Résumé de cours : Semaine 19, du 7 février au 11.

Séries de vecteurs (fin)

Séries de Riemann

Technique de comparaison entre séries et intégrales (TCSI) : Soit $n_0 \in \mathbb{N}$.

Soit $f: [n_0, +\infty[\longrightarrow \mathbb{R}]$ une application décroissante et continue. La TCSI consiste en la présentation des trois étapes suivantes :

Première étape : Soit $k > n_0$. f étant décroissante, pour tout $t \in [k-1,k]$, $f(k) \le f(t) \le f(k-1)$.

Deuxième étape : En intégrant, on obtient $f(k) \leq \int_{k-1}^{k} f(t)dt \leq f(k-1)$.

Troisième étape : Soit $n > n_0$: en sommant, $\sum_{k=n_0+1}^n f(k) \le \int_{n_0}^n f(t)dt \le \sum_{n=n_0+1}^{n-1} f(k)$.

Il faut savoir présenter cette technique.

Théorème de comparaison entre séries et intégrales : Sous les mêmes notations et hypothèses, la série $\sum f(n)$ a même nature que la suite $\left(\int_{n_0}^n f(t)dt\right)_{n\geq n_0}$.

Il faut savoir le démontrer.

Propriété. La série de Riemann $\sum_{n\geq 1} \frac{1}{n^{\alpha}}$ converge si et seulement si $\alpha>1.$

Il faut savoir le démontrer.

Critère de Riemann : Soient $\sum a_n \in \mathcal{S}(\mathbb{R}_+)$. S'il existe $\alpha > 1$ tel que $n^{\alpha}a_n \underset{n \to +\infty}{\longrightarrow} 0$, alors $\sum a_n$ converge.

S'il existe $\alpha \leq 1$ tel que $n^{\alpha} a_n \xrightarrow[n \to +\infty]{} +\infty$, alors $\sum a_n$ diverge.

Propriété. (Hors programme). $\sum_{k=1}^{n} \frac{1}{k} = \ln(n) + \gamma + o(1)$, où γ est la **constante d'Euler**.

Il faut savoir le démontrer.

Hors programme : séries de Bertrand. Soit $(\alpha, \beta) \in \mathbb{R}^2$.

La série $\sum_{n\geq 2} \frac{1}{n^{\alpha} \ln^{\beta} n}$ converge si et seulement si $\alpha>1$ ou bien $(\alpha=1$ et $\beta>1)$.

Il faut savoir le démontrer.

2 Critère de D'Alembert

Propriété. Critère de D'Alembert. Soit $\sum a_n$ une série de réels positifs, non nuls à partir d'un

certain rang, telle que $\frac{a_{n+1}}{a_n} \underset{n \to +\infty}{\longrightarrow} l \in \overline{\mathbb{R}}$. \diamond Si l < 1, $\sum a_n$ est convergente,

- \diamond Si l > 1 ou si $l = 1^+, \sum a_n$ diverge grossièrement.
- \diamond Lorsque l=1, on ne peut conclure. C'est le cas douteux du critère de d'Alembert.

Il faut savoir le démontrer.

Hors programme : Si (a_n) et (b_n) sont deux suites de réels strictement positifs telles que, pour tout $n \in \mathbb{N}, \frac{a_{n+1}}{a_n} \le \frac{b_{n+1}}{b_n}, \text{ alors } a_n = \mathbf{O}(b_n).$

Propriété. Formule de Stirling : $n! \sim \sqrt{2\pi n}e^{-n}n^n$.

Séries alternées 3

3.1Théorème spécial des séries alternées

Définition. On appelle série alternée toute série réelle de la forme $\sum (-1)^n \alpha_n$ ou $\sum (-1)^{n+1} \alpha_n$, où pour tout $n \in \mathbb{R}$, $\alpha_n \in \mathbb{R}_+$.

Théorème des séries spéciales alternées (TSSA).

Soit $\sum a_n$ une série alternée telle que la suite $(|a_n|)$ est décroissante et tend vers 0. On dit dans ce cas que $\sum a_n$ est une série spéciale alternée. Alors $\sum a_n$ est convergente.

De plus pour tout $(n, N) \in \mathbb{N}^2$ avec $N \geq n$, la quantité $\sum_{k=n}^{N} a_k$ est du signe de son premier terme (qui est a_n) et a un module inférieur ou égal au module de son premier terme. C'est encore vrai lorsque $N=+\infty$, donc pour tout $n\in\{-1\}\cup\mathbb{N}$, le reste de Cauchy $\sum_{k=n+1}^{+\infty}a_k$ est du signe de son premier

terme (qui est
$$a_{n+1}$$
) et, pour tout $n \in \{-1\} \cup \mathbb{N}$, $|\sum_{k=n+1}^{+\infty} a_k| \leq |a_{n+1}|$.

Il faut savoir le démontrer.

Non commutativité des séries semi-convergentes.

$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{n} = -\ln 2.$$
 Il faut savoir le démontrer.

On peut démontrer (hors programme) que, si $\sum a_n$ est une série semi-convergente de réels, pour tout $\ell \in \mathbb{R}, \text{ il existe une bijection } \sigma \ : \ \mathbb{N} \longrightarrow \mathbb{N} \text{ telle que } \sum a_{\sigma(n)} \text{ converge et a pour somme } \ell.$

Dans un chapitre ultérieur, on montrera que, lorsque $\sum a_n$ est une série absolument convergente, pour toute bijection σ de \mathbb{N} dans \mathbb{N} , $\sum a_{\sigma(n)}$ est aussi absolument convergente et $\sum_{n=0}^{+\infty} a_{\sigma(n)} = \sum_{n=0}^{+\infty} a_n$.

La transformation d'Abel (hors programme)

Transformation d'Abel : Si
$$(a_n), (x_n) \in \mathbb{C}^{\mathbb{N}}$$
, en posant $X_n = \sum_{k=0}^n x_k$,

$$\text{pour tout } (p,q) \in \mathbb{N}^2 \text{ avec } p \leq q, \\ \sum_{n=p}^q a_n x_n = a_q X_q - a_p X_{p-1} - \sum_{n=p}^{q-1} (a_{n+1} - a_n) X_n.$$

Il faut savoir le démontrer.

Remarque. Cette formule ressemble à l'intégration par parties.

Théorème d'Abel : Soient (a_n) une suite décroissante de réels qui tend vers 0 et $\sum x_n$ une série de complexes dont les sommes partielles sont bornées. Alors la série $\sum a_n x_n$ converge. Il faut savoir le démontrer.

Topologie dans un espace métrique

Pour tout ce chapitre, on fixe un espace métrique (E, d) non vide.

5 Ouverts et fermés

Définition. Soient $x \in E$ et V une partie de E.

V est un voisinage de x si et seulement s'il existe r > 0 tel que $B_o(x,r) \subset V$.

 $\mathcal{V}(x)$ désignera l'ensemble des voisinages de x.

Remarque. Si E est un espace vectoriel normé, lorsqu'on remplace la norme sur E par une norme équivalente, pour tout $x \in E$, $\mathcal{V}(x)$ n'est pas modifié.

Propriété. La notion de voisinage satisfait les propriétés suivantes :

- \diamond Pour tout $x \in E, E \in \mathcal{V}(x)$.
- \diamond Pour tout $x \in E$ et tout $V \in \mathcal{V}(x)$, si $W \supset V$, alors $W \in \mathcal{V}(x)$.
- \diamond Si $x \in E$ et si $(V, W) \in \mathcal{V}(x)^2$, alors $V \cap W \in \mathcal{V}(x)$.

Il faut savoir le démontrer.

Propriété. Si $x \in E$, une intersection finie de voisinages de x est un voisinage de x.

Définition. Soit $U \subset E$. U est ouvert si et seulement si U est voisinage de tous ses points.

Propriété. La notion d'ouvert satisfait les propriétés suivantes :

- $\diamond \emptyset$ et E sont des ouverts de E.
- ♦ Une intersection finie d'ouverts est un ouvert.
- \diamond Si I est un ensemble quelconque (éventuellement de cardinal infini) et si $(U_i)_{i \in I}$ est une famille d'ouverts de E, alors $\bigcup U_i$ est un ouvert de E.

Il faut savoir le démontrer.

Propriété. Les ouverts sont exactement les réunions de boules ouvertes.

Il faut savoir le démontrer.

Définition. Une partie de E est un fermé de E si et seulement si son complémentaire est un ouvert.

Propriété. La notion de fermé satisfait les propriétés suivantes :

- \diamond \emptyset et E sont des fermés de E.
- ♦ Une réunion finie de fermés est un fermé.
- \diamond Si I est un ensemble quelconque (éventuellement de cardinal infini) et si $(F_i)_{i \in I}$ est une famille de fermés de E, alors $\bigcap_{i \in I} F_i$ est un fermé de E.

Propriété. Les boules fermées (donc en particulier les singletons) sont des fermés.

Il faut savoir le démontrer.

Corollaire. Toute partie de E de cardinal fini est un fermé de E.

6 Adhérence et intérieur

Définition. Soient $a \in E$ et A une partie de E. On dit que a est un point intérieur de A si et seulement si $A \in \mathcal{V}(a)$. On note $\overset{\circ}{A}$ l'ensemble des points intérieurs de A.

Ainsi, pour tout $a \in E$, $a \in A \iff A \in \mathcal{V}(a)$.

Propriété. Soit A une partie de E.

 $\overset{\circ}{A}$ est la réunion des ouverts contenus dans A. C'est le plus grand ouvert inclus dans A.

Propriété. Soient A et B deux parties de E.

- $\diamond \quad \overset{\circ}{A} \subset A,$
- \diamond $\overset{\circ}{A} = A$ si et seulement si A est un ouvert,
- $\diamond \quad \overset{\circ}{A} = \overset{\circ}{A},$
- $\diamond \quad A \subset B \Longrightarrow \overset{\circ}{A} \subset \overset{\circ}{B} \text{ et}$

$$\diamond \quad \overbrace{A \cap B} = \overset{\circ}{A} \cap \overset{\circ}{B}.$$

Il faut savoir le démontrer.

Définition. Soient $a \in E$ et A une partie de E. On dit que a est un point adhérent de A si et seulement si, pour tout $V \in \mathcal{V}(a)$, $V \cap A \neq \emptyset$.

On note \overline{A} l'ensemble des points adhérents de A. \overline{A} est appelée l'adhérence de A.

Ainsi, pour tout $a \in E$, $a \in \overline{A} \iff [\forall V \in \mathcal{V}(a) \ V \cap A \neq \emptyset]$.

Propriété. Soit A une partie de
$$E$$
. $E \setminus \overline{A} = \overbrace{E \setminus A}^{\circ}$ et $E \setminus \mathring{A} = \overline{E \setminus A}$.

Il faut savoir le démontrer.

Corollaire. Soit A une partie de E.

 \overline{A} est l'intersection des fermés contenant A. C'est le plus petit fermé contenant A.

Propriété. Soient A et B deux parties de E.

$$\begin{array}{lll} \diamond & \overline{A} & \supset A, \\ \diamond & \overline{A} & = A \text{ si et seulement si } A \text{ est un ferm\'e}, \\ \diamond & \overline{\overline{A}} & = \overline{A}, \\ \diamond & A \subset B & \Longrightarrow \overline{A} \subset \overline{B} \text{ et} \\ \diamond & \overline{A \cup B} & = \overline{A} \cup \overline{B}. \end{array}$$

Il faut savoir le démontrer.

Propriété (hors programme) : Soit (x_n) une suite de points de E.

Pour tout $N \in \mathbb{N}$, notons $X_N = \{x_n/n \ge N\}$.

Alors l'ensemble des valeurs d'adhérence de (x_n) est $\bigcap_{N\in\mathbb{N}} \overline{X_N}$: il est fermé.

Il faut savoir le démontrer.