Álgebra Relacional

Sistemas de Informação I

Álgebra Relacional

- Foi proposta por E. F. Cood
- É uma colecção de operações formais aplicáveis sobre Relações
- Como resultado da aplicação dessas operações obtêm-se sempre uma nova Relação
- Algumas dessas operações derivam directamente da teoria dos conjuntos
- Outras são específicas para o modelo relacional

Operações Relacionais

- Existentes no formalismo matemático da teoria dos conjuntos e aplicáveis pois uma Relação é um <u>conjunto</u> de tuplos:
 - União (operador ∪)
 - Intersecção (operador △)
 - Diferença (operador -)
 - Produto cartesiano (operador x)
- Operações que foram elaboradas para o modelo relacional:
 - Selecção, restrição (operador σ)
 - Projecção (operador π)
 - Junção (operador ⋈)
 - Divisão (operador ÷)

Operações Relacionais (cont.)

Operações Relacionais (cont.)

- Formalmente, os nomes dos atributos das Relações operandos não são tidos em conta
- Cada atributo identifica-se pelo índice que ocupa na relação
- Na prática, e por questões de simplicidade e legibilidade, adopta-se o nome dos atributos para identificação
- Quando tal for ambíguo, utiliza-se o índice para identificação, por vezes entre parêntesis rectos

A	В	C
а	b	С
d	а	f
С	b	d

O atributo B, no contexto da relação correspondente, pode ser identificado por :

- B
- 2
- [2]

Selecção ou restrição

- A operação de selecção "escolhe" um conjunto de tuplos de uma relação que verificam uma determinada condição
- Sendo r uma relação, esta operação representa-se da seguinte forma:
 - σ<condição boolena>(r)
- Exemplo: Quais as pessoas com idade superior a 25 anos?
 - \circ $\sigma_{\text{idade} > 25}$ (PESSOA)

PESSOA

BI	Nome	Idade
123	José	25
456	José	70
789	Joana	15
909	Pedro	30

 $\sigma_{idade>25}$ (PESSOA)

BI	Nome	Idade
456	José	70
909	Pedro	30

Selecção ou restrição (cont.)

- Cada condição booleana consiste numa sequências de cláusulas da forma:
 - Atributo op valor, em que valor pertence ao domínio do atributo
 - Atributo op Atributo
- As operações op podem ser:

- As cláusulas estão ligadas entre si por operadores lógicos:
 - ∧ (e), ∨ (ou), ¬ (negação)
- Quais as pessoas com idade superior a 25 anos e com nome José?
 - \circ $\sigma_{idade > 25 \land nome = José}$ (PESSOA)

BI	Nome	Idade
456	José	70

Selecção ou restrição – características

- A operação de selecção é uma operação unária, que tem como operando uma única relação
- O grau da relação resultante da aplicação da operação é igual ao grau da relação operando
- Uma sequência de operações σ pode ser escrita numa só que tem como condição a conjunção das condições das várias operações σ

```
\circ \ \sigma_{cond1} \left(\sigma_{cond2} \left(...(\sigma_{condN}(r))\right)\right) = \sigma_{(cond1 \land cond2 \land condn)} \left(r\right)
```

A composição de operações σ é comutativa, ou seja:

$$\circ \sigma_{cond1} (\sigma_{cond2} (r)) = \sigma_{cond2} (\sigma_{cond1} (r))$$

Quais as pessoas com idade superior a 25 anos e com nome José? $\sigma_{idade > 25}$ ($\sigma_{nome = José}$ (PESSOA)) = $\sigma_{idade > 25} \land_{nome = José}$ (PESSOA))

$$\sigma_{idade > 25}$$
 ($\sigma_{nome = José}$ (PESSOA)) = $\sigma_{nome = José}$ ($\sigma_{idade > 25}$ (PESSOA))

Projecção

- Operação de projecção escolhe um determinado subconjunto de atributos da relação operando
- Sendo r uma relação, esta operação representa-se da seguinte forma:
 - \circ π sta de atributos>(r)
- Quais os nomes e idades das pessoas?
 - \circ π nome,idade (PESSOA)

PESSOA

BI	Nome	Idade
123	José	25
456	José	70
789	Joana	15
909	Pedro	30

 $\pi_{\text{nome,idade}}$ (PESSOA)

Nome	Idade
José	25
José	70
Joana	15
Pedro	30

Projecção – características

- Quando no resultado de uma operação de projecção existirem vários tuplos iguais, apenas um é considerado:
 - Este procedimento é conhecido como "Eliminação de duplicados"
 - Com este procedimento é garantido que o resultado é uma relação, ou seja, um conjunto
- Se na lista de atributos da projecção estiver contida a chave da relação, <u>a cardinalidade do resultado é a igual à</u> cardinalidade da relação operando

Na composição de várias projecções

- Se lista1 está contida em lista2
 - π_{lista1} (π_{lista2} (PESSOA))= π_{lista1} (PESSOA)
- Se lista1 n\u00e3o est\u00e1 contida em lista2
 - $-\pi_{lista1}$ (π_{lista2} (PESSOA))= operação inválida

Encadeamento de operações

- Escrever as operações numa única expressão
- As operações são aplicadas uma de cada vez a resultados intermédios

Para o exemplo anterior

Quais os nomes e idades das pessoas cuja idade é superior a 25 anos?

```
\pi_{\text{nome,idade}} (\sigma_{\text{idade} > 25} (PESSOA))
Raux = \sigma_{\text{idade} > 25} (PESSOA); \pi_{\text{nome,idade}} (Raux)
```

BI	Nome	Idade
123	José	25
456	José	70
789	Joana	15
909	Pedro	30

Álgebra Relacional – Relações exemplo

Considere os seguintes Esquemas de Relação e as respectivas Relações

- ALUNO (numeroAluno, nomeAluno, dataNascimentoAluno)
- DOCENTE (numeroDocente, nomeDocente, dataNascimentoDocente)

ALUNO

numeroAluno	nomeAluno	dataNascAluno
12345	Antonio	10-10-1970
43321	Nuno	21-09-1970
12231	Maria	12-05-1976

DOCENTE

numeroDocente	nomeDocente	dataNascDocente
12345	Antonio	10-10-1970
11223	Felizberta	21-09-1961

União

- A operação de união de duas Relações R1 e R2 tem como resultado uma Relação R, contendo os tuplos de R1 e R2
- Os tuplos repetidos são removidos
- Esta operação só é válida se R1 e R2 tiverem Esquemas compatíveis
- É uma operação comutativa: R1 ∪ R2= R2 ∪ R1
- Formalmente escreve-se R1 \cup R2 = {t: t \in R1 \vee t \in R2}
- Quais o conjunto de todos os alunos e docentes?
 - ALUNO U DOCENTE

12345	Antonio	10-10-1970
43321	Nuno	21-09-1970
12231	Maria	12-05-1976
11223	Felizberta	21-09-1961

Diferença

- A operação de diferença entre duas Relações R1 e R2 tem como resultado uma Relação R, contendo os tuplos de R1 que não constam de R2
- Esta operação só é válida se R1 e R2 tiverem Esquemas compatíveis
- Formalmente escreve-se R1 R2 = {t: t ∈ R1 ∧ t ∉ R2}
- Qual o conjunto de todos os alunos que não são docentes?
 - ALUNO DOCENTE

43321	Nuno	21-09-1970
12231	Maria	12-05-1976

Diferença - características

- Ao contrário da operação união, a operação diferença não é comutativa: R1 - R2 ≠ R2 - R1
- Para o exemplo:

ALUNO - DOCENTE tem como resultado todos os alunos que não são docentes

43321	Nuno	21-09-1970
12231	Maria	12-05-1976

DOCENTE -ALUNO tem como resultado todos os docentes que não são alunos

11223	Felizberta	21-09-1961

Intersecção

- A operação intersecção entre duas Relações R1 e R2 tem como resultado uma Relação R constituída pelos tuplos comuns a R1 e R2
- Esta operação só é válida se R1 E R2 tiverem esquemas compatíveis
- Formalmente escreve-se R1 \cap R2 = {t: t \in R1 \wedge t \in R2}
- A intersecção pode ser feita recorrendo à diferença:

$$\circ$$
 R1 – (R1 – R2)

Qual o conjunto de todos os alunos que também são docentes?

-ALUNO ∩ DOCENTE

12345	Antonio	10-10-1970

União, diferença, intersecção: características comuns

- São operações binárias, ou seja, são operações efectuadas sobre duas Relações
- Os atributos da Relação resultante podem ser identificados pelo seu índice
- Para que as operações possam ser aplicadas, as Relações operando têm de ter Esquemas compatíveis
- Os Esquemas são compatíveis quando:
 - Têm o mesmo grau
 - Os atributos têm o mesmo domínio
- O Esquema da Relação obtida é igual ao das relações operando

Álgebra Relacional – Relações exemplo II

Considere os seguinte Esquemas de Relação e as respectivas Relações

- BANDA (codigo, nome, anoFormacao, genero)
- GENERO (codigo, designacao)

BANDA

Codigo	Nome	AnoFormacao	Genero
1	Metallica	1981	1
2	Madredeus	1991	2
3	Iron Maiden	1976	1
4	The Platters	1953	3

GENERO

Codigo	Designacao
1	Metal
2	Fado
3	Rock

Produto cartesiano

- A operação produto cartesiano tem como argumentos duas Relações R1 e R2
- Como resultado, obtém-se uma Relação R constituída pelas combinações possíveis dos tuplos de R1 com R2 (por esta ordem)
- Formalmente escreve-se
 - \circ R1 X R2 = {t1,t2: t1 \in R1 \land t2 \in R2}
- Se o grau de R1 for G1 e o de R2 for G2, então
 - O grau da Relação resultante de R1 X R2 será igual a G1 + G2
- Se a cardinalidade de R1 for C1 e a de R2 for C2, então
 - A cardinalidade da Relação resultante de R1 X R2 será igual a C1 *
 C2

Produto Cartesiano

Para as Relações BANDA e GENERO pretende-se saber qual a Relação resultante do produto cartesiano entre as duas?

Codigo	Nome	AnoFormacao	Genero	Codigo	Designacao
1	Metallica	1981	1	1	Metal
1	Metallica	1981	1	2	Fado
1	Metallica	1981	1	3	Rock
2	Madredeus	1991	2	1	Metal
2	Madredeus	1991	2	2	Fado
2	Madredeus	1991	2	3	Rock
3	Iron Maiden	1976	1	1	Metal
3	Iron Maiden	1976	1	2	Fado
3	Iron Maiden	1976	1	3	Rock
4	The Platters	1953	3	1	Metal
4	The Platters	1953	3	2	Fado
4	The Platters	1953	3	3	Rock

Produto cartesiano

- A aplicação de uma selecção à relação resultante de um produto cartesiano tem um grande interesse prático
- Esta composição visa restringir o resultado de uma combinação de duas tabelas
- Para o exemplo anterior pretende-se obter uma Relação que contenha a informação completa de uma BANDA e o seu respectivo GENERO: σ_{genero=codigo} (BANDA x GENERO)

Codigo	Nome	AnoFormacao	Genero	Codigo	Designacao
1	Metallica	1981	1	1	Metal
2	Madredeus	1991	2	2	Fado
3	Iron Maiden	1976	1	1	Metal
4	The Platters	1953	3	3	Rock

Esta combinação de operações está na origem de uma outra, denominada de Junção

Junção

- A condição de junção pode ser constituída pela conjunção de várias condições, cada uma da forma i θ j, sendo i o i-ésimo atributo de R1 e j o j-ésimo de R2
- <u>i e j têm o mesmo domínio</u>
- O operador θ pode ser qualquer um dos seguintes operadores de comparação: <,>,=,≥,≤,≠
- A operação junção definida desta forma designa-se de Junção Teta

Junção

- A operação de junção têm uma analogia directa com o encadeamento de duas operações (uma Seleção sobre um Produto cartesiano):
 - R1 $\prod_{i \in I} R2 = \sigma_{Ai \in A(N+i)}$ (R1xR2), onde N é o grau de R1
- Os tuplos que tiverem o valor NULL nos atributos de junção (i e j) não são contabilizados, ou seja, não pertencem à Relação resultante
- Do exemplo anterior

 BANDA ႘ GENERO

Codigo	Nome	AnoFormacao	Genero	Codigo	Designacao
1	Metallica	1981	1	1	Metal
2	Madredeus	1991	2	2	Fado
3	Iron Maiden	1976	1	1	Metal
4	The Platters	1953	3	3	Rock

Junção natural

- Considere-se os seguintes Esquemas de Relação e as respectivas Relações:
 - ALUNO (numeroAluno, nome, numeroMatricula)
 - AUTOMOVEL (numeroMatricula, modelo, cor)

Aluno

NumeroAluno	Nome	NumeroMatricula
12345	Felisberto	12-45-AA
18904	João	NULL
15444	Maria	00-45-EB
14566	Humberto	33-56-ST

Carro

NumeroMatricula	Modelo	Cor
12-45-AA	Honda Civic	Preto
33-56-ST	BMW Z3	Azul
94-11-FT	Ford Escort	Branco
00-45-EB	Mercedes C	Cinza

Junção natural (cont.)

• Para as relações anteriores pretende-se determinar os automóveis de cada aluno:

 \circ ALUNO $\underset{3=1}{\bowtie}$ CARRO

NumeroAluno	Nome	NumeroMatricula	Modelo	Cor
12345	Felisberto	12-45-AA	Honda Civic	Preto
15444	Maria	00-45-EB	Mercedes C	Cinza
14566	Humberto	33-56-ST	BMW Z3	Azul

- Quando a operação de junção é a igualdade, designa-se de equijoin
- Quando num equijoin os atributos de junção tem o mesmo nome, pode indicar-se a operação de junção da seguinte forma:
 - ALUNO NumeroMatricula CARRO

A esta operação designa-se de junção natural

Junção natural (cont.)

- Para duas Relações R1 e R2 que partilham um atributo x com o mesmo domínio, designa-se de Junção natural a Relação que se obtêm juntando todos os tuplos de R1 e R2 que têm o mesmo valor para esse atributo x
- Formalmente:
 - $\{ < t1.A1, ..., t2.B1, ..., t1.X > : t1 \in R1 \land t2 \in R2 \land t1.X = t2.X \}$
- Quando se omite o atributo (ou atributos) sobre o qual irá ser efectuada a junção, serão considerados os atributos R1 e R2 que têm o mesmo nome e tipo

Deve ser tomado algum cuidado quando se omitem os atributos, pois embora por vezes com o mesmo nome e domínio, a semântica associada é diferente!

Semi-Junção

- A operação de Semi-Junção, ou Junção Parcial, resulta da projecção dos atributos de R1 sobre a Relação resultante de uma Junção Natural entre as Relações R1 e R2
- Formalmente

$$\circ R1 \bowtie_{x} R2 = \pi_{R1.A1, \dots, R1.An} (R \bowtie_{x} S)$$

- Quais os alunos que têm pelo menos um automóvel:
 - ALUNO NumeroMatricula CARRO

NumeroAluno	Nome	NumeroMatricula
12345	Felisberto	12-45-AA
18904	João	NULL
15444	Maria	00-45-EB
14566	Humberto	33-56-ST

N /	NumeroMatricula	Modelo	Cor
X	12-45-AA	Honda Civic	Preto
	33-56-ST	BMW Z3	Azul
	94-11-FT	Ford Escort	Branco
	00-45-FB	Mercedes C	Cinza

NumeroAluno	Nome	NumeroMatricula
12345	Felisberto	12-45-AA
15444	Maria	00-45-EB
14566	Humberto	33-56-ST

Junção Externa

 Nas operações de junção apresentadas, os tuplos de uma Relação R1 que não tenham associação noutra Relação R2 não constavam da Relação resultante

Será que este comportamento é sempre desejado?

- Para resolver esta particularidade foi criada uma operação de junção que aplicada a duas relações R1 e R2
- Quando os tuplos que tem associados são incluídos no resultados, como o resultado de uma junção
- Os outros são igualmente incluídos na Relação resultando, sendo completados com NULL nos atributos inexistentes
- Esta operação designa-se de Junção Externa:
 - R1 ⋈ R2

Junção Externa (cont.)

Para as relações R1 e R2

R1

Codigo	Marca	Categoria
12345	Toyota Corolla	2
18904	Honda Accord	3
14566	Mercedes E3500	4

Quais as marcas de automóveis e categorias existentes, e para cada automóvel as categorias superiores à sua?

R2

Codigo	Descricao
1	1000CC
2	1500CC
3	2000CC
4	2500CC

 $R1^{\bowtie}_{[3]<[1]}R2$

Codigo	Marca	Categoria	Codigo	Descricao
12345	Toyota	2	3	2000CC
12345	Toyota	2	4	2500CC
18904	Honda	3	4	2500CC
14566	Mercedes	4	NULL	NULL
NULL	NULL	NULL	1	1000CC
NULL	NULL	NULL	2	1500CC

Junção Externa à Esquerda e Direita

- Por vezes apenas os tuplos de uma das Relações se querem manter, numa Junção Externa
- Na operação de <u>Junção à Esquerda</u> (*Left Outer Join*) apenas <u>os tuplos</u> da Relação R1, à esquerda do operador, são totalmente considerados no resultado. Os tuplos de R2 aparecem quando verificam a condição
 - R1 🔀 _{iθj} R2
- Na operação de <u>Junção à Direita</u> (*Right Outer Join*) apenas <u>os tuplos</u> da Relação R2, à direita do operador, são totalmente considerados no resultado. Os tuplos de R1 aparecem quando verificam a condição
 - ∘ R1 🖁 _{iθj} R2

Junção Externa à Esquerda e Direita (cont.)

- Para as relações anteriores, pretende-se saber quais as categorias existentes e para essas quais os veículos existentes
- Ou seja

Codigo	Marca	Categoria	Codigo	Descricao
12345	Toyota Corolla	2	2	1500CC
18904	Honda Accord	3	3	2000CC
14566	Mercedes E3500	4	4	2500CC
NULL	NULL	NULL	1	1000CC

Divisão

- A operação de divisão de duas Relações R1 e R2 tem como resultado uma Relação R, contendo um conjunto de tuplos que combinados com R2 dá um tuplo existente em R1
- A relação R é quociente de R1÷ R2
- Os tuplos de R são constituídos apenas pelos atributos de R1 que não fazem parte de R2
- Esta operação só é válida se R1 e R2 tiverem <u>Esquemas</u> <u>compatíveis em divisão</u>, ou seja, sendo X o conjunto de atributos de R1 e Y o conjunto de atributos de R2, essa compatibilidade existe quando X ⊆ Y
- Formalmente:
 - sendo R1(A₁,...,A_p,A_{p+1},A_n) e R2(A_{p+1},...,A_n) duas Relações, a operação R1 ÷ R2 tem como resultado uma Relação R tal que o <u>tuplo que</u> resulta de da concatenação de R com R2 dá um tuplo existente em R1

Divisão

• Para as seguintes relações R1 e R2:

R1

Fornecedor	Produto
1	Feijão
2	Arroz
3	Massa
1	Massa
2	Feijão
1	Arroz

R2

Produto
Feijão
Arroz
Massa

Qual o fornecedor que fornece todos os produtos?

Operações agregadoras

Para a seguinte relação R1

D	1	
\boldsymbol{L}	L	L

Codigo	Nome	Ordenado	Departamento
12345	Felisberto	700	Contabilidade
12333	Maria	650	Secretariado
99912	João	700	Contabilidade
14566	Nuno	900	Secretariado
66277	Joana	1000	Tesouraria
22300	Manuel	700	Contabilidade

Como responder à questão: Qual a média de ordenados ?

- É necessário utilizar funções especiais, designadas funções agregadoras, como
- Count contagem de tuplos
- •Sum cálculo da soma
- Average cálculo da média

- Minimum identificação do mínimo
- Maximum identificação do máximo

Operações agregadoras e operador de agregação

- Outra questão poderá ser o qual o maior dos ordenados, agrupados por departamento?
- A resposta implica agrupar um conjunto de tuplos e sobre um dos atributos desse tuplos aplicar uma operação agregadora
- A definição do operador 3 irá permitir a escrita destas questões
- A aplicação do operador faz-se sobre uma única Relação R e é representado da seguinte forma:
 - <Atributos para agrupamentos> 3 <funções de agregação> (R)
- A questão acima colocada pode ser escrita da forma
 - departamento 3 Maximum(ordenado) (R1)

Operações agregadoras

- Atributos para agrupamento> consiste na lista de atributos sobre os quais se pretende agrupar os valores
- <Funções de agregação> consiste numa lista de pares (<função> <atributo>)
- Na relação resultante existem os atributos presentes em <Atributos para agrupamento> e os atributos que fazem parte dos pares (<função> <atributo>)

departamento 3 Maximum(ordenado) (R1)

Departamento	Ordenado
Contabilidade	700
Secretariado	900
Tesouraria	1000

Bibliografia

Fundamentals of Database System (5th Edition)

R. Elmasri, Shamkant B. Navathe Addison Wesley, 2003

[ISEL-