Basic conventions						
Minkowski metric tensor	Totally antisymmetric tensor	Four-momentum	Four-momentum norm	Massive rest-frame		
$\eta_{\mu u}$	$\epsilon \eta_{\mu u ho \sigma}$	k^{μ}	$k^2 == k_\mu k^\mu$	$n^{\mu} == \frac{k^{\mu}}{k}$		

Fundamental field Symmetries	Decomposition in SO(3) irreps	Source
Symmetry[3, $\Gamma^{\bullet 1 \bullet 2 \bullet 3}$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[{}, GenSet[]]]	$-\frac{1}{2} \eta_{\alpha\chi} \Gamma_{1^{-}\beta}^{\#1} + \frac{1}{2} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#1} + \frac{4}{3} \Gamma_{2^{-}\beta\chi\alpha}^{\#1} + \frac{1}{2} \Gamma_{2^{-}\alpha\beta\chi}^{\#2} + \frac{1}{2} \Gamma_{2^{-}\alpha\chi\beta}^{\#2} + \Gamma_{3^{-}\alpha\beta\chi}^{\#1} + \frac{1}{3} \eta_{\beta\chi} \Gamma_{1^{-}\alpha}^{\#6} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{1^{-}\beta}^{\#6} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#6} + \frac{1}{15} \eta_{\beta\chi} \Gamma_{1^{-}\alpha}^{\#4} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{1^{-}\chi}^{\#4} + \Gamma_{1^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{1}{9} \eta_{\beta\chi} \Gamma_{0^{+}}^{\#3} \eta_{\alpha} + \frac{1}{3} \Gamma_{2^{+}\beta\chi}^{\#2} \eta_{\alpha} + \frac{2}{3} \Gamma_{2^{+}\beta\chi}^{\#3} \eta_{\alpha} + \frac{2}{9} \eta_{\beta\chi} \Gamma_{0^{+}}^{\#4} \eta_{\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{0^{+}}^{\#4} \eta_{\beta} - \Gamma_{1^{+}\alpha\chi}^{\#4} \eta_{\beta} + \Gamma_{1^{+}\alpha\chi}^{\#4} \eta_{\gamma} + \Gamma_{1^{+}\alpha\chi}^{\#4} \eta_{\gamma}^{\#4} \eta_{\gamma} + \Gamma_{1^{+}\alpha\chi}^{\#4} \eta_{\gamma}^{\#4} \eta_{\gamma}^{\#4} \eta$	$\Delta_{lphaeta\chi}$

		$ \frac{1}{3} \Gamma_{1-\beta}^{\#3} n_{\alpha} n_{\chi}^{-\frac{1}{3}} \Gamma_{1-\alpha}^{\#6} n_{\beta} n_{\chi}^{-\frac{1}{15}} \Gamma_{1-\alpha}^{\#4} n_{\beta} n_{\chi}^{+\frac{2}{3}} \Gamma_{1-\alpha}^{\#5} n_{\beta} n_{\chi}^{+\frac{1}{3}} \Gamma_{1-\alpha}^{\#5} n_{\beta} n_{\chi}^{-\frac{1}{3}} \Gamma_{0+\alpha}^{\#3} n_{\beta} n_{\chi}^{+\frac{1}{3}} \Gamma_{0+\alpha}^{\#3} n_{\alpha} n_{\beta} n_{\chi}^{+\frac{1}{6}} n_{\alpha}^{\#3} n_{\beta}^{-\frac{1}{6}} \epsilon \eta_{\alpha\beta\chi\delta} \Gamma_{0-\alpha}^{\#1} n_{\delta}^{-\frac{1}{6}} n_{\alpha\beta\chi\delta} \Gamma_{0-\alpha}^{\#1} n_{\beta}^{-\frac{1}{6}} n_{\alpha\gamma}^{-\frac{1}{6}} n_{\alpha\gamma}^{-$	
SO(3) irrep	Symmetries	Expansion in terms of the fundamental field	Source
	Symmetry[0, $\Gamma_{0+}^{#1}$, {}, StrongGenSet[{}, GenSet[]]]	$-\frac{1}{2} \Gamma_{\alpha}^{\alpha \beta} n_{\beta} + \frac{1}{2} \Gamma_{\alpha}^{\alpha \beta} n_{\beta}$	$\Delta_0^{\#1}$
		$\Gamma^{lphaeta\chi}$ n_{lpha} n_{lpha} n_{χ}	Δ#2
	Symmetry[0, $\Gamma_{0+}^{#3}$, {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\ \beta} n_{\alpha} + \Gamma^{\alpha\beta}_{\ \alpha} n_{\beta} + \Gamma^{\alpha\beta}_{\ \alpha} n_{\beta} - 3 \Gamma^{\alpha\beta\chi} n_{\alpha} n_{\beta} n_{\chi}$	Δ#3
	Symmetry[0, Γ_{0+}^{4} , {}, StrongGenSet[{}, GenSet[]]]	$\Gamma^{\alpha\beta}_{\ \beta} \ n_{\alpha}^{-\frac{1}{2}} \ \Gamma^{\alpha\beta}_{\ \alpha} \ n_{\beta}^{-\frac{1}{2}} \ \Gamma^{\alpha\beta}_{\ \alpha} \ n_{\beta}$	$\Delta_{0}^{#4}$
Γ ₀ ^{#1}		$\epsilon \eta_{\alpha\beta\chi\delta} \Gamma^{\alpha\beta\chi} n^{\delta}$	$\Delta_0^{\#1}$
$\Gamma^{\#1}_{1}{}^{+}\alpha \beta$	StrongGenSet[{1, 2}, GenSet[-(1,2)]]]	$\frac{1}{4} \Gamma_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{4} \Gamma_{\alpha\beta}^{ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{ X} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\beta\alpha}^{ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{4} \Gamma_{\alpha\alpha}^{ X} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha\alpha}^{ X} n_{\chi} n_{\delta} - $	$\Delta_{1}^{\#1}{}_{lphaeta}$
$\Gamma^{\#2}_{1}^{+} \alpha \beta$	Symmetry[2, $\Gamma_{1^+}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{2} \Gamma^{\chi}_{\alpha\beta} n_{\chi} - \frac{1}{2} \Gamma^{\chi}_{\beta\alpha} n_{\chi} + \frac{1}{2} \Gamma^{\chi}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\beta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma^{\chi\delta}_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{\#2}{}_{lphaeta}$
$\Gamma_{1}^{#3}$ $\alpha\beta$	Symmetry[2, $\Gamma_{1}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \Gamma_{\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} +$ $\frac{1}{2} \Gamma_{\beta}^{\ X} n_{\alpha} n_{\chi} n_{\delta} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} + \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{2} \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{#3}{}_{lphaeta}$
${\Gamma_{1}^{\#1}}_{\alpha}$	Symmetry[1, $\Gamma_1^{\#1} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]	$-\frac{1}{2}\Gamma^{\beta}_{\alpha\beta} + \frac{1}{2}\Gamma^{\beta}_{\beta\alpha} - \frac{1}{2}\Gamma^{\beta}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2}\Gamma^{\beta\chi}_{\beta} n_{\alpha} n_{\chi} + \frac{1}{2}\Gamma^{\beta}_{\alpha} n_{\beta} n_{\chi} - \frac{1}{2}\Gamma^{\beta\chi}_{\alpha} n_{\beta} n_{\chi}$	Δ#1 α
-	Symmetry[1, $\Gamma_1^{\#2} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[$\} \}$]		Δ#2 α
-	Symmetry[1, $\Gamma_1^{\#3} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]		Δ#3 α
$\frac{\Gamma_{1}^{\#4}}{\Gamma_{1}^{\#4}}$		$\Gamma_{\alpha\beta}^{\beta} + \Gamma_{\alpha\beta}^{\beta} + \Gamma_{\beta\alpha}^{\beta} - \Gamma_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} - \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + 3 \Gamma_{\alpha}^{\beta\chi\delta} n_{\alpha} n_{\beta} n_{\chi} n_{\delta}$	$\Delta_{1}^{\#4}\alpha$
$\Gamma_{1}^{\#5}$	Symmetry[1, $\Gamma_{1}^{\#5} \bullet 1$, $\{ \bullet 1 \rightarrow -a \}$, StrongGenSet[$\{ \}$, GenSet[]]]		$\Delta_{1}^{\#5}$
$\frac{\Gamma_{1}^{\mu 6}}{\Gamma_{1}^{\mu 6}}$		$\Gamma_{\alpha\beta}^{\beta} - \frac{1}{2} \Gamma_{\alpha\beta}^{\beta} - \frac{1}{2} \Gamma_{\beta\alpha}^{\beta} - \Gamma_{\chi}^{\beta\chi} n_{\alpha} n_{\beta} + \frac{1}{2} \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} + \frac{1}{2} \Gamma_{\beta}^{\beta\chi} n_{\alpha} n_{\chi} - \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi} + \frac{1}{2} \Gamma_{\alpha}^{\beta\chi} n_{\beta} n_{\chi}$	Δ#6 α
_	Symmetry[2, $\Gamma_{2^{+}}^{\#1} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$,	$-\frac{1}{4} \Gamma_{\alpha\beta}^{\ \ \chi} n_{\chi} + \frac{1}{4} \Gamma_{\alpha\beta}^{\ \ \chi} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ \chi} n_{\chi} + \frac{1}{4} \Gamma_{\beta\alpha}^{\ \chi} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\chi\delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\chi} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\chi\delta} n_{\delta} - \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}$	
$\Gamma_{2}^{\#1}_{\alpha\beta}$	StrongGenSet[{1, 2}, GenSet[(1,2)]]]	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\Delta_{2}^{\#1}{}_{lphaeta}$
Γ ^{#2} ₂ + αβ	Symmetry[2, $\Gamma_{2^{+}}^{\#2} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$\frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ \ \ X} n_{\chi} n_{\chi} n_{\zeta} - \Gamma_{\alpha\beta}^{\ \ \ \chi} n_{\chi} n_{\zeta} - \Gamma_{\alpha\beta}^{\ \ \ \chi} n_{\chi} n_{\zeta} - \Gamma_{\alpha\beta}^{\ \ \ \chi} n_{\zeta} n_{\zeta} - \Gamma_{\alpha\beta}^{\ \ \chi} n_{\zeta} n_{\zeta} n_{\zeta} - \Gamma_{\alpha\beta}^{\ \ \chi} n_{\zeta} n_{\zeta} n_{\zeta} n_{\zeta} n$	$\Delta^{\#2}_{2^+ lpha eta}$
Γ ^{#3} ₂ + αβ	Symmetry[2, $\Gamma_{2^{+}}^{\#3} \bullet 1 \bullet 2$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$(1, 2)$]]]	$-\frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\alpha\beta}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{4} \Gamma_{\beta\alpha}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\alpha\beta}^{\ X} n_{\chi} + \frac{1}{2} \Gamma_{\beta\alpha}^{\ X} n_{\chi} - \frac{1}{3} \eta_{\alpha\beta} \Gamma_{\delta}^{\ X\delta} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\beta}^{\ X\delta} n_{\chi} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\ X\delta} n_{\delta} + \frac{1}{6} \eta_{\alpha\beta} \Gamma_{\chi}^{\ X\delta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{\ X\delta} n_{\alpha} n_{\beta} n_{\delta} - \frac{1}{6} \Gamma_{\chi}^{\ X\delta} n_{\alpha} n_{\beta} n_{\delta} + \frac{1}{2} \Gamma_{\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\beta}^{\ X\delta} n_{\alpha} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\beta} n_{\chi} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} n_{\gamma} - \frac{1}{4} \Gamma_{\alpha}^{\ X\delta} n_{\gamma} $	$\Delta^{\#3}_{2^+lphaeta}$
Γ ^{#1} ₂ αβχ	Symmetry[3, $\Gamma_2^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$-\frac{1}{8} \Gamma_{\alpha\beta\chi} + \frac{1}{8} \Gamma_{\alpha\chi\beta} + \frac{1}{8} \Gamma_{\beta\alpha\chi} - \frac{1}{8} \Gamma_{\beta\chi\alpha} + \frac{1}{4} \Gamma_{\chi\alpha\beta} - \frac{1}{4} \Gamma_{\chi\beta\alpha} - \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\alpha\delta} + \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\delta} + \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta}_{\delta\alpha} - \frac{3}{16} \eta_{\alpha\chi} \Gamma^{\delta}_{\delta\beta} - \frac{3}{16} \Gamma^{\delta}_{\beta\delta} n_{\alpha} n_{\chi} + \frac{3}{16} \Gamma^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} - \frac{3}{16} \Gamma^{\delta}_{\delta\alpha} n_{\beta} n_{\chi} + \frac{1}{8} \Gamma_{\beta\chi}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\beta\chi} n_{\alpha} n_{\delta} + \frac{1}{4} \Gamma_{\chi\beta}^{\delta} n_{\alpha} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\lambda} n_{\beta} n_{\gamma} + \frac{1}{8} \Gamma^{\delta}_{\alpha\lambda} n_{\beta} n_{\gamma} - \frac{1}{4} \Gamma^{\delta}_{\alpha\lambda} n_{\beta} n_{\delta} + \frac{1}{4} \Gamma^{\delta}_{\chi\beta} n_{\alpha} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\lambda} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\lambda} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\chi\alpha} n_{\beta} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\lambda} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\lambda} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{\gamma} n_{\delta} - \frac{1}{8} \Gamma^{\delta}_{\alpha\lambda} n_{\beta} n_{\delta} + \frac{1}{8} \Gamma^{\delta}_{\alpha\lambda} n_{\beta} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{\gamma} n_{\delta} - \frac{1}{4} \Gamma^{\delta}_{\alpha\beta} n_{\gamma} n_{\delta} - \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\delta} n_{\alpha} n_{\epsilon} + \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\delta} n_{\alpha} n_{\gamma} n_{\delta} - \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\delta} n_{\alpha} n_{\delta} n_{\epsilon} + \frac{3}{16} \eta_{\beta\chi} \Gamma^{\delta\epsilon}_{\delta} n_{\alpha} n_{\gamma} n_{\delta} - \frac{3}{16} \Gamma^{\delta\epsilon}_{\beta} n_{\alpha} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma^{\delta\epsilon}_{\beta} n_{\alpha} n_{\gamma} n_{\delta} n_{\epsilon} - \frac{3}{16} \Gamma^{\delta\epsilon}_{\beta} n_{\alpha} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma^{\delta\epsilon}_{\beta} n_{\alpha} n_{\gamma} n_{\delta} n_{\epsilon} - \frac{3}{16} \Gamma^{\delta\epsilon}_{\alpha} n_{\gamma} n_{\delta} n_{\epsilon} - \frac{3}{16} \Gamma^{\delta\epsilon}_{\alpha} n_{\gamma} n_{\delta} n_{\epsilon} + \frac{3}{16} \Gamma^{\delta\epsilon}_{\alpha} n_{\gamma} n_{\delta} n_{\epsilon} - \frac{3}{16} \Gamma^{\delta\epsilon}_{\alpha} n_{\gamma} n_{\delta} n_{\delta} - \frac{3}{16} \Gamma^{\delta\epsilon}_{\alpha} n_{\gamma} n_{\delta} n_{\delta}$	$\Delta_{2}^{\#1}{}_{lphaeta\chi}$
Γ ^{#2} ₂ _{αβχ}	Symmetry[3, $\Gamma_2^{\#2} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2 \}$, GenSet[$-(1,2)$]]]	$\frac{1}{3} \Gamma_{\alpha\beta\chi} + \frac{1}{3} \Gamma_{\alpha\chi\beta} - \frac{1}{3} \eta_{\beta\chi} \Gamma_{\alpha}^{\ \delta} - \frac{1}{3} \Gamma_{\beta\alpha\chi} - \frac{1}{3} \Gamma_{\beta\chi\alpha} + \frac{1}{3} \eta_{\alpha\chi} \Gamma_{\beta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} + \frac{1}{6} \eta_{\beta\chi} \Gamma_{\alpha\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} - \frac{1}{6} \eta_{\alpha\chi} \Gamma_{\beta\delta}^{\ \delta} - \frac{1}{3} \Gamma_{\beta\alpha}^{\ \delta} n_{\alpha} n_{\chi} + \frac{1}{3} \Gamma_{\beta\alpha}^{\ \delta} n_{\alpha} n_{\chi} + \frac{1}{3} \Gamma_{\alpha}^{\ \delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\ \delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\delta\alpha}^{\ \delta} n_{\beta} n_{\chi} + \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} n_{\alpha} n_{\delta} + \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma_{\alpha}^{\ \delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\ \delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\ \delta} n_{\beta} n_{\chi} + \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} n_{\alpha} n_{\delta} + \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma_{\alpha\lambda}^{\ \delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\ \delta} n_{\beta} n_{\chi} + \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} n_{\alpha} n_{\delta} + \frac{1}{3} \Gamma_{\beta\chi}^{\ \delta} n_{\alpha} n_{\delta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\chi} - \frac{1}{6} \Gamma_{\alpha\delta}^{\ \delta} n_{\beta} n_{\chi} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\chi} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\chi} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\zeta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\zeta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\zeta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\zeta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\zeta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\zeta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\zeta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\zeta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\beta} n_{\zeta} + \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\zeta} n_{\zeta} - \frac{1}{6} n_{\zeta} \Gamma_{\zeta}^{\ \delta} n_{\zeta} n_{\zeta} - \frac{1}{6} n_{\zeta} \Gamma_{\zeta}^{\ \delta} n_{\zeta} n_{\zeta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\zeta}^{\ \delta} n_{\zeta} n_{\zeta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\zeta} n_{\zeta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\zeta}^{\ \delta} n_{\zeta} n_{\zeta} - \frac{1}{3} \Gamma_{\alpha\chi}^{\ \delta} n_{\zeta}^{\ \delta} n_{\zeta}^{$	$\Delta_{2}^{\#2}{}_{lphaeta\chi}$
$\Gamma_{3}^{#1}$ $_{\alpha\beta\chi}$	Symmetry[3, $\Gamma_3^{\#1} \bullet 1 \bullet 2 \bullet 3$, $\{ \bullet 1 \rightarrow -a, \bullet 2 \rightarrow -b, \bullet 3 \rightarrow -c \}$, StrongGenSet[$\{ 1, 2, 3 \}$, GenSet[$\{ 1, 2, 3 \}$]]]	$\frac{1}{6} \Gamma_{\alpha\beta\chi} + \frac{1}{6} \Gamma_{\alpha\chi\beta} - \frac{1}{15} \eta_{\beta\chi} \Gamma_{\alpha}^{\delta} + \frac{1}{6} \Gamma_{\beta\alpha\chi} + \frac{1}{6} \Gamma_{\beta\alpha\chi} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta}^{\delta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{6} \Gamma_{\chi\alpha\beta} + \frac{1}{15} \eta_{\alpha\beta} \Gamma_{\lambda}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\beta}^{\delta} - \frac{1}{15} \Gamma_{\alpha\chi}^{\delta} \eta_{\alpha} \eta_{\alpha} + \frac{1}{15} \Gamma_{\chi}^{\delta} \eta_{\alpha} \eta_{\alpha} - \frac{1}{15} \Gamma_{\chi}^{\delta} \eta_{\alpha} \eta_{\alpha} - \frac{1}{15} \Gamma_{\chi}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\chi}^{\delta} - \frac{1}{15} \Gamma_{\chi}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\chi}^{\delta} - \frac{1}{15} \Gamma_{\chi}^{\delta} - \frac{1}{15} \Gamma_{\chi}^{\delta} - \frac{1}{15} \Gamma_{\chi}^{\delta} - \frac{1}{15} \eta_{\alpha\chi} \Gamma_{\chi}^{\delta} - \frac{1}{15} \Gamma_{\chi}^{$	$\Delta_3^{#1}{}_{lphaeta\chi}$