Data Assimilation and Genetic Algorithms for the Parameter Estimation Problem in Simple Climate Models

Morgan R. Frank¹, Andrew Reagan²

Computational Story Lab, Department of Mathematics and Statistics, Vermont Complex Systems Center, Vermont Advanced Computing Core,
University of Vermont, Burlington, Vermont, United States of America

¹ mrfrank@uvm.edu, ² andrew.reagan@uvm.edu

December 14, 2013

Abstract

Given observations of an atmospheric phenomenon and a well-principled model of that phenomenon, the parameters for the model must be properly tuned if the model is to mimic the data. We investigate the use of genetic algorithm in comparison to data assimilation as a means of performing parameter estimation when tuning models to data. We compare results while tuning chaotic dynamics, observation noise and frequency, and system dimensionality while performing parameter estimation for the Lorenz '63 and Lorenz '96 systems.

1 Introduction

Weather forecasts have become an expected part of everyday life in the modern society. Things like air-travel, disaster preparation, and daily planning rely on accurate predictions [13]. However, predicting future states of the atmosphere proves to be difficult, as chaotic systems exhibit sensitive dependence of initial conditions, and the underlying processes in weather are known to be chaotic [14-16]. This hurdle is overcome by utilizing computationally expensive global forecasting systems (GFS) for prediction and advanced methods for initial condition determination, but scientists working to improve weather forecasting often lack the time or computational power to execute many high resolution GFS experiments. Instead, climate scientists often use simple models that account for particular aspects of the weather forecasting problem.

Edward Lorenz has made major contributions to the fields of dynamical systems and atmospheric prediction [17–19]. Two such contributions are the wildly popular Lorenz '63 system [20] and the Lorenz '96 system [21]. The Lorenz '63 system (L63), which yields the widely known Lorenz Attractor, is a simple three-variable model with highly tunable dynamics, allowing researchers a computationally tractable means to experiment in the predictability of chaotic systems. The Lorenz '96 system (L96) exhibits tunable chaotic dynamics as well, while additionally providing a computationally tractable way to change the system dimensions and tune the accuracy of data observations. Both systems provide interesting and computationally manageable test beds for the parameter estimation problem across several different types of systems. Figure 1 shows example trajectories for each system.

2 Methods

2.1 The Lorenz '63 Model

In 1962, Barry Saltzmann attempted to model convection in a Rayleigh-Bérnard cell by reducing the equations of motion into their core processes [12]. Then in 1963 Edward Lorenz reduced this system ever further to 3 equations, leading to his landmark discovery of deterministic non-periodic flow [11]. This system, which we will call the Lorenz 63 system, exhibits sensitive dependence on initial conditions, meaning that small errors in an approximation will lead to exponential error growth. These equations have since been the subject of intense study and have changed the way we view prediction and determinism, remaining the simple system of choice for examining

nonlinear behaivor today [10]. The three equations are:

$$\frac{dx}{dt} = \sigma(y - x)$$

The cannonical choice of
$$\sigma=10, \beta=8/3$$
 and $\rho=28$ produce the well known butterfly attractor, and to adjust the strength of nonlinearity (chaos) we tune the ρ parameter.

 $\frac{dz}{dt} = xy - \beta z.$

$$\frac{dx}{dt} = \sigma(y - x)$$
$$\frac{dy}{dt} = \rho x - y - xz$$

Figure 1. (A) The popular "Lorenz Attractor" produced with the Lorenz '63 system. This three-variable system produces a "butterfly"-like chaotic attractor that is well-known among fractal and chaos enthusiasts. (B) An snapshot of a trajectory of the Lorenz '96 system. Each blue point is a slow oscillator, and the adjacent sections of green represent the fast oscillators coupled with the corresponding slow oscillator. The origin represents the lowest value achieved by any of the slow oscillators on this trajectory. The red line is a cubic spline interpolation of the blue data points. (C) An example trajectory of the X variable from the Lorenz '63 system. (D) An example trajectory for a slow oscillator of the Lorenz '96 system.

Parameter	Values Explored	Interpretation, if any
Observed Variables (63 Only)	[<i>x</i> ₁ ,all]	Limited observations
Observational Noise	Normal in [0,.01,.05,.1,.25,.5,1,2]	Measurement and representativeness errors
	Uniform in [0,.5,2,4,6,8,10]	
Nonlinearity	ρ in [22,28,35] or <i>I</i> in [4,8,10,15]	Chaotic behavior
Subsampled observations	[1,5,25,50]	Infrequent observations

Table 1: Experimental parameter choices on which we test the performance of Data Assimilation and a Genetic Algorithm for fitting model parameters.

2.2 The Lorenz '96 Model

In 1995, Edward Lorenz introduced the following *I*-dimensional model [17, 19]. The key characteristics of this model include tunable chaotic behavior when subject to enough forcing, and tunable dimensionality. The predecessor to the current model is given by

$$\frac{dx_i}{dt} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F \tag{1}$$

where i = 1, 2, ..., I and F is the forcing parameter. Each x_i represents observations of some atmospheric atmospheric quantity, like temperature, evenly distributed about a given latitude of the globe. This implies a modularity in the indexing that is described by $x_{i+1} = x_{i-1} = x_i$.

This early model failed to produce realistic growth rate of the large-scale errors along with lacking tenability in observation reliability. Lorenz went on to introduce

a more flexible model in 1996 by coupling two systems similar to the model in equation (1), but differing in time scales. The equations for the Lorenz '96 model [21] are given as

$$\frac{dx_i}{dy(\frac{dt}{j,i})} = x_{i-1}(x_{i+1} - x_{i-2}) - x_i + F - \frac{hc}{b} \sum_{j=1}^{J} y_{(j,i)}$$
(2)
$$\frac{dy_{(j,i)}}{dt} = cby_{(j+1,i)}(y_{(j-1,i)} - y_{(j+2,i)}) - cy_{(j,i)} + \frac{hc}{b}x_i$$
(3)

where i = 1, 2, ..., I and j = 1, 2, ..., J. The parameters b and c indicate the time scale of solutions to equation (3) relative to solutions of equation (2), and h is the coupling parameter. The coupling term can be thought of as a parameterization of dynamics occurring at a spatial and temporal scale unresolved by the x variables. Again, each x_i represents an atmospheric observation about a latitude that oscillates in slow time, and the set of $y_{(j,i)}$ are a set of J fast time oscillators that act as a damping force on x_i . The y's exhibit a similar modularity described by $y_{(j+IJ,i)} = y_{(j-IJ,i)} = y_{(j,i)}$.

2.3 Data Assimilation

Areas as disparate as quadcopter stabilization [1] to the tracking of ballistic missle re-entry [2] use data assimi-

lation. The purpose of data assimilation in weather prediction is defined by Talagrand as "using all the available information, to determine as accurately as possible the state of the atmospheric (or oceanic) flow." [3] The data assimilation algorithm that we use here, the Kalman filter, was originally implemented in the navigation system of Apollo program [4,5].

Data assimilation algorithms consist of a 3-part cycle: predict, observe, and assimilate. Formally, the data assimilation problem is solved by minimizing the initial condition error in the presence of specific constraints. The prediction step involves making a prediction of the future state of the system, as well as the error of the model, in some capacity. Observing systems come in many flavors: rawindsomes and satellite irradiance for the atmosphere, temperature and velocity reconstruction from sensors in experiments, and sampling the market in finance. Assimilation is the combination of these observations and the predictive model in such a way that minimizes the error of the initial condition state, which we denote the analysis.

In addition to determining the initial conditions, we can extend the Extended Kalman Filter (EKF) to determine the model parameters. This is accomplised by considering the model parameters as variables of the model itself, with their differential equation being equal to 0, since they do not change with the solution. The value of this consideration is that the covariance of the model variables and model parameters is now included in the Tangent Linear Model (the Jacobian of the extended analytical system) and hence is updated by the Kalman gain matrix.

The formulation of the filter we employ is the standard formulation, since the incorporation of parameters into the estimation is independent of the filter itself. Using the notation of Kalnay [6], this amounts to making a forecast with the nonlinear model M (either Lorenz 63 or Lorenz 96 in this study), and updating the error covariance matrix \mathbf{P} with the TLM L, and adjoint model L^T

$$\mathbf{x}^{f}(t_{i}) = M_{i-1}[\mathbf{x}^{a}(t_{i-1})]$$

$$\mathbf{P}^{f}(t_{i}) = L_{i-1}\mathbf{P}^{a}(t_{i-1})L_{i-1}^{T} + \mathbf{Q}(t_{i-1})$$

where \mathbf{Q} is the noise covariance matrix (model error). In the experiments here, $\mathbf{Q} = 0$ since our model is perfect. In NWP, \mathbf{Q} must be approximated, e.g. using statistical moments on the analysis increments [7, 8]. The analysis step is then written as (for H the observation operator):

$$\mathbf{x}^{a}(t_{i}) = \mathbf{x}^{f}(t_{i}) + \mathbf{K}_{i}\mathbf{d}_{i} \tag{4}$$

$$\mathbf{P}^{a}(t_{i}) = (\mathbf{I} - \mathbf{K}_{i}\mathbf{H}_{i})\mathbf{P}^{f}(t_{i}) \tag{5}$$

where

$$\mathbf{d}_i = \mathbf{y}_i^o - \mathbf{H}[x^f(t_i)]$$

is the innovation. The Kalman gain matrix is computed to minimize the analysis error covariance P_i^a as

$$\mathbf{K}_i = \mathbf{P}^f(t_i)\mathbf{H}_i^T[\mathbf{R}_i + \mathbf{H}_i\mathbf{P}^f(t_i)\mathbf{H}^T]^{-1}$$

where \mathbf{R}_i is the observation error covariance. Since we are making observations of the truth with known standard deviation ε , the observational error covariance matrix \mathbf{R} is a diagonal matrix with the standard deviatoin ε along the diagonal. This information is an additional assumption, we could however not use this information and simply sample ε as a part of the experiment. The most difficult, and most computationally expensive, part of the EKF is deriving and integrating the TLM. Here we use a differentiated Runge-Kutta scheme of 2-nd order to accurately integrate the TLM. For more details on this implemenation, see Reagan [9].

2.4 Genetic Algorithm

The area of genetic algorithms (GAs) is a prominent area of research [24, 25] with applications in several areas of research, including bankruptcy modeling [26], calibrating water runoff models [27], and spectral data analysis [28]. One key feature of GAs is that no knowledge of the model being fitted is required. To demonstrate the availability and robustness of this algorithm, we proceed by utilizing Matlab's built-in GA function, called "ga.m", with essentially no alterations from the default options (i.e. the defaults for "gaoptimset.m"). The only assumption of note is that we assume parameters are positive real-values. Like other evolutionary algorithms, GA is applicable whenever a problem can be phrased in the biological evolution paradigm. The major hallmarks of this paradigm include identifying a population of genes and subjecting that population to crossover, genetic mutation, and selection pressure. The "indivi! duals" in the population of genes for our experiments will be real-valued vectors where each entry in a vector represents a parameter choice, and vectors are of the same length as the number of parameters being recovered.

Selection pressure is imposed on our population through a fitness-evaluation function that evaluates the "fitness" of an individual by the the root-mean square error of a model integration with the parameter choices encoded in the individual vector who's fitness is being evaluated. The root-mean square error is calculated at each time t that we have observation data. Notice that lower fitness is better in this context. Furthermore, we are attempting to recover parameters for chaotic systems; thus, there may exist brief intervals where the integration fits the observed data simply by chance. This has to do with the unpredictability of chaotic systems over long integration times, and the bounded nature of the chaotic attractors in this study. We address this concern by restarting our integration at unit model-time intervals based on the observation data.

We use stochastic uniform selection to select two individuals at a time based on their fitness to undergo single-point crossover. Single-point crossover begins by randomly selecting a vector index. The two "parents" undergoing crossover are replaced in the population by two "children". The first child is conceived by taking the indices from the first parent up to the selected index. The remaining indices are filled from the second parent. The second child is created following the same process where the parents' roles are switched. This process allows the population to converge on good parameter choices since a good parameter choice will yield favorable fitness scores. Fit individuals will have an increased chance of being selected to pass on genetic material to the next generation.

Genetic mutation is the mechanisms that allows the population to further explore parameter space. When an individual is subject to mutation, a vector index is selected randomly and a randomly selected small real-value is added to or subtracted from the value currently stored at that index of the individual. Large population sizes along with a high mutation rate (i.e. the probability of being subject to mutation) encourage robust sampling of parameter space.

The above mentioned mechanisms are highly tunable in that mutation, crossover, fitness evaluation, and selection can all be achieved through a variety of different methods. The key is to pick these methods to fit the problem you are addressing. The GA is initialized by randomly generating a population of real-valued vectors of the same length as the number of parameters we are trying to recover. Each individual is then assessed for fitness. Now individuals are selected for reproduction based on their fitness and other individuals are subject to genetic mutation. The two fittest individuals from the population are allowed to remain unchanged. This process yields the

population for the next generation of individuals. We iterate this procedure for a prescribed number of generations, or until the population-wide fitness stops changing with successive generations. Figure 2 shows examples for some of these mechanisms along with a snap shot from a GA experiment attempting to recover parameters for L63.

2.5 Experiment

For both of the systems, we study the performance of our parameter estimation scheme under varying observational noise, observational density, observational frequency, nonlinearity and dimension. This amounts to 4 (Lorenz 63) and 5 (Lorenz 96) dimensions of the experiment, and we outline the specific choices for each experiment in Table 1. The experiments were chosen to mimic realisitic conditions under which simple models are fit to data.

3 Results

4 Discussion

Example GA experiment:

Figure 2. (Top) A cartoon demonstrating the flow of control for GA execution. The population of random real-valued vectors is initialized, and each individual has its fitness assessed. With some probability individuals are selected for single-point crossover or mutation. The children from these processes are collected into the new population. This process is iterated for a prescribed number of generations or until iteration fails to yield improvement. (Bottom) An example illustrating the improvement in parameter estimation made by the GA when attempting to recover the parameters $(\sigma = 10, b = 8/3, R = 28)$ over 100 generations. The observed data (truth) is in blue, while the trajectory yielded from the best guess at the true parameters is provided in red. From left to right, we show the best solution after 10, 35, 52, and 100 generations. We see that at 100 generations, the best guess at the true parameters is reasonably close to the correct answer ($\sigma = 9.99711, b = 2.66688, R = 28.0004$)

Example DA experiment: showing the x_1 variable of the Lorenz 63 system, with a observation subsampling of 25. With observational error, the EKF predicts the data well, frequently making analyses that are closer to the truth than the observations.

References

- [1] Achtelik, M., T. Zhang, K. Kuhnlenz, and M. Buss (2009). Visual tracking and control of a quadcopter using a stereo camera system and inertial sensors. In *Mechatronics and Automation*, 2009. ICMA 2009. International Conference on, pp. 2863–2869. IEEE.
- [2] Siouris, G. M., G. Chen, and J. Wang (1997). Tracking an incoming ballistic missile using an extended interval kalman filter. *Aerospace and Electronic Systems*, *IEEE Transactions on 33*(1), 232–240.
- [3] Talagrand, O. (1997). Assimilation of observations, an introduction. *JOURNAL-METEOROLOGICAL SOCIETY OF JAAN SERIES* 2 75, 81–99.
- [4] Kalman, R. and R. Bucy (1961). New results in linear prediction and filtering theory. *Trans. AMSE J. Basic Eng. D* 83, 95–108.
- [5] Savely, R., B. Cockrell, , and S. Pines (1972). Apollo experience report onboard navigational and alignment software. *Technical Report*.
- [6] Kalnay, E. (2003). *Atmospheric modeling, data assimilation, and predictability*. Cambridge university press.
- [7] Danforth, C. M., E. Kalnay, and T. Miyoshi (2007). Estimating and correcting global weather model error. *Monthly weather review 135*(2), 281–299.
- [8] Li, H., E. Kalnay, T. Miyoshi, and C. M. Danforth (2009). Accounting for model errors in ensemble data assimilation. *Monthly Weather Review 137*(10), 3407–3419.
- [9] Reagan, A (2013). Predicting Flow Reversals in a Computational Fluid Dyanmics Simulated Thermosyphon Using Data Assimilatoin. University of Vermont Master's Thesis, arXiv:1312.2142 [math.DS].
- [10] Kalnay, E., H. Li, T. Miyoshi, S.-C. YANG, and J. BALLABRERA-POY (2007). 4-d-var or ensemble kalman filter? *Tellus A* 59(5), 758–773.
- [11] Lorenz, E. N. (1963). Deterministic nonperiodic flow. *Journal of the atmospheric sciences* 20(2), 130–141.
- [12] Saltzman, B. (1962). Finite amplitude free convection as an initial value problem-i. *Journal of the Atmospheric Sciences* 19(4), 329–341.

- [13] R. A. Kerr. Weather Forecasts Slowly Clearing Up. Science 9 November 2012: Vol. 338 no. 6108 pp. 734-737 DOI: 10.1126/science.338.6108.734
- [14] Farmer, J. D., and J. J. Sidorowich. *Predicting Chaotic Time Series*. Phys. Rev. Lett. 59(8) (1987): 845-848.
- [15] D. Orrell, Role of the Metric in Forecast Error Growth: How Chaotic is the Weather?, Tellus 54A (2002) 350362.
- [16] C. M. Danforth, J. A. Yorke. 2006. Making Forecasts for Chaotic Physical Processes. Physical Review Letters, 96, 144102.
- [17] E.N. Lorenz, Predictability A problem partly solved, in: ECMWF Seminar Proceedings on Predictability, Reading, United Kingdom, ECMWF, 1995, pp. 118.
- [18] E. N. Lorenz. The predictability of a flow which possesses many scales of motion. Tellus XXI, 289 (1968).
- [19] E.N. Lorenz, K.A. Emanuel, *Optimal sites for sup*plementary weather observations: simulation with a small model, J. Atmos. Sci. 55 (1998) 399414.
- [20] Lorenz, Edward N., 1963: Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, 130.141.
- [21] E. N. Lorenz, Proc. Seminar on Predictability 1, 1 (1996).
- [22] R. England. Error estimates for Runga-Kutta type solutions to systems of ordinary differential equations. The Computer Journal (1969) 12 (2): 166-170. doi: 10.1093/comjnl/12.2.166
- [23] D. S. Wilks, *Effects of Stochastic Parametrizations* in the Lorenz 96 System, Quart. J. Roy. Meteo. Soc. 131 (2005) 389407.
- [24] J. Horn, N. Nafpliotis, and D.E. Goldberg. *A niched Pareto genetic algorithm for multiobjective optimization*. Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on (1994) 1: 82-87. doi:10.1109/ICEC.1994.350037
- [25] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. *A fast and elitist multiobjective genetic algorithm: NSGA-II*. Evolutionary Computation, IEEE Transactions on 6 (2): 182-197. doi:10.1109/4235.996017

- [26] K-S Shin, Y-J Lee. A genetic algorithm application in bankruptcy prediction modeling. Expert Systems w/ Applications (2002) 23 (3): 321-328. doi = "http://dx.doi.org/10.1016/S0957-4174(02)00051-9"
- [27] Q. J. Wang. The Genetic Algorithm and its Application to Calibrating Conceptual Rainfall-Runoff Mod-
- els. Water Resources Research 27 (9): 2467-2471. dpi:http://dx.doi.org/10.1029/91WR01305
- [28] R. Leardi. Application of genetic algorithm-PLS for feature selection in spectral data sets. Journal of Chemometrics 14 (5-6): 643-655: DOI: 10.1002/1099-128X(200009/12)14:5/6¡643::AID-CEM621;3.0.CO;2-E

Appendix 5

Experimental Results

5.1.1 Lorenz '63 (all Variables)

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [0,0], Use every 1 observation(s)

Experiment ID	σ	b	R
1	41.237	2.669	22.009
2	45.861	2.663	22.004
3	43.252	2.675	22.023
4	43.252	2.675	22.023
5	43.650	2.656	22.010

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Unform on [0,0], Use every 5 observation(s)

Experiment ID	σ	b	R
1	29.169	2.678	21.985
2	35.405	2.657	22.048
3	43.970	2.670	22.030
4	35.405	2.657	22.048
5	38.727	2.712	21.986

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Unform on [0, 0] Use an

noise type. Cinorii	on [o,o], cac	CVCI y 25 OC	sci vation(s)
Experiment ID	σ	b	R
1	27.416	0.088	0.065
2	27.482	0.081	0.095
3	28.000	0.129	0.040
4	27.717	0.104	0.043
5	27.240	0.071	0.080

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: emorni on [0,0], ese every so observation(s				
Experiment ID	σ	b	R	
1	5.251	0.000	0.002	
2	5.247	0.001	0.000	
3	5.261	0.004	0.004	
4	5.250	0.000	0.000	
5	5.249	0.001	0.001	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-0.25, 0.	25], Use eve	ry 1 observation(s	;)
Experiment ID	σ	b	R	
1	10.134	2.678	22.007	
2	9.946	2.671	22.000	
3	9.958	2.677	21.992	
4	18.246	2.663	22.041	
5	9.999	2.667	22.000	

noise Type: Unform	on [-0.25, 0.	25], Use eve	ery 5 observation	on(s)
Experiment ID	σ	b	R	
1	10.002	2.666	22.000	
2	9.979	2.669	21.999	
3	9.992	2.656	22.023	
4	9.986	2.667	22.002	
-	0.000	2.665	21.000	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-0.25, 0.	25], Use eve	ry 25 obser	vation(s)
Experiment ID	σ	b	R	
1	27.636	0.100	0.065	
2	27.610	0.100	0.112	
3	27.584	0.096	0.139	
4	27.473	0.108	0.009	
- 5	27.746	0.135	0.032	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-0.25,0	0.25], Use e	very 50 obse	rvation(s
Experiment ID	σ	b	R]
1	5.250	0.000	0.000	1
2	5.252	0.000	0.000	1
3	5.256	0.000	0.000	1
4	5.251	0.000	0.000]
5	5.251	0.000	0.000	1

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Unform on [-1,1], Use every 1 observation(s)

Experiment ID	σ	b	R
1	10.001	2.667	22.000
2	9.997	2.667	22.000
3	9.991	2.667	22.004
4	9.986	2.666	22.006
5	9.999	2.667	22.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on $[-1, 1]$, Use every 5 observation(s)				
Experiment ID	σ	b	R	
1	9.999	2.667	22.000	
2	10.001	2.668	21.997	
3	9.894	2.678	21.996	
4	10.008	2.666	22.001	
5	9.975	2.671	22.024	

rameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [-1,1], Use every 25 observation(s)				
σ	b	R		
27.302	0.067	0.061		
27.474	0.106	0.106		
27.987	0.111	0.159		
27.727	0.110	0.041		
27.976	0.118	0.141		
	σ 27.302 27.474 27.987 27.727	σ b 27.302 0.067 27.474 0.106 27.987 0.111 27.727 0.110		

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [-1,1], Use every 50 observation(s				
Experiment ID	σ	b	R	
1	5.218	0.000	0.001	
2	5.248	0.003	0.001	
3	5.221	0.000	0.000	
4	5.263	0.001	0.000	
5	5.265	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on $[-2,2]$, Use every 1 observation(s)					
Experiment ID	σ	b	R		
1	10.000	2.667	22.000		
2	9.994	2.667	22.000		
3	9.992	2.667	22.000		
4	9.999	2.667	22.000		
5	10.000	2.667	22.000		

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on $[-2,2]$, Use every 5 observation(s)				
Experiment ID	σ	b	R	
1	9.906	2.674	22.001	
2	9.967	2.666	22.019	
3	10.000	2.667	22.000	
4	10.001	2.667	22.000	
5	9.998	2.667	22.000	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on $[-2, 2]$, Us	se every 25	observation(s
Experiment ID	σ	b	R
1	27.935	0.115	0.165
2	27.940	0.108	0.214
3	27.660	0.095	0.097
4	26.910	0.068	0.040
5	27.081	0.099	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unionii (on [-2,2], t	use every of	observation(
Experiment ID	σ	b	R
1	5.265	0.002	0.001
2	5.260	0.000	0.001
3	5.106	0.000	0.000
4	5.276	0.000	0.000
5	5.246	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on $[-3,3]$, Use every 1 observation(s)					
Experiment ID	σ	b	R		
1	10.000	2.667	22.000		
2	9.999	2.667	22.000		
3	10.000	2.667	22.000		
4	10.004	2.666	22.000		
5	9.993	2.667	22.006		

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [-3,3], Use every 5 observation(s)				
Experiment ID	σ	b	R	
1	9.998	2.667	22.000	
2	10.000	2.667	22.000	
3	9.984	2.669	21.999	
4	9.999	2.667	21.999	
5	10.002	2.667	21.999	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-3,3], U	se every 25	observation(s)
Experiment ID	σ	b	R
1	27.535	0.083	0.042
2	28.956	0.118	0.368
3	27.909	0.136	0.095
4	29.435	0.105	0.009
5	27.996	0.111	0.190

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [−3,3], U	Jse every 50	observation(s
Experiment ID	σ	b	R
1	5.245	0.000	0.001
2	5.208	0.000	0.000
3	5.224	0.003	0.000
4	5.107	0.000	0.000
5	5.182	0.001	0.000

rs: $\sigma = 10 \ h = 8/3 \ R = 22$

noise Type: Unform			heerwation(e)
Experiment ID	σ	b	R
1	10.001	2.667	22.000
2	10.000	2.667	22.000
3	9.994	2.667	22.000
4	10.000	2.667	22.000
5	10.001	2.667	22.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [-4,4], Use every 5 observation(s)				
Experiment ID	σ	b	R	
1	9.999	2.666	22.002	
2	9.989	2.668	21.999	
3	9.997	2.667	22.000	
4	9.998	2.667	22.001	
5	10.000	2.667	22.000	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-4,4], U:	se every 25	observation(s
Experiment ID	σ	b	R
1	29.465	0.124	0.324
2	27.644	0.105	0.038
3	9.999	2.666	22.002
4	26.873	0.102	0.015
5	29.397	0.159	0.100

Parameters: $\sigma = 10, b = 8/3, R = 22$

ioise Type: Unform	on [-4,4], t	se every 50	observation
Experiment ID	σ	b	R
1	4.979	0.036	0.000
2	5.128	0.004	0.003
3	5.009	0.000	0.000
4	5.240	0.001	0.000
5	5.111	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-5,5], U	se every 1 o	bservation(s)
Experiment ID	σ	b	R
1	9.998	2.667	22.000
2	10.000	2.667	22.000
3	10.000	2.667	22.000
4	10.020	2.665	22.001
5	9.999	2.667	22.000

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Unform on [-5,5], Use every 5 observation(s)

Experiment ID	σ	b	R
1	10.001	2.666	22.001
2	9.999	2.667	22.001
3	10.000	2.667	22.000
4	10.002	2.667	22.000
5	9.990	2.668	21.999

noise Type: Unform	on [-5,5], U	se every 25	observation(s)
Experiment ID	σ	b	R
1	9.997	2.667	22.000
2	27.241	0.118	0.028
3	27.971	0.131	0.121
4	28.401	0.068	0.076
5	27.495	0.090	0.185

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-5,5], t	se every 50) observation
Experiment ID	σ	b	R
1	5.306	0.000	0.000
2	5.168	0.002	0.000
3	5.137	0.000	0.000
4	5.044	0.008	0.000
5	5.107	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Unform on [0,0], Use every 1 observation(s)

Experiment ID	σ	b	R
1	10.000	2.667	28.000
2	10.000	2.667	28.000
3	10.000	2.667	28.000
4	10.000	2.667	28.000
-	10.000	2.667	20.000

5 10.000 2.667 28.000 Parameters: σ = 10, b = 8/3, R = 28 noise Type: Unform on [0,0], Use every 5 observation(s)

Experiment ID	σ	b	R
1	10.001	2.667	27.999
2	10.000	2.667	27.999
3	10.000	2.667	28.000
4	10.005	2.665	28.006
5	9.999	2.667	28.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on [0,0], Use every 25 observation(s)

Experiment ID	σ	b	R
1	10.000	2.667	28.000
2	10.000	2.667	28.000
3	21.708	0.057	0.084
4	26.448	0.172	0.065
5	10.013	2.671	27.984

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Unform on [0,0], Use every 50 observation(s)

Experiment ID	σ	ь	R
1	5.216	0.582	0.000
2	7.085	0.221	3.344
3	1.862	0.000	0.002
4	10.000	2.667	28.000
5	4.925	0.057	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-0.25, 0.	25], Use eve	ry 1 observati	on(s)
Experiment ID	σ	b	R	
1	10.000	2.667	28.000	
2	10.000	2.667	28.000	
3	10.000	2.667	28.000	
4	10.001	2.667	28.000	
5	10.000	2.667	28.000	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-0.25, 0.1	25], Use eve	ry 5 observation(s)
Experiment ID	σ	b	R	
1	10.022	2.669	27.996	
2	10.000	2.667	28.000	
3	10.000	2.667	28.000	
4	10.000	2.667	28.000	

5 10.000 2.667 28.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on [-0.25, 0.25], Use every 25 observation(s)

Experiment ID	σ	b	R
1	10.000	2.667	28.000
2	10.000	2.667	28.000
3	26.775	0.362	0.000
4	10.000	2.669	28.001
5	10.000	2.667	27.999

notore: σ = 10 b = 9/2 P = 29

noise Type: Unform on $[-0.25, 0.25]$, Use every 50 observation(s)						
Experiment ID	σ	b	R			
1	9.999	2.666	28.002			
	1.016	0.000	0.004			

1	9.999	2.666	28.002
2	1.916	0.000	0.001
3	6.967	0.361	0.001
4	3.505	0.245	0.001
5	5.004	0.149	0.002

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform			h(-)
7.1	OII [-1,1], U:	se every 1 o	bservation(s)
Experiment ID	σ	ь	R
1	10.000	2.667	28.000
2	10.000	2.667	28.000
3	10.000	2.667	28.000
4	10.000	2.667	27.999
5	10.000	2 667	28 000

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Unform on [-1,1], Use every 5 observation(s)

Experiment ID	σ	b	R
1	10.000	2.667	28.000
2	10.001	2.667	28.000
3	10.000	2.667	28.000
4	10.616	2.719	27.658
5	10.001	2.667	27.999

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on $[-1, 1]$, Use every 25 observation(s)					
Experiment ID	σ	b	R		
1	10.000	2.667	28.000		
2	15.324	2.551	27.402		
3	10.000	2.667	28.000		
4	10.000	2.667	28.000		
5	10.000	2.667	28.000		

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [−1,1], U	Jse every 50	observation(s
Experiment ID	σ	b	R
1	2.080	0.078	0.000
2	4.478	0.289	0.000
3	8.351	0.658	0.003
4	2.410	0.001	0.005
5	2.303	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on $[-2,2]$, Use every 1 observation(s)				
σ	b	R		
10.001	2.667	28.000		
10.000	2.667	28.000		
10.000	2.667	28.000		
10.000	2.667	28.000		
10.000	2.667	28.000		
	σ 10.001 10.000 10.000 10.000	σ b 10.001 2.667 10.000 2.667 10.000 2.667 10.000 2.667 10.000 2.667		

Parameters: $\sigma = 10, b = 8/3, R = 28$

oise Type: Unform on $[-2,2]$, Use every 5 observation(s)					
Experiment ID	σ	b	R		
1	10.002	2.667	27.997		
2	9.990	2.672	27.989		
3	10.034	2.668	27.998		
4	10.002	2.667	28.000		
5	10.001	2.667	28.000		
rarameters: $\sigma = 10, b = 8/3, R = 28$					

r unumerens. o - ro,			
noise Type: Unform	on [-2,2], U	se every 25	observation(s)
Experiment ID	σ	b	R
1	9.999	2.667	27.999
2	10.000	2.667	28.000
3	10.001	2.670	27.990
4	10.000	2.667	27.999

 $\frac{1}{5}$ $\frac{10.000}{10.000}$ $\frac{2.667}{28.000}$ Parameters: σ = 10, b = 8/3, R = 28

n	oise Type: Unform	on [-2,2], U	Jse every 50	observation	(s)
Γ	Experiment ID	σ	b	R	
ľ	1	4.277	0.180	0.001	
ľ	2	3.807	0.213	0.000	
ľ	3	3.698	0.025	0.000	
ľ	4	7.433	0.547	0.008	
r	5	6.476	0.011	0.001	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on [-3,3], Use every 1 observation(s)					
Experiment ID	σ	b	R		
1	10.000	2.667	28.000		
2	10.001	2.667	28.000		
3	10.000	2.667	28.000		
4	10.327	2.678	27.912		

noise Type: Unform on [-3,3], Use every 5 observation(s)					
Experiment ID	σ	b	R		
1	10.000	2.667	28.000		
2	10.000	2.667	28.000		
3	10.001	2.667	28.000		
4	10.000	2.667	28.000		
5	15.354	2.778	27.150		

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on $[-3,3]$, Use every 25 observation(s)			
Experiment ID	σ	b	R
1	26.323	0.005	0.238
2	18.990	0.113	0.011
3	10.002	2.667	28.000
4	9.999	2.667	27.999
,	10.000	2.667	20.000

5 10.000 2.667 28.000 Parameters: σ = 10, b = 8/3, R = 28

noise Type: Unform on $[-3,3]$, Use every 50 observation(s)			
Experiment ID	σ	ь	R
1	3.316	0.003	0.006
2	3.363	0.371	0.000
3	10.000	2.667	28.000
4	4.490	0.116	2.175
5	3.722	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-4,4], Us	se every 1 ol	bservation(s)
Experiment ID	σ	b	R
1	9.998	2.667	28.000
2	10.000	2.667	28.000
3	10.000	2.667	28.000
4	10.000	2.667	28.000
5	10.000	2.667	28.000

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Unform on [-4,4], Use every 5 observation(s)

Experiment ID	σ	b	R
1	10.000	2.667	28.000
2	10.000	2.667	28.000
3	10.000	2.667	28.000
4	10.000	2.667	28.000
5	10.000	2.667	28.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-4,4], U	se every 25	observation(s
Experiment ID	σ	b	R
1	10.000	2.667	28.000
2	10.000	2.667	28.000
3	19.104	0.089	0.011
4	10.000	2.667	28.001
5	10.000	2.667	28.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

oise Type: Unform	on [-4,4], U	se every 50	observation(s)
Experiment ID	σ	b	R
1	10.000	2.667	28.000
2	4.439	0.006	0.001
3	2.857	0.000	0.002
4	3.390	0.001	0.002
5	4.212	0.233	0.000

oise Type: Unform ϵ			bservation(s)
Experiment ID	σ	b	R
1	10.000	2.667	28.000
2	10.000	2.667	28.000
3	10.000	2.667	28.000
4	10.000	2.667	28.000

 $\frac{7}{5}$ $\frac{10.000}{10.017}$ $\frac{2.668}{20.000}$ $\frac{27.998}{20.000}$ Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on $[-5,5]$, Use every 5 observation(s)				
Experiment ID	σ	b	R	
1	10.002	2.667	27.999	
2	10.000	2.667	28.000	
3	10.000	2.667	28.000	
4	10.000	2.667	28.000	
- 5	10.000	2.667	28 000	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on [-5,5], Use every 25 observation(s)

Experiment 1D	0	D D	Λ.	
1	10.000	2.667	28.001	
2	10.000	2.667	28.000	
3	10.001	2.666	28.001	
4	10.000	2.667	28.000	
5	10.000	2.667	28.000	
Parameters: $\sigma = 10, h = 8/3, R = 28$				

rameters: $\sigma = 10, b = 8/3, R = 28$ ise Type: Unform on [-5, 5]. Use every 50 observation(

noise Type: Unform	on [-5,5], O:	se every 50	boservation(s
Experiment ID	σ	b	R
1	6.917	0.047	0.001
2	5.480	0.212	0.000
3	10.000	2.667	28.000
4	10.000	2.667	28.000
5	9.998	2.667	28.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on [0,0], Use every 1 observation(s)

Experiment ID	σ	b	R
1	10.000	2.667	35.000
2	10.000	2.667	35.000
3	10.000	2.667	35.000
4	10.000	2.667	35.000
5	10.000	2.667	35.000

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Unform on [0,0], Use every 5 observation(s)

Experiment ID σ b 9.999 2.666 R 35.000 | 10,000 | 2,667 | 35,000 | 10,000 | 2,667 | 35,000 | 10,000 | 2,667 | 35,000 | 10,000 | 2,667 | 35,000 | 10,000 | 2,667 | 35,000 |

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on [0,0], Use every 25 observation(s)				
Experiment ID	σ	b	R	
1	14.500	0.101	0.004	
2	10.005	2.667	34.995	
3	10.001	2.667	35.000	
4	20.873	0.291	0.004	
5	10.000	2.667	35,000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on [0,0], Use every 50 observation(s)				
Experiment ID	σ	b	R	1
1	3.546	0.091	3.057	1
2	4.672	0.647	0.000	1
3	4.107	0.001	4.257	1
4	3.217	0.000	0.003	1
5	2.096	0.010	2.020	1

Parameters: $\sigma = 10, b = 8/3, R = 35$

1	noise Type: Unform	on [-0.25,0.	25], Use eve	ery 1 observation	ı(s
ĺ	Experiment ID	σ	b	R	
ı	1	13.148	2.452	36.092	
ı	2	10.000	2.667	35.000	
ı	3	10.000	2.667	35.000	
ı	4	38.543	0.548	21.865	
ı	5	10.000	2.667	25,000	

5 10.000 2.667 35.000 Parameters: σ = 10, b = 8/3, R = 35 noise Type: Unform on [-0.25, 0.25], Use every 5 observation(s)

Experiment ID	σ	b	R
1	10.004	2.668	34.997
2	10.190	2.684	35.022
3	10.841	2.770	34.479
4	10.002	2.667	35.001
5	10.000	2.667	35.000

noise Type: Unform on [-0.25, 0.25], Use every 25 observation(s)					
Experiment ID	σ	b	R		
1	22.576	0.280	0.020		
2	23.355	0.237	0.026		
3	10.000	2.667	35.000		
4	16.993	0.272	0.002		
5	10.000	2.667	35.000		

Parameters: $\sigma = 10, h = 8/3, R = 35$

noise Type: Unform	on [-0.25,0).25], Use ev	ery 50 obser	vation(
Experiment ID	σ	b	R	
1	4.383	0.000	0.006	
2	7.167	0.086	15.620	
3	3.992	0.950	0.003	
4	1.755	0.000	0.001	

5 5.507 0.066 7.857 Parameters: σ = 10, b = 8/3, R = 35

noise Type: Unform on $[-1,1]$, Use every 1 observation(s)				
Experiment ID	σ	b	R	
1	10.000	2.667	35.000	
2	20.144	2.513	33.674	
3	10.000	2.667	35.000	
4	10.000	2.667	35.000	
5	10.000	2.667	35.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on [-1,1], Use every 5 observation(s)

Experiment ID	σ	b	R
1	10.000	2.666	35.001
2	10.000	2.667	35.000
3	10.000	2.667	35.000
4	10.000	2.667	35.000
5	10.000	2.667	35.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [-1,1], U	se every 25	observation(s)
Experiment ID	σ	b	R
1	16.212	0.189	0.012
2	31.584	0.528	25.376
3	16.810	0.083	0.021
4	19.503	0.599	0.015
E	10.001	2.669	25.002

5 10.001 2.668 35.002 Parameters: σ = 10, b = 8/3, R = 35noise Type: Unform on [-1, 1], Use every 50 observation(s)

Experiment ID	σ	b	R
1	4.377	0.102	0.000
2	3.875	0.033	3.381
3	2.901	0.000	7.181
4	3.107	0.000	6.873
5	4.579	0.196	0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on $[-2,2]$, Use every 1 observation(s)			
Experiment ID	σ	b	R
1	10.000	2.667	35.000
2	10.000	2.667	35.000
3	10.000	2.667	35.000
4	10.000	2.667	35.000
5	10.000	2.667	35.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [-2,2], U:	se every 5 o	bservation(s)
Experiment ID	σ	b	R
1	10.004	2.667	35.005
2	22.284	2.314	35.346
3	10.001	2.667	35.000
4	10.001	2.667	35.000

5 10.000 2.667 35.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [-2,2], U	se every 25	observation(s)
Experiment ID	σ	b	R
1	11.174	2.695	35.274
2	16.221	0.222	0.002
3	14.725	0.043	0.001
4	16.333	0.192	0.006

 $\frac{4}{5}$ $\frac{10.333}{18.225}$ $\frac{0.192}{0.352}$ $\frac{0.000}{0.028}$ Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [−2,2], U	Jse every 50	observation(
Experiment ID	σ	b	R
1	5.627	0.087	0.003
2	1.959	0.000	0.000
3	4.796	0.058	0.000
4	0.326	0.000	12.639
5	3.158	0.000	1.604

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on $[-3,3]$, Use every 1 observation(s)			
Experiment ID	σ	b	R
1	10.000	2.667	35.000
2	19.983	2.424	33.966
3	10.000	2.667	35.000
4	10.018	2.668	34.999
5	10.707	2.705	34.947

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Unform on [-3,3], Use every 5 observation(s)

Experiment ID	σ	b	R
1	10.000	2.667	35.000
2	10.000	2.667	35.000
3	10.001	2.667	35.001
4	10.000	2.667	35.000
5	9.998	2.667	34.998

Parameters: $\sigma = 10, b = 8/3, R = 35$

Experiment ID	σ	b	R
1	16.903	0.006	0.003
2	21.874	0.354	0.004
3	10.000	2.667	35.000
4	10.010	2.670	34.992
5	19.825	0.264	0.003

noise Type: Unform	on [-3,3], U	se every 50	observation(s)
Experiment ID	σ	b	R
1	2.587	0.007	6.788
2	3.810	0.392	0.001
3	3.857	0.000	0.401
4	3.475	0.000	0.000
5	10.924	0.513	22.533

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on [-4,4], Use every 1 observation(s)				
Experiment ID	σ	b	R	
1	10.001	2.667	35.001	
2	10.001	2.667	35.001	
3	10.776	2.696	34.936	

Experiment ID	σ	b	R
1	21.088	2.547	33.847
2	10.000	2.667	35.000
3	10.000	2.667	35.000
4	10.020	2.674	34.960
5	10.000	2.667	35.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

Experiment ID	σ	ь	observation R
1	10.000	2.667	35.000
2	10.000	2.667	35.000
3	16.883	0.252	0.003
4	2.978	0.583	30.594
5	10.000	2.667	35.000

noise Type: Unform on [-4,4], Use every 50 observation(s)				
Experiment ID	σ	b	R	
1	4.045	0.013	0.000	
2	1.846	0.000	0.000	
3	2.914	0.000	0.000	

noise Type: Unform on [-5,5], Use every 1 observation(s)

Experiment ID	σ	b	R
1	10.000	2.667	35.000
2	10.000	2.667	34.999
3	14.619	2.764	34.293
4	10.003	2.667	35.000
5	23.363	2.456	34.278

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Unform on [-5, 5], Use ev

ionse Type: emorm on [3,3], ese every 5 observation(s)			
Experiment ID	σ	b	R
1	10.000	2.667	35.000
2	10.000	2.667	35.000
3	26.155	0.380	21.218
4	10.000	2.667	35.000
5	10.000	2 667	35,000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on [-5,5]. Use every 25 observation(s)

Total Types Comments	[-,-],		
Experiment ID	σ	b	R
1	36.942	0.004	15.524
2	10.042	2.676	34.954
3	17.973	0.433	0.002
4	19.997	0.086	0.008
5	10.000	2.667	35.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [−5,5], t	Jse every 50	observation	S
Experiment ID	σ	b	R	
1	3.538	0.000	0.000	
2	3.610	0.039	5.936	
3	3.725	0.000	0.008	
4	1.776	0.000	0.000	
5	3 798	0.000	6.263	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal	with st. dev.=	0, Use ever	y 1 observatio	n(s
Experiment ID	σ	b	R	
1	41.237	2.669	22.009	
2	45.861	2.663	22.004	
3	43.252	2.675	22.023	
4	43.252	2.675	22.023	
- 5	42.650	2.656	22.010	

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0, Use every 5 observation(s)

Experiment ID	σ	b	R
1	29.169	2.678	21.985
2	35.405	2.657	22.048
3	43.970	2.670	22.030
4	35.405	2.657	22.048
5	38.727	2.712	21.986

Parameters: $\sigma = 10, b = 8/3, R = 22$

1	noise Type: Normal v	with st. dev.=	0, Use ever	y 25 observa	ation(s
ı	Experiment ID	σ	b	R	
ı	1	27.416	0.088	0.065	
ı	2	27.482	0.081	0.095	
ı	3	28.000	0.129	0.040	
ı	4	27.717	0.104	0.043	
ı	5	27.240	0.071	0.080	

Parameters: $\sigma = 10, b = 8/3, R = 22$

oise Type: Normal v	with st. dev.:	= 0, Use eve	ery 50 obser	vation(s
Experiment ID	σ	b	R	
1	5.251	0.000	0.002	
2	5.247	0.001	0.000	
3	5.261	0.004	0.004	
4	5.250	0.000	0.000	
5	5.249	0.001	0.001	
	- /			

noise Type: Normal with st. dev.= 0.01, Use every 1 observation(s)

Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, h = 8/3, R = 22$

Talanteets. 6 = 10, b = 0, 7, R = 22noise Type: Normal with st. dev.= 0.01, Use every 5 observation(s)

Experiment ID $| \sigma \rangle | b \rangle | R$

Experiment ID	0	U	1 1
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A
- 10.1	0 /2 D	22	

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.01, Use every 25 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 0.01, Use every 50 observation(s)

Experiment ID	0	D	K
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A
	- /		

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.05, Use every 1 observation(s)

σ	ь	R	
N/A	N/A	N/A	
	N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 0.05, Use every 5 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.05, Use every 25 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$

Parameters: G = 10, v = 6/2, R = 22noise Type: Normal with st. dev.= 0.05, Use every 50 observation(s)

Experiment ID	G	B	R				
1	N/A	N/A	N/A		σ	b	R
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A				
N/A	N/A	N/A	N/A	N/A			
N/A	N/A	N/A	N/A	N/A			
N/A	N/A	N/A	N/A	N/A			
N/A	N/A	N/A	N/A	N/A	N/A		
N/A	N/A	N/A	N/A				

1000000000000000000000000000000000000					
oise Type: Normal v	with st. de	v.= 0.1, Us	e every 1 o	bservation(s)	
Experiment ID	σ	b	R		
1	N/A	N/A	N/A		
2	N/A	N/A	N/A		
3	N/A	N/A	N/A		
4	N/A	N/A	N/A		

5 N/A N/A N/A

Parameters: σ = 10, b = 8/3, R = 22

noise Type: Normal with st. dev.= 0.1, Use every 5 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

noise Type: Normal	with st. de	v = 0.1, Us	e every 25	observation(s)
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal v	with st. dev	.= 0.1, Us	e every 50	observation(s)
Experiment ID	σ	b	R	
1	NT/A	NT/A	NT/A	1

1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.25, Use every 1 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 0.25, Use every 5 observation(s)

Experiment ID	0	D	K
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.25, Use every 25 observation(s)

Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 0.25, Use every 50 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.5, Use every 1 observation(s)

Experiment ID	σ	b	R	
1	10.134	2.678	22.007	
2	9.946	2.671	22.000	
3	9.958	2.677	21.992	
4	18.246	2.663	22.041	
5	9.999	2.667	22.000	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 0.5, Use every 5 observation(s)				
Experiment ID	σ	b	R	
1	10.002	2.666	22.000	
2	9.979	2.669	21.999	
3	9.992	2.656	22.023	
4	9.986	2.667	22.002	
5	9.999	2.667	21.999	

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.5, Use every 25 observation(s)

Experiment ID	σ	b	R
1	27.636	0.100	0.065
2	27.610	0.100	0.112
3	27.584	0.096	0.139
4	27.473	0.108	0.009
5	27.746	0.135	0.032

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.5, Use every 50 observation(s)

noise Type. Norman	with st. dev.	= 0.5, USE E	very 50 obse
Experiment ID	σ	b	R
1	5.250	0.000	0.000
2	5.252	0.000	0.000
3	5.256	0.000	0.000
4	5.251	0.000	0.000
5	5.251	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 1, Use every 1 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 1, Use every 5 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal	with st. de	v.= 1, Use	every 25 ol	bservation(s)
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	1
2	N/A	N/A	N/A	1
3	N/A	N/A	N/A	1
4	N/A	N/A	N/A	1
5	N/A	N/A	N/A	

eters: $\sigma = 10, b = 8/3, R = 22$

i an anneces i	- 0/J,R	- 22		
noise Type: Normal v	with st. de	v.= 1, Use	every 50 o	bservation(s)
Experiment ID	σ	b	R	1
1	N/A	N/A	N/A	1
2	N/A	N/A	N/A	1
3	N/A	N/A	N/A	1
4	N/A	N/A	N/A	1

Experiment ID	σ	b	R
1	10.001	2.667	22.000
2	9.997	2.667	22.000
3	9.991	2.667	22.004
4	9.986	2.666	22.006
5	9.999	2.667	22.000

Parameters: $\sigma = 10, h = 8/3, R = 22$

noise Type: Normal v	with st. dev.=	2, Use ever	y 5 observation	on(
Experiment ID	σ	b	R	
1	9.999	2.667	22.000	
2	10.001	2.668	21.997	
3	9.894	2.678	21.996	
4	10.008	2.666	22.001	
	0.075	2.671	22.024	

Experiment ID	σ	b	R
1	27.302	0.067	0.061
2	27.474	0.106	0.106
3	27.987	0.111	0.159
4	27.727	0.110	0.041
5	27.976	0.118	0.141

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal	with st. dev.	= 2, Use eve	ry 50 observation(s)
Experiment ID	σ	b	R	
1	5.218	0.000	0.001	
2	5.248	0.003	0.001	
3	5.221	0.000	0.000	
4	5.263	0.001	0.000	
-	E 26E	0.000	0.000	

5 5.265 0.000 0.000 Parameters: σ = 10, b = 8/3, R = 28

noise Type: Normal	with st. dev.=	0, Use ever	y 1 observation	on(s)
Experiment ID	σ	b	R	
1	10.000	2.667	28.000	
2	10.000	2.667	28.000	
3	10.000	2.667	28.000	

noise Type: Normal	with st. dev.=	0, Use ever	y 5 observatio	n(s)
Experiment ID	σ	b	R	
1	10.001	2.667	27.999	
2	10.000	2.667	27.999	
3	10.000	2.667	28.000	
4	10.005	2.665	28.006	
5	9.999	2.667	28.000	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal	with st. dev.=	0, Use ever	y 25 observat	tion(s
Experiment ID	σ	b	R	
1	10.000	2.667	28.000	1
2	10.000	2.667	28.000	1
3	21.708	0.057	0.084	1
4	26.448	0.172	0.065	1
5	10.013	2.671	27.984	1

Parameters: $\sigma = 10, b = 8/3, R = 28$

oise Type: Normal	with st. dev.=	0, Use ever	y 50 observation(s)
Experiment ID	σ	b	R	
1	5.216	0.582	0.000	
2	7.085	0.221	3.344	
3	1.862	0.000	0.002	
4	10.000	2.667	28.000	
5	4.925	0.057	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 28$

	noise Type: Normal	with st. de	v.= 0.01, U	se every 1	observation(s)
Ì	Experiment ID	σ	b	R	1
	1	N/A	N/A	N/A	
	2	N/A	N/A	N/A	
	3	N/A	N/A	N/A	
	4	N/A	N/A	N/A	
	5	N/A	N/A	N/A	1

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 0.01, Use every 5 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal	with st. de	v.= 0.01, U	se every 2:	5 observation(s
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.01, Use every 50 observation(s)

Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 0.05, Use every 1 observation(s)

Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, h = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.05, Use every 5 observation(s)

Experiment ID	O	D D	K
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A
Paramatars: $\sigma = 10$	b = 9/2 P	_ 29	

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 0.05, Use every 25 observation(s)

noise Type. Normai v	with St. uc	r.= 0.05, U	se every 2.	o observani
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.05, Use every 50 observation(s)

Experiment 1D	U	U	_ K	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 0.1, Use every 1 observation(s)

Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.1, Use every 5 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 0.1, Use every 25 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal v	with st. de	v.= 0.1, Us	e every 50	observation(s
Experiment ID	σ	b	R	1
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$

T N 1	24	0.05 11		1
noise Type: Normal	with st. de	v.= 0.25, U	se every 1	observation(s)
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.25, Use every 5 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

noise Type: Normal v	with st. dev	v.= 0.25, U	se every 25	5 observation(s)
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal v	with st. dev	.= 0.25, U	se every 50	observation(s)
Experiment ID	σ	b	R	

Experiment ID	σ	ь	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 28$

Experiment ID	_	I L	l D	¬ ``
noise Type: Normal v	with st. dev.:	= 0.5, Use ev	ery 1 observ	vation(s)

Experiment ID	σ	b	R	
1	10.000	2.667	28.000	
2	10.000	2.667	28.000	
3	10.000	2.667	28.000	
4	10.001	2.667	28.000	
5	10.000	2.667	28.000	

Parameters: $\sigma = 10, h = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.5, Use every 5 observation(s)

σ	b	K	
10.022	2.669	27.996	
10.000	2.667	28.000	
10.000	2.667	28.000	
10.000	2.667	28.000	
10.000	2.667	28.000	
	10.000 10.000 10.000	10.000 2.667 10.000 2.667 10.000 2.667	10.000 2.667 28.000 10.000 2.667 28.000 10.000 2.667 28.000

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 0.5, Use every 25 observation(s)

Experiment ID	σ	ь	R
1	10.000	2.667	28.000
2	10.000	2.667	28.000
3	26.775	0.362	0.000
4	10.000	2.669	28.001
5	10.000	2.667	27.999

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.5, Use every 50 observation(s)						
Experiment ID	σ	b	R			
1	9.999	2.666	28.002			
2	1.916	0.000	0.001			
2	1.910	0.000	0.001			

 6.967
 0.361
 0.001

 3.505
 0.245
 0.001

 5.004
 0.149
 0.002

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 1, Use every 1 observation(s)

Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise	Type:	Normal	with st.	dev.=	1, Use	every 5	observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 1, Use every 25 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

arameters.	$0 = 10, \nu = 0/.$	5,K = 20	
noise Type:	Normal with st.	dev.= 1, Use every	50 observation(s)

Treatment of Part of Section 1		,		
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 2, Use every 1 observation(s)					
Experiment ID	σ	b	R		
1	10.000	2.667	28.000		
2	10.000	2.667	28.000		
3	10.000	2.667	28.000		
4	10.000	2.667	27.999		
5	10,000	2,667	28.000		

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 2, Use every 5 observation(s)

Experiment ID	σ	b	R
1	10.000	2.667	28.000
2	10.001	2.667	28.000
3	10.000	2.667	28.000
4	10.616	2.719	27.658
5	10.001	2.667	27.999

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal	with st. dev.=	2, Use ever	y 25 observat	ion(s)
Experiment ID	σ	b	R	
1	10.000	2.667	28.000	
2	15.324	2.551	27.402	
3	10.000	2.667	28.000	
4	10.000	2.667	28.000	
5	10.000	2.667	28.000	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 2, Use every 50 observation(s)						
Experiment ID	σ	b	R	1		
1	2.080	0.078	0.000	1		
2	4.478	0.289	0.000	1		
3	8.351	0.658	0.003			
4	2.410	0.001	0.005			
5	2 303	0.000	0.000	1		

Experiment ID	σ	b	R	
1	10.000	2.667	35.000	
2	10.000	2.667	35.000	
3	10.000	2.667	35.000	
4	10.000	2.667	35.000	
5	10.000	2.667	35.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

	noise Type: Normal with st. dev.= 0, Use every 5 observation					
1	Experiment ID	σ	b	R		
1	1	9.999	2.666	35.000		
1	2	10.000	2.667	35.000		
ı	3	10.000	2.667	35.000		
1	4	10.000	2.667	35.000		
ı	5	10.000	2.667	35.000		

Parameters: σ = 10 h = 9/2 P = 25

i municions.	0 - 10,0 - 0/3	·, • · · · · · · · · · · · · · · · · · ·		
noise Type:	Normal with st.	dev.= 0, Use	every 25	observation(s)

Experiment ID	σ	b	R
1	14.500	0.101	0.004
2	10.005	2.667	34.995
3	10.001	2.667	35.000
4	20.873	0.291	0.004
5	10.000	2.667	35.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal v	with st. dev.	= 0, Use eve	ery 50 obser	vation(s)
Experiment ID	σ	b	R	
1	3.546	0.091	3.057	
2	4.672	0.647	0.000	
3	4.107	0.001	4 257	

3.217 0.000 0.003 2.096 0.010 2.020

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.01, Use every 1 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal v	with st. de	v = 0.01, U	se every 5	observation(s)
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

F ID	ion(s)
Experiment ID σ b R	

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
	NT/A	NT/A	NT/A

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal	with st. de	v.= 0.05, U	se every 1	observation(s)
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	

N/A N/A N/A Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.05, Use every 5 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$

Parameters: $0 = 10, t$	$\rho = \delta/\beta, \kappa$	= 55		
noise Type: Normal v	with st. de	v.= 0.05, U	se every 2	5 observation(
Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.05, Use every 50 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.1, Use every 1 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.1, Use every 5 observation(s)

Experiment ID	σ	ь	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.1, Use every 25 observation(s)

σ	ь	R	
N/A	N/A	N/A	
	N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.1, Use every 50 observation(s)

Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.25, Use every 1 observation(s)

Experiment ID	σ	b	R	
1	N/A	N/A	N/A	
2	N/A	N/A	N/A	
3	N/A	N/A	N/A	
4	N/A	N/A	N/A	
5	N/A	N/A	N/A	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.25, Use every 5 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.25, Use every 25 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

J	Parameters: $\sigma = 10, b = 8/3, R = 35$							
1	noise Type: Normal with st. dev.= 0.25, Use every 50 observation(s)							
ſ	Experiment ID	σ	b	R	1			
Ī	1	N/A	N/A	N/A	1			
ſ	2	N/A	N/A	N/A	1			
ſ	3	N/A	N/A	N/A	1			
Ī	4	N/A	N/A	N/A	1			
Ī	5	N/A	N/A	N/A	1			

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.5, Use every 1 observation(s)					
Experiment ID	σ	b	R		
1	13.148	2.452	36.092		
2	10.000	2.667	35.000		
3	10.000	2.667	35.000		
4	38.543	0.548	21.865		
5	10.000	2.667	35.000		

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.5, Use every 5 observation(s)

Experiment ID	σ	b	R
1	10.004	2.668	34.997
2	10.190	2.684	35.022
3	10.841	2.770	34.479
4	10.002	2.667	35.001
5	10.000	2.667	35.000

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.5, Use every 25 observation(s)

noise Type: I torinar war st. de !:= 0.5, e se e rery 25 observation(
Experiment ID	σ	b	R		
1	22.576	0.280	0.020		
2	23.355	0.237	0.026	1	
3	10.000	2.667	35.000	1	
4	16.993	0.272	0.002	1	
5	10.000	2.667	35.000	1	

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.5, Use every 50 observation(s)

Experiment ID	σ	b	R
1	4.383	0.000	0.006
2	7.167	0.086	15.620
3	3.992	0.950	0.003
4	1.755	0.000	0.001
5	5.507	0.066	7.857

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 1, Use every 1 observation(s)

Experiment ID	σ	ь	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 1, Use every 5 observation(s)

Experiment ID	σ	ь	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 1, Use every 25 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 1, Use every 50 observation(s)

Experiment ID	σ	b	R
1	N/A	N/A	N/A
2	N/A	N/A	N/A
3	N/A	N/A	N/A
4	N/A	N/A	N/A
5	N/A	N/A	N/A

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 2, Use every 1 observation(s)

		-,	,
Experiment ID	σ	b	R
1	10.000	2.667	35.000
2	20.144	2.513	33.674
3	10.000	2.667	35.000
4	10.000	2.667	35.000
5	10.000	2 667	35,000

Experiment ID	σ	b	R
1	10.000	2.666	35.001
2	10.000	2.667	35.000
3	10.000	2.667	35.000
4	10.000	2.667	35.000
5	10.000	2.667	35.000

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 2, Use every 25 observation(s)

Experiment ID	σ	b	R
1	16.212	0.189	0.012
2	31.584	0.528	25.376
3	16.810	0.083	0.021
4	19.503	0.599	0.015
5	10.001	2.668	35.002

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 2, Use every 50 observation(s)

		-,	.,
Experiment ID	σ	b	R
1	4.377	0.102	0.000
2	3.875	0.033	3.381
3	2.901	0.000	7.181
4	3.107	0.000	6.873
5	4.579	0.196	0.000

5.1.2 Lorenz '63 (X_1 only)

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [0,0], Use every 1 observation(s)
-------------------------	----------------------------------

noise type. Omorni	Omorni on [0,0], ose every 1 ob		
Experiment ID	σ	b	R
1	0.612	0.000	0.433
2	0.000	1.443	0.000
3	0.000	1.443	0.000
4	0.473	0.000	0.923
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [0,0], Use every 5 observation(s)			
Experiment ID	σ	b	R
1	0.000	0.000	0.000
2	0.000	0.000	1.847
3	0.000	0.000	1.847
4	0.000	0.864	0.270
5	0.000	0.569	1.008

Parameters: $\sigma = 10, b = 8/3, R = 22$

ioise Type: Unform on [0,0], Use every 25 observation			bservation(s
Experiment ID	σ	b	R
1	1.227	0.000	1.278
2	1.023	0.490	1.225
3	0.187	0.733	0.934
4	0.000	0.000	0.000
5	0.513	0.091	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

Experiment ID	σ	ь	R
1	0.000	0.451	0.000
2	1.692	0.896	0.000
3	0.000	0.991	0.478
4	0.000	0.000	0.000
5	0.000	0.000	1.355

noise Type:	Unform on	[-0.25, 0.25]	, Use every	1 observation(s)

Experiment ID	σ	b	R	1
1	0.000	0.000	0.000	1
2	0.000	0.000	0.724	1
3	0.748	0.430	1.376	1
4	0.929	0.000	0.000	1
5	0.926	1.305	0.710]

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [-0.25, 0.25], Use every 5 observation(s)

Experiment ID	σ	b	R
1	0.081	0.000	0.000
2	0.000	0.000	0.518
3	0.000	1.710	1.453
4	0.000	0.000	0.297
5	0.000	1.615	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Unform on [-0.25, 0.25], Use every 25 observation(s)

,,,, -, -,,,,,,,,,,,,,,,,,,,,,,,					
Experiment ID	σ	b	R]	
1	1.359	0.000	0.000		
2	0.000	0.000	0.137	1	
3	0.327	0.879	0.220	1	
4	2.014	0.365	0.000	1	
5	0.000	1.350	0.545	1	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [-0.25, 0.25], Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.000	0.685	0.564
2	1.003	0.933	0.956
3	0.000	0.000	0.000
4	0.000	1.988	1.369
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Unform on [-1, 1], Use every 1 observation(s)

Experiment ID	σ	b	R
1	0.362	0.538	1.381
2	1.163	0.000	0.000
3	0.000	0.000	0.000
4	0.197	0.499	0.479
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [-1,1], Use every 5 observation(s)					
Experiment ID	σ	b	R		
1	0.069	0.024	0.449		
2	0.000	0.332	0.000		
3	1.190	0.136	0.677		
4	1.295	0.721	0.000		
5	0.766	0.079	0.550		

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-1,1], U	Jse every 25	observation(s)
Experiment ID	σ	b	R	
1	0.589	0.000	1.052	
2	0.601	0.000	0.000	
3	0.000	0.147	0.398	
4	0.054	0.719	0.629	

noise Type: Unform on [-1,1], Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.314	0.000	0.000
2	1.809	0.058	0.354
3	0.000	1.053	0.000
4	0.000	0.000	0.152
5	0.447	0.876	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on $[-2, 2]$, U	Jse every 1	observation(s
Experiment ID	σ	b	R
1	0.000	0.000	0.000
2	0.000	0.355	0.000
3	0.000	1.781	0.636
4	0.270	0.000	0.966
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-2,2], U	Jse every 5	observation(s
Experiment ID	σ	b	R
1	1.584	0.000	1.681
2	0.637	0.511	1.698
3	0.161	0.000	0.000
4	0.000	1.357	0.448
5	0.000	0.000	1.529

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on $[-2, 2]$, U	Jse every 25	observation(s
Experiment ID	σ	b	R
1	1.217	0.000	0.000
2	0.000	0.000	1.325
3	0.000	0.000	0.932
4	0.000	0.890	0.256
	0.242	0.545	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on $[-2,2]$, Use every 50 observation(s)				
Experiment ID	σ	b	R	
1	0.000	1.064	0.000	
2	0.523	0.000	0.725	
2	0.142	0.001	0.000	

1	0.000	1.064	0.000
2	0.523	0.000	0.725
3	0.143	0.881	0.000
4	0.000	0.000	0.850
5	0.000	0.000	0.000
D - 10.1	0/2 D	22	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [-3,3], Use every 1 observation(s)

Experiment ID	σ	b	R
1	1.353	0.000	0.000
2	2.168	0.407	0.000
3	0.000	0.269	0.426
4	0.358	0.071	0.000
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-3,3], U	Jse every 5	observation(s
Experiment ID	σ	b	R
1	1.051	0.000	0.306
2	0.000	0.000	0.000
3	1.225	0.183	0.000
4	0.562	0.255	0.812
5	0.574	0.000	1.155

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform on [-3,3], Use every 25 observation(s)				
Experiment ID	σ	b	R	
1	2.493	0.676	1.080	
2	1.312	0.992	0.647	
3	0.181	1.692	0.000	
4	0.000	0.288	0.000	

noise Type: Unform	on [−3,3], U	Jse every 50	observation(
Experiment ID	σ	b	R
1	0.902	0.240	1.175
2	2.306	0.459	1.239
3	0.259	0.553	0.508
4	0.095	0.000	0.000
5	0.000	1.107	1.208

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-4,4], U	Jse every 1	observation(s)
Experiment ID	σ	b	R
1	0.000	0.000	0.314
2	0.309	0.000	0.000
3	0.000	0.000	0.843
4	0.739	0.000	1.004
5	0.632	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-4,4], U	Jse every 5	observation(s
Experiment ID	σ	b	R
1	0.000	0.317	1.476
2	0.298	0.000	0.536
3	0.389	0.384	0.000
4	0.301	0.000	0.000
5	0.264	0.000	0.868

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-4,4], U	Jse every 25	observation(s
Experiment ID	σ	b	R
1	1.245	0.000	1.235
2	0.000	0.000	0.321
3	0.181	0.000	0.095
4	0.494	0.610	0.000
5	0.501	0.573	0.000

 $\frac{5}{5}$ 0.501 0.573 0.000 Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Unform on [-4, 4], Use every 50 observation(s)

Experiment ID	σ	b	R
1	1.276	0.069	0.000
2	0.000	0.000	0.000
3	0.000	0.398	0.884
4	0.000	0.000	0.047
5	0.000	0.000	0.157

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Unform	on [-5,5], U	Jse every 1	observation(
Experiment ID	σ	b	R
1	0.624	0.508	0.219
2	0.761	0.348	0.000
3	0.615	0.348	0.000
4	0.512	0.000	0.000
5	0.598	0.011	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

oise Type: Unform	on [-5,5], U	Jse every 5	observation(s
Experiment ID	σ	b	R
1	0.000	0.000	0.912
2	0.317	0.514	1.452
3	0.000	0.671	1.262
4	1.283	0.000	0.000
5	0.000	0.092	0.000

rarameters: $0 = 10, t$				
noise Type: Unform	on [-5,5], U	Jse every 25	observation	4(
Experiment ID	σ	b	R	
1	2.462	1.010	0.724	
2	0.000	0.000	0.000	
3	1.457	1.424	0.347	
4	0.608	0.000	0.986	

 $\frac{4}{5}$ $\frac{6.000}{1.511}$ $\frac{6.000}{1.284}$ $\frac{6.000}{0.005}$ Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type:	Unform on	[-5,5], Use even	ry 50 observation(s)

Experiment ID	σ	ь	R
1	0.000	0.766	0.582
2	0.000	0.292	0.284
3	0.000	0.000	0.534
4	0.187	0.629	0.328
5	0.000	0.000	0.181

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on [0,0], Use every 1 observation(s)

Experiment ID	σ	b	R
1	0.000	0.000	1.736
2	0.000	0.000	0.000
3	0.000	0.320	0.956
4	0.573	0.000	1.542
5	0.000	0.000	1.284

Parameters: $\sigma = 10, b = 8/3, R = 28$

ioise Type: Unform	on [0,0], Us	e every 5 ob	servation(s)
Experiment ID	σ	b	R
1	0.000	1.981	0.000
2	0.000	0.000	0.765
3	0.000	0.433	0.525
4	1.719	0.000	0.000
5	0.000	1 100	0.885

Parameters: $\sigma = 10, b = 8/3, R = 28$

oise Type: Unform	on [0,0], Us	e every 25 c	bservation(s)
Experiment ID	σ	b	R
1	0.000	0.067	0.695
2	0.000	0.396	0.000
3	0.000	0.000	0.000
4	2.918	0.000	2.104
5	0.607	0.000	0.994

Parameters: $\sigma = 10, b = 8/3, R = 28$

oise Type: Unform			bservation(s)
Experiment ID	σ	ь	R
1	0.000	0.000	0.000
2	0.478	0.731	0.000
3	0.000	2.605	2.189
4	0.468	1.226	0.094
5	0.348	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on [-0.25, 0.25]. Use every 1 observation(s)

71			. ,	
Experiment ID	σ	b	R	
1	0.000	0.000	0.000	
2	0.910	0.000	0.000	
3	0.559	0.000	0.000	
4	0.087	1.362	1.264	
5	0.000	0.745	0.028	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-0.25,0).25], Use ev	very 5 obser	vatio
Experiment ID	σ	b	R]
1	0.000	0.689	0.087	1
2	0.000	1.478	0.012	1
3	0.073	0.000	0.000	1
4	0.000	1.091	0.000	1
5	1.352	0.000	0.397	1

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform on [-0.25, 0.25], Use every 25 observation				
Experiment ID	σ	b	R	
1	1.238	0.000	0.585	
2	0.000	0.390	0.000	
3	0.384	0.000	0.089	
4	0.000	0.000	0.570	

5 0.000 0.474 0.255 Parameters: σ = 10, b = 8/3, R = 28noise Type: Unform on [-0.25, 0.25], Use every 50 observation(s)

Experiment ID	σ	b	R
1	1.123	0.568	0.000
2	0.644	0.000	0.000
3	0.030	0.894	0.513
4	0.288	1.081	0.000
5	1.013	0.000	0.000

Experiment ID	σ	b	R
1	0.000	0.000	0.000
2	0.000	0.000	0.578
3	1.078	0.000	0.678
4	0.600	0.166	0.000
5	0.000	0.000	1.130

noise Type: Unform	on [−1,1], U	Jse every 5	observation(
Experiment ID	σ	b	R
1	0.000	0.000	0.000
2	0.000	0.480	0.246
3	0.000	1.414	0.000
4	2.789	0.836	0.000
5	0.537	0.024	1.459

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [−1,1], t	Jse every 25	observation	1(s)
Experiment ID	σ	b	R	
1	0.000	0.365	0.000	
2	1.104	0.000	0.109	
3	0.814	0.000	0.000	
4	0.122	0.966	1.043	
5	1.023	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [−1,1], U	Jse every 50	observation)
Experiment ID	σ	b	R
1	0.000	0.986	0.000
2	0.000	0.229	0.000
3	0.000	0.000	0.299
4	0.296	0.680	0.516
5	0.000	1.374	1.871

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on $[-2, 2]$, U	Use every 1	observation(s
Experiment ID	σ	b	R
1	0.397	0.190	1.864
2	0.000	1.259	1.735
3	0.000	0.000	0.000
4	0.000	0.504	0.252
5	0.984	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-2,2], I	Jse every 5	observation(s
Experiment ID	σ	b	R
1	1.480	0.000	1.608
2	0.000	0.151	0.000
3	0.000	0.075	0.000
4	0.000	0.000	0.782
5	0.227	1.056	1.583

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-2,2], U	Jse every 25	observation	ı(s)
Experiment ID	σ	b	R	
1	0.945	1.233	0.828	
2	0.000	0.000	0.147	
3	0.046	0.000	0.000	
4	0.000	0.000	0.000	
5	0.000	1.109	0.944	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [−2,2], U	Jse every 50	observation	(s)
Experiment ID	σ	b	R	
1	0.000	0.000	0.000	
2	0.702	0.000	1.079	
3	0.692	0.000	0.000	
4	0.993	0.000	1.665	
5	0.000	0.000	0.958	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-3,3], I	Jse every 1	observation(s
Experiment ID	σ	b	R
1	0.000	0.000	0.135
2	0.000	0.000	0.000
3	0.065	0.370	1.131
4	0.000	0.000	0.000
5	0.000	0.269	0.426

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-3,3], U	Jse every 5	observation(s
Experiment ID	σ	b	R
1	0.394	0.476	0.000
2	0.000	0.000	0.000
3	0.982	0.000	0.508
4	1.240	0.000	2.060
5	0.464	0.000	1.601

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-3,3], U	Jse every 25	observation(s
Experiment ID	σ	b	R
1	0.000	0.950	0.000
2	0.000	0.074	0.000
3	0.000	0.334	0.000
4	0.000	0.000	0.500
5	1.171	0.461	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Unform on [-3,3], Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.000	0.000	1.796
2	0.458	0.000	0.000
3	1.019	0.000	0.912
4	0.000	0.000	0.000
5	0.073	0.829	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-4,4], U	Jse every 1	observation(s)
Experiment ID	σ	b	R
1	0.121	0.200	0.000
2	0.000	0.028	0.000
3	0.000	0.000	0.046
4	0.353	0.000	0.000
5	0.000	0.815	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-4,4], U	Jse every 5	observation(s
Experiment ID	σ	b	R
1	0.000	0.000	0.587
2	0.000	0.891	1.027
3	0.000	0.441	0.743
4	0.108	0.000	1.152
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-4,4], t	Jse every 25	observation(
Experiment ID	σ	b	R
1	0.000	0.000	1.586
2	0.000	0.000	0.000
3	0.414	0.862	0.295
4	1.046	1.192	0.094
5	0.000	0.000	0.841

Parameters: $\sigma = 10, b = 8/3, R = 28$

ioise Type: Unionii (on [-4,4], t	use every 50	observation	I(S)
Experiment ID	σ	b	R	
1	0.000	0.000	0.000	
2	0.000	0.326	0.000	
3	1.028	0.000	0.511	
4	0.000	0.605	0.573	
5	1.934	0.267	0.374	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-5,5], I	Jse every 1	observation(s)
Experiment ID	σ	b	R
1	0.000	0.457	0.269
2	0.000	0.000	1.454
3	0.299	0.776	0.971
4	0.786	0.000	0.000
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [-5,5], U	Jse every 5	observation(s)
Experiment ID	σ	b	R	
1	0.105	0.582	0.121	
2	0.224	0.000	0.347	
3	0.000	2.339	0.000	
4	0.000	1.947	0.000	
5	0.000	0.742	1.116	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [−5,5], U	Jse every 25	observation(:
Experiment ID	σ	b	R
1	0.087	0.000	0.000
2	0.000	0.000	0.000
3	0.000	0.000	0.000
4	0.000	1.029	0.200
5	0.000	1.021	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Unform	on [−5,5], t	Jse every 50	observation	(s
Experiment ID	σ	b	R	
1	0.000	0.593	0.103	
2	0.162	0.000	0.000	
3	0.969	0.000	0.000	
4	0.000	0.374	1.085	
5	0.000	0.425	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [0,0], Us	e every 1 ob	servation(s)
Experiment ID	σ	b	R
1	1.352	0.000	0.163
2	0.000	0.450	0.764
3	0.000	0.000	0.000
4	0.000	0.562	0.000
5	0.000	0.000	0.087

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on [0,0], Use every 5 observation(s)				
Experiment ID	σ	b	R	
1	1.501	1.236	0.000	
2	0.956	0.172	0.000	
3	0.000	0.000	0.572	
4	0.495	0.000	0.000	
5	1.717	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [0, 0]. Us	e every 25 c	bservation(s
Experiment ID	σ	b	R
1	0.430	0.000	0.409
2	0.000	0.838	0.023
3	0.000	0.170	0.000
4	0.658	1.305	1.036
5	0.000	0.000	0.000

Experiment ID σ b R 1 0.000 0.000 1.863 2 0.000 0.000 0.000 3 0.000 0.000 0.728	_
2 0.000 0.000 0.000	
3 0.000 0.000 0.728	
4 1.625 0.000 1.382	
5 0.000 0.000 0.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [-0.25,0	0.25], Use ev	ery 1 obser	vation(s
Experiment ID	σ	b	R]
1	0.000	0.000	0.295	1
2	1.131	0.000	0.000	1
3	1.049	0.000	2.095	1
4	0.000	0.665	0.000	1
5	0.566	0.000	0.000	1

Parameters: $\sigma = 10, b = 8/3, R = 35$

oise Type: Unform	on [-0.25,0	0.25], Use ev	ery 5 obser	vation(s
Experiment ID	σ	b	R	
1	0.000	0.000	0.000	
2	0.563	0.300	0.000	
3	0.000	0.000	0.182	
4	0.000	0.000	0.000	
5	0.000	0.000	0.363	

rarameters: $o = 10, t$	n = 0/5,π =	= 33		
noise Type: Unform	on [-0.25,0	0.25], Use ev	ery 25 obse	rvation(s
Experiment ID	σ	b	R	
1	0.000	0.450	0.566	
2	0.000	0.000	1.284	
3	1.678	0.436	0.388	
4	1.026	0.000	1.627	
5	0.000	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

).25], Use ev	rvation(s)

Experiment ID	σ	b	R	
1	0.102	1.501	0.462	
2	0.294	0.000	1.315	
3	0.000	0.000	0.000	
4	0.000	0.266	0.953	
5	0.000	0.587	0.000	ĺ

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform on [-1,1], Use every 1 observation(s)

Experiment ID	σ	b	R
1	0.000	0.000	1.459
2	0.000	0.830	0.000
3	1.312	0.992	0.647
4	0.000	0.000	0.000
5	0.000	0.459	0.029

Parameters: $\sigma = 10, b = 8/3, R = 35$

Experiment ID	σ	b	R
1	0.233	0.000	0.934
2	0.000	0.000	0.000
3	0.000	0.000	0.000
4	0.053	0.000	0.000
5	0.699	0.000	0.000

noise Type: Unform on $[-1,1]$, Use every 25 observation(
Experiment ID	σ	b	R		
1	0.000	1.499	0.124		
2	0.000	0.000	0.000		
3	0.000	0.000	0.526		
4	0.000	0.000	0.000		
5	0.892	0.000	1.322		

Parameters: $\sigma = 10, b = 8/3, R = 35$

Experiment ID	σ	b	R
1	0.197	0.988	0.000
2	0.000	2.360	0.000
3	1.679	0.000	0.000
4	0.000	0.000	0.000
5	0.577	0.000	1.619

oise Type: Unform			observation(s
Experiment ID	σ	b	R
1	0.000	0.073	0.338
2	0.000	2.139	0.000
3	1.713	0.000	0.000
4	0.000	1.111	0.000

noise Type: Unform	on [-2,2], U	Jse every 5	observation(s)
Experiment ID	σ	b	R	
1	0.000	0.499	0.060	
2	1.854	0.000	1.623	
3	0.181	0.000	0.095	
4	0.000	0.000	0.430	
5	0.000	1.697	0.412	

Parameters: $\sigma = 10, b = 8/3, R = 35$

oise Type: Unform	on [-2,2], U	Jse every 25	observation	ı(s
Experiment ID	σ	b	R	
1	0.000	0.496	0.238	
2	1.168	0.640	1.358	
3	0.000	0.040	0.000	
4	0.000	0.280	0.628	
5	0.296	0.000	1 474	

5 | 0.296 | 0.000 | 1.474 | Parameters: σ = 10, b = 8/3, R = 35 noise Type: Unform on [-2, 2], Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.512	0.000	0.000
2	0.353	0.000	0.000
3	1.504	0.000	0.835
4	0.110	0.000	2.675
5	0.000	0.000	0.845

noise Type: Unform	on [-3,3], U	Jse every 1	observation(s)
Experiment ID	σ	b	R
1	0.402	0.620	0.548
2	0.000	0.844	0.000
3	1.855	1.714	0.000
4	0.000	0.000	0.000
5	0.020	0.343	0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [−3,3], U	Jse every 5	observation(:
Experiment ID	σ	b	R
1	0.342	0.000	0.000
2	0.359	0.000	0.826
3	0.170	0.000	0.000
4	0.000	1.088	1.355
5	0.996	1.227	0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [-3,3], U	Jse every 25	observation(
Experiment ID	σ	b	R
1	0.000	0.000	0.000
2	0.000	0.000	1.454
3	1.208	0.000	0.000
4	0.314	0.000	0.256
- 5	0.469	0.000	0.424

Parameters: $\sigma = 10, b = 8/3, R = 35$

Experiment ID	σ	b	R
1	0.517	1.348	0.000
2	0.740	0.000	1.222
3	2.484	0.000	0.850
4	0.000	0.727	0.000
5	1.606	0.000	0.000

noise Type: Unform	on [-4,4], l	Jse every 1	observation(s
Experiment ID	σ	b	R
1	0.000	0.000	1.454
2	0.000	0.000	0.861
3	0.525	0.000	1.183
4	0.000	0.167	0.000
5	0.000	0.000	0.498

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [-4,4], U	Jse every 5	observation(s)
Experiment ID	σ	b	R
1	0.742	0.000	0.541
2	0.953	0.000	0.000
3	2.144	0.136	0.868
4	1.444	0.709	0.000
5	1.563	0.016	0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [-4,4], U	Jse every 25	observation(s
Experiment ID	σ	b	R
1	1.079	0.000	0.195
2	0.024	0.798	0.005
3	0.000	0.443	0.000
4	0.510	0.000	0.000
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [−4,4], t	Jse every 50	observation(
Experiment ID	σ	b	R
1	0.000	1.601	0.000
2	0.000	0.125	0.054
3	0.064	1.009	1.393
4	2.237	0.000	1.506
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [-5,5], U	Jse every 1	observation(s)
Experiment ID	σ	b	R
1	0.000	2.569	0.000
2	1.306	0.000	0.000
3	0.168	0.299	1.086
4	0.000	0.000	0.727
5	1 208	0.000	1 627

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [−5,5], U	Jse every 5	observation(s
Experiment ID	σ	b	R
1	0.000	0.360	0.161
2	0.000	0.861	0.000
3	0.000	0.000	0.000
4	2.056	0.000	0.345
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Unform	on [-5,5], U	Jse every 25	observation	ı(s)
Experiment ID	σ	b	R	
1	0.000	0.540	0.000	
2	0.000	0.780	0.000	
3	0.989	0.267	0.000	
4	0.441	0.725	0.000	
5	0.000	0.000	0.000	

5 0.000 0.000 0.000 0.000 Parameters: σ = 10, b = 8/3, R = 35 noise Type: Unform on [-5,5], Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.000	0.000	0.261
2	0.000	0.627	0.000
3	0.000	0.260	0.000
4	0.401	0.000	1.157
5	0.000	0.773	0.027

rarameters: $o = 10, i$	n = 6/5, κ =	= 22		
noise Type: Normal	with st. dev.	= 0, Use eve	ery 1 observat	ion(s
Experiment ID	σ	b	R	
1	1.499	0.000	1.147	
2	1.125	0.000	0.000	
3	0.000	0.000	0.611	
4	0.049	0.000	1.036	
5	0.373	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 22$

ioise Type: Normal	with st. dev.	= 0, Use eve	ery 5 observa	tion(s
Experiment ID	σ	b	R	
1	0.000	0.000	0.000	
2	0.000	0.000	0.000	
3	0.012	0.662	0.000	
4	0.000	0.000	1.290	
5	0.384	0.110	1.005	

noise Type: Normal	with st. dev.	= 0, Use eve	ery 25 obser	vation(s
Experiment ID	σ	b	R	1
1	0.000	0.000	0.000	1
2	0.000	0.000	0.000	1
3	0.093	2.178	0.000	1
4	0.617	0.093	0.000	1
5	0.352	0.000	0.000	1

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal v	with st. dev.	= 0, Use eve	ery 50 obser	vation
Experiment ID	σ	b	R	
1	0.000	0.000	0.000	
2	1.317	0.000	0.822	
3	1.427	0.952	0.674	
4	1.383	0.000	0.285	
	0.000	1.062	0.000	

rarameters. $0 = 10, b = 6/$.	J, N = 22
noise Type: Normal with st.	. dev.= 0.01, Use every 1 observation(s)

Experiment ID	σ	b	R
1	0.000	0.596	0.000
2	0.248	0.595	0.497
3	0.004	2.463	0.000
4	0.445	0.000	0.000
5	1.110	0.000	0.000
	- /		

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 0.01, Use every 5 observation(s)						
Experiment ID	σ	b	R			
1	0.000	0.206	0.660			
2	0.000	1.151	0.000			
3	0.000	1.066	0.000			
4	0.000	0.000	0.863	1		
5	0.488	0.691	0.000			

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.01, Use every 25 observation(s)

noise Type. I tornian	min on acr.	- 0.01, 0.00	0.01, 25 00	oci varioni
Experiment ID	σ	b	R	1
1	0.000	0.000	0.318	1
2	1.363	0.586	0.000	1
3	0.000	0.000	1.288	1
4	0.000	0.000	1.288	1
5	0.609	0.000	0.000	1

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal v	with st. dev.:	= 0.01, Use	every 50 ob	servation(s)
Experiment ID	σ	b	R	
1	0.648	1.720	1.619	
2	0.202	0.000	0.000	
3	0.000	0.000	0.000	
4	0.868	0.000	0.000	
5	0.000	0.078	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.05, Use every 1 observation(s)

Experiment ID	σ	b	R	
1	0.487	0.091	0.000	
2	0.000	0.000	0.000	
3	0.000	0.000	0.510	
4	0.000	1.307	0.000	
5	0.000	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 22$

ise Type: Normal v	with st. dev.:	= 0.05, Use	every 5 obs	ervation(s)
Experiment ID	σ	b	R	
1	0.000	0.000	0.000	
2	0.394	1.290	0.000	
3	0.000	0.000	1.273	
4	2.370	0.547	0.599	
5	0.000	1.027	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 22$ Normal with st. dev = 0.05. Use every 25 observed to the state of the

noise Type: Normal v	with st. dev.	= 0.05, Use	every 25 ob	servatio
Experiment ID	σ	b	R	
1	0.000	0.000	0.861	
2	0.538	0.189	0.000	
3	0.833	0.000	0.000	
4	0.016	0.913	0.000	
5	0.000	0.000	0.000	
Parameters: $\sigma = 10, h$	b = 8/3.R =	= 22		l

noise Type: Normal with st. dev.= 0.05, Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.552	0.141	0.000
2	0.000	0.000	1.721
3	0.022	1.537	0.000
4	0.000	0.000	0.106
5	1.504	0.000	1.095

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal	with st. dev.	= 0.1, Use e	very 1 obse	rvation(:
Experiment ID	σ	b	R	1
1	0.000	0.306	0.132	1
2	0.000	1.533	2.499	1
3	0.951	0.000	0.000	1
4	0.000	0.612	0.121	1
5	0.960	2.627	0.000	1

Parameters: $\sigma = 10, h = 8/3, R = 22$

Experiment ID	σ	b	R
1	0.000	0.041	0.000
2	0.000	0.000	0.000
3	0.194	0.400	0.000
4	0.488	2.311	0.000
5	0.000	0.436	0.000

noise Type: Normal v	with st. dev.	= 0.1, Use e	very 25 obs	ervation(s)
Experiment ID	σ	b	R	
1	1.344	0.000	1.999	
2	0.870	1.647	0.000	
3	0.000	0.842	0.943	

					ervation(s)

Experiment ID	σ	ь	R
1	0.539	0.692	0.928
2	0.000	0.955	0.000
3	0.145	0.454	0.397
4	0.118	0.000	0.000
5	0.000	0.062	0.000
D	0 /0 P	22	

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.25, Use every 1 observation(s)

Experiment ID	σ	b	R
1	0.000	0.000	0.416
2	0.000	1.473	0.000
3	0.000	0.744	0.172
4	1.179	0.000	0.000
5	0.000	1.171	0.000

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal	with st. dev.	= 0.25, Use	every 5 obs	ervation(s)
Experiment ID	σ	b	R	
1	0.205	0.002	0.000	
2	0.000	1.693	1.892	
3	0.059	0.701	0.000	
4	0.000	1.016	0.000	

 $\frac{4}{5}$ 0.000 1.016 0.000 5 0.838 0.445 0.923 Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.25, Use every 25 observation(s)

Experiment ID	σ	b	R
1	1.425	1.454	0.396
2	0.000	0.617	0.997
3	0.000	0.000	0.000
4	0.000	0.000	0.000
-	0.000	0.206	2.000

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.25, Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.000	1.306	0.000
2	0.000	0.000	0.647
3	0.860	0.000	0.000
4	1.002	0.000	0.000
5	0.000	0.000	1.435

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 0.5, Use every 1 observation(s)

Experiment ID	σ	b	R
1	0.000	0.221	0.154
2	0.999	0.013	0.470
3	0.000	0.000	0.000
4	0.212	0.920	0.000
5	0.000	0.000	0.142

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 0.5, Use every 5 observation(s)

Experiment ID	σ	b	R
1	0.666	1.838	0.102
2	0.000	0.000	0.339
3	0.000	1.544	0.187
4	0.000	0.000	0.000
5	0.765	0.560	0.200

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal	with st. dev.	= 0.5, Use e	very 25 obs	ervation(s
Experiment ID	σ	b	R	
1	0.222	0.000	0.000	
2	0.000	1.034	2.220	
3	0.000	1.372	1.081	
4	0.957	0.044	0.110	
5	0.000	0.000	0.406	

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: Normal with st. dev.= 0.5, Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.404	0.000	0.000
2	0.201	0.000	0.000
3	0.000	0.000	0.067
4	0.000	1.882	0.000
5	0.463	0.000	0.000

noise Type: Normal	with st. dev.	= 1, Use eve	ery 1 observa	ation(s)
Experiment ID	σ	b	R	
1	0.268	1.179	1.837	
2	0.127	0.000	1.043	
3	0.279	0.000	0.333	
4	0.384	0.000	0.000	
5	0.611	0.579	0.635	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 1, Use every 5 observation					
Experiment ID	σ	b	R	1	
1	0.521	0.237	0.000	1	
2	0.642	0.549	0.721	1	
3	1.969	0.000	0.000	1	
4	0.000	0.112	0.148	1	
5	0.820	0.802	0.000]	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 1, Use every 25 observation(s)					
Experiment ID	σ	b	R	1	
1	0.000	0.000	1.030	1	
2	0.744	0.000	0.000	1	
3	0.000	0.762	0.000	1	
4	0.000	1.133	0.054]	

 $\frac{1}{5}$ $\frac{0.000}{0.000}$ $\frac{0.000}{0.951}$ Parameters: $\sigma = 10, b = 8/3, R = 22$

1	noise Type: Normal with st. dev.= 1, Use every 50 observation(s)						
ĺ	Experiment ID	σ	b	R	1		
1		0.422	0.205	0.554	1		

1	0.433	0.305	0.554
2	0.000	1.083	0.000
3	0.089	0.000	0.000
4	0.000	0.038	0.000
5	0.000	0.000	1.390

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal with st. dev.= 2, Use every 1 observation(s					ation(s)
	Experiment ID	σ	b	R	1
ı	1	0.238	0.000	0.955	1
ı	2	0.000	0.000	0.776	1
- 1	- 1	0.470	0.000	0.000	1

 $\begin{bmatrix} 3 & 0.479 & 0.008 & 0.000 \\ 4 & 1.402 & 1.907 & 0.000 \\ 5 & 0.000 & 0.197 & 2.241 \end{bmatrix}$ Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: Normal	with st. dev.	= 2, Use eve	ery 5 observ	ation(s)
Experiment ID	σ	b	R	1
1	0.937	0.000	1.349	1
2	0.703	0.061	0.000	1
3	1.019	0.000	0.918	1
4	0.000	0.209	1.804	1
-	0.000	0.456	0.000	1

5 0.000 0.456 0.000 Parameters: $\sigma = 10, b = 8/3, R = 22$

1	noise Type: Normal	with st. dev.	= 2, Use eve	ery 25 obser	vation(s
ı	Experiment ID	σ	b	R	1
ı	1	0.000	1.037	0.000	1
ı	2	1.131	0.000	0.000	1
ı	3	0.000	1.251	0.000	1
ı	- 4	0.076	1.024	1.214	1

 $\begin{array}{c|cccc} 4 & 0.976 & 1.024 & 1.214 \\ \hline 5 & 0.000 & 0.000 & 1.662 \\ \hline \text{Parameters: } \sigma = 10, b = 8/3, R = 22 \\ \hline \end{array}$

noise Type: Normal v	vith st. dev.	= 2, Use eve	ery 50 obser	vation(s
Experiment ID	σ	b	R	
1	0.015	0.852	0.304	
2	0.127	0.610	0.000	
3	1.476	0.631	0.272	
4	0.000	0.287	0.983	
5	0.000	0.000	0.036	

rarameters: $G = 10, b = 8/3, K = 28$							
noise Type: Normal with st. dev.= 0, Use every 1 observation(s)							
Experiment ID	σ	b	R				
1	0.000	0.879	0.000				

Experiment ID	σ	b	R	
1	0.000	0.879	0.000	
2	0.000	0.104	0.119	
3	0.000	0.024	0.204	
4	0.000	0.000	0.000	
5	0.000	0.000	1.227	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0, Use every 5 observation(s)						
Experiment ID	σ	b	R			
1	0.000	0.828	0.000			
2	0.426	0.000	0.929			
3	0.000	0.075	0.000			
4	1.042	0.377	0.532			
5	0.631	0.450	0.868			

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0, Use every 25 observation(s)						
Experiment ID	σ	b	R			
1	1.087	0.000	0.000			
2	0.000	0.185	0.730			
3	0.000	1.744	0.000			
4	0.000	0.000	0.000			
5	1.513	0.400	1.013			

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0, Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.000	0.000	1.911
2	1.051	0.000	0.000
3	0.000	0.000	0.580
4	0.000	0.000	0.000
5	0.489	1.645	0.247

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal	with st. dev.	= 0.01, Use	every 1 obs	ervation(s)
Experiment ID	σ	b	R	1
1	0.000	0.000	0.739	1
2	1.845	0.000	1.118	1
3	0.000	0.000	0.000	1
4	0.523	0.142	0.000	1
5	0.000	0.609	0.394	1

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.01, Use every 5 observation(
Experiment ID	σ	b	R			
1	0.312	0.000	0.330	1		
2	0.532	0.000	0.000	1		
3	1.287	1.695	0.000	1		
4	0.000	0.000	0.404	1		
5	0.000	0.000	0.000	1		

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.01, Use every 25 observation(s)						
Experiment ID	σ	b	R			
1	0.000	0.032	0.000			
2	0.598	1.667	0.827			

1	0.000	0.032	0.000				
2	0.598	1.667	0.827				
3	0.857	0.000	0.000				
4	0.000	0.000	0.657				
5	0.000	0.000	2.421				
n							

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.01, Use every 50 observation(s						
Experiment ID	σ	b	R	1		
1	0.000	0.050	0.111			
2	0.000	0.000	0.095			
3	0.309	0.599	0.494			
4	1.167	0.000	0.360	Ì		

4 1.167 0.000 0.300 5 0.000 0.000 1.504 Parameters: σ = 10, b = 8/3, R = 28

1	noise	Type:	Normal	with st.	dev.	= 0.05,	Use	every	1 obs	ervation(s)
ſ			. 115					-		1

Experiment ID	σ	ь	R
1	0.000	0.592	0.000
2	0.000	0.760	0.000
3	0.260	0.000	0.124
4	0.000	0.904	0.344
5	0.000	0.238	0.511

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.05, Use every 5 observation(s)						
Experiment ID	σ	b	R			
1	0.403	0.190	0.000			
2	0.000	1.099	0.000			
3	0.000	0.000	0.000			
4	1.659	0.851	0.000			

5 0.000 0.222 0.000

Parameters: σ = 10, b = 8/3, R = 28noise Type: Normal with st. dev= 0.05. Use every 25 obse

noise Type: Normal with st. dev.= 0.05, Use every 25 observation(s						
Experiment ID	σ	b	R	1		
1	1.496	0.000	1.261	1		
2	1.506	0.000	0.017			

noise Type: Normal v	with st. dev.:	= 0.05, Use	every 50 ob	servation(s)
Experiment ID	σ	b	R	
1	1.304	0.000	0.000	
2	0.168	0.000	0.627	
3	0.218	1.991	0.539	
4	1.474	0.000	0.000	
5	0.000	0.000	0.255	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal v	with st. dev.	= 0.1, Use e	very 1 obsei	vation(s
Experiment ID	σ	b	R	
1	0.422	0.694	0.688	
2	0.000	0.710	0.000	
3	1.353	0.000	0.566	
4	1.929	0.465	0.000	

5 0.000 0.000 0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal	with st. dev.	= 0.1, Use e	very 5 obser	vation(s
Experiment ID	σ	b	R	
1	0.492	0.000	0.000	
2	1.403	0.000	0.000	
3	0.000	0.457	0.000	
4	0.000	0.000	0.000	
5	0.150	0.840	1.022	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.1, Use every 25 observation(s)					
Experiment ID	σ	b	R		
1	2.349	0.000	0.000		
2	0.310	0.000	0.775		
3	0.000	0.000	0.046		
4	0.553	1.042	0.000		
5	1.649	0.000	0.000		

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 0.1, Use every 50 observation(s)

Experiment ID	σ	b	R
1	1.279	0.000	0.000
2	0.000	0.043	0.000
3	0.000	0.817	0.232
4	0.000	0.000	0.000
5	0.376	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal	with st. dev.	= 0.25, Use	every 1 obs	ervation(s
Experiment ID	σ	b	R	
1	0.000	0.293	0.000	
2	0.000	1.780	0.800	
3	0.817	2.621	0.000	
4	0.714	0.155	0.000	
5	0.388	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 28$

oise Type: Normal	with st. dev.	= 0.25, Use	every 5 obs	ervation(s)
Experiment ID	σ	b	R	
1	0.000	0.000	0.349	
2	2.359	0.000	0.701	
3	0.000	0.402	0.856	
4	0.567	0.000	0.168	
5	1.280	1 365	0.758	i .

noise	Type:	Normal	with st.	dev.=	0.25,	Use every	25 ob	servation(s)

Experiment ID	σ	b	R
1	0.652	0.000	0.000
2	0.000	0.278	0.000
3	0.000	0.395	0.000
4	0.000	0.000	0.915
5	0.093	0.000	0.960

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.25, Use every 50 observation(s)

Experiment ID	σ	ь	R	
1	0.329	0.000	1.360	
2	0.062	0.000	0.664	
3	0.101	0.000	0.000	
4	0.000	1.464	0.000	
5	0.000	0.000	0.000	
	- /			

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.5, Use every 1 observation(s)

σ	b	R	
0.129	0.000	0.000	
0.000	0.000	0.000	
0.179	0.601	0.000	
0.060	0.000	0.000	
0.000	1.044	0.000	
	0.000 0.179 0.060	0.129 0.000 0.000 0.000 0.179 0.601 0.060 0.000	0.129 0.000 0.000 0.000 0.000 0.000 0.179 0.601 0.000 0.060 0.000 0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 0.5, Use every 5 observ					rvation(s)
	Experiment ID	σ	b	R	

0.100	0.000	0.268	
0.000	0.137	0.000	
0.549	0.000	0.747	
0.041	0.000	0.000	
0.486	0.234	0.409	
	0.000 0.549 0.041	0.000 0.137 0.549 0.000 0.041 0.000	0.100 0.000 0.268 0.000 0.137 0.000 0.549 0.000 0.747 0.041 0.000 0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal	with st. dev.:	= 0.5, Use e	very 25 obs	ervation(s)
Experiment ID	σ	b	R]

	-		
1	0.000	0.653	0.229
2	0.000	0.411	0.000
3	1.333	0.000	0.000
4	0.020	0.000	0.000
5	0.000	0.590	0.123
- 10 1	. 0/2 D	20	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal	with st. dev.	= 0.5, Use e	very 50 obs	ervation(s)
Experiment ID	σ	b	R	
1	0.000	0.000	0.269	
2	1.942	0.000	0.000	
3	0.000	0.000	0.000	
4	1.512	0.037	0.000	

0.262 1.990 0.841

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: Normal with st. dev.= 1, Use every 1 observation(s)

Experiment ID	σ	b	R
1	1.433	0.000	0.000
2	0.230	0.000	0.946
3	0.000	0.000	0.000
4	0.000	0.402	0.856
5	0.000	0.617	0.000

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 1, Use every 5 observation(s)					
Experiment ID	σ	b	R		
1	0.000	0.000	0.979		
2	0.074	0.351	0.000		
3	0.000	0.000	0.000		
4	0.000	1.830	0.000		
5	0.061	0.700	1.467		

rarameters: $G = 10, b = 8/3, K = 28$					
noise Type: Normal v	with st. dev.:	= 1, Use eve	ery 25 obser	vation(s)	
Experiment ID	σ	b	R		
1	0.000	0.000	0.348		
2	1.100	2.005	0.000		
3	0.000	0.000	0.000		
4	0.000	0.098	1.552		
,	0.000	0.565	0.046		

5 0.000 0.567 0.246 Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 1, Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.225	0.214	0.000
2	0.000	1.371	2.943
3	0.000	0.325	0.179
4	0.211	0.000	0.705
5	0.500	0.000	0.537

noise Type: Normal v	with st. dev.	= 2, Use eve	ery 1 observ	ation(s)
Experiment ID	σ	b	R	1
1	0.547	0.719	0.000	1
2	0.000	0.000	0.000	1
3	0.000	0.997	0.000	1
4	0.015	1.209	0.000	1
5	0.000	0.000	0.000	1

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 2, Use every 5 observation(s					
Experiment ID	σ	b	R	1	
1	0.155	0.233	0.538	1	
2	0.000	0.000	0.000	1	
3	0.981	0.000	0.000	1	
4	0.000	0.063	1.212	1	
5	0.000	0.000	0.000	1	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 2, Use every 25 observation(s)					
Experiment ID	σ	b	R	1	
1	0.605	0.000	1.139	1	
2	0.000	0.000	0.000	1	
3	0.000	0.000	0.000	1	
4	0.351	1.208	0.000	1	
5	1.916	0.000	0.000	1	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: Normal with st. dev.= 2, Use every 50 observation(s)

ı	Experiment ID	σ	ь	R	
ĺ	1	0.000	0.271	0.948	1
ĺ	2	0.000	0.987	0.570	1
ĺ	3	0.000	1.106	2.719	1
ĺ	4	0.000	0.000	1.147	1
ĺ	5	0.000	0.000	2.064	1

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0, Use every 1 observation(s)

Experiment ID	σ	ь	R
1	0.000	1.379	0.000
2	1.089	0.000	1.702
3	0.000	0.000	0.000
4	1.546	0.218	0.009
5	0.000	0.375	0.273

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal v	with st. dev.:	= 0, Use eve	ry 5 observ	ation(s)
Experiment ID	σ	b	R	1
1	0.000	0.937	0.000	1
2	0.629	0.184	0.000	1
3	0.000	0.000	0.000	1
4	0.000	0.000	1.932	1
5	0.000	0.000	0.000	1

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal v	with st. dev.	= 0, Use eve	ery 25 obser	vation(s)
Experiment ID	σ	b	R	1
1	0.272	0.000	0.809	1
2	0.000	0.000	0.000	1
3	0.027	0.000	0.000	1
4	0.121	0.000	0.000	1
5	0.000	0.000	0.000	1

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0, Use every 50 observation				vation(s
Experiment ID	σ	b	R	1
1	0.000	0.000	1.474	1
2	0.317	0.000	0.000	1
3	0.265	1.155	1.470	1
4	0.000	0.000	0.365	1
5	0.000	0.000	0.000	1

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.01, Use every 1 observation(s)

Experiment ID	σ	b	R
1	0.000	0.987	0.000
2	0.000	0.000	0.000
3	0.999	0.013	0.470
4	0.000	0.096	1.395
5	1.442	0.000	1.131

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal v	with st. dev.	= 0.01, Use	every 5 obs	ervation(s)
Experiment ID	σ	b	R	
1	1.333	0.000	0.000	
2	0.696	0.000	0.240	
3	0.000	0.000	0.000	
4	0.739	0.000	0.606	
5	1.535	0.141	0.007	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal v	with st. dev.:	= 0.01, Use	every 25 ob	servation(s)
Experiment ID	σ	b	R	
1	0.072	0.000	1.530	
2	0.000	1.558	0.493	
3	0.000	0.907	0.199	
4	0.000	2.245	0.000	
5	0.000	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.01, Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.460	0.000	0.000
2	0.000	1.476	0.000
3	0.000	0.000	0.142
4	0.000	0.000	0.259
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normai v	vith st. dev.	= 0.05, Use	every 1 obs	ervation(
Experiment ID	σ	b	R	
1	0.858	0.717	0.000	
2	0.960	2.627	0.000	
3	0.467	0.000	2.365	
4	0.000	0.799	0.000	
5	1.361	0.000	0.918	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal	with st. dev.	= 0.05, Use	every 5 obse	ervation(s
Experiment ID	σ	b	R	
1	0.018	0.276	0.000	
2	0.816	0.879	0.548	
3	0.000	1.282	0.000	
4	0.000	0.000	1.073	
- 5	0.000	0.000	0.799	

noise Type: Normal with st. dev.= 0.05, Use every 25 observation(s)

Experiment ID	σ	ь	R
1	0.000	0.000	0.000
2	0.035	0.000	0.005
3	0.000	0.000	0.338
4	0.000	0.000	0.122
5	0.000	0.185	0.000
	- /		

Parameters: $\sigma = 10, b = 8/3, R = 35$

Talkinited St. G is a sum of the state of

Experiment ID		U	1
1	2.354	0.924	0.142
2	0.000	0.000	0.000
3	0.000	0.899	2.636
4	0.000	0.899	2.636
5	0.000	0.000	0.000
D - 10	0 /2 D	25	

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.1, Use every 1 observation(s)

Experiment ID	σ	ь	R
1	0.074	0.926	0.000
2	0.000	0.000	0.544
3	0.093	0.362	0.432
4	0.187	0.777	0.000
5	0.954	1.414	0.997

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal v	with st. dev.:	= 0.1, Use e	very 5 obsei	vation(s)
Experiment ID	σ	b	R	
1	0.000	1.139	0.000	
2	0.000	0.504	1.216	
3	0.032	0.920	0.000	
4	1.151	0.000	0.000	

 $\frac{7}{5}$ 0.068 0.000 0.000 Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.1, Use every 25 observation(s)

Experiment ID	σ	b	R	
1	0.000	0.000	1.621	1
2	0.000	0.000	0.857	1
3	0.000	0.359	2.951	1
4	0.000	0.000	0.000	1
5	0.000	0.000	2.307	1

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal v	with st. dev.	= 0.1, Use e	very 50 obs	ervation(:
Experiment ID	σ	b	R	
1	0.000	0.000	0.647	
2	0.000	0.000	0.173	
3	0.229	0.383	0.000	
4	0.375	0.000	1.317	
5	0.000	0.636	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

with st. dev.:	= 0.25, Use	every 1 obs	ervation(s
σ	b	R	
1.451	0.000	0.000	
0.000	0.000	0.123	
0.248	0.433	1.068	
0.571	0.000	0.000	
	σ 1.451 0.000 0.248	σ b 1.451 0.000 0.000 0.000 0.248 0.433	0.000 0.000 0.123 0.248 0.433 1.068

3	0.517	0.070	0.000		
Parameters: $\sigma = 10, b = 8/3, R = 35$					
noise Type: Normal v	with st. dev.:	= 0.25, Use	every 5 obs	ervation(s	
Experiment ID	σ	b	R		
1	0.605	0.758	0.221		
2	0.000	1.530	0.000		

 0.000
 0.000
 0.000

 0.000
 0.000
 0.000

 0.000
 0.000
 0.000

 0.994
 0.000
 2.093

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 0.25, Use every 25 observation(s)						
noise Type: Normai	with st. dev.	= 0.23, Use	every 25 00	servanon(s)		
Experiment ID	σ	b	R			
1	0.000	2.268	0.000			
2	0.000	0.000	0.000			
3	0.000	0.520	0.000			
4	0.000	0.739	0.761			

0.000 0.424 0.366 Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.25, Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.000	0.000	0.000
2	0.000	2.098	0.000
3	0.000	0.000	0.000
4	0.371	0.000	0.000
5	0.000	0.182	0.460

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal	with st. dev.:	= 0.5, Use e	very 1 obser	rvation(s)
Experiment ID	σ	b	R	
1	0.000	0.234	0.000	
2	1.394	0.000	0.000	
3	0.000	0.000	0.574	
4	0.309	0.000	0.000	
5	0.000	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

oise Type: Normal	with st. dev.:	= 0.5, Use e	very 5 obser	vation(s)
Experiment ID	σ	b	R	
1	0.126	0.000	0.000	
2	0.276	0.000	1.654	
3	0.737	2.341	0.084	
4	0.000	0.772	0.000	

noise Type: Normal with st. dev.= 0.5, Use every 25 observation(s)

Experiment ID	σ	b	R
1	0.000	0.227	0.000
2	0.048	0.000	1.542
3	0.000	0.000	0.000
4	0.000	1.416	0.168
5	0.000	0.000	0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 0.5, Use every 50 observation(s)

Experiment ID	σ	b	R	
1	0.528	0.000	1.039	
2	1.730	0.000	1.461	1
3	0.201	0.000	0.027	1
4	0.622	1.290	0.000	1
5	0.089	3.087	0.015	
	0 /0 P	25		

noise Type: Normal with st. dev.= 1, Use every 1 observation(s)

Experiment ID	σ	b	R	
1	2.034	0.000	0.692	
2	1.945	0.000	0.985	
3	0.000	0.000	0.000	
4	0.000	0.324	0.000	
5	0.861	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: Normal with st. dev.= 1, Use every 5 observation(s)
 σ
 b
 R

 0.000
 0.000
 0.669

 0.391
 0.208
 2.518

 0.000
 0.920
 0.162
 Experiment ID

0.027 1.441 1.400 1.049 0.919 0.000 Parameters: $\sigma = 10 \ h$ = 8/3 R

noise Type: Normal	with st. dev.	= 1, Use eve	ery 25 obser	vation(s)
Experiment ID	σ	b	R	
1	0.038	0.998	0.000	
2	0.000	0.931	0.620	
3	0.606	0.000	0.538	
4	0.000	1.406	0.936	
	0.000	0.267	1.200	

5 0.000 0.267 1.308 Parameters: $\sigma = 10, b = 8/3, R = 35$

1	noise Type: Normal	with st. dev.	= 1, Use eve	ery 50 obser	vation(s)
ı	Experiment ID	σ	b	R	
ı	1	0.000	0.282	0.000	1
ı	2	0.225	0.214	0.000	1
ı	3	0.000	1.705	0.210	1
ı	4	1.424	0.000	0.190	1
ı	5	0.000	0.235	1.967	1

no

oise Type: Normal v			ry 1 observ	ation(s)
Experiment ID	σ	b	R	
1	0.000	0.571	0.000	1
2	0.428	0.362	0.576	1
3	0.592	0.000	0.079	1
4	0.000	0.007	0.643	i

0.000 1.062 0.000

Parameters: $\sigma = 10, b = 8/3, R = 35$					
noise Type: Normal v	with st. dev.	= 2, Use eve	ery 5 observa	ation(s)	
Experiment ID	σ	b	R		
1	0.000	1.044	0.791		
2	0.511	0.000	1.889		
3	0.027	0.000	0.000		
4	1.236	0.000	0.087		
5	0.000	0.000	0.206		

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 2, Use every 25 observation(s)				
Experiment ID	σ	b	R	
1	0.000	0.519	0.000	
2	2.185	0.000	0.000	
3	0.000	0.000	0.000	
4	0.912	0.000	0.000	
5	1.441	0.000	0.000	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: Normal with st. dev.= 2, Use every 50 observation(s)

Experiment ID	σ	b	R
1	0.000	0.413	0.000
2	0.358	1.208	1.162
3	0.185	0.544	1.074
4	0.032	0.962	1.665
5	0.000	0.000	0.096

5.1.3 Lorenz '96

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Unform on [0,0]. Use every 1 observation

noise type. Onform on [0,0], ose every 1 observation(s)					
Experiment ID	h	с	b	F	
1	1.007	9.959	10.011	14.000	
2	0.716	12.796	8.801	13.981	
3	0.111	27.804	3.006	13.977	
4	0.223	24.096	5.157	13.881	
5	0.188	6.501	4.077	13.635	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Unform on [0,0], Use every 5 observation(s)						
Experiment ID	h	c	b	F		
1	0.404	5.084	6.267	13.586		
2	0.183	6.657	4.052	13.687		
3	0.501	5.258	7.359	13.690		
4	0.213	5.782	4.249	13.659		
5	0.136	27.812	3.959	13.928		

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type. Circum on [0,0], ose every 25 observation(s)						
Experiment ID	h	с	b	F		
1	0.116	29.779	3.222	13.980		
2	0.157	8.324	4.079	13.756		
3	0.565	15.336	7.679	13.966		
4	0.432	5.307	6.262	13.594		
5	1.036	9.838	9.994	14.025		

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Unform on [0,0], Use every 30 observation(s)								
Experiment ID	h	с	b	F				
1	0.167	5.904	3.459	13.641				
2	0.108	10.939	2.585	13.741				
3	0.414	6.278	6.453	13.717				
4	0.152	26.915	4.235	13.890				
5	0.230	6.178	5.379	13.670				

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Unform on [-0.25, 0.25], Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.150	33.799	3.870	14.000	
2	0.116	26.084	2.583	13.869	
3	0.128	25.235	3.201	13.714	
4	0.402	17.255	6.370	13.584	
5	0.155	24.293	3.812	13.915	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Unform on [-0.25, 0.25], Use every 5 observation(s)

Experiment ID	h	с	b	F	
1	0.072	19.349	1.887	13.991	
2	0.430	7.399	5.888	14.553	
3	0.135	13.496	2.840	13.927	
4	0.230	27.778	4.180	14.158	
5	0.543	11.583	8.510	13.759	
Parameters: $h = 1$, $c = 10$, $h = 10$, $F = 14$, $I = 4I = 4$					

noise Type: Unform on [-0.25, 0.25], Use every 25 observation(s)

21			,	
Experiment ID	h	с	b	F
1	0.084	17.943	2.229	14.183
2	0.093	18.731	2.222	13.589
3	0.080	26.975	2.328	13.491
4	0.154	23.234	3.910	13.746
5	0.100	23.264	2.689	13.936

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Onform on [0.25, 0.25], Ose every 50 observation(s)					
Experiment ID	h	с	b	F	
1	0.532	13.463	7.863	14.341	
2	0.240	10.424	7.121	14.325	
3	0.106	15.701	2.519	13.547	
4	0.233	25.224	4.801	14.099	
5	0.084	23.930	2.112	13.934	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type. Cinorii on [-1,1], Ose every 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.023	27.288	0.608	14.460	
2	0.604	14.037	6.108	15.527	
3	0.035	26.367	0.805	12.343	
4	0.841	14.974	5.905	16.229	

noise Type: Unform on [-1,1], Use every 5 observation(s)					
Experiment ID	h	с	b	F	
1	0.444	28.821	4.339	14.935	
2	0.444	28.821	4.339	14.935	
3	1.044	11.688	6.371	12.309	
4	0.006	21.649	0.329	10.188	
	0.190	24.256	2.504	12 557	

5 0.189 34.356 3.594 13.557 Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Unform	on [−1,1], U	Jse every 25	observation((s)
Experiment ID	h	с	b	F
1	0.206	47.003	3.709	11.685
2	0.889	12.023	5.942	16.278
3	0.272	41.118	3.812	14.998
4	0.269	27.382	4.470	14.831
5	0.082	55.034	1.097	18.670

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Unform on [-1,1], Use every 50 observation(s)

Experiment ID	h	с	b	F
1	0.048	21.993	1.191	10.552
2	0.138	30.749	2.779	13.382
3	0.059	35.284	1.225	13.891
4	0.059	35.284	1.225	13.891
5	0.088	49.045	1.704	14.757

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type. Cinomi on [2,2], eseevery 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.531	19.850	5.329	13.684	
2	2.126	14.844	7.840	11.845	
3	0.271	43.965	2.402	23.656	
4	1.099	14.213	8.254	10.477	
5	0.948	16.192	8.912	12.948	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type. Unform on [-2,2], Ose every 5 observation(s)					
Experiment ID	h	С	b	F	
1	0.499	35.878	3.803	20.394	
2	0.166	38.702	1.716	12.048	
3	1.043	14.940	6.440	17.135	
4	0.307	38.406	2.733	16.310	
5	1.053	10.927	6.068	15.521	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Unform on [-2, 2], Use every 25 observation(s)

manage Types a manage	[=,=], .			
Experiment ID	h	С	b	F
1	0.041	31.907	0.967	13.479
2	1.099	12.645	5.472	15.889
3	1.766	14.214	5.378	16.702
4	0.070	49.563	0.876	14.857
5	0.142	52.299	1.687	18.830
Parameters: $h = 1, c = 10, b = 10, F = 14, I = 4J = 4$				
noise Type: Unform on [-2,2], Use every 50 observation(s)				

noise Type: Unform on [-2,2], Use every 50 observation(s)					
Experiment ID	h	с	b	F	
1	1.321	14.943	7.079	15.731	
2	0.191	27.253	1.614	16.812	
3	0.045	38.834	0.531	20.886	
4	1.252	16.145	4.915	17.873	
5	0.147	30.239	1.600	15.864	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Unform on [-3, 3], Use every 1 observation(s)

Experiment ID	h	С	b	F
1	1.440	15.294	6.048	10.671
2	0.683	24.935	3.196	21.426
3	1.062	13.887	3.815	15.994
4	0.145	32.644	1.167	16.930
5	0.441	19.959	2.713	16.053

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Unform	on [−3,3], U	se every 5 of	bservation(s	.)
Experiment ID	h	С	b	F
1	1.521	14.427	5.197	14.346
2	0.470	20.396	2.219	19.601
3	0.690	21.510	2.731	21.820
4	0.021	41.180	0.221	16.131
5	0.034	28.214	0.247	16.113

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Unform on [-3, 3] Use every 25 observati

Experiment ID	h	с	b	F
1	1.484	12.092	6.667	11.663
2	2.615	8.759	6.309	10.730
3	1.715	11.097	3.761	13.261
4	2.022	11.045	5.607	10.893
5	0.769	9.943	2.669	13.999

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Unform	on [-3,3], U	Jse every 50	observation((s)
Experiment ID	h	с	b	F
1	1.142	17.845	5.649	18.291
2	1.711	15.995	7.548	16.544
3	1.310	12.210	3.759	17.865
4	2.197	11.975	5.732	14.509
5	0.107	32.158	0.877	14.069

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Unform on [-4,4], Use every 1 observation(s)				
Experiment ID	h	С	b	F
1	1.325	15.633	4.705	13.415
2	0.979	25.639	4.436	18.708
3	1.470	11.331	5.340	12.563
4	3.009	15.454	6.554	15.847

5 1.277 20.931 4.818 27.737 Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Unform on [-4,4], Use every 5 observation(s)				
Experiment ID	h	С	b	F
1	0.018	26.975	0.100	22.855
2	0.329	39.186	2.446	17.256
3	2.982	12.535	11.275	18.205
4	2.059	11.594	7.432	10.875
5	2.524	12.733	5.783	9.397

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

I	ioise Type: Unform	on [-4,4], t	se every 25	observation	(S)
ſ	Experiment ID	h	С	b	F
	1	0.116	32.468	0.657	23.587
ľ	2	1.389	14.530	3.983	18.789
ľ	3	2.584	12.876	5.954	7.952
I	4	0.205	19.499	1.185	16.207
ſ	5	1.256	27.318	5.153	14.632

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Unform on [-4, 4], Use every 50 observation(s)

Experiment ID	h	С	b	F
1	1.835	12.739	5.490	14.026
2	1.065	13.739	4.748	9.558
3	0.071	43.456	0.404	30.274
4	2.224	8.908	3.660	7.551
5	0.019	21.719	0.081	19.856

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

ionse Type: emorim on [5,5], ese every 1 observation(s)				
Experiment ID	h	с	b	F
1	3.521	17.906	10.432	12.441
2	1.705	9.953	3.790	6.392
3	1.531	9.110	2.586	11.549
4	1.490	12.008	5.555	11.267
5	2.751	8.028	4.734	2.933

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

ioise Type. Unform on [-5,5], Use every 5 observation(s)				
Experiment ID	h	С	b	F
1	3.316	8.335	6.178	6.572
2	1.050	18.539	4.033	16.155
3	2.003	12.280	3.999	13.460
4	1.992	8.384	2.997	6.811
5	2.821	13.072	7.781	11.051

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Unform on [-5,5], Use every 25 observation(s)

Experiment ID	h	С	b	F
1	0.132	25.253	0.734	21.213
2	2.383	11.625	4.697	8.556
3	0.193	25.111	1.105	17.337
4	2.292	10.843	4.457	9.524
5	2.309	8.032	3.834	8.428

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Unform on [-5, 5]. Use every 50 observat

noise type. Cinotin on [3,5], ese every 50 observation(s)				
Experiment ID	h	с	b	F
1	1.411	7.742	2.521	13.074
2	3.175	11.820	7.344	10.725
3	0.215	19.996	0.861	21.006
4	2.204	9.091	5.934	9.592
5	2.067	6.332	2,750	7.215

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

Experiment ID h c b F				
h	с	b	F	
0.064	37.961	2.132	13.892	
0.295	19.508	6.139	13.912	
0.201	29.474	5.108	14.012	
	h 0.064 0.295	h c 0.064 37.961 0.295 19.508	h c b 0.064 37.961 2.132 0.295 19.508 6.139	

noise Type: Unform on [0,0], Use every 5 observation(s)				
Experiment ID	h	с	b	F
1	0.451	14.767	7.563	13.979
2	0.142	29.603	4.078	13.959
3	0.072	39.573	2.500	13.961
4	0.991	10.050	9.958	14.073
	0.056	10.000	0.050	12.025

5 0.956 10.266 9.872 13.937 Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [0,0], Use every 25 observation(s)

ioise Type. Cinomi on [0,0], ese every 25 observation(s)				
Experiment ID	h	С	b	F
1	0.097	33.650	3.103	13.990
2	0.160	29.922	4.236	14.048
3	0.303	19.202	6.287	13.924
4	0.043	34.479	1.442	13.886
5	0.546	15.140	8.364	13.981

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

noise Type: Uniform on [0,0], Use every 50 observation(s)				
Experiment ID	h	С	b	F
1	0.063	28.875	1.839	13.935
2	0.054	37.748	1.795	14.002
3	0.016	32.506	0.576	13.855
4	1.000	9.999	10.000	14.000
5	0.020	36.037	0.705	13.819

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

noise Type. Omorini	JII [-0.25,0	1.25], USE EVE	iy i obsciva	ation(s)
Experiment ID	h	с	b	F
1	0.204	23.665	4.871	13.789
2	0.191	25.770	4.084	14.091
3	0.086	34.213	2.640	13.669
4	0.035	28.166	1.221	13.567
5	0.269	18.561	5.189	14.077

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

noise Type: Unform	on [-0.25,0	0.25], Use eve	ery 5 observ	ation(s)
Experiment ID	h	с	b	F
1	0.062	35.223	2.121	13.877
2	0.160	27.664	3.389	14.144
3	0.252	21.636	4.867	14.054
4	0.162	27.505	4.199	13.766
5	0.122	33.095	3.444	13.684

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

noise Type: Unform on [-0.25, 0.25], Use every 25 observation(s)				
Experiment ID	h	С	b	F
1	0.458	13.908	6.609	13.851
2	0.114	33.771	3.318	13.988
3	0.176	27.356	3.946	14.079
4	0.225	15.187	4.750	13.990
5	0.247	23.419	5.786	13.833

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-0.25, 0.25], Use every 50 observation(s)

Experiment ID	h	С	b	F
1	0.075	30.612	2.463	13.827
2	0.439	15.343	7.380	14.024
3	0.190	23.824	4.386	13.667
4	0.118	30.259	3.446	13.982
5	0.201	24.998	4.768	14.151

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-1, 1], Use every 1 observation(s)

noise type. Chrom on [1,1], ose every 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.165	46.826	4.010	13.955	
2	0.033	28.073	1.504	12.689	
3	0.195	29.962	3.409	14.101	
4	0.104	27.743	2.164	13.417	
5	0.012	37.450	0.290	13.720	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-1, 1]. Use every 5 observation(s)

Experiment ID	h	С	b	F	
1	0.140	39.850	2.931	14.877	
2	0.065	31.495	2.383	13.211	
3	0.141	39.160	4.173	14.572	
4	0.062	34.611	1.549	14.724	
5	0.324	36.662	4.917	14.526	
		Experiment ID h 1 0.140 2 0.065 3 0.141 4 0.062	Experiment ID h c 39.850 1 0.140 39.850 2 0.065 31.495 3 0.141 39.160 4 0.062 34.611	Experiment ID h c b 1 0.140 39.850 2.931 2 0.065 31.495 2.383 3 0.141 39.160 4.173 4 0.062 34.611 1.549	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-1, 1], Use every 25 observation(s)

Experiment ID	h	с	b	F
1	0.652	16.783	4.846	16.546
2	0.094	40.096	2.061	15.922
3	0.098	43.688	1.893	15.566
4	0.147	29.939	2.408	13.799
5	0.145	39.212	2.044	13.900

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-1, 1]. Use every 50 observation(s)

noise Type. Unform on [-1,1], Use every 50 observation(s)				
Experiment ID	h	с	b	F
1	0.210	27.285	3.321	15.632
2	0.130	40.629	2.815	13.863
3	0.111	32.272	2.807	12.519
4	0.090	29.018	2.211	14.166
5	0.083	36.626	2.663	13.372

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

noise Type: Uniform on [-2,2], Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	1.442	13.972	6.212	13.417	
2	0.848	24.447	5.611	16.810	
3	2.016	11.546	7.873	12.758	
4	0.622	13.731	4.210	15.579	
5	0.414	20.113	2.561	16.491	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

noise Type: Unform on [-2,2], Use every 5 observation(s)					
Experiment ID	h	с	b	F	
1	0.114	22.830	1.022	13.121	
2	0.598	17.491	4.855	14.909	
3	0.109	24.467	0.964	14.599	
4	3.013	12.525	8.372	14.970	
5	1.156	11.906	5.377	16.251	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-2,2], Use every 25 observation(s)

Experiment ID	h	с	b	F	
1	0.468	13.577	4.370	13.353	
2	0.548	30.905	6.572	15.277	
3	0.522	13.699	3.055	11.880	
4	3.258	9.883	9.141	13.699	
5	0.781	20.394	4.972	14.779	
Parameters: $h = 1$ $c = 10$ $h = 10$ $F = 14$ $I = 8I = 4$					

noise Type: Unform on [-2,2], Use every 50 observation(s)

Experiment ID	h	с	b	F
1	0.057	41.356	1.033	14.967
2	0.082	22.710	0.676	16.882
3	0.657	17.800	7.405	12.708
4	0.075	51.118	1.029	16.746
5	0.976	14.398	5.631	12.046

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on $\begin{bmatrix} -3 & 3 \end{bmatrix}$ Use every 1 observation(s

noise Type. Unform on [-3,3], Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	2.261	18.612	7.677	16.961	
2	0.669	12.553	2.146	12.934	
3	1.113	16.278	6.711	11.301	
4	0.619	15.734	2.767	15.195	
5	3.447	17.188	10.459	14.842	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-3, 3]. Use every 5 observation(

noise type: ofform on [5,5], ose every 5 observation(s)					
Experiment ID	h	с	b	F	
1	1.625	11.705	4.903	15.236	
2	0.968	9.137	2.269	16.639	
3	0.053	32.758	0.623	14.419	
4	0.058	36.429	0.894	13.227	
5	0.172	18.903	1.221	13.113	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

noise Type: Unform on [-3,3], Use every 25 observation(s)					
Experiment ID	h	С	b	F	
1	1.068	21.031	6.507	9.814	
2	1.578	17.836	6.867	15.040	
3	1.578	17.836	6.867	15.040	
4	0.114	28.955	0.921	15.273	
5	1.490	12.206	4.392	12.776	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-3,3], Use every 50 observation(s)

Experiment ID	h	С	b	F
1	0.779	15.415	3.322	11.350
2	3.179	12.057	7.638	16.060
3	1.500	16.664	8.889	15.722
4	3.500	10.071	6.651	10.697
5	1.035	12.873	3.716	15.069

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-4, 4], Use every 1 observation(s)

>,,,					
Experiment ID	h	с	b	F	
1	3.083	13.484	7.238	13.402	
2	1.724	15.795	4.629	16.023	
3	1.775	12.074	4.478	9.870	
4	4.336	16.536	9.489	11.490	
5	0.307	25.308	1.490	19.441	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-4, 4], Use every 5 observation(s)

noise Type: emorim on [1, 1], ese every 5 observation(s)					
Experiment ID	h	С	b	F	
1	3.036	13.856	9.183	16.544	
2	0.149	43.502	1.176	18.066	
3	3.061	13.479	8.913	12.281	
4	0.056	32.213	0.391	13.774	
5	2.003	13.916	5.672	12.008	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-4, 4], Use every 25 observation(s)

Experiment ID	h	С	b	F
1	1.124	13.162	4.630	15.004
2	3.033	11.989	5.936	10.599
3	0.043	46.163	0.485	11.931
4	1.621	16.773	5.177	15.955
5	1.066	18.779	4.044	17.886

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4noise Type: Unform on [-4, 4]. Use every 50 observation(s

noise type. Omorni on [4,4], ose every 50 observation(s)				
Experiment ID	h	с	b	F
1	3.862	12.611	6.109	10.357
2	2.065	8.266	4.529	9.654
3	1.381	11.434	3.012	9.826
4	0.176	31.880	1.127	16.545
5	2.020	12.246	5.622	12.826

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

noise Type: Unform on [-5,5], Use every 1 observation(s)					
Experiment ID	h	С	b	F	
1	1.549	14.933	3.876	12.132	
2	1.293	11.771	2.770	12.610	
3	2.751	12.486	4.575	11.014	
4	3.149	9.937	4.920	10.226	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

noise Type: Unform	on [−5,5], t	se every 5 of	bservation(s)
Experiment ID	h	С	b	F
1	0.111	33.748	0.623	16.603
2	1.795	11.380	2.543	4.808
3	3.450	9.489	4.248	6.149
4	2.741	12.093	4.351	11.811
5	2.075	11.536	5.466	8.114

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

Experiment ID h c b F	noise Type: Unform on [-5,5], Use every 25 observation(s)					
1 1814 11501 4.043 9.418	Experiment ID	h	С	b	F	
1 1.014 11.501 4.045 2.410	1	1.814	11.501	4.043	9.418	
2 1.879 11.021 3.799 5.851	2	1.879	11.021	3.799	5.851	
3 1.759 13.095 5.054 11.526	3	1.759	13.095	5.054	11.526	
4 3.489 11.940 6.865 12.672	4	3.489	11.940	6.865	12.672	
5 0.262 18.093 1.187 14.906	5	0.262	18.093	1.187	14.906	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 8J = 4

ioise Type: Unform on [-5,5], Use every 50 observation(s)				
Experiment ID	h	с	b	F
1	1.203	9.992	4.724	8.026
2	2.259	11.121	4.938	8.999
3	3.506	12.829	7.359	12.328
4	2.049	11.704	5.277	7.877
5	3.471	11.555	7.580	12.488

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

oise Type: Unform on [0,0], Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.049	33.115	1.488	13.924	
2	0.104	31.318	3.112	13.870	
3	0.104	31.318	3.112	13.870	
4	0.104	31.318	3.112	13.870	
5	0.077	37.578	2.665	13.965	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [0,0], Use every 5 observation(s

ionse Type: emorim on [o, o], ese every 5 observation(s)					
Experiment ID	h	С	b	F	
1	0.353	18.361	6.522	13.981	
2	0.375	17.835	7.079	13.892	
3	0.998	10.025	9.988	13.953	
4	0.719	11.948	8.960	13.950	
5	0.457	14.358	8.323	13.936	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Unform	on [0,0], Us	e every 25 ob	servation(s))
Experiment ID	h	С	b	F
1	0.565	14.102	8.009	13.967
2	0.306	20.735	6.797	14.020
3	0.490	14.526	7.834	13.967
4	0.050	30.393	1.550	13.944
5	0.110	35.103	3.422	13.970

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [0,0], Use every 50 observation(s)

Experiment ID	h	с	b	F
1	0.152	27.731	4.226	13.917
2	0.796	11.296	9.186	13.958
3	0.038	35.298	1.182	14.008
4	0.212	27.117	5.179	13.964
5	0.182	26.311	4.900	13.974

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10I = 4noise Type: Unform on [-0.25, 0.25], Use every 1 observation(s)

Experiment ID	h	с	b	F
1	0.270	19.904	5.849	13.800
2	0.097	31.976	2.774	13.979
3	0.097	31.976	2.774	13.979
4	0.006	27.787	0.183	13.991
5	0.165	28.241	4.019	13.961

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

ionse Type. Cinomi on [0.25, 0.25], ese every 5 observation(s)					
Experiment ID	h	С	b	F	
1	0.438	15.074	7.217	13.974	
2	0.081	32.355	2.565	13.808	
3	0.063	32.392	1.731	14.152	
4	0.238	19.936	5.726	13.638	
5	0.071	39.179	2.339	13.954	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Cinomi on [0.25,0.25], Ose every 25 observation(5)				
Experiment ID	h	с	b	F
1	0.373	15.491	6.489	14.104
2	0.082	36.951	2.451	13.876
3	0.065	39.098	2.242	13.940
4	0.050	37.958	1.605	13.779

 $\frac{4}{5}$ 0.335 | 17.133 | 6.279 | 13.643 | Parameters: h = 1, c = 10, b = 10, F = 14, I = 10I = 4 noise Type: Unform on [-0.25, 0.25], Use every 50 observation(s)

loise Type. Unform on [-0.25,0.25], Use every 50 observation(s)					
Experiment ID	h	С	b	F	
1	0.031	22.904	0.987	13.942	
2	0.035	25.341	1.178	13.589	
3	0.027	31.727	0.773	13.879	
4	0.109	28.261	3.622	13.963	
5	0.114	28.633	3.803	13.496	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

oise Type: Unform on [-1,1], Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.053	23.911	1.526	14.566	
2	0.120	40.663	3.018	14.050	
3	0.119	32.906	2.232	12.769	
4	0.772	17.275	6.017	13.138	

5 0.366 26.001 5.394 13.590

Parameters: h = 1,c = 10,b = 10,F = 14,I = 10J = 4

noise Type: Unform on [-1,1]. Use every 5 observation(s)

noise Type: Unionii on [-1,1], Use every 3 observation(s)					
Experiment ID	h	с	b	F	
1	0.097	26.771	2.596	13.538	
2	0.029	20.537	0.357	13.433	
3	0.068	38.016	1.589	14.616	
4	0.202	25.891	3.701	13.290	
5	0.281	26.227	4.578	13.624	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [-1, 1]. Use every 25 observation

noise Type. Cinomi.	[.,.], .	300 CTC1 23 .	ooser ration,	.9)
Experiment ID	h	С	b	F
1	0.098	23.619	1.863	13.383
2	0.388	15.198	4.457	12.899
3	0.163	31.781	3.052	14.141
4	0.106	45.492	2.615	14.439
5	0.033	43.373	0.764	14.405

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Uniorm	on [-1,1], t	se every 50	observation((S)
Experiment ID	h	с	b	F
1	0.878	11.765	7.466	13.746
2	0.063	40.146	1.450	14.146
3	0.063	40.146	1.450	14.146
4	0.063	40.146	1.450	14.146
5	0.080	39 668	1 718	13.613

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

ioise Type. Cinomi on [2,2], Ose every 1 observation(s)				
Experiment ID	h	с	b	F
1	0.077	31.900	1.109	14.586
2	0.979	13.578	3.919	16.642
3	0.355	24.127	2.885	16.481
4	0.355	24.127	2.885	16.481
5	0.355	24.127	2.885	16.481

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Unform on [-2,2], Use every 5 observation(s)					
Experiment ID	h	с	b	F	
1	0.183	33.361	4.097	11.721	
2	0.144	31.308	1.317	14.249	
3	1.099	17.209	6.071	11.615	
4	0.399	39.371	4.077	15.550	
5	0.553	16.683	3.062	16.664	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [-2, 2], Use every 25 observation(s)

noise Type: Unform on [-2,2], Use every 25 observation(s)					
Experiment ID	h	с	b	F	
1	0.170	43.005	2.224	15.322	
2	0.592	17.004	4.132	15.461	
3	0.091	42.126	1.314	15.354	
4	0.033	32.042	0.439	12.605	
5	0.024	41.868	0.670	13.308	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4 noise Type: Unform on [-2,2], Use every 50 observation(s)

Experiment ID	h	с	b	F	
1	0.391	13.721	4.977	14.999	
2	0.066	39.141	0.838	13.409	
3	0.264	35.812	3.652	16.141	
4	0.188	33.939	3.412	15.371	
5	0.188	33.939	3.412	15.371	
Parameters: $h = 1, c = 10, b = 10, F = 14, I = 10J = 4$					
noise Type: Unform on [-3,3], Use every 1 observation(s)					
Experiment ID	h	c	h	F	

Experiment ID	h	с	b	F
1	0.146	32.325	1.465	14.659
2	0.441	15.445	2.269	13.188
3	0.619	18.042	3.693	12.601
4	0.611	35.106	3.936	16.044
5	1.329	18.831	5.046	15.048

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [-3, 3]. Use every 5 observation

noise Type: emoint on [5,5], ese every 5 observation(s)					
Experiment ID	h	с	b	F	
1	0.913	18.496	4.093	17.356	
2	1.681	13.599	5.592	16.393	
3	1.076	16.848	4.427	17.456	
4	1.249	12.560	3.494	14.473	
5	1.153	15.142	5.624	12.878	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [-3,3], Use every 25 observation(s)

Experiment ID	h	с	b	F
1	1.342	15.635	4.459	9.718
2	0.064	38.851	0.716	17.633
3	0.995	17.411	4.098	16.958
4	1.193	14.382	4.482	17.365
5	1.193	14.382	4.482	17.365

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [-3, 3]. Use every 50 observation

noise Type. Cinomi on [5,5], Ose every 50 observation(s)					
Experiment ID	h	с	b	F	
1	4.229	14.231	10.535	19.773	
2	0.748	17.888	3.504	14.021	
3	0.081	27.905	0.640	16.818	
4	1.883	13.971	6.189	13.641	
5	0.117	30,060	0.843	14.235	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Unform on [-4,4], Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	1.644	17.413	6.184	15.214	
2	1.328	13.228	4.148	13.537	
3	2.664	15.193	7.208	15.503	
4	1.497	18.970	4.437	15.481	
5	1.294	12.324	3.630	13.362	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [-4,4], Use every 5 observation(s)

Experiment ID	h	с	b	F
1	3.821	11.521	7.123	9.174
2	1.356	15.980	4.567	15.436
3	0.596	20.845	2.413	16.390
4	1.291	11.822	3.996	13.923
5	0.697	23.208	3.416	14.883

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [-4,4], Use every 25 observation(s)

Experiment ID	h	с	b	F	
1	0.107	27.811	0.783	15.096	
2	1.320	10.734	3.171	8.976	
3	0.391	24.370	2.469	22.308	
4	2.277	9.700	4.631	11.705	
5	0.420	24.282	1.903	18.743	
Parameters: $h = 1, c = 10, b = 10, F = 14, I = 10J = 4$					

noise Type: Unform on [-4,4], Use every 50 observation(s)

Experiment ID	h	С	b	F
1	0.003	36.058	0.033	13.003
2	2.431	13.231	6.723	11.253
3	3.043	13.324	8.098	6.469
4	2.498	9.075	4.241	10.226
5	0.646	22.551	2.862	18.958

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [-5,5], Use every 1 observation(s)

2.646	11.256	5.192	7.168
2.328	16.247	4.956	14.674
2.049	11.667	3.569	13.109
4.546	19.068	9.896	14.979
0.130	38.135	1.093	17.677
	2.328 2.049 4.546	2.328 16.247 2.049 11.667 4.546 19.068 0.130 38.135	2.328 16.247 4.956 2.049 11.667 3.569 4.546 19.068 9.896 0.130 38.135 1.093

neters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4Type: Unform on [-5,5], Use every 5 observation

noise Type: Cinorin on [5,5], ose every 5 observation(s)					
Experiment ID	h	c	b	F	
1	2.374	13.225	4.606	11.189	
2	2.518	15.094	5.095	13.337	
3	3.072	14.315	6.263	15.380	
4	0.233	18.237	0.735	16.988	
5	3.140	14.174	7.237	14.817	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Unform on [-5,5], Use every 25 observation(s)					
Experiment ID	h	с	b	F	
1	0.432	17.378	1.915	10.701	
2	0.515	19.563	2.288	15.553	
3	2.284	15.464	4.779	13.091	
4	2.766	11.944	5.953	13.439	
5	0.423	14.014	1.177	15.674	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Unform on [-5,5], Use every 50 observation(s)

Experiment ID	h	с	b	F
1	4.323	10.684	5.455	8.488
2	2.325	16.811	6.370	16.263
3	2.325	16.811	6.370	16.263
4	2.325	16.811	6.370	16.263
5	0.781	20.609	3.550	18.385

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Unionii on [0,0], Use every 1 observation(s)					
Experiment ID	h	С	b	F	
1	0.137	33.161	3.953	13.998	
2	0.170	26.111	4.495	13.982	
3	0.151	28.673	4.017	13.983	
4	0.151	28.673	4.017	13.983	
5	0.151	28.673	4.017	13.983	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [0,0]. Use every 5 observation(s

noise Type: Cinoriii on [0,0], ese every 5 observation(s)						
Experiment ID	h	С	b	F		
1	0.593	13.828	8.312	13.958		
2	0.535	13.754	7.959	13.973		
3	0.260	22.166	5.835	13.993		
4	0.260	22.166	5.835	13.993		
5	0.260	22.166	5.835	13.993		

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [0,0], Use every 25 observation(s)

Experiment ID	h	С	b	F	
1	0.168	27.371	4.335	13.989	
2	0.204	22.762	5.075	13.998	
3	0.056	37.015	1.770	14.009	
4	0.552	13.426	7.849	14.042	

ioise Type: Uniorin on [0,0], Use every 30 observation(s)						
Experiment ID	h	С	b	F		
1	0.619	13.206	8.498	13.959		
2	0.144	26.814	3.835	13.999		
3	0.270	18.984	5.891	13.942		
4	0.270	18.984	5.891	13.942		
5	0.194	25.052	4.682	13.988		

Parameters: h = 1 c = 10 h = 10 F = 14 I = 15 I = 4

noise Type: Unform on [-0.25, 0.25], Use every 1 observation(s)						
Experiment ID h c b F						
1	0.189	25.220	4.283	13.946		
2	0.265	21.672	5.410	13.715		
3	0.287	19.367	5.316	13.979		
5	0.414	15 200	6.896	14 210		

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

ioise Type. Cinomi on [0.25, 0.25], Ose every 5 observation(s)				
Experiment ID	h	С	b	F
1	0.146	33.857	3.532	14.131
2	0.296	17.027	6.274	13.724
3	0.042	25.081	1.223	14.105
4	0.114	30.980	3.562	13.808
5	0.129	32.866	3.361	13.972

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-0.25, 0.25], Use every 25 observation(s)

Experiment ID	h	С	b	F
1	0.234	22.731	5.513	14.207
2	0.058	31.893	1.745	13.753
3	0.178	28.466	4.503	13.894
4	0.143	27.914	3.470	14.091
5	0.296	20.566	5.929	14.020

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-0.25, 0.25]. Use every 50 obs

noise Type. Unform on [0.25, 0.25], ose every 50 observation(s)				
Experiment ID	h	С	b	F
1	0.089	33.245	2.557	13.982
2	0.197	25.927	4.531	13.817
3	0.053	38.013	1.632	13.981
4	0.076	32.768	2.330	13.739
	0.022	20.622	0.625	12 060

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

ioise Type: Unform on [-1,1], Use every 1 observation(s)				
Experiment ID	h	С	b	F
1	0.019	31.868	0.496	13.744
3	0.038	36.025	0.805	13.958
4	0.142	38.036	3.181	13.858
5	0.170	45.145	6.125	13.494

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-1, 1], Use every 5 observation(s)

Experiment ID	h	С	b	F
1	0.150	29.802	3.503	13.561
2	0.166	24.309	4.464	13.550
3	0.074	29.434	1.729	14.255
4	0.052	30.509	1.324	14.393
5	0.305	26.557	4.209	15.731

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [=1, 1]. Use every 25 observation(s)

yp (-,-),				
Experiment ID	h	С	b	F
1	0.145	42.949	3.260	13.505
2	0.058	30.907	1.470	13.458
3	0.083	38.782	2.098	13.257
4	0.172	35.685	3.074	13.965
5	0.068	39 899	1.712	14 179

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-1,1], Use every 50 observation(s)

Experiment ID	h	с	b	F
1	0.086	40.794	1.828	14.206
2	0.190	36.385	4.217	13.819
3	0.087	35.637	1.817	14.287
4	0.221	24.368	4.257	13.622
5	0.275	22.410	4.447	13.836

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-2, 2], Use every 1 observation(s)

)F					
Experiment ID	h	С	b	F	
1	1.020	17.143	5.296	13.664	
2	1.365	12.419	9.101	11.810	
3	0.229	21.329	2.307	12.976	
4	0.229	21.329	2.307	12.976	
5	0.229	21.329	2.307	12.976	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-2, 2], Use every 5 observation(s)

Experiment ID	h	С	b	F
1	0.059	30.455	0.681	11.983
2	0.550	20.029	4.347	14.268
3	0.966	19.225	4.360	16.546
4	3.719	9.746	8.960	13.275
5	1.324	14.827	5.627	15.255

5 | 1.324 | 14.827 | 5.627 | Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4 noise Type: Unform on [-2,2], Use every 25 observation(s)

Experiment ID	h	с	b	F
1	0.309	20.022	2.560	14.370
2	0.796	17.596	5.557	13.689
3	0.118	34.403	1.244	14.177
4	0.796	18.844	5.175	13.568
5	0.304	35 141	3 117	15 952

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-2, 2], Use every 50 observation(s)

noise Type: Cinomi on [2,2], ose every 50 observation(s)				
Experiment ID	h	с	b	F
1	0.103	26.430	1.256	13.441
2	0.077	42.766	1.168	15.026
3	0.369	28.669	5.543	14.207
4	2.040	12.399	8.921	12.946
5	1.159	16.498	7.292	12.082

Parameters: h = 1, c = 10, F = 14, I = 15J = 4

oise Type: Unform on [-3,3], Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	1.102	18.729	5.188	16.241	
2	0.989	15.954	3.892	17.485	
3	1.568	17.295	6.113	15.842	
4	0.806	12.900	3.474	15.809	
	1.001	11000	0.605	15.005	

noise Type: Unform on [-3,3], Use every 5 observation(s)					
Experiment ID	h	с	b	F	
1	0.333	17.653	2.077	13.378	
2	2.586	15.011	8.468	12.183	
3	2.586	15.011	8.468	12.183	
4	1.333	14.790	3.891	14.398	
- 5	2 297	12 797	9 1/15	14 271	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Unform on [-3,3], Use every 25 observation(s)				
Experiment ID	h	С	b	F
1	0.089	23.910	0.653	13.422
2	3.372	15.919	8.969	14.443
4	0.384	22.991	2.480	16.562
-	0.000	12 1 10	1.055	15 161

Experiment ID	h	С	b	F	
1	2.686	13.377	6.952	15.444	
2	1.032	14.953	3.857	15.219	
3	1.854	13.413	5.557	14.224	
4	1.092	16.998	5.891	15.253	
-	0.130	25.460	0.055	15 111	

,,,					
Experiment ID	h	С	b	F	
1	2.061	13.744	6.209	14.286	
2	1.684	12.177	4.321	9.017	
3	2.957	14.195	7.108	15.961	
4	2.036	11.353	4.717	7.239	
5	2.036	11.353	4.717	7.239	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Unform on [-4,4], Use every 5 observation(s)					
Experiment ID	h	С	b	F	
1	0.163	25.403	0.995	15.541	
2	4.831	13.798	9.265	14.124	
3	1.797	12.993	5.431	13.568	
4	2.001	11.372	4.026	13.129	

noise Type: Unform on [-4,4], Use every 25 observation(s)					
Experiment ID h c b F					
1	2.598	13.982	6.221	11.838	
2	0.398	20.025	1.643	15.039	
3	2.356	12.248	4.820	9.159	
4	3.349	13.931	8.446	14.447	
5	1 503	10.003	4.456	16 107	

Experiment ID	h	с	b	F
1	2.326	15.894	5.018	12.462
2	2.431	10.746	5.707	11.135
3	2.431	10.746	5.707	11.135
4	0.107	34.115	0.658	18.138
5	2.325	10.492	5.169	10.631

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-5,5], Use every 1 observation(s)

,,,					
Experiment ID	h	с	b	F	
1	2.217	15.852	5.596	11.452	
2	2.487	9.820	4.123	4.818	
3	2.468	11.904	4.908	11.028	
4	2.468	11.904	4.908	11.028	
5	2.468	11.904	4.908	11.028	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-5, 5] Use every 5 observation(s)

noise Type: Cinom on [3,5], Ose every 5 observation(5)					
Experiment ID	h	с	b	F	
1	1.567	15.308	3.685	12.438	
2	3.036	15.489	5.618	12.055	
3	4.584	12.849	8.348	12.612	
4	2.754	13.571	6.504	11.831	
5	1.220	16.363	2.907	12.608	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Unform on [-5,5], Use every 25 observation(s)

Experiment ID	h	с	b	F
1	3.026	14.234	5.499	12.692
2	2.680	13.721	4.345	7.355
3	2.680	13.721	4.345	7.355
4	2.578	17.736	5.069	17.366
5	0.845	21.583	2.820	18.656

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Unionii on [-3,3], Use every 30 observation(s)					
Experiment ID	h	с	b	F	
1	0.033	31.585	0.178	19.955	
2	1.359	14.943	3.222	15.837	
3	2.807	10.476	4.994	10.367	
4	1.950	18.202	6.119	13.482	
5	1.112	13.917	2.754	13.967	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=0, Use every 1 observation(s)

		.,		
Experiment ID	h	c	b	F
1	0.231	5.129	4.715	13.643
2	0.211	22.562	4.951	13.812
3	0.998	10.007	9.988	13.999
4	0.111	11.532	2.790	13.682
5	0.456	8.870	7.506	13.900

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal with st. dev.=0, Use every 5 observation(s)					
Experiment ID	h	С	b	F	
1	0.153	29.119	3.953	13.875	
2	0.236	25.002	5.537	13.829	
3	0.812	11.598	9.055	13.959	
4	0.168	6.501	3.470	13.642	
5	0.205	5.410	4.376	13.618	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st dev = 0. Use every 25 observation(s)

ioise Type: Normal v	vith st. dev.:	=0, Use every	25 observat	on(s)
Experiment ID	h	с	b	F
1	0.297	4.961	5.734	13.712
2	0.149	5.884	2.973	13.696
3	1.000	10.000	10.001	13.999
4	1.001	9.992	10.008	14.001
5	0.316	20.797	6.434	13.910
	10.1.16	T 11 T		

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal with st. dev.=0, Use every 50 observation(s)					
Experiment ID	h	с	b	F	
1	0.128	8.309	2.746	13.597	
2	0.136	27.658	3.840	13.825	
3	0.455	6.443	7.612	13.714	
4	0.190	6.284	3.902	13.711	
5	0.999	10.009	9.995	14.001	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal with st. dev.=0.01, Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.136	7.982	2.972	13.785	
2	0.245	22.245	5.511	13.888	
3	0.245	22.245	5.511	13.888	
4	0.341	6.497	6.931	13.696	
5	0.116	7.945	2.545	13.552	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4 noise Type: Normal with st. dev.=0.01, Use every 5 observation(s)

Experiment ID	h	с	b	F
1	0.378	4.526	6.651	13.618
2	0.229	5.343	4.316	13.521
3	0.131	29.517	3.771	13.870
4	0.176	5.810	3.841	13.738
5	0.371	4.213	6.103	13.630
D	10.1.11			

noise Type: Normal with st. dev.=0.01, Use every 25 observation(s)

noise Type: Normal with st. dev.=0.01, Use every 23 observation(s)					
Experiment ID	h	с	b	F	
1	0.067	35.129	2.213	13.957	
2	0.148	7.591	3.369	13.625	
3	0.090	17.343	2.276	13.573	
4	0.233	5.307	4.638	13.636	
5	0.338	5.338	6.208	13.720	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=0.01, Use every 50 observation(s)

Experiment ID	h	С	b	F
1	0.269	5.683	5.405	13.707
2	0.028	24.783	0.856	13.805
3	0.012	15.861	0.395	13.597
4	0.690	12.988	8.434	13.914
5	0.172	6.179	3.580	13.555

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=0.05, Use every 1 observation(s)

noise Type: Tromai wan st. dev0.05, ose every 1 005ervaron(s)					
Experiment ID	h	С	b	F	
1	0.129	9.021	2.885	13.681	
2	0.132	29.717	3.538	14.056	
3	0.080	31.244	2.572	13.771	
4	0.070	17.544	1.864	13.814	
5	0.066	31.767	2.112	13.712	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=0.05. Use every 5 observation(s)

Experiment ID	h	С	b	F
1	0.301	4.551	6.081	13.847
2	0.104	16.692	2.515	13.783
3	0.169	6.387	3.559	13.754
4	0.438	10.042	7.201	13.697
5	0.093	21.947	2.429	13.864

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=0.05, Use every 25 observation(s)

Experiment ID	h	с	b	F	
1	0.126	26.111	3.665	13.698	
2	0.225	8.059	5.640	13.642	
3	0.109	11.499	2.561	13.667	
4	0.078	21.700	2.228	13.638	
5	0.168	7.777	3.813	13.658	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type. (volinar with st. dev.=0.05, Ose every 50 observation(s)					
Experiment ID	h	С	b	F	
1	0.288	6.926	5.646	13.557	
2	0.316	17.020	5.939	13.602	
3	0.145	6.814	3.038	13.711	
4	0.316	17.020	5.939	13.602	
5	0.036	27.417	1.190	13.682	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal	with st. dev.	=0.1, Use eve	ery I observa	ation(s)
Experiment ID	h	С	b	F
1	0.192	29.376	4.406	14.441
2	0.137	11.891	3.436	13.901
3	0.159	5.857	3.237	13.940
4	0.166	30.346	3.912	14.122
5	0.167	6 940	3 422	13.849

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal v	with st. dev.:	=0.1, Use eve	ery 5 observa	ation(s)
Experiment ID	h	С	b	F
1	0.249	23.557	5.425	14.045
2	0.108	30.072	2.694	13.644
3	0.037	32.746	1.096	13.781
4	0.252	18.689	4.785	13.547
5	0.092	21.800	2.246	13.830

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

ioise Type: Normai v	vith st. dev.:	=0.1, Use eve	ry 25 obser	vation(s)
Experiment ID	h	С	b	F
1	0.130	33.332	3.279	13.887
2	0.166	6.852	3.150	14.091
3	0.123	24.179	3.136	14.038
4	0.045	18.313	1.173	13.741
5	0.171	23.327	3.718	14.018
Domonous towns Is 1 -	10 % 10	E 14 I	A I A	

Parameters: h = 1, c = 10, b = 10, F = 14, 1 = 4J = 4

noise Type: Normal	with st. dev.:	=0.1, Use eve	ry 50 obser	vation(s)
Experiment ID	h	С	b	F
1	0.072	21.017	1.926	13.726
2	0.093	11.971	2.230	14.608
3	0.175	24.895	4.220	13.480
4	0.175	24.895	4.220	13.480
5	0.175	24.895	4.220	13.480

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal	with st. dev.	=0.25, Use ev	ery 1 obser	vation(s)
Experiment ID	h	с	b	F
1	0.082	19.770	1.833	14.357
2	0.050	27.874	1.294	13.562
3	0.168	34.106	3.674	13.653
4	0.092	33.419	2.052	14.086
5	0.094	19.410	2.643	13.022

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

ioise Type: Normai v	with st. dev.:	=0.25, Use ev	ery 5 obser	vation(s)
Experiment ID	h	С	b	F
1	0.082	40.008	2.085	14.667
2	0.208	31.659	4.530	13.058
3	0.098	32.099	2.338	14.945
4	0.102	16.332	2.893	13.167
5	0.077	15.078	1.888	13.157

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=0.25. Use every 25 observation

noise type, riorman	min or. do	-0.25, 050 0	25 0050	1 (111011(5)
Experiment ID	h	С	b	F
1	0.079	32.947	2.627	13.701
2	0.870	11.836	8.675	14.077
3	0.431	11.177	6.633	13.156
4	0.116	30.127	2.914	13.614
5	0.067	32.963	1.534	13.674

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=0.25, Use every 50 observation(s)

Experiment ID	h	С	b	F
1	0.050	23.645	1.359	13.414
2	0.582	14.142	6.481	14.256
3	0.407	16.923	6.292	13.441
4	0.056	18.209	1.355	13.334
5	0.089	20.995	2.023	14.301

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4 noise Type: Normal with st. dev.=0.5, Use every 1 observation(s)

Experiment ID	h	с	b	F
1	0.062	38.758	1.402	14.604
2	0.222	24.180	3.946	15.950
3	0.622	22.999	5.878	13.852
4	0.540	24.210	4.120	17.525
5	0.641	20.824	4.085	16.892

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=0.5, Use every 5 observation(s)

		,	.,	
Experiment ID	h	С	b	F
1	0.312	40.077	4.470	14.279
2	0.489	40.972	6.082	15.077
3	0.145	48.060	2.587	14.183
4	0.056	31.601	1.151	16.400
5	0.088	32 318	1 956	13 420

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

pise Type: Normal with st. dev.=0.5, Use every 25 observation(s)					
Experiment ID	h	с	b	F	
1	0.091	25.437	1.700	13.870	
2	0.074	41.740	1.720	12.931	
3	0.156	34.112	2.798	12.932	
- 4	0.000	41 417	1.607	16 021	

noise Type: Normal with st. dev.=0.5, Use every 50 observation(s)					
Experiment ID	h	с	b	F	
1	0.226	27.075	3.506	13.580	
2	0.091	41.271	1.612	15.737	
3	0.108	23.525	2.186	15.217	
4	0.056	20.485	1.250	12.371	

5 0.190 39.021 3.141 12.626 Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

oise Type: Normal with st. dev.=1, Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.827	14.514	4.072	16.147	
2	0.372	43.243	2.987	16.725	
3	0.049	41.496	1.058	12.663	
4	0.979	11.240	6.436	16.770	

5 0.215 36.279 2.087 15.739

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

poice Type: Normal with st. day = 1. Use every 5 observation(s)

ise Type. Normal with st. dev.=1, Ose every 5 observation(s)				
Experiment ID	h	С	b	F
1	0.380	25.168	3.500	11.967
2	0.773	25.022	10.528	13.274
3	2.513	11.954	7.049	18.920
4	0.142	60.193	1.701	16.148
5	0.532	22.079	4.304	15.249

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal with st. dev.=1, Use every 25 observation(s)						
Experiment ID	h	с	b	F		
1	0.015	34.070	0.312	11.347		
2	0.354	27.431	3.044	14.359		
3	0.354	27.431	3.044	14.359		
4	0.102	32.455	0.988	14.689		
5	0.157	41.125	3.377	11.748		

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal	with st. dev.	=1, Use every	y 50 observa	tion(s)
Experiment ID	h	с	b	F
1	0.421	14.325	8.754	11.962
2	0.087	38.026	1.079	13.999
3	0.446	17.318	6.724	8.154
4	0.518	14.194	4.285	15.380
- 5	0.120	16 296	1.702	12.409

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal v	with st. dev.:	=2, Use every	1 observati	ion(s)
Experiment ID	h	с	b	F
1	1.022	12.937	2.623	20.110
2	2.945	12.401	5.267	8.593
3	1.231	19.229	4.639	18.246
4	1.629	13.304	6.243	14.612
5	0.079	38.211	0.707	15.507

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4

noise Type: Normal	with st. dev.	=2, Use every	5 observat	ion(s)
Experiment ID	h	С	b	F
1	1.767	14.360	5.858	11.166
2	1.958	8.230	5.103	20.165
3	0.627	18.165	5.412	12.897
4	0.098	57.417	1.245	13.358
5	2.912	14.216	6.902	17.477

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=2. Use every 25 observation(s)

noise Type: Normal with st. dev.=2, Use every 25 observation(s)						
Experiment ID	h	С	b	F		
1	0.056	38.271	0.413	20.444		
2	1.136	10.402	2.926	15.855		
3	0.099	34.201	0.895	12.455		
4	0.517	18.361	2.120	16.122		
5	0.090	48.562	0.895	22.516		

Parameters: h = 1, c = 10, b = 10, F = 14, I = 4J = 4noise Type: Normal with st. dev.=2, Use every 50 observation(s)

vith st. dev. h 0.049 0.143 0.115 0.057 0.995 10,b = 10,b = 11 0.021 0.517 0.512 0.5	c 6.683 6.639 35.830 40.898 13.971 0.7 = 14.7 = =0, Use ever c 30.533 25.882 37.152 10.015 p.f = 14.7 = 0, Use ever c 14.787 25.215 30.016 15.043 14.843 2.7 = 0, Use ever c 2.6 = 0, Use ever c 2.6 = 0, Use ever c 2.7 = 0, Use ever c 14.787 = 0, Use ever c 2.7 = 0, Use ever c 2.8 = 0, Use ever c 2.8 = 0, Use ever c 2.9 = 0, U	y 1 observati b 1.489 3.805 3.223 1.875 9.976 8.372 9.976 8.372 0.573 4.040 7.176 8.113 8.113 8.12 4.94 9.25 observat b 4.542 3.568 5.839 7.101 5.838 8.114	F 13.876 13.929 13.992 13.973 14.011 con(s) F 13.966 13.966 13.972 13.984 13.979
2.425 3.240 0.097 0.113 1.359 10.6 = 10 0.049 0.143 0.115 0.057 0.995 10,6 = 10 0.511 0.021 0.151 0.051 0.152 0.512 0.512 0.512 0.512 0.151 0.015 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.184 0.175 0.199	6.683 6.633 35.830 40.898 13.971 .F = 14, I = =0, Use ever c 30.533 25.882 37.152 10.015 .F = 14, I = =0, Use ever c 14.787 25.215 30.016 15.043 14.843 19.05 ever c 26.143 32.497 21.05 ever c 14.787 25.215 30.016 15.043 14.84, I = =0, Use ever c 14.787 25.215 30.016 15.043 14.84, I = =0, Use ever c 26.143 32.497 21.05 ever 21.05 ever c 26.143 32.497 21.05 ever c 26.143 21.05 ever c 26.143 21.05 ever c 26.143 21.05 ever c 26.143 26.15 ever c 26.15	4.449 6.960 0.726 1.169 3.984 8	10.832 5.216 18.504 18.936 19.213 ston(s) F 13.876 13.929 13.973 14.011 ston(s) F 13.966 13.966 13.966 13.972 13.973 tion(s) F 13.977 13.896 13.971 13.896 13.981
2.425 3.240 0.097 0.113 1.359 10.6 = 10 0.049 0.143 0.115 0.057 0.995 10,6 = 10 0.511 0.021 0.151 0.051 0.152 0.512 0.512 0.512 0.512 0.151 0.015 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.175 0.184 0.175 0.199	6.683 6.633 35.830 40.898 13.971 .F = 14, I = =0, Use ever c 30.533 25.882 37.152 10.015 .F = 14, I = =0, Use ever c 14.787 25.215 30.016 15.043 14.843 19.05 ever c 26.143 32.497 21.05 ever c 14.787 25.215 30.016 15.043 14.84, I = =0, Use ever c 14.787 25.215 30.016 15.043 14.84, I = =0, Use ever c 26.143 32.497 21.05 ever 21.05 ever c 26.143 32.497 21.05 ever c 26.143 21.05 ever c 26.143 21.05 ever c 26.143 21.05 ever c 26.143 26.15 ever c 26.15	4.449 6.960 0.726 1.169 3.984 8	10.832 5.216 18.504 18.936 19.213 ston(s) F 13.876 13.929 13.973 14.011 ston(s) F 13.966 13.966 13.966 13.972 13.973 tion(s) F 13.977 13.896 13.971 13.896 13.981
3.240 0.097 0.113 1.359 = 10,b = 10,ith st. dev. h 0.049 0.143 0.115 0.057 0.995 = 10,b = 11 0.021 0.511 0.021 0.512 0.537 = 10,b = 11 0.147 0.113 0.240 0.460 0.294 = 10,b = 10 0.460 0.294 = 10,b = 11 vith st. dev. h 0.207	6.639 35.830 40.898 13.971), F = 14, I = = 0, Use ever c 30.533 25.882 32.629 37.152 10.015), F = 14, I = = 0, Use ever c 14.787 25.215 30.016 15.043 14.843 0, F = 14, I = = 0, Use ever c 26.143 32.497 21.061 15.349 18.980), F = 14, I = = 0, Use ever c 15.043 32.497 21.061 32.497 21.061 33.497 21.061 35.497 21.061 35.497 21.061 35.497 21.061 35.497 21.061 35.497 21.061 35.497 21.061 35.497 21.061 35.497 21.061 35.497 21.061 35.497 21.061 35.497 21.061	6.960 0.726 1.169 3.984 8 J = 4 y I observati b 1.489 3.805 3.203 1.875 9.976 8.113 8 J = 4 y 5 observati b 4.940 7.176 8.113 8 J = 4 y 25 observati b 5.788 8 J = 4 8 J = 8	5.216 18.504 18.936 19.213 ion(s) F 13.876 13.929 13.992 13.993 14.011 ion(s) F 13.966 13.966 13.976 13.994 13.977 13.896 13.997 13.896 13.991
0.113 1.359 = 10, b =	40.898 13.971), F = 14, I = =0, Use ever c 30.533 25.882 37.152 10.015), F = 14, I = =0, Use ever c 14.787 25.215 30.016 15.043 14.843 19.F = 14, I = =0, Use ever c 26.143 32.497 21.061 15.340 18.980), F = 14, I = =0, Use ever	1.169 1.394 1.489 1.489 1.489 1.489 1.489 1.489 1.489 1.489 1.489 1.4875 1.875	18,936 19,213 son(s) F 13,876 13,929 13,973 14,011 son(s) F 13,966 13,966 13,966 13,972 13,984 13,977 13,896 13,977 13,896 13,981 13,981
1.359 = 1.359	13.971 13.971 14.1 = 14, I = 14, I = 16 15.0 Use ever. 15.30.533 25.882 32.629 37.152 10.015 25.215 30.016 14.787 25.215 30.016 15.043 14.843 26.144, I = 14, I = 16 26.143 32.497 21.061 15.343 18.980 26.144, I = 16 26.143 21.061	3.984 8J = 4 9 observati b 1.489 3.805 3.223 1.875 9.976 4.9 5 observati b 7.175 0.573 4.040 8.113 8J = 4 9 25 observa b 4.542 3.568 5.839 7.101 5.788 8J = 4	19.213 ion(s) F 13.876 13.929 13.992 13.993 14.011 ion(s) F 13.966 13.966 13.972 13.993 tion(s) F 13.973 13.993 13.993 13.993 13.981 13.981
= 10, b = 16	D, F = 14, I = 0, Use ever, c 30,533 25.88	8 J = 4 y l observati b 1.489 3.805 3.823 1.875 9.976 8 J = 4 y 5 observati b 7.775 0.573 4.040 7.176 8.13 8.J = 4 y 25 observati b 4.040 7.176 8.13 8.23 1.875 9.976 9.9776 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.9776 9.9776 9.9776 9.976 9.976 9.976 9.9776 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.9776 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.9776 9.9776 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.9776 9.9776 9.9776 9.9776 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.9776 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.976 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776 9.9776	ion(s) F 13.876 13.929 13.973 14.011 ion(s) F 13.966 13.966 13.966 13.972 13.979 ition(s) F 13.977 13.896 13.984 13.977 13.896 13.981
vith st. dev. h 0.049 0.143 0.115 0.057 0.995 10,b = 10,b = 11 0.021 0.517 0.512 0.5	=0, Use ever, c 30.533 25.882 37.152 10.015),F = 14,I = =0, Use ever, c 14.787 25.215 30.016 15.043 14.843 0,F = 14,I = =0, Use ever, c c 14.787 25.215 30.016 15.043 14.843 32.497 21.061 15.340 18.980 0,F = 14,I = =0, Use ever, c c 0, C	y 1 observati b 1.489 3.805 3.223 1.875 9.976 8.372 9.976 8.372 0.573 4.040 7.176 8.113 8.113 8.12 4.94 9.25 observat b 4.542 3.568 5.839 7.101 5.838 8.114	F 13.876 13.929 13.992 13.992 13.973 14.011 toin(s) F 13.966 13.966 13.963 13.972 13.984 13.979 ttion(s) F 13.977 13.896 13.961
0.049 0.143 0.115 0.015 0.057 0.995 10,b = 10 ith st. dev. h 0.021 0.147 0.512 0.537 = 10,b = 10 ith st. dev. h 0.175 0.113 0.240 0.460 0.294 = 10,b = 10 ith st. dev. h 0.078	30.533 25.882 32.629 37.152 10.015 37.629 10.015	1.489 3.805 3.223 1.875 9.976 8.17 0.573 4.040 7.176 8.113 8.1 = 4 y 25 observat b 4.542 3.568 7.101 5.839 7.101	13.876 13.929 13.992 13.993 14.011 ion(s) F 13.966 13.972 13.984 13.979 ttion(s) F 13.977 13.896 13.991
0.143 0.115 0.057 0.995 0.995 0.995 0.057 0.995 0.051 0.021 0.147 0.512 0.537 0.512 0.147 0.512 0.147 0.512 0.240 0.460 0.240 0.240 0.294 0.195 0.195 0.195 0.195 0.196 0.197 0.197 0.197 0.197 0.197 0.197 0.197 0.197 0.197	25.882 32.629 37.152 10.015),F = 14,I = 0. 0, Use ever 25.215 30.016 15.043 14.843 0,F = 14,I = 0. 26.143 32.497 21.061 15.340 18.980 19.781	3.805 3.223 1.875 9.976 8 J = 4 y 5 observati b 7.775 0.573 4.040 7.176 8.113 8 J = 4 y 2 5 observati b 4.542 3.568 5.839 7.101 5.839 7.101	13.929 13.992 13.973 14.011 ion(s) F 13.966 13.966 13.972 13.984 13.979 ition(s) F 13.977 13.896 13.971 13.991
0.115 0.057 0.995 = 10, b = 10 ith st. dev. h 0.511 0.021 0.147 0.512 0.537 = 0.537 = 10, b = 10 ith st. dev. h 0.113 0.240 0.460 0.294 = 10, b = 10 ith st. dev. h	37.152 10.015 1 30, F = 14, I = =0, Use ever c c 14,787 25.215 30.016 15.043 14.843 0,F = 14, I = =0, Use ever c 26.143 32.497 21.061 15.340 18.980 19.78 14, I = =0, Use ever c	1.875 9.976 : 8 <i>J</i> = 4 y 5 observati b 7.775 0.573 4.040 7.176 8.113 8 <i>J</i> = 4 y 25 observa b 4.542 3.568 5.839 7.101 5.839 7.101 8.83 : 8 <i>J</i> = 4	13.973 14.011 ton(s) F 13.966 13.966 13.972 13.984 13.979 ttion(s) F 13.977 13.896 13.981 13.981
0.995 = 10,b = 10 / 10 / 10 / 10 / 10 / 10 / 10 / 10	10.015),F = 14,I = -0 0, Use ever, c 14.787 25.215 30.016 15.043 14.843),F = 14,I = -0 0, Use ever, c 26.143 32.497 21.061 15.340 18.980),F = 14,I = -0 0, Use ever, c 18.980	9.976 8 J = 4 y 5 observati b 7.775 0.573 4.040 7.176 8.113 8 J = 4 y 25 observat b 4.542 3.568 5.839 7.101 5.788 8 J = 4	14.011 ion(s) F 13.966 13.966 13.972 13.984 13.979 tion(s) F 13.977 13.896 13.981 13.981
= 10, b = 10 rith st. dev. h 0.511 0.021 0.147 0.512 0.512 0.537 = 10, b = 10 rith st. dev. h 0.175 0.113 0.240 0.460 0.294 = 10, b = 10 rith st. dev. h 0.078	D, F = 14, I = 0, Use ever, c 14.787 25.215 30.016 15.043 14.843 0,F = 14, I = 0, Use ever, c 26.143 32.497 21.061 15.340 18.980 0,F = 14, I = = 0, Use ever, c 26.143 32.497 21.061 15.340 18.980 0,F = 14, I = = 0, Use ever, c 26.143 32.497 21.061 15.340 18.980 0,F = 14, I = 0, Use ever, c 26.143 32.497 21.061 18.980 0,F = 14, I = 0, Use ever, c 26.143 0.75	8 J = 4 y 5 observati b 7.775 0.573 4.040 7.176 8.113 8 J = 4 y 25 observa b 4.542 3.568 5.839 7.101 5.788 8.8 J = 4	ion(s) F 13.966 13.966 13.972 13.984 13.979 tion(s) F 13.977 13.896 13.981 13.941
vith st. dev. h 0.511 0.021 0.147 0.512 0.537 0.512 0.537 = 10,b = 10 0.175 0.113 0.240 0.460 0.294 = 10,b = 10 vith st. dev. h	=0, Use ever c 14.787 25.215 30.016 15.043 14.843),F = 14,I = =0, Use ever c 26.143 32.497 21.061 15.340 18.980),F = 14,I = =0, Use ever	y 5 observati b 7.775 7.775 0.573 4.040 7.176 8.113 8J = 4 y 25 observat b 4.542 3.568 5.839 7.101 5.788 8J = 4	F 13.966 13.966 13.972 13.984 13.979 tion(s) F 13.977 13.896 13.981
h 0.511 0.021 0.147 0.512 0.537 = 10, b = 10 vith st. dev. h 0.175 0.113 0.240 0.294 = 10, b = 10 vith st. dev. h	c 14.787 25.215 30.016 15.043 14.843 0,F = 14,I = =0, Use ever, c 26.143 32.497 21.061 15.340 18.980 0,F = 14,I = =0, Use ever,	b 7.775 0.573 4.040 7.176 8.113 = 8J = 4 y 25 observa b 4.542 3.568 5.839 7.101 5.788	F 13.966 13.966 13.972 13.984 13.979 tion(s) F 13.977 13.896 13.981
0.021 0.147 0.512 0.537 = 10, b = 10 vith st. dev. h 0.175 0.113 0.240 0.460 0.294 = 10, b = 10 vith st. dev. h	14.787 25.215 30.016 15.043 14.843 0,F = 14,I = =0, Use ever c 26.143 32.497 21.061 15.340 18.980 0,F = 14,I = =0, Use ever	0.573 4.040 7.176 8.113 = 8J = 4 y 25 observa b 4.542 3.568 5.839 7.101 5.788 = 8J = 4	13.966 13.972 13.984 13.979 tion(s) F 13.977 13.896 13.981 13.941
0.147 0.512 0.537 = 10, b = 10 vith st. dev. h 0.175 0.113 0.240 0.460 0.294 = 10, b = 10 vith st. dev. h	30.016 15.043 14.843 19.07 = 14, I = 10, Use ever c 26.143 32.497 21.061 18.980 19.07 = 14, I = 10, Use ever c	4.040 7.176 8.113 = 8J = 4 y 25 observa b 4.542 3.568 5.839 7.101 5.788 = 8J = 4	13.972 13.984 13.979 tion(s) F 13.977 13.896 13.981 13.941
0.512 0.537 = 10, b = 10 vith st. dev. h 0.175 0.113 0.240 0.460 0.294 = 10, b = 10 vith st. dev. h	15.043 14.843 0, F = 14, I = =0, Use ever c 26.143 32.497 21.061 15.340 18.980 0, F = 14, I = =0, Use ever	7.176 8.113 = 8J = 4 y 25 observa b 4.542 3.568 5.839 7.101 5.788 = 8J = 4	13.984 13.979 tion(s) F 13.977 13.896 13.981 13.941
0.537 = 10, b = 10 vith st. dev. h 0.175 0.113 0.240 0.460 0.294 = 10, b = 10 vith st. dev. h 0.078	14.843), F = 14, I = =0, Use ever c 26.143 32.497 21.061 15.340 18.980), F = 14, I = =0, Use ever	8.113 = 8J = 4 y 25 observa b 4.542 3.568 5.839 7.101 5.788 = 8J = 4	13.979 tion(s) F 13.977 13.896 13.981 13.941
10,b = 10 20 ith st. dev. h 0.175 0.113 0.240 0.460 0.294 10,b = 10 20 ith st. dev. h 0.078	o, F = 14, I = 20, Use ever c 26.143 32.497 21.061 15.340 18.980 c), F = 14, I = 20, Use ever	= 8 <i>J</i> = 4 y 25 observa b 4.542 3.568 5.839 7.101 5.788 = 8 <i>J</i> = 4	tion(s) F 13.977 13.896 13.981 13.941
h 0.175 0.113 0.240 0.460 0.294 = 10, b = 10 vith st. dev. h 0.078	=0, Use ever c 26.143 32.497 21.061 15.340 18.980 0, F = 14, I = =0, Use ever	y 25 observa b 4.542 3.568 5.839 7.101 5.788 = 8J = 4	F 13.977 13.896 13.981 13.941
0.175 0.113 0.240 0.460 0.294 = 10, b = 10 vith st. dev. h	26.143 32.497 21.061 15.340 18.980 0,F = 14,I = 0, Use ever	4.542 3.568 5.839 7.101 5.788 8J = 4	13.977 13.896 13.981 13.941
0.113 0.240 0.460 0.294 = 10, b = 10 vith st. dev. h 0.078	32.497 21.061 15.340 18.980 0,F = 14,I = 0, Use ever	3.568 5.839 7.101 5.788 8J = 4	13.896 13.981 13.941
0.240 0.460 0.294 = 10, b = 10 vith st. dev. h 0.078	21.061 15.340 18.980 0,F = 14,I = =0, Use ever	5.839 7.101 5.788 8J = 4	13.981 13.941
0.460 0.294 = 10, b = 10 vith st. dev. h 0.078	15.340 18.980 0,F = 14,I = =0, Use ever	7.101 5.788 8J = 4	13.941
0.294 = 10, b = 10 vith st. dev. h 0.078	18.980 0, F = 14, I = =0, Use ever	5.788 8J = 4	
= 10, b = 10 vith st. dev. h 0.078	0, F = 14, I = 0, Use ever	8J = 4	
h 0.078		v 50 observa	
0.078	c		
	24.114	b	F 13.995
0.203	34.114 23.054	2.590 4.757	13.995
0.588	13.824	8.762	14.012
0.230	21.128	5.515	13.945
0.156	28.770		13.905
= 10, b = 10 with st. dev.	0, F = 14, I = 0.01, Use e	= 8J = 4 very 1 obser	vation(s)
h	с	b	F
			13.917
			13.948 13.917
			13.948
0.670	12.636	8.558	13.998
= 10, b = 10	0, F = 14, I =		
			F 13.950
			14.017
			13.916
0.241	24.052	5.697	13.904
			F 13.969
			13.969
			13.944
0.133	30.762	3.835	13.918
0.185	25.687	4.601	13.917
			rvation(s)
h	С	b	F
0.148	30.451	4.190	14.060
			13.941
			13.995 13.920
		2.349	13.920
	0, F = 14, I =		
	=0.05, Use e		vation(s)
h			13,994
	26.572 29.895	1.731	13.994 14.133
h 0.058 0.154 0.405	26.572 29.895 15.722	1.731 4.137 6.457	14.133 13.978
h 0.058 0.154 0.405 0.258	26.572 29.895 15.722 20.157	1.731 4.137 6.457 5.564	14.133 13.978 13.931
h 0.058 0.154 0.405 0.258 0.395	26.572 29.895 15.722 20.157 17.305	1.731 4.137 6.457 5.564 7.017	14.133 13.978
h 0.058 0.154 0.405 0.258 0.395 = 10,b = 10	26.572 29.895 15.722 20.157	1.731 4.137 6.457 5.564 7.017 = 8J = 4	14.133 13.978 13.931 13.959
	= 10, b = 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Experiment ID	h	с	b	F
2	0.141	30.380 27.811	4.234	14.001 13.850
3	0.661	12.973	10.404	13.859
4 5	0.179	26.361	4.229 2.607	13.935
arameters: $h = 1, c$	0.086 = $10, b = 10$	34.938 0, F = 14, I =	= 8J = 4	14.013
Dise Type: Normal Experiment ID	with st. dev.	=0.1, Use ev	ery 1 observa	tion(s)
1	0.253	22.582	5.658	13.880
2	0.102	31.806 34.448	3.316 2.754	13.987 13.985
4	0.300	17.745	6.292	13.945
5 arameters: $h = 1, c$	0.172 = $10, b = 10$	26.795 F = 14, I = 14	4.196 = 8J = 4	13.947
oise Type: Normal				ntion(s)
Experiment ID	h 0.469	c 14.729	6.754	F 14.138
2	0.286	16.909	5.599	13.983
3	0.123	32.790 33.856	3.324 1.877	13.926 13.748
5	0.033	23.668	4.692	14.046
arameters: $h = 1, c$				
Dise Type: Normal Experiment ID	with st. dev.	=0.1, Use ev	ery 25 observ	ration(s)
1	0.053	28.395	1.712	13.740
3	0.072	32.865 24.690	2.278 4.235	13.835
4	0.163	31.493	4.585	14.228
5 arameters: $h = 1, c$	0.168	30.402	4.071	14.189
oise Type: Normal	with st. dev.	=0.1, Use ev	ery 50 observ	vation(s)
Experiment ID	h 0,495	c 14.199	6.361	F 13.944
2	0.694	11.849	8.725	14.094
3	0.229	22.575 29.192	5.310	14.018 14.258
5	0.150	23.094	3.899 4.536	14.238
arameters: $h = 1, c$				(-)
Experiment ID	h	=0.23, Use e	b b	F
1	0.121	35.620	2.783	14.437
3	0.271	19.994 33.501	5.467 2.220	14.134
4	0.142	27.655	3.069	14.163
arameters: $h = 1, c$	0.130 = $10. h$ = 10	40.875 F = 14.I =	3.282 8I = 4	13.805
oise Type: Normal	with st. dev.	=0.25, Use e	very 5 observ	
Experiment ID	h 0.140	c 37.474	b 3.144	F 14.889
2	0.438	17.091	6.535	12.873
3	0.264	20.220	4.731	
4	0.245			14.458
5	0.245 0.075	22.183 36.878	4.837 2.047	13.849 14.782
$\frac{1}{5}$ arameters: $h = 1, c$	0.075 = $10, b = 10$	22.183 36.878 0, F = 14, I =	4.837 2.047 = 8J = 4	13.849 14.782
$\frac{1}{5}$ arameters: $h = 1, c$	0.075 = 10, b = 10 with st. dev.	22.183 36.878 0, F = 14, I = =0.25, Use e	4.837 2.047 = 8J = 4 very 25 obser b	13.849 14.782 rvation(s)
5 arameters: h = 1, c bise Type: Normal Experiment ID	0.075 = 10, b = 10 with st. dev. h 0.157	22.183 36.878 0, F = 14, I = 0.25, Use e c 31.605	4.837 2.047 = 8J = 4 very 25 obse b 3.647	13.849 14.782 rvation(s) F 13.812
5 arameters: h = 1, c bise Type: Normal Experiment ID	0.075 = 10, b = 10 with st. dev.	22.183 36.878 0, F = 14, I = =0.25, Use e	4.837 2.047 = 8J = 4 very 25 obser b	13.849 14.782 rvation(s)
5 arameters: h = 1, c bise Type: Normal Experiment ID 1 2 3 4	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091	22.183 36.878 3, F = 14, I = -0.25, Use e c 31.605 38.034 43.961 26.572	4.837 2.047 = 8J = 4 very 25 obse b 3.647 2.610 1.867 2.345	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554
sarameters: $h = 1, c$ bise Type: Normal Experiment ID 1 2 3 4	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507	22.183 36.878), F = 14, I = 0.25, Use e c 31.605 38.034 43.961 26.572 12.331	4.837 2.047 = 8 <i>J</i> = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511	13.849 14.782 rvation(s) F 13.812 14.123 14.531
arameters: $h = 1, c$ oise Type: Normal Experiment ID 2 3 4 5 arameters: $h = 1, c$ oise Type: Normal	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev.	22.183 36.878 0, F = 14, I = =0.25, Use e c 31.605 38.034 43.961 26.572 12.331 0, F = 14, I = =0.25, Use e	4.837 2.047 = 8J = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 = 8J = 4 very 50 obse	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s)
arameters: $h = 1, c$ bise Type: Normal: Experiment ID 2 3 4 5 arameters: $h = 1, c$	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10	22.183 36.878), F = 14, I = =0.25, Use e c 31.605 38.034 43.961 26.572 12.331), F = 14, I =	4.837 2.047 = 8 <i>J</i> = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 = 8 <i>J</i> = 4	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F
$\frac{5}{5}$ arameters: $h=1,c$ losine Type: Normal Experiment ID $\frac{1}{2}$ $\frac{2}{3}$ $\frac{4}{4}$ $\frac{5}{5}$ arameters: $h=1,c$ losine Type: Normal Experiment ID $\frac{1}{2}$ $\frac{1}{2}$	$\begin{array}{c} 0.075 \\ = 10, b = 10 \\ \text{with st. dev.} \\ \text{h} \\ 0.157 \\ 0.091 \\ 0.071 \\ 0.091 \\ 0.507 \\ = 10, b = 10 \\ \text{with st. dev.} \\ \text{h} \\ 0.127 \\ 0.211 \end{array}$	22.183 36.878 36.878 36.878 36.055 31.605 38.034 43.961 26.572 12.331 0, F = 14, I = 0.25, Use e c 27.811 26.100	4.837 2.047 = 8J = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 = 8J = 4 very 50 obse b 3.401 4.137	13.849 14.782 rvation(s) F I 3.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388
$\frac{5}{5}$ arameters: $h=1,c$ to sise Type: Normal Experiment ID $\frac{1}{2}$ $\frac{2}{3}$ $\frac{3}{4}$ $\frac{4}{5}$ arameters: $h=1,c$ to sise Type: Normal Experiment ID $\frac{1}{1}$	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev. h 0.127	22.183 36.878 0, F = 14, I = e0.25, Use e c 31.605 38.034 43.961 26.572 12.331 0, F = 14, I = e0.25, Use e c 27.811	4.837 2.047 = 8J = 4 very 25 obset b 3.647 2.610 1.867 2.345 5.511 = 8J = 4 very 50 obset b	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F
$\begin{array}{c} 5\\ \text{arameters: } h=1,c\\ \text{oise Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ 4\\ 5\\ \text{subsete Type: Normal} \\ \\ \text{Experiment ID} \\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ \end{array}$	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev. h 0.127 0.211 0.045	22.183 36.878 0,F = 14,I = =0.25, Use e c 31.055 38.034 43.961 26.572 12.331 0,F = 14,I = =0.25, Use e c 27.811 26.100 36.788 30.684 38.616	4.837 2.047 2.047 2.610 3.647 2.610 1.867 2.345 5.511 2.5 4 very 50 obse b 3.401 4.137 1.295 2.262 2.076	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709
$\begin{array}{l} 5\\ \text{arameters: } h=1,c\\ \text{oise Type: Normal} \\ \hline \text{Experiment ID} \\ \hline 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{ise Type: Normal} \\ \hline 1\\ \hline 2\\ \text{sise Type: Normal} \\ \hline 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \\ \text{arameters: } h=1,c\\ \\ \end{array}$	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev. h 0.127 0.211 0.045 0.079 0.090 = 10, b = 10	22.183 36.878), F = 14, I = -0.25, Use c c 31.605 38.034 43.961 26.572 12.331), F = 14, I = -0.25, Use c c 27.811 26.100 36.788 30.684 38.616), F = 14, I =	4.837 2.047 = 8 <i>I</i> = 4 very 25 obse b 3.647 2.345 5.511 = 8 <i>I</i> = 4 very 50 obse b 3.401 4.137 1.295 2.628 2.076	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.071
$\begin{array}{l} 5\\ \text{arameters: } h=1,c\\ \text{oise Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sameters: } h=1,c\\ \text{oise Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{surameters: } h=1,c\\ \text{oise Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{Surameters: } h=1,c\\ \text{oise Type: Normal} \\ \text{Experiment ID} \\ \end{array}$	0.075 = 10,b = 10 with st. dev. h 0.157 0.091 0.091 0.507 0.091 0.507 in the st. dev. h 0.127 0.211 0.045 0.090 = 10,b = 10 with st. dev. h 0.127 0.211	22.183 36.878 36.878	4.837 2.047 2.047 2.047 2.010 8	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 F 14.286 13.388 13.709 14.736 tition(s) F
$\begin{array}{l} 5\\ \text{oisc Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{oisc Type: Normal} \\ 2\\ 3\\ 4\\ 5\\ \text{oisc Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 2\\ 3\\ 4\\ 5\\ \text{oisc Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{oisc Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{oisc Type: Normal} \\ \text{Soft Type: Normal} \\$	0.075 = 10,b = 10 with st. dev. h 0.157 0.091 0.091 0.091 0.507 in the st. dev. h 0.127 0.211 0.045 0.079 0.090 = 10,b = 10 with st. dev. h 0.175	22.183 36.878	4.837 2.047 2.047 2.610 3.647 2.610 1.867 2.345 5.511 8.8 J = 4 very 50 obse b 3.401 4.137 1.295 2.628 2.076 8.8 J = 4 very 50 observe b 3.401 4.231	13.849 14.782 rvation(s) F 13.812 14.123 14.531 14.531 15.005 rvation(s) F 14.286 13.388 13.709 14.071 14.736 attion(s) F 13.541
$\begin{array}{l} 5\\ \text{arameters: } h=1,c\\ \text{oisic Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \end{array}$ $\begin{array}{l} 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{oisic Type: Normal} \\ \hline \text{Experiment ID} \\ \hline 2\\ 2\\ 3\\ 4\\ 5\\ \text{surameters: } h=1,c\\ \end{array}$ $\begin{array}{l} 3\\ 4\\ 5\\ \text{surameters: } h=1,c\\ \end{array}$ $\begin{array}{l} 2\\ \text{sisc Type: Normal} \\ \hline \text{Experiment ID} \\ \hline \\ 2\\ 3\\ \end{array}$	0.075 = 10, b = 10 h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev. h 0.127 0.211 0.045 0.079 = 10, b = 10 with st. dev. h 0.175 0.175 0.175	22.183 36.878 , F = 14, I = 0.25, Use e 0.25, Use e c 31.605 38.034 43.961 26.572 12.331 , F = 14, I = 0.25, Use e 27.811 26.100 36.788 30.684 38.616 , F = 14, I = 0.5, Use e c c 30.162 20.732	4.837 2.047 8 J = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 8 J = 4 very 50 obse b 3.401 4.137 1.295 2.628 2.076 8 J = 4 very 10 observe b 4.231 3.934 3.934 3.934	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.071 14.736 tition(s) F 13.541 14.250 14.426
$\begin{array}{c} 5\\ \text{arameters: } h=1,c\\ \text{oise Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{oise Type: Normal} \\ \text{Experiment ID} \\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{oise Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{oise Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 3\\ 4\\ 4\\ 3\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$	0.075 10,b = 10,b = 10 10,b = 10,b = 10 10,091 0.091 0.507 10,b = 10 with st. dev. h 0.127 0.091 0.095 0.127 0.11 0.045 0.175 0.175 0.311 0.230	22,183 36,878 3,F = 14,1 =0.25, Use e 0.25, Use e 31,605 38,034 43,961 26,572 12,331 30,F = 14,1 =0.25, Use e 27,811 26,100 36,788 30,684 38,616 36,788 30,684 38,016 20,732 24,257	4.837 2.047 2.047 2.047 2.610 3.647 2.610 1.867 2.345 5.511 8.7 4.137 1.295 2.628 2.076 8.7 4.137 1.295 4.231 3.934 3.639 3.551	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.071 14.736 ttion(s) F 13.541 14.250 14.485
$\begin{array}{l} 5\\ \text{since Type: } h=1,c\\ \text{orise Type: Normal} \\ \hline \\ 2\\ 3\\ 4\\ 5\\ 5\\ \text{surameters: } h=1,c\\ \text{orise Type: Normal} \\ \hline \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{surameters: } h=1,c\\ \text{orise Type: Normal} \\ \hline \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ \text{arameters: } h=1,c\\ \\ \text{orise Type: Normal} \\ \hline \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ \text{arameters: } h=1,c\\ \\ \text{orise Type: Normal} \\ \hline \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ 5\\ \text{arameters: } h=1,c\\ \\ \text{orise Type: Normal} \\ \end{bmatrix}$	0.075 10, b = 10 10, b = 10 10, b = 10 10, b = 10 10, 507 10, 0.091 10, 507	22, 183 36,878 36,FF = 14,I = 0.25, Use e 0.25, Use e 0.31,605 38,034 43,961 26,572 12,331 12,331 26,100 36,788 30,684 38,616 20,732 20,732 24,257 17,610 30,653 30,F = 14,I =	4.837 2.047 8 J = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 8 J = 4 very 50 obse b 3.401 4.137 1.295 2.628 2.076 8 J = 4 very 1 observe b 4.231 3.934 3.934 3.551 1.613 8 J = 4	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.799 14.071 14.736 attion(s) F 13.541 14.250 14.485 15.558 14.426
$\begin{array}{l} 5\\ \text{arameters: } h=1,c\\ \text{oisic Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sis Type: Normal} \\ \\ 5\\ \text{arameters: } h=1,c\\ \text{oisic Type: Normal} \\ \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Experiment ID} \\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Syperiment ID} \\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Syperiment ID} \\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Syperiment ID} \\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Syperiment ID} \\ 1\\ 1\\ 3\\ 4\\ 5\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Syperiment ID} \\ 1\\ 3\\ 4\\ 5\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Syperiment ID} \\ 3\\ 4\\ 5\\ 5\\ \text{sis Type: Normal} \\ \\ \text{Syperiment ID} \\ Syper$	0.075 = 10, b = 10 with st. dev. h h 0.157 0.091 0.071 0.991 0.507 = 10, b = 10 with st. dev. h colored to the	22,183 36,878 3,F = 14,1 =0.25, Use ev c 31,605 38,034 43,961 26,572 12,331 26,572 12,331 26,100 36,788 30,684 38,616 20,F = 14,1 =0.5, Use ev c 10,732 24,257 17,610 30,653 24,257 17,610 30,653 20,F = 14,1 =0.5, Use ev c c 20,732 24,257	4.837 2.047 2.047 2.047 2.047 2.010 3.647 2.010 1.867 2.345 5.511 8.7 4.137 1.295 4.137 1.295 2.076 8.7 4.137 1.295 8.7 4.137 1.295 8.7 4.137 1.295 8.7 8.7 8.7 8.8 8.8 8.8 8.8 8.8 8.8 8.8	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.071 14.736 ttion(s) F 13.541 14.250 14.485 15.558 14.426
$\begin{array}{l} 5\\ \text{since Type: } h=1,c\\ \text{orise Type: Normal} \\ \hline \\ 2\\ 3\\ 4\\ 5\\ 5\\ \text{surameters: } h=1,c\\ \text{orise Type: Normal} \\ \hline \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{surameters: } h=1,c\\ \text{orise Type: Normal} \\ \hline \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ \text{arameters: } h=1,c\\ \\ \text{orise Type: Normal} \\ \hline \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ \text{arameters: } h=1,c\\ \\ \text{orise Type: Normal} \\ \hline \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ 5\\ \text{arameters: } h=1,c\\ \\ \text{orise Type: Normal} \\ \end{bmatrix}$	0.075 10, b = 10 10, b = 10 10, b = 10 10, b = 10 10, 507 10, 0.091 10, 507	22, 183 36,878 36,FF = 14,I = 0.25, Use e 0.25, Use e 0.31,605 38,034 43,961 26,572 12,331 12,331 26,100 36,788 30,684 38,616 20,732 20,732 24,257 17,610 30,653 30,F = 14,I =	4.837 2.047 8 J = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 8 J = 4 very 50 obse b 3.401 4.137 1.295 2.628 2.076 8 J = 4 very 1 observe b 4.231 3.934 3.639 3.551 1.613 8 J = 4	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.799 14.071 14.736 attion(s) F 13.541 14.250 14.485 15.558 14.426
$\begin{array}{l} 5\\ \text{osise Type: Normal}\\ \text{Experiment ID}\\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{osise Type: Normal}\\ 2\\ 3\\ 4\\ 5\\ \text{osise Type: Normal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{emision Type: Normal}\\ \text{Experiment ID}\\ 1\\ 2\\ 3\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{emision Type: Normal}\\ \text{Experiment ID}\\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \text{softs Type: Normal}\\ \text{Experiment ID}\\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \text{Softs Type: Normal}\\ \text{Experiment ID}\\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 4\\ 4\\ 5\\ 5\\ 5\\ \text{Indiagonal}\\ \text{Experiment ID}\\ 1\\ 2\\ 2\\ 2\\ 3\\ 3\\ 4\\ 4\\ 5\\ 5\\ 5\\ 7\\ 8\\ 2\\ 3\\ 3\\ 4\\ 4\\ 5\\ 5\\ 7\\ 8\\ 2\\ 3\\ 3\\ 4\\ 4\\ 5\\ 5\\ 7\\ 8\\ 2\\ 3\\ 3\\ 4\\ 4\\ 5\\ 5\\ 7\\ 8\\ 2\\ 3\\ 3\\ 4\\ 4\\ 4\\ 5\\ 5\\ 7\\ 8\\ 2\\ 4\\ 4\\ 5\\ 5\\ 8\\ 4\\ 4\\ 5\\ 5\\ 8\\ 4\\ 4\\ 5\\ 5\\ 8\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 4\\ 4\\ 4\\ 5\\ 8\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\ 4\\$	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev. h 0.127 0.211 0.045 0.090 = 10, b = 10 0.071 0.090 = 10, b = 10 0.079 0.090 = 10, b = 10 0.079 0.090 h 0.127 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121 0.121	22,183 36,878 37, F = 14,17 =0.25, Use e 31,605 38,034 43,961 26,572 12,2331 0,7 = 14,17 =0.25, Use e c c 27,811 26,100 36,788 30,684 38,616 0,7 = 14,17 =0.5, Use e c c c c 10,000 31,700 32,732 32,732 32,732 33,732 34,257 31,610 30,653 30,5	4.837 2.047 8 <i>J</i> = 4.047 1.867 2.610 1.867 2.345 2.511 1.87 2.345 2.345 2.345 2.345 3.401 4.137 1.295 2.628 2.076 8 <i>J</i> = 4 ery 1 observe b 4.231 3.934 3.639 3.551 1.613 8 <i>J</i> = 4 ery 5 observe b 3.299 4.214	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.736 14.736 14.250 14.4250
$\begin{array}{l} 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{orameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{orameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{orameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{Experiment ID} \\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 5\\ 1\\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 5\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	0.075 = 10, b = 10 h 0.157 0.091 0.077 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev. h 0.127 0.211 0.045 0.079 0.090 = 10, b = 10 with st. dev. h 0.175 0.311 0.230 0.427 0.058 = 10, b = 10 with st. dev.	22.183 36.878 , F = 14, I = 0.25, Use e 0.25, Use e 13.605 38.034 43.961 26.572 12.331 , F = 14, I = 0.25, Use e 27.811 26.100 36.788 30.684 38.616 , F = 14, I = 0.5, Use e 20.732 24.257 17.610 30.653 0, F = 14, I = 0.5, Use e 29.109 28.438	4.837 2.047 8 J = 4 2.047 8 J = 4 2.047 8 J = 4 2.610 1.867 2.345 5.511 8 J = 4 2.628 2.076 8 J = 4 2.076 8 J = 4 2.076 8 J = 4 8 J = 8 8 J = 4 8 J = 8 8 J = 4 8 J = 8 8 J = 4 8 J = 8 8 J =	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.799 14.071 14.736 attion(s) F 13.541 14.250 14.425 15.558 14.426 attion(s) F 12.931 14.028
$\begin{array}{c} 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ \text{subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 4\\ 5\\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \\ \\ \text{Subse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \\ \\ \text{Subse Type: Normal ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \\ \\ \\ \text{Subse Type: Normal ID} \\ 1\\ 2\\ 3\\ 3\\ 4\\ 5\\ \\ \\ \\ \text{Subse Type: Normal ID} \\ 1\\ 2\\ 3\\ 3\\ 4\\ 5\\ \\ \\ \\ \\ \\ \text{Subse Type: Normal ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 0.150 0.211 0.045 0.211 0.045 0.090 = 10, b = 10 0.150 0.071 0.071 0.071 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075	22, 183 36,878 , F = 14, I = 60.25, Use e c 31,605 38,034 43,961 26,572 12,331 0, F = 14, I = 60.25, Use e c 27,811 26,103 30,684 30,684 30,684 30,162 20,732 24,257 17,610 30,162 20,732 24,257 17,610 30,658 21,058 22,0732 24,257 29,109 28,438 28,270 48,081	4.837 2.047 8 <i>J</i> = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 8 <i>J</i> = 4 very 50 obse b 3.401 4.137 1.295 2.628 2.076 8 <i>J</i> = 4 ery 1 observe b 4.231 3.639 3.551 1.613 8 <i>J</i> = 4 ery 5 observe b 3.299 4.214 8.617 1.952	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.736 14.736 14.250 14.4250
$\begin{array}{l} 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \\ \end{array}$	0.075 = 10, b = 10 with st. dev. h 0.091 0.071 0.091 0.507 0.091 0.507 = 10, b = 10 with st. dev. h 0.127 0.127 0.1287 0.1287 0.129 0.109 0.109 0.109 0.10, b = 10 with st. dev. h 0.127 0.121 0.125	22,183 36,878 36,FF = 14,I = 0.25, Use e 0.25, Use e 2 c 31,605 38,034 43,961 26,572 12,331 3,F = 14,I = 0.25, Use e 0.27,811 26,100 36,788 30,684 38,616 3,F = 14,I = 0.5, Use e c 20,732 24,257 17,610 30,654 3,F = 14,I = 0.5, Use e 0.5 24,257 17,610 26,100 27,811 28,100 29,100 29,100 28,438 29,100 28,438 28,270 48,081 25,978 36,F = 14,I = 0.5	4.837 2.047 8 J = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 8 J = 4 very 50 obse b 3.401 4.137 1.295 2.628 2.076 2.076 8 J = 4 very 10 observe b 4.231 3.934 3.551 8.61 8.75 8 J = 4 very 50 observe c b 4.231 3.934 3.551 8.61 8.75 8 J = 4 8.617 1.955 8 J = 4 8.617 1.955 8 J = 4 8.617 1.955 8 J = 8 8 J	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.799 14.071 14.736 attion(s) F 13.541 14.250 14.425 15.558 14.426 attion(s) F 12.931 14.028 13.922 13.932
$\begin{array}{l} 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \\ \end{array}$	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev. h 0.127 0.211 0.045 0.099 0.099 = 10, b = 10 with st. dev. h 0.127 0.050 0.079 0.050 0.175 0.127 0.058 = 10, b = 10 with st. dev. h 0.127 0.058 = 10, b = 10 with st. dev. h 0.127 1.007	22, 183 36,878 3, F = 14, I = 0.25, Use ev c 31,605 38,034 43,961 26,572 12,331 0, F = 14, I = 0.25, Use ev c 27,811 26,100 36,788 30,684 38,616 0, F = 14, I = 0.5, Use ev c 30,162 20,732 24,257 17,610 30,653 0, F = 14, I = 0.5, Use ev c 29,109 28,438 28,270 48,081 25,978 0, F = 14, I = 0.5, Use ev c c 29,109 28,438 28,270 48,081 25,978 0, F = 14, I = 0.5, Use ev c c 29,109 28,438 28,270 48,081 25,978 0, F = 14, I = 0.5, Use ev c c 0,000 0,	4.837 2.047 8 J = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.11 8 J = 4 very 25 obsev b 3.401 4.137 1.295 4.231 3.934 3.535 1.613 3.639 3.551 1.613 6.8 J = 4 ery 5 observe b 3.299 4.214 4.21 3.299 4.214 5.3727 8 J = 4 ery 5 observe b 3.299	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.071 14.736 attion(s) F 13.541 14.250 14.485 15.558 14.426 attion(s) F 12.931 14.028 13.876 13.876 13.932 ration(s) F
$\begin{array}{c} 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 2\\ 3\\ 4\\ 5\\ \text{orameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 2\\ 3\\ 4\\ 5\\ \text{orameters: } h=1,c\\ \text{obse Type: Normal} \\ \hline \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ 5\\ \text{Experiment ID} \\ 1\\ 1\\ 2\\ 3\\ 4\\ 5\\ 5\\ 5\\ 5\\ 5\\ 6\\ 7\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\ 8\\$	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.507 0.091 0.507 1.0091 0.507 0.127 0.211 0.042 0.075 0.091 0.075 0.091 0.075 0.091 0.090	22,183 36,878 36,FF = 14,I = 0.25, Use ev 31,605 38,034 43,961 26,572 12,331 26,100 36,788 30,684 38,616 20,732 21,233 31,605 30,788 30,684 38,616 20,732 21,233 30,684 38,616 20,732 21,532 21,532	4.837 2.047 8 J = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 8 J = 4 very 50 obse b 3.401 4.137 1.295 2.628 2.076 8 J = 4 very 1 observe b 4.231 3.934 3.551 1.613 8 J = 4 very 5 observe b 3.299 4.214 8.617 1.952 3.727 8 J = 4 very 5 observe b 1.952 3.727 8 J = 4 very 5 observe b 1.931	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.071 14.736 stion(s) F 13.541 14.250 14.485 15.558 14.426 stion(s) F 12.931 14.028 13.876 13.932 ration(s) F 14.185
5 arameters: h = 1, c oise Type: Normal Experiment ID 1 2 3 4 5 arameters: h = 1, c oise Type: Normal Experiment ID 1 2 3 4 5 arameters: h = 1, c oise Type: Normal Experiment ID 1 2 3 4 5 arameters: h = 1, c oise Type: Normal Experiment ID 1 2 3 4 5 5 arameters: h = 1, c oise Type: Normal Experiment ID 2 3 4 5 5 arameters: h = 1, c oise Type: Normal Experiment ID 2 3 4 5 5 5 arameters: h = 1, c oise Type: Normal Experiment ID 2 3 4 5 5 5 arameters: h = 1, c oise Type: Normal	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev. h 0.127 0.211 0.045 0.099 0.099 = 10, b = 10 with st. dev. h 0.127 0.050 0.079 0.050 0.175 0.127 0.058 = 10, b = 10 with st. dev. h 0.127 0.058 = 10, b = 10 with st. dev. h 0.127 1.007	22, 183 36,878 3, F = 14, I = 0.25, Use ev c 31,605 38,034 43,961 26,572 12,331 0, F = 14, I = 0.25, Use ev c 27,811 26,100 36,788 30,684 38,616 0, F = 14, I = 0.5, Use ev c 30,162 20,732 24,257 17,610 30,653 0, F = 14, I = 0.5, Use ev c 29,109 28,438 28,270 48,081 25,978 0, F = 14, I = 0.5, Use ev c c 29,109 28,438 28,270 48,081 25,978 0, F = 14, I = 0.5, Use ev c c 29,109 28,438 28,270 48,081 25,978 0, F = 14, I = 0.5, Use ev c c 0,000 0,	4.837 2.047 8.J = 4 2.047 8.J = 4 2.047 8.J = 4 2.610 1.867 2.345 5.511 8.J = 4 2.628 2.07 2.628 2.07 6 8.J = 4 2.10 3.639 3.551 1.295 2.628 2.07 6 8.J = 4 2.11 3.934 3.639 3.551 1.613 8.J = 4 2.71 3.934 3.299 4.214 8.617 1.952 3.727 8.J = 4 27 5 observe b 1.931 4.767 2.713	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.071 14.736 attion(s) F 13.541 14.250 14.485 15.558 14.426 attion(s) F 12.931 14.028 13.876 13.876 13.932 ration(s) F
$\begin{array}{c} 5\\ \text{arameters: } h=1,c\\ \text{obse Type: Normal} \\ \text{Experiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ 3\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ 3\\ 4\\ 4\\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ \\ 3\\ \\ 4\\ \\ 5\\ \\ \text{superiment ID} \\ 1\\ 2\\ \\ 3\\ \\ 4\\ \\ 5\\ \\ \text{superiment ID} \\ 1\\ \\ 2\\ \\ \\ \text{superiment ID} \\ 1\\ \\ \\ 2\\ \\ \\ \text{superiment ID} \\ 1\\ \\ \\ 2\\ \\ \\ \\ \text{superiment ID} \\ 1\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.075 = 10, b = 10 with st. dev. h 0.157 0.091 0.071 0.091 0.507 = 10, b = 10 with st. dev. h 0.127 0.131 0.230 0.311 0.230 0.427 0.058 = 10, b = 10 with st. dev. h 0.127 0.127 0.127 0.167 0.177 - 10, b = 10 with st. dev. h 0.177 - 0.091 0.079 0.079 0.090 - 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079	22, 183 36,878 3, F = 14, I = e0.25, Use e c 31,605 38,034 43,961 26,572 12,331 0, F = 14, I = e0.25, Use e c 27,811 26,103 36,788 30,684 33,616 0, F = 14, I = e0.5, Use ev c 27,813 24,257 17,610 30,53 0,F = 14, I = e0.5, Use ev c 29,103 24,257 17,610 30,53 0,F = 14, I = e0.5, Use ev c c 29,103 0,F = 14, I = e0.5, Use ev c c 0,5, Use ev c 1,5, Use ev c 2,5, Use ev c 1,5, Use ev c 2,5, Use ev	4.837 2.047 8 J = 4 very 25 obse b 3.647 2.610 1.867 2.345 5.511 8 J = 4 very 50 obse b 3.401 4.137 1.295 2.628 2.076 8 J = 4 ery 1 observe b 4.231 3.934 3.639 3.551 1.613 8 J = 4 ery 25 observe b 3.299 4.214 8.617 8.617 8.617 8.617 8.727 8 J = 4 ery 25 observe b 1.931 1.931 1.931	13.849 14.782 rvation(s) F 13.812 14.123 14.531 13.554 15.005 rvation(s) F 14.286 13.388 13.709 14.071 14.736 stion(s) F 13.541 14.250 14.485 15.558 14.426 tion(s) F 12.931 14.021 14.021 14.021 14.031 14.031 14.031

1	0.037	29.278	0.960	13.641
2	0.332	16.963	3.085	15.943
3	0.256	41.035	2.839	13.761
4	0.250	28.206	2.094	16.019
5	0.203	32.960	1.444	18.178
Parameters: $h = 1, c$:				
noise Type: Normal v				ion(s)
Experiment ID	h	с	ь	F
1	0.109	36.991	1.852	13.421
2	2.011	10.205	4.759	16.554
_	0.924	17.925		16.383
3			5.814	
4	1.131	11.997	9.696	14.615
5	0.155	29.073	2.365	12.326
Parameters: $h = 1, c$				
noise Type: Normal v	with st. dev.:	=1, Use every	25 observa	ttion(s)
Experiment ID	h	С	b	F
1	1.768	20.664	9.392	14.903
2	0.173	42.912	3.409	12.220
3	0.958	12.882	5.881	14.207
4			2.127	
	0.091	38.908		14.514
5	0.462	31.001	4.692	13.645
Parameters: $h = 1, c$				
noise Type: Normal v		=1, Use every		
Experiment ID	h	с	b	F
1	0.255	25.338	3.922	12.723
2	0.147	45.055	2.848	14.251
4	0.768	19.442	4.715	14.952
Parameters: $h = 1, c$:		0, F = 14, I =	8J = 4	1+.732
noise Type: Name 1, C	-10, o = 10			ion(e)
noise Type: Normal v				
Experiment ID	h	С	b	F
1	0.796	16.261	3.506	12.937
2	2.246	16.500	8.698	12.121
3	1.019	10.687	2.953	14.624
4	2.656	8.971	6.495	7.981
5	2.342	12.959	5.916	12.849
				12.049
Parameters: $h = 1, c$:				ion(e)
noise Type: Normal v				
Experiment ID	h	C COOT	b	F
1	3.149	6.907	4.531	8.083
2	1.330	10.477	3.539	12.394
3	2.124	9.714	5.497	9.880
4	2.123	11.661	5.073	10.444
5	0.132	34.104	1.098	16.232
Parameters: $h = 1, c$:				
noise Type: Normal v				ation(e)
				F
Experiment ID	h	C 11.055	2 501	-
1	0.811	11.955	3.591	13.354
2	0.053	29.724	0.537	14.953
3	2.537	13.859	6.207	11.068
4	3.059	9.695	7.962	15.049
5	1.056	14.502	5.807	10.314
Parameters: $h = 1, c$:				
noise Type: Normal v				ation(s)
Experiment ID	h	c c	b	F
1	2.375	15.461	8.801	13.855
2	0.606	15.092	2.747	14.210
3	0.305	26.195	2.164	13.957
4	2.071	14.999	7.930	14.223
5	0.138	23.331	0.949	16.471
Parameters: $h = 1, c$:				
noise Type: Normal v				ion(s)
Experiment ID	h	c, saccita	b	F
1	0.604	13.139	8.268	13.994
2	0.004	28.617	4.373	13.934
_ ~				
3	0.649	12.985	8.734	13.963
4	0.297	18.332	6.317	13.939
5	0.092	32.376	2.850	13.921
Parameters: $h = 1, c$:				
noise Type: Normal v				ion(s)
Experiment ID	h	С	b	F
1	0.182	25.446	4.687	13.937
		33.741		
2	0.024		0.781	13.895
3	0.079	33.979	2.410	13.975
4	0.117	32.574	3.514	13.964
5	0.350	18.125	6.666	13.973
Parameters: $h = 1, c$			10J = 4	
noise Type: Normal v				ation(s)
Experiment ID	h	c	ь	F
1	0.669	12.209	8.658	13.971
				13.860
3				13.946
4	0.730	12.040	8.788	13.999
5	0.269	20.271	5.676	13.943
Parameters: $h = 1 c$				
				ation(s)
noise type. (Notifial V	- an or ucv.	-o, ose ever	. Jo obsciva	on(s)
4	0.269 = $10, b = 10$	20.271 0, F = 14, I =	10J = 4	ntic

Experiment ID

39.510

h c b F 0.037 29.278 0.960 13.641

0.159 0.009 22.994

3.921 14.311 0.263 13.760

Experiment ID	h	с	ь	F
1	0.259	19.184	6.080	13.931
2	0.050	35.972	1.600	13.967
3	0.050	35.972	1.600	13.967
4	0.050	35.972	1.600	13.967
5	0.050	35.972	1.600	13.967
Parameters: $h = 1, c$				
noise Type: Normal				
Experiment ID	h	с	b	F
1	0.203	23.640	4.922	13.959
2	0.373	16.453	6.978	14.000
3	0.168	28.755	4.419	13.948
4	0.123	29.685	3.365	13.989
5	0.037	30.268	1.169	13.857
Parameters: $h = 1, c$				
noise Type: Normal	with st. dev.	=0.01, Use ev	ery 5 observ	
Experiment ID	h	с	b	F
1	0.049	33.285	1.529	13.945
2	0.142	28.434	4.125	13.901
3	0.265	21.153	6.015	14.050
4	0.160	28.668	4.329	13.970
5	0.435	15.861	7.597	13.969
Parameters: $h = 1, c$				
noise Type: Normal	with st. dev.	=0.01, Use ev	ery 25 obse	
Experiment ID	h	с	b	F
1	0.148	26.539	3.879	13.941
2	1.014	9.947	10.312	13.946
3	0.174	27.049	4.585	13.979
4	0.843	11.046	9.411	13.959
5	0.952	10.421	9.555	13.961
Parameters: $h = 1, c$				
noise Type: Normal	with st. dev.	=0.01, Use ev	ery 50 obse	rvation(s)
Experiment ID	h	с	b	F
1	0.128	32.803	3.899	13.921
2	0.209	22.098	5.146	13.958
3	0.181	27.160	4.639	13.987
4	0.021	30.924	0.710	13.962
5	0.608	13.346	8.283	14.010
Parameters: $h = 1, c$ noise Type: Normal				vation(s)
Experiment ID	h	c	ь	F
1	0.001	25 256	2.400	12 902

rummeters. n = 1,c				
noise Type: Normal v	with st. dev.:	=0.05, Use ev	ery 1 obser/	vation(s)
Experiment ID	h	с	b	F
1	0.081	35.356	2.490	13.892
2	0.165	24.803	4.116	14.019
3	0.737	11.868	9.618	13.975
4	0.280	19.015	5.622	13.905
5	0.180	27.233	4.603	14.075
Parameters: $h = 1.c$:	= 10. h = 10	0.F = 14.I =	10I = 4	-

noise Type: Normal with st. dev.=0.05, Use every 5 observation(s)					
Experiment ID	h	с	b	F	
1	0.086	36.393	2.637	13.862	
2	0.655	12.154	7.466	14.020	
3	0.484	14.838	7.417	13.993	
4	0.050	36.177	1.514	14.076	
5	0.061	35,538	2.072	13,869	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Normal with st. dev.=0.05, Use every 25 obs

loise Type. Normal with st. dev.=0.05, Ose every 25 observation(s)						
Experiment ID	h	С	b	F		
1	0.068	32.053	2.002	14.118		
2	0.012	35.829	0.381	13.998		
3	0.094	31.578	2.812	13.897		
4	0.764	11.249	9.266	14.150		
5	0.308	18.840	6.361	13.882		

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

ioise Type: Normal with st. dev.=0.05, Use every 50 observation(s)					
Experiment ID	h	с	ь	F	
1	0.022	26.997	0.657	13.865	
2	0.023	35.114	0.804	13.872	
3	0.472	15.476	7.778	13.905	
4	0.158	26.728	4.101	14.058	
5	0.588	13.507	8.404	13.980	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Normal with st. dev.=0.1, Use every 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.124	30.587	3.752	13.870	
2	0.025	30.734	0.853	13.919	
3	0.074	41.052	2.272	14.136	
4	0.436	16.387	7.939	14.106	
5	0.302	19.947	5.731	14.044	
Domonostomo la 1 -	10 5 10) E 14 I	101 4		

noise Type: Normal with st. dev.=0.1, Use every 5 observation(s)

Experiment ID	h	с	b	F		
1	0.090	33.038	2.808	13.809		
2	0.039	36.476	1.248	14.087		
3	0.259	20.458	5.308	14.199		
4	0.631	13.157	8.809	13.953		
5	0.059	28.236	1.855	13.635		
Parameters: $h = 1$, $a = 10$, $h = 10$, $F = 14$, $I = 10I = 4$						

noise Type: Normal with st. dev.=0.1, Use every 25 observation(s)

Experiment ID	h	с	b	F
1	0.111	32.961	3.301	13.937
2	0.243	23.204	5.276	14.022
3	0.170	27.550	3.799	14.237
4	0.066	30.656	1.796	14.052
5	0.080	35.308	2.478	14.055

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Normal with st. dev.=0.1, Use every 50 observation(s)

Experiment ID	h	С	b	F
1	0.268	21.677	5.365	14.147
2	0.051	32.286	1.556	13.960
3	0.299	18.098	6.123	14.060
4	0.020	30.982	0.639	14.037
5	0.199	25.608	4.794	13.921

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Normal with st. dev.=0.25, Use every 1 obse

•	noise Type. Itolinai with st. dev.=0.25, ese every 1 observation(s)					
ſ	Experiment ID	h	с	b	F	
Γ	1	0.050	32.678	1.571	14.247	
Γ	2	0.213	23.280	4.794	13.979	
Γ	3	0.138	31.275	4.070	13.797	
Γ	4	0.212	18.650	4.612	12.970	
Γ	5	0.110	22.329	2.638	13.912	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Normal with st. dev.=0.25, Use every 5 observation(s)

Experiment ID	h	С	b	F			
1	0.163	32.511	3.857	14.370			
2	0.137	26.379	2.955	13.988			
3	0.137	26.379	2.955	13.988			
4	0.086	33.641	1.807	13.760			
5	0.086	33.641	1.807	13.760			

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type. Normal with st. dev.=0.23, Ose every 23 observation(s)					
Experiment ID	h	с	b	F	
1	0.130	35.960	3.731	13.872	
2	0.150	30.218	3.880	14.442	
3	0.110	33.423	3.008	14.211	
4	0.130	31.770	4.156	13.377	
5	0.129	38.214	3.053	14.174	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Normal with st. dev.=0.25, Ose every 50 observation(s)				
Experiment ID	h	С	b	F
1	0.076	37.562	2.305	13.501
2	0.082	35.390	2.361	13.890
3	0.082	35.390	2.361	13.890
4	0.136	34.925	3.538	13.977
5	0.136	34.925	3.538	13.977

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

ioise Type. Ivorniai with st. dev.=0.5, Ose every 1 observation(s)					
Experiment ID	h	С	b	F	
1	0.088	50.233	2.155	14.170	
2	0.081	39.285	1.666	14.535	
3	0.258	31.113	4.734	13.952	
4	0.210	27.724	3.015	12.722	
5	0.090	21.506	1.810	13.692	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Normal v	with st. dev.:	=0.5, Use eve	ery 5 observa	ation(s)
Experiment ID	h	С	b	F
1	0.124	32.896	4.307	14.045
2	0.210	34.654	3.500	13.919
3	0.099	44.425	2.156	13.700
4	0.071	37.140	1.979	13.470
5	0.017	35.176	0.734	12.820

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

ioise Type: Normai with st. dev.=0.5, Use every 25 observation(s)				
Experiment ID	h	С	b	F
1	0.160	37.195	3.849	14.419
2	0.128	38.780	2.564	13.880
3	0.081	30.704	1.920	13.137
4	0.152	47.105	4.052	13.770
5	0.223	44.685	4.624	14.458
Percentage: h = 1 a = 10 h = 10 F = 14 I = 10 I = 4				

noise Type: Normal with st. dev.=0.5, Use every 50 observation(s)				
Experiment ID	h	С	b	F
1	0.270	27.016	4.592	14.599
2	0.219	24.185	3.372	13.671
3	0.010	27.182	0.334	13.310
4	0.019	29.884	0.484	14.484
5	0.118	37.126	2.164	14.493

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Normal with st. dev.=1, Use every 1 observ:

ionse Type: Tronnan wan se dev.—1, ese every 1 observation(s)					
Experiment ID	h	С	b	F	
1	0.588	18.663	3.320	15.553	
2	0.243	14.525	2.212	16.130	
3	0.642	15.249	4.684	14.879	
4	0.563	21.170	5.346	15.714	
5	0.083	47.122	1.224	14.065	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Normal with st. dev.=1, Use every 5 observation(s)					
Experiment ID	h	С	b	F	
1	0.346	17.926	3.075	14.522	
2	0.394	21.975	7.687	14.981	
3	0.499	19.794	3.613	14.988	
4	0.231	48.943	3.368	13.271	
5	0.830	23.646	4.895	15.078	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Normal with st. dev.=1, Use every 25 observation(s)

Experiment ID	h	С	b	F
1	0.050	28.497	1.084	12.964
2	0.303	31.217	4.181	15.405
3	0.041	27.158	0.634	13.730
4	0.046	38.927	0.909	13.338
5	1.089	12.384	7.642	17.142

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Normal with st. dev.=1, Use every 50 observation(s)

Experiment ID	h	с	b	F
1	0.275	23.518	4.591	12.800
2	1.185	12.023	6.123	14.916
3	0.176	51.086	2.950	15.319
4	0.762	19.665	4.953	15.291
5	1.543	12.092	7.934	15.711

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4noise Type: Normal with st. dev.=2, Use every 1 observation(s)

Experiment ID	h	С	b	F
1	1.006	27.687	5.858	16.692
2	1.139	16.272	4.747	12.531
3	1.476	15.961	5.956	13.392
4	1.647	14.224	4.968	12.476
5	1.151	15.157	3.280	15.616

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Troilina with st. dev.—2, ese every 5 observation(s)				
Experiment ID	h	с	b	F
1	2.439	13.859	6.097	14.419
2	2.523	15.448	6.196	14.442
3	0.278	35.195	1.937	15.217
4	0.381	25.918	2.159	13.212
5	0.247	28,479	1.536	16.540

Solution $\frac{5}{1.536}$ $\frac{0.247}{1.536}$ $\frac{28.479}{1.536}$ $\frac{1.536}{1.536}$ Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4 noise Type: Normal with st. dev.=2, Use every 25 observation(s)

Experiment ID	h	С	b	F
1	0.084	25.032	0.528	15.491
2	2.162	14.392	10.200	12.150
3	2.550	13.896	5.807	17.143
4	2.259	13.461	6.241	13.665
5	0.106	35.311	0.951	17.565

Parameters: h = 1, c = 10, b = 10, F = 14, I = 10J = 4

noise Type: Normal	with st. dev.	=2, Use every	y 50 observa	ition(s)
Experiment ID	h	с	b	F
1	2.810	16.007	8.827	14.833
2	1.040	14.635	5.238	14.446
3	1.449	12.376	6.551	12.555
4	1.022	17.057	4.009	17.779
5	1 307	13 301	3 939	14 656

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=0. Use every 1 observation(s)

ioise Type. Ivolinai with st. dev.=0, ose every 1 observation(s)				
Experiment ID	h	С	b	F
1	0.211	21.867	5.143	13.919
2	1.000	9.997	10.002	13.997
3	0.012	26.544	0.369	13.987
4	0.177	26.652	4.541	13.961
5	0.177	26.652	4.541	13.961

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type. Normal with st. dev.=0, Ose every 5 observation(s)				
Experiment ID	h	с	b	F
1	0.133	29.148	3.859	13.951
2	0.173	26.476	4.717	13.933
3	0.259	22.401	6.130	13.900
4	0.410	15.618	7.378	14.004
5	0.347	18.200	6.574	13.916

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=0, Use every 25 observation(s)

noise Type: Fromain with st. dev. = 0, ese every 25 observation(s)				
Experiment ID	h	с	b	F
1	0.864	10.868	9.528	13.909
2	0.171	27.611	4.632	13.931
3	0.091	36.165	2.697	14.031
4	0.485	15.328	7.862	13.947
5	0.143	28.896	3.964	13.968

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

oise Type: Normal with st. dev.=0, Use every 50 observation(s)					
Experiment ID	h	с	b	F	
1	0.104	31.693	3.098	13.914	
2	0.203	22.117	4.909	13.997	
3	0.203	22.117	4.909	13.997	
4	0.202	20.004	£ 902	12.069	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Normal with st. dev.=0.01, Use every 1 observation(s)				
Experiment ID	h	c	b	F
1	0.849	10.841	9.721	13.962
2	0.598	13.101	8.166	13.997
3	0.094	33.379	2.764	13.999
4	0.667	12.875	8.989	14.006
5	0.667	12.875	8.989	14.006

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Normal	with st. dev.	=0.01, Use e	very 5 obser	vation(s)
Experiment ID	h	с	b	F
1	0.153	30.070	4.157	14.117
2	0.135	29.347	3.759	13.986
3	0.135	29.347	3.759	13.986
4	0.152	30.672	4.303	13.980
- 5	0.124	31.446	3 534	14.050

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Normal with st. dev.=0.01, Use every 25 observation(s)					
Experiment ID	h	С	b	F	
1	0.899	10.824	9.704	13.929	
2	0.049	32.458	1.542	13.921	
3	0.049	32.458	1.542	13.921	
4	0.022	32.156	0.697	13.957	
5	0.369	18.151	7.199	14.004	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=0.01, Use every 50 observation(s)

Experiment ID	h	c	b	F
1	0.179	25.565	4.642	13.893
2	0.159	26.505	4.255	13.922
3	0.183	24.506	4.726	13.994
4	0.183	24.506	4.726	13.994
5	0.183	24.506	4.726	13.994

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=0.05, Use every 1 obs

noise Type: Troinian with str devi-0.05; else every T observation(s)				
Experiment ID	h	С	b	F
1	0.243	20.408	6.036	13.894
2	0.109	32.622	3.170	13.954
3	0.181	25.530	5.025	13.946
4	0.024	30.606	0.717	14.050
5	0.061	38.038	2.008	13.932

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev = 0.05. Use every 5 obs

noise Type. Ivorniai with st. dev.=0.05, Csc every 5 observation(s)				
Experiment ID	h	С	b	F
1	0.122	33.785	3.378	14.084
2	0.125	30.789	3.814	13.985
3	0.032	31.118	0.994	14.055
4	0.125	30.789	3.814	13.985
5	0.129	30,176	3,539	13.958

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Tyne: Normal with st. dev.=0.05. Use every 25 of

noise Type: Troinia with st. dev.=0.05, ese every 25 observation(s)				
Experiment ID	h	с	b	F
1	0.446	15.093	7.596	13.958
2	0.088	32.712	2.836	13.776
3	0.157	27.710	4.534	13.961
4	0.043	30.739	1.221	13.993
5	0.233	21.445	5.687	13.951

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Normal with st. dev.=0.05, Use every 50 observation(s)				
Experiment ID	h	с	b	F
1	0.528	13.789	8.004	14.001
2	0.014	34.664	0.450	13.891
3	0.550	14.261	8.514	14.016
4	0.320	18.014	6.199	14.026
5	0.273	20.315	5.594	13.991

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=0.1. Use every 1 observation(s)

noise Type: Trothiai with st. dev.—o.1, Ose every 1 observation(s)					
Experiment ID	h	с	b	F	
1	0.411	14.585	7.199	13.844	
2	0.136	29.613	3.835	14.066	
3	0.435	14.674	7.232	13.866	
4	0.103	34.511	3.099	14.070	
5	0.240	23.296	5.332	14.005	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Normal with st. dev.=0.1, Use every 5 observation(s)				
Experiment ID	h	с	b	F
1	0.081	33.955	2.282	13.902
2	0.099	30.462	2.909	13.858
3	0.147	29.657	3.899	13.951
4	0.418	15.902	7.313	13.903
5	0.120	31.607	3.506	14.079

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=0.1, Use every 25 obs

oise Type. Itorinai	min on de i.	-0.1, 050 010	25 00501	vution(5)
Experiment ID	h	с	b	F
1	0.178	28.357	4.286	14.116
2	0.080	28.312	2.563	13.832
3	0.118	31.712	3.385	13.979
4	0.118	31.712	3.385	13.979
5	0.118	31.712	3.385	13.979
arameters: $h = 1.c$	$= 10 \ h = 10$	F = 14 I =	15I = 4	

noise Type: Normal with st. dev.=0.1, Use every 50 observation(s)

Experiment ID	h	С	b	F
1	0.110	35.110	3.293	13.907
2	0.170	26.153	4.440	13.810
3	0.115	31.332	3.507	13.847
4	0.115	31.332	3.507	13.847
5	0.115	31.332	3.507	13.847

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15, J = 4 noise Type: Normal with st. dev.=0.25, Use every 1 observation(s)

Experiment ID	h	с	b	F
1	0.118	33.327	2.764	13.660
2	0.119	34.927	2.824	13.976
3	0.141	29.156	3.594	14.191
4	0.058	37.642	1.843	13.580
5	0.058	37.642	1.843	13.580

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=0.25, Use every 5 observation(s)

Experiment ID	h	С	b	F
1	0.131	27.270	3.650	14.031
2	0.399	17.501	7.113	13.415
3	0.062	38.356	1.769	13.991
4	0.057	31.983	1.748	13.798
5	0.071	36.540	2.347	13.809

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

oise Type. Normal with st. dev.=0.25, Ose every 25 observation(s)				
Experiment ID	h	с	b	F
1	0.026	29.708	0.715	13.939
2	0.148	30.038	4.157	14.419
3	0.293	20.807	6.073	13.803
4	0.129	28.714	3.046	13.968
5	0.006	20.012	0.220	12 000

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=0.25, Use every 50 obs

ioise Type. Ivoitian with st. dev.=0.25, 0se every 50 observation(s)				
Experiment ID	h	С	b	F
1	0.024	32.678	0.752	14.016
2	0.096	33.169	2.749	14.286
3	0.170	28.229	4.138	14.010
4	0.137	37.256	3.839	13.495
5	0.137	37.256	3.839	13.495

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type. Normai	with st. dev.	-0.5, USE EVE	Ty I OUSELV	ation(s)
Experiment ID	h	с	b	F
1	0.036	30.829	1.022	14.238
3	0.113	27.153	2.220	13.869
4	0.282	21.449	4.064	13.104
5	0.282	21.449	4.064	13.104
Parameters: $h = 1, c = 10, b = 10, F = 14, I = 15J = 4$				

noise Type: Normal with st. dev.=0.5, Use every 5 observation(s)

Experiment ID	h	С	b	F
1	0.105	34.624	1.877	14.261
2	0.045	31.077	1.205	13.528
3	0.267	19.209	3.990	14.114
4	0.267	19.209	3.990	14.114
5	0.267	19.209	3.990	14.114

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=0.5, Use every 25 observation(s)

Experiment ID	h	с	b	F
1	0.109	36.403	2.553	12.706
2	0.046	32.343	1.121	13.787
3	0.107	36.729	2.047	14.055
4	0.114	27.913	3.519	13.529
5	0.033	21.916	0.962	12.853

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

loise Type. Ivoiniai with st. dev.=0.5, Ose every 50 observation(s)				
Experiment ID	h	с	b	F
1	0.016	35.210	0.401	13.722
2	0.081	35.924	1.948	13.277
3	0.123	34.668	3.223	12.980
4	0.378	20.239	5.065	13.741
5	0.209	24.982	3.587	13.987

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0, using every 50 observation(s) of first

	Experiment ID	b	σ	R	
	0	nan	nan	nan	
	1	nan	nan	nan	
	2	nan	nan	nan	
	3	nan	nan	nan	
ī	4	nan	nan	nan	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.01, using every 1 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	2.6513	9.9041	22.089
1	2.6513	9.9041	22.089
2	2.6513	9.9041	22.089
3	2.6513	9.9041	22.089
4	2.6513	9.9041	22.089

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0.01, using every 5 observation(s) of

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=1, Use every 1 observation(s)

Experiment ID	h	с	b	F
1	0.154	26.369	2.083	11.689
2	0.556	11.155	3.295	14.452
3	0.597	29.554	5.045	15.943
4	0.168	29.731	1.802	15.108
5	0.339	36.388	4.133	13.151

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=1, Use every 5 observation(s)

Experiment ID	h	С	b	F
1	0.114	28.492	1.463	13.749
2	0.684	22.822	4.220	17.232
3	0.097	32.497	1.494	14.061
4	0.564	16.160	3.984	14.705
5	0.074	42.506	1.470	14.158

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type: Normai with st. dev.=1, Use every 25 observation(s)				
Experiment ID	h	с	b	F
1	0.763	26.120	7.372	11.215
2	0.277	23.069	2.647	13.832
3	0.837	14.565	5.515	13.687
4	0.076	37.083	1.173	14.680
5	0.100	27.870	1.793	13.516

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev = 1. Use every 50 observ

noise Type: Normal with st. dev.=1, Ose every 50 observation(s)				
Experiment ID	h	с	b	F
1	0.339	20.779	3.404	14.406
2	0.043	37.335	0.533	14.697
3	2.031	14.287	8.737	14.799
4	0.327	30.677	3.220	14.329
5	0.528	17.783	4.542	14.691

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4noise Type: Normal with st. dev.=2, Use every 1 observ.

noise Type. Itorniai	with st. ucv.	=2, Osc every	1 Obscivat	ion(s)
Experiment ID	h	с	ь	F
1	0.131	37.988	1.173	16.175
2	0.215	22.196	1.393	16.718
3	1.478	15.344	4.407	13.663
4	0.216	25.777	1.453	14.584
5	1.179	25.244	6.034	14.437
Parameters: $h = 1, c = 10, b = 10, F = 14, I = 15J = 4$				

onse Type: Tromain with st. dev2, ese every 5 observation(s)					
Experiment ID	h	С	b	F	
1	1.416	10.461	3.858	14.276	
2	3.120	11.399	7.082	15.472	
3	0.323	25.915	1.913	16.408	
4	0.264	21.456	1.232	16.926	
5	1.982	14.607	6.867	16.864	

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15J = 4

noise Type. Ivoiniai with st. dev.=2, Ose every 25 observation(s)				
Experiment ID	h	с	b	F
1	0.870	18.070	3.015	13.906
2	0.010	19.309	0.066	14.939
3	1.868	20.815	6.223	16.095
4	2.257	16.455	8.846	17.423
5	0.152	24.211	0.872	16.450

Parameters: h = 1, c = 10, b = 10, F = 14, I = 15, I = 4 noise Type: Normal with st. dev.=2, Use every 50 observation(s)

noise Type: Itolinai wai st. det.=2, ese every 50 observation(s)				
Experiment ID	h	С	b	F
1	2.283	15.376	6.523	16.005
2	0.101	30.468	0.606	17.024
3	0.117	26.638	0.697	16.790
4	1.344	12.916	3.804	13.935
5	1.275	14.406	3.813	14.436

first 1 variables. Experiment ID 2.6641 9.9993 22.02 2.6641 9.9993 2.6641 9.9993 22.02 2.6641 9.9993 22.02

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.01, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.01, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

5.1.4 Lorenz '63 (all Variables)

Parameters: $\sigma = 10, b = 8/3, R = 22$

 $_{\rm r}$ arameters: $\sigma=10,b=8/3,R=22$ noise Type: normal with magnitude 0, using every 1 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0, using every 5 observation(s) of first

1 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4			

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0, using every 25 observation(s) of first 1 variables.

noise Type: normal with magnitude 0.05, using every 1 observation(s) of

first 1 variables.			
Experiment ID	b	σ	R
0	2.692	9.9964	21.786
1	2.692	9.9964	21.786
2	2.692	9.9964	21.786
3	2.692	9.9964	21.786
4	2.692	9.9964	21.786

Parameters: $\sigma = 10, b = 8/3, R = 22$

Talanteets: 0 = 0.5 + 0.5 = 0.5, R = 2.2 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	2.6579	9.9885	22.07
1	2.6579	9.9885	22.07
2	2.6579	9.9885	22.07
3	2.6579	9.9885	22.07
4	2.6579	9.9885	22.07

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0.05, using every 25 observation(s) of first together.

mst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.05, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.1, using every 1 observation(s) of

nrst i variables.			
Experiment ID	b	σ	R
0	2.6857	9.9685	21.833
1	2.6857	9.9685	21.833
2	2.6857	9.9685	21.833
3	2.6857	9.9685	21.833
4	2.6857	9.9685	21.833

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.1, using every 5 observation(s) of

Experiment ID	b	σ	R
0	2.6575	9.9249	22.076
1	2.6575	9.9249	22.076
2	2.6575	9.9249	22.076
3	2.6575	9.9249	22.076
4	2.6575	9.9249	22.076

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.1, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.1, using every 50 observation(s) of

first I variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.25, using every 1 observation(s) of

mst i variables.			
Experiment ID	b	σ	R
0	2.7263	9.6664	21.488
1	2.7263	9.6664	21.488
2	2.7263	9.6664	21.488
3	2.7263	9.6664	21.488
4	2,7263	9.6664	21.488

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.25, using every 5 observation(s) of

first 1 variables.			
Experiment ID	b	σ	R
0	2.6715	9.8862	21.977
1	2.6715	9.8862	21.977
2	2.6715	9.8862	21.977
3	2.6715	9.8862	21.977
4	2 6715	9.8862	21 977

Parameters: $\sigma = 10, b = 8/3, R = 22$

. mannerers. $\sigma = \tau \sigma$, $\sigma = \delta/3$, K = 22 noise Type: normal with magnitude 0.25, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.25, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	4.2404	33.763	-7.259
1	4.2404	33.763	-7.259
2	4.2404	33.763	-7.259
3	4.2404	33.763	-7.259
4	4.2404	33.763	-7.259

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0.5, using every 1 observation(s) of

first 1 variables.			
Experiment ID	b	σ	R
0	2.7172	9.6206	21.437
1	2.7172	9.6206	21.437
2	2.7172	9.6206	21.437
3	2.7172	9.6206	21.437
4	2.7172	9.6206	21.437

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.5, using every 5 observation(s) of first 1 variables

Experiment ID	b	σ	R
0	2.6821	9.8642	21.904
1	2.6821	9.8642	21.904
2	2.6821	9.8642	21.904
3	2.6821	9.8642	21.904
4	2.6821	9.8642	21.904
4		9.8642	21

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.5, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.5, using every 50 observation(s) of

first 1 variables.	_	-	-
Experiment ID	b	σ	R
0	5.2708	-0.21294	11.562
1	5.2708	-0.21294	11.562
2	5.2708	-0.21294	11.562
3	5.2708	-0.21294	11.562
4	5.2708	-0.21294	11.562

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 1, using every 1 observation(s) of first

Experiment ID	b	σ	R
0	2.7143	9.5407	21.386
1	2.7143	9.5407	21.386
2	2.7143	9.5407	21.386
3	2.7143	9.5407	21.386
4	2.7143	9.5407	21.386

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 1, using every 5 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	3.0825	10.171	19.214
1	3.0825	10.171	19.214
2	3.0825	10.171	19.214
3	3.0825	10.171	19.214
4	3.0825	10.171	19.214

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 1, using every 25 observation(s) of first

i variables.				
Experiment ID	b	σ	R	
0	nan	nan	nan	
1	nan	nan	nan	
2	nan	nan	nan	
3	nan	nan	nan	
4	nan	nan	nan	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 1, using every 50 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	3.9608	2.3971	14.915
1	3.9608	2.3971	14.915
2	3.9608	2.3971	14.915
3	3.9608	2.3971	14.915
4	3.9608	2.3971	14.915

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 2, using every 1 observation(s) of first

Experiment ID	b	σ	R
0	2.7045	9.289	21.371
1	2.7045	9.289	21.371
2	2.7045	9.289	21.371
3	2.7045	9.289	21.371
	2.7045	0.200	21 271

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 2, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	3.7514	9.8205	16.029
1	3.7514	9.8205	16.029
2	3.7514	9.8205	16.029
3	3.7514	9.8205	16.029
- 4	2 7514	0.8205	16.020

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 2, using every 25 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 2, using every 50 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	3.7842	2.6283	15.308
1	3.7842	2.6283	15.308
2	3.7842	2.6283	15.308
3	3.7842	2.6283	15.308
4	3.7842	2.6283	15.308

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0, using every 1 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0, using every 5 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

caratheters: σ = 10, b = 8/3, R = $\overline{22}$ noise Type: normal with magnitude 0, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0, using every 50 observation(s) of first

3 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.01, using every 1 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6666	10.0	22.0
1	2.6666	10.0	22.0
2	2.6666	10.0	22.0
3	2.6666	10.0	22.0
4	2.6666	10.0	22.0

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.01, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.01, using every 25 observation(s) of first 3 variables.

Experiment 1D	U	0	10
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.01, using every 50 observation(s) of first 3 variables

mst 2 variables.			
Experiment ID	b	σ	R
0	2.6027	-0.34153	21.996
1	2.6027	-0.34153	21.996
2	2.6027	-0.34153	21.996
3	2.6027	-0.34153	21.996
4	2.6027	-0.34153	21.996

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0.05, using every 1 observation(s) of

st 3 variables.			
Experiment ID	b	σ	R
0	2.6663	10.0	22.0
1	2.6663	10.0	22.0
2	2.6663	10.0	22.0
3	2.6663	10.0	22.0
4	2 6663	10.0	22.0

noise Type: normal with magnitude 0.05, using every 5 observation(s) of

mst 5 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0.05, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.05, using every 50 observation(s) of

ilist 5 variables.			
Experiment ID	b	σ	R
0	2.5516	10.217	22.012
1	2.5516	10.217	22.012
2	2.5516	10.217	22.012
3	2.5516	10.217	22.012
4	2.5516	10.217	22.012

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.1, using every 1 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6658	9.9991	22.0
1	2.6658	9.9991	22.0
2	2.6658	9.9991	22.0
3	2.6658	9.9991	22.0
4	2.6658	9.9991	22.0

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.1, using every 5 observation(s) of

Experiment ID	b	σ	R
0	2.6678	10.01	21.998
1	2.6678	10.01	21.998
2	2.6678	10.01	21.998
3	2.6678	10.01	21.998
4	2.6678	10.01	21.998

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.1, using every 25 observation(s) of

mst 5 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.1, using every 50 observation(s) of first 3 variables

h		D
2 6334	11 315	21.961
		21.961
		21.961
		21.961
		21.961
	b 2.6334 2.6334 2.6334 2.6334 2.6334	2.6334 11.315 2.6334 11.315 2.6334 11.315

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0.25, using every 1 observation(s) of

first 3 variables.			
Experiment ID	b	σ	R
0	2.664	9.9999	21.999
1	2.664	9.9999	21.999
2	2.664	9.9999	21.999
3	2.664	9.9999	21.999
- 4	2.664	9.9999	21.999

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.25, using every 5 observation(s) of

rst 3 variables.			
Experiment ID	b	σ	R
0	2.6619	10.035	22.004
1	2.6619	10.035	22.004
2	2.6619	10.035	22.004
3	2.6619	10.035	22.004
4	2 6619	10.035	22 004

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.25, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

_

. at atticters: σ = 10, b = 8/3, R = 22 noise Type: normal with magnitude 0.25, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6973	2.3157	21.42
1	2.6973	2.3157	21.42
2	2.6973	2.3157	21.42
3	2.6973	2.3157	21.42
4	2.6973	2.3157	21.42

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 0.5, using every 1 observation(s) of

rst 3 variables.			
Experiment ID	b	σ	R
0	2.6639	10.014	22.0
1	2.6639	10.014	22.0
2	2.6639	10.014	22.0
3	2.6639	10.014	22.0
4	2 6639	10.014	22.0

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.5, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6587	10.056	22.009
1	2.6587	10.056	22.009
2	2.6587	10.056	22.009
3	2.6587	10.056	22.009
4	2.6587	10.056	22.009

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 0.5, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Experiment ID	b	σ	R
0	2.6659	20.04	21.976
1	2.6659	20.04	21.976
2	2.6659	20.04	21.976
3	2.6659	20.04	21.976
4	2.6659	20.04	21.976

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 1, using every 1 observation(s) of first

3 variables.			
Experiment ID	b	σ	R
0	2.6651	10.002	22.0
1	2.6651	10.002	22.0
2	2.6651	10.002	22.0
3	2.6651	10.002	22.0
- 4	2.6651	10.002	22.0

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 1, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6503	10.11	22.017
1	2.6503	10.11	22.017
2	2.6503	10.11	22.017
3	2.6503	10.11	22.017
4	2.6503	10.11	22.017

2.6503

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: normal with magnitude 1, using every 25 observation(s) of first 3 variable

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 1, using every 50 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	2.6627	19.548	21.953
1	2.6627	19.548	21.953
2	2.6627	19.548	21.953
3	2.6627	19.548	21.953
4	2.6627	19.548	21.953

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 2, using every 1 observation(s) of first 3 variables.

Experiment ID	ь	σ	R
0	2.6677	9.9369	21.999
1	2.6677	9.9369	21.999
2	2.6677	9.9369	21.999
3	2.6677	9.9369	21.999
4	2.6677	9.9369	21.999

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 2, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.5547	10.103	22.061
1	2.5547	10.103	22.061
2	2.5547	10.103	22.061
3	2.5547	10.103	22.061
4	2.5547	10.103	22.061
arameters: $\sigma = 10$,	b = 8/3, R =	22	

noise Type: normal with magnitude 2, using every 25 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: normal with magnitude 2, using every 50 observation(s) of first

3 variables.			
Experiment ID	b	σ	R
0	2.7649	11.678	22.247
1	2.7649	11.678	22.247
2	2.7649	11.678	22.247
3	2.7649	11.678	22.247
4	2.7649	11.678	22.247

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0, using every 1 observation(s) of first

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0, using every 5 observation(s) of first 1 variables

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

aratheters: $\sigma=10,b=8/3,R=\overline{28}$ noise Type: normal with magnitude 0, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0, using every 50 observation(s) of first

l variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.01, using every 1 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan

 $\frac{4}{\text{Parameters: } \sigma = 10, b = 8/3, R = 28}$

noise Type: normal with magnitude 0.01, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.01, using every 25 observation(s) of first 1 variables.

Experiment 1D	U	U	IX.
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.01, using every 50 observation(s) of first 1 variables.

Experiment ID	ь	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0.05, using every 1 observation(s) of

rst 1 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

noise Type: normal with magnitude 0.05, using every 5 observation(s) of first I variables.

mst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.05, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.05, using every 50 observation(s) of

nrst i variables.			
Experiment ID	b	σ	R
0	0.73426	14.162	46.524
1	0.73426	14.162	46.524
2	0.73426	14.162	46.524
3	0.73426	14.162	46.524
4	0.73426	14.162	46.524

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.1, using every 1 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.1, using every 5 observation(s) of

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.1, using every 25 observation(s) of

nrst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.1, using every 50 observation(s) of first 1 variables

mst i variables.			
Experiment ID	b	σ	R
0	0.0059554	51.224	43.227
1	0.0059554	51.224	43.227
2	0.0059554	51.224	43.227
3	0.0059554	51.224	43.227
4	0.0059554	51.224	43.227

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0.25, using every 1 observation(s) of

first I variables.			
Experiment ID	b	σ	R
0	2.5358	9.4042	28.632
1	2.5358	9.4042	28.632
2	2.5358	9.4042	28.632
3	2.5358	9.4042	28.632
4	2.5358	9.4042	28.632

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.25, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.25, using every 25 observation(s) of first 1 variables

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.25, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	0.55379	17.2	36.953
1	0.55379	17.2	36.953
2	0.55379	17.2	36.953
3	0.55379	17.2	36.953
4	0.55379	17.2	36.953

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0.5, using every 1 observation(s) of

irst 1 variables.			
Experiment ID	b	σ	R
0	1.6882	5.1545	30.438
1	1.6882	5.1545	30.438
2	1.6882	5.1545	30.438
3	1.6882	5.1545	30.438
4	1.6882	5.1545	30.438

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.5, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.5, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0.5, using every 50 observation(s) of first 1 variables.

mst i variables.			
Experiment ID	b	σ	R
0	0.19227	4.1401	25.436
1	0.19227	4.1401	25.436
2	0.19227	4.1401	25.436
3	0.19227	4.1401	25.436
4	0.19227	4 1401	25.436

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 1, using every 1 observation(s) of first

variables.				
Experiment ID	b	σ	R	
0	1.1488	8.0732	40.423	
1	1.1488	8.0732	40.423	
2	1.1488	8.0732	40.423	
3	1.1488	8.0732	40.423	
4	1.1488	8.0732	40.423	

Parameters: $\sigma=10,b=8/3,R=28$ noise Type: normal with magnitude 1, using every 5 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	2.1208	-0.59827	25.53
1	2.1208	-0.59827	25.53
2	2.1208	-0.59827	25.53
3	2.1208	-0.59827	25.53
	2.1200	0.50025	25.52

1 variable

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 1, using every 50 observation(s) of first

variables.				
Experiment ID	b	σ	R	
0	0.066075	11.973	13.416	
1	0.066075	11.973	13.416	
2	0.066075	11.973	13.416	
3	0.066075	11.973	13.416	
4	0.066075	11.973	13.416	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 2, using every 1 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	2.275	15.009	27.688
1	2.275	15.009	27.688
2	2.275	15.009	27.688
3	2.275	15.009	27.688
4	2 275	15.009	27.688

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 2, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	1.0623	6.2884	38.972
1	1.0623	6.2884	38.972
2	1.0623	6.2884	38.972
3	1.0623	6.2884	38.972
4	1.0623	6 2884	38 972

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 2, using every 25 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 2, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	0.0017466	23.373	35.938
1	0.0017466	23.373	35.938
2	0.0017466	23.373	35.938
3	0.0017466	23.373	35.938
4	0.0017466	23,373	35.938

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0, using every 1 observation(s) of first 3 variables

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0, using every 5 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, h = 8/3, R = 28$

noise Type: normal with magnitude 0, using every 25 observation(s) of first 3 variables.

Experiment ID	ь	σ	R	
0	nan	nan	nan	
1	nan	nan	nan	
2	nan	nan	nan	
3	nan	nan	nan	
4	nan	nan	nan	
Parameters: $\sigma = 10$,	Parameters: $\sigma = 10, b = 8/3, R = 28$			
	nan	nan R = 28		

noise Type: normal with magnitude 0, using every 50 observation(s) of first

3 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.01, using every 1 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6667	9.9999	28.0
1	2.6667	9.9999	28.0
2	2.6667	9.9999	28.0
3	2.6667	9.9999	28.0
4	2.6667	9.9999	28.0

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.01, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.01, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.01, using every 50 observation(s) of first 3 variables.

Experiment ID	ь	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0.05, using every 1 observation(s) of

first 3 variables.			
Experiment ID	b	σ	R
0	2.6667	9.9995	28.0
1	2.6667	9.9995	28.0
2	2.6667	9.9995	28.0
3	2.6667	9.9995	28.0
4	2,6667	9.9995	28.0

noise Type: normal with magnitude 0.05, using every 5 observation(s) of

mst 5 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

Lammeters: o = 10, p = 8/3, R = 28noise Type: normal with magnitude 0.05, using every 25 observation(s) of first 3 variables.

Experiment ID	h	σ	R
0	0.37317	-0.072476	24.786
1	0.37317	-0.072476	24.786
2	0.37317	-0.072476	24.786
3	0.37317	-0.072476	24.786
4	0.37317	-0.072476	24,786

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.05, using every 50 observation(s) of

nrst 3 variables.			
Experiment ID	b	σ	R
0	-0.0014538	18.474	26.944
1	-0.0014538	18.474	26.944
2	-0.0014538	18.474	26.944
3	-0.0014538	18.474	26.944
4	-0.0014538	18,474	26,944

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.1, using every 1 observation(s) of first 3 variables

Experiment ID	b	σ	R
0	2.6667	9.9984	28.001
1	2.6667	9.9984	28.001
2	2.6667	9.9984	28.001
3	2.6667	9.9984	28.001
4	2.6667	9.9984	28.001

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.1, using every 5 observation(s) of

Experiment ID	b	σ	R
0	2.6664	9.989	28.007
1	2.6664	9.989	28.007
2	2.6664	9.989	28.007
3	2.6664	9.989	28.007
4	2.6664	9.989	28.007

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.1, using every 25 observation(s) of

Experiment ID	b	σ	R
0	0.90877	5.6695	24.781
1	0.90877	5.6695	24.781
2	0.90877	5.6695	24.781
3	0.90877	5.6695	24.781
4	0.90877	5.6695	24.781

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.1, using every 50 observation(s) of first 3 variables

not 5 variables.			
Experiment ID	b	σ	R
0	-0.002865	17.547	25.662
1	-0.002865	17.547	25.662
2	-0.002865	17.547	25.662
3	-0.002865	17.547	25.662
4	-0.002865	17.547	25,662

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0.25, using every 1 observation(s) of

first 3 variables.			
Experiment ID	b	σ	R
0	2.6667	9.9922	28.003
1	2.6667	9.9922	28.003
2	2.6667	9.9922	28.003
3	2.6667	9.9922	28.003
4	2.6667	9.9922	28.003

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.25, using every 5 observation(s) of

rst 3 variables.			
Experiment ID	b	σ	R
0	2.6649	9.9544	28.017
1	2.6649	9.9544	28.017
2	2.6649	9.9544	28.017
3	2.6649	9.9544	28.017
4	2.6649	9.9544	28.017

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.25, using every 25 observation(s) of first 3 variables

Experiment ID	b	σ	R
0	0.34094	9.9971	25.664
1	0.34094	9.9971	25.664
2	0.34094	9.9971	25.664
3	0.34094	9.9971	25.664
4	0.34094	9.9971	25.664

Parameters: $\sigma = 10, b = 8/3, R = 28$

Latanieres: o = 10, p = 8/3, K = 28 noise Type: normal with magnitude 0.25, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	-0.00017067	0.49258	20.093
1	-0.00017067	0.49258	20.093
2	-0.00017067	0.49258	20.093
3	-0.00017067	0.49258	20.093
4	-0.00017067	0.49258	20.093

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0.5, using every 1 observation(s) of first 3 variables.

iist 3 variables.			
Experiment ID	b	σ	R
0	2.667	9.9736	28.01
1	2.667	9.9736	28.01
2	2.667	9.9736	28.01
3	2.667	9.9736	28.01
4	2,667	9.9736	28.01

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 0.5, using every 5 observation(s) of first 3 variables.

b	σ	R
2.6709	9.8612	27.989
2.6709	9.8612	27.989
2.6709	9.8612	27.989
2.6709	9.8612	27.989
2.6709	9.8612	27.989
	2.6709 2.6709 2.6709	2.6709 9.8612 2.6709 9.8612 2.6709 9.8612 2.6709 9.8612 2.6709 9.8612

Parameters: $\sigma = 10, b = 8/3, R = 28$

r arameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0.5, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	0.0091763	4.0844	36.266
1	0.0091763	4.0844	36.266
2	0.0091763	4.0844	36.266
3	0.0091763	4.0844	36.266
4	0.0091763	4.0844	36.266

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 0.5, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	-0.00028445	-0.73762	29.22
1	-0.00028445	-0.73762	29.22
2	-0.00028445	-0.73762	29.22
3	-0.00028445	-0.73762	29.22
4	-0.00028445	-0.73762	29.22

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 1, using every 1 observation(s) of first 3 variables.

b	σ	R	
2.6684	9.9272	28.019	
2.6684	9.9272	28.019	
2.6684	9.9272	28.019	
2.6684	9.9272	28.019	
2.6684	9.9272	28.019	
	2.6684 2.6684 2.6684	2.6684 9.9272 2.6684 9.9272 2.6684 9.9272	2.6684 9.9272 28.019 2.6684 9.9272 28.019 2.6684 9.9272 28.019

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: normal with magnitude 1, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 1, using every 50 observation(s) of first

variables.				
Experiment ID	b	σ	R	
0	-0.0017706	19.211	24.894	
1	-0.0017706	19.211	24.894	
2	-0.0017706	19.211	24.894	
3	-0.0017706	19.211	24.894	
4	-0.0017706	19.211	24.894	

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 2, using every 1 observation(s) of first

5 variables.			
Experiment ID	b	σ	R
0	2.5137	9.6374	28.815
1	2.5137	9.6374	28.815
2	2.5137	9.6374	28.815
3	2.5137	9.6374	28.815
4	2.5137	9.6374	28.815

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 2, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.52	11.138	27.675
1	2.52	11.138	27.675
2	2.52	11.138	27.675
3	2.52	11.138	27.675
4	2.52	11.138	27.675

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 2, using every 25 observation(s) of first

3 variables.			
Experiment ID	b	σ	R
0	0.0073123	1.1599	34.544
1	0.0073123	1.1599	34.544
2	0.0073123	1.1599	34.544
3	0.0073123	1.1599	34.544
4	0.0073123	1.1599	34.544

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: normal with magnitude 2, using every 50 observation(s) of first

5 variables.			
Experiment ID	b	σ	R
0	-0.019088	21.408	22.691
1	-0.019088	21.408	22.691
2	-0.019088	21.408	22.691
3	-0.019088	21.408	22.691
	-0.010088	21.408	22 601

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0, using every 1 observation(s) of first 1 variables

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0, using every 5 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

namewers: $o = 10, b = \delta/3, K = 35$ noise Type: normal with magnitude 0, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0, using every 50 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.01, using every 1 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan

 $\frac{4}{\text{Parameters: } \sigma = 10, b = 8/3, R = 35}$

noise Type: normal with magnitude 0.01, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.01, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

anameters: $\sigma=10, b=8/3, R=35$ noise Type: normal with magnitude 0.01, using every 50 observation(s) of first 1 variables.

ilist i valiables.			
Experiment ID	b	σ	R
0	26.036	-0.27007	11.836
1	26.036	-0.27007	11.836
2	26.036	-0.27007	11.836
3	26.036	-0.27007	11.836
4	26.036	-0.27007	11.836

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.05, using every 1 observation(s) of

irst 1 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.05, using every 5 observation(s) of

first 1 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.05, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.05, using every 50 observation(s) of

first i variables.			
Experiment ID	b	σ	R
0	5.6745	0.13621	-1.216
1	5.6745	0.13621	-1.216
2	5.6745	0.13621	-1.216
3	5.6745	0.13621	-1.216
4	5.6745	0.13621	-1.216

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.1, using every 1 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.1, using every 5 observation(s) of

Experiment ID	b	σ	R
0	2.7775	10.338	34.015
1	2.7775	10.338	34.015
2	2.7775	10.338	34.015
3	2.7775	10.338	34.015
4	2.7775	10.338	34.015

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.1, using every 25 observation(s) of first 1 variables

mst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.1, using every 50 observation(s) of first 1 variables

mst i variables.			
Experiment ID	b	σ	R
0	4.7847	13.369	-1.868
1	4.7847	13.369	-1.868
2	4.7847	13.369	-1.868
3	4.7847	13.369	-1.868
4	4.7847	13.369	-1.868

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.25, using every 1 observation(s) of

first I variables.			
Experiment ID	b	σ	R
0	2.6876	10.04	34.822
1	2.6876	10.04	34.822
2	2.6876	10.04	34.822
3	2.6876	10.04	34.822
- 4	2.6876	10.04	34.822

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.25, using every 5 observation(s) of

first 1 variables.			
Experiment ID	b	σ	R
0	2.7652	10.32	34.099
1	2.7652	10.32	34.099
2	2.7652	10.32	34.099
3	2.7652	10.32	34.099
4	2.7652	10.32	34 099

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.25, using every 25 observation(s) of first 1 variables

mot i variables.			
Experiment ID	ь	σ	R
0	0.76193	-1.1688	41.538
1	0.76193	-1.1688	41.538
2	0.76193	-1.1688	41.538
3	0.76193	-1.1688	41.538
4	0.76193	-1.1688	41.538

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.25, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	0.40302	23.405	40.769
1	0.40302	23.405	40.769
2	0.40302	23.405	40.769
3	0.40302	23.405	40.769
4	0.40302	23.405	40.769

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.5, using every 1 observation(s) of

irst 1 variables.			
Experiment ID	b	σ	R
0	2.5727	9.7305	35.76
1	2.5727	9.7305	35.76
2	2.5727	9.7305	35.76
3	2.5727	9.7305	35.76
4	2.5727	9.7305	35.76

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.5, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	1.8514	16.124	35.673
1	1.8514	16.124	35.673
2	1.8514	16.124	35.673
3	1.8514	16.124	35.673
4	1.8514	16.124	35.673

Parameters: $\sigma = 10, b = 8/3, R = 35$

r an annexers: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.5, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	1.2744	-0.56637	31.786
1	1.2744	-0.56637	31.786
2	1.2744	-0.56637	31.786
3	1.2744	-0.56637	31.786
4	1.2744	-0.56637	31.786

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.5, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	1.9203	16.514	32.723
1	1.9203	16.514	32.723
2	1.9203	16.514	32.723
3	1.9203	16.514	32.723
4	1.9203	16.514	32.723

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 1, using every 1 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	2.478	9.5361	36.546
1	2.478	9.5361	36.546
2	2.478	9.5361	36.546
3	2.478	9.5361	36.546
4	2.478	9.5361	36.546

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 1, using every 5 observation(s) of first

i variables.				
Experiment ID	b	σ	R	
0	2.0716	12.4	28.69	
1	2.0716	12.4	28.69	
2	2.0716	12.4	28.69	
3	2.0716	12.4	28.69	
4	2.0716	12.4	28.69	

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 1, using every 25 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	2.049	13.221	21.132
1	2.049	13.221	21.132
2	2.049	13.221	21.132
3	2.049	13.221	21.132
4	2.049	13.221	21.132

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 1, using every 50 observation(s) of first

i variabies.				
Experiment ID	b	σ	R	
0	0.96514	20.136	37.92	
1	0.96514	20.136	37.92	
2	0.96514	20.136	37.92	
3	0.96514	20.136	37.92	
4	0.96514	20.136	37.92	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 2, using every 1 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	2.5859	6.7114	35.304
1	2.5859	6.7114	35.304
2	2.5859	6.7114	35.304
3	2.5859	6.7114	35.304
4	2 5859	6.7114	35 304

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 2, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 2, using every 25 observation(s) of first

l variables.			
Experiment ID	b	σ	R
0	1.0802	23.228	40.538
1	1.0802	23.228	40.538
2	1.0802	23.228	40.538
3	1.0802	23.228	40.538
4	1.0802	23 228	40 538

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 2, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	7.1914	-0.77856	52.786
1	7.1914	-0.77856	52.786
2	7.1914	-0.77856	52.786
3	7.1914	-0.77856	52.786
- 4	7.1914	-0.77856	52.786

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0, using every 1 observation(s) of first 3 varial

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0, using every 5 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0, using every 50 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.01, using every 1 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6667	10.0	35.0
1	2.6667	10.0	35.0
2	2.6667	10.0	35.0
3	2.6667	10.0	35.0
4	2.6667	10.0	35.0

2.6667 Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.01, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.01, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.01, using every 50 observation(s) of first 3 variables

mst 3 variables.			
Experiment ID	b	σ	R
0	0.58929	20.021	34.127
1	0.58929	20.021	34.127
2	0.58929	20.021	34.127
3	0.58929	20.021	34.127
4	0.58929	20.021	34 127

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.05, using every 1 observation(s) of

st 3 variables.			
Experiment ID	b	σ	R
0	2.6667	10.0	35.0
1	2.6667	10.0	35.0
2	2.6667	10.0	35.0
3	2.6667	10.0	35.0
4	2 6667	10.0	35 (

noise Type: normal with magnitude 0.05, using every 5 observation(s) of

nrst 3 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.05, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.05, using every 50 observation(s) of

rst 3 variables.			
Experiment ID	b	σ	R
0	0.26817	6.5347	31.788
1	0.26817	6.5347	31.788
2	0.26817	6.5347	31.788
3	0.26817	6.5347	31.788
4	0.26817	6.5347	31.788

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.1, using every 1 observation(s) of

nrst 3 variables.			
Experiment ID	b	σ	R
0	2.6667	9.9996	35.0
1	2.6667	9.9996	35.0
2	2.6667	9.9996	35.0
3	2.6667	9.9996	35.0
4	2 6667	9 9996	35.0

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.1, using every 5 observation(s) of

mst 3 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.1, using every 25 observation(s) of first 3 variables

ilist 3 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.1, using every 50 observation(s) of first 3 variables

iiist 2 variables.			
Experiment ID	b	σ	R
0	0.024014	0.88564	31.889
1	0.024014	0.88564	31.889
2	0.024014	0.88564	31.889
3	0.024014	0.88564	31.889
4	0.024014	0.88564	31.889

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.25, using every 1 observation(s) of

first 3 variables.			
Experiment ID	b	σ	R
0	2.6668	9.9987	35.0
1	2.6668	9.9987	35.0
2	2.6668	9.9987	35.0
3	2.6668	9.9987	35.0
- 4	2.6668	9.9987	35.0

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.25, using every 5 observation(s) of

first 3 variables.			
Experiment ID	b	σ	R
0	2.6688	9.9598	35.012
1	2.6688	9.9598	35.012
2	2.6688	9.9598	35.012
3	2.6688	9.9598	35.012
4	2.6688	9.9598	35.012

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.25, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	1.4011	5.5139	31.117
1	1.4011	5.5139	31.117
2	1.4011	5.5139	31.117
3	1.4011	5.5139	31.117
4	1.4011	5.5139	31.117

. an anteers: $\sigma=10,b=8/3,R=35$ noise Type: normal with magnitude 0.25, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	0.8251	10.733	34.336
1	0.8251	10.733	34.336
2	0.8251	10.733	34.336
3	0.8251	10.733	34.336
4	0.8251	10.733	34.336

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.5, using every 1 observation(s) of first 3 variables.

St 3 variables.			
Experiment ID	b	σ	R
0	2.6669	9.9953	35.0
1	2.6669	9.9953	35.0
2	2.6669	9.9953	35.0
3	2.6669	9.9953	35.0
4	2.6669	9.9953	35.0

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 0.5, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6745	9.8575	35.031
1	2.6745	9.8575	35.031
2	2.6745	9.8575	35.031
3	2.6745	9.8575	35.031
4	2.6745	9.8575	35.031

Parameters: $\sigma = 10, b = 8/3, R = 35$

r arameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.5, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 0.5, using every 50 observation(s) of first 3 wrighlys.

mst 5 variables.			
Experiment ID	b	σ	R
0	0.048738	1.9323	31.866
1	0.048738	1.9323	31.866
2	0.048738	1.9323	31.866
3	0.048738	1.9323	31.866
4	0.048738	1.9323	31.866

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 1, using every 1 observation(s) of first

3 variables.			
Experiment ID	b	σ	R
0	2.667	9.9817	35.003
1	2.667	9.9817	35.003
2	2.667	9.9817	35.003
3	2.667	9.9817	35.003
4	2 667	9 9817	35.003

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 1, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6651	9.8494	35.014
1	2.6651	9.8494	35.014
2	2.6651	9.8494	35.014
3	2.6651	9.8494	35.014
4	2.6651	9.8494	35.014

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: normal with magnitude 1, using every 25 observation(s) of first

J variables.				
Experiment ID	b	σ	R	
0	0.051339	9.3048	30.962	
1	0.051339	9.3048	30.962	
2	0.051339	9.3048	30.962	
3	0.051339	9.3048	30.962	
4	0.051339	9.3048	30.962	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 1, using every 50 observation(s) of first

variables.				
Experiment ID	b	σ	R	
0	0.069178	11.614	32.25	
1	0.069178	11.614	32.25	
2	0.069178	11.614	32.25	
3	0.069178	11.614	32.25	
4	0.069178	11.614	32.25	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 2, using every 1 observation(s) of first

J variables.			
Experiment ID	ь	σ	R
0	2.6663	9.9232	34.999
1	2.6663	9.9232	34.999
2	2.6663	9.9232	34.999
3	2.6663	9.9232	34.999
	2.000	0.0222	24.000

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 2, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6669	9.9831	34.515
1	2.6669	9.9831	34.515
2	2.6669	9.9831	34.515
3	2.6669	9.9831	34.515
4	2 6669	9 9831	34 515

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 2, using every 25 observation(s) of first

5 variables.			
Experiment ID	b	σ	R
0	1.3155	6.8289	32.555
1	1.3155	6.8289	32.555
2	1.3155	6.8289	32.555
3	1.3155	6.8289	32.555
4	1.3155	6.8289	32.555

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: normal with magnitude 2, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	0.20429	1.5591	32.489
1	0.20429	1.5591	32.489
2	0.20429	1.5591	32.489
3	0.20429	1.5591	32.489
4	0.20429	1.5591	32.489

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0, using every 1 observation(s) of first 1 variables

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0, using every 5 observation(s) of first 1 variables.

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0, using every 25 observation(s) of

ilist i valiables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan

nan

nan Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 0, using every 50 observation(s) of

nan

first I variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0.5, using every 1 observation(s) of

first I variables.			
Experiment ID	b	σ	R
0	2.6284	0.072685	22.244
1	2.6284	0.072685	22.244
2	2.6284	0.072685	22.244
3	2.6284	0.072685	22.244
4	2.6294	0.072695	22 244

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0.5, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	3.6945	10.184	16.148
1	3.6945	10.184	16.148
2	3.6945	10.184	16.148
3	3.6945	10.184	16.148
4	3.6945	10.184	16.148

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0.5, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0.5, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 2, using every 1 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	1.7463	18.554	27.584
1	1.7463	18.554	27.584
2	1.7463	18.554	27.584
3	1.7463	18.554	27.584
4	1.7463	18.554	27.584

noise Type: uniform with magnitude 2, using every 5 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	4.185	11.887	14.386
1	4.185	11.887	14.386
2	4.185	11.887	14.386
3	4.185	11.887	14.386
4	4.185	11.887	14.386

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 2, using every 25 observation(s) of first 1 variables

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 2, using every 50 observation(s) of

first i variables.			
Experiment ID	b	σ	R
0	3.6228	3.9209	16.481
1	3.6228	3.9209	16.481
2	3.6228	3.9209	16.481
3	3.6228	3.9209	16.481
4	3,6228	3.9209	16.481

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 4, using every 1 observation(s) of first 1 variables

Experiment ID	b	σ	R
0	1.6323	21.303	29.274
1	1.6323	21.303	29.274
2	1.6323	21.303	29.274
3	1.6323	21.303	29.274
4	1.6323	21.303	29.274

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 4, using every 5 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	4.3803	16.771	13.834
1	4.3803	16.771	13.834
2	4.3803	16.771	13.834
3	4.3803	16.771	13.834
4	4.3803	16,771	13.834

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 4, using every 25 observation(s) of first 1 variables.

mst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 4, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 6, using every 1 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	1.5364	24.428	31.598
1	1.5364	24.428	31.598
2	1.5364	24.428	31.598
3	1.5364	24.428	31.598
4	1.5364	24,428	31.598

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 6, using every 5 observation(s) of first

l variables.			
Experiment ID	b	σ	R
0	4.4082	18.125	13.8
1	4.4082	18.125	13.8
2	4.4082	18.125	13.8
3	4.4082	18.125	13.8
- 4	4.4082	18 125	13.8

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 6, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

_

noise Type: uniform with magnitude 6, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 8, using every 1 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	5.5708	6.66e-06	29.971
1	5.5708	6.66e-06	29.971
2	5.5708	6.66e-06	29.971
3	5.5708	6.66e-06	29.971
4	5.5708	6.66e-06	29.971

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 8, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R	
0	4.2604	18.473	14.289	
1	4.2604	18.473	14.289	
2	4.2604	18.473	14.289	
3	4.2604	18.473	14.289	
4	4.2604	18.473	14.289	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 8, using every 25 observation(s) of first 1 variables.

mst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 8, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 10, using every 1 observation(s) of first 1 variables.

nst i variables.			
Experiment ID	b	σ	R
0	1.6493	-0.05191	34.936
1	1.6493	-0.05191	34.936
2	1.6493	-0.05191	34.936
3	1.6493	-0.05191	34.936
4	1.6493	-0.05191	34.936

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 10, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	4.133	18.483	14.739
1	4.133	18.483	14.739
2	4.133	18.483	14.739
3	4.133	18.483	14.739
4	4.133	18.483	14.739

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 10, using every 25 observation(s) of first 1 variables.

ist i variables.			
Experiment ID	b	σ	R
0	1.1656	17.618	24.089
1	1.1656	17.618	24.089
2	1.1656	17.618	24.089
3	1.1656	17.618	24.089
4	1.1656	17.618	24.089

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 10, using every 50 observation(s) of

ist i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0, using every 1 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
- 4	non	non	non

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 0, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0, using every 25 observation(s) of first 3 variables.

irst 5 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 0.5, using every 1 observation(s) of

mst 3 variables.			
Experiment ID	b	σ	R
0	2.6661	10.001	21.998
1	2.6661	10.001	21.998
2	2.6661	10.001	21.998
3	2.6661	10.001	21.998
4	2.6661	10.001	21.998

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 0.5, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6666	9.9976	21.998
1	2.6666	9.9976	21.998
2	2.6666	9.9976	21.998
3	2.6666	9.9976	21.998
4	2.6666	9.9976	21.998

Parameters: $\sigma = 10, h = 8/3, R = 22$

radializers. $o = 10, \theta = 9/3, R = 22$ noise Type: uniform with magnitude 0.5, using every 25 observation(s) of first 3 variables.

Experiment ID b σ R

0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan
Parameters: $\sigma = 10$	h - 8/3 h	2 - 22	

noise Type: uniform with magnitude 0.5, using every 50 observation(s) of

mst 5 variables.			
Experiment ID	b	σ	R
0	2.8955	7.9076	18.964
1	2.8955	7.9076	18.964
2	2.8955	7.9076	18.964
3	2.8955	7.9076	18.964
4	2.8955	7.9076	18.964

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 2, using every 1 observation(s) of first

5 variables.			
Experiment ID	b	σ	R
0	2.6619	10.007	21.989
1	2.6619	10.007	21.989
2	2.6619	10.007	21.989
3	2.6619	10.007	21.989
4	2.6610	10.007	21.090

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 2, using every 5 observation(s) of first

3 variables.			
Experiment ID	b	σ	R
0	2.6678	9.9901	21.993
1	2.6678	9.9901	21.993
2	2.6678	9.9901	21.993
3	2.6678	9.9901	21.993
	2 6670	0.0001	21.002

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 2, using every 25 observation(s) of first 3

mst 5 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 2, using every 50 observation(s) of first 3 variables

Experiment ID	b	σ	R
0	2.7511	3.3962	20.681
1	2.7511	3.3962	20.681
2	2.7511	3.3962	20.681
3	2.7511	3.3962	20.681
	2 7511	3 3062	20.681

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 4, using every 1 observation(s) of first

Experiment ID	b	σ	R
0	2.664	10.038	21.987
1	2.664	10.038	21.987
2	2.664	10.038	21.987
3	2.664	10.038	21.987
4	2 664	10.038	21.087

noise Type: uniform with magnitude 4, using every 5 observation(s) of first

5 variables.			
Experiment ID	b	σ	R
0	2.6691	9.9845	21.987
1	2.6691	9.9845	21.987
2	2.6691	9.9845	21.987
3	2.6691	9.9845	21.987
4	2,6691	9.9845	21.987

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 4, using every 25 observation(s) of first 3 variables

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 4, using every 50 observation(s) of

mst 5 variables.			
Experiment ID	b	σ	R
0	2.6313	7.8808	21.982
1	2.6313	7.8808	21.982
2	2.6313	7.8808	21.982
3	2.6313	7.8808	21.982
4	2.6313	7.8808	21.982

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 6, using every 1 observation(s) of first

Experiment ID	b	σ	R
0	2.6599	10.063	21.978
1	2.6599	10.063	21.978
2	2.6599	10.063	21.978
3	2.6599	10.063	21.978
4	2.6599	10.063	21.978

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 6, using every 5 observation(s) of first

Experiment ID	b	σ	R
0	2.6704	9.9949	21.973
1	2.6704	9.9949	21.973
2	2.6704	9.9949	21.973
3	2.6704	9.9949	21.973
4	2.6704	9.9949	21.973

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 6, using every 25 observation(s) of first 3 variables.

mst 5 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 6, using every 50 observation(s) of first 3 variables.

not 5 variables.			
Experiment ID	b	σ	R
0	1.1382	11.089	21.995
1	1.1382	11.089	21.995
2	1.1382	11.089	21.995
3	1.1382	11.089	21.995
4	1.1382	11.089	21.995

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 8, using every 1 observation(s) of first

5 variables.			
Experiment ID	b	σ	R
0	2.6217	9.966	21.939
1	2.6217	9.966	21.939
2	2.6217	9.966	21.939
3	2.6217	9.966	21.939
4	2.6217	9,966	21.939

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 8, using every 5 observation(s) of first

3 variables.			
Experiment ID	b	σ	R
0	2.6244	9.9351	21.978
1	2.6244	9.9351	21.978
2	2.6244	9.9351	21.978
3	2.6244	9.9351	21.978
- 4	2.6244	9.9351	21.978

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 8, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 8, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.8416	4.9467	19.688
1	2.8416	4.9467	19.688
2	2.8416	4.9467	19.688
3	2.8416	4.9467	19.688
4	2.8416	4.9467	19.688

Parameters: $\sigma = 10, b = 8/3, R = 22$ noise Type: uniform with magnitude 10, using every 1 observation(s) of first

rst 3 variables.			
Experiment ID	b	σ	R
0	2.6151	9.9106	21.931
1	2.6151	9.9106	21.931
2	2.6151	9.9106	21.931
3	2.6151	9.9106	21.931
4	2 6151	9 9106	21 931

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 10, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R	
0	2.585	9.9046	21.964	
1	2.585	9.9046	21.964	
2	2.585	9.9046	21.964	
3	2.585	9.9046	21.964	
4	2.585	9.9046	21.964	

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 10, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 22$

noise Type: uniform with magnitude 10, using every 50 observation(s) of

nrst 3 variables.			
Experiment ID	b	σ	R
0	2.8607	5.0074	19.509
1	2.8607	5.0074	19.509
2	2.8607	5.0074	19.509
3	2.8607	5.0074	19.509
4	2.8607	5.0074	19.509

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0, using every 1 observation(s) of first

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: uniform with magnitude 0, using every 5 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan

iist i variabies.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0, using every 50 observation(s) of

itst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0.5, using every 1 observation(s) of

nrst i variabies.			
Experiment ID	b	σ	R
0	2.5198	13.156	27.557
1	2.5198	13.156	27.557
2	2.5198	13.156	27.557
3	2.5198	13.156	27.557
4	2 5198	13 156	27 557

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0.5, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	1.1717	3.2724	26.388
1	1.1717	3.2724	26.388
2	1.1717	3.2724	26.388
3	1.1717	3.2724	26.388
4	1 1717	3 2724	26 388

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0.5, using every 25 observation(s) of

arst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0.5, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
- 4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 2, using every 1 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 2, using every 5 observation(s) of first 1 variables.

i variables.			
Experiment ID	b	σ	R
0	1.2726	-0.030629	27.69
1	1.2726	-0.030629	27.69
2	1.2726	-0.030629	27.69
3	1.2726	-0.030629	27.69
4	1.2726	-0.030629	27.69

Parameters: $\sigma = 10, b = 8/3, R = 28$

radializers. $0 = 10, \theta = 0/3, R = 28$ noise Type: uniform with magnitude 2, using every 25 observation(s) of first 1 variables.

Experiment ID b σ R

nan nan nan nan nan nan nan nan nan

nan

nan Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: uniform with magnitude 2, using every 50 observation(s) of

nan

first 1 variables.		-	_
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan

nan Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 4, using every 1 observation(s) of first $\underline{1}$ variables.

variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 4, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	0.33524	27.26	38.33
1	0.33524	27.26	38.33
2	0.33524	27.26	38.33
3	0.33524	27.26	38.33
4	0.33524	27.26	38.33

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 4, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	0.64917	55.038	33.14
1	0.64917	55.038	33.14
2	0.64917	55.038	33.14
3	0.64917	55.038	33.14
4	0.64917	55.038	33.14

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 4, using every 50 observation(s) of first 1 variables

mst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: uniform with magnitude 6, using every 1 observation(s) of first

1 variables.			
Experiment ID	b	σ	R
0	1.7931	8.1949	27.695
1	1.7931	8.1949	27.695
2	1.7931	8.1949	27.695
3	1.7931	8.1949	27.695
4	1.7931	8.1949	27.695

noise Type: uniform with magnitude 6, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	3.118	-2.6726	28.684
1	3.118	-2.6726	28.684
2	3.118	-2.6726	28.684
3	3.118	-2.6726	28.684
4	3.118	-2.6726	28,684

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 6, using every 25 observation(s) of

Experiment ID	b	σ	R
0	1.5582	6.775	48.321
1	1.5582	6.775	48.321
2	1.5582	6.775	48.321
3	1.5582	6.775	48.321
4	1.5582	6.775	48.321

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 6, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 8, using every 1 observation(s) of first

Experiment ID	ь	σ	R
0	0.22229	0.33675	34.944
1	0.22229	0.33675	34.944
2	0.22229	0.33675	34.944
3	0.22229	0.33675	34.944
4	0.22229	0.33675	34,944

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 8, using every 5 observation(s) of first

Experiment ID	b	σ	R
0	2.2165	22.033	34.501
1	2.2165	22.033	34.501
2	2.2165	22.033	34.501
3	2.2165	22.033	34.501
4	2.2165	22.033	34.501

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 8, using every 25 observation(s) of first 1 variables

mst i variables.			
Experiment ID	b	σ	R
0	0.92498	8.5968	26.231
1	0.92498	8.5968	26.231
2	0.92498	8.5968	26.231
3	0.92498	8.5968	26.231
4	0.92498	8.5968	26.231

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 8, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: uniform with magnitude 10, using every 1 observation(s) of

first 1 variables.			
Experiment ID	b	σ	R
0	2.2119	10.868	29.142
1	2.2119	10.868	29.142
2	2.2119	10.868	29.142
3	2.2119	10.868	29.142
4	2.2119	10.868	29.142

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 10, using every 5 observation(s) of

first 1 variables.			
Experiment ID	b	σ	R
0	0.91672	22.137	38.179
1	0.91672	22.137	38.179
2	0.91672	22.137	38.179
3	0.91672	22.137	38.179
4	0.91672	22 137	38 179

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 10, using every 25 observation(s) of first 1 variables.

Ī	Experiment ID	b	σ	R
	0	1.1467	22.938	37.131
	1	1.1467	22.938	37.131
	2	1.1467	22.938	37.131
	3	1.1467	22.938	37.131
Ī	4	1.1467	22.938	37.131

Parameters: $\sigma = 10, b = 8/3, R = 28$

_

_

noise Type: uniform with magnitude 10, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: uniform with magnitude 0, using every 1 observation(s) of first 3 variables.

	variables.			
	Experiment ID	b	σ	R
	0	nan	nan	nan
	1	nan	nan	nan
	2	nan	nan	nan
_	3	nan	nan	nan
	4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0, using every 50 observation(s) of

irst 5 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0.5, using every 1 observation(s) of

mst 2 variables.			
Experiment ID	b	σ	R
0	2.6667	9.9985	28.001
1	2.6667	9.9985	28.001
2	2.6667	9.9985	28.001
3	2.6667	9.9985	28.001
4	2.6667	9.9985	28.001
4	2.6667	9.9985	28.0

Parameters: $\sigma=10,b=8/3,R=28$ noise Type: uniform with magnitude 0.5, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6644	9.9976	28.006
1	2.6644	9.9976	28.006
2	2.6644	9.9976	28.006
3	2.6644	9.9976	28.006
4	2.6644	9.9976	28.006

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: uniform with magnitude 0.5, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 0.5, using every 50 observation(s) of first 3 variables first

St 3 variables.			
Experiment ID	b	σ	R
0	-0.4678	-0.0037233	22.677
1	-0.4678	-0.0037233	22.677
2	-0.4678	-0.0037233	22.677
3	-0.4678	-0.0037233	22.677
4	-0.4678	-0.0037233	22.677

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 2, using every 1 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	2.6646	9.9819	28.014
1	2.6646	9.9819	28.014
2	2.6646	9.9819	28.014
3	2.6646	9.9819	28.014
4	2 6646	0.0810	28.014

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 2, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6642	10.082	27.881
1	2.6642	10.082	27.881
2	2.6642	10.082	27.881
3	2.6642	10.082	27.881
4	2 6642	10.082	27.881

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 2, using every 25 observation(s) of

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 2, using every 50 observation(s) of

mst 5 variables.			
Experiment ID	b	σ	R
0	-0.016717	-0.14549	25.269
1	-0.016717	-0.14549	25.269
2	-0.016717	-0.14549	25.269
3	-0.016717	-0.14549	25.269
	-0.016717	-0.14549	25 260

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 4, using every 1 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	2.6652	9.9473	28.017
1	2.6652	9.9473	28.017
2	2.6652	9.9473	28.017
3	2.6652	9.9473	28.017
4	2.6652	9.9473	28.017

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 4, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6093	10.587	27.662
1	2.6093	10.587	27.662
2	2.6093	10.587	27.662
3	2.6093	10.587	27.662
4	2.6093	10.587	27.662

Parameters: $\sigma = 10, b = 8/3, R = 28$

radializers. $S = 10, \theta = 9/3, R = 28$ noise Type: uniform with magnitude 4, using every 25 observation(s) of first 3 variables.

Experiment ID b σ R

0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan
Parameters: $\sigma = 10$	b = 8/3 B	2 = 28	

noise Type: uniform with magnitude 4, using every 50 observation(s) of

mst 5 variables.			
Experiment ID	b	σ	R
0	-0.00025828	20.843	22.177
1	-0.00025828	20.843	22.177
2	-0.00025828	20.843	22.177
3	-0.00025828	20.843	22.177
4	-0.00025828	20.843	22,177

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 6, using every 1 observation(s) of first

Experiment ID σ 4.9924 24.029 1.34 4.9924 24.029 24.029 4.9924 1.34 4.9924 24.029 4.9924 24.029

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 6, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.2108	10.573	28.744
1	2.2108	10.573	28.744
2	2.2108	10.573	28.744
3	2.2108	10.573	28.744
4	2.2108	10.573	28.744

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 6, using every 25 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	0.061787	1.5961	33.449
1	0.061787	1.5961	33.449
2	0.061787	1.5961	33.449
3	0.061787	1.5961	33.449
4	0.061787	1.5961	33.449

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 6, using every 50 observation(s) of first 3 variables

Experiment ID	b	σ	R	
0	0.0095503	0.8512	27.728	
1	0.0095503	0.8512	27.728	
2	0.0095503	0.8512	27.728	
3	0.0095503	0.8512	27.728	
4	0.0095503	0.8512	27 728	

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: uniform with magnitude 8, using every 1 observation(s) of first

Experiment ID	b	σ	R
0	2.4757	10.904	28.023
1	2.4757	10.904	28.023
2	2.4757	10.904	28.023
3	2.4757	10.904	28.023
A	2.4757	10.904	28.023

Parameters: $\sigma = 10, b = 8/3, R = 28$ noise Type: uniform with magnitude 8, using every 5 observation(s) of first

5 variables.			
Experiment ID	b	σ	R
0	2.4807	11.62	26.68
1	2.4807	11.62	26.68
2	2.4807	11.62	26.68
3	2.4807	11.62	26.68
4	2.4807	11.62	26,68

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 8, using every 25 observation(s) of

Experiment ID	b	σ	R
0	-0.013095	18.034	24.943
1	-0.013095	18.034	24.943
2	-0.013095	18.034	24.943
3	-0.013095	18.034	24.943
4	-0.013095	18.034	24.943

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 8, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	0.30634	10.124	24.699
1	0.30634	10.124	24.699
2	0.30634	10.124	24.699
3	0.30634	10.124	24.699
4	0.30634	10.124	24.699

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 10, using every 1 observation(s) of first 3 variables

mst 5 variables.			
Experiment ID	b	σ	R
0	2.4254	12.97	27.99
1	2.4254	12.97	27.99
2	2.4254	12.97	27.99
3	2.4254	12.97	27.99
4	2.4254	12.97	27.99

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 10, using every 5 observation(s) of

Experiment ID	b	σ	R
0	2.4116	10.76	24.915
1	2.4116	10.76	24.915
2	2.4116	10.76	24.915
3	2.4116	10.76	24.915
4	2.4116	10.76	24.915

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 10, using every 25 observation(s) of

mst 3 variables.			
Experiment ID	b	σ	R
0	0.87339	15.612	23.833
1	0.87339	15.612	23.833
2	0.87339	15.612	23.833
3	0.87339	15.612	23.833
4	0.87339	15.612	23.833

Parameters: $\sigma = 10, b = 8/3, R = 28$

noise Type: uniform with magnitude 10, using every 50 observation(s) of

Experiment ID	b	σ	R
0	0.74352	20.85	28.293
1	0.74352	20.85	28.293
2	0.74352	20.85	28.293
3	0.74352	20.85	28.293
4	0.74352	20.85	28,293

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 0, using every 1 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0, using every 5 observation(s) of first

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0, using every 50 observation(s) of first 1 variables.

Experiment ID) b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 0.5, using every 1 observation(s) of

	_			
first 1 variables.				
Experiment ID	b	σ	R	
0	2.6678	10.005	34.987	
1	2.6678	10.005	34.987	
2	2.6678	10.005	34.987	
3	2.6678	10.005	34.987	
4	2.6678	10.005	34.987	•

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0.5, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	1.5511	-0.90281	30.246
1	1.5511	-0.90281	30.246
2	1.5511	-0.90281	30.246
3	1.5511	-0.90281	30.246
4	1.5511	-0.90281	30.246

. matterets. σ = 10, b = 8/3, R = 35 noise Type: uniform with magnitude 0.5, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	0.69714	-1.0911	44.058
1	0.69714	-1.0911	44.058
2	0.69714	-1.0911	44.058
3	0.69714	-1.0911	44.058
4	0.69714	-1.0911	44.058

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 0.5, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 2, using every 1 observation(s) of first

Experiment ID	b	σ	R
0	2.265	8.8814	25.161
1	2.265	8.8814	25.161
2	2.265	8.8814	25.161
3	2.265	8.8814	25.161
4	2.265	8.8814	25.161

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 2, using every 5 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	1.591	7.1272	30.115
1	1.591	7.1272	30.115
2	1.591	7.1272	30.115
3	1.591	7.1272	30.115
4	1.591	7.1272	30.115

1.591

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 2, using every 25 observation(s) of

irst i variables.			
Experiment ID	b	σ	R
0	2.1885	11.088	38.36
1	2.1885	11.088	38.36
2	2.1885	11.088	38.36
3	2.1885	11.088	38.36
4	2.1885	11.088	38.36

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 2, using every 50 observation(s) of

iist i variables.				
Experiment ID	b	σ	R	
0	nan	nan	nan	
1	nan	nan	nan	
2	nan	nan	nan	
3	nan	nan	nan	
4	nan	nan	nan	

Parameters: $\sigma = 10 \ h = 8/3 \ R = 35$

noise Type: uniform with magnitude 4, using every 1 observation(s) of first

i variables.			
Experiment ID	b	σ	R
0	2.5002	10.244	35.839
1	2.5002	10.244	35.839
2	2.5002	10.244	35.839
3	2.5002	10.244	35.839
	2.5002	10.244	25 920

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 4, using every 5 observation(s) of first 1 variables.

Experiment ID	ь	σ	R
0	1.3244	32.806	33.218
1	1.3244	32.806	33.218
2	1.3244	32.806	33.218
3	1.3244	32.806	33.218
4	1.3244	32.806	33.218
rameters: $\sigma = 10$,	b = 8/3, R =	35	

noise Type: uniform with magnitude 4, using every 25 observation(s) of

nrst i variables.			
Experiment ID	b	σ	R
0	2.3601	14.249	39.81
1	2.3601	14.249	39.81
2	2.3601	14.249	39.81
3	2.3601	14.249	39.81
4	2.3601	14.249	39.81

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 4, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 6, using every 1 observation(s) of first 1 variables

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 6, using every 5 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	2.4487	4.2538	40.725
1	2.4487	4.2538	40.725
2	2.4487	4.2538	40.725
3	2.4487	4.2538	40.725
4	2.4487	4.2538	40.725

Parameters: $\sigma = 10, b = 8/3, R = 35$

radializers. $0 = 10, \theta = 9/3, R = 33$ noise Type: uniform with magnitude 6, using every 25 observation(s) of first 1 variables.

Experiment ID b σ R

Experiment ID b σ R 2.948 16.901 36.143 2.948 2.948 16.901 36.143 2 948 16,901 36 143

16.901 Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 6, using every 50 observation(s) of

36.143

irst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 8, using every 1 observation(s) of first 1 variables

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 8, using every 5 observation(s) of first

variables.			
Experiment ID	b	σ	R
0	3.0352	15.49	23.615
1	3.0352	15.49	23.615
2	3.0352	15.49	23.615
3	3.0352	15.49	23.615
4	2.0252	15.40	22.615

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 8, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	1.5694	21.759	37.373
1	1.5694	21.759	37.373
2	1.5694	21.759	37.373
3	1.5694	21.759	37.373
4	1.5694	21.759	37.373

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 8, using every 50 observation(s) of first 1 variables.

Experiment ID	b	σ	R	
0	nan	nan	nan	
1	nan	nan	nan	
2	nan	nan	nan	
3	nan	nan	nan	
4	nan	nan	nan	
Parameters: $\sigma = 10, b = 8/3, R = 35$				

noise Type: uniform with magnitude 10, using every 1 observation(s) of

first 1 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

noise Type: uniform with magnitude 10, using every 5 observation(s) of

mst i variables.			
Experiment ID	b	σ	R
0	2.1064	14.873	38.916
1	2.1064	14.873	38.916
2	2.1064	14.873	38.916
3	2.1064	14.873	38.916
4	2.1064	14.873	38.916

Parameters: $\sigma = 10, b = 8/3, R = 35$

Laminutes: o = 10, p = 8/3, R = 35 noise Type: uniform with magnitude 10, using every 25 observation(s) of first 1 variables.

Experiment ID	b	σ	R
0	1.4673	-0.67811	62.201
1	1.4673	-0.67811	62.201
2	1.4673	-0.67811	62.201
3	1.4673	-0.67811	62.201
4	1.4673	-0.67811	62,201

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 10, using every 50 observation(s) of

mst i variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0, using every 1 observation(s) of first

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0, using every 5 observation(s) of first

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0, using every 25 observation(s) of

nrst 5 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 0.5, using every 1 observation(s) of

nrst 3 variables.			
Experiment ID	b	σ	R
0	2.6667	10.0	34.999
1	2.6667	10.0	34.999
2	2.6667	10.0	34.999
3	2.6667	10.0	34.999
4	2,6667	10.0	34,999

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0.5, using every 5 observation(s) of

irst 3 variables.			
Experiment ID	b	σ	R
0	2.6677	9.9839	35.003
1	2.6677	9.9839	35.003
2	2.6677	9.9839	35.003
3	2.6677	9.9839	35.003
- 1	2 6677	0.0830	35.003

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 0.5, using every 25 observation(s) of

Experiment ID	b	σ	R
0	0.11552	2.0249	31.45
1	0.11552	2.0249	31.45
2	0.11552	2.0249	31.45
3	0.11552	2.0249	31.45
4	0.11552	2.0249	31.45

Parameters: $\sigma = 10, b = 8/3, R = 35$

r arameters: o = 10, p = 8/3, K = 35noise Type: uniform with magnitude 0.5, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 2, using every 1 observation(s) of first 2 unifolds 3 var E

arrabies.			
Experiment ID	b	σ	R
0	2.6672	9.9958	34.996
1	2.6672	9.9958	34.996
2	2.6672	9.9958	34.996
3	2.6672	9.9958	34.996
4	2.6672	9.9958	34.996

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 2, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R	
0	2.6702	9.9402	34.997	
1	2.6702	9.9402	34.997	
2	2.6702	9.9402	34.997	
3	2.6702	9.9402	34.997	
4	2.6702	9.9402	34.997	

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 2, using every 25 observation(s) of first 3 variables

mst 5 variables.			
Experiment ID	b	σ	R
0	0.054368	13.788	31.593
1	0.054368	13.788	31.593
2	0.054368	13.788	31.593
3	0.054368	13.788	31.593
4	0.054368	13.788	31.593

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 2, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 4, using every 1 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.6681	9.9844	34.988
1	2.6681	9.9844	34.988
2	2.6681	9.9844	34.988
3	2.6681	9.9844	34.988
4	2.6681	9.9844	34.988

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 4, using every 5 observation(s) of first

3 variables.

Experiment ID	D	0	N.
0	2.593	10.437	35.019
1	2.593	10.437	35.019
2	2.593	10.437	35.019
3	2.593	10.437	35.019
4	2.593	10.437	35.019

Parameters: $\sigma = 10, b = 8/3, R = 35$ noise Type: uniform with magnitude 4, using every 25 observation(s) of

nrst 3 variables.			
Experiment ID	b	σ	R
0	0.40712	13.634	32.662
1	0.40712	13.634	32.662
2	0.40712	13.634	32.662
3	0.40712	13.634	32.662
4	0.40712	13.634	32.662

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 4, using every 50 observation(s) of

b	σ	R	
0.23522	13.531	31.091	
0.23522	13.531	31.091	
0.23522	13.531	31.091	
0.23522	13.531	31.091	
0.23522	13.531	31.091	
	0.23522 0.23522 0.23522	0.23522 13.531 0.23522 13.531 0.23522 13.531	0.23522 13.531 31.091 0.23522 13.531 31.091 0.23522 13.531 31.091 0.23522 13.531 31.091 0.23522 13.531 31.091

Parameters: $\sigma = 10 \ h = 8/3 \ R = 35$

noise Type: uniform with magnitude 6, using every 1 observation(s) of first

o variables.			
Experiment ID	b	σ	R
0	2.6738	9.9912	34.873
1	2.6738	9.9912	34.873
2	2.6738	9.9912	34.873
3	2.6738	9.9912	34.873
- 4	2 6729	0.0012	24 972

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 6, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	1.6881	12.71	33.774
1	1.6881	12.71	33.774
2	1.6881	12.71	33.774
3	1.6881	12.71	33.774
- 1	1 6991	12.71	22 774

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 6, using every 25 observation(s) of first 3 variables

ilist 5 variables.			
Experiment ID	b	σ	R
0	0.018521	10.961	31.356
1	0.018521	10.961	31.356
2	0.018521	10.961	31.356
3	0.018521	10.961	31.356
4	0.018521	10.961	31.356

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 6, using every 50 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	0.14392	3.1132	30.364
1	0.14392	3.1132	30.364
2	0.14392	3.1132	30.364
3	0.14392	3.1132	30.364
4	0.14392	3.1132	30.364

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 8, using every 1 observation(s) of first

J variables.			
Experiment ID	b	σ	R
0	2.6732	9.9325	34.923
1	2.6732	9.9325	34.923
2	2.6732	9.9325	34.923
3	2.6732	9.9325	34.923
4	2.6732	9.9325	34.923

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 8, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.5477	9.8632	34.166
1	2.5477	9.8632	34.166
2	2.5477	9.8632	34.166
3	2.5477	9.8632	34.166
4	2.5477	9.8632	34.166

Parameters: $\sigma = 10, b = 8/3, R = 35$

realinears. $0 = 10, \theta = 9/3, R = 33$ noise Type: uniform with magnitude 8, using every 25 observation(s) of first 3 variables.

Experiment ID b σ R33.77 1.0851 16.815 1.085 16.815 33.77 1.0851 16.815 1.0851 16.815 33 77

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 8, using every 50 observation(s) of

16.815

33.77

nrst 3 variables.			
Experiment ID	b	σ	R
0	nan	nan	nan
1	nan	nan	nan
2	nan	nan	nan
3	nan	nan	nan
4	nan	nan	nan

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 10, using every 1 observation(s) of $\underbrace{\text{first 3 variables.}}_{\text{Experiment ID}}$ b σ R

2.5869 10.078 2.5869 2.5869 10.078 34.578 10.078 2.5869 10.078 10.078

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 10, using every 5 observation(s) of first 3 variables.

Experiment ID	b	σ	R
0	2.4957	7.8965	32.966
1	2.4957	7.8965	32.966
2	2.4957	7.8965	32.966
3	2.4957	7.8965	32.966
4	2.4957	7.8965	32.966

Parameters: $\sigma = 10, b = 8/3, R = 35$

noise Type: uniform with magnitude 10, using every 25 observation(s) of first 3 va

Experiment ID	b	σ	R
0	0.33049	12.796	32.947
1	0.33049	12.796	32.947
2	0.33049	12.796	32.947
3	0.33049	12.796	32.947
4	0.33049	12.796	32.947

Parameters: $\sigma = 10, b = 8/3, R = 35$

33.001 7.5997 0.53181 7 5997 33.001 33.001 0.53181 7 5997 33 001 33.001