PROJEKTOWANIE EFEKTYWNYCH ALGORYTMÓW

PROJEKT

11/12/2021

252736 Hutnik Szymon

Genetyczny (6)

Strona	Spis treści
2	Treść zadania
3	Opis metody
4	Opis algorytmu
6	Dane testowe
7	Procedura badawcza
9	Wyniki
12	Analiza

1. Treść zadania

Opracować, napisać, zbadać rozwiązanie problemu komiwojażera w wersji optymalizacyjnej algorytmem genetycznym.

Problem komiwojażera (eng. *Travelling Salesman Problem*) polega na znalezieniu minimalnego cyklu Hamiltona (przejście przez wszystkie wierzchołki tylko raz, startując i kończąc w tym samym punkcie) w pełnym grafie ważonym.

2. Opis metody

Algorytm genetyczny polega na stworzeniu populacji, gdzie każda jednostka posiada pewne cechy. Następnie w kolejnych iteracjach algorytmu symulowane jest krzyżowanie genetyczne między najlpiej przystosowanymi osobnikami (w przypadku TSP są to najniższe koszty przejścia ścieżki). Rodziców wybiera się jedną z metod selekcji, w przypadku tego programu jest to turniej – wylosowanie k wierzchołków, a następnie skrzyżowanie 2 najlepszych ze sobą. Następnie nowa jednostka może zostać zmutowana, w losowy sposób (w przypadku TSP losowa modyfikacja ścieżki, np. swap dwóch losowych wierzchołków). Kiedy wygenerowana zostanie nowa populacja, następuje połączenie jej z już istniejącą w wybrany przez nas sposób, np. usunięcie wszystkich starych jednostek.

3. Opis algorytmu

Rozwiązanie zaimplementowano w postaci programu opisanego przez poniższe diagramy:

Rysunek 1: Ogólny diagram czynności programu

Najpierw inicjalizowane są zmienne. Po wczytaniu danych z konsoli następuje uruchomienie właściwej części algorytmu, następnie wypisywany jest wynik oraz czas wykonania właściwego algorytmu.

Rysunek 2: Szczegółowy diagram czynności algorytmu

4. Dane testowe

Dane, na których była badana efektywność algorytmu pochodzą ze zbioru udostępnionego przez dr Rudego. Do badania użyto wartości z następujących plików:

- m15.txt, 259
- gr21.txt, 2707
- gr48.txt, 5046
- gr96.txt, 55209
- lin105.txt, 14379
- gr137.txt, 69853
- gr202.txt, 69853
- lin318.txt, 42029
- gr431.txt, 171414

http://jaroslaw.rudy.staff.iiar.pwr.wroc.pl/files/pea/instances.zip

5. Procedura badawcza

Należało zbadać poprawność znajdowanych rozwiązań w ciągu 10 minut. Badanie polegało na zmianach wielkości populacji;

- $\max(n, 100)$
- $\max(n/2, 50)$
- $\max(n/10, 20)$

prawdopodobieństwa mutacji;

- 1%
- 10%
- 50%

oraz wierzchołków turniejowych;

- 5
- 10
- 20

Na początku metodą prób i błędów zostały dostosowane parametry algorytmu, następnie każdą instancję badaną wykonano 1 raz.

Pomiar czasu został wykonany przy użyciu bilbioteki chrono. Po otrzymaniu wyniku należy go podzielić przez liczbę powtórzeń wywołań algorytmu.

```
auto startTime = chrono::steady_clock::now();

for (int q = 0; q < repeats; ++q)
{
    cout << "Iteration " << q << endl;
    bestCost = INT_MAX;
    findShortestPath();
    totalBestCost += bestCost;
}

auto resultTime = chrono::steady_clock::now() - startTime;

double bestCostDiff = 0;
bestCostDiff = (((double)totalBestCost / (double)repeats) - (double)result) * (double)100 / (double)result;
cout << bestCostOst << " - expected: " << result << " difference: " << bestCostDiff << endl;
cout << chrono::duration <double>(resultTime).count()/repeats << "s \n";
while (1);</pre>
```

Item	Value
OS Name	Microsoft Windows 11
Version	10.0.22471 Build 22471
Other OS Description	Not Available
OS Manufacturer	Microsoft Corporation
System Name	SUPERCIUPERPC
System Manufacturer	Micro-Star International Co., Ltd.
System Model	MS-7C95
System Type	x64-based PC
System SKU	To be filled by O.E.M.
Processor	AMD Ryzen 5 3600 6-Core Processor, 3600 Mhz, 6 Core(s), 12 Logical Proces
BIOS Version/Date	American Megatrends International, LLC. 2.82, 22/06/2021
SMBIOS Version	2.8
Embedded Controller Version	255.255
BIOS Mode	UEFI
BaseBoard Manufacturer	Micro-Star International Co., Ltd.
BaseBoard Product	B550M PRO-VDH (MS-7C95)
BaseBoard Version	1.0
Platform Role	Desktop
Secure Boot State	Off
PCR7 Configuration	
Windows Directory	
System Directory	
Boot Device	
Locale	United Kingdom
Hardware Abstraction Layer	
Username	
Time Zone	
Installed Physical Memory (RAM)	16.0 GB
Total Physical Memory	15.9 GB
Available Physical Memory	8.21 GB
Total Virtual Memory	18.3 GB
Available Virtual Memory	6.31 GB
Page File Space	2.38 GB
Page File	
Kernel DMA Protection	Off
Virtualisation-based security	Not enabled
Device Encryption Support	Elevation Required to View
Hyper-V - VM Monitor Mode E	Yes
Hyper-V - Second Level Addres	Yes
Hyper-V - Virtualisation Enable	Yes
Hyper-V - Data Execution Prote	Yes

6. Wyniki

Wyniki opracowano w programie Excel.

Standardowe parametry testowe:

- ➤ prawdopodobieństwo mutacji 1%
- ➤ liczebność populacji max(n, 100)
- > liczba wierzchołków turniejowych 5

6.1. Badania parametrów:

I. Prawdopodobieństwo mutacji

Rysunek 3: Błąd procentowy dla *n* wierzchołków – graf – prawdopodobieństwo mutacji

	n	15	21	48	96	105	137	202	318	431
mutacja (prawdopod	0.01	0	0	2.44	8.33	21.2	24.8	33.6	133	216
	0.1	0	0	0	5.37	21.2	45.98	53.12	200	193
	0.5	0	0	0.55	4.86	22.78	46.23	49.21	205	201

Rysunek 4: Błąd procentowy dla n wierzchołków – tabela – prawdopodobieństwo mutacji

II. Liczebność populacji

Rysunek 5: Błąd procentowy dla n wierzchołków – graf – liczebność populacji

n	15	21	48	96	105	137	202	318	431
max(n, 10	0	0	2.44	8.33	21.2	24.8	33.6	133	216
max(n/2, !	0	0	0	5.6956	52.55	50.93	27.63	133	212
max(n/10,	0	0	0	10.17	55.3	84.12	33.21	115	178
	max(n/2, !	max(n, 10 0 max(n/2, ! 0	max(n, 10 0 0 max(n/2, : 0 0	max(n, 10 0 0 2.44 max(n/2, 1 0 0 0	max(n, 10 0 0 2.44 8.33 max(n/2,: 0 0 0 5.6956	max(n, 10 0 0 2.44 8.33 21.2 max(n/2, : 0 0 0 5.6956 52.55	max(n, 10 0 0 2.44 8.33 21.2 24.8 max(n/2, : 0 0 0 5.6956 52.55 50.93	max(n, 10 0 0 2.44 8.33 21.2 24.8 33.6 max(n/2,: 0 0 0 5.6956 52.55 50.93 27.63	max(n, 10 0 0 2.44 8.33 21.2 24.8 33.6 133 max(n/2,: 0 0 0 5.6956 52.55 50.93 27.63 133

Rysunek 6: Błąd procentowy dla n wierzchołków – tabela – liczebność populacji

III. Liczba wierzchołków turniejowych

Rysunek 7: Błąd procentowy dla n wierzchołków – graf – prawdopodobieństwo mutacji

	n	15	21	48	96	105	137	202	318	431	
turniej (liczba wierzo	5	0	0	2.44	8.33	21.2	24.8	33.6	133	216	i
	10	5.41	0	4.68	13.26	18.38	44.05	18.31	114	189	(
	20	5.41	1.96	1.51	13.05	16.19	30.34	32.72	100	321	

Rysunek 8: Błąd procentowy dla n wierzchołków – tabela – prawdopodobieństwo mutacji

6.2. Finalowe badanie:

Do finałowego badania wybrałem parametry dające najlepsze wyniki w poprzednich badaniach:

- prawdopodobieństwo mutacji 1%
- ➤ liczebność populacji max(n / 2, 50)
- ➤ liczba wierzchołków turniejowych 10

Rysunek 9: Błąd procentowy dla n wierzchołków - graf

5 2	1 48	96	105	137	202	318	431
	_		100	107	202	210	431
)	0.85	14.47	20.2	59.08	25	92.75	232
(0 (0 0.85	0 0.85 14.47	0 0 0.85 14.47 20.2	0 0 0.85 14.47 20.2 59.08	0 0 0.85 14.47 20.2 59.08 25	0 0 0.85 14.47 20.2 59.08 25 92.75

Rysunek 10: Błąd procentowy dla n wierzchołków - tabela

^{*}dane testowe nie są kolejnymi wartościami n stąd połączenie znanych wyników linią

7. Analiza

Na podstawie przeprowadzonego badania można zauważyć, że rozwiązania algorytmu genetycznego znacznie odbiegają od oczekiwanych wyników, jednak pozwala on na badanie instancji nieosiągalnych dla dokładniejszych algorytmów. Można go również dostosować do każdego zadanego problemu modyfikując geny jednostek.