The disjoint cycle expansion of a simplex

Kai Renken

Dmitry Kozlov

January 28, 2021

Abstract

1 Basics

Theorem 1.1 (The cycle detection theorem). *Proof.*

Definition 1.1. Let X be a simplicial complex and $k \ge 1$. Furthermore, let $\mathcal{F} \subset C_k(X)$ be a family of cycles, such that their supports are pairwise disjoint (i.e. $\operatorname{supp}(F) \cap \operatorname{supp}(F') = \emptyset$ for all $F, F' \in \mathcal{F}$, satisfying $F \ne F'$) and let

$$P(\mathcal{F}) := \{ \varphi \in C^k(X) : | \operatorname{supp}(\varphi) \cap \operatorname{supp}(F) | = 1 \text{ for all } F \in \mathcal{F} \text{ and } \operatorname{supp}(\varphi) \subset \bigcup_{F \in \mathcal{F}} \operatorname{supp}(F) \}$$

denote the set of all cochains constructed by all possible choices of one simplex per cycle in the family \mathcal{F} . Then we define

$$\gamma_{\mathcal{F}} \coloneqq rac{\min\limits_{arphi \in P(\mathcal{F})} \lVert \delta^k(arphi)
Vert}{|\mathcal{F}|}$$

and we call

$$\gamma_k(X) \coloneqq \min_{\mathcal{F} \in \mathfrak{G}} \gamma_{\mathcal{F}}$$

the k-th disjoint cycle expansion of X, where

$$\mathfrak{C} := \{ \mathcal{F} \subset C_k(X) : F \text{ is a cycle and } \operatorname{supp}(F) \cap \operatorname{supp}(F') = \emptyset \text{ for all } F, F' \in \mathcal{F} \ (F \neq F') \}$$

is the collection of all families of cycles in $C_k(X)$ with pairwise disjoint supports.

Proposition 1.1. *Let* X *be a simplicial complex and* $k \ge 1$ *, then we have:*

$$h_k(X) \leq \gamma_k(X)$$

Proof. Let $\mathcal{F} \subset C_k(X)$ be a family of cycles with pairwise disjoint supports and $\varphi \in P(\mathcal{F})$. Then we have $\varphi \in P'(\mathcal{F})$ and $\tau(\mathcal{F}) = |\mathcal{F}|$ and we immediately get $\rho_{\mathcal{F}} \leq \gamma_{\mathcal{F}}$, so we have $\rho_k(X) \leq \gamma_k(X)$. Let now $\mathcal{F} \subset C_k(X)$ be an arbitrary family of cycles and $\varphi \in P'(\mathcal{F})$. Then we have $\langle \varphi, F \rangle = 1$ for all $F \in \mathcal{F}$ so we can use the cycle detection theorem and we get $\|\varphi\|_{csy} \geq \tau(\mathcal{F})$. This implies $\|\varphi\|_{exp} \leq \rho_{\mathcal{F}}$ and we have $h_k(X) \leq \rho_k(X)$.

Theorem 1.2. *Let n not be a power of* 2*, then we have*:

$$\gamma_1(\Delta^{[n]}) =
ho_1(\Delta^{[n]}) = rac{n}{3}$$

Proof. Since n is not a power of 2 we can write it as n = c(2t+1). Now consider the staircase graph $G_n(\lambda)$ given by the partition $\lambda = c \cdot \operatorname{cor}(t)$. For the definition of staircase graphs and partitions, see [2]. Since $G_n(\lambda)$ is bipartite we can partition the vertices of $G_n(\lambda)$ as $[n] = A \cup B \cup C$, with $A = \{v_1, \ldots, v_{ct}\}$, $B = \{w_1, \ldots, w_{ct}\}$ and $C = \{x_1, \ldots, x_c\}$, such that C is the set of all isolated vertices, and all edges of $G_n(\lambda)$ are contained in $E_{G_n(\lambda)}(A, B)$. Construct a family of cycles in $C_1(\Delta^{[n]})$ with pairwise disjoint supports as follows: For all edges (v_i, w_j) satisfying $i + j \leq ct$, such that (v_{ct-j+1}, w_{ct-i+1}) is not an edge in $G_n(\lambda)$ consider the cycle

$$C_{ij} := (v_i, w_j) + (v_{ct-j+1}, w_{ct-i+1}) + (v_i, v_{ct-j+1}) + (w_j, w_{ct-i+1})$$

For all edges $e_{ij} = (v_i, w_j)$ satisfying $i + j \le ct + 1$, such that $e'_{ij} = (v_{ct-j+1}, w_{ct-i+1})$ is also an edge in $G_n(\lambda)$ (for i + j = ct + 1 they are equal), the set

$$D := \{e_{ij}, e'_{ij} : i + j \le ct + 1, e_{ij} \text{ and } e'_{ij} \text{ are edges in } G_n(\lambda)\}$$

can be partitioned into t sets B_1, \ldots, B_t , each containing c^2 edges:

$$B_k := \{(v_i, w_j) : (k-1)c + 1 \le i \le kc, c(t-k) + 1 \le j \le c(t-k+1)\}$$

Now, each vertex from $A \cup B$ is only contained in edges from exactly one of the sets B_k . This means that for any l = 1, ..., c and any pair of edges $(v_i, w_i) \in B_{k_1}$ and $(v_{i'}, w_{j'}) \in B_{k_2}$ $(k_1 \neq k_2)$ the supports of the cycles $(v_i, w_j) + (v_i, x_l) + (v_i, w_j)$ (w_i, x_l) and $(v_{i'}, w_{i'}) + (v_{i'}, x_l) + (w_{i'}, x_l)$ are disjoint. Furthermore, each set B_k itself is a complete balanced bipartite graph (i.e. a graph in which each of the c vertices from A is adjacent to each of the c vertices from B) so we can partition it into c sets B_k^1, \ldots, B_k^c , such that all edges in B_k^l are disjoint, for every $l = 1, \dots, c$. Thus, the supports of the cycles $(v_i, w_i) + (v_i, x_l) + (w_i, x_l)$ are pairwise disjoint for all $(v_i, w_i) \in B_k^l$. The family of all these cycles united with the cycles C_{ij} we defined before gives a family of cycles with pairwise disjoint supports, such that every edge of $G_n(\lambda)$ is contained in exactly one cycle and every cycle containes exactly one of the edges from $G_n(\lambda)$. Since the number of cycles in this family equals the number of edges in $G_n(\lambda)$ and we know that we have $h(G_n(\lambda)) = \frac{n}{3}$ by [2] (Theorem 4.2.) we get $\gamma_1(\Delta^{[n]}) \leq \frac{n}{3}$ and by Proposition 1.1 we have $\gamma_1(\Delta^{[n]}) = \rho_1(\Delta^{[n]}) = \frac{n}{3}$.

Example 1.1. Let n = 10 and consider the staircase graph $G_{10}(\lambda)$ with $\lambda = 2 \cdot cor(2)$ as shown in Figure 1 (v_i and w_j are adjacent if and only if there is a box in column i and row j and the x_i 's are isolated vertices). Then, intuitively speaking, for every edge represented by a box for which there is no box on the other side of the diagonal

$$(v_1, w_4), (v_2, w_3), (v_3, w_2), (v_4, w_1)$$

we can "use" the missing boxes to construct cycles for these edges as we did in the first part of the proof of Theorem 1.2. This means, we get the family of cycles:

$$\{(v_1, w_1) + (v_4, w_4) + (v_1, v_4) + (w_1, w_4), (v_2, w_2) + (v_3, w_3) + (v_2, v_3) + (w_2, w_3), (v_1, w_2) + (v_3, w_4) + (v_1, v_3) + (w_2, w_4), (v_2, w_1) + (v_4, w_3) + (v_2, v_4) + (w_1, w_3)\}$$

For the remaining edges, according to the second part of the proof we use the isolated vertices to construct cycles and we get the family of cycles:

$$\{ (v_1, w_4) + (v_1, x_1) + (w_4, x_1), (v_2, w_3) + (v_2, x_1) + (w_3, x_1), \\ (v_3, w_2) + (v_3, x_1) + (w_2, x_1), (v_4, w_1) + (v_4, x_1) + (w_1, x_1), \\ (v_1, w_3) + (v_1, x_2) + (w_3, x_2), (v_2, w_4) + (v_2, x_2) + (w_4, x_2), \\ (v_3, w_1) + (v_3, x_2) + (w_1, x_2), (v_4, w_2) + (v_4, x_2) + (w_2, x_2) \}$$

Uniting both families gives a family of cycles \mathcal{F} , whose supports are pairwise disjoint and such that every edge of $G_{10}(\lambda)$ is contained in the support of exactly one cycle. If we consider $\varphi \in C^1(\Delta^{[10]})$ as the characteristic cochain of the chain respresented by $G_{10}(\lambda)$, then we have $\|\delta^1(\varphi)\| = 40$ and we have $|\mathcal{F}| = 12$, so we get:

$$\gamma_{\mathcal{F}} = \frac{40}{12} = \frac{10}{3}$$

Figure 1: The staircase graph $G_{10}(\lambda)$ with $\lambda = 2 \cdot cor(2)$

Theorem 1.3. *Let* k + 2 *devide* n, *then we have:*

$$\gamma_k(\Delta^{[n]}) = \rho_k(\Delta^{[n]}) = \frac{n}{k+2}$$

References

- [1] Dmitry N. Kozlov, Roy Meshulam; Quantitative aspects of acyclicity
- [2] Dmitry N. Kozlov; The first Cheeger constant of a simplex