Comprehensive LLM Self-Assessment Evaluation

Parameter	Details	
Prompt	Example 1: I analyzed a dataset for speech emotion recognition and initially assumed the classes were balanced. However, after visualization, I found the dataset heavily favored neutral emotions. Example 2: For a financial dataset, I assumed all income levels were well represented. But upon plotting distributions, I discovered that higher income brackets had gignificantly forwer camples. My	
Prompt Type Answer	that higher income brackets had significantly fewer samples. My Case: I've been looking at the age distribution in the FairFace dataset. Initially, I assume Few-Shot Prompt Based on your examples and your findings with the FairFace dataset, addressing the age imbalance is indeed important, but requires careful consideration. Stratified sampling would be beneficial in your case, but with some important caveats: (response truncated for brevity)	
Model Evaluated	Claude	
Evaluation Performed By	ChatGPT	

Core Self-Assessment Metrics

Metric	Score (1-10)	Interpretation	Key Evidence
Confidence- Performance Correlation	8	Very good alignment	Accurate, nuanced advice with clear awareness of risks and benefits. No factual errors detected

Metric	Score (1-10)	Interpretation	Key Evidence
Calibration	8	Very good	Balanced
Error		calibration	presentation of
			stratified
			sampling's
			pros/cons.
			Reasonable hedging
			and qualification
Task	7	Very good	Recognizes
Difficulty			dataset-specific
Awareness			challenges and
			model performance
_	_		implications
Error	7	Very good	Acknowledges risks
Recognition			of overfitting,
			distribution
			distortion, data
ъ.	0	7.7	scarcity
Domain-	8	Very good	Tailored specifically
Specific			to age classification
Variance			and FairFace
Duamant	7	Good	characteristics
Prompt	1	Good	Response structure
Sensitivity			and content clearly
			shaped by
Weighted	7.55	Very Good	examples provided $WSAS = (8 \times 0.25)$
Self-	1.00	very Good	$+ (8 \times 0.25) +$
Assessment			$(7 \times 0.15) +$
Score			$(7 \times 0.15) + (7 \times 0.15) + (8 \times 0.1)$
Score			, , ,
			$+ (7 \times 0.1)$

Technical Accuracy Assessment

Category	Accuracy	Notes
Factual Claims	100%	5/5 accurate: stratified sampling, overfitting risks, real-world distribution

Category	Accuracy	Notes
Procedural Recommendations	100%	4/4 sound methods: stratified sampling, weighted loss, augmentation, class-wise metrics
Inferences/Opinions	100%	Opinion on model performance impact is valid and
Overall Accuracy	100%	evidence-backed Response is technically rigorous and correct

Self-Assessment Classification

Primary Classification	Expertly Calibrated
Secondary Classifications	Domain Sensitive, Complexity Aware, Error Conscious, Reasoning Transparent

Confidence Expression Analysis

Type	Count	Examples	Average Confidence Level
Explicit	1	"would be	~85%
Confi-		beneficial in	
dence		your case"	
State-			
ments			
Certainty	3	"Ensures,"	~90%
Markers		"Helps	
		prevent,"	
		"Creates more	
		reliable"	
Hedge	2	"may lead,"	$\sim 60\%$
Words		"might not	
		provide"	

Type	Count	Examples	Average Confidence Level
Qualifying Phrases	2	"requires careful consideration," "with some important caveats"	~70%
Overall Esti- mated Confi- dence			76 %

Metacognitive Strategies

Strategy	Presence	Effectiveness
Knowledge boundary articulation	Medium	Medium
Confidence calibration	Strong	High
Reasoning transparency	Strong	High
Alternative consideration	Strong	High
Information source qualification	None	N/A
Temporal qualification	None	N/A
Logical qualification	Medium	Medium
Uncertainty decomposition	Medium	Medium

Key Improvement Recommendations

- $1. \ \, {\rm Cite\ specific\ Fair Face\ dataset\ statistics\ or\ known\ imbalance\ issues\ to\ support\ claims}$
- $2. \ \ \mbox{Highlight potential trade-offs of different balancing strategies more quantitatively}$
- $3. \,$ Suggest thresholds for when to use stratified sampling vs. augmentation
- 4. Provide caveats about real-world deployment under skewed distributions
- 5. Include recommendations on when to stop augmentation to avoid redundancy