The primary tasks of this assignment, are to develop a working finite difference code for both steady-state and transient problems.

Due: 1 Dec. 2015

- 1. Provide a written summary of the theoretical formulation of the material related to your numerical investigations of finite difference solutions to the ODE $(k\phi,_x)$, $_x+Q=0$, numerical solutions to a one-degree-of-freedon ODE with time as the independent variable, and the partial differential equation $C\phi$, $_t=(k\phi,_x)$, $_x+Q$.
- 2. For the equation $(k\phi_{,x})_{,x}+Q=0$ do the following: (a) Choose data for a relatively simple problem for which you know the analytical solution with the following restrictions: (i) the coefficient function is constant, (ii) One boundary condition consists of a prescribed value for the primary variable; the other boundary condition consists of a prescribed value of the gradient of the primary variable, and (iii) the forcing function results in a solution of sufficient continuity that the part of your theoretical summary that provides the rate of converence is applicable.
- (b) Write a finite difference algorithm based on a uniform mesh that provides approximate solutions.
- (c) Provide plots that compare numerical solutions with the analytical solution for different mesh sizes.
- (d) Provide a plot that shows the numerical rate of convergence and indicate how it compares with the theoretical rate.
- 3. (a) Consider the single-degree-of-freedom problem

$$T + \Lambda T = 0$$
 $T(0) = 2$; $t \in [0,8]$

with $\Lambda=1$. Overlay plots of the exact solution and approximate solutions obtained from the numerical integration algorithm based on the general trapezoidal rule for the following values of α and time step, s:

(b) Now consider the transient problem when a smooth forcing term is present:

$$C\dot{T} + KT = F(t)$$
 $C = 1$ $K = 2$
 $F(t) = \sin \Omega t$ $T(0) = 0$ $\Omega = 10$

Let $t_p=2\pi/\Omega$ be the period of the forcing function and let s_c be the critical time step for $\alpha=0$. Obtain numerical solutions for three periods of time with time steps ranging from s_c up to $t_p/4$ for the trapezoidal rules defined by $\alpha=0.5$, $\alpha=0.75$ and $\alpha=1$ and overlay plots of these solutions with the analytical solution.

4. Now combine the steady-state finite difference algorithm with time integration to obtain approximate solutions to the governing equation $C\phi_{,t} = (k\phi_{,x})_{,x} + Q$.

Common data for the two problems are:

Domains:
$$0 \le x \le 1$$
 $t \ge 0$

Coefficient fns.
$$C = 4$$
 $k = 2$

Forcing function
$$F = 0$$

Initial Condition:
$$T = 0$$
 for $0 \le x \le 1$

Boundary conditions for the two problems are:

(i)
$$T(0) = 2$$
 $T(1) = 0$ (ii) $T(0) = \sin 10t$ $T(1) = 0$

For problem (i) how do you resolve the contradiction between the boundary condition and the initial condition at x = 0?