高数基础班(13)

13 反常积分举例(敛散性; 计算),定积分应用(几何; 物理) P98-P105

主讲 武忠祥 教授

常考题型与典型例题

常考题型

- 1. 反常积分敛散性
- 2. 反常积分计算

(一) 反常积分的敛散性

$$\begin{array}{c} (\underline{J}) \int_{1}^{th} x \, e^{-x} \, dx = -\int_{2}^{th} x \, de^{-x} = -xe^{-x} \Big|_{1}^{th} + \int_{2}^{th} e^{-x} \, dx = -e^{-x} \Big|_{1}^{th} \\ \xrightarrow{ex} = \frac{x}{\sqrt{3}} = \frac{x^{3}}{\sqrt{3}} \left(\underbrace{e^{x} \geq x^{3}}_{2} \right) - \underbrace{e^{x}}_{2} \xrightarrow{y \geq 0}$$

【例4】 (2013年2) 设函数
$$f(x) = \begin{cases} \frac{1}{(x-1)^{\alpha-1}}, & 1 < x < e, \\ \frac{1}{x \ln^{\alpha+1} x}, & x \ge e. \end{cases}$$

若反常积分 $\int_{1}^{+\infty} f(x)dx$ 收敛, 则

(A)
$$\alpha < -2$$
.

(B)
$$\alpha > 2$$
.

(C)
$$-2 < \alpha < 0$$
.

(D)
$$0 < \alpha < 2$$
.

$$\int_{1}^{1} f(x) dx = \int_{1}^{1} \frac{dx}{dx} + \int_{1}^{1} \frac{dx}{dx} +$$

【例5】(2016年2)反常积分
$$\int_{-\infty}^{0} \frac{1}{x^2} e^{\frac{1}{x}} dx$$
, $\int_{0}^{+\infty} \frac{1}{x^2} e^{\frac{1}{x}} dx$

的敛散性为()

- (A) 收敛, 收敛.
- (C) 发散, 收敛. (~~, o]
- (B) 收敛, 发散
 - (D) 发散,发散.

$$\int_{-\infty}^{\infty} \frac{1}{x^{2}} e^{\frac{1}{x}} dx = -e^{\frac{1}{x}} \Big|_{-\infty}^{\infty} = 0 + 1 = 1 + 1$$

$$\int_{0}^{+\infty} \frac{1}{k^{2}} e^{\frac{1}{k}} dk = -e^{\frac{1}{k}} \Big|_{0}^{+\infty} = -|+(+\infty)| = 0$$

$$k \to 0^{+}$$

$$[0, +\infty)$$

【例6】(2016年1) 反常积分
$$\int_{0}^{+\infty} \frac{1}{x^{a}(1+x)^{b}} dx$$
 收敛,则()

(A) $a < 1, b > 1$.

(B) $a > 1, b > 1$.

(C) $a < 1, a + b > 1$.

(D) $a > 1, a + b > 1$.

(E) $\int_{0}^{+\infty} \frac{1}{x^{a}(1+x)^{b}} dx$ 十 $\int_{0}^{+\infty} \frac{1}{x^{a}(1+x)^{b}} dx$ 1 $\int_{0}^{+\infty}$

(二) 反常积分的计算

【例7】 (2000年, 2)
$$\int_{2}^{+\infty} \frac{\mathrm{d}x-2}{(x+7)\sqrt{x-2}} = \underline{\qquad}$$

$$\int_{0}^{\infty} dt = \int_{0}^{+\infty} \frac{2x}{x(t^{2}+1)} dt = 2 \int_{0}^{+\infty} \frac{dt}{1+x^{2}}$$

$$\sqrt{3}$$
 = $\int_{2}^{+\infty} \frac{2 d \sqrt{x-2}}{9 + (\sqrt{x-2})^2} = \frac{2}{3} \arctan \frac{\sqrt{x-2}}{3}$

$$\begin{bmatrix} \frac{1}{3} \\ \frac{1}{4} \end{bmatrix}$$

【例8】 (2000年4) 计算
$$I = \int_{1}^{+\infty} \frac{dx}{e^{x} + e^{2-x}}$$
 $\left(\frac{\pi}{4e}\right)$

[M]
$$\Gamma \stackrel{\text{def}}{=} \int_{1}^{t_{2}} \frac{e^{x}}{e^{x} + e^{x}} dx = \int_{1}^{t_{2}} \frac{de^{x}}{e^{x} + (e^{x})^{2}}$$

【例9】 (2013年, 1, 3)
$$\int_{1}^{+\infty} \frac{\ln x}{(1+x)^2} dx = \underline{\qquad}. \quad \text{(in 2)}$$

$$= \ell_{N} \frac{\chi}{1+\chi} \Big|_{1}^{+2\delta} = 0 - \ell_{N-2}^{-1}$$

$$= \ell_{N-2}$$

第六章 定积分应用

本节内容要点

- 一. 考试内容概要
 - (一) 几何应用
 - (二) 物理应用
- 二. 常考题型与典型例题

题型一 几何应用

题型二 物理应用

(一) 几何应用

1. 平面图形的面积

(1) 若平面域 p 由曲线 $y = f(x), y = g(x)(f(x) \ge g(x)),$

$$x=a$$
, $x=b$ $(a < b)$ 所围成,则

$$S = \int_a^b [f(x) - g(x)] dx$$

中世华
$$a = a(\theta)$$
 $\theta = \alpha(\theta) = \beta(\alpha < \theta)$

(2) 若平面域 D 由曲线 $\rho = \rho(\theta), \theta = \alpha, \theta = \beta(\alpha < \beta)$ 所围成,则

$$S = \frac{1}{2} \int_{\alpha}^{\beta} \rho^{2}(\theta) d\theta$$

2. 旋转体体积

若平面域
$$D$$
 由曲线 $y = f(x), (f(x) \ge 0)$,

x = a, x = b (a < b) 所围成,则

$$dV = 2\pi c \gamma(x_1 y) db$$

1) 区域 D 绕 x 轴旋转一周所得到的旋转体积为

$$V_{x} = \pi \int_{a}^{b} f^{2}(x) dx$$

$$V_{x} = 2\pi \begin{cases} y dy = 2\pi \end{cases} \begin{cases} y dy = \pi \int_{a}^{b} f(x) dx \end{cases}$$

2) 区域 D 绕 y 轴旋转一周所得到的旋转体积为

$$V_y = 2\pi \int_a^b x f(x) dx$$

$$V_y = 2\pi \iint_a x f(x) dx$$

$$V_y = 2\pi \iint_a x dx = 2\pi \iint_a x dx = 2\pi \iint_a x dx$$

V= 2th Spa.4)db

3. 曲线弧长 (数三不要求)

1)
$$C: y = y(x), \quad a \le x \le b. \quad s = \int_a^b \sqrt{1 + {y'}^2} dx$$

.2)
$$C:\begin{cases} x = x(t) \\ y = y(t) \end{cases}$$
 $\alpha \le t \le \beta$. $s = \int_{\alpha}^{\beta} \sqrt{x'^2 + y'^2} dt$

3)
$$C: \rho = \rho(\theta), \quad \alpha \leq \theta \leq \beta. \quad s = \int_{\alpha}^{\beta} \sqrt{\rho^2 + {\rho'}^2} d\theta$$

4. 旋转体侧面积(数三不要求)

$$S = 2\pi \int_{a}^{b} f(x) \sqrt{1 + f'^{2}(x)} dx$$

- **4** 2. 变力做功; 1. 压力;
 - 3. 引力。

常考题型与典型例题

常考题型

- 1.几何应用
- 2.物理应用

(一) 几何应用

【例1】(2014年, 3) 设 D 是由曲线 xy+1=0 与直线 y+x=0

及
$$y=2$$
 围成的有界区域,则 D 的面积为

$$= \int_{1}^{2} (y - \frac{1}{3}) dy = (\frac{1}{2}y^{2} - \frac{1}{6}y) \Big|_{1}^{2} = \frac{3}{2} - \frac{3}{2}$$

$$-y^{2} = -y^{2}$$

→ 有道考袖

【例2】(2013年, 2) 设封闭曲线 L 的极坐标方程为

$$r = \cos 3\theta \left(-\frac{\pi}{6} \le \theta \le \frac{\pi}{6}\right)$$
,则 L 所围平面图形的面积是 _____

$$r = \cos 3\theta \left(-\frac{\pi}{6} \le \theta \le \frac{\pi}{6}\right)$$
,则 L 所围平面图形的面积是

[解1] $S = \frac{1}{2} \int_{0}^{\infty} \gamma^{2} d\theta = \frac{1}{2} \int_{0}^{\infty} \frac{1}{12} d$

【例3】(2015年2,3) 设
$$A > 0, D$$
 是由曲线段 $y = A \sin x (0 \le x \le \frac{\pi}{2})$

及直线 $y=0, x=\frac{\pi}{2}$ 所围成的平面区域, V_1, V_2 分别表示 D 绕

x 轴与 y 轴旋转所成旋转体的体积. 若 $V_1 = V_2$, 求 A 的值.

$$[V_1 = \frac{\pi^2}{4}A^2, V_2 = 2\pi A, A = \frac{8}{\pi}]$$

[#]
$$V_{1} = \pi \int_{A^{2}}^{\infty} A^{2} \sin k \, dk = \pi A^{2} \left[\frac{\pi}{2} \right] = \frac{\pi^{2} A^{2}}{4}$$

$$V_{z} = 2\pi \int_{0}^{\frac{\pi}{2}} x \operatorname{Ani} x \, dx = 2\pi A \int_{0}^{\frac{\pi}{2}} x \operatorname{Ani} x \, dx$$

【例4】(2012年,数二)过点(0,1) 作曲线 $L: y = \ln x$ 的切线,切点为 A,又 L 与 x 轴交于 B 点,区域 D 由 L 与直线 AB

围成. 求区域 D 的面积及 D 绕 x 轴旋转一周所得旋转体的体积.

$$[S=2;V=\frac{2\pi}{3}(e^2-1)]$$

【解1】设切点为
$$(x_0, y_0)$$
,则切线方程为 $y - \ln x_0 = \frac{1}{x_0}(x - x_0)$

【解2】设过点 (0,1) 的线方程为 y-1=kx $y=\mu ky$ $y=\mu ky$

$$S = \int_{1}^{e^{2}} \ln x dx - \frac{1}{2} e^{2} \cdot 2 = 2$$

$$V = \pi \int_{1}^{e^{2}} \frac{\ln^{2} x dx - \frac{\pi}{3} \cdot 4 \cdot (e^{2} - 1)}{3} = \frac{2\pi}{3} \left(e^{2} - 1 \right)$$

【例5】 (2011年1, 2) 曲线
$$y = \int_0^x \tan t dt (0 \le x \le \frac{\pi}{4})$$
 的弧长

$$s = \underline{\hspace{1cm}}$$

$$[\ln(1+\sqrt{2})]$$

$$\begin{cases} \mathbf{f} \\ \mathbf{f}$$

$$= \int_{0}^{\frac{\pi}{4}} \operatorname{sec}_{X} dX = \ln \left(\frac{d^{2}}{2} + \operatorname{th}_{X} \right) \left| \frac{\pi}{4} \right|$$

(二) 物理应用

【例6】(2011年2)一容器的内侧是由图中曲

线绕 y 轴旋转一周而成的曲面,该曲线由

$$x^2 + y^2 = 2y(y \ge \frac{1}{2})$$
 与 $x^2 + y^2 = 1(y \le \frac{1}{2})$ 连接而成.

- (I) 求容器的容积; ✓
- (II) 若将容器内盛满的水从容器顶部全部抽出, 至少需要做多少功?

(长度单位: m, 重力加速度为*g*m/s², 水的密度 为10³kg/m³)

[#]
$$V = 2\pi \int_{-1}^{\frac{1}{2}} x^2 \, dy = 2\pi \int_{-1}^{\frac{1}{2}} (1 - y^2) \, dy = \frac{9\pi}{4}.$$

$$W = 10^3 \int_{-1}^{\frac{1}{2}} \pi (1 - y^2) (2 - y) g \, dy + 10^3 \int_{\frac{1}{2}}^{2} \pi [2y - y^2)] (2 - y) g \, dy = \frac{27}{8} \pi \rho g$$

【例7】(2002年2)某闸门的形状与大小如图 所示,其中 y 轴为对称轴,闸门的上部为矩形 ABCD, DC=2m, 下部由二次抛物线与线段 AB 所围成,当水面与闸门的上端相平时,欲使闸门矩形部分承受的水压力与闸门下部承受的水压力之比为5: 4,闸门矩形部分的高 h 应为多少

压强 $p = g\rho h$ \checkmark

高数基础班 (13)

主讲 武忠祥 教授

