Onde elettromagnetiche (sintesi)

Maxwell (Trattato di elettricità e magnetismo, 1873)

I campi elettrici e magnetici dipendenti dal tempo soddisfano un'equazione d'onda lineare. In pratica le equazioni di Maxwell prevedono l'esistenza di onde elettromagnetiche consistenti di campi elettrici e magnetici oscillanti.

Proprietà

1) \vec{E} e \vec{B} sono sempre perpendicolari tra loro e perpendicolari alla direzione di propagazione

$$\vec{E} = \vec{B} \times \vec{c} \quad \Rightarrow \quad E = cB$$

velocità dell'onda

$$c = \frac{1}{\sqrt{\varepsilon_0 \mu_0}} = 3{,}00 \times 10^8 \,\mathrm{m/s}$$
VELOCITÀ
DELLA LUCE

Le onde elettromagnetiche sono trasversali e si propagano anche nel vuoto

2) Se una carica oscilla (ad es. in un'antenna) emette un'onda elettromagnetica. Consideriamo la sorgente puntiforme e i fronti d'onda piani (poiché consideriamo punti sufficientemente lontani dalla sorgente)

3) Se la sorgente si muove di moto armonico con frequenza f, anche l'onda elettromagnetica emessa è armonica, cioè

$$E = E_0 \cos[k(x - ct)]$$

$$B = B_0 \cos[k(x - ct)]$$

$$E_0, B_0 \text{ ampiezze}$$

$$k = \frac{2\pi}{\lambda} \text{ numero di oscillazioni}$$

$$\frac{1}{\lambda} \stackrel{\downarrow}{=} \text{ numero di oscillazioni}$$
 nell'unità di lunghezza

$$\lambda = \text{Lunghezza d'onda}$$

$$f = \frac{c}{\lambda} \text{ frequenza}$$

$$\downarrow \downarrow$$

$$c = \lambda f \text{ velocità di propagazione}$$

Il campo elettrico e il campo magnetico oscillano in fase

Energia trasportata da un'onda elettromagnetica

Densità volumica di energia del campo elettrico Densità volumica di energia del campo magnetico

Nello spazio attraversato da un'onda elettromagnetica c'è una densità di energia

$$w = w_{\vec{E}} + w_{\vec{B}}$$
 che varia nel tempo

Se l'onda è armonica, calcoliamone il valore medio \bar{w}

$$\bar{w}_{\vec{E}} = \frac{1}{4}\varepsilon_0 E_0^2$$

$$\bar{w}_{\vec{E}} = \frac{1}{4} \varepsilon_0 E_0^2 \qquad \bar{w}_{\vec{B}} = \frac{1}{4\mu_0} B_0^2$$

$$\bar{w} = \bar{w}_{\vec{E}} + \bar{w}_{\vec{B}} = \frac{1}{4}\varepsilon_0 E_0^2 + \frac{1}{4\mu_0} B_0^2 = \boxed{ }$$

per funzioni
$$a \sin^2 x$$

valore medio = $\frac{1}{2}$ valore max

$$= \frac{1}{4}\varepsilon_0 \left(E_0^2 + \frac{1}{\mu_0 \varepsilon_0} B_0^2 \right) = \frac{1}{4}\varepsilon_0 \left(E_0^2 + c^2 B_0^2 \right) =$$

$$= \frac{1}{4}\varepsilon_0 (E_0^2 + E_0^2) = \boxed{\frac{1}{2}\varepsilon_0 E_0^2}$$

 $=\frac{1}{4}\varepsilon_0\big(E_0^2+E_0^2\big)= \boxed{\frac{1}{2}\varepsilon_0E_0^2} \quad \begin{array}{l} \text{densità volumica} \\ \text{media di energia} \\ \text{di un'onda elettromagnetica} \end{array}$

Valori efficaci (vedi dopo)

$$E_{\text{eff}} = \frac{E_0}{\sqrt{2}} \qquad B_{\text{eff}} = \frac{B_0}{\sqrt{2}}$$

intensità che dovrebbe avere un campo costante per avere una densità di energia pari a quella media

$$w_{\vec{E}} = \frac{1}{2}\varepsilon_0 \frac{E_0^2}{2} = \frac{1}{4}\varepsilon_0 E_0^2 = \bar{w}_{\vec{E}}$$

Irradiamento (o intensità dell'onda)

(perpendicolare alla direzione di propagazione)

unità di misura =
$$\frac{W}{m^2}$$

$$\mathcal{E} = \bar{w} \, A \, c \, \Delta t$$

$$E_R = \frac{\bar{w} \mathcal{A} c \mathcal{M}}{\mathcal{A} \mathcal{M}} = c \, \bar{w}$$

$$E_R = \frac{1}{2}c\,\varepsilon_0 E_0^2$$

Lo spettro elettromagnetico

Lo spettro è suddiviso convenzionalmente in una successione di bande: ONDE RADIO, MICROONDE, INFRAROSSO, VISIBILE, ULTRAVIOLETTO, RAGGI X, RAGGI γ

Le separazioni non sono nette e gli intervalli delle singole bande hanno zone di sovrapposizione

Puntualizzazioni su valore medio e valore efficace

Data una funzione $f:[a,b]\to\mathbb{R}$ integrabile in [a,b], si dice valore medio di f su [a,b] il numero

$$\frac{1}{b-a} \int_{a}^{b} f(x) \, dx$$

che corrisponde al valore di una funzione costante che ha lo stesso integrale di f su [a,b]

Figura 35.17 (a) Un grafico di sin θ in funzione di θ . Il suo valore medio su un periodo è zero. (b) Un grafico di sin² θ in funzione di θ . Il suo valor medio su un periodo è $\frac{1}{2}$.

(Si noti in figura 35.17b come le parti ombreggiate della curva che giacciono sopra la linea orizzontale corrispondente a $\frac{1}{2}$ siano esattamente equivalenti agli spazi bianchi al di sotto della stessa linea.)

Se consideriamo la densità volumica di energia del campo elettrico

$$w_{\vec{E}} = \frac{1}{2}\varepsilon_0 E^2$$

E = E(t), cioè E varia nel tempo, secondo una funzione sinusoidale

$$E = E_0 \sin[k(x - ct)]$$

dunque $w_{\vec{E}}$ è del tipo costante $\cdot \sin^2$, per cui il suo valor medio è costante $\cdot \frac{1}{2}$, cioè proprio

$$\bar{w}_{\vec{E}} = \frac{1}{4}\varepsilon_0 E_0^2$$

Dunque

$$w_{\vec{E}} = \frac{1}{2}\varepsilon_0 E^2$$
 e $\bar{w}_{\vec{E}} = \frac{1}{4}\varepsilon_0 E_0^2$

Qual è il valore costante di E per cui $w_{\vec{E}} = \bar{w}_{\vec{E}}$?

Tale numero si chiama valore efficace di E e corrisponde a

$$E_{\text{eff}} = \frac{E_0}{\sqrt{2}}$$

infatti

$$w_{\vec{E}} = \frac{1}{2}\varepsilon_0 \left(\frac{E_0}{\sqrt{2}}\right)^2 = \frac{1}{4}\varepsilon_0 E_0^2 = \bar{w}_{\vec{E}}$$

 E_{eff} è perciò il valore costante di un campo con la densità volumica di energia uguale a quella media

Quantità di moto e impulso

Quantità di moto di un corpo di massa m e velocità \vec{v}

$$\vec{p} = m\vec{v}$$

Impulso di una forza \vec{F} che agisce in un intervallo di tempo dt

Impulso di una forza \vec{F} che agisce in un intervallo di tempo Δt (con inizio all'istante t)

$$\vec{I} = \int_{t}^{t+\Delta t} \vec{F} \, dt$$

durante il tempo dt

$$\vec{F} = m\vec{a} = m\frac{d\vec{v}}{dt} = \frac{d(m\vec{v})}{dt} = \frac{d\vec{p}}{dt} \Rightarrow \vec{F} dt = d\vec{p}$$

l'impulso della forza è uguale alla variazione della quantità di moto integrando

$$\vec{I} = \int_{t}^{t+\Delta t} \vec{F} dt = \int_{\vec{p}_{1}}^{\vec{p}_{2}} d\vec{p} = \vec{p}_{2} - \vec{p}_{1} = \Delta \vec{p}$$

$$\vec{I} = \Delta \vec{p}$$

$\vec{I} = \Delta \vec{p}$ Teorema dell'impulso In un dato intervallo di t

In un dato intervallo di tempo Δt l'impulso complessivo esercitato su un punto materiale dalle forze ad esso applicate è pari alla variazione della sua quantità di moto

In generale \vec{F} è variabile. Se consideriamo la forza media \vec{F}_m

$$\vec{F}_m \, \Delta t = \Delta \vec{p}$$

Quantità di moto trasferita dall'onda

Le onde elettromagnetiche non trasportano solo energia, ma anche quantità di moto

Si può dimostrare che, se un corpo assorbe dall'onda un'energia \mathcal{E} , esso riceve, nella direzione di propagazione, una quantità di moto Δp che ha modulo

energia assorbita (J) modulo della quantità di moto acquistata (kg · m/s) $\Delta p = \frac{\mathcal{E}}{c}$ velocità della luce nel vuoto (m/s)

Se, anziché assorbire l'onda elettromagnetica, il corpo la riflette, la variazione Δp della sua quantità di moto è doppia.

Se un'onda elettromagnetica colpisce perpendicolarmente una superficie A, trasferendo una quantità di moto Δp in un intervallo di tempo Δt , esercita una forza media F tale che

Teorema dell'impulso
$$\Rightarrow$$
 $F \Delta t = \Delta p = \frac{\mathcal{E}}{c}$ \Rightarrow $F = \frac{\mathcal{E}}{c \Delta t}$

 $p_R = \frac{F}{A} = \frac{\mathcal{E}}{c A \Delta t}$ irradiamento E_R $\downarrow \downarrow$ $p_R = \frac{E_R}{c}$ Introduciamo la seguente grandezza, detta pressione di radiazione

$$p_R = \frac{E_R}{c}$$

ricordando che $E_R = c\bar{w}$, si ha che la pressione di radiazione è uguale alla densità media di energia dell'onda elettromagnetica

$$p_R = \bar{w}$$