MATH 308 Assignment 12: Sequences in Coin Flips

Nakul Joshi

March 26, 2014

1 Expected Number of Oc- 2 Probability of Occurence curences

For each coin flip i, let X_i be the event that the sequence 01111111 occurs starting at position i. Then:

$$\mathbb{E}(\mathbb{1}(X_i)) = \begin{cases} 2^{-8}, & \text{if } 1 \le i \le 93\\ 0, & \text{if } i > 93 \end{cases}$$

So, the expected number of occurences is:

$$N = \mathbb{E}\left(\sum_{i=1}^{100} \mathbb{1}(X_i)\right)$$
$$= \sum_{i=1}^{100} \mathbb{E}\left(\mathbb{1}(X_i)\right)$$
$$= \sum_{i=1}^{93} \mathbb{E}\left(\mathbb{1}(X_i)\right)$$
$$= 93/2^8 \approx 0.363$$

Using the result above, we can approximate the coinflipping experiment as a Poisson process with rate parameter $\lambda=93/2^8$.

The requisite probability can then be calculated as 1-ppois(0,93/2^8), which comes out to ≈ 0.30 , which is slightly under the result from Assignment 2.

MATH 308 Assignment 15:

Exercises 5.10

Nakul Joshi

March 26, 2014

5

a)

6

a)

Suppose that cookie orders are represented such that, for example, an order of 1 sugar, 2 chocolate chips, 0 oatmeal, 0 peanut butter, and 2 ginger snaps is given by |c|cc|cc|. Then, two of the bars are fixed, giving the string [??????], where the nine? symbols are to be replaced by five c's and two |'s. If we choose 5 distinct positions in which to place the c's, the positions of the remaining 's is fixed. Thus, the number of possible

cookie orders is $\binom{9}{5}$.

b)

More generally, we can use 'cookie types' to represent occurances of particular elements in the chosen sets. Then, fixing the position of two |'s leaves n+1-2=n-1 |'s and n c's, for a total of 2n-1 symbols. Picking element members requires n position choices, giving the total number of set choices as $\binom{2n-1}{n}$.

 $\mathbf{c})$

For a sample S of size n, each bootstrap sample represents the choice of n elements from S with replacement. Thus, the number of bootstrap samples is as above $\binom{2n-1}{n}$.

The number of bootstrap samples with k_1 a_1 's, k_2 a_2 's $\dots k_n a_n$'s is the same as the number of permutations of the string

$$\underbrace{a_1 a_1 \dots a_1}^{k_1 \text{times}} \underbrace{a_2 a_2 \dots a_2}^{k_2 \text{times}} \dots \underbrace{a_n a_n \dots a_n}^{k_n \text{times}}$$
n symbols

Using the formula for string permuations with repeated characters, this yields

$$\frac{n!}{k_1!k_2!\dots k_n!}$$

which, by definition, equals

$$\binom{n}{k_1, k_2 \dots k_n}$$

b)

A bootstrap sample with k_i a_i 's requires choosing k_i of n positions, after which the remaining $n - k_i$ positions can be filled by any of the remaining n-1elements. Thus, the number of such samples is:

$$(n-1)^{n-k_i} \binom{n}{k_i}$$

The total number of bootstrap samples is simply n^n . Thus, the required probability is

$$\frac{(n-1)^{n-k_i}}{n^n} \binom{n}{k_i}$$