Discrete Distributions

Distribution	θ	PMF	E(X)	Var(X)	MGF	Support
Bernoulli	p	$p^x (1-p)^{1-x}$	p	p(1-p)	$1 - p + pe^t$	X = 0, 1
Binomial	n, p	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)	$(1 - p + pe^t)^n$	$X=0,1,\dots,n$
Poisson	λ	$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	$e^{\lambda(e^t-1)}$	$X=0,1,\dots,\infty$
Geometric	p	$p(1-p)^{x-1}$	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}$	$X=1,2,\dots,\infty$
Negative Binomial	r, p	$\binom{x-1}{r-1}p^{r-1}(1-p)^{x-r}$	$\frac{pr}{1-p}$	$\frac{(1-p)r}{p^2}$	$\left(rac{1-p}{1-pe^t} ight)^n$	$X=0,1,\dots,\infty$

Continuous Distributions

Distribution	θ	PDF	E(X)	Var(X)	MGF	Support
Uniform	a, b	$\frac{1}{b-a}$	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	$\frac{e^{tb} - e^{ta}}{t(b-a)}$	$a \le X \le b$
Normal	μ, σ^2	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	σ^2	$e^{\mu t + \frac{t^2}{2}\sigma^2}$	$-\infty \leq X \leq \infty$
Exponential	λ	$\lambda e^{-x\lambda}$	$1/\lambda$	$1/\lambda^2$	$rac{\lambda}{\lambda - t}$	$0 \le X$
χ^2	k	$\tfrac{1}{2^{k/2}\Gamma(k/2)}x^{k/2-1}e^{-x/2}$	k	2k	$(1-2t)^{-k/2}$	$0 \le X$
Gamma	α, eta	$\frac{1}{eta^{lpha}\Gamma(lpha)}x^{lpha-1}e^{-x/eta}$	lphaeta	$lphaeta^2$	$(1-\beta t)^{-\alpha}$	$0 \le X$
Beta	lpha,eta	$\tfrac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}x^{\alpha-1}(1-x)^{\beta}$	$rac{lpha}{lpha+eta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$		$0 \le X \le 1$
Laplace	μ, b	$\frac{1}{2b}e^{-\frac{ x-\mu }{b}}$	μ	$2b^2$	$\frac{e^{\mu t}}{1 - b^2 t^2}$	$-\infty \leq X \leq \infty$
Logistic	μ, s	$\frac{e^{\frac{-(x-\mu)}{s}}}{s\left(1+e^{\frac{-(x-\mu)}{s}}\right)^2}$	μ	$\frac{s^2\pi^2}{3}$	$e^{\mu t} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$	$-\infty \le X \le \infty$