Question 1. [5 MARKS]

The Setun computer was developed in Moscow in the 1950s. It used a ternary (base 3) number system.

Part (a) [1 MARK]

What is the decimal (base 10) representation of the ternary number 121? Show your work and place your final answer in the box.

$$1 \times 3^{0} + 2 \times 3^{1} + 1 \times 3^{2}$$
= $1 + 6 + 9$ decimal
= 16 decimal

Part (b) [1 MARK]

What is the binary (base 2) representation of the ternary number 121? Show your work and place your final answer in the box.

$$16 = 1 \times 2^{4}$$

$$= 0 \times 2^{0} + 0 \times 2^{1} + 0 \times 2^{2} + 0 \times 2^{3} + 1 \times 2^{4}$$

$$10000$$

Part (c) [1 MARK]

Using only ternary numbers, determine the sum of the ternary numbers 10101 and 20102. Show your work and place your final answer in the box.

10101	
20102	100210
100210	

Part (d) [2 MARKS]

Using only ternary numbers, determine the product of the ternary numbers 12 and 102. Show your work and place your final answer in the box.

102		
12		
211		2001
1020		
2001	'	

Page 1 of 6 Cont'd...

Question 2. [9 MARKS]

Recall that an integer n is even if and only if $\exists q \in \mathbb{Z}, n = 2q$. Also, an integer n is odd if and only if $\exists q \in \mathbb{Z}, n = 2q + 1$. Integers are either even or odd.

Let us define the predicates E(n): "n is an even number" and O(n): "n is an odd number".

Consider the following statement:

For every integer n, n^3 is even if and only if n is even.

Part (a) [1 MARK]

Translate the statement into symbolic notation. Quantify over the integers (\mathbb{Z}). Use the predicate E(n). Sample Solution:

$$\forall n \in \mathbb{Z}, E(n^3) \iff E(n)$$

or

$$\forall n \in \mathbb{Z}, E(n^3) \Rightarrow E(n) \land E(n) \Rightarrow E(n^3)$$

Part (b) [8 MARKS]

Write a detailed structured proof of the statement. Part marks will be given for having correct elements of the proof structure.

Sample Solution: There are a few ways to prove this statement. Here is one proof.

```
Assume n \in \mathbb{Z}.
```

Assume E(n).

```
Then \exists q \in \mathbb{Z}, n = 2q.
            Let q_0 \in \mathbb{Z} be such that n = 2q_0.
            Then n^3 = (2q_0)^3
            = 2(4q_0^3). Then \exists r \in \mathbb{Z}, n^3 = 2r. \quad \# \text{ since } 4q_0^3 \in \mathbb{Z}
            Then E(n^3).
      Then E(n) \Rightarrow E(n^3).
       Assume \neg E(n).
            Then O(n).
            Then \exists q \in \mathbb{Z}, n = 2q + 1.
            Let q_1 \in \mathbb{Z} be such that n = 2q_1 + 1.
            Then n^3 = (2q_1 + 1)^3
                            = 8q_1^3 + 12q_1^2 + 6q_1 + 1
                            = 2(4q_1^3 + 6q_1^2 + 3q_1) + 1.
            Then \exists r \in \mathbb{Z}, n^3 = 2r + 1. # since 4q_1^3 + 6q_1^2 + 3q_1 \in \mathbb{Z}
            Then O(n^3).
            Then \neg E(n^3).
      Then \neg E(n) \Rightarrow \neg E(n^3).
      Then E(n^3) \Rightarrow E(n). # contrapositive
      Then E(n^3) \Rightarrow E(n) \land E(n) \Rightarrow E(n^3).
      Then E(n^3) \iff E(n).
Then \forall n \in \mathbb{Z}, E(n^3) \iff E(n).
```

Page 2 of 6

Question 3. [9 MARKS]

Recall that an integer p > 1 is prime if and only if its only positive integer divisors are 1 and p.

Also, an integer n is odd if and only if $\exists q \in \mathbb{Z}, n = 2q + 1$. An integer n is even if and only if $\exists q \in \mathbb{Z}, n = 2q$. Integers are either odd or even.

Let us define the predicates P(n): "n is a prime number", O(n): "n is an odd number" and E(n): "n is an even number".

Consider the following statement:

All prime numbers greater than 2 are odd.

Part (a) [2 MARKS]

Translate the statement into symbolic notation. Quantify over the natural numbers (\mathbb{N}). Use the predicates P(n), O(n) and/or E(n).

SAMPLE SOLUTION:

$$\forall n \in \mathbb{N}, P(n) \land n > 2 \Rightarrow O(n)$$

Part (b) [7 MARKS]

Write a detailed structured proof of the statement. Part marks will be given for having correct elements of the proof structure.

SAMPLE SOLUTION:

A proof follows from the observation that even numbers that are more than 2 are divisible by 2 and hence cannot be prime. Here is a formal proof that uses this idea.

```
Assume n \in \mathbb{N}.

Assume P(n) \wedge n > 2.

Then P(n).

Then n > 2.

Then the only integer divisors of n are q_1 = 1 and q_2 = n with q_2 > 2.

Assume \neg O(n).

Then n is even. # all natural numbers are either even or odd

Then \exists q \in \mathbb{N}, n = 2q.

Then 2 divides n.

Then n has a divisor that is more than 1 and less than n.

But n's only divisors are 1 and n.

Then we have a contradiction and our assumption must be false.

Then O(n).

Then n > 2 \wedge P(n) \Rightarrow O(n).

Then \forall n \in \mathbb{N}, n > 2 \wedge P(n) \Rightarrow O(n).
```

Alternatively, one could consider the contrapositive of $P(n) \wedge n > 2 \Rightarrow O(n)$, namely $\neg O(n) \Rightarrow \neg P(n) \vee \neg (n > 2)$, or the equivalent $E(n) \Rightarrow \neg P(n) \vee n \leqslant 2$. As seen in class, statements of the form $A \Rightarrow B \vee C$ are equivalent to $A \wedge \neg B \Rightarrow C$. And so, a proof can follow by considering the statement $E(n) \wedge P(n) \Rightarrow n \leqslant 2$. This is not to difficult to prove using some of the steps in the above proof by contradiction.

Page 3 of 6 Cont'd...

Question 4. [8 MARKS]

Recall that for $x \in \mathbb{R}$, we can define |x| by $|x| = \begin{cases} -x, & x < 0, \\ x, & x \ge 0. \end{cases}$

(This is the only definition of |x| that you are allowed to use in your solution to this question.)

Consider the following statement:

For every real number x, if |x-3| < 3 then 0 < x < 6.

This statement is equivalent to the symbolic statement:

$$\forall x \in \mathbb{R}, |x-3| < 3 \Rightarrow 0 < x < 6.$$

Now consider the following argument:

```
Assume x \in \mathbb{R}.
     Assume |x-3| < 3.
         Then either x-3 \ge 0 or x-3 < 0.
         Case 1: Assume x - 3 \ge 0.
             Then |x-3|=x-3. # by the above definition
             Then x - 3 < 3. # since |x - 3| < 3
             Then x < 6. # add 3 to both sides
         Case 2: Assume x - 3 < 0.
             Then |x-3| = -(x-3). # by the above definition
             Then -(x-3) < 3. # since |x-3| < 3
             Then -x + 3 < 3.
             Then -x < 0. # subtract 3 from both sides
             Then 0 < x \# \text{ add } x \text{ to both sides.}
         Then we have proven both 0 < x and x < 6.
         Then 0 < x < 6.
     Then |x - 3| < 3 \Rightarrow 0 < x < 6.
Then \forall x \in \mathbb{R}, |x-3| < 3 \Rightarrow 0 < x < 6.
```

Part (a) [2 MARKS]

This argument is not a correct proof of the statement. Explain the flaw in the argument.

SAMPLE SOLUTION: The proof shows that, under the assumption that |x-3| < 3, it follows that for $x-3 \ge 0$, x < 6. It also shows that under the same assumption, when x-3 < 0, x > 0. Since either $x-3 \ge 0$ or x-3 < 0, we have shown that either x < 6 or x > 0. But we are required to show 0 < x < 6. That is, we are required to show 0 < x and x < 6. In other words, the disjuction of 0 < x, x < 6 has been proven, but not the conjuction.

Page 4 of 6 Cont'd...

Part (b) [6 MARKS]

Give a correct proof of the statement $\forall x \in \mathbb{R}, |x-3| < 3 \Rightarrow 0 < x < 6$.

SAMPLE SOLUTION: A correct proof follows from using the additional fact that $\forall z \in \mathbb{R}, 0 \leq |z|$. Students were allowed to use this as a known fact, thought it is not difficult to prove using a direct proof with two cases.

```
Assume x \in \mathbb{R}.
     Assume |x-3| < 3.
         Then either x - 3 \ge 0 or x - 3 < 0.
         Case 1: Assume x - 3 \ge 0.
              Then |x-3|=x-3. # by the above definition
              Then x - 3 < 3. # since |x - 3| < 3
              Then x-3 \ge 0. # since |x-3| \ge 0
              Then 0 \le x - 3 < 6.
              Then 3 \le x < 6. # add 3 to all sides
         Then x - 3 \ge 0 \Rightarrow 3 \le x < 6.
         Case 2: Assume x - 3 < 0.
              Then |x-3| = -(x-3). # by the above definition
              Then -(x-3) < 3. # since |x-3| < 3
              Then -(x-3) \ge 0. # since |x-3| \ge 0
              Then 0 \le -x + 3 < 3.
              Then -3 \leqslant -x < 0. # subtract 3 from all sides
              Then 3 \geqslant x > 0. # multiply by -1
              Then 0 < x \leq 3.
         Then x - 3 < 0 \Rightarrow 0 < x \leq 3.
         Then 0 < x \le 3 \land 3 \le x < 6.
         Then 0 < x < 6.
     Then |x-3| < 3 \Rightarrow 0 < x < 6.
Then \forall x \in \mathbb{R}, |x-3| < 3 \Rightarrow 0 < x < 6.
```

Page 5 of 6 Cont'd...

Total Marks = 31