Тема 7 Държавен изпит

специалност Приложна математика

Степенни редове. Радиус на сходимост. Развитие на елементарните функции в степенен ред.

Анотация

Степенни редове. Радиус на сходимост. Развитие на елементарните функции в степенен ред.

1. Да се дефинира степенен ред на комплексна променлива и област на сходимост на такъв ред. Да се докаже, че ако един степенен е сходящ за някое комплексно число $z_0 \in X$, то той е абсолютно сходящ за всяко z друго при $z_0 \in X$

 $\limsup_{n\to\infty}\sqrt[n]{\dot{\boldsymbol{\iota}}\,a_nee\dot{\boldsymbol{\iota}}}$ Да се докаже, че областта на сходимост е кръг с радиус $\frac{1}{\dot{\boldsymbol{\iota}}}$, където a_n са

коефициентите на степенния ред.

2. Като се използва формулата на Тейлър с остатъчен член във формата на Лагранж, да се развият в степенен ред при реални стойности на x функциите e^X , sin x, cos x. За целта да се намерят стойностите на всички производни на тези функции при x = 0.

<u>1.</u>

Ще разглеждаме степенните редове над полето на комплексните числа. Всички свойства изложени тук директно се пренасят за реалнозначни редове.

Дефиниция 1.1 (степенен ред)

Функционален ред от специалния вид $\sum_{i=0}^{\infty} a_i z^i$, $z \in C$ наричаме **степенен ред.** По-

общо, ако $\xi_0 \epsilon C$ е фиксирано комплексно число и $z = \xi - \xi_0$, то $\sum_{i=0}^\infty a_i (\xi - \xi_0)^i$, $z \epsilon C$ също е **степенен ред**.

Дефиниция 1.2 (област на сходимост)

Множеството от точки G $\subset C$,за които $\sum_{i=0}^{\infty} a_i z^i$ е $cxoдящ^*$ наричаме $oбласт^{**}$ на cxoдимост за същия ред.

*да е сходящ $\sum_{i=0}^{\infty}a_{i}z^{i}$ в точката z_{0} означава редицата от парциалните му суми

$$\Sigma_n = \sum_{i=0}^n a_i z_0^i$$
 да е сходяща. Да е абсолютно сходящ означава редът $\sum_{i=0}^\infty \zeta$ да е

СХОДЯЩ.

** нарича се област, понеже, както в ще докажем това множество е наистина област в нетривиалните случаи , т.е. е отворено и свързано.

Теорема 1.1

Нека редът
$$\sum_{i=0}^{\infty} a_i z^i$$
 е сходящ за $z=z_0$. Тогава

Доказателство. Нека |z| =r . От дадената сходимост имаме, че $\left|a_n z_0^{\ n}\right|_{n\to\infty} 0$.

Следователно $\stackrel{+i}{\exists} \rho \epsilon R^i$:

 $\ddot{\iota} a_n \lor \dot{\iota} z_0^n \lor \dot{\iota} \rho$. Нека z е такова, че $\ddot{\iota} z \lor \dot{\iota} \lor z_0 \lor \dot{\iota}$. Имаме

$$\sum_{i=0}^{\infty} \dot{\iota} \, a_i z^i \lor \dot{\iota} \sum_{i=0}^{\infty} \dot{\iota} \, a_i \lor \dot{\iota} \frac{z}{z_0} \dot{\iota}^i \lor z_0 \dot{\iota}^i \lessdot \rho \sum_{i=0}^{\infty} \dot{\iota} \frac{z}{z_0} \dot{\iota}^i \quad \text{. Нека} \quad \dot{\iota} \frac{z}{z_0} \lor \dot{\iota} \, q \quad \text{. Тогава}$$

$$\sum_{i=0}^{\infty}$$
 $\stackrel{\cdot}{\iota} a_i z^i \lor \stackrel{\cdot}{\iota} \rho \sum_{i=0}^{\infty} q^i = \frac{\rho}{1-q}$, понеже q<1. Следователно редът от абсолютните стойности е

ограничен от горе и освен това редицата от парциалните му суми е растяща. Следователно той е сходящ.

Следствие:

Ако редът $\sum_{i=0}^{\infty} a_i z^i$ не е абсолютно сходящ за всяко z, то областта му на сходимост е или кръг или { 0+0i }.

Доказателство:

Тъй като
$$\sum_{i=0}^{\infty}a_iz^i$$
 не е абсолютно сходящ за всяко z, то съществува $z_0:\sum_{i=0}^{\infty}a_iz_0^i$ е

разходящ. Ако допуснем, че има число с по- голям модул, за което редът е абсолютно сходящ, то по Теорема 1.1 ще излезе, че редът е абсолютно сходящ и за Z_0 , което е противоречие. Следователно множеството от точки в комплексната равнина, за които редът е абсолютно сходящ е ограничено от кръга с център началото и радиус $|^{Z_0}$ |. Нека тогава вземем супремума R на ограниченото множество от реални числа — модулите на множеството от точки в комплексната равнина, за които редът е абсолютно сходящ.

$$R=^[z:ee zee ee ee]z_0ig|ee \sum_{i=0}^\infty a_iz^i$$
 е абсолютно сходящ $\}$

Тогава в кръга |z|<R редът е абсолютно сходящ. В частност, R може да е 0 ако за никое ненулево комплексно число редът не е сходящ.

4

<u>Теорема 1.2</u> (Коши – Адамар)

Доказателство:

- 1. Нека R=0, т.е. $L=\infty$. Тогава има подредица на a_n , за която от опредлен индекс нататък всички членове са по- гоелнми от константа, по- голяма от 1. Следователно сходимост е възможна само при z=0
- 2. Нека $R = {}^{\infty}$, т.е. L = 0 . Най дясната точка на сгъстяване на ${}^{n} |a_n|$ е 0, следователно е единствената. Ще докажем, че редът е сходящ за всяко комплексно число.

Тогава повдигайки на n-та за всяко n получаваме , че $\sum_{i=1}^{\infty} \dot{c} \, a_n \lor \dot{c} \, z \dot{c}^n < \sum_{i=1}^{\infty} \rho^n$. Следователно реда е абсолютно сходящ в т. z.

Следователно $\sqrt[n]{a_n}|z| < \frac{L + \frac{\epsilon}{2}}{L + \epsilon} = q < 1$. Следователно реда се мажурира от сходящ ред (геометрична прогресия).

Нека сега $|z|>\frac{1}{L}$. От свойствата на реалните числа следва, че съществува $\epsilon>0,$ $ve|z|>\frac{1}{L-\epsilon}>\frac{1}{L}$

Също така съществува подредица на $\sqrt[n]{a_n}$, за която от определено място нагоре

$$\sqrt[n]{a_n} > L - \epsilon$$
 . Получаваме, че за членовете на тази подредица имаме $\sqrt[n]{a_n} \lor z \lor \dot{\iota} \frac{L - \epsilon}{L - \epsilon} = 1$.

Следователно редът от абсолютните стойности е разходящ.

<u>2.</u>

Припомняне:

Теорема (Тейлор)

Нека f е дефинирана в околност на т. а и в тази околност има непрекъснати производни до n+1-ва, където $n \in \mathbb{N}$. Тогава за f е в сила представянето

$$f(x) = \sum_{i=0}^{n} \frac{f^{i}(a)}{i!} (x-a)^{i} + R_{n}(x), R_{n}(x) = o(x-a)^{n}$$

Във вид на Лагранж, остатъчния член е $R_n(x) = \frac{f^{(n+1)}(a+\theta(x-a))(x-a)^{n+1}}{(n+1)!}$

Извод на формулата на Тейлор за \mathscr{Q}^x , $\sin(x)$, $\cos(x)$

Твърдение 2.1 Развитието около 0 на \mathscr{C}^x е

$$e^{x} = 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{e^{\theta x} x^{n+1}}{(n+1)!}, \theta \epsilon(0,1)$$

Наистина, производната на e^x е e^x и в нулата има стойност 1. Това е вярно и за вскички производни на e^x

Твърдение 2.2 Развиетоето около 0 на sin(x) е

$$\sin(x) = \frac{x}{1!} - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + R_n(x)$$

Нека първо пресметнем производните на sin и тогава ще уточним $R_{\rm n}$.

 $(\sin(x))'=\cos(x)$

 $(\sin(x))"=(\cos(x))"=-\sin(x)$

 $(\sin(x))"=(-\sin(x))=-\cos(x)$

 $(\sin(x))""=(-\cos(x))'=\sin(x)$

Следователно произвдната на sin се повтаря на всеки 4 стъпки. Да обобщим

6

$$(\sin(x))^{(n)=} \begin{cases} \cos(x), n=4 \ k+1 \\ -\sin(x), n=4 \ k+2 \\ -\cos(x), n=4 \ k+3 \\ \sin(x), n=4 \ k+4 \end{cases}$$

От тези пресмятания веднага се вижда защо коефициентите в реда са +/-1 и 0 . Също остатъчния член ще е различен в зависимост този вида на n.

Твърдение 2.3 Развиетоето около 0 на cos(x) е

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + R_n(x)$$

$$(\cos(x))'=-\sin(x)$$

$$(\cos(x))$$
"= $(-\sin(x))$ "= $-\cos(x)$

$$(\cos(x))$$
"= $(-\cos(x))$ = $\sin(x)$

$$(\cos(x))$$
"= $\cos(x)$

Следователно произвдната на sin се повтаря на всеки 4 стъпки. Да обобщим

$$(\cos(x))^{(n)} = \begin{cases} -\sin(x), n=4 \ k+1 \\ -\cos(x), n=4 \ k+2 \\ \sin(x), n=4 \ k+3 \\ \cos(x), n=4 \ k+4 \end{cases}$$

От тези пресмятания веднага се вижда защо коефициентите в реда са +/-1 и 0 . Също остатъчния член ще е различен в зависимост този вида на n.

Забележка: Частта с развитията на функции не е доизпипана.

Литература:

- [1] Записки от лекциите по ДИС2 ,спец. ПМ, на Людмила Николова
- [2] Увод в теория на аналитичните функции, Любомир Чолаков

Темата е разработена от Велико Дончев, уч. 2011/2012 г.