constant-time small-key code-based cryptography

Tung Chou

Technische Universiteit Eindhoven, The Netherlands

Code-based crypto

Coding theory

Code

- a linear subspace in \mathbb{F}_2^N
- can be defined by a parity-check matrix H, e.g.,

$$C = \{c \mid Hc = 0\}$$

Decoding

- compute e (or c) given c + e, where e is of weight $\leq t$
- compute e given the syndrome He = H(c + e)

Code-based encryption

• McEliece versus Niederreiter

	plaintext ciphertex	
McEliece	С	c + e
Niederreiter	е	He

• General shape

 ${\sf McEliece/Niederreiter} + {\bf some} \ {\bf code}$

Binary Goppa versus QC-MDPC codes

Binary Goppa versus QC-MDPC codes

2013 QC-MDPC McEliece

The problem is timing attacks.

The problem is timing attacks.

The problem is timing attacks.

• PQCrypto 2014: constant-time operations assuming no caches

The problem is timing attacks.

- PQCrypto 2014: constant-time operations assuming no caches
- QcBits: constant-time for a wide-variety of 32/64-bit platforms

Performance results

platform	key-pair	encrypt	decrypt	reference	scheme
Haswell	784 192	82 732	1 560 072	(new) QcBits	KEM/DEM
	14 234 347	34 123	3 104 624	ACMTECS 2015	McEliece
Cortex-M4	140 372 822	2 244 489	14 679 937	(new) QcBits	KEM/DEM
	63 185 108	2 623 432	18 416 012	PQCrypto 2016	KEM/DEM
	148 576 008	7 018 493	42 129 589	PQCrypto 2014	McEliece

Cycle counts for key-pair generation, encryption, and decryption for 80-bit pre-quantum security. Numbers in RED are non-constant-time. Numbers in BLUE are constant-time.

• MDPC: moderate-density-parity-check

- MDPC: moderate-density-parity-check
- QC: quasi-cyclic (for saving bandwidth and memory)

- MDPC: moderate-density-parity-check
- QC: quasi-cyclic (for saving bandwidth and memory)

$$H = \begin{pmatrix} H^{(0)} & H^{(1)} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \in \mathbb{F}_2^{n \times 2n}$$

- MDPC: moderate-density-parity-check
- QC: quasi-cyclic (for saving bandwidth and memory)

$$H = \begin{pmatrix} H^{(0)} & H^{(1)} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} \in \mathbb{F}_2^{n \times 2n}$$

Start with v = c + e.

$$Hv \ = \ \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} v \ = \ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Start with v = c + e.

$$Hv = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} v = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Start with v = c + e.

$$Hv = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} v = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\underbrace{+)}_{u = \begin{pmatrix} 2 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 2 \end{pmatrix}}_{e \mathbb{Z}^{2n}} \in \mathbb{Z}^{2n}$$

Flip v_i if u_i is "large". Repeat until Hv = 0.

Start with v = c + e.

$$Hv = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 \end{pmatrix} v = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

$$\underbrace{+)}_{u = \begin{pmatrix} 2 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 2 \end{pmatrix}}_{e \ \mathbb{Z}^{2n}}$$

Flip v_i if u_i is "large". Repeat until Hv = 0.

- parity= 0: perhaps no errors. no information.
- parity=1: one score for each possible position.

$$f,g\in \, \mathbb{F}_2[x]/\big(x^n-1\big)$$

$$f,g \in \mathbb{F}_{2}[x]/(x^{n}-1)$$

$$\downarrow$$

$$\begin{pmatrix} f_{0} & f_{n-1} & \dots & f_{1} & g_{0} & g_{n-1} & \dots & g_{1} \\ f_{1} & f_{0} & \dots & f_{2} & g_{1} & g_{0} & \dots & g_{2} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_{0} & g_{n-1} & g_{n-2} & \dots & g_{0} \end{pmatrix} \begin{pmatrix} v_{0} \\ v_{1} \\ \vdots \\ v_{2n-1} \end{pmatrix} = s$$

$$f,g \in \mathbb{F}_{2}[x]/(x^{n}-1)$$

$$\downarrow$$

$$\begin{pmatrix} f_{0} & f_{n-1} & \dots & f_{1} & g_{0} & g_{n-1} & \dots & g_{1} \\ f_{1} & f_{0} & \dots & f_{2} & g_{1} & g_{0} & \dots & g_{2} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_{0} & g_{n-1} & g_{n-2} & \dots & g_{0} \end{pmatrix} \begin{pmatrix} v_{0} \\ v_{1} \\ \vdots \\ v_{2n-1} \end{pmatrix} = s$$

$$\downarrow$$

$$\begin{pmatrix} f & xf & \dots & x^{n-1}f & g & xg & \dots & x^{n-1}g \end{pmatrix} \begin{pmatrix} v_{0} \\ v_{1} \\ \vdots \\ v_{2n-1} \end{pmatrix} = s$$

$$f,g \in \mathbb{F}_{2}[x]/(x^{n}-1)$$

$$\downarrow$$

$$\begin{pmatrix} f_{0} & f_{n-1} & \dots & f_{1} & g_{0} & g_{n-1} & \dots & g_{1} \\ f_{1} & f_{0} & \dots & f_{2} & g_{1} & g_{0} & \dots & g_{2} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ f_{n-1} & f_{n-2} & \dots & f_{0} & g_{n-1} & g_{n-2} & \dots & g_{0} \end{pmatrix} \begin{pmatrix} v_{0} \\ v_{1} \\ \vdots \\ v_{2n-1} \end{pmatrix} = s$$

$$\downarrow$$

$$f = xf \quad \dots \quad x^{n-1}f \quad g \quad xg \quad \dots \quad x^{n-1}g \end{pmatrix} \begin{pmatrix} v_{0} \\ v_{1} \\ \vdots \\ v_{2n-1} \end{pmatrix} = s$$

$$\downarrow$$

$$s = v^{(0)}f + v^{(1)}g \in \mathbb{F}_{2}[x]/(x^{n}-1)$$

Sparse-times-dense polynomial in $\mathbb{F}_2[x]/(x^n-1)$

```
Compute vf \in \mathbb{F}_2[x]/(x^n-1)
```

- v dense: array of 32/64-bit words
- f sparse: i_1, i_2, \ldots , where $f_i = 1$

Sparse-times-dense polynomial in $\mathbb{F}_2[x]/(x^n-1)$

Compute $vf \in \mathbb{F}_2[x]/(x^n-1)$

• v dense: array of 32/64-bit words

• f sparse: i_1, i_2, \ldots , where $f_i = 1$

QcBits computes vf as

$$x^{i_1}v + x^{i_2}v + \cdots$$

- Each $x^i v$ is simply a rotation of v.
- Summation can be carried out by XOR instructions.
- Constant-time rotations?

Task: compute $v \gg s$, where $s = (s_1 s_2 s_3 ... s_\ell)_2$.

V

Task: compute $v \gg s$, where $s = (s_1 s_2 s_3 \dots s_\ell)_2$.

Task: compute $v \gg s$, where $s = (s_1 s_2 s_3 \dots s_\ell)_2$.

Task: compute $v \gg s$, where $s = (s_1 s_2 s_3 \dots s_\ell)_2$.

$$f,g \in \mathbb{Z}[x]/(x^n-1)$$

$$f,g \in \mathbb{Z}[x]/(x^{n}-1)$$

$$\downarrow$$

$$\begin{pmatrix} f_{0} & f_{1} & \dots & f_{n-1} & g_{0} & g_{1} & \dots & g_{n-1} \\ f_{n-1} & f_{0} & \dots & f_{n-2} & g_{n-1} & g_{0} & \dots & g_{n-2} \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ f_{1} & f_{2} & \dots & f_{0} & g_{1} & g_{2} & \dots & g_{0} \end{pmatrix} v = \begin{pmatrix} s_{0} \\ s_{1} \\ \vdots \\ s_{n-1} \end{pmatrix}$$

$$f,g \in \mathbb{Z}[x]/(x^{n}-1)$$

$$\downarrow$$

$$\begin{pmatrix} f_{0} & f_{1} & \dots & f_{n-1} & g_{0} & g_{1} & \dots & g_{n-1} \\ f_{n-1} & f_{0} & \dots & f_{n-2} & g_{n-1} & g_{0} & \dots & g_{n-2} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ f_{1} & f_{2} & \dots & f_{0} & g_{1} & g_{2} & \dots & g_{0} \end{pmatrix} v = \begin{pmatrix} s_{0} \\ s_{1} \\ \vdots \\ s_{n-1} \end{pmatrix}$$

$$\downarrow$$

$$\begin{pmatrix} f & g \\ xf & xg \\ \vdots \\ x^{n-1}f & x^{n-1}g \end{pmatrix} v = \begin{pmatrix} s_{0} \\ s_{1} \\ \vdots \\ s_{n-1} \end{pmatrix}$$

$$f,g \in \mathbb{Z}[x]/(x^{n}-1)$$

$$\downarrow$$

$$\begin{pmatrix} f_{0} & f_{1} & \dots & f_{n-1} & g_{0} & g_{1} & \dots & g_{n-1} \\ f_{n-1} & f_{0} & \dots & f_{n-2} & g_{n-1} & g_{0} & \dots & g_{n-2} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ f_{1} & f_{2} & \dots & f_{0} & g_{1} & g_{2} & \dots & g_{0} \end{pmatrix} v = \begin{pmatrix} s_{0} \\ s_{1} \\ \vdots \\ s_{n-1} \end{pmatrix}$$

$$\downarrow$$

$$\begin{pmatrix} f & g \\ xf & xg \\ \vdots \\ x^{n-1}f & x^{n-1}g \end{pmatrix} v = \begin{pmatrix} s_{0} \\ s_{1} \\ \vdots \\ s_{n-1} \end{pmatrix}$$

$$\downarrow$$

$$u = (sf, sg) \in \mathbb{Z}[x]/(x^{n}-1)$$

Accumulating $x^i s$

Flipping bits

Failure rate

Problem

- Can the adversary exploit decoding failures?
- Reviewer comment: "...the number of iterations in the decoding step is fixed to a value which is heuristically judged high enough..."
- \bullet QcBits: 10^{-8} for 2^{80} security; worse for higher security levels

Solution?

 Julia Chaulet, Nicolas Sendrier. "Worst case QC-MDPC decoder for Mceliece cryptosystem". ISIT 2016. www.win.tue.nl/~tchou/qcbits/