

Bharathi R

Department of Computer Science & Engineering

DESIGN AND ANALYSIS OF ALGORITHMS

Unit 4: Greedy Technique *Prim's algorithm*

Bharathi R

Department of Computer Science & Engineering

Minimum Spanning Tree: DEFINITIONs

A *spanning tree* of an undirected connected graph is its connected acyclic subgraph (i.e., a tree) that contains all the vertices of the graph.

Example

Minimum Spanning Tree (MST) of a weighted, connected graph G is a spanning tree of G with minimum total weight.

Prim's Algorithm: Greedy Approach

PES UNIVERSITY ONLINE

- Start with a tree, T_1 , consisting of one vertex (V).
- Adjacent vertices of the vertex in T₁ are "fringe" vertices of T₁.
- For i = 1 to |V|-1 do
 - O Construct T_i from T_{i-1} by adding the fringe vertex with the minimum weight edge from the set. The vertex is removed from the set of fringe vertices.
 - Add the adjacent vertices of the vertex to the set of fringe vertices which are not in T_i.
 - o Remove vertices from the set of fringe vertices where the new vertex is one of the terminal vertex of the edge.
- Return T_n which is a minimum spanning tree.

Prim's Algorithm

Prim's Algorithm

Tree vertices Remaining vertices

Illustration

$$a(-, -)$$
 b(**a**, **3**) $c(-, \infty)$ $d(-, \infty)$ $e(a, 6)$ $f(a, 5)$

b(a, 3)
$$c(b, 1) d(-, \infty) e(a, 6)$$

f(b, 4)

Prim's Algorithm

Remaining vertices Tree vertices c(b, 1)

Illustration

$$f(b, 4)$$
 $d(f, 5) e(f, 2)$

$$e(f, 2)$$
 $d(f, 5)$

Prim's Algorithm

ALGORITHM Prim(G)

```
//Prim's algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph G = \langle V, E \rangle
//Output: E_T, the set of edges composing a minimum spanning tree of G
V_T \leftarrow \{v_0\} //the set of tree vertices can be initialized with any vertex
E_T \leftarrow \emptyset
for i \leftarrow 1 to |V| - 1 do
     find a minimum-weight edge e^* = (v^*, u^*) among all the edges (v, u)
     such that v is in V_T and u is in V - V_T
     V_T \leftarrow V_T \cup \{u^*\}
     E_T \leftarrow E_T \cup \{e^*\}
return E_T
```

Design and Analysis of Algorithms Prim's Algorithm

find a minimum-weight edge $e^* = (v^*, u^*)$ among all the edges (v, u) such that v is in V_T and u is in $V - V_T$

After we have identified a vertex u^* to be added to the tree, we need to perform two operations:

Move u^* from the set $V - V_T$ to the set of tree vertices V_T .

For each remaining vertex u in $V - V_T$ that is connected to u^* by a shorter edge than the u's current distance label, update its labels by u^* and the weight of the edge between u^* and u, respectively.

Design and Analysis of Algorithms How efficient is Prim's Algorithm

PES UNIVERSITY ONLINE

- The answer depends on the data structures chosen for the graph itself and for the priority queue of the set $V V_T$ whose vertex priorities are the distances to the nearest tree vertices.
- If a graph is represented by its weight matrix and the priority queue is implemented as an unordered array, the algorithm's running time will be in $\Theta(|V|^2)$
- If a graph is represented by its adjacency lists and the priority queue is implemented as a min-heap, the running time of the algorithm is in $O(|E| \log |V|)$.

Prim's algorithm is very similar to Kruskal's: whereas Kruskal's "grows" a forest of trees, Prim's algorithm grows a single tree until it becomes the minimum spanning tree.

Both algorithms use the greedy approach - they add the cheapest edge that will not cause a cycle. But rather than choosing the cheapest edge that will connect *any* pair of trees together, Prim's algorithm only adds edges that join nodes to the existing tree.

(In this respect, Prim's algorithm is very similar to <u>Dijkstra's</u> <u>algorithm</u> for finding shortest paths.)

Text Books

Chapter 9, Introduction to The Design and Analysis of Algorithms by Anany Levitin

THANK YOU

Bharathi R

Department of Computer Science & Engineering

rbharathi@pes.edu