Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського»

Кафедра прикладної математики

Лабораторна робота №1 з кредитного модуля «Випадкові процеси» Варіант 8

Виконав:

студент групи КМ-81

Донченко Богдан Миколайович

Перевірив викладач:

Пашко Анатолій Олексійович

Умова(1)

- 1. Згенерувати послідовність з n =1000000 псевдовипадкових чисел, що рівномірно розподілені на інтервалі (0,1) (використати вбудований генератор псевдовипадкових чисел). Побудувати графік.
- 1.1. Оцінити математичне сподівання та дисперсію отриманої послідовності.
- 1.2. Побудувати таблицю 1 (кількість L підінтервалів не менше 10), частотну таблицю вивести на екран.

Таблиця 1. Частотна таблиця

Інт ервал	Кількість чисел (частота попадань), які випали в даний інтервал	Відносна частота потрапляння
Δ_1	ν_{l}	v_1/n
Δ_2	ν_2	v ₂ /n
		•••
$\Delta_{ m L}$	$ u_{ m L}$	$\nu_{\rm L}/n$
	∑ кіл-ть	

- 1.3. Перевірити гіпотезу про закон розподілу, побудувати гістограму.
- 1.4. Побудувати гістограму розподілу випадкової величини $\eta = \max{(\xi)}$, де ξ рівномірно розподілена на (0,1) випадкова величина:
- а) змоделювати n =1000000 значень величини ξ , знайти максимальне значення $\eta_1 = \max(\xi)$;
 - б) процедуру а) повторити т=1000;
 - в) для випадкової величини $\eta = \{\eta_i, i = 1,...,m\}$ побудувати гістограму.

Графіки та таблиці(1)

Завдання 1

Мат. ожидание: 28.068 Дисперсия: 80.73138

Інтервали	Кількість	Відносна частот
(0.0, 0.1)	100150	0.1002
(0.1, 0.2)	100063	0.1001
(0.2, 0.3)	100412	0.1004
(0.3, 0.4)	100164	0.1002
(0.4, 0.5)	99900	0.0999
(0.5, 0.6)	99760	0.0998
(0.6, 0.7)	100335	0.1003
(0.7, 0.8)	99945	0.0999
(0.8, 0.9)	100025	0.1
(0.9, 1.0)	99246	0.0992
	Сума: 1000000	

Код(1)

```
r arr = np.random.rand(1000000)
head arr = ["Інтервали", "Кількість", "Відносна частота"]
def task 1():
    graph(r arr, "Завдання 1")
def task 1 1():
    exp dis(r arr)
def task 1 2():
    print table(get interval(r arr, 10), head arr)
def task 1 3():
    histogramm(r arr, 10, 0.9, "Завдання 1.3")
def task 1 4():
    m = 1000
    a = 0
    max arr = []
    while a<m:
        arr = np.random.rand(10000)
        mx = np.max(arr)
        max arr.append(mx)
        a += 1
    histogramm (np.array (max arr), 10, 0.9, "Завдання 1.4")
def graph (array, name):
   title = plt.title(name)
   plot = plt.plot(array)
   plt.show()
def exp dis(array):
   exp value = np.mean(array)
   print("Мат. ожидание: ", round(exp value, 5))
   dispersion = np.var(array)
   print("Дисперсия: ", round(dispersion, 5))
   print("")
```

```
def get interval(r array, intervals):
   (element, counts) = np.unique(r array, return counts=True)
   result = []
   a = np.min(element)
   step = (np.max(element) - np.min(element))/intervals
   b = a + step + 0.0001
   n = 0
   for i in range(1, intervals + 1):
       count = counts[(a <= element) & (b >= element)]
       quantity = np.sum(count)
       n += quantity
       frequency = quantity/len(r array)
       result.append((a, b, quantity, frequency))
       b = b + step + 0.0001
   return np.array(result)
def print table(table arr, table header):
   table = [table header]
   table arr[2] = np.round(table arr[2], 4)
   for i in table arr:
        interval = "({}, {})".format(round(i[0], 2), round(i[1], 2))
        table.append([interval, int(i[2]), round(i[3], 4)])
    summa = "Cyma: {}".format(int(np.sum(table arr.T[2])))
    table.append(["", summa, ""])
   print(tabulate(table))
def histogramm (array, n, w, name):
    title = plt.title(name)
    plt.hist(array, n, rwidth=w, color='red')
    plt.show()
```

Умова(2)

- 2. Змоделювати дискретну випадкову величину, задану таблицею 2, побудувати графік.
- 2.1.Оцінити математичне сподівання та дисперсію отриманої дискретної випадкової величини.
 - 2.2. Побудувати частотну таблицю.
 - 2.3. Перевірити гіпотезу про закон розподілу, побудувати гістограму.

	I I				- 00 / 50 T - 0			TITLE
8	x_i	1	10	15	23	29	38	42
	p_i	0.02	0.05	0.1	0.28	0.23	0.22	0.1

Графіки та таблиці(2)

Завдання 2

Мат. ожидание: 28.068 Дисперсия: 80.73138

Інтервали	Кількість	Відносна частота
1.0	6.0	0.006
10.0	37.0	0.037
15.0	98.0	0.098
23.0	306.0	0.306
29.0	246.0	0.246
38.0	211.0	0.211
42.0	96.0	0.096
	Сума: 1000	

Код (2)

```
x = np.array([1, 10, 15, 23, 29, 38, 42])
p = np.array([0.02, 0.05, 0.1, 0.28, 0.23, 0.22, 0.1])
r arr = np.random.choice(x, 1000, p=p)
def task 2():
    graph (r arr, "Завдання 2")
def task 2 1():
    exp dis(r arr)
def task 2 2():
    print dis table (get dis interval (r arr), head arr)
def task 2 3():
   histogramm(r arr, 10, 0.9, "Завдання 2")
def get dis interval(r array):
    (element, counts) = np.unique(r array, return counts=True)
    result = []
    for i, j in zip(element, counts):
        result.append([i, j, j / len(r_array)])
    return np.array(result)
def print dis table (table arr, table header):
    table = [table header]
    table.extend(table arr)
    summa = "Cyma: {}".format(int(np.sum(table arr.T[1])))
    table.append(["", summa, ""])
    print(tabulate(table))
```

Умова(3)

3. Моделювання гауссівського розподілу за алгоритмами:

a)
$$\xi_1 = \sqrt{-2\ln(\alpha_1)} \cos(2\pi\alpha_2),$$
 $\xi_2 = \sqrt{-2\ln(\alpha_1)} \sin(2\pi\alpha_2),$
b) $\xi_1 = \sqrt{\frac{12}{n}} \sum_{i=1}^n (\alpha_i - 0.5),$

 α_i - рівномірно розподілені в інтервалі (0,1).

Перевірити закон розподілу, в алгоритмі b) перевірити закон розподілу для різних n (n=12, n=48, n=3).

Графіки(3)

Код(3)

```
def task_3_a1():
   a1 = np.random.rand(1000000)
    a2 = np.random.rand(1000000)
    formula = np.sqrt(-2*np.log(a1))*np.cos(2*np.pi*a2)
    histogramm (formula, 1000, 1, "Завдання 3")
def task_3_a2():
    a1 = np.random.rand(1000000)
    a2 = np.random.rand(1000000)
    formula = np.sqrt(-2*np.log(a1))*np.sin(2*np.pi*a2)
    histogramm(formula, 1000, 1, "Завдання 3")
def task_3_b():
    n1, n2, n3 = 12, 48, 3
    formula1 = [np.sqrt(12/n1)*(np.sum(np.random.rand(n1))-0.5) for i in range(100000)]
    graf1=np.array(formula1)
   formula2 = [np.sqrt(12/n2)*(np.sum(np.random.rand(n2))-0.5) for i in range(100000)]
    graf2=np.array(formula2)
    formula3 = [np.sqrt(12/n3)*(np.sum(np.random.rand(n3))-0.5) for i in range(100000)]
    graf3=np.array(formula3)
    g1 = plt.hist(graf1, 100)
    g2 = plt.hist(graf2, 100)
    g3 = plt.hist(graf3, 100)
   plt.show()
```

Завдання 4 Умова(4)

- 4. Змоделювати неперервні випадкові величини, що мають закони розподілу Вейбулла, Релея, логнормальний, Коші, Накагамі. Побудувати графіки.
- 4.1.Оцінити математичне сподівання та дисперсію отриманих випадкових величин.
 - 4.2. Побудувати частотну таблицю для кожної реалізації.
 - 4.3. Перевірити гіпотезу про закон розподілу, побудувати гістограму.

Графіки і таблиці(4)

Завдання 4 Вейбулла:

Мат. ожидание: 0.91516 Дисперсия: 0.04387

Релея:

Мат. ожидание: 6.26144 Дисперсия: 10.73738

Логнормальний:

Мат. ожидание: 246.39938 Дисперсия: 119538.67825

Коші:

Мат. ожидание: 0.23038 Дисперсия: 7552.08244

Накагамі:

Мат. ожидание: 4.99465

Дисперсия: 5.026

Вейбулла:

Інтервали	Кількість	Відносна частота
(0.16, 0.31)	26	0.0026
(0.31, 0.45)	152	0.0152
(0.45, 0.6)	564	0.0564
(0.6, 0.75)	1304	0.1304
(0.75, 0.89)	2236	0.2236
(0.89, 1.04)	2738	0.2738
(1.04, 1.18)	1977	0.1977
(1.18, 1.33)	821	0.0821
(1.33, 1.48)	174	0.0174
(1.48, 1.62)	8	0.0008
	Сума: 10000	

Релея:

Інтервали	Кількість	Відносна частота
(0.05, 2.1)	876	0.0876
(2.1, 4.15)	2034	0.2034
(4.15, 6.21)	2482	0.2482
(6.21, 8.26)	2049	0.2049
(8.26, 10.31)	1388	0.1388
(10.31, 12.37)	701	0.0701
(12.37, 14.42)	300	0.03
(14.42, 16.47)	125	0.0125
(16.47, 18.53)	35	0.0035
(18.53, 20.58)	10	0.001
	Сума: 10000	

Логнормальний:

Інтервали	Кількість	Відносна частота
(3.99, 581.3)	9153	0.9153
(581.3, 1158.62)	643	0.0643
(1158.62, 1735.94)	128	0.0128
(1735.94, 2313.26)	44	0.0044
(2313.26, 2890.58)	15	0.0015
(2890.58, 3467.9)	11	0.0011
(3467.9, 4045.22)	2	0.0002
(4045.22, 4622.54)	3	0.0003
(4622.54, 5199.86)	0	0.0
(5199.86, 5777.17)	1	0.0001
	Сума: 10000	

Сума: 10000

Коші:

Інтервали	Кількість	Відносна частота
(-5259.62, -4653.64)	1	0.0001
(-4653.64, -4047.65)	0	0.0
(-4047.65, -3441.66)	0	0.0
(-3441.66, -2835.68)	0	0.0
(-2835.68, -2229.69)	0	0.0
(-2229.69, -1623.71)	0	0.0
(-1623.71, -1017.72)	3	0.0003
(-1017.72, -411.74)	4	0.0004
(-411.74, 194.25)	9977	0.9977
(194.25, 800.24)	15	0.0015
	Сума: 10000	

Накагамі:

Інтервали	Кількість	Відносна частота
(0.53, 2.35)	904	0.0904
(2.35, 4.17)	3095	0.3095
(4.17, 5.99)	3145	0.3145
(5.99, 7.82)	1776	0.1776
(7.82, 9.64)	730	0.073
(9.64, 11.46)	249	0.0249
(11.46, 13.28)	82	0.0082
(13.28, 15.1)	16	0.0016
(15.1, 16.92)	2	0.0002
(16.92, 18.74)	1	0.0001
	Сума: 10000	

Код (4)

```
wei arr = np.random.weibull(5, 10000)
ray arr = np.random.rayleigh(5, 10000)
lognorm arr = np.random.lognormal(5, 1, 10000)
cauchy arr = np.random.standard cauchy(10000)
nak arr = np.random.standard gamma(5, 10000)
def task 4():
    graph (wei arr, "Вейбулла")
    graph (ray arr, "Релея")
    graph (lognorm arr, "Логнормальний")
    graph (cauchy arr, "Komi")
    graph (nak arr, "Hakarami")
def task 4 1():
   print ("Вейбулла:")
    exp dis(wei arr)
   print ("Релея:")
   exp dis(ray arr)
   print ("Логнормальний:")
   exp dis(lognorm arr)
   cauchy = np.array(cauchy arr)
   print ("Kowi:")
   exp dis(cauchy arr)
   print ("Hakarami:")
   exp dis(nak arr)
def task 4 2():
   print ("Вейбулла:")
    print table(get interval(wei arr, 10), head arr)
    print("Релея:")
   print table (get interval (ray arr, 10), head arr)
    print ("Логнормальний:")
    print table (get interval (lognorm arr, 10), head arr)
   print ("Komi:")
    print table (get interval (cauchy arr, 10), head arr)
   print ("Hakarami:")
   print table (get interval (nak arr, 10), head arr)
def task 4 3():
   histogramm (wei arr, 10, 0.9, "Вейбулла")
   histogramm(ray arr, 10, 0.9, "Релея")
    histogramm(lognorm arr, 10, 0.9, "Логнормальний")
    histogramm (cauchy arr, 10, 0.9, "Коші")
    histogramm (nak arr, 10, 0.9, "Hakarami")
```

Умова(5)

5. Обчислити методом Монте-Карло визначені інтеграли

$$\int_{0}^{1} (x^{7} + x^{5} + x^{3}) dx, \quad \int_{0}^{\pi} 2 \sin(3x) dx, \quad \int_{0}^{\infty} \frac{1}{(x+1)\sqrt{x}} dx.$$

Пояснити отримані результати.

Рішення (5)

```
Завдання 5

Інтеграл 1:

0.5549229136214642

Інтеграл 2:

1.2974858862890033

Інтеграл 3:

0.28892952759754376
```

Код(5)

```
def function 1(x):
   return (x**7 + x**5 + x**3)
def function 2(x):
   return(2*np.sin(3*x))
def function 3(x):
   return (1/((x+1)*np.sqrt(x)))
def task 5():
    print("Інтеграл 1:")
    integral 1 = monte carlo(function 1, 0, 1, 100)
    print(integral 1)
    print("\nIнтеграл 2:")
    integral 2 = monte carlo(function 2, 0, np.pi, 100)
    print(integral 2)
    print("\nIнтеграл 3:")
    integral 3 = monte carlo(function 3, 0, 2000, 100)
    print(integral 3)
```

Умова(6)

6. Змоделювати випадкову двійкову послідовність за формулою $\beta_i = \begin{cases} 1, \ \xi_{i+1} - \xi_i > 0 \\ 0, \ \xi_{i+1} - \xi_i \leq 0 \end{cases}.$

Знайти емпіричний закон розподілу двійкової послідовності.

Рішення (6)

Код(6)

```
def task_6():
    n = 1001
    r_arr = np.random.rand(n)
    new_arr = []
    for i in range(n):
        if r_arr[i-1] < r_arr[i]:
            new_arr.append(1)
        elif r_arr[i-1] >= r_arr[i]:
            new_arr.append(0)
    #arr = new_arr.remove(new_arr[0])
    plt.hist(np.array(new_arr))
    plt.show()
```

Умова(7)

7. Побудувати гістограму розподілу випадкової величини $\eta = \max{(\xi)}$, де ξ - випадкова величина, що має нормальний закон розподілу N(0,1).

Рішення(7)

Код(7)

```
def task_7():
    m = 1000
    a = 0
    max_arr = []
    for i in range(m):
        arr = np.random.normal(0, 1, 1000)
        mx = np.max(arr)
        max_arr.append(mx)
    histogramm(np.array(max_arr), 100, 1, "Завдання 7")
```