Solve the equations in Exercises 11-14 for x.

- 11. $2^{x+1} = 3^x$
- 12. $3^x = 9^{1-x}$
- 13. $\frac{1}{2^x} = \frac{5}{8^{x+3}}$
- 14. $2^{x^2-3} = 4^x$

Find the domains of the functions in Exercises 15–16.

- **15.** $\ln \frac{x}{2-x}$
- **16.** $\ln(x^2 x 2)$

Solve the inequalities in Exercises 17-18.

- 17. ln(2x-5) > ln(7-2x)
- **18.** $\ln(x^2 2) \le \ln x$

In Exercises 19–48, differentiate the given functions. If possible, simplify your answers.

- **19.** $v = e^{5x}$
- **20.** $v = xe^x x$
- **21.** $y = \frac{x}{a^2x}$
- **22.** $y = x^2 e^{x/2}$
- **23.** $y = \ln(3x 2)$
- **24.** $y = \ln |3x 2|$
- **25.** $y = \ln(1 + e^x)$
- **26.** $f(x) = e^{(x^2)}$
- **27.** $y = \frac{e^x + e^{-x}}{2}$
- **28.** $x = e^{3t} \ln t$
- **29.** $v = e^{(e^x)}$
- **30.** $y = \frac{e^x}{1 + e^x}$
- **31.** $y = e^x \sin x$
- **32.** $v = e^{-x} \cos x$
- **33.** $y = \ln \ln x$
- **34.** $y = x \ln x x$
- 35. $y = x^2 \ln x \frac{x^2}{2}$
- **36.** $y = \ln|\sin x|$
- 37. $v = 5^{2x+1}$
- **38.** $v = 2^{(x^2-3x+8)}$
- **39.** $g(x) = t^x x^t$
- **40.** $h(t) = t^x x^t$
- **41.** $f(s) = \log_a(bs + c)$
- **42.** $g(x) = \log_x(2x + 3)$
- **43.** $v = x^{\sqrt{x}}$
- **44.** $v = (1/x)^{\ln x}$
- **45.** $y = \ln|\sec x + \tan x|$
- **46.** $y = \ln|x + \sqrt{x^2 a^2}|$
- **47.** $y = \ln(\sqrt{x^2 + a^2} x)$ **48.** $y = (\cos x)^x x^{\cos x}$
- **49.** Find the *n*th derivative of $f(x) = xe^{ax}$.
- **50.** Show that the *n*th derivative of $(ax^2 + bx + c)e^x$ is a function of the same form but with different constants.
- **51.** Find the first four derivatives of e^{x^2} .
- **52.** Find the *n*th derivative of $\ln(2x+1)$.
- **53.** Differentiate (a) $f(x) = (x^x)^x$ and (b) $g(x) = x^{(x^x)}$. Which function grows more rapidly as x grows large?
- **54.** Solve the equation $x^{x^{x^{-1}}} = a$, where a > 0. The exponent tower goes on forever.

Use logarithmic differentiation to find the required derivatives in Exercises 55-57.

- **55.** f(x) = (x-1)(x-2)(x-3)(x-4). Find f'(x).
- **56.** $F(x) = \frac{\sqrt{1+x}(1-x)^{1/3}}{(1+5x)^{4/5}}$. Find F'(0).
- **57.** $f(x) = \frac{(x^2 1)(x^2 2)(x^2 3)}{(x^2 + 1)(x^2 + 2)(x^2 + 3)}$. Find f'(2). Also find
- **58.** At what points does the graph $y = x^2 e^{-x^2}$ have a horizontal tangent line?

- **59.** Let $f(x) = xe^{-x}$. Determine where f is increasing and where it is decreasing. Sketch the graph of f.
- **60.** Find the equation of a straight line of slope 4 that is tangent to the graph of $y = \ln x$.
- 61. Find an equation of the straight line tangent to the curve $v = e^x$ and passing through the origin.
- **62.** Find an equation of the straight line tangent to the curve $y = \ln x$ and passing through the origin.
- **63.** Find an equation of the straight line that is tangent to $y = 2^x$ and that passes through the point (1,0).
- **64.** For what values of a > 0 does the curve $y = a^x$ intersect the straight line y = x?
- **65.** Find the slope of the curve $e^{xy} \ln \frac{x}{y} = x + \frac{1}{y}$ at (e, 1/e).
- **66.** Find an equation of the straight line tangent to the curve $xe^{y} + y - 2x = \ln 2$ at the point (1, $\ln 2$).
- **67.** Find the derivative of $f(x) = Ax \cos \ln x + Bx \sin \ln x$. Use the result to help you find the indefinite integrals $\int \cos \ln x \, dx$ and $\int \sin \ln x \, dx$.
- **18.** Let $F_{A,B}(x) = Ae^x \cos x + Be^x \sin x$. Show that $(d/dx)F_{A,B}(x) = F_{A+B,B-A}(x).$
- **19.** Using the results of Exercise 68, find (a) $(d^2/dx^2)F_{A,B}(x)$ and (b) $(d^3/dx^3)e^x \cos x$.
- **170.** Find $\frac{d}{dx}(Ae^{ax}\cos bx + Be^{ax}\sin bx)$ and use the answer to (a) $\int e^{ax} \cos bx \, dx$ and (b) $\int e^{ax} \sin bx \, dx$.
- **? 71.** Prove identity (ii) of Theorem 2 by examining the derivative of the left side minus the right side, as was done in the proof of identity (i).
- **? 72.** Deduce identity (iii) of Theorem 2 from identities (i) and (ii).
- \bigcirc 73. Prove identity (iv) of Theorem 2 for rational exponents r by the same method used for Exercise 71.
- 1 74. Let x > 0, and let F(x) be the area bounded by the curve $y = t^2$, the t-axis, and the vertical lines t = 0 and t = x. Using the method of the proof of Theorem 1, show that $F'(x) = x^2$. Hence, find an explicit formula for F(x). What is the area of the region bounded by $y = t^2$, y = 0, t = 0,
- **I** 75. Carry out the following steps to show that 2 < e < 3. Let f(t) = 1/t for t > 0.
 - (a) Show that the area under y = f(t), above y = 0, and between t = 1 and t = 2 is less than 1 square unit. Deduce that e > 2.
 - (b) Show that all tangent lines to the graph of f lie below the graph. *Hint*: $f''(t) = 2/t^3 > 0$.
 - (c) Find the lines T_2 and T_3 that are tangent to y = f(t) at t = 2 and t = 3, respectively.
 - (d) Find the area A_2 under T_2 , above y = 0, and between t = 1 and t = 2. Also find the area A_3 under T_3 , above y = 0, and between t = 2 and t = 3.
 - (e) Show that $A_2 + A_3 > 1$ square unit. Deduce that e < 3.