CM1501 Grignard Reactions

Grignard Reagent

Grignard with Epoxides

Grignard with Aldehyde/Ketone

Grignard with Esters

Grignard with Nitriles

Grignard with COOH

Tautomerism

Grignard Reagent

- Increase number of C.
- Alternative method: Nitrile hydrolysis (SN2 with -CN)

1. Mg
$$OR$$

2. CO_2 1. CN

3. H_3O^+ 2. H_3O^+

Br CO_2H

 Grignard reagent cannot be used when there is acidic functional group (e.g. -COOH, -OH, -NH2, RCCH) in the compound as the Grignard reagent is immediately quenched by the proton source. ⇒ use CN hydrolysis

A Grignard reagent cannot be prepared from a compound containing an acidic functional group because the Grignard reagent is immediately quenched by the proton source:

Acidic proton sources include -CO₂H, -OH, -NH₂ and RC≡CH, e.g. BrCH₂CH₂NH₂ is another compound that does not form a Grignard reagent.

 Use Grignard if the compound does not favour SN2 (e.g. bulky or secondary and above)

$$\begin{array}{ccc} \text{O} & \text{O} \\ \parallel & \parallel \\ \text{CH}_{3}\text{CCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{I} & \longrightarrow & \text{CH}_{3}\text{CCH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CO}_{2}\text{H} \\ \end{array}$$

neither method will yield the desired product as both Grignard and CN will attack C=O instead of -I

Grignard with Epoxides

This is essentially an S_N2 reaction. Attack occurs with inversion of configuration:

Grignard with Aldehyde/Ketone

Grignard Addition To Aldehydes and Ketones: How It Works

The nucleophilic pair of electrons in the C–Mg bond attack the carbonyl carbon, breaking the C–O (π) bond. In the second step, a proton source is added in workup.

Note: "Addition" is **THE** most important mechanism for carbonyls. Carbonyl carbons are electrophiles, and will react with many different nucleophiles!

Grignard with Esters

Addition of Grignard Reagents To Esters: How It Works

- In the first step, the nucleophile (Grignard) attacks the carbonyl carbon in an addition reaction (essentially the same step as for ketones/aldehydes).
- THEN, the C–O π bond re-forms, displacing a leaving group (alkoxide, RO-) . This is a ketone!
- The ketone is then attacked by a second equivalent of nucleophile, leading to formation of a new alkoxide. Workup (addition of water or acid) completes the reaction.

Grignard with Nitriles

Reaction of Grignard reagents with nitriles to form ketones

Step 2: Addition of acid; protonation

Step 4: 1,2-addition of water

Step 3: Protonation

Step 6: 1,2-elimination

$$\begin{array}{c} \bigoplus_{H_2 \text{O} \to H} \\ \bigoplus_{H_2 \text{N}} \\ \bigoplus_{1 \text{O} \to H} \\$$

$$+ H-OH_{2} \qquad H_{2}O: M$$

$$H_{2}O: M$$

$$H_{$$

Grignard with COOH

Carboxylic Acids Will Neutralize Strongly Basic Nucleophiles

Reaction you might think would happen:

Addition of Grignard reagent to carboxylic acid

What actually happens:

Irreversible Acid base reaction between carboxylic acid and Grignard

Tautomerism