MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 5 - FEBRUARY 2017 SOLUTION KEY

Team Round - continued

F)

- if a term is even, the next term is half the current term
- if a term is odd, the next term is 1 more than the current term

Following this algorithm, starting with a power of 2, we eventually produce the alternating sequence 2, 1, 2, 1,

Starting with 32, we have 32 - 16 - 8 - 4 - 2 - 1, alternating 2 - 1 thereafter.

The 5th term starts the repetition and k = 5, as required.

Let $t_1 = n$.

n > 32 will clearly require longer to settle into the 2-1 repetition.

For $n \le 4$, 3 - 4 - 2 - 1 is the longest sequence and k = 3 is rejected.

Here are the sequences where k = 5:

For
$$n \le 8$$
, $5 - 6 - 3 - 4 - 2 - 1$ $6.3,4,2.1$ $(k = 4)$ $7.8,4,2.1$ $(k = 4)$ $8.4,2.1$ $(k = 3)$

For
$$n \le 16$$
, $16.8, 4, 2.1$ $(k = 4)$ $15 - 16 - 8 - 4 - 2 - 1$, $14 - 7 - 8 - 4 - 2 - 1$, $12 - 6 - 3 - 4 - 2 - 1$

It is left to you to verify that n = 9,10,11,13 fail and that for $17 \le n \le 31$, $k \ge 6$ before the sequence settles into a 2-1 repetition.

Thus, there are 5 possibilities: <u>5, 12, 14, 15, 32</u>

There are several instances of k = 6

For example, start with 28.

Note that if k = 6 for these sequences, starting with 27 or 29 will settle for k = 7.

What patterns do you see?