More Reductions for **NP** Problems

Nabil Mustafa

Computational Complexity

Reductions From Last Time

So far, we have shown the following problems **NP** complete:

• SAT, 3-CNF SAT, INDSET, CLIQUE, VERTEX-COVER, HITTING-SET, INTEGER-PROGRAMMING

Claim

Claim

HAMILTONIAN: Given a directed graph G = (V, E), does G have a Hamiltonian path?

The Hamiltonian path problem (HAMILTONIAN) is **NP** complete.

ullet Review: Hamiltonian path visits each vertex in G exactly once

Claim

- ullet Review: Hamiltonian path visits each vertex in G exactly once
- Computationally very different from Eulerian paths

Claim

- Review: Hamiltonian path visits each vertex in G exactly once
- Computationally very different from Eulerian paths
- Note that HAMILTONIAN is in NP

Claim

- Review: Hamiltonian path visits each vertex in G exactly once
- Computationally very different from Eulerian paths
- Note that HAMILTONIAN is in NP
- We reduce 3-CNF SAT to HAMILTONIAN
 - ► For a fixed 3-CNF SAT formula, show that it can be transformed into a graph whose Hamiltonian path will give us the assignments for SAT.

$$\phi = \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge \ldots \wedge \mathcal{C}_m$$
, n variables, $\mathcal{C}_i = (x_1^i \vee x_2^i \vee x_3^i)$

$$\phi = \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge \ldots \wedge \mathcal{C}_m$$
, *n* variables, $\mathcal{C}_i = (x_1^i \vee x_2^i \vee x_3^i)$

• Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.

$$\phi = \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge \ldots \wedge \mathcal{C}_m$$
, *n* variables, $\mathcal{C}_i = (x_1^i \vee x_2^i \vee x_3^i)$

- Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.
- We first define the mapping of variables, and then the clauses.

$$\phi = \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge \ldots \wedge \mathcal{C}_m$$
, *n* variables, $\mathcal{C}_i = (x_1^i \vee x_2^i \vee x_3^i)$

- Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.
- We first define the mapping of variables, and then the clauses.
- Each x_i will correspond to a path (chain) of 6m vertices

$$\phi = \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge \ldots \wedge \mathcal{C}_m$$
, *n* variables, $\mathcal{C}_i = (x_1^i \vee x_2^i \vee x_3^i)$

- Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.
- We first define the mapping of variables, and then the clauses.
- Each x_i will correspond to a path (chain) of 6m vertices

$$\phi = \mathcal{C}_1 \wedge \mathcal{C}_2 \wedge \ldots \wedge \mathcal{C}_m$$
, *n* variables, $\mathcal{C}_i = (x_1^i \vee x_2^i \vee x_3^i)$

- Given ϕ , have to construct a graph G such that G has a Hamiltonian path iff ϕ is satisfiable.
- We first define the mapping of variables, and then the clauses.
- Each x_i will correspond to a path (chain) of 6m vertices
- If we are at the first (or end) vertex, only one path to follow

ullet Add a start vertex v_{start} which has

- Add a start vertex *v*_{start} which has
 - ▶ no incoming edges.

- Add a start vertex *v*_{start} which has
 - no incoming edges.
 - ightharpoonup an outgoing edge to the first vertex of x_1 chain.

- Add a start vertex *v*_{start} which has
 - no incoming edges.
 - ▶ an outgoing edge to the first vertex of x_1 chain.
 - ▶ an outgoing edge to the last vertex of x_1 chain.

- Add a start vertex *v_{start}* which has
 - no incoming edges.
 - ▶ an outgoing edge to the first vertex of x_1 chain.
 - ▶ an outgoing edge to the last vertex of x_1 chain.

ullet Add an end vertex v_{end} which has

- Add an end vertex v_{end} which has
 - ▶ no outgoing edges.

- Add an end vertex v_{end} which has
 - no outgoing edges.
 - \triangleright an incoming edge from the first vertex of x_n chain.

- Add an end vertex v_{end} which has
 - no outgoing edges.
 - \triangleright an incoming edge from the first vertex of x_n chain.
 - ▶ an incoming edge from the last vertex of x_n chain.

- Add an end vertex *v_{end}* which has
 - no outgoing edges.
 - ▶ an incoming edge from the first vertex of x_n chain.
 - ▶ an incoming edge from the last vertex of x_n chain.

• From the first and last vertex of each chain x_i , add

- From the first and last vertex of each chain x_i , add
 - ▶ an outgoing edge to the first vertex of chain x_{i+1}

- From the first and last vertex of each chain x_i , add
 - ▶ an outgoing edge to the first vertex of chain x_{i+1}
 - ▶ an outgoing edge to the last vertex of chain x_{i+1}

- From the first and last vertex of each chain x_i , add
 - ▶ an outgoing edge to the first vertex of chain x_{i+1}
 - ▶ an outgoing edge to the last vertex of chain x_{i+1}

- From the first and last vertex of each chain x_i , add
 - ▶ an outgoing edge to the first vertex of chain x_{i+1}
 - ▶ an outgoing edge to the last vertex of chain x_{i+1}

- From the first and last vertex of each chain x_i , add
 - ▶ an outgoing edge to the first vertex of chain x_{i+1}
 - ▶ an outgoing edge to the last vertex of chain x_{i+1}

- From the first and last vertex of each chain x_i , add
 - ▶ an outgoing edge to the first vertex of chain x_{i+1}
 - ▶ an outgoing edge to the last vertex of chain x_{i+1}

Any Hamiltonian path has to start at v_{start}

ullet Any Hamiltonian path has to end at v_{end}

• Any Hamiltonian path first traverses chain x_1 , then x_2 etc.

- For each chain, only two ways of traversing it.
 - Left-to-right means $x_i = 1$, right-to-left means $x_i = 0$

• Each assignment of variables corresponds to a unique Hamiltonian path.

Construction Properties

• Each Hamiltonian path corresponds to a unique variable assignment.

Construction Properties

So far, no constraints – they will come from the clauses now.

• Each clause C_j corresponds to a new vertex u_j .

- ullet Each clause \mathcal{C}_j corresponds to a new vertex u_j .
- If C_j contains a non-negated literal x_i , add edges to u_j :

- Each clause C_j corresponds to a new vertex u_j .
- If C_j contains a non-negated literal x_i , add edges to u_j :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain

- Each clause C_j corresponds to a new vertex u_j .
- If C_i contains a non-negated literal x_i , add edges to u_i :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain
 - ▶ Add an outgoing edge to v_{k+1} in the x_i chain

- Each clause C_j corresponds to a new vertex u_j .
- If C_j contains a non-negated literal x_i , add edges to u_j :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain
 - Add an outgoing edge to v_{k+1} in the x_i chain

ullet If \mathcal{C}_i contains a negated literal, reverse the edge directions

- ullet If \mathcal{C}_i contains a negated literal, reverse the edge directions
- If C_i contains a negated literal \overline{x}_i , add edges to u_i :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain

- If C_i contains a negated literal, reverse the edge directions
- If C_i contains a negated literal \overline{x}_i , add edges to u_i :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain
 - ▶ Add an outgoing edge to v_{k-1} in the x_i chain

- ullet If \mathcal{C}_i contains a negated literal, reverse the edge directions
- If C_i contains a negated literal \overline{x}_i , add edges to u_i :
 - Add an incoming edge from a vertex, say v_k , in the x_i chain
 - ▶ Add an outgoing edge to v_{k-1} in the x_i chain

An Example

Construction of Hamiltonian path for

$$(a \lor b) \land (a \lor \overline{b})$$

Here:

- $C_1 = (a \lor b)$
- $C_2 = (a \vee \overline{b})$

The Graph Construction

The Graph Construction

Claim

Hamiltonian path exists ONLY if you go from left to right in *a* and chose any one of the two directions for *b*.

Error in finding HAMILTONIAN

No HAMILTONIAN PATH as $(a \lor \overline{b})$ is not accessible

Error in finding HAMILTONIAN

No HAMILTONIAN PATH as $(a \lor b)$ is not accessible

Claim

The constructed graph G has a Hamiltonian path **iff** ϕ satisfiable.

Claim

The constructed graph G has a Hamiltonian path **iff** ϕ satisfiable.

Claim

The constructed graph G has a Hamiltonian path **iff** ϕ satisfiable.

Things to note about the final construction:

Any Hamiltonian path has to start at v_{start}

Claim

The constructed graph G has a Hamiltonian path **iff** ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- ullet Any Hamiltonian path has to end at v_{end}

Claim

The constructed graph G has a Hamiltonian path $iff \phi$ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- ullet Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.

Claim

The constructed graph G has a Hamiltonian path $iff \phi$ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- ullet Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.

Claim

The constructed graph G has a Hamiltonian path $iff \phi$ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- ullet Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.

Claim

The constructed graph G has a Hamiltonian path **iff** ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- ullet Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.
- Each path corresponds to a unique variable assignment.

Claim

The constructed graph G has a Hamiltonian path **iff** ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- ullet Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.
- Each path corresponds to a unique variable assignment.
- If $x_i \in C_j$ and $x_i = 1$, can visit u_j along the way.

Claim

The constructed graph G has a Hamiltonian path **iff** ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- ullet Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.
- Each path corresponds to a unique variable assignment.
- If $x_i \in C_j$ and $x_i = 1$, can visit u_j along the way.
- If $\overline{x}_i \in C_j$ and $x_i = 0$, can visit u_j along the way.

Claim

The constructed graph G has a Hamiltonian path **iff** ϕ satisfiable.

- Any Hamiltonian path has to start at v_{start}
- ullet Any Hamiltonian path has to end at v_{end}
- Any Hamiltonian path first traverses chain x_1 , then x_2 etc.
- For each chain, only two ways of traversing it.
- Each assignment of variables corresponds to a path.
- Each path corresponds to a unique variable assignment.
- If $x_i \in C_j$ and $x_i = 1$, can visit u_j along the way.
- If $\overline{x}_i \in C_j$ and $x_i = 0$, can visit u_j along the way.
- The above two *only* ways to visit u_j without getting stuck.

Claim

SET-COVER: A collection $C = \{S_1, \dots, S_m\}$ of subsets of a base set X, |X| = n, and parameter k, find a set cover $C' \subseteq C$ of size k. The set cover problem (SET-COVER) is **NP** complete.

Claim

SET-COVER: A collection $C = \{S_1, \ldots, S_m\}$ of subsets of a base set X, |X| = n, and parameter k, find a set cover $C' \subseteq C$ of size k. The set cover problem (SET-COVER) is **NP** complete.

• $C' = \{S_{i_1}, \dots, S_{i_k}\}$ is a set-cover iff $\bigcup_j S_{i_j} = X$.

Claim

SET-COVER: A collection $C = \{S_1, \ldots, S_m\}$ of subsets of a base set X, |X| = n, and parameter k, find a set cover $C' \subseteq C$ of size k. The set cover problem (SET-COVER) is **NP** complete.

- $C' = \{S_{i_1}, \dots, S_{i_k}\}$ is a set-cover iff $\bigcup_j S_{i_j} = X$.
- Note that SET-COVER is in NP

Claim

SET-COVER: A collection $C = \{S_1, \ldots, S_m\}$ of subsets of a base set X, |X| = n, and parameter k, find a set cover $C' \subseteq C$ of size k. The set cover problem (SET-COVER) is **NP** complete.

- $C' = \{S_{i_1}, \dots, S_{i_k}\}$ is a set-cover iff $\bigcup_j S_{i_j} = X$.
- Note that SET-COVER is in NP
- How to prove NP hardness?

Claim

SET-COVER: A collection $C = \{S_1, \ldots, S_m\}$ of subsets of a base set X, |X| = n, and parameter k, find a set cover $C' \subseteq C$ of size k. The set cover problem (SET-COVER) is **NP** complete.

- $C' = \{S_{i_1}, \dots, S_{i_k}\}$ is a set-cover iff $\bigcup_j S_{i_j} = X$.
- Note that SET-COVER is in NP
- How to prove NP hardness?
- Reduce from VERTEX-COVER

Reduction from VERTEX-COVER

• Given a graph G = (V, E), the idea is that:

Reduction from VERTEX-COVER

- Given a graph G = (V, E), the idea is that:
 - ▶ Each vertex v_i maps to a set C_i

- Given a graph G = (V, E), the idea is that:
 - ▶ Each vertex v_i maps to a set C_i
 - $\{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_1}, \dots, C_{i_k}\}$ is a set-cover.

- Given a graph G = (V, E), the idea is that:
 - ▶ Each vertex v_i maps to a set C_i
 - $\{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_1}, \dots, C_{i_k}\}$ is a set-cover.
- The exact construction is as follows:

- Given a graph G = (V, E), the idea is that:
 - ▶ Each vertex v_i maps to a set C_i
 - $\{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_1}, \dots, C_{i_k}\}$ is a set-cover.
- The exact construction is as follows:
 - ▶ Each edge $e_j \in E$ maps to an element $a_j \in X$.

- Given a graph G = (V, E), the idea is that:
 - ▶ Each vertex v_i maps to a set C_i
 - $\{v_{i_1}, \dots, v_{i_L}\}$ is a vertex-cover iff $\{C_{i_1}, \dots, C_{i_L}\}$ is a set-cover.
- The exact construction is as follows:
 - ▶ Each edge $e_j \in E$ maps to an element $a_j \in X$.
 - ▶ Each vertex $v_i \in V$ maps to set $C_i = \{a_j \ s.t. \ e_j \ \text{incident to} \ v_i\}$

- Given a graph G = (V, E), the idea is that:
 - ▶ Each vertex v_i maps to a set C_i
 - $\{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_1}, \dots, C_{i_k}\}$ is a set-cover.
- The exact construction is as follows:
 - ▶ Each edge $e_j \in E$ maps to an element $a_j \in X$.
 - ▶ Each vertex $v_i \in V$ maps to set $C_i = \{a_j \ s.t. \ e_j \ \text{incident to} \ v_i\}$

Claim

 $V' = \{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_j}, \dots, C_{i_k}\}$ is a set cover.

- Given a graph G = (V, E), the idea is that:
 - ▶ Each vertex v_i maps to a set C_i
 - $\{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_1}, \dots, C_{i_k}\}$ is a set-cover.
- The exact construction is as follows:
 - ▶ Each edge $e_j \in E$ maps to an element $a_j \in X$.
 - ▶ Each vertex $v_i \in V$ maps to set $C_i = \{a_j \ s.t. \ e_j \ \text{incident to} \ v_i\}$

Claim

 $V' = \{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_j}, \dots, C_{i_k}\}$ is a set cover.

Proof.

• If e_j incident to v_i , then set C_i contains a_j

- Given a graph G = (V, E), the idea is that:
 - ▶ Each vertex v_i maps to a set C_i
 - $\{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_1}, \dots, C_{i_k}\}$ is a set-cover.
- The exact construction is as follows:
 - ▶ Each edge $e_j \in E$ maps to an element $a_j \in X$.
 - ▶ Each vertex $v_i \in V$ maps to set $C_i = \{a_j \ s.t. \ e_j \ \text{incident to} \ v_i\}$

Claim

 $V' = \{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_j}, \dots, C_{i_k}\}$ is a set cover.

- If e_j incident to v_i , then set C_i contains a_j
- Picking v_i covers all edges incident to $v_i \iff$ picking C_i covers all corresponding elements a_j

- Given a graph G = (V, E), the idea is that:
 - ▶ Each vertex v_i maps to a set C_i
 - $\{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_1}, \dots, C_{i_k}\}$ is a set-cover.
- The exact construction is as follows:
 - ▶ Each edge $e_j \in E$ maps to an element $a_j \in X$.
 - ▶ Each vertex $v_i \in V$ maps to set $C_i = \{a_j \ s.t. \ e_j \ \text{incident to} \ v_i\}$

Claim

 $V' = \{v_{i_1}, \dots, v_{i_k}\}$ is a vertex-cover iff $\{C_{i_j}, \dots, C_{i_k}\}$ is a set cover.

- If e_j incident to v_i , then set C_i contains a_j
- Picking v_i covers all edges incident to $v_i \iff$ picking C_i covers all corresponding elements a_i
- V' covers all edges $\iff C'$ cover all elements

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

Proof.

• Formulate the set-cover problem as an integer program

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

- Formulate the set-cover problem as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

- Formulate the set-cover problem as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- ullet Integer program variables: $x_j=1$ iff S_j picked in set-cover

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

Proof.

- Formulate the set-cover problem as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff S_j picked in set-cover

At most k sets:

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

- Formulate the set-cover problem as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff S_j picked in set-cover

At most k sets:
$$\sum_{i} x_{j} \leq k$$

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

Proof.

- Formulate the set-cover problem as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- ullet Integer program variables: $x_j=1$ iff S_j picked in set-cover

At most k sets:
$$\sum_{i} x_{j} \leq k$$

All elements covered:

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

- Formulate the set-cover problem as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff S_j picked in set-cover

At most k sets:
$$\sum_{i} x_{i} \leq k$$

All elements covered:
$$\sum_{j|a_i \in S_i} x_j \ge 1 \ \forall i$$

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

Proof.

- Formulate the set-cover problem as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff S_j picked in set-cover

At most k sets:
$$\sum_{i} x_{j} \leq k$$

All elements covered:
$$\sum_{j|a_i \in S_i} x_j \ge 1 \ \forall i$$

Variable 0 or 1:

Another reduction for INTEGER-PROGRAMMING

SET-COVER can be reduced to INTEGER-PROGRAMMING

Proof.

- Formulate the set-cover problem as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff S_j picked in set-cover

At most k sets:
$$\sum_{i} x_{j} \leq k$$

All elements covered: $\sum_{j|a_i \in S_i} x_j \ge 1 \ \forall i$

Variable 0 or 1: $x_i \in \{0, 1\}$

Yet another reduction for INTEGER-PROGRAMMING

HITTING-SET can be reduced to INTEGER-PROGRAMMING

Yet another reduction for INTEGER-PROGRAMMING
HITTING-SET can be reduced to INTEGER-PROGRAMMING

Proof.

Formulate the hitting-set as an integer program

Yet another reduction for INTEGER-PROGRAMMING

HITTING-SET can be reduced to INTEGER-PROGRAMMING

- Formulate the hitting-set as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:

Yet another reduction for INTEGER-PROGRAMMING

HITTING-SET can be reduced to INTEGER-PROGRAMMING

- Formulate the hitting-set as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff x_j picked in hitting-set

Yet another reduction for INTEGER-PROGRAMMING

HITTING-SET can be reduced to INTEGER-PROGRAMMING

Proof.

- Formulate the hitting-set as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff x_j picked in hitting-set

At most k elements:

Yet another reduction for INTEGER-PROGRAMMING

HITTING-SET can be reduced to INTEGER-PROGRAMMING

- Formulate the hitting-set as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff x_j picked in hitting-set

At most k elements:
$$\sum_{i} x_{j} \leq k$$

Yet another reduction for INTEGER-PROGRAMMING

HITTING-SET can be reduced to INTEGER-PROGRAMMING

Proof.

- Formulate the hitting-set as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff x_j picked in hitting-set

At most k elements:
$$\sum_{i} x_{j} \leq k$$

All sets covered:

Yet another reduction for INTEGER-PROGRAMMING

HITTING-SET can be reduced to INTEGER-PROGRAMMING

- Formulate the hitting-set as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff x_j picked in hitting-set

At most k elements:
$$\sum_{j} x_{j} \leq k$$
 All sets covered:
$$\sum_{i|\alpha \in S_{i}} x_{j} \geq 1 \ \forall i$$

Yet another reduction for INTEGER-PROGRAMMING

HITTING-SET can be reduced to INTEGER-PROGRAMMING

Proof.

- Formulate the hitting-set as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff x_j picked in hitting-set

At most k elements:
$$\sum_{j} x_{j} \leq k$$

All sets covered: $\sum_{j|a_i \in S_i} x_j \ge 1 \quad \forall i$

Variable 0 or 1:

Yet another reduction for INTEGER-PROGRAMMING

HITTING-SET can be reduced to INTEGER-PROGRAMMING

Proof.

- Formulate the hitting-set as an integer program
- Given $C = \{S_1, \dots, S_m\}$ over $X = \{a_1, \dots, a_n\}$ and k:
- Integer program variables: $x_j = 1$ iff x_j picked in hitting-set

At most k elements:
$$\sum_{j} x_{j} \leq k$$
 All sets covered: $\sum_{j|a_{j} \in S_{i}} x_{j} \geq 1 \ \ \forall i$

Variable 0 or 1: $x_i \in \{0, 1\}$

Claim

EXACT-COVER: A collection $C = \{S_1, \dots, S_n\}, |S_j| = 3$ over a base set X, |X| = 3m, find a disjoint set cover $C' \subseteq C$ of size m. The exact cover by 3-sets problem (EXACT-COVER) is **NP** complete.

Claim

EXACT-COVER: A collection $C = \{S_1, \dots, S_n\}, |S_j| = 3$ over a base set X, |X| = 3m, find a disjoint set cover $C' \subseteq C$ of size m. The exact cover by 3-sets problem (EXACT-COVER) is **NP** complete.

Note that EXACT-COVER is in NP

Claim

EXACT-COVER: A collection $C = \{S_1, \dots, S_n\}, |S_j| = 3$ over a base set X, |X| = 3m, find a disjoint set cover $C' \subseteq C$ of size m. The exact cover by 3-sets problem (EXACT-COVER) is **NP** complete.

- Note that EXACT-COVER is in NP
- How to prove NP hardness?

Claim

EXACT-COVER: A collection $C = \{S_1, \dots, S_n\}, |S_j| = 3$ over a base set X, |X| = 3m, find a disjoint set cover $C' \subseteq C$ of size m. The exact cover by 3-sets problem (EXACT-COVER) is **NP** complete.

- Note that EXACT-COVER is in NP
- How to prove NP hardness?
- Reduce from SAT . Read from the Papadimitriou book.

Claim

KNAPSACK: Given a set $A = \{a_1, \ldots, a_n\}$ of n elements, where each element a_i has a weight w_i and a value v_i , both positive integers. Find a subset $A' \subseteq A$ such that

Claim

KNAPSACK: Given a set $A = \{a_1, \ldots, a_n\}$ of n elements, where each element a_i has a weight w_i and a value v_i , both positive integers. Find a subset $A' \subseteq A$ such that

 $\bullet \sum_{a_j \in A'} w_i \leq W,$

Claim

KNAPSACK: Given a set $A = \{a_1, \ldots, a_n\}$ of n elements, where each element a_i has a weight w_i and a value v_i , both positive integers. Find a subset $A' \subseteq A$ such that

Claim

KNAPSACK: Given a set $A = \{a_1, \ldots, a_n\}$ of n elements, where each element a_i has a weight w_i and a value v_i , both positive integers. Find a subset $A' \subseteq A$ such that

- $\bullet \ \sum_{a_j \in A'} w_i \leq W,$

The Knapsack problem (KNAPSACK) is **NP** complete.

Claim

KNAPSACK: Given a set $A = \{a_1, \ldots, a_n\}$ of n elements, where each element a_i has a weight w_i and a value v_i , both positive integers. Find a subset $A' \subseteq A$ such that

The Knapsack problem (KNAPSACK) is NP complete.

Note that KNAPSACK is in NP

Claim

KNAPSACK: Given a set $A = \{a_1, \ldots, a_n\}$ of n elements, where each element a_i has a weight w_i and a value v_i , both positive integers. Find a subset $A' \subseteq A$ such that

- $\bullet \sum_{a_i \in A'} w_i \leq W,$

- Note that KNAPSACK is in NP
- How to prove NP hardness?

Claim

KNAPSACK: Given a set $A = \{a_1, \ldots, a_n\}$ of n elements, where each element a_i has a weight w_i and a value v_i , both positive integers. Find a subset $A' \subseteq A$ such that

- $\bullet \sum_{a_i \in A'} w_i \leq W,$

- Note that KNAPSACK is in NP
- How to prove NP hardness?
- Special case: K = W and $w_i = v_i$ for all i.

Claim

KNAPSACK: Given a set $A = \{a_1, \ldots, a_n\}$ of n elements, where each element a_i has a weight w_i and a value v_i , both positive integers. Find a subset $A' \subseteq A$ such that

- $\bullet \sum_{a_i \in A'} w_i \leq W,$

- Note that KNAPSACK is in NP
- How to prove NP hardness?
- Special case: K = W and $w_i = v_i$ for all i. Then problem?

Claim

KNAPSACK: Given a set $A = \{a_1, \ldots, a_n\}$ of n elements, where each element a_i has a weight w_i and a value v_i , both positive integers. Find a subset $A' \subseteq A$ such that

- $\bullet \ \sum_{a_j \in A'} w_i \leq W,$

- Note that KNAPSACK is in NP
- How to prove NP hardness?
- Special case: K = W and $w_i = v_i$ for all i. Then problem?
- ullet Subset sum! Find a subset with value and weight equal to W.

Claim

Claim

The subset sum problem (SUBSET-SUM) is NP complete.

• Reduce EXACT-COVER to SUBSET-SUM

Claim

- Reduce EXACT-COVER to SUBSET-SUM
- $\{S_1,\ldots,S_n\},|S_j|=3$ over a base set $X=\{a_1,\ldots,a_{3m}\}$

Claim

- Reduce EXACT-COVER to SUBSET-SUM
- $\{S_1,\ldots,S_n\},|S_j|=3$ over a base set $X=\{a_1,\ldots,a_{3m}\}$
- ullet Map each set S_j to an integer t_j

Claim

- Reduce EXACT-COVER to SUBSET-SUM
- $\{S_1,\ldots,S_n\},|S_j|=3$ over a base set $X=\{a_1,\ldots,a_{3m}\}$
- Map each set S_j to an integer t_j
- If S_j 's are disjoint and cover X, then t_j 's add up to some T

Claim

- Reduce EXACT-COVER to SUBSET-SUM
- $\{S_1, \ldots, S_n\}, |S_j| = 3$ over a base set $X = \{a_1, \ldots, a_{3m}\}$
- Map each set S_j to an integer t_j
- If S_j 's are disjoint and cover X, then t_j 's add up to some T
- For mapping sets into integers, use the characteristic vector

Claim

- Reduce EXACT-COVER to SUBSET-SUM
- $\{S_1,\ldots,S_n\},|S_j|=3$ over a base set $X=\{a_1,\ldots,a_{3m}\}$
- Map each set S_j to an integer t_j
- If S_j 's are disjoint and cover X, then t_j 's add up to some T
- For mapping sets into integers, use the characteristic vector
 - ▶ Represent set S as a vector v(S) where $v_i(S) = 1$ iff $a_i \in S$

Claim

- Reduce EXACT-COVER to SUBSET-SUM
- $\bullet \ \{S_1,\dots,S_n\}, |S_j| = \text{3 over a base set } X = \{a_1,\dots,a_{3m}\}$
- Map each set S_j to an integer t_j
- If S_i 's are disjoint and cover X, then t_i 's add up to some T
- For mapping sets into integers, use the characteristic vector
 - ▶ Represent set S as a vector v(S) where $v_i(S) = 1$ iff $a_i \in S$
 - Example: $S = \{a_1, a_4, a_5\}$ out of 6 elements

Claim

- Reduce EXACT-COVER to SUBSET-SUM
- $\{S_1, \ldots, S_n\}, |S_j| = 3$ over a base set $X = \{a_1, \ldots, a_{3m}\}$
- Map each set S_j to an integer t_j
- If S_j 's are disjoint and cover X, then t_j 's add up to some T
- For mapping sets into integers, use the characteristic vector
 - ▶ Represent set S as a vector v(S) where $v_i(S) = 1$ iff $a_i \in S$
 - Example: $S = \{a_1, a_4, a_5\}$ out of 6 elements
 - \triangleright v(S) =

Claim

- Reduce EXACT-COVER to SUBSET-SUM
- $\{S_1,\ldots,S_n\},|S_j|=3$ over a base set $X=\{a_1,\ldots,a_{3m}\}$
- Map each set S_j to an integer t_j
- If S_i 's are disjoint and cover X, then t_i 's add up to some T
- For mapping sets into integers, use the characteristic vector
 - ▶ Represent set S as a vector v(S) where $v_i(S) = 1$ iff $a_i \in S$
 - Example: $S = \{a_1, a_4, a_5\}$ out of 6 elements
 - V(S) = 100110

Claim

- Reduce EXACT-COVER to SUBSET-SUM
- $\{S_1, \ldots, S_n\}, |S_j| = 3$ over a base set $X = \{a_1, \ldots, a_{3m}\}$
- Map each set S_j to an integer t_j
- If S_j 's are disjoint and cover X, then t_j 's add up to some T
- For mapping sets into integers, use the characteristic vector
 - ▶ Represent set S as a vector v(S) where $v_i(S) = 1$ iff $a_i \in S$
 - Example: $S = \{a_1, a_4, a_5\}$ out of 6 elements
 - V(S) = 100110
 - Easy to see that its a one-to-one mapping

 $\{1,4,6\},\{6,8,9\},\{2,4,7\},\{1,2,8\},\{2,4,6\},\{1,3,5\}$

 $\{1,4,6\},\{6,8,9\},\{2,4,7\},\{1,2,8\},\{2,4,6\},\{1,3,5\}$

1 2 3 4 5 6 7 8 9

$$\{1,4,6\},\{6,8,9\},\{2,4,7\},\{1,2,8\},\{2,4,6\},\{1,3,5\}$$

1 2 3 4 5 6 7 8 9

1 0 0 1 0 1 0 0 0

$$\{1,4,6\},\{6,8,9\},\{2,4,7\},\{1,2,8\},\{2,4,6\},\{1,3,5\}$$

1 2 3 4 5 6 7 8 9

$$\{1,4,6\},\{6,8,9\},\{2,4,7\},\{1,2,8\},\{2,4,6\},\{1,3,5\}$$

1 2 3 4 5 6 7 8 9

1 0 0 1 0 1 0 0 0

 $0 \ 0 \ 0 \ 0 \ 0 \ 1 \ 0 \ 1 \ 1$

0 1 0 1 0 0 1 0 0

1 0 1 0 1 0 0 0 0

- Lets take the two sets $\{6, 8, 9\}, \{2, 4, 7\}.$
- The corresponding vectors are:

0 0 0 0 0 1 0 1 1

- Lets take the two sets $\{6, 8, 9\}, \{2, 4, 7\}.$
- The corresponding vectors are:

```
0 0 0 0 0 1 0 1 1
0 1 0 1 0 0 1 0 0
```

- Lets take the two sets $\{6,8,9\},\{2,4,7\}.$
- The corresponding vectors are:

• The union of the two sets is: $\{2, 4, 6, 7, 8, 9\}$

- Lets take the two sets $\{6, 8, 9\}, \{2, 4, 7\}.$
- The corresponding vectors are:

- The union of the two sets is: $\{2, 4, 6, 7, 8, 9\}$
- The characteristic vector of the union is:

- Lets take the two sets $\{6, 8, 9\}, \{2, 4, 7\}.$
- The corresponding vectors are:

- The union of the two sets is: $\{2, 4, 6, 7, 8, 9\}$
- The characteristic vector of the union is:

• Any observations?

 $\{1,4,6\},\{6,8,9\},\{2,4,7\},\{1,2,8\},\{2,4,6\},\{1,3,5\}$

 $\{1,4,6\},\{6,8,9\},\{2,4,7\},\{1,2,8\},\{2,4,6\},\{1,3,5\}$

```
\{1,4,6\}, \{6,8,9\}, \{2,4,7\}, \{1,2,8\}, \{2,4,6\}, \{1,3,5\}
0 0 0 0 0 1 0 1 1 : 2^3 + 2^1 + 2^0 = 011
0 1 0 1 0 0 0 0 : 2^7 + 2^5 + 2^2 = 164
1 0 1 0 1 0 0 0 0 : 2^8 + 2^6 + 2^4 = 336
```

$$\{1,4,6\}, \{6,8,9\}, \{2,4,7\}, \{1,2,8\}, \{2,4,6\}, \{1,3,5\}$$
0 0 0 0 0 1 0 1 1 : $2^3 + 2^1 + 2^0 = 011$
0 1 0 1 0 0 0 0 : $2^7 + 2^5 + 2^2 = 164$
1 0 1 0 1 0 0 0 0 : $2^8 + 2^6 + 2^4 = 336$

• The union covers X and the sets are pair-wise disjoint:

$$\{1,4,6\},\{6,8,9\},\{2,4,7\},\{1,2,8\},\{2,4,6\},\{1,3,5\}$$
0 0 0 0 0 1 0 1 1 : $2^3 + 2^1 + 2^0 = 011$
0 1 0 1 0 0 0 0 : $2^7 + 2^5 + 2^2 = 164$
1 0 1 0 1 0 0 0 0 : $2^8 + 2^6 + 2^4 = 336$

• The union covers X and the sets are pair-wise disjoint:

1 1 1 1 1 1 1 1 1 1
$$1^9 - 1 = 511$$

$$\{1,4,6\},\{6,8,9\},\{2,4,7\},\{1,2,8\},\{2,4,6\},\{1,3,5\}$$
0 0 0 0 0 1 0 1 1 : $2^3 + 2^1 + 2^0 = 011$
0 1 0 1 0 0 0 0 : $2^7 + 2^5 + 2^2 = 164$
1 0 1 0 1 0 0 0 0 : $2^8 + 2^6 + 2^4 = 336$

• The union covers *X* and the sets are pair-wise disjoint:

1 1 1 1 1 1 1 1 1 1
$$1^9 - 1 = 511$$

 \bullet 11 + 164 + 336 = 511.

$$\{1,4,6\}, \{6,8,9\}, \{2,4,7\}, \{1,2,8\}, \{2,4,6\}, \{1,3,5\}$$
0 0 0 0 0 1 0 1 1 : $2^3 + 2^1 + 2^0 = 011$
0 1 0 1 0 0 0 0 : $2^7 + 2^5 + 2^2 = 164$
1 0 1 0 1 0 0 0 0 : $2^8 + 2^6 + 2^4 = 336$

• The union covers X and the sets are pair-wise disjoint:

1 1 1 1 1 1 1 1 1 1
$$1^9 - 1 = 511$$

• 11 + 164 + 336 = 511. So set $W = 2^n - 1$, and check.

$$\{1,4,6\}, \{6,8,9\}, \{2,4,7\}, \{1,2,8\}, \{2,4,6\}, \{1,3,5\}$$
0 0 0 0 0 1 0 1 1 : $2^3 + 2^1 + 2^0 = 011$
0 1 0 1 0 0 0 0 : $2^7 + 2^5 + 2^2 = 164$
1 0 1 0 1 0 0 0 0 : $2^8 + 2^6 + 2^4 = 336$

• The union covers *X* and the sets are pair-wise disjoint:

1 1 1 1 1 1 1 1 1 1
$$1^9 - 1 = 511$$

- 11 + 164 + 336 = 511. So set $W = 2^n 1$, and check.
- ullet There exists subset equal to $W\Longrightarrow {\sf exact}{\sf -cover}$ possible

$$\{1,4,6\}, \{6,8,9\}, \{2,4,7\}, \{1,2,8\}, \{2,4,6\}, \{1,3,5\}$$
0 0 0 0 0 1 0 1 1 : $2^3 + 2^1 + 2^0 = 011$
0 1 0 1 0 0 0 0 : $2^7 + 2^5 + 2^2 = 164$
1 0 1 0 1 0 0 0 0 : $2^8 + 2^6 + 2^4 = 336$

• The union covers X and the sets are pair-wise disjoint:

1 1 1 1 1 1 1 1 1 1
$$1^9 - 1 = 511$$

- 11 + 164 + 336 = 511. So set $W = 2^n 1$, and check.
- ullet There exists subset equal to $W \Longrightarrow ext{exact-cover possible}$
- Problem:

An Example

$$\{1,4,6\}, \{6,8,9\}, \{2,4,7\}, \{1,2,8\}, \{2,4,6\}, \{1,3,5\}$$
0 0 0 0 0 1 0 1 1 : $2^3 + 2^1 + 2^0 = 011$
0 1 0 1 0 0 0 0 : $2^7 + 2^5 + 2^2 = 164$
1 0 1 0 1 0 0 0 0 : $2^8 + 2^6 + 2^4 = 336$

• The union covers *X* and the sets are pair-wise disjoint:

1 1 1 1 1 1 1 1 1 1
$$\vdots$$
 2⁹ - 1 = 511

- 11 + 164 + 336 = 511. So set $W = 2^n 1$, and check.
- ullet There exists subset equal to $W \Longrightarrow ext{exact-cover possible}$
- Problem: False positives.

 $\{3,4\},\{2,4\},\{2,3,4\}$

 $\{3,4\},\{2,4\},\{2,3,4\}$

 $0\ 0\ 1\ 1\ : 3$

$$\{3,4\},\{2,4\},\{2,3,4\}$$

0 0 1 1 : 3 0 1 0 1 : 5

$$\{3,4\},\{2,4\},\{2,3,4\}$$

0 1 1 1 : 7

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1$$

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 1\ 1\ 1\ 1$$

0 1 1 1 : 7

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 1\ 1\ 1\ 1\ =\ 15$$

0 0 1 1 :3 0 1 0 1 :5 0 1 1 1 :7

• The union does not cover X, and not disjoint.

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 1\ 1\ 1\ 1\ =\ 15$$

• So, where is the problem coming from?

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 1\ 1\ 1\ 1\ =\ 15$$

- So, where is the problem coming from?
- Carrying! It messes up the addition.

• There are actually two different problems due to carrying:

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution:

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3*m*, not base 2!

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!
 - $ightharpoonup \{2,3,4\} = 0 1 1 1 =$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

•
$$\{2,3,4\} = 0 \ 1 \ 1 \ 1 = 2^2 + 2^1 + 2^0, \ 5^2 + 5^1 + 5^0 = 31$$

$$ightharpoonup \{2,4\} = 0101 =$$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3*m*, not base 2!

•
$$\{2,3,4\} = 0 \ 1 \ 1 \ 1 = 2^2 + 2^1 + 2^0, \ 5^2 + 5^1 + 5^0 = 31$$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

•
$$\{2,3,4\} = 0 \ 1 \ 1 \ 1 = 2^2 + 2^1 + 2^0, \ 5^2 + 5^1 + 5^0 = 31$$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

$$\begin{array}{lll} \bullet & \{3,4\} & = & 0 & 0 & 1 & 1 & = 2^1 + 2^0, \\ \bullet & \{2,4\} & = & 0 & 1 & 0 & 1 & = 2^2 + 2^0, \end{array}$$

$$\begin{array}{lll} 5^1 + 5^0 = 6 \\ 5^2 + 5^0 = 26 \end{array}$$

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1$$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

$$\begin{array}{lll} \bullet & \{3,4\} & = & 0 & 0 & 1 & 1 & = 2^1 + 2^0, \\ \bullet & \{2,4\} & = & 0 & 1 & 0 & 1 & = 2^2 + 2^0, \end{array}$$

$$\begin{array}{lll} 5^1 + 5^0 = 6 \\ 5^2 + 5^0 = 26 \end{array}$$

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 0\ 2\ 2\ 3$$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

$$\ \ \, \{2,3,4\} \ = \ 0 \ 1 \ 1 \ 1 \ = 2^2 + 2^1 + 2^0, \ \, 5^2 + 5^1 + 5^0 = 31$$

$$\begin{array}{lll} \bullet & \{3,4\} & = & 0 & 0 & 1 & 1 & = 2^1 + 2^0, \\ \bullet & \{2,4\} & = & 0 & 1 & 0 & 1 & = 2^2 + 2^0, \end{array}$$

$$\begin{array}{lll} 5^1 + 5^0 = 6 \\ 5^2 + 5^0 = 26 \end{array}$$

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 0\ 2\ 2\ 3=63\ne\ 1\ 1\ 1\ 1$$

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

$$\begin{array}{lll} \bullet & \{3,4\} & = & 0 & 0 & 1 & 1 & = 2^1 + 2^0, \\ \bullet & \{2,4\} & = & 0 & 1 & 0 & 1 & = 2^2 + 2^0, \end{array}$$

$$\begin{array}{lll} 5^1 + 5^0 = 6 \\ 5^2 + 5^0 = 26 \end{array}$$

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 0\ 2\ 2\ 3=63\ne\ 1\ 1\ 1\ 1$$

• Adding at most n 1's \implies no carry-over at any digit

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3*m*, not base 2!

▶
$$\{2,3,4\}$$
 = 0 1 1 1 = $2^2 + 2^1 + 2^0$, $5^2 + 5^1 + 5^0 = 31$
▶ $\{3,4\}$ = 0 0 1 1 = $2^1 + 2^0$, $5^1 + 5^0 = 6$
▶ $\{2,4\}$ = 0 1 0 1 = $2^2 + 2^0$, $5^2 + 5^0 = 26$

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 0\ 2\ 2\ 3=63\ne\ 1\ 1\ 1\ 1$$

- Adding at most n 1's \implies no carry-over at any digit
- This solves both the problems since:

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

$$\{2,3,4\} = 0 \ 1 \ 1 \ 1 = 2^2 + 2^1 + 2^0, \quad 5^2 + 5^1 + 5^0 = 31$$

$$\begin{array}{lll} \bullet & \{3,4\} & = & 0 & 0 & 1 & 1 & = 2^1 + 2^0, \\ \bullet & \{2,4\} & = & 0 & 1 & 0 & 1 & = 2^2 + 2^0, \end{array}$$

$$\begin{array}{lll} 5^1 + 5^0 = 6 \\ 5^2 + 5^0 = 26 \end{array}$$

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 0\ 2\ 2\ 3\ =\ 63\ \neq\ 1\ 1\ 1\ 1$$

- Adding at most n 1's \implies no carry-over at any digit
- This solves both the problems since:
 - ▶ If a column has all 0's, no carry-over ensures it gets a 0.

- There are actually two different problems due to carrying:
 - ▶ If a column has all 0's, could get 1 from carry-over
 - ▶ If a column has more than one 1, could still get one 1
- Solution: Interpret vector over base 3m, not base 2!

$$\begin{tabular}{ll} \begin{tabular}{ll} \be$$

$$\begin{array}{lll} \bullet & \{3,4\} & = & 0 & 0 & 1 & 1 & = & 2^1 + 2^0, \\ \bullet & \{2,4\} & = & 0 & 1 & 0 & 1 & = & 2^2 + 2^0, \end{array}$$

$$\begin{array}{lll} 5^1 + 5^0 = 6 \\ 5^2 + 5^0 = 26 \end{array}$$

$$0\ 0\ 1\ 1\ +\ 0\ 1\ 0\ 1\ +\ 0\ 1\ 1\ 1\ =\ 0\ 2\ 2\ 3=63\ne\ 1\ 1\ 1\ 1$$

- Adding at most n 1's \implies no carry-over at any digit
- This solves both the problems since:
 - ▶ If a column has all 0's, no carry-over ensures it gets a 0.
 - ▶ If a column has more than one 1, it will get the sum, not 1.

Reductions So Far

