University of Connecticut Computer Science and Engineering CSE 4402/5095: Network Security

'Knowledge is Power': Reconnaissance and Scanning

Last updated: Sunday, 08 December 2024

© Prof. Amir Herzberg

Reconnaissance and Scans: Agenda

- Introduction
- TCP scans
- UDP scans
- DNS scans

Penetration testing: ethical hacking?

- Goal of pen-testing:
 - Evaluate security, find and fix vulnerabilities
 - By `playing' attacker interacting with the system.
 - Ethically: with permission of system owners (and users?)
- Should Pen-testers know network, organization, source?
 - Three approaches often combined
 - Black-box: no info 'most realistic'
 - find, minimize 'public' exposure of network
 - White-box: Kerckhoffs' principle' system should be secure even if details known [all but keys, secrets]
 - Grey-box: provide information and access like provided to users

Pen-Testing: risks, social engineering

- Possible damage to operational systems
 - By mistake or by 'rogue tester'
 - As side-effect, e.g., annoying spam/phishing messages
- Include social engineering attacks in pentesting?
 - Social engineering attacks exploit users psychology and social behaviour to circumvent defences
 - Include (spear) phishing, social network scams, cracking of weak/multi-use passwords, ...
 - Often most effective attacks
 - But most `costly' to pen-test
 - □ Annoys legit users and operators

Reconnaissance - 'Knowledge is Power'

- First step of black-box hacking
 - And of many real attacks
 - **Active reconnaissance: network scans**
 - Tools: NMAP (classic), ZMAP (efficient), ...
 - We'll study this in a later lecture
- Passive/public reconnaissance
 - Google, Whols, Finger, social networks...
 - Reasonable queries in victim's site
 - Paid/Free Search Engines of Daily Internet-Scans
 - Shodan.IO: 'first search engine for internet-connected devices'
 - Censys.IO

Example: Censys Scanning Engine

- Search in daily-ZMAP scans :

 - X.509 certificates
 - Websites in Alexa's top 1N
- Akamai webservers...
- using insecure cipher-su
 - SSL2 and RC4 and MD5.
 autonomous_system.asn=20940
 and

443.https.tls.cipher_suite=
`SSL2 RC4 128 WITH MD5`

Example: Censys Scanning Engine

- Search in daily-ZMAP scar
 - Hosts on public IPv4 space
 - X.509 certificates
 - Websites in Alexa's top 1M
- Akamai webservers...
- using insecure cipher-suite
 - SSL2 and RC4 and MD5...
 autonomous_system.asn=20940
 and
 443.https.tls.cipher_suite=
 `SSL2_RC4_128_WITH_MD5`
 - Same, ranked (in Alexa 1M list)...

hubspot.com

smtp https

≣ 563 **♦** 25/smtp, 443/https, 80/http

Cybersecurity Ethics

- Basic cyber-sec ethics:
 - Do no harm
 - Intentional or by negligence (e.g., experiment `in wild')
 - Don't attack, don't provide attack tools,...
- But there are dilemmas...
 - Ok to provide 'dual-use' tools, e.g., Shodan?
 - Can be (and was) abused by black-hat hackers
 - Many <u>'awesome'</u> (exploitable) queries
 - Unlike Censys, does not follow ethical guidelines
 - So, some consider it unethical
 - Wiki: named after SHODAN (Sentient Hyper-Optimized Data Access Network), an AI antagonist of the cyberpunk-horror themed game System Shock

Cybersecurity Ethics

- Basic cyber-sec ethics:
 - Do no harm
 - Intentional or by negligence (e.g., experiment `in wild')
 - Don't attack, don't provide attack tools,...
- But there are dilemmas...
 - Ok to provide 'dual-use' tools, e.g., Shodan?
 - Ok to help law enforcement, e.g., against terror NSO Group promised to stop
 - One is selling tools to spy on journalists.
 A new report proves otherwise

Reconnaissance - 'Knowledge is Power'

- First step of attack and of black-box pen-testing
 - Also: for research (academic, industry) and identify customers

Passive/public reconnaissance

- General-info: search engines, social networks...
- Specific information (free/pay):
 - DNS, Whols, Caida, ...
 - Internet-wide network scan engines: Shodan.IO, Censys.IO

10

Example: Censys Scanning Engine (1)

- Search in daily-ZMAP scans :
 - Hosts on public IPv4 space
 - X.509 certificates
- Some simple examples..
- Servers running insecure TLS (1.0, 1.1):
 - services.tls.version_selected: {TLSv1_0, TLSv1_1}

Example: Censys Scanning Engine (2)

- Search in daily-ZMAP scans :
 - Hosts on public IPv4 space
 - X.509 certificates
- Servers running insecure TLS (1.0, 1.1):
 - services.tls.version_selected: {TLSv1_0, TLSv1_1}
- And AS is 'university'
 - autonomous_system.description: university
- Lots of relevant info both here and in Shodan.IO

Reconnaissance - 'Knowledge is Power'

First step of black-box pen-testing and of attacks

Passive/public reconnaissance

- Open general-info: Google, ChatGPT / Bard, social networks...
- Open (free/pay) specific-info:
 - DNS, Whols, Caida, ...
 - Internet-wide network scan engines: Shodan.IO, Censys.IO

Active reconnaissance:

- Spyware
- Phishing: email, social-networks-contacts
- Web reconnaissance, crawling
- Network scans
 - Tools: NMAP (classic), ZMAP (efficient, used by Censys), ...
 - We'll study methods

Network Scans: Goals

- Goal 1: effectiveness: discover all relevant information
- Goal 2: efficiency
 - Time (speed)
 - Resources: communication, state
- Goal 3: resiliency, availability, minimal requirements
 - Resiliency: avoid blocking by FW etc.
 - Agent: puppet / user-zombie / admin-zombie
- Goal 4: no attribution, detection ('stealthy scan')
 - Weakly-stealthy scan: avoid logged events, attribution
 - Off-path stealthy: no exposure of IP to scan-target
- Goal 5: ethics [a goal for white-hat scanners]
- Reality: if you're connected, you're scanned...
 - Attackers, scan engines, pen-testers, researchers

Network Scans: for what information?

Resources: in general, and for attacks

Vulnerabilities in victim network

Behaviors and configurations

Network Scans: for what information?

- Resources: in general, and for attacks, e.g.:
 - Vulnerable hosts that can be exploited (worm)
 - Peer/slave bots, CnC center
 - For DDoS: amplifiers, e.g., open DNS resolvers
 - For stealthy scans+attacks, e.g., IP-ID incrementing hosts
 - □ For off-path side-channels, e.g., rate-limiting nets/hosts
- Vulnerabilities in victim network

Behaviors and configurations

Network Scans: for what information?

- Resources: in general, and for attacks
- Vulnerabilities in a (victim/customer) network:
 - Vulnerable product/version, identify by 'banner' or fingerprint
 - Vulnerable configurations, e.g.:
 - Vulnerable services, often identified by specific open port
 - DNS vulnerabilities: ???? , ???? port, ...
 - Vulnerable web servers: vulnerable TLS / cipher-suite, ...
 - Unprotected networks, e.g., no egress filtering
- Behaviors and configurations:
 - Deployed products, configurations; e.g., validating DNSSEC
 - Users of ('forbidden') site/service (e.g., Tor or other)

Ethical Research-Scanning

- Researchers scanning non-owned networks (IPs)...
- Be open
 - Publish goals, policy, contact
 - Include clear identification in probes (where possible)
- Opt-out mechanisms:
 - Scan-specific and standard (e.g., robots.txt)
- Be considerate: do no harm
 - Limited experiment before large-scale scanning
 - Avoid side-effects
 - Rate-limit, load-balance
 - Also important to avoid target's rate-limiting!

Categories of Network Scans

- Direct (on path): send requests, inspect responses
 - Visible: exposes scanner's IP, logged
 - Weakly-stealthy scans: expose IP but avoid log?
 - Essential (only?) when response required:
 - Version, header, options
 - `Fingerprint' of OS, version
 - □ TTL, TCP init window size, MSS,IP-ID, retransmit pattern...
 - Amplification (is response really required?)
- Off-path (spoofed): do not expose scanner's IP!
 - Often via side channels, e.g., IP-ID of 3rd party
 - Usually requires raw sockets
 - What's this IP-ID? Well, it begins with IP fragmentation...

Reconnaissance: Agenda

- Introduction
- TCP scans
- UDP scans
- DNS scans

We discuss specific scans; you should learn principles and techniques, to be able to apply to other scans

Recall: TCP three-way handshake

- TCP uses 3-way handshake to setup connection:
 - Allocate buffers (or abort, if unavailable)
 - Agree on client, server's ISNs (Init Seq Number)
 - Reliability for this connection & separate from others
 - Agree on options, e.g., MSS (maximal segment size)

TCP Connect Scan

- Scan using 'standard TCP process'
 - Detect if connection succeeds of fails
 - Use standard TCP sockets
 - If receiving SYN/ACK, respond with ACK (and succeed)
 - If not: resend SYN, eventually time-out (and fail)
- Pro: easy to deploy: uses standard TCP sockets

Application Scan and Banner Grabbing

- Complete TCP connection, then...
 - HTTP: send request(s), wait for response
 - SMTP: wait for 'ready' from server (220 OK)
 - May continue handshake to get more responses
- Allows detection of specific application, behavior
- Application may respond with useful data
 - E.g., 'Banner' identifying software

TLS-Hello Scan

- Application scan allows completing appl handshake
- TLS-hello scan: receive server-hello message, incl:
 - Server's protocol version, cipher-suite responses
 - Need to send different client versions to 'learn' server
 - Server's extensions, response to client extensions
 - Other (e.g., DH groups, cert)

The weakly-stealthy TCP SYN scan

- Scanner sends SYN to target IP:port
 - Target reachable, port open: SYN/ACK [scanner doesn't respond!]
 - Target reachable, port closed: RST
 - Unreachable: ICMP 'unreachable' response or timeout
 - Filtered/non-existing target: no response (timeout)

TCP On-Path Scans

Connection scan:

- Full handshake
- Full (logged) connection
- TCP Socket library
 - Resend SYN till Time-Out
- Visible, attributable
- Easy to deploy (sockets)

SYN scan:

- Only SYN handshake
- Half-open connection
 - Not logged? Suspect?
- Requires raw socket
- Weakly-stealthy, deniable

Next: a stealthy, off-path TCP scan

Other TCP on-path scans:

- NULL (no flag), FIN and XMAS (URG, PSH and FIN all set)
- Standard response: RST if port closed, none if open
- Raw socket, obvious attack
- Weakly-stealthy, deniable

Off-path Attacker

Aka: spoofing, blind

Can eavesdrop, inject, modify
Spoofed sender IP address ('sender: Alice')
Cannot receive responses (or original packets)

ISPs should prevent: 'ingress filter' → many don't

8-Dec-24

Off-path ('Idle') TCP Stealthy Scan

- Goal: identify Open/Closed TCP ports
 - Without exposing scanner's IP address
- Idea: use IP-ID Incrementing hosts
 - What's IP-ID?
 - Hint: part of IP header
 - 16-bit field in IP header, used for fragmentation
 - IP-ID Incrementing hosts: increment IP-ID upon sending packets
 - Global-incrementing: one IP-ID counter for all dest-IPs
 - Per-dest incrementing: IP-ID counter per each dest-IP
 - Useful for many stealthy attacks
 - Later: a scan to find IP-ID incrementing hosts

The Internet Protocol: Fragmentation

- Every network has a size-limit on packet size (MTU)
- What if we need to send more?

Packet Reassembly: Careful!

- Bob receives fragments of multiple packets
- How to reassemble without mixing?
- Identify each packet
 - By Src, Dst addresses and protocol
 - And: IP-ID (16bit in IPv4; 32bit in IPv6)

Typical methods to choose IP-ID

- Basic goal: avoid collision with an old fragment
- Security goal: unpredictable IP-ID [16b in IPv4]
- Common methods:
 - Random
 - Con: 'birthday paradox': if >255 packets are in transit (even low), collision occurs with probability ~ ½!! [16b]
 - Also, good randomization is often hard
 - Globally-incrementing [from random initial value]
 - Per-destination incrementing [random initial value]
 - 'Zero': use one of above but only for long packets
 - For short pkts, send IP-ID of zero (or other fixed value)
 - Defeats some IP-ID prediction/exposure attacks

Knowing IP-ID facilitates off-path attacks

Attacker models Security goals	MitM	Off-Path attack with unknown IP-ID	Off-Path attack Exploiting known IP-ID
Confidentiality and privacy	Broken (without crypto)	Expected	2 nd Frag interception attack
Integrity and authentication	Broken (without crypto)	Expected: spoofing, but no modification	2 nd Frag spoofing attack
Availability (and efficiency)	Broken	Expected (except by clogging)	Frag-based packet drop and overhead attacks
Stealthy scan	Broken	Expected	Off-path stealthy TCP scan

Off-path ('Idle') TCP Stealthy Scan

- Goal: identify Open/Closed TCP ports
 - Without exposing scanner's IP address
 - Using IP-ID global-incrementing hosts ('helpers' or `useful idiots')
 - Global-incrementing: one IP-ID counter for all dest-lps
- Pros: off-path-stealthy, hard to detect and very hard to attribute, deniable
- Cons: slow, more pkts, raw socket

TCP Idle Off-path Stealthy Scan: Open

TCP Idle Off-path Stealthy Scan:Closed

TCP Idle Off-path Stealthy Scan: Filtered

37

TCP Idle Off-path Stealthy Scan: Filtered

Scanning for Global-inc IP-ID helpers

- Basic goal: avoid collision with an old fragment
- Security goal: unpredictable IP-ID [16b in IPv4]
- Common methods:
 - Random
 - Con: 'birthday paradox': if >255 packets are in transit (even low), collision occurs with probability ~ ½!! [16b]
 - IPv6 uses 32b IP-ID; collision for ~ 64K pkts < 100MB</p>
 - Globally-incrementing [from random initial value]
 - Per-destination incrementing [random initial value]
 - 'Zero': use one of above but only for long packets
 - Send IP-ID of zero (or other fixed value) for short pkts
 - Defeats some IP-ID prediction/exposure attacks

IP-ID Scan: find global-inc hosts

Problem: ???

IP-ID Scan: global-inc or per-dest-inc?

Great, but some hosts are not IP-ID incrementing, mainly:

- Always use IP-ID=0 (for short packets)
- Other ('random')

[there's also a common option which is btw global and per-dest, but we'll ignore it]

IP-ID Scan

Reconnaissance: Agenda

- Introduction
- TCP scans
- UDP scans
- DNS scans

UDP Scan

UDP scan: rate-limiting challenge

- Rate limiting provided in all routers
- Traffic policing: limit incoming TCP, UDP packets
 - Mostly against Denial of Service (DoS)
 - Also limit incoming/outgoing ICMP packets
- ICMP `port unreachable` sent upon receiving UDP packet to a closed port, and other ICMP errors for filtered
 - 'Good' hosts will not send more pkts to closed/filtered port
- Many systems rate-limit such ICMP messages
 - Typically to one per second; higher rate
 no response
- What to do?
 - Slow-down UDP scan delay between packets

UDP scan: rate-limiting challenge

- Many systems rate-limit ICMP error messages
 - Typically to one per second; higher rate
 no response
- What to do?
 - Slow-down UDP scan delay between packets
 - Challenge: stealthy, high-rate UDP scan
 - Also allows stealthy scan for amplifiers
 - Hint: use DNS scans... (next)

ICMP Rate limiting

- ICMP-Response rate limits (global or per IP)
 - Mainly for ICMP error messages (ICMP NACKs)
 - Type 3: destination unreachable
 - Destination: net, host, protocol, port
 - Also: fragmentation required and don't-fragment set
 - Type 11: time (or TTL) exceeded
- Typical limit: 1 ICMP/second (globally)
 - □ Send in rate<0.39/second → almost no rate limiting</p>
 - Don't exceed for good scan
 - Or... abuse as a side-channel

Reconnaissance: Agenda

- Introduction
- TCP scans
- UDP scans
- DNS scans
 - Goals: find vulnerable and/or 'useful' DNS servers
 - Find open DNS resolvers
 - Find (global/per-IP) incrementing IP-ID DNS servers
 - Find (global/per-IP) incrementing Src-port resolvers

Scans for Open DNS Resolvers

- Goal 1: use for BW-DoS attacks (amplification)
 - Send short request using (spoofed) src-IP of victim
 - DNS resolver sends long response to victim
 - 'Amplification': bw-to-victim/bw-by-attacker
 - Or: send many requests to victim name servers
- Goal 2: DNS poisoning
 - Easy if also using open/fixed source port (detect!)
- Goal 3: use for stealthy UDP-scans
 - Use open DNS resolvers with glob-inc-IP-ID
 - Hint: <u>use</u> 'don't send to unreachable port'

Scan for Open DNS Resolvers

- Open resolvers that return long responses are abused for clogging DoS
- ANY DNS query returns all DNS records of the specified domain name

Scan for (in, out) open resolvers

Finds mapping btw open-resolver's In IP-address and Out IP-address Note: Scan-client can be off-path (stealthy scan, except use of *ns.scan.net*)!

Scan for Inc-src-port/IP-ID Resolvers

Detect if resolver uses (fixed or) incrementing IP-ID and/or source ports

Detection rule? Distinguish btw `per-dest' and global incrementing?

Other scans...

- Scanning from a client visiting rogue website
 - Using Javascript, HTML5: error and/or timing side channel
 - Stealthy and with access to internal network!
- Fingerprinting: identifying device, appl, version
 - Explicit ('banner' or in errors, e.g., SQL)
 - Behavior: TTL, options, MSS, retransmit pattern...
 - Defense: corrupt 'fingerprint' (by FW/IPS; 'fuzzing')
- Scanning for other amplifiers... and more!!