A Álgebra Matricial e as Transformações Lineares

• Sejam V e W espaços lineares sobre um corpo Ω , em que dimV = n e dimW = m; admita-se que $S_V = \{v_1, v_2, ..., v_n\}$ é uma base ordenada para V e $S_W = \{w_1, w_2, ..., w_m\}$ é uma base ordenada para W.

Teorema [3.22]: Considere as transformações lineares $T: V \to W$ e $S: V \to W$. Sendo $T_{S_V,S_W} = m(T)_{S_V,S_W} \in M_{(m,n)}(\Omega)$ e $T_{S_V,S_W} = m(S)_{S_V,S_W} \in M_{(m,n)}(\Omega)$, respectivamente, as *representações matriciais* de T e S em relação às bases ordenadas S_V e S_W , então:

i) Para a transformação linear $S+T:V\to W$ verifica-se

$$m(S+T)_{S_V,S_W} = m(S)_{S_V,S_W} + m(T)_{S_V,S_W} \in M_{(m,n)}(\Omega)$$

ii) Para a transformação linear $\alpha T: V \rightarrow W$, com $\alpha \in \Omega$, verifica-se

$$m(\alpha T)_{\mathsf{S}_{\mathsf{V}},\mathsf{S}_{\mathsf{W}}} = \alpha m(T)_{\mathsf{S}_{\mathsf{V}},\mathsf{S}_{\mathsf{W}}} \in \mathsf{M}_{(m,n)}(\Omega)$$

J.A.T.B. NAL-3.46

• Seja U um espaço linear sobre um corpo Ω , em que dimU = p, e admita-se que $S_U = \{u_1, u_2, ..., u_p\}$ é uma base ordenada para U.

Teorema [3.23]: Sejam as transformações lineares $T:V\to W$ e $R:W\to U$. Sendo $T_{S_V,S_W}=m(T)_{S_V,S_W}\in M_{(m,n)}(\Omega)$ a representação matricial de T em relação às bases ordenadas S_V e S_W e $R_{S_W,S_U}=m(R)_{S_W,S_U}\in M_{(p,m)}(\Omega)$ a representação matricial de R em relação às bases ordenadas S_W e S_U , então a matriz que representa a transformação linear $RT:V\to U$ em relação às bases ordenadas S_V e S_U é dada por

$$m(RT)_{S_V,S_U} = m(R)_{S_W,S_U} m(T)_{S_V,S_W} \in M_{(p,n)}(\Omega)$$

- Convém notar o seguinte:
 - i) A matriz de $RT: V \to U$ só poderá ser obtida a partir do produto matricial m(RT) = m(R) m(T) se a base ordenada para o conjunto de chegada (W) associada a m(T) for igual à base ordenada para o domínio (W) associada a m(R);
 - ii) A base ordenada para o domínio (V) associada a m(RT) é igual à base ordenada para o domínio (V) associada a m(T);
 - iii) A base ordenada para o conjunto de chegada (U) associada a m(RT) é igual à base ordenada para o conjunto de chegada (U) associada a m(R).

J.A.T.B. NAL-3.47

Teorema [3.24]: Considere a transformação linear $T: V \rightarrow W$, em que $\dim V = \dim W = n$, que possui a matriz

$$m(T)_{S_V,S_W} \in M_{(n)}(\Omega)$$

como representação matricial em relação às bases ordenadas S_V e S_W para os espaços lineares V e W, respectivamente. Então T é invertível, se e só se a matriz $m(T)_{S_V,S_W}$ é não singular. Além disso, tem-se

$$m(T^{-1})_{S_{W},S_{V}} = (m(T)_{S_{V},S_{W}})^{-1} \in M_{(n)}(\Omega)$$

Teorema [3.25]: Seja a transformação linear $T: V \rightarrow W$, em que $\dim V = n$ e $\dim W = m$, e admita-se que

$$m(T)_{S_V,S_W} \in M_{(m,n)}(\Omega)$$

é a sua representação matricial em relação às bases ordenadas S_V e S_W para os espaços lineares V e W, respectivamente. Então, verifica-se

$$r \lceil m(T)_{S_V,S_W} \rceil = \dim T(V)$$

isto é, a característica da matriz $m(T)_{S_V,S_W}$ é igual à dimensão do contradomínio (ordem) de T.

J.A.T.B. NAL-3.48