1	3c	3b	3a	2d	2c	2b	2a	1d	lc	16	la
-		Name of Street		A REPORT							
10000		2000			F15100		1888				
100000	3866										

ATENÇÃO: Não é permitido destacar as folhas

$3^{\underline{a}}$ Prova de MA327 — 21/11/2013, **08:00–10:00** hs

NOME:	Turma:	E	RA:
1011201		_	

1. a) (1 pt) Seja $T:V\to V$ uma transformação linear. Defina subespaço invariante. Seja $W\subset V$ um subespaço T-invariante, defina a transformção linear restrita à W, T_W .

Agora seja $V = \mathbb{R}^4$, o espaço euclidiano com o produto interno usual, e e_1 , e_2 , e_3 e e_4 a base canônica. Seja T o operador linear em V tal que

$$T(e_1) = 3e_1 + e_2 + e_3 + e_4,$$
 $T(e_2) = e_1 + 3e_2 + e_3 + e_4,$ $T(e_3) = e_1 + e_2 + 3e_3 + e_4,$ $T(e_4) = e_1 + e_2 + e_3 + 3e_4.$

Seja W_0 o espaço gerado por i + j + k e W_1 o seu complemento ortogonal.

- b) (1 pt) Mostre que W_0 e W_1 são subespaços T-invariantes.
- c) (1 pt) Exiba uma base de W_1 e escreva a matriz da restrição $T_{W_1}: W_1 \to W_1$ nessa base.
- d) (1 pt) Calcule o polinômio característico de T. Encontre uma base de V que diagonaliza T.
- (2 pt) Verificar se as afirmações abaixo são verdadeiras ou falsas. (Respostas sem justificativa não serão consideradas.)
- a) Seja $V=\mathbb{R}^n$ e seja T um operador linear em V tal que $T^2=I$, a transformação identidade. Se Tnão tem autovalor 1 então T = -I.
- b) Seja $T\colon V\to V$ um operador linear no espaço $V=\mathbb{R}^n$ com o produto escalar usual. Se T é diagonalizável, então o adjunto dele T^* também o é.
- c) Se V é um espaço vetorial sobre os reais e T é um operador linear em V então T sempre possui subespaço invariante (diferente de 0 e de V).
- d) Seja T um operador linear normal no espaço vetorial V de dimensão finita e sejam $\lambda \neq \mu$ dois autovalores distintos de T, com autovetores v e w, respectivamente. Então $v \perp w$.
 - 3. a) (1 pt) Definir operador autoadjunto e operador normal num espaço vetorial com produto interno.
 - b) (1 pt) Seja $V=\mathbb{R}^3$ com o produto interno usual. Seja $T\colon V\to V$ dado pela fórmula

$$T(x_1, x_2, x_3) = (2x_1 - 2x_2, -2x_1 + 3x_2 + 2x_3, 2x_2 + 4x_3).$$

Mostrar que T é autoadjunto.

c) (2 pt) Seja A a matriz de T na base canônica de V. Encontrar uma matriz ortogonal $P \in M_3(\mathbb{R})$ tal que $P^{-1}AP = D$ com D uma matriz diagonal. Explicitar a matriz D.

Incluir na prova, por favor, todas as "contas" feitas nas resoluções. Respostas não acompanhadas de argumentos que as justifiquem não serão consideradas.

Boa Prova!