Содержание

1	Линейное пространство над произвольным полем. Ранг и база системы векторов.	2
2	Изоморфизм линейных пространств.	2
3	Сумма и пересечение линейных пространств.	3
4	Прямая сумма линейных пространств.	3
5	Евклидово и унитарное пространство. Неравенство Коши-Буняковского.	4
6	Скалярное произведение в ортонормированном базисе. Существование ортонормированного базиса.	5
7	Изометрия.	Ę
8	Матрица Грама. Критерий линейной независимости.	F

1 Линейное пространство над произвольным полем. Ранг и база системы векторов.

Опр. Множество V называется линейным пространством над полем \mathbb{P} , если V является аддитивной абелевой группой относительно операции сложения векторов, а операция умножения вектора на число обладает следующими свойствами:

- $(\alpha\beta)v = \alpha(\beta v)$;
- $(\alpha + \beta)v = \alpha v + \beta v$;
- $\alpha(v+u) = \alpha v + \alpha u$;
- 1 * v = v

Эти свойства выполняются для любых чисел $\alpha, \beta \in \mathbb{P}$ и любых векторов $u, v \in V$.

Опр. Рангом системы векторов называется максимальное число линейно независимых векторов системы.

Опр. Базой системы векторов называется базис их линейной оболочки, состоящий из векторов системы.

2 Изоморфизм линейных пространств.

Опр. Гомоморфизмом двух линейных пространств V и W над одним полем \mathbb{P} называется отображение $\varphi: V \to W$ такое, что $\varphi(\alpha v + \beta u) = \alpha \varphi(v) + \beta \varphi(u) \, \forall u, v \in V$. Если отображение φ взаимооднозначно (является биекцией), то оно называется изоморфизмом.

Теорема. Два линейных пространства над одним полем изоморфны тогда и только тогда, когда они имеют одинаковую размерность.

Д-во. (\Longrightarrow) Пусть линейные пространства V и W над полем $\mathbb P$ изоморфны, и $\varphi:V\to W$. Рассмотрим базис $V:v_1,\ldots,v_n$. $\forall y\in W,\,y\neq\theta\exists x\in V,\,x\neq0:\varphi(x)=y$. Далее $\forall x\in V\,\exists\alpha_1,\ldots,\alpha_n\in\mathbb P:x=\alpha_1v_1+\cdots+\alpha_nv_n,\,y=\varphi(x)=\alpha_1\varphi(v_1)+\cdots+\alpha_n\varphi(v_n)$. Значит любой вектор из W линейно выражается через образы базисных векторов V. А так же образы этих векторов линейно независимы. Если бы существовала нетривиальная линейная комбинация этих векторов равная нулю, то $\theta=\beta_1\varphi(v_1)+\cdots+\beta_n\varphi(v_n)=\varphi(\beta_1v_1+\cdots+\beta_nv_n)=\varphi(0)$, получили что векторы v_1,\ldots,v_n линейно зависимы - противоречие. Значит образ базисных векторов в V является базисом в W, а значит их количество совпадает и размерности линейных пространств равны.

 (\Leftarrow) Пусть V, W - линейные пространства над полем \mathbb{P} и $\dim V = \dim W = n, e_1, \ldots, e_n$ - базис V, f_1, \ldots, f_n - базис W. Построим отображение $\varphi: V \to W$, поставим в соответствие каждому вектору $x = \sum_{i=1}^n \alpha_i e_i$ вектор $y = \sum_{i=1}^n \alpha_i f_i \in W$. В силу единственности разложения вектора по базису отображение φ . При этом φ - изоморфизм, так как координаты вектора обладают свойством линейности.

3 Сумма и пересечение линейных пространств.

Опр. Непустое подмножество $L \subseteq V$ называется подпространством линейного пространства V, если оно само является линейным пространством относительно операций, действующих в V. Для этого необходимо и достаточно, чтобы результата этих операций над векторами из L оставался в L.

Опр. Сумма подпространств $L = L_1 + \dots + L_s$ пространства V называется множество вида $L = \{x_1 + \dots + x_s : x_1 \in L_1, \dots, x_s \in L_s\}$, которое так же является подпространством V. Пересечением подпространств L_1, \dots, L_n пространства V называется множество $L = \{x : x \in L_1, \dots, L_n\}$, которое так же является подпространством V.

Теорема (Теорема Грассмана). Пусть L и M - конечно мерные подпространства некоторого линейного пространства. Тогда $\dim(L+M) = \dim L + \dim M - \dim(L\cap M)$.

 \mathcal{A} -во. Рассмотрим базис g_1, \ldots, g_r подпространства $L \cap M$ и дополним его до базисов L и M:

$$g_1, \ldots, g_r, p_1, \ldots, p_k$$
 (базис L) $g_1, \ldots, g_r, q_1, \ldots, q_m$ (базис M).

Заметим, что вектора $p_1, \ldots, p_k, q_1, \ldots, q_m$ линейное независимы, так как если бы они были линейно зависимы, то существовал бы вектор q_i , который выражается через p_1, \ldots, p_k , а значит принадлежит $L \cap M$ - противоречие.

Ясно, что L+M является линейной оболочкой векторов $g_1,\ldots,g_r,p_1,\ldots,p_k,q_1,\ldots,q_m$ и остается лишь установить их линейную независимость. Пусть

$$\alpha_1 g_1 + \dots + \alpha_r g_r + \beta_1 p_1 + \dots + \beta_k p_k + \gamma_1 q_1 + \dots + \gamma_m q_m = 0 \implies$$

$$z := \alpha_1 g_1 + \dots + \alpha_r g_r + \beta_1 p_1 + \dots + \beta_k p_k = -(\gamma_1 g_1 + \dots + \gamma_m g_m) \in L \cap M$$

Будучи элементом из $L\cap M$, вектор z представляется в виде $z=\delta_1g_1+\cdots+\delta_rg_r$

$$\delta_1 g_1 + \dots + \delta_r g_r + \gamma_1 q_1 + \dots + \gamma_m q_m = 0 \implies \delta_1 = \dots = \delta_r = \gamma_1 = \dots = \gamma_m = 0. \implies$$

$$z = 0 \implies \alpha_1 = \dots = \alpha_r = \beta_1 = \dots = \beta_k.$$

4 Прямая сумма линейных пространств.

Опр. Пусть L - сумма подпространств L_1, \ldots, L_n . Если для любого вектора $x \in L$ компоненты разложения $x_i \in L_i$ определены однозначно, то L называется прямой суммой подпространств L_1, \ldots, L_n . Обозначение: $L = L_1 \oplus \cdots \oplus L_n$.

5 Евклидово и унитарное пространство. Неравенство Коши-Буняковского.

Опр. Пусть V - вещественное линейное пространство, на котором каждой упорядоченной паре векторов $x, y \in V$ поставлено в соответствие вещественное число (x, y) таким образом, что:

- $(x,x) \ge 0 \,\forall x \in V; (x,x) = 0 \Leftrightarrow x = 0;$
- $(x,y) = (y,x) \forall x,y \in V;$
- $(x + y, z) = (x, z) + (y, z) \forall x, y, z \in V;$
- $(\alpha x, y) = \alpha(x, y) \, \forall \alpha \in \mathbb{R} \, \forall x, y \in V.$

Число (x,y) называется скалярным произведением векторов x,y. Вещественное линейное пространство со скалярным произведение называется евклидовым.

Опр. Пусть V - комплексное линейное пространство, на котором каждой упорядоченной паре векторов $x, y \in V$ поставлено в соответствие комплексное число (x, y) таким образом, что:

- $(x, x) \ge 0 \forall x \in V$; $(x, x) = 0 \Leftrightarrow x = 0$;
- $(x,y) = \overline{(y,x)} \, \forall x,y \in V;$
- $(x + y, z) = (x, z) + (y, z) \forall x, y, z \in V;$
- $\bullet \ (\alpha x,y) = \alpha(x,y) \, \forall \alpha \in \mathbb{C} \, \forall x,y \in V.$

 $\mathit{Число}(x,y)$ называется скалярным произведением векторов x,y. Комплексное линейное пространство со скалярным произведение называется унитарным.

Опр. В произвольном евклидовом или унитарном пространстве величина $|x| := \sqrt{(x,x)}$ называется длиной вектора. Равенство достигается в том и только в том случае, когда векторы x и y линейно зависимы.

Теорема (Неравенство Коши-Буняковского-Шварца). Скалярное произведение векторов и их длины связано неравенством $|(x,y)| \le |x||y|$.

6 Скалярное произведение в ортонормированном базисе. Существование ортонормированного базиса.

Опр. Система ненулевых векторов x_1, \ldots, x_m называется ортогональной, если $(x_i, x_j) = 0$ при $i \neq j$. Ортогональная система, в которой длина каждого вектора равна 1, называется ортонормированной.

Теорема. Для любой линейно независимой системы векторов a_1, \ldots, a_m существует ортогональная система p_1, \ldots, p_m такая, что $L(p_1, \ldots, p_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

 \mathcal{A} -60. Положим, что $p_1=a_1 \implies L(p_1)=L(a_1)$. Предположим, что уже постоена ортогональная система p_1,\ldots,p_{k-1} такая, что $L(p_1,\ldots,p_i)=L(a_1,\ldots,a_i)$ при $1\leq i\leq k-1$. Тогда вектор

$$p_k = a_k - \sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i.$$

будет ортогонален каждому из векторов p_1, \ldots, p_{k-1} :

$$(p_k, p_j) = (a_k, p_j) - \left(\sum_{i=1}^{k-1} \frac{(a_k, p_i)}{(p_i, p_i)} p_i, p_j\right) = (a_k, p_j) - \frac{(a_k, p_j)}{(p_j, p_j)} (p_j, p_j) = 0.$$

Кроме того,
$$p_k \in L(p_1, \dots, p_{k-1}, a_k) = L(a_1, \dots, a_{k-1}, a_k)$$
 и $a_k \in L(p_1, \dots, p_{k-1}, p_k) \implies L(p_1, \dots, p_{k-1}, p_k) = L(a_1, \dots, a_{k-1}, a_k)$.

Следствие. Для любой линейно независимой системы a_1, \ldots, a_m существует ортонормированная система q_1, \ldots, q_m такая, что $L(q_1, \ldots, q_k) = L(a_1, \ldots, a_k), 1 \le k \le m$.

Следствие. В любом конечномерном пространстве со скалярным произведением существует ортонормированный базис.

7 Изометрия.

8 Матрица Грама. Критерий линейной независимости.

Теорема (теорема о перпендикуляре). Для любого вектора x в произвольном пространстве со скалярным произведением и любого конечномерного подпространства $L \subset V$ существуют и единственны перпендикуляр h и проекция z такие, что

$$x = z + h, z \in L, h \perp L, |x - z| = |h| \le |x - y| \, \forall y \in L.$$

$$\mathcal{A}$$
-60.

Если v_1, \ldots, v_k - произвольный базис подпространства L, то ортогональная проекция $z = x_1v_1 + \cdots + x_kv_k$ вектора x на L однозначно определяется уравнением $x - z \perp L$.

Для этого необходимо и достаточно, чтобы вектор x-z был ортогонален каждому из векторов v_1,\ldots,v_k :

$$\begin{cases} (v_1, v_1)x_1 + \dots + (v_k, v_1)x_k = (x, v_1) \Leftrightarrow (x - z, v_1) = 0 \\ (v_1, v_2)x_1 + \dots + (v_k, v_2)x_k = (x, v_2) \Leftrightarrow (x - z, v_2) = 0 \\ \dots \\ (v_1, v_k)x_1 + \dots + (v_k, v_k)x_k = (x, v_k) \Leftrightarrow (x - z, v_k) = 0 \end{cases}$$

Из теоремы о перпендикуляре следует, что эта система линейных алгебраических уравнений имеет и притом единственное решение, определяющее коэффициенты x_1, \ldots, x_k .

Опр. Матрицы $A = [a_{ij}]$ полученной нами системы линейны алгебраических уравнений имеет элементы $a_{ij} = (v_i, v_j)$. Матрица такого вида называется матрицей Грама системы векторов v_1, \ldots, v_k .

Теорема. Для линейно независимой системы матрица Грама невырождена.

 \mathcal{A} -60. Сразу следует из теоремы о перпендикуляре, так как система должна иметь единственное решение.