Exercice 249:

- a) Calculer $\prod (1+\omega)$
- **b)** Pour $n \in \mathbb{N}^*$ et $\sigma \in \mathcal{S}_n$, calculer $\det(I_n + P_{\sigma})$ **c)** Montrer que, pour tout $n \in \mathbb{N}^*, T_{n+1} = 2T_n + n(n-1)T_{n-1}$.
- d) Donner une formule simple pour T_n .

a) On note
$$P = \prod_{\omega \in \mathbb{U}} (-X + \omega) = (-1)^n (X^n - 1)$$
. Ainsi, $\prod_{\omega \in \mathbb{U}} (1 + \omega) = P(-1) = 1 + (-1)^{n+1}$.

 σ se décopose en produit de cycles à support disjoint. $\sigma = c_1 \dots c_p$ où $c_i = (a_1^i \dots a_{n_i}^i)$.

Si on permute les éléments de la base canonique, alors P_{σ} devient semblable à $P_{\sigma} = \begin{pmatrix} C_1 & 0 \\ & \ddots & \\ & & C_1 \end{pmatrix}$

Il y a p blocs C_i où chaque C_i est de taille n_i on a alors $C_i = \begin{pmatrix} 0 & \cdots & 0 & 1 \\ 1 & & 0 & 0 \\ & \ddots & & \vdots \\ 0 & & & 1 & 0 \end{pmatrix}$

$$\chi_{C_i} = \det(XI_n - C_i) = X^{n_i} - 1 \text{ donc } \chi_{P_{\sigma}} = \prod_{i=1}^p (X^{n_i} - 1) \text{ et } \det(I_n + P_{\sigma}) = (-1)^n \cdot \chi_{P_{\sigma}}(-1) = \prod_{i=1}^p (1 - (-1)^{n_i})$$

c) On pose E_k l'ensemble des σ tel que l'orbite de n+1 soit de longueur k.

$$T_{n+1} = \sum_{\sigma \in S_{n+1}} \det(I_{n+1} + P_{\sigma})$$

$$= \sum_{k} \sum_{\sigma \in E_k} \det(I_{n+1} + P_{\sigma})$$

$$= \sum_{k=1}^{n+1} \sum_{\sigma \in S_{n+1-k}} (1 - (-1)^k) \frac{n!}{(n+1-k)!} \det(I_{n+1-k} + P_{\sigma})$$

Donc $|E_k| = \frac{n!}{(n+1-k)!} |S_{n+1-k}| \text{ donc } \binom{n}{k-1} (k-1)! (n+1-k)! = \frac{n!}{(n+1-k)!} (n+1-k)!$ Donc $n! = \frac{n!}{(n+1-k)!}(n+1-k)!$

$$T_{n+1} = \sum_{k=1}^{n+1} (1 - (-1^k)) \frac{n!}{(n+1-k)!} T_{n+1-k}$$

$$= \sum_{k=0}^{n} (1 + (-1)^{n-k}) \frac{n!}{k!} T_k$$

$$= 2T_n + n(n-1) \sum_{k=0}^{n-1} (1 + (-1)^{n-2-k}) \frac{(n-2)!}{k!} T_k$$

$$= 2T_n + n(n-1) T_{n-1}$$

d) Déjà, on a $T_0 = 0$ et $T_1 = 2$.

On pose $f: x \in \mathbb{R} \mapsto \sum_{n=1}^{+\infty} \frac{T_n}{n!} x^n$.

Alors,

$$f'(x) = \sum_{n=1}^{+\infty} \frac{T_n}{(n-1)!} x^{n-1}$$

$$= \sum_{n=0}^{+\infty} \frac{T_{n+1}}{n!} x^n$$

$$= \sum_{n=1}^{+\infty} \frac{2T_n + n(n-1)T_{n-1}}{n!} x^n + 2$$

$$= 2 + 2f(x) + \sum_{n=2}^{+\infty} \frac{T_{n-1}}{(n-2)!} x^n$$

$$= \frac{2}{1 - x^2} f(x) + \frac{2}{1 - x^2}$$

Donc f vérifie l'équation différentielle

$$y' = \left(\frac{1}{1-x} + \frac{1}{1+x}\right)y + \frac{2}{1-x^2}$$

Solution générale : $y_0(x) = \lambda \exp\left(\ln\frac{1+x}{1-x}\right) = \lambda\frac{1+x}{1-x}$. Méthode de variation de la constante : $\lambda'(x) = \frac{1-x}{1+x}\frac{2}{(1-x)(1+x)} = \frac{2}{(1+x)^2}$ donc on prend $\lambda(x) = -\frac{2}{1+x}$ et $y_1(x) = -\frac{2}{1+x}\frac{1+x}{1-x} = -\frac{2}{1-x}$ Ainsi, $f(x) = \lambda\frac{1+x}{1-x} - \frac{2}{1-x}$

Comme de plus
$$f(0) = 0 = \lambda - 2$$
, on a $f(x) = \frac{2 + 2x - 2}{1 - x} = \frac{2x}{1 - x} = 2\sum_{n=1}^{+\infty} x^n = \sum_{n=1}^{+\infty} \frac{2n!}{n!} x^n$

Finalement, $T_0 = 0$ et $\forall n \in \mathbb{N}^*, T_n = 2n!$