Fashion MNIST

The dataset, Fashion MNIST, is a collection of apparel images falling into several classes. Classes are numbered from 0 to 9 and have the following meanings with Tshirt/Top represented as 0 and an Ankle Boot as 9. class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']

Overview

- The fashion MNIST dataset contains 60,000 (train) + 10,000 (test) article images
- Each image in the dataset has a 28x28 pixel size
- The dataset consist of 10 classes (T-shirt/Top, Trouser, Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle Boot)
- We have images of clothes and for each image to classify what type of dress it belongs to
- For image data, the input to the neural network will be pixel values of the image
- As this dataset is a multi-class classification problem, the loss function will be Categorical Cross-Entropy Function
- In this data, each image has 28x28 pixel values, which will be flattened and passed to the neural network.

Objective

In this exercise, we will create a simple ANN (Feed Forward Neural Network) model to classify the images into some categories. We will also use Convoluted neural network to further refine our classification

Import the Libraries

```
In [1]: # Manipulating and reading data
import numpy as np
import pandas as pd
import itertools
np.set_printoptions(precision=2)

# Visualization library
import matplotlib.pyplot as plt
import seaborn as sns

# Evaluation metrics
from sklearn.metrics import accuracy_score, precision_score, recall_score, f
from sklearn.metrics import classification_report, confusion_matrix, precisi
```

```
# Tensorflow library
# BatchNormalization for regularization
import tensorflow as tf
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D, BatchNormaliza
from tensorflow.keras.utils import to_categorical
from tensorflow.keras import losses, optimizers
import keras.backend as K

# ignore warnings
import warnings
warnings.filterwarnings("ignore")
```

Import the dataset

```
In [2]: # Importing the dataset
    (train_image, train_labels), (test_image,test_labels) = tf.keras.datasets.fa
In [3]: # Check the shape of the train and test set
    print(f"The shape of training set is {train_image.shape}, {train_labels.shape print(f"The shape of test set is {test_image.shape}, {test_labels.shape}")
    The shape of training set is (60000, 28, 28), (60000,)
    The shape of test set is (10000, 28, 28), (10000,)
In [4]: # Lets check the shape of the image after flattening, we will need to pass the print(f"The shape of training set after flattening is {np.product(train_image)
    The shape of training set after flattening is 784
In [5]: # Check what are the classes/unique values in the training outputs
    np.unique(train_labels)
Out[5]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=uint8)
```

There are a total of 10 classes where each class denotes one type of aparel.

Encoding the target variable

```
In [6]: x_train = train_image
    x_test = test_image
    y_train = to_categorical(train_labels, num_classes=10)
    y_test = to_categorical(test_labels, num_classes=10)

# Check the shape of all the dataset after encoding
    print(f"The shape of training set is {x_train.shape}, {y_train.shape}")
    print(f"The shape of test set is {x_test.shape}, {y_test.shape}")

The shape of training set is (60000, 28, 28), (60000, 10)
The shape of test set is (10000, 28, 28), (10000, 10)
In [7]: ## Let's normalize the dataset. Since there are pixel values ranging from 0-X_train = x_train/255
```

Visualization

```
In [8]: class_names_list = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
         plt.figure(figsize=(8,8))
         for i in range(24):
             plt.subplot(4,6,i+1)
             plt.xticks([])
             plt.yticks([])
             plt.grid(False)
             plt.imshow(train_image[i], cmap=plt.cm.binary)
             plt.xlabel(class_names_list[train_labels[i]])
         plt.show()
           Ankle boot
                         T-shirt/top
                                       T-shirt/top
                                                       Dress
                                                                   T-shirt/top
                                                                                  Pullover
                                         Sandal
                                                                                Ankle boot
             Sneaker
                          Pullover
                                                       Sandal
                                                                   T-shirt/top
             Sandal
                           Sandal
                                                     Ankle boot
                                        Sneaker
                                                                    Trouser
                                                                                T-shirt/top
              Shirt
                            Coat
                                         Dress
                                                      Trouser
                                                                     Coat
                                                                                   Bag
```

In [9]: # Fixing the seed for random number generators
np.random.seed(42)
import random

```
random.seed(42)

tf.random.set_seed(42)
```

Model Building

Feed Forward Neural Network

2023-03-13 03:44:22.847255: I tensorflow/core/platform/cpu_feature_guard.c c:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: SSE4.1 SSE4.2 AVX AVX2 FMA To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.

In [11]: ffnn_model.summary()

Model: "sequential"

Layer (type)	Output Shape	Param #
flatten (Flatten)	(None, 784)	0
dense (Dense)	(None, 128)	100480
dropout (Dropout)	(None, 128)	0
dense_1 (Dense)	(None, 64)	8256
dense_2 (Dense)	(None, 10)	650 =======

Total params: 109,386 Trainable params: 109,386 Non-trainable params: 0

Observations:

- The model has 109,386 parameters
- All the parameters are trainable

Epoch 1/25

2023-03-13 03:44:23.120643: I tensorflow/compiler/mlir_graph_optimizat ion_pass.cc:116] None of the MLIR optimization passes are enabled (register ed 2)

```
1688/1688 [============== ] - 2s 1ms/step - loss: 0.7170 - a
ccuracy: 0.7443 - val_loss: 0.4245 - val_accuracy: 0.8405
Epoch 2/25
accuracy: 0.8475 - val_loss: 0.3657 - val_accuracy: 0.8657
Epoch 3/25
accuracy: 0.8630 - val_loss: 0.3560 - val_accuracy: 0.8683
accuracy: 0.8722 - val_loss: 0.3446 - val_accuracy: 0.8742
accuracy: 0.8744 - val_loss: 0.3363 - val_accuracy: 0.8743
Epoch 6/25
accuracy: 0.8781 - val_loss: 0.3370 - val_accuracy: 0.8780
Epoch 7/25
1688/1688 [============= ] - 1s 852us/step - loss: 0.3121 -
accuracy: 0.8841 - val_loss: 0.3379 - val_accuracy: 0.8755
Epoch 8/25
accuracy: 0.8860 - val_loss: 0.3152 - val_accuracy: 0.8837
Epoch 9/25
1688/1688 [============== ] - 1s 854us/step - loss: 0.2945 -
accuracy: 0.8884 - val loss: 0.3310 - val accuracy: 0.8747
Epoch 10/25
accuracy: 0.8908 - val_loss: 0.3214 - val_accuracy: 0.8818
Epoch 11/25
accuracy: 0.8945 - val_loss: 0.3150 - val_accuracy: 0.8828
Epoch 12/25
accuracy: 0.8937 - val_loss: 0.3185 - val_accuracy: 0.8798
Epoch 13/25
accuracy: 0.8972 - val_loss: 0.3396 - val_accuracy: 0.8820
Epoch 14/25
1688/1688 [============= ] - 1s 874us/step - loss: 0.2696 -
accuracy: 0.8977 - val loss: 0.3188 - val accuracy: 0.8862
Epoch 15/25
accuracy: 0.8991 - val_loss: 0.3249 - val_accuracy: 0.8830
Epoch 16/25
1688/1688 [============= ] - 1s 869us/step - loss: 0.2543 -
accuracy: 0.9031 - val_loss: 0.3153 - val_accuracy: 0.8835
Epoch 17/25
1688/1688 [============= ] - 1s 860us/step - loss: 0.2524 -
accuracy: 0.9056 - val loss: 0.3087 - val accuracy: 0.8888
Epoch 18/25
1688/1688 [============= ] - 1s 865us/step - loss: 0.2504 -
accuracy: 0.9047 - val_loss: 0.3138 - val_accuracy: 0.8867
Epoch 19/25
accuracy: 0.9071 - val loss: 0.3115 - val accuracy: 0.8890
```

```
Epoch 20/25
      accuracy: 0.9089 - val loss: 0.3041 - val accuracy: 0.8878
      Epoch 21/25
      accuracy: 0.9093 - val loss: 0.3204 - val accuracy: 0.8893
      accuracy: 0.9080 - val loss: 0.3129 - val accuracy: 0.8880
      Epoch 23/25
      accuracy: 0.9109 - val loss: 0.3209 - val accuracy: 0.8840
      Epoch 24/25
      accuracy: 0.9116 - val loss: 0.3490 - val accuracy: 0.8798
      Epoch 25/25
      accuracy: 0.9125 - val_loss: 0.3337 - val_accuracy: 0.8857
In [14]: # K.eval(ffnn model.optimizer.lr)
      #ffnn_model.optimizer.get_config()
      def plot validation training curve(model):
        list_ep = [i for i in range(1, model.history.params['epochs']+1)]
         dict hist = model.history.history
         plt.figure(figsize=(8,8))
         plt.plot(list_ep, dict_hist['accuracy'], ls='--', label='accuracy')
         plt.plot(list_ep, dict_hist['val_accuracy'], ls='--', label='val_accurac
         plt.ylabel('Accuracy')
         plt.xlabel('Epochs')
         plt.legend()
         plt.show()
In [15]: plot_validation_training_curve(ffnn_model)
```


There is some overfitting from the model since validation accuracy is lower than training accuracy.

```
In [16]: ffnn_model.evaluate(X_train, y_train, verbose=1)
    yhat_ffnn = np.argmax(ffnn_model.predict(X_test), axis=-1)
    metric_score(test_labels, yhat_ffnn)
```


The confusion matrix shows that the model was not able to differentiate properly on the following apparel (particularly class 4 and class 6):

- 1. T-shirt/Top and Shirt
- 2. Shirt and Coat
- 3. Pullover and Coat
- 4. Pullover and Shirt

```
In [17]: def plot_visual(model, ypredict, X_test):
             rows = 4
             cols = 6
             fig = plt.figure(figsize=(15, 15))
             for i in range(cols):
                 for j in range(rows):
                     random_index = np.random.randint(0, len(test_labels))
                     ax = fig.add_subplot(rows, cols, i*rows+j+1)
                     ax.imshow(X_test[random_index, :])
                     pred_label = class_names_list[ypredict[random_index]]
                     true_label = class_names_list[test_labels[random_index]]
                     y_pred_test_max_probas = np.max(model.predict(X_test), axis=1)
                     pred_proba = y_pred_test_max_probas[random_index]
                     ax.set_title("actual: {}\npredicted: {}\nprobability: {:.3}\n".f
                         true_label, pred_label, pred_proba
                     ))
             plt.show()
In [18]: plot_visual(ffnn_model, yhat_ffnn, X_test)
```


Convolution Neural Network (CNN)

```
In [31]: X train cnn = train image.reshape(train image.shape[0], 28, 28, 1)
          X_test_cnn = test_image.reshape(test_image.shape[0], 28, 28, 1)
          X_{\text{train\_cnn}} = X_{\text{train\_cnn}}/255
          X_{\text{test\_cnn}} = X_{\text{test\_cnn}}/255
          cnn_model = Sequential([
              Conv2D(filters=16, kernel size=(3,3), padding="same", input shape=(28, 2
              LeakyReLU(0.1),
              Conv2D(filters=32, kernel_size=(3,3), padding="same"),
              LeakyReLU(0.1),
              MaxPool2D(pool_size=(2,2)),
              BatchNormalization(),
              Conv2D(filters=32, kernel size=(3,3), padding="same"),
              LeakyReLU(0.1),
              Conv2D(filters=64, kernel_size=(3,3), padding="same"),
              LeakyReLU(0.1),
              MaxPool2D(pool_size=(2,2)),
```

```
BatchNormalization(),
Flatten(),
Dense(64),
LeakyReLU(0.1),
Dropout(0.4),
Dense(10, activation='softmax')
])

adam_opt = optimizers.Adam(learning_rate=0.001)
cnn_model.compile(loss=losses.categorical_crossentropy, optimizer=adam_opt,
```

In [32]: cnn_model.summary()

Model: "sequential_4"

Layer (type)	Output Shape	Param #
conv2d_8 (Conv2D)	(None, 28, 28, 16)	160
leaky_re_lu_11 (LeakyReLU)	(None, 28, 28, 16)) 0
conv2d_9 (Conv2D)	(None, 28, 28, 32)	4640
leaky_re_lu_12 (LeakyReLU)	(None, 28, 28, 32)	0
max_pooling2d_4 (MaxPooling2	(None, 14, 14, 32)	0
batch_normalization_3 (Batch	(None, 14, 14, 32)	128
conv2d_10 (Conv2D)	(None, 14, 14, 32)	9248
leaky_re_lu_13 (LeakyReLU)	(None, 14, 14, 32)	0
conv2d_11 (Conv2D)	(None, 14, 14, 64)	18496
leaky_re_lu_14 (LeakyReLU)	(None, 14, 14, 64)	0
max_pooling2d_5 (MaxPooling2	(None, 7, 7, 64)	0
batch_normalization_4 (Batch	(None, 7, 7, 64)	256
flatten_4 (Flatten)	(None, 3136)	0
dense_9 (Dense)	(None, 64)	200768
leaky_re_lu_15 (LeakyReLU)	(None, 64)	0
dropout_2 (Dropout)	(None, 64)	0
dense_10 (Dense)	(None, 10)	650

Total params: 234,346 Trainable params: 234,154 Non-trainable params: 192

- The model has 234,346 parameters. The majority of parameters belong to the single dense layer with 64 nodes.
- All the parameters are trainable

```
In [33]: cnn_history = cnn_model.fit(X_train_cnn, y_train, validation_split=0.1, epod
        Epoch 1/10
        422/422 [============== ] - 48s 112ms/step - loss: 0.6473 -
        accuracy: 0.7817 - val_loss: 0.6616 - val_accuracy: 0.7678
        Epoch 2/10
        422/422 [============ ] - 47s 111ms/step - loss: 0.3129 -
        accuracy: 0.8875 - val loss: 0.3035 - val accuracy: 0.8857
        Epoch 3/10
        422/422 [============ ] - 47s 112ms/step - loss: 0.2531 -
        accuracy: 0.9087 - val_loss: 0.2550 - val_accuracy: 0.9037
        Epoch 4/10
        422/422 [============ ] - 50s 117ms/step - loss: 0.227 -
        accuracy: 0.9196 - val loss: 0.2290 - val accuracy: 0.9137
        Epoch 5/10
        422/422 [============ ] - 49s 117ms/step - loss: 0.1974 -
        accuracy: 0.9272 - val_loss: 0.2265 - val_accuracy: 0.9178
        Epoch 6/10
        422/422 [============== ] - 50s 118ms/step - loss: 0.1789 -
        accuracy: 0.9330 - val_loss: 0.2397 - val_accuracy: 0.9155
        Epoch 7/10
        422/422 [============== ] - 50s 117ms/step - loss: 0.1639 -
        accuracy: 0.9392 - val_loss: 0.2158 - val_accuracy: 0.9215
        Epoch 8/10
        422/422 [============= ] - 49s 116ms/step - loss: 0.1441 -
        accuracy: 0.9456 - val_loss: 0.2320 - val_accuracy: 0.9232
        Epoch 9/10
        422/422 [============== ] - 50s 118ms/step - loss: 0.1347 -
        accuracy: 0.9486 - val_loss: 0.2560 - val_accuracy: 0.9202
        Epoch 10/10
        422/422 [============= ] - 49s 116ms/step - loss: 0.1279 -
        accuracy: 0.9507 - val_loss: 0.2271 - val_accuracy: 0.9202
        In the CNN model, we added batch normalization and dropout to help in reducing the
        overfitting which occurs in the feed-forward neural network. From the metrics, we can see
        that the CNNs model is still overfitting but less compared to the feed-forward neural
        network.
```

```
In [34]: plot_validation_training_curve(cnn_model)
```



```
In [35]: cnn_model.evaluate(X_train_cnn, y_train, verbose=1)
   yhat_cnn = np.argmax(cnn_model.predict(X_test_cnn), axis=-1)
   metric_score(test_labels, yhat_cnn)
```


Visualize the images from the test data

In [36]: plot_visual(cnn_model, yhat_cnn, X_test_cnn)

Observations:

- 1. The performance of the CNN model performs better than feed-forward neural network, suggesting that CNNs are a better choice for this particular dataset. We can see that the CNNs model classify the shirt and T-shirt/Top and Coat and Shirt better although there are still some confusion.
- 2. For class 6 (Pullover), the CNNs model only perform slightly better (4% better) compared to feed-forward neural network
- 3. 5 of the classes (namely class 1, 5, 7, 8, 9 which represent Trouser, Sandal, Sneaker, Bag and Ankle boot) have precision higher than 95% and the recall is also higher than 95%. The precision values shows that the model is precise in its prediction without much sacrifice to recall.

Suggestion for Next Step (Revisit)

We can try hyperparameter tuning to get an even better performance

- Data Augmentation might help to make the model more robust and invariant towards different orientations
- We can try technique like transfer learning to see if better results can be achieve.