Exercises week 37

Exercise 1: Expectation values for ordinary least squares expressions

There exists a continuous function $f(\mathbf{x})$ and a normal distributed error $\epsilon \sim N(0,\sigma^2)$ which describes our data $\mathbf{y} = f(\mathbf{x}) + \epsilon$. We approximate the function f with our model $\mathbf{\tilde{y}} = \mathbf{X}eta$, minimized by $(\mathbf{y} - \mathbf{\tilde{y}})^2$.

Show that the expectation value of y for a given element in i:

$$\mathbb{E}(y_i) = \sum_j x_{ij} eta_j = \mathbf{X}_{i,*} eta$$

and its variance is:

$$\mathrm{Var}(y_i) = \sigma^2$$

Given $\mathbf{y} = f(\mathbf{x}) + \epsilon$ and $\epsilon \sim N(0, \sigma^2)$

Expectation value:

$$\mathbb{E}(\mathbf{y}) = \mathbb{E}(f(\mathbf{x}) + \epsilon) = \mathbb{E}(f(\mathbf{x}))$$

Since $\mathbb{E}(\epsilon)=0$, because we assume ϵ to be normally distributed with a mean value of 0, and a variance of σ^2 .

We need to keep in mind our model for ${f y}$ is ${f ilde y}={f X}eta$

From there we can look at it element-wise:

$$\mathbb{E}(y_i) = \sum_j x_{ij} eta_j = \mathbf{X}_{i,*} eta$$

Variance: The variance lies in the normal distributed error $\epsilon \sim N(0,\sigma^2)$. For each point in ${f y}$ the variance $ext{Var}(y_i) = \sigma^2$. And therefor $y_i \sim N(\mathbf{X}_{i,*}eta,\sigma^2)$ with the mean value $\mathbf{X}_{i,*}eta$ and variance σ^2

Show that $\mathbb{E}(\hat{eta})=eta$ using the (OLS) expression for the optimal parameters \hat{eta} ,

$$\boldsymbol{\hat{\beta}} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$$

Then we need the expression for \mathbf{y} , $\mathbf{y} = \mathbf{X}\beta + \epsilon$ and we can substitute into the OLS expression:

$$egin{aligned} \hat{eta} &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} eta + \epsilon) \ &= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{X} eta + \mathbf{X}^T \epsilon) \ &= eta + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon \end{aligned}$$

Then we can find the expectation value:

$$\mathbb{E}(\hat{eta}) = \mathbb{E}(eta + (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\epsilon)$$

$$= \mathbb{E}(eta) + \mathbb{E}((\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\epsilon) = eta$$

This is because $\mathbb{E}(eta)=eta$ and $\mathbb{E}(\epsilon)=0$

Thus, we have shown that: $\mathbb{E}(\hat{eta}) = eta$

To show that $\operatorname{Var}(\hat{\beta}) = \sigma^2(\mathbf{X}^T\mathbf{X})^{-1}$, we can start the same way as before:

$$egin{aligned} \hat{eta} &= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T (\mathbf{X} eta + \epsilon) \ &= (\mathbf{X}^T \mathbf{X})^{-1} (\mathbf{X}^T \mathbf{X} eta + \mathbf{X}^T \epsilon) \ &= eta + (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \epsilon \end{aligned}$$

Since eta is a constant vector, its variance is zero: $\mathrm{Var}(eta) = 0$

Variance of linear transformation: $Var(\mathbf{A}\epsilon) = \mathbf{A}Var(\epsilon)\mathbf{A}^T$.

Set
$$\mathbf{A} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$$
:

$$\operatorname{Var}(\mathbf{A}\epsilon) = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\operatorname{Var}(\epsilon)((\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T)^T$$

 $Var(\epsilon) = \sigma^2$.

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T ((\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T)^T \sigma^2$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{X} (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$$

$$= (\mathbf{X}^T \mathbf{X})^{-1} \sigma^2$$

Exercise 2: Expectation values for Ridge regression

Show that $\mathbb{E}\left[\hat{oldsymbol{eta}}^{Ridge}
ight]=(\mathbf{X}^T\mathbf{X}+\lambda\mathbf{I}_{pp})^{-1}(\mathbf{X}^T\mathbf{X})eta$

First of all $\hat{eta}^{Ridge} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_{pp})^{-1}\mathbf{X}^T\mathbf{y}$ Substitute for \mathbf{y} : $\hat{eta}^{Ridge} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_{nn})^{-1}\mathbf{X}^T(\mathbf{X}eta + \epsilon)$

$$oldsymbol{\hat{eta}}^{Ridge} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_{pp})^{-1}(\mathbf{X}^T\mathbf{X}eta + \mathbf{X}^T\epsilon)$$

 $\mathbb{E}\left[\mathbf{\hat{eta}}^{Ridge}
ight] = \mathbb{E}\left[(\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1}(\mathbf{X}^T\mathbf{X}eta + \mathbf{X}^T\epsilon)
ight]$

Then we find the expectation value of the expression:

$$\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1}\mathbb{E}\left[\mathbf{X}^T\mathbf{X}eta + \mathbf{X}^T\epsilon
ight]$$

And again, since $\mathbb{E}(\epsilon)=0$

$$=\mathbb{E}\left[\hat{m{eta}}^{Ridge}
ight]=(\mathbf{X}^T\mathbf{X}+\lambda\mathbf{I}_{pp})^{-1}\mathbb{E}\left[\mathbf{X}^T\mathbf{X}m{eta}
ight]$$
 Since $\mathbb{E}\left[\mathbf{X}^T\mathbf{X}m{eta}
ight]$ is a constant term:

 $\mathbb{E}\left[\mathbf{X}^T\mathbf{X}eta
ight] = \left[\mathbf{X}^T\mathbf{X}eta
ight]$

And therefor

 $\mathbb{E}\left[\hat{oldsymbol{eta}}^{Ridge}
ight] = (\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1}(\mathbf{X}^T\mathbf{X})eta$

And lastly, show that the variance is:

$$ext{Var}\left[\hat{oldsymbol{eta}}^{Ridge}
ight] = \sigma^2 \Big[\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I} \Big]^{-1} \mathbf{X}^T \mathbf{X} \left(\Big[\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I} \Big]^{-1}
ight)^T$$

Again we start with the expression of \hat{eta}^{Ridge} and substitute for ${f y}$:

ression of
$$eta$$
 and substitute for \mathbf{y} :
$$\hat{eta}^{Ridge} = (\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1}\mathbf{X}^T\mathbf{y}$$

$$= (\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1}\mathbf{X}^T(\mathbf{X}eta + \epsilon)$$

When looking at the variance we can ignore the
$$eta$$
 term, because $\mathrm{Var}(eta)=0$

 $= (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_m)^{-1}(\mathbf{X}^T\mathbf{X}eta + \mathbf{X}^T\epsilon)$

 $ext{Var}\left[oldsymbol{\hat{eta}}^{Ridge}
ight] = ext{Var}\left((\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}_{pp})^{-1}\mathbf{X}^T\epsilon
ight)$

And again we need to remember that $\mathrm{Var}(\mathbf{A}\epsilon) = \mathbf{A}\mathrm{Var}(\epsilon)\mathbf{A}^T$ and set $\mathbf{A} = (\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1}\mathbf{X}^T$

$$\begin{aligned} \operatorname{Var}\left[\hat{\boldsymbol{\beta}}^{Ridge}\right] &= \left((\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1}\mathbf{X}^T\right)\operatorname{Var}(\epsilon)\left((\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1}\mathbf{X}^T\epsilon\right)^T \\ &= \left((\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1}\mathbf{X}^T\right)\operatorname{Var}(\epsilon)\mathbf{X}((\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}_{pp})^{-1})^T \\ &= \sigma^2\Big[\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}\Big]^{-1}\mathbf{X}^T\mathbf{X}\left(\Big[\mathbf{X}^T\mathbf{X} + \lambda\mathbf{I}\Big]^{-1}\right)^T \end{aligned}$$