Appendices

A DATASETS

Table 1: Dataset characteristics. The subsequent columns refer to the dataset name, the number of numerical and binary features, the number of observations, and the count of classes. The first 31 datasets presented in the table come from the UCI Machine Learning Repository (Kelly *et al.*, 2023). The next four are from Breiman (1998), and the last one is from Breiman *et al.* (1984).

Dataset	Numerical features	Binary features	Observations	Classes
Abalone	7	3	4172	23
Adult	6	85	48790	2
Arrhythmia	194	64	420	12
Audiology (Standardized)	0	89	171	18
Australian Credit Approval	6	32	690	2
Balance Scale	0	20	625	3
Breast Cancer Wisc. (Diag.)	30	0	569	
Breast Cancer Wisc. (Orig.)	9	0	449	2
Congressional Voting Rec.	0	48	342	2 2 2 2
Echocardiogram	6	1	62	2
Ecoli	5	1	336	8
German Credit Data	6	53	1000	2
Glass Identification	9	0	213	6
Heart	7	13	270	2
Hepatitis	6	27	148	2
Horse Colic	7	140	368	2 2
Image Segmentation (Stat.)	18	0	2086	7
Ionosphere	32	1	350	2
Iris	4	0	149	3
Labor Relations	8	29	57	2
Liver Disorders	5	0	341	2
Optical Recognition (Digits)	61	0	1797	10
Parkinsons	22	0	195	2
Pima Indians Diabetes	8	0	768	2
Sonar, Mines vs. Rocks	60	0	208	2
Soybean (Large)	0	132	631	19
Tic-Tac-Toe Endgame	0	27	958	2
Thyroid Disease	5	0	215	3
Vehicle Silhouettes	18	0	845	4
Vowel Recognition	10	0	990	11
Wine	13	0	178	3
Ringnorm	20	0	300	2
Threenorm	20	0	300	2 2 2 3
Twonorm	20	0	300	2
Waveform	21	0	300	3
LED Display Domain	0	24	200	10

B DETAILED RESULTS

Table 2: Classification accuracy (mean ± standard deviation) for the Abalone dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	26.368 ± 0.719	25.959 ± 0.753	26.345 ± 0.759	26.682 ± 0.766	26.718 ± 0.711	26.801 ± 0.703	25.984 ± 0.799
0.4	25.777 ± 0.744	25.439 ± 0.769	25.835 ± 0.764	26.229 ± 0.754	26.457 ± 0.746	26.584 ± 0.714	25.290 ± 0.766
0.6	25.323 ± 0.741	25.032 ± 0.750	25.447 ± 0.748	25.963 ± 0.774	26.256 ± 0.750	26.388 ± 0.740	24.761 ± 0.781
0.8	25.031 ± 0.746	24.732 ± 0.780	25.206 ± 0.767	25.729 ± 0.747	25.970 ± 0.775	26.190 ± 0.803	24.458 ± 0.777
1.0	24.825 ± 0.750	24.588 ± 0.719	25.017 ± 0.762	25.595 ± 0.762	25.840 ± 0.775	26.050 ± 0.730	24.142 ± 0.731
1.2	24.696 ± 0.726	24.346 ± 0.720	24.773 ± 0.721	25.243 ± 0.761	25.553 ± 0.735	25.738 ± 0.770	23.953 ± 0.724
2.0	24.294 ± 0.752	24.027 ± 0.726	24.383 ± 0.751	24.840 ± 0.768	25.173 ± 0.771	25.373 ± 0.797	23.452 ± 0.776
3.0	24.123 ± 0.747	23.883 ± 0.739	24.038 ± 0.776	24.445 ± 0.773	24.758 ± 0.739	24.932 ± 0.753	23.112 ± 0.814
4.0	23.970 ± 0.710	23.775 ± 0.714	23.861 ± 0.740	24.154 ± 0.738	24.502 ± 0.772	24.686 ± 0.753	22.930 ± 0.787
5.0	23.918 ± 0.725	23.753 ± 0.760	23.806 ± 0.723	23.972 ± 0.733	24.295 ± 0.713	24.489 ± 0.800	22.779 ± 0.835

Table 3: Results for the Adult dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	86.315 ± 0.151	86.182 ± 0.152	86.266 ± 0.146	86.329 ± 0.152	86.053 ± 0.160	85.977 ± 0.157	86.270 ± 0.150
0.4	86.168 ± 0.151	86.068 ± 0.154	86.220 ± 0.144	86.347 ± 0.146	86.224 ± 0.155	86.167 ± 0.157	86.098 ± 0.154
0.6	85.977 ± 0.153	85.879 ± 0.157	86.112 ± 0.152	86.305 ± 0.146	86.300 ± 0.154	86.250 ± 0.152	85.886 ± 0.160
0.8	85.798 ± 0.159	85.717 ± 0.165	86.002 ± 0.158	86.245 ± 0.157	86.341 ± 0.154	86.292 ± 0.153	85.673 ± 0.168
1.0	85.654 ± 0.156	85.576 ± 0.157	85.908 ± 0.150	86.192 ± 0.150	86.363 ± 0.151	86.319 ± 0.155	85.482 ± 0.171
1.2	85.542 ± 0.157	85.464 ± 0.155	85.715 ± 0.158	86.052 ± 0.152	86.420 ± 0.152	86.385 ± 0.155	85.302 ± 0.171
2.0	85.261 ± 0.157	85.182 ± 0.158	85.424 ± 0.156	85.822 ± 0.153	86.465 ± 0.153	86.428 ± 0.157	84.805 ± 0.174
3.0	85.120 ± 0.154	85.049 ± 0.158	85.145 ± 0.157	85.542 ± 0.160	86.481 ± 0.153	86.475 ± 0.156	84.471 ± 0.192
4.0	85.063 ± 0.157	84.993 ± 0.157	85.028 ± 0.162	85.344 ± 0.154	86.447 ± 0.156	86.484 ± 0.155	84.284 ± 0.202
5.0	85.041 ± 0.157	84.979 ± 0.163	84.986 ± 0.163	85.214 ± 0.159	86.305 ± 0.156	86.462 ± 0.151	84.148 ± 0.211

Table 4: Results for the Arrhythmia dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	62.300 ± 1.482	59.704 ± 1.396	62.098 ± 1.578	61.287 ± 1.432	57.487 ± 0.825	56.637 ± 0.439	64.712 ± 1.938
0.4	68.310 ± 1.629	64.137 ± 1.667	67.794 ± 1.825	66.781 ± 1.821	61.971 ± 1.519	60.544 ± 1.315	73.096 ± 2.006
0.6	70.875 ± 1.652	66.696 ± 1.631	70.719 ± 1.837	70.010 ± 1.815	65.270 ± 1.722	63.580 ± 1.615	75.290 ± 1.896
0.8	72.371 ± 1.683	68.155 ± 1.724	72.150 ± 1.771	71.561 ± 1.862	67.346 ± 1.845	65.598 ± 1.804	75.999 ± 1.944
1.0	73.208 ± 1.767	69.061 ± 1.656	72.975 ± 1.874	72.714 ± 1.928	68.610 ± 1.788	67.092 ± 1.843	76.130 ± 1.929
1.2	73.844 ± 1.792	69.758 ± 1.631	73.538 ± 1.945	73.505 ± 1.995	70.548 ± 1.793	69.507 ± 1.780	76.161 ± 1.949
2.0	74.887 ± 1.863	70.823 ± 1.605	74.706 ± 1.863	74.654 ± 1.939	72.496 ± 1.762	71.760 ± 1.868	75.277 ± 2.320
3.0	75.289 ± 1.910	71.452 ± 1.740	75.127 ± 1.972	75.193 ± 2.043	74.018 ± 1.969	73.482 ± 1.882	74.417 ± 2.534
4.0	75.518 ± 1.941	71.625 ± 1.742	75.327 ± 1.915	75.271 ± 1.865	74.660 ± 1.920	74.217 ± 1.858	73.840 ± 2.693
5.0	75.554 ± 1.831	71.726 ± 1.644	75.250 ± 1.948	75.427 ± 1.892	75.024 ± 1.807	74.637 ± 1.956	73.299 ± 2.860

1	0	8
1	0	9
1	1	0

		~
1	1	1
1	1	2
1	1	3
1	1	4
1	1	5
1	1	6
1	1	7

117 118 119

120121122

129130131132

133134135

136137138139

140 141

142143144145

146147148

149150151152

RF(nt_500) RF(mn_8) RF(ml_5) BRRF(qs_ent) RF(mn_4) $RF(ml_4)$ RF(nf_all) 0.2 60.583 ± 3.708 55.974 ± 3.811 47.936 ± 2.531 41.996 ± 4.582 38.258 ± 6.699 62.505 ± 3.902 62.012 ± 3.483 68.927 ± 3.394 67.429 ± 3.510 66.274 ± 3.570 60.223 ± 3.823 46.573 ± 2.348 45.205 ± 2.154 0.4 69.445 ± 3.565 71.831 ± 3.390 70.062 ± 3.607 69.844 ± 3.525 65.517 ± 3.301 51.308 ± 3.124 47.432 ± 2.393 72.611 ± 3.894 0.6 72.977 ± 3.460 71.022 ± 3.488 71.411 ± 3.601 68.334 ± 3.502 56.200 ± 3.591 50.707 ± 3.160 74.181 ± 4.129 0.8 1.0 73.600 ± 3.529 71.338 ± 3.652 72.482 ± 3.604 69.635 ± 3.662 59.150 ± 3.630 53.672 ± 3.550 74.912 ± 4.221 71.984 ± 3.495 1.2 73.914 ± 3.642 71.940 ± 3.598 73.553 ± 3.628 64.130 ± 3.055 61.341 ± 3.446 75.257 ± 4.040 2.0 74.563 ± 3.634 72.556 ± 3.819 74.459 ± 3.808 73.940 ± 3.741 67.001 ± 2.997 65.144 ± 2.945 74.918 ± 4.231 3.0 74.742 ± 3.833 72.814 ± 3.668 74.812 ± 3.897 74.913 ± 3.833 69.641 ± 3.490 68.392 ± 3.249 74.473 ± 4.305 75.017 ± 3.864 72.908 ± 3.733 75.122 ± 3.949 72.248 ± 3.682 70.200 ± 3.341 74.227 ± 4.441 4.0 75.216 ± 3.679 5.0 74.980 ± 3.860 72.929 ± 3.729 75.037 ± 3.703 75.338 ± 3.621 73.653 ± 3.646 71.930 ± 3.452 74.101 ± 4.527

Table 6: Results for the Australian Credit Approval dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	86.946 ± 1.397	86.680 ± 1.431	86.727 ± 1.451	86.634 ± 1.430	86.312 ± 1.469	86.151 ± 1.512	86.208 ± 1.450
0.4	87.151 ± 1.370	86.986 ± 1.429	86.974 ± 1.479	86.810 ± 1.413	86.714 ± 1.419	86.564 ± 1.400	86.525 ± 1.461
0.6	87.225 ± 1.399	87.087 ± 1.415	87.062 ± 1.422	86.945 ± 1.355	86.920 ± 1.407	86.773 ± 1.429	86.541 ± 1.443
0.8	87.199 ± 1.411	87.098 ± 1.436	87.135 ± 1.393	87.067 ± 1.400	86.947 ± 1.409	86.812 ± 1.436	86.404 ± 1.490
1.0	87.214 ± 1.409	87.070 ± 1.430	87.089 ± 1.368	87.062 ± 1.376	86.953 ± 1.409	86.901 ± 1.454	86.130 ± 1.484
1.2	87.188 ± 1.367	87.114 ± 1.363	87.059 ± 1.393	87.055 ± 1.363	86.990 ± 1.430	86.956 ± 1.371	85.850 ± 1.602
2.0	87.051 ± 1.356	87.018 ± 1.413	87.022 ± 1.401	87.025 ± 1.412	87.105 ± 1.459	87.018 ± 1.405	84.980 ± 1.749
3.0	86.989 ± 1.373	86.878 ± 1.381	86.917 ± 1.342	86.999 ± 1.368	87.096 ± 1.366	87.104 ± 1.425	84.350 ± 1.891
4.0	86.944 ± 1.346	86.821 ± 1.385	86.841 ± 1.417	86.888 ± 1.367	87.078 ± 1.373	87.070 ± 1.410	83.967 ± 1.852
5.0	86.911 ± 1.375	86.824 ± 1.366	86.844 ± 1.423	86.891 ± 1.388	87.073 ± 1.413	87.076 ± 1.345	83.723 ± 1.931

Table 7: Results for the Balance Scale dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	85.972 ± 1.474	85.018 ± 1.595	85.404 ± 1.599	85.519 ± 1.766	85.454 ± 1.914	85.296 ± 2.031	84.374 ± 1.747
0.4	84.732 ± 1.452	84.095 ± 1.441	84.649 ± 1.527	84.895 ± 1.719	85.386 ± 1.800	85.283 ± 1.877	82.641 ± 1.830
0.6	83.947 ± 1.427	83.416 ± 1.440	84.227 ± 1.549	84.487 ± 1.652	84.906 ± 1.668	84.959 ± 1.792	81.262 ± 1.775
0.8	83.329 ± 1.493	82.786 ± 1.435	83.811 ± 1.464	84.268 ± 1.595	84.635 ± 1.705	84.664 ± 1.765	80.093 ± 1.887
1.0	82.831 ± 1.449	82.333 ± 1.582	83.593 ± 1.489	84.180 ± 1.585	84.490 ± 1.682	84.547 ± 1.719	79.090 ± 1.913
1.2	82.483 ± 1.445	81.907 ± 1.519	82.909 ± 1.497	83.936 ± 1.582	84.319 ± 1.667	84.341 ± 1.708	78.248 ± 1.864
2.0	81.581 ± 1.538	81.143 ± 1.593	81.958 ± 1.603	83.419 ± 1.518	83.913 ± 1.538	84.051 ± 1.590	76.734 ± 1.969
3.0	81.256 ± 1.579	80.743 ± 1.629	81.097 ± 1.655	82.447 ± 1.562	83.619 ± 1.497	83.661 ± 1.561	76.189 ± 2.062
4.0	81.029 ± 1.563	80.670 ± 1.628	80.938 ± 1.604	81.811 ± 1.567	83.263 ± 1.442	83.512 ± 1.522	75.956 ± 2.133
5.0	81.015 ± 1.614	80.616 ± 1.625	80.712 ± 1.610	81.326 ± 1.583	82.771 ± 1.516	83.185 ± 1.564	75.788 ± 2.113

Table 8: Results for the Breast Cancer Wisc. (Diag.) dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	$RF(ml_4)$	RF(ml_5)	RF(nf_all)
0.2	94.673 ± 1.126	94.598 ± 1.201	94.460 ± 1.194	94.289 ± 1.163	93.794 ± 1.273	93.567 ± 1.316	94.367 ± 1.365
0.4	95.076 ± 1.081	95.080 ± 1.171	94.880 ± 1.112	94.664 ± 1.121	94.487 ± 1.222	94.291 ± 1.277	94.704 ± 1.257
0.6	95.257 ± 1.111	95.314 ± 1.163	95.147 ± 1.130	94.924 ± 1.117	94.730 ± 1.144	94.615 ± 1.193	94.876 ± 1.313
0.8	95.360 ± 1.153	95.494 ± 1.144	95.241 ± 1.203	95.061 ± 1.187	94.922 ± 1.164	94.746 ± 1.194	94.942 ± 1.350
1.0	95.459 ± 1.138	95.606 ± 1.171	95.346 ± 1.140	95.122 ± 1.163	94.970 ± 1.146	94.829 ± 1.206	94.930 ± 1.383
1.2	95.540 ± 1.165	95.675 ± 1.168	95.511 ± 1.186	95.309 ± 1.152	95.176 ± 1.188	95.087 ± 1.168	94.822 ± 1.371
2.0	95.651 ± 1.202	95.870 ± 1.110	95.710 ± 1.165	95.600 ± 1.181	95.387 ± 1.183	95.265 ± 1.172	94.536 ± 1.374
3.0	95.724 ± 1.168	95.871 ± 1.113	95.743 ± 1.188	95.642 ± 1.179	95.544 ± 1.167	95.500 ± 1.163	94.256 ± 1.398
4.0	95.692 ± 1.172	95.897 ± 1.108	95.714 ± 1.188	95.699 ± 1.186	95.607 ± 1.156	95.518 ± 1.146	94.154 ± 1.462
5.0	95.691 ± 1.152	95.898 ± 1.095	95.702 ± 1.178	95.704 ± 1.151	95.619 ± 1.166	95.550 ± 1.176	94.007 ± 1.442

Table 9: Results for the Breast Cancer Wisc. (Orig.) dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	95.366 ± 1.105	95.212 ± 1.144	95.321 ± 1.128	95.454 ± 1.123	95.458 ± 1.128	95.423 ± 1.112	94.517 ± 1.298
0.4	95.506 ± 1.085	95.309 ± 1.113	95.350 ± 1.113	95.474 ± 1.142	95.422 ± 1.160	95.386 ± 1.200	94.552 ± 1.255
0.6	95.491 ± 1.085	95.362 ± 1.127	95.440 ± 1.112	95.501 ± 1.118	95.435 ± 1.138	95.415 ± 1.170	94.570 ± 1.286
0.8	95.457 ± 1.070	95.342 ± 1.135	95.403 ± 1.103	95.440 ± 1.122	95.411 ± 1.124	95.376 ± 1.133	94.521 ± 1.274
1.0	95.429 ± 1.055	95.287 ± 1.087	95.355 ± 1.097	95.433 ± 1.116	95.401 ± 1.099	95.382 ± 1.105	94.407 ± 1.309
1.2	95.378 ± 1.077	95.247 ± 1.081	95.312 ± 1.109	95.394 ± 1.120	95.393 ± 1.130	95.403 ± 1.118	94.336 ± 1.357
2.0	95.262 ± 1.086	95.162 ± 1.109	95.176 ± 1.112	95.233 ± 1.095	95.341 ± 1.111	95.324 ± 1.108	93.919 ± 1.473
3.0	95.166 ± 1.105	95.133 ± 1.110	95.091 ± 1.124	95.151 ± 1.142	95.249 ± 1.138	95.279 ± 1.174	93.516 ± 1.569
4.0	95.155 ± 1.134	95.102 ± 1.124	95.026 ± 1.140	95.089 ± 1.124	95.179 ± 1.132	95.207 ± 1.145	93.316 ± 1.590
5.0	95.115 ± 1.120	95.064 ± 1.128	95.024 ± 1.153	95.047 ± 1.133	95.145 ± 1.104	95.183 ± 1.107	93.100 ± 1.618

1	O	2
1	6	3
	_	_

1	64
1	65
1	66
1	67
1	68
1	69
1	70

169 170 171 172 173

175 176 177

174

187 188 189

190 191 192 193

194 195 196 197

198

199200201202203

205206207

204

208209210211212213

RF(nt_500) RF(mn_8) RF(ml_5) BRRF(qs_ent) RF(mn_4) $RF(ml_4)$ RF(nf_all) 0.2 93.690 ± 1.487 93.918 ± 1.474 93.819 ± 1.437 93.687 ± 1.439 92.997 ± 1.550 92.795 ± 1.658 94.404 ± 1.337 94.355 ± 1.520 94.412 ± 1.509 93.974 ± 1.410 93.534 ± 1.469 94.373 ± 1.394 0.4 94.278 ± 1.471 93.683 ± 1.421 94.592 ± 1.480 94.640 ± 1.489 94.509 ± 1.517 94.202 ± 1.429 93.807 ± 1.380 93.747 ± 1.428 94.301 ± 1.448 0.6 94.661 ± 1.494 94.692 ± 1.471 94.637 ± 1.519 94.377 ± 1.483 93.886 ± 1.462 93.800 ± 1.449 94.156 ± 1.453 0.8 1.0 94.702 ± 1.431 94.683 ± 1.451 94.686 ± 1.490 94.512 ± 1.500 94.028 ± 1.489 93.890 ± 1.455 93.915 ± 1.579 94.099 ± 1.484 1.2 94.681 ± 1.457 94.662 ± 1.442 94.763 ± 1.480 94.652 ± 1.504 94.276 ± 1.524 93.702 ± 1.684 2.0 94.675 ± 1.426 94.604 ± 1.443 94.753 ± 1.455 94.795 ± 1.474 94.481 ± 1.540 94.317 ± 1.505 93.139 ± 1.782 3.0 94.620 ± 1.413 94.569 ± 1.389 94.605 ± 1.457 94.760 ± 1.461 94.705 ± 1.485 94.620 ± 1.515 92.788 ± 1.878 4.0 94.539 ± 1.423 94.575 ± 1.394 94.703 ± 1.433 94.756 ± 1.501 94.722 ± 1.513 92.721 ± 1.931 94.615 ± 1.413 5.0 94.621 ± 1.432 94.520 ± 1.451 94.520 ± 1.404 94.633 ± 1.425 94.791 ± 1.472 94.769 ± 1.483 92.645 ± 1.922

Table 11: Results for the Echocardiogram dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	70.774 ± 2.633	70.992 ± 2.462	71.153 ± 2.174	70.968 ± 0.000	70.968 ± 0.000	70.968 ± 0.000	71.226 ± 3.311
0.4	71.242 ± 4.116	71.435 ± 3.788	71.524 ± 3.908	71.427 ± 3.500	70.944 ± 0.665	70.968 ± 0.000	71.718 ± 4.577
0.6	72.024 ± 4.493	72.468 ± 4.497	72.500 ± 4.746	72.315 ± 4.755	71.766 ± 3.347	71.056 ± 2.374	72.000 ± 5.264
0.8	71.790 ± 5.039	72.258 ± 5.018	72.524 ± 4.697	72.581 ± 4.823	72.444 ± 3.855	71.944 ± 3.446	70.774 ± 6.117
1.0	71.831 ± 4.925	72.298 ± 5.077	72.306 ± 5.037	72.685 ± 4.923	72.645 ± 4.224	72.403 ± 3.853	70.500 ± 6.162
1.2	71.766 ± 5.117	72.008 ± 5.478	72.008 ± 5.353	72.718 ± 5.119	73.048 ± 4.601	72.976 ± 4.423	69.919 ± 6.735
2.0	71.589 ± 5.629	71.581 ± 6.115	71.565 ± 5.413	72.331 ± 5.516	72.887 ± 5.019	73.113 ± 5.005	68.355 ± 7.291
3.0	71.387 ± 5.876	71.927 ± 6.038	71.266 ± 5.837	72.194 ± 5.717	72.935 ± 5.458	73.065 ± 5.224	68.105 ± 7.742
4.0	71.419 ± 6.142	71.460 ± 5.895	71.177 ± 5.918	71.403 ± 5.795	72.540 ± 5.775	72.815 ± 5.564	67.847 ± 7.604
5.0	71.234 ± 6.367	71.734 ± 6.113	71.161 ± 6.173	71.387 ± 5.916	72.234 ± 5.867	72.452 ± 5.595	67.419 ± 8.158

Table 12: Results for the Ecoli dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	84.060 ± 1.965	83.714 ± 2.027	83.295 ± 2.017	79.817 ± 2.070	76.765 ± 1.462	76.155 ± 1.311	84.161 ± 1.945
0.4	85.527 ± 1.799	84.943 ± 1.886	85.220 ± 1.942	84.589 ± 1.864	81.098 ± 1.966	78.716 ± 1.762	84.644 ± 1.994
0.6	85.835 ± 1.858	85.263 ± 1.928	85.680 ± 1.843	85.378 ± 1.922	83.496 ± 1.856	82.314 ± 1.962	84.339 ± 2.127
0.8	85.671 ± 1.872	85.164 ± 1.926	85.580 ± 2.000	85.452 ± 1.914	84.201 ± 1.834	83.573 ± 1.996	83.664 ± 2.242
1.0	85.565 ± 1.905	85.082 ± 1.949	85.589 ± 1.975	85.509 ± 1.924	84.560 ± 1.868	84.170 ± 1.912	83.049 ± 2.438
1.2	85.321 ± 1.981	84.933 ± 1.996	85.592 ± 1.928	85.554 ± 1.939	85.046 ± 1.895	84.647 ± 1.905	82.658 ± 2.535
2.0	84.859 ± 2.041	84.394 ± 2.073	85.006 ± 2.060	85.351 ± 2.069	85.106 ± 1.968	84.902 ± 1.945	81.269 ± 2.666
3.0	84.604 ± 2.054	84.104 ± 2.132	84.621 ± 2.049	84.946 ± 2.020	85.171 ± 2.015	85.070 ± 1.976	80.528 ± 2.765
4.0	84.490 ± 2.110	83.978 ± 2.036	84.439 ± 2.111	84.690 ± 2.096	85.019 ± 2.050	85.054 ± 1.999	80.137 ± 2.788
5.0	84.369 ± 2.111	83.912 ± 2.060	84.348 ± 2.103	84.568 ± 2.130	84.876 ± 2.011	84.990 ± 2.051	79.839 ± 2.765

Table 13: Results for the German Credit Data dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	$RF(ml_4)$	RF(ml_5)	RF(nf_all)
0.2	73.932 ± 1.059	73.797 ± 1.169	73.614 ± 1.169	73.195 ± 1.066	71.769 ± 0.839	71.227 ± 0.738	74.612 ± 1.322
0.4	75.023 ± 1.137	74.778 ± 1.190	74.700 ± 1.159	74.337 ± 1.176	73.230 ± 1.031	72.766 ± 0.938	75.046 ± 1.416
0.6	75.312 ± 1.110	75.072 ± 1.172	74.996 ± 1.262	74.816 ± 1.201	73.879 ± 1.090	73.483 ± 1.084	74.919 ± 1.423
0.8	75.410 ± 1.149	75.157 ± 1.199	75.127 ± 1.222	74.954 ± 1.223	74.276 ± 1.137	73.908 ± 1.113	74.567 ± 1.524
1.0	75.397 ± 1.150	75.195 ± 1.232	75.170 ± 1.197	75.174 ± 1.190	74.510 ± 1.164	74.178 ± 1.175	74.344 ± 1.615
1.2	75.466 ± 1.196	75.296 ± 1.272	75.262 ± 1.240	75.153 ± 1.242	74.798 ± 1.168	74.636 ± 1.164	74.127 ± 1.597
2.0	75.352 ± 1.196	75.113 ± 1.263	75.164 ± 1.280	75.154 ± 1.209	75.114 ± 1.217	75.035 ± 1.226	73.342 ± 1.655
3.0	75.375 ± 1.211	75.078 ± 1.209	75.082 ± 1.299	75.164 ± 1.303	75.324 ± 1.197	75.207 ± 1.191	72.835 ± 1.749
4.0	75.349 ± 1.226	75.073 ± 1.302	75.007 ± 1.288	75.124 ± 1.263	75.252 ± 1.256	75.249 ± 1.225	72.440 ± 1.781
5.0	75.322 ± 1.218	75.106 ± 1.280	75.110 ± 1.244	75.178 ± 1.279	75.216 ± 1.278	75.245 ± 1.348	72.175 ± 1.742

Table 14: Results for the Glass Identification dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	67.159 ± 3.839	67.054 ± 3.664	65.267 ± 3.704	63.493 ± 3.843	61.211 ± 3.696	60.005 ± 3.950	65.789 ± 3.919
0.4	72.204 ± 3.639	72.366 ± 3.629	70.746 ± 3.679	67.456 ± 3.605	65.249 ± 3.781	64.087 ± 3.939	71.043 ± 3.915
0.6	74.004 ± 3.690	74.222 ± 3.719	72.821 ± 3.492	70.084 ± 3.738	67.529 ± 3.871	66.000 ± 3.737	72.572 ± 3.927
0.8	74.934 ± 3.675	74.812 ± 3.579	73.941 ± 3.784	71.793 ± 3.779	69.305 ± 3.829	67.435 ± 3.690	72.891 ± 3.877
1.0	75.250 ± 3.652	75.154 ± 3.608	74.346 ± 3.865	72.728 ± 3.859	70.676 ± 3.851	68.794 ± 3.761	72.829 ± 3.958
1.2	75.413 ± 3.695	75.424 ± 3.659	74.727 ± 3.768	73.748 ± 3.932	72.845 ± 3.870	71.479 ± 3.804	72.798 ± 3.983
2.0	75.577 ± 3.698	75.596 ± 3.778	75.176 ± 3.813	74.460 ± 3.889	74.366 ± 3.795	73.659 ± 3.823	71.466 ± 4.357
3.0	75.429 ± 3.751	75.383 ± 3.969	74.927 ± 3.667	74.819 ± 3.593	74.840 ± 3.687	74.624 ± 3.789	70.340 ± 4.430
4.0	75.328 ± 3.788	75.457 ± 3.842	74.848 ± 3.641	74.708 ± 3.744	74.868 ± 3.641	74.725 ± 3.698	69.839 ± 4.622
5.0	75.295 ± 3.721	75.363 ± 3.920	74.923 ± 3.736	74.838 ± 3.877	75.037 ± 3.738	74.931 ± 3.725	69.432 ± 4.705

Table 15: Results for the Heart dataset.

221222223224225

225 226 227

229 230 231

232

228

233234235236

237238239

240241242

243244245246

247248249

250251

259 260 261

262263264265266267268269

RF(nt_500) RF(mn_8) RF(ml_5) BRRF(qs_ent) RF(mn_4) $RF(ml_4)$ RF(nf_all) 0.2 83.319 ± 2.532 82.794 ± 2.558 82.969 ± 2.641 82.924 ± 2.685 83.324 ± 2.569 83.217 ± 2.502 81.669 ± 2.773 82.693 ± 2.339 82.406 ± 2.480 83.294 ± 2.553 81.289 ± 2.810 0.4 82.696 ± 2.461 82.806 ± 2.542 83.224 ± 2.662 82.272 ± 2.432 82.019 ± 2.495 82.243 ± 2.514 82.472 ± 2.505 83.137 ± 2.650 83.119 ± 2.584 80.676 ± 2.961 0.6 81.907 ± 2.465 81.800 ± 2.614 82.061 ± 2.490 82.352 ± 2.558 82.981 ± 2.534 83.148 ± 2.617 80.409 ± 2.981 0.8 81.639 ± 2.565 82.933 ± 2.555 82.993 ± 2.525 1.0 81.689 ± 2.472 81.846 ± 2.545 82.272 ± 2.470 79.961 ± 3.096 81.506 ± 2.501 81.372 ± 2.551 81.917 ± 2.569 82.594 ± 2.550 82.830 ± 2.556 1.2 81.578 ± 2.623 79.502 ± 2.959 2.0 81.046 ± 2.466 80.894 ± 2.481 80.946 ± 2.510 81.361 ± 2.428 82.093 ± 2.390 82.435 ± 2.453 78.394 ± 3.078 80.854 ± 2.523 80.707 ± 2.517 80.744 ± 2.465 81.083 ± 2.619 81.750 ± 2.612 81.989 ± 2.632 77.691 ± 3.164 3.0 80.813 ± 2.517 80.639 ± 2.563 80.680 ± 2.578 80.926 ± 2.610 81.441 ± 2.609 81.539 ± 2.475 77.250 ± 3.278 4.0 5.0 80.774 ± 2.541 80.691 ± 2.510 80.583 ± 2.552 80.835 ± 2.582 81.180 ± 2.652 81.322 ± 2.607 77.019 ± 3.233

Table 16: Results for the Hepatitis dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	83.399 ± 2.143	82.936 ± 2.195	82.858 ± 2.107	82.081 ± 1.879	79.730 ± 0.000	79.730 ± 0.000	84.115 ± 2.303
0.4	84.726 ± 2.600	84.287 ± 2.784	84.149 ± 2.513	83.760 ± 2.454	80.831 ± 1.246	79.943 ± 0.501	84.044 ± 3.243
0.6	84.561 ± 2.587	84.446 ± 2.868	84.220 ± 2.789	84.189 ± 2.575	82.530 ± 1.869	81.128 ± 1.384	83.645 ± 3.406
0.8	84.355 ± 2.823	84.243 ± 2.997	84.270 ± 2.976	84.226 ± 2.794	83.439 ± 2.194	82.537 ± 1.866	83.233 ± 3.526
1.0	84.318 ± 2.889	84.216 ± 3.067	83.993 ± 3.007	84.176 ± 2.886	83.838 ± 2.281	83.236 ± 2.111	82.720 ± 3.387
1.2	84.341 ± 2.899	84.274 ± 2.999	83.993 ± 3.004	84.108 ± 2.986	84.206 ± 2.530	83.905 ± 2.335	82.274 ± 3.660
2.0	84.111 ± 3.048	84.095 ± 3.154	84.020 ± 3.136	83.970 ± 3.050	84.166 ± 2.772	84.169 ± 2.627	81.081 ± 3.963
3.0	84.020 ± 3.081	84.061 ± 3.223	83.760 ± 3.168	83.905 ± 3.138	84.020 ± 2.928	84.068 ± 2.862	80.436 ± 4.001
4.0	83.976 ± 3.042	83.895 ± 3.169	83.723 ± 3.068	83.851 ± 3.163	84.027 ± 2.988	83.983 ± 2.959	80.068 ± 4.158
5.0	83.983 ± 3.152	83.922 ± 3.131	83.672 ± 3.239	83.696 ± 3.054	83.814 ± 3.100	83.929 ± 2.956	79.959 ± 4.031

Table 17: Results for the Horse Colic dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	85.883 ± 1.902	85.681 ± 1.959	85.645 ± 1.848	85.685 ± 1.904	84.041 ± 2.054	82.474 ± 2.331	84.861 ± 2.541
0.4	86.111 ± 1.882	85.933 ± 1.905	86.056 ± 1.812	86.090 ± 1.837	85.670 ± 1.840	85.458 ± 1.822	86.052 ± 2.245
0.6	86.285 ± 1.872	86.240 ± 1.858	86.193 ± 1.855	86.230 ± 1.843	85.780 ± 1.860	85.698 ± 1.878	86.269 ± 2.141
0.8	86.484 ± 1.879	86.279 ± 1.903	86.315 ± 1.932	86.216 ± 1.881	85.815 ± 1.907	85.774 ± 1.798	86.095 ± 2.068
1.0	86.516 ± 1.918	86.311 ± 1.852	86.303 ± 1.808	86.197 ± 1.805	85.818 ± 1.927	85.766 ± 1.826	85.769 ± 2.199
1.2	86.515 ± 1.888	86.365 ± 1.855	86.371 ± 1.910	86.295 ± 1.827	85.856 ± 1.839	85.780 ± 1.875	85.387 ± 2.231
2.0	86.438 ± 1.871	86.226 ± 1.920	86.360 ± 1.873	86.383 ± 1.901	85.887 ± 1.998	85.781 ± 1.962	84.645 ± 2.301
3.0	86.480 ± 1.872	86.202 ± 1.919	86.306 ± 1.886	86.421 ± 1.902	86.144 ± 1.953	85.950 ± 1.870	84.007 ± 2.395
4.0	86.395 ± 1.844	86.148 ± 1.928	86.156 ± 1.915	86.205 ± 1.865	86.167 ± 1.926	86.163 ± 1.899	83.776 ± 2.420
5.0	86.414 ± 1.846	86.177 ± 1.797	86.261 ± 1.926	86.276 ± 1.861	86.216 ± 1.936	86.166 ± 1.941	83.569 ± 2.373

Table 18: Results for the Image Segmentation (Stat.) dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn4)	RF(mn_8)	$RF(ml_4)$	RF(ml_5)	RF(nf_all)
0.2	95.150 ± 0.754	95.081 ± 0.718	94.914 ± 0.783	94.360 ± 0.816	93.540 ± 0.785	93.179 ± 0.774	95.126 ± 0.739
0.4	96.213 ± 0.583	96.143 ± 0.605	96.049 ± 0.615	95.634 ± 0.679	94.868 ± 0.759	94.518 ± 0.798	95.859 ± 0.662
0.6	96.511 ± 0.539	96.502 ± 0.577	96.418 ± 0.555	96.130 ± 0.581	95.465 ± 0.681	95.151 ± 0.722	96.070 ± 0.612
0.8	96.712 ± 0.528	96.718 ± 0.559	96.608 ± 0.548	96.365 ± 0.547	95.802 ± 0.645	95.519 ± 0.665	96.150 ± 0.621
1.0	96.825 ± 0.509	96.843 ± 0.563	96.728 ± 0.544	96.498 ± 0.564	95.996 ± 0.625	95.720 ± 0.663	96.184 ± 0.631
1.2	96.898 ± 0.513	96.924 ± 0.522	96.814 ± 0.528	96.680 ± 0.549	96.328 ± 0.589	96.104 ± 0.618	96.190 ± 0.625
2.0	97.018 ± 0.512	97.071 ± 0.539	96.967 ± 0.524	96.876 ± 0.529	96.604 ± 0.552	96.479 ± 0.548	96.094 ± 0.662
3.0	97.064 ± 0.525	97.107 ± 0.522	96.989 ± 0.532	96.993 ± 0.524	96.805 ± 0.548	96.702 ± 0.553	95.970 ± 0.669
4.0	97.081 ± 0.521	97.130 ± 0.544	97.023 ± 0.523	97.017 ± 0.537	96.906 ± 0.539	96.824 ± 0.525	95.842 ± 0.690
5.0	97.080 ± 0.530	97.133 ± 0.538	97.018 ± 0.538	97.013 ± 0.544	96.939 ± 0.540	96.880 ± 0.554	95.773 ± 0.692

Table 19: Results for the Ionosphere dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	92.629 ± 1.511	91.544 ± 1.839	91.913 ± 1.651	91.934 ± 1.701	88.669 ± 2.406	86.764 ± 2.230	91.700 ± 1.979
0.4	93.076 ± 1.448	92.580 ± 1.591	92.643 ± 1.533	92.511 ± 1.575	91.760 ± 1.758	91.183 ± 1.996	92.256 ± 2.013
0.6	93.194 ± 1.495	92.753 ± 1.513	92.699 ± 1.550	92.666 ± 1.538	92.253 ± 1.611	91.986 ± 1.685	92.190 ± 2.083
0.8	93.209 ± 1.475	92.937 ± 1.544	92.829 ± 1.547	92.707 ± 1.561	92.443 ± 1.574	92.310 ± 1.635	91.961 ± 2.139
1.0	93.231 ± 1.524	93.024 ± 1.499	92.881 ± 1.493	92.764 ± 1.564	92.591 ± 1.587	92.400 ± 1.593	91.730 ± 2.169
1.2	93.254 ± 1.526	93.020 ± 1.588	92.903 ± 1.637	92.814 ± 1.613	92.776 ± 1.586	92.630 ± 1.593	91.571 ± 2.190
2.0	93.233 ± 1.595	93.070 ± 1.556	92.957 ± 1.640	92.851 ± 1.627	92.843 ± 1.572	92.770 ± 1.592	90.896 ± 2.281
3.0	93.229 ± 1.600	93.099 ± 1.608	93.003 ± 1.614	92.906 ± 1.615	92.897 ± 1.594	92.836 ± 1.572	90.474 ± 2.443
4.0	93.240 ± 1.598	93.103 ± 1.523	93.010 ± 1.632	92.956 ± 1.709	92.844 ± 1.627	92.881 ± 1.597	90.151 ± 2.442
5.0	93.237 ± 1.571	93.127 ± 1.577	93.039 ± 1.615	92.964 ± 1.625	92.911 ± 1.604	92.927 ± 1.559	89.920 ± 2.498

Table 20: Results for the Iris dataset.

DD	DE(+ 500)	DE()	DE(4)	DE(0)	DE(1.4)	DE(15)	DE(C 11)
BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	95.178 ± 1.824	95.098 ± 1.833	95.171 ± 1.876	95.199 ± 1.899	95.095 ± 1.951	94.880 ± 2.076	95.218 ± 1.840
0.4	95.115 ± 1.831	95.058 ± 1.804	95.232 ± 1.900	95.185 ± 1.878	95.155 ± 1.835	95.212 ± 1.860	95.084 ± 1.856
0.6	95.010 ± 1.870	94.947 ± 1.863	95.145 ± 1.941	95.185 ± 1.983	95.081 ± 1.923	95.081 ± 1.949	95.017 ± 1.901
0.8	94.967 ± 1.892	94.859 ± 1.883	95.091 ± 1.982	95.131 ± 2.049	94.963 ± 1.986	94.947 ± 1.980	94.940 ± 1.926
1.0	94.950 ± 1.904	94.863 ± 1.915	95.064 ± 1.972	95.101 ± 2.033	94.920 ± 2.030	94.859 ± 1.989	94.886 ± 1.947
1.2	94.917 ± 1.890	94.860 ± 1.931	95.020 ± 1.977	95.138 ± 2.050	94.919 ± 2.036	94.896 ± 2.015	94.883 ± 1.989
2.0	94.863 ± 1.919	94.826 ± 1.915	94.933 ± 1.942	95.155 ± 2.053	94.943 ± 2.067	94.876 ± 2.039	94.624 ± 2.239
3.0	94.883 ± 1.893	94.819 ± 1.865	94.842 ± 1.929	95.054 ± 1.989	94.947 ± 2.000	95.001 ± 2.102	94.517 ± 2.294
4.0	94.839 ± 1.898	94.816 ± 1.928	94.812 ± 1.916	94.964 ± 1.959	94.897 ± 1.976	94.954 ± 2.050	94.517 ± 2.223
5.0	94.849 ± 1.914	94.806 ± 1.895	94.792 ± 1.899	94.890 ± 1.955	94.833 ± 1.946	94.897 ± 1.981	94.500 ± 2.237

Table 21: Results for the Labor Relations dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	82.500 ± 5.787	83.768 ± 6.384	80.735 ± 6.456	64.901 ± 0.616	64.901 ± 0.616	64.901 ± 0.616	84.817 ± 6.153
0.4	90.273 ± 5.306	90.113 ± 5.135	89.246 ± 5.120	84.780 ± 5.871	66.436 ± 2.657	64.901 ± 0.616	88.058 ± 5.846
0.6	92.629 ± 4.660	92.268 ± 4.704	91.790 ± 4.777	90.437 ± 4.619	78.279 ± 5.683	70.293 ± 4.840	89.736 ± 5.886
0.8	93.227 ± 4.407	92.929 ± 4.537	92.682 ± 4.575	91.825 ± 4.584	83.577 ± 5.449	77.870 ± 5.680	90.354 ± 5.748
1.0	93.381 ± 4.478	92.865 ± 4.579	92.837 ± 4.656	92.354 ± 4.416	85.311 ± 5.239	80.514 ± 5.594	90.369 ± 5.799
1.2	93.608 ± 4.329	93.374 ± 4.445	93.339 ± 4.390	92.699 ± 4.447	89.673 ± 4.926	87.363 ± 5.051	89.845 ± 6.026
2.0	93.522 ± 4.419	93.408 ± 4.362	93.346 ± 4.447	93.222 ± 4.362	91.798 ± 4.772	90.671 ± 4.840	88.915 ± 6.119
3.0	93.445 ± 4.414	93.332 ± 4.374	93.191 ± 4.356	93.127 ± 4.388	92.531 ± 4.538	92.169 ± 4.463	88.321 ± 6.562
4.0	93.496 ± 4.366	93.365 ± 4.392	93.375 ± 4.313	93.215 ± 4.309	93.065 ± 4.282	92.723 ± 4.303	87.866 ± 6.702
5.0	93.462 ± 4.390	93.304 ± 4.448	93.127 ± 4.415	93.111 ± 4.468	93.077 ± 4.445	92.750 ± 4.578	87.597 ± 6.552

Table 22: Results for the Liver Disorders dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	59.507 ± 2.770	59.089 ± 2.991	59.164 ± 2.827	59.485 ± 3.014	59.714 ± 2.951	59.711 ± 2.870	59.213 ± 2.791
0.4	58.570 ± 2.799	58.240 ± 2.868	58.406 ± 2.697	58.757 ± 2.760	59.109 ± 2.816	59.209 ± 2.880	58.219 ± 2.778
0.6	57.910 ± 2.817	57.616 ± 2.845	57.923 ± 3.027	58.482 ± 2.786	58.921 ± 2.846	59.206 ± 2.851	57.605 ± 2.928
0.8	57.391 ± 2.867	57.352 ± 2.883	57.752 ± 2.896	58.259 ± 2.828	58.825 ± 2.831	59.186 ± 2.841	56.903 ± 2.998
1.0	57.016 ± 2.746	57.061 ± 3.103	57.387 ± 2.934	57.916 ± 2.934	58.635 ± 2.860	58.991 ± 2.877	56.614 ± 2.884
1.2	56.752 ± 2.880	56.638 ± 2.901	56.961 ± 2.938	57.399 ± 2.883	58.183 ± 2.858	58.446 ± 2.739	56.409 ± 3.139
2.0	56.160 ± 2.936	55.975 ± 3.188	56.290 ± 3.053	56.956 ± 2.935	57.720 ± 2.865	57.935 ± 2.867	55.569 ± 3.149
3.0	55.751 ± 3.008	55.612 ± 3.181	55.826 ± 3.100	56.144 ± 3.027	56.830 ± 2.886	57.326 ± 3.121	55.075 ± 3.227
4.0	55.755 ± 3.067	55.578 ± 3.134	55.721 ± 3.039	55.867 ± 3.113	56.548 ± 3.034	56.877 ± 3.091	54.922 ± 3.159
5.0	55.645 ± 3.090	55.452 ± 3.043	55.755 ± 3.006	55.776 ± 3.166	56.301 ± 3.055	56.460 ± 2.977	54.812 ± 3.189

Table 23: Results for the Optical Recognition (Digits) dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	95.549 ± 0.677	95.168 ± 0.742	94.761 ± 0.739	94.161 ± 0.814	93.207 ± 0.878	92.702 ± 0.884	93.174 ± 0.985
0.4	96.386 ± 0.593	96.156 ± 0.642	95.861 ± 0.679	95.341 ± 0.759	94.507 ± 0.799	94.029 ± 0.788	93.866 ± 0.975
0.6	96.744 ± 0.572	96.553 ± 0.617	96.310 ± 0.623	95.873 ± 0.664	95.094 ± 0.740	94.691 ± 0.747	94.074 ± 0.977
0.8	96.964 ± 0.562	96.811 ± 0.544	96.581 ± 0.571	96.188 ± 0.627	95.488 ± 0.713	95.104 ± 0.759	94.094 ± 1.018
1.0	97.108 ± 0.548	96.933 ± 0.539	96.741 ± 0.580	96.378 ± 0.633	95.717 ± 0.713	95.387 ± 0.711	94.014 ± 1.045
1.2	97.176 ± 0.535	96.986 ± 0.512	96.883 ± 0.572	96.624 ± 0.598	96.108 ± 0.634	95.849 ± 0.684	93.943 ± 1.061
2.0	97.340 ± 0.524	97.194 ± 0.499	97.085 ± 0.564	96.898 ± 0.584	96.536 ± 0.598	96.267 ± 0.642	93.335 ± 1.209
3.0	97.396 ± 0.505	97.246 ± 0.531	97.208 ± 0.527	97.096 ± 0.555	96.794 ± 0.596	96.654 ± 0.601	92.561 ± 1.423
4.0	97.413 ± 0.519	97.255 ± 0.514	97.218 ± 0.540	97.153 ± 0.556	96.977 ± 0.591	96.858 ± 0.599	91.948 ± 1.544
5.0	97.401 ± 0.514	97.263 ± 0.511	97.233 ± 0.539	97.192 ± 0.530	97.050 ± 0.541	96.944 ± 0.581	91.474 ± 1.645

Table 24: Results for the Parkinsons dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	84.367 ± 3.323	84.487 ± 3.351	83.902 ± 3.371	82.746 ± 3.191	81.979 ± 3.268	81.174 ± 3.147	84.482 ± 3.362
0.4	86.205 ± 3.474	86.203 ± 3.337	85.618 ± 3.554	84.339 ± 3.385	84.187 ± 3.226	83.464 ± 3.141	85.950 ± 3.506
0.6	87.223 ± 3.458	87.413 ± 3.426	86.705 ± 3.585	85.462 ± 3.544	84.993 ± 3.256	84.446 ± 3.294	86.554 ± 3.622
0.8	87.949 ± 3.369	88.085 ± 3.256	87.408 ± 3.375	86.336 ± 3.557	85.757 ± 3.364	85.097 ± 3.383	86.828 ± 3.765
1.0	88.297 ± 3.317	88.354 ± 3.123	87.874 ± 3.369	86.674 ± 3.516	86.275 ± 3.346	85.687 ± 3.400	87.151 ± 3.840
1.2	88.536 ± 3.299	88.736 ± 3.191	88.426 ± 3.260	87.629 ± 3.330	87.069 ± 3.297	86.528 ± 3.318	87.195 ± 3.914
2.0	89.093 ± 3.270	89.150 ± 3.270	88.854 ± 3.136	88.462 ± 3.320	87.782 ± 3.336	87.418 ± 3.404	87.335 ± 4.205
3.0	89.213 ± 3.262	89.244 ± 3.162	89.139 ± 3.216	88.877 ± 3.245	88.482 ± 3.285	88.215 ± 3.268	87.167 ± 4.156
4.0	89.306 ± 3.254	89.206 ± 3.208	89.154 ± 3.123	89.031 ± 3.269	88.628 ± 3.298	88.508 ± 3.275	87.000 ± 4.281
5.0	89.306 ± 3.234	89.160 ± 3.296	89.213 ± 3.070	89.133 ± 3.130	88.810 ± 3.169	88.710 ± 3.194	86.941 ± 4.166

Table 25: Results for the Pima Indians Diabetes dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	76.344 ± 1.557	75.767 ± 1.632	76.092 ± 1.559	76.144 ± 1.580	75.973 ± 1.505	75.805 ± 1.522	76.333 ± 1.659
0.4	76.285 ± 1.662	76.020 ± 1.555	76.152 ± 1.575	76.086 ± 1.588	76.061 ± 1.561	76.040 ± 1.543	75.995 ± 1.631
0.6	76.161 ± 1.619	76.022 ± 1.647	76.069 ± 1.552	76.099 ± 1.592	76.101 ± 1.578	75.965 ± 1.555	75.912 ± 1.636
0.8	76.071 ± 1.633	75.937 ± 1.609	75.998 ± 1.596	76.100 ± 1.711	76.058 ± 1.620	76.048 ± 1.564	75.566 ± 1.743
1.0	75.950 ± 1.658	75.752 ± 1.627	75.921 ± 1.681	75.984 ± 1.690	76.061 ± 1.636	76.148 ± 1.607	75.316 ± 1.707
1.2	75.883 ± 1.626	75.745 ± 1.648	75.764 ± 1.705	75.999 ± 1.667	76.096 ± 1.649	76.075 ± 1.616	75.107 ± 1.727
2.0	75.736 ± 1.648	75.579 ± 1.617	75.549 ± 1.693	75.736 ± 1.733	75.937 ± 1.637	75.987 ± 1.660	74.475 ± 1.832
3.0	75.500 ± 1.642	75.386 ± 1.675	75.349 ± 1.728	75.578 ± 1.731	75.821 ± 1.641	75.811 ± 1.680	74.051 ± 1.878
4.0	75.517 ± 1.684	75.370 ± 1.714	75.281 ± 1.667	75.446 ± 1.720	75.598 ± 1.613	75.739 ± 1.636	73.600 ± 1.846
5.0	75.449 ± 1.700	75.231 ± 1.705	75.320 ± 1.663	75.378 ± 1.669	75.575 ± 1.635	75.602 ± 1.705	73.443 ± 1.910
		Table 26: F	Results for the	Sonar, Mines	s vs. Rocks da	ataset.	

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	77.678 ± 3.731	76.805 ± 3.706	76.656 ± 3.867	76.327 ± 3.705	76.135 ± 3.647	75.899 ± 3.627	75.820 ± 3.805
0.4	78.594 ± 3.922	78.212 ± 3.900	77.959 ± 3.892	77.404 ± 3.868	77.752 ± 3.845	77.351 ± 3.948	76.356 ± 3.951
0.6	79.120 ± 3.966	79.353 ± 4.033	78.697 ± 4.141	78.159 ± 3.992	78.433 ± 4.140	78.099 ± 4.079	76.887 ± 4.058
0.8	79.572 ± 3.961	79.870 ± 3.937	79.209 ± 4.078	78.442 ± 4.099	78.623 ± 4.087	78.418 ± 4.111	76.803 ± 4.042
1.0	80.214 ± 3.992	80.240 ± 3.903	79.625 ± 4.093	78.894 ± 4.004	79.130 ± 4.014	78.808 ± 4.019	76.897 ± 4.227
1.2	80.618 ± 4.143	80.053 ± 3.981	79.750 ± 4.055	79.296 ± 4.040	79.397 ± 4.041	79.055 ± 3.962	76.894 ± 4.261
2.0	81.236 ± 4.060	81.094 ± 3.975	80.579 ± 4.141	80.276 ± 4.192	80.091 ± 4.045	79.817 ± 4.206	76.548 ± 4.440
3.0	81.486 ± 4.057	81.308 ± 4.024	80.974 ± 3.884	80.656 ± 3.927	80.514 ± 4.021	80.341 ± 4.103	75.822 ± 4.701
4.0	81.565 ± 4.072	81.627 ± 4.007	81.317 ± 4.061	81.113 ± 4.037	80.962 ± 3.934	80.668 ± 3.834	75.464 ± 4.878
5.0	81.548 ± 4.161	81.538 ± 3.989	81.012 ± 4.123	81.161 ± 3.924	80.930 ± 3.939	80.913 ± 4.007	74.950 ± 4.863

Table 27: Results for the Soybean (Large) dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	90.450 ± 1.379	89.572 ± 1.557	89.425 ± 1.555	86.323 ± 1.798	74.294 ± 2.680	67.276 ± 2.540	89.222 ± 1.595
0.4	91.692 ± 1.346	91.319 ± 1.321	91.410 ± 1.349	90.479 ± 1.479	85.207 ± 1.979	82.423 ± 2.141	91.089 ± 1.541
0.6	92.186 ± 1.312	91.806 ± 1.382	92.050 ± 1.336	91.511 ± 1.395	87.737 ± 1.699	85.760 ± 1.888	91.463 ± 1.516
0.8	92.386 ± 1.280	92.013 ± 1.288	92.268 ± 1.291	91.938 ± 1.319	88.928 ± 1.636	87.261 ± 1.727	91.628 ± 1.467
1.0	92.442 ± 1.282	92.101 ± 1.308	92.459 ± 1.327	92.204 ± 1.316	89.641 ± 1.588	88.136 ± 1.732	91.664 ± 1.474
1.2	92.521 ± 1.296	92.233 ± 1.293	92.440 ± 1.294	92.479 ± 1.278	90.923 ± 1.434	90.044 ± 1.516	91.635 ± 1.488
2.0	92.606 ± 1.299	92.348 ± 1.254	92.598 ± 1.304	92.695 ± 1.263	91.704 ± 1.355	91.182 ± 1.450	91.505 ± 1.509
3.0	92.641 ± 1.300	92.412 ± 1.296	92.618 ± 1.292	92.691 ± 1.240	92.153 ± 1.340	91.985 ± 1.351	91.274 ± 1.564
4.0	92.640 ± 1.251	92.480 ± 1.278	92.561 ± 1.297	92.712 ± 1.276	92.403 ± 1.278	92.220 ± 1.327	91.133 ± 1.613
5.0	92.662 ± 1.246	92.537 ± 1.288	92.566 ± 1.290	92.681 ± 1.314	92.526 ± 1.291	92.387 ± 1.289	91.027 ± 1.623

Table 28: Results for the Tic-Tac-Toe Endgame dataset.

BR	RF(nt_500)	RF(qs_ent)	$RF(mn_4)$	RF(mn_8)	$RF(ml_4)$	RF(ml_5)	RF(nf_all)
0.2	84.737 ± 1.551	84.186 ± 1.683	82.142 ± 1.618	78.510 ± 1.538	76.485 ± 1.409	75.429 ± 1.290	88.951 ± 2.208
0.4	90.749 ± 1.738	90.185 ± 1.796	88.007 ± 1.783	83.849 ± 1.626	81.011 ± 1.574	79.460 ± 1.552	95.987 ± 1.283
0.6	93.423 ± 1.661	92.680 ± 1.595	90.843 ± 1.747	86.760 ± 1.740	83.504 ± 1.666	81.897 ± 1.641	96.907 ± 1.053
0.8	94.821 ± 1.502	93.998 ± 1.537	92.594 ± 1.689	88.705 ± 1.812	85.392 ± 1.809	83.569 ± 1.730	97.150 ± 0.981
1.0	95.590 ± 1.387	95.009 ± 1.396	93.755 ± 1.592	90.200 ± 1.807	86.947 ± 1.827	85.031 ± 1.774	97.131 ± 1.043
1.2	96.101 ± 1.310	95.585 ± 1.366	94.832 ± 1.546	92.697 ± 1.652	89.772 ± 1.873	88.176 ± 1.851	97.110 ± 1.027
2.0	96.866 ± 1.174	96.424 ± 1.192	96.055 ± 1.252	94.711 ± 1.475	92.581 ± 1.781	91.113 ± 1.852	96.676 ± 1.229
3.0	97.162 ± 1.094	96.697 ± 1.118	96.537 ± 1.200	95.793 ± 1.317	94.310 ± 1.567	93.478 ± 1.713	96.235 ± 1.312
4.0	97.184 ± 1.063	96.819 ± 1.113	96.778 ± 1.088	96.333 ± 1.246	95.201 ± 1.467	94.563 ± 1.573	95.908 ± 1.438
5.0	97.264 ± 1.065	96.858 ± 1.128	96.873 ± 1.104	96.545 ± 1.172	95.831 ± 1.306	95.226 ± 1.429	95.608 ± 1.482

Table 29: Results for the Thyroid Disease dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	92.821 ± 2.404	92.992 ± 2.334	93.078 ± 2.393	92.924 ± 2.317	89.785 ± 2.068	82.280 ± 3.670	93.146 ± 2.386
0.4	95.148 ± 1.951	94.949 ± 1.940	95.049 ± 2.068	94.822 ± 2.099	93.696 ± 2.220	93.371 ± 2.124	93.927 ± 2.296
0.6	95.529 ± 1.952	95.478 ± 1.831	95.384 ± 2.054	95.166 ± 2.103	94.431 ± 2.199	94.229 ± 2.256	94.203 ± 2.366
0.8	95.552 ± 1.945	95.675 ± 1.848	95.366 ± 1.938	95.087 ± 2.067	94.631 ± 2.131	94.496 ± 2.179	94.142 ± 2.378
1.0	95.542 ± 1.926	95.766 ± 1.841	95.331 ± 1.981	95.070 ± 2.055	94.710 ± 2.176	94.531 ± 2.210	94.080 ± 2.362
1.2	95.624 ± 1.903	95.840 ± 1.777	95.482 ± 1.917	95.240 ± 1.968	95.010 ± 2.091	94.870 ± 2.109	94.078 ± 2.288
2.0	95.459 ± 1.935	95.635 ± 1.858	95.328 ± 1.924	95.112 ± 2.057	94.964 ± 2.034	94.815 ± 2.110	93.763 ± 2.308
3.0	95.321 ± 2.021	95.565 ± 1.853	95.152 ± 2.030	95.029 ± 2.010	94.882 ± 2.139	94.778 ± 2.179	93.689 ± 2.327
4.0	95.217 ± 2.047	95.523 ± 1.882	95.042 ± 2.059	94.924 ± 2.080	94.847 ± 2.193	94.768 ± 2.280	93.622 ± 2.378
5.0	95.163 ± 2.044	95.423 ± 1.924	94.977 ± 2.058	94.898 ± 2.041	94.858 ± 2.108	94.724 ± 2.113	93.601 ± 2.347

Table 30: Results for the Vehicle Silhouettes dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	$RF(ml_4)$	RF(ml_5)	RF(nf_all)
0.2	72.444 ± 1.686	72.441 ± 1.739	72.170 ± 1.746	71.441 ± 1.810	70.228 ± 1.823	69.615 ± 1.790	72.351 ± 1.817
0.4	73.467 ± 1.615	73.362 ± 1.587	73.238 ± 1.683	72.954 ± 1.710	71.817 ± 1.768	71.322 ± 1.774	73.385 ± 1.837
0.6	73.932 ± 1.618	73.790 ± 1.564	73.845 ± 1.625	73.434 ± 1.670	72.490 ± 1.695	71.973 ± 1.794	73.595 ± 1.680
0.8	74.286 ± 1.606	74.070 ± 1.560	74.118 ± 1.673	73.737 ± 1.597	72.794 ± 1.692	72.355 ± 1.770	73.597 ± 1.682
1.0	74.397 ± 1.591	74.227 ± 1.509	74.303 ± 1.614	73.998 ± 1.663	73.005 ± 1.694	72.568 ± 1.683	73.656 ± 1.709
1.2	74.442 ± 1.581	74.322 ± 1.568	74.347 ± 1.608	74.212 ± 1.590	73.451 ± 1.695	73.160 ± 1.646	73.471 ± 1.747
2.0	74.557 ± 1.519	74.487 ± 1.561	74.566 ± 1.615	74.422 ± 1.555	73.948 ± 1.619	73.616 ± 1.683	73.220 ± 1.765
3.0	74.506 ± 1.542	74.434 ± 1.576	74.531 ± 1.562	74.455 ± 1.597	74.127 ± 1.618	74.071 ± 1.574	72.681 ± 1.856
4.0	74.544 ± 1.480	74.547 ± 1.582	74.480 ± 1.529	74.522 ± 1.562	74.214 ± 1.536	74.138 ± 1.563	72.343 ± 1.885
5.0	74.583 ± 1.512	74.442 ± 1.576	74.544 ± 1.577	74.505 ± 1.549	74.326 ± 1.665	74.276 ± 1.495	72.091 ± 1.918

Table 31: Results for the Vowel Recognition dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	84.796 ± 2.104	81.707 ± 2.151	80.631 ± 2.235	76.111 ± 2.369	73.027 ± 2.420	70.847 ± 2.581	77.066 ± 2.491
0.4	88.552 ± 1.902	86.939 ± 2.015	85.794 ± 2.090	82.279 ± 2.149	78.848 ± 2.342	76.617 ± 2.353	82.283 ± 2.336
0.6	90.170 ± 1.852	89.077 ± 1.852	88.036 ± 1.943	85.067 ± 2.124	81.585 ± 2.264	79.443 ± 2.321	84.474 ± 2.194
0.8	90.981 ± 1.737	90.127 ± 1.732	89.185 ± 1.881	86.562 ± 2.053	83.281 ± 2.128	81.293 ± 2.266	85.400 ± 2.053
1.0	91.415 ± 1.745	90.697 ± 1.694	89.849 ± 1.804	87.463 ± 2.015	84.339 ± 2.210	82.412 ± 2.172	85.844 ± 2.090
1.2	91.657 ± 1.692	91.089 ± 1.653	90.576 ± 1.767	89.089 ± 1.895	86.603 ± 2.078	85.111 ± 2.154	86.088 ± 2.145
2.0	92.146 ± 1.616	91.751 ± 1.686	91.428 ± 1.663	90.328 ± 1.796	88.485 ± 1.956	87.211 ± 2.098	85.754 ± 2.149
3.0	92.285 ± 1.651	91.964 ± 1.601	91.718 ± 1.651	91.034 ± 1.757	89.755 ± 1.855	88.989 ± 1.876	84.890 ± 2.276
4.0	92.278 ± 1.662	91.929 ± 1.679	91.785 ± 1.722	91.363 ± 1.701	90.404 ± 1.804	89.876 ± 1.829	84.246 ± 2.288
5.0	92.182 ± 1.667	91.922 ± 1.652	91.730 ± 1.719	91.492 ± 1.683	90.832 ± 1.729	90.358 ± 1.742	83.619 ± 2.390

Table 32: Results for the Wine dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	97.548 ± 1.432	96.649 ± 1.856	96.674 ± 1.847	96.444 ± 1.891	96.413 ± 1.915	96.435 ± 1.965	95.716 ± 2.252
0.4	97.632 ± 1.363	97.067 ± 1.751	97.034 ± 1.743	96.840 ± 1.767	96.489 ± 1.785	96.447 ± 1.870	95.309 ± 2.617
0.6	97.694 ± 1.358	97.346 ± 1.619	97.298 ± 1.603	97.191 ± 1.642	96.677 ± 1.761	96.581 ± 1.755	95.073 ± 2.973
0.8	97.728 ± 1.347	97.368 ± 1.575	97.424 ± 1.519	97.331 ± 1.563	96.691 ± 1.697	96.579 ± 1.758	95.132 ± 3.017
1.0	97.764 ± 1.381	97.396 ± 1.578	97.455 ± 1.534	97.357 ± 1.560	96.728 ± 1.773	96.581 ± 1.807	94.927 ± 3.137
1.2	97.809 ± 1.312	97.416 ± 1.630	97.441 ± 1.528	97.385 ± 1.601	96.969 ± 1.638	96.812 ± 1.721	94.916 ± 3.081
2.0	97.761 ± 1.340	97.416 ± 1.663	97.567 ± 1.513	97.455 ± 1.559	97.039 ± 1.675	96.938 ± 1.789	94.067 ± 3.291
3.0	97.654 ± 1.465	97.362 ± 1.615	97.489 ± 1.541	97.452 ± 1.581	97.211 ± 1.682	97.051 ± 1.713	93.492 ± 3.291
4.0	97.649 ± 1.445	97.357 ± 1.639	97.500 ± 1.509	97.511 ± 1.513	97.334 ± 1.598	97.272 ± 1.595	93.101 ± 3.373
5.0	97.640 ± 1.421	97.329 ± 1.648	97.492 ± 1.536	97.438 ± 1.560	97.289 ± 1.612	97.236 ± 1.604	92.812 ± 3.454

Table 33: Results for the Ringnorm dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn4)	RF(mn_8)	$RF(ml_4)$	RF(ml_5)	RF(nf_all)
0.2	89.752 ± 2.383	88.622 ± 2.779	89.057 ± 2.718	90.107 ± 2.605	83.540 ± 3.072	81.078 ± 3.104	81.605 ± 3.569
0.4	92.597 ± 2.220	91.437 ± 2.413	91.802 ± 2.314	92.443 ± 2.212	89.123 ± 2.691	87.778 ± 2.827	86.065 ± 3.641
0.6	92.717 ± 2.390	91.538 ± 2.526	91.962 ± 2.455	92.335 ± 2.352	89.738 ± 2.701	88.995 ± 2.848	86.747 ± 3.468
0.8	92.370 ± 2.473	91.515 ± 2.582	92.060 ± 2.533	92.192 ± 2.413	89.898 ± 2.675	89.288 ± 2.742	86.725 ± 3.669
1.0	92.173 ± 2.457	91.325 ± 2.692	91.710 ± 2.543	91.957 ± 2.376	89.828 ± 2.619	89.232 ± 2.687	86.767 ± 3.679
1.2	91.977 ± 2.513	91.010 ± 2.693	91.407 ± 2.617	91.657 ± 2.539	90.160 ± 2.638	89.562 ± 2.832	86.563 ± 3.737
2.0	91.322 ± 2.523	90.442 ± 2.754	91.068 ± 2.593	91.213 ± 2.590	89.865 ± 2.754	89.453 ± 2.837	85.672 ± 3.747
3.0	90.670 ± 2.640	89.985 ± 2.752	90.365 ± 2.661	90.450 ± 2.597	89.757 ± 2.755	89.432 ± 2.788	84.672 ± 4.002
4.0	90.398 ± 2.648	89.603 ± 2.710	90.092 ± 2.730	90.173 ± 2.691	89.680 ± 2.698	89.405 ± 2.692	84.085 ± 3.918
5.0	90.173 ± 2.731	89.312 ± 2.864	89.882 ± 2.666	89.953 ± 2.717	89.555 ± 2.733	89.473 ± 2.724	83.438 ± 3.954

Table 34: Results for the Threenorm dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	79.700 ± 2.653	77.880 ± 2.842	77.762 ± 2.973	77.563 ± 2.958	77.197 ± 2.973	76.840 ± 2.982	76.652 ± 3.294
0.4	80.050 ± 2.774	78.720 ± 2.921	78.812 ± 3.059	78.557 ± 2.957	78.468 ± 3.065	78.128 ± 3.138	77.513 ± 3.275
0.6	79.888 ± 2.623	79.040 ± 2.823	79.040 ± 2.753	78.963 ± 2.746	78.587 ± 2.734	78.342 ± 2.820	77.258 ± 3.135
0.8	79.852 ± 2.690	78.910 ± 2.977	79.252 ± 2.782	79.035 ± 2.856	78.733 ± 2.997	78.667 ± 2.891	77.218 ± 3.254
1.0	79.743 ± 2.617	78.723 ± 2.892	78.977 ± 2.792	79.025 ± 2.736	78.643 ± 2.856	78.505 ± 2.890	77.008 ± 3.304
1.2	79.725 ± 2.693	78.715 ± 2.903	78.967 ± 2.861	78.958 ± 2.820	78.868 ± 2.887	78.702 ± 2.938	76.598 ± 3.262
2.0	79.465 ± 2.681	78.663 ± 2.941	78.810 ± 2.659	78.925 ± 2.822	78.687 ± 2.827	78.528 ± 2.833	75.537 ± 3.555
3.0	79.032 ± 2.749	78.307 ± 2.811	78.503 ± 2.890	78.525 ± 2.860	78.390 ± 2.811	78.465 ± 2.860	74.313 ± 3.647
4.0	78.843 ± 2.693	78.053 ± 2.910	78.422 ± 2.954	78.313 ± 2.865	78.407 ± 2.845	78.373 ± 2.859	73.457 ± 3.735
5.0	78.810 ± 2.787	77.863 ± 3.004	78.178 ± 2.904	78.312 ± 2.964	78.258 ± 2.877	78.285 ± 2.944	72.995 ± 3.860

Table 35: Results for the Twonorm dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	96.002 ± 1.397	94.825 ± 1.692	95.023 ± 1.634	94.927 ± 1.780	94.755 ± 1.720	94.590 ± 1.751	93.297 ± 2.170
0.4	95.688 ± 1.426	94.630 ± 1.742	94.977 ± 1.651	94.730 ± 1.676	94.363 ± 1.747	94.192 ± 1.831	92.850 ± 2.546
0.6	95.413 ± 1.533	94.360 ± 1.774	94.805 ± 1.646	94.540 ± 1.722	94.070 ± 1.728	93.942 ± 1.788	91.957 ± 2.703
0.8	95.285 ± 1.560	94.297 ± 1.800	94.567 ± 1.745	94.467 ± 1.717	93.993 ± 1.833	93.722 ± 1.836	91.260 ± 2.948
1.0	95.093 ± 1.594	93.975 ± 1.833	94.448 ± 1.804	94.253 ± 1.723	93.770 ± 1.740	93.625 ± 1.911	90.832 ± 3.036
1.2	95.008 ± 1.634	93.957 ± 1.825	94.355 ± 1.727	94.288 ± 1.867	93.797 ± 1.901	93.678 ± 1.893	90.383 ± 3.141
2.0	94.617 ± 1.728	93.653 ± 2.006	94.123 ± 1.838	94.038 ± 1.772	93.542 ± 2.007	93.307 ± 1.991	88.787 ± 3.731
3.0	94.413 ± 1.814	93.378 ± 1.957	93.923 ± 1.828	93.955 ± 1.892	93.438 ± 1.949	93.322 ± 2.010	87.398 ± 3.882
4.0	94.197 ± 1.846	93.200 ± 1.975	93.628 ± 1.848	93.807 ± 1.884	93.425 ± 1.977	93.302 ± 2.006	86.270 ± 4.283
5.0	94.125 ± 1.866	93.057 ± 1.966	93.680 ± 1.917	93.647 ± 1.897	93.435 ± 1.907	93.342 ± 1.969	85.280 ± 4.206

Table 36: Results for the Waveform dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	86.165 ± 2.424	84.730 ± 2.706	84.752 ± 2.666	84.630 ± 2.705	84.067 ± 2.777	83.598 ± 2.739	83.990 ± 2.788
0.4	85.635 ± 2.441	84.913 ± 2.489	84.702 ± 2.578	84.658 ± 2.591	84.900 ± 2.591	84.465 ± 2.553	82.855 ± 3.023
0.6	85.328 ± 2.322	84.747 ± 2.563	84.375 ± 2.433	84.313 ± 2.561	84.857 ± 2.639	84.725 ± 2.619	81.982 ± 3.297
0.8	84.868 ± 2.409	84.538 ± 2.441	84.253 ± 2.667	84.253 ± 2.515	84.823 ± 2.576	84.827 ± 2.616	81.252 ± 3.185
1.0	84.682 ± 2.396	84.367 ± 2.447	83.973 ± 2.479	83.970 ± 2.690	84.660 ± 2.573	84.632 ± 2.539	80.578 ± 3.406
1.2	84.435 ± 2.406	84.135 ± 2.592	83.998 ± 2.537	83.910 ± 2.563	84.552 ± 2.562	84.598 ± 2.650	80.015 ± 3.251
2.0	83.948 ± 2.494	83.758 ± 2.533	83.332 ± 2.500	83.327 ± 2.731	84.000 ± 2.582	84.058 ± 2.684	78.445 ± 3.620
3.0	83.585 ± 2.478	83.368 ± 2.600	83.293 ± 2.563	83.230 ± 2.704	83.788 ± 2.702	83.740 ± 2.625	77.073 ± 3.826
4.0	83.485 ± 2.539	83.398 ± 2.528	83.177 ± 2.706	83.073 ± 2.593	83.507 ± 2.534	83.590 ± 2.503	76.318 ± 3.853
5.0	83.437 ± 2.509	83.282 ± 2.544	83.083 ± 2.552	83.055 ± 2.503	83.230 ± 2.609	83.468 ± 2.596	75.653 ± 3.977

Table 37: Results for the LED Display Domain dataset.

BR	RF(nt_500)	RF(qs_ent)	RF(mn_4)	RF(mn_8)	RF(ml_4)	RF(ml_5)	RF(nf_all)
0.2	61.648 ± 3.594	57.242 ± 4.151	58.780 ± 4.167	61.237 ± 3.791	57.737 ± 4.245	54.337 ± 4.506	63.862 ± 3.841
0.4	63.392 ± 3.392	61.350 ± 3.712	62.823 ± 3.885	65.780 ± 3.654	64.990 ± 3.818	64.850 ± 3.512	64.633 ± 3.597
0.6	63.365 ± 3.434	61.950 ± 3.708	62.835 ± 3.763	65.375 ± 3.708	65.847 ± 3.627	66.018 ± 3.704	62.800 ± 3.736
0.8	63.285 ± 3.478	61.343 ± 3.613	62.977 ± 3.735	64.765 ± 3.697	65.703 ± 3.673	66.425 ± 3.750	61.330 ± 3.704
1.0	63.025 ± 3.481	61.593 ± 3.608	63.047 ± 3.787	64.528 ± 3.715	65.448 ± 3.790	66.590 ± 3.755	60.175 ± 3.837
1.2	62.818 ± 3.516	61.617 ± 3.801	62.740 ± 3.485	64.327 ± 3.701	64.993 ± 3.476	65.320 ± 3.472	59.453 ± 3.951
2.0	62.553 ± 3.622	61.428 ± 3.795	62.062 ± 3.696	63.653 ± 3.511	64.565 ± 3.620	65.050 ± 3.650	57.205 ± 4.111
3.0	62.110 ± 3.544	60.918 ± 3.705	61.262 ± 3.575	62.790 ± 3.642	63.873 ± 3.489	64.218 ± 3.450	55.770 ± 4.185
4.0	61.888 ± 3.528	61.000 ± 3.822	61.155 ± 3.752	62.073 ± 3.700	63.287 ± 3.582	63.932 ± 3.513	55.203 ± 4.229
5.0	61.848 ± 3.570	61.240 ± 3.724	60.912 ± 3.687	61.622 ± 3.713	62.742 ± 3.714	63.420 ± 3.666	54.860 ± 4.338

C BOOTSTRAP RATE CURVES

Figure 1: Characteristics of bootstrap rate curves for datasets not shown in main part.

REFERENCES Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. Classification and Re-gression Trees. Taylor & Francis, 1984. Leo Breiman. Arcing Classifiers. *The Annals of Statistics*, 26(3):801–824, 1998. Markelle Kelly, Rachel Longjohn, and Kolby Nottingham. The UCI Machine Learning Repository. https://archive.ics.uci.edu, 2023. Accessed: 2024-07-11.