MATH 217 (Fall 2022)

Honors Advanced Calculus, I

Assignment #4

1. For $0 \le r \le R$ and $\epsilon \in (0,1)$, determine whether or not the set

$$\{(x, y, z) \in \mathbb{R}^3 : r^2 \le x^2 + z^2 \le R^2, |y| \in [\epsilon, 1] \}$$

is (a) open, (b) closed, (c) compact, or (d) connected.

- 2. A set $S \subset \mathbb{R}^N$ is called *star shaped* if there is $x_0 \in S$ such that $tx_0 + (1-t)x \in S$ for all $x \in S$ and $t \in [0,1]$. Show that every star shaped set is connected, and give an example of a star shaped set that fails to be convex.
- 3. Let $C \subset \mathbb{R}^N$ be connected. Show that \overline{C} is also connected.
- 4. Let $S \subset \mathbb{R}^N$, and let $x \in \mathbb{R}^N$. Show that $x \in \overline{S}$ if and only if there is a sequence $(x_n)_{n=1}^{\infty}$ in S such that $x = \lim_{n \to \infty} x_n$.
- 5. Let $(x_n)_{n=1}^{\infty}$ be a convergent sequence in \mathbb{R}^N with limit x. Show that $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ is compact.
- 6*. Show that $\mathbb{R}^N \setminus \{0\}$ is disconnected if and only if N = 1.

Due Wednesday, October 12, 2020, at 10:00 a.m.; no late assignments.