Lecture 33-34: Definite Integrals (DI)

Tae Eun Kim, Ph.D.

Autumn 2021

Definite Integrals

Definition

Let f be a function which is continuous on the interval [a,b]. We define the **definite integral** of f on [a,b] by

$$\int_a^b f(x) \ dx = \lim_{n \to \infty} \sum_{k=1}^n f(x_k^*) \Delta x.$$

The definite integral is a number that gives the **net area** of the region between the curve y=f(x) and the x-axis on the interval [a,b].

Basic Properties

Theorem (Properties of the definite integral)

Let f and g be defined on a closed interval [a,b] that contains the value c, and let k be a constant. The following hold:

$$\int_a^a f(x) \, dx = 0$$

2
$$\int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

3
$$\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$$

6
$$\int_a^b \{f(x) \pm g(x)\} dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

3/11

Definite Integrals Using Geometry vs. Definition

Question. Compute the integral

$$\int_0^{10} (4-x) \ dx$$

in two ways:

- ① by interpreting the integral as the net area of the region between the curve y = 4 x and the interval [0, 10] on the x-axis;
- 2 using the definition of the definite integral, i.e. by computing the limit of Riemann sums.

Question. Compute the integral

$$\int_0^{10} |4 - x| \ dx \, .$$

Note: Net Areas vs. Geometric Areas

We know that the net area of the region between a curve y=f(x) and the x-axis on [a,b] is given by

$$\int_a^b f(x) \, dx.$$

On the other hand, if we want to know the *geometric area*, meaning the "actual" area, we compute

$$\int_{a}^{b} |f(x)| \, dx.$$

Question. The graph of a function f is given in the figure.

- ① Express the geometric area of the region between the curve y=f(x) and the x-axis on the interval [0,9] as a definite integral.
- **2** Express the geometric area of the region between the curve y=f(x) and the x-axis on the interval [0,9] in terms of definite integrals of f.
- **3** Express the geometric area of the region between the curve y=f(x) and the x-axis on the interval [0,9] in terms of areas A_1,A_2,A_3 and A_4 .

From Riemann Sums to Definite Integrals

Question. Compute the limit:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\sqrt{1 - \left(-1 + \frac{2k}{n} \right)^2} \right) \left(\frac{2}{n} \right)$$

Question. Express the following limit of Riemann sum as a definite integral:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{k\pi}{n} + \cos \frac{k\pi}{n} \right) \frac{\pi}{n} .$$

Definite Integrals of Symmetric Functions

Recall that a function f is

- an **odd** function if f(-x) = -f(x);
- an **even** function if f(-x) = f(x).

Theorem

Let f be a symmetric function on a symmetric interval [-a,a] where a>0. Then

$$\int_{-a}^{a} f(x) \ dx = \begin{cases} 2 \int_{0}^{a} f(x) \ dx & \text{if } f \text{ is even} \\ 0 & \text{if } f \text{ is odd.} \end{cases}$$

Question.

1 Find the following definite integral:

$$\int_{-4}^{4} \frac{x^2 \sin^3(x)}{\sqrt{x^4 + 1}} \, dx \, .$$

2 Suppose that f is an even function. Given that $\int_{0}^{6} f(x) dx = 13$, find

$$\int_{c}^{6} (5f(x) + 14) \ dx.$$