

planetmath.org

Math for the people, by the people.

proof of Fermat's Theorem (stationary points)

Canonical name ProofOfFermatsTheoremstationaryPoints

Date of creation 2013-03-22 13:45:09 Last modified on 2013-03-22 13:45:09

Owner paolini (1187) Last modified by paolini (1187)

Numerical id 5

Author paolini (1187)

Entry type Proof

Classification msc 26A06

Suppose that x_0 is a local maximum (a similar proof applies if x_0 is a local minimum). Then there exists $\delta > 0$ such that $(x_0 - \delta, x_0 + \delta) \subset (a, b)$ and such that we have $f(x_0) \geq f(x)$ for all x with $|x - x_0| < \delta$. Hence for $h \in (0, \delta)$ we notice that it holds

$$\frac{f(x_0+h)-f(x_0)}{h} \le 0.$$

Since the limit of this ratio as $h \to 0^+$ exists and is equal to $f'(x_0)$ we conclude that $f'(x_0) \le 0$. On the other hand for $h \in (-\delta, 0)$ we notice that

$$\frac{f(x_0+h)-f(x_0)}{h} \ge 0$$

but again the limit as $h \to 0^+$ exists and is equal to $f'(x_0)$ so we also have $f'(x_0) \ge 0$.

Hence we conclude that $f'(x_0) = 0$.

To prove the second part of the statement (when x_0 is equal to a or b), just notice that in such points we have only one of the two estimates written above.