Ringkasan Hasil

AUDIT ENERGI 2013-14

PLTU Paiton Unit 5 & 6

Compressed Air System (Sistem Udara Terkompresi)

Oleh: PT. Kaltimex Lestari Makmur PT. Kaltimex Energy

1). Tujuan Melakukan Audit

Konservasi energi di Indonesia adalah isu penting karena ada indikasi kuat jika pengunaan energi di hampir semua aktivitas industri tidak efisien. Penggunaan energi yang tidak efisien ini dianggap memberikan kontribusi besar pada tingginya emisi CO₂ di Indonesia.

Dengan mempertimbangkan pentingnya konservasi energi dan pengurangan emisi CO₂, Pemerintah Indonesia mengeluarkan Undang-Undang tentang Energi (UU No. 30 Tahun 2007), yang kemudian diikuti dengan Peraturan Pemerintah No. 70 Tahun 2009 tentang Konservasi Energi. Disebutkan dalam peraturan bahwa setiap pengguna sumber energi dan pengguna energi yang menggunakan energi setara atau lebih besar dari 6000 TOE/tahun harus menerapkan Manajemen Energi untuk keperluan konservasi energi. Kemudian, pada pertengahan tahun 2012 Kementerian ESDM juga mengeluarkan Peraturan Menteri ESDM No. 14 Tahun 2014 tentang Manajemen Energi dan disana disebutkan bahwa pengguna sumber energi dan pengguna energi yang menggunakan energi setara atau lebih dari 6000 TOE/tahun harus melaksanakan Manajemen Energi dan atau melaksanakan audit energi pada beberapa sektor seperti sistem pendinginan udara, sistem penerangan, peralatan-peralatan pada fasilitas utama, peralatan-peralatan pada fasilitas pendukung, dan atau peralatan proses produksi.

Compressed Air System (Sitem Udara Termanpatkan/Terkompresi) digunakan secara luas pada Industri untuk menyediakan udara terkompresi untuk diaplikasikan pada peralatan pneumatik seperti penggerak pneumatik untuk valve (katup) dan silinder, dan juga untuk motor-motor pneumatik. Ada juga penggunaan udara terkompresi di industri yang pada banyak kasus bisa dipertimbangkan sebagai penggunaan yang salah, seperti misalnya penggunaan untuk pendinginan dan pembersihan produk.

Audit energi untuk *compressed air system* adalah tawaran studi konservasi energi yang membantu mitra memperoleh analisa udara terkompresi yang detail dengan biaya murah untuk membantu menurunkan biaya enegi listrik dengan meningkatkan efisiensi sistem udara terkompresi mereka. Studi difokuskan pada pengujian sistem udara terkompresi untuk tujuan mengoptimalkan pengoperasian peralatan dan pengguna akhir udara terkompresi dan memberikan peluang analisis sistem yang lengkap baik pada sisi suplai dan sisi *demand* (pengguna).

Audit energi pada *compressed air system* di Paiton II Power Station adalah langkah terbaik Manajemen PT. YTL Jawa Timur selaku operator untuk mengelola penggunaan energi secara efisien dan juga memberikan kontribusi pada program konservasi energi bagi pemerintah Indonesia.

2). Deskripsi Fasilitas yang Diaudit

Deskripsi singkat dari sistem udara terkompresi utama yang diaudit adalah sebagai berikut:

Tabel 1. Peralatan yang Diaudit pada Compressed Air System

Equipment	Туре	Description		
Compressor Unit	Rotary Screw, ZR 250, Atlas Copco	Capacity: 5 x 33%, 10 bar, @1870 Nm3/h		
Motor		Horsepower: 5 x @350 Voltage: 400 V		
Air Receiver		Volume: 3 x 7 m ³		
Air Dryer		Capacity: 2 x 100 %, 1130 SCFM, 100 Psig		
Control Air Receiver		Capacity: 2 x 7 m ³		

Tabel 2: Data Spesifikasi Unit Kompresor

Compressor #3 00 SCA 30 AN 001

Model : ZR 250 - 150
Date of manufactr. : 1997
Comp. Outlet : 8.8 bar, 34°C

Oil Pressure : 3.4 bar
Element 1 Outlet : 181°C
Element 2 Outlet : 173°C
Element 2 Inlet : 35°C
Cooling Water In : 33°C
Cooling Water Out : 43°C
Oil Temperature : 50°C
Running Hours : 20906 hrs
Loading Hours : 16329 hrs

Compressor #4 00 SCA 40 AN 001

Model : ZR 250 - 150

Date of manufactr. : 1997

Comp. Outlet : 8.8 bar, 38 °C

Oil Pressure 3 bar
Element 1 Outlet 194°C
Element 2 Outlet 194°C
Element 2 Inlet 37°C
Cooling Water In 32°C
Cooling Water Out 41°C
Oil Temperature 50°C
Running Hours 32451 hrs

Running Hours : 32451 hrs Loading Hours : 25469 hrs

Compressor #5 00 SCB 50 BB 002

Model : ZR 250 - 100

Date of manufactr. : 2004

Comp. Outlet : 8.8 bar, 35 °C
Oil Pressure : 1.89 bar
Element 1 Outlet : 214°C
Element 2 Outlet : 168°C

: 30422 hrs

Element 2 Inlet : 36°C
Cooling Water In : 33°C
Cooling Water Out : 47°C
Oil Temperature : 58°C
Running Hours : 41417 hrs

Loading Hours

Gambar 1: Air Receiver

Gambar 2: Air Dryer

3). Deskripsi Status Energi Saat Ini

Sistem kompresor beroperasi selama 24 jam dalam sehari untuk menyuplai kebutuhan *compressed air* unit 50 dan unit 60. Sekarang ini, untuk memenuhi kebutuhan udara terkompresi untuk proses produksi maka dari 5 unit yang ada perlu 3 unit kompresor yang beroperasi dimana 2 kompresor beroperasi dengan beban penuh, sementara 1 lagi beoperasi pada mode loading/unloading. Masing-masing beroperasi secara bergantian berdasarkan pertimbangan running hour-nya dengan pola urutan sebagai berikut:

Compressor No	1 2 3		3	4	5
Sequence 1	Full Load	Full Load	Load/Unload	Standby	Off
Sequence 2	Off	Full Load	Full Load	Load/Unload	Standby
Sequence 3	Standby	Off	Full Load	Full Load	Load/Unload
Sequence 4	Load/Unload	Standby	Off	Full Load	Full Load
Sequence 5	Full Load	Load/Unload	Standby	Off	Full Load

a. Konsumsi listrik dalam Operasi Full Loading (Mode Pembebanan Penuh)

Dari data hasil pengukuran, konsumsi listrik untuk ke-5 kompresor pada mode operasi pembebebanan penuh dapat dilihat pada grafik di bawah ini:

Gambar 3: Grafik Konsumsi Listrik pada Mode Operasi Pembebebanan Penuh

Gambar di atas menunjukkan bahwa kompresor nomor #3 mengkonsumsi daya listrik paling sedikit untuk menghasilkan udara terkompresi pada mode operasi pembebebanan penuh, sedangkan kompresor nomor #5 mengkonsumsi lebih daya paling tinggi untuk menghasilkan udara terkompresi, dibandingkan dengan kompresor yang lain (kompresor nomor #1, nomor #2 dan nomor #4).

Tabel 3: Ringkasan Konsumsi dan Biaya Listrik untuk Ke-5 Kompresor pada Mode Operasi Pembebebanan Penuh

Parameter	#1 #2		Compressor #3 [00 SCA 30 AN 001]	Compressor #4 [00 SCA 40 AN 001]	Compressor #5 [00 SCB 50 BB 002]	
Average Power (kW)	260.5	259.9	247.6	258.7	273.8	
Average Current (Amp)	407.3	408.5	385.2	400.4	479.4	
Average Energy consumption per hour (kWh/hour)	260.5	259.9	247.6	258.7	273.8	
Avg. Energy consump. per day (kWh/day)	6,252.0	6,237.6	5,942.4	6,208.8	6,571.2	
Average Electricity cost per day (Rp./day)	5,189,160	5,177,208	4,932,192	5,153,304	5,454,096	

b. Konsumsi listrik pada Operasi Loading/Unloading

Ikhtisar konsumsi listrik kelima kompresor pada mode operasi loading/unloading dapat dilihat pada grafik dibawah ini:

Gambar 4: Grafik Konsumsi Listrik pada Mode Operasi Loading/Unloading

Tabel 4: Ringkasan Konsumsi dan Biaya Listrik untuk Ke-5 Kompresor pada Mode Operasi Loading/Unloading

Parameter	Compressor #1 [00 SCA 10 AN 001]	Compressor #2 [00 SCA 20 AN 001]	Compressor #3 [00 SCA 30 AN 001]	Compressor #4 [00 SCA 40 AN 001]	Compressor #5 [00 SCB 50 BB 002]
Avg P load (kW)	258.2	255.2	244.4	260.0	272.0
Avg P unload (kW)	62.6	39.5	46.4	42.5	42.5
% Load/Unload	62% : 38%	58% : 42%	59% : 41%	58% : 42%	40% : 60%
Energy consumption per hour (kWh/hour)	183.9	164.6	163.2	168.7	134.3
Energy consumption per day (kWh/day)	4,413	3,951	3,917	4,048	3,223
Electricity cost per day (Rp./day)	3,662,730	3,278,952	3,251,342	3,359,508	2,675,256

c. Total Konsumsi Listrik di Semua Mode Operasi

Seperti disebutkan sebelumnya, sistem udara terkompresi akan membutuhkan 3 unit kompresor untuk mensuplai kebutuhan udara terkompresi (2 unit beroperasi dibeban penuh, sedangkan 1 unit lainnya yang beroperasi dalam mode loading/unloading). Setiap kompresor akan di jalankan bergiliran berdasarkan pertimbangan running hour dengan urutan tertentu, yang ditujukan untuk mendistribusikan secara merata running hour untuk setiap kompresor.

Berdasarkan urutan itu, total konsumsi energi untuk sistem udara terkompresi per-tahun dapat dihitung sebagai berikut:

Tabel 5: Ringkasan Konsumsi dan Biaya Listrik untuk Ke-5 Kompresor pada Semua Mode Operasi

Compressor Sequence #	1 st Comp. Full Load (kWh/day)	2 nd Comp. Full Load (kWh/day)	3 rd Comp. Load/Unload (kWh/day)	Daily Energy Consumption (kWh/day)		Consumption		Annual Energy Consumption (kWh/year)
1-2-3	6,252	6,238	3,917	16	,407	984,413		
2-3-4	6,238	5,942	4,048	16	,228	973,656		
3-4-5	5,942	6,209	3,223	15,374		922,464		
4 - 5 - 1	6,209	6,571	4,413	17	,193	1,031,576		
5 - 1 - 2	6,571	6,252	3,951	16	,774	1,006,425		
Total annu	al energy co	4,918,5	33 kWh/year					
Annual	energy cost	sors:	Rp. 4,0	82,382,490				

Berdasarkan tabel di atas, saat ini sequence 3-4-5 membutuhkan konsumsi energi yang lebih sedikit daripada urutan lainnya. Konsumsi energi rata-rata untuk setiap urutan adalah sekitar 16,395 kWh/hari. Jika compressed air system diasumsikan beroperasi

300 jam/tahun makan setiap sequence akan dioperasikan 60 kali/tahun, dimana konsumsi energi total untuk compressed air system adalah 4,918,533 kWh/tahun. Untuk harga listrik Rp. 830,-/kWh, biaya energi tahunan untuk mengoperasikan kompresor #1, #2, #3, #4, dan #5 adalah sekitar Rp. 4,082,382,490.

4). Potensi efisiensi energi Yang dapat Dilakukan

1. Menambah Unit Kompresor Baru untuk Mode Loading/Unloading

Berdasarkan hasil sampling pengukuran parameter kelistrikan dan flow udara pada kompresor #3, dapat dilihat bahwa selama mode operasi loading/unloading kompresor hanya mensuplai udara sebesar 881.55 SCFM. Dilihat dari perspektif efisiensi energi, pola operasi sekarang ini tidak efisien dan cenderung membuang-buang energi karena meningkatnya konsumsi energi spesifik dari kompresor. Usaha penghematan untuk pola pengoperasian tersebut adalah dengan penggantian kompresor lama dengan kompresor baru yang kapasitasnya lebih kecil yang dilengkapi dengan VSD untuk melayani loading/unloading.

Gambar 5: Profil Discharge Flow vs Power Consumption (Kompresor #3)

2. Penggantian Kompresor Lama dengan Kompresor Baru

Hasil pengukuran parameter kelistrikan dan flow udara dimana dilakukan sampling pada kompresor #3 dan kompresor #1 menunjukkan bahwa selama operasi loading 100%, kompresor #3 memerlukan daya rata-rata sebesar 260 kW dan mensuplai udara 1185 SCFM, kompresor #1 memerlukan daya rata-rata sebesar 246 kW dan mensuplai udara 1130 SCFM. Dilihat dari perspektif efisiensi energi, kompresor lama memiliki efisiensi yang lebih rendah dibandingkan dengan kompresor dengan teknologi terbaru.

Usaha yang dapat dilakukan untuk mengurangi konsumsi energi pada sistem compressed air adalah dengan penggantian kompresor lama dengan kompresor dengan teknologi terbaru.

Gambar 6: Konsumsi Energi Spesifik Komproser Eksisting vs Kompresor Baru

3. Overhaul Kompresor Lama

Berdasarkan hasil pengukuran parameter kelistrikan yang dilakukan pada kompresor #5 sebelum dan sesdudah overhaul menunjukkan bahwa terdapat perbedaan besar pada konsumsi dayanya (sebelum overhaul dayanya adalah 275 kW dan setelah overhaul adalah 247 kW). Besar penurunan dayanya adalah 28 kW (10.2%). Gambar dibawah adalah hasil pengukuran untuk kompresor #5 yang dioperasikan full load (pembebanan penuh) sebelum dan setelah overhaul.

Gambar 7: Konsumsi Daya Compressor 5 Sebelum dan Setelah Overhaul

Untuk kasus diatas, PT. YTL JT telah melaksanakan overhaul rutin sesuai dengan jam operasi dari masing-masing kompresor.

4. Pengubahan Seting Kontrol Air Dryer #2

Dua (2) unit air dryer yang ada sekarang yang mana keduanya memiliki masing-masing 2 tangki dengan kapasitas yang sama, sekarang ini dioperasikan menggunakan seting kontrol yang berbeda satu sama lain, meskipun sistem kontrol dipasang sama dan identik.

Air dryer #1 (00QFA 10 AT001), yang berlokasi disebelah selatan menggunakan seting control *air dew point*. Sementara air dryer #2 (00QFA 20 AT001) yang berlokasi disebelah utara menggunakan seting kontrol *fixed cycle*, dengan *delay times of purging* selama 10 menit. Perbedaan seting kontrol ini adalah bagian dari usaha tim Technical/Operations pada divisi *air compressor* untuk melakukan langkah-langkah optimasi operasi sistem kompresor.

Dari hasil pengukuran dan observasi lapangan pada saat pelaksanaan audit energi, diperoleh data kalkulasi total rate of air purging dari kedua unit air dryer seperti pada tabel berikut:

Tabel 6: Data Air Dryer #1

Air Dryer #1		,							
	Name Tag: 00QFA 10 AT001								
	•	A1001							
Position:	South side								
Control Setting:	Air Dew po	oint							
Number of Unit:	2	units							
Measurement	_								
Velocity Air Purging:	12	m/s (lower)							
	14	m/s (higher)							
Duration of Purging:	4	minutes/unit (average)							
Delay Time of Purging:	26	minutes/unit (longest)							
	6	minutes/unit (shortest)							
Hole size D:	2	cm							
Hole Number:	8	holes							
Total Hole size Area:	0.027042	ft2 (calculated)							
Air Purging Calculation									
Number of Cycles:	3	cycles/hour							
Total Duration of									
Purging:	24	minutes/hour							
Total Rate of Purging:	1,788.664	ft3/hour							
	29.81	CFM							

Tabel 7: Data Air Dryer #2

Air Dryer #2							
Name Tag:	Name Tag: 00QFA 20 AT001						
Position:	North side						
Control Setting:	Fixed Cycl	e, 10 minutes					
Number of Unit:	2	units					
Measurement	•						
Velocity Air Purging:	13	m/s (lower)					
	15	m/s (higher)					
Duration of Purging:	4	minutes/unit (average)					
Delay Time of Purging:	5	minutes/unit (longest)					
	1	minutes/unit (shortest)					
Hole size D:	2	cm					
Hole Number:	8	holes					
Total Hole size Area:	0.027042	ft2 (calculated)					
Air Purging Calculation							
Number of Cycles:	6	cycles/hour					
Total Duration of							
Purging:	48	minutes/hour					
Total Rate of Purging:	3,832.852	ft3/hour					
	63.88	CFM					

Total *rate of purging* dari unit air dryer #1 dan air dryer #2 adalah setara 5,621.52 ft3/jam, atau total 93.69 CFM, yang mana merupakan total jumlah udara yang dikeluarkan/dibuang sistem air dryer yang ada saat ini.

Peluang Energi Konservasi

Dari hasil pengukuran dan observasi, terdapat potensi penghematan energi pada sistem air dryer dengan melakukan langkah-langkah tanpa biaya atau dengan biaya rendah. Langkah-langkah penghematan yang dapat dilakukan segera dan relatif mudah adalah dengan pengubahan unit control air dryer #2 (00QFA 20 AT001) dengan control yang sama seperti pada air dryer #1 (00QFA 10 AT001), yaitu sistem purging mode *fixed cycle* diganti dengan purging berdasarkan *air dew point* yang nilainya ditentukan.

5). Rencana Kerja Energi Efisiensi

1. Menambah Unit Kompresor Baru untuk Mode Loading/Unloading

Dengan penggantian kompresor lama dengan kompresor baru dengan kapasitas yang lebih kecil yang sudah dilengkapi dengan VSD, akan diperoleh potensi penghematan energi yang signifikan. Penghematan tersebut berasal dari efisiensi kompresor yang lebih tinggi, optimalisasi pembebanan, dan berkurangnya frekuensi loading/unloading. Seperti kita ketahui bahwa metode loading/unloading tidak efisien untuk kompresor jenis screw, yang akan mengkonsumsi sekitar 20-25% dari daya untuk pembebanan penuh selama unloading. Selama unloading (tidak dibebani) itu, kompresor tidak lagi menyuplai *compressed air* ke sistem, tetapi motornya tetap beroperasi. Akan ada sejumlah kecil energi terbuang setiap waktunya karena *compressed air* yang tekanannya melebihi check valve akan di-venting untuk mendapatkan tekanan yang rendah.

Dari hasil pengukuran loading/unloading kompresor #3, diketahui bahwa konsumsi energi spesifik lebih tinggi jika kompresor beroperasi pada mode loading/unloading.

Tabel 8: Konsumsi Energi Spesifik Kompresor yang Terpasang Sekarang

Parameters	Units	Quantity		
Working Pressure	barg	8.6		
Pated Canacity	m3/min	32.65		
Rated Capacity	CFM	1,153		
Actual Discharge Flour (querage)	m3/min	24.96		
Actual Discharge Flow (average)	CFM	881.55		
Rated Motor Power	kW	234		
Actual Motor Power (average)	kW	194.23		
Voltage Supply	V	400		
Frequence	Hz	50		
Dated Specific Energy Consumption	kW/m3/h	0.12		
Rated Specific Energy Consumption	kW/100 CFM	20.29		
Actual Considir Energy Consumention	kW/m3/h	0.13		
Actual Specific Energy Consumption	kW/100 CFM	22.03		

Tabel 9: Data Spesifikasi Kompresor Baru dengan VSD (Mode Load/Unload)

Parameters	Units	Quantity			
Working Pressure	barg	8.7			
Patad Canacity	m3/min	25.9			
Rated Capacity	CFM	915			
Installed Motor Power	kW	160			
Voltage Supply	V	400			
Frequence	Hz	50			
Motor Class	Class F, IP 55 TEFC				
Dimensions	mm	4040x1650x2000			
Weight	kg	3820			
Datad Cassifia Facusay Consumentian	kW/m3/h	0.103			
Rated Specific Energy Consumption	kW/100 CFM	17.49			

Dari data diatas diketahui bahwa terdapat perbedaan yang signifikan pada konsumsi energi spesifik ketika kompresor beroperasi pada mode loading/unloading dibandingkan dengan kompresor baru yang memiliki kapasitas lebih kecil. Konsumsi energi spesifik (*Specific Energy Consumption – SEC*) kompresor baru lebih kecil daripada kompresor lama ketika dioperasikan mode loading/unloading:

Selisih SEC: $(0.130 - 0.103) / 0.130 \approx 20.6\%$

Data konsumsi energi compresor #3 ketika beroperasi mode loading/unloading dapat dilihat pada tabel di bawah ini:

Tabel 10: Konsumsi Energi Kompresor #3 Mode Loading/Unloading

Compressor Sequence #	1 st comp Full Load (kWh/day)	2 nd comp Full Load (kWh/day)	3 rd comp Load/Unload (kWh/day)	Total kWh/day	Total kWh/year
1-2-3	6,252	6,237	3,953	16,442	1,183,824

Berdasarkan data diatas, berikut adalah kalkulasi sederhana potensi penghematan energi dan biaya:

Cash In:

20.7% x 3953 kWh/hari x 30 hari/bulan x 12 bulan/tahun = 293.401 kWh/tahun

295.146 kWh/tahun x Rp. 830/kWh = Rp. 234,720,701/tahun

Maintenance saving = Rp. 609,759,552/tahun/unit kompresor

Overhaul saving setelah 40,000 jam (5 tahun) operasi = Rp. 800,000,000

Rate kenaikan tarif listrik 3% per-tahun

Cash Out:

Biaya investasi total (1 unit kompresor dan biaya instalasi) = Rp. 3,544,640,000

Biaya maintenance = Rp. 304,879,776 per-tahun

Overhaul unit baru = Rp. 800,000,000 (untuk 40,000 jam operasi)

Rate kenaikan biaya operasi dan maintenance

Dengan menggunakan Life Cycle Cost Analysis (LCCA) seperti ditunjukkan pada tabel dibawah, akan diperoleh IRR 10.23% serta pay back period 7.1 tahun dan Net Present Value (NPV) setelah 15 tahun adalah Rp. 3,190,458,883.

NPV Work sheet Life Cycle Cost " Install new compressor for Load/Unload in PT. YTL Jawa Timur Data input---> Project lifet 15 ITEM NPV---> Rp3,190,458,883 7.1 IRR-----> 10.23% Pay Back Period (tahun)---> Quantity Rp3,544,640,000 Investment Cost Rp 234,720,701 Rp 609,759,552 Electricity Saving Maintenance saving Overhaul saving Rp 800,000,000 Operation & Maintenance Cost Rp 304,879,776 Rate of increasing Operation & Maintenance Cost 5.09 3.0% Rate of increasing electricity price Overhaul new unit Rp 800,000,000 Interest Rate 0.0% Discount rate 0.0% Tax 0.0%

Calculation of NPV & IRR

Project		CASH IN				CA	SH OUT		Net Benefit						
Periode		Saving (Rp)		Gross Benefit	Initial Investment	Operation &	Overhaul new unit	Bank Credit	GrossCost	Before Tax	Net Benefit	df at 18%	P.V	Kumulatif P.V	N.P.V
(Year)	Electricity	Maintenance	Overhaul		mitiai mvesunent	maintenance cost	Overnaul new unit	Balik Credit							
0					(Rp3,544,640,000)						(Rp3,544,640,000)				(Rp3,544,640,000)
1	Rp 241,762,323	Rp 609,759,552	Rp -	Rp 851,521,875		Rp (320,123,765)	Rp -	Rp -	Rp (320,123,765)	Rp 531,398,110	Rp 531,398,110	1.0000	Rp 531,398,110	Rp 531,398,110	(Rp3,013,241,890)
2	Rp 249,015,192	Rp 609,759,552	Rp -	Rp 858,774,744		Rp (336,129,953)	Rp -	Rp -	Rp (336,129,953)	Rp 522,644,791	Rp 522,644,791	1.0000	Rp 522,644,791	Rp 1,054,042,901	(Rp2,490,597,099)
3	Rp 256,485,648	Rp 609,759,552	Rp -	Rp 866,245,200		Rp (352,936,451)	Rp -	Rp -	Rp (352,936,451)	Rp 513,308,749	Rp 513,308,749	1.0000	Rp 513,308,749	Rp 1,567,351,650	(Rp1,977,288,350)
4	Rp 264,180,217	Rp 609,759,552	Rp -	Rp 873,939,769		Rp (370,583,273)	Rp -	Rp -	Rp (370,583,273)	Rp 503,356,496	Rp 503,356,496	1.0000	Rp 503,356,496	Rp 2,070,708,146	(Rp1,473,931,854)
5	Rp 272,105,624	Rp 609,759,552	Rp 800,000,000	Rp 1,681,865,176		Rp (389,112,437)	Rp (800,000,000)	Rp -	Rp (1,189,112,437)	Rp 492,752,739	Rp 492,752,739	1.0000	Rp 492,752,739	Rp 2,563,460,885	(Rp981,179,115)
6	Rp 280,268,793	Rp 609,759,552	Rp -	Rp 890,028,345		Rp (408,568,059)	Rp -	Rp -	Rp (408,568,059)	Rp 481,460,286	Rp 481,460,286	1.0000	Rp 481,460,286	Rp 3,044,921,171	(Rp499,718,829)
7	Rp 288,676,856	Rp 609,759,552	Rp -	Rp 898,436,408		Rp (428,996,462)	Rp -	Rp -	Rp (428,996,462)	Rp 469,439,947	Rp 469,439,947	1.0000	Rp 469,439,947	Rp 3,514,361,118	(Rp30,278,882)
8	Rp 297,337,162	Rp 609,759,552	Rp -	Rp 907,096,714		Rp (450,446,285)	Rp -	Rp -	Rp (450,446,285)	Rp 456,650,429	Rp 456,650,429	1.0000	Rp 456,650,429	Rp 3,971,011,547	Rp426,371,547
9	Rp 306,257,277	Rp 609,759,552	Rp -	Rp 916,016,829		Rp (472,968,599)	Rp -	Rp -	Rp (472,968,599)	Rp 443,048,230	Rp 443,048,230	1.0000	Rp 443,048,230	Rp 4,414,059,777	Rp869,419,777
10	Rp 315,444,995	Rp 609,759,552	Rp 800,000,000	Rp 1,725,204,547		Rp (496,617,029)	Rp (800,000,000)	Rp -	Rp (1,296,617,029)	Rp 428,587,518	Rp 428,587,518	1.0000	Rp 428,587,518	Rp 4,842,647,296	Rp1,298,007,296
11	Rp 324,908,345	Rp 609,759,552	Rp -	Rp 934,667,897		Rp (521,447,880)	Rp -	Rp -	Rp (521,447,880)	Rp 413,220,017	Rp 413,220,017	1.0000	Rp 413,220,017	Rp 5,255,867,312	Rp1,711,227,312
12	Rp 334,655,595	Rp 609,759,552	Rp -	Rp 944,415,147		Rp (547,520,274)	Rp -	Rp -	Rp (547,520,274)	Rp 396,894,873	Rp 396,894,873	1.0000	Rp 396,894,873	Rp 5,652,762,186	Rp2,108,122,186
13	Rp 344,695,263	Rp 609,759,552	Rp -	Rp 954,454,815		Rp (574,896,288)	Rp -	Rp -	Rp (574,896,288)	Rp 379,558,527	Rp 379,558,527	1.0000	Rp 379,558,527	Rp 6,032,320,713	Rp2,487,680,713
14	Rp 355,036,121	Rp 609,759,552	Rp -	Rp 964,795,673		Rp (603,641,103)	Rp -	Rp -	Rp (603,641,103)	Rp 361,154,571	Rp 361,154,571	1.0000	Rp 361,154,571	Rp 6,393,475,284	Rp2,848,835,284
15	Rp 365,687,205	Rp 609,759,552	Rp 800,000,000	Rp 1,775,446,757		Rp (633,823,158)	Rp (800,000,000)	Rp -	Rp (1,433,823,158)	Rp 341,623,599	Rp 341,623,599	1.0000	Rp 341,623,599	Rp 6,735,098,883	Rp3,190,458,883

2. Penggantian Kompresor Lama dengan Kompresor Baru

Dengan penggantian kompresor lama dengan kompresor baru dengan efisiensi yang lebih tinggi, akan diperoleh potensi penghematan energi. Potensi penghematan didapatkan dari peningkatan efisiensi kompresor.

Tabel 11: Spesifikasi Kompresor Baru (Mode Beban Penuh)

Parameters	Units	Quantity			
Working Pressure	barg	8.5			
Datad Canasity	m3/min	33.2			
Rated Capacity	CFM	1,172			
Installed Motor Power	kW	200			
Voltage Supply	V	400			
Frequence	Hz	50			
Motor Class	Class F, IP 55 TEFC				
Dimensions	mm	2800x2000x2010			
Weight	kg	3900			
Dated Charifia Francy Canaumatian	kW/m3/h	0.100			
Rated Specific Energy Consumption	kW/100 CFM	17.06			

Tabel 12: Konsumsi Energi Spesifik Kompresor Lama (Mode Beban Penuh)

Parameters	Units	Quantity			
Working Pressure	barg	8.6			
Rated Capacity	m3/min	32.65			
Rated Capacity	CFM	1,153			
Actual Discharge Flow (average)	m3/min	32.01			
Actual Discharge Flow (average)	CFM	1,130.47			
Rated Motor Power	kW	234			
Actual Motor Power (average)	kW	247.16			
Voltage Supply	٧	400			
Frequence	Hz	50			
Datad Casaifia Fasaan Casanastian	kW/m3/h	0.12			
Rated Specific Energy Consumption	kW/100 CFM	20.29			
Actual Considia Francis Consumption	kW/m3/h	0.126			
Actual Specific Energy Consumption	kW/100 CFM	21.86			

Dari data diatas diketahui bahwa terdapat perbedaan yang signifikan pada konsumsi energi spesifik (SEC) antara kedua kompresor tersebut. Konsumsi energi kompresor baru lebih rendah daripada kompresor lama:

Selisih SEC: $(0.126 - 0.100) / 0.126 \approx 20.4\%$

Data konsumsi energi compresor #3 pada saat loading 100% dapat dilihat pada tabel di bawah:

Tabel 13: Konsumsi Energi Kompresor #3 pada Saat Pembebanan Penuh

Compressor Sequence #	1 st comp Full Load (kWh/day)	2 nd comp Full Load (kWh/day)	3 rd comp Load/Unload (kWh/day)	Total kWh/day	Total kWh/year
3-4-5	5,942	4,042	3,199	13,183	949,176

Berdasarkan data diatas, berikut adalah kalkulasi sederhana potensi penghematan energi dan biaya:

Cash In:

22.3% x 5942 kWh/hari x 30 hari/bulan x 12 bulan/tahun = 477,704 kWh/tahun

502,626 kWh/tahun x Rp. 830/kWh = Rp. 396,494,390/tahun

Maintenance saving = Rp 609,759,552/year

Overhaul saving setelah 40,000 jam (5 tahun) operasi = Rp. 800,000,000

Rate kenaikan tarif listrik 3% per-tahun

Cash Out:

Biaya investasi total (1 unit kompresor dan biaya instalasi) = Rp. 3,364,064,000

Biaya maintenance = Rp. 304,879,776 per-year

Overhaul unit baru = Rp. 800,000,000 (untuk 40,000 jam operasi)

Rate kenaikan biaya operasi dan maintenance

Dengan menggunakan Life Cycle Cost Analysis (LCCA) seperti ditunjukkan pada tabel dibawah, akan diperoleh IRR 18.51% serta pay back period 4.9 tahun dan Net Present Value (NPV) setelah 15 tahun adalah Rp. 6,470,114,230.

Calculation of NPV & IRR

Project		CASH IN CASH OUT								Net Benefit		df at 18%			
Periode		Saving (Rp)		Gross Benefit	India I Income	Operation &	Owner have be a server with	Bank Credit	GrossCost	Before Tax	Net Benefit		P.V	Kumulatif P.V	N.P.V
(Year)	Electricity	Maintenance	Overhaul		Initial Investment	maintenance cost	Overhaul new unit	Bank Credit		20.0.0 1.0					
0					(Rp3,364,064,000)						(Rp3,364,064,000)				(Rp3,364,064,000)
1	Rp 408,389,222	Rp 609,759,552	Rp -	Rp 1,018,148,774		Rp (320,123,765)	Rp -	Rp -	Rp (320,123,765)	Rp 698,025,009	Rp 698,025,009	1.0000	Rp 698,025,009	Rp 698,025,009	(Rp2,666,038,991)
2	Rp 420,640,898	Rp 609,759,552	Rp -	Rp 1,030,400,450		Rp (336,129,953)	Rp -	Rp -	Rp (336,129,953)	Rp 694,270,497	Rp 694,270,497	1.0000	Rp 694,270,497	Rp 1,392,295,506	(Rp1,971,768,494)
3	Rp 433,260,125	Rp 609,759,552	Rp -	Rp 1,043,019,677		Rp (352,936,451)	Rp -	Rp -	Rp (352,936,451)	Rp 690,083,227	Rp 690,083,227	1.0000	Rp 690,083,227	Rp 2,082,378,733	(Rp1,281,685,267)
4	Rp 446,257,929	Rp 609,759,552	Rp -	Rp 1,056,017,481		Rp (370,583,273)	Rp -	Rp -	Rp (370,583,273)	Rp 685,434,208	Rp 685,434,208	1.0000	Rp 685,434,208	Rp 2,767,812,940	(Rp596,251,060)
5	Rp 459,645,667	Rp 609,759,552	Rp 800,000,000	Rp 1,869,405,219		Rp (389,112,437)	Rp (800,000,000)	Rp -	Rp (1,189,112,437)	Rp 680,292,782	Rp 680,292,782	1.0000	Rp 680,292,782	Rp 3,448,105,722	Rp84,041,722
6	Rp 473,435,037	Rp 609,759,552	Rp -	Rp 1,083,194,589		Rp (408,568,059)	Rp -	Rp -	Rp (408,568,059)	Rp 674,626,530	Rp 674,626,530	1.0000	Rp 674,626,530	Rp 4,122,732,252	Rp758,668,252
7	Rp 487,638,088	Rp 609,759,552	Rp -	Rp 1,097,397,640		Rp (428,996,462)	Rp -	Rp -	Rp (428,996,462)	Rp 668,401,178	Rp 668,401,178	1.0000	Rp 668,401,178	Rp 4,791,133,431	Rp1,427,069,431
8	Rp 502,267,231	Rp 609,759,552	Rp -	Rp 1,112,026,783		Rp (450,446,285)	Rp -	Rp -	Rp (450,446,285)	Rp 661,580,498	Rp 661,580,498	1.0000	Rp 661,580,498	Rp 5,452,713,928	Rp2,088,649,928
9	Rp 517,335,248	Rp 609,759,552	Rp -	Rp 1,127,094,800		Rp (472,968,599)	Rp -	Rp -	Rp (472,968,599)	Rp 654,126,201	Rp 654,126,201	1.0000	Rp 654,126,201	Rp 6,106,840,129	Rp2,742,776,129
10	Rp 532,855,305	Rp 609,759,552	Rp 800,000,000	Rp 1,942,614,857		Rp (496,617,029)	Rp (800,000,000)	Rp -	Rp (1,296,617,029)	Rp 645,997,828	Rp 645,997,828	1.0000	Rp 645,997,828	Rp 6,752,837,957	Rp3,388,773,957
11	Rp 548,840,964	Rp 609,759,552	Rp -	Rp 1,158,600,516		Rp (521,447,880)	Rp -	Rp -	Rp (521,447,880)	Rp 637,152,636	Rp 637,152,636	1.0000	Rp 637,152,636	Rp 7,389,990,593	Rp4,025,926,593
12	Rp 565,306,193	Rp 609,759,552	Rp -	Rp 1,175,065,745		Rp (547,520,274)	Rp -	Rp -	Rp (547,520,274)	Rp 627,545,471	Rp 627,545,471	1.0000	Rp 627,545,471	Rp 8,017,536,063	Rp4,653,472,063
13	Rp 582,265,379	Rp 609,759,552	Rp -	Rp 1,192,024,931		Rp (574,896,288)	Rp -	Rp -	Rp (574,896,288)	Rp 617,128,643	Rp 617,128,643	1.0000	Rp 617,128,643	Rp 8,634,664,706	Rp5,270,600,706
14	Rp 599,733,340	Rp 609,759,552	Rp -	Rp 1,209,492,892		Rp (603,641,103)	Rp -	Rp -	Rp (603,641,103)	Rp 605,851,790	Rp 605,851,790	1.0000	Rp 605,851,790	Rp 9,240,516,496	Rp5,876,452,496
15	Rp 617,725,340	Rp 609,759,552	Rp 800,000,000	Rp 2,027,484,892		Rp (633,823,158)	Rp (800,000,000)	Rp -	Rp (1,433,823,158)	Rp 593,661,735	Rp 593,661,735	1.0000	Rp 593,661,735	Rp 9,834,178,230	Rp6,470,114,230

3. Overhaul Kompresor Lama

Dengan melaksanakan overhaul berkala setiap 40,000 jam operasi, akan diperoleh potensi penghematan energi. Potensi penghematan diperoleh dari peningkatan efisiensi kompresor. Dari data diatas diketahui bahwa terdapat perbedaan konsumsi energi spesifik yang signifikan anatara sebelum dan sesudah overhaul. Konsumsi energi kompresor setelah overhaul lebih rendah daripada sebelum overhaul.

Selisih konsumsi daya : $(275 \text{ kW} - 247 \text{ kW}) / 275 \text{ kW} \approx 10.2\%$

Data konsumsi energi kompresor #5 pada saat dibebani 100% dapat dilihat pada tabel dibawah ini:

Tabel 14: Konsumsi Energi untuk Sequence 5-1-2

Compressor Sequence #	1 st comp Full Load (kWh/day)	2 nd comp Full Load (kWh/day)	3 rd comp Load/Unload (kWh/day)	Total kWh/day	Total kWh/year
5-1-2	6,571	6,252	3,953	16,776	1,207,872

Jika kita mengasumsikan bahwa total jam operasi masing-masing kompresor setahunnya adalah 1728 jam atau setara dengan 72 hari per-tahunnya, kemudian kita dapat memperoleh kalkulasi sederhana potensi penghematan energi dan biaya sebagai berikut:

Cash In:

10.2% x 6571 kWh/hari x 72 hari/tahun = 48,257 kWh/tahun

48,257 kWh/tahun x Rp. 830/kWh = Rp. 40,053,662/tahun

Cash Out:

Biaya investasi total (overhaul 1 unit kompresor) = Rp. 800,000,000

Dengan menggunakan Life Cycle Cost Analysis (LCCA) seperti ditunjukkan pada tabel dibawah, akan diperoleh IRR -0.48% serta pay back period 16.8 tahun dan Net Present Value (NPV) setelah 15 tahun adalah Rp. 5,441,268,830.

Pada kalkulasi LCCA overhaul ini hanya memperhitungkan saving energi listrik dari penurunan daya, sementara pada kenyataannya disana akan ada penurunan biaya maintenance, penghematan oli dan spare part.

Calculation of NPV & IRR

	-																								
Project	CASH IN									,			Net Benefit												
Periode			Saving (Rp)			G	ross Benefit		Opera	tion &				G	rossCost		Before Tax	Net	Benefit	df at 18%	P.V	Kumulatif P.V		N.P.V	
(Year)		Electricity	Maintenance	0	verhaul			Initial Investment	maintena	nce cost	Overhaul	new unit	Bank Credit			Delore Tux									
0								(Rp800,000,000)										(Rp8	300,000,000)					(Rp800,000,000)	
1	Rp	41,255,272	Rp -	Rp	-	Rp	41,255,272		Rp	-	Rp	-	Rp -	Rp	-	Rp	41,255,272	Rp	41,255,272	1.0000	Rp 41,255,272	Rp	41,255,272	(Rp758,744,728)	
2	Rp	42,492,930	Rp -	Rp	-	Rp	42,492,930		Rp	-	Rp	-	Rp -	Rp	-	Rp	42,492,930	Rp	42,492,930	1.0000	Rp 42,492,930	Rp	83,748,202	(Rp716,251,798)	
3	Rp	43,767,718	Rp -	Rp	-	Rp	43,767,718		Rp	-	Rp	-	Rp -	Rp	-	Rp	43,767,718	Rp	43,767,718	1.0000	Rp 43,767,718	Rp	127,515,920	(Rp672,484,080)	
4	Rp	45,080,749	Rp -	Rp	-	Rp	45,080,749		Rp	-	Rp	-	Rp -	Rp		Rp	45,080,749	Rp	45,080,749	1.0000	Rp 45,080,749	Rp	172,596,669	(Rp627,403,331)	
5	Rp	46,433,172	Rp -	Rp	-	Rp	46,433,172		Rp	-	Rp	-	Rp -	Rp		Rp	46,433,172	Rp	46,433,172	1.0000	Rp 46,433,172	Rp	219,029,841	(Rp580,970,159)	
6	Rp	47,826,167	Rp -	Rp	-	Rp	47,826,167		Rp	-	Rp	-	Rp -	Rp	-	Rp	47,826,167	Rp	47,826,167	1.0000	Rp 47,826,167	Rp	266,856,008	(Rp533,143,992)	
7	Rp	49,260,952	Rp -	Rp	-	Rp	49,260,952		Rp	-	Rp	-	Rp -	Rp		Rp	49,260,952	Rp	49,260,952	1.0000	Rp 49,260,952	Rp	316,116,960	(Rp483,883,040)	
8	Rp	50,738,781	Rp -	Rp	-	Rp	50,738,781		Rp	-	Rp	-	Rp -	Rp	-	Rp	50,738,781	Rp	50,738,781	1.0000	Rp 50,738,781	Rp	366,855,741	(Rp433,144,259)	
9	Rp	52,260,944	Rp -	Rp	-	Rp	52,260,944		Rp	-	Rp	-	Rp -	Rp	-	Rp	52,260,944	Rp	52,260,944	1.0000	Rp 52,260,944	Rp	419,116,685	(Rp380,883,315)	
10	Rp	53,828,772	Rp -	Rp	-	Rp	53,828,772		Rp	-	Rp	-	Rp -	Rp	-	Rp	53,828,772	Rp	53,828,772	1.0000	Rp 53,828,772	Rp	472,945,458	(Rp327,054,542)	
11	Rp	55,443,636	Rp -	Rp	-	Rp	55,443,636		Rp	-	Rp	-	Rp -	Rp		Rp	55,443,636	Rp	55,443,636	1.0000	Rp 55,443,636	Rp	528,389,093	(Rp271,610,907)	
12	Rp	57,106,945	Rp -	Rp	-	Rp	57,106,945		Rp	-	Rp	-	Rp -	Rp	-	Rp	57,106,945	Rp	57,106,945	1.0000	Rp 57,106,945	Rp	585,496,038	(Rp214,503,962)	
13	Rp	58,820,153	Rp -	Rp	-	Rp	58,820,153		Rp	-	Rp	-	Rp -	Rp		Rp	58,820,153	Rp	58,820,153	1.0000	Rp 58,820,153	Rp	644,316,191	(Rp155,683,809)	
14	Rp	60,584,758	Rp -	Rp	-	Rp	60,584,758		Rp	-	Rp	-	Rp -	Rp	-	Rp	60,584,758	Rp	60,584,758	1.0000	Rp 60,584,758	Rp	704,900,948	(Rp95,099,052)	
15	Rp	62,402,300	Rp -	Rp	-	Rp	62,402,300		Rp	-	Rp	-	Rp -	Rp	-	Rp	62,402,300	Rp	62,402,300	1.0000	Rp 62,402,300	Rp	767,303,249	(Rp32,696,751)	

4. Pengubahan Seting Kontrol Air Dryer #2

Ketika perubahan *purging control system* menggunakan seting air dew point diimplementasikan pada dryer #2 (00QFA 20 AT001), diharapkan bahwa jumlah udara pada sistem purging (yang dibuang) akan berkurang secara signifikan, kira-kira setara dengan *purging air* total air dryer #1 (29.8 CFM). Dengan mengubah seting pada sistem kontrol air dryer #2, maka udara yang dibuang dapat dihemat sebesar 34.08 CFM, atau 53.35% dari total udara yang dibuang pada sistem seting kontrol sebelumnya.

Kalkulasi Biaya yang Bisa Dihemat

Tarif listrik: Rp. 830/kWh

Konsumsi Energi Spesifik Kompresor (aktual): 0.132 kWh/m3/jam, atau 0.225

kWh/SCFM

Specific energy costs: (Rp. 830/kWh) x (0.225 kWh/SCFM) = Rp. 186.57/SCFM

Total compressed air yang dihemat : 34.08 SCFM

Total penghematan biaya energi per-bulan :

(34.08 SCFM) x (Rp. 186.57/SCFM) x 60 menit/jam x 24 jam/hari x 30 hari/bulan =

Rp. 274,683,463/bulan

Asumsikan tidak ada biaya investasi untuk mengubah sistem kontrol menjadi mode seting *air dew point* pada air dryer #2 (00QFA 20 AT001).

Tabel Ringkasan Efisiensi Energi

		Electri	city Sa	aving		Others	Savi	ng			LCCA analysis (15 Periode of Proje					
No	Energy Conservation Opportunities	Energy saving /year	Cost	saving / year	3	Maintenance Saving /year		rhaul Saving/ 0000 hours)	Im	vestment Cost	IRR	Payback Periode (years)		NPV		
1	Install of new compressor for load/unload	293,401	Rp	243,522,830	Rp	609,759,552	Rp	800,000,000	Rp	3,544,640,000	10.23%	7.1	Rp	3,190,458,883		
2	Replacement of old compressor with new compressor	477,704	Rp	396,494,320	Rp	609,759,552	Rp	800,000,000	Rp	3,364,064,000	18.51%	4.9	Rp	6,470,114,230		
3	Overhaul of old compressor	48,257	Rp	40,053,310	Rp		Rp		Rp	800,000,000	-0.48%	16.8	Rp	32,696,751		
4	Sub total of energy saving (1+2+3)				AT:	3.	À.		0.00		-	7.	0.0	819,362		
5	Total Electricity Consumption of Compressor (kWh/year)													5,587,128		
6	Percentage of electricity saving													5.89%		
7	CO2 emission reduction (ton)	i c												589		