Lecture #21

MA 511, Introduction to Analysis

June 28, 2021

Riemann's Original Integral

Definition (Tagged Partition)

A tagged Partition is a partition $P \in \mathcal{P}$ along with a set of points $\{c_k\}$ such that $c_k \in [x_k, x_{k+1}]$

Definition (Riemann Sum)

Let $f:[a,b]\to\mathbb{R}$ be a function and $(P,\{c_k\}_{k=0}^{n-1})$ be a tagged partition of [a,b]. The Riemann sum of f associated to this tagged partition is

$$R(f.P) = \sum_{k=0}^{n-1} f(c_k) \Delta x_k$$

- The choice of $c_k = x_k$ and $\Delta x_k = \frac{b-a}{n}$ corresponds to the "left" sum of calculus
- Clearly, $L(f, P) \le R(f, P) \le U(f, P)$ for any choice of tags

An $\varepsilon - \delta$ Characterization of Integrability

Definition (δ -fine Partitions)

A partition is said to be δ -fine if $\Delta x_k < \delta$ for all k = 0, ..., n - 1

Theorem (Limit Criterion for Riemann Integrability)

A bounded function f is Riemann integrable with $\int_a^b f = A$ if and only if for all $\varepsilon > 0$, there is $\delta > 0$ such that

$$|R(f, P) - A| < \varepsilon$$

for any set of tags $\{c_k\}$ and any δ -fine partition P

- We have found another characterization (and Riemann's original definition) of the Riemann Integral
- This is the characterization which we will generalize

Gauges and Partitions

Definition (Gauge)

A function $\delta:[a,b]\to\mathbb{R}$ is called a gauge on [a,b] if $\delta(x)>0$ for all $x\in[a,b]$

Definition ($\delta(x)$ -fine Tagged Partitions)

A tagged partition is said to be $\delta(x)$ -fine if $\Delta x_k < \delta(c_k)$ for all k=0,...,n-1 and $\delta(x)$ a gauge on [a,b]

Theorem

For any gauge $\delta(x)$, there is a $\delta(x)$ -fine tagged partition of [a,b]

■ The existence of such partitions will be essential for generalizing integration

Gauge Integration

Definition (Gauge Integral)

A function $f:[a,b]\to\mathbb{R}$ is gauge integrable with $\int_a^b f=A$ if for all $\varepsilon>0$, there exists a gauge on [a,b], $\delta(x)$, such that

$$|R(f,P)-A|<\varepsilon$$

for all $\delta(x)$ -fine tagged partitions P

Theorem

The gauge integral is well-defined

- All Riemann integrable functions are gauge integrable and the values of the integrals agree
- The gauge integral is more powerful than the Riemann integral (and Lebesgue integral)

Parametric Derivatives

Definition (Parametric Derivative)

A function $F:[a,b]\to\mathbb{R}$ is parametrically differentiable if there exists $\phi:[\alpha,\beta]\to[a,b]$ which is differentiable, strictly increasing, and such that $(F\circ\phi)$ is differentiable in the traditional sense. f is a parametric derivative of F if

$$(F \circ \phi)'(t) = f(\phi(t))\phi'(t)$$

- lacksquare f is not unique. If $\phi'(t)=0$, then $f(\phi(t))$ can have any value
- If $\phi'(t) \neq 0$, then $F'(\phi(t)) = f(\phi(t))$
- ullet $\phi(t)=t$ give the normal derivative
- Many of our non-differentiable functions are parametrically differentiable

The Fundamental Theorem of Calculus

Theorem

If F is normally differentiable with F'(x) = f(x), then $\int_a^b f = F(b) - F(a)$

Theorem

F is parametrically differentiable on [a,b] with a parametric derivative f if and only if $\int_a^b f = F(b) - F(a)$

 All of the requirements from the Fundamental Theorem of Calculus can be dropped with these generalizations