

Trigger Efficiencies from 2015D

 $\underline{\mathsf{P.\ Dunne}}$ on behalf of the $\mathsf{H}{
ightarrow}$ invisible analysis group

Introduction

Overview

- ► 50ns data control plots and trigger efficiencies shown previously
- First golden JSONs from 2015D 25ns data have come out in the last couple of weeks
- ightharpoonup ~166.37 pb^{-1} of 25ns data processed
- Slightly less as 2% of grid jobs failed
- Updated trigger efficiencies will be shown today

Trigger Efficiencies - first iteration

- ► Trigger: HLT_DiPFJet40_DEta3p5_MJJ600_PFMETNoMu140
- ► Measure efficiency as a function of each variable
- ► Started by cutting on all other variables at trigger threshold
- ▶ MET and jet 2 p_T turn ons found to cause inefficiency in other variables
- Cuts tightened to: Jet 1 and 2 p_T > 80 GeV, METnoMu> 300 GeV, $\Delta\eta_{jj}>$ 3.5, $M_{jj}>$ 600 GeV

Trigger efficiencies

- ▶ Jet 2 p_T turn on is quite slow, 95% efficient only at 80 GeV
- For the same trigger cut in run 1 the 95% efficient point was ${\sim}50~\text{GeV}$

Trigger efficiencies

 \blacktriangleright METnoMu turn on has "shelf" at ${\sim}200$ GeV before becoming fully efficient at 300 GeV

Summary

- ► Trigger efficiencies from 25ns data shown:
 - MET shelf and slow jet 2 p_T turn on interesting
- $\Delta\eta_{jj}$ and M_{jj} turn ons good
- ► Another 80 pb⁻¹ of data processing
- Will update plots when this is done

Backup