SOUND SOURCE DISTANCE ESTIMATION IN DIVERSE AND DYNAMIC ACOUSTIC CONDITIONS

Saksham S. Kushwaha^{1,2}, Iran R. Roman², Magdalena Fuentes^{2,3}, Juan P. Bello²

¹Courant Institute of Mathematical Sciences, New York University, NY, USA

²Music and Audio Research Lab, New York University, NY, USA

³Integrated Design and Media, New York University, NY, USA

Introduction

- Sound Source Localization
 - Direction of arrival (DOA) estimation (θ, ϕ)
 - Source distance (r)
- Several applications. For eq.
 - Audio-based navigation
 - Sound source separation
- Recent research development has focused on DOA estimation
- Sound distance estimation remains understudied
 - Difficult task: reverberation, reflections, noise etc.
 - Lack of annotated data
- Previous attempts are not generalizable:
 - Often reformulated as classification problem / range estimation
 - Existing methods test on synthetic data OR handful of real data 0

(Origin)

Contributions

- Distance annotations for a collection of open-source DOA datasets
- CRNN-based model benchmark for distance estimation
- Comprehensive testing on diverse environments and acoustic conditions
- Model performance analysis over different loss functions
 - Percentage based regression losses provide optimal performance

Related Work

DOA estimation:

- Primarily focusing on direction rather than distance [Shimada et.al]
- Many studies on DOA estimation have employed CRNNs [Adavanne et.al]
- Open source real data and Room impulse responses (RIR) based data generators [Politis et.al]

Distance estimation:

- Given the sound onset(t₀) and arrival times(t_a)
 - Distance, $d = c \times (t_r t_o)$ where c: speed of sound
- Previous approaches:
 - Human listening inspired approaches. Eg. direct-to-reverberant ratio [Zahorik et.al]
 - Data driven approaches. Eg. FNN, CNN [Yiwere et. al, Takeda et. al]
- Most of work assumes non-coincident microphones
- (Baseline) Generalized Time-domain Velocity Vector based method [Kitic et. al]

Our study: Datasets

- DCASE: Synthetic data + Room impulse responses(RIRs)
- **STARSS**: Real-world recordings + masked overlapping sounds
- LOCATA: Single room real speech recordings
- 3D-MARCo: Musical recordings + reverberant church
- METU-SPARG: RIRs + 3D grid + office setup

Dataset	Range(m)	Avg dist(m)	#train	#test	Avg. dur(s)	#Room	Moving Sources?
DCASE	1.35-7.15	3.34	900	300	60.0	9	Y
S TARSS	0.42 - 7.02	1.83	87	74	162.2	16	Y
LOCATA	0.50 - 3.49	1.78	27	5	18.9	1	Y
MARCo	2.6-12	4.01	5	7	78.6	1	N
METU	0.3 - 2.2	1.41	146	98	2.0	1	N

Model

- Aim: Non-simultaneous + moving sources
- Adapt the CRNN model from Adavane et al.
- Distance output is ignored if sound is not present

$$L = \left[\frac{1}{N}\frac{1}{T}\sum_{n=0}^{N-1}\sum_{t=0}^{T-1}d_{n,t}\mathbb{E}(y_{n,t},\hat{y}_{n,t}) + \left[\text{BCE}(d_{n,t},\hat{d}_{n,t})\right]\right]$$

Here, ε can be different regression losses.

Training procedure and loss

- Two steps:
 - Train the model only for sound detection over DCASE (PSED)
 - Multi-task training: Sound detection + distance estimation
- Model name:
 - TWx : PSED + Train with data x
 - FWx-y: PSED + Pretrain with y + Finetune with x
- Loss functions:
 - Percentage losses:
 - Uniform error weighing with distance

Acronym	Full name	3
AE	absolute error	$ y-\hat{y} $
SE	squared error	$(y-\hat{y})^2$
APE	absolute percent error	$rac{1}{y} y-\hat{y} $
SPE	squared percent error	$(\frac{1}{y}(y-\hat{y}))^2$
TAPE	thresholded APE	$\max(\delta, \frac{1}{y} y - \hat{y})$

Experiments

- Exp1: comparing with a baseline with
- Exp2: Effect of model pretraining over a larger dataset
- Exp3: Effect of different regression losses.

Exp1: Comparing with recent baseline

- LOCATA dataset
- Baselines:
 - Avg prediction
 - o [20] Daniel et al.
- Model name:
 - TWx : PSED + Train with data x
 - FWx-y: PSED + Pretrain with y + Finetune with x
- Pretrained models perform better
- Percent error loss perform better
- Qualitative results

Model	Exp	Best E	Mean ↓	Median ↓	Std ↓
	TWL	SPE	0.413	0.330	0.347
CRNN	TWA	SE	0.368	0.340	0.244
CICITI	FWL-S	APE	0.337	0.290	0.246
	FWL-D	APE	0.352	0.269	0.275
avg pred	-		0.452	0.410	0.283
[20]			0.448	0.326	0.416

D=DCASE. A=All data,.T=METU-SPARG, L=LOCATA, S=STARSS

Exp2: Effect of model pre-training

- Model name:
 - TWx : PSED + Train with data x
 - FWx-y: PSED + Pretrain with y + Finetune with x
- Pretrained models perform better
- Percent error loss perform better

Model	Exp	Best E	Mean ↓	Median ↓	Std ↓
CRNN	TWD	SE	1.032	0.903	0.838
CRNN	FWD-S	AE	0.952	0.731	0.834
avg pred			1.014	0.866	0.596
CRNN	TW <u>M</u>	SE	1.346	0.417	2.158
CRNN	FWM-S	SPE	0.811	0.405	0.508
avg pred			1.183	1.611	0.494
CRNN	$TW\underline{T}$	APE	0.148	0.122	0.126
CRNN	FWT-S	$TAPE^*$	0.167	0.114	0.150
avg pred			0.378	0.289	0.234

D=DCASE. M=MARCo. T=METU-SPARG

Exp3: Effect of loss functions

- Performance comparison on LOCATA
- Thresholded percent error performs best
- Error vs. ground truth distance
 - Percentage error performs better
 - Due to uniformly reduces error w.r.t distance

3	Mean ↓	Median ↓	Std ↓
AE	0.438	0.360	0.342
SE	0.374	0.319	0.256
APE	0.337	0.290	0.246
SPE	0.334	0.292	0.259
TAPE ($\delta = 0.01$)	0.322	0.248	0.261
TAPE ($\delta = 0.10$)	0.361	0.312	0.250
TAPE ($\delta = 0.20$)	0.346	0.282	0.260

Conclusion and Future Work

- Extended DOA datasets and model for distance estimation
- Proposed a generalizable training schema for distance prediction
- Improved distance estimation using percent error-based loss and pretraining
- In the future:
 - Extend our approach to multiple simultaneous occurring sounds
 - Joint model for DOA + classification + distance