1	Wersja:	Numer in
	\mathbf{A}	

]	Numer indeksu:				

Grupa ⁺ :				
s. 103	s. 104	s. 105		
s. 139	s. 140	s. 141		

Logika dla informatyków

Kolokwium nr 3, 20 stycznia 2023 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Czy istnieją takie trzy zbiory A, B, C że $B \not\sim C$ oraz $A^B \sim A^C$? Podaj dowód bądź stosowny kontrprzykład.

$$A = \{1\}, B = \{1, 2\}, C = \{3\}$$

Zadanie 2 (2 punkty). Rozważmy funkcje $app: B^A \times A \to B, \ curry: B^{(B^A \times A)} \to (B^A)^{(B^A)}$ i $f: A \to B$, oraz element $a \in A$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C) jej argument należy do dziedziny tej funkcji. Np. wyrażenie app(a) nie jest poprawne, bo nie dla wszystkich zbiorów A, B i C mamy $a \in B^A \times A$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia f(a) jest B. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE".

$$f(a)$$
 B $curry(app)$ $(B^A)^{(B^A)}$ $(curry(app))(f,a)$ NIE $app(a)$ NIE $(curry(app))(f(a))$ NIE $((curry(app))(f))(a)$ B

Zadanie 3 (2 punkty). Rozważmy relację równoważności na zbiorze liczb naturalnych dodatnich \mathbb{N}_+ zdefiniowaną wzorem

$$m \simeq n \iff \lfloor \log_2 m \rfloor = \lfloor \log_2 n \rfloor.$$

W prostokąt poniżej wpisz moc klasy abstrakcji $[2023]_{\sim}$. Wskazówka: $|\log_2 2023| = 10$.

1024

Zadanie 4 (2 punkty). Niech A oznacza zbiór liczb naturalnych parzystych, a B zbiór liczb naturalnych nieparzystych. Zdefiniujmy funkcję $f: A \times B \to \mathbb{N}$ daną wzorem $f(a,b) = \frac{a+2b}{2}$. W prostokąty poniżej wpisz obliczone wartości obrazów i przeciwobrazów:

$$f[\{42\}\times B] \hspace{1cm} \{2n\mid n\in\mathbb{N}\wedge n\geq 21\} \hspace{1cm} f^{-1}[A] \hspace{1cm} \{2n\mid n\in B\}\times B$$

Przez *obliczoną wartość* rozumiemy tutaj dowolne wyrażenie oznaczające dany zbiór i niezawierające symbolu f.

Zadanie 5 (2 punkty). Wskaż błąd w następującym rozumowaniu: podaj numer błędnego zdania i wyjaśnij na czym błąd polega.

(1) Niech $R \subseteq A \times A$ będzie relacją symetryczną oraz przechodnią, oraz niech a będzie dowolnie wybranym elementem A. (2) Pokażę, że aRa, co oznaczać będzie że R jest zwrotna. (3) Weźmy taki element $b \in A$, że aRb. (4) Wtedy z symetryczności R dostajemy bRa. (5) Ponieważ aRb oraz bRa, to z przechodniości R otrzymujemy aRa, co kończy dowód.

Błąd jest w zdaniu (3): taki element bnie musi istnieć.

Wersja:

Numer	indeksu:	

s. 103	s. 104	s. 105
s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Jakiej mocy jest zbiór wszystkich trójkątów na płaszczyźnie? A jakiej mocy jest zbiór wszystkich trójkątów, których każdy wierzchołek ma obie współrzędne wymierne? Uzasadnij odpowiedzi.

Zadanie 7 (5 punktów). Jaka jest moc zbioru funkcji $f: \mathbb{N} \to \mathbb{N}$, spełniających równania:

- (a) f(1) = 1,
- (b) f(1000) = 2023, oraz
- (c) $f(a+b) = f(a) + f(b) + 3a^2b + 3b^2a$ dla dowolnych $a, b \in \mathbb{N}$?

Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Niech \sim_{2023} oznacza następującą relację na zbiorze $\{0,1\}^{\mathbb{N}}$:

$$f \sim_{2023} g \stackrel{\text{df}}{\iff} \forall i < 2023 \ f(i) = g(i).$$

Wykaż, że \sim_{2023} jest relacją równoważności, oraz że ma ona tylko skończenie wiele klas abstrakcji. Wskazówka: możesz skorzystać z faktu, że zbiór $\{0,1\}^{\underline{2023}}$ jest skończony.

Wersja:]

Numer indeksu:			

Grupa ⁺ :				
s. 103	s. 104	s. 105		
s. 139	s. 140	s. 141		

Logika dla informatyków

Kolokwium nr 3, 20 stycznia 2023 czas pisania: 30+60 minut

Zadanie 1 (2 punkty). Czy istnieją takie trzy zbiory A, B, C, że $B \not\sim C$, natomiast $B^A \sim C^A$? Podaj dowód bądź stosowny kontrprzykład.

$$A=B=\mathbb{N}, C=\mathbb{R}$$

Zadanie 2 (2 punkty). Rozważmy funkcje $flip: A \times B \to B \times A$, $unflip: B \times A \to A \times B$, $curry: (B \times A)^{A \times B} \to ((B \times A)^B)^A$ i $f: A \to B$, oraz element $a \in A$. W tym zadaniu uznamy wyrażenie za poprawne, jeśli dla każdej użytej w nim funkcji (i dla dowolnych zbiorów A, B i C jej argument należy do dziedziny tej funkcji. Np. wyrażenie flip(a) nie jest poprawne, bo nie dla wszystkich zbiorów A, B i C mamy $a \in A \times B$. Jeśli wyrażenie jest poprawne, to przez jego typ rozumiemy zbiór do którego należy element oznaczany przez to wyrażenie. Np. typem wyrażenia f(a) jest B. W prostokąty obok tych spośród podanych niżej wyrażeń, które są poprawne, wpisz odpowiedni typ wyrażenia. W pozostałe prostokąty wpisz słowo "NIE". Operator \circ oznacza składanie funkcji.

$$f(a) \quad B \quad curry(flip) \quad \boxed{((B \times A)^B)^A} \quad \Big((curry(flip))(a)\Big)(f(a)) \quad B \times A$$

$$flip(a) \quad \boxed{\text{NIE}} \quad curry \circ flip \quad \boxed{\text{NIE}} \quad unflip \circ \Big((curry(flip))(a)\Big) \quad \boxed{(A \times B)^B}$$

Zadanie 3 (2 punkty). Rozważmy relację równoważności na zbiorze liczb naturalnych zdefiniowaną wzorem

$$m \simeq n \iff \lfloor \sqrt{m} \rfloor = \lfloor \sqrt{n} \rfloor.$$

W prostokąt poniżej wpisz moc klasy abstrakcji $[2023]_{\sim}$. Wskazówka: $|\sqrt{2023}| = 44$.

Zadanie 4 (2 punkty). Niech A oznacza zbiór liczb naturalnych parzystych, a B zbiór liczb naturalnych nieparzystych. Zdefiniujmy funkcję $f: A \times B \to \mathbb{N}$ daną wzorem $f(a,b) = \frac{a \cdot b}{2}$. W prostokąty poniżej wpisz obliczone wartości obrazów i przeciwobrazów:

$$f[\{42\}\times B] \hspace{1cm} \{21n\mid n\in B\} \hspace{1cm} \{4n\mid n\in \mathbb{N}\}\times B$$

Przez *obliczoną wartość* rozumiemy tutaj dowolne wyrażenie oznaczające dany zbiór i niezawierające symbolu f.

Zadanie 5 (2 punkty). Wskaż błąd w następującym rozumowaniu: podaj numer błędnego zdania i wyjaśnij na czym błąd polega.

Pokażę, że jeśli relacja $\sim \subseteq X \times X$ jest niepusta, przechodnia i symetryczna, to jest również zwrotna. (1) Weźmy dowolne $x \in X$ oraz dowolne $y \in X$ spełniające $x \sim y$. (2) Ponieważ relacja \sim jest symetryczna, to zachodzi $y \sim x$. (3) Oznacza to zatem, że zarówno $x \sim y$ oraz $y \sim x$, co z przechodniości relacji \sim implikuje $x \sim x$. (4) Zatem \sim jest zwrotna.

Błąd jest w zdaniu (4): nie rozważyliśmy wszystkich elementów $x \in X$.

Wersja:

Numer indeksu	1:

Grupa ¹ :

s. 103	s. 104	s. 105
s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Jakiej mocy jest zbiór wszystkich kwadratów na płaszczyźnie? A jakiej mocy jest zbiór wszystkich kwadratów, których każdy wierzchołek ma obie współrzędne wymierne? Uzasadnij odpowiedzi.

Zadanie 7 (5 punktów). Jaka jest moc zbioru funkcji $f: \mathbb{N} \to \mathbb{N}$, spełniających równania:

- (a) f(1) = 1,
- (b) f(44) = 1936, oraz
- (c) f(a-b) = f(a) 2ab + f(b) dla dowolnych $a, b \in \mathbb{N}$?

Uzasadnij odpowiedź.

Zadanie 8 (5 punktów). Niech \approx_{2023} oznacza następującą relację na zbiorze $\mathcal{P}(\mathbb{N})$:

$$X \approx_{2023} Y \stackrel{\text{df}}{\iff} \forall i < 2023 \ (i \in X \Leftrightarrow i \in Y)$$
.

Wykaż, że \approx_{2023} jest relacją równoważności, oraz że ma ona tylko skończenie wiele klas abstrakcji. Wskazówka: możesz skorzystać z faktu, że zbiór $\mathcal{P}(\underline{2023})$ jest skończony.