DATS-6103: Data Mining Final Project Individual Report

Popular Attraction/Landmark Recognition Using Google Landmark Dataset

Introduction:

Image Processing, Image Recognition and Image Classification has become a buzzing topic in the field of Engineering and Computer Science. With increasing use of social applications, trend of capturing pictures alongside various popular landmark has always been in fashion. Our focus on this project has been to recognize a given popular landmark irrespective of different aspect ratio or the illumination of the presented image. Google-Landmarks-v2 (September 2019), a dataset released by Google is used as source of data in the project. In order to maintain uniformity, images in the dataset are resized to a fixed ratio. Histogram of Oriented Gradients (HOG) classifier is then used for feature extraction which were later stored as array. We then ran various models such as K-Nearest Neighbors, Logistic Regression, Decision Trees, Linear Support Vector Machine, Non-Linear Support Vector Machine, Naïve Bayes and Random Forest. Random Forest worked best for our given dataset with an accuracy of 68%.

The project was divided among three members as follows – Sharmin Nerius Kantharia – Data Preprocessing and GUI Saurav Mainali – Feature Extraction and GUI Gayathri Chandrasekaran – Modelling

Feature Extraction

In order to get important features from the images HOG descriptor was used. Image was subdivided many cells. For every pixel in the image the HOG classifier calculates the gradients in both the horizontal and the vertical direction. Then magnitude and orientation of each gradients are measured and stored. Based upon this histogram is created and distributed over bins. Histograms for each subdivided cell is calculated which gives the features representing in that cell. Thereby important high-level information is generated. For this project, HOG classifier from OpenCV package was used.

Magnitude: $\sqrt{[(G_x)^2+(G_y)^2]}$

Orientation: $\Phi = atan(Gy / Gx)$

Graphical User Interface

For the GUI, main menu was created including multiple buttons. The buttons were named Load Data, Pre-Processing, Features Extraction, Frequency Plot, Data Split, Cross Validation Score, Modelling and Prediction and Live data and Prediction. Once the user interface was created using Qt designer, it was converted into .py file using the command prompt.

Results:

After the features were extracted we ran various model and the results are presented below.

EDA: Top 10 Sampled Landmark Details

Fig 1: Frequency Plot – top 10 Sampled Data

The graph shows that out dataset is highly imbalanced. Landmark id - '138982' has highest annotated images.

CONFUSION MATRIX:

Confusion matrix for different model are described below.

onfusion	Matrix	1	26637.0	138982.0	151942.0	171772.0	176528.0	177870.0	Confusion	Matrix	12	26637.0	138982.0	151942.0	171772.0	176528.0	1778
26637.0	378	77	20	0	37	14	1		126637.0	396	77	1	9	29	5	1	
38982.0	17	922	3	9	3	31	28		138982.0	2	1140	1	2	1	4	14	
51942.0	19	119	20:	1	38	32	19		151942.0	30	71	25	4	40	3	16	
71772.0	29	19	3	5 4	130	23	2		171772.0	15	22		7 4	183	6	0	
76528.0	19	15		4	16 2	954	0		176528.0	4	22		3	14 29	42	1	
77870.0	17	190	4	3	9	14	41		177870.0	26	187	6		8	2	89	
92931.0	6	72		6	50	56	3		192931.0	0	21		1	20	13	1	
0409.0	70	267	20		27	27	7		20409.0	20	291	2		30	8	16	
2798.0	42	38	6		L30	57	12		62798.0	43	70	6			13	13	
3144.0	39	170	70	0	44	34	17		83144.0	20	152	7	9	41	6	14	
	192931.0	20409.0	62798.0	83144.0						192931.0	20409.0	62798.0	83144.0				
26637.0	6	34	58	32					126637.0	6	43	39	42				
38982.0	35	136	22	50					138982.0	23	41	9	37				
51942.0	16	103	97	62					151942.0	28	64	106	94				
71772.0	34	13	153	36					171772.0	37	15	154	35				
76528.0	11	11	34	10					176528.0	18	18	45	7				
77870.0	18	108	35	42					177870.0	17	54	29	40				
92931.0	374	43	38	14					192931.0	565	3	17	21				
0409.0	42	447	37	23					20409.0	41	492	16	31				
2798.0	44	51	513	85					62798.0	38	49	513	107				
3144.0	33	42	139	211					83144.0	35	38	135	279				

Fig 3: Confusion Matrix – Logistic regression & Random Forest

onfusion	Matrix	13	26637.0	138982.0	151942.	0 171772	.0 176528.0	177870.	Confusion	Matrix		126637.0	138982.0	151942.0	171772.0	176528.0	177870.
26637.0	16	9			35	53	23		126637.0	0		Э	0	0	0	0	
38982.0	50	211	2	7	25	351	46		138982.0	0	15	7	0	0	0	0	
51942.0	7	35	2	1	51	41	17		151942.0	0		9	0	0	0	0	
71772.0	10	13	6	5 1	L91	43	30		171772.0	0		9	0	0	0	0	
76528.0	29	14	8	2 9	969	1237	4		176528.0	0		Э	0	0	0	0	
77870.0	7	67	2	1	25	50	26		177870.0	0		9	0	0	0	0	
92931.0	2	4	1	5 1	L75	9	3		192931.0	0		9	0	0	0	0	
0409.0	15	81	1	8	50	129	40		20409.0	0		Э	0	0	0	0	
2798.0	26	29	7	0 1	L01	103	34		62798.0	0		Э	0	0	0	0	
3144.0	12	50	1	7	73	92	31		83144.0	0		9	0	0	0	0	
	192931.0	20409.0	62798.0	83144.0						192931.0	20409.0	62798.0	83144.0				
26637.0	3	233	159	113					126637.0	0	0	6	657				
38982.0	22	212	154	185					138982.0	0	0	e	1126				
51942.0	3	236	162	133					151942.0	0	0	e	706				
71772.0	4	120	211	87					171772.0	0	0	e	774				
76528.0	21	436	156	126					176528.0	0	0	6	3074				
77870.0	6	137	86	92					177870.0	0	0	6	517				
92931.0	7	357	64	26					192931.0	0	0	e	662				
0409.0	5	451	84	94					20409.0	0	3	6	964				
2798.0	9	177	305	180					62798.0	0	0	e	1034				
3144.0	4	168	186	166					83144.0	0	0	e	799				

Fig 4: Confusion Matrix - SVM Model

onfusion	Matrix	1	26637.0 1	38982.0	151942.0	171772.0	176528.0	177870.0	Confusion	Matrix	17	26637.0	138982.0	151942.0	171772.0	176528.0	1778
26637.0	283	42	44	4	7 1	0 :	28		126637.0	406	59		56	28	10	9	
38982.0	32	789	38	1	.4 1	0	89		138982.0	45	922		29	3	5	70	
51942.0	52	50	154	4	6 1	8	68		151942.0	127	84	2	93	40	38	35	
71772.0	53	14	55	28	4 2	3 :	22		171772.0	80	21		34 4	107	98	3	
76528.0	18	27	21	3	4 285	9 :	15		176528.0	39	27		29	39 28	363	3	
77870.0	24	113	58	1	.5	6 !	96		177870.0	27	190		56	4	12	86	
92931.0	9	22	23	4	0 2	0 :	17		192931.0	10	42		7	57	89	4	
0409.0	59	183	62	5	0 1	5	79		20409.0	67	300		53	16	20	69	
2798.0	60	54	102	14	5 3	4	64		62798.0	155	43	1	35 1	.57	97	33	
3144.0	38	80	90	6	3 2	3	79		83144.0	130	108	1	92	50	66	45	
	192931.0	20409.0	62798.0	83144.0						192931.0	20409.0	62798.0	83144.0				
26637.0	10	68	79	46					126637.0	7	24	29	29				
38982.0	19	153	50	89					138982.0	40	121	10	38				
51942.0	23	68	128	99					151942.0	13	36	67	63				
71772.0	36	31	172	84					171772.0	22	11	67	31				
76528.0	16	19	40	25					176528.0	15	12	32	15				
77870.0	12	75	59	59					177870.0	30	57	11	34				
92931.0	426	33	42	30					192931.0	404	25	12	12				
0409.0	42	350	59	68					20409.0	76	328	12	26				
2798.0	44	60	313	158					62798.0	21	31	274	88				
3144.0	41	63	138	184					83144.0	25	37	75	161				

Fig 5: Confusion Matrix – Decision Tree & KNN

Confusion	Matrix	1	26637.0	138982.0			176528.0	177870.0	Accuracy	Score :	67.5833094	524272					
126637.0	301	52	25)	14 1	85	7		Confusion							176528.0	177870
L38982.0	113	695	10	1		47	76		126637.0	393				34	5	2	
151942.0	165	102	113			97	36		138982.0	8		2		2	3	19	
171772.0	111	32	2	2 2	29 1	95	15		151942.0	31		25		40	3	14	
76528.0	37	31	!	5	17 29	11	3		171772.0	19		1		86	4	0	
77870.0	110	175	39)	19	56	39		176528.0	5					941	0	
92931.0	36	10	2	2	26 2	91	2		177870.0	23			8	8	4	88	
0409.0	282	207	4	1	39 1	83	24		192931.0	0					13	2	
2798.0	228	134	8	5 1	22 1	42	46		20409.0	23				30	9	16	
3144.0	138	148	9	5	76	70	58		62798.0	47					14	8	
									83144.0	21	150	8	1	44	9	16	
	192931.0	20409.0	62798.0	83144.0													
26637.0	14	14	14	27						192931.0			83144.0				
38982.0	29	79	15	107					126637.0	6		37	34				
51942.0	51	8	22	49					138982.0	17		16	32				
71772.0	81	4	46	39					151942.0	29		109	82				
76528.0	29	6	29	6					171772.0	34		146	37				
77870.0	24	13	7	35					176528.0	16	20	40	8				
92931.0	247	6	11	11					177870.0	21		30	36				
0409.0	72	69	20	27					192931.0	567	2	17	16				
2798.0	71	22	81	102					20409.0	46	484	25	29				
3144.0	46	14	33	120					62798.0	39	41	474	127				
									83144.0	42	37	134	265				

Fig 6: Confusion Matrix – Naïve Bayes & Ensemble Model

We can see landmark id -177870,151942 has more misclassified records. SVM has low performance in our dataset. Landmark id -177870,151942 has similar features with other classes which increases number of incorrect predictions.

CLASSIFICATION REPORT:

lassificatio	on Ponont									63				
1assilicaci	precision	noca11	f1-score	support	Classificatio					Classificatio				
	precision	recall	T1-Score	Suppor t		precision	recall	f1-score	support		precision	recall	f1-score	support
20409.0	0.59	0.58	0.58	657	20409.0	0.71	0.60	0.65	657	20409.0	0.09	0.02	0.04	657
62798.0	0.49	0.72	0.58	1283	62798.0	0.56	0.89	0.68	1283	62798.0	0.41	0.16	0.23	1283
83144.0	0.40	0.28	0.33	706	83144.0	0.48	0.36	0.41	706	83144.0	0.06	0.03	0.04	706
126637.0	0.55	0.56	0.55	774	126637.0	0.61	0.62	0.62	774	126637.0	0.11	0.25	0.15	774
138982.0	0.91	0.96	0.94	3074	138982.0	0.98	0.96	0.97	3074	138982.0	0.59	0.40	0.48	3074
151942.0	0.32	0.08	0.13	517	151942.0	0.54	0.17	0.26	517	151942.0	0.10	0.05	0.07	517
171772.0	0.61	0.56	0.59	662	171772.0	0.70	0.85	0.77	662	171772.0	0.08	0.01	0.02	662
176528.0	0.45	0.46	0.46	967	176528.0	0.60	0.51	0.55	967	176528.0	0.18	0.47	0.26	967
177870.0	0.46	0.50	0.48	1034	177870.0	0.48	0.50	0.49	1034	177870.0	0.19	0.29	0.23	1034
192931.0	0.37	0.26	0.31	799	192931.0	0.40	0.35	0.37	799	192931.0	0.14	0.21	0.17	799
ndel Evaluat	ion Metrics	- SVM Non	Linear Mod	le1	Model Evalua	ation Metrics	- Decisi	on Tree		Model Eval	luation Metri	cs - KNN		
	ion Metrics	- SVM Non	Linear Mod	el	Model Evalua		- Decisi	on Tree		Model Eval		cs - KNN		
odel Evaluat			Linear Mod	lel support				on Tree f1-score	support				l f1-score	suppor
	on Report					on Report			support 657		ion Report precision		l f1-score 0.47	suppor
lassificatio	on Report precision	recall	f1-score	support	Classificatio	on Report precision	recall	f1-score		Classificat	ion Report precision 0.37	recal		
lassificatio	on Report precision	recall	f1-score	support 657	Classification 20409.0	on Report precision 0.45	recall	f1-score	657	Classificat 20409.0	ion Report precision 0.37 0.51	recal:	0.47	657
20409.0 62798.0	on Report precision 0.00 1.00	recall 0.00 0.12	f1-score 0.00 0.22	support 657 1283	20409.0 62798.0	on Report precision 0.45 0.57	recall 0.43 0.61	f1-score 0.44 0.59	657 1283	Classificat 20409.0 62798.0	ion Report precision 0.37 0.51 0.28	recal: 0.62 0.72	0.47 0.60	657 1283
20409.0 62798.0 83144.0	on Report precision 0.00 1.00 0.00	recall 0.00 0.12 0.00	f1-score 0.00 0.22 0.00	support 657 1283 706	20409.0 62798.0 83144.0	on Report precision 0.45 0.57 0.24	0.43 0.61 0.22	f1-score 0.44 0.59 0.23	657 1283 706	Classificat 20409.0 62798.0 83144.0	ion Report precision 0.37 0.51 0.28 0.51	necal 0.62 0.72 0.29	0.47 0.60 0.29	657 1283 706
20409.0 62798.0 83144.0 126637.0	0.00 0.00 1.00 0.00 0.00	recall 0.00 0.12 0.00 0.00	f1-score 0.00 0.22 0.00 0.00	support 657 1283 706 774	20409.0 62798.0 83144.0 126637.0	0.45 0.57 0.24 0.38	0.43 0.61 0.22 0.37	f1-score 0.44 0.59 0.23 0.38	657 1283 706 774	Classificat 20409.0 62798.0 83144.0 126637.0	ion Report precision 0.37 0.51 0.28 0.51 0.87	0.62 0.72 0.29 0.53	0.47 0.60 0.29 0.52	657 1283 706
20409.0 62798.0 83144.0 126637.0 138982.0	0.00 0.00 1.00 0.00 0.00 0.00	recall 0.00 0.12 0.00 0.00 0.00	f1-score 0.00 0.22 0.00 0.00	557 1283 706 774 3074	20409.0 62798.0 83144.0 126637.0 138982.0	0.45 0.57 0.24 0.38 0.95	0.43 0.61 0.22 0.37 0.93	f1-score 0.44 0.59 0.23 0.38 0.94	657 1283 706 774 3074	20409.0 62798.0 83144.0 126637.0 138982.0	ion Report precision 0.37 0.51 0.28 0.51 0.87 0.24	0.62 0.72 0.29 0.53 0.93	0.47 0.60 0.29 0.52 0.90	657 1283 706 774 3074 517
20409.0 62798.0 83144.0 126637.0 138982.0 151942.0	0.00 1.00 0.00 0.00 0.00 0.00	recall 0.00 0.12 0.00 0.00 0.00 0.00	f1-score 0.00 0.22 0.00 0.00 0.00 0.00	500 support 657 1283 706 774 3074 517	20409.0 62798.0 83144.0 126637.0 138982.0 151942.0	0.45 0.57 0.24 0.38 0.95 0.17	recall 0.43 0.61 0.22 0.37 0.93 0.19	f1-score 0.44 0.59 0.23 0.38 0.94 0.18	657 1283 706 774 3074 517	20409.0 62798.0 831140 126637.0 138982.0 151942.0	ion Report precision 0.37 0.51 0.28 0.51 0.87 0.24	0.62 0.72 0.29 0.53 0.93	0.47 0.60 0.29 0.52 0.90	657 1283 706 774 3074
20409.0 62798.0 83144.0 126637.0 138982.0 151942.0 171772.0	0.00 1.00 0.00 0.00 0.00 0.00 0.00	recall 0.00 0.12 0.00 0.00 0.00 0.00 0.00	f1-score 0.00 0.22 0.00 0.00 0.00 0.00 0.00	support 657 1283 706 774 3074 517 662	20409.0 62798.0 83144.0 126637.0 138982.0 151942.0 171772.0	0.45 0.57 0.24 0.38 0.95 0.17	recall 0.43 0.61 0.22 0.37 0.93 0.19 0.64	f1-score 0.44 0.59 0.23 0.38 0.94 0.18 0.64	657 1283 706 774 3074 517 662	20409.0 62798.0 83144.0 126637.0 138982.0 151942.0 171772.0	ion Report precision 0.37 0.51 0.28 0.51 0.87 0.24 0.62 0.48	recal. 0.62 0.72 0.29 0.53 0.93 0.17 0.61	0.47 0.60 0.29 0.52 0.90 0.20	657 1283 706 774 3074 517

Fig 7: Classification report

Classificati	on Report				Model Evaluation Metrics - Ensemble Classification Report							
	precision	recall	f1-score	support	Classificati	on Report precision	recall	f1-score	support			
20409.0	0.20	0.46	0.28	657	20409.0	0.69	0.60	0.64	657			
62798.0	0.44	0.54	0.48	1283	62798.0	0.55	0.88	0.68	1283			
83144.0	0.21	0.17	0.19	706	83144.0	0.44	0.36	0.40	706			
126637.0	0.37	0.30	0.33	774	126637.0	0.59	0.63	0.61	774			
138982.0	0.70	0.95	0.80	3074	138982.0	0.98	0.96	0.97	3074			
151942.0	0.13	0.08	0.09	517	151942.0	0.53	0.17	0.26	517			
171772.0	0.37	0.37	0.37	662	171772.0	0.69	0.86	0.77	662			
176528.0	0.29	0.07	0.11	967	176528.0	0.61	0.50	0.77	967			
177870.0	0.29	0.08	0.12	1034	177870.0	0.46	0.46	0.46	1034			
192931.0	0.23	0.15	0.18	799	192931.0	0.40	0.33	0.46	799			

Fig 7a: Classification report

F1 scores for other algorithms are good. Landmark id -138982 is classified properly most and Landmark id -192931 is misclassified quiet often. Due to imbalance in dataset and multiclass environment, we are not able to conclude much from these results for other classes.

ACCURACY & COHEN KAPPA SCORE:

	Model	Accuracy_Score	Cohen Kappa Score
0	Logistic Regression	61.787453	0.548704
1	Random Forest	68.299437	0.627768
2	SVM_Linear	25.121742	0.141461
3	SVM Non Linear	9.156880	0.015796
4	Decision Tree	54.788504	0.471286
5	KNN	57.805786	0.503012
6	Naive Bayes	45.927623	0.351123
7	Ensemble(Hard voting)	67.583309	0.619471

Fig 8: Accuracy & Cohen Kappa Score

Fig 9: Accuracy Score for various Models

From Accuracy Score and Kappa Score, we can conclude Random forest gives better accuracy rate and kappa value also falls under Fair agreement region, followed by Ensemble and Logistic Regression. SVM model has lowest accuracy and kappa score is least, it doesn't suit for given dataset.

CROSS VALIDATION SCORE:

Мо	del CV Score	
	Classifier_Name	Cross_validation_Score
0	LR	0.617887
1	KNN	0.582703
2	Decision Tree	0.552306
3	RF	0.675163
4	NB	0.463691
5	SVM Non Linear	0.090619
6	SVM Linear	0.227345

Fig10: Cross Validation Score

The cross-validation score suggest us that, Random forest and logistic regression have better score and SVM models has the least.

Conclusion

Hence after we conducted test with all the models, we can conclude that Random Forest works best for the given set of data which gives 68% accuracy. Logistic Regression is the second best. SVM does not produce accurate result in our dataset. This is because our dataset is highly imbalanced and hence optimum decision boundary cannot be created.

Percentage of work from internet – I have used hog classifier form open cv algorithm tutorial for feature extraction which is 10 lines of code. Total percentage of code from internet is 17%

Reference Materials:

1. Announcing Google-Landmarks-v2: An Improved Dataset for Landmark Recognition & Retrieval (2019, September),

Retrieved from: https://ai.googleblog.com/2019/05/announcing-google-landmarks-v2-improved.html

- 2. The Common Visual Data Foundation(2019, September), Google Landmarks Dataset v2, **Retrieved from:** https://www.kaggle.com/c/landmark-recognition-2019
- 3. Y. Li, D. J. Crandal and D. P. Huttenlocher, Landmark Classification in Large-scale Image Collections,

Retrieved from: https://www.cs.cornell.edu/~yuli/papers/landmark.pdf

4. A. Crudge, W. Thomas and K. Zhu, Landmark Recognition Using Machine Learning, **Retrieved from:**

http://cs229.stanford.edu/proj2014/Andrew%20Crudge,%20Will%20Thomas,%20Kaiyuan%20Zhu,%20Landmark%20Recognition%20Using%20Machine%20Learning.pdf

5. Y. Takeuchi, P. Gros, M. Hebert and K. Ikeuchi, Visual Learning for Landmark Recognition,

Retrieved from: https://www.cs.cmu.edu/~takeuchi/iuw97/iuw97.html

6. https://www.analyticsvidhya.com/blog/2019/09/feature-engineering-images-introduction-hog-feature-descriptor/