Class X

Maths Test 1:

(Polynomials, Pair of Linear Eqns & Trignometry)

Duration: 1.45 hrs TotalMks: 61

(TRIGNOMETRY)

- 1. If A, B are acute angles and sinA= cosB, then find the value of A+B. 1
- 2. If $\tan\theta = \frac{2}{\sqrt{3}} \& \theta + \varphi = 90^\circ$. What is the value of $\cot\varphi$?
- 3. Solve for φ , if $tan 5\varphi = 1$.
- 4. If $x\cos\theta y\sin\theta = a$, $x\sin\theta + y\cos\theta = b$, prove that $x^2 + y^2 = a^2 + b^2$.
- 5. If $\sin\theta = \frac{1}{2}$, show that $3\cos\theta 4\cos^3\theta = 0$.
- 6. Find the value of tanφ in terms of sinφ.
- 7. Find the value of θ for which $\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 4$.
- 8. Prove geometrically the value of Sin 60°.
- 9. If tanA + sinA = m and tanA sinA = n, show that $m^2 n^2 = 4\sqrt{mn}$.

(Pair of Linear Equations)

- 10. The larger of two supplementary angles exceeds the smaller by 180, find the angles.
- 11. Students are made to stand in rows. If one student is extra in a row there would be 2 rows less. If one student is less in a row there would be 3 rows more. Find the number of students in the class.
- 12. When 6 boys were admitted & 6 girls left the percentage of boys increased from 60% to 75%. Find the original no. of boys and girls in the class.
- 13. Solve for x,y

 a. $\frac{x+y-8}{2} = \frac{x+2y-14}{3} = \frac{3x+y-12}{11}$

b.
$$\frac{x}{a} + \frac{y}{b} = a + b$$
 $\frac{x}{a^2} + \frac{y}{b^2} = 2$ a\neq 0, b\neq 0

c.
$$41x + 53y = 135$$
, $53x + 41y = 147$

(Polynomials)

- 14. Find the value for K for which $x^4 + 10x^3 + 25x^2 + 15x + K$ exactly divisible by x + 7.
- 15. If α, β are the zeros of the polynomial $2x^2 4x + 5$ find the value of 3
 - a. $\alpha^2 + \beta^2$
 - b. $(\alpha \beta)^2$
- 16. What must be added to the polynomial $p(x) = x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by x^2+2x-3 .

OR

If α , β are the zeros of a Quadratic polynomial such that $\alpha + \beta = 24$, $\alpha - \beta = 8$. Find a Quadratic polynomial having α and β as its zeros.

- 17. If two zeros of the polynomial $f(x) = x^4 6x^3 26x^2 + 138x 35$ are $2 \pm \sqrt{3}$. Find the other zeros.
- 18. On dividing the polynomial $4x^4 5x^3 39x^2 46x 2$ by the polynomial g(x) the quotient is $x^2 3x 5$ and the remainder is -5x + 8. Find the polynomial g(x).