# Reactive Scheduling of Computational Resources in Control Systems

### Hodai Goldman

Ben-Gurion University of the Negev Department of Computer Science

January 1, 2018

- 1 Automata-based Scheduling
  - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- 2 Integration with Kalman
  - Guiding Concept
  - Guided Tour Simulation
- 3 Experiment with real-life case-study
  - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- Conclusion
  - Conclusion
  - Related Work



- Automata-based Scheduling
  - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- - Guiding Concept
  - Guided Tour Simulation
- - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- - Conclusion
  - Related Work

# An control problem example

present the example: robot moving in root with obstacles, mission 1: avoid obstetrical(camera), mission 2: follow the guiding root(GPS)

### The Traditional Solution



### Constant time steps + periodic tasks

| time steps |                     |        |          |  |
|------------|---------------------|--------|----------|--|
| figure+    | Task                | Period | Deadline |  |
|            | Check for obstacles | 10ms   | 1.5ms    |  |
|            | Check GPS position  | 10ms   | 0.5ms    |  |
|            | Control Law         | 2ms    | 0ms      |  |
|            |                     |        |          |  |

# The Main Software Design Problems

| Task                | Period | Deadline |  |  |
|---------------------|--------|----------|--|--|
| Check for obstacles | 10ms   | 1.5ms    |  |  |
| Check GPS position  | 10ms   | 0.5ms    |  |  |
| Control Law         | 2ms    | 0ms      |  |  |
| •••                 |        |          |  |  |

### The design problems from our point of view

- All the tasks are highly coupled: any change or addition of some task require to consider all other tasks requirements
- Static and inefficient scheduling: the table is defined for the worst case talk about related work on this direction
- No consideration of the environmental conditions: it is a cyber-physical system after all



### The Goal

In this thesis we design an **reactive** scheduling framework for real-time systems

### Required features:

- Independent and composable requirements
- Control objective based requirement interface
- Environment adoptive scheduler

- Automata-based Scheduling
  - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- 2 Integration with Kalman
  - Guiding Concept
  - Guided Tour Simulation
- 3 Experiment with real-life case-study
  - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- 4 Conclusion
  - Conclusion
  - Related Work







### Explain that the scheduler is involve in the control loops



Scheduler Kalman Filter Experiment Conclusion Motivation Architecture Büchi Games

# Automata-Based Specification Interface

The Proposed Architecture

### maybe add a word about RTcomposer and GameComposer



### Why Automata

- Lite: minimal resource consumption at run-time
- Composable: easy to compose independent components
- Automata theory built in: allows for tools such GOAL
- Expressiveness

# The Proposed Architecture







# Simplifying the Guarded Automata

### The Proposed Architecture

# Mode-based guarded automata (for good intuition) no obstacles in frame no obstacles in frame High

1

### The automata in practice (best match $\omega$ -word theory)



Q: How to create the guarded automata? By wining Büchi

games



- Automata-based Scheduling
  - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- 2 Integration with Kalman
  - Guiding Concept
  - Guided Tour Simulation
- 3 Experiment with real-life case-study
  - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- 4 Conclusion
  - Conclusion
  - Related Work

# Büchi game remainder



# Büchi game remainder



# A Component in the System



# Component Definition $(\langle T, G \rangle)$

- A set of subroutines (functions code)
- A Generalize Büchi Game



Scheduler Kalman Filter Experiment Conclusion Motivation Architecture Büchi Games

# A Component in the System



# The Büchi game $(G = \langle A, \langle P_{sched}, P_{env} \rangle \rangle)$

- Is played in turns by the environment and the scheduler
- Represent the interaction between the scheduler and the environment reaction

# Scheduling Büchi Game

### A Component in the System



### Scheduling Büchi Game

- Alternating turns
- Scheduler alphabet is  $\Sigma_{schd} = 2^T$
- ullet Environment alphabet is  $\Sigma_{env}=\mathbb{R}^n$  (scheduler feedback variables)
- There is an Edge for any possible environmental outcome
- The scheduler feedback variables can be any environment-depended value
- Environment player plays first

The Büchi Game of the obstacles avoidance component:



- The objectives of the component is to avoid obstacles
- The scheduler win  $\Leftrightarrow$  the corresponding word  $\omega \in \mathcal{L}(A) \Leftrightarrow$ the component achieved his objectives

# Component Composition





### Requirements

- A game  $(G = \langle A, \langle P_s, P_e \rangle \rangle)$  correspond to all the components
- The game of Component is  $G_i = \langle A_i, \langle P_s^i, P_e^i \rangle \rangle$
- $\omega \in \mathcal{L}(A) \Leftrightarrow \forall i : \omega(i) \in \mathcal{L}(A_i)$



- - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- Integration with Kalman
  - Guiding Concept
  - Guided Tour Simulation
- - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- - Conclusion
  - Related Work



- - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- Integration with Kalman
  - Guiding Concept
  - Guided Tour Simulation
- - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- - Conclusion
  - Related Work





- - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- - Guiding Concept
  - Guided Tour Simulation
- Experiment with real-life case-study
  - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- - Conclusion
  - Related Work



1. mission definition 2. scheduling objectives 3. how we review the results (the x axis) 4. add a

- - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- - Guiding Concept
  - Guided Tour Simulation
- Experiment with real-life case-study
  - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- - Conclusion
  - Related Work





1. why not Kalman2. how we use complementary filter 3. the linearize model in x / roll axis 4. update state (equa-

- - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- - Guiding Concept
  - Guided Tour Simulation
- Experiment with real-life case-study
  - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- - Conclusion
  - Related Work





# the automata and their results

- Automata-based Scheduling
  - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- Integration with Kalman
  - Guiding Concept
  - Guided Tour Simulation
- 3 Experiment with real-life case-study
  - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- 4 Conclusion
  - Conclusion
  - Related Work



instead of with Related

- 1 Automata-based Scheduling
  - Motivation
  - Component-based Architecture
  - Büchi Games Interface
- 2 Integration with Kalman
  - Guiding Concept
  - Guided Tour Simulation
- 3 Experiment with real-life case-study
  - The Mission
  - Simplifying the Kalman filter with complementary filter
  - Results
- 4 Conclusion
  - Conclusion
  - Related Work





# **Thanks**