DIODOS

PRÁCTICA 5

CURSO 2017/2018

	Nombres y Apellidos				
1					
2					
3					
4					
5					

ESTUDIO DE UN DIODO RECTIFICADOR

- (1) Determinar el valor de la tensión umbral del diodo rectificador. <u>Pasos</u>:
- 1°) Conectar el diodo (" $\neg \triangleright \vdash$ ") en polarización <u>DIRECTA</u> a uno de los polímetros, es decir: conectar el ánodo (región P, " $\neg \triangleright$ ") al terminal V- Ω del aparato, y el cátodo (región N, " \vdash ") al terminal común (COM).
- 2°) Situar el selector de funciones en la posición "->|-".
- Si en la pantalla aparece un «1» a la izquierda: usar el otro polímetro. Si pasa lo mismo: decírselo al/a la profesor/a (el diodo puede estar fundido o desoldado, o esos polímetros no pueden medir la tensión -puede ocurrir con los LED-).
- Si en el valor de la tensión umbral hay un punto, está en voltios; si no aparece un punto en la pantalla, la tensión umbral está expresada en milivoltios.

$V_{UMBRAL} =$

ANTES DE PASAR AL APARTADO SIGUIENTE COMPLETAR LOS APDOS. 2.1 (PÁG. 5) Y 3.1 (PÁG. 7)

- (2) <u>PUESTA A PUNTO DE LA FUENTE</u>: Cortocircuitarla (es decir, conectar con UN CABLE sus terminales + y -) \rightarrow Encenderla \rightarrow Situar el mando de V al máximo y el de I a 0,2 A \rightarrow Situar el de V a cero \rightarrow Retirar el cable \rightarrow Apagarla.
- (3) Montar el circuito de la figura.
- Emplear como amperímetro un polímetro que posea para corriente continua la escala de 200 µA.
- Que el/la profesor/a revise el montaje antes de encender nada.

- (4) Rellenar en la siguiente tabla las medidas en polarización directa. <u>Pasos</u>:
- 1°) Aplicar las tensiones indicadas para la fuente, V_G , <u>de forma aproximada</u>.
- 2^{o}) Medir V_{D} , en voltios, e I_{D} , en <u>miliamperios</u>, usando las escalas adecuadas.

	POLARIZACIÓN DIRECTA				POL	. INVE	RSA	
$V_G(V)$	$V_D()$	$I_D()$	$V_G(V)$	$V_D()$	$I_D()$	$V_G(V)$	$V_D()$	$I_D()$
0	0	0	10			10		
1			20			20		
5			30			30		

- (5) A continuación, completar la tabla en **polarización inversa**, verificando que el diodo no conduce, es decir, que: $V_D \cong -V_G$ e $I_D < 0.1 \ \mu\text{A}$. Pasos:
- 1°) Poner V_G a cero.
- 2°) Cambiar la polarización del diodo: <u>Lo hacemos permutando la conexión de los cables en la fuente</u>.
- 3°) <u>Variar la conexión del voltímetro de manera que quede en paralelo con el conjunto «amperímetro—diodo»</u> (así el amperímetro mide I_D correctamente).
- 4°) Repetir los pasos del apartado anterior, pero midiendo I_D en <u>microamperios</u>.
- (6) Poner V_G a cero, cambiar la polarización del diodo y <u>retornar la conexión del voltímetro a su estado anterior</u>.

PASAR AL ESTUDIO DEL DIODO ZÉNER (APDO. 2.2)

- (7) Representar I_D frente a V_D gráficamente. <u>Instrucciones</u>:
- <u>Semiejes</u>: Trazar un semieje negativo de intensidad muy corto. Y que cada semieje de tensión ocupe la mitad del espacio, con distinta escala en cada uno.
- <u>Escalas</u>: Elegir la del semieje positivo de tensión de manera que la porción ascendente de la curva en el 1^{er} cuadrante quede «centrada» en él.
- Indicaciones: Marcar en el eje V la posición de la V_U medida (Apdo. 1.1), y caracterizarla poniendo « V_U », no el dato numérico.

DIODO RECTIFICADOR	

CUESTIONES

- ① ¿Qué podemos hacer, al construir un regulador de tensión, si necesitamos un diodo zéner que garantice que la tensión aplicada a un circuito no supere los 30 V, y nos encontramos que solo tenemos diodos zéner con una tensión zéner de 10 V?
- Responder teniendo presente lo observado en el estudio de los LED.

- ② La tensión de ruptura de cada uno de nuestros LED es, en valor absoluto, de 12 V. Si hubiésemos cambiado a polarización inversa, ¿qué comportamiento hubiéramos observado variando la tensión aplicada con la fuente, V_G , de 0 a 30 V?:
- a) El mismo que en el caso del diodo zéner: se alcanzaría la tensión de ruptura.
- b) El mismo que en el caso del diodo rectificador: no se alcanzaría dicha tensión. ¿Por qué?

2

ESTUDIO DE UN DIODO ZÉNER

(1) Determinar el valor de la tensión umbral del diodo zéner.

$$V_{UMBRAL} =$$

- (2) Montar el circuito de la figura.
- Basta con cambiar el diodo rectificador por el diodo zéner en el circuito empleado en el bloque anterior.
- Debe quedar en polarización directa.

- (3) A continuación, rellenar la siguiente tabla. <u>Pasos</u>:
- 1^{o}) Aplicar las tensiones indicadas para la fuente, V_{G} , <u>de forma aproximada</u>.
- 2^{o}) Medir V_{D} , en voltios, e I_{D} , <u>en miliamperios</u>, usando las escalas adecuadas.
- Poner V_G a cero antes de cambiar de polarización.
- No cambiar la conexión del voltímetro al pasar a inversa (el diodo "conduce").

POLARIZACIÓN DIRECTA			POLARIZA	ACIÓN IN	IVERSA
$V_{G}(V)$	$V_D($)	$I_D($ $)$	$V_G(V)$	$V_D($	$I_D($ $)$
0	0	0	0	0	0
1			10		
5			15		
10			20		
20			25		
30			30		

(4) Poner V_G a cero y cambiar la polarización del diodo.

PASAR AL ESTUDIO DEL DIODO LED (APARTADO 3.2)

- (5) Representar I_D frente a V_D gráficamente. <u>Instrucciones</u>:
- <u>Semiejes</u>: Usar para cada semieje de tensión o intensidad la mitad del espacio.
- <u>Escalas</u>: Elegir la de los semiejes de tensión de manera que tanto la porción ascendente de la curva en el 1^{er} cuadrante, como la descendente en el 3º, queden «centradas» respecto al semieje.
- <u>Indicaciones</u>: Marcar en el eje V la posición tanto de la V_U medida (Apdo. 2.1) como de la tensión zéner (en valor absoluto es $V_Z = 10 \text{ V}$), y caracterizarlas poniendo « V_U » y « V_Z », respectivamente, no los datos numéricos.

DIODO ZÉNER	

ESTUDIO DE UN LED EQUIVALENTE

- (1) Determinar el valor de la tensión umbral de cada LED y estimar la tensión umbral equivalente de su asociación en serie sumando las de los tres LED.
- Si un LED está en buen estado, se enciende al determinar su V_{UMBRAL} con un polímetro. La luz se aprecia mejor si es rojo (emite más luz), y peor si es verde.

LED	ROJO	AMARILLO	VERDE	EQUIVALENTE
V_{UMBRAL} ()	+	-	+	=

- (2) Montar el circuito de la figura.
- Basta con cambiar el diodo zéner por la asociación serie de los LED en el circuito del bloque anterior. Para ello, hay que desplazar a la dcha. el punto de conexión entre diodo, voltímetro y fuente (⑤ ⇨).
- Deben quedar en polarización directa.
- (3) Rellenar la tabla. Solo haremos pol. directa, que es cuando emiten luz. Se aprecia claramente a partir de V_U , al crecer la I, y se ve mejor mirando los LED "desde arriba". Pasos:
- 1°) Aplicar las tensiones indicadas para la fuente, V_G , <u>de forma aproximada</u>.
- 2^{o}) Medir V_{D} , en voltios, e I_{D} , <u>en miliamperios</u>, usando las escalas adecuadas.

POLARIZACIÓN DIRECTA						
$V_{G}\left(V\right)$	$V_D($	$I_D($)	$V_{G}(V)$	$V_D($	$I_D($)	
0	0	0	10			
5			20			
6			30			

- (4) Dejar el mando de V_G a 30 V y apagar la fuente y los polímetros.
- (5) Retirar el voltímetro desconectándolo de los cables que salen de él.
- (6) Usar el voltímetro como ohmímetro para medir la resistencia de la LDR: a) tapada, y b) sin tapar, de manera cualitativa (va a oscilar mucho). Pasos:
- ullet Tras insertar la LDR en el ohmímetro entre los terminales Ω y COM: En a): Tapar la LDR usando los dedos de una mano.

En b): No moverse, para contribuir a una iluminación constante.

LDR	Estado	TAPADA	SIN TAPAR
LDK	R(

- (7) Insertar la LDR en el circuito. Obliga a variar el punto de conexión del polo "-" de la fuente al circuito.
- (8) Reconectar el voltímetro al circuito, tras seleccionar una escala de tensión continua: la que tenía.

¡OJO! SI NO SE PONE UNA ESCALA DE TENSIÓN PUEDE AVERIARSE AL ENCENDER LA FUENTE.

- (9) Encender la fuente y los polímetros. La tensión V_G será de 30 V.
- (10) Completar la tabla con la LDR tapada y sin tapar.
- Tratar de repetir las condiciones de tapado e iluminación anteriores.

LDR	Estado	TAPADA	SIN TAPAR
	$V_D($)		
LEDs	$I_D($		
	¿Se aprecia luz?		

(11) Poner V_G a cero, apagar todo, <u>deshacer el circuito</u>, y <u>desgrapar el boletín</u>.

DIBUJAR, PRIMERO, LAS TRES GRÁFICAS (PÁGS. 3, 6 Y 9), REPARTIÉNDOSE EL TRABAJO Y <u>SIGUIENDO LAS PAUTAS</u>. Y LUEGO, RESPONDER A LAS CUESTIONES (PÁGINA 4)

- (12) Representar I_D frente a V_D gráficamente. <u>Instrucciones</u>:
- <u>Semiejes</u>: Representar solo el primer cuadrante.
- <u>Escalas</u>: Elegir la del semieje de tensión de manera que la porción de curva ascendente quede «centrada» respecto a él.
- <u>Indicaciones</u>: Marcar los dos puntos (V,I) correspondientes a la LDR. Y en el eje V la posición de la V_U estimada para el diodo LED equivalente (Apdo. 3.1). Caracterizarla poniendo « V_U », no el dato numérico.

DIODO LED	