AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions of claims in the application:

Listing of Claims:

- (Currently amended) An architecture that facilitates a reference voltage in a multi-bit memory, comprising:
 - a multi-bit memory core including a plurality of data cells for storing data;

first and second reference arrays of a plurality of multi-bit reference cells fabricated on the memory core, <u>pairs of</u> the plurality of <u>the</u> multi-bit reference cells each associated with separate wordlines within the multi-bit memory core; and

- a first bit value of a first reference cell of the first reference array averaged with a second bit value of a second reference cell of the second reference array to arrive at the reference voltage employed during a data cell read operation.
- 2. (Original) The architecture of claim 1, the core further comprising a sector of multi-bit data cells organized in rows and columns with associated wordlines attached to the multi-bit data cells in a row and with associated bitlines attached to the multi-bit data cells in a column, the first and second reference cells forming a multi-bit reference pair that is programmed and erased with the multi-bit data cells during programming and erase cycles.
- (Original) The architecture of claim 2, the multi-bit reference pair is associated with a
 word in a wordline, the multi-bit reference pair utilized during reading of bits of the word.
- (Original) The architecture of claim 2, the multi-bit reference pair is associated with multi-bit data cells in a wordline, the multi-bit reference pair utilized during reading of bits in the wordline.
- (Cancelled)

- (Original) The architecture of claim 2, the multi-bit reference pair is associated with multi-bit data cells in the sector, the multi-bit reference pair utilized during reading of bits in the sector.
- (Original) The architecture of claim 1, the memory core including a plurality of data sectors that are accessible by the first and second reference arrays, the first and second reference arrays located centrally of the plurality of data sectors.
- 8. (Original) An integrated circuit comprising the memory of claim 1.
- (Original) A computer comprising the memory of claim 1.
- 10. (Original) An electronic device comprising the memory of claim 1.
- 11. (Original) The architecture of claim 1, the first and second reference arrays including corresponding reference cells that are interweaved among the data cells.
- 12. (Original) The architecture of claim 1, the memory core further comprising a plurality of data sectors, such that each data sector is associated with at least one of the first reference array and the second reference array of multi-bit reference cells.

13. (Currently amended) An architecture that facilitates a reference voltage in a multi-bit memory, comprising:

a multi-bit memory core for storing data, the memory core including two groups of data sectors:

first and second reference arrays of a plurality of multi-bit reference cells fabricated on the memory core interstitial to the groups of data sectors, <u>pairs of</u> the plurality of [[the]] <u>multi-bit</u> reference [[pairs]] <u>cells</u> each associated with a disparate wordline within the two groups of data sectors; and

a first bit value of a first reference cell of the first reference array and a second bit value of a second reference cell of the second reference array forming a reference pair whose respective bit values are averaged to arrive at the reference voltage for a read operation.

- (Original) The architecture of claim 13, the groups of data sectors read in an interleaved manner with a selected reference pair.
- (Original) The architecture of claim 13, the first and second reference arrays precharged before being averaged.
- 16. (Original) The architecture of claim 13, further comprising a redundancy array located at least one of proximate and adjacent to the groups of data sectors.

17. (Currently amended) A method for providing a reference voltage in a multi-bit memory, comprising:

receiving a multi-bit memory core for storing data;

providing first and second reference arrays of a plurality of multi-bit reference cells, the first and second reference arrays fabricated on the memory core;

associating each of pairs of the plurality of multi-bit reference cells [[pairs]] each with separate wordlines within the memory core; and

averaging a first bit value of a first reference cell of the first reference array with a second bit value of a second reference cell of the second reference array to arrive at the reference voltage utilized during a read operation.

- 18. (Previously Presented) The method of claim 17, the core comprising a sector of multi-bit data cells organized in rows and columns with associated wordlines attached to the multi-bit data cells in a row and with associated bitlines attached to the multi-bit data cells in a column, the multi-bit reference pairs are programmed and erased with the multi-bit data cells during programming and erase cycles.
- 19. (Original) The method of claim 18, the multi-bit reference pair is associated with a word in a wordline, the multi-bit reference pair utilized during reading of bits in the word.
- (Original) The method of claim 18, the multi-bit reference pair is associated with multibit data cells in a wordline, the multi-bit reference pair utilized during reading of bits in the wordline.
- (Previously Presented) The method of claim 18, the associated multi-bit reference pair utilized during reading of bits in the corresponding wordline.
- 22. (Original) The method of claim 18, the multi-bit reference pair is associated with multi-bit data cells in the sector, the multi-bit reference pair utilized during reading of bits in the sector.

- 23. (Original) The method of claim 17, the memory core including a plurality of data sectors that are accessible by the first and second reference arrays, the first and second reference arrays located centrally of the plurality of data sectors.
- 24. (Previously presented) A system for providing a reference voltage in a multi-bit memory, comprising:

means for providing a multi-bit memory core for storing data;

means for providing first and second reference arrays of a plurality of multi-bit reference cells, the first and second reference arrays fabricated on the memory core; and

means for averaging a first bit value of a first reference cell of the first reference array with a second bit value of a second reference cell of the second reference array to arrive at the reference voltage to facilitate a read operation; and

means for separately monitoring process variations at each wordline within the multi-bit memory core.

- 25. (Previously presented) The system of claim 24, the first and second reference arrays including corresponding reference cells that are interweaved among the data cells.
- 26. (Previously presented) The system of claim 24, the memory core further comprising a plurality of data sectors, such that each data sector is associated with at least one of the first reference array and the second reference array of multi-bit reference cells.
- (Previously presented) The system of claim 24, further comprising a redundancy array located at least one of proximate and adjacent to the groups of data sectors.