Sistemas de Procesamiento de Datos

Prof. Lic Verónica Lourdes Tomich

Prof. TUP Rodrigo Soto

Prof. TUSI Leonardo Chiessa

Prof. Lic Eduardo Monaco

PDI Guillermo Gimenez

La circuitería digital en computadoras y otros sistemas digitales, se diseña y se analiza con el uso de una disciplina matemática denominada...

Resulta ser una herramienta útil en dos áreas:

- Análisis: es una forma concisa de describir el funcionamiento de los circuitos digitales.
- Diseño: dada una función deseada, se puede aplicar el álgebra para simplificar dicha función.

- Componentes de un álgebra:
 - Variables
 - Operaciones

- En este caso dichos componentes son lógicos.
 - Variables: Pueden tomar valores 0 o 1.
 - Operaciones: Op. Log. básicas
 - AND
 - OR
 - NOT

Representación de las operaciones básicas.

 \circ A AND B = A . B

La operación and es verdadera (1) si y sólo si

los dos valores son verdaderos.

А	В	A AND B
0	0	0
0	1	0
1	0	0
1	1	1

 \circ A OR B = A+ B

Es verdadero si al menos 1 de los dos operandos es verdadero.

 \circ NOT A = \bar{A} o $\sim A$

А	В	<u>A OR B</u>
0	0	0
0	1	1
1	0	1
1	1	1

 \circ NOT A = \bar{A} o $\sim A$

Si A es verdadero entonces \bar{A} va a ser falso. Pero si A es falso entonces \bar{A} va a ser verdadero.

А	Ā
0	1
0	1
1	0
1	0

Ejemplo:

$$D = A + (\sim B + C)$$

D es igual a 1 si A es 1 o si B = 0 o si C = 1.

En otro caso D es igual a 0.

■ Resolución del Ejemplo: $D = A + (\sim B + C)$

$$\blacksquare$$
 D = 1 => A= 1, B=0 y C = 1

■
$$D = 1 + (\sim 0 + 1) = >$$

$$\blacksquare$$
 D= 1+(1+1)

■ Resolución del Ejemplo: $D = A + (\sim B + C)$

$$\blacksquare$$
 D = 1 => A= 1, B=1 y C = 0

■
$$D = 1 + (\sim 1 + 0) = >$$

$$\blacksquare$$
 D= 1+(0+0)

■ Resolución del Ejemplo: $D = A + (\sim B + C)$

$$\blacksquare$$
 D = 1 => A= 0, B=1 y C = 0

■
$$D = 0 + (\sim 1 + 0) = >$$

$$D = 0 + (0 + 0)$$

Aclaraciones:

En ausencias de paréntesis la operación AND es preferente a la operación OR. Si no hay ambigüedad la operación AND se presenta como una concatenación.

$$A + B.C = A + (B.C) = A + BC$$

La Tabla define las operaciones básicas en una forma conocida como TABLA de VERDAD.

- Se enumeran otro tres operadores
 - → XOR
 - → NAND
 - → NOR

Los dos postulados agregados anteriormente denotan la manera en las que se interpretan las expresiones.

- \rightarrow A NAND B = NOT(A AND B) = NOT A OR NOT B
- \rightarrow A NOR B = NOT(A OR B) = NOT A AND NOT B

Las dos expresiones anteriores se denomina Teorema De Morgan

A NAND B = NOT(A AND B) = NOT A OR NOT B

Α	В	A AND B	A OR B	A NAND B	~(A AND B)	~A	~B	<u>~A OR ~B</u>
0	0	0	0	1	1	1	1	1
0	1	0	1	1	1	1	0	1
1	0	0	1	1	1	0	1	1
1	1	1	1	0	0	0	0	0

A NOR B = NOT(A OR B) = NOT A AND NOT B

А	В	Ā	A NOR B	A OR B	<u>~(A OR B)</u>	~A	∼B	<u>∼A AND ∼B</u>
0	0	1	1	0	1	1	1	1
0	1	1	0	1	0	1	0	0
1	0	0	0	1	0	0	1	0
1	1	0	0	1	0	0	0	0

De esta manera tenemos la tabla de verdad completa

А	В	Ā	A AND B	A OR B	A XOR B	A NAND B	A NOR B
0	0	1	0	0	0	1	1
0	1	1	0	1	1	1	0
1	0	0	0	1	1	1	0
1	1	0	1	1	0	0	0

Ahora analicemos los postulados:

Postulados básicos				
A.B=B.A	A+B=B+A	Ley Conmutativa		

Postulados básicos					
A.(B+C)=	A+(B.C)=	Ley			
(A.B)+(A.C)	(A+B).(A+C)	Distributiva			

Postulados básicos				
1.A=A	0+A=A	Elemento Neutro		

Postulados básicos				
A.Ā=0	A+Ā=1	Elemento complemento		

Ahora analicemos otras identidades:

Otras identidades				
0.A=0	1+A=1	Ley Nula		

Otras identidades				
A.A=A	A+A=A	Idempotencia		

Otras identidades			
A.(B.C)=(A.B).C	A+(B+C)=(A+B)+C	Ley Asociativa	

Otras identidades			
~(A.B)=~A+~B	~(A+B)=~A.~B	Teorema De Morgan	

Puertas: Bloque fundamental de construcción de todos los circuitos lógicos digitales.

- Las funciones lógicas se implementan interconectando puertas.

- Cada puerta se define de tres formas:
 - Símbolo grafico
 - Notación algebraica
 - Tabla de verdad

Nombre	Símbolo	Función
AND		F=A.B
OR		F=A+B
XOR		F=A B
NOT	— 	F=Ā
NAND		F=~(AB)
NOR	<u></u>	F=~(A+B)

- Por lo tanto para poder llevar todo esto a la práctica vamos a tener qué tener muy presente las siguientes tres diapositivas:
- Postulados Básicos
- Otras Identidades
- Simbología de funciones básicas

Álgebra de Boole

Postulados Básicos				
A.B=B.A	A+B=B+A	Ley Conmutativa		
A.(B+C)= (A.B)+(A.C)	A+(B.C)= (A+B).(A+C)	Ley Distributiva		
1.A=A	0+A=A	Elemento Neutro		
A.Ā=0	A+Ā=1	Elemento Complemento		
A.(A +B)=A	A+A.B=A	Ley de Absorción		

Álgebra de Boole

Otras identidades				
0.A=0	1+A=1	Elemento Neutro		
A.A=A	A+A=A	Idempotencia		
A.(B.C)=(A.B).C	A+(B+C)=(A+B)+C	Ley Asociativa		
~(A.B)=~A+~B	~(A+B)=~A.~B	Teorema De Morgan		

Nombre	Símbolo	Función
AND		F=A.B
OR		F=A+B
XOR		F=A⊕B
NOT	— >	F=Ā
NAND		F=~(AB)
NOR	<u></u>	F=~(A+B)

Expresiones Canónicas

- ■Existen dos formas básicas de expresión canónica que pueden ser interpretadas en dos niveles de compuertas:
 - Suma de productos o expansión de miniterminos.
 - Productos de sumas o expansión de maxiterminos.

Expresiones Canónicas

- ■Permiten asociar a una función una expresión algebraica única.
- ■La tabla de verdad también es una representación única para una función booleana.

Los términos son productos o miniterminos.

- Formado por los productos AND que para las diferentes combinaciones de entradas producen salida verdadera.
- En cada producto cada variable aparece una vez, esta puede estar invertida.

También conocida como expansión de miniterminos.

Primero tomamos los F qué tienen como resultado el 1

Α	В	С	F F'	
0	0	0	0 1	
0	0	1	1 0	001 :
0	1	0	0 1	
0	1	1	1/0	011 :
1	0	0	0 1	
1	0	1	1/0/	101 :
1	1	0	1/0/	110 :
1	1	1	1/0	111:
			'	

Los términos de miniterminos los tendremos que sumar

F=	001	011	101	110	111	

F=	001	011	101	110	111
F=	A´.B´.C +	A´.B.C +	A.B'.C +	A.B.C´+	ABC

F=	001	011	101	110	111
F=	A'.B'.C+	A'.B.C +	A.B'.C +	A.B.C´+	ABC
F(001)=	1.1.1 +	1.0.1 +	0.1.1+	0.0.0+	001

F=	001	011	101	110	111
F=	A'.B'.C +	A´.B.C +	A.B´.C +	A.B.C´+	ABC
F(001)=	1.1.1 +	1.0.1 +	0.1.1+	0.0.0+	0.0.1
F(001)=	1 +	0 +	0 +	0 +	0
F(011)=	1.0.1+	1.1.1+	0.0.1+	0.1.0+	011

Entonces sabemos qué si el primer término nos da 1 todo lo qué luego sumamos no importa porque su resultado es 1.

Forma Canónica de Miniterminos buscamos los F=1

F en forma canónica:

```
F(A, B, C) = \Sigma m(1,3,5,6,7)
= m1 + m3 + m5 + m6 + m7
= A'B'C + A'BC + AB'C + ABC' + ABC'
```

RECORDEMOS:

Terminos = ABC

Variables = Cada letra

Objetivo:

Reducir la función aplicando las leyes anteriormente nombradas

Reducir la función aplicando las leyes anteriormente:

```
forma canónica \neq forma minima

F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'
= (A'B' + A'B + AB' + AB)C + ABC'
= ((A' + A)(B' + B))C + ABC'
= C + ABC'
= ABC' + C
= AB + C
```

Veamos el Paso a Paso

Buscar qué tienen en común los términos:

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'$$

Los primeros cuatro términos tienen C en común.

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$

Ahora tratamos de reducirlo más..

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$

Seguimos simplificando, aplico ley distributiva.

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$
$$= (A'B' + A'B + AB' + AB)C + ABC'$$
$$= ((A' + A)(B' + B))C + ABC'$$

Analicemos los términos con: A', B' B y A

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$

Aplico Elemento Complemento: (A' + A) = 1 y (B' + B) = 1

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$

Aplico ley distributiva NUEVAMENTE

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$

Aplicó la distributiva (C+C') . (A.B+C) y luego simplifico

```
forma canónica ≠ forma minima
  F(A, B, C) = A'B'C + A'BC + ABC + ABC'
             = (A'B' + A'B + AB' + AB)C + ABC'
             = ((A' + A)(B' + B))C + ABC'
             = C + ABC'
             = ABC' + C
             = AB + C
```

٨	D	_	nointaun.				
A	<u> </u>	L	minterms	F en forma ca	nónica:		
0	0	0	A'B'C' m0				
0	0	1	A'B'C m1	r(A, B, C)	$= \Sigma m(1,3,5,6,7)$	7	
0	1	0	A'BC' m2		= m1 + m3 + m5 + m6		_
0	1	1	A'BC m3		= A'B'C + A'BC + AB'C +	HARC + AB	٠
1	0	0	AB'C' m4	forma canánic	a / forma minima		
1	0	1	AB'C m5		ca ≠ forma minima ^'P'C + ^'PC + ^P'C +	ADC : ADC	,
1	1	0	ABC' m6	F(A, B, C)	= A'B'C + A'BC + AB'C +		
1	1	1	ABC m7		= (A'B' + A'B + AB' + AB	•	
			1		= ((A' + A)(B' + B))C + A	ARC	
					= C + ABC'		
forma	corta	de es	scribir minterms		= ABC' + C		
(ejemp	(ejemplo de 3 terminos o $2^3 = 8$ minterms)			$= AB + C \qquad 3: C$	Canónicas	5	

Producto de sumas

 También conocida como expansión de maxiterminos.

Producto de sumas

 También conocida como expansión de maxiterminos. Tomamos como seria con el F´

Producto de sumas

Los términos son sumas o maxitérminos.

- Formado por las suma OR que para las diferentes combinaciones de entradas producen salida falsa.
- En cada producto cada variable aparece una vez, esta puede estar invertida.

<u>A</u>	В	С	maxterms	
0	0	0	A+B+C	M0
0	0	1	A+B+C'	M1
0	1	0	A+B'+C	M2
0	1	1	A+B'+C'	M3
1	0	0	A'+B+C	M4
1	0	1	A'+B+C'	M5
1	1	0	A'+B'+C	M6
1	1	1	A'+B'+C'	M7
			/	/

F en forma canónica:

F(A, B, C) =
$$\Pi M(0,2,4)$$

= $M0 \cdot M2 \cdot M4$
= $(A + B + C) (A + B' + C) (A' + B + C)$

forma canónica ≠ forma minima

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$

forma corta de escribir minterminos (ejemplo de 3 términos o 2³ = 8 minterminos)

3: Canónicas

7

Se desea construir un circuito que contiene tres entradas A, B, C, que representan los bits de un número binario entero no negativo, y la salida vale 1, si el número que representa en decimal, es una potencia exacta de 2.

A	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Son potencias de dos: 1, 2 y 4.

Utilizamos Miniterminos:

Se desea diseñar un circuito que permita determinar cuando un semáforo se encuentra dañado.

```
A= VERDE B = AMARILLO C = ROJO
1= PRENDIDO 0= APAGADO
```

Α	В	С	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

```
A= VERDE B = AMARILLO C = ROJO

1= PRENDIDO 0=

APAGADO

Usamos Maxiterminos:

F= (A+B+C).(A'+B+C').(A'+B'+C')
```