Bayesian estimation for time series models

Feb 14 2017

Eric Ward

Re-cap following models using Bayesian code

- Regression
- ARMA models
- State Space Models
- Dynamic Factor Analysis
- Dynamic Linear Models
- MARSS models (multivariate time series models)

Why Bayesian?

Complex hierarchical models

 Inference: what's the probability that the data are less than some threshold?

- No bootstrapping!
 - We get credible intervals for parameters and states simultaneously

Getting started

```
library(rstan)
library(devtools)
devtools::install_github("eric-ward/safs-
timeseries/statss")
library(statss)
```

Using STAN objects

Flow volume from Nile River

Fitting linear regression

We'll use wrapper function 'fit_stan'

```
x = model.matrix(lm(Nile^1))
```

```
lm_intercept = fit_stan(y = as.numeric(Nile), x =
rep(1, length(Nile)), model_name = "regression")
```

Output of fitted object

> lm_intercept

```
Inference for Stan model: regression.

3 chains, each with iter=1000; warmup=500; thin=1; post-warmup draws per chain=500, total post-warmup draws=1500.
```

	mean	se_mean	sd	2.5%	25%	50%	75%	97.5%	n_eff	Rhat
beta[1]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
sigma	936.34	1.79	66.16	819.09	891.53	929.75	978.62	1074.10	1365	1
pred[1]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[2]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[3]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[4]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[5]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[6]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[7]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[8]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[9]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[10]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[11]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1
pred[12]	0.56	0.05	1.97	-3.25	-0.78	0.51	1.87	4.53	1321	1

Output from model

Can be plotted using base graphics in R

```
pars = extract(lm_intercept)
hist(pars$beta, 40, col="grey", xlab="Intercept",
main="")
quantile(pars$beta, c(0.025,0.5,0.975))
```

Traceplots of parameters

traceplot(lm_intercept, pars = "beta[1]")

traceplot(lm_intercept, pars = "sigma")

Pairs plots between parameters

pairs(lm_intercept, pars=c("beta[1]","sigma"))

Plots with credible intervals

plot(lm_intercept, pars=c("beta[1]","sigma"))

Getting tidy summaries

coef = broom::tidy(Im_intercept)

```
> broom::tidy(lm_intercept)
                estimate std.error
        term
      beta[1]
               0.5602528 1.966926
1
       sigma 936.3438793 66.160572
     pred[1]
               0.5602528
                         1.966926
     pred[2]
               0.5602528
                         1.966926
5
     pred[3]
               0.5602528 1.966926
               0.5602528 1.966926
     pred[4]
     pred[5]
               0.5602528 1.966926
8
     pred[6]
               0.5602528 1.966926
9
     pred[7]
               0.5602528 1.966926
10
     pred[8]
               0.5602528 1.966926
11
     pred[9]
               0.5602528 1.966926
12
    pred[10]
               0.5602528 1.966926
13
    pred[11]
               0.5602528 1.966926
    pred[12]
14
               0.5602528 1.966926
15
    pred[13]
               0.5602528
                         1.966926
16
    pred[14]
               0.5602528
                         1.966926
    pred[15]
               0.5602528
                         1.966926
17
    pred[16]
               0.5602528
                          1.966926
18
19
    pred[17]
               0.5602528
                         1.966926
```

Useful in ggplot, for example

ggplot(coef[grep("pred",coef\$term),], aes(x = 1:100,y=estimate)) + geom_point() + ylab("Estimate +/- SE")+ geom_errorbar(aes(ymin=estimate-std.error, ymax=estimate+std.error)) + xlab("")

Not interesting – all values are the same!

Preserving MCMC chains

- Each chain is independent
- Defaults to merging samples from all chains together

extract(object, pars, permuted = TRUE)

 But summaries can be generated for each combination of parameters-chains by setting

extract(object, pars, permuted = FALSE)

Random walk

• Formula: $E[Y_t] = Y_{t-1} + e_{t-1}$

 We'll fit model to temperature data data(airquality)
 Temp = airquality\$Temp # air temperature rw = fit_stan(y = Temp, est_drift = FALSE, model_name = "rw")

Model convergence?

> rw

```
Inference for Stan model: rw.
3 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=1500.
```

	1
sigma 5.77 0.01 0.33 5.19 5.53 5.76 5.99 6.44 1125	_
pred[1] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1500 N	NaN
pred[2] 67.00 0.00 0.00 67.00 67.00 67.00 67.00 1500 N	NaN
pred[3] 72.00 0.00 0.00 72.00 72.00 72.00 72.00 1500 N	NaN
pred[4] 74.00 0.00 0.00 74.00 74.00 74.00 74.00 1500 N	NaN
pred[5] 62.00 0.00 0.00 62.00 62.00 62.00 62.00 1500 N	NaN
pred[6] 56.00 0.00 0.00 56.00 56.00 56.00 56.00 1500 N	NaN
pred[7] 66.00 0.00 0.00 66.00 66.00 66.00 66.00 1500 N	NaN
pred[8] 65.00 0.00 0.00 65.00 65.00 65.00 65.00 1500 N	NaN
pred[9] 59.00 0.00 0.00 59.00 59.00 59.00 59.00 1500 N	NaN
pred[10] 61.00 0.00 0.00 61.00 61.00 61.00 61.00 1500 N	NaN
pred[11] 69.00 0.00 0.00 69.00 69.00 69.00 69.00 69.00 1500 N	NaN

Univariate state space models

State equation

$$x_t = \phi * x_{t-1} + e_{t-1}; e_{t-1} \sim Normal(0, q)$$

Observation equation

$$Y_t \sim Normal(x_t, r)$$

 Let's compare models with and without the ar parameter phi in the process model

Using our stan_fit function

```
ss_ar = fit_stan(y = Temp, est_drift=FALSE,
model_name = "ss_ar")
```

```
ss_rw = fit_stan(y = Temp, est_drift=FALSE,
model_name = "ss_rw")
```

Estimates from AR SS model

AR model

Estimates from both models

AR model

Posterior probability

 What's the probability that the temperature exceeds some threshold? 100 degrees?

Probability of > 100 degrees

```
pars = extract(ss_ar)
length(which(pars$pred > 100))
```

Low probability: ~ 20 / 229500

Dynamic Factor Analysis

 Lake WA plankton example used in manual # load the data (there are 3 datasets contained here) data(lakeWAplankton) # we want lakeWAplanktonTrans, which has been transformed # so the Os are replaced with NAs and the data z-scored dat = lakeWAplanktonTrans # use only the 10 years from 1980-1989 plankdat = dat[dat[,"Year"]>=1980 & dat[,"Year"]<1990,] # create vector of phytoplankton group names phytoplankton = c("Cryptomonas", "Diatoms", "Greens", "Unicells", "Other.algae") # get only the phytoplankton dat.spp.1980 = plankdat[,phytoplankton]

Plankton data

Running the model

• 3 trend model to start

```
mod_3 = fit_dfa(y = t(dat.spp.1980),
num_trends=3)
```

Trends need to be rotated (like MARSS)

- Again we'll use varimax rotation
- Use function we've written, rotate_trends

```
rot = rotate_trends(mod_3)
```

names(rot)

- Z_rot, rotated Z matrix for each MCMC draw
- trends, rotated trends for each MCMC draw
- Z_rot_mean, mean Z across draws
- trends_mean, mean trends across draws
- trends_lower, lower 2.5% on trends
- trends_upper, upper 97.5% on trends

Predicted values from Bayesian DFA

Same results as MARSS (trends_mean)

Other variance structures

```
mod_3 = fit_dfa(y = t(dat.spp.1980),
num_trends=3)
```

By default, this is modeling 'diagonal and equal'

 Diagonal and unequal or shared variances can also be specified using 'varIndx' argument

```
mod_3 = fit_dfa(y = t(dat.spp.1980),
num_trends=3, varIndx = rep(1,5))
```

Model selection: how to select best number of trends?

First run multiple models with varying trends

```
mod_1 = fit_dfa(y = t(dat.spp.1980), num_trends=1)
mod_2 = fit_dfa(y = t(dat.spp.1980), num_trends=2)
mod_3 = fit_dfa(y = t(dat.spp.1980), num_trends=3)
mod_4 = fit_dfa(y = t(dat.spp.1980), num_trends=4)
mod_5 = fit_dfa(y = t(dat.spp.1980), num_trends=5)
```

• 3 minutes to fit all models (4000 iterations) – probably could be at least cut in half

Leave One Out Information Criterion (LOOIC)

- Like AIC, lower is better
- Simple function in library(loo)

loo(extract_log_lik(mod_1))\$looic

Trends	LOOIC
1	1598.889
2	1535.885
3	1469.439
4	1455.7
5	1449.304

Predicted values

Also like MARSS, use \$pred parameter

Uncertainty intervals on states

 We often just present the trend estimates for DFA – but not uncertainty

 Let's look at effect of missing data on DFA for the harbor seal dataset

data("harborSealWA")

Assume single trend for the population

pars = extract(fit_dfa(y = t(harborSealWA[,-1]), num_trends = 1))

> harborSealWA

	Year	SJF	211	EBays	PSna	HC
[1,]	1978	6.033086	6.747587	6.626718	5.820083	6.595781
[2,]	1979	NA	NA	NA	NA	NA
[3,]	1980	NA	NA	NA	NA	NA
[4,]	1981	NA	NA	NA	NA	NA
- /-	1982					NA
[6,]	1983	6.783325	7.431300	7.205635	NA	NA
[7,]	1984	6.932448	7.744137	7.454141	NA	NA
[8,]	1985	7.160846	7.527794	7.255591	6.595781	NA
[9,]	1986	6.744059	7.693026	7.385851	NA	NA
[10,]	1987	6.923629	7.686621	7.467942	NA	NA
[11,]	1988	7.325149	7.954021	7.550661	NA	NA
[12,]	1989	7.245655	7.966933	7.516977	NA	NA
[13,]	1990	7.040536	8.057377	NA	NA	NA
[14,]	1991	7.121252	8.163371	7.569928	6.792344	7.095064
[15,]	1992	7.365180	8.199739	7.650645	6.562444	6.896694
[16,]	1993	7.675082	8.417152	7.684784	6.879356	6.383507
[17,]	1994	7.305188	8.418256	7.670429	6.749931	NA
[18,]	1995	7.732369	8.487146	7.634337	NA	NA
[19,]	1996	7.594884	8.581107	7.832411	7.020191	6.882437
[20,]	1997	7.733684	8.361007	7.604894	6.966024	6.543912
[21,]	1998	7.458186	8.398635	7.501082	6.933423	6.357842
[22,]	1999	7.468513	8.185350	7.535297	6.932448	6.566672
-						

What happens when we delete last 3 years of data?

DLMs

- Mark's example of salmon survival
- Logit transformed data

Fitting a DLM with time varying intercept

mod = fit_stan(y = SalmonSurvCUI\$logit.s,
model_name="dlm-intercept")

Constant intercept, time – varying slope

mod = fit_stan(y = SalmonSurvCUI\$logit.s, x = SalmonSurvCUI\$CUI.apr, model_name="dlm-slope")

Time varying intercept and slope

Use model.matrix() to specify 'x'

 x = model.matrix(lm(SalmonSurvCUI\$logit.s ~ SalmonSurvCUI\$CUI.apr))

```
mod = fit_stan(y = SalmonSurvCUI$logit.s, x = model.matrix(lm(SalmonSurvCUI$logit.s ~ SalmonSurvCUI$CUI.apr)), model_name="dlm")
```

Summary

Additional models available, e.g. 'marss'

Very flexible

Easy to add custom features on existing code