BACSEQ PROJECT UPDATE 02/07/14

Hung-Ying Lin

Introduction

Genome

BAC-Seq Flow I Chart 2

4 Res: Banll, Bsp1286l, Nspl, Nlalll

Data:

- 1. Reference: 12 B73 BACs
- 2. Restriction Enzyme reads about 10M reads (real data)
- 3. Real Whole Genome Shotgun reads
 - Miseq 2 * 250 bp
 - Enzyme shearing: Chimeric reads (2.6M; depth~400)
 - Physical shearing: Fragment size only 375bp (1.3M; depth~200)
- 4. Simulated Whole genome data
 - Miseq 2 * 250 bp
 - Fragment size: 750bp (1.4M; depth~ 200)
 - Fragment size: 1,500bp (0.7M; depth~ 100)

BACseq Pipeline Updated Result

Data: Fragment 750bp 200fold; Fragment 1,500bp 100fold

(300fold in total)

• Cores: 12

Time: 2 days

				2				
RE reads	Contig #	Mean	L50	Total	map ratio	Mismatch/kb	InDel/kb	Coverage
BAC1	15	10,151	14,113	152,259	93.3%	0.5	0.5	90.0%
BAC2	21	6,484	10,853	136,162	95.2%	1.3	0.7	67.4%
BAC3	7	16,460	23,441	115,219	100.0%	1.1	1.1	87.8%
BAC4	11	13,193	19,899	145,125	90.9%	0.1	-	86.9%
BAC5	10	22,264	37,936	222,638	90.0%	0.1	-	68.6%
BAC6	14	9,738	10,219	136,334	100.0%	2.3	2.2	84.9%
BAC7	19	8,354	18,885	158,726	89.5%	4.7	5.0	82.4%
BAC8	12	12,696	19,708	152,346	100.0%	2.5	2.7	84.4%
BAC9	4	18,067	16,510	72,269	100.0%	-	-	43.1%
BAC10	14	9,120	12,860	127,678	100.0%	0.1	0.1	62.5%
BAC11	14	12,469	12,948	174,571	100.0%	0.1	-	83.7%
BAC12	17	9,616	12,330	163,469	100.0%	2.8	3.2	75.0%

79.4% (not include BAC9)

^{*} BAC9 restriction enzyme reads from other part of B73 genome sequence. That is not belong to all 12 BACs regions.

Limitations in BACseq Pipeline

- TASR
 - Accuracy
 - That will produce some chimeric contigs when (Contigs N50 > 10,000 bp)
 - Efficiency
 - For few BACs will takes a lot of time to finish target assembly
- Results are highly dependent on Restriction Enzyme Reads
 - Change new enzyme to avoid chimeric reads

Restriction Enzyme Part

Nlalll (256bp)

Thank you so much !!

Following slides are other details

BACseq Pipeline Update

Cutadapter v1.2.1 barcode.test.pl

Remove barcode & adapter sequence

cut.chimeric.read.auto.sh

Adapter check again
Cut chimeric reads
Bacteria reads filter
Start point check
Error correction

Restriction Enzyme reads

COPE

(Connecting Overlapped Pair-End reads) BACseq.cope.sh

Connecting those overlap paired-end reads

Whole genome shotgun reads

ARF-PE v0.2

Producing long reads (Mean 750bp)

Data:

Reference: 12 B73 BACs Restriction Enzyme reads about 10M reads (real data)

Simulated WGS reads:

2 * 250 Miseq

Fragment: 750 depth 200 1,500 depth 100

Extension module:

- 1. TASR v1.5
- 2. SSPACE (extension module)
- 3. Hierarchical merging (Merging pipeline)

Data:

300 fold

ARF

RE reads₀

- Connecting overlapped pair-end reads
- (Restriction enzyme cut reads)
- COPE version v1.1.3

- Chimeric reads checking
 - Indexing long reads
 - Bowtie2 alignment
- Reads condense
 - In-house script
 - Log10 scale

ARF-PE workflow

BACseq Pipeline Update

Cutadapter v1.2.1 barcode.test.pl

Remove barcode & adapter sequence Cut chimeric reads cut.chimeric.read.auto.sh

Adapter check again Cut chimeric reads Bacteria reads filter Start point check Error correction Restriction Enzyme reads

COPE
Connecting Overlapped
Pair-End reads)
RACseg cope sh

Connecting those overlap paired-end reads Whole genome shotgun reads

Producing long reads (Mean 750bp

Data:

100 fold

Extension module:

- 1. TASR v1.5
- 2. SSPACE (extension module)
- 3. Hierarchical merging (Merging pipeline)

Time: 2 days

(1 week)

Cores: 12

ARF-PE result

Correct Assembly Errors

RE reads	Read #	Mean	L50	Total	map ratio	1ismatch/k	InDel/kb
BAC12	398,299	748	755	297,853,717	99.9%	0.0	0.0

TASR(Target Assembly of Sequence Reads)

- TASR (version1.5)
- Input data:

Reads: Reads from ARF

Target sequence: RE reads contigs

- Overlap: 100 bp
 - Minimum number of reads needed to call a base: 1
 - Minimum base ratio used to accept a overhang: 0.9
- Iteration control:
 - Coverage:
 - If the coverage can not increase, this loop will be stop.

Hierarchical Clustering

0.02

0.01

X1

Contig.1 Contig.40

Contig.2 Contig.42

Contig.33 Contig.23

Contig.17 Contig.41

Contig.32 Contig.34

Contig.39 Contig.43

Contig.24

Contig.31

Contig.29

X2

step.4

step.1

step.7

Restriction Enzyme reads

Connecting those overlap paired-end

shotgun reads

Producing long

Whole genome

1. TASR v1.5

2. SSPACE (extension module)

BACseq Pipeline Update

Time:

2 davs

Cores:

(1 week)

Adapter check again

Cut chimeric reads

Bacteria reads filter Start point check Error correction

3. Hierarchical (Merging pipeline) Data: 100 fold

