Diszkrét matematika I. feladatok

Negyedik alkalom (2013.09.30.-10. 04.)

1. Oldd meg az alábbi diofantikus egyenleteket:

a)
$$172x + 62y = 38$$
; b) $82x + 22y = 34$; c) $450x + 86y = 100$; d) $125x + 45y = -20$.

2. Oldd meg az alábbi kongruenciákat:

```
a) 21x \equiv 14 \mod 35; b) 172x \equiv 6 \mod 62; c) 3x \equiv 8 \mod 13; d) 12x \equiv 9 \mod 18;
```

e)
$$26x \equiv 12 \mod 22$$
; f) $20x \equiv 19 \mod 22$; g) $16x \equiv 36 \mod 28$; h) $126x \equiv 46 \mod 99$.

3. Keressük meg a következő egyenletek egész megoldásait kongruenciák felhasználásával.

a)
$$27x + 49y = 3$$
; b) $33x + 23y = 2$; c) $33x + 23y = 3$.

- 4. Pajkos százlábúak futkároznak egy ládában. Az egyik fajtának 14 lába van, a másiknak 20. Összesen 232 lábat számoltunk meg. Hány százlábú van a ládában?
- 5. Adjuk meg azt a legkisebb természetes számot, amely 28-as alapú számrendszerben felírva 3-ra, 19-es alapú számrendszerben felírva pedig 4-re végződik. Oldjuk meg a feladatot kongruenciák segítségével.
- 6. A boltban egy vásárlás során 100 forint a visszajáró. Hányféleképpen kaphatjuk meg a visszajárót, ha a pénztárgépben csak 20 és 50 forintosok vannak?
- 7. Oldd meg a következő kongruencia-rendszereket:

$5x \equiv 3 \mod 7$ $3x \equiv 7 \mod 8$	$3x \equiv 2 \mod 4$ $4x \equiv 3 \mod 5$	$5x \equiv 1 \mod 6$ $7x \equiv 9 \mod 10$	$5x \equiv 2 \mod 6$ $7x \equiv 3 \mod 10$
$x \equiv 2 \mod 3$	$4x \equiv 2 \mod 3$	$3x \equiv 1 \mod 4$	$5x \equiv 3 \mod 6$
$x \equiv 3 \mod 4$ $x \equiv 1 \mod 5$	$3x \equiv 2 \mod 7$ $9x \equiv 7 \mod 11$	$7x \equiv 2 \mod 9$ $9x \equiv 3 \mod 13$	$3x \equiv 9 \mod 10$ $8x \equiv 9 \mod 15$

- 8. Melyek azok a száznál kisebb természetes számok, amelyek huszonháromszorosát hetes alapú számrendszerben felírva az utolsó jegy 5, az utolsó előtti jegy pedig 2? Oldjuk meg a feladatot kongruenciák segítségével.
- 9. Keressük meg a kínai maradéktétel alkalmazásával azokat az egész számokat, amelyek 3-mal osztva 1-et, 4-gyel osztva 2-t, 5-tel osztva 3-at adnak maradékul.

Szorgalmi feladatok

10. Írj programot általános lineáris kongruencia rendszerek megoldására (ahol a modulusok nem feltétlenül relatív prímek)!