Permit Number 106921 and N270

This table lists the maximum allowable emission rates and all sources of air contaminants on the applicant's property covered by this permit. The emission rates shown are those derived from information submitted as part of the application for permit and are the maximum rates allowed for these facilities, sources, and related activities. Any proposed increase in emission rates may require an application for a modification of the facilities covered by this permit.

Air Contaminants Data

Emission Point No. (1)	Source Name (2)	Air Contaminant Name (3)	Emission	Emission Rates	
(±)			lbs/hour	TPY (4)	
		voc	0.41	0.02	
		NO _x	0.78	0.04	
ENG-01	Control Room Emergency Generator	со	1.60	0.08	
	Emergency Generator	SO ₂	<0.01	<0.01	
		РМ	Ibs/hour TPY (4) 0.41 0.02 0.78 0.04 1.60 0.08	<0.01	
		PM ₁₀	0.02	<0.01	
		PM _{2.5}	0.02	<0.01	
	Flare Blower Emergency Generator	voc	0.88	0.05	
		NOx	1.70	0.09	
ENG-02		со	3.30	0.17	
		SO ₂	<0.01	<0.01	
		РМ	0.05	<0.01	
		PM ₁₀	0.05	<0.01	
		PM _{2.5}	0.05	<0.01	
ENG-03		voc	3.70	0.19	
	Emergency Air Compressor	NO _x	3.70	0.19	
		со	3.20	0.16	
		SO ₂	<0.01	<0.01	
		РМ	0.19	<0.01	
		PM ₁₀	0.19	<0.01	
		PM _{2.5}	0.19	<0.01	

ENG-04	Emergency Firewater Pump	voc	3.60	0.18
		NO _x	3.60	0.18
		со	3.10	0.16
		SO ₂	<0.01	<0.01
		РМ	0.18	0.01
		PM ₁₀	0.18	0.01
		PM _{2.5}	0.18	0.01
ENG-07	Frac-3 & 4 Emergency Air Compressor	voc	1.40	0.07
		NO _x	2.60	0.13
		со	5.30	0.27
		SO ₂	<0.01	<0.01
		РМ	0.09	<0.01
		PM ₁₀	0.09	<0.01
		PM _{2.5}	0.09	<0.01
ENG-09	Frac-3 & 4 Emergency Generator	voc	0.86	0.04
		NO _x	1.60	0.08
		со	3.20	0.16
		SO ₂	<0.01	<0.01
		РМ	0.05	<0.01
		PM ₁₀	0.05	<0.01
		PM _{2.5}	0.05	<0.01

ENG-10	Emergency Firewater Pump	VOC	3.30	0.17
	·	NO _x	3.30	0.17
		со	2.80	0.14
		SO ₂	0.01	<0.01
		РМ	0.16	0.01
		PM ₁₀	0.16	0.01
		PM _{2.5}	0.16	0.01
H-5500	Hot Oil Heater H-5500	voc	0.72	
		NO _x	1.54	
		со	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH ₃	0.71	
		РМ	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions	NO _x	7.68	
		СО	46.10	

H-5501	Hot Oil Heater H-5501	voc	0.72	
		NO _x	1.54	
		со	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH ₃	0.71	
		РМ	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions	NO _x	7.68	
		со	46.10	
H-5502	Hot Oil Heater H-5502	voc	0.72	
		NO _x	1.54	
		СО	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH₃	0.71	
		РМ	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions	NO _x	7.68	
		СО	46.10	

H-7500	Hot Oil Heater H-7500	voc	0.72	
		NO _x	1.54	
		со	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH ₃	0.71	
		РМ	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions	NOx	7.68	-
		со	46.10	-
H-7501	Hot Oil Heater H-7501	voc	0.72	
		NOx	1.54	
		СО	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH₃	0.71	
		РМ	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Emissions	NOx	7.68	-
		СО	46.10	-

H-7502	Hot Oil Heater H-7502	voc	0.72	
		NO _x	1.54	
		со	5.76	
		SO ₂	25.26	
		H ₂ S	0.07	
		NH₃	0.71	
		РМ	0.77	
		PM ₁₀	0.77	
		PM _{2.5}	0.77	
	Heater MSS Emissions	NO _x	7.68	-
		со	46.10	-
H-5500/H-5501/H- 5502/H-7500/H-	Hot Oil Heater Cap (6)	voc	-	8.82
7501/H-7502		NO _x	-	35.13
		со	-	93.09
		SO ₂	-	104.71
		H ₂ S	-	0.29
		NH₃	-	11.25
		РМ	-	17.55
		PM ₁₀	-	17.55
		PM _{2.5}	-	17.55
	Heater MSS Emissions (6)	NO _x	-	0.74
	,	СО	-	4.42

H-41500	Hot Oil Heater H- 41500	voc	2.24	
		NO _x	1.92	
		со	7.20	
		SO ₂	13.73	
		H ₂ S	0.07	
		NH ₃	0.88	
		РМ	0.96	
		PM ₁₀	0.96	
		PM _{2.5}	0.96	
	Heater MSS Emissions	NO _x	9.60	
		со	57.60	
H-41501		voc	2.24	
		NO _X	1.92	
		СО	7.20	
		SO ₂	13.73	
	Hot Oil Heater H-	H ₂ S	0.07	
	41501	NH₃	0.88	
		РМ	0.96	
		PM ₁₀	0.96	
		PM _{2.5}	0.96	
	Heater MSS Emissions	NOx	9.60	
		СО	57.60	

H-51500		VOC	2.24	
01000		NOx	1.92	
		СО	7.20	
		SO ₂	13.73	
	Hot Oil Heater H- 51500	H ₂ S	0.07	
		NH₃	0.88	
		PM	0.96	
		PM ₁₀	0.96	
		PM _{2.5}	0.96	
	Heater MSS Emissions	NO _X	9.60	
		со	57.60	
H-51501		voc	2.24	
		NO _X	1.92	
		СО	7.20	
		SO ₂	13.73	
	Hot Oil Heater H- 51501	H ₂ S	0.07	
		NH₃	0.88	
		РМ	0.96	
		PM ₁₀	0.96	
		PM _{2.5}	0.96	
	Heater MSS Emissions	NOx	9.60	
	EIIIISSIUIIS	СО	57.60	

H-41500/H-41501/H- 51500/H-51501		VOC		13.37
		NOx		18.28
	Hot Oil Heater Cap (7)	СО		80.80
		SO ₂		57.24
		H ₂ S		0.28
		NH ₃		10.76
		РМ		15.24
		PM ₁₀		15.24
		PM _{2.5}		15.24
	Hot Oil Heater MSS Emissions (7)	NO _X		0.56
		СО		3.34
H-EP2	Hot Oil Heater H-EP2	VOC	0.30	1.31
		NO _X	1.50	3.94
		СО	5.63	17.41
		SO ₂	0.26	1.13
		NH₃	0.69	2.10
		РМ	0.75	3.29
		PM ₁₀	0.75	3.29
		PM _{2.5}	0.75	3.29
	Heater MSS Emissions	NO _X	7.50	0.12
		со	45.00	0.72

H-61500	Hot Oil Heater H- 61500	VOC	2.47	
		NO _X	1.92	
		со	7.20	
		SO ₂	51.21	
		H ₂ S	0.07	
		NH ₃	0.88	
		PM	0.96	
		PM ₁₀	0.96	
		PM _{2.5}	0.96	
	Heater MSS Emissions	NO _X	9.60	
		со	57.60	
H-61501	Hot Oil Heater H- 61501	VOC	2.47	
		NO _X	1.92	
		СО	7.20	
		SO ₂	51.21	
		H ₂ S	0.07	
		NH ₃	0.88	
		PM	0.96	
		PM ₁₀	0.96	
		PM _{2.5}	0.96	
	Heater MSS Emissions	NO _X	9.60	
		СО	57.60	

H-71500	Hot Oil Heater H- 71500	VOC	2.47	
		NO _X	1.92	
		СО	7.20	
		SO ₂	51.21	
		H ₂ S	0.07	
		NH₃	0.88	
		РМ	0.96	
		PM ₁₀	0.96	
		PM _{2.5}	0.96	
	Heater MSS Emissions	NO _X	9.60	
		СО	57.60	
H-71501	Hot Oil Heater H- 71501	voc	2.47	
		NO _X	1.92	
		СО	7.20	
		SO ₂	51.21	
		H ₂ S	0.07	
		NH₃	0.88	
		РМ	0.96	
		PM ₁₀	0.96	
		PM _{2.5}	0.96	
	Heater MSS Emissions	NO _X	9.60	
		СО	57.60	

H-61500/H-61501/H-	Hot Oil Heater Cap (9)	VOC		14.33
71500/H-71501		NOx		
				18.29
		СО		80.78
		SO ₂		205.80
		H ₂ S		0.28
		NH ₃		9.76
		PM		15.24
		PM ₁₀		15.24
		PM _{2.5}		15.24
	Hot Oil Heater MSS Emissions (9)	NO _X		0.56
		СО		3.34
FI-5600	Flare	voc	0.01	0.06
		NOx	0.35	1.50
		со	1.40	6.10
		SO ₂	<0.01	0.02
FL-02	Flare	voc	0.01	0.06
		NOx	0.35	1.50
		СО	1.40	6.10
		SO2	<0.01	0.02
CT-5601	Cooling Tower CT- 5601	voc	2.52	3.15
		РМ	1.50	6.57
		PM ₁₀	0.60	2.63
		PM _{2.5}	0.15	0.66
CT-7601	Cooling Tower CT- 7601	voc	2.53	4.71
		РМ	1.50	6.57

1	1	-		
		PM ₁₀	0.60	2.63
		PM _{2.5}	0.15	0.66
CT-41601	Cooling Tower CT- 41601	voc	3.01	3.15
		PM	1.80	6.58
		PM ₁₀	0.72	2.63
		PM _{2.5}	0.18	0.66
CT-51601	Cooling Tower CT- 51601	voc	3.70	4.05
	1-11-	PM	2.20	8.44
		PM ₁₀	0.88	3.38
		PM _{2.5}	0.22	0.84
CT-EP2	Cooling Tower CT-EP2	voc	4.49	8.44
		PM	2.68	11.73
		PM ₁₀	1.07	4.69
		PM _{2.5}	0.27	1.17
CT-61601	Cooling Tower CT- 61601	voc	3.73	6.95
		PM	2.20	9.64
		PM ₁₀	0.88	3.86
		PM _{2.5}	0.22	0.96
CT-71601	Cooling Tower CT- 71601	voc	3.73	6.95
		PM	2.20	9.64
		PM ₁₀	0.88	3.86
		PM _{2.5}	0.22	0.96
T-2421	Spent Caustic Tank T- 2421	VOC	0.99	0.01
	-	H₂S	<0.01	<0.001
T-3421	Spent Caustic Tank T- 3421	VOC	0.99	0.01

		H ₂ S	<0.01	<0.001
T 5004		П23	<0.01	<0.001
T-5631	Wastewater Tank T- 5631	VOC	1.69	0.02
T-7631	Wastewater Tank T- 7631	voc	1.69	0.02
CAS-2421	Controlled Emissions from Spent Caustic Tank (EPN T-2421)	VOC	0.05	<0.01
CAS-3421	Controlled Emissions from Spent Caustic Tank (EPN T-3421)	VOC	0.05	<0.01
LOAD-2421	Spent Caustic Loading (T-2421)	voc	0.09	<0.01
LOAD-5631	Wastewater Loading (T-5631)	VOC	0.09	<0.01
LOAD-3421	Spent Caustic Loading (T-3421)	VOC	0.09	<0.01
LOAD-7631	Wastewater Loading (T-7631)	voc	0.09	<0.01
LOAD-SC-3	Spent Caustic Loading (Frac-4, -5, and -6)	voc	0.09	<0.01
LOAD-C3-3	Pressurized Loading (Frac-3 & 4 Contribution)	VOC	0.47	<0.01
LOAD-C3	Pressurized Loading (EP-2, Frac-5 & 6 Contribution)	VOC	0.47	<0.01
FUG-01	EPS and Frac-1 Equipment Leak	VOC	2.18	9.53
	Fugitives (5)	NH ₃	0.13	0.55
FUG-02	Frac-2 Equipment Leak Fugitives (5)	voc	1.20	5.23
FUG-03	Frac-3 Equipment Leak Fugitives (5)	VOC	1.23	5.33
		H₂S	0.01	0.02
FUG-04	Frac-4 Equipment Leak Fugitives (5)	VOC	1.22	5.32
		H ₂ S	0.01	0.02
		NH ₃	0.02	0.10
FUG-EP2	EP-2 Equipment Leak Fugitives (5)	voc	0.24	1.03

	NH ₃	0.20	0.10
Frac-5 Equipment Leak Fugitives (5)	VOC	1.22	5.32
	H ₂ S	0.01	0.02
	NH ₃	0.02	0.10
Frac-6 Equipment Leak Fugitives (5)	VOC	1.22	5.32
(o)	H ₂ S	0.01	0.02
	NH₃	0.02	0.10
MSS Flaring Cap (8)	voc	620.88	12.79
	NO _x	246.65	5.52
	со	1531.80	34.60
	SO ₂	0.25	0.03
	H₂S	<0.01	<0.001
MSS Flaring Cap (EP- 2 Contribution) (8)	VOC	76.88	1.85
	NO _x	69.46	1.67
	со	406.00	9.75
MSS Flaring Cap (Frac- 5 & 6 Contribution) (8)	VOC	384.00	9.24
	NO _x	175.00	4.20
	со	1079.00	25.91
	SO ₂	0.19	<0.01
	H ₂ S	<0.01	<0.01
MSS Degassing	VOC	176.80	3.43
	NH₃	0.47	<0.01
MSS De-gassing (EP-2 Contribution)	VOC	14.50	0.57
	NH ₃	0.10	<0.01
MSS De-gassing	VOC	169.00	1.44
	Frac-6 Equipment Leak Fugitives (5) MSS Flaring Cap (8) MSS Flaring Cap (EP-2 Contribution) (8) MSS Plaring Cap (Frac-5 & 6 Contribution) (8) MSS Degassing MSS De-gassing (EP-2 Contribution)	Frac-5 Equipment Leak Fugitives (5) VOC H₂S NH₃ Frac-6 Equipment Leak Fugitives (5) VOC H₂S NH₃ MSS Flaring Cap (8) VOC MSS Flaring Cap (EP-2 Contribution) (8) VOC MSS Flaring Cap (EP-2 Contribution) (8) VOC MSS Flaring Cap (Frac-5 & CO VOC NOx CO MOX CO NOx CO MOX CO MSS Degassing VOC NH₃ NH₃	Frac-5 Equipment Leak Fugitives (5) VOC 1.22 H₂S 0.01 0.02 Frac-6 Equipment Leak Fugitives (5) VOC 1.22 H₂S 0.01 0.02 MSS Flaring Cap (8) VOC 620.88 NOx 246.65 0.02 CO 1531.80 0.25 H₂S 0.01 0.25 H₂S 0.01 0.01 MSS Flaring Cap (EP-2 Contribution) (8) VOC 76.88 NOx 69.46 0.00 NOx 175.00 0.00 MSS Flaring Cap (Fract S & 6 Contribution) (8) NOx 175.00 NOx 175.00 0.01 NOx 1079.00 0.19 H₂S 0.01 MSS Degassing VOC 176.80 NH₃ 0.47 MSS De-gassing (EP-2 Contribution) VOC 14.50 NH₃ 0.10

Contribution)

		NH₃	0.07	<0.01
		H₂S	<0.01	<0.001
MSS-FUG-5 MSS De-gassing (Frac-5 & 6 Contribution)		VOC	149.00	1.36
		NH ₃	0.07	<0.01
	H₂S	<0.01	<0.01	

- (1) Emission point identification either specific equipment designation or emission point number from plot plan.
- (2) Specific point source name. For fugitive sources, use area name or fugitive source name.
- (3) VOC volatile organic compounds as defined in Title 30 Texas Administrative Code § 101.1

H₂S - Hydrogen Sulfide NO_x - total oxides of nitrogen

SO₂ - sulfur dioxide

PM - total particulate matter, suspended in the atmosphere, including PM₁₀ and PM_{2.5}, as represented

PM₁₀ - total particulate matter equal to or less than 10 microns in diameter, including PM_{2.5}, as

represented

PM_{2.5} - particulate matter equal to or less than 2.5 microns in diameter

CO - carbon monoxide

NH₃ - ammonia

- (4) Compliance with annual emission limits (tons per year) is based on a 12-month rolling period.
- (5) Emission rate is an estimate and is enforceable through compliance with the applicable special condition(s) and permit application representations.
- (6) Annual Emissions represent combined annual emissions from heaters H-5500, H-5501, H-5502, H-7500, H-7501, and H-7502.
- (7) Annual Emissions represent combined annual emissions from heaters H-41500, H-41501, H-51500, and H-51501.
- (8) Emissions represent total combined emission rates from EPNs FL-5600 and FL-02.
- (9) Annual Emissions represent combined annual emissions from heaters H-61500, H-61501, H-71500, and H-71501.

Date:	December 12, 2022
-------	-------------------