6. Root finding

6. Root finding

Summary of last lecture

- Taylor series
- Taylor polynomials + Lagrange remainder

- Solving equations as root finding
- Roots of polynomials: Fundamental Theorem of Algebra

Goals for today

- Iterative algorithms
- Root-finding algorithms using iteration

Root finding as a problem

 \blacksquare Suppose we want to solve the problem $\mathcal{Y}=\mathcal{F}(\mathcal{X})$

Root finding as a problem

- \blacksquare Suppose we want to solve the problem $\mathcal{Y}=\mathcal{F}(\mathcal{X})$
- $\qquad \qquad \text{Input } \mathcal{X} = f \quad \text{- a function}$
- Problem \mathcal{F} = "calculate a root"

lacksquare Output $\mathcal{Y}=$ position x^* of the root

└6. Root finding

 $\quad \blacksquare \; \mathcal{Y} = \mathcal{F}(\mathcal{X})$

$$\mathcal{Y} = \mathcal{F}(\mathcal{X})$$

- lacksquare Suppose we start from an initial guess y_0 of the *output*
- We hope to find an algorithm g (computational function) that *approximates* "solving $\mathcal F$ with input x"

- lacksquare Suppose we start from an initial guess y_0 of the *output*
- We hope to find an algorithm g (computational function) that *approximates* "solving $\mathcal F$ with input x"
- Some algorithms can refine an approximation to give a better approximation

Collaboration I

Cosine-ing

- Open the scientific calculator app on your computer (or online) and make sure it is in "radians" mode
- 2 Start with an initial value and keep hitting the "cosine" key.
- What happens after you do this many times?
- 4 Write down a formula that describes the *process*.
- 5 What is the end result of the process? Can you write down a formula for it?
- 6 How could we generalise this?

Visualising the cosine iteration

■ What we have just done is an **iteration** or **recurrence**:

$$x_{n+1} = \cos(x_n)$$

starting from an initial value x_0

■ What we have just done is an iteration or recurrence:

$$x_{n+1} = \cos(x_n)$$

starting from an initial value x_0

lacktriangle We observe that the sequence x_0, x_1, \dots converges

■ What we have just done is an **iteration** or **recurrence**:

$$x_{n+1} = \cos(x_n)$$

starting from an initial value x_0

- We observe that the sequence $x_0, x_1, ...$ converges
- I.e. there is a limiting value x* with

$$x_n \to x^*$$
 as $n \to \infty$

■ What we have just done is an **iteration** or **recurrence**:

$$x_{n+1} = \cos(x_n)$$

starting from an initial value x_0

- We observe that the sequence $x_0, x_1, ...$ converges
- I.e. there is a limiting value x* with

$$x_n \to x^*$$
 as $n \to \infty$

$$x_{n+1} = \cos(x_n)$$

■ What can we say about the limit $n \to \infty$?

$$x_{n+1} = \cos(x_n)$$

- What can we say about the limit $n \to \infty$?
- \blacksquare Taking the limit $n\to\infty$ gives

$$x^* = \cos(x^*)$$

$$x_{n+1} = \cos(x_n)$$

- What can we say about the limit $n \to \infty$?
- lacktriangle Taking the limit $n o \infty$ gives

$$x^* = \cos(x^*)$$

lacksquare So x^* is a solution of the transcendental equation

$$\cos(x) = x$$

■ The iteration gives an approximation algorithm to calculate x^* as closely as we want!

Some natural questions arise:

Some natural questions arise:

■ Which functions *g* give iterations that converge?

Some natural questions arise:

Which functions g give iterations that converge?

- How fast is the convergence?
 - I.e. how does $|x_n x^*|$ depend on n?

Some natural questions arise:

Which functions g give iterations that converge?

- How fast is the convergence?
 - I.e. how does $|x_n x^*|$ depend on n?
- To solve h(x) = 0, how should we choose g?

- \blacksquare Consider a general iteration $x_{n+1}=g(x_n)$
 - lacktriangle for an algorithm (function) g and initial guess x_0

- \blacksquare Consider a general iteration $x_{n+1}=g(x_n)$
 - $\ \blacksquare$ for an algorithm (function) g and initial guess x_0
- \blacksquare It produces a sequence x_0, x_1, x_2, \dots

- \blacksquare Consider a general iteration $x_{n+1}=g(x_n)$
 - $\hfill\blacksquare$ for an algorithm (function) g and initial guess x_0
- It produces a sequence x_0 , x_1 , x_2 , ...
- lacksquare If the iteration converges, $x_n o x^*$ as $n o \infty$, then

$$g(x^*) = x^*$$

provided g is continuous

- \blacksquare Consider a general iteration $x_{n+1}=g(x_n)$
 - $\ \blacksquare$ for an algorithm (function) g and initial guess x_0
- It produces a sequence x_0, x_1, x_2, \dots
- \blacksquare If the iteration converges, $x_n \to x^*$ as $n \to \infty$, then

$$g(x^*) = x^*$$

provided q is continuous

- We say that x^* is a **fixed point** of g
- Hence it solve f(x) := g(x) x = 0

 \blacksquare Given a function g, does it have a fixed point?

- Given a function g, does it have a fixed point?
- A sufficient condition is given by the Banach fixed-point / contraction mapping theorem:

If g is continuous and maps $\left[a,b\right]$ into itself, then there exists a fixed point

- Given a function g, does it have a fixed point?
- A sufficient condition is given by the Banach fixed-point / contraction mapping theorem:

If g is continuous and maps $\left[a,b\right]$ into itself, then there exists a fixed point

■ If $|g'(x)| \le k \ \forall x \in [a,b]$ with k < 1, then the fixed point is *unique*

- Given a function *g*, does it *have* a fixed point?
- A sufficient condition is given by the Banach fixed-point / contraction mapping theorem:

If g is continuous and maps $\left[a,b\right]$ into itself, then there exists a fixed point

If $|g'(x)| \le k \ \forall x \in [a,b]$ with k < 1, then the fixed point is *unique*

- lacksquare g is called a **contraction mapping**
- \blacksquare Since it contracts distances: $|g(x)-g(y)| \leq k|x-y|$

Iterations as dynamical systems

An iteration is a discrete-time dynamical system

Iterations as dynamical systems

- An iteration is a discrete-time dynamical system
- We are solving a stationary (time-independent) problem by solving a time-dependent problem!
- By introducing a fictitious (discrete) time n

Iterations as dynamical systems

- An iteration is a discrete-time dynamical system
- We are solving a stationary (time-independent) problem by solving a time-dependent problem!
- By introducing a fictitious (discrete) time n

- This is a common trick
 - e.g. Markov chains, elliptic PDEs

Collaboration II

Convergence

Suppose that x_0 is close to x^* . How does the iteration $x_{n+1}=g(x_n)$ behave?

- 1 Define the distance $\delta_n := x_n x^*$
- **2** Can you find the approximate dynamics of δ ?
- When will the dynamics converge to the fixed point?

Convergence to a fixed point

- lacktriangle Assume there is a fixed point x^*
- Let's look at the distance $\delta_n := x_n x^*$

Convergence to a fixed point

- \blacksquare Assume there is a fixed point x^*
- lacksquare Let's look at the distance $\delta_n := x_n x^*$

We have

$$\begin{split} \delta_{n+1} &= x_{n+1} - x^* \\ &= g(x_n) - x^* \\ &= g(x^* + \delta_n) - x^* \\ &\simeq \delta_n \, g'(x^*) \end{split}$$

Convergence to a fixed point II

Asymptotically

$$\delta_{n+1} = \alpha \, \delta_n$$

with $\alpha := g'(x^*)$

Convergence to a fixed point II

Asymptotically

$$\delta_{n+1} = \alpha \, \delta_n$$

with
$$\alpha := g'(x^*)$$

So

$$\delta_{n+1} = \alpha^n \, \delta_0$$

Convergence to a fixed point II

Asymptotically

$$\delta_{n+1} = \alpha \, \delta_n$$

with
$$\alpha := g'(x^*)$$

So

$$\delta_{n+1} = \alpha^n \, \delta_0$$

- lacksquare δ_n decays if $|\alpha| < 1$ stable fixed point
- lacksquare δ_n grows if $|\alpha|>1$ unstable fixed point

- The fixed-point iteration solves an equation
- It is an approximation algorithm for solving that equation!

- The fixed-point iteration solves an equation
- It is an approximation algorithm for solving that equation!
- What does the speed of convergence mean?

- The fixed-point iteration solves an equation
- It is an approximation algorithm for solving that equation!
- What does the speed of convergence mean?

The speed of convergence tells us how good the approximation algorithm is

- The fixed-point iteration solves an equation
- It is an approximation algorithm for solving that equation!
- What does the speed of convergence mean?

- The speed of convergence tells us how good the approximation algorithm is
- If we can find a different algorithm which converges faster, we will need to do less work to solve the problem

Collaboration III

Designing fixed-point iterations

Let's try to solve the equation $x^2-x+1=0$ using fixed-point iteration.

- Can you come up with a fixed-point iteration that does this?
- Which root does it find?
- Can you find the other one?

Summary

- Iterations may converge
- If they converge, they converge to a fixed point
- Fixed points solve equations

- We can calculate a **convergence rate** to the fixed point
- This tells us how good the algorithm is