Differential methylation analysis

Sergio Martínez Cuesta sermarcue@gmail.com

Employment disclosures:

Materials obtained from:

A basic question...

Two Strategies

Factors to consider

- Formulating a sensible question
- Applying corrections if needed
- Assessing statistical power
- Relating hits to biology

Question

Which areas show a significant change in methylation level between the two conditions?

Question

Which areas show a change in methylation which is larger or smaller than the global change in the samples overall?

Question

Which areas show a change in methylation after correcting for the small global differences?

Count based statistics

Count Data

	Meth	Unmeth		
Sample 1	18	10		
Sample 2	5	20		

Is the difference in ratios significant given the observation levels of the samples

The problem of power...

- Ideally want to cover every Cytosine (CpG)
- Should correct for the number of tests

 It's unlikely you'll collect enough data to analyse each C and have p-values which survive multiple testing correction

Generally need to analyse in windows

Window sizes

- Good resolution
- Specific biological effects
- High MTC burden
- Small observations
- High p-values

- Lots of data
- High statistical power
- Low MTC burden
- Low p-values
- Effect averaging

Power Analysis

(Assuming a human genome with p<0.05 and power of detection of 0.8)

Required Fold Genome Coverage

Without Multiple Testing Correction

	1	10	25	50	100	200	500
1	25583	2559	1024	512	256	128	52
5	1094	110	44	22	11	6	3
10	294	30	12	6	3	2	1
20	82	9	4	2	1	1	1
50	15	2	1	1	1	1	1

Applicable Statistics

Contingency Statistics are simple to use for differential methylation in well behaved data

- Unreplicated
 - Chi-Square
 - Fisher's Exact

Contingency Statistics are simple to use for differential methylation in well behaved data

- Replicated Contingency
- Logistic Regression

- Linear Modelling of counts
- EdgeR

F1000Research

F1000Research 2017, 6:2055 Last updated: 20 APR 2018

METHOD ARTICLE

Differential methylation analysis of reduced representation bisulfite sequencing experiments using edgeR [version 1; referees: 2 approved, 1 approved with reservations]

Yunshun Chen^{1,2}, Bhupinder Pal^{1,2}, Jane E. Visvader^{1,2}, Gordon K. Smyth ^{6,2,3}

¹Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3010, Australia

²The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia

³School of Mathematics and Statistics, The University of Melbourne, Melbourne, VIC, 3010, Australia

Binomial statistics can find interesting points in globally changing datasets

- Changes the default expectation
- Find average difference for each starting point
- Select points which exhibit unusual change

Globally changing example

Starting level = 30%

Observations = 14 meth 6 unmeth

Expected End level = 85%

Binomial test, p=0.85, trials=20, successes=14

Raw p=0.106

Beta Binomial Models

0000

What is the probability distribution for the true methylation level?

Simple model: Binomial stats to estimate confidence

Can we do better?

Genome-wide methylation profile.

All levels are not equally likely

Can inform the construction of a Custom beta binomial distribution

Beta-binomial model

The binomial distribution would be defined by the mean and observations

Using the whole genome prior a beta-binomial model would upweight the lower methylation levels, since these are more common.

Provides increased power in comparisons between major groups

Often computationally intensive

Limitations of count based stats

- No subdivision of calls all calls are equal even when coverage isn't
 - Supplement with differences based on better quantitation
- Potential biased by power
 - Can alleviate with CpG window based analysis
 - Easy to bias data otherwise
 - Problem of interpretation, not statistics

Methylation Level Statistics

BSmooth algorithm for methylation correction

black: 25x (Lister)

pink: 4x (Lister)

Normalisation for methylation levels

Statistics

- Standard continuous statistics
 - T-Test
 - ANOVA

- Information sharing continuous stats
 - LIMMA

Reduced power – one value per replicate

Reverse counting

 Some packages offer a conversion from normalised methylation back to counts

True observations: Meth=20 Umeth=30 (40% meth)

Corrected % methylation = 50%

Reversed counts: Meth=25 Unmeth=25

 Allows count based statistics – regains the lost power from normalisation

Retains information about noise from the true observation level

Reverse counting of normalised data can give very different results

Reverse counting of normalised data can give very different results

Reviewing Hits

Look for hit clusters

- Grouping to create larger candidate regions
- Check intermediate regions for consistency

Patterning of hits may suggest more specific ways to quantitate and analyse.

Look at underlying data for artefacts

Biological considerations

- Minimum relevant effect size?
 - Balance power vs change
 - What makes biological sense
 - (what would you follow up?)

Position relative to features

Consistent change over adjacent regions

Methylation statistics packages

- SeqMonk (Graphical Analysis Package)
 - Flexible measurement based on fixed windows, fixed calls or features. Complex corrected methylation calculation and several optional post-calculation normalization options. Chi-Square with optional resampling for unreplicated data, logistic regression with optional resampling for replicated data.
- EdgeR (R-package by Gordon Smyth)
 - Originally designed for count data (RNA-Seq mostly), there is now a mode which models paired counts for meth/unmeth to provide differential methylation statistics. Stats are based around negative binomial linear models.
- methylKit (R-package by A. Akalin et al.)
 - Sliding window, Fisher's exact test or logistic regression. Adjusts p-values to q-values using SLIM method.
- **bsseq** (R/Bioconductor by K.D. Hansen)
 - Implements the BSmooth smoothing algorithm. Numerous CpG-wise t-tests and p-value cutoff to define DMRs. Outperforms Fisher's exact test. Requires biological replicates for DMR detection
- BiSeq (R/Bioconductor by K. Hebestreit et al.)
 - Beta regression model, impractical for very large data other than RRBS or targeted BS-Seq
- MOABS (C++ command line tool by D. Sun et al.)
 - Beta binomial hierarchical model to capture sampling and biological variation, Credible Methylation
 Difference (CDIF) single metric that combines biological and statistical significance