Пространственно-временные характеристики в задаче декодирования временных рядов

Даниил Дмитриевич Дорин Научный руководитель: к.ф.-м.н. А.В. Грабовой

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 03.04.01 Прикладные математика и физика

Цель исследования

Цель

Проанализировать влияние пространственно-временных характеристик на точность и качество декодирования временных рядов фМРТ.

Задача

Построить метод аппроксимации показаний фМРТ по просматриваемому видеоряду. Предложить метод классификации сегментов временных рядов фМРТ.

Методы решения

- ightharpoonup Учет постоянного времени гемодинамической ответной реакции зависимости уровня кислорода в крови Δt .
- Снижение пространственной размерности временных рядов путем анализа активных областей мозга.
- Использование римановой геометрии для выделения пространственно-временных характеристик.

Постановка задачи восстановления временных рядов фМРТ по просматриваемому видеоряду

lacktriangleright Задана частота кадров $u\in\mathbb{R}$ и продолжительность $t\in\mathbb{R}$ видеоряда. Задан видеоряд

$$\mathbf{P} = [\mathbf{p}_1, \dots, \mathbf{p}_{\nu t}], \quad \mathbf{p}_{\ell} \in \mathbb{R}^{W \times H \times C},$$

с шириной, высотой и числом каналов изображения W, H и C соответственно.

lacktriangle Обозначим частоту снимков фМРТ $\mu\in\mathbb{R}$. Задана последовательность снимков

$$\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{\mu t}], \quad \mathbf{x}_{\ell} \in \mathbb{R}^{X \times Y \times Z},$$

где X, Y и Z — размерности воксельного изображения.

ightharpoonup Задача состоит в построении отображение ightharpoonup, которое бы учитывало задержку Δt между снимком фМРТ и видеорядом, а также предыдущие томографические показания:

$$\mathbf{g}(\mathbf{p}_1,\ldots,\mathbf{p}_{k_\ell-\nu\Delta t};\mathbf{x}_1,\ldots,\mathbf{x}_{\ell-1})=\mathbf{x}_\ell,\ \ell=1,\ldots,\mu t,\ k_\ell=\frac{\ell\cdot\nu}{\mu}.$$

Постановка задачи классификации сегментов временных рядов фМРТ

▶ Задано N наблюдений временных рядов фМРТ длины T:

$$\mathbf{X} = {\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_N},$$

 $\mathbf{X}_i = {\mathbf{x}_1^i, \mathbf{x}_2^i, \dots, \mathbf{x}_T^i},$

где $\mathbf{x}_t^i \in \mathbb{R}^{X \times Y \times Z}$ — это тензор снимка в момент времени t для набора i. Каждому наблюдению соответствует $y_i \in \{1, \dots, C\}$, где C — число классов.

Имеется выборка:

$$\mathfrak{D} = \{(y_i, \mathbf{X}_i) \mid i = 1, \dots, N\}.$$

▶ Требуется построить модель классификации g, которая учитывает пространственно-временные характеристики временных рядов фМРТ:

$$g: \mathbf{X} \rightarrow \{1, \ldots, C\}.$$

Схема предлагаемого метода восстановления снимков фМРТ

Метод строится из двух компонент — кодировщика и линейного декодера. В качестве кодировщика рассматривается ResNet152 без последнего линейного слоя.

Предлагаемый метод восстановления временных рядов фМРТ по просматриваемому видеоряду

Используем предположение марковости:

$$\mathbf{g}(\mathbf{p}_{k_{\ell}-\nu\Delta t}) = \mathbf{x}_{\ell} - \mathbf{x}_{\ell-1} = \boldsymbol{\delta}_{\ell}, \ \ell = 2, \dots, \mu t.$$

Отображение $\mathbf{g}: \mathbf{P} \to \mathbf{X}$ представляется в виде суперпозиции:

$$\mathbf{g} = \boldsymbol{arphi} \circ \boldsymbol{\psi}, \quad \boldsymbol{\psi} : \mathbf{P} o \mathbb{R}^d, \quad \boldsymbol{arphi} : \mathbb{R}^d o \mathbf{X}.$$

Декодер φ задается линейной моделью:

$$arphi_{ijk}(\mathbf{z}, \mathbf{w}_{ijk}) = \langle \mathbf{z}, \mathbf{w}_{ijk} \rangle,$$

$$\mathbf{w}_{ijk} = [w_1^{ijk}, \dots, w_d^{ijk}]^\mathsf{T} \in \mathbb{R}^d,$$

где $\mathbf{z} = [z_1, \dots, z_d]^\mathsf{T} \in \mathbb{R}^d$ — признаки изображения. Решение оптимизационной задачи находится методом наименьших квадратов:

$$\hat{\mathbf{w}}_{ijk} = (\mathbf{Z}^\mathsf{T}\mathbf{Z} + \alpha \mathbf{I})^{-1}\mathbf{Z}^\mathsf{T}\mathbf{\Delta}_{ijk}, \quad \mathbf{\Delta}_{ijk} = [\delta_{ijk}^2, \dots, \delta_{ijk}^N]^\mathsf{T} \in \mathbb{R}^{N-1}, \quad N = \mu(t - \Delta t).$$

Взвешивание вокселей фМРТ

Заданы временной ряд фМРТ $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_{\tau}], \ \mathbf{x}_t \in \mathbb{R}^{X \times Y \times Z}$ с частотой μ и временной ряд стимула $\mathbf{s} = [s_1, \dots, s_{\tau}], \ s_t \in \{0, 1\}.$

Алгоритм:

- 1. Сжатие 3D Average Pooling с размером ядра k_s : $\mathbf{X} \to \mathbf{X}'$.
- 2. Нормализация временных рядов: $\mathbf{X}' o \hat{\mathbf{X}}', \ \mathbf{s} o \hat{\mathbf{s}}.$
- 3. Подсчет кросс-корреляции:

$$c_{i,j,k}\left(p
ight)=\left(\hat{oldsymbol{s}}*oldsymbol{v}^{i,j,k}
ight)\left(p
ight)=rac{1}{ au-1}\sum_{t=1}^{ au-p}\hat{oldsymbol{s}}_t\cdot v_{t+p}^{i,j,k},\quad p=0,\ldots, au-1.$$

- 4. Выбор оптимального значения $p=\lfloor \mu \Delta t \rfloor$ и h наиболее скоррелированных позиций.
- 5. Построение маски активности головного мозга $\mathcal{M}_c \in \{0,1\}^{X/k_s \times Y/k_s \times Z/k_s}$.
- 6. Восстановление размерности: $\mathcal{M}_c \to \mathcal{M} \in \{0,1\}^{X \times Y \times Z}$.

Схема предлагаемого метода классификации сегментов фМРТ

Метод строится из двух основных этапов — извлечение масок активности головного мозга для каждой категории стимула и классификации с учетом полученных масок.

Метод классификации сегментов временных рядов фМРТ

Заданы выборка $\mathfrak{D} = \{(\mathbf{X}_j, y_j), \; \mathbf{X}_j \in \mathbb{R}^{ au imes X imes Y imes Z} \; | \; j=1,\dots,N \}$ и сжатые маски

$$\mathbf{M} = \{ \mathcal{M}^k \in \{0,1\}^{X/k_s \times Y/k_s \times Z/k_s} \mid k = 1, \dots, C \}.$$

Отображение $g: \mathbf{X} \to \{1,\dots,C\}$ представляется в виде суперпозиции:

$$g \coloneqq \boldsymbol{\varphi} \circ \boldsymbol{\psi} \circ \mathcal{A}, \quad \hat{\mathbf{X}} \subset \mathbb{R}^{\tau \times X/k_s \times Y/k_s \times Z/k_s}.$$

$$\mathcal{A}: \mathbf{X} \to \hat{\mathbf{X}}, \quad \boldsymbol{\psi}: \hat{\mathbf{X}} \to \mathbb{R}^d, \quad \boldsymbol{\varphi}: \mathbb{R}^d \to \{1, \dots, C\}.$$

 \mathcal{A} — 3d Average Pooling. Обозначим число ненулевых элементов в \mathcal{M}^k как h_k . Отображение ψ является конкатенацией $\psi \coloneqq \psi_1 \oplus \ldots \oplus \psi_C$:

$$oldsymbol{\psi}_k: \hat{oldsymbol{X}}
ightarrow \mathbb{R}^{d_k}, \quad oldsymbol{\psi}_k \coloneqq oldsymbol{\pi}_k \circ oldsymbol{f}_k, \quad d = \sum_{k=1}^C d_k, \quad d_k = rac{h_k(h_k+1)}{2}.$$

Здесь $\mathbf{f}_k: \hat{\mathbf{X}} \to \mathbb{R}^{h_k \times \tau}$ — применение маски активности \mathcal{M}^k . Отображение $\pi_k: \mathbb{R}^{h_k \times \tau} \to \mathbb{R}^{d_k}$ — проекция на риманово касательное пространство.

Анализ качества восстановления фМРТ от гиперпараметра Δt

Проведена локализация на затылочную долю мозга. Метрика MSE была пересчитана на локализованную область, результаты представлены на графиках. Имеется характерный минимум при $\Delta t \approx$ 5c.

Корректность метода восстановления снимков фМРТ по видеоряду

Рассмотрено качество работы метода на неинформативной матрице объекты-признаки **Z**, целиком состоящей из единиц.

Значение MSE на неинформативной выборке больше, что говорит о наличии корреляции между истинными даннами.

Анализ метода взвешивания вокселей фМРТ снимков

- ▶ Рассматриваются реальные данные фМРТ испытуемого, которому показывали различные изображения из восьми категорий.
- ▶ Частота снимков $\mu = 2.5 \text{ c}^{-1}$, число областей h = 10, размер ядра $k_c = 4$.

(d) Метод

(е) Статистически значимые области

(f) Разметка нейробиологов

Полученные области очень близки к истинной разметке. Корреляция взвешенных вокселей со стимулом является статистически значимой.

Качество работы модели классификации

- Рассмотрены сегменты ряда фМРТ трех испытуемых. Объем выборки для каждого испытуемого составил N=96 объектов, число классов C=8. Данные разделены на тренировочные и тестовые в соотношении 80% к 20%.
- ightharpoonup Зафиксированы следующие параметры метода: число выделяемых областей для каждого класса $h_k=10,\ k=1,\ldots,\mathcal{C}$, размер ядра $k_s=4$.
- ightharpoonup В качестве классификатора arphi рассмотрены логистическая регрессия и перцептрон с двумя скрытыми слоями и сигмоидной функцией активации.

Классификатор	Accuracy	Macro F1 score	Micro F1 score
Логистическая регрессия	0.600	0.558	0.600
Перцептрон	0.700	0.636	0.636

В таблице представлены усредненные значения метрик на тесте.

Влияние отдельных компонент модели на качество классификации

Для сравнения с предложенным методом используются две упрощенные модели. В таблице представлены результаты работы методов на данных 2-го испытуемого. В качестве классификатора φ рассмотрена логистическая регрессия.

Метод	Accuracy	Macro F1 score	Micro F1 score
Предложенный	0.650	0.598	0.650
Без Tangent Space Mapping	0.150	0.121	0.150
Без масок активности	0.400	0.376	0.400

- Наибольшее снижение метрик происходит при исключении проекции на риманово касательное пространство.
- Качество классификации также падает, если используется общая усредненная маска вместо масок активности для каждого класса стимула.

Выносится на защиту

- 1. Предложен метод восстановления показаний фМРТ по видеоряду, просматриваемому человеком.
- 2. Проанализирована зависимость качества прогноза от задержки Δt .
- 3. Проверена корректность метода на неинформативных данных.
- 4. Предложен метод взвешивания активных областей мозга на фМРТ снимках. Проверена корректность метода.
- 5. Предложен метод классификации сегментов временного ряда фМРТ.
- 6. Проверено, что исключение отдельных компонент метода приводит к значительному снижению качества классификации.

Список работ автора по теме диплома

- 1. **D. Dorin**, N. Kiselev, A. Grabovoy. Forecasting fMRI Images From Video Sequences: Linear Model Analysis // Health Information Science and Systems (на рецензировании).
- 2. Пространственно-временные методы анализа временных рядов // 66-я Всероссийская научная конференция МФТИ, 2024.