Which of the following is an example of linear regression where y is the scalar output, \mathbf{x} is the input vector, and \mathbf{w} is a weight vector?

- P(y=1|x) = $\sigma(\mathbf{w}^{\mathsf{T}}\mathbf{x})$ where $\sigma(t)=1/(1+\exp(-t))$
- $y = (\mathbf{w}^{\mathsf{T}} \mathbf{x})^2$
- $y = (\mathbf{w}^{\mathsf{T}} \mathbf{x})^2 + \mathbf{w}^{\mathsf{T}} \mathbf{x}$

2 Multiple Choice 1 point

Suppose in a linear regression setting with squared loss, the design matrix is such that $\mathbf{X}^T\mathbf{X}$ is invertible. Suppose \mathbf{w}^* is the minimizer of $||\mathbf{y} - \mathbf{X} \mathbf{w}||^2$. What will be the minimizer of $2||\mathbf{y} - \mathbf{X} \mathbf{w}||^2$?

- **O** w
- 2 w*
- $w^*/2$
- \bigcirc Cannot be written just in terms of \mathbf{w}^*

Multiple Choice 1 point

Suppose in a linear regression setting with squared loss, the design matrix is such that $\mathbf{X}^T\mathbf{X}$ is invertible. Suppose \mathbf{w}^* is the minimizer of $||\mathbf{y} - \mathbf{X} \mathbf{w}||^2$. What will be the minimizer of $1/2 ||\mathbf{y} - \mathbf{X} \mathbf{w}||^2$?

- **O** w
- 2 w*
- $w^*/2$
- Cannot be written just in terms of \mathbf{w}^*

Recall that the norm $||\mathbf{w}||$ of a vector \mathbf{w} is defined as $(\mathbf{w}^\mathsf{T}\mathbf{w})^{1/2}$. What is the gradient of $||\mathbf{w}||$ with respect to \mathbf{w} at $\mathbf{w} = \mathbf{0}$?

- 2 w
- 1/2 (w^Tw)^{-1/2}
- it is not differentiable at that point
- $(w^Tw)^{-1/2}w$

5 Multiple Choice 1 point

What does "descent" in "minibatch stochastic gradient descent" refer to?

- The fact that the algorithm tries to decrease the value of the objective function
- The fact that you reduce the step size at each iteration
- The fact that it decreases the running time by using a small batch of training examples
- The fact that it tries to reduce the noise in the estimate of the gradient

6 Multiple Choice 1 point

Which of the following best describes gradient descent?

- It exactly minimizes the objective function
- At every step it exactly minimizes a local approximation of the objective function
- It is the best optimization algorithm we know of
- It is a randomized algorithm, that is, it uses randomness to speed-up certain computations

10	Mu	Itiple Choice 1 point				
	Which of the following is NOT a reasonable loss function for regression? y is the ground truth, y' is model prediction					
		$(y-y')^2$				
		absolute value of (y-y')				
	0	(y-y') ³				
		(y-y') ⁴				
11	Mu	ltiple Choice 1 point				
	Whic	ch of the following is a synonym for "deep learning"?				
		Machine learning using nonlinear functions				
		Machine learning using tensorflow				
	0	Machine learning using multilayer neural networks				
		Machine learning using Python and numpy				
12		ose a distribution has the density $p(x)$ proportional to $exp(x) * exp(-x^2/8)$. What kind of a distribution is it? Can't be determined. Need to know the constant of proportionality. Gaussian distribution				
		Standard Gaussian distribution				
		Laplace distribution				
13	Multiple Choice 1 point Suppose A is a matrix of size n x n with all 1s in it. What is the rank of A? 0					
	0	1				
		n .				
		None of the other choices are correct				

1 A / I . I . C				11 2
Which of	the toll	AW/IDG I	s a regression	nrohlem/
V V I II CI I OI	tile ion	OVVIII S I.	a regression	problem.

- Predicting whether or not a student will pass STATS 315
- Predicting whether or not the end-of-semester letter grade of a student in STATS 315 will be an A+
- Predicting whether or not a student initially enrolled in STATS 315 will drop the class within the first 4 weeks of the semester
- Predicting the time a student will need to finish the final exam in STATS 315

18 Multiple Choice 1 point

What is the maximum possible value of the entropy (in bits) of a distribution of a random variable that can take N distinct values.

- **N**
- () +∞
- \bigcirc $\log_2(N)$
- 1

19 Multiple Choice 1 point

Suppose we have a coin whose probability of landing HEADS is p and the probability of landing TAILS is 1-p. What is the entropy of the outcome of this coin's toss?

- p log p (1-p) log (1-p)
- p log p + (1-p) log (1-p)
- 1
- 0

Suppose \boldsymbol{Y} takes values either 0 or 1 and that

$$P(Y=1) = 1/(1 + \exp(-t)).$$

What happens to the entropy of the distribution of Y as $t \to +\infty$?

- O It tends to 0
- 1 It tends to 1
- It tends to plus infinity
- 1t tends to 0.5

21 Multiple Choice 1 point

Consider linear regression with squared loss. Suppose I am running minibatch stochastic gradient descent with a batch size of one and positive learning rate. The current weight vector is \mathbf{w} . I choose a random labeled example with feature vector \mathbf{x} and associated response y from the dataset. After the update, the weight vector is now $\mathbf{w} + \mathbf{x}$. What can be correctly concluded from this?

- The training process has finished and we can stop training
- w perfectly predicts the response y associated with x
- w under-predicts the response y associated with x
- w over-predicts the response y associated with x

22 Multiple Choice 1 point

We noted that cross-entropy loss can also be used when true labels in the labeled dataset are soft. Suppose you have a true label which is soft and whose entropy is H. What is the maximum possible value of the cross-entropy loss for such a true label?

- 0
- () H
- \bigcirc 1
- **○** ∞

Mu	Iltiple Choice 1 point
Supp	oose p is a probability distribution with entropy H. What is the cross-entropy between p and p itself? H
	1
	-∞
Mu	Iltiple Choice 1 point
Whi	ch package had its first release earlier, Keras or Tensorflow?
	Tensorflow
0	Keras
	They were released together
	They have not been released yet to the general public
	Iltiple Choice 1 point does the following code not run properly?
impo	ort tensorflow as t
	.constant(3.0)
y =	t.GradientTape() as g: : x * x lx = g.gradient(y, x)
	t(dy_dx.numpy())
	tensorflow should be imported as tf, not t
	GradientTape() should be named tape, not g
0	x is a constant and so its gradients are not tracked by default
	all of the other choices are correct

The main goal of the Gradient Tape API in tensorflow is to:

- make it easy to perform automatic differentiation
- make it easy to design new deep learning architectures
- make it easy to select good quality datasets
- make it easy to manipulate tensors

27 Multiple Choice 1 point

Why is backpropagation called by that name?

- Because it has a backward pass in addition to a forward pass
- Because it is backwards compatible with propagation
- Because it serves as a backup in case gradient descent doesn't work
- Because it keeps coming back to the same expression differentiating it over and over again

Multiple Choice 1 point

28

Suppose I have a binary classification problem and I want to model the probability of the label being 1 linearly. I write down my model as:

$$P(y = 1 | x) = w^{T}x$$

What's the problem with such a model?

- We should not model probabilities to solve a classification problem
- This model does not ensure that we always get valid probabilities
- This model will suffer from having too many parameters
- This model will suffer from having too few parameters

29	Мι	ultiple Choice 1 point
	Wha	Add a dummy feature to all examples that is always 0 Add a dummy feature to all examples that is always 1 Add a dummy feature to all examples that is chosen randomly Add a dummy feature that is 1 for all examples with a positive response and is 0 for all examples with a negative response
30		ch of the following branches of mathematics have we NOT used in this course? linear algebra information theory multivariable calculus topology