<u>Help</u>

sandipan_dey >

<u>Course</u>

Progress

<u>Dates</u>

<u>Discussion</u>

MO Index

★ Course / 15 Fundamentals of Probability and Sta... / 15.3 Statistics and Confidence Int...

All posts sorted by recent activity

15.3.5 Law of Large Numbers and Standard Error

□ Bookmark this page

MO2.13 MO2.14

While the sample mean is an unbiased estimator of the expectation, as we observed there is variation in the sample mean. This suggests we should calculate the variance of \overline{x} about μ_x . We give this quantity a special symbol,

$$\sigma_{\overline{x}}^2 \equiv E\left[(\overline{x} - \mu_x)^2 \right] \tag{15.19}$$

where $\sigma_{\overline{x}}$ is referred to as the $standard\ error$ of \overline{x} .

After a lot of algebra, we can find the following result for the standard error,

$$\sigma_{\overline{x}}^2 = E\left[\left(\overline{x} - \mu_x\right)^2\right] = \frac{\sigma_x^2}{N} \Rightarrow \sigma_{\overline{x}} = \frac{\sigma_x}{\sqrt{N}}$$
 (15.20)

Recall in our demonstration in Section <u>15.3.2</u>, we observed in the scatter plots and histograms that $|\overline{x} - \mu_x| \propto 1/\sqrt{N}$. The result in Eq. <u>15.20</u>, which quantifies the square of $\overline{x} - \mu_x$ is consistent with this observation.

Previous

Next >

© All Rights Reserved

edX

About

Affiliates

edX for Business

Open edX

Careers

<u>News</u>

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

Trademark Policy

<u>Sitemap</u>

Cookie Policy

Your Privacy Choices

Connect

<u>Idea Hub</u>

Contact Us

Help Center

<u>Security</u>

Media Kit

© 2023 edX LLC. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>