Music Genre Classification

Abhijit Suresh, Paria Rezaeinia, Sahana Sadogopan December 8, 2016

1 Introduction

Music genre classification is the task of classifying the given audio signal into its corresponding categorical description (a.k.a. genre). It has been a very challenging task in the field of music information retrieval (MIR) and widely used for digital music service and internet radio. You will properly define the genre classification problem, and indicate a few references to the literature. explaining the problem, the current and common methods to solve this problem. the way that we approach it, the algorithms that we use and the reason we use these algorithms. a very brief overview of the results. The organization of the paper. : Paria

2 Dimensionality Reduction

Describe your dimension reduction technique, and justify why it is appropriate to use it in this context. You should explain what performance is expected. I suggest we give some background to dimensionality reduction and also mention the Johnson-Lindestrauss theorem here. : Sahana

2.1 mfcc

Sahana

2.2 PCA

Sahana

2.3 Content based similarity

Beth and Ariel(??) presents a novel approach to compare songs based on their corresponding audio content. For each song in the dataset, they create a song signature. The song signature is generated based on k-means clustering of spectral features. The algorithm is summarized in figure (??) below.

The first setup is to divide the audio into frames. Then, each frame is converted into its corresponding spectral representation. In order to generate the spectral representation we make use of mfcc algorithm which is explained in the previous sub section. The number of cepstrum coefficients was calculated based on the Johnson-Lindenstrauss lemma.

$$P = \{(\mu_{p_1}, \Sigma_{p_1}, w_{p_1}), \dots, (\mu_{p_m}, \Sigma_{p_m}, w_{p_m})\}$$

Figure 1: Content based similarity method

2.3.1 Johnson-Lindenstrauss

The idea behind Johnson-Lindenstrauss lemma is that points in high-dimensional space can be projected onto low dimensional space while preserving the distance between the points. For a given dataset, the minimum number of dimension required to preserve the distance between the points is given by the formula

$$n > 8 * ln(m) * \epsilon^2$$

where is a number between 0 and 1. For this project we have

and hence the number of cepstrum coefficients that we have considered is 79.

2.3.2 k-Means

Once each frame is clustered into its corresponding we spectral representation, we cluster the frames using unsupervised k-Means clustering algorithm where the value of k is fixed to 10. k-Means is a popular clustering algorithm used in data mining. It is often confused with k-nearest neighbour algorithm which makes use of supervised labels during the training phase in order to cluster the points. Given a set of n observations in a d dimensional space, k-Means aims to cluster the n dimension into k sets $S = S_1, S_2, ...S_k$ where $k \leq n$. The idea is to find the sum of distance functions of each point in the cluster to the K center. The equation is given by (??):

$$rg\min_{\mathbf{S}} \sum_{i=1}^k \sum_{\mathbf{x} \in S_i} \|\mathbf{x} - oldsymbol{\mu}_i\|^2$$

Figure 2: k-Means

2.4 Modified Gaussian Mixture

Paria

3 Distance Metrics

Explain what are the available distance in the space of songs. Describe your distance and any pre-processing performed before computing the distance. : Abhijit

3.1 Minowski distance

Abhijit

3.2 Earth Movers distance

Abhijit

3.3 Euclidean distance

Paria

3.4 Kullback-Leibler distance (KL) distance

Paria

4 Statiscal learning

In previous sections we discussed the projection of audio files into lower dimensional space. And we introduced the measure of distances we use to represent the distance between the new representations of the audio files. The next step is to build the classifier to these information for genre classification. We have implemented three classifiers that we explain here.

4.1 k-Nearest Neighbors

One of the common algorithms for classifying multi-class data is k-nearest neighbors (kNN). This algorithm simply finds the k closest data points to the testing point and determines which class owns the majority of points among these points. Therefore, the label for the testing data point would be the label of the majority of k closest data points. The following figure represents the kNN algorithm for k = 3. There

are 2 classes in this example represented with blue and red color. The testing point is the black circle and because 2 out of 3 closest neighbors are in blue, the classifier will assign it to blue class.

Figure 3: k-nearest neighbors

4.2 Modified-kNN

Paria

4.3 Neural Network

Sahana

5 Experiments

Describe the experiments, and include the confusion matrix. Discuss the influence of the various parameters, and describe how the optimal parameters were chosen. Include the computation time for your method. : Sahana

6 Discussion

Provide a critique of the approach and discuss any potential improvement. Discuss the ability of your approach to classify non-classical into the five remaining genres. Abhijit

References

[1] Logan, B., Salomon, A. (2001). A content-based music similarity function. Cambridge Research Labs-Tech Report.