Ответы на теоретические вопросы к экзамену по математике. Семестр 1, 2019

по конспектам лекций Рачковского Н.Н. студентов группы 950501

4января 2020 г.

Оглавление

1	\mathbf{PU}	BLIC	SERVICE ANNOUNCEMENT	4				
2	Мн	ожест	ва	5				
	2.1		сества и операции над ними	5				
	2.2		нутость множеств	6				
	2.3		иченность множеств	6				
	2.4	_	стности	6				
3	Фун	нкции		7				
	3.1	Графі	ики	8				
		3.1.1	угол между прямыми	8				
		3.1.2	Основные элементарные функции	9				
4	Плоские фигуры							
	4.1	Уравн	нения фигур	11				
		4.1.1	Окружность	11				
		4.1.2	Эллипс	11				
		4.1.3	Гипербола	12				
		4.1.4	Парабола	13				
5	Бин	юм Н	ьютона	14				
6	Бесконечно малые и бесконечно большие последовательно-							
	сти	и их о	свойства	16				
	6.1	Основ	вные свойства б.м. и б.б. последовательностей	16				
7	Пос	ледов	ательности	17				
	7.1	Свойс	ства	18				
8	Бес	конеч	но малые и бесконечно большие функции	20				
9	Moi	нотоні	ные последовательности, теорема Вейкерштрасса	21				
10	DΡΙ	мw		22				

ОГЛАВЛЕНИЕ ОГЛАВЛЕНИЕ

11	Предел функции в точке и на бесконечности, Односторон-	
	11.1 Бесконечный предел, Предел на бесконечности	23 23 23
12	DPMW	25
		_0
13	Непрерывность 13.1 Односторонняя	26 27 28
14	DPMW	2 9
15	Сравнение функций 15.1 Эквивалентность	30 30
16	DPMW	32
17	Непрерывность функции на отрезке	33
18	DPMW	35
19	Производная функции, односторонние производные	36
20	DPMW	39
21	правила дифференцирования	40
22	Дифференциал функции 22.1 Св. производной	42 43
23	Производные и дифференциалы высших порядков	46
24	Дифференцирование функции, заданной параметрически	47
25	Локальный экстремум функции, теорема Ферма	48
26	Теоремы Ролля, Лагранжа, Коши	50
27	Правило Лопиталя	52
32	Неопределённый интеграл 32.1 Первообразная	55 55 55
		56
33	Замен переменной	58

ОГЛАВЛЕНИЕ	ОГЛАВЛЕНИВ
------------	------------

34	Интегрирование по частям	59
35	Определённый интеграл 35.1 Свойства	60 61
36	Формула Ньютона-Лейбница	64
46	Поверхности второго порядка, метод сечения 46.1 Метод сечений	66
47	Поверхности вращения	67
48	Циллиндрические поверхности	68
49	Конические поверхности	71

PUBLIC SERVICE ANNOUNCEMENT

DEAR SLAVS, TODAY, I HAVE TO ASK YOU TO HELP ME! HELP ME AND THIS PROJECT BY REARRANGING QUESTIONS IN THE CORRENT ORDER, SO IT MAKES SENSE. ALSO, I'D LIKE TO SEE PLACEHOLDERS FOR ALL OF THE QUESTIONS THAT ARE NOT IMPLEMENTED YET. LATEX-хуячеры

Элементы теортии Множеств

2.1 Множества и операции над ними

Множество - совокупность некоторых объектов, обладающих определёнными свойствами. Каждый из объектов называется элементом обозначение множества: $\{a|P(a)\}$ где P(a) - свойство, объединяющее объекты а.

Специльные символы, обозначающие операции над множествами:

- 1. содержится: $A \subseteq B$. Каждый элемент множества A содержится в B.
- 2. совпадает: $A = B \Leftrightarrow A \subseteq B, B \subseteq A$
- 3. объединение: $A \cup B = \{c | c \in A$ или $c \in B\}$
- 4. пересечение: $A\cap B=\{c|c\in A\ \mathbf{u}\ c\in B\}$
- 5. теоритическо-множественная разность: $A \setminus B = \{c | c \in A \ \mathbf{u} \ c \notin B\}$
- 6. декартово произведение: $A \times B = \{(a,b) | a \in A; b \in B\}^{-1}$

Операции с ∅:

- 1. $A \cup \emptyset = A$
- 2. $A \cap \emptyset = \emptyset$
- 3. $A \setminus \emptyset = A$
- 4. $\emptyset \setminus A = \emptyset$

 $^{^{1}}$ каждый элемент в паре с каждым другим, как при раскрытии скобок

2.2 Замкнутость множеств

Рассматривая операции умножения и и деления над \mathbb{N} мы *остаёмся* в $\mathbb{N} \Rightarrow \mathbb{N}$ замкнуто относительно операции умножения.Для того, чтобы \mathbb{N} стало замкнуто относительно операции вычитания нужно добавить к нему отрицательные числа и ноль тем самым привратив его в \mathbb{Z} . Таким образом \mathbb{Z} замкнуто относительно \times, \pm но не \div . Для того, чтобы замкнуть \mathbb{Z} относительно \div , нужно дополнить его дробями вида $\frac{m}{n}$, где $m \in \mathbb{Z}$ и $n \in \mathbb{N}$. Т. О. получили \mathbb{Q} Получили: $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}$ где \mathbb{R} - действительные числа.

2.3 Ограниченность множеств

А ограничено сверху, если $\exists M, \forall a \in A: a \leq M$ и А ограничено снизу, если $\exists M, \forall a \in A: a \geq M$

Таким образом, если множество ограничено **и** сверху **и** снизу, оно называется *ограниченным.* $\Rightarrow \exists M, \forall a \in A : |a| \leq M(1)$

$$\begin{split} \exists M_1, M_2, \forall a \in A: M_1 \leq a \leq M_2 \\ M &= \max(|M_1|, |M_2|) \\ M \geq |M_1| \geq M_2 \\ M \geq |M_1| \Rightarrow -M \leq -|M_1| \leq M_1 \Rightarrow \\ \forall a \in A: -M \leq -M_1 \leq a \leq M_2 \leq M \rightarrow -M \leq a \leq M \end{split}$$

Следовательно из ограниченности А получается (1).

2.4 Окрестности

Рассмотрим $a \in \mathbb{R}$. Окрестностью а является отрезок (b;c), содержущюю а. Рассмотрим $\epsilon > 0$. ϵ -окрестностью а является отрезок $(a - \epsilon; a + \epsilon)$, содержущюю а.

 $\mathcal{U}_{\epsilon}(a)$ есть отрезок длиной 2ϵ , центром которого является а:

$$\mathcal{U}_{\epsilon}(a) = \{x \in \mathbb{R} | |x - a| < \epsilon \}$$

Оно бывает и проколото: т.е. из отрезка удалена точка а: $\dot{\mathcal{U}}_{\epsilon}(a) = \mathcal{U} \setminus \{a\}$

Функции

обведи пж важные уравнения в коробку boxedeq{eq:*}{...}

Пусть даны 2 непустых множества A и В. Отображением из A и В называется правило, согласно которому каждому элементу множества A соответствует не более одного элемента В. Это обозначается $f:A\to B$ Областью определения f называется множество $D(f)=\{a\in A|\exists b=f(a)\}^1$ Множеством значений f называется множество $E(f)=\{b\in B|\exists a\in A;b=f(a)\}^2$ Запись b=f(a) обозначает, что $a\in A$ в отображениии f соответствует $b\in B$ тут b - образ, а a - прообраз.

Свойства биективного² отображения $f: A \to B$:

- 1. D(f) = A
- 2. E(f) = B
- 3. $\forall a_1, a_2 \in A, a_1 \neq a_2 : f(a_1) \neq f(a_2)$
- 4. обратное оторажение: $f^{-1}: B \to A; a = f^{-1}(b) \Leftrightarrow b = f(a)$

График отображения $fA \to B = \{(a,b)|b=f(a)\} \subset A \times B$ Если A и B - числовые, то это функция тогда график функции есть подмножество в декартовом квадрате³. Рассмотрим полскость с прямоугольной системой координат: элементам множества \mathbb{R}^2 можно поставить в соответствие точки этой полскости, координаты которой в этой С.К. являются эти элементы \mathbb{R}^2 . Тогда график функции можно предстваить как множество точек, причем ясно, что не каждое множество точек задает график функции. Множество точек задает график функции тогда и только тогда, когда любая вертикальная прямая параллельная оси ординат пересекает множество данных не более одного раза. Функция может задаваться аналитически, графичекси и неявно. Неявный способ: Рассмотрим $F: \mathbb{R}^2 \to R$ и Рассмотрим

¹f - заданное нами правило

 $^{^2}$ взаимооднозначного

 $^{^3\}mathbb{R}^2=\mathbb{R}\times\mathbb{R}$

F(x;y) = 0. На Координатной плоскости рассмотрим множество решений этого уравнения: $\{(x;y) \in \mathbb{R}^2 | F(x;y) = 0\}$: если оказывается, что это множество является графиком функции, функция задана нефвно унавнением F(x;y) = 0.

3.1 Типовые функции, график функции

Линейная функция:

Функция вида $y = kx + b; k, b \in \mathbb{R}$ имеет графиком невертикальную прямую при b = 0 график функции проходит через (0; 0). K - угловой коеффициент равный тангенсу кгла наклона графика к Ох. Взаимное расположение двух прямых, заданных функциями $y_1 = k_1 x + b_1$ и $y_2 = k_2 x + b_2$:

- 1. совпаление прямых $\Leftrightarrow k_1 = k_2; b_1 = b_2$
- 2. параллельность прямых $\Leftrightarrow k_1 = k_2$ и $b_1 \neq b_2$
- 3. пересечение прямых $\Leftrightarrow k_1 \neq k_2$

доказательство свойства 2:

 \Rightarrow) Пусть прямые $y_1 = k_1 x + b_1$ и $y_2 = k_2 x + b_2$ параллельны.

Следовательно у них не общих точек:

$$\begin{cases} y=k_1x+b_1\\y=k_2x+b_2 \end{cases}$$
 не имеет решений
$$\Rightarrow x(k_1-k_2)=b_2-b_1 \text{ не имеет решений}$$

Следовательно
$$x = \frac{b_2 - b_1}{k_1 - k_2} \notin \mathbb{R} \Rightarrow \begin{cases} k_1 = k_2 \\ b_1 \neq b_2 \end{cases}$$

Следовательно $x=\frac{b_2-b_1}{k_1-k_2}\notin\mathbb{R}\Rightarrow \begin{cases} k_1=k_2\\b_1\neq b_2 \end{cases}$ \Leftarrow) Предположим, что $\begin{cases} k_1=k_2\\b_1\neq b_2 \end{cases}$ и проведем все эти действия в обратном порялке.

Формула получения угла между двумя прямыми

$$\begin{cases} y = k_1 x + b_1 \\ y = k_2 x + b_2 \end{cases}$$

обозначим угол между красной и синей линиями за θ , наклон линий соответственно ϕ_1 и ϕ_2 $\theta=\phi_1-\phi_2$ $k_1=\tan\phi_1$

 $k_2 = \tan \phi_2$

 $\theta = \tan \phi_1 - \tan \phi_2 \Rightarrow$

$$\theta = \frac{k_1 - k_2}{1 + k_1 k_2} \tag{3.1}$$

Таким образом 2 прямые взаимоперпендикулярны тогда и только тогда когда $k_1 = \frac{-1}{k_2}$

3.1.2 Основные элементарные функции

Степенная функция

Окружность, Эллипс, Гипербола, Парабола

Пусть Существует прямоугольная система координат Оху; Пусть даны две точки $A(x_1; y_1), B(x_2; y_2)$; Тогда расстояние между A и B вычисляется так:

$$|AB| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$
 (4.1)

4.1 Фигуры и канонические уравнения фигур

Говорят, что уравнение на плоскости задет некоторую фигуру, если принадлежность M(x;y) этой фигуре равносильно выполнению равенства f(x;y)=0 для каждой точки этой фигуры.

4.1.1 Окружность

Окружностью называется множество всех точек в плоскости, удаленных от данной фиксированной точки, называемой центром окружности на одно и то же расстояние, называемое радиусом окружности.

дана точа M(x;y) и окружность с центром $\mathrm{O}(x_0,r_0)$. $\in \omega(O,r) \Leftrightarrow |MO|=R\Leftrightarrow |MO|^2=r^2\Leftrightarrow$

$$(x - x_0)^2 + (y - y_0)^2 = r^2$$
(4.2)

Равенство 3.2 есть уравнение окружности т.к. оно равносильно принадлежности точки M к окружности.

4.1.2 Эллипс

Пусть на плоскости заданы 2 точки F_1, F_2 , расстояние между которыми равно 2c; и пусть дано некоторое число a > c. Эллипсом называется

множество всех точек ранной плоскости, длял которых сумма расстояний от этой точки до точек F_1 и $F_2=2a$. Точки F называются фокусами эллипса. Вывод:

Зададим на плоскости ПСК с $Ox = F_1F_2$; координаты точек F получаются: $F_1(-c;0), F_2(c;0)$ Возьмем произвольную точку $M(x;y)\Rightarrow (MF_1+F_1F_2)=2a\Rightarrow \sqrt{(x+c)^2+y^2}+\sqrt{(x-c)^2+y^2}=2a$ $\therefore (x+c)^2+y^2=4a^2-4a\sqrt{(x-c)^2+y^2}+(x-c)^2+y^2$ $\therefore a^2(x-c)^2+a^2y^2=a^4-2a^2cx+c^2x^2$... $\therefore b^2=a^2-c^2$ $\therefore b^2x^2+a^2y^2=a^2b^2$, делим на a^2b^2

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$$
(4.3)

Так как обе переменных х и у в четных степенях, эллипс симметричен относительно начала координат. Эллипс ограничен прямоугольником 2a на 2b. В случае совпадения a и b получим $\omega(0,a)$. эксцентриситет эллипса: $\varepsilon = \frac{c}{a}$. $\varepsilon \in [0;1]$ $\varepsilon = 0$ для окружности.

4.1.3 Гипербола

На плоскости заданы несовпадающие точки F_1, F_2 , расстояние между которыми равно 2с. Пусть $a \in (0; c)$. Гиперболой называется множество точек, для которых разность расстояний от точки до F_1 и F_2 . F_1 и F_2 это фокусы гиперболы. На плоскости задана ПСК с $Ox = F_1F_2$; координаты точек F получаются: $F_1(-c; 0), F_2(c; 0)$

 $^{^{1}}$ неуверен в записи, особенно в $(MF_{1}+F_{1}F_{2})=2a$

wywod urawnenija giperboly zdesja.

$$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = -1$$
 (4.4)

Так как обе переменных x и y в четных степенях, эллипс симметричен относительно начала координат. $y=\pm \frac{b}{a}x$ - асимптоты гиперболы. а и b - полуоси гиперболыб точки пересеччения с Ох - вершины. эксцентриситет гиперболы: $\varepsilon=\frac{c}{a}.$ $c>a\Rightarrow\varepsilon>1$

4.1.4 Парабола

На плоскости задана прямая Δ и $F \notin \Delta$. Параболой называется множество точек плоскости равноудаленных от Δ и F. При этом Δ -директрисса параболы, F - фокус Параболы. Введем ПСК: Ох проходит через F и $\bot \Delta \Rightarrow F(\frac{p}{2};0)$ где p - расстояние от F до Δ .

Уравнение параболы wywod urawnenija tuta

$$y = \pm 2px \tag{4.5}$$

у в уравнении в чтной степени \Rightarrow парабола симметрична относительно Ох при $x \ge 0$ получается, что парабола расположена в правой полуплоскости.

Бином Ньютона

Бином Ньютона: $(a+b)^n = \sum_{i=0}^n C_n^i a^i b^{n-i}$ Сочетания: $C_n^i = \frac{n!}{i!(n-i)!}$

Применим метод математической индукции:

- 1. При n=1 имеем: $a+b=C_1^0a^0b^1+C_1^1a^1b^0=\frac{1!}{0!(1-0)!}b+\frac{1!}{1!(1-1)!}a=b+a$ Таким образом, при n=1 формула верна
- 2. При n = 2:

$$\begin{array}{l} (a+b)^2 = C_2^0 a^0 b^2 + C_2^1 a^1 b^1 + C_2^2 a^2 b^0 = \frac{2!}{0!(2-0)!} b: 2 + \frac{2!}{1!(2-1)!} ab + \\ + \frac{2!}{2!(2-2)!} a^2 = b^2 + 2ab + a^2 \end{array}$$

Для n=2 также справедлива формула бинома Ньютона

3. Предположим, что она верна и при n = k:

$$(a+b)^k = \sum_{i=0}^k C_k^i a^i b^{k-i}$$

4. Предположим, что она верна и при n=k+1 Действительно:

$$\begin{split} &(a+b)^{k+1} = (a+b)^k(a+b) = (\sum_{i=0}^k C_k^i a^i b^{k-i})(a+b) = \sum_{i=0}^k C_k^i a^{i+1} b^{k-i} + \\ &+ \sum_{i=0}^k C_k^i a^i b^{k-i+1} = C_k^k a^{k+1} b^0 + \sum_{i=0}^{k-1} C_k^i a^{i+1} b^{k-i} + \sum_{i=1}^k C_k^i a^i b^{k-i+1} + \\ &C_k^0 b^{k+1} a^0 = \end{split}$$

Заметим, что в обеих суммах сумма показателей степеней a и b в каждом слагаемом равна одному и тому же (k+1). С другой стороны, каждая из этих сумм содержит ровно одно слагаемое с множителями ab^k и ровно одно слагаемое с показателями a^2b^{k-1} и a^kb , поэтому:

$$\begin{split} &= C_k^k a^{k+1} b^0 + \sum_{i=0}^{k-1} (C_k^i + C_k^{i+1} a^{i+1} b^{k-i} + C_k^0 b^{k+1} a^0 \\ &C_k^i + C_k^{i+1} = \frac{k!}{i!(k-1)!} + \frac{k!}{(i+1)!(k-i-1)!} = \frac{k!(i+1) + k!(i-1)}{(i+1)!(k-i)!} = \frac{k!(k+1)}{(i+1)!(k-i)!} = \\ &= \frac{(k+1)!}{(i+1)!(k-i)!} = \frac{(k+1)!}{(i+1)!((k+1) - (i+1))!} = C_{k+1}^{i+1} \end{split}$$

Продолжая цепочку равенств в вычисляемом $(a+b)^{k+1}$, получаем:

$$\begin{aligned} 1*a^{k+1}b^0 + \sum_{i=0}^{k+1} C_{k+1}^{i+1}a^{i+1}b^{k-1} + 1*a^0b^{k+1} \\ 1 = C_{k+1}^{k+1} = C_{k+1}^0 \end{aligned}$$

В сумме сделаем замену j = i + 1:

$$C_{k+1}^{k+1}a^{k+1}b^0 + \sum_{i=1}^k C_{k+1}^j a^j b^{(k+1)-j} + C_{k+1}^0 a^0 b^{k+1} = \sum_{j=0}^k C_{k+1}^j a^j b^{(k+1)-j}$$

Таким образом, мы показали, что формула Бинома Ньютона справедлива при $n=k+1\Rightarrow$ эта формула справедлива для любого натурального п

Бесконечно малые и бесконечно большие последовательности и их свойства

Выделяют бесконечно большие последовательности - последовательности, имеющие пределом бесконечность. Говорят, что последовательность $\{x_n\}$ имеет бесконечный предел, если $\forall M>0 \exists N=N(M)\in \mathbb{N}, \forall n\geq N: |x_n|>M$ Последовательность называется бесконечно малой последовательностью (б.м.п.), если $\forall \epsilon>0 \exists n_0\in \mathbb{N}: \forall n\geq n_0$ выполняется равенство $|x_n|<\epsilon$

6.1 Основные свойства б.м. и б.б. последовательностей

- 1. Сумма б.м. последовательностей есть б.м.п.
- 2. Произведение ограниченной последовательности и б.м. есть б.м.п.
- 3. Если $\{x_n\}$ б.м.п., то $\{x_n\}$ ограниченная последовательность
- 4. Произведение б.м.п. есть последовательность б.м.
- 5. Если $\{x_n\}$ б.м.п. и $x_n=c,\, \forall n\in\mathbb{N},\, \text{то }c=0,\, \text{т.е. }x_n=c, \forall n\in\mathbb{N}$
- 6. Если $\{x_n\}$ б.м.п. и $x_n \neq 0, \forall n \geq n_0: \{\frac{1}{x_n}\}_{n=n_0}^\infty$ б.б.п
- 7. Если $\{x_n\}$ б.б.п., то $\exists n_0 \in \mathbb{N}: x_n \neq 0, \forall n \geq n_0$ и последовательность $\{\frac{1}{x_n}\}_{n=n_0}^\infty$ б.м.п

Числовая последовательность и ее предел. Свойства сходящихся последовательностей.

Числовая последовательность называется отображением в котором каждому $\mathbb N$ числу соответствует некоторое число. Последовательности принято изображать $\{x_n\}=x_1;x_2;\dots x_n$ Если из $\{x_n\}$ взято некое бесконечное подмножество, из которого сформирована другая последовательность, в которой порядок следования членов такой же как и в исходной последовательности, то она называется подпоследовательностью. Обозначение $\{x_{nm}\}$. Из определения последовательности: если $k_1 < k_2 \Rightarrow m_1 < m_2$. Число а называется пределом последовательности

 $\lim_{n\to\infty}x_n=a\Leftrightarrow \forall \epsilon>0, \exists N=N(\epsilon)\in\mathbb{N}, \forall n\geq N:|x_n-a|<\epsilon\Rightarrow \lim_{n\to\infty}x_n=a\Leftrightarrow$ в сколь угодно малой $\mathcal{U}_\epsilon(a)$ может находиться конечное число членов этой последовательности.

Предел числовой последовательности есть точчка, в которой кучкуются почти все члены последовательности за исключением, может последнего члена.

Последовательность, имеющая предел называется *сходящейся*; в противном случае - *расходящейся*. Расходящиеся последовстельности также включают бесконечно большие последовательности.

бесконечно большие последовательности:

$$\lim_{n\to\infty} k_n = \infty \Leftrightarrow$$

$$\forall M > 0, \exists N = N(M) \in \mathbb{N}, \forall n \ge N : |x_n| > M$$

бесконечно малые последовательности:

$$\lim_{n \to \infty} k_n = -\infty \Leftrightarrow$$

$$\forall M < 0, \exists N = N(M) \in \mathbb{N}, \forall n \ge N : |x_n| < M$$

7.1 Свойства сходящихся последовательностей DOKAZAT' SWOJSTWA

- 1. Сходящаяся последовательность имеет единственный предел. Действительно, если предположть, что пределов 2, можноуказать несколько \mathcal{U}_{ϵ} этих пределов, не пересекающте друг друга. По определению предела внутри каждой из этих $\mathcal{U}_{\epsilon}(a)$ должно содержаться бесконечно много членов последовательности, что есть противоречие.
- 2. Если Последовательность сходится к а, то любая подпоследовательность этоц последовательности сходиться к а.
- 3. Любая мходящаяся последовательность ограничена:

Пусть
$$\epsilon=1:\exists\in\mathbb{N}, n\geq N: |x_n-a|<1\Leftrightarrow |x_n|-|a|\leq |x_n-a|<1\Leftrightarrow |x_n|-|a|<1\Rightarrow |x_n|<|a|+1$$
 Пусть члены $x_1\dots x_{N-1},$ не попавшие в рассматриваемую окрестность точки а. и Пусть $M=\max(|x_1|\dots|x_{N-1}|,|a+1|)$ $\forall n,|x_n|\leq M$

4. Если для 2х членов последовате
ьностей x_n и y_n , сходящихся к числам а и b соответственно, начиная с некоторого номера $x_n < y_n, a \le b$:

Пусть
$$\lim_{n\to\infty} x_n = a$$

$$\lim_{n\to\infty} y_n = b$$
 $a < b \Rightarrow \exists N \in \mathbb{N}, A_n \geq N : x_n < y_n$
Примем $\epsilon = \frac{b-a}{2}$

$$\exists N_1, N_2 \in \mathbb{N}, \forall n \geq N_1, |x_n - a| < \frac{b-a}{2},$$

$$\forall n \geq N_2, |y_n - b| < \frac{b-a}{2}$$

$$\therefore$$
 при $N = max(N_1, N_2)$

$$\begin{cases} x_n > a - \frac{b-a}{2} \\ x_n > a + \frac{b-a}{2} \end{cases}$$

$$b - \frac{b-a}{2} < y_n < b + \frac{b-a}{2}$$

- 5. Если для 3х последовательностей $x_n,\,y_n,\,z_n$ выполняется $x_n\leq y_n\leq z_n$ $\lim_{x_n\to\infty}x_n=a\lim_{x_n\to\infty}z_n=a,$ то y_n также сходится к a
- 6. Если $\lim_{x_n\to\infty}x_n=a\neq 0$, то начиная с некоторого номера $|x_m|>\frac{a}{2}$ все члены этой последовательности имеют тот же знак, что и a.

7.

Тероэма 7.1. Пусть x_n и y_n сходятся κ а и b, тогда

- (a) $\{x_n \pm y_n\} = k \lim_{n \to \infty} k_n = a \pm b$
- (b) $\forall c \{c \cdot x_n\} \lim_{n \to \infty} = c \cdot a$
- (c) $\lim_{n\to\infty} \{x_n \cdot y_n\} = a \cdot b$
- (d) $\lim_{n\to\infty} \{\frac{1}{x_n}\} = \frac{1}{a}$, echu $a \neq 0$
- (e) $\lim_{n\to\infty} \left\{ \frac{y_n}{x_n} \right\} = \frac{b}{a}$, если $a \neq 0$

Бесконечно малые и бесконечно большие функции

```
ВНФ не люди Пусть функция y=f(x) определена в окрестности U(x_0). Эта функция называется бесконечно малой при x\to x_0, если \lim_{x\to x_0}f(x)=0 А бесконечно большой при x\to x_0 - если \lim_{x\to x_0}f(x)=\infty
```

- 1. Сумма и произведение любого конечного числа и б.м.ф. является б.м.ф
- 2. Пусть функция y=f(x) б.м.ф. при $x\to x_0$, а функция y=g(x) ограничена в $U(x_0)$, то есть $\exists c>0: \forall x\in U(x_0): |g(x)|\le c$. Тогда функция y=f(x)*g(x) является б.м.ф.при $x\to x_0$
- 3. произведение конечного числа б.б.ф является б.б.ф.при $x \to x_0$
- 4. Пусть функция y=f(x) б.б.ф. при $x\to x_0$, а функция y=g(x) удовлетворяет свойству: $\exists c>0: \forall x\in U(x_0): |g(x)|>c$, тогда функция y=f(x)*g(x) является б.б.ф.при $x\to x_0$
- 5. Пусть функция y=f(x) б.м.ф. при $x\to x_0$ и $f(x)\ne 0$ в $U(x_0)$, тогда функция $y=\frac{1}{f(x)}$ является б.б.ф.при $x\to x_0$
- 6. Если функция y=f(x) б.б.ф. при $x\to x_0$, тогда функция $y=\frac{1}{f(x)}$ является б.м.ф.при $x\to x_0$

Монотонные последовательности, теорема Вейкерштрасса

ебаьт где это в конспекте?

\mathbf{DPMW}

Предел функции в точке и на бесконечности, Односторонние пределы.

КАК-ТО МАЛО НАПИСАНО

Предел функции на бесконечности определяется так:

11.1 Бесконечный предел, Предел на бесконечности

- $\lim_{x\to\infty} f(x) = A \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0, \forall x, |x| > \delta; |f(x) A| < \epsilon$
- $\lim_{x \to x_0} f(x) = \infty \Leftrightarrow \forall \epsilon > 0, \exists \delta > 0, \forall x \in \dot{\mathcal{U}}_{\delta(x_0)}, |f(x)| > \epsilon$

11.2 Односторонние пределы

y = f(x) определена на $(x - \delta; x)$.

 $\lim_{x \to x_0 - 0} f(x) = A$: Односторонним пределом слева функции y = f(x) называется $A: \forall \epsilon > 0, \exists \delta_1 > 0, \forall x \in (x_0 - \delta_0; x_0): |f(x) - A| < \epsilon$, если A существует.

Анологично определяется предел справа: $\lim_{x\to x_0+0} f(x) = A \ \forall \epsilon > 0, \exists \delta_1 > 0, \forall x \in (x_0+\delta_0;x_0): |f(x)-A| < \epsilon$

$$\lim_{x \to x_0} f(x) = a \Leftrightarrow \lim_{x \to x_0 - 0} f(x) = A = \lim_{x \to x_0 + 0} f(x)$$
(11.1)

ГЛАВА 11. ПРЕДЕЛ ФУНКЦИИ В ТОЧКЕ И НА БЕСКОНЕЧНОСТИ, 11.2. ОДНОСТОРОННИЕ ПРЕДЕЛЫ. ОДНОСТОРОННИЕ ПРЕДЕЛЫ.

предел слева(точка на красном) и справа(точка на синем)

в данном случае предела у функции нет

\mathbf{DPMW}

Непрерывность функций в точке, их свойства.

y=f(x) непрерывна в точке x_0 , если она определена в этой точке, а также в $\mathcal{U}_{(x)}$ и при этом $\lim_{x\to x_0}f(x_0)\Leftrightarrow \forall \epsilon>0, \exists \delta>0, \forall x, |x-x_0|<\delta:|f(x)-f(x_0|<\epsilon$ $\Delta_x=x-x_0$ - приращение аргумента $\Delta f(x_0)=f(x)-f(x_0)$ - есть приращение функции в x_0 y=f(x) непрерывна в x_0 \Leftrightarrow

$$\forall \epsilon > 0, \exists \delta > 0, |\Delta x| < \delta \Rightarrow |\Delta f(x_0)| < \epsilon \Leftrightarrow \lim_{\Delta x \to 0} \Delta f(x_0) = 0$$
 (13.1)

Непрерывность функции в точке означает то, что в любой, сколь угодно маленькой окрестности, бесконечно малое приращение аргумента влечёт за собой бесконечно маое приращение функции.

Свойства непрерывной функции в точке

- 1. Если функция непрерывна в точке x_0 , тов некоторой окрестности этой точки эта функция ограничена.
- 2. Если функция непрерывна в точке x_0 и $f(x_0) \neq 0$, то в некоторой окрестности x_0 функция имеет тот же знак, что и $f(x_0)$
- 3. Если $y = f(x_0)$ и $y = g(x_0)$ непрерывна в точке x_0 и $f(x_0) < g(x_0)$, то $\exists \mathcal{U}_{(x_0)}$ где f(x) < g(x)
- 4. Если $y=f(x_0)$ и $y=g(x_0)$ непрерывна в точке x_0 , то так же непрерывны $y=f(x_0)\pm y=g(x_0),\,y=f(x_0)\cdot y=g(x_0),\,y=f(x_0)y\div g(x_0)$
- 5. Непрерывность композиции функций: Если $y=g(x_0)$ непрерывна в точке $x_0,\ z=f(x_0)$ непрерывна в точке $y_0=g(x_0),$ то y=f(g(x)) непрерывна в точке $x_0.$

Доказательство.

```
\forall \epsilon > 0, \exists \delta > 0, \forall x \in \mathcal{U}_{\delta(x_0)}: |g(x) - g(x_0)| < \epsilon
\forall \sigma > 0, \exists \tau > 0, \forall y \in \mathcal{U}_{\tau(y_0)}: |f(y) - f(y_0)| < \sigma
\forall \sigma > 0, \exists \delta > 0, \forall x \in \mathcal{U}_{\delta(x_0)}: |f(g(x)) - f(g(x_0))| < \sigma
что и означает непрерывность y = f(g(x)) в точке x_0
```

13.1 Односторонняя непрерывность

y=f(x) определена на $(x_0-\delta;x_0]$ такая функция называется непрерывной слева, если $\lim_{x\to x_0-0}f(x)=f(x_0)$ аналогично функция называется непрерывной справа, если $\lim_{x\to x_0+0}f(x)=f(x_0)$. Так как функция непрерывна, она непрерывна слева и справа.

Функция называется разрывна в точке x_0 , если она либо не определена в этой точке, либо определена, но не непрерывна.

Классификация точек разрыва:

- 1. Если существуют и конечны оба односторонних пределаи эти односторонние пределы не равны друг другу, то эта точка точка разрыва первого рода.
- 2. Если функции справа равен пределу слева и не равен значению функции в точке, это точка устранимого разрыва. $\lim_{x\to x_0+0} f(x) = \lim_{x\to x_0-0} f(x) \neq f(x_0)$
- 3. Если хотя бы один из односторонних пределов бесконечен или не существует точка разрыва второго рода

Точки разрыва

13.2 непрерывны $\forall x \in \mathcal{D}(f(x))$

- постоянные функции
- $\bullet \ y = x$
- $y = a_n x^m + a_{n-1} x^{m-1} + \dots + a_0$
- функции sin, cos, tan, cot

\mathbf{DPMW}

Сравение функций, эквивалентные функции

Пусть y=f(x) и y=g(x) определены в $\mathcal{U}_{x_0}.$ Говорят, что f(x) сравнима с g(x), если

$$\exists \epsilon, \exists \mathcal{U}_{x_0}, \forall x_0 \in \mathcal{U}_{x_0} : |f(x)| \le \epsilon |g(x)|$$
(15.1)

В этом случае пишут, что f(x) = O(g(x)).

Очевидно, что f(x)=O(g(x)) при $x\to x_0\Leftrightarrow \lim_{x\to x_0}\frac{f(x)}{f(x)}\le \epsilon$ а это означает, что $\frac{f(x)}{f(x)}$ ограничена в \mathcal{U}_{x_0} .

15.1 Эквивалентность

Функции y=f(x) и y=g(x) квивалентны при $x\to x_0$, если $\lim_{x\to x_0}\frac{f(x)}{g(x)}=1$ или конечному числу A, тогда пишется $f(x)\sim g(x)$ при $x\to x_0\Rightarrow f(x)\sim g(x)\Leftrightarrow f(x)=g(x)+o(g(x))$, тут y=g(x) - главная часть y=f(x)

Тероэма 15.1. *Если* $f(x) \sim g(x)$ *npu* $x \to x_0$, *mo* $\forall x$:

- $\lim_{x \to x_0} f(x) \cdot h(x) = \lim_{x \to x_0} g(x) \cdot h(x)$
- $\lim_{x \to x_0} \frac{f(x)}{h(x)} = \lim_{x \to x_0} \frac{g(x)}{h(x)}$

Таблица эквивалентных при $x \to x_0$:

15.1. ЭКВИВАЛЕНТНОСТЬ ГЛАВА 15. СРАВНЕНИЕ ФУНКЦИЙ

$$\begin{array}{c|cccc} \sin(\mathbf{x}) & \mathbf{x} \\ \operatorname{tg}(\mathbf{x}) & \mathbf{x} \\ \operatorname{arcsin}(\mathbf{x}) & \mathbf{x} \\ \operatorname{arctg}(\mathbf{x}) & \mathbf{x} \\ 1 - \cos(x) & \frac{x^2}{2} \\ \ln a & \mathbf{x} \\ a^x - 1 & \mathbf{x} \cdot \ln a \\ \log_a 1 + x & \frac{x}{\ln a} \\ e^x - 1 & \mathbf{x} \\ (1 + x)^{\beta} - 1 & \beta x \\ x^{\beta} - 1 & \beta (x - 1) \end{array}$$

\mathbf{DPMW}

Непрерывность функции на отрезке

Пусть $y = f(x), [a; b] \subset \mathcal{D}(y).$ y = f(x) непрерывна на [a; b], если она непрерывна в каждой точке интервала (a;b) и непрерывна справа в точке a и слува в точке b.

Тероэма 17.1. Кантора о вложенных отрезках.

Имеется [a;b] и совокупность вложенных отрезков $[a;b]\supset [a_1;b_1]\supset [a_2;b_2]\supset$ $\cdots \supset [a_n; b_n] \supset \ldots \ u \ npu \ этом \lim_{n\to\infty} b_n - a_n = 0^1, \ mor \partial a$

$$\exists a \in [a; b] : \lim_{n \to \infty} a_n = \lim_{n \to \infty} b_n$$
 (17.1)

Используя теорему Кантора Докажем теорему Больцана-Вейерштрасса

Доказательство. $\forall \{x_n\} \subset [a;b]$ можно выделить мходящуюся подпоследовательность:

Разобьём [a;b] точкой С пополам и рассмотрим $[a_1;b_1]$, половину первоначального отрезка.

Эта половна содержит бесконечно много точек из $\{x_n\}$. Пусть $x_{n_1} \in [a_1; b_1]$. Точкой C_2 Разобьём отрезок $[a_1;b_1]$ пополам и мрассмотрим $[a_2;b_2]$, она содержит бесконечно много точек из $\{x_n\}$

и в этом отрезке обозначим x_{n_k} , чтобы $n_2 > n_1$ и так далее. Получим

$$\begin{aligned} \{x_{n_k}\} \in [a_k;b_k], \forall k \in \mathbb{N} \Rightarrow \\ a_k \leq x_{n_k} \leq , b_k - a_k = \frac{b_k - a_k}{2^k} \\ \lim_{n \to \infty} \frac{b_k - a_k}{2^k} = 0 \end{aligned}$$
 По теореме Кантора имеем: $\lim_{n \to \infty} a_k = \lim_{n \to \infty} b_k = a$

В неравенстве $a_k \le x \le b_k$ перейдём к пределам.

¹вложены друг в друга и уменьшаются

По теореме о 2х милиционерах:
$$a_0 \leq \lim_{n \to \infty} x_{n_k} \leq a_0 \Rightarrow \lim_{n \to \infty} x_{n_k} = a_0 \in [a;b]$$

Тероэма 17.2. Если y = f(x) непрерывна на [a; b], то она ограничена на этом отрезке.

$$\exists c > 0, \forall x \in [a; b] : |f(x)| \le c$$

Доказательство. Пусть y=f(x) непрерывна на [a;b]. Предположим, что она неограничена на этом отрезке.

Отсюда $\forall n \in \mathbb{N}, \exists x_n \in [a;b] : |f(x)| \ge n$

Отсюда по Больцана-Вейерштрасса в $\{x_n\}$ можно выделить сходящуюся подпоследовательность $\{x_{n_k}\}$ с пределом $x_0 \in [a;b]$

Отсюда $\forall k, |f(x_{x_k})| > n_k, \lim_{k \to \infty} |f(x_{x_k})| \ge \infty$

Поскольку $\{x_n\} \to x_0$, в x_0 функция не является непрерывной, а терпит разрыв второго рода, что протеворечит нашему утверждению.

Тероэма 17.3. Вейерштрасса.

Hепрерывная на [a;b] функция достинает на нём своего максимального и минимального значений.

\mathbf{DPMW}

Производная функции, односторонние производные

Пусть $y = f(x), x_0 \in \mathcal{D}(f(x))$. Рассмотрим график функции. и прямые $y = k(x-x_0) + f(x_0)$ Среди всех таких прямвх рассмотрим ту, которая наиболее тесно прижимается к графику функции f(x). Такая прямая называется касательной к графику функции в точке $(x_0; f(x_0))$. Эту прямую можно найти так: На графике функции рассмотрим кроме $(x_0; f(x_0))$ рассмотрим $(x_1; f(x_1))$ и прямую, проходящую через эти точки. Эта прямая - секущая, приближённая $(x_0; f(x_0))$

Уравнение секущей с угловым коеффициентом. Так как секущая должна роходить через $(x_0; f(x_0))$ должно выпоняться равенство $k = \frac{f(x_1) - f(x_0)}{x_1 - x_0} \Rightarrow (x_1; f(x_1)) \to (x_0; f(x_0)) \Leftrightarrow x_1 - x_0 \Rightarrow k = \lim_{x \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ Если этот преел конечен и существует, то он есть производная функции y = f(x) в x_0 и обозначается $f'(x_0)$

$$x_1-x_0=\Delta x, f(x_1)-f(x_0)=\Delta f(x_0)$$
 $f'(x_0)=lim_{\Delta x o 0} {\Delta f(x_0) \over \Delta x}$ иногда обозначается $df(x_0) \over dx$

Может оказаться, что $\lim_{\Delta x\to 0} \frac{\Delta f(x_0)}{\Delta x}$ бесконечен, в этом случае касательая к графику в точке вертикальна

Как известно, существование конечного предела равносильно существованию и равенству между собой односторонних пределов $\lim_{\Delta x \to 0+0} \frac{\Delta f(x_0)}{\Delta x}$ и $\lim_{\Delta x \to 0-0} \frac{\Delta f(x_0)}{\Delta x}$ Эти односторонние пределы, если они конечны и существуют, называются односторонними производными и обозначаются $f'(x_{0-0})$ и $f'(x_{0+0})$ Их существование означает существование касательной к фрагменту графика функции левее и правее $(x_0; f(x_0))$. Справедливо и обратное.

Возможны случаи, когда односторонние пределы существуют, но не равны друг другу это значит, что в точке $(x_0; f(x_0))$ терпит излом и не является гладким.

¹Размытое определение

Излом графика функции

Тероэма 19.1. Если f(x) имеет конечную производную в точке x_0 , то она непрерывна в этой точке.

Доказательство. Пусть Существует конечный предел $\lim_{\Delta x \to 0} \frac{\Delta f(x_0)}{\Delta x} = f'(x_0) \Leftrightarrow \Delta f(x_0) = f'(x_0) + o(\Delta x)$ Перейдём к пределу при $\Delta x \to 0$: $\lim_{\Delta x \to 0} \Delta f(x_0) = 0 \Leftrightarrow f(x) \Leftrightarrow f(x_0)$ непрерывна в x_0 Заметим, что обратное утверждение неверно.

Так как производная - предел, из свойств пределов можно вывести свойства производных:

1.
$$(f \pm g)' = f' \pm g'$$

2.
$$(cf)' = c(f)'$$

3.
$$(f \cdot g)' = f'g \cdot g'f$$

4.
$$\frac{1}{g} (\frac{f}{g})' = \frac{f'g - g'f}{g^2}$$

5.
$$c' = 0$$

 $^{^2\}mathrm{proofs}$ are pending

ГЛАВА 19. ПРОИЗВОДНАЯ ФУНКЦИИ, ОДНОСТОРОННИЕ ПРОИЗВОДНЫЕ

f(x)	f'(x)
tg(x)	$\frac{1}{\cos^2(x)}$
ctg(x)	$\frac{-1}{\cos^2(x)}$
x^k	$k \cdot x^{x-1}$
e^x	e^x
$log_a x$	$\frac{1}{x \cdot ln(a)}$
ln(x)	$\frac{1}{x}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
arctg(x)	$\frac{1}{1+x^2}$
arcctg(x)	$\frac{-1}{1+x^2}$

Производная сложной функции:

- $\bullet \ (f(g(x)))' = f'(g(x)) \cdot g'(x)$
- $(f^{-1}(y))' = \frac{1}{f'(x)}$ при y = f(x)
- $f'(x) = \frac{1}{f^{-1}(y)}$ при y = f(x)

\mathbf{DPMW}

Основные правила дифференцирования, производные элементарных функций.

Так как производная - предел, из свойств пределов можно вывести свойства производных:

- 1. $(f \pm g)' = f' \pm g'$
- 2. (cf)' = c(f)'
- 3. $(f \cdot g)' = f'g \cdot g'f$
- 4. $(\frac{f}{g})' = \frac{f'g g'f}{g^2}$
- 5. c' = 0

¹proofs are pending

f(x)	f'(x)
tg(x)	$\frac{1}{\cos^2(x)}$
ctg(x)	$\frac{-1}{\cos^2(x)}$
x^k	$k \cdot x^{x-1}$
e^x	e^x
$log_a x$	$\frac{1}{x \cdot ln(a)}$
ln(x)	$\frac{1}{x}$
arcsin(x)	$\frac{1}{\sqrt{1-x^2}}$
arccos(x)	$\frac{-1}{\sqrt{1-x^2}}$
arctg(x)	$\frac{1}{1+x^2}$
arcctg(x)	$\frac{-1}{1+x^2}$

Производная сложной функции:

- $(f(g(x)))' = f'(g(x)) \cdot g'(x)$
- $(f^{-1}(y))' = \frac{1}{f'(x)}$ при y = f(x)
- $f'(x) = \frac{1}{f^{-1}(y)}$ при y = f(x)

Дифференциал функции

Функция называется дифференцируемой в точке x_0 , если её $\Delta f(\Delta x)$ можно предстваить так: $f(x)-f(x_0)=A(x-x_0)+o(x-x_0)$ где A - конечное число; $A(x-x_0)$ называется дифференциалом.

Тероэма 22.1. Функция y = f(x) дифференцируема в точке x_0 тогда и только тогда, когда функция имеет конечную производную в этой точке и производная функции равна A

Доказательство. Если y = f(x) дифференцируема в x_0 , то

$$f(x) - f(x_0) = A(x - x_0) + o(x - x_0)|_{\dot{x}(x - x_0)}$$

при перезоде к пределам:

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{A + o(x - x_0)}{x - x_0} = A \Rightarrow f'(x_0) = A$$

Предположим, что f(x) имеет конечную производную

$$\Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$

$$\frac{f(x) - f(x_0)}{x - x_0} = f'x_0 + o(x - x_0)$$

$$f(x) = f'(x_0)(x - x_0) + o(x - x_0) \cdot (x - x_0) \Rightarrow A = f'(x_0)$$

22.1. СВ. ПРОИЗВОДНОЙ ГЛАВА 22. ДИФФЕРЕНЦИАЛ ФУНКЦИИ

Таким образом дифференцируемость функции равносильна существованию её конечной производной.

$$f(x) - f(x_0) = df(x_0) + (x - x_0)$$
(22.1)

При $x \to x_0, df(x_0) = f'(x_0)(x - x_0)$

Бесконечно малое приращение аргумента Δx обозначается dx, отсюда

$$df(x_0) = f'(x_0)dx$$
 (22.2)

Заметим, что формула справедлива и когда x - функция.

$$df(x(t)) = (f'(x(t)))'dt = f'(x) \cdot x(t)dt = f'(x)dx$$
 (22.3)

Дифференциал можно использовать и при приблиэённом вычислении значения функции:

$$f(x)-f(x_0)=df(x_0)+o(x-x_0), x\to x_0\Rightarrow$$
 при x близких к x_0 $o(x-x_0)\approx 0\Rightarrow f(x)-f(x_0)\approx df(x_0)\Rightarrow$
$$\boxed{f(x)\approx f(x_0)+df(x_0)} \tag{22.4}$$

Пример:

$$\sqrt[100]{1.1} \approx |_{x_0 \approx 1 = \sqrt{x}|_{x=1}}$$

$$(1.1-1) + \sqrt[100]{1} = (x^{\frac{1}{100}})|_{x=1} \cdot 0.1 + 1 = \frac{1}{100} \cdot x^{-0.99}|_{x=1} \Rightarrow$$
$$0.1 \cdot \frac{1}{100} + 1 = 1.001$$

22.1 Основные свойства производной на отрезке

Тероэма 22.2. Ферма: Пусть y = f(x) в точке x_0 имеет локальный экстремум¹ \Rightarrow если

$$\exists \mathcal{U}_{(x_0)} \forall x \in \mathcal{U}_{(x_0)} : f(x_0) \le f(x)$$

 $^{^{1}\}max \mid\mid \min$

для мин. экстр $f(x_0) \ge f(x)$

Доказательство. Если x_0 - точка локального максимума функции f(x), то $\exists \mathcal{U}_{(x_0)} \forall x \in \mathcal{U}_{(x_0)}: f(x_0) \leq f(x)$. Рассмотрим односторонние пределы:

$$\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0, f(x) - f(x_0) \le 0, x < x_0$$

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0, f(x) - f(x_0) \le 0, \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

Так как функция дифференцируема в точке, то Существует предел, равный производной функции, равный обоим односторонним пределам и

$$\begin{cases} f'(x_0) \ge 0 \\ f'(x_0) \le 0 \end{cases} \Rightarrow f'(x_0) = 0$$

Тероэма 22.3. Ролля: Пусть y = f(x) непрерывна на [a;b] и дифференцируема на (a;b) и Если $f(a) = f(b), \exists c \in [a;b]: f'(c) = 0 \forall (a;b)$

Доказательство. Если f(x) не постоянна, то по теореме Вейерштрасса она достигает на этом отрезке своего маесимального и минимального значений, что не равны друг другу, а значит, чтчо хоть один их нах отличается от f(a) = f(b). Обозначим такую точку экстремума $c \in (a;b)$

 $f(c) \neq f(a) = f(b)$ и по теореме Ферма f'(c) = 0

удовлетв. усл.

22.1. СВ. ПРОИЗВОДНОЙ ГЛАВА 22. ДИФФЕРЕНЦИАЛ ФУНКЦИИ

Для функции удовлетворяющей условиям теоремы Ролля обязательно найдётся точка на графике, касательной в которой будет горизонтальная прямая

Тероэма 22.4. Коши: Пусть y = f(x) и Пусть y = g(x) непрерывны на [a;b] и дифференцируемы на $(a;b), g'(x) \neq 0$, тогда

$$\exists c \in (a; b) : \frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Пусть функция $F(x)=f(x)-f(a)-\frac{f(b)-f(a)}{g(b)-g(a)}\cdot(g(x)-g(a))$. Функция F уодвлетворяет условиям теоремы Ролля \Rightarrow $\exists c\in(a;b):F'(x)=0$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(x)$$

$$F'(c) = 0 \Leftrightarrow f(c) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c) = 0$$

Производные и дифференциалы высших порядков

Данная глава находится в разработке, при отсутствии в ней полезной информации (или вообще какой-либо информации вините еврея, араба и немца (с явными расистскими наклонностями)

Дифференцирование функции, заданной параметрически

Данная глава находится в разработке, при отсутствии в ней полезной информации (или вообще какой-либо информации вините еврея, араба и немца (с явными расистскими наклонностями)

Локальный экстремум функции, теорема Ферма

Определение локального максимума и локального минимума Пусть функция y=f(x) определена в некоторой δ -окрестности точки x_0 , где $\delta>0$. Говорят, что функция f(x) имеет локальный максимум в точке $x_0, \ \forall x\neq x_0\in \mathcal{U}_{\delta(x_0)}: f(x)\leq f(x_0)$. Если поменять знак на строгий, то максимум строгий, если знак перевернуть, то будет смнимум, а если знак перевернуть и поменять на строгий, то строгого минимума.

Тероэма 25.1. Ферма: Пусть y = f(x) в точке x_0 имеет локальный экстремум¹ \Rightarrow если

$$\exists \mathcal{U}_{(x_0)} \forall x \in \mathcal{U}_{(x_0)} : f(x_0) \le f(x)$$

для мин. экстр $f(x_0) \ge f(x)$

Доказательство. Если x_0 - точка локального максимума функции f(x), то $\exists \mathcal{U}_{(x_0)} \forall x \in \mathcal{U}_{(x_0)}: f(x_0) \leq f(x)$. Рассмотрим односторонние пределы:

$$\lim_{x \to x_0 - 0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0, f(x) - f(x_0) \le 0, x < x_0$$

$$\lim_{x \to x_0 + 0} \frac{f(x) - f(x_0)}{x - x_0} \le 0, f(x) - f(x_0) \le 0, \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

 $^{^{1}}$ max || min

ГЛАВА 25. ЛОКАЛЬНЫЙ ЭКСТРЕМУМ ФУНКЦИИ, ТЕОРЕМА ФЕРМА

Так как функция дифференцируема в точке, то Существует предел, равный производной функции, равный обоим односторонним пределам и

$$\begin{cases} f'(x_0) \ge 0 \\ f'(x_0) \le 0 \end{cases} \Rightarrow f'(x_0) = 0$$

Теоремы Ролля, Лагранжа, Коши

Тероэма 26.1. Ролля: Пусть y = f(x) непрерывна на [a;b] и дифференцируема на (a;b) и Если $f(a) = f(b), \exists c \in [a;b]: f'(c) = 0 \forall (a;b)$

Доказательство. Если f(x) не постоянна, то по теореме Вейерштрасса она достигает на этом отрезке своего маесимального и минимального значений, что не равны друг другу, а значит, чтчо хоть один их нах отличается от f(a) = f(b). Обозначим такую точку экстремума $c \in (a;b)$

 $f(c) \neq f(a) = f(b)$ и по теореме Ферма f'(c) = 0

удовлетв. усл.

Для функции удовлетворяющей условиям теоремы Ролля обязательно найдётся точка на графике, касательной в которой будет горизонтальная прямая

Тероэма 26.2. Коши: Пусть y = f(x) и Пусть y = g(x) непрерывны на [a;b] и дифференцируемы на $(a;b), g'(x) \neq 0$, тогда

$$\exists c \in (a; b) : \frac{f(a) - f(b)}{g(a) - g(b)} = \frac{f'(c)}{g'(c)}$$

Доказательство. Пусть функция $F(x) = f(x) - f(a) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot (g(x) - g(a))$. Функция F уодвлетворяет условиям теоремы Ролля \Rightarrow $\exists c \in (a;b): F'(x) = 0$

$$F'(x) = f'(x) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(x)$$

$$F'(c) = 0 \Leftrightarrow f(c) - \frac{f(b) - f(a)}{g(b) - g(a)} \cdot g'(c) = 0$$

Тероэма 26.3. Лагранжа о конечном приращении.

Пусть y = f(x) непрерывна на [a;b] и дифференцируема на (a;b) тогда $\exists c \in (a;b): \frac{f(b)-f(a)}{b-a} = f'(c)$

Доказательство. наряду с y=f(x) рассмотрим $g(x)\equiv x$. Заметим, что эти 2 функции удовлетворяют всем условиям теоремы Коши. Тогда получается, что $\exists c\in (a;b): \frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{b-a}=\frac{f'(c)}{1}$

Геосмысл теоремы Лагранжа: Прямая, прохлдящая через точки (a;f(a)),(b;b(b)) задаётся уравнением y=k(x-a)+f(a). k найдём из условия прохождения этой прямой через точку (b;f(b)). f(b)=k(b-a)+f(a) $k=\frac{f(b)-f(a)}{b-a}\Rightarrow$ на (a;b) в условиях теоремы Лагранжа Существует такая точка c, в которой касательная к графику функции параллельна хорде, стягивающей (a;f(a)),(b;b(b))

Правило Лопиталя

Пусть функции f(x) и g(x) непрерывны и дифференцируемы в окрестности точки x_0 и обращаются в нуль в этой точке: $f(x_0) = g(x_0) = 0$. Пусть $g'(x_0) \neq 0$. Если существует предел $\lim_{x \to x_0} \frac{f'(x)}{g'(x)}$, то $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$.

Замечание: Правило Лопиталя также справедливо, если $\lim_{x\to x_0} f(x) = \lim_{x\to x_0} g(x) = \infty$

Доказательство

Функции f(x) и g(x) непрерывны и дифференцируемы в окрестности точки x_0 , значит $f(x_0)=\lim_{x\to x_0}f(x)=0$ и $g(x_0)=\lim_{x\to x_0}g(x)=0$. По теореме Коши для отрезка $[x_0;x]$, лежащего в окрестностях x_0 существует $\frac{f(x)-f(x_0)}{g(x)-g(x_0)}=\frac{f'(c)}{g'(c)}$, где c лежит между точками x и x_0 . Учитывая, что $f(x_0)=g(x_0)=0$, получаем

$$\frac{f(x)}{g(x)} = \frac{f'(c)}{g'(c)}.$$

При $x \to x_0$ с также стремится к x_0 ; перейдем к пределу:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{c \to x_0} \frac{f'(c)}{g'(c)}.$$

Получается $\lim_{x\to x_0} \frac{f(x)}{g(x)} = \lim_{c\to x_0} \frac{f'(c)}{g'(c)}$, а $\lim_{x\to x_0} \frac{f'(x)}{g'(x)} = \lim_{c\to x_0} \frac{f'(c)}{g'(c)}$, значит

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$
 (27.1)

А если кратенько, то полученную формулу можно читать так: **предел** отношения двух бесконечно малых равен пределу отношения их производных, если по следний существует.

Замечания:

- 1. Правило Лопиталя справедливо и в случае, когда функции f(x) и g(x) не определены при $x=x_0$, но $\lim_{x\to x_0}f(x)=0$ и $\lim_{x\to x_0}g(x)=0$. В этом случае $f(x_0)=\lim_{x\to x_0}f(x)=0$ и $g(x_0)=\lim_{x\to x_0}g(x)=0$
- 2. Правило Лопиталя справедливо и в случае, когда $x \to \infty$:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$

3. Если производные f'(x) и g'(x) удовлетворяют тем же условиям, что и f(x) и g(x), то правило Лопиталя можно применить еще раз:

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)} = \lim_{x \to x_0} \frac{f''(x)}{g''(x)}$$
 (27.2)

Виды неопределенностей:

- 1. Неопределенность вида $\frac{0}{0}$: $\lim_{x\to 0} \frac{1-\cos(6x)}{2x^2} = [\frac{0}{0}] = \lim_{x\to 0} \frac{(1-\cos(6x))'}{(2x^2)'} = \lim_{x\to 0} \frac{6\sin(6x)}{4x} = \frac{3}{2}\lim_{x\to 0} \frac{\sin(6x)}{x} = \frac{3}{2}\times[\frac{0}{0}] = \frac{3}{2}\lim_{x\to 0} \frac{(\sin(6x))'}{(x)'} = \frac{3}{2}\lim_{x\to 0} \frac{6\cos(6x)}{1} = \frac{3}{2}\times 6 = 9$
- 2. Неопределенность вида $\frac{\infty}{\infty}$:

$$\begin{split} \lim_{x \to \frac{\pi}{2}} \frac{tg(3x)}{tg(5x)} &= [\frac{\infty}{\infty}] = \lim_{x \to \frac{\pi}{2}} \frac{(tg(3x))'}{(tg(5x))'} = \lim_{x \to \frac{\pi}{2}} \frac{3\cos^2(5x)}{5\cos^2(3x)} = \\ \frac{3}{5} \times [\frac{0}{0}] &= \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \frac{\cos^2(5x) - 1 + 1}{\cos^2(3x) - 1 + 1} = \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \frac{\cos(10x) + 1}{\cos(6x) + 1} = \\ \frac{3}{5} \times [\frac{0}{0}] &= \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \frac{(\cos(10x) + 1)'}{(\cos(6x) + 1)'} = \frac{3}{5} \lim_{x \to \frac{\pi}{2}} \frac{10\sin(10x)}{6\sin(6x)} = \lim_{x \to \frac{\pi}{2}} \frac{\sin(10x)}{\sin(6x)} = \\ [\frac{0}{0}] &= \lim_{x \to \frac{\pi}{2}} \frac{(\sin(10x))'}{(\sin(6x))'} = \lim_{x \to \frac{\pi}{2}} \frac{10\cos(10x)}{6\cos(6x)} = \frac{5}{3} \end{split}$$

Для пунктов 3-7 рассмотрим преобразования в общих случаях:

3. Неопределенность вида $\infty - \infty$:

Пусть $f(x) \to \infty, g(x) \to \infty$ при $x \to x_0$, тогда:

$$\lim_{x \to x_0} (f(x) - g(x)) = [\infty - \infty] = \lim_{x \to x_0} \left(\frac{1}{\frac{1}{f(x)}} - \frac{1}{\frac{1}{g(x)}} \right) = \lim_{x \to x_0} \left(\frac{\frac{1}{g(x)} - \frac{1}{f(x)}}{\frac{1}{f(x)} \frac{1}{g(x)}} \right) = \begin{bmatrix} \frac{0}{0} \end{bmatrix} = \dots$$

4. Неопределенность вида $\infty \times 0$:

Пусть $f(x) \to 0, g(x) \to \infty$ при $x \to x_0$, тогда:

$$\lim_{x \to x_0} (f(x)g(x)) = [\infty \times 0] = \lim_{x \to x_0} \frac{f(x)}{\frac{1}{g(x)}} = \frac{0}{0} = \dots$$

- 5. Неопределенность вида 1^{∞}
- 6. Неопределенность вида ∞^0
- 7. Неопределенность вида 0^0

Для неопределенностей вида 4-7 воспользуемся следующим преобразованием:

Пусть $f(x) \to 1, g(x) \to \infty$; или $f(x) \to \infty, g(x) \to 0$; или $f(x) \to 0, g(x) \to 0$ при $x \to x_0$. Для нахождения предела вида $\lim_{x \to x_0} f(x)^{g(x)}$ удобно сначала прологарифмировать выражение

$$A = f(x)^{g(x)}$$

Неопределённый интеграл и его свойства

32.1 Понятие первообразной

Пусть y=f(x) - непрерывная функция, Первообразной для f(x) является F(x):F'(x)=f(x) Если F(x) - первообразная для f(x), то $\forall C:(F(x)+C)'=f(x)$

Тероэма 32.1. Если функция y = g(x) непрерывно-дифференцируема $u \ e\ddot{e} \ \forall x : g'(x) = 0, \ g(x) = C$

Доказательство. Пусть $\forall x: g'(x) = 0 \Rightarrow \forall x_1, x_2: g(x_1) = g(x_2)$. Тогда по теореме Лагранжа: $\xi \in (x_1; x_2): g(x-2) - g(x_1) = g'(\xi) \cdot (x_2 - x_1) \Rightarrow$ так как $g'(\xi) = 0, g(x_2) - g(x_1) = 0 \Rightarrow g(x_2) = g(x_1)$

Тероэма 32.2. Если F(x) первообразная для f(x), то любая первообразная для f(x) представима в виде G(x) = F(x) + C

Доказательство. Пусть 2 различные первообразные F(x), G(x) для $f(x) \Leftrightarrow F'(x) = f(x)$ и G'(x) = f(x). Тогда $\forall x: (G(x) - F(x))' = G'(x) - F'(x) = f(x) - f(x) = 0 \Rightarrow$ по теорете 1 $G(x) - F(x) = C \Rightarrow G(x) = F(x) + C$

совокупность всех первообразных для функции называется неопределённым интегралом этой функции $\int f(x) dx = F(x) + C$

32.2 Свойства неопределённого интервала

(a)
$$d(\int f(x)dx) = f(x)dx$$

(b)
$$\int f'(x)dx = f(x) + C$$

(c)
$$\forall \alpha, \beta \in \mathbb{R}, \forall f(x), g(x) : \int \alpha f(x) + \beta g(x) dx = \alpha \int f(x) dx + \beta \int g(x) dx$$

(d)
$$\forall \alpha, \beta : F'(x) = f(x), \int f(\alpha x + \beta) dx = \frac{1}{\alpha} F(\alpha x + \beta) + C$$

Из таблицы производных получаем таблицу интегралов:

32.3 Таблица Интегралов

$$\int 0dx = C \tag{32.1}$$

$$\int dx = x + C \tag{32.2}$$

$$\int x^n = \frac{x^{n+1}}{n+1} + C, n \neq 1$$
 (32.3)

$$\int \frac{dx}{x} = \ln(|x|) + C \tag{32.4}$$

$$\int a^x dx = \frac{a^x}{\ln(a)} + C \tag{32.5}$$

$$\int e^x dx = e^x + C \tag{32.6}$$

$$\int \sin(x)dx = -\cos(x) + C \tag{32.7}$$

$$\int \cos(x)dx = \sin(x) + C \tag{32.8}$$

$$\int \operatorname{tg}(x)dx = \ln(\frac{1}{|\cos(|x|)}) + C \tag{32.9}$$

$$\int \frac{dx}{\sqrt{1-x^2}} = \arcsin(x) + C \tag{32.10}$$

$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin(\frac{x}{a}) + C \tag{32.11}$$

$$\int \frac{dx}{x^2 + 1} = arctg(x) + C \tag{32.12}$$

32.3. ТАБЛИЦА ИНТЕГРАЛОВ

ГЛАВА 32. НЕОПРЕДЕЛЁННЫЙ ИНТЕГРАЛ

$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \operatorname{arctg}(\frac{x}{a}) + C \tag{32.13}$$

$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} ln(|\frac{x - a}{x + a}|) + C$$
 (32.14)

$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln(x + \sqrt{x^2 \pm a^2}) + C \tag{32.15}$$

Метод замены переменной в неопределённом интеграле

Тероэма 33.1. Пусть функция f(x) непрерывна, а $x = \phi(t)$ непрерывно-дифференцируема, причём $\mathcal{D}(\phi(t)) \subset \mathcal{D}(f)$, тогда $\int f(x(t))\phi'(t)dt = \int f(x)dx$ Произведём по t:

$$(\int f(x(t))\phi'(t)dt)_t' = \int x(t) \cdot \phi'(t)$$

$$(\int f(x)dx)_t' = (\int f(x(t))dx)_t' = f_t'(x(t)) = f_t'(x(t))x'(t) = f_t'(x(t))\phi'(t)$$

Пример:

$$\int tg(x)dx = \int \frac{\sin(x)}{\cos(x)}dx \\ \left[t = \cos(x), dt = -\sin(x)dx, \sin(x)dx = -dt \right]$$

$$= \int \frac{-dt}{t} = -\ln(|t|) + C = -\ln(|\cos(x)|) + C$$
 (33.1)

Интегрирование по частям

Пусть есть 2 нерерывно-дифференцируемые функции u(x), v(x):

$$d(uv) = (uv)'dx = (u'v + v'u)dx = u'vdx + v'udx = vdu + udv \Rightarrow d(uv) = vdu + udv$$

- $\Rightarrow \int u dv = uv \int v du (34.1)$ Когда использовать? (за u берём многочлен и корячим столько раз,какова степень)
 - подинтегральная функция есть произведение многочлена и синуса/косинуса
 - подинтегральная функция есть произведение многочлена и показательной функции

Определённый интеграл и его свойства

Пусть задана y=f(x), предположим, что $\forall x\in [a;b]\subset \mathcal{D}(f):f(x)\geq 0$

Излом графика функции

Рассмотрим фигуру, ограниченную сниху Ox, сверху графиком функции, слева и справа - вертикальными прямыми x=a, x=b это называется криволинейной трапецией. Чтоб найти площадь этой фигуры, разобьём её на досаточно большое количество очень узких вертикальных полосок, чтобы ступенчатая форма была ближе к кривой. Площадь криволинейной трапеции буде равна сумме площадей полосок.

Разбиение [a;b] (конечное множество точек) таких, что $a=x_0 < x_1 < x_2 \cdots < x_n = b$. На каждом $x_{[i-1;x_i]}$ выберем ξ_i и рассмотрим

 $f(\xi_i)$ Рассмотрим итый прямоугольник со сторонами $x_i - x_{i-1}$, площадь которого равна $f(\xi_i) \cdot (x_i - x_{i-1})$ Обозначим $(x_i - x_{i-1})$ за Δ_i и пусть $\Delta = \max(\Delta_i...\Delta_n)$ Δ - диаметр разбиения.

Интегральная сумма соответствующая данному разбиению:

$$\sum_{i=1}^{n} \Delta_i \cdot f(\xi_i)$$

Рассмотрим $\lim_{\Delta \to 0} \sum_{i=1}^n \Delta_i \cdot f(\xi_i)$. Если такой предел существует и конечен, не зависит от разбиения и от выбора ξ_i , то этот предел называется определённым интегралом $\int_a^b f(x) dx$

Тероэма 35.1. необходимые условия интегрируемости. Если функция интегрируема на отрезке, то она ограничена на этом отрезке.

Доказательство. Произведём разбиение [a;b]. Если функция неограничена на [a;b], она неограничена хотя бы на одном из отрезков $[x_i-x_{i-1}]$. Следовательно точку ξ_i можно выбрать так, что $|\xi_i|$ будет сколь угодно велик. В этом случае интегральная сумма стремится к бесконечности и предел интегральной суммы будет зависеть от выбора ξ_i и, при некотором ξ_i он будет бесконечным, что противоречит условиям интегрирования.

Тероэма 35.2. Если функция непрерывна на [a;b], она интегрируема на [a;b].

Следствие: Если функция на [a; b] имеет конечное количество точек разрыва первого рода¹, то она интегрируема на [a; b].

Доказательство. Функция кусочно-непрерывна на [a;b] тогда и только тогда, когда этот отрезок разбивается на конечное число меньших отрезков, на каждом из которых эта функция непрерывна и ограничена, по теореме 2 доказательство.

Тероэма 35.3. *Если функция монотонна на* [a;b], *она интегрируема на* [a;b].

35.1 Свойства определённго интеграла

- (a) $\int_a^a f(x)dx = 0$
- (b) $\int_{a}^{b} dx = b a$
- (c) $\forall f(x), g(x)$ интегрируемой на $[a; b], \forall \alpha, \beta$

$$\int_{a}^{b} \alpha f(x) + \beta g(x) dx = \alpha \int_{a}^{b} f(x) dx + \beta \int_{a}^{b} g(x) dx$$

¹кусочно-непрерывна

(d) Если $f(x) \ge 0$ на $[a;b], \forall x \in [a;b] : f(x) \ge g(x),$

$$\int_{a}^{b} f(x)dx \ge \int_{a}^{b} g(x)dx$$

(e)
$$\left| \int_{a}^{b} g(x) dx \right| \leq \int_{a}^{b} g(x) dx$$

Доказательство.

$$\forall |\sum_{i=1}^{n} \Delta_i \cdot f(\xi_i)| \le \sum_{i=1}^{n} |\Delta_i \cdot f(\xi_i)| \le \sum_{i=1}^{n} \Delta_i \cdot |f(\xi_i)|$$

При $\Delta \to 0$ доказывается

(f)
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

(g)

$$\forall a,b,c: \int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx$$

Доказательство. і. Пусть $c \in (a;b)$, тогда рассмотрим разбиения отрезка [a;b], содержащие c. Тогда интегральная сумма разивается на 2 суммы: слева от c и справа от c. При $\Delta \to 0$ доказывается.

іі. $c \notin (a; b) \Rightarrow b \in (a; c)$ по пункту i:

$$\int_{a}^{c} f(x)dx = \int_{a}^{b} f(x)dx + \int_{b}^{c} f(x)dx$$

$$\Rightarrow \int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

ііі. $a \in (c; b)$ аналогично

iv. c = a или c = b: по первому свойству.

Тероэма 35.4. о среднем: Если функция непрерывна на [a;b], $\exists \xi \in [a;b]: f(\xi) \cdot (b-a) = \int_a^b f(x) dx$

Доказательство. Пусть y = f(x) непрерывна на $[a;b] \Rightarrow$ на этом отрезке она достигает своих максимального и минимального значений. $m = min(f(x)); M = max(f(x)), x \in [a;b]$

$$\forall x \in [a; b] : m \le f(x) \le M. \Rightarrow \int_a^b m dx \le \int_a^b f(x) dx \le \int_a^b M dx$$

$$\Rightarrow m(b-a) \leq \int_a^b f(x) dx \leq M(b-a). \\ a < b \Rightarrow m \leq \frac{1}{b-a} \int_a^b f(x) dx \leq M$$

по теореме о промежуточных значениях непрерывной функции:

$$\exists \xi \in [a;b]: f(\xi) = \frac{1}{b-a} \int_a^b f(x) dx$$

умножив на (b-a)>0 получим доказываемое равенство. \qed

Формула Ньютона-Лейбница

Для y=f(x) на [a;b] рассмотрим функцию $\Phi(x)=\int_a^x f(t)dt, x\in [a;b]$

Тероэма 36.1. Если функция интегрируема на $[a;b], \Phi(x)$ непрерывна на [a;b]

$$\exists M > 0, \forall x \in [a; b] : |f(x)| < M.$$

Возьмём произвольное $x \in [a; b], \Delta_x > 0$. Рассмотрим

$$|-\Phi(x) + \Phi(x + \Delta_x)| = |\int_a^{x + \Delta_x} f(t)dt - \int_a^x f(t)dt =$$

$$|\int_a^x f(t)dt + \int_x^{x+\Delta_x} f(t)dt - \int_a^x f(t)dt| =$$

$$|\int_x^{x+\Delta_x} f(t)dt| \leq |\int_x^{x+\Delta_t} |f(t)|dt|$$

$$\leq |\int_{x}^{x+\Delta_{x}} M dt| \leq M |\int_{x}^{x+\Delta_{x}} dt| = M \Delta_{x}$$

 $0\leq |\Phi(x+\Delta_x)-\Phi(x)|\leq M\Delta_x\ M\Delta_x\to 0$ при $\Delta_x\to 0\Rightarrow\lim_{\Delta_x\to 0}\Phi(x+\Delta_x)=\Phi(x)$ Следовательно $\Phi(x)$ непрерывна изза того, что x выбран произвольно.

Тероэма 36.2. y = f(x) непрерывна, отсюда $\Phi(x)$ дифференцируема на [a;b]. При этом $\Phi'(x) = f(x)$.

Доказательство.

$$x \in (a; b), x + \Delta_x \in (a; b).$$

$$\Phi(x + \Delta_x) - \Phi(x) = \int_x^{x + \Delta_x} f(t)dt|_{\div \Delta_x}$$

$$\frac{\Phi(x + \Delta_x) - \Phi(x)}{\Delta_x} = \frac{1}{\Delta_x} \int_x^{x + \Delta_x} f(t) dt$$

По теореме о среднем

$$\frac{1}{\Delta_x} f(\xi)(x + \Delta_x - x) = f(\xi), \xi \in [x; x + \Delta_x]$$

Если $\Delta_x \to 0, \xi \to x$

$$\frac{\Phi(x + \Delta_x) - \Phi(x)}{\Delta_x} = f(\xi)$$

При переходе к пределу с $\Delta_x \to 0$ получим $\Phi'(x) = f(x)$ Таким образом, Если функция y = f(x) непрерывна на $[a;b], \Phi(x)$ - первообразная для f(x)

Рассмотрим Вас первообразные F(x) для f(x). $\int_a^x f(t)dt = \Phi(t) = F9x) + C$. Найдём z, взяв $x=a\Rightarrow \int_a^a f(t)dt = f(a) + C \Rightarrow C = -F(a) \Rightarrow \int_a^x f(t)dt = F(x) - F(a)$

При $x=b:\int_a^b f(t)dt=\int_a^x f(x)dx=F(b)-f(a)\Rightarrow F(b)-F(a)=F(x)|_a^b$

$$\int_{a}^{b} f(x)dx = F(x)|_{a}^{b} = F(b) - F(a)$$
 (36.1)

Поверхности второго порядка, метод сечения

Пусть в пространсве задана ПСК Oxyz. Фигурой, задаваемой уравнением F(x,y,z)=0 называется множество тех точек, координаты которых удовлетворяют этому уравнению. Если F(x,y,z) многочлен, т.е. конечная сумма вида $ax^py^qz^r$, $a\in athbbR$; $p,q,r\in\mathbb{N}$, фигура на выходе - алгебраическая поверхность. Если F(x,y,z) - многочлен степени k, фигура будет порядка k. Таким образом поверхности второго порядка задаются уравнением вида $a_1x^2+a_2y^2+a_3z^2+a_4xy+a_5xz+a_6yz+a_7x+a_8y+a_9z+a_0=0$; $a_0,a_1\ldots a_9\in\mathbb{R}$ $\exists x\in\{a_1,a_2\ldots,a_6\}:x\neq 0$

46.1 Метод сечений

Тероэма 46.1. Пусть задано уравнение F(x,y,z) = 0, тогда проекция на Оху, пересечения поверхности с плоскостью z = h Задаётся уравнением F(x,y,h) = 0.

Доказательство. F(x,y,z)=0 // Пусть $M(x_1,y_1,z_1)$ - произвольная точка. Тогда проекция этой точки на $Oxy=M_1(x_1,y_1,0)$. Пусть M принадлежит пересечению этой поверхности с плоскостью $z=h \Leftrightarrow M(x_1,y_1,h)$ при этом $F(x_1,y_1,h)=0$ Тогда M_1 в $Oxy=M(x_1,y_1)$ есть проекция пересечения данной поверхностии плоскость. z=h тогда и только тогда, когда $M(x_1,y_1,h)$ принадлежит этому пересечению, что значит, что $F(x_1,y_1,h)=0$

Поверхности вращения

Пусть в пространстве задана некая линия γ и прямая d. Фигура, получающаяся при вращении γ вокруг d называется поверхностью вращения. Выберем в пространсве ПСК Охуг так, чтбы ось вращения совпадала с $Ox \Rightarrow$ поверхность вращения можно задать так: $y \in Oxz = x = f(z)$, где f - некоторая функция, и рассмотрим Поверхность вращения, полученную при вращении γ вокруг Oz. Рассмотрим $M(x,y,z) \in$ этой поверхности, и плокость, проходящую через $M \perp Oz$ и M_0 , точку пересечения этой плоскости с $Oz \Rightarrow M_0 = M_0(0,0,z_1) \Rightarrow$ вся окружность с центром в M_0 , проходящая через M, целиком лежит нв этой поверхности. Рассмотри пересечение этой окружности с $Oxz: M_1$ и M_2 . Заметим, что M_0M_1, M_0M_2, M_0M - радиусы одной окружности (поэтому они равны друг другу). $\Rightarrow M_0M_1=M_0M_2=M_0M=$ $=\sqrt{(x_1-0)^2+(y_1-0)^2+(z_1-z_1)^2}=\sqrt{x_1^2+y_1^2}$ $\Rightarrow M_1(\sqrt{x_1^2+y_1^2},0,z_1), M_2(-\sqrt{x_1^2+y_1^2},0,z_1).$ Так как M принадлежит поверхности вращения, $\sqrt{x_1^2 + y_1^2} = f(z_1) \Rightarrow x_1^2 + y_1^2 =$ $(f(z_1))^2 \Rightarrow$ эта линия вращения задана

$$x^2 = y^2 = f^2(z) (47.1)$$

Поверхнощение второго порядка тогда, когда многочлен от z не более второго порядка:

$$- f(z) = a$$

$$- f(z) = \sqrt{az^2 + b}$$

$$- f(z) = \sqrt{az^2 + bz + c}$$

Циллиндрические поверхности

Пусть в пространстве задага линия γ и ненулевой вектор \vec{p} . Поверхность нахывается циллиндрической, если вместе с любой своей точкой она содержит и всю прямую, параллельную \vec{p} и проходящую через эту точку. Такие прямые называются образующими. В пространствк рассмотрим СК Oxyz такую, что $Oz \parallel \vec{p} \Rightarrow$ Все образующие Ц.П. параллельны Oz и имеют направляющим вектором \vec{p} . Ц.П. можно задать следующим образом: Пусть в плоскости Oxy задана линия $\gamma:=f(x,y)=0$; через каждую точук этой линии проведём прямую, параллельную Ox. Тут γ называется направляющей для этой Ц.П.

Найдём уравнение, задающее Ц.П. Рассмотрим произвольную точку M(x,y,z) в пространстве. Её проекция M_1 на Oxy имеет координаты $M_1(x,y,0)\Rightarrow M_1\in\gamma\Rightarrow f(x,y)=0$. Если направляющая γ в Oxy задаётся уравнением f(x,y)=0, Ц.П. так же задаётся уравнением $f(x,y)=a_1x^2+a_2y^2+a_3xy+a_4x+a_5y+a_0=0$ - второго порядка. Из a_1,a_2,a_2 хотя бы один ненулевой.

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

(48.2) (b) Гиперболический циллиндр

(48.6)

При a=b получаем цилиндр вращения(школьный).

(с) Параболический циллиндр

$$x^2 = \pm 2py$$

(а) Пара плоскостей

(b) Пара плоскостей

$$\boxed{\frac{x^2}{a^2} = 1} \tag{48.10}$$

Конические поверхности

Они тип состоят из коней гы. Поэтому КОНИческие.