Exercice 1. Les fonctions suivantes sont-elles affines? Si oui, identifier les coefficents m et p.

a)
$$f(x) = 5x - 3$$

b)
$$g(x) = x^2 - 1$$

c)
$$h(x) = 9 - x$$

a)
$$f(x) = 5x - 3$$
 b) $g(x) = x^2 - 1$ c) $h(x) = 9 - x$ d) $t(x) = \frac{7 - 4x}{6}$

Exercice 2. Déterminer le coefficient directeur m et l'ordonnée à l'origine p de chaque fonction affine suivante.

a)
$$f(x) = -2x + 3$$

b)
$$q(x) = x + 4$$

c)
$$h(x) = 7 - 11x$$

d)
$$t(x) = -\frac{1}{2}$$

b)
$$g(x) = x + 4$$

e) $u(x) = 3x$

f)
$$v(x) = \frac{6-x}{3}$$

Tracer les courbes représentatives des fonctions suivantes.

Exercice 4. Soit g la fonction affine définie pour tout $x \in \mathbb{R}$ par g(x) = -7 + 4x. Recopier et compléter le tableau de valeurs ci-dessous avec des valeurs exactes.

x	-9		0		3		$\frac{10}{3}$	
f(x)		-9		0		3		$\frac{10}{3}$

Exercice 5. Soit h la fonction affine définie pour tout $x \in \mathbb{R}$ par $h(x) = -\frac{7}{3}x - 1$. Recopier et compléter le tableau de valeurs ci-dessous avec les valeurs exactes.

x	-3	$-\frac{5}{7}$			
f(x)			0	$\frac{4}{3}$	π

Exercice 6.

Deux fonctions f et g ont été représentées dans le repère (O; I, J) ci-contre.

- 1. Retrouver l'expression algébrique de chacune de ces fonctions.
- 2. Déterminer graphiquement les soltions de $f(x) = g(x) \text{ sur } \mathbb{R}.$
- 3. Déterminer graphiquement les soltions de $f(x) > g(x) \text{ sur } \mathbb{R}.$

Exercice 7.

Deux fonctions f et g ont été représentées dans le repère (O; I, J) cicontre.

- 1. Retrouver l'expression algébrique de chacune de ces fonctions.
- 2. Déterminer graphiquement les soltions de f(x) = g(x) sur \mathbb{R} .
- 3. Déterminer graphiquement les soltions de f(x) > g(x) sur \mathbb{R} .

Exercice 8. Dans chaque cas, déterminer l'expression de la fonction affine f vérifiant les conditions données.

a)
$$f(-2) = 1$$
 et $f(-5) = 4$ b) $f(0) = 0$ et $f(8) = 4$ c) $f(1) = -2$ et $f(3) = 8$

b)
$$f(0) = 0$$
 et $f(8) = 4$

c)
$$f(1) = -2$$
 et $f(3) = 8$

Exercice 9. Déterminer l'expression de f(x) dans les cas suivants.

- 1. La fonction f est affine, f(-3) = 4 et f(2) = 11.
- 2. La fonction f est affine et sa courbe représentative coupe l'axe des ordonnées au point d'ordonnée 7 et l'axe des abscisses au point d'abscisse -3.

Exercice 10. Pour chacune des fonctions affines suivantes, déterminer le sens de variation.

a)
$$f(x) = 5x - 12$$

b)
$$g(x) = 4 - x$$

c)
$$h(x) = 8$$

a)
$$f(x) = 5x - 12$$
 b) $g(x) = 4 - x$ c) $h(x) = 8$ d) $t(x) = -\frac{3}{7}x + 12$

Exercice 11. Soient f, g et h trois fonctions définies sur \mathbb{R} par

$$f(x) = -x + 3,$$
 $g(x) = 2x - 5,$

$$a(x) = 2x - 5.$$

$$h(x) = \frac{1}{2}x - 3.$$

- 1. Représenter les courbes de ces trois fonctions sur un même graphique.
- 2. Donner le sens de variation de ces trois fonctions.
- 3. Dresser le tableau de signe de ces trois fonctions.

Exercice 12. Dresser le tableau de signe des fonctions suivantes.

a)
$$f(x) = -x + 8$$

b)
$$g(x) = 2x - 5$$

c)
$$h(x) = \frac{1}{2}x - 3$$

a)
$$f(x) = -x + 8$$
 b) $g(x) = 2x - 5$ c) $h(x) = \frac{1}{2}x - 3$ d) $t(x) = -\frac{3}{4}x + 2$

Exercice 13. Pendant les mois les plus froids de l'hiver, un lac situé au Nord du cercle polaire Arctique est couvert d'une couche de glace de 2 m d'épaisseur. Lorsque le printemps arrive, l'air chaud fait petit à petit fondre la glace, et l'épaisseur de la couche de glace diminue à une vitesse constante. Au bout de 3 semaines, cette épaisseur n'est plus que de 1,25 m. On note f(x) l'épaisseur (en m) de la couche de glace en fonction du temps x (exprimé en semaine) et on admet que f est une fonction

- 1. (a) D'après l'énoncé, que valent f(0) et f(3)?
 - (b) Déterminer l'expression de f(x).

Dans la suite de l'exercice, on admettra que f(x) = -0.25x + 2. Pour les questions suivantes, on attend que le problème soit posé sous forme d'équation ou inéquation. Procéder par tâtonnement n'est pas accepté.

- 2. On considère qu'un mois dure 4 semaines. Déterminer l'épaisseur de la couche de glace au bout de 1 mois et demi.
- 3. Au bout de combien de semaines la glace aura-t-elle totalement disparue? Expliquer.
- 4. Combien de jours faut-il pour que l'épaisseur de la glace soit inférieure à 90 cm? Expliquer.

Exercice 14. Un étudiant a emprunté 1000 euros à ses parents. Il prévoit de rembourser 85 euros par mois. On note x le nombre de mois écoulés depuis l'emprunt et S(x) la somme restant à rembourser après x mois.

- 1. Donner une expression de S(x).
- 2. Etudier le signe et les variations de la fonction S.
- 3. En déduire au bout de combien de mois l'étudiant aura payé sa dette.

Exercice 15. On souhaite résoudre dans \mathbb{R} l'inéquation $(4x-3)(2x-1) \geq 0$.

- 1. Déterminer, en fonction de x, le signe de 4x-3 puis celui de 2x-1.
- 2. Rassembler les réponses dans un tableau de signes et en déduire la résolution du problème.

Exercice 16. On souhaite résoudre dans \mathbb{R} l'inéquation $\frac{3x-4}{-2x+1} > 0$.

- 1. Déterminer, en fonction de x, le signe de 3x 4 puis celui de -2x + 1.
- 2. Rassembler les réponses dans un tableau de signes et en déduire la résolution du problème.

Exercice 17. Résoudre dans \mathbb{R} les inéquations suivantes.

a)
$$(-2x+1)(6x+5) > 0$$

b)
$$(2-3x)(4x-1) \le 0$$

a)
$$(-2x+1)(6x+5) > 0$$
 b) $(2-3x)(4x-1) \le 0$ c) $\left(\frac{1}{2}x+3\right)\left(\frac{-2}{3}x-\frac{1}{2}\right) < 0$

d)
$$\frac{x+2}{-x+6} < 0$$

e)
$$\frac{3x-4}{2x+3} \ge 0$$

e)
$$\frac{3x-4}{2x+3} \ge 0$$
 f) $\frac{\frac{1}{2}x-7}{8x+\frac{1}{2}} \le 0$

g)
$$\frac{x-4}{x+8} > -1$$

h)
$$\frac{x}{2x-10} \ge 2$$

i)
$$(5x-3)(2x+1) > (2x+1)(x-4)$$

Exercice 18. Une bibliothèque propose deux types de tarifs :

- Formule A : abonnement de 12 euros puis 20 centimes par livre emprunté.
- Formule B : un euro par livre emprunté.

Soit x le nombre de livres empruntés. On note f(x) et g(x) les prix correspondants aux formules A et B.

- 1. Donner l'expression de f(x) et g(x) en fonction de x.
- 2. Sur le graphique ont été représentées des droites.
 - (a) Associer chacune des fonctions f et g à la droite qui la représente.
 - (b) Résoudre l'inéquation $0.2x + 12 \le x$.
 - (c) Quelle formule (entre la A et la B) vous paraît la plus avantageuse?
- 3. (a) Une troisième formule (formule C) est envisagée, on note h(x) le prix correspondant à la formule C. La droite tracée en pointillés est la courbe représentative de cette fonction h. Lire graphiquement l'expression de de h(x).
 - (b) Déterminer graphiquement quelle est la formule la plus avantageuse en fonction du nombre de livres empruntés.

