

La gestion opérationnelle de la météosensibilité

La prévision météorologique et hydrologique au cœur de l'Économie et de la Société

La société METNEXT

METNEXT en bref

Notre métier :

L'assistance aux entreprises dans le <u>diagnostic</u> de météosensibilité et la <u>gestion opérationnelle</u> des risques et opportunités météo

Des actionnaires solides et de long terme :

- 60 clients
- Fondée en 2007, forte croissance

Une solide expertise métier

- Notre offre :
 - Diagnostics et études de météo-sensibilité
 - Fourniture d'indicateurs métiers opérationnels liés à la météo
 - Editeur d'un logiciel de modélisation de l'effet météo
- 3 grands secteurs d'activités couverts
 - Energie
 - Fabricants & distributeurs de Produits Grande Consommation (PGC)
 - Finance & Assurance

Secteur Energie - Solutions

- Gestionnaires de réseaux Fournisseurs
 - Services de prévision de charge
 - Segmentation et prévisions portefeuille clients

- Production EnR solaire & éolien
 - Services de prévisions météorologiques
 - Services de prévisions de productible

- Activités de trading –marchés de l'énergie
 - Services de prévisions météorologiques

- Efficacité Energétique
 - Analyse de consommation à météo constante

Secteur Energie – Références

- Electricité & Gaz
 - Gestionnaires de réseaux
 - Fournisseurs

Réseau urbain de chauffage & de climatisation

- Fournisseur de services
- Gestionnaire de patrimoine

La prise en compte de la météo

Pourquoi une expertise spécifique :

La météo n'est pas une variable comme une autre...

- 20° C n'est pas le double de 10° C
- Sur 1 semaine, l'impact de 4 jours à 5° C + 3 jours à 19° C est très différent de 7 jours à 11° C...
- Sur 1 semaine, l'impact de 10mm de pluie chaque jour est très différent de celui d'un gros orage de 70mm et 6 jours de beau temps...
- Une augmentation de 5° C n'a pas le même impact si le soleil brille ou s'il pleut...
- Au même moment, une augmentation de 5° C n'a pas le même impact entre 10° C et 15° C qu'entre 20° C et 25° C...

• ...

Comment répercuter l'aléa météo en impact sur le business d'une société?

L'impact météo en 4 leçons (1/5)

Quantité

Modèle avec météo

Modèle avec météo moyenne de saison

Quantité hors météo (baseline)

L'impact météo en 4 leçons (2/5)

Quantité hors météo (baseline)

L'impact météo en 4 leçons (3/5)

Modèle avec météo moyenne de saison

Quantité hors météo (baseline)

L'impact météo en 4 leçons (4/5)

- Leçon #1 : modélisation des données avec de la météo
- Leçon #2 : remplacer la météo par les moyennes de saison
- Leçon #3 : calcul des facteurs d'effet météo

$$Facteur = \frac{volume_météo}{volume_normale} - 1$$

L'impact météo en 4 leçons (5/5)

- Leçon #1 : modélisation des données avec de la météo
- Leçon #2 : remplacer la météo par les moyennes de saison
- Leçon #3 : calcul des facteurs d'effet météo
- Leçon #4 : dépolluer l'historique de l'effet météo

$$Baseline = \frac{volume_r\acute{e}el}{1 + Facteur}$$

Quelles prévisions météos utilise-t-on?

- Les Adaptations statistiques de Météo France
 - Sur la température principalement
 - Autres paramètres: nébulosité, précipitations, humidité
- Les sorties brutes de modèles (CEP, ARPEGE, AROME)
 - Quand il n'y a pas d'AS disponibles ou adaptées (cas pour le vent à 70m, le rayonnement global…)
- Des prévisions déterministes, et probabilistes
 - Selon l'horizon de prévision
 - Le probabiliste pour quantifier l'incertitude de la prévision (de consommation, de production,)

Quels modèles?

Quelques exemples d'application

Quelles applications?

ENERGIE

- Prévision de production d'électricité (éolien, PV, hydro)
- Prévision de consommation (transporteurs, régies)
- Planification d'opérations de maintenance (Enr)
- Analyse de la tendance de CA hors effet météo
- Simulations budgétaires à météo normale de saison

CPG RETAIL

- Impact météo calcul a posteriori ou en prévisionnel
- Analyse de la tendance de CA hors effet météo
- Simulations budgétaires à météo normale de saison

Exemple 1: Analyse de la tendance hors effet météo (1/3)

Baisse « brute » de 3,9% des ventes entre 2010 et 2011

Exemple 1: Analyse de la tendance hors effet météo (2/3)

Baisse « brute » de 3,9% des ventes entre 2010 et 2011

Exemple 1: Analyse de la tendance hors effet météo (3/3)

Une baisse des ventes « brutes » en 2011 de 3,8% par rapport à 2010 masque en réalité une augmentation des ventes de 1,4%, « nettes » de l'effet météo!

Exemple 2: prévision de consommation de gaz (1/3)

 Etape 1: Une classification est menée pour classer les PCE par iso-comportement

Exemple 2: prévision de consommation de gaz (2/3)

 Etape 2: des modèles de consommation sont optimisés pour chaque groupe

Facteurs exogènes

(jours fériés, vacances, ponts, jour de la semaine, saison,...)

Prévisions météos

régionales ou locales (températures J, J-1)

Facteurs d'inertie

Consommation des jours précédents

Modèle statistique Modélisation statistique, non linéaire, multivariée

Consommation

Pas de temps: horaire Horizons: H+1 – J+7

. . .

Exemple 2: prévision de consommation de gaz (3/3)

Etape 3: le modèle, validé, est déployé chez le client

DÉFINITIONS

- Consommation: Quantité de gaz consommé par la Distribution Publique et les clients industriels.
- Prévision de consommation : Prévision de consommation de la Distribution Publique et des Clients Industriels.
- Site Fortement Modulé (SFM): Un site est dit « fortement modulé » lorsqu'il présente un volume modulé journalier supérieur à 0,8 GWh/j par jour de fonctionnement.
 Le volume modulé journalier est la somme pour toutes les heures d'une journée gazière, des écarts en valeur absolue entre la consommation horaire constatée et

Pour conclure

Conclusions

- La compréhension de l'impact météorologique et la part qu'il représente dans un très grand nombre d'activités économiques est aujourd'hui essentiel dans l'amélioration :
 - Des connaissances
 - Des prévisions
 - Des projections budgétaires
- La qualité de la prévision météorologique est souvent déterminante
 - En particulier pour les Enr où la prévision de production est pilotée quasiment exclusivement par la qualité de la prévision météo en amont
 - Les besoins en météo sont souvent spécifiques: adaptations locales des prévisions, sur des paramètres peu classiques

Merci de votre attention!

Sophie MOREL - 06 76 93 06 70

Directrice des Etudes et du Service Clients

17 rue de la Banque
F-75002 Paris

www.metnext.com

