Numerical Relativity Cheat Sheet

Equations I should remember, but I don't

Gabriele Bozzola

1

Contents

1 Conventions

2	ADM Decomposition 2.1 Constraints	1 2
3	Matter and Equations of State 3.1 Velocity definitions	2 2
4	Global quantities	3
5	Useful identities	3
6	Numerical values	3
1	Conventions	
We	e denote the metric as $g_{\alpha\beta}$.	
2	ADM Decomposition	
The line element ds^2 is		
	$ds^{2} = g_{\alpha\beta} dx^{\alpha} dx^{\beta} = -\alpha^{2} dt^{2} + \gamma_{ij} (dx^{i} + \beta^{i} dt)(dx^{j} + \beta^{j} dt)$	(1)
	$\gamma_{aeta}=g_{lphaeta}+n_lpha n_eta$	(2)
	$\gamma^{a\beta} = g^{\alpha\beta} + n^{\alpha}n^{\beta}$	(3)
	$n^{lpha}\gamma_{lphaeta}=0$	(4)
	$t^\alpha = \alpha n^\alpha + \beta^\alpha$	(5)
	$n^{\alpha} = \frac{1}{\alpha}(1, -\beta^i)$	(6)
	$n_{\alpha} = (-\alpha, 0, 0, 0)$	(7)

2.1 Constraints

Hamiltonian constraint

$$\mathcal{E} = n^{\alpha} n^{\beta} T_{\alpha\beta} \,. \tag{8}$$

Momentum constraint

$$S_i = -\gamma_{i\alpha} n_{\beta} T^{\alpha\beta} \,. \tag{9}$$

3 Matter and Equations of State

Let ρ_0 be the rest-mass density, and ϵ the specific internal energy density, the total mass-energy ρ measured by an observer comoving with the fluid is

$$\rho = \rho_0(1 + \epsilon) = \rho_0 + \rho_0 \epsilon = \rho_0 + \varepsilon_{\text{int}}, \qquad (10)$$

with $\varepsilon_{\rm int}$ internal energy density.

The specific enthalpy is $h = (1 + \epsilon + P/\rho_0)$, or $\rho_0 h = \rho + P$.

The Gamma-law equation of state is $P = (\Gamma - 1)\rho_0\epsilon$, or $P = (\Gamma - 1)\varepsilon_{\text{int}}$.

3.1 Velocity definitions

$$u_{\alpha}u^{\alpha} = -1\tag{11}$$

Let u^{α} be the four-velocity of the fluid.

$$W = -n_{\alpha}u^{\alpha} \tag{12}$$

$$u^t = \frac{W}{\alpha} \,. \tag{13}$$

IllinoisGRMHD:

$$v_{\rm IL}^i = \frac{u^i}{u^t} \tag{14}$$

Valencia:

$$v_{\text{VA}}^{i} = \frac{1}{\alpha} \left(\frac{u^{i}}{u^{t}} + \beta^{i} \right) \tag{15}$$

Conversion:

$$v_{\text{VA}}^{i} = \frac{1}{\alpha} \left(v_{\text{IL}}^{i} + \beta^{i} \right) \tag{16}$$

$$v_{\rm IL}^i = \alpha \left(\alpha v_{\rm IL}^i - \beta^i \right) \tag{17}$$

$$W = \frac{1}{\sqrt{1 - v_{\text{VA}}^i v_{i,\text{VA}}}} \tag{18}$$

Stress-energy tensor of a perfect fluid

$$T^{\alpha\beta} = \rho_0 h u^{\alpha} u^{\beta} + P g^{\alpha\beta},. \tag{19}$$

4 Global quantities

Rest-mass

$$M_0 = \int d^3x \sqrt{\gamma} W \rho_0 \tag{20}$$

5 Useful identities

$$\sqrt{-g} = \alpha \sqrt{\gamma} \tag{21}$$

6 Numerical values

Length-scale associated to $1\,M_{\odot}$:

$$[L] = \frac{GM_{\odot}}{c^2} = 1.477 \,\mathrm{km}$$
 (22)

Time-scale associated to $1\,M_\odot\colon$

$$[T] = \frac{GM_{\odot}}{c^3} = 4.93 \,\mu\text{s} \approx 5 \,\mu\text{s}$$
 (23)

Frequency-scale associated to $1\,M_\odot$:

$$[f] = \frac{1}{[T]} = \frac{c^3}{GM_{\odot}} = 203 \,\text{kHz} \approx 200 \,\text{kHz}$$
 (24)