Modal Logic Notes

Evante Garza-Licudine

September 3, 2012

Administrative Stuff

Instructor: Alexandru Baltag

TA: Jort Bergfeld

Schedule:

Week 1: Basic Concepts (Ch. 1)

2, 3: Models (2)

4, 5: Finite model properties and van Benthem's characterization theorem (2)

6: Strong completeness (4)

7: Canonicity (4)

8: break (take home exam)

9: Completeness for PDL (4.8)

10, 11: Frame def. and correspondence theory (3.1, .2, .5, .6)

12, 13: Decidability and complexity (5, 6)

14: Advanced topics and applications

15: Take home exam

Modalities

- necessity/possibility
- knowledge/belief
- obligation/permission
- temporal modalities
- provability

Kripke Semantics (relational)

A model $M := \langle W, R \rangle$, where W is the universe of discourse and R is a set of relations on W. Modal logics are pairs (W, R) where R is a binary relation.

 $\forall w \in W:$

$$w \models \Diamond \phi \Leftrightarrow \exists w' : R(w, w') \land w' \models \phi$$

$$w \models \Box \phi \Leftrightarrow \forall w' : R(w, w') \to w' \models \phi$$

Definition. Connected relations are binary relations s.t. for all w, w' we have R(w, w'), R(w', w') or w = w'.

Definition. A tree is a pair $T := (T, S), S \subseteq T^2$, subject to:

- 1. T has a unique root; that is, there exists a unique $r \in T$ s.t. for any $t \neq r$ in T, $S^+(r,t)$. Here, S^+ iterates S one, two, ... times.
- 2. Every node (except the root) has a unique predecessor. For all $t \neq r$, there is a unique t' in T s.t. S(t',t).
- 3. **T** is acyclic. For all t in T, $\neg S^+(t,t)$.

Similarity type: $T = \langle O, \tau, \Phi \rangle$ where $O \neq \emptyset$ and $\tau : O \mapsto \mathbb{N}$.

 $\tau(\Box) = \tau(\diamondsuit) = 1$. Φ is some set of propositional letters.

$$\phi ::= p \mid \phi \lor \phi \mid \Delta(\phi_1, \dots, \phi_n), \ \Delta \in O, \ \tau(\Delta) = n \text{ and } \nabla(\phi_1, \dots, \phi_n) := \neg \Delta(\neg \phi_1, \dots, \neg \phi_n)$$