SYNTHESIS BEYOND TWO SINE WAVES

FANG Jiakun A0123777@u.nus.edu

HARMONIC AND PARTIALS

For harmonic sounds, the first peak is the "fundamental" and the next is the first "harmonic". Alternately, the peaks are partial 1, partial 2, etc.

SAWTOOTH WAVE

Energy at all partials, 1/k

Given: amplitude A, frequency f, sampling rate Fs, maximum partial M.

$$x_{\text{sawtooth}}(t) = -\frac{2A}{\pi} \sum_{k=1}^{M} \frac{1}{k} \sin\left(k2\pi \frac{f}{F_s}t\right)$$

sawtooth = A*scipy.signal.sawtooth(f/FS*2*numpy.pi*t)

BAND-LIMITED

A band-limited signal can be fully reconstructed from its samples, provided that the sampling rate exceeds twice the maximum frequency in the band-limited signal.

$$x_{\text{sawtooth}}(t) = -\frac{2A}{\pi} \sum_{k=1}^{M} \frac{1}{k} \sin\left(k2\pi \frac{f}{F_s}t\right)$$

Perfect sawtooth wave is not a band-limited signal.

The additive synthesis of a sawtooth wave with an increasing number of harmonics

DB-MAGNITUDE FFT

```
def power_spectrum(x):
window = numpy.blackman(len(x))
fft = numpy.fft.fft(x*window)
# only keep the positive frequencies
fft = fft[:len(fft)/2+1]
# magnitude sprectrum, normalize
magfft = abs(fft) / (numpy.sum(window)/2.0)
# log-spectrum
epsilon = 1e-10
db = 20*numpy.log10(magfft + epsilon)
return db
```


LOOK-UP TABLE

LOOK-UP TABLE

Synthesize 1 cycle of a sine wave, then alter the way you read it to get any frequency.

- Suppose our table contains NL = 44100 samples
- If the phase increment is 1, we get a sine wave at 1 Hz
- If the phase increment is 100, we get a sine wave at 100 Hz
- When the phase accumulator is larger than NL, MOD NL

To get frequency f, advance by \$\phi\$inc samples (can be a float!)

$$\phi_{\rm inc} = \frac{f}{FS} N_{\rm L}$$

LINEAR INTERPOLATION

Given (x0, y0) and (x1, y1), find the value at x given $x0 \le x \le x1$ and $x0 \ne x1$.

$$y = y_0 + (y_1 - y_0) \frac{x - x_0}{x_1 - x_0}$$

 $y0 = lookup_table[floor(x)]$

 $y1 = lookup_table[floor(x) + 1]$

LINEAR INTERPOLATION

