Z325FU04 - Modèles Linéaires de la Recherche Opérationnelle Duality

Hervé Kerivin, PhD

Université Clermont Auvergne Institut d'Informatique LIMOS UMR 6158 CNRS Clermont-Ferrand

Office: ISIMA B133

kerivin@isima.fr

Motivation

Consider the following LP problem

maximize
$$z = 4x_1 + x_2 + 5x_3 + 3x_4$$

subject to $x_1 - x_2 - x_3 + 3x_4 \le 1$
 $5x_1 + x_2 + 3x_3 + 8x_4 \le 55$
 $-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3$
 $x_1, x_2, x_3, x_4 \ge 0$

Can we prove that a given feasible solution is optimal without using the simplex method

Every feasible solution gives a lower bound on the optimal value z^* (e.g., $x_1 = 3, x_2 = 0, x_3 = 2, x_4 = 0$ yields $z^* \ge 22$)

Need an upper bound on z^* to prove that a given feasible solution which hits z^* is optimal (e.g., $x_1=0, x_2=14, x_3=0, x_4=5$ yields $z^*\geq 29$)

Multiply the second inequality by $\frac{5}{3}$

$$\frac{5}{3}(5x_1+x_2+3x_3+8x_4\leq 55)$$

Duality

Multiply the second inequality by $\frac{5}{3}$

$$\frac{5}{3}(5x_1+x_2+3x_3+8x_4\leq 55)$$

Every feasible solution (x_1, x_2, x_3, x_4) satisfies

$$\frac{25}{3}x_1 + \frac{5}{3}x_2 + 5x_3 + \frac{40}{3}x_4 \le \frac{275}{3}$$

Multiply the second inequality by $\frac{5}{3}$

$$\frac{5}{3}(5x_1+x_2+3x_3+8x_4\leq 55)$$

Every feasible solution (x_1, x_2, x_3, x_4) satisfies

$$\frac{25}{3}x_1+\frac{5}{3}x_2+5x_3+\frac{40}{3}x_4\leq \frac{275}{3}$$

Since

$$4x_1 \leq \frac{25}{3}x_1, \ x_2 \leq \frac{5}{3}x_2, \ 5x_3 \leq 5x_3, \ 3x_4 \leq \frac{40}{3}x_4$$

Multiply the second inequality by $\frac{5}{3}$

$$\frac{5}{3}(5x_1+x_2+3x_3+8x_4\leq 55)$$

Every feasible solution (x_1, x_2, x_3, x_4) satisfies

$$\frac{25}{3}x_1+\frac{5}{3}x_2+5x_3+\frac{40}{3}x_4\leq \frac{275}{3}$$

Since

Upper Bounds

00000

$$4x_1 \leq \frac{25}{3}x_1, \ x_2 \leq \frac{5}{3}x_2, \ 5x_3 \leq 5x_3, \ 3x_4 \leq \frac{40}{3}x_4$$

we obtain

$$4x_1+x_2+5x_3+3x_4 \leq \frac{25}{3}x_1+\frac{5}{3}x_2+5x_3+\frac{40}{3}x_4 \leq \frac{275}{3}$$

that is,

$$z^* \leq \frac{275}{2}$$

Upper Bounds (cont'd)

Add the second and third constraints

Every feasible solution (x_1, x_2, x_3, x_4) satisfies

$$4x_1 + 3x_2 + 6x_3 + 3x_4 < 58$$

Since

$$4x_1 \le 4x_1, x_2 \le 3x_2, 5x_3 \le 6x_3, 3x_4 \le 3x_4$$

we obtain

$$4x_1 + x_2 + 5x_3 + 3x_4 \le 4x_1 + 3x_2 + 6x_3 + 3x_4 \le 58.$$

that is.

$$z^*$$
 ≤ 58

Can we do better?

00000

Upper Bounds (cont'd)

Construct a linear combination of the constraints

$$y_1(x_1 - x_2 - x_3 + 3x_4 \le 1)$$
 with $y_1 \ge 0$
 $y_2(5x_1 + x_2 + 3x_3 + 8x_4 \le 55)$ with $y_2 \ge 0$
 $y_3(-x_1 + 2x_2 + 3x_3 - 5x_4 \le 3)$ with $y_3 \ge 0$

Every feasible solution (x_1, x_2, x_3, x_4) satisfies

$$(y_1 + 5y_2 - y_3)x_1 + (-y_1 + y_2 + 2y_3)x_2 + (-y_1 + 3y_2 + 3y_3)x_3 + (3y_1 + 8y_2 - 5y_3)x_4 \le y_1 + 55y_2 + 3y_3$$

Objective function: $z = 4x_1 + x_2 + 5x_3 + 3x_4$

To conclude that $z^* \leq y_1 + 55y_2 + 3y_3$ we want

$$y_1 + 5y_2 - y_3 \ge 4$$

 $-y_1 + y_2 + 2y_3 \ge 1$
 $-y_1 + 3y_2 + 3y_3 \ge 5$
 $3y_1 + 8y_2 - 5y_3 \ge 3$

Upper Bounds (cont'd)

To get the smallest upper bound on z^* , we need to solve the following LP problem

minimize
$$y_1 + 55y_2 + 3y_3$$

subject to $y_1 + 5y_2 - y_3 \ge 4$
 $-y_1 + y_2 + 2y_3 \ge 1$
 $-y_1 + 3y_2 + 3y_3 \ge 5$
 $3y_1 + 8y_2 - 5y_3 \ge 3$
 $y_1, y_2, y_3 \ge 0$

This LP problem is called the dual problem of our original LP problem (called the primal problem)

Duality Theorems

Primal problem

Upper Bounds

Primal problem

maximize
$$\sum_{j=1}^{n} c_{j} x_{j}$$
subject to
$$\sum_{j=1}^{n} a_{ij} x_{j} \leq b_{i} \quad \text{for } i = 1, 2 \dots, m$$

$$x_{j} \geq 0 \quad \text{for } j = 1, 2 \dots, n$$

Dual problem

Dual problem

$$\begin{array}{ll} \text{minimize} & \sum\limits_{i=1}^{m} b_i y_i \\ \text{subject to} & \sum\limits_{i=1}^{m} a_{ij} y_i \geq c_j \quad \text{ for } j=1,2\dots,n \\ & y_i \geq 0 \quad \qquad \text{for } i=1,2\dots,m \end{array}$$

Dual Problem (cont'd)

Constraint-Variable correspondence

- m Primal constraints $\sum_{j=1}^{n} a_{ij}x_{j} \le b_{i}$ are in a one-to-one correspondence with the m dual variables y_{i} (i = 1, 2, ..., m)
- *n* Primal variables x_j are in a one-to-one correspondence with the *n* dual constraints $\sum_{i=1}^{m} a_{ij} y_i \ge c_j$ $(j=1,2,\ldots,n)$

Objective-Rhs correspondence

- Coefficient c_i (in the primal objective function) appears as the right-hand side of the dual constraint corresponding to variable x_i (i = 1, 2, ..., n)
- Right-hand side b_i in the primal appears as the coefficient of dual variable y_i in the dual objective function (i = 1, 2, ..., m)

Write the dual problem of the following LP problem

The primal variables are non-negative and it is a maximization primal problem: the dual constraints are \geq constraints

Write the dual problem of the following LP problem

The primal variables are non-negative and it is a minimization primal problem: the dual constraints are \leq constraints

Write the dual problem of the following LP problem

One primal variable is non-negative and the other ones are free; it is a maximization primal problem: one dual constraint is an \geq constraint, the two other ones are equations

Dual Problem (cont'd)

PRIMAL	DUAL
maximization	minimization
\leq constraint	variable ≥ 0
\geq constraint	variable ≤ 0
= constraint	unconstrained variable
variable ≥ 0	\geq constraint
variable ≤ 0	\leq constraint
unconstrained variable	= constraint
right-hand side	objective function
objective function	right-hand side

Proposition 1

The dual of the dual is the primal

Primal/Dual solution

- A feasible solution of the primal problem is called a primal solution
- A feasible solution of the dual problem is called a dual solution

Duality Theorems

•00000

Primal and Dual Problems

Primal problem

Upper Bounds

maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i} \quad \text{for } i = 1, 2 \dots, m$$

$$x_{j} \geq 0 \quad \text{for } j = 1, 2 \dots, n$$

Dual problem

minimize
$$\sum_{i=1}^{m} b_i y_i$$
subject to
$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad \text{for } j = 1, 2 ..., n$$

$$y_i \ge 0 \quad \text{for } i = 1, 2 ..., m$$

Weak Duality Theorem

Theorem 2 (Weak duality)

Suppose that x is a primal solution and y is a dual solution. Then

$$\sum_{j=1}^n c_j x_j \leq \sum_{i=1}^m b_i y_i$$

Theorem 2 (Weak duality)

Suppose that x is a primal solution and y is a dual solution. Then

$$\sum_{j=1}^n c_j x_j \leq \sum_{i=1}^m b_i y_i$$

Corollary 3

Suppose that x^* is a primal solution, y^* is a dual solution and

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Then x^* is an optimal primal solution, and y^* is an optimal dual solution

Back to our example:

- primal solution $x_1^* = 0, x_2^* = 14, x_3^* = 0, x_4^* = 5$
- dual solution $y_1^* = 11, y_2^* = 0, y_3^* = 6$

Duality

Optimal Dual Solution and Primal Dictionary

Optimal dictionary for the primal

Optimal Dual Solution and Primal Dictionary

Optimal dictionary for the primal

 x_5 is the slack variable for the first primal constraint; y_1 is the dual variable associated with the first primal constraint

The slack variables x_5, x_6, x_7 can be matched up with the dual variables y_1, y_2, y_3 as follows

$$X_5 \leftrightarrow V_1, X_6 \leftrightarrow V_2, X_7 \leftrightarrow V_3$$

Assign, with reversed signed, the reduced-cost coefficients of the slack variables to the corresponding dual variables, that is,

$$y_1 = 11, y_2 = 0, y_3 = 6$$

Duality Theorem

Theorem 4 (Strong duality)

If the primal problem has an optimal solution $(x_1^*, x_2^*, \dots, x_n^*)$, then the dual problem has an optimal solution $(y_1^*, y_2^*, \dots, y_n^*)$ so that

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

Corollary 5

- The primal problem has an optimal solution if and only if the dual solution has an optimal solution
- If the primal is unbounded, then the dual is infeasible
- If the dual is unbounded, then the primal is infeasible

Self-Duality

Consider the following LP problem

Write its dual

Both primal and dual problems are equivalent

Both primal and dual problems may be infeasible at the same time

Skew-symmetric matrix : $A^T = -A$

Primal/Dual Combinations

		DUAL		
		Optimal	Infeasible	Unbounded
	Optimal	Possible	Impossible	Impossible
PRIMAL	Infeasible	Impossible	Possible	Possible
	Unbounded	Impossible	Possible	Impossible

Solve the dual problem using the simplex method

Read the optimal primal solution off the optimal dictionary

Problem #4 (cont'd)

Dual problem

min
$$-y_1 + y_2 + 6y_3 + 6y_4 - 3y_5 + 6y_6$$

s.t. $-3y_1 + y_2 - 2y_3 + 9y_4 - 5y_5 + 7y_6 \ge -1$
 $y_1 - y_2 + 7y_3 - 4y_4 + 2y_5 - 3y_6 \ge -2$
 $y_1, y_2, y_3, y_4, y_5, y_6 \ge 0$

Optimal dictionary

Optimal primal solution $x_1^* = \frac{3}{5} x_2^* = 0$

Problem #4 (cont'd)

Suppose somebody claims that

•
$$x_1 = \frac{3}{5} x_2 = 0$$

•
$$y_1 = 0$$
 $y_2 = 0$ $y_3 = 0$ $y_4 = 0$ $y_5 = \frac{1}{5}$ $y_6 = 0$

are optimal solutions for the primal and dual problems, respectively Can you check it without using the simplex method?

Problem #4 (cont'd)

Suppose somebody claims that

•
$$x_1 = \frac{3}{5} x_2 = 0$$

•
$$y_1 = 0$$
 $y_2 = 0$ $y_3 = 0$ $y_4 = 0$ $y_5 = \frac{1}{5}$ $y_6 = 0$

are optimal solutions for the primal and dual problems, respectively Can you check it without using the simplex method?

Same question with the following claim

•
$$x_1 = \frac{3}{5} x_2 = 0$$

•
$$y_1 = \frac{1}{5} y_2 = 0 y_3 = 0 y_4 = 0 y_5 = \frac{2}{15} y_6 = 0$$

are optimal solutions for the primal and dual problems, respectively

Same question with the following claim

•
$$x_1 = \frac{1}{5} x_2 = \frac{1}{5}$$

•
$$y_1 = 0$$
 $y_2 = 0$ $y_3 = 0$ $y_4 = 0$ $y_5 = \frac{1}{5}$ $y_6 = 0$

are optimal solutions for the primal and dual problems, respectively

Duality Theorems

PRIMAL	DUAL
slack variables	decision variables
$X_3 = \frac{4}{5}$ $X_4 = \frac{36}{5}$ $X_5 = \frac{36}{5}$ $X_6 = \frac{36}{5}$	$y_1 = 0$
$x_4 = \frac{2}{5}$	$y_2 = 0$
$x_5 = \frac{36}{5}$	$y_3 = 0$
$x_6 = \frac{3}{5}$	$y_4 = 0$
$x_7 = 0$	$y_5 = \frac{1}{5}$
$x_8 = \frac{9}{5}$	$y_6 = 0$

PRIMAL	DUAL
decision variables	slack variables
$x_1 = \frac{3}{5}$	$y_7 = 0$
$x_2 = 0$	$y_8 = \frac{12}{5}$

PRIMAL	DUAL
objective function	objective function
$-\frac{3}{5}$	$-\frac{3}{5}$

Duality Theorems

PRIMAL	DUAL
slack variables	decision variables
$X_3 = \frac{4}{15}$ $X_4 = \frac{5}{36}$ $X_5 = \frac{36}{5}$ $X_6 = \frac{3}{5}$	$y_1 = \frac{1}{5}$
$X_4 = \frac{2}{5}$	$y_2 = 0$
$x_5 = \frac{36}{5}$	$y_3 = 0$
$x_6 = \frac{3}{5}$	$y_4 = 0$
$x_7 = 0$	$y_5 = \frac{2}{15}$
$X_8 = \frac{9}{5}$	$y_6 = 0$

PRIMAL	DUAL
decision variables	slack variables
$X_1 = \frac{3}{5}$	$y_7 = -\frac{4}{15} < 0$
$x_2 = 0$	$y_8 = 3$

PRIMAL	DUAL
objective function	objective function
$-\frac{3}{5}$	$-\frac{3}{5}$

Duality Theorems

PRIMAL	DUAL
slack variables	decision variables
$x_3 = -\frac{3}{5} < 0$	$y_1 = 0$
$x_4 = 1$	$y_2 = 0$
$x_5 = 5$	$y_3 = 0$
$x_6 = 5$	$y_4 = 0$
$x_7 = -\frac{12}{5} < 0$	$y_5 = \frac{1}{5}$
$X_8 = \frac{26}{5}$	$y_6 = 0$

PRIMAL	DUAL
decision variables	slack variables
$X_1 = \frac{1}{5}$	$y_7 = 0$
$x_2=\frac{1}{5}$	$y_8 = \frac{12}{5}$

PRIMAL	DUAL
objective function	objective function
$-\frac{3}{5}$	$-\frac{3}{5}$

Primal and Dual problems

Primal problem

maximize
$$\sum_{j=1}^{n} c_j x_j$$
subject to
$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad \text{ for } i = 1, 2 ..., m$$

$$x_j \ge 0 \quad \text{ for } j = 1, 2 ..., n$$

Dual problem

minimize
$$\sum_{i=1}^{m} b_i y_i$$
subject to
$$\sum_{i=1}^{m} a_{ij} y_i \ge c_j \quad \text{ for } j = 1, 2 \dots, n$$

$$y_i \ge 0 \quad \text{ for } i = 1, 2 \dots, m$$

Complementary Slackness Conditions

Complementary slackness conditions

Let x^* and y^* be feasible solutions for the primal and dual problems, respectively. We say that they satisfy the complementary slackness conditions if

$$x_j^* = 0 \text{ or } \sum_{i=1}^m a_{ij} y_i^* = c_j \text{ (or both) for } j = 1, 2, \dots, n$$
 (1)

and

$$\sum_{j=1}^{n} a_{ij} x_{j}^{*} = b_{i} \text{ or } y_{i}^{*} = 0 \text{ (or both) for } i = 1, 2, \dots, m$$
 (2)

- (1) for every primal variable, either it is equal to zero or the slack variable of the associated dual constraint is zero
- (2) for every primal constraint, either its slack variable is zero or the associated dual variable is zero

Complementary Slackness Theorem

Theorem 6 (Complementary slackness theorem)

Let x^* and y^* be feasible solutions for the primal and dual problems, respectively. The complementary slackness conditions are necessary and sufficient conditions for simultaneous optimality of x^* and y^* .

Proof. The following expression

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} \leq \sum_{j=1}^{n} (\sum_{i=1}^{m} a_{ij} y_{i}^{*}) x_{j}^{*} = \sum_{i=1}^{m} (\sum_{j=1}^{n} a_{ij} x_{j}^{*}) y_{i}^{*} \leq \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

holds with equality throughout if and only if

$$c_j x_j^* = (\sum_{i=1}^m a_{ij} y_i^*) x_j^*$$
 for $j = 1, 2, ..., n$

$$(\sum_{i=1}^{n} a_{ij} x_{j}^{*}) y_{i}^{*} = b_{i} y_{i}^{*}$$
 for $i = 1, 2, ..., m$

Proof of the Theorem

The first *n* equations gives Condition (1)

The last *m* equations gives Condition (2)

Therefore, Conditions (1) and (2) are necessary and sufficient for

$$\sum_{j=1}^{n} c_{j} x_{j}^{*} = \sum_{i=1}^{m} b_{i} y_{i}^{*}$$

to hold

On the other hand, the Duality theorem shows that this equality is necessary and sufficient for simultaneous optimality of x^* and y^*

A More Applicable Form

Theorem 7

A feasible solution x^* to the primal problem is optimal if and only if there are numbers $y_1^*, y_2^*, \dots, y_m^*$ so that (complementary slackness conditions)

$$\sum_{i=1}^{m} a_{ij} y_i^* = c_j \qquad \qquad \text{whenever } x_j^* > 0$$

$$y_i^* = 0 \qquad \qquad \text{whenever } \sum_{i=1}^{n} a_{ij} x_j^* < b_j$$

and so that (y^*) is a dual solution)

$$\sum_{i=1}^{m} a_{ij} y_i^* \ge c_j$$
 for $j = 1, 2, ..., n$

$$y_i^* \ge 0$$
 for $i = 1, 2, ..., m$

Uniqueness

This strategy for verifying optimality of allegedly optimal solutions is applicable only if the system of equations of Theorem 7 has a unique solution

Theorem 8

If x^* is a nondegenerate basic primal solution, then the system of equations of Theorem 7 has a unique solution