto sin sobrescribir el trabajo de los demás.
- Registra cada cambio, permitiendo volver a versiones anteriores en cualquier momento.
- Esencial para la trazabilidad y la auditoría de proyectos de software y ciencia de datos.

Comandos Básicos de Git

- **git init:** Inicializa un nuevo repositorio Git en tu directorio actual.
- git add .: Agrega todos los archivos nuevos o modificados al área de preparación.
- **git commit -m "Mensaje":** Guarda los cambios preparados en el historial del repositorio con un mensaje descriptivo.
- **git status**: Muestra el estado de tu directorio de trabajo y el área de preparación.

```
• • • with git-ria/connall ling
▼ 13 giterack Cvetomg
   Corntalloctuste ustury 6: nerver
   Thattime Brancher Remins
  7 Ines
                entsetice _istice 0-{
  # EleLet
                 (rion Hereskeister, it fricball );
 37 Diespell:
                    > Estimorets.
 23 toter
                    : Auttr dffferente: Vilcets, ill mestection
  5 Incluati:
                    ? / Antrerte Werlscing ficeeller
 17 vicee:
 43 raone:
                staleowards of eraveries, calcy the (Scafchlatte)
 28 timet:
                < closs = -1)
 17 Writer marking connttelle (VII factagels frofils-ciel
 17 freer caledratt; eren=Inservatty ( Louct cateenet))
 44 Mote fitirectric-alogy / information, certecit ver
 18 Moceet (-Ropealt)
 23 WILE-THE
 28 Reigiel free vol: comple: Inchetiv, stylate:
                                             larp (comment
                                                                       Up rameti
    f et ttick for instteate:
                                            loy ITTI remment
                                                                     they eff & comment

→ etropiane ly que Aotori

    4 stictioncloy:
    « etcemertes user:
                                                                    to strd (exameel
                                   They of Cagninacel
    4 Scriertateoctop:
```

Git en la Armada

Uso de GitHub/GitLab para Proyectos Institucionales

- Repositorios Privados: Imprescindibles para la seguridad y confidencialidad de los proyectos militares.
- Centralización: Unifica el desarrollo y permite la gestión de accesos.
- Auditoría y Trazabilidad: Cada cambio es registrado, facilitando la revisión y el cumplimiento de normativas.

Flujo Simple de Trabajo

- 1. Crear un repositorio privado en la plataforma institucional.
- 2. Clonar el repositorio a tu máquina local.
- 3. Subir tu notebook de prueba y los cambios realizados.

Actividad Práctica

- Valida tu entorno instalando las librerías y corriendo el notebook de ejemplo.
- Crea un repositorio local con Git.
- Sube un archivo README.md con el mensaje: "Mi ecosistema de datos está listo".

