TITANIC SURVIVAL

Importing libraries

```
In [24]: import pandas as pd
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
         from sklearn.preprocessing import LabelEncoder
         from sklearn.model selection import train test split
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.linear_model import LogisticRegression
         from sklearn.metrics import accuracy score, confusion matrix, classification rep
         ort
         from scipy.stats import chi2_contingency
         from sklearn.ensemble import RandomForestClassifier,GradientBoostingClassifie
         r, AdaBoostClassifier
         from sklearn.neighbors import KNeighborsClassifier
          import warnings
         warnings.filterwarnings('ignore')
         pd.set_option('display.max_columns', None)
          pd.set_option('display.max_rows', None)
```

Loading dataset

```
In [25]: df = pd.read_csv('/kaggle/input/test-file/tested.csv')
```

In [26]: df.head()

Out[26]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabiı
0	892	0	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	Nal
1	893	1	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	Nal
2	894	0	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	Nal
3	895	0	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	Nat
4	896	1	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	Nal
4											•

Analyzing data

```
In [27]: def summary(df):
    sum = pd.DataFrame(df.dtypes, columns=['dtypes'])
    sum['missing#'] = df.isna().sum().values
    sum['missing%'] = (df.isna().sum().values*100)/len(df)
    sum['uniques'] = df.nunique().values
    sum['count'] = df.count().values
    #sum['skew'] = df.skew().values
    desc = pd.DataFrame(df.describe().T)
    sum['min'] = desc['min']
    sum['max'] = desc['mean']
    return sum
summary(df).style.background_gradient(cmap='twilight_shifted_r')
```

Out[27]:

	dtypes	missing#	missing%	uniques	count	min	max	mean
Passengerld	int64	0	0.000000	418	418	892.000000	1309.000000	1100.500000
Survived	int64	0	0.000000	2	418	0.000000	1.000000	0.363636
Pclass	int64	0	0.000000	3	418	1.000000	3.000000	2.265550
Name	object	0	0.000000	418	418	nan	nan	nan
Sex	object	0	0.000000	2	418	nan	nan	nan
Age	float64	86	20.574163	79	332	0.170000	76.000000	30.272590
SibSp	int64	0	0.000000	7	418	0.000000	8.000000	0.447368
Parch	int64	0	0.000000	8	418	0.000000	9.000000	0.392344
Ticket	object	0	0.000000	363	418	nan	nan	nan
Fare	float64	1	0.239234	169	417	0.000000	512.329200	35.627188
Cabin	object	327	78.229665	76	91	nan	nan	nan
Embarked	object	0	0.000000	3	418	nan	nan	nan
4								

```
In [28]: df.shape
Out[28]: (418, 12)
```

We drop the cabin values since it has a lot of null values

```
In [29]: df.drop(columns=['Cabin'], inplace=True)
```

In [30]: summary(df).style.background_gradient(cmap='twilight_shifted_r')

Out[30]:

	dtypes	missing#	missing%	uniques	count	min	max	mean
Passengerld	int64	0	0.000000	418	418	892.000000	1309.000000	1100.500000
Survived	int64	0	0.000000	2	418	0.000000	1.000000	0.363636
Pclass	int64	0	0.000000	3	418	1.000000	3.000000	2.265550
Name	object	0	0.000000	418	418	nan	nan	nan
Sex	object	0	0.000000	2	418	nan	nan	nan
Age	float64	86	20.574163	79	332	0.170000	76.000000	30.272590
SibSp	int64	0	0.000000	7	418	0.000000	8.000000	0.447368
Parch	int64	0	0.000000	8	418	0.000000	9.000000	0.392344
Ticket	object	0	0.000000	363	418	nan	nan	nan
Fare	float64	1	0.239234	169	417	0.000000	512.329200	35.627188
Embarked	object	0	0.000000	3	418	nan	nan	nan
4								•

· We use fillna method to fill the null values in Fare and Age columns using mean fill

```
In [31]: df['Age'].fillna(df['Age'].mean(), inplace=True)
In [32]: df['Fare'].fillna(df['Fare'].mean(), inplace=True)
```

In [33]: summary(df).style.background_gradient(cmap='twilight_shifted_r')

Out[33]:

	dtypes	missing#	missing%	uniques	count	min	max	mean
Passengerld	int64	0	0.000000	418	418	892.000000	1309.000000	1100.500000
Survived	int64	0	0.000000	2	418	0.000000	1.000000	0.363636
Pclass	int64	0	0.000000	3	418	1.000000	3.000000	2.265550
Name	object	0	0.000000	418	418	nan	nan	nan
Sex	object	0	0.000000	2	418	nan	nan	nan
Age	float64	0	0.000000	80	418	0.170000	76.000000	30.272590
SibSp	int64	0	0.000000	7	418	0.000000	8.000000	0.447368
Parch	int64	0	0.000000	8	418	0.000000	9.000000	0.392344
Ticket	object	0	0.000000	363	418	nan	nan	nan
Fare	float64	0	0.000000	170	418	0.000000	512.329200	35.627188
Embarked	object	0	0.000000	3	418	nan	nan	nan
4								•

• We drop the passengerid and the name column

```
In [34]: df.drop(columns=['PassengerId', 'Name'], inplace=True)
```

In [35]: summary(df).style.background_gradient(cmap='twilight_shifted_r')

Out[35]:

	dtypes	missing#	missing%	uniques	count	min	max	mean
Survived	int64	0	0.000000	2	418	0.000000	1.000000	0.363636
Pclass	int64	0	0.000000	3	418	1.000000	3.000000	2.265550
Sex	object	0	0.000000	2	418	nan	nan	nan
Age	float64	0	0.000000	80	418	0.170000	76.000000	30.272590
SibSp	int64	0	0.000000	7	418	0.000000	8.000000	0.447368
Parch	int64	0	0.000000	8	418	0.000000	9.000000	0.392344
Ticket	object	0	0.000000	363	418	nan	nan	nan
Fare	float64	0	0.000000	170	418	0.000000	512.329200	35.627188
Embarked	object	0	0.000000	3	418	nan	nan	nan

```
In [36]: df['Ticket'].sample(10)
Out[36]: 113
                      329944
         338
                  C.A. 31029
         39
                        1601
         302
                 S.O./P.P. 2
                      350053
         223
         306
                      113781
         221
                      342684
         94
                       13905
         69
                       19950
         370
                       28133
         Name: Ticket, dtype: object
```

· We also drop the ticket column

```
In [37]: df.drop(columns=['Ticket'], inplace=True)
In [38]: summary(df).style.background_gradient(cmap='twilight_shifted_r')
```

Out[38]:

	dtypes	missing#	missing%	uniques	count	min	max	mean
Survived	int64	0	0.000000	2	418	0.000000	1.000000	0.363636
Pclass	int64	0	0.000000	3	418	1.000000	3.000000	2.265550
Sex	object	0	0.000000	2	418	nan	nan	nan
Age	float64	0	0.000000	80	418	0.170000	76.000000	30.272590
SibSp	int64	0	0.000000	7	418	0.000000	8.000000	0.447368
Parch	int64	0	0.000000	8	418	0.000000	9.000000	0.392344
Fare	float64	0	0.000000	170	418	0.000000	512.329200	35.627188
Embarked	obiect	0	0.000000	3	418	nan	nan	nan

```
In [39]: sns.countplot(x=df['Sex'])
```

Out[39]: <Axes: xlabel='Sex', ylabel='count'>


```
In [40]: sns.countplot(x=df['Embarked'])
```

Out[40]: <Axes: xlabel='Embarked', ylabel='count'>


```
In [41]: sns.countplot(x=df['Survived'])
```

Out[41]: <Axes: xlabel='Survived', ylabel='count'>

• The data is a bit imbalanced, hence we will use smote methods

Encoding the variables using LabelEncoder

```
In [42]: le = LabelEncoder()
    columnsle=['Sex', 'Embarked']
    for i in columnsle:
        df[i] = le.fit_transform(df[i])
```

```
In [43]: summary(df).style.background_gradient(cmap='twilight_shifted_r')
```

Out[43]:

	dtypes	missing#	missing%	uniques	count	min	max	mean	
Survived	int64	0	0.000000	2	418	0.000000	1.000000	0.363636	
Pclass	int64	0	0.000000	3	418	1.000000	3.000000	2.265550	
Sex	int64	0	0.000000	2	418	0.000000	1.000000	0.636364	
Age	float64	0	0.000000	80	418	0.170000	76.000000	30.272590	
SibSp	int64	0	0.000000	7	418	0.000000	8.000000	0.447368	
Parch	int64	0	0.000000	8	418	0.000000	9.000000	0.392344	
Fare	float64	0	0.000000	170	418	0.000000	512.329200	35.627188	
Embarked	int64	0	0.000000	3	418	0.000000	2.000000	1.401914	

Balancing the data

```
In [44]: x = df.drop(columns=['Survived'])
y = df['Survived']

In [45]: from imblearn.combine import SMOTETomek
smt=SMOTETomek()
x,y=smt.fit_resample(x,y)
```

```
In [47]: sns.countplot(x=y)
```

Out[47]: <Axes: xlabel='Survived', ylabel='count'>

Applying Models

```
In [48]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, rando
m_state=123)

In [49]: dtree = DecisionTreeClassifier()
    rf = RandomForestClassifier()
    gb = GradientBoostingClassifier()
    ada = AdaBoostClassifier()
    knn = KNeighborsClassifier()
    lr = LogisticRegression()
```

```
In [50]:
         dtree.fit(x_train, y_train)
         rf.fit(x_train, y_train)
         gb.fit(x_train, y_train)
         ada.fit(x train, y train)
          knn.fit(x_train, y_train)
         lr.fit(x_train, y_train)
Out[50]:
          ▼ LogisticRegression
          LogisticRegression()
In [51]:
         pdtreetr = dtree.predict(x_train)
         pdtreete = dtree.predict(x_test)
          prftr = rf.predict(x train)
         prfte = rf.predict(x_test)
         pgbtr = gb.predict(x_train)
          pgbte = gb.predict(x_test)
          padatr = ada.predict(x_train)
          padate = ada.predict(x_test)
          pknntr = knn.predict(x_train)
          pknnte = knn.predict(x_test)
In [52]: | def acc_report(actual, predicted):
              acc_score=accuracy_score(actual,predicted)
              cm matrix=confusion matrix(actual, predicted)
              class_rep=classification_report(actual,predicted)
              print('the accuracy of tha model is ',acc_score)
              print(cm_matrix)
              print(class_rep)
```

```
In [53]:
         print(acc_report(y_train, pdtreetr))
          print(acc_report(y_test, pdtreete))
         the accuracy of tha model is 1.0
          [[199
                  0]
           [ 0 199]]
                        precision
                                      recall
                                              f1-score
                                                          support
                                        1.00
                     0
                             1.00
                                                  1.00
                                                              199
                     1
                             1.00
                                        1.00
                                                  1.00
                                                              199
                                                  1.00
                                                              398
              accuracy
             macro avg
                             1.00
                                        1.00
                                                  1.00
                                                              398
                                                              398
         weighted avg
                             1.00
                                        1.00
                                                  1.00
         None
         the accuracy of tha model is 1.0
          [[50 0]
           [ 0 50]]
                        precision
                                      recall
                                              f1-score
                                                          support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                               50
                     1
                             1.00
                                        1.00
                                                  1.00
                                                               50
                                                              100
              accuracy
                                                  1.00
             macro avg
                             1.00
                                        1.00
                                                  1.00
                                                              100
         weighted avg
                             1.00
                                        1.00
                                                  1.00
                                                              100
```

```
In [54]:
         print(acc_report(y_train, prftr))
          print(acc_report(y_test, prfte))
         the accuracy of tha model is 1.0
          [[199
                  0]
           [ 0 199]]
                        precision
                                      recall
                                              f1-score
                                                          support
                                        1.00
                     0
                             1.00
                                                  1.00
                                                              199
                     1
                             1.00
                                        1.00
                                                  1.00
                                                              199
                                                  1.00
                                                              398
              accuracy
             macro avg
                             1.00
                                        1.00
                                                  1.00
                                                              398
                                                              398
         weighted avg
                             1.00
                                        1.00
                                                  1.00
         None
         the accuracy of tha model is 1.0
          [[50 0]
           [ 0 50]]
                        precision
                                      recall
                                              f1-score
                                                          support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                               50
                     1
                             1.00
                                        1.00
                                                  1.00
                                                               50
                                                              100
              accuracy
                                                  1.00
             macro avg
                             1.00
                                        1.00
                                                  1.00
                                                              100
         weighted avg
                             1.00
                                        1.00
                                                  1.00
                                                              100
```

```
In [55]:
         print(acc_report(y_train, pgbtr))
          print(acc_report(y_test, pgbte))
         the accuracy of tha model is 1.0
          [[199
                  0]
           [ 0 199]]
                        precision
                                      recall
                                              f1-score
                                                          support
                                        1.00
                     0
                             1.00
                                                  1.00
                                                              199
                     1
                             1.00
                                        1.00
                                                  1.00
                                                              199
                                                  1.00
                                                              398
              accuracy
             macro avg
                             1.00
                                        1.00
                                                  1.00
                                                              398
                                                              398
         weighted avg
                             1.00
                                        1.00
                                                  1.00
         None
         the accuracy of tha model is
          [[50 0]
           [ 0 50]]
                        precision
                                      recall
                                              f1-score
                                                          support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                               50
                     1
                             1.00
                                        1.00
                                                  1.00
                                                               50
                                                              100
              accuracy
                                                  1.00
             macro avg
                             1.00
                                        1.00
                                                  1.00
                                                              100
         weighted avg
                             1.00
                                        1.00
                                                  1.00
                                                              100
```

```
In [56]:
         print(acc_report(y_train, padatr))
          print(acc_report(y_test, padate))
         the accuracy of tha model is 1.0
          [[199
                  0]
           [ 0 199]]
                        precision
                                      recall
                                              f1-score
                                                          support
                                        1.00
                     0
                             1.00
                                                  1.00
                                                              199
                     1
                             1.00
                                        1.00
                                                  1.00
                                                              199
                                                  1.00
                                                              398
              accuracy
             macro avg
                             1.00
                                        1.00
                                                  1.00
                                                              398
                                                              398
         weighted avg
                             1.00
                                        1.00
                                                  1.00
         None
         the accuracy of tha model is 1.0
          [[50 0]
           [ 0 50]]
                        precision
                                      recall
                                              f1-score
                                                          support
                     0
                             1.00
                                        1.00
                                                  1.00
                                                               50
                     1
                             1.00
                                        1.00
                                                  1.00
                                                               50
                                                              100
              accuracy
                                                  1.00
             macro avg
                             1.00
                                        1.00
                                                  1.00
                                                              100
         weighted avg
                             1.00
                                        1.00
                                                  1.00
                                                              100
```

```
In [57]:
         print(acc_report(y_train, pknntr))
          print(acc_report(y_test, pknnte))
         the accuracy of tha model is 0.8241206030150754
          [[151 48]
           [ 22 177]]
                        precision
                                      recall
                                             f1-score
                                                          support
                                        0.76
                     0
                             0.87
                                                  0.81
                                                              199
                     1
                             0.79
                                        0.89
                                                  0.83
                                                              199
                                                  0.82
                                                              398
              accuracy
             macro avg
                             0.83
                                        0.82
                                                  0.82
                                                              398
                                                              398
         weighted avg
                             0.83
                                        0.82
                                                  0.82
         None
         the accuracy of tha model is 0.8
          [[38 12]
           [ 8 42]]
                        precision
                                      recall
                                             f1-score
                                                          support
                     0
                             0.83
                                        0.76
                                                  0.79
                                                               50
                     1
                             0.78
                                        0.84
                                                  0.81
                                                               50
                                                  0.80
                                                              100
              accuracy
             macro avg
                             0.80
                                        0.80
                                                  0.80
                                                              100
         weighted avg
                             0.80
                                        0.80
                                                  0.80
                                                              100
```