3.2 Метод Данилевського розгортання характеристичного визначника

Розглянемо повну проблему власних значень і метод розв'язання цієї проблеми, пов'язаний з розгортанням характеристичного визначника $D(\lambda)$, тобто обчисленням коефіцієнтів при степенях λ у відповідного характеристичного многочлена.

Oзначення. Квадратну матрицю P порядку m називають **подібною** до матриці A, якщо вона може бути подана у вигляді

$$P = S^{-1}AS,$$

де S – невироджена квадратна матриця порядку m.

Властивість подібних матриць. Якщо дві матриці подібні, то їх власні значення збігаються.

Методи перетворення подібності здійснюють перетворення матриці A таким чином, щоб у отриманої подібної матриці власні значення обчислювались простіше.

Ідея методу Данилевського полягає у тому, що матриця A подібним перетворенням зводиться до так званої *нормальної форми Фробеніуса*

$$P = \begin{pmatrix} p_1 & p_2 & \cdots & p_{m-1} & p_m \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix}.$$

Можна перевірити, що характеристичне рівняння для матриці P має простий вигляд

$$D(\lambda) = \begin{vmatrix} p_1 - \lambda & p_2 & \dots & p_{m-1} & p_m \\ 1 & -\lambda & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & -\lambda \end{vmatrix} = (-1)^m (\lambda^m - p_1 \lambda^{m-1} - p_2 \lambda^{m-2} - \dots - p_{m-1} \lambda - p_m) = 0,$$

тобто коефіцієнти при степенях λ характеристичного полінома безпосередньо виражаються через елементи першого рядка матриці P.

Зведення матриці A до нормальної форми Фробеніуса P здійснюється послідовно по рядкам, починаючи з останнього рядка.

Зведемо матрицю A

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1,m-1} & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2,m-1} & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m-1,1} & a_{m-1,2} & \dots & a_{m-1,m-1} & a_{m-1,m} \\ a_{m1} & a_{m2} & \dots & a_{m,m-1} & a_{mm} \end{pmatrix}$$

подібним перетворенням до вигляду

$$A_{1} = \left(egin{array}{cccccc} a_{11}^{(1)} & a_{12}^{(1)} & \ldots & a_{1,m-1}^{(1)} & a_{1m}^{(1)} \ a_{21}^{(1)} & a_{22}^{(1)} & \ldots & a_{2,m-1}^{(1)} & a_{2m}^{(1)} \ & \ddots & \ddots & \ddots & \ddots \ a_{m-1,1}^{(1)} & a_{m-1,2}^{(1)} & \ldots & a_{m-1,m-1}^{(1)} & a_{m-1,m}^{(1)} \ 0 & 0 & \ldots & 1 & 0 \end{array}
ight).$$

1-ий етап.

Нехай $a_{m,m-1} \neq 0$. Можна перевірити, що такий вигляд має матриця $A_{\!_1}$, яка дорівнює

$$A_1 = M_{m-1}^{-1} A M_{m-1},$$

де

$$M_{m-1}^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{m,m-1} & a_{mm} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix},$$

$$M_{m-1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ -a_{m1} & -a_{m2} & \dots & \frac{1}{a_{m,m-1}} & \frac{-a_{mm}}{a_{m,m-1}} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}.$$

<u>2-ий етап</u>.

Наступний крок — зведення матриці A_1 подібним перетворенням до вигляду A_2 , де і другий знизу рядок має одиницю у (m-2)-му стовпці, а всі інші елементи рядка дорівнюють нулеві:

$$A_2 = \begin{pmatrix} a_{11}^{(2)} & a_{12}^{(2)} & \dots & a_{1,m-2}^{(2)} & a_{1,m-1}^{(2)} & a_{1m}^{(2)} \\ a_{21}^{(2)} & a_{22}^{(2)} & \dots & a_{2,m-2}^{(2)} & a_{2,m-1}^{(2)} & a_{2m}^{(2)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & \dots & 0 & 1 & 0 \end{pmatrix}.$$

Коли $a_{m-1,m-2}^{(1)} \neq 0$, то можна перевірити, що такий вигляд має матриця A_2 :

$$A_2 = M_{m-2}^{-1} A^1 M_{m-2},$$

де

$$M_{m-2}^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \ddots & \vdots \\ a_{m-1,1}^{(1)} & a_{m-1,2}^{(1)} & \dots & a_{m-1,m-2}^{(1)} & a_{m-1,m-1}^{(1)} & a_{m-1,m}^{(1)} \\ 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix},$$

$$M_{m-2} = \begin{pmatrix} 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ -a_{m-1,1}^{(1)} & -a_{m-1,2}^{(1)} & \cdots & \frac{1}{a_{m-1,m-2}^{(1)}} & \frac{-a_{m-1,m-1}^{(1)}}{a_{m-1,m-2}^{(1)}} & \frac{-a_{m-1,m}^{(1)}}{a_{m-1,m-2}^{(1)}} \\ 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & \cdots & 0 & 0 & 1 \end{pmatrix}.$$

Таким чином,

$$A_2 = M_{m-2}^{-1} M_{m-1}^{-1} A M_{m-1} M_{m-2}.$$

Далі процедура аналогічна, коли на кожному кроці елемент чергового рядка, на місці якого подібним перетворенням потрібно отримати одиницю, не дорівнює нулеві.

У цьому випадку (будемо називати його *регулярним випадком*) нормальна формула Фробеніуса буде одержана за (m-1) крок і буде мати вигляд

$$P = M_1^{-1} M_2^{-1} \dots M_{m-2}^{-1} M_{m-1}^{-1} A M_{m-1} M_{m-2} \dots M_2 M_1$$
.

Розглянемо *нерегулярний випадок*, коли матриця, що одержується внаслідок подібних перетворень, зведена вже до вигляду

$$A_{m-k} = \begin{pmatrix} a_{11}^{(m-k)} & \dots & a_{1,k-1}^{(m-k)} & a_{1k}^{(m-k)} & \dots & a_{1,m-1}^{(m-k)} & a_{1m}^{(m-k)} \\ \vdots & \dots & \vdots & \dots & \ddots & \vdots \\ a_{k-1,1}^{(m-k)} & \dots & a_{k-1,k-1}^{(m-k)} & a_{k-1,k}^{(m-k)} & \dots & a_{k-1,m-1}^{(m-k)} & a_{k-1,m}^{(m-k)} \\ a_{k1}^{(m-k)} & \dots & a_{k,k-1}^{(m-k)} & a_{kk}^{(m-k)} & \dots & a_{k,m-1}^{(m-k)} & a_{km}^{(m-k)} \\ 0 & \dots & 0 & 1 & \dots & 0 & 0 \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 1 & 0 \end{pmatrix}$$

i елемент $a_{k,k-1}^{(m-k)} = 0$.

Отже, звичайна процедура методу Данилевського не підходить через необхідність ділення на нуль.

У цій ситуації можливі два випадки.

<u>У першому випадку</u> у k-му рядку лівіше елемента $a_{k,k-1}^{(m-k)}$ є елемент $a_{k,l}^{(m-k)} \neq 0$, l < k-1. Тоді домножаючи матрицю A_{m-k} зліва та справа на елементарну матрицю переставлення $P_{l,k-1}$, одержуємо матрицю

$$A'_{m-k} = P_{l,k-1} A_{m-k} P_{l,k-1},$$

у якої на відміну від матриці A_{m-k} переставлені l-й та (k-1)-й рядок і l-й та (k-1)-й стовпець. Внаслідок цього, на необхідному нам місці одержуємо ненульовий елемент $a_{kl}^{(m-k)}$, вже перетворена частина матриці не змінюється, можна застосувати звичайний крок методу Данилевського до матриці A_{m-k}' . Вона подібна до матриці A_{m-k} (а тому і до вихідної матриці A), оскільки елементарна матриця переставлення збігається із своєю оберненою, тобто $P_{l,k-1}^{-1} = P_{l,k-1}$.

Розглянемо другий нерегулярний випадок, коли у матриці A_{m-k} елемент $a_{k,k-1}^{(m-k)}=0$ і всі елементи цього рядка, що знаходяться лівіше його, теж дорівнюють нулеві. У цьому разі характеристичний визначник матриці A_{m-k} може бути подано у вигляді

$$|A_{m-k} - \lambda E| = |B_{m-k} - \lambda E_{k-1}| |C_{m-k} - \lambda E_{m-k+1}|,$$

де E_{k-1} і E_{m-k+1} — одиничні матриці відповідної вимірності, а квадратні матриці B_{m-k} та C_{m-k} мають вигляд:

$$B_{m-k} = egin{pmatrix} a_{11}^{(m-k)} & \dots & a_{1,k-1}^{(m-k)} \ & \dots & & \ddots \ a_{k-1,1}^{(m-k)} & \dots & a_{k-1,k-1}^{(m-k)} \end{pmatrix}, \qquad C_{m-k} = egin{pmatrix} a_{kk}^{(m-k)} & \dots & a_{k,m-1}^{(m-k)} & a_{km}^{(m-k)} \ 1 & \dots & 0 & 0 \ & & & \ddots & \ddots \ 0 & \dots & 1 & 0 \end{pmatrix}.$$

Звернемо увагу на те, що матриця C_{m-k} вже має нормальну форму Фробеніуса, і тому співмножник $\left|C_{m-k}-\lambda E_{m-k+1}\right|$ просто розгортається у вигляді багаточлена з коефіцієнтами, що дорівнюють елементам першого рядка.

Співмножник $|B_{m-k} - \lambda E_{k-1}|$ є характеристичним визначником матриці B_{m-k} . Для його розгортання можна знову застосувати метод Данилевського, зводячи матрицю B_{m-k} подібними перетвореннями до нормальної форми Фробеніуса.

Задача відшукання власних векторів. Припустимо тепер, що матриця A подібним перетворенням $P = S^{-1}AS$ вже зведена до нормальної форми Фробеніуса.

Розв'язуючи характеристичне рівняння

$$\lambda^{m} - p_{1}\lambda^{m-1} - p_{2}\lambda^{m-2} - \dots - p_{m-1}\lambda - p_{m} = 0$$
,

знаходимо одним з відомих методів його корені λ_i , $i=\overline{1,m}$, які є власними значеннями матриці P та вихідної матриці A.

Тепер маємо задачу відшукання власних векторів, що відповідають цим власним значенням, тобто вектори $x^{(i)}$, $i = \overline{1,m}$, такі, що

$$Ax^{(i)} = \lambda_i x^{(i)}, \quad i = \overline{1, m}.$$

Розв'яжемо її таким чином: відшукаємо власні вектори матриці P, а потім за допомогою одного співвідношення перерахуємо власні вектори матриці A. Це співвідношення дає наступна теорема.

Теорема. Нехай λ_i ϵ власне значення, а $y^{(i)}$ ϵ відповідний власний вектор матриці P , що подібна до матриці A , тобто

$$P = S^{-1}AS$$
, $Py^{(i)} = \lambda_i y^{(i)}$.

Тоді $x^{(i)} = Sy^{(i)}$ є власний вектор матриці A, що відповідає власному значенню λ_i .

Доведення. Тривіально випливає з того, що

$$S^{-1}ASy^{(i)} = \lambda_i y^{(i)}.$$

Після множення лівої і правої частини цієї рівності зліва на S , отримаємо

$$A(Sy^{(i)}) = \lambda_i(Sy^{(i)}).$$

А це і означає, що $Sy^{(i)}$ – власний вектор матриці A, що відповідає власному значенню λ_i .

Знайдемо власний вектор матриці P , яка має нормальну форму Фробеніуса та подібна до матриці A. Запишемо $Py^{(i)} = \lambda_i y^{(i)}$ у розгорнутій формі

$$\begin{pmatrix} p_1 & p_2 & \cdots & p_{m-1} & p_m \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{pmatrix} \begin{pmatrix} y_1^{(i)} \\ y_2^{(i)} \\ \vdots \\ y_m^{(i)} \end{pmatrix} = \begin{pmatrix} \lambda_i y_1^{(i)} \\ \lambda_i y_2^{(i)} \\ \vdots \\ \lambda_i y_m^{(i)} \end{pmatrix},$$

або

$$\begin{cases} p_1 y_1^{(i)} + p_2 y_2^{(i)} + \ldots + p_m y_m^{(i)} = \lambda_i y_1^{(i)}, \\ y_1^{(i)} = \lambda_i y_2^{(i)}, \\ \vdots \\ y_{m-1}^{(i)} = \lambda_i y_m^{(i)}. \end{cases}$$

У цій системі одна з змінних може бути зроблена вільною і вона може набути довільного значення. Як таку візьмемо $y_{\scriptscriptstyle m}^{(i)}$ та покладемо $y_{\scriptscriptstyle m}^{(i)}=1$.

Тоді послідовно одержуємо

$$y_m^{(i)} = 1$$
, $y_{m-1}^{(i)} = \lambda_i$, $y_{m-2}^{(i)} = \lambda_i^2$, ..., $y_1^{(i)} = \lambda_i^{m-1}$,

тобто шуканий власний вектор матриці Р має вигляд

$$y^{(i)} = \begin{pmatrix} \lambda_i^{m-1} \\ \lambda_i^{m-2} \\ \vdots \\ \lambda_i \\ 1 \end{pmatrix}.$$

Коли процес зведення матриці A до форми P був регулярним, то

$$S = M_{m-1}M_{m-2}\dots M_1.$$

Згідно з теоремою, власним вектором матриці A для власного значення λ_i буде вектор

$$x^{(i)} = Sy^{(i)} = M_{m-1}M_{m-2}...M_1y^{(i)}.$$

Отже, задача відшукання власних векторів матриці A розв'язана.

Приклад. Знайти власні значення та власні вектори матриці A методом Данилевського:

$$A = \begin{pmatrix} 2,2 & 1 & 0,5 & 2\\ 1 & 1,3 & 2 & 1\\ 0,5 & 2 & 0,5 & 1,6\\ 2 & 1 & \boxed{1,6} & 2 \end{pmatrix}$$

Розв'язання. Обчислимо власні значення матриці A, використовуючи формули, наведені вище.

1-ий етап. Знайдемо матриці M_3 та M_3^{-1} за формулами

$$M_{m-1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ -a_{m1} & -a_{m2} & \dots & \frac{1}{a_{m,m-1}} & \frac{-a_{mm}}{a_{m,m-1}} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix},$$

$$M_{m-1}^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{m,m-1} & a_{mm} \\ 0 & 0 & \dots & 0 & 1 \end{pmatrix}, \quad \mathbf{m} = 4.$$

Отримаємо

$$M_3 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -\frac{2}{1,6} & -\frac{1}{1,6} & \frac{1}{1,6} & -\frac{2}{1,6} \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1,25 & -0,625 & 0,625 & -1,25 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$M_{3}^{-1} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 2 & 1 & 1,6 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A_{1} = M_{3}^{-1} A M_{3} = \begin{bmatrix} 1,575 & 0,6875 & 0,3125 & 1,375 \\ -1,5 & 0,05 & 1,25 & -1,5 \\ 1,45 & \boxed{4,125} & 4,375 & 2,81 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2-ий етап. Знайдемо матриці $M_{_2}$ та $M_{_2}^{^{-1}}$ за формулами

$$M_{m-2} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots \\ -a_{m-1,1}^{(1)} & -a_{m-1,2}^{(1)} & \dots & \frac{1}{a_{m-1,m-2}^{(1)}} & \frac{-a_{m-1,m-1}^{(1)}}{a_{m-1,m-2}^{(1)}} & \frac{-a_{m-1,m}^{(1)}}{a_{m-1,m-2}^{(1)}} \\ 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix},$$

$$M_{m-2}^{-1} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \dots & \vdots & \vdots & \vdots \\ a_{m-1,1}^{(1)} & a_{m-1,2}^{(1)} & \dots & a_{m-1,m-2}^{(1)} & a_{m-1,m-1}^{(1)} & a_{m-1,m}^{(1)} \\ 0 & 0 & \dots & 0 & 1 & 0 \\ 0 & 0 & \dots & 0 & 0 & 1 \end{pmatrix}, \quad \mathbf{m} = 4.$$

Отримаємо

$$M_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -\frac{1,45}{4,125} & \frac{1}{4,125} & -\frac{4,375}{4,125} & -\frac{2,81}{4,125} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} =$$

$$A_2 = M_2^{-1} A_1 M_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ -0.3515 & 0.2424 & -1.0606 & -0.6812 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$M_2^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1.45 & 4.125 & 4.375 & 2.81 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_2 = M_2^{-1} A_1 M_2 = \begin{pmatrix} \frac{1.3333}{|-4.3267|} & 4.6667 & 7.1433 & -5.0133 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

3-ій етап. Аналогічно знайдемо матриці $M_{\scriptscriptstyle 1}$ та $M_{\scriptscriptstyle 1}^{\scriptscriptstyle -1}$

$$M_{1} = \begin{pmatrix} \frac{1}{-4,3267} & -\frac{4,6667}{-4,3267} & -\frac{7,1433}{-4,3267} & -\frac{-5,0133}{-4,3267} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} -0,2311 & 1,0786 & 1,651 & -1,1587 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$M_{1}^{-1} = \begin{pmatrix} -4,3267 & 4,6667 & 7,1433 & -5,0133 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$A_3 = M_1^{-1} A_2 M_1 = P = \begin{pmatrix} 6 & 0.2 & -12.735 & 2.7616 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

Матриця A подібним перетворенням

$$P = S^{-1}AS = M_1^{-1}M_2^{-1}M_3^{-1}AM_3M_2M_1$$

зведена до нормальної форми Фробеніуса. Перший рядок матриці P визначає коефіцієнти при степенях λ характеристичного рівняння матриці A, яке має вигляд

$$\lambda^4 - 6\lambda^3 - 0.2\lambda^2 + 12.735\lambda - 2.7616 = 0.$$

Корені λ_i , $i=\overline{1,4}$, цього рівняння ϵ власними значеннями матриці P та вихідної матриці A.

Розв'язуючи характеристичне рівняння, знаходимо власні значення

$$\lambda_1 = -1,4201$$
 , $\lambda_2 = 0,2226$, $\lambda_3 = 1,5454$, $\lambda_4 = 5,652$.

Знайдемо власні вектори матриці P, що відповідають власним значенням λ_i , $i=\overline{1,4}$ за формулою

$$y^{(i)} = \begin{pmatrix} \lambda_i^{m-1} \\ \lambda_i^{m-2} \\ \vdots \\ \lambda_i \\ 1 \end{pmatrix}, i = \overline{1, 4}.$$

Отже,

$$\vec{y}_{1} = \begin{pmatrix} (-1,4201)^{3} \\ (-1,4201)^{2} \\ -1,4201 \\ 1 \end{pmatrix} = \begin{pmatrix} -2,8638 \\ 2,0166 \\ -1,4201 \\ 1 \end{pmatrix} \qquad \vec{y}_{2} = \begin{pmatrix} 0,2226^{3} \\ 0,2226^{2} \\ 0,2226 \\ 1 \end{pmatrix} = \begin{pmatrix} 0,011 \\ 0,0496 \\ 0,2226 \\ 1 \end{pmatrix}$$

$$\vec{y}_{3} = \begin{pmatrix} 1,5454^{3} \\ 1,5454^{2} \\ 1,5454 \\ 1 \end{pmatrix} = \begin{pmatrix} 3,691 \\ 2,3883 \\ 1,5454 \\ 1 \end{pmatrix} \qquad \vec{y}_{4} = \begin{pmatrix} 5,652^{3} \\ 5,652^{2} \\ 5,652 \\ 1 \end{pmatrix} = \begin{pmatrix} 180,5568 \\ 31,9455 \\ 5,652 \\ 1 \end{pmatrix}$$

Оскільки матриці A та P подібні, то $P = S^{-1}AS$, а матриця подібності S визначається за формулою

$$S = M_3 M_2 M_1 = \begin{pmatrix} -0.2311 & 1.0786 & 1.651 & -1.1587 \\ 0.0812 & -0.1367 & -1.641 & -0.2739 \\ 0.2381 & -1.2628 & -0.4132 & 0.3696 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

Тоді, власні вектори матриці A визначаємо за формулою $x^{(i)} = Sy^{(i)}$. Отримуємо

$$\overline{x}_{1} = S \cdot \overline{y}_{1} = \begin{pmatrix} -0,6663 \\ 1,548 \\ -2,2723 \\ 1 \end{pmatrix}$$

$$\overline{x}_{2} = S \cdot \overline{y}_{2} = \begin{pmatrix} -0,7402 \\ -0,6451 \\ 0,2176 \end{pmatrix}$$

$$\overline{x}_3 = S \cdot \overline{y}_3 = \begin{pmatrix} 3,1157 \\ -2,8365 \\ -2,4059 \\ 1 \end{pmatrix}$$

$$\overline{x}_4 = S \cdot \overline{y}_4 = \begin{pmatrix} 0,8975 \\ 0,7531 \\ 0,69 \\ 1 \end{pmatrix}$$