

Università degli Studi di Trieste Laurea Triennale in Intelligenza Artificiale e Data Analytics A. A. 2024–2025 Analisi Numerica

ESERCIZI SULL'ARITMETICA DI MACCHINA

Esercizio 1

1. Si ricordi che, fissata una base (un numero naturale B>1), ogni numero $x\in\mathbb{R}$ si può scrivere (rappresentazione a virgola fissa) come

$$x = sign(x) (d_m \dots d_1 d_0 \dots d_{-1} \dots d_{-n} \dots)_B$$

$$= \operatorname{sign}(x) \left(\sum_{j=0}^{m} d_j B^j + \sum_{j=1}^{\infty} d_{-j} B^{-j} \right)$$

dove $d_j, d_{-j} \in \{0, 1, \dots, B-1\}$ sono le cifre della rappresentazione in base B (ad esempio $\{0, 1\}$ in base 2, $\{0, \dots, 9\}$ in base 10); chiamiamo $\sum_{j=0}^{n} d_j B^j$ parte intera del numero e $\sum_{j=1}^{\infty} d_{-j} B^{-j}$ parte frazionaria del numero

- 2. Perché la serie che rappresenta la parte frazionaria converge? traccia: si utilizzi il confronto con la serie geometrica di ragione a=1/B, osservando che $d_{-j} \leq B-1$ (si tratta del criterio di confronto tra serie a termini non negativi);
- 3. La parte frazionaria di un numero irrazionale è infinita (perché?); la parte frazionaria di un numero razionale può essere finita o infinita a seconda della base: $1/3 = (0.333...)_{10}$ ma come si scrive 1/3 in base 3?

Esercizio 2 Si ricordi che un numero reale può essere scritto in virgola mobile normalizzata in base B come:

$$x = \operatorname{sign}(x)B^{e}(0.d_{1}...d_{t}...)_{B} = \operatorname{sign}(x)B^{e}\sum_{j=1}^{\infty}d_{j}B^{-j}$$

 $d_j \in \{0, 1, \dots B-1\}, d_1 \neq 0$, dove chiamiamo $\sum_{j=1}^{\infty} d_j B^{-j}$ mantissa e $e \in \mathbb{Z}$ esponente della rappresentazione; a cosa serve la normalizzazione $d_1 \neq 0$?

Si facciano esempi di numeri reali rappresentati in virgola mobile normalizzata in base B=2 e B=10

Esercizio 3 L'insieme dei numeri macchina si definisce (modello teorico)

$$\mathbb{F}(B, t, L, U) = \{x = \pm (0.d_1 d_2 \dots d_t) B^e, d_i \in \{0, 1, \dots, B-1\}, d_1 \neq 0, e \in [L, U] \subset \mathbb{Z} \} \cup \{0\}$$

Si studi (considerando il modello teorico):

- 1. $\operatorname{card}(\mathbb{F}) = 1 + 2(B-1)B^{t-1}(U-L+1)$ (sugg.: \mathbb{F} è simmetrico, $\mathbb{F}^- = -\mathbb{F}^+$; si contino le possibili mantisse e i possibili esponenti)
- 2. $\min \mathbb{F}^+ = B^{L-1}$ (sugg.: chi è la minima mantissa?)
- 3. $\max \mathbb{F}^+ = B^U(1-B^{-t})$ (sugg.: utilizzare la somma geometrica per calcolare la massima mantissa)
- 4. Si rifletta sul fatto che la densità dei numeri macchina è variabile calcolando la distanza tra numeri macchina consecutivi; dove e come cambia tale densità?

Esercizio 4

- 1. Si maggiori, usando le serie, il massimo errore di troncamento a t cifre che si commette nell'approssimazione di un numero reale x
- 2. Si maggiori, usando le serie, il massimo errore di arrotondamento a t cifre che si commette nell'approssimazione di un numero reale x
- 3. La precisione di macchina, $u=B^{1-t}/2$, non è il più piccolo numero floating-point positivo (che invece è ...)

Esercizio 5 Calcolare il minimo e il massimo numero rappresentabile e la cardinalità dell'insieme di numeri macchina $\mathbb{F}(2,4,-2,3)$. Quanto vale la distanza relativa massima tra due numeri consecutivi ϵ_M e quanto la precisione di macchina u?

Esercizio 6 Supponendo di avere a disposizione 3 bit per l'esponente e 5 bit per la mantissa, e usando lo standard IEEE-754r

- 1. Si dica qual è l'insieme dei numeri macchina.
- 2. Si determini il minimo e il massimo numero rappresentabile, la distanza relativa massima tra due numeri consecutivi ϵ_M e la precisione di macchina u.
- 3. Si dica quale numero rappresenta la configurazione di bit 0 101 1011.
- 4. Si dia la rappresentazione binaria in virgola mobile normalizzata dei seguenti numeri reali: (a) 6.5 (b) -7.3 (c) 16
- 5. Quantificare gli errori di rappresentazione commessi ai punti 4.a) e 4.b).
- 6. Quanto vale la distanza assoluta tra x = 6.5 e il suo successivo numero macchina x_{+} ?

Esercizio 7 Cosa succede se si prova a calcolare $a^2 - b^2$ con $a = 1.4 \cdot 10^{154}$ e $b = 1.3 \cdot 10^{154}$ in un calcolatore con aritmetica IEEE-754r in doppia precisione? Come si potrebbe realizzare questo calcolo in maniera stabile?

3

Esercizio 8 Si dimostri con un esempio che la proprietà associativa del prodotto non è verificata in aritmetica di macchina. (Suggerimento: ricordare che in $\mathbb{F}(2,53,-1022,1023)$ il massimo numero rappresentabile è $\approx 1.7977 \cdot 10^{308}$).

Esercizio 9 Si faccia un esempio in cui la proprietà associativa della somma in aritmetica di macchina non sia verificata per effetto di cancellazione numerica in $\mathbb{F}(10,6,L,U)$.

Si faccia un esempio in cui la proprietà associativa della somma non è valida in aritmetica di macchina per overflow.

Esercizio 10 Si definisca $a_n = n\left(\sqrt{n^2+1} - n\right)$. Sapendo che $\lim_{n \to \infty} a_n = \frac{1}{2}$, quale sarà il valore fornito da MATLAB/OCTAVE per a_n quando $n = 10^8$? Rispondere al quesito senza calcolare a_n , e quantificare gli errori assoluto e relativo commessi assumendo come valore vero quello del limite.

Esercizio 11 Sia $x = 10^{-15}$. Si calcoli l'espressione

$$\frac{(1+x)-1}{x}.$$

Perché il risultato è meno accurato che prendendo $x=8.88178419700125\cdot 10^{-16}$? Si noti che $x=4\epsilon_M$.

Esercizio 12 Si scelga la risposta esatta per ognuno dei seguenti quesiti:

1. Si dica quanto vale la precisione di macchina u in $\mathbb{F}(2,8,-6,7)$, assumendo lo standard IEEE-754r.

$$\boxed{\mathbf{A}} \ \frac{1}{2} \cdot 2^{-8} \qquad \boxed{\mathbf{B}} \ 2^{-7} \qquad \boxed{\mathbf{C}} \ 2^{-8}$$

2. Il numero 1 + eps nell'aritmetica IEEE 754-r viene rappresentato come:

$$\begin{array}{c|c} \mathbf{A} & 0|0111111111111 & 50 \text{ zeri} \\ \hline \mathbf{A} & 0|011111111111 & 00 \dots 0000 1 \\ \hline \mathbf{B} & 0|111111111111 & 00 \dots 0000 1 \\ \hline \mathbf{C} & 0|011111111111 & 000 \dots 0000 1 \\ \hline \end{array}$$

3. Si dica quanto vale la distanza relativa massima tra due numeri consecutivi ϵ_M in $\mathbb{F}(2,4,-2,3)$, assumendo lo standard IEEE-754r.

Esercizio 13 Per alcuni valori di x la funzione reale di variabile reale $f(x) = \sqrt{x^2 + 1} - x$ non può essere calcolata in maniera accurata in un calcolatore; quali? Si spieghi il perchè con un esempio.

Come si potrebbe risolvere il problema?

Esercizio 14 Si dica per quali valori di x la formula $f(x) = \frac{1}{\sqrt{x+2}-\sqrt{x}}$ soffre di cancellazione numerica. Si scriva una formula alternativa stabile.

Esercizio 15 Data la seguente successione di integrali definiti

$$I_n = \int_0^1 \frac{x^n}{x+5} \, dx,$$

- 1. Si calcoli I_0 .
- 2. Si consideri la seguente formula ricorsiva per il calcolo di I_n :

$$s_0 = \ln(1.2)$$

 $s_n = \frac{1}{n} - 5s_{n-1}$ $n > 0$

Si studi la stabilità di tale formula esprimendo l'errore al passo n, $|e_n|$ in funzione dell'errore iniziale $|e_0|$.

3. Si ricavi una formula stabile per il calcolo della successione I_n giustificando la risposta.

Esercizio 16 Sia data una funzione (derivabile) y = f(x). Se il dato di ingresso x è perturbato di una quantità Δx , e detto $\Delta y = f(x + \Delta x) - f(x)$ l'errore assoluto sul valore della funzione, si dimostri che quello relativo verifica, per Δx "piccolo"

$$\left| \frac{\Delta y}{y} \right| = K(f, x) \frac{|\Delta x|}{|x|}$$

dove $K(f,x) = \frac{|x \cdot f'(x)|}{|y|}$ è detto Numero di condizionamento.

Esercizio 17 Dimostrare che il numero di condizionamento del problema di calcolare la funzione $f(x) = \sqrt{x}$ è $K(f, x) = \frac{1}{2}$.

Esercizio 18 Si dica per quali valori di x risulta malcondizionato il problema di calcolare

- a) $f(x) = 4x^3 + 2x^2 4x$
- b) $f(x) = 3x^2 + 10x$.

5

Esercizio 19 Date le funzioni

$$f_1(x) = 1 - \sqrt{1 - x^2}, \qquad f_2(x) = 1 - x$$

se ne calcoli analiticamente il condizionamento.

- ullet Per quali valori di x le rispettive funzioni saranno malcondizionate?
- $\bullet\,$ Per quali valori di x la funzione f_1 presenta invece problemi di cancellazione numerica?