Siemens S7-1200

CPU 1212C AC/DC/Relay

Bit Logic Operations

SET and RESET Instructions

• Exercise Example Codean

Code and Compile
Learning Made Easy
www.codeandcompile.com

SIMILAR

Bit Logic Instructions in LAD – SET and RESET (1)

SET Instruction

Symbol

<u>%Q0.0</u> <u>"X"</u> (s)

When S (Set) is activated, then the data value at the OUT address is set to 1. When S is not activated, OUT is not changed.

RESET Instruction

Symbol

When R (Reset) is activated, then the data value at the OUT address is set to 0. When R is not activated, OUT is not changed.

A oil

STREET

Exercise Example in Ladder

Write a Logic to latch two outputs Q0.0 & Q0.1 with I0.0 and unlatch it using I0.1

Ladder Solution

Required Condition

10.0	10.1	Q0.0	Q0.1
0	0	Last State	Last State
0	1	0	0
1	0	1	1
1	1	0	0

PLC Wiring

STREET

Bit Logic Instructions in FBD- SET & RESET (1)

SET Instruction

When S (Set) is activated, then the data value at the OUT address is set to 1. When S is not activated, OUT is not changed.

RESET Instruction

When R (Reset) is activated, then the data value at the OUT address is set to 0. When R is not activated, OUT is not changed.

Example

SET	RESET	OUT
10.0	10.1	Q0.0
0	0	Last State
0	1	0
1	0	1
1	1	0

Exercise Example in FBD

Write a Logic to latch two outputs Q0.0 & Q0.1 with I0.0 and unlatch it using I0.1

FBD Solution

STREET

Required Condition

10.0	10.1	Q0.0	Q0.1
0	0	Last State	Last State
0	1	0	0
1	0	1	1
1	1	0	0

odeandcoi

STREET

Bit Logic Instructions in LAD - SET and RESET (Field)

SET Instruction

Symbol

%Q0.0 "X"

_(SET_BF)_

When SET_BF is activated, a data value of 1 is assigned to "n" bits starting at address tag OUT. When SET_BF is not activated, OUT is not changed

RESET Instruction

Symbol

RESET_BF writes a data value of 0 to "n" bits starting at address tag OUT.

When RESET_BF is not activated, OUT is not changed.

Example

SET	RESET	OUT 1	OUT 2	OUT 3
10.0	10.1	Q0.0	Q0.1	Q0.2
0	0	Last State	Last State	Last State
0	1	0	0	0
1	0	1	1	0
1	1	0	0	0

Exercise Example in LADDER

1. Write a Logic to latch three outputs Q0.0 ~ Q0.2 with I0.0 and unlatch all using I0.1

Ladder Solution

Required Condition In Commission Commission

10.0	10.1	Q0.0	Q0.1	Q0.2
0	0	Last State	Last State	Last State
0	1	0	0	0
1	0	1	1	1
1	1	0	0	0

PLC Wiring

Bit Logic Instructions in FBD- SET & RESET (Field)

When SET_BF is activated, a data value of 1 is assigned to "n" bits starting at address tag OUT. When SET_BF is not activated, OUT is not changed

RESET Instruction

RESET_BF writes a data value of 0 to "n" bits starting at address tag OUT. When RESET_BF is not activated, OUT is not changed.

Example

SET	RESET	OUT 1	OUT 2	OUT 3
10.0	10.1	Q0.0	Q0.1	Q0.2
0	0	Last State	Last State	Last State
0	1	0	0	0
1	0	1	1	0
1	1	0	0	0

Exercise Example in FBD

%Q0.0

Write a Logic to latch three outputs Q0.0 ~ Q0.2 with I0.0 and unlatch all using I0.1

FBD Solution

10.0	10.1	Q0.0	Q0.1	Q0.2
0	0	Last State	Last State	Last State
0	1	0	0	0
1	0	1	1	1
1	1	0	0	0

*X" 0 0 Last State Last

SET_BF 0 1 0

1 0 1

1 1 0

PLCWiring 1

The state Last State L

%Q0.0
"X"

RESET_BF

%I0.1
"B" — EN
3 — N

Bit Logic Instructions in FBD- SET Dominant & RESET Dominant

SET/ Reset Flip Flop

STREET

SR is a **reset dominant** latch where the **reset dominates**. **If the set (S)** and **reset (R1) signals** are both true, the value at address **Q0.0 will** be **0**.

Truth Table

SET	RESET	OUT 1
10.0	10.1	Q0.0
0	0	Last State
0	1	0
1	0	1
1	1	0

Reset/SET Flip Flop

%Q0.0 "X" RS %I0.0 "A" — R %I0.1 "B" — S1 — Q —

RS is a set dominant latch where the set dominates. If the set (S1) and reset (R) signals are both true, the value at address Q0.0 will be 1.

Truth Table

RESET	SET	OUT 1
10.0	10.1	Q0.0
0	0	Last State
0	1	1
1	0	0
1	1	0

SERVING

Exercise Example in FBD

Write a Logic to latch the Motor Q0.0 with I0.0 (PB) and include two emergency switches I0.2 and I0.3 to unlatch it. Which Flip Flop you will use?

PLC Wiring

Required Condition

Contacts	Description	l I D
10.0	Start the Motor	7N Y
10.2	Emergency Stop	10
10.3 😝	Emergency Stop	10
Q0.0	Motor	h
прі	16.66	וווע

FBD Solution

What did we learn in this lesson?

- The SET & RESET Bit instruction is used to latch or unlatch only one bit.
- The SET & RESET Field instruction is used to latch or unlatch multiple bits.
- In SET/RESET Flip Flop the OUTPUT will be FALSE if both the inputs are HIGH
- In RESET/SET Flip Flop the OUTPUT will be TRUE if both the inputs are HIGH

Thank you

Get copy of this presentation in the course!

