Рекуррентные нейронные сети для разметки последовательности

RNN для разметки

Математические методы анализа текстов осень 2021

Попов Артём Сергеевич

6 откября 2021

Задача разметки последовательности (sequence tagging)

Дано:

- ▶ D множество размеченных последовательностей (x, y)
- ▶ $x = \{x_1, ..., x_n\}, x_i \in X$ входная последовательность (слова)
- ▶ $y = \{y_1, ..., y_n\}, y_i \in Y$ выходная последовательность (метки)

RNN для разметки

Необходимо: по входной последовательности предсказать элементы выходной последовательности

В задачах анализа текста:

- \triangleright y_i метка для x_i , длина последовательностей в одной паре одинаково, в разных может быть различна
- Последовательности можно привести к одной длине дополнив их специальным <PAD> токеном

Примеры задач разметки в NLP

Задача разметки может быть и «вспомогательной» и «продуктовой»:

RNN для разметки

- ▶ Разметка по частям речи (Part-of-speech tagging, POS)
- Распознавание именованных сущностей (Named Entity Recognition, NER)
- ▶ Разметка семантических ролей (Semantic Role Labeling, SRL)
- ► Выделение текстовых полей данных (Slot filling)
- ▶ Разметка библиографических данных

ВІО-нотация

Для составных сущностей используется BIO-нотация:

RNN для разметки

- ▶ В (Begin) первое слово сущности
- ► I (Inside) слово внутри сущности
- ▶ О (Outsied) слово вне сущности

Пример входа и выхода (x, y):

Alex is going to Los Angeles B-PER O B-LOC I-LOC

Подходы для разметки последовательностей

- ► Правиловые подходы (rule-based)
- Классификатор на признаках, зависящих от позиции элемента в последовательности

RNN для разметки

- ▶ Графические модели (HMM/CRF)
- Нейронные сети (рекуррентные/свёрточные/трансформеры)
- Комбинация подходов

Модель рекуррентной нейронной сети¹ (RNN)

 h_t — скрытое состояние в момент времени t

$$h_t = f(Vx_t + Wh_{t-1} + b)$$
$$\hat{y}_t = g(Uh_t + \hat{b})$$

Обучение сети — минимизация суммарных потерь:

$$\sum_{t=1}^n \mathcal{L}_t(y_t, \hat{y}_t)
ightarrow \min_{V,U,W,b,\hat{b}}$$

Сеть обучается с помощью алгоритма backpropagation (through time)

¹Rumelhart et al; Learning internal representations by error propagation; 1985

Градиент по U зависит только от величин в момент t:

$$\frac{d\mathcal{L}_t}{dU} =$$

Градиент по U зависит только от величин в момент t:

RNN для разметки

$$\frac{d\mathcal{L}_t}{dU} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

Градиент по U зависит только от величин в момент t:

RNN для разметки

$$\frac{d\mathcal{L}_t}{dU} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

Градиент по W зависит от всех предыдущих величин:

$$rac{d\mathcal{L}_t}{dW} =$$

Градиент по U зависит только от величин в момент t:

$$\frac{d\mathcal{L}_t}{dU} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

Градиент по W зависит от всех предыдущих величин:

$$\frac{d\mathcal{L}_t}{dW} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{dh_t}{dW}$$

Градиент по U зависит только от величин в момент t:

$$\frac{d\mathcal{L}_t}{dU} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial U}$$

Градиент по W зависит от всех предыдущих величин:

$$\frac{d\mathcal{L}_t}{dW} = \frac{\partial \mathcal{L}_t}{\partial \hat{y}_t} \frac{\partial \hat{y}_t}{\partial h_t} \frac{dh_t}{dW}$$

$$\frac{dh_t}{dW} = \frac{\partial h_t}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{dh_{t-1}}{dW} = \frac{\partial h_t}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial W} + \frac{\partial h_t}{\partial h_{t-1}} \frac{\partial h_{t-1}}{\partial h_{t-2}} \frac{dh_{t-2}}{dW} = \\
= \dots = \sum_{k=1}^t \left(\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \right) \frac{\partial h_k}{\partial W}$$

RNN для разметки

Градиент по V считается аналогично градиенту по W

Детали обучения RNN: взрыв и затухание градиентов

Взрыв градиента:

$$\prod_{i=k+1}^{t} \frac{\partial h_i}{\partial h_{i-1}} \to \infty$$

Затухание градиента:

$$\prod_{i=k+1}^t \frac{\partial h_i}{\partial h_{i-1}} \to 0$$

$$\frac{\partial h_i}{\partial h_{i-1}} = diag\left(\frac{1}{\mathsf{ch}^2(z_i)}\right) W$$

$$z_i = Vx_i + Wh_{i-1} + b$$

если f = tanh

Популярные способы борьбы с взрывом/затуханием:

- ► Gradient clipping (против взрыва)
- ▶ Модели LSTM и GRU (против затухания)

Gradient clipping

Ограничение нормы градиентов:

Algorithm 1 Pseudo-code for norm clipping the gradients whenever they explode

```
\hat{\mathbf{g}} \leftarrow rac{\partial \mathcal{E}}{\partial 	heta} \ 	ext{if } \|\hat{\mathbf{g}}\| \geq threshold \ 	ext{then} \ \hat{\mathbf{g}} \leftarrow rac{threshold}{\|\hat{\mathbf{g}}\|} \hat{\mathbf{g}} \ 	ext{end if}
```

Как выбрать порог?

Можно использовать константу. Можно брать среднюю норму градиента для весов по запускам без gradient clipping

RNN для разметки

LSTM сеть

Используем более сложную структуру ячейки:

RNN

¹Hochreiter and Schmidhuber (Neural Computation); Long Short-Term Memory; 1997

¹ссылка на туториал по LSTM

RNN для разметки

Output gate

Ct

LSTM ячейка

$$z_t = [h_{t-1}, x_t]$$
 $f_t = \sigma(W_f \cdot z_t + b_f)$
 $i_t = \sigma(W_i \cdot z_t + b_i)$
 $\hat{C}_t = \operatorname{th}(W_c \cdot z_t + b_c)$
 $C_t = f_t \cdot C_{t-1} + i_t \cdot \hat{C}_t$
 $o_t = \sigma(W_o \cdot z_t + b_o)$
 $h_t = o_t \cdot \operatorname{tanh}(C_t)$

Обучается с помощью алгоритма Backpropagation

Почему решает проблему затухающих градиентов?

Введение

$$\begin{aligned} z_t &= [h_{t-1}, x_t] \\ f_t &= \sigma(W_f \cdot z_t + b_f) \\ i_t &= \sigma(W_i \cdot z_t + b_i) \\ \hat{C}_t &= \operatorname{th}(W_c \cdot z_t + b_c) \\ C_t &= f_t \cdot C_{t-1} + i_t \cdot \hat{C}_t \\ o_t &= \sigma(W_o \cdot z_t + b_o) \\ h_t &= o_t \cdot \operatorname{tanh}(C_t) \end{aligned}$$

Обучается с помощью алгоритма Backpropagation

Почему решает проблему затухающих градиентов?

 C_t зависит от C_{t-1} линейно, т.е $\frac{\partial C_t}{\partial C_{t-1}}=f_t$, при инициализации b_f большими числами, $f_tpprox 1$

GRU ячейка

$$z_{t} = [h_{t-1}, x_{t}]$$

$$u_{t} = \sigma(W_{u}z_{t} + b_{u})$$

$$r_{t} = \sigma(W_{r}z_{t} + b_{r})$$

$$\hat{h}_{t} = \text{th}(W_{h}[r_{t}h_{t-1}, x_{t}] + b_{h})$$

$$h_{t} = (1 - u_{t})h_{t-1} + u_{t}\hat{h}_{t}$$

RNN для разметки

На практике часто используют GRU ячейку, т.к. она быстрее учится.

¹Cho et al (EMNLP 2014), Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation; 2014

RNN для разметки

Разные архитектуры рекуррентных сетей

Примеры задач:

one to many Генерация описания изображения many to one Классификация предложений many to many(1) Перевод с одного языка на другой many to many(2) Определение частей речи

Глубокие рекуррентные сети (deep RNN, layers stacking)

Выходы одной рекуррентной сети подаются на вход другой:

$$h_t^1, C_t^1 = LSTM(h_{t-1}^1, C_{t-1}^1, x_t)$$

$$h_t^2, C_t^2 = LSTM(h_{t-1}^2, C_{t-1}^2, h_t^1)$$

$$h_t^3, C_t^3 = LSTM(h_{t-1}^1, C_{t-1}^1, h_t^2)$$

$$y_t = g(Uh_t^2 + \hat{b})$$

RNN для разметки

Двунаправленные сети (bidirectional)

Конкатенация выходов двух сетей, одна идёт слева направо, другая справа налево:

$$\overrightarrow{h_t}, \overrightarrow{C_t} = \overrightarrow{LSTM}(\overrightarrow{h_{t-1}}, \overrightarrow{C_{t-1}}, x_t)$$

$$\overleftarrow{h_t}, \overleftarrow{C_t} = \overleftarrow{LSTM}(\overleftarrow{h_{t+1}}, \overleftarrow{C_{t+1}}, x_t)$$

$$y_t = g(U[\overrightarrow{h_t}, \overleftarrow{h_t}] + \hat{b})$$

На практике часто работают лучше чем однонаправленные!

Работа с словами не из словаря (OOV, out of vocabulary)

Добавление в словарь <UNK> токена

- ► Заменить редкие слова на <UNK> токен при обучении
- ▶ Во время обучения с малой вероятностью заменять часть слов на <UNK>

Использовать посимвольную RNN (charRNN)

- ▶ Вероятность встретить новый символ крайне мала...
- ▶ Во многих задачах charRNN работает не хуже wordRNN

Использовать посимвольную RNN для новых слов

- ► Если встречаем незнакомое слово, используем charRNN для его кодирования
- На каждой итерации обучения с малой вероятностью считаем одно из слов новым

Пример создания LSTM-теггера в Pytorch

RNN

```
import torch.nn as nn
class LSTMTagger(nn.Module):
   def __init__(self, embedding_dim, hidden_dim,
                             vocab_size, tagset_size):
        super(LSTMTagger, self).__init__()
        self.word_embeddings = nn.Embedding(
            vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim)
        self.hidden2tag = nn.Linear(hidden_dim, tagset_size)
```

Пример создания LSTM-теггера в Pytorch

```
class LSTMTagger(nn.Module):
   def forward(self, sentence):
        sentence_embeddings = self.word_embeddings(sentence)
        lstm_out, _ = self.lstm(
            sentence_embeddings.view(len(sentence), 1, -1)
        tag_scores = self.hidden2tag(
            lstm_out.view(len(sentence), -1)
       return tag_scores
```

Введение

▶ Рекуррентный нейронные сети (RNN) — нейросетевая архитектура для работы с последовательностями

RNN для разметки

- ▶ Обучается с помощью алгоритма backpropagation
- ▶ В исходном виде RNN плохо обучается, необходимо использовать LSTM/GRU и gradient clipping
- ▶ С помощью разных архитектур сети можно решать разные задачи
- ▶ Ещё одна архитектура для работы с последовательностями трансформер (на следующей лекции)

Базовая модель разметки (tagging)

Вход модели:

 \blacktriangleright $x=(x_1,\ldots,x_n), x_t$ — one-hot вектор t-го слова

Выход модели:

 $\hat{y}=(\hat{y}_1,\ldots,\hat{y}_n),\quad \hat{y}_t=p(y|x_1,\ldots,x_n,t)$ — распределение тегов t-го слова

▶ один тег — префикс-тип (например, B-PER) или О

Архитектура сети:

$$egin{aligned} v_t &= \operatorname{Embedding}(t) \ h_t, \, C_t &= \operatorname{LSTM}(h_{t-1}, \, C_{t-1}, \, v_t) \ \hat{y}_t &= \operatorname{softmax}(Uh_t + \hat{b}) \ \mathcal{L} &= \sum_{t=1}^n \mathcal{L}_t, \quad \mathcal{L}_t = -\sum_{y \in Y} [y = y_t] \log p(y = y_t | x_1^n, \, t) \end{aligned}$$

Базовая модель разметки

Замечания о базовой модели

При предобработке слова обычно не приводятся к нижнему регистру

RNN для разметки 00000000000000000

- ▶ Лучше использовать bidirectional сеть
- ▶ Может быть несколько слоёв (но редко > 2)
- ▶ Эмбеддинги слов могут быть:
 - инициализированы предобученной моделью, заморожены во время обучения
 - инициализированы предобученной моделью, обучаются во время обучения
 - случайно инициализированы, обучаются во время обучения.
- Dropout помогает при обучении

Почему регистр важен? (задача NER)

Facebook нашел нового финансового директора . Финансовым директором социальной сети Facebook назначен 39-летний Дэвид Эберсман (David Ebersman), сообщает The Wall Street Journal.

RNN для разметки

T1 ORG 0 8 Facebook

T2 ORG 83 91 Facebook

T3 PER 111 142 Дэвид Эберсман (David Ebersman)

T4 ORG 153 176 The Wall Street Journal

Модификации модели

- ► Замена RNN на трансформеры или свёрточные сети
- ▶ Постобработка выходов сети, например через CRF слой
- ▶ Усложнение слоя представлений слов, увеличение количества представлений

RNN для разметки 0000•0000000000000

- ► Предобученные глубокие сети (transfer learning)
- ▶ Разделение предсказания префиксов и типов
- ► Semi-supervised и multi-task learning

CRF: напоминание

Моделируем вероятность последовательности y при условии x линейной моделью с вектором весов $w \in \mathbb{R}^d$:

RNN для разметки

$$p(y|x,w) = \frac{1}{Z(x,w)} \exp(\langle w, F(x,y) \rangle)$$

Признак $F_i(x, y)$ задаётся через признак f_i специального вида:

$$F_j(x,y) = \sum_{i=1}^n f_j(y_{i-1}, y_i, x_i, i)$$

После некоторых преобразований:

$$\langle w, F(x,y) \rangle = \sum_{i=1}^{n} \sum_{j=1}^{d} w_j f_j(y_{i-1}, y_i, x_i, i) = \sum_{i=1}^{n} G_{x,i}[y_{i-1}, y_i]$$

CRF: напоминание

Для обучения модели CRF максимизируем правдоподобие, используя SGD:

RNN для разметки

$$\sum_{(x,y)\in D}\log p(y|x,w)\to \max_w$$

Для вычисления y по x при известных w необходимо найти:

$$\hat{y} = \arg\max_{y \in Y^n} p(y|x, w)$$

За счёт марковского свойства элементарных признаков f_i , расчёт градиента слагаемого правдоподобия и \hat{y} можно провести за $O(|Y|^2n)$ (алгоритм вперёд-назад и алгоритм Витерби соответственно).

Почему CRF может помочь модели?

Не все выходные последовательности соответствуют формату:

- ► B-PER I-LOC I-LOC O
- ► O I-LOC I-LOC O

Таким образом, CRF — обучаемый пост-процессинг последовательности:

- ▶ функционал CRF явно учитывает совместное положение выходных меток в отличие от RNN
- ▶ функционал CRF для последовательности не разбивается на пословные слагаемые

Важно. Если данных много, постпроцессинг не нужен. Но для задачи разметки часто тяжело собрать большие выборки данных.

Признаки CRF для обработки выходов RNN

Пусть после применения стандартного теггера к последовательности xполучается последовательность $s, s_i \in \mathbb{R}^{|Y|}$.

RNN для разметки 000000000000000000

Выход соответствующий у элемента s_i будем обозначать $s_i(y)$.

Будем использовать в модели CRF два вида признаков:

ightharpoonup |Y| imes |Y| признаков, учитывающих выход модели:

$$\phi_{uv}(y_{i-1}, y_i, x_i) = \mathbb{I}[y_{i-1} = u]\mathbb{I}[y_i = v]s_i(y),$$

▶ $|Y| \times |Y|$ признаков, учитывающих связь меток:

$$\psi_{uv}(y_{i-1}, y_i) = \mathbb{I}[y_{i-1} = u]\mathbb{I}[y_i = v],$$

Преобразование выражения для признаков

Линейные коэффициенты модели будем обозначать w(u, v) и a(u, v). После преобразований $G_{x,i}[y_{i-1}, y_i]$ получим:

RNN для разметки

$$G_{x,i}[y_{i-1}, y_i] = \sum_{u \in Y} \sum_{v \in Y} (w(u, v)\phi_{uv}(y_{i-1}, y_i, x_i) + a(u, v)\psi_{uv}(y_{i-1}, y_i)) =$$

$$= \sum_{u \in Y} \sum_{v \in Y} \mathbb{I}[y_{i-1} = u]\mathbb{I}[y_i = v](w(u, v)s_i(y) + a(u, v)) =$$

$$= w(y_{i-1}, y_i)s_i(y) + a(y_{i-1}, y_i)$$

Часто при реализации полагают $w(u, v) = 1 \quad \forall u \in Y, v \in Y$.

Алгоритм обучения сети вместе с CRF

Выход biLSTM — вход для CRF.

T.к. CRF обучается через градиентные методы, можем пробрасывать градиенты CRF в backpropgation алгоритме.

Algorithm 1 Bidirectional LSTM CRF model training procedure

```
1: for each epoch do
      for each batch do
3:
         1) bidirectional LSTM-CRF model forward pass:
             forward pass for forward state LSTM
5:
             forward pass for backward state LSTM
         2) CRF layer forward and backward pass
6:
         3) bidirectional LSTM-CRF model backward pass:
8:
             backward pass for forward state LSTM
9:
             backward pass for backward state LSTM
10:
         4) update parameters
11:
      end for
12: end for
```

CRF слой

POS и NER на практике

 $^{^{\}mathbf{1}}$ Lample et al (NAACL 2016). Neural Architectures for Named Entity Recognition

Улучшение от CRF в biLSTM¹

Результаты biLSTM + CRF превосходят остальные подходы

Table 2: Comparison of tagging performance on POS, chunking and NER tasks for various models.

		POS	CoNLL2000	CoNLL2003
	Conv-CRF (Collobert et al., 2011)	96.37	90.33	81.47
Random	LSTM	97.10	92.88	79.82
	BI-LSTM	97.30	93.64	81.11
	CRF	97.30	93.69	83.02
	LSTM-CRF	97.45	93.80	84.10
	BI-LSTM-CRF	97.43	94.13	84.26
	Conv-CRF (Collobert et al., 2011)	97.29	94.32	88.67 (89.59)
Senna	LSTM	97.29	92.99	83.74
	BI-LSTM	97.40	93.92	85.17
	CRF	97.45	93.83	86.13
	LSTM-CRF	97.54	94.27	88.36
	BI-LSTM-CRF	97.55	94.46	88.83 (90.10)

Добавление CRF помогает и в CNN, и в трансформерах...

¹Huang et al (2015); Bidirectional LSTM-CRF Models for Sequence Tagging.

Посимвольные представления слов

Улучшение работы для слов с опечатками и ошибками:

- ► Кодируем слово посимвольной LSTM
- Можно использовать только эти эмбеддинги
- ► Можно конкатенировать с «табличными» эмбеддингами слов
- ▶ Можно вместо LSTM использовать свёртку

Дополнительные представления: регистр и тип

В модели¹ используется 4 вида эмбеддингов:

- стандартные
- ▶ признаки регистра
- посимвольные
- ▶ тип

¹Ghaddar et al (2018), Robust Lexical Features for Improved Neural Network Named-Entity Recognition

Как строились представления типа?

- 1. Используется корпус WiFiNE, содержащий для слов относящиеся к ним категории (например, для hilton /building/hotel, /building/restaurant, /person/actor)
- 2. Также корпус WiFine содержит предложения, в которых некоторым словам соответствуют необходимые сущности
- 3. По такому корпусу обучаются эмбеддинги (FastText) единое пространство для слов и сущностей слов
- 4. Представление типа для слова вектор расстояний от эмбеддинга слова до всех представлений сущностей

Это полезно. Для улучшения качества иногда можно использовать специальные корпуса или лингвистические ресурсы.

Резюме RNN-теггер

Стандартная архитектура теггера:

- 1. Табличные эмбеддинги / посимвольные RNN эмбеддинги / посимвольные CNN эмбеддинги
- 2. RNN / CNN / Трансформер
- СRF слой

Если нужно улучшить качество:

▶ Добавление CRF слоя почти всегда улучшает качество, но замедляет обучение и инференс

RNN для разметки 00000000000000000

▶ Добавление посимвольных представлений улучшает качество, если в данных много опечаток, но сильно замедляет обучение и инференс

Задача POS (Part of speech tagging)

Для каждого слова в предложении определить часть речи

RNN для разметки

- Простая задача решается хорошо простыми моделями
- Вспомогательная задача

Зачем могут использоваться pos-теги:

- ▶ Снятие омонимии (мыло NOUN и мыло VERB)
- Дополнительный признак / дополнительное представление
- ▶ Выделение стоп-слов (предлоги и союзы стоп-слова)
- Группировка слов по важности (определение темы текста существительные важнее глаголов)

Разметка POS

Есть несколько лингвистических концепций разметки pos-тегов:

- ► Universal POS tags (в UDPipe) (единый международный стандарт)
- ▶ OpenCorpora tags (в Pymorphy2) (например, различаются хороший (ADJF) и хорош (ADJS))

Некоторые библиотеки (например, лемматизаторы в nltk) принимают теги в определённом формате!

- ▶ Для каждого слова в предложении определить является ли он частью какой-либо именованной сущностью
- ► Более сложная задача чем POS
- ▶ Может быть и вспомогательной, и конечной задачей
- ▶ Может быть частью задачи Named Entity Linking (NEL) соотнести найденную сущность с сущностью из списка

Где используется NER:

- ▶ Диалоговые системы
- Дополнительный признак
- ▶ Поиск
- ▶ Деперсонализация данных
- Выделение сущностей в новостном потоке (выделить все упоминания Трампа в новостях)

	in	New	York
Правильный вариант	0	B-LOC	I-LOC
Точное совпадение	0	B-LOC	I-LOC
Лишняя сущность	B-LOC	B-LOC	I-LOC
Пропуск сущности	0	0	0
Неправильный тип	0	B-ORG	I-ORG
Неправильные границы	B-LOC	I-LOC	I-LOC
Неправильные тип и	B-ORG	I-ORG	I-ORG
границы	D-ONG	I-ONG	I-ONG

 $^{^{\}mathbf{1}} \mathsf{http://www.davidsbatista.net/blog/2018/05/09/Named_Entity_Evaluation/}$

Способы задания метрик качества

Макро-метрики: смотрим на долю правильно размеченых предложений. Микро-метрики: смотрим на долю правильно размеченных сущностей.

RNN для разметки

Микро-метрики:

- ▶ precision доля правильно распознанных сущностей среди всех распознанных сущностей
- ▶ recall доля правильно распознанных сущностей среди всех истинных сущностей
- ▶ f1 среднее гармоническое precision и recall

Можно считать микро-метрики отдельно по каждому типу сущностей.

Способы задания метрик качества: SemEval

Считаем микро-метрики по четырём показателям, каждый показатель задаётся допустимыми ошибками:

- 1. Strict нет ошибок
- 2. Туре неправильный тип
- 3. Exact неправильные границы
- 4. Partial неправильный тип + неправильные границы

Открытые модели POS и NER

- ▶ Spacy пайплайны для разных задач (Tok2Vec, CNN-based), есть частичная поддержка русского языка
- ▶ UDPipe пайплайны для разных задач (LSTM-CRF), есть частичная поддержка русского языка

- ▶ pymorphy2 неконтекстный rule-based для русского языка
- ▶ nltk rule-based и n-граммные модели для POS
- ▶ rnnmorph POS для русского языка (biLSTM-CRF)
- ▶ deepavlov NER для русского языка (transformer, BERT-based)
- ▶ natasha NER для русского языка (CNN-CRF)

Проблема обучения теггеров — отсутствие большого датасета для разметки.

Создадим синтетический датасет разметки следующим образом:

- 1. Обучим очень тяжёлую модель на основе BERT на небольшом NER датасете (\approx 1k объектов)
- **2.** Полученным теггером разметим большое число объектов ($\approx 700 k$ объектов)
- 3. Обучим лёгкую модель на синтетическом датасете

¹https://habr.com/ru/post/516098/

Введение

Зависимость качества от количества объектов в синтетическом датасете:

Резюме по лекции

▶ Рекуррентные нейронные сети (LSTM, GRU) позволяют решать задачи машинного обучения на последовательностях

- ▶ Комбинация CRF с нейросетями для последовательностей позволяет улучшить качество решения задачи разметки
- Не всегда нейросетевые решения необходимы, для некоторых задач достаточно простых rule-based подходов