מבוא לתורת הקבוצות

משה קמנסקי

2024 במאי 20

מבוא 1

A מטרת הקורס היא לתת מבוא המרוה של המבנים המתמטיים הכי בסיסיים, קבוצות. קבוצה ?Aשייך אוסף האיברים עשייכים אליה: לכל עצם x ניתן לשאול: האם שייך ל-x שייך אוסף אליה: לכל עצם המשאלות שייך ל-x שייך ל-x שייך ל-x שייך ל-x שייך ל-x שייך ל-אנחנו נסמן את הטענה שx שייך ל-x שייך ל-אנחנו נסמן את הטענה שייך ל-

?וות? מבנים מעניינים ניתן לתאר באמצעות קבוצות?

- 1. תכונות כתתי קבוצות
- 2. בניית קבוצות חדשות מקבוצות קיימות
 - 3. יחסים ופעולות

?חיד אינסופיות אינסופיות? איך אפשר לעבוד עם לעבוד אינסופיות?

- 1. קבוצות סופיות ואינסופיות
- 2. גדלים של קבוצות אינסופיות
- ?.. על מה אפשר לעשות אינדוקציה?

?חל מהן קבוצות?

- 1. הגישה האקסיומטית
- 2. הגדרה ותכונות של קבוצות מוכרות

1.4 כמה שאלות

- ?. האם לכל מרחב וקטורי יש בסיס?
- 2. האם קיים מספר ממשי שאינו אלגברי?
- ? אבל אה חיבורית שהיא $f:\mathbb{R} \to \mathbb{R}$ ביפה? מונקציה פונקציה לא האם היימת לא האם $f:\mathbb{R} \to \mathbb{R}$
- 4. האם אפשר להגדיר באופן סביר את האורך של כל תת-קבוצה של קטע ממשי חסום?
 - .5 האם כל פונקציה מהטבעיים לטבעיים ניתנת לחישוב על-ידי תכנית מחשב?
 - 6. האם קיימת קבוצה של נקודות במישור שכל ישר פוגש בשתי נקודות בדיוק?
 - ?. האם המישור הוא איחוד של מעגלים זרים? מה לגבי המרחב התלת-מימדי?

2 תורת קבוצות אלמנטרית (תזכורת)

2.1 פעולות בסיסיות

- 1. הכלה
- 2. חיתוך, איחוד, הפרש, הפרש סימטרי
 - 3. קבוצת חזקה

גרפים 2.2

מכפלה קרטזית, יחסים, פונקציות, תחום, תמונה, הרכבה, יחס הפוך

X יחס מעל $R\subseteq X imes X$ הגדרה 2.2.1. גרף הוא זוג ר $\Gamma=\langle X,R
angle$ כאשר כא

הגדרה 2.2.2. נניח ש- $\langle A,R \rangle$ ו- $\langle B,S \rangle$ שני גרפים ו- $f:A \to B$ פונקציה. אז f נקראת העתקה העתקה (של גרפים) אם לכל aRa' אם aRa' אם aRa' אז aRa' אם בנוסף גם הכיוון השני נכון (של גרפים) אם לכל aRa' אם aRa' אם aRa' אז aRa' אז aRa' אם בנוסף גם הכיוון השני נכון (כלומר לכל aRa' אם aRa' אז aRa' אז aRa' אז aRa' אז aRa' אז aRa' אונפינה (כלומר לכל aRa' אם העתקה של גרפים, אז aRa' נקראת aRa' ההופכית היא גם העתקה של גרפים, אז aRa' נקראת aRa'

יחס שקילות

2.3 יחסי שקילות, מנות

A הגדרה 2.3.1. יחס שקילות על קבוצה A הוא יחס סימטרי, טרנזיטיבי ורפלקסיבי מעל

יחס החפיפה על A הוא המשולשים שווי שוקיים. יחס החפיפה על המשולשים לוגמה במישור A קבוצת קבוצת לוגמה שקילות, וכך גם יחס הדמיון.

 mE_nk בניח על \mathbb{Z} על ידי: $A=\mathbb{Z}$ אם mE_nk מספר שלם, ו- $R=\mathbb{Z}$ נגדיר אם $R=\mathbb{Z}$ על ידי: $R=\mathbb{Z}$ אם $R=\mathbb{Z}$ עבורו פולח יחס החלוקה $R=\mathbb{Z}$ (כלומר $R=\mathbb{Z}$ מחלק את שלם עם יחס החלוקה עבורו $R=\mathbb{Z}$ יחס שקילות (תרגיל) יחס שקילות (תרגיל)

אינטואיטיבית, יחס שקילות על A מבטא את הרעיון שאנחנו רוצים לזהות איברים שונים של אינטואיטיבית, יחס שקילות על אערכי פונקציה מסוימת על האיברים הללו הם זהים. A

הגרעין של f הוא היחס הנרעין פונקציה, $f:A\to B$ אם $A\to B$ הגדרה גרעין אבררה $\ker(f)=\{\langle a_1,a_2\rangle\in A\times A\ |\ f(a_1)=f(a_2)\}$

. שקילות של f של של הגרעין של $f:A \rightarrow B$ שלכל שלכל. הוכיחו

 $r_n:\mathbb{Z} \to C_n$ נניה ש-0 שלם, ונסמן n>0 שלם, ננסמן 2.3.6. נניה ארירי: ... על-ידי: m-k שלם, ונסמן m-k ב- $k\in C_n$ המספר היחיד $k\in C_n$ כך ש- $k\in C_n$ מתחלק ב- $k\in C_n$ מתחלק מדוגמה 2.3.3 (תרגיל).

. בהמשך בסימונים E_n ו- ו C_n הים בסימונים בסימונים להשתמש בסימונים ו C_n ו-

להיות $f:A\to B$ אם A קבוצת המשולשים במישור שאינם שווי שוקיים, נגדיר את $f:A\to B$ להיות הפונקציה שמתאימה לכל משולש את קבוצת אורכי הצלעות שלו (הבחירה במשולשים שאינם שווי שוקיים היא כדי להבטיח שהקבוצה הזו היא בת שלושה איברים בדיוק, ולכן ניתן לשחזר את אורכי שוקיים היא כדי להבטיח לפי משפט החפיפה צלע-צלע-צלע, f היא העתקת מנה עבור יחס החפיפה.

יחסי שקילות מהצורה $\ker(f)$ הם נוחים במיוחד: על מנת לקבוע האם $\ker(f)$ הסולים, יחסי שקילות מספיק לחשב את הערכים לכן, מעניין לשאול אילו יחסי שקילות הם מהצורה הזו. מסתבר שהתשובה היא: כולם.

משפט 2.3.9. לכל יחס שקילות E על קבוצה A קיימת פונקציה f:A o B שהיא על, כך ש-גווו לכל יחס לכל נקראת העתקת מנה עבור E.

העתקת מנה

על-מנת להוכיח את המשפט, נציג את המינוח הבא: אם Bיחס שקילות על $a\in A$ ו-, מחלקת על-מנת להוכיח את מחלקת את השקילות [$a]_E=\{a'\in A\ |\ aEa'\}$ היא הקבוצה השקילות של

$$\square$$
 . $f(a)=[a]_E$ על ידי $f:A \to B$ ו- $B=\{[a]_E \mid a \in A\}$ הוכחה. נגדיר

תרגיל $[a_1]_E = [a_2]_E$ אם היא שיקרית היא ההוכחה את השלימו את מילות. .2.3.10 אם הרכחה (a_1Ea_2

הערה 2.3.11. בניגוד למקובל במקומות אחרים, אנחנו לא נשתמש במפורש בבנייה שמופיעה בהוכחת המשפט (כלומר, בקבוצת מחלקות השקילות) אלא רק במשפט עצמו. הסיבה היא שהמידע בהוכחת המשפט (כלומר, בקבוצת מחלקות השקילות) אלא רק במשפט עצמו. הסיבה הזו מספקת אינו שימושי לרוב, ומאידך הגמישות שבבחירת העתקת מנה כלשהי היא לעתים שימושית ויותר אינטואיטיבית. למשל, ראינו את העתקת המנה r_n עבור היחס r_n שהיא יותר טבעית מהבניה בהוכחה.

Aכעל איברי שוויון של שוויון בין איברי Aעל Eיחס שקילות בין איברי לחשוב כאמור, ניתן לחשוב על איברי $f:A\to B$ מנקודת המבט הזו, העתקת מנה $f:A\to B$ מנקודת המבט הזו, העתקת לשוויון ממש: $f:A\to B$ ממשויון המוחלש לשוויון ממש: aEa' אם ורק לשוויון ממש: לכן, ניתן לחשוב על איבר שני המוחלש המידע הרלוונטי" אודות ב $a\in A$ אודות המידע הרלוונטי" המידע הרלוונטי" אודות בא שלכל שובר להבין איזה מידע מעניין על א מושרה ל-B. נדגים שלכל של איבר באמצעות השימוש הבא.

שלשה שלשה a,b,c הם שלשה פתגורית היא שלשה שלשה a,b,c של מספרים טבעיים כך ש $a^2+b^2=c^2$ (לכן, הם שלשה פתגורית אורכים של צלעות משולש ישר זווית). אנחנו רוצים להוכיח את הטענה הבאה:

טענה 2.3.12. לא קיימת שלשה פיתגורית בה אורכי הניצבים a,b הם אי-זוגיים.

על מנת להוכיח את הטענה הזו, נשתמש בטענה הבאה:

טענה 2.3.13. נניח ש-n טבעי חיובי, ו-B העתקת מנה עבור m. אז קיימות פעולות פעולות π (m+n) בי π (m+n) של π (m+n) בי π את השוויונות π (m+n) בי π (

נוכיח את הטענה הזו בהמשך. בינתיים, נשים לב שהתנאים בטענה מאפשרים לחשב את נוכיח את בינתיים, בינתיים, נשים לב משרים למשל, כדי למשל, כדי לחשב את $b_1\oplus b_2$ את כדי למשל, כדי למשל, כדי לחשב את $\pi(a_1+a_2)$, ולחשב את לחשב את $\pi(a_1+a_2)$. הטענה מבטיחה שהתשובה אינה תלויה בבחירה של תכונות של הפעולות הללו גם ניתן להסיק מתוך הטענה. למשל:

ו- $u\odot v=v\odot u$, $u\oplus v=v\oplus u$ מתקיים $u,v,w\in B$ מתקיים שלכל .2.3.14 הוכיחו שלכל $u\odot v=v\odot u$ (במונחים של טענה $u\odot v=v\odot u$) במונחים של טענה עובה $u\odot v=v\odot u$

עבור n=4 ר-n=7 כמו בדוגמא 2.3.6, אפשר בקלות לחשב את טבלת ה"חיבור" וה"כפל" עבור n=4 היברים. אנחנו בעיקר רוצים לשים לב שאם $u\in C_4$ זוגי (כלומר $u\in C_4$ אנחנו בעיקר רוצים עפשר להוכיח את טענה $u\in C_4$ אז עכשיו אפשר להוכיח את טענה 2.3.12 (כלומר $u\in C_4$ או עכשיו אפשר להוכיח את טענה $u\in C_4$ או אפשר להוכיח את טענה בינו או עודער עודער עודער אפשר להוכיח את טענה בינו או ערכים עודער עודער עודער עודער ערכים או ערכים אפשר להוכיח את טענה בינו או ערכים עדער ערכים או ערכים או ערכים או ערכים ערכים או ערכים או ערכים או ערכים או ערכים או ערכים ערכים או ערכים או ערכים ערכים או ערכים או ערכים ערכים או ערכים ער

 $.a^2+b^2=c^2$ עם כך שלים מים אי-זוגיים מספרים שקיימים בשלילה נניח בשלילה. נניח מענה 2.3.12 מושב אי-זוגיים מספרים בשלילה שקיימים נחשב אר r_4 בשני הצדדים:

$$r_4(c) \odot r_4(c) = r_4(c \cdot c) = r_4(a \cdot a + b \cdot b) =$$

 $(r_4(a) \odot r_4(a)) \oplus (r_4(b) \odot r_4(b)) = 1 \oplus 1 = 2 \in C_4$

... מאשר השוויון הלפני אחרון נובע מההנחה ש-a,b אי-זוגיים, ומהחישוב שעשינו לפני ההוכחה. כאשר השוויון הלפני אחרון נובע מההנחה של חייב להיות a,b אותו חישוב מראה שהגענו לסתירה, שכן צד שמאל חייב להיות a,b

על-מנת להשלים את ההוכחה, עלינו להוכיח את טענה 2.3.13. נשים לב ראשית שהטענה אינה טריוויאלית: ישנן פעולות על השלמים שלא מקיימות את התכונה המקבילה.

igoplus mעבור מספרים שלמים m,k הוכיחו שלא קיימת פעולה שלה עבור $m\star k=m^{|k|}$ נסמן 2.3.15. נסמן על על $m\star k=m^{|k|}$ מתקיים על על בר שלכל על $m,k\in\mathbb{Z}$ מתקיים על כך שלכל בר שלכל על מתקיים על מחקיים ועדי מחקיים על מחקיים

אנחנו נוכיח את טענה 2.3.13 כמסקנה מטענה כללית על יחסי שקילות. אנחנו מתעניינים בטענה אנחנו נוכיח את טענה 2.3.13 בטענה מהצורה הבאה: נתון יחס שקילות E על קבוצה A, עם העתקת מנה B לנו "מבנה מעניין" על A, ואנחנו מעוניינים להבין באיזה תנאי הוא "משרה" מבנה דומה על A בטענה 2.3.13 המבנה המעניין היה פעולות החיבור והכפל. באופן כללי, זה יכול להיות למשל פונקציה מ-A, תת-קבוצה של A, יחס על A וכו'.

Cכאשר (כאשר מתקד המקד האבית) אנחנו נתמקד האבית במקרה הפשוט של פונקציה. נתונה לנו פונקציה במקרה במקרה הזו "משרה" פונקציה על P אנחנו שואלים האם קיימת פונקציה קבוצה כלשהי). מתי הפונקציה הזו "משרה" פונקציה על g אנחנו שואלים מתקיים g מתקיים g מתקיים g באב בתמונה של האם הגודל g שאנחנו מודדים על איברי g תלוי בעצם רק במידע שבאמת מעניין אותנו, כלומר בתמונה של האיבר ב-g. נשים לב שאם זה המצב, ו-g שקול ל-g על הg (מ') בg(a') בg(a') שקול ל-g מפיק:

-שפט 2.3.16. נניח שB יחס שקילות על קבוצה A, עם העתקת מנה B יחס שקילות על קבוצה $g:A \to C$

- $.g = \bar{g} \circ \pi$ -ע כך $\bar{g}: B \to C$ קיימת פונקציה.
- g(a)=g(a') אז aEa' אז aEa' אז aEa' אז aEa' אז aEa' אז aEa' .2

אם התנאים מתקיימים, אז \bar{g} יחידה.

סוף הרצאה 1, 1 במאי 2024

הוכחה. כיוון אחד ראינו בדיוק לפני הניסוח של המשפט. בכיוון השני, נגדיר

$$\bar{g} = \{ \langle \pi(a), g(a) \rangle \mid a \in A \}$$

 π -ש מכך שירות על ויחידה של העובדה שירות מהבניה. העובדה שירות $g=\bar g\circ\pi$ ויחידה בובעת נובעת בובע פובע נובעת אירות על $g=\bar g\circ\pi$ איבר על כל איבר של העל הערך של $\bar g$

למשפט יש מספר מסקנות והכללות שימושיות:

מסקנה F-ו $\pi_X: X \to \bar{X}$ מסקנה 2.3.17. נניח ש-E- יחס שקילות על X, עם העתקת מנה E- יחס שקילות על X, עם העתקת מנה X- יחס שקילות $\pi_Y: Y \to \bar{Y}$ פונקציה. אז שני התנאים הבאים שקולים:

- $\pi_X(h(y))=ar{h}(\pi_Y(y))$ מתקיים $y\in Y$ כך שלכל $ar{h}:ar{Y} oar{X}$ היימת פונקציה. 1
 - .h(y)Eh(y') אז yFy' אם $y,y'\in Y$.2

g(y)=g(y') מתקיים: $y,y'\in Y$ אז לכל $g=\pi_X\circ h$ על-ידי $g:Y\to \bar X$ מתקיים: h(y)Eh(y') אם ורק אם ורק אם לכן, לפי משפט h(y)Eh(y') לכן, לפי משפט h(y)Eh(y') לכך אם h(y)Eh(y') לכך שיh(y)Eh(y') כדרש.

 r_1 כמו r_2 בניח ש- r_2 נניח ש- r_2 ברו r_2 ברו הונה r_1 אם r_2 ברו הונה r_1 אם r_2 ברו ברוני של הונה על-ידי r_1 ברוני של r_2 אם r_2 אם r_2 אם r_2 ברוגמא 2.3.6 ברוגמא r_2 ברוני של ברוני של

אפשר הזה, אין \bar{h} במקרה הזה, במקרה הזה, אפשר אפשר אפשר אפשר גם לחשוב על אותה דוגמא ביז מחליפים בין Fו -F1. במקרה דוגמא איבדנו יותר מדי יותר של השארית של השארית של השארית של הלויה רק בזוגיות של השארית מדע. ל

-ש. $\pi: X \to \bar{X}$ מסקנה 2.3.19 עם העתקת מנה E-ש יחס שקילות על קבוצה $h: X \times X \to X$ פונקציה. אז התנאים הבאים שקולים:

מתקיים $x_1,x_2\in X$ כך שלכל $\bar{h}:\bar{X}\times\bar{X}\to\bar{X}$ (יחידה) פונקציה פונקציה .1 $.\bar{h}(\pi(x_1),\pi(x_2))=\pi(h(x_1,x_2))$

 $.h(x_1,x_2)Eh(x_1',x_2')$ אז x_2Ex_2' י x_1Ex_1' אם $x_1,x_1',x_2,x_2'\in X$ לכל 2.

לפני שנוכיח את המסקנה, נסיק ממנה את טענה 2.3.13.

הוכחת שענה 2.3.13. ניקוח $A: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ ו- $B: E=E_n$ עם $X=\mathbb{Z}$ פונקציית החיבור $ar h: B\times B \to B$ (יחידה) פונקציה מבטיח במסקנה 2.3.19 מתנאי הראשון במסקנה h(m,k)=m+k בחיבור שלכל $\pi(m+k)=\pi(h(m,k))=\bar h(\pi(m),\pi(k))$ מתקיים $\pi(m+k)=\pi(h(m,k))=\bar h(\pi(m),\pi(k))$ כלומר היא בדיוק הפונקציה שאנחנו מחפשים.

המסקנה אומרת שקיומה של הפונקציה הזו שקול לתנאי שאם mEm' וגם kEk' הזו שקיומה של הפונקציה הזו שקול מתחלק ב-m+kEm'+k' מתחלק ההנחה במקרה שלנו היא m-m'+k-k'=m+k-(m'+k') מתחלק המצב, אז גם הסכום שלהם m+k-k'=m+k-(m'+k') מתחלק ב-m+k-k'=m+k-m'+k-k'

ההוכחה עבור כפל דומה (תרגיל).

סוף הרצאה 2, 6 במאי, 2024

עכשיו נוכיח את המסקנה

 $\langle x_1,x_2 \rangle F \langle x_1',x_2' \rangle$ הנתון על-ידי $Y=X\times X$ את היחס על F- מסמן ב-2.3.19 הנתונה על- אם $\pi_Y:X\times X\to \bar X\times \bar X$ הוא הגרעין של הפונקציה אז $\pi_Y:X\times X\to \bar X\times \bar X$ הנתונה על הפרט, הוא הא הגרעין של הפרט, הוא העתקת מנה π_Y - עבור π_Y - עכשיו הטענה נובעת מיידית ממסקנה π_Y - מסקנה π_Y - עבור π_Y - עכשיו הטענה נובעת מיידית ממסקנה π_Y - מרכז אוריבים מיידית ממסקנה ב- π_Y - מרכז אוריבים מיידית ממסקנה π_Y - מרכז אוריבים מיידית ממסקנה ב- π_Y - מרכז אוריבים מיידית ממסקנה מיידית ממסקנה מיידית ממסקנה ב- π_Y - מיידית ממסקנה מיידית מיידית ממסקנה מיידית מיידית ממסקנה מיידית ממסקנה מיידית מייד

 $S\subseteq X$ - יחס שקילות על קבוצה X עם מנה $X\to X$ ונניח ש-E- ונניח ש- $\pi:X\to X$ מסקנה 2.3.20. נניח ש- $\pi:X\to X$ הת-קבוצה. אז התנאים הבאים שקולים:

 $\pi(x)\in ar{S}$ אם ורק אם $x\in S$ מתקיים: $x\in X$ מתקיים לכל $ar{S}\subseteq ar{X}$ אם ורק אם .1

 $x' \in S$ אם ורק אם $x \in S$ אז $x \in X$ אם ורק אם $x \in S$.

אם g(x)=1 . כלומר: g(x)=1, כלומר: $g:X\to C$, ו- $C=\{0,1\}$ אם הוכחה. נגדיר ורק אם 2.3.17 לכן, לפי אותה שני שקול לתנאי השני שקול לכן, לפי אז התנאי השני $x \in S$ אותה מסקנה, הוא שקול לקיומה של פונקציה $\overline{g}: \bar{X} o C$ כך ש $g(x) = \bar{g}(\pi(x))$ לכל $x \in X$. נגדיר . אז התנאי האחרון שקול לתנאי הראשון במסקנה (תרגיל). $\bar{S} = \bar{q}^{-1}[\{1\}]$

דוגמה 2.3.21. נניח שאני יודע מהי השארית של מספר שלם m ביחס ל-7. האם אני יכול לגלות אם אהרית ביחס ל-7. זוגיות שונה, אבל אותה שארית ביחס ל-7. זהו m אם mהמקרה של מסקנה 2.3.20 בו $S\subseteq X=\mathbb{Z}$ בו מסקנה מסקנה

התשובה שונה אם מחליפים את 7 ב-6: לכל שני מספרים שההפרש ביניהם מתחלק ב-6 אותה $\bar{S}\subseteq C_6$ זוגיות. הקבוצה $\bar{S}\subseteq C_6$ מהמסקנה היא, במקרה הזה,

הערה 2.3.22. נשים לב לעקרון הכללי שהשתמשנו בו בהוכחת מסקנה 2.3.20: יש התאמה טבעית כל ידי: לכל בתונה $C:X \rightarrow \{0,1\}$ ופונקציות אל-ידי: לכל של ההתאמה בתונה על-ידי: לכל תת-קבוצה כ- $c_S(x)=1$ המוגדרת כ- $c_S:X o \{0,1\}$ אם ורק אם מתאימה מתאימה מת-קבוצה מת-קבוצה מתאימה מת-קבוצה מתאימה מת-קבוצה מתאימה מת-קבוצה מתאימה מת-קבוצה מתאימה מת-קבוצה מ הפנקציה המציינת $c:X \to \{0,1\}$ אם הפונקציה המציינת של $c:X \to \{0,1\}$ הפונקציה המציינת $x \in S$ $S_c = \{x \in X \mid c(x) = 1\}$ פונקציה כלשהי, מתאימה לה קבוצה

ולכל , $S=S_{c_S}$ מתקיים $S\subseteq X$ שלכל (2.3.22 של הערה בסימונים של הוכיחו (בסימונים של הערה ב (כלומר, שתי ההתאמות הפוכות אחת לשנייה) $c = c_{S_c}$ מתקיים $c: X \to \{0, 1\}$

E אקילות יחס שקילות בהינת, נאמר כפי שכבר האינו, המנה והעתקת המנה והעתקת המנה. על X, ישנן לרוב הרבה העתקות מנה עבור E (וראינו שלעתים זה מועיל). למרות זאת, נסביר בתרגיל הבא שניתן לזהות כל שתיים מהן באופן יחיד.

 $\pi:X \to ar{X}$ מנה בעתקת מנה X, עם העתקת שקילות על יחס שקילות על 2.3.24 מרגיל ביוח יחס שקילות על האילות על יחס שקילות על יחס של יחס שקילות על יחס שקילות על יחס שקילות על יחס שקילות על יחס של יחס

- .1. נניח ש $ar{X}
 ightarrow ar{X}$ פונקציה המקיימת $\pi = \pi$. הוכיחו ש $h: ar{X}
 ightarrow ar{X}$. נניח
- .2 נניח ש- $ar{X}_1$ ביימת פונקציה יחידה $\pi_1:X oar{X}_1$. הוכיחו שקיימת פונקציה יחידה רמז:) $q\circ\pi_1=\pi$ כך ש $q:\bar{X}_1 o ar{X}$ כך יחידה $f\circ\pi=\pi_1$, ופונקציה יחידה $f:\bar{X} o ar{X}_1$ משפט 2.3.16.
 - .3 הוכיחו ש-f ו-g הפוכות אחת לשניה.

בגלל התרגיל הזה, לרוב מתייחסים אל העתקת מנה שונות (עבור יחס שקילות נתון) כאל אובייקט יחיד, וקוראים לו העתקת המנה.

מנות במרחבים וקטוריים 2.3.25

נניח שL העתקה שדה M העתקה לינארית בין שני מרחבים לינארית העתקה לינארית העתקה לינארית בין שני אבל , $E=\ker(T)=\{\langle u_1,u_2\rangle\,|\,u_1,u_2\in U,T(u_1)=T(u_2)\}$ אבל יש גרעין ל-7 אבל $T(u_1 - u_2) = T(u_1) - T(u_2) = 0$ המבנה התנאי התנאי את לרשום את הרשום את הלינארי כלומר $\ker(T)=\{u\in U\mid T(u)=0\}\subseteq U$ כאשר, כאשר הקבוצה היא $\ker(T)=\{u\in U\mid T(u)=0\}$

הגרעין של E-ט ביחס ל-E. אז המידע של הגרעין של בדיוק מחלקת העקות. זוהי בדיוק באלגברה לינאריות. של $\ker(T)$ שקול עבור העתקות לינאריות.

משפט 2.3.26. נניח ש-W תת-מרחב וקטורי של מרחב וקטורי U מעל שדה k. אז קיים מרחב וקטורי U והעתקה לינארי $T:U \to V$ בך ש- $T:U \to V$.

הפילות (תרגיל). לפי $u_1-u_2\in W$ אם u_1Eu_2 ידי: U על-ידי. גדיר יחס שקילות (תרגיל). לפי משפט 2.3.9, קיימת ל-E העתקת מנה $U\to V$ מנה $T:U\to V$ העתקת מנה עלינו להראות: פירוט, עלינו להראות:

מתקיים
$$u_1,u_2\in U$$
 שלכל $\oplus:V\times V\to V$ מתקיים .1
$$T(u_1+u_2)=T(u_1)\oplus T(u_2)$$

- ש- $u\in U$ המקיימת לכל ,(c בסקלר הכפלה (הכפלה בסקלר), קיימת פונקציה , $t\in U$ ש- .2 המקיימת לכל . $T(cu)=f_c(T(u))$
- ו- $c \in k$ לכל $c \cdot_V v = f_c(v)$ ידי שנתון על-ידי הכפל בסקלרים והכפל לכל $c \cdot_V v = f_c(v)$ הידי שנתון שנתוך של מרחב את ההגדרה של מרחב וקטורי מעל על $v \in V$

על מנת להוכיח את (1), נשתמש במסקנה 2.3.19, עבור הנתונים X=U יחס השקילות על מנת להוכיח את (1), נשתמש במסקנה $h:X\times X\to X$ פונקציית החיבור של D. התנאי הראשון באותה מסקנה מבטיח שקיימת פונקציה D באותה מסקנה מבטיח שקיימת פונקציה עובר (1) שלנו. D באותה מסקנה מבטיח שקיימת פונקציה עובר (1) שלנו. D באות (1) שלנו. D באות (1) שלנו שלנו (1) שלנו. D באות (1) שלנו (1) ש

-ש המרחב הווקטורי נובעות בקלות ממה שכבר הוכחנו. למשל, על-מנת להוכיח ש-תכונות המרחב הווקטורי נובעות בקלות ממה שכבר $v_1,v_2\in V$ לכל $v_1\oplus v_2=v_2\oplus v_1$ על). אז על). אז

$$v_1 \oplus v_2 = T(u_1) \oplus T(u_2) = T(u_1 + u_2) =$$

= $T(u_2 + u_1) = T(u_2) \oplus T(u_1) = v_2 \oplus v_1$

הוכחת יתר האקסיומות דומה.

תרגיל 2.3.27. השלימו את ההוכחה

מרחב V כמו במשפט נקרא מרחב מנה של U ב-W, ומסומן ב-U/W. ההעתקה נקראת נקראת נקראת מנה. כמו במקרה של קבוצות, מרחב המנה והעתקת המנה אינם יחידים, אבל הם יחידים עד כדי העתקה לינארית יחידה:

.Wעבור שתי העתקות העת ד $T_2:U\to V_2$ ו ו- היו היו , $W\subseteq U$ שתי נניח העתקות ארגיל מרגיל הייטו הייטו איז הארית הפיכה הייטו אינארית העתקה העתקה הייטו אינארית הפיכה הייטו אינארית העתקה העתקה העתקה אינארית הפיכה הייטו אינארית הייטו אינאר הייטו אינארית הייטו אינאר הייטו אינארית הייטו אינארית הייטו אינאר הייטו אינארית הייטו אינארית הייטו אינארית הייטו אינארית הייטו אינאר א

סוף הרצאה 3, 8 במאי, 2024

יחסי סדר 2.4

יחס סדר

X הוא יחס רפלקסיבי, אנטי-סימטרי וטרנזיטיבי מעל אנטי-סימטרי הוא הוא הוא קבוצה אנטי-סימטרי וטרנזיטיבי מעל אנטי-סדר פוצה סדורה הוא הוא הוא זוג לא אוג לא לא אוג לא ריקה, ו-R יחס סדר מעל אנטי-סדר אוג לא אוג לא אוג לא אנטי-סימטרי הוא הוא זוג לא אנטי-סימטרי הוא הוא זוג לא אנטי-סדר מעל אנטי-סדר הוא זוג לא אנטי-סדר מעל אנטי-סדר הוא זוג לא אנטי-סדר מעל אנטי-

 \lozenge עם הסדר הרגיל $R=\leqslant$ עם הסדר הרגיל עם המספרים \mathbb{Q} . ו- \mathbb{Q} ו- \mathbb{Q} ו- \mathbb{Q} קבוצות המספרים . $X=\mathcal{P}(A)$ הוא החזקה על קבוצת קבוצה כלשהי, אז R=R הוא האם אם $R \upharpoonright_Y=R\cap (Y\times Y)$ אז הצמצום $R \upharpoonright_Y=R\cap (Y\times Y)$ הוא האס סדר על . $R \upharpoonright_Y=R\cap (Y\times Y)$ העתים נמשיך לסמן $R \upharpoonright_Y=R$ במקום . $R \upharpoonright_Y=R$

אינטואיטיבית, אם $B \leq C$ ו- $B \leq C$ בעניה, היינו רוצים אינטואיטיבית, אם $B \leq C$ ו- $B \leq C$ אותו איבר. ראינו איך ניתן לעשות זאת: עלינו לומר שהן "כמעט שוות", ולהתייחס אליהן כאל אותו איבר. ראינו איך ניתן לעשות זאת: עלינו לחלק ביחס שקילות. בתרגיל הבא נעשה זאת באופן כללי.

תרגיל 2.4.7. נניח ש- \geq יחס רפלקסיבי וטרנזיטיבי על קבוצה X (יחס כזה נקרא $y \leq x$ אם רפלקסיבי וטרנזיטיבי על על-ידי: $y \leq x$ אם אוגם $x \leq y$ אם אל-ידי: $x \sim y$

- X יחס שקילות על - \sim יחס שקילות על .1
- על פך אלכל איזי שקיים אקיים עבור הוכיחו עבור עבור מנה אתקת העתקת $p:X\to B$ על .2 נניח $p:X\to B$ על אתקיים אורק אם בין אתקיים אורק אם אורק אם אורק אם אורק א אתקיים אורק א
 - .B יחס סדר על .3
- נגדיר ב. C על סדר פונקציה, ו-R פונקציה, פונקציה, אך $q:Y\to C$ על .4 נניח ש- \tilde{R} קדם-סדר, אך אך אך $\tilde{R}=\{\langle x,y\rangle\in Y\times Y\ |\ \langle q(x),q(y)\rangle\in R\}$ בהכרח סדר.

- בור על \mathbb{Z} , ושפונקציית הערך המוחלט $\mathbb{Z} \to \mathbb{N}$ היא העתקת מנה עבור .5. הוכיחו שהקילות המתאים \mathbb{Z} . תארו את יחס הסדר שמתקבל מהבנייה בסעיפים הקודמים.
- אם ורק אם אם אם הסדר הסדר שבדוגמא האחרונה, יחס השקילות שמתקבל מקדם הסדר אם ורק אם ורק אם ורק אם הוכיחו $B \sim C$

יחסי סדר הם טבעיים ונפוצים מאוד במתמטיקה, האם יש לנו אפשרות להבין, באיזשהו אופן, מהם כל יחסי הסדר? בשלב ראשון, עלינו להבין איך להשוות בין שני יחסי סדר שונים, ובפרט להבין מתי הם אותו דבר, עד כדי "שינוי שמות". כיוון שקס"ח היא מקרה פרטי של גרף, המושגים העתקה, שיכון ואיזומורפיזם תקפים גם עבורן. בהקשר הזה, העתקה של גרפים נקראת גם העתקה שומרת סדר. נשים לב לעובדה שמקילה על הבדיקה שהעתקה היא איזומורפיזם:

העתקה שומרת סדר

 $.\langle Y,S\rangle$ בניח לגרף רפלקסיבי אנטי-סימטרי שיכון שיכון $f:X\to Y$ -ש נניח נניח מגרף אז אז תרגיל אז שיכון שיכון ה $f:X\to Y$ אז חח"ע

בפרט, ההנחות בתרגיל חלות אם R,S יחסי סדר.

T איזומורפית לקס"ח איזומורפית לקס"ח איזומורפית לקס"ח איזומורפית לקס"ח איזומורפית הקס"ח איזומורפיזם $f:X\to Y$ איזומורפיזם $f:X\to Y$ איזומורפיזם $Y=\langle\{1,2,3,5,6,10,15,30\},|\rangle$ מכפלת האיברים ב-A, עם הופכית $g:Y\to X$ המוגדרת על-ידי: $g:Y\to X$ הראשוניים של $g:Y\to X$

ידי על-ידי גתומורפיזם נתון איזומורפית לקס"ח לקס"ח איזומורפית איזומורפיזם נתון על-ידי $X=\langle\mathbb{Z},\leqslant\rangle$ הקס"ח איזומורפית איזומורפית איזומורפית לקס"ח לקס"ח איזומורפית איזומורפית לקס"ח איזומורפית הפיכה, וההפוכה היא העתקה לf(n)=-n

העתקה העתקה ל- $\langle \mathcal{P}(A), \supseteq \rangle$: היומורפית איזומורפית אז קבוצה. אז קבוצה. אז קבוצה. מניח ש-2.4.11 העתקה $f\circ f=\operatorname{Id}_X$ נתונה על-ידי $f:X\to X$

האם כל קס"ח איזומורפית לקס"ח ההפוך? נראה ש- $\langle \mathbb{N}, \leqslant \rangle$ אינה איזומורפית לקס"ח האם האם כל קס"ח אינה איזומורפית לקס"ח ההפוך? נראה ש- $a \leqslant b \in \mathbb{N}$ כך ש- $a \leqslant b \in \mathbb{N}$ אבל איך ניתן להוכיח זאת? ב- $a \leqslant b \in \mathbb{N}$ יש מינימום: איבר איבר זאת? ב- $a \leqslant b \in \mathbb{N}$ לקס"ח לקס"ח כלשהו ל $a \leqslant b \in \mathbb{N}$ איזומורפיזם של הקס"ח לקס"ח לקס"ח כלשהו ל $a \leqslant b \in \mathbb{N}$. בפרט, זה המצב ב- $a \leqslant b \in \mathbb{N}$ מינימום בקס"ח זו הוא מקסימום ב- $a \leqslant b \in \mathbb{N}$, וזה לא קיים.

את העקרון הזה ניתן להכליל: כיוון שקס"ח איזומורפיות הן "אותו קסח בשינוי שמות האיברים", כל תכונה של יחסי סדר שמוגדרת רק במונחי היחס נשמרת תחת איזומורפיזם, ולכן אם התכונה מופיעה רק באחת הקס"ח, אז הן אינן איזומורפיות.

T איזומורפית לקסח ההפוך ($\mathbb{N}, | ^{-1} \rangle$ בשתיהן יש מינימום דוגמה 24.12. האם ($\mathbb{N}, | ^{-1} \rangle$ איזומורפית לקסח ההפוך ($\mathbb{N}, | ^{-1} \rangle$ בשתיהן יש מינימום מקסימום, אז הגישה הקודמת לא תעזור. למינימום \mathbb{N} ב- \mathbb{N} יש התכונה הבאה: קיים איבר \mathbb{N} (ולכן בהכרח גדול ממנו), כך שאין אף איבר שנמצא ממש בין \mathbb{N} למשל \mathbb{N} למשל \mathbb{N} באופן כללי, כל ראשוני שונה מ-0). איבר \mathbb{N} כזה נקרא עוקב מיידי של \mathbb{N} . אם קיים איזומורפיזם \mathbb{N} מיידי של \mathbb{N} שומר על המינימום), ואם \mathbb{N} עוקב מיידי של \mathbb{N} אז (\mathbb{N}) צריך להיות עוקב מיידי של \mathbb{N} ב- \mathbb{N} , אבל ל- \mathbb{N} אין עוקבים מידיים ב- \mathbb{N} (תרגיל).

ננסח את ההגדרה שהופיעה בדוגמא.

הגדרה 2.4.13. נניח ש- $\langle X, \leq \rangle$ קס"ח.

 $b \leq a$ בר כך שXבר בינימלי (מזערי) אם לא קיים $a \in X$ בר ביך מינימלי .1

עוקב מיידי $a \neq b$ ו ו $a \leq b$ המקיים $b \in X$ הוא איבר $a \in A$ איבר כלשהו, $a \in A$ איבר מנימלי בקבוצת העוקבים של $a \in A$ הוא איבר מינימלי בקבוצת העוקבים של

3. המושגים איבר מקסימלי (מירבי), קודם וקודם מיידי מוגדרים כמושגים המקבילים עבור הסדר ההפוך $^{-1}$ ב.

 $a \leq c$ רו $c \leq b$ אם $c \in X$ ולכל $a \neq b$ אם $a \leq b$ אם מיידי של $a \neq b$ אם $a \leq c$ רו של a = cר. אז a = cראו a = c

כאמור, כל תכונה של סדר (או, באופן כללי, של גרפים) נשמרת על-ידי איזומורפיזמים. אין לנו (כרגע) אפשרות לנסח במדויק מה זה "תכונה של סדר", ולכן נסתפק בדוגמאות. הטענה הבאה מנוסחת עבור המושגים שהזכרנו עד כה, אבל נכונה גם ליתר התכונות שמופיעות בהמשד.

טענה 2.4.15. נניה ש $\langle X,R \rangle$ י איזומורפיזם. f:X o Yי שני גרפים, ו-f:X o Yי שני גרפים.

- קס"ח אנטי סימטרי, אנטי סימטרי, או טרנזיטיבי אם ורק אם Y כזה. בפרט, אנטי סימטרי, או טרנזיטיבי אם אם אם X קס"ח.
- הוא כזה. בפרט, $f(a) \in Y$ אם ורק אם מקסימלי או מינימלי מינימלם, מקסימום, $a \in X$.2 בפרט, מינימום אם ורק אם ב- Y הוא ישנו, ובדומה עבור התכונות האחרות.
- עוקב מיידי של f(a) אם ורק אם ורק אם ורק אם $a\in X$ אם ורק מיידי של $b\in X$.3 מיידי).

הערה 2.4.16. ההגדרות של מינימום, מינימלי וכו' נוסחו עבור קבוצות סדורות, אבל הן תקפות לגרפים כלשהם.

 $a,b\in X$ נניח עבור עוקבים מידיים. נשתמש בניסוח בתרגיל 2.4.14. נניח ש-b וואס עוקבים מידיים. נשתמש בניסוח בתרגיל 2.4.14. נניח ש-f(a)Sd וואס מיידי של $a,d\in Y$ ושלכל f(a)=f(b), ש-f(a)Sf(b), אם d=f(a) אם מכך ש-f(a) או מכן ב-f(a) או הבעיה מ-f(a) ונשתמש ב-f(a) ונשתמש ב-f(a) או הבעיה מ-f(a) מכן ב-f(a) או הבעיה מ-f(a) ונשתמש ב-f(a) או הבעיה מ-f(a) הב

נסמן g-ש g-ש

תרגיל 2.4.17. הוכיחו את הסעיפים האחרים

X'' הערה 2.4.18. במונחים של הסעיף הקודם, אפשר לנסח את הטענה כך: היחס איזומורפי ל-X'' הערה 2.4.18 במונחים של האוסף של כל הגרפים (או על אוסף כל הקס"חים). אם $\mathcal{G} \to \mathcal{B}$ העתקת מנה עבורו, התכונות מהטענה (כמו קיום מינימום) מוגדרות על \mathcal{B} .

 $1 \le \operatorname{Id}_X$ אם $X = \operatorname{Id}_X$ אם לכסח, נסמן ב->

סוף הרצאה 4, 15 במאי 2024

איבר מינימלי (מזערי)

איבר מקסימלי (מירבי)

קודם מיידי

לאף \mathbb{Q} - ווב- \mathbb{Q} אינם איזומורפיים: ב- \mathbb{Z} לכל איבר יש עוקב מיידי, וב- \mathbb{Q} לאף אינבר אין.

הגדרה 2.4.20. נניח ש $\langle X, \leq
angle$ קס"ח. נאמר שX היא *צפופה* אם לכל x < y, אם עx < y אז מפופו יש $a \in X$ יש $a \in X$

 \mathbb{Z} לא (עם הסדר הרגיל) צפופה, אבל \mathbb{Z} לא (עם הסדר הרגיל)

. עוקב אין עוקב ב-X אין איבר ב-X אין עוקב מיידי. מרגיל 2.4.22 היא צפופה אם אם היא צפופה אים מיידי.

הגדרה 2.4.23. שני איברים x,y בקסח $\langle X, \leq \rangle$ ניתנים להשוואה אם מתקיים שני איברים x,y בקסח בקסח x,y בקסח x,y שני איברים ב-x,y אם כל שני איברים ב-x,y ניתנים להשוואה.

 \Diamond

מלא

הוא קווי אווביים): \geqslant הטבעיים החיוביים): אינה איזומורפית ל- $\langle \mathbb{N}_+,| \rangle$ (כאשר \mathbb{N}_+ הטבעיים החיוביים): \geqslant הוא קווי ו-| לא.

עבור סדרים קוויים, הכיוון ההפוך לתרגיל 2.4.8 תקף:

. שיכון. f אז f אקס"ח X אווי X לקס"ח f אז f:X o Y אז f:X o Y אז איכון.

אינטואיטיבית, יחסי סדר קוויים הם "גדולים": הם מחליטים על הכי הרבה זוגות. לכן, טבעי לשאול, האם כל יחס סדר ניתן להרחבה לסדר קווי. הטענה הבאה מאפשרת לנסח את השאלה מחדש.

נניח של החדר על X קבוצה, ונסמן ב- $\mathcal{O}(X)$ את קבוצה של הסדר על את קבוצה, ונסמן ב-X קבוצה של הכלה. ונסמן סדורה על-ידי הכלה.

 $\mathcal{O}(X)$ -טענה 2.4.26. יחס סדר \geq על קבוצה X הוא קווי אם ורק אם הוא איבר מירבי ב-2.4.26.

לכן, אפשר להמיר את השאלה "האם ביתן להרחבה לסדר ביתן "האם שיחס יש יחס סדר להמיר את להמיר את שמרחיב על Xעל להכלה?". בהמשד נענה על השאלה הזו.

על-מנת להוכיח את הטענה, נשתמש בתרגיל הבא:

יחס סדר על $.y \le x$ מקיימים א $x,y \in X$ ונניח ש-.X, ונניח ש-כיחס סדר ביחס נניח אז מקיימים אוניח הרגיל $.x \le 1$ שמרחיב את בא, כך ש- $.x \le 1$ שמרחיב את אוניח אוניחס מדר ביחס אוניחס מדר ביחס מדר ביחס מדר אוניחס מדר ביחס מדר ביחס

הוכחת הטענה. נניח ש- \geq קווי, ונניח בשלילה שיש איבר ' \leq ב- $\mathcal{O}(X)$ שמרחיב את אוניח בשלילה שיש איבר אבל אוניח בx אבל אבל עבx ב' x בל אבל אבל אבל בובע אבל קווי, נובע אבל x אבל אבל אבל אבל בסתירה לאנטי-סימטריות של '>.

בכיוון השני, נניח ש- מירבי ב- $\mathcal{O}(X)$, אבל לא קווי. אז יש $x,y\in X$ שלא ניתנים להשוואה בכיוון השני, נניח ש-x מירבי שברחיב אב בערחיב אר בין אחרון, קיים בx שמרחיב את בין אחרון, קיים בx שמרחיב את בין שברחיב און לפי

מסמים עליונים 2.4.28

נניח ש- $\Phi(A)$ התכונות שראינו עד כה לא האם קבוצה אינסופית. האם אינסופית ל- $\Phi(A)$ האם האם האינו עד כה לא מאפשרות להבדיל ביניהן.

נזכיר שאם $\mathcal C$ הוא הקבוצה של קבוצות, האיחוד האונרי של הוא הקבוצה האיחוד האונרי

אז $\mathcal{P}(A)$ אם של $\Phi(A)$ אז תת-קבוצה של $\Phi(A)$ אם \mathcal{O} אם \mathcal{O} אם \mathcal{O} אז \mathcal{O} אבל לא בהכרח ב- $\Phi(A)$. האם אפשר להשתמש באבחנה הזו כדי להבדיל בין שתי $\mathcal{O}(A)$ אבל לא בהכרח ב- $\mathcal{O}(A)$ האם אפשר לתאר את $\mathcal{O}(A)$ באמצעות הסדר. נשים לב ש- $\mathcal{O}(A)$ מאופיינת באמצעות שתי התכונות הבאות:

- $A\subseteq \bigcup \mathcal{C}$ מתקיים $A\in \mathcal{C}$ לכל.
- . |
 $\mathcal{C}\subseteq B$ אז $\mathcal{A}\subseteq B$ מתקיים מתקיים שלכל התכונה אם התכונה א
 $A\in\mathcal{C}$ אם אם התכונה אם מערכל האו

תרגיל מאפיינות ש- \mathcal{C} אכן מקיימת את שתי התכונות הנ"ל, ושהתכונות הללו מאפיינות לו ש- \mathcal{C} אכן הוכיחו של אכן אותה, כלומר: אם \mathcal{C} קבוצה נוספת שמקיימת את שתי התכונות הנ"ל, אז \mathcal{C}

כיוון ש- \supseteq הוא יחס הסדר על $\mathcal{P}(A)$, האבחנה הנ"ל מספקת תיאור של \subseteq במונחים של יחס הסדר. תיאור זה ניתן להכליל:

חסם מלעיל חסם עליון חסם מלרע חסם תחתון המקיים $b\in X$ הוא איבר \mathcal{C} . חסם מלעיל של \mathcal{C} . הסם מקיים הגדרה 2.4.30. נניח ש- $\langle X,\leq \rangle$ קס"ח, ו- \mathcal{C} האוא המינימום של קבוצת כל החסמים מלעיל של \mathcal{C} (אם הוא $a\in\mathcal{C}$ המן לכל $a\leq b$ קיים). המושגים המקבילים עבור הסדר ההפוך נקראים חסם מלרע וחסם תחתון.

לכל חסם לכל $b \leq c$ ו ו- $a \in \mathcal{C}$ לכל המקיים: $b \in X$ הוא איבר של הוא לכל פלומר, סם עליון שמינימום של איבר הוא הוא יחיד, לכל מלעיל של של שמינימום של קבוצה הוא יחיד, לכל מת-קבוצה יש לכל היותר חסם עליון אחד.

, שמסימום, אם ל- \mathcal{C} יש חסם עליון ששייך ל- \mathcal{C} אז הוא המקסימום של \mathcal{C} . אם ל- \mathcal{C} יש מקסימום, אז הוא החסם העליון של \mathcal{C} .

 \diamondsuit . \mathbb{Q} - $\mathbb{Q$

נניח בשלילה שיש ל- $\mathcal C$ חסם עליון B ב- $(\mathbb N)$. אז B קבוצה סופית, או שהמשלימה שלה סופית. המקרה הראשון אינו אפשרי, משום ש-B כוללת כל מספר זוגי. במקרה השני, ב-B יש לפחות מספר אי-זוגי אחד A (כל מספר אי-זוגי שאינו במשלימה ש-B). אבל אז גם A כוללת את כל הזוגיים, בסתירה למינימליות של A

 \diamondsuit . $\mathcal{P}(\mathbb{N})$ - אינה איזומורפית $\Phi(\mathbb{N})$ אינה אחסם עליון, ולכן שאין לה של $\Phi(\mathbb{N})$ שאין לה חסם עליון" של קבוצות סדורות נשמרת תחת הרגיל 2.4.35. הוכיחו שהתכונה "לכל תת-קבוצה יש חסם עליון" של קבוצות סדורות נשמרת איזומורפיזם.

לתכונה שלכל תת-קבוצה יש חסם עליון יש השלכות מעניינות. נניח שX-X פונקציה לתכונה שלכל תת-קבוצה יש חסם עליון יש השלניין לשאול האם יש איבר $X\in X$ כך שX-X איבר כזה נקרא *נקודת שבת* של X. בהקשר שלנו, ישנה הטענה הכללית הבאה:

נקודת שבת

 $f: X \to X$ קס"ח בה לכל תת-קבוצה יש חסם עליון, ונניח ש- $\langle X, \leq \rangle$ קס"ח בה לכל תת-קבוצה יש חסם עליון, ונניח ש-f יש נקודת שבת.

הנחה. נסמן a- נוכיח ש-a- נפי ההנחה, ל-c- לפי ההנחה. נוכיח ש-a- נוכיח ש-a- נקודת שבת של a- שבת של a-

נניח שf-ש שומרת f-ש משום שa-ש משום שa-ש משום עa-ש משום שa-ש שומרת בניח נניח עa-ש משום עa-ש משום עa-ש משום עa-ש משום על של a-שומרת a-שומרת (מקבלים ביa-שומרת וכיוון שa-שומרת וכיוון מa-שומרת ומקבלים ביa-שומרת ומקבלים על מקבלים על מקבלים ביa-שומרת מקבלים על מקבלים על מקבלים ביa-שומרת מקבלים על מקבלים

ראינו מספר תכונות שמאפשרות לנו להוכיח שקבוצות סדורות לא איזומורפיות. אם אנחנו רוצים להוכיח ששתי קבוצות סדורות הן כן איזומורפיות, האופן היחיד שיש לנו כרגע הוא למצוא איזומורפיזם ספציפי, וזה לעתים קשה. היה יותר נוח אם היינו יכולים לאפיין קבוצות סדורות באמצעות התכונות שלהן. למשל, נניח שנתונה קס"ח $\langle X, \leq \rangle$ כך ש-g סדר קווי, g צפופה וללא מינימום או מקסימום. דוגמא אחת לקבוצה כזו היא g, עם הסדר הרגיל, אבל עוד דוגמא היא תת-הקבוצה של g המורכבת ממספרים קטנים מ-1 וגדולים מ-0. האם קבוצה כזו בהכרח איזומורפית ל-g על מנת שזה יקרה, הכרחי כמובן שקיימת בכלל פונקציה הפיכה מ-g (ללא שום תנאים על הסדר). תחת ההנחה הזו, אנחנו נראה בהמשך שהתשובה היא "כן".

סוף הרצאה 5, 20 במאי 2024