#	C_{2}	ntion	า This!	
##	Сa	puoi	1 11113:	

Note:- To run this project we require linux based operating system, as the project is docker dependent.

Place the code folder i.e image_caption folder at your home directory location

Docker

Install Docker using the platform-specific installation instructions for Docker [here](https://docs.docker.com/engine/installation/#platform-support-matrix).

Use the pre-built Docker image from Docker Hub

3. After installing Docker, pull a prebuilt image from Docker Hub by entering:

sudo docker pull mlatberkeley/showandtell

You will need a Docker Hub account in order to pull the image (get one [here](https://hub.docker.com/)).

If it's your first time pulling a Docker image from Docker Hub you will need to login to your Docker Hub account from your terminal with `docker login`, and follow the username and password prompt.

4. To run the pulled image (after cloning and downloading the repository) enter

sudo docker run -it -p 8888:8888 -v </pathtoimage_captionfolder>:/root mlatberkeley/showandtell

where __pathtoimage_captionfolder__ should be the __absolute path__ to image_caption.

5. After building, starting, and attaching to the appropriate Docker container, run the provided Jupyter notebooks by entering

Click on the link obtained...see the below image

The Notebooks

There are three notebooks:

- * `image_caption_train.ipynb` Contains code to train a TensorFlow caption generator from a VGG16 word embedding as described in our article.
- * `image_caption_generator.ipynb` Contains the same code as `1.ipynb` except it introduces functionality to generate captions from an image embedding (as opposed to just being able to train on captions). Functions as a sanity check for the quality of captions we are generating.
- * `image_caption_test.ipynb` Builds on the previous notebook, except instead of feeding an image embedding to our caption generation model, it first feeds an image to the VGG-16 Convolutional Neural Network to generate an image feature embedding. This gives us an end-to-end pipeline for going from an image to a caption.
- * In order to run the test notebook edit the image path in the ipynb (more details in the `.ipynb` itself).

Additional Downloads:

Visit the link and download and extract the folder imag_caption.

https://drive.google.com/file/d/11T4qocrd8E_V-NOpCyVtSj5BKS4MKEdJ/view?usp=sharing

Copy all the three folders inside imag_caption i.e. data, dockerfiles, models and paste them inside the home directory directory image_caption of your linux system.