Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau und Bauingenieurwesen

Prof. Dr. Thomas Carraro M.Sc Janna Puderbach

Mathematik III/B (WI/ET)

Blatt 12

1

FT 2024

Integration

Einführende Bemerkungen

• Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.

Aufgabe 12.1: Frühere Klausuraufgabe

a) Berechnen Sie die Integrale

$$I = \int_{0}^{\pi} (\sin x) \cdot e^{2\cos x} dx$$
 und $J = \int_{1}^{2} (t^3 - 2t)e^{3t^2} dt$.

- b) Berechnen Sie das Integral $\int_{B} \sqrt{x^2 + y^2} dx dy$, wobei B der Kreisring in der (x, y)-Ebene mit Mittelpunkt $(0, 0)^{\top}$, Innenradius a und Außenradius b (mit 0 < a < b) ist.
- c) Berechnen Sie das Integral

$$\iiint_D e^{5z+3y+2x} dx dy dz$$

über dem Gebiet $D = \left\{ (x,y,z)^\top \Big| x,y,z \geq 0 \text{ und } 5z + 3y + 2x \leq 2 \right\}.$

Lösung 12.1:

a) Im ersten Integral substituieren wir

$$u(x) = 2\cos x, \qquad du = -2\sin x dx.$$

Eingesetzt ergibt das

$$I = \int_{0}^{\pi} \sin x e^{2 \cos x} dx$$

$$= -\frac{1}{2} \int_{u(0)}^{u(\pi)} e^{u} du = -\frac{1}{2} \left[e^{u} \right]_{u=2}^{-2} = \frac{e^{2} - e^{-2}}{2} = \sinh(2).$$

Zur Berechnung des zweiten Integrals integrieren wir partiell:

$$J = \int_{1}^{2} \underbrace{(t^{2} - 2)}_{u} \underbrace{te^{3t^{2}}}_{v'} = \underbrace{\left[(t^{2} - 2)}_{u} \underbrace{\left(\frac{1}{6}e^{3t^{2}}\right)\right]_{1}^{2} - \int_{1}^{2} \underbrace{2t}_{u'} \underbrace{\frac{1}{6}e^{3t^{2}}}_{v} dt}_{e^{3t^{2}} + \frac{1}{6}e^{3} - \frac{2}{36}e^{3t^{2}}\Big|_{1}^{2} = \frac{e^{3}}{6} \left(2e^{9} + 1\right) + \frac{1}{18} \left(e^{3} - e^{12}\right)$$
$$= \frac{e^{3}}{18} \left(5e^{9} + 4\right).$$

b) Es bietet sich eine Berechnung in Polarkoordinaten an:

$$\int\limits_{B} \sqrt{x^2 + y^2} dx dy = \int\limits_{\varphi=0}^{2\pi} \int\limits_{r=a}^{b} rr dr d\varphi = 2\pi \frac{b^3 - a^3}{3}.$$

c) Wir integrieren in kartesischen Koordinaten, wobei zu beachten ist, dass die Integrationsgrenzen für z von x und y abhängen und die für y von x. Deswegen ist die Integrationsreihenfolge – nachdem sie einmal gewählt wurde – festgelegt. Die

oberen Integrationsgrenzen resultieren aus der Ebenengleichung 2x + 3y + 5z = 2:

$$\int_{D} e^{5z+3y+2x} d(x,y,z) = \int_{x=0}^{1} e^{2x} \int_{y=0}^{\frac{2-2x}{3}} e^{3y} \int_{z=0}^{\frac{2-2x-3y}{5}} e^{5z} dz dy dx$$

$$= \int_{x=0}^{1} e^{2x} \int_{y=0}^{\frac{2-2x}{3}} e^{3y} \left[\frac{e^{5z}}{5} \right]_{z=0}^{\frac{2-2x-3y}{5}} dy dx$$

$$= \frac{1}{5} \int_{x=0}^{1} e^{2x} \int_{y=0}^{\frac{2-2x}{3}} e^{3y} \left(e^{2-2x-3y} - 1 \right) dy dx$$

$$= \frac{1}{5} \int_{x=0}^{1} e^{2x} \left[e^{2-2x}y - \frac{e^{3y}}{3} \right]_{y=0}^{\frac{2-2x}{3}} dx$$

$$= \frac{1}{15} \int_{x=0}^{1} \left(e^{2}(2-2x) - e^{2} + e^{2x} \right) dx$$

$$= \frac{1}{15} \left[e^{2}(x-x^{2}) + \frac{1}{2} e^{2x} \right]_{x=0}^{1} = \frac{e^{2}-1}{30}$$

Aufgabe 12.2: Parametrisierung von Integrationsbereichen

Gegeben seien die folgenden drei Körper im \mathbb{R}^3 :

- ein Quader $Q = \{x \in \mathbb{R}^3 | 0 \le x_1 \le 1, 0 \le x_2 \le 1, -3 \le x_3 \le 3\}$
- eine Kugel $K = \{ \boldsymbol{x} \in \mathbb{R}^3 | \|\boldsymbol{x}\| \le 1 \}$
- ein Zylinder $Z = \{ x \in \mathbb{R}^3 | x_1^2 + x_2^2 \le 1, \ 0 \le x_3 \le 3 \}$

Skizzieren und parametrisieren Sie die Schnittmenge eines jeden einzelnen dieser Körper mit den beiden folgenden Mengen:

$$M_1 = \{ \boldsymbol{x} \in \mathbb{R}^3 | 0 \le \boldsymbol{x}_3 \}, M_2 = \{ \boldsymbol{x} | 3x_1 \le x_3 \}.$$

D. h. geben Sie die Integrationsgrenzen der zugehörigen Volumenintegrale über die Bereiche $Q \cap M_1, Q \cap M_2, K \cap M_1, \ldots$ an.

Lösung 12.2:

 M_1 beschreibt den oberen Halbraum $z\geq 0$. M_2 beschreibt die Menge der Punkte oberhalb der Ebene z=3x. Für die Schnittmengen mit den drei Körpern hat man jeweils:

• Für den Quader:

$$Q \cap M_1 = \{ \boldsymbol{x} \in \mathbb{R}^3 | 0 \le x_1 \le 1, \ 0 \le x_2 \le 1, \ 0 \le x_3 \le 3 \}$$
$$Q \cap M_2 = \{ \boldsymbol{x} \in \mathbb{R}^3 | 0 \le x_1 \le 1, \ 0 \le x_2 \le 1, \ 3x_1 \le x_3 \le 3 \}$$

Für $Q\cap M_2$ muss man keine Fallunterscheidung der x_3 -Grenzen vornehmen, da die Obergrenze des Quaders (z=3) die Ebene 3y=z nur an der Kante des Quaders schneidet.

• Für die Kugel:

$$K \cap M_1 = \left\{ \boldsymbol{x} \in \mathbb{R}^3 | -1 \le x_1 \le +1, -\sqrt{1-x_1^2} \le x_2 \le +\sqrt{1-x_1^2}, 0 \le x_3 \le \sqrt{1-x_2^2} \right\}$$

Die zweite Schnittmenge $K\cap M_2$ besteht aus zwei Bereichen: B_1 der Bereich, der von oben durch die Kugeloberfläche und von unten durch die Ebene 3x=z begrenzt wird.

 B_2 , der von oben und von unten durch die Kugeloberfläche begrenzt wird, da die Ebenbe dort außerhalb der Kugel liegt.

Für die Schnittkurve der Kugeloberfläche $x^2+y^2+z^2=1$ mit der Ebene3x=zgilt

$$x^2 + y^2 + 9x^2 = 1$$

$$\Leftrightarrow \qquad \qquad x = \pm \sqrt{\frac{1 - y^2}{10}}$$

Damit darf y nur Werte zwischen -1 und +1 annehmen.

3

 B_1 lässt sich somit parametrisieren als

$$B_1 = \left\{ \boldsymbol{x} \in \mathbb{R}^3 | -1 \le x_2 \le 1, -\sqrt{\frac{1 - x_2^2}{10}} \le x_1 \le \sqrt{\frac{1 - x_2^2}{10}}, \right.$$
$$3x_1 \le x_3 \le \sqrt{1 - x_1^2 - x_2^2} \right\}$$

Für den zweiten Teil von $K \cap M_2$ ergibt sich

$$B_2 = \left\{ \boldsymbol{x} \in \mathbb{R}^3 | -1 \le x_2 \le 1, -\sqrt{1 - x_2^2} \le x_1 \le -\sqrt{\frac{1 - x_2^2}{10}}, -\sqrt{1 - x_1^2 - x_2^2} \le x_3 \le \sqrt{1 - x_1^2 - x_2^2} \right\}$$

Eine Parametrisierung in Kugelkoordinaten, deren z-Achse (\tilde{z} in der Skizze) senkrecht auf der Ebene 3x=z steht, wäre für diesen Körper deutlich einfacher. Die entsprechende Rotation um die y-Achse wird durch die (orthogonale) Matrix

$$\mathbf{R} = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 0 & -3\\ 0 & \sqrt{10} & 0\\ 3 & 0 & 1 \end{pmatrix}$$

beschrieben. Damit ergibt sich dann

$$\mathbf{x}(r,\theta,\varphi) = \frac{1}{\sqrt{10}} \begin{pmatrix} 1 & 0 & -3 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \begin{pmatrix} r\sin\theta\cos\varphi \\ r\sin\theta\sin\varphi \\ r\cos\theta \end{pmatrix}$$
$$= \frac{r}{\sqrt{10}} \begin{pmatrix} \sin\theta\cos\varphi - 3\cos\theta \\ \sin\theta\sin\varphi \\ 3\sin\theta\cos\varphi + \cos\theta \end{pmatrix}$$

und weiter

$$K\cap M_2=\left\{\boldsymbol{x}(r,\theta,\varphi)|\ 0\leq r\leq 1,\ 0\leq \theta\leq \pi/2,\ 0\leq \varphi\leq 2\pi\right\}.$$

• Für den Zylinder nutzen wir die Parametrisierung in Zylinderkoordinaten

$$m{x}(r, arphi, z) = egin{pmatrix} r\cosarphi \\ r\sinarphi \\ z \end{pmatrix}$$

Die erste Menge $Z \cap M_1$ stimmt mit dem Zylinder überein.

$$Z = Z \cap M_1 = \{ \boldsymbol{x}(r, \varphi, z) | 0 \le r \le 1, \ 0 \le \varphi \le 2\pi, \ 0 \le z \le 3 \}$$
$$Z \cap M_2 = \{ \boldsymbol{x}(r, \varphi, z) | 0 < r < 1, \ 0 < \varphi < 2\pi, \ z_0(r, \varphi) < z < 3 \}$$

Dabei berücksichtigt $z_0(r,\varphi)$, dass die Ebene 3x=z den Zylinderboden in der Mitte schneidet. Dies führt dazu, dass für positive x die Untergrenze des Integrationsbereichs von der Ebene beschrieben wird und für negative x durch den Zylinderboden z=0:

$$z_0(r,\varphi) = \begin{cases} 0, & \text{für } \frac{\pi}{2} \le \varphi \le \frac{3\pi}{2} \\ 3r\cos(\varphi), & \text{sonst} \end{cases}$$
.

Aufgabe 12.3: Integration in Kugelkoordinaten

Berechnen Sie

$$I = \int \int_{B} \int \frac{1}{\sqrt{x^2 + y^2 + z^2}} d(x, y, z),$$

wobei B das Innere der Kugel $x^2 + y^2 + z^2 + 2Ry = 0$ ist.

Hinweis: Verwenden Sie die Kugelkoordinaten

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} r \sin \varphi \sin \theta \\ r \cos \theta \\ r \cos \varphi \sin \theta \end{pmatrix}.$$

Lösung 12.3:

Zunächst wird der Rand des Bereiches B untersucht:

$$0 = x^{2} + y^{2} + z^{2} + 2Ry = x^{2} + (y+R)^{2} + z^{2} - R^{2}.$$

B ist also eine Kugel mit Radius R um den Mittelpunkt (0, -R, 0). In den gegebenden Kugelkoordinaten hat man dann folgende Integrationsbereiche:

- $\varphi \in [0, 2\pi]$, da die Kugel B rotationssymmetrisch bezüglich der y-Achse ist und φ einen Winkel um eben diese Achse beschreibt.
- $\theta \in [\frac{\pi}{2}, \pi]$, da die Kugel B im negativen y-Bereich liegt.
- An den Grenzen für r soll gelten

$$0 = x^{2} + y^{2} + z^{2} + 2Ry$$

$$= r^{2} \sin^{2} \varphi \sin^{2} \theta + r^{2} \cos^{2} \theta + r^{2} \cos^{2} \varphi \sin^{2} \theta + 2Rr \cos \theta$$

$$= r^{2} \sin^{2} \theta + r^{2} \cos^{2} \theta + 2Rr \cos \theta = r^{2} + 2Rr \cos \theta$$

$$\Rightarrow r = 0 \text{ oder } r = -2R \cos \theta (> 0, \text{ da } \cos \theta < 0)$$

Der Integrationsbereich ist also $r \in [0, -2R\cos\theta]$.

Das Integral berechnet sich damit zu

$$I = \int_{\varphi=0}^{2\pi} \int_{\theta=\pi/2}^{\pi} \int_{r=0}^{-2R\cos\theta} \frac{1}{r} r^2 \sin\theta dr d\theta d\varphi$$
$$= 2\pi \int_{\theta=\pi/2}^{\pi} \frac{(-2R\cos\theta)^2}{2} \sin\theta d\theta = 4\pi R^2 \left. \frac{-\cos^3\theta}{3} \right|_{\pi/2}^{\pi} = \frac{4\pi R^2}{3}.$$

Aufgabe 12.4: Masse einer Halbkugel

Berechnen Sie die Masse einer Halbkugel mit Mittelpunkt $(0,0,0)^{\top}$, Radius a>0 sowie z>0 und der Massendichte

- a) mithilfe von Kugelkoordinaten,
- b) mithilfe von Zylinderkoordinaten.

$$\rho(x, y, z) = \frac{z}{\sqrt{x^2 + y^2}}.$$

Hinweis: Die Masse M eines Körpers K mit Massendichte $\rho(x)$ ergibt sich aus

$$M = \int_{K} \rho(\boldsymbol{x}) d\boldsymbol{x}.$$

Lösung 12.4:

a) Es bietet sich die Rechnung in Kugelkoordinaten an. Wegen der Bedingung $z \ge 0$ wird θ auf das Intervall $[0, \pi/2]$ eingeschränkt.

$$M = \int_{\theta=0}^{\pi/2} \int_{\varphi=0}^{2\pi} \int_{r=0}^{a} \rho \cdot r^2 \sin\theta dr d\varphi d\theta = \int_{\theta=0}^{\pi/2} \int_{\varphi=0}^{2\pi} \int_{r=0}^{a} \frac{r \cos\theta}{r \sin\theta} r^2 \sin\theta dr d\varphi d\theta$$
$$= \frac{a^3}{3} \cdot 2\pi \int_{\theta=0}^{\pi/2} \cos\theta d\theta = \frac{2\pi a^3}{3}.$$

b) Aus der Beziehung $a^2 = r^2 + z^2$ erhalten wir $0 < r < \sqrt{a^- z^2}$. In Zylinderkoordinaten erhalten wir das Integral

$$M = \int_{\varphi=0}^{2\pi} \int_{z=0}^{a} \int_{r=0}^{\sqrt{a^2 - z^2}} \frac{z}{r} r dr dz d\varphi$$
$$= \int_{\varphi=0}^{2\pi} \int_{z=0}^{a} \int_{r=0}^{\sqrt{a^2 - z^2}} z dr dz d\varphi$$
$$= \int_{\varphi=0}^{2\pi} \int_{z=0}^{a} z \sqrt{a^2 - z^2} dz d\varphi$$

Mit der Substitution $u = a^2 - z^2$ erhalten wir

$$M = \int_{\varphi=0}^{2\pi} \int_{u=a^2}^{0} -\frac{1}{2}\sqrt{u} du d\varphi$$
$$= \int_{\varphi=0}^{2\pi} \frac{1}{3}a^3 d\varphi$$
$$= \frac{2\pi a^3}{3}.$$

Aufgabe 12.5: Volumenintegrale

Berechnen Sie

$$\int_{V} \frac{\mathrm{e}^{-x^2 - y^2}}{1 + z^2} \mathrm{d}x \mathrm{d}y \mathrm{d}z$$

 $_{
m mit}$

$$V = \{(x, y, z) \in \mathbb{R}^3 : z \ge 0\}.$$

Hinweise:

- Es empfiehlt sich die Rechnung in Zylinderkoordinaten.
- Der Integrationsbereich ist unendlich groß. Dadurch treten uneigentliche Integrale auf.

Lösung 12.5:

Es werden Zylinderkoordinaten (r, φ, z) verwandt: $x = r \cos \varphi, \ y = r \sin \varphi, \ z = z.$ Dann gilt

$$\left| \frac{\partial(x, y, z)}{\partial(r, \varphi, z)} \right| = r.$$

Es folgt

$$V' = \{(r, \varphi, z): \quad r \in [0, \infty), \quad \varphi \in [0, 2\pi], \quad z \in [0, \infty)\}$$

$$\int_{V} \frac{e^{-x^{2}-y^{2}}}{1+z^{2}} dx dy dz = \int_{V'} \frac{e^{-r^{2}}}{1+z^{2}} r dr d\varphi dz$$

$$= \int_{0}^{2\pi} \left(\int_{0}^{\infty} \left(\int_{0}^{\infty} \frac{e^{-r^{2}}}{1+z^{2}} dr \right) dz \right) d\varphi$$

$$= \int_{0}^{2\pi} \left(\int_{0}^{\infty} \left[\frac{-e^{-r^{2}}}{2(1+z^{2})} \right]_{0}^{\infty} dz \right) d\varphi$$

$$= \int_{0}^{2\pi} \left(\int_{0}^{\infty} \frac{1}{2(1+z^{2})} dz \right) d\varphi$$

$$= \int_{0}^{2\pi} \left[\frac{1}{2} \arctan z \right]_{0}^{\infty} d\varphi$$

$$= \int_{0}^{2\pi} \frac{\pi}{4} d\varphi = \frac{\pi^{2}}{2}.$$

Aufgabe 12.6: Alte Klausuraufgabe

- a) Berechnen Sie das Integral $\iint_D \frac{x^2}{y^2} dx dy$, wobei D den von den Geraden x = 2, y = x und der Hyperbel xy = 1 begrenzten Bereich des \mathbb{R}^2 bezeichne.
- b) Gegeben sei der Körper

$$K = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 - z^2 \le 1, -1 \le z \le 2\}.$$

Skizzieren Sie den Körper und berechnen Sie dessen Volumen.

Lösung 12.6:

a) Der Integrationsbereich hat die folgende Gestalt:

D ist Normalbereich bezüglich x,

$$D = \left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 : \frac{1}{x} \le y \le x, \quad 1 \le x \le 2 \right\}.$$

Es gilt

$$\iint_D \frac{x^2}{y^2} dx dy = \int_1^2 \left(\int_{1/x}^x \frac{x^2}{y^2} dy \right) dx$$
$$= \int_1^2 x^2 \cdot \left[\frac{-1}{y} \right]_{y=1/x}^{y=x} dx$$
$$= \int_1^2 \left(-x + x^3 \right) dx = \frac{9}{4}.$$

b) Die Ungleichung in der Definition des Integrationsgebietes lässt sich schreiben als $x^2 + y^2 < 1 + z^2$.

Skizze:

Das Volumen berechnet man in Zylinderkoordinaten,

$$x = r \cos \varphi, \quad y = r \sin \varphi, \quad z = z.$$

Die zugehörige Funktionaldeterminante ist $\left| \frac{\partial(x,y,z)}{\partial(r,\varphi,z)} \right| = r$. Das Volumen ist:

$$\int_{z=-1}^{2} \int_{\varphi=0}^{2\pi} \int_{r=0}^{\sqrt{1+z^2}} r \, dr d\varphi dz = \int_{z=-1}^{2} 2\pi \frac{1+z^2}{2} dz$$
$$= \pi \left(3 + \left[\frac{z^3}{3} \right]_{z=-1}^{2} \right)$$
$$= \pi \left(3 + \frac{8}{3} + \frac{1}{3} \right) = 6\pi.$$