H4 Force on a Conductor in a Magnetic Field

Ignore the Earth's magnetic field unless specifically asked. Assume the ho-

The horizontal component of the Earth's magnetic field in Britain is 6.91×10^{-5} T, while the vertical component is 1.55×10^{-4} T.

rizontal component of the Earth's field points North, and the vertical down.

complete the questions in the table.				
Length	Current	Field	Field-current angle	Force
0.30 m	10 A	5.0 T	90°	(a)
2.0 cm	200 A	0.040 T	30°	(b)
56 m	20 mA	(c)	90°	3.5 N
2.0 m	(d)	$7.0 \times 10^{-5} \text{ T}$	90°	0.032 N

H4.1 Complete the questions in the table:

- H4.2 Calculate the force on 3.0 mm of wire carrying a 4.0 A current in a 0.020 T field, if the current is perpendicular to the field.
- H4.3 Calculate the force on 3.0 mm of wire carrying an 8.0 A current in a 0.0040 T field, if the current is parallel to the field.
- H4.4 Calculate the current needed in a wire if you wish it to levitate in a 0.50 T field. Assume that the wire has a weight of 0.14 N, and 3.0 cm of it is inside the magnetic field region.
- H4.5 There is a bad electrical fault in a house. A 6.0 m wire running North-South carries a current of 6000 A for a short time.
 - a) Calculate the magnitude of the force on it due to the Earth's magnetic field.
 - b) At an instant when the current in the wire is running from North to South, what is the direction of the force?
- H4.6 A rail gun consists of two metal rails 8.0 cm apart in a magnetic field with a projectile (shell) placed to bridge the rails. A large current is passed from one rail to the other through the projectile, which then experiences a force and shoots off the end of the rails. A 100 N force needs to act on the projectile. Assuming permanent magnets provide a 0.16 T magnetic field, how much current needs to pass through the projectile?

⁸/₁₀