Chain-of-thought Prompting

Large Language Models (LLMs)

Learning goals

- illustrate chain-of-thought and point out the benefits it brings to LLMs
- illustrate tree-of-thought and point out the benefits it brings to LLMs

CHAIN-OF-THOUGH MOTIVATION

How to boost the reasoning capabilities of LLMs? • Wei et al., 2021

- Use formal approaches, e.g., logic, symbolic reasoning
 - Example: BeliefBank
 - Difficult to train and deploy, not widely used
- Few-shot learning via prompting works for many tasks
 - Still, it works poorly on tasks that require reasoning
- Chain of thought (CoT) prompting
 - Prompts in the form <input, chain of thought, output>
 - CoT: series of intermediate steps that lead to a final output

CHAIN-OF-THOUGHT PROMPTING PARADIGM

CoT enables LLMs to tackle complex arithmetic, commonsense and symbolic reasoning tasks.

CHAIN-OF-THOUGHT PROMPTING PARADIGM

Chain-of-Thought Prompting

Model Input

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can has 3 tennis balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11. The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to make lunch and bought 6 more, how many apples do they have?

Model Output

A: The cafeteria had 23 apples originally. They used 20 to make lunch. So they had 23 - 20 = 3. They bought 6 more apples, so they have 3 + 6 = 9. The answer is 9.

BENEFITS OF CHAIN-OF-THOUGHT

- Decompose multi-step problems and thus allocate more compute to problems requiring more reasoning steps
- By describing the reasoning, interpretability is increased. It provides the possibility to observe where reasoning went wrong
- It is closer to how humans solve tasks using language
- By designing a prompt, existing large language models are able to perform chain-of-thought reasoning.

EXAMPLES FOR CHAIN OF THOUGHT

Examples of <input, chain of thought, output> triples for commonsense and symbolic reasoning

Source: Wei et al., 2022

StrategyQA

Q: Yes or no: Would a pear sink in water?

A: The density of a pear is about 0.6 g/cm^3, which is less than water.
Thus, a pear would float. So the answer is no.

Date Understanding

Q: The concert was scheduled to be on 06/01/1943, but was delayed by one day to today. What is the date 10 days ago in MM/DD/YYYY?

A: One day after 06/01/1943 is 06/02/1943, so today is 06/02/1943. 10 days before today is 05/23/1943. So the answer is 05/23/1943.

Sports Understanding

Q: Is the following sentence plausible? "Joao Moutinho caught the screen pass in the NFC championship."

A: Joao Moutinho is a soccer player. The NFC championship is part of American football, not soccer. So the answer is no.

SayCan (Instructing a robot)

Human: How would you bring me something that isn't a fruit?

Explanation: the user wants something to eat that isn't a fruit. An energy bar is not a fruit, so I will bring the user an energy bar.

Plan: 1. find(energy bar) 2.

pick(energy bar) 3. find(user) 4.

put(energy bar) 5. done().

Last Letter Concatenation

Q: Take the last letters of the words in "Lady Gaga" and concatenate them.

A: The last letter of "Lady" is "y". The last letter of "Gaga" is "a".

Concatenating them is "ya". So the answer is ya.

Coin Flip (state tracking)

Q: A coin is heads up. Maybelle flips the coin. Shalonda does not flip the coin. Is the coin still heads up?

A: The coin was flipped by Maybelle. So the coin was flipped 1 time, which is an odd number. The coin started heads up, so after an odd number of flips, it will be tails up. So the answer is no.

COT IMPROVES ARITHMETICS

SVAMP: math word problems with varying structures; MAWPS: repository unifying math problems from different sources;

► Source: Wei et al., 2022

COT IMPROVES COMMONSENSE

CSQA: Contains around 200K dialogs with a total of 1.6M turns. Further, unlike existing large scale QA datasets which contain simple questions that can be answered from a single tuple, the questions in the dialogs require a larger subgraph of the KG.

TREE-OF-THOUGHT: MOTIVATION

- The token-level and left-to-right decisions of the autoregressive mechanism pose a limitation for:
 - Tasks where initial decisions play a pivotal role
 - Tasks requiring exploration or strategic lookahead
- Potential strategy to solve those:
 - Maintain and explore diverse alternatives instead of just picking one
 - Evaluates current status and looks ahead or backtrack to make global decisions

TREE-OF-THOUGHT: PROMPTING PARADIGM

Schematic illustrating various approaches to problem solving with LLMs. Each rectangle box represents a *thought*, a coherent language sequence serving as an intermediate step toward problem solving.

TREE-OF-THOUGHT FOR CREATIVE WRITING

A step of deliberate search in a randomly picked Creative Writing task. Given the input, the LM samples five different plans, and then votes five times to decide which plan is best.

TREE-OF-THOUGHT FOR CREATIVE WRITING (2)

(a) Input Write a coherent passage of 4 short paragraphs. The end sentence of each paragraph must be: 1. It isn't difficult to do a handstand if you just stand on your hands. 2. It caught him off guard that space smelled of seared steak. 3. When she didn't like a guy who was trying to pick her up, she started using sign language. 4. Each person who knows you has a different perception of who you are.

(c) **Votes**

Analyzing each choice in detail: Choice 1, while incorporating the required end sentences, seems to lack a clear connection between the paragraphs (...) Choice 2 offers an interesting perspective by using the required end sentences to present a self-help book's content. It connects the paragraphs with the theme of self-improvement and embracing challenges, making for a coherent passage. {...} The best choice is 2.

CHAIN OF THOUGHT: WHAT COULD GO WRONG?

- Decompose multi-step problems and thus allocate more compute to problems requiring more reasoning steps
- By describing the reasoning, interpretability is increased. It provides the possibility to observe where reasoning went wrong
- It is closer to how humans solve tasks using language
- By designing a prompt, existing large language models are able to perform chain-of-thought reasoning.
- Question: What could go wrong?