111511076 陳彥宇

TSMC N16 ADFP process

gm-Vov

Log(I)-Vov

$$\frac{g_m}{I_D}\text{-}V\!ov$$

Selfgain- $\frac{g_m}{I_D}$

$$f_t$$
 - $\frac{g_m}{I_D}$

 $\frac{I_D}{\text{nfin}} - \frac{g_m}{I_D}$

$L = 16 \text{nm}$ $V_{DS} = 0.4 \text{V}$	$\frac{g_m}{I_D}$ (S/A)		
	5	10	20
$V_{ov}(V)$	305m	144m	17.3m
$\frac{I_D}{nfin}$ (uA/Fin)	26.8u	8.56u	1.39u
Self Gain (V/V)	11.5	19.5	24.9
f_T (GHz)	451	327	133

$L = 36 \text{nm}$ $V_{DS} = 0.4 \text{V}$	$\frac{g_m}{I_D}$ (S/A)		
	5	10	20
$V_{ov}(V)$	298m	136m	8.27m
$\frac{l_D}{nfin} \text{ (uA/Fin)}$	18u	5.05u	654n
Self Gain (V/V)	17.9	44	70.9
f_T (GHz)	212	138	49

$L = 72 \text{nm}$ $V_{DS} = 0.4 \text{V}$	$\frac{g_m}{I_D}$ (S/A)		
	5	10	20
$V_{ov}(V)$	314m	151m	22.8m
$\frac{I_D}{nfin}$ (uA/Fin)	14.1u	3.97u	550n
Self Gain (V/V)	19.8	62.7	104
f_T (GHz)	102	65.5	24.2

```
.title bonus
.lib './N16ADFP_SPICE_MODEL/toplevel.l'top_tt
.TEMP 25
.op
.option post
.option accurate=1
.DC V gs 0V 0.8V 1m
.probe id = I(M1)
.probe gm = par('lx7(MN)')
.probe logI = par('log(I(MN))')
.probe gmoverid = par('lx7(MN)/I(MN)')
.probe selfgain = par('lx7(MN)/lx8(MN)')
.probe vov = par('lx2(MN) - lv9(MN)')
.probe ft = par('lx7(MN)/(2*3.1415926*lx18(MN))')
.probe(i/nfin) = par('I(MN)/k')
.param k = 1
.param ln = 16n
Vsupply VDD GND 1.8
V_gs Vgs GND 0.8
V ds
      Vds GND 0.4
MN Vds Vgs GND GND nch_svt_mac l="ln" nfin=k multi=1 nf=1
.alter
.param ln = 36n
.alter
.param ln = 72n
.end
```

U18 process

gm-Vov

Log(I)-Vov

$$\frac{g_m}{I_D}$$
-Vov

Selfgain- $\frac{g_m}{I_D}$

$$f_t$$
 - $\frac{g_m}{I_D}$

 $\frac{I_D}{W} - \frac{g_m}{I_D}$

$L = 180 \text{nm}$ $V_{DS} = 0.9 \text{V}$	$\frac{g_m}{I_D}$ (S/A)		
	5	10	20
$V_{ov}(V)$	291m	131m	-39.9m

$\frac{I_D}{W}$ (uA/um)	79.6	25.7	1.95
Self Gain (V/V)	19.9	24	27.2
f_T (GHz)	37.9	24.6	5.38

L = 360nm	$\frac{g_m}{I}$ (S/A)		
$V_{DS} = 0.9V$	I_D (3/A)		
	5	10	20
$V_{ov}(V)$	331m	155m	4.9m
$\frac{I_D}{W}$ (uA/um)	45.4	13.2	4.11u
Self Gain (V/V)	37.3	47.4	53.4
f_T (GHz)	13	7.56	2.18

L = 720nm	$\frac{g_m}{(S/A)}$		
$V_{DS} = 0.9V$	$\frac{SH}{I_D}$ (S/A)		
	5	10	20
$V_{ov}(V)$	358m	166m	17.8m
$\frac{I_D}{W}$ (uA/um)	24.1	6.26	3.95u
Self Gain (V/V)	62.3	78.7	85
f_T (GHz)	3.73	1.95	0.572

```
1. ***----**

2. *** setting ***

3. ***----**

4. lib "~/U18_HSPICE_Model/mm180_reg18_v124.lib" tt

5. TEMP 25

6. op

7. ***-----**

8. *** simulation ***

9. ***-----**

10. option post

11. DC V_gs 0V 1.8V 1m
```

```
12. .probe id_{mos} = I(MN)
13. .probe gm = lx7(MN)
14. .probe LogI = par('log(I(MN))')
15. .probe gmoverid = par('lx7(MN)/I(MN)')
16. .probe SelfGain = par('lx7(MN)/lx8(MN)')
17. *self gain = intrinsic gain = gm/gds
18. .probe vov = par('lx2(MN)-lv9(MN)')
19. .probe ft = par('lx7(MN) / (2 * 3.1415926 * lx18(MN))')
20. .probe I/w = par(I(MN)/wn')
21. *ro = 1/gds
22. *self gain = intrinsic gain = gm/gds
23. *ft = transition frequency = the frequency at which gain = 1
24. *= gm / [2*pi*(Cgs + Ggd)]
25.
26. ***-----***
27. *** parameters ***
28. ***----***
29. .param wn = 1u
30. .param ln = 180n
31. .param ls = 0.48u
32. .global VDD GND
33.
34. ***-----***
35. *** power/input ***
36. ***-----***
37. Vsupply VDD GND 1.8v
38. V_ds Vds GND 0.9V
39. V_gs Vgs GND 1.8V
40. ***-----***
41. *** circuit ***
42. ***----***
43. MN Vds Vgs GND GND n_18_mm w=wn l=ln
44.
45. ***-----***
46. *** alter ***
47. ***-----***
48. .alter
49. .param ln = 360n
```

50. .alter

51. .param ln = 720n

52. .end