Hybrid BERT + LightGBM Model for Predicting Week of Sale

With Feature Engineering, Hyperparameter Tuning & Evaluation

Introduction:

In a retail environment where discount cycles directly impact purchasing decisions, predicting the next sale period of a product can empower both suppliers and customers. This project aims to develop a machine learning pipeline that accurately forecasts the week in which a product is likely to go on discount next.

The model leverages:

- BERT for contextual text embeddings,
- LightGBM for structured classification,
- · Enhanced feature engineering, and
- Hyperparameter tuning via Optuna for optimization.

Objective:

The objective is to build a robust hybrid model that:

- Predicts the **number of weeks until the next sale**.
- Uses a **classification approach** (Weeks 1–8 as classes).
- Incorporates both textual and numerical features.
- Provides class-wise performance insights.

Dataset Overview:

- **Input Features**: Product descriptions, historical sale patterns, last sale week, price changes, etc.
- Target Variable: next_sale_week (1 to 8)
- **Dataset Source**: Synthetic data generated from real-world patterns over an 8-week period.
- **Size**: ~24,575 samples

Methodology:

1. Preprocessing & Feature Engineering:

• **Data Cleaning**: Removed nulls, ensured valid date-time and product formats.

• Feature Generation:

- Days since last sale
- Price difference
- Is discounted (binary)
- Average discount cycle for product
- **Target Creation**: Created by calculating difference in weeks between current and next known sale.

Note: Warnings such as DeprecationWarning for groupby().apply() were addressed during preprocessing.

2. Text Embeddings Using BERT:

- Used a pretrained BERT model (bert-base-uncased) to embed product descriptions.
- Applied mean pooling on token embeddings.
- Combined BERT features with numeric features for modeling.

3. Modeling with LightGBM:

• Model Type: LGBMClassifier

• Classes: 8 classes for week prediction (1–8)

• Training Strategy: 80/20 train-test split

- Evaluation Metrics:
 - Accuracy
 - Precision
 - Recall
 - F1 Score
 - Confusion Matrix
 - Prediction Error Distribution

4. Hyperparameter tuning with Optuna:

- Conducted optimization with:
 - learning_rate
 - num_leaves

max_depth

• min_data_in_leaf

Best Trial: 14

learning_rate: 0.147

• num_leaves: 134

• max_depth: 6

• min_data_in_leaf: 47

• Best validation score: 0.9009

Evaluation:

1. Classification Report:

Week	Precision	Recall	F1-Score	Support
1	0.25	0.03	0.05	78
2	0.77	0.79	0.82	2106
3	0.87	0.85	0.84	2888
4	0.88	0.86	0.87	3565
5	0.89	0.88	0.88	3831
6	0.92	0.88	0.90	3554
7	0.94	0.91	0.92	4130
8	0.96	0.96	0.96	4423

Macro Average:

Precision: 0.8020Recall: 0.7816

• F1 Score: 0.7797

Weighted Average:

Precision: 0.8914Recall: 0.8908F1 Score: 0.8903

Overall Accuracy: 0.8908

2. Confusion Matrix:

- High prediction accuracy for classes 4–8.
- Class 1 shows major misclassification, likely due to its low frequency.

3. Prediction Error Distribution:

- Most predictions are correct (Week Difference = 0).
- Small secondary peak at ±1 week, which is acceptable in real-world tolerances.

4. Precision, Recall, F1 per Class (Bar Chart)

- Visualization confirms high per-class scores from Week 3 onward.
- Clear underperformance on Week 1 due to class imbalance.

5. RMSE (Root Mean Squared Error) and MAE (Mean Absolute Error):

To measure continuous deviation between predicted and actual weeks:

- Root Mean Squared Error (RMSE): 0.5259 weeks
- Mean Absolute Error (MAE): 0.1538 weeks

These values indicate:

- Low average error, affirming close predictions to actual values.
- Low variance in prediction, demonstrating model consistency.

6. Other figures:

• Classification Report

Accuracy: 0.8908240081383519					
	precision	recall	f1-score	support	
1	0.25	0.03	0.05	78	
2	0.77	0.89	0.82	2106	
3	0.82	0.85	0.84	2888	
4	0.88	0.86	0.87	3565	
5	0.89	0.88	0.88	3831	
6	0.92	0.88	0.90	3554	
7	0.94	0.91	0.93	4130	
8	0.96	0.96	0.96	4423	
accuracy			0.89	24575	
macro avg	0.80	0.78	0.78	24575	
weighted avg	0.89	0.89	0.89	24575	

```
    Precision (macro): 0.8020
    Recall (macro): 0.7816
    F1 Score (macro): 0.7797

(Micro Average) Precision: 0.8908, Recall: 0.8908, F1: 0.8908
(Weighted Average) Precision: 0.8914, Recall: 0.8908, F1: 0.8903
```

Challenges and Fixes:

Issue	Resolution
min_data_in_leaf warning	Adjusted LightGBM params
BERT + LightGBM integration	Flattened embeddings correctly
Week 1 misclassification	Flagged for potential resampling or threshold tuning

Recommendations for future work:

- SMOTE or class weights to handle low-frequency classes like Week 1.
- Explore domain-specific models (e.g., RetailBERT).
- Use **time-based CV split** to ensure robustness over sales cycles.
- Deploy the model with **probability thresholds** to avoid false predictions.
- Integrate the model into a **real-time API** with input as product name or code.

Conclusion:

This hybrid model efficiently combines deep text understanding via BERT with structured feature analysis through LightGBM. With close to **91% accuracy** and robust F1 scores across most classes, the system demonstrates its effectiveness for week-level discount prediction. Its modularity allows future extensions to other retail scenarios.