

(https://www.nvidia.com/en-us/deep-learning-ai/education/)

신경망을 데이터에 노출시키기

여러분이 실행할 명령어는 모두 이 노트북에 있으며 작업 공간은 DIGITS에 있습니다. 여러분은 두 개의 탭을 오가셔야 합니다. DIGITS를 별도의 탭으로 여세요.

Open DIGITS (/digits/).

DIGITS가 사용자 이름을 물어오면, 소문자로 원하는 이름을 입력하시면 됩니다.

DIGITS의 홈 화면이 나타나고, 여기에서 여러분의 첫 모델을 만들 수 있습니다. 아래 그림과 같이 "New Model" 메뉴에서 "Images"->"Classification"을 선택하세요.

이곳이 바로 여러분의 학습 세션을 설정하는 곳입니다. 선택할 옵션이 많이 있지만 여기에서는 그냥 데이터 세트, 트레이닝 시간, 신경망을 선택하기만 하면 됩니다.

데이터 세트 (Dataset)

신경망에게 루이(Louie)와 다른 개들의 차이점을 학습시키기 위해 학습 이미지가 필요합니다. 여기에 8 장의 레이블 붙은 루이의 이미지와 8 장의 다른 개 이미지를 "비글 이미지"라는 데이터 세트에 올려 두었습니다.

아래에 보이는 것과 같이 선택하세요.

학습 시간 (Training Time)

다음으로 DIGITS에게 얼마나 오랫동안 이미지를 살펴보야야 하는지 가르쳐 주어야 합니다. 데이터를 한 번 모두 훑는 것을 **에포크(epoch)**라고 합니다. "학습 에포크(Training Epoch)"를 30에서 2로 바꾸어 주세요. (2 에포크는 다음 섹션에서 우리가 원하는 것을 보여드릴 수 있는 최소 학습 시간입니다.)

바꿀 수 있는 많은 옵션이 있다는 점에 유의하세요. 우리는 이것을 *하이퍼파라미터(hyperparameter)*라고 부르는데,이것을 통해 신경망이 학습되는 방식을 조절할 수 있습니다. 옵션을 디폴트로 놓아 두세요. 강좌를 진행함에따라 하나씩 살펴 보도록 하겠습니다.

신경망 (Neural Network)

"표준망(Standard Networks)" 목록중 "AlexNet"을 선택해서 심층 신경망(deep neural network)을 선택하세요.

앞으로 이 선택에 의해 정해지는 많은 규칙을 알아볼텐데, 일단은 선택하자마자 다음 규칙을 볼 수 있을 것입니다.

규칙 #1: AlexNet은 256x256(컬러) 이미지에 사용되도록 되어 있다.

우리의 데이터 세트인 "비글 이미지"는 이 요구사항에 부합합니다. 강좌를 진행함에 따라 **신경망 선택과 설계**에 대한 실험을 하면서 AlexNet이 정한 규칙이 무엇에 관한 것인지 살펴볼 것입니다.

지금은 일단 "비글 이미지" 데이터 세트를 가지고 AlexNet을 학습시키면서 다른 규칙에 대해 배워보도록 하겠습니다.

학습이 끝나면 우리는 **모델(model)**을 갖게 됩니다. 우리의 마지막 단계는 앞으로 쉽게 찾을 수 있도록 모델에 이름을 붙이는 것입니다. 이것을 "루이 분류기(Louie Classifier)"라고 부르기로 합시다.

이름이 정해졌으니 "생성(Create)"를 선택해서 학습을 시작합니다.

여러분이 루이를 데이터 세트에서 찾으려고 할 때와 마찬가지로 여러분의 모델 역시 이미지를 한 장씩 살펴 봅니다. 이미지 한 장을 볼 때마다 출력 또는 예측을 생성해내는데, 이것으로 이미지에 루이가 있는지 없는지를 나타냅니다. 모델이 예측을 할 때마다 올바른 답과의 비교를 통해 학습하고, 모델 스스로를 조정하고, 다시 시도합니다. 모델이 학습한 바를 알아봅시다.

모델 페이지(model page)를 스크롤하시면 아직 별다르게 보이지 않는 두 개의 그래프와 "학습된 모델(Trained Model)"이라는 섹션을 보실 수 있습니다.

이것이 여러분의 모델을 *테스트*하는 곳입니다. "단일 이미지 테스트(Test a single image)" 아래에 "이미지 경로 (Image Path)"라는 필드가 보일 것입니다.

다음 경로를 복사해서 붙이세요.

/dli/data/BeagleImages/Louie/Iouie1.JPG

그리고 "Classify One"을 선택하세요.

그러면 모델은 우연보다 나을 바 없어 보이는 예측치를 생성할 것입니다.

다음 섹션에서 다방면에서 성능을 높힐 수 있도록 만들 예정이니까 걱정하지 마세요. 지금 중요한 것은 신경망이게임의 규칙을 이해한다는 점입니다. 비록 별로 쓸모있어 보이는 정보는 아직 아니지만 말이죠.

한 번 더 해봅시다. 여러분은 데이터를 몇 번 더 본다면 루이를 좀 더 정확히 분류해내고 각각의 이미지에 루이가 있는지 없는지까지 외우실 수 있다고 생각하고 있을지 모릅니다. 여러분에게 이 개를 학습시키는 것이 본 강좌의 목표가 아닙니다. 신경망을 학습시키는 것이 목표이지요. 그러니 에포크를 더 시도해 봅시다.

이번에는 100 번을 시도합니다. 좌상단의 "DIGITS"를 선택해서 DIGITS의 홈 화면으로 돌아가세요. 여러분이 방금 훈련시킨 모델인 "루이 분류기"를 선택하세요.

화면 오른쪽의 "작업 복제(Clone Job)"를 선택해서 학습 옵션을 여세요. "학습 에포크"를 100으로 바꾸세요.

New Image Classification Model

제일 아래까지 스크롤해서 모델에 새 이름을 할당하세요.

Louie Classifier after 100 Epoch

그리고 "생성"을 선택하세요.

주의: 작업을 복제했으므로 우리가 전에 선택했던 설정은 모두 그대로 유지됩니다. 우리는 여전히 16 장의 비글이미지로 AlexNet을 학습시키고 있는 중이고, 이번에는 1 번이 아니라 100 번을 학습시키려 합니다.

이제는 학습에 시간이 좀 더 걸릴 것입니다. 약 3~4 분 정도입니다. 학습이 진행되는 동안 생성된 두 개의 그래프를 살펴 보세요. 이 그래프들은 나중에 살펴볼 두 가지 중요한 개념을 나타냅니다.

손실(loss)

• 학습률(learing rate)

모델의 학습이 끝나면 여러분이 1 에포크 후 사용했던 동일한 이미지와 동일한 방식으로 테스트를 수행하세요. 아래까지 스크롤해서 "학습된 모델"까지 가신 후, "단일 이미지 테스트"로 가세요. 다음 경로를 복사해서 "이미지 경로" 필드에 붙이세요. /dli/data/BeagleImages/Louie/louie1.JPG

그리고 "Classify One"을 선택하세요.

모든 것이 잘 되었다면 여러분의 모델은 100% 신뢰도(confidence)로 올바른 분류를 수행할 것입니다.

Predictions

Louie	100.0%
Not Louie	0.0%

축하합니다. 여러분은 방금 준비된 데이터를 이용하여 신경망을 학습시켰습니다. (좌상단 DIGITS 로고를 클릭해서) DIGITS 흠 페이지로 돌아간 후, 두 가지 모델 중 하나를 선택하고, 다른 이미지를 가지고 자유로이 학습을 시도해 보세요.

충분히 해 보신 후, DIGITS 탭과 주피터 노트북을 닫은 후 강좌로 돌아오세요.

루이 이미지는 다음 경로로부터 테스트할 수 있습니다.

/dli/data/BeagleImages/Louie/louie1.JPG/dli/data/BeagleImages/Louie/louie1.JPG

/dli/data/BeagleImages/Louie/Iouie2.JPG

/dli/data/BeagleImages/Louie/Iouie3.JPG

/dli/data/BeagleImages/Louie/Iouie4.JPG

/dli/data/BeagleImages/Louie/Iouie5.JPG

/dli/data/BeagleImages/Louie/Iouie6.JPG

/dli/data/BeagleImages/Louie/Iouie7.JPG

/dli/data/BeagleImages/Louie/Iouie8.JPG

루이가 아닌 이미지는 다음 경로로부터 테스트할 수 있습니다.

/dli/data/BeagleImages/Not Louie/notlouie1.JPG

/dli/data/Beaglelmages/Not Louie/notlouie2.jpg

/dli/data/BeagleImages/Not Louie/notlouie3.JPG

/dli/data/BeagleImages/Not Louie/notlouie4.JPG

/dli/data/BeagleImages/Not Louie/notlouie5.JPG

/dli/data/Beaglelmages/Not Louie/notlouie6.JPG

/dli/data/BeagleImages/Not Louie/notlouie7.JPG

/dli/data/BeagleImages/Not Louie/notlouie8.JPG

(https://www.nvidia.com/en-us/deep-learning-ai/education/)