# In [1]: # import libraries import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns

| Out[2]: |        | date                       | BEN  | со   | EBE  | MXY  | NМНС | NO_2      | NOx        | ОХҮ  | O_3       | PM10  |
|---------|--------|----------------------------|------|------|------|------|------|-----------|------------|------|-----------|-------|
|         | 0      | 2005-<br>11-01<br>01:00:00 | NaN  | 0.77 | NaN  | NaN  | NaN  | 57.130001 | 128.699997 | NaN  | 14.720000 | 14.91 |
|         | 1      | 2005-<br>11-01<br>01:00:00 | 1.52 | 0.65 | 1.49 | 4.57 | 0.25 | 86.559998 | 181.699997 | 1.27 | 11.680000 | 30.93 |
|         | 2      | 2005-<br>11-01<br>01:00:00 | NaN  | 0.40 | NaN  | NaN  | NaN  | 46.119999 | 53.000000  | NaN  | 30.469999 | 14.60 |
|         | 3      | 2005-<br>11-01<br>01:00:00 | NaN  | 0.42 | NaN  | NaN  | NaN  | 37.220001 | 52.009998  | NaN  | 21.379999 | 15.16 |
|         | 4      | 2005-<br>11-01<br>01:00:00 | NaN  | 0.57 | NaN  | NaN  | NaN  | 32.160000 | 36.680000  | NaN  | 33.410000 | 5.00  |
|         |        |                            |      |      |      |      |      |           |            |      |           |       |
|         | 236995 | 2006-<br>01-01<br>00:00:00 | 1.08 | 0.36 | 1.01 | NaN  | 0.11 | 21.990000 | 23.610001  | NaN  | 43.349998 | 5.00  |
|         | 236996 | 2006-<br>01-01<br>00:00:00 | 0.39 | 0.54 | 1.00 | 1.00 | 0.11 | 2.200000  | 4.220000   | 1.00 | 69.639999 | 4.95  |
|         | 236997 | 2006-<br>01-01<br>00:00:00 | 0.19 | NaN  | 0.26 | NaN  | 0.08 | 26.730000 | 30.809999  | NaN  | 43.840000 | 4.31  |
|         | 236998 | 2006-<br>01-01<br>00:00:00 | 0.14 | NaN  | 1.00 | NaN  | 0.06 | 13.770000 | 17.770000  | NaN  | NaN       | 5.00  |
|         | 236999 | 2006-<br>01-01<br>00:00:00 | 0.50 | 0.40 | 0.73 | 1.84 | 0.13 | 20.940001 | 26.950001  | 1.49 | 48.259998 | 5.67  |

237000 rows × 17 columns

In [3]: data.head(10)

| -   |         |    |
|-----|---------|----|
| 7.1 | <br>    |    |
| UЛ  | <br>וכו | Ι. |
| •   | <br>    | ٠, |

|   | date                       | BEN  | со   | EBE  | MXY  | NMHC | NO_2      | NOx        | OXY  | O_3       | PM10      | Р |
|---|----------------------------|------|------|------|------|------|-----------|------------|------|-----------|-----------|---|
| 0 | 2005-<br>11-01<br>01:00:00 | NaN  | 0.77 | NaN  | NaN  | NaN  | 57.130001 | 128.699997 | NaN  | 14.720000 | 14.910000 | 1 |
| 1 | 2005-<br>11-01<br>01:00:00 | 1.52 | 0.65 | 1.49 | 4.57 | 0.25 | 86.559998 | 181.699997 | 1.27 | 11.680000 | 30.930000 |   |
| 2 | 2005-<br>11-01<br>01:00:00 | NaN  | 0.40 | NaN  | NaN  | NaN  | 46.119999 | 53.000000  | NaN  | 30.469999 | 14.600000 |   |
| 3 | 2005-<br>11-01<br>01:00:00 | NaN  | 0.42 | NaN  | NaN  | NaN  | 37.220001 | 52.009998  | NaN  | 21.379999 | 15.160000 |   |
| 4 | 2005-<br>11-01<br>01:00:00 | NaN  | 0.57 | NaN  | NaN  | NaN  | 32.160000 | 36.680000  | NaN  | 33.410000 | 5.000000  |   |
| 5 | 2005-<br>11-01<br>01:00:00 | 1.92 | 0.88 | 2.44 | 5.14 | 0.22 | 90.309998 | 207.699997 | 2.78 | 13.760000 | 18.070000 | 1 |
| 6 | 2005-<br>11-01<br>01:00:00 | NaN  | 0.55 | NaN  | NaN  | 0.27 | 50.279999 | 77.209999  | NaN  | 19.120001 | 18.209999 |   |
| 7 | 2005-<br>11-01<br>01:00:00 | 0.20 | 0.38 | 1.00 | NaN  | 0.27 | 51.759998 | 72.989998  | NaN  | 14.810000 | 16.430000 |   |
| 8 | 2005-<br>11-01<br>01:00:00 | NaN  | 0.70 | NaN  | NaN  | NaN  | 39.040001 | 43.860001  | NaN  | 25.379999 | 16.139999 |   |
| 9 | 2005-<br>11-01<br>01:00:00 | NaN  | 0.56 | NaN  | NaN  | NaN  | 41.820000 | 51.869999  | NaN  | 24.290001 | 7.130000  |   |

In [4]: data.tail(20)

| Out[4]: |        | date                       | BEN  | со   | EBE  | MXY  | NMHC | NO_2      | NOx       | ОХҮ  | O_3       | PM10 | F |
|---------|--------|----------------------------|------|------|------|------|------|-----------|-----------|------|-----------|------|---|
|         | 236980 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.32 | NaN  | NaN  | 0.21 | 23.610001 | 32.470001 | NaN  | 37.020000 | 4.33 | _ |
|         | 236981 | 2006-<br>01-01<br>00:00:00 | 0.20 | 0.30 | 0.12 | NaN  | 0.13 | 33.740002 | 42.869999 | NaN  | 40.849998 | 3.79 |   |
|         | 236982 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.44 | NaN  | NaN  | NaN  | 38.139999 | 43.439999 | NaN  | 48.009998 | 5.00 |   |
|         | 236983 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.56 | NaN  | NaN  | NaN  | 16.010000 | 18.160000 | NaN  | 53.700001 | 5.00 |   |
|         | 236984 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.62 | NaN  | NaN  | 0.27 | 25.559999 | 56.130001 | NaN  | 54.959999 | 4.70 |   |
|         | 236985 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.52 | NaN  | NaN  | NaN  | 30.240000 | 35.919998 | NaN  | 43.029999 | 4.69 |   |
|         | 236986 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.33 | NaN  | NaN  | NaN  | 15.470000 | 20.559999 | NaN  | 46.200001 | 5.91 |   |
|         | 236987 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.30 | NaN  | NaN  | NaN  | 21.219999 | 27.860001 | NaN  | NaN       | 5.00 |   |
|         | 236988 | 2006-<br>01-01<br>00:00:00 | 0.37 | 0.29 | 0.43 | NaN  | 0.10 | 21.040001 | 28.280001 | NaN  | 43.430000 | 5.00 |   |
|         | 236989 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.43 | NaN  | NaN  | NaN  | 19.170000 | 20.420000 | NaN  | 49.470001 | 5.00 |   |
|         | 236990 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.61 | NaN  | NaN  | NaN  | 14.920000 | 16.200001 | NaN  | 52.910000 | 5.00 |   |
|         | 236991 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.23 | NaN  | NaN  | NaN  | 13.470000 | 14.850000 | NaN  | 55.730000 | 5.00 |   |
|         | 236992 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.25 | NaN  | NaN  | NaN  | 21.570000 | 23.450001 | NaN  | 50.650002 | 5.00 |   |
|         | 236993 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.64 | NaN  | NaN  | NaN  | 8.640000  | 10.900000 | NaN  | 53.970001 | 5.00 |   |
|         | 236994 | 2006-<br>01-01<br>00:00:00 | NaN  | 0.31 | NaN  | NaN  | NaN  | 7.290000  | 7.970000  | NaN  | 51.709999 | 5.00 |   |
|         | 236995 | 2006-<br>01-01<br>00:00:00 | 1.08 | 0.36 | 1.01 | NaN  | 0.11 | 21.990000 | 23.610001 | NaN  | 43.349998 | 5.00 |   |
|         | 236996 | 2006-<br>01-01<br>00:00:00 | 0.39 | 0.54 | 1.00 | 1.00 | 0.11 | 2.200000  | 4.220000  | 1.00 | 69.639999 | 4.95 |   |

|   |        | date                       | BEN  | СО   | EBE  | MXY  | NMHC | NO_2      | NOx       | OXY  | O_3       | PM10 | F |
|---|--------|----------------------------|------|------|------|------|------|-----------|-----------|------|-----------|------|---|
| , | 236997 | 2006-<br>01-01<br>00:00:00 | 0.19 | NaN  | 0.26 | NaN  | 0.08 | 26.730000 | 30.809999 | NaN  | 43.840000 | 4.31 |   |
|   | 236998 | 2006-<br>01-01<br>00:00:00 | 0.14 | NaN  | 1.00 | NaN  | 0.06 | 13.770000 | 17.770000 | NaN  | NaN       | 5.00 |   |
|   | 236999 | 2006-<br>01-01<br>00:00:00 | 0.50 | 0.40 | 0.73 | 1.84 | 0.13 | 20.940001 | 26.950001 | 1.49 | 48.259998 | 5.67 |   |

In [5]: data.describe()

| $\Omega$ | 1 | [5] | ١. |
|----------|---|-----|----|
| Ou       | ľ | Lフ」 | ٠  |

|       | BEN          | СО            | EBE          | MXY          | NMHC         | NO_2            |                |
|-------|--------------|---------------|--------------|--------------|--------------|-----------------|----------------|
| count | 70370.000000 | 217656.000000 | 68955.000000 | 32549.000000 | 92854.000000 | 235022.000000 2 | <u>-</u><br>?: |
| mean  | 1.294665     | 0.652278      | 1.633530     | 4.862915     | 0.176943     | 61.829514       |                |
| std   | 1.845280     | 0.527821      | 2.524665     | 5.093012     | 0.153792     | 37.404725       |                |
| min   | 0.000000     | 0.000000      | 0.000000     | 0.000000     | 0.000000     | 0.000000        |                |
| 25%   | 0.240000     | 0.330000      | 0.550000     | 1.580000     | 0.080000     | 33.619999       |                |
| 50%   | 0.720000     | 0.510000      | 1.000000     | 3.300000     | 0.140000     | 56.080002       |                |
| 75%   | 1.550000     | 0.790000      | 1.710000     | 6.270000     | 0.220000     | 82.779999       |                |
| max   | 40.090000    | 9.350000      | 84.279999    | 77.379997    | 6.860000     | 419.500000      |                |
| 4     |              |               | _            |              |              |                 |                |

In [6]: np.shape(data)

Out[6]: (237000, 17)

In [7]: np.size(data)

Out[7]: 4029000

In [8]: data.isna()

Out[8]:

|                 | date  | BEN   | СО    | EBE   | MXY   | NMHC  | NO_2  | NOx   | OXY   | O_3   | PM10  | PM25  | PXY   |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0 F             | False | True  | False | True  | True  | True  | False | False | True  | False | False | False | True  |
| 1 F             | False | True  | False |
| <b>2</b> F      | False | True  | False | True  | True  | True  | False | False | True  | False | False | True  | True  |
| 3 F             | False | True  | False | True  | True  | True  | False | False | True  | False | False | True  | True  |
| 4 F             | False | True  | False | True  | True  | True  | False | False | True  | False | False | True  | True  |
|                 |       |       |       |       |       |       |       |       |       |       |       |       |       |
| <b>236995</b> F | False | False | False | False | True  | False | False | False | True  | False | False | True  | True  |
| <b>236996</b> F | False |
| <b>236997</b> F | False | False | True  | False | True  | False | False | False | True  | False | False | False | True  |
| 236998 F        | False | False | True  | False | True  | False | False | False | True  | True  | False | True  | True  |
| <b>236999</b> F | False |

237000 rows × 17 columns

In [9]: data.dropna()

|        | date                       | BEN  | со   | EBE  | MXY  | NMHC | NO_2      | NOx        | OXY  | 0_3       | PM1  |
|--------|----------------------------|------|------|------|------|------|-----------|------------|------|-----------|------|
| 5      | 2005-<br>11-01<br>01:00:00 | 1.92 | 0.88 | 2.44 | 5.14 | 0.22 | 90.309998 | 207.699997 | 2.78 | 13.760000 | 18.0 |
| 22     | 2005-<br>11-01<br>01:00:00 | 0.30 | 0.22 | 0.25 | 0.59 | 0.11 | 18.540001 | 19.020000  | 0.67 | 46.799999 | 9.8  |
| 25     | 2005-<br>11-01<br>01:00:00 | 0.67 | 0.49 | 0.94 | 3.44 | 0.17 | 48.740002 | 74.349998  | 1.57 | 23.430000 | 13.8 |
| 31     | 2005-<br>11-01<br>02:00:00 | 3.10 | 0.84 | 3.21 | 6.82 | 0.22 | 89.919998 | 224.199997 | 3.72 | 12.390000 | 28.7 |
| 48     | 2005-<br>11-01<br>02:00:00 | 0.39 | 0.20 | 0.29 | 0.68 | 0.11 | 16.639999 | 17.080000  | 0.40 | 47.689999 | 8.7  |
|        |                            |      |      |      |      |      |           |            |      |           |      |
| 236970 | 2005-<br>12-31<br>23:00:00 | 0.37 | 0.39 | 1.00 | 1.00 | 0.10 | 4.500000  | 5.550000   | 1.00 | 57.779999 | 8.2  |
| 236973 | 2005-<br>12-31<br>23:00:00 | 0.92 | 0.45 | 1.26 | 3.42 | 0.14 | 37.250000 | 49.060001  | 2.57 | 31.889999 | 19.7 |
| 236979 | 2006-<br>01-01<br>00:00:00 | 1.00 | 0.38 | 1.11 | 2.35 | 0.04 | 35.919998 | 59.480000  | 1.39 | 35.810001 | 4.2  |
| 236996 | 2006-<br>01-01<br>00:00:00 | 0.39 | 0.54 | 1.00 | 1.00 | 0.11 | 2.200000  | 4.220000   | 1.00 | 69.639999 | 4.9  |
|        |                            |      |      |      |      |      |           |            |      | 48.259998 |      |

In [12]: dd=sd.head(20) dd

#### Out[12]:

|    | BEN  | СО   | EBE  | MXY  | NMHC | NO_2      | NOx        |
|----|------|------|------|------|------|-----------|------------|
| 0  | NaN  | 0.77 | NaN  | NaN  | NaN  | 57.130001 | 128.699997 |
| 1  | 1.52 | 0.65 | 1.49 | 4.57 | 0.25 | 86.559998 | 181.699997 |
| 2  | NaN  | 0.40 | NaN  | NaN  | NaN  | 46.119999 | 53.000000  |
| 3  | NaN  | 0.42 | NaN  | NaN  | NaN  | 37.220001 | 52.009998  |
| 4  | NaN  | 0.57 | NaN  | NaN  | NaN  | 32.160000 | 36.680000  |
| 5  | 1.92 | 0.88 | 2.44 | 5.14 | 0.22 | 90.309998 | 207.699997 |
| 6  | NaN  | 0.55 | NaN  | NaN  | 0.27 | 50.279999 | 77.209999  |
| 7  | 0.20 | 0.38 | 1.00 | NaN  | 0.27 | 51.759998 | 72.989998  |
| 8  | NaN  | 0.70 | NaN  | NaN  | NaN  | 39.040001 | 43.860001  |
| 9  | NaN  | 0.56 | NaN  | NaN  | NaN  | 41.820000 | 51.869999  |
| 10 | NaN  | 0.65 | NaN  | NaN  | 0.18 | 46.040001 | 76.610001  |
| 11 | NaN  | 0.68 | NaN  | NaN  | NaN  | 69.150002 | 115.199997 |
| 12 | NaN  | 0.29 | NaN  | NaN  | NaN  | 38.689999 | 45.790001  |
| 13 | NaN  | 0.26 | NaN  | NaN  | NaN  | 43.509998 | 50.910000  |
| 14 | 0.41 | 0.33 | 0.56 | NaN  | 0.09 | 34.220001 | 46.529999  |
| 15 | NaN  | 0.41 | NaN  | NaN  | NaN  | 51.950001 | 59.450001  |
| 16 | NaN  | 0.28 | NaN  | NaN  | NaN  | 25.600000 | 32.610001  |
| 17 | NaN  | 0.56 | NaN  | NaN  | NaN  | 26.709999 | 30.969999  |
| 18 | NaN  | 0.29 | NaN  | NaN  | NaN  | 43.310001 | 47.650002  |
| 19 | NaN  | 0.72 | NaN  | NaN  | NaN  | 44.360001 | 70.089996  |

# In [13]: dd.plot.bar()

## Out[13]: <AxesSubplot:>



```
In [14]: dd.plot.bar(color='r')
```

### Out[14]: <AxesSubplot:>



```
In [15]: dd.plot.scatter(x='CO',y='NO_2')
```

Out[15]: <AxesSubplot:xlabel='CO', ylabel='NO\_2'>



```
In [16]: dd.plot.pie(y='NO_2')
```

Out[16]: <AxesSubplot:ylabel='NO\_2'>



In [17]: dd.plot.box()

#### Out[17]: <AxesSubplot:>



```
In [18]: dd.plot.hist()
```

Out[18]: <AxesSubplot:ylabel='Frequency'>



In [19]: dd.plot.line()

Out[19]: <AxesSubplot:>



```
In [20]: dd.plot.area()
```

Out[20]: <AxesSubplot:>



In [21]: dd.plot.bar()

Out[21]: <AxesSubplot:>



In [22]: sns.pairplot(dd)

Out[22]: <seaborn.axisgrid.PairGrid at 0x1bef62dc220>



```
In [23]: sns.distplot(dd['NO_2'])
```

C:\ProgramData\Anaconda3\lib\site-packages\seaborn\distributions.py:2557: Fut ureWarning: `distplot` is a deprecated function and will be removed in a futu re version. Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for hi stograms).

warnings.warn(msg, FutureWarning)

Out[23]: <AxesSubplot:xlabel='NO\_2', ylabel='Density'>



```
In [24]: ds=data.fillna(20)
```

In [25]: | ssd=ds.head(20)

```
In [26]: sd1=ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
```

In [27]: sns.heatmap(ssd.corr())

Out[27]: <AxesSubplot:>



```
In [28]: x= ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         y=ssd['station']
In [29]: | from sklearn .model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
In [30]: from sklearn.linear_model import LinearRegression
         lr=LinearRegression()
         lr.fit(x_train,y_train)
Out[30]: LinearRegression()
In [31]: |print(lr.intercept_)
         28079067.988365117
In [32]: |
         coeff= pd.DataFrame(lr.coef ,x.columns,columns=['Co-efficient'])
         coeff
Out[32]:
                 Co-efficient
            BEN
                  31.109126
             CO
                  -5.797872
            EBE
                 -31.594687
            MXY
                  -2.499751
          NMHC
                   0.548670
           NO_2
                   0.701443
            NOx
                  -0.434011
         prediction = lr.predict(x_test)
In [33]:
         plt.scatter(y_test,prediction)
Out[33]: <matplotlib.collections.PathCollection at 0x1befd73eb80>
              +2.8079e7
           25
           20
           15
           10
```

5

0

-5

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0 +2.8079e7

```
In [34]: |print(lr.score(x_test,y_test))
         -4.372096022320417
In [35]: |lr.score(x_test,y_test)
Out[35]: -4.372096022320417
In [36]: |lr.score(x_train,y_train)
Out[36]: 0.4714946246429693
In [37]: from sklearn.linear_model import Ridge,Lasso
In [38]: | dr=Ridge(alpha=10)
         dr.fit(x_train,y_train)
Out[38]: Ridge(alpha=10)
In [39]: |dr.score(x_test,y_test)
Out[39]: -4.189240646890433
In [40]: | dr.score(x_train,y_train)
Out[40]: 0.4065328952270928
In [41]: | la=Lasso(alpha=10)
         la.fit(x_train,y_train)
Out[41]: Lasso(alpha=10)
In [42]: la.score(x_test,y_test)
Out[42]: -1.7258813737223608
In [43]: la.score(x_train,y_train)
Out[43]: 0.21841992749087602
         ElasticNet
In [44]: from sklearn.linear_model import ElasticNet
         en=ElasticNet()
```

en.fit(x\_train,y\_train)

Out[44]: ElasticNet()

```
In [45]: |print(en.coef_)
                                   -0.32752493 -2.23503092 0.51857853 0.83219835
         [-0.
                       -0.
          -0.50412721]
In [46]: |print(en.intercept_)
         28079055.84710282
In [47]:
         prediction=en.predict(x_test)
In [48]: print(en.score(x_test,y_test))
         -3.975899163340628
In [49]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
In [50]: from sklearn.linear_model import LogisticRegression
In [51]: feature_matrix = ssd[['BEN','CO', 'EBE', 'MXY', 'NMHC', 'NO_2', 'NOx']]
         target vector=ssd['station']
In [52]: | feature_matrix.shape
Out[52]: (20, 7)
In [53]: |target_vector.shape
Out[53]: (20,)
In [54]: | from sklearn.preprocessing import StandardScaler
In [55]: | fs=StandardScaler().fit_transform(feature_matrix)
In [56]: logr= LogisticRegression()
         logr.fit(fs,target_vector)
Out[56]: LogisticRegression()
In [57]: observation =[[1.2,2.3,3.3,4.3,5.3,6.3,7.3]]
In [58]:
         prediction=logr.predict(observation)
         print(prediction)
         [28079012]
```

```
In [59]: logr.classes
Out[59]: array([28079001, 28079003, 28079004, 28079006, 28079007, 28079008,
                28079009, 28079011, 28079012, 28079014, 28079015, 28079016,
                28079017, 28079018, 28079019, 28079021, 28079035, 28079038,
                28079039, 28079040], dtype=int64)
In [60]: |logr.predict_proba(observation)[0][0]
Out[60]: 0.20603948773364483
In [61]: | ged=data[['BEN','CO','EBE','MXY','NMHC','NO_2','NOx','OXY','O_3','PM10','PXY',
In [62]: d=ged.fillna(20)
In [63]: dg=d.head(100)
In [64]: | x=dg[['BEN','CO','EBE','MXY','NMHC','NO_2','NOx','OXY','O_3','PM10','PXY','SO_
         y=dg['station']
In [65]: print(len(x))
         print(len(y))
         100
         100
In [66]: | from sklearn.model_selection import train_test_split
         x_train,x_test,y_train,y_test=train_test_split(x,y,train_size=0.70)
In [67]: from sklearn.ensemble import RandomForestClassifier
         rfc=RandomForestClassifier()
         rfc.fit(x_train,y_train)
Out[67]: RandomForestClassifier()
In [68]: paramets = {'max_depth':[1,2,3,4,5,6,7],
                        'min_samples_leaf':[5,10,15,20,25,30,35],
                        'n_estimators':[10,20,30,40,50,60,70]}
```

```
In [72]: from sklearn.tree import plot_tree
    plt.figure(figsize=(50,40))
    plot_tree(rfc_best.estimators_[5],filled=True)
```



# Conclusion : LogisticRegression() [28079012] HIGH RANGE