

Week 8 Fourier Transform

Jimin Xiao

EB Building, Room 312

jimin.xiao@xjtlu.edu.cn

0512-81883209

Review of Fourier Series

Trigonometric Fourier Series:

$$x(t) = a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) \right]$$

Exponential Fourier Series:

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$$

Outline

From Fourier series to Fourier transform

Fourier transform

Fourier transform table

Spectrum of a signal

Properties of Fourier Transform

From Fourier series to Fourier transform

Last time: Fourier Series

Representing periodic signals as sums of sinusoids.

→ new representations for systems as filters.

Today: generalize for aperiodic signals.

What will happen to the spectrum of a rectangular pulse when T get increased, while keeping the same width of

F.S. of the rectangular pulse signal (T=4ms)

$$C_n = \frac{2}{4} sinc(n\frac{2}{4})$$

F.S. of the rectangular pulse signal (*T*=8ms)

$$C_n = \frac{2}{8} sinc(n\frac{2}{8})$$

F.S. of the rectangular pulse signal (*T*=16ms)

$$C_n = \frac{2}{16} sinc(n\frac{2}{16})$$

F.S. of the rectangular pulse signal (*T*=16ms)

Parseval's theorem

The total average power in a periodic signal equals the sum of the average powers in all of its harmonic components.

$$P_x = \frac{1}{T} \int_T |x(t)|^2 |dt = \sum_{k=-\infty}^{\infty} |a_k|^2$$

$$x_T(t) = \sum_{n=-\infty}^{\infty} c_n e^{j2\pi n \frac{t}{T}}$$

FS representation of a periodic signal

$$c_n = \frac{1}{T} \int_{-T/2}^{T/2} x_T(t) e^{-j2\pi n \frac{t}{T}} dt$$
 FS coefficient

substitute into above equation

$$x_T(t) = \sum_{n=-\infty}^{\infty} \left[\int_{-T/2}^{T/2} x_T(t) e^{-j2\pi n \frac{t}{T}} dt \right] e^{j2\pi n \frac{t}{T}} \frac{1}{T}$$

What will happen when $T \rightarrow \infty$?

$$\left(\Delta f = \frac{1}{T}\right) \to df$$
 In the limit, as T approaches infinity, the spectrum becomes continuous.
$$\left(f_n = \frac{n}{T}\right) \to f$$

What will happen when

$$7 \rightarrow \infty$$
?

$$\left(\Delta f = \frac{1}{T}\right) \to df$$

$$\left(f_n = \frac{n}{T}\right) \to f$$

What will happen when

$$7\rightarrow \infty$$
?

$$\left(\Delta f = \frac{1}{T}\right) \to df$$

$$\left(f_n = \frac{n}{T}\right) \to f$$

$$\begin{pmatrix} \Delta f = \frac{1}{T} \end{pmatrix} \to df \\ \left(f_n = \frac{n}{T} \right) \to f$$

$$x(t) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(t) e^{-j2\pi t f} dt \right] e^{j2\pi t f} df$$

$$x(t) = \int_{-\infty}^{\infty} \left[\int_{-\infty}^{\infty} x(t)e^{-j2\pi tf}dt \right] e^{j2\pi tf}df$$

It depends only on $f \rightarrow$ we will represent it by X(f)

Forward Fourier transform:

('analysis' equation)

$$X(f) = \mathcal{F}\left\{x(t)\right\} \stackrel{\text{def}}{=} \int_{-\infty}^{\infty} x(t)e^{-j2\pi tf}dt$$

The Inverse Fourier transform:

('synthesis' equation)

$$x(t) = \mathcal{F}^{-1} \left\{ X(f) \right\} = \int_{-\infty}^{\infty} X(f) e^{j2\pi t f} df$$

Fourier transform pair

$$G(f) = \int_{-\infty}^{\infty} g(t)e^{-j2\pi f t} dt \qquad X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt$$

$$g(t) = \int_{-\infty}^{\infty} G(f)e^{j2\pi f t} df \qquad x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega)e^{j\omega t} d\omega$$
frequency (in Hz) Angular frequency (in rad/s)

Notation:

$$X(\omega) = F[x(t)] \quad x(t) = F^{-1}[X(\omega)] \quad x(t) \longleftrightarrow X(\omega)$$

In our textbook, FT form is denoted as: \(\lambda\)

Same

 $X(j\omega)$

Fourier transform

Forward (*analysis*) and inverse (*synthesis*)
Fourier transform:

- We say that x(t) exists in the "time domain," and X(f) exists in the "frequency domain."
 - X(f) is just another way of looking at a function or a signal.

Fourier transform

- -X(t) contains equivalent information to that in X(t).
 - It is widely used to study linear systems.
- Allows to generalize the concept of fourier series to infinite duration and non-periodic signals.
- Introduces the concept of "continuous" frequency.

21

Fourier transform of the rectangular pulse signal

$$x(t) = rect\left(\frac{t}{\tau}\right) = \begin{cases} 1, & |t| \le -\tau/2\\ 0, & \text{otherwise} \end{cases}$$

$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$$

$$= \int_{-\tau/2}^{\tau/2} e^{-j2\pi ft}dt$$

$$= \frac{e^{-j2\pi ft}}{-j2\pi f}\Big|_{-\tau/2}^{\tau/2}$$

$$= \frac{e^{-j\pi f\tau} - e^{j\pi f\tau}}{-j2\pi f}$$

$$= \tau \frac{\sin(\pi f\tau)}{\pi f\tau}$$

$$= \tau \operatorname{sinc}(f\tau)$$

Real function

Fourier transform of the rectang war pu

$$x(t) = rect\left(\frac{t}{\tau}\right) = \begin{cases} 1, & |t| \le -\tau/2 \\ 0, & \text{otherwise} \end{cases}$$

$$X(f) = \tau \operatorname{sinc}(f\tau)$$

		Time domain	Frequency domain	
CT signals		$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} dt$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	Comments
, ,	Constant	1	$2\pi\delta(\omega)$	
(2)	Impulse function	$\delta(t)$	1	
(3)	Unit step function	u(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$	
(4)	Causal decaying exponential function	$e^{-at}u(t)$	$\frac{1}{a+j\omega}$	<i>a</i> > 0
(5)	Two-sided decaying exponential function	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	<i>a</i> > 0
(6)	First-order time-rising causal decaying exponential function	$t e^{-at} u(t)$	$\frac{1}{(a+\mathrm{j}\omega)^2}$	<i>a</i> > 0
(7)	Nth-order time-rising causal decaying exponential function	$t^n e^{-at} u(t)$	$\frac{n!}{(a+\mathrm{j}\omega)^{p+1}}$	<i>a</i> > 0
(8)	Sign function	$sgn(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases}$	$\frac{2}{j\omega}$	
(9)	Complex exponential	el cot	$2\pi\delta(\omega-\omega_0)$	
0)	Periodic cosine function	$\cos(\omega_0 t)$	$\pi[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]$	
1)	Periodic sine function	$\sin(\omega_0 t)$	$\frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$	
2)	Causal cosine function	$\cos(\omega_0 t) u(t)$	$\frac{\pi}{2}[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)] + \frac{j\omega}{\omega_0^2 - \omega^2}$	
(3)	Causal sine function	$\sin(\omega_0 t)u(t)$	$\frac{\pi}{2i} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] + \frac{\omega_0}{\omega_0^2 - \omega^2}$	
(4)	Causal decaying exponential cosine function	$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
15)	Causal decaying exponential sine function	$\mathrm{e}^{-at}\sin(\omega_0t)u(t)$	$\frac{\omega_0}{(a+\mathrm{j}\omega)^2+\omega_0^2}$	<i>a</i> > 0
(6)	Rectangular function	$rect\left(\frac{t}{\tau}\right) = \begin{cases} 1 & t \le \tau/2\\ 0 & t > \tau/2 \end{cases}$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2\pi}\right)$	$\tau \neq 0$
7)	Sinc function	$\frac{W}{\pi}\operatorname{sinc}\left(\frac{Wt}{\pi}\right)$	$rect\left(\frac{\omega}{2W}\right) = \begin{cases} 1 & \omega \le W \\ 0 & \omega > W \end{cases}$	
8)	Triangular function	$\triangle \left(\frac{t}{\tau}\right) = \begin{cases} 1 - \frac{ t }{\tau} & t \le \tau \\ 0 & \text{otherwise} \end{cases}$	$\tau \operatorname{sinc}^2\left(\frac{\omega \tau}{2\pi}\right)$	$\tau > 0$
9)	Impulse train	$\sum_{k=-\infty}^{\infty} \delta(t - kT_0)$	$\omega_0 \sum_{m=-\infty}^{\infty} \delta(\omega - m\omega_0)$	angular frequency
0)	Gaussian function	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	$\omega_0 = 2\pi$

	Time domain	Frequency domain	
CT signals	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} dt$	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$	Comments
(1) Constant (2) Impulse function	$\frac{1}{\delta(t)}$	$2\pi\delta(\omega)$ 1	
(3) Unit step function	u(t)	$\pi\delta(\omega) + \frac{1}{i\omega}$	
(4) Causal decaying exponential function	$e^{-at}u(t)$	$\frac{1}{a+\mathrm{j}\omega}$	<i>a</i> > 0
(5) Two-sided decaying exponential function	$e^{-a t }$	$\frac{2a}{a^2 + \omega^2}$	<i>a</i> > 0
(6) First-order time-rising causal decaying exponential function	$te^{-at}u(t)$	$\frac{1}{(a+\mathrm{j}\omega)^2}$	<i>a</i> > 0
(7) Nth-order time-rising causal decaying exponential function	$t^{\pi}e^{-at}u(t)$	$\frac{n!}{(a+\mathrm{j}\omega)^{n+1}}$	<i>a</i> > 0
(8) Sign function	$sgn(t) = \begin{cases} 1 & t > 0 \\ -1 & t < 0 \end{cases}$	$\frac{2}{j\omega}$	
9) Complex exponential	ejant	$2\pi\delta(\omega-\omega_0)$	
0) Periodic cosine function	$\cos(\omega_0 t)$	$\pi[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$	
Periodic sine function	$\sin(\omega_0 t)$	$\frac{\pi}{j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)]$	
Causal cosine function	$\cos(\omega_0 t) u(t)$	$\frac{\pi}{2}[\delta(\omega-\omega_0)+\delta(\omega+\omega_0)]+\frac{j\omega}{\omega_0^2-\omega^2}$	
3) Causal sine function	$\sin(\omega_0 t)u(t)$	$\frac{\pi}{2j} [\delta(\omega - \omega_0) - \delta(\omega + \omega_0)] + \frac{\omega_0}{\omega_0^2 - \omega^2}$	
Causal decaying exponential cosine function	$e^{-at}\cos(\omega_0 t)u(t)$	$\frac{a+j\omega}{(a+j\omega)^2+\omega_0^2}$	<i>a</i> > 0
 Causal decaying exponential sine function 	$e^{-at}\sin(\omega_0 t)u(t)$	$\frac{\omega_0}{(a+\mathrm{j}\omega)^2+\omega_0^2}$	<i>a</i> > 0
6) Rectangular function	$rect\left(\frac{t}{\tau}\right) = \begin{cases} 1 & t \le \tau/2\\ 0 & t > \tau/2 \end{cases}$	$\tau \operatorname{sinc}\left(\frac{\omega \tau}{2\pi}\right)$	$\tau \neq 0$
7) Sinc function	$\frac{W}{\pi}\operatorname{sinc}\left(\frac{Wt}{\pi}\right)$	$\operatorname{rect}\left(\frac{\omega}{2W}\right) = \begin{cases} 1 & \omega \le W \\ 0 & \omega > W \end{cases}$	
8) Triangular function	$\triangle \left(\frac{t}{\tau}\right) = \begin{cases} 1 - \frac{ t }{\tau} & t \le \tau \\ 0 & \text{otherwise} \end{cases}$	$\tau \operatorname{sinc}^2\left(\frac{\omega \tau}{2\pi}\right)$	$\tau > 0$
9) Impulse train	$\sum_{k=-\infty}^{\infty} \delta(t - kT_0)$	$\omega_0 \sum_{m=-\infty}^{\infty} \delta(\omega - m\omega_0)$	angular frequency
0) Gaussian function	$e^{-t^2/2\sigma^2}$	$\sigma\sqrt{2\pi}e^{-\sigma^2\omega^2/2}$	$\omega_0 = 2\pi/T_0$

Determine the CTFT of the following functions and plot the corresponding magnitude and phase spectra:

4.1
$$x(t) = e^{-at}u(t), a \in R^+$$

4.2 $x(t) = e^{-a|t|}, a \in R^+$

$$4.3 x(t) = \delta(t)$$

FT for periodic signals

Consider a signal x(t) with FT $X(\omega)$ that is a single impulse of area 2π at $\omega = \omega_0$

$$X(\omega) = 2\pi\delta(\omega - \omega_0)$$

$$x(t) =$$
???

FT for periodic signals

Each term in the Fourier series is replaced by an impulse.

Find and plot FT for $x(t) = \sin(\omega_0 t)$ and $x(t) = \cos(\omega_0 t)$

Exercises

Textbook page 334

- 4.1
- 4.3
- 4.4