Mathematics and Multivariate Statistics

Prof. Dr. Stephan Doerfel

MADS-MMS SoSe 2025

Analytic Geometry Exercises

Please join the Particify Room.

Exercise 1. (Norms)

Consider the vectors $\mathbf{a}=(1,2,3,4)$ and $\mathbf{b}=(1.37,2.74,4.11,5.48)$. Compute for both their Manhattan and their Euclidean norm. Compute the unit vectors (same orientation but length 1). What do you observe?

Which of the following are true?

- 1. a = b
- 2. $\|\boldsymbol{a}\|_1 = \|\boldsymbol{b}\|_1$
- 3. $\|\boldsymbol{a}\|_2 = \|\boldsymbol{b}\|_2$
- 4. $\|\boldsymbol{a}\|_1 = \|\boldsymbol{a}\|_2$
- 5. a and b have the same length
- 6. **a** and **b** have the same orientation
- 7. b is a multible of a

Exercise 2. (Norms)

Compute the length of vector (4,3,0) according to both the Manhattan, the Euclidean and the Maximum norm. Explain the intuition behind the three values.

Exercise 3. (Distance Functions)

Consider the sets $A = \{1, 2, 3, 4, 5\}, B = \{2, 3, 5\}, C = \{1, 3, 4, 5, 6\}, D = \{4, 5, 6\}.$

- 1. Let Compute the Jaccard-Distance between any two pairs. Which are the most similar sets?
- 2. Lill Create a representation of the sets as boolean vectors. Compute the Hamming distance between any two pairs. Which are the most similar sets?

Exercise 4. (Dot Product and Angles)

Find a function for the dot product in Python.

- 1. We verify that the vectors (1,0,0), (0,1,0), (0,0,1) are pairwise orthogonal
- 2. \blacksquare Compute the angle between (1,0,0) and (2,0,0)

3. Let Compute the angle between (1,1,1) and (1,0,0)

Exercise 5. (Modelling Similarity)

A movie streaming service wants to cluster their users. Similar users are users who have a similar taste in movies. This is approximated by looking at the movies, users have rated.

Alice: Matrix (6 stars), Star Wars (9 stars) Bob: Matrix (3 stars), Star Wars (4.5 stars) Carol: Matrix (5 stars), Star Wars (5 stars)

- 1. Compare the Manhattan, Euclidean, Maximum and Cosine distance for pairwise comparisons of users.
- 2. Which metric would be the best choice for the use-case?

Exercise 6. (Issues with Distance Functions)

Consider a dataset where the instances are people and the features are age and height: Alice (18y, 192cm), Bob (24y, 180cm), Carol (25y, 165cm).

- 1. Lill Compute the Euclidean distance between each pair.
- 2. \square Compute the same but measure the height in m instead of cm.
- 3. Discuss the difference of the results.
- 4. How can we resolve this issue?