Chapitre\I

ELECTROSTATIQUE

Théorème de Gauss

<u>Plan</u>

- I. Introduction
- II. Enoncé du théorème de Gauss
- III. Flux du champ électrique
 - 1. Définition d'un flux à travers une surface
 - 2. Propriétés du vecteur élément de surface
 - 3. Notion de surface fermée
- IV. Application
 - 1. fil infini
 - 2. Plan infini

I. Introduction

Le théorème de Gauss permet le calcul du champ électrique E à partir du flux de \vec{E} : $\Phi(\vec{E})$.

- ⇒ Le théorème est plus facile à appliquer pour des systèmes à symétrie (sphérique ou cylindrique...).
- \Rightarrow Le calcul du flux, il est nécessaire de connaître la direction de \vec{E} (que l'on peut déduire à l'aide des symétries).

II. Énonce du théorème de Gauss

Le flux de \vec{E} à travers une surface fermée, appelée surface de Gauss S_g , est égal à la somme des charges intérieures (à S_g) divisée par ε_0 :

$$\oint_{S_g} \vec{E} . d\vec{S} = \frac{Q_{\text{int}}}{\varepsilon}$$

 $(\pmb{\varepsilon} = \pmb{\varepsilon_r} \pmb{\varepsilon_0} \;\; ; \, \text{milieu air ou vide} \;\; \pmb{\varepsilon_r} = \pmb{1} = > \pmb{\varepsilon} \; = \pmb{\varepsilon_0})$

- ε : Permittivité diélectrique du milieu $\mathbf{\varepsilon_{air}} = \mathbf{\varepsilon_{vide}} = \mathbf{\varepsilon_0}$
- intégrale sur une surface fermée.
- S_g : Surface de Gauss, surface fictive qui vérifie :
 - Sg fermée
 - S_g passe par M où se calcule E(M)
 - de géométrie "cohérente" avec la géométrie du système physique réel

III. Flux de \vec{E} : flux électrique

1- Définition

Par définition mathématique, le flux de \vec{E} est :

Le flux représente l'intensité de "l'écoulement des lignes de champs \vec{E} " à travers une surface S donnée.

Exemples:

Lignes de champ \vec{E} traversant un disque de section S

Lignes de champ électrique radial traversant un cylindre

2 - <u>Propriétés du vecteur élément de surface</u> $d\vec{S}$

Le vecteur $d\vec{S}$ doit vérifier :

- Direction : perpendiculaire à la surface.
- Sens : orienté selon la règle de la main droite.
- Intensité : dS s'exprime en fonction des variables des coordonnées, selon la géométrie du système

dx dy: Pour une surface plane

Exemples: $dS = \begin{cases} r dr d\theta : \text{ Pour une surface de base cylindrique} \\ r d\theta dz : \text{ Pour une surface latérale cylindrique} \end{cases}$

3- Notion de surface fermée

C'est une surface qui sépare ou "isole " le milieu extérieur du milieu intérieur. C'est aussi une enveloppe qui contient un volume.

Pour une surface fermée, de vecteur dS est dirigé vers l'extérieur

Exemples

Surfaces non fermées

Surface d'un disque

Surface d'un plan

Surface latérale d'un cylindre

Surfaces fermées

4- Notion de charge intérieure

(Pint) g = change continue à l'intérieur de la surface de Gauss (fermée) &.

Pint = Je represent une partie de la charge totale du system charge * represent une partie de la charge totale du system (phys)

* represent la charge totale du system (phys)

exple: changes reportes este R. et R2 D'in bystem Cylindrique

IV. Applications sur le théorème de Gauss

Étapes: * Règle de syntie pour E pour trouve le direction de l'élé en Psyn * choix de Sg (en faction de la géomètrie du syst. phys dage) · Jernes · passant par M * Calcul Luglux de co: E (E) à travers Sq * Calad Le Qist dans les 7 régions du système * Dans le théorem & (E)= Out as E= (pour daque région du sest) 1- Fol infini (Fil change and une Sesiti & constant et positive) EEPINPZ DE portipar Calculde Elm)? * direction de E . Il mfri A=Cst (réposition uniform) Entradal + lique de Ens travent que Sest Jan D(+) : 6 7. 15 : (8. 65 Cat Rylande = Surface degaus Ig = Span, + Spanz + Slat D(€)= S € rdo dy (0/0) ₫()= C.- Sda. Sdy Q (= E 2 TIPE)

$$\frac{D}{E_0} = \frac{2\pi L}{E_0}$$

$$\frac{E_1}{E_0} = \frac{1}{E_0}$$

$$\frac{E_1}{E_0} = \frac{1}{E_$$

= 1 Er (2 remltal)

2- Plan infini

On considère un plan infini chargé avec une densité σ cste et > 0.