VE406

Group 3

Boqun Li Shensong Zhao Xinmiao Yu

December 1, 2020

Overview

- Close Price Analysis
- 2 Data Collecting
- MLR Analysis
- Problem Addressing
- Model Comparison
- 6 Discussion of Final Model
- Reference

Overview

Close Price Analysis

Goal: Predict the Stock Price

Figure 1: Close Price vs. Date

- Moving Average
- Smooth
- Correlation
- Year Trend and Seasonality
- Outliers

Moving Average

- Reduce noise
- Better understanding of underlying trend

Figure 2: Moving Average Plot with 7, 15, 30 Days

Smooth

Figure 3: Smoothing with Fraction is 0.05 and 0.15

- Overall increasing trend
- Sharp gap between year 2020 and previous years

Correlation

Shift the Close price by x days, denoted as $Close_x$

Figure 4: Pearson Correlation Coefficient

Show correlation, less time shifted, higher correlated

Group 3 Final Project December 1, 2020

Correlation

Group 3

Highly correlated, need further discussed

Figure 5: Pearson Correlation Coefficient

Year Trend and Seasonality

Figure 6: Year and Month Box Plot

• Clear gap and no seasonality

Outliers

Use K-means as a quick reference for outliers identification

Figure 7: Outlier Detection

Year 2020 identified as outliers, as expected

Consider only use year 2020 data for our goal...

Year Trend and Seasonality Revisited

No year 2020 data involved!

Figure 8: Without Year 2020 Trend

• No outliers anymore and still no seasonality

Group 3 Final Project December 1, 2020 11/49

Decomposition

Figure 9: Year 2020 Decomposition

Decide to only use year 2020 data

Data Collecting

variable	brief explanation
OilPrice	The daily price of oil in US
death	The number of death caused by the car of Tesla
DPRIME	daily Bank Prime Loan Rate
TOTALSA	total number of sales monthly data divided by 30
new-death	newly death numbers due to COVID-19
new-case	new cases of COVID-19
${\sf GoogleTrend}$	The number of people searching for TSLA on Google

- Research to find the related factors
- Choose data in different categories to reduce predictors' correlation
- Choose daily data

Variable Selection

• First we need to select the related variable from the collected data.

Figure 10: Variable selection

MLR

• Based on the acf plot and the residual plot, the errors are correlated

Figure 11: Residual plot

17 / 49

Group 3 Final Project December 1, 2020

MLR

• From the pattern of the residuals, we can see that the residuals series is not a white noise.

Figure 12: ACF plot

Problem Addressing

Based on the problems

- Monthly Data
- Collinearity
- Heteroskedasticity
- Time Series

Different Methods will be used respectively

20 / 49

Group 3 Final Project December 1, 2020

The monthly collected data are mainly *TOTALSA* and *DPRIME*, which is as following,

Figure 13: Scatter plot for TOTALSA

Generalized Linear Mixed Model

- Fixed Effects
 Fixed across the date
 Oil price that is daily collected
- Random Effects
 Random across the date
 Total mobile sale collected monthly average to daily basis

We can have the random effect either affect intercept or the slope of the model. Here we assume the random effect only contributes to the intercept.

We fit three models in total.

- DPRIME + TOTALSA
- TOTALSA
- DPRIME

Then we compare the three models using anova table. We mainly focus on AIC and BIC criteria across the model.

We further check the summary of the model fitted only with TOTALSA.

```
Formula: Close ~ OilPrice + GoogleTrend + new_cases + (1 | TOTALSA)
  Data: data.frame(tesla.training)
REML criterion at convergence: 1963.4
Scaled residuals:
   Min
            10 Median
                            30
                                   Max
-3.2321 -0.4571 0.0706 0.5182 4.3036
Random effects:
Groups
         Name
                     Variance Std.Dev.
TOTALSA (Intercept) 15105.5 122.90
Residual
                       711.9
                               26.68
Number of obs: 202, groups: TOTALSA, 10
Fixed effects:
            Estimate Std. Error t value
(Intercept) 1.298e+02 4.520e+01
                                2.870
OilPrice
           1.360e+00 4.106e-01
                                 3.313
GoogleTrend 7.110e-01 1.594e-01
                                 4.460
new_cases 3.365e-04 3.193e-04
                                 1.054
Correlation of Fixed Effects:
           (Intr) OilPrc GglTrn
OilPrice
           -0.409
GoogleTrend -0.231 -0.018
new cases -0.302 0.197 0.173
```

We make the prediction on the testing dataset and compare it with the real close price.

Figure 14: Predict close prices for GLMM model

Collinearity

To address the collinearity problem, Principal Component Analysis is used. We first center and scale the data. Then we plot the total variance proportion explained by the principal components.

Figure 15: Variance proportion explained by different principal components

Group 3 Final Project December 1, 2020 27 / 49

Collinearity

Besides, we also give the numeric value for the cumulative proportion of total variance explained by each component.

```
Importance of components:
```

```
PC1
                                 PC2
                                        PC3
                                               PC4
                                                       PC5
                                                               PC6
                                                                       PC7
                                                                               PC8
                                                                                        PC9
Standard deviation
                       2.2719 1.7868 1.1550 0.6609 0.59955 0.50071 0.42512 0.28016 0.05867
Proportion of Variance 0.4692 0.2903 0.1213 0.0397 0.03268 0.02279 0.01643 0.00714 0.00031
Cumulative Proportion 0.4692 0.7595 0.8808 0.9205 0.95313 0.97593 0.99236 0.99949 0.99980
                          PC10
                                  PC11
Standard deviation
                       0.04045 0.02259
Proportion of Variance 0.00015 0.00005
```

Cumulative Proportion 0.99995 1.00000

Collinearity

Then we try to explore whether PCA contributes to addressing collinearity. We plot the correlation pair plot.

Figure 16: Pair plot for correlation between PCA components

Time Series

Single Close Price Variable

- Simple Exponential Smoothing (SES)
- Holt's Method
- Holt-Winter exponential trend
- Year Trend and Seasonality
- Seasonal Autoregressive Integrated Moving Average (SARIMA)
- Autocorrelation(AR)

Multiple Variables

- GLMM
- ARIMA
- VectorAutoRegression (VAR)

All the models are fitted using train-test spilt

SES model

Simple Exponential Smoothing

Figure 17: SES Model Forecast

Holt model

Holt's Method with linear and exponential trend

Figure 18: Holt's Method Model Forecast

HWES model

Holt-Winter exponential trend, addition-addition and addition multiplication

Figure 19: HWES Model Forecast

SARIMA model

Seasonal Autoregressive Integrated Moving Average

Figure 20: SARIMA Model

AR model

- First we seek AR model for help
- ullet We tried AR(10) to solve the correlated errors

Figure 21: ACF plot

AR model

• The test using data spliting

Figure 22: prediction vs real price

GARCH model

The residuals of the mean model of a time series is a_t, The ARCH model is used to solve the heteroscedasticity of the time series.
 Though we solved correlated errors, the variance of the residuals is still not a constant.

$$a_t = \sigma_t \varepsilon_t \sigma_t^2 = \alpha_0 + \alpha_1 a_{t-1}^2 + \dots + \alpha_m a_{t-m}^2$$
 (1)

 The GARCH model is the generalized ARCH model, the residuals of mean model of time series at follows

$$a_t = \sigma_t \varepsilon_t, \quad \sigma_t^2 = \alpha_0 + \sum_{i=1}^m \alpha_i a_{t-i}^2 + \sum_{j=1}^s \beta_j \sigma_{t-j}^2$$
 (2)

Group 3 Final Project December 1, 2020 37 / 49

GARCH model

 By boxtest, the residuals for close – mean(close) shows that there is ARCH effect

Figure 23: Pacf plot of a_t^2

38 / 49

GARCH model

• From the pacf plot, we can set the order in GARCH to be 1 and construct the model.

Standardized Residuals

Figure 24: Residuals plot for garch model

ARIMA model

 The time series of the close price may not be stationary, so we need to further check if ARIMA model is necessary.

residuals

Figure 25: Residuals for arima model

Time

100

50

150

200

ARIMA model

The acf plot shows the correlated errors problem is solved

Figure 26: Acf plot for arima model

ARIMA model

• The test using data spliting

prediction vs real

Figure 27: prediction vs real price

VAR model

• The test using data spliting

price prediction

Figure 28: prediction vs real price

Model Comparison

All the models following

- Method: Train/Test Spilt
- Criteria:

```
y_{test} = original test set y_{pred} = predicted values from fitted models for the test set score = \sum (y_{pred} - y_{test})^2
```

45 / 49

Model Score

Final Model: AR!

Figure 29: Different Model Score

Discussion of Final Model

Potential issues for large datasets.

- Relative small sample size
- Stationary violation
- Fitting time

Reference

Reference

- Peking University, https://www.math.pku.edu.cn/teachers/lidf/course/fts/ ftsnotes/html/ ftsnotes/fts-var.html#var-mod
- Kaggle, https://www.kaggle.com/jutrera/ stanford-car-dataset-by-classes-folder
- PennState, Eberly College of Science https://online.stat.psu.edu/stat501/lesson/
- nwfsc-timeseries, https://nwfsc-timeseries.github.io/ atsa-labs/sec-tslab-moving-average-ma-models.html

48 / 49

Thanks for your listening