

Extended Application Protocol (EAP) DICE

Date: September 10, 2007

Document History

Version	Date	Name	Comment
0.0.1.0	December 1, 2006	M Lave	Document started
0.0.7.0	February 19, 2007	M Lave	First external release
0.0.8.0	February 22, 2007	M Lave	Minor updates to capability and stand alone section.
0.0.9.0	May 30, 2007	M Lave	Added application specific space
0.1.0.0	June 25, 2007	M Lave	Added cap bits to specify if various sections are stored to flash.
0.1.0.1	July 25, 2007	M Lave	Fixed RO/RW typo in New Stream Config section and Current Config section
0.1.0.2	Sep. 10,2007	M Lave	Some more RO/RW corrections. Changed name to "Extended Application Protocol"

Table of Contents

1	Intro	oduction	3
2	Fea	itures	3
3		mmunication model	
	3.1	EXT CTRL PRIVATE SPACE	4
	3.2	CAPABILITY SPACE	
	3.3	COMMAND SPACE	
	3.4	MIXER SPACE	7
	3.5	PEAK SPACE	8
	3.6	NEW ROUTER SPACE	8
	3.7	NEW STREAM CFG SPACE	
	3.8	CURRENT CFG SPACE	9
	3.9	STAND ALONE CFG SPACE	10
	3.10	APPLICATION SPACE	12
4	DIC	F Async, Capabilities	12

1 Introduction

This specification specifies the Extended DICE Control protocol. This protocol in an optional addition to the DICE Driver Protocol and enables host applications to gain access to dynamic stream configuration and mixer, peak and router functionality for the chips supporting this feature.

This specification works with version 1.0.7.0 of the DICE Driver Specification with the exception of the addition of a new notification directing the driver to resynchronize the stream configuration.

2 Features

- Dynamic configuration of streams enabling control panels to provide a bandwidth configuration page.
- Direct access to routing tables enabling dynamic routing changes.
- Access to Peak information for any routed channel (DICE JR/Mini)
- Access to Mixer coefficients (DICE JR/Mini)
- Optional flash storage/retrieval of configuration parameters for each of the three major rate modes.
- Support for 'stand alone' mode configuration.

3 Communication model

The communication model is based on a private memory space. This memory space contains locations to read peaks, set mixer coefficients, change routing etc.

As devices can support all or parts of the protocol and functionality could expand with future chips and information and capability area is specified indicating the feature set of an actual device.

The private space used for the Extended Control Interface is split into sections. The offset to those sections are defined in the beginning of the space. This would allow for future extensions without jeopardizing backward compatibility. The following sections are defined in the EXT_CTRL_PRIVATE SPACE:

```
EXT_CTRL_SPC_CAPABILITY
EXT_CTRL_SPC_CMD
EXT_CTRL_SPC_MIXER
EXT_CTRL_SPC_PEAK
EXT_CTRL_SPC_NEW_ROUTING
EXT_CTRL_SPC_NEW_STREAM_CFG
EXT_CTRL_SPC_CURR_CFG
EXT_CTRL_SPC_STAND_ALONE_CFG
EXT_CTRL_SPC_APP
```


3.1 EXT_CTRL_PRIVATE_SPACE

Address	Parameter name	Size	Att
FFFF E020 0000 ₁₆	EXT_CTRL_SPC_CAPABILITY_OFS	32bit	RO
FFFF E020 0004 ₁₆	EXT_CTRL_SPC_CAPABILITY_SZ	32bit	RO
FFFF E020 0008 ₁₆	EXT_CTRL_SPC_CMD_OFS	32bit	RO
FFFF E020 000C ₁₆	EXT_CTRL_SPC_CMD_SZ	32bit	RO
FFFF E020 0010 ₁₆	EXT_CTRL_SPC_MIXER_OFS	32bit	RO
FFFF E020 0014 ₁₆	EXT_CTRL_SPC_MIXER_SZ	32bit	RO
FFFF E020 0018 ₁₆	EXT_CTRL_SPC_PEAK_OFS	32bit	RO
FFFF E020 001C ₁₆	EXT_CTRL_SPC_PEAK_SZ	32bit	RO
FFFF E020 0020 ₁₆	EXT_CTRL_SPC_NEW_ROUTING_OFS	32bit	RO
FFFF E020 0024 ₁₆	EXT_CTRL_SPC_NEW_ROUTING_SZ	32bit	RO
FFFF E020 0028 ₁₆	EXT_CTRL_SPC_NEW_STREAM_CFG_OFS	32bit	RO
FFFF E020 002C ₁₆	EXT_CTRL_SPC_NEW_STREAM_CFG_SZ	32bit	RO
FFFF E020 0030 ₁₆	EXT_CTRL_SPC_CURR_CFG_OFS	32bit	RO
FFFF E020 0034 ₁₆	EXT_CTRL_SPC_CURR_CFG_SZ	32bit	RO
FFFF E020 0038 ₁₆	EXT_CTRL_SPC_STAND_ALONE_CFG_OFS	32bit	RO
FFFF E020 003C ₁₆	EXT_CTRL_SPC_STAND_ALONE_CFG_SZ	32bit	RO
FFFF E020 0040 ₁₆	EXT_CTRL_SPC_APP_OFS	32bit	RO
FFFF E020 0044 ₁₆	EXT_CTRL_SPC_APP_SZ	32bit	RO
FFFF E020 0048 ₁₆	0x0000 0000	32bit	RO

This structure is read only and is used to specify the offset of the various configuration blocks. All values are 32 bit unsigned. The offsets are in quadlets from the start of this structure and the sizes are in number of quadlets.

3.2 CAPABILITY SPACE

The capability space enables the creation of generic control panel applications and/or generic drivers supporting the enhanced application functionality.

Offset	Parameter	Size	Attribute	Function
00 ₁₆	ROUTER_CAPS	32bit	RO	Indicates router
				capabilities
04 ₁₆	MIXER_CAPS	32bit	RO	Indicates mixer
				capabilities
08 ₁₆	GENERAL_CAPS	32bit	RO	Indicates general
				capabilities.
0C ₁₆	RESERVED	32bit	RO	Reserved for future
				capability bits.
				Currently read as zero.

ROUTER_CAPS bit definitions

Bit	Name	Meaning	
0	ROUTER_EXPOSED	If clear no router is exposed.	
1	ROUTER_RO	If set router is read only and can not be configured	
		through this interface.	
2	ROUTER_FLS	Determines if router is stored to flash	
1631	MAX_ROUTES	This number is one less than the max number of	
		router entries. A value of 0xff indicates 256 routes.	

MIXER_CAPS bit definitions

Bit	Name	Meaning	
0	MIXER_EXPOSED	If clear no mixer is exposed	
1	MIXER_RO	Mixer coefficients are read only	
2	MIXER_FLS	Determines if mixer is stored to flash	
47	MIXER_IN_DEV	Routing input device ID for first 16 channels, if	
		mixer has more than 16 input channels the	
		consecutive ID's are expected.	
811	MIXER_OUT_DEV	Routing output device ID for first 16 channels, if	
		mixer has more than 16 output channels the	
		consecutive ID's are expected.	
1623	MIXER_INPUTS	Number of mixer input channels.	
2431	MIXER_OUTPUTS	Number of mixer output channels.	

GENERAL CAPS bit definitions

Bit	Name	Meaning	
0	STRM_CFG_EN	Dynamic stream configuration is enabled.	
1	FLASH_EN	Flash store and load supported.	
2	PEAK_EN	Peak enabled	
47	MAX_TX_STREAMS	The maximum number of transmit streams which are supported by this device.	
811	MAX_RX_STREAMS	The maximum number of receive streams which are supported by this device.	
12	STRM_CFG_FLS	Determines if the stream config is stored to flash	
1623	Chip	ID of the chip used for the implementation: 0: DICE II (including router bug) 1: TCD2210 (DICE Mini) 2: TCD2220 (DICE JR) 3-255: Reserved	

The capability section will be expanded in the future with ASCII descriptions of physical IO on the device enabling generic control panels to create drop down lists for routing entries and mixer channels.

3.3 COMMAND SPACE

Offset	Parameter	Size	Attribute	Function
00 ₁₆	OPCODE	32bit	RW	Writing op-code with execute bit set initiates execution.
04 ₁₆	RET_VAL	32bit	RO	Return value from previous operation. A value of zero indicates successful execution.

Definition of OPCODE bitfield

Bit	Name	Meaning
015	OPCODE_ID	The op-code identifier, see table below for a complete list of op-codes.
16	LD_LOW	Some commands perform operations relating to the rate mode. This bit indicates that the op-code should be performed on the LOW rate mode configuration.
17	LD_MID	Some commands perform operations relating to the rate mode. This bit indicates that the op-code should be performed on the MID rate mode configuration.
18	LD_HIGH	Some commands perform operations relating to the rate mode. This bit indicates that the op-code should be performed on the HIGH rate mode configuration.
19-30	Reserved	Should always be zero
31	EXECUTE	The host writes an op-code with this bit set. This will initiate execution and the bit will be cleared by the device when execution is completed.

Definition of OPCODE IS's

Val	Name	Meaning	
0000 ₁₆	NO_OP	Does nothing except for clearing the execute flag	
		and indicate success.	
0001 ₁₆	LD_ROUTER	Loads the router configuration written into the	
		NEW_ROUTING space.	
		The new routing will be loaded into the setting	
		space for LOW/MID/HIGH depending on the	
		corresponding op-code bits.	
		If the space for the current rate mode is loaded this	
		will have immediate effect on the routing otherwise	
		it will have effect when the rate mode is changed.	

Val	Name	Meaning
0002 ₁₆	LD_STRM_CFG	Loads the stream configuration written into the NEW_STREAM_CFG space. The new stream configuration will be loaded into the setting space for LOW/MID/HIGH depending on the corresponding op-code bits. If the space for the current rate mode is loaded this will have immediate effect on the DiceDriver information structure and a notification will be sent to the driver. The actual streaming however will not change until the driver disables streaming, reallocates isoc channels and bandwidth and restarts the streaming.
0003 ₁₆	LD_RTR_STRM_CFG	Equivalent to executing both of the above commands one after each other.
0004 ₁₆	LD_FLASH_CFG	Overwrite the current configuration with the last stored in flash. If the stored Flash setting is missing or damaged the factory default setting will be loaded. This is equivalent to what will happen at device boot time.
0005 ₁₆	ST_FLASH_CFG	Store current setting in Flash.

3.4 MIXER SPACE

The example below is for a 18x16 mixer as featured on TCD22xx

Offset	Parameter	Size	Attribute	Function
000 ₁₆	SAT_BITS	32bit	RO	Saturation bit for each of the 16
				output channels. Bit 0
				corresponds to channel 0 and so
				forth.
004 ₁₆	Coeff _{0,0}	32bit	RW	Coefficient for mixer input 0 to
				mixer output 0.
008 ₁₆	Coeff _{1,0}	32bit	RW	Coefficient for mixer input 1 to
				mixer output 0.
048 ₁₆	Coeff _{17,0}	32bit	RW	Coefficient for mixer input 17 to
				mixer output 0.
04C ₁₆	Coeff _{0,1}	32bit	RW	Coefficient for mixer input 0 to
				mixer output 1.
630 ₁₆	Coeff _{17,15}	32bit	RW	Coefficient for mixer input 17 to
				mixer output 15.

The format of the coefficients is 16 bits unsigned placed in the 16 LSB of the 32bit entry. The coefficient is unsigned fix-point 2:14 meaning that the decimal point is between bit 13 and 14 giving a maximum gain of 4 (~12dB).

3.5 PEAK SPACE

The example below is for a 128 entry router as featured on TCD22xx. The peak detectors in the TCAT chips are part of the router. This result in each router entry having a 12 bit peak value. The interface returns the routing entry and the peak value to make it simpler to identify which channel the peak value belongs to.

Offset	Parameter	Size	Attribute	Function
000 ₁₆	PEAK ₀	32bit	RO	Lower 16 bits contains the
004 ₁₆	PEAK ₁	32bit	RO	routing entry, bits 1627
				contains the 12 bit max absolute
4BC ₁₆	PEAK ₁₂₇	32bit	RO	audio value since last read.

3.6 NEW ROUTER SPACE

The example below is for a 128 entry router as featured on TCD22xx.

Offset	Parameter	Size	Attribute	Function
00 ₁₆	ROUTES	32bit	RW	Number of active
				routes in table.
04 ₁₆	route ₀	32bit	RW	The 16 LSB contains a
08 ₁₆	route ₁	32bit	RW	router word. For the
				format of router entries
04 ₁₆ + n	route _n	32bit	RW	please refer to the
				TCD22xx User's Guide

3.7 NEW STREAM CFG SPACE

Offset	Parameter	Size	Attribute	Function
00 ₁₆	NB_TX	32bit	RW	Number of Isoc
				Transmitters.
04 ₁₆	NB_RX	32bit	RW	Number of Isoc
				Receivers.
08 ₁₆	TX0_NB_AUDIO	32bit	RW	number of audio
				channels
0C ₁₆	TX0_MIDI	32bit	RW	Number of MIDI
				channels (0-8)

Offset	Parameter	Size	Attribute	Function
10 ₁₆	TX0_NAMES	64 x 32bit	RW	Name string separated by '\', terminated with '\\'
110 ₁₆	TX0_AC3	32 bit	RW	A 1 in the bit field indicates that the corresponding channel pair is AC3 capable
114 ₁₆	TX1_NB_AUDIO	32bit	RW	number of audio channels
118 ₁₆	TX1_MIDI	32bit	RW	Number of MIDI channels (0-8)
11C ₁₆	TX1_NAMES	64 x 32bit	RW	Name string separated by '\', terminated with '\\'
21C ₁₆	TX1_AC3	32 bit	RW	A 1 in the bit field indicates that the corresponding channel pair is AC3 capable
08 ₁₆ + NB_TX * 43 ₁₆	RX1_NB_AUDIO	32bit	RW	number of audio channels
0C ₁₆ + NB_TX * 43 ₁₆	RX1_MIDI	32bit	RW	Number of MIDI channels (0-8)
10 ₁₆ + NB_TX * 43 ₁₆	RX1_NAMES	32bit	RW	Name string separated by '\', terminated with '\\'
14 ₁₆ + NB_TX * 43 ₁₆	RX1_AC3	32bit	RW	A 1 in the bit field indicates that the corresponding channel pair is AC3 capable
		••	••	••

3.8 CURRENT CFG SPACE

Offset	Parameter	Size	Attribute	Function
0000 ₁₆	LOW_ROUTER	32bit	RO	Current routing for low rate mode. The format of this section is identical to the New Router Space above.
1000 ₁₆	LOW_STRM_CFG	32bit	RO	Current stream configuration for low rate mode. The format of this section is identical to the New Stream Cfg Space above.

Offset	Parameter	Size	Attribute	Function
2000 ₁₆	MID_ROUTER	32bit	RO	Current routing for mid rate mode. The format of this section is identical to the New Router Space above.
3000 ₁₆	MID_STRM_CFG	32bit	RO	Current stream configuration for mid rate mode. The format of this section is identical to the New Stream Cfg Space above.
4000 ₁₆	HIGH_ROUTER	32bit	RO	Current routing for high rate mode. The format of this section is identical to the New Router Space above.
5000 ₁₆	HIGH_STRM_CFG	32bit	RO	Current stream configuration for high rate mode. The format of this section is identical to the New Stream Cfg Space above.

3.9 STAND ALONE CFG SPACE

When the device is in stand alone mode there would typically not be any UI to rely on. For simple analog to analog connections this would be trivial, but with several digital interfaces involved more parameters are required.

A device in stand alone mode would use the routing and mixer setting stored in Flash.

Depending on how the device is clocked some extra parameters are needed. Each of the clock options are described below:

Source	Description	Extra settings	Extra settings
AES1	Specific	The device can	AES_HIGH_RATE
AES2	AES	automatically detect	On
AES3	Receiver	rates from 32kHz to	Off
AES4		96kHz. A setting need	
AES_ANY	Auto-detect on any AES receiver	to identify that the device is in HIGH mode.	
ADAT	Clock from ADAT	ADAT uses the same carrier for all three	ADAT_MODE Normal
	Receiver	ratemodes. An extra variable is needed to	SMUX 2 SMUX 4

Source	Description	Extra settings	Extra settings
		select Normal, SMUX2 or SMUX 4 or auto- detect using user bits.	Auto
WC	Clock from WC BNC	If used for straight WC only no extra settings are required. In case of base-rate sync or Video sync a fractional number is needed.	WC_MUL 1-9999 WC_DIV 1-9999
Internal	Internally generated clock	An extra variable indicating the actual clock is needed.	INT_RATE 32 kHz 44.1 kHz 48 kHz 88.2 kHz 96 kHz 176.4 kHz

Offset	Parameter	Size	Attribute	Function
00 ₁₆	CLK_SRC	32bit	RW	Clock source used for stand alone mode. This field follows the DiceDriver clock source field.
04 ₁₆	AES_EXT	32bit	RW	Bit 0 indicates high rate mode. All other bits reserved for future use.
08 ₁₆	ADAT_EXT	32bit	RW	Bit 01 indicates mode. 00: Normal 01: SMUX II 10: SMUX Iv 11: Auto All other bits are reserved for future use.
0C ₁₆	WC_EXT	32bit	RW	See below for bit definitions.
10 ₁₆	INT_EXT	32bit	RW	When internal mode is selected this field indicates actual rate. This field follows the DiceDriver nominal rate definition.

Offset	Parameter	Size	Attribute	Function
14 ₁₆ -3F ₁₆	Reserved	11x32bit	RO	Reserved for future
				options.

Definition of WC EXT bitfield

Bit	Name	Meaning
01	MODE	The WC mode:
		00: Normal WC
		01: LOW 44.1k-48k use div/mul
		10: MID 88.2k-96k use div/mul
		11: HIGH 176.4k-192k use div/mul
415	WC_MUL	Numerator used to multiply the incoming clock to
		obtain the base rate.
1631	WC_DIV	Denominator used to divide the incoming clock to
		obtain base rate.

The formula for the relation between the sample rate fs and the incoming clock is as follows:

 $F_s = F_{wc}^*(WC_MUL+1)/(WC_MUL+1)$

As an example: NTSC, 48k (based on 29.97) WC_MUL = 8008-1 WC_DIV = 5-1

And check:

 $F_s = F_{wc}*8008/5 = 29.97*8008/5 = 48k$

3.10 APPLICATION SPACE

This space can be used for device specific control such as analog gains etc. It is entirely up to the manufacturer to define the content of this space. The firmware will be notified by changes and if Flash is enabled it will be stored with the other settings.

4 DICE Async. Capabilities

The DICE chips are able to handle payloads of 512 bytes (128 quadlets). Any write request with larger payload will result in multiple write transactions (Both Windows and OSX will split the transactions based on max receive size).

The DICE will not split large read transactions so no reads resulting in a response packet with a payload larger than 512 bytes should be issued.