PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-122931

(43)Date of publication of application: 28.04.2000

(51)Int.Cl.

G06F 12/14

G06F 9/06

H04L 9/10

(21)Application number: 10-293715

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

15.10.1998

(72)Inventor: MOTAI MASAHIKO

(54) DIGITAL INTEGRATED CIRCUIT

(57)Abstract:

PROBLEM TO BE SOLVED: To securely stop secret data from being accessed from outside and to easily perform reliable inspection at the time of a test by providing a control means which disables the external access to a specific storage area when specific data are written from outside.

SOLUTION: A ROM 15 stores fixed data such as open key data and programs. A RAM 16 provides an I/F area and a computing operation area for data communication with an external computer. Further, an EEPROM 17 functions to rewrite data different for every device and store data without a battery. Then a security circuit 21 as a control means performs control when certain specific data are inputted so that the area where secret data of each circuit part are written can not be accessed from outside. Before the specific data are inputted, respective circuit parts can freely be accessed from outside and a test can easily be conducted.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-122931 (P2000-122931A)

(43)公開日 平成12年4月28日(2000.4.28)

(51) Int.Cl.'	識別記号	FI.	テーマコード(参考)
G06F 12/14	3 2 0	G06F 12/14	3.20A 5B017
9/06	5 5 0	9/06	550Z 5B076
H04L 9/10		HO4L 9/00	621A 5J104

審査請求 未請求 請求項の数10 OL (全 11 頁)

(22)出顧日 平成10年10月15日(1998. 10. 15) (72)発明	株式会社東芝 神奈川県川崎市幸区堀川町72番地 3者 馬波 正彦 神奈川県川崎市幸区柳町70番地 株式会社
!	計者 馬渡 正彦
(72)発明	
	神奈川県川崎市幸区柳町70番地 株式会社
	東芝柳町工場内
(74)代理	上人 100058479
	弁理士 鈴江 武彦 (外6名)
F9-1	(参考) 5B017 AA01 BA01 BA07 BB03 CA12
	5B076 AB10 CA08 FA02 FA14
	5J104 AA01 AA16 EA08 NA27 NA39
·	NA43

(54) 【発明の名称】 デジタル集積回路

(57)【要約】

【課題】この発明は、秘匿データに対しては外部からの アクセスを確実に阻止することができ、テスト時には信 頼性の高い検査を容易に行ない得るようにしたデジタル 集積回路を提供することを目的としている。

【解決手段】外部からのアクセスが可能で、内部に秘匿 すべきデータが書き込まれる特定記憶領域を含む記憶手 段15,16,17を備えたデジタル集積回路におい て、外部から特定データが書き込まれることにより、特 定記憶領域への外部からのアクセスを不可とする制御手 段21を備えている。

1

【特許請求の範囲】・

【請求項1】 外部からのアクセスが可能で、内部に秘匿すべきデータが書き込まれる特定記憶領域を含む記憶 手段を備えたデジタル集積回路において、

外部から特定データが書き込まれることにより、前記特 定記憶領域への外部からのアクセスを不可とする制御手 段を具備してなることを特徴とするデジタル集積回路。

【請求項2】 前記制御手段は、前記特定データが書き 込まれた状態で、その制御出力を外部から変更不能とな ることを特徴とする請求項1記載のデジタル集積回路。

【請求項3】 前記制御手段は、前記特定データが書き 込まれた状態で、その特定データの書き替えが不可とな ることを特徴とする請求項1記載のデジタル集積回路。

【請求項4】 前記制御手段は、前記特定データが書き 込まれた状態で、その特定データの書き替えが不可とな るとともに、その制御出力を外部から変更不能となるこ とを特徴とする請求項1記載のデジタル集積回路。

【請求項5】 前記制御手段は、

外部からデータが書き込まれるもので、データの書き込 みが1回だけ可能なワンタイムメモリと、

予め設定された固定データが記憶された記憶部と、

この記憶部の固定データと前記ワンタイムメモリの内容 とが一致した状態で、前記記憶手段の特定記憶領域への 外部からのアクセスを不可とするための出力を発生する 制御部とを具備してなることを特徴とする請求項1記載 のデジタル集積回路。

【請求項6】 前記制御手段は、

外部からデータが書き込まれるメモリと、

予め設定された固定データが記憶された記憶部と、

この記憶部の固定データと前記メモリの内容とが一致し 30 た状態で、前記記憶手段の特定記憶領域への外部からのアクセスを不可とするための出力を発生するとともに、前記メモリに対する外部からのデータ書き込み及びデータ読み出しを不可とする制御部とを具備してなることを特徴とする請求項1記載のデジタル集積回路。

【請求項7】 前記制御部は、前記記憶手段の特定記憶 領域への外部からのアクセスを不可とするための出力に 基づいて、前記メモリの書き込みイネーブル端を書き込 み不能状態に設定するとともに、前記メモリから読み出 しデータを外部に出力することを制限するゲート手段を 遮断状態に設定することを特徴とする請求項6記載のデ ジタル集積回路。

【請求項8】 前記制御手段は、

外部から初期化が要求された状態で、前記記憶手段の特定記憶領域のアドレスを指定する指定手段と、

この指定手段で指定されたアドレスに記憶された内容が 書き込まれる第1の記憶部と、

予め設定された固定データが記憶された第2の記憶部 と、

この第2の記憶部に記憶された固定データと前記第1の 50

記憶部の内容とが一致した状態で、前記記憶手段の特定 記憶領域への外部からのアクセスを不可とするための出 力を発生する制御部とを具備してなることを特徴とする 請求項1記載のデジタル集積回路。

【請求項9】 前記制御部は、前記記憶手段の特定記憶領域への外部からのアクセスを不可とするための出力が発生された状態で、前記記憶手段の記憶領域を、データの書き込み及び読み出しが共に可能な領域と、データの読み出しのみが可能な領域と、外部からのアクセスが不可な前記特定記憶領域とに分けることを特徴とする請求項8記載のデジタル集積回路。

【請求項10】 前記記憶手段及び前記制御手段は、パッケージ内に封止されていることを特徴とする請求項1 記載のデジタル集積回路。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】この発明は、秘匿すべきデジ タルデータを外部からアクセス不可能に保護するデジタ ル集積回路の改良に関する。

20 [0002]

【従来の技術】周知のように、例えばデジタルデータに 暗号化処理を施すためのデジタル集積回路にあっては、暗号化処理の鍵となるデータや、その暗号化処理アルゴ リズムを実行するためのプログラムデータ等のような秘 匿すべきデータが、内部メモリに記憶されることになる.

【0003】この場合、デジタル集積回路には、その内部メモリ内に記憶された秘匿データが、外部から不正に読み出されたり書き替えられたりすることのないように、つまり、秘匿データを外部からアクセスすることが不可能になるように、保護対策が講じられている。

【0004】一方、この種のデジタル集積回路においては、工場で製造された後、その内部メモリを含む各種の内部回路が正常に動作するか否かを確かめるためのテストが行なわれる。このテストとしては、実際に各種の内部回路に所定のデータを入力して、期待した出力が得られる否かを確認する手法がとられている。

【0005】このため、上記したように、内部メモリに対して、そこに記憶されたデータを外部からアクセス不可能となるように保護対策が施されているという点と、製造時のテストを容易に行なえるようにする点とは、相反する技術となり、このことが、デジタル集積回路の設計製造を困難なものとしている。

【0006】通常、LSI(Large Scale Integrated c ircuit)製造時の検査は、LSIテスターを用いて行なわれており、短時間で済ませることができ、しかも検査されていない回路部分を極力少なくすることが要求されている。特に、LSI内部のRAM(Random Access Me mory)の検査では、その全アドレスに渡って書き込みと読み出しとが正常に行なわれるか否かを調べる必要があ

20

る。

【0007】このためには、LSIの各回路部分毎にそれぞれテストモードを設定し、例えばRAMのテストモードを指定すると、RAMのアドレス端子とデータ端子とがLSIの接続ピンを介してテスターと接続され、また、暗号化処理のための特殊演算回路のテストモードを指定すると、その回路の入出力端子がLSIの接続ピンを介してテスターと接続されるように、LSIを設計している

【0008】一方、外部からアクセス不可能となるよう 10 に保護対策が施される回路部分については、LSI内部の素子を接続するワイヤーを電源端や接地端に接続して固定データを作り、公開された暗号の手続に沿ってのみテストを行なうことが可能になっている。また、検査途中のデータが外部に漏れないように、各回路部分の出力が外部に出ないように考慮されている。

【0009】このように、中間データをLSI外部に取り出すことができず、公開された暗号の手続に沿ってのみしかテストすることができないとなると、特定の回路を検査するのに複数の回路を経由しての検査となるため、テストのための入力データパターンが長くなるとともに、被検査部分の回路素子をできるだけ多く活性化させるということも困難になる。

【0010】特に、秘匿データが、1つ1つのLSI毎、あるいはそのLSIを搭載した1つ1つの機器毎に異なる場合には、例えば特開平7-45782号公報に示されるように、LSI毎あるいは機器毎に異なるデータを書き込み及び読み出しするためのデータチップと、暗号化処理するためのチップとを同一の基板上にモールドする等の処理が必要になってくる。

【0011】ここで、従来では、例えば特開平5-75597号公報等に示されるような、暗号処理LSICが提案されている。この暗号処理LSICは、秘匿データを記憶するメモリ部と、このメモリ部から読み出されるデータの外部への出力可否を制御する制御部と、メモリ部への秘匿データの書き込みアドレスを記憶する記憶部と、この記憶部に記憶された書き込みアドレスとメモリ部への読み出しアドレスとを比較する比較部とを備え、テストモードでかつ比較部の比較結果が一致した場合にのみ、制御部を出力可に制御するようにしたものである。

【0012】しかしながら、この暗号処理LSICでは、テストモードに設定されたとき、記憶部の全記憶内容がリセットされることが必要条件となる。このため、実際の使用状態において、何らかの原因でテストモードに投入されてしまうと、再度、メモリ部に秘匿データを書き込み、その書き込みアドレスを記憶部に記憶させるという作業が必要になるので、使用者にとって取り扱いが不便になるという問題が生じている。

[0013]

4

【発明が解決しようとする課題】以上のように、従来の デジタル集積回路では、秘匿データを外部からアクセス 不可能となるように保護する点と、製造時のテストを容 易に行なえるようにする点とが、それぞれ十分実用に供 し得るレベルにまで達していないという問題を有してい る

【0014】そこで、この発明は上記事情を考慮してなされたもので、秘匿データに対しては外部からのアクセスを確実に阻止することができ、テスト時には信頼性の高い検査を容易に行ない得るようにした極めて良好なデジタル集積回路を提供することを目的とする。

[0015]

【課題を解決するための手段】この発明に係るデジタル 集積回路は、外部からのアクセスが可能で、内部に秘匿 すべきデータが書き込まれる特定記憶領域を含む記憶手 段を備えたものを対象としている。そして、外部から特 定データが書き込まれることにより、特定記憶領域への 外部からのアクセスを不可とする制御手段を備えるよう にしたものである。

【0016】上記のような構成によれば、外部から特定 データが書き込まれる前は、記憶手段に対して特定記憶 領域も含めて外部からアクセス可能であるため、信頼性 の高いテストを容易に行なうことができる。また、外部 から特定データが書き込まれた後は、記憶手段の特定記 憶領域が外部からアクセス不可となるので、秘匿データ に対しては外部からのアクセスを確実に阻止することが できる。

[0017]

【発明の実施の形態】以下、この発明の実施の形態について図面を参照して詳細に説明する。まず、図7は、この実施の形態で説明するデジタルLSIチップ10の外観を示している。このデジタルLSIチップ10は、以下に述べる各種の回路が形成された半導体基板11を樹脂製パッケージ内に封止してなる本体10aと、この本体10aから突出する複数のリード10bとから構成されている。

【0018】図1は、上記半導体基板11に形成された 各種の回路を示している。まず、スクランブル回路12 は、入力された平文データにスクランブル処理を施し、 40 暗号文データに変換して出力している。

【0019】また、ホストI/F(Inter/Face)回路13は、デジタルLSIチップ10の外部に設けられた図示しないコンピュータと通信を行なうためのインターフェースである。このホストI/F回路13は、コンピュータから送出されるアドレスデータ、チップセレクト信号CS、書き込みイネーブル信号WE及び読み出しイネーブル信号RE等を入力する機能と、データをコンピュータと双方向通信する機能と、割り込み信号INT及び待機信号WAIT等をコンピュータに出力する機能とを

50 有している。

【0020】コントロール回路14は、デジタルLSI チップ10内部の制御や、暗号鍵解凍プログラムの演算 制御を行なっている。ROM(Read Only Memory)15 は、公開鍵データやプログラム等の固定データを記憶し ている。RAM16は、外部コンピュータとのデータ通 信を行なう際のI/Fエリアや、計算作業エリアを提供 している。

【0021】さらに、EEP(Electrically Erasable and Programmable)ROM17は、機器毎に異なるデー タを書き替え可能で、電池がなくてもデータを保存する 10 機能を有している。ALU(Arithmetic Logical Unit) 18は、暗号化のための特殊演算を行なう特別の四 則演算器である。

【0022】また、テスト回路19は、外部入力される テストモード信号に基づいて、各回路部分を選択的にデ ジタルLSIチップ10の外部から検査し得る状態に切 り替える。初期化回路20は、機器の電源投入時に供給 される初期化要求信号INITに基づいて、各回路部分 を初期化するための初期化パルスを発生する。

【0023】ここで、セキュリティ回路21は、詳細は 20 後述するが、ある特定のデータが入力されると、各回路 部分の秘匿データが書き込まれている領域を外部からア クセスすることができないように制御する。また、特定 のデータが入力される前は、各回路部分が自由に外部か らアクセスでき、テストを容易に行なえるようになって

【0024】図2は、上記ホストI/F回路13及びセ キュリティ回路21の詳細な構成を示している。すなわ ち、ホストI/F回路13から出力される書き込みデー タWDATAは、セキュリティ回路21のワンタイムR 30 OM22の書き込みデータ入力端に供給されている。

【0025】このワンタイムROM22は、1度だけの データの書き込みを可能とする不揮発性メモリである。 このワンタイムROM22の読み出しデータ出力端は、 そのビット毎に設けられた複数(図では簡単のため1個 のみ示す)のEX (exclusive) オア回路23の一方の 入力端に接続されている。

【0026】これらEXオア回路23の他方の入力端に は、不揮発性のメモリ24に記憶された固定データが供 給されている。これらEXオア回路23の各出力は、オ 40 ア回路25によって論理和演算処理された後、フリップ フロップ回路26にラッチされる。

【0027】すなわち、このEXオア回路23、オア回 路24及びフリップフロップ回路26は、ワンタイムR OM22に書き込まれたデータと、メモリ24に記憶さ れた固定データとの一致を判別している。そして、両デ ータが一致している場合に、L(Low)レベルのディス エーブル信号が、セキュリティ回路21の出力として各 回路部分に供給される。

回路27に供給されて、ホストI/F回路13から出力 される書き込みイネーブル信号WEと、ホストI/F回 路13のアドレスデコーダ28から出力される第4のチ ップセレクト信号CS4と、論理積演算される。このア ンド回路27の出力が、ワンタイムROM22の書き込 みイネーブル端に供給されている。

【0029】図2に示す構成において、まず、デジタル LSIチップ10の製造後の検査時には、ワンタイムR OM22には何もデータが書き込まれておらず、メモリ 24の固定データとの一致がとられていないため、セキ ュリティ回路21からは、H (High) レベルのディスエ ーブル信号が出力されている。

【0030】この状態では、外部から各回路部分が自由 にアクセスでき、容易にテストを行なうことができる。 ただし、ワンタイムROM22は、一旦データを書き込 んでしまうと書き替えができないため、その書き込み読 み出しテストは行なわないようになされている。

【0031】テストが終了した後、その検査用のテスタ ーで直接に、または、外部コンピュータからホストI/ F回路13を介して、ワンタイムROM22に、メモリ 2.4に記憶されている固定データと同じ値の特定データ を書き込む。すると、ワンタイムROM22に書き込ま れたデータと、メモリ24の固定データとが一致するの で、セキュリティ回路21からは、Lレベルのディスエ ーブル信号が出力される。

【0032】この状態では、デジタルLSIチップ10 の各回路部分のうち、秘匿データが書き込まれている部 分が外部からアクセスできないように設定される。そし て、このようにワンタイムROM22に、メモリ24に 記憶されている固定データと同じ値の特定データが書き 込まれると、ワンタイムROM22の内容は書き替える ことができないため、以後、ディスエーブル信号はLレ ベルに固定され、秘匿データが確実に保護されることに

【0033】図3は、上記したディスエーブル信号を発 生するための他の例を示している。すなわち、セキュリ ティ回路21には、ワンタイムROM22に代えてEE PROM29が設置されている。そして、ホストI/F 回路13から出力される書き込みデータWDATAが、 EEPROM29の書き込みデータ入力端に供給されて

【0034】また、上記フリップフロップ回路26から 出力されるディスエーブル信号と、ホストI/F回路1 3から出力される書き込みイネーブル信号WEと、ホス トI/F回路13のアドレスデコーダ28から出力され る第4のチップセレクト信号CS4とを論理積演算する アンド回路27の出力が、EEPROM29の書き込み イネーブル端に供給されている。

【0035】さらに、EEPROM29の読み出しデー 【0028】また、このディスエーブル信号は、アンド 50 夕出力端は、上記EXオア回路23の一方の入力端に接 続されるとともに、3ステートバッファ30を介して、 読み出しデータRDATAの伝送ラインに接続されている。

【0036】そして、フリップフロップ回路26から出力されるディスエーブル信号と、ホストI/F回路13から出力される読み出しイネーブル信号REと、ホストI/F回路13のアドレスデューダ28から出力される第4のチップセレクト信号CS4とを論理積演算するアンド回路31の出力が、3ステートバッファ30のイネーブル端に供給されている。

【0037】図3に示す構成において、外部コンピュータによってセキュリティ回路21のEEPROM29に、メモリ24に記憶されている固定データと同じ値の特定データを書き込む。すると、EEPROM29に書き込まれたデータと、メモリ24の固定データとが一致するので、セキュリティ回路21からは、Lレベルのディスエーブル信号が出力される。

【0038】このようにして、ディスエーブル信号が一旦Lレベルになると、アンド回路27の出力、つまり、 EEPROM29の書き込みイネーブル端がLレベルに 20 なるので、以後、EEPROM29に対するデータの書き替えは行なわれないようになる。

【0039】また、ディスエーブル信号が一旦Lレベルになると、アンド回路31の出力、つまり、3ステートバッファ30のイネーブル端がLレベルになるので、以後、EEPROM29から読み出された特定データが読み出しデータRDATAの伝送ラインに供給されないようになり、特定データが外部に読み出されることが防止されるようになる。

【0040】一方、デジタルLSIチップ10の製造直 30後のテスト時には、EEPROM29には何もデータが 書き込まれていないので、EEPROM29のデータと メモリ24に記憶された固定データとは一致せず、ディ スエーブル信号はHレベルとなっている。

【0041】このため、上記した特定データ以外のデータであれば、EEPROM29に対して、外部からのデータの書き込み及び読み出しが可能となり、EEPROM29のテストも容易に行なうことができる。

【0042】なお、図3に示した構成において、EEP ROM29へのデータ書き込みに当たっては、同一デー 40 タを繰り返し書き込む必要があるメモリもあり、この場合には、データの書き込みが完了するまでの期間中、フリップフロップ回路26の出力をHレベルに保持しておく必要があるが、その保持手段についての説明は省略する。

【0043】図4は、上記したディスエーブル信号を発生するためのさらに他の例を示している。すなわち、セロスリティ回路21には、ワンタイムROM22やEEPROM29に代えて、レジスタ32が設置されてい 号, Lレベルの書き込みイネーブル信号が出力される。このレジスタ32は、そのデータ入力端が読み出し 50 み出しイネーブル信号が出力される。

データRDATAの伝送ラインに接続され、そのデータ 出力端がEXオア回路23の一方の入力端に接続されて

いる。また、このレジスタ32のクロック入力端には、 初期化回路20から出力されるストローブ信号が供給さ れている。

【0044】また、セキュリティ回路21には、ロジック回路33が設置されている。このロジック回路33は、ホストI/F回路13から出力される書き込みイネーブル信号WE, 読み出しイネーブル信号RE, 第1乃至第3のチップセレクト信号CS1~CS3と、フリップロップ回路26から出力されるディスエーブル信号と、初期化回路20から出力される初期化パルスとに基づいて、前記EEPROM17に対する、チップセレクト信号CS, 書き込みイネーブル信号WE及び読み出しイネーブル信号REを生成している。

【0045】なお、このEEPROM17は、その書き 込みデータ入力端が書き込みデータWDATAの伝送ラ インに接続され、その読み出しデータ出力端が読み出し データRDATAの伝送ラインに接続されている。

【0046】さらに、セキュリティ回路21は、EEP ROM17の特定のアドレスA1を指定するためのアドレスデータが書き込まれたメモリ34を有しており、このメモリ34に書き込まれたアドレスデータと、ホスト I/F回路13から出力される下位アドレスデータとが、初期化パルスで制御されるスイッチ35によって選択的にEEPROM17に導かれるようになっている。

【0047】ここで、上記ロジック回路33では、CS出力=CS1+CS2+CS3+初期化パルスのバー、WE出力=(CS1+CS2*ディスエーブル信号+CS3*ディスエーブル信号)*入力WE、RE出力=(CS1+CS2+CS3*ディスエーブル信号)*入力RE+(初期化パルスのバー)なる演算を行なうことにより、チップセレクト信号CS,書き込みイネーブル信号WE及び読み出しイネーブル信号REをそれぞれ生成している。

【0048】図4に示す構成において、製造直後のテスト時に初期化回路20に初期化要求信号INITを供給すると、初期化回路20は、Lレベルの初期化パルスを発生する。すると、スイッチ35は、メモリ34側に切り替わり、メモリ34に記憶されているアドレスデータがEEPROM17に供給される。

【0049】また、この時点では、ホストI/F回路13から出力される書き込みイネーブル信号WEと読み出しイネーブル信号は共にLレベルで、チップセレクト信号CS1~CS3は不定であり、フリップフロップ回路26から出力されるディスエーブル信号はHレベルとなっているが、初期化パルスがLレベルであるために、ロジック回路33からは、Hレベルのチップセレクト信号、Lレベルの書き込みイネーブル信号、Hレベルの読み出してネーブル信号が出力される。

【0050】 このため、EEPROM17は、アドレス A1に記憶されているデータ(現時点では何も書かれて いない)の読み出し状態となり、読み出されたデータが 読み出しデータRDATAの伝送ラインに出力されるこ とになる。

【0051】その後、初期化回路20に対する初期化要 求信号INITの供給が停止されると、初期化回路20 からは、1クロック期間分Hレベルとなるストローブ信 号が発生されるので、読み出しデータRDATAの伝送 ラインに出力されていたデータが、レジスタ32にラッ 10 **チされる。そして、これよりさらに1クロック期間経過** 後、初期化パルスがHレベルになるので、スイッチ35 が下位アドレスデータの伝送ライン側に切り替えられ

【0052】この場合、レジスタ32にラッチされたデ ータは何も書かれていなかった値であるから、メモリ2 4の固定データとは一致せず、フリップフロップ回路2 6からはHレベルのディスエーブル信号が出力される。 すると、ロジック回路33では、上式の演算が、CS出 カ=CS1+CS2+CS3、WE出力=(CS1+C 20) S2+CS3) *入力WE、RE出力=(CS1+CS 2+CS3) *入力REとなる。つまり、EEPROM 17の全アドレス領域が外部からアクセス可能になり、 テストが容易に行なわれる状態となる。

【0053】この状態で、EEPROM17のアドレス A1に、メモリ24に記憶されている固定データと同じ 値の特定データを書き込み、再度、初期化回路20に対 して初期化要求信号を供給して停止させる。すると、今 度は、EEPROM17のアドレスA1に記憶されてい る特定データがレジスタ32にラッチされることにな り、その結果、フリップフロップ回路26からはLレベ ルのディスエーブル信号が出力されることになる。

【0054】このとき、ロジック回路33では、上式の 演算が、CS出力=CS1+CS2+CS3、WE出力 =CS1*入力WE、RE出力= (CS1+CS2) * 入力REとなる。つまり、EEPROM17に対し、チ ップセレクト信号CS1で指定される領域について書き 込み及び読み出しを可能とし、チップセレクト信号CS 2で指定される領域について書き込み不可で読み出しを 可能とし、チップセレクト信号CS3で指定される領域 40 について書き込み及び読み出しを不可とするように制御 している。

【0055】図5 (a) は、EEPROM17のアクセ ス領域を示している。図中上部がアドレス値の小さい領 域であるとする。外部から指定されたアドレスに基づい て、ホストI/F回路13で生成されたチップセレクト 信号CS1で指定される領域では、外部からの読み出し と書き込みとが共に可能となっている。

【0056】また、外部から指定されたアドレスに基づ いて、ホストI/F回路13で生成されたチップセレク 50

ト信号CS2で指定される領域では、外部からの読み出 しのみが可能となっている。さらに、外部から指定され たアドレスに基づいて、ホストI/F回路13で生成さ れたチップセレクト信号CS3で指定される領域では、 外部からの読み出しと書き込みとが共に不可となってい

【0057】そして、前記メモリ34に書き込まれてい るアドレスA1は、チップセレクト信号CS3で指定さ れる領域のアドレスとなっている。このため、チップセ レクト信号CS3で指定される領域に秘匿データを書き 込み、アドレスA1に固定データと同じ特定データを書 き込んで、初期化することにより、秘匿データを外部か らアクセス不可能にすることができる。

【0058】このようなEEPROM17のアクセス不 能領域には、秘密を要する鍵データや暗号の非公開パラ メータ、あるいは非公開の暗号処理アルゴリズムの実行 プログラム等を書き込むことが有効である。また、EE PROM17の読み出し可能領域には、公開鍵データ等 を書き込むことが有効である。

【0059】暗号の非公開パラメータには、機器毎に値 が異なるデータと、機器毎には同一値となるデータとが あり、後者のデータは、図1に示したROM15に書き 込むことも可能であるが、EEPROM17のアクセス 不能領域に書き込む方が望ましい。

【0060】なぜならば、ROM15に書き込んだ場 合、EEPROM17のアドレスA1に書き込んだ特定 データが、何らかの原因で固定データと異なる値に変化 して記憶されてしまうと、ROM15が外部からアクセ ス可能となって秘匿データが読み出されることになる。

【0061】これに対し、EEPROM17のアクセス 不能領域に書き込むと、製造検査が可能となるだけでな く、EEPROM17のアクセス不能領域に書き込まれ たデータが何らかの原因で変化する場合には、同一領域 に書き込まれた他の非公開データも同じように変化して、 いると考えられるので、元の正規の非公開データが読み 出されることは防止することができる。

【0062】図5 (b) は、デジタルLSIチップ10 内のRAM16のアクセス領域を示している。このRA M16に対しても、EEPROM17の場合と同様に、 チップセレクト信号CSiで指定される外部からの読み 出し書き込み可能領域と、チップセレクト信号CSi+ 1で指定される外部からの読み出しのみ可能領域と、チ ップセレクト信号CSi+2で指定される外部からのア クセス不可領域とを設定することができる。

【0063】そして、例えば、このRAM16の読み出 し書き込み可能領域は、外部とのデータ通信領域として 使用され、読み出しのみ可能領域は、内部状態を示すフ ラグ等の記憶領域として使用され、アクセス不能領域 は、暗号処理時における中間データ等の非公開データを 処理するために使用される。

10

30

【0064】図6は、スクランブル処理における、その テストと秘匿データの保護について説明している。すな わち、スクランブル回路12は、入力データにスクラン ブル処理を施すシャッフル回路12aと、ホストI/F 回路13やコントロール回路14からのアドレスをデコ ードするアドレスデコーダ12bと、スクランブルキー を書き込むレジスタ12cと、スクランブルのモードを 決めるコントロールレジスタ12dと、スクランブル回 路12の状態や入力データの状態を示す状態レジスタ1 2 e とを含んでいる。

【0065】また、コントロール回路14は、ゼネラル レジスタ14aと、命令レジスタ14bと、アドレス発 生器14cとを含んでいる。さらに、暗号鍵解凍のため の特殊演算器であるALU18は、入力レジスタ18a と、出力レジスタ18bと、演算部18cとを含んでい る。

【0066】外部から、コントロール回路14の命令レ ジスタ14bに命令が書き込まれると、コントロール回 路14は、その命令に対応して、デジタルLSIチップ 10の各回路を制御する。例えばスクランブルキーの解 20 凍であるとすると、外部からRAM16に暗号鍵データ が書き込まれた後、その鍵の解凍命令が命令レジスタ1 4 bに書き込まれる。

【0067】コントロール回路14は、RAM16の暗 号鍵データをALU18の入力レジスタ18aに書き込 む。すると、ALU18の演算結果が、出力レジスタ1 8 b に 現れる。 コントロール 回路 1 4 は、出力レジスタ 186のデータをゼネラルレジスタ14aに読み込み、 スクランブル回路12のレジスタ12cに書き込むとい う一連のプログラムを実行する。外部からの命令実行が 30 終了すると、コントロール回路14は、その内部のステ ータスフラグを立て、あるいは割り込みを発生させて外 部に通知する。

【0068】デジタルLSIチップ10の製造検査時 は、テストモードデータをテスト回路19に与えて、各 回路部分毎にテストができるようにする。例えばスクラ ンブル回路12をテストする場合には、ホストI/F回 路13を介してスクランブル回路12の全てのレジスタ が外部からアクセスできるように、内部接続が制御され る。

【0069】その後、仮のスクランブルキーをレジスタ 12cに書き込み、仮の規定データを入力データとして シャッフル回路12aに供給する。そして、所定の期待 値データが出力データとして得られるか否かを判別す る。もし、スクランブル回路12の一部が不良であった 場合には、出力データが期待値と異なるので不良品であ ると判断することができる。ALU18についても同様 な手法でテストすることができる。

【0070】ここで、スクランブル回路12のレジスタ 12c, コントロール回路14のゼネラルレジスタ14 50 23…EXオア回路、

a 及びALU18の出力レジスタ18 bには、秘匿すべ きデータがそれぞれラッチされているため、これらレジ スタ12c, 14a, 18bの内容を外部からアクセス できないようにすることが、肝要なことになる。

【0071】上記したセキュリティ回路21によって、 ディスエーブル信号がHレベルのとき、内部の回路を自 由に外部からアクセス可能とし、ディスエーブル信号が Lレベルのとき、上記レジスタ12c,14a,18b の内容を外部からアクセスできないように設定すること 10 で、テストを容易に行なうことができ、しかも秘匿デー タを確実に保護することができるようになる。なお、こ の発明は上記した実施の形態に限定されるものではな く、この外その要旨を逸脱しない範囲で種々変形して実 施することができる。

[0072]

【発明の効果】以上詳述したようにこの発明によれば、 秘匿データに対しては外部からのアクセスを確実に阻止 することができ、テスト時には信頼性の高い検査を容易 に行ない得るようにした極めて良好なデジタル集積回路 を提供することができる。

【図面の簡単な説明】

【図1】この発明に係るデジタル集積回路の実施の形態 を示すブロック構成図。

【図2】同実施の形態における要部の一例を示すブロッ ク構成図。

【図3】同実施の形態における要部の他の例を示すブロ ック構成図。

【図4】同実施の形態における要部のさらに他の例を示 すブロック構成図。

【図5】同実施の形態におけるメモリのアクセス領域を 説明するために示す図。

【図6】 同実施の形態におけるスクランブル動作を説明 するために示す図。

【図7】同実施の形態におけるデジタルLSIチップを 示す外観図。

【符号の説明】

10…デジタルLSIチップ、

11…半導体基板、

12…スクランブル回路、

13…ホストI/F回路、

14…コントロール回路、

15...ROM、

16...RAM,

17...EEPROM,

18 ··· ALU、

19…テスト回路、

20…初期化回路、

21…セキュリティ回路、

22…ワンタイムROM、

12

24…メモリ、

25…オア回路、

26…フリップフロップ回路、

27…アンド回路、

28…アドレスデコーダ、

29 ··· EEPROM、

30…3ステートバッファ、

31…アンド回路、

32…レジスタ、

33…ロジック回路、

34…メモリ、

35…スイッチ。

[図1]

【図2】

【図3】

[図4]

•

【図5】

【図6】

[図7]

