GRAPHS part III

- Find a minimum-cost set of edges that connect all vertices of a graph
- Applications
 - Connect "nodes" with a minimum of "wire"

- Find a minimum-cost set of edges that connect all vertices of a graph
- Applications
 - Collect nearby nodes
 - Clustering, taxonomy construction

- Find a minimum-cost set of edges that connect all vertices of a graph
- Applications
 - Approximating graphs

- A tree is an acyclic, undirected, connected graph
- A <u>spanning tree</u> of a graph is a tree containing all vertices from the graph
- A minimum spanning tree is a spanning tree, where the sum of the weights on the tree's edges are minimal

 A minimum spanning tree is a spanning tree, where the sum of the weights on the tree's edges are minimal

Problem formulation

- Given an undirected, weighted graph G = (V, E) with weights w(u, v) for each edge $(u, v) \in E$
- Find an acyclic subset $T \subseteq E$ that connects all of the vertices V and minimizes the total weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v)$$

- The minimum spanning tree is (V, T)
 - Minimum spanning tree may be not unique (can be more than one)

- Both Kruskal's and Prim's Algorithms work with undirected graphs
- Both work with weighted and unweighted graphs but are more interesting when edges are weighted
- Both are greedy algorithms that produce optimal solutions

- Solution 1: Kruskal's algorithm
 - Work with edges
 - Two steps:
 - · Sort edges by increasing edge weight
 - Select the first |V| 1 edges that do not generate a cycle
 - Walk through:

Solution 1: Kruskal's algorithm

Sort the edges by increasing edge weight

edge	d_v	
(D,E)	1	
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

edge	d_v	
(D,E)	1	√
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Accepting edge (E,G) would create a cycle

Solution 1: Kruskal's algorithm

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	1
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	√
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	√
(C,F)	3	√
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	1
(C,F)	3	√
(B,C)	4	√

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

edge	d_v	
(D,E)	1	1
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	1
(G,H)	3	√
(C,F)	3	1
(B,C)	4	√

edge	d_v	
(B,E)	4	χ
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	x
(C,D)	3	√
(G,H)	3	√
(C,F)	3	√
(B,C)	4	√

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

edge	d_v	
(D,E)	1	1
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	1
(G,H)	3	√
(C,F)	3	√
(B,C)	4	√

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	√
(C,F)	3	√
(B,C)	4	√

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	√
(D,F)	6	
(A,B)	8	
(A,F)	10	

Solution 1: Kruskal's algorithm

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	√
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	√
(C,F)	3	√
(B,C)	4	√

edge	d_v	
(B,E)	4	χ
(B,F)	4	x
(B,H)	4	χ
(A,H)	5	√
(D,F)	6	
(A,B)	8	
(A,F)	10	

Done

Total Cost = 21

considered

- Solution 2: Prim's algorithm
 - Work with nodes (instead of edges)
 - Two steps
 - Select node with minimum distance
 - Update distances of adjacent, unselected nodes

– Walk through:

Solution 2: Prim's algorithm

Initialize array

	K	d_v	p_v
A	F	8	_
В	F	8	_
C	F	~	_
D	\mathbf{F}	8	_
E	F	8	_
F	F	8	_
G	F	~	_
н	F	8	_

K: whether in the tree

 d_v : distance to the tree

 p_{ν} : closest node that is in the tree

Solution 2: Prim's algorithm

Solution 2: Prim's algorithm

Update distances of adjacent, unselected nodes

	K	d_v	p_v
\mathbf{A}			
В			
C		3	D
D	T	0	
\mathbf{E}		25	D
F		18	D
G		2	D
H			

Solution 2: Prim's algorithm

Select node with minimum distance

	K	d_v	p_v
A			
В			
C		3	D
D	T	0	1
E		25	D
F		18	D
G	T	2	D
н		-	-

Solution 2: Prim's algorithm

Update distances of adjacent, unselected nodes

	K	d_v	p_v
A			
В			
C		3	D
D	T	0	_
E		7	G
F		18	D
G	T	2	D
н		3	Ğ

Solution 2: Prim's algorithm

Select node with minimum distance

	K	d_v	p_v
A			
В			
C	T	3	D
D	T	O	_
E		7	G
F		18	D
G	Т	2	D
H		3	G

Solution 2: Prim's algorithm

Update distances of adjacent, unselected nodes

	K	d_v	p_v
A			
В		4	С
C	T	3	D
D	T	0	1
E		7	G
F		3	С
G	T	2	D
H		3	G

Solution 2: Prim's algorithm

Select node with minimum distance

	K	d_v	p_v
\mathbf{A}			
В		4	C
C	T	3	D
D	T	0	_
\mathbf{E}		7	G
F	T	3	C
G	T	2	D
H		3	G

Solution 2: Prim's algorithm

Update distances of adjacent, unselected nodes

	K	d_v	p_v
A		10	F
В		4	C
C	T	3	D
D	T	0	-
E		2	F
F	T	3	C
G	T	2	D
H		3	G

Solution 2: Prim's algorithm

Select node with minimum distance

	K	d_v	p_v
A		10	F
В		4	O
C	T	3	D
D	T	0	_
E	T	2	F
F	T	3	U
G	T	2	D
н		3	Ō

Solution 2: Prim's algorithm

Update distances of adjacent, unselected nodes

	K	d_v	p_v
A		10	F
В		4	C
C	T	3	D
D	T	0	1
\mathbf{E}	T	2	F
F	T	3	C
G	T	2	D
н		3	G

Table entries unchanged

Solution 2: Prim's algorithm

Select node with minimum distance

	K	d_v	p_v
A		10	F
В		4	C
C	T	3	D
D	T	0	_
E	T	2	F
F	T	3	C
G	T	2	D
н	Т	3	G

Solution 2: Prim's algorithm

Update distances of adjacent, unselected nodes

	K	d_v	p_v
A		4	Н
В		4	C
C	T	3	D
D	T	0	1
E	T	2	F
F	T	3	C
G	T	2	D
H	T	3	G

Solution 2: Prim's algorithm

Select node with minimum distance

	K	d_v	p_v
A	T	4	H
В		4	C
C	T	3	D
D	T	0	
E	T	2	F
F	T	3	C
G	T	2	D
н	T	3	G

Solution 2: Prim's algorithm

Update distances of adjacent, unselected nodes

	K	d_v	p_v
A	T	4	H
В		4	C
C	T	3	D
D	T	0	_
E	T	2	F
F	T	3	C
G	T	2	D
H	T	3	G

Table entries unchanged

Solution 2: Prim's algorithm

Select node with minimum distance

	K	d_v	p_v
A	T	4	Н
В	T	4	C
C	T	3	D
D	T	0	-
E	T	2	F
F	T	3	C
G	T	2	D
Н	T	3	G

Solution 2: Prim's algorithm

Cost of Minimum
Spanning Tree = 21

	K	d_v	p_v
A	T	4	H
В	T	4	C
C	T	3	D
D	T	0	_
E	T	2	F
F	T	3	C
G	T	2	D
н	T	3	G

Done

Runtime

- When using binary heaps, the runtime of the Kruskal's algorithm is $O(E \lg V)$
- When using binary heaps, the runtime of the Prim's algorithm is $O(E \lg V)$ When using the Fibonacci heaps, the runtime of the Prim's algorithm becomes: $O(E + V \lg V)$
- So, when an undirected graph is dense (i.e., |V| is much small than |E|), the Prim's algorithm is more efficient