DÉRIVÉE : Deuxième partie

Table des matières

Ι	I Rappel cours dérivation première partie 1				
II	Fonction dérivée de fonctions de référence	2			
II	I Fonction dérivée et opérations 1 RAPPEL : Somme de deux fonctions, multiplication par un réel	2 2 3 3			
IV	Fonction dérivée d'une fonction composée 1 Dérivée des fonctions du type $x \mapsto f(ax + b)$	4 4			
Ι	Rappel cours dérivation première partie				
	 Le taux de variations de f en a est le nombre défini par τa(h) = f(a+h)-f(a)/h Le nombre dérivé s'il existe est le nombre défini par : f'(a) = lim ta(h) =	I.			

Méthode 1 (Rappel :Étude d'une fonction polynôme de degré 3)

- Si, pour tout x de I, f'(x) = 0, alors f est constante sur I.

Soit la fonction f définie sur $\mathbb R$ par $f(x)=x^3-3x-4$

- 1. Déterminer la dériver de f
- 2. Étudier le signe de f'(x)
- 3. En déduire les variations $\mathrm{de}f$
- 4. Donner l'équation de la tangente T à la courbe de f au point d'abscisse -2

II Fonction dérivée de fonctions de référence

Fonctions de référence

f désigne une fonction dérivable sur I et f' est la fonction dérivée de f. On a :

Fonction f	Fonction f'	Intervalle I
k	0	\mathbb{R}
ax + b	a	\mathbb{R}
x^2	2x	\mathbb{R}
x^3	$3x^2$	\mathbb{R}
x^n	nx^{n-1}	\mathbb{R} , avec $n \in \mathbb{N}^*$
$\frac{1}{x}$	$-\frac{1}{x^2}$	R *
$\cos(x)$	$-\sin(x)$	\mathbb{R}
$\sin(x)$	$\cos(x)$	\mathbb{R}

Remarque 1

Les quatre premières lignes sont des rappels de la partie 1 sur la dérivation. La 5ème est une généralisation des résultats obtenus avec x^2 et x^3 .

Exemple 1

Si f est définie par $f(x) = x^5$, f est dérivable sur \mathbb{R} et $f'(x) = 5x^4$.

Les quatre dernières lignes sont admises.

III Fonction dérivée et opérations

1 RAPPEL : Somme de deux fonctions, multiplication par un réel

Fonction u + v et λu avec λ réeel

Si u et v sont deux fonctions dérivables sur un même intervalle I de $\mathbb R$ et λ un réel non nul alors :

- (u+v) est dérivable sur I et (u+v)'=u'+v'.
- λu est dérivable sur I et $(\lambda u)' = \lambda u'$

Méthode 2

- 1. Déterminer la dérivée de la fonction f définie sur $]0;+\infty[$ par $f(x)=-3x^4-\frac{5}{x}$
- 2. Déterminer la dérivée de la fonction g définie sur \mathbb{R} par $g(x)=3\cos(x)-5\sin(x)$

2 Produit de deux fonctions dérivables

Fonction $u \times v$

Si u et v sont deux fonctions dérivables sur un même intervalle I de \mathbb{R} , alors $u \times v$ est dérivable sur I et $(u \times v)' = u'v + uv'$.

Exemple 2 (Rédaction)

Soit la fonction f définie sur \mathbb{R} par :

$$f(x) = (4x^3 - 3)(-\frac{3}{2}x^2 - 4x)$$

f est de la forme uv avec :

①
$$u(x) = 4x^3 - 3$$

$$2 v \text{ est d\'erivable sur } \mathbb{R}$$

$$u'(x) = 12x^2$$

①
$$v(x)=-\frac{3}{2}x^2-4x$$

② v est dérivable sur $\mathbb R$
③ $v'(x)=-\frac{3}{2}\times 2x-4=-3x-4$

$$f \text{ est donc dérivable sur } \mathbb{R} \text{ et pour tout } x \in \mathbb{R}$$

$$f'(x) = (12x^2)(-\frac{3}{2}x^2 - 4) + (-3x - 4)(4x^3 - 3)$$

$$\Leftrightarrow f'(x) = -16x^4 - 48x^3 - 12x^4 + 9x - 16x^3 + 12$$

$$\Leftrightarrow f'(x) = -16x^4 - 48x^3 - 12x^4 + 9x - 16x^3 + 12$$

$$\Leftrightarrow f'(x) = -28x^4 - 64x^3 + 9x + 12$$

Méthode 3

Déterminer la fonction dérivée de la fonction f définie sur \mathbb{R} par $f(x) = x \cos x$.

Inverse d'une fonction dérivable 3

fonction $\frac{1}{x}$

Si v est une fonction dérivable sur un intervalle I de \mathbb{R} et qui ne s'annule pas, alors $\frac{1}{v}$ est dérivable sur I

$$\operatorname{et}\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}.$$

Exemple 3 (Rédaction)

Soit la fonction f définie sur \mathbb{R} (car pour tout $x \in \mathbb{R}$, $3x^2 + 2x + 1 \neq 0$) par :

$$f(x) = \frac{1}{3x^2 + 2x + 1}$$

f est de la forme $\frac{1}{u}$ avec :

$$u(x) = 3x^2 + 2x + 1$$

u est dérivable sur \mathbb{R} et $u(x) \neq 0$ pour tout $x \in \mathbb{R}$

$$u'(x) = 6x + 2$$

$$f$$
 est donc dérivable sur $\mathbb R$ et pour tout $x\in\mathbb R$:
$$f'(x)=-\frac{6x+2}{(3x^2+2x+1)^2}$$

Méthode 4

Déterminer la fonction dérivée de la fonction f définie sur $]5;+\infty[$ par $f(x)=\frac{1}{2x-10}$

Quotient de deux fonctions dérivables 4

Fonction $\frac{u}{v}$

Si u et v sont deux fonctions dérivables sur un même intervalle I de \mathbb{R} et v ne s'annule pas sur I, alors $\frac{u}{v}$

est dérivable sur I et $\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$.

Exemple 4 (Rédaction)

Soit la fonction f définie sur $\mathbb{R} \setminus \{-\frac{2}{3}\}$ par :

$$f(x) = \frac{2x - 1}{3x + 2}$$

 $f \text{ est de la forme } \frac{u}{v} \text{ avec } :$ $\textcircled{1} \ u(x) = 2x - 1 \qquad |$

①
$$u(x) = 2x - 1$$

$$①v(x) = 3x + 2$$

$${f 2}$$
 u est dérivable sur ${\Bbb R}$

②
$$u$$
 est dérivable sur \mathbb{R} ② v est dérivable sur \mathbb{R} et $v(x) \neq 0$ pour $x \in \mathbb{R} \setminus \{-\frac{2}{3}\}$

$$u'(x) = 2$$

$$v'(x) = 3$$

 $\mathrm{donc}\; f \; \mathrm{est} \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; \mathrm{et} \; \mathrm{pour} \; \mathrm{tout} \; x \in \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{sur} \; \mathbb{R} \setminus \{-\frac{2}{3}\} \; : \; \mathrm{d\acute{e}rivable} \; \mathrm{$

$$f'(x) = \frac{2(3x+2) - 3(2x-1)}{(3x+2)^2}$$
$$f'(x) = \frac{6x+4-6x+3}{(3x+2)^2}$$
$$f'(x) = \frac{7}{(3x+2)^2}$$

$$f'(x) = \frac{6x + 4 - 6x + 3}{(3x + 2)^2}$$

$$f'(x) = \frac{7}{(3x+2)^2}$$

Remarque 2

On ne développe pas le dénominateur car par la suite on va étudier le signe de f'(x) et comme $(3x+2)^2$ est positif il suffira d'étudier le signe du numérateur.

Déterminer la fonction dérivée de la fonction f définie sur \mathbb{R} par $f(x) = \frac{\cos x}{x^2 + 1}$

Méthode 6 (Étude de variations d'une fonction)

Déterminer les fonctions dérivées des fonctions f définies sur I suivantes puis établir leur tableau de variations :

1.
$$f(x) = 3x^2 + 2x - 4$$
, $I = \mathbb{R}$

3.
$$f(x) = x^2(-2x+3), I = \mathbb{R}$$

2.
$$f(x) = \frac{3}{x}$$
, $I =]0; +\infty[$

4.
$$f(x) = \frac{3x+4}{1-2x}$$
, $I =]\frac{1}{2}$; $+\infty[$

Fonction dérivée d'une fonction composée

Dérivée des fonctions du type $x \mapsto f(ax + b)$

Propriété

On définit sur un intervalle J une fonction g composée de la fonction affine $x \mapsto ax + b$ par une fonction f. On a le schéma de composition suivant g:

On a le schema de composition suivant $g: | x \mapsto ax + b \mapsto f(ax + b)$. Soient a et b deux réels et f une fonction dérivable sur I. Soit J un intervalle tel que pour tout xappartenant à I, ax + b appartient à J.

Alors la fonction $g: x \mapsto f(ax+b)$ est dérivable sur J et pour tout x dans J:

$$g'(x) = a \times f'(ax + b)$$

Méthode 7

Déterminer la fonction dérivée de la fonction g définie sur \mathbb{R} par $g(x) = (3x-2)^4$.

$\mathbf{2}$ Dérivée des fonctions trigonométriques composées

Propriété

Soient A, ω et φ des réels.

Les fonctions $f: t \longmapsto A\cos(\omega t + \varphi)$ et $g: t \longmapsto A\sin(\omega t + \varphi)$ sont dérivables sur \mathbb{R} et pour tout x dans \mathbb{R} on a:

$$f'(t) = -A \times \omega \sin(\omega t + \varphi)$$

$$g'(t) = A \times \omega \cos(\omega t + \varphi)$$

Méthode 8

Déterminer la fonction dérivée de la fonction f définie sur \mathbb{R} par $f(t) = 10\cos(25t + \frac{\pi}{4})$.