Case Study

Predict High-Risk Donors for Hepatitis C:

Predict high risk donors using the 'K-Nearest Neighbors' model

KNN 모델을 활용한 HCV 고위험 헌혈자 선별

Hyun Jin (Austin) Kang, Yoojin (Audrey) Jung (Data Analyst) 2024.08.

Table of Contents

- 1. Background
- 2. Objective
 - a. Identify which variables really impact blood donation rate
- 3. Plan (Prepare and Collect Data)
 - a. Data collection * pre-processing
- 4. Analyze (Visualization)
 - a. Data Visualization
- 5. Construct model (Design and Test models)
 - a. Find Feature Importances: Random Forest Model
 - b. Classifying Target: K-Nearest Neighbors(KNN) Model
 - c. Summary of model results
- 6. Execute
 - a. Conclusion (Recommendations)

Background & Objective

Background

- Hepatitis C Virus(HCV) is known to be a 'transfusion-transmissible infections(TTI)'
- World Health Organization(WHO) recommends all blood donations should be screened for HCV*
- Predicting donors with a high-risk of Hepatitis C (before testing HCV) will help blood centers to pre-screen and monitor high-risk donors, enhancing blood safety.

* WHO, Blood safety and availability

Objective

- Predict blood donor with a high risk of Hepatitis C
- Identify which variables have an impact on classifying Hepatitis C patient

Pace: Plan Stage

Plan (Data Collection & Preprocessing)

- Data Collection
 - Data from UCI Machine Learning Repository*
 - Data has 615 people data including 7 blood test results
 - Blood Test Items: 'ALB', 'ALP', 'ALT', 'AST', 'BIL', 'CHE', 'CHOL', 'CREA', 'GGT', 'PROT'
 - Target attribute has 4 types of categories: blood donors, hepatitis C, fibrosis, and Cirrhosis
- Pre-processing
 - Replaced 31 missing values with the group mean of each category.
 - Merged all Hepatitis C patient's data into one category; 'patient'
 - Excluded 'suspect blood donor' data from modeling for final test (prevent data leakage)

^{*} Lichtinghagen, Ralf, Klawonn, Frank, and Hoffmann, Georg. (2020). HCV data. UCI Machine Learning Repository. https://doi.org/10.24432/C5D612.

pAce: Analyze Stage

Data Distribution

- Identified outliers across blood test items
 - → Removed outliers(using Z score) on selected items considering the characteristic of the KNN model
 - \rightarrow Scaled data before training

Relationship between features

- Identified there are some correlations between variables.
 - PROT ALB
 - GGT AST
 - CHE CHOL
- To prevent dimensionality reduction and overfitting, used a random forest model to find important features

paCe: Construct Stage

Prepare Modeling

- The goal of this study is to classify(and predict) Hepatitis C patient
- To select important features, used a Random Forest Classifier, then built a K-NN model using selected features
- The KNN model is a simple algorithm with fewer parameters to adjust. The model is capable of classifying with small datasets and high dimensionality.
- Due to the class imbalance, used undersampling and SMOTE method (80% non-patient : 20% patient)
 - a. selected F1 score as the main evaluation score
- Used 'suspect blood donor' category data to predict if the donor has a high-risk of hepatitis C

Model Results(Random Forest Classifier)

- From the Random Forest model, able to extract top important features with high evaluation score
 - Important features: AST, GGT, BIL, ALP, ALT
 - F1 score: 0.96
 Accuracy score: 0.99
 ROC score: 0.96
- Added two additional features(ALB, CHOL), considering current testing items at the blood center

Construct Model

Target (y)

Patient $(1, 0) \rightarrow 20\%(1) : 80\%(0)$

Feature (X)

AST, GGT, BIL, ALP, ALT, ALB, CHOL *Removed outliers by each target class

Model

K-Nearest Neighbor(KNN) Model

Scaling

Downsampling → SMOTE (Upsampling) → Standard Scaler

Evaluation

F1 score, Accuracy score, and ROC score

KNN Model Results

- Found K values of 3, 5, and 7 showed highest F1 score of 0.96
- To prevent 'overfitting' and 'underfitting', chose K values of 3 as an optimal k value

Final Model - KNN model with 3 neighbors

- In the test data, the KNN model showed a higher score of F1 and Precision
- With an ROC score of 0.91, the KNN model performs better than random guessing 91% of the time.
 - \rightarrow Strong ability to classify between the two classes

pacE: Execute Stage

Predict New Dataset

Suspected Blood Donors

	Category	Age	Sex	ALB	ALP	ALT	AST	BIL	CHE	CHOL	CREA	GGT	PROT
534	4	47	m	22.5	124.0	79.5	46.7	2.3	6.83	4.30	170.0	345.6	58.6
535	4	48	m	24.9	116.9	49.2	24.3	4.9	3.44	5.25	29.0	83.0	47.8
536	4	49	m	21.6	42.2	9.5	10.6	2.4	3.75	3.01	64.0	38.9	44.8
537	4	55	m	47.3	106.0	208.8	130.6	0.8	14.80	8.08	76.0	71.6	78.3
538	4	71	m	14.9	69.8	19.7	95.2	9.8	13.30	2.61	9.0	7.6	47.0
539	4	74	m	20.3	84.0	22.8	43.0	5.7	4.91	3.19	52.0	218.3	47.8
540	4	59	f	19.3	208.2	325.3	146.6	6.9	5.33	4.72	32.0	295.6	53.1

```
prediction = optimal_knn_model.predict(new_df_scaled)
print(f'Predicted class for the suspect blood donors : {prediction}')
Predicted class for the suspect blood donors : [1 1 1 1 1 1]
```

Predicted all donors have high risk of HCV

Further investigate these donors' blood samples to prevent any adverse event

Conclusion

- Identified AST, GGT, BIL, ALP, and ALT are important features in predicting HCV
- The KNN model achieved an F1-score of 88%, precision of 91%, and AUC-score of 91% on the test set.
- The KNN model is a simple and effective machine learning model to classify the target in a short time with fewer parameters to be tuned.
- Blood centers can utilize this model to classify donors with a high risk of HCV, enhancing blood safety.
 - If the donor is predicted to have a risk of HCV, further investigate his/her previous blood sample and monitor the next blood donation result

Thank You

Reference

Full Project Code: Github

<Contributions>

- Yoojin (Audrey) Jung Data Analyst (Professional)
 - (Contribution) EDA (processing & visualization)
 - (Skills) Data Analytics, Visualization (Tableau), SQL, R, Python
 - (LinkedIn) https://www.linkedin.com/in/yoojin-jung/
- Hyunjin (Austin) Kang Data Scientist (Associate)
 - (Contribution) Data collection, EDA (feature engineering), construct model
 - o (Interest Area) Public Health
 - (Skills) Machine Learning, Python, SQL
 - (LinkedIn) <u>www.linkedin.com/in/austinkang0702</u>