

WATER SCARCITY CAPE TOWN, SOUTH AFRICA

Graywater and Rainwater to Enhance Local Supply

ERICK JONES

ORIE, Cockrell School of Engineering

SERGIO LEON MARQUEZ

EER, Jackson School of Geosciences

Executive Summary

Model:

Community = 100 households

Monthly demand and rainfall resolution

- High-dependency on municipal supply
- Community Gray Water is the most cost-effective
- We can reduce demand by 50% and save \$60,000 in 5 years
- Individual household graywater is cost prohibited under most scenarios
- Scenarios where rain harvesting is selected have more contingencies
 - Increasing community size and payback period

Contents

- 1. Story
- 2. Model
- 3. Results
- 4. Scenarios
- 5. Conclusions

Statistical Overview

South Africa has recently faced challenges providing enough <u>water</u> for its residents

Population	Urban
58 MM (2019)	63%

Cape Town's 1 MM households are almost entirely dependent on <u>municipal supply</u>

Source of water	Percentage
Regional/Local water scheme (operated by municipality or other water services provider)	97,3%
Borehole	0,5%
Spring	0,1%
Rain water tank	0,1%
Dam/Pool/Stagnant water	0,1%
River/Stream	0,1%
Water vendor	0,3%
Water tanker	0,4%
Other	1,1%

What We Want To Do...

Save water and **\$X**

Water Tariff System

Monthly Residential Water Tariffs*

Step #	Volume [kl]	2018-2019 [R/kl]	Tariff Δ%
1	6	25	-
2	10.5	40	50
3	35	60	60
4	35+	345	475

Lower income levels have lower tariffs but they also follow step-wise increases

1 USD = 14.5 R

*Level 5: High Income (rounded)

Municipal supply **price signals** highlight need for sustainable water management

Western Cape: Urban and Climate Trends

Systems Modeling Team Project

Greywater generation grows

→ 1 X 225	Per capita Δ	Net Δ
2 X 175	225-175 = 50	100
4 X 125	225-125 = 100	400

Figure 1.4 Impact of household size on per capita consumption (Edward and Martin, 1995).

Shrinking **stormwater** potential due to declining accumulated rainfall levels

What is Gray Water?

No: Toilet, Kitchen

Yes: Sinks, Showers, Bathtubs, Washers

Average Annual Household Demand

[kl/year]

	Low	Base	High
Indoor	4.4	6.9	9.9
Outdoor	2.4	3.7	5.3
Total	6.8	10.6	15.2
100	4	2	1

People per household

Model Assumptions

- 1. Household Rainwater Harvesting (Outdoor Use only)
 - Like most systems
 - Note: Restricted the choice to a 1000 gallon tank only
- 2. Household Rainwater Harvesting (Indoor and Outdoor Use)
 - Like some systems in South Australia
 - Note: restricted tank size to 500 gallons; can add more later.
- 3. Household Greywater Recycling (Outdoor Use only)
 - Like systems in Australia
- 4. Community Scale Stormwater Recycling (Outdoor Use only)
 - Not done too many places
 - Assumed that the system can hold the average monthly rainfall
- 5. Community Scale Greywater Recycling (Indoor and Outdoor Use)
 - Like the Vitter paper also not done too many places.

Mathematical Formulation

Objective Function

$$\begin{aligned} \min \ c_{rho} x_{rho} + c_{rhi} x_{rhi} + c_{csw} x_{csw} + c_{cgw} x_{cgw} + c_{hgw} x_{hgw} + f_{rho} y_{rho} + f_{hgw} y_{hgw} + f_{cgw} y_{cgw} \\ + f_{rhi} y_{rhi} + f_{csw} y_{csw} + c_{e} e_{t} \end{aligned}$$

s.t.

$$\sum x_i \ge D_i$$

$$x_i \le f_i(D_{cw} - l_{cw})$$

$$x_i \le My_i$$

Constraints

Cost-Benefit Analysis

Benefits

- Enhanced Local Water Supply
- Water and Financial Savings

Save: \$60,000

Costs

 Annual CAPEX required is <u>less</u> than Municipal Water or Energy

USD LIFECYCLE COST ASSESSMENT [BASE]

Technology Selection Demand and Rain Water Scenarios

Base Case* [0]:

Cost [\$,R] x 10 ³	Energy [kWh]	% Technology
25, 350	1600	50

*:PER YEAR (rounded)

Scenarios:

Rainfall

HGW: Household Gray Water

CSW: Community Storm Water

RWI: Rain Water Indoors

RWO: Rain Water Outdoors

CGW: Community Gray Water

PP: 5 years

Conclusions

	Discount Rate	5	96		1000	square foot roo	of			
Payback Period 5		years		0.62	gallons/inch of	water per sq f	t			
Yearly \	Water Demand	6660	kL		6200 gallons/inch of water (stormwater)					
	Yearly Rainfall	30.31	inches		75	% of indoor wa	ter available fo	or greywater re	cycling	
				Fraction	n of Capacity Ins	stalled				
Modification	Rain Multiplier	Demand Multiplier	Rainwater Harvesting Indoor Use	Rainwater Harvesting Outdoor Use	Community Stormwater System	Community Greywater System	Household Greywater	Annutized Cost	% of Water Supplied by Tech	kWh Used By Tech
Base Case	1	1	0	0	0	1	0	\$23,763	48.6%	1620
Increased Rainwater (RW)	1.8	1	0	0.20	0	1	0	\$23,313	78.2%	2701
Increased RW more	2.3	1	0.04	0.15	0	1	0	\$20,693	86.0%	3276
Increased Demand	1	1.4	0	0	1	1	0	\$30,594	83.8%	2595
Decreased Demand	1	0.2	0	0	0	0	0	\$7,392	0.0%	0
Increased RW and Demand	1.9	1.4	0	0.27	0	1	0	\$30,027	83.8%	3522
Increased RW and Demand	2.4	1.4	0.05682	0.21	0	1	0	\$27,121	83.8%	3522
Decreased RW & Increased Demand	0	1.4	0	0	0	1	0	\$31,420	86.0%	4586
Increased Discount Rate	86%	1	0	0	0	0	0	\$36,963	0.0%	0
Increased # of Households	140 houses	1	0	0	1	1	0	\$30,594	83.8%	2595
		Base case								
		Change from	n anticipated va	lue						
		Parameter of								
		New investr	nent							
		Deviation fr	om base investi	ment						
		Favorable de	ecrease or incre	ase						
		Unfavorable	increase or de	crease						

Conclusions

Q&A

Dr. Leibowicz,
Thank you for a great semester!

Back-up slides

Rainwater: not internally plumbed	Dobrowksy et al. (2014); Mukheibir et al. (2014); Fisher-Jeffes et al. (2017)	Varies notably ² Low summer yield in winter rainfall regions with $Y \approx 0$ in peak summer time	Non-potable	Outdoor use, hand washing of clothes, house cleaning (e.g. floors)	Yield is a function of rainfall, storage and roof size; potential mismatch between seasonal rainfall and highest demand; high capital cost; possible environmental
Rainwater: Internally plumbed tanks	Beal et al. (2012)	Varies notably ² Queensland Australia. Y varies from 54–260 L·hh ⁻¹ ·d ⁻¹ , with ave. 137 L·hh ⁻¹ ·d ⁻¹	Non-potable	As above plus toilet flushing and clothes washing	impact (e.g., reduced urban streamflow impacts natural ecosystems)
Greywater ⁴	Christova- Boal et al. (1996); Eriksson et al. (2003); WHO (2006)	Reported Y varies from 218–346 L·hh ⁻¹ ·d ⁻¹ ; or about ± 100 L·c ⁻¹ ·d ⁻¹ (Jacobs and Van Staden, 2008)	Non-potable, relatively poor quality (Maimon et al., 2010)	Outdoor irrigation (Carden et al., 2017); toilet flush (Ilemobade et al., 2012)	Relatively constant yield; yield reduces in line with indoor water savings; relatively high community health risk and environmental risks; high capital and energy cost if treated

Cost Parameters

Graywater

Ind	oor	Outo	door	
MIT, Vitt	er, Book	Comm	nercial	
Income				
Low	High	Low	High	
Community				

Stormwater

Indoor	Outdoor

How much does it cost to install a rainwater collection system?

A rainwater collection system is a way to capture rainwater to save and distribute later. They can be simple or

complex, but either way are a great way to save on your wat

If you live in an area that experiences drought or if you find a rainwater storage and distribution system can help offset re

The true cost of any home improvement project will vary bar tank system will cost about \$2,500, including installation.

Comparing their improved model with the simple method used previously, they found that the energy use and carbon dioxide emissions predicted by the improved method were 60% higher than those predicted by the simple method. For instance, the simple method predicted energy use of 0.32kWh per m³ of rainwater, versus 0.54kWh per m³ from the improved method. Similarly, carbon dioxide emissions increased from 0.34kgCO₂e per m³ of rainwater to 0.56 kgCO₂e per m³. These results emphasised the importance of the amount of pump start-up energy consumption and efficiency and underlined the necessity to estimate the total energy consumption and CO₂ emissions.

Storage tank	Every rainwater system needs a storage tank This holds the water until you need to use it	5,000-gallon polyethylene ³ tank: \$2,000 Steel tank: \$4,000
Tank top- up system	Not required A top-up system will open a valve if the water level gets too low Allow water to flow in from another source	\$100-\$150
Pump	Some systems may include a pump ⁴ Helps push water out of the storage tank and into an irrigation or sprinkler system Optional	\$100-\$1,000
Filters	Filters remove contaminants before the water goes into the storage tank Optional	\$100-\$1,000
Treatment system	If you intend to drink rainwater or use it for household use Optional	\$2,500-\$3,000
Tank gauge	Helps tell you how much water is in your storage tank Optional	\$30-\$40
Pipes	Connect your water storage system to your irrigation system or household pipes	Price will vary significantly Based on the pipe material, length and amount of digging required

5: Aqua2Use Greywater Recycling System

Features

Known as the GWDD system, Aqua2Use collects the water from your bath, shower, and laundry. The water gets filtered through a state-of-the-art system for progressive filtration. After that, the water automatically gets sent over to your irrigation system for a second use.

Because the Aqua2Use system uses full automation, it doesn't require any human intervention for operation. You'd feel surprised at what greywater looks like after you have filtered it. In the long run, this saves you extra cash.

Pros

- · Employs a non-clog filter.
- · Comes with a simple controller.
- · It has an excellent overflow system.
- . It is fairly easy to install.

Cons

- No indicator for on or off.
- · Only one-year warranty.

Price: \$789.95.

Uniqueness of Aqua2use Greywater Treatment System:

- No chemical & disinfectants added
- · No new water needed for backwash
- · Modern design easily integrates with the enviro
- · User friendly: process is automatic & self-main
- · Long lasting Matala filter media, no regular repl
- Progressive biofilter: copes with fluctuating flow pollution

Fig. 2. Autonomous PVRO system.

4.3.1. Capital costs

The capital costs include the purchase price of components, shipping costs to the field site for assembly, and the labor for installation, approximately 10,000 USD (140,000 pesos) for this one-of-a-kind prototype system. Obviously, commercial prices would be substantially lower than these figures. The annualized capital cost is 1342 USD (18,184 pesos). The costs of individual subsystems, sensors, shipping and installation in percentages of total capital cost are presented in Table 3. Annu-

Model

Stormwater

For Cost Energy Assumption

BASE

Min Sump Basin Size: 18 Inch

MOTOR

Horsepower: 1/2HP

Volt: 115
Phase: 1Ph

Hertz: 60Hz

IICI CZI OUTIZ

Running Amps: 10.4
Operation: Automatic

RPM: 1750

Thermal Protection: YES
Power Cord Length: 10 Feet

Cord Type: UL listed, 3-wire neoprene cord and plug

Oil Free Motor: NO Starting Amps: 43.6

<u>PUMP</u>

Housing Material: Cast Iron **Solids Handling Size:** 2 inch

Float Type: Vertical Float

GPH @ 0 feet: 7680 **GPH @ 5 feet:** 7680 **GPH @ 10 feet:** 5340

GPH @ 15 feet: 3000

GPH @ 20 feet: 600

Max Head: 21.5 feet

Max Flow Rate: 128 GPM

Mana On annating Tanana 100 of (54 oc)

Electricity Cost

ID	LL-250	CM-600	LL-350	PP-450	PP-600
Tariff [c/kWh]	126.85	185.32	225.75	210.32	255.75
Max free [kWh]	25	0	60	0	0
Max block [kWh]	325	600	290	600	∞

1 c = 0.01 R = 0.00069 USD

LL: lifeline tariff

CM: credit meter

PP: prepayment meter

Back-up slides

Figure 1. South African energy mix (Ward, 2008)

Back-up slides

Energy consumption per capita in 2004 was 44GJ/capita (SEA, 2006.)
 Much of Cape Town's energy is consumed as electricity, see Figure 7.

		27777				
44 GJ	1 year	7.8W h	1kW	1019 kWh	0.1\$	102\$
	month					
person year	12 s	1GJ	1000 W	month	kWh	month

• A low-income household could spend up to 25% of their monthly income on meeting their energy requirements, with most of the energy required for cooking. Mid to high income households typically spend 3-5% of their monthly income on energy, with the majority of the energy being used in water heating.

This is according to statements made by former Johannesburg mayor and president of the South African Local Government Association (SALGA) Parks Tau during a speech. Tau noted that the country's water consumption far exceeded international benchmarks and that the average water consumption in South Africa is 235 litres per capita per day compared to a world average of 185.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
mm	20	20	30	50	70	90	100	70	50	40	20	20
Days	6	5	6	9	12	14	14	14	12	9	7	7

Here are the figures presented:

Province Consumption (litres/person/day)

•	Eastern Cape	200
•	Free State	209
•	Gauteng	305
	Limpopo	182
•	KwaZulu Natal	225
. •	North West	186
t •	Northern Cape	238
•	Western Cape	201
. •	Mpumalanga	205
	National	233

Residential Water Tariffs (Domestic Full and Domestic Cluster)				
Water Steps (1kl = 1000 litres)	Level 5 (2018/19) Until 30/11/2018 Rands (incl VAT)	Level 3 (2018/19) From 1/12/2018 Rands (incl VAT)		
Step 1 (0 ≤ 6kl)	R24.37 (free for indigent households)	R15.73 (free for indigent households)		
Step 2 (>6 ≤ 10.5kl)	R39.59 (free for indigent households)	R22.38 (free for indigent households)		
Step 3 (>10.5 ≤ 35kl)	R60.25	R31.77		
Step 4 (>35kl)	R345.00	R69.76		

Residential Sanitation Tariffs (Domestic Full and Domestic Cluster)				
Water Steps (1kl = 1000 litres)	Level 5 (2018/19) Until 30/11/2018 Rands (incl VAT)	Level 3 (2018/19) From 1/12/2018 Rands (incl VAT)		
Step 1 (0 ≤ 4.2kl)	R19.47 (free for indigent households)	R13.82 (free for indigent households)		
Step 2 (>4.2 ≤ 7.35kl)	R34.79 (free for indigent households)	R19.67 (free for indigent households)		
Step 3 (>7.35 ≤ 24.5kl)	R51.92	R29.43		
Step 4 (>24.5 ≤ 35kl)	R124.30	R52.96		

Fixed Basic Delivery Charge			
Size (mm)	Monthly Charge Rands (incl VAT)		
15	R64.40 (free for indigent households)		

Global electricity prices in 2018, by select country (in U.S. dollars per kilowatt hour)

What about stormwater?

Opportunity for **low-income** (36%) and **unemployed** (24%) residents

Sizing, distribution and connectivity matter

- Harvesting Method
 Optimize design to
 minimize total network costs
- End-User Dispatch:
 Shift timing of precipitation relative to water demand