Lab 3 Mini-Lecture

Categorical MLM

1

Today's Roadmap

- General feedback and review
 - Assignment 2
 - Review models and excel file
- Exercise 3
 - Starting today
 - Will finish on Monday

Thailand Education Data

- 7516 pupils in primary schools
 - Example data from HLM
- Outcome variable dichotomous
 - Repeat a class (1) or not (0)
- Pupil level predictors
 - sex (1=male, 0=female)
 - pre-primary education (PPED: 1=yes, 0=nc
- School level predictor
 - Mean SES

Emmeke Aarts

Multilevel analysis - lecture 3

3

3

Generalized linear model

- To analyze dichotomous multilevel data in R, we need to use the function glmer() instead of lmer()
 - where 'g' stands for generalized of the generalized linear model.
- Regression portion similar to Imer
 - Follows the same structure we have been using already

glmer

- Need to specify appropriate link function
- Also, need to adjust the number of points per axis for evaluating the adaptive Gauss-Hermite approximation to the log-likelihood using nAGQ = 10 in order to ensure convergence of the model
- https://www.rdocumentation.org/packages/lme4/versions/1.1-26/topics/glmer

5

Let's get started

- Read in and view the data
- Specify the model with the random intercept and no predictors.
 - Compare to table from class

M1 <- glmer(rep1~1 + (1|schoolid), data = dat, family = binomial, nAGQ = 10)

Thailand Education Data

Model	Empty model		Predictors level 1, fixed effects		
Predictor	par est	SE	par est	SE	Odds ratio
Fixed part					
threshold	-2.23	0.08	-2.23	0.10	
Sex (female=ref)			0.54	0.07	1.71
PPED (no=ref)			-0.64	0.10	0.53
Mean SES					
Random part		SD		SD	
Intercept school level	1.73	1,31	1.69	1,30	
Model fit					
Deviance	5537.4		5443.5		
AIC Emmeke Aarts	5541.4		5451.5 Multilevel analysi	s - lecture 3	

7

Continue with exercise

- Set up the model with the level 1 predictors male and pped.
- Once parameters match previous table, obtain the variance of the linear predictor in either R or SPSS using the obtained regression coefficients for the level 1 predictors (and intercept).
- Variance of linear predictor of fixed part $\,\sigma_F^2$ can be calculated in R or SPSS using estimates of regression coefficients

Recall example from class: Variance of the linear predictor

ID	sex	age	 $\gamma_{00} + \gamma_{10} sex_{ij} + \gamma_{10} age_{ij}$		
1	0	23	-2.8		
2	0	20	-2.71		
3	1	19	$-2.27 \qquad \sigma_F^2 =$		
4	1	25	-2.45 <- var		
5	1	24	-2.42		
6	0	28	-2.95		
7	1	22	-2.36		

$$Y_{ij} = \gamma_{00} + \gamma_{10} sex_{ij} + \gamma_{20} age_{ij}$$

$$Y_{ij} = -2.11 + 0.41 \, sex_{ij} - 0.03 \, age_{ij}$$

Emmeke Aarts Multilevel analysis - lecture 3

9

Helpful reminder of definitions of logit and odds from class slides

 p_{ij} = probability of repeating a class

$$logit(p_{ij}) = -2.237 + 0.536sex_{ij} - 0.642pped_{ij} + u_{0j}$$

$$odds = \frac{p_{ij}}{1 - p_{ij}}$$

$$\frac{odds \ ratio}{odds_{females}} = \frac{odds_{males}}{odds_{females}} = e^{0.536} = 1.709$$

Emmeke Aarts Multilevel analysis - lecture 3

Interpretation of model parameters

Qualitative interpretation for sex

Males have higher probability of repeating a class than females

Quantitative interpretation for sex

- On logit scale:
- What both interpretation. Logit probability of repeating a class is 0.536 higher for males than for females (effect is <u>additive</u> on logit scale)
- The great full title, Using odds ratios
- Odds of repeating a class are 1.709 times as high for males as for females & the quantitative (effect is multiplicative on odds scale)

W) all the stats , odds ratio, significance value. etch

In sloving sheet

In the exam,

highly recommend, in the exam, you interpret in terms of colds ratio

Thailand Education Data

•
$$\rho = \frac{\sigma_{u0}^2}{\sigma_{u0}^2 + \sigma_R^2} = \frac{1.725}{1.725 + 3.29} = 0.331$$

- Estimates of variance components
 - $\sigma_{u0}^2 = 1.627$ $\sigma_R^2 = 3.290$

 - $\sigma_E^2 = 0.176$
- Explained and unexplained variance
 - Explained:

$$\frac{\sigma_F^2}{(\sigma_F^2 + \sigma_{u0}^2 + \sigma_R^2)} = 0.035$$

- Unexplained level 1:
- Unexplained level 2:

$$\frac{\sigma_F^{2} + \sigma_{u0}^{2} + \sigma_R^{2}}{(\sigma_F^{2} + \sigma_{u0}^{2} + \sigma_R^{2})} = 0.319$$

Emmeke Aarts

Multilevel analysis - lecture 3