

EXAMEN DE FIN D'ÉTUDES SECONDAIRES 2018

BRANCHE	SECTIONS	ÉPREUVE ÉCRITE	
Mathématiques	E, F, G	Durée de l'épreuve : 2 heures	
•	. ,	Date de l'épreuve : 17/09/2018	

Partie I : Systèmes d'équations et d'inéquations

Question 1 - (8 points)

Résoudre le système suivant :

$$\begin{cases} \frac{x-1}{2} - \frac{x-1+z-y}{5} + \frac{z}{10} = 0 \\ 5y = 2(2+x+2y) - 3(z+1) \\ 4x - 2y = -2 + 6z \end{cases}$$

Question 2 - (9 points = 6+3)

Dans le repère orthonormé cicontre, on considère les points $\left(-2;\frac{7}{2}\right)$, $B\left(\frac{3}{2};\frac{9}{2}\right)$, $C\left(3;\frac{3}{2}\right)$, $D\left(\frac{1}{2};-\frac{3}{2}\right)$ et $E\left(-2;-\frac{3}{2}\right)$.

- Déterminer le système d'inéquations correspondant au polygone ABCDE, bords inclus. Justifier par des calculs.
- 2. Reproduire le graphique puis déterminer le maximum de la fonction f définie par : f(x; y) = 9x + 5y

Partie II : Analyse

Question 3 - (15 points = (1+5) + (1,5+4,5+3))

Une usine de textile fabrique des robes. Elle peut en produire quotidiennement entre une et 200 et le coût de fabrication de q robes est exprimé en euros par : $\mathcal{C}(q)=q^2-10q+361$.

- 1. Le coût unitaire moyen de production \mathcal{C}_m est défini par $\mathcal{C}_m(q) = \frac{\mathcal{C}(q)}{q}$
 - a) Exprimer le coût unitaire moyen en fonction du nombre de robes $q\,.$
 - b) Quelle quantité de robes doit fabriquer l'usine pour que le coût unitaire moyen soit minimal ? Quel est ce coût ?
- 2. On suppose que toutes les robes fabriquées seront vendues à 150 \in pièce.
 - a) Déterminer l'expression de la fonction bénéfice B en fonction de q .
 - b) Combien de robes devront être fabriquées et vendues pour réaliser un bénéfice maximal ? Calculer ce bénéfice.
 - c) Déterminer la quantité de robes à produire et à vendre pour ne pas faire de pertes.

Question 4 - (9 points = (3+3)+(1,5+1,5))

- 1. Résoudre les équations suivantes (valeurs exactes) et donner l'ensemble des solutions :
 - a) $3 \cdot 7^{2-x} 7 = 8 2 \cdot 7^{2-x}$
 - b) $4 + \log_5(-1 3x) = 7$
- 2. Sachant que $\log a = 2$ et $\log b = -3$, calculer :
 - a) $\log(ab)^3$
 - b) $\log \sqrt{\frac{a}{b}}$

Partie III : Probabilités et combinatoires

Question 5 - (10 points = 4 + (2 + 2 + 2))

Pour des besoins administratifs, une ville a constitué un fichier statistique concernant l'origine de véhicules personnels selon le sexe du propriétaire. D'après les résultats :

- 31,2 % des personnes interrogées roulent avec une voiture japonaise et parmi ces personnes, les deux tiers sont des femmes.
- 26,4 % des personnes interrogées roulent avec une voiture française et parmi elles, 20 % sont des hommes.
- 9 % des femmes possèdent une voiture allemande.
- 1. Recopier et compléter le tableau suivant :

	Allemande	Française	Japonaise
Femme			
Homme			

- 2. On choisit au hasard une entrée du fichier :
 - a) Quelle est la probabilité qu'il s'agisse d'un homme qui possède une voiture française ?
 - b) Quelle est la probabilité qu'il s'agisse d'une femme, sachant qu'elle possède une voiture allemande ?
 - c) Sachant qu'il s'agit d'un homme, quelle est la probabilité qu'il possède une voiture allemande ?

Question 6 - (9 points = (3+2)+(2+2))

Dans un jeu de 52 cartes,

- 1. On tire simultanément une main de 4 cartes.
 - a) Calculer la probabilité d'obtenir exactement 3 cœurs et un valet.
 - b) Calculer la probabilité de tirer au moins une dame.
- 2. On tire 4 cartes successivement et sans remise.
 - a) Calculer la probabilité de tirer 4 trèfles.
 - b) Sachant que les deux premières cartes sont des rois, calculer la probabilité de tirer un roi suivi d'une dame.