Teorías

Semana $(13)_2 = 1101$

Lógica para Ciencia de la Computación - IIC2213

Prof. Sebastián Bugedo

Programa

Obertura

Acto único $\mathsf{Th}(\mathfrak{N}) \text{ no categórica}$ Teorías decidibles

Epílogo

Programa

Obertura

Acto único $Th(\mathfrak{N}) \text{ no categórica}$ Teorías decidibles

Epílogo

Teorías

Definición

Dado un vocabulario \mathcal{L} , un conjunto de \mathcal{L} -oraciones Σ se dice una teoría si cumple

- 1. Σ es satisfacible
- 2. Σ es cerrado bajo consecuencia lógica, es decir, para toda oración φ se tiene que

si
$$\Sigma \vDash \varphi$$
 entonces $\varphi \in \Sigma$

Una teoría Σ no tiene contradicciones y contiene todas sus consecuencias lógicas

Construcción de teorías

Proposición

Sea ${\mathfrak A}$ una ${\mathcal L}$ -estructura. El siguiente conjunto es una teoría

$$\mathsf{Th}(\mathfrak{A}) = \{\varphi \mid \varphi \text{ es una } \mathcal{L}\text{-oración tal que } \mathfrak{A} \vDash \varphi\}$$

Proposición

Sea Ψ un conjunto satisfacible de \mathcal{L} -oraciones. El siguiente conjunto es una teoría

$$\mathsf{Th}(\Psi) = \{ \varphi \mid \varphi \text{ es una } \mathcal{L}\text{-oración tal que } \Psi \vDash \varphi \}$$

Ejemplos de teorías conocidas

Ejemplo

definen

- Teoría de la aritmética: $Th(\mathfrak{N})$
- Teoría de los números reales: Th(ℜ)

Para $\mathcal{L} = \{e, \circ\}$, el conjunto de axiomas $\mathit{Gr} = \{\varphi_1, \varphi_2, \varphi_3\}$ con

$$\varphi_1 = \forall x \forall y \forall z. (x \circ (y \circ z) = (x \circ y) \circ z)$$

$$\varphi_2 = \forall x ((x \circ e = x) \land (e \circ x = x))$$

$$\varphi_3 = \forall x \exists y ((x \circ y = e) \land (y \circ x = e))$$

define la teoría de grupos Th(Gr)

Teorías completas

Definición

Una teoría Σ sobre $\mathcal L$ se dice completa si para toda $\mathcal L$ -oración φ ocurre alguna de las siguientes alternativas

- $\Sigma \vDash \varphi$
- $\Sigma \vDash \neg \varphi$

Teorema

Una teoría Σ es completa si, y solo si, para cada par de estructuras $\mathfrak A$ y $\mathfrak B$ que satisfacen Σ , se tiene que $\mathfrak A$ y $\mathfrak B$ son equivalentes

¿Algún ejemplo de teoría no completa?

Teorías categóricas

Definición

Una teoría Σ es categórica si para cada par de estructuras $\mathfrak A$ y $\mathfrak B$ que satisfacen Σ , se tiene que $\mathfrak A\cong \mathfrak B$

Teorema

Si Σ es una teoría categórica, entonces Σ es una teoría completa

Hoy veremos otro ejemplo de que el converso de este teorema es falso

Playlist Unidad IV y Orquesta

Playlist: LogiWawos #4

Además sigan en instagram: @orquesta_tamen

Objetivos de la clase

- \square Demostrar que $\mathsf{Th}(\mathfrak{N})$ no es categórica
- ☐ Comprender el concepto de teoría decidible
- Comprender la eliminación de cuantificadores
- ☐ Usar esta herramienta para demostrar decidibilidad de teorías

Programa

Obertura

Acto único $\mathsf{Th}(\mathfrak{N}) \text{ no categórica}$ Teorías decidibles

Epílogo

Proposición

 $\mathsf{Th}(\mathfrak{N})$ no es una teoría categórica.

¿Qué necesitamos encontrar para probar esto?

Demostración

Vamos a construir una estructura $\mathfrak{N}^{\mathsf{ne}}$ tal que

- $\mathfrak{N}^{\mathsf{ne}} \vDash \mathsf{Th}(\mathfrak{N})$
- ${\color{red} \bullet}$ ${\mathfrak N}^{\mathsf{ne}} \not\equiv {\mathfrak N}$
- lacktriangle Es decir, $\mathfrak{N}^{\mathsf{ne}}$ es modelo no estándar de \mathfrak{N}

¿Qué hicimos para construir el modelo no estándar de la línea infinita?

Sea
$$\mathcal{L} = \{0, 1, s, +, \cdot, <\}$$

- L es el vocabulario estándar de la aritmética
- Definimos $\mathcal{L}' = \mathcal{L} \cup \{c\}$

Observemos que $\mathfrak N$ es una $\mathcal L$ -estructura, pero no una $\mathcal L'$ -estructura.

Definimos las \mathcal{L}' -oraciones

$$\begin{array}{rcl} \psi_0 &=& 0 < c \\ \psi_1 &=& 1 < c \\ \psi_2 &=& 1+1 < c \\ \psi_n &=& \underbrace{1+1+\dots+1}_{n \text{ símbolos } 1} < c \quad \text{para } n \geq 3 \end{array}$$

Además, sea
$$\Sigma = \mathsf{Th}(\mathfrak{N}) \cup \{\psi_n \mid n \ge 0\}$$

¿Qué ingrediente invocamos ahora?

Tenemos $\Sigma = \mathsf{Th}(\mathfrak{N}) \cup \{\psi_n \mid n \ge 0\}$ conjunto infinito de oraciones

Sea $\Sigma' \subseteq \Sigma$ finito. Definimos

$$\ell = \max\{\{0\} \cup \{n \mid \psi_n \in \Sigma'\}\}\$$

y consideremos la \mathcal{L}' -estructura

$$\mathfrak{A} = \langle \mathbb{N}, 0^{\mathfrak{A}}, 1^{\mathfrak{A}}, s^{\mathfrak{A}}, +^{\mathfrak{A}}, \cdot^{\mathfrak{A}}, <^{\mathfrak{A}}, c^{\mathfrak{A}} \rangle$$

tal que interpreta todo símbolo de $\mathcal L$ como $\mathfrak N$, y la constante se toma como $c^{\mathfrak A}=\ell+1$

Observamos que $\mathfrak{A} \models \Sigma'$, por lo que es satisfacible. Luego, como Σ' es arbitrario, por **compacidad** tenemos que Σ es satisfacible.

¿Qué significa que Σ sea satisfacible?

Como Σ es satisfacible, existe una \mathcal{L}' -estructura \mathfrak{B} tal que $\mathfrak{B} \models \Sigma$.

Definimos $\mathfrak{N}^{\rm ne}$ como la restricción de \mathfrak{B} a los símbolos de \mathcal{L} , i.e. nos olvidamos de la constante c.

- $\mathfrak{N}^{\mathsf{ne}} \vDash \mathsf{Th}(\mathfrak{N})$
- \blacksquare $\mathfrak{N}^{\mathsf{ne}}$ y \mathfrak{N} son equivalentes
- 𝐧 no son isomorfas

Concluimos que $\mathsf{Th}(\mathfrak{N})$ no es categórica.

Programa

Obertura

Acto único $\mathsf{Th}(\mathfrak{N}) \text{ no categórica}$ Teorías decidibles

Epílogo

Teorías decidibles

Definición

Una teoría Σ sobre un vocabulario \mathcal{L} es **decidible** si existe un algoritmo tal que para cualquier \mathcal{L} -oración φ , verifica si $\varphi \in \Sigma$.

¿Hay algún caso sencillo de estructura decidible?

Teorías decidibles

Ejemplo

Si $\Sigma = \mathsf{Th}(\mathfrak{A})$ y \mathfrak{A} tiene dominio finito, entonces Σ es decidible.

Sea φ una oración cualquiera. Queremos verificar si $\varphi \in \Sigma$

- Por definición de teoría, esto corresponde a verificar si $\Sigma \models \varphi$
- Como la teoría es completa, basta con analizar si $\mathfrak{A} \models \varphi$
- Dado su dominio finito, y que φ también es finita, podemos verificar exhaustivamente si $\mathfrak{A} \models \varphi$

¿Son $Th(\mathfrak{N})$ y $Th(\mathfrak{R})$ decidibles?

Una técnica para decidibilidad

Definición

Una teoría Σ admite eliminación de cuantificadores si para toda \mathcal{L} -fórmula $\varphi(x_1,\ldots,x_k)$, existe una \mathcal{L} -fórmula φ^{sc} sin cuantificadores tal que

$$\Sigma \models \forall x_1 \dots \forall x_k [\varphi(x_1, \dots, x_k) \leftrightarrow \varphi^{sc}(x_1, \dots, x_k)]$$

Ejemplo

Notemos que si φ es oración, entonces $\varphi^{\rm sc}$ es una tautología o contradicción según si φ está o no en Σ

$$\Sigma \models \varphi \leftrightarrow \varphi^{sc}$$

Ojo: la posibilidad de eliminar cuantificadores es una característica de **la teoría**, no de fórmulas específicas!

Eliminación de cuantificadores

Ejemplo

Sea $\mathcal{L} = \{0, 1, s, +, \cdot, <\}$ y φ la siguiente \mathcal{L} -fórmula

$$\varphi(x_1, x_2, x_3) = \exists y(x_1 \cdot y \cdot y + x_2 \cdot y + x_3 = 0)$$

¿Se pueden eliminar los cuantificadores en $Th(\mathfrak{R})$?

Definamos φ^{sc} como

$$\varphi^{\text{sc}}(x_1, x_2, x_3) = \begin{bmatrix} (x_1 \cdot x_3 + x_1 \cdot x_3 + x_1 \cdot x_3 + x_1 \cdot x_3) < x_2 \cdot x_2 \end{bmatrix} \lor \\ \begin{bmatrix} (x_1 \cdot x_3 + x_1 \cdot x_3 + x_1 \cdot x_3 + x_1 \cdot x_3) = x_2 \cdot x_2 \end{bmatrix}$$

Se tiene entonces que

$$\mathsf{Th}(\mathfrak{R}) \; \vDash \; \forall x_1 \forall x_2 \forall x_3 \big[\varphi(x_1, x_2, x_3) \leftrightarrow \varphi^{\mathsf{sc}}(x_1, x_2, x_3) \big]$$

¿Esto demuestra que $Th(\mathfrak{R})$ admite eliminación de cuant.?

Eliminación de cuantificadores

Ejercicio

Para $\mathfrak{A}=\langle\mathbb{N},+^{\mathfrak{A}}\rangle$, donde $+^{\mathfrak{A}}$ se interpreta como suma, considere $\varphi(x)=\exists y(x+y=x)$. Construya una fórmula $\varphi^{\mathrm{sc}}(x)$ sin cuantificadores tal que

$$\mathsf{Th}(\mathfrak{A}) \;\vDash\; \forall x \big[\varphi(x) \leftrightarrow \varphi^{\mathsf{sc}}(x) \big]$$

Hacia la decidibilidad

Teorema

Si una teoría Σ cumple

- 1. admite eliminación de cuantificadores
- 2. existe un algoritmo que construye $\varphi^{\rm sc}$ a partir de φ , para toda fórmula φ

entonces Σ es decidible.

¿Cómo demostramos la parte 1.?

Hacia la decidibilidad

Proposición

Sea Σ una teoría tal que para toda fórmula de la forma

$$\varphi(x_1,\ldots,x_k) = \exists y(\alpha_0 \wedge \cdots \alpha_m)$$

con α_i sin cuantificadores, existe una fórmula φ^{sc} sin cuantificadores tal que

$$\Sigma \models \forall x_1 \dots \forall x_k [\varphi(x_1, \dots, x_k) \leftrightarrow \varphi^{sc}(x_1, \dots, x_k)]$$

Entonces Σ admite eliminación de cuantificadores.

Para probar eliminación de cuantif. basta con probarlo para fórmulas conjuntivas existenciales!

Sea $\mathcal{L} = \{<\}$ y Th $(\mathfrak{R}_{<}) = (\mathbb{R}, <^{\mathfrak{R}_{<}})$ que interpreta < de forma usual

Teorema

 $\mathsf{Th}(\mathfrak{R}_<)$ admite eliminación de cuantificadores y además, existe un algoritmo que construye φ^sc a partir de φ

Ejemplo

Observemos algunas oraciones que están en $\mathsf{Th}(\mathfrak{R}_{\scriptscriptstyle{<}})$

irreflexividad $\forall x \neg (x < x)$

transitividad $\forall x \forall y \forall z (x < y \land y < z \rightarrow x < z)$

tricotomía $\forall x \forall y (x < y \lor x = y \lor y < x)$

sin primer elemento $\forall x \exists y (y < x)$ sin último elemento $\forall x \exists y (x < y)$

densidad $\forall x \forall y [x < y \rightarrow \exists z (x < z \land z < y)]$

Idea de demostración

Para probar que $\mathsf{Th}(\mathfrak{R}_{\scriptscriptstyle{<}})$ admite eliminación de cuantificadores, sea

$$\varphi(x_1,\ldots,x_k) = \exists y(\alpha_0 \wedge \cdots \alpha_m)$$

con α_i sin cuantificadores.

Realizamos los siguientes cambios sintácticos para variables u, v

- Reemplazar $\neg(u < v)$ por $(u = v \lor v < u)$
- Reemplazar $\neg(u = v)$ por $(u < v \lor v < u)$

Habiendo eliminado las negaciones, se puede obtener una fórmula equivalente en DNF φ'

- Como $\exists y (\gamma \lor \delta) \equiv (\exists y \gamma) \lor (\exists y \delta)...$
- se puede reescribir $\varphi' = \psi_0 \vee \ldots \vee \psi_\ell$, donde cada $\psi_i = \exists y (\beta_0 \wedge \cdots \wedge \beta_{m_i})$, y los β_j son fórmulas atómicas

Idea de demostración

Hasta aquí, la fórmula es de la forma

$$\varphi' = \psi_0 \vee \ldots \vee \psi_\ell$$

con cada

$$\psi_i = \exists y (\beta_0 \wedge \dots \wedge \beta_{m_i})$$

Para cada β_j atómica de ψ_i se hacen los siguientes reemplazos que involucran a la variable cuantificada y

- Si $\beta_i = (y < y)$, se reemplaza ψ_i por una contradicción
- Si $\beta_i = (y = y)$, se elimina β_i de ψ_i
- Si β_j no menciona y, se elimina β_j de ψ_i y se reemplaza ψ_i por $\beta_j \wedge \psi_i$ (se saca para afuera de la cuantificación)
- Si β_j = (y = x), se reemplaza cada y en ψ_i por x y se elimina β_j

Idea de demostración

Luego de estos pasos, la fórmula debiera ser de la forma

$$\exists y \bigg[\bigwedge_{i} (u_{i} < y) \wedge \bigwedge_{j} (y < v_{j}) \bigg]$$

que es equivalente a

$$\varphi^{\mathsf{sc}} = \bigwedge_{i} \bigwedge_{j} (u_{i} < v_{j})$$

Esta es la estrategia para construir φ^{sc} .

Ejemplo

Consideremos la fórmula $\varphi(x) = \exists y (y < x \land x < y)$

Notamos que

- no tiene negaciones
- ya está en DNF, para $\varphi(x) = \psi_0$ con $\psi_0 = \exists y(\beta_0 \land \beta_1)$
- i.e. es equivalente a $\varphi^{sc}(x) = (x < x)$

Vemos que se cumple lo pedido en la definición:

$$\mathsf{Th}(\mathfrak{R}_{<}) \; \vDash \; \forall x \big[\big(\exists y (y < x \land x < y) \big) \leftrightarrow \big(x < x \big) \big]$$

Una teoría decidible

Corolario

 $\mathsf{Th}(\mathfrak{R}_{<})$ es decidible

Esta no es la única teoría que admite eliminación de cuantificadores

Teorema (Tarski)

Th(\mathfrak{R}) admite eliminación de cuantificadores. Además, existe un algoritmo que construye φ^{sc} a partir de φ .

Corolario

 $\mathsf{Th}(\mathfrak{R})$ es decidible

¿Toda teoría que hemos estudiado es decidible? ¿Para todas sirve esta estrategia? ¿Hacia dónde vamos?

Nos centraremos en las estructuras de naturales

- Mostraremos que la técnica de eliminación de cuantificadores permite estudiar algunas de ellas
- Enunciaremos un primer resultado de incompletitud de Gödel

Próxima clase concluiremos nuestro estudio de decidibilidad

Programa

Obertura

Acto único
Th(\$M\$) no categórica
Teorías decidibles

Epílogo

Actividad Espiritual Complementaria #2

An epic drama of adventure and exploration

Objetivos de la clase

- \square Demostrar que $\mathsf{Th}(\mathfrak{N})$ no es categórica
- ☐ Comprender el concepto de teoría decidible
- Comprender la eliminación de cuantificadores
- ☐ Usar esta herramienta para demostrar decidibilidad de teorías

¿Qué aprendí hoy? ¿Comentarios?

Ve a

www.menti.com

Introduce el código

6574 0248

