import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
import seaborn as sns
from sklearn.preprocessing import scale

##loading dataset

data=pd.read_csv("Churn_Modelling.csv")

data.head()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Ba:
0	1	15634602	Hargrave	619	France	Female	42	2	
1	2	15647311	Hill	608	Spain	Female	41	1	838
2	3	15619304	Onio	502	France	Female	42	8	1596
3	4	15701354	Boni	699	France	Female	39	1	
4	5	15737888	Mitchell	850	Spain	Female	43	2	1255
4									•

data.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
9995	9996	15606229	Obijiaku	771	France	Male	39	5
9996	9997	15569892	Johnstone	516	France	Male	35	10
9997	9998	15584532	Liu	709	France	Female	36	7
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3
9999	10000	15628319	Walker	792	France	Female	28	4
4								•

#univariate analysis

sns.distplot(data.Balance)

C:\Users\amarnath\anaconda3\lib\site-packages\seaborn\distributions.py:2619: FutureWarnings.warn(msg, FutureWarning)

<AxesSubplot:xlabel='Balance', ylabel='Density'>

#bivariate analysis

sns.scatterplot(data.Balance,data.CustomerId)

C:\Users\amarnath\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnir
warnings.warn(

<AxesSubplot:xlabel='Balance', ylabel='CustomerId'>

#multivariate analysis

sns.pairplot(data)

<seaborn.axisgrid.PairGrid at 0x1e27ba06820>

#descriptive statics

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balaı
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.0000
mean	5000.50000	1.569094e+07	650.528800	38.921800	5.012800	76485.8892
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.4052
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.0000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.0000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.5400
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.2400
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.0900
4						>

#handling the missing values

data.isna().sum()

0
0
0
0
0
0
0
0
0
0
0
0
0
0

#handling outliers

sns.boxplot(data['CreditScore'])

C:\Users\amarnath\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnir
warnings.warn(

<AxesSubplot:xlabel='CreditScore'>

data['CreditScore']=np.where(data['CreditScore']<400,650,data['CreditScore'])</pre>

sns.boxplot(data['CreditScore'])

C:\Users\amarnath\anaconda3\lib\site-packages\seaborn_decorators.py:36: FutureWarnir
warnings.warn(

<AxesSubplot:xlabel='CreditScore'>

#encoding

data['Gender'].replace({'Male':1, 'Female':0}, inplace=True)

data.tail()

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
9995	9996	15606229	Obijiaku	771	France	1	39	5
9996	9997	15569892	Johnstone	516	France	1	35	10
9997	9998	15584532	Liu	709	France	0	36	7
9998	9999	15682355	Sabbatini	772	Germany	1	42	3
9999	10000	15628319	Walker	792	France	0	28	4
4								•

#Split the data into dependent and independent variables

```
y=data['EstimatedSalary']
     0
             101348.88
     1
             112542.58
     2
             113931.57
     3
              93826.63
              79084.10
                . . .
     9995
              96270.64
     9996
             101699.77
     9997
              42085.58
     9998
              92888.52
     9999
              38190.78
     Name: EstimatedSalary, Length: 10000, dtype: float64
```

x=data.drop(columns=['EstimatedSalary'],axis=1)
x

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure
0	1	15634602	Hargrave	619	France	0	42	2
1	2	15647311	Hill	608	Spain	0	41	1
2	3	15619304	Onio	502	France	0	42	8
3	4	15701354	Boni	699	France	0	39	1
4	5	15737888	Mitchell	850	Spain	0	43	2
9995	9996	15606229	Obijiaku	771	France	1	39	5
9996	9997	15569892	Johnstone	516	France	1	35	10
9997	9998	15584532	Liu	709	France	0	36	7
9998	9999	15682355	Sabbatini	772	Germany	1	42	3
9999	10000	15628319	Walker	792	France	0	28	4
10000 r	rows × 13 colu	ımns						>

Scaling the independent variables

```
x=data.drop(columns=['Geography'])
```

	RowNumber	CustomerId	Surname	CreditScore	Gender	Age	Tenure	Balance	I
0	1	15634602	Hargrave	619	0	42	2	0.00	
1	2	15647311	Hill	608	0	41	1	83807.86	
2	3	15619304	Onio	502	0	42	8	159660.80	
3	4	15701354	Boni	699	0	39	1	0.00	
4	5	15737888	Mitchell	850	0	43	2	125510.82	
9995	9996	15606229	Obijiaku	771	1	39	5	0.00	
9996	9997	15569892	Johnstone	516	1	35	10	57369.61	
9997	9998	15584532	Liu	709	0	36	7	0.00	
0000	0000	45000055	O-FF-#:-:	770	A	40	2	75075 04	

x=data.drop(columns=['Surname','Geography'])

Χ

	RowNumber	CustomerId	CreditScore	Gender	Age	Tenure	Balance	NumOfProduc
0	1	15634602	619	0	42	2	0.00	
1	2	15647311	608	0	41	1	83807.86	
2	3	15619304	502	0	42	8	159660.80	
3	4	15701354	699	0	39	1	0.00	
4	5	15737888	850	0	43	2	125510.82	
9995	9996	15606229	771	1	39	5	0.00	
9996	9997	15569892	516	1	35	10	57369.61	
9997	9998	15584532	709	0	36	7	0.00	
9998	9999	15682355	772	1	42	3	75075.31	
9999	10000	15628319	792	0	28	4	130142.79	
10000 rows × 12 columns ◀								

x=scale(x)

Χ

```
array([[-1.73187761, -0.78321342, -0.33452426, ..., 0.97024255, 0.02188649, 1.97716468], [-1.7315312, -0.60653412, -0.44928208, ..., 0.97024255, 0.21653375, -0.50577476], [-1.73118479, -0.99588476, -1.55513017, ..., -1.03067011,
```

```
0.2406869 , 1.97716468],
            [1.73118479, -1.47928179, 0.60440336, ..., 0.97024255,
             -1.00864308, 1.97716468],
            [1.7315312, -0.11935577, 1.26165269, ..., -1.03067011,
             -0.12523071, 1.97716468],
            [1.73187761, -0.87055909, 1.47030328, ..., -1.03067011,
             -1.07636976, -0.50577476]])
# Splitting the data into training and testing
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=0)
x_train.shape
     (8000, 12)
x_test.shape
     (2000, 12)
y_test.shape
     (2000,)
```

Colab paid products - Cancel contracts here