Formula Sheet

- 1. Basic sums: $\sum_{i=1}^{n} i = \frac{1}{2}n(n+1)$, $\sum_{i=1}^{n} i^2 = \frac{1}{6}n(n+1)(2n+1)$, $\sum_{i=1}^{n} i^3 = \frac{1}{4}n^2(n+1)^2$, $n \ge 1$.
- 2. Binomial coefficients: $\binom{n}{k} := \frac{n!}{(n-k)!k!} = \binom{n}{n-k}, n \ge k \ge 0, \binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}, n, k \ge 1.$
- 3. Sums of them: $\sum_{i=0}^{n} {k+i-1 \choose i} = {n+k \choose k}, k, n \ge 0, \sum_{i=0}^{n} {l \choose i} {m-l \choose n-i} = {m \choose n}, m \ge 0, n, l = 0, \dots, m.$
- 4. Binomial theorem: $\sum_{i=0}^{n} {n \choose i} a^i b^{n-i} = (a+b)^n, n \ge 0, a, b \in \mathbb{R}.$
- 5. Sum of a geometric progression: $\sum_{i=0}^{n} a^i = \frac{1-a^{n+1}}{1-a}$ if $a \neq 1$, and $\sum_{i=0}^{n} a^i = n+1$ if a=1.
- 6. Derivative: $f'(a) := \lim_{h \to 0} \frac{f(a+h) f(a)}{h} = \lim_{x \to a} \frac{f(x) f(a)}{x a}$.
- 7. Differentiation: $\frac{d}{dx}(f+g) = \frac{df}{dx} + \frac{dg}{dx}$, $\frac{d}{dx}(fg) = f\frac{dg}{dx} + g\frac{df}{dx}$, $\frac{d}{dx}(f\circ g) = \frac{df}{dg}\frac{dg}{dx}$ $((f\circ g)(x) := f(g(x)))$.
- 8. Integration by parts: if g(x) = G'(x), then $\int_a^b f(x)g(x) dx = f(b)G(b) f(a)G(a) \int_a^b f'(x)G(x) dx$.
- 9. Taylor's theorem: if $f, f', \ldots, f^{(n+1)}$ are defined on [a, x], then (using the Lagrange remainder) $f(x) = f(a) + f'(a)(x-a) + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n + \frac{f^{(n+1)}(t)}{(n+1)!}(x-a)^{n+1} \text{ for some } t \in (a, x).$
- 10. Triangle inequalities: $||x| |y|| \le |x + y| \le |x| + |y|$.
- 11. Logarithm: $\ln(x) = \int_1^x \frac{1}{t} dt$, x > 0, $\ln(xy) = \ln(x) + \ln(y)$, $\ln(y^{\alpha}) = \alpha \ln(y)$, $\log_a(x) = \ln(x) / \ln(a)$.
- 12. Exponential: $\exp := \ln^{-1}, e := \exp(1), e^x := \exp(x), e^{x+y} = e^x e^y, a^x := e^{x \ln(a)}, a^{x+y} = a^x a^y, a > 0.$ $\frac{d}{dx} e^{ax} = a e^{ax}, \ a \in \mathbb{R}, \quad \frac{d}{dx} a^{bx} = b \ln(a) a^{bx}, \ a > 0, \ \sum_{i=0}^{\infty} \frac{a^i}{i!} = e^a, \ \lim_{n \to \infty} \left(1 + \frac{a}{n}\right)^n = e^a, \ a \in \mathbb{R}.$
- 13. Geometric series: $\sum_{i=0}^{\infty} a^i = \frac{1}{1-a}$, $\sum_{i=1}^{\infty} i a^{i-1} = \left(\frac{1}{1-a}\right)^2$, |a| < 1, $\sum_{i=1}^{\infty} \frac{a^i}{i} = \ln\left(\frac{1}{1-a}\right)$, $-1 \le a < 1$.
- 14. Binomial series: $\sum_{i=0}^{\infty} {n+i-1 \choose i} (-1)^i a^i = \left(\frac{1}{1+a}\right)^n, \ n \ge 1, \ |a| < 1.$
- 15. Trigonometric functions: $\tan x = \frac{\sin x}{\cos x}$, $\sin(2x) = 2\sin x \cos x$, $\cos(2x) = 1 2\sin^2 x = 2\cos^2 x 1$, $\sin(x + \frac{\pi}{2}) = \cos x$, $\sin(x + 2k\pi) = \sin x$, $\cos(x + 2k\pi) = \cos x$, $\tan(x + k\pi) = \tan x$, $\sin^2 x + \cos^2 x = 1$, $\frac{d}{dx}\sin x = \cos x$, $\frac{d}{dx}\cos x = -\sin x$, $\frac{d}{dx}\tan x = 1 + \tan^2 x$, $\sin(x + y) = \sin x \cos y + \cos x \sin y$, $\cos(x + y) = \cos x \cos y \sin x \sin y$, $\tan(x + y) = \frac{\tan x + \tan y}{1 \tan x \tan y}$, $\sin x = x \frac{x^3}{3!} + \frac{x^5}{5!} \frac{x^7}{7!} + \cdots$, $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + \cdots$.
- 16. Gamma function: $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$, $\alpha > 0$, $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$, $\Gamma(n+1) = n!$, $\Gamma(\frac{1}{2}) = \sqrt{\pi}$,
- 17. Beta function: $\beta(a,b) = \int_0^1 x^{a-1} (1-x)^{b-1} dx = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}, \ a,b > 0$
- 18. Sterling's formula: $n! \sim \sqrt{2\pi} n^{n+1/2} e^{-n}$ as $n \to \infty$, $n! = \sqrt{2\pi} n^{n+1/2} e^{(-n+\frac{t}{12n})}$ for some $t \in (0,1)$.
- 19. Probability. Ω is the sample space, A, B, \cdots are events, $P(\cdot)$ is probability measure, X, Y, \cdots are random variables (rvs), S is the range of X if X is a discrete rv, F_X denotes distribution function, f_X denotes probability density function (pdf) when X is a continuous rv, and, $\mathbb{E}(\cdot)$ is expectation.
 - (a) $P(A \cup B) = P(A) + P(B) P(A \cap B)$, $P(A|B) := P(A \cap B)/P(B)$, P(B|A) = P(A|B)P(B)/P(A).
 - (b) Total probability: $P(A) = \sum_{i} P(A \cap B_i) = \sum_{i} P(A|B_i)P(B_i)$, where $\{B_i\}$ is a partition of Ω .
 - (c) $F_X(x) := \Pr(X \leq x)$. If X is a continuous rv, $F_X(x) = \int_{-\infty}^x f_X(u) du$.
 - (d) $\mathbb{E}(X) = \sum_{x \in S} x \Pr(X = x)$ (discrete), $\mathbb{E}(X) = \int_{-\infty}^{\infty} x f_X(x) dx$ (continuous).
 - (e) $\mathbb{E}(g(X)) = \sum_{x \in S} g(x) \Pr(X = x)$ (discrete), $\mathbb{E}(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$ (continuous).
 - (f) $Var(X) := \mathbb{E}((X \mathbb{E}(X))^2) = \mathbb{E}(X^2) (\mathbb{E}(X))^2$, Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y).
 - (g) $Cov(X,Y) := \mathbb{E}((X \mathbb{E}(X))(Y \mathbb{E}(Y))) = \mathbb{E}(XY) \mathbb{E}(X)\mathbb{E}(Y).$
 - (h) Conditional expectation: $\mathbb{E}(\mathbb{E}(Y|X)) = \mathbb{E}(Y)$, $\mathbb{E}(Yg(Z)|Z) = g(Z)\mathbb{E}(Y|Z)$.
 - (i) Probability generating function (pgf): if X is a non-negative discrete rv, $G_X(z) = \mathbb{E}(z^X)$.
 - (j) Moment generating function (mgf): if $\mathbb{E}(|X|^k) < \infty$ for all $k, M_X(t) = \mathbb{E}(e^{tX})$.
 - (k) Laplace-Steiltjes transform (LST): if X is a non-negative rv, $L_X(t) = \mathbb{E}(e^{-tX}), t \geq 0.$
 - (l) Characteristic function (cf): if X is any rv, $\phi_X(t) = \mathbb{E}(e^{itX}), t \in \mathbb{R}$ (here $i = \sqrt{-1}$).

20. Discrete distributions: Here X is a discrete rv taking values in a denumerable set. The mean, variance and probability function are listed, together with the pgf $G(z) = \mathbb{E}(z^X)$, $|z| \leq 1$.

Constant
$$Pr(X = c) = 1$$
, $\mathbb{E}(X) = c$, $Var(X) = 0$, $G(z) = z^c$.

Binomial $(B(n, p): 0 <math>\mathbb{E}(X) = np, Var(X) = np(1 - p),$

$$\Pr(X=j) = \binom{n}{i} p^j (1-p)^{n-j}, \ j \in \{0,1,\ldots,n\}, \qquad G(z) = (1-p+pz)^n.$$

The Bernoulli distribution is the special case B(1, p).

Poisson (Poisson(λ): $\lambda > 0$) $\mathbb{E}(X) = \text{Var}(X) = \lambda$,

$$\Pr(X = j) = e^{-\lambda} \frac{\lambda^j}{j!}, \ j \in \{0, 1, \dots\}, \qquad G(z) = e^{-\lambda(1-z)}.$$

Geometric $(0 < q < 1) \mathbb{E}(X) = q/(1-q), Var(X) = q/(1-q)^2,$

$$\Pr(X = j) = (1 - q)q^j, \ j \in \{0, 1, \dots\}, \quad \text{(Note: } \Pr(X \ge j) = q^j\text{)} \qquad G(z) = \frac{1 - q}{1 - q^2}.$$

Negative binomial $(0 < q < 1, n \ge 1)$ $\mathbb{E}(X) = nq/(1-q)$, $Var(X) = nq/(1-q)^2$,

$$\Pr(X = j) = \binom{n+j-1}{j} (1-q)^n q^j, \ j \in \{0, 1, \dots\}, \qquad G(z) = \left(\frac{1-q}{1-qz}\right)^n.$$

Hypergeometric $(N \ge 0, 0 \le n, a \le N)$ $\mathbb{E}(X) = na/N$, $\operatorname{Var}(X) = na(N-n)(N-a)/(N^2(N-1))$,

$$\Pr(X = j) = \binom{a}{j} \binom{N-a}{n-j} / \binom{N}{n}, \ j \in \{\max(0, n+a-N), \dots, \min(n, a)\}, \qquad G(z) = complicated.$$

21. Continuous distributions: Here X is a continuous rv taking values in a subset of \mathbb{R} . The mean, variance, pdf $f: \mathbb{R} \to [0, \infty)$ and (if it can be written down explicitly) the distribution function $F: \mathbb{R} \to [0, 1]$ are listed; f takes the value 0 outside the range given, so that F takes the value 0 below that range and 1 above. The mgf $M(t) = \mathbb{E}(e^{tX})$, or cf $\phi(t) = \mathbb{E}(e^{itX})$, whichever is appropriate, is also listed. For non-negative rvs, the LST satisfies $L(t) = \mathbb{E}(e^{-tX}) = M(-t)$, $t \ge 0$.

Uniform $(U(a,b): a < b) \mathbb{E}(X) = (a+b)/2, Var(X) = (b-a)^2/12,$

$$f(x) = \frac{1}{b-a}, \ F(x) = \frac{x-a}{b-a}, \ a \le x \le b,$$
 $M(0) = 1, \ M(t) = \frac{e^{bt} - e^{at}}{(b-a)t}, \ t \ne 0.$

Exponential (exp(λ): $\lambda > 0$) $\mathbb{E}(X) = 1/\lambda$, $Var(X) = 1/\lambda^2$.

$$f(x)=\lambda e^{-\lambda x},\ F(x)=1-e^{-\lambda x},\ x\geq 0,\qquad M(t)=\tfrac{\lambda}{\lambda-t}\,,\ t<\lambda.$$

Gamma ($\Gamma(\alpha, \lambda)$: $\alpha > 0$, $\lambda > 0$) $\mathbb{E}(X) = \alpha/\lambda$, $Var(X) = \alpha/\lambda^2$,

$$f(x) = \lambda e^{-\lambda x} \tfrac{(\lambda x)^{\alpha-1}}{\Gamma(\alpha)}, \ x \geq 0, \qquad M(t) = \left(\tfrac{\lambda}{\lambda - t}\right)^{\alpha}, \ t < \lambda.$$

The Chi-squared distribution χ_n^2 $(n \ge 1)$ is $\Gamma(n/2, 1/2)$. The Erlang distribution is $\Gamma(n, \lambda)$, and

$$f(x) = \lambda e^{-\lambda x} \frac{(\lambda x)^{n-1}}{(n-1)!}, \ F(x) = 1 - e^{-\lambda x} \sum_{i=0}^{n-1} \frac{(\lambda x)^i}{i!}, \ x \ge 0.$$

Beta (a > 0, b > 0) $\mathbb{E}(X) = a/(a+b)$, $Var(X) = ab/((a+b)^2(a+b+1))$,

$$f(x) = \frac{1}{\beta(a,b)} x^{a-1} (1-x)^{b-1}, \ 0 \le x \le 1,$$
 $M(t) = complicated.$

Normal (Gaussian) $(N(\mu, \sigma^2): \mu \in \mathbb{R}, \sigma^2 > 0) \mathbb{E}(X) = \mu, \operatorname{Var}(X) = \sigma^2,$

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}(x-\mu)^2/\sigma^2\right), \ x \in \mathbb{R}, \qquad M(t) = \exp\left(\mu t + \frac{1}{2}\sigma^2 t^2\right), \ t \in \mathbb{R}$$

Multivariate Normal $(N(\mu, V): \mu \in \mathbb{R}^n, V \text{ +ve-definite symmetric}) \mathbb{E}(X) = \mu, \text{Cov}(X) = V,$

$$f(x) = \frac{1}{\sqrt{(2\pi)^n |V|}} \exp\left(-\frac{1}{2}(x-\mu)V^{-1}(x-\mu)^T\right), \ x \in \mathbb{R}^n, \quad M(t) = \exp\left(\mu t^T + \frac{1}{2}tVt^T\right), \ t \in \mathbb{R}^n.$$

Cauchy $(m \in \mathbb{R}, b > 0)$ median= m (Note that $\mathbb{E}(X)$ does not exist: $\mathbb{E}(X^+) = \mathbb{E}(X^-) = \infty$)

$$f(x) = \frac{b}{\pi(b^2 + (x-m)^2)}, \ F(x) = \frac{1}{2} + \frac{1}{\pi}\arctan\left(\frac{x-m}{b}\right), \ x \in \mathbb{R}, \qquad \phi(t) = e^{imt-b|t|}, \ t \in \mathbb{R}.$$

Weibull
$$(\lambda > 0, \beta > 0)$$
 $\mathbb{E}(X) = \lambda^{-1/\beta} \Gamma(1 + 1/\beta), \text{Var}(X) = \lambda^{-2/\beta} \{ \Gamma(1 + 2/\beta) - (\Gamma(1 + 1/\beta))^2 \},$

$$f(x) = \lambda \beta x^{\beta-1} \exp(-\lambda x^{\beta}), \ F(x) = 1 - \exp(-\lambda x^{\beta}), \ x \ge 0,$$
 $M(t) = complicated.$

Laplace $(\alpha \in \mathbb{R}, \beta > 0)$ $\mathbb{E}(X) = \alpha$, $Var(X) = 2\beta^2$,

$$f(x) = \frac{1}{2\beta} \exp(-|x - \alpha|/\beta), \ x \in \mathbb{R}, \qquad M(t) = \frac{e^{\alpha t}}{1 - \beta^2 t^2}, \ |t| < 1/\beta.$$