Лабораторная работа 1.1.4

Талашкевич Даниил Александрович October 29, 2020

1. Аннотация

Применение методов обработки экспериментальных данных для изучения статистических закономерностей при измерении интенсивности радиоционного фона.

2. Используемое оборудование

счётчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счетчиком.

3. Теоретические сведения

В лабораторной работе изучаются космические лучи-потоки частиц, заполняющие межзвездное пространство и постоянно бомбардирующие Землю. Основной величиной, характеризующей количество частиц в космических лучах является интенсивность I - число частиц, подающих в единицу времени на единичную площадку, перпендикулярную к направлению наблюдения, отнесенное к ERROR. В случае изотропного излучения интенсивность I связана с плотностью потока формулой $F=\pi I$, обе величины — флуктуирующие.

Для измерения итенсивности лучей мы будем использовать счетчик Гейгера=Мюллера. Частицы космических лучей пролетают через газ, которым наполнен счетчик, ионизируя его и выюивая электроны из его стенок. На электроды счетчика падается напряжение 400B, из-за чего электроны ускоряются и выюивают из молекул газа вторичные электроны, затем они снова ускоряются и ионизируют молекулы газа — в результате образуется электронная лавина, и через счетчик резко увеличивается ток.

Экспериментальная схема показана на рисунке.

Ход работы

1) Включаем счетчик Гейгера-Мюллера, затем компьютеря, предварительно собрав электрическую схему, полностью описанную выше. Запускаем

программу *STAT* для начала проведения основного эксперимента.

Длительность эксперимента: 4000 c.

- 2) Измеряем плотность потока космического излучения за 20: составляем таблицу срабатываний счетч ка Гейгера на основе снятых данных с компьютера (табл.1).
- 3) Запишем в таблицу измеренные данные для построения гистограммы распределения числа срабатываний счетчика за 10 секунд (табл.2).
- 4) С помощью таблицы 1 переведем полученные значения в таблицу количества срабатываний счетчика за 40 секунд (табл.3).
- 5) Запишем в таблицу измеренные данные для построения гистограммы распределения числа срабатываний счетчика за 40 секунд (табл. 4).
- 6) Построим гистограмму по полученным данных так, чтоюы их масштабы были примерно одинаковы (гист.1).
 - 7) Найдем среднее значение числа срабатывания счетчика:
 - a) t = 10 c.

$$\overline{n_1} = \frac{1}{N_1} \sum_{i=1}^{N_1} n_i = \frac{5346}{400} \approx 13.37.$$

б) $t = 40 \ c$.

$$\overline{n_2}=rac{1}{N_2}\sum_{i=1}^{N_2}n_i=rac{5339}{100}pprox 53,39.$$
 Таблица 1. Число срабатывания счетчика за 20 c .

№ опыта	1	2	3	4	5	6	7	8	9	10
0	24	31	29	17	28	27	18	22	32	34
10	28	14	31	33	30	22	33	25	28	29
20	30	34	27	27	21	24	28	33	25	24
30	31	31	30	25	30	23	28	21	27	22
40	31	28	25	28	25	19	30	22	17	21
50	24	28	21	28	27	28	26	26	27	20
60	21	25	24	15	30	26	29	29	36	22
70	26	24	31	30	22	29	22	30	33	21
80	23	19	35	20	25	25	38	21	27	23
90	30	37	30	27	25	25	29	28	35	29
100	27	31	30	24	27	27	23	22	21	31
110	32	40	22	24	39	24	32	24	31	19
120	24	25	20	21	30	28	31	25	28	29
130	31	30	33	28	27	23	28	28	35	26
140	22	29	29	29	27	25	26	28	23	23
150	30	31	29	25	30	23	33	23	30	26
160	21	20	24	17	27	25	33	20	31	26
170	30	26	28	29	28	32	30	30	23	18
180	24	30	27	25	27	32	24	32	17	30
190	22	40	21	19	22	27	26	24	24	31

Таблица 2. Данные для гистограммы (кол-во срабатываний за $10\ c$).

число импульсов	число случаев	доля случаев
0	0	0
1	0	0
2	0	0
3	0	0
4	0	0
5	0	0
6	7	0.0175
7	8	0.02
8	13	0.0325
9	14	0.035
10	26	0.065
11	56	0.14
12	45	0.1125
13	41	0.1025
14	45	0.1125
15	49	0.1225
16	35	0.0875
17	16	0.04
18	19	0.0475
19	10	0.025
20	7	0.0175
21	4	0.01
22	3	0.0075
23	1	0.0025
24	0	0
25	0	0
26	0	0
27	1	0.0025
28	0	0

Таблица 3. Числа срабатываний счетчика за 40 c.

№ опыта	1	2	3	4	5	6	7	8	9	10
0	55	46	55	40	66	42	64	52	58	57
10	64	54	45	61	49	62	55	53	49	49
20	59	53	44	55	38	52	49	55	52	47
30	46	39	56	58	58	50	61	51	52	54
40	42	55	50	59	50	67	57	50	57	64
50	58	54	54	45	52	72	46	63	56	50
60	49	41	58	56	57	61	61	50	56	61
70	51	58	52	54	46	61	54	53	56	56
80	41	41	52	53	57	56	57	60	60	41
90	54	52	59	56	47	62	40	49	50	55

Таблица 4. Данные для гистограммы (кол-во срабатываний за 40 c).

число импульсов	число случаев	доля случаев
38	1	0.01
39	1	0.01
40	2	0.02
41	4	0.04
42	2	0.02
43	0	0
44	1	0.01
45	2	0.02
46	4	0.04
47	2	0.02
48	0	0
49	6	0.06
50	7	0.07
51	2	0.02
52	8	0.08
53	4	0.04
54	7	0.07
55	7	0.07
56	8	0.08
57	6	0.06
58	6	0.06
59	3	0.03
60	2	0.02
61	6	0.06
62	2	0.02
63	1	0.01
64	3	0.03
65	0	0
66	1	0.01
67	1	0.01
68	0	0
69	0	0
70	0	0
71	0	0
72	1	0.01

⁸⁾ Найдем среднеквадратичную ошибку отдельного измерения :

a) t = 10 **c**.

$$\sigma_1 = \sqrt{\frac{1}{N_1} \sum_{i=1}^{N_1} (n_i - \overline{n_1})^2} = \sqrt{\frac{4409}{400}} \approx 3,32.$$

б)
$$t = 40 \ c$$
.

$$\sigma_2 = \sqrt{\frac{1}{N_2} \sum_{i=1}^{N_2} (n_i - \overline{n_2})^2} = \sqrt{\frac{4508}{100}} \approx 6,71.$$

9) Убедимся в справедливости формулы
$$\sigma_k = \sqrt{\frac{1}{N_k}\sum_{i=1}^{N_k}(n_i-\overline{n_k})^2} \approx$$

$$\sqrt{\overline{n_k}}$$
.

a)
$$t = 10$$
 c.

$$\sigma_1' = 3,65 \approx 1, 1 \cdot \sigma_1.$$

6)
$$t = 40$$
 c.

$$\sigma_2^{;} = 7, 3 \approx 1,09 \cdot \sigma_2.$$

Полученные данные примерно сходятся ⇒ формула справедлива.

10) Определим долю случаев, когда отклонение от среднего значения не превыщают $\sigma_1, 2\sigma_1$ и сравним с теоретическими оценками.

Ошибка	Число случаев	Доля случаев,%	Теор.оценка,%
$\pm \sigma_1 = \pm 3,32$	270	67,6	0
$\pm 2\sigma_1 = \pm 6,64$	382	95, 6	0

Теоретические оценки практически совпадают с экспериментальными данными.

11) Сравним среднеквадратичные ошибки отдельных измерений для двух распределений : $\overline{n_1}=13,37,\ \sigma_1=3,32,\ \overline{n_2}=53,39\ ,\ \sigma_2=6,71$. Легко виделть, что хотя абсолютное значение σ во втором распределении больше, чем в первом (>), относительная полуширина второго распределения меньше :

$$\frac{\sigma_1}{\overline{n_1}} \cdot 100\% = \frac{3,32}{13,37} \cdot 100\% \approx 24,8\%, \quad \frac{\sigma_2}{\overline{n_2}} \cdot 100\% = \frac{6,71}{53,39} \approx 12,6\%.$$

Это так же следует из гистограммы (см. гист 1).

12) Определим стандартную ошибку величин $\overline{n_1}$ и $\overline{n_2}$:

$$\sigma_{\overline{n_1}} = \frac{\sigma_1}{\sqrt{N_1}} = \frac{3,32}{\sqrt{400}} \approx 0,17, \ \sigma_{\overline{n_2}} = \frac{\sigma_2}{\sqrt{N_2}} = \frac{6,71}{\sqrt{100}} \approx 0,67.$$

Найдем относительную ошибку:

$$\varepsilon_{\overline{n_1}} = \frac{\sigma_{\overline{n_1}}}{\overline{n_1}} \cdot 100\% = \frac{0.17}{13,37} \cdot 100\% \approx 1,27\%, \ \varepsilon_{\overline{n_2}} = \frac{\sigma_{\overline{n_2}}}{\overline{n_2}} \cdot 100\% = \frac{0.67}{53,39} \cdot 100\% \approx 1,25\%.$$

(теор. оценка
$$\varepsilon'_{n_1}=\frac{100\%}{\sqrt{\overline{n_1}N_1}}\approx 1,37\%,\ \varepsilon'_{n_2}=\frac{100\%}{\sqrt{\overline{n_2}N_2}}\approx 1.36\%$$
 .

- 13) Строим гистограмму на основе таблице 2 и 4, причем там, чтобы данные удобно располагались на ней (см. след. страницу).
 - 14) Окончательный результат:

$$n_{40} = \overline{n_2} \pm \sigma_{\overline{n_2}} = 53,39 \pm 0.67$$
.

$$n_{10} = \overline{n_1} \pm \sigma_{\overline{n_1}} = 13,37 \pm 0,17$$
.

Вывод: применив методы обработки экспериментальных данных мы изучали статистические закономерности при измерении интенсивности радиационного фона. Узнали, что из себя представляет и как работает счетчик Гейгера-Мюллера и экспериментально подтвердили теоретические формулы.