PROBLEM STATEMENT

We¹ consider the problem of modeling a market consists of only stocks. Specifically, let $\{s_{d,t}\}_{t=0}^T$ being the time series of realized daily prices of the d-th stock, for $d=1,\ldots,N$. We would like to understand the distributions of the next-day stock prices $S_{d,T+1}$ for stock allocations.

DETAILS OF RECIPE STEPS

- 1. Identify the risk drivers. $X_{d,t} = \log(S_{d,t})$.
- 2. Extract invariants from risk drivers. We assume each risk driver $X_{d,t}$ follows a GARCH(1,1) process

$$dX_{d,t} = X_{d,t} - X_{d,t-1} = \mu_d + \sigma_{d,t} \varepsilon_{d,t} \tag{1}$$

$$\sigma_{d,t}^2 = c_d + b_d \sigma_{d,t-1}^2 + a_d (dX_{d,t-1} - \mu_d)^2$$
(2)

The $\varepsilon_{d,t}$ are the i.i.d. invariants (i.e., shocks). We use the garch model in MATLAB to fit our data $\{x_{d,t} = \log(s_{d,t})\}_{t=0}^T$ for each $d=1,\ldots,N$ to estimate the parameters μ_d (the offset), c_d (the constant variance), b_d (the GARCH coefficient), and a_d (the ARCH coefficient). Using the estimated parameters of GARCH(1,1), we can extract the invariants $\{\epsilon_{d,t}\}_{t=1}^T$ for $d=1,\ldots,N$.

- 3. **Estimation.** We follow a marginal-copula approach for estimating the joint distribution of $\{\varepsilon_d\}_{d=1}^N$. First we model the marginal distribution of each ε_d by its empirical distribution given the realizations $\{\epsilon_{d,t}\}_{t=1}^T$. Then we use **copulafit** in MATLAB to fit a *t*-copula to the joint grades $\{u_{d,t}\}_{d=1}^N$ from empirical CDF for $t=1,\ldots,T$. The fitted *t*-copula is parametrized by correlation matrix $\boldsymbol{\rho}$ and degree of freedom ν .
- 4. **Project the next-day's risk drivers.** We would like to generate a total of J scenarios for the next step shocks. From the t-copula parameters $(\boldsymbol{\rho}, \nu)$ and using the copularnd in MATLAB, we first generate the scenarios of joint grades $\{u_d^{(j)}\}_{d=1}^N$ for $j=1,\ldots,J$. We then invert the empirical CDF defined by $\{\epsilon_{d,t}\}_{t=1}^T$ to find the corresponding $\{\epsilon_d^{(j)}\}_{j=1}^J$ for $d=1,\ldots,N$. Put $\{\epsilon_d^{(j)}\}_{j=1}^J$ back into the GARCH(1,1) equations (1) and (2), we generate the scenarios of next-day risk drivers $\{x_d^{(j)}\}_{j=1}^J$ for $d=1,\ldots,N$.
- 5. **Pricing.** From the scenarios of next-day risk drivers $\{x_d^{(j)}\}_{j=1}^J$, we can compute the next-day's stock prices $\{s_d^{(j)} = \exp(x_d^{(j)})\}_{j=1}^J$, P&L $\{\pi_d^{(j)} = s_d^{(j)} s_{d,T}\}_{j=1}^J$, and returns $\{r_d^{(j)} = \pi_d^{(j)}/s_{d,T}\}_{j=1}^J$, for $d = 1, \ldots, N$.
- 6. View processing. The prior distribution on the generated J scenarios are defined as $p_0(j) = 1/J$ for $j = 1, \ldots, J$. We express the following two views on the invariant shocks under the posterior distribution $p_{\underline{\cdot}}$: $\mathbb{E}^{p_{\underline{\cdot}}}[\varepsilon_1 \varepsilon_2] = -0.03$, and $\mathbb{E}^{p_{\underline{\cdot}}}[\varepsilon_3 \varepsilon_2] = 0.15$. We can find $p_{\underline{\cdot}}$ by minimizing the relative entropy $\mathcal{E}(f, p_0)$ under the two view constraints. This is achieved by calling EntropyProg.m by Attilio Meucci. We plot the posterior $p_{\underline{\cdot}}$ from using the entire dataset in the left panel of Figure 1.
- 7. Portfolio optimization and evaluation. From the scenarios of joint returns $\{r_d^{(j)}\}_{d=1}^N$, for $j=1,\ldots,J$, we generate the mean-variance frontier of allocations under p_{\cdot} . We constrain the allocations to be no shorting. We plot the mean-variance frontier from using the entire dataset on the right panel of Figure 1, with the left most being the min-variance allocation, and the right most being the max-return allocation. Finally, to choose one allocation on the mean-variance frontier, we use the CVaR (with the definition using the negative sign) of P&L under p_{\cdot} . The minimizer of CVaR for a total wealth of 1 million dollars on the efficient frontier has a return of 0.17% and volatility of 1.4%, with CVaR=\$27637.57.

Figure 1: The left panel shows the posterior distribution $p_{\underline{}}$ satisfying the view constraints, which is apparently different from the uniform prior p_0 . The right panel plots the mean-variance efficient frontier under $p_{\underline{}}$.

¹The author, Yao Zhu, PhD, works on the Derivatives Pricing team at Bloomberg L.P.