НАЗВАНИЕ УЧРЕЖДЕНИЯ, В КОТОРОМ ВЫПОЛНЯЛАСЬ ДАННАЯ ДИССЕРТАЦИОННАЯ РАБОТА

На правах рукописи УДК xxx.xxx

ФАМИЛИЯ ИМЯ ОТЧЕСТВО автора

НАЗВАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Специальность XX.XX.XX — «Название специальности»

Диссертация на соискание учёной степени кандидата каких-то там наук

Научный руководитель: уч. степень, уч. звание Фамилия И.О.

Содержание

Вв	еден	ие	•					•			•	•		•			•	•		•	•	•		•		•		•	•			•	•	
1	Teop	. RИС																														•		Į
	1.1	Параг																																
	1.2	Ураві																																
	1.3	Форм																																
	1.0	1.3.1																																
						рова																												
		1.3.2				рова																												
		1.3.3	F	Іум	epo	ван	НЫ	e c	þo]	рм	ІУЛ	Ы		•			•	•		•	•	•		•	•	•		•	•			•	•	(
За	ключ	ение									•						•					•			•			•				•	•	
Сп	исок	рисун	IKO]	В.						•	•				•		•					•		•	•			•				•	٠	8
Сп	исок	табли	Щ					•												•														(
Ли	тера	тура .	•					•							•					٠				•										10
A	Назі	вание і	пер	ВОІ	ОΠ	рил	ЖОЖ	ен	ия		•				•		•			•								•					•	10
В	Оче	нь дли	инн	юе	наз	ван	ие	вт	or	юг	'O	пт	эи.	лох	ке	ни	Я.	В	KC	тс) DC	ЭМ	П	рo	ле	емс	ЭНС	:TT	ЭИ.	DO'	ва	на		
		тасд.							_			_					- 1				-			-				-	-	-				1.
		Подра			_																													
	B.2	Ещё о																																
		Очере							-																									
	R 4	И ещі	ëo	пин	т по	πna	зпе	π	πn	ип	кол	KΡ	ни	Я																				- 13

Введение

Обзор, введение в тему, обозначение места данной работы в мировых исследованиях и т.п.

Нефтепроводы — инженерно-технические сооружения трубопроводного транспорта, предназначенное для транспорта нефти. Сооружение и обслуживание трубопровода весьма дорогостоящее, но тем не менее — это наиболее дешёвый способ транспортировки газа и нефти. По этой причине, удешевление процесса транспортировки нефти и повышение эффективности её передачи является важнейшей задачей при строительстве трубопроводов.

Из скважин вместе с нефтью поступают пластовая вода, попутный нефтяной газ (ПНГ), твердые частицы механических примесей (горных пород, затвердевшего цемента.), поэтому поступающую из скважин нефть и газ нужно очистить. В данной работе мы концентрируемся на проблеме оседания твердой фазы на дне трубы.

Широко признано, что неэффективное удаление твердых частиц представляет собой ключевую проблему для технической и экономической осуществимости транспортировочных работ. Отложение шлама в стволе трубопровода может привести к прихвату труб, существенно высокому сопротивлению и крутящему моменту, снижению объёмов поступающего вещества. Таким образом, точное прогнозирование оседания бурового шлама в трубе жизненно важно для надежной конструкции и правильного выполнения процесса транспортировки.

Проблемы гидромеханики иногда не имеют точного аналитического решения, а проведение эксперимента, получаение и обработка данных явлеттся довольно затратным в плане финансирования и времени. Численные методы решения, в отличие от вышеописанных, не используют ресурсы лабороторий, обходятся дешевле и могут быть довольно легко модифицированны. Именно поэтому для решения обозначенной проблемы мы использовали методы вычислительной гидродинамики.

В данной работе использовался программный пакет для вычислительной гидродинамики OpenFoam. Этот продукт предоставляет широкий спектр функций для решения любых задач, от сложных потоков жидкости, включающих химические реакции, турбулентность и теплопередачу, до акустики, механики твердого тела и электромагнетизма. OpenFoam имеет открытый исходный код и бесплатную модель распространения, что является очень важным и акутальным преимуществом.

Целью данной работы является изучение распределения осадочного слоя при транспортировке нефти...

Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. Выбрать оптимальные физические модели.
- 2. Научиться работать в программном пакете OpenFoam.
- 3. Выбрать оптимальные математические и вычислительные модели.
- 4. Смоделировать течение жидкости при разных углах наклона

Основные положения, выносимые на защиту:

- 1. Первое положение
- 2. Второе положение
- 3. Третье положение
- 4. Четвертое положение

Научная новизна:

- 1. Впервые ...
- 2. Впервые . . .
- 3. Было выполнено оригинальное исследование ...

Научная и практическая значимость . . .

Степень достоверности полученных результатов обеспечивается ... Результаты находятся в соответствии с результатами, полученными другими авторами.

Апробация работы. Основные результаты работы докладывались на: перечисление основных конференций, симпозиумов и т.п.

Личный вклад. Автор принимал активное участие . . .

Публикации. Основные результаты по теме диссертации изложены в XX печатных изданиях [?,?,?,?,?], X из которых изданы в журналах, рекомендованных ВАК [?,?,?], XX — в тезисах докладов [?,?].

Объем и структура работы. Диссертация состоит из введения, четырех глав, заключения и двух приложений. Полный объем диссертации составляет XXX страница с XX рисунками и XX таблицами. Список литературы содержит XXX наименований.

Глава 1

Теория

1.1 Параметры жидкости

Можно считать, что нефть - несжимаема. Т.к. преполагается изгиб трубопровода и достаточно большая скорость течения жидкости, влияние флуктуаций на течение жидкости достаточно существенно, чтобы использовать турбулентную модель жидкости. Изначально примем участок трубы пустым, поэтому движение жидкости необходимо считать нестационарным.

1.2 Уравнение неразрывности

Уравнение неразрывности: [

$$\frac{\partial U_i}{\partial x_i} = 0$$

1.3 Формулы

1.3.1 Ненумерованные одиночные формулы

Вот так может выглядеть формула, которую необходимо вставить в строку по тексту: $x \approx \sin x$ при $x \to 0$.

А вот так выглядит ненумерованая отдельностоящая формула с подстрочными и надстрочными индексами:

$$(x_1 + x_2)^2 = x_1^2 + 2x_1x_2 + x_2^2$$

При использовании дробей формулы могут получаться очень высокие:

$$\frac{1}{\sqrt(2) + \frac{1}{\sqrt{2} + \frac{1}{\sqrt{2} + \cdots}}}$$

В формулах можно использовать греческие буквы:

 $\alpha\beta\gamma\delta\epsilon\varepsilon\zeta\eta\theta\vartheta\iota\kappa\lambda mu\nu\xi\pi\varpi\rho\varrho\sigma\varsigma\tau\upsilon\phi\varphi\chi\psi\omega\Gamma\Delta\Theta\Lambda\Xi\Pi\Sigma\Upsilon\Phi\Psi\Omega$

1.3.2 Ненумерованные многострочные формулы

Вот так можно написать две формулы, не нумеруя их, чтобы знаки равно были строго друг под другом:

$$f_W = \min\left(1, \max\left(0, \frac{W_{soil}/W_{max}}{W_{crit}}\right)\right),$$

 $f_T = \min\left(1, \max\left(0, \frac{T_s/T_{melt}}{T_{crit}}\right)\right),$

Можно использовать разные математические алфавиты:

ABCDEFGHIJKLMNOPQRSTUVWXYZ ABCDEFGHIJKLMNOPORSTUVWXYZ

Посмотрим на систему уравнений на примере аттрактора Лоренца:

$$\begin{cases} \dot{x} = \sigma(y - x) \\ \dot{y} = x(r - z) - y \\ \dot{z} = xy - bz \end{cases}$$

А для вёрстки матриц удобно использовать многоточия:

$$\begin{pmatrix}
a_{11} & \dots & a_{1n} \\
\vdots & \ddots & \vdots \\
a_{n1} & \dots & a_{nn}
\end{pmatrix}$$

1.3.3 Нумерованные формулы

А вот так пишется нумерованая формула:

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{1.1}$$

Нумерованых формул может быть несколько:

$$\lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k^2} = \frac{\pi^2}{6} \tag{1.2}$$

В последствии на формулы (1.1) и (1.2) можно ссылаться.

Заключение

Основные результаты работы заключаются в следующем.

- 1. На основе анализа ...
- 2. Численные исследования показали, что ...
- 3. Математическое моделирование показало ...
- 4. Для выполнения поставленных задач был создан ...

И какая-нибудь заключающая фраза.

Список рисунков

Список таблиц

Приложение А

Название первого приложения

Некоторый текст.

Приложение В

Очень длинное название второго приложения, в котором продемонстрирована работа с длинными таблицами

В.1 Подраздел приложения

Вот размещается длинная таблица:

Параметр	Умолч.	Тип	Описание
&INP			
kick	1	int	0: инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
${ m kick}$	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0		экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			2. генерация оелого шума симметрично относительно экватора
mars	0	int	экватора 1: инициализация модели для планеты Марс
mars kick	1	int	0 : инициализация модели для планеты марс 0 : инициализация без шума $(p_s=const)$
KICK	1	1116	1 : генерация белого шума $(p_s = const)$
			1. генерация оелого шума 2: генерация белого шума симметрично относительно
			экватора
	l	l	продолжение следует
			продолжение следует

			(продолжение)
Параметр	Умолч.	Тип	(продолжение) Описание
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mars	0	\inf	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	_		1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	l . ,	экватора
mars kick	0	$\mid ext{int} \mid$	1: инициализация модели для планеты Марс 0: инициализация без шума $(p_s=const)$
KICK	1	1116	1: генерация белого шума $(p_s = const)$
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	$_{ m int}$	зкватора 1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mars	0	\inf	экватора 1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
	_	1110	1: генерация белого шума
			2: генерация белого шума симметрично относительно
	0	. ,	экватора
wars &SURFPAI	0 R	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
meng	0	\inf	экватора
mars kick	1	int	1: инициализация модели для планеты Марс 0: инициализация без шума $(p_s=const)$
RICK	1	1110	1: генерация белого шума (<i>p_s</i> = <i>const</i>)
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума $(p_s = const)$ 1: генерация белого шума
			2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума 2: генерация белого шума симметрично относительно
			экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s=const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно экватора
mars	0	int	1: инициализация модели для планеты Марс
kick	1	int	0 : инициализация без шума $(p_s = const)$
			1: генерация белого шума
			2: генерация белого шума симметрично относительно
mars	0	\inf	экватора 1: инициализация модели для планеты Марс
kick	1	int	0: инициализация без шума ($p_s = const$)
	_		1: генерация белого шума
			продолжение следует

(продолжение)								
Параметр	Умолч.	Тип	Описание					
mars kick	0	int int	 2: генерация белого шума симметрично относительно экватора 1: инициализация модели для планеты Марс 0: инициализация без шума (p_s = const) 1: генерация белого шума 2: генерация белого шума симметрично относительно экватора 					
mars kick	0 1	int int	1: инициализация модели для планеты Марс 0: инициализация без шума ($p_s = const$) 1: генерация белого шума 2: генерация белого шума симметрично относительно экватора					
mars	0	int	1: инициализация модели для планеты Марс					

В.2 Ещё один подраздел приложения

Нужно больше подразделов приложения!

В.3 Очередной подраздел приложения

Нужно больше подразделов приложения!

В.4 И ещё один подраздел приложения

Нужно больше подразделов приложения!