

Experimento 5 - Colisões Inelásticas

Objetivos

✓ Estudar o coeficiente de restituição em colisões inelásticas de objetos com uma superfície lisa e rígida;

PREPARAÇÃO

Conceitos

O experimento consiste em abandonar uma bola em queda livre, de uma altura H1, tal como sugerido na Figura o1 abaixo, de modo que fique quicando em uma superfície e emita um sinal sonoro que possa ser detectado por um microfone. A medida de tempo decorrido entre os diferentes quiques (impactos) pode fornecer informação sobre a quantidade de energia dissipada em cada choque, entre a bola e o chão, permitindo conhecer o coeficiente de restituição e a altura em que o objeto foi abandonado.

Figura 01: Esquema do experimento.

Durante o impacto, exatamente no instante em que a velocidade da bola se torna nula, parte (ou em alguns casos a totalidade) da energia mecânica é perdida. Vejo o vídeo em super câmera disponível neste link¹ para visualizar o que ocorre com uma bola de golf, durante este curtíssimo intervalo de tempo. para O coeficiente de restituição está intimamente relacionado com a energia consumida durante essa efêmera deformação e depende das propriedades elásticas tanto do objeto quanto da superfície. A taxa de perda de energia em uma colisão pode ser escrita como sendo:

$$f = \frac{K_{antes} - K_{depois}}{K_{antes}} = \frac{1/2 \, mv_{antes}^2 - 1/2 \, mv_{depois}^2}{1/2 \, mv_{antes}^2} = 1 - \frac{v_{depois}^2}{v_{antes}^2}$$

A partir desta taxa f de perda de energia, torna-se útil definir o coeficiente de restituição ε :

$$\varepsilon = \frac{v_{depois}}{v_{antes}}$$

¹ Colisão de bola de golf em super câmera lenta:

Este coeficiente fornece o "grau de elasticidade" da colisão, de modo que as colisões podem ser classificadas como:

i. ε = 0: colisão perfeitamente inelástica;

ii. $0 < \varepsilon < 1$: colisão inelástica;

iii. ε = 1: colisão perfeitamente elástica;

iv. ε > 1: colisão superelástica.

Supondo que a fração de perda de energia cinética seja constante ao longo dos sucessivos choques, independendo do valor da velocidade de impacto da bola, supondo que a energia cinética da superfície como um todo não sofra variação durante os choques, e usando as equações da cinemática, a expressão anterior pode ser escrita como:

 $\varepsilon = \frac{v_{depois(n)}}{v_{antes(n)}}$ onde n é o índice que identifica a quantidade de impactos sofridos pela bola.

Considerando que sucessivos movimentos verticais estão submetidos à aceleração da gravidade g, o módulo da velocidade vertical da bola (tanto imediatamente após o n-ésimo impacto quanto imediatamente antes do (n+1)-ésimo impacto) possui o mesmo valor e pode ser obtido usando a expressão cinemática do MRUV:

$$v_f = v_i + g\Delta t_n$$

Como o tempo de subida após um impacto é igual ao de descida, o intervalo de tempo medido deve ser divido por 2, de modo que o módulo da velocidade vertical (tanto imediatamente após o n-ésimo impacto quanto imediatamente antes do (n+1)-ésimo impacto) pode ser calculado por:

$$v_n = \frac{g\Delta t_n}{2}$$

onde Δt_n é o intervalo de tempo entre o n e o n+1 ésimo impactos. Considerando a definição de ε e substituindo o valor de v_n em $v_{antes(n)}$ e de v_{n+1} em $v_{depois(n)}$, temos:

$$\varepsilon = \frac{\frac{g\Delta t_{n+1}}{2}}{\frac{g\Delta t_{n}}{2}} = \frac{\Delta t_{n+1}}{\Delta t_{n}}$$

Esta expressão sugere que é possível determinar o coeficiente de restituição entre um objeto e uma superfície, medindo o tempo transcorrido entre pelos menos três impactos sucessivos entre eles. Escrevendo:

$$\Delta t_{n+1} = \varepsilon \Delta t_n$$

Note ainda que o valor de ε pode ser obtido a partir do coeficiente angular do gráfico de Δt_{n+1} versus Δt_n .

Determinação da altura de abandono da bolinha

Partindo da definição de ε , admitida como sendo válida para todos os impactos, no primeiro impacto as velocidades antes e depois são dadas por:

$$v_{antes(1)} = \sqrt{2gH_1}$$

$$v_{depois(1)} = \frac{g\Delta t_1}{2}$$

Substituindo na expressão do coeficiente de restituição, teremos:

$$\varepsilon = \frac{v_{depois(1)}}{v_{antes}(1)} = \frac{\frac{g\Delta t_1}{2}}{\sqrt{2gH_1}} \qquad H_1 = \frac{g(\Delta t_1)^2}{8\varepsilon^2}.$$

Utilizando-se o valor da aceleração da gravidade $g = (9,79\pm0,08) \,\text{m/s}^2$ na cidade de Vitória-ES, determinado no Experimento 3, é possível calcular a altura inicial que a bolinha foi abandonada.

Questionário

Antes de começar as atividades, práticas, responda as perguntas abaixo:

1 -	Em uma colisão entre dois objetos, descreva em que condições a energia mecânica se
	conserva. Dê um exemplo.

2 -	Explique por que a expressão $\varepsilon=rac{\Delta t_{n+1}}{\Delta t_n}$ só é válida nos casos em que a fração de perda
	de energia cinética é constante a cada impacto, independendo do valor da velocidade
	de impacto do objeto contra o piso.

Referências

A leitura das referências abaixo é recomendada para uma revisão e compreensão dos conceitos e teorias envolvidas na colisão de dois ou mais corpos e para ajudar a responder as perguntas do questionário:

- ✓ HALLIDAY, RESNICK & WALKER, Fundamentos de Física, Vol. 1, 9ª edição, LTC. Capítulo 9 (seções sobre colisões).
- ✓ TIPLER P. A. **Mecânica, Oscilações e Ondas, Termodinâmica**, Vol. 1, 4ª edição, LTC. Capítulo 8 (seções sobre colisões).
- ✓ MEIRA FILHO, D. P.; KAMASSURY, J. K. S. MEIRA, R. C. S. Uma discussão sobre o coeficiente de restituição. Revista Brasileira de Ensino de Física, vol. 39, n° 4, e4302 (2017). Disponível em: https://www.scielo.br/j/rbef/a/Nhf7kKcDVmkMXLTvRRFxzRb/?lang=pt&format=pdf. Acesso em agosto de 2021.
- ✓ CAVALCANTE M A, SILVA E, PRADO R, HAAG R. O Estudo de Colisões através do Som. Revista Brasileira de Ensino de Física, vol. 24, no. 2, Junho, 2002. Disponível em:

https://www.scielo.br/j/rbef/a/Mjy3p8CDzwVPMbhxzFCQFcb/?lang=pt&format=pdf. Acesso em agosto de 2021.

Execução

O material a ser utilizado para a realização deste procedimento experimental está listado abaixo:

- √ 1 bolinha de gude;
- √ 1 bolinha de borracha;
- ✓ Trena ou metro;
- ✓ Fita crepe;
- ✓ 1 pedaço de papel alumínio de aproximadamente 70cm de comprimento;
- ✓ Celular com o aplicativo Phyphox 🌇 instalado, para ser usado como detector sonoro.

Lançamento em piso liso e rígido - Bolinha de gude

Para realizar o experimento e coletar os dados, proceda da seguinte forma:

- 3 Baixe o aplicativo Phyphox (disponível para Android e IOS) e instale no seu celular;
- 4 Abra o aplicativo e escolha a opção "Temporizadores" e em seguida escolha a opção "Cronômetro Acústico". Depois, clique na aba "Sequência". Ele vai aparecer como na figura ao lado.
- 5 Escolha um local que tenha piso liso e rígido. Utilize a parede ou a lateral de um armário, cole um pedaço de fita crepe a 750 mm do chão e faça uma marca exatamente nesta medida.

- 6 Acione o cronômetro, clicando no ícone , e em seguida abandone a bolinha. Tome o cuidado de fazer a parte de baixo da bolinha coincidir com a marca na parede ou armário.
- 7 Abandone a bolinha, aguarde ela efetuar os quiques e certifique-se de que o aplicativo esteja registrando os 5 primeiros intervalos de tempo entre eles. Anote o valor dos intervalos de tempo na tabela mais abaixo.

Obs: Ao longo das medidas, pode ocorrer algum ruído externo ou o som do quique pode ficar abafado, por diferentes motivos, ocasionando medidas erradas (ou inconsistentes) de intervalos de tempo. Por isso, certifique-se de que os dados registrados apresentem consistência. Um exemplo do que pode dar errado e gerar dados inconsistentes: Os intervalos de tempo devem ter valores decrescentes. Caso isso não ocorra com as medidas que estiver fazendo, descarte-as e repita o lançamento.

- 8 O vídeo disponível no link https://youtu.be/8Ha8QXI-ZSk, mostra a execução dos passos acima.
- 9 Para fazer nova medida, basta clicar no botão "Reiniciar" logo abaixo das medidas de tempo.

10 - Repita todo esse procedimento pelo menos cinco vezes com a bolinha de gude.

Bolinha de	Bolinha de gude abandonada de uma altura $H_1 = 750mm$						
Intervalo de tempo	Medida 1	Medida 2	Medida 3	Medida 4	Medida 5	$\overline{\Delta t_{gude}}$	Média dos desvios de $\overline{\Delta t_{gude}}$
Δt_1							
Δt_2							
Δt_3							
Δt_4							
Δt_5							

	Estime a incerteza da medida da altura inicial da bolinha $\Delta H_{1gude} = \pm$ mm
11 -	Explique o procedimento/critérios utilizados para determinar a incerteza na medida de altura inicial da bolinha.
12 -	Observe o movimento de quicar da bolinha de gude, nos diferentes lançamentos. Descreva abaixo o que você observa e também possíveis diferenças entre eles.

Lançamento em piso liso e rígido - Bolinha de borracha

13 - Todos os passos anteriores devem ser repetidos com a bolinha de borracha. Antes, porém, faz-se necessário colocar no chão um pedaço de papel alumínio de uns 70 cm de comprimento, de forma "enrugada". O objetivo é de apenas amplificar o som produzido por esse tipo de bolinha, de modo a sensibilizar o "cronômetro acústico" do aplicativo Phyphox e permitir a coleta dos dados.

Bolinha de	Bolinha de borracha abandonada de uma altura $H_1 = 750mm$						
Intervalo de tempo	Medida 1	Medida 2	Medida 3	Medida 4	Medida 5	$\overline{\Delta t_{gude}}$	Média dos desvios de $\overline{\Delta t_{borracha}}$
Δt_1							
Δt_2							
Δt_3							
Δt_4							
Δt_5							

Estime a incerteza da medida da altura inicial da bolinha $\Delta H_{1borracha}=\pm$ _____ mm

14 -	- Observe o movimento de quicar da bolinha de borracha, nos diferentes lançamentos.
	Descreva abaixo o que você observa e também possíveis diferenças entre eles.

Lançamentos em superfície de madeira

15 - Pegue um pedaço de madeira de aproximadamente 30 x 30 cm, que pode ser a tábua de cortar carne da sua casa, e abandone a bolinha de gude de uma altura de 750 mm.

Em seguida, abandone a bolinha de borracha desta mesma altura inicial. Certifique-se
de que as bolinhas estejam efetuando os quiques sobre a superfície de madeira. Utilize
o espaço abaixo para descrever e explicar as diferenças observadas no movimento de
quique de cada bolinha.

L			

DISCUSSÕES E CONCLUSÕES

Lançamento em piso liso e rígido - Bolinha de gude

- 16 Considerando as cinco medidas de intervalos de tempo para os quiques da bolinha de gude, calcule o valor médio de cada intervalo e anote o valor na tabela dos dados.
- 17 Calcule também a incerteza do primeiro intervalo de tempo e anote na última coluna da tabela. Note que só será necessário fazer este cálculo, para o primeiro intervalo de tempo.
- 18 Em seguida, construa uma tabela com os valores de $\overline{\Delta t_n}$ e de $\overline{\Delta t_{n+1}}$ de acordo com o esquema abaixo.

Bolinha de gude	
eixo x	eixo y
$\overline{\Delta t_1}$	$\overline{\Delta t_2}$
$\overline{\Delta t_2}$	$\overline{\Delta t_3}$
$\overline{\Delta t_3}$	$\overline{\Delta t_4}$
$\overline{\Delta t_4}$	$\overline{\Delta t_5}$

19 -	Utilize um programa de planilha eletrônica ou o SciDAVIs para plotar o gráfico de
	Δt_{n+1} versus Δt_n . Os valores de Δt_n devem ser plotados no eixo x e os valores de
	Δt_{n+1} devem ser plotados no eixo y. Apresente o gráfico plotado no espaço abaixo:

20 - Utilize o SciDAVIs para determinar o coeficiente angular da reta e sua respectiva incerteza. O grupo deve estar convencido de que este é o valor do coeficiente de restituição.

Valor do coeficiente de restituição e de sua incerteza $\varepsilon_{gude} =$ _____ \pm _____

21 - Utilize o valor do coeficiente de restituição, a expressão $H_1 = \frac{g(\Delta t_1)^2}{8\epsilon^2}$ e o valor g = (9,79±0,08) m/s², aferido no Experimento 3, para determinar a altura em que o lançamento foi realizado.

Altura inicial calculada da bolinha de gude $H_{1gude} =$ ____ \pm ____

Lançamento em piso liso e rígido - Bolinha de borracha

- 22 Considerando as cinco medidas de intervalos de tempo para os quiques da bolinha de borracha, calcule o valor médio de cada intervalo e anote o valor na tabela dos dados.
- 23 Calcule também a incerteza do primeiro intervalo de tempo e anote na última coluna da tabela. Note que só será necessário fazer este cálculo, para o primeiro intervalo de tempo.
- 24 Em seguida, construa uma tabela com os valores de $\overline{\Delta t_n}$ e de $\overline{\Delta t_{n+1}}$ de acordo com o esquema abaixo.

Bolinha de borrac	:ha
eixo x	eixo y
$\overline{\Delta t_1}$	$\overline{\Delta t_2}$
$\overline{\Delta t_2}$	$\overline{\Delta t_3}$
$\overline{\Delta t_3}$	$\overline{\Delta t_4}$
$\overline{\Delta t_4}$	$\overline{\Delta t_5}$

25 -	Utilize um programa de planilha eletrônica ou o SciDAVIs para plotar o gráfico de
	Δt_{n+1} versus Δt_n . Os valores de Δt_n devem ser plotados no eixo x e os valores de
	Δt_{n+1} devem ser plotados no eixo y. Apresente o gráfico plotado no espaço abaixo:

26 - Utilize o SciDAVIs para determinar o coeficiente angular da reta e sua respectiva incerteza. O grupo deve estar convencido de que este é o valor do coeficiente de restituição.

Valor do coeficiente de restituição e de sua incerteza $\varepsilon_{borracha} =$ _____ \pm _____

27 - Utilize o valor do coeficiente de restituição, a expressão $H_1 = \frac{g(\Delta t_1)^2}{8\varepsilon^2}$ e o valor g = $(9,79\pm0,08)$ m/s², aferido no Experimento 3, para determinar a altura em que o lançamento foi realizado.

Altura inicial calculada da bolinha de borracha $H_{1borracha} =$ _____ \pm ____ mm

Comparações e conclusões

28 -	- Compare os valores dos coeficientes de restituição das duas bolinhas: sâ	ío iguais? I	Ēra
	esperado que fossem iguais? Explique suas respostas.		

29 - Levando-se em consideração as incertezas, é possível dizer que o valor calculado da altura inicial H_1 da **bolinha de gude** é igual ao valor medido? Explique sua resposta,

levando-se em consideração as premissas (1 - a fração de perda de energia cinética é constante ao longo dos sucessivos choques; 2 - a energia cinética da superfície como um

	expressão $H_1=rac{g(\Delta t_1)^2}{8arepsilon^2}$.
30 -	Levando-se em consideração as incertezas, é possível dizer que o valor calculado da altura inicial H_1 da bolinha de borracha é igual ao valor medido? Explique sua resposta, levando-se em consideração as premissas (1 - a fração de perda de energia cinética é constante ao longo dos sucessivos choques; 2 - a energia cinética da superfície como um todo não sofre variação durante os choques) que foram utilizadas pra determinar a expressão $H_1 = \frac{g(\Delta t_1)^2}{8\varepsilon^2}$.
31 -	As premissas iniciais (1 - a fração de perda de energia cinética é constante ao longo dos sucessivos choques; 2 - a energia cinética da superfície como um todo não sofre variação durante os choques) continuam válidas no lançamento da bolinha de gude sobre a superfície de madeira ? Explique sua resposta.
32 -	As premissas iniciais (1 - a fração de perda de energia cinética é constante ao longo dos sucessivos choques; 2 - a energia cinética da superfície como um todo não sofre variação durante os choques) continuam válidas no lançamento da bolinha de borracha sobre a superfície de madeira ? Explique sua resposta.
33 -	Ao se escolher o material utilizado no para-choques de um carro, é importante levar em consideração o seu coeficiente de restituição? Explique sua resposta.
34 ⁻	Descreva abaixo as principais dificuldades encontradas pelo grupo para o desenvolvimento deste experimento.
	deservoivimento deste experimento.