Data Analysis (Exploratory Data Analysis)

February 6, 2024

```
[9]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt #for
visualizing data %matplotlib inline
import seaborn as sns
```

1 Data Cleaning

6 Uttar Pradesh Central

```
[14]: df=pd.read csv("Downloads/Diwali Sales Data.csv", encoding="unicode escape")
     #to avoid encoding error, use "unicode escape"
     df.shape
[14]: (11251, 15)
       df.head(10)
[17]:
       User ID Cust name Product ID Gender Age Group Age Marital Status \
      0 1002903 Sanskriti P00125942
                                       F
                                             26-35
                                                     28
      1 1000732
                Kartik P00110942
                                             26-35
                                                     35
                                       F
                                                                     1
                                             26-35
      2 1001990
                  Bindu P00118542
                                       F
                                                     35
                                                                     1
      3 1001425
                  Sudevi P00237842
                                             0 - 17
                                                     16
                                      M
                                             26-35
      4 1000588
                    Joni P00057942
                                                     28
                                                                     1
                                      M
      5 1000588
                     Joni P00057942
                                             26-35
                                                     28
                                       Μ
      6 1001132
                    Balk P00018042
                                             18-25
                                                     25
                                                                     1
      7 1002092 Shivangi P00273442
                                       F
                                               55+
                                                     61
      8 1003224
                  Kushal P00205642
                                             26-35
                                                     35
                                                                     0
                                       Μ
      9 1003650
                    Ginny P00031142
                                       F
                                             26-35
                                                     26
                  State
                            Zone
                                   Occupation Product Category Orders \
           Maharashtra Western
                                     Healthcare
                                                                      1
                                                           Auto
      1 Andhra Pradesh Southern
                                           Govt
                                                           Auto
         Uttar Pradesh Central
                                     Automobile
                                                                      3
                                                           Auto
      3
             Karnataka Southern Construction
                                                                      2
                                                           Auto
                Gujarat Western Food Processing
                                                           Auto
                                                                      2
      5 Himachal Pradesh Northern Food Processing
                                                                     1
                                                           Auto
```

Lawyer

Auto

```
Maharashtra Western
                                     IT Sector
                                                         Auto
                                                                   1
        Uttar Pradesh Central
                                                                   2
                                         Govt
                                                         Auto
      9 Andhra Pradesh Southern
                                         Media
                                                         Auto
         Amount Status unnamed1
      0 23952.00
                   NaN
                            NaN
      1 23934.00
                   NaN
                            NaN
      2 23924.00
                   NaN
                            NaN
      3 23912.00
                   NaN
                            NaN
      4 23877.00
                   NaN
                            NaN
      5 23877.00
                   NaN
                            NaN
      6 23841.00
                   NaN
                            NaN
            NaN
                   NaN
                            NaN
      8 23809.00
                  NaN
                            NaN
      9 23799.99
                   NaN
                            NaN
[16]:
     df.info()
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 11251 entries, 0 to 11250
    Data columns (total 15 columns):
     # Column
                         Non-Null Count Dtype
     ____
                         _____
        User ID
                        11251 non-null int64
        Cust name
                        11251 non-null object
        Product ID
                        11251 non-null object
     2
     3
        Gender
                        11251 non-null object
        Age Group
     4
                        11251 non-null object
     5
        Age
                        11251 non-null int64
     6
        Marital Status 11251 non-null int64
     7
        State
                        11251 non-null object
                        11251 non-null object
         Zone
        Occupation
                       11251 non-null object
     10 Product Category 11251 non-null object
     11 Orders
                       11251 non-null int64
     12 Amount
                        11239 non-null float64
     13 Status
                        0 non-null
                                     float64
     14 unnamed1
                       0 non-null
    dtypes: float64(3), int64(4), object(8)
    memory usage: 1.3+ MB
[18]: #drop unrelated / blank columns
     df.drop(['Status', 'unnamed1'], axis=1, inplace=True)
[19]: df.info() #when we again do df.info() it shows that the two rows
      i.e Status and unnamed1 has been dropped
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 11251 entries, 0 to 11250 Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype		
0	User_ID	11251 non	-null int64		
1	Cust_name	11251 non	-null object		
2	Product_ID	11251 non	-null object		
3	Gender	11251 non	-null object		
4	Age Group	11251 non	-null object		
5	Age	11251 non	-null int64		
6	Marital_Status	11251 non-null	int64		
7	State	11251 non	-null object		
8	Zone	11251 non	-null object		
9	Occupation	11251 non	-null object		
10	Product_Category	11251 non-null	object		
11	Orders	11251 non	-null int64		
12	Amount	11239 non	-null float64		
dtyp	pes: float64(1),	int64(4), obj	ect(8)		

memory usage: 1.1+ MB

[20]: pd.isnull(df)

[20]:	User_ID Cust_	name Pr	oduct_ID	Gender	Age Group	Age	\
0	False F	alse	False	False	False	False	
1	False F	alse	False	False	False	False	
2	False F	alse	False	False	False	False	
3	False F	alse	False	False	False	False	
4	False F	alse	False	False	False	False	
11246	False F	alse	False	False	False	False	
11247	False F	alse	False	False	False	False	
11248	False F	alse	False	False	False	False	
11249	False F	alse	False	False	False	False	
11250	False F	alse	False	False	False	False	
	Marital_Status	State	Zone 0	ccupation	Product_C	ategory	Orders \
0	False	False	False	False		False	False
1	False	False	False	False		False	False
2	False	False	False	False		False	False
3	False	False	False	False		False	False
4	False	False	False	False		False	False
11246	False	False	False	False		False	False
11247	False	False	False	False		False	False
11248	False	False	False	False		False	False
11249	False	False	False	False		False	False

```
11250
                 False False False
                                              False False
          Amount
     0
           False
     1
           False
           False
     3
           False
     4
           False
    11246
           False
    11247 False
    11248 False
    11249 False
    11250 False
     [11251 rows x 13 columns]
[21]: #checking for null values
     pd.isnull(df).sum()
[21]: User ID
    Cust name
                      0
    Product ID
                      0
    Gender
                      0
    Age Group
                      0
                      0
    Age
                      0
    Marital Status
    State
                      0
    Zone
                      0
    Occupation
                      0
    Product Category
                      0
    Orders
                      0
                     12
    Amount
    dtype: int64
[22]: df.shape
[22]: (11251, 13)
[24]: #drop null values
     df.dropna(inplace=True)
[25]: df.shape #here we can see that 12 rows which are null are deducted
      which is 11251 initially
[25]: (11239, 13)
```

```
[26]: #change data type of 'Amount' as it is in float
     df["Amount"] = df["Amount"].astype('int')
[27]: df["Amount"].dtype #after run this we can see that data type of
       'Amount' changes from float to int
[27]: dtype('int32')
[28]: df.columns
[28]: Index(['User ID', 'Cust name', 'Product ID', 'Gender', 'Age
           Group', 'Age', 'Marital Status', 'State', 'Zone',
           'Occupation', 'Product Category', 'Orders', 'Amount'],
          dtype='object')
[]: #to rename column
     #df.rename(columns={'':''})
[29]: #describe() method return description of the data in the
      database (i.e. *count, mean, std etc.)
     df[["Age", "Orders", "Amount"]].describe()
[29]:
                                         Amount
                             Orders
                    Age
     count 11239.000000 11239.000000 11239.000000
                           2.489634 9453.610553
     mean
             35.410357
             12.753866
                           1.114967 5222.355168
     std
     min
             12.000000
                          1.000000 188.000000
     25%
             27.000000
                        2.000000 5443.000000
     50%
             33.000000
                         2.000000 8109.000000
     75%
             43.000000 3.000000 12675.000000
             92.000000 4.000000 23952.000000
     max
```

2 Exploratory Data Analysis

3 1. Gender


```
[88]: ax = sns.countplot(x = "Gender", data=df)
sns.set(rc={"figure.figsize":(4,6)})
for bars in ax.containers: #for values of no. of females and males i.e we can_
see there are 7832 females and 3407 males...
ax.bar_label(bars)
```



```
[37]: sales_gen = df.groupby(['Gender'],as_index=False)['Amount'].sum().

*sort_values(by="Amount",ascending=False)

[87]: sales_gen = df.groupby(['Gender'],as_index=False)['Amount'].sum().

*sort_values(by="Amount",ascending=False)
sns.set(rc={"figure.figsize":(4,6)})
sns.barplot(x="Gender",y="Amount", data=sales_gen)

[87]: <Axes: xlabel='Gender', ylabel='Amount'>
```


From above graph we can see that most of the buyers are females and even the purchasing power of females are greater than males.

4 2. Age

```
[38]: ax = sns.countplot(data=df, x= "Age Group", hue="Gender") #hue
    will divide__ *gender bars in male and female

for bars in ax.containers:
    ax.bar_label(bars)
```


[40]: <Axes: xlabel='Age Group', ylabel='Amount'>

From above Graphs we can see that most of the buyers are of age group between 26-35 years (female)

5 3. State

[49]: <Axes: xlabel='State', ylabel='Orders'>

[51]: <Axes: xlabel='State', ylabel='Amount'>

From above Graphs we can see that most of the orders and total sales/amount are from Uttar Pradesh, Maharashtra, Karnataka respectively.

6 4.Martial Status

C:\Users\Dell\AppData\Local\Temp\ipykernel_18684\2957534978.py:1: FutureWarning: The default value of numeric_only in DataFrameGroupBy.sum is deprecated. In a future version, numeric_only will default to False. Either specify numeric_only or select only columns which should be valid for the function.

sales_state = df.groupby(["Marital_Status","Gender"],as_index=False).sum().sor
t_values(by="Amount",ascending = False)

From above graphs we can see that most of the buyers are married(women) and the have high purchasing power.

7 5. Occupation

```
[66]: sns.set(rc={'figure.figsize':(20,6)})
ax= sns.countplot(data=df, x="Occupation")

for bars in ax.containers:
    ax.bar_label(bars)
```


[68]: <Axes: xlabel='Occupation', ylabel='Amount'>

From above graphs we can see that most of the buyers are working in IT, Aviation and Healthcare sector.

```
[69]: df.columns
```

8 6. Occupation

```
[72]: sns.set(rc={'figure.figsize':(25,7)})
ax= sns.countplot(data=df, x="Product_Category")

for bars in ax.containers:
   ax.bar_label(bars)
```


[79]: <Axes: xlabel='Product Category', ylabel='Amount'>

From above graph we can see that most of the sold products are from Food, Clothing and Electronics category.

```
[82]: sales state = df.groupby(["Product ID"], as index=False)["Orders"].sum().
      sort_values(by="Orders", ascending=False).head(10)
     sns.set(rc={"figure.figsize":(26,7)})
     sns.barplot(data = sales state , x="Product ID",y ="Orders")
```

[82]: <Axes: xlabel='Product ID', ylabel='Orders'>


```
[83]: #top 10 most sold products (same thing as above)
     fig1, ax1 = plt.subplots(figsize=(12,7))
     df.groupby("Product ID")["Orders"].sum().nlargest(10).sort values(ascending
      =_ False).plot(kind="bar")
```


9 Conclusion

Married women age group 26-35 years from UP, Maharashtra and Karnataka working in IT, Health-care and Aviation are more likely to buy products from Food, Clothing and Electronics category.