Praca zdalna

XVI OIJ, zawody II stopnia, zawody próbne

11 marca 2022

Kod zadania: pra

Limit czasu: 0.5 s (C++) / 6.5 s (Python)

Limit pamięci: 256 MB

Bajtazar z racji pandemii pracuje zdalnie. Ponieważ wszyscy jego współpracownicy pracują ze swoich rodzinnych krajów z różnymi strefami czasowymi, coraz trudniej jest ustalić wspólny termin comiesięcznego spotkania. Spotkanie to powinno rozpocząć się o pełnej godzinie i trwać dokładnie godzinę.

Każdy pracownik ma kalendarz, w którym jest zaznaczony przedział czasu, w którym może wziąć udział w spotkaniu: i-ty pracownik zaczyna pracę o godzinie A_i , a kończy pracę **po** godzinie B_i . Oznacza to, że pracownik i może wziąć udział w spotkaniu o dowolnej godzinie od A_i do B_i (włącznie).

Każdy z pracowników jest także gotowy zostać po godzinach albo zacząć wcześniej niż to co zadeklarował. Nikt nie zrobi jednak tego za darmo: za każdą godzinę spędzoną dłużej w pracy należy zapłacić pracownikowi bajtodolara.

Wyznacz termin, w którym można zorganizować spotkanie tak, żeby każdy z pracowników (być może za dodatkową opłatą) mógł w nim uczestniczyć, a opłata za nadgodziny była jak najmniejsza.

Wejście

W pierwszym wierszu wejścia znajduje się jedna liczba naturalna N ($1 \le N \le 100\,000$) oznaczające liczbę pracowników. Następnie w N wierszach znajdują się dwie liczby całkowite A_i oraz B_i ($0 \le A_i \le B_i \le 10^9$) oznaczające okienko pracy i-tego pracownika, przy czym A_i to godzina rozpoczęcia pracy, natomiast B_i to godzina po której opuści on pracę.

Wyjście

Na standardowe wyjście należy wypisać dwie liczby w pojedynczym wierszu – liczbę T oznaczającą moment rozpoczęcia spotkania oraz liczbę K oznaczającą sumaryczną opłatę za nadgodziny.

Jeśli istnieje wiele możliwych rozwiązań, Twój program może wypisać dowolne z nich.

Ocenianie

Jeżeli jedynie jedna z dwóch wypisanych liczb będzie poprawna, otrzymasz za dany test 50% punktów przypisanych dla danego testu. Aby otrzymać te punkty, Twój program musi wypisać dwie liczby całkowite nie większe od 10^{18} oraz musi zmieścić się w limicie czasu i pamięci i zakończyć uruchomienie bez błędu.

Możesz rozwiązać zadanie w kilku prostszych wariantach – niektóre grupy testów spełniają pewne dodatkowe ograniczenia. Poniższa tabela pokazuje, ile punktów otrzyma Twój program, jeśli przejdzie testy z takim ograniczeniem.

Dodatkowe ograniczenia	Liczba punktów
$A_i = B_i$	18
$N \le 1000, A_i, B_i \le 1000$	24
$N \le 1000$	48
$A_i, B_i \le 100000$	76

Przykłady

Wejście dla testu pra0a:

vvejscie dia testu prava.	
3	
1 5	
3 4	
7 8	

Wyjście dla testu pra0a:

4 3

Wyjaśnienie do przykładu: Za 3 bajtodolary ostatni pracownik jest skłonny rozpocząć pracę o godzinie 4, wtedy spotkanie o godzinie 4 pasuje każdemu pracownikowi.

Wejście dla testu pra0b:

2			
1 7			
10 20			
- '			

Wyjście dla testu pra0b:

7 3	
-----	--

Weiście dla testu pra0c:

vvejscie dia testu prauc.	
5	
1 2	
3 3	
4 5	
1 3	
3 5	

Wyjście dla testu pra0c:

3 2	
-----	--

Pozostałe testy przykładowe

- test pra0d: N = 1000, $A_i = B_i = i$ dla i = 1, 2, ..., 1000.