Machine Learning

VC-Dimension

Fabio Vandin

November 11th, 2022

PAC Learning

Question: which hypothesis classes \mathcal{H} are PAC learnable?

Up to now: if $|\mathcal{H}| < +\infty \Rightarrow \mathcal{H}$ is PAC learnable.

What about \mathcal{H} : $|\mathcal{H}| = +\infty$? Not PAC learnable?

We focus on:

- binary classification: $\mathcal{Y} = \{0, 1\}$
- 0-1 loss

but similar results apply to other learning tasks and losses.

Restrictions

Definition (Restriction of **#** to **6**)

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $\mathcal{C} = \{c_1, \dots, c_m\} \subset \mathcal{X}$. The restriction $\mathcal{H}_{\mathcal{C}}$ of \mathcal{H} to \mathcal{C} is:

$$\mathcal{H}_C = \{[h(c_1), \ldots, h(c_m)] : h \in \mathcal{H}\}$$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

if
$$|\mathcal{Y}|_{2,3}$$

$$1 \leq |\mathcal{Y}_{\mathbf{c}}| \leq 2^{m}$$

Restrictions

Definition (Restriction of \mathcal{H} to \mathcal{C})

Let \mathcal{H} be a class of functions from \mathcal{X} to $\{0,1\}$ and let $C = \{c_1, \dots, c_m\} \subset \mathcal{X}$. The restriction \mathcal{H}_C of \mathcal{H} to C is:

$$\mathcal{H}_C = \{ [h(c_1), \ldots, h(c_m)] : h \in \mathcal{H} \}$$

where we represent each function from C to $\{0,1\}$ as a vector in $\{0,1\}^{|C|}$.

Note: \mathcal{H}_C is the set of functions from C to $\{0,1\}$ that can be derived from \mathcal{H} .

VC-dimension and Shattering

Definition (Shattering)

Given $C \subset \mathcal{X}$, \mathcal{H} shatters \mathfrak{C} if $\mathcal{H}_{\mathfrak{C}}$ contains all $2^{|C|}$ functions from C to $\{0,1\}$.

$$|C| = m : 2 = 2$$

$$|\mathcal{X}_c|$$

VC-dimension and Shattering

Definition (Shattering)

Given $C \subset \mathcal{X}$, \mathcal{H} shatters C if \mathcal{H}_C contains all $2^{|C|}$ functions from C to $\{0,1\}$.

Definition (VC-dimension)

The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} .

Notes:

- VC = Vapnik-Chervonenkis, that introduced it in 1971
- if \mathcal{H} can shatter sets of arbitrarily large size then we say that $VCdim(\mathcal{H}) = +\infty$;
- if $|\mathcal{H}| < +\infty \Rightarrow VCdim(\mathcal{H}) \leq \log_2 |\mathcal{H}|$

VC-dimension and Shattering

Definition (Shattering)

Given $C \subset \mathcal{X}$, \mathcal{H} shatters C if \mathcal{H}_C contains all $2^{|C|}$ functions from C to $\{0,1\}$.

Definition (VC-dimension)

The VC-dimension $VCdim(\mathcal{H})$ of a hypothesis class \mathcal{H} , is the maximal size of a set $C \subset \mathcal{X}$ that can be shattered by \mathcal{H} .

Notes:

- VC = Vapnik-Chervonenkis, that introduced it in 1971
- if \mathcal{H} can shatter sets of arbitrarily large size then we say that $VCdim(\mathcal{H}) = +\infty$;
- if $|\mathcal{H}| < +\infty \Rightarrow VCdim(\mathcal{H}) \leq \log_2 |\mathcal{H}|$

Intuition: the VC-dimension measures the *complexity* of \mathcal{H} (\approx how large a dataset that is perfectly classified using the functions in \mathcal{H} can be)

Note

To show that $VCdim(\mathcal{H}) = d$ we need to show that:

- **1** $VCdim(\mathcal{H}) \geq d$
- **2** $VCdim(\mathcal{H}) \leq d$

that translates to

- 1 there exists a set C of size d which is shattered by H
- 2 every set of size d+1 is not shattered by \mathcal{H}

Question: why don't we need to consider sets of size > d + 1?

Example: Threshold Functions

$$\mathcal{H} = \{h_a: a \in \mathbb{R}\}$$

$$\mathcal{H} = \{h_a: a \in \mathbb{R}\}$$
 where $h_a: \mathbb{R} \to \{0,1\}$ is
$$h_{7.3}$$

$$h_{\sigma}(x) =$$

$$h_{a}(x) = \mathbb{1}[x < a] = \begin{cases} 1 & \text{if } x < a \end{cases}$$

$$h_{b}(x) = \mathbb{1}[x < a] = \begin{cases} 1 & \text{if } x < a \end{cases}$$

$$0 & \text{if } x \ge a \end{cases}$$

$$h_{a}(x) = \mathbb{1}[x < a] = \begin{cases} 1 & \text{if } x < a \\ 0 & \text{if } x \ge a \end{cases}$$

$$\begin{cases} 1 & \text{if } x < a \\ 0 & \text{of } x \ge a \end{cases}$$

VC dim(H) 7,5? YES

instance

$$h_{\partial_1}$$
 h_{∂_2}
 h_{∂_2}
 h_{∂_3}
 h_{∂_4}
 h_{∂_4}
 h_{∂_5}
 h_{∂_5}
 h_{∂_5}
 h_{∂_5}
 h_{∂_5}
 h_{∂_5}
 h_{∂_5}
 h_{∂_5}
 h_{∂_5}

Example: Threshold Functions

$$\mathcal{H} = \{h_a : a \in \mathbb{R}\}$$

where $h_a: \mathbb{R} \to \{0,1\}$ is

$$h_a(x) = \mathbb{1}[x < a] =$$

$$\begin{cases} 1 & \text{if } x < a \\ 0 & \text{if } x \ge a \end{cases}$$

VC-dimension? C_3 C_2 $C_3 < C_2$ $C_3 < C_2$ $C_4 < C_5 < C_2$ $C_5 < C_6$ $C_7 < C_8 < C_8$ $C_8 < C_8$ $C_8 < C_9$ $C_9 < C_9$ C

Example: Intervals

$$\mathcal{H} = \{ h_{\mathsf{a},\mathsf{b}} : \mathsf{a},\mathsf{b} \in \mathbb{R}, \mathsf{a} < \mathsf{b} \}$$

where $h_{a,b}: \mathbb{R} \to \{0,1\}$ is

$$h_{a,b}(x) = \mathbb{1}[x \in (a,b)] = \begin{cases} 1 & \text{if } a < x < b \\ 0 & \text{otherwise} \end{cases}$$

VC-dimension?

Example: Axis Aligned Rectangles

$$\mathcal{H} = \{h_{(a_1,a_2,b_1,b_2)} : a_1, a_2, b_1, b_2 \in \mathbb{R}, a_1 \leq a_2, b_1 \leq b_2\}$$

$$h_{(a_1,a_2,b_1,b_2)}(x_1,x_2) = \begin{cases} 1 & \text{if } a_1 \le x_1 < a_2, b_1 \le x_2 \le b_2 \\ 0 & \text{otherwise} \end{cases}$$

VC-dimension?

Example: Convex Sets

Model set \mathcal{H} such that for $h \in \mathcal{H}$, $h : \mathbb{R}^2 \to \{0,1\}$ with

$$h(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in S \\ 0 & \text{otherwise} \end{cases}$$

where S is a convex subset of \mathbb{R}^2

VC-dimension?