ПЗ – 6/7. Равномерная сходимость функциональных последовательностей и рядов. Свойства равномерно сходящихся рядов. І

Определение 4. Функциональный ряд (1) называется равномерно сходящимся к своей сумме S(x) на множестве X, если последовательность частичных сумм $(S_n(x))$ этого ряда равномерно сходится на X к S(x).

1. Критерий Коши.

Для равномерной сходимости ряда (1), п.4.1, на множестве X необходимо и достаточно, чтобы $\forall \varepsilon > 0 \ \exists N = N(\varepsilon)$ такое, что $\forall n > N \land \forall p \in \mathbb{N} \land \forall x \in X$ выполнялось неравенство

$$|S_{n+p}(x) - S_n(x)| < \varepsilon.$$

Важнейшие достаточные признаки равномерной сходимости рядов.

2. Мажорантный признак Вейерштрасса. Если $\exists a_k \in \mathbb{R}$ такие, что $\forall x \in X$ справедливы неравенства $|u_k(x)| \leq a_k$, $k \in \mathbb{N}$, и ряд $\sum_{k=1}^{\infty} a_k$ сходится, то ряд (1), п.4.1, сходится равномерно на X.

2768.
$$\sum_{n=1}^{\infty} \frac{x^n}{n^2}$$
 Ha orpeske[-1, 1].

$$\left|\frac{x^n}{n^2}\right| \leqslant \frac{1}{n^2} \qquad \text{при } n \to \infty,$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \quad \text{ряд сходится}$$

рассматриваемый ряд сходится равномерно.

2774. r.
$$\sum_{n=1}^{\infty} \frac{nx}{1+n^5x^2}, |x| < +\infty.$$

lacktriangleda Найдем $\sup_{|x|<+\infty}|a_n(x)|$, где $a_n(x)$ — общий член ряда. Имеем

$$\sup_{|x|<+\infty} |a_n(x)| = \sup_{|x|<+\infty} \left| \frac{nx}{1+n^5x^2} \right| = \frac{1}{2n^{\frac{3}{2}}}$$

и достигается при $x_n = \frac{1}{n^{\frac{5}{2}}}$. Следовательно, ряд $\sum_{n=1}^{\infty} \frac{1}{2^{n^{\frac{3}{2}}}}$ является мажорантным для данного ряда. Так как мажорантный ряд сходится, то исходный ряд, согласно признаку Вейерштрасса, сходится равномерно. \blacktriangleright

2774.д.
$$\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n!}} (x^n + x^{-n}), \ \frac{1}{2} \leqslant |x| \leqslant 2.$$

◆ Легко найти, что

$$\sup_{\frac{1}{2} \le |x| < 2} (x^n + x^{-n}) = 2^n + \frac{1}{2^n} < 2^{n+1}.$$

Поскольку, к тому же, ряд $\sum_{n=1}^{\infty} \frac{n^2}{\sqrt{n!}} 2^{n+1}$, в силу признака д'Аламбера, сходится, то исследуемый ряд сходится равномерно. \blacktriangleright

- 3. Признак Дирихле. Если частичные суммы ряда $\sum_{k=1}^{\infty} a_k(x)$ равномерно ограничены на X, т.е. $\exists M>0$ такое, что $\forall x\in X \land \forall n\in \mathbb{N}$ выполняется неравенство $|S_n(x)|=\left|\sum_{k=1}^n a_k(x)\right|\leqslant M$, а функциональная последовательность $(b_n(x))$ удовлетворяет двум условизм:
 - a) $\forall x \in X : b_{n+1}(x) \leqslant b_n(x) \ \forall n > n_0$
 - 6) $b_n(x) \rightrightarrows 0$ на X при $n \to \infty$, то функциональный ряд

$$\sum_{k=1}^{\infty} a_k(x)b_k(x) \tag{1}$$

сходится равномерно на X.

2775. а)
$$\sum_{n=1}^{\infty} \frac{\sin nx}{n}$$
: а) на отрезке $\varepsilon \leqslant x \leqslant 2\pi - \varepsilon$, где $\varepsilon > 0$;

 \blacktriangleleft а) Поскольку частичные суммы $\sum_{k=1}^{n} \sin kx$ ограничены:

$$\left| \sum_{k=1}^{n} \sin kx \right| = \left| \frac{\sin \frac{nx}{2} \sin \frac{n+1}{2}x}{\sin \frac{x}{2}} \right| \leqslant \frac{1}{\sin \frac{x}{2}} \leqslant \frac{1}{\sin \frac{x}{2}},$$

а последовательность $(\frac{1}{n}) \downarrow 0$ при $n \to \infty$, то, по признаку Дирихле, ряд сходится равномерно.

$$2781. \quad \sum_{n=1}^{\infty} \frac{\sin x \sin nx}{\sqrt{n+x}}, \ 0 \leqslant x < +\infty.$$

◀ Поскольку частичные суммы, в силу оценки

$$\left|\sum_{n=1}^{n}\sin x\sin kx\right| = 2\left|\cos\frac{x}{2}\right|\left|\sin\frac{nx}{2}\sin\frac{n+1}{2}x\right| \leqslant 2,$$

ограничены, а функциональная последовательность $\left(\left(n+x\right)^{-\frac{1}{2}}\right)$ равномерно по x $\left(\frac{1}{\sqrt{n+x}}\leqslant \frac{1}{\sqrt{n}}\to 0\right)$ и монотонно по n

$$\left(\frac{1}{\sqrt{n+x}} - \frac{1}{\sqrt{n+1+x}} = \frac{1}{\sqrt{(n+x)(n+1+x)}(\sqrt{n+1+x} + \sqrt{n+x})} > 0\right)$$

стремится к нулю при $n \to \infty$, то, согласно признаку Дирихле, ряд сходится равномерно. \blacktriangleright

- 4. Признак Абеля. Ряд (1) сходится равномерно на X, если ряд $\sum_{k=1}^{\infty} a_k(x)$ сходится равномерно на X, а функции b_k удовлетворяют двум условиям:
 - a) $\exists M > 0$ makee, umo $\forall x \in X \land \forall k \in \mathbb{N}$ выполняется неравенство $|b_k(x)| \leq M$;
 - б) $\forall x_0 \in X$ последовательность $(b_k(x_0))$ монотонна при $k > k_0$.

 5^{***} . для равномерной сходимости на множестве X последовательности

 $(f_n), f_n: X \to \mathbb{R}(\mathbb{C}), n \in \mathbb{N},$ к предельной функцин $f: X \to \mathbb{R}(\mathbb{C}),$ необходимо и достаточно, чтобы

$$\lim_{n\to\infty}\left(\sup_X r_n(x)\right)=0,$$

где

$$r_n(x) = |f(x) - f_n(x)|.$$

$$2747, \quad 4_{n}(x) = x^{n} - x^{n+1}, \quad 0 \le x \le 1.$$

$$4 \text{ kpurequei} \quad 5^{****} :$$

$$4(x) = \lim_{n \to \infty} 4_{n}(x) = \lim_{n \to \infty} (x^{n} - x^{n+1}) = 0,$$

$$4(x^{n} - x^{n+1}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n+1}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n+1}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n+1}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{n}) \times (x^{n} - x^{n}) = 0,$$

$$4(x^{n} - x^{n}) = n \times (x^{n} - x^{$$

2748.
$$f_n(x) = x^n - x^{2n}$$
 $0 \le x \le 1$

fo kfurghero 5 *** $f(x) = 0$;

 $(x^n - x^{2n})' = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $1 - 2 \times^n = 0$, $9 \times = \frac{1}{\sqrt{2}}$

Sup $|f_n(x) - f(x)| = |f_n(x)|^n - |f_n(x)|^2 = |f_n(x)|^n - |f_n(x)|^2 = |f_n(x)|^n - |f_n(x)|^2 = |f_n(x)|^n + |f_n(x)|^2 = |f_n(x)|^2$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{2n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} = 0$
 $|f_n(x)| = n \times^{n-1} - 2n \times^{n-1} =$

2750.
$$f_n(x) = \frac{nx}{1+n+x}, 0 \le x \le 1.$$

 \blacktriangleleft Нетрудно видеть, что $f(x) = \lim_{n \to \infty} \frac{nx}{1+n+x} = x$ и справедлива оценка $\sup_{x \in [0, 1]} \left| \frac{nx}{1+n+x} - x \right| \leqslant \frac{2}{n+1}$. Поэтому

$$\lim_{n\to\infty}\left(\sup_{x\in[0,\,1]}|f_n(x)-f(x)|\right)=0,\quad f_n(x)\rightrightarrows x.\;\blacktriangleright$$

Задачи для самостоятельного решения

2774. Пользуясь признаком Вейерштрасса, доказать равномерную сходимость в указанных промежутках следующих функциональных рядов:

a)
$$\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$$
, $-\infty < x < +\infty$;

B) $\sum_{n=1}^{\infty} \frac{x}{1 + n^4 x^2}$, $0 \le x < +\infty$;

2776.
$$\sum_{n=1}^{\infty} 2^n \sin \frac{1}{3^n x}$$
; $0 < x < +\infty$.

Литература

Демидович Б.П.

Сборник задач и упражнений по математическому анализу: Учеб. пособие. — 14-е изд. испр. — М.: Изд-во Моск. ун-та, 1998. — 624 с.