IPESUP 2023/2024

Colle 20 MPSI/MP2I Jeudi 28 mars 2024

Planche 1

- 1. Description de l'espace engendré par une partie (éventuellement infinie).
- 2. On note $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$ et pour tout a dans \mathbb{R} , on note $E_a = \{f \in E | f(a) = 0\}$.
 - (a) Montrer que pour tout a dans \mathbb{R} , E_a est un sev de E.
 - (b) Soit $(a, b) \in \mathbb{R}^2$ tel que $a \neq b$. Montrer que $E = E_a + E_b$. Cette somme est-elle directe?
- 3. On se se place dans $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$. Soit $n \in \mathbb{N}^*$. On considère une famille libre (f_1, \ldots, f_n) de fonctions dérivables de \mathbb{R} dans \mathbb{R} . Montrer que dim $(\text{Vect}(f'_1, \ldots, f'_n)) \ge n 1$.

Planche 2

- 1. Définition d'un espace vectoriel de dimension finie. Montrer que tout espace vectoriel de dimension finie possède une base finie.
- 2. Soit *E* un espace vectoriel et *F* un sev de *E*, différent de *E*. Déterminer l'espace engendré par le complémentaire de *F*.
- 3. Soit E un espace vectoriel de dimension finie. On considère des sev $E_1, \ldots, E_p, F_1, \ldots, F_p$ qui vérifient : $\forall i \in [[1, p]], F_i \subset E_i$ et $\bigoplus_{i=1}^p E_i = \bigoplus_{i=1}^p F_i$. Montrer qu'alors $\forall i \in [[1, p]], F_i = E_i$.

Planche 3

- 1. Formule de Grassmann de la dimension de la somme de deux sous-espaces vectoriels. Énoncé et démonstration.
- 2. On se place dans $E = \mathbb{R}[X]$. Soit $P \in E$ non nul. On note p son degré. Montrer que $P\mathbb{R}[X]$ est un sev de E, puis que $E = P\mathbb{R}[X] \oplus \mathbb{R}_{p-1}[X]$.
- 3. On se place dans $E = \mathbb{R}^{\mathbb{R}}$. On considère F un sev de E ne contenant que des applications de signe constant. Montrer que $\dim(F) \leq 1$.

Bonus

Soit E un espace vectoriel. Montrer que E n'est pas de dimension finie si et seulement si il contient une famille libre infinie.