

Experimental and Numerical Study of Flame Spread in the Parallel Panel Geometry

Krishnamoorthy, N., Chaos, M., Khan, M. M., Chatterjee, P., Wang, Y., Dorofeev, S.

FM Global, Research Division Norwood, MA, USA

Background

- FM Global fire modeling research program
 - To develop CFD fire modeling capability for largescale fires including fire growth and extinguishment, which will help FM Global to reduce the number of required large-scale tests
 - FireFOAM (http://code.google.com/p/firefoam-dev)
 - LES solver based on OpenFOAM
 - Basic models for fire spread
 - Unstructured mesh
 - Massive parallelization

Objective

- Evaluate the overall performance of FireFOAM for flame spread in an intermediate scale fire
 - Validation experiments (parallel panel)
- Evaluate the pyrolysis model, and effect property estimation approach in real fire test

Parallel Panel Configuration

- Standard intermediate test for materials
- Heat flux similar as in large-scale fires
- 0.6 x 0.3 x 2.4 m

Experiments

- Three materials
 - PMMA (3.18mm)
 - Single-wall corrugated cardboard (3.8mm)
 - CPVC (chlorinated polyvinyl chloride)
- Repeat tests
 - 3 repeat tests for PMMA and corrugated
 - Performed in two different time slots
 - July, November 2009

Corrugated

Instrumentation

Measurements

- Heat release rates (5 MW FPC)
 - CO-CO₂ generation calorimetry
 - O₂ consumption calorimetery
- Mass loss rate
 - Load cell
- Surface temperatures
 - K-Type thermocouples, 0.8 mm D butt-welded
- Heat fluxes
 - Schmidt-Boelter gage 12.7 mm D

Experimental Challenges

- Exfoliation, warp
 - Thermocouple lost contact
 - View of heat flux gages blocked

Pyrolysis Model

• 1D, single step, Arrhenius chemistry

$$\frac{\partial}{\partial t} \left(\rho_s C p_s T \right) = \frac{\partial}{\partial x} \left(k \frac{\partial T}{\partial x} \right) + \frac{\partial \dot{q}_r}{\partial x} + \dot{m}''' H_p \qquad \dot{m}''' = -\rho A \exp \left(\frac{-E_a}{RT} \right)$$

Estimation of model properties

Pyrolysis Model: Implementation

Implemented as boundary conditions

Computational Models: FireFOAM

- Combustion (Wang et. al. P8.3)
 - Infinite fast chemistry model
 - Beta PDF for SGS mixture fraction
- Soot and Radiation (Chatterjee et. al. P30.2)
 - Smoke point based flamelet model
 - Finite volume RTE solver
 - Optically thin, gray gas assumptions
 - 48 angles, solved every 100 time steps

Mesh

- Domain: 3m x 3m x 4.2m
- SnappyHexMesh: 527k cells
 - 5 refinement levels
 - 1cm x 1cm x 1.25cm
 - 70% cells in the finest region

HRR of Three Materials

- Single-wall corrugated cardboard
- PMMA
- CPVC

PMMA: Model Properties

- No in-depth radiation
- Adiabatic back boundary

Property	Optimized value	Uncertainty
Thermal Conductivity (W/m K)	0.152	± 0.008
Density (kg/m³)	1112.8	± 7
Specific Heat Capacity (J/kg K)	1462	± 33
Heat of Vaporization (J/kg)	8.22 x 10 ⁵	± 2.9 x 10 ⁴
Emissivity	0.992	± 0.09
Pre-exponential Factor (1/s)	1.19 x 10 ⁶	± 1.5 x 10 ⁶
Activation Energy (J/mol)	9.4 x 10 ⁴	± 6.6 x 10 ³

PMMA: Heat Release Rate

 $HRR = \exp(b\Delta t)$; $b_{expt} = 0.0798 \pm 0.006$; $b_{sim} = 0.084$

Exponential growth rate observed between 60-90 seconds

PMMA: Heat Flux

PMMA: Surface Temperature

PMMA: Radiant Fraction

PMMA: Improved Model Properties

- Shuffled Complex Evolution (SCE) algorithm
- In-depth radiation
- Heat transfer to back boundary
- Cumulative mass loss included in objective function

Corrugated: Sensitivity to Properties

- Cumulative mass loss included in objective function
- Shuffled Complex Evolution (SCE) algorithm

Sensitivity to Properties: HRR in PP

Heat Release Rate: Corrugated

Summary and Future Work

- FireFOAM with coupled submodels is used to model flame spread behavior in the parallel panel geometry
- Feasibility of the extraction of material properties from bench-scale experiments for use in intermediate-scale has been demonstrated.
- Additional physics for pyrolysis models and improved optimization algorithm improved model prediction.
 Simulation for PMMA with improved properties ongoing.
- Systematic study of property uncertainty planned

Acknowledgement

- Funding
 - FM Global Strategic Research Program on fire modeling
- Regis Bauwens
- John de Ris
- Franco Tamanini