Problem 12.11. Let $\varphi \colon E \times E \to \mathbb{R}$ be a symmetric bilinear form on a real vector space E of finite dimension n. Two vectors x and y are said to be *conjugate or orthogonal w.r.t.* φ if $\varphi(x,y) = 0$. The main purpose of this problem is to prove that there is a basis of vectors that are pairwise conjugate w.r.t. φ .

(1) Prove that if $\varphi(x,x)=0$ for all $x\in E$, then φ is identically null on E.

Otherwise, we can assume that there is some vector $x \in E$ such that $\varphi(x, x) \neq 0$.

Use induction to prove that there is a basis of vectors (u_1, \ldots, u_n) that are pairwise conjugate w.r.t. φ .

Hint. For the induction step, proceed as follows. Let (u_1, e_2, \ldots, e_n) be a basis of E, with $\varphi(u_1, u_1) \neq 0$. Prove that there are scalars $\lambda_2, \ldots, \lambda_n$ such that each of the vectors

$$v_i = e_i + \lambda_i u_1$$

is conjugate to u_1 w.r.t. φ , where $2 \leq i \leq n$, and that (u_1, v_2, \ldots, v_n) is a basis.

(2) Let (e_1, \ldots, e_n) be a basis of vectors that are pairwise conjugate w.r.t. φ and assume that they are ordered such that

$$\varphi(e_i, e_i) = \begin{cases} \theta_i \neq 0 & \text{if } 1 \leq i \leq r, \\ 0 & \text{if } r + 1 \leq i \leq n, \end{cases}$$

where r is the rank of φ . Show that the matrix of φ w.r.t. (e_1, \ldots, e_n) is a diagonal matrix, and that

$$\varphi(x,y) = \sum_{i=1}^{r} \theta_i x_i y_i,$$

where $x = \sum_{i=1}^{n} x_i e_i$ and $y = \sum_{i=1}^{n} y_i e_i$.

Prove that for every symmetric matrix A, there is an invertible matrix P such that

$$P^{\mathsf{T}}AP = D.$$

where D is a diagonal matrix.

(3) Prove that there is an integer p, $0 \le p \le r$ (where r is the rank of φ), such that $\varphi(u_i, u_i) > 0$ for exactly p vectors of every basis (u_1, \ldots, u_n) of vectors that are pairwise conjugate w.r.t. φ (Sylvester's inertia theorem).

Proceed as follows. Assume that in the basis (u_1, \ldots, u_n) , for any $x \in E$, we have

$$\varphi(x,x) = \alpha_1 x_1^2 + \dots + \alpha_p x_p^2 - \alpha_{p+1} x_{p+1}^2 - \dots - \alpha_r x_r^2,$$

where $x = \sum_{i=1}^{n} x_i u_i$, and that in the basis (v_1, \dots, v_n) , for any $x \in E$, we have

$$\varphi(x,x) = \beta_1 y_1^2 + \dots + \beta_q y_q^2 - \beta_{q+1} y_{q+1}^2 - \dots - \beta_r y_r^2,$$