

We claim:

1. A method of determining an uncoded bit error rate p_b based on a target symbol
2 error rate ε_s , comprising:

3 determining the uncoded bit error rate p_b based on a weighted series expansion of
4 the target symbol error rate ε_s , comprising weights W that are a function of a maximum
5 number of symbol errors that can be corrected t and a number of symbols in an
6 information field K; and

7 selecting the maximum number of symbol errors t and the number of symbols in
8 the information field K such that the uncoded bit error rate p_b that produces a symbol
9 error rate that is less than or equal to the target symbol error rate ε_s is largest.

1. 2. The method of claim 1 wherein the weighted series expansion comprises at least a
first term, wherein second order and higher terms are ignored to determine the uncoded
bit error rate p_b .

1. 3. The method of claim 1 wherein the symbols comprise Reed-Solomon symbols.

1. 4. The method of claim 1 wherein the weighted series expansion to determine the
uncoded bit error p_b rate comprises the following relationship:

$$p_b = 1 - \left(1 - W(t, K) \varepsilon_s^{\frac{1}{t+1}} \right)^{1/\alpha}$$

5
6 wherein
7

8 $W(t, K) = \left[\binom{K+C+R-1}{t} \right]^{\frac{1}{(t+1)}},$

9
10 ε_s represents a target symbol error rate, and C + R represents a number of symbols in an
11 error correction field.

1 5. A method of determining an optimum bit load per subchannel in a multicarrier
2 system with forward error correction, comprising:

3 computing one or more values of a maximum number of symbol errors that
4 can be corrected t, and a number of symbols in the information field K to determine
5 the optimum bit load per subchannel in accordance with the following relationship:

6
7 $1 - \left(1 - W(t, K) \varepsilon_s^{\frac{1}{t+1}} \right)^{1/\alpha} = \omega(b) \left(1 - 2^{-b(t,K)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{7.10} / (2^{b(t,K)+1} - 2)} \right)$
8 $\times \left[2 - \left(1 - 2^{-b(t,K)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{7.10} / (2^{b(t,K)+1} - 2)} \right) \right]$

9 wherein $W(t, K) = \left[\binom{K+C+R-1}{t} \right]^{\frac{1}{(t+1)}},$

10
11 $\omega(b) = \frac{1}{b \cdot 2^b} \sum_{i=1}^b \sum_{j \neq i} \frac{d_H(a_i, a_j)}{\chi_i},$

12
13 ε_s represents a target symbol error rate, C + R represents a number of symbols in an
14 error correction field, b represents a number of bit positions of a
15 quadrature-amplitude-modulation symbol, $\omega(b)$ represents an average fraction of
16 erroneous bits in an erroneous b-sized quadrature-amplitude-modulation symbol, a_i
17 represents a label for the i^{th} point of a constellation associated with a subchannel, a_j

18 represents a label for the j^{th} point of a constellation associated with a subchannel, χ_i
19 represents a coordination number of the a_i^{th} point, $d_H(a_i, a_j)$ represents a Hamming
20 distance between respective binary vectors associated with points a_i and a_j ; and

21 selecting the maximum number of symbol errors that can be corrected t , and the
22 number of symbols in the information field K such that the uncoded bit error rate p_b that
23 produces a symbol error rate that is less than or equal to the target symbol error rate is
24 increased.

1 6. A method of determining an optimum bit load per subchannel in a multicarrier
2 system with forward error correction, comprising:

3 computing one or more values of a maximum number of symbol errors that
4 can be corrected t , and a number of symbols in the information field K to determine
5 the optimum bit load per subchannel in accordance with the following relationship:

$$1 - \left(1 - W(t, K) \varepsilon_s^{\frac{1}{t+1}} \right)^{1/\alpha} = \omega(b) \left(1 - 2^{-b_{\ell}(t, K)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{r/10} / (2^{b_{\ell}(t, K)+1} - 2)} \right)$$
$$\times \left[2 - \left(1 - 2^{-b_{\ell}(t, K)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{r/10} / (2^{b_{\ell}(t, K)+1} - 2)} \right) \right]$$

$$\text{wherein } W(t, K) = \left[\binom{K+C+R-1}{t} \right]^{\frac{1}{(t+1)}},$$

10
11 ε_s represents a target symbol error rate, $C + R$ represents a number of symbols in an
12 error correction field, b represents a number of bit positions of a
13 quadrature-amplitude-modulation symbol, $\omega(b)$ represents an approximate average
14 fraction of erroneous bits in an erroneous b -sized quadrature-amplitude-modulation
15 symbol; and

16 selecting the maximum number of symbol errors that can be corrected t , and the
17 number of symbols in the information field K such that the uncoded bit error rate p_b that
18 produces a symbol error rate that is less than or equal to the target symbol error rate is
19 increased.

1 7. The method of claim 6 wherein $\omega(b_i)$ is determined in accordance with the
2 following relationship:

3

4
$$\omega(b_i) = \frac{4}{3 + 2b_i}$$

1 8. A method of selecting forward error correction parameters in a channel having
2 a plurality of subchannels in a multicarrier communications system, comprising:
3 determining a signal-to-noise ratio representing a subset of the subchannels;
4 and
5 selecting forward error correction parameters of the channel based on the
6 signal-to-noise ratio.

1 9. The method of claim 8 wherein the subset of the subchannels comprises all of
2 the subchannels of the channel.

1 10. The method of claim 8 wherein the forward error correction parameters are
2 utilized in Reed- Solomon encoding.

1 11. The method of claim 8 wherein the signal-to-noise ratio is an average
2 signal-to-noise ratio of respective signal-to-noise ratios of the subset of the
3 subchannels.

1 12. The method of claim 8 wherein the signal-to-noise ratio represents all of the
2 subchannels.

1 13. The method of claim 8 wherein the selecting comprises applying a mean field
2 approximation to evaluate a bit load over the subset of subchannels.

1 14. The method of claim 13 wherein the selecting comprises adjusting the mean
2 field approximation.

1 15. The method of claim 14 wherein the adjusting is applied when the number of
2 bits per subchannel is less than or equal to two.

1 16. The method of claim 14 wherein the adjusting is a linear adjustment with
2 respect to a bit load of a subchannel.

1 17. The method of claim 8 further comprising:
2 determining the representative performance measurement as an average
3 signal-to-noise ratio γ_{eff} for the channel in accordance with the following
4 relationship:

5

6
$$\gamma_{eff} = \frac{1}{n_{eff}} \sum_{\gamma_i > \gamma_s} \gamma_i, \text{ wherein}$$

7

8
$$n_{eff} = \sum_{\gamma_i > \gamma_s} 1,$$

9

10 γ_i represents a signal-to-noise measurement for an ith subchannel, and n_{eff}
11 represents a number of subchannels for which the signal-to-noise ratio γ_i was

12 measured for which γ_i is greater than γ_* , and γ_* represents a threshold
13 signal-to-noise ratio.

1 18. A method of determining a bit load b per subchannel in a multicarrier system with
2 forward error correction, comprising:

3 computing one or more values of a maximum number of symbol errors that
4 can be corrected t , and a number of symbols in the information field K to determine
5 the bit load per subchannel in accordance with the following relationship:

6

7 $b = [\gamma + \Phi(\gamma, t, K, \varepsilon)] / 10 \log 2$,

8

9 wherein

10 $\Phi(\gamma, t, K, \varepsilon)$

11 $= 10 \log \left[10^{-\gamma/10} + \frac{3 \log e}{2 \log \left[\frac{\alpha \langle \omega(b) \rangle \sqrt{8/\pi}}{W(t, K)(\alpha \varepsilon / \beta)^{1/(t+1)}} \right] - \log \log \left[\frac{\alpha \langle \omega(b) \rangle \sqrt{8/\pi}}{W(t, K)(\alpha \varepsilon / \beta)^{1/(t+1)}} \right] + \log \left(\frac{\log e}{2} \right)} \right]$

12 ,

13

14 $W(t, K) = \left[\binom{K+C+R-1}{t} \right]^{\frac{1}{(t+1)}} \left[\binom{K+C+R}{t+1} \right]^{\frac{k-1}{(t+1)}},$

15 $\langle \omega(b) \rangle = \frac{1}{b_{\max}} \int_1^{b_{\max}} \omega(b) (1 - 2^{-b/2}) db$

16 α represents a number of bits per symbol, γ represents a signal-to-noise ratio, t
17 represents a maximum number of symbol errors that can be corrected, ε represents a
18 target bit error rate, $C + R$ represents a number of symbols in an error correction field,

19 b represents a number of bit positions of a quadrature-amplitude-modulation symbol,
20 $\omega(b)$ represents an average fraction of erroneous bits in an erroneous b -sized
21 quadrature-amplitude-modulation symbol, b_{max} is a maximum bit load per
22 subchannel; and

23 selecting a bit load per subchannel in accordance with the maximum number
24 of symbol errors that can be corrected t , and a number of symbols in the information
25 field K .

1 19. The method of claim 18 wherein $\Phi(\gamma, t, K, \varepsilon)$ is evaluated at γ equals $-\infty$.

1 20. The method of claim 18 wherein b is greater than or equal to three.

1 21. A method of selecting forward error correction parameters for use in a channel
2 having a plurality of subchannels, comprising:

3 determining an average signal-to-noise ratio of at least a subset of the
4 subchannels; and

5 selecting forward error correction parameters based on the average signal-to-noise
6 ratio, and a count of the number of subchannels in the subset.

1 22. The method of claim 21 wherein the selecting the forward error correction
2 parameters comprises selecting the forward error correction parameters based on a
3 predicted gain from application of the selected forward error correction parameters.

1 23. The method of claim 22 wherein the gain is a performance gain.

1 24. A method of selecting at least one forward error correction parameter,
2 comprising:

3 computing one or more values representing a number of information symbols
4 K in a frame accordance with the following relationship:

$$\begin{aligned} & \left[\frac{\alpha(K+s+zs)}{sn_{\text{eff}}} + 1.5 \right] \left[1 - \left(1 - \left(\left[\binom{K+C+R-1}{t} \right]^{\frac{1}{t+1}} \varepsilon_s^{1/(t+1)} \right)^{1/\alpha} \right) \right] \\ & = 2 \left(1 - 2^{-\frac{\alpha(K+s+zs)}{2sn_{\text{eff}}}} \right) \operatorname{erfc} \left(\sqrt{1.5 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{-\frac{\alpha(K+s+zs)}{sn_{\text{eff}}}} - 1 \right)} \right) \\ & \quad \times \left[2 - \left(1 - 2^{-\frac{\alpha(K+s+zs)}{2sn_{\text{eff}}}} \right) \operatorname{erfc} \left(\sqrt{1.5 \cdot 10^{\gamma_{\text{eff}}/10} / \left(2^{-\frac{\alpha(K+s+zs)}{sn_{\text{eff}}}} - 1 \right)} \right) \right] \end{aligned}$$

7 8 wherein $t = \left\lfloor \frac{sz+1+e_r}{2} \right\rfloor$, $e_r \leq sz$, and

9
10 s represents a number of discrete multi-tone symbols in a frame, z represents a
11 number of error correction symbols in a discrete multi-tone symbol, α represents a
12 number of bits per code symbol, C+R represents a number of redundant symbols in
13 an error correction field, n_{eff} represents a number of subchannels exceeding a
14 threshold performance value, γ_{eff} represents an effective signal-to-noise ratio
15 associated with the number of subchannels exceeding the threshold performance
16 value, ε_s represents a target symbol error rate; and e_r represents a number of erasures;
17 and

18 determining a number of bits per subchannel in accordance with the one or
19 more values of K.

1 25. The method of claim 24 wherein K is a continuous variable.

1 26. The method of claim 24 wherein K is computed using dichotomy, for values
2 of γ_{eff} , n_{eff} , z , and s .

1 27. The method of claim 24 further comprising:

2 determining a net coding gain associated with values of γ_{eff} , n_{eff} , z , and s ;
3 determining an incremental number of bits per subchannel associated with the
4 net coding gain; and
5 storing associated values of γ_{eff} , n_{eff} , z , s and the incremental number of bits
6 per subchannel.

1 28. A method of selecting transmission parameters of a multicarrier system
2 having a channel comprising a plurality of subchannels, comprising:

3 selecting a number (s) of discrete multi-tone symbols in a
4 forward-error-correction frame, and a number (z) of forward-error-correction control
5 symbols in a discrete multitone symbol based on a signal-to-noise ratio and a number
6 of subchannels associated with the signal-to-noise ratio; and
7 transmitting information in accordance with the selected number (s) of
8 discrete multi-tone symbols, and a number (z) of forward-error-correction control
9 symbols in the discrete multitone symbol.

1 29. The method of claim 28 wherein the selecting comprises selecting an
2 adjustment value per subchannel based on the signal-to-noise ratio and the number of
3 subchannels associated with the signal-to-noise ratio; and

4 adjusting a number of bits per subchannel for at least one subchannel in
5 accordance with the adjustment value.

30. The method of claim 28 wherein the signal-to-noise ratio is an average signal-to-noise ratio of the associated number of subchannels.

31. The method of claim 28 further comprising:

storing, in a table, the number (s) of discrete multi-tone symbols in the forward-error-correction frame, the number (z) of forward-error-correction control symbols in the discrete multitone symbol associated with the signal-to-noise ratio and the number of subchannels associated with the signal-to-noise ratio, for different values of s , z , signal-to-noise ratios and numbers of subchannels.

32. The method of claim 31 wherein for each value of signal-to-noise ratio and number of bits per subchannel of the table, the associated value of s and z provide a maximal net coding gain g_n , and the associated value of s and z is selected from a subset of associated s and z values.

33. An apparatus for determining an uncoded bit error rate p_b based on a target symbol error rate ε_s , comprising:

means for determining the uncoded bit error rate p_b based on a weighted series expansion of the target symbol error rate ε_s , comprising weights W that are a function of a maximum number of symbol errors that can be corrected t and a number of symbols in an information field K ; and

means for selecting the maximum number of symbol errors t and the number of symbols in the information field K such that the uncoded bit error rate p_b , that produces a symbol error rate that is less than or equal to the target symbol error rate ε_s , is largest.

34. The apparatus of claim 33 wherein the weighted series expansion comprises at least a first term, wherein second order and higher terms are ignored to determine the uncoded bit error rate p_b .

1 35. The apparatus of claim 33 wherein the symbols comprise Reed-Solomon symbols.

1 36. The apparatus of claim 33 wherein the weighted series expansion to determine the
2 uncoded bit error p_b rate comprises the following relationship:

4

$$p_b = 1 - \left(1 - W(t, K) \varepsilon_s^{\frac{1}{t+1}} \right)^{1/\alpha}$$

5 wherein

8

$$W(t, K) = \left[\binom{K+C+R-1}{t} \right]^{\frac{1}{(t+1)}},$$

10 ε_s represents a target symbol error rate, and C + R represents a number of symbols in
11 an error correction field.

1 37. An apparatus for determining an optimum bit load per subchannel in a
2 multicarrier system with forward error correction, comprising:

3 means for computing one or more values of a maximum number of symbol
4 errors that can be corrected t, and a number of symbols in the information field K to
5 determine the optimum bit load per subchannel in accordance with the following
6 relationship:

8

$$1 - \left(1 - W(t, K) \varepsilon_s^{\frac{1}{t+1}} \right)^{1/\alpha} = \omega(b) \left(1 - 2^{-b(t,K)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{y_t/10} / (2^{b(t,K)+1} - 2)} \right)$$
$$\times \left[2 - \left(1 - 2^{-b(t,K)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{y_t/10} / (2^{b(t,K)+1} - 2)} \right) \right]$$

10 wherein $W(t, K) = \left[\binom{K+C+R-1}{t} \right]^{\frac{1}{(t+1)}}$,

11
12 $\omega(b) = \frac{1}{b \cdot 2^b} \sum_{i=1}^b \sum_{j \neq i} \frac{d_H(a_i, a_j)}{\chi_i}$,

13
14 ε_s represents a target symbol error rate, C + R represents a number of symbols in an
15 error correction field, b represents a number of bit positions of a
16 quadrature-amplitude-modulation symbol, $\omega(b)$ represents an average fraction of
17 erroneous bits in an erroneous b-sized quadrature-amplitude-modulation symbol, a_i
18 represents a label for the i^{th} point of a constellation associated with a subchannel, a_j
19 represents a label for the j^{th} point of a constellation associated with a subchannel, χ_i
20 represents a coordination number of the a_i^{th} point, $d_H(a_i, a_j)$ represents a Hamming
21 distance between respective binary vectors associated with points a_i and a_j ; and

22 means for selecting the maximum number of symbol errors that can be
23 corrected t, and the number of symbols in the information field K such that the
24 uncoded bit error rate p_b that produces a symbol error rate that is less than or equal to
25 the target symbol error rate is increased.

1 38. An apparatus for determining an optimum bit load per subchannel in a
2 multicarrier system with forward error correction, comprising:

3 means for computing one or more values of a maximum number of symbol
4 errors that can be corrected t, and a number of symbols in the information field K to
5 determine the optimum bit load per subchannel in accordance with the following
6 relationship:

8

$$1 - \left(1 - W(t, K) e_s^{\frac{1}{t+1}} \right)^{1/\alpha} = \omega(b) \left(1 - 2^{-b_i(t, K)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{r/10} / (2^{b_i(t, K)+1} - 2)} \right)$$

9

$$\times \left[2 - \left(1 - 2^{-b_i(t, K)/2} \right) \operatorname{erfc} \left(\sqrt{3 \cdot 10^{r/10} / (2^{b_i(t, K)+1} - 2)} \right) \right]$$

10

$$\text{wherein } W(t, K) = \left[\binom{K+C+R-1}{t} \right]^{\frac{1}{(t+1)}}.$$

11

12 ϵ_s represents a target symbol error rate, C + R represents a number of symbols in an
13 error correction field, b represents a number of bit positions of a
14 quadrature-amplitude-modulation symbol, $\omega(b)$ represents an approximate average
15 fraction of erroneous bits in an erroneous b-sized quadrature-amplitude-modulation
16 symbol; and

17 selecting the maximum number of symbol errors that can be corrected t, and
18 the number of symbols in the information field K such that the uncoded bit error rate
19 p_b that produces a symbol error rate that is less than or equal to the target symbol
20 error rate is increased.

1 39. The apparatus of claim 38 wherein $\omega(b_i)$ is determined in accordance with the
2 following relationship:

3

4
$$\omega(b_i) = \frac{4}{3 + 2b_i}$$

1 40. An apparatus for selecting forward error correction parameters in a channel
2 having a plurality of subchannels in a multicarrier communications system,
3 comprising:

4 means for determining a signal-to-noise ratio representing a subset of the
5 subchannels; and

6 means for selecting forward error correction parameters of the channel based
7 on the signal-to-noise ratio.

1 41. The apparatus of claim 40 wherein the subset of the subchannels comprises all
2 of the subchannels of the channel.

1 42. The apparatus of claim 40 wherein the forward error correction parameters are
2 utilized in Reed-Solomon encoding.

1 43. The apparatus of claim 40 wherein the signal-to-noise ratio is an average
2 signal-to-noise ratio of respective signal-to-noise ratios of the subset of the
3 subchannels.

1 44. The apparatus of claim 40 further comprising:
2 means for determining a signal-to-noise ratio representing all of the
3 subchannels.

1 45. The apparatus of claim 40 wherein the means for selecting comprises means
2 for applying a mean field approximation to evaluate a bit load over the subset of
3 subchannels.

1 46. The apparatus of claim 40 wherein the means for selecting comprises means
2 for adjusting the mean field approximation.

1 47. The apparatus of claim 46 wherein the means for adjusting is applied when
2 the number of bits per subchannel is less than or equal to two.

1 48. The apparatus of claim 46 wherein the means for adjusting is a linear
2 adjustment with respect to a bit load of a subchannel.

1 49. The apparatus of claim 46 further comprising:
2 means for determining the representative performance measurement as an
3 average signal-to-noise ratio γ_{eff} for the channel in accordance with the following
4 relationship:

5

$$6 \quad \gamma_{eff} = \frac{1}{n_{eff}} \sum_{\gamma_i > \gamma_*} \gamma_i, \text{ wherein}$$

7

$$8 \quad n_{eff} = \sum_{\gamma_i > \gamma_*} 1,$$

9

10 γ_i represents a signal-to-noise ratio measurement for an ith subchannel, and n_{eff}
11 represents a number of subchannels for which the signal-to-noise ratio γ_i was
12 measured for which γ_i is greater than γ_* , and γ_* represents a threshold
13 signal-to-noise ratio.

1 50. The apparatus of claim 49 further comprising:
2 means for determining the representative performance measurement as an
3 average signal-to-noise ratio γ_{eff} for the channel in accordance with the following
4 relationship:

5

$$6 \quad \gamma_{eff} = \frac{1}{n_{eff}} \sum_{\gamma_i > \gamma_*} \gamma_i, \text{ wherein}$$

8 $n_{\text{eff}} = \sum_{\gamma_i \geq \gamma_*} 1,$

9

10 γ_i represents a signal-to-noise measurement for an i th subchannel, and n_{eff} represents
11 a number of subchannels for which the signal-to-noise ratio γ_i was measured for
12 which γ_i is greater than or equal to than γ_* , and γ_* represents a threshold
13 signal-to-noise ratio.

1 51. An apparatus for determining a bit load b per subchannel in a multicarrier system
2 with forward error correction, comprising:

3 means for computing one or more values of a maximum number of symbol
4 errors that can be corrected t , and a number of symbols in the information field K to
5 determine the bit load per subchannel in accordance with the following relationship:

6

7 $b = [\gamma + \Phi(\gamma, t, K, \varepsilon)]/10 \log 2 ,$

8

9 wherein

10

11 $\Phi(\gamma, t, K, \varepsilon)$

12 $= 10 \log \left\{ 10^{-\gamma/10} + \frac{3 \log e}{2 \log \left[\frac{\alpha(\omega(b)) \sqrt{8/\pi}}{W(t, K)(\alpha\varepsilon/\beta)^{\frac{1}{t+1}}} \right] - \log \log \left[\frac{\alpha(\omega(b)) \sqrt{8/\pi}}{W(t, K)(\alpha\varepsilon/\beta)^{\frac{1}{t+1}}} \right] + \log \left(\frac{\log e}{2} \right)} \right\}$

13

14

$$W(t, K) = \left[\binom{K+C+R-t}{t+1} \right]^{\frac{1}{t+1}} \left[\binom{K+C+R}{t+1} \right]^{\frac{k-t}{t+1}},$$

15
$$\langle \omega(b) \rangle = \frac{1}{b_{\max}} \int_1^{b_{\max}} \omega(b)(1 - 2^{-b/2}) db$$

16

17 α represents a number of bits per symbol, γ represents a signal-to-noise ratio, t
18 represents a maximum number of symbol errors that can be corrected, ϵ represents a
19 target bit error rate, $C + R$ represents a number of symbols in an error correction field,
20 b represents a number of bit positions of a quadrature-amplitude-modulation symbol,
21 $\omega(b)$ represents an average fraction of erroneous bits in an erroneous b -sized
22 quadrature-amplitude-modulation symbol, b_{\max} is a maximum bit load per
23 subchannel; and

24 means for selecting a bit load per subchannel in accordance with the
25 maximum number of symbol errors that can be corrected t , and a number of symbols
26 in the information field K .

1 52. The apparatus of claim 51 wherein $\Phi(\gamma, t, K, \epsilon)$ is evaluated at γ equals $-\infty$.

1 53. The apparatus of claim 51 wherein b is greater than or equal to three.

1 54. An apparatus for selecting forward error correction parameters for use in a
2 channel having a plurality of subchannels, comprising:

3 means for determining an average signal-to-noise ratio of at least a subset of the
4 subchannels; and

5 means for selecting forward error correction parameters based on the average
6 signal-to-noise ratio, and a count of the number of subchannels in the subset.

1 55. The apparatus of claim 54 wherein the means for selecting the forward error
2 correction parameters selects the forward error correction parameters based on a
3 predicted gain from application of the selected forward error correction parameters.

1 56. The apparatus of claim 55 wherein the gain is a performance gain.

1 57. An apparatus for selecting at least one forward error correction parameter,
2 comprising:
3 means for computing one or more values representing a number of
4 information symbols K in a frame accordance with the following relationship:

$$\begin{aligned} & \left[\frac{\alpha(K+s+zs)}{sn_{eff}} + 1.5 \right] \left[1 - \left(1 - \left(\left[\binom{K+C+R-1}{t} \right]^{\frac{1}{(t+1)}} \varepsilon_s^{1/(t+1)} \right)^{1/\alpha} \right) \right] \\ & = 2 \left(1 - 2^{-\frac{\alpha(K+s+zs)}{2sn_{eff}}} \right) erfc \left(\sqrt{1.5 \cdot 10^{\gamma_{eff}/10} \left(2^{-\frac{\alpha(K+s+zs)}{sn_{eff}}} - 1 \right)} \right) \\ & \quad \times \left[2 - \left(1 - 2^{-\frac{\alpha(K+s+zs)}{2sn_{eff}}} \right) erfc \left(\sqrt{1.5 \cdot 10^{\gamma_{eff}/10} \left(2^{-\frac{\alpha(K+s+zs)}{sn_{eff}}} - 1 \right)} \right) \right] \end{aligned}$$

7 8 wherein $t = \left\lfloor \frac{sz + 1 + e_r}{2} \right\rfloor$, $e_r \leq sz$, and

9 10 s represents a number of discrete multi-tone symbols in a frame, z represents a
11 number of error correction symbols in a discrete multi-tone symbol, α represents a
12 number of bits per code symbol, C+R represents a number of redundant symbols in
13 an error correction field, n_{eff} represents a number of subchannels exceeding a
14 threshold performance value, γ_{eff} represents an effective signal-to-noise ratio
15 associated with the number of subchannels exceeding the threshold performance
16 value, ε_s represents a target symbol error rate; and e_r represents a number of erasures;

17 and

18 means for determining a number of bits per subchannel in accordance with the
one or more values of K.

1 58. The apparatus of claim 57 wherein K is a continuous variable.

1 59. The apparatus of claim 57 wherein K is computed using dichotomy, for values
2 of γ_{eff} , n_{eff} , z , and s .

1 60. The apparatus of claim 57 further comprising:
2 means for determining a net coding gain associated with values of γ_{eff} , n_{eff} , z ,
3 and s ;
4 means for determining an incremental number of bits per subchannel
5 associated with the net coding gain; and
6 means for storing associated values of γ_{eff} , n_{eff} , z , s and the incremental
7 number of bits per subchannel.

1 61. An apparatus for selecting transmission parameters of a multicarrier system
2 having a channel comprising a plurality of subchannels, comprising:
3 means for selecting a number (s) of discrete multi-tone symbols in a
4 forward-error-correction frame, and a number (z) of forward-error-correction control
5 symbols in a discrete multitone symbol based on a signal-to-noise ratio and a number
6 of subchannels associated with the signal-to-noise ratio; and
7 means for transmitting information in accordance with the selected number (s)
8 of discrete multi-tone symbols, and a number (z) of forward-error-correction control
9 symbols in the discrete multitone symbol.

1 62. The apparatus of claim 61 wherein the means for selecting comprises:
2 selecting an adjustment value per subchannel based on the signal-to-noise
3 ratio and the number of subchannels associated with the signal-to-noise ratio; and
4 means for adjusting a number of bits per subchannel for at least one
5 subchannel in accordance with the adjustment value.

1 63. The apparatus of claim 61 wherein the signal-to-noise ratio is an average
2 signal-to-noise ratio of the associated number of subchannels.

1 64. The apparatus of claim 61 further comprising:
2 means for storing, in a table, the number (s) of discrete multi-tone symbols in
3 the forward-error-correction frame, the number (z) of forward-error-correction
4 control symbols in the discrete multitone symbol associated with the signal-to-noise
5 ratio and the number of subchannels associated with the signal-to-noise ratio, for
6 different values of s, z, signal-to-noise ratios and numbers of subchannels.

1 65. The apparatus of claim 64 wherein for each value of signal-to-noise ratio and
2 number of bits per subchannel of the table, the associated value of s and z provides a
3 maximal net coding gain, and the associated value of s and z is selected from a subset
4 of associated s and z values.