Design and Analysis of Algorithms

Week 3
Iteration, Recursion,
and Divide-and-Conquer

Warut Suksompong

Iterative algorithms

Iterative algorithms

 Algorithms which have one or multiple loops, sequentially processing input elements

```
NDAYSOFCHRISTMAS(gifts[2..n]):

for i \leftarrow 1 to n

Sing "On the ith day of Christmas, my true love gave to me"

for j \leftarrow i down to 2

Sing "j gifts[j],"

if i > 1

Sing "and"

Sing "a partridge in a pear tree."
```

• Our running example in this lecture: insertion sort.

The problem of sorting

- *Input:* sequence $\langle a_1, a_2, ..., a_n \rangle$ of numbers.
- Output: permutation $\langle a'_1, a'_2, ..., a'_n \rangle$ such that $a'_1 \leq a'_2 \leq \cdots \leq a'_n$.

• Example:

• *Input:* 8 2 4 9 3 6

• Output: 2 3 4 6 8 9

Insertion Sort

INSERTION-SORT(A[1..n])

1. for
$$j = 2$$
 to n

2.
$$key = A[j]$$

- 3. // Insert A[j] into sorted seq A[1..j-1]
- 4. i = j 1
- 5. **while** i > 0 and A[i] > key

6.
$$A[i+1] = A[i]$$

7.
$$i = i - 1$$

8.
$$A[i+1] = key$$

Runtime of $\Theta(n^2)$ already argued in last lecture slides

Consider the iteration of the **for** loop where j = 5.

Suppose the array A at this stage is [1, 4, 6, 9, 2, 7, 3].

1. for
$$j = 2$$
 to n

2.
$$key = A[j]$$

3. // Insert
$$A[j]$$
 into sorted seq $A[1 .. j-1]$

$$4. \qquad i = j - 1$$

5. **while**
$$i > 0$$
 and $A[i] > key$

6.
$$A[i+1] = A[i]$$

7. $i = i-1$

7.
$$i = i - 1$$

8.
$$A[i+1] = key$$

Consider the iteration of the **for** loop where j = 5.

Suppose the array A at this stage is [1, 4, 6, 9, 2, 7, 3].

i		
4	1 4 6 9 2 7 3	Oth round of while loop
3	1 4 6 9 9 7 3	1st round of while loop

1. for
$$j = 2$$
 to n

2.
$$key = A[j]$$

3. // Insert
$$A[j]$$
 into sorted seq $A[1 .. j-1]$

$$4. \qquad i = j - 1$$

5. **while**
$$i > 0$$
 and $A[i] > key$

6.
$$A[i+1] = A[i]$$

7. $i = i-1$

7.
$$i = i - 1$$

8.
$$A[i+1] = key$$

Consider the iteration of the **for** loop where j = 5.

Suppose the array A at this stage is [1, 4, 6, 9, 2, 7, 3].

i		
4	1 4 6 9 2 7 3	Oth round of while loop
3	1 4 6 9 9 7 3	1st round of while loop
2	1 4 6 6 9 7 3	2 nd round of while loop

1. for
$$j = 2$$
 to n

2.
$$key = A[j]$$

3. // Insert
$$A[j]$$
 into sorted seq $A[1 .. j-1]$

$$4. \qquad i = j - 1$$

5. **while**
$$i > 0$$
 and $A[i] > key$

6.
$$A[i+1] = A[i]$$

7. $i = i-1$

7.
$$i = i - 1$$

8.
$$A[i+1] = key$$

Consider the iteration of the **for** loop where j = 5.

Suppose the array A at this stage is [1, 4, 6, 9, 2, 7, 3].

i		
4	1 4 6 9 2 7 3	Oth round of while loop
3	1 4 6 9 9 7 3	1st round of while loop
2	1 4 6 6 9 7 3	2 nd round of while loop
1	1 4 4 6 9 7 3	3 rd round of while loop
	End of while loop	A:

End of while loop

1. for
$$j = 2$$
 to n

2.
$$key = A[j]$$

3. // Insert
$$A[j]$$
 into sorted seq $A[1 .. j-1]$

$$4. \qquad i = j - 1$$

5. **while**
$$i > 0$$
 and $A[i] > key$

6.
$$A[i+1] = A[i]$$

7.
$$i = i - 1$$

8.
$$A[i+1] = key$$

Correctness of Iterative Algorithms

The key step in the reasoning about the correctness of iterative algorithms is finding a:

Loop invariant

- True before the first iteration
- If true before an iteration, then remains true at the beginning of the next iteration
- If true at the end, then it implies algorithm's correctness

Example: Step 1 (for loop) of Insertion srot

j			Insertion-Sort(A[1n])
	8 2 4 9 3 6	Oth round of for loop	1. for $j = 2$ to n
2	284936	1 st round of for loop	2. key = A[j]
	204330	1 Tourid of for loop	3. // Insert $A[j]$ into sorted seq $A[1 j-1]$
3	2 4 8 9 3 6	2 nd round of for loop	4. $i = j - 1$
4	2 4 8 9 3 6	3 rd round of for loop	5. while $i > 0$ and $A[i] > key$
7	2 7 0 3 3 0		6. A[i+1] = A[i]
5	2 3 4 8 9 6	4 th round of for loop	7. $i = i - 1$
6	2 3 4 6 8 9	6 th round of for loop	8. $A[i+1] = key$

By inspection, the invariant is "A[1..j-1] is the sorted list of elements originally in A[1..j-1]".

How to use invariant to show the correctness of an iterative algorithm?

To understand the correctness of an algorithm using an invariant, we need to show three things:

- Initialization: The invariant is true before the first iteration of the loop
- Maintenance: If the invariant is true before an iteration, it remains true before the next iteration
- Termination: When the algorithm terminates, the invariant provides a useful property for showing correctness.

Invariant: the subarray A[1 .. j-1] consists of the elements originally in A[1 .. j-1], but in sorted order

 Initialization: Before the start of the first iteration, j has been initialized to 2. The subarray A[1 .. j-1] is just A[1], which is trivially sorted.

```
INSERTION-SORT(A[1..n])

1. for j = 2 to n

2. key = A[j]

3. // Insert A[j] into sorted seq A[1..j-1]

4. i = j-1

5. while i > 0 and A[i] > key

6. A[i+1] = A[i]

7. i = i-1
```

A[i+1] = key

8.

Invariant: the subarray A[1 .. j-1] consists of the elements originally in A[1 .. j-1], but in sorted order

8.

A[i+1] = key

- Maintenance: (Sketch) By the property of the invariant, A[1 .. j-1] is sorted.
 - Line 2 assigns A[j] to key.
 - The **while** loop ensures that all array entries in A[1 ... j-1] larger than key is shifted one place to the right.
 - Line 8 assigns key to location created by shifts.
 - Then, A[1..j] is sorted!

```
INSERTION-SORT(A[1..n])

1. for j = 2 to n

2. key = A[j]

3. // Insert A[j] into sorted seq A[1...j-1]

4. i = j-1

5. while i > 0 and A[i] > key

6. A[i+1] = A[i]

7. i = i-1
```

Invariant: the subarray A[1 .. j-1] consists of the elements originally in A[1 .. j-1], but in sorted order

• Termination: Array length is n and after the final loop, j is incremented to n+1. From the invariant, we have A[1..j-1] being sorted. Substituting j, the whole array is sorted.

```
INSERTION-SORT(A[1..n])

1. for j = 2 to n

2. key = A[j]

3. // Insert A[j] into sorted seq A[1..j-1]

4. i = j - 1

5. while i > 0 and A[i] > key

6. A[i+1] = A[i]

7. i = i - 1

8. A[i+1] = key
```

Invariant of Iterative Algorithm

- Recap:
 - Invariant is a condition that is true at the beginning of every iteration
 - To show an invariant is true, we need to show that the invariant is true at initialization, is correctly maintained, and implies correctness with termination condition.

Question 1

The pseudo-code for selection sort is given below:

```
SELECTION-SORT(A)

n = A.length

for j = 1 to n-1

    smallest = j

    for i = j+1 to n

        if A[i] < A[smallest]

        smallest = i

    exchange A[j] with A[smallest]</pre>
```

What is a suitable loop invariant for the outer loop?

- The array A is sorted.
- The array A[1..j-1] is sorted.
- The array A[1..j-1] contains the j-1 smallest elements of the array A[1..n]
- The array A[1..j-1] is sorted and contains the j-1 smallest elements of the array A[1..n].

Answer to Question 1

Answer: The array A[1..j-1] is sorted and contains the j-1 smallest elements of the array A[1..n]

Termination: The invariant needs to imply a sorted array when the loop terminates.

• At termination, j == n, so by the invariant, A[1..n-1] is sorted and does not have elements larger than A[n], implying that the whole array is sorted.

Answer to Question 1

Initialization: A[1..j-1] is empty, so invariant is true.

Maintenance: Need invariant for inner loop stating that A[smallest] is the smallest element in A[j ... i-1].

When inner loop terminate, i == n + 1, so A[smallest] is the smallest element in A[j ... n].

If outer invariant is true before loop, it will be true after swapping on last line and incrementing *j*.

Divide-and-conquer algorithms

Divide-and-Conquer

- **Divide** the problem into a number of subproblems that are smaller instances of the same problem.
- **Conquer** the subproblems by solving them recursively. If the subproblem sizes are small enough, however, just solve the subproblems in a straightforward manner.
- **Combine** the solutions to the subproblems into the solution for the original problem.

(CLRS, pg. 86)

(Algorithms. Erickson, pg. 25)

 $\frac{\text{Hanoi}(n, src, dst, tmp):}{\text{if } n > 0}$ $\text{Hanoi}(n-1, src, tmp, dst) \quad \langle\langle Recurse! \rangle\rangle$ move disk n from src to dst $\text{Hanoi}(n-1, tmp, dst, src) \quad \langle\langle Recurse! \rangle\rangle$

Warning: don't try to unroll recursion. Head will explode!

Merge Sort

Input is an array $A[1, \dots, r]$

MERGE-SORT(A, 1, r)

1 if
$$p < r$$

2/

$$q = \lfloor (1+r)/2 \rfloor$$

Merge-Sort(A, 1, q)

MERGE-SORT(A, q + 1, r)

MERGE(A, 1, q, r)

Use the obvious induction to prove correctness

Merges two sorted A[1,..,q] and A[q+1,..,r] into one sorted

The recursion tree

Correctness of Recursive Algorithms

- Use strong induction
- Prove base cases
- Show algorithm works correctly assuming algorithm works correctly for all smaller cases

How to analyze the running time of a recursive algorithm?

- 1. Derive a recurrence
 - Already seen one example (Recursive algorithm for Fibonacci number)
- 2. Solve the recurrence

Analyzing Tower-Of-Hanoi

$$T(n)$$
 $\frac{\text{Hanoi}(n, src, dst, tmp):}{\text{if } n > 0}$ $T(n-1)$ $\text{Hanoi}(n-1, src, tmp, dst)$ 1move disk n from src to dst $T(n-1)$ $\text{Hanoi}(n-1, tmp, dst, src)$

Recurrence: T(1) = 1 and $T(n) = 2 \cdot T(n-1) + 1$.

Claim: $T(n) = 2^n - 1$.

Proof: By induction. Base case is n=1 which holds. Assuming induction hypothesis, $T(n+1)=2\cdot(2^n-1)+1=2^{n+1}-1$.

Analyzing merge sort

asymptotically.

```
MERGE-SORT A[1 ... n]

O(1)

1. If n = 1, done.

2T(n/2)

2. Recursively sort A[1 ... \lceil n/2 \rceil]

and A[\lceil n/2 \rceil + 1 ... n].

3. "Merge" the 2 sorted lists

Sloppiness: Should be T(\lceil n/2 \rceil) + T(\lceil n/2 \rceil), but it turns out not to matter
```

- See lecture notes for how to argue this formally for this recurrence
- For a general result showing that floors and ceilings don't matter, check out the SODA '21 paper posted on LumiNUS.

Recurrence for merge sort

$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1\\ 2T\left(\frac{n}{2}\right) + \Theta(n) & \text{if } n > 1 \end{cases}$$

- We <u>usually omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small n.</u>
- Next, we describe a few ways to solve the recurrence to find a good upper bound on T(n).

Recurrences for Divide-and-Conquer

Divide, conquer, combine.

Consider the recurrence

How to solve a recurrence?

- Recursion tree
- Master method
- Substitution method

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

T(n)

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Solve T(n) = 2T(n/2) + cn, where c > 0 is constant.

Question 2

Use a recursion tree to give an asymptotically tight upper bound to the recurrence T(n) = T(n-a) + T(a) + cn where $a \ge 1$ and c > 0, and T(a) is a constant.

- $T(n) \le C \frac{n}{a} \log n$ for some constant C
- \cap $T(n) \leq Cn/a$ for some constant C
- $T(n) \le Cn^2/a$ for some constant C
- $T(n) \le Ca \log n$ for some constant C

Answer of Question 2

T(n) = T(n-a) + T(a) + cnAnswer: $T(n) \le Cn^2/a$

$$T(n) = T(n-a) + T(a) + cn$$

Recursion tree height is n/aAt depth k, computation: T(a) + c(n-ka). Summed over height, we get

Arithmetic Series

$$\sum_{k=1}^{n} k = 1 + 2 + 3 + \dots + n$$
$$= \frac{1}{2}n(n+1) = \Theta(n^2)$$

$$T(a)\frac{n}{a} + ac + 2ac + 3ac + \dots + \frac{n}{a}ac$$
$$= T(a)\frac{n}{a} + \frac{ac}{2}\frac{n}{a}\left(\frac{n}{a} + 1\right) \le C\left(\frac{n^2}{a}\right)$$

Master method

The master method

• The master method applies to recurrences of the form

•
$$T(n) = a T(n/b) + f(n)$$
,

where $a \ge 1$, b > 1, and f is asymptotically positive.

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log ba}$ (by an n^{ϵ} factor).

Solution: $T(n) = \Theta(n^{\log ba})$.

- 2. $f(n) = \Theta(n^{\log_b a} \lg^k n)$ for some constant $k \ge 0$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution: $T(n) = \Theta(n^{\log_b a} \lg^{k+1} n)$.

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log ba}$ (by an n^{ϵ} factor),

and f(n) satisfies the *regularity condition* that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

The regularity condition guarantees the sum of subproblems is smaller than f(n)

Summary: Master Theorem

$$T(n) = aT(n/b) + \Theta(f(n))$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$T(n) = \Theta(n^{\log_b a})$$

 \leftarrow If ε=0, it is case 2.

Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$

$$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$

$$af(n/b) \leq cf(n), c < 1$$

$$T(n) = \Theta(f(n))$$

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n.$
CASE 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1$.
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n)$.

Question 3

Solve
$$T(n) = 4T(n/2) + n^3$$

- 1. $T(n) = \Theta(n^2).$
- $2. T(n) = \Theta(n^3).$
- 3. $T(n) = \Theta(n \log n)$.
- 4. $T(n) = \Theta(n^2 \log n).$

Answer of Question 3

```
T(n) = 4T(n/2) + n^3

a = 4, b = 2 \Rightarrow n^{\log ba} = n^2; f(n) = n^3.

Case 3: f(n) = \Omega(n^{2+\epsilon}) for \epsilon = 1

and 4(n/2)^3 \le cn^3 (reg. cond.) for c = 1/2.

\therefore T(n) = \Theta(n^3).
```

Examples

```
Ex. T(n) = 4T(n/2) + n^2/\lg n

a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.

n^2/\lg n \notin O(n^{2-\varepsilon}) \Rightarrow \text{Not case 1}

-Reason: \text{ for every constant } \varepsilon > 0, \text{ we have } n^\varepsilon = \omega(\lg n).

n^2/\lg n \notin O(n^2\log^k n) \text{ for any } k \ge 0 \Rightarrow \text{Not case 2}

n^2/\lg n \notin \Omega(n^{2+\varepsilon}) \Rightarrow \text{Not case 3}

Master method does not apply.
```

Summary: Master Theorem

$$T(n) = aT(n/b) + \Theta(f(n))$$

Case 1:
$$f(n) = O(n^{\log_b a - \epsilon})$$

$$T(n) = \Theta(n^{\log_b a})$$

 \leftarrow If ε=0, it is case 2.

Case 2:
$$f(n) = \Theta(n^{\log_b a} \log^k n)$$

$$T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$$

Case 3:
$$f(n) = \Omega(n^{\log_b a + \epsilon})$$

$$af(n/b) \leq cf(n), c < 1$$

$$T(n) = \Theta(f(n))$$

Substitution method

- The most general method:
- 1. Guess the form of the solution
- 2. Verify by induction

Example: Solve T(n) = 4 T(n/2) + n

- [Assume T(1)=q where q is a constant.]
- **Step 1:** Guess $T(n) = O(n^3)$.
 - I.e. there exists a constant c such that $T(n) \le c \cdot n^3$, for $n \ge n_0$.
- Step 2: Verify by induction.
 - Set $c=max\{2,q\}$ and $n_0=1$.
 - Base case $(n=n_0=1)$: $T(1) = q \le c(1)^3$.
 - Recursive case (n>1):
 - By strong induction, assume $T(k) \le c \cdot k^3$ for $n > k \ge 1$.
 - $T(n) = 4 T(n/2) + n \le 4 c (n/2)^3 + n = (c/2) n^3 + n \le c n^3$.
 - Hence, $T(n) \le c n^3$ for $n \ge 1$.
- Conclusion: $T(n) = O(n^3)$.

$$T(n) = 4 T(n/2) + n$$

• Is $T(n) = O(n^3)$ a tight bound?

- Answer: No.
- The tight bound is $T(n) = O(n^2)$

$$T(n) = 4 T(n/2) + n$$

- A possible solution to prove that $T(n) = O(n^2)$.
 - i.e. we show that $T(n) \le c n^2$ for $n \ge n_0$.
- Set $c=max\{2,q\}$ and $n_0=1$.
- Base case (n=1): $T(1) = q \le c(1)^2$.
- Recursive case (n>1):
 - By strong induction, assume $T(k) \le c \cdot k^2$ for $n > k \ge 1$.
 - T(n) = 4 T(n/2) + n
 - $\leq 4 \text{ c} \cdot (n/2)^2 + n$
 - = $c n^2 + n$
 - = O(n²). ←This is not correct! You need to show T(n) ≤ c n²!

$$T(n) = 4 T(n/2) + n$$

- [Assume T(1)=q where q is a constant.]
- Correct solution: Show that, for $n \ge n_0$, $T(n) \le c_1 n^2 c_2 n$.
- Set $c_1 = q+1$ and $c_2 = 1$ and $n_0 = 1$.
- Base case (n=1): $T(1) = q \le (q+1)(1)^2 (1)(1)$.
- Recursive case (n>1):
 - By strong induction, assume $T(k) \le c_1 \cdot k^2 c_2 \cdot k$ for $n > k \ge 1$.
 - $T(n) = 4 T(n/2) + n = 4 (c_1 (n/2)^2 c_2 (n/2)) + n = c_1 n^2 2 c_2 n + n$ = $c_1 n^2 - c_2 n + (1 - c_2) n$
 - Since $(1 c_2) = 0$, $T(n) \le c_1 n^2 c_2 n$.

Summary for substitution method

Guess the time complexity and verify that it is correct by induction.

- Sometimes, the verification is a bit tricky.
- Sometimes, guessing the correct expression is also difficult and need experience. So I will <u>suggest not to use this method</u> as a beginner (unless you feel comfortable).

Powering a number

Powering a number

- Problem: Compute f(n,m) = aⁿ (mod m) for any integer n,m.
 (Assume each of n,m fits into one/constantly many words)
- Observation: $f(x+y,m) = f(x,m)*f(y,m) \pmod{m}$.
- Naïve solution:
- 1. Divide: Trivial.
- 2. Conquer: Recursively compute f(n-1,m) and f(1,m).
- 3. Combine: f(n-1,m)*f(1,m) (mod m).

Running time of naïve solution

Divide: Trivial.
 Conquer: Recursively compute f(n-1,m) and f(1,m)
 Combine: f(n-1,m)*f(1,m) (mod m).
 Not affected by m
 T(n) = T(n-1) + T(1) + Θ(1)
 By recursion tree, we have T(n) = Θ(n).
 T(1)
 height = n

A better algorithm for powering a number

- 1. Divide: Trivial.
- 2. Conquer: Recursively compute $f(\lfloor n/2 \rfloor, m)$
- 3. Combine: $f(n,m) = f(\lfloor n/2 \rfloor, m)^2$ (mod m) if n is <u>even</u>; $f(n,m) = f(1,m) * f(\lfloor n/2 \rfloor, m)^2$ (mod m) if n is <u>odd</u>.
- $T(n) = T(n/2) + \Theta(1)$.
- By master theorem, we have $T(n) = \Theta(\log n)$.

Acknowledgement

- The slides are modified from
 - the slides from Prof. Erik D. Demaine and Prof. Charles E. Leiserson
 - the slides from Prof. Leong Hon Wai
 - the slides from Prof. Lee Wee Sun
 - the slides from Prof. Ken Sung
 - the slides from Prof. Diptarka Chakraborty
 - the slides from Prof. Arnab Bhattacharyya