Unidad VI: Funciones y Cardinalidad

Funciones: definiciones básicas.

Clase 15 - Matemáticas Discretas (IIC1253)

Prof. Miguel Romero

Sean A y B conjuntos no vacíos.

Definición:

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplos:

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_1 = \{ (3,c), (1,a), (2,b), (3,d) \} \times$$

Sean A y B conjuntos no vacíos.

Definición:

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplos:

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_2 = \{ (1,a), (3,b) \} \times$$

Sean A y B conjuntos no vacíos.

Definición:

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Ejemplos:

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$. ¿Cuáles son funciones?

$$f_3 = \{ (1,c), (3,c), (2,a) \} \checkmark$$

Sean A y B conjuntos no vacíos.

Definición:

Una relación f de A en B es una función si para todo elemento $a \in A$ existe un único elemento $b \in B$ tal que $(a, b) \in f$.

Si $f \subseteq A \times B$ es una función, entonces escribiremos:

- $f: A \rightarrow B$ para decir que f es una función de A en B.
- f(a) = b para decir que $(a, b) \in f$.
 - b es la imagen de a en f
 - a es una preimagen de b en f

Sean A y B conjuntos no vacíos.

Definición:

Una relación f de A en B es una función parcial si para todo elemento $a \in A$, si existe un elemento $b \in B$ tal que $(a, b) \in f$, entonces b es único.

Sean A y B conjuntos no vacíos.

Definición:

Una relación f de A en B es una función parcial si para todo elemento $a \in A$, si existe un elemento $b \in B$ tal que $(a, b) \in f$, entonces b es único.

Si $f \subseteq A \times B$ es una función parcial, entonces escribiremos:

- $f:A \rightarrow B$ para decir que f es una función parcial de A en B. (notar la diferencia en la flecha)
- f(a) = b para decir que $(a, b) \in f$.
 - Igual que antes, usamos los términos imagen y preimagen.

Sean A y B conjuntos no vacíos y $f:A \rightarrow B$ una función parcial.

Definición:

Se define el **dominio** e **imagen** de *f* como:

$$dom(f) = \{ a \in A \mid \text{ existe } b \in B \text{ tal que } (a, b) \in f \}.$$

$$img(f) = \{ b \in B \mid \text{ existe } a \in A \text{ tal que } (a, b) \in f \}.$$

Ejemplos:

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$.

 $\mathsf{dom}(f) = \{1,3\}$

$$img(f) = \{a, b\}$$

Sean A y B conjuntos no vacíos y $f: A \rightarrow B$ una función parcial.

Definición:

Se define el **dominio** e **imagen** de *f* como:

$$dom(f) = \{ a \in A \mid \text{ existe } b \in B \text{ tal que } (a, b) \in f \}.$$

$$img(f) = \{ b \in B \mid \text{ existe } a \in A \text{ tal que } (a, b) \in f \}.$$

Ejemplos:

Sea $A = \{1, 2, 3\}$ y $B = \{a, b, c, d\}$.

$$dom(f) = \{1, 2, 3\}$$

$$img(f) = \{a, c\}$$

Sean A y B conjuntos no vacíos y $f:A \rightarrow B$ una función parcial.

Definición:

Se define el **dominio** e **imagen** de *f* como:

```
dom(f) = \{ a \in A \mid existe \ b \in B \ tal \ que \ (a,b) \in f \}.
img(f) = \{ b \in B \mid existe \ a \in A \ tal \ que \ (a,b) \in f \}.
```

Proposición:

Sea $f: A \rightarrow B$ una función parcial. Entonces:

```
f es una función \iff dom(f) = A
```

Ejemplos de funciones

Ejemplos:

Sea
$$A = B = \mathbb{R}$$
.

$$f_1(x) = x^2$$

$$f_2(x) = [x + \sqrt{x}]$$

$$f_3(x) = 0$$

$$f_4(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

Algunas preguntas

- ¿Es necesario definir funciones de más "dimensiones"?
 - Por ejemplo: $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ o $g: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$
- Si $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, ¿qué es dom(f)?

Tanto el **dominio** como la **imagen** de una función pueden ser números, tuplas, conjuntos, relaciones, grafos, . . .

Más ejemplos de funciones

Ejemplos:

Las siguientes son funciones de A en $\mathcal{P}(A)$:

$$g_1: A \to \mathcal{P}(A)$$
 $g_1(a) = \{a\}$

$$g_2: A \to \mathcal{P}(A)$$
 $g_2(a) = A \setminus \{a\}$

$$g_3:A\to \mathcal{P}(A)$$
 $g_3(a)=\varnothing$

Secuencias infinitas (otro ejemplo de funciones)

Sea A un conjunto.

Definición:

Una secuencia S sobre A es una función $S: \mathbb{N} \to A$.

Ejemplos:

 $S_1: \mathbb{N} \to \mathbb{Q}$

$$1, -\frac{1}{2}, \frac{1}{3}, -\frac{1}{4}, \ldots, \frac{(-1)^n}{n+1}, \ldots$$

 $S_2: \mathbb{N} \to \mathbb{N}$

$$0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, \dots$$

 $S_3: \mathbb{N} \to \{0, 1, 2 \dots, 9\}$

Sean A y B dos conjuntos no vacíos.

Definición:

Una función $f: A \rightarrow B$ se dice:

1. Inyectiva:

No existen dos elementos distintos en A con la misma imagen.

- No existen $a, b \in A$ tal que $a \neq b$ y f(a) = f(b).
- Otra forma: Para todo $a, b \in A$, si f(a) = f(b), entonces a = b.

Ejemplos:

¿Cuáles de las siguientes funciones son inyectivas?

Sean A y B dos conjuntos no vacíos.

Definición:

Una función $f: A \rightarrow B$ se dice:

1. Inyectiva:

No existen dos elementos distintos en A con la misma imagen.

2. Sobreyectiva:

Todo elemento en *B* tiene una preimagen.

• Para todo $b \in B$, existe $a \in A$ tal que f(a) = b.

Ejemplos:

¿Cuáles de las siguientes funciones son sobreyectivas?

Sean A y B dos conjuntos no vacíos.

Definición:

Una función $f: A \rightarrow B$ se dice:

1. Inyectiva:

No existen dos elementos **distintos** en A con la misma imagen.

2. Sobreyectiva:

Todo elemento en *B* tiene una preimagen.

3. Biyectiva:

f es inyectiva \mathbf{y} sobreyectiva.

Ejemplos:

¿Cuáles de las siguientes funciones son biyectivas?

Sean A y B dos conjuntos no vacíos.

Definición:

Una función $f: A \rightarrow B$ se dice:

1. Inyectiva:

No existen dos elementos **distintos** en A con la misma imagen.

2. Sobreyectiva:

Todo elemento en *B* tiene una preimagen.

3. Biyectiva:

f es inyectiva \mathbf{y} sobreyectiva.

Notación común:

- Una función inyectiva es llamada 1-a-1.
- Una función sobreyectiva es llamada sobre.

Ejercicios finales

¿Son las siguientes funciones inyectivas, sobreyectivas o biyectivas?

■ $f_1: A \to \mathcal{P}(A)$ tal que para todo $a \in A$:

$$f_1(a) = \{a\}$$

■ $f_2 : \mathbb{R} \to \mathbb{N}$ tal que para todo $r \in \mathbb{R}$:

$$f_2(r) = |\lfloor r \rfloor|$$

■ $f_3: \{0,1\}^+ \to \{0,1\}^+$ tal que para todo $u = u_1 \cdots u_k \in \{0,1\}^+$:

$$f_3(u) = u_k \cdots u_1$$