Basic Statistics for Data science

อาจารย์จารุมาศ แสงสว่าง สาขาวิชาสถิติประยุกต์ คณะวิทยาศาสตร์ มหาวิทยาลัยราชภัฏบุรีรัมย์

Data science

วิทยาการข้อมูล เป็นศาสตร์ที่มีเป้าหมายในการบริหารสกัดข้อมูลเชิงลึก และวิเคราะห์ข้อมูลเพื่อทำ ความเข้าใจและอธิบายปรากฏการณ์ต่าง ๆ ที่เกิดขึ้น อีกทั้งมุ่งเน้นการสร้างโมเดลเพื่อวิเคราะห์ ข้อมูลสำหรับการทำนายผลที่จะเกิดในอนาคตและสร้างองค์ความรู้ใหม่เพื่อช่วยในการแก้ปัญหา หรือหาช่องทางใหม่ ๆ ในการวางแผนการดำเนินงานขององค์กรจากข้อมูลที่มีอยู่ในหลายรูปแบบ

Data science

จากการเพิ่มขึ้นของปริมาณข้อมูลในปัจจุบัน ไม่ว่าจะเป็นข้อมูลด้านการแพทย์ ข้อมูลด้าน
การศึกษา ข้อมูลด้านการเกษตร ข้อมูลสังคมออนไลน์ ข้อมูลการใช้งานอินเทอร์เน็ต ข้อมูลเชิง
ธุรกิจ ที่ทำให้เกิดวิทยาการใหม่ที่เรียกว่า Big data ที่มุ่งเน้นการศึกษาและวิเคราะห์ข้อมูลขนาด
ใหญ่ที่มีความหลากหลายและปริมาณข้อมูลมหาศาล ซึ่งหากข้อมูลเหล่านี้ไม่ได้ถูกนำมาวิเคราะห์
เพื่อใช้ประโยชน์จากข้อสนเทศ จะทำให้พลาดโอกาสที่จะได้องค์ความรู้ที่มีคุณค่าต่อองค์กร ไม่ว่า
จะในแง่ของการตลาดหรือการแข่งขัน แง่ของการจัดการปรับปรุง หรือพัฒนาองค์กร

กระบวนการทำงานของ Crisp-dm (Cross-Industry Standard-Process Data-Mining)

■ ขั้นตอนเข้าใจธุรกิจ (Business/research understanding)

🗕 ขั้นตอนเข้าใจข้อมูล (data understanding phase)

🖚 ชั้นตอนการเตรียมข้อมูล (data preparation phase)

🗕 ขั้นตอนการพัฒนาโมเดล (modeling phase)

→ ขั้นตอนการประเมินโมเดล (evaluation phase)

→ ขั้นตอนการนำโมเดลไปใช้ (Deployment phase)

การเรียนรู้ของเครื่อง (Machine Learning)

- Machine Learning เป็นศาสตร์ที่ว่าด้วยอัลกอริทึมที่ทำให้เครื่องกลเรียนรู้และ เข้าใจในประเด็นที่เราสนใจจากข้อมูล โดยแบ่งการเรียนรู้เป็น 2 แบบ ดังนี้
 - nารเรียนรู้แบบมีผู้สอน (Supervised Learning) เป็นการเรียนรู้แบบมีเป้าหมายที่ชัดเจน เป็นการเรียนรู้จากข้อมูลผลลัพธ์ที่ระบุไว้ในข้อมูลชุดข้อมูลเรียนรู้ (Training set) ซึ่งกระบวนการ เรียนรู้นี้จะเป็นการพัฒนาตัวแบบพยากรณ์หรือตัวจำแนกเป็นหลัก
 - ■การเรียนรู้แบบไม่มีผู้สอน (Unsupervised Learning) เป็นเทคนิคการเรียนรู้เพื่อค้นหา รูปแบบหรือลักษณะบางอย่างที่เหมือนกันของข้อมูลแต่ละรายการ จะไม่มีการระบุผลลัพธ์ที่ต้องการไว้ก่อน เป็นการเรียนรู้ที่พิจารณาเซตของตัวแปรสุ่มก่อนแล้วจึงสร้างโมเดลร่วมกับชุดข้อมูล

Data science skills

- Hacking Skill (สกิลเกี่ยวกับ Computer
 Programming, Data Base, Big data
 Technologies)
- Statistics & Math
- Substantive Expertise (หรือ Domain Knowledge) ความเชี่ยวชาญเฉพาะด้าน เช่น ความเชี่ยญาชาญด้านธุรกิจ

http://alldatascience.com/what-is-data-science

Statistics

- ■สถิติ คือ กระบวนการในการดำเนินการกับข้อมูลอย่างเป็นระบบ เพื่อให้ได้สารสนเทศ ประกอบการตัดสินใจภายใต้สภาวการณ์ที่ไม่แน่นอน และขจัดความอคติส่วนตัวออกจากการ ตัดสินใจ ซือถือเป็นศาสตร์ชนิดหนึ่งที่เป็นทั้งวิทยาศาสตร์และศิลปศาสตร์ที่ว่าด้วย การเก็บ รวบรวมข้อมูล การนำเสนอข้อมูล การวิเคราะห์ข้อมูล และการตีความหมาย
 - ■สถิติพรรณนา (Descriptive Statistics)
 - ุ ■สถิติอ้างอิง (Inferential Statistics)

Descriptive Statistics

■ สถิติพรรณนา เป็นการนำเสนอข้อมูลเพื่อสะดวกในการทำความเข้าใจในเรื่องใดเรื่องหนึ่งที่สนใจ ซึ่ง
 อาจบรรยายข้อมูลในลักษณะกราฟ ตาราง แผนภาพ หรือค่าสถิติพื้นฐาน ได้แก่ ค่าความถี่ ค่าร้อยละ
 ค่าเฉลี่ย ค่าเบี่ยงเบนมาตรฐาน เป็นต้น

Descriptive Statistics

There are 266,042 young people that work in the retail, grocery, restaurant and fast food sectors

Percent that work within 4 industries	
Restaurant	33.7%
Fast Food	8.0%
Retail	48.6%
Grocery	9.8%

Over a quarter [28.9%] of young workers work in retail stores and restaurants.

https://www.labor.ucla.edu/

Inferential Statistics

■ สถิติอ้างอิง เป็นกระบวนการสรุปอ้างอิงค่าสถิติที่ได้จากกลุ่มตัวอย่างไปสู่ค่าพารามิเตอร์ของประชากรโดย อาศัยทฤษฎีความน่าจะเป็น ซึ่งประกอบด้วย เทคนิคการประมาณค่า และการทดสอบสมมติฐาน

Population & Sample

- ■ประชากร (Population) หน่วยทุกหน่วยที่สนใจศึกษา (ข้อมูลทั้งหมด)
- ตัวอย่าง (Sample) บางหน่วยที่สนใจศึกษา หรือ บางส่วนของประชากร (ข้อมูลบางส่วน)

Type of DATA

- 🕶 ข้อมูลโดยทั่วไปแบ่งออกเป็น 2 ประเภท
 - ข้อมูลแบบมีโครงสร้าง (Structured Data) เป็นข้อมูลที่มีโครงสร้างแน่นอน มีการกำหนดตัว แปรภายในของข้อมูลอย่างชัดเจน และอยู่ในรูปแบบที่สามารถนำมาวิเคราะห์ได้โดยง่าย เช่น ข้อมูลที่อยู่ในรูป ระเบียน (Record) ตารางข้อมูล รายการข้อมูล (Transactional Data) เป็นต้น
 - ■ข้อมูลแบบไม่มีโครงสร้างแน่นอน (Unstructured Data) เป็นข้อมูลที่ไม่มีการกำหนดตัวแปร ภายในของข้อมูลอย่างชัดเจน เช่น ข้อมูลในรูปข้อความ (Text) ข้อมูลภาพ เสียง วิดีโอ กราฟ เป็นต้น
- โดยส่วนใหญ่ข้อมูลที่นำมาทำการวิเคราะห์ส่วนใหญ่มักจะเป็นข้อมูลในรูปแบบของ<u>ข้อมูลแบบมี</u> โครงสร้าง

Type of DATA

- ข้อมูลเชิงปริมาณ (Quantitative data) เป็นข้อมูลที่สามารถวัดค่ามากหรือน้อยได้ บอกปริมาณความแตกต่าง ได้ โดยที่แสดงข้อมูลในรูปของตัวเลข เช่น อายุ น้ำหนัก ส่วนสูง รายได้ เป็นต้น ซึ่งข้อมูลเชิงปริมาณยังสามารถ แบ่งออกได้เป็น 2 ลักษณะ ดังนี้
 - ข้อมูลเชิงปริมาณแบบต่อเนื่อง (Continues data) เป็นข้อมูลที่เป็นจำนวนจริงที่มีค่าได้ทุกค่าในช่วงที่
 กำหนด เช่น น้ำหนักของสินค้า ส่วนสูง อายุ คะแนนสอบ ความยาวของเส้นผม เป็นต้น
 - ■ข้อมูลเชิงปริมาณแบบไม่ต่อเนื่อง (Discrete data) เป็นข้อมูลที่ให้ค่าเป็นจำนวนเต็มแบบนับได้ เช่น จำนวนร้านที่ถ่ายเอกสารที่บริเวณสถานศึกษา จำนวนนักศึกษาหญิง จำนวนคนที่มีอายุมากกว่า 50 ปี เป็นต้น
- ข้อมูลเชิงคุณภาพ (Qualitative data) เป็นข้อมูลเชิงกลุ่มหรือจำแนกประเภท อาจจะเป็นตัวเลขหรือตัวอักษร ก็ได้ โดยที่ถ้าเป็นตัวเลขจะไม่สามารถระบุค่าระดับมากน้อยหรือให้ความหมายในทางปริมาณได้ มักจะเป็น ข้อความ เช่น เพศ อาชีพ ศาสนา สีผิว คุณภาพของสินค้า ความพึงพอใจ เป็นต้น

Discrete and Continuous Data

Discrete data can only take on certain individual values.

Continuous data can take on any value in a certain range.

Example 1

Number of pages in a book is a discrete variable.

Example 2

Length of a film is a continuous variable.

Example 3

Shoe size is a **Discrete** variable. E.g. $5, 5\frac{1}{2}, 6, 6\frac{1}{2}$ etc. Not in between.

Example 4

Temperature is a continuous variable.

Example 5

Number of people in a race is a discrete variable.

Example 6

Time taken to run a race is a continuous variable

Data that can be measured with numbers, such as duration or speed

™ Discrete

Whole numbers that can't be broken down, such as a number of items

Continuous Continuous

Numbers that can be broken down, such as height or weight

Non-numerical data that is categorical, such as yes/no responses or eye colour

*** Nominal

Data used for naming variables, such as hair colour

■ Ordinal

Data used to describe the order of values, such as 1 = happy, 2 = neutral, 3 = unhappy

Numbers with known differences between variables, such as time Ratio Ratio

Numbers that have measurable intervals where difference can be determined, such as height or weight

ค่าสถิติพื้นฐานที่ใช้ใน data science

- ค่า Max Min
- ค่าวัดแนวโน้มเข้าสู่ส่วนกลาง Measures of Central Tendency
- ค่าวัดการกระจายของข้อมูล Measure of Dispersion
- ค่าผิดปกติ Outliers
- ค่าความน่าจะเป็น Probability

Descriptive Statistics

- Pen Max คือ ค่าข้อมูลที่มีค่าสูงที่สุด
- Pein Min คือ ค่าข้อมูลที่มีค่าน้อยที่สุด

EX: 9 7.8 5 10 12 7 8 7 5 9 13 27 8.5 7 15

Measures of Central Tendency

- Measures of Central Tendency ค่ากลางที่ใช้ในการอธิบายข้อมูล โดยค่าที่นิยมใช้คือ ค่าเฉลี่ย มัธยฐาน และฐานนิยม
 - ค่าเฉลี่ย (Mean) เป็นค่าที่นิยมใช้มากสุด สามารถคำนวณได้จากผลรวมของข้อมูลหารด้วยจำนวนข้อมูล

$$\overline{X} = rac{X_1 + X_2 + \dots + X_n}{n} = rac{\sum X}{n}$$
 with $\mu = rac{X_1 + X_2 + \dots + X_n}{N} = rac{\sum X}{N}$

■มัธยฐาน (Median) เป็นค่าที่อยู่ตำแหน่งตรงกลางของข้อมูลเมื่อเรียงจากน้อยไปหามาก

ถ้าเป็นข้อมูลจำนวนคี่ ตำแหน่งตรงกลางหาจาก $\frac{n+1}{2}$ แต่ถ้าข้อมูลจำนวนคู่นำค่าข้อมูลสองตำแหน่ง คือ $\frac{n}{2}$ และ $\frac{n}{2}+1$ มาหาค่าเฉลี่ย

ฐานนิยม (Mode) เป็นค่าข้อมูลที่เกิดบ่อยที่สุด หรือมีความถี่ หรือซ้ำสูงที่สุด

Measures of Central Tendency

(ตัวอย่าง)

จากการการประกาศขายบ้านได้สุ่มเก็บข้อมูลราคาบ้านที่ประกาศขายในเว็บแห่งหนึ่ง (หน่วย : แสนบาท) ได้ข้อมูลดังนี้

9 7.8 5 10 12 7 8 7 5 9 13 27 8.5 7 15

จากข้อมูลข้างต้นสามารถคำนวณค่าเฉลี่ย มัธยฐาน และฐานนิยมได้ดังนี้

ค่าเฉลี่ย
$$\overline{X}=rac{9+7.8+\cdots+15}{15}=rac{150.3}{15}=10.02$$

มัธยฐาน 8.5 (เรียงข้อมูล 5 5 7 7 7 7.8 8 8.5 9 9 10 12 13 15 27)

ฐานนิยม 7

Measures of Central Tendency

■ ข้อเสียของค่าเฉลี่ย (Mean) จะอ่อนไหวกับค่าที่เป็น outlier หรือค่าที่สูงหรือน้อยกว่าปกติ แต่ ค่ามัธยฐาน (Median) จะไม่อ่อนไหวกับค่า Outlier ตัวอย่างเช่น

บ้านที่	ราคาขาย
1	900,000
2	750,000
3	12,000,000
4	1,000,000
5	990,000
6	850,000
7	950,000

ค่าเฉลี่ย (Mean)

$$\overline{X} = \frac{900000 + 750000 + \dots + 950000}{7}$$

$$= \frac{17440000}{7} = 2,491,428.57$$

ค่ามัธยฐาน (Median) เท่ากับ 950,000
 (เรียงข้อมูล >> 750,000 850,000 900,000 950,000
 990,000 1,000,000 12,000,000)

Measure of Dispersion

- ค่าวัดการกระจาย (Measure of Dispersion) เป็นค่าที่ใช้อธิบายลักษณะการกระจายของ ข้อมูล ถ้าข้อข้อมูลชุดนั้น ๆ มีค่าต่างกันมาก จะหมายถึง ข้อมูลมีการกระจายมาก ถ้าข้อข้อมูลชุดนั้น ๆ มีค่า ต่างกันน้อย จะหมายถึง ข้อมูลมีการกระจายน้อย ถ้าข้อมูลชุดนั้น ๆ มีค่าเท่ากันทุกค่า จะหมายถึง ข้อมูลไม่มี การกระจาย ซึ่งค่าวัดการกระจายมักนิยมใช้คู่กับค่าวัดแนวโน้มเข้าสู่ส่วนกลางเพื่อเป็นการอธิบายลักษณะของ ข้อมูลได้ชัดเจนมากยิ่งขึ้น โดยวิธีที่นิยมใช้
 - Pค่าพิสัย (Range) คือ ค่าผลต่างระหว่างข้อมูลสูงสุดกับข้อมูลต่ำสุด
 - →ค่าเบี่ยงเบนมาตรฐาน (Standard deviation: S.D.) รากที่สองของค่าความแปรปรวน (Variance)

Outliers

ค่าผิดปกติ (Outliers) คือ ข้อมูลที่มีค่าแตกต่างทั้งมากกว่า และน้อยกว่าจากข้อมูลในชุดเดียวกันมาก ผิดปกติ จนกระทั่งทำให้สงสัยว่าเป็นข้อมูลที่ไมอยู่ในกลุ่มเดียวกัน เป็นสาเหตุให้ผลการวัดที่ใช้เป็นตัวแทนของ กลุ่มคลาดเคลื่อนไป

Outliers

- ค่าผิดปกติ (Outliers) ในการตรวจจับข้อมูลที่ผิดปกติหรือข้อมูลที่เป็น outliers ในวิธีทางสถิติ หนึ่ง ในวิธีที่นิยมใช้คือ "Interquartile Range (IQR)" หรือช่วงระหว่างควอไทล์ ซึ่งเป็นวิธีที่ใช้ ค่าสถิติเพื่อหาข้อมูลที่กระจายตัวหรือแตกต่างจากค่ากลางของข้อมูลโดยมีเกณฑ์ในการวัดความผิดปกติ พิจารณาจาก
 - lueข้อมูลที่มีค่ามากกว่า $oldsymbol{Q}_3 + (\mathbf{1}.\,\mathbf{5} imes IQR)$
 - lacksquareข้อมูลที่มีค่าน้อยกว่า $oldsymbol{Q_1} (\mathbf{1.5} imes IQR)$

EX

lacksquare จากข้อมูลต่อไปนี้ 3 6 8 9 12 13 38 จงพิจารณาว่ามีค่าข้อมูลผิดปกติหรือไม่ จากข้อมูลพบว่า $m{Q}_1$ = 7 $m{Q}_3$ = 12.5 $m{I}m{Q}m{R}$ = 5.5

Probability

 ความน่าจะเป็น (Probability) เป็นค่าที่แสดงถึงโอกาสที่จะเกิดเหตุการณ์ต่าง ๆ โดยมีค่าอยู่ ระหว่าง 0 ถึง 1 ซึ่งเขียนสัญลักษณ์แทน ความน่าจะเป็น คือ P หรือ P(A) ซึ่งหมายถึงความน่าจะ เป็นที่จะเกิดเหตุการณ์ A (ในที่นี่อาจใช้ตัวอักษรอื่น ๆ แทน A ได้)

$$P(A) = rac{$$
จำนวนเหตุการณ์ที่สนใจ $rac{n(A)}{n(S)}$

■ Probability ถูกนำไปประยุกต์ใช้ในการทำนายผลของ Machine Learning ได้
หลายรูปแบบ เช่น การทำนายความน่าจะเป็นของคนสูบบุหรื่แล้วจะเป็นโรคมะเร็งปอด หรือความน่าจะเป็นที่
จะเกิดอุบัติเหตุทางรถยนต์ของคนคุยโทรศัพท์ระหว่างขับรถ เป็นต้น

Probability

- ■โอกาสที่ Email จะเป็น spam
- ▶ โอกาสที่จะเป็น Email งาน

- nารวิเคราะห์การถดถอยเชิงเส้น หรือ Linear Regression เป็นหนึ่งในโมเดลการเรียนรู้ของเครื่อง (Machine Learning) ที่จัดอยู่ในลักษณะของการเรียนรู้แบบมีผู้สอน (Supervised Learning) ถือว่าเป็นโมเดลที่นิยม นำมาใช้ ซึ่งเป็นโมเดลที่ถูกนำมาใช้สำหรับการทำนายผลข้อมูลที่มีความสัมพันธ์กันแบบเส้นตรง
- aักษณะที่สำคัญของ Linear Regression
 - ข้อมูลตัวอย่างที่นำมา Train Model ชนิดนี้ จะต้องมีคอลัมน์ที่เป็นผลลัพธ์ เช่น การทำนายแคลอรีที่ถูกเผาผลาญ จากระยะเวลาในการออกกำลังกาย เมื่อนำข้อมูลตัวอย่างมา Train Model จะต้องประกอบด้วย ระยะเวลาในการ ออกกำลังกาย และ จำนวนแคลอรีที่ถูกเผาผลาญ (ผลลัพธ์)
 - ■ผลลัพธ์เป็นตัวเลขที่มีค่าแตกต่างกัน จึงไม่สามารถจำแนกประเภทแบบกลุ่ม (Classification) ได้ หรือกล่าวได้ว่า เป็นการทำนายผลแบบ Regression (เป็นตัวเลขที่มีค่าไม่แน่นอน)
 - แบ่งตามลักษณะของข้อมูลตัวอย่างที่นำมา Train Model หรือตามลักษณะผลลัพธ์ที่ได้ โดยจะกล่าวถึง 2 เรื่อง ได้แก่ Simple Linear Regression และ Multiple Linear Regression

าารพิจารณาเลือกใช้โมเดล Linear Regression

สามารถทำนายด้วยโมเดล Linear Regression ได้

ลักษณะเช่นนี้อาจไม่ควรทำนายด้วยโมเดล Linear Regression เพราะอาจขาดความแม่นยำได้

Simple Linear Regression หรือ การวิเคราะห์การถดถอยเชิงเส้นอย่างง่าย ใช้ในการทำนายผลสำหรับกรณีที่ ข้อมูลตัวอย่างประกอบด้วยข้อมูลที่เป็น Feature หรือตัวแปรอิสระ (X : Independence Variable) เพียงตัว เดียว และข้อมูลที่เป็น Target หรือผลลัพธ์ หรือตัวแปรตาม (Y : Dependence Variable) มีค่าเป็นตัวเลข เท่านั้น โดยสามารถเขียนสมการถดถอยดังกล่าว ได้ดังต่อไปนี้

$$\hat{y} = a + bx$$

Multiple Linear Regression จะมี Feature หรือตัวแปรอิสระ (X) มากกว่า 1 ตัวแปร (x₁, x₂, ..., x_n) ส่วนตัวแปร Target หรือผลลัพธ์ หรือตัวแปรตาม (Y) มี 1 ตัวแปรเท่านั้น ดังนั้นสมการถดถอยจึงเป็นดังนี้

$$\widehat{y} = a + b_1 x_1 + b_2 x_2 + \dots + b_n x_n$$

X 1 ตัว Y 1 ตัว

การวิเคราะห์การถดถอยอย่างง่าย

(Simple regression)

การวิเคราะห์การถดถอยพหุคูณ (Multiple regression Analysis)

ตัวอย่าง หากต้องการพยากรณ์ยอดขายสินค้า

Logistic Regression in Machine Learning

- Linear Regression คือโมเดลที่ต่อยอดมาจากสมการ Linear Equation เนื่องจากสมการเส้นตรงหรือ Linear Regression ไม่สามารถแก้ไขปัญหาบางอย่างได้
- Logistic Regression is one of the most popular Machine Learning algorithms, which comes under the Supervised Learning technique. It is used for predicting the categorical dependent variable using a given set of independent variables.

Logistic Regression in Machine Learning

- Logistic Regression predicts the output of a categorical dependent variable. Therefore the outcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true or False, etc.
- Logistic Regression เป็นอัลกอริทึมสำหรับการจำแนกประเภท
 (Classification Algorithm) ที่ใช้สำหรับการทำนายความน่าจะเป็น
 ของผลลัพธ์เป็นค่า discrete ซึ่งจะมีค่าอยู่ในช่วง 0 ถึง 1
- Logistic Regression is a significant machine learning algorithm because it has the ability to provide probability and classify new data using continuous and discrete datasets.

Logistic Regression in Machine Learning

- เป้าหมายในการวิเคราะห์การถดถอยโลจิสติค เพื่อทำนายโอกาส (ความน่าจะเป็น) ที่จะเกิดเหตุการณ์ที่สนใจ โดยสามารถแบ่งการวิเคราะห์การถดถอยโลจิสติคได้เป็น 2 ประเภท
 - การวิเคราะห์การถดถอยโลจิสติคทวิ หรือ Binary Logistic Regression เป็นลักษณะที่ผลลัพธ์หรือตัว แปรตามสามารถจำแนกออกได้ 2 กลุ่ม ได้แก่ เกิดเหตุการณ์ (y = 1) หรือไม่เกิดเหตุการณ์ (y = 0) เช่น การทำนายผลการสอบ (สอบผ่าน หรือ สอบตก) การพยากรณ์ฝนตก (ฝนตก หรือ ฝนไม่ตก) เป็นต้น
 - การวิเคราะห์การถดถอยโลจิสติคพหุ หรือ Multinomial Logistic Regression เป็นลักษณะที่ผลลัพธ์ หรือตัวแปรตามสามารถจำแนกออกได้ได้มากกว่า 2 กลุ่ม เช่น การพยากรณ์สภาพอากาศดี (y = 3) ปาน กลาง (y = 2) แย่ (y = 1) เป็นต้น
- ถ้าความน่าจะเป็นอยู่ในช่วง 0 0.49 หมายความว่า ไม่อยู่ในกลุ่มนั้นๆ
- ถ้าความน่าจะเป็นอยู่ในช่วง 0.5 1 หมายความว่า อยู่ในกลุ่มนั้นๆ