I. Simple example.

II. Medium example.

III. Harder example.

Example:
$$f(x,y) = xy^2$$

$$\iint_{R} f(x,y) dA$$

Fubini still works: Focus 1 variable at a time still works.

$$\int_{0}^{2} \left(\frac{x}{x} \right)^{2} dy dx$$

S1:
$$x \cdot y^{3} = x^{3} = x^{4} = x^{4$$

II. Medium Poblem:

Compute Anea of a circle of radius R.

Trick:

1 dA

 $x^{2} + y^{2} = R^{2}$ $y^{2} = R^{2} - x^{2}$

Fubmi says:
$$y = \sqrt{R^2 - x^2}$$

$$-R$$

$$-R$$

$$y = \sqrt{R^2 - x^2}$$

$$= \sqrt{R^2 - x^$$

Santi-denvature? $\int \sqrt{R^2 - x^2} \, dx$ Substitute: \sqrt{x} $X = R \sin \theta$ $dx = R\cos\theta d\theta$ changes into $\frac{dx}{R^2 - R^2 \sin \theta} \cdot R \cos \theta d\theta$ $= \int \mathbb{R} \cdot \sqrt{1-\sin^2\theta} \cdot \mathbb{R} \cdot \cos\theta \, d\theta$ $\sqrt{\cos^2\theta}$ $= R \cos \theta \cdot R \cdot \cos \theta d\theta$

$$\int_{-\pi/2}^{\pi/2} \sin^2\theta \, d\theta = \int_{-\pi/2}^{\pi/2} \cos^2\theta \, d\theta$$

$$A = B$$

$$A + B = \int_{-\pi/2}^{\pi/2} 1 \, d\theta = T$$

$$B = \frac{1}{2}T$$

$$= R^2 - \frac{1}{2}\pi$$

=> Area of circle is
$$\pi R^2$$

Next Q: What is the Volume of

a radius R ball! (1 dv III. Harder example: Integrate f(x,y,z) = x+y+z

