

Norwegian University of Science and Technology

TDT4145 Datamodellering og databasesystemer

Normaliseringsteori, del 1

13. februar 2017

Roger Midtstraum (roger.midtstraum@ntnu.no)

Funksjonelle avhengigheter

- X → Y der X, Y ⊆ R uttrykker en restriksjon på alle lovlige tabellforekomster:
 - Alle tupler, t_i og t_i, i en forekomst r(R)
 - som har samme verdier for attributtene i X

$$- t_i[X] = t_i[X]$$

- må ha samme verdier for attributtene i Y
 - $t_i[Y] = t_i[Y]$
- Eksempler:
 - Regnr → Navn, Rase, Får, EierPnr
 - Regnr, Pnr → Antall

Utledningsregler

IR-1 (reflexive): Hvis $Y \subseteq X$ så $X \rightarrow Y$

IR-2 (augmentation): $\{X \rightarrow Y\}$ gir $XZ \rightarrow YZ$

IR-3 (transitive): $\{X \rightarrow Y, Y \rightarrow Z\} \text{ gir } X \rightarrow Z$

IR-4 (decomposition): $\{X \rightarrow YZ\} \text{ gir } X \rightarrow Y$

IR-5 (additive): $\{X \rightarrow Y, X \rightarrow Z\} \text{ gir } X \rightarrow YZ$

IR-6 (pseudotransitive): $\{X \rightarrow Y, WY \rightarrow Z\}$ gir $WX \rightarrow Z$

 $X, Y, Z, W \subseteq R$ (mengden av alle attributter)

IR-1 + IR-2 + IR-3 kalles *Armstrongs aksiomer* og er tilstrekkelig for å utlede alle funksjonelle avhengigheter fra et gitt utgangspunkt (en mengde funksjonelle avhengigheter).

Tillukningen til en mengde FD-er

- F er en mengde funksjonelle avhengigheter
- $F^+ = \{ X \rightarrow Y \mid X \rightarrow Y \text{ kan utledes fra FD-ene i } F \}$
 - Opplisting av alle FD-er som gjelder når vi har F.
 - Merk: F og F⁺ uttrykker akkurat samme restriksjon
- Eksempel:
 - Anta R = {a, b, c} og F = { a → b; b → c }
 F⁺ = { a → a; a → b; a → c; a → ab; a → abc; ab → a; abc → a; osv. }
- F⁺ inneholder mange trivielle funksjonelle avhengigheter
 - $-X \rightarrow Y$, der $Y \subseteq X$. Uttrykker ingen restriksjon
- Krevende å beregne, men heldigvis sjelden interessant

Tillukningen til en mengde attributter

- Anta R og F. $X \subseteq R$
- $X^+ = \{ Y \in R \mid X \to Y \in F^+ \}$
 - Alle attributter som er funksjonelt avhengig av X
 - $-X \rightarrow X^+$ vil gjelde

```
• Algoritme: X^+ = X;

repeat

oldX^+ = X^+;

for each Y \rightarrow Z \in F do

if Y \subseteq X^+ then

X^+ = X^+ \cup Z;

until X^+ = \text{old}X^+;
```


Eksempel

Norwegian University of Science and Technology

Oppgave

a) (3 %) Ta utgangspunkt i tabellen **Birds**(SpeciesID, SpeciesName, BirdGroup, Prevalence) og følgende tabellforekomst:

SpeciesID	SpeciesName	BirdGroup	Prevalence
1	Redwing	Thrushes	Migratory
2	Blackbird	Thrushes	Resident
3	Raven	Crows	Resident
4	Magpie	Crows	Resident
5	Chaffinch	Finches	Resident

Hvilke funksjonelle avhengigheter (eng: <u>functional dependencies</u>) er det rimelig å anta vil gjelde for denne tabellen? Forklar de forutsetningene du legger til grunn. Du trenger ikke å ta med trivielle funksjonelle avhengigheter eller funksjonelle avhengigheter som kan utledes ut fra funksjonelle avhengigheter i svaret ditt.

Supernøkler og nøkler

- En supernøkkel for en tabell R er en mengde attributter S slik at:
 - Det ikke i noen forekomst av tabellen kan finnes to tupler, t_i og t_j , med samme verdier for S (t_i [S] = t_i [S]).
 - Supernøkkelen vil være en unik identifikator for tabellen.
 - $S^{+} = R$
- En nøkkel K er en minimal supernøkkel
 - Vi kan ikke fjerne noe attributt fra K og fortsatt ha en supernøkkel.
 - Alle nøkler er supernøkler, noen supernøkler er nøkler

Kandidat-, primær- og sekundærnøkler

- Alle tabeller vil ha minst en nøkkel
- En tabells nøkler utgjør tabellens kandidatnøkler
- En kandidatnøkkel velges til primærnøkkel
- Øvrige kandidatnøkler utgjør tabellens sekundærnøkler (alternative nøkler)

Eksempel

Student har 2 kandidatnøkler, mange supernøkler

Oppgave

b) (3 %) Gitt R = {A, B, C, D, E} og F = {A -> B, B -> C, CD-> E}. Finn alle kandidatnøkler i R. Svaret må begrunnes.

Nøkkel- og ikke-nøkkel-attributter

- Nøkkelattributt (eng: prime)
 - Attributter som inngår i en eller flere kandidatnøkler
- Ikke-nøkkelattributt (nonprime)
 - Attributter som ikke inngår i noen kandidatnøkkel
- Partisjonerer attributtene i en tabell i 2 deler

Normalformer

- Regler som stiller stadig strengere krav til tabeller.
 - Sikrer at vi har tabeller som unngår uheldige egenskaper
- Første normalform (1NF)
 - Attributtenes domener inneholder atomiske (udelelige) verdier
 - Verdien til et attributt er en enkelt verdi fra domenet
 - Sikrer "flate, 2-dimensjonale tabeller"
 - Unngår sammensatte attributter, flere verdier og nøstede tabeller
 - NB! Det finnes tabeller som ikke er på 1NF
- Alle høyere normalformer forutsetter 1NF
- Alle tabeller på 2NF er på 1NF, alle på 3NF er på 2NF, osv.

Norwegian University of Science and Technology

Full funksjonell avhengighet

En funksjonell avhengighet

$$X \rightarrow Y$$

er en *full* funksjonell avhengighet hvis det er umulig å fjerne et attributt, $A \subseteq X$, og ha $(X - \{A\}) \rightarrow Y$

- Inneholder ikke "overflødige" venstreside-attributter
- Kan tenke på den som en "sterkere" regel enn en delvis funksjonell avhengighet, der vi kan fjerne venstreside-attributt og ...
- Sid, Pid → Navn er en delvis f.a.
- Sid → Navn og Pid → Navn er fulle f.a.

Andre normalform (2NF)

- En tabell er på andre normalform hvis og bare hvis
 - Det ikke finnes noe ikke-nøkkel-attributter som er delvis avhengig av en kandidatnøkkel

- Kandidatnøkkel: bokld, dato (maks ett utlån av samme boklD per dato)
- bokID, dato → lånerID er en full f.a.
- bokID, dato → bokTittel er en delvis f.a.
 - bokTittel er et ikke-nøkkel-attributt som er delvis avhengig av en kandidatnøkkel
 - Utlån-tabellen er ikke på 2NF

Å oppnå andre normalform

- Problem
 - bokTittel henger "tettere sammen" med bokID enn med hele kandidatnøkkelen
- Løsning
 - Splitte i to tabeller

- bok og nye utlån er begge på 2NF
- Har fjernet kilde til redundans (delvis avhengighet av nøkkel)

Tredje normalform (3NF)

- En tabell er på tredje normalform hvis og bare hvis det for alle funksjonelle avhengigheter på formen, X → A, som gjelder for tabellen er slik at:
 - a) X er en supernøkkel i tabellen, eller
 - b) A er et nøkkelattributt i tabellen
- Husk: X → BCD utleder X → B; X → C; X → D

- postNr → postSted
 - postNr er ikke en supernøkkel
 - postSted er ikke et nøkkelattributt
 - person-tabellen er ikke på 3NF, men den er på 2NF

Å oppnå tredje normalform (1)

- Problem
 - postNr → postSted er en kilde til redundans
- Løsning
 - Splitte i to tabeller

- Begge tabeller er på 3NF
- Har fjernet kilde til redundans (f.a. mellom ikke-nøkkel-attributter)
- Men inter-tabell f.a.

Å oppnå tredje normalform (2)

Alternativ løsning

- Begge tabeller er på 3NF
- Unngår inter-tabell f.a.
- Bedre løsning

Boyce-Codd normalform

- 3NF kan ha redundansproblemer ved overlappende kandidatnøkler
- En tabell er på Boyce-Codd normalform (BCNF)
 hvis og bare hvis det for alle funksjonelle
 avhengigheter på formen, X → Y, som gjelder for
 tabellen er slik at:
 - a) X er en supernøkkel i tabellen
- Alle venstresider i f.a.-er må altså være supernøkler (entydige identifikatorer for rader i tabellen)

Å oppnå BCNF

- Problem
 - pID → Snr og Snr → pID er kilder til redundans, selv om tabellen er på 3NF
- Løsning
 - Splitte i to tabeller

- Begge er på BCNF
- Har fjernet kilde til redundans
 (avhengighet inne blant kandidatnøklene)

Oppgave

c) (4 %) Gitt R = {A, B, C, D, E} og F = {A -> B, B -> C, CD-> E}. Gå ut fra at R oppfyller 1. normalform. Bestem den høyeste normalformen som oppfylles av R. Svaret må begrunnes.

