Universidade Federal de Goiás Professora Telma Woerle de Lima Soares telma_woerle@ufg.br

Heurísticas e Modelagem Multiobjetivo

42

Tópico: Algoritmos Genéticos

Objetivo

Compreender os conceitos básicos do Algoritmo Genético

Referências

https://repositorio.usp.br/directbitstream/7472618b-87b3-4077-a1ca-eb5f40a0542c/nd_75.pdf
https://www.youtube.com/watch?v=yfNFXw5j8Jo

Atividades

Nesta atividade vamos explorar o desempenho e o efeito dos parâmetros nos algoritmos genéticos para o problema da mochila.

Claro! Aqui está uma definição do problema da mochila:

Problema da Mochila (Knapsack Problem)

Definição: O problema da mochila é um clássico problema de otimização combinatória. Dado um conjunto de itens, cada um com um peso e um valor, o objetivo é determinar a combinação de itens que pode ser colocada em uma mochila de capacidade limitada de forma a maximizar o valor total dos itens na mochila.

Elementos do Problema:

- Capacidade da Mochila: A capacidade máxima que a mochila pode suportar, geralmente expressa em unidades de peso.
- Itens: Um conjunto de itens, onde cada item tem um peso e um valor associado.

Universidade Federal de Goiás Professora Telma Woerle de Lima Soares telma_woerle@ufg.br

Heurísticas e Modelagem Multiobjetivo 2025/1

43

 Objetivo: Selecionar os itens de forma que o valor total seja maximizado sem exceder a capacidade da mochila.

Formulação Matemática: Seja (n) o número de itens, (w_i) o peso do item (i), (v_i) o valor do item (i), e (W) a capacidade máxima da mochila. O problema pode ser formulado como:

$$Maximizar \sum_{i=1}^{n} v_{i} x_{i}$$

Sujeito a:

$$\sum_{i=1}^{n} w_{i} x_{i} \leq W$$

Onde (x_i) é uma variável binária que indica se o item (i) é incluído na mochila (($x_i=1$)) ou não (($x_i=0$)).

Aplicações:

Universidade Federal de Goiás Professora Telma Woerle de Lima Soares telma_woerle@ufg.br

Heurísticas e Modelagem Multiobjetivo 2025/1

44

O problema da mochila tem diversas aplicações práticas, incluindo:

- Planejamento de Recursos: Alocação de recursos limitados para maximizar benefícios.
- Logística: Otimização de carga em transporte.
- Investimentos: Seleção de portfólio de investimentos para maximizar retorno.

Nesta atividade deve ser desenvolvido um algoritmo genético, código de referência em https://github.com/thieu1995/mealpy/blob/master/mealpy/evolutionary_based/GA.py, para resolver o problema da mochila com os itens da tabela a segui. Cada item pode ser representado por um bit (0 ou 1), onde 1 indica que o item é incluído na mochila e 0 indica que o item é excluído.

Item	Peso (kg)	Valor (R\$)
1	8	3
2	4	6
3	7	16
4	2	9
5	6	7
6	10	8
7	3	5
8	5	11
9	11	13
10	9	14

Considere que a mochila possui como restrição o peso máximo de 30kg. Defina a função de aptidão para calcular o valor total dos itens na mochila, penalizando soluções que excedem 30kg.

Adapte o código do algoritmo genético para representar a solução em formato binário.

Universidade Federal de Goiás Professora Telma Woerle de Lima Soares telma_woerle@ufg.br

Heurísticas e Modelagem Multiobjetivo

45

- Execute o algoritmo e colete as soluções com as seguintes configurações com a seleção dos indivíduos por torneio.
 - Experimento 1: Exploração Inicial

■ Tamanho da População: 200

Quantidade de Gerações: 100

■ Taxa de Mutação: 0.05 (5%)

■ Taxa de Crossover: 0.7 (70%)

o Experimento 2: Exploração e Intensificação Equilibrada

■ Tamanho da População: 150

Quantidade de Gerações: 75

■ Taxa de Mutação: 0.02 (2%)

■ Taxa de Crossover: 0.85 (85%)

• Experimento 3:

■ Tamanho da População: 300

Quantidade de Gerações: 150

■ Taxa de Mutação: 0.1 (10%)

■ Taxa de Crossover: 0.9 (90%)

- Repita os experimentos anteriores considerando agora preservar para a próxima geração
 5% do tamanho da população (elitismo). No que essa característica influência o resultado final?
- Analise a evolução das soluções ao longo das gerações por meio de gráficos.
- Repita cada experimento pelo menos 5 vezes e apresente os resultados estatísticos entre essas 5 execuções