MONTGOMERY MODULAR MULTIPLICATION

EE577A Fall 2019

Montgomery Form

Assume R is a convenient constant (i.e. 2^7), the Montgomery form "A" of a number "a $mod\ N$ " is defined as:

$$A = aR \pmod{N}$$

- Here we define an operation as $S = AR^{-1} \pmod{N} = reduce(A)$.
- R^{-1} is an unsigned number that has $RR^{-1} = 1 \pmod{N}$.
- We usually choose the $R^{-1} \in [0, N)$.
- Axiom: If $a = p \mod m$, $b = q \mod m$, then $ab \mod m = pq \mod m$.

Montgomery Form Why Montgomery Reduction Useful?

- Here we define an operation as $S=TR^{-1} \pmod{N}=reduce(T)$.
- $Z = zR \pmod{N} = xR*yR*R \pmod{N}$ $= xR*yR*R^{-1} \pmod{N}$ $= XYR^{-1} \pmod{N}$ = reduce(X*Y)

Montgomery Form Why Montgomery Reduction Useful?

- Here we define an operation as $S = AR^{-1} \mod N = reduce(A)$.
- To convert $A=aR \pmod{N}$ to $a \pmod{N}$

```
■ a \pmod{N} = (a*1) \pmod{N}

= (a*R*R^{-1}) \pmod{N}

= ((a*R \pmod{N}))*R^{-1}) \pmod{N}

= (A*R^{-1}) \pmod{N}

= reduce(A*1)
```

Montgomery Form Why Montgomery Reduction Useful?

- Here we define an operation as $S=TR^{-1} \pmod{N}=reduce(T)$.
- To convert a $(mod \ N)$ to $A=aR \ (mod \ N)$,

```
■ a*R \pmod{N} = (a*1*R) \pmod{N}

= (a*R*R^{-1}*R) \pmod{N}

= ((a \pmod{N})*R*R \pmod{N})*R^{-1}) \pmod{N}

= (a*K*R^{-1}) \pmod{N}

= reduce(a*K)
```

 \blacksquare K=R*R (mod N)

- We want to realize:
- Given R, N and T=x*y
- Calculate $S=TR^{-1}$ (mod N)=reduce(T).

- Assumptions:
- x and y are 7-bit unsigned numbers.
- R and N are coprime pairs, i.e. 10 and 7.
- N is a 7-bit unsigned number.
- Here we assume $R = 2^7$
- \blacksquare T=x*y is in the range [0,R*N-1].

Algorithm:

- (1) Calculate T=x*y
- (2) Calculate $m = (T \pmod{R})^{N-1}) \pmod{R}$
- (3) Calculate t = (T + mN)/R

$$(4) S = \begin{cases} t - N & if \ t \ge N \\ t & if \ t < n \end{cases}$$

Bezout's Identity:

Bezout's Identity:

When R and N are coprime, we can find R^{-1} and N^{-1} so that $RR^{-1} - NN^{-1} = 1$.

And we have $N^{-1} \in [0, R-1], R^{-1} \in [0, N-1]$

Extended Euclidean Algorithm

Find the value of R^{-1} and N^{-1} : Extended Euclidean Algorithm

For two integers a and b, we can find two integers x and y that (ax+by=gcd(a,b)=d).

If a and b are coprime, then d=1,=> ax+by=1.

Here we assume a=R, b=N,

We can find that $R^{-1} = x$, $N^{-1} = -y$

Extended Euclidean Algorithm

$$r_0 = R, s_0 = 1, t_0 = 0$$

$$r_1 = N, s_1 = 0, t_1 = 1$$

$$q_i = \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor$$

$$r_{i+1} = r_{i-1} - q_i * r_i, s_{i+1} = s_{i-1} - q_i * s_i, t_{i+1} = t_{i-1} - q_i * t_i$$

The procedure stops when $r_{k+1}=0$, and it gives $1=r_k=Rs_k+Nt_k$. Here we suppose to have $s_k>0$ and $t_k<0$, then $R^{-1}=s_k$, $N^{-1}=-t_k$ If the output is reversed, say $s_k<0$ and $t_k>0$, take $R^{-1}=s_k+N$, $N^{-1}=-(t_k-R)$

Extended Euclidean Algorithm Example: R=10, N=3

$$r_0 = R, s_0 = 1, t_0 = 0$$

 $r_1 = N, s_1 = 0, t_1 = 1$
 $q_i = \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor$

$$r_{i+1} = r_{i-1} - q_i * r_i, s_{i+1} = s_{i-1} - q_i * s_i, t_{i+1} = t_{i-1} - q_i * t_i$$

i	q_{i-1}	r_i	s_i	t_i
0		10	1	0
1		3	0	1
2	10\3=3	10-3*3=1	1-3*0= 1	0-3*1=-3
3	3\1=3	3-3*1=0	0-3*1=-3	1-3*(-3)=10

$$R^{-1} = 1, N^{-1} = 3$$

Extended Euclidean Algorithm Example: R=10, N=7

$$\begin{aligned} r_0 &= R, s_0 = 1, t_0 = 0 \\ r_1 &= N, s_1 = 0, t_1 = 1 \\ r_{i+1} &= r_{i-1} - q_i * r_i, s_{i+1} = s_{i-1} - q_i * s_i, t_{i+1} = t_{i-1} - q_i * t_i \\ q_i &= \left\lfloor \frac{r_{i-1}}{r_i} \right\rfloor \end{aligned}$$

i	q_{i-1}	r_i	s_i	t_i
0		10	1	0
1		7	0	1
2	10\7=1	10-1*7=3	1-1*0= <mark>1</mark>	0-1*1=-1
3	7\3=2	7-2*3=1	0-2*1=- <mark>2</mark>	1-2*(-1)=3
4	3\1=3	3-3*1= <mark>0</mark>	1-3*(-2)=7	(-1)-3*3=-10

$$R^{-1} = -2 + 7 = 5, N^{-1} = -(3 - 10) = 7$$

Assumptions:

- x and y are 7-bit unsigned numbers.
- R and N are coprime pairs, i.e. 10 and 7.
- N is a 7-bit unsigned number.
- Here we assume $R = 2^7$
- \blacksquare T=x*y is in the range [0,RN-1].
- $RR^{-1} NN^{-1} = 1$

Algorithm:

- (1) Calculate T=x*y
- (2) Calculate $m = (T \pmod{R})N^{-1}) \pmod{R}$
- (3) Calculate t = (T + mN)/R

(4)
$$S = \begin{cases} t - N & \text{if } t \ge N \\ t & \text{if } t < n \end{cases}$$

We want calculate $TR^{-1} \pmod{N}$

$$TR^{-1} = \frac{TRR^{-1}}{R}$$

$$(RR^{-1} - NN^{-1} = 1)$$

$$= \frac{T(1+NN^{-1})}{R} = \frac{T+TNN^{-1}}{R}$$

We want calculate $TR^{-1} \pmod{N}$

$$TR^{-1} = \frac{TRR^{-1}}{R}$$

$$(RR^{-1} - NN^{-1} = 1) \qquad \qquad = \frac{T(1+NN^{-1})}{R} = \frac{T+TNN^{-1}}{R}$$

$$TR^{-1} \ (mod \ N) = \frac{T+TNN^{-1}}{R} \ (mod \ N) = \frac{T+(TN^{-1})N}{R} \ (mod \ N)$$

$$TR^{-1} \ (mod \ N) = \frac{T + (TN^{-1})N}{R} \ (mod \ N)$$

 $TN^{-1} = L * R + [TN^{-1} \ (mod \ R)], L \text{ is an integer}$

$$TR^{-1} (mod N) = \frac{T + (TN^{-1})N}{R} (mod N)$$

$$TN^{-1} = L * R + [TN^{-1} (mod R)], L \text{ is an integer}$$

$$TR^{-1} (mod N) = \frac{T + (L * R + [TN^{-1} (mod R)])N}{R} (mod N)$$

$$= \frac{T + L * R * N + [TN^{-1} (mod R)] * N}{R} (mod N)$$

$$= \frac{T + [TN^{-1} (mod R)] * N}{R} + LN (mod N)$$

$$= \frac{T + [TN^{-1} (mod R)] * N}{R} (mod N)$$

$$TR^{-1} (mod N) = \frac{T + (TN^{-1})N}{R} (mod N)$$

$$TN^{-1} = L * R + [TN^{-1} (mod R)], L \text{ is an integer}$$

$$TR^{-1} (mod N) = \frac{T + (L * R + [TN^{-1} (mod R)])N}{R} (mod N)$$

$$TR^{-1} (mod N) = \frac{T + L * R * N + [TN^{-1} (mod R)] * N}{R} (mod N)$$

$$TR^{-1} (mod N) = \frac{T + [TN^{-1} (mod R)] * N}{R} + LN (mod N)$$

$$TR^{-1} (mod N) = \frac{T + [TN^{-1} (mod R)] * N}{R} (mod N)$$

$$TR^{-1} (mod N) = \frac{T + [TN^{-1} (mod R)] * N}{R} (mod N)$$

$$TR^{-1} (mod N) = \frac{T + [TN^{-1} (mod R)] * N}{R} (mod N)$$

We want calculate $TR^{-1} \pmod{N}$

$$TR^{-1} = \frac{TRR^{-1}}{R}$$

$$(RR^{-1} - NN^{-1} = 1) \qquad \qquad = \frac{T(1+NN^{-1})}{R} = \frac{T+TNN^{-1}}{R}$$

$$TR^{-1} \ (mod \ N) = \frac{T+TNN^{-1}}{R} \ (mod \ N) = \frac{T+(TN^{-1})N}{R} \ (mod \ N)$$

$$m = TN^{-1} \ (mod \ R) = \left(T(mod \ R)\right)N^{-1} \ (mod \ R) < R$$

$$TR^{-1} \ (mod \ N) = \frac{T+mN}{R} \ (mod \ N)$$

We want calculate $TR^{-1} \pmod{N}$

$$TR^{-1} = \frac{TRR^{-1}}{R}$$

$$(RR^{-1} - NN^{-1} = 1) \qquad \qquad = \frac{T(1+NN^{-1})}{R} = \frac{T+TNN^{-1}}{R}$$

$$TR^{-1} (mod N) = \frac{T+TNN^{-1}}{R} (mod N) = \frac{T+(TN^{-1})N}{R} (mod N)$$

$$m = TN^{-1} (mod R) = (T(mod R))N^{-1} (mod R) < R$$

$$TR^{-1} (mod N) = \frac{T+mN}{R} (mod N)$$

$$T \in [RN-1] \qquad T+mN \in [0, RN-1+(R-1)*N < 2RN]$$

$$t = \frac{T+mN}{R} \in [0, 2N-1]$$

Montgomery Reduction Algorithm Implementation

Algorithm:

- (1) Calculate T=x*y
- (2) Calculate $m = (T \pmod{R})N^{-1}) \pmod{R}$
- (3) Calculate t = (T + mN)/R

$$(4) S = \begin{cases} t - N & if \ t \ge N \\ t & if \ t < n \end{cases}$$

Montgomery Reduction Algorithm Implementation

Montgomery Reduction Algorithm Schematic Diagram

Montgomery Reduction Algorithm Example

```
Calculate S=TR^{-1} \pmod{N} = reduce(T).
```

```
R=128, N=5, x=8, y=57  
With Extended Euclidean Algorithm,  
N=5=00000101, N^{-1}=51=00110011, R^{-1}=2=00000010, x=8=00001000, y=57=00111001  
T=x*y=456=0000000111001000  
T (mod R)=72=01001000=72,    
T(mod R)*N^{-1}=3672=0000111001000000   
[T(mod R)*N^{-1}] (mod R)=88=01011000=m   
T+mN=896=0000001110000000   
(T+mN)/R=7=00000111=t   
S=t-N=7-5=2=00000010
```

