Nr. 401

Das Michelson-Interferometer

Sara Krieg Marek Karzel sara.krieg@udo.edu marek.karzel@udo.edu

Durchführung: 18.06.2019 Abgabe: 25.06.2019

TU Dortmund – Fakultät Physik

Inhaltsverzeichnis

1	Theorie	3
2	Durchführung	3
3	Auswertung3.1 Bestimmung der Wellenlänge des Diodenlasers	
4	Diskussion	6
5	Literaturverzeichnis	7

1 Theorie

Ziel dieses Versuches ist die Bestimmung der Wellenlänge λ eines Diodenlasers und des Brechungsindizes n von Luft mithilfe des Michelson-Interferometers.

Licht ist eine elektromagnetische Welle mit elektromagnetischer Feldstärke

$$\vec{E}(x,t) = \vec{E}_0 \cdot \cos(kx - \omega t - \delta) , \qquad (1)$$

für die das Superpositionsprinzip gilt.

Es besitzt die Wellenlänge λ , die Wellenzahl $k = \frac{2\pi}{\lambda}$, die Kreisfrequenz ω , die Phase δ und die Intensität

$$I \propto |\vec{E}|^2$$
 . (2)

Die Gesamtintensität an einem Ort, auf den die Wellen \vec{E}_1 und \vec{E}_2 treffen, ergibt sich unter der Bedingung, dass t_2-t_1 groß gegen die Periodendauer $T=\frac{2\pi}{\omega}$ ist, als

$$I_{\text{ges}} = \frac{C}{t_2 - t_1} \int_{t_1}^{t_2} |\vec{E}_1 + \vec{E}_2|^2(x, t) \, dt \,, \, C \text{ konstant},$$
 (3)

Wird der Wellenansatz (1) in (2) eingesetzt, so ergibt sich aufintegriert

$$I_{\rm ges} = 2 \cdot C \cdot \vec{E_0}^2 (1 + \cos(\delta_2 - \delta_1)) \tag{4}$$

mit dem sogenannten Interferenzter
m $2C\vec{E_0}^2.$

Die Gesamtintensität $I_{\rm ges}$ weicht also um bis zu $\pm 2C\vec{E_0}^2$ von ihrem Mittelwert $2C\vec{E_0}^2$ ab und verschwindet für den Fall

$$\delta_2 - \delta_1 = (2n+1)\pi, \ n \in \mathbb{N}_0.$$
 (5)

Da für inkohärentes Licht der Interferenzterm bei der zeitlichen Mittelung verschwindet, wird kohärentes Laserlicht verwendet.

2 Durchführung

Der Aufbau des Michelson-Interferometers ist in Abbildung 1 dargestellt. Die Apparatur muss so justiert werden, dass die Überschneidung der beiden hellsten Punkte detektiert wird.

Damit die beiden Lichtbündel kohärent zueinander bleiben, muss ihr optischer Wegunterschied kleiner als die Kohärenzlänge

$$l = n\lambda \tag{6}$$

der Lichtquelle sein. Dabei ist n die Anzahl der bei D beobachtbaren Intensitätsmaxima. Die Bedingung wird dadurch realisiert, dass für die Abstände

$$\overline{S_1P} \approx \overline{S_2P}$$
 (7)

Abbildung 1: Prinzipieller Aufbau des Michelson-Interferometers. Das Licht wird von der Lichtquelle L emittiert, trifft auf den Strahlenteiler P, das reflektierte Lichtbündel trifft auf den Spiegel S_1 , das transmittierte auf S_2 . Danach treffen sie wieder auf P und jeweils ein Teil trifft auf den Detektor D und interferiert dort mit dem anderen. [1]

gilt. Zudem wird zwischen P und S_2 eine Kompensationsplatte eingebaut. Diese gleicht, dass das reflektierte Lichtbündel die Spiegelplatte von P zweimal mehr durchläuft, als das transmittierte.

Trifft (7) genau zu, so kommt es am Detektor zur destruktiven Interferenz.

Mit einem hoch untersetzten Zahnradmotor wird die Mikrometerschraube des Spiegels S_1 gedreht und dieser um Δd verschoben. Es werden z=3000 von den auftretenden Interferenzringen gemessen.

Außerdem gilt:

$$\frac{\Delta d}{C_{\rm H}} = \frac{z \cdot \lambda}{2} \tag{8}$$

mit dem Hebelübersetzungsfaktor $C_{\rm H}$.

Für die Messung des Brechungsindizes n wird die in Abbildung 2 abgebildete Versuchsanordnung werwendet.

Abbildung 2: Aufbau des Michelson-Interferometers mit einem Abschnitt der Länge b und des Brechungsindizes $n+\Delta n$ zwischen P und S_1 [1]

Der Wegunterschied zwischen den Strahlenbündeln beträgt dann Δnb und kann durch Senkung des Luftdruckes in der Messzelle vergrößert werden. Es gilt dann:

$$\Delta nb = \frac{z \cdot \lambda}{2} \tag{9}$$

und n ergibt sich zu

$$n(p_0,T_0) = 1 + \Delta n(p,p') \frac{T}{T_0} \frac{p_0}{p-p'} \ . \tag{10} \label{eq:10}$$

3 Auswertung

3.1 Bestimmung der Wellenlänge des Diodenlasers

Es werden 10 Messungen des Abstandes Δd für die Zählung von $z\approx 3000$ Interferenzmaxima durchgeführt. Der Hebelübersetzungsfaktor beträgt dabei $C_{\rm H}=5,046$ und es ergibt sich

$$\Delta d_{\rm H} = \frac{\Delta d}{C_{\rm H}} \ . \tag{11}$$

Die zugehörigen Messwerte sind zusammen mit den nach Gleichung (8) berechneten Wellenlängen λ in Tabelle 1 eingetragen.

Tabelle 1: Messwerte zur Wellenlängenbestimmung

\overline{z}	d_1 / mm	d_2 / mm	Δd / mm	$\Delta d_{ m H}/{ m mm}$	λ / nm
2999	2,00	7,02	5,02	0,99	663,45
3000	2,00	7,03	5,03	1,00	$664,\!55$
3003	8,00	2,91	5,09	1,01	671,81
3000	2,50	$7,\!54$	5,04	1,00	$665,\!87$
3001	$7,\!54$	2,49	$5,\!05$	1,00	666,97
3000	2,49	$7,\!53$	5,04	1,00	$665,\!87$
3001	$7,\!53$	2,49	5,04	1,00	$665,\!65$
3016	2,49	$7,\!55$	5,06	1,00	664,97
3000	$7,\!55$	$2,\!51$	5,04	1,00	$665,\!87$
3000	2,51	7,55	5,04	1,00	665,87

Der Mittelwert der Wellelnlängen ergibt sich als

$$\bar{\lambda} = (666.1 \pm 0.7) \,\text{nm}$$
.

3.2 Bestimmung des Brechungsindizes

Die Länge der Messkammer beträgt $b=50\,\mathrm{mm}$. Für eine Druckdifferenz $p-p'=0.6\,\mathrm{bar}$ wurden zehn Impulsmaximaanzahlen z gemessen und sind in Tabelle 2 aufgelistet.

Ihr Mittelwert beträgt

Tabelle 2: Messwerte zur Brechungsindexbestimmung

z
25
24
24
23
23
24
24
23
21
23

$$\bar{z}=23,4$$
 .

Unter normalen Bedingungen mit

$$\begin{aligned} p_0 &= 1{,}0132\,\mathrm{bar} \\ T_0 &= 273{,}15\,\mathrm{K} \\ T &= 298{,}15\,\mathrm{K} \end{aligned}$$

ergeben sich Δn und n mit den Gleichungen (9) und (10) zu

$$\Delta n = (0.155\,87 \pm 0.000\,16) \cdot 10^{-3}$$

$$n = 1.000\,287\,29 \pm 0.000\,000\,30 \; .$$

4 Diskussion

Es ist zu erkennen, dass die Messungen mit dem Michelson-Interferometer sehr genau sind. Sowohl die Fehler der Größen sind sehr klein, als auch die Abweichungen von den Literaturwerten.

Die berechnete Wellenlänge von

$$\bar{\lambda} = (666, 1 \pm 0.7) \, \text{nm}$$

weicht um $4.9\,\%$ vom Literaturwert

$$\lambda_{\rm Lit} = 635 \, \rm nm$$

ab.

Der berechnete Brechungsindex von

$$n = 1{,}000\,287\,29 \pm 0{,}000\,000\,30$$

weicht um 0,002% vom Literaturwert [2]

$$n_{\rm Lit} = 1{,}000\,272$$

ab.

5 Literaturverzeichnis

[1]: TU Dortmund. Versuchsanleitung zu Versuch 602: Röntgenemission und -absorption.

[2]: https://www.spektrum.de/lexikon/physik/brechzahl/1958 (zuletzt besucht am 22.06.2019, 02:16 Uhr)