Cela est d'autant plus valable que $T\Delta f$ est plus grand. A cet égard la figure 2 représente la vraie courbe donnant $|\phi(f)|$ en fonction de f pour les valeurs numériques indiquées page précédente.

Fig. 2

Dans ce cas, le filtre adapté pourra être constitué, conformément à la figure 3, par la cascade :

— d'un filtre passe-bande de transfert unité pour $f_0 \le f \le f_0 + \Delta f$ et de transfert quasi nul pour $f < f_0$ et $f > f_0 + \Delta f$, filtre ne modifiant pas la phase des composants le traversant;

Fro. 3

— filtre suivi d'une ligne à retard (LAR) dispersive ayant un temps de propagation de groupe T_R décroissant linéairement avec la fréquence f suivant l'expression :

$$T_R = T_0 + (f_0 - f) \frac{T}{\Delta f} \quad (\text{avec } T_0 > T)$$

(voir fig. 4).

Fig. 4

telle ligne à retard est donnée par :

$$\varphi = -2\pi \int_0^f T_R \, \mathrm{d}f$$

$$\varphi = -2\pi \left[T_0 + \frac{f_0 T}{\Delta f} \right] f + \pi \frac{T}{\Delta f} f^2$$

Et cette phase est bien l'opposé de $/\phi(f)$,

à un déphasage constant près (sans importance) et à un retard T_0 près (inévitable).

Un signal utile S(t) traversant un tel filtre adapté donne à la sortie (à un retard T_0 près et à un déphasage près de la porteuse) un signal dont la transformée de Fourier est réelle, constante entre f_0 et $f_0 + \Delta f$, et nulle de part et d'autre de f_0 et de $f_0 + \Delta f$, c'està-dire un signal de fréquence porteuse $f_0 + \Delta f/2$ et dont l'enveloppe a la forme indiquée à la figure 5, où l'on a représenté simultanément le signal S(t) et le signal $S_1(t)$ correspondant obtenu à la sortie du filtre adapté. On comprend le nom de récepteur à compression d'impulsion donné à ce genre de filtre adapté : la « largeur » (à 3 dB) du signal comprimé étant égale à $1/\Delta f$, le rapport de compression

est de
$$\frac{T}{1/\Delta f} = T\Delta f$$

Fig. 5

On saisit physiquement le phénomène de compression en réalisant que lorsque le signal S(t) entre dans la ligne à retard (LAR) la fréquence qui entre la première à l'instant 0 est la fréquence basse f_0 , qui met un temps T_0 pour traverser. La fréquence f entre à l'instant $t = (f - f_0) \frac{T}{T}$ et elle met un temps

entre à l'instant $t = (f - f_0) \frac{T}{\Delta f}$ et elle met un temps

 $T_0 - (f - f_0) \frac{T}{\Delta f}$ pour traverser, ce qui la fait ressortir à l'instant T_0 également. Ainsi donc, le signal S(t)