# The Short-Run: IS/LM

Prof. Lutz Hendricks

Econ520

January 10, 2023

# Objectives

In this section, we are concerned with the short-run IS-LM model You will learn:

- 1. how to set up and interpret the IS-LM model
- 2. what its limitations are
- 3. how to solve for the equilibrium
- 4. how to analyze the effects of shocks and policies

All of this is review of material you previously learned in Intermediate Macro.

#### IS-LM Model

#### Key assumptions:

- Output is determined by aggregate demand
- There is no supply side
- Prices are fixed
- Closed economy

Think: economy in recession, with lots of unemployed resources.

We relax all of these assumptions later.

#### IS-LM Model

#### Two markets

- ► Goods (IS). Money (LM)
- In the background there is also a bond market

#### Two endogenous variables

ightharpoonup Output (Y). Interest rate (i)

#### Two policy variables

▶ Government spending (G). Money supply (M)

## **Modeling Choices**

Why does the model have these ingredients?

We want to talk about monetary and fiscal policies

main instruments for business cycle stabilization

Main outcome of interest: output Y

so we need aggregate demand for goods

Monetary policy mainly works by changing interest rates i

so we need the money / bond market

Fixed prices are for simplicity only.

# The Goods Market: IS Curve

# Aggregate Demand

Start from an accounting identity

$$Z = C + I + G + X - IM$$

**Z** is aggregate demand / expenditure.

For now: closed economy with X - IM = 0.

Add behavioral assumptions to give it content.

# Consumption function

$$C = C(Y_D) = c_0 + c_1 Y_D \tag{1}$$

 $Y_D = Y - T$ : disposable income (after taxes and transfers)

c<sub>0</sub>: "autonomous consumption" (intercept)

 $c_1$ : marginal propensity to consume (slope)

 $s = 1 - c_1$ : marginal propensity to save

Consumption might also depend on wealth, expected incomes, etc.

 $\triangleright$  these are stuffed into  $c_0$ 

#### Investment function

$$I = I(Y, i) = \bar{I} + b_1 Y - b_2 i \tag{2}$$

#### Investment depends on:

- ▶ interest rate *i*: cost of capital
- ▶ output Y: aggregate demand
- $\triangleright$  expectations etc (again stuffed into the intercept  $\overline{I}$ )

#### Government

- $\triangleright$  Exogenous G and T.
- ▶ *G* is government consumption
- ► *T* is tax revenue net of transfer payments

# Aggregate Demand

$$Z = C + I + G$$

$$= [c_0 + c_1 (Y - T)] + [\bar{I} + b_1 Y - b_2 i] + G$$

$$= [c_0 + \bar{I} + G - c_1 T] + (c_1 + b_1)Y - b_2 i$$
(5)

 $ar{Z}$ : autonomous spending / demand

In words / intuition ...

## Isn't this completely arbitrary?

Yes, it is arbitrary.

- ▶ We just made up a consumption function from introspection.
- Shouldn't we use data?

Is this "bad"?

▶ It depends on the purpose of the model.

A simple model is a story told through math.

# The IS/LM story

This model roughly tells the following story.

The government has three ways of affecting AD

- 1. Buy goods (G)
- Tax income (T) because AD depends on after tax income.
- Change interest rates (i) because the interest rate affects saving (C) and borrowing for investment (I)

There are complicated interactions because

- i depends on AD (money market clearing)
- AD depends on income (a multiplier effect)

# Goods Market Clearing

Assumption: supply is perfectly elastic

$$Y = Z = \bar{Z} + (c_1 + b_1)Y - b_2i \tag{6}$$

Rearrange to get the IS curve:

$$Y = \frac{\bar{Z} - b_2 i}{1 - c_1 - b_1} \tag{7}$$

Key assumption: marginal propensity to spend  $c_1 + b_1 < 1$ .

otherwise we have serious problems...

# Goods Market Clearing

Demand Z, Production Y



Demand:

$$Z = \bar{Z} + (c_1 + b_1)Y - b_2i.$$

What happens when the interest rate *i* rises?

#### IS Curve



IS collects all (Y,i) for which the goods market clears.

## Intuition: IS Curve

Why is IS downward sloping?

## Shifting the IS Curve

Only autonomous demand  $\bar{Z}$  shifts IS

Example:  $G \uparrow$ 

- $\blacktriangleright$  Excess demand  $\rightarrow$  Need higher *i* to reduce *I*
- New IS curve shifted up

What else shifts IS?

Clearly distinguish moving along the curve vs. shifting the curve!

## The Fiscal Multiplier

$$Y = \frac{\bar{Z} - b_2 i}{1 - c_1 - b_1} \tag{8}$$

Increasing government spending by \$1  $\Longrightarrow$  increasing Y by  $1/(1-c_1-b_1)$ .

This holds the interest rate constant (which will not be true in equilibrium)

Intuition:

# The Fiscal Multiplier



## Saving Equals Investment

We can also think about goods market clearing as equating saving with investment.

Private saving:

$$S = Y_D - C = Y - T - C \tag{9}$$

Public saving:

$$S^P = T - G \tag{10}$$

Total saving equals investment:

$$I = \underbrace{Y - T - C}_{S} + \underbrace{T - G}_{S^{P}} \tag{11}$$

This yields goods market clearing

$$Y = C + I + G \tag{12}$$

The Money / Bond Market: LM Curve

#### LM Curve

The LM curve equates supply and demand of "money." What is "money"?

## Money Demand

How to divide wealth between "money" and bonds?

- ► Money: liquidity benefit
- ► Bonds: interest benefit

Division depends on

- transactions volume (nominal income)
- interest rate

Money demand can then be written as

$$M^d = \$Y \times L(i) \tag{13}$$

**\$***Y* is nominal income (in dollars)



# Money Supply

Real world: money = [currency] + [checkable deposits] + [more?]

Currency: controlled by CB

Checkable deposits: created by banks (not controlled by CB)

For now: assume that CB controls money supply

$$M = M^s \tag{14}$$

Money market clearing:

$$M^s = \$YL(i) \tag{15}$$





# Money Supply Increases



## Open Market Operations

The markets for money and bonds are linked.

To increase the money supply, the CB buy bonds and pays with currency.

The price of bonds rises  $\implies$  the bond yield i falls.

A complication: the CB has no direct control over the supply of bonds / the bond interest rate.

open market operations do not always work

# Reading

▶ Blanchard / Johnson, Macroeconomics, ch. 3-4