Spring 2022

CSE 317: Design and Analysis of Algorithms, Quiz - 2 [Section 4]

Monday, February 28, 2022. Total marks: 10 point, Duration: 15 minutes.

N.I.	C. I . ID
Name:,	Student ID:

1. (10 points) Let $A = \langle a_1, \dots a_n \rangle$ a be a sequence of n distinct positive integers. An element a_i , $1 \le i \le n$, is called a *peak element* if none of its neighbors are larger than it. Two elements a_i and a_j are neighbors if |i-j|=1. Design a *divide and conquer* $O(\log n)$ -algorithm to find **one** peak element.

For example, peak elements in different cases of A are underlined next: $A = \langle 1, 2, \underline{3} \rangle$, $A = \langle \underline{6}, 5, 4 \rangle$ and $A = \langle 1, \underline{5}, 2, \underline{4}, 3 \rangle$. [Note: It is possible that a given sequence contains more than one peak elements (see the last example) but your algorithm is supposed to return just one of them.]

Solution:

Algorithm: FIND-PEAK

Input: A sequence $A = \langle a_l, \dots a_h \rangle$ of h - l + 1 distinct positive integers.

Output: A peak element a_j such that $a_j > a_{j+1}$ and $a_j > a_{j-1}$.

- 1. m = |(h+l)/2|
- 2. if $a_m > a_{m-1}$ and $a_m > a_{m+1}$ then return a_m
- 3. if $a_m < a_{m-1}$ then return FIND-PEAK $(\langle a_l, \ldots, a_{m-1} \rangle)$
- 4. if $a_m < a_{m+1}$ then return FIND-PEAK($\langle a_{m+1}, \ldots, a_h \rangle$)

Time complexity: Let h-l+1=n initially and T(n) be time required to compute FIND-PEAK, then T(n)=T(n/2)+1, with T(1)=1 so, $T(n)=O(\log n)$.