

Personalized Predictions of Patient Physiologies Associated with Successful Extubation

Chloe Ling, Laura Pruitt, Cameron Carlin, David Ledbetter, Melissa Aczon, Randall Wetzel

This work was funded by the Laura P. and Leland K. Whittier Foundation

Quantify the physiologic state of successfully extubated children

 Develop a machine learning model that can predict patient-specific physiological values associated with successful extubation

Data Sources and Cohort Selection

Quantifying the physiologic state of successful extubations

Time

Successful Extubation Heart Rates

Recurrent Neural Network Model

- Input is a sequence of measurements (vitals, labs, drugs, interventions) of a single patient
- Output is prediction of that patient's physiologically acceptable state for successful extubation
 - heart rate
 - systolic blood pressure
 - diastolic blood pressure
 - respiratory rate
 - serum bicarbonate
- Output is generated each time there is a measurement

Systolic Blood Pressure (mmHg)

Notes:

- $_{\rightarrow}$ Increased performance with additional observation window
- → Moderate performance increase compared to age-normal baselines across physiologies tested

Time when prediction was made (hours)

Model	Heart Rate MAE (bpm)	Systolic Blood Pressure MAE (mmHg)	Diastolic Blood Pressure MAE (mmHg)	Respiratory Rate MAE (bpm)	Serum Bicarbonate MAE (mg/dL)
Age-Normal	20.0	11.0	10.7	7.1	3.8
Age-Regression	16.7	10.3	8.6	5.3	3.8
RNN (12th hr)	16.0	9.3	9.3	5.0	3.2

The RNN model:

- Can more accurately predict patient-specific physiologic states than a polynomial age-regression model
- Has significant improvement over the models generated from published age-normalized values