K-means praktična razmatranja

- Da li konvergira? Da li u lokalni ili u globalni minimum?
- ➤ Kako da procenimo kvalitet dobijenih klastera?
- Kako da odredimo broj klastera K?
- Kako definisati metriku udaljenosti/sličnosti?

Kvalitet klastera

Neka je broj klastera fiksan (3)

Koji rezultat preferiramo?

Kvalitet klastera

Za fiksan broj klastera

- K-means ima za cilj da minimizuje sumu kvadratnih rastojanja opservacija od centroida
- Možemo ovo direktno koristiti kao meru evaluacije (manja vrednost je bolja):

$$\sum_{j=1}^{\kappa} \sum_{i:z^{(i)}=j} \|\mu_j - x^{(i)}\|_2^2$$

(merimo heterogenost klastera)

Šta ako uvećamo broj klastera?

 Možemo da rafiniramo klastere sve više i više prema podacima

- U ekstremnom slučaju K = N
 - Svaka tačka je poseban klaster (svaki centroid odgovara toj jednoj opservaciji u klasteru)
 - Heterogenost je 0!

 Sa povećanjem K smanjuje se najmanja moguća heterogenost klastera

K-means praktična razmatranja

- Da li konvergira? Da li u lokalni ili u globalni minimum?
- Kako da procenimo kvalitet dobijenih klastera?
- ➤ Kako da odredimo broj klastera *K*?
- Kako definisati metriku udaljenosti/sličnosti?

 Ovo je netrivijalan problem koji može biti težak i za (ljudskog) eksperta

- Rekli smo da je manja heterogenost bolja
- Ali ne želimo previše klastera jer onda ne opisujemo dobro strukturu koja postoji u podacima
- Treba nam nagodba između ova dva cilja heuristika "lakat na krivoj"

Heuristika "lakat na krivoj"

Proverite:

- Algoritam
- Pretprocesiranje
- Vizualizujte rezultate
- Razmotrite druge mere poput Silhouette function

Heuristika "lakat na krivoj"

- Metod je i računski zahtevan
- Treba da crtamo najmanju moguću heterogenost, što znači da bismo za svaku vrednost K trebali isprobati sve moguće podele na K klastera
- U praksi, za isto K primenićemo više slučajnih inicijalizacija algoritma (čak i ako koristimo K-means++) i na grafiku zabeležiti najmanju dobijenu heterogenost

• Imajte u vidu da je "lakat na krivoj" samo heuristika

 Želimo da evaluiramo klasterovanje iz konteksta konkretnog problema koji rešavamo

- Šta želimo od dobre klasterizacije?
 - Objekti unutar istog klastera treba da su slični
 - Objekti iz različitih klastera treba da su manje slični

- Na primer, ako klasterujemo tekstualne dokumente, *loš* klastering će imati sledeće osobine:
 - Dokumenti unutar istog klastera imaju mešoviti sadržaj
 - Dokumenti sličnog sadržaja su razbacani u više različitih klastera
- Pokazaćemo ovo na primeru klasterizacije Wikipedia stranica
 - Pronaći ćemo članke najbliže centroidima (smatraćemo da reprezentuju klaster) i pregledaćemo njihove naslove i prve rečenice
 - Za svaki klaster ćemo pronaći top 5 reči (prema broju pojavljivanja u klasteru)

Primer – klasterovanje Wikipedia članaka

K=2	Cluster 0	artists, songwriters, professors, politicians, writers,
	Cluster 1	baseball players, hockey players, soccer (association football) players,

- Glavne reči u klasteru 1 se odnose na sport
- Glavne reči u klasteru 0 ne pokazuju jasan šablon
- Gruba podela je sportisti/ostalo
- Želeli bismo da klaster 0 podelimo na više kategorija pa ćemo uvećati K

Primer – klasterovanje Wikipedia članaka

<i>K</i> = 10	Cluster 0	artists, actors, film directors, playwrights
	Cluster 1	soccer (association football) players, rugby players
	Cluster 2	track and field athletes
	Cluster 3	baseball players
	Cluster 4	professors, researchers, scholars
	Cluster 5	Austrailian rules football players, American football players
	Cluster 6	female figures from various fields
	Cluster 7	composers, songwriters, singers, music producers
	Cluster 8	composers, songwriters, singers, music producers
	Cluster 9	ice hockey players
	Cluster 10	politicians

- Klasteri 0, 1 i 5 su i dalje mešovitog sadržaja, ali ostali izgledaju dosta konzistentno
- Neki su "veći" od drugih. Na primer, klaster 4 je sveobuhvatniji od klastera 3 možda bi uvećavanje broja klastera razbilo veće klastere

Primer – klasterovanje Wikipedia članaka

- Visoke vrednosti K bi rezultovale čistijim klasterima, ali ne možemo stalno uvećavati K
- Moramo se zapitati koliko granularnosti želimo u klasterima
 - Ako želimo grub pregled Wikipedia članaka ne želimo suviše sitnu podelu
 - Ako želimo da se fokusiramo na određeni deo Wikipedia članaka
 - treba da uvećamo*K*

Primer – podela majica na veličine

- Recimo da želimo da prodajemo majice
 - Prikupili smo podatke o visini i težini mušterija
 - Pitamo se koje veličine majica treba da ponudimo (S/M/L ili XS/S/M/L/XL)
 - Možemo probati da klasterujemo mušterije u 3 i u 5 klastera i onda da za svaku podelu procenimo koliko dobro će majice odgovarati mušterijama
 - Dakle, u ovom slučaju evaluiramo broj klastera na osnovu cilja klasterovanja (domena)

Kako da odaberemo K – zaključak

 Zaključak: ne postoji zlatno pravilo za izbor K – sve zavisi od konkretnog domena i zadatka

• Možemo:

- Probati da odredimo broj klastera vizuelizacijom skupa podataka (ali ovo ne mora uvek biti moguće)
- Probati da primenimo heuristiku "lakat na krivoj", ali ovo ne mora uvek da rezultuje jasnim (ili optimalnim) brojem klastera
- Analizirati rezultate klasterovanja dobijene za različite vrednosti K (primer Wikipedia članaka)
- Proceniti broj klastera na osnovu poznavanja domena/cilja klasterovanja (primer veličina majica)