Obs. Una matriz diagonal es más fácil de interpretar (geométricamente) y de aplicar (algebráicamente) que una no diagonal.

Como sabemos, cualquier matriz $A \in M_{n\times n}(K)$ representa a un operador $T:V \Rightarrow V$ donde $\dim(V)=n$ utilizando una base ordenada β específica. Si existe una base ordenada β de V tal que [T] sea una matriz diagonal, decimos que T es un operador diagonalizable.

El problema que guiará este módulo será el de determinar cuándo un operador es diagonal; zable.

Supongamos que
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
 y $\mathcal{T} = (\vec{g}_1, \vec{g}_2, \vec{g}_3)$ es una bose ordenada de \mathbb{R}^3 tal que
$$[T]_{\mathcal{T}} = \begin{pmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Recordando que [T] = ([T/32], [T(32)], [T(32)], y que [31], = (1), [32], = (1) y [3], = (1), entonces tenemos que

$$[T(\vec{g}_1)]_{y} = -1[\vec{g}_1]_{y}, [T(\vec{g}_2)]_{y} = -1[\vec{g}_2]_{y}, [T(\vec{g}_3)]_{y} = 1[\vec{g}_3]_{y}.$$

Como sabemos, por isomorfismos, esto implica que

$$T(\vec{g}_1)=-1\vec{g}_1$$
, $T(\vec{g}_2)=-1\vec{g}_2$, $T(\vec{g}_3)=1\vec{g}_3$.

Generalizando el ejemplo anterior, sea V un espacio vectorial de dimensión n, T:V>V un operador lineal y supongamos que existe una base ordenada 7 = (31, 52, ..., gn) de V fal que

entonces $T(\vec{g}_i) = d_i \vec{g}_i + i \in \S_{1,2,...,n}$

Conversamente, si podemos encontrar una base ordenada 3=(q1,q1,..., qn) de V tal que T(q1)=2; q1; con 2; K ti & \$1.2,..., n3, entonces tendremos que

$$[T]_{\gamma} = \begin{pmatrix} \lambda_1 & O \\ O & \lambda_1 \end{pmatrix}$$

es decir, habremos demostrado que Tes diagonalizable.

Claramente, los vectores \overrightarrow{V} y escalares λ tales que $T(\overrightarrow{V})=\lambda \overrightarrow{V}$ son importantes para determinar si T es diagonalizable. Si $\overrightarrow{V} \neq \overrightarrow{D}$, decimos que \overrightarrow{V} es un eigenvector (o vector propio) de T y que λ es el eigenvalor (o valor propio) de T correspondiente al eigenvector \overrightarrow{V} .

Si β es una base ordenada tal que $[T]_{\beta}[V]_{\beta} = \lambda[V]_{\beta}$ para alguna $\lambda \notin K$ con $[V]_{\beta} \neq [\tilde{o}v]_{\beta}$, decimos que $[V]_{\beta}$ es un eigenvector de la matriz $[T]_{\beta}$ y que λ es un eigenvalor de $[T]_{\beta}$ correspondiente al eigenvector $[V]_{\beta}$.

Naturalmente, ahora nos surge la pregunta, è cómo encontramos a los eigenvectores y eigenvalores de un operador Tarbitrario? Para esto, nos ayudan las representaciones (i.e., los isomorpismos). Partimos de la ecuación

$$T(\forall) = \lambda \vec{\nabla}, \ \vec{\nabla} \neq \vec{\delta}.$$

Representamos en una base ordenada B de V

$$[T(\forall)]_{\beta} = \lambda [\forall]_{\beta}$$

Reescribimos ambos lados de la ecuación como el producto de un vector por una matriz

$$[T]_{\beta}[\overline{V}]_{\beta} = (\lambda I_{nun})[\overline{V}]_{\beta}.$$

Despejamos para obtener

$$([T]_{\beta} - \chi I_{n\times n})[V]_{\beta} = [OV]_{\beta}.$$
 (*)

Como $\nabla \neq \vec{0}$, entonces $[\nabla]_{\vec{0}} \neq [\vec{0}\nu]_{\vec{0}}$, y la ecuación anterior implica que la matriz $([T]_{\vec{0}} - \lambda I_{num}) : K^n \rightarrow K^n$ no es inyectiva; por ende, tampoco es biyectiva, de don de se sigue que

Como les una incógnita en esta ecuación, por la naturaleza del determinante, det ([t]p-l]nxn) es un polinomio en l y sus raíces son los eigenvalores de [T]p y, por ende, de T. Dicho polinomio es independiente de la base ordenada p de V con la que representamos a T (ejercicio) y es conocido como el polinomio característico de T.

El conjunto de eigenvalores $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_K\}$ de un operador lineal T se conoce como el **espectro** de T. Ulavez que conocemos el espectro Λ de T, podemos sustituir la variable λ en (*) con $\lambda_i \in \Lambda$ y solucionar el sistema de ecuaciones para $[V]_R$ para encontrar los eigenvectores de T con eigenvalor λ_i .

Obs. Si T:V=V es un operador lineal y TEV es tal que $T(\vec{v})$ = $\lambda \vec{v}$ con $\lambda \in K$ y $\vec{v} \neq \vec{o}$, entonces $T(c\vec{v})$ = $cT(\vec{v})$ = $c(\lambda \vec{v})$ =

Similarmente, podemos dar una definición de eigenvector, eigenvalor y polinomio característico de una matriz A e Muxu (K), sin pensarla como la representación matricial de algún operador líneal en un espacio de dimensión n.

Ejemplo: Sea T:1R²→1R² tal que T(ē1)=2€1 y T(€2)=-15€1-3€2.

 $T(c_1\vec{e}_1+c_2\vec{e}_2) = c_1(2\vec{e}_1)+c_2(-15\vec{e}_1-3\vec{e}_2) = (2(1-15c_1)\vec{e}_1-3(2\vec{e}_2)$

 $[T]_{\eta} = ([T(\tilde{z}_{1})]_{\eta}) = (2 - 15)$. No es claro cómo actúa T en \mathbb{R}^{2} .

Calculemos los eigenvalores de T: de+([+],- \Imm)=0 =>

 $\det\left(\begin{pmatrix} 2 - 15 \\ 0 - 3 \end{pmatrix} - \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \right) = 0 \Rightarrow \begin{pmatrix} 2 - \lambda & -15 \\ 0 & -3 - \lambda \end{pmatrix} = (2 - \lambda)(-3 - \lambda) - (-15)(0) = (2 - \lambda)(-3 - \lambda) = 0 \Rightarrow \lambda_1 = 2, \lambda_2 = -3$

 $\rightarrow \Lambda = \{2, -3\}$. Ahora, calculemos los eigenvectores $[\bar{g}_1]_{\bar{i}} \begin{pmatrix} u_i \\ u_2 \end{pmatrix}_{\bar{j}} [\bar{g}_2]_{\bar{i}} \begin{pmatrix} v_i \\ v_i \end{pmatrix}_{\bar{j}}$

 $\frac{\lambda_{2}=3}{\binom{5-15}{0}\binom{V_{1}}{V_{2}}} = \binom{0}{0} \Rightarrow 5V_{1}=3V_{2} \quad V_{1}=3V_{2} \quad V_{1}, V_{2} \in \mathbb{R}, \quad \text{Sea} \quad V_{2}=9 \Rightarrow \boxed{9}_{2} \boxed{1} = \binom{3}{1}. \quad (\Rightarrow \overline{9}_{2}=3\overline{e}_{1}+\overline{e}_{2})$

P.D. S. y= (g1, g2), enforces [T]= (203).

