- a) For each 1 find a constant $c_p < \infty$ for which the following statement holds:
- If $f: [-1,1] \to \mathbb{R}$ is a continuously differen-
- tiable function satisfying f(1) > f(-1) and $|f'(y)| \leq 1$ for all $y \in [-1,1]$, then there is an $x \in [-1, 1]$ such that f'(x) > 0 and
- $|f(y) f(x)| \le c_n (f'(x))^{1/p} |y x|$ for all $u \in [-1, 1].$
- b) Does such a constant also exist for p = 1?