STAT 153 sketch

Neo Lee

Proof of $\operatorname{null}(X)$ contains at least one non-zero vector η :

Since p > n, the column vectors are linear dependent. Denote (v_1, \dots, v_p) as the column vectors of X. Then, there are non trivial coefficients (c_1, \dots, c_p) such that

$$\sum_{i=1}^{p} c_i v_i = 0.$$

Hence, $\eta = (c_1, \dots, c_p)$ is a non-zero vector in null(X).

Proof of $\hat{\beta} = \tilde{\beta} + \eta$ is also a least squares solution for $\eta \in \text{null}(X)$:

Denote the prediction from $\tilde{\beta}$ as $\tilde{y} = X\tilde{\beta}$ with MSE = $y - \tilde{y}$. Then the prediction from $\hat{\beta}$

$$\hat{y} = X\hat{\beta} \tag{1}$$

$$=X(\tilde{\beta}+\eta)\tag{2}$$

$$= X\tilde{\beta} + X\eta \tag{3}$$

$$= \tilde{y} + X\eta \tag{4}$$

$$= \tilde{y}. \tag{5}$$

Therefore, they have the same MSE. Since $\hat{\beta}$ is a least squares solution, $\tilde{\beta} + \eta$ is also a least squares solution. Since $\operatorname{null}(X) \not \perp e_j$, there exists some $v \in \operatorname{null}(X)$ that has non-zero j-th coordinate. Denote the j-th coordinate of v as a real number c. If c > 0, we can construct $\hat{\beta} = \tilde{\beta} - \left(\frac{\tilde{\beta}_j}{c}\right)v - v$, which has the j-th coordinate less than 0. If c < 0, we can construct $\hat{\beta} = \tilde{\beta} + \left(\frac{\tilde{\beta}_j}{c}\right)v - v$, which also has the j-th coordinate less than 0.

For either case, the prediction

$$\begin{split} \hat{y} &= X \tilde{\beta} \\ &= X \left[\tilde{\beta} \pm \left(\frac{\tilde{\beta}_j}{c} \right) v - v \right] \\ &= X \tilde{\beta} \pm X \left(\frac{\tilde{\beta}_j}{c} \right) v - X v \\ &= X \tilde{\beta} \pm \left(\frac{\tilde{\beta}_j}{c} \right) X v - X v \\ &= X \tilde{\beta} \qquad (\because v \in \text{null}(X)) \\ &= \tilde{y}. \end{split}$$

Hence, $\tilde{\beta}$ and $\hat{\beta}$ will have the same prediction under X, so as the MSE.