Zero knowledge-proof

Ante Sosa

Faculty of Computer and Information Science University of Ljubljana

December 12, 2018

Agenda

- 1 Introduction
- 2 Two balls and the colour-blind verifier
- 3 Yao's millionaires problem
- 4 Discrete logarithm of a given value
- **5** Application on blockchain
- 6 Conclusion

Introduction

- Definition.
- Properties:
 - Completeness
 - Soundness
 - Zero-knowledge
- Problems:
 - Two balls and the colour-blind verifier
 - Yao's millionaires problem
 - Discrete logarithm of a given value

Two balls and the colour-blind verifier

Yao's millionaires problem

- $s = s_n s_{n-1} \dots s_1 \in \{0, 1\}^n$
- $S_s^0 = \{s_n s_{n-1} \dots s_{i+1} 1 | s_i = 0, 1 \le i \le n\}.$
- $S_s^0 = \{s_n s_{n-1} \dots s_i | s_i = 1, 1 \le i \le n\}.$
- If x is encoded in S_x^1 and y is encoded in S_y^0 than x > y if and only if S_x^1 and S_y^0 has common element.

Discrete logarithm of a given value

- $\alpha^x \equiv \beta \pmod{N}$ Both prover and verifier know the values of α, β , but x is known only by prover.
- The protocol proceeds as follows:
 - The prover chooses by random $r \in \{1, ..., \phi(N)\}$, calculates $\gamma :\equiv \beta^r \pmod{N}$ and sends it to verifier.
 - The verifier chooses $b \in \{0, 1\}$.
 - Prover sends $y \equiv r + bx \pmod{N}$ to verifier.
 - Verifier checks if $\alpha^y \equiv \alpha^r \beta^b \pmod{N}$ holds.

Application on blockchain

Conclusion

References

- Y. Lin and W. G. Tzeng, An Efficient Solution to The Millionaires's Problem Based on Homomorphic Encryption, 2005.
- D. Chaum, J. H. Evertse, J. van de Graaf, An Improved Protocol for Demonstrating Possession of Discrete Logarithms and Some Generalizations. Advances in Cryptology EuroCrypt '87: Proceedings. 304: 127-141, 1987.
- R. Gennaro, C. Gentry, B. Parno, M. Raykova, Quadratic Span Programs and Succinct NIZKs without PCPs, 2012.

Questions

Ante Sosa

Zero knowledge-proof

December 12, 2018