SC2207/CZ2007 Introduction to Database Systems (Week 1)

Topic 1: Entity Relationship Diagram (1)

This Lecture

- Database and DBMS
- ER diagram
- Types of relationships
- Roles

Database and DBMS

- What is a database?
 - A collection of data specially organized for efficient retrieval by a computer
- What is a database system?
 - A piece of software that helps us efficiently manage/retrieve information from databases
- More formal name: Database Management System (DBMS)

DBMS in Practice

- Large web sites rely heavily on DBMS
 - Facebook
 - Twitter
- Many non-web companies, too
 - Banks, hospitals, etc
- Even small pieces of software on your computer
 - Google Chrome

Relational Model

- Numerous DBMS exist on the market
 - Oracle, SQL Server, MongoDB, ...
- Most of them follow the relational model
- What does it mean?
- Answer: They store all data in the form of relations.

Relation

Product

<u>Name</u>	Price	Category	Manufacturer
iPhone 6	888	Phone	Apple
iPad Air 2	668	Tablet	Apple
Galaxy	798	Phone	Samsung
EOS-1D X	1199	Camera	Canon

Some jargons:

- A relation is often referred to as a table
- A row in a table is also called a tuple or a record
- A column in a table is also called an attribute of the table

A real database may have a large number of tables ...

A real database may have a large number of tables ...

- Imagine that you are ask to design a database like this
- How would you approach this task?

Designing a Database for an Application

- Conceptually model the data requirements of the application
 - What are the things that need to be stored?
 - How do they interact with one another?
- Tool to use: Entity-Relationship (ER) Diagrams
 - A pictorial and intuitive way for modelling
- Translate the conceptual model into a set of tables
- Construct the tables with a DBMS

This Lecture

- Database and DBMS
- ER diagram
- Types of relationships
- Roles

- ER diagram is a collection of visual artifacts
- Each artifact captures some data requirement or relationship

- Rectangle = Entity Set
- Entity = Real-world object (entity)
- Entity Set = Collection of similar objects (entities)
- Analogue: An object class in object-oriented programming language

Companies

- Rectangle = Entity Set
- Entity = Real-world object (entity)
- Entity Set = Collection of similar objects (entities)
- Analogue: An object class in object-oriented programming language

Oval = Attribute = Property of an entity set

Diamond = Relationship = Connection between two entity sets

- Diamond = Relationship = Connection between two entity sets
- Persons buy products

- Diamond = Relationship = Connection between two entity sets
- Companies make products

This Lecture

- Database and DBMS
- ER diagram
- Types of relationships <-</p>
- Roles

Types of Relationships

- Many-to-Many Relationships
- Many-to-One Relationships
- One-to-One Relationships

Many-to-Many Relationship

- One person can buy multiple products
- One product can be bought by multiple persons
- Note: Some Person entity is not related to Product entities, vice versa

Many-to-One Relationship

- One company can make multiple products
- But one product can only be made by one company
- Note: Some Company entity does not make any Product entity

One-to-One Relationship

- A city can be the capital of only one country
- A country can have only one capital city
- Note: Some Country entity has no capital city, vice versa

- What if we want to record the store from which the person bought the product?
- We can use a 3-way relationship
- Drawback: The arrows would be complicated

- Should we use this? What does it mean?
- One <person, store> pair to one product
- One product to many <person, store> pairs
- Meaning: A person only buys one product from one shop

- What about this?
- <person, store> to product? many to one?
- <person, product> to store? many to one?
- Getting more complicated avoid this

Example

- Each student is mentored by one faculty member
- Each faculty member can mentor multiple students

- Each player prefers only one game, but not vice versa
- Many-to-many? X
- Many-to-one?
- One-to-one?

- Any two players are from exactly two different countries
- Many-to-many? X
- Many-to-one? X
- One-to-one?

- No two shops sell the <u>same</u> product
- Many-to-many? X
- Many-to-one?
- One-to-one?

This Lecture

- Database and DBMS
- ER diagram
- Types of relationships
- Roles

Roles

- Sometimes an entity set may appear more than once in a relationship
- Example: some persons are married to each other
- The role of the person is specified on the edge connecting the entity set to the relationship

Husband	Wife	
Bob	Alice	
David	Cathy	
•••	•••	

Roles

- Example: some employee supervises other employees
- Without the roles, it is unclear whether it is many-to-one from supervisees to supervisors, or the other way around

One More Thing about Relationships

A relationship can have its own attribute

One More Thing about Relationships

- A relationship can have its own attribute
- If we want to record the date of the purchase

- Consider two entity sets, Shops and Companies
- Each shop sells products from at least one company
- Each company has its product <u>sold</u> in at least one shop
- A shop may be the <u>flagship</u> shop of at most one company
- Each company has at least one flagship shops
- Draw some relationships between Shops and Companies to capture the above statements

- Consider two entity sets, Shops and Companies
- Each shop sells products from at least one company
- Each company has its product sold in at least one shop
- A shop may be the flagship shop of at most one company

- Consider two entity sets, Shops and Companies
- Each shop sells products from at least one company
- Each company has its product sold in at least one shop
- A shop may be the flagship shop of at most one company
- Each company has at least one flagship shops
- Draw some relationships between Shops and Companies to capture the above statements

There can be multiple relationships between two entity sets

To continue in

Topic 1: Entity Relationship Diagram (2)