### **AUTO**

POPULATION SIZE, MIGRATION, DIVERGENCE, ASSIGNMENT, HISTORY

Bayesian inference using the structured coalescent

Migrate-n version 5.0.0a [May-20-2017]

Using Intel AVX (Advanced Vector Extensions)

Compiled for PARALLEL computer architectures

One master and 8 compute nodes are available.

Compiled for a SYMMETRIC multiprocessors (Grandcentral)

Program started at Sun Jan 7 10:29:01 2018

Program finished at Sun Jan 7 10:43:46 2018 [Runtime:0000:00:14:45]



### **Options**

Datatype: DNA sequence data

Inheritance scalers in use for Thetas:

All loci use an inheritance scaler of 1.0

[The locus with a scaler of 1.0 used as reference]

Random number seed: (with internal timer) 3406649980

Start parameters:

Theta values were generated Using a percent value of the prior

M values were generated Using a percent value of the prior

Connection matrix:

m = average (average over a group of Thetas or M,

s = symmetric migration M, S = symmetric 4Nm,

0 = zero, and not estimated,

\* = migration free to vary, Thetas are on diagonal

d = row population split off column population, D = split and then migration

Population

1 Romanshorn 0

Order of parameters:

1  $\Theta_1$  <displayed>

Mutation rate among loci: Mutation rate is constant for all loci

Analysis strategy: Bayesian inference

-Population size estimation: Exponential Distribution

Proposal distributions for parameter

Parameter Proposal
Theta Metropolis sampling
M Metropolis sampling
Divergence Metropolis sampling
Divergence Spread Metropolis sampling
Genealogy Metropolis-Hastings

Prior distribution for parameter

Parameter Prior Minimum MeanMaximum Delta Bins UpdateFreq
1 Theta -11 Uniform 0.000000 0.050 0.100 0.010 1500 0.20000

[-1 -1 means priors were set globally]

Markov chain settings: Long chain

Number of chains 1

Recorded steps [a] 5000
Increment (record every x step [b] 20

Number of concurrent chains (replicates) [c] 2

Visited (sampled) parameter values [a\*b\*c] 200000

Number of discard trees per chain (burn-in) 1000

Multiple Markov chains:

Static heating scheme 4 chains with temperatures

1000000.00 3.00 1.50

Swapping interval is 1

1.00

Print options:

Data file: infile.1.0

Haplotyping is turned on:

Output file: outfile\_1.0\_0.8

Posterior distribution raw histogram file: bayesfile

Raw data from the MCMC run: bayesallfile\_1.0\_0.8

Print data: No

Print genealogies [only some for some data type]:

# Data summary

Data file:

Datatype:

Sequence data

Number of loci:

100

| N/III | tatio | ٦nm       | $\alpha$ | ΣI: |
|-------|-------|-----------|----------|-----|
| iviu  | ιαιις | /I II I I | out      | 7I. |

| Mutation | model:  |               |                          |  |
|----------|---------|---------------|--------------------------|--|
| Locus S  | ublocus | Mutationmodel | Mutationmodel parameters |  |
| 1        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 2        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 3        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 4        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 5        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 6        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 7        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 8        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 9        | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 10       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 11       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 12       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 13       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 14       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 15       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 16       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 17       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 18       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 19       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 20       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 21       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 22       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 23       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 24       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 25       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 26       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 27       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 28       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 29       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 30       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 31       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 32       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 33       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |
| 34       | 1       | Jukes-Cantor  | [Basefreq: =0.25]        |  |

| 35 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|----|---|--------------|-------------------|
| 36 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 37 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 38 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 39 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 40 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 41 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 42 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 43 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 44 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 45 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 46 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 47 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 48 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 49 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 50 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 51 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 52 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 53 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 54 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 55 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 56 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 57 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 58 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 59 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 60 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 61 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 62 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 63 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 64 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 65 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 66 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 67 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 68 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 69 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 70 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 71 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 72 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 73 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 74 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 75 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 76 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 77 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 78 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
| 79 | 1 | Jukes-Cantor | [Basefreq: =0.25] |
|    |   |              |                   |

|           |       |              |                   | AUTO 5 |
|-----------|-------|--------------|-------------------|--------|
| 80        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 81        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 82        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 83        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 84        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 85        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 86        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 87        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 88        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 89        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 90        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 91        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 92        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 93        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 94        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 95        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 96        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 97        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 98        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 99        | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
| 100       | 1     | Jukes-Cantor | [Basefreq: =0.25] |        |
|           |       |              |                   |        |
| Sites per | locus |              |                   |        |
| Locus     |       | Sites        |                   |        |

| Locus | Sites |
|-------|-------|
| 1     | 10000 |
| 2     | 10000 |
| 3     | 10000 |
| 4     | 10000 |
| 5     | 10000 |
| 6     | 10000 |
| 7     | 10000 |
| 8     | 10000 |
| 9     | 10000 |
| 10    | 10000 |
| 11    | 10000 |
| 12    | 10000 |
| 13    | 10000 |
| 14    | 10000 |
| 15    | 10000 |
| 16    | 10000 |
| 17    | 10000 |
| 18    | 10000 |
| 19    | 10000 |
| 20    | 10000 |

| 21 10000 |  |
|----------|--|
| 22 10000 |  |
| 23 10000 |  |
| 24 10000 |  |
| 25 10000 |  |
| 26 10000 |  |
| 27 10000 |  |
| 28 10000 |  |
| 29 10000 |  |
| 30 10000 |  |
| 31 10000 |  |
| 32 10000 |  |
| 33 10000 |  |
| 34 10000 |  |
| 35 10000 |  |
| 36 10000 |  |
| 37 10000 |  |
| 38 10000 |  |
| 39 10000 |  |
| 40 10000 |  |
| 41 10000 |  |
| 42 10000 |  |
| 43 10000 |  |
| 44 10000 |  |
| 45 10000 |  |
| 46 10000 |  |
| 47 10000 |  |
| 48 10000 |  |
| 49 10000 |  |
| 50 10000 |  |
| 51 10000 |  |
| 52 10000 |  |
| 53 10000 |  |
| 54 10000 |  |
| 55 10000 |  |
| 56 10000 |  |
| 57 10000 |  |
| 58 10000 |  |
| 59 10000 |  |
| 60 10000 |  |
| 61 10000 |  |
| 62 10000 |  |
| 63 10000 |  |
| 64 10000 |  |
| 65 10000 |  |

| 66      | 10000                  |                |             |            |  |
|---------|------------------------|----------------|-------------|------------|--|
| 67      | 10000                  |                |             |            |  |
| 68      | 10000                  |                |             |            |  |
| 69      | 10000                  |                |             |            |  |
| 70      | 10000                  |                |             |            |  |
| 71      | 10000                  |                |             |            |  |
| 72      | 10000                  |                |             |            |  |
| 73      | 10000                  |                |             |            |  |
| 74      | 10000                  |                |             |            |  |
| 75      | 10000                  |                |             |            |  |
| 76      | 10000                  |                |             |            |  |
| 77      | 10000                  |                |             |            |  |
| 78      | 10000                  |                |             |            |  |
| 79      | 10000                  |                |             |            |  |
| 80      | 10000                  |                |             |            |  |
| 81      | 10000                  |                |             |            |  |
| 82      | 10000                  |                |             |            |  |
| 83      | 10000                  |                |             |            |  |
| 84      | 10000                  |                |             |            |  |
| 85      | 10000                  |                |             |            |  |
| 86      | 10000                  |                |             |            |  |
| 87      | 10000                  |                |             |            |  |
| 88      | 10000                  |                |             |            |  |
| 89      | 10000                  |                |             |            |  |
| 90      | 10000                  |                |             |            |  |
| 91      | 10000                  |                |             |            |  |
| 92      | 10000                  |                |             |            |  |
| 93      | 10000                  |                |             |            |  |
| 94      | 10000                  |                |             |            |  |
| 95      | 10000                  |                |             |            |  |
| 96      | 10000                  |                |             |            |  |
| 97      | 10000                  |                |             |            |  |
| 98      | 10000                  |                |             |            |  |
| 99      | 10000                  |                |             |            |  |
| 100     | 10000                  |                |             |            |  |
|         |                        |                |             |            |  |
|         | e variation and probab |                |             |            |  |
| Locus S | Sublocus Region type   | Rate of change | Probability | Patch size |  |
| 1       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 2       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 3       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 4       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 5       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
| 6       | 1 1                    | 1.000          | 1.000       | 1.000      |  |
|         |                        |                |             |            |  |

| 7  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 8  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 9  | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 10 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 11 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 12 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 13 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 14 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 15 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 16 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 17 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 18 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 19 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 20 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 21 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 22 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 23 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 24 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 25 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 26 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 27 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 28 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 29 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 30 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 31 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 32 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 33 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 34 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 35 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 36 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 37 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 38 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 39 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 40 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 41 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 42 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 43 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 44 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 45 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 46 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 47 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 48 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 49 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 50 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 51 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |

| 52 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|----|---|---|-------|-------|-------|--|
| 53 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 54 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 55 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 56 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 57 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 58 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 59 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 60 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 61 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 62 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 63 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 64 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 65 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 66 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 67 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 68 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 69 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 70 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 71 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 72 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 73 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 74 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 75 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 76 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 77 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 78 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 79 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 80 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 81 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 82 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 83 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 84 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 85 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 86 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 87 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 88 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 89 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 90 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 91 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 92 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 93 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 94 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 95 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
| 96 | 1 | 1 | 1.000 | 1.000 | 1.000 |  |
|    |   |   |       |       |       |  |

| 97         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
|------------|-----------|---|-------|-------|-------|-------------|
| 98         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| 99         | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| 100        | 1         | 1 | 1.000 | 1.000 | 1.000 |             |
| Population |           | ı | 1.000 | 1.000 | Locus | Gene copies |
| 1 Roman    |           |   |       |       | 1     | 10          |
| i Koman    | 3110111_0 |   |       |       | 2     | 10          |
|            |           |   |       |       | 3     | 10          |
|            |           |   |       |       | 4     | 10          |
|            |           |   |       |       |       |             |
|            |           |   |       |       | 5     | 10          |
|            |           |   |       |       | 6     | 10          |
|            |           |   |       |       | 7     | 10          |
|            |           |   |       |       | 8     | 10          |
|            |           |   |       |       | 9     | 10          |
|            |           |   |       |       | 10    | 10          |
|            |           |   |       |       | 11    | 10          |
|            |           |   |       |       | 12    | 10          |
|            |           |   |       |       | 13    | 10          |
|            |           |   |       |       | 14    | 10          |
|            |           |   |       |       | 15    | 10          |
|            |           |   |       |       | 16    | 10          |
|            |           |   |       |       | 17    | 10          |
|            |           |   |       |       | 18    | 10          |
|            |           |   |       |       | 19    | 10          |
|            |           |   |       |       | 20    | 10          |
|            |           |   |       |       | 21    | 10          |
|            |           |   |       |       | 22    | 10          |
|            |           |   |       |       | 23    | 10          |
|            |           |   |       |       | 24    | 10          |
|            |           |   |       |       | 25    | 10          |
|            |           |   |       |       | 26    | 10          |
|            |           |   |       |       | 27    | 10          |
|            |           |   |       |       | 28    | 10          |
|            |           |   |       |       | 29    | 10          |
|            |           |   |       |       | 30    | 10          |
|            |           |   |       |       | 31    | 10          |
|            |           |   |       |       | 32    | 10          |
|            |           |   |       |       | 33    | 10          |
|            |           |   |       |       | 34    | 10          |
|            |           |   |       |       | 35    | 10          |
|            |           |   |       |       | 36    | 10          |
|            |           |   |       |       | 37    | 10          |
|            |           |   |       |       | 38    | 10          |
|            |           |   |       |       | 39    | 10          |
|            |           |   |       |       | 40    | 10          |
|            |           |   |       |       | -     |             |

| 4.4 | 40 |
|-----|----|
| 41  | 10 |
| 42  | 10 |
| 43  | 10 |
| 44  | 10 |
| 45  | 10 |
| 46  | 10 |
| 47  | 10 |
| 48  | 10 |
| 49  | 10 |
| 50  | 10 |
| 51  | 10 |
| 52  | 10 |
| 53  | 10 |
| 54  | 10 |
| 55  | 10 |
| 56  | 10 |
| 57  | 10 |
| 58  | 10 |
| 59  | 10 |
| 60  | 10 |
| 61  | 10 |
| 62  | 10 |
| 63  | 10 |
| 64  | 10 |
| 65  | 10 |
| 66  | 10 |
| 67  | 10 |
| 68  | 10 |
| 69  | 10 |
| 70  | 10 |
| 71  | 10 |
| 72  | 10 |
| 73  | 10 |
| 74  | 10 |
| 75  | 10 |
| 76  | 10 |
| 77  | 10 |
| 78  | 10 |
| 79  | 10 |
| 80  | 10 |
| 81  | 10 |
| 82  | 10 |
| 83  | 10 |
| 84  | 10 |
| 85  | 10 |
|     | -  |

|                          | 00       | 40 |  |
|--------------------------|----------|----|--|
|                          | 86       | 10 |  |
|                          | 87       | 10 |  |
|                          | 88       | 10 |  |
|                          | 89       | 10 |  |
|                          | 90       | 10 |  |
|                          | 91       | 10 |  |
|                          | 92       | 10 |  |
|                          | 93       | 10 |  |
|                          | 94       | 10 |  |
|                          | 95       | 10 |  |
|                          | 96       | 10 |  |
|                          | 97       | 10 |  |
|                          | 98       | 10 |  |
|                          | 99       | 10 |  |
|                          |          |    |  |
|                          | 100      | 10 |  |
| Total of all populations | 1        | 10 |  |
|                          | 2        | 10 |  |
|                          | 3        | 10 |  |
|                          | 4        | 10 |  |
|                          | 5        | 10 |  |
|                          | 6        | 10 |  |
|                          | 7        | 10 |  |
|                          | 8        | 10 |  |
|                          | 9        | 10 |  |
|                          | 10       | 10 |  |
|                          | 11       | 10 |  |
|                          | 12       | 10 |  |
|                          | 13       | 10 |  |
|                          | 14       | 10 |  |
|                          |          |    |  |
|                          | 15<br>16 | 10 |  |
|                          | 16       | 10 |  |
|                          | 17       | 10 |  |
|                          | 18       | 10 |  |
|                          | 19       | 10 |  |
|                          | 20       | 10 |  |
|                          | 21       | 10 |  |
|                          | 22       | 10 |  |
|                          | 23       | 10 |  |
|                          | 24       | 10 |  |
|                          | 25       | 10 |  |
|                          | 26       | 10 |  |
|                          | 27       | 10 |  |
|                          | 28       | 10 |  |
|                          | 29       | 10 |  |
|                          | 30       | 10 |  |
|                          | 30       | 10 |  |

| 31 | 10 |
|----|----|
| 32 | 10 |
| 33 | 10 |
| 34 | 10 |
| 35 | 10 |
| 36 | 10 |
| 37 | 10 |
| 38 | 10 |
| 39 | 10 |
| 40 | 10 |
| 41 | 10 |
| 42 | 10 |
| 43 | 10 |
| 44 | 10 |
| 45 | 10 |
| 46 | 10 |
| 47 | 10 |
| 48 | 10 |
| 49 | 10 |
| 50 | 10 |
| 51 | 10 |
| 52 | 10 |
| 53 | 10 |
| 54 | 10 |
| 55 | 10 |
| 56 | 10 |
| 57 | 10 |
| 58 | 10 |
| 59 | 10 |
| 60 | 10 |
| 61 | 10 |
| 62 | 10 |
| 63 | 10 |
| 64 | 10 |
| 65 | 10 |
| 66 | 10 |
| 67 | 10 |
| 68 | 10 |
| 69 | 10 |
| 70 | 10 |
| 71 | 10 |
| 72 | 10 |
| 73 | 10 |
| 74 | 10 |
| 75 | 10 |
|    |    |

|   | 76  | 10 |
|---|-----|----|
|   | 77  | 10 |
|   | 78  | 10 |
|   | 79  | 10 |
|   | 80  | 10 |
|   | 81  | 10 |
|   | 82  | 10 |
|   | 83  | 10 |
|   | 84  | 10 |
|   | 85  | 10 |
|   | 86  | 10 |
|   | 87  | 10 |
|   | 88  | 10 |
|   | 89  | 10 |
|   | 90  | 10 |
|   | 91  |    |
|   |     | 10 |
|   | 92  | 10 |
|   | 93  | 10 |
|   | 94  | 10 |
|   | 95  | 10 |
|   | 96  | 10 |
|   | 97  | 10 |
|   | 98  | 10 |
|   | 99  | 10 |
| 1 | 100 | 10 |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |
|   |     |    |

# Bayesian Analysis: Posterior distribution table

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 1     | $\Theta_1$ | 0.01800 | 0.02540 | 0.03057 | 0.03920 | 0.05000 | 0.03363 | 0.04345 |
| 2     | $\Theta_1$ | 0.02527 | 0.03927 | 0.04750 | 0.04853 | 0.05107 | 0.04050 | 0.05751 |
| 3     | $\Theta_1$ | 0.01940 | 0.03093 | 0.04157 | 0.04393 | 0.05053 | 0.03603 | 0.04848 |
| 4     | $\Theta_1$ | 0.01933 | 0.03273 | 0.03757 | 0.04773 | 0.05047 | 0.03623 | 0.04594 |
| 5     | $\Theta_1$ | 0.01480 | 0.01707 | 0.02910 | 0.04440 | 0.04800 | 0.02997 | 0.03525 |
| 6     | $\Theta_1$ | 0.01927 | 0.03013 | 0.03237 | 0.04347 | 0.05013 | 0.03523 | 0.04558 |
| 7     | $\Theta_1$ | 0.02313 | 0.03913 | 0.04750 | 0.04873 | 0.05087 | 0.03937 | 0.05766 |
| 8     | $\Theta_1$ | 0.02300 | 0.03780 | 0.04263 | 0.04793 | 0.05067 | 0.03803 | 0.05357 |
| 9     | $\Theta_1$ | 0.01987 | 0.02973 | 0.03543 | 0.04280 | 0.05007 | 0.03523 | 0.04334 |
| 10    | $\Theta_1$ | 0.01100 | 0.01867 | 0.02577 | 0.03267 | 0.04907 | 0.02763 | 0.03234 |
| 11    | $\Theta_1$ | 0.01707 | 0.02207 | 0.03003 | 0.04033 | 0.04887 | 0.03183 | 0.03748 |
| 12    | $\Theta_1$ | 0.02153 | 0.03213 | 0.03670 | 0.04420 | 0.05047 | 0.03677 | 0.04852 |
| 13    | $\Theta_1$ | 0.02393 | 0.03800 | 0.04750 | 0.04880 | 0.05080 | 0.03937 | 0.05445 |
| 14    | $\Theta_1$ | 0.01913 | 0.03040 | 0.03517 | 0.04427 | 0.05020 | 0.03550 | 0.04578 |
| 15    | $\Theta_1$ | 0.02327 | 0.03527 | 0.04403 | 0.04813 | 0.05060 | 0.03863 | 0.05362 |
| 16    | $\Theta_1$ | 0.02013 | 0.03407 | 0.04010 | 0.04700 | 0.05047 | 0.03683 | 0.04884 |
| 17    | $\Theta_1$ | 0.01680 | 0.02267 | 0.03317 | 0.03647 | 0.04893 | 0.03150 | 0.03781 |
| 18    | $\Theta_1$ | 0.01673 | 0.02833 | 0.03217 | 0.04107 | 0.05020 | 0.03417 | 0.04579 |

| 19 | $\Theta_1$ | 0.02153 | 0.03267 | 0.04097 | 0.04427 | 0.05040 | 0.03710 | 0.04955 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 20 | $\Theta_1$ | 0.02293 | 0.03720 | 0.04563 | 0.04807 | 0.05053 | 0.03810 | 0.04815 |
| 21 | $\Theta_1$ | 0.02320 | 0.03740 | 0.04623 | 0.04847 | 0.05080 | 0.03883 | 0.05327 |
| 22 | $\Theta_1$ | 0.01987 | 0.02787 | 0.03290 | 0.04213 | 0.04980 | 0.03483 | 0.04291 |
| 23 | $\Theta_1$ | 0.01360 | 0.01907 | 0.02410 | 0.03500 | 0.04880 | 0.02937 | 0.03576 |
| 24 | $\Theta_1$ | 0.02527 | 0.03853 | 0.04770 | 0.04887 | 0.05100 | 0.04017 | 0.05874 |
| 25 | $\Theta_1$ | 0.01947 | 0.03027 | 0.03570 | 0.04547 | 0.05013 | 0.03577 | 0.04628 |
| 26 | $\Theta_1$ | 0.01887 | 0.02447 | 0.03030 | 0.04020 | 0.04980 | 0.03363 | 0.04236 |
| 27 | $\Theta_1$ | 0.02160 | 0.02160 | 0.04077 | 0.05047 | 0.05047 | 0.03730 | 0.04872 |
| 28 | $\Theta_1$ | 0.01980 | 0.02760 | 0.03537 | 0.04547 | 0.05067 | 0.03597 | 0.04515 |
| 29 | $\Theta_1$ | 0.01327 | 0.01813 | 0.02370 | 0.03053 | 0.04213 | 0.02717 | 0.03100 |
| 30 | $\Theta_1$ | 0.01807 | 0.02720 | 0.02877 | 0.03867 | 0.04980 | 0.03377 | 0.04054 |
| 31 | $\Theta_1$ | 0.01987 | 0.02187 | 0.03670 | 0.04880 | 0.04960 | 0.03490 | 0.04263 |
| 32 | $\Theta_1$ | 0.00880 | 0.01427 | 0.01897 | 0.02600 | 0.04400 | 0.02330 | 0.02736 |
| 33 | $\Theta_1$ | 0.02260 | 0.03693 | 0.04317 | 0.04833 | 0.05080 | 0.03883 | 0.05446 |
| 34 | $\Theta_1$ | 0.01293 | 0.01747 | 0.02337 | 0.03253 | 0.04433 | 0.02717 | 0.03174 |
| 35 | $\Theta_1$ | 0.01520 | 0.01633 | 0.02550 | 0.04047 | 0.04447 | 0.02883 | 0.03374 |
| 36 | $\Theta_1$ | 0.02213 | 0.03053 | 0.04083 | 0.04927 | 0.05067 | 0.03817 | 0.05074 |
| 37 | $\Theta_1$ | 0.02367 | 0.03873 | 0.04770 | 0.04867 | 0.05087 | 0.03890 | 0.05419 |
| 38 | $\Theta_1$ | 0.01780 | 0.02247 | 0.02990 | 0.04087 | 0.04867 | 0.03197 | 0.03726 |
| 39 | $\Theta_1$ | 0.00927 | 0.01247 | 0.01730 | 0.02293 | 0.03147 | 0.02023 | 0.02315 |
| 40 | $\Theta_1$ | 0.01960 | 0.02820 | 0.03237 | 0.04060 | 0.04993 | 0.03463 | 0.04380 |
| 41 | $\Theta_1$ | 0.00280 | 0.01040 | 0.01123 | 0.01160 | 0.03253 | 0.01357 | 0.01535 |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 10:29:01]

| Locus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 42    | $\Theta_1$ | 0.02027 | 0.03587 | 0.04690 | 0.04820 | 0.05073 | 0.03743 | 0.05061 |
| 43    | $\Theta_1$ | 0.02253 | 0.03740 | 0.04730 | 0.04860 | 0.05080 | 0.03870 | 0.05602 |
| 44    | $\Theta_1$ | 0.01680 | 0.02213 | 0.03023 | 0.04380 | 0.04953 | 0.03263 | 0.04332 |
| 45    | $\Theta_1$ | 0.02733 | 0.04073 | 0.04770 | 0.04953 | 0.05133 | 0.04197 | 0.06707 |
| 46    | $\Theta_1$ | 0.01927 | 0.03447 | 0.03790 | 0.04527 | 0.05033 | 0.03577 | 0.04703 |
| 47    | $\Theta_1$ | 0.01413 | 0.01673 | 0.02417 | 0.04007 | 0.04633 | 0.02883 | 0.03417 |
| 48    | $\Theta_1$ | 0.01413 | 0.01927 | 0.02790 | 0.03253 | 0.04480 | 0.02830 | 0.03265 |
| 49    | $\Theta_1$ | 0.01867 | 0.02840 | 0.03123 | 0.03867 | 0.04973 | 0.03410 | 0.04254 |
| 50    | $\Theta_1$ | 0.01813 | 0.02673 | 0.03257 | 0.04047 | 0.04960 | 0.03363 | 0.04287 |
| 51    | $\Theta_1$ | 0.02993 | 0.04153 | 0.04763 | 0.04907 | 0.05153 | 0.04303 | 0.06650 |
| 52    | $\Theta_1$ | 0.01720 | 0.02380 | 0.03270 | 0.03833 | 0.04980 | 0.03283 | 0.04208 |
| 53    | $\Theta_1$ | 0.01953 | 0.03060 | 0.03323 | 0.04020 | 0.05013 | 0.03523 | 0.04514 |
| 54    | $\Theta_1$ | 0.01287 | 0.02107 | 0.02477 | 0.02920 | 0.04753 | 0.02810 | 0.03202 |
| 55    | $\Theta_1$ | 0.01540 | 0.02560 | 0.02883 | 0.03247 | 0.04847 | 0.03030 | 0.03598 |
| 56    | $\Theta_1$ | 0.02413 | 0.03980 | 0.04750 | 0.04867 | 0.05100 | 0.03997 | 0.05722 |
| 57    | $\Theta_1$ | 0.01933 | 0.02887 | 0.03817 | 0.04420 | 0.04987 | 0.03523 | 0.04453 |
| 58    | $\Theta_1$ | 0.00893 | 0.00947 | 0.01570 | 0.02433 | 0.02573 | 0.01837 | 0.02011 |
| 59    | $\Theta_1$ | 0.01687 | 0.02440 | 0.02863 | 0.03980 | 0.04933 | 0.03250 | 0.04068 |
| 60    | $\Theta_1$ | 0.02027 | 0.03053 | 0.04017 | 0.04367 | 0.05027 | 0.03610 | 0.04867 |
| 61    | $\Theta_1$ | 0.02280 | 0.03833 | 0.04470 | 0.04847 | 0.05073 | 0.03857 | 0.05222 |

| 62 | $\Theta_1$ | 0.02380 | 0.03867 | 0.04750 | 0.04887 | 0.05093 | 0.03990 | 0.05710 |
|----|------------|---------|---------|---------|---------|---------|---------|---------|
| 63 | $\Theta_1$ | 0.02260 | 0.03827 | 0.04690 | 0.04847 | 0.05073 | 0.03810 | 0.05536 |
| 64 | $\Theta_1$ | 0.01100 | 0.01753 | 0.02070 | 0.02887 | 0.04740 | 0.02583 | 0.02958 |
| 65 | $\Theta_1$ | 0.01633 | 0.02533 | 0.03043 | 0.04007 | 0.04953 | 0.03297 | 0.04191 |
| 66 | $\Theta_1$ | 0.02187 | 0.03227 | 0.03663 | 0.04380 | 0.05053 | 0.03690 | 0.04839 |
| 67 | $\Theta_1$ | 0.01653 | 0.03033 | 0.03557 | 0.04287 | 0.04980 | 0.03370 | 0.04382 |
| 68 | $\Theta_1$ | 0.02713 | 0.04073 | 0.04703 | 0.04887 | 0.05140 | 0.04230 | 0.06410 |
| 69 | $\Theta_1$ | 0.02333 | 0.03740 | 0.04063 | 0.04780 | 0.05060 | 0.03870 | 0.05362 |
| 70 | $\Theta_1$ | 0.02140 | 0.03140 | 0.03810 | 0.04313 | 0.05040 | 0.03677 | 0.04695 |
| 71 | $\Theta_1$ | 0.01907 | 0.02653 | 0.03263 | 0.03800 | 0.04940 | 0.03337 | 0.04065 |
| 72 | $\Theta_1$ | 0.01807 | 0.02840 | 0.03470 | 0.04133 | 0.04980 | 0.03430 | 0.04089 |
| 73 | $\Theta_1$ | 0.02507 | 0.04040 | 0.04510 | 0.04847 | 0.05100 | 0.04063 | 0.06022 |
| 74 | $\Theta_1$ | 0.01793 | 0.02547 | 0.03037 | 0.03673 | 0.04933 | 0.03283 | 0.04094 |
| 75 | $\Theta_1$ | 0.01493 | 0.01820 | 0.02483 | 0.03620 | 0.04673 | 0.02877 | 0.03543 |
| 76 | $\Theta_1$ | 0.02453 | 0.03813 | 0.04770 | 0.04887 | 0.05093 | 0.03963 | 0.05640 |
| 77 | $\Theta_1$ | 0.01980 | 0.02707 | 0.03470 | 0.04647 | 0.05013 | 0.03563 | 0.04581 |
| 78 | $\Theta_1$ | 0.01900 | 0.02593 | 0.03130 | 0.04287 | 0.04980 | 0.03423 | 0.04354 |
| 79 | $\Theta_1$ | 0.01980 | 0.02840 | 0.03437 | 0.04427 | 0.05007 | 0.03523 | 0.04481 |
| 80 | $\Theta_1$ | 0.01920 | 0.03000 | 0.04230 | 0.04487 | 0.05027 | 0.03557 | 0.04497 |
| 81 | $\Theta_1$ | 0.02647 | 0.04107 | 0.04550 | 0.04913 | 0.05087 | 0.04123 | 0.05843 |
| 82 | $\Theta_1$ | 0.01147 | 0.01467 | 0.02283 | 0.03127 | 0.03927 | 0.02497 | 0.02772 |
| 83 | $\Theta_1$ | 0.01067 | 0.01527 | 0.01997 | 0.02993 | 0.04300 | 0.02443 | 0.02743 |
| 84 | $\Theta_1$ | 0.02487 | 0.04073 | 0.04770 | 0.04913 | 0.05127 | 0.04123 | 0.06225 |

| _ocus | Parameter  | 2.5%    | 25.0%   | Mode    | 75.0%   | 97.5%   | Median  | Mean    |
|-------|------------|---------|---------|---------|---------|---------|---------|---------|
| 85    | $\Theta_1$ | 0.01600 | 0.02107 | 0.02977 | 0.03980 | 0.04860 | 0.03130 | 0.03760 |
| 86    | $\Theta_1$ | 0.02160 | 0.03680 | 0.04277 | 0.04840 | 0.05073 | 0.03843 | 0.05485 |
| 87    | $\Theta_1$ | 0.00287 | 0.00700 | 0.01117 | 0.01680 | 0.03280 | 0.01383 | 0.01652 |
| 88    | $\Theta_1$ | 0.01093 | 0.01693 | 0.02137 | 0.02973 | 0.04313 | 0.02563 | 0.02955 |
| 89    | $\Theta_1$ | 0.02267 | 0.04060 | 0.04630 | 0.04820 | 0.05087 | 0.03843 | 0.05262 |
| 90    | $\Theta_1$ | 0.01173 | 0.01787 | 0.02057 | 0.02487 | 0.03520 | 0.02423 | 0.02751 |
| 91    | $\Theta_1$ | 0.01720 | 0.02220 | 0.02850 | 0.04020 | 0.04900 | 0.03197 | 0.03888 |
| 92    | $\Theta_1$ | 0.01513 | 0.02113 | 0.02810 | 0.03833 | 0.04920 | 0.03083 | 0.03968 |
| 93    | $\Theta_1$ | 0.01953 | 0.03353 | 0.03737 | 0.04453 | 0.05020 | 0.03570 | 0.04759 |
| 94    | $\Theta_1$ | 0.02007 | 0.03420 | 0.04183 | 0.04593 | 0.05053 | 0.03683 | 0.04908 |
| 95    | $\Theta_1$ | 0.02020 | 0.03153 | 0.03810 | 0.04587 | 0.05020 | 0.03597 | 0.04480 |
| 96    | $\Theta_1$ | 0.02273 | 0.03673 | 0.03950 | 0.04813 | 0.05073 | 0.03857 | 0.05151 |
| 97    | $\Theta_1$ | 0.01720 | 0.02447 | 0.03103 | 0.03700 | 0.04933 | 0.03223 | 0.03853 |
| 98    | $\Theta_1$ | 0.01473 | 0.03020 | 0.03510 | 0.04087 | 0.05127 | 0.03517 | 0.04425 |
| 99    | $\Theta_1$ | 0.02393 | 0.03887 | 0.04763 | 0.04900 | 0.05107 | 0.03997 | 0.05805 |
| 100   | $\Theta_1$ | 0.01887 | 0.02320 | 0.03163 | 0.04440 | 0.04927 | 0.03343 | 0.04035 |
| All   | $\Theta_1$ | 0.03027 | 0.03060 | 0.03217 | 0.03353 | 0.03380 | 0.03503 | 0.03522 |

#### Citation suggestions:

Beerli P., 2006. Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22:341-345

Beerli P., 2007. Estimation of the population scaled mutation rate from microsatellite data, Genetics, 177:1967-1968.

| Beerli P., 2009. How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use?          |
|-------------------------------------------------------------------------------------------------------------|
| In Population Genetics for Animal Conservation, G. Bertorelle, M. W. Bruford, H. C. Hauffe, A. Rizzoli,     |
| and C. Vernesi, eds., vol. 17 of Conservation Biology, Cambridge University Press, Cambridge UK, pp. 42-79. |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |
|                                                                                                             |

## Bayesian Analysis: Posterior distribution over all loci



### Log-Probability of the data given the model (marginal likelihood)

Use this value for Bayes factor calculations:  $BF = Exp[\ ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel)) \\ or \ as \ LBF = 2 \ (ln(Prob(D \mid thisModel) - ln(\ Prob(\ D \mid otherModel))) \\ shows the \ support for \ thisModel]$ 

| ocus. | TI(1a)    | BTI(1b)   | SS(2)     | HS(3)     |
|-------|-----------|-----------|-----------|-----------|
| 1     | -15713.94 | -15336.35 | -15398.06 | -15444.85 |
| 2     | -17113.22 | -16553.10 | -16599.59 | -16641.19 |
| 3     | -16177.17 | -15660.78 | -15700.32 | -15747.79 |
| 4     | -15865.95 | -15419.17 | -15471.07 | -15515.46 |
| 5     | -16487.22 | -15822.99 | -15834.62 | -15884.37 |
| 6     | -15727.18 | -15331.20 | -15389.07 | -15435.87 |
| 7     | -17610.14 | -16606.74 | -16566.70 | -16609.26 |
| 8     | -16231.13 | -15701.36 | -15741.28 | -15785.77 |
| 9     | -16039.85 | -15491.48 | -15523.05 | -15568.27 |
| 10    | -15597.91 | -15089.42 | -15119.93 | -15170.56 |
| 11    | -15782.60 | -15411.18 | -15474.65 | -15523.66 |
| 12    | -17597.23 | -16359.05 | -16268.92 | -16315.12 |
| 13    | -16207.69 | -15668.83 | -15402.24 | -15750.75 |
| 14    | -16127.84 | -15700.87 | -15473.53 | -15804.22 |
| 15    | -15932.87 | -15496.16 | -15551.52 | -15595.03 |
| 16    | -15888.02 | -15442.76 | -15396.57 | -15539.43 |
| 17    | -15962.90 | -15469.52 | -15479.89 | -15558.07 |
| 18    | -15231.46 | -14958.96 | -15033.36 | -15083.26 |
| 19    | -16330.59 | -15894.30 | -15953.61 | -15998.32 |
| 20    | -17032.98 | -16149.14 | -15132.25 | -16169.53 |
| 21    | -16986.97 | -16287.36 | -15554.36 | -16346.27 |
| 22    | -16365.42 | -15740.94 | -15708.72 | -15807.15 |
| 23    | -15213.03 | -14872.76 | -14933.14 | -14983.80 |
| 24    | -17834.12 | -16751.71 | -15502.32 | -16742.03 |
| 25    | -16671.99 | -15928.14 | -15037.53 | -15973.87 |
| 26    | -16284.42 | -15857.40 | -15915.99 | -15963.24 |
| 27    | -15783.22 | -15397.42 | -15461.21 | -15505.50 |
| 28    | -16414.19 | -15818.54 | -15845.80 | -15893.53 |
| 29    | -15048.80 | -14722.17 | -14783.55 | -14834.58 |

Migrate 5.0.0a: (http://popgen.sc.fsu.edu) [program run on 10:29:01]

| 30 | -16737.72 | -15883.01 | -14939.57 | -15906.98 |
|----|-----------|-----------|-----------|-----------|
| 31 | -17254.69 | -16155.09 | -16087.71 | -16133.99 |
| 32 | -15713.51 | -15228.43 | -15262.64 | -15317.36 |
| 33 | -16286.45 | -15782.89 | -15830.04 | -15871.87 |
| 34 | -14998.41 | -14697.81 | -14764.14 | -14814.49 |
| 35 | -15270.11 | -14868.12 | -14787.88 | -14966.46 |
| 36 | -15897.02 | -15484.11 | -15544.27 | -15587.97 |
| 37 | -16377.09 | -15944.42 | -15853.30 | -16050.11 |
| 38 | -15580.04 | -15111.39 | -15153.10 | -15200.45 |
| 39 | -15227.37 | -14751.91 | -14780.41 | -14835.17 |
| 40 | -16308.12 | -15670.08 | -15273.70 | -15732.49 |
| 41 | -14510.33 | -14262.77 | -14321.71 | -14383.22 |
| 42 | -18011.74 | -16712.16 | -14924.99 | -16660.52 |
| 43 | -16537.70 | -15985.36 | -15836.49 | -16071.27 |
| 44 | -15967.85 | -15408.69 | -15436.82 | -15484.27 |
| 45 | -16612.44 | -16210.48 | -16009.98 | -16325.46 |
| 46 | -16537.82 | -15822.52 | -14799.19 | -15872.99 |
| 47 | -15765.08 | -15231.10 | -15157.38 | -15308.85 |
| 48 | -16182.76 | -15784.66 | -15687.10 | -15895.56 |
| 49 | -15856.77 | -15390.61 | -14338.81 | -15483.60 |
| 50 | -15682.91 | -15264.54 | -15317.87 | -15366.42 |
| 51 | -17135.09 | -16496.90 | -15447.89 | -16568.46 |
| 52 | -15965.55 | -15546.16 | -15601.67 | -15648.84 |
| 53 | -16792.78 | -16000.79 | -15991.88 | -16039.02 |
| 54 | -16025.19 | -15490.70 | -15521.14 | -15571.67 |
| 55 | -15932.23 | -15563.15 | -15261.56 | -15676.94 |
| 56 | -17122.53 | -16389.34 | -15856.04 | -16443.62 |
| 57 | -16885.53 | -15987.23 | -15443.84 | -16004.46 |
| 58 | -14596.59 | -14350.49 | -14417.46 | -14473.93 |
| 59 | -15417.53 | -15090.94 | -15160.41 | -15210.28 |
| 60 | -17627.01 | -16437.07 | -16356.82 | -16401.16 |
| 61 | -16607.04 | -15918.83 | -15931.94 | -15974.20 |
| 62 | -16742.23 | -16182.70 | -15639.50 | -16267.47 |
| 63 | -17569.21 | -16698.25 | -15534.04 | -16729.00 |
| 64 | -16222.61 | -15450.15 | -15432.11 | -15484.39 |
| 65 | -16153.96 | -15616.11 | -15650.56 | -15697.05 |
| 66 | -17453.37 | -16352.57 | -14429.59 | -16334.55 |
| 67 | -15484.57 | -15108.14 | -15164.13 | -15217.28 |
| 68 | -19057.51 | -17586.91 | -16363.88 | -17514.42 |
| 69 | -16455.24 | -15833.71 | -15856.68 | -15903.48 |
| 70 | -16693.92 | -16019.42 | -16033.21 | -16078.51 |
| 71 | -15709.76 | -15354.35 | -15421.28 | -15467.62 |
| 72 | -16447.14 | -15983.68 | -15442.27 | -16084.35 |
| 73 | -17056.85 | -16419.23 | -15659.19 | -16491.15 |
| 74 | -16443.96 | -15640.94 | -15166.75 | -15674.36 |
| L  |           |           |           |           |

| All | -1635547.74 | -1573969.98 | -1547780.20 | -1580792.28 |
|-----|-------------|-------------|-------------|-------------|
| 100 | -15781.10   | -15333.51   | -15382.82   | -15429.04   |
| 99  | -17962.15   | -17010.55   | -15868.82   | -17029.23   |
| 98  | -15647.20   | -15262.73   | -15322.21   | -15368.62   |
| 97  | -15632.19   | -15283.31   | -15044.56   | -15397.42   |
| 96  | -16325.64   | -15859.07   | -15615.63   | -15957.36   |
| 95  | -15968.00   | -15474.80   | -15516.53   | -15562.93   |
| 94  | -16722.38   | -15968.03   | -15966.79   | -16011.73   |
| 93  | -16100.96   | -15563.79   | -15600.07   | -15644.96   |
| 92  | -16905.36   | -15906.45   | -15371.48   | -15903.24   |
| 91  | -15942.99   | -15500.27   | -15550.89   | -15598.87   |
| 90  | -15484.16   | -15006.34   | -14901.45   | -15091.91   |
| 89  | -16221.12   | -15834.91   | -14728.34   | -15948.55   |
| 88  | -16369.54   | -15616.78   | -15604.94   | -15657.19   |
| 87  | -17783.64   | -16153.98   | -15827.53   | -16033.93   |
| 86  | -16331.13   | -15769.39   | -15566.77   | -15848.11   |
| 85  | -15802.14   | -15326.93   | -15369.25   | -15417.18   |
| 84  | -18665.89   | -17386.10   | -16197.68   | -17345.59   |
| 83  | -15156.23   | -14830.55   | -14892.60   | -14944.58   |
| 82  | -15020.88   | -14666.04   | -14719.16   | -14770.93   |
| 81  | -17874.99   | -17016.21   | -15632.72   | -17052.29   |
| 80  | -16754.19   | -16172.70   | -15425.81   | -16252.19   |
| 79  | -16671.76   | -15852.99   | -15837.19   | -15883.48   |
| 78  | -16596.72   | -16134.33   | -15857.74   | -16237.48   |
| 77  | -16159.92   | -15543.90   | -15562.98   | -15608.18   |
| 76  | -18129.36   | -17015.51   | -16038.15   | -17002.78   |
| 75  | -17420.60   | -16429.01   | -16290.19   | -16433.93   |

- (1a) TI: Thermodynamic integration: log(Prob(D|Model)): Good approximation with many temperatures (1b) BTI: Bezier-approximated Thermodynamic integration: when using few temperatures USE THIS!
- (2) SS: Steppingstone Sampling (Xie et al 2011)
- (3) HS: Harmonic mean approximation: Overestimates the marginal likelihood, poor variance [Scaling factor = 55.874206]

#### Citation suggestions:

Beerli P. and M. Palczewski, 2010. Unified framework to evaluate panmixia and migration direction among multiple sampling locations, Genetics, 185: 313-326.

Palczewski M. and P. Beerli, 2014. Population model comparison using multi-locus datasets.

In M.-H. Chen, L. Kuo, and P. O. Lewis, editors, Bayesian Phylogenetics: Methods, Algorithms, and Applications, pages 187-200. CRC Press, 2014.

Xie W., P. O. Lewis, Y. Fan, L. Kuo, and M.-H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology, 60(2):150â 160, 2011.

## Acceptance ratios for all parameters and the genealogies

| Parameter   | Accepted changes | Ratio   |  |
|-------------|------------------|---------|--|
| $\Theta_1$  | 3725509/4001979  | 0.93092 |  |
| Genealogies | 717418/15998021  | 0.04484 |  |

## MCMC-Autocorrelation and Effective MCMC Sample Size

| Parameter              | Autocorrelation    | Effective Sampe Size    |
|------------------------|--------------------|-------------------------|
| $\Theta_1$ Genealogies | 0.94520<br>0.55280 | 354779.26<br>3612108.01 |

## Average temperatures during the run

#### 

Adaptive heating often fails, if the average temperatures are very close together try to rerun using static heating! If you want to compare models using marginal likelihoods then you MUST use static heating

4

0.00000

#### Potential Problems

This section reports potential problems with your run, but such reporting is often not very accurate. Whith many parameters in a multilocus analysi s, it is very common that some parameters for some loci will not be very informative, triggering suggestions (for example to increase the prior ran ge) that are not sensible. This suggestion tool will improve with time, therefore do not blindly follow its suggestions. If some parameters are fla

| gged, inspect the tables carefully and judge wether an action is required. For example, if you run a Bayesian inference with sequence data, for mac roscopic species there is rarely the need to increase the prior for Theta |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| beyond 0.1; but if you use microsatellites it is rather common that your prior distribution for Theta should have                                                                                                             |
| a range from 0.0 to 100 or more. With many populations (>3) it is also very common that some migration rou                                                                                                                    |
| tes are estimated poorly because the data contains little or no information for that route. Increasing the range will                                                                                                         |
| not help in such situations, reducing number of parameters may help in such situations.                                                                                                                                       |
|                                                                                                                                                                                                                               |
| No warning was recorded during the run                                                                                                                                                                                        |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                               |