Trenowanie modeli

Julia Janczyk

2024-05-20

CZESC I

Przygotowanie i filtracja danych

```
# 1
dane <- read.csv2("weather.csv", header = TRUE, sep=";") # NA
head(dane)</pre>
```

##		id DWD_ID	STATION.NA	ME FEDERAL.STATE	LAT	LON	ALTITUDE
##	1	0 1	Aa	ch Baden-W\xfcrttemberg	47.8413	8.8493	478
##	2	1 3	Aach	en Nordrhein-Westfalen	50.7827	6.0941	202
##	3	2 44	Gro\xdfenknet	en Niedersachsen	52.9335	8.2370	44
##	4	6 71	Albstadt-Badk	ap Baden-W\xfcrttemberg	48.2156	8.9784	759
##	5	8 73	Aldersbach-Kriesto	•	48.6159		340
##	6	9 78	Alfhaus	en Niedersachsen	52.4853	7.9126	65
##		PERIOD	RECORD.LENGTH MEAN	.ANNUAL.AIR.TEMP MEAN.M	ONTHLY.MA	AX.TEMP	
##	1	1931-1986	55	8.2		13.1	
##	2	1851-2011	160	9.8		13.6	
##	3	1971-2016	45	9.2		13.2	
##	4	1986-2016	30	7.4		12.2	
##	5	1952-2016	64	8.4		13.4	
##	6	1961-2016	55	9.3		13.4	
##		MEAN.MONTHLY.MIN.TEMP MEAN.ANNUAL.WIND.SPEED MEAN.CLOUD.COVER					
##	1		3.5	2	(67	
##	2		6.3	3	(67	
##	3		5.4	2	(67	
##			3.3	2	(66	
##	5		3.9	1	(35	
##	6		5.2	2		67	
##		MEAN.ANNUA	AL.SUNSHINE MEAN.AN	NUAL.RAINFALL MAX.MONTH	LY.WIND.		K.AIR.TEMP
##	_		NA	755		2	32.5
##	_		1531	820		3	32.3
##	-		1459	759		3	32.4
##	4		1725	919		2	30.2
##	5		1595	790		2	33.0
##	6		NA	794		2	32.2
##		MAX.WIND.SPEED MAX.RAINFALL MIN.AIR.TEMP MEAN.RANGE.AIR.TEMP					
##	1		NA 39	-16.3	9.6	3	
##	2		30.2 36	-10.9	7.3	3	

```
7.8
## 3
              29.9
                            32
                                      -12.6
## 4
                            43
                                      -15.5
                                                            8.9
                NA
                            43
                                      -19.2
## 5
                NA
                                                            9.5
## 6
                            33
                                                            8.2
                NA
                                      -13.3
# 2
# typy zmiennych
str(dane)
## 'data.frame': 599 obs. of 22 variables:
## $ id
                           : int 0 1 2 6 8 9 10 12 14 18 ...
## $ DWD_ID
                           : int 1 3 44 71 73 78 91 98 116 132 ...
## $ STATION.NAME
                           : chr "Aach" "Aachen" "Gro\xdfenkneten" "Albstadt-Badkap" ...
                           : chr "Baden-W\xfcrttemberg" "Nordrhein-Westfalen" "Niedersachsen" "Baden-
## $ FEDERAL.STATE
                          : num 47.8 50.8 52.9 48.2 48.6 ...
## $ LAT
## $ LON
                          : num 8.85 6.09 8.24 8.98 13.05 ...
## $ ALTITUDE
                          : num 478 202 44 759 340 65 300 780 213 750 ...
## $ PERIOD
                           : chr "1931-1986" "1851-2011" "1971-2016" "1986-2016" ...
## $ RECORD.LENGTH
                          : int 55 160 45 30 64 55 38 67 67 33 ...
## $ MEAN.ANNUAL.AIR.TEMP : num 8.2 9.8 9.2 7.4 8.4 9.3 8.2 5.1 8.4 5.7 ...
## $ MEAN.MONTHLY.MAX.TEMP : num 13.1 13.6 13.2 12.2 13.4 13.4 12.7 8.9 12.9 9.2 ...
## $ MEAN.MONTHLY.MIN.TEMP : num 3.5 6.3 5.4 3.3 3.9 5.2 4.1 2.2 4.2 2.7 ...
## $ MEAN.ANNUAL.WIND.SPEED: num 2 3 2 2 1 2 3 3 2 3 ...
## $ MEAN.CLOUD.COVER
                       : num 67 67 67 66 65 67 72 72 66 64 ...
## $ MEAN.ANNUAL.SUNSHINE : num NA 1531 1459 1725 1595 ...
## $ MEAN.ANNUAL.RAINFALL : num 755 820 759 919 790 794 657 NA NA 915 ...
## $ MAX.MONTHLY.WIND.SPEED: num 2 3 3 2 2 2 3 4 3 3 ...
## $ MAX.AIR.TEMP
                      : num 32.5 32.3 32.4 30.2 33 32.2 31.6 27.6 33.2 29 ...
## $ MAX.WIND.SPEED
                          : num NA 30.2 29.9 NA NA NA NA NA NA NA ...
                          : num 39 36 32 43 43 33 37 NA NA 40 ...
## $ MAX.RAINFALL
## $ MIN.AIR.TEMP
                          : num -16.3 -10.9 -12.6 -15.5 -19.2 -13.3 -15.2 -15.7 -17.5 -17.2 ...
## $ MEAN.RANGE.AIR.TEMP : num 9.6 7.3 7.8 8.9 9.5 8.2 8.6 6.7 8.6 6.5 ...
```

podsumowanie summary(dane)

STATION.NAME DWD ID FEDERAL.STATE id ## Min. : 0.0 Min. : 1 Length:599 Length:599 ## 1st Qu.: 259.5 1st Qu.: 1368 Class : character Class : character Median: 2812 ## Median : 479.0 Mode :character Mode :character ## Mean : 489.2 Mean : 2902 ## 3rd Qu.: 731.5 3rd Qu.: 4338 ## Max. :1058.0 Max. :15526 ## ## LAT LON ALTITUDE PERIOD Min. : 1.0 Length: 599 ## Min. :47.40 Min. : 6.094 1st Qu.:49.27 1st Qu.: 8.477 1st Qu.: 75.0 Class:character ## Median :50.64 Median : 9.966 Median : 224.0 Mode :character ## Mean :50.75 Mean :10.120 Mean : 285.3 3rd Qu.:51.96 ## 3rd Qu.:11.703 3rd Qu.: 418.0 ## Max. :55.01 Max. :14.951 Max. :2964.0 ##

RECORD.LENGTH MEAN.ANNUAL.AIR.TEMP MEAN.MONTHLY.MAX.TEMP

```
## Min. : 30.00
                  Min. : 2.500
                                     Min. : 3.30
## 1st Qu.: 54.00 1st Qu.: 8.000
                                     1st Qu.:12.10
## Median : 70.00
                  Median : 8.500
                                     Median :12.90
## Mean : 80.07
                                     Mean :12.66
                  Mean : 8.401
   3rd Qu.:103.00
                  3rd Qu.: 9.100
                                      3rd Qu.:13.50
## Max. :297.00
                  Max. :11.000
                                     Max.
                                            :15.60
##
                   NA's
                                      NA's
                                            :2
                        :1
## MEAN.MONTHLY.MIN.TEMP MEAN.ANNUAL.WIND.SPEED MEAN.CLOUD.COVER
## Min. :0.300 Min. :1.000
                                            Min.
## 1st Qu.:3.800
                      1st Qu.:2.000
                                            1st Qu.:65.0
## Median :4.600
                      Median :2.000
                                            Median:67.0
                                            Mean :66.8
## Mean :4.488
                      Mean :2.124
## 3rd Qu.:5.300
                                            3rd Qu.:69.0
                       3rd Qu.:2.000
## Max. :7.300
                       Max. :6.000
                                            Max. :79.0
## NA's :4
                      NA's
                            :11
                                            NA's
                                                 :11
## MEAN.ANNUAL.SUNSHINE MEAN.ANNUAL.RAINFALL MAX.MONTHLY.WIND.SPEED
## Min. : 0
                 Min. : 446.0
                                         Min. :1.000
## 1st Qu.:1441
                     1st Qu.: 640.2
                                         1st Qu.:2.000
## Median :1543
                    Median : 737.5
                                         Median :3.000
                      Mean : 787.2
## Mean :1517
                                         Mean :2.721
## 3rd Qu.:1635
                      3rd Qu.: 857.0
                                         3rd Qu.:3.000
## Max. :1846
                      Max. :1995.0
                                         Max.
                                              :7.000
## NA's :193
                      NA's
                                         NA's
                                              :11
                           :13
   MAX.AIR.TEMP MAX.WIND.SPEED MAX.RAINFALL
##
                                               MIN.AIR.TEMP
## Min. :13.90 Min. : 3.80 Min.
                                     :25.00 Min.
                                                    :-25.40
## 1st Qu.:31.10 1st Qu.:25.45 1st Qu.:34.00 1st Qu.:-16.70
## Median :32.20 Median :27.50 Median :36.00 Median :-14.90
## Mean :31.84 Mean :27.56 Mean :38.55
                                              Mean :-14.93
## 3rd Qu.:33.10 3rd Qu.:29.50
                                3rd Qu.:41.00
                                               3rd Qu.:-13.30
## Max. :35.40 Max.
                                Max. :76.00
                       :54.30
                                              Max. : -5.30
## NA's :2
                 NA's
                        :380
                                NA's :14
                                               NA's
                                                     :2
## MEAN.RANGE.AIR.TEMP
## Min. : 0.000
## 1st Qu.: 7.600
## Median: 8.400
## Mean : 8.168
## 3rd Qu.: 8.900
## Max. :11.100
##
istotne = subset(dane, select = -c(LAT, LON, PERIOD, RECORD.LENGTH, FEDERAL.STATE))
# 4 obrobka danych, usuwanie pustych
liczba <- nrow(istotne)</pre>
nowe dane <- na.omit(istotne)</pre>
liczba bp <- nrow(nowe dane) # liczba wierszy z pominietymi brakującymi danymi
liczba_usunietych = liczba - liczba_bp
liczba_usunietych
```

```
#5
wymiary <- dim(nowe_dane)
wymiary # wiersze, kolumny

## [1] 204 17

# 6 podział zestawu
# install.packages("caTools")
library(caTools)

## Warning: pakiet 'caTools' został zbudowany w wersji R 4.3.3

split <- sample.split(nowe_dane, 0.7)

trening <- subset(nowe_dane, split == TRUE)
test <- subset(nowe_dane, split == FALSE)

# 7 Wyodrębnij tą zmienną w postaci wektora
treningV <- trening$MEAN.ANNUAL.RAINFALL
testV <- test$MEAN.ANNUAL.RAINFALL

trening_matrix = as.matrix(subset(trening, select = -c(MEAN.ANNUAL.RAINFALL)))

test_matrix = as.matrix(subset(test, select = -c(MEAN.ANNUAL.RAINFALL)))</pre>
```



```
corr = cor(dane8)
# 10
library(corrplot)
## Warning: pakiet 'corrplot' został zbudowany w wersji R 4.3.2
## corrplot 0.92 loaded
corrplot(corr, method = "number") # wartość korelacji w sposób liczbowy
                                                                            0.2
                                                                            0.6
# filtracja par zmiennych z wartością współczynnika korelacji /r/>=0.5
zmienne = abs(corr['MEAN.ANNUAL.RAINFALL',]) >= 0.5
wybrane = names(zmienne[zmienne])
z11 <- nowe_dane[wybrane]</pre>
```

```
# 12
ggpairs(z11)
```


CZESC II

Tworzenie modeli

```
# 1
# srednia opadow na wszystkich stacjach
srednia_opadow <- mean(treningV)</pre>
srednia opadow
## [1] 738.3258
# porownaj ze srednia dla kazdej stacji
srednia_stacje <- aggregate(MEAN.ANNUAL.RAINFALL ~ STATION.NAME, data = trening, FUN = mean)</pre>
head(srednia_stacje)
             STATION.NAME MEAN.ANNUAL.RAINFALL
##
               G\xf6rlitz
                                             681
## 2 Gie\xdfen/Wettenberg
                                             624
## 3
                L\xfcchow
                                             539
## 4 Gro\xdf L\xfcsewitz
                                             612
## 5
       Bremerv\xf6rde (A)
                                             758
                                             608
## 6
             G\xf6ttingen
```

```
model_bazowy <- lm(MEAN.ANNUAL.RAINFALL ~ 1, data = trening)</pre>
# 2
RMSE2 <- sqrt(sum((srednia_opadow - treningV)^2)/length(treningV) )</pre>
# RMSE <- sqrt(mean((srednia_opadow - treningV)^2))</pre>
RMSE2
## [1] 222.4818
# 3
predykcje_bazowe <- predict(model_bazowy, newdata = test)</pre>
pred = srednia_opadow * length(treningV)
RMSE3 <- sqrt(mean(( predykcje_bazowe - testV)^2))</pre>
RMSE3
## [1] 247.9997
# 4
corr_srednia <- cor(dane8)[, "MEAN.ANNUAL.RAINFALL"]</pre>
# zmienna ALTITUDE ma korelacje 0.758532239 ze srednimi opadami
model_liniowy4 <- lm(MEAN.ANNUAL.RAINFALL ~ ALTITUDE, data = trening)</pre>
RMSE4 <- sqrt(mean((predict(model_liniowy4) - srednia_opadow)^2))</pre>
predykcje_liniowe5 <- predict(model_liniowy4, newdata = test)</pre>
RMSE5 <- sqrt(mean((predykcje liniowe5 - srednia opadow)^2))</pre>
RMSE5
## [1] 185.2929
model_liniowy6 <- lm(MEAN.ANNUAL.RAINFALL ~ MAX.RAINFALL, data = trening)</pre>
RMSE6 <- sqrt(mean((predict(model_liniowy6) - srednia_opadow)^2))</pre>
RMSE6
## [1] 184.2358
predykcje_liniowe6<- predict(model_liniowy6, newdata = test)</pre>
RMSE7 <- sqrt(mean((predykcje liniowe5 - testV)^2))</pre>
RMSE7
## [1] 150.6471
model liniowy wielokrotny8 <- lm(MEAN.ANNUAL.RAINFALL ~ ALTITUDE + MEAN.ANNUAL.AIR.TEMP + MAX.RAINFALL,
R2_8 <- summary(model_liniowy_wielokrotny8)$r.squared
RMSE8 <- sqrt(mean((predict(model_liniowy_wielokrotny8) - srednia_opadow)^2))</pre>
RMSE8
## [1] 186.9019
```

```
predykcje_9 <- predict(model_liniowy_wielokrotny8, newdata = test)
RMSE9 <- sqrt(mean((predykcje_9 - testV)^2))
RMSE9

## [1] 103.1275

# 10
RMSE_trening <- c(RMSE2, RMSE4, RMSE6, RMSE8)
RMSE_test <- c(RMSE3, RMSE5, RMSE7, RMSE9)

modele <- c("$rednia opadów", "lin altitude", "lin max opady", "lin wielokrotny")

barplot(
   rbind(RMSE_trening, RMSE_test),
   beside = TRUE,
   names.arg = modele,</pre>
```

col = c("blue", "red"),

xlab = "Modele",
ylab = "Wartość RMSE"

legend.text = c("Trening", "Test"),

main = "Porównanie RMSE dla różnych modeli",

Porównanie RMSE dla róznych modeli

