スキルシート

言語:Python, Stata, R

フレームワーク: Django

クラウド:AWS

インフラ管理: Docker

機械学習: Jupyter notebook, pandas, NumPy,

scikit-learn, Streamlit, Tensorflow, PyTorch...

データベース:SQL(勉強中)

そのほか: Github

1日本で上映中の最新映画の情報収集

概要

Filmarksサイトの「上映中の最新映画おすすめ人気ランキング」をスクレイピングし、映画の各種情報を収集し、Excelにまとめた。フィルターで見たい映画を絞り込んだ。また、ポスターをダウンロードし、JPGファイルに対応する映画名をつけた。

使用技術

Windows / Python3, selenium, pillow, urllibなど

図 1 Filmarksサイトの「上映中 の最新映画おす すめ人気ランキ ング」画面 (2022年12月04 日)

4	A	В	С	D
1	映画名 ▼	上映日 🌃	製作国 🌃	評価点数 🌃
3	劇場版 Free!-the Final Stroke- 後編	2022年04月22日	日本	4.3
7	ファーストミッション	2022年05月06日	日本	4.3
10	映画 五等分の花嫁	2022年05月20日	日本	4. 2
14	劇場版 おいしい給食 卒業	2022年05月13日	日本	4.2
17	銀河英雄伝説 Die Neue These 激突 第三章	2022年05月13日	日本	4. 2
56	機界戦隊ゼンカイジャーVSキラメイジャーVSセンパイジャー	2022年04月29日	日本	4.2
65	シネマ歌舞伎 桜姫東文章 下の巻	2022年04月29日	日本	4. 2
122	流浪の月	2022年05月13日	日本	4.1
134	RE:cycle of the PENGUINDRUM 前編 君の列車は生存戦略	2022年04月29日	日本	4. 1
233	杜人(もりびと) 環境再生医 矢野智徳の挑戦	2022年04月15日	日本	4. 1
235	シネマ歌舞伎 桜姫東文章 上の巻	2022年04月08日	日本	4. 1
316	ハケンアニメ!	2022年05月20日	日本	4.0
408	名探偵コナン ハロウィンの花嫁	2022年04月15日	日本	4.0
442	マイスモールランド	2022年05月06日	日本	4.0
452	銀河英雄伝説 Die Neue These 激突 第二章	2022年04月01日	日本	4. 0

図 2 2022年5月22日22:30時点で、日本で上映中の462本の映画の名・上映日・製作国・評価点数をExcelにまとめた。

フィルターをかけ、「上映日」の期間は"2022年04月~05月"、「製作国」は"日本"、「評価点数」は"4.0以上"の映画を絞り込んだ。

図3名付けたポスターのJPGファイル

成果

今回の結果を判断基準の一つとして、「ハケンアニメ!」と「名探偵コナン ハロウィンの 花嫁 | のチケットを購入した。

2 タイタニック号沈没事故の生存者の傾向

概要

タイタニック号沈没事故の当事者の個人情報データを加工し、性別・年齢・船室等級などの情報を組み合わせて可視化することによって、生存者の傾向を分析した。

使用技術

Windows / Python3, seaborn, numpy, pandas, matplotlib, scipyなど

仮説:1.女性・子供の生存率が高い。若年男性より、優先的に救命ボートに乗船されたからだ。

2.一等船室(3.乗船料金が高い)乗客の生存率が高い。人数が少ないので、客室係より直接的な支援を受けたからだ。「4.乗船港」または「5.親戚の数」は生存率と関連性がある。

図1 性別・年齢別の生存数のグラフ。左側は女性、右側は男性。緑色は生存者、赤色は死亡者。

図4 乗船港別・船室等級別・性別の生存率のグラフ。 黒色は男性、ブルーは女性。

図2 性別・船室等級別・ 年齢別の生存数のグラフ。 黄色は生存者、ブルーは死 亡者。

図3 性別・船室等級別・ 乗船料金別の生存数のグラ フ。黄色は生存者、ブルー は死亡者。

図5 親戚(兄弟や配偶者・ 親や子供)と同乗する人の生 存率のグラフ。

成果

生存者の傾向は判明できる。1. 女性・子供の生存率は若年男性より高い。2.一等船室乗客の生存率は二等と三等船室乗客より高い。3. 乗船料金が高ければ、乗客の生存率が高くなる。4.港Qと港Sで乗船する女性の生存率は男性より高いが、港Cでは逆になる。5.同乗する親戚の数は3人まで生存率は高くなるが、4人以上になると、低くなる。

3 お弁当の需要予測

概要

お弁当の販売情報から曜日やメニュー等の複数の変数を利用し、線形回帰モデルやアンサンブル学習を適用し、販売されているお弁当の販売数を予測するモデルを作成した。

使用技術

Windows / Python3, seaborn,numpy, pandas, sklearnなど

図1 目的変数(販売数)と説明変数(曜日、天気、メインメニューの名前、イベント)の関係を箱ひげ図で確認

図2 線形回帰の予測値と実数値のグラフ , _____

図4 testデータの予測のグラフ

図3 アンサンブル学習後の予測値と実数値のグラフ

成果

お弁当の販売数を予測するモデルを作成した。コンペに参加して、予測値のRMSEは 9.3794178となった。

4 毒キノコの分類

概要

キノコの特性データから重要である特徴値だけを利用し、決定木を適用し、毒キノコの分類を行った。

使用技術

Windows / Python3, numpy, pandas, sklearn, matplotlibなど

図1 第一回の決定木の学習後、特徴値重要度の高い順にプロットする

図2 前回の重要度が高い特徴値だけを残して、第二回の決定木の学習後、特徴値重要度の高い順にプロット

4	A	В
1	1	p
2	4	
3	6	e
4	8	р
5	9	p
6	12	
7	14	p
8	15	e
9	17	e
10	18	e
11	20	p
12	22	p
13	23	e
14	29	p
15	30	р
16	31	
17	32	e
18	33	e
19	34	e
20	36	e
21	37	p
22	38	e
23	39	e
24	42	p
25	44	
26	45	p
27	48	e
28	49	e
29	50	p
30	51	p

57 e

59 p

32

33

図3 テストデータの予測を行う

成果

毒キノコを分類するモデルを作成した。コンペに参加して、予測値の暫定評価は 1.0000000となった。

5エンジニア職年収データの収集

概要

Webサイト「indeed」でスクレイピングし、5つのエンジニア職(データエンジニア、データアナリスト、データサイエンティスト、機械学習エンジニア、データアーキテクト)の年収データを収集。得られたデータのヒストグラムを作成した。

使用技術

Windows / Python, pandas, numpy, streamlit, seleniumなど

図1 indeedの求人検索画面

図 2 indeedの求人検索結果画面 (2022年12月4日)

図3 職種別最低年収

図4 職種別平均年収

図4 職種別最高年収

図4 職種別平均年収概要

成果

全体的に見ると、データサイエンティストの求人数は最も多い。機械学習エンジニアの最低年収の最頻値は最も高い。データエンジニアの最高年収と平均年収の最頻値が一位となる。職種別平均年収の平均値を求めると、データエンジニア求人別の平均年収の平均値は871万円であることは分かる。

6製品の在庫管理API

概要

製品の在庫管理の FastAPI を作成した。製品名、製品価格といった情報を登録・参照・更 新・削除できた。操作に不備があった場合、エラーコードを表示した。このFastAPIをAWS にデプロイした。

使用技術

fastAPI: Windows / Python3, fastapi, uvicorn, sqlalchemyなど

検証:insomnia, AWS

図1 データを登録する。

登録したデータを読み込む。 図3 登録したデータを更新する。

図6 FastAPIをAWSに デプロイした。

http://35.78.94.95/docs

図 5

データを登録・更新する場合

- ・受け取った JSON の項目が、product name, price が揃っていなか った場合、{"error code": "1"}を返す
- ・price の値が数字ではなかった場合、{"error_code": "2"}を返す
- ・price の値がマイナスだった場合、{"error code": "3"}を返す

データを削除する場合。

・JSON の product name のデータがデータベースに無い場合、 {"error code": "4"}を返す

図4 登録したデータを削除する。

成果

製品の在庫管理APIを完成した。製品情報の登録・参照・更新・削除やエラーコードの表 示などができた。さらに、AWSにデプロイした。

7LSGANによるウサギ画像の生成

概要

LSGAN(Least Square Generative Adversarial Networks)をPyTorchで実装し、ImageNetから収集したウサギ画像を訓練データとして学習し、それらの画像データと似たような新しい画像データを生成した。

使用技術

Windows / Python (Google Colab), numpy, matplotlib, PyTorchなど

図1 ウサギ画像データ

図 2 Epochs: 400まで学習 して、生成した画像。

図4 Epochs: 1180まで学 習して、生成した画像。

成果

GPUの処理速度やコンピューティングユニットの制限によって、Epochs: 1180までしか学習していなかった。まだはっきり認識できないけど、ウサギらしい画像が出できた。

8魯迅チャットボット

概要

魯迅の小説を学習データに使い、文章を予測できるようにSeq2Seqのモデルを訓練し、魯迅風の返事や対話文を生成した。魯迅チャットボットを作った。

使用技術

Windows / Python (Google Colab), numpy, keras, pykakasi, pickleなど

図1 漢字をひらがなに変換する。 テキストデータをまとめる。

魯迅A: かれはこういっていると、かれはこのときこんなにんをくっっていたが、それはいったいのかんじょうのなかにはなしをしていた。

魯迅B: そこでかれはこのときこういうにんをかんじた。 魯迅A: かれらはかれにかえってきた。

魯迅B: そうしてもういちどたっているので、それはいったいにんからあQのまえにとびだしていた。

図4 モデル同士を会話させる。

図 2 構築したSeq2Seqのモデル を使って、学習を行って。誤差の 推移を確認。

Input: ジョバンニさん。

Response: あなたはこんどはおおきなこえでした。

Input: あなたはわかっているのでしょう。 Response: ジョバンニは、なにかおもいました。

Input: ジョバンニはせいよくたちあがりましたが、たってみるともうは Response: そしてそのときは、あおいひかりをして、そのときあたまをあ

Input: ザネリがまえのせきからふりかえって、ジョバンニをみてくすっ Response: ジョバンニは、もうそのときあるいていきました。

Input: ジョバンニはもうどぎまぎしてまっあかになってしまいました。 Response: そしてそのまえにはしっているのでした。

図3 訓練データの文を使って、返ってくる返答を確認。

魯迅bot: こんにちは、屈さん。

屈: こんにちは。

魯迅bot: やまのなかにはおおぜいのにんがあった。

屈: なにたべましたか。

魯迅bot: おまえはほんとうにかんじて、あQのまえにとうりゃくはない。

屈: こんばんは。

魯迅bot: やくにんのたいからあQのおもいでした。

屈: さょうなら。

魯迅bot: おまえはおまえとおるはねえ。

図4 魯迅チャットボットと会話する。

成果

モデル同士の会話において、返答が似たような文章になる傾向があった。魯迅ボットと会話して、正確な返答が来ていないけど、"会話をしている"という感じがあった。