1 Equivalent Multiplicative Submonoids of \mathbb{Z}^+

Consider the set of positive integers \mathbb{Z}^+ as a monoid equipped with multiplication. Let Y be a submonoid of \mathbb{Z}^+ . Define $F(Y) := \{\frac{m}{n} \mid m, n \in Y\}$ and $\overline{Y} := F(Y) \cap \mathbb{Z}^+$. We call \overline{Y} the completion of Y. Note that F(Y) is a multiplicative subgroup of \mathbb{Q}^+ , so it is free. Now, for two submonoids Y, Z of \mathbb{Z}^+ , we define $Y \sim Z$ if $\overline{Y} = \overline{Z}$. It is easy to check that \sim is an equivalent relation. We then raise the following question.

Question 1. Is it true that any submonoid Y of \mathbb{Z}^+ is equivalent to some freely generated submonoid Z of \mathbb{Z}^+ ? In particular, if Y is finitely generated, then Z should have the same rank as F(Y).

One should be wary that the completion of a monoid is not necessarily free, even if the original one is free. For example, let Y be the free monoid generated by $\{4,6\}$. We then have $9 \notin Y$ but $9 = 4^{-1} \cdot 6^2 \in \overline{Y}$. One can check that if \overline{Y} is free, then its generating set must contain 2^2 and 3^2 , so there will be nontrivial relations when we write $2 \cdot 3$ in terms of the remaining generators. Hence, \overline{Y} is not free as a monoid.