

Gruppenmitglied 01: Holtermann, Lukas

Gruppenmitglied 02: Duc Nguyen, Nam

Gruppenmitglied 03: Lünsmann, Mario

e-Mail 01: Lukas.Holtermann@gmx.de

e-Mail 02:

Tutor: None

e-Mail 01: mr.ml.fwm@t-online.de

Übungsblattnummer: Hausübungsblatt 02

Status: Lösung 01

Punkte/Prozente:

Anmerkungen/Verbesserungsvorschläge:

Logik und Formale Systeme

Hausübungsblatt 02 - Abgabetermin 13.05.2019

1 Hausübungen

1.1 Aufgabe 1

1.1.1 (a)

Zeigen durch Äquivalenzumformungen und Wahrheitstafeln jeweils eine KNF und DNF:

$$\varphi_1 := ((P_1 \vee P_2) \to P_2) \wedge P_3$$

Zu erst Äquivalenzumformungen:

$$\begin{array}{ll} \varphi_1 & \xrightarrow{\operatorname{Imp.Aufl.}} & (\neg (P_1 \lor P_2) \lor P_2) \land P_3 \\ & \xrightarrow{\operatorname{de-Morgan}} & ((\neg P_1 \land \neg P_2) \lor P_2) \land P_3 \\ & \xrightarrow{\operatorname{Ergebnis}} & ((\neg P_1 \land \neg P_2) \land P_3) \lor (P_2 \land P_3) = \operatorname{DNF} \end{array}$$

Dann zeigen via Wahrheitstafeln:

P_1	P ₂	P ₃	$(P_1 \vee P_2)$	$\rightarrow P_2$	$\wedge P_3$
0	0	0	0	1	0
0	0	1	0	1	1
0	1	0	1	1	0
0	1	1	1	1	1
1	0	0	1	0	0
1	0	1	1	0	0
1	1	0	1	1	0
1	1	1	1	1	1

Tabelle 1: Wahrheitstafel φ_1

Tutor: None

1.1.2 (b)

Zeigen durch Äquivalenzumformungen und Wahrheitstafeln jeweils eine KNF und DNF:

$$\psi_1 := (P_1 \leftrightarrow P_2) \lor (P_2 \land P_3)$$

Zu erst Äquivalenzumformungen:

$$\psi_{1} \xrightarrow{\underline{\text{Biimp.Aufl.}}} \qquad ((P_{1} \to P_{2}) \land (P_{2} \to P_{1})) \lor (P_{2} \land P_{3})$$

$$\xrightarrow{\underline{\text{Imp.Aufl.}}} \qquad ((\neg P_{1} \lor P_{2}) \land (\neg P_{2} \lor P_{1})) \lor (P_{2} \land P_{3})$$

$$\xrightarrow{\underline{\text{Distributivität}}} \qquad ((\neg P_{1} \lor P_{2}) \lor (P_{2} \land P_{3})) \land ((\neg P_{2} \lor P_{1}) \lor (P_{2} \land P_{3})) = \text{KNF}$$

$$\psi_{1} \xrightarrow{\text{Biimp.Aufl.}} \qquad ((P_{1} \rightarrow P_{2}) \land (P_{2} \rightarrow P_{1})) \lor (P_{2} \land P_{3})$$

$$\xrightarrow{\text{Imp.Aufl.}} \qquad ((\neg P_{1} \lor P_{2}) \land (\neg P_{2} \lor P_{1})) \lor (P_{2} \land P_{3})$$

$$\xrightarrow{\text{Distributivität}} \qquad (\neg P_{1} \land (\neg P_{2} \lor P_{1})) \lor (P_{2} \land (\neg P_{2} \lor P_{1})) \lor (P_{2} \land P_{3}) = \text{DNF}$$

Dann zeigen via Wahrheitstafeln:

P_1	P ₂	P ₃	$(P_1 \leftrightarrow P_2)$	V	$(P_2 \wedge P_3)$
0	0	0	1	1	0
0	0	1	1	1	0
0	1	0	0	0	0
0	1	1	0	1	1
1	0	0	0	0	0
1	0	1	0	0	0
1	1	0	1	1	0
1	1	1	1	1	1

Tabelle 2: Wahrheitstafel ψ_1

1.2 Aufgabe 2

1.2.1 (1)

Zeigen über Induktion über *K*.

Es gilt bei
$$K = 1$$
:

Es gilt bei
$$K = 1$$
:
$$\neg \bigwedge_{i=1}^{1} \varphi_i = \neg(\varphi_1) \equiv (\neg \varphi_1) = \bigvee_{i=1}^{1} \neg \varphi_i$$

P ₁	P ₂	$\neg P_1$	$\neg P_2$	$\neg (P_1 \land P_2)$	$(\neg P_1 \lor \neg P_2)$
0	0	1	1	1	1
0	1	1	0	1	1
1	0	0	1	1	1
1	1	0	0	0	0

Tabelle 3: Wahrheitstafel Belegungen de-Morgansche Regeln (1)

Induktionsvoraussetzung: Es gilt für bel. Formeln die über Konjunktionen verbunden sind. Induktionsschritt: $K \rightarrow K + 1$

Somit gilt:

$$\neg \bigwedge_{i=1}^{K+1} \varphi_i \equiv \neg (\varphi_1 \land \varphi_2 \land \dots \land \varphi_{K+1}) \xrightarrow{\text{I.V.}} \bigvee_{i=1}^{K} (\neg \varphi_i \lor \neg \varphi_{K+1}) \equiv \bigvee_{i=1}^{K+1} \neg \varphi_i$$

1.2.2 (2)

Zeigen über Induktion über K.

Es gilt bei K = 1:

$$\neg \bigvee_{i=1}^{1} \varphi_i = \neg(\varphi_1) \equiv (\neg \varphi_1) = \bigwedge_{i=1}^{1} \neg \varphi_i$$

Siehe Belegung für Wahrheitstafel:

P_1	P ₂	$\neg P_1$	$\neg P_2$	$\neg (P_1 \lor P_2)$	$(\neg P_1 \wedge \neg P_2)$
0	0	1	1	1	1
0	1	1	0	0	0
1	0	0	1	0	0
1	1	0	0	0	0

Tabelle 4: Wahrheitstafel Belegungen de-Morgansche Regeln (2)

Induktionsvoraussetzung: Es gilt für bel. Formeln die über Disjunktionen verbunden sind. Induktionsschritt: $K \to K+1$

Somit gilt:

$$\neg \bigvee_{i=1}^{K+1} \varphi_i \equiv \neg (\varphi_1 \lor \varphi_2 \lor \cdots \lor \varphi_{K+1}) \stackrel{\text{I.V.}}{=\!=\!=} \bigwedge_{i=1}^K (\neg \varphi_i \land \neg \varphi_{K+1}) \equiv \bigwedge_{i=1}^{K+1} \neg \varphi_i$$

1.3 Aufgabe 3

1.3.1 (a)

Es gilt:

$$\models \varphi_{n+1} \land \varphi_{n+2} \rightarrow \varphi_n \text{ und } \not\models \varphi_n \rightarrow (\varphi_{n+2} \rightarrow \neg \varphi_{n+1})$$

Nach Endlichkeitssatz gilt: Eine Menge Φ Form_{AL} ist immer dann erfüllbar, wenn all deren endliche Teilmengen ϕ_i mit $i = 1 \dots n$ erfüllbar sind.

Es gilt somit die Voraussetzung: $\phi_i \subseteq \Phi$ muss in jeder Teilmenge erfüllbar sein.

Somit gilt:

$$\models \varphi_{n+1} \land \varphi_{n+2} \rightarrow \varphi_n = TAUT$$
, das heißt es gilt:

 $\mathfrak{J}_1 = \varphi_{n+1} \vee \mathfrak{J}_2 = \varphi_{n+2} = 1$ oder $\mathfrak{J} = (\varphi_{n+1} \wedge \varphi_{n+2}) = 1$ also haben eine erfüllende Belegung jeweils.

Wenn aber die Teilmengen ϕ_i von Φ bereits erfüllbar sind s.o. dann gilt ja gerade nach Endlichkeitssatz $\mathfrak{I}_n = \varphi_n = 1$, wegen der Implikation.

Da gilt:

$$\mathfrak{I}_n \models \phi_i$$
 gilt somit aber auch $\mathfrak{I}_n \models \Phi$ nach Voraussetzung s.o. .

1.3.2 (b)

Tutor: None

Es gilt folgende Formelmenge in Form einer Wahrheitstafel:

Stelle	φ_n	φ_{n+1}	φ_{n+2}	$\varphi_{n+1} \wedge \varphi_{n+2} \rightarrow \varphi_n$	$\varphi_n \to (\varphi_{n+2} \to \neg \varphi_{n+1})$
1. (n = 1)	1	0	0	1	0
2. (n = 1 + 1)	1	1	0	1	0
3. (n = 1 + 2)	1	1	1	1	0
4. $(n = 1 + 3)$	1	1	1	1	0
÷	:	:	:	1	0
n = 1 + (n - 1)	1	1	1	1	0

Tabelle 5: Wahrheitstafel Form_{AL}

Somit gilt: $\varphi_{n+1} \wedge \varphi_{n+2}$ evaluieren zu 1 und $\varphi_n = 1$ laut Tabelle an der ersten Stelle n = 1

Somit gilt:

$$1 \rightarrow 1 = 1$$

Dies gilt überall daher gilt:

 $\models \varphi_{n+1} \land \varphi_{n+2} \rightarrow \varphi_n$ eine Tautologie laut Wahrheitstafel!

Aber bei $\varphi_n \to (\varphi_{n+2} \to \neg \varphi_{n+1})$, gilt ja: $\varphi_{n+2} = 1 \to \overbrace{\neg(\varphi_{n+1} = 1)}^{\text{wird zu } 0}$, daher gilt $1 \to 0 = 0$ und da $\varphi_n = 1$ gilt auch hier: $1 \to 0 = 0$.

Somit gilt: $\not\models \varphi_n \to (\varphi_{n+2} \to \neg \varphi_{n+1})$, wie auch belegt durch die Wahrheitstafel s.o. .