Exemple

- La suite (u_n) des puissances de 2 : On a $u_0 = 1$; $u_1 = 2$; $u_2 = 4$; $u_3 = 8$... C'est une suite géométrique de premier terme $u_0 = 1$ et de raison 3 ; $u_{n+1} = u_n \times 2$
- **2** La suite (v_n) définie par $v_n = \frac{1}{3^n}$:

On a
$$v_0 = \frac{1}{3^0} = \frac{1}{1} = 1$$
; $v_2 = \frac{1}{3^2} = \frac{1}{9}$; $v_1 = \frac{1}{3^1} = \frac{1}{3}$; $v_3 = \frac{1}{3^3} = \frac{1}{27}$...

C'est une suite géométrique de premier terme $v_0=1$ et de raison $\frac{1}{3}$, $v_{n+1}=v_n\times\frac{1}{3}$

Exemple

- La suite (u_n) des puissances de 2 : On a $u_0 = 1$; $u_1 = 2$; $u_2 = 4$; $u_3 = 8$... C'est une suite géométrique de premier terme $u_0 = 1$ et de raison 3 ; $u_{n+1} = u_n \times 2$
- 2 La suite (v_n) définie par $v_n = \frac{1}{3^n}$:

 On a $v_0 = \frac{1}{3^0} = \frac{1}{1} = 1$; $v_1 = \frac{1}{3^1} = \frac{1}{3}$; $v_2 = \frac{1}{3^2} = \frac{1}{9}$; $v_3 = \frac{1}{3^3} = \frac{1}{27}$...

C'est une suite géométrique de premier terme $v_0=1$ et de raison $\frac{1}{3}$, $v_{n+1}=v_n\times\frac{1}{3}$

Exemple

- La suite (u_n) des puissances de 2 : On a $u_0 = 1$; $u_1 = 2$; $u_2 = 4$; $u_3 = 8$... C'est une suite géométrique de premier terme $u_0 = 1$ et de raison 3 ; $u_{n+1} = u_n \times 2$
- 2 La suite (v_n) définie par $v_n = \frac{1}{3^n}$:

On a
$$v_0 = \frac{1}{3^0} = \frac{1}{1} = 1$$
; $v_2 = \frac{1}{3^2} = \frac{1}{9}$; $v_1 = \frac{1}{3^1} = \frac{1}{3}$; $v_3 = \frac{1}{3^3} = \frac{1}{27}$...

C'est une suite géométrique de premier terme $v_0=1$ et de raison $\frac{1}{3}$, $v_{n+1}=v_n\times\frac{1}{3}$