1.BasicExps 基础功能性实验

本文件夹中的所有实验均为本讲中基础性的功能实验,用户可快速上手熟悉一些简单的功能性实验,本讲中包含有最小模板使用介绍、固定翼无人机软硬件在环仿真、阿克曼底盘无人车模型代码生成及软硬件在环仿真等。

序号	实验名称	简介	文件地址	版本
1	平台建模模板之最小模板	该例程对如何使用平台最小模板进行软/硬件在	e1_MinModelTemp\Readme.pdf	免费版
	使用介绍	环仿真进行介绍,其中最小模版为平台满足仿真		
		所需的最简化模型。		
2	平台固定翼无人机软硬件	通过本例程熟悉平台固定翼模型的使用。	e2_FixWingModelCtrl\Readme.pdf	免费版
	在环仿真实验			
3	阿克曼底盘无人车模型代	在 Matlab 将 Simulink 文件编译生成阿克曼底盘	e3_CarAckermanModeCtrl\Readme.pdf	免费版
	码生成及软硬件在环仿真	无人车的 DLL 模型文件;并对生成的阿克曼底盘		
		无人车模型在 PX4 官方控制器下进行软硬件在环		
		仿真测试,通过本例程熟悉平台阿克曼底盘无人		
		车模型的使用。		
4	差动无人车模型代码生成	在 Matlab 将 Simulink 文件编译生成差动无人车	e4_CarR1DiffModelCtrl\Readme.pdf	免费版
	及软硬件在环仿真	的 DLL 模型文件;并对生成的差动无人车模型在		
		PX4 官方控制器下进行软硬件在环仿真测试,通		
		过本例程熟悉平台差动无人车模型的使用。		

所有文件列表

序号	实验名称	简介	文件地址	版本
1	基础功能性实验	本文件夹中的所有实验均为本讲中基础性的功	Readme.pdf	免费版
		能实验, 用户可快速上手熟悉一些简单的功能性		
		实验,本讲中包含有最小模板使用介绍、固定翼		
		无人机软硬件在环仿真、阿克曼底盘无人车模型		
		代码生成及软硬件在环仿真等。		
2	平台建模模板之最小模板	该例程对如何使用平台最小模板进行软/硬件在	e1_MinModelTemp\Readme.pdf	免费版
	使用介绍	环仿真进行介绍, 其中最小模版为平台满足仿真		
		所需的最简化模型。		
3	平台固定翼无人机软硬件	通过本例程熟悉平台固定翼模型的使用。	e2_FixWingModelCtrl\Readme.pdf	免费版
	在环仿真实验			
4	阿克曼底盘无人车模型代	在 Matlab 将 Simulink 文件编译生成阿克曼底盘	e3_CarAckermanModeCtrl\Readme.pdf	免费版
	码生成及软硬件在环仿真	无人车的 DLL 模型文件;并对生成的阿克曼底		
		盘无人车模型在 PX4 官方控制器下进行软硬件		
		在环仿真测试,通过本例程熟悉平台阿克曼底盘		
		无人车模型的使用。		
5	差动无人车模型代码生成	在 Matlab 将 Simulink 文件编译生成差动无人车	e4_CarR1DiffModelCtrl\Readme.pdf	免费版
	及软硬件在环仿真	的 DLL 模型文件;并对生成的差动无人车模型		
		在 PX4 官方控制器下进行软硬件在环仿真测试,		
		通过本例程熟悉平台差动无人车模型的使用。		

备注

注 1: 各版本区别说明详见: http://rflysim.com/doc/RflySimVersions.xlsx。更高版本获取请见: https://rflysim.com/download.html, 或咨询service@rflysim.com。