Математический анализ

Конспект лекций С.В. Кислякова

19 апреля 2021 г.

МКН СПбГУ

Анализ. Третий семестр
Colophon
This document was typeset with the help of KOMA-Script and LATEX using the kaobook class. Publisher First printed in May 2019 by МКН СПбГУ
1

Оглавление

Or	лавл	пение	iii	
1	Mep	ра	1	
	1.1	Первые определения	. 1	
	1.2	(Полу)кольца, алгебры	. 2	

глава 1

Mepa

1.1. Первые определения

Definition 1.1.1 Пусть X — множество, $\mathscr{A} \subseteq \mathscr{P}(X)$. Мера — это функция $\mu: \mathscr{A} \to [0, +\infty]$, обладающая свойством аддитивности: если $A = \bigsqcup_{i=1}^N A_i, A_i \in \mathscr{A}$, то $\mu(A) = \sum_{i=1}^N \mu(A_i)$.

цет ри-

Это первое "рабочее" определение меры. Впоследствии оно будет меняться, где-то мы будем его ослаблять, где-то усиливать. Например, когда-нибудь может понадобиться изменение условия на область значений:

[0, +∞) конечная мера

- В Вещественная мера ("заряд")
- С Комплексная мера

Example 1.1.1 \mathscr{A}_0 – множество всех конечных отрезков, $f: \mathbb{R} \to \mathbb{R}$ – возрастающая функция. Тогда *квазидлина* $l_f: \langle a,b \rangle \mapsto f(b)$ – $f(a): \mathscr{A}_0 \to \mathbb{R}_{\geq 0}$ – мера. Аддитивность очевидна: если $a_0 = a \leq a_1 \leq ... \leq a_n = b$, то $l_f(\langle a,b \rangle) = \sum_{i=1}^n l_f(\langle a_{i-1},a_i \rangle) = f(a_n) - f(a_0)$.

При $f: x \mapsto x$ получается обычная длина.

напомню, что у нас отрезками называются множества $\langle a,b \rangle, a \leq b,$ без любых ограничений на принадлежность концов

Напомню, что символом $\mathcal{P}(X)$ обозна-

чается множество всех подмножеств

Example 1.1.2 Обычную длину можно считать мерой, заданной на множестве *всех* отрезков: $l(I) = +\infty$, если I – луч или $\mathbb R$. Тогда для конечных отрезков все то же самое, а для бесконечных отрезков заметим, что если они представляются в виде объединения, то одно из объединяемых множеств будет бесконечно.

и бесконечных тоже

Example 1.1.3 $P(\mathbb{R}^n) = \{I_1 \times \dots \times I_n | I_i \in \mathcal{A}\}$ — совокупность всех прямоугольных параллелепипедов (со сторонами, параллельными осям). $l_P(I_1 \times \dots I_n) = \prod_{i=1}^n l(I_i)$. Длины могут быть бесконечными, поэтому считаем, что $+\infty \cdot 0 = 0$, $+\infty \cdot x = +\infty$, x > 0, $+\infty \cdot +\infty = +\infty$.

Или $P_0(\mathbb{R}^n)$ и \mathcal{A}_0 соотвественно

Это действительно мера, но доказывать мы это пока не будем, а потом докажем общее утверждение.

Example 1.1.4 (Считающая мера) Если есть функция $\phi: X \to \mathbb{R}_{\geq 0}$, то можно определить меру как $A \mapsto \sum_{a \in A} \phi(a)$.

Ее частный случай, когда ϕ = 1:

$$A \mapsto \begin{cases} |A| & A \text{ конечно,} \\ +\infty & \text{иначе} \end{cases}$$

1.2. (Полу)кольца, алгебры

Definition 1.2.1 $\mathscr{A} \subseteq \mathscr{P}(X)$ называют **кольцом**, если это множество замкнуто относительно конечных объединений, пересечений, и разности. \mathscr{A} называют **алгеброй**, если это кольцо и $X \in \mathscr{A}$.

Непустое кольцо содержит пустое множество: $A \in \mathcal{A} \Rightarrow \emptyset$ = $A \setminus A \in \mathcal{A}$.

Definition 1.2.2 $\mathscr{A} \subseteq \mathscr{P}(X)$ называют полукольцом, если

- 1. $\emptyset \in \mathcal{A}$
- 2. $A, B \in \mathcal{A} \Rightarrow A \cap B \in \mathcal{A}$
- 3. $A, B \in \mathcal{A} \implies A \setminus B = \bigsqcup_{i=1}^{n} C_i, C_i \in \mathcal{A}$

Theorem 1.2.1 $\mathscr{A} \subseteq \mathscr{P}(X), \mathscr{B} \subseteq \mathscr{P}(Y)$ — полукольца. Тогда $C = \{A \times B | A \in \mathscr{A}, B \in \mathscr{B}\}$ — полукольцо в $X \times Y$.

Доказательство.

Правильнее было бы называть ее *алгеб-рой множеств*, но так почему-то не депают

Example 1.2.1 Очевидные примеры: множество конечных подмножеств X – кольцо, $\mathcal{P}(X)$ – алгебра.

Заметим, что если выполнены условия 1,2, то условие 3 можно проверять только для $A,B:B\subseteq A$, так как $A\setminus B=A\setminus (A\cap B)$