(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001年3月22日(22.03.2001)

PCT

(10) 国際公開番号 WO 01/19807 A1

(51) 国際特許分類7:

C07D 277/18. 279/06, 279/08, 417/12, A61K 31/426, 31/541, 31/5415, 31/547, A61P 13/12, 29/00, 37/06, 43/00 // (C07D 417/12, 213:36, 279:06) (C07D 417/12, 215:12, 279:06) (C07D 417/12, 279:06, 333:34)

(21) 国際出願番号:

PCT/JP00/06185

(22) 国際出願日:

2000年9月11日(11.09.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平11/260780 1999年9月14日(14.09.1999) JP

(71) 出願人 (米国を除く全ての指定国について): 塩野義 製薬株式会社 (SHIONOGI & CO., LTD.) [JP/JP]; 〒 541-0045 大阪府大阪市中央区道修町3丁目1番8号 Osaka (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 花崎浩二 (HANASAKI, Koji) [JP/JP]; 〒553-0002 大阪府大阪 市福島区鷲洲5丁目12番4号 塩野義製薬株式会社内 Osaka (JP). 村司孝己 (MURASHI, Takami) [JP/JP]. 甲 斐浩幸 (KAI, Hiroyuki) [JP/JP]; 〒520-3423 滋賀県甲 賀郡甲賀町大字五反田1405番地 塩野義製薬株式会 社内 Shiga (JP).

- (74) 代理人: 山内秀晃,外(YAMAUCHI, Hideaki et al.); 〒553-0002 大阪府大阪市福島区鷲洲5丁目12番4号 塩 野羲製薬株式会社 知的財産部 Osaka (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: 2-IMINO-1,3-THIAZINE DERIVATIVES

(54) 発明の名称: 2ーイミノー1,3ーチアジン誘導体

represents optionally substituted aryl, etc.

(57) Abstract: It is found out that compounds represented by general formula (I) bind selectively to cannabinoid 2 receptor (CB2R) and thus exhibit CB2R antagonism or CB2R agonis wherein R1 represents optionally substituted alkylene; R2 represents hydrogen, alkyl, a group represented by the formula -C(=R5)-R6 (wherein R5 represents O or S; and R6 represents alkyl, alkoxy, alkylthio, etc.) or a group represented by the formula SO₂R⁷ (wherein R⁷ represents alkyl, etc.); m is an integer of from 0 to 2; and A

(57) 要約:

式(I)で示される本発明化合物が、カンナビノイド2受容体(CB2R)に 選択的に結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を 示すことを見出した。

$$(CH_2)_m$$
 R^1 (I)

(式中、式中、 R^1 は置換されていてもよいアルキレン; R^2 は水素、アルキル、式: -C (= R^5) $-R^6$ (式中、 R^6 は O 又は S; R^6 はアルキル、アルコキシ、アルキルチオ等)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル等)で示される基;mは $0\sim 2$ の整数;A は置換されていてもよい芳香族炭素環等)

明細書

2-イミノー1,3-チアジン誘導体

5 技術分野

a**g**)

本発明は、2-イミノー1,3-チアジン誘導体に関する。より詳しくは、カンナビノイド2受容体に選択的なアンタゴニスト作用またはアゴニスト作用を有する2-イミノー1,3-チアジン誘導体及びその医薬用途に関する。

10 背景技術

15

カンナビノイドは、1960年にマリファナの活性物質の本体として発見され、 その作用は、中枢神経系作用(幻覚、多幸感、時間空間感覚の混乱)、および末 梢細胞系作用(免疫抑制、抗炎症、鎮痛作用)であることが見出された。

その後、内在性カンナビノイド受容体アゴニストとして、アラキドン酸含有リン脂質から産生されるアナンダミドや2-アラキドノイルグリセロールが発見された。これら内在性アゴニストは、中枢神経系作用及び末梢細胞系作用を発現することが知られているが、さらに、Hypertension (1997) 29, 1204-1210 には、アナンダミドの心血管への作用も報告されている。

カンナビノイド受容体としては、1990年にカンナビノイド1受容体が発見 され、脳などの中枢神経系に分布することがわかり、そのアゴニストは神経伝達 物質の放出を抑制し、幻覚などの中枢作用を示すことがわかった。また、1993年にはカンナビノイド2受容体が発見され、脾臓などの免疫系組織に分布することがわかり、そのアゴニストは免疫系細胞や炎症系細胞の活性化を抑制し、免疫抑制作用、抗炎症作用、鎮痛作用を示すことがわかった (Nature, 1993, 365, 61-65)。

従って、カンナビノイド2受容体の選択的なアンタゴニストまたはアゴニスト

は、カンナビノイド1受容体に由来する中枢神経系の副作用(幻覚など)を回避することができ、カンナビノイド1受容体に関連した依存性を引き起こすこともなく、免疫抑制剤、抗炎症剤、鎮痛剤として期待されている(Nature, 1998, 349, 277-281)。

カンナビノイド2受容体アンタゴニスト作用またはアゴニスト作用を有する化合物としては、イソインドリノン誘導体(WO97/29079、WO99/02499)、ピラゾール誘導体(WO98/41519)などが知られている。一方、2-イミノー1,3-チアジン骨格を有する有機燐化合物には殺虫作用があることが知られている(特開昭61-65894、特開昭62-29594)。
 しかし、2-イミノー1,3-チアジン誘導体がカンナビノイド2受容体アンタゴニスト作用またはアゴニスト作用を有することは知られていない。

発明の開示

اتا (ار

(**î**)

カンナビノイド2受容体に選択的なアンタゴニスト作用またはアゴニスト作用 15 を有する新規な化合物として、2-イミノ-1,3-チアジン誘導体などを見出 した。

すなわち、本発明は、

1) 式(I):

20

(式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 はアルキル、式: $-C (=R^6) - R^6 (式中、<math>R^6$ はO又はSを表わし、 R^8 はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラ

ルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、mは $0\sim2$ の整数を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物、

2) 式:

11

10

15

20

で示される基が、式:

(式中、 R^3 および R^4 はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アルコキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(=O) $-R^H$ (R^H は水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、又は R^3 及び R^4 は一緒になってアルキレンジオキシを表わし、Aは

置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表 わす。)である上記1)記載の医薬組成物、

- 3) カンナビノイド2受容体親和性である上記1)又は2)記載の医薬組成物、
- 4) カンナビノイド2受容体作動性である上記3)記載の医薬組成物、
- 5 5) 抗炎症剤である上記3)記載の医薬組成物、
 - 6) 免疫抑制剤である上記3)記載の医薬組成物、
 - 7) 腎炎治療剤である上記3)記載の医薬組成物、
 - 8) 式(II):

10

15

$$\begin{array}{c|c}
R^3 & (CH_2)_m & R^1 \\
R^4 & R^2
\end{array}$$
(II)

(式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 は式:-C($=R^5$) $-R^6$ (式中、 R^5 はO又はSを表わし、 R^6 はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアラルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアラルキルアラルキルアシ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていてもよいアリール、又は置換されていてもよいハテロアリールを表わす)で示される基を表わし、 R^3 および R^4 はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、置換されていてもよいアリール、カルボキシ、アルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アル

1)

コキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(=O)-R^H(R^Hは水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、又はR³及びR⁴は一緒になってアルキレンジオキシを表わし、mは0~2の整数を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物、

- 9) mが0である上記8)記載の化合物、そのプロドラッグ、それらの製薬上 許容される塩、又はそれらの溶媒和物、
- 10) R¹がアルキレンで置換されていてもよい炭素数2~9の直鎖状又は分枝状のアルキレンである上記8)又は9)記載の化合物、そのプロドラッグ、そ 15 れらの製薬上許容される塩、又はそれらの溶媒和物、
 - 11) R^1 がアルキレンで置換された炭素数 $2 \sim 9$ の直鎖状のアルキレン、又は炭素数 $2 \sim 9$ の分枝状のアルキレンである上記 8) ~ 1 0)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物、
- 20 12) R^6 がアルコキシ又はアルキルチオであり、 R^7 が置換されていてもよい アリールである上記 8) ~ 11) のいずれかに記載の化合物、そのプロドラッグ、 それらの製薬上許容される塩、又はそれらの溶媒和物、
 - 13) R^3 および R^4 がそれぞれ独立して水素、アルキル、アルコキシ、又はアルキルチオであり、Aが置換されていてもよい芳香族炭素環である上記8) ~ 1
- 25 2) のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される 塩、又はそれらの溶媒和物、

()

10

15

20

25

 R^{1} が2,2-ジメチルトリメチレン、2,2-ジエチルトリメチレン、 2, 2-xレン、トリメチレン、2,2-ジ-n-プロピルトリメチレン、2,2-テトラ メチレントリメチレン、2,2-ベンタメチレントリメチレン、1,1-ジメチ ールエチレン、又は1-メチルエチレンであり、R⁶がメチル、エチル、n-プロ ピル、i-プロピル、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、 n-ブトキシ、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、 i-プチルチオ、sec-ブチルチオ、ベンジルオキシ、ベンジルチオ、メトキシ メチル、エトキシメチル、メチルチオメチル、エチルチオメチル、又はエチルア ミノであり、R⁷がメチル、エチル、4ートリル、4ーニトロフェニル、3ーニ トロフェニル、2-ニトロフェニル、4-メトキシフェニル、4-トリフルオロ メチルフェニル、2 ーチエニル、又は2 ーナフチルであり、R³が水素、メチル、 エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチル、sec-ブチ ル、t-ブチル、メトキシ、エトキシ、n-プロポキシ、i-プロポキシ、n-ブトキシ、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、ジ メチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、ジエチルアミノ、 エチルメチルアミノ、プロピルメチルアミノ、フェニル、フェノキシ、フッ素、 塩素、臭素、ニトロ、トリフルオロメチル、ジフルオロメトキシ、トリフルオロ メトキシ、N-メチルカルバモイル、メトキシカルボニル、メタンスルフィニル、 エタンスルフィニル、メタンスルホニル、エタンスルホニル、アセチル、メトキ シメチル、1-メトキシエチル、3-ピリジル、モルホリノ、ピロリジノ、ピベ リジノ、2-オキソピロリジノ、1-メトキシイミノエチル、又はモルホリノカ ルポニルであり、R⁴が水素、メチル、エチル、フッ素、塩素、ニトロ、メトキ シ、又はエトキシであり、又はR³及びR⁴が一緒になって-0-CHゥ-0-を 表わし、Aがベンゼン環、ナフタレン環、ピリジン環、又はキノリン環である上 記8)記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそ

れらの溶媒和物、

15) 上記8)~14)のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物、

- 16) カンナビノイド2受容体親和性である上記15)記載の医薬組成物、
- 5 17) カンナビノイド2受容体作動性である上記16)記載の医薬組成物、
 - 18) 抗炎症剤である上記16)記載の医薬組成物、
 - 19) 免疫抑制剤である上記16)記載の医薬組成物、
 - 20) 腎炎治療剤である上記16)記載の医薬組成物、
 - 21) 上記1)記載の医薬組成物を投与することを特徴とする炎症の治療方法、
- 10 22) 上記1)記載の医薬組成物を投与することを特徴とする免疫抑制の方法、
 - 23) 上記1)記載の医薬組成物を投与することを特徴とする腎炎の治療方法、
 - 24) 抗炎症剤を製造するための上記1)記載の化合物の使用、
 - 25) 免疫抑制剤を製造するための上記1)記載の化合物の使用、
 - 26) 腎炎治療剤を製造するための上記1)記載の化合物の使用、
- 15 に関する。

発明を実施するための最良の形態

式(I)及び式(II)で示される化合物の定義中使用される各語の意味を、 以下に説明する。各語は明細書中で統一して使用する。

- 20 「アルキレン」とは、炭素数 $2 \sim 1$ 0 の直鎖状又は分枝状のアルキレンを意味 し、例えば、エチレン、1-メチルエチレン、1-エチルエチレン、1, 1-ジメチルエチレン、1, 1-ジメチルエチレン、1, 1-ジメチルエチレン、1, 1-ジメチルエチレン、1, 1-ジメチルエチレン、1-メチルトリメチレン、1-メチルトリメチレン、1-メチルトリメチレン、1-
- 25 1, 2-3 $\sqrt{3}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{2}$ $\sqrt{2$

ージエチルトリメチレン、 2 、 2 ージエチルトリメチレン、 2 ーエチルー 2 ーメチルトリメチレン、 2 トラメチレン、 1 ・ 1 ージメチルテトラメチレン、 1 、 1 ージスチルテトラメチレン、 1 、 1 ープロピルトリメチレン等が挙げられる。特に、炭素数 1 2 ~ 1 のの直鎖状又は分枝状のアルキレン、 1 さらには、炭素数 1 での分枝状のアルキレンが好ましい。具体的には、 1 ・ 1

10

「置換されていてもよいアルキレン」の置換基としては、アルキレン(例えば、 メチレン、エチレン、トリメチレン、テトラメチレン、ペンタメチレン等)、シ クロアルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シク ロヘキサン等)、アルコキシ(例えば、メトキシ、エトキシ等)、アルキルチオ 15 (例えば、メチルチオ、エチルチオ等)、アルキルアミノ(例えば、メチルアミ ノ、エチルアミノ、ジメチルアミノ等)、アシルアミノ(例えば、アセチルアミ ノ等)、アリール(例えば、フェニル等)、アリールオキシ(例えば、フェノキ シ等)、ハロゲン(フッ素、塩素、臭素、よう素)、ヒドロキシ、アミノ、ニト 20 ロ、アルキルスルホニル(例えば、メタンスルホニル、エタンスルホニル等)、 アリールスルホニル(例えば、ベンゼンスルホニル等)、シアノ、ヒドロキシア ミノ、カルボキシ、アルコキシカルボニル(例えば、メトキシカルボニル、エト キシカルポニル等)、アシル(例えば、アセチル、ペンゾイル等)、アラルキル (例えば、ペンジル等)、メルカプト、ヒドラジノ、アミジノ、グアニジノ等が 挙げられ、これらの置換基は1~4個の任意の位置で置換していてもよい。「置 換されていてもよいアルキレン」の置換基としては、特に、アルキレンが好まし

W.

なお、アルキレンで置換されたアルキレンには、スピロ原子を介してアルキレンで置換されたアルキレン(例えば、2,2-エチレントリメチレン、2,2-トリメチレントリメチレン、2,2-ベトリメチレントリメチレン、2,2-ベシタメチレントリメチレン等)、及び異なる位置がアルキレンで置換されたアルキレン(例えば、1,2-デトラメチレンエチレン、1,2-エチレントリメチレン等)が包含される。具体的には、2,2-エチレントリメチレン、2,2-ベンタメチレントリメチレン、2,2-ベンタメチレントリメチレンが好ましく、特に、2,2-エチレントリメチレン、2,2-ベンタメチレントリメチレンが好ましく、特に、2,2-エチレントリメチレンが好ましく、特に、2,2-エチレントリメチレンが好ましい。

「アルキル」とは、炭素数 1 ~ 1 0 の直鎖状又は分枝状のアルキルを意味し、例えば、メチル、エチル、n - プロピル、i - プロピル、n - ブチル、i - ブチル、sec - ブチル、t - ブチル、n - ペンチル、i - ペンチル、neo - ペンチル、n - へキシル、n - ヘブチル、n - オクチル、n - ノニル、n - デシルなどが挙げられる。特に、炭素数 1 ~ 4 の直鎖又は分枝状のアルキルが好ましく、具体的には、メチル、エチル、n - プロピル、i - プロピル、n - ブチル、sec - ブチル、t - ブチルが好ましい。

「アルコキシ」とは、酸素原子に上記「アルキル」が置換した基を意味し、例えば、メトキシ、エトキシ、nープロポキシ、iープロポキシ、nープトキシ、iープトキシ、secーブトキシ、tーブトキシ、nーペンチルオキシ、nーペキシルオキシ、nーペプチルオキシ、nーペクチルオキシなどが挙げられる。特に、炭素数1~4の直鎖又は分枝状のアルコキシが好ましく、メトキシ、エトキシ、nープロポキシ、iープロポキシ、nープトキシ、iープトキシ、secーブトキシ、tープトキシが好ましい。

9

「アルキルチオ」とは、硫黄原子に上記「アルキル」が置換した基を意味し、例えば、メチルチオ、エチルチオ、nープロピルチオ、iープロピルチオ、nープチルチオ、iープチルチオ、secープチルチオ、tープチルチオ、nーペンチルチオ、nーペキシルチオ等が挙げれれる。特に、炭素数1~4の直鎖又は分ち 枝状のアルキルチオが好ましく、メチルチオ、エチルチオ、nープロピルチオ、iープロピルチオ、nープチルチオ、iープチルチオが好ましい。

「置換されていてもよいアミノ」の置換基としては、アルキル(例えば、メチル、エチル、n-プロピル、i-プロピル等)、アシル(例えば、ホルミル、ア セチル、プロピオニル、ベンゾイル等)等が挙げられる。アミノ基の窒素原子が、これらの置換基でモノ置換またはジ置換されていてもよい。

「置換されていてもよいアミノ」としては、アミノ、メチルアミノ、エチルアミノ、n-プロピルアミノ、i-プロピルアミノ、ジメチルアミノ、ジエチルアミノ、エチルメチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、プロピルメチルアミノ等が好ましい。

15

「アリール」とは、炭素数 6~14の芳香族炭素環式基を意味し、例えば、フェニル、ナフチル、アントリル、フェナントリル等が挙げられる。

「アラルキル」とは、上記「アルキル」に上記「アリール」が置換した基を意 20 味し、例えば、ベンジル、フェニルエチル(例えば、1-フェニルエチル、2-フェニルエチル)、フェニルプロピル(例えば、1-フェニルプロピル、2-フェニルプロピル、3-フェニルプロピル等)、ナフチルメチル(例えば、1-ナフチルメチル、2-ナフチルメチル等)等が挙げられる。

「アラルキルオキシ」とは、酸素原子に上記「アラルキル」が置換した基を意 25 味し、例えば、ベンジルオキシ、フェニルエチルオキシ(例えば、1-フェニル エチルオキシ、2-フェニルエチルオキシ)、フェニルプロポキシ(例えば、1

-フェニルプロピルオキシ、2-フェニルプロピルオキシ、3-フェニルプロピルオキシ等)、ナフチルメトキシ(例えば、1-ナフチルメトキシ、2-ナフチルメトキシ等)等が挙げられる。

「アラルキルチオ」とは、硫黄原子に上記「アラルキル」が置換した基を意味 し、例えば、ベンジルチオ、フェニルエチルチオ(例えば、1-フェニルエチル チオ、2-フェニルエチルチオ)、フェニルプロピルチオ(例えば、1-フェニ ルプロピルチオ、2-フェニルプロピルチオ、3-フェニルプロピルチオ等)、 ナフチルメチルチオ(例えば、1-ナフチルメチルチオ、2-ナフチルメチルチ オ等)等が挙げられる。

「アラルキルアミノ」とは、窒素原子に上記「アラルキル」が1又は2個置換した基を意味し、例えば、ベンジルアミノ、フェニルエチルアミノ(例えば、1ーフェニルエチルアミノ、2ーフェニルエチルアミノ)、フェニルプロピルアミノ(例えば、1ーフェニルプロピルアミノ、2ーフェニルプロピルアミノ、3ーフェニルプロピルアミノ)、ナフチルメチルアミノ(例えば、1ーナフチルメチルアミノ、2ーナフチルメチルアミノ等)、ジベンジルアミノ等が挙げられる。

「アルコキシアルキル」とは、上記「アルキル」に上記「アルコキシ」が置換した基を意味し、例えば、メトキシメチル、エトキシメチル、ロープロポキシメチル、1ーメトキシエチル、2ーエトキシエチル、2ーエンロープロポキシエチル、2ーロープロポキシエチル、1ーメトキシーロープロピル、2ーメトキシーロープロピル、3ーメトキシーロープロピル、3ーメトキシーロープロピル、3ーエトキシーロープロピル、1ーエトキシーロープロピル、2ーエトキシーロープロピル、2ーロープロポキシーロープロピル、3ーロープロポキシーロープロピル、3ーロープロポキシーロープロピル、3ーロープロポキシーロープロピル、3ーロープロポキシーロープロピル、3ーロープロポキシーロープロピル等が挙げられる。

25 「アルキルチオアルキル」とは、上記「アルキル」に上記「アルキルチオ」が 置換した基を意味し、例えば、メチルチオメチル、エチルチオメチル、n-プロ

ピルチオメチル、1-メチルチオエチル、2-メチルチオエチル、1-エチルチオエチル、2-ロープロピルチオエチル、2-ロープロピルチオエチル、2-ロープロピルチオエチル、3-ロープロピルチオエチル、1-メチルチオーロープロピル、2-メチルチオーロープロピル、3-メチルチオーロープロピル、1-エチルチオーロープロピル、2-エチルチオーロープロピル、3-エチルチオーロープロピル、1-ロープロピルチオーロープロピル、2-エテルチオーロープロピル、2-ロープロピルチオーロープロピル・2-ロープロピルチオーロープロピル・3-ロープロピルチオーロープロピル等が挙げられる。

「置換されていてもよいアミノアルキル」とは、上記「置換されていもてよいアミノ」が置換した上記「アルキル」を意味し、例えば、Nーメチルアミノメチル、N、Nージメチルアミノメチルなどが挙げられる。

「アルコキシアルコキシ」とは、上記「アルコキシ」で置換された上記「アルコキシ」を意味し、例えば、メトキシメトキシ、エトキシメトキシ、n-プロポキシメトキシ、イソプロポキシメトキシ、1-メトキシエトキシ、2-メトキシエトキシなどが挙げられる。

15

「アルキルチオアルコキシ」とは、上記「アルキルチオ」で置換された上記「アルコキシ」を意味し、例えば、メチルチオメトキシ、エチルチオメトキシ、nープロピルチオメトキシ、イソプロピルチオメトキシ、1ーメチルチオエトキシ、2ーメトキシエトキシなどが挙げられる。

20 「ヘテロアリール」とは、窒素原子、酸素原子、および/又は硫黄原子を1~4個含む炭素数1~9のヘテロアリールを意味し、例えば、フリル (例えば、2-フリル、3-フリル)、チェニル (例えば、2-チェニル、3-チェニル)、ピロリル (例えば、1-ピロリル、2-ピロリル、3-ピロリル)、イミダゾリル (例えば、1-イミダゾリル、2-イミダゾリル、4-イミダゾリル)、ピラゾリル (例えば、1-ピラゾリル、3-ピラゾリル、4-ピラゾリル)、トリアゾリル (例えば、1,2,4-トリアゾール-1-イル、1,2,4-トリアゾリール-3-イル、1,2,4-トリアゾール-4-

イル)、テトラゾリル(例えば、1-テトラゾリル、2-テトラゾリル、5-テトラゾ リル)、オキサゾリル(例えば、2-オキサゾリル、4-オキサゾリル、5-オキサゾ リル)、イソキサゾリル(例えば、3-イソキサゾリル、4-イソキサゾリル、5-イ ソキサゾリル)、チアゾリル(例えば、2-チアゾリル、4-チアゾリル、5-チアゾ リル)、チアジアゾリル、イソチアゾリル(例えば、3-イソチアゾリル、4-イソ 5 チアゾリル、5-イソチアゾリル)、ピリジル(例えば、2-ピリジル、3-ピリジル、 4-ピリジル)、ピリダジニル(例えば、3-ピリダジニル、4-ピリダジニル)、ピ リミジニル(例えば、2-ピリミジニル、4-ピリミジニル、5-ピリミジニル)、フ ラザニル(例えば、3-フラザニル)、ピラジニル(例えば、2-ピラジニル)、オ キサジアゾリル (例えば、1,3,4-オキサジアゾール-2-イル)、ベンゾフリル (例 10 えば、2・ベンゾ[b]フリル、3・ベンゾ[b]フリル、4・ベンゾ[b]フリル、5・ベンゾ[b] フリル、6-ベンゾ[b]フリル、7-ベンゾ[b]フリル)、ベンゾチエニル(例えば、2-ペンゾ[b]チエニル、3·ベンゾ[b]チエニル、4·ベンゾ[b]チエニル、5·ベンゾ[b]チ エニル、6-ベンゾ[b]チエニル、7·ベンゾ[b]チエニル)、ベンズイミダゾリル(例 えば、1-ベンゾイミダゾリル、2-ベンゾイミダゾリル、4-ベンゾイミダゾリル、 15 5-ベンゾイミダゾリル)、ジベンゾフリル、ベンゾオキサゾリル、キノキサリル (例えば、2-キノキサリニル、5-キノキサリニル、6-キノキサリニル)、シンノ リニル(例えば、3-シンノリニル、4-シンノリニル、5-シンノリニル、6-シンノ リニル、7-シンノリニル、8-シンノリニル)、キナゾリル(例えば、2-キナゾリ 20 ニル、4-キナゾリニル、5-キナゾリニル、6-キナゾリニル、7-キナゾリニル、8-キナゾリニル)、キノリル(例えば、2-キノリル、3-キノリル、4-キノリル、5-キノリル、6・キノリル、7・キノリル、8・キノリル)、フタラジニル(例えば、1-フタラジニル、5-フタラジニル、6-フタラジニル)、イソキノリル(例えば、1-イソキノリル、3-イソキノリル、4-イソキノリル、5-イソキノリル、6-イソキノ リル、7-イソキノリル、8・イソキノリル)、プリル、プテリジニル(例えば、2-25 プテリジニル、4-プテリジニル、6-プテリジニル、7-プテリジニル)、カルパゾ

リル、フェナントリジニル、アクリジニル(例えば、1-アクリジニル、2-アクリジニル、3-アクリジニル、4-アクリジニル、9-アクリジニル)、インドリル(例えば、1-インドリル、2-インドリル、3-インドリル、4-インドリル、5-インドリル、6-インドリル、7-インドリル)、イソインドリル、ファナジニル(例えば、1-フェナジニル、2-フェナジニル)またはフェノチアジニル(例えば、1-フェノチアジニル、2-フェノチアジニル、3-フェノチアジニル、4-フェノチアジニル)等が挙げられる。

 R^3 又は R^4 のヘテロアリールとしては、特に、3-ピリジルが好ましい。 R^7 のヘテロアリールとしては、特に、2-チエニルが好ましい。

10

15

20

25

A環は、「置換されていてもよい芳香族炭素環」又は「置換されていてもよい 芳香族複素環」を意味する。

「芳香族炭素環」とは、炭素数 6~14の芳香族炭素環を意味し、例えば、ベンゼン、ナフタレン、アントラセン、フェナントレン等が挙げられる。特にペンゼン環、ナフタレン環が好ましい。

「芳香族複素環」とは、窒素原子、酸素原子、および/又は硫黄原子を1~4個含む炭素数1~9の芳香環を意味し、例えば、フラン、チオフェン、ピロール、イミダゾール、ピラゾール、トリアゾール、テトラゾール、オキサゾール、イソキサゾール、チアゾール、チアジアゾール、イソチアゾール、ピリジン、ピリダジン、ピリミジン、フラザン、ピラジン、ベンゾフラン、ベンゾチオフェン、ベンズイミダゾール、ジベンゾフラン、ベンゾオキサゾール、キノキサリン、シンノリン、キナゾリン、キノリン、フタラジン、イソキノリン、ブリン、ブテリジン、カルバゾール、フェナントリジン、アクリジン、インドール、イソインドールまたはフェナジン等が挙げられる。特に、ピリジン、キノリン、イソキノリンが好ましい。

「置換されていてもよいアラルキルオキシ」、「置換されていてもよいアラル

キルチオ」、「置換されていてもよいアラルキルアミノ」、「置換されていても よいアリール」、「置換されていてもよいヘテロアリール」、「置換されていて もよいアリールオキシ」、「置換されていてもよい芳香族炭素環」、「置換され ていてもよい芳香族複素環」及び「置換されていてもよい非芳香族複素環式基」 の置換基としては、アルキル、アルコキシ、アルキルチオ、置換されていてもよ いアミノ、置換されていてもよいアリール、置換されていてもよいアリールオキ シ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアル コキシ、置換されていてもよいカルバモイル、カルボキシ、アルコキシカルボニ ル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキ ルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、 アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されてい てもよい非芳香族複素環式基、アルコキシイミノアルキル、式:-C(=0)-RH(RHは水素、アルキル、置換されていてもよいアリール、又は置換されてい てもよい非芳香族複素環式基)で示される基、アリールスルホニル(例えば、ベ ンゼンスルホニル等)、シアノ、ヒドロキシアミノ、アラルキル(例えば、ベン ジル等)、メルカプト、ヒドラジノ、アミジノ、グアニジノ、イソシアノ、イソ シアナト、チオシアナト、イソチオシアナト、スルファモイル、ホルミルオキシ、 ハロホルミル、オキザロ、チオホルミル、チオカルボキシ、ジチオカルボキシ、 チオカルバモイル、スルフィノ、スルフォ、スルホアミノ、アジド、ウレイド、 アミジノ、グアニジノ、オキソ、チオキソ等が挙げられる。

これらの置換基で置換可能な任意の位置が置換されていてもよい。また、環上の同一又は隣接する位置において、アルキレンジオキシで置換されていてもよい。 アルキレンジオキシとしては、例えば、 $-O-CH_2-O-$ 、 $-O-CH_2-CH_2-O-$ が挙げられる。

25

10

15

20

「アリールオキシ」とは、酸素原子に上記「アリール」が置換した基を意味し、

例えば、フェノキシ、ナフトキシ (例えば、1-ナフトキシ、2-ナフトキシ等)、アントリルオキシ (例えば、1-アントリルオキシ、2-アントリルオキシ等)、フェナントリルオキシ (例えば、1-フェナントリルオキシ、2-フェナントリルオキシ等)等が挙げられる。

5 「シクロアルキル」とは、炭素数3~7のシクロアルキルを意味し、例えば、 シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル等が挙げられ る。

「ハロゲン」とは、フッ素、塩素、臭素、沃素を意味する。特に、フッ素、塩素、臭素が好ましい。

- 10 「ハロアルキル」とは、上記「アルキル」に1以上のハロゲンが置換した基を 意味し、例えば、クロロメチル、ジクロロメチル、ジフルオロメチル、トリフル オロメチル、クロロエチル (例えば、1-クロロエチル、2-クロロエチル等)、ジクロロエチル (例えば、1,1-ジクロロエチル、1,2-ジクロロエチル、2,2-ジクロロエチル等)等が挙げられる。
- 15 「ハロアルコキシ」とは、上記「アルコキシ」に 1 以上のハロゲンが置換した 基を意味し、例えば、ジクロロメトキシ、ジフルオロメトキシ、トリフルオロメトキシ、トリフルオロエトキシ等)等が挙 げられる。

「置換されていてもよいカルバモイル」の置換基としては、アルキル(例えば、20 メチル、エチル、nープロピル、iープロピル等)、アシル(例えば、ホルミル、アセチル、プロピオニル、ベンゾイル等)等が挙げられる。カルバモイル基の窒素原子が、これらの置換基でモノ置換またはジ置換されていてもよい。

「置換されていてもよいカルバモイル」としては、カルバモイル、N-メチルカルバモイル、N-エチルカルバモイル等が好ましい。

25 「アルコキシカルボニル」とは、カルボニルに上記「アルコキシ」が置換した 基を意味し、特に、メトキシカルボニル、エトキシカルボニル等が好ましい。

「アルキルスルフィニル」とは、スルフィニルに上記「アルキル」が置換した 基を意味し、特に、メタンスルフィニル、エタンスルフィニル等が好ましい。

「アルキルスルホニル」とは、スルホニルに上記「アルキル」基が置換した基 を意味し、特に、メタンスルホニル、エタンスルホニル等が好ましい。

5 「非芳香族複素環式基」とは、窒素原子、酸素原子、および/又は硫黄原子を 1~4個含む炭素数 1~9の非芳香環を意味し、例えば、1-ピロリニル、2-ピロリニル、3-ピロリニル、ピロリジノ、2-ピロリジニル、3-ピロリジニル、1-イミダゾリニル、2-イミダゾリニル、4-イミダゾリニル、1-イミダゾリニル、2-イミダゾリジニル、1-ピラゾリニル、3-ピラゾリニル、4-ピラゾリジニル、4-ピラゾリジニル、1-ピラゾリジニル、2-ピーラゾリジニル、ピープリジニル、ピープリジニル、1-ピラゾリジニル、ピープリジニル、ピープリジニル、3-ピープリジニル、ピープリジニル、ピープリジン、2-ピープジンル、2-ピープジニル、2-ピープジンがリジニル、モルホリン、テトラヒドロピラニル等が挙げられる。特に、モルホリノ、ピロリジノ、ピースジンが好ましい。

15 「アルコキシイミノアルキル」は、アルコキシイミノで置換された上記「アルキル」を意味する。例えば、メトキシイミノメチル、エトキシイミノメチル、1
-メトキシイミノエチル等が挙げられる。

式:-C(=O)-R^H(RHは水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基としては、

20 例えば、ホルミル、アセチル、ベンゾイル、トルオイル、モルホリノカルボニル 等が挙げられる。

mは0~2の整数を意味し、特に、m=0が好ましい。

カンナビノイド2受容体作動性とは、カンナビノイド2受容体に対してアゴニスト作用を示すことを意味する。

25

本発明に係る化合物は、以下に示す工程によって製造することができる。

(式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 はアルキル、式: - C (= R⁵) - R⁸ (式中、R⁵はO又はSを表わし、R⁶はアルキル、アルコ キシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラ ルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいア ラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されて いてもよいアミノアルキルを表わす)で示される基、又は式:-SO,R7(式中、 R⁷はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、 又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、R ³およびR⁴はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、 置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてす もよいアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロ アルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、 アルコキシカルポニル、アルキルスルフィニル、アルキルスルホニル、アルコキ シアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、ア ルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロア リール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、 又は式:-C(=O)-R^H(RHは水素、アルキル、置換されていてもよいアリ ール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、 又はR³及びR⁴は一緒になって-O-CH₂-O-を表わし、mは0~2の整数

10

15

20

を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳香族複素環を表わす)

第1工程

式(III)で示される化合物のアミノ基をイソチオシアン酸エステル(イソチオシアネート)に変換し、式(IV)で示される化合物を製造する工程である。アミノ基からイソチオシアン酸エステル(イソチオシアネート)への変換法としては、①アンモニア(NH3、NH4OH)やトリエチルアミン(Et3N)などの塩基の存在下に二硫化炭素(CS2)を作用させて得られるジチオカルバミド酸塩を、クロロ炭酸エチル(C1CO2Et)、トリエチルアミン(Et3N)で処理する方法、②前記ジチオカルバミド酸塩を、硝酸鉛等の金属塩で処理する方法③チオホスゲン(CSC12)を作用させる方法④チオカルボニルジイミダゾールを作用させる方法等が挙げられる。

①の場合、塩基(1.0~1.5当量)及び二硫化炭素(1.0~1.5当量)を化合物(III)に加え、非プロトン性溶媒(例えば、ジェチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間~10時間攪拌する。その後、クロロ炭酸エチル(1.0~1.5当量)及びトリエチルアミン(1.0~1.5当量)を加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間~10時間攪拌する。反応温度としては0℃~100℃が好ましく、特に0℃~室温が好ましい。

③の場合、チオホスゲン(1.0~1.5当量)を化合物(III)に加え、 非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチル ホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で 0. 5時間~10時間攪拌する。反応温度としては 0 ℃~100 ℃が好ましく、特に

0℃~室温が好ましい。

④の場合、チオカルボニルジイミダゾール($1.0 \sim 1.5$ 当量)を化合物(III)に加え、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で0.5時間 ~ 10 時間攪拌する。反応温度としては $0 \sim 10 \sim 10$ が好ましく、特に $0 \sim 2$

式(III)で示される化合物としては、m=0の例として、アニリン、2-メチルアニリン、2-エチルアニリン、2-n-プロピルアニリン、2-i-プ ロピルアニリン、2-n-ブチルアニリン、2-sec-ブチルアニリン、2t-ブチルアニリン、3-メチルアニリン、3-i-ブロピルアニリン、3-i 10 ープロピルー4ーメチルアニリン、3ーtープチルアニリン、4ーメチルアニリ ン、4-i-プロピルアニリン、2、6-ジメチルアニリン、2,3-ジメチル アニリン、2,4-ジメチルアニリン、3,4-ジエチルアニリン、2,5-ジ メチルアニリン、3,4-ジメチルアニリン、3,5-ジメチルアニリン、2, 6-ジエチルアニリン、2,6-ジーi-プロピルアニリン、2-メトキシアニ 15 リン、2-エトキシアニリン、2-i-プロポキシアニリン、3-メトキシアニ リン、3,5-ジメトキシアニリン、3-n-ブトキシアニリン、4-n-ブト キシアニリン、4-エトキシアニリン、3,4-ジメトキシアニリン、2-メチ ルチオアニリン、2-エチルチオアニリン、2-i-プロピルチオアニリン、2 -N.N-ジメチルアミノアニリン、2-フェニルアニリン、3-フェニルアニ 20 リン、4-フェノキシアニリン、2-シクロヘキシルアニリン、2-シクロペン チルアニリン、2-ニトロアニリン、2,4-ジニトロアニリン、2-フルオロ アニリン、2-クロロアニリン、4-クロロアニリン、2,3-ジクロロアニリ ン、3、4-ジクロロアニリン、2-i-プロピル-4-ニトロアニリン、2i-プロピルー6-ニトロアニリン、2-ヒドロキシアニリン、2-N, N-ジ 25

メチルアミノカルポニルアニリン、2-N-アセチルアニリン、2-(1-エチ

ルプロピル) アニリン、2-i-プロピル4-メチルアニリン、<math>2-i-プロピルー4-ヒドロキシアニリン、<math>2-i-プロピルー4-クロロアニリン、2-i-プロピルー4-アミノアニリン、2-i-プロピルー5-メチルアニリン、2-i-プロピルー5-とドロキシアニリン、2-i-プロピルー5-クロロアニリン、4-クロロー3-メチルアニリン、3, 4-メチレンジオキシアニリン等が挙げられる。

m=1の例としては、ペンジルアミン、2-メチルベンジルアミン、2-エチ ルベンジルアミン、2-n-プロピルベンジルアミン、2-i-プロピルベンジ ルアミン、2-n-ブチルベンジルアミン、2-sec-ブチルベンジルアミン、 10 2-t-ブチルベンジルアミン、3-メチルベンジルアミン、3-i-プロピル ペンジルアミン、3-i-プロピル-4-メチルベンジルアミン、3-t-ブチ ルベンジルアミン、4-メチルベンジルアミン、4-i-プロピルベンジルアミ ン、2,6-ジメチルベンジルアミン、2,3-ジメチルベンジルアミン、2, 4ージメチルベンジルアミン、3,4ージエチルベンジルアミン、2,5ージメ - チルベンジルアミン、3,4-ジメチルベンジルアミン、3,5-ジメチルベン 15 ジルアミン、2,6-ジエチルベンジルアミン、2,6-ジ-i-プロピルベン ジルアミン、2-メトキシベンジルアミン、2-エトキシベンジルアミン、2iープロポキシベンジルアミン、3ーメトキシベンジルアミン、3,5ージメト キシベンジルアミン、3-n-ブトキシベンジルアミン、4-n-ブトキシベン 20 ジルアミン、4-エトキシベンジルアミン、3,4-ジメトキシベンジルアミン、 2-メチルチオベンジルアミン、2-エチルチオベンジルアミン、2-i-プロ \mathbb{C} \mathbb{C} ェニルベンジルアミン、3-フェニルベンジルアミン、4-フェノキシベンジル アミン、2-シクロヘキシルベンジルアミン、2-シクロペンチルベンジルアミ ン、2-ニトロベンジルアミン、2,4-ジニトロベンジルアミン、2-フルオ 25 ロベンジルアミン、2-クロロベンジルアミン、4-クロロベンジルアミン、2,

m=2の例としては、フェネチルアミン、2-メチルフェネチルアミン、2-エチルフェネチルアミン、2-n-プロピルフェネチルアミン、2-i-プロピ ルフェネチルアミン、2-n-ブチルフェネチルアミン、2-sec-ブチルフ ェネチルアミン、2-t-ブチルフェネチルアミン、3-メチルフェネチルアミ ン、3-i-プロピルフェネチルアミン、3-i-プロピル-4-メチルフェネ 15 **チルアミン、3-t-プチルフェネチルアミン、4-メチルフェネチルアミン、** 4-1-プロピルフェネチルアミン、2,6-ジメチルフェネチルアミン、2, 3 - ジメチルフェネチルアミン、 2 , 4 - ジメチルフェネチルアミン、 3 , 4 -ジエチルフェネチルアミン、2,5-ジメチルフェネチルアミン、3,4-ジメ 20 チルフェネチルアミン、3,5-ジメチルフェネチルアミン、2,6-ジエチル フェネチルアミン、2,6-ジーi-プロピルフェネチルアミン、2-メトキシ フェネチルアミン、2-エトキシフェネチルアミン、2-i-プロポキシフェネ チルアミン、3-メトキシフェネチルアミン、3,5-ジメトキシフェネチルア ミン、3-n-プトキシフェネチルアミン、4-n-プトキシフェネチルアミン、 4-エトキシフェネチルアミン、3,4-ジメトキシフェネチルアミン、2-メ 25

チルチオフェネチルアミン、2-エチルチオフェネチルアミン、2-i-プロピ

ルチオフェネチルアミン、2-N, N-ジメチルアミノフェネチルアミン、<math>2-フェニルフェネチルアミン、3-フェニルフェネチルアミン、4-フェノキシフ ェネチルアミン、2-シクロヘキシルフェネチルアミン、2-シクロベンチルフ ェネチルアミン、2-ニトロフェネチルアミン、2,4-ジニトロフェネチルア ミン、2-フルオロフェネチルアミン、2-クロロフェネチルアミン、4-クロ ロフェネチルアミン、2,3-ジクロロフェネチルアミン、3,4-ジクロロフ ェネチルアミン、2-i-プロピル-4-ニトロフェネチルアミン、2-i-プ ロピルー6-ニトロフェネチルアミン、2-ヒドロキシフェネチルアミン、2-N, N-ジメチルアミノカルボニルフェネチルアミン、2-N-アセチルフェネ チルアミン、2-(1-エチルプロピル)フェネチルアミン、2-i-プロピル 10 4-メチルフェネチルアミン、2-i-プロピル-4-ヒドロキシフェネチルア ミン、2-i-プロピル-4-クロロフェネチルアミン、2-i-プロピル-4 ーアミノフェネチルアミン、2-i-プロピル-5-メチルフェネチルアミン、 2-i-プロピル-5-ヒドロキシフェネチルアミン、2-i-プロピル-5-クロロフェネチルアミン、4ークロロー3ーメチルフェネチルアミン、3,4-15 メチレンジオキシフェネチルアミン等が挙げられる。

第2工程

式(IV)で示される化合物のイソチオシアン酸エステル(イソチオシアネー 20 ト)に、 NH_2-R^1-OH を反応させ、式(V)で示される化合物を製造するエ程である。

本工程は、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)中で行うことができる。

25 反応温度としては、0℃~100℃が好ましく、特に0℃~室温が好ましく、 反応時間としては、0.5時間~10時間が好ましい。

 NH_2-R^1-OH (R^1 は置換されていてもよいアルキレン) は、化合物 (I V) に対して 1. $0\sim1$. 5 当量用いればよい。

 NH_2-R^1-OH としては、2-Pミノエタノール、2-Pミノー2-メチル エタノール、2-Pミノー1-メチルエタノール、2-Pミノー1, 1-ジメチ ルエタノール、3-Pミノプロパノール、3-Pミノー2, 2-ジメチルプロパノール、3-Pミノー1-メチルプロパノール、3-Pミノー1-メチルプロパノール、3-Pミノー1-メチルプロパノール、1-Pミノメチルー1-ヒドロキシメチルシクロプロパン、1-Pミノメチルー1-(ヒドロキシメチル)シクロプタン、1-Pミノメチルー1-(ヒドロキシメチル)シクロプタン、1-Pミノメチルーの等が挙げられる。

第3工程

式(V)で示される化合物を閉環させ、式(VI)で示される化合物を製造する工程である。

15 閉環方法としては、①ジエチルアゾジカルボキシレート(DEAD)及びトリフェニルホスフィン(Ph_3P)で処理する方法、②塩酸で処理する方法等が挙げられる。

①の場合は、溶媒として非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ペンゼン、トルエン、ジクロロメタン、20 クロロホルム等)等を用い、0.5時間~5時間、0℃~室温で行えばよい。ジエチルアゾジカルボキシレート(DEAD)及びトリフェニルホスフィン(Ph₃P)は、それぞれ化合物(V)に対して1.0~1.5当量用いればよい。②の場合は、濃塩酸中で0.5時間~10時間、加熱還流すればよい。

25 第4工程

式 (VI) で示される化合物に、 R^2 (式: -C ($=R^5$) $-R^6$ で示される基

又は式: $-SO_2R^7$ で示される基)を導入し、式(II)で示される化合物を製造する工程である。(式中、 R^6 はO又はSを表わし、 R^6 はPルキル、Pルコキシ、Pルキルチオ、置換されていてもよいPラルキルオキシ、置換されていてもよいPラルキルチオ、置換されていてもよいPラルキルアミノ、PルコキシPルキル、PルキルチオPルキル、又は置換されていてもよいPミノ、PルコキシPルキル、Pルキル・Pロキル、Pロキルを表わし、P0。「はP1」に関換されていてもよいP1」、置換されていてもよいP1」、置換されていてもよいP1」に関換されていてもよいP1」に関換されていてもよいP1」に

本工程は、塩基(例えば、トリエチルアミン、ピリジン、N, Nージメチルア 10 ミノピリジン等)の存在下、式:X-C ($=R^5$) $-R^6$ (式中、 R^5 及び R^6 は 前記と同意義、Xはハロゲンを表わす)で示される化合物を反応させることにより行うことができる。通常のN-アシル化の条件に従って行えばよく、例えば、溶媒として非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等) 等を使用し、0 \mathbb{C} \mathbb{C}

また、 R^5 がS、 R^6 がアルキルチオ又は置換されていてもよいアラルキルチオであるジチオ酸エステルの化合物は、塩基(例えば、水素化ナトリウム等)の存在下、二硫化炭素(CS_2)を反応させ、次いで、ハロゲン化アルキル(例えば、ヨードメタン、ヨードエタン等)又はハロゲン化アラルキル(例えば、ベンジルブロマイド等)を反応させることによっても得ることができる。この場合、溶媒としては、非プロトン性溶媒(例えば、ジエチルエーテル、テトラヒドロフラン、ジメチルホルムアミド、ベンゼン、トルエン、ジクロロメタン、クロロホルム等)を用いることができ、0 \mathbb{C} ~室温で反応は進行する。

20

また、 R^2 として、式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていて もよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を導入する場合は、式: R^7SO_2X (式中、

Xはハロゲン等)で示される化合物を式(VI)で示される化合物に塩基存在下で反応させればいい。

プロドラッグは、生理学的条件下でインビボにおいて薬学的に活性な本発明化 合物となる化合物である。適当なプロドラッグ誘導体を選択する方法および製造 する方法は、例えば Design of Prodrugs, Elsevier, Amsterdam 1985 に記載され ている。

本発明に係る化合物のプロドラッグは、脱離基を導入することが可能なA環上の置換基(例えば、アミノ、ヒドロキシ等)に、脱離基を導入して製造することができる。アミノ基のプロドラッグとしては、カルバメート体(例えば、メチルカルバメート、シクロプロピルメチルカルバメート、tーブチルカルバメート、ベンジルカルバメート等)、アミド体(例えば、ホルムアミド、アセタミド等)、Nーアルキル体(例えば、Nーアリルアミン、Nーメトキシメチルアミン等)等が挙げられる。ヒドロキシ基のプロドラッグとしては、エーテル体(メトキシメチルエーテル、メトキシエトキシメチルエーテル等)、エステル体(例えば、アセテート、ピバロエート、ベンゾエート等)等が挙げられる。

10

20

25

製薬上許容される塩としては、塩基性塩として、例えば、ナトリウム塩、カリウム塩等のアルカリ金属塩;カルシウム塩、マグネシウム塩等のアルカリ土類金属塩;アンモニウム塩;トリメチルアミン塩、トリエチルアミン塩、ジシクロヘキシルアミン塩、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩、ブロカイン塩等の脂肪族アミン塩;N,N-ジベンジルエチレンジアミン等のアラルキルアミン塩;ピリジン塩、ピコリン塩、キノリン塩、イソキノリン塩等のヘテロ環芳香族アミン塩;テトラメチルアンモニウム塩、デトラエチルアモニウム塩、ベンジルトリズチルアンモニウム塩、メチルトリオクチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、メチルトリオクチルアンモニウム塩、ベンジルトリブチルアンモニウム塩、メチルトリオクチルアンモニウム

塩、テトラブチルアンモニウム塩等の第4級アンモニウム塩;アルギニン塩、リジン塩等の塩基性アミノ酸塩等が挙げられる。酸性塩としては、例えば、塩酸塩、硫酸塩、硝酸塩、リン酸塩、炭酸塩、炭酸水素塩、過塩素酸塩等の無機酸塩;酢酸塩、プロピオン酸塩、乳酸塩、マレイン酸塩、フマール酸塩、酒石酸塩、リンゴ酸塩、クエン酸塩、アスコルビン酸塩等の有機酸塩;メタンスルホン酸塩、イセチオン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等のスルホン酸塩;アスパラギン酸塩、グルタミン酸塩等の酸性アミノ酸等が挙げられる。

溶媒和物としては、式(I)又は式(II)で示される化合物、そのプロドラ 10 ッグ、又はその製薬上許容される塩の溶媒和物を意味し、例えば、一溶媒和物、二溶媒和物、一水和物、二水和物等が挙げられる。

本発明化合物は、カンナビノイド2受容体(CB2R)親和性であり、カンナビノイド2受容体(CB2R)に選択的に結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を示す。特に、CB2Rアゴニスト作用を示す。

また、本発明化合物は、カンナビノイド1受容体 (CB1R) に対する親和性がなく、カンナビノイド1受容体 (CB1R) に由来する中枢神経系の副作用(幻覚など)を回避することができ、カンナビノイド1受容体 (CB1R) に関連した依存性を引き起こすこともない。

15

従って、本発明化合物は、カンナビノイド2受容体(CB2R)が関与する疾患に対して治療又は予防の目的で使用することができる。例えば、Proc. Natl. Acad. Sci. USA 96, 14228-14233.には、CB2受容体アゴニストが抗炎症作用、鎮痛作用を有する旨記載されている。また、Nature, 1998, 349, 277-281 には、CB2受容体アゴニストが鎮痛作用を有する旨記載されている。また、European Journal of Pharmacology 396 (2000) 85-92 には、CB2受容体アンタゴニストが鎮痛作用を有する旨記載されている。

すなわち、本発明化合物は、免疫系細胞や炎症系細胞の活性化を抑制し、末梢 細胞系作用(免疫抑制、抗炎症、鎮痛作用)を発現すると考えられ、抗炎症剤、 抗アレルギー剤、鎮痛剤、免疫不全治療剤、免疫抑制剤、免疫調節剤、自己免疫 疾患治療剤、慢性関節リューマチ治療剤、多発性硬化症治療剤等として用いるこ とができる。

また、カンナビノイド 2 受容体作動剤は、ラット Thy-1 抗体惹起腎炎に対する 抑制効果を有していることが知られており(W O 9 7 / 2 9 0 7 9)、腎炎治療 剤としても有用である。

本発明化合物を治療に用いるには、通常の経口又は非経口投与用の製剤として製剤化する。本発明化合物を含有する医薬組成物は、経口及び非経口投与のための剤形をとることができる。即ち、錠剤、カブセル剤、顆粒剤、散剤、シロップ剤などの経口投与製剤、あるいは、静脈注射、筋肉注射、皮下注射などの注射用溶液又は懸濁液、吸入薬、点眼薬、点鼻薬、坐剤、もしくは軟膏剤などの経皮投与用製剤などの非経口投与製剤とすることもできる。

15

20

10

5

これらの製剤は当業者既知の適当な担体、賦形剤、溶媒、基剤等を用いて製造することができる。例えば、錠剤の場合、活性成分と補助成分を一緒に圧縮又は成型する。補助成分としては、製剤的に許容される賦形剤、例えば結合剤(例えば、トウモロコシでん粉等)、充填剤(例えば、ラクトース、微結晶性セルロース等)、崩壊剤(例えば、でん粉グリコール酸ナトリウム等)又は滑沢剤(例えば、ステアリン酸マグネシウム等)などが用いられる。錠剤は、適宜、コーティングしてもよい。シロップ剤、液剤、懸濁剤などの液体製剤の場合、例えば、懸濁化剤(例えば、メチルセルロース等)、乳化剤(例えば、レシチン等)、保存剤などを用いる。注射用製剤の場合、溶液、懸濁液又は油性もしくは水性乳濁液の形態のいずれでもよく、これらは懸濁安定剤又は分散剤などを含有していてもよい。吸入剤として使用する場合は吸入器に適応可能な液剤として、点眼剤として

て使用する場合も液剤又は懸濁化剤として用いる。

本発明化合物の投与量は、投与形態、患者の症状、年令、体重、性別、あるいは併用される薬物(あるとすれば)などにより異なり、最終的には医師の判断に委ねられるが、経口投与の場合、体重1 kg あたり、1日 $0.01\sim100$ mg、好ましくは $0.01\sim10$ mg、より好ましくは $0.1\sim10$ mg、非経口投与の場合、体重1 kg あたり、1日 $0.001\sim100$ mg、好ましくは $0.001\sim1$ mg、より好ましくは $0.001\sim1$ mg、より好ましくは $0.001\sim1$ mg、よ

10

実施例

以下に実施例を挙げて本発明を詳しく説明するが、これらは単なる例示であり 本発明はこれらに限定されるものではない。

なお、各略号は以下に示す意味を有する。

15 $Me: x \neq y$, $Et: x \neq y$, $Pr: T \cap U$, $Pr^{i}: i - T \cap U$,

 $Bu: \mathcal{I} \mathcal{F} \mathcal{N}$ 、 $Bu^i: i - \mathcal{I} \mathcal{F} \mathcal{N}$ 、 $Bu^s: sec - \mathcal{I} \mathcal{F} \mathcal{N}$ 、

Bu^t:t-ブチル

Ph:フェニル、Ac:アセチル、Bn:ベンジル

DMF:N, N-ジメチルホルムアミド、THF:テトラヒドロフラン、

20 DEAD:アゾジカルポン酸ジエチル、

参考例 1 - 1 (2 - イソプロピルフェニル) イソチオシアネート(化合物 2)の製造

2-イソプロピルアニリン(5.00g)、トリエチルアミン(3.74g)、トルエン(10 ml)の混合液に、二硫化炭素(2.81g)を10分間で滴下し、室温で1時間攪拌した後、12時間放置した。反応溶液を減圧濃縮し、塩化メチレン(20 ml)、トリエチルアミン(3.74g)を加え、クロロ炭酸エチル(4.01g)を氷冷下10分間で加え、室温で1時間攪拌した。反応液に10%塩酸(20 ml)を加え、塩化メチレン(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、(2-イソプロピルフェニル)イソチオシアネート(6.55g、収率99%)を黄色油状物で得た。

10 ¹H-NMR (δ ppm TMS / CDCl₃)1.25(6H, d, J=6.7), 3.25(1H, q, J=6.7), 7.14-7.30(4H, m).

参考例 1 - 2 (2-イソプロピルフェニル) イソチオシアネート(化合物 2)の製造

15

20

2-イソプロピルアニリン (1.81g) のジエチルエーテル (20 ml) 溶液に、チオホスゲン (1.54g) を氷冷下10分間で滴下し、室温で1時間撹拌した。 反応液に水 (30 ml) を加え、ジエチルエーテル (60 ml) で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、(2-イソプロピルフェニル) イソチオシアネート (2.35g、収率99%) を褐色油状物で得た。

参考例 2 N-(2-4) プロピルフェニル) -N'-(1-1) では、2 -2 ジメチル) プロピルチオウレア (化合物 3) の製造

5 (2-イソプロピルフェニル) イソチオシアネート (3.30g) のジエチルエーテル (20 ml) 溶液に、3-アミノ-2,2-ジメチルプロパノール (1.92g) を加え、室温で1時間撹拌した。反応溶液を減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (n-ヘキサン/酢酸エチル) にて精製して、N-(2-イソプロピルフェニル) -N'-(1-ヒドロキシ-2,2-ジメ チル) プロピルチオウレア (4.60g、収率88%) を黄色油状物で得た。

1H-NMR (δ ppm TMS / CDCl₃)0.82(6H, s), 1.25(6H, d, J=6.7), 3.11(1H, q, J=6.7), 3.25(2H, s), 3.55(2H, d, J=6.3), 6.05(1H, m), 7.17-7.40(4H, m).

参考例3 2-(2-イソプロピルフェニル)イミノー5,5-ジメチル-1,3-15 チアジン(化合物4)の製造

20

N-(2-4)プロピルフェニル) -N'-(1-1) に -2 に

率50%)を白色結晶で得た。

融点155-157℃

¹H-NMR (δ ppm TMS / CDCl₃)1.15(6H, s), 1.20(6H, d, J=6.7), 2.67(2H, s), 3.09(2H, s), 3.15.(1H, q, J=6.7), 6.88(1H, m), 7.05-7.11(2H, m), 7.20(1H, m).

5

参考例 4 2-(2-4)プロピルフェニル) $4 \leq 2-5$, 5-3 メチルー 1, 3-4 チアジン(化合物 4)の製造

N-(2-4)プロピルフェニル)-N'-(1-k+n+2-2,2-2)メチ 10 ル)プロピルチオウレア (1.00g) のテトラヒドロフラン (6ml) の混合液に、塩化チオニル (0.60g) を滴下し、室温で 1 時間撹拌する。反応溶液を減圧濃縮し、アセトニトリル (20ml) 、炭酸カリウム (0.93g) を加え、2 時間加熱還流した。反応液に水 (40ml) を加え、塩化メチレン (60ml) で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー (n-n+1) が酸エチル)にて精製して、2-(2-4)プロピルフェニル)イミノー5,5-ジメチルー1,3-チアジン (0.45g)、収率 48%)を白色結晶で得た。

参考例 3、4 で得られた 2-(2-4)プロピルフェニル) 4 ミノー 5, 5-9メ 20 チルー 1, 3-4アジンを用いて、以下の実施例 $1\sim 5$ を行った。

実施例 1 3 - エチルー 2 - (2 - イソプロピルフェニル)イミノー 5,5 - ジメチルー 1,3 - チアジン(化合物 I-1)の製造

2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(0.26g)のN,N-ジメチルホルムアミド(2 ml)溶液に、60%水素化ナトリウム(0.05g)を氷冷下で加え、30分間撹拌後、よう化エチル(0.17g)を加え、室温で2時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、3-エチル-2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(0.21g、収率71%)を無色油状物で得た。

10 ¹ H-NMR (δ ppm TMS / CDCl ₃) 1.13 (6H, s), 1.20 (6H, d, J = 6.9), 1.25 (3H, t, J = 7.4), 2.61 (2H, s), 3.05 (2H, s), 3.17 (1H, m), 3.64 (2H, q, J = 6.9), 6.72-6.80 (1H, m), 6.98-7.07 (2H, m), 7.20-7.32 (1H, m).

実施例 2 2-(2-4) ソプロピルフェニル) イミノー 3- プロピオニルー 5, 5 15 - ジメチルー 1, 3- チアジン(化合物 I-2) の製造

20

2-(2-4)プロピルフェニル) $4 \le 1-5$, $5-3 \le 1$ メチルー 1, 3-4 アジン (0.26g)、トリエチルアミン(0.15g)、塩化メチレン(5ml) の混合液に、塩化プロピオニル(0.13g)を5分間で滴下し、室温で2時間撹拌した。反応液に水(30ml)を加え、ジエチルエーテル(60ml)で抽出した。抽出液を無水硫酸

マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー $(n-\wedge$ キサン/酢酸エチル)にて精製して、2-(2-1) プロピルフェニル (0.1) 3 の (0.

¹ H-NMR (δ ppm TMS / CDCl ₃)1.14 (6H, s), 1.20 (6H, d, J = 6.9), 1.22 (3H, t, J = 7.4), 2.60 (2H, s), 2.95 (2H, q, J = 7.4), 2.96 (1H, q, J = 6.9), 3.73 (2H, s), 6.73-6.78 (1H, m), 7.10-7.17 (2H, m), 7.25-7.32 (1H, m).

実施例3 3-(x++シカルボニル)-2-(2-イソプロピルフェニル)イミノ10 -5,5-ジメチル-1,3-チアジン(化合物 I-3)の製造

15

2-(2-1)プロピルフェニル)イミノー5,5ージメチルー1,3ーチアジン (0.26g)、トリエチルアミン(0.15g)、塩化メチレン(5ml)の混合液に、クロロ炭酸エチル(0.13g)を5分間で滴下し、室温で2時間撹拌した。反応液に水(30ml)を加え、ジエチルエーテル(60ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-0)十ン/酢酸エチル)にて精製して、3-(x+1)1のボニル)-2-(x+1)2のピルフェニル)イミノー5,5ージメチルー1,3ーチアジン(0.23g)0、収率 68%0を白色結晶で得た。融点 84-86%

20 ¹ H-NMR (δ ppm TMS / CDCl ₃) 1.16 (6H, s), 1.21 (6H, d, J = 6.9), 1.36 (3H, t, J = 7.1), 2.59 (2H, s), 3.17 (1H, q, J = 6.9), 3.65 (2H, s), 4.32 (2H, q, J = 7.1), 6.74-6.78 (1H, m), 7.12-7.16 (2H, m), 7.30-7.36 (1H, m).

実施例 4 3-(エチルチオカルボニル)-2-(2-イソプロピルフェニル)イミ<math>J-5,5-ジメチル-1,3-チアジン(化合物 I-4)の製造

5 2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン (1.00g)、トリエチルアミン(0.58g)、塩化メチレン(5 ml)の混合液に、クロロチオ炭酸エチル(0.56g)を5分間で滴下し、室温で1時間撹拌した。反応液に水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、3-(エチルチオカルボニル)-2-(2-イソプロピルフェニル)イミノ-5,5-ジメチル-1,3-チアジン(0.74g、収率56%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl ₃)1.16 (6H, s), 1.21 (6H, d, J = 6.9), 1.36 (3H, t, J = 7.1), 2.63 (2H, s), 2.89 (2H, q, J = 7.1), 3.15 (1H, q, J = 6.9), 3.77 (2H, s), 6.79-6.85 (1H, m), 7.12-7.16 (2H, m), 7.30-7.36 (1H, m).

実施例 5 2-(2-4)プロピルフェニル) $4 \le 1-3-(3+1)$ チオカル ポニル 4-5 , 5-3 メチル 4-5 , 3-4 アジン(化合物 1-5) の製造

15

1-5

10 ¹ H-NMR (δ ppm TMS / CDCl ₃)1.20 (6H, d, J = 6.9), 1.23 (6H, s), 2.65 (3H, s), 2.68 (2H, s), 3.11 (1H, q, J = 6.9), 4.51 (2H, s), 6.83-6.90 (1H, m), 7.11-7.18 (2H, m), 7.28-7.35 (1H, m).

参考例2、参考例3と同様に、以下の参考例5を行った。

15 参考例 5 2 - (2-イソプロピルフェニル) イミノー 1,3 - チアゾリジン(化 合物 6)の製造

NCS
$$\frac{H_2N}{OH} \underbrace{OH}_{\text{(1eq)}} \underbrace{H}_{N} \underbrace{N}_{N} \underbrace{OH}_{N} \underbrace{OH}_{S} \underbrace{$$

(2-イソプロピルフェニル) イソチオシアネート(2.00g) のジエチルエーテル(20 ml) 溶液に、2-アミノエタノール(0.69g) を加え、室温で120 時間撹拌した。反応溶液を減圧濃縮して得られた油状物に濃塩酸(5 ml)を加え、3時間加熱還流した。反応液を室温に冷却し、20%水酸化ナトリウム水溶液(2

¹H-NMR (δ ppm TMS / CDCl₃)1.20(6H, d, J=6.7), 3.15(1H, q, J=6.7), 3.27(2H, t, J = 6.7), 3.67(2H, t, J = 6.7), 6.95-6.99(1H, m), 7.05-7.19(2H, m), 7.22-7.26(1H, m).

10 参考例 5 で得られた 2-(2-4)プロピルフェニル) イミノー 1,3-4アゾリジンを用いて、以下の実施例 $6\sim7$ を行った。

実施例 6 3-(エチルチオカルボニル)-2-(2-イソプロピルフェニル)イミ<math>J-1,3-チアゾリジン(化合物 I-6)の製造

15

20

2-(2-4)プロピルフェニル)イミノー1,3-4アゾリジン(0.25g)、トリエチルアミン(0.15g)、塩化メチレン(5ml)の混合液に、クロロチオ炭酸エチル(0.15g)を5分間で滴下し、室温で2時間撹拌した。反応液に水(30ml)を加え、ジエチルエーテル(60ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-4)が酸エチル)にて精製して、3-(x+1)がカラムクロマトグラフィー(2-4)が配出が、(2-4)がでは、(2-4)がのようにで

1-6

¹ H-NMR (δ ppm TMS / CDCl ₃) 1.20 (6H, d, J = 6.9), 1.30 (3H, t, J = 7.4), 2.90 (2H, t, J = 7.4), 3.15 (2H, t, J = 7.4), 3.20 (1H, q, J = 6.9), 4.31 (2H, t, J = 7.4), 6.79-6.82 (1H, m), 7.07-7.16 (2H, m), 7.28-7.32 (1H, m).

2-(2-イソプロピルフェニル)イミノー1,3-チアゾリジン(0.22 g)、二硫化炭素(0.09 g)、N,N-ジメチルホルムアミド(2 ml)の混合液に、6 0% 水素化ナトリウム(0.05 g)を氷冷下で加え、3 0分間撹拌後、よう化メチル(0.17 g)を加え、室温で2時間撹拌した。反応液に水(3 0 ml)を加え、ジエチルエーテル(6 0 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-イソプロピルフェニル)イミノー3-(メチルチオ)チオカルボニルー1,3-チアゾリジン(0.14 g、収率45%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl₃) 1.23 (6H, d, J = 6.9), 2.65 (3H, s), 2.90 (2H, t, J = 7.4), 3.20 (1H, q, J = 6.9), 4.45 (2H, t, J = 7.4), 6.79-6.82 (1H, m), 7.07-7.16 (2H, m), 7.28-7.32 (1H, m).

参考例6 (2-メトキシベンジル) イソチオシアネート(化合物8)の製造

20

5

2 - メトキシベンジルアミン (1.80 g) のジエチルエーテル (20 ml) 溶液に、チオホスゲン (1.54 g) を氷冷下10分間で滴下し、室温で1時間撹拌した。反応液に水 (30 ml) を加え、ジエチルエーテル (60 ml) で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、 (2 - メトキシベンジル) イソチオシアネート (2.35 g、収率99%) を褐色油状物で得た。

¹H-NMR(δ ppm TMS/CDCl₃)3.86(3H, s), 4.70(2H, s), 6.88 (1H, d, J = 7.4), 6.98(1H, t, J = 7.4), 7.24-7.30(2H, m).

¹H-NMR (δ ppm TMS / CDCl₃)0.82(6H, s), 3.25(2H, s), 3.55(2H, d, J=6.3), 20 3.86(3H, s), 4.70(2H, s), 6.50(1H, brs), 6.88(1H, d, J = 7.4), 6.95(1H, t, J = 7.4), 7.24-7.30(2H, m).

参考例8 2-(2-メトキシベンジル) イミノー5,5-ジメチルー1,3-チ アジン(化合物10)の製造

プロピルチオウレア(3.70g)、トリフェニルホスフィン(3.44g)、テト ラヒドロフラン (20 ml) の混合液に、アゾジカルボン酸ジエチル (2.28 g) を10分間で滴下し、室温で2時間撹拌した。反応液に水(40 ml)を加え、塩 化メチレン (90 ml) で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減 圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン 10 /酢酸エチル)にて精製して、2-(2-メトキシベンジル)イミノ-5,5-ジ メチルー1,3-チアジン(0.87g、収率25%)を無色油状物で得た。 ¹H-NMR (δ ppm TMS / CDCl₃)1.05(6H, s₁), 2.75(2H, s), 3.23(2H, s), 3.83(3H,

s), 4.41(2H, s), 6.86-6.95(1H, m), 7.20-7.30(1H, m), 7.44-7.48 (2H, m).

参考例8で得られた2-(2-メトキシベンジル)イミノ-5,5-ジメチル-15 1,3-チアジンを用いて、以下の実施例8~9を行った。

実施例8 3-(エチルチオカルボニル)-2-(2-メトキシベンジル)イミノー 5,5-ジメチル-1,3-チアジン(化合物 I-8)の製造

20 28 g)、トリエチルアミン(0.15 g)、塩化メチレン(5 ml)の混合液に、クロ ロチオ炭酸エチル(0.17g)を5分間で滴下し室温で1時間撹拌した。反応液に

水(30 ml)を加え、ジエチルエーテル(60 ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-n+1)にて精製して、3-(x+1)でがボニル)-2-(2-メトキシベンジル)イミノ-5,5-ジメチル-1,3-チアジン(0.20g、収率57%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl₃) 1.15 (6H, s), 1.25 (3H, t, J = 7.4), 2.69 (2H, s), 2.83 (2H, q, J = 7.4), 3.69 (2H, s), 3.84 (3H, s), 4.61 (2H, s), 6.86 (1H, d, J = 8.2), 6.96 (1H, t, J = 8.2), 7.26 (1H, t, J = 8.2), 7.55 (1H, t, J = 8.2).

10 実施例 9 2-(2-メトキシベンジル) 1-3-(メチルチオ) チオカルボニル 1-3 1-

2-(2-メトキシベンジル)イミノ-5,5-ジメチル-1,3-チアジン(0.27g)、二硫化炭素(0.09g)、N,N-ジメチルホルムアミド(2 m1)の混合 液に、60%水素化ナトリウム(0.05g)を氷冷下で加え、30分間撹拌後、よう化メチル(0.17g)を加え、室温で2時間撹拌した。反応液に水(30 m1)を加え、ジエチルエーテル(60 m1)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-メトキシベンジル)イミノ-3-(メチルチオ)チオカルボニル-5,5-ジメチル-1,3-チアジン(0.20g、収率57%)を無色油状物で得た。

¹ H-NMR (δ ppm TMS / CDCl₃) 1.25 (6H, s), 2.56 (3H, s), 2.72 (2H, s), 3.85 (3H, s), 4.43 (2H, s), 4.63 (2H, s), 6.86-6.88(2H, m), 7.20-7.30 (1H, m), 7.44-7.48 (1H, m).

参考例9 (2-メトキシフェネチル)イソチオシアネート(化合物12)の製造

2 - メトキシフェネチルアミン (1.98 g) のジエチルエーテル (20 ml) 5 溶液に、チオホスゲン (1.54 g) を氷冷下10分間で滴下し、室温で1時間撹拌した。反応液に水 (30 ml) を加え、ジエチルエーテル (60 ml) で抽出した。 抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して、 (2 - メトキシフェネチル) イソチオシアネート (1.80 g、収率71%) を褐色油状物で得た。 1H-NMR (δ ppm TMS / CDCl₃)3.00(2H, t, J = 7.4), 3.70(2H, t, J = 7.4), 3.86(3H, s), 6.88-6.95(2H, m), 7.15(1H, d, J = 7.4), 7.24(1H, t, J = 7.4).

参考例 10 N - (2-メトキシフェネチル) - N'- (1-ヒドロキシ- 2, 2 -ジメチル) プロピルチオウレア(化合物 1 3)の製造

¹H-NMR (δ ppm TMS / CDCl₃)0.82(6H, s), 2.90(2H, t, J = 7.4), 3.25(2H, s),

3.55(2H, d, J=6.3), 3.70(2H, t, J=7.4), 3.86(3H, s), 6.50(1H, brs), 6.88-6.95(2H, m), 7.15(1H, m), 7.24(1H, m).

参考例11 2-(2-メトキシフェネチル) イミノー5,5-ジメチルー1,3 5 -チアジン(化合物14)の製造

N-(2-メトキシフェネチル)-N'-(1-ヒドロキシ-2,2-ジメチル) プロピルチオウレア(2.40g)、トリフェニルホスフィン(2.12g)、テトラヒドロフラン(20ml)の混合液に、アゾジカルボン酸ジエチル(2.28g) を10 を10分間で滴下し、室温で2時間撹拌した。反応液に水(40ml)を加え、塩化メチレン(90ml)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル)にて精製して、2-(2-メトキシフェネチル)イミノ-5,5-ジメチル-1,3-チアジン(0.70g、収率31%)を無色油状物で得た。

上記参考例 1 1 で得られた 2-(2-メトキシフェネチル) イミノー 5 , 5-ジ 20 メチルー 1 , 3-チアジンを用いて、以下の実施例 <math>1 0 ~ 1 1 を行った。

実施例 10 3 - (エチルチオカルポニル) - 2 - (2 - 3 - 3 - 3 - 3 - 4

5

20

1 H - NMR (δ ppm TMS / CDCl₃) 1.11 (6H, s), 1.26 (3H, t, J = 7.4), 2.61 (2H, s), 2.83 (2H, q, J = 7.4), 2.99-3.05 (2H, m), 3.61-3.66 (2H, m), 3.62 (2H, s), 3.82 (3H, s), 6.86-6.91 2H, m), 7.17-7.26 (2H, m).

1-(1-メトキシフェネチル)イミノー 5 , 5-ジメチルー 1 , 3-チアジン (0.28 g)、二硫化炭素(0.09 g)、N , N-ジメチルホルムアミド(2 m1)の混合液に、60%水素化ナトリウム(0.05 g)を氷冷下で加え、30 分間撹拌後、よう化メチル(0.17 g)を加え、室温で 2 時間撹拌した。反応液に水(30 m1) を加え、ジエチルエーテル(60 m1)で抽出した。抽出液を無水硫酸マグネシウムで乾燥後、減圧濃縮して得られた残渣をシリカゲルカラムクロマトグラフィー(n m1)

¹ H-NMR (δ ppm TMS / CDCl ₃) 1.19 (6H, s), 2.55 (3H,s), 2.64 (2H, s), 3.05 (2H, t, J = 7.5), 3.66 (2H, t, J = 7.5), 3.84 (3H, s), 4.35 (2H, s), 6.84-6.91 (2H, m), 7.17-7.30 (2H, m).

上記実施例と同様にして、以下の表に示される化合物を合成した。なお、表中の左カラムの数字は化合物No.を表わす。

	R¹	R ²	R³	R ⁴	R⁵	R ^B	R ⁷	Rª
I-16	Н	Н	Н	Н	Н	COSEt	Me	Me
I-17	F	Н	Н	Н	Н	COSEt	Me	Me
I-18	Cl	Н	Н	Н	Н	COSEt	Me	Me
I-19	Me	Н	Н	Н	Н	COSEt	Me	Me
I-20	Et	Н	Н	Н	Н	COSEt	Me	Me
I-21	Pr	Н	Н	Н	Н	COSEt	Me	Me
I-22	Bu	Н	Н	Н	Н	COSEt	Me	Me
I-23	Bu*	Н	Н	Н	Н	COSEt	Me ·	Me
I-24	Buʻ	Н	Н	Н	Н	COSEt	Me	Me
I-25	Ph	Н	Н	Н	Н	COSEt	Me	Me
I-26	CF ₃	Н	Н	Н	Н	COSEt	Me	Me
I-27	OMe	Н	Н	Н	Н	COSEt	Me	Me
I-28	0Et	Н	Н	Н	Н	COSEt	Me	Me
I-29	OPr'	Н	Н	Н	H `	COSEt	Me	Me
I-30	SMe	Н	Н	Н	Н	COSEt	Me	Me
I-31	SEt	Н	Н	Н	Н	COSEt	Me	Me
I-32	SPr'	Н	Н	Н	Н	COSEt	• Me	Me
I-33	NMe,	Н	Н	Н	Н	COSEt	Me	Me
I-34	Н	Pr'	Н	Н	Н	COSEt	Me	Me
I-35	Н	Н	C1	Н	Н	COSEt	Me	Me
I-36	Н	Н	Pr'	Н	Н	COSEt	Me	Me
I-37	Н	Н	NO,	Н	Н	COSEt	Me	Me
I-38	Ме	Me	Н	Н	Н	COSEt	Me	Ме
I-39	Ме	Н	Ме	Н	Н	COSEt	Me	Me
I-40	Me	Н	Н	Me	Н	COSEt	Me	Me
I-41	Me	Н	Н	Н	Me	COSEt	Me	Me
I-42	Н	Me	Me	Н	Н	COSEt	Me	Me
I-43	Н	Me	Н	Me	Н	COSEt	Me	Me
I-44	Me	Н	Cl	Н	Н	COSEt	Me	Me

(表2)

R* F	R'	R²	R³	R ⁴	l R⁵	∏ R ⁶	R ⁷	R ⁸
7 45					Н Н			
I-45	C1	Н	Me	Н		COSEt	Me	Me
I-46	Pr'	Н	NO,	Н	Н	COSEt	Me	Me
I-47	Pr'	Н	Н	Н	NO,	COSEt	Me	Me
I-48	NO,	Н	NO,	H	Н	COSEt	Me	Me
I-49	Pr	Н	Н	Н	Н	COSMe	Me	Me
I-50	Pr'	Н	Н	Н	Н	COSMe	Me	Me
I-51	Bu*	Н	Н	Н	Н	COSMe	Me	Me
I-52	Н	Pr'	Н	Н	Н	COSMe	Me	Me
I-53	Н	OMe	OMe	Н	Н	COSMe	Me	Me
I-54	Н	-0	CH,O-	Н	Н	COSMe	Me	Me
I-55	Н	0Me	OMe	0Me	Н	COSMe	Me	Me
I-56	Et	Н	Н	Н	Н	CSSMe	Me	Me
I-57	Bu*	Н	Н	Н	Н	CSSMe	Me	Me
I-58	CH,0Me	Н	Н	Н	Н	CSSMe	Me	Me
I-59	CH(Me)OMe	Н	Н	Н	Н	CSSMe	Me	Me
I-60	OMe	Н	Н	H	Н	CSSMe	Me	Me
I-61	0Et	Н	Н	Н	Н	CSSMe	Me	Me
I-62	SMe	Н	Н	Н	Н	CSSMe	Ме	Me
I-63	SEt	Н	Н	Н	Н	CSSMe	Me	Me
I-64	SPr'	Н	Н	Н	Н	CSSMe	Me	Me
I-65	SOMe	Н	Н	Н	Н	CSSMe	Me	Me
I-66	SO₁Me	Н	Н	Н	Н	CSSMe	Me	Me
I-67	SOEt	Н	Н	Н	Н	CSSMe	Me	Me
I-68	NMe,	Н	Н	Н	Н	CSSMe	Me	Me
I-69	Н	Pr'	Н	Н	Н	CSSMe	Me	Me
I-70	Н	Н	C1	Н	Н	CSSMe	Me	Me

(表3)

$$R^3$$
 R^4
 R^5
 R^7
 R^9

H	R'	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
I-71	Me	Н	Me	Н	Н	CSSMe	Me	Me
I-72	Me	Н	Н	Me	Н	CSSMe	Me	Me
I-73	Me	н	Н	Н Н	Me	CSSMe	Me	Me
I-74	Н	Me	Me	Н	H	CSSMe	Me	Me
I-75	Н	Me	Н	Me	Н Н	CSSMe	Me	Me
	İ							
I-76	OMe	0Me	Н	Н	Н	CSSMe	Me	Me
I-77	Н	OMe	OMe	Н	Н	CSSMe	Me	Me
I-78	OMe	H	Н	0Me	Н	CSSMe	Me	Me
I-79	OMe	Н	0Me		Н	CSSMe	Me	Me
I-80	Н	-OCI	H,0-	Н	Н	CSSMe	Me	Me
I-81	Pr'	Н	NO ₁	Н	Н	CSSMe	Me	Me
I-82	Pr'	Н	Н	Н	NO,	CSSMe	Me	Me
I-83	Н	OMe	OMe	OMe	Н	CSSMe	Me	Me
I-84	Pr'	Н	Н	Н	Н	CSSEt	Me	Me
I-85	Bu*	Н	Н	Н	Н	CSSEt	Me	Me
I-86	OEt	Н	Н	Н	Н	CSSEt	Me	Me
I-87	SMe	Н	Н	Н	Н	CSSEt	Me	Me
I-88	Н	Pr'	Н	Н	Н	CSSEt	Me	Me
I-118	Н	OEt	0Et	Н	Н	CSSMe	Me	Me
I-119	OMe	Н	Me	Н	н	CSSMe	Me	Me
I-120	OMe	Н	Н	Me	Н	CSSMe	Me	Me
I-121	Н	OMe	Me	Н	Н	CSSMe	Me	Me
I-122	Me	Me	Н	Н	Н	CSSMe	Me	Me
I-123	N(Me)Ac	Н	Н	Н	Н	CSSMe	Me	Me

(表4)

·	R ⁶	R ⁷	R ⁸
I-89	COPr	Me	Me
I-90	C00Me	Me	Me
I-91	COOPr	Me	Me
I-92	CONHEt	Me	Me
I-93	COCH₂OMe	Me	Me
I-94	COCH₂SMe	Me	Ме
I-95	COCH ₂ SEt	Me	Me
I-96	CS0Et	Me	Me
I-97	CSNHEt	Me	Me
I-98	CSSPr	Me	Me
I-99	CSSPr'	Me	Me
I-100	CSSBn	Me	Me

(表5)

5

	R¹	R²	R³	n	R ⁶	R ⁷	Rª
I-101	Н	Н	Cl	1	COSEt	Me	Me
I-102	Н	Н	Cl	1	CSSMe	Me	Me
I-103	C1	Н	C1	2	COSEt	Me	Me
I-104	C1	Н	C1	2	CSSMe	Me	Me

(表6)

	R ⁶	W
I-105	COSEt	s N
I-106	COSEt	s N
I-107	COSEt	s
I-108	COSEt	s
I-109	COSEt	, the same of the
I-110	COSEt	s N
I-111	COSEt	s Z
I-112	COSEt	\ s
I-113	CSSMe	s N
I-114	CSSMe	s
I-115	CSSMe	s
I-116	CSSMe	the state of the s
I-117	CSSMe	s

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
I-124	Н	Н	OEt	Н	Н	CSSMe	Me	Me
I-125	Н	OEt	Н	Н	Н	CSSMe	Ме	Me
I-126	Н	Н	ОМе	Н	Н	CSSMe	Me	Me
I-127	Н	OMe	Н	Н	Н	CSSMe	Me	Me
I-128	H_	OEt	OMe	Н	Н	CSSMe	Me	Me
I-129	Н	OPr	OMe	Н	Н	CSSMe	Me	Me
I-130	Н	OEt	OEt	Н	Н	CSSMe	Me	Me
I-131	H	Н	OPr	Ή	Н	CSSMe	Me	Me
I-132	Н	OPr	Н	Н	Н	CSSMe	Me	Me
I-133	Ι	Н	OBu	Ι	H	CSSMe	Me	Me
I-134	Н	OBu	Н	H	H	CSSMe	Me	Me
I-135	Ι	OMe	OEt	Ι	H	CSSMe	Ме	Me
I-136	Ι	OMe	OPr	Η	Н	CSSMe	Me	Me
I-137	Н	OBu	OMe	Ι	Ι	CSSMe	Me	Ме
I-138	Η	Η	OPr ⁱ	I	I	CSSMe	Ме	Ме
I-139	Τ	OPr ⁱ	Ξ	Ι	Ι	CSSMe	Me	Me
I-140	Ι	H	Ξ	I	Η	CSSMe	Ме	Ме
I-141	F	Ι	I	Ι	Ι	CSSMe	Ме	Ме
I-142	C	Н	Ι	Ι	Η	CSSMe	Ме	Ме
I-143	Ξ	CI	Ι	Н	Ι	CSSMe	Me	Ме
I-144	Ме	H	Н	H	Η	CSSMe	Ме	Me
I-145	Н	Ме	Н	Н	I	CSSMe	Me	Ме
I-146	Н	Н	Ме	Н	H	CSSMe	Ме	Ме
I-147	Н	Bu	H	Н	Η	CSSMe	Ме	Ме
I-148	Н	Н	Bu	Н	H	CSSMe	Ме	Ме

					T 56		57	. 50
ļ	R¹	R²	R ³	R⁴	R ⁵	R⁵	R ⁷	R⁵
I-149	Bu'	Н	H	Н	H	CSSMe	Me	Me
I-150	H	H	Et	Н	Н	CSSMe	Me	Me
I-151	Н	Et	Н	Н	Н	CSSMe	Me	Me
I-152	Н	Н	F	Ι	Н	CSSMe	Ме	Me
I-153	Н	F	Н	Н	Н	CSSMe	Me	Me
I-154	Н	Н	Pr ⁱ	Н	Н	CSSMe	Ме	Ме
I-155	Н	Н	Morpho lino	Н	н	CSSMe	Ме	Ме
I-156	Н	Ac	Н	Н	Н	CSSMe	Ме	Me
I-157	Н	Н	Br	Н	Н	CSSMe	Ме	Me
I-158	Н	Br	Н	Н	Н	CSSMe	Ме	Me
I-159	Br	Н	Н	Н	Н	CSSMe	Me	Me
I-160	Н	C(Me)= NOMe	Н	Н	Н	CSSMe	Ме	Ме
I-161	Н	Н	Ac	Н	Η	CSSMe	Ме	Me
I-162	Н	Н	C(Me)= NOMe	Н	Н	CSSMe	Me	Ме
I-163	OPr ⁱ	Н	Н	Ι	H	CSSMe	Me	Ме
I-164	Pr	Н	Н	I	Ξ	CSSMe	Ме	Ме
I-165	CF ₃	Н	Н	Н	Н	CSSMe	Ме	Me
I-166	Н	Н	OPh	Н	Н	CSSMe	Ме	Ме
I-167	Н	Н	Pr	Н	Н	CSSMe	Me	Me
I-168	Н	Н	Bu'	Н	Н	CSSMe	Me	Ме
I-169	Н	CF₃	Н	Н	Н	CSSMe	Ме	Ме
I-170	Н	Н	CF ₃	Н	Н	CSSMe	Ме	Ме
I-171	Pr ⁱ	Н	NHAc	Н	Н	CSSMe	Me	Ме
I-172	Pr [/]	Н	Н	Н	NHAc	CSSMe	Ме	Ме
I-173	Н	COOMe	Н	Н	OMe	CSSMe	Ме	Ме

(表9)

F	R¹	R ²	R ³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸
I-174	Morpholino	H	Н	. H	Н	CSSMe	Me	Me
	Н	Morpholino	H	. ''	H	CSSMe	Me	
I-175	Pr ⁱ							Me
I-176	Pr'	<u> </u>	H	COOEt	Н	CSSMe	Me	Ме
I-177	Н	Н	Piperid ino	Н	Н	CSSMe	Me	Ме
I-178	Pyrrolidino	Н	Н	Н	H	CSSMe	Ме	Ме
I-179	H	SMe	Н	Н	I	CSSMe	Me	Ме
I-180	H	Н	SMe	Н	I	CSSMe	Me	Me
I-181	OCF ₃	Н	Н	Н	I	CSSMe	Me	Me
I-182	Н	OCF₃	Н	Н	I	CSSMe	Me	Me
I-183	Н	Н	OCF ₃	Н	Н	CSSMe	Me	Me
I-184	Н	Н	3- Pyridyl	н	н	CSSMe	Me	Ме
I-185	Н	3-Pyridyl	Н	Н	Н	CSSMe	Me	Ме
I-186	3-Pyridyl	I	Η	Н	Н	CSSMe	Ме	Me
I-187	OPh	Ξ	Н	I	Н	CSSMe	Ме	Ме
I-188	Н	OEt	OEt	I	Н	COOMe	Ме	Ме
I-189	OMe	H	Н	I	Н	COOMe	Me	Ме
I-190	Н	Н	Et	H	Н	COOMe	Me	Ме
I-191	Н	Н	Pr [/]	Н	Н	COOMe	Me	Ме
I-192	OMe	Н	Н	H	Н	COSMe	Ме	Ме
I-193	Н	Н	Et	Н	Н	COSMe	Me	Me
I-194	Н	Н	Pr ⁱ	Н	Н	COSMe	Ме	Ме
I-195	Н	Н	OEt	Н	Н	COSMe	Ме	Ме
I-196	Н	OMe	OEt	Н	Н	COSMe	Ме	Ме
I-197	Н	Piperidino	Н	Н	Н	CSSMe	Ме	Ме
I-198	Н	Н	NEt ₂	Н	Н	CSSMe	Ме	Ме

(表10)

	H ⁻							
	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	Rª
I-199	OMe_	H	COOMe	H	H	CSSMe	Ме	Ме
I-200	н	2- Oxopyrr olidino	н	Н	Н	CSSMe	Ме	Ме
I-201	H	OPh	Н	Ι	H	CSSMe	Ме	Ме
I-202	Н	Н	Ph	H	Н	CSSMe	Ме	Ме
I-203	Ph	Н	Н	Н	Н	CSSMe	Me	Ме
I-204	Н	Ph	Н	Н	Н	CSSMe	Ме	Ме
I-205	Pr ⁱ	Н	Н	Н	Η	CSOMe	Ме	Ме
I-206	Pr [/]	Н	1	Н	Н	CSSMe	Ме	Ме
I-207	OMe	H	(Morphol ino)CO	Н	Н	CSSMe	Ме	Ме
I-208	Н	Ι	NMe ₂	Н	Н	CSSMe	Ме	Ме
I-209	Н	NMe ₂	Н	H	Н	CSSMe	Ме	Ме
I-210	N(Me)Et	Н	Н	Н	Н	CSSMe	Ме	Ме
I-211	N(Me)Pr	Н	H	Н	I	CSSMe	Ме	Ме
I-212	NEt ₂	Ι	H	Н	Ή	CSSMe	Ме	Ме
I-213	F	Ξ	Н	Н	F	CSSMe	Me	Ме
I-214	Pr ⁱ	Ŧ	CI	Н	Ι	CSSMe	Ме	Ме
I-215	NMe ₂	Ме	Ι	Н	Ι	CSSMe	Me	Ме
I-216	NMe ₂	Ι	Ме	Н	Ι	CSSMe	Me	Ме
I-217	NMe ₂	Ι	H	Ме	Η	CSSMe	Ме	Ме
I-218	NMe ₂	Η	Н	CI	Н	CSSMe	Ме	Ме
I-219	Me	Η	Н	Н	Me	CSSMe	Ме	Ме
I-220	NMe ₂	Н	Н	Н	H	CSSEt	Ме	Ме
I-221	H	NMe ₂	Н	H	Н	CSSEt	Ме	Ме
I-222	NMe ₂	H	Me	H	H	CSSEt	Ме	Ме
I-223	Н	Н	Pr ⁱ	H	Н	CSSEt	Ме	Ме

(表11)

	R¹	R ²	R³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
I-224	OMe	Н	CONHMe	H	Н	CSSMe	Ме	Ме
I-225	OCHF ₂	H	Ξ	Ξ	H	CSSMe	Ме	Ме
I-226	H	OCHF ₂	I	Η	Н	CSSMe	Ме	Ме
I-227	Н	NEt₂	Н	Ι	Н	CSSMe	Ме	Ме
I-228	NMe ₂	Ι	C	Ι	Н	CSSMe	Ме	Ме
I-229	NMe ₂	Ι	F	Τ	Н	CSSMe	Ме	Ме
1-230	NMe ₂	Η	Н	F	H	CSSMe	Ме	Ме
I-231	NMe ₂	H	Et	Η	Н	CSSMe	Ме	Ме
I-232	NMe₂	Ι	Η	Et	Н	CSSMe	Ме	Ме
I-233	NMe ₂	Τ	CI	Н	Н	CSSEt	Ме	Ме
I-234	NMe ₂	H	F	Ŧ	Η	CSSEt	Ме	Ме
I-235	NMe₂	Ι	Et	Ι	Н	CSSEt	Ме	Ме
I-236	Pr [/]	Ι	H	Η	Н	CSSBu ^s	Ме	Ме
I-237	Pr ⁱ	H	Н	H	H	CSSBu [/]	Ме	_Me
I-238	Pr'	Η	Н	Ι	Η	CSNHMe	Ме	Ме
1-239	Ме	NMe ₂	Н	H	Η	CSSMe	Ме	Ме
I-240	NMe₂	OMe	Н	Н	Н	CSSMe	Ме	Ме
I-241	Н	NMe ₂	Me	Н	Н	CSSMe	Ме	_Me
I-242	NMe₂	CI	Н	Н _	H	CSSMe	Ме	Ме
I-243	Н	NMe ₂	OMe	Н	Н	CSSMe	Ме	Ме
I-244	Pr ⁱ	Н	Н	Н	Н	CSSEt	Et	Et
I-245	Pr'	Н	Н	H	H	Ме	Ме	Ме
I-246	Pr	Н	Н	Н	Н	Pr	Me	Ме
I-247	Pr'	Н	Н	Н	Н	Pr ⁱ	Me	Ме
I-248	Pr [/]	Н	Н	Н	Н	Bu [/]	Ме	Ме

(表12)

	Α	R ⁶	R ⁷	R ⁸
I-249		CSSMe	Me	Me
I-250		CSSMe	Me	Me
I-251	N—OMe	CSSMe	Me	Me
I-252	N—NMe ₂	CSSMe	Me	Ме
I-253	a—√N	CSSMe	Me	Me
I-254	MeO-N	CSSMe	Me	Me
1-255	EtO-N	CSSMe	Me	Ме
I-256	PrO-N	CSSMe	Me	Me
I-257	Pr'O-N	CSSMe	Me	Ме
I-258	MeS - N	CSSMe	Me	Ме
I-259	EtS-N	CSSMe	Me	Ме
I-260	PrS-N	CSSMe	Me	Ме
I-261	Pr'S-N	CSSMe	Ме	Ме

(表13)

	R ¹	R ²	R ³	R⁴	R⁵	R⁵	R ⁷	R ⁸
I-262	NMe ₂	Н	OMe	Н	Н	CSSMe	Ме	Me
I-263	NMe ₂	Η	Н	OMe	H	CSSMe	Ме	Me
I-264	Ме	NEt ₂	H	Н	Н	CSSMe	Me	Me
I-265	H	NEt ₂	Ме	Н	Η	CSSMe	Ме	Me
I-266	Н	NEt ₂	OMe	Н	H	CSSMe	Ме	Ме
I-267	Bu⁵	Н	Н	Н	H	CSSMe	Et	Et
I-268	Pr [/]	Η	Н	Н	Ι	CSSMe	Pr	Pr
I-269	Pr ⁱ	Н	H	Н	H	CSSMe	-(CH	2)4-
I-270	Pr ⁱ	Η	Н	Н	H	CSSMe	-(CH	

(表14)

	R¹	R ²	R³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
I-271	Pr [/]	Н	Н	Н	Н	SO₂Me	Me	Ме
I-272	Pr ⁱ	Н	Н	Н	н	so ₂ \sqrt{s}	Ме	Ме
1-273	Pr ⁱ	Н	Н	Н	н	SO₂€ Me	Ме	Ме
I-274	н	Pr [/]	Н	Н	Н	SO₂√ Me	Ме	Ме
I-275	Н	Pr [/]	Н	Н	Н	SO ₂ Et	Ме	Ме
1-276	Н	Pr ^I	Н	Н	Н	SO ₂ NO ₂	Ме	Ме
I-277	н	Pr ⁱ	н	Н	Н	SO₂€ OMe	Ме	Ме
I-278	н	Pr ⁱ	н	Ι	Н	SO ₂ NO ₂	Ме	Me
I-279	Н	Pr ⁱ	Н	H	Н	SO₂€CF ₃	Ме	Ме
I-280	Н	Pr [/]	Н	Н	Н	SO₂√∑ O₂N	Ме	Ме

上記の表に示される化合物の物性データ (融点、 1 H - N M R) を以下の表に 5 示す。

(表15)

化 合 物 番号		物性
No No	融点	
I-16	57-59℃	1.16 (6H, s), 1.31 (3H, t, J = 7.3), 2.64 (2H, s), 2.91 (2H, q, J = 7.3), 3.78 (2H, s), 6.96 (1H,dd, J = 7.4, 1.2), 7.14 (1H, t, J = 7.4), 7.36 (2H, t, J = 7.4).
I-17		1.15 (6H, s), 1.31 (3H, t, J = 7.3), 2.67 (2H, s), 2.91 (2H, q J = 7.3), 3.77 (2H, s), 7.10-7.15 (4H, m).
I-18		1.16 (6H, s), 1.31 (3H, t, J = 7.3), 2.68 (2H, s), 2.92 (2H, q, J = 7.3), 3.80 (2H, s), 6.96 (1H, dd, J = 7.7, 1.2), 7.08 (1H, dt, J = 7.7, 1.6), 7.25 (2H, t, J = 7.4), 7.40 (1H, d, J = 7.4).
I-19		1.15 (6H, s), 1.27 (3H, t, J = 7.3), 2.24 (3H, s), 2.62 (2H, s), 2.92 (2H, q, J = 7.4), 3.77 (2H, s), 6.83 (1H, d, J = 7.7), 7.04 (1H, t, J = 7.7), 7.16-7.22 (2H, m).
I-20		1.15 (6H, s), 1.19 (3H, t, J = 7.4), 1.31 (3H, t, J = 7.3), 2.62 (2H, q, J = 7.3), 2.65 (2H, s), 2.94 (2H, q, J = 7.4), 3.77 (2H, s), 6.83 (1H, d, J = 7.6), 7.10-7.22 (3H, m).
I-21		0.95 (3H, t, J = 7.3), 1.15 (6H, s), 1.30 (3H, t, J = 7.4), 1.50-1.64 (2H, m), 2.56 (2H, q, J = 7.3), 2.59 (2H, s), 2.90 (2H, q, J = 7.4), 3.76 (2H, s), 6.82 (1H, d, J = 7.3), 7.06-7.28 (3H, m).
I-22		0.90 (3H, t, $J = 7.1$), 1.15 (6H, s), 1.29 (3H, t, $J = 7.4$), 1.30-1.34 (2H, m), 1.52-1.58 (2H, m), 2.54 (2H, q, $J = 7.1$), 2.62 (2H, s), 2.92 (2H, q, $J = 7.4$), 3.76 (2H, s), 6.79 (1H, dd, $J = 7.9$, 1.4), 7.06-7.28 (3H, m).
I-23		0.86 (3H, t, J = 7.4), 1.14 (6H, s), 1.16 (6H, d, J = 6.9), 1.29 (3H, t, J = 7.4), 1.48-1.58 (2H, m), 2.61 (2H, s), 2.89 (2H, q, J = 7.4), 2.88-2.92 (1H, m), 3.76 (2H, d, J = 13.6), 3.82 (1H, d, J = 13.6), 6.82-6.88 (1H, m), 7.10-7.18 (1H, m), 7.23-7.29 (1H, m).
I-24		1.15 (6H, s), 1.27 (3H, t, J = 7.4), 1.33 (9H, s), 2.68 (2H, s), 2.86 (2H, q, J = 7.4), 3.75 (2H, s), 6.86 (1H, dd, J = 7.4, 1.6), 7.08-7.19 (2H, m), 7.38 (2H, dd, J = 7.4, 1.6).
I-25		0.99 (6H, s), 1.25 (3H, t, J = 7.4), 2.45 (2H, s), 2.82 (2H, q, J = 7.4), 3.51 (2H, s), 6.98 (1H, d, J = 7.7), 7.20-7.36 (6H, m), 7.43 (2H, m).
I-26	82-83℃	1.15 (6H, s), 1.29 (3H, t, J = 7.3), 2.66 (2H, s), 2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.98 (1H, d, J = 7.6), 7.19 (1H, t, J = 7.6), 7.49 (1H, t, J = 7.6), 7.64 (1H, d, J = 7.6).

(表16)

化合物		物性
番号		· · · · · · · · · · · · · · · · · · ·
No	融点	
I-27		1.16 (6H, s), 1.25 (3H, t, J = 7.4), 2.62 (2H, s), 2.88 (2H, q, J
		= 7.4), 3.78 (2H, s), 3.83 (3H, s), 6.91-6.96 (3H, m), 7.05-7.14
		(1H, m).
I-28		1.15 (6H, s), 1.30 (3H, t, J = 7.4), 1.40 (3H, t, J = 7.0), 2.60
		(2H, s), 2.90 (2H, q, J = 7.4), 3.78 (2H, s), 4.08 (2H, q, J =
		7.0), 6.90-6.94 (3H, m), 7.06-7.08 (1H, m).
I-29		1.14 (6H, s), 1.29 (6H, d, J = 7.4), 1.31 (6H, d, J = 6.0), 2.59
		(2H, s), 2.89 (2H, q, J = 7.4), 3.76 (2H, s), 4.50 (1H, q, J =
		6.0), 6.90-6.93 (3H, m), 7.01-7.07 (1H, m).
I-30		1.15 (6H, s), 1.29 (3H, t, J = 7.4), 2.43 (3H, s), 2.63 (2H, s),
	78-80℃	2.89 (2H, q, J = 7.4), 3.78 (2H, s), 6.87-6.91 (1H, m), 7.05-7.14
T 24		(2H, m), 7.20-7.29 (1H, m).
I-31	FF F500	1.15 (6H, s), 1.29 (3H, t, J = 7.4), 1.31 (3H, t, J = 7.4), 2.66
	55-57℃	(2H, s), 2.89 (2H, q, J = 7.4), 2.94 (2H, q, J = 7.4), 3.78 (2H, l)
		s), 6.91 (1H, dd, J = 7.4, 1.6), 7.08-7.20 (2H, m), 7.32 (1H, dd, J = 7.4, 1.6).
I-32		1.15 (6H, s), 1.27 (6H, d, J = 6.6), 1.28 (6H, d, J = 7.4), 2.65
1-02		(2H, s), 2.88 (2H, q, J = 7.4), 3.38-3.42 (1H, m), 3.78 (2H, s),
		$\begin{bmatrix} 6.90 \text{ (1H, dd, J = 7.7, 1.6), } & 7.08-7.20 \text{ (2H, m), } & 7.32 \text{ (1H, dd, J)} \end{bmatrix}$
		= 7.7, 1.6).
I-33		1.15 (6H, s), 1.29 (3H, t, J = 7.4), 2.60 (2H, s), 2.71 (6H, s),
	-	2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.90-6.98 (3H, m), 7.05-7.10
		(1H, m).
I-34		1.16 (6H, s), 1.27 (6H, d, J = 6.9), 1.31 (3H, t, J = 7.4), 2.64
		(2H, s), 2.91 (2H, q, J = 7.4), 2.98 (1H, q, J = 6.9), 3.77 (2H,
		s), 6.78-6.83 (2H, m), 7.01-7.04 (1H, m), 7.25-7.27 (1H, m).
I-35	68-69℃	1.16 (6H, s), 1.30 (3H, t, $J = 7.3$), 2.66 (2H, s), 2.90 (2H, q, J
		= 7.3), 3.76 (2H, s)6.98 (2H, dd, $J = 6.6$, 2.1), 7.31 (2H, dd, $J = 6.6$)
		= 6.6, 2.1).
I-36		1.15 (6H, s), 1.20 (6H, d, J = 6.9), 1.26 (3H, t, J = 7.4), 2.64
	67-69℃	(2H, s), 2.86 (2H, q, J = 7.4), 2.89 (1H, q, J = 6.9), 3.75 (2H,
107	105	s), 6.98 (2H, d, J = 8.2), 7.20 (2H, d, J = 8.3).
I-37	125-	$\begin{bmatrix} 1.15 & (6H, s), 1.30 & (3H, t, J = 7.3), 2.72 & (2H, s), 2.92 & (2H, q, J), 2.72 & (2H, s), 2.72 & (2H, d, J = 2.3), $
<u> </u>	126℃	= 7.3), 3.78 (2H, s), 7.05 (2H, d, J = 8.3), 7.31 (2H, d, J = 8.3).
1-38	70 7000	1.15 (6H, s), 1.30 (3H, t, $J = 7.4$), 2.14 (3H, s), 2.29 (3H, s),
	76-78℃	2.63 (2H, s), 2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.70 (1H, d, J
		= 7.9), 6.94 (1H, d, J = 7.9), 7.06 (1H, s).

(表17)

化合物		物性
番号		<u> </u>
No	融点	
I-39		1.14 (6H, s), 1.29 (3H, t, J = 7.4), 2.21 (3H, s), 2.32 (3H, s),
		2.65 (2H, s), 2.89 (2H, q, J = 7.4), 3.76 (2H, s), 6.73 (1H, d,
		J = 7.9), 6.97 (1H, d, $J = 7.9$), 7.02 (1H, s).
I-40		1.15 (6H, s), 1.30 (3H, t, J = 7.4), 2.19 (3H, s), 2.31 (3H, s),
		2.64 (2H, s), 2.89 (2H, q, J = 7.4), 3.77 (2H, s), 6.65 (1H, s),
		6.86 (1H, d, J = 7.9), 7.07 (1H, d, J = 7.7).
I-41	59-61℃	1.15 (6H, s), 1.30 (3H, t, J = 7.3), 2.19 (6H, s), 2.62 (2H, s),
		2.90 (2H, q, J = 7.3), 3.78 (2H, s), 6.90-6.96 (1H,m), 7.02-
		7.08 (2H, m).
I-42		1.15 (6H, s), 1.31 (3H, t, $J = 7.4$), 2.26 (3H, s), 2.28 (3H, s),
		2.65 (2H, s), 2.91 (2H, q, J = 7.4), 3.78 (2H, s), 6.74 (1H, dd,
T 40		J = 7.9, 1.8, 6.80 (1H, d, J = 1.8), 7.13 (1H, d, J = 7.7).
I-43		1.15 (6H, s), 1.31 (3H, t, J = 7.4), 2.31 (6H, s), 2.63 (2H, s),
I-44		2.90 (2H, q, J = 7.4), 3.76 (2H, s), 6.58 (2H, s), 6.77 (1H, s).
1-44		1.15 (6H, s), 1.28 (3H, t, $J = 7.4$), 2.21 (3H, s), 2.64 (2H, s), 2.90 (2H, q, $J = 7.4$), 3.76 (2H, s), 6.74 (1H, d, $J = 8.2$),
		[7.10-7.18 (2H, m)]
I-45		1.15 (6H, s), 1.28 (3H, t, J = 7.4), 2.31 (3H, s), 2.66 (2H, s),
		2.92 (2H, q, J = 7.4), 3.78 (2H, s), 6.74 (1H, d, J = 7.8), 7.04
		(1H, d, J = 7.8), 7.25 (1H, d, J = 7.8).
I-46		1.16 (6H, s), 1.25 (6H, d, J = 6.9), 1.29 (3H, t, J = 7.4), 2.69
	119-	(2H, s), 2.90 (2H, q, J = 7.4), 3.15 (1H, m), 3.79 (2H, s), 6.92
	120℃	(1H, d, J = 8.7), 8.01 (1H, dd, J = 8.5, 2.4), 8.18 (1H, d, J =
		2.4).
I-47		1.17 (6H, s), 1.23 (6H, d, J = 6.9), 1.30 (3H, t, J = 7.4), 2.69
		(2H, s), 2.91 (2H, q, J = 7.4), 3.19 (1H, m), 3.79 (2H, s), 7.41
		(1H, d, J = 8.7), 7.71 (1H, d, $J = 2.4$), 7.92 (1H, dd, $J = 8.7$,
I-48		2.4).
1-48		1.15 (6H, s), 1.30 (3H, t, J = 7.4), 2.73 (2H, s), 2.93 (2H, q, J = 7.4), 3.82 (2H, s)7.15 (2H, d, J = 8.3), 8.48 (1H, dd, J = 8.3,
		[-7.4), 5.82 (2H, 8)7.15 (2H, 0, 3 -8.5), 8.48 (1H, 00, 3 = 8.5, 1.4), 8.90 (1H, d, J = 8.3).
I-49		$0.95 \text{ (3H, t, } J = 7.3), 1.15 \text{ (6H, s), } 1.50 \cdot 1.64 \text{ (2H, m), } 2.32$
	64-66℃	(3H, s), 2.56 $(2H, q, J = 7.3)$, 2.63 $(2H, s)$, 3.78 $(2H, s)$, 6.82
		(1H, d, J = 7.3),
		7.06-7.28 (3H, m).
I-50		1.16 (6H, s), 1.20 (6H, d, J = 6.9), 2.32 (3H, s), 2.64 (2H, s),
	95-96℃	3.12 (1H, q, J = 6.9), 3.79 (2H, s), $6.78-6.82$ (1H, m),
		7.11-7.20 (2H, m), 7.30-7.34 (1H, m).

(表18)

化合	•	物性
化 合物 番		Del Lade
号		
No	 融点	
140	MLL JAN	
I-51		0.85 (3H, t, J = 7.3), 1.15 (6H, d, J = 6.9), 1.18 (6H, s),
1 01	53-56℃	1.57-1.70 (2H, m), 2.31 (3H, s), 2.62 (2H, s), 2.91 (1H, q, J =
		[6.9), 3.74 (1H, d, J = 13.7), 3.78 (1H, d, J = 13.7), 6.78-6.83
		(1H, m), 7.11-7.18 (2H, m), 7.23-7.30 (1H, m).
I-52		1.17 (6H, s), 1.27 (6H, d, J = 6.9), 2.33 (3H, s), 2.65 (2H, s),
	88-90℃	2.91 (1H, q, $J = 6.9$), 3.79 (2H, s), 6.78-6.83 (2H, m), 7.01-
		7.04 (1H, m), 7.20-7.24 (1H, m).
I-53		1.16 (6H, s), 2.32 (3H, s), 2.65 (2H, s), 3.77 (2H, s), 3.87 (6H,
TEA	102-	s), 6.51-6.59 (2H, m), 6.80-6.89 (1H, m). 1.15 (6H, s), 2.31 (3H, s), 2.65 (2H, s), 3.76 (2H, s), 5.96 (2H,
I-54	102- 104℃	s , 6.42 (1H, dd, $J = 8.1$, 1.8), 6.53 (1H, d, $J = 1.8$), 6.78 (1H,
	104 0	d, J = 8.1).
I-55	129-	1.16 (6H, s), 2.32 (3H, s), 2.67 (2H, s), 3.78 (2H, s), 3.85 (6H,
	131℃	s), 3.86 (3H, s), 6.20 (2H, s)
I-56	107-	1.17 (3H, t, J = 7.6), 1.22 (6H, s), 2.58 (2H, q, J = 7.6), 2.64
	109℃	(3H, s), 2.66 (2H, s), 4.51 (2H, s), 6.91 (1H, dd, J = 7.5, 1.3),
		7.02-7.19 (2H, m), 7.23-7.28 (1H, m).
I-57		0.85 (3H, t, J = 7.3), 1.18 (6H, d, J = 6.9), 1.23 (6H, s),
		1.57-1.70 (2H, m), 2.64 (3H, s), 2.66 (2H, s), 2.88 (1H, q, J = 6.9), 4.38 (1H, d, J = 13.7), 4.60 (1H, d, J = 13.7), 6.83-6.90
		(1H, m), 7.11-7.18 (2H, m), 7.28-7.35 (1H, m).
I-58	85-87°C	1.22 (6H, s), 2.62 (3H, s), 2.63 (2H, s), 3.35 (3H, s), 4.40 (2H,
1-50	05-0.0	s), 4.48 (2H, s), 6.93-6.99 (1H, m), 7.11-7.29 (2H, m), 7.40-
		7.49 (1H, m).
I-59	113-	1.22 (3H, s), 1.24 (3H, s), 1.37 (3H, d, J = 6.4), 2.63 (3H, s),
	114℃	2.65 (2H, s), 3.24 (3H, s), 4.35 (1H, d, J = 13.6), 4.55 (1H, q,
		J = 6.4), 4.66 (1H, d, $J = 13.6$), 6.91 (1H, d, $J = 7.4$), 7.19-
1.32	100	7.40 (2H, m), 7.51 (1H, d, J = 7.4).
1-60	128-	1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.85 (3H, s), 4.53 (2H, s), 6.93-6.99 (2H, m), 7.02-7.15 (2H, m).
T 01	130℃	1.26 (6H, s), 1.43 (3H, t, J = 7.4), 2.66 (2H, s), 2.67(3H,s),
I-61	100- 101℃	1.26 (8H, s), 1.43 (8H, t, $s = 7.4$), 2.66 (2H, s), 2.61 (6H, s), 4.08 (2H, q, $J = 7.0$), 4.55 (2H, s), 6.95-6.99 (3H, m), 7.11-
	1010	7.18 (1H, m).
I-62	137-	1.23 (6H, s), 2.43 (3H, s), 2.64 (3H,s), 2.67 (2H, s), 4.53 (2H,
	139℃	s), 6.87-6.92 (1H, m), 7.11-7.20 (2H, m), 7.23-7.29 (1H, m).
L		

(表19)

化合物		物性
番号	-1 1	
No	融点	
I-63		1.15 (6H, s), 1.29 (3H, t, J = 7.4), 1.31 (3H, t, J = 7.4), 2.66
	103-	(2H, s), 2.89 (2H, q, J = 7.4), 2.94 (2H, q, J = 7.4), 3.78 (2H, q
	105℃	s), 6.91 (1H, dd, J = 7.4, 1.6), 7.08-7.20 (2H, m), 7.32 (1H, dd, J = 7.4, 1.6).
I-64		1.24 (6H, s), 1.28 (6H, d, J=6.6), 2.63(3H, s), 2.66 (2H, s),
	125-	3.38-3.42 (1H, m), 4.53 (2H, s), 6.97 (1H, dd, $J = 7.7$, 1.6),
	126℃	7.08-7.20 (2H, m), 7.32 (1H, dd, $J = 7.7$, 1.6).
I-65		1.22 (6H, s), 2.63 (3H, s), 2.65 (2H, d, J = 13.6), 2.75 (3H, s),
		4.17 (1H, d, J = 13.6), 4.77 (1H, d, J = 13.6), 7.06 (1H, dd, J
		= 7.7, 1.7, 7.19-7.40 (2H, m), 7.97 (1H, dd, $J = 7.7, 1.7$).
I-66	147-	1.23 (6H, s), 2.63 (3H, s), 2.71 (2H, s), 3.13 (3H, s), 4.52 (2H,
	149℃	s), 7.11 (1H, m,), 7.11-7.20 (2H, m), 7.23-7.29 (1H, m).
I-67		1.22 (6H, s), 1.23 (3H, t, $J = 6.9$), 2.63 (3H, s), 2.66 (2H, s),
	129-	2.70-2.85 (1H, m), $2.90-3.15$ (1H, m), 4.25 (1H, d, $J = 13.6$),
	130℃	4.70 (1H, d, $J = 13.6$), 7.06 (1H, d, $J = 7.5$), $7.30-7.45$ (2H,
		m), $7.90 (1H, d, J = 7.5)$.
I-68	100-	1.23 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 2.71 (6H, s), 4.50 (2H,
	102℃	s), 6.93-6.99 (3H, m), 7.02-7.15 (1H, m).
I-69		1.23 (6H, s), 1.25 (6H, d, J = 6.9), 2.64 (3H, s), 2.66 (2H, s),
		2.92 (1H, q, J = 6.9), 4.52 (2H, s), 6.84-6.86 (2H, m), 7.08-
I-70	116-	7.13 (1H, m), 7.28-7.32 (1H, m).
1.70	118℃	1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, s), 6.97 (2H, d, J = 8.6), 7.35 (2H, d, J = 8.6).
I-71	103-	1.22 (6H, s), 2.19 (3H, s), 2.30 (3H, s), 2.63 (3H, s), 2.65 (2H,
1-11	105°C	(2H, 5), $(2H, 5)$, $(2H, 6)$,
	1000	7.02 (1H, s).
I-72	100-	1.23 (6H, s), 2.18 (3H, s), 2.32 (3H, s), 2.64 (3H, s), 2.65 (2H,
	101℃	s), 4.51 (2H, s), 6.71 (1H, s), 6.88 (1H, d, J = 7.9), 7.08 (1H,
		t, J = 7.9).
I-73	93-95℃	1.22 (6H, s), 2.12 (3H, s), 2.30 (3H, s), 2.64 (3H, s), 2.65 (2H,
		s), 4.51 (2H, s), 6.76 (1H, d, J = 7.9), 6.98 (1H, d, J = 7.9),
		7.08 (1H, t, J = 7.9).
I-74	126-	1.23 (6H, s), 2.25 (3H, s), 2.27 (3H, s), 2.64 (3H, s), 2.65 (2H,
	128℃	s), 4.51 (2H, s), 6.76 (1H, d, $J = 7.9$), 6.82 (1H, s), 713 (1H,
		d, J = 7.9).
I-75	96-98℃	1.23 (6H, s), 2.32 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 4.51 (2H,
T 50		s), 6.64 (2H, s), 6.80 (1H,s).
I-76		1.22 (6H, s), 2.64 (3H, s), 2.65 (2H, s), 3.79 (3H, s), 3.88 (3H,
		s), 4.52 (2H, s), 6.60 (1H, d, J = 7.9), 6.73 (1H, d, J = 7.9),
		7.04 (1H, d, J = 7.9).

(表20)

化 合 物 番号		物性
No	融点	
I-77		1.24 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 3.87 (6H, s), 4.50 (2H, s) 6.61-6.65 (2H, m), 6.85-6.89 (1H, m).
I-78		1.22 (6H, s), 2.62 (3H, s), 2.66 (2H, s), 3.81 (6H, s), 4.52 (2H, s), 6.48 (1H, dd, J=8.5, 2.4), 6.51 (1H, d, J=2.4), 6.92 (1H, d, J=8.5).
I-79		1.22 (6H, s), 2.62 (3H, s), 2.64 (2H, s), 3.77 (6H, s), 4.52 (2H, s), 6.56 (1H, d, J = 2.4), 6.68 (1H, dd, J = 8.5, 2.4), 686 (1H, d, J = 8.5).
I-80	108- 110℃	1.23 (6H, s), 2.63 (3H, s), 2.66 (2H, s), 4.49 (2H, s), 6.04 (2H, s), 6.50 (1H, dd, J = 8.1, 1.8), 6.61 (1H, d, J = 1.8), 6.83 (1H, d, J = 8.1).
I-81		1.23 (6H, s), 1.25 (6H, d, J = 6.9), 2.65 (3H, s), 2.71 (2H, s), 3.11 (1H, q, J = 6.9), 4.51 (2H, s), 7.02 (1H, d, J = 8.5), 8.04 (1H, dd, J = 8.5, 2.7), 8.21 (1H, d, J = 2.7).
I-82		1.21 (6H, s), 1.24 (6H, d, J = 6.9), 2.63 (3H, s), 2.66 (2H, s), 3.17 (1H, q, J = 6.9), 4.51 (2H, s), 7.45 (1H, d, J = 8.5), 7.80 (1H, d, J = 2.4), 7.99 (1H, dd, J = 8.5, 2.4).
I-83		1.24 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 3.85 (6H, s), 3.86 (3H, s), 4.51 (2H, s), 6.28 (2H, s).
I-84	68-70	1.22 (6H, d, J = 6.9), 1.23 (6H, s), 1.35 (3H, t, J = 7.4), 2.65 (2H, s), 3.11 (1H, q, J = 6.9), 3.25 (2H, q, J = 6.9), 4.48 (2H, s), 6.89-6.92 (1H, m), 7.14-7.20 (2H, m), 7.30-7.34 (1H, m).
I-85		0.85 (3H, t, J = 7.4), 1.18 (6H, d, J = 6.9), 1.23 (6H, s), 1.35 (3H, t, J = 7.4), 1.57-1.70 (2H, m), 2.56 (2H, s), 2.87 (1H, q, J = 6.9), 3.25 (2H, q, J = 7.4), 4.35 (1H, d, J = 13.7), 4.60 (1H, d, J = 13.7), 6.89-6.92 (1H, m), 7.10-7.18 (2H, m), 7.30-7.34 (1H, m).
I-86	96-97	1.23 (6H, s), 1.36 (3H, t, J = 7.0), 1.40 (3H, t, J = 7.0), 2.63 (2H, s), 3.27 (2H, q, J = 7.4), 4.06 (2H, q, J = 7.0), 4.51 (2H, s), 6.92-7.08 (3H, m), 7.11-7.15 (1H, m).
I-87	105-106	1.22 (6H, s), 1.35 (3H, t, J = 7.4), 2.43 (3H, s), 2.66 (2H, s), 3.26 (2H, q, J = 7.4), 4.50 (2H, s), 6.95-6.98 (1H, m), 7.10-7.17 (2H, m), 7.24-7.29 (1H, m).

(表21)

(II. A	,	d. Ul
化合		物性
物番号		
No	融点	
	III,A ////	
I-88		1.23 (6H, s), 1.25 (6H, d, J = 6.9), 1.35 (3H, t, J = 7.4), 2.66
		(2H, s), 2.90 (1H, q, J = 6.9), 3.28 (2H, q, J = 7.4), 4.50 (2H, q
		s), 6.84-6.88 (2H, m), 7.08-7.13 (1H, m), 7.28-7.32 (1H, m).
I-89		0.98 (3H,t, J = 7.4), 1.12 (6H, s), 1.22 (6H, d, J = 6.9),
		1.72-1.80 (2H, m), 2.58 (2H, s), 2.90 (2H, t, J = 7.4), 3.06
	ļ	(1H, q, J = 6.9), 3.71 (2H, s), 6.71-6.76 (1H, m), 7.11-7.20
T 00	 	(2H, m), 7.30-7.34 (1H, m).
I-90	99-	1.14 (6H, s), 1.21 (6H, d, J = 6.9), 2.58 (2H, s), 3.14 (1H, q, J = 6.9), 3.64 (2H, s), 3.86 (3H, s), 6.73-6.78 (1H, m),
	101℃	7.11-7.18 (2H, m), 7.28-7.35 (1H, m).
I-91	1010	1.00 (3H, t, $J = 7.3$), 1.14 (6H, s), 1.20 (6H, d, $J = 6.9$), 1.74
1-01		(2H, q, J = 7.3), 2.58 (2H, s), 3.16 (1H, q, J = 6.9), 3.65 (2H, g, J = 6.9), 3.65 (2H, g
		s), 4.23 (2H, q, $J = 6.9$), 6.73-6.80 (1H, m), 7.12-7.18 (2H,
		m), 7.31-7.34 (1H, m).
I-92		1.13 (6H, s), 1.19 (6H, d, J = 6.9), 1.20 (3H, t, J = 7.4), 2.60
	52-53℃	(2H, s), 2.98 (1H, q, J = 6.9), 3.38 (2H, q, J = 7.4), 3.77 (2H, q)
		s), 6.73-6.78 (1H, m), 7.09-7.18 (2H, m), 7.28-7.32 (1H, m).
I-93		1.14 (6H, s), 1.22 (6H, d, $J = 6.9$), 2.62 (2H, s), 2.96 (1H, q,
	76-78℃	J = 6.9), 3.48 (3H, s), 3.75 (2H, s), 4.64 (2H, s), 6.73-6.78
T 0.4		(1H, m), 7.10-7.17 (2H, m), 7.25-7.32 (1H, m).
I-94	01.000	1.14 (6H, s), 1.20 (6H, d, J = 6.9), 2.23 (3H, s), 2.68 (2H, s),
	61-62℃	2.93 (1H, q, J = 6.9), 3.71 (2H, s), 3.94 (2H, s), 6.82-6.86 (1H, m), 7.10-7.18 (2H, m), 7.30-7.36 (1H, m).
I-95		1.13 (6H, s), 1.20 (6H, d, $J = 6.9$), 1.31 (3H, t, $J = 7.3$), 2.65
1-50	50-52℃	(2H, J = 7.3), 2.68 (2H, s), 2.90 (1H, q, J = 6.9), 3.71 (2H, J = 7.8), 2.90 (1H, q, J = 6.9), 3.71 (2H, J = 7.8), 3.71 (2H,
	00 02 0	s), 3.97 (2H, s), 6.82-6.86 (1H, m), 7.12-7.19 (2H, m),
	•	7.30-7.36 (1H, m).
I-96		1.21 (6H, s), 1.22 (6H, d, J = 6.9), 1.42 (3H, t, J = 6.9), 2.61
	73-75℃	(2H, s), 3.10 $(1H, q, J = 6.9)$, 4.15 $(2H, s)$, 4.65 $(2H, q, J = 6.9)$
		6.9), 6.74-6.78 (1H, m), 7.14-7.20 (2H, m), 7.30-7.34 (1H,
<u></u>		m).
I-97		1.18 (6H, s), 1.22 (6H, d, $J = 6.9$), 1.25 (3H, t, $J = 7.4$), 2.60
1	160-	(2H, s), 2.90 (1H, q, J = 6.9), 3.71 (2H, q, J = 7.4), 4.40 (2H,
7.00	162℃	s), 6.74-6.78 (1H, m), 7.14-7.20 (2H, m), 7.30-7.34 (1H, m).
I-98		1.04 (3H, t, $J = 7.4$), 1.20 (6H, d, $J = 6.9$), 1.27 (6H, s), 1.73
		(2H, m), 2.64 $(2H, s)$, 3.12 $(1H, q, J = 6.9)$, 3.22 $(2H, t, J = 6.9)$
		7.4), 4.48 (2H, s),
		6.89-6.92 (1H, m), 7.10-7.20 (2H, m), 7.28-7.35 (1H, m).

(表22)

化合物	物性
番号	
No 融点	
I-99	1.04 (6H, d, J = 6.9), 1.27 (6H, s), 1.42 (3H, d, J = 6.9),
113-	2.63 (2H, s), 3.14 (1H, q, J = 6.9), 4.02 (1H, q, J = 6.9),
114	4.46 (2H, s), 6.89-6.93 (1H, m), 7.10-7.20 (2H, m), 7.28-
	7.35 (1H, m).
I-100	1.10 (6H, d, $J = 6.9$), 1.22 (6H, s), 2.64 (2H, s), 3.08 (1H,
	q, $J = 6.9$, 4.48 (2H, s), 4.49 (2H, s), 6.83-6.90 (1H, m),
	7.11-7.18 (2H, m), 7.20-7.38 (6H, m).
I-101	1.15 (6H, s), 1.25 (3H, t, J = 7.4), 2.70 (2H, s), 2.87 (2H, q)
	J = 7.4), 3.69 (2H, s), 4.55 (2H, s), 7.30-7.40 (4H, m).
I-102	1.24 (6H, s), 2.57 (3H, s), 2.73 (2H, s), 4.43 (2H, s), 4.58
	(2H, s), 7.23-7.40 (4H, m).
I-103	1.11 (6H, s), 1.26 (3H, t, $J = 7.4$), 2.61 (2H, s), 2.83 (2H, q,
	J = 7.4), 3.10 (2H, t, $J = 7.4$), 3.65 (2H, s), 3.66 (2H, t, $J =$
	7.4, 7.17 (1H, dd, $J = 8.2$, 2.1), 7.30 (1H, t, $J = 8.2$), 7.36
7 101	(1H, d, J = 2.1).
I-104	1.16 (6H, s), 2.55 (3H,s), 2.63 (2H, s), 3.13 (2H, t, $J =$
	7.5), 3.69 (2H, t, $J = 7.5$), 4.35 (2H, s), 7.15 (1H, dd, $J =$
-	8.2, 2.1), 7.25 (1H, t, $J = 8.2$), 7.36 (1H, d, $J = 2.1$).
I-105	1.20 (6H, d, J = 6.9), 1.30 (3H, t, J = 7.4), 2.10-2.22 (2H,
·	m), 2.88 (2H, t, $J = 6.4$), 2.94 (2H, q, $J = 7.4$), 3.11 (1H, q,
	J = 6.9, 4.05 (2H, t, $J = 7.4$), $6.82-6.86$ (1H, m), $7.10-7.16$
	(2H, m), 7.28-7.34 (1H, m).
I-106	1.17-1.30 (12H, m), 1.45-1,52 (1H,m), 1.90-1.96 (1H, m),
	$2.92 \text{ (2H, q, J = 7.4), } 2.95 \cdot 3.05 \text{ (2H,m), } 3.14 \cdot 3.23 \text{ (1H,m),}$
	3.72-3.75 (1H, m), 7.20-7.30 (2H,m), 7,40-7.45 (2H,m).
I-107	1.22 (6H, d, J = 6.9), 1.28 (3H, d, J = 6.6), 1.29 (3H, t, J =
•	7.4), 1.75-1.77 (1H,m), 2.29-2.34 (1H, m), 2.88 (2H, q, J =
	7.4), 3.14 (1H, m), 3.31-3.36 (1H, m), 4.01-4.10 (2H, m),
I-108	6.81-6.85 (1H, m), 7.10-7.20 (2H, m), 7.28-7.35 (1H, m). 1.12 (3H,d, J = 6.6), 1.20 (6H, d, J = 6.9), 1.29 (3H, t, J =
1-100	7.4), 2.40-2.50 (1H, m), 2.57 (1H, dd, $J = 13.5, 6.6$), 2.91
	(2H, q, J = 7.4), 2.95 (1H, m), 3.14 (1H, m), 3.45 (1H, dd, dd)
	J = 13.5, 8.4, 4.30 (1H, dd, $J = 13.5, 8.4$), 6.81-6.85 (1H,
	m), 7.10-7.20 (2H, m), 7.28-7.35 (1H, m).

(表23)

化合		物性
物番		يدا دم
号		
No	融点	
I-109		0.88 (6H, t, J = 7.5), 1.22 (6H, d, J = 6.9), 1.29 (3H, t, J = 7.4),
		1.45-1.52 (4H, m), 2.58 (2H, s), 2.89 (2H, q, J = 7.4), 3.15
,		(1H,m), 3.77 (2H, s), 6.78-6.83 (1H, m), 7.08-7.21 (2H, m),
		7.30-7.35 (1H, m).
I-110	109-	1.21 (6H, d, $J = 6.9$), 1.23 (6H, s), 1.25 (3H, t, $J = 7.4$), 2.81
	111℃	(2H, q, J = 7.4), 2.90 (1H, t, J = 6.9), 3.05 (2H, s), 7.13-7.30
		(2H, m), 7.36-7.45 (2H, m).
I-111		1.21 (6H, d, $J = 6.9$), 1.31 (3H, t, $J = 7.4$), 1.42 (3H, d, $J = 6.7$),
		2.90 (2H, q, J = 7.4), 3.23 (1H, q, J = 6.9), 3.69 (1H, q, J = 7.4)
		6.6), 3.87-3.93 (1H, m), 6.78-6.82 (1H, m), 7.08-7.20 (2H, m),
		7.25-7.30 (1H, m).
I-112		1.19-1.25 (9H, m), 1.14 (3H, d, $J = 6.3$), 2.76 (1H, d, $J = 10.9$),
		2.96 (2H, t, J = 7.4), 3.22 (1H, q, J = 6.9), 3.44-3.48 (1H, m),
		5.12 (1H, q, J = 6.3), 6.81-6.85 (1H, m), 7.09-7.16 (2H, m),
		7.28-7.32 (1H, m).
I-113		1.18 (6H, d, $J = 6.9$), 1.22 (6H, d, $J = 6.9$), 1.45 (3H, t, $J = 7.4$),
	126-	1.80-1.91 (1H,m), 2.57-2.64 (2H, m), 2.61 (3H,s), 2.86-2.89
	128℃	(1H, m), 3.07 (1H, m), 5.95-6.05 (1H, m), 6.98-7.00 (1H, m),
7 7 7 4		7.12-7.22 (2H, m), 7.28-7.35 (1H, m).
I-114		1.20 (6H, d, $J = 6.9$), 1.28 (3H, d, $J = 6.9$), 1.82-1.88 (1H, m),
		2.48-2.63 (1H, m), 2.63 (3H,s), 3.11 (1H, m), 3.29-3.35 (1H, m),
		4.26(1H, m), 4.98 (1H, m), 6.90-6.95 (1H, m), 7.15-7.20 (2H,
T 115		m), 7.30-7.35 (1H, m).
I-115		1.14 (3H, d, J = 6.5), 1.20 (6H, d, J = 6.9), 2.53 (1H, dd, J = 13.0, 5.4), 2.75 (3H,s), 2.80-2.85 (1H, m), 2.95 (1H, dd, J =
		$\begin{bmatrix} 13.0, 5.4 \end{bmatrix}$, $\begin{bmatrix} 2.75 \\ (3H, s) \end{bmatrix}$, $\begin{bmatrix} 2.80-2.85 \\ (1H, d) \end{bmatrix}$, $\begin{bmatrix} 1H, d \\ J \end{bmatrix}$, $\begin{bmatrix} 2.95 \\ (1H, d \\ J \end{bmatrix}$, $\begin{bmatrix} 3.11 \\ (1H, m) \end{bmatrix}$, $\begin{bmatrix} 3.72 \\ (1H, d \\ J \end{bmatrix}$, $\begin{bmatrix} 3.0, 5.4 \\ J \end{bmatrix}$, $\begin{bmatrix} 3.11 \\ (1H, m) \end{bmatrix}$, $\begin{bmatrix} 3.72 \\ (1H, d \\ J \end{bmatrix}$, $\begin{bmatrix} 3.0, 5.4 \\ J \end{bmatrix}$, $\begin{bmatrix} 3.11 \\ J \end{bmatrix}$, $\begin{bmatrix} 3.11 \\ (1H, m) \end{bmatrix}$, $\begin{bmatrix} 3.72 \\ (1H, d \\ J \end{bmatrix}$, $\begin{bmatrix} 3.11 \\ J $
		dd, J = 13.0, 9.0), 6.90-6.95 (1H, m), 7.15-7.25 (2H, m), 7.30-1
1 . 1		7.35 (1H, m).
I-116		0.88 (6H, t, J = 7.5), 1.20 (6H, d, J = 6.9), 1.45-1.52 (4H, m),
1,110	119-	2.62 (2H, s), 2.64 (3H, s), 3.15 (1H,m), 4.66 (2H, s), 6.78-6.83
	121℃	(1H, m), 7:08-7.21 (2H, m), 7:30-7.35 (1H, m).
I-117		$0.71 \cdot 0.79$ (1H, m), $0.85 \cdot 0.90$ (2H, m), 1.22 (6H, d, $J = 6.9$),
	99-	1.22-1.25 (1H, m), 2.61 (3H, s), 2.79 (3H, s), 3.00-3.05 (1H, m),
	100℃	4.40 (2H, s), 6.92-6.95 (1H, m), 7.15-7.21 (2H, m), 7.30-7.35
1		(1H, m).

(表24)

化 合物 番号		物性
No	融点	
I-118		1.23 (6H, s), 1.45 (6H, t, J = 7.4), 2.63 (3H, s), 2.67(2H, s), 4.08 (2H, q, J = 7.0), 4.55 (2H, s), 6.57-6.63 (2H, m), 6.85 (1H, d, J = 7.9).
I-119	116∙ 118℃	1.24 (6H, s), 2.37 (3H, s), 2.64 (3H, s), 2.66 (2H, s), 3.84 (3H, s), 4.54 (2H, s), 6.75-6.80 (2H, m), 6.88 (1H, m).
I-120	92-93℃	1.23 (6H, s), 2.27 (3H, s), 2.63 (3H, s), 2.67 (2H, s), 3.84 (3H, s), 4.51 (2H, s), 6.51-6.58 (2H, m), 7.10 (1H, d, J = 7.9).
I-121	129∙ 130°C	1.22 (6H, s), 2.30 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 3.80 (3H, s), 4.53 (2H, s), 6.78-6.95 (3H, m).
I-122	93-95℃	1.22 (6H, s), 2.12 (3H, s), 2.30 (3H, s), 2.64 (3H, s), 2.65 (2H, s), 4.51 (2H, s), 6.76 (1H, d, J = 7.9), 6.98 (1H, d, J = 7.9), 7.08 (1H, t, J = 7.9).
I-123	151- 152℃	1.22 (6H, s), 1.83 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 3.17 (3H, s), 4.40 (1H, d, J = 13.6), 4.65 (1H, d, J = 13.6), 7.01 (1H, d, J = 7.9), 7.10-7.15 (2H, m), 7.30-7.35 (1H, m).

(表25)

化合	T	物性
物番		
号		
No	融点	NMR (CHCI ₃)
I-124	105-	1.23 (6H, s), 1.41 (3H, t, J=7.0), 2.63 (3H, s), 2.66 (2H,
	106℃	s),4.08 (2H, q, J=7.0), 4.50 (2H, s), 6.88 (2H, d, J=8.6), 6.98 (2H, d, J=8.6).
I-125	92-94℃	1.23 (6H, s), 1.40 (3H, t, J=7.0), 2.62 (3H, s), 2.66 (2H,
		s), 4.08 (2H, q, J=7.0), 4.50 (2H, s), 6.57-6.63 (2H, m),
T 100	100	6.70-6.75 (1H, m), 7.25-7.30 (1H, m).
I-126	108- 109℃	1.23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 3.81 (3H, s), 4.50 (2H, s), 6.92 (2H, d, J=8.6), 7.04 (2H, d, J=8.6).
I-127	62-64℃	1.23 (6H, s), 2.63 (3H, s), 2.66 (2H, s), 3.82 (3H, s), 4.50
		(2H, s),6.57-6.63 (2H, m), 6.70-6.75 (1H, m), 7.25-7.30 (1H,
		m).
I-128	78-79℃	1.23 (6H, s), 1.44 (3H, t, J=7.0), 2.59 (3H, s), 2.63 (2H,
		s), 3.82 (3H, s), 4.10 (2H, q, J=7.0), 4.47 (2H, s), 6.57-6.63 (2H, m), 6.82-6.87 (1H, m).
I-129	58-60℃	1.04 (3H, t, J=7.0), 1.23 (6H, s), 2.00 (2H, sext, J= 7.0),
1 120		2.63 (3H, s), 2.67 (2H, s), 3.87 (3H, s), 4.10 (2H, t, J=7.0),
		4.50 (2H, s), 6.58-6.64 (2H, m), 6.86-6.91 (1H, m).
I-130		1.13 (6H, s), 1.45 (6H, t, J=7.4), 2.28 (3H, s), 2.62 (2H,
	i	s), 3.74 (2H, s), 4.08 (4H, q, J=7.4), 6.46-6.53 (2H, m),
7 101	04 0000	6.88-6.92 (1H, m).
I-131	91-93℃	1.04 (3H, t, J=7.0), 1.22 (6H, s), 1.76 (2H, sext, J=7.0),
		2.63 (3H, s), 2.65 (2H, s), 3.91 (2H, t, J=7.0), 4.50 (2H, s), 6.90 (2H, d, J=8.6), 6.98 (2H, d, J = 8.6).
I-132	103-	1.04 (3H, t, $J = 7.0$), 1.22 (6H, s), 1.76 (2H, sext, $J = 7.0$)
	104℃	7.0), 2.63 (3H, s), 2.65 (2H, s), 3.91 (2H, t, J=7.0), 4.50
		(2H, s), 6.50 (1H, d, J=2.1), 6.60 (1H, d, J=7.4), 6.72 (1H,
		dd, J=7.4, 2.1), 7.28 (1H, d, J=7.4).
I-133	91-92℃	0.98 (3H, t, J=7.0), 1.23 (6H, s), 1.42-1.48 (2H, m),
		1.70-1.80 (2H, m), 2.63 (3H, s), 2.65 (2H, s), 3.96 (2H,
		t, J=7.0), 4.50 (2H, s), 6.90 (2H, d, J=8.6), 6.98 (2H, d, J=8.6).
I-134	86-87℃	0.98 (3H, t, J=7.0), 1.23 (6H, s), 1.42-1.48 (2H, m),
1 134	30 07 0	1.70-1.80 (2H, m), 2.63 (3H, s), 2.65 (2H, s), 3.96 (2H,
		t, J=7.0), 4.50 (2H, s), 6.50 (1H, d, J=2.1), 6.60 (1H, d,
-		J=7.8), 6.72 (1H, dd, J=7.8, 2.1), 7.28 (1H, d, J=7.8).

(表26)

化 合		物性
物番		
号		
No	融点	NMR (CHCl ₃)
I-135	69-70°C	1.22 (6H, s), 1.47 (3H, t, J=7.0), 2.64 (3H, s), 2.66 (2H,
		s), 3.88 (3H, s), 4.15 (2H, q, J=7.0), 4.51 (2H, s), 6.61
		(1H, d, J=8.2), 6.62 (1H, d, J=2.1), 6.88 (1H, d, J=8.2).
I-136	88-89℃	1.04 (3H, t, J=7.0), 1.23 (6H, s), 1.80 (2H, sext, J=7.0),
		2.63 (3H, s), 2.67 (2H, s), 3.87 (3H, s), 3.90 (2H, t, J=7.0),
		4.51 (2H, s), 6.61 (1H, dd, J=8.2, 2.1), 6.62 (1H, d, J=2.1),
		6.88 (1H, d, J=8.2).
I-137	83-85℃	0.98 (3H, t, J=7.0), 1.23 (6H, s), 1.42-1.48 (2H, m),
		1.70-1.80 (2H, m), 2.64 (3H, s), 2.68 (2H, s), 3.87 (3H, s),
		4.03 (2H, t, J=7.0), 4.50 (2H, s), 6.59 (1H, d, J=8.2), 6.61
7 100	04 0500	(1H, s), 6.88 (1H, d, J=8.2).
I-138	84-85℃	1.23 (6H, s), 1.34 (6H, d, J=6.1), 2.63 (3H, s), 2.65 (2H,
		s), 4.50 (2H, s), 4.53 (1H, sept, J=6.1), 6.89 (2H, d, J=8.6), 7.04 (2H, d, J=8.6).
I-139	92-93°C	1.23 (6H, s), 1.34 (6H, d, J=6.1), 2.63 (3H, s), 2.65 (2H,
1-133	32 33 0	s), 4.50 (2H, s), 4.53 (1H, sept, J=6.1), 6.50 (1H, d,
		J=2.1), 6.60 (1H, d, J=8.0), 6.72 (1H, dd, J=8.0, 2.1), 7.28
		(1H, d, J=8.0).
I-140	109-	1.22 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 4.50 (2H, s), 7.04
	110℃	(2H, d, J=7.5), 7.15 (1H, d, J=7.5),
<u> </u>		7.32 (2H, t, J =7.5).
I-141	92-93℃	1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 4.54 (2H, s),
		7.01-7.08 (1H, m), 7.11-7.15 (3H, m).
I-142	133-	1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 4.54 (2H, s), 7.03
	135℃	(1H, dd, J=8.0, 2.1), 7.08 (1H, dd, J=8.0, 2.1), 7.25 (1H,
		t, J=8.0), 7.44 (1H, t, J=8.0).
I-143	92-93℃	1.23 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 4.50 (2H, s), 6.88
		(1H, dd, J = 8.0, 2.1), 7.03 (1H, d, J=2.1), 7.15 (1H, dd, J=2.1)
7 144	124	J=8.0, 2.1), 7.28(1H, t, J=8.0).
I-144	134- 135°C	1.22 (6H, s), 2.22 (3H,s), 2.63 (3H, s), 2.65 (2H, s), 4.50
	133 0	(2H, s), 7.00 (1H, d, J=8.1), 7.08 (1H, t, J=8.1), 7.15-7.25 (2H, m).
I-145	87-89°C	1.23 (6H, s), 2.37 (3H,s), 2.63 (3H, s), 2.66 (2H, s), 4.50
1-149	01-03	(2H, s), 6.82 (1H, d, J=8.1), 6.84 (1H, s), 6.98 (1H, d,
		J=8.1), 7.21 (1H, t, J=8.1).
L		U-U.1/1 1.11 \ III, U, U-U.1/.

(表27)

化合		物性
物番	1	// IT
号	1	
No	融点	NMR (CHCl ₃)
110	III,A ZIIX	it is a concis,
I-146	91-93℃	1.23 (6H, s), 2.35 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 4.50
		(2H, s), 6.92 (2H, d, J=8.6), 7.15 (2H, d, J=8.6).
I-147	82-83℃	0.90 (3H, t, J=7.0), 1.22 (6H, s), 1.28-1.40 (2H, m),
	_	1.48-1.55 (2H, m), 2.55 (2H, t, $J = 7.0$), 2.64 (3H, s), 2.66
	1	(2H, s), 4.50 (2H, s), 6.90 (1H, d, J=7.8), 7.09 (1H, t,
		J=7.8), 7.11 (1H, t, J=7.8), 7.28 (1H, d, J=7.8).
I-148	72-73℃	0.90 (3H, t, J=7.0), 1.22 (6H, s), 1.28-1.40 (2H, m),
		1.48-1.55 (2H, m), 2.60 (2H, t, J=7.0), 2.64 (3H, s), 2.66
		(2H, s), 4.50 (2H, s), 6.95 (2H, d, J=8.6), 7.18 (2H, d,
		J = 8.6).
I-149	133-	1.23 (6H, s), 1.35 (9H, s), 2.65 (3H, s), 2.69 (2H, s), 4.50
	134℃	(2H, s), 6.97 (1H, d, J=7.8), 7.13 (1H, t, J=7.8), 7.19 (1H,
		t, J=7.8), 7.41 (1H, d, J=7.8).
I-150	99-	1.22 (6H, s), 1.23 (3H, t, J=7.4), 2.62 (3H, s), 2.64 (2H,
	100℃	s), 2.66 (2H, q, J=7.4), 4.50 (2H, s), 6.95 (2H, d, J= 8.6),
		7.20 (2H, d, J=8.6).
I-151	40-42°C	1.23 (6H, s), 1.24 (3H, t, J=7.0), 2.64 (3H, s), 2.66 (2H,
		s), 2.67 (2H, q, J=7.0), 4.52 (2H, s), 6.83 (1H, d, J=8.1),
- 450	440	6.86 (1H, s), 7.00 (1H, d, J=8.1), 7.28 (1H, t, J=8.1).
I-152	118-	1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s),
7 150	119°C	6.97-7.10 (4H, m).
I-153	89-90℃	1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s),
T 154	111	6.73-6.90 (3H, m), 7.25-7.30 (1H, m).
I-154	111-	1.22 (6H, s), 1.25 (6H, d, J=7.0), 2.62 (3H, s), 2.64 (2H,
	112℃	s), 2.91 (1H, sept, J=7.0), 4.50 (2H, s), 6.95 (2H, d,
I-155	127-	J=8.6), 7.25 (2H, d, J=8.6). 1.23 (6H, s), 2.62 (3H, s), 2.64 (2H, s), 3.14-3.18 (4H,m),
1-199	127- 129℃	3.85-3.90 (4H, m), 4.50 (2H, s), 6.93 (2H, d, $J=8.6$), 7.04
	1230	(2H, d, J=8.6).
I-156	91-93℃	1.24 (6H, s), 2.62 (3H, s), 2.65 (3H, s), 2.68 (2H, s), 4.53
1-100	31-33 C	(2H, s), $7.21-7.25$ $(1H, m)$, 7.48 $(1H, t, J=7.9)$, 7.61 $(1H, t, J=7.9)$
		t, J=1.8), 7.74-7.78 (1H, m).
L		υ, υ-1.0/, [. T. 1. U LIL, Ψ/,

(表28)

化 合		物性
物番		
号		
No	融点	NMR (CHCl ₃)
I-157	103.5-	1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 4.50 (2H, s),
	104.5℃	6.88-6.94 (2H, m), 7.46-7.51 (2H, m).
I-158	97-98℃	1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, s),
		6.93-6.97 (1H, m), 7.19-7.31 (3H, m).
I-159	155.5-	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, s),
	156.5℃	6.98-7.05 (2H, m), $7.28-7.34$ (1H, m), $7.59-7.63$ (1H, m).
I-160	102-	1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.00
	106℃	(3H, s), 4.52 (2H, s), 7.01-7.05 (1H, m), 7.28 (1H, t)
		J=1.8), 7.37 (1H, t, $J=7.8$), 7.45-7.49 (1H, m).
I-161	111-	1.23 (6H, s), 2.60 (3H, s), 2.65 (3H, s), 2.69 (2H, s), 4.53
	112℃	(2H, s), 7.06-7.10 (2H, m), 7.97-8.03 (2H, m).
I-162	124-	1.23 (6H, s), 2.23 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.00
	125℃	(3H, s), 4.52 (2H, s), 7.00-7.05 (2H, m), 7.65-7.70 (2H,
	100	
I-163	102-	1.23 (6H, s), 1.32 (6H, d, J=6.3), 2.63 (2H, s), 2.64 (3H,
	103.5℃	s), 4.52 (2H, s), 4.52 (1H, sept, J=6.3), 6.90-6.98 (3H,
7 101	00 000	m), 7.04-7.13 (1H, m)
I-164	90-92℃	0.94 (3H, t, J=7.3), 1.23 (6H, s), 1.58 (2H, sext, J=7.3),
		2.51-2.56 (2H, m), 2.65 (3H, s), 2.65 (2H, s), 4.51 (2H,
I-165	157-	s), 6.90 (1H, dd, J=7.6, 1.3), 7.07-7.25 (3H, m) 1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.49 (2H, s), 7.08
1-105	157- 158℃	(1H, d, J=7.9), 7.22 (1H, d, J=7.6), 7.50-7.56 (1H, m),
	130 C	7.66-7.69 (1H, m)
I-166	145-	1.24 (6H, s), 2.64 (3H, s), 2.69 (2H, s), 4.51 (2H, s),
1 100	145°C	7.00-7.13 (7H, m), 7.30-7.37 (2H, m)
I-167	77-79℃	0.95 (3H, t, J=7.3), 1.23 (6H, s), 1.65 (2H, sext, J=7.3),
' '		2.58 (2H, t, J=7.3), 2.63 (3H, s), 2.66 (2H, s), 4.51 (2H,
		s), 6.93-7.00 (2H, m), 7.14-7.20 (2H, m)

(表29)

化合	1	物性
物番		· · ·
号		
No	融点	NMR (CHCI ₁)
***	19,24,7115	11.111 (011013)
I-168	117-	1.23 (6H, s), 1.55 (9H, s), 2.63 (3H, s), 2.67 (2H, s), 4.52
	118℃	(2H, s), 6.96-7.01 (2H, m), 7.37-7.42 (2H, m).
I-169	55-56℃	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.53 (2H, s), 7.19
		(1H, d, J=7.6), 7.26-7.27 (1H, m), 7.40-7.52 (2H, m).
I-170	88-90℃	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.53 (2H, s), 7.10
		(2H, d, J=8.2), 7.63 (2H, d, J=8.2).
I-171		1.15 (6H, s), 1.18 (6H, d, J=6.9), 2.17 (3H, s), 2.31 (3H,
		s), 2.64 (2H, s), 3.11 (1H, sept, J=6.9), 3.78 (2H, s), 6.80
		(1H, d, J=8.2), 7.11-7.18 (1H, m), 7.28-7.35 (1H, m).
I-172		1.15 (6H, s), 1.18 (6H, d, J=6.9), 2.15 (3H, s), 2.31 (3H,
		s), 2.65 (2H, s), 3.11 (1H, sept, J=6.9), 3.78 (2H, s), 6.99
		(1H, s), 7.11-7.18 (1H, m), 7.28-7.35 (1H, s).
I-173	121-	1.22 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 3.89 (3H, s), 3.89
	123℃	(3H, s), 4.54 (2H, s), 6.96 (1H, d, J=8.6), 7.67 (1H, d,
T 1574	1.10	J=2.1), 7.87 (1H, dd, J=8.6, 2.1).
I-174	146-	1.24 (6H, s), 2.59 (2H, s), 2.65 (3H, s), 2.96-2.99 (4H,
T 175	147℃	m), 3.76-3.79 (4H, m), 4.52 (2H, s), 6.98-7.17 (4H, m).
I-175	155-	1.23 (6H, s), 2.64 (3H, s), 2.66 (2H, s), 3.16-3.20 (4H,
	157℃	m), 3.84-3.88 (4H, m), 4.51 (2H, s), 6.54-6.57 (2H, m),
1 175		6.70-6.74 (1H, m), 7.24-7.30 (1H, m).
I-176		1.22 (6H, d, J=6.6), 1.23 (6H, s), 1.38 (3H, t, J=7.1),
		2.65 (3H, s), 2.67 (2H, s), 3.08-3.18 (1H, m), 4.37 (2H,
		q, J=6.9), 4.52 (2H, s), 7.38 (1H, d, J=7.9), 7.59 (1H,
7 100	100	d, J=2.0), 7.82 (1H, dd, J=8.1, 1.8).
I-177	120-	1.23 (6H, s), 1.50-1.61 (2H, m), 1.67-1.75 (4H, m), 2.62
	122℃	(3H, s), 2.66 (2H, s), 3.13-3.17 (4H, m), 4.50 (2H, s),
1 170	104	6.92-7.02 (4H, m).
I-178	124-	1.23 (6H, s), 1.85-1.90 (4H, m), 2.62 (3H, s), 2.68 (2H,
	125℃	s), 3.22-3.27 (4H, m), 4.48 (2H, s), 6.74-6.80 (2H, m),
		6.95-6.98 (1H, m), 7.03-7.10 (1H, m).

(表30)

化合	<u> </u>	物性
物番		175 126
号		
No	融点	NMR (CHCl ₃)
I-179		1.23 (6H, s), 2.50 (3H, s), 2.64 (3H, s), 2.67 (2H, s), 4.51
		(2H, s), 6.78-6.82 (1H, m), 6.91 (1H, t, J=2.0), 7.03-7.07
		(1H, m), 7.25-7.31 (1H, m).
I-180	102-	1.23 (6H, s), 2.49 (3H, s), 2.63 (3H, s), 2.67 (2H, s), 4.51
	103℃	(2H, s), 6.96-7.01 (2H, m), 7.27-7.31 (2H, m).
I-181	82-83℃	1.23 (6H, s), 2.64 (3H, s), 2.67 (2H, s), 4.52 (2H, s), 7.07
		(1H, dd, J=7.6, 1.7), 7.14-7.20 (1H, m), 7.25-7.34 (2H, m).
I-182		1.23 (6H, s), 2.64 (3H, s), 2.69 (2H, s), 4.52 (2H, s), 6.90
		(1H, s), 6.93-7.04 (2H, m), 7.38 (1H, t, J=8.2)
I-183	68-70℃	1.24 (6H, s), 2.64 (3H, s), 2.69 (2H, s), 4.51 (2H, s),
<u></u>	 	7.01-7.07 (2H, m), 7.21-7.24 (2H, m).
I-184	169-	1.25 (6H, s), 2.66 (3H, s), 2.70 (2H, s), 4.54 (2H, s),
	170℃	7.13-7.18 (2H, m), 7.34-7.39 (1H, m), 7.59-7.63 (2H, m),
		7.86-7.91 (1H, m), 8.58 (1H, dd, J=4.8, 1.6), 8.87 (1H, t,
7 105	20 5	J=1.5)
I-185	92.5-	1.24 (6H, s), 2.65 (3H, s), 2.69 (2H, s), 4.54 (2H, s),
	93.5℃	7.05-7.09 (1H, m), 7.24 (1H, t, J=1.6), $7.34-7.40$ (2H, m),
		7.49 (1H, t, $J=7.6$), 7.87-7.92 (1H, m), 8.60 (1H, dd, $J=4.9$,
I-186		1.4), 8.87 (1H, dd, J=2.3, 0.7)
1-190		1.09 (6H, s), 2.56 (3H, s), 2.58 (2H, s), 4.20 (2H, s), 7.09-7.12 (1H, m), 7.24-7.30 (2H, m), 7.36-7.45 (2H, m),
		7.75-7.79 (1H, m), 8.54 (1H, dd, $J=4.9$, 1.6), 8.68 (1H, dd,
		J=2.3, 0.7)
I-187	110.5-	1.17 (6H, s), 2.51 (3H, s), 2.61 (2H, s), 4.33 (2H, s),
1 10	111.5℃	6.93-7.19 (7H, m), 7.23-7.30 (2H, m)
I-188	75-76°C	1.14 (6H, s), 1.43 (6H, t, J=7.4), 2.61 (2H, s),
		3.65 (2H, s), 3.84 (3H, s), 4.08 (4H, q, J=7.4),
		6.46 (1H, dd, J=8.1, 2.2), 6.52 (1H, d, J=2.2),
	•	6.84 (1H, d, J=8.4).
I-189		1.19 (6H, s), 2.61 (2H, s), 3.65 (2H, s), 3.85 (3H, s), 3.88
		(3H, s), 6.85-6.99 (3H, m), 7.02-7.15 (1H, m).

(表31)

化合		物性
物番		
号		
No	融点	NMR (CHCl ₃)
I-190		1.13 (6H, s), 1.23 (3H, t, J=7.4), 2.62 (2H, s), 2.66 (2H,
		q, J=7.4), 3.64 (2H, s), 3.84 (3H, s), 6.84 (2H, d, J=8.6),
		7.16 (2H, d, J=8.6).
I-191	45-47°C	1.14 (6H, s), 1.25 (6H, d, $J = 7.0$), 2.62 (2H, s), 2.91 (1H,
		sept, J=7.0), 3.64 (2H, s), 3.84 (3H, s), 6.86 (2H, d,
	<u> </u>	J=8.6), 7.19 (2H, d, J=8.6).
I-192	93-95℃	1.15 (6H, s), 2.31 (3H, s), 2.62 (2H, s), 3.80 (2H, s), 3.85
		(3H, s), 6.85-6.99 (3H, m), 7.02-7.15 (1H, m).
I-193	65-67℃	1.13 (6H, s), 1.23 (3H, t, J=7.4), 2.31 (3H, s), 2.62 (2H,
		s), 2.65 (2H, q, J=7.4), 3.77 (2H, s), 6.90 (2H, d, J=8.3),
T 104	05.0790	7.21 (2H, d, J=8.3).
I-194	95-97℃	1.15 (6H, s), 1.24 (6H, d, J=7.0), 2.31 (3H, s), 2.64 (2H, s), 2.91 (1H, sept, J=7.0), 3.77 (2H, s), 6.90 (2H, d,
		J=8.6), 7.21 (2H, d, J=8.6).
I-195	94-96°C	1.15 (6H, s), 1.41 (3H, t, J=7.0), 2.31 (3H, s), 2.64 (2H,
1 133	04-000	s), 3.77 (2H, s), 4.05 (2H, q, J=7.4), 6.90-6.99 (4H, m).
I-196	99-	1.15 (6H, s), 1.47 (3H, t, J=7.0), 2.32 (3H, s), 2.66 (2H,
	100℃	s), 3.77 (2H, s), 3.88 (3H, s), 4.08 (2H, q, J=7.0), 6.52
		(1H, d, J= 8.2), 6.56 (1H, d, J=2.1), 6.88 (1H, d, J=8.2).
I-197	133-	1.23 (6H, s), 1.50-1.75 (6H, m), 2.63 (3H, s), 2.65 (2H,
	134℃	s), 3.18 (4H, t, J=5.4), 4.51 (2H, s), 6.47-6.57 (2H, m),
		6.72-6.76 (1H, m), 7.21 (1H, d, J=8.1)
I-198	124-	1.17 (6H, t, J=6.9), 1.23 (6H, s), 2.61 (3H, s), 2.68 (2H,
	125℃	s), 3.35 (4H, q, J=6.9), 4.49 (2H, s), 6.68 (2H, d, J=8.9),
		7.04 (2H, d, J=8.9)
I-199	85-87℃	1.22 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 3.89 (3H, s),
		3.92 (3H, s), 4.54 (2H, s), 7.01 (1H, d, J=7.9), 7.62 (1H,
7 600	107	d, J=1.3), 7.67 (1H, dd, J=7.9, 1.7)
I-200	137-	1.23 (6H, s), 2.11-2.22 (2H, m), 2.62 (2H, t, J=7.9),
	138℃	2.64 (3H, s), 2.67 (2H, s), 3.88 (2H, t, J=7.1), 4.52
		(2H, s), 6.81-6.84 (1H, m), 7.30-7.50 (3H, m)

(表32)

化合		物性
物番		
号 No	融点	NMR (CHCl ₁)
INO	職点	NMR (CHCl ₃)
I-201	86.5-	1.22 (6H, s), 2.62 (3H, s), 2.67 (2H, s), 4.50 (2H, s), 6.71
	87.5℃	(1H, t, J=2.0), 6.76-6.82 (2H, m), 7.02-7.13 (3H, m),
		7.29-7.37 (3H, m)
I-202	162-	1.25 (6H, s), 2.65 (3H, s), 2.70 (2H, s), 4.54 (2H, s),
	163℃	7.10-7.14 (2H, m), 7.33-7.46 (3H, m), 7.59-7.63 (4H, m)
I-203	56.5-	1.06 (6H, s), 2.51 (3H, s), 2.59 (2H, s), 4.14 (2H, s), 7.07
	57.5℃	(1H, dd, J=8.2, 1.3), 7.21-7.45 (8H, m)
I-204	97-99℃	1.24 (6H, s), 2.65 (3H, s), 2.68 (2H, s), 4.54 (2H, s),
		7.00-7.04 (1H, m), 7.25-7.26 (1H, m), 7.33-7.48 (5H, m),
		7.60-7.63 (2H, m)
I-205	95-96℃	1.21 (6H, s), 1.21 (6H, d, J=6.9), 2.61 (2H, s), 4.13(3H,
		s), 4.16 (2H, s), 6.77-6.81 (1H, m), 7.13-7.16 (2H, m),
		7.29-7.33 (1H, m)
I-206	128-	1.18 (6H, d, J=6.9), 1.22 (6H, s), 2.63 (3H, s), 2.66 (2H,
	129℃	s), 2.96-3.06 (1H, m), 4.48 (2H, s), 6.67 (1H, d, J=8.2),
		7.47 (1H, dd, J=8.2, 1.7), 7.59 (1H, d, J=2.0)
I-207	149-	1.23 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 3.71 (8H, m),
	150℃	3.86 (3H, s), 4.53 (2H, s), 6.95-7.05 (3H, m)
I-208	124-	1.23 (6H, s), 2.61 (3H, s), 2.67 (2H, s), 2.96 (6H, s), 4.50
	126℃	(2H, s), 6.74 (2H, d, J=8.2), 7.04 (2H, d, J=8.2).
I-209	107-	1.23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 2.96 (6H, s), 4.51
	109℃	(2H, s), 6.34 (1H, d, J=2.0), 6.38 (1H, d, J=8.0), 6.54 (1H,
	22 222	dd, J=8.0, 2.0), 7.24 (2H, d, J=8.0).
I-210	98-99℃	1.06 (3H, t, J=7.4), 1.23 (6H, s), 2.63 (5H, s), 2.65 (3H,
	:	s), 2.99 (2H, q, J=7.4), 4.51 (2H, s), 6.98-7.10 (3H, m),
<u> </u>	04 0000	7.15-7.20 (1H, m).
I-211	94-96℃	0.84 (3H, t, $J = 7.4$), 1.22 (6H, s), 1.49 (2H, sext, $J = 7.4$), 0.65 (2H, s), 0.70 (2H, s), 0.64 (2H, s)
		7.3), 2.63 (3H, s), 2.65 (2H, s), 2.72 (3H, s), 2.84 (2H,
		t, $J = 7.4$), 4.51 (2H, s), 6.90-7.05 (3H, m), 7.10-7.15
		(1H, m).

(表33)

化合		物性
物番号		
No	融点	NMR (CHCl ₃)
I-212	98-99℃	1.02 (6H, t, J=7.4), 1.22 (6H, s), 2.61 (2H, s), 2.63 (3H,
		s), 3.06 (4H, q, J=7.4), 4.51 (2H, s), 6.98-7.10 (4H, m).
I-213	83-84℃	1.23 (6H, s), 2.64 (3H, s), 2.71 (2H, s), 4.57 (2H, s), 6.90-7.12 (3H, m)
I-214		1.19 (6H, d, J=6.9), 1.23 (6H, s), 2.64 (3H, s), 2.67 (2H,
		s), 3.06 (1H, sept, J=6.9), 4.49 (2H, s), 6.85 (1H, d,
		J=8.2), 7.14 (1H, dd, J=8.2, 2.3), 7.27 (1H, d, J=2.3)
I-215	83-85℃	1.23 (6H, s), 2.32 (3H, s), 2.63 (3H, s), 2.66 (2H, s), 2.71
	i	(6H, s), 4.50 (2H, s), 6.75-6.80 (1H, m), 6.98 (1H, s),
		6.97-7.00 (1H, m).
I-216	99-	1.23 (6H, s), 2.33 (3H, s), 2.62 (3H, s), 2.65 (2H, s), 2.70
İ	100℃	(6H, s), 4.50 (2H, s), 6.78 (2H, t, J=7.9),
		6.91 (1H, d , J=7.9).
I-217	98-99℃	1.23 (6H, s), 2.30 (3H, s), 2.63 (3H, s), 2.64 (2H, s), 2.67
<u></u>		(6H, s), 4.50 (2H, s), 6.81 (1H, s), 6.92 (2H, s).
I-218	117-	1.23 (6H, s), 2.63 (3H, s), 2.65 (2H, s), 2.68 (6H, s), 4.50
	19℃	(2H, s), 6.89 (1H, d , J=8.5), 6.99 (1H, d , J=2.0), 7.04
		(1H, dd , J=7.9, 2.0).
I-219	68-70℃	1.22 (6H, s), 2.22 (6H, s), 2.64 (3H, s), 2.66 (2H, s), 4.54
		(2H, s), 6.93-6.98 (1H, m), 7.04 (2H, d, J=8.0).
I-220	97-99℃	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.64 (2H, s),
}	,	2.72 (6H, s), 3.25 (2H, q, J=7.4), 4.47 (2H, s),
	110	6.94-7.05 (3H, m), 7.15-7.20 (1H, m).
I-221	118-	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.64 (2H, s), 2.95 (6H,
	119℃	s), 3.25 (2H, q, J=7.4), 4.47 (2H, s), 6.34 (1H, d, J=7.5),
	54 5045	6.38 (1H, s), 6.52 (1H, d, J=7.5,), 7.24 (1H, t, J=7.5).
I-222	74-76°C	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.33 (3H, s), 2.63 (2H,
		s), 2.70 (6H, s),3.25 (2H, q, J=7.4), 4.47 (2H, s), 6.78
		(1H, d, J=7.5), 6.82 (1H, s), 6.91 (1H, t, J=7.5).

(表34)

化合		物性
物番		174 1-22
号		
No	融点	NMR (CHCl ₃)
	111111111111	(01033)
I-223		1.22 (6H, s), 1.25 (6H, d, J=7.0), 1.34 (3H, t, J=7.4), 2.65
İ		(2H, s), 2.91 (1H, sept, J=7.0), 3.25 (2H, q, J=7.4), 4.50
		(2H, s), 6.98 (2H, d, J=8.2), 7.28 (2H, d, J=8.2).
I-224		1.21 (6H, s), 2.62 (3H, s), 2.66 (2H, s), 2.97 (3H, d,
	}	J=4.9), 3.84 (3H, s), 4.51 (2H, s), 6.66 (1H, brs), 6.96
		(1H, d, J=7.9), 7.30-7.33 (1H, m), 7.49 (1H, d, J=1.3)
I-225	69-71℃	1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.52 (2H, s), 6.49
		(1H, t, J=74.6), 7.04-7.26 (4H, m)
I-226		1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.51 (2H, s), 6.50
		(1H, t, J=74.2), 7.00-7.05 (2H, s),
		7.11-7.16 (2H, m)
I-227	81-83℃	1.17 (6H, t, J=7.0), 1.23 (6H, s), 2.63 (3H, s),
		2.66 (2H, s), 3.35 (4H, q, J=7.0), 4.52 (2H, s),
		6.29 (1H, s), 6.30 (1H, d,t, J=8.2,2.3),
7 000	100	6.49 (1H, dd, J=8.2, 2.3), 7.19 (1H, t, J=8.2).
I-228	106-	1.21 (6H, s), 2.61 (3H, s), 2.64 (2H, s), 2.70 (6H, s), 4.47
7 000	107°C	(2H, s), 6.90 (2H, s), 6.93 (1H, s).
I-229	121-	1.23 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 2.70 (6H, s), 4.48
7 000	122°C	(2H, s), 6.50-6.70 (2H, m), 6.93 (1H, dd, J=8.5, 6.2).
I-230	85-86℃	1.21 (6H, s), 2.63 (3H, s), 2.64 (2H, s), 2.66 (6H, s), 4.49
I-231	82-84°C	(2H, s),6.74-6.79 (2H, m), 6.93-6.98 (1H, m). 1.23 (6H, s), 1.25 (3H, t, J=7.6), 2.62 (3H, s), 2.66 (2H,
1-231	04-04	s), 2.67 (2H, q, J=7.6), 2.71 (6H, s), 4.50 (2H, s), 6.80
		(1H, d, J=7.6), 6.84 (1H, s), 6.93 (1H, d, J=7.6).
I-232	75-76℃	1.22 (3H, t, J=7.6), 1.23 (6H, s), 2.60 (2H, q, J=7.6), 2.63
1 202	.0 .00	(3H, s), 2.64 (2H, s), 2.68 (6H, s), 4.50 (2H, s), 6.83 (1H,
		s), 6.93 (2H, s).
I-233	86-88℃	1.22 (6H, s), 1.33 (3H, t, J=7.4), 2.64 (2H, s), 2.71 (6H,
	-	s), 3.24 (2H, q, J=7.4), 4.47 (2H, s), 6.92 (2H, s), 6.94 (1H,
		s).

(表35)

化 合物 番		物性
物 番 号		
No	融点	NMR (CHCl ₃)
I-234	70-71°C	1.22 (6H, s), 1.34 (3H, t, J=7.4), 2.64 (2H, s), 2.71 (6H,
		s), 3.25 (2H, q, J=7.4), 4.46 (2H, s), 6.60-6.68 (2H, m), 6.92-6.94(1H, m).
I-235	80-82℃	1.22 (6H, s), 1.24 (3H, t, J=7.6), 1.33 (3H, t, J=7.4), 2.60
		(2H, q, J=7.6), 2.61 (2H, s), 2.71 (6H, s), 3.24 (2H, q,
		J=7.4), 4.47 (2H, s), 6.81 (1H, d, J=7.6), 6.94(1H, s), 6.94 (1H, d, J=7.6).
I-236	\ <u></u>	1.03 (3H, t, J=7.3), 1.20 (6H, d, J=6.9), 1.23 (6H, s), 1.40
		(3H, d, J=6.9), 1.61-1.89 (2H, m), 2.63 (2H, s), 3.15 (1H,
		sept, J=6.9), 3.95 (1H, q, J=6.9), 4.47 (2H, s), 6.89-6.92
I-237		(1H, m), 7.13-7.20 (2H, m), 7.31-7.34 (1H, m) 1.05 (6H, d, J=6.6), 1.21 (6H, d, J=6.6), 1.23 (6H, s),
		1.98-2.08 (1H, m), 2.64 (2H, s), 3.16 (1H, sept, J=6.6),
		3.20 (2H, d, J=6.6), 4.49 (2H, s), 6.88-6.92 (1H, m),
		7.13-7.22 (2H, m), 7.30-7.35 (1H, m)
I-238	102-	1.20 (6H, d, J=6.9), 1.22 (6H, s), 2.61 (2H, s), 2.85-2.95
	104℃	(1H, m), 3.19 (3H, d, J=4.6), 4.46 (2H, s), 6.73-6.79 (1H, m), 7.14-7.20 (2H, m), 7.29-7.34 (1H, m), 12.40 (1H, brs)
I-239	58-60℃	1.23 (6H, s), 2.17 (3H, s), 2.64 (3H, s), 2.65 (2H, s),
		2.70 (6H, s), 4.52 (2H, s), 6.63 (1H, d, J=7.9), 6.87 (1H,
7 040	100	d , J=7.9), 7.14 (1H, d, J=7.9).
I-240	100- 101℃	1.23 (6H, s), 2.62 (3H, s), 2.64 (2H, s), 2.78 (6H, s), 3.89 (3H, s), 4.52 (2H, s), 6.60-6.70 (2H, m), 6.94 (1H, d,
	101 0	J=7.9).
I-241	82-83℃	1.23 (6H, s), 2.30 (3H, s), 2.63 (3H, s), 2.65 (2H, s), 2.70
		(6H, s), 4.52 (2H, s), 6.63 (1H, d,t, J=7.9,1.9),
T 040	00	6.70 (1H, d, J=1.9), 7.14 (1H, d, J=7.9).
I-242	99- 100℃	1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.81 (6H, s), 4.50 (2H, s), 6.91 (1H, d,t, J=8.4,2.6), 7.06 (1H, d, J=8.4),
	1000	7.14 (1H, d, J=2.6).
I-243	63-64°C	1.23 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 2.78 (6H, s), 3.89
		(3H, s), 4.52 (2H, s), 6.67 (1H, s), 6.70 (1H, d, J=7.9),
I-244	68-70°C	6.81 (1H, d , J=7.9). 0.88 (6H, t, J=7.5), 1.22 (6H, d, J=6.9), 1.35 (3H, t,
1-244	00-100	J=7.4), 1.50-1.70 (4H, m), 2.61 (2H, s), 3.15 (1H, sept,
		J=6.9), 3.29 (2H, q, J=7.4), 4.44 (2H, s), 6.89-6.92 (1H,
		m), 7.08-7.21 (2H, m), 7.30-7.35 (1H, m).

(表36)

化合		物性
物番		175 Tabe
号		
No	融点	NMR (CHCl ₃)
T 045	01 0000	1 1 (0) 1 00 (0) 1 7 (0) 0 (0) 1 0 00 (0)
I-245	81-82℃	1.14 (6H, s), 1.20 (6H, d, J=6.9), 2.63 (2H, s), 3.06 (2H,
		s), 3.08 (1H, sept, J=6.9), 3.18 (3H, s), 6.74 (1H, dd, J=7.3, 1.7), 6.98-7.10 (2H, m), 7.20-7.24 (1H, m)
I-246	47-49℃	0.95 (3H, t, J=7.3), 1.13 (6H, s), 1.20 (6H, d, J=6.9),
		1.55-1.74 (2H, m), 2.62 (2H, s), 3.03-3.11 (3H, m),
ŀ		3.52-3.57 (2H, m), 6.73 (1H, dd, J=7.6, 1.7), 6.96-7.10 (2H,
		m), 7.21 (1H, dd, J=7.3, 1.7)
I-247	68-70℃	1.11 (6H, s), 1.18 (6H, d, J=6.9), 1.19 (6H, d, J=6.9), 2.56
		(2H, s), 2.89 (2H, s), 3.08 (1H, sept, J=6.9), 5.08 (1H,
		sept, J=6.9), 6.73 (1H, dd, J=7.9, 1.7), 6.99-7.10 (2H, m),
T 040		7.21 (1H, dd, J=7.9, 1.7)
I-248		0.97 (6H, d, J=6.9), 1.14 (6H, s), 1.18 (6H, d, J=6.9), 2.05-2.15 (1H, m), 2.62 (2H, s), 3.07 (2H, s), 3.08 (1H,
		sept, J=6.9), 3.44 (2H, d, J=7.6), 6.71(1H, dd, J=7.6, 1.7),
		6.96-7.09 (2H, m), 7.21 (1H, dd, J=7.6, 1.7)
I-249	96-97℃	1.23 (6H, s), 2.64 (3H, s), 2.68 (2H, s), 4.59 (2H, s), 7.04
		(1H, d, J=7.3), 7.41-7.50 (3H, m), 7.67 (1H, d, J=7.3), 7.87
		(1H, dd, J = 7.3, 2.1), 8.05 (1H, d, J=7.3,).
I-250	108-	1.24 (6H, s), 2.67 (3H, s), 2.69 (2H, s), 4.59 (2H, s), 7.15
	109℃	(1H, d, J=7.3), 7.41 (1H, q, J=7.3), 7.69 (1H, t, J=8.4),
		7.91 (1H, d, J=7.3), 8.45 (1H, d, J=8.4),
I-251	105-	8.92-8.95 (1H, m). 1.22 (6H, s), 2.62 (3H, s), 2.65 (2H, s), 3.97 (3H, s), 4.53
1-231	103°C	(2H, s), 6.87-6.90 (1H, m), $7.25-7.30$ (1H, m), $7.96-7.99$
	1010	(1H, m).
I-252	132-	1.23 (6H, s), 2.63 (3H, s), 2.68 (2H, s), 2.92 (3H, s),
	133℃	4.49 (2H, s), 6.73-6.78 (1H, m), 7.20-7.23 (1H, m),
		8.05-8.07 (1H, m)
I-253	118-	1.23 (6H, s), 2.60 (3H, s), 2.63 (2H, s), 4.52 (2H, s), 7.30
	120°C	(2H, s), 8.12 (1H, s).
I-254	112-	1.23 (6H, s), 2.63 (3H, s), 2.69 (2H, s), 3.94 (3H, s), 4.51
	113℃	(2H, s), 6.76 (1H, d, J = 8.1), 7.35 (1H, dd, J = 8.1, 2.1),
I-255	109-	7.92 (1H, d, $J = 2.1$). 1.23 (6H, s), 1.40 (3H, t, $J=7.0$), 2.62 (3H, s), 2.66 (2H,
1-200	109- 110℃	(31, 23, 01, 3), 1.40 (31, 0, 3-7.0), 2.02 (31, 3), 2.00 (21, 3), 4.38 (21, q, J=7.0), 4.51 (21, s), 6.75 (11, d, J= 8.1).
	1100	7.35 (1H, dd, J=8.1, 2.1), 7.90 (1H, d, J=2.1).

(表37)

		物性
No	融点	NMR (CHCl ₃)
I-256	75-76℃	1.03 (3H, t, J=7.6), 1.22 (6H, s), 1.76 (2H, sext, J= 7.6), 2.63 (3H, s), 2.65 (2H, s), 4.24 (2H, t, J=7.6), 4.51 (2H, s), 6.76 (1H, d, J=8.1), 7.35 (1H, dd, J=8.1, 2.1), 7.92 (1H, d, J=2.1).
I-257	74-76℃	1.24 (6H, s), 1.36 (6H, d, J=6.3), 2.63 (3H, s), 2.70 (2H, s), 4.51 (2H, s), 5.28 (1H, sept, J=6.3), 6.70 (1H, d, J=8.1), 7.32 (1H, dd, J=8.1, 2.1), 7.92 (1H, d, J=2.1).
1-258	102- 104℃	1.23 (6H, s), 2.58 (3H, s), 2.63 (2H, s), 2.69 (3H, s), 4.51 (2H, s), 7.20-7.26 (2H, m), 8.21 (1H, d, J=2.1).
I-259	81-83℃	1.23 (6H, s), 1.38 (3H, t, J=7.3), 2.63 (3H, s), 2.63 (2H, s), 3.18 (2H, q, J=7.3), 4.51 (2H, s), 7.15-7.26 (2H, m), 8.21 (1H, d, J=2.1).
I-260	78-79℃	1.05 (3H, t, J = 7.4), 1.23 (6H, s), 1.75 (2H, sext, J=7.3), 2.63 (3H, s), 2.65 (2H, s), 3.15 (2H, t, J=7.4), 4.51 (2H, s), 7.15-7.26 (2H, m), 8.20 (1H, d, J=2.1).
I-261	102- 103℃	1.23 (6H, s), 1.40 (6H, d, J=6.6), 2.63 (3H, s), 2.66 (2H, s), 4.00 (1H, sept, J=6.6), 4.51 (2H, s), 7.15-7.26 (2H, m), 8.22 (1H, d, J=2.1).
I-262	109- 110℃	1.22 (6H, s), 2.61 (3H, s), 2.65 (2H, s), 2.70 (6H, s), 3.80 (3H, s), 4.48 (2H, s), 6.47 (1H, dd, J=7.9, 2.1), 6.56 (1H, d, J=2.1), 6.95 (1H, d, J=7.9).
I-263	99- 100℃	1.22 (6H, s), 2.62 (3H, s), 2.63 (2H, s), 2.64 (6H, s), 3.78 (3H, s), 4.48 (2H, s), 6.59 (1H, d, J=2.1), 6.64 (1H, dd, J=7.9, 2.1), 6.98 (1H, d, J=7.9).
I-264	114- 115℃	0.98 (6H, t, J=7.0), 1.23 (6H, s), 2.16 (3H, s), 2.63 (3H, s), 2.64 (2H, s), 2.98 (4H, q, J=7.0), 4.52 (2H, s), 6.65 (1H, d, J=7.9), 6.89 (1H, d, J=7.9), 7.13 (1H, t, J=7.9).
I-265	66-67°C	0.98 (6H, t, J=7.0), 1.23 (6H, s), 2.16 (3H, s), 2.63 (3H, s), 2.64 (2H, s), 2.98 (4H, q, J=7.0), 4.52 (2H, s), 6.63 (1H, dd, J=7.9,2.1), 6.70 (1H, d, J=2.1), 7.16 (1H, d, J = 7.9).
1-266	88-90℃	1.04 (6H, t, J=7.0), 1.24 (6H, s), 2.63 (3H, s), 2.67 (2H, s), 3.17 (4H, q, J=7.0), 3.86 (3H, s), 4.51 (2H, s), 6.67 (1H, s), 6.70 (1H, d, J=7.9), 6.85 (1H, d, J=7.9).

(表38)

化 合物 番号		物性
No	融点	NMR (CHCl ₃)
I-267	138- 140℃	0.82-0.92 (9H, m), 1.18 (3H, d, J=6.9), 1.51-1.65 (6H, m), 2.62 (2H, s), 2.65 (3H, s), 2.87 (1H, sept, J=6.9), 4.33 (1H, d, J=13.5), 4.59 (1H, d, J=13.5), 6.89-6.92 (1H, m), 7.13-7.28 (3H, m)
I-268	161- 163℃	0.89-0.95 (6H, m), 1.21 (6H, d, J=6.9), 1.25-1.54 (8H, m), 2.62 (2H, s), 2.65 (3H, s), 3.10 (1H, sept, J=6.9), 4.47 (2H, s), 6.88-6.92 (1H, m), 7.14-7.18 (2H, m), 7.31-7.34 (1H, m)
I-269		1.21 (6H, d, J=6.9), 1.65-1.88 (8H, m), 2.64 (3H, s), 2.75 (2H, s), 3.09 (1H, sept, J=6.9), 4.57 (2H, s), 6.90-6.94 (1H, m), 7.13-7.20 (2H, m), 7.30-7.35 (1H, m)
1-270		1.21 (6H, d, J=6.9), 1.37-1.54 (8H, m), 1.76-1.80 (2H, m), 2.65 (3H, s), 2.67 (2H, s), 3.09 (1H, sept, J=6.9), 4.54 (2H, s), 6.89 (1H, m), 7.11-7.21 (2H, m), 7.29-7.34 (1H, m)

(表39)

化 合		物性
物番		
号		
No	融点	NMR (CHCl ₃)
I-271		1.04 (3H, s), 1.08 (3H, s), 1.29 (6H, d), J=6.9), 2.69(2H,
		s), 3.40 (1H, sept, J=6.9), 3.43 (3H, s), 3.51 (2H, s),
		7.18-7.29 (2H, m), 7.36-7.45 (2H, m)
I-272		0.96 (3H, s), 1.05 (3H, s), 1.25 (3H, d, J=6.9), 1.26 (3H,
		d, J=6.9), 2.61 (1H, d, J=12), 2.70 (1H, d, J=12), 3.39 (1H, d,
		sept, J=6.9), 3.45-3.58 (2H, m), 7.02-7.07 (2H, m),
		7.11-7.18 (1H, m), $7.38-7.45$ (2H, m), $7.61-7.70$ (2H, m)
I-273		0.84 (3H, s), 1.00 (3H, s), 1.25 (3H, d, J=6.9), 1.29 (3H,
		J=6.9), 2.43 (3H, s), 2.53 (1H, d, $J=12$), 2.64 (1H, d, $J=12$),
		3.29 (1H, d, J=16), 3.42 (1H, d, J=16), 3.47 (1H, sept,
		J=6.9), $7.09-7.19$ (2H, m), $7.24-7.29$ (2H, m), $7.38-7.45$ (2H,
		m), 7.81-7.86 (2H, m)
I-274		0.99 (6H, s), 1.19 (6H, d, J=6.9), 2.40 (3H, s), 2.67 (2H,
		s), 2.87 (1H, sept, J=6.9), 3.43 (2H, s), 7.11-7.29 (6H,
		m), 7.68 (2H, d, J=8.1)
I-275		1.07 (6H, s), 1.26 (6H, d, J=6.9), 1.38 (3H, t, J=7.2), 2.71
		(2H, s), 2.93 (1H, sept, J=6.9), 3.51 (2H, s), 3.60 (2H,
		q, J=7.2), 7.20-7.30 (4H, m)
I-276		1.19 (6H, s), 1.23 (6H, d, J=6.9), 2.77 (2H, s), 2.87 (1H,
		sept, J=6.9), 3.58 (2H, s), 6.65-6.69 (2H, m), 6.91 (1H,
		d, J=7.5), 7.20 (1H, t, J=7.5), 7.51 (2H, d, J=9.3), 8.22
		(2H, d, J=9.3)
I-277		0.99 (6H, s), 1.20 (6H, d, J=6.9), 2.67 (2H, s), 2.88 (1H,
		sept, J=6.9), 3.44 (2H, s), 3.85 (3H, s), 6.86-6.90 (2H,
		m), 7.11-7.26 (4H, m), 7.72-7.76 (2H, m)

(表40)

化 合物 番号		物性
No	融点	NMR (CHCl ₃)
I-278		1.03 (6H, s), 1.20 (6H, d, J=6.9), 2.70 (2H, s), 2.88 (1H, sept, J=6.9), 3.44 (2H, s), 7.08-7.31 (4H, m), 7.60 (1H, t, J=8.4), 8.04 (1H, d, J=8.4), 8.39 (d, J=8.4), 8.74 (1H, s)
I-279		1.01 (6H, s), 1.19 (6H, d, J=6.9), 2.69 (2H, s), 2.88 (1H, sept, J=6.9), 3.42 (2H, s), 7.09-7.32 (4H, m), 7.68 (2H, d, J=8.4), 7.92 (2H, d, J=8.4),
I-280		1.19 (3H, s), 1.21 (3H, s), 1.23-1.30 (6H, m), 2.62 (1H, d, J=12), 2.82 (1H, sept, J=6.9), 3.02 (1H, d, J=12), 3.46-3.70 (2H, m), 6.53-6.60 (2H, m), 6.86 (1H, d, J=7.8), 7.13 (1H, t, J=7.8), 7.28-7.40 (2H, m), 7.61-7.66 (1H, m), 7.90 (1H, dd, J=7.5, 1.2)

本発明化合物には、以下の表に示される化合物も含まれる。これらの化合物は、 上記実施例と同様に合成することができる。なお、表中の左カラムの数字は化合 5 物No. を表わす。

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
A-1	Н	Pr	Н	Н	Н	CSSMe	Ме	Me
A-2	Pr ⁱ	Н	CI	Н	Н	CSSMe	Me_	Me
A-3	Н	Bu⁵	Н	Н	Н	CSSMe	Ме	Ме
A-4	Н	Н	Bu⁵	Н	Н	CSSMe	Me	Ме
A-5	OPr	Н	Н	Н	Н	CSSMe	Ме	Ме
A-6	OBu	Н	H	Н	Н	CSSMe	Me	Me
A-7	Η	SEt	Н	Н	Н	CSSMe	Ме	Ме
A-8	Η	Н	SEt	Н	Н	CSSMe	Ме	Ме
A-9	Н	SPr'	H	H	Η	CSSMe	Ме	Ме
A-10	Н	Н	SPr ⁱ	Н	Н	CSSMe	Ме	Ме
A-11	Н	OCHF	Н	Н	Н	CSSMe	Ме	Ме
A-12	Pr ⁱ	Н	NMe ₂	Н	Н	CSSMe	Me	Ме
A-13	Pr ⁱ	NMe ₂	Η	Ι	H	CSSMe	Ме	Ме
A-14	Et	Et	Η	Η	Ι	CSSMe	Me	Ме
A-15	Н	Et	Et	Ξ	I	CSSMe	Me	Ме
A-16	Bu ⁱ	Η	Ξ	Ι	H	CSSMe	Me	Me
A-17	Н	Bu [/]	Η	Ι	Ι	CSSMe	Ме	Ме
A-18	Н	Н	Bu ⁱ	I	Ι	CSSMe	Ме	Me
A-19	Н	N(Me)Et	Ξ	Ι	Ι	CSSMe	Ме	Ме
A-20	Н	N(Me)Pr	Η	I	H	CSSMe	Ме	Me
A-21	NPr ₂	Н	Η	I	I	CSSMe	Ме	Ме
A-22	H	NPr ₂	Η	Η	Η	CSSMe	Ме	Ме
A-23	Н	Н	NPr ₂	I	Н	CSSMe_	Ме	Ме
A-24	Н	NPr ₂	Ме	Η	Н	CSSMe	Me	Ме
A-25	Н	Bu ^r	Н	Н	Н	CSSMe	Ме	Ме

(表41-B)

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
A-26	Н	CH,OMe	Н	Н	Н	CSSMe	Ме	Me
A-27	Н	н	CH,OMe	Н	Н	CSSMe	Me	Me
A-28	CH,OEt	н	Н	Н	Н	CSSMe	Me	Me
A-29	Н	CH,OEt	Н	Н	Н	CSSMe	Me	Me
A-30	Н	Н	CH,OEt	Н	Н	CSSMe	Me	Me
A-31	CH, SMe	Н	Н	Н	Н	CSSMe	Me	Me
A-32	Н	CH, SMe	Н	Н	Н	CSSMe	Me	Me
A-33	Н	Н	CH,SMe	Н	Н	CSSMe	Ме	Me
A-34	CH, SEt	Н	Н	Н	Н	CSSMe	Me	Me
A-35	Н	CH,SEt	Н	H	Н	CSSMe	Me	Me
A-36	Н	Н	CH,SEt	Н	Н	CSSMe	Me	Me
A-37	CH,NMe,	Н	Н	Н	Н	CSSMe	Me	Me
A-38	Н	CH,NMe,	Н	Н	Н	CSSMe	Me	Me
A-39	Н	Н	CH,NMe,	Н	Н	CSSMe	Me	Me
A-40	CH, NEt,	Н	Н	Н	Н	CSSMe	Me	Me
A-41	Н	CH, NEt,	Н	Н	Н	CSSMe	Ме	Ме
A-42	Н	Н	CH,NEt,	Н	H	CSSMe	Ме	Me
A-43	OCH,CH,OM e	Н	Н	Н	Н	CSSMe	Me	Me
A-44	Н	OCH,CH,OMe	Н	_н	Н	CSSMe	Me	Me
A-45	Н	Н	OCH,CH,OM e	Н	Н	CSSMe	Ме	Me
A-46	OCH,CH,SM e	Н	н	I	I	CSSMe	Ме	Me
A-47	Н	OCH, CH, SMe	H	Н	Н	CSSMe	Ме	Ме
A-48	н	Н	OCH,CH,SM e	Н	Н	CSSMe	Ме	Me
A-49	OCH,CH,NM e,	Н	Н	Н	Н	CSSMe	Me	Me
A-50	Н	OCH, CH, NMe,	Н	Н	Н	CSSMe	Ме	Ме

(表41-C)

	R¹	R²	R ³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸
A-51	Н	Н	OCH, CH, NMe,	Н	Н	CSSMe	Me	Ме
A-52	F	Н	F	Н	Н	CSSMe	Ме	Me
A53	C1	Н	Cl	Н	Н	CSSMe	Me	Me
A-54	OMe	CI	Н	Н	Н	CSSMe	Me	Me
A-55	OMe	Н	CI	Ι	Н	CSSMe	Ме	Ме
A-56	OMe	Me	H	I	Ι	CSSMe	Ме	Me
A-57	OMe	Et	Н	Ξ	Н	CSSMe	Ме	Ме
A-58	OMe	Ι	Et	Ι	Н	CSSMe	Ме	Ме
A-59	OMe	Н	Pr ⁱ	Н	Н	CSSMe	Me	Ме
A-60	OMe	Н	OEt	H	Н	CSSMe	Ме	Ме
A-61	OMe	Ŧ	OPr	Ξ	Ι	CSSMe	Me	Ме
A-62	OMe	NMe,	Н	Ι	I	CSSMe	Ме	Ме
A-63	OMe	NEt,	Н	Η	Ξ	CSSMe	Ме	Ме
A-64	OEt	NMe,	Н	Η	H	CSSMe	Ме	Me
A-65	OEt	NEt,	Н	H	Ι	CSSMe	Ме	Ме
A-66	Н	OMe	F	Η	Ι	CSSMe	Ме	Ме
A-67	Н	OMe	CI	Η	Ι	CSSMe	Ме	Me
A-68	Н	OMe	OPr ⁱ	Н	Ι	CSSMe	Me	Ме
A-69	H	OEt	OPr	Н	Η	CSSMe	Ме	Ме
A-70	H	OEt	OPr ⁱ	Н	Н	CSSMe	Ме	Me
A-71	Н	OEt	OBu	Н	Ι	CSSMe	Ме	Ме
A-72	SMe	SMe	Н	H	Н	CSSMe	Ме	Ме
A-73	SMe	Н	SMe	Н	H	CSSMe	Ме	Ме
A-74	NMe;	NMe ₁	H	Н	Н	CSSMe	Ме	Ме
A-75	NMe,	Н	NMe,	Н	Ι	CSSMe	Ме	Ме

(表42)

	R¹	R²	R³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
B-1	Н	Н	Н	Н	Н	COSMe	Me	Me
B-2	CI	Н	Н	H.	Н	COSMe	Ме	Me
B-3	Br	Н	Н	Н	Н	COSMe	Me	Me
B-4	Ме	Н	Н	Н	Н	COSMe	Ме	Me
B-5	Et	Н	Н	Н	Н	COSMe	Me	Me
B-6	_Bu	Η	Н	Н	Н	COSMe	Me	Ме
B-7	Bu [/]	Ι	Н	Н	Н	COSMe	Me	Ме
B-8	_Bu [*]	Н	Н	Н	Н	COSMe	Me	Me
B-9	OEt	Н	Н	Н	Н	COSMe	Me	Ме
B-10	OPr	Ι	Н	Н	Н	COSMe	Ме	Me
B-11	OCHF ₂	H	Н	Н	Н	COSMe	Ме	Me
B-12	OCF₃	I	Н	Н	Н	COSMe	Ме	Ме
B-13	CF₃	Ι	Н	Ι	Ι	COSMe	Ме	Me
B-14	SMe	Н	Н	Τ	Η	COSMe	Ме	Me
B-15_	SEt	Н	Н	Н	Η	COSMe	Ме	Me
B-16	SPr [/]	H	H	H	Ι	COSMe	Ме	Ме
B-17	NMe₂	Н	Н	H	Ι	COSMe	Ме	Ме
B-18	NEt ₂	н	Н	H	Η	COSMe	Ме	Ме
B-19	Н	CI	Н	Ξ	Ι	COSMe	Ме	Me
B-20	Н	Br	Ι	Η	I	COSMe	Ме	Ме
B-21	Н	Ме	Η	Ι	Н	COSMe	Ме	Ме
B-22	Н	Et	Н	H	Н	COSMe	Ме	Me
B-23	H	Pr	Н	Н	Н	COSMe	Ме	Ме
B-24	H	Bu	Н	Н	Н	COSMe	Ме	Me
B-25	H	Bu ⁱ	Н	Н	H	COSMe	Ме	Ме

(表43)

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
B-26	Н	Bu⁵	Н	H	Н	COSMe	Ме	Ме
B-27	Η	Bu'	Н	Н	Н	COSMe	Ме	Ме
B-28	Ή	OMe	Н	Н	Н	COSMe	Me	Me
B-29	Н	OEt	Н	Н	н	COSMe	Ме	Ме
B-30	Н	OPr	Н	Н	Н	COSMe	Me	Me
B-31	Н	OCHF ₂	Н	Н	Н	COSMe	Ме	Ме
B-32	Н	OCF ₃	Н	Н	Н	COSMe	Ме	Me
B-33	Н	CF₃	Н	Н	Н	COSMe	Ме	Ме
B-34	Ι	SMe	Ι	H	Н	COSMe	Ме	Me
B-35	Н	SEt	Н	Н	Н	COSMe	Ме	Me
B-36	Н	SPr [/]	Н	Н	Н	COSMe	Ме	Ме
B-37	Н	NMe ₂	Н	H	Н	COSMe	Ме	Me
B-38	Ι	NEt ₂	Ι	Ι	Н	COSMe	Me	Me
B-39	Ι	Н	ō	Η	Н	COSMe	Ме	Ме
B-40	Ξ	Н	Br	I	Н	COSMe	Ме	Мe
B-41	Н	Н	Ме	Ι	Н	COSMe	Me	Ме
B-42	Н	Н	Pr	Ι	Н	COSMe	Ме	Ме
B-43	Ι	Н	Bu	Ι	Η	COSMe	Ме	Ме
B-44	Ι	Н	Bu [/]	Ι	Ι	COSMe	Me	Ме
B-45	Η	Н	Bu⁵	Ι	Н	COSMe	Ме	Ме
B-46	Н	Н	Bu ^t	Ι	Н	COSMe	Me	Ме
B-47	Н	Н	OMe	Ι	Н	COSMe	Me	Ме
B-48	Н	Н	OEt	I	H	COSMe	Ме	Ме
B-49	Н	Η	OPr	Η	Н	COSMe	Ме	Ме
B-50	Н	Н	OCHF ₂	Н	Н	COSMe	Ме	Ме

(表44)

	R¹	R²	R³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
B-51	Н	Н	OCF₃	Н	Η	COSMe	Ме	Me
B-52	Н	Н	CF ₃	Н	Η	COSMe	Ме	Ме
B-53	Н	Н	SMe	Н	Н	COSMe	Me	Ме
B-54	Н	Н	SEt	Н	Ξ	COSMe	Ме	Ме
B-55	Н	Н	SPr ⁱ	H	Η	COSMe	Ме	Me
B-56	H	Н	NMe ₂	H	Н	COSMe	Ме	Me
B-57	Н	Н	NEt ₂	Н	Η	COSMe	Ме	Ме
B-58	Ме	Ме	Ι	Н	Ι	COSMe	Ме	Me
B-59	Н	Ме	Ме	Н	Η	COSMe	Ме	Ме
B-60	Et	Et	Н	H	Ι	COSMe	Ме	Me
B-61	Н	Et	Et	Ι	Ι	COSMe	Ме	Ме
B-62	OMe	Ме	Η	I	Η	COSMe	Ме	Me
B-63	OMe	H	Ме	Н	Η	COSMe	Ме	Ме
B-64	NM e ₂	Ме	Н	Η	Η	COSMe	Ме	Me
B-65	Η	NMe ₂	Ме	Ι	Н	COSMe	Me	Me_
B-66	Me	NMe ₂	H	I	H	COSMe	Ме	Me
B-67	NM e ₂	C	Ι	I	Ι	COSMe	Ме	Ме
B-68	Me	NEt ₂	Ξ	Ι	Ι	COSMe	Ме	Ме
B-69	Н	NEt ₂	Ме	H	Ι	COSMe	Ме	Ме
B-70	Pr ⁱ	Н	F	H	Н	COSMe	Me	Me

PCT/JP00/06185 WO 01/19807

	R¹	R²	R³	R⁴	R⁵ .	R ⁶	R ⁷	R⁴
C-1	Н	Н	Н	Н	H	CSSEt	Ме	Ме
C-2	CI	Н	Н	Н	H	CSSEt	Ме	Ме
C-3	Br	Н	Н	Н	Н	CSSEt	Me	Me
C-4	Me	Н	Н	Н	Н	CSSEt	Me	Me
C-5	Et	Н	Н	Н	Н	CSSEt	Me	Me
C-6	Pr	Н	Н	Н	Н	CSSEt	Me	Me
C-7	Bu	Н	Н	Н	H	CSSEt	Me	Me
C-8	Bu ^r	Н	_ н	Н	Н	CSSEt	Ме	Ме
C-9	Bu ^t	Н	Н	Н	Н	CSSEt	Ме	Me
C-10	OMe	H	_ н	Н	Н	CSSEt	Me	Ме
C-11	OPr	Н	Н	Н	I	CSSEt	Ме	Ме
C-12	OCHF ₂	Ι	H	Н	Η	CSSEt	Ме	Me
C-13	OCF ₃	Ι	H	H	Η	CSSEt	Ме	Me
C-14	CF₃	Ι	Η	H	Η	CSSEt	Ме	Me
C-15	SEt	I	Н	Η	Η	CSSEt	Me	Me
C-16	SPr ¹	Ι	Н	Ι	Ι	CSSEt	Ме	Me
C-17	NEt ₂	Ι	Η	I	Ξ	CSSEt	Ме	Me
C-18	Н	ō	Ι	Ι	Ξ	CSSEt	Me	Me
C-19	Н	Br	Η	I	H	CSSEt	Me	Me
C-20	Н	Ме	H	Ξ	H	CSSEt	Ме	Me
C-21	Н	Et	Н	H	H	CSSEt	Ме	Me
C-22	Н	Pr	Н	Ι	Ι	CSSEt	Ме	Ме
C-23	Н	Bu	Н	H	H	CSSEt	Ме	Мe
C-24	Н	Bu [/]	Н	Н	Н	CSSEt	Ме	Me
C-25	Н	Bus	Н	Н	Н	CSSEt	Ме	Me

(表46)

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

$$R^{5}$$

$$R^{7}$$

$$R^{8}$$

	R¹	R²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
C-26	Н	Bu ^t	Н	Н	Н	CSSEt	Ме	Me_
C-27	Н	OMe	H	Η	Н	CSSEt	Ме	Me
C-28	H	OEt	Н	Н	Н	CSSEt	Ме	Me
C-29	Н	OPr	Н	Н	Н	CSSEt	Ме	Me
C-30	Н	OCHF ₂	Н	H	Н	CSSEt	Me	Me
C-31	Н	OCF ₃	H	H	Н	CSSEt	Ме	Me
C-32	Н	CF₃	Н	Τ	Н	CSSEt	_Me	Me
C-33	H	SMe	Н	I	Н	CSSEt	Ме	Me
C-34	Н	SEt	Н	I	Η	CSSEt	Ме	Ме
C-35	H	SPr [/]	Н	Ι	Н	CSSEt	Me	Ме
C-36	Η	NEt ₂	Н	I	Τ	CSSEt	Ме	Ме
C-37	Η	Н	C	Ι	Н	CSSEt	Ме	Me
C-38	H	Η	Br	Ι	H	CSSEt	Ме	Ме
C-39	Н	Η	Ме	I	Ι	CSSEt	Me	Ме
C-40	Н	Ι	Et	Τ	Н	CSSEt	Ме	Me
C-41	Н	Η	Pr	Ι	Н	CSSEt	Ме	Me
C-42	Н	Η	Bu	Ι	H	CSSEt	Ме	Me
C-43	H	Н	Bu [/]	Τ	Н	CSSEt	Ме	Ме
C-44	H	Н	Bu⁵	Н	Τ	CSSEt	Ме	Ме
C-45	Η	Н	Bu ^t	Ι	Н	CSSEt	Ме	Me
C-46	Н	Н	OMe	H	Н	CSSEt	Ме	Ме
C-47	Н	Н	OEt	H	Н	CSSEt	Me	Ме
C-48	Н	Η	OPr	Н	Н	CSSEt	Ме	Ме
C-49	Н	Η	OCHF ₂	Н	Н	CSSEt	Ме	Ме
C-50	Н	Н	OCF₃	Н	Н	CSSEt	Me	Me

	R¹	R ²	R ³	R⁴	R⁵	R ^e	R ⁷	R ⁸
C-51	Н	Н	CF ₃	Н	Н	CSSEt	Me	Ме
C-52	Н	Н	SMe	Н	Н	CSSEt	Ме	Ме
C-53	Н	Н	SEt	Н	Н	CSSEt	Ме	Ме
C-54	Н	Н	SPr ⁱ	Н	Н	CSSEt	Me	Me
C-55	Н	Н	NMe₂	Η	Ι	CSSEt	Ме	Me
C-56	Н	Н	NEt ₂	Н	Н	CSSEt	Me	Me
C-57	Ме	Me	Ŧ	Η	Ι	CSSEt	Ме	Ме
C-58	Н	Me	Ме	H	Ι	CSSEt	Ме	Ме
C-59	Et	Et	I	I	Ι	CSSEt	Me	Ме
C-60	Н	Et	Et	Ι	H	CSSEt	Ме	Ме
C-61	OMe	Me	Ι	Ι	Н	CSSEt	Ме	Ме
C-62	OMe	Н	Ме	Н	Н	CSSEt	Ме	Ме
C-63	NMe₂	Ме	Ι	I	Н	CSSEt	Ме	Ме
C-64	Н	NMe ₂	Ме	Ι	Н	CSSEt	Ме	Ме
C-65	Me	NMe₂	Ι	I	Η	CSSEt	Me	Ме
C-66	NMe₂	ō	I	Ι	Η	CSSEt	Ме	Ме
C-67	Me	NEt ₂	Н	Η	Н	CSSEt	Me	Me
C-68	Η	NEt ₂	Ме	Ι	Ξ	CSSEt	Me	Ме
C-69	Pr'	Η	F	Н	H	CSSEt	Ме	Me
C-70	OMe	Н	OMe	Н	Н	CSSEt	Me	Ме
C-71	Τ	OMe	OMe	Н	Н	CSSEt	Ме	Ме
C-72	Н	OMe	OEt	Н	Н	CSSEt	Ме	Ме
C-73	H	OEt	OMe	Н	H	CSSEt	Me	Ме
C-74	Н	OEt	OEt	Н	Η	CSSEt	Me	Me
C-75	OMe	Н	Ме	Н	Н	CSSEt	Ме	Me

(表48)

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
D-1	Br	Н	Н	Н	Н	COSEt	Ме	Me
D-2	Bu ^I	Н	Н	Н	Н	COSEt	Ме	Ме
D-3	OPr	Н	Н	Н	Н	COSEt	Ме	Me
D-4	OCHF ₂	Н	Н	H	Н	COSEt	Ме	Me
D-5	OCF₃	Н	Н	Н	Н	COSEt	Ме	Ме
D-6	NEt ₂	Н	Н	Н	Н	COSEt	Ме	Ме
D-7	Н	CI	Н	Н	Н	COSEt	Ме	Me
D-8	H	Br	Н	Н	Н	COSEt	Ме	Me
D-9	Н	Et	Н	Н	Н	COSEt	Ме	Me
D-10	Н	Pr	Η	H	Н	COSEt	Me	Me
D-11	Н	Bu	Н	Н	Н	COSEt	Ме	Me
D-12	Н	Bu [/]	Н	H	Н	COSEt	Ме	Ме
D-13	Н	Bu³	Ι	H	H	COSEt	Ме	Ме
D-14	Н	Bu ^t	Н	H	H	COSEt	Ме	Ме
D-15	H	OEt	Η	Τ	H	COSEt	Ме	Ме
D-16	Н	OPr	Ή	Η	Н	COSEt	Me	Ме
D-17	Н	OCHF ₂	Ι	H	Н	COSEt	Ме	Ме
D-18	Н	OCF₃	H	Н	Η	COSEt	Ме	Me
D-19	Н	CF₃	Ι	Ι	Ι	COSEt	Ме	Ме
D-20	Н	SMe	Η	Τ	Н	COSEt	Ме	Me
D-21	Н	SEt	Η	Ι	H	COSEt	Ме	Ме
D-22	Н	SPr [/]	I	H	Н	COSEt	Ме	Me
D-23	H	NMe ₂	H	Н	Н	COSEt	Ме	Ме
D-24	Н	NEt ₂	H	Н	Н	COSEt	Me	Me
D-25	H	Н	Br	Н	Η	COSEt	Me	Me

					_			
	R¹	R ²	R³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸
D-26	Н	Н	Et	H	Н	COSEt	Ме	Ме
D-27	Н	Н	Pr	Н	Н	COSEt	Ме	Me
D-28	Н	Н	Bu	Н	Н	COSEt	Ме	Me
D-29	Н	Н	Bu ⁱ	Н	H	COSEt	Me	Me
D-30	Н	Н	Bu³	Н	Н	COSEt	Ме	Me
D-31	Н	Н	Bu'	Н	Н	COSEt	Me	Ме
D-32	Н	Н	OMe	Н	Н	COSEt	Me	Me
D-33	Н	Н	OEt	Н	Н	COSEt	Ме	Ме
D-34	Н	Н	OPr	Н	Н	COSEt	Ме	Me
D-35	Н	Н	OCHF ₂	H	Н	COSEt	Ме	Me
D-36	H	Н	OCF ₃	H	Н	COSEt	Ме	Ме
D-37	Н	Н	CF ₃	Н	Н	COSEt	Ме	Me
D-38	H	Н	SMe	I	Ι	COSEt	Ме	Me
D-39	I	Н	SEt	Ι	Η	COSEt	Ме	Ме
D-40	Ξ	Н	SPr ⁱ	I	Η	COSEt	Me_	Me
D-41	I	Н	NMe₂	Ι	Ι	COSEt	Ме	Me
D-42	I	Η	NEt ₂	Ξ	Н	COSEt	Ме	Me
D-43	Et	Et	Н	Ι	H	COSEt	Me_	Me
D-44	Ξ	Et	Et	I	Ι	COSEt	Ме	Me
D-45	OMe	Me	Н	H	Н	COSEt	Me	Me
D-46	OMe	Н	Ме	Ι	Н	COSEt	Me	Me
D-47	NMe ₂	Me	Н	Н	Н	COSEt	Ме	Me
D-48	Н	NMe ₂	Me	H	H	COSEt	Ме	Me
D-49	Н	OEt	OMe	Н	Н	COSEt	Ме	Me
D-50	Н	OEt	OEt	H	Н	COSEt	Me	Me

(表50)

$$R^{3} \xrightarrow{R^{4}} R^{5}$$

	R¹	R ²	_R ³	R⁴	R ⁵	R⁵	R ⁷	R ⁸
E-1	Н	Н	Н	Н	Н	CSSMe	Et	Et
E-2	CI	Н	Н	Н	Н	CSSMe	Et	Et
E-3	Br	Н	Н	Н	Н	CSSMe	Et	Et
E-4	Me	Н	H	Н	Н	CSSMe	Et	Et
E-5	Et	Н	Н	Н	Н	CSSMe	Et	Et
E-6	Pr	Н	Н	Н	Н	CSSMe	Et	Et
E-7	Bu	Н	Н	H	Н	CSSMe	Et	Et
E-8	Bu [/]	Н	Н	Н	Н	CSSMe	Et	Et
E-9	Bu ^t	Н	Н	Н	Н	CSSMe	Et	Et
E-10	OMe	H	Н	H_	Н	CSSMe	Et	Et
E-11	OEt	Н	Н	Н	Н	CSSMe	Et	Et
E-12	OPr ⁱ	Н	Н	H	Н	CSSMe	Et	Et
E-13	OPr	Η	Ι	I	Ξ	CSSMe	Et	Et
E-14	OCHF ₂	Ι	Η	H	H	CSSMe	Et	Et
E-15	OCF ₃	H	H	H	Н	CSSMe	Et	Et
E-16	CF ₃	Ι	Ξ	Ι	Ι	CSSMe	Et	Et
E-17	SMe	Ι	Ι	Ι	Ή	CSSMe	Et	Et
E-18	SEt	H	Ι	I	Ι	CSSMe	Et	Et
E-19	SPr'	Η	Ι	Ι	Η	CSSMe	Et	Et
E-20	NMe ₂	H	H	Ι	Ι	CSSMe	Et	Et
E-21	NEt ₂	Н	Н	Η	Н	CSSMe	Et	Et
E-22	Н	Cl	H	Ι	Η	CSSMe	Et	Et
E-23	Н	Br	Н	Ξ	Н	CSSMe	Et	Et
E-24	Н	Ме	H	Н	Н	CSSMe	Et	Et
E-25	Н	Et	Н	Н	H	CSSMe	Et	Et

(表51)

	R¹	R ²	R ³	R⁴	R⁵	R⁵	R ⁷	R ⁸
E-26	Н	Pr	Н	Н	Н	CSSMe	Et	Et
E-27	Н	Pr ⁱ	Η	Н	Н	CSSMe	Et	Et
E-28	Н	Bu	Ι	Н	Ι	CSSMe	Et	Et
E-29	Н	Bu ⁱ	Η	Н	Ι	CSSMe	Et	Et
E-30	Н	Bu⁵	H	Н	Ι	CSSMe	Et	Et
E-31	Н	Bu ^t	Н	Н	Η	CSSMe	Et	Et
E-32	Н	OMe	H	Н	H	CSSMe	Et	Et
E-33	Н	OEt	H	Н	Ξ	CSSMe	Et	Et
E-34	Н	OPr	I	Н	I	CSSMe	Et	Et
E-35	Н	OPr ⁱ	H	Н	H	CSSMe	Et	Et
E-36	H	OCHF ₂	Ι	Η	Ή	CSSMe	Et	Et
E-37	Н	OCF ₃	Ι	Τ	Ι	CSSMe	Et	Et
E-38	Н	CF ₃	Ι	Ή	Ι	CSSMe	Et	Et
E-39	Н	SMe	I	Η	Τ	CSSMe	Et	Et
E-40	Н	SEt	Ι	Ι	Η	CSSMe	Et	Et
E-41	Н	\$Pr ⁱ	Ι	Ι	Η	CSSMe	Et	Et
E-42	Н	NMe₂	Ι	Ι	Η	CSSMe	Et	Et
E-43	H	NEt ₂	H	Ι	Η	CSSMe	Et	Et
E-44	Η	Н	C	H	Н	CSSMe	Et	Et
E-45	H	Н	Br	Н	Н	CSSMe	Et	Et
E-46	Н	Н	Ме	Ι	Н	CSSMe	Et	Et
E-47	Н	Н	Et	Н	H	CSSMe	Et	Et
E-48	Ι	Н	Pr	Ι	Н	CSSMe	Et	Et
E-49	Н	Н	Pr ⁱ	Н	Н	CSSMe	Et	Et
E-50	Н	H	Bu	Н	Н	CSSMe	Et	Et

(表52)

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
E-51	Н	Н	Bu ^r	Н	Н	CSSMe	Et	Et
E-52	Н	Н	Bu*	Н	Н	CSSMe	Et	Et
E-53	Н	Н	Bu ^t	Н	Н	CSSMe	Et	Et
E-54	Н	Н	OMe	Н	Н	CSSMe	Et	Et
E-55	Н	Н	OEt	Н	Н	CSSMe	Et	Et
E-56	Н	Н	OPr	Н	Н	CSSMe	Et	Et
E-57	Н	Н	OPr ⁱ	Н	Н	CSSMe	Et	Et
E-58	Н	Н	OCHF ₂	Н	Н	CSSMe	Et	Et
E-59	Н	Н	OCF ₃	Н	Н	CSSMe	Et	Et
E-60	Н	Н	CF ₃	Н	Н	CSSMe	Et	Et
E-61	Н	Н	SMe	Н	Н	CSSMe	Et	Et
E-62	Н	Н	SEt	Н	Н	CSSMe	Et	Et
E-63	Н	H	SPr'	Н	Н	CSSMe	Et	Et
E-64	Н	Н	NMe ₂	Н	Η	CSSMe	Et	Et
E-65	Н	Н	NEt ₂	H	Ή	CSSMe	Et	Et
E-66	Ме	NMe ₂	Н	Н	H	CSSMe	Et	Et
E-67	NMe ₂	Cl	Н	Н	H	CSSMe	Et	Et
E-68	Me	NEt ₂	Н	Н	Н	CSSMe	Et	Et
E-69	Н	NEt ₂	Me	Ι	Н	CSSMe	Et	Et
E-70	Pr ⁱ	Н	F	H	Н	CSSMe	Et	Et
E-71	OMe	Н	OMe	Н	Η	CSSMe	Et	Et
E-72	Н	OMe	OMe	Η	Н	CSSMe	Et	Et
E-73	Н	OMe	OEt	Н	Н	CSSMe	Et	Et
E-74	Н	OEt	OMe	H	Н	CSSMe	Et	Et
E-75	Н	OEt	OEt	H	Н	CSSMe	Et	Et

(表53)

	R'	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
F-1	Н	Н	Н	Н	Н	CSSMe	Pr	Pr
F-2	CI	H	Н	Н	Н	CSSMe	Pr	Pr
F-3	Br	I	Н	Н	Н	CSSMe	Pr	Pr
F-4	Me	Н	Н	H	Н	CSSMe	Pr_	Pr
F-5	Et	Н	Н	Н	Н	CSSMe	Pr	Pr
F-6	Pr	Н	Н	Н	Н	CSSMe	Pr	Pr
F-7	Bu	Н	Н	Н	Н	CSSMe	Pr	Pr
F-8	Bu ⁱ	Н	Н	Н	Ι	CSSMe	Pr	Pr
F-9	Bu'	Ι	Н	Н	H	CSSMe	Pr	Pr
F-10	OMe	H	Ι	Ή	Ι	CSSMe	Pr	Pr
F-11	OEt	I	Η	I	Ι	CSSMe	Pr	Pr
F-12	OPr ⁱ	I	H	H	Ι	CSSMe	Pr	Pr
F-13	OPr	I	Ι	Н	I	CSSMe	Pr	Pr
F-14	OCHF ₂	Н	Н	Η	H	CSSMe	Pr	_Pr
F-15	OCF ₃	H	Н	Н	Н	CSSMe	Pr	Pr
F-16	CF₃	Н	Η	Н	Н	CSSMe	Pr	Pr
F-17	SMe	Н	Н	H	Н	CSSMe	Pr	Pr
F-18	SEt	H	Н	Н	Н	CSSMe	Pr	Pr
F-19	SPr ⁱ	Н	Н	Н	Н	CSSMe	Pr	Pr
F-20	NMe₂	Н	Н	Н	Н	CSSMe	Pr	Pr_
F-21	NEt ₂	Н	Η.	Н	Н	CSSMe	Pr	Pr
F-22	Н	CI	Н	Н	H	CSSMe	Pr	Pr
F-23	Н	Br	Н	Н	Н	CSSMe	Pr	Pr
F-24	Н	Ме	Н	Н	Н	CSSMe	Pr	Pr
F-25	Н	Et	H	Н	н	CSSMe	Pr	Pr

(表54)

	R¹	R²	R ³	R⁴	R⁵	R ⁶	_ R ⁷	R ⁸
F-26	Н	Pr	Н	Н	Н	CSSMe	Pr	Pr
F-27	H	Pr ⁱ	Н	Н	Н	CSSMe	Pr	Pr
F-28	Н	Bu	H	Н	Н	CSSMe	Pr	Pr
F-29	Н	Bu'	Н	Н	Н	CSSMe	Pr	Pr
F-30	Н	Bus	Н	Н	Н	CSSMe	Pr	Pr
F-31	Н	Bu ^t	H	Н	Н	CSSMe	Pr	Pr
F-32	Н	OMe	Н	Н	Н	CSSMe	Pr	Pr
F-33	Н	OEt	Н	Н	Н	CSSMe	Pr	Pr
F-34	Н	OPr	Н	Н	Н	CSSMe	Pr	Pr
F-35	H	OPr [/]	Н	Н	Н	CSSMe	Pr	Pr
F-36	Н	OCHF ₂	Н	Н	Н	CSSMe	Pr	Pr
F-37	Н	OCF₃	Н	Н	Н	CSSMe	Pr	Pr
F-38	Н	CF₃	H	H	Н	CSSMe	Pr	Pr
F-39	Н	SMe	Н	Н	Н	CSSMe	Pr	Pr
F-40	Н	SEt	I	H	H	CSSMe	Pr	Pr
F-41	Н	SPr ⁱ	H	Н	Н	CSSMe	Pr	Pr
F-42	Н	NMe ₂	Τ	Н	Н	CSSMe	Pr	Pr
F-43	Н	NEt ₂	I	H	Н	CSSMe	Pr	Pr
F-44	Н	H	CI	Н	Н	CSSMe	Pr	Pr
F-45	Η	Н	Br	Н	Н	CSSMe	Pr	Pr
F-46	Н	Н	Ме	H	Н	CSSMe	Pr	Pr
F-47	Н	Н	Et	Н	Н	CSSMe	Pr	Pr
F-48	H	Н	Pr	Н	Н	CSSMe	Pr	Pr_
F-49	Н	H	Pr [/]	Н	Н	CSSMe	Pr	Pr
F-50	Н	Н	Bu	H	H	CSSMe	Pr	Pr

(表55)

	R¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
F-51	Н	Н	Bu ⁱ	Н	Н	CSSMe	Pr	Pr
F-52	Н	Н	Bu⁵	Н	Н	CSSMe	Pr	Pr
F-53	Н	Н	Bu ^t	Н	Н	CSSMe	Pr	Pr
F-54	Н	Н	OMe	Н	Н	CSSMe	Pr	Pr
F-55	Н	Н	OEt	Н	Н	CSSMe	Pr	Pr
F-56	Н	Н	OPr	Н	Н	CSSMe	Pr	Pr
F-57	Н	Н	OPr ⁱ	H	Н	CSSMe	Pr	Pr
F-58	Н	H	OCHF ₂	H	Н	CSSMe	Pr	Pr
F-59	Н	Н	OCF ₃	Н	H	CSSMe	Pr	Pr
F-60	Н	Н	CF₃	Ι	Ι	CSSMe	Pr	Pr
F-61	Н	Н	SMe	Ι	H	CSSMe	Pr	Pr
F-62	H ·	Н	SEt	I	H	CSSMe	Pr	Pr
F-63	Η	Н	SPr ⁱ	Ι	Ι	CSSMe	Pr	Pr
F-64	Η	Н	NMe ₂	Ι	Τ	CSSMe	Pr	Pr
F-65	Η	Н	NEt ₂	Ι	H	CSSMe	Pr	Pr
F-66	Me	NMe ₂	H	Ι	H	CSSMe	Pr	Pr
F-67	NMe₂	C	H	Ι	Ι	CSSMe	Pr	Pr
F-68	Me	NEt ₂	Ξ	Ι	I	CSSMe	Pr	Pr
F-69	H	NEt ₂	Ме	Ι	Τ	CSSMe	Pr	Pr
F-70	Bu⁵	Н	Н	Η	H	CSSMe	Pr	Pr
F-71	OMe	Η	OMe	Н	H	CSSMe	Pr	Pr
F-72	Ι	OMe	OMe	Н	Η	CSSMe	Pr	Pr
F-73	Η.	OMe	OEt	Н	Н	CSSMe	Pr	<u>P</u> r
F-74	Н	OEt	OMe	Н	Н	CSSMe	Pr	Pr
F-75	Н	OEt	OEt	Н	Н	CSSMe	Pr	Pr

(表56)

	R¹	R²	R³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸
G-1	Н	Н	Н	Н	Н	CSSEt	Et	Et
G-2	CI	Н	Н	Н	Н	CSSEt	Et	Et
G-3	Br	Н	Н	Н	Н	CSSEt	Et	Et
G-4	Me	Н	Н	Н	Н	CSSEt	Et	Et
G-5	Et	Н	Н	Н	Н	CSSEt	Et	Et
G-6	Pr	Н	Н	Н	Н	CSSEt	Et	Et
G-7	Bu	Н	Н	Н	Н	CSSEt	Et	Et
G-8	Bu [/]	H	Н	Н	Н	CSSEt	Et	Et
G-9	Bu ^t	Н	Н	Н	Н	CSSEt	Et	Et
G-10	OMe	Н	Н	Η	Н	CSSEt	Et	Et
G-11	OEt	H	Н	Н	Н	CSSEt	Et	Et
G-12	OPr ⁱ	Н	Н	Ι	Н	CSSEt	Et	_ Et
G-13	OPr	Н	H	Η	Η	CSSEt	Et	Et
G-14	OCHF ₂	Н	Η	Н	Н	CSSEt	E	Et
G-15	OCF₃	Τ	Ή	Τ	Η	CSSEt	Et	Et
G-16	CF₃	Ι	Ι	I	H	CSSEt	Et	Et
G-17	SMe	I	Ŧ	Ι	Н	CSSEt	Et	Et _
G-18	SEt	I	Ξ	I	Η	CSSEt	Et	Et
G-19	SPr ⁱ	H	Ι	Ι	Н	CSSEt	Et	Et
G-20	NMe ₂	H	H	Н	Н	CSSEt	Et	Et
G-21	NEt ₂	H	H	Η	Н	CSSEt	Et	Et
G-22	Н	CI	Н	Н	Н	CSSEt	Et	Et
G-23	H	Br	Н	Ξ	Н	CSSEt	Et	Et
G-24	Н	Ме	Н	Н	Н	CSSEt	Et	Et
G-25	Н	Et	Η	Ι	Ι	CSSEt	Et	Et

(表57)

	R¹	R²	R³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
G-26	Н	Pr	Н	H	Н	CSSEt	Et	Et
G-27	Н	Pr [/]	Н	Н	Н	CSSEt	Et	Et
G-28	Н	Bu	Н	Н	Н	CSSEt	Et	Et
G-29	Н	Bu'	Н	Н	Н	CSSEt	Et	Et
G-30	Н	Bus	Н	Н	Н	CSSEt	Et	Et
G-31	Н	Bu ^t	Ι	Н	Н	CSSEt	Et	Et
G-32	Н	OMe	Ξ	Н	Н	CSSEt	Et	Et
G-33	Н	OEt	Η	Н	Η	CSSEt	Et	Et
G-34	Н	OPr	H	Н	Ŧ	CSSEt	Et	Et
G-35	H	OPr [/]	Ι	H	Τ	CSSEt	Et	Et
G-36	Н	OCHF ₂	Η	Н	H	CSSEt	Et	: Et
G-37	Н	OCF ₃	Ξ	Η	Ι	CSSEt	Εť	Et
G-38	H	CF₃	Η	Η	Τ	CSSEt	Et	Et
G-39	Ι	SMe	Ι	Н	Τ	CSSEt	Et	Et
G-40	H	SEt	Η	Н	Н	CSSEt	Et	Et
G-41	Ι	SPr ⁱ	. Н	Н	Н	CSSEt	Et	Et
G-42	Τ	NMe₂	H	Н	Η	CSSEt	Et	Et
G-43	H	NEt ₂	Ι	Н	Τ	CSSEt	Et	Et
G-44	Ι	Н	ō	Н	I	CSSEt	Et	Et
G-45	I	Н	Br	H	H	CSSEt	Et	Et
G-46	I	H	Me	H	Τ	CSSEt	Et	Et
G-47	Ι	Н	Et	Į	Ė	CSSEt	Et	Et
G-48	H	H	Pr	Н	_ Н	CSSEt	Et	Et_
G-49	Н	Н	Pr ⁱ	Н	Н	CSSEt	Et_	Et
G-50	Н	H	Bu	Н	Н	CSSEt	Et	Et

(表58)

	R¹	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
G-51	Н	Н	Bu ⁱ	Н	Н	CSSEt	Et	Et
G-52	Н	Н	Bu⁵	Н	_ H	CSSEt	Et	Et
G-53	Н	Н	Bu'	Н.	Н	CSSEt	Et	Et_
G-54	Н	Н	OMe	Н	Н	CSSEt	Et	Et
G-55	Н	Н	OEt	H	Н	CSSEt	Et	Et
G-56	Н	Н	OPr	Н	Н	CSSEt	Et _	Et
G-57	Н	Н	OPr ⁱ	Η	Н	CSSEt	Et	Et
G-58	Н	Н	OCHF ₂	H	Н	CSSEt	Et	Et
G-59	Н	Н	OCF₃	H	H	CSSEt	Et	Et
G-60	Н	Н	CF₃	Н	H	CSSEt	Et	Et
G-61	Н	Н	SMe	Н	Н	CSSEt	Et	Et
G-62	Н	Н	SEt	Ι	Ι	CSSEt	Et	Et
G-63	Н	Н	SPr ⁱ	I	Ŧ	CSSEt	Et	Et
G-64	Н	Н	NMe ₂	I	Н	CSSEt	Et	Et
G-65	H	Н	NEt ₂	H	Н	CSSEt	Et	Et
G-66	Ме	NMe ₂	Н	Ι	Η	CSSEt	Et	Et
G-67	NMe ₂	C	Н	Н	Н	CSSEt	Et	Et
G-68	Me	NEt ₂	Н	H	Н	CSSEt	Et	Et
G-69	Н	NEt ₂	Ме	Н	Ι	CSSEt	Et	Et
G-70	Bu⁵	H	Н	I	Ι	CSSEt	Et	Et
G-71	OMe	H	OMe	Н	Н	CSSEt	Et	Et
G-72	Н	OMe	OMe	Н	Н	CSSEt	Et	Et
G-73	Н	OMe	OEt	Н	Н	CSSEt	Et	Et
G-74	Н	OEt	OMe	Н	Н	CSSEt	Et	Et
G-75	Н	OEt	OEt	Н	Н	CSSEt	Et	Et

н.	r.							
	R¹	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R⁵
H-1	Н	. Н	Н	Н	Н	CSSMe	-(CH	1 ₂) ₂ -
H-2	CI	Н	Н	Н	Н	CSSMe	-(CH	l ₂) ₂ -
H-3	Br	Н	Н	Н	Н	CSSMe	-(C	l ₂) ₂ -
H-4	Me	Н	Н	Н	Н	CSSMe	-(CH	12)2-
H-5	Et	Н	Н	Н	Н	CSSMe	-(CH	
H-6	Pr	Н	H	Н	Н	CSSMe	-(CH	
H-7	Bu	Н	Н	Н	Н	CSSMe	-(CH	12)2-
H-8	Bu ⁱ	Н	Н	Н	Н	CSSMe	-(CH	
H-9	Bu'	Н	Н	H.	Н	CSSMe	-(CF	l ₂) ₂ -
H-10	OMe	Н	Н	Н	Н	CSSMe	-(CH	l ₂) ₂ -
H-11	OEt	Н	Н	Н	Н	CSSMe	-(CH	
H-12	OPr ⁱ	Н	Н	Н	Н	CSSMe	-(CF	
H-13	OPr	H	Н	Н	Н	CSSMe	-(CH	
H-14	OCHF ₂	H	Н	Н	Н	CSSMe	-(CH	l ₂) ₂ -
H-15	OCF ₃	H	Н	Η	Н	CSSMe	-(CH	l ₂) ₂ -
H-16	CF ₃	Н	Н	H	Н	CSSMe	-(CH	l ₂) ₂ -
H-17	SMe	I	Н	I	Η	CSSMe	-(CH	2)2-
H-18	SEt	Н	Н	Ι	Н	CSSMe	-(CH	l ₂) ₂ -
H-19	SPr ⁱ	H	Н	Ι	Ι	CSSMe	-(CH	l ₂) ₂ -
H-20	NMe ₂	Η	Н	I	Ι	CSSMe	-(CH	l ₂) ₂ -
H-21	NEt ₂	Н	H	Η	Ι	CSSMe	-(CH	l ₂) ₂ -
H-22	Н	CI	Н	I	Η	CSSMe	-(CF	l ₂) ₂ -
H-23	Н	Br	H	Н	Н	CSSMe	-(CH	
H-24	Н	Me	Н	Н	Н	CSSMe	-(CF	l ₂) ₂ -
H-25	Н	Et	H	Н	Н	CSSMe	-(CF	l ₂) ₂ -

(表60)

	R ¹	R ²	R³	R⁴	R⁵	R ⁶	R ⁷ R ⁸
H-26	Н	Pr	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-27	Н	Pr ⁱ	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-28	Н	Bu	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-29	Н	Bu [/]	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-30	Н	Bu ^s	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-31	Н	Bu'	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-32	Н	OMe	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-33	H	OEt	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-34	Н	OPr	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-35	Н	OPr ⁱ	H	Н	Н	CSSMe	-(CH ₂) ₂ -
H-36	Н	OCHF ₂	Н	Н	Н	CSSMe	-(CH ₂) ₂ -
H-37	Н	OCF₃	H	H	Н	CSSMe	-(CH ₂) ₂ -
H-38	Н	CF₃	H	Н	Н	CSSMe	-(CH ₂) ₂ -
H-39	Н_	SMe	Τ	Н	Н	CSSMe	-(CH ₂) ₂ -
H-40	H	SEt	I	I	Ι	CSSMe	-(CH ₂) ₂ -
H-41_	Η	SPr ⁱ	H	Η	Τ	CSSMe	-(CH ₂) ₂ -
H-42	Ι	NMe₂	I	Ι	H	CSSMe	-(CH ₂) ₂ -
H-43	Η	NEt ₂	Н	Ι	Ŧ	CSSMe	-(CH ₂) ₂ -
H-44	Τ	H	CI	Η	Н	CSSMe	-(CH ₂) ₂ -
H-45	Н	Н	Br	Η	Η	CSSMe	-(CH ₂) ₂ -
H-46	Н	H	Ме	Η	Η	CSSMe	-(CH ₂) ₂ -
H-47	Τ	Н	Et	I	Ξ	CSSMe	-(CH ₂) ₂ -
H-48	Н	H	Pr	Н	Н	CSSMe	-(CH ₂) ₂ -
H-49	Н	Н	Pr ⁱ	Н	H	CSSMe	-(CH ₂) ₂ -
H-50	Н	Н	Bu	H	Ή	CSSMe	-(CH ₂) ₂ -

(表61)

n	<u>n</u>						
	R¹	R²	R³	R⁴	R⁵	R ⁶	R ⁷ R ⁸
H-51	Н	Н	Bu ⁱ	H	Н	CSSMe	-(CH ₂) ₂ -
H-52	H	Н	Bu³	Н	Н	CSSMe	-(CH ₂) ₂ -
H-53	Н	Н	Bu ^t	Н	Н	CSSMe	-(CH ₂) ₂ -
H-54	Н	Н	OMe	Н	Н	CSSMe	-(CH ₂) ₂ -
H-55	Н	Н	OEt	Н	Н	CSSMe	-(CH ₂) ₂ -
H-56	Н	Н	OPr	Н	Н	CSSMe	-(CH ₂) ₂ -
H-57	Н	Н	OPr [/]	Н	Н	CSSMe	-(CH ₂) ₂ -
H-58	Н	Н	OCHF ₂	Н	Н	CSSMe	-(CH ₂) ₂ -
H-59	Н	Н	OCF ₃	Н	Н	CSSMe	-(CH ₂) ₂ -
H-60	Н	Н	CF ₃	Н	Н	CSSMe	-(CH ₂) ₂ -
H-61	Н	Н	SMe	Н	Н	CSSMe	-(CH ₂) ₂ -
H-62	Н	Н	SEt	Н	Н	CSSMe	-(CH ₂) ₂ -
H-63	Н	Н	SPr'	Н	Н	CSSMe	-(CH ₂) ₂ -
H-64	Н	Н	NMe ₂	Н	Н	CSSMe	-(CH ₂) ₂ -
H-65	Н	Н	NEt ₂	I	Η	CSSMe	-(CH ₂) ₂ -
H-66	Ме	NMe ₂	Н	Ι	Τ	CSSMe	-(CH ₂) ₂ -
H-67	NMe ₂	ō	Н	Ι	Ι	CSSMe	-(CH ₂) ₂ -
H-68	Ме	NEt ₂	Н	H	I	CSSMe	-(CH ₂) ₂ -
H-69	Н	NEt ₂	Me	I	Η	CSSMe	-(CH ₂) ₂ -
H-70	Bu ^s	Η	Н	I	Ι	CSSMe	-(CH ₂) ₂ -
H-71	OMe	H	OMe	Η	Η	CSSMe	-(CH ₂) ₂ -
H-72	Н	OMe	OMe	Ι	Н	CSSMe	-(CH ₂) ₂ -
H-73	Н	OMe	OEt	I	Ι	CSSMe	-(CH ₂) ₂ -
H-74	Н	OEt	OMe	Ι	Η	CSSMe	-(CH ₂) ₂ -
H-75	Н	OEt	OEt	Ι	Н	CSSMe	-(CH ₂) ₂ -

(表62)

$$R^3$$
 R^4
 R^5
 R^7
 R^8

	R¹	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
N-1	Н	Н	Н	Н	Н	CSSMe	-(CF	12)4-
N-2	CI	Н	Н	Н	Н	CSSMe	-(CF	
N-3	Br	Н	Н	Н	Н	CSSMe	-(CH	l ₂) ₄ -
N-4	Me	Н	Н	Н	Н	CSSMe	-(CH	
N-5	Et	Н	Н	Н	Н	CSSMe	-(CF	
N-6	Pr	Н	Н	Η	H	CSSMe	-(CH	
N-7	Bu	Н	Н	Н	Н	CSSMe	-(CH	l ₂) ₄ -
N-8	Bu ⁱ	Н	Н	Η	H	CSSMe	-(CH	l ₂) ₄ -
N-9	Bu'	H	Н	Ή	Ι	CSSMe	-(C	l ₂) ₄ -
N-10	OMe	H	Н	1	Ξ	CSSMe	-(C)	l ₂) ₄ -
N-11	OEt	H	Н	Ι	Ι	CSSMe	-(CH	l ₂) ₄ -
N-12	OPr ⁱ	Ι	Η	I	Ι	CSSMe	-(CH	2)4-
N-13	OPr	Н	Η	I	Ι	CSSMe	-(CH	
N-14	OCHF ₂	Ι	Τ	Τ	Ι	CSSMe	-(CH	2)4-
N-15	OCF₃	Н	Ι	Η	H	CSSMe	-(CH	2)4-
N-16	CF₃	Η	H	Н	Η.	CSSMe	-(CH	2)4-
N-17	SMe	Ι	H	Н	Ι	CSSMe	-(CH	2)4-
N-18	SEt	Н	Н	Н	Н	CSSMe	-(CH	
N-19	SPr ⁱ	I	Н	Н	Н	CSSMe	-(CH	2)4-
N-20	NMe ₂	H	Н	Н	Н	CSSMe	-(CH	2)4-
N-21	NEt ₂	Н	Н	Н	Н	CSSMe	-(CH	2)4-
N-22	Н	CI	Н	Н	H	CSSMe	-(CH	2)4-
N-23	Н	Br	Н	Н	Н	CSSMe	-(CH	
N-24	Н	Ме	H	Н	Н	CSSMe	-(CH	
N-25	Н	Et	Н	Н	Н	CSSMe	-(CH	2)4-

(表63)

	R¹	R²	R³	R⁴	R⁵	R⁵	R ⁷	R⁵
N-26	Н	Pr	Н	Н	Н	CSSMe	-(CH	2)4-
N-27	Н	Pr ⁱ	Н	Н	Н	CSSMe	-(CH	2)4-
N-28	Н	Bu	Н	Н	Н	CSSMe	-(CH	2)4-
N-29	Н	Bu ⁱ	Н	H	Н	CSSMe	-(CH	
N-30	Н	Bu⁵	H	Н	H	CSSMe	-(CH	2)4-
N-31	Н	Bu ^t	Ε	Н	Η	CSSMe	-(CH	2)4-
N-32	Η	OMe	Η	Н	Н	CSSMe	-(CH	2)4-
N-33	Н	OEt	Τ	Н	Η	CSSMe	-(CH	2)4-
N-34	Н	OPr	Τ	Н	Τ	CSSMe	-(CH	2)4-
N-35	Н	OPr ⁱ	Η	Н	Ι	CSSMe	-(CH	
N-36	Ι	OCHF ₂	Τ	Н	Τ	CSSMe	-(CH	
N-37	Η	OCF ₃	Ι	Н	I	CSSMe	-(CH	2)4-
N-38	Ι	CF₃	Ι	Н	Ι	CSSMe	CH-(CH	2)4-
N-39	Ή	SMe_	Η	Н	Н	CSSMe	-(CH	2)4-
N-40	Η	SEt	H	H	Н	CSSMe	-(CH	2)4-
N-41	H	SPr [/]	Н	H	H	CSSMe	-(CH	2)4-
N-42	Η	NMe ₂	Ι	Η	I	CSSMe	-(CH	2)4-
N-43	H	NEt ₂	Ŧ	Η	I	CSSMe	-(CH	2)4-
N-44	Ι	Н	ō	Ι	Ι	CSSMe	-(CH	2)4-
N-45	H	Н	Br	Ι	Н	CSSMe	CH-(CH	2)4-
N-46	Ξ	Н	Ме	H	Ξ	CSSMe	-(CH	2)4-
N-47	Н	Н	Et	Η	Н	CSSMe	-(CH	2)4-
N-48	Н	Н	Pr	Η	Η	CSSMe	-(CH	
N-49	H	Н	Pr	H	Н	CSSMe	-(CH	
N-50	H	Н	Bu	I	I	CSSMe	-(CH	

(表64)

	R¹	R²	R ³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸
N-51	Н	Н	Bu ⁱ	Н	Н	CSSMe	-(CF	12)4-
N-52	H	Н	Bu ^s	Н	Н	CSSMe		12)4-
N-53	Н	Н	Bu ^t	Н	Н	CSSMe		12)4-
N-54	Н	Н	OMe	Н	Н	CSSMe		12)4-
N-55	Н	Н	OEt	Н	Н	CSSMe		12)4-
N-56	Н	Н	OPr	Н	Н	CSSMe	-(CH	
N-57	Н	Н	OPr ⁱ	Н	Н	CSSMe		12)4-
N-58	Н	Н	OCHF ₂	Н	Н	CSSMe	-(CF	12)4-
N-59	Н	Н	OCF ₃	Н	Н	CSSMe	-(C	12)4-
N-60	Н	Н	CF₃	Н	Н	CSSMe	-(CH	
N-61	Н	Н	SMe	Н	Н	CSSMe	-(CH	
N-62	Н	Н	SEt	Ι	Н	CSSMe	-(CH	12)4-
N-63	Н	Н	SPr ⁱ	H	Н	CSSMe	-(CH	12)4-
N-64	Н	Н	NMe ₂	Ι	Н	CSSMe	-(CH	12)4-
N-65	Η	Н	NEt ₂	Τ	Н	CSSMe	-(CF	
N-66	Me	_NMe₂	Н	I	Н	CSSMe	-(C	12)4-
N-67	NMe ₂	CI	Н	Ξ	H	CSSMe	-(CH	12)4-
N-68	Me	NEt ₂	Н	H	Н	CSSMe	-(CH	12)4-
N-69	Н	NEt ₂	Ме	H	Ι	CSSMe	-(C	l ₂) ₄ -
N-70	Bu⁵	Н	Н	Н	Н	CSSMe	-(CH	
N-71	OMe	Н	OMe	Н	Η	CSSMe	-(CH	
N-72	Н	OMe	OMe	Η	Ι	CSSMe	-(CH	l ₂) ₄ -
N-73	Н	OMe	OEt	Н	Н	CSSMe	-(CH	
N-74	Н	OEt	OMe	Н	Η	CSSMe	-(CH	12)4-
N-75	Н	OEt	OEt	Н	Н	CSSMe	-(CH	1 ₂) ₄ -

(表65)

	R¹	R ²	R³	R⁴_	R⁵	R ⁶	R ⁷	R⁵
J-1	Н	Н	Н	Н	Н	CSSMe	-(CH	2)5-
J-2	CI	Н	Н	Н	Н	CSSMe	-(CH	2)5-
J-3	Br	Н	Н	Н	Н	CSSMe	-(CH	
J-4	Ме	Н	Н	Н	Н	CSSMe	-(CH	
J-5	Et	H	Н	Н	Н	CSSMe	-(CH	
J-6	Pr	Н	Н	Н	Н	CSSMe	-(CH	
J-7	Bu	Н	Н	Н	Н	CSSMe	-(CH	
J-8	Bu ⁱ	Н	Н	Н	Ι	CSSMe	-(CH	
J-9	Bu¹	Н	Η	Н	H	CSSMe	-(CH	2)5-
J-10	OMe	Н	Н	Н	Ι	CSSMe	-(CH	
J-11	OEt	Н	Н	I	Ι	CSSMe	-(CH	2)5-
J-12	OPr [/]	Ξ	Η	Н	Н	CSSMe	-(CH	2)5-
J-13	OPr	Ι	Ι	Ι	Ι	CSSMe	-(CH	
J-14	OCHF ₂	Ι	Η	Ι	Ι	CSSMe	-(CH	
J-15	OCF ₃	I	Н	H	Ι	CSSMe	-(CH	2)5-
J-16	CF ₃	H	Ξ	Η	Ι	CSSMe	-(CH	₂) ₅ -
J-17	SMe	Н	Н	Н	Н	CSSMe	-(CH	
J-18	SEt	Н	Н	Н	I	CSSMe	-(CH	₂) ₅ -
J-19	SPr'	Н	H	H	H	CSSMe	-(CH	₂) ₅ -
J-20	NMe ₂	Н	Н	Н	Ξ	CSSMe	-(CH	
J-21	NEt ₂	Н	Н	Н	Н	CSSMe	-(CH	
J-22	Н	CI	H	Н	H	CSSMe	-(CH	
J-23	Н	Br	Н	Н	H	CSSMe	-(CH	2)5-
J-24	Н	Me_	Н	Н	Н	CSSMe	-(CH	2)5-
J-25	Н	Et	H	Н	Н	CSSMe	-(CH	2)5-

(表66)

	R¹	R ²	R³	R ⁴	R⁵	R ⁶	R ⁷	R ⁸
J-26	Н	Pr	Н	Н	Н	CSSMe	-(CH	2)5-
J-27	Н	Pr'	Н	Н	Н	CSSMe	-(CH	
J-28	Н	Bu	Н	Н	Н	CSSMe	-(CH	2)5-
J-29	Н	Bu ⁱ	Н	Н	Н	CSSMe	-(CH	2)5-
J-30	H	Bu ^s	Ι	Η	Н	CSSMe	-(CH	
J-31	Н	Bu ^t	Н	Н	Н	CSSMe	-(CH	2)5-
J-32	Н	OMe	Н	H	H	CSSMe	-(CH	2)5-
J-33	Н	OEt	I	I	Η	CSSMe	-(CH	2)5-
J-34	Н	OPr	Ι	Н	Н	CSSMe	-(CH	2)5-
J-35	H	OPr'	I	Н	H	CSSMe	-(CH	
J-36	Н	OCHF ₂	Ξ	Н	Н	CSSMe	-(CH	2)5-
J-37	Н	OCF ₃	I	Н	Η	CSSMe	CH -	2)5-
J-38	Н	CF₃	I	Н	H	CSSMe	-(CH	₂) ₅ -
J-39	Н	SMe	Ι	H	Н	CSSMe	(CH	₂) ₅ -
J-40	Ι	SEt	Ι	Η	Η	CSSMe	-(CH	2)5-
J-41	H	SPr [/]	Н	H	Н	CSSMe	-(CH	2)5-
J-42	Τ	NMe ₂	Τ	Η	Н	CSSMe	-(CH	2)5-
J-43	Н	NEt ₂	Н	Н	Н	CSSMe	-(CH	2)5-
J-44	Ŧ	Н	CI	Ξ	Η	CSSMe	-(CH	₂) ₅ -
J-45	Н	Н	Br	Н	Н	CSSMe	-(CH	2)5-
J-46	I	Н	Ме	Η	Н	CSSMe	-(CH	2)5-
J-47	Н	Н	Et	Н	H_	CSSMe	-(CH	
J-48	Н	Н	Pr	H	Н	CSSMe	-(CH	2)5-
J-49	Н	Н	Pr ⁱ	Н	Н	CSSMe	-(CH	2)5-
J-50	Н	Н	Bu	Η	Н	CSSMe	-(CH	2)5-

(表67)

	R¹	R ²	R ³	R ⁴	R⁵	R ⁶	R ⁷ R ⁸	
J-51	Н	H	Bu [']	Н	H	CSSMe	-(CH ₂) ₅ -	
J-52	Н	Н	Bus	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-53	Н	Н	Bu'	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-54	Н	Н	OMe	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-55	H	Н	OEt	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-56	Н	Н	OPr	Η	Н	CSSMe	-(CH ₂) ₅ -	
J-57	Н	Н	OPr ⁱ	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-58	Н	Н	OCHF ₂	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-59	Н	Н	OCF₃	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-60	H	Н	CF₃	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-61	Н	Н	SMe	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-62	Н	Н	SEt	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-63	Н	Н	SPr'	Н	Н	CSSMe	-(CH ₂) ₅ -	
J-64	Н	Н	NMe ₂	H	Н	CSSMe	-(CH ₂) ₅ -	
J-65	Н	Η	NEt ₂	Ι	H	CSSMe	-(CH ₂) ₅ -	
J-66	Ме	NM e ₂	Н	I	Н	CSSMe	-(CH ₂) ₅ -	
J-67	NMe₂	CI	Н	Ι	Ι	CSSMe	-(CH ₂) ₅ -	
J-68	Ме	NEt ₂	Н	I	Ι	CSSMe	-(CH ₂) ₅ -	
J-69	H	NEt ₂	Ме	Σ	H	CSSMe	-(CH ₂) ₅ -	
J-70	Bu ^s	Н	Н	H	H	CSSMe	-(CH ₂) ₅ -	
J-71	OMe	H	OMe	Ι	Η	CSSMe	-(CH ₂) ₅ -	
J-72	Н	OMe	OMe	Ι	Н	CSSMe	-(CH₂)₅-	
J-73	Н	OMe	OEt	H	Н	CSSMe	-(CH ₂) ₅ -	
J-74	Н	OEt	OMe	H	Ι	CSSMe	-(CH ₂) ₅ -	
J-75	Н	OEt	OEt	Н	Н	CSSMe	-(CH ₂) ₅ -	

(表68)

	R¹	R ²	R ³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
K-1	Н	Н	Н	Н	Н	COSEt	Et	Et
K-2	CI	Н	Н	Н	_ H	COSEt	Et	Et
K-3	Br	Н	Н	Н	Н	COSEt	Et	Et
K-4	Ме	Н	Н	Н	H	COSEt	Et	Et
K-5	Et	Н	Н	Н	Н	COSEt	Et	Et
K-6	Pr	Н	Н	Н	Н	COSEt	Et	Et
K-7	Bu	Н	н	Н	Н	COSEt	Et	Et
K-8	Bu ⁱ	Ι	Н	Н	Н	COSEt	Et	Et
K-9	Bu ^t	H	Н	Н	H	COSEt	Et	Et
K-10	OMe	Ι	Н	Н	Η	COSEt	Et	Et
K-11	OEt	H	Н	Н	H	COSEt	Et	Et
K-12	OPr ⁱ	Τ	Н	Н	Н	COSEt	Et	Et
K-13	OPr	Ι	Η	Η	Ή	COSEt	Et_	Et
K-14	OCHF ₂	Ι	Н	Η	Н	COSEt	Et	Et
K-15	OCF ₃	Ι	H	Ή	Н	COSEt	Et	Et
K-16	CF ₃	I	Τ	Η	Ι	COSEt	Et	Et
K-17	SMe	I	Η	Н	Η	COSEt	Et	Et
K-18	SEt	Η _	Н	Н	Η	COSEt	Et	Et
K-19	SPr ⁱ	I	H	Н	Η	COSEt	Et	Et
K-20	NMe ₂	Н	H	Н	Н	COSEt	Et	Et
K-21	NEt ₂	Н	Н	H	Н	COSEt	Et	Et
K-22	H	CI	H	Н	H	COSEt	Et	Et
K-23	H	Br	Н	Н	Н	COSEt	Et	Et
K-24	Н	Ме	Н	Н	H	COSEt	Et	Et
K-25	Н	Et	Н	Н	H	COSEt	Et	Et

(表69)

	R¹	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R⁵
K-26	Н	Pr	Н	Н	Н	COSEt	Et	Et
K-27	H	Pr ⁱ	Н	Н	Н	COSEt	Et	Et
K-28	H	Bu	Н	Н	Н	COSEt	Et	Et
K-29	Н	Bu ⁱ	Н	H	Н	COSEt	Et	Et
K-30	Ξ	Bu⁵	Н	Н	Н	COSEt	Et	Et
K-31	Ι	Bu¹	Н	Н	Ι	COSEt	Et	Et
K-32	Н	OMe	Η	Н	H	COSEt	Et	Et
K-33	Ι	OEt	Η	Н	H	COSEt	Et	Et
K-34	Ι	OPr	Ι	Ξ	Ι	COSEt	Et	Et
K-35	H	OPr [/]	Н	H	Н	COSEt	Et	Et
K-36	Ι	OCHF ₂	Η	Η	H	COSEt	Et	Et
K-37	Ι	OCF ₃	Ι	I	1	COSEt	Et	Et
K-38	Η	CF₃	Ξ	Η	H	COSEt	Et	Et
K-39	Η	SMe	Η	H	Н	COSEt	Et	Et
K-40	I	SEt	Η	Ι	Ι	COSEt	Et	Et
K-41	I	SPr ⁱ	Ξ.	Ξ	H	COSEt	Et	Et
K-42	Н	NMe ₂	Н	Н	Н	COSEt	Et	Et
K-43	Н	NEt ₂	Н	Н	H	COSEt	Et	Et
K-44	H	Н	CI	Н	H	COSEt	Et	Et
K-45	Н	H	Br	Н	Н	COSEt	Et	Et
K-46	Н	Н	Me	Н	Н	COSEt	Et	Et
K-47	Н	Н	Et	Н	Н	COSEt	Et	Et
K-48	Н	Н	Pr	Н	Н	COSEt	Et	Et
K-49	H	Н	Pr ⁱ	H	<u>H</u>	COSEt	Et	Et
K-50	H	Η	Bu	Н	Н	COSEt	Et	Et

(表70)

	R ¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
K-51	Н	Н	Bu [/]	Н	Н	COSEt	Et	Et
K-52	Н	Н	Bu⁵	Н	Н	COSEt	Et	Et
K-53	Н	Н	Bu'	Н	Н	COSEt	Et	Et
K-54	Н	Н	OMe	Н	Н	COSEt	Et	Et
K-55	Н	Н	OEt	Н	Н	COSEt	Et	Et
K-56	Н	Н	OPr	Н	Н	COSEt	Et	Et
K-57	Н	Н	OPr ⁱ	Η	Н	COSEt	Et	Et
K-58	Н	Н	OCHF ₂	Ι	Н	COSEt	Et	Et
K-59	Н	Н	OCF ₃	Ι	Ι	COSEt	Et	Et
K-60	Н	Н	CF₃	Ι	Ξ	COSEt	Et	Et
K-61	Н	Н	SMe	Η	Ξ	COSEt	Et	Et
K-62	Н	Н	SEt	Τ	Ι	COSEt	Et	Et
K-63	Н	Н	SPr [/]	Ι	T	COSEt	Et	Et
K-64	Н	Н	NMe ₂	Τ	Τ	COSEt	Et	Et
K-65	H	H	NEt ₂	Н	Ι	COSEt	Et	Et
K-66	Me	NMe ₂	H	Н	H	COSEt	Et	Et
K-67	NMe ₂	CI	H	Н	Н	COSEt	Et	Et
K-68	Me	NEt ₂	H	Н	Н	COSEt	Et	Et
K-69	Н	NEt ₂	Me	<u> </u>	Н	COSEt	Et	Et
K-70	Bu⁵	Н	Н	Н	Н	COSEt	Et	Et
K-71	OMe	H	OMe	Н	H	COSEt	Et	Et_
K-72	Н	OMe	OMe	Н	H	COSEt	Et	Et
K-73	Н	OMe	OEt.	Н	H	COSEt	Et	Et
K-74	Н	OEt	OMe	H	Н	COSEt	Et	Et
K-75	Ħ,	OEt	OEt	Н	Н	COSEt	Et	Et

(表71)

	R ¹	R ²	R ³	R⁴	R⁵	Re	R ⁷	R ⁸
L-1	_ н	Н	Н	Н	Η	COSMe	Et	Et
L-2	CI	Н	Н	Н	Н	COSMe	Et	Et
L-3	Br	Н	Н	Н	Η	COSMe	Et	Et
L-4	Ме	Н	Н	Н	Н	COSMe	Et	Et
L-5	Et	Н	Ι	Н	Н	COSMe	Et	Et
L-6	Pr	Ι	H	Н	H	COSMe	Et	Et
L-7	Bu	Н	I	Н	Ι	COSMe	Et	Et
L-8	Bu [/]	Н	H	Н	H	COSMe	Et	Et
L-9	Bu ^t	H	Η	Н	Η	COSMe	Et	Et
L-10	ОМе	H	H	Н	Н	COSMe	Et	Et
L-11	OEt	Η	Н	Η	Τ	COSMe	Et	Et
L-12	OPr [/]	Η	I	Н	Ι	COSMe	Et	Et
L-13	OPr	Ι	Τ	Н	Ξ	COSMe	Et	Et
L-14	OCHF ₂	H	Н	Н	Н	COSMe	Et	Et
L-15	OCF₃	H	Н	Н	Н	COSMe	Et	Et
L-16	CF ₃	H	H	Н	Н	COSMe	Et	Et
L-17	SMe	Н	Н	Н	Н	COSMe	Et	Et
L-18	SEt	Ι	Η	H	Н	COSMe	Et	Εt
L-19	SPr [/]	Ι	Ι	I	Ι	COSMe	Et	É
L-20	NMe ₂	Н	Ι	Н	Н	COSMe	Et_	Et
L-21	NEt ₂	Н	Н	Н	Н	COSMe	Et	Et
L-22	H	CI	Н	Н	H	COSMe	Et	Et
L-23	Н	Br	Η	Н	Н	COSMe	Et	Et
L-24	H	Me	Н	Н	Н	COSMe	Et	Et
L-25	Н	Et	Н	Н	Н	COSMe	Et	Et

(表72)

	R¹	R²	R ³	R⁴	R ⁵	R ⁶	R ⁷	R ⁸
L-26	Н	Pr	Н	Н	Н	COSMe	Et	Et
L-27	Н	Pr ⁱ	H	Н	Н	COSMe	Et	Et
L-28	Н	Bu	Н_	Н	Н	COSMe	Et	Et
L-29	Н	Bu ⁱ	H	Н	Η	COSMe	Et	Et
L-30	Н	Bu³	Η	Н	H	COSMe	Et	Et
L-31	Н	Bu¹	Η	Н	Ŧ	COSMe	Et	Et
L-32	Н	OMe	Τ	H	H	COSMe	Ĕ	Et
L-33	Н	OEt	Ι	Н	Ι	COSMe	Et	Et
L-34	H	OPr	Ή	Н	H	COSMe	Et	Et
L-35	Η	OPr'	Ι	Τ	Ι	COSMe	Ĕ	Et
L-36	Н	OCHF ₂	Τ	I	Η	COSMe	Ĕ	Et
L-37	Н	OCF₃	Η	H	Ι	COSMe	Εť	Et
L-38	Τ	CF₃	Ι	Τ	Τ	COSMe	Ĕ	Εť
L-39	Η	SMe	Ι	Τ	I	COSMe	Ĕ	Et
L-40	Τ	SEt	Ι	Ι	Η	COSMe	Εť	Et
L-41	Ι	SPr ⁱ	H	H	Н	COSMe	Et	Et
L-42	I	NMe₂	Η	H	H	COSMe	Et	Et
L-43	Ι	NEta	Η	H	Н	COSMe	Et	Et
L-44	Ι	H	CI	Н	Н	COSMe	Et	Et
L-45	Ι	Н	Br	Η	Н	COSMe	Et	Et
L-46	Н	Н	Ме	Н	H	COSMe	Et	Et
L-47	Ξ	Н	Et	Н	H	COSMe	Et	Et
L-48	Н	Η.	Pr	Н	Н	COSMe	Et	Et
L-49_	Н	Н	Pr ⁱ	H	Н	COSMe	Et	Et_
L-50	Н	Н	Bu	H	_ н_	COSMe	Et	Et

(表73)

	R¹	R ²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
L-51	Н	Н	Bu'	Н	Н	COSMe	Et	Et
L-52	Н	Н	Bu⁵	Н	Н	COSMe	Et	Et
L-53	Н	Н	Bu'	Н	Н	COSMe	Et	Et
L-54	H	Н	OMe	Н	Н	COSMe	Et	Et
L-55	Н	Н	OEt	Ħ	Н	COSMe	Et	Et
L-56	Н	H	OPr	Ι	H	COSMe	Et	Et
L-57	Н	Н	OPr ⁱ	Ι	Н	COSMe	Et	Et
L-58	Н	Н	OCHF ₂	Ι	Н	COSMe	Et	Et
L-59	Н	Н	OCF₃	Ι	Н	COSMe	Et	<u>Et</u>
L-60	Н	Н	CF₃	Η	Н	COSMe	Et	Et
L-61	Н	Н	SMe	Η	Н	COSMe	Et	Et
L-62	Н	Н	SEt	Н	Н	COSMe	Et	Et
L-63	Н	Η	SPr ⁱ	Н	Н	COSMe	Et	Et
L-64	Ι	H	NMe ₂	Ξ	Н	COSMe	Et	Et
L-65	Ŧ	Ι	NEt ₂	Ι	Н	COSMe	Et	Et
L-66	Me	NMe₂	H	Η	Н	COSMe	Et	Et
L-67	NMe₂	C	Н	Η	Н	COSMe	Et	E
L-68	Ме	NEt ₂	Н	H	Н	COSMe	Et	Et
L-69	Н	NEt ₂	Ме	_H	Η	COSMe	Et_	Et
L-70	Bu ^s	Н	Н	Н	H	COSMe	Et	Et
L-71	Pr [/]	H	Н	Н	Н	COSMe	Et	Et
L-72	Н	OMe	OMe	Н	Н	COSMe	Et	Et
L-73	Ι	OMe	OEt	Н	H	COSMe	Et	Et
L-74	Η	OEt	OMe	Н	Η	COSMe	Et	Et
L-75	H	OEt	OEt	Н	Н	COSMe	Et	Et

(表74)

$$R^{3} \xrightarrow{R^{4}} R^{5} \xrightarrow{R^{5}} R^{8}$$

	R¹	R²	R ³	R ⁴	R⁵	R ⁶	R ⁷	R⁵
M-1	Н	H	Н	H	Н	COSMe	-(CH	2)4-
M-2	CI	Н	Н	H	Н	COSMe	-(CH	
M-3	Br	H	Н	H	Н	COSMe	-(CH	2)4-
M-4	Me	Ι	Н	Н	Н	COSMe	-(CH	2)4-
M-5	Et	I	Н	H	Н	COSMe	(CH	2)4-
M-6	Pr	Н	Н	Н	Н	COSMe	-(CH	2)4-
M-7	Bu	H	Η	H	Н	COSMe	-(CH	2)4-
M-8	Bu ⁱ	H	Н	Н	Н	COSMe	-(CH	2)4-
M-9	Bu ^t	H	Η	Н	Н	COSMe	-(CH	2)4-
M-10	OMe	I	Η	Η	Н	COSMe	-(CH	2)4-
M-11	OEt	H	Н	Η	Н	COSMe	-(CH	2)4-
M-12	OPr [/]	Ι	H	Ι	Н	COSMe	-(CH	2)4-
M-13	OPr	I	Н	Η	Н	COSMe	-(CH	2)4-
M-14	OCHF ₂	Ι	Н	H	Н	COSMe	-(CH	2)4-
M-15	OCF₃	Ι	H	Ι	Η	COSMe	-(CH	2)4-
M-16	CF₃	Ξ	Н	Τ	Н	COSMe	-(CH	2)4-
M-17	SMe	Н	Н	Н	Н	COSMe	-(CH	2)4-
M-18	SEt	Н	Н	Н	Н	COSMe	-(CH	
M-19	SPr ⁱ	H	H	I	Ι	COSMe	-(CH	2)4-
M-20	NMe ₂	H	I	Ι	Η	COSMe	-(CH	2)4-
M-21	NEt ₂	Н	Ξ	Ι	Ξ	COSMe	-(CH	2)4-
M-22	Н	CI	Τ	H	Η	COSMe	-(CH	2)4-
M-23	Н	Br	Н	Н	Н	COSMe	-(CH	
M-24	Н	Ме	Н	H	Н	COSMe	-(CH	
M-25	Н	Et	Н	Н	Н	COSMe	-(CH	2)4-

(表75)

$$R^{3} \xrightarrow{R^{4}} R^{5}$$

	R¹	R ²	R³	R ⁴	_ R⁵	R⁵	R ⁷ R ⁸
M-26	Н	Pr	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-27	Н	Pr ⁱ	Η	Н	Н	COSMe	-(CH ₂) ₄ -
M-28	H	Bu	Н	Н	Н	COSMe	-(CH ₂) ₄ -
M-29	Н	Bu ⁱ	Н	H	Н	COSMe	-(CH ₂) ₄ -
M-30	Н	Bu⁵	Η	Ξ	Ι	COSMe	-(CH ₂) ₄ -
M-31	Н	Bu'	Η	I	Н	COSMe	-(CH ₂) ₄ -
M-32	Н	OMe	Н	Ι	Ι	COSMe	-(CH ₂) ₄ -
M-33	Н	OEt	Ή	Ι	Ι	COSMe	-(CH ₂) ₄ -
M-34	Н	OPr	Ι	Ι	Ι	COSMe	-(CH ₂) ₄ -
M-35	H	OPr ⁱ	Ι	Ι	I	COSMe	-(CH ₂) ₄ -
M-36	Н	OCHF ₂	Η	I	Н	COSMe	-(CH ₂) ₄ -
M-37	H	OCF ₃	Τ	Ι	Ι	COSMe	-(CH ₂)₄-
M-38	Н	CF₃	I	Ι	Η	COSMe	-(CH ₂) ₄ -
M-39	Н	SMe	Ι	Ι	Η	COSMe	-(CH ₂) ₄ -
M-40	H	SEt	Ι	I	Н	COSMe	-(CH ₂) ₄ -
M-41	Н	SPr ⁱ	I	Ξ	Н	COSMe	-(CH ₂) ₄ -
M-42	Н	NMe₂	I	H	Ι	COSMe	-(CH₂)₄-
M-43	Н	NEt ₂	H	Н	Н	COSMe	-(CH ₂) ₄ -
M-44	Н	Н	C	Н	Н	COSMe	-(CH ₂)₄-
M-45	Н	Н	Br	Н	Н	COSMe	-(CH ₂) ₄ -
M-46	Н	Н	Ме	Н	Н	COSMe	-(CH ₂) ₄ -
M-47	Н	Н	Et	Н	Н	COSMe	-(CH ₂) ₄ -
M-48	H	Н	Pr	Н	Н	COSMe	-(CH₂)₄-
M-49	H	Н	Pr ⁱ	Н	Н	COSMe	-(CH ₂)₄-
M-50	H	Н	Bu	Н	Н	COSMe	-(CH ₂) ₄ -

(表76)

	R¹	R²	R ³	R⁴	R⁵	R ⁶	R ⁷	R ⁸
M-51	Н	Н	Bu [/]	Н	Н	COSMe	-(CH	2)4-
M-52	Н	Н	Bu⁵	H	Н	COSMe	-(CH	2)4-
M-53	Н	Н	Bu'	Н	Н	COSMe	-(CH	
M-54	Н	Н	OMe	Н	Н	COSMe	-(CH	2)4-
M-55	Н	Н	OEt	Н	Н	COSMe	(CH	2)4-
M-56	Н	Н	OPr	Ι	Н	COSMe	-(CH	
M-57	Н	Н	OPr ⁱ	Η	Н	COSMe	-(CH	2)4-
M-58	Н	Н	OCHF ₂	Η	Н	COSMe	-(CH	2)4-
M-59	Н	Н	OCF ₃	I	Н	COSMe	-(CH	2)4-
M-60	Н	Н	CF₃	I	Н	COSMe	-(CH	
M-61	Н	Н	SMe	Η	H	COSMe	(CH	2)4-
M-62	Н	Н	SEt	Ι	Н	COSMe	-(CH	2)4-
M-63	Н	Н	SPr [/]	Ι	Н	COSMe	-(CH	2)4-
M-64	Н	Н	NMe ₂	Ŧ	Н	COSMe	-(CH	2)4-
M-65	Н	Η	NEt ₂	Н	Н	COSMe	-(CH	2)4-
M-66	Ме	NMe ₂	H	Н	Н	COSMe	-(CH	
M-67	NMe ₂	CI	H	Н	Н	COSMe	-(CH	2)4-
M-68	Me	NEt ₂	Н	Н	H	COSMe	-(CH	
M-69	Η .	NEt ₂	Ме	Н	Н	COSMe	-(CH	2)4-
M-70	Bu*	Н	Н	Η	Н	COSMe	-(CH	2)4-
M-71	Pr ⁱ	H	Н	Н	Н	COSMe	-(CH	2)4-
M-72	Н	OMe	OMe	Н	Н	COSMe	-(CH	2)4-
M-73	Н	OMe	OEt	H	Н	COSMe	-(CH	2)4-
M-74	Н	OEt	OMe	Н	Н	COSMe	-(CH	2)4-
M-75	Н	OEt	OEt	Н	Н	COSMe	-(CH	2)4-

(表77)

$$R^{2}$$
 R^{3}
 $(CH_{2})_{n}$
 R^{6}

	R¹	R²	R³	n	R ⁶	R ⁷	R ⁸
R-1	Н	Н	H_	1	CSSMe	Ме	Me
R-2	CI	Н	Н	1	CSSMe	Ме	Me
R-3	Br	Н	Н	1	CSSMe	Me	Me
·R-4	Me	Н	Н	1	CSSMe	Me	Me
R-5	Et	Н	Н	1	CSSMe	Me	Me
R-6	Pr	Н	_ H	1	CSSMe	Me	Me
R-7	Bu	Н	Н	1	CSSMe	Me	Me
R-8	Bu ⁱ	Н	Н	1	CSSMe	Me	Ме
R-9	Bu'	Н	Н	1	CSSMe	Me	Ме
R-10	Pr'	Н	Н	1	CSSMe	Me	Ме
R-11	OEt	Н	Н	1	CSSMe	Ме	Ме
R-12	OPr ⁱ	Н	Н	1	CSSMe	Ме	Ме
R-13	OPr	Н	Н	1	CSSMe	Me	Ме
R-14	OCHF ₂	I	Н	1	CSSMe	Ме	Ме
R-15	OCF₃	Ξ	Н	1	CSSMe	Ме	Ме
R-16	CF₃	Ι	Н	1	CSSMe	Me	Ме
R-17	SMe	Η	Н	1	CSSMe	Ме	Me
R-18	SEt	I	Н	1	CSSMe	Ме	Ме
R-19	SPr [/]	Ξ	Н	1	CSSMe	Ме	Ме
R-20	NMe ₂	Η	H	1	CSSMe	Me	Ме
R-21	NEt ₂	Н	H	1	CSSMe	Me	Me
R-22	Н	CI	Н	1	CSSMe	Me	Ме
R-23	Н	Br	Н	1	CSSMe	Ме	Ме
R-24	Н	Ме	Н	1	CSSMe	Me	Ме
R-25	Н	Et	Н	1	CSSMe	Me	Ме

WO 01/19807

PCT/JP00/06185

(表78)

$$R^{2}$$
 R^{1} R^{3} $(CH_{2})_{n}$ R^{3} R^{6}

	R¹	R ²	R³	n	R ⁶	R ⁷	R ⁸
R-26	Н	Pr	Н	1	CSSMe	Me	Me
R-27	Н	Pr [/]	Н	1	CSSMe	Me	Me
R-28	Н	Bu	Н	1	CSSMe	Me	Me
R-29	Н	Bu'	Н	1	CSSMe	Me	Me
R-30	Н	Bu ^s	Н	1	CSSMe	Me	Me
R-31	Н	Bu'	Н	1	CSSMe	Me	Me
R-32	Н	OMe	Н	1	CSSMe	Ме	Ме
R-33	Н	OEt	Н	1	CSSMe	Ме	Me
R-34	Н	OPr	Η	1	CSSMe	Ме	Ме
R-35	Н	OPr ⁱ	Η	1	CSSMe	Me	Me
R-36	Н	OCHF ₂	Н	1	CSSMe	Me	Ме
R-37	H	OCF₃	H	1	CSSMe	Me	Ме
R-38	Н	CF₃	H	1	CSSMe	Me	Me
R-39	H	SMe	H	1	CSSMe	Ме	Me
R-40	Τ	SEt	T	1	CSSMe	Me	Me
R-41	H	SPr'	Н	1	CSSMe	Me	Ме
R-42	Ι	NMe ₂	Ξ	1	CSSMe	Ме	Ме
R-43	Н	NEt ₂	H	1	CSSMe	Ме	Me
R-44	C	Н	CI	1	CSSMe	Ме	Ме
R-45	H	Н	Br	1	CSSMe	Me	Ме
R-46	H	Н	Ме	1	CSSMe	Ме	Ме
R-47	Η	Н	Et	1	CSSMe	Ме	Me
R-48	Η	H	Pr	1	CSSMe	Ме	Ме
R-49	H	Н	Pr ⁱ	1	CSSMe	Ме	Me
R-50	H	H	Bu	1	CSSMe	Me	Ме

(表79)

$$R^{2}$$
 R^{3}
 $(CH_{2})_{n}$
 R^{6}

	R¹	R ²	R ³	n	R ⁶	R ⁷	R ⁸
R-51	Н	Н	Bu ⁱ	1	CSSMe	Me	Me
R-52	Н	Н	Bu ^s	1	CSSMe	Me	Me
R-53	Н	Н	Bu'	1	CSSMe	Ме	Me
R-54	Н	Н	OMe	1	CSSMe	Me	Me
R-55	Н	Н	OEt	1	CSSMe	Me	Ме
R-56	Н	Н	OPr	1	CSSMe	Me	Me
R-57	Н	Н	OPr ⁱ	1	CSSMe	Me	Me
R-58	Н	Н	OCHF ₂	1	CSSMe	Me	Me
R-59	Н	Н	OCF ₃	1	CSSMe	Ме	Me
R-60	Н	Н	CF ₃	1	CSSMe	Me	Ме
R-61	Н	Н	SMe	1	CSSMe	Me	Ме
R-62	Н	Н	SEt	1	CSSMe	Me	Ме
R-63	Н	Н	SPr'	1	CSSMe	Me	Me
R-64	Н	Н	NMe ₂	1	CSSMe	Me	Ме
R-65	Н	Н	NEt ₂	1	CSSMe	Me	Ме
R-66	Ме	NMe ₂	Н	1	CSSMe	Me	Me
R-67	NMe ₂	CI	Н	1	CSSMe	Me	Me
R-68	Ме	NEt ₂	H	1	CSSMe	Me	Me
R-69	Н	NEt ₂	Me	1	CSSMe	Ме	Me
R-70	Bu ^s	Ή	Н	1	CSSMe	Me	Ме
R-71	OMe	Н	OMe	1	CSSMe	Me	Me
R-72	Н	OMe	OMe	1	CSSMe	Me	Me
R-73	H	OMe	OEt	1	CSSMe	Me	Me
R-74	Н	OEt	OMe	1	CSSMe	Ме	Me
R-75	Н	OEt	OEt	1	CSSMe	Me	Me

(表80)

$$R^{2}$$
 R^{1}
 $(CH_{2})_{n}$
 N
 R^{6}

	R ¹	R ²	R³	n	R ⁶	R ⁷	R ⁸
0-1	Н	Н	Н	2	CSSMe	Me	Me
0-2	CI	Н	Н	2	CSSMe	Ме	Me
O-3	Br	Н	Н	2	CSSMe	Me	Me
0-4	Ме	Н	Н	2	CSSMe	Ме	Me
0-5	Et	Н	Н	2	CSSMe	Me	Ме
0-6	Pr	Н	Н	2	CSSMe	Ме	Me
0-7	Bu	H	Н	2	CSSMe	Me	Me
O-8	Bu ^r	Н	H .	2	CSSMe	Me	Me
0-9	Bu ^t	Η	Н	2	CSSMe	Me	Me
O-10	Pr ⁱ	Τ	Н	2	CSSMe	Me	Me
0-11	OEt	H	Н	2	CSSMe	Ме	Me
O-12	OPr ⁱ	Н	Н	2	CSSMe	Ме	Me
0-13	OPr	Ι	Н	2	CSSMe	Me	Me
O-14	OCHF ₂	I	H	2	CSSMe	Me	Me
O-15	OCF ₃	Ι	H	2	CSSMe	Ме	Me
0-16	CF₃	I	Ι	2	CSSMe	Ме	Me
O-17	SMe	Ι	H	2	CSSMe	Ме	Me
O-18	SEt	I	Η	2	CSSMe	Ме	Me
O-19	SPr ⁱ	I	H	2	CSSMe	Ме	Ме
O-20	NMe ₂	I	Ι	2	CSSMe	Ме	Me
O-21	NEt ₂	I	Н	2	CSSMe	Ме	Me
O-22	Н	CI	H	2	CSSMe	Me	Me
O-23	Н	Br	Н	2	CSSMe	Me	Me
O-24	Н	Ме	Ι	2	CSSMe	Ме	Me
O-25	Н	Et	Н	2	CSSMe	Ме	Me

(表81)

$$R^{2}$$
 R^{1}
 $(CH_{2})_{n}$
 R^{6}

	R¹	R ²	R ³	m	R ⁶	R ⁷	R ⁸
O-26	Н	Pr	Н	2	CSSMe	Ме	Ме
O-27	Н	Pr ⁱ	Н	2	CSSMe	Me	Me
O-28	Н	Bu	Н	2	CSSMe	Me	Ме
0-29	Н	Bu ⁱ	Н	2	CSSMe	Me	Ме
O-30	Н	Bu⁵	Н	2	CSSMe	Me	Me
0-31	Н	Bu ^t	Н	2	CSSMe	Me	Ме
0-32	Н	OMe	Н	2	CSSMe	Me	Me
O-33	Н	OEt	Н	2	CSSMe	Me	Me
0-34	Н	OPr	Н	2	CSSMe	Ме	Ме
O-35	Н	OPr [/]	H	2	CSSMe	Me	Ме
0-36	H _	OCHF ₂	Н	2	CSSMe	Ме	Ме
O-37	Н	OCF₃	Н	2	CSSMe	Me	Me
O-38	Н	CF₃	Н	2	CSSMe	Ме	Ме
0-39	Н	SMe	Н	2	CSSMe	Ме	Ме
O-40	Н	SEt	Н	2	CSSMe	Me	Ме
O-41	Н	SPr ⁱ	Ι	2	CSSMe	Ме	Me
O-42	Н	NMe ₂	H	2	CSSMe	Ме	Ме
O-43	Н	NEt ₂	Н	2	CSSMe	Me	Ме
0-44	F	Н	F	2	CSSMe	Ме	Ме
O-45	Ι	Ι	Br	2	CSSMe	Me	Ме
0-46	I	Н	Ме	2	CSSMe	Ме	Ме
0-47	Н	H	Et	2	CSSMe	Ме	Ме
O-48	Н	Н	Pr	2	CSSMe	Me	Ме
0-49	Τ	H	Pr ⁱ	2	CSSMe	Ме	Me
O-50	Ι	Ι	Bu	2	CSSMe	Ме	Me

(表82)

	R¹	R ²	R ³	n	R ⁶	R ⁷	R ⁸
O-51	Н	Н	Bu [/]	2	CSSMe	Me	Me
O-52	Н	Н	Bu⁵	2	CSSMe	Me	Ме
O-53	Н	Н	Bu ^t	2	CSSMe	Me	Me
O-54	Н	Н	OMe	2	CSSMe	Me	Me
O-55	Н	Н	OEt	2	CSSMe	Me	Me
O-56	Н	Н	OPr	2	CSSMe	Me	Ме
O-57	Н	Н	OPr'	2	CSSMe	Me	Ме
O-58	Н	Н	OCHF ₂	2	CSSMe	Ме	Me
O-59	Н	Н	OCF ₃	2	CSSMe	Me	Me
O-60	Н	Н	CF₃	2	CSSMe	Ме	Me
O-61	Н	Н	SMe	2	CSSMe	Ме	Ме
O-62	Н	Н	SEt	2	CSSMe	Ме	Ме
O-63	Н	Н	SPr'	2	CSSMe	Ме	Ме
O-64	Н	Н	NMe ₂	2	CSSMe	Ме	Me
O-65	H	Н	NEt ₂	2	CSSMe	Ме	Me
O-66	Ме	NM e _s _	I	2	CSSMe	Ме	Me
0-67	NMe ₂	CI	H	2	CSSMe	Ме	Me
O-68	Ме	NEt ₂	H	2	CSSMe	Me	Me
O-69	Н	NEt ₂	Me	2	CSSMe	Me	Me
O-70	Bu ^s	Н	Ι	2	CSSMe	Ме	Me
0-71	OMe	Н	OMe	2	CSSMe	Ме	Me
0-72	H	OMe	OMe	2	CSSMe	Ме	Me
O-73	Н	OMe	OEt	2	CSSMe	Ме	Me
0-74	H	OEt	OMe	2	CSSMe	Ме	Me
0-75	Н	OEt	OEt	2	CSSMe	Ме	Me

(表83)

$$R^{2}$$
 R^{3}
 $(CH_{2})_{n}$
 R^{8}

	R¹	R²	R ³	n	R ⁶	R ⁷	R ⁸
P-1	Н	Н	Н	1	CSSMe	Et	Et
P-2	CI	Н	Н	1	CSSMe	Et	Et
P-3	Br	Н	Н	1	CSSMe	Et	Et
P-4	Me	Н	Н	1	CSSMe	Et	Et
P-5	Et	Н	H	1	CSSMe	Et	Et
P-6	Pr	H	H	1	CSSMe	Et	Et
P-7	Bu	H	Н	1	CSSMe	Et	Et
P-8	Bu ⁱ	Н	H	1	CSSMe	Et	Et
P-9	Bu ^t	Н	H	1	CSSMe	Et	Et
P-10	Pr ⁱ	Н	Н	1	CSSMe	Et	Et
P-11	OEt	Н	Ι	1	CSSMe	Et	Et
P-12	OPr ⁱ	H	Ι	1	CSSMe	Et	Et
P-13	OPr	Η	Η	1	CSSMe	Et	Et
P-14	OCHF ₂	H	Н	1	CSSMe	Et	Et
P-15	OCF₃	Н	Τ	1	CSSMe	Et	Et
P-16	CF₃	Ι	Τ	1	CSSMe	Et	Et
P-17	SMe	Ι	Ι	1	CSSMe	Et	Et
P-18	SEt	Н	Τ	1	CSSMe	Et	Et
P-19	SPr [/]	Τ	Ι	1	CSSMe	Et	Et
P-20	NMe ₂	H	H	1	CSSMe	Et	Et
P-21	NEt ₂	Н	Ŧ	1	CSSMe	Et	Et
P-22	Н	CI	H	1	CSSMe	Et	Et
P-23	Н	Br	H	1	CSSMe	Et	Et
P-24	Н	Me	H	1	CSSMe	Et	Et
P-25	Н	Et	Ι	1	CSSMe	Et	Et

(表84)

	R¹	R ²	R ³	n	R ⁶	R ⁷	R ⁸
P-26	Н	Pr	Н	1	CSSMe	Et	Et
P-27	Н	Pr [/]	Н	1	CSSMe	Et	Et
P-28	Н	Bu	Н	1	CSSMe	Et	Et
P-29	Н	Bu ⁱ	Н	1	CSSMe	Et	Et
P-30	Н	Bu⁵	Н	11	CSSMe	Et	Et
P-31	Н	Bu ^t	Н	1	CSSMe	Et	Et
P-32	Н	OMe	Н	1	CSSMe	Et	Et
P-33	Н	OEt	Н	1	CSSMe	Et	Et
P-34	Н	OPr	H	1	CSSMe	Et	Et
P-35	Н	OPr ⁱ	Н	1	CSSMe	Et	Et
P-36	Н	OCHF ₂	Н	1	CSSMe	Et	Et
P-37	Н	OCF ₃	Н	1	CSSMe	Et	Et
P-38	Н	CF₃	Ι	1	CSSMe	Et	Et
P-39	Н	SMe	Ι	1	CSSMe	Et	Et
P-40	Н	SEt	Η	1	CSSMe	Et	Et
P-41	Н	SPr ⁱ	Ι	11	CSSMe	Et	Et
P-42	Н	NMe ₂	Ι	1	CSSMe	Et	Et
P-43	Н	NEt ₂	H	1	CSSMe	Et	Et
P-44	OMe	Н	Η	1	CSSMe	Et	Et
P-45	Н	H	Br	1	CSSMe	Et	Et
P-46	Н	Н	Me	1	CSSMe	Et	Et
P-47	Н	Н	Et	1	CSSMe	Et	Et
P-48	Н	H	Pr	1	CSSMe	Et	Et
P-49	Н	H	Pr ⁱ	1	CSSMe	Et	Et
P-50	Н	Н	Bu	1	CSSMe	Et	Et

(表85)

$$R^{3}$$
 R^{3}
 $(CH_{2})_{n}$
 N
 R^{6}

<u> </u>	R ¹	R²	R³	n	R ⁶	R ⁷	R ⁸
P-51	Н	Н	Bu ⁱ	1	CSSMe	Et	Et
P-52	Н	Н	Bus	1	CSSMe	Et	Et
P-53	Н	Н	Bu ^r	1	CSSMe	Et	Et
P-54	Н	Н	OMe	1	CSSMe	Et	Et
P-55	Н	Н	OEt	1	CSSMe	Et	Et
P-56	Н	Н	OPr	1	CSSMe	Et	Et
P-57	Н	Н	OPr ⁱ	1	CSSMe	Et	Et
P-58	Н	Н	OCHF ₂	1	CSSMe	Et	Et
P-59	Н	Н	OCF ₃	1	CSSMe	Et	Et
P-60	Н	Н	CF ₃	1	CSSMe	Et	Et
P-61	Н	Н	SMe	1	CSSMe	Et	Et
P-62	Н	Н	SEt	1	CSSMe	Et	Et
P-63	Н	Н	SPr ⁱ	1	CSSMe	Et	Et
P-64	Н	Ι	NMe₂	1	CSSMe	Et	Et
P-65	Н	H	NEt ₂	1	CSSMe	Et	Et
P-66	Me	NMe ₂	H	1	CSSMe	Et	Et
P-67	NMe ₂	CI	Н	_1	CSSMe	Et	Et
P-68	Me	NEt ₂	Н	1	CSSMe	Et	Et
P-69	Н	NEt ₂	Me	1	CSSMe	Et	Et
P-70	Bu ^s	Н	Н	1	CSSMe	Et	Et
P-71	OMe	Ι	OMe	1	CSSMe	Et	Et
P-72	Н	OMe	OMe	1	CSSMe	Et	Et
P-73	Н	OMe	OEt	1	CSSMe	Et	Et
P-74	Н	OEt	OMe	1	CSSMe	Et	Et
P-75	Н	OEt	OEt	1	CSSMe	Et	Et

(表86)

	R¹	R²	R³	n	R ⁶	R⁵ ·	R ⁸
Q-1	Н	Н	Н	2	CSSMe	Et	Et
Q-2	CI	Н	Н	2	CSSMe	Et	Et
Q-3	Br	Н	Н	2	CSSMe	Et	Et
Q-4	Me	Н	Н	2	CSSMe	Et	Et
Q-5	Et	Н	Н	2	CSSMe	Et	Et
Q-6	Pr	Н	Н	2	CSSMe	Et	Et
Q-7	Bu	Н	Н	2	CSSMe	Et	Et
Q-8	Bu [/]	Н	H _	2	CSSMe	Et	Et
Q-9	Bu ^t	Н	Н	2	CSSMe	Et	Et
Q-10	Pr [/]	Н	Н	2	CSSMe	Et	Et
Q-11	OEt	Н	H	2	CSSMe	Et	Et
Q-12	OPr [/]	Н	Н	2	CSSMe	Et	Et
Q-13	OPr	Н	H	2	CSSMe	Et	Et
Q-14	OCHF ₂	Н	Н	2	CSSMe	Et	Et
Q-15	OCF₃	Ξ	H	2	CSSMe	Et	Et
Q-16	CF₃	I	Ι	2	CSSMe	Et	Et
Q-17	SMe	Н	Н	2	CSSMe	Et	Et
Q-18	SEt	Н	Н	2	CSSMe	Et	Et
Q-19	SPr'	Н	Н	2	CSSMe	Et	Et
Q-20	NMe ₂	Ξ	Н	2	CSSMe	Et	Et
Q-21	NEt ₂	H	Н	2	CSSMe	Et	Et
Q-22	Н	CI	Н	2	CSSMe	Et	Et
Q-23	Н	Br	Н	2	CSSMe	Et	Et
Q-24	Н	Me	Н	2	CSSMe	Et	Et
Q-25	Н	Et	Н	2	CSSMe	Et	Et

(表87)

	R¹	R ²	R³	m	R ⁶	R ⁷	R ^a
Q-26	Н	Pr	Н	2	CSSMe	Et	Et
Q-27	Н	Pr ⁱ	Н	2	CSSMe	_ Et	Et
Q-28	Н	Bu	Н	2	CSSMe	Et	Et
Q-29	Н	Bu'	H	2	CSSMe	Et	Et
Q-30	Н	Bus	Н	2	CSSMe	Et	Et
Q-31	Н _	Bu ^t	Н	2	CSSMe	Et	Et
Q-32	Н	OMe	I	2	CSSMe	Et	Et
Q-33	Н	OEt	Н	2	CSSMe	Et	Et
Q-34	Н	OPr	Н	2	CSSMe	Et	Et
Q-35	Н	OPr ⁱ	Н	2	CSSMe	Et	Et
Q-36	Н	OCHF ₂	Η	2	CSSMe	Et	Et
Q-37	Н	OCF₃	H	2	CSSMe	Et	Et
Q-38	H	CF₃	H	2	CSSMe	Et	Et
Q-39	Н	SMe	H	2	CSSMe	Et	Et
Q-40	I	SEt	H	2	CSSMe	Et	Et
Q-41	H	SPr ⁱ	I	2	CSSMe	Et	Et
Q-42	H	NMe ₂	Ι	2	CSSMe	Et	Et
Q-43	I	NEt ₂	Ι	2	CSSMe	Et	Et
Q-44	OMe	Н	I	2	CSSMe	Et	Et
Q-45	Ŧ	Н	Br	2	CSSMe	Et	Et
Q-46	Ħ	Н	Me	2	CSSMe	Et	Et
Q-47	H	Н	Et	2	CSSMe	Et	Et
Q-48	H	H	Pr	2	CSSMe	Et	Et
Q-49	H	Н	Pr ⁱ	2	CSSMe	Et	Et
Q-50	Н	Н	Bu	2	CSSMe	Et	Et

(表88)

	R¹	R ²	R³	n	R ⁶	R ⁷	R ⁸
Q-51	Н	Н	Bu [/]	2	CSSMe	Et	Et
Q-52	Н	H	Bus	2	CSSMe	Et	Et
Q-53	Н	Н	Bu ^t	2	CSSMe	Et	Et
Q-54	Н	Н	OMe	2	CSSMe	Et	Et
Q-55	Н	Н	OEt	2	CSSMe	Et	Et
Q-56	Н	_ н	OPr	2	CSSMe	Et	Et
Q-57	Н	Н	OPr ⁱ	2	CSSMe	Et	Et
Q-58	Н	Н	OCHF ₂	2	CSSMe	Et	Et
Q-59	Н	Н	OCF ₃	2	CSSMe	Et	Et
Q-60	Н	Н	CF₃	2	CSSMe	Et	Et
Q-61	Н	Н	SMe	2	CSSMe	Et	Et
Q-62	Н	Н	SEt	2	CSSMe	Et	Et
Q-63	Н	Н	SPr'	2	CSSMe	Et	Et
Q-64	Н	H	NMe ₂	2	CSSMe	Et	Et
Q-65	Н	Н	NEt ₂	2	CSSMe	Et	Et
Q-66	Me	NMe ₂	Н	2	CSSMe	Et	Et
Q-67	NMe ₂	C	Н	2	CSSMe	Et	Et
Q-68	Ме	NEt₂	Η	2	CSSMe	Et	Et
Q-69	Н	NEt ₂	Me	2	CSSMe	Et	Et
Q-70	Bu⁵	H	Η	2	CSSMe	Et	Et
Q-71	OMe	Н	OMe	2	CSSMe	Et	Et
Q-72	Н	OMe	OMe	2	CSSMe	Et	Et
Q-73	Н	OMe	OEt	2	CSSMe	Et	Et
Q-74	Н	OEt	OMe	2	CSSMe	Et	Et
Q-75	Н	OEt	OEt	2	CSSMe	Et	Et

上記の本発明化合物の試験例を以下に示す。

5 試験例1 ヒト CB2 受容体結合阻害実験

10

ヒト CB2 受容体をコードする cDNA 配列(Munro 等, Nature, 1993, 365, 61-65)を、動物細胞用発現ベクターである pSVL SV40 Late Promoter Expression Vector (Amersham Pharmacia Biotech社) のプロモーター下流域に順方向に挿入した。得られた発現ベクターを LipofectAMINE 試薬 (Gibco BRL社)を用いて、宿主細胞 CHO に使用説明醬にしたがってトランスフェクションし、CB2 受容体安定発現細胞を得た。

CB2 受容体を発現させた CHO 細胞から調製した膜標品を、被検化合物及び38,000 dpm の[³H]CP55940 (終濃度 0.5 nM: NEN Life Science Products 社製)とともに、アッセイ緩衝液 (0.5% 牛血清アルブミンを含む 50 mM Tris-HCl 緩衝液 (pH 7.4)、1 mM EDTA、3 mM MgCl2)中で、25℃、2時間インキュベーションした後、1% ポリエチレンイミン処理したグラスフィルターGF/Cにて濾過した。0.1% BSA を含む 50 mM Tris-HCl 緩衝液 (pH 7.4)にて洗浄後、液体シンチレーションカウンターにてグラスフィルター上の放射活性を求めた。非特異的結合は 10 μ M WIN55212-2 (US 5081122 記載のカンナビノイド受容体アゴニスト、Research Biochemicals International 社製)存在下で測定し、特異的結合に対する被検化合物の 50%阻害濃度 (IC5o値)を求めた。

ヒト CB1 受容体に対する結合実験は、CB1 受容体を安定発現する CHO 細胞を上記と同じ方法で作製し、その膜画分を用いて行った。これらの結合実験の結果、得られた被検化合物の各ヒトカンナビノイド受容体に対する Ki 値を表に示した。表に示したとおり、本発明の一連の化合物は、CB1 受容体に比べて CB2 受容体への CP55940 (US 4371720 記載のカンナビノイド受容体アゴニスト) の結合を選択的に阻害した。

10

15

(表89)

(3000)					
化合物	Ki (nM)				
	CB1受容体	CB2受容体			
I-5	>5000	61			
1-23	>5000	29			
I-50	>5000	39			
I-51	n.t.	23			
I-52	n.t.	35			
I-56	n.t.	54			
1-6	>5000	9			
1-57	4134	6			
I~69	n.t.	33			
I-60	2097	18			
1-62	n.t.	44			
I-63	n.t.	43			
· I-74	n.t.	48			
1-77	n.t.	53			
I-84	>5000	35			
I-85	n.t.	25			

n.t.: not tested

10

試験例2 ヒト CB2 受容体を介する cAMP 生成阻害実験

ヒト CB2 受容体を発現させた CHO 細胞に、被検化合物を添加し 15 分間インキュ 5 ベーションの後、フォルスコリン (終濃度 4 μ M、SIGMA 社) を加えて 20 分間イ ンキュベーションした。1N HCl を添加して反応を停止させた後、上清中の cAMP 量を Amersham Pharmacia Biotech 社製の BIA kit を用いて測定した。フォルスコ リン刺激による cAMP 生成をフォルスコリン無刺激に対して 100%とし、50%の抑制 作用を示す被検化合物の濃度(ICio値)を求めた。この結果得られた被検化合物 の IC_{so}値を表90に示す。表90に示すとおり、本発明化合物は、CB2 受容体に 対してアゴニスト作用を示した。

なお、同様に試験することにより、アンタゴニスト作用についても試験するこ とができる。

(表90)

化合物	IC _{so} (nM)
1-5	6.5
1-23	2.6
I-51	2.8
I-6	2.7
1-57	5.5

試験例3 ヒツジ赤血球(SRBC)誘発遅延型過敏反応(DTH)モデル実験

雌性 ddY マウス(7週令)をヒツジ赤血球(SRBC)誘発遅延型過敏反応(DTH)モデル に用いた。

カンナビノイド受容体作用薬である I-6、I-60、I-77 および I-118 は 0.6% アラビアゴム溶液に懸濁した。マウスは 10⁷ 個の SRBC を左後肢足蹠皮内(40 ml) に注射することにより感作した。その 5 日後に 10⁸ 個の SRBC を右後肢足蹠皮内(40 ml)に注射することにより DTH 反応を惹起した。薬物は DTH 反応惹起 1 時間前および 5 時間後に経口投与(10 ml/kg)した。 SRBC 注射 24 時間後に左右後肢の容積を水置換法により測定し、右足容積と左足容積の差を求めることにより足浮腫容量を算出して DTH 反応の指標とした。

データはそれぞれの化合物の抑制率で示す。統計的検定はWelchのt検定法により行ない、P<0.05のとき有意差ありと判定した。

10

(表91)

化合物	投与量(mg/kg)	抑制率(%)
1-6	40	45.2
1-60	30	31.1
1-77	30	33.8
I-118	30	33.0

産業上の利用可能性

5

10

式(I)及び式(II)で示される本発明化合物は、カンナビノイド2受容体(CB2R)に選択的に結合し、CB2Rアンタゴニスト作用またはCB2Rアゴニスト作用を示す。従って、カンナビノイド1受容体(CB1R)に由来する中枢神経系の副作用(幻覚など)を回避することができ、カンナビノイド1受容体(CB1R)に関連した依存性を引き起こすこともなく、カンナビノイド2受容体(CB2R)が関与する疾患に対して治療又は予防の目的で使用することができる。

請求の範囲

1. 式(I):

5 (式中、 R^1 は置換されていてもよいアルキレンを表わし、 R^2 はアルキル、式: $-C(=R^5)-R^6$ (式中、 R^5 はO又はSを表わし、 R^8 はアルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキシ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルアミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよいアミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はアルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置換されていてもよいヘテロアリールを表わす)で示される基を表わし、 R^7 はアルキル、置換されていてもよいアミノ、の整数を表わし、 R^7 はアルキル、置換されていてもよいアミノ、で示される基を表わし、 R^7 はアルキル、置換されていてもよいアミノ、で示される基を表わし、 R^7 はアルキル、置換されていてもよいアミノ、で示される基を表わし、 R^7 はアルキル、置換されていてもよいアミノ、で示される基を表わし、 R^7 はアルキル、の整数を表わし、 R^7 はでいてもよい方香族炭素環又は置換されていてもよい方香族炭素環又は置換されていてもよい方香族炭素環又は置換されていてもよい方香族炭素環又は置換されていてもよい方香族炭素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成物。

2. 式:

で示される基が、式:

(式中、R³およびR⁴はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよいアリールスキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアルキル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アルコキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシアルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコキシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリール、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又は式:-C(=O)-R^H(R^Hは水素、アルキル、置換されていてもよいアリール、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、又はR³及びR⁴は一緒になってアルキレンジオキシを表わし、Aは置換されていてもよい芳香族複素環又は置換されていてもよい芳香族複素環を表わす。)である請求の範囲第1項記載の医薬組成物。

- 3. カンナビノイド2 受容体親和性である請求の範囲第1項又は第2項記載の 15 医薬組成物。
 - 4. カンナビノイド2受容体作動性である請求の範囲第3項記載の医薬組成物。
 - 5. 抗炎症剤である請求の範囲第3項記載の医薬組成物。
 - 6. 免疫抑制剤である請求の範囲第3項記載の医薬組成物。
 - 7. 爾炎治療剤である請求の範囲第3項記載の医薬組成物。
- 20 8. 式(II):

5

10

$$R^3$$
 $(CH_2)_m$
 R^2
 (II)

(式中、 R^{-1} は置換されていてもよいアルキレンを表わし、 R^{-2} は式: -C (= R⁵) - R⁶(式中、R⁵はO又はSを表わし、R⁶はアルキル、アルコキシ、アル キルチオ、置換されていてもよいアミノ、置換されていてもよいアラルキルオキ シ、置換されていてもよいアラルキルチオ、置換されていてもよいアラルキルア ミノ、アルコキシアルキル、アルキルチオアルキル、又は置換されていてもよい アミノアルキルを表わす)で示される基、又は式: $-SO_2R^7$ (式中、 R^7 はア ルキル、置換されていてもよいアミノ、置換されていてもよいアリール、又は置 換されていてもよいヘテロアリールを表わす)で示される基を表わし、R³およ びR⁴はそれぞれ独立して、水素、アルキル、アルコキシ、アルキルチオ、置換 10 されていてもよいアミノ、置換されていてもよいアリール、置換されていてもよ いアリールオキシ、シクロアルキル、ハロゲン、ヒドロキシ、ニトロ、ハロアル キル、ハロアルコキシ、置換されていてもよいカルバモイル、カルボキシ、アル コキシカルボニル、アルキルスルフィニル、アルキルスルホニル、アルコキシア ルキル、アルキルチオアルキル、置換されていてもよいアミノアルキル、アルコ キシアルコキシ、アルキルチオアルコキシ、置換されていてもよいヘテロアリー 15 ル、置換されていてもよい非芳香族複素環式基、アルコキシイミノアルキル、又 は式:-C(=O)-R#(R#は水素、アルキル、置換されていてもよいアリー ル、又は置換されていてもよい非芳香族複素環式基)で示される基を表わすか、 又はR³及びR⁴は一緒になってアルキレンジオキシを表わし、mは0~2の整数 を表わし、Aは置換されていてもよい芳香族炭素環又は置換されていてもよい芳 香族複素環を表わす)で示される化合物、そのプロドラッグ、それらの製薬上許 容される塩、又はそれらの溶媒和物。

- 9. mが 0 である請求の範囲第 8 項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。
- 25 10. R¹がアルキレンで置換されていてもよい炭素数 2~9の直鎖状又は分 枝状のアルキレンである請求の範囲第8項又は第9項記載の化合物、そのプロド

ラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

11. R¹がアルキレンで置換された炭素数2~9の直鎖状のアルキレン、又は炭素数2~9の分枝状のアルキレンである請求の範囲第8項~第10項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

- 12. R®がアルコキシ又はアルキルチオであり、R⁷が置換されていてもよい アリールである請求の範囲第8項~第11項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。
- 13. R³およびR⁴がそれぞれ独立して水素、アルキル、アルコキシ、又はア 10 ルキルチオであり、Aが置換されていてもよい芳香族炭素環である請求の範囲第 8項~第12項のいずれかに記載の化合物、そのプロドラッグ、それらの製薬上 許容される塩、又はそれらの溶媒和物。
- - メチル、エトキシメチル、メチルチオメチル、エチルチオメチル、又はエチルアミノであり、 R^7 がメチル、エチル、4-トリル、4-ニトロフェニル、3-ニトロフェニル、2-ニトロフェニル、4-メトキシフェニル、4-トリフルオロメチルフェニル、2-チエニル、又は2-ナフチルであり、 R^3 が水索、メチル、
- 25 $x \neq n$, $n \forall c \leq n$, $i \forall c \leq n$, $s = c \forall e \leq n$ $n \leq t \forall e \leq n$, $n \forall c \leq n$,

WO 01/19807 PCT/JP00/06185

ブトキシ、メチルチオ、エチルチオ、n-プロピルチオ、i-プロピルチオ、ジメチルアミノ、アセチルアミノ、N-アセチルメチルアミノ、ジエチルアミノ、エチルメチルアミノ、プロピルメチルアミノ、フェニル、フェノキシ、フッ素、塩素、臭素、ニトロ、トリフルオロメチル、ジフルオロメトキシ、トリフルオロ メトキシ、N-メチルカルバモイル、メトキシカルボニル、メタンスルフィニル、エタンスルフィニル、メタンスルホニル、アセチル、メトキシメチル、1-メトキシエチル、3-ピリジル、モルホリノ、ピロリジノ、ピペリジノ、2-オキソピロリジノ、1-メトキシイミノエチル、又はモルホリノカルボニルであり、 R^4 が水素、メチル、エチル、フッ素、塩素、ニトロ、メトキシ、又はエトキシであり、又は R^3 及び R^4 が一緒になって $-O-CH_2-O-$ を表わし、Aがベンゼン環、ナフタレン環、ピリジン環、又はキノリン環である請求の範囲第 8 項記載の化合物、そのプロドラッグ、それらの製薬上許容される塩、又はそれらの溶媒和物。

- 15. 請求の範囲第8項~第14項のいずれかに記載の化合物、そのプロドラ 15 ッグ、それらの製薬上許容される塩、又はそれらの溶媒和物を含有する医薬組成 物。
 - 16. カンナビノイド2受容体親和性である請求の範囲第15項記載の医薬組成物。
- 17. カンナビノイド2 受容体作動性である請求の範囲第16項記載の医薬組 20 成物。
 - 18. 抗炎症剤である請求の範囲第16項記載の医薬組成物。
 - 19. 免疫抑制剤である請求の範囲第16項記載の医薬組成物。
 - 20. 腎炎治療剤である請求の範囲第16項記載の医薬組成物。
- 21. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする炎症の 25 治療方法。
 - 22. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする免疫抑

WO 01/19807 PCT/JP00/06185

制の方法。

23. 請求の範囲第1項記載の医薬組成物を投与することを特徴とする腎炎の治療方法。

- 24. 抗炎症剤を製造するための請求の範囲第1項記載の化合物の使用。
- 5 25. 免疫抑制剤を製造するための請求の範囲第1項記載の化合物の使用。
 - 26. 腎炎治療剤を製造するための請求の範囲第1項記載の化合物の使用。

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/06185

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ C07D277/18, 279/06, 279/08, 417/12, A61K31/426, 31/541, 31/5415, 31/547, A61P13/12, 29/00, 37/06, 43/00//(C07D417/12, C07D213:36, C07D279:06), (C07D417/12, C07D215:12, C07D279:06), (C07D417/12, C07D279:06, C07D333:34) According to International Patent Classification (IPC) or to both national classification and IPC			
B. FIELD	S SEARCHED		
Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07D277/08-277/18,279/06-279/08,417/12,A61K31/426, 31/541-31/5415, 31/547, A61P13/12, 29/00, 37/00-37/06, 43/00			
	tion searched other than minimum documentation to the		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN), REGISTRY (STN), WPI (DIALOG), JICST (JOIS)			
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.
х	GIELDANOWSKI, J., et al., "PHAR THE GROUP OF NEW SUBSTITUT	ED THIAZOLOACETIC AND	1-6,24,25
A	THIAZINOCAOROXYL ACID DERIVATIV Exp., 26(1-6), pp.921-929 (1978		7-20,26
X	JP, 62-212378, A (Bayer Aktiend 18 September, 1987 (18.09.87),		1-5,24
A	Claims; page 25, upper right colucolumn; example & DE, 3632042, A & EP, 2406 & US, 4771062, A		6-20,25,26
x	JP, 2-3678, A (Janssen Pharmace 09 January, 1990 (09.01.90),	eutica N.V.),	1-5,24
A	Claims; page 14, upper left colum column; example		6-20,25,26
	& EP, 331232, A & AU, 8930 & NO, 8900813, A & DK, 89009	739, A 918, A	
	& PT, 89875, A & FI, 8900	931, A	•
	& CN, 1036569, A & ZA, 8901 & IL, 89426, A	547, A	
	r documents are listed in the continuation of Box C.	See patent family annex.	
"A" document defining the general state of the art which is not priority dat		priority date and not in conflict with the understand the principle or theory under	e application but cited to
date	E" earlier document but published on or after the international filing document of particular relevance; the claimed invention cannot be date "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive		
cited to special	cited to establish the publication date of another citation or other special reason (as specified) "Y" document of particular relevance; the claimed invention cannot to considered to involve an inventive step when the document is		when the document is
means "P" docume	means combination being obvious to a person skilled in the art		
Date of the	Date of the actual completion of the international search 27 November, 2000 (27.11.00) Date of mailing of the international search report 12 December, 2000 (12.12.00)		
	Name and mailing address of the ISA/ Japanese Patent Office Authorized officer		
Facsimile No.		Telephone No.	

International application No.
PCT/JP00/06185

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
х	FR, 2201080, A (BADISCHE ANILIN- & SODA-FABRIK AG.), 26 April, 1974 (26.04.74),	1-5,24
A	Claims; page 4, line 1 to page 5, line 3 & DE, 2114097, A & GB, 1402103, A	6-20,25,26
x	JP, 2-223564, A (Ube Industries, Ltd.), 05 September, 1990 (05.09.90),	8-10,13
A	Claims; Table 1, & EP, 356158, A & ZA, 8906308, A & US, 5073558, A	11,12,14
х	JP, 63-41471, A (Nippon Soda Co., Ltd.), 22 February, 1988 (22.02.88),	8-10,13
A	Claims; Table 1 (Family: none)	11,12,14
X	JP, 57-134472, A (Hoechst Aktiengesellschaft), 19 August, 1982 (19.08.82),	1,2
A	Claims; page 9, lower right column to page 10, lower right column	3-20,24-26
	& EP, 55458, A & DE, 3049460, A	
	& NO, 8104468, A & DK, 8105811, A & FI. 8104175, A & ZA, 8108968, A	
	& FI, 8104175, A & ZA, 8108968, A & US, 4421757, A & IL, 64653, A & ES, 8305342, A & ES, 8308549, A	
	& ES, 8305342, A & ES, 8308549, A	
	& ES, 8308550, A & ES, 8308551, A & ES, 8402829, A & CA, 1173836, A	
x	JP, 59-172486, A (Janssen Pharmaceutica N.V.), 29 September, 1984 (29.09.84),	1,2
A	Claims; page 11, upper right column to lower left column;	3-20,24-26
	example	
	& EP, 118138, A & AU, 8425097, A & NO, 8400735, A & NO, 8702221, A	
	& NO, 8400735, A & NO, 8702221, A & NO, 9000396, A & DK, 8401070, A	
	& DK. 9100783. A & DK. 9101088. A	
	& DK, 9100783, A & DK, 9101088, A & FI, 8400781, A & PT, 78156, A & ZA, 8401449, A & US, 4619931, A	
	& ZA, 8401449, A & US, 4619931, A	
	& IL, 71066, A & CA, 1271194, A	
	& JP, 5-246999, A & ES, 8505364, A	
	& ES, 8506007, A & ES, 88507541, A	
x	JP, 56-10180, A (Hoechst Aktiengesellschaft), 02 February, 1981 (02.02.81),	1,2
A	Claims; page 18, upper left column to page 19, upper left column; example	3-20,24-26
	& DE, 2926771, A & NO, 8001995, A	
	& NO, 8404120, A & EP, 23964, A	
	& DK, 8002865, A & FI, 8002094, A & ZA, 8003979, A & US, 4346088, A	
	& CA, 1156240, A & IL, 60468, A	
	& IL, 70114, A	
x	JP, 52-51364, A (Hoechst Aktiengesellschaft),	1,2
A	25 April, 1977 (25.04.77), Claims; example	3-20,24-26
•	& BE, 847352, A & DE, 2546165, A	J 40,24-20
	& NL, 7611159, A & SE, 7611504, A	
	& NO, 7603502, A & FI, 7602920, A	
	& DK, 7604640, A	
	& US, 4083979, A & AT, 7902625, A	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

International application No.

PCT/JP00/06185

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	& AT, 7607655, A & GB, 1563323, A	· · · · · · · · · · · · · · · · · · ·
	& CA, 1083581, A	
x	JP, 52-17468, A (Hoechst Aktiengesellschaft),	1,2
	09 February, 1977 (09.02.77),	-/-
A	Claims; example	3-20,24-26
	& BE, 844666, A & DE, 2533821, A & NL, 7608206, A & SE, 7608545, A	
	& NL, 7608205, A & SE, 7608545, A & NO, 7602625, A & DK, 7603404, A	
	& FI, 7602140, A & FR, 2319345, A	
	& FI, 7602140, A & FR, 2319345, A & US, 4061647, A & GB, 1522107, A	
	& AT, 7605555, A & IL, 50146, A	
	& CA, 1077492, A	
x	JP, 51-54555, A (Hoechst Aktiengesellschaft),	1,2,
_	13 May, 1976 (13.05.76),	
A	Claims; page 28, lower right column to page 29, upper right column; example	3-20,24-36
	& JP, 52-83511, A & NL, 5708848, A	
	& BE, 831794, A & IL, 47779, A & DE, 2436263, A & SE, 7508476, A	
	& PT, 64112, A & NO, 7502636, A	
	& DK, 750340, A & FI, 7502131, A & FR, 2282882, A & ZA, 7504772, A	
	& DD, 121112, A & US, 4061761, A	
	& US, 4125614, A & GB, 1513948, A & CA, 1054596, A & CH, 617431, A	
,	& CA, 1054596, A & CH, 617431, A	
	& CH, 623316, A & CH, 624677, A	
	& CH, 624678, A & AT, 7505770, A & AT, 7707814, A	
	& AT, 7707815, A & AT, 7707816, A	
х	JP, 50-37775, A (Egyt Gyogyszervegyeszeti Gyar),	1,2,
	08 April, 1975 (08.04.75),	-1-1
A	Claims; page 2; example	3-10,24-26
	& NL, 7409315, A & DE, 2433104, A & SE, 7409092, A & DK, 7403740, A	
	& SE, 7409092, A & DK, 7403740, A & DD, 112452, A & FR, 2236495, A	
	& CS, 7404954, A & GB, 1467385, A	
	& AT, 7404954, A	
x	JP, 48-36169, A (Bayer Aktiengesellschaft),	1,2,
	28 May, 1973 (28.05.73),	±, =,
A	Claims; page 3, upper left column to page 4, upper right	3-20,24,26
	column; example	
	& JP, 48-36168, A & BE, 788743, A	
ł	& DE, 2145807,	
	& FR, 2154512, A & DD, 103898, A	
	& DD, 105990, A & GB, 1377265, A	
	& RO, 84247, A & US, 3860590, A	
	& AT, 7402318, A & AT, 7402319, A & SU, 455544, A & CH, 569724, A	
	& CH, 587258, A & SU, 439988, A	
	& SU, 505363, A & SU, 556728, A	
	& RO, 84248, A & RO, 68372, A	
	& IL, 40338, A & CA, 1007638, A	
x	JP, 48-23793, A (Imperial Chem. Ind. Ltd.),	1,2
	29 March, 1973 (29.03.73),	- •

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP00/06185

C (Continu	ation). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	Claims; page 3, upper left column; example & DE, 2236970, A & BE, 786416, A & FR, 2147214, A & ZA, 7204731, A & SU, 847915, A & DD, 103645, A & GB, 1351031, A & US, 3845070, A & US, 3925440,	3-20,24,26
x	US, 3678041, A (Etablissements Clin-Byla), 18 July, 1972 (18.07.72),	1,2
A	Claims; Column 1, lines 1 to 11; example & DE, 1770583, A & BE, 716140, A & AU, 6838776, A & ZA, 6703535, A & ZA, 6803535, A & CA, 897687, A & GB, 1224546, A & US, 3678041, A & US, 3704296, A & FR, 1604530, A	3-20,24,26
x	JP, 6-220053, A (Fuji Photo Film Co., Ltd.), 09 August, 1994 (09.08.94),	1,2
A	Claims; Par. Nos. [0014], [0015], [0024] & US, 5476945, A & US, 5618831, A	3-20,24,26
x	GAILWAD, N. J., et al., "Substituted-4-Thiazolidinones as Anticonvulsants", Indian J. Pharm. Sci., 46(5),	1,2
A	pp.170-171 (1984)	3-20,24,26
PX	WO, 00/42031, A2 (BAYER CORPORATION), 20 July, 2000 (20.07.00), Claims; example & AU, 200027087, A	1,2,8-10,13,15
A	JP, 11-80124, A (JAPAN TOBACCO INC.), 26 March, 1999 (26.03.99) & WO, 99/02499, A1 & AU, 9881279, A	1-20,24-26
A	MUNRO, S., et al., "Molecular characterization of a peripheral receptor of cannabinoids", NATURE, 365(2), pp.61-65 (1993)	1-20,24-26

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP00/06185

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)		
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following re-	easons:	
1. Claims Nos.: 21-23 because they relate to subject matter not required to be searched by this Authority, namely:		
The inventions as set forth in claims 21 to 23 pertain to methods for treatment of the human body by therapy (Article 17(2)(a)(i) of the PCT and Rule 39.1(i) of the Regulations under the PCT).		
2. Claims Nos.: 1-20,24-26 because they relate to parts of the international application that do not comply with the prescribed requirements to su extent that no meaningful international search can be carried out, specifically:	uch an	
(See extra sheet.)		
	i	
3. Claims Nos.:		
3. Light Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4	(a).	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)		
This International Searching Authority found multiple inventions in this international application, as follows:		
	i	
1. As all required additional search fees were timely paid by the applicant, this international search report covers all search report covers all search report covers all search report covers all search report covers.	archable	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite particles of any additional fee.	yment	
3. As only some of the required additional search fees were timely paid by the applicant, this international search repor	t covers	
only those claims for which fees were paid, specifically claims Nos.:	. 501015	
	- 1	
	[
4. No required additional search fees were timely paid by the applicant. Consequently, this international		
search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:		
	j	
Remark on Protest		
No protest accompanied the payment of additional search fees.		

Continuation of Box No. I-2 of continuation of first sheet (1)

(The technical features of the inventions as set forth in claims 1 to 20 and claims 24 to 26 reside in the compounds per se represented by the formula (I) or (II) or utilization of these compounds as drugs. The compounds involved in the formulae (I) and (II) have nothing but the following chemical structure in common:

As stated in the documents, compounds having this chemical structure and medicinal compositions with the use of these compounds have been widely known. Therefore, the technical features cannot be considered as being sufficiently specified by the chemical structure. Moreover, only a part of compounds among compounds involved in a broad scope are supported in the description. Therefore, the claims and description fail to satisfy the definite requirements to such an extent as enabling meaningful international search.

In this report, therefore, the search has been practiced exclusively on compounds satisfying the following conditions by reference to the statement in the description:

- the substituent A is an optionally substituted phenyl or optionally substituted 3-pyridyl group;
- ·m is an integer of from 0 to 2;
- $\cdot R^1$ is an optionally substituted, linear C_{2-3} alkylene group; and
- \cdot R^2 is an alkyl, $-(C=R^5)-R^6$ or $-SO_2R^7$ group (wherein R^5 , R^6 and R^7 are each as defined in claims).

国際調査報告

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1 C07D277/18, 279/06, 279/08, 417/12, A61K31/426, 31/541, 31/5415, 31/547, A61P13/12, 29/00, 37/06, 43/00 //(C07D417/12, C07D213:36, C07D279:06), (C07D417/12, C07D279:06, C07D333:34)

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl⁷ C07D277/08-277/18, 279/06-279/08, 417/12, A61K31/426, 31/541-31/5415, 31/547, A61P13/12, 29/00, 37/00-37/06, 43/00

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース(データベースの名称、調査に使用した用語) CAPLUS (STN), REGISTRY (STN), WPI (DIALOG), JICST (JOIS)

C. 関連すると認められる文献		
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
X	GIELDANOWSKI, J., et al., "PHARMACOLOGICAL ACTIVITY IN THE GROUP OF NEW SUBSTITUTED THIAZOLOACETIC AND THIAZINOCAOROXYL	1-6, 24, 25
A	ACID DERIVATIVES", Arch. Immunl. Ther. Exp., 26(1-6), pp. 921-929 (1978)	7-20, 26
X	JP, 62-212378, A (バイエル・アクチエンゲゼルシャフト), 18. 9月. 1987 (18. 09. 87),	1-5, 24
A	特許請求の範囲,第25頁右上欄一第26頁左上欄,実施例, & DE, 3632042, A, & EP, 240680, A, & US, 4771062, A	6-20, 25, 26

X C欄の続きにも文献が列挙されている。

| | パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「〇」口頭による開示、使用、展示等に官及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性义は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 27.11.00 国際調査報告の発送日 12.12.00 国際調査機関の名称及びあて先 日本国特許庁(ISA/JP) 野便番号100-8915 東京都千代田区館が関三丁目4番3号 電話番号 03-3581-1101 内線 3450

<u>C</u> (続き). 引用文献の カテゴリー* X		関連する 請求の範囲の番号
		1 HO 11 1 PERU 17 HE 17
	JP, 2-3678, A (ジャンセン・ファーマシューチカ・ナー ムローゼ・フェンノートシャップ),	
Α	9. 1月. 1990 (09. 01. 90), 特許請求の範囲, 第14頁左上欄一第15頁右下欄, 実施例, & EP, 331232, A, & AU, 8930739, A, & NO, 8900813, A, & DK, 8900918, A, & PT, 89875, A, & FI, 8900931, A, & CN, 1036569, A, & ZA, 8901547, A, & IL, 89426, A	6-20, 25, 26
X	FR, 2201080, A (BADISCHE ANILIN- & SODA-FABRIK AG.), 26.4月.1974(26.04.74),	1-5, 24
Α	特許請求の範囲, 第4頁1行一第5頁3行, & DE, 2114097, A, & GB, 1402103, A	, 6-20, 25, 26
X	JP, 2-223564, A (宇部與産株式会社), 5.9月.1990 (05.09.90),	8-10, 13
Α	特許請求の範囲,第1表, & EP, 356158, A,& ZA, 8906308, A,& US, 5073558, A	11, 12, 14
X	JP, 63-41471, A (日本曹達株式会社), 22. 2月. 1988 (22. 02. 88),	8-10, 13
Α	特許請求の範囲、第1表(ファミリーなし)	11, 12, 14
X	JP, 57-134472, A (ヘキスト・アクチエンゲゼルシヤフト), 19.8月.1982 (19.08.82),	1, 2
A	特許請求の範囲, 第9頁右下欄一第10頁右下欄, & EP, 55458, A, & DE, 3049460, A, & NO, 8104468, A, & DK, 8105811, A, & FI, 8104175, A, & ZA, 8108968, A, & US, 4421757, A, & IL, 64653, A, & ES, 8305342, A, & ES, 8308549, A, & ES, 8308550, A, & ES, 8308551, A, & ES, 8402829, A, & CA, 1173836, A	3-20, 24-26
X	JP, 59-172486, A (ジャンセン・ファーマシューチカ・ナームローゼ・フェンノートシャップ),	1, 2
A .	29. 9月. 1984 (29. 09. 84), 特許請求の範囲, 第11頁右上欄一左下欄, 実施例, & EP, 118138, A, & AU, 8425097, A, & NO, 8400735, A, & NO, 8702221, A, & NO, 9000396, A, & DK, 8401070, A, & DK, 9100783, A, & DK, 9101088, A, & FI, 8400781, A, & PT, 78156, A, & ZA, 8401449, A, & US, 4619931, A, & IL, 71066, A, & CA, 1271194, A, & JP, 5-246999, A, & ES, 8505364, A, & ES, 8506007, A, & ES, 88507541, A	3-20, 24-26

C(続き).	即事ナスト級めたれる立体	
引用文献の	関連すると認められる文献	関連する
カテゴリー*		請求の範囲の番号
X	JP, 56−10180, A(ヘキスト・アクチーエンゲゼルシヤ フト), 2. 2月. 1981(02. 02. 81), 特許請求の範囲, 第18頁左上欄一第19頁左上欄, 実施例,	1, 2
A	& DE, 2926771, A, & NO, 8001995, A, & NO, 8404120, A, & EP, 23964, A, & DK, 8002865, A, & FI, 8002094, A, & ZA, 8003979, A, & US, 4346088, A, & CA, 1156240, A, & IL, 60468, A, & IL, 70114, A	0 20, 21 20
x	JP, 52-51364, A (ヘキスト・アクチーエンゲゼルシヤフト), 25. 4月. 1977 (25. 04. 77),	1, 2
A	特許請求の範囲,実施例,& BE,847352,A,& DE,2546165,A, & NL,7611159,A,& SE,7611504,A,& NO,7603502,A, & FI,7602920,A,& DK,7604640,A,& FR,2327778,A, & US,4083979,A,& AT,7902625,A,& AT,7607655,A, & GB,1563323,A,& CA,1083581,A	3-20, 24-26
X	JP, 52-17468, A (ヘキスト・アクチーエンゲゼルシヤフト), 9. 2月. 1977 (09. 02. 77),	1, 2
A	特許請求の範囲,実施例,& BE, 844666, A,& DE, 2533821, A, & NL, 7608206, A,& SE, 7608545, A,& NO, 7602625, A, & DK, 7603404, A,& FI, 7602140, A,& FR, 2319345, A, & US, 4061647, A,& GB, 1522107, A,& AT, 7605555, A, & IL, 50146, A,& CA, 1077492, A	3-20, 24-26
Χ.	JP, 51-54555, A (ヘキスト・アクチーエンゲゼルシヤフト), 13. 5月. 1976 (13. 05. 76),	1, 2
A	特許請求の範囲,第28頁右下欄一第29頁右上欄,実施例, & JP, 52-83511, A, & NL, 5708848, A, & BE, 831794, A, & IL, 47779, A, & DE, 2436263, A, & SE, 7508476, A, & PT, 64112, A, & NO, 7502636, A, & DK, 750340, A, & FI, 7502131, A, & FR, 2282882, A, & ZA, 7504772, A, & DD, 121112, A, & US, 4061761, A, & US, 4125614, A & GB, 1513948, A, & CA, 1054596, A, & CH, 617431, A, & CH, 623316, A, & CH, 624677, A, & CH, 624678, A, & AT, 7505770, A, & AT, 7707817, A & AT, 7707814, A, & AT, 7707815, A, & AT, 7707816, A	3-20, 24-26
х	JP, 50-37775, A (エギト ギオギスゼルヴェギエスゼ ティ グヤール), 8. 4月. 1975 (08. 04. 75),	1, 2
A	特許請求の範囲,第2頁,実施例,& NL,7409315,A, & DE,2433104,A, & SE,7409092,A, & DK,7403740,A, & DD,112452,A, & FR,2236495,A, & CS,7404954,A, & GB,1467385,A, & AT,7404954,A	3-20, 24-26

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
X	JP, 48-36169, A (バイエル・アクチエンゲゼルシヤフト), 28.5月.1973 (28.05.73), 特許請求の範囲,第3頁左上欄一第4頁右上欄,実施例,	1, 2 3-20, 24-26
	& JP, 48-36168, A, & BE, 788743, A, & DE, 2145807, & RO, 68389, A, A, & NL, 7212419, A, & ZA, 7206271, A, & FR, 2154512, A, & DD, 103898, A, & DD, 105990, A, & GB, 1377265, A, & RO, 84247, A, & US, 3860590, A, & AT, 7402318, A, & AT, 7402319, A, & SU, 455544, A, & CH, 569724, A, & CH, 587258, A & SU, 439988, A, & SU, 505363, A, & SU, 556728, A, & RO, 84248, A& RO, 68372, A, & IL, 40338, A, & CA, 1007638, A	
X	JP, 48-23793, A (イムペリアル・ケミカル・インダストリース・リミテッド),	1, 2
A	27. 3月. 1973 (29. 03. 73), 特許請求の範囲, 第3頁左上欄, 実施例, & DE, 2236970, A, & BE, 786416, A, & FR, 2147214, A, & ZA, 7204731, A, & SU, 847915, A, & DD, 103645, A, & GB, 1351031, A, & US, 3845070, A, & US, 3925440,	3-20, 24-26
x	US, 3678041, A (Etablissements Clin-Byla), 18.7月.1972 (18.07.72),	1, 2
A	特許請求の範囲,第1欄1-11行,実施例,& DE, 1770583, A, & BE, 716140, A, & AU, 6838776, A, & ZA, 6703535, A, & ZA, 6803535, A, & CA, 897687, A, & GB, 1224546, A, & US, 3678041, A, & US, 3704296, A, & FR, 1604530, A	3-20, 24-26
X A	JP, 6-220053, A (富士写真フィルム株式会社), 9.8月.1994 (09.08.94), 特許請求の範囲, 【0014】, 【0015】, 【0024】, & US,5476945, A, & US,5618831, A	1, 2 3-20, 24-26
x	GAILWAD, N. J., et al., "Substituted-4-Thiazolidinones as Anticonvulsants", Indian J. Pharm. Sci., 46(5), pp. 170-171	1, 2
A	(1984)	3-20, 24-26
PX	WO, 00/42031, A2 (BAYER CORPORATION), 20.7月.2000 (20.07.00), 特許請求の範囲,実施例, & AU,200027087, A	1, 2, 8-10, 13, 15
A	JP, 11-80124, A (日本たばこ産業株式会社), 26.3.1999 (26.03.99), & WO,99/02499,A1, & AU,9881279,A	1-20, 24-26
A	MUNRO, S., et al., "Molecular characterization of a peripheral receptor of cannabinoids", NATURE, 365(2), pp.61-65 (1993)	1-20, 24-26

国際出願番号 PCT/JP00/06185

第Ⅰ欄	請求の範囲の一部の調査ができないときの意見(第1ページの2の続き)		
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。			
1. X	請求の範囲 <u>21-23</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、		
	請求の範囲21ないし23にかかる発明は治療による人体の処置方法である。 (PCT17条(2)(a)(i)、PCT規則39.1(iv))		
2. X	請求の範囲 <u>1-20,24-26</u> は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、 (別紙を参照のこと。)		
3.	請求の範囲は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。		
第Ⅱ欄	発明の単一性が欠如しているときの意見(第1ページの3の続き)		
次に豆	☆べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。		
1.	出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。		
2.	追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追 加調査手数料の納付を求めなかった。		
3.	出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納付のあった次の請求の範囲のみについて作成した。		
4.	出願人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。		
追加調査	を手数料の異議の申立てに関する注意 」 追加調査手数料の納付と共に出願人から異議申立てがあった。		
	追加調査手数料の納付と共に出願人から異議申立てがなかった。		

請求の範囲 1-20 並びに 24-26 にかかる発明は、いずれも式(I) 若しくは式(II) により表される化合物自体又は当該化合物を医薬として用いることを技術的特徴とするものである。そして、式(I) 及び式(II) に含まれる化合物群における共通した化学構造は

$$- (CH2) _m - N = C$$

なる部分のみであるが、文献欄にもあるように、かかる化学構造を有する化合物やかかる化合物を用いた医薬組成物は広く知られているものであるから、かかる化学構造によってはその技術的特徴が充分に特定されたものとは認められず、また、明細書には広範な化合物群に包含される一部の化合物についてしか裏付けとなる記載がなされていない。したがって、請求の範囲及び明細書は、有意義な国際調査をすることができる程度まで所定の要件を満たしているものではない。

したがって、本報告においては明細書の記載を参考にして、以下の条件を満たすもののみを調査の対象とした。

- ・置換基Aは置換可能なフェニル基又は置換可能な3-ピリジル基
- ・mは0ないし2の整数
- ・R'は炭素数2または3である、置換可能な直鎖アルキレン基
- ・R²はアルキル基、-C(=R⁵)-R⁶基、又は-SO₂R⁷基 (R⁵、R⁶及びR⁷の各置換基の定義は請求の範囲に記載の通り。)