

# DRUGS USED IN ACID-PEPTIC DISEASES

Ilona Benkő M.D., Ph.D. associate professor

Inst. of Pharmacology and Pharmacotherapy
University of Debrecen

# **Acid-peptic diseases**

**Gastrooesophageal reflux disease = GERD** 

Benign peptic ulcers of the stomach and duodenum

Ulcers secondary to the used conventional NSAIDs

Ulcers in the rare Zollinger-Ellison syndrome

# **Control of gastric acidity**

is a cornerstone of therapy of these disorders

# Peptic ulcer

Mucosal damaging processes

Secretion of acid and pepsin

mucosal protective mechanisms secretion of bicarbonate and mucus



# Helicobacter pylori infection has a great importance in hyperacidity

**Drugs for eradication Helicobacter pylori:** 

metronidazole this antiprotozoal drug has also effect on anaerob bacteria

+

antibiotics from macrolide group (clarythromycin)

or

penicillins with broad-spectrum (amoxicillin)

or

tetracyclines

bismuth salts

Therapy may be success if only the gastric pH is increased in a great extent using

+

proton pump inhibitors

The ınin iro-. by ong ilso POTO-5-7 the ced oth are and of



**Fig. 25.1** A schematic illustration of the secretion of hydrochloric acid by the gastric parietal cell. Secretion involves a proton pump (P), which is an H<sup>+</sup>/K<sup>+</sup> ATPase, a symport carrier (C) for K<sup>+</sup> and Cl<sup>-</sup>, and an antiport (A), which exchanges Cl<sup>-</sup> and HCO<sub>3</sub><sup>-</sup>. An additional Na<sup>+</sup>/H<sup>+</sup> antiport situated at the interface with the plasma may also have a role (not shown).







Figure 36-1. Physiological and pharmacological regulation of gastric secretion: the basis for therapy of acid-peptic disorders.

Shown are the interactions among an enterochromaffin like (ECL) and the basis for therapy of acid-peptic disorders.

$$\begin{array}{c} \mathsf{CH_3} \\ \mathsf{HN} \\ \mathsf{N} \end{array} \qquad \begin{array}{c} \mathsf{CH_2} \\ \mathsf{S} \\ \mathsf{CH_2} \\ \mathsf{CH_2} \\ \mathsf{NH} \\ \mathsf{CH_2} \\ \mathsf{NH} \\ \mathsf{CH} \\ \mathsf{C} \\ \mathsf{EN} \end{array} \qquad \begin{array}{c} \mathsf{NH} \\ \mathsf{C} \\ \mathsf{CH} \\ \mathsf{NH} \\ \mathsf{HC} \\ \mathsf{C} \\ \mathsf{EN} \\ \mathsf{NH} \\ \mathsf{NH} \\ \mathsf{C} \\ \mathsf{CH} \\ \mathsf{NH} \\ \mathsf{C} \\ \mathsf{NH} \\ \mathsf{CH} \\ \mathsf{CH} \\ \mathsf{NH} \\ \mathsf{CH} \\ \mathsf{CH} \\ \mathsf{CH} \\ \mathsf{NH} \\ \mathsf{CH} \\ \mathsf{CH}$$

Cimetidine



**Fig. 25.3** The effect of cimetidine on betazole-stimulated gastric acid and pepsin secretion in humans. Either cimetidine or a placebo was given orally 60 minutes prior to a subcutaneous injection (1.5 mg/kg) of betazole, a relatively specific histamine H<sub>2</sub> receptor agonist that stimulates gastric acid secretion. (Modified from Binder H J, Donaldson R M 1978 Gastroenterology 74: 371–375.)

HISTAMINE

#### CIMETIDINE

RANITIDINE

$$CH_2SCH_2CH_2CNH_2$$
 $NSO_2NH_2$ 
 $N=C(NH_2)_2$ 

**FAMOTIDINE** 

NIZATIDINE

Safety is good



**OTC** drugs



Rang and Dales Pharmacology textbook

# **Pharmacokinetics of H2 blocking drugs**

Absorption is good and rapid with peak concentration 1-3 hours after administration

Protein binding is low

Metabolism is small in the liver with exception of cimetidine, which has many metabolites and drug interactions on CYP enzimes

# Excretion by the kidney –drug interactions : cimetidine and ranitidine inhibit tubular secretion of basic drugs

Cross the placenta and excreated in breast milk!

TABLE 62-1 Clinical comparisons of H<sub>2</sub>-receptor blockers.

| Drug       | Relative<br>Potency | Dose to Achieve > 50% Acid Inhibition for 10 Hours | Usual Dose for<br>Acute Duodenal<br>or Gastric Ulcer | Usual Dose for<br>Gastroesophageal<br>Reflux Disease | Usual Dose for<br>Prevention of Stress-<br>Related Bleeding |
|------------|---------------------|----------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|
| Cimetidine | 1                   | 400-800 mg                                         | 800 mg HS or 400 mg bid                              | 800 mg bid                                           | 50 mg/h continuous infusion                                 |
| Ranitidine | 4–10                | 150 mg                                             | 300 mg HS or 150 mg bid                              | 150 mg bid                                           | 6.25 mg/h continuous infusion or 50 mg IV every 6–8 h       |
| Nizatidine | 4–10                | 150 mg                                             | 300 mg HS or 150 mg bid                              | 150 mg bid                                           | Not available                                               |
| Famotidine | 20-50               | 20 mg                                              | 40 mg HS or 20 mg bid                                | 20 mg bid                                            | 20 mg IV every 12 h                                         |

BID, twice daily; HS, bedtime.



**Fig. 25.4** The inhibitory action of omeprazole on acid secretion from isolated human gastric glands stimulated by 50 μmol/l histamine. Acid secretion was measured by the accumulation of a radiolabelled weak base, aminopyrine (AP), in the secretory channels. The data represent the mean and standard error of measurements from eight patients. (Adapted from Lindberg P et al. 1987 Trends Pharmacol Sci 8: 399–402.)



IDE 63 3 Malandar at the proton numbilitars; omenazole Jansonrazole nantonrazole and the sodium salt of rabenra-



Katzung et al Basic and clinical Pharmacology textbook

TABLE 62-2 Pharmacokinetics of proton pump inhibitors.

| Drug         | pKa | Bioavailability (%) | t <sub>1/2</sub> (h) | T <sub>max</sub> (h) | Usual Dosage for<br>Peptic Ulcer or GERD |
|--------------|-----|---------------------|----------------------|----------------------|------------------------------------------|
| Omeprazole   | 4   | 40-65               | 0.5-1.5              | 1-3.5                | 20-40 mg qd                              |
| Esomeprazole | 4   | >80                 | 1.2-1.5              | 1.6                  | 20-40 mg qd                              |
| Lansoprazole | 4   | >80                 | 1.5                  | 1.7                  | 30 mg qd                                 |
| Pantoprazole | 3.9 | 77                  | 1.0-1.9              | 2.5-4.0              | 40 mg qd                                 |
| Rabeprazole  | 5   | 52                  | 1.0-2.0              | 2.0-5.0              | 20 mg qd                                 |

GERD, gastroesophageal reflux disease.

**Duration of action** is not directly related to their short plasma half - lives

because they covalently bind to proton/potassium ATPase enzyme.

Therefore once daily dosing results in acid inhibiting effect for 24-48 hours or more, until the new enzyme molecules are synthesized.

PPIs are weak bases and acidic pH destroy them

enteric-coated tablets (pantoprazole is more resistant)

Administration: with meals !!

Inhibition CYP2C19 and CYP3A4 drug interactions !!

Clearance of e.g. benzodiazepines, phenytoin, warfarin

#### Side effects:

Not too frequent

Nausea, abdominal pain, constipation, flatulance, diarrhea,

myopathy, arthralgias, headache, skin rashes

**Absorption of vitamin B12 decreases** 

5-10 % in chronic use:

Hypergastrinaemia!! Rebound effect

Maybe teratogenic Do not use them in pregnancy if it is possible!

### ANTACIDS I.

# Also systemic effects:



**HCI ♠** in the gastric juice

Ca salts more rarely used (Rennie tablets contain them)

Milk -alkali syndrome: CaCO3 or NaHCO3

hypercalcemia, phosphate retention, PTH secretion, Ca precipitation in the kidney

### ANTACIDS II.

#### local effect in the stomach:



hydrotalcite Al-Mg carbonate in hydroxylated form

OPTACID is a buffer system containing NaHSO<sub>4</sub> + NaH<sub>2</sub>PO<sub>4</sub> in combination

----- eapacides of ropular Aritacia Preparations

| PRODUCT                     | Al(OH) <sub>3</sub> * | Mg(OH) <sub>2</sub> * | CaCO <sub>3</sub> * | SIMETHICONE* | ACID NEUTRALIZI |
|-----------------------------|-----------------------|-----------------------|---------------------|--------------|-----------------|
| Tablets                     |                       |                       |                     |              |                 |
| Gelusil                     | 200                   | 200                   | 0                   | 25           | 10.5            |
| Maalox Quick Dissolve       | 0                     | 0                     | 600                 | 0            | 12              |
| Mylanta Double Strength     | 400                   | 400                   | 0                   | 40           | 23              |
| Riopan Plus Double Strength | Magaldrate, 1080      |                       |                     | 20           | 30              |
| Calcium Rich Rolaids        |                       | 80                    | 412                 | 0            | - 11            |
| Tums EX                     | 0                     | 0                     | 750                 | 0            | 15              |
| Liquids                     |                       |                       |                     |              |                 |
| Maalox TC                   | 600                   | 300                   | 0                   | 0            | 28              |
| Milk of Magnesia            | 0                     | 400                   | 0                   | 0            | 14              |
| Mylanta Maximum Strength    | 400                   | 400                   | 0                   | 40           | 25              |
| Riopan                      | Magaldrate, 540       |                       |                     | 0            | 15              |
|                             |                       |                       |                     |              |                 |

<sup>\*</sup>Contents, milligrams per tablet or per 5 ml. †Acid-neutralizing capacity, milliequivalents per tablet or per 5 ml. The United States marketpla antacids is fluid. The current trend of "reusing" well-known broad account.

#### kecommendations for Treatment of Gastroduodenal Uicers

| DRUG                                | ACTIVE ULCER                                                      | MAINTENANCE THERAPY |
|-------------------------------------|-------------------------------------------------------------------|---------------------|
| H <sub>2</sub> Receptor Antagonists |                                                                   |                     |
| Cimetidine                          | 800 mg at bedtime/400 mg twice daily                              | 400 mg at bedtime   |
| Famotidine                          | 40 mg at bedtime                                                  | 20 mg at bedtime    |
| Nizatidine/ranitidine               | 300 mg after evening meal or at bedtime/150 mg twice daily        | 150 mg at bedtime   |
| Proton Pump Inhibitors              |                                                                   |                     |
| Lansoprazole                        | 15 mg (DU; NSAID risk reduction) daily                            |                     |
| be to be                            | 30 mg (GU including NSAID-associated) daily                       |                     |
| Omeprazole                          | 20 mg daily                                                       |                     |
| Rabeprazole                         | 20 mg daily                                                       |                     |
| Prostaglandin Analogs               |                                                                   |                     |
| Misoprostol                         | 200 $\mu$ g four times daily (NSAID-associated ulcer prevention)* |                     |

Goodman Gilman's The Pharmacological Basis of Therapeutics

## Severity of GERD Medical Management Lifestyle modification, including diet, Stage I positional changes, weight loss, etc. Sporadic uncomplicated heartburn, often Antacids and/or histamine H<sub>2</sub>-receptor in setting of known precipitating factor. antagonists as needed. Often not the chief complaint. Less than 2-3 episodes per week. No additional symptoms. Proton pump inhibitors more effective Stage II Frequent symptoms, with or without than histamine H<sub>2</sub>-receptor antagonists. esophagitis. Greater than 2-3 episodes per week. Stage III Proton pump inhibitor either once or Chronic, unrelenting symptoms; twice daily. immediate relapse off therapy. Esophageal complications (e.g., stricture, Barrett's metaplasia)

Goodman Gilman's The Pharmacological Basis of Therapeutics