

MITx: 15.053x Optimization Methods in Business Analytics

Bookmarks

- General Information
- ▼ Week 1

Lecture 1

Lecture questions due Sep 13, 2016 at 19:30 IST

Recitation

Problem Set 1

Homework due Sep 13, 2016 at 19:30 IST

Week 1 > Lecture 1 > Diet Problem Exercise

■ Bookmark

Cost of Eating

(1/1 point)

Suppose we wish to minimize the amount of calories consumed in one week.

Suppose further that we wish to spend **no more than** $m{D}$ dollars on eating in one week.

- n: number of different foods
- z: Total number of calories consumed in one week
- **A**: Number of dollars spent in one week
- c_i : Number of calories in one unit of food j
- x_i : Number of units of food j consumed in the week
- p_i : Cost of one unit of food in dollars j

Which of the following represents the constraint on cost?

 $igcup_{j=1}^n p_j x_j \geq D$

 $igcup_{j=1}^n x_j \leq p_j$

- $\bigcirc \sum_{j=1}^n p_j x_j = D$
- $igcup_{j=1}^n x_j \geq p_j$

EXPLANATION

Solution

The correct answer is: $\sum_{j=1}^n p_j x_j \leq D$

The left hand side in the above represents the cost and we want it to be $\leq D$

You have used 1 of 1 submissions

Calories as an Objective

(1/1 point)

Which of the following represents the objective on calories?

 \circ MAX $z = \sum_{j=1}^n c_j x_j$

- \circ MIN $z = \sum_{j=1}^n c_j p_j$
- ullet MAX $z = \sum_{j=1}^n p_j x_j$
- \circ MIN $z = \sum_{j=1}^n p_j x_j$
- $lacksquare MIN \ z = \sum_{j=1}^n c_j x_j \quad lacksquare$

EXPLANATION

Solution

The correct answer is: MIN $z = \sum_{j=1}^n c_j x_j$

The weekly calories, z, a sum product of amount of food and calories per food per week, should be minimized.

You have used 1 of 1 submissions

© All Rights Reserved

© 2016 edX Inc. All rights reserved except where noted. EdX, Open edX and the edX and Open EdX logos are registered trademarks or trademarks of edX Inc.

