Mathematics 141 Test 2

Kex Name:

You are to use your own calculator, no sharing. Show your work to get credit.

(a)
$$y = \frac{3x}{x^2 + 9}$$

Show your work to get credit.

1. (40 Points) Compute the derivatives of the following functions.

(a)
$$y = \frac{3x}{x^2 + 9}$$
 $y' = \frac{3x}{x^2 + 9}$

$$y' = \frac{3(\chi^2 + 4) - 3\chi(2\chi)}{(\chi^2 + 4)^2}$$

$$= \frac{3\chi^2 + 12 - 6\chi^2}{(\chi^2 + 4)^2}$$

$$= \frac{3\chi^2 + 12 - 6\chi^2}{(\chi^2 + 4)^2}$$

(b)
$$r = 2\sin(3\theta) - 4\cos(5\theta) - 6\tan(7\theta)$$

(b)
$$r = 2\sin(3\theta) - 4\cos(5\theta) - 6\tan(7\theta)$$
 $\frac{dr}{d\theta} = 6\cos(3\theta) + 2\cos(5\theta) - 42\cos(47\theta)$

(d)
$$y = e^{x^2} \tan x^2$$
 $y' = \frac{2 \chi e^{\chi^2} (+a_4^2 \chi^2) + 2e^{2(\chi^2)}}{y' = e^{\chi^2} (+a_4^2 \chi^2) + 2e^{2(\chi^2)}}$
= $2 \chi e^{\chi^2} (+a_4 \chi^2) + 2e^{2(\chi^2)}$

(e)
$$A(r) = r \tan^{-1}(r)$$
 $A'(r) = \frac{1}{1+r^2}$

$$A'(r) = \frac{1}{1+r^2} + \frac{1}{1+r^2}$$

$$A'(r) = \frac{1}{1+r^2} + \frac{1}{1+r^2}$$

$$(f) y = \cos^{-1}(x)$$

$$\frac{dy}{dx} = \frac{-1}{\sqrt{1-x^2}}$$

(g)
$$h(s) = s \sin^{-1}(s^2)$$

$$h'(s) = \frac{25^2}{\sqrt{1-54}}$$

$$l(s) = (1) sur'(s^2) + 5 \frac{1}{\sqrt{1-(s^2)^2}} (2s)$$

(h)
$$g(x) = x \ln(x) - x$$

$$g'(x) = \underbrace{lnix}$$

(i)
$$y = \ln \left(e^{x^2} (x+1)^2 \sqrt{x} \right)$$

$$\frac{dy}{dx} = \frac{2 \times + \frac{2}{2 \times 1} + \frac{1}{2 \times 2}}{2 \times 2}$$

$$= x^{2} + 2 \ln(x+1) + \frac{1}{2} \ln(x)$$

$$y' = 2x + \frac{2}{3+1} + \frac{1}{2}x$$

(j)
$$w = \ln(\cos z)$$

$$\frac{dw}{dz} = \frac{-+au/3}{}$$

2. (10 Points) (a) Let x and y be related by
$$x^2 + 4xy + y^2 = 13$$
. Find $y' = \frac{dy}{dx}$.

$$\frac{d}{dx}(\chi^{2}+4\chi y+y^{2}) = \frac{d}{dx} 13 \qquad y' = \frac{-\chi-2y}{2\chi+y}$$

$$2\chi + 4y + 4\chi y' + 2yy' = 0$$

$$(4\chi+2y)y' = -2\chi-4y$$

$$y' = \frac{-2\chi-4y}{4\chi+2y} = \frac{2(-\chi-2y)}{2(2\chi+y)} = \frac{-\chi-2y}{2\chi+y}$$

(b) What is the equation of the equation of the tangent line to $x^2 + 4xy + y^2 = 13$ at the point (1,2).

Equ 15

$$y - y_0 = w_1 \times -x_0$$

The equation is $y - 2 = -\frac{5}{4}(x - 1)$
 $y = -\frac{x - 2y}{2(1) + 2} = -\frac{5}{4}$

3. (10 Points) (a) What is the linearization approximation of $f(x) = \sqrt{8+x}$ at the point x = 1?

The linear approximation
$$f(x) \approx \frac{3 + \frac{1}{6}(x-1)}{8(x)^2 + 8(0)(x-a)}$$
 $f(x) \approx \frac{3 + \frac{1}{6}(x-1)}{8(1)^2 + 8(0)(x-a)}$ $f(x) \approx \frac{3 + \frac{1}{6}(x-1)}{8(1)^2 + \frac{1}{6}(x-1)}$ $f(x) = \frac{1}{2\sqrt{8}+1} = \sqrt{4} = 3$ $f(x) \approx \frac{3 + \frac{1}{6}(x-1)}{8(1)^2 + \frac{1}{6}(x-1)}$

(b) Use this approximation to estimate f(1.3). (Show your work.)

$$\beta_{y}$$
 (a)
 $\beta(1.3) \approx 3 + \xi(1.3 - 1)$
 $\beta(1.3) \approx 3.05$
 $\beta(1.3) \approx 3.05$
 $\beta(1.3) \approx 3.05$

4. (5 Points) Find all solutions to
$$y' = 3x^2 + 2x$$
.

$$y = \chi^3 + \chi^2 + C$$

- 5. (10 Points) The surface area of a cube is increasing at a constant rate of 2 in²/hour. Let s be the side length of the cube.
 - (a) At what rate is the side length of the cube increasing?

$$\frac{ds}{dt} = \frac{1}{6} \frac{m}{h}$$

(b) At what rate is the volume changing when the side is 5 inches long?

$$V = 5^{3}$$

$$dV = 61 + 5^{3} = 35^{2} + 15$$

$$= 35^{2} + (65)$$

$$= 5$$

$$dV = 5$$

$$= 2.5$$

6. (10 Points) (a) State the Mean Value Theorem:

If
$$6$$
 15 Continuous on (a,b) and differentiable on (a,b) than there is a $c \in (a,b)$ such that

 $6 \ln - 6(a) = 6(a)$

(b) Use the Mean Value Theorem to show that if f is differentiable on and interval and $f' > 0$ on the interval, then f is increasing on the interval. (That is if $x_2 > x_1$, then $f(x_2) > f(x_1)$.)

Let $x_2 > x_1$. By mean value theorem $(x_1, x_2) > (x_1, x_2)$ we have

$$\frac{b(x_2) - b(x_1)}{x_2 - x_1} = b(c) > 0$$
 for some c
 $\frac{b(x_2) - b(x_1)}{x_2 - x_1} = b(c) > 0$ for some c
 $\frac{b(x_2) - b(x_1)}{x_2 - x_1} = b(c) > 0$ for some c
 $\frac{b(x_2) - b(x_1)}{b(x_2) - b(x_1)} > 0$
 $\frac{b(x_2) - b(x_1)}{b(x_2) > b(x_1)}$

7. (10 Points) Let f(x) satisfy

$$f'(x) = e^x(x-1)(x-2)(4-x).$$

 $f(x) = e^{x}(x-1)(x-2)(y-x)$ What are the critical points of f?

1, 2, 4

What are the local maximizers of f? $f(x) = e^{x}(x-1)(x-2)(y-x)$ What are the local maximizers of f? $f(x) = e^{x}(x-1)(x-2)(y-x)$ What are the local minimizers of f? $f(x) = e^{x}(x-1)(x-2)(y-x)$ What are the local minimizers of f?

(Those are solutions to fix =0)

8. (10 Points) Find the absolute maximum and minimum of $f(x) = xe^{-x/2}$ with $0 \le x \le 5$. Show all your work to get credit for this problem.

First find the critical rolling $f(x) = (1)e^{\frac{x}{2}} + y = \frac{x}{2}(-1)$ $= e^{-\frac{x}{2}}(1-\frac{x}{2}) = 0$ $= e^{-\frac{x}{2}}(1-\frac{x}{2}) = 0$ $= e^{-\frac{x}{2}}(1-\frac{x}{2}) = 0$ $= e^{-\frac{x}{2}}(1-\frac{x}{2}) = 0$ $= e^{-\frac{x}{2}}(1-\frac{x}{2}) = 0$

Maximum is 2

Maximizer(s) is 2

Minimum is 0

Minimizer(s) is ______

SO x=2 is maximizer. At end yourts $b(0) = 0e^{4/2} = 0$ $b(5) = 5e^{5/2} > 0$ SO b(0) = 0 is minimum