Lecture 3: GWAS in Samples with Structure & Introduction to the REGENIE Software

Instructors: Joelle Mbatchou and Loic Yengo

Summer Institute in Statistical Genetics 2022

Introduction

- Genetic association studies are widely used for the identification of genes that influence complex traits.
- To date, hundreds of thousands of individuals have been included in genome-wide association studies (GWAS) for the mapping of both dichotomous and quantitative traits.
- Large-scale genomic studies often have high-dimensional data consisting of
 - ► Tens of thousands of individuals
 - Genotypes data on a million (or more!) SNPs for all individuals in the study
 - Many phenotypes of interest such as Height, BMI, HDL cholesterol, blood pressure, diabetes, etc.

Introduction

- ► The vast majority of these studies have been conducted in populations of European ancestry
- Non-European populations have largely been underrepresented in genetic studies, despite often bearing a disproportionately high burden for some diseases.
- Recent genetic studies have investigated more diverse populations.

Confounding due to Ancestry

- ► The observations in association studies can be confounded by population structure
 - Population structure: the presence of subgroups in the population with ancestry differences
- Neglecting or not accounting for ancestry differences among sample individuals can lead to false positive or spurious associations!
- This is a serious concern for all genetic association studies.

Confounding due to Ancestry

In statistics, a **confounding variable** is an extraneous variable in a statistical model that correlates with both the dependent variable and the independent variable.

Confounding due to Ancestry

Ethnic groups (and subgroups) often share distinct dietary habits and other lifestyle characteristics that leads to many traits of interest being correlated with ancestry and/or ethnicity. 40 + 48 + 43 + 43 + 3

Spurious Association

- Association test aims to compare of allele frequency between cases and controls.
- Consider a sample from 2 populations:
 - No differences in allele frequencies between cases/controls within each population
 - Large differences in allele frequencies between populations
 - ▶ Population 2 is overrepresented among cases in the sample.
 ⇒ spurious association between disease and genetic marker

Genomic Control

- Devlin and Roeder (1999) proposed correcting for substructure via a method called "genomic control."
- If there is no population structure, then at unlinked variants the test statistic $T\sim\chi_1^2$.
- If there is population structure, the statistic will deviate from a χ_1^2 distribution by an approximate constant factor $T\sim \lambda\chi_1^2$ which is estimated as

$$\lambda = \frac{\textit{median}(T)}{\textit{median}(\chi_1^2)} = \frac{\textit{median}(T)}{.456}$$

It is then applied to the test statistic values at all markers:

$$\tilde{T}_j = \frac{T_j}{\lambda}$$

Genomic Control

LD Score Regression

- In practice, λ is computed using all variants
- Polygenicity can cause $\lambda > 1$
 - lacktriangle Hard to separate confounding from polygenicity when $\lambda>1$
- ▶ LD score regression separates these by regressing "LD scores" L_j on the test statistics

$$E[T_j] = \frac{Nh_g^2}{M} \cdot L_j + Na + 1$$

Slope → captures polygenicity Intecept → captures confounding

LD Score Regression

Correcting for Population Structure with PCA

- Principal Components Analysis (PCA) is the most widely used approach for identifying and adjusting for ancestry differences among sample individuals
- Consider the genetic relationship matrix $\hat{\Psi}$ discussed in the previous lecture with components $\hat{\psi}_{ij}$ for each pair of individuals as:

$$\hat{\psi}_{ij} = \frac{1}{M} \sum_{l=1}^{M} \frac{(G_{il} - 2\hat{\rho}_l)(X_{jl} - 2\hat{\rho}_l)}{\hat{\rho}_l(1 - \hat{\rho}_l)}$$

where $G_{il} = \{0, 1, 2\}$ is the genotype value and \hat{p}_l is a corresponding allele frequency estimate at marker l

Correcting for Population Structure with PCA

- Price et al. (2006) proposed correcting for structure in genetic association studies by applying PCA to $\hat{\Psi}$.
- ▶ They developed a method called EIGENSTRAT for association testing in structured populations where the top principal components (highest eigenvalues) are used as covariates in a linear regression model to correct for sample structure.

$$Y = \beta_0 + \beta_1 G + \beta_2 P C_1 + \beta_3 P C_2 + \beta_4 P C_3 + \dots + \epsilon$$

 $H_0: \beta_1 = 0 \text{ vs } H_a: \beta_1 \neq 0$

Samples with Population Structure and Relatedness

- Relatedness (family structure or cryptic relatedness) in the sample can lead to spurious association in genetic association studies
- ► The EIGENSTRAT method was developed for unrelated samples with population structure
 - In the presence of relatedness, PCs may not fully capture this finer-scale structure
- Many genetic studies include relatedness & modeling it directly can lead to improvements in statistical power

Association Testing in Samples with Population Structure and Relatedness

Linear mixed models (LMMs) have been demonstrated to be a flexible approach for association testing in structured samples. Consider the following model:

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{G_s}\gamma + \mathbf{g} + \boldsymbol{\epsilon}$$

- Fixed effects:
 - **X** is a $n \times (k+1)$ matrix of covariates that includes an intercept
 - \triangleright β is the (k+1)-length vector of covariate effects
 - $ightharpoonup \gamma$ is the (scalar) association parameter of interest, measuring the effect of genotype on phenotype

Linear Mixed Models for Genetic Association

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{G}_{\mathbf{s}}\gamma + \mathbf{g} + \boldsymbol{\epsilon}$$

- Random effects:
 - **g** is a *n*-length vector of polygenic effects with $\mathbf{g} \sim \mathcal{N}(\mathbf{0}, \sigma_g^2 \mathbf{\Psi})$
 - σ_g^2 represents additive genetic variance and Ψ is a $n \times n$ matrix of pairwise measures of genetic relatedness (e.g. kinship matrix, GRM)
 - g should capture correlation between individuals due to genetic relatedness
 - $ightharpoonup \epsilon$ is a *n*-length vector with $\epsilon \sim N(\mathbf{0}, \sigma_e^2 \mathbf{I})$
 - σ_e^2 represents variance due to non-genetic effects assumed to be acting independently on individuals

LMM methods for Quantitative Traits

models for genome-wide

Ying Lite', Carl M Kadle', Robert I Davidson' & David Heckerman' converty feedble analyses much faster.

Our 1957-15MV almosthen builds on the insiste that the

maximum Bubbood for the netricial national Bubbood 000503-cfan LMH can be rewritten as a function of test a single

association studies

TECHNICAL REPORTS TECHNICAL REPORTS nature genetics genetics Variance component model to account for sample Rapid variance components-based method for structure in genome-wide association studies whole-genome association analysis Hyun Min Kane^{1,2,8}, Jae Hoon Sul^{3,8}, Susan K Service⁴, Noah A Zaitlen⁵, Sit-vee Kone⁴, Nelson B Freimer⁴, Gulnara R Svishcheva¹, Tatiana I Axenovich¹, Nadezhda M Belonogova¹, Cornelia M van Duiin² & Chiara Sabatti⁶ & Eleazar Eskin^{1,5} Yurii S Aulchenko¹ TECHNICAL REPORTS PLOS GENETICS OPEN & ACCESS Freely available online genetics Polygenic Modeling with Bayesian Sparse Linear Mixed Models Xiang Zhou1*, Peter Carbonetto1, Matthew Stephens1,2* 1 Department of Human Genetics University of Chicago, Chicago, Illinois, United States of America, 2 Department of Statistics, University of Chicago, Chicago, Illinois Genome-wide efficient mixed-model analysis for association studies Xiang Zhou1 & Matthew Stephens 1,2 TECHNICAL REPORTS BRIFF COMMUNICATIONS genetics FaST linear mixed Mixed linear model approach adapted for genome-wide

association studies

Zhiwu Zhang¹, Ilhan Brooz¹, Chao-Qiang Lai², Rory J Todhunter³, Hemant K Tiwari⁴, Michael A Gore³, Peter J Bradbury⁶, Jiazming Yu², Donna K Arnett⁴, Jose M Ordovas^{1,5} & Edward S Backles^{1,6}

4 D > 4 D > 4 E > 4 E > E 9 9 9

LMMs: Two Step Procedure

- Many LMM methods use a two-step procedure for GWAS
- Step 1 considers a null model without the tested SNP of interest (i.e. $\gamma=0$)

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{g} + \boldsymbol{\epsilon}$$

- Obtain parameter estimates to get predictions for the polygenic effects g
- Same for all variants tested so only performed once which reduces the computational burden

LMMs: Two Step Procedure

- Many methods differ mainly in Step 1 approach
 - Model used for the additive polygenic random effect term

- Algorithm used to obtain parameter estimates
 - Parameter estimates are obtained using various approaches (e.g. maximum likelihood, restricted maximum likelihood [REML],...)

LMMs: Two Step Procedure

In Step 2, association testing of SNP and phenotype $(H_0: \gamma = 0)$ is performed based on the model including the tested SNP

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{G_s}\gamma + \mathbf{g} + \boldsymbol{\epsilon}$$

- ➤ A score test is performed using the null parameter estimates obtained from Step 1.
- Use Leave-One-Chromosome-Out (LOCO) scheme in Step 1 so polygenic term doesn't capture effects on tested chromosome (i.e. proximal contamination)

$$\mathbf{g} \sim N(\mathbf{0}, \sigma_g^2 \mathbf{\Psi}_{-chr(G_s)})$$

LMMs on biobank scale data

- ▶ Largest biobanks have gathered data on 100,000s of individuals (e.g. UK Biobank at N = 500,000 individuals)
- Many LMM methods involved computationally expensive operations due to the $N \times N$ GRM

Table 1 Computational cost of EMMAX, FaST-LMM, GEMMA, GRAMMAR-Gamma and GCTA

Method	Building GRM	Variance components	Association statistics
EMMAX	O(MN ²)	O(N ³)	O(MN ²)
FaST-LMM ^a	$O(MN^2)$	O(N ³)	$O(MN^2)$
GEMMA	$O(MN^2)$	O(N ³)	$O(MN^2)$
GRAMMAR- Gamma	$O(MN^2)$	O(N ³)	O(MN)
GCTA	$O(MN^2)$	$O(N^3)$	$O(MN^2)$

For each method, we list the computational cost of each step. alf M < N, the computational cost of FaST-LMM can be reduced to $O(M^2N)$.

Yang et al., Nature Genetics 2014

LMMs on biobank scale data

- ▶ Loh et al. (2015) proposed BOLT-LMM which used very efficient algorithms (Variational Bayes) to reduce scaling to ~ O(MN^{1.5}) for Step 1 and could be applied to biobank-scale data
- ▶ Jiang et al. (2019) proposed fastGWA which made use of a sparse GRM leading to further improvements for Step 1 $\sim O(MN)$

LMMs & Whole Genome Regression

▶ LMMs are closely related to whole genome regression

$$Y = W\beta + g + \epsilon$$
 \Leftrightarrow $Y = W\beta + \sum_{l=1}^{M} G_l \theta_l + \epsilon$
 $N(0, \sigma_g^2 \Psi)$ $N(0, \sigma_g^2/M)$
 $\Psi = GG^T/M$
GRM using M variants

LMMs & Whole Genome Regression

▶ LMMs are closely related to whole genome regression

1 parameter M parameters $Y = W\beta + g + \epsilon \qquad \Longleftrightarrow \qquad Y = W\beta + \sum_{l=1}^{M} G_l \theta_l + \epsilon$ $N(0, \sigma_g^2 \Psi) \qquad \qquad N(0, \sigma_g^2/M)$ $\Psi = GG^T/M$ GRM using M variants

▶ Step 1: computationally efficient whole genome regression

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \sum_{l=1}^{M} G_l \theta_l + \epsilon$$

- ightharpoonup M is usually \sim 500,000 SNPs across the genome
- ► REGENIE splits genetic data into blocks and runs local regressions in each block to obtain local genetic scores

Step 1: computationally efficient whole genome regression

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \sum_{l=1}^{M} G_l \theta_l + \epsilon$$

- Divide into two levels of regressions
 - Reads genetic data in blocks and within each block fits ridge regression (penalized linear regression)
 - Fit another round of ridge regression on all the block predictors
- ▶ Polygenic predictions $(\sum_{l=1}^{M} G_l \hat{\theta}_l)$ capture population structre, relatedness as well as polygenicity using LOCO

Step 2: test the association parameter γ under the null hypothesis of H_0 : $\gamma = 0$.

$$\mathbf{Y} = \mathbf{X}eta + G_s\gamma + \sum_{l=1}^M G_l\hat{ heta}_l + \epsilon$$

- Test on millions of genetic variants (array/imputed/exome)
- Also works on binary traits where logistic regression is used instead of linear regression

https://rgcgithub.github.io/regenie/

Summary

- Population structure is an important source of confounding in GWAS
- ▶ Genomic inflation λ_{GC} and LD score regression can be used to detect its presence
- Adding PCs as covariates can control for population stratification but not relatedness
- Mixed models can directly capture genetic relatedness and help improve statistical power as well as avoid inflated type 1 error

References

- Devlin, B. & Roeder, K. Genomic Control for Association Studies. *Biometrics* 55, 997-1004 (1999).
- Bulik-Sullivan, B.K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. *Nature Genetics* 47, 291-295 (2015).
- Price, A.L. et al. Principal components analysis corrects for stratification in genome-wide association studies. *Nature Genetics* 38, 904-909 (2006).
- Yang, J., Zaitlen, N.A., Goddard, M.E., Visscher, P.M. & Price, A.L. Advantages and pitfalls in the application of mixed-model association methods. *Nature Genetics* 46, 100-106 (2014).

References

- Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. *Nature Genetics* 47, 284-290 (2015).
- Jiang, L. et al. A resource-efficient tool for mixed model association analysis of large-scale data. *Nature Genetics* 51, 1749-1755 (2019).
- Zhou, W. et al. Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies. *Nature Genetics* 50, 1335-1341 (2018).
- Mbatchou, J. et al. Computationally efficient whole-genome regression for quantitative and binary traits. *Nature Genetics* 53, 1097-1103 (2021).