Ing. dell'Automazione, Elettrica, Elettronica, Informatica e delle Telecomunicazioni

ANALISI MATEMATICA 1 - docente Cipriani - 1 settembre 2023

Cognome e nome	
----------------	--

Codice Persona:

DOMANDE A RISPOSTA MULTIPLA

Per ogni quesito, indicare con una croce l'unica risposta corretta. Per annullare una risposta già data, racchiudere la croce in un cerchio.

- 1. [punti 2] Sia $f: \mathbb{R} \to \mathbb{R}$. La proposizione $\forall \epsilon > 0, \exists \delta > 0: |x x_0| < \delta \Rightarrow |f(x) \lambda| < \epsilon + 2$
 - (a) è la definizione di $\lim_{x\to x_0} f(x) = \lambda$;
 - (b) è la definizione di f continua in x_0 ;
 - (c) è la definizione di $\lim_{x\to x_0} f(x) = \lambda + 2$;
 - (d) implica che f sia limitata in un intorno di x_0 ma non implica l'esistenza del limite;
 - (e) nessuna delle altre risposte è corretta.
- 2. [punti 1] L'insieme degli $z\in\mathbb{C}$ tali che $\bar{z}-z\in(0,+\infty)$ è
 - (a) l'asse immaginario;
 - (b) il semiasse immaginario con coefficiente positivo;
 - (c) il solo punto $-\frac{1}{2}i$;
 - (d) formato da esattamente due punti;
 - (e) nessuna delle altre risposte è corretta.
- 3. [punti 2] Il numero delle soluzioni dell'equazione $|\log |x|| = 10$, con $x \in \mathbb{R} \setminus \{0\}$ è
 - (a) 1;
 - (b) 2;
 - (c) 3;
 - (d) 4;
 - (e) nessuna delle altre risposte è corretta.
- 4. [punti 1] Sia f una funzione convessa. È vero che
 - (a) f ha almeno un punto di minimo ma può averne piú di uno;
 - (b) f ha esattamente un punto di minimo;
 - (c) $\lim_{x\to+\infty} f(x) = +\infty$;
 - (d) f può non avere punti estremanti;
 - (e) nessuna delle altre risposte è corretta.

- 5. [punti 2] Sia F la funzione integrale definita da $F(x)=\int_1^x{(3-t)^{\frac{1}{3}}}\,dt$. È vero che
 - (a) F è discontinua in x = 3;
 - (b) F ha un punto di flesso a tangente orizzontale in x = 3;
 - (c) F non è derivabile in x = 3;
 - (d) F ha un punto di massimo in x = 3;
 - (e) nessuna delle altre risposte è corretta
- 6. [punti 1] Quale delle seguenti funzioni è una primitiva della funzione f definita da $f(x) = \frac{x^3}{1+x^4}$?
 - (a) $\arctan x^2$;
 - (b) $\frac{1}{4}\log(1+x^4)$;
 - (c) $\frac{1}{(1+x^4)^2}$;
 - (d) $\frac{\log(1+x^4)}{x^3}$;
 - (e) nessuna.
- 7. [punti 1] Quale dei seguenti può essere un grafico qualitativo, in un intorno di x=0, della funzione f definita da $f(x)=\left(x^3\cdot\sin x\right)^{\frac{1}{5}}$?

TEORIA

Teoria 1. [punti 4] Enunciare e dimostrare il Teorema degli Zeri.

Teoria 2. [punti 3] Fornire la definizione di successione convergente e di successione divergente. Corredare la discussione con opportuni esempi.

Teoria 3. [punti 3] Fornire la definizione di funzione derivabile in un punto. Classificare i punti di non derivabilità, corredando la discussione con opportuni esempi.

ESERCIZI

Esercizio 1. [punti 5] Studiare la funzione f definita da

$$f(x) = e^{\frac{x^2 - 2|x|}{x+1}},$$

e disegnarne un grafico qualitativo (non è richiesto lo studio della derivata seconda).

Esercizio 2. [punti 4] Calcolare, dopo aver giustificato l'integrabilita' della funzione integranda, l'integrale

$$I := \int_{1}^{+\infty} \frac{\arctan\left(\sqrt{x}\right)}{\sqrt{x}(1+x)} \ dx.$$

Esercizio 3. [punti 3] Sia

$$a_n = \frac{1}{\sqrt{n}} - \ln\left(1 + \frac{1}{\sqrt{n}}\right).$$

- (2.1) Stabilire il carattere della serie $\sum_{n=1}^{\infty} a_n$.
- (2.2) Stabilire il carattere della serie $\sum_{n=1}^{\infty} (-1)^n a_n$.