Китайская теорема об остатках

- 1. Даны n попарно взаимно простых натуральных чисел d_1, d_2, \ldots, d_n и целые числа r_1, r_2, \ldots, r_n такие, что $0 \le r_i < d_i, i \in \{1, \ldots, n\}$. Докажите, что существует единственное целое число A такое, что $0 \le A < d_1 d_2 \ldots d_n$ и $A \equiv r_i \pmod{d_i}, i \in \{1, \ldots, n\}$.
- 2. Докажите, что для произвольного $n \in \mathbb{N}$ найдутся такие целые числа a и b, что $n \mid 4a^2 + 9b^2 1$.
- 3. Докажите, что для любого натурального n существует n последовательных натуральных чисел,
 - (a) каждое из которых делится на квадрат некоторого натурального числа, большего 1;
 - (b) ни одно из которых не является целой степенью простого числа.
- 4. Докажите, что числа натурального ряда можно переставить местами так, чтобы сумма любых n первых чисел делилась на n.
- 5. (а) Докажите, что для произвольного множества натуральных чисел $\{a_1, a_2, ..., a_n\}$ существует такое число b, что каждое из произведений a_ib является степенью натурального числа (с показателем большим 1).
 - (b) Докажите, что для произвольного $n \in \mathbb{N}$ существует подмножество $M \subset \mathbb{N}$, состоящее из n элементов, такое, что сумма произвольного количества элементов этого множества является степенью целого числа.
- 6. Натуральные числа a и b такие, что $b^n + n : a^n + n$ для любого $n \in \mathbb{N}$. Докажите, что a = b.