Ъ.	Illustrate the bubble sort technique for the given data and write the pseudo code and mention its worst case time complexity. 33 54 8 57 12 62 7 73	12	3	1	2			
29. a.	Write an pseudo code to insert a node '74' at the beginning, at any position and at the end of the single linked list. Give a pictorial representation of single linked list before and after insertion. 12 76 33 47 23		3	2	3			
ъ.	(OR) Write the pseudo code for inserting an element in the beginning of an array and for traversing an array with examples.	12	3	2	2			
30. a.	Convert the following expression from infix to postfix. (i) $(a-b)*(c-d)-(d*e)$ (ii) $a-(b/c+(d\%e*f)/g)*h$	12	3	3	3			
b.	(OR) Write the pseudo code to insert and delete an element in a circular queue with example.	12	3	3	2			
31. a.	Construct a AVL tree and explain all the rotations with the given data. 49 13 9 52 69 73 54 16 23 44 39	12	3	4	3			
	(OR)							
b.	Construct the binary search tree using the following elements. 45 39 56 12 35 78 32 10 89 82 Find in-order, pre-order and post-order traversal of the same tree.	12	3	4	3			
32. a.	2. a. Describe the implementation of Dijikistra's algorithm with an example.							
	(OR)	27						
b.	12	3	5	3				

Reg. No.

B.Tech. DEGREE EXAMINATION, JUNE 2023

Third & Fourth Semester

18CSC201J – DATA STRUCTURES AND ALGORITHMS

(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note:		4		- 100				
(i)		 A should be answered in OMR sl to hall invigilator at the end of 40th r 		vithin first 40 minutes and OMR shee	et shou	ld be	han	ded
(ii)		- B & Part - C should be answered						
Time:	3 hours			*	Max. l	Marl	cs: 1	00
		$PART - A (20 \times 1 =$	- 20 1	Marks)	Marks	BL	CO	PO
		Answer ALL Q		•				
1	l What	t is the best case time complexity			1	1	1	1
Í		O(n)		O (n log n)				
	. ,	$O(n^2)$		$O(2^n)$				
. 2		abble sort, how many passes ar	e req	uired to sort 'n' elements in the	1	1	1	1
	(A)	n-1	(B)	n				
	(C)	n+1	(D)	n(n-1)/2				
3	3. In lin	ear search algorithm, what is the	e inpu	ut data structure?	1	1	1	1
		Array	_	Linked list				
	(C)	Tree	(D)	Graph				
2		ch of the following notations report of an algorithm?	oresei	nts a lower bound on the running	1	1	1	1
		O-notation	(B)	Ω -notation				
	(C)	θ-notation	(D)	γ-notation				
4	5. What	t is the index of the first element	in an	array in C?	1	1	2	1
	(A)		(B)					
	(C)	-1	(D)	2				
(6. What	t is a node in a linked list?			1	1	2	1
	` ,	A pointer to the next node in the list	(B)	A pointer to the previous node in the list				
	. ,	A data structure that contains data and a pointer to the next node in the list	(D)	A data structure that contains data only				
		t is the time complexity of search			1	1	2	2
	• •	O(1)		O(n)				
	(C)	O (log n)	(D)	$O(n^2)$				

0.	(A) The matrix has very few non-zero elements(C) The matrix is diagonal	The second secon			2			18.	(A) A structure that maps values to (B) A structure that maps keys to keys (C) A structure used for storage (D) A structure used to implement stack	1		3 1	
9.		insertion operation on a queue? (B) Enqueue (D) Dequeue	1	1	3	1		19.	Load factor is (A) Average array size (B) Average key size (C) Average chain length (D) Average hash table length	1	1	5 1	
10.		element from an empty stack? (B) A default value is returned (D) The program crashes	1	1	3	1		20.	Dijikistra's algorithm is used for which type of problems? (A) Shortest path problem in (B) Shortest path problem in	2	2	5 2	
11.	Which of the following is true about a (A) It operates on a FIFO principle (C) It stores element in a random	priority queue? (B) It operates on a LIFO principle	1	1	3	2			weighted graph (C) Longest path problem in (D) Longest path problem in unweighted graph unweighted graph weighted graph				
	order	their priority				2			PART – B ($5 \times 4 = 20 \text{ Marks}$) Answer ANY FIVE Questions	ss B	L C	ÇO PO)
12.	In a stack, if a user tries to remove a called	an element from an empty stack it is	1	1	3	2		21.	Distinguish the characteristics of Big Oh, Big Omega and theta notations. 4	2	2	1 2	
		(B) Over flow(D) Garbage						22.	Analyze the time complexity of insertion sort.	_ 3	3	1 1	
13.	The number of edges from the node to the tree.	o the deepest leaf is called of	1	2	4	1		. 4 23.	Write an algorithm for deletion of an node at the beginning of the single linked list.	3	3 :	2 3	
	(A) Height	(B) Depth (D) Width						24.	For the given matrix, find the sparse triplet matrix and transpose it. $\begin{bmatrix} 0 & 0 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix}$. 3	3 2	2 2	
14.		hildren, called as (B) Half binary tree (D) Quarter binary tree	1	1	4	1			$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 \\ 3 & 0 & 0 & 0 \end{bmatrix}$				
15.	In a full binary tree, if the number of i nodes N are?	nternal nodes is I, then the number of	. 1	2	4	2		25.	Define dequeue. How it is represented? What are the types of dequeue?	2	2	3 2	
	(A) $N = 2L$	(B) $N = L + 1$ (D) $N = 2L - 1$						26.	Construct the binary search tree with following elements. 47, 36, 57, 10, 34, 73, 30, 9, 91, 56, 69, 82	2	<u> </u>	4 2	
16.	What is the salient feature about the tree?	_	1	2	4	2		27.	Consider the graph given below and find the degree of each node. 4	3	3 :	5 3	
	(A) It traverses in a non-increasing order(C) It traverses in a random fashion	(B) It traverses in an increasing order(D) It traverses based on priority of the node							A E D				
17.	A path that beigns and ends at the same		1	1	5	1			$PART - C (5 \times 12 = 60 \text{ Marks})$ Answer ALL Questions	cs BI	L C	со ро)
		(B) Path (D) Link						28. a.	In a given array of 10 numbers the data 35 need to be found using linear search algorithm. 4 8 10 17 28 33 45 35 91 97 Write the C program for the same.	3	} 1	1 2	
							8 7	7.					