Maximum Likelihood Estimators

Maximum Likelihood Estimation (MLE) is a method used in statistics to estimate the parameters of a probability distribution by maximizing the likelihood function.

In simpler terms, MLE finds the parameter values that make the **observed data most likely** under a given statistical model.

Step-by-Step Understanding of MLE

1. Define the Likelihood Function

- Suppose we have a dataset $X = \{x_1, x_2, ..., x_n\}$ that follows a probability distribution with an unknown parameter θ .
- The likelihood function is the joint probability of observing the given data, assuming they are independent:

$$L(heta) = P(X| heta) = \prod_{i=1}^n f(x_i| heta)$$

Here, $f(x_i|\theta)$ is the probability density function (PDF) or probability mass function (PMF) depending on whether the data is continuous or discrete.

2. Take the Log-Likelihood

 Since the likelihood function is a product, it's easier to work with the log-likelihood function:

$$\ell(heta) = \log L(heta) = \sum_{i=1}^n \log f(x_i| heta)$$

3. Differentiate and Solve for θ

• Find the value of θ that **maximizes** the log-likelihood by **taking its** derivative and setting it to zero:

$$\frac{d\ell(\theta)}{d\theta} = 0$$

• Solve for θ , which gives the **MLE estimate** $\hat{\theta}$.

MLE for different distributions

MLE for Bernoulli Parameter p

A Bernoulli distribution models a binary outcome (success/failure, 1/0, heads/tails). It is parameterized by p, which represents the probability of success. The goal of MLE is to find the best estimate of p given observed data.

Step 1: Define the Probability Mass Function (PMF)

The Bernoulli distribution has the following PMF:

$$P(X=x|p)=p^x(1-p)^{1-x}, \quad ext{for } x \in \{0,1\}$$

Where:

- p = probability of success (X=1)
- 1 p = probability of failure (X=0)

Step 2: Write the Likelihood Function

Suppose we observe **n independent Bernoulli trials** with outcomes:

$$X_1, X_2, ..., X_n$$

The likelihood function is the joint probability of observing the given data:

$$L(p) = \prod_{i=1}^n P(X_i|p)$$

Since each X_i follows a Bernoulli distribution:

$$L(p) = \prod_{i=1}^n p^{X_i} (1-p)^{1-X_i}$$

Expanding the product:

$$L(p) = p^{\sum X_i} (1-p)^{n-\sum X_i}$$

Where:

• $\sum X_i$ is the total number of successes in the sample.

Step 3: Take the Log-Likelihood

Since it's easier to work with logs, we take the log-likelihood function:

$$\ell(p) = \log L(p)$$

$$\ell(p) = \sum X_i \log p + (n - \sum X_i) \log(1-p)$$

Step 4: Differentiate and Solve for p

To find the **maximum likelihood estimate (MLE) of p**, we take the derivative with respect to p:

$$rac{d\ell(p)}{dp} = rac{\sum X_i}{p} - rac{n - \sum X_i}{1 - p}$$

Setting this derivative to zero:

$$\frac{\sum X_i}{p} = \frac{n - \sum X_i}{1 - p}$$

Solving for p:

$$egin{aligned} p(n-\sum X_i) &= (1-p)\sum X_i \ n &= \sum X_i \ \hat{p} &= rac{\sum X_i}{n} \end{aligned}$$

Step 5: Interpretation of \hat{p}

The **MLE estimate of p** is simply:

$$\hat{p} = rac{ ext{Number of successes}}{ ext{Total trials}}$$

Which is the sample proportion of successes.

MLE for Poisson Parameter λ

A **Poisson distribution** models the number of occurrences of an event in a fixed time or space interval, given a constant average rate λ .

The goal of MLE is to find the best estimate of λ based on observed data.

Step 1: Define the Probability Mass Function (PMF)

The Poisson distribution is given by:

$$P(X=x|\lambda)=rac{e^{-\lambda}\lambda^x}{x!},\quad x=0,1,2,...$$

Where:

- λ = expected number of occurrences in a given interval
- x =observed number of occurrences

Step 2: Write the Likelihood Function

Suppose we observe n independent Poisson-distributed data points:

$$X_1, X_2, ..., X_n$$

Since each X_i follows a Poisson distribution, the **likelihood function** is:

$$L(\lambda) = \prod_{i=1}^n P(X_i|\lambda)$$

$$L(\lambda) = \prod_{i=1}^n rac{e^{-\lambda} \lambda^{X_i}}{X_i!}$$

$$L(\lambda) = e^{-n\lambda} \lambda^{\sum X_i} \prod_{i=1}^n rac{1}{X_i!}$$

Since $\prod \frac{1}{X_i!}$ does not depend on λ , we ignore it when maximizing.

Step 3: Take the Log-Likelihood

Taking the natural log of the likelihood:

$$\ell(\lambda) = \log L(\lambda)$$

$$\ell(\lambda) = \log\left(e^{-n\lambda}\lambda^{\sum X_i}
ight)$$

$$\ell(\lambda) = -n\lambda + \sum X_i \log \lambda$$

Using logarithm properties:

1.
$$\log(ab) = \log a + \log b$$

$$2. \log(e^x) = x$$

3.
$$\log(a^b) = b \log a$$

Step 4: Differentiate and Solve for λ

To maximize $\ell(\lambda)$, take its derivative with respect to λ :

$$rac{d\ell(\lambda)}{d\lambda} = -n + rac{\sum X_i}{\lambda}$$

Setting it to zero:

$$-n + rac{\sum X_i}{\lambda} = 0$$
 $\lambda = rac{\sum X_i}{n}$

Step 5: Interpretation of $\hat{\lambda}$

The **MLE estimate of** λ is simply the **sample mean**:

$$\hat{\lambda} = rac{1}{n} \sum X_i$$

This means that the best estimate for λ is just the average number of occurrences per interval.

MLE for Normal Population

A **normal distribution** is characterized by two unknown parameters:

- μ (mean) \rightarrow the central tendency
- σ^2 (variance) \rightarrow the spread of the data

The goal of **MLE** is to find the best estimates $\hat{\mu}$ and $\hat{\sigma}^2$ given observed data.

Step 1: Define the Probability Density Function (PDF)

The normal distribution has the following probability density function (PDF):

$$f(x|\mu,\sigma^2) = rac{1}{\sqrt{2\pi\sigma^2}}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$

Where:

- μ is the **mean** (location parameter)
- σ^2 is the **variance** (scale parameter)

x is an observation from the population

Step 2: Write the Likelihood Function

Suppose we observe **n independent samples** from a normal distribution:

$$X_1,X_2,...,X_n \sim N(\mu,\sigma^2)$$

Since the data points are **independent**, the **likelihood function** is the **product** of their individual probabilities:

$$L(\mu,\sigma^2) = \prod_{i=1}^n f(x_i|\mu,\sigma^2)$$

Substituting the normal PDF:

$$L(\mu,\sigma^2) = \prod_{i=1}^n rac{1}{\sqrt{2\pi\sigma^2}} e^{-rac{(x_i-\mu)^2}{2\sigma^2}}$$

Taking the product:

$$2L(\mu,\sigma^2) = \left(rac{1}{\sqrt{2\pi\sigma^2}}
ight)^n e^{-\sum_{i=1}^nrac{(x_i-\mu)^2}{2\sigma^2}}$$

Step 3: Take the Log-Likelihood Function

Since logarithms simplify products into sums, we take the log-likelihood:

$$\ell(\mu, \sigma^2) = \log L(\mu, \sigma^2)$$

Applying logarithm properties:

$$\ell(\mu,\sigma^2) = \log\left(\left(rac{1}{\sqrt{2\pi\sigma^2}}
ight)^n e^{-\sum_{i=1}^nrac{(x_i-\mu)^2}{2\sigma^2}}
ight)$$

Splitting terms:

$$\ell(\mu,\sigma^2) = n\log\left(rac{1}{\sqrt{2\pi\sigma^2}}
ight) + \log e^{-\sum_{i=1}^nrac{(x_i-\mu)^2}{2\sigma^2}}$$

Using $\log a^b = b \log a$ and $\log e^x = x$

$$\ell(\mu,\sigma^2) = -rac{n}{2}\log(2\pi\sigma^2) - rac{1}{2\sigma^2}\sum_{i=1}^n (x_i - \mu)^2$$

Step 4: Differentiate and Solve for MLEs

To maximize the log-likelihood, take **partial derivatives** with respect to μ and σ^2 .

lacktriangledown Finding $\hat{\mu}$

Differentiate $\ell(\mu,\sigma^2)$ with respect to μ :

$$egin{aligned} rac{\partial \ell}{\partial \mu} &= -rac{1}{2\sigma^2} \cdot 2 \sum (x_i - \mu) \ &= -rac{1}{\sigma^2} \sum (x_i - \mu) \end{aligned}$$

Setting this to zero:

$$\sum (x_i - \mu) = 0$$

$$\hat{\mu} = rac{1}{n} \sum_{i=1}^n x_i$$

Thus, the **MLE estimate of** μ is simply the **sample mean**:

$$\hat{\mu}=ar{X}$$

▼ Finding $\hat{\sigma}^2$

Now differentiate $\ell(\mu,\sigma^2)$ with respect to σ^2 :

$$rac{\partial \ell}{\partial \sigma^2} = -rac{n}{2}rac{1}{\sigma^2} + rac{1}{2\sigma^4}\sum (x_i - \mu)^2.$$

Setting this to zero:

$$-rac{n}{2}rac{1}{\sigma^2}+rac{1}{2\sigma^4}\sum (x_i-\mu)^2=0$$

Multiplying by $2\sigma^4$:

$$-n\sigma^2+\sum (x_i-\mu)^2=0$$

Solving for σ^2 :

$$\hat{\sigma}^2 = rac{1}{n} \sum_{i=1}^n (x_i - ar{X})^2$$

Thus, the **MLE estimate of** σ^2 is:

$$\hat{\sigma}^2 = rac{1}{n} \sum (x_i - ar{X})^2$$

Which is the **sample variance with denominator n** (not n-1, which is used in unbiased estimation).

The final MLE Estimate

$$\hat{\mu}=ar{X}=rac{1}{n}\sum X_i$$
 $\hat{\sigma}^2=rac{1}{n}\sum (X_i-ar{X})^2$ $\hat{\sigma}=\left[rac{\sum (X_i-ar{X})^2}{n}
ight]^{1/2}$

- $\hat{\mu}$ is the **sample mean** (same as in standard statistics).
- $\hat{\sigma}^2$ is the **MLE estimate for variance** (divided by n, not n-1).

MLE for Uniform Distribution\Estimating the Mean of a Uniform Distribution

Problem Setup

Suppose we have a **Uniform distribution**:

$$X \sim \mathrm{Uniform}(0, \theta)$$

meaning:

- The random variable X is equally likely to take any value between 0 and θ .
- The probability density function (pdf) is:

$$f(x; heta) = egin{cases} rac{1}{ heta}, & ext{if } 0 \leq x \leq heta \ 0, & ext{otherwise} \end{cases}$$

We observe a **sample** of n values: x_1, x_2, \ldots, x_n .

The goal is:

igcup Estimate the unknown parameter heta using MLE.

Step 1: Write the Likelihood Function

Since the observations are independent, the **likelihood** is the product of the individual densities:

$$L(heta) = \prod_{i=1}^n f(x_i; heta)$$

Since $f(x_i; heta) = rac{1}{ heta}$ for each $x_i \in [0, heta]$, the likelihood becomes:

$$L(heta) = egin{cases} heta^{-n}, & ext{if } 0 \leq x_i \leq heta ext{ for all } i \ 0, & ext{otherwise} \end{cases}$$

igvee I In short: $L(heta) = heta^{-n}$ if $heta \geq \max(x_1, \dots, x_n)$, otherwise 0.

Step 2: Find the MLE

- $L(\theta) = \theta^{-n}$ decreases as θ increases.
- We want to maximize $L(\theta)$, so we should pick the smallest possible θ that still satisfies:

$$heta \geq \max(x_1,\ldots,x_n)$$

Thus, the MLE is:

$$oxed{\hat{ heta} = \max(x_1, x_2, \dots, x_n)}$$

Intuition:

The estimated upper bound θ should be just enough to include the largest observed sample point.

Final Answer:

The **MLE** for
$$heta$$
 in $\mathrm{Uniform}(0, heta)$ is: $\hat{ heta} = \max(x_1, x_2, \dots, x_n)$

Maximum Likelihood Estimators 10