R-L and R-C DC Transient

Name: Adwait S Purao UID: 2021300101 Batch: B2

Question 1:

1. Calculate time constant for the given circuit. R₁= 3, R₂=6, R₃=2, R₄=4, C=2, V₁=3V, I₁=2A, I₂=4A

At 63% of voltage reached the time is 20 sec which matches the theoretical value of Time constant. Also the value of V_{Th} matches the peak voltage.

.)	Observation Table:		2 = 14xE	
		- 23	+ 5 11	
		77-7 E	+ ~	- F 707
	Mode	VTH (v)	RTM(22)	7 (8)
	Theoretical	290	10.33.22	20.666
	Sequel	29 V	10.33 2	20.665 s

Question 2:

2. The switch S has been in position 1 for long time. It is thrown to position 2 at t=0. Compute i(t). $R_1=5$, $R_2=10$, L=3, $V_1=5$, $V_2=10$

Question 3:

3. Calculate $i_1(t)$ and $i_2(t)$ when switch is closed at t=0.

The peak value of current of both, the theoretical and sequel implemented circuits come out to be 4A

Question 4:

4. The switch is opened for long time and it has been closed at t=0. Find $v_c(t)$

The final value of voltages both, the theoretical and sequel simulation comes to 900V.

Question 5:

5. The switch has been closed for long time. Calculate v_c and i if switch is thrown open. V_1 = 100, R_1 = 300, R= 200, C=2

Sequel Simulation:

Name	V-C	i
Sequel	100V	0.2A
Theoretical	100V	0.2A

EXPERIMENT No: 4 DATE: 10 / 07 / 2022

R-L and R-C DC Transient response

AIM: To verify DC Transient response for the given R-L an R-C circuits.

APPARATUS AND COMPONENTS REQIRED: Sequel Simulator

THEORY: Write theory related with following questions:

1) Define time constant, initial condition, final condition, transient response, natural response, forced response.

Time Response: The time required for a changing quantity in a circuit, as voltage or current, to rise or fall approximately 0.632 of the difference between its old and new value after an impulse has been applied that induces such a change: equal in seconds to the inductance of the circuit in henries divided by its resistance in ohms.

Initial Condition: The values of the dependent variable (current and voltage) and their higher derivatives just after the instant of switching are known as an initial conditions.

Final Condition: The values of the dependent variable (current and voltage) and their higher derivatives at a very long time after the instant of switching are known as an final conditions.

Transient Conditions: a transient response or natural response is the response of a system to a change from equilibrium

Natural Response: The natural response of a circuit is what it does "naturally" as its internal energy moves around. As the energy sloshes around we track what happens to voltage and current.

Forced Response: The forced response is where the output (the voltage on the capacitor) is going to end up in the long run after all stored energy eventually dissipates.

PROCEDURE:

- 1) Solve the problems given in below table (as per your batch e.g. X1= A1/B1/C1) to obtain transient response of R-L and R-C circuits
- 2) Verify the solution of the problems solved in step 1 using Sequel software.

RESULT:

Problem no.	Parameter	Theoretical	Practical
1	Time Constant	20.667 s	20.665 s
2	Current	1 A	1 A
3	Current	4 A	4 A
4	Voltage	900 V	900 V
5	Voltage and Current	100 V, 0.2 A	100 V, 0.2 A

CONCLUSION:

	In this experiment we learn't about DC
The state of	In this experiment we learnt about DC Transents cercuits. We solved 5 sums on
	paper and reeriffeed them with the help of
	sequel software.
	sequel software. We learnt about the Ifme-constants on R-L
	and R-C cercusts.
I	

as

Bharatiya Vidya Bhavan's Sardar Patel Institute of Technology

Bhavan's Campus, Munshi Nagar, Andheri (West), Mumbai-400058-India (Autonomous College Affiliated to University of Mumbai)

Applied Science and Humanities Department