Problème 1 : CCP PSI 2013 adapté

Notations:

On note:

- \bullet N l'ensemble des entiers naturels.
- \mathbb{R} l'ensemble des réels et \mathbb{R}^+ l'intervalle $[0, +\infty [$.

Pour tout entier naturel n on note n! la factorielle de n avec la convention 0! = 1.

Objectifs:

L'objet de ce problème est d'expliciter la valeur d'une fonction (notée ψ) définie par une intégrale.

Dans la **partie I**, on étudie une fonction f et l'on propose un procédé de calcul de la limite de f en $+\infty$. La **partie II** est consacrée à l'étude de deux fonctions (notées h et φ) qui seront utilisées dans la **partie III**.

Partie I Étude d'une fonction et de sa limite

I.1 Étude de la fonction f

On note f la fonction définie sur $\mathbb R$ par :

$$f(x) = \int_0^x \exp(-t^2) dt = \int_0^x e^{-t^2} dt.$$

- **I.1.1** Montrer que f est une fonction impaire dérivable sur \mathbb{R} .
- **I.1.2** Montrer que f est indéfiniment dérivable sur \mathbb{R} . Pour tout entier $n \in \mathbb{N}^*$, on note $f^{(n)}$ la dérivée n-ième de f. Montrer qu'il existe une fonction polynôme p_n , dont on précisera le degré, telle que pour tout $x \in \mathbb{R}$:

$$f^{(n)}(x) = p_n(x) \exp(-x^2)$$

- **I.1.3** Que peut-on dire de la parité de p_n ?
- **I.1.4** Démontrer que f admet une limite finie en $+\infty$ (on ne demande pas de calculer cette limite). Dans toute la suite du problème, on note Δ cette limite.

I.2 Développement en série de f

- **I.2.1** Montrer que pour tout $x \in \mathbb{R}$, on a $f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{x^{2n+1}}{n!(2n+1)}$.
- **I.2.2** Expliciter $p_n(0)$.

I.3 Les intégrales de Wallis

Pour tout entier naturel n, on note:

$$W_n = \int_0^{\pi/2} \cos^n x \, \mathrm{d}x.$$

I.3.1

- **I.3.1.a** Calculer W_0 et W_1 et justifier que $W_n > 0$ pour tout $n \in \mathbb{N}$.
- **I.3.1.b** Montrer que pour tout entier $n \ge 2$, $nW_n = (n-1)W_{n-2}$.
- **I.3.1.c** En déduire que pour tout entier $n \ge 1$, $nW_nW_{n-1} = \frac{\pi}{2}$.

I.3.2

- **I.3.2.a** Montrer que la suite $(W_p)_{p\in\mathbb{N}}$ est décroissante et que pour tout $n\geqslant 1$, $\frac{n-1}{n}\leqslant \frac{W_n}{W_{n-1}}\leqslant 1$.
- **I.3.2.b** Justifier alors que $W_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.

I.4 Calcul de Δ

- **I.4.1** Montrer que pour tout réel u, on a $e^u \ge 1 + u$.
- I.4.2 Soit n un entier naturel non nul. Montrer que :

$$\begin{cases} (1-u)^n \leqslant e^{-nu} & \text{si} \quad u \leqslant 1 \\ e^{-nu} \leqslant \frac{1}{(1+u)^n} & \text{si} \quad u > -1 \end{cases}$$

I.4.3 Démontrer que pour tout entier naturel n non nul, on a :

$$\int_0^1 (1 - x^2)^n \, \mathrm{d}x \le \int_0^{+\infty} e^{-nx^2} \, \mathrm{d}x \le \int_0^{+\infty} \frac{\mathrm{d}x}{(1 + x^2)^n}$$

(on justifiera l'existence de ces intégrales).

I.4.4 En déduire que pour tout $n \in \mathbb{N}^*$:

$$W_{2n+1} \leqslant \frac{\Delta}{\sqrt{n}} \leqslant W_{2n-2}.$$

En utilisant le résultat de **I.3.2.b**, calculer Δ .

Partie II Étude de deux fonctions

II.1 Étude de la fonction h

II.1.1 Justifier l'existence, pour tout réel b, de l'intégrale :

$$h(b) = \int_0^{+\infty} \cos(2bt) \exp(-t^2) dt.$$

- **II.1.2** Démontrer que h est de classe \mathscr{C}^1 sur \mathbb{R} , et donner la valeur de h'(b) sous forme d'une intégrale.
- II.1.3 À l'aide d'une intégration par parties, montrer que h est solution d'une équation différentielle linéaire homogène du premier ordre que l'on précisera.
- **II.1.4** En déduire h(b) en fonction de b et Δ .

II.2 Étude de la fonction φ

II.2.1 Montrer que l'on définit une fonction φ paire et continue sur $\mathbb R$ en posant :

$$\varphi(x) = \int_0^{+\infty} \exp\left(-t^2 - \frac{x^2}{t^2}\right) dt.$$

- **II.2.2** Montrer que φ est de classe \mathcal{C}^1 sur $]0, +\infty[$.
- II.2.3 À l'aide d'un changement de variable, montrer que φ est solution sur \mathbb{R}_+^* d'une équation différentielle linéaire homogène du premier ordre que l'on précisera.

II.2.4 Expliciter $\varphi(x)$ pour $x \in]0, +\infty[$, puis pour $x \in \mathbb{R}$.

Partie III Calcul d'une intégrale

III.1 Étude de la fonction ψ

III.1.1 Vérifier que l'on définit une fonction ψ , continue sur \mathbb{R} , paire, en posant :

$$\psi(x) = \int_0^{+\infty} \frac{\cos(2xt)}{1+t^2} dt.$$

III.1.2 Calculer $\psi(0)$.

III.2 Soit $p \in \mathbb{N}^*$ et j_p la fonction définie sur \mathbb{R} par :

$$j_p(x) = \int_0^p y \exp(-(1+x^2)y^2) dy.$$

Montrer que $(j_p)_{p\in\mathbb{N}^*}$ est une suite de fonctions continues qui converge simplement sur \mathbb{R} . Expliciter sa limite.

III.3 Désormais, a désigne un réel. Soit $n \in \mathbb{N}^*$ et k_n la fonction définie sur \mathbb{R}^+ par :

$$k_n(y) = \int_0^n y \exp(-y^2 x^2) \cos(2ax) dx.$$

Montrer que $(k_n)_{n\in\mathbb{N}^*}$ est une suite de fonctions continues qui converge simplement sur \mathbb{R}^+ . Expliciter sa limite.

III.4 Soit $u_{n,p} = \int_0^n j_p(x) \cos(2ax) dx$ avec $n \in \mathbb{N}^*$ et $p \in \mathbb{N}^*$.

III.4.1 Justifier l'existence de $\lim_{p\to+\infty}u_{n,p}$ et l'expliciter sous forme d'une intégrale.

III.4.2 Montrer que $u_{n,p} = \int_0^p k_n(y) \exp(-y^2) dy$.

Ce résultat exige un théorème désormais hors-programme, et pourra donc être admis.

III.5 Justifier l'intégrabilité sur $[0, +\infty[$ de la fonction $y \mapsto k_n(y) \exp(-y^2)$.

III.6 Calculer $\psi(x)$.