

Methodology

Background

Business Understanding

Data Understanding

Data Preprocessing

Exploratory Data Analysis

Modeling

Evaluation

Forecast

Follow-up Action

Conclusion and Recommendation

Background

We're in the midst of an energy transition that continues to evolve.

Net Zero 2050

Net Zero 2050 is an ambitious scenario that limits global warming to 1.5 °C through stringent climate policies and innovation, reaching net-zero CO₂ emissions around 2050.

Renewable Energy show accelerated growth

32%

2035

50%

2050

This analysis mainly provides insights into the longerterm trends that will continue to be essential in shaping future energy systems.

Background

Current Condition of Energy Consumption

Objective

Will the Energy Mix of renewable energy reach

32% in 2035 and 50% in 2050?

Getting insights into how have energy consumption changed. Getting insights into how have renewable energy generation changed.

World Energy Consumption

Renewable Energy Consumption

Renewable Energy Consumption Prediction

About Data

Our World in Data

Dataset can be found on

https://ourworldindata.org/grapher/primary-sub-energy-source

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5003 entries, 0 to 5002
Data columns (total 12 columns):
Column

Data	columns (total 12 columns):		
#	Column	Non-Null Count	Dtype
0	Entity	5003 non-null	object
1	Code	4219 non-null	object
2	Year	5003 non-null	int64
3	Wind Consumption - TWh	5003 non-null	float64
4	Hydro Consumption - TWh	5003 non-null	float64
5	Solar Consumption - TWh	5003 non-null	float64
6	Nuclear Consumption - TWh	5003 non-null	float64
7	Biofuels Consumption - TWh - Total	1085 non-null	float64
8	Geo Biomass Other - TWh	5003 non-null	float64
9	Coal Consumption - TWh	5003 non-null	float64
10	Oil Consumption - TWh	5003 non-null	float64
11	Gas Consumption - TWh	5003 non-null	float64
4.0	63 (64/6) (1.64/4) (1.1.4/6)		

dtypes: float64(9), int64(1), object(2)

memory usage: 469.2+ KB

This dataset outline the number of terawatt-hours (TWh) of energy consumed from 1965-2020 through various sources of energy.

Energy consumption by source datasets provides context about the quantity of energy required, how that is changing over time, and how we are doing in terms of transitioning from non-renewable to renewable energy use.

^{**}Network of Central Banks and Supervisors for Greening the Financial System (NGFS).

Data Preprocessing

Total Energy Consumption

The Majority of energy consumption is coal, oil, and gas. Renewable energy sources do not affect by the economic condition.

Observation:

- 1. Wind energy is highly correlated with solar, biofuels, and biomass
- 2. Hydro is highly correlated with gas, oil, coal, nuclear.
- 3. Solar energy is highly correlated with wind.
- 4. Nuclear is highly correlated with gas, oil, biomass, and wind.
- 5. Biofuel is highly correlated with biomass and wind.
- 6. Biomass is highly correlated with gas, oil, biofuels, nuclear, and wind.
- 7. Coal is highly correlated with gas, oil, and hydro.
- 8. Oil is highly correlated with gas, coal, biomass, nuclear, and hydro.
- 9. Gas is highly correlated with oil, coal, biomass, biofuels, nuclear, and hydro.

Organization Energy Consumption

- OECD: The Organisation for Economic Co-operation and Development. The OECD's 38 members are Austria, Australia, Belgium, Canada, Chile, Colombia, Costa Rica, Czech Republic, Denm'ark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Latvia, Lithuania, Luxembourg, Mexico, the Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States.
- CIS: Commonwealth of Independent States (CIS) Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan, Kyrgyzstan, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan

The majority of energy use was by OECD countries (countries in Europe and the US) but since 2008 the value has been followed by Non-OECD with the development of industry and shifting manufacturing in Non-OECD countries, especially Asia Pacific. Meanwhile, the use of renewable energy is still being led by OECD countries if seen because a lot of research is being carried out in that country.

Continent Energy Consumption

As for the energy consumption of each continent, the highest in the Asia Pacific, this is due to the shifting of the manufacturing area to Asia. Meanwhile, renewable energy is also the most abundant in the Asia Pacific because there is significant growth in China and many other countries in the Asia Pacific that have ambitious projects and energy councils.

Country Total Energy Consumption

The country with the highest energy consumption is in China and followed by the US. The US rate is fixed because industrialization is already saturated. When viewed from the rank of 20 countries, it can be seen that 18 countries with the highest energy consumption are G20 countries, so energy consumption is influenced by GDP.

Rank	entity	energy_total
0	World	153593.345591
1	China	40205.612739
2	United States	24274.675985
3	India	8837.288286
4	Russia	7862.609703
5	Japan	4674.827030
6	Canada	3770.207007
7	Iran	3341.653124
8	Germany	3289.622781
9	Brazil	3254.323685
10	South Korea	3248.875830
11	Saudi Arabia	2933.478211
12	France	2402.240415
13	Indonesia	2097.218126
14	United Kingdom	1857.330738
15	Mexico	1787.707571
16	Turkey	1725.107006
17	Italy	1590.959188
18	Australia	1541.826678
19	Thailand	1401.757539
20	Spain	1371.654702

Renewable Energy Consumption

As for renewable energy, the highest is in China and followed by the United States. The amount of renewable energy is influenced by state policy and R&D, as well as global pressure.

Rank	entity	renewable_total
0	World	25043.893091
1	China	6130.451370
2	United States	4359.180480
3	Brazil	1492.653525
4	Canada	1322.788200
5	France	1197.974574
6	Russia	1064.712358
7	India	864.077589
8	Germany	742.805675
9	Japan	556.049624
10	South Korea	478.807054
11	United Kingdom	415.841831
12	Spain	414.613605
13	Sweden	412.050931
14	Norway	372.789358
15	Turkey	294.636075
16	Italy	264.279221
17	Ukraine	226.920137
18	Vietnam	193.468097
19	Mexico	182.094024
20	Switzerland	158.546115

Modeling

Simple Linear Regression

Baseline Model

Coefficients total consumption: [[2054.62121668]] Intercept total consumption: -3993548.2297531567

Residual sum of squares: 2741072224.02

Variance score: 0.99

MAE: 4040.9212110047374

MAPE: 0.03868109982985234

RMSE: 4501.132771395035

Coefficients renewable generation: [[370.80997815]] Intercept renewable generation: -726820.4748541047

Residual sum of squares:117594821.66

Variance score: 0.99

MAE: 972.6329378142814

MAPE: 0.08567532132870648

RMSE: 1318.5432554145223

ModelingRidge Regression

Ridge(alpha=1e-06), Rank Test Score: -4057.064642 Coefficients world consumption: [[2054.62121647]] Intercept world consumption: [-3993548.22933293]

MAE: 4040.921211327712

MAPE: 0.03868109983041363

RMSE: 4501.1327717306785

Ridge(alpha=20), Rank Test Score: -564.169196 Year Coefficients renewable generation: [[370.04985967]] Coefficients renewable generation: [-725306.76801097]

MAE: 979.5488642505542

MAPE: 0.08601418509642077

RMSE: 1327.4182736359692

ModelingLasso Regression

MAE: 4040.9212110116446

MAPE: 0.038681099829864764

RMSE: 4501.132771402146

Ridge(alpha=100), Rank Test Score: -564.277586 Coefficients renewable generation: [[370.04985967]] Coefficients renewable generation: [-725306.76801097]

MAE: 976.7445562252132

MAPE: 0.08601418509642077

RMSE: 1327.4182736359692

World Energy Consumption

Data has trend and no seasonality

Modeling

Time Series – Simple Exponential Smoothing & Holt Exponential Smoothing

World Energy Consumption

Simple Exponential Smoothing Level :- 0.75

MAE: 16853.851587644545

MAPE: 0.11045592786770939

RMSE: 17948.114379130744

Holt's Exponential Smoothing RMS: 2307.102 & Smoothing Level: - 0.3 & Smoothing Slope: - 0.85

MAE: 1423.591457612474

MAPE: 0.009258938683930953

RMSE: 2307.102195531802

World Energy Consumption

Best model: ARIMA(0,2,0)(0,0,0)[0] Total fit time: 0.179 seconds

Covariance Type:

SARIMAX Results

______ Dep. Variable: No. Observations: Model: SARIMAX(0, 2, 0) Log Likelihood -374.651 Date: Thu, 19 May 2022 751.303 Time: 10:53:59 BIC 753.064 Sample: HOIC 751.952 - 45

-

	coef	std err	Z	P> z	[0.025	0.975]
sigma2	2.16e+06	4.41e+05	4.903	0.000	1.3e+06	3.02e+06
Ljung-Box Prob(Q): Heteroske	(L1) (Q):		0.80	Jarque-Bera Prob(JB): Skew:	(JB):	1.2 0.5 -0.4
	two-sided):			Kurtosis:		3.1

MAE: 132815.78191329486

MAPE: 0.8820595430524025

RMSE: 132959.07047534556

Renewable Energy Consumption

Data has trend and no seasonality

Data is stationary

Modeling

Time Series – Simple Exponential Smoothing & Holt Exponential Smoothing

Renewable Energy Consumption

MAE: 16853.851587644545

MAPE: 0.11045592786770939

RMSE: 17948.114379130744

MAE: 814.1174943085418

MAPE: 0.03522427607653008

RMSE: 1164.0991406934272

Renewable Energy

Best model: ARIMA(1,2,1)(0,0,0)[0]

Total fit time: 1.783 seconds

SARIMAX Results

Dep. Variable: No. Observations: 45 Model: Log Likelihood SARIMAX(1, 2, 1) -294.771 Date: Thu, 19 May 2022 595.543 Time: 11:11:23 BIC 600.826 Sample: 597,491 HQIC - 45

Covariance Type: opg

	coef	std err	Z	P> z	[0.025	0.975]
ar.L1	-0.3100	0.212	-1.466	0.143	-0.725	0.105
ma.L1	-0.7087	0.141	-5.010	0.000	-0.986	-0.431
sigma2	5.082e+04	1.11e+04	4.564	0.000	2.9e+04	7.26e+04

Ljung-Box (L1) (Q):	0.01	Jarque-Bera (JB):	0.97
Prob(Q):	0.91	Prob(JB):	0.61
Heteroskedasticity (H):	3.56	Skew:	0.36
Prob(H) (two-sided):	0.02	Kurtosis:	3.19

MAE: 132815.78191329486

MAPE: 0.8820595430524025

RMSE: 132959.07047534556

Evaluation

World Energy Consumption

	Simple Regression	Ridge Regression	Lasso Regression	Exponential Smoothing	Holt Exponential Smoothing	ARIMA
MAE	4040.92	4040.92	4040.92	16853.85	423.59	132815.78
MAPE	0.04	0.04	0.04	0.11	0.01	0.88
RMSE	4501.13	4501.13	4501.13	17948.11	2307.10	132959.07

Renewable Energy Consumption

	Simple Regression	Ridge Regression	Lasso Regression	Exponential Smoothing	Holt Exponential Smoothing	ARIMA
MAE	972.63	979.54	979.74	16853.85	814.11	132815.78
MAPE	0.08	0.09	0.09	0.11	0.03	0.88
RMSE	1318.54	1327.41	1327.42	17948.11	1164.10	132959.07

Prediction World Energy Consumption

year	energy_total_p rediction		
2021-01-01	159909.476902	2036-01-01	187943.359771
2022-01-01	161778.402427	2037-01-01	189812.285295
2023-01-01	163647.327951	2038-01-01	191681.210820
2024-01-01	165516.253476	2039-01-01	193550.136344
2025-01-01	167385.179000	2040-01-01	195419.061869
2026-01-01	169254.104525	2041-01-01	197287.987393
2027-01-01	171123.030050	2042-01-01	199156.912918
2028-01-01	172991.955574	2043-01-01	201025.838442
2029-01-01	174860.881099	2044-01-01	202894.763967
2030-01-01	176729.806623	2045-01-01	204763.689492
2031-01-01	178598.732148	2046-01-01	206632.615016
2032-01-01	180467.657672	2047-01-01	208501.540541
2033-01-01	182336.583197	2048-01-01	210370.466065
2034-01-01	184205.508721	2049-01-01	212239.391590
2035-01-01	186074.434246	2050-01-01	214108.317114
		2051-01-01	215977.242639

186074.43_{TWh}

214108.32_{TWh}

Prediction Renewable Energy Consumption

year	renewable_pre diction	2036-01-01	29684.603458
2021-01-01	22662.200925	2037-01-01	30152.763627
2022-01-01	23130.361094	2038-01-01	30620.923796
2023-01-01	23598.521263	2039-01-01	31089.083965
2024-01-01	24066.681432	2040-01-01	31557.244134
2025-01-01	24534.841601	2041-01-01	32025.404302
2026-01-01	25003.001770	2042-01-01	32493.564471
2027-01-01	25471.161938	2043-01-01	32961.724640
2028-01-01	25939.322107	2044-01-01	33429.884809
2029-01-01	26407.482276	2045-01-01	33898.044978
2030-01-01	26875.642445	2046-01-01	34366.205147
2031-01-01	27343.802614	2047-01-01	34834.365316
2032-01-01	27811.962783	2048-01-01	35302.525485
2033-01-01	28280.122952	2049-01-01	35770.685653
2034-01-01	28748.283120	2050-01-01	36238.845822
2035-01-01	29216.443289	2051-01-01	36707.005991

29216.44_{TWh}

36707.32_{TWh}

Forecast Total & Renewable Ene

2035

186074.43TWh 29216.44TWh

2050

214108.32TWh 36707.32TWh

Reduce Consumption with energy efficiency

Increase renewable energy mix

Follow-up Action

Bulgaria | Czechia | Hungary | Iran | Pakistan | Romania | Russia | Slovakia | Slovenia | Switzerland | Taiwan | Ukraine | United Arab Emirates Total Members: 13

Cluster: 1 The Members:

Argentina | Belgium | Brazil | Canada | China | Finland | France | Germany | India | Japan | Mexico | Netherlands | South Korea | Spain | Sweden | United Kingdom | United States Total Members: 17 Cluster: 2 The Members:

Chile | Denmark | Egypt | Greece | Ireland | Kazakhstan | Malaysia | Morocco | New Zealand | Norway | Peru | Philippines | Turkey | Vietnam Total Members: 14

Cluster: 3 The Members:

Algeria | Azerbaijan | Bangladesh | Belarus | Croatia | Cyprus | Ecuador | Estonia | Hong Kong | Iceland | Iraq | Israel | Kuwait | Latvia | Lithuania | Luxembourg | North Macedonia | Oman | Qatar | Saudi Arabia | Singapore | Sri Lanka | Trinidad and Tobago | Turkmenistan | Uzbekistan | Venezuela Total Members: 26 Cluster: 4

The Members: Australia | Austria | Colombia | Indonesia | Italy | Poland | Portugal | Thailand Total Members: 8

Cluster: 0 The Members:

Algeria | Azerbaijan | Bangladesh | Belarus | Croatia | Cyprus | Denmark | Ecuador | Egypt | Estonia | Greece | Hong Kong | Iceland | Iraq | Ireland | Israel | Kazakhstan | Kuwait | Latvia | Lithuania | Luxembourg | Malaysia | Morocco | New Zealand | North Macedonia | Norway | Oman | Peru | Qatar | Saudi Arabia | Singapore | Sri Lanka | Trinidad and Tobago | Turkmenistan | Uzbekistan | Venezuela | Vietnam Total Members: 37 Cluster: 1 The Members:

Bulgaria | Czechia | Hungary | Iran | Pakistan | Romania | Russia | Slovakia | Slovenia | Switzerland | Taiwan | Ukraine | United Arab Emirates Total Members: 13

Cluster: 2 The Members:

Argentina | Belgium | Brazil | Canada | China | Finland | France | Germany | India | Japan | Mexico | Netherlands | South Korea | Spain | Sweden | United Kingdom | United States Total Members: 17

Cluster: 3 The Members:

Australia | Austria | Chile | Colombia | Indonesia | Italy | Philippines | Poland | Portugal | Thailand | Turkey Total Members: 11

Follow-up Action

Agricultural and Service Based Country:

Algeria | Azerbaijan | Bangladesh | Belarus | Croatia | Cyprus | Denmark | Ecuador | Egypt | Estonia | Greece | Hong Kong | Iceland | Iraq | Ireland | Israel | Kazakhstan | Kuwait | Latvia | Lithuania | Luxembourg | Malaysia | Morocco | New Zealand | North Macedonia | Norway | Oman | Peru | Qatar | Saudi Arabia | Singapore | Sri Lanka | Trinidad and Tobago | Turkmenistan | Uzbekistan | Venezuela | Vietnam Total Members: 37

Fossil Fuel Producer

Bulgaria | Czechia | Hungary <u>| Iran |</u> Pakistan | Romania | Russia | Slovakia | Slovenia | Switzerland | Taiwan | Ukraine | United Arab Emirates Total Members: 13

Emission Intensive Producer

Argentina | Belgium | <u>Brazil | Canada | China | Finland | France | Germany | India | Japan | Mexico |</u>
Netherlands | <u>South Korea | Spain | Sweden | United Kingdom | United States | Total Members: 17</u>

Emerging Energy Consumer Country

<u>Australia</u> | Austria | Chile | Colombia <u>| Indonesia | Italy |</u> Philippines | Poland | Portugal | <u>Thailand |</u> <u>Turkey Total Members:</u> 11

Cluster Country	Priority	Reluctancy	Rank Renewable Energy Source					
			Wind	Hydro	Solar	Nuclear	Biofuel	Biomass
Agricultural and Service	4	4	3	1	2	6	5	4
Fossil Fuel Producer	2	1	5	3	2	1	6	4
Emission Intensive Producer	1	2	3	6	5	1	2	4
Emerging Energy Consumer Country	3	3	4	5	3	6	1	2

Conclusion

The forecast results show that the Net Zero Energy Mix target failed to meet the target of only 15.70% from 35% in 2035 and only 17.14% of 50% in 2050 so efforts were needed to accelerate an increase in the increase in renewable energy.

Recommendations

To accelerate the process of achieving the Net Zero Energy Mix target, a regional policy variation and effort is required according to the nature of the consumption of each country according to the results of the clustering.

Future Research & Improvement

Forecasting needs to be done with more advanced methods such as fbprophet or LSTM to forecast Total Energy Consumption and Renewable Energy Consumption.

