Basic Electronic Circuits (IEC-103)

Lecture-18

Small Signal Analysis

BJT Circuit Analysis

□ DC Analysis: To fix DC operating point (Q point). Also called biasing of transistor.

BJT Circuit Analysis

□ DC Analysis: To fix DC operating point (Q point). Also called biasing of transistor.

☐ Small Signal Analysis: Analyze BJT circuits for signals being amplified. Small signal model is used for analysis.

BJT Circuit Analysis

□ DC Analysis: To fix DC operating point (Q point). Also called biasing of transistor.

- ☐ Small Signal Analysis: Analyze BJT circuits for signals being amplified. Small signal model is used for analysis.
- ☐ The transistor is biased such a way to operate it in active region if used in amplifier circuit.

Large Signal Model (BJT) (Active Region)

Large Signal DC Analysis (Active Region)

Large Signal DC Analysis (Active Region)

Large Signal DC Analysis (Active Region)

Function of each component

Function of each component

• Capacitors: Act as an open circuit DC operation and short circuits to AC.

Function of each component

 Capacitors: Act as an open circuit DC operation and short circuits to AC.

(If f = 10 kHz & C = 10 μ F, then $|ZC| = (2\pi fC)^{-1} = 8 \Omega$ which is usually smaller than $R_{TH} = R_1 ||R_2|$.

Function of each component

• Capacitors: Act as an open circuit DC operation and short circuits to AC.

(If f = 10 kHz & C = 10 µF, then $|ZC| = (2\pi fC)^{-1} = 8 \Omega$ which is usually smaller than $R_{TH} = R_1 ||R_2|$.

• R_1 , R_2 , R_C , and R_E : Setting DC biasing Q-Opoint.

Function of each component

• Capacitors: Act as an open circuit DC operation and short circuits to AC.

(If f = 10 kHz & C = 10 μ F, then $|ZC| = (2\pi fC)^{-1} = 8 \Omega$ which is usually smaller than $R_{TH} = R_1 ||R_2|$.

- R_1 , R_2 , R_C , and R_E : Setting DC biasing Q-Opoint.
- R_C : Converting i_c variation into v_{ce} (or v_o) variation (signal conversion).

DC & AC Analysis of Amplifiers

To determine DC operating point (or Q-point)

Reduce all signal sources to zero.

- Reduce all signal sources to zero.
- Open all the capacitors

- Reduce all signal sources to zero.
- Open all the capacitors
- Draw and analyze the DC equivalent.

- Reduce all signal sources to zero.
- Open all the capacitors
- Draw and analyze the DC equivalent.

To determine ac characteristics (e.g., small signal voltage gain, input impedance, output impedance, frequency response etc.

Reduce all DC sources to zero.

- Reduce all DC sources to zero.
- Short all the capacitors

- Reduce all DC sources to zero.
- Short all the capacitors
- Draw and analyze the AC equivalent.

- Reduce all DC sources to zero.
- Short all the capacitors
- Draw and analyze the AC equivalent.

BJT as a 2 port network

BJT as a 2 port network

Small signal hybrid π equivalent circuit

BJT as a 2 port network

Small signal hybrid π equivalent circuit

 $\beta = Common\ emitter\ current\ gain = i_c/i_b$

BJT as a 2 port network

Small signal hybrid π equivalent circuit

$$\beta = Common\ emitter\ current\ gain = i_c/i_b$$

$$r_{\pi} = v_{be}/i_b = V_T/I_{BQ}$$

= $\beta V_T/I_{CQ} = small \ signal \ resistance, where \ V_T \ is the thermal \ voltage$

With current gain parameter

With current gain parameter

With transconductance parameter

With current gain parameter

With transconductance parameter

$$g_m = \beta/r_\pi = I_{CQ}/V_T = transconductance$$

Small Signal Hybrid- π Equiv. Circuit

With current gain parameter

With transconductance parameter

$$g_m = \beta/r_\pi = I_{CQ}/V_T = transconductance$$

 i_c is assumed to be independent of v_{ce} which is not the case in practice and the assumption will be released later to include the "Early effect"

Overall Amplifier Gain

$$A_{v} = \frac{v_{o}}{v_{s}}$$

Overall Amplifier Gain

$$A_{v} = \frac{v_{o}}{v_{s}}$$

Input Resistance

$$R_i = \frac{v_i}{i_i}$$

Overall Amplifier Gain

$$A_{v} = \frac{v_{o}}{v_{s}}$$

Input Resistance

$$R_i = \frac{v_i}{i_i}$$

Output Resistance

$$R_{\rm o} = \frac{v_{\rm o}}{i_{
m o}}\Big|_{v_{
m s}=0}$$

$$V_{\pi} = V_{be} = V_{s} \left(\frac{r_{\pi}}{r_{\pi} + R_{B}} \right)$$

$$V_o = V_{ce} = -(g_m V_\pi) R_C = -(g_m V_{be}) R_C$$

$$V_{\pi} = V_{be} = V_{s} \left(\frac{r_{\pi}}{r_{\pi} + R_{B}} \right)$$

$$V_{o} = V_{ce} = -(g_{m}V_{\pi})R_{C} = -(g_{m}V_{be})R_{C}$$
Small-signal voltage gain:
$$A_{v} = \frac{V_{o}}{V_{s}} = -(g_{m}R_{C}) \left(\frac{r_{\pi}}{r_{\pi} + R_{B}} \right)$$

Input and Output Resistances

Input and Output Resistances

Input resistance: $R_i = R_B + r_{\pi}$

$$R_i = R_B + r_{\pi}$$

Input and Output Resistances

Input resistance: $R_i = R_B + r_{\pi}$

Output resistance: $R_o = R_C$

[Setting $V_s = 0$ (short), then $V_{\pi} = 0$ & $g_m V_{\pi} = 0$ (open)]

Example

Calculate the small-signal voltage gain, input resistance & output resistance of the BJT amplifier circuit at 300 K. Assume that the BJT & circuit parameters are: $\beta = 100$, $V_{CC} = 12$ V, $V_{BE} = 0.7$ V, $R_C = 6$ k Ω , $R_B = 50$ k Ω & $V_{BB} = 1.2$ V.

