1. Given the data as listed below

	4.0							
y	102.6	113.2	130.1	142.1	167.5	195.1	224.9	256.8

- a. Construct the least squares approximation of degree two and compute the error.
- b. Construct the least squares approximation of the form be^{ax} and compute the error.
- c. Construct the least squares approximation of the form bx^n and compute the error.

```
PS C:\Users\afatf\Desktop\E94116067_numerical_hw8>

(a)
a = 6.6912 , b = -1.8837 , c = 3.0864
Error: 0.0052

(b)
a = 0.3985 , b = 21.4445
Error: 94.9830

(c)
n = 2.0196 , b = 6.2390
Error: 0.0117
```

2. Find the least squares polynomial approximation of degree two on the interval [-1,1] for the function $f(x) = \frac{1}{2}\cos x + \frac{1}{4}\sin 2x$

PS C:\Users\afatf\Desktop\E94116067_numerical_hw8>
• a = -0.2326 , b = 0.3265 , c = 0.4983
Error: 0.0032

- 3. Determine the discrete least squares trigonometric polynomial S_4 using m = 16 for $f(x) = x^2 \sin x$ on the interval [0,1].
 - b. Compute $\int_0^1 S_4(x) dx$
 - c. Compare the integral in part (b) to $\int_0^1 x^2 \sin x dx$
 - d. Compute the error $E(S_4)$

```
PS C:\Users\afatf\Desktop\E94116067_numerical_hw8>

(a)
    a0 = 0.4592
    a1 = -0.1468 , b1 = 0.2323
    a2 = 0.0546 , b2 = -0.1249
    a3 = -0.0389 , b3 = 0.0829
    a4 = 0.0335 , b4 = -0.0609
    (b)
    Ans: 0.2296
    (c)
    Absolute: 0.0064 , Relative: 2.8482%
    (d)
    Error: 0.5056
```