

GEC6818实验箱硬件手册

作者	日期	版本	更新内容
粤嵌	2017.01.15	V1.0	初始版本

版权声明

本文档归属广州粤嵌通信科技股份有限公司(以下简称"粤嵌") 所有,并保留一切权利,非经粤嵌同意(书面形式),任何单位及个 人不得擅自摘录本文档部分或者全部内容,违者将追究其法律责任。

目 录

版权声明	1
目 录	2
第一章 前言	3
1.1 目的	3
1.2 对象范围	3
第二章 开发平台介绍	4
2.1 开发平台简介	4
2.2 S5P6818 芯片特性	5
2.3 资源配置	6
2.4 功能简介	6
第三章 硬件资源	10
3.1 核心板资源	10
3.1.1 核心板特性	11
3.1.2 特性参数	11
3.1.3 引脚定义	12
3.2 嵌入式开发平台资源	15
3.2.1 平台硬件接口介绍	15
3.2.2 常用接口说明	17
3.3 实验扩展主板资源	20
3.3.1 扩展板硬件接口介绍	20
3.3.2 模块接口说明	21

第一章 前言

1.1 目的

帮助初学者快速了解和熟悉物联网综合实验教学开发系统。另外,在使用设备之前,请 仔细阅读和遵循该手册进行教学和实验,以免非常规操作而导致设备的损坏;

1.2 对象范围

该手册适用于该平台的初次使用者,既适合于计算机,软件,电子信息,自动化,机电一体化等开设嵌入式、物联网专业课程的教师和学生,又适合于从事 PMP、PDA、智能手机研发的硬件和软件工程师。

第二章 开发平台介绍

2.1 开发平台简介

GEC6818 实验开发平台由嵌入式开发平台和液晶板、实验主板三大块组成,核心板采用 8 层板工艺设计,确保稳定可靠,可以批量用于平板电脑,车机,学习机,POS 机,游戏机,行业监控等多种领域。该平台搭载三星 Cortex-53 系列高性能处理器 S5P6818,八核,最高主频高达 1.4GHz,可应用于嵌入式操作系统的高端应用开发。实验主板留有丰富的外设,支持千兆以太网、板载 LVDS 接口、MIPI 接口、PCIE 接口等。

GEC6818 实验开发平台支持三大操作系统,具备完整的教学资源和教学内容,包括: ARM 微处理器系统驱动的实验、嵌入式实时操作系统 Linux 开发、嵌入式 Android 系统开发、嵌入式 Android 应用开发、嵌入式系统项目实战开发等内容。

2.2 S5P6818 芯片特性

Cortex-A53真八核A53极速处理器

- 主频可达1.4GHz
- 运行温度: -40°C +80°C

GEC6818 开发平台采用三星最新的 64 位八核 Cortex-A53 架构的 S5P6818 芯片设计, 它和 S5P4418 芯片管脚完全兼容, 唯一不同的就是 ARM 内核不一样。二者芯片差异对照表如下:

型号	S5P4418	S5P6818	
上市时间	2014年10月	2014 年	
工艺制程	28nm	28nm	
CPU 主频	1.4G	1.4G+	
封装尺寸	0.65mm 引脚间距,17*17mm2	0.65mm 引脚间距,17*17mm2	
到 表 八 寸	513-FCBGA 封装	513-FCBGA 封装	
CPU 架构	Cortex-A9 四核	Cortex-A53 八核	
缓存容量	32KB*4 I/D 缓存,1MB 二级	32KB*4 I/D 缓存,1MB 二级	
坂竹 谷里	缓存	缓存	
DDR3 接口	单通道 32 位数据总线, 高达	单通道 32 位数据总线, 高达	
DDK3 按口	800MHz 工作频率	800MHz 工作频率	
	H.263 , H.264 , MPEG1 ,	H.263 , H.264 , MPEG1 ,	
多媒体解码	MPEG2, MPEG4, VC1, VP8,	MPEG2, MPEG4, VC1, VP8,	
少然件析问	Theora, AVS, RV8/9/10,	Theora, AVS, RV8/9/10,	
	MJPEG(几乎全格式)	MJPEG(几乎全格式)	
多媒体编码	H.263, H.264, MPEG4, MJPEG	H.263,H.264,MPEG4,MJPEG	
显示接口	显示接口 RGB,MIPI,LVDS		
最大显示分辨率	2048*1280	2048*1280	
以太网接口	需通过地址总线扩展	集成千兆以太网控制器	
GPIO 电平	3.3V	3.3V	
ADC	8路 12 bit 0~1.8V	8 路 12 bit 0~1.8V	

	1路 HOST,1路 HSIC,1路	1路 HOST,1路 HSIC,1路
USB 接口		OTG
芯片 ID	支持 128BIT 唯一 ID 号	支持 128BIT 唯一 ID 号

2.3 资源配置

实验开发平台包括以下主要资源:

电源模块: 开关电源适配器输入, DC1.8V/3.3V/5V/12V多电压输出。

CPU 模块: 三星S5P6818核心处理器、Cortex-A53, 八核处理器

人机交互模块: 鼠标/键盘接口、触摸屏、4*4 矩阵按键、QWERTY全按键键盘

多媒体模块: MIC/LineIn 输入接口、数字音频接口、数字摄像头接口、TFT LCD电容屏、HDMI接口、VGA接口

通信模块接口: SPI接口、IIC 接口、UART接口、USB2.0 接口(HOST/OTG)、以太网接口、GPRS接口、GPS接口、Zigbee无线通信接口、蓝牙无线通信接口、3G模块接口、CAN接口、RS-485接口

大容量存储: SD卡接口、SATA接口

其他模块: GPIO接口、1xI2C存储器、1x SPI储存器、1x RTC时钟电路、1x 蜂鸣器、1x ADC、烟雾传感器模块、温湿度传感器模块、光敏电阻模块、继电器模块、直流电机模块、步进电机模块、RFID模块

2.4 功能简介

GEC6818实验开发平台支持三大操作系统(Android、Linux、Ubuntu),资源比较完备,支持多种方式启动,例如SD卡启动、内置ROM启动等,拥有该实验开发平台,可以实现以下功能或进行以下相关的实验或者扩展实验:

1、Linux系统部分实验:

Linux 开发平台建立实验

Linux内核模块HelloWorld

嵌入式Linux的LED实验

嵌入式Linux下的按键中断实验

嵌入式Linux的蜂鸣器控制实验

嵌入式Linux的定时中断实验

嵌入式Linux的EEPROM读写实验

嵌入式Linux的SD卡读写实验

嵌入式Linux的LCD显示实验

嵌入式Linux的ADC转换实验

嵌入式Linux下的RTC时钟控制

嵌入式Linux下的USB通信实验

嵌入式Linux下的串口实验

嵌入式Linux的TCP/IP协议实验

嵌入式Linux下的GPRS拨号和短信实验

嵌入式Linux下的GPS模块通讯实验

嵌入式Linux的温湿度传感器实验

嵌入式Linux的烟雾传感器实验

嵌入式Linux步进电机控制实验

嵌入式Linux直流电机控制实验

嵌入式Linux继电器控制实验

嵌入式Linux文件IO

嵌入式Linux进程间通信

嵌入式Linux多线程通信

2、多媒体实验:

液晶屏显示实验

视频播放实验

音频接口实验

MP3音频解码实验

3、无线通信实验:

GPS 全球定位实验

GPRS 通信实验

WIFI 通信实验

蓝牙通信实验

Zigbee通信实验

4、GUI实验:

温湿度显示实验

蜂鸣器控制实验

继电器控制实验

直流电机控制实验

步进电机控制实验

Qt Hello World

Qt跑马灯

Qt聊天程序

4、网络实验:

TCP 通信实验

UDP 通信实验

Web Server实验

5、模块实验:

GPI0驱动开发实验

矩阵键盘驱动开发实验

UART 驱动开发实验

ADC驱动开发实验

IIC驱动开发实验

485通信实验

6、高级实验:

BootLoader (Uboot) 开发实验

内核开发实验

根文件系统开发实验

7、综合实验:

手机开发项目

Media Player项目

网络五子棋项目

无线点菜机项目

嵌入式数码相框

嵌入式VOD点播系统

基于RFID超市管理系统

嵌入式温室大棚项目

嵌入式智能家居项目

基于zigbee无线传感网组网

基于GPRS远程监控项目

8、Android系统部分实验:

Android 平台搭建实验

Android 应用程序开发环境搭建实验

Android应用控制LED灯

Android应用控制PWM

Android应用控制ADC

温湿度应用

光感应用

RFID读卡应用

烟雾监控应用

步进电机控制应用

直流电机控制应用

继电器控制应用

Android实现视频播放

Android实现音频播放

Android实现录制视频

Android实现电话功能

第三章 硬件资源

GEC6818 实验开发平台包含核心板、嵌入式开发平台、实验扩展主板,下面对这三大部分进行介绍。

3.1 核心板资源

S5P6818 核心板采用邮票孔的核心板方式设计,核心板可扩展性强,多达 180PIN 管脚,运行速度高达 1.4GHz。PCB 采用 8 层沉金工艺设计,具有最佳的电气特性和抗干扰特性,工作稳定可靠。核心板板载了足以胜任 S5P6818 的 PMU AXP228,带库仑计的充电管理,同时支持 S5P4418 和 S5P6818 正常工作,并集成千兆以太网,可以广泛应用于 MID,POS,PDA,PND,智能家居,手机,车机,学习机,游戏机以及其他各种工控领域。

S5P6818 采用 28nm 制作工艺,内置高性能八核 ARM Cortex-A53 处理器架构,在多媒体性能上,它几乎支持全格式视频解码,在 LCD 控制器上,芯片板载 LVDS、RGB、MIPI 三路显示控制接口,显示分辨率可以高达 2048*1280@60Hz。同时,内部集成千兆以太网控制器,令很多对网络有更高要求的客户垂涎三尺。

GEC6818 的嵌入式开发平台出色的性能,能够完美展现芯片的绝大多数功能,可以大大缩短用户的开发周期。GEC6818 嵌入式开发在设计之初,就充分考虑了 S5P6818 的芯片特性,同时考虑到了很多实际应用场景。从软硬件整体考虑,即大大节约了用料成本,又很完美的将芯片本身的性能发挥到极致,教学、科研以及企业用户的学习与借鉴具有非常大的意义。

3.1.1 核心板特性

GEC-S5P6818 核心板具有以下特性:

- 最佳尺寸,即保证精悍的体积又保证足够的 GPIO 口,仅 68mm*48mm;
- 使用 AXP228 PMU 电源管理设计,在保证工作稳定可靠的同时,成本足够低廉;
- 支持多种品牌,多种容量的 emmc,默认使用东芝 8GB emmc(19nm MLC 工艺);
- 使用单通道 DDR3 设计,默认支持 1GB 容量,可定制 2GB 容量;
- 支持电源休眠唤醒;
- 支持 Linux、android5.1、Ubuntu 嵌入式操作系统;
- 板载千兆有线以太网;

3.1.2 特性参数

结构参数		
外观	邮票孔方式	
核心板尺寸	68mm*48mm*3mm	
引脚间距	1.2mm	
引脚焊盘尺寸	1.8mm*0.8mm	

系统配置		
CPU	S5P6818	
主频	64 位八核 1.4+GHz	
内存	标配 1GB,可定制 2GB	
存储器	4GB/8GB/16GB/32GB emmc 可选,标配 8GB	
电源 IC	使用 AXP228, 支持动态调频, 库仑计等	
以太网	使用 RTL8211E 千兆以太网 PHY	

接口	参数
LCD 接口	同时支持 TTL、LVDS、MIPI 接口输出
Touch 接口	电容触摸,可使用 USB 或串口扩展电阻触摸
音频接口	AC97/IIS 接口,支持录放音
SD 卡接口	2 路 SDIO 输出通道
emmc 接口	板载 emmc 接口,管脚不另外引出
以太网接口	支持千兆以太网
USB HOST 接口	一路 HOST2.0,一路 HSIC
USB OTG 接口	一路 OTG2.0
UART 接口	6 路串口,支持带流控串口

/ // 3 ROCIETIA ROCIETIA (A 1
4 路 PWM 输出
2 路 IIC 输出
1 路 SPI 输出
2 路 ADC 输出
1路 CIF,1路 MIPI 输出
高清音视频输出接口,音视频同步输出
使用 LCD 输出接口扩展
无需启动配置,核心板自动适配

电气特性		
输入电压	3.7~5.5V(推荐使用 5V 输入)	
输出电压	3.3V/4.2V(可用于底板供电及电池充电)	
工作温度	-40~80 度	
储存温度	-10~80 度	

3.1.3 引脚定义

核心板引脚定义 1				
引脚编号	信号	引脚编号	信号	
1	LCD_PWM	28	LCD_CLK	
2	LCD_EN	29	LCD_DE	
3	LCD_RESET	30	LCD_HSYNC	
4	LCD_R0	31	LCD_VSYNC	
5	LCD_R1	32	GPIOE13	
6	LCD_R2	33	MCU_SDA_0	
7	LCD_R3	34	MCU_SCL_0	
8	LCD_R4	35	MCU_HDMI_CEC	
9	LCD_R5	36	MCU_HDMI_HPD	
10	LCD_R6	37	MCU_HDMI_TXCN	
11	LCD_R7	38	MCU_HDMI_TXCP	
12	LCD_G0	39	MCU_HDMI_TX0N	
13	LCD_G1	40	MCU_HDMI_TX0P	
14	LCD_G2	41	MCU_HDMI_TX1N	
15	LCD_G3	42	MCU_HDMI_TX1P	
16	LCD_G4	43	MCU_HDMI_TX2N	
17	LCD_G5	44	MCU_HDMI_TX2P	
18	LCD_G6	45	GND	
19	LCD_G7	46	MCU_LVDS_CLKM	
20	LCD_B0	47	MCU_LVDS_CLKP	
21	LCD_B1	48	MCU_LVDS_Y3M	
22	LCD_B2	49	MCU_LVDS_Y3P	
23	LCD_B3	50	MCU_LVDS_Y2M	

公司地址:广州科学城光谱西路 69 号 TCL 文化产业园 B 栋

广州粤嵌通信科技股份有限公司

24	LCD_B4	51	MCU_LVDS_Y2P
25	LCD_B5	52	MCU_LVDS_Y1M
26	LCD_B6	53	MCU_LVDS_Y1P
27	LCD_B7	54	MCU_LVDS_Y0M

	核心板引脚定义 2			
引脚编号	信号	引脚编号	信号	
55	MCU_LVDS_Y0P	73	MIPICSI_DN0	
56	MIPIDSI_DP3	74	MIPICSI_DP0	
57	MIPIDSI_DN3	75	MIPICSI_DNCLK	
58	MIPIDSI_DP2	76	MIPICSI_DPCLK	
59	MIPIDSI_DN2	77	CAM_H	
60	MIPIDSI_DP1	78	CAM_V	
61	MIPIDSI_DN1	79	CAM_CLK	
62	MIPIDSI_DP0	80	CAM_D0	
63	MIPIDSI_DN0	81	CAM_D1	
64	MIPIDSI_DPCLK	82	CAM_D2	
65	MIPIDSI_DNCLK	83	CAM_D3	
66	MIPIDSI_VREG	84	CAM_D4	
67	MIPICSI_DN3	85	CAM_D5	
68	MIPICSI_DP3	86	CAM_D6	
69	MIPICSI_DN2	87	CAM_D7	
70	MIPICSI_DP2	88	MCU_CAM1_MCLK	
71	MIPICSI_DN1	89	CAM_PN	
72	MIPICSI_DP1	90	CAM_RST	

核心板引脚定义 3			
引脚编号	信号	引脚编号	信号
91	CAM_PD	118	UARTTXD1
92	GPIOB8	119	UARTRXD0
93	MCU_CAM1_D7	120	UARTTXD0
94	MCU_CAM1_D4	121	GND
95	MCU_CAM1_D3	122	VBAT
96	MCU_CAM1_D2	123	VBAT
97	MCU_CAM1_D1	124	+5V_IN
98	MCU_CAM1_D0	125	+5V_IN
99	MCU_I2S_MCLK	126	VBAT_SYS
100	MCU_I2S_BCK	127	GND
101	MCU_I2S_SDIN	128	LINK_LED
102	MCU_I2S_SDOUT	129	SPEED_LED
103	MCU_I2S_LRCK	130	MDI0_P
104	MCU_HP_DET	131	MDI0_N

公司地址:广州科学城光谱西路 69 号 TCL 文化产业园 B 栋

广州粤嵌通信科技股份有限公司

105	SPDIF_TX	132	MDI1_P
106	SPDIF_RX	133	MDI1_N
107	MCU_KEY_VOLDN	134	MDI2_P
108	MCU_KEY_VOLUP	135	MDI2_N
109	MCU_NRESETIN	136	MDI3_P
110	MCU_PWRKEY	137	MDI3_N
111	GPIOA28	138	USBHSIC_DATA
112	GPIOB9	139	USBHSIC_STROBE
113	UARTRXD3	140	USB_HOST_D-
114	UARTTXD3	141	USB_HOST_D+
115	UARTRXD2	142	OTG_USB-
116	UARTTXD2	143	OTG_USB+
117	UARTRXD1	144	USB_ID

	核心板引脚定义 4			
引脚编号	信号	引脚编号	信号	
145	DC5V_OTG	163	MCU_SD1_D0	
146	SEN0_INT	164	MCU_SD1_D1	
147	MCU_OTG_PWRON	165	MCU_SD1_D2	
148	GPIOC11	166	MCU_SD1_D3	
149	GPIOC7	167	MCU_SD0_CD	
150	GPIOC12	168	MCU_SD0_D3	
151	ADC1	169	MCU_SD0_D2	
152	ADC0	170	MCU_SD0_D1	
153	PWM2	171	MCU_SD0_D0	
154	SPI_WP	172	MCU_SD0_CMD	
155	SPIFRM0	173	MCU_SD0_CLK	
156	SPIRXD0	174	RTC	
157	SPITXD0	175	VCC3P3_SYS	
158	SPICLK0	176	MCU_SCL_2	
159	IR	177	MCU_SDA_2	
160	MCU_SD1_CD	178	MCU_SCL_1	
161	MCU_SD1_CLK	179	MCU_SDA_1	
162	MCU_SD1_CMD	180	TOUCH_INT	

注:每个接口或模块的引脚定义和占用的 CPU 资源,光盘中另有核心板的完整 PDF 格式理图(名字为: 1_gec_s5p4418_6818_core),以供参考使用。

3.2 嵌入式开发平台资源

3.2.1 平台硬件接口介绍

硬件接口		
标号	名称	说明
[1]	UART4	通用串口 4,TTL 电平
[2]	UART3	通用串口 3, TTL 电平
[3]	UART2	通用串口 2, TTL 电平
[4]	UART1	通用串口 1, RS232 电平
[5]	UART0	调试串口 0 (默认调试口, RS232 电平)
[6]	HDMI 接口	HDMI 输出接口
[7]	MIPI 接口	接 MIPI 接口的液晶屏

		/ 州粤嵌进信科技股份有限公司
[8]	LVDS 接口	接 LVDS 接口的液晶屏
[9]	LCD/VGA 接口	RGB 输出接口
【10】	SD 卡, CH0	SD 卡,使用通道 0
【11】	SD 卡, CH1	SD 卡,使用通道 1
【12】	POWER 开关	电源控制开关, K5
【13】	按键,返回	独立按键, K2
【14】	按键,音量减	独立按键, K3
[15]	按键,音量加	独立按键,K4
【16】	按键,菜单	独立按键, K6
【17】	蜂鸣器	支持有源蜂鸣器
[18]	硬复位按钮	硬复位,K1
【19】	电池接口	单节 4.2V 锂电池接口
【20】	5V 输入插孔	直流电源输入口
【21】	USB OTG	USB OTG 接口
[22]	WIFI/BT 模块接口	支持 USB WIFI/BT 模块
【23】	USB HOST1	HUB 芯片扩展,HOST
【24】	USB HOST2	HUB 芯片扩展,HOST
【25】	千兆以太网接口	RT8211E 接口
【26】	GPIO 接口	SPI、UART、ADC 设备扩展
[27]	摄相头接口	标准 24PIN 并口摄相头接口
[28]	摄相头接口	26PIN MIPI CSI 摄相头接口
_	-	

		/ 川号队起旧村及放仍有限公司
【29】	VGA 接口	VGA 接口
【30】	 耳机接口	耳机输出
【31】	锂电池座	3V 锂电电池座
[32]	红外接收头	HS0038 红外一体化接收头
[33]	扩展板 GPIO	可与实验扩展主板连接,GPIO、LCD、总线等

3.2.2 常用接口说明

1、电源接口

实验开发平台总电源接口为 J3,如上图所示,该接口在实验扩展主板上(**注意:核心** 板底板上的电源输入接口 CN1 为 DC5V),我们提供的电源适配器的输出电压为 DC12V。

2、调试串口

嵌入式开发平台预留 RS232 串口,分别为 UARTO。默认使用 UARTO 作为调试串口, UARTO 为标准 DB9 接口。你可以通过附带的交叉串口线和 PC 进行通讯。

3、USB OTG 接口

该接口用于程序烧写,同步等。它还能通过 OTG 线实现 HOST 的功能。

4、以太网接口

开发平台支持千兆有线以太网接口,板载 RTL8211E,用户可以通过有线以太网上网,体验极速网络。

5、TF卡槽

开发平台引出两个外置 TF 卡,对应 S5P6818 的通道 0 和通道 1,默认可以通过 SD0 进行 TF 卡升级,或是存放一些多媒体文件。

6、HDMI 接口

开发平台采用 HDMI 接口,配合 HDMI 的延长线,可以将音视频信号完美的呈现在支持 HDMI1.4 协议的监控终端,如电视机,显示器等。

7、camera 接口(并口)

该接口为通用的 24PIN 并口摄相头接口,支持 OV 全系列摄相头,省去 camera 转接板。针对不同型号的摄相头,只需按照摄相头的规格,调整一下输出电压就行了。同时,该接口可兼容配套的 TVP5150, TVP5146 等 AVIN 模块。

8、camera 接口(MIPI CSI 接口)

该接口为通过的 26PIN MIPI 摄相头接口,用于驱动高分辨率的 MIPI 摄相头。

9、音频接口

一个 3.5mm 音频输入接口(红色),一个 3.5mm 输出接口(绿色),可直接接耳机,用于音频的播放和录制。

10、USB HOST 接口

S5P6818 自带有 USB HOST 接口,开发平台通过该 HOST 接口扩展出了 3 路 USB HOST2.0 接口,其中 2 路通过标准的 TypeA 接口引出,可用于连接 USB WIFI, USB 蓝牙, USB 鼠标键盘等,1 个用于总线扩展。

11、LCD 接口(RGB 接口)

开发平台底板默认留有一个 40PIN 的 LCD 接口,通过软排线将 RGB 相关信号连接到 LCD 控制板上,进而控制 LCD 和显示。

注:光盘中另有嵌入式开发平台底板的完整 PDF 格式原理图 (名为 2_gec_6818_base_V1.1),详细部分可进行查阅,以供参考使用。

3.3 实验扩展主板资源

3.3.1 扩展板硬件接口介绍

硬件接口		
标号	名称	说明
[1]	嵌入式开发平台	包含嵌入式核心板、GPIO等资源,可作为物联网平台的嵌入式网关;
[2]	LCD 接口	7 寸电容触摸屏, 800X480 分辨率;
[3]	UART1	RS232 接口;
[4]	UART2	RS232 接口;
[5]	UART3	RS232 接口;
[6]	USB 键盘	板载标准 QWERTY 全按键键盘,带 Fn 功能键;
[7]	1.8 寸 LCD 模块	1.8 寸 TFT LCD,单片机控制模块,用于显示通讯接口组合模式;

鼠标、
录口;

3.3.2 模块接口说明

1、嵌入式开发平台(嵌入式网关)

2、7寸 LCD 电容触摸屏

7寸 800x480 分辨率,LCD 型号为 AT070TN92。

3、1.8 寸 LCD 显示模块

采用 SPI 通信方式,与单片机模块串口通讯;

4、USB 键盘

标准 QWERTY 全按键键盘,带 Fn 功能键

5、4X4 矩阵键盘

采用 ZLG7290B 芯片,基于 I2C 总线接口的芯片。

6、USB HUB 接口

4个 USB HUB 接口,支持 USB2.0 协议。

7、GPRS 模块

采用 M35 芯片,可用于拨打电话、发送信息、上网等功能。

8、GPS 模块

采用 JN3 芯片,可用于坐标的采集与定位功能。

9、WSN 协调器

(程序烧录接口)

采用 CC2530 芯片,可用于无线传感网,可加入传感节点。

10、蓝牙主机

(程序烧录接口)

采用 CC2540 芯片,可与从机节点进行无线蓝牙通讯。

11、Mini PCIE 接口

标准的 Mini PCIE 接口, USB 通讯方式,可外接 3G/4G 模块。

12、RFID 模块

工作频率: 13.56MHz。

13、RS-232 串口

串口1、串口2、串口3,可用于外接RS-232信号通讯模块。

14、CAN 总线

15、RS-485 总线

16、步进电机模块

采用 UNL2003 电机驱动芯片,可控制电机的正、反转,以及速度的快慢;

17、直流电机

L9110 控制芯片,可实现电机的正、反转。

18、继电器模块

5V继电器模块,采用 GPIO 控制。

19、气体烟雾模块

采用 LM393 比较器,中断方式出发。

20、光照度模块

通过 ADC 采集方式。

注: 在光盘中另有实验扩展板的完整 PDF 格式理图 (名字为: 3_4412_box_Main_sch_V1),详细请查阅,以供参考使用。