

Ingénierie Electronique pour le Traitement de l'Information

TD10

Modéliser un montage transimpédance

Julien VILLEMEJANE

Montage simple vs transimpédance

léTl / TD10

Montage simple vs transimpédance

léTI / TD10

Saint-Étienne

léTl / TD10

Exercice 1 / Modèle simplifié de l'ALI (mode linéaire)

Exercice 1 / Modèle simplifié de l'ALI (mode linéaire)

léTl / TD10

Exercice 1 / Modèle simplifié de l'ALI (mode linéaire)

léTI / TD10

$$V_S(f) = -R_F \cdot i_{Phd}$$

expérimentalement

ParisTech

Exercice 1 / Modèle simplifié de l'ALI (mode linéaire)

léTl / TD10

$$V_S(f) = -R_F \cdot i_{Phd}$$

expérimentalement

Modèle trop simplifié de l'ALI

$$A(p) = \frac{V_S(p)}{\varepsilon(p)} = \frac{A_0}{1 + \frac{p}{\omega_c}}$$

Saint-Étienne

Transimpédance / Schéma bloc

IéTI / TD10

Transimpédance / Schéma bloc

léTl / TD10

$$A(p) = \frac{V_S(p)}{\varepsilon(p)} = \frac{A_0}{1 + \frac{p}{\omega_c}}$$

léTl / TD10

léTl / TD10

léTl / TD10

$$V^{-} = (V_S + R_F \cdot i_{Phd}) \cdot \frac{1}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega}$$

Paris-Saclay

Saint-Étienne

ParisTech

Exercice 2 / Contre-réaction

$$V^{-} = (V_S + R_F \cdot i_{Phd}) \cdot \frac{1}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega}$$

Saint-Étienne

Ordre de A?

ParisTech

$$A(p) = \frac{V_S(p)}{\varepsilon(p)} = \frac{A_0}{1 + \frac{p}{\omega_c}}$$

Ordre de B?

$$V^{-} = (V_S + R_F \cdot i_{Phd}) \cdot \frac{1}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega}$$

léTl / TD10

Ordre de A.B?

$$A(p) = \frac{V_S(p)}{\varepsilon(p)} = \frac{A_0}{1 + \frac{p}{\omega_c}}$$

$$V^{-} = (V_S + R_F \cdot i_{Phd}) \cdot \frac{1}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega}$$

expérimentalement

Ingénierie Electronique pour le Traitement de l'Information

Paris-Saclay

110

100

Saint-Étienne

fréquence (Hz)

10⁷

léTl / TD10

léTI / TD10

$$V_S = -A(j \cdot \omega) \cdot (V_S + R_F \cdot i_{Phd}) \cdot \frac{1}{1 + j \cdot R_F \cdot C_{Phd} \cdot \omega}$$

$$\omega_c = \frac{1}{R_F \cdot C_{Phd}}$$

$$K = \frac{A_0}{1 + A_0}$$

$$\frac{V_S}{i_{Phd}} = -K \cdot \frac{R_F}{1 + j \cdot \omega \cdot \frac{1}{1 + A_0} \left(\frac{\omega_c + \omega_0}{\omega_c \cdot \omega_0}\right) + (j \cdot \omega)^2 \cdot \frac{1}{1 + A_0} \frac{1}{\omega_c \cdot \omega_0}}$$

$$\frac{V_S}{i_{Phd}} = -K \cdot \frac{R_F}{1 + j \cdot \omega \cdot \frac{1}{1 + A_0} \left(\frac{\omega_c + \omega_0}{\omega_c \cdot \omega_0}\right) + (j \cdot \omega)^2 \cdot \frac{1}{1 + A_0} \frac{1}{\omega_c \cdot \omega_0}}$$

$$T_{LP}(j\omega) = \frac{A}{1 + 2 \cdot m \cdot j \frac{\omega}{\omega_c} + (j \frac{\omega}{\omega_c})^2}$$

$$\omega_c = \frac{1}{R_F \cdot C_{Phd}} \qquad K = \frac{A_0}{1 + A_0}$$

$$G_T = K \cdot R_F$$

$$\omega_T = \sqrt{(1 + A_0) \cdot \omega_c \cdot \omega_0}$$

$$m_T = \frac{\omega_T}{(1 + A_0) \cdot \omega_c \cdot \omega_0} \cdot \frac{\omega_c + \omega_0}{2}$$

Paris-Saclay

Fréquence (Hz)

Saint-Étienne

$$\frac{V_S}{i_{Phd}} = -K \cdot \frac{R_F}{1 + j \cdot \omega \cdot \frac{1}{1 + A_0} \left(\frac{\omega_c + \omega_0}{\omega_c \cdot \omega_0}\right) + (j \cdot \omega)^2 \cdot \frac{1}{1 + A_0} \frac{1}{\omega_c \cdot \omega_0}}$$

$$\omega_c = \frac{1}{R_F \cdot C_{Phd}} \qquad K = \frac{A_0}{1 + A_0}$$

$$G_T = K \cdot R_F$$

$$\omega_T = \sqrt{(1 + A_0) \cdot \omega_c \cdot \omega_0}$$

$$m_T = \frac{\omega_T}{(1 + A_0) \cdot \omega_c \cdot \omega_0} \cdot \frac{\omega_c + \omega_0}{2}$$

 $A_0 >> 1$

$$K \approx 1$$

$$G_T \approx R_F$$

$$\omega_T \approx \sqrt{\omega_c \cdot A_0 \cdot \omega_0} = \sqrt{\omega_c \cdot \omega_{GBP}}$$

$$m_T = \frac{\omega_c + \omega_0}{2 \cdot \omega_T} \approx \frac{1}{2} \cdot \sqrt{\frac{\omega_c}{\omega_{GBP}}}$$

léTl / TD10

Intérêt de V_R ?

léTI / TD10

Intérêt de V_R ?

Capacitance

léTl / TD10

Capacitance

Impact sur la fonction de transfert ?

$$V_R = 30 \text{ V}$$
$$C_{Phd} = 10 \text{ pF}.$$

Saint-Étienne

léTI / TD10

Bande passante

Paris-Saclay

Saint-Étienne

Ingénierie Electronique pour le Traitement de l'Information

Exercice 3 / Polarisation de la photodiode

/

Saint-Étienne

