命题演算自然推理形式系统N

王捍贫 北京大学信息科学技术学院软件研究所

§6 命题演算的自然推理形式系统N

怎么在计算机上实现如下有效推理:

$$\{p \to q, \ q \to r\} \vdash p \to r$$

- 识别符号p, q, r, . . .
- 识别公式 $p \rightarrow q, q \rightarrow r, \dots$
- 推理方法

计算机上实现有效推理需要建立:

- 字母表(符号库) 非空集合
- 公式集合 字母表中符号的有限序列
- 公理集合 公式集合的子集
- 规则集合 公式集合的部分多元运算

形式系统

- 符号库 (字母表)
- (形式)公式
- (形式)公理
- (形式)推理规则

符号库和形式公式统称为形式语言。 形式公理和形式推理规则统称为形式推理。

命题演算的自然推理形式系统N

推理

N的符号库

 $(1) p_1, p_2, \dots$

(可数个命题符号)

 $(2) \quad \neg, \quad \lor, \quad \land, \quad \rightarrow, \quad \leftrightarrow$

(5个联结词符号)

(3)), (

(2个辅助符号)

N的公式

归纳定义如下:

- (1) 命题符号都是公式;
- (2) 若 α 是公式,则($\neg \alpha$)也是公式;
- (3) 若 α , β 是公式,则($\alpha \lor \beta$), ($\alpha \land \beta$), ($\alpha \rightarrow \beta$), ($\alpha \leftrightarrow \beta$)也都是公式;
- (4) 每个公式都是有限次使用(1)、(2)或(3)得到的.

N的公理

公理集合为空集

N的推理规则

包含律:

则 $\Gamma \vdash \alpha$.

 (\in)

¬消去律:

若
$$\Gamma \cup \{(\neg \alpha)\} \vdash \beta$$
, $\Gamma \cup \{(\neg \alpha)\} \vdash (\neg \beta)$, 则 $\Gamma \vdash \alpha$. $(\neg -)$

N的推理规则(续一)

→消去律:

$$(\rightarrow -)$$

→引入律:

若Γ∪
$$\{\alpha\}$$
⊢ β ,

则
$$\Gamma \vdash \alpha \rightarrow \beta$$
.

$$(\rightarrow +)$$

N的推理规则(续二)

∀消去律:

>引入律:

N的推理规则(续三)

△消去律:

$$(\wedge -)$$

∧引入律:

若
$$\Gamma \vdash \alpha$$
, $\Gamma \vdash \beta$, 则 $\Gamma \vdash (\alpha \land \beta)$.

$$(\wedge+)$$

N的推理规则(续四)

↔消去律:

↔引入律:

用形式系统N可以做什么?

例2.12

(1)
$$\{(\alpha \to \beta), (\beta \to \gamma), \alpha\} \vdash (\alpha \to \beta)$$
 (\in)

(2)
$$\{(\alpha \to \beta), (\beta \to \gamma), \alpha\} \vdash \alpha$$
 (\in)

(3)
$$\{(\alpha \rightarrow \beta), (\beta \rightarrow \gamma), \alpha\} \vdash \beta$$
 $(\rightarrow -)(1)(2)$

(4)
$$\{(\alpha \to \beta), (\beta \to \gamma), \alpha\} \vdash (\beta \to \gamma)$$
 (\in)

(5)
$$\{(\alpha \rightarrow \beta), (\beta \rightarrow \gamma), \alpha\} \vdash \gamma$$
 $(\rightarrow -)(3)(4)$

(6)
$$\{(\alpha \to \beta), (\beta \to \gamma)\} \vdash (\alpha \to \gamma)$$
 $(\to +)(5)$

N的证明序列

定义13 若有限序列

$$\Gamma_1 \vdash \alpha_1, \Gamma_2 \vdash \alpha_2, \cdots, \Gamma_n \vdash \alpha_n$$
 (*)

满足:

- Γ_1 , Γ_2 , · · · , Γ_n 为**N**中有限公式集;
- α_1 , α_2 , · · · · , α_n 为**N**中公式;
- 每个 Γ_i \vdash α_i (1 \leq i \leq n)都是对(*)中它之前的若干个 Γ_j \vdash α_j (1 \leq j < i \leq n)应用**N**的某条推演规则得到的。

则称(*)为 $\Gamma_n \vdash \alpha_n$ 在**N**的一个 (形式)证明序列。

此时,也称 α_n 在**N**中可由 Γ_n (形式)证明或(形式)推出,记为 $\Gamma_n \vdash_{\mathbf{N}} \alpha_n$.

曲例12知: $\{(\alpha \rightarrow \beta), (\beta \rightarrow \gamma)\} \vdash_{\mathbf{N}} (\alpha \rightarrow \gamma)$

注记

- 1. 命题形式与N公式在定义上虽然一样,本质上也一样,都是命题的抽象,但他们仍有差别: N公式仅由N 中符号构成。命题形式由命题符号构成,而命题符号要广泛得多
- 2. 形式语言与与元语言
 - (a) N中的符号和公式称为N的形式语言。 它描写了N的组成部分。
 - (b) 在叙述**N**的构成和性质时使用了非**N**中符号,如 α , β 等, 这些符号称为元语言符号。 元语言一般为自然语言。

公式的简写

- 1. 省略命题形式最外层括号;
- 2. ¬的优先级高于其它的;
- 3. $\alpha_1 \vee \alpha_2 \vee \alpha_3$ 代表($\alpha_1 \vee (\alpha_2 \vee \alpha_3)$). 即用同一联结词构造公式时,括号从右往左加。 对 \wedge , \rightarrow , \leftrightarrow 类似处理。

证明序列的简写

- 1. 将有限公式集合 $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ 简写为 $\alpha_1, \alpha_2, \dots, \alpha_n$ 。
- 2. α_1 , α_2 , ···, α_n 中元素没有顺序关系. (若有顺序关系,将记为 $<\alpha_1$, α_2 , ···, $\alpha_n >$.)
- 3. $\Gamma \cup \{\alpha\}$ 也将记为 Γ, α .

例12的简写

(1)
$$(\alpha \to \beta)$$
, $(\beta \to \gamma)$, $\alpha \vdash (\alpha \to \beta)$ (\in)

(2)
$$(\alpha \to \beta)$$
, $(\beta \to \gamma)$, $\alpha \vdash \alpha$ (\in)

(3)
$$(\alpha \to \beta)$$
, $(\beta \to \gamma)$, $\alpha \vdash \beta$ $(\to -)(1)(2)$

(4)
$$(\alpha \to \beta)$$
, $(\beta \to \gamma)$, $\alpha \vdash (\beta \to \gamma)$ (\in)

(5)
$$(\alpha \rightarrow \beta)$$
, $(\beta \rightarrow \gamma)$, $\alpha \vdash \gamma$ $(\rightarrow -)(3)(4)$

(6)
$$(\alpha \to \beta), (\beta \to \gamma) \vdash (\alpha \to \gamma)$$
 $(\to +)(5)$

例13

给出下列各式的证明序列

1.
$$\alpha \rightarrow \beta$$
, $\alpha \vdash \beta$

2.
$$\alpha \vdash \beta \rightarrow \alpha$$

3.
$$\alpha \to (\beta \to \gamma), \ \alpha \to \beta \vdash \alpha \to \gamma$$

例13(1)的证明

1.
$$\alpha \rightarrow \beta$$
, $\alpha \vdash \beta$

$$(1) \ \alpha \rightarrow \beta, \ \alpha \vdash \alpha \rightarrow \beta \qquad (\in)$$

$$(2) \alpha \rightarrow \beta, \alpha \vdash \alpha \qquad (\in)$$

(3)
$$\alpha \rightarrow \beta$$
, $\alpha \vdash \beta$ $(\rightarrow -)(1)(2)$

例13(2)的证明

2.
$$\alpha \vdash \beta \rightarrow \alpha$$

$$(1) \ \alpha, \ \beta \vdash \alpha \qquad (\in)$$

(2)
$$\alpha \vdash \beta \rightarrow \alpha (\rightarrow +)(1)$$

例13(3)的证明

3.
$$\alpha \to (\beta \to \gamma), \ \alpha \to \beta \vdash \alpha \to \gamma$$

$$(1) \ \alpha \rightarrow (\beta \rightarrow \gamma), \ \alpha \rightarrow \beta, \ \alpha \vdash \alpha$$
 (\in)

(2)
$$\alpha \rightarrow (\beta \rightarrow \gamma), \ \alpha \rightarrow \beta, \ \alpha \vdash \alpha \rightarrow \beta$$
 (\in)

(3)
$$\alpha \rightarrow (\beta \rightarrow \gamma), \ \alpha \rightarrow \beta, \ \alpha \vdash \beta$$
 $(\rightarrow -)(1)(2)$

(4)
$$\alpha \rightarrow (\beta \rightarrow \gamma), \ \alpha \rightarrow \beta, \ \alpha \vdash \alpha \rightarrow (\beta \rightarrow \gamma)$$
 (\in)

(5)
$$\alpha \rightarrow (\beta \rightarrow \gamma), \ \alpha \rightarrow \beta, \ \alpha \vdash \beta \rightarrow \gamma \qquad (\rightarrow -)(1)(4)$$

(6)
$$\alpha \rightarrow (\beta \rightarrow \gamma), \ \alpha \rightarrow \beta, \ \alpha \vdash \gamma$$
 $(\rightarrow -)(3)(5)$

(7)
$$\alpha \rightarrow (\beta \rightarrow \gamma), \ \alpha \rightarrow \beta \vdash \alpha \rightarrow \gamma$$
 $(\rightarrow +)(6)$

证明序列的简单性质

- 1. 若 $\Gamma \vdash_N \alpha$, 则 Γ 一定是一个有限公式集。
- 2. 若 $\Gamma_1 \vdash \alpha_1$, $\Gamma_2 \vdash \alpha_2$, \cdots , $\Gamma_n \vdash \alpha_n$ 是**N**中的一个证明序列, 则对任意自然数i (1 $\leq i \leq n$),
 - (a) 子序列 $\Gamma_1 \vdash \alpha_1$, $\Gamma_2 \vdash \alpha_2$, ..., $\Gamma_i \vdash \alpha_i$ 也 是**N**中的一个证明序列.
 - (b) $\Gamma_i \vdash_N \alpha_i$.

形式系统N的中心问题

对**N**的任意有限公式集 Γ 和公式 α , $\Gamma \vdash_N \alpha$?

约定

在形式系统N确定前提下,为简便起见,我们常省去"在N中"一词.

增加前提律

定理5: 令 Γ 为有限公式集, α , β 为公式.

 $若\Gamma \vdash \alpha, \, M\Gamma, \beta \vdash \alpha.$

证明思路: 既然 Γ , $\beta \vdash \alpha$ 的前提比 $\Gamma \vdash \alpha$ 的前提还要多, $\Gamma \vdash \alpha$ 的证明序列应该可以转化为 Γ , $\beta \vdash \alpha$ 的证明序列。怎么转化呢?

证: $\mathsf{B}\Gamma \vdash \alpha$,则存在证明序列

$$\Gamma_1 \vdash \alpha_1, \ \Gamma_2 \vdash \alpha_2, \ \cdots, \ \Gamma_n \vdash \alpha_n$$
 (*)

满足 $\Gamma_n = \Gamma$, $\alpha_n = \alpha$.

增加前提律的归纳证明 — 奠基步骤

只要证:

对任意 $k: (1 \le k \le n)$, Γ_k , $\beta \vdash \alpha_k$ 成立 (**) 下对k归纳证之.

(1) 奠基步骤:

当k = 1时, $\Gamma_1 \vdash \alpha_1$ 是(*)的第一项,故 $\Gamma_1 \vdash \alpha_1$ 必然是应用(\in)得到的,从而 $\alpha_1 \in \Gamma_1$. 故 $\alpha_1 \in \Gamma_1 \cup \{\beta\}$,再由(\in)知: Γ_1 , $\beta \vdash \alpha_1$.

增加前提律的归纳证明 — 归纳步骤

- (2) 归纳步骤: 归纳假设(**)对< m的所有k成立,下面考察(**)在k = m时的情形.
- (2.1) $若\Gamma_m \vdash \alpha_m$ 是由(∈)导出的, 类似(1)可证.
- (2.2) 若 $\Gamma_m \vdash \alpha_m$ 是由($\neg -$)导出,则存在自然数i, j < k使得 $\Gamma_i \vdash \alpha_i$ 、 $\Gamma_j \vdash \alpha_j$ 分别为 $\Gamma_m, \neg \alpha_m \vdash \gamma$ 、 $\Gamma_m, \neg \alpha_m \vdash \neg \gamma$. 由归纳假设得: $\Gamma_i, \beta \vdash \alpha_i, \Gamma_j, \beta \vdash \alpha_j$,即 $\Gamma_m, \beta, \neg \alpha_m \vdash \gamma, \Gamma_m, \beta, \neg \alpha_m \vdash \neg \gamma$. 再由($\neg -$)知: $\Gamma_m, \beta \vdash \alpha_m$.
- (2.3) 对于(\rightarrow –), 类似(2.2)可证.

- (2.4) 若 $\Gamma_m \vdash \alpha_m$ 是由(\rightarrow +)导出,则 α_m 必为形如 $\gamma_1 \rightarrow \gamma_2$ 的公式,且有自然数i < m使得: $\Gamma_i \vdash \alpha_i$ 为 Γ_m , $\gamma_1 \vdash \gamma_2$. 由归纳假设知: Γ_m , β , $\gamma_1 \vdash \gamma_2$, 再由(\rightarrow +)知: Γ_m , $\beta \vdash \gamma_1 \rightarrow \gamma_2$, 即 Γ_m , $\beta \vdash \alpha_m$.
- (2.5) 若 $\Gamma_m \vdash \alpha_m$ 是由(\land -)导出的,则存在自然数i < k使得: $\Gamma_i \vdash \alpha_i$ 为

 $\Gamma_m \vdash \alpha_m \land \gamma \text{ is } \Gamma_m \vdash \gamma \land \alpha_m.$

由归纳假设得: Γ_m , $\beta \vdash \alpha_m \land \gamma$ 或 Γ_m , $\beta \vdash \gamma \land \alpha_m$. 不管哪种情形, 都有 Γ_m , $\beta \vdash \alpha_m$.

(2.6) 对于(^+)类似可证.

- (2.7) 若 $\Gamma_m \vdash \alpha_m$ 是由 $(\lor -)$ 导出的,则 $\Gamma_m = \Gamma' \cup \{\gamma_1 \lor \gamma_2\}$,且 Γ' , $\gamma_1 \vdash \alpha_m$ 与 Γ' , $\gamma_2 \vdash \alpha_m$ 在(*)中出现,且出现在 $\Gamma_m \vdash \alpha_m$ 之前。 其中: Γ' 为一个有限公式集, γ_1 , γ_2 都是公式。 由归纳假设知: Γ' , β , $\gamma_1 \vdash \alpha_m$ 且 Γ' , β , $\gamma_2 \vdash \alpha_m$. 从而 Γ' , β , $\gamma_1 \lor \gamma_2 \vdash \alpha_m$,即 Γ_m , $\beta \vdash \alpha_m$.
- (2.8) 对于(>+), 类似(2.5)可证.
- (2.9) 对于(\leftrightarrow -)和(\leftrightarrow +), 类似(2.2)可证.

归纳证毕, (**)成立, 故 Γ_n , $\beta \vdash \alpha_n$, 即: Γ , $\beta \vdash \alpha$.

增加前提律的推论

推论3: 设 Γ , Γ' 是有限公式集, α 是公式.

若 Γ \vdash α , 则 Γ , Γ' \vdash α .

常把增加前提律记作(+).

传递律

定理6: 若 $\Gamma \vdash \alpha_1$, $\Gamma \vdash \alpha_2$, ..., $\Gamma \vdash \alpha_n$, 且 $\alpha_1, \alpha_2, \ldots, \alpha_n \vdash \alpha$, 则 $\Gamma \vdash \alpha$.

传递律常记为(Tr).

传递律的证明

两个记号

- (1) 以 $\Gamma \vdash \alpha_1, \cdots, \alpha_n$ 记 $\Gamma \vdash \alpha_1 \perp \cdots \perp \Gamma \vdash \alpha_n$.
- (2) 设 Γ , Γ' 都是有限公式集, 以 $\Gamma \mapsto \Gamma'$ 记 $\Gamma \vdash \Gamma'$ 且 $\Gamma' \vdash \Gamma$.

则

- (1) 若 $\Gamma \vdash \alpha_1, \cdots, \alpha_n$, 且 $\alpha_1, \cdots, \alpha_n \vdash \alpha$, 则 $\Gamma \vdash \alpha$
- (2) 设 Γ_1 , Γ_2 , ..., Γ_n , Γ 都是有限公式集, 若 $\Gamma_1 \vdash \Gamma_2$, ..., $\Gamma_{n-1} \vdash \Gamma_n$, $\Gamma_n \vdash \Gamma$, 则 $\Gamma_1 \vdash \Gamma$.

定理7

$$(1) \quad \alpha_1 \vdash \alpha_2 \tag{假设}$$

$$(2) \qquad \emptyset \vdash \alpha_1 \rightarrow \alpha_2 \qquad (\rightarrow +)(1)$$

$$(3) \qquad \alpha_1 \to \alpha_2 \vdash \alpha_3 \to \alpha_4 \qquad \qquad (假设)$$

$$(4) \qquad \emptyset \vdash \alpha_3 \rightarrow \alpha_4 \qquad (Tr)(2)(3)$$

$$(5) \qquad \alpha_3 \vdash \alpha_3 \rightarrow \alpha_4 \qquad (+)(4)$$

$$(6) \qquad \alpha_3 \vdash \alpha_3 \qquad (\in)$$

$$(7) \qquad \alpha_3 \vdash \alpha_4 \qquad (\rightarrow -)(5)(6)$$

例14 给出下列各式的形式证明

- 1. $\neg \neg \alpha \vdash \alpha$.
- 2. 如果 Γ , $\alpha \vdash \beta$, 且 Γ , $\alpha \vdash \neg \beta$, 则 $\Gamma \vdash \neg \alpha$.
- 3. $\alpha \vdash \neg \neg \alpha$.
- 4. α , $\neg \alpha \vdash \beta$.

其中(2)称为归缪律, 记为(¬+).

例14(1)的形式证明

1. $\neg \neg \alpha \vdash \alpha$.

$$(1) \qquad \neg \neg \alpha, \ \neg \alpha \vdash \neg \alpha \qquad (\in)$$

$$(2) \qquad \neg \neg \alpha, \ \neg \alpha \vdash \neg \neg \alpha \qquad (\in)$$

$$(3) \qquad \neg\neg \alpha \vdash \alpha \qquad (\neg -)(1)(2)$$

例14(2)的形式证明

2. 如果 Γ , $\alpha \vdash \beta$, 且 Γ , $\alpha \vdash \neg \beta$, 则 $\Gamma \vdash \neg \alpha$.

例14(3)的形式证明

3. $\alpha \vdash \neg \neg \alpha$.

$$(1) \qquad \alpha, \ \neg \alpha \vdash \alpha \qquad (\in)$$

$$(2) \qquad \alpha, \ \neg \alpha \vdash \neg \alpha \qquad (\in)$$

(3)
$$\alpha \vdash \neg \neg \alpha$$
 本例之(2.)

例14(4)的形式证明

4. α , $\neg \alpha \vdash \beta$.

$$(1) \quad \alpha, \ \neg \alpha, \ \neg \beta \vdash \alpha \tag{(e)}$$

(2)
$$\alpha, \neg \alpha, \neg \beta \vdash \neg \alpha$$
 (\in)

(3)
$$\alpha, \neg \alpha \vdash \beta$$
 $(\neg -)(1)(2)$

例15 给出下列各式的形式证明

1.
$$\alpha \rightarrow \beta \vdash \neg \beta \rightarrow \neg \alpha$$

2.
$$\alpha \rightarrow \neg \beta \vdash \beta \rightarrow \neg \alpha$$

3.
$$\neg \alpha \rightarrow \beta \vdash \neg \beta \rightarrow \alpha$$

4.
$$\neg \alpha \rightarrow \neg \beta \vdash \beta \rightarrow \alpha$$

只证2. 和4.

例15(2)的证明

2. $\alpha \rightarrow \neg \beta \vdash \beta \rightarrow \neg \alpha$.

$$(1) \quad \alpha \to \neg \beta, \ \beta, \ \alpha \vdash \alpha \tag{(e)}$$

$$(2) \quad \alpha \to \neg \beta, \ \beta, \ \alpha \vdash \alpha \to \neg \beta \qquad (\in)$$

(3)
$$\alpha \rightarrow \neg \beta, \ \beta, \ \alpha \vdash \neg \beta \qquad (\rightarrow -)(1)(2)$$

$$(4) \quad \alpha \to \neg \beta, \ \beta, \ \alpha \vdash \beta \tag{(\epsilon)}$$

(5)
$$\alpha \rightarrow \neg \beta, \ \beta \vdash \neg \alpha$$
 $(\neg +)(3)(4)$

(6)
$$\alpha \rightarrow \neg \beta \vdash \beta \rightarrow \neg \alpha$$
 $(\rightarrow +)(5)$

例15(4)的证明

4. $\neg \alpha \rightarrow \neg \beta \vdash \beta \rightarrow \alpha$.

$$(1) \neg \alpha \rightarrow \neg \beta, \ \beta, \ \neg \alpha \vdash \neg \alpha \tag{(e)}$$

$$(2) \neg \alpha \rightarrow \neg \beta, \ \beta, \ \neg \alpha \vdash \neg \alpha \rightarrow \neg \beta$$
 (\in)

(3)
$$\neg \alpha \rightarrow \neg \beta$$
, β , $\neg \alpha \vdash \neg \beta$ $(\rightarrow -)(1)(2)$

$$(4) \neg \alpha \rightarrow \neg \beta, \ \beta, \ \neg \alpha \vdash \beta$$
 (\in)

$$(5) \neg \alpha \rightarrow \neg \beta, \ \beta \vdash \alpha \qquad (\neg -)(3)(4)$$

$$(6) \neg \alpha \rightarrow \neg \beta \vdash \beta \rightarrow \alpha \qquad (\rightarrow +)(5)$$

例16 给出下列各式的形式证明

1.
$$\neg \alpha \rightarrow \alpha \vdash \alpha$$
.

2.
$$\alpha \rightarrow \neg \alpha \vdash \neg \alpha$$
.

3.
$$\alpha \rightarrow \beta$$
, $\alpha \rightarrow \neg \beta \vdash \neg \alpha$.

4.
$$\alpha \rightarrow \beta$$
, $\neg \alpha \rightarrow \beta \vdash \beta$.

5.
$$\neg (\alpha \rightarrow \beta) \vdash \alpha$$
.

6.
$$\neg (\alpha \rightarrow \beta) \vdash \neg \beta$$
.

证: 只证1. 4. 5.

例16(1)的证明

1. $\neg \alpha \rightarrow \alpha \vdash \alpha$.

$$(1) \quad \neg \alpha \rightarrow \alpha, \quad \neg \alpha \vdash \neg \alpha \qquad (\in)$$

$$(2) \quad \neg \alpha \rightarrow \alpha, \quad \neg \alpha \vdash \neg \alpha \rightarrow \alpha \qquad (\in)$$

$$(3) \quad \neg \alpha \rightarrow \alpha, \quad \neg \alpha \vdash \alpha \qquad (\rightarrow -)$$

$$(4) \quad \neg \alpha \rightarrow \alpha \vdash \alpha \qquad (\neg -)(1)(3)$$

例16(4)的证明

4.
$$\alpha \rightarrow \beta$$
, $\neg \alpha \rightarrow \beta \vdash \beta$.

 $(8)\alpha \rightarrow \beta$, $\neg \alpha \rightarrow \beta \vdash \beta$

证:
$$(1)\alpha \rightarrow \beta \vdash \neg \beta \rightarrow \neg \alpha \qquad (例15之1)$$

$$(2)\alpha \rightarrow \beta, \ \neg \alpha \rightarrow \beta, \ \neg \beta \vdash \neg \beta \rightarrow \neg \alpha \qquad (+)(1)$$

$$(3)\neg \alpha \rightarrow \beta \vdash \neg \beta \rightarrow \alpha \qquad (例15之3)$$

$$(4)\alpha \rightarrow \beta, \ \neg \alpha \rightarrow \beta, \ \neg \beta \vdash \neg \beta \rightarrow \alpha \qquad (+)(3)$$

$$(5)\alpha \rightarrow \beta, \ \neg \alpha \rightarrow \beta, \ \neg \beta \vdash \neg \beta \qquad (\in)$$

$$(6)\alpha \rightarrow \beta, \ \neg \alpha \rightarrow \beta, \ \neg \beta \vdash \neg \alpha \qquad (\rightarrow -)(2)(5)$$

$$(7)\alpha \rightarrow \beta, \ \neg \alpha \rightarrow \beta, \ \neg \beta \vdash \alpha \qquad (\rightarrow -)(4)(5)$$

 $(\neg -)(6)(7)$

例16(5)的证明

5.
$$\neg (\alpha \rightarrow \beta) \vdash \alpha$$
.

$$(1) \neg (\alpha \rightarrow \beta), \neg \alpha \vdash \neg (\alpha \rightarrow \beta) \qquad (\in)$$

$$(2) \neg \alpha, \ \alpha \vdash \beta \tag{例14之4.}$$

$$(3) \neg \alpha \vdash \alpha \rightarrow \beta \qquad (\rightarrow +)(2)$$

$$(4) \neg (\alpha \rightarrow \beta), \neg \alpha \vdash \alpha \rightarrow \beta \qquad (+)(3)$$

$$(5) \neg (\alpha \rightarrow \beta) \vdash \alpha \qquad (\neg -)(1)(4)$$

作业

```
p.508(p.101). 13(1)(3)(5)
9
10
```

谢谢

例17 给出下列各式的形式证明

- 1. $\alpha \wedge \beta \vdash \alpha, \beta$.
- 2. $\alpha \wedge \beta \vdash \beta \wedge \alpha$.
- 3. $(\alpha \wedge \beta) \wedge \gamma \vdash \alpha \wedge (\beta \wedge \gamma)$.
- 4. $\neg (\alpha \land \beta) \vdash \alpha \rightarrow \neg \beta$.
- 5. $\neg (\alpha \rightarrow \beta) \vdash \alpha \land \neg \beta$.
- 6. $\emptyset \vdash \neg (\alpha \land \neg \alpha)$.

例17(1)的证明

1. $\alpha \wedge \beta \vdash \alpha, \beta$.

证:

 (\vdash)

(1)

 $\alpha \wedge \beta \vdash \alpha \wedge \beta$

 (\in)

(2)

 $\alpha \wedge \beta \vdash \alpha, \beta$

 $(\wedge -)$

 (\dashv)

(1)

 $\alpha, \beta \vdash \alpha$

 (\in)

(2)

 $\alpha, \beta \vdash \beta$

 (\in)

(3)

 $\alpha, \beta \vdash \alpha \land \beta$

 $(\wedge+)$

例17(2)的证明

2. $\alpha \wedge \beta \vdash \beta \wedge \alpha$.

证:

 (\vdash)

(1)

 $\alpha \wedge \beta \vdash \beta, \alpha$

(本例之1.)

(2)

 $\alpha \wedge \beta \vdash \beta \wedge \alpha$

 $(\wedge -)$

(一) 同理可证。

例17(3)的证明

3. $(\alpha \wedge \beta) \wedge \gamma \vdash \alpha \wedge (\beta \wedge \gamma)$.

证:

 (\vdash)

$$(1) \quad (\alpha \wedge \beta) \wedge \gamma \vdash \gamma \tag{1.}$$

$$(2) \quad (\alpha \wedge \beta) \wedge \gamma \vdash \alpha \wedge \beta \tag{1.}$$

$$(3) \quad (\alpha \wedge \beta) \wedge \gamma \vdash \alpha \qquad (\wedge -)(2)$$

$$(4) \quad (\alpha \wedge \beta) \wedge \gamma \vdash \beta \qquad (\wedge -)(2)$$

(5)
$$(\alpha \wedge \beta) \wedge \gamma \vdash (\beta \wedge \gamma)$$
 $(\wedge +)(4)(1)$

(6)
$$(\alpha \wedge \beta) \wedge \gamma \vdash \alpha \wedge (\beta \wedge \gamma) (\wedge +)(3)(5)$$

例17(3)的证明(续)

3. $(\alpha \wedge \beta) \wedge \gamma \vdash \alpha \wedge (\beta \wedge \gamma)$.

证:

 (\dashv)

(1)
$$\alpha \wedge (\beta \wedge \gamma) \vdash (\beta \wedge \gamma) \wedge \alpha$$
 (2.)

(2)
$$(\beta \wedge \gamma) \wedge \alpha \vdash \beta \wedge (\gamma \wedge \alpha)$$
 (\vdash)

(3)
$$\beta \wedge (\gamma \wedge \alpha) \vdash (\gamma \wedge \alpha) \wedge \beta$$
 (2.)

(4)
$$(\gamma \wedge \alpha) \wedge \beta \vdash \gamma \wedge (\alpha \wedge \beta)$$
 (\vdash)

(5)
$$\gamma \wedge (\alpha \wedge \beta) \vdash (\alpha \wedge \beta) \wedge \gamma$$
 (2.)

(6)
$$\alpha \wedge (\beta \wedge \gamma) \vdash (\alpha \wedge \beta) \wedge \gamma$$
 (Tr)

当然(∃)也可仿(►)证得.

例17(4)的证明

4.
$$\neg (\alpha \land \beta) \vdash \alpha \rightarrow \neg \beta$$
.

证:

 (\vdash)

$$(1) \quad \neg (\alpha \wedge \beta), \ \alpha, \ \beta \vdash \neg (\alpha \wedge \beta) \tag{(e)}$$

$$(2) \quad \alpha, \ \beta \vdash \alpha \land \beta \tag{1.}$$

(3)
$$\neg (\alpha \land \beta), \ \alpha, \ \beta \vdash (\alpha \land \beta)$$
 (+)(2)

(4)
$$\neg (\alpha \land \beta), \ \alpha \vdash \neg \beta$$
 $(\neg +)(1)(3)$

$$(5) \quad \neg (\alpha \land \beta) \vdash \alpha \rightarrow \neg \beta \qquad (\rightarrow +)(4)$$

例17(4)的证明(续)

4. $\neg (\alpha \land \beta) \vdash \alpha \rightarrow \neg \beta$.

证:

 (\dashv)

$$(1) \quad \alpha \to \neg \beta, \alpha \land \beta \vdash \alpha \land \beta \tag{(e)}$$

$$(2) \quad \alpha \to \neg \beta, \ \alpha \land \beta \vdash \alpha \qquad (\land)(1)$$

$$(3) \quad \alpha \to \neg \beta, \ \alpha \land \beta \vdash \beta \qquad (\land)(1)$$

$$(4) \quad \alpha \to \neg \beta, \quad \alpha \land \beta \vdash \alpha \to \neg \beta \qquad (\in)$$

(5)
$$\alpha \rightarrow \neg \beta$$
, $\alpha \land \beta \vdash \neg \beta$ $(\rightarrow -)(2)(4)$

(6)
$$\alpha \rightarrow \neg \beta \vdash \neg (\alpha \land \beta)$$
 $(\neg +)(3)(5)$

例17(5)的证明

5.
$$\neg(\alpha \rightarrow \beta) \vdash \alpha \land \neg \beta$$
.
证:
(\vdash)
(1) β , $\alpha \vdash \beta$ (\in)
(2) $\beta \vdash \alpha \rightarrow \beta$ ($\rightarrow +$)(1)
(3) $\beta \rightarrow (\alpha \rightarrow \beta) \vdash \neg(\alpha \rightarrow \beta) \rightarrow \neg \beta$ (β 15之1.)
(4) $\neg(\alpha \rightarrow \beta) \vdash \neg \beta$ (β 2)(3)
(5) $\neg \alpha$, $\alpha \vdash \beta$ (β 3)(β 3)(β 3)(β 3)(β 3)(β 4)(β 4)(β 5)(β 3)(β 4)(β 4)(β 5)(β 5)(β 6)(β 7)(β 8)(β 8)(β 8)(β 9)(β 9)(β 8)(β 9)(β

例17(5)的证明(续)

5.
$$\neg (\alpha \rightarrow \beta) \vdash \alpha \land \neg \beta$$
.

证:

 (\dashv)

$$(1) \quad \alpha, \ \neg \beta, \ \alpha \rightarrow \beta \vdash \alpha \qquad (\in)$$

(2)
$$\alpha, \neg \beta, \alpha \rightarrow \beta \vdash \alpha \rightarrow \beta$$
 (\in)

(3)
$$\alpha, \neg \beta, \alpha \rightarrow \beta \vdash \beta \qquad (\rightarrow -)$$

$$(4) \quad \alpha, \ \neg \beta, \ \alpha \rightarrow \beta \vdash \neg \beta \qquad (\in)$$

(5)
$$\alpha, \neg \beta \vdash \neg (\alpha \rightarrow \beta)$$
 $(\neg +)$

(6)
$$\alpha \land \neg \beta \vdash \alpha, \ \neg \beta$$
 (1.)

$$(7) \quad \alpha \land \neg \beta \vdash \neg (\alpha \rightarrow \beta) \qquad (Tr)$$

思考题: 怎么用 $\alpha \land \neg \beta$, $\neg (\alpha \rightarrow \beta)$ 作为前提直接证明。

例17(6)的证明

6. $\emptyset \vdash \neg (\alpha \land \neg \alpha)$.

- $(1) \quad \alpha \wedge \neg \alpha \vdash \alpha \qquad (1.)$
- $(2) \quad \alpha \wedge \neg \alpha \vdash \neg \alpha \qquad (1.)$
- $(3) \quad \emptyset \vdash \neg (\alpha \land \neg \alpha) \quad (\neg +)$

例18 给出下列各式的形式证明

1.
$$\alpha \vdash \alpha \lor \beta, \ \beta \lor \alpha$$

2.
$$\alpha \vee \beta \vdash \beta \vee \alpha$$

3.
$$(\alpha \vee \beta) \vee \gamma \vdash \alpha \vee (\beta \vee \gamma)$$

4.
$$\neg (\alpha \lor \beta) \vdash \neg \alpha \land \neg \beta$$

5.
$$\neg (\alpha \land \beta) \vdash \neg \alpha \lor \neg \beta$$

6.
$$\alpha \vee \beta \vdash \neg \alpha \rightarrow \beta$$

7.
$$\alpha \rightarrow \beta \vdash \neg \alpha \lor \beta$$

8.
$$\emptyset \vdash \alpha \lor \neg \alpha$$
.

例18(1)的证明

1. $\alpha \vdash \alpha \lor \beta, \ \beta \lor \alpha$

- $(1) \quad \alpha \vdash \alpha \qquad (\in)$
- (2) $\alpha \vdash \alpha \lor \beta \quad (\lor +)$
- (3) $\alpha \vdash \beta \lor \alpha \quad (\lor +)$

例18(2)的证明

2. $\alpha \vee \beta \vdash \beta \vee \alpha$

证:

 (\vdash)

(1) $\alpha \vdash \beta \lor \alpha$

(本例之1.)

(2)

 $\beta \vdash \beta \lor \alpha$

(本例之1.)

(3)

 $\alpha \vee \beta \vdash \beta \vee \alpha$

 $(\vee -)(1)(2)$

(→) 同理可证。

例18(3)的证明

3. $(\alpha \vee \beta) \vee \gamma \vdash \alpha \vee (\beta \vee \gamma)$

证:

 (\vdash)

$$(1) \gamma \vdash \beta \lor \gamma (1.)$$

$$(2) \gamma \vdash \alpha \lor (\beta \lor \gamma) (1.)$$

$$(3) \quad \alpha \vdash \alpha \lor (\beta \lor \gamma) \tag{1.}$$

$$(4) \quad \beta \vdash \alpha \lor (\beta \lor \gamma) \qquad \qquad 与(2) 类似$$

(5)
$$\alpha \vee \beta \vdash \alpha \vee (\beta \vee \gamma)$$
 $(\vee -)(3)(4)$

(6)
$$(\alpha \vee \beta) \vee \gamma \vdash \alpha \vee (\beta \vee \gamma) \quad (\vee -)(2)(5)$$

(→) 同理可证。也可用(⊢)结合本例之2证得。

例18(4)的证明

4.
$$\neg (\alpha \lor \beta) \vdash \neg \alpha \land \neg \beta$$

证(上):

$$(1) \qquad \alpha \vdash \alpha \lor \beta \tag{1.}$$

$$(2) \qquad \neg (\alpha \lor \beta) \vdash \neg \alpha \qquad (定理7及例15)$$

$$(3) \qquad \beta \vdash \alpha \lor \beta \tag{1.}$$

$$\neg (\alpha \lor \beta) \vdash \neg \beta \tag{同(2)}$$

(5)
$$\neg (\alpha \lor \beta) \vdash \neg \alpha \land \neg \beta$$
 $(\land +)(2)(4)$

例18(4)的证明(续一)

4.
$$\neg (\alpha \lor \beta) \vdash \neg \alpha \land \neg \beta$$

另证(⊢):

$$(1) \quad \neg (\alpha \lor \beta), \alpha \vdash \alpha \tag{(e)}$$

(2)
$$\neg (\alpha \lor \beta), \alpha \vdash \alpha \lor \beta$$
 ($\lor +$)(1)

$$(3) \quad \neg (\alpha \lor \beta), \alpha \vdash \neg (\alpha \lor \beta) \tag{(e)}$$

$$(4) \quad \neg (\alpha \lor \beta) \vdash \neg \alpha \qquad (\neg +)(2)(3)$$

$$(5) \quad \neg (\alpha \lor \beta) \vdash \neg \beta \qquad (同(4))$$

(6)
$$\neg (\alpha \lor \beta) \vdash \neg \alpha \land \neg \beta$$
 $(\land +)(4)(5)$

例18(4)的证明(续二)

4. $\neg (\alpha \lor \beta) \vdash \neg \alpha \land \neg \beta$ 证(一): (例17) (1) $\neg \alpha \land \neg \beta \vdash \neg \alpha$ (2) $\neg \alpha \land \neg \beta, \ \alpha \vdash \neg \alpha$ (+)(1)(3) (\in) $\neg \alpha \land \neg \beta, \ \alpha \vdash \alpha$ (例14) (4) $\neg \alpha, \ \alpha \vdash \beta$ (Tr)(2)(3)(4)(5) $\neg \alpha \land \neg \beta, \ \alpha \vdash \beta$ (6) $\neg \alpha \land \neg \beta, \beta \vdash \beta$ (\in) (7) $(\vee -)(5)(6)$ $\neg \alpha \land \neg \beta, \ \alpha \lor \beta \vdash \beta$ (例17) (8) $\neg \alpha \land \neg \beta \vdash \neg \beta$ (9)(+)(8) $\neg \alpha \land \neg \beta, \ \alpha \lor \beta \vdash \neg \beta$ $(\neg +)(7)(9)$ (10) $\neg \alpha \land \neg \beta \vdash \neg (\alpha \lor \beta)$

例18(5)的证明

5.
$$\neg (\alpha \land \beta) \vdash \neg \alpha \lor \neg \beta$$

证(上):

$$(1) \quad \neg \alpha \vdash \neg \alpha \lor \neg \beta \tag{1}$$

(2)
$$\neg (\neg \alpha \lor \neg \beta) \vdash \alpha$$
 (定理7及例15)

(3)
$$\neg (\neg \alpha \lor \neg \beta) \vdash \beta$$
 类似(2)

$$(4) \quad \neg (\neg \alpha \lor \neg \beta) \vdash \alpha \land \beta \qquad (\land +)(2)(3)$$

(5)
$$\neg (\alpha \land \beta) \vdash \neg \alpha \lor \neg \beta$$
 (定理7)

例18(5)的证明(续一)

5.
$$\neg (\alpha \land \beta) \vdash \neg \alpha \lor \neg \beta$$

另证(上):
 $(1) \neg (\neg \alpha \lor \neg \beta) \vdash \neg \neg \alpha \land \neg \neg \beta$ (本例之4)
 $(2) \neg (\neg \alpha \lor \neg \beta) \vdash \neg \neg \alpha$ ($\land -$)(1)
 $(3) \neg \neg \alpha \vdash \alpha$ (例14之1)
 $(4) \neg (\neg \alpha \lor \neg \beta) \vdash \alpha$ (Tr)(2)(3)
 $(5) \neg (\neg \alpha \lor \neg \beta) \vdash \beta$ 同理
 $(6) \neg (\neg \alpha \lor \neg \beta) \vdash \alpha \land \beta$ ($\land +$)(4)(5)
 $(7) \neg (\alpha \land \beta), \neg (\neg \alpha \lor \neg \beta) \vdash \alpha \land \beta$ ($+$)(6)
 $(8) \neg (\alpha \land \beta), \neg (\neg \alpha \lor \neg \beta) \vdash \neg (\alpha \land \beta)$ (\in)
 $(9) \neg (\alpha \land \beta) \vdash \neg \alpha \lor \neg \beta$ ($\neg -$)(7)(8)

例18(5)的证明(续二)

5.
$$\neg (\alpha \land \beta) \vdash \neg \alpha \lor \neg \beta$$

证(十):

$$(1) \qquad \alpha \land \beta \vdash \alpha \tag{例17}$$

$$(2) \qquad \neg \alpha \vdash \neg (\alpha \land \beta) \qquad (定理7)$$

$$(3) \qquad \neg \beta \vdash \neg (\alpha \land \beta) \qquad \qquad 类似(2)$$

$$(4) \qquad \neg \alpha \vee \neg \beta \vdash \neg (\alpha \wedge \beta) \qquad (\vee -)$$

例18(6)的证明

6.
$$\alpha \vee \beta \vdash \neg \alpha \rightarrow \beta$$

证(上):

$$(1) \quad \alpha, \ \neg \alpha \vdash \beta \qquad \qquad (例14之4)$$

$$(2) \qquad \alpha \vdash \neg \alpha \rightarrow \beta \qquad (\rightarrow +)(1)$$

$$(3) \qquad \beta \vdash \neg \alpha \rightarrow \beta \qquad \qquad (例13之2)$$

$$(4) \qquad \alpha \vee \beta \vdash \neg \alpha \rightarrow \beta \qquad (\vee -)(2)(3)$$

例18(6)的证明(续)

6.
$$\alpha \vee \beta \vdash \neg \alpha \rightarrow \beta$$

证(十):

$$(1) \neg (\alpha \lor \beta) \vdash \neg \alpha \land \neg \beta$$
 (本例之4.)
$$(2) \neg (\alpha \lor \beta) \vdash \neg \alpha$$
 ($\land -$)
$$(3) \neg (\alpha \lor \beta) \vdash \neg \beta$$
 ($\land -$)
$$(4) \neg \alpha \rightarrow \beta, \neg (\alpha \lor \beta) \vdash \neg \alpha$$
 (+)(3)
$$(5) \neg \alpha \rightarrow \beta, \neg (\alpha \lor \beta) \vdash \neg \alpha \rightarrow \beta$$
 (\in)

(6)
$$\neg \alpha \rightarrow \beta$$
, $\neg (\alpha \lor \beta) \vdash \beta$ $(\rightarrow -)(4)(5)$

(7)
$$\neg \alpha \rightarrow \beta$$
, $\neg (\alpha \lor \beta) \vdash \neg \beta$ (+)(3)

(8)
$$\neg \alpha \rightarrow \beta \vdash \alpha \lor \beta$$
 $(\neg -)(6)(7)$

例18(7)的证明

$$7. \quad \alpha \to \beta \vdash \vdash \neg \alpha \lor \beta$$
运(上):
$$(1) \quad \neg(\neg \alpha \lor \beta) \vdash \neg \neg \alpha \land \beta \qquad (本例之4)$$

$$(2) \quad \neg(\neg \alpha \lor \beta) \vdash \neg \neg \alpha \qquad (\land -)$$

$$(3) \quad \neg(\neg \alpha \lor \beta) \vdash \neg \beta \qquad (\land -)$$

$$(4) \quad \alpha \to \beta, \neg(\neg \alpha \lor \beta) \vdash \neg \neg \alpha \qquad (+)(2)$$

$$(5) \quad \alpha \to \beta, \neg(\neg \alpha \lor \beta) \vdash \neg \beta \qquad (+)(3)$$

$$(6) \quad \neg \neg \alpha \vdash \alpha \qquad (\emptyset 14 \angle 1)$$

$$(7) \quad \alpha \to \beta, \neg(\neg \alpha \lor \beta) \vdash \alpha \qquad (Tr)(4)(6)$$

$$(8) \quad \alpha \to \beta, \neg(\neg \alpha \lor \beta) \vdash \alpha \to \beta \qquad (\in)$$

$$(9) \quad \alpha \to \beta, \neg(\neg \alpha \lor \beta) \vdash \beta \qquad (\to -)(7)(8)$$

$$(10) \quad \alpha \to \beta \vdash \neg \alpha \lor \beta \qquad (\neg -)(5)(9)$$

例18(7)的证明(续一)

7.
$$\alpha \rightarrow \beta \vdash \neg \alpha \lor \beta$$

另证(⊢):

$$(1) \qquad \neg\neg \alpha \vdash \alpha \tag{例14}$$

$$(2) \qquad \alpha \rightarrow \beta, \ \neg \neg \alpha \vdash \alpha \qquad (+)(1)$$

$$(3) \qquad \alpha \rightarrow \beta, \ \neg \neg \alpha \vdash \alpha \rightarrow \beta \qquad (\in)$$

$$(4) \qquad \alpha \rightarrow \beta, \ \neg \neg \alpha \vdash \beta \qquad (\rightarrow -)(2)(3)$$

$$(5) \qquad \alpha \rightarrow \beta \vdash \neg \neg \alpha \rightarrow \beta \qquad (\rightarrow +)(4)$$

(6)
$$\neg \neg \alpha \rightarrow \beta \vdash \neg \alpha \lor \beta$$
 (本例之6)

$$(7) \qquad \alpha \rightarrow \beta \vdash \neg \alpha \lor \beta \qquad (Tr)(5)(6)$$

例18(7)的证明(续二)

7.
$$\alpha \rightarrow \beta \vdash \neg \alpha \lor \beta$$

证(十):

$$(1) \neg \alpha \lor \beta \vdash \neg \neg \alpha \to \beta \qquad (本例之6)$$

(2)
$$\neg \alpha \lor \beta$$
, $\alpha \vdash \neg \neg \alpha \rightarrow \beta$ (+)(1)

$$(3) \quad \alpha \vdash \neg \neg \alpha \tag{例14之3}$$

$$(4) \quad \neg \alpha \lor \beta, \ \alpha \vdash \neg \neg \alpha \qquad (+)(3)$$

(5)
$$\neg \alpha \lor \beta, \ \alpha \vdash \beta \qquad (\rightarrow -)(2)(4)$$

(6)
$$\neg \alpha \lor \beta \vdash \alpha \rightarrow \beta$$
 $(\rightarrow +)(5)$

例18(7)的证明(续三)

7.
$$\alpha \rightarrow \beta \vdash \neg \alpha \lor \beta$$

另证(┤):

$$(1) \quad \neg \alpha, \alpha \vdash \beta \qquad \qquad (例14之4)$$

$$(2) \quad \neg \alpha \vdash \alpha \rightarrow \beta \qquad (\rightarrow +)(1)$$

$$(3) \quad \beta, \alpha \vdash \beta \tag{(e)}$$

$$(4) \quad \beta \vdash \alpha \rightarrow \beta \qquad (\rightarrow +)(3)$$

(5)
$$\neg \alpha \lor \beta \vdash \alpha \rightarrow \beta \quad (\lor -)(2)(4)$$

例18(8)的证明

8. $\emptyset \vdash \alpha \lor \neg \alpha$

证:

(1)
$$\neg(\alpha \lor \neg \alpha) \vdash \neg \alpha \land \neg \neg \alpha$$
 (本例之4)

(2)
$$\neg \alpha \wedge \neg \neg \alpha \vdash \neg \alpha, \neg \neg \alpha$$
 (例17之1)

$$(3) \quad \neg (\alpha \lor \neg \alpha) \vdash \neg \alpha, \ \neg \neg \alpha \qquad (Tr)$$

$$(4) \quad \emptyset \vdash \alpha \lor \neg \alpha \qquad (\neg -)(3)$$

例19

证明: $\alpha \leftrightarrow \beta \vdash (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$

证(上):

$$(1) \quad \alpha \leftrightarrow \beta, \ \alpha \vdash \alpha \tag{(e)}$$

$$(2) \quad \alpha \leftrightarrow \beta, \quad \alpha \vdash \alpha \leftrightarrow \beta \tag{(e)}$$

$$(3) \quad \alpha \leftrightarrow \beta, \quad \alpha \vdash \beta \qquad (\leftrightarrow -)$$

$$(4) \quad \alpha \leftrightarrow \beta \vdash \alpha \to \beta \qquad (\rightarrow +)(3)$$

(5)
$$\alpha \leftrightarrow \beta \vdash \beta \rightarrow \alpha$$
 (类似(4))

(6)
$$\alpha \leftrightarrow \beta \vdash (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha) (\land +)(4)(5)$$

例19(续)

证明: $\alpha \leftrightarrow \beta \vdash (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$

证(一):

$$(1) (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha) \vdash \alpha \rightarrow \beta, \ \beta \rightarrow \alpha$$
 (例17)

$$(2) (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha), \ \alpha \vdash \alpha \rightarrow \beta \qquad (+)(1)$$

$$(3) (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha), \ \alpha \vdash \alpha$$
 (\in)

$$(4) (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha), \ \alpha \vdash \beta$$
 (\in)

$$(5) (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha), \ \beta \vdash \alpha \qquad (类似(4))$$

$$(6) (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha) \vdash \alpha \leftrightarrow \beta \qquad (\leftrightarrow +)(4)(5)$$

定理8

对于任意公式 α , α_1 , α_2 , \cdots , α_n .

1.
$$\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha \iff$$

$$\emptyset \vdash \alpha_1 \rightarrow \alpha_2 \rightarrow \cdots \rightarrow \alpha_{n-1} \rightarrow \alpha_n \rightarrow \alpha$$

2.
$$\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha \iff \emptyset \vdash (\alpha_1 \land \alpha_2 \land \cdots \land \alpha_n) \rightarrow \alpha$$

证1(⇒): 多次使用(→+)易证.

定理8的证明

证1(⇐): $\emptyset \vdash \alpha_1 \rightarrow (\alpha_2 \rightarrow \ldots \rightarrow (\alpha_n \rightarrow \alpha) \cdots)$ $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha_1 \rightarrow (\alpha_2 \rightarrow \cdots \rightarrow (\alpha_n \rightarrow \alpha) \cdots)$ $\alpha_1, \ \alpha_2, \cdots, \alpha_n \vdash \alpha_1$ $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha_2 \rightarrow (\alpha_3 \rightarrow \cdots \rightarrow (\alpha_n \rightarrow \alpha) \cdots)$ $\alpha_1, \ \alpha_2, \cdots, \alpha_n \vdash \alpha_n \rightarrow \alpha$ $\alpha_1, \ \alpha_2, \cdots, \alpha_n \vdash \alpha_n$ $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha$

定理8的证明(续一)

证2(⇒): $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n \vdash \alpha_1$ $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n \vdash \alpha_2$ $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n \vdash \alpha_n$ $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha$ $\alpha_1 \wedge \alpha_2 \wedge \cdots \wedge \alpha_n \vdash \alpha$ $\emptyset \vdash (\alpha_1 \land \alpha_2 \land \cdots \land \alpha_n) \rightarrow \alpha$

定理8的证明(续二)

证2(⇐): $\emptyset \vdash (\alpha_1 \land \alpha_2 \land \cdots \land \alpha_n) \rightarrow \alpha$ $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash (\alpha_1 \land \alpha_2 \land \cdots \land \alpha_n) \rightarrow \alpha$ $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha_1$ $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha_2$ $\alpha_1, \ \alpha_2, \ \cdots, \ \alpha_n \vdash \alpha_n$ $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha_1 \land \alpha_2 \land \cdots \land \alpha_n$ $\alpha_1, \alpha_2, \cdots, \alpha_n \vdash \alpha$

定理8的意义

定义2.14(可证公式): 若 $\emptyset \vdash_N \alpha$, 则称 α 为**N**的一个可证公式或内定理, 记为 $\vdash_N \alpha$, 在不引起混淆情况下, 也简记为 $\vdash \alpha$.

定理2.8说明:任何一个有前提的形式推演关系都可转化为与之等价的没有前提的形式推演关系。

即:任何一个形式推演关系都可化为一个与之等价的可证式.

作业

```
p.508(p.101). 11(3), (6)
11(1), (2), (5)
12(4), (6), (8)
13(2), (7), (10), (12),(14)
```

