

526,551

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
8. April 2004 (08.04.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/029900 A1

(51) Internationale Patentklassifikation⁷: **G08G 1/16**

(21) Internationales Aktenzeichen: PCT/EP2003/009330

(22) Internationales Anmeldedatum:
22. August 2003 (22.08.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
102 41 134,4 3. September 2002 (03.09.2002) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): DAIMLERCHRYSLER AG [DE/DE]; Epplestrasse 225, 70567 Stuttgart (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (nur für US): ECKSTEIN, Lutz

[DE/DE]; Birkendörflle 19, 70567 Stuttgart (DE). ENTENMANN, Volker [DE/DE]; Hauffstrasse 24, 71563 Affalterbach (DE). HESS, Markus [DE/DE]; Frühlingsstrasse 16, 73666 Baltmannsweiler (DE). PETERSEN, Uwe [DE/DE]; Loewenstrasse 81, 70597 Stuttgart (DE). REICHELT, Werner [DE/DE]; Steinhalde 30, 73730 Esslingen (DE). UNSELT, Thomas [DE/DE]; Hegelstrasse 51, 70174 Stuttgart (DE). ZIMMER, Richard [DE/DE]; Robert-Koch-Strasse 17, 70734 Fellbach (DE).

(74) Anwälte: KOLB, Georg usw.; DaimerChrysler AG, Intellectual Property Management, IPM - C106, 70546 Stuttgart (DE).

(81) Bestimmungsstaaten (national): JP, US.

(84) Bestimmungsstaaten (regional): europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR).

[Fortsetzung auf der nächsten Seite]

(54) Title: DEVICE FOR RADIO-BASED DANGER WARNING

(54) Bezeichnung: VORRICHTUNG ZUR FUNKBASIERTEN GEFAHRENWARNUNG

(57) Abstract: The invention relates to a device for the radio-based warning of a driver of a vehicle about a danger, said vehicle comprising a data receiving device (10) which receives data from at least one data transmission device (15) of at least one other vehicle and evaluates the received data in a computer unit (20). The received data contains information about the position, speed, and direction of driving of the transmitting vehicle. A degree of relevance is determined in the receiving vehicle for whether the transmitting vehicle is located in a sector lying ahead of the receiving vehicle, said degree of relevance being determined from the received data of the transmitting vehicle, information concerning the position of the receiving vehicle, speed-related data, and data regarding the direction of driving of the receiving vehicle. A history of the degree of relevance is determined by repeatedly determining the degree of relevance.

[Fortsetzung auf der nächsten Seite]

WO 2004/029900 A1

Veröffentlicht:

— mit internationalem Recherchenbericht

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(57) Zusammenfassung: Die Erfindung betrifft eine Vorrichtung zur funkbasierten Gefahrenwarnung des Fahrers eines Fahrzeuges mit einer Datenempfangseinrichtung (10), wobei die Datenempfangseinrichtung (10) von mindestens einer Datensendeeinrichtung (15) mindestens eines anderen Fahrzeuges Daten empfängt und die empfangenen Daten in einer Rechnereinheit (20) auswertet, wobei die empfangenen Daten Informationen über die Position, die Geschwindigkeit, und die Fahrtrichtung des sendenden Fahrzeugs umfassen. Erfindungsgemäß wird aus den empfangenen Daten des sendenden Fahrzeuges und aus Informationen zur Position des empfangenden Fahrzeuges, aus Geschwindigkeitsdaten und Fahrtrichtungsdaten des empfangenden Fahrzeuges im empfangenden Fahrzeug ein Relevanzmass dafür ermittelt, ob sich das sendende Fahrzeug auf einem vor dem empfangenden Fahrzeug liegenden Streckenabschnitt befindet, wobei durch wiederholtes Ermitteln des Relevanzmasses ein zeitlicher Verlauf des Relevanzmasses ermittelt wird..

DaimlerChrysler AG

Vorrichtung zur funkbasierteren Gefahrenwarnung

Die Erfindung betrifft eine Vorrichtung zur funkbasierteren Gefahrenwarnung gemäß dem Oberbegriff des Anspruchs 1.

In EP 927 983 A2 wird eine Vorrichtung zur funkbasierteren Gefahrenwarnung beschrieben, wobei Fahrzeuge zum Austausch von Daten zur Gefahrenwarnung mit jeweils einer Datensendeeinrichtung und Datenempfangseinrichtung ausgestattet sind. Nach Aktivierung der Datensendeeinrichtung werden die Daten zur Gefahrenwarnung an andere Kraftfahrzeuge gesendet, wobei die gesendeten Daten Informationen zur Position, die Geschwindigkeit und die Fahrtrichtung des sendenden Fahrzeuges umfassen. Im empfangenden Fahrzeug werden die empfangenen Daten dahingehend ausgewertet, ob eine Gefahr vor dem Fahrzeug liegt oder nicht. Wird eine Gefahr festgestellt, so wird dies dem Fahrer durch Warnsignale mitgeteilt

In FR 2 793 056 wird eine Vorrichtung zur Gefahrenwarnung beschrieben, bei der der Typ der Gefahr im Fahrzeug angezeigt wird. Im empfangenden Fahrzeug wird ermittelt, ob es notwendig ist, die Warnung an weitere Fahrzeuge auszusenden.

In der WO 01/61668 A1 wird eine Vorrichtung zur Gefahrenwarnung beschrieben, bei der im sendenden Fahrzeug eine Warnzone erzeugt und zusammen mit der Gefahrenwarnung ausgesendet wird. Im sendenden Fahrzeug wird die Position des Fahrzeuges und der Straßentyp, auf dem sich das Fahrzeug befindet unter Verwendung eines Navigationssystems ermittelt. In die Berechnung der Warnzone im sendenden Fahrzeug fließt die Geschwindigkeitsdifferenz zwischen der Geschwindigkeit des sendenden Fahrzeuges und der typischen oder maximalen Geschwindigkeit anderer Fahrzeuge auf dem gegebenen Straßentyp mit ein. Die

Auswertung der empfangenen Gefahrenwarnung im empfangenden Fahrzeug erfolgt unter Verwendung eines Navigationssystems, indem überprüft wird, ob sich das empfangende Fahrzeug in der Warnzone befindet und ob die Gefahrenwarnung sich auf einen potentiell vor dem empfangenden Fahrzeug liegenden Streckenabschnitt bezieht.

Aus dem Dokument "WARN - ein neues funkbasiertes Gefahrenwarnsystem im Kfz für mehr Sicherheit im Straßenverkehr", Brenzel, C., Hickel, F., Paßmann, C., VDI Berichte Nr. 1415, 1998, ist es bekannt, zusammen mit der Gefahrenwarnung den Typ der Gefahr, die Geschwindigkeit des sendenden Fahrzeuges, sowie Informationen über die Position des sendenden Fahrzeuges zu übertragen. Im empfangenden Fahrzeug wird die Differenzgeschwindigkeit zu dem sendenden Fahrzeug ermittelt. Informationen über die Position von Fahrzeugen werden dazu verwendet zu ermitteln, ob die Warnmeldung von einem vorausfahrenden oder nachfolgenden Fahrzeug oder vom Gegenverkehr generiert wurde.

Aus dem Dokument "Wireless Vehicle to Vehicle Warning System", Paßmann, C., Brenzel, C., Meschenmoser R., SAE-Paper, 2000-01-1307, ist es bekannt, dass im empfangenden Fahrzeug überprüft wird, ob sich das sendende Fahrzeug vor oder hinter dem empfangenden Fahrzeug befindet.

Es ist aus DE 199 52 392 A1 ein Verfahren bekannt, bei dem dem Fahrer fahrstreckenabhängige Warninformationen bereitgestellt werden. Anhand digitaler Straßenkarten wird beispielsweise erkannt, ob sich der Fahrer einer vorausliegenden Kurve nähert. Ist die aktuelle Geschwindigkeit des Fahrzeugs größer als eine Kurvengrenzgeschwindigkeit, dann wird der Fahrer zuerst optisch gewarnt. Reagiert der Fahrer innerhalb einer gewissen Zeit nicht auf die optische Warnung, d.h. fährt er mit unverminderter Geschwindigkeit weiter, dann erfolgt eine zusätzliche akustische Warnung. Da die Kurve eine fixe Position hat, wird die Annäherung an eine Kurve stets in ausreichend

großer Entfernung vor der Kurve erkannt und verschiedene Warnstufen zunehmender Dringlichkeit werden nacheinander ausgelöst.

Der Erfindung liegt nun die Aufgabe zugrunde, eine verbesserte Vorrichtung zur Gefahrenwarnung mit einer verbesserten Erkennung von relevanten Gefahrenwarnungen zu realisieren.

Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst. Die abhängigen Ansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.

Die Vorrichtung zur funkbasierteren Gefahrenwarnung generiert eine Gefahrenwarnung, die über die optische Reichweite einer Warnblinkanlage hinausreicht. Hierdurch wird eine elektronische Verlängerung der klassischen Warnblinkanlage erreicht. Eine wesentliche Komponente der Vorrichtung ist ein Funkmodem, das den direkten Datenaustausch zwischen Fahrzeugen in Echtzeit und mit einer ausreichend großen Reichweite, ca. 1 km ermöglicht. Zusätzlich umfasst die Vorrichtung optional ein Ortungsmodul, mit dem die Position des Fahrzeugs durch Ortung bestimmt werden kann. Dieses Ortungsmodul kann Bestandteil eines Navigationssystems sein oder mit einem Navigationssystem gekoppelt sein. Ist das Ortungsmodul mit einem Navigationssystem gekoppelt oder Bestandteil desselben, so kann die Fahrzeugposition mit noch höherer Genauigkeit bestimmt werden, weil die gemessene Fahrzeugposition auf die im Navigationssystem vorhandene digitalen Karte durch Map Matching abgebildet werden kann. Dadurch können Fehler bei der Positionsbestimmung durch das Ortungsmodul kompensiert werden.

Die vom sendenden Fahrzeug empfangenen Daten umfassen dabei Informationen zur Position des sendenden Fahrzeugs. Diese Informationen zur Position umfassen Positionen, die durch eine Ortungsvorrichtung ermittelt worden sind und/oder eine Richtungsfahrspur des Fahrzeuges. Eine Richtungsfahrspur des

Fahrzeuges wird gebildet aus Fahrtrichtung und Geschwindigkeit des Fahrzeuges zu verschiedenen Zeitpunkten. Die empfangenen Informationen zur Position umfassen optional auch zusätzliche Informationen über frühere Positionen des sendenden Fahrzeuges. Die früheren Positionen des Fahrzeuges bilden eine Positions-kette des Fahrzeuges, die aus einer Folge von Punkten besteht, zu denen Informationen zur Position des Fahrzeuges vorliegen. Dabei kann es sich bei der Positions-kette um eine Richtungsfahrspur und/oder um eine Folge von mittels Ortungssystem bzw. Navigationssystem ermittelten Positionen handeln.

Es wird aus den empfangenen Daten des sendenden Fahrzeugs und den Positions-, Geschwindigkeits- und Fahrtrichtungsdaten des empfangenden Fahrzeugs ein Relevanzmaß ermittelt, durch das ausgedrückt wird, mit welcher Wahrscheinlichkeit sich das sendende Fahrzeug auf dem vor, also stromab, dem Empfänger liegenden Streckenabschnitt befindet. Vorteilhafterweise verfügt das empfangende Fahrzeug dabei über Fahrstreckeninformationen, mit denen die zukünftige Fahrstrecke des empfangenden Fahrzeuges vorausgeschätzt wird. Vorteilhafterweise wird dabei aus den empfangenen Daten des sendenden Fahrzeugs und der vorhergesagten, zukünftigen Fahrstrecke des empfangenden Fahrzeugs das Relevanzmaß ermittelt, durch das ausgedrückt wird, mit welcher Wahrscheinlichkeit sich das sendende Fahrzeug auf der vorhergesagten zukünftigen Fahrstrecke des empfangenden Fahrzeuges befindet. Durch die Ermittlung des zeitlichen Verlaufs des Relevanzmaßes ist eine sicherere Erkennung von relevanten Gefahrenstellen möglich.

In einer vorteilhaften Ausgestaltung der Erfindung werden anhand des zeitlichen Verlaufs des Relevanzmaßes Falschwarnungen erkannt. Vorteilhafterweise erfolgt die Informationsausgabe in Abhängigkeit von dem ermittelten Relevanzmaß. Dies bedeutet beispielsweise, dass Informationen, deren Relevanzmaß zu gering ist, nicht ausgegeben werden.

In einer vorteilhaften Weiterbildung der Erfindung wird die Informationsausgabe an den Fahrer beendet, sobald eine Warnung als Falschwarnung erkannt wird. Hierbei ist es vorteilhaft, wenn der Fahrer, sobald eine Informationsausgabe aufgrund einer Falschwarnung beendet wird, durch eine sich unmittelbar anschließende Informationsausgabe explizit darüber informiert wird, dass die zuvor gemeldete Gefahr für ihn nicht mehr relevant ist.

Durch die Erfindung werden z. B. Massenkarambolagen verhindert, die z. B. auf Autobahnen auftreten, an denen mehrere Fahrzeuge beteiligt sind und die sich oft bei schlechten Sichtbedingungen, z.B. Nebel, an unübersichtlichen Streckenabschnitten, z.B. hinter einer schlecht einsehbaren Kurve oder aufgrund von Verkehrsstörungen, z.B. Stauende, Baustelle, ereignen. Durch die Vorrichtung zur funkbasierteren Gefahrenwarnung wird ermöglicht, dass die Fahrer von nachfolgenden Fahrzeugen die vor ihnen liegende Gefahr rechtzeitig erkennen und dann in der Lage sind, ihr Fahrzeug rechtzeitig abzubremsen. In einer Weiterbildung der Erfindung ist es möglich vorzusehen, dass durch einen Eingriff in Fahrzeugsteuerungssysteme das Fahrzeug automatisch abgebremst wird.

In einer vorteilhaften Weiterbildung der Erfindung umfasst die Vorrichtung zur funkbasierteren Gefahrenwarnung eine Datensendeeinrichtung, die z. B. durch die Warnblinkanlage des Fahrzeuges ausgelöst wird. Wird in dieser Ausgestaltung der Erfindung die Warnblinkanlage eines Fahrzeuges ausgelöst, dann wird eine entsprechende Funkmeldung an alle Fahrzeuge in der Umgebung des sendenden Fahrzeugs ausgestrahlt. Die ausgesendeten Daten jedes Sender umfassen dabei seine aktuelle Geschwindigkeit und seine Positionsquelle. In einer Ausgestaltung der Erfindung ist es auch möglich, dass der Sender seine Identifikationsnummer und/oder einen Gefahrenotyp überträgt.

Bevorzugte Ausführungsbeispiele der Erfindung werden anhand der zugehörigen Zeichnungen nachfolgend beschrieben.

Dabei zeigt die einzige Fig. ein Blockdiagramm einer Vorrichtung zur funkbasierteren Gefahrenwarnung.

Wie aus Fig. ersichtlich ist, umfasst die Vorrichtung zur funkbasierteren Gefahrenwarnung eine Datenempfangseinheit 10, Datensendeeinheit 15 und eine Rechnereinheit 20. Vorzugsweise ist die Vorrichtung zur funkbasierteren Gefahrenwarnung mit einem Navigationssystem 30, einer Ausgabeeinheit 40, einer Aktivierungsvorrichtung 50 und einer Sensoreinheit 60 über ein Fahrzeubussystem verbunden. Die Sensoreinheit kann mehrere verschiedene Sensoren, insbesondere einen Crash-Sensor, einen Geschwindigkeitssensor usw. umfassen. Die Aktivierungseinrichtung 50 kann z. B. die Warnblinkanlage des Fahrzeuges sein.

Vorteilhafterweise umfassen die Informationen über die Position, die von einem sendenden Fahrzeug ausgesendet werden, eine Richtungsfahrspur des Fahrzeuges, gebildet aus Fahrrichtung und Geschwindigkeit des Fahrzeuges zu verschiedenen Zeitpunkten. Alternativ oder zusätzlich werden die Informationen über die Position, von einem Navigationssystem 30 erzeugt, dies geschieht vorteilhafterweise unter Verwendung einer Ortungsvorrichtung, z. B. GPS. Die Straßenart und die Fahrtrichtung können ebenfalls unter Verwendung eines Navigationssystems 30 ermittelt werden. Die Ermittlung von Position, Straßenart und Fahrtrichtung mittels eines Navigationssystems 30 ist in WO 01/61668 A1 beschrieben und wird hierin durch Referenz aufgenommen. Die Ermittlung von Position, Straßenart und Fahrtrichtung unter Verwendung von Richtungsfahrspuren von Fahrzeugen ist in EP 0 927 983 A2 beschrieben und wird hierin durch Referenz aufgenommen.

Eine Positionsfolge eines Fahrzeuges besteht aus einer Folge von Punkten, zu denen Informationen zur Position des Fahrzeuges vorliegen. Dabei kann es sich bei der Positionsfolge um eine Richtungsfahrspur und/oder um eine Folge von mittels Or-

tungssystem bzw. Navigationssystem 30 ermittelten Positionen handeln. Die Positions kette beschreibt die Geometrie der von dem Sender in jüngster Vergangenheit zurückgelegte Fahrstrecke. Das empfangende Fahrzeug, der Empfänger, kann durch einen Vergleich seiner eigenen Positions kette mit der Positions kette des Senders prüfen, ob die von beiden Fahrzeugen bisher zurückgelegten Fahrstrecken identisch sind und ob sich das sendende Fahrzeug, der Sender, vor, also stromab, oder hinter, also stromauf, dem empfangenden Fahrzeug, dem Empfänger befindet. Das Ergebnis dieses Vergleiches wird durch ein Relevanzmaß ausgedrückt. So kann beispielsweise auf Autobahnen erkannt werden, ob sich der Sender auf derselben Fahrbahn vor dem Empfänger oder auf der Gegenfahrbahn befindet. Befindet sich das sendende Fahrzeug vor dem empfangenden Fahrzeug auf der selben Fahrbahn, so ist das Relevanzmaß groß und der Fahrer des Empfängers muss vor der gemeldeten Gefahr gewarnt werden. Befindet sich das sendende Fahrzeug hinter dem empfangenden Fahrzeug oder auf der Gegenfahrbahn, so ist das Relevanzmaß klein und die empfangene Gefahrenmeldung hat für den Fahrer des Empfängers keine Bedeutung.

Eine weiterer Vorteil der hier beschriebenen Vorrichtung ist das Erkennen von Falschwarnungen. Unter einer Falschwarnung ist eine Warnung zu verstehen, die den Fahrer vor einer Gefahr warnt, die sich nicht auf seiner zukünftigen Fahrstrecke befindet. Es gibt durchaus Situationen, in denen eine Falschwarnung nicht zu vermeiden ist. Befindet sich der Sender beispielsweise kurz hinter einer Gabelung der Fahrbahn, z.B. auf dem linken Ast, dann muss der Fahrer des Empfängers rechtzeitig vor der gemeldeten Gefahr gewarnt werden, auch wenn beim Auslösen der Warnung noch gar nicht bekannt ist, ob der Empfänger auf den linken oder rechten Ast der Gabelung fahren wird. Unabhängig von der zukünftigen Abbiegeentscheidung ist das Relevanzmaß des Senders ausreichend groß, um eine Warnung auszulösen. Allerdings hängt nach dem Erreichen der Gabelung der weitere Verlauf des Relevanzmaßes davon ab, ob der Empfänger den linken oder rechten Ast der Gabelung befährt. Im

ersten Fall stimmen die Positionsketten von Sender und Empfänger weiterhin gut überein, das Relevanzmaß bleibt hoch und die Warnung wird aufrechterhalten. Im zweiten Fall laufen die Positionsketten von Sender und Empfänger auseinander und das Relevanzmaß sinkt. Fällt es unter einen bestimmten Schwellwert, dann kann davon ausgegangen werden, dass sich Sender und Empfänger nun auf verschiedenen Fahrstrecken befinden und die Warnung fälschlicherweise ausgelöst wurde. Durch die fallende Flanke des Relevanzmaßes wird also eine Falschmeldung detektiert. Ist dies der Fall, dann wird nicht nur die Warnung beendet, sondern der Fahrer wird auch explizit darüber informiert, dass die zuvor gemeldete Gefahr für ihn nun nicht mehr relevant ist. Dadurch wird verhindert, dass der Fahrer aufgrund von, unter Umständen unvermeidlichen Falschwarnungen das Vertrauen in das Funkwarnsystem verliert oder sich über das für ihn scheinbar grundlose Verschwinden der Warnung wundert.

Die Gefahrenwarnung kann noch durch Fahrstreckeninformationen, die beispielsweise einer digitalen Straßenkarte entnommen werden können, verfeinert werden. Zum einen kann mit den Fahrstreckeninformationen die zukünftige Fahrstrecke des Senders zumindest bis zum nächsten Kreuzungspunkt vorhergesagt werden. Damit kann die Positionsfolge des Senders verlängert und die Zuverlässigkeit des Relevanzmaßes, die von der Überlappungslänge der Positionsfolgen von Sender und Empfänger abhängt, erhöht werden. Außerdem kann mit der Streckenvorausschau die Entfernung zwischen Sender und Empfänger genauer bestimmt werden, weil die genaue Geometrie des zwischen beiden Fahrzeugen liegenden Streckenteils bekannt ist. Ebenso können durch die Fahrstreckeninformation in bestimmten Situationen Falschwarnungen vermieden werden. Wird beispielsweise erkannt, dass sich ein Sender hinter einer Gabelung befindet, dann können nur Warnstufen hoher Dringlichkeit zugelassen werden, wodurch erreicht wird, dass die Entfernungsschwelle für das Auslösen der Warnung hinter der Gabelung liegt und so abgewartet werden kann, ob der Empfänger nach der Gabelung

den gleichen Ast befährt wie der Sender oder die andere Routenalternative wählt.

Vorteilhafterweise wird der Fahrer solange gewarnt, wie Funkmeldungen empfangen werden und sich der Sender vor dem Empfänger befindet. Dabei ist allerdings zu berücksichtigen, dass es durch externe Einflüsse zu temporären Störungen der Kommunikationsverbindung kommen kann. Deshalb wird bei der hier beschriebenen Vorrichtung ein Ausbleiben weiterer Funkmeldungen zunächst als temporäre Unterbrechung der Kommunikationsverbindung und nicht als Abschalten des Senders interpretiert. Die Warnung wird weiterhin aufrechterhalten, und die Relativbewegung des Empfängers in Bezug auf den Sender wird unter der Annahme fortgeschrieben, dass sich der Sender mit seiner zuletzt bekannten Geschwindigkeit weiterbewegt. Erst wenn für eine ausreichend lange Zeit keine Funkmeldungen mehr empfangen werden, wird die Warnung beendet, allerdings frühestens nach einer minimalen Warnzeit, durch die sichergestellt wird, dass der Fahrer die angezeigte Warnung auch wahrnehmen kann.

Eine Warnung wird auch beendet, wenn der Fahrer des Empfängers durch das Einschalten der eignen Warnblinkanlage zu erkennen gibt, dass er die gemeldete Gefahr erkannt hat. Vorteilhafterweise wird der Einschaltvorgang der Warnblinkanlage und nicht der Zustand "Warnblinker ein" als Kriterium für das Beenden der Warnung verwendet wird, denn sonst würde der Fahrer keine Warnung erhalten, wenn er sich mit bereits eingeschalteter Warnblinkanlage einem Sender nähert, weil er beispielsweise ein anderes Fahrzeug abschleppt. Das Einschalten der eigenen Warnblinkanlage ist für den Fahrer eine vorteilhafte Möglichkeit, eine Warnung zu quittieren und dadurch manuell zu beenden. Durch die Beschränkung auf diese Art der Quittierung bleibt das System einfach. Weitergehende Bedienaktionen sind aber vorstellbar.

Eine Warnung wird auch dann automatisch beendet, wenn die Annäherungsgeschwindigkeit des Empfängers an den Sender oder die absolute Geschwindigkeit des Empfängers sehr klein werden. Dadurch wird verhindert, dass z.B. ein Display im Fahrzeug unnötig lange blockiert wird.

Es sind Szenarien vorstellbar, beispielsweise bei der Annäherung an ein Stauende, bei denen mehrere Sender gleichzeitig Funkmeldungen ausstrahlen.

Bei dem hier beschriebenen System können die Funkmeldungen beliebig vieler Sender parallel verarbeitet werden. Dabei werden aufeinanderfolgende Funkmeldungen desselben Senders anhand ihrer gemeinsamen Identifikationsnummer erkannt. Zunächst wird für jeden Sender individuell geprüft, welches Relevanzmaß ihm zuzuordnen ist.

Für die Ermittlung des zeitlichen Verlaufes des Relevanzmaßes für jedes sendenden Fahrzeuge wird das Relevanzmaß für jedes sendende Fahrzeug in zeitlichen Abständen ermittelt. Anhand des zeitlichen Verlaufes kann dann beispielsweise ermittelt werden, bei welchen Meldungen es sich um Falschmeldungen handelt.

Bei den Gefahrentypen wird unterschieden zwischen einer allgemeinen Gefahr, einem virtuellen Warndreieck, einem Unfall und einer Baustelle. Der Gefahrentyp allgemeine Gefahr wird gesendet, wenn der Fahrer die Warnblinkanlage manuell ausgelöst hat und der Motor des Fahrzeugs läuft, z.B. beim Auffahren auf ein Stauende. Der Gefahrentyp virtuelles Warndreieck wird gesendet, wenn der Fahrer die Warnblinkanlage manuell ausgelöst hat und der Motor des Fahrzeugs aus ist, beispielsweise weil das Fahrzeug eine Panne hat. Der Gefahrentyp Unfall wird dann gesendet, wenn die Warnblinkanlage durch den Crash-Sensor des Fahrzeugs automatisch ausgelöst wurde. Und der Gefahrentyp Baustelle wird schließlich nicht von Fahrzeu-

gen, sondern von Baken gesendet, die den Beginn einer Baustelle markieren.

Der Fahrer kann optisch und/oder akustisch über die vorausliegende Gefahr informiert werden. Die optische Ausgabe erfolgt über ein im Fahrzeug angebrachtes Display. Dieses ist vorzugsweise in das Kombiinstrument integriert und befindet sich somit im primären Blickfeld des Fahrers. Dort kann mit einer optischen Ausgabe die Aufmerksamkeit des Fahrers vorteilhaft auf die Gefahrenwarnung gelenkt werden. Die optischen Warnungen können noch durch akustische Signale oder Sprachausgaben ergänzt werden, um eine sichere Wahrnehmung der Warnung auch dann zu gewährleisten, wenn der Blick des Fahrers vom Kombiinstrument abgewendet ist, weil er beispielsweise das in der Mittelkonsole montierte Radio oder eine andere Bedieneinrichtung bedient oder sich voll und ganz auf die Beobachtung des verkehrlichen Umfeldes konzentriert.

DaimlerChrysler AG

Patentansprüche

1. Vorrichtung zur funkbasierten Gefahrenwarnung des Fahrers eines Fahrzeuges mit einer Datenempfangseinrichtung (10), wobei die Datenempfangseinrichtung (10) von mindestens einer Datensendeeinrichtung (15) mindestens eines anderen Fahrzeuges Daten empfängt und die empfangenen Daten auswertet,
wobei die empfangenen Daten Informationen über die Position, die Geschwindigkeit, und die Fahrtrichtung des sendenden Fahrzeugs umfassen,
dadurch gekennzeichnet,
aus den empfangenen Daten des sendenden Fahrzeuges und aus Informationen zur Position des empfangenden Fahrzeuges, aus Geschwindigkeitsdaten und Fahrtrichtungsdaten des empfangenden Fahrzeuges im empfangenden Fahrzeug ein Relevanzmaß dafür ermittelt wird, ob sich das sendende Fahrzeug auf einem vor dem empfangenden Fahrzeug liegenden Streckenabschnitt befindet, wobei
durch wiederholtes Ermitteln des Relevanzmaßes ein zeitlicher Verlauf des Relevanzmaßes ermittelt wird.
2. Vorrichtung nach Anspruch 1
dadurch gekennzeichnet,
dass der zeitliche Verlauf des Relevanzmaßes im empfangenden Fahrzeug gespeichert wird.
3. Vorrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass anhand des zeitlichen Verlaufs des Relevanzmaßes Falschwarnungen erkannt werden.

4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die empfangenen Daten eine Positions kette des sendenden Fahrzeugs umfassen.
5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im empfangenden Fahrzeug die künftige Fahrstrecke des empfangenden Fahrzeuges vorausgeschätzt wird.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Relevanzmaß aus den empfangenen Daten des sendenden Fahrzeuges und der vorausgeschätzten zukünftigen Fahrstrecke des empfangenden Fahrzeuges ermittelt wird.
7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Informationsausgabe in Abhängigkeit von dem ermittelten Relevanzmaß erfolgt.
8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Informationsausgabe beendet wird, sobald sie als Falschwarnung erkannt wurde.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass der Fahrer nach Beenden der Informationsausgabe durch eine weitere Informationsausgabe darüber informiert wird, dass die zuvor gemeldete Gefahr für ihn nicht mehr relevant ist.
10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Daten von Datensendeeinrichtungen (15) mehrerer Fahrzeuge empfangen und ausgewertet werden.

11. Vorrichtung nach Anspruch 10,
dadurch gekennzeichnet,
dass der zeitliche Verlauf des Relevanzmaßes zu jedem
sendenden Fahrzeug, von dem Daten empfangen werden, er-
mittelt wird.
12. Vorrichtung nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet,
dass die Vorrichtung zur funkbasierten Gefahrenwarnung
des Fahrers eine Datensendeeinrichtung (15) umfasst, die
bei Aktivierung Daten zur Gefahrenwarnung anderer Fahr-
zeuge aussendet, wobei die gesendeten Daten Informationen
über die Position, die Geschwindigkeit, und die Fahrt-
richtung des sendenden Fahrzeugs umfassen.

Fig.