Jee 13 April Shift - 1 - 1-15

AI24BTECH11013-Geetha charani

I. Section - A

```
1) \int_0^\infty \frac{6}{e^{3x} + 6e^{2x} + 11e^x + 6} \, dx
```

- a) $\log_e(\frac{32}{27})$
- b) $\log_e(\frac{256}{81})$ c) $\log_e(\frac{512}{81})$ d) $\log_e(\frac{64}{27})$
- 2) Among

$$(S1): \lim_{n \to \infty} \frac{1}{n^2} (2 + 4 + 6 + \dots + 2n) = 1$$

$$(S2): \lim_{n \to \infty} \frac{1}{n^{16}} \left(1^1 5 + 2^1 5 + 3^1 5 + \dots + n^1 5 \right) = \frac{1}{16}$$

- a) Only (S1) is true
- b) Both (S1) and (S2) are true
- c) Both (S1) and (S2) are false
- d) Only (S2) is true
- 3) The number of symmetric matrices of order 3, with all the entries from the set 0, 1, 2, 3, 4, 5, 6, 7,
 - a) 10^9
 - b) 10⁶
 - c) 9^{10}
- 4) Let $\bar{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\bar{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\bar{c} = 2\hat{i} \hat{j} + 4\hat{k}$. If a vector \bar{d} satisfies $\bar{d} * \bar{b} = \bar{c} * \bar{b}$ and $\bar{d}.\bar{a} = 24$, then $|\bar{d}|^2$ is equal to
- 5) A coin is biased so that the head is 3 times as likely to occur as tail. This coin ias tossed until a head or three tails occur. If X denotes the number of tosses of the coin, then the mean of X is

 - a) $\frac{21}{16}$ b) $\frac{15}{16}$ c) $\frac{81}{64}$ d) $\frac{37}{16}$
- 6) $\max_{0 \le x \le \pi} x 2 \sin x \cos x + \frac{1}{3} \sin 3x =$
 - a) 0

 - c) $\frac{5\pi+2+3\sqrt{3}}{6}$ d) $\frac{\pi+2-3\sqrt{3}}{6}$
- 7) The set of all $a \in R$ for which the equation x|x-1|+|x+2|=a=0 has exactly one real root, is
 - a) $(-\infty, -3)$
 - b) $(-\infty, \infty)$
 - c) $(-6, \infty)$
 - d) (-6, -3)
- 8) Let PQ be a focal chord of the parabola $y^2 = 36x$ of length 100, making an acute with the position x-axis. Let the ordinate of P be positive and M be the point on the line segment PQ such that

PM: MQ = 3:1. Then wich of the following points does NOT lie on the line passing through M and perpendicular to the line PQ?

- a) (3, 33)
- b) (6, 29)
- c) (-6,45)
- d) (-3,43)
- 9) For the system of linear equations

$$2x + 4y + 2az = b$$

$$x + 2y + 3z = 4$$

$$2x - 5y + 2z = 8$$

which of the following is NOT correct?

- a) It has infinitely many solutions if a = 3, b = 8
- b) It has unique solution if a = b = 8
- c) It has unique solution if a = b = 6
- d) It has infinitely many solutions if a = 3, b = 6
- 10) Let s_1, s_2, s_3,s_{10} respectively be the sum of 12 terms of 10 A.P.s whose first terms are 1, 2,v 3, ..., 10 and the common difference arev 1, 3, 5,...., 19 respectively. Then $\sum_{i=1}^{10} s_i$ is equal to
 - a) 7260
 - b) 7380
 - c) 7220
 - d) 7360
- 11) For the differentiable function $f: R-0 \to R$, let $3f(x) + 2f\left(\frac{1}{x}\right) = \frac{1}{x} 10$, then $|f(3) + f'\left(\frac{1}{4}\right)|$ is equal to
 - a) 13

 - b) $\frac{29}{5}$ c) $\frac{33}{5}$ d) 7
- 12) The negation of the statement $((A \land (B \lor C)) \Rightarrow (A \lor B)) \Rightarrow A$ is
 - a) equivalent to $B \lor \sim C$
 - b) a fallacy
 - c) equivalent to $\sim C$
 - d) equivalent to $\sim A$
- 13) Let the tangent and normal at the point $(3\sqrt{3},1)$ on the ellipse $\frac{x^2}{36} + \frac{y^2}{4} = 1$ meet the y-axis at the points A and B respectively. Let the circle C be drawn taking AB as a diameter and the line $x = 2\sqrt{5}$ intersect C at the points P and Q. If the tangents at the points P and Q on the circle intersect at the point (α, β) , then $\alpha^2 - \beta^2$ is equal to
 - a) $\frac{304}{}$
 - b) 60
 - c) $\frac{314}{5}$
 - d) 61
- 14) The distance of the points (-1,2,3) from the plane $\bar{r}.(\hat{i}-2\hat{j}+3\hat{k})=10$ parallel to the line of the shortest distance between the lines $\bar{r} = (\hat{i} - \hat{j}) + \lambda (2\hat{i} + \hat{k})$ and $\bar{r} = (2\hat{i} - \hat{j} + \mu (\hat{i} - \hat{j} + \hat{k}))$ is
 - a) $2\sqrt{5}$
 - b) $3\sqrt{5}$
 - c) $3\sqrt{6}$
 - d) $2\sqrt{6}$

15) Let $B = \begin{bmatrix} 1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4 \end{bmatrix}$, $\alpha > 2$ be the adjoint of matrix A and |A| = 2, then $\begin{bmatrix} \alpha & -2\alpha & \alpha \end{bmatrix}$ B $\begin{bmatrix} \alpha \\ -2\alpha \\ \alpha \end{bmatrix}$ is equal to

- a) 16
- b) 32
- c) 0
- d) -16