TriangulatedCategoriesForCAP

framework for triangulated categories

0.1

21/07/2016

Kamal Saleh

Kamal Saleh

Email: kamal.saleh@rwth-aachen.de Homepage: Kamal.saleh@rwth-aachen.de

Address: Siegen

Contents

1	Introduction		
	1.1	What is this package	3
	1.2	Definition of triangulated categories	3
2	Crea	iting triangulated categories and their operations	4
	2.1	Creating triangulated category	4
		Primitive operations	
	2.3	General operations	6
	2.4	Attributes	7
	2.5	Properties	8
Inc	dex		9

Chapter 1

Introduction

1.1 What is this package

bla bla

1.2 Definition of triangulated categories

A triangulated category consists of the following data.

Chapter 2

Creating triangulated categories and their operations

2.1 Creating triangulated category.

bla bla.

2.2 Primitive operations

In the following T is the shift fuctor of the triangulated category \mathscr{C} . Its inverse will be denoted by D.

2.2.1 ShiftOfObject (for IsCapCategoryObject)

▷ ShiftOfObject(a)

Returns: object

The argument is an object a. The output is T(a).

2.2.2 ShiftOfMorphism (for IsCapCategoryMorphism)

▷ ShiftOfMorphism(alpha)

(operation)

(operation)

Returns: morphism

The argument is a morphism α . The output is $T(\alpha)$.

2.2.3 ReverseShiftOfObject (for IsCapCategoryObject)

▷ ReverseShiftOfObject(a)

(operation)

Returns: object

The argument is an object a. The output is D(a).

2.2.4 ReverseShiftOfMorphism (for IsCapCategoryMorphism)

 ${\scriptstyle \rhd} \ {\tt ReverseShiftOfMorphism(alpha)}$

(operation)

Returns: morphism

The argument is a morphism α . The output is $D(\alpha)$.

2.2.5 IsomorphismFromObjectToShiftAfterReverseShiftOfTheObject (for IsCapCategoryObject)

▷ IsomorphismFromObjectToShiftAfterReverseShiftOfTheObject(a)

(operation)

Returns: morphism

The argument is an object a. The output is an isomorphism $\alpha : a \to TD(a)$.

2.2.6 IsomorphismFromObjectToReverseShiftAfterShiftOfTheObject (for IsCapCategoryObject)

▷ IsomorphismFromObjectToReverseShiftAfterShiftOfTheObject(a)

(operation)

Returns: morphism

The argument is an object a. The output is an isomorphism $\alpha : a \to DT(a)$.

2.2.7 IsExactForTriangles (for IsCapCategoryTriangle)

▷ IsExactForTriangles(tr)

(operation)

Returns: a boolian

The argument is a triangle in the category \mathscr{C} . The output is true if tr is exact. Otherwise the output is false.

2.2.8 CompleteMorphismToExactTriangle (for IsCapCategoryMorphism)

(operation)

Returns: an exact triangle.

The input is a morphism $\alpha: a \to b$. The output is an exact triangle $a \to b \to c \to T(a)$, in which the morphism from a to b is α .

2.2.9 CompleteToMorphismOfExactTriangles (for IsCapCategoryExactTriangle, IsCapCategoryMorphism, IsCapCategoryMorphism)

 $\qquad \qquad \triangleright \ \, {\tt CompleteToMorphismOfExactTriangles}(tr1,\ tr2,\ alpha,\ beta)\\$

(operation)

Returns: a morphism.

The input is two triangles tr_1, tr_2 and two morphisms α, β as in axiom TR?. The output is a morphism γ that complete the diagram in TR? into a morphism of exact triangles.

2.2.10 OctohedralAxiom (for IsCapCategoryMorphism, IsCapCategoryMorphism)

▷ OctohedralAxiom(alpha, beta)

(operation)

Returns: list.

The input is two morphisms $\alpha: a \to b, \beta: b \to c$. The output is a list of 4 exact triangle satisfying the octohedral axiom.

2.3 General operations

2.3.1 ApplyShift (for IsCapCategoryObject, IsInt)

▷ ApplyShift(a, n)

(operation)

Returns: object

The argument is an object a. The output is $T^n(a)$.

2.3.2 ApplyShift (for IsCapCategoryMorphism, IsInt)

▷ ApplyShift(alpha, n)

(operation)

Returns: morphism

The argument is a morphism α . The output is $T^n(\alpha)$.

2.3.3 CreateTriangle (for IsCapCategoryMorphism, IsCapCategoryMorphism) IsCapCategoryMorphism)

▷ CreateTriangle(alpha, beta, gamma)

(operation)

Returns: a triangle

The arguments are morphism $\alpha: a \to b, \beta: b \to c, \gamma: c \to T(a)$. The output is the triangle defined by α, β, γ .

2.3.4 ConeObject (for IsCapCategoryMorphism)

▷ ConeObject(alpha)

(operation)

Returns: object

The input is a morphism $\alpha : a \to b$. The output is an object c such that there exsits an exact triangle $a \to b \to c \to T(a)$, in which the morphism from a to b is α .

2.3.5 CreateExactTriangle (for IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism)

▷ CreateExactTriangle(alpha, beta, gamma)

(operation)

Returns: a triangle

The arguments are morphism $\alpha: a \to b, \beta: b \to c, \gamma: c \to T(a)$. The output is exact triangle defined by α, β, γ .

2.3.6 CreateExactTriangle (for IsCapCategoryTriangle)

▷ CreateExactTriangle(tr)

(operation)

Returns: exact triangle

The argument is a triangle tr. The output is an exact triangle that equals to tr as triangles.

2.3.7 IsEqualForTriangles (for IsCapCategoryTriangle, IsCapCategoryTriangle)

▷ IsEqualForTriangles(tr1, tr2)

(operation)

Returns: a boolian

The output is true if $tr_1 = tr_2$. Otherwise it returns false.

2.3.8 CreateMorphismOfTriangles (for IsCapCategoryTriangle, IsCapCategoryTriangle, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism)

▷ CreateMorphismOfTriangles(tr1, tr2, f, g, h)

(operation)

Returns: morphism of triangles

The output is a morphism of triangles defined by the input data.

2.3.9 PreCompose (for IsCapCategoryTrianglesMorphism, IsCapCategoryTrianglesMorphism)

▷ PreCompose(mor1, mor2)

(operation)

Returns: morphism of triangles

The input is two morphisms of triangles $mor_1: tr_1 \to tr_2, mor_2: tr_2 \to tr_3$. The output is their pre-composition.

2.3.10 PostCompose (for IsCapCategoryTrianglesMorphism, IsCapCategoryTrianglesMorphism)

▷ PostCompose(mor2, mor1)

(operation)

Returns: morphism of triangles

The input is two morphisms of triangles $mor_1: tr_1 \to tr_2, mor_2: tr_2 \to tr_3$. The output is their post-composition.

2.3.11 CompleteToMorphismOfExactTriangles (for IsCapCategoryExactTriangle, IsCapCategoryMorphism, IsCapCategoryMorphism, IsCapCategoryMorphism, IsList)

▷ CompleteToMorphismOfExactTriangles(tr1, tr2, alpha, beta, list)

(operation

Returns: morphism

The input is two exact triangles and two morphisms α, β and a list. The list is allowed to be [1,2],[1,3] or [2,3]. It discribes between which objects in tr_1,tr_2 the morphisms α,β are. The output is a morphism that complete the diagram to a morphism of exact triangles.

2.4 Attributes

2.4.1 ShiftFunctor (for IsCapCategory)

▷ ShiftFunctor(C)

(attribute)

Returns: a functor

The input is finalised triangulated category \mathscr{C} . The output is its shift functor T.

2.4.2 ReverseShiftFunctor (for IsCapCategory)

▷ ReverseShiftFunctor(C)

(attribute)

Returns: a functor

The input is finalised triangulated category \mathscr{C} . The output is the inverse of its shift functor, i.e., D.

(property)

2.4.3 NaturalIsomorphismFromIdentityToReverseShiftAfterShiftFunctor (for IsCap-Category)

▷ NaturalIsomorphismFromIdentityToReverseShiftAfterShiftFunctor(C) (attribute)

Returns: a natural transformation

The input is finalised triangulated category \mathscr{C} . The output is the natural isomorphism between the identity functor and $D \circ T$.

2.4.4 NaturalIsomorphismFromIdentityToShiftAfterReverseShiftFunctor (for IsCap-Category)

 ${\tt \triangleright} \ \ {\tt NaturalIsomorphismFromIdentityToShiftAfterReverseShiftFunctor(\it C)} \\ (attribute)$

Returns: a natural transformation

The input is finalised triangulated category \mathscr{C} . The output is the natural isomorphism between the identity functor and $T \circ D$.

2.4.5 CapCategory (for IsCapCategoryTriangle)

Returns: Cap category

The input is a triangle. The output is the category of tr.

2.5 Properties

2.5.1 IsTriangulatedCategory (for IsCapCategory)

▷ IsTriangulatedCategory(C)
Returns: a boolian

The output is true if the category is triangulated. Otherwise false.

2.5.2 IsIsomorphism (for IsCapCategoryTrianglesMorphism)

▷ IsIsomorphism(mor) (property)

Returns: a boolian

The output is true if *mor* is isomorphism. Otherwise false.

Index

ApplyShift	for IsCapCategoryTrianglesMorphism, 8
for IsCapCategoryMorphism, IsInt, 6	IsomorphismFromObjectToReverseShift-
for IsCapCategoryObject, IsInt, 6	AfterShiftOfTheObject
	for IsCapCategoryObject, 5
CapCategory	IsomorphismFromObjectToShiftAfter-
for IsCapCategoryTriangle, 8	ReverseShiftOfTheObject
${\tt Complete Morphism To Exact Triangle}$	for IsCapCategoryObject, 5
for IsCapCategoryMorphism, 5	IsTriangulatedCategory
${\tt CompleteToMorphismOfExactTriangles}$	for IsCapCategory, 8
for IsCapCategoryExactTriangle, IsCapCate-	
goryExactTriangle, IsCapCategoryMor-	NaturalIsomorphismFromIdentityTo-
phism, IsCapCategoryMorphism, 5	ReverseShiftAfterShiftFunctor
for IsCapCategoryExactTriangle, IsCapCate-	for IsCapCategory, 8
goryExactTriangle, IsCapCategoryMor-	${\tt NaturalIsomorphismFromIdentityToShift-}$
phism, IsCapCategoryMorphism, IsList,	AfterReverseShiftFunctor
7	for IsCapCategory, 8
ConeObject	OctohedralAxiom
for IsCapCategoryMorphism, 6	for IsCapCategoryMorphism, IsCapCatego-
CreateExactTriangle	ryMorphism, 5
for IsCapCategoryMorphism, IsCapCatego-	Tymorphism, 5
ryMorphism, IsCapCategoryMorphism,	PostCompose
6	for IsCapCategoryTrianglesMorphism, Is-
for IsCapCategoryTriangle, 6	CapCategoryTrianglesMorphism, 7
CreateMorphismOfTriangles	PreCompose
for IsCapCategoryTriangle, IsCapCategory-	for IsCapCategoryTrianglesMorphism, Is-
Triangle, IsCapCategoryMorphism, Is-	CapCategoryTrianglesMorphism, 7
CapCategoryMorphism, IsCapCatego-	ReverseShiftFunctor
ryMorphism, 7	for IsCapCategory, 7
CreateTriangle	
for IsCapCategoryMorphism, IsCapCatego-	ReverseShiftOfMorphism
ryMorphism, IsCapCategoryMorphism,	for IsCapCategoryMorphism, 4
6	ReverseShiftOfObject
	for IsCapCategoryObject, 4
IsEqualForTriangles	ShiftFunctor
for IsCapCategoryTriangle, IsCapCategory-	for IsCapCategory, 7
Triangle, 6	ShiftOfMorphism
IsExactForTriangles	for IsCapCategoryMorphism, 4
for IsCapCategoryTriangle, 5	ShiftOfObject
IsIsomorphism	for IsCapCategoryObject, 4