STA286 Lecture 28

Neil Montgomery

Last edited: 2017-03-30 14:30

One variable in the dataset with 0's and 1's; another variable splitting observations into two groups.

The two populations are Bernoulli(p_1) and Bernoulli(p_2). The independent samples are X_{11},\ldots,X_{1n_1} and X_{21},\ldots,X_{2n_2}

Patented process:

1. Estimate $\theta = p_1 - p_2$.

One variable in the dataset with 0's and 1's; another variable splitting observations into two groups.

The two populations are Bernoulli(p_1) and Bernoulli(p_2). The independent samples are X_{11}, \ldots, X_{1n_1} and X_{21}, \ldots, X_{2n_2}

- 1. Estimate $\theta = p_1 p_2$.
- 2. Estimator $\hat{\theta} = \hat{p}_1 \hat{p}_2 = \overline{X_1} \overline{X_2}$

One variable in the dataset with 0's and 1's; another variable splitting observations into two groups.

The two populations are Bernoulli(p_1) and Bernoulli(p_2). The independent samples are X_{11}, \ldots, X_{1n_1} and X_{21}, \ldots, X_{2n_2}

- 1. Estimate $\theta = p_1 p_2$.
- 2. Estimator $\hat{\theta} = \hat{p}_1 \hat{p}_2 = \overline{X_1} \overline{X_2}$
- 3. $\operatorname{Var}(\hat{p}_1 \hat{p}_2) = \frac{p_1(1-p_1)}{n_1} + \frac{p_2(1-p_2)}{n_2}$

One variable in the dataset with 0's and 1's; another variable splitting observations into two groups.

The two populations are Bernoulli(p_1) and Bernoulli(p_2). The independent samples are X_{11},\ldots,X_{1n_1} and X_{21},\ldots,X_{2n_2}

- 1. Estimate $\theta = p_1 p_2$.
- 2. Estimator $\hat{\theta} = \hat{p}_1 \hat{p}_2 = \overline{X_1} \overline{X_2}$
- 3. $Var(\hat{p}_1 \hat{p}_2) = \frac{p_1(1-p_1)}{p_2} + \frac{p_2(1-p_2)}{p_2}$
- 4. Whoops! Don't know p_1 or p_2 . So use \hat{p}_1 and \hat{p}_2 instead. Bam. Done.

One variable in the dataset with 0's and 1's; another variable splitting observations into two groups.

The two populations are Bernoulli(p_1) and Bernoulli(p_2). The independent samples are X_{11},\ldots,X_{1n_1} and X_{21},\ldots,X_{2n_2}

- 1. Estimate $\theta = p_1 p_2$.
- 2. Estimator $\hat{\theta} = \hat{p}_1 \hat{p}_2 = \overline{X_1} \overline{X_2}$
- 3. $Var(\hat{p}_1 \hat{p}_2) = \frac{p_1(1-p_1)}{p_2} + \frac{p_2(1-p_2)}{p_2}$
- 4. Whoops! Don't know p_1 or p_2 . So use \hat{p}_1 and \hat{p}_2 instead. Bam. Done.

One variable in the dataset with 0's and 1's; another variable splitting observations into two groups.

The two populations are Bernoulli (p_1) and Bernoulli (p_2) . The independent samples are X_{11}, \ldots, X_{1n_1} and X_{21}, \ldots, X_{2n_2}

Patented process:

- 1. Estimate $\theta = p_1 p_2$.
- 2. Estimator $\hat{\theta} = \hat{p}_1 \hat{p}_2 = \overline{X_1} \overline{X_2}$
- 3. $Var(\hat{p}_1 \hat{p}_2) = \frac{p_1(1-p_1)}{p_2} + \frac{p_2(1-p_2)}{p_2}$
- 4. Whoops! Don't know p_1 or p_2 . So use \hat{p}_1 and \hat{p}_2 instead. Bam. Done.

Formula for 95% interval:

$$(\hat{p}_1 - \hat{p}_2) \pm 1.96 \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

two non-robust confidence intervals

Every procedure I have explained so far is *robust* as long as the sample size is large enough (except for the prediction interval formula.)

In principle we could apply the patented procedure to estimate σ^2 with S^2 , using a χ^2 distribution.

We could also apply the patented procedure to estimate the ratio σ_1^2/σ_2^2 with S_1^2/S_2^2 using an F distribution.

But the results are well known to be non-robust, even with large sample sizes, so I cannot recommend them for use.

fun fact from mathematics

Suppose a twice-differentiable function f(x) has a critical value at x_0 , and g(x) is strictly increasing and twice-differentiable.

Then g(f(x)) also has a critical value at x_0 , and the sign of its second derivative at x_0 is the same as the sign of the second derivative of f at x_0 .

This can be seen by evaluating the left hand sides at x_0 :

$$(g(f(x)))' = g'(f(x))f'(x) (g(f(x)))'' = g''(f(x))(f'(x))^2 + g'(f(x))f''(x)$$

Here's a simulated sequence of 0's and 1's from a Bernoulli(p) distribution. I know what (p), but you don't.

```
## [1] 0 1 1 0 0 0 0 0 1 1
```

What value of p between 0 and 1 is the *most likely* to have produce this sequence of 4 1's and 6 0's?

Here's a simulated sequence of 0's and 1's from a Bernoulli(p) distribution. I know what (p), but you don't.

What value of p between 0 and 1 is the *most likely* to have produce this sequence of 4 1's and 6 0's?

The probability of getting this sample exactly is:

$$(1-p) \cdot p \cdot p \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdot p \cdot p$$

= $p^4 (1-p)^6$

Let's call this function L(p).

Here's a simulated sequence of 0's and 1's from a Bernoulli(p) distribution. I know what (p), but you don't.

What value of p between 0 and 1 is the *most likely* to have produce this sequence of 4 1's and 6 0's?

The probability of getting this sample exactly is:

$$(1-p) \cdot p \cdot p \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdot (1-p) \cdot p \cdot p$$

= $p^4 (1-p)^6$

Let's call this function L(p).

We could maximize L(p), but it's easier to maximize $\ell(p) = \log L(p)$

$$0 = \frac{d}{dp}\ell(p) = \frac{d}{dp}(4\log(p) + 6\log(1-p)) = \frac{4}{p} - \frac{6}{1-p}$$

$$0 = \frac{d}{dp}\ell(p) = \frac{d}{dp}(4\log(p) + 6\log(1-p)) = \frac{4}{p} - \frac{6}{1-p}$$
$$\frac{4}{p} = \frac{6}{1-p} \Longrightarrow p = \frac{4}{10}$$

The second derivative is negative, so this is a maximum.

$$0 = \frac{d}{dp}\ell(p) = \frac{d}{dp}(4\log(p) + 6\log(1-p)) = \frac{4}{p} - \frac{6}{1-p}$$
$$\frac{4}{p} = \frac{6}{1-p} \Longrightarrow p = \frac{4}{10}$$

The second derivative is negative, so this is a maximum.

It would have been no harder to work in general, with k 1's out of a sample of size n, and maximizing $L(p) = p^k (1-p)^{n-k}$

$$0 = \frac{d}{dp}\ell(p) = \frac{d}{dp}(4\log(p) + 6\log(1-p)) = \frac{4}{p} - \frac{6}{1-p}$$
$$\frac{4}{p} = \frac{6}{1-p} \Longrightarrow p = \frac{4}{10}$$

The second derivative is negative, so this is a maximum.

It would have been no harder to work in general, with k 1's out of a sample of size n, and maximizing $L(p) = p^k (1-p)^{n-k}$

The same calculus gives the maximum at k/n.

$$0 = \frac{d}{dp}\ell(p) = \frac{d}{dp}(4\log(p) + 6\log(1-p)) = \frac{4}{p} - \frac{6}{1-p}$$
$$\frac{4}{p} = \frac{6}{1-p} \Longrightarrow p = \frac{4}{10}$$

The second derivative is negative, so this is a maximum.

It would have been no harder to work in general, with k 1's out of a sample of size n, and maximizing $L(p) = p^k (1-p)^{n-k}$

The same calculus gives the maximum at k/n.

This is exactly the same as \hat{p} that was used as "obvious" from before.

The p.m.f. of a Bernoulli(p) is $f(x; p) = p^x(1-p)^{1-x}$ with $x \in \{0, 1\}$.

The p.m.f. of a Bernoulli(p) is $f(x; p) = p^x (1-p)^{1-x}$ with $x \in \{0, 1\}$.

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

The p.m.f. of a Bernoulli(p) is $f(x; p) = p^x(1-p)^{1-x}$ with $x \in \{0, 1\}$.

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$$

The p.m.f. of a Bernoulli(p) is $f(x; p) = p^x(1-p)^{1-x}$ with $x \in \{0, 1\}$.

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$$

$$= \prod_{i=1}^{n} f(x_i; p)$$

The p.m.f. of a Bernoulli(p) is $f(x; p) = p^x(1-p)^{1-x}$ with $x \in \{0, 1\}$.

$$L(p) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$$

$$= \prod_{i=1}^{n} f(x_i; p)$$
Also: $\ell(p) = \log L(p) = \sum_{i=1}^{n} \log f(x_i; p)$

likelihood function in general

Given a sequence of observations $\{x_1, \ldots, x_n\}$ ("the data") from a random variable X with pmf or pdf $f(x; \theta)$, a likelihood function $L(\theta) = L(x_1, \ldots, x_n; \theta)$ for the parameter θ is defined as (for any positive g):

$$L(\theta) = \underbrace{g(\mathbf{x}) \prod_{i=1}^{n} f(x_i; \theta)}_{\text{real definition}}$$

likelihood function in general

Given a sequence of observations $\{x_1, \ldots, x_n\}$ ("the data") from a random variable X with pmf or pdf $f(x; \theta)$, a likelihood function $L(\theta) = L(x_1, \ldots, x_n; \theta)$ for the parameter θ is defined as (for any positive g):

$$L(\theta) = \underbrace{g(\mathbf{x}) \prod_{i=1}^{n} f(x_i; \theta)}_{\text{real definition}} \propto \underbrace{\prod_{i=1}^{n} f(x_i; \theta)}_{\text{easy definition}}$$

If X is discrete and f is a pmf, then $L(\theta)$ is literally the probability of the data given θ .

likelihood function in general

Given a sequence of observations $\{x_1, \ldots, x_n\}$ ("the data") from a random variable X with pmf or pdf $f(x;\theta)$, a likelihood function $L(\theta) = L(x_1, \ldots, x_n; \theta)$ for the parameter θ is defined as (for any positive g):

$$L(\theta) = \underbrace{g(\mathbf{x}) \prod_{i=1}^{n} f(x_i; \theta)}_{\text{real definition}} \propto \underbrace{\prod_{i=1}^{n} f(x_i; \theta)}_{\text{easy definition}}$$

If X is discrete and f is a pmf, then $L(\theta)$ is literally the probability of the data given θ . If X is continuous and f is a pdf, then $L(\theta)$ is not a probability, but it still provides a useful "index" for θ values.

Suppose $X \sim \text{Exp}(\lambda)$ and the data are: 1,3,8. A likelihood for λ is:

$$L(1,3,8;\lambda) = \lambda^3 e^{-\lambda(1+3+8)} = \lambda^3 e^{-12\lambda}$$

Suppose $X \sim \text{Exp}(\lambda)$ and the data are: 1,3,8. A likelihood for λ is:

$$L(1,3,8;\lambda) = \lambda^3 e^{-\lambda(1+3+8)} = \lambda^3 e^{-12\lambda}$$

a possibly useless and confusing picture

Suppose $X \sim \text{Exp}(\lambda)$ and the data are: 1, 3, 8. A likelihood for λ is:

$$L(1,3,8;\lambda) = \lambda^3 e^{-\lambda(1+3+8)} = \lambda^3 e^{-12\lambda}$$

Suppose $X \sim \text{Exp}(\lambda)$ and the data are: 1,3,8. A likelihood for λ is:

$$L(1,3,8;\lambda) = \lambda^3 e^{-\lambda(1+3+8)} = \lambda^3 e^{-12\lambda}$$

$$L(0.5) = 0.5^3 e^{-12} = 3.0984402 \times 10^{-4}$$

Suppose $X \sim \text{Exp}(\lambda)$ and the data are: 1,3,8. A likelihood for λ is:

$$L(1,3,8;\lambda) = \lambda^3 e^{-\lambda(1+3+8)} = \lambda^3 e^{-12\lambda}$$

$$L(0.5) = 0.5^3 e^{-12} = 3.0984402 \times 10^{-4}$$

 $L(0.25) = (0.25)^3 e^{-12 \cdot 0.25} = 7.7792294 \times 10^{-4}$

Suppose $X \sim \text{Exp}(\lambda)$ and the data are: 1,3,8. A likelihood for λ is:

$$L(1,3,8;\lambda) = \lambda^3 e^{-\lambda(1+3+8)} = \lambda^3 e^{-12\lambda}$$

$$L(0.5) = 0.5^{3}e^{-12} = 3.0984402 \times 10^{-4}$$

$$L(0.25) = (0.25)^{3}e^{-12 \cdot 0.25} = 7.7792294 \times 10^{-4}$$

$$L(0.1) = (0.1)^{3}e^{-12 \cdot 0.1} = 3.0119421 \times 10^{-4}$$

Suppose $X \sim \text{Exp}(\lambda)$ and the data are: 1,3,8. A likelihood for λ is:

$$L(1,3,8;\lambda) = \lambda^3 e^{-\lambda(1+3+8)} = \lambda^3 e^{-12\lambda}$$

$$L(0.5) = 0.5^3 e^{-12} = 3.0984402 \times 10^{-4}$$

 $L(0.25) = (0.25)^3 e^{-12 \cdot 0.25} = 7.7792294 \times 10^{-4} \longleftarrow$ Highest "likelihood"
 $L(0.1) = (0.1)^3 e^{-12 \cdot 0.1} = 3.0119421 \times 10^{-4}$

The value of θ that maximizes $L(\theta)$ is called the *maximum likelihood estimate*.

The value of θ that maximizes $L(\theta)$ is called the *maximum likelihood estimate*.

In many cases it is more convenient to maximize $\ell(\theta)$.

The value of θ that maximizes $L(\theta)$ is called the *maximum likelihood estimate*.

In many cases it is more convenient to maximize $\ell(\theta)$.

For example, suppose x_1, x_2, \dots, x_n are data observed from a $X \sim N(\mu, 1)$ population. A likelihood for μ is:

$$L(\mu) = (2\pi)^{n/2} \exp\left(-\frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^2\right)$$

The value of θ that maximizes $L(\theta)$ is called the *maximum likelihood estimate*.

In many cases it is more convenient to maximize $\ell(\theta)$.

For example, suppose x_1, x_2, \dots, x_n are data observed from a $X \sim N(\mu, 1)$ population. A likelihood for μ is:

$$L(\mu) = (2\pi)^{n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2\right)$$

$$\ell(\mu) = \log L(\mu) = C - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2$$

The value of θ that maximizes $L(\theta)$ is called the *maximum likelihood estimate*.

In many cases it is more convenient to maximize $\ell(\theta)$.

For example, suppose x_1, x_2, \dots, x_n are data observed from a $X \sim N(\mu, 1)$ population. A likelihood for μ is:

$$L(\mu) = (2\pi)^{n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2\right)$$

$$\ell(\mu) = \log L(\mu) = C - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2$$

To maximize:

$$0 = \frac{d}{d\mu}\ell(\mu) = \sum_{i=1}^{n} (x_i - \mu)$$

The value of θ that maximizes $L(\theta)$ is called the *maximum likelihood estimate*.

In many cases it is more convenient to maximize $\ell(\theta)$.

For example, suppose x_1, x_2, \dots, x_n are data observed from a $X \sim N(\mu, 1)$ population. A likelihood for μ is:

$$L(\mu) = (2\pi)^{n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2\right)$$

$$\ell(\mu) = \log L(\mu) = C - \frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2$$

To maximize:

$$0 = \frac{d}{d\mu}\ell(\mu) = \sum_{i=1}^{n} (x_i - \mu) \Longrightarrow \mu = \frac{\sum_{i=1}^{n} x_i}{n} = \overline{x}$$

the maximum likelihood estimator

A final technicality. When you replace the data x_1, x_2, \ldots, x_n with its "model", the sample: X_1, X_2, \ldots, X_n , inside the maximum likelihood estimate, you end up with the maximum likelihood estimator, or MLE.

Traditionally the MLE notation is the parameter-with-a-hat.

the maximum likelihood estimator

A final technicality. When you replace the data x_1, x_2, \ldots, x_n with its "model", the sample: X_1, X_2, \ldots, X_n , inside the maximum likelihood estimate, you end up with the maximum likelihood estimator, or MLE.

Traditionally the MLE notation is the parameter-with-a-hat.

For example, the maximum likelihood estimator for μ using a sample from a $N(\mu,1)$ population is:

$$\hat{\mu} = \overline{X}$$

Everything so far extends to vector parameters. For example (textbook example 9.21), the maximum likelihood estimates given data x_1, \ldots, x_n from a $N(\mu, \sigma)$ population, the MLE for $\theta = (\mu, \sigma^2)$ are:

$$\hat{\mu} = \overline{X}$$
 $\widehat{\sigma^2} = \frac{\sum_{i=1}^n (X_i - \overline{X})^2}{n}$

In most cases, the MLE $\hat{\theta}$ has all the following (amazing!) properties:

1. it is asymptotically unbiased.

- 1. it is asymptotically unbiased.
- 2. it is consistent.

- 1. it is asymptotically unbiased.
- 2. it is consistent.
- 3. it is "invariant", which means $\widehat{h(\theta)} = h(\widehat{\theta})$ when h is a 1-1 function.

- 1. it is asymptotically unbiased.
- 2. it is consistent.
- 3. it is "invariant", which means $\widehat{h(\theta)} = h(\widehat{\theta})$ when h is a 1-1 function.
- 4. it is asymptotically normal.

- 1. it is asymptotically unbiased.
- 2. it is consistent.
- 3. it is "invariant", which means $\widehat{h(\theta)} = h(\widehat{\theta})$ when h is a 1-1 function.
- 4. it is asymptotically normal.
- 5. if $c\hat{\theta}$ is unbiased for some constant c, then $c\hat{\theta}$ is the unbiased estimator with the smallest variance (our "gold standard".)