Université Paris-Sud
2018–2019
Math201

Feuille 10 : Réduction et forme de Jordan

Exercice 1. Soit ϕ l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est la matrice A suivante:

$$A := \begin{pmatrix} 4 & 3 & -1 \\ -2 & -1 & 2 \\ -1 & -1 & 4 \end{pmatrix}.$$

- 1. Déterminer un vecteur non nul ϵ_1 tel que $\phi(\epsilon_1)=3\epsilon_1$, puis un vecteur ϵ_2 tel que $\phi(\epsilon_2)=3\epsilon_2+\epsilon_1$.
- 2. Montrer que $Vect(\epsilon_1, \epsilon_2)$ est un plan vectoriel stable sous ϕ .
- 3. Déterminer une matrice inversible P telle que $P^{-1}AP = \begin{pmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & \alpha \end{pmatrix}$, où α est un nombre réel que l'on précisera.
- 4. Calculer A^n pour tout entier n strictement positif.

Exercice 2. Soient V un \mathbb{R} -espace vectoriel de dimension 2, et f un endomorphisme de V dont le polynôme caractéristique est $X^2 + 2$.

- 1. Montrer qu'aucun vecteur de V n'est un vecteur propre de f.
- 2. Soit e_1 un vecteur non nul de V. Montrer qu'on peut trouver e_2 tel que (e_1, e_2) soit une base de V dans laquelle la matrice de f est $\begin{pmatrix} 0 & -2 \\ 1 & 0 \end{pmatrix}$.
- 3. On désigne par \mathcal{C} le sous-espace vectoriel de $\mathcal{L}(V)$ formé des endomorphismes g tel que $g \circ f = f \circ g$. Montrer que, pour tout $g \in V$, il existe un unique $g \in \mathcal{C}$ tel que $g(e_1) = g$. En déduire que (f, Id) est une base de \mathcal{C} .

Exercice 3. Soit E un \mathbb{R} -espace vectoriel de dimension 3. On considère un endomorphisme u de E dont le polynôme caractéristique est $X(X^2+2)$ et on pose $V=\mathrm{Ker}(u^2+2\mathrm{Id})$.

- 1. Quelle est la dimension de $\operatorname{Ker} u$?
- 2. Montrer que $\operatorname{Ker} u \cap V = \{0\}$, puis que $E = \operatorname{Ker} u \oplus V$.
- 3. Soit W un supplémentaire de Ker u stable sous u. Montrer que W = V.

Exercice 4. Soit
$$M = \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$$
.

- 1. Trouver un polynôme annulateur de M de degré minimal A.
- 2. Effectuer, pour tout n entier naturel plus grand que 2, la division euclidienne de X^n par A et en déduire M^n .

3. On pose $u_0 = 1$, $v_0 = -1$ et $w_0 = 2$ puis $u_{n+1} = 2u_n + v_n + w_n$, $v_{n+1} = u_n + 2v_n + w_n$, $w_{n+1} = u_n + v_n + 2w_n$. Calculer u_n , v_n et w_n en fonction de n.

Exercice 5. Soient
$$U = \begin{pmatrix} 3 & -2 \\ 1 & 0 \end{pmatrix}$$
 et $V = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$.

- 1. Calculer pour tout entier n les matrices U^n et V^n .
- 2. On considère les suites de nombres réels définies par les relations de récurrence : $u_{n+2} 3u_{n+1} + 2u_n = 0$, $u_0 = 1$ et $u_1 = -1$ et $v_{n+2} 2v_{n+1} + v_n = 0$, $v_0 = 1$ et $v_1 = -1$. Calculer u_n et v_n en fonction de n.

Exercice 6 (Calcul des puissances d'une matrice). Soit $n \in \mathbb{N}^*$, \mathbb{K} un corps et $M \in \mathcal{M}_n(\mathbb{K})$ une matrice n lignes n colonnes à coefficients dans \mathbb{K} . On suppose qu'il existe un polynôme $\alpha := \prod_{i=1}^d (X - \lambda_i) \in \mathbb{K}[X]$ scindé à racines simples (i.e. $\forall 1 \leq i \leq d, \forall 1 \leq j \leq d, \lambda_i = \lambda_j \Rightarrow i = j$) et tel que $\alpha(M) = 0$.

1. Pour tout $k \in \mathbb{N}$, montrer qu'il existe un unique polynôme $Q \in \mathbb{K}[X]$ et un unique d-uplet $(a_{k,i})_{0 \le i \le d-1}$ tels que :

$$X^k = Q\alpha + \sum_{i=0}^{d-1} a_{k,i} X^i.$$

2. En déduire que

$$M^k = \sum_{i=0}^{d-1} a_{k,i} M^i.$$

3. Écrire le système dont les $a_{k,i}$ sont solutions et montrer que ce dernier admet une unique solution. (Voir l'exercice sur Vandermonde.)

Exercice 7. 1. Vérifier que la matrice $A = \begin{pmatrix} 3 & -2 & -2 \\ -4 & 1 & 2 \\ 8 & -4 & -5 \end{pmatrix}$ admet -1 pour valeur propre et déterminer une matrice inversible P telle que $P^{-1}AP$ soit diagonale.

2. Résoudre le système différentiel :

$$\begin{cases} x'(t) &= 3x(t) - 2y(t) - 2z(t) \\ y'(t) &= -4x(t) + y(t) + 2z(t) + e^{2t} \\ z'(t) &= 8x(t) - 4y(t) - 5z(t) + 1 \end{cases}$$

Exercice 8. Soient A et B deux matrices à coefficients complexes ayant même polynôme caractéristique et même polynôme minimal. Si les multiplicités des valeurs propres sont inférieures ou égales à 3, démontrer que A et B sont semblables. Donner un contre-exemple démontrant que cela n'est plus vrai s'il existe une valeur propre de multiplicité $m \ge 4$.

Exercice 9. Dans chacun des cas qui suivent, on note C et M le polynôme caractéristique et le polynôme minimal d'une même matrice. Donner les formes de Jordan possibles ainsi que les dimensions des sous-espaces caractéristiques et des sous-espaces propres :

1.
$$C(X) = (X-5)^5(X+2)^3$$
 et $M(X) = (X-5)^2(X+2)$

2.
$$C(X) = (X-2)^6(X+6)^3$$
 et $M(X) = (X-2)^3(X+6)^2$

3.
$$C(X) = (X-3)^6$$
 et $M(X) = (X-3)^3$

Exercice 10. Soient A et B deux matrices $n \times n$ à coefficients complexes.

- 1. Soit v un vecteur propre de AB associé à la valeur propre λ . Montrer que λ est une valeur propre de BA (On pourra distinguer les cas où Bv = 0 et $Bv \neq 0$). Conclure.
- 2. On veut montrer un résultat plus précis : les produits AB et BA ont même polynôme caractéristique.
- 3. On considère les matrices $2n \times 2n$ définies par : $M=\begin{pmatrix}AB&0\\B&0\end{pmatrix}$ et $N=\begin{pmatrix}0&0\\B&BA\end{pmatrix}$. Montrer que

$$M\begin{pmatrix} I & A \\ 0 & I \end{pmatrix} = \begin{pmatrix} I & A \\ 0 & I \end{pmatrix} N .$$

En déduire que M et N ont même polynôme caractéristique.

4. Calculer les polynômes caractéristiques de M et N en fonction de ceux de AB et BA. Conclure.

Definition 11. Soit \mathbb{K} un corps. Soit E un \mathbb{K} -espace vectoriel et u un endomorphisme de E.

- 1. On dit qu'un sous-espace vectoriel F de E est stable par (sous) u si $u(F) \subset F$.
- 2. On dit que le couple (E, u) est *semi-simple* si tout sous espace F de E stable par u admet un supplémentaire G stable par u.

Exercice 12 (Diagonalisable entraı̂ne semi-simple). Soit E un \mathbb{K} -espace vectoriel de dimension finie n, u un endomorphisme diagonalisable de E et \mathcal{S} son spectre autrement dit l'ensemble de ses valeurs propres. Pour tout $\lambda \in \mathcal{S}$, on note E_{λ} le sous-espace propre associé à λ . Soit F un sous-espace vectoriel de E stable par u. Pour tout $\lambda \in \mathcal{S}$ on note $F_{\lambda} := E_{\lambda} \cap F$.

1. Montrer que

$$F = \bigoplus_{\lambda \in \mathcal{S}} F_{\lambda}.$$

- 2. Montrer que, pour tout $\lambda \in \mathcal{S}$, F_{λ} est stable par u et qu'il admet un supplémentaire G_{λ} dans E_{λ} , stable par u.
- 3. En déduire que F admet un supplémentaire G dans E stable par u et conclure.

Exercice 13 (Sur \mathbb{C} semi-simple entraı̂ne diagonalisable). Dans tout ce qui suit on suppose désormais que $\mathbb{K} = \mathbb{C}$. Soit E un \mathbb{C} -espace vectoriel de dimension finie n et u un endomorphisme de E tel que (E, u) est semi-simple.

- 1. Rappeler pourquoi u possède une valeur propre λ . Soit E_{λ} l'espace propre associé.
- 2. Montrer que E_{λ} possède un supplémentaire F stable par u.
- 3. Montrer que (F, res uF) est semi-simple.
- 4. Conclure finalement que si (E, u) est semi-simple, u est diagonalisable. Hint: On pourra raisonner, par récurrence, sur la dimension n de E.