Can brAln imaging help Dr House?

João Duarte | joaovduarte@gmail.com

Marco Simões | marcoamsimoes@gmail.com

с .

• ICNAS

INSTITUTO DE CIÊNCIAS NUCLEARES
APLICADAS À SAÚDE
UNIVERSIDADE DE COIMBRA

C

υ

 \mathbf{C}

FMUC

FACULDADE DE MEDICINA
UNIVERSIDADE DE COIMBRA

FCTUC

FACULDADE DE CIÊNCIAS
E TECNOLOGIA
UNIVERSIDADE DE COIMBRA

Outline

- Neuroimaging
- Magnetic resonance imaging (MRI)
- Electroencephalography (EEG)
- Machine learning in neuroimaging
- Support Vector Machines (SVM)
- Weightless Neural Networks (WNN)
- Applications of machine learning in neuroimaging
- Brain function in Autism Spectrum Disorder (ASD)
- Brain structure in Neurofibromatosis Type 1 (NF1)

Study of the brain before neuroimaging

Phineas Gage

Developments in neuroimaging

- Information about areas previously unavailable to other imaging techniques
- Direct access to brain structure and function
- Identification of neural correlates/functional networks

Magnetic Resonance Imaging (MRI) Scanner and Electroencephalography (EEG)

Comparison between control and clinical groups

- Observe and understanding brain structural abnormalities or dysfunctions
- Access to the mechanisms involved in structure/function differences
- Creation/development of diagnostic tools/applications
- Creation/development of personalized interventions on the dysfunctional mechanisms

Magnetic Resonance Imaging (MRI)

High quality 2D or 3D images of brain structure (different tissues)

Standard analysis of MRI data

Regions of Interest (ROI) analysis

- High statistical power (no/less correction for multiple comparisons)
- Low exploratory power

Whole-brain analysis

- Low/moderate statistical power (heavy correction for multiple comparisons)
- High exploratory power
- o No predictive value

Electroencephalogram (EEG)

Invented by Hans Berger in 1924

Measures **electric activity** along the scalp (head)

Activity which corresponds to neuronal processes

Electroencephalogram (EEG)

Very good temporal resolution

Poor spatial resolution – source reconstruction

Easily contaminated by noise

Frequency bands for different mental processes

Machine learning in

Neuroimaging

Machine learning in neuroimaging

Brain imaging MRI • EEG • ...

Machine learning

- Multivariate pattern analysis (MVPA)
- Pattern recognition
- Classification models
- Brain reading

Clinical decision

- Healthy vs. Disease (diagnostic)
- Invisible brain damage (structure)
- Cognitive state/performance (function)
- Clinical score (prognostic)

Learn mathematical decision functions based on statistical information extracted from known training data and predict (assign a label to) new unseen data

Basic design

- Measurements in input space (e.g. image intensity).
- How big is an adequately large sample?
 Complex patterns need larger samples to be found...
- Features can be the input variables or characteristics computed from input data.
- It depends on the problem domain: the features should be interpretable!

- Trade-off between computational cost, biological interpretability and performance.
- Good practice: do not train the model with test examples - that is cheating!

- Measure testing error rate on unseen data and adjust:
- Features
- Model (and parameters)
- Training/testing sample size

Multivariate Pattern Classifier

Discrimination in 1D is not good...

Discrimination in 1D is not good...

With 2D we have many possibilities...

Which one is best to predict new data?

Ok, this example was easy...

In harder cases use the *kernel trick*

Weightless Neural Networks (WNN)

Convert features to binary representation

One discriminant per class

Discriminant = list of memories

Ramdomly map bits to memories

Train phase:

Count bit patterns from the training exemples

Test phase:

Get counts from each discriminant (class)

Label the case with the discriminant with higher count

Applications of machine learning

in Neuroimaging

Brain function in Autism Spectrum Disorder (ASD)

Machine learning approaches to neuroimaging

Mental Imagery of Facial Expressions

ASD reveal several Facial Expression processing deficits

But EEG studies present inconsistent results

There are also deficits on pretend play and imagery

We created a task that combines both:

mental imagery of facial expressions

Biomarkers of Facial Expression Imagery Deficit

Characteristics / features of the signal that are related to the disorder

Can be used as diagnosis and interventional biomarker

ТҮРЕ	CLASS.	ACCURACY	SPECIFICITY	SENSITIVITY RECALL	PRECISION	F1 SCORE
EMOT	SVM	85,5% (1,3)	95,8% (1,3)	75,3% (3,1)	96,2% (1,2)	82,6% (1,9)
	WiSARD	92,4% (1,0)	93,7% (1,7)	91,1% (1,8)	94,6% (1,4)	92,1% (1,1)
NEUT	SVM	75,0% (2,1)	83,2% (2,8)	66,8% (4,1)	82,0% (2,8)	72,2% (2,8)
	WiSARD	78,4% (2,1)	81,6% (2,8)	75,3% (3,1)	82,4% (2,4)	77,0% (2,4)

Brain structure in Neurofibromatosis Type 1 (NF1)

Machine learning approaches to neuroimaging

Brain structure in Neurofibromatosis Type 1 (NF1)

Background

Genetic disorder characterized by impaired cognitive function and brain anomalies, megalencephaly being the most apparent.

However the gross brain anatomy appears normal.

Subtle and widespread differences in NF1 brain are challenges to:

Region-of-interest analysis (low exploratory power)

Voxel-based morphometry (low statistical power)

Next logical step: Multivariate pattern analysis (SVM) with MRI data

SVM approach

Can we discriminate NF1 patients from controls based on patterns on neuroanatomical data?

High-resolution MRI data

Spatial normalization (inter-subject comparison)

Tissue segmentation (Grey Matter and White Matter)

Image classification

Features: Tissue volume (GM or WM) in each voxel

Label: NF1 (positive class) or control (negative class)

Diagnostic and neuroscientific tool (classification weights)

Performance	GM	WM
Accuracy	93.60%	91.96%
Sensitivity	91.65%	89.64%
Specificity	95.56%	94.28%

Take home messages

Machine learning extends traditional analysis of neuroimaging data.

Can be used for binary (or multiclass) output – diagnostic.

Can be used for development of outcome measures – clinical scores, symptom severity.

Interpretable features can be useful for widespread clinical application.

Machine learning features can guide new basic research about underlying mechanisms.

Thank you!

Questions?