- Week 1
  - Name of the project : HCIP (House Construction Investment Project)
  - Objective of the project:
    - Develop a sales model to predict sales by product family
    - Milestones
      - Use new houses dataset started to build by province
      - Establish a correlation with the new construction and Nedco sales dataset
      - Use # of permits by construction type dataset
      - Use Nedco CRM sales data to look into customer profile
      - Evaluate the correlation among sales 2017 / Product family / market segment
      - Evaluate the correlation among sales 2017 / Market segment / ship type
      - Evaluate the correlation among sales 2017 / market segment / ship type / product family
      - Repeat the model with 2016
  - Create a functional map
    - Understand the relationship between:
      - An electrical Distributor (Nedco) & customer
    - Potential attributes from a distributor perspective
      - Sales 2017, product families, market segment, customer type, age of account, profit by customer
      - From a customer perspective and the market
        - # of house permits, Type of construction, City, postal code, province, New construction or renovation
    - Use cases examples
      - SEARCH BY FEATURE
        - What is the age of the account by customer for 2017?
        - o What is the credit limit by customer class for 2017?
        - What is the avg payment terms for a residential contractor in 2017?

# SEARCH BY PRICE

- What is the avg selling price by type of houses by province in 2017?
- What is the avg selling price for residential houses by province in 2017?

# SEARCH BY MARKET TRENDS

- o What type of order a contractor orders?
- How many residential houses were built by Postal code in 2017?
- What are the sales by customers by SIC code in 2017 vs 2016?
- What are the sales by product family in 2017?
- What is the avg spend of electrical material according to a contractor?
- How many permits for new construction of residential houses were awarded in 2017 by province?
- o How many permits were awarded in 2017 by province?

# • SEARCH BY TYPE OF MARKETS (Residential, commercial)

- How many were awarded by cities, municipalities for 2017 by vertical market (resi, commercial)
- What type of permits were awarded in 2017? i.e commercial, residential
- What type of houses have been built in 2017 by province?
- O What is the avg sales by market segment?
- What is the avg sales by type of customer class?

# SEARCH BY TYPE OF SIC CODE

 What is the SIC code ratio for residential vs all SIC codes for 2017?

# SEARCH BY TYPE OF ROI

o What is the P&L by market segment in 2017 for Quebec?

# SEARCH BY TYPE OF CUSTOMER

 How many permits were awarded between contractors or consumers by postal code for 2017?

- Week 2: Data exploratory
  - Business Question
    - What could look like 2017 sales within product family, market segment & ship type?
  - Sub questions:
    - What could look like the projected sales for electrical products within residential market by product family in 2018?
    - What would be the best market segment to grow the sales in 2018?
    - What would be the best product family to grow our base line sales in 2018?
  - Data Exploratory
    - Four (4) datasets were exported
      - Nedco Sales 2016 2017
      - SIC code from Nedco CRM
      - Housing starts from Stat Can
      - Housing type from Stat can
    - Challenges
      - Data complexity due to data cleaning
      - Lot of data to analyze from a time constraint perspective
  - Feedback from a technical perspective
    - Challenge to have the right coding
    - Challenge to resolve error within coding
    - Challenge to clean data before machine learning process
    - Challenge to learn and apply python coding
  - Feedback from a business perspective
    - The project was based on Nedco sales data only

- 1st level of analysis: One variable
   Define DF\_sales 2017 according to the # of transactions:
   Including 'NA': 144 468 transactions • Excluding 'NA': 90 761 transactions

| 144447     | \$14.49         |               |  |
|------------|-----------------|---------------|--|
| 144448     | NaN             |               |  |
| 144449     | \$81.30         |               |  |
| 144450     | \$158.76        |               |  |
| 144451     | \$1,530.60      |               |  |
| 144452     | (\$434.70)      |               |  |
| 144453     | \$1,199.90      |               |  |
| 144454     | \$23.40         |               |  |
| 144455     | \$83.92         |               |  |
| 144456     | \$593.50        |               |  |
| 144457     | NaN             |               |  |
| 144458     | \$9.64          |               |  |
| 144459     | NaN             |               |  |
| 144460     | \$17.43         |               |  |
| 144461     | \$69.97         |               |  |
| 144462     | NaN             |               |  |
| 144463     | NaN             |               |  |
| 144464     | NaN             |               |  |
| 144465     | NaN             |               |  |
| 144466     | NaN             |               |  |
| 144467     | NaN             |               |  |
| Name: 2017 | T.ength: 144468 | dtype: object |  |

Name: 2017, Length: 144468, dtype: object

- 2<sup>nd</sup> level of analysis using an histogram and box plot
   Mean: avg sales order 1582

  - Std
  - Min per sales order:
  - Max

| count | 90761.0   |
|-------|-----------|
| mean  | 1582.0    |
| std   | 13082.0   |
| min   | -68151.0  |
| 25%   | 37.0      |
| 50%   | 150.0     |
| 75%   | 600.0     |
| max   | 1368388.0 |

Name: 2017, dtype: float64





# o 3<sup>rd</sup> level of analysis: Sales by Product Family 2017 (Count)

| CONNECT, FITT & OUT/BOXES | 19730                                                                                                                                                                     |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LIGHTING                  | 19532                                                                                                                                                                     |
| WIRE & CABLE              | 16557                                                                                                                                                                     |
| CONDUIT & ACCESSORIES     | 16240                                                                                                                                                                     |
| DISTRIBUTION & FUSES      | 15281                                                                                                                                                                     |
| DATACOM                   | 14424                                                                                                                                                                     |
| OTHER PRODUCTS            | 11668                                                                                                                                                                     |
| WIRING DEVICES            | 10393                                                                                                                                                                     |
| TOOLS                     | 9692                                                                                                                                                                      |
| HEATING PRODUCTS          | 5841                                                                                                                                                                      |
| MOTOR CONTROLS/AUTOMATION | 4364                                                                                                                                                                      |
| SECURITY PRODUCTS         | 680                                                                                                                                                                       |
| ALTERNATE ENERGY          | 30                                                                                                                                                                        |
|                           | LIGHTING WIRE & CABLE CONDUIT & ACCESSORIES DISTRIBUTION & FUSES DATACOM OTHER PRODUCTS WIRING DEVICES TOOLS HEATING PRODUCTS MOTOR CONTROLS/AUTOMATION SECURITY PRODUCTS |



- 4<sup>th</sup> level of analysis: Multiple variables (numeric \* Numeric)
   Validate the ship type and sales 2017 correlation's

Ship Type 2017 **Ship Type** 1.000000 0.173076 2017 0.173076 1.000000



- 5th level of analysis: Multiple variables (Categorical x Numeric)
  - Box plot to show the distribution Market Segment Desc x sales 2017
  - Validate Ship type 1, 2,3 & product sales



- o 6<sup>th</sup> level of analysis: Multiple variables (Categorical x Categorical)
  - Validate sales between product family and market segment
  - Key questions to answer
    - Is the Product Family Score a good indicator of predictive sales?
    - Identify Product Family with high potential of sales?
    - As an sales executive, select a Product Family to predict sales?

- Week 3: Machine Learning
  - Sk Learn extended
    - Feedback from a technical perspective
    - Challenging to have the right coding
    - Challenging to resolve error
    - Data was not as clean as it should be to process machine learning
    - I was able to run machine learning up tp Model training

# **Model Training**

```
In [89]: # split the data

threshold = 0.8
    X = df_sales[X_columns]
    y = df_sales[y_column]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1.0-threshold)

print('X_train', X_train.shape)
    print('Y_train', Y_train.shape)
    print('X_test', X_test.shape)
    print('y_test', y_test.shape)

    X_train (115574, 8)
    y_train (115574,)
    X_test (28894, 8)
    y_test (28894,)
```

- SK LEARN
  - Challenge to go further than model training
     Model Training

```
In [89]: # split the data

threshold = 0.8
    X = df_sales[X_columns]
    y = df_sales[Y_column]
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=1.0-threshold)

print('X_train', X_train.shape)
    print('Y_train', y_train.shape)
    print('X_test', y_test.shape)
    print('Y_test', y_test.shape)

    X_train (115574, 8)
    y_train (115574, 8)
    y_train (115574, 8)
    y_test (28894, 8)
    y_test (28894,)
```

# Spark

 Could not go further, due to multiple unsolved errors and time constraints

# Load the data

- o Feedback from a business perspective
  - Challenge to find if market segment, Product family and ship type could be good indicators to establish a predictive sales model
  - At this point, there is no specific and formal answer to establish a correlation to validate if the model is positively correlated to predict 2017 sales within product family, market segment & ship type?

#### Results

 Due to time constraints and coding issues, the model was tested at level at Model Training / Evaluation - Using Split, but couldn't figure out how to fix ValueError: could not convert string to float: '\$1,628.00'

- Week 4: Cluster analysis
  - Technical challenge
    - No significant results due to unfinished data mining process with machine learning
    - Model has not been validated and/or tested using all statistical methodology
    - Data exploratory was not enough significant to validate the current model
  - Present the results
    - Since, machine learning process was not processed entirely, I couldn't run my app test with Flask

# Model Evaluation

```
In [58]: # Intra-Cluster
        centroids = []
        for cluster in sorted(set(T)):
           centroids.append(df_sales_results[df_sales_results['cluster'] == cluster][X_columns].mean().va
        print('Intra-Cluster Distances', sum(sum(euclidean_distances(centroids, centroids))))
        # Inter-Cluster
        distances = 0
        for cluster in sorted(set(T)):
            centroid = df sales results[df results['cluster']==cluster][X columns].mean().values
            distances += (sum(euclidean_distances(df_results[df_results['cluster'] == cluster)[X_columns].
        print('Inter-Cluster Distances', distances)
                                                   Traceback (most recent call last)
         NameError
         <ipython-input-58-29908755500f> in <module>()
              1 # Intra-Cluster
              2 centroids = []
         ---> 3 for cluster in sorted(set(T)):
              4 centroids.append(df_sales_results[df_sales_results['cluster']==cluster][X_columns
         ].mean().values)
              5 print('Intra-Cluster Distances', sum(sum(euclidean_distances(centroids, centroids))))
         NameError: name 'T' is not defined
In [ ]: #could make clustering analysis work: dataset issues, multiple errors and time constraint
```