Cyril Hugounena

All useful documents on Pari-GP can be found at https://pari.math.u-bordeaux.fr/doc.html

1 RSA in practice

- 1. Implement a pair of functions:
 - RSA_OAEP_enc(m,N,e)
 - $RSA_OAEP_dec(c,N,d)$

where n = 768, k = 256 and G and H belong to the SHA2 family. *Note:* the encryption function should check the size of its inputs.

- 2. Implement a pair of functions:
 - $RSA_PSS_sign(m,N,d)$
 - RSA_PSS_verify(m,s,N,e)

where k = 256, H = SHA256 and G = SHA384.

Note: both functions should check the size of their inputs.

2 On the difficulty of solving the discrete logarithm over prime fields

- 1. Use the *ploth* function to display the first 200 values of $g^x \mod p$ for some integer x and a prime p on 768-bit. Note the seemingly random behaviour of the function to get an idea of the difficulty of solving the discrete logarithm.
- 2. Using the *znlog* function, show the empirical difficulty of solving DLP depending on the smoothness of the order of the group. What should be the structure of our prime?

3 El-Gamal and DSS

- 1. Implement a function gen_DLP_parameters(g,p) returning a pair of public/private keys [pub,priv]
- 2. Implement a function $ElGamal_enc(q,p,pub,M)$ returning a ciphertext [K,C]
- 3. Implement a function $ElGamal_dec(g, p, priv, K, C)$ returning a plaintext M
- 4. Bonus: Implement the signature scheme $DSS_sign(g,p,priv,M)$ and $DSS_verify(g,p,pub,M,Kr,Km)$ using H=SHA256