

Calorimetric Measurements on a 32 Ah Li/MnO₂ Cell for the X-38 Crew Return Vehicle

by Eric Darcy/NASA-JSC and Chris Johnson/Boeing-Seattle 1999 NASA Aerospace Battery Workshop Presented at the

Agenda

- Introduction
- Battery and Cell Description
- Thermal Vacuum Performance
- Comparison of Dewar vs Heat Conduction Calorimetry
- Theory
- Experiments
- Results
- Preliminary Findings
- Future Work

Introduction

- Crew Return Vehicle Objectives
- return ill or injured crew
- evacuate crew from ISS
- return crew if Shuttle is grounded
- X-38 Objective
- Demonstrate the design in a unmanned spaceflight test (Feb 2002)
- X-38 Vehicle has 3 battery systems
- Spacecraft
- 28V In-Cabin NiMH (400 Ah total)
 - 270V high power (27 Ah total)
- Deorbit Propulsion Stage (DPS)
- 32V Li/MnO₂ (1400 Ah)

32V DPS Lithium Primary Battery

- Design Features
- Li/MnO₂ 32Ah cell (P/N M62) from Friemann & Wolf, Germany
- Battery Module consists of 144 cells in a 12P-12S configuration
- 4 Battery Modules per DPS
- 350 Ah per Battery Module at 50A to 25V starting at 0 degC
- 7 hour discharge rate
- Refurbished by replacing cell strings
- Battery Module Size
- 620 mm wide, 620 mm deep, 206 mm tall

350Ah Li/MnO₂ Battery Module for X-38

Friemann & Wolf Part No. 49815-000.000

11/16/99

Eric Darcy/281-483-9055

Li/MnO₂ Cell Description (P/N M62)

Similar to commercial M25 cell

Capacity = 32 Ah

Mass = 354 g

Diameter = 42 mm

Height = 133 mm Spirally wound Hermetically sealed

Vent = opens at 10-17 atms

Battery String of 12 cells

Battery Module Without Top Cover

2 Views of the DPS

Propellant Tank

Grapple Fixture

Thruster Module

Deorbit Module (DM)

Forward / Structural Adapter (FSA)

Forward Structural Adapter

1st Thermal Vacuum Test Results

Thermal Vacuum Test Results

What is needed to improve battery thermal design?

- Cell thermal properties must be known accurately
- Cell heat capacity, C_p, (cal/g/C)
- No values found in the literature for Li/MnO, cells
- Drop calorimetry
- Cell heat generation, Q, (W)
- No values found in the literature for Li/MnO2 cells
- Heat conduction calorimetry
- Battery heat conduction bottlenecks must be improved
- From cell to the structure of the battery
- Battery must take full advantage of heat dissipation modes
- Conduction to the DPS/battery structure
- Radiation to the DPS propellant tanks

Two Drop Calorimetric Methods to get Cell C_p

Adiabatic dewar method

- Water in a dewar at 26 C
- known mass of water
- dewar assumed adiabatic
- Cell at 55 C dropped into water
- cell mass at 354 g
- Cell C_p calculated from rise in temp of water/cell mixture
- water C_p is known
- Simple, inexpensive

Theory

Heat inside dewar at start

•
$$Q_{init} = (mC_p\Delta T)_{cell} + (mC_p\Delta T)_{water}$$

- Heat inside dewar at end

•
$$Q_{final} = ((mC_p)_{cell} + (mC_p)_{water})T_{final}$$

 $Q_{init} = Q_{final}$, solve for cell C_p

Heat conduction method

- Oil bath maintained at 20 C
 inside water bath maintained at lower temp (16 C)
- Cell at 33.8 C dropped into oil
- Oil heating drops as cell heat is dissipated in the oil
- (-1) * heater counts ~ to cell W
- Custom instrument, expensive

Theory

$$-E = \int Q dt = \int mC_p dT$$

$$C_p = E / m(T_2 - \dot{T}_1)$$

- where
$$E = k^* E_{exp}$$

- where
- E_{exp} = area under thermogram
- k = cal/integrated counts

40 Mixing temperature vs time during drop of 55 degC Li/Mno2 Cell into insulated dewar with water starting at 26 degC. 30 20 Time, min NASA-Johnson Space Center, Houston, TX 10 40 35 30 20 Temperature, degC

Eric Darcy/281-483-9055

11/16/99

Heat Conduction Calorimeter

Boeing Calorimeter

Eric Darcy/281-483-9055

Results

Adiabatic Dewar Method

- Cell data from 3 drops

$$Cp = 0.254 \text{ cal/g/C}$$

s.d. = 0.0154 cal/g/C or 6%

• 90% conf. Int=
$$+/- 17\%$$

Heat Conduction Method

- Cell data from X drops

$$Cp = 0.203 \text{ cal/g/C}$$

$$s.d. = TBD$$

90% conf. Int. =
$$\pm$$
 TBD

Preliminary Findings

- Difference between methods is significant
- Cp difference is 20%
- can not be explained by 11 g shrink wrap
- Possible source of errors with each method
- Dewar method
- small mixing temp rise (~ 4 degC) requires very accurate and precise temperature measurements
- small errors in delta T measurement can propagate errors significantly
- heat losses through top of dewar could be significant
- Heat conduction method
- small errors in delta T measurement
- heat losses through top of oil bath are minimized by surrounding water and air
- Heat conduction appears to be more accurate and precise

Future Work

Determine cell heat generation during 4.2 A discharge

- Compare both methods

Calibrate both with a known power input through a resistor

Obtain effective thermoneutral potential, E_m vs SOC

• $Q = (E_{tm} - L.V.)I$

calculate heat generation at different discharge rates

Improve battery heat conduction bottlenecks

- From cell to the structure of the battery

Take full advantage of heat dissipation modes

Conduction to the DPS/battery structure

- Radiation to the DPS propellant tanks