Lending Club Case Study

Reading the CSV File

```
In [1]: import pandas as pd
         import seaborn as sb
         import numpy as np
         import matplotlib.pyplot as plt #to plot some parameters in seaborn
        import plotly.offline as py
        py.init notebook mode(connected=True) # this code, allow us to work with offline plotly version
        import plotly.graph_objs as go # it's like "plt" of matplot
         import plotly.tools as tls # It's useful to we get some tools of plotly
         import warnings # This library will be used to ignore some warnings
         from collections import Counter # To do counter of some features
         import plotly.io as pio
         #pio.renderers.default = "colab" #Colab configs for plotly
In [2]: loan = pd.read_csv("loan.csv")
        /var/folders/p6/klf5stcd60n3 hy6dqwl0xh0000gn/T/ipykernel_36579/3592418794.py:1: DtypeWarning:
        Columns (47) have mixed types. Specify dtype option on import or set low memory=False.
In [3]: loan.head()
                id member_id loan_amnt funded_amnt_inv
                                                                     term int_rate installment grade sub_grade ... num_tl_90g_dpd_24m num_tl_op_past_12m pct_tl_nvr_dlq percent_bc_gt_75
Out[3]:
                                                             4975.0
                                                                            10.65%
        0 1077501
                      1296599
                                  5000
                                               5000
                                                                                       162.87
                                                                                                 В
                                                                                                          B2 ...
                                                                                                                                NaN
                                                                                                                                                   NaN
                                                                                                                                                                NaN
                                                                                                                                                                                 NaN
                                                             2500.0
                                                                                                 С
        1 1077430
                      1314167
                                  2500
                                               2500
                                                                                        59.83
                                                                                                          C4 ...
                                                                                                                                NaN
                                                                                                                                                   NaN
                                                                                                                                                                NaN
                                                                                                                                                                                 NaN
                                                             2400.0 36 months
                                                                                                 С
                                                                                                          C5 ...
        2 1077175
                      1313524
                                  2400
                                               2400
                                                                                        84.33
                                                                                                                                NaN
                                                                                                                                                   NaN
                                                                                                                                                                NaN
                                                                                                                                                                                 NaN
        3 1076863
                      1277178
                                                            10000.0
                                                                                                 С
                                                                                                          C1 ...
                                  10000
                                              10000
                                                                                       339.31
                                                                                                                                NaN
                                                                                                                                                   NaN
                                                                                                                                                                NaN
                                                                                                                                                                                 NaN
                                                             3000.0 60 months
        4 1075358
                                                                                                 В
                                                                                                          B5 ...
                       1311748
                                  3000
                                               3000
                                                                                        67.79
                                                                                                                                NaN
                                                                                                                                                   NaN
                                                                                                                                                                NaN
                                                                                                                                                                                 NaN
        5 rows × 111 columns
In [4]: loan.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39717 entries, 0 to 39716
Columns: 111 entries, id to total_il_high_credit_limit
dtypes: float64(74), int64(13), object(24)
memory usage: 33.6+ MB
```

In [5]: loan.describe()

Out[5]

5]:		id	member_id	loan_amnt	funded_amnt	funded_amnt_inv	installment	annual_inc	dti	delinq_2yrs	inq_last_6mths	•••	num_tl_90g_dpd_24m	num_tl_op_past_
	count	3.971700e+04	3.971700e+04	39717.000000	39717.000000	39717.000000	39717.000000	3.971700e+04	39717.000000	39717.000000	39717.000000		0.0	
	mean	6.831319e+05	8.504636e+05	11219.443815	10947.713196	10397.448868	324.561922	6.896893e+04	13.315130	0.146512	0.869200		NaN	
	std	2.106941e+05	2.656783e+05	7456.670694	7187.238670	7128.450439	208.874874	6.379377e+04	6.678594	0.491812	1.070219		NaN	
	min	5.473400e+04	7.069900e+04	500.000000	500.000000	0.000000	15.690000	4.000000e+03	0.000000	0.000000	0.000000		NaN	
	25%	5.162210e+05	6.667800e+05	5500.000000	5400.000000	5000.000000	167.020000	4.040400e+04	8.170000	0.000000	0.000000		NaN	
	50%	6.656650e+05	8.508120e+05	10000.000000	9600.000000	8975.000000	280.220000	5.900000e+04	13.400000	0.000000	1.000000		NaN	
	75%	8.377550e+05	1.047339e+06	15000.000000	15000.000000	14400.000000	430.780000	8.230000e+04	18.600000	0.000000	1.000000		NaN	
	max	1.077501e+06	1.314167e+06	35000.000000	35000.000000	35000.000000	1305.190000	6.000000e+06	29.990000	11.000000	8.000000		NaN	

8 rows × 87 columns

```
In [6]: df = pd.DataFrame(loan)
         list(df.columns)
Out[6]: ['id',
          'member id',
          'loan amnt',
          'funded amnt',
          'funded_amnt_inv',
          'term',
          'int_rate',
          'installment',
          'grade',
          'sub_grade',
          'emp_title',
          'emp_length',
          'home_ownership',
          'annual inc',
          'verification_status',
          'issue d',
          'loan_status',
          'pymnt_plan',
          'url',
          'desc',
          'purpose',
          'title',
          'zip_code',
          'addr_state',
          'dti',
          'delinq_2yrs',
          'earliest cr line',
```

```
'inq last 6mths',
'mths since last deling',
'mths since last record',
'open_acc',
'pub rec',
'revol_bal',
'revol_util',
'total_acc',
'initial_list_status',
'out prncp',
'out_prncp_inv',
'total pymnt',
'total pymnt inv',
'total rec prncp',
'total_rec_int',
'total_rec_late_fee',
'recoveries',
'collection_recovery_fee',
'last pymnt d',
'last_pymnt_amnt',
'next pymnt d',
'last credit pull d',
'collections 12 mths ex med',
'mths_since_last_major_derog',
'policy code',
'application type',
'annual_inc_joint',
'dti joint',
'verification_status_joint',
'acc_now_deling',
'tot_coll_amt',
'tot cur bal',
'open_acc_6m',
'open_il_6m',
'open il 12m',
'open il 24m',
'mths since rcnt il',
'total bal il',
'il util',
'open_rv_12m',
'open_rv_24m',
'max bal bc',
'all util',
'total rev hi lim',
'inq_fi',
'total cu tl',
'inq_last_12m',
'acc open past 24mths',
'avg cur bal',
'bc_open_to_buy',
'bc util',
'chargeoff_within_12_mths',
'deling_amnt',
'mo_sin_old_il_acct',
'mo_sin_old_rev_tl_op',
'mo_sin_rcnt_rev_tl_op',
'mo_sin_rcnt_tl',
```

http://localhost: 8888/nbconvert/html/Learning/AIML/Git/LendingClubCaseStudy/LendlingClubAnalysis.ipynb?download=false-lendingClubAnalysis.ipynb.

```
'mort acc',
'mths_since_recent_bc',
'mths since recent bc dlq',
'mths_since_recent_inq',
'mths_since_recent_revol_deling',
'num_accts_ever_120_pd',
'num_actv_bc_tl',
'num_actv_rev_tl',
'num_bc_sats',
'num_bc_tl',
'num_il_tl',
'num_op_rev_tl',
'num rev accts',
'num_rev_tl_bal_gt_0',
'num_sats',
'num_tl_120dpd_2m',
'num_tl_30dpd',
'num_t1_90g_dpd_24m',
'num_tl_op_past_12m',
'pct_tl_nvr_dlq',
'percent_bc_gt_75',
'pub_rec_bankruptcies',
'tax liens',
'tot_hi_cred_lim',
'total_bal_ex_mort',
'total bc limit',
'total_il_high_credit_limit']
```

Data Cleaning

Drop Loan behaviourial fields as per the suggestion 1) deling_2yrs

- 2) earliest_cr_line
- 3) inq_last_6mths
- 4) open_acc
- 5) pub_rec
- 6) revol_bal
- 7) revol_util
- 8) total_acc
- 9) out_prncp
- 10) out_prncp_inv
- 11) total_pymnt
- 12) total_pymnt_inv
- 13) total_rec_prncp
- 14) total_rec_int
- 15) total_rec_late_fee
- 16) recoveries
- 17) collection_recovery_fee
- 18) last_pymnt_d
- 19) last_pymnt_amnt
- 20) last_credit_pull_d
- 21) application_type

```
In [7]: df = df.drop(['delinq_2yrs', 'earliest_cr_line', 'inq_last_6mths', 'open_acc', 'pub_rec', 'revol_bal', 'revol_util', 'total_acc', 'out_prncp', 'out_prncp_inv', 'total_py
```

Drop the columns which contains same values in all rows

```
In [8]: for col in df.columns: # Loop through columns
if len(df[col].unique()) == 1: # Find unique values in column along with their length and if length is == 1 then it contains same values
    df.drop([col], axis=1, inplace=True) # Drop the column
```

```
In [9]: df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 39717 entries, 0 to 39716
Data columns (total 31 columns):

#	Column	Non-Null Count	Dtype					
0	id	39717 non-null	 int64					
1	member_id	39717 non-null	int64					
2	loan_amnt	39717 non-null	int64					
3	funded_amnt	39717 non-null	int64					
4	funded_amnt_inv	39717 non-null	float64					
5	term	39717 non-null	object					
6	int_rate	39717 non-null	object					
7	installment	39717 non-null	float64					
8	grade	39717 non-null	object					
9	sub_grade	39717 non-null	object					
10	emp_title	37258 non-null	object					
11	emp_length	38642 non-null	object					
12	home_ownership	39717 non-null	object					
13	annual_inc	39717 non-null	float64					
14	verification_status	39717 non-null	object					
15	issue_d	39717 non-null	object					
16	loan_status	39717 non-null	object					
17	url	39717 non-null	object					
18	desc	26777 non-null	object					
19	purpose	39717 non-null	object					
20	title	39706 non-null	object					
21	zip_code	39717 non-null	object					
22	addr_state	39717 non-null	object					
23	dti	39717 non-null	float64					
24	mths_since_last_delinq	14035 non-null	float64					
25	mths_since_last_record	2786 non-null	float64					
26	next_pymnt_d	1140 non-null	object					
27	collections_12_mths_ex_med	39661 non-null	float64					
28	chargeoff_within_12_mths	39661 non-null	float64					
29	<pre>pub_rec_bankruptcies</pre>	39020 non-null	float64					
30	tax_liens	39678 non-null	float64					
dtyp	es: float64(10), int64(4), o	bject(17)						
memory usage: 9.4+ MB								

In [10]: df.describe()

Out[10]: id loan_amnt funded_amnt_inv installment dti mths_since_last_delinq mths_since_last_record collections_12_mths_ex_m member_id annual_inc **count** 3.971700e+04 3.971700e+04 39717.000000 39717.000000 39717.000000 39717.000000 3.971700e+04 39717.000000 14035.000000 2786.000000 3966 69.698134 6.831319e+05 8.504636e+05 11219.443815 10947.713196 10397.448868 324.561922 6.896893e+04 13.315130 35.900962 2.106941e+05 2.656783e+05 7456.670694 7187.238670 7128.450439 208.874874 6.379377e+04 6.678594 22.020060 43.822529 min 5.473400e+04 7.069900e+04 500.000000 500.000000 0.000000 15.690000 4.000000e+03 0.000000 0.000000 0.000000 8.170000 5500.000000 22.000000 5.162210e+05 6.667800e+05 5400.000000 5000.000000 167.020000 4.040400e+04 18.000000 90.000000 6.656650e+05 8.508120e+05 10000.000000 9600.000000 8975.000000 280.220000 5.900000e+04 13.400000 34.000000 8.377550e+05 1.047339e+06 15000.000000 15000.000000 14400.000000 430.780000 8.230000e+04 18.600000 52.000000 104.000000 max 1.077501e+06 1.314167e+06 35000.000000 35000.000000 35000.000000 1305.190000 6.000000e+06 29.990000 120.000000 129.000000

Drop URL which is a non-significant field

```
In [11]: df = df.drop(columns = 'url')
In [12]: df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 39717 entries, 0 to 39716
         Data columns (total 30 columns):
              Column
          #
                                         Non-Null Count Dtype
                                         _____
          0
              id
                                         39717 non-null int64
          1
              member id
                                         39717 non-null int64
              loan amnt
                                         39717 non-null int64
          2
              funded amnt
                                         39717 non-null int64
          3
              funded_amnt_inv
                                         39717 non-null float64
          5
              term
                                         39717 non-null object
                                         39717 non-null object
              int rate
          6
          7
              installment
                                         39717 non-null float64
                                         39717 non-null object
              grade
          9
              sub grade
                                         39717 non-null object
                                         37258 non-null object
          10
              emp title
          11 emp length
                                         38642 non-null object
          12 home ownership
                                         39717 non-null object
             annual inc
                                         39717 non-null float64
          13
          14 verification_status
                                         39717 non-null object
             issue d
                                         39717 non-null object
          16
             loan_status
                                         39717 non-null object
              desc
                                         26777 non-null object
          17
                                         39717 non-null object
          18
              purpose
          19
             title
                                         39706 non-null object
                                         39717 non-null object
              zip_code
          20
          21
              addr state
                                         39717 non-null object
                                         39717 non-null float64
          22 dti
                                         14035 non-null float64
          23 mths since last deling
          24 mths since last record
                                         2786 non-null float64
          25 next pymnt d
                                         1140 non-null
                                                         object
          26 collections_12_mths_ex_med 39661 non-null float64
          27 chargeoff_within_12_mths
                                         39661 non-null float64
          28
              pub rec bankruptcies
                                         39020 non-null float64
          29 tax liens
                                         39678 non-null float64
         dtypes: float64(10), int64(4), object(16)
         memory usage: 9.1+ MB
         Remove the word years in emp_length
In [13]: df['emp_length'] = df['emp_length'].str.replace(' years','')
         df['emp_length'] = df['emp_length'].str.replace(' year','')
         df['emp_length'] = df['emp_length'].str.replace('+','')
         df['emp length'] = df['emp length'].str.replace('<','')</pre>
         #df['emp length'] = df['emp length'].str.replace('nan','0')
         df['emp_length'] = df['emp_length'].fillna('0')
```

/var/folders/p6/klf5stcd60n3_hy6dqwl0xh0000gn/T/ipykernel_36579/2446633840.py:3: FutureWarning:

The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal string s when regex=True.

Variables:

- 1) Categorical:
- i) Ordered term, grade, sub_grade, loan_status
- ii) Unordered emp_title, home_ownership, verification_status, purpose, title
- 2) Quantitative/Numeric:

loan_amnt, funded_amnt, funded_amnt_inv, int_rate, installment, emp_length, annual_inc, dti

(issue_d, desc, zip_code, addr_state, mths_since_last_delinq, mths_since_last_record, next_pymnt_d, collections_12_mths_ex_med,chargeoff_within_12_mths,pub_rec_bankruptcies, tax_liens)

Observation

Univariate Analysis

1) Employees in B,C,D grades are defaulting more compared to other grades

In [14]: sb.histplot(df[df["loan_status"] == 'Charged Off'].sub_grade,bins=10)

Out[14]: <AxesSubplot:xlabel='sub_grade', ylabel='Count'>

2) Employess more than 10 years of experience are Charged Off

```
In [15]: sb.histplot(df[df["loan_status"] == 'Charged Off'].emp_length,bins=10)
```

Out[15]: <AxesSubplot:xlabel='emp_length', ylabel='Count'>

3) Employess who does not own house is Charged Off most of the times

```
In [16]: sb.histplot(df[df["loan_status"] == 'Charged Off'].home_ownership,bins=2)
```

Out[16]: <AxesSubplot:xlabel='home_ownership', ylabel='Count'>

4) Most of the employees are getting loan for Debt Consolidation

```
In [17]: sb.histplot(df[df["loan_status"] == 'Charged Off'].purpose,bins=2)
Out[17]: <AxesSubplot:xlabel='purpose', ylabel='Count'>
```


5) Employees from CA, NY and FL are Charged Off more

In [18]: sb.histplot(df[df["loan_status"] == 'Charged Off'].addr_state,bins=2)

Out[18]: <AxesSubplot:xlabel='addr_state', ylabel='Count'>

Segmented Univariate Analysis

1) Mostly the loan amount higher than 10000 are defaulted

2) Employees lesser than 5 years of experience are Charged Off more

```
In [20]: emp_len_conditions = [ (df['emp_length'] == '10'), (df['emp_length'] == '9'), (df['emp_length'] == '8'), (df['emp_length'] == '7'), (df['emp_length'] == '6'), (df['emp_length'] == '6'), (df['emp_length'] == '6'), (df['emp_length'] == '6'), (df['emp_length'] == '7'), (df['emp_length'] == '6'), (df['emp_length'] == '6'), (df['emp_length'] == '6'), (df['emp_length'] == '8'), (df['emp_length'] == '7'), (df['emp_length'] == '6'), (df['emp_length'] == '8'), (df['emp_length'] == '8'), (df['emp_length'] == '7'), (df['emp_length'] == '6'), (df['emp_length'] == '8'), (df['emp_length'] == '8'), (df['emp_length'] == '7'), (df['emp_length'] == '6'), (df['emp_length'] == '8'), (df['emp_l
```


3) Employees with lower Credit Risk (Higher DTI) is Charged off more

bad

credit risk

BiVariate Analysis

good

1000

500

1) Chances of default is higher in the employees who are less than or equal to 5 years. However employees more than 10 years of experience are Charged off more than anyone else

In [22]: sb.histplot(df[df["loan_status"] == 'Charged Off'].addr_state,bins=10)

Out[22]: <AxesSubplot:xlabel='addr_state', ylabel='Count'>

05/10/22, 11:39 PM LendlingClubAnalysis

2) Loans which are more than 10000 are mostly defaulted among all employees


```
In [23]: sb.heatmap(df[df["loan_status"] == 'Charged Off'].corr(), cmap="Reds")
         <AxesSubplot:>
```

http://localhost: 8888/nbconvert/html/Learning/AIML/Git/LendingClubCaseStudy/LendlingClubAnalysis.ipynb?download=falseter (a.e., a.e., a

Out[23]:

In [24]: sb.heatmap(df[df["loan_status"] == 'Fully Paid'].corr(),cmap="Greens")

Out[24]: <AxesSubplot:>


```
In [25]: tr0 = go.Bar(
                     x = df[df["credit_risk"]== 'good']["credit_risk"].value_counts().index.values,
                     y = df[df["credit risk"] == 'good']["credit risk"].value counts().values,
                     name='Good credit'
          tr1 = go.Bar(
                     x = df[df["credit_risk"]== 'bad']["credit_risk"].value_counts().index.values,
                     y = df[df["credit_risk"]== 'bad']["credit_risk"].value_counts().values,
                     name='Bad credit'
         data = [tr0, tr1]
         layout = go.Layout(
         layout = go.Layout(
             yaxis=dict(
                 title='Count'
             xaxis=dict(
                 title='Risk Variable'
             title='Dependent variable distribution'
         fig = go.Figure(data=data, layout=layout)
         py.iplot(fig, filename='grouped-bar')
```

Dependent variable distribution


```
In [26]: df good
                        = df.loc[df["credit risk"] == 'good']['emp length'].values.tolist()
         df bad
                        = df.loc[df["credit_risk"] == 'bad' ]['emp_length'].values.tolist()
         df emp length = df['emp length'].values.tolist()
         #First plot
         tr0 = go.Histogram(
             x=df_good,
             histnorm='probability',
             name="Good Credit"
         #Second plot
         tr1 = go.Histogram(
             x=df bad,
             histnorm='probability',
             name="Bad Credit"
         #Third plot
         tr2 = go.Histogram(
             x=df_emp_length,
             histnorm='probability',
             name="Overall Experience"
          #Creating the grid
         fig = tls.make_subplots(rows=2, cols=2, specs=[[{}, {}], [{'colspan': 2}, None]],
                                   subplot titles=('Good', 'Bad', 'General Distribuition'))
          #setting the figs
         fig.append trace(tr0, 1, 1)
         fig.append trace(tr1, 1, 2)
         fig.append_trace(tr2, 2, 1)
         fig['layout'].update(showlegend=True, title='Experience Distribuition', bargap=0.05)
         py.iplot(fig, filename='custom-sized-subplot-with-subplot-titles')
         /opt/anaconda3/lib/python3.9/site-packages/plotly/tools.py:461: DeprecationWarning:
         plotly.tools.make subplots is deprecated, please use plotly.subplots.make subplots instead
```

Experience Distribuition


```
In [27]: df good = df[df["credit risk"] == 'good']
         df_bad = df[df["credit_risk"] == 'bad']
         fig, ax = plt.subplots(nrows=2, figsize=(12,8))
         plt.subplots_adjust(hspace = 0.4, top = 0.8)
         g1 = sb.distplot(df_good["emp_length"], ax=ax[0],
                      color="g")
         g1 = sb.distplot(df_bad["emp_length"], ax=ax[0],
                      color='r')
         gl.set_title("Experience Distribuition", fontsize=15)
         g1.set xlabel("Experience")
         g1.set xlabel("Frequency")
         g2 = sb.countplot(x="emp_length",data=df,
                       palette="hls", ax=ax[1],
                       hue = "credit_risk")
         g2.set_title("Experience Counting by Credit Risk", fontsize=15)
         g2.set_xlabel("Experience")
         plt.show()
```

/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexib ility) or `histplot` (an axes-level function for histograms).

/opt/anaconda3/lib/python3.9/site-packages/seaborn/distributions.py:2619: FutureWarning:

`distplot` is a deprecated function and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level function with similar flexib ility) or `histplot` (an axes-level function for histograms).


```
In [28]: df_good = df[df["credit_risk"] == 'good']
         df_bad = df[df["credit_risk"] == 'bad']
         tr0 = go.Box(
             y=df_good["loan_amnt"],
             x=df_good["emp_sen_level"],
             name='Good credit',
             marker=dict(
                 color='#3D9970'
         tr1 = go.Box(
             y=df_bad['loan_amnt'],
             x=df bad['emp sen level'],
             name='Bad credit',
             marker=dict(
                 color='#FF4136'
         data = [tr0, tr1]
         layout = go.Layout(
             yaxis=dict(
                 title='Loan Amount',
                 zeroline=False
             ),
             xaxis=dict(
                 title='Seniority'
             boxmode='group'
         fig = go.Figure(data=data, layout=layout)
         py.iplot(fig, filename='box-age-cat')
```



```
In [29]: #First plot
tr0 = go.Bar(
    x = df[df["credit_risk"]== 'good']["home_ownership"].value_counts().index.values,
    y = df[df["credit_risk"]== 'good']["home_ownership"].value_counts().values,
    name='Good credit'
)

#Second plot
tr1 = go.Bar(
    x = df[df["credit_risk"]== 'bad']["home_ownership"].value_counts().index.values,
    y = df[df["credit_risk"]== 'bad']["home_ownership"].value_counts().values,
    name="Bad Credit"
)

data = [tr0, tr1]

layout = go.Layout(
    title='Housing Distribuition'
)

fig = go.Figure(data=data, layout=layout)

py.iplot(fig, filename='Housing-Grouped')
```

Housing Distribuition


```
In [30]: #Distribuition of Loan amount by Home Ownership
         fig = {
             "data": [
                      "type": 'violin',
                     "x": df_good['home_ownership'],
                     "y": df_good['loan_amnt'],
                     "legendgroup": 'Good Credit',
                     "scalegroup": 'No',
                     "name": 'Good Credit',
                     "side": 'negative',
                     "box": {
                          "visible": True
                     },
                      "meanline": {
                         "visible": True
                     },
                     "line": {
                         "color": 'blue'
                 },
                     "type": 'violin',
                     "x": df_bad['home_ownership'],
                     "y": df_bad['loan_amnt'],
                     "legendgroup": 'Bad Credit',
                     "scalegroup": 'No',
                     "name": 'Bad Credit',
                     "side": 'positive',
                     "box": {
                         "visible": True
                     },
                      "meanline": {
                         "visible": True
                     },
                     "line": {
                         "color": 'green'
             ],
             "layout" : {
                 "yaxis": {
                     "zeroline": False,
                 },
                 "violingap": 0,
                 "violinmode": "overlay"
         py.iplot(fig, filename = 'violin/split', validate = False)
```


05/10/22, 11:39 PM LendlingClubAnalysis

```
In [31]: #First plot
         tr0 = go.Bar(
             x = df[df["credit_risk"]== 'good']["grade"].value_counts().index.values,
             y = df[df["credit_risk"]== 'good']["grade"].value_counts().values,
             name='Good credit'
          #First plot 2
         tr1 = go.Bar(
             x = df[df["credit_risk"] == 'bad']["grade"].value_counts().index.values,
             y = df[df["credit_risk"]== 'bad']["grade"].value_counts().values,
             name="Bad Credit"
          #Second plot
         tr2 = go.Box(
             x = df[df["credit risk"]== 'good']["grade"],
             y = df[df["credit_risk"]== 'good']["loan_amnt"],
             name=tr0.name
          #Second plot 2
         tr3 = go.Box(
             x = df[df["credit risk"]== 'bad']["grade"],
             y = df[df["credit_risk"] == 'bad']["loan_amnt"],
             name=tr1.name
         data = [tr0, tr1, tr2, tr3]
         fig = tls.make subplots(rows=1, cols=2,
                                  subplot titles=('Grade', 'Loan Amount by Grade'))
         fig.append trace(tr0, 1, 1)
         fig.append_trace(tr1, 1, 1)
         fig.append trace(tr2, 1, 2)
         fig.append trace(tr3, 1, 2)
         fig['layout'].update(height=400, width=800, title='Grade Distribution', boxmode='group')
         py.iplot(fig, filename='sex-subplot')
         /opt/anaconda3/lib/python3.9/site-packages/plotly/tools.py:461: DeprecationWarning:
```

plotly.tools.make subplots is deprecated, please use plotly.subplots.make subplots instead

Grade Distribuition

