1. 개와 고양이 분류 CNN 모델에 LIME 적용

```
In [1]:
        import glob
         import numpy as np
         import matplotlib.pyplot as plt
         from tensorflow.keras.preprocessing.image import ImageDataGenerator, load_img, img_
       train_files = glob.glob('training_data/*')
In [2]:
       IMG_DIM = (150, 150)
In [3]:
         train_files = glob.glob('training_data/*')
         train_imgs = [img_to_array(load_img(img, target_size=IMG_DIM)) for img in train_file
         train_imgs = np.array(train_imgs)
        train_labels = [fn.split('\\")[1].split('.')[0].strip() for fn in train_files] # fo
        validation_files = glob.glob('validation_data/*')
        validation_imgs = [img_to_array(load_img(img, target_size=IMG_DIM)) for img in valid
        validation_imgs = np.array(validation_imgs)
        validation_labels = [fn.split('\\")[1].split('.')[0].strip() for fn in validation_f
        print('Train dataset shape:', train_imgs.shape,
               '\tValidation dataset shape:', validation_imgs.shape)
        Train dataset shape: (1000, 150, 150, 3)
                                                      Validation dataset shape: (200, 150,
        150. 3)
In [4]:
       train_imgs_scaled = train_imgs.astype('float32')
        validation_imgs_scaled = validation_imgs.astype('float32')
        train_imgs_scaled /= 255
        validation_imgs_scaled /= 255
In [5]: print(train_imgs[0].shape)
        print(train_imgs[0])
        array_to_img(train_imgs[0])
```

```
(150, 150, 3)
[[[101. 103. 100.]
 [123. 125. 122.]
 [116. 118. 115.]
 [ 45. 41. 30.]
 [ 56. 52. 41.]
 [ 78. 74. 63.]]
[[ 91. 93. 90.]
 [119. 121. 118.]
 [116. 118. 115.]
 [ 46. 42. 31.]
 [ 64. 60. 49.]
 [ 84. 80. 69.]]
[[ 80. 82. 79.]
 [119. 121. 118.]
 [122. 124. 121.]
 [ 47. 43. 32.]
 [ 72. 68. 57.]
 [ 86. 82. 71.]]
[[ 30. 34. 35.]
 [ 32. 36. 37.]
 [ 35. 39. 40.]
 [ 65. 70. 66.]
 [106. 108. 105.]
 [171. 173. 170.]]
[[ 31. 35. 36.]
 [ 33. 37.
             38.]
 [ 28. 32.
            33.]
 [51.56.52.]
 [ 93. 95. 92.]
 [152. 154. 151.]]
[[ 30. 34. 35.]
 [ 33. 37. 38.]
 [ 28. 32.
            33.]
 [ 39. 44.
           40.]
 [82.84.81.]
 [134. 136. 133.]]
```

Out[5]:

```
In [6]: batch_size = 30
    num_classes = 2
    epochs = 30
    input_shape = (150, 150, 3)
```

```
# encode text category labels
from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
le.fit(train_labels)
train_labels_enc = le.transform(train_labels)
validation_labels_enc = le.transform(validation_labels)
print(train_labels[0:10], train_labels_enc[0:10])

['cat', 'cat', 'cat', 'cat', 'cat', 'cat', 'cat', 'cat', 'cat', 'cat'] [0 0 0 0 0 0 0 0 0 0 0 0 0]
```

```
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Flatten, Dense, Dropout
In [7]:
        from tensorflow.keras.models import Sequential
        from tensorflow.keras import optimizers
        # sequential은 한종류로 쌓겠다는 뜻
        # 뒤로갈수록 세밀한 특징을 뽑음
        # 커널 개수가 16->64->128로 늘었고, max pooling도 64->128로 늘음
        # 즉 커널을 많이 쓰면 같은 feature을 세밀하게 뽑겠다는 뜻
        model = Sequential()
        model.add(Conv2D(16, kernel_size=(3, 3), activation='relu', # kernel은 3*3짜리 16개
                        input_shape=input_shape))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Conv2D(64, kernel_size=(3, 3), activation='relu')) # kernel은 3*3짜리 64개
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
        model.add(MaxPooling2D(pool_size=(2, 2)))
        model.add(Flatten())
        model.add(Dense(512, activation='relu'))
        model.add(Dense(1, activation='sigmoid'))
        model.compile(loss='binary_crossentropy',
                     optimizer=optimizers.RMSprop(),
                     metrics=['accuracy'])
        model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
conv2d (Conv2D)	(None, 148, 148, 16)	448
max_pooling2d (MaxPooling2 D)	(None, 74, 74, 16)	0
conv2d_1 (Conv2D)	(None, 72, 72, 64)	9280
<pre>max_pooling2d_1 (MaxPoolin g2D)</pre>	(None, 36, 36, 64)	0
conv2d_2 (Conv2D)	(None, 34, 34, 128)	73856
<pre>max_pooling2d_2 (MaxPoolin g2D)</pre>	(None, 17, 17, 128)	0
flatten (Flatten)	(None, 36992)	0
dense (Dense)	(None, 512)	18940416
dense_1 (Dense)	(None, 1)	513

Total params: 19024513 (72.57 MB) Trainable params: 19024513 (72.57 MB) Non-trainable params: 0 (0.00 Byte)

```
In [8]: history = model.fit(x=train_imgs_scaled, y=train_labels_enc,
                            validation_data=(validation_imgs_scaled, validation_labels_enc),
                            batch_size=batch_size,
                            epochs=epochs,
                            verbose=1)
```

```
Epoch 1/30
34/34 [===========] - 44s 1s/step - loss: 0.7678 - accuracy: 0.51
70 - val_loss: 0.6895 - val_accuracy: 0.5850
Epoch 2/30
34/34 [=========] - 43s 1s/step - loss: 0.6841 - accuracy: 0.55
40 - val_loss: 0.6568 - val_accuracy: 0.6050
34/34 [============ ] - 43s 1s/step - loss: 0.6585 - accuracy: 0.59
90 - val_loss: 0.6423 - val_accuracy: 0.6450
Epoch 4/30
34/34 [===========] - 43s 1s/step - loss: 0.6171 - accuracy: 0.66
70 - val_loss: 0.6148 - val_accuracy: 0.6600
Epoch 5/30
34/34 [===========] - 43s 1s/step - loss: 0.5805 - accuracy: 0.68
80 - val_loss: 0.6761 - val_accuracy: 0.6000
34/34 [============] - 44s 1s/step - loss: 0.5178 - accuracy: 0.73
10 - val_loss: 0.5810 - val_accuracy: 0.7100
Epoch 7/30
34/34 [===========] - 47s 1s/step - loss: 0.4637 - accuracy: 0.77
20 - val_loss: 0.6658 - val_accuracy: 0.6700
34/34 [============ ] - 41s 1s/step - loss: 0.3969 - accuracy: 0.82
30 - val_loss: 0.9557 - val_accuracy: 0.5800
Epoch 9/30
34/34 [============ ] - 41s 1s/step - loss: 0.3328 - accuracy: 0.85
30 - val_loss: 0.7440 - val_accuracy: 0.7300
Epoch 10/30
34/34 [============] - 41s 1s/step - loss: 0.2826 - accuracy: 0.88
90 - val_loss: 0.9775 - val_accuracy: 0.6200
Epoch 11/30
34/34 [============] - 40s 1s/step - loss: 0.1888 - accuracy: 0.92
40 - val_loss: 0.8949 - val_accuracy: 0.7100
Epoch 12/30
34/34 [=========== ] - 40s 1s/step - loss: 0.1577 - accuracy: 0.94
40 - val_loss: 0.9082 - val_accuracy: 0.6850
Epoch 13/30
34/34 [============= ] - 41s 1s/step - loss: 0.1344 - accuracy: 0.96
40 - val_loss: 1.0171 - val_accuracy: 0.7000
Epoch 14/30
34/34 [============] - 43s 1s/step - loss: 0.0726 - accuracy: 0.97
40 - val_loss: 1.3698 - val_accuracy: 0.6900
Epoch 15/30
34/34 [============] - 42s 1s/step - loss: 0.0672 - accuracy: 0.97
90 - val_loss: 1.3347 - val_accuracy: 0.7150
Epoch 16/30
34/34 [===========] - 41s 1s/step - loss: 0.0071 - accuracy: 1.00
00 - val_loss: 1.7554 - val_accuracy: 0.6950
Epoch 17/30
34/34 [============] - 42s 1s/step - loss: 0.0826 - accuracy: 0.98
00 - val_loss: 1.7793 - val_accuracy: 0.6250
Epoch 18/30
34/34 [===========] - 43s 1s/step - loss: 0.0370 - accuracy: 0.99
00 - val_loss: 2.0783 - val_accuracy: 0.6650
Epoch 19/30
34/34 [===============] - 42s 1s/step - loss: 0.0060 - accuracy: 0.99
80 - val_loss: 1.9362 - val_accuracy: 0.7050
Epoch 20/30
34/34 [===========] - 41s 1s/step - loss: 5.4585e-04 - accuracy:
1.0000 - val_loss: 2.3239 - val_accuracy: 0.7000
Epoch 21/30
34/34 [=======] - 41s 1s/step - loss: 1.7216e-04 - accuracy:
1.0000 - val_loss: 2.6105 - val_accuracy: 0.7050
Epoch 22/30
```

```
34/34 [========] - 43s 1s/step - loss: 9.7265e-05 - accuracy:
1.0000 - val_loss: 2.6287 - val_accuracy: 0.6850
Epoch 23/30
34/34 [=================== ] - 45s 1s/step - loss: 0.2583 - accuracy: 0.96
10 - val_loss: 1.5674 - val_accuracy: 0.6900
Epoch 24/30
34/34 [===========] - 44s 1s/step - loss: 0.0132 - accuracy: 0.99
60 - val_loss: 1.6115 - val_accuracy: 0.7200
Epoch 25/30
1.0000 - val_loss: 1.8995 - val_accuracy: 0.7400
Epoch 26/30
34/34 [===========] - 41s 1s/step - loss: 3.6507e-04 - accuracy:
1.0000 - val_loss: 2.3728 - val_accuracy: 0.6700
Epoch 27/30
34/34 [============== ] - 42s 1s/step - loss: 0.0210 - accuracy: 0.99
50 - val_loss: 2.4420 - val_accuracy: 0.6850
Epoch 28/30
34/34 [============== ] - 42s 1s/step - loss: 3.2010e-04 - accuracy:
1.0000 - val_loss: 2.6263 - val_accuracy: 0.7000
Epoch 29/30
34/34 [===========] - 41s 1s/step - loss: 7.4491e-05 - accuracy:
1.0000 - val_loss: 2.8692 - val_accuracy: 0.6900
Epoch 30/30
34/34 [==============] - 55s 2s/step - loss: 3.6963e-05 - accuracy:
1.0000 - val_loss: 3.0252 - val_accuracy: 0.6850
```

In [9]: !pip install LIME

```
Requirement already satisfied: LIME in c:\u00edusers\u00fchanaconda3\u00fclib\u00fcsite-packages (0.2.0.1)
```

Requirement already satisfied: matplotlib in c:\users\hanjo\anaconda3\lib\site-packa ges (from LIME) (3.7.1)

Requirement already satisfied: numpy in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-packages (from LIME) (1.24.3)

Requirement already satisfied: scipy in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-packages (from LIME) (1.11.1)

Requirement already satisfied: tqdm in c:\users\users\understanjo\understanda3\understib\understielpackages (from LIME) (4.65.0)

Requirement already satisfied: scikit-learn>=0.18 in c:\u00ccusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-packages (from LIME) (1.3.0)

Requirement already satisfied: scikit-image>=0.12 in c:\u00ccusers\u00fchanaconda3\u00fclib\u00fcsite-packages (from LIME) (0.20.0)

Requirement already satisfied: networkx>=2.8 in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-pa ckages (from scikit-image>=0.12->LIME) (3.1)

Requirement already satisfied: pillow>=9.0.1 in c:\users\hanjo\andconda3\lib\site-pa ckages (from scikit-image>=0.12->LIME) (9.4.0)

Requirement already satisfied: imageio>=2.4.1 in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-p ackages (from scikit-image>=0.12->LIME) (2.26.0)

Requirement already satisfied: tifffile>=2019.7.26 in c:\users\undersubanaconda3\undersubanaconda\undersubanaconda3\undersubanaconda3\unde

Requirement already satisfied: PyWavelets>=1.1.1 in c:\u00ccusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsit e-packages (from scikit-image>=0.12->LIME) (1.4.1)

Requirement already satisfied: packaging>=20.0 in c:\u00fcusers\u00fchanaconda3\u00fclib\u00fcsite-packages (from scikit-image>=0.12->LIME) (23.0)

Requirement already satisfied: lazy_loader>=0.1 in c:\u00fcusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite -packages (from scikit-image>=0.12->LIME) (0.2)

Requirement already satisfied: joblib>=1.1.1 in c:\users\undersubanjo\undersubanaconda3\undersubanaconda\undersubanaconda\undersubanaconda\undersubanaconda\undersubanaconda\undersubanaconda\undersubanaconda\und

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\u00e4users\u00fchanaconda3\u00fclib\u00e4site-packages (from scikit-learn>=0.18->LIME) (2.2.0)

Requirement already satisfied: contourpy>=1.0.1 in c:\u00fcusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite -packages (from matplotlib->LIME) (1.0.5)

Requirement already satisfied: cycler>=0.10 in c:\u00fcusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-pac kages (from matplotlib->LIME) (0.11.0)

Requirement already satisfied: fonttools>=4.22.0 in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsit e-packages (from matplotlib->LIME) (4.25.0)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\u00fcusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsit e-packages (from matplotlib->LIME) (1.4.4)

Requirement already satisfied: pyparsing>=2.3.1 in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite -packages (from matplotlib->LIME) (3.0.9)

Requirement already satisfied: python-dateutil>=2.7 in c:\u00e4users\u00fchanjo\u00fcanaconda3\u00fclib\u00fcstere backages (from matplotlib->LIME) (2.8.2)

Requirement already satisfied: colorama in c:\u00fcusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-package s (from tqdm->LIME) (0.4.6)

Requirement already satisfied: six>=1.5 in c:\users\hanjo\undanaconda3\lib\undansite-package s (from python-dateutil>=2.7->matplotlib->LIME) (1.16.0)

In [10]: from lime import lime_image

from lime.wrappers.scikit_image import SegmentationAlgorithm

explainer = lime_image.LimeImageExplainer()

In [11]:

			ᅶᄼ	네2코느_201907
1/1	[==========]	_	0s	321ms/step
1/1	[=======]	_	0s	173ms/step
1/1	[=======]	_	0s	142ms/step
.,			_	
1/1	[========]	-	0s	94ms/step
1/1	[========]	-	0s	125ms/step
1/1	[========]	-	0s	158ms/step
1/1	[=======]	_	0s	189ms/step
1/1	[=======]	_	0s	205ms/step
1/1	[=======]	_	0s	122ms/step
. , .	[=======]	_	-	
1/1		_	0s	116ms/step
1/1	[=======]	_	0s	186ms/step
1/1	[=======]	-	0s	173ms/step
1/1	[=======]	_	0s	125ms/step
1/1	[=======]	_	0s	204ms/step
1/1	[=======]	_	0s	190ms/step
1/1	[=======]	_	0s	134ms/step
. , .	[=======]		-	
1/1	1		0s	188ms/step
1/1	[========]	-	0s	143ms/step
1/1	[========]	-	0s	189ms/step
1/1	[========]	_	0s	128ms/step
1/1	[=======]	_	0s	135ms/step
1/1	[=======]	_	0s	204ms/step
1/1	[======]		0s	
.,	· ,	_	00	134ms/step
1/1	[=======]	_	0s	137ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[=======]	_	0s	329ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[=======]	_	0s	133ms/step
1/1	[=======]	_	0s	94ms/step
1/1	[=======]	_	-	94ms/step
.,.				
1/1	[========]	-	00	131ms/step
1/1	[=======]	-	0s	119ms/step
1/1	[========]	-	0s	122ms/step
1/1	[========]	_	0s	189ms/step
1/1	[=======]	_	0s	176ms/step
1/1	[========]	_	0s	172ms/step
1/1	[=======]	_	0s	189ms/step
	[=======]		0s	
1/1	r i	_		220ms/step
1/1	[========]	-	0s	94ms/step
1/1	[========]	-	0s	110ms/step
1/1	[=======]	-	0s	145ms/step
1/1	[========]	_	0s	110ms/step
1/1	[======]	_	0s	95ms/step
1/1	[=======]	_	0s	95ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[=======]	_	0s	121ms/step
.,.		_		
1/1	[========]	_	0s	111ms/step
1/1	[=======]	-	0s	110ms/step
1/1	[========]	-	0s	110ms/step
1/1	[========]	_	0s	110ms/step
1/1	[=======]	_	0s	113ms/step
1/1	[=======]	_	0s	133ms/step
1/1	[=======]	_	0s	94ms/step
. , .	[=======]	_	-	
1/1		_	0s	93ms/step
1/1	[=======]	_	0s	123ms/step
1/1	[======]	-	0s	126ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[=======]	_	0s	173ms/step
1/1	[========]	_	0s	110ms/step
., .	[=======]			
1/1	-	-	0s	110ms/step
1/1	[========]	_	0s	110ms/step
1/1	[======]	-	0s	97ms/step

```
1/1 [======] - Os 173ms/step
1/1 [======] - Os 110ms/step
1/1 [======] - Os 95ms/step
1/1 [=======] - Os 110ms/step
1/1 [======] - Os 105ms/step
1/1 [======] - Os 121ms/step
1/1 [======] - Os 111ms/step
1/1 [======] - Os 110ms/step
1/1 [======] - Os 104ms/step
1/1 [======] - Os 134ms/step
1/1 [======] - Os 113ms/step
1/1 [======] - Os 102ms/step
1/1 [======] - Os 105ms/step
1/1 [======] - Os 127ms/step
1/1 [======] - Os 110ms/step
1/1 [======= ] - Os 94ms/step
1/1 [======] - Os 94ms/step
1/1 [======] - Os 94ms/step
1/1 [=======] - Os 99ms/step
1/1 [======] - Os 129ms/step
1/1 [======] - Os 119ms/step
1/1 [=======] - Os 95ms/step
1/1 [======] - Os 172ms/step
1/1 [======] - Os 173ms/step
1/1 [======] - Os 98ms/step
1/1 [======] - Os 111ms/step
1/1 [======= ] - Os 101ms/step
1/1 [======= ] - Os 124ms/step
1/1 [======= ] - Os 147ms/step
1/1 [=======] - Os 125ms/step
1/1 [======] - Os 173ms/step
1/1 [======] - Os 107ms/step
1/1 [=======] - Os 94ms/step
1/1 [======= ] - Os 110ms/step
1/1 [======] - Os 94ms/step
1/1 [======] - Os 111ms/step
```

```
In [13]: X_test = validation_imgs_scaled olivetti_test_index = 0 # 0번째 장을 집어 넣음 exp=model(우리 딥러닝에서 한것처럼) exp = explainer.explain_instance(X_test[olivetti_test_index], classifier_fn=model.predict, # 40개 class 확률 반환 top_labels=5, # 확률 기준 1~5위 (과제: top_labels=2(num_samples=1000, # sample space segmentation_fn=segmenter) # 분할 알고리즘
```

0%| | 0/1000 [00:00<?, ?it/s]

			ᅶᄼ	네2코느_201907
1/1	[========]	_	0s	129ms/step
1/1	[=======]	_	0s	190ms/step
1/1	- [========]	_	0s	96ms/step
1/1	[=======]		0s	100ms/step
	[=========]		-	
1/1			-	133ms/step
1/1	[========]		0s	111ms/step
1/1	[========]	-	0s	111ms/step
1/1	[========]	-	0s	108ms/step
1/1	[========]	-	0s	108ms/step
1/1	[======================================	_	0s	157ms/step
1/1	[========]	_	0s	111ms/step
1/1	[=======]		0s	110ms/step
1/1	[========]		0s	96ms/step
1/1	[=========]		0s	111ms/step
.,.				
1/1	[=======]		0s	206ms/step
1/1	[========]		0s	96ms/step
1/1	[========]	-	0s	113ms/step
1/1	[========]	-	0s	111ms/step
1/1	[======================================	_	0s	111ms/step
1/1	[========]	_	0s	110ms/step
1/1	[========]	_	0s	106ms/step
1/1	[========]		0s	111ms/step
. , .				
1/1	[=======]		0s	117ms/step
1/1	[========]		0s	94ms/step
1/1	[=========]		0s	158ms/step
1/1	[========]	-	0s	94ms/step
1/1	[========]	_	0s	125ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[=========]	_	0s	110ms/step
1/1	[========]		0s	111ms/step
1/1	[======]			110ms/step
	[========]		00	
1/1			-	97ms/step
1/1	[========]		-	119ms/step
1/1	[=======]		0s	110ms/step
1/1	[========]		00	94ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[======================================	_	0s	110ms/step
1/1	[========]	_	0s	110ms/step
1/1	[=======]		-	
1/1	[=========]			95ms/step
	[=======]			
1/1			0s	94ms/step
1/1	[=======]		0s	94ms/step
1/1	[========]		0s	126ms/step
1/1	[=======]		0s	180ms/step
1/1	[========]	-	0s	111ms/step
1/1	[=========]	-	0s	110ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[========]	_	0s	166ms/step
1/1	[=========]	_	0s	97ms/step
1/1	[========]		0s	94ms/step
1/1	[=======]		0s	
				94ms/step
1/1	[========]		0s	160ms/step
1/1	[======]		0s	95ms/step
1/1	[======]		0s	113ms/step
1/1	[========]	-	0s	110ms/step
1/1	[=======]	_	0s	91ms/step
1/1	[=========]	_	0s	95ms/step
1/1	[========]		0s	112ms/step
1/1	[=======]		0s	94ms/step
1/1	[=======]		0s	
.,.				94ms/step
1/1	[=======]		0s	,
1/1	[==========]		0s	147ms/step
1/1	[======]		0s	111ms/step
1/1	[======]	-	0s	90ms/step

1/1 [======] - 0s 127ms/step 1/1 [======] - 0s 158ms/step

In [14]:

```
1/1 [======] - Os 95ms/step
1/1 [=======] - Os 110ms/step
1/1 [======] - Os 148ms/step
1/1 [======] - Os 126ms/step
1/1 [======] - Os 173ms/step
1/1 [======] - Os 141ms/step
1/1 [======] - Os 173ms/step
1/1 [=======] - Os 87ms/step
1/1 [======] - Os 143ms/step
1/1 [======] - Os 103ms/step
1/1 [======] - Os 99ms/step
1/1 [======] - Os 96ms/step
1/1 [=======] - Os 95ms/step
1/1 [======= ] - Os 110ms/step
1/1 [======] - Os 110ms/step
1/1 [======] - Os 103ms/step
1/1 [======] - Os 96ms/step
1/1 [======] - Os 107ms/step
1/1 [======] - Os 124ms/step
1/1 [=======] - Os 103ms/step
1/1 [======] - Os 99ms/step
1/1 [======] - Os 113ms/step
1/1 [======] - Os 112ms/step
1/1 [======] - Os 119ms/step
1/1 [======= ] - Os 112ms/step
1/1 [======= ] - Os 103ms/step
1/1 [======] - Os 405ms/step
1/1 [=======] - 1s 550ms/step
1/1 [======] - Os 227ms/step
1/1 [======] - Os 157ms/step
1/1 [======= ] - Os 109ms/step
1/1 [======= ] - Os 193ms/step
1/1 [======] - Os 110ms/step
1/1 [======] - Os 111ms/step
from skimage.color import label2rgb
def visualize_explanation(image_index, explainer, model, X_data, y_data, num_feature
  # 설명 생성
  exp = explainer.explain_instance(X_data[image_index],
                         classifier_fn=model.predict,
                         top_labels=5,
                         num_samples=1000.
                         segmentation_fn=segmenter)
  fig, m_axs = plt.subplots(2, 2, figsize=(8, 8))
  ax = m_axs.ravel()
  for i in ax:
     i.grid(False)
  # Positive Regions
   temp, mask = exp.get_image_and_mask(y_data[image_index],
                            positive_only=True,
                            num_features=num_features,
                            hide_rest=False)
  ax[0].imshow(label2rgb(mask, temp, bg_label=0), interpolation='nearest')
  ax[0].set_title('Positive Regions for {}'.format(y_data[image_index]))
  # Positive/Negative Regions
   temp, mask = exp.get_image_and_mask(y_data[image_index],
```

positive_only=False,

```
num_features=num_features,
                                                 hide_rest=False)
             ax[1].imshow(label2rgb(4 - mask, temp, bg_label=0), interpolation='nearest')
             ax[1].set_title('Positive/Negative Regions for {}'.format(y_data[image_index]))
             # Show output image only
             ax[2].imshow(temp, interpolation='nearest')
             ax[2].set_title('Show output image only')
             # Show mask only
             ax[3].imshow(mask, interpolation='nearest')
             ax[3].set_title('Show mask only')
In [15]: y_pred = model.predict(validation_imgs_scaled)
         y_pred_num = np.argmax(y_pred, axis=1)
         # 실제 라벨
         y_test_num = validation_labels_enc
         7/7 [======] - 2s 285ms/step
In [16]:
        visualize_explanation(image_index=0, explainer=explainer, model=model, X_data=X_test
                       | 0/1000 [00:00<?, ?it/s]
           0%|
```

			ᅶᄼ	ᆌ2코느_2019078
1/1	[==========]	_	0s	186ms/step
1/1	[===========]	_	0s	102ms/step
1/1	[==========]	_	0s	126ms/step
.,.	[====================================		0s	94ms/step
.,.	[===========]		0s	112ms/step
.,.	[==========]		0s	94ms/step
.,.				
.,.	[==========]		0s	109ms/step
. , .	[=========]		0s	111ms/step
. , .	[==========]		0s	111ms/step
.,.	[==========	_	0s	105ms/step
1/1	[===========]	-	0s	126ms/step
1/1	[==========]	-	0s	110ms/step
1/1	[==========]	_	0s	108ms/step
1/1	[==========]	_	0s	110ms/step
1/1	[===========]	_	0s	111ms/step
1/1	[============]	_	0s	177ms/step
1/1	- [===========]	_	0s	127ms/step
1/1	[====================================	_	0s	83ms/step
.,	[============]	_	0s	101ms/step
., .	[==========]		0s	110ms/step
. , .	[-	
. , .			0s	126ms/step
.,.	[=========]		0s	110ms/step
' / '	[===========]		0s	126ms/step
., .	[===========]		0s	111ms/step
1/1	[=========]	_	0s	108ms/step
1/1	[===========]	_	0s	95ms/step
1/1	[======================================	_	0s	111ms/step
1/1	[==========]	_	0s	109ms/step
1/1	- [===========]	_	0s	219ms/step
1/1	[==========]	_	0s	139ms/step
	[===========]		0s	209ms/step
., .	[==========]		0s	135ms/step
.,.	[
			0s	55ms/step
. , .	[=========]		0s	,
., .	[===========		0s	
	[==========]			63ms/step
1/1	[========]	-	0s	51ms/step
1/1	[=========]	_	0s	47ms/step
1/1	[===========]	_	0s	50ms/step
1/1	[===========]	_	0s	62ms/step
1/1	[======================================	_	0s	62ms/step
1/1	- [===========]	_		53ms/step
1/1	[====================================	_		47ms/step
. , .	[====================================	_		63ms/step
., .	[===========]			61ms/step
., .	[===========]			50ms/step
., .	[=========]			
.,.				68ms/step
., .	[=========]			85ms/step
., .	[==========]			63ms/step
., .	[======================================			63ms/step
., .	[=========]		0s	63ms/step
1/1	[==========]	_	0s	63ms/step
1/1	[===========]	_	0s	63ms/step
1/1	[==========]	_	0s	63ms/step
1/1	[=========]	_	0s	63ms/step
1/1	- [===========]	_	0s	63ms/step
1/1	[==========]	_	0s	
	[==========]		0s	
	[==========]		0s	62ms/step
	[0s 0s	
	[=========] [===========]			
			0s	78ms/step
	[==========]		0s	,
., .	[======================================			62ms/step
1/1	[=========]	_	Us	68ms/step

3				과지	데2코드_2019078
	1/1	[======]	_	0s	79ms/step
	1/1	[======]	-	0s	47ms/step
	1/1	[======]	_	0s	63ms/step
	1/1	[======]	_	0s	63ms/step
	1/1	[======]	-	0s	142ms/step
	1/1	[======]	_	0s	261ms/step
	1/1	[======]	-	0s	158ms/step
	1/1	[======]	_	0s	218ms/step
	1/1	[======]	_	0s	209ms/step
	1/1	[=======]	-	0s	204ms/step
	1/1	[======]	-	0s	239ms/step
	1/1	[======]	_	0s	173ms/step
	1/1	[=======]	-	0s	211ms/step
	1/1	[======]	-	0s	229ms/step
	1/1	[======]	_	0s	220ms/step
	1/1	[=======]	-	0s	173ms/step
	1/1	[=======]	-	0s	324ms/step
	1/1	[======]	-	0s	218ms/step
	1/1	[=======]	-	0s	257ms/step
	1/1	[======]	-	0s	129ms/step
	1/1	[======]	-	0s	139ms/step
	1/1	[======]	-	0s	190ms/step
	1/1	[======]	-	0s	238ms/step
	1/1	[======]	-	0s	303ms/step
	1/1	[======]	-	0s	166ms/step
	1/1	[======]	-	0s	437ms/step
	1/1	[======]	-	0s	177ms/step
	1/1	[======]	-	0s	337ms/step
	1/1	[======]	-	0s	142ms/step
	1/1	[======]	-	0s	295ms/step
	1/1	[======]	-	0s	134ms/step
	1/1	[======]	-	0s	165ms/step
	1/1	[======]	-	0s	223ms/step
	1/1	[======]	-	0s	256ms/step
	1/1	[======]	-	0s	263ms/step
	1/1	[======]	-	0s	192ms/step

			ᅶᄼ	네2코느_201907
1/1	[===========]	_	0s	184ms/step
1/1	[=========]	_	0s	118ms/step
1/1	[========]	_	0s	121ms/step
1/1	[==========]	_	0s	172ms/step
.,.	[=========]		00	186ms/step
., .	[==========]		00	188ms/step
٠, ٠			00	
.,.	[========]		00	131ms/step
., .	[========]		00	90ms/step
., .	[======================================		00	129ms/step
., .	[======================================		00	85ms/step
1/1	[========]		0s	102ms/step
1/1	[=========]		0s	184ms/step
1/1	[=========]	_	0s	96ms/step
1/1	[======================================	_	0s	149ms/step
1/1	[=========]	_	0s	98ms/step
1/1	[=========]			139ms/step
	[=========]			99ms/step
-	[=========]		0s	120ms/step
	[========]			
. , , .	[==========]		0s	105ms/step
.,.			0s	165ms/step
	[======================================		0s	99ms/step
	[=======]		0s	101ms/step
1/1	[========]	_	0s	100ms/step
1/1	[==========]	_	0s	183ms/step
1/1	[=========]	_	0s	189ms/step
1/1	[======================================	_	0s	178ms/step
1/1	[==========]	_	0s	185ms/step
., .	[=========]	_	-	170ms/step
., .	[=========]		0s	99ms/step
., .	[==========]		0s	108ms/step
	[========]			
., .			0s	113ms/step
	[======================================		0s	108ms/step
	[======================================		0s	179ms/step
	[=======]			138ms/step
	[========]			170ms/step
1/1	[=========]	-	0s	95ms/step
1/1	[=========]	_	0s	139ms/step
1/1	[======================================	_	0s	103ms/step
1/1	[=======]	_	0s	81ms/step
	[=========]		0s	
., .	[=========]	_	0s	
	[=========]		0s	
., .	[========]		0s	184ms/step
., .	[==========]		0s	99ms/step
., .	[=========]			
	[==========]		0s	96ms/step
			0s	91ms/step
., .	[==========		0s	103ms/step
., .	[======]		0s	165ms/step
	[=======]		0s	93ms/step
	[========]		0s	148ms/step
., .	[=========]		0s	173ms/step
1/1	[===========]	_	0s	123ms/step
1/1	[======================================	_	0s	114ms/step
1/1	[========]	_	0s	177ms/step
1/1	- [==========]	_	0s	111ms/step
., .	[=========]		0s	131ms/step
.,.	[=========]		0s	95ms/step
	[=========]		0s	155ms/step
	[=========]			
			0s	205ms/step
	[======================================		0s	121ms/step
	[========]		0s	106ms/step
	[======================================		0s	110ms/step
	[======================================		00	181ms/step
1/1	[=========]	_	0s	188ms/step

3				과제	데2코드_201907
	1/1	[=======]	_	0s	177ms/step
	1/1	[=======]	_	0s	153ms/step
	1/1	[=======]	_	0s	103ms/step
	1/1	[=======]	_	0s	116ms/step
	1/1	[=======]	_	0s	83ms/step
	1/1	[=======]	_	0s	187ms/step
	1/1	[=======]	_	0s	113ms/step
	1/1	[=======]	_	0s	104ms/step
	1/1	[=======]	_	0s	102ms/step
	1/1	[=======]	_	0s	93ms/step
	1/1	[=======]	_	0s	140ms/step
	1/1	[=======]	_	0s	108ms/step
	1/1	[=======]	_	0s	108ms/step
	1/1	[=======]	_	0s	110ms/step
	1/1	[=======]	_	0s	113ms/step
	1/1	[=======]	_	0s	134ms/step
	1/1	[=======]	_	0s	106ms/step
	1/1	[=======]	_	0s	111ms/step
	1/1	[=======]	_	0s	101ms/step
	1/1	[=======]	_	0s	106ms/step
	1/1	[=======]	_	0s	132ms/step
	1/1	[=======]	_	0s	101ms/step
	1/1	[=======]	_	0s	127ms/step
	1/1	[=======]	_	0s	123ms/step
	1/1	[=======]	_	0s	138ms/step
	1/1	[========]	_	0s	145ms/step
	1/1	[=======]	_	0s	108ms/step
	1/1	[=======]	_	0s	112ms/step
	1/1	[=======]	_	0s	144ms/step
	1/1	[=======]	_	0s	155ms/step
	1/1	[=======]	_	0s	119ms/step
	1/1	[=======]	_	0s	96ms/step
	1/1	[======]	_	0s	96ms/step
	1/1	[======]	_	0s	138ms/step
	1/1	[======]	-	0s	95ms/step
	1/1	[======]	_	0s	98ms/step

			ᅶᄼ	ᆌ2코느_201907
1/1	[========]	_	0s	103ms/step
1/1	[=======]	_	0s	121ms/step
1/1	[=======]	_	0s	116ms/step
1/1	[=======]	_	-	95ms/step
.,			0s	
1/1	[=======]	_	0s	108ms/step
1/1	[=======]	_	0s	94ms/step
1/1	[========]	_	0s	111ms/step
1/1	[=======]	_	0s	86ms/step
1/1	[=======]	_	0s	181ms/step
1/1	[=======]	_		104ms/step
.,.			00	
1/1	[========]	_	0s	93ms/step
1/1	[=======]	_	0s	120ms/step
1/1	[=========]		0s	176ms/step
1/1	[=========]	_	0s	97ms/step
1/1	[=======]	_	0s	108ms/step
1/1	[=======]	_	0s	98ms/step
1/1	[=======]		0s	140ms/step
. , .	[======]		-	
1/1			0s	95ms/step
1/1	[========]	_	0s	121ms/step
1/1	[=======]	-	0s	184ms/step
1/1	[=========]	_	0s	123ms/step
1/1	[=========]	_	0s	214ms/step
1/1	[=======]	_	0s	185ms/step
1/1	[======]	_	0s	109ms/step
. , .	[=======]		00	
1/1		_	0s	114ms/step
1/1	[=======]	-	0s	111ms/step
1/1	[========]	_	0s	109ms/step
1/1	[=========]	_	0s	190ms/step
1/1	[=======]	_	0s	103ms/step
1/1	[=======]	_	0s	117ms/step
1/1	[======]	_	0s	112ms/step
.,				
1/1	[=======]	_	0s	150ms/step
1/1	[=======]	-	0s	109ms/step
1/1	[=======]	-	0s	120ms/step
1/1	[========]	_	0s	126ms/step
1/1	[=======]	_	0s	99ms/step
1/1	[=======]	_	0s	94ms/step
1/1	[======]	_	0s	91ms/step
.,.	L ,			
1/1	[=======]	_	0s	156ms/step
1/1	[=======]	-	0s	96ms/step
1/1	[=======]	-	0s	110ms/step
1/1	[=========]	_	0s	95ms/step
1/1	[=======]	_	0s	156ms/step
1/1	[========]	_	0s	111ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[======]	_	0s	94ms/step
.,.	[=======]	_	00	
1/1	· ,	_	0s	100ms/step
1/1	[=======]	-	0s	141ms/step
1/1	[========]	-	0s	121ms/step
1/1	[=========]	_	0s	94ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[=======]	_	0s	97ms/step
1/1	[=======]	_	0s	164ms/step
. , .	[======]		-	
1/1		_	0s	100ms/step
1/1	[=======]	_	0s	108ms/step
1/1	[=======]	-	0s	110ms/step
1/1	[========]	_	0s	94ms/step
1/1	[=======]	_	0s	105ms/step
1/1	[=======]	_	0s	95ms/step
1/1	[=======]	_	0s	110ms/step
1/1	[======]	_	0s	112ms/step
., .	[=======]			
1/1	-	-	0s	138ms/step
1/1	[========]	_	0s	102ms/step
1/1	[=====]	_	0s	87ms/step

3				과지	레2코드_201907
	1/1	[=======]	_	0s	108ms/step
	1/1	[=======]	_	0s	96ms/step
	1/1	[=======]	_	0s	152ms/step
	1/1	[=======]	_	0s	96ms/step
	1/1	[=======]	_	0s	98ms/step
	1/1	[=======]	_	0s	92ms/step
	1/1	[=======]	_	0s	125ms/step
	1/1	[=======]	_	0s	205ms/step
	1/1	[=======]	_	0s	185ms/step
	1/1	[=======]	_	0s	136ms/step
	1/1	[=======]	_	0s	126ms/step
	1/1	[=======]	_	0s	95ms/step
	1/1	[=======]	_	0s	111ms/step
	1/1	[========]	_	0s	117ms/step
	1/1	[=======]	_	0s	95ms/step
	1/1	[=======]	_	0s	126ms/step
	1/1	[=======]	_	0s	107ms/step
	1/1	[========]	_	0s	111ms/step
	1/1	[=======]	_	0s	112ms/step
	1/1	[=======]	_	0s	95ms/step
	1/1	[========]	_	0s	145ms/step
	1/1	[========]	_	0s	191ms/step
	1/1	[=======]	_	0s	87ms/step
	1/1	[========]	_	0s	95ms/step
	1/1	[========]	_	0s	142ms/step
	1/1	[========]	_	0s	95ms/step
	1/1	[=======]	_	0s	95ms/step
	1/1	[========]	_	0s	112ms/step
	1/1	[========]	_	0s	94ms/step
	1/1	[========]	_	0s	174ms/step
	1/1	[=======]	_	0s	127ms/step
	1/1	[========]	_	0s	110ms/step
	1/1	[========]	-	0s	110ms/step
	1/1	[========]	-	0s	122ms/step
	1/1	[======]	_	0s	110ms/step
	1/1	[======]	_	0s	95ms/step

				-11	데2코드_201907
1/	1	[=======]	_	0s	109ms/step
1/	1	[=======]	_	0s	126ms/step
1/		[======]			111ms/step
. ,	. '	<u>.</u>	_	0s	
1/	. '	[=======]	_	0s	112ms/step
1/	1	[=======]	-	0s	96ms/step
1/	1	[========]	_	0s	95ms/step
1/	/ 1	[======]	_	0s	164ms/step
1/	. '	[======]	_	0s	123ms/step
. ,	. '	ı.		-	
1/	. '	[========]	_	0s	116ms/step
1/	1	[=======]	-	0s	131ms/step
1/	1	[========]	_	0s	158ms/step
1/	/ 1	[=======]	_	0s	113ms/step
1/		[======]	_	0s	139ms/step
. ,		[=======]		-	
1/			_	0s	111ms/step
1/	1	[=======]	-	0s	127ms/step
1/	1	[=======]	_	0s	115ms/step
1/	1	[=======]	_	0s	116ms/step
1/	/ 1	[=======]	_	0s	88ms/step
. ,	. '	[=======]			98ms/step
1/			_	0s	
1/	1	[======]	_	0s	204ms/step
1/	1	[========]	-	0s	185ms/step
1/	1	[======================================	_	0s	120ms/step
1/	/ 1	[=======]	_	0s	148ms/step
1/		[=======]	_	0s	101ms/step
. ,		<u>.</u>		-	
1/	1	[========]	_	0s	105ms/step
1/	1	[========]	-	0s	112ms/step
1/	1	[========]	_	0s	127ms/step
1/	1	[=======]	_	0s	109ms/step
1/		[=======]	_	0s	109ms/step
. ,		-		-	
1/		[=======]	_	0s	99ms/step
1/	1	[=======]	-	0s	112ms/step
1/	1	[=======]	_	0s	110ms/step
1/	1	[=======]	_	0s	110ms/step
1/	/ 1	[=======]	_	0s	107ms/step
. ,		[======]			•
1/			_	0s	94ms/step
1/	1	[=======]		0s	112ms/step
1/	1	[========]	-	0s	106ms/step
1/	1	[=======]	_	0s	111ms/step
1/	/ 1	[=======]	_	0s	94ms/step
1/		[========]		0s	110ms/step
. ,		. ,	_		
1/		[======]	_	0s	79ms/step
1/	1	[=======]	-	0s	157ms/step
1/	1	[========]	_	0s	120ms/step
1/	1	[=======]	_	0s	94ms/step
1/	/ 1	[=======]	_	0s	110ms/step
1/		[========]	_	0s	114ms/step
. ,			_		
1/		[=======]	_	0s	172ms/step
1/	1	[=======]	-	0s	124ms/step
1/	1	[========]	_	0s	110ms/step
1/	1	[=======]	_	0s	111ms/step
1/	/ 1	[=======]	_	0s	158ms/step
1/		[=======]		0s	
. ,				-	110ms/step
1/		[=======]		0s	112ms/step
1/	1	[=======]	-	0s	95ms/step
1/	¹ 1	[=======]	_	0s	110ms/step
1/	[/] 1	[========]	_	0s	106ms/step
1/		[=======]	_	0s	94ms/step
. ,		[=======]	_		
1/		-	_	0s	110ms/step
1/		[======]	_	0s	110ms/step
1/	1	[=======]	_	0s	136ms/step
1/	¹ 1	[=======]	_	0s	123ms/step
1/	[/] 1	[=======]	_	0s	128ms/step
1/		[=======]	_	0s	110ms/step
. ,			_		
1/	1	[======]	_	0s	110ms/step

3				과제	데2코드_2019078
	1/1	[======]	_	0s	173ms/step
	1/1	[======]	_	0s	103ms/step
	1/1	[======]	_	0s	110ms/step
	1/1	[======]	_	0s	96ms/step
	1/1	[======]	_	0s	95ms/step
	1/1	[======]	_	0s	141ms/step
	1/1	[======]	_	0s	106ms/step
	1/1	[======]	_	0s	159ms/step
	1/1	[======]	_	0s	122ms/step
	1/1	[======]	_	0s	120ms/step
	1/1	[======]	_	0s	110ms/step
	1/1	[======]	_	0s	100ms/step
	1/1	[======]	_	0s	95ms/step
	1/1	[======]	_	0s	110ms/step
	1/1	[======]	_	0s	110ms/step
	1/1	[======]	_	0s	110ms/step
	1/1	[======]	_	0s	107ms/step
	1/1	[======]	_	0s	110ms/step
	1/1	[======]	_	0s	95ms/step
	1/1	[======]	_	0s	158ms/step
	1/1	[======]	_	0s	103ms/step
	1/1	[======]	_	0s	103ms/step
	1/1	[======]	_	0s	108ms/step
	1/1	[======]	_	0s	174ms/step
	1/1	[======]	_	0s	94ms/step
	1/1	[======]	_	0s	126ms/step
	1/1	[======]	_	0s	111ms/step
	1/1	[======]	_	0s	101ms/step
	1/1	[======]	_	0s	178ms/step
	1/1	[======]	_	0s	118ms/step
	1/1	[======]	_	0s	111ms/step
	1/1	[======]	_	0s	103ms/step
	1/1	[======]	_	0s	118ms/step
	1/1	[======]	_	0s	110ms/step
	1/1	[======]	_	0s	111ms/step
	1/1	[======]	_	0s	112ms/step

1. 피마 인디언 당뇨 예측 모델에 SHAP 적용

In [20]: !pip install shap

Requirement already satisfied: shap in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-packages (0.44.0)

Requirement already satisfied: numpy in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-packages (from shap) (1.24.3)

Requirement already satisfied: scipy in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-packages (from shap) (1.11.1)

Requirement already satisfied: scikit-learn in c:\u00edusers\u00fchanaconda3\u00fclib\u00fcsite-pac kages (from shap) (1.3.0)

Requirement already satisfied: pandas in c:\u00e4users\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-packages (from shap) (2.0.3)

Requirement already satisfied: tqdm>=4.27.0 in c:\users\users\understanjo\understanda3\understib\understied=pac kages (from shap) (4.65.0)

Requirement already satisfied: packaging>20.9 in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-p ackages (from shap) (23.0)

Requirement already satisfied: slicer==0.0.7 in c:\users\hanjo\anda3\lib\site-pa ckages (from shap) (0.0.7)

Requirement already satisfied: numba in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-packages (from shap) (0.57.0)

Requirement already satisfied: cloudpickle in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-pack ages (from shap) (2.2.1)

Requirement already satisfied: colorama in c:\u00e4users\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-package s (from tqdm>=4.27.0->shap) (0.4.6)

Requirement already satisfied: | Ilvm|ite<0.41,>=0.40.0dev0 in c:\u00fcusers\u00fchanjo\u00fcanaconda 3\u00fclib\u00fcsite-packages (from numba->shap) (0.40.0)

Requirement already satisfied: python-dateutil>=2.8.2 in c:\users\unders

Requirement already satisfied: pytz>=2020.1 in c:\u00cc\u00fcars\u00fchhanjo\u00fcanaconda3\u00fclib\u00fcsite-packages (from pandas->shap) (2022.7)

Requirement already satisfied: tzdata>=2022.1 in c:\users\understanjo\understanda3\

Requirement already satisfied: joblib>=1.1.1 in c:\users\undersubanaconda3\undersubanaconda\undersubanaconda\undersubanaconda\undersubanaconda\undersubanaconda\undersubanaconda\undersubanacond

Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\hanjo\andconda3\lib\users\notation c:\users\notation c:\unders\notation c:\und

Requirement already satisfied: six>=1.5 in c:\u00edusers\u00fchanjo\u00fcanaconda3\u00fclib\u00fcsite-package s (from python-dateutil>=2.8.2->pandas->shap) (1.16.0)

```
In [21]: import shap import numpy as np import pandas as pd
```

```
In [22]: df = pd.read_csv('diabetes.csv')
```

In [23]: df

Out[23]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
	0	6	148	72	35	0	33.6	0.627
	1	1	85	66	29	0	26.6	0.351
	2	8	183	64	0	0	23.3	0.672
	3	1	89	66	23	94	28.1	0.167
	4	0	137	40	35	168	43.1	2.288
	•••							
	763	10	101	76	48	180	32.9	0.171
	764	2	122	70	27	0	36.8	0.340
	765	5	121	72	23	112	26.2	0.245
	766	1	126	60	0	0	30.1	0.349
	767	1	93	70	31	0	30.4	0.315

768 rows × 9 columns

```
# 데이터를 훈련 데이터셋과 테스트 데이터셋으로 분할
In [24]:
         from sklearn.model_selection import train_test_split
         X = df.loc[:, df.columns != 'Outcome']
         y = df.loc[:, 'Outcome']
         X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
        # 1. 의사결정트리모델 사용
In [38]:
         from sklearn.tree import DecisionTreeClassifier
         from sklearn.metrics import accuracy_score, classification_report
         tree = DecisionTreeClassifier(max_depth=4, random_state=42)
         tree.fit(X_train, y_train)
         y_pred = tree.predict(X_test)
         accuracy = accuracy_score(y_test, y_pred)
         print(f'Accuracy: {accuracy}')
         print('\nClassification Report:')
         print(classification_report(y_test, y_pred))
         Accuracy: 0.75757575757576
         Classification Report:
                      precision
                                   recall f1-score
                                                     support
                   0
                           0.77
                                     0.86
                                               0.81
                                                         143
                           0.72
                                     0.59
                                              0.65
                                                          88
                                               0.76
                                                         231
             accuracy
            macro avg
                           0.75
                                     0.73
                                               0.73
                                                         231
         weighted avg
                           0.75
                                     0.76
                                               0.75
                                                         231
```

```
In [26]: # 2. xgboost모델 사용

import xgboost
model = xgboost.XGBRegressor(objective ='reg:linear') # 확률을 숫자로 변환하여 출력히
model.fit(X_train, y_train)
preds = model.predict(X_test)
```

```
# 전체 피처를 사용해서 학습시킨 모델의 RMSE를 구하는 코드
                                   from sklearn.metrics import mean_squared_error
                                   rmse = np.sqrt(mean_squared_error(y_test, preds))
                                  print("RMSE: %f" % (rmse))
                                  [13:10:52] WARNING: C:\u00e8buildkite-agent\u00fabuilds\u00fabuildkite-windows-cpu-autoscaling-grou
                                 p-i-0b3782d1791676daf-1\psixgboost\psixgboost-ci-windows\psirc\psibolective\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\psirc\ps
                                 09: reg:linear is now deprecated in favor of reg:squarederror.
                                 RMSE: 0.437362
                                 # 3. 로지스틱회귀모델 사용
In [27]:
                                   from sklearn.preprocessing import StandardScaler
                                   from sklearn.linear_model import LogisticRegression
                                   from sklearn.metrics import accuracy_score, classification_report
                                  scaler = StandardScaler()
                                  X_train_scaled = scaler.fit_transform(X_train)
                                  X_test_scaled = scaler.transform(X_test)
                                   Ir_model = LogisticRegression(random_state=42)
```

y_pred = Ir_model.predict(X_test_scaled)
accuracy = accuracy_score(y_test, y_pred)
class_report = classification_report(y_test, y_pred)

print(f'Classification Report:\footnote{\text{Report}})

Ir_model.fit(X_train_scaled, y_train)

print(f'Accuracy: {accuracy:.4f}')

Accuracy: 0.7792

Classification Report: precision recall f1-score support \cap 0.77 0.92 0.84 143 1 0.80 0.56 0.66 88 accuracy 0.78 231 0.79 0.74 0.75 231 macro avg 231 weighted avg 0.78 0.78 0.77

recall이 높은 의사결정모델을 사용하기로 결정함.

```
# SHAP의 설명체를 정의하고 섀플리 값을 계산하는 로직
In [39]:
         # SHAP은 자바스크립트를 무조건 사용함
         # load JS visualization code to notebook(자바스크립트 쓰겠다고 알려주는 것)
         import shap
         import matplotlib
         shap.initjs()
         # explain the model's predictions using SHAP values
         # (same syntax works for LightGBM, CatBoost, and scikit-learn models)
         # SHAP안에 TreeExplainer 사용
         explainer = shap.TreeExplainer(tree)
         shap_values = explainer.shap_values(X_train)
         # visualize the first prediction's explanation
         # (use matplotlib=True to avoid Javascript)
         sample_index = int(input("인덱스를 입력하세요."))
         shap.force_plot(explainer.expected_value[0], shap_values[0][sample_index, :], X_trai
```

빨간색: 중요한 변수, 이 값이 높을수록 모델의 예측도 증가 # 파란색: 오히려 방해하는 변수. 중요하지 않은 변수를 보여줌

인덱스를 입력하세요.1

In [40]: # 전체 데이터에 대한 섀플리 값을 플롯으로 그리는 코드 # load JS visualization code to notebook shap.initjs() # visualize the training set predictions shap.force_plot(explainer.expected_value[0], shap_values[0], X_train) # 음성 shap.force_plot(explainer.expected_value[1], shap_values[1], X_train) # 양성

In [41]: shap.dependence_plot("BMI", shap_values[0], X_train)

In [42]: # 피처별 섀플리 값을 막대 타입으로 비교하는 코드 shap.summary_plot(shap_values, X_train, plot_type="bar")

In [43]: plt.barh(X_train.columns, tree.feature_importances_)
plt.show()

