

in nodes :
 8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 53
 g nodes :
 1 2 3 4 5 6 38 39 40 41 42 43 44 45 46 47
 in bonds :
 5-8 8-9 9-10 10-53 11-12 11-53 12-17 17-18 18-19 18-20 20-21 21-37 22-23 24-25
 24-27 28-29 37-39
 g bonds :
 1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43 44-45 44-47 45-46
 46-47
 ct/norm bonds :
 5-8 8-9 9-10 10-53 11-53 12-17 17-18 18-19 21-37 22-23 24-25 24-27 28-29 37-39
 44-45 44-47 45-46 46-47
 ct bonds :
 11-12 18-20 20-21
 malized bonds :
 1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43

 O,N

 O,S

 SO₂, [*1-*2], [*3-*4], [*5-*6]

 C, [*7-*8]

 ch level :
 1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS 11:CLASS
 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS 23:CLASS 24:CLASS
 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom 39:Atom 40:Atom 41:Atom
 42:Atom 43:Atom 44:Atom 45:Atom 46:Atom 47:Atom 53:CLASS

3], [*4], [*5], [*6], [*7]

level :
:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS 11:CLASS
2:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 23:Atom 24:Atom 25:Atom
6:Atom 27:Atom 28:Atom 29:Atom 30:Atom 31:Atom 32:Atom 38:CLASS 42:Atom 43:Atom
4:Atom 45:Atom 46:Atom 47:Atom 48:Atom 49:Atom 50:Atom 51:Atom 52:Atom 53:Atom
4:Atom 55:Atom 56:Atom 57:Atom 58:Atom 59:Atom 60:Atom 61:Atom 62:Atom 63:Atom
4:Atom 65:Atom 66:Atom 67:Atom 68:Atom 69:Atom 70:Atom 71:Atom 72:Atom 73:Atom
4:Atom 75:Atom 76:Atom 77:Atom 93:CLASS 94:CLASS


```

nodes :
 3 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 55 110 111
nodes :
 2 3 4 5 6 38 39 40 41 42 43 46 47 48 49 59 60 61 62 63 64 65 66
 57 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
 90 91 92 93 94
bonds :
 3-9 8-110 9-10 10-55 11-12 11-55 12-17 17-18 18-19 18-20 20-21 21-37 22-23
 24-25 24-27 28-29 37-111
bonds :
 1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 39-59 40-41 40-62 41-42 42-43 46-47
 46-49 47-48 48-49 59-60 60-61 61-62 63-64 63-68 64-65 64-85 65-66 65-89 66-67
 57-68 69-70 69-74 70-71 70-90 71-72 71-94 72-73 73-74 75-76 75-80 76-77 76-81
 77-78 77-84 78-79 79-80 81-82 82-83 83-84 85-86 86-87 87-88 88-89 90-91 91-92
 92-93 93-94
c/norm bonds :
 3-9 8-110 9-10 10-55 11-55 12-17 17-18 18-19 21-37 22-23 24-25 24-27 28-29
 37-111 46-47 46-49 47-48 48-49
c bonds :
 11-12 18-20 20-21 64-85 65-89 70-90 71-94 85-86 86-87 87-88 88-89 90-91 91-92
 92-93 93-94
alized bonds :
 1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 39-59 40-41 40-62 41-42 42-43 59-60
 50-61 61-62 63-64 63-68 64-65 65-66 66-67 67-68 69-70 69-74 70-71 71-72 72-73
 73-74 75-76 75-80 76-77 76-81 77-78 77-84 78-79 79-80 81-82 82-83 83-84
ated ring systems :
containing 1 : 38 : 63 : 69 : 75 :
```

N

s

3:SO2, [*1-*2], [*3-*4], [*5-*6]

4:CH, [*7-*8]

5:[*9], [*10], [*11], [*12], [*13]

atch level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS 11:CLASS
12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS 23:CLASS 24:CLASS
25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom 39:Atom 40:Atom 41:Atom
42:Atom 43:Atom 46:Atom 47:Atom 48:Atom 49:Atom 55:CLASS 59:Atom 60:Atom 61:Atom
62:Atom 63:Atom 64:Atom 65:Atom 66:Atom 67:Atom 68:Atom 69:Atom 70:Atom 71:Atom
72:Atom 73:Atom 74:Atom 75:Atom 76:Atom 77:Atom 78:Atom 79:Atom 80:Atom 81:Atom
82:Atom 83:Atom 84:Atom 85:Atom 86:Atom 87:Atom 88:Atom 89:Atom 90:Atom 91:Atom
92:Atom 93:Atom 94:Atom 110:CLASS 111:CLASS

ain nodes :

8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 53

ng nodes :

1 2 3 4 5 6 38 39 40 41 42 43 44 45 46 47

ain bonds :

5-8 8-9 9-10 10-53 11-12 11-53 12-17 17-18 18-19 18-20 20-21 21-37 22-23 24-25
24-27 28-29 37-39

ng bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43 44-45 44-47 45-46

46-47

act/norm bonds :

5-8 8-9 9-10 10-53 11-53 12-17 17-18 18-19 21-37 22-23 24-25 24-27 28-29 37-39

44-45 44-47 45-46 46-47

act bonds :

11-12 18-20 20-21

ormalized bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43

O,N

O,S

SO2, [*1-*2], [*3-*4], [*5-*6]

C, [*7-*8]

tch level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS 11:CLASS
12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS 23:CLASS 24:CLASS
25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom 39:Atom 40:Atom 41:Atom
42:Atom 43:Atom 44:Atom 45:Atom 46:Atom 47:Atom 53:CLASS

=>

Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce).str

chain nodes :

8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 55

ring nodes :

1 2 3 4 5 6 38 39 40 41 42 43 46 47 48 49

chain bonds :

5-8 8-9 9-10 10-55 11-12 11-55 12-17 17-18 18-19 18-20 20-21 21-37

22-23 24-25 24-27 28-29 37-39

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43 46-47

46-49 47-48 48-49

exact/norm bonds :

5-8 8-9 10-55 11-55 12-17 17-18 18-19 20-21 21-37 22-23 24-25 24-27

28-29 37-39 46-47 46-49 47-48 48-49

exact bonds :

9-10 11-12 18-20

normalized bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43

G1:O,N

G2:O,S

G3:SO2,[*1-*2],[*3-*4],[*5-*6]

G4:C, [*7-*8]

Match level :

```

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 46:Atom 47:Atom 48:Atom 49:Atom
55:CLASS

```

L1 STRUCTURE UPLOADED

```
=> d l1
L1 HAS NO ANSWERS
L1 STR
```

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Structure attributes must be viewed using STN Express query preparation.

```
=> s l1 sss sam
SAMPLE SEARCH INITIATED 16:47:14 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 23958 TO ITERATE
```

4.2% PROCESSED	1000 ITERATIONS	1 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)		
SEARCH TIME: 00.00.01		

FULL FILE PROJECTIONS:	ONLINE **INCOMPLETE**
	BATCH **COMPLETE**
PROJECTED ITERATIONS:	469907 TO 488413
PROJECTED ANSWERS:	186 TO 772

L2 1 SEA SSS SAM L1

```
=> => ....Testing the current file.... screen
```

```
ENTER SCREEN EXPRESSION OR (END):end
```

```
=> screen 1839
```

L3 SCREEN CREATED

```
=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
```

L4 SCREEN CREATED

```
=>
Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 1).str
```


chain nodes :

8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 55 59

ring nodes :

1 2 3 4 5 6 38 39 40 41 42 43 46 47 48 49

chain bonds :

5-8 8-9 9-10 10-55 11-12 11-55 12-17 17-18 18-19 18-20 20-21 20-59
21-37 22-23 24-25 24-27 28-29 37-39

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43 46-47
46-49 47-48 48-49

exact/norm bonds :

5-8 8-9 10-55 11-55 12-17 17-18 18-19 20-21 20-59 21-37 22-23 24-25
24-27 28-29 37-39 46-47 46-49 47-48 48-49

exact bonds :

9-10 11-12 18-20

normalized bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43

G1:O,N

G2:O,S

G3:SO₂, [*1-*2], [*3-*4], [*5-*6]

G4:C, [*7-*8]

G5:C,H

Match level :

```

1:Atom  2:Atom  3:Atom  4:Atom  5:Atom  6:Atom  8:CLASS  9:CLASS  10:CLASS
11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 46:Atom 47:Atom 48:Atom 49:Atom
55:CLASS 59:CLASS

```

L5 STRUCTURE uploaded

=> que L5 AND L3 NOT L4

L6 QUE L5 AND L3 NOT L4

=> d 16

L6 HAS NO ANSWERS

L3 SCR 1839

L4 SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L5 STR

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Structure attributes must be viewed using STN Express query preparation.

L6 QUE L5 AND L3 NOT L4

=> s 16 sss sam

SAMPLE SEARCH INITIATED 16:50:07 FILE 'REGISTRY'

SAMPLE SCREEN SEARCH COMPLETED - 22921 TO ITERATE

4.4% PROCESSED	1000 ITERATIONS	0 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)		
SEARCH TIME: 00.00.01		

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**

BATCH **COMPLETE**

PROJECTED ITERATIONS: 449368 TO 467472

PROJECTED ANSWERS: 0 TO 0

L7 0 SEA SSS SAM L5 AND L3 NOT L4

=>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END):end

=> screen 1839

L8 SCREEN CREATED

=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L9 SCREEN CREATED

=>
Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 2).str


```

chain nodes :
8   9   10  11  12   17  18   19  20   21  22   23  24   25  27   28  29   37  55
ring nodes :
1   2   3   4   5   6   38  39   40  41   42  43   46  47   48  49
chain bonds :
5-8   8-9   9-10  10-55  11-12  11-55  12-17  17-18  18-19  18-20  20-21  21-37
22-23  24-25  24-27  28-29  37-39
ring bonds :
1-2   1-6   2-3   3-4   4-5   5-6   38-39  38-43  39-40  40-41  41-42  42-43  46-47
46-49  47-48  48-49
exact/norm bonds :
5-8   8-9   10-55  11-55  12-17  17-18  18-19  21-37  22-23  24-25  24-27  28-29
37-39  46-47  46-49  47-48  48-49
exact bonds :
9-10  11-12  18-20  20-21
normalized bonds :
1-2   1-6   2-3   3-4   4-5   5-6   38-39  38-43  39-40  40-41  41-42  42-43

```

G1:O, N

G2:O, S

G3:SO₂, [*1-*2], [*3-*4], [*5-*6]

G4:C, [*7-*8]

Match level :

```

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 46:Atom 47:Atom 48:Atom 49:Atom
55:CLASS

```

L10 STRUCTURE uploaded

=> que L10 AND L8 NOT L9

L11 QUE L10 AND L8 NOT L9

=> d l11

L11 HAS NO ANSWERS

```

L8           SCR 1839
L9           SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L10          STR

```

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

'Structure attributes must be viewed using STN Express query preparation.

L11 QUE L10 AND L8 NOT L9

=> s l11 sss sam

```

SAMPLE SEARCH INITIATED 16:53:52 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 22600 TO ITERATE

```

```

4.4% PROCESSED    1000 ITERATIONS          0 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

```

```

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**
                      BATCH **COMPLETE**
PROJECTED ITERATIONS:   443011 TO   460989
PROJECTED ANSWERS:      0 TO      0

```

L12 0 SEA SSS SAM L10 AND L8 NOT L9

=>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END):end

=> screen 1839

L13 SCREEN CREATED

=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L14 SCREEN CREATED

=>

Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 3).str

chain nodes :

8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 55

ring nodes :

1 2 3 4 5 6 38 39 40 41 42 43 46 47 48 49

chain bonds :

5-8 8-9 9-10 10-55 11-12 11-55 12-17 17-18 18-19 18-20 20-21 21-37
22-23 24-25 24-27 28-29 37-39

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43 46-47
46-49 47-48 48-49

exact/norm bonds :

5-8 8-9 9-10 10-55 11-55 12-17 17-18 18-19 21-37 22-23 24-25 24-27
28-29 37-39 46-47 46-49 47-48 48-49

exact bonds :

11-12 18-20 20-21

normalized bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43

G1:O,N

G2:O,S

G3:SO2,[*1-*2],[*3-*4],[*5-*6]

G4:C, [*7-*8]

Match level :

```
1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 46:Atom 47:Atom 48:Atom 49:Atom
55:CLASS
```

L15 STRUCTURE uploaded

=> que L15 AND L13 NOT L14

L16 QUE L15 AND L13 NOT L14

=> d 116

L16 HAS NO ANSWERS

L13 SCR 1839

L14 SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L15 STR

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Structure attributes must be viewed using STN Express query preparation.

L16 QUE L15 AND L13 NOT L14

=> s 116 sss sam

SAMPLE SEARCH INITIATED 16:57:27 FILE 'REGISTRY'

SAMPLE SCREEN SEARCH COMPLETED - 22600 TO ITERATE

4.4% PROCESSED	1000 ITERATIONS	0 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)		
SEARCH TIME: 00.00.01		

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**

BATCH **COMPLETE**

PROJECTED ITERATIONS: 443011 TO 460989

PROJECTED ANSWERS: 0 TO 0

L17 0 SEA SSS SAM L15 AND L13 NOT L14

=>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END):end

=> screen 1839

L18 SCREEN CREATED

=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L19 SCREEN CREATED

=>
Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 4).str

exact/norm bonds :
 8-9 8-110 9-10 10-55 11-55 12-17 17-18 18-19 21-37 22-23 24-25 24-27
 28-29 37-111 46-47 46-49 47-48 48-49
 exact bonds :
 11-12 18-20 20-21 64-85 65-89 70-90 71-94 85-86 86-87 87-88 88-89 90-91
 91-92 92-93 93-94
 normalized bonds :
 1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 39-59 40-41 40-62 41-42
 42-43 59-60 60-61 61-62 63-64 63-68 64-65 65-66 66-67 67-68 69-70 69-74
 70-71 71-72 72-73 73-74 75-76 75-80 76-77 76-81 77-78 77-84 78-79 79-80
 81-82 82-83 83-84
 isolated ring systems :
 containing 1 : 38 : 63 : 69 : 75 :

G1:O,N

G2:O,S

G3:SO2, [*1-*2], [*3-*4], [*5-*6]

G4:C, [*7-*8]

G5:[*9], [*10], [*11], [*12], [*13]

Match level :
 1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
 11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
 23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
 39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 46:Atom 47:Atom 48:Atom 49:Atom
 55:CLASS 59:Atom 60:Atom 61:Atom 62:Atom 63:Atom 64:Atom 65:Atom 66:Atom
 67:Atom 68:Atom 69:Atom 70:Atom 71:Atom 72:Atom 73:Atom 74:Atom 75:Atom
 76:Atom 77:Atom 78:Atom 79:Atom 80:Atom 81:Atom 82:Atom 83:Atom 84:Atom
 85:Atom 86:Atom 87:Atom 88:Atom 89:Atom 90:Atom 91:Atom 92:Atom 93:Atom
 94:Atom 110:CLASS 111:CLASS

L20 STRUCTURE UPLOADED

=> que L20 AND L18 NOT L19

L21 QUE L20 AND L18 NOT L19

=> d 121

L21 HAS NO ANSWERS

L18 SCR 1839

L19 SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L20 STR

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

Structure attributes must be viewed using STN Express query preparation.

L21 QUE L20 AND L18 NOT L19

=> s 121 sss sam

SAMPLE SEARCH INITIATED 17:06:00 FILE 'REGISTRY'

10/027,505 (RCE)

SAMPLE SCREEN SEARCH COMPLETED - 46361 TO ITERATE

2.2% PROCESSED 1000 ITERATIONS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

1 ANSWERS

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**
BATCH **INCOMPLETE**
PROJECTED ITERATIONS: 914391 TO 940049
PROJECTED ANSWERS: 519 TO 1335

L22 1 SEA SSS SAM L20 AND L18 NOT L19

=> =>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END):end

=> screen 1839

L23 SCREEN CREATED

=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L24 SCREEN CREATED

=>
Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 5).str

chain nodes :

8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 55 110 111

ring nodes :

1 2 3 4 5 6 38 39 40 41 42 43 46 47 48 49 59 60 61 62 63 64

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

86 87 88 89 90 91 92 93 94

chain bonds :

8-9 8-110 9-10 10-55 11-12 11-55 12-17 17-18 18-19 18-20 20-21 21-37

22-23 24-25 24-27 28-29 37-111

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 39-59 40-41 40-62 41-42

42-43 46-47 46-49 47-48 48-49 59-60 60-61 61-62 63-64 63-68 64-65 64-85

65-66 65-89 66-67 67-68 69-70 69-74 70-71 70-90 71-72 71-94 72-73 73-74

75-76 75-80 76-77 76-81 77-78 77-84 78-79 79-80 81-82 82-83 83-84 85-86

86-87 87-88 88-89 90-91 91-92 92-93 93-94

10/027,505 (RCE)

exact/norm bonds :
8-9 8-110 9-10 10-55 11-55 12-17 17-18 18-19 21-37 22-23 24-25 24-27
28-29 37-111 46-47 46-49 47-48 48-49
exact bonds :
11-12 18-20 20-21 64-85 65-89 70-90 71-94 85-86 86-87 87-88 88-89 90-91
91-92 92-93 93-94
normalized bonds :
1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 39-59 40-41 40-62 41-42
42-43 59-60 60-61 61-62 63-64 63-68 64-65 65-66 66-67 67-68 69-70 69-74
70-71 71-72 72-73 73-74 75-76 75-80 76-77 76-81 77-78 77-84 78-79 79-80
81-82 82-83 83-84
isolated ring systems :
containing 1 : 38 : 63 : 69 : 75 :

G1:O,N

G2:O,S

G3:SO2,[*1-*2],[*3-*4],[*5-*6]

G4:CH,[*7-*8]

G5:[*9],[*10],[*11],[*12],[*13]

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 46:Atom 47:Atom 48:Atom 49:Atom
55:CLASS 59:Atom 60:Atom 61:Atom 62:Atom 63:Atom 64:Atom 65:Atom 66:Atom
67:Atom 68:Atom 69:Atom 70:Atom 71:Atom 72:Atom 73:Atom 74:Atom 75:Atom
76:Atom 77:Atom 78:Atom 79:Atom 80:Atom 81:Atom 82:Atom 83:Atom 84:Atom
85:Atom 86:Atom 87:Atom 88:Atom 89:Atom 90:Atom 91:Atom 92:Atom 93:Atom
94:Atom 110:CLASS 111:CLASS

L25 STRUCTURE UPLOADED

=> que L25 AND L23 NOT L24

L26 QUE L25 AND L23 NOT L24

=> d 126

L26 HAS NO ANSWERS

L23 SCR 1839

L24 SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L25 STR

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

Structure attributes must be viewed using STN Express query preparation.

L26 QUE L25 AND L23 NOT L24

=> s 126 sss sam

SAMPLE SEARCH INITIATED 17:08:34 FILE 'REGISTRY'

10/027,505 (RCE)

SAMPLE SCREEN SEARCH COMPLETED - 46361 TO ITERATE

2.2% PROCESSED 1000 ITERATIONS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

0 ANSWERS

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**
BATCH **INCOMPLETE**
PROJECTED ITERATIONS: 914391 TO 940049
PROJECTED ANSWERS: 0 TO 0

L27 0 SEA SSS SAM L25 AND L23 NOT L24

=>
Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (genus).str

chain nodes :
1 4 5 6 7 8 9 10
chain bonds :
1-4 4-5 5-6 6-7 7-8 7-9 9-10
exact/norm bonds :
1-4 4-5 5-6 6-7 7-8
exact bonds :
7-9 9-10

G1:Cy,Ak

G2:O,N

Match level :
1:Atom 4:CLASS 5:CLASS 6:CLASS 7:CLASS 8:CLASS 9:CLASS 10:CLASS
Generic attributes :
1:
Saturation : Unsaturated

L28 STRUCTURE UPLOADED

=> d 128
L28 HAS NO ANSWERS
L28 STR

G1 Cy,Ak

G2 O,N

Structure attributes must be viewed using STN Express query preparation.

=> s 128 sss sam
 SAMPLE SEARCH INITIATED 17:19:58 FILE 'REGISTRY'
 SAMPLE SCREEN SEARCH COMPLETED - 76144 TO ITERATE

1.3% PROCESSED 1000 ITERATIONS
 INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
 SEARCH TIME: 00.00.01

4 ANSWERS

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**
 BATCH **INCOMPLETE**
 PROJECTED ITERATIONS: EXCEEDS 1000000
 PROJECTED ANSWERS: EXCEEDS 5044

L29 4 SEA SSS SAM L28

=> =>
 Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (genus 1).str
 O 11
 " 10
 " 12

chain nodes :
 3 4 5 6 7 8 9 10 11 12 14 15 16 17 25
 ring nodes :
 26 27 28 29 30 31 32 33 34 35 36 37
 chain bonds :

10/027,505 (RCE)

3-4 3-30 4-5 5-6 6-7 6-8 8-9 9-25 10-11 12-14 12-15 16-17 25-34
ring bonds :
26-27 26-31 27-28 28-29 29-30 30-31 32-33 32-37 33-34 34-35 35-36 36-37
exact/norm bonds :
3-4 3-30 4-5 5-6 6-7 9-25 10-11 12-14 12-15 16-17 25-34
exact bonds :
6-8 8-9
normalized bonds :
26-27 26-31 27-28 28-29 29-30 30-31 32-33 32-37 33-34 34-35 35-36 36-37

G1:Cy,Ak

G2:O,N

G3:O,S

G4:SO2,[*1-*2],[*3-*4],[*5-*6]

Match level :

3:CLASS 4:CLASS 5:CLASS 6:CLASS 7:CLASS 8:CLASS 9:CLASS 10:CLASS 11:CLASS
12:CLASS 14:CLASS 15:CLASS 16:CLASS 17:CLASS 25:CLASS 26:Atom 27:Atom
28:Atom 29:Atom 30:Atom 31:Atom 32:Atom 33:Atom 34:Atom 35:Atom 36:Atom
37:Atom

L30 STRUCTURE UPLOADED

=> d 130

L30 HAS NO ANSWERS

L30 STR

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Structure attributes must be viewed using STN Express query preparation.

=> s 130 sss sam

SAMPLE SEARCH INITIATED 17:23:18 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 25618 TO ITERATE

3.9% PROCESSED 1000 ITERATIONS 0 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 502794 TO 521926
PROJECTED ANSWERS: 0 TO 0

L31 0 SEA SSS SAM L30

=>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END):end

10/027,505 (RCE)

G2:O,N

G3:O,S

G4:SO₂, [*5-*6], [*7-*8], [*9-*10]

Connectivity :

40:3 X maximum RC ring/chain

Match level :

3:CLASS 4:CLASS 5:CLASS 6:CLASS 7:CLASS 8:CLASS 9:CLASS 10:CLASS 11:CLASS
12:CLASS 14:CLASS 15:CLASS 16:CLASS 17:CLASS 25:CLASS 26:Atom 27:Atom
28:Atom 29:Atom 30:Atom 31:Atom 32:Atom 33:Atom 34:Atom 35:Atom 36:Atom
37:Atom 40:CLASS 42:Atom 43:Atom 44:Atom 45:Atom

Generic attributes :

40:

Saturation : Saturated

Number of Carbon Atoms : less than 7

Element Count :

Node 40: Limited

C,C1-4

L34 STRUCTURE UPLOADED

=> que L34 AND L32 NOT L33

L35 QUE L34 AND L32 NOT L33

=> d 135

L35 HAS NO ANSWERS

L32 SCR 1839

L33 SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L34 STR

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Structure attributes must be viewed using STN Express query preparation.

L35 QUE L34 AND L32 NOT L33

=> s 135 sss sam

SAMPLE SEARCH INITIATED 17:28:29 FILE 'REGISTRY'

SAMPLE SCREEN SEARCH COMPLETED - 24554 TO ITERATE

4.18 PROCESSED 1000 ITERATIONS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

0 ANSWERS

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**
BATCH **COMPLETE**
PROJECTED ITERATIONS: 481713 TO 500447
PROJECTED ANSWERS: 0 TO 0

10/027, 505 (RCE)

L36 0 SEA SSS SAM L34 AND L32 NOT L33

=>
Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (broad).str
0 2
" 12 12

chain nodes :
1 2 3 4 5 6 7 21 22 25 26 27 28 29
ring nodes :
14 15 16 17 18 19
chain bonds :
1-2 3-4 3-5 6-7 16-21 21-22 22-25 25-26 26-27 26-28 28-29
ring bonds :
14-15 14-19 15-16 16-17 17-18 18-19
exact/norm bonds :
1-2 3-4 3-5 6-7 16-21 21-22 26-27 26-28 28-29
exact bonds :
22-25 25-26
normalized bonds :
14-15 14-19 15-16 16-17 17-18 18-19

G1:SO2, [*1-*2], [*3-*4], [*5-*6]

Match level :
1:CLASS 2:CLASS 3:CLASS 4:CLASS 5:CLASS 6:CLASS 7:CLASS 14:Atom 15:Atom
16:Atom 17:Atom 18:Atom 19:Atom 21:CLASS 22:CLASS 25:CLASS 26:CLASS
27:CLASS 28:CLASS 29:CLASS

L37 STRUCTURE UPLOADED

=> d 137
L37 HAS NO ANSWERS
L37 STR

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

Structure attributes must be viewed using STN Express query preparation.

=> s 137 sss sam

SEARCH FAILED DUE TO A STRUCTURE QUERY ERROR

The structure query could not be searched. Please review and revise your structure query, especially checking the variable definitions and attachments. In rare instances the failure may be due to a system problem. Please contact your local STN Help Desk if you need assistance.

=>

Uploading C:\Program Files\Common Files\System\MapI\1033\NT\10027505 (broad 1).str

chain nodes :

8 9 12 13 14 15 16 17 18 19 21 22 23 24

ring nodes :

Page 6

chain bonds :

3-8 8-9 9-12 12-13 13-14 13-15 15-16 17-18 19-21 19-22 23-24

ring bonds :

long bonus:

exact/norm_bonds :

3-8 8-9 13-14 13-15 15-1

exact bonds :

Shade bonus

normalized by

normalized bonds :
1=2 1=6 2=3 3=4

1 2 1 0 2 5 5 4 4 5 5 0

G1:SO2, [*1-*2], [*3-*4], [*5-*6]

G2:0, S

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 12:CLASS
13:CLASS 14:CLASS 15:CLASS 16:CLASS 17:CLASS 18:CLASS 19:CLASS 21:CLASS
22:CLASS 23:CLASS 24:CLASS

L38 STRUCTURE UPLOADED

=> d 138

L38 HAS NO ANSWERS
L38 STR

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

Structure attributes must be viewed using STN Express query preparation.

=> s 138 sss sam
SAMPLE SEARCH INITIATED 17:34:36 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 70642 TO ITERATE

1.4% PROCESSED 1000 ITERATIONS 2 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**
PROJECTED ITERATIONS: EXCEEDS 1000000
PROJECTED ANSWERS: EXCEEDS 2112

L39 2 SEA SSS SAM L38

$\Rightarrow \Rightarrow$

Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (broad 2).str
AK 3†


```
chain nodes :  
8 9 12 13 14 15 17 18 19 21 22 23 24 31  
ring nodes :
```

10/027,505 (RCE)

1 2 3 4 5 6
ring/chain nodes :
16
chain bonds :
3-8 8-9 9-12 12-13 13-14 13-15 15-16 17-18 19-21 19-22 23-24
ring bonds :
1-2 1-6 2-3 3-4 4-5 5-6
exact/norm bonds :
3-8 8-9 13-14 13-15 15-16 17-18 19-21 19-22 23-24
exact bonds :
9-12 12-13
normalized bonds :
1-2 1-6 2-3 3-4 4-5 5-6

G1:SO2,[*1-*2],[*3-*4],[*5-*6]

G2:O,S

G3:Cy,[*7]

Connectivity :
31:2 X maximum RC ring/chain
Match level :
1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 12:CLASS
13:CLASS 14:CLASS 15:CLASS 16:CLASS 17:CLASS 18:CLASS 19:CLASS 21:CLASS
22:CLASS 23:CLASS 24:CLASS 31:CLASS
Generic attributes :
31:
Saturation : Saturated
Number of Carbon Atoms : less than 7

Element Count :
Node 31: Limited
C,C1-4

L40 STRUCTURE UPLOADED

=> d 140
L40 HAS NO ANSWERS
L40 STR

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Structure attributes must be viewed using STN Express query preparation.

=> s 140 sss sam
SAMPLE SEARCH INITIATED 17:38:54 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 60423 TO ITERATE

1.7% PROCESSED 1000 ITERATIONS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)

1 ANSWERS

10/027,505 (RCE)

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**

BATCH **INCOMPLETE**

PROJECTED ITERATIONS: EXCEEDS 1000000

PROJECTED ANSWERS: EXCEEDS 742

L41 1 SEA SSS SAM L40

=> =>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END):end

=> screen 1839

L42 SCREEN CREATED

=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L43 SCREEN CREATED

=>

Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 6).str

chain nodes :

8 9 10 11 12 17 18 19 20 21 38 93 94

ring nodes :

1	2	3	4	5	6	23	24	25	26	27	28	29	30	31	32	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	66	67	68	
69	70	71	72	73	74	75	76	77													

chain bonds :

8-9 8-93 9-10 10-38 11-12 11-38 12-17 17-18 18-19 18-20 20-21 21-94

ring bonds :

1-2	1-6	2-3	3-4	4-5	5-6	23-24	23-28	24-25	24-42	25-26	25-45	26-27
27-28	29-30	29-32	30-31	31-32	42-43	43-44	44-45	46-47	46-51	47-48	47-68	
48-49	48-72	49-50	50-51	52-53	52-57	53-54	53-73	54-55	54-77	55-56	56-57	
58-59	58-63	59-60	59-64	60-61	60-67	61-62	62-63	64-65	65-66	66-67	68-69	
69-70	70-71	71-72	73-74	74-75	75-76	76-77						

exact/norm bonds :

10/027,505 (RCE)

8-9 8-93 9-10 10-38 11-38 12-17 17-18 18-19 21-94 29-30 29-32 30-31
31-32

exact bonds :

11-12 18-20 20-21 47-68 48-72 53-73 54-77 68-69 69-70 70-71 71-72 73-74
74-75 75-76 76-77

normalized bonds :

1-2 1-6 2-3 3-4 4-5 5-6 23-24 23-28 24-25 24-42 25-26 25-45 26-27
27-28 42-43 43-44 44-45 46-47 46-51 47-48 48-49 49-50 50-51 52-53 52-57
53-54 54-55 55-56 56-57 58-59 58-63 59-60 59-64 60-61 60-67 61-62 62-63
64-65 65-66 66-67

isolated ring systems :

containing 1 : 23 : 46 : 52 : 58 :

G1:O,N

G2:O,S

G4:CH,[*1-*2]

G5:[*3],[*4],[*5],[*6],[*7]

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 23:Atom
24:Atom 25:Atom 26:Atom 27:Atom 28:Atom 29:Atom 30:Atom 31:Atom 32:Atom
38:CLASS 42:Atom 43:Atom 44:Atom 45:Atom 46:Atom 47:Atom 48:Atom 49:Atom
50:Atom 51:Atom 52:Atom 53:Atom 54:Atom 55:Atom 56:Atom 57:Atom 58:Atom
59:Atom 60:Atom 61:Atom 62:Atom 63:Atom 64:Atom 65:Atom 66:Atom 67:Atom
68:Atom 69:Atom 70:Atom 71:Atom 72:Atom 73:Atom 74:Atom 75:Atom 76:Atom
77:Atom 93:CLASS 94:CLASS

L44 STRUCTURE UPLOADED

=> que L44 AND L42 NOT L43

L45 QUE L44 AND L42 NOT L43

=> d 145

L45 HAS NO ANSWERS

L42 SCR 1839

L43 SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L44 STR

*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

Structure attributes must be viewed using STN Express query preparation.

L45 QUE L44 AND L42 NOT L43

=> s 145 sss sam

SAMPLE SEARCH INITIATED 17:41:56 FILE 'REGISTRY'

SAMPLE SCREEN SEARCH COMPLETED - 2347 TO ITERATE

42.6% PROCESSED 1000 ITERATIONS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)

0 ANSWERS

10/027,505 (RCE)

SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
BATCH **COMPLETE**

PROJECTED ITERATIONS: 44035 TO 49845
PROJECTED ANSWERS: 0 TO 0

L46 0 SEA SSS SAM L44 AND L42 NOT L43

=> s 145 sss ful
FULL SEARCH INITIATED 17:42:19 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 47892 TO ITERATE

100.0% PROCESSED 47892 ITERATIONS

3 ANSWERS

SEARCH TIME: 00.00.01

L47 3 SEA SSS FUL L44 AND L42 NOT L43

=> => s 147
L48 2 L47

=> d 147 1-2 bib,ab,hitstr
YOU HAVE REQUESTED DATA FROM FILE 'REGISTRY' - CONTINUE? (Y)/N:n

=> d 148 1-2 bib,ab,hitstr

L48 ANSWER 1 OF 2 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1991:679833 CAPLUS

DN 115:279833

TI Preparation of bis[(quinolylamino)ethylamine and analogs as
N-methyl-D-aspartic acid (NMDA) receptor antagonists

IN Antoku, Fujio; Saji, Ikutaro; Ohashi, Naohito; Nagata, Ryu

PA Sumitomo Pharmaceuticals Co., Ltd., Japan

SO Eur. Pat. Appl., 43 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 443862	A1	19910828	EP 1991-301417	19910222
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE				
	JP 04211040	A2	19920803	JP 1991-48974	19910220
	CA 2036781	AA	19910823	CA 1991-2036781	19910221

PRAI JP 1990-43638 19900222

OS MARPAT 115:279833

AB Ar₁NR₁A₁NR₂A₂NR₃Ar₂ [I; Ar₁ = (un)substituted aryl, 6-membered heterocyclyl containing 1-3 N, bicyclic heterocyclyl having a 5-membered hetero ring fused to a benzene ring, etc.; Ar₂ = (un)substituted naphthyl, bicyclic heterocyclyl having a 5-membered hetero ring with 1-3 N atoms fused to a benzene ring, etc.; A₁, A₂ = (oxo-substituted) alkylene; R₁-R₃ = H, alkyl, aryl, arylalkyl, arylalkoxycarbonyl, alkylalkoxycarbonyl, acyl] and salts, useful in the prevention or treatment of symptoms associated with cerebral apoplexy or cerebral infarction, were prepared. A stirred mixture of 8-aminoquinoline 0.1, HCl.NH(CH₂CH₂Cl)₂ 0.1, and Na₂CO₃ 0.2 mol in 100 mL BuOH was refluxed for 35.5 h to give 3.9% title triamine which was converted to its HCl salt (II). II in mice inhibited NMDA-induced convulsions with ED₅₀ = 16.4 mg/kg i.p., and in an in vitro competitive binding test with [³H]MK 801, II had IC₅₀ of 1.3 μM. Approx. 22 I were prepared.

IT 137582-78-6P 137582-79-7P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(preparation and reaction of, in preparation of methylaspartate receptor antagonist)

RN 137582-78-6 CAPLUS

CN Acetamide, 2-(1-naphthalenylamino)-N-[2-(1-naphthalenylamino)ethyl]-, dihydrochloride (9CI) (CA INDEX NAME)

●2 HCl

RN 137582-79-7 CAPLUS

CN Acetamide, 2-(1-naphthalenylamino)-N-[2-(1-naphthalenylamino)ethyl]- (9CI)
(CA INDEX NAME)

L48 ANSWER 2 OF 2 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1981:22885 CAPLUS
 DN 94:22885
 TI Photosensitive silver halide photographic materials
 IN Fujiwara, Mitsuto; Kaneko, Yutaka; Kawasaki, Mikio; Masukawa, Toyoaki;
 Matsuo, Shunji
 PA Konishiroku Photo Industry Co., Ltd., Japan
 SO U.S., 42 pp. Cont.-in-part of U.S. Ser. No. 726,635, abandoned.
 CODEN: USXXAM
 DT Patent
 LA English
 FAN.CNT 2

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 4200466	A	19800429	US 1978-874056	19780201
JP 52042725	A2	19770402	JP 1975-118480	19750930
PRAI JP 1975-118480		19750930		
US 1976-726635		19760927		

AB Photog. materials which are capable of producing a neutral black dye image of excellent stability to oxidation without having to be subjected to a special image stabilization treatment contain a m-aminophenol derivative I ($R_1, R_2 = H$, halo, or a split-off group or ≥ 1 is OH, SH, NH₂, alkylamino, or arylamino and the other a H, halo, or a split-off group; $R_1, R_2 = H$, halo, OH, alkyl, alkoxy, alkylamido, arylamido, alkylsulfonamido, or arylsulfonamido; $R_4, R_5 = H$, alkyl, aralkyl, aryl, or alkenyl) as the black dye image forming coupler. These couplers are especially applicable to black-and-white photog. to produce imaging materials having a greatly reduced Ag content and greatly increased speed. Thus, II (prepared by treatment of m-aminophenol with N-dodecyl- β -bromoethylamide) 10 g was dissolved in EtOAc 30 mL and di-Bu phthalate 10 g, the solution mixed with 10% aqueous Alkanol B 5 mL and then dispersed in 5% aqueous gelatin 200 mL. This dispersion was added to a gelatin-Ag(Br,I) emulsion 500 g, and the emulsion coated on a cellulose triacetate support at 20 mg Ag/100 cm² of support. The finished material was then exposed and developed to show a speed of 105, a γ of 0.46, a fog of 0.06, and a Dmax of 2.6 vs. 65, 0.22, 0.03, and 1.1, resp., for a II-free control and 100, 0.43, 0.05, and 2.7, resp., for a II-free control containing 40 mg Ag/100 cm² of support.

IT 74935-58-3P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)
 RN 74935-58-3 CAPLUS
 CN Acetamide, N-[4-[2,4-bis(1,1-dimethylpropyl)phenoxy]butyl]-2-[(3-hydroxyphenyl)amino]- (9CI) (CA INDEX NAME)

=> =>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END) :end

=> screen 1839

L49 SCREEN CREATED

=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L50 SCREEN CREATED

=>

Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 7).str

chain nodes :

10/027,505 (RCE)

8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 53 108 109
ring nodes :
1 2 3 4 5 6 38 39 40 41 42 43 44 45 46 47 57 58 59 60 61 62
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
84 85 86 87 88 89 90 91 92
chain bonds :
8-9 8-108 9-10 10-53 11-12 11-53 12-17 17-18 18-19 18-20 20-21 21-37
22-23 24-25 24-27 28-29 37-109
ring bonds :
1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 39-57 40-41 40-60 41-42
42-43 44-45 44-47 45-46 46-47 57-58 58-59 59-60 61-62 61-66 62-63 62-83
63-64 63-87 64-65 65-66 67-68 67-72 68-69 68-88 69-70 69-92 70-71 71-72
73-74 73-78 74-75 74-79 75-76 75-82 76-77 77-78 79-80 80-81 81-82 83-84
84-85 85-86 86-87 88-89 89-90 90-91 91-92
exact/norm bonds :
8-9 8-108 9-10 10-53 11-53 12-17 17-18 18-19 21-37 22-23 24-25 24-27
28-29 37-109 44-45 44-47 45-46 46-47
exact bonds :
11-12 18-20 20-21 62-83 63-87 68-88 69-92 83-84 84-85 85-86 86-87 88-89
89-90 90-91 91-92
normalized bonds :
1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 39-57 40-41 40-60 41-42
42-43 57-58 58-59 59-60 61-62 61-66 62-63 63-64 64-65 65-66 67-68 67-72
68-69 69-70 70-71 71-72 73-74 73-78 74-75 74-79 75-76 75-82 76-77 77-78
79-80 80-81 81-82
isolated ring systems :
containing 1 : 38 : 61 : 67 : 73 :

G1:O,N

G2:O,S

G3:S02, [*1-*2], [*3-*4], [*5-*6]

G4:CH, [*7-*8]

G5:[*9], [*10], [*11], [*12], [*13]

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 44:Atom 45:Atom 46:Atom 47:Atom
53:CLASS 57:Atom 58:Atom 59:Atom 60:Atom 61:Atom 62:Atom 63:Atom 64:Atom
65:Atom 66:Atom 67:Atom 68:Atom 69:Atom 70:Atom 71:Atom 72:Atom 73:Atom
74:Atom 75:Atom 76:Atom 77:Atom 78:Atom 79:Atom 80:Atom 81:Atom 82:Atom
83:Atom 84:Atom 85:Atom 86:Atom 87:Atom 88:Atom 89:Atom 90:Atom 91:Atom
92:Atom 108:CLASS 109:CLASS

L51 STRUCTURE UPLOADED

=> que L51 AND L49 NOT L50

L52 QUE L51 AND L49 NOT L50

=> d 152
L52 HAS NO ANSWERS
L49 SCR 1839
L50 SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L51 STR
*** STRUCTURE DIAGRAM IS NOT AVAILABLE ***

Structure attributes must be viewed using STN Express query preparation.
L52 QUE L51 AND L49 NOT L50

=> s 152 sss sam
SAMPLE SEARCH INITIATED 17:46:16 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 36983 TO ITERATE

2.7% PROCESSED 1000 ITERATIONS 0 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

FULL FILE PROJECTIONS: ONLINE **INCOMPLETE**
BATCH **INCOMPLETE**
PROJECTED ITERATIONS: 728186 TO 751134
PROJECTED ANSWERS: 0 TO 0

L53 0 SEA SSS SAM L51 AND L49 NOT L50

=>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END):end

=> screen 1839

L54 SCREEN CREATED

=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L55 SCREEN CREATED

=>
Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 8).str

chain nodes :

8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 53

ring nodes :

1 2 3 4 5 6 38 39 40 41 42 43 44 45 46 47

chain bonds :

5-8 8-9 9-10 10-53 11-12 11-53 12-17 17-18 18-19 18-20 20-21 21-37
22-23 24-25 24-27 28-29 37-39

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43 44-45
44-47 45-46 46-47

exact/norm bonds :

5-8 8-9 9-10 10-53 11-53 12-17 17-18 18-19 21-37 22-23 24-25 24-27
28-29 37-39 44-45 44-47 45-46 46-47

exact bonds :

11-12 18-20 20-21

normalized bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43

G1:O,N

G2:O,S

G3:SO₂, [*1-*2], [*3-*4], [*5-*6]

G4:C, [*7-*8]

Match level :

```

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 44:Atom 45:Atom 46:Atom 47:Atom
53:CLASS

```

L56 STRUCTURE UPLOADED

=> que L56 AND L54 NOT L55

L57 QUE L56 AND L54 NOT L55

=> d 157

L57 HAS NO ANSWERS

```

L54          SCR 1839
L55          SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L56          STR

```

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Structure attributes must be viewed using STN Express query preparation.

L57 QUE L56 AND L54 NOT L55

=> s 157 sss sam

```

SAMPLE SEARCH INITIATED 17:48:24 FILE 'REGISTRY'
SAMPLE SCREEN SEARCH COMPLETED - 9195 TO ITERATE

```

```

10.9% PROCESSED    1000 ITERATIONS          0 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)
SEARCH TIME: 00.00.01

```

```

FULL FILE PROJECTIONS: ONLINE **COMPLETE**
                      BATCH **COMPLETE**

```

```

PROJECTED ITERATIONS: 178155 TO 189645
PROJECTED ANSWERS:    0 TO 0

```

L58 0 SEA SSS SAM L56 AND L54 NOT L55

=>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END):end

=> screen 1839

L59 SCREEN CREATED

=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L60 SCREEN CREATED

=>

Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 9).str

chain nodes :

8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 53

ring nodes :

1 2 3 4 5 6 38 39 40 41 42 43 44 45 46 47

chain bonds :

5-8 8-9 9-10 10-53 11-12 11-53 12-17 17-18 18-19 18-20 20-21 21-37
22-23 24-25 24-27 28-29 37-39

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43 44-45
44-47 45-46 46-47

exact/norm bonds :

5-8 8-9 9-10 10-53 11-53 12-17 17-18 18-19 21-37 22-23 24-25 24-27
28-29 37-39 44-45 44-47 45-46 46-47

exact bonds :

11-12 18-20 20-21

normalized bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43

G1:O,N

G2:O,S

G3:SO2, [*1-*2], [*3-*4], [*5-*6]

G4:C, [*7-*8]

Match level :

1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
 11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
 23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
 39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 44:Atom 45:Atom 46:Atom 47:Atom
 53:CLASS

L61 STRUCTURE UPLOADED

=> que L61 AND L59 NOT L60

L62 QUE L61 AND L59 NOT L60

=> d 162

L62 HAS NO ANSWERS

L59 SCR 1839

L60 SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L61 STR

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Structure attributes must be viewed using STN Express query preparation.

L62 QUE L61 AND L59 NOT L60

=> s 162 sss sam

SAMPLE SEARCH INITIATED 17:50:14 FILE 'REGISTRY'
 SAMPLE SCREEN SEARCH COMPLETED - 9195 TO ITERATE

10.9% PROCESSED	1000 ITERATIONS	0 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)		
SEARCH TIME: 00.00.01		

FULL FILE PROJECTIONS:	ONLINE	**COMPLETE**
	BATCH	**COMPLETE**

PROJECTED ITERATIONS:	178155	TO	189645
-----------------------	--------	----	--------

PROJECTED ANSWERS:	0	TO	0
--------------------	---	----	---

L63 0 SEA SSS SAM L61 AND L59 NOT L60

=>Testing the current file.... screen

ENTER SCREEN EXPRESSION OR (END):end

=> screen 1839

L64 SCREEN CREATED

=> screen 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047

L65 SCREEN CREATED

=>

Uploading C:\Program Files\Common Files\System\Mapi\1033\NT\10027505 (rce 10).str

chain nodes :

8 9 10 11 12 17 18 19 20 21 22 23 24 25 27 28 29 37 53

ring nodes :

1 2 3 4 5 6 38 39 40 41 42 43 44 45 46 47

chain bonds :

5-8 8-9 9-10 10-53 11-12 11-53 12-17 17-18 18-19 18-20 20-21 21-37
22-23 24-25 24-27 28-29 37-39

ring bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43 44-45
44-47 45-46 46-47

exact/norm bonds :

5-8 8-9 9-10 10-53 11-53 12-17 17-18 18-19 21-37 22-23 24-25 24-27
28-29 37-39 44-45 44-47 45-46 46-47

exact bonds :

11-12 18-20 20-21

normalized bonds :

1-2 1-6 2-3 3-4 4-5 5-6 38-39 38-43 39-40 40-41 41-42 42-43

G1:O,N

G2:O,S

G3:SO2, [*1-*2], [*3-*4], [*5-*6]

G4:C, [*7-*8]

Match level :
 1:Atom 2:Atom 3:Atom 4:Atom 5:Atom 6:Atom 8:CLASS 9:CLASS 10:CLASS
 11:CLASS 12:CLASS 17:CLASS 18:CLASS 19:CLASS 20:CLASS 21:CLASS 22:CLASS
 23:CLASS 24:CLASS 25:CLASS 27:CLASS 28:CLASS 29:CLASS 37:CLASS 38:Atom
 39:Atom 40:Atom 41:Atom 42:Atom 43:Atom 44:Atom 45:Atom 46:Atom 47:Atom
 53:CLASS

L66 STRUCTURE UPLOADED

=> que L66 AND L64 NOT L65

L67 QUE L66 AND L64 NOT L65

=> d 167

L67 HAS NO ANSWERS

L64	SCR 1839
L65	SCR 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L66	STR

* STRUCTURE DIAGRAM TOO LARGE FOR DISPLAY - AVAILABLE VIA OFFLINE PRINT *

Structure attributes must be viewed using STN Express query preparation.

L67 QUE L66 AND L64 NOT L65

=> s 167 sss sam
 SAMPLE SEARCH INITIATED 17:51:49 FILE 'REGISTRY'
 SAMPLE SCREEN SEARCH COMPLETED - 22600 TO ITERATE

4.4% PROCESSED	1000 ITERATIONS	0 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)		
SEARCH TIME: 00.00.01		

FULL FILE PROJECTIONS:	ONLINE	**INCOMPLETE**
	BATCH	**COMPLETE**
PROJECTED ITERATIONS:	443011 TO	460989
PROJECTED ANSWERS:	0 TO	0

L68 0 SEA SSS SAM L66 AND L64 NOT L65

=> s 162 sss sam
 SAMPLE SEARCH INITIATED 17:52:23 FILE 'REGISTRY'
 SAMPLE SCREEN SEARCH COMPLETED - 9195 TO ITERATE

10.9% PROCESSED	1000 ITERATIONS	0 ANSWERS
INCOMPLETE SEARCH (SYSTEM LIMIT EXCEEDED)		
SEARCH TIME: 00.00.01		

FULL FILE PROJECTIONS:	ONLINE	**COMPLETE**
	BATCH	**COMPLETE**
PROJECTED ITERATIONS:	178155 TO	189645
PROJECTED ANSWERS:	0 TO	0

L69 0 SEA SSS SAM L61 AND L59 NOT L60

10/027, 505 (RCE)

=> s 162 sss ful
FULL SEARCH INITIATED 17:52:29 FILE 'REGISTRY'
FULL SCREEN SEARCH COMPLETED - 183719 TO ITERATE

100.0% PROCESSED 183719 ITERATIONS
SEARCH TIME: 00.00.03

67 ANSWERS

L70 67 SEA SSS FUL L61 AND L59 NOT L60

=> => s 170
L71 47 L70

=> d 171 1-47 bib,ab,hitstr

L71 ANSWER 1 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 2003:271704 CAPLUS
 DN 138:304056
 TI Preparation of 2-phenylalkylthio-3-phenyl-2-propenoic acids and Cdc25 phosphatase inhibitors
 IN Kitaide, Makoto; Nagai, Kentaro; Terada, Tadashi; Asao, Tetsuji; Sugimoto, Yoshikazu; Yamada, Yuji
 PA Taiho Pharmaceutical Co., Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 24 pp.
 CODEN: JKXXAF
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 2003104964	A2	20030409	JP 2001-301335	20010928
PRAI	JP 2001-301335		20010928		
OS	MARPAT 138:304056				
AB	The compds. I [R1 = H, cycloalkyl, Ph, naphthyl, pyridyl, phenylpyrazolyl, etc.; W = CH, N; X = O, OCH_2 , NR4; R4 = H, lower alkyl, (un)substituted aralkyl; Y = 1,4-piperazinyl, NHCHR5CONH, NH; R5 = H, (un)substituted lower alkyl; Z = CO2H, SO3H; R2 = alkyl, Ph, NR6R7; R6, R7 = lower alkyl; R3 = H, lower alkyl; j, k, n = 0, 1; l = 0-6; m = 1-10] or their pharmaceutically acceptable salts are prepared Me 3-[4-[(4-tert-butylphenyl)methoxy]phenyl]-2-[(4-tert-butylphenyl)methylthio]-2-propenoate was treated with NaOH in THF-MeOH at room temperature for 17 h to give 320 mg 2-[(4-tert-butylphenyl)methylthio]-3-[4-[(4-tert-butylphenyl)methoxy]phenyl]-2-propenoic acid showing Cdc25 phosphatase inhibitory activity IC50 of 3.6 μm .				
IT	508180-73-2P				
	RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)				
	(preparation of phenylalkylthiophenylpropenoic acids and Cdc25 phosphatase inhibitors)				
RN	508180-73-2	CAPLUS			
CN	2-Propenoic acid, 3-[4-[2-[[[[[5-(dibutylamino)-1-naphthalenyl]sulfonyl]amino]acetyl]amino]ethoxy]phenyl]-2-[[[4-(1,1-dimethylethyl)phenyl]methyl]thio]- (9CI) (CA INDEX NAME)				

PAGE 1-A

PAGE 2-A

L71 ANSWER 2 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 2002:487516 CAPLUS
 DN 137:63474
 TI Preparation of amino acid-related diamines as modulators of chemokine receptor activity
 IN Carter, Percy; Cherney, Robert
 PA Bristol-Myers Squibb Pharma Company, USA
 SO PCT Int. Appl., 375 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2002050019	A2	20020627	WO 2001-US50619	20011220
	WO 2002050019	A3	20030313		
				W: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG	
	AU 2002041724	A5	20020701	AU 2002-41724	20011220
	US 2003060459	A1	20030327	US 2001-27505	20011220
	EP 1351924	A2	20031015	EP 2001-988415	20011220
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
PRAI	US 2000-256855P	P	20001220		
	WO 2001-US50619	W	20011220		
OS	MARPAT	137:63474			
AB	Diamine compds. R1-X-CR6R7(CR8R9)m(CR10R11)1CR12R3NHCO(CR14R14a)nNR15-Z-R2 {Z = a bond, CONH, C(S)NH, SO ₂ , SO ₂ NH; X = NH, (cyclo)alkylimino, O, S, methyleneimino optionally substituted by (cyclo)alkyl; R1, R2 = (hetero)aryl; R3 = H, functionalized alkyl, (hetero)cyclyl; R6-R12 = alkyl, alkenyl, alkynyl, any group given for R3; R14, R14a = (un)substituted alkyl; n = 1 or 2; 1, m = 0 or 1} or their pharmaceutically acceptable salt were prepared as modulators of chemokine receptor activity for use in the treatment and prevention of asthma, multiple sclerosis, atherosclerosis, and rheumatoid arthritis. One hundred ninety-four diamines, e.g., Me (2S)-3-[(2,4-dimethylphenyl)methyl]aminol-2-[[3-(trifluoromethyl)benzoyl]amino]acetyl]amino]propanoate, were synthesized and claimed. All examples of the present invention have activity (IC50 = 50% at .ltorsim. 20 μM) in the antagonism of MCP-1 binding to human PBMC (human peripheral blood mononuclear cells).				
IT	439148-73-9P RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses) (preparation of amino acid-related diamines as modulators of chemokine receptor activity)				
RN	439148-73-9 CAPLUS				
CN	L-Alaninamide, N-[3-(trifluoromethyl)benzoyl]glycyl-3-[(2,4-dimethylphenyl)methyl]amino]-N-phenyl- (9CI) (CA INDEX NAME)				

Absolute stereochemistry.

L71 ANSWER 3 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 2002:275953 CAPLUS
 DN 136:309851
 TI Preparation of diphenylamines and N-nitrosodiphenylamines for treatment of oxidative stress and unavailability of endothelial nitric oxide.
 IN Lardy, Claude; Nioche, Jean-Yves; Caputo, Lidia; Decerprit, Jacques;
 Ortholand, Jean-Yves; Festal, Didier; Guerrier, Daniel
 PA Merck Patent G.m.b.H., Germany
 SO PCT Int. Appl., 142 pp.
 CODEN: PIXXD2

DT Patent
 LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 2002028820	A1	20020411	WO 2001-EP10761	20010918
	W: AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	RW: GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW, AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG				
	FR 2815030	A1	20020412	FR 2000-12749	20001005
	AU 2001089891	A5	20020415	AU 2001-89891	20010918
	BR 2001014252	A	20030701	BR 2001-14252	20010918
	EP 1322598	A1	20030702	EP 2001-969732	20010918
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO, MK, CY, AL, TR				
	US 2004063783	A1	20040401	US 2003-398238	20030403
	NO 2003001533	A	20030404	NO 2003-1533	20030404
PRAI	FR 2000-12749	A	20001005		
	WO 2001-EP10761	W	20010918		

OS MARPAT 136:309851
 AB Title compds. [I; X, Ra = H, (unsatd.) alipharyl, AY; A = CO, SO2, CONRa,
 CONRaSO2; T = H, halo, NO2, cyano, (unsatd.) (halogenated) alipharyl
 optionally interrupted by O and/or S; Y = organic substituent; with
 provisos], and des-nitroso compds. (II; variables as above), were prepared
 Thus, a mixture of nicotinoyl chloride hydrochloride, 4-amino-4'-methoxy-N-
 tert-butoxycarbonyldiphenylamine, and Et3N was stirred in CH2Cl2 to give
 100% 4-nicotinoylamino derivative which was N-deprotected with CF3CO2H to give
 95.2% 4-methoxy-4'-nicotinoylaminodiphenylamine. The latter in HOAc was
 treated dropwise with aqueous NaNO2 to give 88% N-nitroso-4-methoxy-4'-
 nicotinoylaminodiphenylamine. Tested II inhibited oxidation of human low
 mol. weight lipoproteins by Cu2+ with IC50 = 1.7-13.4 μM.

IT 409353-72-6P
 RL: PAC (Pharmacological activity); SPN (Synthetic preparation); THU
 (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES
 (Uses)
 (preparation of diphenylamines and N-nitrosodiphenylamines for treatment of
 oxidative stress and unavailability of endothelial nitric oxide)

RN 409353-72-6 CAPLUS
 CN Glycinamide, N-(4-nitrobenzoyl)glycyl-N-[4-[(4-
 methoxyphenyl)nitrosoamino]phenyl]- (9CI) (CA INDEX NAME)

RE.CNT 5 THERE ARE 5 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L71 ANSWER 4 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 2001:752347 CAPLUS
 DN 136:33788
 TI Kinetic Evaluation of a Metalated Diglycine Conjugate as a Functional Mimetic of Phosphate Ester Hydrolase
 AU Madhavaiah, C.; Verma, Sandeep
 CS Department of Chemistry Indian Institute of Technology-Kanpur, Kanpur (UP), 208016, India
 SO Bioconjugate Chemistry (2001), 12(6), 855-860
 CODEN: BCCHE; ISSN: 1043-1802
 PB American Chemical Society
 DT Journal
 LA English
 AB The crucial role of phosphate ester hydrolysis in various biol. processes has spurred vigorous research activities to understand mechanisms of phosphate ester hydrolysis and to develop model systems that assist the above-mentioned reaction in a catalytic fashion. In the present study, we describe a novel, metalated peptide conjugate 4 possessing phosphate ester hydrolyzing activity against a phosphate monoester, diester, and a RNA chemical model. The design of conjugate 4 is inspired by the ATCUN binding tripeptide motif of serum albumin and involves tethering of two diglycine units by a flexible 1,3-diaminopropane linker. Detailed kinetic investigations of phosphate ester hydrolysis using model substrates and efforts to decipher underlying mechanisms are presented.

IT 380365-66-2P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (kinetic evaluation of copper-metalated diglycine conjugate as a functional mimetic of phosphate ester hydrolase)

RN 380365-66-2 CAPLUS
 CN Glycine, N-benzyloglycyl-, 4-nitrophenyl ester (9CI) (CA INDEX NAME)

RE.CNT 46 THERE ARE 46 CITED REFERENCES AVAILABLE FOR THIS RECORD
 ALL CITATIONS AVAILABLE IN THE RE FORMAT

L71 ANSWER 5 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
AN 2001:430537 CAPLUS
DN 135:195737
TI Combinatorial synthesis of nikkomycin analogues on solid support
AU Suda, Atsushi; Ohta, Atsunori; Sudoh, Masayuki; Tsukuda, Takuo; Shimma, Nobuo
CS Combinatorial Chemistry Group, Department of Chemistry, Nippon Roche Research Center, Kanagawa, 247-8530, Japan
SO Heterocycles (2001), 55(6), 1023-1028
CODEN: HTCYAM; ISSN: 0385-5414
PB Japan Institute of Heterocyclic Chemistry
DT Journal
LA English
OS CASREACT 135:195737
AB Using Rink amide resin as the amine portion, a group of fifty-nine carboxylic acids, fifteen isocyanides, and 5'-deoxy-2',3'-O-(1-methylethyldene)-5'-oxo-uridine, generated in two steps from uridine, a four-component Ugi reaction was used to prepare a library of title compds., of which three proved to be as potent as nikkomycin Z as inhibitors of *Candida albicans* chitin synthase 1; only one showed inhibitory activity against *C. albicans* chitin synthase 2.
IT 356533-75-0P 356533-76-1P
RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)
RN (preparation of nikkomycin analog library on solid support using 4-component Ugi reaction)
RN 356533-75-0 CAPLUS
CN β -D-ribo-Hexopyranuronamide, 5-[[(benzoylamino)acetyl]amino]-1,5-dideoxy-1-(3,4-dihydro-2,4-dioxo-1(2H)-pyrimidinyl)-N-[4-(4-morpholinyl)phenyl], (5 ξ)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 356533-76-1 CAPLUS
CN β -D-ribo-Hexopyranuronamide, 5-[[(benzoylamino)acetyl]amino]-1,5-dideoxy-1-(3,4-dihydro-2,4-dioxo-1(2H)-pyrimidinyl)-N-[4-(phenylmethoxy)phenyl]-, (5 ξ)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RE.CNT 27 THERE ARE 27 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L71 ANSWER 6 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 2001:271407 CAPLUS
 DN 135:57729
 TI Protease inhibitors, part 13: specific, weakly basic thrombin inhibitors incorporating sulfonyl dicyandiamide moieties in their structure
 AU Clare, Brian W.; Scozzafava, Andrea; Supuran, Claudio T.
 CS Department of Chemistry, The University of Western Australia, Nedlands, 6009, Australia
 SO Journal of Enzyme Inhibition (2001), 16(1), 1-13
 CODEN: ENINEG; ISSN: 8755-5093
 PB Harwood Academic Publishers
 DT Journal
 LA English
 AB A series of compds. has been prepared by reaction of dicyandiamide with alkyl/arylsulfonyl halides as well as arylsulfonyl isocyanates to locate a lead for obtaining weakly basic thrombin inhibitors with sulfonyl dicyandiamide moieties as the S1 anchoring group. The detected lead was sulfanilyl-dicyandiamide (KI of 3 μ M against thrombin, and 15 μ M against trypsin), which has been further derivatized at the 4-amino group by incorporating arylsulfonylureido as well as amino acyl/dipeptidyl groups protected at the amino terminal moiety with benzyloxycarbonyl or tosylureido moieties. The best compound obtained (ts-D-Phe-Pro-sulfanilyl-dicyandiamide) showed inhibition consts. of 9 nM against thrombin and 1400 nM against trypsin. The pKa measurements showed that the new derivs. reported here do indeed possess a reduced basicity, with the pKa of the modified guanidine moieties in the range 7.9-8.3 pKa units. Mol. mechanics calcns. showed that the preferred tautomeric form of these compds. is of the type ArSO₂N=C(NH₂) NH-CN, probably allowing for the formation of favorable interaction between this new anchoring group and the active site amino acid residue Asp 189, critical for substrate/inhibitor binding to this type of serine protease. Thus, the main finding of the present paper is that the sulfonyldicyandiamide group may constitute an interesting alternative for obtaining weakly basic, potent thrombin inhibitors, which bind with less affinity to trypsin.
 IT **345916-26-9P**
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)
 (preparation of specific, weakly basic thrombin inhibitors incorporating sulfonyl dicyandiamide moieties in their structure)
 RN 345916-26-9 CAPLUS
 CN L-Histidinamide, N-[(4-methylphenyl)sulfonyl]glycyl-N-[4-[[[cyanoamino]iminomethyl]amino]sulfonyl]phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RE.CNT 48 THERE ARE 48 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L71 ANSWER 7 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1997:366202 CAPLUS

DN 127:95604

TI Synthesis of cyclic depsipeptides and peptides via direct amide cyclization

AU Villalgoro, Jose M.; Heimgartner, Heinz

CS Organisch-Chemisches Inst., Universitat Zurich, Zurich, CH-8057, Switz.

SO Helvetica Chimica Acta (1997), 80(3), 748-766

CODEN: HCACAV; ISSN: 0018-019X

PB Verlag Helvetica Chimica Acta

DT Journal

LA English

OS CASREACT 127:95604

AB The 2H-azirin-3-amines I [R = Me, R₂ = (CH₂)₄] were used as amino acid synthons in the preparation of medium-sized cyclic depsipeptides and peptides derived from salicylates and anthranilic acid, resp. The combination of the "azirine/oxazolone method" for the synthesis of linear peptides containing α,α -disubstituted α -amino acids and the acid-catalyzed amide cyclization in DMF at 60° proved to be an excellent preparative route to 10-membered cyclic depsipeptides and peptides. In the case of the anthranilic acid derivative, a transannular ring-closure reaction was observed. Larger rings proved to be extremely sensitive to hydrolysis.

IT 192046-51-8P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)

(preparation of cyclic depsipeptides and peptides via direct amide cyclization)

RN 192046-51-8 CAPLUS

CN Alaninamide, N-(2-hydroxybenzoyl)glycyl-N,2-dimethyl-N-phenyl- (9CI) (CA INDEX NAME)

L71 ANSWER 8 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1997:290093 CAPLUS
 DN 126:264011
 TI Preparation of meta-guanidine, urea, thiourea or azacyclic amino benzoic acid derivatives as integrin antagonists
 IN Ruminski, Peter Gerrard; Clare, Michael; Collins, Paul Waddell; Desai, Bipinchandra Nanubhai; Lindmark, Richard John; Rico, Joseph Gerace; Rogers, Thomas Edward; Russell, Mark Andrew; et al.
 PA G.D. Searle and Co., USA; Ruminski, Peter Gerrard; Clare, Michael; Collins, Paul Waddell; Desai, Bipinchandra Nanubhai; Lindmark, Richard, John
 SO PCT Int. Appl., 930 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 3

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9708145	A1	19970306	WO 1996-US13500	19960827
	W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, AM, AZ, BY, KG, KZ, MD, RU, TJ, TM				
	RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM				
	CA 2230209	AA	19970306	CA 1996-2230209	19960827
	AU 9671039	A1	19970319	AU 1996-71039	19960827
	AU 702487	B2	19990225		
	EP 850221	A1	19980701	EP 1996-932142	19960827
	EP 850221	B1	20010718		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, PT, IE, FI				
	CN 1201454	A	19981209	CN 1996-197911	19960827
	CN 1085980	B	20020605		
	BR 9610422	A	19990713	BR 1996-10422	19960827
	JP 11510814	T2	19990921	JP 1996-510397	19960827
	IL 123164	A1	20010319	IL 1996-123164	19960827
	AT 203234	E	20010815	AT 1996-932142	19960827
	ES 2161373	T3	20011201	ES 1996-932142	19960827
	RU 2196769	C2	20030120	RU 1998-105408	19960827
	RO 118290	B1	20030430	RO 2001-1069	19960827
	RO 118289	B1	20030430	RO 1998-500	19960827
	PL 186370	B1	20031231	PL 1996-325312	19960827
	ZA 9607379	A	19980330	ZA 1996-7379	19960830
	NO 9800817	A	19980424	NO 1998-817	19980226
	HK 1021532	A1	20020208	HK 1998-114666	19981228
	GR 3036751	T3	20011231	GR 2001-401608	20010928
PRAI	US 1995-3277P	P	19950830		
	WO 1996-US13500	W	19960827		
OS	MARPAT	126:264011			
AB	The title compds. I [A = (un)substituted ureido, guanidino, etc. (generic structures given); Z1 = H, alkyl, OH, alkoxy, halo, (di)(alkyl)amino, aryl, etc.; V = NR6; R6 = H, alkyl, etc.; or YR6 forms a 4- to 12-membered mono-N-containing ring; Y, Y3, Z, Z3 = H, alkyl, aryl, cycloalkyl; or YZ or Y3Z3 form cycloalkyl; n = 1-3; t = 0-2; p = 0-3; R = XR3; X = O, S, NH, etc.; R3 = H, alkyl, etc.; R1 = H, alkyl, alkenyl, etc.; R11 = H, alkyl, aralkyl, etc.] are prepared. For example, m-nitrohippuric acid was subjected to a sequence of (1) amidation with Et 3-amino-3-(3-pyridyl)propanoate-				

2HCl; (2) hydrogenation of the nitro group; (3) reaction of the formed amine with benzyl isocyanate; and (4) alkaline saponification of the ester, to give

title compound II, isolated as the CF₃CO₂H or HCl salt. In an in vitro assay for antagonism of human vitronectin receptor ($\alpha V\beta 3$), the title compound II.HCl bound with an IC₅₀ of 0.86 nM.

IT 188810-81-3P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); RCT (Reactant); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); RACT (Reactant or reagent); USES (Uses)

(preparation of meta-guanidino, -ureido, -thioureido, or -azacyclic-amino benzoic acid derivs. as integrin antagonists)

RN 188810-81-3 CAPIUS

CN Pentanoic acid, 3-[[[3-[(aminoiminomethyl)amino]benzoyl]amino]acetyl]amin o]-5-[(3,5-dichlorophenyl)amino]-5-oxo-, ethyl ester, mono(trifluoroacetate) (9CI) (CA INDEX NAME)

CM 1

CRN 188810-80-2

CMF C23 H26 Cl2 N6 O5

CM 2

CRN 76-05-1

CMF C2 H F3 O2

IT 188809-64-5P 188809-65-6P 188810-80-2P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)

(preparation of meta-guanidino, -ureido, -thioureido, or -azacyclic-amino benzoic acid derivs. as integrin antagonists)

RN 188809-64-5 CAPIUS

CN Pentanoic acid, 3-[[[3-[(aminoiminomethyl)amino]benzoyl]amino]acetyl]amin o]-5-[(3,5-dichlorophenyl)amino]-5-oxo- (9CI) (CA INDEX NAME)

RN 188809-65-6 CAPLUS

CN Pentanoic acid, 3-[[[3-[(aminoiminomethyl)amino]benzoyl]amino]acetyl]amino]-5-[(3,5-dichlorophenyl)amino]-5-oxo-, mono(trifluoroacetate) (9CI) (CA INDEX NAME)

CM 1

CRN 188809-64-5

CMF C21 H22 Cl2 N6 O5

CM 2

CRN 76-05-1

CMF C2 H F3 O2

RN 188810-80-2 CAPLUS

CN Pentanoic acid, 3-[[[3-[(aminoiminomethyl)amino]benzoyl]amino]acetyl]amino]-5-[(3,5-dichlorophenyl)amino]-5-oxo-, ethyl ester (9CI) (CA INDEX NAME)

L71 ANSWER 9 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1997:248791 CAPLUS

DN 126:327291

TI Design of kallidin-releasing tissue kallikrein inhibitors based on the specificities of the enzyme's binding subsites

AU Portaro, Fernanda C. V.; Cezari, Maria H. S.; Juliano, Maria A.; Juliano, Luiz; Walmsley, Adrian R.; Prado, Eline S.

CS Department Biophysics, Universidade Federal Sao Paulo-Escola Paulista Medicina, Sao Paulo, 04044-020, Brazil

SO Biochemical Journal (1997), 323(1), 161-171

CODEN: BIJOAK; ISSN: 0264-6021

PB Portland Press

DT Journal

LA English

AB Tissue kallikrein inhibitors were derived by selectively replacing residues in Na^+ -substituted arginine- or phenylalanine-pNA (where pNA is p-nitroanilide), and in peptide substrates for these enzymes. Phenylacetyl-Arg-pNA was an efficient inhibitor of human tissue kallikrein (K_i 0.4 μM) and was neither a substrate nor an inhibitor of plasma kallikrein. The peptide inhibitors having phenylalanine as the P1 residue behaved as specific inhibitors for kallidin-releasing tissue kallikreins, whereas plasma kallikrein showed high affinity for inhibitors containing (p-nitro)phenylalanine at the same position. The K_i value of the most potent inhibitor developed, Abz-Phe-Arg-Arg-Pro-Arg-EDDnp [where Abz is o-aminobenzoyl and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine], was 0.08 μM for human tissue kallikrein. Progress curve analyses of the inhibition of human tissue kallikrein by benzoyl-Arg-pNA and phenylacetyl-Phe-Ser-Arg-EDDnp indicated a single-step mechanism for reversible formation of the enzyme-inhibitor complex.

IT 189621-44-1 189621-45-2

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); PRP (Properties); BIOL (Biological study)
 (design of kallidin-releasing tissue kallikrein inhibitors based on the specificities of the enzyme's binding subsites)

RN 189621-44-1 CAPLUS

CN L-Phenylalaninamide, N-benzoylglycyl-N-(4-nitrophenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 189621-45-2 CAPLUS

CN L-Phenylalaninamide, N-benzoylglycyl-4-nitro-N-(4-nitrophenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

10/027,505 (RCE)

RE.CNT 31 THERE ARE 31 CITED REFERENCES AVAILABLE FOR THIS RECORD
ALL CITATIONS AVAILABLE IN THE RE FORMAT

L71 ANSWER 10 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1996:560491 CAPLUS
 DN 125:215690
 TI Methods of determining endogenous thrombin potential and thrombin substrates for use in said methods
 IN Hemker, Hendrik Coenraad; Rijkers, Dirk Thomas Sigurd; Tesser, Godefriedus Ignatius
 PA Neth.
 SO PCT Int. Appl., 113 pp.
 CODEN: PIXXD2
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9621740	A1	19960718	WO 1996-NL18	19960110
	W: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI RW: KE, LS, MW, SD, SZ, UG, AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN				
	AU 9646348	A1	19960731	AU 1996-46348	19960110
	EP 802986	A1	19971029	EP 1996-902007	19960110
	EP 802986	B1	20010919	R: CH, DE, ES, FR, GB, IT, LI, NL	
	ES 2162025	T3	20011216	ES 1996-902007	19960110
	US 6207399	B1	20010327	US 1997-860808	19970905
PRAI	EP 1995-200043	A	19950110		
	WO 1996-NL18	W	19960110		
OS	MARPAT	125:215690			
AB	A method for determining the ETP (endogenous thrombin potential) of a sample, preferably in a continuous assay is claimed, said sample comprising a total anticoagulant activity of or equivalent to at least 0,07 U ISH/mL, wherein a thrombin substrate or a salt thereof that is soluble in the sample is applied in a manner known per se for determining the ETP of a sample, said thrombin substrate being selected from the group comprising substrates of the formula P-Val-Xaa-S (P = nonarom., polar amino protective group; Val = valine residue attached via a peptide bond to Xaa; Xaa = amino acid residue comprising a terminal guanidino group or ureido group separated by at least 2 carbon atoms from the peptide backbone, said amino acid residue being attached to S; S = signal group such as a chromophore that can be enzymically hydrolyzed). Other substrates such as Zaa-Pipecolyl-Yaa-S or Zaa-Pro-Yaa-S, (Zaa = D-Phe, D-Trp, D-Tyr; Pro = proline; Yaa = amino acid residue other than Arg; S = signal group) can also be used. The substrates Boc-Gly-Val-Arg-pNA and H-Glu-Gly-Val-Arg-pNA are also applicable. Furthermore ETP determination methods as such can be improved by addition of hydroxylamine to the sample to circumvent defibrination of the sample.				
IT	167961-66-2P RL: ARG (Analytical reagent use); SPN (Synthetic preparation); ANST (Analytical study); PREP (Preparation); USES (Uses) (methods of determining endogenous thrombin potential and thrombin substrates for use in said methods)				
RN	167961-66-2 CAPLUS				
CN	L-Argininamide, N-(2-naphthalenylsulfonyl)glycyl-N-(4-nitrophenyl)-,				

monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

J

● HCl

IT 167961-67-3

RL: RCT (Reactant); RACT (Reactant or reagent)

(methods of determining endogenous thrombin potential and thrombin substrates

for use in said methods)

RN 167961-67-3 CAPLUS

CN L-Argininamide, N-[(4-methylphenyl)sulfonyl]glycyl-N-(4-nitrophenyl)-, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

● HCl

L71 ANSWER 11 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1996:241536 CAPLUS
 DN 124:290265
 TI Preparation of amino acid moiety-containing benzoxazines as elastase inhibitors
 IN Oshida, Junichi; Kawabata, Hiroshi; Kato, Yoshinori; Kokubo, Masayuki;
 Ueshima, Yasuhide; Sato, Osami; Fujii, Katsuhiko
 PA Teijin Ltd., Japan
 SO Jpn. Kokai Tokkyo Koho, 34 pp. Division of Jpn. Kokai Tokkyo Koho Appl.
 NO. 91 504,791.
 CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 07316056	A2	19951205	JP 1994-272320	19941107
PRAI	JP 1991-504791		19910215		
OS	MARPAT 124:290265				

AB The title compds. I [R1 = H, alkyl; X = Y1A1, Y2(A2)mA3; when X is Y1A1 : R2, R3 = H, (carboxy)alkyl, or NR2R3 = ring; when X is Y2(A2)mA3 : R2 = alkyl, R3 = H; Y1 = amino-protecting group; Y2 = H, sulfonyl; A1, A2 = amino acid residue, etc.; A3 = lysine residue, etc.; m = 0 or 1] are prepared 7-(N-benzyloxycarbonyl-L-phenylalanyl)amino-5-methyl-2-(1-carboxyethyl)amino-4H-3,1-benzoxazin-4-one (preparation given) in vitro showed IC50 values of 5.1×10^{-8} M and 1.5×10^{-6} M against elastase and chymotrypsin, resp.

IT 138006-83-4P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use); BIOL (Biological study); PREP (Preparation); USES (Uses)
 (preparation of amino acid moiety-containing benzoxazines as elastase inhibitors)

RN 138006-83-4 CAPLUS

CN L- α -Glutamine, N2-[N-[(4-chlorophenyl)sulfonyl]glycyl]-N-[5-methyl-2-[(1-methylethyl)amino]-4-oxo-4H-3,1-benzoxazin-7-yl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 12 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1996:175894 CAPLUS
 DN 124:254974
 TI Arylacetamide-derived fluorescent probes: synthesis, biological evaluation, and direct fluorescent labeling of κ opioid receptors in mouse microglial cells
 AU Chang, An-Chih; Chao, Chun C.; Takemori, Akira E.; Gekker, Genya; Hu, Shuxian; Peterson, Phillip K.; Portoghesi, Philip S.
 CS College of Pharmacy, University of Minnesota, Minneapolis, MN, 55455, USA
 SO Journal of Medicinal Chemistry (1996), 39(8), 1729-35.
 CODEN: JMCMAR; ISSN: 0022-2623
 PB American Chemical Society
 DT Journal
 LA English
 AB Fluorescein isothiocyanate isomer I (FITC-I) conjugates of 2-(3,4-dichlorophenyl)-N-methyl-N-[1-(3- or 4-aminophenyl)-2-(1-pyrrolidinyl)ethyl]acetamide (10 and 14) were prepared either without or with an intervening mono-, di-, or tetraglycyl linker. The 3-substituted fluorescent probes (2-5) were found to retain potent agonist activity in smooth muscle preps. as well as high κ receptor affinity and selectivity in receptor binding assays. The 4-substituted series (6-9) were substantially less potent than the corresponding 3-substituted compds. Flow cytometric anal. demonstrated high levels of direct κ -specific staining of mouse microglial cells by the fluorescent probe 5 containing a tetraglycyl linker, as indicated by a 41% decrease in percent cells pos. labeled and a 61% decrease in mean fluorescence intensity in the presence of the κ -selective antagonist, norbinaltorphimine (norBNI). In similar studies, the probe 2 without a linker exhibited only nonspecific binding. This is the first report of direct, selective staining of κ opioid receptors by a fluorescent nonpeptide opioid ligand. The results of the present study illustrate the importance of introducing hydrophilic linkers to reduce nonspecific binding of fluorescent probes for opioid receptors.
 IT 174971-79-OP 174971-87-OP
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); BUU (Biological use, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); USES (Uses) (arylacetamide-derived fluorescent probes synthesis, smooth muscle agonist activity, and direct fluorescent labeling of κ opioid receptors in mouse microglial cells)
 RN 174971-79-0 CAPLUS
 CN Glycinamide, N-[[[3-carboxy-4-(6-hydroxy-3-oxo-3H-xanthen-9-yl)phenyl]amino]thioxomethyl]glycyl-N-[3-[1-[[3,4-dichlorophenyl]acetyl]methylamino]-2-(1-pyrrolidinyl)ethyl]phenyl]-, (S)-, compd. with N,N-diethylethanamine (1:1) (9CI) (CA INDEX NAME)
 CM 1
 CRN 174971-78-9
 CMF C46 H42 Cl2 N6 O8 S

Absolute stereochemistry.

CM 2

CRN 121-44-8
CMF C6 H15 N

RN 174971-87-0 CAPLUS
CN Glycinamide, N-[[[3-carboxy-4-(6-hydroxy-3-oxo-3H-xanthen-9-yl)phenyl]amino]thioxomethyl]glycyl-N-[4-[1-[[3,4-dichlorophenyl]acetyl]methylamino]-2-(1-pyrrolidinyl)ethyl]phenyl]-, compd. with N,N-diethylethanamine (1:1) (9CI) (CA INDEX NAME)

CM 1

CRN 174971-86-9
CMF C46 H42 Cl2 N6 O8 S

10/027,505 (RCE)

PAGE 1-A

PAGE 2-A

CM 2

CRN 121-44-8
CMF C₆ H₁₅ N

10/027,505 (RCE)

L71 ANSWER 13 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1995:762217 CAPLUS
 DN 123:192056
 TI Design and synthesis of thrombin substrates with modified kinetic parameters
 AU Rijkers, Dirk T. S.; Welders, Simone J. H.; Tesser, Godefridus I.; Hemker, H. Coenraad
 CS Faculty of Medicine, University of Limburg, Maastricht, 6200 MD, Neth.
 SO Thrombosis Research (1995), 79(5/6), 491-9
 CODEN: THBRAA; ISSN: 0049-3848
 PB Elsevier
 DT Journal
 LA English
 AB For the continuous registration of thrombin formation in plasma, selective thrombin substrates are required, that show moderate binding affinities (high Km) and low turnover nos. (low kcat). Previously the authors have used SQ68 (CH₃O-CO-CH₂-CO-Aib-Arg-pNA) for this purpose. To find more substrates suitable for this application, the authors synthesized a series of 25 peptide p-nitroanilides. As lead structures SQ68 and S2238 (H-D-Phe-Pip-Arg-pNA) were used. By introduction of specific structure modifications the authors tried to alter the kinetic data in the required direction. The modifications were designed on basis of existing knowledge on the structure of the thrombin active-site and its surroundings. The authors indeed obtained a number of substrates with the kinetic consts. in the desired range.
 IT 167961-66-2P 167961-67-3P
 RL: BPR (Biological process); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation); PROC (Process)
 (design and synthesis of peptide p-nitroanilides and reaction with human α -thrombin and factor Xa)
 RN 167961-66-2 CAPLUS
 CN L-Argininamide, N-(2-naphthalenylsulfonyl)glycyl-N-(4-nitrophenyl)-, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

● HCl

RN 167961-67-3 CAPLUS
 CN L-Argininamide, N-[(4-methylphenyl)sulfonyl]glycyl-N-(4-nitrophenyl)-, monohydrochloride (9CI) (CA INDEX NAME)

Absolute stereochemistry.

● HCl

L71 ANSWER 14 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1994:646178 CAPLUS
 DN 121:246178
 TI Inhibition of human sputum elastase by 7-substituted 5-methyl-2-isopropylamino-4H-3,1-benzoxazin-4-ones
 AU Uejima, Yasuhide; Oshida, Jun-Ichi; Kawabata, Hiroshi; Kokubo, Masayuki; Kato, Yoshinori; Fujii, Katsuhiko
 CS Teijin Institute for Biomedical Research, Tokyo, 191, Japan
 SO Biochemical Pharmacology (1994), 48(2), 426-8
 CODEN: BCPCA6; ISSN: 0006-2952
 DT Journal
 LA English
 AB 7-Substituted 5-methyl-2-isopropylamino-4H-3,1-benzoxazin-4-ones (BOZNs) were prepared and tested as inhibitors of human sputum elastase (HSE). The BOZNs with certain amino acid residues at the 7-position proved to be potent inhibitors of HSE. Some of the compds. also showed a high selectivity for HSE vs. chymotrypsin. In a hamster model in which acute injury was induced by intratracheal administration of HSE (1.0 mg/kg), these compds., when administered intratracheally (1.0 mg/kg) either 30 or even 240 min before challenge with HSE, significantly suppressed pulmonary hemorrhage. These findings suggest that 7-substitution of BOZN by amino acid residues can produce strong and HSE-specific inhibitors, with potential use in elastase-mediated disorders.
 IT 138006-83-4
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); THU (Therapeutic use); BIOL (Biological study); USES (Uses)
 (inhibition of human sputum elastase by 7-substituted 5-methyl-2-isopropylamino-4H-3,1-benzoxazin-4-ones)
 RN 138006-83-4 CAPLUS
 CN L- α -Glutamine, N2-[N-[(4-chlorophenyl)sulfonyl]glycyl]-N-[5-methyl-2-[(1-methylethyl)amino]-4-oxo-4H-3,1-benzoxazin-7-yl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 15 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1992:106815 CAPLUS
 DN 116:106815
 TI Preparation of derivatives of N-phenylglycinamide as CCK and gastrin antagonists.

IN Bourzat, Jean Dominique; Capet, Marc; Cotrel, Claude; Guyon, Claude;
 Manfre, Franco; Roussel, Gerard
 PA Rhone-Poulenc Rorer SA, Fr.
 SO PCT Int. Appl., 100 pp.
 CODEN: PIXXD2

DT Patent
 LA French

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9113907	A1	19910919	WO 1991-FR174	19910305
	W: AU, CA, HU, JP, KR, NO, SU, US RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LU, NL, SE				
	FR 2659334	A1	19910913	FR 1990-2889	19900307
	FR 2659334	B1	19920515		
	FR 2667864	A2	19920417	FR 1990-12727	19901016
	FR 2667864	B2	19940805		
	AU 9174920	A1	19911010	AU 1991-74920	19910305
	AU 635832	B2	19930401		
	EP 518960	A1	19921223	EP 1991-905832	19910305
	EP 518960	B1	19940914		
	R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE				
	HU 61576	A2	19930128	HU 1992-2865	19910305
	JP 05504967	T2	19930729	JP 1991-505781	19910305
	ES 2059128	T3	19941101	ES 1991-905832	19910305
	RU 2076108	C1	19970327	RU 1991-5053153	19910305
	ZA 9101637	A	19911224	ZA 1991-1637	19910306
	IL 97476	A1	19960723	IL 1991-97476	19910307
	NO 9203456	A	19920904	NO 1992-3456	19920904
	US 5475106	A	19951212	US 1992-924065	19921008

PRAI FR 1990-2889
 FR 1990-12727
 WO 1991-FR174

OS MARPAT 116:106815

AB R2COCHR1NR4COCH2NHCOR3 [I; R1 = H, alkyl, alkoxycarboyl, (substituted) phenyl; R2 = alkoxy, (substituted) cycloalkoxy, cycloalkylalkoxy, phenylalkoxy, polyfluoroalkoxy, cinnamylxy, (substituted) amino; R3 = (substituted) phenylamino, etc.; R4 = Ph substituted by a halogen, alkyl, alkoxy, etc.], useful as antagonists against CCK and gastrin (no data), are prepared N-(Chlorophenyl)acetamide II [R5 = H] (preparation given) in THF was reacted with m-MeC₆H₄NCO at 20° to give II [R5 = m-MeC₆H₄NHCO]. Tablets, injections, etc., containing I were formulated.

IT 139089-29-5P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of, as intermediate for CCK and gastrin antagonists)

RN 139089-29-5 CAPLUS

CN Benzeneacetic acid, 3-[[[2-[(methylphenylamino)-2-oxoethyl]amino]-2-oxoethyl]amino]carbonyl]amino]-, ethyl ester (9CI) (CA INDEX NAME)

L71 ANSWER 16 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1992:21062 CAPLUS
 DN 116:21062
 TI Preparation of 7-(peptidylamino)-4H-3,1-benzoxazin-4-one compound and elastase inhibitor composition containing same
 IN Oshida, Junichi; Kawabata, Hiroshi; Kato, Yoshinori; Kokubo, Masayuki; Uejima, Yasuhide; Sato, Osami; Fujii, Katsuhiko
 PA Teijin Ltd., Japan
 SO PCT Int. Appl., 101 pp.
 CODEN: PIIXD2
 DT Patent
 LA Japanese
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	WO 9112245	A1	19910822	WO 1991-JP183	19910215
	W: AU, CA, JP, KR, US RW: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, NL, SE				
	CA 2051115	AA	19910816	CA 1991-205115	19910215
	AU 9173250	A1	19910903	AU 1991-73250	19910215
	AU 635403	B2	19930318		
	EP 466944	A1	19920122	EP 1991-904621	19910215
	R: AT, BE, CH, DE, DK, ES, FR, GB, IT, LI, NL, SE				
PRAI	JP 1990-32440		19900215		
	WO 1991-JP183		19910215		
OS	MARPAT 116:21062				
AB	The title compds. [I; X = Y1A1, Y2(A2)mA3; A1 = amino acid residue, peptide residue comprising 2 or 3 amino acid residues; A2 = Gly, Ala, Val, Leu, dipeptide residue containing these amino acid residues; A3 = (side-chain protected) Lys, Glu, Or Asp; Y1 = amino-protecting group; Y2 = H, SO ₃ H; provided that when the side-chain of A3 is protected, Y2 = H; m = 0, 1; when X = Y1A1, R2 = alkyl containing 1 or 2 CO ₂ H, and R3 = H, alkyl containing 1 or 2 alkyl or CO ₂ H, or NR ₂ R ₃ forming a 6- to 7-membered ring optionally substituted with 1 or 2 alkyl or CO ₂ H; when X = Y2(A2)mA3, R2 = alkyl and R3 = H], which show particularly a selective inhibiting effect on a human leukocyte elastase and excellent H ₂ O-solubility and residence in the lung tissue, are prepared. Thus, treatment of BOC-Lys(COCMe ₃)-OH with iso-BuO ₂ CCl in THF containing N-methylmorpholine at -15° followed by I (R1 = Me, R2 = Me ₂ CH, R3 = X = H) (preparation given) gave I [R1,R2,R3 = unchanged; X = BOC-Lys(OCM33)] which was deprotected with 4N HCl in dioxane, treated with Me ₃ SiNHNHSiMe ₃ in CH ₂ Cl ₂ , and then condensed with 4-C ₁ C ₆ H ₄ SO ₂ Cl in the presence of Et ₃ N to give II [R1,R2,R3 = unchanged; X = p-C ₁ C ₆ H ₄ SO ₂ -Lys] (II). II in vitro inhibited human purulent sputum elastase and α-chymotrypsin with IC ₅₀ of 2.9 + 10 ⁻⁹ and 4.9 + 10 ⁻⁶ M and 1690 times selectivity for the elastase.				
IT	138006-83-4P				
	RL: SPN (Synthetic preparation); PREP (Preparation) (preparation of, as elastase inhibitor)				
RN	138006-83-4 CAPLUS				
CN	L-α-Glutamine, N ₂ -[N-[(4-chlorophenyl)sulfonyl]glycyl]-N-[5-methyl-2-[(1-methylethyl)amino]-4-oxo-4H-3,1-benzoxazin-7-yl]- (9CI) (CA INDEX NAME)				

Absolute stereochemistry.

L71 ANSWER 17 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1991:409314 CAPLUS
 DN 115:9314
 TI Synthesis and study of intramolecularly-quenched fluorogenic substrates containing aminocoumarin or aminoquinolinone-type fluorophores
 AU Kokotos, George; Tzougraki, Chryssa
 CS Dep. Chem., Univ. Athens, Athens, 15771, Greece
 SO Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry (1972-1999) (1991), (4), 495-9
 CODEN: JCPKBH; ISSN: 0300-9580
 DT Journal
 LA English
 AB Quenched fluorogenic substrates I and II [X = NH, O; R = 2,4-(O₂N)C₆H₃ (Dnp), 2,4,6-(O₃N)C₆H₂ (Tnp), 2-O₂NC₆H₄S (Nps), 3,5-(O₂N)C₆H₃CO] were prepared. Efficient quenching of fluorescence is observed in all cases. The Dnp, Nps, and Tnp groups show a higher quenching efficiency and II (R = Dnp) gives the best result (99% quenching). The substrates synthesized can be used for the direct specific determination of enzymes which hydrolyze the peptide chain at any point between the interacting groups by measuring the increase in fluorescence.
 IT 134269-02-6P 134269-06-0P
 RL: PRP (Properties); SPN (Synthetic preparation); PREP (Preparation) (preparation and fluorescence of)
 RN 134269-02-6 CAPLUS
 CN L-Phenylalaninamide, N-(3,5-dinitrobenzoyl)glycyl-N-(4-methyl-2-oxo-2H-1-benzopyran-7-yl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 134269-06-0 CAPLUS
 CN L-Phenylalaninamide, N-(3,5-dinitrobenzoyl)glycyl-N-(1,2-dihydro-4-methyl-5-oxo-7-quinolinyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 18 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1990:154777 CAPLUS
 DN 112:154777
 TI Composition or kit containing peptide substrates for testing periodontal diseases by determining peptidase-like enzymic activity
 IN Suido, Hirohisa; Miike, Akira; Hasegawa, Kenji; Kayahara, Norihiko; Eguchi, Toru; Tatano, Toshio; Nakashima, Koichi
 PA Sunstar, Inc., Japan; Kyowa Medex Co., Ltd.
 SO Eur. Pat. Appl., 18 pp.

CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	EP 325472	A2	19890726	EP 1989-300533	19890120
	EP 325472	A3	19900620		
	EP 325472	B1	19930428		
R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE					
	JP 02000499	A2	19900105	JP 1988-331988	19881228
	JP 06050995	B4	19940706		
	AT 88759	E	19930515	AT 1989-300533	19890120
	ES 2055029	T3	19940816	ES 1989-300533	19890120
	CA 1332347	A1	19941011	CA 1989-588832	19890120
	KR 140216	B1	19980601	KR 1989-615	19890120
	US 5223404	A	19930629	US 1991-639742	19910111
PRAI	JP 1988-10241	A	19880120		
	JP 1988-331988	A	19881228		
	US 1989-298965	B1	19890119		
	EP 1989-300533	A	19890120		

OS MARPAT 112:154777

AB The title composition or kit comprises (1) peptide derivs. X-T-Pro-Y and/or X-Z-Arg-Y (X = H, amino protecting group; Y is a residue of a compound capable of increasing the oxidation rate of a chromogen with an oxidase in the presence of O₂; T, Z = amino acid, peptide containing 0-4 amino acids or their protected derivs.); (2) a chromogen; and (3) an oxidase. The enhancer residue Y may be an aniline derivative. Saliva samples from healthy subjects and patients with periodontitis and juvenile periodontitis were centrifuged and the supernatants were tested for hydrolytic activity using N-carbobenzoxy-glycyl-arginine-DIHA (DIHA = 3,5-diido-4-hydroxyanilinyl) and N-benzoyl-arginyll-glycyl-phenylalanyl-proline-DIHA, alone or in combination, as substrates, ascorbate oxidase, and I. The diseased group showed 1.5 times higher activity than the healthy group when both substrates were used. The values were 10 times higher than those of a conventional method.

IT 126152-05-4

RL: ANST (Analytical study)

(as substrate, in peptidase assay for periodontal disease diagnosis)

RN 126152-05-4 CAPLUS

CN L-Argininamide, N-benzoylglycyl-N-(3,5-dibromo-4-hydroxyphenyl)- (9CI)
 (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 19 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1990:84179 CAPLUS

DN 112:84179

TI Aminopeptidase and its substrates for the diagnosis of gingivitis

IN Eguchi, Toru; Suido, Hirohisa; Nakajima, Koichi; Hasegawa, Kenji; Kanbara, Mitsuho; Nakamura, Shoichi

PA Sunstar, Inc., Japan

SO Jpn. Kokai Tokkyo Koho, 6 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	JP 01014000	A2	19890118	JP 1987-170779	19870708
	JP 06050993	B4	19940706		

PRAI JP 1987-170779 19870708

OS MARPAT 112:84179

AB A diagnostic agent for gingivitis contains X-T-Pro-S (Pro = proline residue; X = H or amino group protector; S = a luminating group which binds to the C-terminal of the proline residue; T = 0-4 amino acid or derivative which binds to the N-terminal of the proline residue) and X-Z-Arg-Y (Arg = arginine residue; X = H or NH₂ protecting group; Y = a luminating agent binding to C terminal of Pro; Z = 0-4 amino acid or its protective derivative). These agents are substrates of aminopeptidase, and the measurement of the enzyme activity shows the extent of gingivitis in patients oral cavities. Thus, N-carbobenzoxy-glycyl-glycyl-arginine-β-naphthylamide (20 mM) solution was prepared in a 0.1 M tris-HCl buffer (pH 7.0) and added to a nitrocellulose filter. This filter was used in the detection of aminopeptidase activity associated with dental plaque bacteria.

IT 115871-03-9

RL: BIOL (Biological study)

(as aminopeptidase substrate, in gingivitis diagnosis)

RN 115871-03-9 CAPLUS

CN L-Argininamide, N-benzoylglycyl-N-2-naphthalenyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 20 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1988:489350 CAPLUS
 DN 109:89350
 TI Peptide-linked β -naphthylamide derivative reagent for detection of oral pathogens
 IN Tanaka, Toshiyuki; Nakamura, Masakazu; Suido, Hirohisa
 PA Sunstar, Inc., Japan
 SO Eur. Pat. Appl., 24 pp.
 CODEN: EPXXDW
 DT Patent
 LA English
 FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE	
PI	EP 255341	A2	19880203	EP 1987-306663	19870728	
	EP 255341	A3	19900131			
	EP 255341	B1	19930203			
	R: AT, BE, CH, DE, ES, FR, GB, GR, IT, LI, LU, NL, SE					
	JP 63036800	A2	19880217	JP 1986-179716	19860729	
	JP 06048998	B4	19940629			
	JP 63087999	A2	19880419	JP 1986-233848	19860930	
	JP 06011240	B4	19940216			
	JP 63277966	A2	19881115	JP 1987-113122	19870509	
	JP 2516365	B2	19960724			
AT 85362	E	19930215	AT 1987-306663	19870728		
ES 2053547	T3	19940801	ES 1987-306663	19870728		
CA 1310893	A1	19921201	CA 1987-543277	19870729		
US 5137811	A	19920811	US 1989-459185	19891229		

PRAI JP 1986-179716 19860729
 JP 1986-233848 19860930
 JP 1987-113122 19870509
 JP 1987-233848 19860930
 US 1987-76875 19870723
 EP 1987-306663 19870728

OS MARPAT 109:89350

AB Peptides of formula X-Z-Arg-Y and X-Z'-Pro-Y (X = H, amino blocking group; Y = color developing group; Z = peptide of 1-4 residues; Z' = peptide of 0-4 residues) are substrates for aminopeptidases produced by pathogenic oral microorganisms such as spirochetes and gram-neg. anaerobic bacteria, and are useful for detection of periodontal disease. Specimens of gingival crevicular fluid were collected with paper points from subjects with gingivitis and periodontitis and dispersed in Ringer's solution. The specimens were tested for hydrolytic activity with N-benzoylvalylglycylarginine β -naphthylamide and N-carbobenzoxyvalylglycylarginine β -naphthylamide by observation of color development after addition of garnet GBC diazonium salt. Specimens from all patients with periodontitis were strongly pos., those from patients with gingivitis were neg. or weakly pos., and those from normal subjects were almost always neg.

IT 115871-03-9

RL: ANST (Analytical study)
 (as aminopeptidase substrate, for periodontal disease diagnosis)

RN 115871-03-9 CAPLUS

CN L-Argininamide, N-benzoylglycyl-N-2-naphthalenyl- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 21 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1988:38341 CAPLUS

DN 108:38341

TI Synthesis of some peptides containing methyl o- and p-aminobenzoate, aminobenzamide, phthalamide and terephthalamide residues

AU El-Naggar, A. M.; Zaher, M. R.; Kora, F. A.

CS Fac. Sci., Al-Azhar Univ., Cairo, Egypt

SO Egyptian Journal of Chemistry (1986), Volume Date 1985, 28(1), 47-52

CODEN: EGGJCA3; ISSN: 0367-0422

DT Journal

LA English

AB Tos-Gly-Gly-X-o-Aba-OMe (Tos = tosyl; Aba = aminobenzoic acid residue; X = null, Gly) and Tos-Gly-Gly-X-p-Aba-OMe (X = null, Gly) were prepared by coupling Tos-Gly-Gly-X-OH with H-o-Aba-OMe or H-p-Aba-OMe by DCC. N,N'-Dipeptidyl derivs. of o- and p-aminobenzamide, phthalamide, and terephthalamide were also prepared. The above peptides formed complexes with Cu(II). The above peptides and their Cu(II) complexes were inactive against several bacteria, e.g., *Bacillus subtilis*.

IT 112129-75-6P 112129-76-7P 112129-79-0P

112129-80-3P

RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)

RN 112129-75-6 CAPLUS

CN Glycinamide, N-[(4-methylphenyl)sulfonyl]glycyl-N-[4-(methoxycarbonyl)phenyl]- (9CI) (CA INDEX NAME)

RN 112129-76-7 CAPLUS

CN Glycinamide, N-[(4-methylphenyl)sulfonyl]glycyl-N-[2-(methoxycarbonyl)phenyl]- (9CI) (CA INDEX NAME)

RN 112129-79-0 CAPLUS

CN Glycinamide, N-[(4-methylphenyl)sulfonyl]glycyl-N-[4-[[N-[(4-methylphenyl)sulfonyl]glycyl]amino]benzoyl]- (9CI) (CA INDEX NAME)

PAGE 1-B

RN 112129-80-3 CAPLUS

CN Glycinamide, N-[4-(4-methylphenyl)sulfonyl]glycyl-N-[2-[[N-[N-[(4-methylphenyl)sulfonyl]glycyl]glycyl]amino]benzoyl]- (9CI) (CA INDEX NAME)

L71 ANSWER 22 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1987:532277 CAPLUS
 DN 107:132277
 TI The complement component C.hivin.1s catalyzed hydrolysis of peptide 4-nitroanilide substrates
 AU Keogh, Shelley J.; Harding, David R. K.; Hardman, Michael J.
 CS Dep. Chem. Biochem., Massey Univ., Palmerston North, N. Z.
 SO Biochimica et Biophysica Acta (1987), 913(1), 39-44
 CODEN: BBACAQ; ISSN: 0006-3002
 DT Journal
 LA English
 AB The kinetic parameter kcat/Km was determined for the hydrolysis of peptide 4-nitroanilides, catalyzed by complement component C.hivin.1s. Substrates based on the C-terminal sequence of human C4 α (Leu-Gln-Arg) were synthesized. Replacement of the glutamine residue by glycine or serine increased kcat/Km. Substitution of valine for the leucine residue increased kcat/Km, while substitution of glycine or lysine for the leucine residue decreased kcat/Km slightly. D-Val-Ser-Arg 4-nitroanilide is the most reactive substrate towards C.hivin.1s, so far. These results are discussed in relation to the amino acid sequences near the bonds cleaved by C.hivin.1s in C4, C2, and C.hivin.1 inhibitor.
 IT 103418-67-3P
 RL: PREP (Preparation)
 (preparation and hydrolysis by complement C1 components)
 RN 103418-67-3 CAPLUS
 CN L-Argininamide, N-benzoylglycyl-N-(4-nitrophenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 23 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1986:605278 CAPLUS
 DN 105:205278
 TI Synthesis and kinetic parameters of hydrolysis by trypsin of some acyl-arginyl-p-nitroanilides and peptides containing arginyl-p-nitroanilide
 AU Juliano, M. A.; Juliano, L.
 CS Dep. Biofis., Esc. Paul. Med., Sao Paulo, 04034, Brazil
 SO Brazilian Journal of Medical and Biological Research (1985), 18(4), 435-45
 CODEN: BJMRDK; ISSN: 0100-879X
 DT Journal
 LA English
 AB Four acyl-arginyl-p-nitroanilides, 9 acetyl-(or benzoyl)-aminoacyl-arginyl-p-nitroanilides and 12 acyl-(or free α -amino)-dipeptidyl-arginyl-p-nitroanilides were synthesized, and the kinetic parameters for tryptic hydrolysis of these substrates were determined in 100 mM Tris-HCl buffer, pH 8.0, containing 10 mM CaCl₂ at 37°. Among the acyl-arginyl-p-nitroanilides, octanoyl-Arg-pNA (where pNA=p-nitroanilide and Arg = arginine) was hydrolyzed 4-fold more rapidly by trypsin than the commonly used substrate benzoyl-Arg-pNa. The best trypsin substrates contain proline and noreleucine at subsite P2, indicating that unbranched aliphatic side chain folded as the β , γ , and δ methylenes are in proline provides the most favorable conditions for S2P2 interaction. Extending the length of the substrates from di- to tripeptidyl-pNA did not have a large influence on the kinetic parameters. However, phenylalanine (Phe) at the P3 position had a clear favorable effect, in contrast to proline, which is unfavorable only when the group is present at P4. The series Ac-Phe (or D-Phe)-Gly-Arg-pNA and Phe (or D-Phe)-Gly-Arg-pNA were studied. The benzyl side chain of D-Phe has a more favorable interaction at S3 than Phe (Phe = phenylalanine). A P4-CO...HN-S4 H.bond is proposed to stabilize P3/S3 interaction when an acetyl group is present on the α -amino group of the Phe residue, and the reverse would be expected to occur for the corresponding D-epimer.
 IT 103418-67-3P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation and trypsin reaction kinetics with)
 RN 103418-67-3 CAPLUS
 CN L-Argininamide, N-benzoylglycyl-N-(4-nitrophenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 24 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1986:497888 CAPLUS
 DN 105:97888
 TI Synthesis of Na^+ - (benzoylglycyl)- and Na^+ - (benzyloxycarbonylglycyl)-4-amidinophenylalanine as thrombin inhibitors
 AU Voigt, B.; Wagner, G.
 CS Sekt. Biowiss., Karl-Marx-Univ., Leipzig, DDR-7010, Ger. Dem. Rep.
 SO Pharmazie (1985), 40(8), 527-9
 CODEN: PHARAT; ISSN: 0031-7144
 DT Journal
 LA German
 OS CASREACT 105:97888
 AB Dipeptides I ($R = \text{Bz}$, $\text{PhCH}_2\text{O}_2\text{C}$) were condensed with HNR_1R_2 ($\text{NR}_1\text{R}_2 =$ piperidino, pyrrolidino, morpholino, NBu_3) to give dipeptide amides II (R , R_1 , $\text{R}_2 = \text{same}$), which were treated with H_2S to give thioamides III, which were S -methylated with MeI to give thioimidic esters IV, which were treated with NH_4OAc to give title compds. V. V can be used as thrombin inhibitors; V ($R = \text{PhCH}_2\text{O}_2\text{C}$, $\text{NR}_1\text{R}_2 = \text{piperidino}$) was the most effective inhibitor.
 IT 103879-80-7P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation and amidation of)
 RN 103879-80-7 CAPLUS
 CN Phenylalanine, N-(N-benzoylglycyl)-4-cyano-, 4-nitrophenyl ester (9CI)
 (CA INDEX NAME)

L71 ANSWER 25 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1986:456903 CAPLUS
 DN 105:56903
 TI Synthesis and kinetic parameters of hydrolysis by trypsin of some acyl-arginyl-p-nitroanilides and peptides containing arginyl-p-nitroanilide
 AU Juliano, M. A.; Juliano, L.
 CS Dep. Biofis., Esc. Paulista Med., Sao Paulo, 04034, Brazil
 SO Brazilian Journal of Medical and Biological Research (1985), 18(4), 435-45
 CODEN: BJMRDK; ISSN: 0100-879X
 DT Journal
 LA English
 AB Four acylarginine-p-nitroanilides, 9 acetyl- (or benzoyl)aminoacylarginine-p-nitroanilides, and 12 acyl- (or free α -amino-)dipeptidylarginine-p-nitroanilides were synthesized, and the kinetic parameters for trypsic hydrolysis of these substrates were determined in 100 mM Tris-HCl buffer, pH 8.0, containing 10 mM CaCl₂ at 37°. Among the acylarginine-p-nitroanilides, octanoylarginine-p-nitroanilide was hydrolyzed 4-fold more rapidly by trypsin than the commonly used substrate, benzoylarginine-p-nitroanilide. The best trypsin substrates contained proline and norleucine at subsite P2, indicating that unbranched aliphatic side-chain folded, as the β , γ , and δ methylenes are in proline, provides the most favorable conditions for S2P2 interaction. Extending the length of the substrates from di- to tripeptidyl-p-nitroanilide did not have a large influence on the kinetic parameters. However, phenylalanine at the P3 position had a clearly favorable effect, in contrast to proline, which was unfavorable only when the benzoyl group was present at P4. The series, Ac-Phe-(or D-Phe)-Gly-Arg-p-nitroanilide and Phe-(or D-Phe)-Gly-Arg-p-nitroanilide were studied. The benzyl side-chain of D-phenylalanine had a more favorable interaction at S3 than phenylalanine. A P4-CO...HN-S4 H-bond was proposed to stabilize the P3/S3 interaction when an Ac group was present on the α -NH₂ group of the phenylalanine residue, and the reverse would be expected to occur for the corresponding D-epimer.
 IT 103418-67-3P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation and reaction kinetics with trypsin)
 RN 103418-67-3 CAPLUS
 CN L-Argininamide, N-benzoylglycyl-N-(4-nitrophenyl)-(9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 26 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1985:25017 CAPLUS
 DN 102:25017
 TI Synthesis of N^{α} -(arylsulfonylglycylglycyl)-4-amidinophenylalanine amides as thrombin inhibitors
 AU Voigt, B.; Wagner, G.
 CS Sekt. Biowiss., Karl-Marx-Univ., Leipzig, Ger. Dem. Rep.
 SO Pharmazie (1984), 39(6), 379-81
 CODEN: PHARAT; ISSN: 0031-7144
 DT Journal
 LA German
 AB The title compds. I (R = piperidine, pyrrolidino, morpholino, BuNH; R1 = p-tolyl, α -naphthyl, β -naphthyl) were prepared as thrombin inhibitors. Aminolysis of 4-R1SO₂NHCH₂CONHCH₂COR₂ (II, R₂ = 4-O₂NC₆H₄O) with 4-NCC₆H₄CH₂CH(NH₂)CO₂H.HCl gave II [R₂ = NHCH(CO₂R₃)CH₂C₆H₄R₄-4] (III, R₃ = H, R₄ = cyano), which were esterified to give III (R₃ = OC₆H₄NO₂-4, R₄ = cyano) and the product treated with amines to give III (R₃ = R, R₄ = cyano). H₂S treatment gave III (R₃ = R, R₄ = CSNH₂) which were methylated to III [R₃ = R, R₄ = C(SMe):NH].HI and the products treated with NH₄OAc in MeOH to give I.HI. The (arylsulfonyl)glycylglycine group gave decreased thrombin inhibitory activity.

IT 93886-72-7P 93886-73-8P 93909-49-0P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation and aminolysis of, with cyanophenylalanine)

RN 93886-72-7 CAPLUS
 CN Glycine, N-[N-[(4-methylphenyl)sulfonylglycyl]-, 4-nitrophenyl ester (9CI) (CA INDEX NAME)

RN 93886-73-8 CAPLUS
 CN Glycine, N-[N-(1-naphthalenylsulfonylglycyl)-, 4-nitrophenyl ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

RN 93909-49-0 CAPLUS
 CN Glycine, N-[N-(2-naphthalenylsulfonyl)glycyl]-, 4-nitrophenyl ester (9CI)
 (CA INDEX NAME)

L71 ANSWER 27 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1984:611666 CAPLUS
 DN 101:211666
 TI Synthesis of Na^+ -arylsulfonylglycylamidinophenylalaninamides as highly active inhibitors of thrombin
 AU Wagner, G.; Voigt, B.; Vieweg, H.
 CS Sekt. Biowiss., Karl-Marx-Univ. Leipzig, Leipzig, DDR-7010, Ger. Dem. Rep.
 SO Pharmazie (1984), 39(4), 226-30
 CODEN: PHARAT; ISSN: 0031-7144
 DT Journal
 LA German
 AB The title compds. I (R = piperidino, pyrrolidino, BuNH, PhNH, morpholino; R1 = p-tolyl, α -, β -naphthyl; amidino at 3 or 4), as the HCl or HI salts, were prepared from purified cyanophenylalanines after introducing the arylsulfonylglycyl group, activating the CO₂H group by forming the 4-O₂NC₆H₄ ester, subsequent aminolysis, and conversion of the cyano into an amidino function. Addnl., several esters and an acid with the basic structure of I were prepared. I (R = piperidino, R1 = 2-naphthyl, 4-amidino) had the strongest antithrombin activity with K_i = 6 + 10⁻⁹ mol/L using S-2238 substrate.
 IT 84792-45-0P 92740-67-5P 92771-17-0P
 92771-18-1P 92771-19-2P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation and aminolysis of)
 RN 84792-45-0 CAPLUS
 CN Phenylalanine, 4-cyano-N-[N-[(4-methylphenyl)sulfonyl]glycyl]-, 4-nitrophenyl ester (9CI) (CA INDEX NAME)

RN 92740-67-5 CAPLUS
 CN Phenylalaninamide, N-[(4-methylphenyl)sulfonyl]glycyl-4-[imino(methylthio)methyl]-N-phenyl-, monohydriodide (9CI) (CA INDEX NAME)

• HI

RN 92771-17-0 CAPLUS
CN Phenylalanine, 3-cyano-N-[N-[(4-methylphenyl)sulfonyl]glycyl]-, 4-nitrophenyl ester (9CI) (CA INDEX NAME)

RN 92771-18-1 CAPLUS
CN Phenylalanine, 4-cyano-N-[N-(1-naphthalenylsulfonyl)glycyl]-, 4-nitrophenyl ester (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

RN 92771-19-2 CAPLUS

CN Phenylalanine, 4-cyano-N-[N-(2-naphthalenylsulfonyl)glycyl]-,
4-nitrophenyl ester (9CI) (CA INDEX NAME)

IT 92771-23-8P

RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation and hydrosulfuration of)
 RN 92771-23-8 CAPLUS
 CN Phenylalaninamide, N-[(4-methylphenyl)sulfonyl]glycyl-4-cyano-N-phenyl-
 (9CI) (CA INDEX NAME)

IT 92771-14-7P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT
 (Reactant or reagent)
 (preparation and S-methylation of)
 RN 92771-14-7 CAPLUS
 CN Phenylalaninamide, N-[(4-methylphenyl)sulfonyl]glycyl-4-
 (aminothioxomethyl)-N-phenyl- (9CI) (CA INDEX NAME)

IT 92842-14-3P
 RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); THU (Therapeutic use);
 BIOL (Biological study); PREP (Preparation); USES (Uses)
 (preparation of, as thrombin inhibitor)
 RN 92842-14-3 CAPLUS
 CN Phenylalaninamide, N-[(4-methylphenyl)sulfonyl]glycyl-4-(aminoiminomethyl)-
 N-phenyl-, monohydrochloride (9CI) (CA INDEX NAME)

● HCl

L71 ANSWER 28 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1983:107770 CAPLUS

DN 98:107770

TI N_α-Aryl- or N_α-heteroaryl sulfonyl aminoacylated amidinophenylalanine amidesIN Wagner, Guenther; Voigt, Bernd; Vieweg, Helmut; Markwardt, Fritz;
Stuerzebecher, Joerg

PA Ger. Dem. Rep.

SO Ger. (East), 17 pp.

CODEN: GEXXA8

DT Patent

LA German

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DD 155954	Z	19820721	DD 1981-227387	19810203
	DD 155954	B1	19881109		
PRAI	DD 1981-227387		19810203		
OS	CASREACT 98:107770				

AB Title compds. I (R = aryl, heteroaryl; R1 = H, alkyl, aryl, aralkyl; R2 = alkyl, aryl, aralkyl; NR1R2 = heteroaliph. ring; n = 1-5; amidino group at m- or p-position) were prepared as thrombin inhibitors for use as anticoagulants (no data). Thus, Tos-Gly-Cl (Tos = tosyl) was coupled with 3- and 4-cyanophenylalanine-HCl in 1N NaOH to give peptide II and its p-isomer, which were esterified with HO-C₆H₄-NO₂-4 by DCC to give the p-nitrophenyl esters, which were treated with piperidine to give piperidides III (R₃ = m-CN, p-CN). The latter were treated with H₂S to give the thioamides, which were treated with MeI and then with NH₄OAc/MeOH to give III [R₃ = m-C(:NH)NH₂, p-C(:NH)NH₂].

IT 84792-45-0P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(preparation and reaction of, with piperidine)

RN 84792-45-0 CAPLUS

CN Phenylalanine, 4-cyano-N-[N-[(4-methylphenyl)sulfonyl]glycyl]-, 4-nitrophenyl ester (9CI) (CA INDEX NAME)

IT 84792-59-6P

RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)

RN 84792-59-6 CAPLUS

CN Phenylalaninamide, N-[(4-methylphenyl)sulfonyl]glycyl-4-(aminoiminomethyl)-N-phenyl-, monohydriodide (9CI) (CA INDEX NAME)

● HI

L71 ANSWER 29 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1983:67751 CAPLUS
 DN 98:67751
 TI Membrane-bound kidney neutral metalloendopeptidase: interaction with synthetic substrates, natural peptides, and inhibitors
 AU Almenoff, June; Orlowski, Marian
 CS Mt. Sinai Sch. Med., City Univ. New York, NY, 10029, USA
 SO Biochemistry (1983), 22(3), 590-9
 CODEN: BICHAW; ISSN: 0006-2960
 DT Journal
 LA English
 AB A neutral metalloendopeptidase with thermolysin-like specificity was purified to apparent homogeneity from the particulate fraction of rabbit kidney homogenates. After preparation of a deoxycholate extract, the enzyme was released from membranes by papain treatment and separated from other membrane-bound enzymes including dipeptidyl aminopeptidase IV, aminopeptidase M, and γ -glutamyl transpeptidase by chromatog. on Sephadex G-200, phenyl-Sepharose, and CM-cellulose columns. The isolated enzyme had a mol. weight of .apprx.95,000 and was inhibited by thiols, metal chelators, phosphoramidon, and thiorphane. It was apparently identical with kidney neutral metalloendopeptidase and similar to bovine pituitary metalloendopeptidase and to an enzyme designated as enkephalinase. Studies with a series of synthetic substrates showed that the enzyme preferentially cleaved bonds in which the amino group was provided by a hydrophobic amino acid residue. Several biol. active peptides, such as methionine- and leucine-enkephalin, dynorphin, bradykinin, and angiotensin I, were degraded by cleavage of the same type of bond. The endopeptidase acted as a dipeptidyl carboxypeptidase on peptides having a hydrophobic residue in the penultimate position. N-[1(RS)-Carboxy-2-phenylethyl] derivs. of phenylalanyl- and alanyl-p-aminobenzoate were synthesized and tested as potential inhibitors. The two diastereomers of N-[1(R,S)-carboxy-2-phenylethyl]phenylalanyl-p-aminobenzoate were separated by high-pressure liquid chromatog.; the more potent isomer had a Ki. of 2.9 + 10⁻⁸ M. The inhibitory potency of the alanyl derivs. was lower by almost 2 orders of magnitude. The data indicated that, as with thermolysin, a hydrophobic residue in the P1' position and the carboxylate group complexing with the active-site Zn accounted for the inhibitory action of these derivs.
 IT 84041-48-5P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of and metalloendopeptidase of kidney inhibition by)
 RN 84041-48-5 CAPLUS
 CN L-Phenylalaninamide, N-benzoylglycyl-N-(4-carboxyphenyl)- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 30 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1983:49235 CAPLUS
 DN 98:49235
 TI Two automated methods for plasma antithrombin III compared, and the clinical significance of the results
 AU Prellwitz, Winfried; Schmitt, Karl Friedrich; Machner, Mathias; Schuster, Carl Johannes; Weilemann, Ludwig
 CS Dep. Clin. Chem., Univ. Mainz, Mainz, D 6500, Fed. Rep. Ger.
 SO Clinical Chemistry (Washington, DC, United States) (1982), 28(11), 2249-53
 CODEN: CLCHAU; ISSN: 0009-9147
 DT Journal
 LA English
 AB Antithrombin III (AT III) activity was determined with 2 different new chromogenic substances [Chromozym-TH (tosyl-Gly-Arg-p-nitroanilide) and α -N-carbobenzoyloxy-L-lysine-thiobenzyl ester] with both a discrete (aca) and a centrifugal analyzer (COBAS BIO). The correlation between the Chromozym-TH/centrifugal analyzer and Du Pont ester/aca methods was good. Precision within and between runs was similar to that for typical enzymic detns. AT III in plasma of healthy men and women ranged 76.6-141.1% (100% = normal). No significant differences ascribable to oral contraceptives were found. AT III activity was decreased in 27% of patients with acute thromboembolic diseases, in 48% of patients the 1st day after abdominal operations without complications, and in 100% of patients with reversible or irreversible shock. In patients receiving continuous therapy with heparin (1500 USP units/h), no decrease in AT III within 96 h of beginning treatment was observed. Plasma from 14 of 16 patients with disseminated intravascular coagulopathy showed a decrease in AT III of 17-51% of normal before and during heparin therapy. All 16 patients were treated with AT III concentrate. During such treatment, AT III in plasma must be monitored over short intervals to assure that sufficiently high proportions of AT III (>70% of normal) are reached.

IT 84213-42-3
 RL: BIOL (Biological study)
 (in antithrombin III determination, in blood plasma of humans)
 RN 84213-42-3 CAPLUS
 CN L-Argininamide, N-[$(4$ -methylphenyl)sulfonyl]glycyl-N-(4-nitrophenyl)-
 (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 31 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1977:439805 CAPLUS

DN 87:39805

TI Synthesis of some N4-(amino acid or dipeptide)-sulfanilamide derivatives

AU El-Naggar, A. M.; Zaher, M. R.

CS Fac. Sci., Al-Azhar Univ., Cairo, Egypt

SO Roczniki Chemii (1976), 50(12), 2187-91

CODEN: ROCHAC; ISSN: 0035-7677

DT Journal

LA English

AB 4-RNH₂C₆H₄SO₂NHR₁ [I; R = Bz-Gly, R₁ = H, R₂, R₃, C(:NH)NH₂; R = Tos-β-Ala, R₁ = R₂, C(:NH)NH₂; where Tos = 4-MeC₆H₄SO₂] were prepared by condensing R-NHNH₂ with the appropriate 4-H₂NC₆H₄SO₂NHR₁ (II) by azide couplings. I (R = phthaloylglycyl, phthaloyl-β-alanyl, R₁ = H, R₂, R₃; R = Tos-β-Ala, Tos-Ala, R₁ = R₃) were prepared by acylating the appropriate II with the appropriate R-Cl. Bz-Gly-NHNH₂ was coupled to H-X-OMe (X = Ala, Val) to give Bz-Gly-X-OMe which were treated with NH₂NH₂ to give Bz-Gly-X-NHNH₂ (III). Bz-Gly-X-NHC₆H₄SO₂NHR₁ (IV; X = Ala, R₁ = R₂, R₃; X = Val, R₁ = R₃) were prepared by coupling III to the appropriate II. I (X = Tos-β-Ala, Tos-Ala; R₁ = R₃) possess antibacterial against Bacillus subtilis and Escherichia coli, but they were inactive against Micrococcus pyogenes and several other bacteria. IV (X = Ala, R₁ = R₂) was active against B. subtilis and inactive against all other microorganisms tested.

IT 63203-26-9P

RL: BAC (Biological activity or effector, except adverse); BSU (Biological study, unclassified); SPN (Synthetic preparation); BIOL (Biological study); PREP (Preparation)

(preparation and antibacterial activity of)

RN 63203-26-9 CAPLUS

CN L-Alaninamide, N-benzoylglycyl-N-[4-[(2-thiazolylamino)sulfonyl]phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 63203-25-8P 63203-27-0P

RL: SPN (Synthetic preparation); PREP (Preparation)
(preparation of)

RN 63203-25-8 CAPLUS

CN L-Alaninamide, N-benzoylglycyl-N-[4-[(2-pyrimidinylamino)sulfonyl]phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 63203-27-0 CAPLUS

CN L-Valinamide, (N-benzoylglycyl)-N-[4-[(2-pyrimidinylamino)sulfonyl]phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 32 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1977:433009 CAPLUS
 DN 87:33009
 TI Metal complexes and biological activities of some peptides containing glycine, alanine, and hippuric acid
 AU El-Naggar, A. M.; Shehata, Y. A.; Zaher, M. R.
 CS Fac. Sci., Al-Azhar Univ., Cairo, Egypt
 SO Roczniki Chemii (1977), 51(2), 233-7
 CODEN: ROCHAC; ISSN: 0035-7677
 DT Journal
 LA English
 AB Spectrophotometric studies were carried out on the formation of Cu, Fe, and Ni complexes with di- and tripeptides containing glycine, alanine, and hippuric acid. Replacement of the end amino acid in the peptide by 2-aminopyridine, sulfadiazine, sulfathiazole, sulfanilamide, sulfaguanidine, urea, or β -alanine gave compds. which did not form the normal complexes with Cu²⁺, Fe³⁺, and Ni²⁺ ions. The hydrazides of the peptides participated in the usual way in the formation of complexes. Some of the obtained complexes exhibited distinct antibacterial activity.
 IT 63203-25-8DP, copper complexes 63203-26-9DP, copper complexes 63203-27-0DP, copper complexes
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)
 RN 63203-25-8 CAPLUS
 CN L-Alaninamide, N-benzoylglycyl-N-[4-[(2-pyrimidinylamino)sulfonyl]phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 63203-26-9 CAPLUS
 CN L-Alaninamide, N-benzoylglycyl-N-[4-[(2-thiazolylamino)sulfonyl]phenyl]- (9CI) (CA INDEX NAME)

Absolute stereochemistry.

RN 63203-27-0 CAPLUS

CN L-Valinamide, (N-benzoylglycyl)-N-[4-[(2-pyrimidinylamino)sulfonyl]phenyl]-
(9CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 33 OF 47 CAPLUS COPYRIGHT 2004 ACS ON STN
 AN 1977:73090 CAPLUS
 DN 86:73090
 TI Synthesis of some protected amino acid and dipeptide derivatives of desmethylvisnagin
 AU Elgamal, M. H. A.; El-Naggar, A. M.; El-Tawii, B. A. H.; Abd El-Salam, A. M.
 CS Natl. Res. Cent., Cairo, Egypt
 SO Roczniki Chemii (1976), 50(4), 765-8
 CODEN: ROCHAC; ISSN: 0035-7677
 DT Journal
 LA English
 AB Aminodemethylvisnagins (I; R₁ = phthaloyl, p-MeC₆H₄SO₂; X = Gly, Ala, β-Ala, Val, Leu, D-Phe, Ser; R₁ = p-MeC₆H₄SO₂, X = Ala-Gly, Gly-Gly) were prepared by acylating II with R-X-Cl. II was prepd by reducing III with Zn in EtOH. I did not have microbiol. activity (no data).
 IT 61635-38-9P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)
 RN 61635-38-9 CAPLUS
 CN Glycinamide, N-[(4-methylphenyl)sulfonyl]glycyl-N-(4-hydroxy-7-methyl-5-oxo-5H-furo[3,2-g][1]benzopyran-9-yl)- (9CI) (CA INDEX NAME)

PAGE 1-A

PAGE 2-A

L71 ANSWER 34 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1976:44621 CAPLUS

DN 84:44621

TI Synthesis of tertiary amines by selective diborane reduction

AU Russ, Pamela A.; Caress, Edward A.

CS Dep. Chem., George Washington Univ., Washington, DC, USA

SO Journal of Organic Chemistry (1976), 41(1), 149-51

CODEN: JOCEAH; ISSN: 0022-3263

DT Journal

LA English

OS CASREACT 84:44621

AB N-ethyl-N-(2-tosylaminoethyl)glycine hydrochloride was prepared by protecting the amine and carboxyl functions of glycylglycine with tosyl and pentachlorophenyl groups, resp., and then selectively reducing the amide carbonyl with diborane to give N-(2-tosylaminoethyl)glycine pentachlorophenyl ester (II). Acetylation of II followed by selective amide reduction with diborane and hydrolysis gave N-ethyl-N-(2-tosylaminoethyl)glycine.

IT 57066-12-3P

RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
(preparation and diborane reduction of)

RN 57066-12-3 CAPLUS

CN Glycine, N-[N-[(4-methylphenyl)sulfonyl]glycyl]-, pentachlorophenyl ester (9CI) (CA INDEX NAME)

L71 ANSWER 35 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1975:586299 CAPLUS

DN 83:186299

TI Light-sensitive color photographic material with diffusion-resistant cyan color couplers

IN Credner, Hans H.

PA Agfa-Gevaert, Fed. Rep. Ger.

SO Ger. Offen., 18 pp. Addn. to Ger. Offen. 2,325,461.

CODEN: GWXXBX

DT Patent

LA German

FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	DE 2349562	A1	19750410	DE 1973-2349562	19731003
	GB 1469696	A	19770406	GB 1974-21738	19740516
	FR 2229998	A1	19741213	FR 1974-17377	19740517
	FR 2229998	B1	19780929		
	IT 1013190	A	19770330	IT 1974-51067	19740517
	CH 600387	A	19780615	CH 1974-6842	19740517
	JP 50020723	A2	19750305	JP 1974-55025	19740518

PRAI DE 1973-2325461 19730519
DE 1973-2349562 19731003

AB Naphtholic and phenolic light-stable, diffusion-resistant, cyan couplers for color photog. are described. Especially useful are 1-hydroxy-2-[δ -(4-dodecyloxyphenoxy)butyl]naphthamide (I), 1-hydroxy-2-[δ -(4-dodecyloxyphenoxy)butyl]-4-chloro-naphthoylglycinamide, 2-[δ -(4-dodecyloxyphenoxy)propionamido]-4,6-dichloro-5-methylphenol. Thus, I (prepared by heating δ -(4-dodecyloxyphenoxy)butylamine with Ph 1-hydroxy-2-naphthoate for 3 hr at 130°) 2.1 g in EtOAc 10 ml was added to a 5% aqueous gelatin solution containing Na dodecylsulfonate 0.4 g, emulsified, added to a gelatin-Ag halide emulsion containing 0.024 moles Ag halide, coated on a cellulose acetate support, exposed through a cyan step wedge, developed in a developer containing N,N-diethyl-p-phenylenediamine, and then exposed to a fluorescent lamp (7.5 + 106 lx-sec) to give at a d. of 0.5 a 12% decrease in d. and at a d. of 1.5 a 6% decrease in d. vs. 26 and 8, resp., for a control containing 1-hydroxy-2-[δ -(2,4-di-tert-amylphenoxy)butyl]naphthamide.

IT 57249-77-1

RL: TEM (Technical or engineered material use); USES (Uses)
(photog. cyan coupler)

RN 57249-77-1 CAPLUS

CN 2-Naphthalenecarboxamide, 4-chloro-N-[2-[[4-[4-(dodecyloxy)phenoxy]butyl]amino]-2-oxoethyl]-1-hydroxy- (9CI) (CA INDEX NAME)

L71 ANSWER 36 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1967:105183 CAPLUS
 DN 66:105183
 TI Amino acids and peptides. XXV. The mechanism of the base-catalyzed racemization of the p-nitrophenyl esters of acylpeptides
 AU Antonovics, Ieva; Young, Geoffrey Tyndale
 CS Oxford Univ., Oxford, UK
 SO Journal of the Chemical Society [Section] C: Organic (1967), (7), 595-601
 CODEN: JSOOAX; ISSN: 0022-4952
 DT Journal
 LA English
 AB cf. CA 64, 5200f. The p-nitrophenyl esters of benzoyl- and benzyloxycarbonyl glycyl-L-phenylalanine (I) are racemized by Et₃N in CH₂Cl₂ much more rapidly than are the analogous esters of benzyloxycarbonyl- and phthaloyl-L-phenylalanine. The acyldipeptide esters react reversibly with Et₃N to give the corresponding oxazolone, the equilibrium being greatly in favor of the ester. The racemization of benzoylglycyl-L-phenylalanine p-nitrophenyl ester by Et₃N is suppressed by the addition of a large excess of the oxazolone derived from benzyloxycarbonylglycylphenylalanine, which reacts immediately with the p-nitro-phenoxide anion and so prevents the back-reaction by which racemic ester is formed. This experiment distinguishes clearly between the direct exchange mechanism of racemization and that through the oxazolone. Such racemization proceeds through the intermediate formation, racemization, and coupling of the corresponding oxazolone. Evidence is also given that the conversion of I into its p-nitrophenyl ester by means of diphenylketene is accompanied by racemization. 23 references.
 IT 2900-37-0P
 RL: RCT (Reactant); SPN (Synthetic preparation); PREP (Preparation); RACT (Reactant or reagent)
 (preparation and racemization of)
 RN 2900-37-0 CAPLUS
 CN Alanine, N-hippuroyl-3-phenyl-, p-nitrophenyl ester, L- (8CI) (CA INDEX NAME)

Absolute stereochemistry.

IT 13716-78-4P 13716-80-8P
 RL: SPN (Synthetic preparation); PREP (Preparation)
 (preparation of)
 RN 13716-78-4 CAPLUS
 CN Alanine, N-hippuroyl-3-phenyl-, p-chlorophenyl ester, DL- (8CI) (CA INDEX NAME)

RN 13716-80-8 CAPLUS
CN Alanine, N-hippuroyl-3-phenyl-, p-nitrophenyl ester, DL- (8CI) (CA INDEX NAME)

L71 ANSWER 37 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1965:489240 CAPLUS
 DN 63:89240
 OREF 63:16450d-f
 TI Contribution to the discussion on racemization
 AU Young, G. T.; Antonovics, I.
 SO Acta Chimica Academiae Scientiarum Hungaricae (1965), 44(1-2), 43-4
 CODEN: ACASA2; ISSN: 0001-5407

DT Journal
 LA English
 AB cf. preceding abstract When benzoylglycyl-L-phenylalanine p-nitrophenyl ester in tetrahydrofuran was treated with one equivalent of Et₃N the optical rotation fell very much more rapidly than when the benzyloxycarbonyl(CBZ)-L-phenylalanine ester was similarly treated, and when CH₂Cl₂ was used as solvent, benzoylglycyl-DL-phenylalanine p-nitrophenyl ester separated out within 1 hr. at room temperature However, the ir absorption of the solution showed only a very small peak at 1830 cm.⁻¹ (oxazolone C:O), and the same observation was made with the CBZ analog. Addition of 1 equivalent each of

Et₃N and p-nitrophenol to the oxazolones very rapidly extinguished the 1830 cm.⁻¹ peak. Equimolar amounts of CBZ-L-phenylalanine p-nitrophenyl ester and of the oxazolone derived from benzoylglycyl-L-phenylalanine in CH₂Cl₂ were treated with one equivalent of Et₃N 1 hr. at room temperature The p-nitrophenyl ester was recovered. Chromatography showed the presence of the p-nitrophenyl esters of both the CBZ-and the benzoyl-dipeptide esters, and the latter ester was isolated (as racemate). This evidence is viewed as consistent with racemization proceeding through the oxazolone formed rapidly but being present in only small concentration

IT 2900-37-0, Alanine, N-hippuroyl-3-phenyl-, p-nitrophenyl ester, L-
 (coupling reactions of, racemization in relation to)

RN 2900-37-0 CAPLUS

CN Alanine, N-hippuroyl-3-phenyl-, p-nitrophenyl ester, L- (8CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 38 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1965:480972 CAPLUS
 DN 63:80972
 OREF 63:14976g-h
 TI The mechanism of racemization during the coupling of acyl peptides
 AU Antonovics, I.; Young, G. T.
 CS Univ. Oxford, UK
 SO Chemical Communications (London) (1965), (17), 398-9
 CODEN: CCOMA8; ISSN: 0009-241X
 DT Journal
 LA English
 AB When a solution of benzoyl-L-leucine p-nitrophenyl ester in dichloromethane was treated with one molar proportion of triethylamine, the optical rotation decreased by 50% in 50 min. at room temperature -far more rapidly than with phthaloyl-L-phenylalanine p-nitrophenyl ester (.apprx. 5% in the same time). It was concluded that the racemization followed chiefly, if not exclusively, through the oxazolone.
 IT 2900-37-0, Alanine, N-hippuroyl-3-phenyl-, p-nitrophenyl ester, L- (coupling and racemization of)
 RN 2900-37-0 CAPLUS
 CN Alanine, N-hippuroyl-3-phenyl-, p-nitrophenyl ester, L- (8CI) (CA INDEX NAME)

Absolute stereochemistry.

L71 ANSWER 39 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1962:31703 CAPLUS

DN 56:31703

OREF 56:6084e-i,6085a-i,6086a-f

TI Insulin peptides. I. Synthesis of cysteine-containing peptides related to the A-chain of sheep insulin

AU Katsoyannis, Panayotis G.

CS Univ. of Pittsburgh, Pittsburgh, PA

SO Journal of the American Chemical Society (1961), 83, 4053-7

CODEN: JACSAT; ISSN: 0002-7863

DT Journal

LA Unavailable

OS CASREACT 56:31703

AB Several protected cysteine-containing peptides with amino acid sequences found in the intra-chain ring region of the A-chain of sheep insulin were synthesized. For the protection of the SH functions of these peptides, the p-nitrobenzyl, carbobenzyloxy, and benzylthiomethyl groups, which can be removed selectively, were employed. Evidence is presented that the S-benzyl-thiomethyl-L-cysteine (I) does not remain intact on treatment with HBr in AcOH, contrary to a previous report by Pimlott and Young (CA 53, 9082f). S-p-Nitrobenzyl-L-cysteine (II) (15.2 g.) in 20 cc. cold H₂O and 60 cc. N NaOH treated in portions with stirring with 12.8 cc. ClCO₂CH₂Ph and 80 cc. N NaOH during 0.5 hr., stirred 0.5 hr. at room temperature, washed with Et₂O, acidified with HCl, and extracted with EtOAc yielded

23 g. oily N-carbobenzyloxy derivative (III) of II. III in Et₂O with cyclohexylamine in Et₂O gave the cyclohexylamine salt of III, needles, m. 129-30° (EtOH-Et₂O) (all m.ps. are corrected), [α]28D -2.2° (c 1, EtOH). L-Alanine Me ester-HCl (4.2 g.) in 50 cc. tetrahydrofuran (THF) stirred 20 min. with 4.1 cc. Et₃N, cooled, filtered, treated with 11 g. III and 6:2 g. N,N'-dicyclohexylcarbodiimide (IV) in 50 cc. THF, kept at 0° overnight, filtered from the N,N'-dicyclohexylurea (V), the THF replaced by 600 cc. EtOAc, and the solution worked up gave 8.95 g. Me ester (VI) of N-carbobenzyloxy-S-p-nitrobenzyl-L-cysteinyl-L-alanine (VII), m. 173-4°, [α]28D -39.6° (c 1.5, HCONMe₂). VI (4.75 g.) in 50 cc. dioxane and 50 cc. Me₂CO treated with stirring during 0.5 hr. with 11 cc. N NaOH, stirred 45 min. at room temperature, diluted with

150 cc. cold H₂O, and acidified with 6N HCl gave 3.65 g. VII, m. 157-9° (50% aqueous EtOH), [α]28D -45.5° (c 1, HCONMe₂). VII (6.93 g.) and 2.1 cc. Et₃N in 70 cc. THF treated at -5° with 2 cc.

ClCO₂CH₂CHMe₂ (VIII) and after 10 min. with Et glycinate (from 3.5 g. HCl salt and dry NH₃) in 25 cc. THF, kept 10 min. at -5° and 45 min. at room temperature, and worked up gave 7 g. N-carbobenzyloxy-S-p-nitrobenzyl-L-cysteinyl-L-alanylglycine Et ester (IX), needles, m. 212° (60% aqueous AcOH), [α]28D -25.4° (c 1, HCONMe₂). Carbobenzyloxyglycine (8.20 g.) in 50 cc. THF containing 5. cc. Et₃N treated at -5° with 5.28 cc. VIII and after 10 min. with valine Me ester (from 6.8 g. HCl salt in 80 cc. THF and 5.6 cc. Et₃N), stirred 15 min. at -5° and 1 hr. at room temperature, and evaporated to dryness in vacuo, and the residue dissolved in

150 cc. EtOAc and 50 cc. H₂O, and the organic layer worked up gave 8.5 g. N-carbobenzyloxyglycyl-L-valine Me ester (X), m. 78° [α]28D -15.5° (c 1.5, EtOH). IX (2.21 g.) in 4 cc. AcOH treated 1 hr. at room temperature with 10 cc. 4N HBr-AcOH, concentrated to 1/3 volume in vacuo, diluted with 100 cc. dry Et₂O, and filtered, the residue washed, dried, suspended in 10 cc. THF and 0.87 cc. Et₃N, stirred 10 min., and filtered, the

filtrate added to 2.9 g. VII and 0.86 g. Et₃N in 20 cc. THF which was previously treated at -5° with 0.82 cc. VIII, the mixture stirred 15 min. at -5° and 1 hr. at room temperature, and evaporated gave 2.60 g. N-carbobenzyloxy-S-p-nitrobenzyl-L-cysteinyl-L-alanylglucyl-L-valine Me ester (XI), needles, m. 200° (50% aqueous AcOH), [α]28D -18° (c 1, HCONMe₂). VII (6 g.) in 40 cc. 2N HBr stirred 1 hr. at room temperature, concentrated in vacuo, dissolved in 15 cc. MeOH, and evaporated, the residual HBr salt, m. 126-8° dissolved in 50 cc. THF and 1.65 cc. Et₃N, stirred 15 min., cooled, filtered, added to 4.6 g. N,S-dicarbobenzyloxy-L-cysteine in 20 cc. tetrahydrofuran and 2.7 g. IV, kept 1 hr. at 0° and 16 hrs. at room temperature, treated with a few drops AcOH, filtered from V, and evaporated gave 6.4 g. N,S-dicarbobenzyloxy-L-cysteinyl-S-p-nitrobenzyl-L-cysteinyl-L-alanine Me ester, m. 173-4° (60% aqueous AcOH), [α]28D -54° (c 1, HCONMe₂). Powdered L-Cysteine-HCl (50 g.) in 70 cc. MeOH and 58 g. PhCH₂SCH₂Cl refluxed 0.5 hr., concentrated in vacuo, stirred 2 hrs. at room temperature with 150 cc. dioxane and 60 cc. H₂O while maintaining pH about 9 by the dropwise addition of 4N NaOH, diluted with 500 cc. H₂O washed with Et₂O, acidified with dilute HCl to pH 5.5, cooled several hrs., and filtered, and the residue suspended in 1.5 cc. boiling H₂O, dissolved with 6N HCl, treated with Norite, adjusted with dilute NH₄OH to pH 5.5, and filtered gave 45 g. I, m. 200° I (200 mg.) added to 10 cc. 2N HBr-AcOH, concentrated after 45 min. to a small volume in vacuo, and diluted with Et₂O gave a precipitate which chromatographed on paper gave 4 ninhydrin-pos. spots with R_f 0.19, 0.32, 0.77, and 0.87 (Partridge system). I (200 mg.) added to 6 cc. 4N HBr-AcOH, 3 cc. (EtO)₂P(O)H, and 3 cc. EtSMe and chromatographed on paper gave 1 main ninhydrin-pos. spot (R_f 0.77) and traces of 2 other ninhydrin-pos. materials, R_f 0.24 and 0.87. I (5.2 g.) in 42 cc. 98% HCO₂H treated dropwise during 15 min. at 8-12° with 14 cc. Ac₂O, stirred 1 hr., and diluted with 200 cc. cold H₂O gave 5.2 g. N-CHO derivative (XII) of I, m. 138° (H₂O), [α]27D -38.4° (c 1.24, 90% aqueous HCONMe₂). X (3.3 g.) in 8 cc. AcOH and 18 cc. 4N HBr-AcOH kept 45 min. at room temperature, concentrated to half-volume in vacuo, and diluted with 300 cc. dry Et₂O, the precipitate filtered off, repprd. from EtOH-Et₂O, dissolved in 10 cc. HCONMe₂, treated with 0.8 cc. Et₃N, filtered, treated with 1.8 g. XII in 20 cc. dioxane, cooled to 0°, treated with 1.35 g. IV, kept 18 hrs. at 5°, diluted with 20 cc. HCONMe₂, warmed to 45°, cooled to room temperature, acidified with AcOH, filtered from 1.38 g. V, mixed with 400 cc. H₂O containing 1 cc. AcOH, and filtered yielded 2.5 g. N-formyl-S-benzylthiomethyl-L-cysteinyl-S-p-nitrobenzyl-L-cysteinyl-L-alanylglucine Et ester, m. 212-15°, [α]27D -32.1° (c 0.99, HCONMe₂). X (7 g.) in 10 cc. AcOH and 25 cc. 4N HBr-AcOH kept 45 min. at room temperature, concentrated to half-volume, diluted with 400 cc. dry Et₂O, and filtered, the residue dissolved in 20 cc. HCONMe₂ and 60 cc. THF, treated with 1.8 cc. Et₃N, filtered, concentrated to 1/4 volume, mixed with 4.7 g. N,S-dicarbo-benzyloxy-L-cysteine, cooled to 5°, treated with 2.9 g. IV in 20 cc. dioxane, kept 18 hrs. at 5°, diluted with 20 cc. dioxane, warmed to room temperature, acidified with 1 cc. AcOH, filtered from 2.8 g. V, concentrated to about 50 cc., mixed with 400 cc. 5% aqueous KHCO₃, and filtered yielded 7 g. Et ester (XIII) of N,S-dicarbobenzyloxy-L-cysteinyl-S-p-nitro-benzyl-L-cysteinyl-L-alanylglucine (XIV), m. 197-8° (60% aqueous AcOH),

[α]_{28D} -36.8° (c 1, HCONMe₂). XIII (1.54 g.) in 80 cc. warm dioxane treated with 10 cc. N HCl, heated 1.5 hrs. at 60°, concentrated to 1/4 volume, and diluted with H₂O gave 1.4 g. XIV.H₂O, needles, m. 170-2° (60% aqueous AcOH), [α]_{28D} -36.2° (c 1, HCONMe₂). L-Leucinamide (4.6 g.) in 40 cc. HCONMe₂ treated with N-carbobenzyloxy-L-serine azide (from 8.5 g. hydrazide and 2.35 g. NaNO₂ in 75 cc. N HCl at 0°) in 150 cc. EtOAc, stirred 5 hrs. at 20° and 1 hr. at room temperature, diluted with 100 cc. EtOAc and 20 cc. EtOH, and worked up gave 6.6 g. N-carbobenzyloxy-L-seryl-L-leucinamide (XV), m. 181-3° (50% aqueous EtOH), [α]_{27D} 9.1° (c 1.07, HCONMe₂). S-Carbobenzyloxy-L-cysteine (12.75 g.) in 105 cc. 98% HCO₂H treated dropwise at 5° during 15 min. with 42 cc. Ac₂O, stirred 1 hr. at 10-15°, diluted with 350 cc. cold H₂O, and filtered gave 9.8 g. N-formyl-S-carbobenzyloxy-L-cysteine (XVI), m. 141-2° (hot H₂O), [α]_{27D} -41.6° (c 1.34, HCONMe₂). XV (5.25 g.) in 120 cc. EtOH containing 1.35 cc. concentrated HCl hydrogenated about 2 hrs. over 1 g. Pd-C, filtered, and evaporated, the residue dried by evaporation with absolute EtOH, dissolved in 25 cc. HCONMe₂, treated with 2.1 cc. Et₃N, filtered, treated with 4.25 g. XVI in 20 cc. dioxane and 3.3 g. IV, stirred 20 hrs. at 5°, warmed to room temperature, acidified with AcOH, filtered from V, and worked up gave 4.2 g. N-formyl-S-carbobenzyloxy-L-cysteinyl-L-seryl-L-leucinamide, m. 219° (80% aqueous EtOH), [α]_{27D} -13.3° (c 1.12, HCONMe₂). Me ester (9.7 g.) of I.HCl in 60 cc. THF treated with 4.3 cc. Et₃N, filtered, treated with 4.35 g. N-formyl-L-valine in 25 cc. THF and 6.8 g. IV, stirred 5 hrs. at 5° and 1 hr. at room temperature, acidified with a few drops AcOH, filtered from 6.9 g. V, concentrated to 15 cc., and diluted with 150 cc. H₂O containing 1 cc. AcOH gave 6.8 g. Me ester (XVII) of N-formyl-L-valyl-S-benzylthiomethyl-L-cysteine (XVIII), m. 128-9° (MeOH), [α]_{27D} -50.0° (c 1.46, HCONMe₂). XVIII (1.6 g.) in 30 cc. MeOH and 8 cc. N HCl refluxed 1 hr. and evaporated, and the residue evaporated 3 times with MeOH, dissolved in 15 cc. MeOH, and diluted with 100 cc. Et₂O gave 1.12 g. XVIII.HCl, m. 161-2°, [α]_{27D} -4.9° (c 1.12, HCONMe₂), Rf 0.74. N-Carbobenzyloxy-L-valine (3.8 g.) and 2.1 cc. Et₃N in 30 cc. THF treated at -5° with stirring with 2 cc. VI and after 10 min. with XVIII (from XVIII.HCl and 2.1 cc. Et₃N) in 30 cc. THF, kept 0.5 hr. at -5° and 6 hrs. at room temperature, concentrated to 15 cc., and poured into 300 cc. H₂O containing 2 cc. concentrated HCl yielded 6.3 g. N-carbobenzyloxy-L-valyl-S-benzylthiomethyl-L-cysteine Me ester (XIX), m. 112° (70% aqueous MeOH), [α]_{30D} -28.8° (c 1.05, HCONMe₂). XIX (100 mg.) added to 4 cc. 2N HBr-AcOH, kept 1 hr. at room temperature, diluted with dry Et₂O, and filtered gave a precipitate which yielded 4 ninhydrin-pos. spots with Rf 0.38, 0.48, 0.60, and 0.77. XIX (100 mg.), 2 cc. 4N HBr-AcOH, 1 cc. (EtO)₂P(O)H, and 1 cc. EtSMe kept 1 hr. at room temperature and worked up after 1 hr. with 1:1 EtOAc-petr. ether gave a heavy oil which showed 1 main ninhydrin-pos. component with Rf 0.76 and traces of 2 other components with Rf 0.42 and 0.54.

IT 93818-92-9, Acetanilide, 2-(2-benzamidoacetamido)-
(preparation of)

RN 93818-92-9 CAPLUS

CN Acetanilide, 2-(2-benzamidoacetamido)- (6CI, 7CI) (CA INDEX NAME)

10/027,505 (RCE)

L71 ANSWER 40 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1962:31702 CAPLUS
 DN 56:31702
 OREF 56:6084c-e
 TI Reactions of formylamino acids and acyldipeptides with dicyclohexylcarbodiimide
 AU Siemion, Ignacy Z.; Nowak, Kornel
 CS Akad. Med., Wroclaw, Pol.
 SO Roczniki Chemii (1961), 35, 979-84
 CODEN: ROCHAC; ISSN: 0035-7677
 DT Journal
 LA Unavailable
 OS CASREACT 56:31702
 AB Azlactones (I) of the formyl derivs. of the following amino acids were prepared by reaction of dicyclohexylcarbodiimide (II) with the corresponding acylamino acid in EtOAc: DL-alanine, m. 137-9° low yield; DL-valine, m. 177-8°, 55% yield; DL-norleucine, b1 47° 48.3% yield; L-leucine, b. 42-3°, 32.4% yield, $[\alpha]D$ -46.4°. I reacted easily with Et esters of amino acids to give the following: Et formyl-DL-valyl-DL-norleucinate (III) (m. 98-9°, quant. yield); Et formyl-L-leucylglycinate (m. 113-15° 72.5%, $[\alpha]D$ -7.1°); Et formyl-DL-norleucyl-L-leucinate (m. 120-2° 80%, -19.0°). III reacted similarly with II to give a tripeptide (m. 152°, 46%), and dicyclo-hexylurea (IV). The reaction of benzoyldiglycine with II led similarly to formation of IV but not to N-(benzoyldiglycyl)-N,N'-dicyclohexylurea (Khorana, CA 47, 1054g).
 IT 93818-92-9, Acetanilide, 2-(2-benzamidoacetamido)-
 (preparation of)
 RN 93818-92-9 CAPLUS
 CN Acetanilide, 2-(2-benzamidoacetamido)- (6CI, 7CI) (CA INDEX NAME)

L71 ANSWER 41 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1961:111878 CAPLUS
 DN 55:111878
 OREF 55:21015i,21016a-i,21017a-i,21018a-i,21019a-i,21020a-i,21021a-c
 TI Chemotherapy of schistosomiasis. IV. Ethers of 4-amino-2-methoxyphenol
 AU Collins, R. F.; Davis, M.
 CS May & Baker, Ltd., Dagenham, UK
 SO Journal of the Chemical Society, Abstracts (1961) 1863-79
 CODEN: JCSAAZ; ISSN: 0590-9791
 DT Journal
 LA Unavailable
 AB cf. CA 54; 7613f. Alkyl ethers of 4-amino-2-methoxyphenol (I) were prepared together with some related compds. and N-substituted derivs. Many of the compds. were schistosomicides. Benzylideneacetone was reduced catalytically in alc. to 92% 4-phenyl-2-butanol (II), b11 119-21°. II refluxed 20 hrs. with 50% HBr gave 75% 4-phenyl-2-butyl bromide (III), b10 116°. PhCH₂MgCl (from 189.75 g. PhCH₂Cl) in 400 cc. Et₂O treated during 1 hr. with 2,3-dichlorotetrahydropyran (from 86 g. dihydropyran) in 200 ml. Et₂O, the mixture stirred 5 hrs., left overnight, and decomposed gave 145.4 g. mixture containing both cis- and trans-2-benzyl-3-chlorotetrahydropyran (IV), b15 148-78°. Similar reactions were carried out with PhBr, PhCH₂CH₂Br, 3-phenylpropyl bromide, o-bromotoluene, p-bromotoluene, and p-bromoanisole. Crude IV (144 g.) added to 34.8 g. Na in 500 ml. Et₂O and the mixture treated with 50 ml. alc. after standing overnight gave 107.7 g. trans-6-phenylhex-4-en-1-ol, b10 152-7°, n₁₂D 1.5380. Similarly prepared (yields were for crude alc. over-all from dihydropyran) were trans-5-phenyl-4-penten-1-ol (77%), b0.1 102°, n₂₀D 1.5620; trans-7-phenyl-4-hepten-1-ol (51%), b0.03 100-5°, nD 1.5260; trans-8-phenyl-4-octen-1-ol (81%), b15 190-4°, n₁₉D 1.5240; trans-5-(o-tolyl)-4-penten-1-ol (49%), b15 162-70°, nD 1.5505; trans-5-(p-tolyl)-4-penten-1-ol (78%), b14 155-73°, m. 40-2°; trans-5-(p-methoxyphenyl)-4-penten-1-ol (71%), m. 74-5°. Catalytic reduction of the above unsatd. alcs. with Raney Ni gave resp.: 5-phenylpentanol (87%), b11 133-4°; 6-phenylhexanol (93%), b13 157-67°; 7-phenylheptanol (65%), b0.02 125-35°, nD 1.5135; 8-phenyloctanol (81%), b12 185-9°, n₁₉D 1.5080; 5-(o-tolyl)pentanol (86%), b13 155-6°, nD 1.5225; 5-(p-tolyl)pentanol (95%), b14 159-62°; 5-(p-methoxyphenyl)pentanol (94%), b0.03 110-15°. The saturated alcs. were converted into the bromides by treatment with 50% aqueous HBr (2 ml./g.) and concentrated H₂SO₄

(0.67 ml./g.) 20 hrs. at 100°. The following were obtained: 5-phenylpentyl bromide; 6-phenylhexyl bromide; 7-phenylheptyl bromide, b0.05 110-14°; 8-phenyloctyl bromide (72%), b12 185-7°; 5-(o-tolyl)pentyl bromide (84%), b14 155-62°; 5-(p-tolyl)pentyl bromide (84%), b14 157-63°. 5-Phenyl-4-penten-1-yl p-toluenesulfonate (V), prepared in 38% yield in the usual way, m. 42-3° (MeOH). When V was prepared in C₅H₅N and the mixture left several days at room temperature the product was the quaternary pyridinium salt, m. 68-9°. 1-Methyl-5-phenylpentyl bromide prepared by catalytic reduction of cinnamylideneacetone and subsequent treatment with 50% HBr, b14 152-6°, n₃₀D 1.5218. 5-Cyclohexylpentan-1-ol was prepared in 90% yield by reduction of 5-phenylpent-4-en-1-ol over Raney Ni in alc. at 131°/100 atmospheric, b11 136-7°, n₁₇D 1.4685. Treatment with HBr-H₂SO₄ gave 91% 5-cyclohexylpentyl bromide, b7 127°, n₂₀D 1.4838. NaNH₂ (15.6 g.) powdered under 50 ml. PhMe for 30 hrs., treated under reflux with 19.65 g. 3-chlorotetrahydro-2-phenylpyran in 50 ml.

PhMe, and refluxed 17 hrs. gave 78% 3,4-dihydro-6-phenyl-2H-pyran, b9 119-25°, n_{17D} 1.5703. When heated 15 min. at 100° with 50% HBr it gave 94% 4-benzoylbutyl bromide, m. 58°.

4-(p-Methoxyphenoxy)butyl bromide (67.5 g.) in 50 ml. alc. and 50 g. benzoylacetic ester added successively to 6.1 g. Na in 150 ml. alc., mixture refluxed 3 hrs., and concentrated gave 62 g. Et α-[4-(p-methoxyphenoxy)-butyl]benzoylacetate (VI), m. 38-40° (alc.). VI (50 g.), 20 g. KOH, 300 ml. MeOH, and 200 ml. H₂O refluxed 24 hrs. gave 34.3 g.

1-benzoyl-5-(p-methoxyphenoxy)pentane (VII), m. 42°. The alkaline mother liquors on acidification gave 1 g. 6-(p-methoxyphenoxy)hexanoic acid, m. 80-2°. VII (34.5 g.), 30 g. PhOH, and 100 ml. 50% HBr refluxed 2 hrs., added to dilute NaOH, and extracted with Et₂O gave 17.3 g. 5-benzoylpentyl bromide, b14 190-200°, m. 37.5-8.5° (ligroine). 1,5-Dibromopentane (46 g.) and 19.2 g. benzoylacetic ester added successively to 2.3 g. Na in 70 ml. alc., the mixture refluxed 1.5 hrs., and the residue treated with 100 ml. 50% HBr 18 hrs. on the steam bath gave 14.7 g. 6-benzoylhexyl bromide, b0.03 140-50°. K 2-methoxy-4-nitrophenoxy (220.5 g.), 1150 g. 1,5-dibromopentane, and 3 l. Me₂CO refluxed 20 hrs., concentrated, steam distilled, and the residue extracted with CHCl₃, concentrated, and diluted gave 252 g. crude bromide. This bromide was dissolved in Et₂O and filtered from 8.85 g. 1,5-bis(2-methoxy-4-nitrophenoxy)pentane, m. 122-3°. Crystallization afforded 218 g. 3-(2-methoxy-4-nitrophenoxy)propyl bromide, m. 77.5-9.0° (MeOH).

7-(2-Methoxy-4-nitrophenoxy)-1-phenylheptan-1-ol (39 g.) treated at room temperature with 150 ml. Ac₂O and 1 drop concentrated H₂SO₄ gave 37 g. 7-(2-methoxy-4-nitrophenoxy)-1-phenylheptyl acetate, m. 88-9° (MeOH). In another experiment the mixture was refluxed 1 hr. to give 7 g. 7-(2-methoxy-4-nitrophenoxy)-1-phenyl-1-heptene, m. 97-9°. Its structure was confirmed by catalytic reduction to 1-(4-amino-2-methoxyphenoxy)-7-phenylheptane. Similarly prepared was 71% 5-(2-methoxy-4-nitrophenoxy)-1-phenylpentyl acetate, m. 114-15°. 1-Benzoyl-4-(2-methoxy-4-nitrophenoxy)butane (15 g.) in 100 ml. alc. left 3 days at 35-40° with 5.8 g. HC(OEt)₃ and 1 drop concentrated HCl gave 10.2 g. 5-(2-methoxy-4-nitrophenoxy)-1-phenylpentan-1-one diethyl acetal, m. 62-4° (Et₂O-ligroine). Et α-[4-(p-nitrophenoxy)butyl]benzoylacetate (VIII), prepared in 62% yield from benzoylacetic ester and 4-(p-nitrophenoxy)butyl bromide, m. 74-5°. VIII (33.3 g.) hydrolyzed by refluxing 24 hrs. with 13 g. KOH in 250 ml. MeOH and 250 ml. H₂O gave 80% 6-(p-nitrophenoxy)-1-phenylhexan-1-one (IX), m. 102° (alc.). 6-(p-Nitrophenoxy)hexanoic acid was isolated from the mother liquor in 1.8-g. yield, m. 103-4°. IX was obtained in 76% yield by condensation of K p-nitrophenoxy with 5-benzoylpentyl bromide. 5-(p-Nitrophenoxy)-1-phenylpentan-1-one was similarly obtained from benzoylacetic ester and 3-(p-nitrophenoxy)propyl bromide in 26% over-all yield. 5-(p-Nitrophenoxy)pentanoic acid was obtained in 13% yield from the alkaline liquors. The ketone had been synthesized by another route earlier. 6-(p-Nitrophenoxy)-1-phenylhexan-1-ol was prepared in 94% yield by reduction (Meerwein-Ponndorf method) of IX, m. 72-4°. 5-(2-Methoxy-4-nitrophenoxy)pentyl bromide (63.6 g.), 15.2 g. CS(NH₂)₂, and 150 ml. alc. refluxed 20 hrs. gave 93% S-[5-(2-methoxy-4-nitrophenoxy)pentyl]thiourea (X), m. 158-9° (alc.). X (95 g.) and 129 ml. 1.86N NaOH refluxed 3 hrs. and extracted with CHCl₃ gave 79% 5-(2-methoxy-4-nitrophenoxy)pentane-1-thiol (XI), m. 84-6°. XI (6.15 g.) refluxed with 0.52 g. Na in 30 ml. alc. while 3.55 g. MeI in 10 ml. alc. was added during 15 min., after a further 4 hrs. the mixture evaporated, and the residue dissolved in CHCl₃ gave 55% 1-(2-methoxy-4-

nitrophenoxy)-5-(methylthio)pentane, b0.15 185-205°, m. 56-9°. 2-Mercaptoethanol (15.6 g.) and 60.4 g. 5-(2-methoxy-4-nitrophenoxy)pentyl bromide added successively to 4.6 g. Na in 150 ml. alc. and the mixture refluxed 1 hr. gave 52% 1-(2-hydroxyethylthio)-5-(2-methoxy-4-nitrophenoxy)pentane, m. 52-4°. Similarly prepared were 80% 1-benzylthio-3-(2-methoxy-4-nitrophenoxy)propane, m. 51-3° (MeOH-alc.), 83% 1-(2-methoxy-4-nitrophenoxy)-5-(phenylthio)pentane, m. 54-5° (Et₂O-ligroine), and 76% 1-(p-chlorophenylthio)-5-(2-methoxy-4-nitrophenoxy)pentane, m. 67-9° (alc.-Et₂O). Similarly prepared, with 5-(p-nitrophenoxy)pentyl bromide, were 90% 1-(p-nitrophenoxy)-5-(phenylthio)pentane (XIa), m. 67° (alc.), 88% 1-(p-nitrophenoxy)-5-(p-nitrophenylthio)pentane, m. 83-4° (AcOH), and 77% 5-benzylthio-1-(p-nitrophenoxy)pentane, m. 33-4° (alc.). PhSH (11 g.) refluxed 0.5 hr. with 2.3 g. Na in 100 ml. alc. and 1,3-dibromopropane gave 3-phenylthiopropyl bromide and this was condensed with K 2-methoxy-4-nitrophenoxyde to give 54% 1-(2-methoxy-4-nitrophenoxy)-3-(phenylthio) propane (XII), m. 87-9° (alc.). XII (27 g.) in 200 ml. AcOH treated with 20 ml. 30% H₂O₂ (the temperature rose to 50°), after 2.5 hrs. the solution heated 1 hr. at 90°, and poured into H₂O gave 88% 1-(2-methoxy-4-nitrophenoxy)-5-(phenylsulfonyl) pentane, m. 122-4° (alc.). Similarly prepared were: 66% 1-(2-methoxy-4-nitrophenoxy)-5-(methylsulfonyl)pentane, m. 95-7°; 97% 1-(p-nitrophenoxy)-5-(phenylsulfonyl)pentane, m. 85-6° (alc.); 94% 1-(p-nitrophenoxy)-5-(p-nitrophenylsulfonyl)pentane, m. 129-30° (AcOH); 88% 1-benzylsulfonyl-5-(p-nitrophenoxy)pentane, m. 120-1° (AcOH). 5-(p-Nitrophenoxy)pentyl bromide (28.8 g.), 19.9 g. p-acetamidobenzenesulfinic acid, 7 g. NaOAc, 2 g. NaI, 200 ml. 2-ethoxyethanol, and 5 ml. H₂O refluxed 2.5 hrs., concentrated, and diluted

with

Et₂O gave 55% 1-(p-acetamidophenylsulfonyl)-5-(p-nitrophenoxy)pentane, m. 112-13° (alc.). XIa (40 g.) in 400 ml. AcOH treated at 40° with 14.6 ml. 30% H₂O₂ and the solution heated 0.5 hr. at 80° gave 98% 5-(p-nitrophenoxy)pentyl phenyl sulfoxide, m. 80-1° (alc.). Similarly prepared was 92% benzyl 5-(p-nitrophenoxy)pentyl sulfoxide, m. 97-8° (aqueous alc.). K 2-methoxy-4-nitrophenoxyde (14.1 g.), 28 g. acetobromogluucose, and 100 ml. HCONMe₂ stirred 20 hrs. and the product in C₆H₆ stirred with activated Al₂O₃ gave 49% 2-methoxy-4-nitrophenyl tetra-O-acetyl-D-glucoside (XIII), m. 145-7°. XIII was obtained in traces by using the free phenol, Ag₂CO₃, quinoline, and acetobromogluucose in Et₂O. XIII (33.2 g.) in 340 ml. MeOH kept 0.5 hr. in a solution of 11.2 g. NaOH, H₂O, and 170 ml. MeOH gave 2-methoxy-4-nitrophenyl D-glucoside, m. 212-13°. 2-Methoxy-4-nitrophenol (31 g.) reduced over PtO₂ in alc. and the residue acetylated gave 50% 4-acetamido-2-methoxyphenyl acetate (XIV), m. 150-2°. XIV (54 g.) shaken 10 min. with 242 ml. 2N NaOH containing wetting agent gave 98% 4-acetamido-2-methoxyphenol (XV), m. 115-17° (EtOAc). XV (15.35 g.) and 23.1 g. 5-(p-nitrophenyl)pentyl bromide refluxed 20 hrs. with 1.95 g. Na in 100 ml. alc. gave 21% 1-(4-acetamido-2-methoxyphenoxy)-5-(p-nitrophenyl)pentane, m. 115.5-16.0° (MeOH). 4-Nitropyrocatechol (18.2 g.) and 34.7 g. 5-phthalimidopentyl bromide refluxed 20 hrs. with 100 ml. EtOCH₂CH₂OH and 6.6 g. KOH in 20 ml. H₂O gave 41% 1-(2-hydroxy-4-nitrophenoxy)-5-phthalimidopentane (XVI), m. 137-9° (AcOH). XVI (0.77 g.), 0.3 g. anhydrous K₂CO₃, 4 ml. MeI, and 30 ml. Me₂CO refluxed 20 hrs. gave 1-(2-methoxy-4-nitrophenoxy)-5-phthalimidopentane, m. 147.5-8.5° (aqueous alc.). 1-(2-Methoxy-5-nitrophenoxy)-5-phenylpentane, m. 73-5° (alc.), was prepared in 81% yield from 2-methoxy-5-nitrophenol, 5-phenylpentyl bromide, and 10N KOH in EtOCH₂CH₂OH. HNO₃ (20 ml.) added

slowly to 30 g. 1,2,3-trimethoxybenzene in 60 ml. AcOH, cooled when the temperature reached 90-100°, and the product stirred with hot dilute NaOH gave 39-41% 1,2,3-trimethoxy-5-nitrobenzene (XVII). XVII (60 g.) refluxed 2 days with 60 g. KOH in 350 ml. H₂O, the 49.5 g. K salt filtered off, washed, dried, and the mother liquors afforded 6.1 g. more salt. 1,3-Dimethoxyacetone (7.14 g.), 9.5 g. Na nitromalonaldehyde, and 0.9 g. NaOH in 90 ml. H₂O kept overnight at room temperature gave 8.35 g. Na salt. Acidification gave 2,6-dimethoxy-4-nitrophenol, m. 136-7° (effervescence). The above K salt (40 g.), 50 g. 5-phthalimidopentyl bromide, and 100 ml. EtOCH₂CH₂OH refluxed 7 days at 100° gave 68% 1-(2,6-dimethoxy-4-nitrophenoxy)-5-phthalimidopentane, m. 105-6°. Similarly obtained (63%) (refluxed for 48 hrs.) was 1-(2,6-dimethoxy-4-nitrophenoxy)-5-phenylpentane, m. 36-7° (ligroine). Nitro compds., 2,4-MeO(O₂N)C₆H₃O(CH₂)nR, were prepared (except where stated) by condensation of 2,4-MeO(O₂N)C₆H₃OK with the appropriate alkyl bromide, usually in refluxing alc. or EtOCH₂CH₂OH. The following compds. were obtained (n, R, % yield, m.p., and solvent given): 4, Me, 71, 54-5°, alc.; 5, Me, 69, 69.5-70.5°, alc.; 6, Me, 63, 53-5°, alc.; 7, Me, 87, 37-8°, alc.-H₂O; 8, Me, -, -, -, -; 9, Me, 73, 50°, alc.; 10, Me, 87, 49.5-50.5°, alc.; 11, Me, 73, 51-2.5°, alc.; 15, Me, 73, 57-8.5°, alc.; 1, CHEt₂, 45, -(b0.05 150-70°), -; 1, CHEtBu, 44, -(b0.02 164-8°), -; 0, CHMeC₆H₁₃, 18, 42-3°, MeOH; 1, CHMeCH₂CMe₃, -, noncryst., -; 0, CHMeC₇H₁₅, 19 (p-toluenesulfonate of the alc. used), -(b0.8 186-94°), -; 2, CHMe(CH₂)₂CH₂Pr-iso, 29, -(b0.3 204-15°), -; 0, cyclopentyl, 53, 83-5°, alc.; 2, cyclohexyl, 64, 78-80°, alc.; 5, cyclohexyl, 66, 57-8°, ligroine; 1, CH:CH₂, 85, 51-2.5°, Et₂O-ligroine; 3, CH:CH₂, 68, 65-6°, alc.-H₂O; 2, CH:CHBu, 36 (over-all from 3-hepten-1-ol via the p-tosylate), -(b0.1 164-86°), -; 1, COMe, 63, 116-18°, alc.; 5, OAc, 89 (from nitroguaiacyloxpentyl bromide and KOAc), 75-6°, alc.; 1, CO₂Et, 79 (via p-tosylate), 86-8°, MeOH; 1, CO₂H, 91 (by hydrolysis of the Et ester with 0.8N NaOH), 165.5-7.0°, AcOH-H₂O; 2, NET₂, 49 (from CH₂ClCH₂NET₂ in Me₂CO), -(b0.15 175-200°), -; 1, Ph, 70, 80-2°, HO(CH₂)₂OEt; 2, Ph, 66, 97-9°, alc.; 3, Ph, 85, 72.5-3.5°, alc.; 4, Ph, -, -, -; 0, CHMe(CH₂)₂Ph, 55, 50-1°, alc.; 5, Ph, 81 (over-all from 5-phenylpentanol), 75-6, alc.; 6, Ph, -, 55-7°, ligroine; 0, CHMe(CH₂)₄Ph, 58, 65.5-7.5°, Et₂O-ligroine; 7, Ph, 59, 73-4°, alc.; 8, Ph, 62, 49-50°, Me₂CO-alc.; 5, C₆H₄Meo, 84, 76-8°, alc.; 5, C₆H₄OMe-p, 57 (over-all from 5-(p-methoxyphenyl)pentanol), 81-2°, alc.; 5, C₆H₄NO₂-p, 45, 84 and 93-4°, Me₂CO-alc.; 5, C₆H₃(NO₂)₂-2,4, 58, 86-7°, EtOAc; 3, CH:CHPh-trans, 74, 95-7°, alc.; 3, CH:CHC₆H₄Me-p-trans, 57, 103-3.5°, EtOAc-ligroine; 3, CH:CHC₆H₄OMe-p-trans, 60 (over-all from 5(p-methoxyphenyl)-4-penten-1-ol), 121-1.5°, alc.-EtOAc; 1, p-C₆H₄SO₂Me, 87, 195-7°, alc.; 1, 1-naphthyl, 62, 110-11°, alc.-Me₂CO; 1, OMe, 82 (from CH₂ClOMe), 89-92°, alc.-ligroine; 5, OMe, 66, (b0.1 170°), -; 2, OCH₂Ph, 80 (p-tosylate), 75-7°, alc.; 5, OCH₂Ph, 71 (from 5-benzylloxypentyl bromide), 90-1°, alc.; 2, OPh, 90, 116-17°, alc.; 3, OPh, 73, 100-2°, alc.; 4, OPh, 89, 90-1.5°, alc.; 5, OPh, 80, 67-8°, alc.; 6, OPh, 84, 81-2°, alc.; 7, OPh, 70, 56-7°, alc.; 8, OPh, 82, 58-9°, alc.; 3, OC₆H₄OMe-p, 32, 96-7°, alc.; 4, OC₆H₄OMe-p, 85, 106-7°, alc.; 5, OC₆H₄NHAc-p, 78, 95-6°, AcOH; 5, phthalimido, 78 (noncryst.), 147.5-8.5°, AcOH; 6, phthalimido, 61, 81-3°, alc.; 8, phthalimido, 79, 91-2°, AcOH; 5, NHCOPh, 64, 131-2°, EtOAc; 5, NHCOCH₂NHCOPh, 95, 129-30° (b0.02 164-84°), Me₂CO; 5, NHCO(CH₂)₃CO₂H, 99, 94-7°,

Me₂CO-ligroine; 5, glutarimido, 83, 138-40°, alc.; 1, COPh, 84, 122-3°, EtOCH₂CH₂OH; 4, COPh, 59, 91°, EtOCH₂CH₂OH; 6, COPh, 81, 82-4°, alc.; 4, CPhOH, 94, 76-7°, Et₂O-ligroine; 6, CPhOH, 89, 62-3°, Et₂O-ligroine. 5-(2-Methoxy-4-nitrophenoxy)pentyl bromide (24 g.), 48 g. Na₂S·9H₂O, 200 ml. alc., and 100 ml. H₂O refluxed 24 hrs., and the product purified via the HCl salt, and liberated gave bis[5-(4-amino-2-methoxyphenoxy)pentyl] sulfide, m. 90-2° (CHCl₃-Et₂O). 3,3' - Dimethoxy - (4,4' - bisoctyloxy)azoxybenzene was prepared in 5% yield, m. 86-9°, when a batch of 1-(2-methoxy-4-nitrophenoxy)octane was reduced over Raney Ni in alc. The principal product, 3-methoxy-4-(octyloxy)aniline, was isolated from the filtrate. The corresponding nitro compound (15.6 g.) in 460 ml. alc. and 180 ml. H₂O reduced over Raney Ni gave 70% 4-amino-2-methoxyphenyl D-glucoside, m. 202-3°, [α]_D 19.5D -61° (H₂O). 3,5-Dimethoxy-4,5'-phthalimidopentylaniline was obtained in 85% yield by catalytic reduction of the nitro compound over Raney Ni, m. 97°. 3,5-Dimethoxy- m. 85-7° (Et₂O), and 3-methoxy-4-(5-phenylpentyloxy)aniline (92%), m. 59-60° (Et₂O-ligroine) [methanesulfonate m. 130-1° (alc.-Et₂O)], were obtained by a similar reduction in alc. The following 2,4-MeO(H₂N)C₆H₃O(CH₂)_nR were prepared by catalytic reduction of the corresponding nitro compds., usually over Raney Ni in alc. or EtOCH₂CH₂OH, but occasionally in EtOAc or HCONMe₂ (n, R, base or derivative, % yield, m.p., solvent given): 1, Me, base, 86, 60-1°, Et₂O-ligroine; 2, Me, base, 87, 65-7°, Et₂O-ligroine; 3, Me, base, 77, 35-6°, ligroine; 3, Me, MeSO₃H salt, -, 173-5°, alc.; 4, Me, base, 92, 43-4°, ligroine; 4, Me, HCl salt, -, 185-200°, alc.-Et₂O; 5, Me, base, 91, 67-9°, alc.; 5, Me, HCl salt, -, 185-200°, alc.-Et₂O; 6, Me, base, 92, 72-4°, alc.; 7, Me, base, 76, 63-4°, EtOH, 7, Me, MeSO₃H salt, -, 120-5° and 200°, -; 7, Me, di-p-toluoyl-D-tartrate -, 161-2°, EtOAc; 8, Me, base, 64 (over-all from K nitroguaiaicyl oxide), 71-3°, Et₂O-ligroine; 9, Me, base, 84, 61-2°, ligroine; 10, Me, base, 95, 66-7°, alc.; 11, Me, base, 90, 65-6°, alc.; 15, Me, base, 85, 67-8°, Et₂O-ligroine; 1, CHEt₂, HBr salt, 69, 214-17°, alc.-Et₂O; 1, CHEtBu, HBr salt, 55, 160-4°, Et₂O-C₆H₆; 0, CHMeC₆H₁₃, base, 83, b0.05 143-6°, -; 2, CHMeCH₂CMe₃, base, 62 (di-p-toluoyl-D-tartrate), 72-3.5°, Et₂O-ligroine; 0, CHMeC₆H₁₃, HCl, -, 160-80°, alc.-Et₂O; 0, CHMeC₇H₁₅, base, 49, b0.2 160-70°, -; 0, CHMeC₇H₁₅, HCl salt, -, 164-8°, -; 2, CHMe(CH₂)₂CH₂Pr-iso, HCl salt, 59, 158-64°, alc.-Et₂O; 0, cyclopentyl, base, 83, 64-6°, alc.-ligroine; 2, cyclohexyl, base, 80, 64-5°, ligroine; 5, cyclohexyl, base, 80, 91-1.5°, MeOH; 3, CH:CH₂, base, 90 (from the corresponding nitro ketone), 25-6°, Et₂O-ligroine; 3, CH:CH₂, HBr salt, -, 195-7°, dilute aqueous HBr; 2, CH:CHBu, base, 42 (from the corresponding nitro ketone), 38-42°, ligroine; 1, CHMeOH, base, 78 (from the corresponding nitro ketone), 125-6°, alc.; 5, OAc, base, 71, 46-8°, alc.-H₂O; 5, OH, base, 93 (by acid hydrolysis of the acetate), 70-1°, CHCl₃-ligroine; 1, CO₂H, base, 93, 200-2°, H₂O; 2, NET₂, di-HBr salt, 81, 216-18°, MeOH-Et₂O; 1, Ph, base, 39, 84-5°, ligroine (b. 100-20°); 1, Ph, MeSO₃H salt, -, 200-1°, alc.-Et₂O; 2, Ph, base, 78, 47-8°, Et₂O-ligroine; 2, Ph, MeSO₃H, -, 159-60°, alc.-Et₂O; 3, Ph, base, 90, 103-4°, alc.; 3, Ph, MeSO₃H salt, -, 159-60°, alc.-Et₂O; 4, Ph, MeSO₃H, 60, 123-4°, alc.; 5, Ph, base, 90 [from 1-(2-methoxy-4-nitrophenoxy)-5-nitropentane], 77-8°, alc.; 5, Ph, MeSO₃H salt, 86 [from 1-(2-methoxy-4-nitrophenoxy)-5-phenyl-4-pentene], 138.5-9.5°, -; 5,

Ph, HCl salt, -; 147-9° (clears 158-60°), alc.-Et₂O; 6, Ph,
 base, 38 (over-all from 6-phenylhexanol), 39-41°, Et₂O-ligroine; 0,
 CHMe(CH₂)₄Ph, base, 70, 42-4°, Et₂O-ligroine; 7, Ph, base, 80,
 65°, alc.-ligroine; 8, Ph, base, 87, 52-3°, Et₂O-ligroine;
 5, C₆H₄Me-o, base, 73, 69-71°, alc.-H₂O; 5, C₆H₄Me-p, base, 91,
 84-6°, alc.-ligroine; 5, C₆H₄OMe-p, base, 93, 98-100°, alc.;
 5, C₆H₄NO₂-p, base, 82 (from the N-acyl derivative by hydrolysis with 2N HCl
 in alc.), 86-7°, alc.; 5, C₆H₄NH₂-p, base, 90, 68-9°, Et₂O;
 5, C₆H₃(NH₂)₂-2,4, base, 71, 99-100°, alc.-ligroine; 3,
 CH:CHPh-trans, base, 94 (reduction by Na₂S in alc.), 90-2°, alc.-Et₂O;
 3, CH:CHPh-trans, MeSO₃H, -, 188-90°, alc.-Et₂O; 3,
 CH:CHC₆H₄Me-p-trans, base, 88 (reduction by Na₂S in alc.), 117-18°,
 alc.; 1, 1-naphthyl, base, 65, 61-3°, Et₂O; 1, 1-naphthyl, MeSO₃H
 salt, -, 192-4°, alc.; 1, C₆H₄SO₂Me-p, base, 85, 130°,
 HO(CH₂)₂OEt-Et₂O; 1, OMe, base, 80, 61-2°, alc.-Et₂O; 5, OMe, base,
 78, -(b0.1 160-5°), -; 5, OMe, MeSO₃H salt, 88, 124-6°,
 alc.-Et₂O; 2, OCH₂Ph, base, 88, 41-2°, alc.-ligroine; 2, OCH₂Ph,
 MeSO₃H salt, -, 138-9°, alc.-Et₂O; 5, OCH₂Ph, base, 80,
 34-5°, ligroine; 5, OCH₂Ph, MeSO₃H salt, -, 122-4°,
 alc.-Et₂O; 2, OPh, base, 84, 106-7°, alc.; 3, OPh, base, 81,
 76-8°, alc.; 4, OPh, base, 74, 115-17°, alc.; 5, OPh, base,
 81, 76-8°, alc.; 5, OPh, MeSO₃H salt, 83, 125°, alc.-Et₂O;
 6, OPh, base, 75, 104-4.5°, alc.; 7, OPh, base, 73, 57-8°,
 alc.; 8, OPh, base, 78, 76-7°, CCl₄; 3, OC₆H₄OMe-p, base, 79,
 66-7.5°, alc.; 4, OC₆H₄OMe-p, base, 74, 105-7°, alc.; 5,
 OC₆H₄NHAc-p, MeSO₃H salt, 74, 167-9°, alc.; 5, OC₆H₄NH₂-p,
 di-MeSO₃H salt, 64, 232-4°, alc.; 5, phthalimido, base, 61,
 103-5°, alc.; 5, phthalimido, MeSO₃H, 92, 205-7°, alc.-Et₂O;
 6, phthalimido, base, 98, 86-7°, alc.; 8, phthalimido, base, 82,
 70-1°, alc.; 5, NHCOPh, base, 82, 103-4°, C₆H₆; 5,
 NHCOCH₂NHBz, base, 61, 120.5-1.5°, C₆H₆; 5, glutarimido, base, 83,
 94-5°, alc.; 5, phthalimidino, base, 76 (from a phthalimide by
 reduction with Sn and HCl), 129-30°, alc.; 1, CHPhOH, base, 51 (from
 corresponding nitro ketone), 96-7°, alc.-H₂O; 4, CHPhOH, base,
 73° (from the corresponding nitro ketone), 104-5°, alc.; 6,
 CHPhOH, base, 89 (from the corresponding nitro ketone), 108-10°,
 alc.; 4, CHPhOAc, base, 72, 67-8°, Et₂O; 6, CHPhOAc, base, 74,
 36-7°, Et₂O-ligroine; 4, COPh, base, 61 (reduction of the NO₂ group by
 Fe and AcOH), 101-3°, MeOH; 6, COPh, base, 83 (reduction of NO₂ by Fe
 and AcOH), 85-7°, EtOAc-Et₂O; 4, CHPh(OEt)₂ (sic), base, 78,
 107-9°, MeOH; 5, SMe, base, 58 (reduction by Na₂S in alc.),
 53.5-6.0°, alc.-H₂O; 5, SCH₂Ph, base, 41 (Na₂S in alc.),
 38-40°, Et₂O; 3, SCH₂Ph, MeSO₃H salt, 62 (Na₂S in alc.),
 134-6°, MeOH; 3, SPh, base, 75 (Na₂S in alc.), 57-8°,
 alc.-Et₂O; 5, SPh, base, 74 (Na₂S in alc.), 72-3°, alc.-Et₂O; 5,
 SC₆H₄Cl-p, base, 81 (Na₂S in alc.), 44-6°, Et₂O-ligroine; 5, SO₂Me,
 base, 87, 84-7°, MeOH; 5, SO₂Ph, base, 73, 89-90°, alc. The
 following p-H₂NC₆H₄O(CH₂)nR were similarly obtained (n, R, derivative, %
 yield, m.p., and solvent given): 4, COPh, base, 49° (nitro ketone
 reduced with Fe in 90% AcOH), 112-14°; 5, COPh, base, 56 (nitro
 ketone reduced with Fe in 90% AcOH), 61-3°, C₆H₆-ligroine; 5,
 CHPhOH, base, 89 (catalytic reduction of either nitro ketone or nitro alc.),
 86-8°, Et₂O-ligroine; 5, SPh, base, 92 (Na₂S in alc.), 63,
 C₆H₆-ligroine; 5, SC₆H₄NH₂-p, 2HCl, 66 (Na₂S in alc.), 220-30°
 (decomposition), dilute HCl; 5, SCH₂Ph, MeSO₃H salt, 91 (Na₂S in alc.),
 147-9°, alc.-Et₂O; 5, SOPh, base, 65 (Na₂S in alc.), 70-1°,
 Et₂O; 5, SOCH₂Ph, base, 66 (Na₂S in alc.), 89-90°, Et₂O; 5, SO₂Ph,
 base, 82, 93-5°, alc.; 5, SO₂C₆H₄NH₂-p, base, 84, 136-8°,

alc.; 5, SO₂C₆H₄NH₂-p, diacetyl, -, 154°, -; 5, SO₂C₆H₄NHAc-p, base, 87, 126-8°, alc.; 5, SO₂CH₂Ph, base, 94, 101-2°, alc. N-Formyl-3-methoxy-4-(5-phenylpentyloxy)aniline, prepared in 89% yield from the primary amine by means of HCONH₂ and concentrated HCl, m. 86-8° (MeOH). The 4-octyloxy derivative (81%), m. 77-8° (MeOH), was similarly prepared. The following formamides were reduced with LiAlH₄ in Et₂O-C₆H₆. The resulting primary amines were converted into the quaternary iodides, which were pyrolyzed in vacuo. 2-Chloroethyl chloroformate (8.7 g.) and 11.1 g. NaOAc·3H₂O added successively to 20 g. 3-methoxy-4-(5-phenylpentyloxy)aniline suspended in 115 ml. H₂O and 3 ml. AcOH, the mixture shaken 1 hr., and the solid washed gave 85% N-(2-chloroethoxycarbonyl)-3-methoxy-4-(5-phenylpentyloxy)aniline (XVIII), m. 76-8.5° (aqueous alc.). XVIII (22.4 g.) added to 12 g. NaOH in 23 ml. H₂O, 4.9 ml. alc., and 49 ml. EtOCH₂CH₂OH, and the mixture refluxed 10 min. gave 68% N-(2-hydroxyethyl)-3-methoxy-4-(5-phenylpentyloxy)aniline, m. 72-3° (aqueous alc.). 3-Methoxy-4-(5-phenylpentyloxy)aniline (14.27 g.), 14.27 g. CaCO₃, 14.27 ml. CH₂ClCH₂OH, and 150 ml. H₂O refluxed 18 hrs., extracted with CHCl₃, and the residue treated with MeSO₃H in alc.-Et₂O gave 46% N,N-bis(2-hydroxyethyl)-3-methoxy-4-(5-phenylpentyloxy)aniline, m. 93-4°. 3-Methoxy-4-(5-phthalimidopentyloxy)aniline (20 g.), 25 ml. 1,2-epoxypropane, 170 ml. alc., and 1 ml. concentrated HCl refluxed 24 hrs. gave 28% N,N-bis(2-hydroxypropyl)-3-methoxy-4-(5-phthalimidopentyloxy)aniline, m. 112-14° (MeOH-Et₂O). 3-Methoxy-4-(5-phthalimidopentyloxy)aniline (3.54 g.), 1.8 g. D-glucose, and 30 ml. alc. refluxed 1.5 hrs. gave 53% N-(D-glucosyl)-3-methoxy-4-(5-phthalimidopentyloxy)aniline, m. 121-3°. Similarly prepared was 62% of the corresponding galactosylamine, m. 96-8°. 3-Methoxy-4-octyloxyaniline (30 g.), 10 g. dicyandiamide, 10 ml. concentrated HCl, and 300 ml. Me₂CO refluxed 4 hrs. gave 4,6-diamino-1,2-dihydro-1-(3-methoxy-4-octyloxyphenyl)-2,2-dimethyl-1,3,5-triazine HCl salt, m. 210-12°. The following 2,4-MeO(R₁R₂N)C₆H₃O(CH₂)nR were prepared (R₁, R₂, n, R, base or derivative, % yield, m.p., and solvent given): Me, H, 5, Ph, base, 63, 35° (b0.04 197-228°), Et₂O-ligroine; Me, H, 7, Me, base, 63, b0.2 161-3°, -; Me, Me, 2, Ph, base, 93, 32-3°, Et₂O; Me, Me, 2, Ph, MeI salt, 89, 152-6°, H₂O; Me, Me, 5, Ph, base, 93, 38.5-9.5°, Et₂O-ligroine; Me, Me, 5, Ph, MeI salt, 93°, 183-5°, H₂O; Me, Me, 5, Ph, p-C₆H₄MeSO₃H salt, -, 114-16°, alc.-Et₂O; Me, Me, 7, Me, HBr salt, 80, 119-20°, alc.-Et₂O; Me, Me, 7, Me, MeI salt, 67, 184-6° (decomposition), H₂O; Me, Me, 4, OPh, base, 89, 49-51°, Et₂O-ligroine; Me, Me, 4, OPh, MeI, 95, 162.5-4.0° (decomposition), H₂O; Me, Me, 4, COPh, base, 73, 82-4°, alc.; Me, Me, 4, COPh, MeI salt, 92, 160-3° (decomposition), H₂O; Me, Me, 5, SPh, HBr, 26, 96-8°, aqueous HBr; Me, Me, 5, SPh, MeI, 100, 142-5° (decomposition), H₂O; Me, Me, 5, p-C₆H₄NMe₂, base, 74, 39-41°, ligroine; Me, Me, 5, p-C₆H₄NMe₂, MeI salt, 80, 203-4°, H₂O; Me, Me, 5, phthalimido, base, 92, 70-2°, alc.; Et, Et, 7, Me, base, 85° (over-all from primary amine), -, -; Me, Me, 5, phthalimido, MeI salt, 100, 200-2°, H₂O; CO₂CH₂CH₂Cl, H, 2, Ph, -, 90, 63-5°, alc.; CO₂CH₂CH₂Cl, H, 7, Me, -, 100, 72-3.5°, alc.; CO₂CH₂CH₂Cl, H, 4, OPh, -, 94, 109-10°, alc.; CO₂CH₂CH₂Cl, H, 4, COPh, -, 69, 95-7°, alc.; CO₂CH₂CH₂Cl, H, 5, SPh, -, 86, 45-7°, alc.-H₂O; (CH₂)₂OH, H, 2, Ph, HBr, 75, 147.5-9.0°, MeOH-Et₂O; (CH₂)₂OH, H, 7, Me, base, 75, 35-6°, ligroine; (CH₂)₂OH, H, 4, OPh, base, 87, 62.5-3.5°, MeOH; (CH₂)₂OH, H, 4, COPh, base, 86, 77-8°, alc.-Et₂O; (CH₂)₂OH, H, 5, SPh, HBr, 67, 113-15°, alc.-Et₂O; (CH₂)₂OH, (CH₂)₂OH, 7, Me, base, 34, 62-4°, Et₂O; (CH₂)₂OH, (CH₂)₂OH, 5, phthalimido, base, 51, 68-9°, alc.

IT 103506-85-0, Benzamide, N-{{[5-(4-amino-2-methoxyphenoxy)pentyl]carbamoyl}methyl}- 103990-63-2, Benzamide, N-{{[5-(2-methoxy-4-nitrophenoxy)pentyl]carbamoyl}methyl}-
 (preparation of)
 RN 103506-85-0 CAPLUS
 CN Benzamide, N-[[[5-(4-amino-2-methoxyphenoxy)pentyl]carbamoyl]methyl]-
 (6CI) (CA INDEX NAME)

RN 103990-63-2 CAPLUS
 CN Benzamide, N-[[[5-(2-methoxy-4-nitrophenoxy)pentyl]carbamoyl]methyl]-
 (6CI) (CA INDEX NAME)

L71 ANSWER 42 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1960:87613 CAPLUS
 DN 54:87613
 OREF 54:16655a-d
 TI The schistosomicidal and toxic effects of some N-(p-aminophenoxyalkyl)amides
 AU Collins, R. F.; Davis, M.; Edge, N. D.; Hill, J.; Reading, H. W.; Turnbull, Eleanor R.
 CS May & Baker Ltd., Dagenham, UK
 SO British Journal of Pharmacology and Chemotherapy (1959), 14, 467-75
 CODEN: BJPCAL; ISSN: 0366-0826
 DT Journal
 LA Unavailable
 AB Compds. related to N-(p aminophenoxyalkyl)amide were prepared, and 102 were screened for schistosomicidal activity. Two of these compds., N-[5-(p-aminophenoxy)pentyl]phthalimide (I) and N-[5-(p-aminophenoxy)pentyl]benzamide (II) were investigated in detail. Given orally, I was inactive against Schistosoma mansoni in monkeys, but both I and II were effective in mice and hamsters. II was more toxic in rats, guinea pigs, and monkeys than I. Visual impairment in monkeys and cats by both compds. was considered to be less than other ω -p-aminophenoxyalkyl derivs. not containing an amide group. Results of absorption studies of the 2 compds. in rats and mice show lower blood concentration after 4 hrs. Most of the drug was excreted in the 1st 24 hrs. I has been found to be moderately effective against S. haematobium infections in Africans.
 IT 103388-58-5, Benzamide, N-{{[5-(p-aminophenoxy)pentyl]carbamoyl}methyl}-
 (pharmacology of)
 RN 103388-58-5 CAPLUS
 CN Benzamide, N-[[[5-(p-aminophenoxy)pentyl]carbamoyl]methyl]- (6CI) (CA INDEX NAME)

L71 ANSWER 43 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1960:38924 CAPLUS
 DN 54:38924
 OREF 54:7613f-i,7614a-i,7615a-i,7616a-i,7617a-i,7618a-d
 TI Chemotherapy of schistosomiasis. III. N-(p-amino-phenoxyalkyl)amides, -imides, and -sulfonamides
 AU Ashley, J. N.; Collins, R. F.; Davis, M.; Sirett, N. E.
 CS May & Baker, Dagenham, UK
 SO Journal of the Chemical Society, Abstracts (1959) 3880-94
 CODEN: JCSAAZ; ISSN: 0590-9791
 DT Journal
 LA Unavailable
 AB cf. C.A. 53, 17942c. Many acyl- and diacylaminoalkyl ethers of p-aminophenol (I) were prepared by a number of routes. Some of these compds. were effective against schistosomicides. K p-nitrophenoxy and 2-phthalimidoethyl bromide gave 22% 1-(p-nitrophenoxy)-2-phthalimidoethane, m. 152-4° (AcOH). Similarly prepared in either alc. or EtOCH₂-CH₂OH were: 44% 1-(p-nitrophenoxy)-3-phthalimidopropane, m. 189-91.5° (dioxane); 64% 1-(p-nitrophenoxy)-4-phthalimidobutane, m. 119° (AcOH); 60% 1-(p-nitrophenoxy)-10-phthalimidodecane, m. 102-3° (AcOH); and 55% 1-(p-nitrophenoxy)-6-phthalimido-3-hexene [from 6-phthalimido-1-(p-toluenesulfonyloxy)-3-hexene], m. 118-19° (aqueous AcOH). 1-(p-Nitrophenoxy)-5-phthalimidopentane (Ia) treated with aqueous N₂H₄.H₂O in alc. and the amine liberated by shaking the complex with CHCl₃ and warm 2N NaOH gave 1-amino-5-(p-nitrophenoxy)pentane (II), b0.02 160-5°. Similarly prepared were: 94% 1-amino-5-(p-aminophenoxy)pentane, m. 67-9° (ligroine) (dimethanesulfonate m. 244-6°); and 91% 1-(p-acetamidophenoxy)-5-aminopentane (IIa) m. 137-9° (C₆H₆) (methanesulfonate m. 155-7°). II (22.4 g.) and 28.6 g. tetrachlorophthalic anhydride heated 2 hrs. at 180-90°, cooled, and dissolved in 150 ml. hot EtOCH₂CH₂OH gave 96% 1-(p-nitrophenoxy)-5-tetrachlorophthalimidopentane, m. 165-7°. Similarly prepared were: 84% 1-(p-nitrophenoxy)-5-(3-nitrophthalimido)pentane, m. 163-4.5°; 67% 1-(p-acetamidophenoxy)-5-(3-nitrophthalimido)pentane, m. 132-4°(alc.); and 65% 1-homophthalimido-5-(p-nitrophenoxy)pentane, m. 144-5° (Me₂CO). 1-(p-Nitrophenoxy)-5-ureidopentane (61 g.), 24 g. CH₂(CO₂H)₂, and 55 ml. AcOH heated to 70-80°, treated dropwise with 45 ml. Ac₂O, left 8 hrs. at 90°, cooled, diluted with 84 ml. H₂O, and filtered gave a solid, m. 178.5-80.0°, possibly an Ac derivative. Further dilution with 240 ml. H₂O gave 1-[5-(p-nitrophenoxy)pentyl]barbituric acid, m. 149-51° (alc.). II (45 g.) and 15.2 g. Me salicylate heated 5 hrs. at 120°, dissolved in CHCl₃, washed with 2N HCl, dried, and evaporated gave 73% 1-(p-nitrophenoxy)-5-(salicylylamido)pentane (III), m. 123-5°(C₆H₆). ClCO₂Et (12 g.) slowly added to a cold solution of 35 g. III in 120 ml. C₆H₆, the mixture heated 2 hrs. at 100°, cooled, and diluted with H₂O gave 86% 3,4-dihydro-3-[5-(p-nitrophenoxy)pentyl]-2,4-dioxo-5,6-benz-1,2-oxazine, m. 145-6° (AcOH and alc.). 5-(p-Nitrophenoxy)pentyl bromide (IIIa) (16.15 g.), 10.15 g. (+)-camphorimide, 5.4 ml. 10.4N KOH, and 25 ml. EtOCH₂CH₂OH refluxed 2 hrs. and the product crystallized gave 71% 1-camphorimido-5-(p-nitrophenoxy)pentane, m. 66-7° (aqueous alc.). N-[5-(p-Nitrophenoxy)pentyl]phthalhydrazide was similarly obtained in 23% yield, m. 160-2° (PhMe). II (22.4 g.) in 100 ml. CHCl₃ refluxed 1 hr. with 9.8 g. maleic anhydride in 100 ml. CHCl₃ gave 53% 1-(β-carboxyacrylamido)-6-(p-nitrophenoxy)pentane (IV), m. 91-3° (alc.). Similarly prepared were: 63% 1-(p-acetamidophenoxy)-5-

(β -carboxyacrylamido)pentane, m. 161-3° (aqueous AcOH); 1-(β -carboxymethyl- β -methylvaleramido)-5-(p-nitrophenoxy)pentane (not obtained crystalline); and 92% 1-(γ -carboxybutyramido)-5-(p-nitrophenoxy)pentane (V), m. 116-17°. IV (17.2 g.), 18 ml. Ac₂O, and 1.8 g. freshly fused NaOAc stirred 1 hr. at 100° gave 51% 1-maleimido-5-(p-nitrophenoxy)pentane, m. 105-7° (ligroine). The glutaramic acid (37.3 g.) and 100 ml. AcCl refluxed 20 min., evaporated, and the residue crystallized gave 84% 1-glutarimido-5-(p-nitrophenoxy)pentane, m. 87-8° (MeOH). 1-(β -Ethyl- β -methylglutarimido)-5-(p-nitrophenoxy)pentane was made similarly, but was not obtained crystalline Glutarimide (11.3 g.) and 28.8 g. 5-(p-nitrophenoxy)pentyl bromide refluxed 20 hrs. with 2.3 g. Na in 150 ml. alc., diluted with H₂O, and extracted

with CHCl₃ gave 39% 1-(γ -ethoxycarbonylbutyramido)-5-(p-nitrophenoxy)pentane (VI), m. 90-1.5° (C₆H₆). Hydrolysis of VI with 1 equivalent 2N NaOH gave 93% V. When a similar condensation was carried out by using 1 equivalent of NaOH in aqueous alc. 33% 5-(p-nitrophenoxy)pentyl glutaramate (VII), m. 93-5° (C₆H₆), was obtained identical with a specimen prepared in 34% yield from 5-(p-nitrophenoxy)pentyl bromide and Ag glutaramate in dry dioxane. Its structure was confirmed by catalytic reduction of VII to 81% 5-(p-aminophenoxy)pentyl glutaramate, m. 116-18°, and subsequent hydrolysis to 5-(p-aminophenoxy)pentanol, m. 94-5°. The following p-RC₆H₄O(CH₂)_nNHR₁ (VIII) were prepared from IIa, 1-amino-4-(p-nitrophenoxy)butane, II, or 1-amino-8-(p-nitrophenoxy)octane with the appropriate acid chloride or anhydride either in C₅H₅N or under Schotten-Baumann conditions (n, R, R', % yield, m.p., and solvent of recrystn. given): 4, NO₂, Bz, 82, 102-3°, aqueous AcOH; 5, NO₂, p-BrC₆H₄CO, 81, 153-4°, alc.; 5, NO₂, p-MeC₆H₄CO, 73, 132-3°, AcOH; 5, NO₂, p-O₂NC₆H₄CO, 49, 148-50°, Me₂CO; 5, NO₂, p-AcOC₆H₄CO, 54, 131-3°, Me₂CO; 5, NO₂, p-HOC₆H₄CO, 91, 147-50°, PhMe; 5, NO₂, o-MeO₂CC₆H₄CO, 61, 140-1°, C₆H₆; 5, NO₂, p-MeO₂CC₆H₄CO, 56, 164-6°, alc.; 5, NO₂, p-MeSO₂C₆H₄CO, 22, 169-71°, AcOH; 5, NO₂, hexahydrobenzoyl, 87, 123°, AcOH; 5, NO₂, EtCO, 69, 79-80°, aqueous alc.; 5, NO₂, C₅H₁₁CO, 60, 59-60°, Et₂O; 5, NO₂, Ph₂CHCO, 53, 104-6°, aqueous Me₂CO; 5, NO₂, Ph(CH₂)₄CO, 82, 87-9°, aqueous alc.; 5, NO₂, 2,4-C₁₂C₆H₃OCH₂CO, 37, 112-14°, alc.; 5, NO₂, C₆H₄(CO)₂NCH₂CO, 68, 183.5-5.0°, EtO(CH₂)₂OH; 5, AcNH, p-O₂NC₆H₄CO, -, 214-17.5°, alc. or EtO(CH₂)₂OH; 8, NO₂, PhSO₂, 71, 73-5°, alc.; 5, NO₂, p-MeC₆H₄SO₂, 93, 154-6°, aqueous alc.; 5, NO₂, p-AcNHC₆H₄SO₂, 77, 129-31°, aqueous alc. N,N'-Bis[5-(p-nitrophenoxy)pentyl]terephthalamide (58%), m. 154-7° (alc.), and 39% N,N'-bis[5-(p-nitrophenoxy)pentyl]glutaramide, m. 127-9° (Me₂CO), were similarly prepared II and NCCH₂CO₂Et in refluxing alc. gave 68% 1-cyanoacetamido-5-(p-nitrophenoxy)pentane, m. 85-6° (aqueous alc.). Similarly obtained in the absence of solvent was 73% N,N'-bis[5-(p-nitrophenoxy)pentyl]oxamide, m. 163.5-4.5° (CHCl₃-alc.). Ethoxalyl chloride (13.65 g.) slowly added to 21.4 g. II in 100 ml. C₅H₅N, the solution kept overnight at room temperature, diluted with H₂O and

Et₂O, and filtered gave 27% 1-ethoxalylamino-5-(p-nitrophenoxy)pentane, m. 85-7° (ligroine). II (36.4 g.), 13.95 ml. concentrated HCl, and 64.5 g. HCONH₂ heated 0.5 hr. at 145°, cooled, evaporated, 100 ml. H₂O added, and the crude product extracted with Et₂O in a Soxhlet apparatus gave 78% 1-formamido-5-(p-nitrophenoxy)pentane, m. 71-2°. 2-Phenylloxazolone (8.2 g.) added to 12 g. II in CHCl₃, the solvent evaporated, and the residue heated 0.5 hr. at 100° gave 80% 1-hippuramido-5-(p-nitrophenoxy)pentane, m. 145-7° (alc.). Ia (17.7 g.) refluxed 15 min. with 50 ml. N NaOH gave 1-(o-carboxybenzamido)-5-(p-

nitrophenoxy)pentane, m. 118-22° (CHCl₃-ligroine). Tetra-Et pyrophosphate (2.7 ml.) added to 2.24 g. II and 1.79 g. p-acetamidobenzoic acid in 7 ml. di-Et phosphite, the mixture heated 1 hr. at 100°, diluted with H₂O, and cooled gave 55% 1-(p-acetamidobenzamido)-5-(p-nitrophenoxy)pentane (IX), m. 187-8° (EtOCH₂CH₂OH). II (11.2 g.) added to 17.9 g. p-acetamidobenzoic acid and 9.52 g. p-MeC₆H₄SO₂Cl in 40 ml. C₅H₅N, left 0.5 hr. at room temperature, and the mixture treated with 10 g. NaOH and 5 g. Na metabisulfite in 200 ml. H₂O gave 60% IX. II (2.54 g.) in 10 ml. C₅H₅N refluxed 1.5 hrs. with 5 ml. BzCl gave 83% 1-dibenzoylamino-5-(p-nitrophenoxy)pentane, m. 119-20° (alc.). Benzyloxycarbonyl-β-alanine (24 g.) and 24 g. II in 75 ml. diethyl phosphite heated 0.5 hr. at 100° with 30 ml. tetraethyl pyrophosphate gave 90% 1-(N-benzyloxycarbonyl-β-alanylamino)-5-(p-nitrophenoxy)pentane (X), m. 137-8° (aqueous alc.). X (35.05 g.) left 20 min. with 60 ml. 33% HBr with evolution of CO₂, the solution treated with Et₂O, the hygroscopic hydrobromide filtered off, the salt dissolved in H₂O, basified, and extracted with CHCl₃ gave 1-(β-alanylamino)-5-(p-nitrophenoxy)pentane (XI), m. 93-5° (C₆H₆). XI (10.36 g.) and 4.56 g. DL-pantolactone in 50 ml. alc. refluxed 20 hrs., evaporated, and washed with 2N NaOH, 2N HCl, and H₂O gave 14.6 g. 1-(p-nitrophenoxy)-5-(DL-pantothenamido)pentane, oil. 5-(p-Nitrophenoxy)pentyl bromide (XII) (43.2 g.) and 19.8 g. cyclohexylamine in 50 ml. alc. refluxed 19 hrs., cooled, and filtered gave 76% 1-cyclohexyl-amino-5-(p-nitrophenoxy)pentane-HBr, m. 221-3° (alc.); benzoyl derivative m. 78-9° (aqueous alc.). XII (44.5 g.) and 35 g. N-benzyloxybenzamide refluxed 24 hrs. with 3.5 g. Na and 300 ml. alc. gave 46% 1-(N-benzyloxybenzamido)-5-(p-nitrophenoxy)pentane, m. 77-8°. XII (57.6 g.), 50 ml. PhNH₂, and 200 ml. alc. refluxed 20 hrs., concentrated, diluted with H₂O, and crystallized gave 98% 1-anilino-5-(p-nitrophenoxy)pentane, m. 87-9° (alc.); Ac derivative noncryst.; methanesulfonyl derivative (XIII) (64%) m. 73-4° (C₆H₆-ligroine). XIII (42.7 g.), 5 ml. H₂O, and 17.4 ml. MeI added to 3.5 g. Na in 300 ml. alc., the mixture refluxed 3 hrs., concentrated, and diluted with H₂O gave 78% 1-(N-methylmethanesulfonamido)-5-(p-nitrophenoxy)pentane, m. 61-3° (Et₂O). XII (28.8 g.) and 22.4 g. II in 250 ml. alc. refluxed 20 hrs. and the 68% crude HBr shaken with BzCl in Me₂CO-2N NaOH gave 66% N-benzylbis[4-(p-nitrophenoxy)pentyl]amine, m. 114-15.5° (Me₂CO-Et₂O). Condensation of K p-nitrophenoxy with 4-benzoylbutyl bromide in EtOCH₂CH₂OH gave 89% 1-benzoyl-4-(p-nitrophenoxy)butane (XIV), m. 122-3° (AcOH). XIV (63 g.) and 25.2 g. (iso-PrO)₃Al in 3 l. iso-PrOH slowly distilled 2 hrs., the solution evaporated, and the residue treated with dilute HCl gave 94% 1-hydroxy-5-(p-nitrophenoxy)-1-phenylpentane (XV), m. 61-2° (aqueous alc.). PBr₃ (21.6 ml.) added slowly under cooling at 10° to 54 g. XV in 500 ml. C₆H₆, the mixture kept overnight at room temperature, treated with H₂O, the C₆H₆ layer separated, the aqueous layer extracted with Et₂O, the combined organic layers dried, evaporated, the mixture refluxed 48 hrs. with 54 g. K phthalimide and 250 ml. Me₂CO, and the product isolated gave 66% 5-(p-nitrophenoxy)-1-phenyl-1-phthalimidopentane (XVI), m. 131-2° (alc.). Hydrolysis of XVI with N₂H₄ and subsequent benzoylation afforded 69% 1-benzamido-5-(p-nitrophenoxy)-1-phenylpentane, m. 116-18° (C₆H₆). 1-(2-Hydroxyethoxy)-5-(p-nitrophenoxy)pentane was converted by p-MeC₆H₄SO₂Cl in C₅H₅N into 81% p-toluenesulfonyl derivative, m. 49-50°, which condensed with K phthalide gave 65% 1-(p-nitrophenoxy)-5-(2-phthalimidoethoxy)pentane, m. 78-9° (MeOH). 5-(p-Nitrophenoxy)pentyl iodide (102 g.), 36 g. Na derivative of 2-pyridone, 400 ml. alc., and 200 ml. H₂O refluxed 24 hrs. gave 47%

1-(1,2-dihydro-2-oxo-1-pyridyl)-5-(p-nitrophenoxy)pentane, m. 103° (Me₂CO), and a small amount of 1-(p-nitrophenoxy)-5-(2-pyridyloxy)pentane. XII (2.88 g.), 1.73 g. Na derivative of 2,3-dihydro-3-oxobenzisothiazole (XVII), and 10 ml. EtOCH₂CH₂OH refluxed 20 hrs. gave 39% 1-(2,3-dihydro-3-oxobenzisothiazol-2-yl)-5-(p-nitrophenoxy)pentane, m. 109-11° (alc.). Oxidation with 30% H₂O₂ in AcOH at 100° gave the known saccharin derivative, m. 126-7°. XII (3.15 g.) condensed with 1.65 g. XVII by use of 0.76 g. K₂CO₃ in 50 ml. Me₂CO gave 1.9 g. 1-(p-nitrophenoxy)-5(3-benzisothiazolyloxy)pentane, m. 97-9° (AcOH). CS₂ (8.4 ml.) and 60 ml. HCONMe₂ added successively to 32 g. II in 100 ml. PhMe, the mixture left 0.5 hr., cooled, shaken 0.5 hr. with 32 g. HgO, filtered, the filtrate treated with 7.3 g. 90% mercaptoacetic acid, the solution heated 0.5 hr. at 100°, concentrated, and diluted with Et₂O gave 68% 3-[5-(p-nitrophenoxy)pentyl]rhodanine (XVIII), m. 112-13° (alc.). XVIII (30 g.) heated 3 hrs. at 100° with 20 ml. BzH, 200 ml. AcOH, and 40 ml. H₂SO₄ gave 96% 5-benzylidene derivative, m. 143-4° (AcOH). Thiazolidine-2,4-dione (14.1 g.) and 49.7 g. 5-(p-nitrophenoxy)pentyl iodide added successively to 3.43 g. Na and 200 ml. alc., the mixture refluxed 20 hrs., cooled, and filtered gave 46% 3-[5-(p-nitrophenoxy)pentyl]thiazolidine-2,4-dione, m. 118-19° (alc.). Butane-1,4-sultam (2 g.) in 0.35 g. Na and 10 ml. alc. and refluxed 3 hrs. with 4.3 g. XII in 10 ml. alc. gave 79% N-[5-(p-nitrophenoxy)pentyl]butane-1,4-sultam, m. 89-90° (MeOH).

N-[5-(p-Nitrophenoxy)pentyl]naphthalene-1,8-sultam (59%) was similarly prepared from naphthalene-1,8-sultam, m. 1190 (alc.). 1-(p-Nitrophenoxy)-7-phthalimidoheptane (43.8 g.) reduced at 70°/56 lb./sq. in. in 350 ml. alc. over 2% PtO₂ gave 55% 1-(p-aminophenoxy)-7-phthalimidoheptane, m. 107-9°. Concentration of the mother liquor gave 27% 1-(p-aminophenoxy)-7-hexahydrophthalimidoheptane, m. 73-5° (CHCl₃-ligroine).

1-Maleimido-5-(p-nitrophenoxy)pentane (5.9 g.) kept 5 min. at 100° in 18 g. SnCl₂.2H₂O and 27 ml. concentrated HCl, poured into 50% NaOH and 100 ml. CHCl₃ at 0°, the solution immediately separated, and crystallized gave 71% 1-(p-aminophenoxy)-5-maleimidopentane, m. 122-4° (EtOAc/ligroine); methanesulfonate m. 194-5°. 3-[5-(p-Aminophenoxy)pentyl]rhodanine (40%), m. 104-6° (alc.), and 73% 3-[5-(p-aminophenoxy)pentyl]-5-benzylidenerhodanine, m. 133-5° (AcOH), were similarly prepared.

3-[5-(p-Aminophenoxy)pentyl]thiazolidine-2,4-dione was prepared in 54% yield by reducing the corresponding NO₂ compound with SnCl₂, or preferably with reduced Fe powder and aqueous AcOH, m. 107-9° (alc.). 1-Amino-5-(p-aminophenoxy)pentane (14.55 g.), 8.36 g. CNCH₂CO₂Et, and 20 ml. MeOH kept 5 days gave 81% 1-(p-aminophenoxy)-5-(cyanoacetamido)pentane, m. 92-30° (alc.). The Ac derivative was obtained directly from 1-(p-acetamidophenoxy)-5-aminopentane and NCCH₂CO₂Et. Similarly prepared were 13% 1-(p-aminophenoxy)-5-(dichloroacetamido)pentane, m. 81-2° (C₆H₆-ligroine), and 66% 1-(p-aminophenoxy)-5-(trichloroacetamido)pentane, m. 97-9° (Et₂O). Concentrated HCl (100 ml.) added during 1 hr. to a refluxing mixture of 32.4 g. 1-(p-aminophenoxy)-5-phthalimidopentane (XVIIIa), 25 g. Sn, and 200 ml. alc., left 17 hrs., filtered, and the filtrate added to 200 ml. 50% NaOH gave 63% 1-(p-aminophenoxy)-5-phthalimidinopentane, m. 143-4°. Except where stated, the amines, p-H₂NC₆H₄O(CH₂)_nR, were prepared by catalytic reduction of the corresponding

NO2

compds., usually over Raney Ni in alc., EtOCH₂CH₂OH, or HCONMe₂ (n, R, derivative, % yield, m.p., and solvent given): 2, phthalimido, base, 59, 159-60°, alc.; 2, phthalimido, MeSO₃H, -, 198-9°, -; 3, phthalimido, base, 94, 67-8° (or 92-3°), CHCl₃-Et₂O; 3, phthalimido, MeSO₃H, -, 163-5°, EtOH-Et₂O; 4, phthalimido, base, 59, 124-5°, alc.; 10, phthalimido, base, 70, 98°, alc.; 5,

tetrachlorophthalimido, base, 55, 180-2°, EtOCH₂CH₂OH; 5,
 3-nitrophthalimido, base, 30, 117-18°, alc.; 5, 3-nitro
 phthalimido, MeSO₃H, -, 183-5°, alc.-Et₂O; 5, 3-aminophthalimido,
 base, 87, 105-7°, alc.; 5, homophthalimido, MeSO₃H, 85,
 187-9°, MeOH; 5, 3,4-dihydro-2,4-dioxo-5,6-benz-1,3-oxazin-3-yl,
 base, 95, 136-8°, alc.; 5, camphorimido, 0.5H₂SO₄, 54,
 183-5°, alc.-Et₂O; 5, 1,2,3,4-tetrahydro-11,4-dioxophthalazin-2-yl,
 base, 43, 169-71°, alc.; 5, glutarimido, base, 93, 109°,
 alc.; 5, β-ethyl-Bmethylglutarimido, base, 57, 99-100°, C₆H₆;
 5, hexahydro-2,4,6-trioxopyrimidin-1-yl, base, 78, 211-14°
 (effervescent), Me₂NCHO-alc.; 4, α-phthalimidobenzyl, base, 73,
 112-13°, alc.; 4, α-benzamidobenzyl, MeSO₃H, 63,
 177-9°, alc.Et₂O; 5, NHCHO, base, 89, 74-6°, C₆H₆; 5,
 NHC₂Et, base, 70, 77.5-9.0°, C₆H₆; 5, NHC₂Et, CHPh:, -,
 122.5-3.5°, -; 5, NHCOC₅H₁₁, base, 74, 86-7°, alc.Et₂O; 5,
 NHCO(CH₂)₄Ph, base, 87, 92° CHCl₃-ligroine; 5, NHCOC₂Et, base, 85,
 78-80°, CHCl₃-ligroine; 5, NHCOC₂Et, MeSO₃H, -, 142-3°,
 alc.-Et₂O; 5, NHCOCHPh₂, base, 80, 101-2.5°, alc.-ligroine; 5,
 NHCOCH₂C₆H₃C₁₂-1,2,4, base, 84, 104.5-6.5°, alc.; 5,
 NHCOCH₂N(CO₂)C₆H₄-o, base, 98, 156.5-8.5°, alc.; 5, NHCOCH₂NHCOPh,
 base, 81, 119-21°, alc.; 5, pantothenamido, base, 86, -, -; 5,
 hexahydrobenzamido, base, 85, 103-4°, C₆H₆; 5, N(COPh)₂, base, 87,
 92 3°, alc.; 4, NHCOPh, base, 80, 108°, alc.; 5,
 NHCOC₆H₄Me-p, base, 84, 123-4°, CHCl₃-ligroine; 5, NHCOC₆H₄Br-p,
 base, 47, 118-20°, alc.; 5, NHCOC₆H₄Br-p, CHPh:, -, 154-5°,
 alc.; 5, NHCOC₆H₄OH-p, base, 67, 192.5-4.0°, alc.; 5, NHCOC₆H₄OH-o,
 base, 80, 122-3°, aqueous MeOH; 5, NHCOC₆H₄CO₂Me-p, base, 77,
 141-3°, PhMe; 5, NHCOC₆H₄CO₂H-p, base, 93, 242-4°, aqueous
 HCONMe₂; 5, NHCOC₆H₄SO₂Me-p, base, 77, 144-5°, alc.; 5,
 NHCOC₆H₄NO₂-p, base, 75, 139-41°, EtOAc; 5, NHCOC₆H₄NHAc-p, base,
 89, 173.5-4.5°, alc.; 5, NHCOC₆H₄NH₂-p, base, 80, 121-3°,
 alc.; 5, NHCOC₆H₄NH₂-p, 2MeSO₃H, -, 272-4°, alc.-Et₂O; 5, NPhAc,
 base, 62, 66-8°, Et₂O-ligroine; 5, N-cyclohexyl-benzamido, base,
 80, 72-5°, Et₂O-ligroine; 5, N(OCH₂Ph)Bz, base, 96, 77-8°,
 aqueous alc.; 5, N(OH)Bz, base 78, 105-7°, alc.; 5,
 NBz(CH₂)₅OC₆H₄NH₂-p, 2MeSO₃H, 82, 137-9°, alc.-Et₂O; 5,
 1,2-dihydro-2-oxopyridyl, base, 96, 114-15°, alc.; 5,
 2-oxopiperidino, base, 56, 97-8°, H₂O; 5, 2,3-dihydro-3-
 oxobenzisothiazol-2-yl, base, 78, 117-19°, C₆H₆; 5,
 2-phthalimidooxy, base, 94, 104-6°, alc.; 2,
 4-phthalimidobut-1-enyl, base, -, 101-3°, aqueous alc.; 5, NHCONH (bis
 compound), base, 72, 160-2°, alc.; 5, NHCOCONH (bis compound), base,
 79, 150-2°, EtOCH₂CH₂OH; 5, p-NHCOC₆H₄CONH (bis compound), base, 53,
 176-8°, xylene; 5, NHCO(CH₂)₃ CONH (bis compound), base, 94,
 133-5° and 140-1°, alc.; 5, NHCO(CH₂)₃CONH (bis compound),
 MeSO₃H, -, 227-30°, alc.; 8, NHSO₂Ph, base, 79, 121-2°,
 alc.; 5, NHSO₂C₆H₄Me-p, base, 67, 168-9°, alc.; 5, NHSO₂C₆H₄NHAc-p,
 base, 79, 117-19°, aqueous
 MeOH; 5, NHSO₂C₆H₄NHAc-p, H₂SO₄, -, 198-201°, -; 5, NHSO₂C₆H₄NH₂-p,
 base, 64, 125-8°, aq.alc.; 5, NHSO₂C₆H₄NH₂-p, 2MeSO₃H, -,
 235-7°, -; 5, NPhSO₂Me, base, 81, 67-8°, MeOH; 5, NM₂SO₂Me,
 base, 81, 76-7°, alc.-Et₂O; 5, tetrahydro-1,1-dioxo-1,2-thiazin-2-
 yl, base, 60, 73°, Et₂O; 5, 1,1-dioxonaphtho[1.8a.8-cd]isothiazol-2-
 yl, base, 92, 106-7°, alc. 1-(p-Aminophenoxy)-3-phthalimidopropane
 (m. 92-3°) converted to the MeI salt in 100% yield, m.
 203-6° (H₂O), and pyrolyzed under reduced pressure gave 100%
 1-(p-dimethylaminophenoxy)-3-phthalimidopropane, m. 121-2°(alc.).
 1-Benzene sulfonamido-5-(p-dimethylaminophenoxy)pentane, m. 71-2.5°

(Et₂O), similarly obtained (96%) from its MeI salt (96%), m. 183-5° (H₂O). p-(N-Methylacetamido)phenol, 5-phthalimidopentyl bromide, and NaOEt in alc. gave 53% 1-[p-(N-methylacetamido)phenoxy]-5-phthalimidopentane (XIX), m. 83-5° (CHCl₃-Et₂O).

1-[p-(N-Methylbenzamido)phenoxy]-5-phthalimidopentane, m. 121-4° (MeOH), was similarly obtained. Refluxing XIX with concentrated HCl gave 1-amino-5-(p-methylaminophenoxy)pentane, m. 76-9° (ligroine), decomposed on storage. The corresponding 5-phthalimido compound treated with aqueous alc.-N₂H₄ and the amine hydrolyzed gave 61% 1-benzamido-5-[p-(N-methylacetamido)phenoxy]pentane, m. 110-12° (Me₂CO-ligroine). 1-Benzamido-5-[p-(N-methylformamido)phenoxy]pentane, m. 115-16° (Me₂CO-Et₂O), was similarly prepared in 12% yield.

Partial hydrolysis of either the N-formyl or the N-Ac derivative with aqueous HCl gave 60% 1-benzamido-5-(p-methylaminophenoxy)pentane, m. 91-2° (Me₂CO-ligroine); N-Bz derivative m. 111-13° (C₆H₆-Et₂O).

1-Benzenesulfonamido-5-[p-(N-methylacetamido)phenoxy]pentane, m. 109-11° (PhMe-ligroine), was similarly prepared and was hydrolyzed to 62% 1-benzenesulfonamido-5-(p-methylaminophenoxy)pentane (XX), m. 83-5° (alc.). XX with HOCH₂CH₂Cl and CaCO₃ in refluxing H₂O gave 76% 1-benzenesulfonamido-5-[p-(2-hydroxy-N-methylethylamino)phenoxy]pentane, m. 76-8° (C₆H₆-ligroine). 1-(p-Aminophenoxy)-5-benzamidopentane (XXa) (14.9 g.), 4.7 g. (CH₂Br)₂, and 25 ml. alc. refluxed 20 hrs. gave 3.3 g. piperazine derivative and 24% 1,2-bis[p-(5-benzamidopentyloxy)anilino]ethane (XXI), m. 155-7° (alc.). XXI (8.1 g.), 4.7 g. (CH₂Br)₂, and 4.2 g. NaHCO₃ refluxed 20 hrs. in 30 ml. EtOCH₂CH₂OH gave 1,4-bis[p-(5-benzamidopentyloxy)phenyl]piperazine, m. 231-3° (EtOCH₂CH₂OH). POCl₃ (2.74 g.) added to 4.12 g. 1-[p-bis(2-hydroxyethyl)aminophenoxy]-5-phthalimidopentane in 15 ml. C₆H₆, the mixture refluxed 2 hrs., poured on ice, and extracted with C₆H₆ gave 81% 1-[p-bis(2-chloroethyl)aminophenoxy]-5-phthalimidopentane (XXII), m. 107-8° (alc.). XXII (17.96 g.), 5.66 g. 3-chloro-p-toluidine, 4.24 g. Na₂CO₃, and 75 ml. EtOCH₂CH₂OH refluxed 20 hrs. gave 63% 1-(3-chloro-p-tolyl)-4-[p-(5-phthalimidopentyloxy)phenyl]piperazine, m. 149-50° (CHCl₃-alc.). 2-Amino-4-chloro-6-methylpyrimidine (14.35 g.), 32.4 g. XVIIIa, 100 ml. N HCl, and 500 ml. H₂O refluxed 1 hr., and made alkaline gave 67% 1-[p-(2-amino-6-methylpyrimid-4-ylamino)phenoxy]-5-phthalimidopentane, m. 211-13° (EtOCH₂CH₂OH); 1-methomethylsulfate (75%) m. 186-8° (alc.). NaNO₂ (91.43 g.) in 24 ml. H₂O added slowly at 0-5° to 4.16 g. p-aminobenzamidine-2HCl and 2.9 ml. concentrated HCl in 17 ml. H₂O, 6.28 g. XVIIIa in 20 ml. AcOH added quickly followed by NaOAc, and the product separated gave 68% 4-amidino-4'-(5-phthalimido)pentyloxydiazoamino]benzene acetate, m. 210-12° (alc.). XXa (19.7 g.), 6.18 g. chloracetamide, 3.5 g. Na₂CO₃, and 200 ml. alc. refluxed 20 hrs. gave 61% 5-benzamido-1-(p-carbamoylmethylaminophenoxy)pentane, m. 161-3° (alc.). XVIIIa (3.24 g.), 1.8 g. D-glucose, and 0.5 ml. 5% alc. CaCl₂ in 20 ml. alc. refluxed 1.5 hrs. gave 86% 1-(p-D-glucosylaminophenoxy)-5-phthalimidopentane, m. 110-15°.

1-Benzamido-5-(p-D-glucosylamino)pentane (83%) was similarly prepared, m. 119-20° (aqueous MeOH). IIIa (14.6 g.), 10.65 g. 1-(3-chloro-p-tolyl)piperazine, and 75 ml. alc. refluxed 40 hrs. gave 76% 4-(3-chloro-p-tolyl)-1-[5-(p-nitrophenoxy)pentyl]piperazine (XXIII). HBr, m. 170-2° (alc.). Free XXIII m. 101-3° (alc.). Reduction of XXIII with Na₂S gave 86% 1-[5-(p-aminophenoxy)pentyl]-4-(3-chloro-p-tolyl)piperazine, m. 95-6° (alc.). IIIa (5.76 g.) and 1.94 g. piperazine-6H₂O heated 40 hrs. at 100° and the residue refluxed with alc. gave 92% 1,4-bis[5-(p-nitrophenoxy)pentyl]piperazine-2HBr, m. 253-5°; free base m. 122-3° (alc.). Catalytic reduction gave

92% 1,4-bis[5-(p-aminophenoxy)pentyl]piperazine, m. 124-6°
 (alc.-ligroine). The following RC₆H₄O(CH₂)₅R' were prepared (R, R', m.p., and solvent for recrystn. given): p-NHCHO, NHBz, 163-4°, alc.; p-NHAc, NHBz, 165-7°, alc.; p-NHAc, NHAc, 155-7°, H₂O; p-HO₂C(CH₂)₂CONH, o-C₆H₄(CO)₂N, 185-7°, AcOH; p-NH₄O₂C(CH₂)₂CONH, o-C₆H₄(CO)₂N, 174-6°, -; p-(5-nitrofurfurylidene)amino, o-C₆H₄(CO)₂N, 138-9°, CHCl₃-alc.; p-PhCH:N, NHBz, 133-4° alc.; p-MeN(NO), o-C₆H₄(CO)₂N, 104-5°, alc.; o-NO₂, o-C₆H₄(CO)₂N, 99.5°, alc.; o-NH₂, o-C₆H₄(CO)₂N, 94-5°, alc.; m-NHAc, o-C₆H₄(CO)₂N, 127.5-9.0°, alc.; m-NH₂, o-C₆H₄(CO)₂N, 102-3°, alc.

IT 103388-58-5, Benzamide, N-{{[5-(p-aminophenoxy)pentyl]carbamoyl}methyl}-
 117123-84-9, Benzamide, N-{{[5-(p-nitrophenoxy)pentyl]carbamoyl}methyl}-
 (preparation of)

RN 103388-58-5 CAPLUS

CN Benzamide, N-{{[5-(p-aminophenoxy)pentyl]carbamoyl}methyl}- (6CI) (CA
 INDEX NAME)

RN 117123-84-9 CAPLUS

CN Benzamide, N-[(5-(p-nitrophenoxy)pentyl)carbamoyl]methyl- (6CI) (CA
 INDEX NAME)

L71 ANSWER 44 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1960:11409 CAPLUS

DN 54:11409

OREF 54:2312d-h

TI Aminolysis of 1-acyl-3,5-dimethylpyrazoles

AU Ried, Walter; Schleimer, Bernhard

CS Univ. Frankfurt, Germany

SO Ann. (1959), 626, 98-105

DT Journal

LA Unavailable

OS CASREACT 54:11409

AB The aminolysis of a number of 1-acyl-3,5-dimethylpyrazoles was studied as a function of the acyl group, the basicity of the aminolyzing base, and the nature of the solvent. By condensation of the corresponding acid hydrazide with acetylacetone in the heat, reaction of the acid hydrazide with acetylacetone in aqueous HCl at room temperature, or reaction of 3,5-dimethylpyrazole with the acid chloride were prepared 1-acyl-3,5-dimethylpyrazoles with the following acyl groups: Ac (b12 70°), COCH₂CN (m. 118-21°), COCH₂SH (m. 118-19.5°), COCH₂Cl (m. 68-70°), COCH₂OPh (m. 85-7°), COCH₂Ph (m. 56.5-58°), Bz (b12 158°), COC₆H₄NO₂-p (m. 122.5-3.5°), COC₆H₄NH₂-p (m. 95.5-6.5°), OCNH₂ (m. 112-13°), SO₂C₆H₄Me-p (m. 96.5-7.5°), N-tosylglycyl (m. 119-20.5°), N-tosyl-DL-alanyl (m. 144.5-5.5°), N-tosyl-DL-valyl (m. 149.5-50.5°), N-tosylglycyl-DL-alanyl (m. 143.5-4.5°), N-tosyl-L-leucyl (m. 164-6°), and N-tosyl-L-tyrosyl (m. 165-6°). Electropos. substituents in the acyl component lowered the reaction rate of aminolysis, electroneg. ones increased it. Thus, 1-(p-nitrobenzoyl)-3,5-dimethylpyrazole was very easily aminolyzed by aniline, while even at temps. up to 180° 1-(p-aminobenzoyl)-3,5-dimethylpyrazole was not. Of the pyrazoles containing the tosyl group only the 1-tosyl- and 1-(N-tosyl-DL-valyl)-3,5-dimethylpyrazole could not be aminolyzed by aniline. N-Tosylglycyl- (m. 159-60°), N-tosyl-DL-alanyl- (m. 163-4.5°), N-tosylglycyl-DL-alanyl- (m. 1567.5°), and N-tosyl-L-tyrosylanilide (m. 183-5°) were obtained in this manner from the corresponding 1-(N-tosyl- α -aminoacyl)-3,5-dimethylpyrazoles. Glacial AcOH exerted an effect on the aminolysis reaction similar to that of positivating group in the acyl component. Thus, in benzene, 1-cyanoacetyl-3,5-dimethylpyrazole was not aminolyzed by benzaldehyde phenylhydrazone, while in glacial AcOH N-cyanoacetyl-N-phenyl-N'-benzylidenehydrazine (m. 201-3°) was obtained in good yields. N-Cyanoacetyl-N-phenyl-N'-(p-nitrobenzylidene)hydrazine (m. 205-7°) was prepared similarly.

IT 101720-38-1, Propionanilide, 2-(2-p-toluenesulfonamidoacetamido)-(preparation of)

RN 101720-38-1 CAPLUS

CN Propionanilide, 2-(2-p-toluenesulfonamidoacetamido)-(6CI) (CA INDEX NAME)

L71 ANSWER 45 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN
 AN 1959:76148 CAPLUS
 DN 53:76148
 OREF 53:13774g-i
 TI Ultraviolet absorption spectra of benzoyl polyglycine anilides and benzoyl polyalanine anilides
 AU Goldfarb, A. R.; Hoffmann, E.
 CS Chicago Med. School
 SO Archives of Biochemistry and Biophysics (1959), 81, 493-9
 CODEN: ABBIA4; ISSN: 0003-9861
 DT Journal
 LA Unavailable
 AB cf. C.A. 52, 20318f. Benzoyldiglycine (1.2 g.) dispersed in 10 ml. CHCl₃, the mixture treated with 0.71 ml. Et₃N, cooled (ice bath), 0.39 ml. ClCO₂Me added, the mixture stirred 15-20 min., treated with 0.46 ml. PhNH₂, allowed to warm to room temperature during a few hrs., held overnight at room temperature, evaporated to dryness, and the residue washed with H₂O, dilute alkali, dilute acid, and H₂O yielded 1 g. benzoyl diglycine anilide, m. 248°. Other glycine and alanine anilides were prepared by the same method. The absorption spectra of the compds. were studied in MeOH and HClO₄. The data support the hypothesis that interactions between peptide bonds occur which are energetic in nature.
 IT 93818-92-9, Acetanilide, 2-(2-benzamidoacetamido)-
 (spectrum of)
 RN 93818-92-9 CAPLUS
 CN Acetanilide, 2-(2-benzamidoacetamido)- (6CI, 7CI) (CA INDEX NAME)

L71 ANSWER 46 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1957:47458 CAPLUS

DN 51:47458

OREF 51:8846c-d

TI Enzymic synthesis of peptide bonds. VII. Competition between some benzoylamino acids and benzyldipeptides in papain-catalyzed reactions with glycylanilide

AU Tollin, Gordon; Fox, Sidney W.

CS Florida State Univ., Tallahassee

SO Archives of Biochemistry and Biophysics (1957), 66, 411-17

CODEN: ABBIA4; ISSN: 0003-9861

DT Journal

LA Unavailable

AB cf. C.A. 48, 2148b. A series of competition expts. in which more than one benzoylamino acid or benzyldipeptide component was present with glycylanilide and papain were performed. In some reactions, the product represented the faster-reacting component; in others it did not. The 2nd component, in the latter instances, altered the normal course of the reaction. The theory of the participation of proteases in protein synthesis is discussed.

IT 93818-92-9, Acetanilide, 2-(2-benzamidoacetamido)-
(formation from glycylanilide by papain)

RN 93818-92-9 CAPLUS

CN Acetanilide, 2-(2-benzamidoacetamido)- (6CI, 7CI) (CA INDEX NAME)

L71 ANSWER 47 OF 47 CAPLUS COPYRIGHT 2004 ACS on STN

AN 1954:11568 CAPLUS

DN 48:11568

OREF 48:2148b-e

TI Enzymic synthesis of peptide bonds. VI. The influence of residue type on papain-catalyzed reactions of some benzoylamino acids with some amino acid anilides

AU Fox, Sidney W.; Winitz, Milton; Pettinga, Cornelius W.

CS Iowa State Coll., Ames

SO Journal of the American Chemical Society (1953), 75, 5539-42

CODEN: JACSAT; ISSN: 0002-7863

DT Journal

LA Unavailable

AB cf. C.A. 47, 5465d. Each of 13 benzoylamino acids was submitted to reaction with glycylanilide in the presence of papain. Only benzoylglycine (I) participated in a synthesis leading to a larger peptide. The failure of benzoylaminoisobutyric acid to react is explainable on the basis of steric hindrance. Benzoylglutamic acid and benzoyltyrosine did not react at pH values in which the corresponding reactions with PhNH₂ had been shown to proceed rapidly. Eight other reactions were transacylations yielding glycine-free products. I with each of 4 amino acid anilides yielded benzoylglycylamino acid anilide. When benzoylalanine was used instead of I, 2 syntheses and 2 transacylations resulted. The acylamino acid and the amino acid anilide thus each contribute to selectivity in synthesis. The specificities observed when the carboxoid or aminoid component is systematically varied contrasts, at the 2 amino acid level, with the broad preferences observed in reactions of benzoylamino acid with PhNH₂. A single protease participating in peptide-bond synthesis may favor unique synthetic reactions, and reject or divert others. These phenomena are referred to as zymosequential specificity. These observations suggest the possibility that, in protein synthesis, each peptide intermediate becomes part of the protease to give, in effect, a new enzyme at each step.

IT 93818-92-9, Acetanilide, 2-(2-benzamidoacetamido)-
(preparation of)

RN 93818-92-9 CAPLUS

CN Acetanilide, 2-(2-benzamidoacetamido)- (6CI, 7CI) (CA INDEX NAME)

10/027,505 (RCE)

=> => d his

(FILE 'HOME' ENTERED AT 16:45:14 ON 16 JUN 2004)

FILE 'REGISTRY' ENTERED AT 16:45:19 ON 16 JUN 2004

L1 STRUCTURE uploaded
L2 1 S L1 SSS SAM
L3 SCREEN 1839
L4 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L5 STRUCTURE uploaded
L6 QUE L5 AND L3 NOT L4
L7 0 S L6 SSS SAM
L8 SCREEN 1839
L9 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L10 STRUCTURE uploaded
L11 QUE L10 AND L8 NOT L9
L12 0 S L11 SSS SAM
L13 SCREEN 1839
L14 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L15 STRUCTURE uploaded
L16 QUE L15 AND L13 NOT L14
L17 0 S L16 SSS SAM
L18 SCREEN 1839
L19 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L20 STRUCTURE uploaded
L21 QUE L20 AND L18 NOT L19
L22 1 S L21 SSS SAM
L23 SCREEN 1839
L24 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L25 STRUCTURE uploaded
L26 QUE L25 AND L23 NOT L24
L27 0 S L26 SSS SAM
L28 STRUCTURE uploaded
L29 4 S L28 SSS SAM
L30 STRUCTURE uploaded
L31 0 S L30 SSS SAM
L32 SCREEN 1839
L33 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L34 STRUCTURE uploaded
L35 QUE L34 AND L32 NOT L33
L36 0 S L35 SSS SAM
L37 STRUCTURE uploaded
L38 STRUCTURE uploaded
L39 2 S L38 SSS SAM
L40 STRUCTURE uploaded
L41 1 S L40 SSS SAM
L42 SCREEN 1839
L43 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L44 STRUCTURE uploaded
L45 QUE L44 AND L42 NOT L43
L46 0 S L45 SSS SAM
L47 3 S L45 SSS FUL

FILE 'CAPIUS' ENTERED AT 17:42:28 ON 16 JUN 2004

L48 2 S L47

FILE 'REGISTRY' ENTERED AT 17:45:35 ON 16 JUN 2004

L49 SCREEN 1839

10/027,505 (RCE)

L50 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L51 STRUCTURE uploaded
L52 QUE L51 AND L49 NOT L50
L53 0 S L52 SSS SAM
L54 SCREEN 1839
L55 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L56 STRUCTURE uploaded
L57 QUE L56 AND L54 NOT L55
L58 0 S L57 SSS SAM
L59 SCREEN 1839
L60 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L61 STRUCTURE uploaded
L62 QUE L61 AND L59 NOT L60
L63 0 S L62 SSS SAM
L64 SCREEN 1839
L65 SCREEN 2016 OR 2026 OR 2039 OR 2040 OR 2045 OR 2047
L66 STRUCTURE uploaded
L67 QUE L66 AND L64 NOT L65
L68 0 S L67 SSS SAM
L69 0 S L62 SSS SAM
L70 67 S L62 SSS FUL

FILE 'CAPLUS' ENTERED AT 17:52:39 ON 16 JUN 2004
L71 47 S L70

FILE 'CAOLD' ENTERED AT 17:53:26 ON 16 JUN 2004

=> s 170
L72 10 L70

=> d 172 1-10 bib,hitstr

L72 ANSWER 1 OF 10 CAOLD COPYRIGHT 2004 ACS on STN
AN CA63:16450d CAOLD
TI racemization
AU Young, Geoffrey T.; Antonovics, I.
IT 2900-37-0
RN 2900-37-0 CAOLD
CN Alanine, N-hippuroyl-3-phenyl-, p-nitrophenyl ester, L- (8CI) (CA INDEX
NAME)

Absolute stereochemistry.

L72 ANSWER 2 OF 10 CAOLD COPYRIGHT 2004 ACS on STN
AN CA63:14976h CAOLD
TI synthesis of peptides related to eleodoisin
AU Boissonnas, Roger A.; Sandrin, E.
IT 2900-37-0
RN 2900-37-0 CAOLD
CN Alanine, N-hippuroyl-3-phenyl-, p-nitrophenyl ester, L- (8CI) (CA INDEX
NAME)

Absolute stereochemistry.

L72 ANSWER 3 OF 10 CAOLD COPYRIGHT 2004 ACS on STN
AN CA56:6084c CAOLD
TI reactions of formylamino acids and acyldipeptides with
dicyclohexylcarbodiimide
AU Siemion, Ignacy Z.; Nowak, K.
IT 93818-92-9
RN 93818-92-9 CAOLD
CN Acetanilide, 2-(2-benzamidoacetamido)- (6CI, 7CI) (CA INDEX NAME)

L72 ANSWER 4 OF 10 CAOLD COPYRIGHT 2004 ACS on STN
AN CA55:21020b CAOLD
IT **103506-85-0**
RN 103506-85-0 CAOLD
CN Benzamide, N-[[(5-(4-amino-2-methoxyphenoxy)pentyl]carbamoyl)methyl]-
(6CI) (CA INDEX NAME)

L72 ANSWER 5 OF 10 CAOLD COPYRIGHT 2004 ACS on STN
AN CA55:21015i CAOLD
TI chemotherapy of schistosomiasis - (IV) ethers of 4-amino-2-methoxyphenol
AU Collins, Raymond F.; Davis, M.
IT 103990-63-2
RN 103990-63-2 CAOLD
CN Benzamide, N-[[(5-(2-methoxy-4-nitrophenoxy)pentyl]carbamoyl]methyl]-
(6CI) (CA INDEX NAME)

L72 ANSWER 6 OF 10 CAOLD COPYRIGHT 2004 ACS on STN
AN CA54:16655b CAOLD
TI schistosomicidal and toxic effects of some N-p-aminophenoxyalkylamides
AU Collins, Raymond F.; Davis, M.; Edge, N. D.; Hill, J.; Reading, H. W.;
Turnbull, E. R.
IT 103388-58-5
RN 103388-58-5 CAOLD
CN Benzamide, N-[[(5-(p-aminophenoxy)pentyl]carbamoyl)methyl]- (6CI) (CA
INDEX NAME)

L72 ANSWER 7 OF 10 CAOLD COPYRIGHT 2004 ACS on STN
 AN CA54:7613f CAOLD
 TI chemotherapy of schistosomiasis - (III) N-(p-aminophenoxyalkyl)amides,
 -imides, and -sulfonamides
 AU Ashley, Julius N.; Collins, R. F.; Davis, M.; Sirett, N. E.
 IT 103388-58-5 117123-84-9
 RN 103388-58-5 CAOLD
 CN Benzamide, N-[[(5-(p-aminophenoxy)pentyl]carbamoyl)methyl]- (6CI) (CA
 INDEX NAME)

RN 117123-84-9 CAOLD
 CN Benzamide, N-[[(5-(p-nitrophenoxy)pentyl]carbamoyl)methyl]- (6CI) (CA
 INDEX NAME)

L72 ANSWER 8 OF 10 CAOLD COPYRIGHT 2004 ACS on STN
AN CA54:2312d CAOLD
TI aminolysis of 1-acyl-3,5-dimethylpyrazoles
AU Ried, Walter; Schleimer, B.

PATENT NO. KIND DATE

DE 1054968

IT 101720-38-1

RN 101720-38-1 CAOLD

CN Propionanilide, 2-(2-p-toluenesulfonamidoacetamido)- (6CI) (CA INDEX
NAME)

L72 ANSWER 9 OF 10 CAOLD COPYRIGHT 2004 ACS on STN
AN CA53:13774g CAOLD
TI ultraviolet absorption spectra of benzoyl polyglycine anilides and benzoyl polyalanine anilides
AU Goldfarb, A. R.; Hoffmann, E.
IT 93818-92-9
RN 93818-92-9 CAOLD
CN Acetanilide, 2-(2-benzamidoacetamido)- (6CI, 7CI) (CA INDEX NAME)

L72 ANSWER 10 OF 10 CAOLD COPYRIGHT 2004 ACS on STN

AN CA51:8846c CAOLD

TI enzymic synthesis of peptide bonds - (VII) competition between benzoylamino acids and benzoyldipeptides in papain-catalyzed reactions with glycinalanilide, (VIII) activation phenomena in the papsin-catalyzed synthesis of peptide bonds

AU Tollin, Gordon; Fox, S. W.

IT 93818-92-9

RN 93818-92-9 CAOLD

CN Acetanilide, 2-(2-benzamidoacetamido)- (6CI, 7CI) (CA INDEX NAME)

10/027,505 (RCE)

=> => log y

COST IN U.S. DOLLARS	SINCE FILE ENTRY	TOTAL SESSION
FULL ESTIMATED COST	27.72	618.56
DISCOUNT AMOUNTS (FOR QUALIFYING ACCOUNTS)	SINCE FILE ENTRY	TOTAL SESSION
CA SUBSCRIBER PRICE	0.00	-33.96

Connection closed by remote host