Programación funcional con Haskell

Juan Manuel Rabasedas

Aplicación de funciones

Haskell
f x
f x y
f(g x)
f x (g y)
$f x \circ g y$

- En matemática la aplicacion de funciones se denota usando paréntesis: $f\left(a,b\right)+c\ d$
- En Haskell la aplicación de funciones se denota con un espacio: $f\ a\ b+c*d$
- La aplicación tiene mayor precedencia que cualquier otro operador: $f \ x + y = (f \ x) + y$
- La aplicación asocia a las izquierda: f a $b + c * d = ((f \ a) \ b) + c * d$

Nombres y comentarios

 Las funciones y sus argumentos deben empezar con minúscula, y pueden ser seguidos por cero o más letras (mayúsculas o minúsculas), dígitos, guiones bajos, y apóstrofes.

$$myFun\ fun1\ arg_2\ x'$$

- Las palabras reservadas son:
 case class data default deriving do else if import in
 infix infixl infixr instance let module newtype of then type where
- Por convención los nombres de las listas terminan en s para decir que contienen múltiples valores ejemplo xs.
- Para comentarios se utiliza -- este es un comentario

{-ponga aquí su comentario de más de una línea -}

The layout rule

En una serie de definiciones, cada definición debe empezar en la misma columna.

$$a = b + c$$
where
 $b = 1$
 $c = 2$
 $d = a * 2$

También se puede hacer en forma explicita metiendo una secuencia de definiciones entre llaves $(\{\})$ y separandolas con (;):

$$a = b + c$$
 where
$$\left\{ \begin{array}{l} b = 1; \\ c = 2 \end{array} \right\}$$

$$d = a * 2$$

Pero no la vamos a usar en este curso.

Tipos

- Un tipo es una colección de valores relacionados.
 - Bool contiene los valores True y False.
 - Escribimos True :: Bool y False :: Bool.
 - ullet Bool o Bool contiene todas las funcines que van de Bool en Bool
- ullet En general, si la evaluación de una expresión e tiene tipo t escribimos

e :: t

En Haskell toda expresión tiene que tener un tipo

- El tipo de una expresión es calculado antes de su evaluación por el inferidor de tipo.
- Si el tipo de una expresión no se puede inferir la expresión no es válida.

Tipos básicos

Algunos tipos básicos de vamos a considerar son:

- Bool booleanos
- Char caracteres
- Int enteros de precisión fija.
- Integer enteros de precisión arbitraria.
- Float números de punto flotante de precisión simple.

El Tipo Listas

- Una lista es una secuencia de valores del mismo tipo
 - [False, True, False] :: [Bool]
 - ['a', 'b', 'c', 'd'] :: [Char]
- ullet En general, [t] es una lista con elementos de tipo t
- Donde t, puede ser cualquier tipo válido.
- No hay restricción con respecto a la longitud de las listas.
- El tipo de las listas no dice nada sobre su longitud.
- El tipo de elemento de una lista es irrestricto.

$$[[\,\dot{\,}\,\dot{a}\,\dot{\,}\,],[\,\dot{\,}\,\dot{b}\,\dot{\,}\,,\,\dot{\,}\,\dot{c}\,\dot{\,}\,]]::[[\mathsf{Char}]]$$

El Tipo Tuplas

- Una tupla es una secuencia finita de valores de tipos (posiblemente) distintos.
 - (True, True) :: (Bool, Bool)
 - (True, 'a', 'b') :: (Bool, Char, Char)
- En general, $(t_1, t_2, ...; t_n)$ es el tipo de una n-tupla cuyas componente i tiene tipo t_i , para i en 1...n.
- A diferencia de las listas, las tuplas tienen explicitado en su tipo la cantidad de elementos que almacenan.
- Los tipos de elementos de las tuplas es irrestricto.('a'; (True; 'c')) :: (Char; (Bool; Char))

El Tipo Función

- Una función mapea valores de un tipo en valores de otro:
 - $not :: \mathsf{Bool} \to \mathsf{Bool}$
 - $even :: Int \rightarrow Bool$
- En general, Un tipo $t_1 \rightarrow t_2$ mapea valores de t_1 en valores de t_2 .
- La flecha \rightarrow se introduce desde el teclado como ->
- Los tipos de los argumentos o de los resultados de una función son irrestrictos.

$$\begin{array}{l} add :: (\mathsf{Int}, \mathsf{Int}) \to \mathsf{Int} \\ add \; (x,y) = x + y \\ zeroto :: \mathsf{Int} \to [\mathsf{Int}] \\ zeroto \; n = [0 \mathinner{.\,.} n] \end{array}$$

Currificación de Funciones

 Es posible definir funciones con múltiples argumentos retornando una función como resultado.

$$add' :: Int \rightarrow (Int \rightarrow Int)$$

 $add' x y = x + y$

- add y add' retornan lo mismo pero add' toma los argumentos de a uno en uno. Está currificada.
- Permite la aplicación parcial:

$$add'$$
 3 :: Int \rightarrow Int $take$ 5 :: [Int] \rightarrow [Int] $drop$ 5 :: [Int] \rightarrow [Int]

Convenciones de la Currificación

 Función que tome más de dos argumentos se pueden definir devolviendo funciones anidadas:

$$mult :: Int \rightarrow (Int \rightarrow (Int \rightarrow Int))$$

 $mult \ x \ y \ z = x * y * z$

 Como el constructor de tipos → asocia a la derecha podemos no poner los paréntesis:

$$mult :: \mathsf{Int} \to \mathsf{Int} \to \mathsf{Int} \to \mathsf{Int}$$

• En consecuencia la aplicación de funciones asociando a la izquierda.

$$((mult\ x)\ y)\ z)$$

Salvo en el caso de las tuplas, todas las funciones en Haskell están currificadas

Funciones Polimórficas

• Una función es polimórfica si su tipo contiene una o más variables de tipo.

 $length :: [a] \rightarrow Int$

Para cualquier tipo a la función length es la misma.

- Las variables de tipo se escriben con minúscula a, b, c, etc.

Expresiones Condicionales

Las funciones pueden ser definidas usando expresiones condicionales

```
abs :: Int \rightarrow Int

abs \ n = if \ n > 0 \ then \ n \ else - n
```

Ambas ramas del if deben tener el mismo tipo.

• Las expresiones condicionales pueden estar anidadas:

```
signum :: Int \rightarrow Int signum \ n = if \ n < 0 \ then -1 \ else if \ n \equiv 0 \ then \ 0 \ else \ 1
```

Las expresiones condicionales siempre deben tener la rama **else**, lo que elimina la posibilidad de ambigüedades cuando se anidan expresiones

Ecuaciones con Guardas

 Una alternativa a los condicionales es el uso de ecuaciones con guardas.

$$abs \ n \mid n > 0 = n$$

 $\mid otherwise = -n$

Se usan para hacer ciertas definiciones más fáciles de leer.

$$\begin{array}{c|c} signum \ n \mid n < 0 = -1 \\ \mid n \equiv 0 = 0 \\ \mid otherwise = 1 \end{array}$$

 La condición otherwise se define en el preludio como otherwise = True

Pattern Matching

 Muchas funciones se definen más claramente usando pattern matching (Ajuste de Patrones).

```
not :: \mathsf{Bool} \to \mathsf{Bool}

not \; \mathsf{False} = \mathsf{True}

not \; \mathsf{True} = \mathsf{False}
```

- not mapea False a True y True a False
- Los patrones se componen de constructores de datos y variables.

Pattern Matching

 Las funciones pueden ser definidas de distintas formas usando Patter Maching:

```
(\land) :: \mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool}

\mathsf{True} \ \land \mathsf{True} = \mathsf{True}

\mathsf{True} \ \land \mathsf{False} = \mathsf{False}

\mathsf{False} \ \land \mathsf{True} = \mathsf{False}

\mathsf{False} \ \land \mathsf{False} = \mathsf{False}
```

puede ser escrita en forma compacta como

$$\begin{array}{ll} (\wedge) :: \mathsf{Bool} \to \mathsf{Bool} \to \mathsf{Bool} \\ \mathsf{True} \wedge \mathsf{True} = \mathsf{True} \\ {}_{-} \wedge {}_{-} &= \mathsf{False} \end{array}$$

El símbolo _ es un patrón comodín que machea cualquier patrón.

Pattern Matching

Las ecuaciones con patter Matching se evalúan en orden (Top-Down).
 Por ejemplo la siguiente definición siempre retorna False

$$_ \land _ = \mathsf{False}$$
 $\mathsf{True} \land \mathsf{True} = \mathsf{True}$

Las ecuaciones no pueden repetir variables
 Por ejemplo la siguiente definición da error:

$$b \wedge b = b$$

_ \wedge _ = False

Patrones de Listas

 Toda lista no vacía se construye usando el operador (:) llamado "cons" que agrega un elemento al principio de la lista.

$$[1, 2, 3, 4]$$
 resulta de $1:(2:(3:(4:[])))$

ullet Por lo tanto, puedo definir funciones usando el patrón (x:xs)

$$head :: [a] \rightarrow a$$

 $head (x: _) = x$
 $tail :: [a] \rightarrow [a]$
 $tail (_: xs) = xs$

(x:xs) sólo machea el caso de listas no vacías.

Si aplicamos:

$$head$$
 [] nos da un error $***Exception : empty list$

• El patrón x:xs debe ir entre paréntesis ya que la aplicación tiene prioridad sobre el (:)

Expresiones Lambda

Las funciones pueden construirse sin nombres usando expresiones lambda:

$$\lambda x \to x + x$$

Es la función que toma como entrada x y retorna el resultado x+x.

- ullet El simbolo λ es la letra griega lambda y en el teclado se ingresa \setminus .
- ullet En Haskell el uso de λ para las funciones sin nombres proviene del Calculo Lambda que es la teoria funcional en la que se basa Haskell.

Expresiones Lambda

Las funciones lambdas son útiles para evitar darles nombres a funciones que va a ser usadas una sola vez:

$$odds \ n = map \ f \ [0 \dots n-1]$$
 where $f \ x = x * 2 + 1$

Puede escribirse mas sintéticamente:

odds
$$n = map (\lambda x \rightarrow x * 2 + 1) [0..n - 1]$$

Operadores de Secciones

 Un operador escrito entre sus dos argumentos (infijo), puede ser escrito antes de sus dos argumentos (prefijo) usando paréntesis:

También uno de los argumentos puede ser incluído en los paréntesis

$$> (1+) 2$$

3 $> (+2) 1$

• En general, dado un operador \oplus , entonces las funciones de la forma (\oplus) , $(x\oplus)$, $(\oplus y)$ son llamadas secciones.

Conjuntos por comprensión

En matemáticas, una manera de construir conjuntos a partir de conjuntos existentes es con la notación por comprensión

$$\{x^2|x\in\{1\dots 5\}\}$$

Describe el conjunto $\{1,4,9,16,25\}$ o (lo que es lo mismo) el conjunto de todos los números x^2 tal que x sea un elemento del conjunto $\{1\dots 5\}$

Listas por comprensión

En Haskell, una manera de construir listas a partir de listas existentes es con la notación por comprensión

$$[x \uparrow 2 \mid x \leftarrow [1 \mathinner{.\,.} 5]]$$

Describe la lista [1,4,9,16,25] o (lo que es lo mismo) la lista de todos los números $x\uparrow 2$ tal que x sea un elemento de la lista $[1\mathinner{.\,.}5]$

Listas por comprensión

- La expresión $x \leftarrow [1..5]$ es un generador, ya que dice como se generan los valores de x.
- Una lista por comprensión puede tener varios generadores, separados por coma.

$$> [(x,y) \mid x \leftarrow [1,2,3], y \leftarrow [4,5]]$$

[(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)]

 Cuando cambiamos el orden de los generadores cambiamos el orden de los elementos en la lista final

$$> [(x,y) | y \leftarrow [4,5], x \leftarrow [1,2,3]]$$

[(1,4),(2,4),(3,4),(1,5),(2,5),(3,5)]

 Los múltiples generadores actúan como bucles anidados. Los generadores posteriores cambian más rápidamente.

Generadores dependientes

 Un generador puede depender de variables introducidas por un generador anterior

$$[(x,y) | x \leftarrow [1..3], y \leftarrow [x..3]]$$

Esto es la lista de todos los pares (x,y) tal que x,y están en $[1\mathinner{.\,.} 3]$ e $y\geqslant x.$

 Usando generadore dependientes podemos definir concat definida en el preludio.

$$\begin{array}{l} concat & :: [[\,a\,]] \to [\,a\,] \\ concat \; xss = [\,x \mid xs \leftarrow xss, x \leftarrow xs\,] \end{array}$$

$$> concat [[1, 2, 3], [4, 5], [6]]$$

[1, 2, 3, 4, 5, 6]

Guardas

 Las listas por comprensión pueden usar guardas para restringir los valores producidos por generadores anteriores

$$[x \mid x \leftarrow [1..10], even x]$$

• Usando guardas podemos definir factors.

$$\begin{array}{ll} factors & :: \mathsf{Int} \to [\mathsf{Int}] \\ factors \; n = [x \mid x \leftarrow [1 \mathinner{.\,.} n], n \, `mod` \, x \equiv 0] \end{array}$$

ullet Como un número n es primo si y solo si sus únicos factores son $1\ {
m y}n$, podemos definir

```
\begin{array}{l} prime :: \mathsf{Int} \to \mathsf{Bool} \\ prime \ n = factors \ n \equiv [1, n] \\ primes :: \mathsf{Int} \to [\mathsf{Int}] \\ primes \ n = [x \mid x \leftarrow [2 \mathinner{\ldotp\ldotp} n], prime \ x] \end{array}
```

La función zip

 La función zip, mapea dos listas a una lista con los pares de elementos correspondientes

$$zip :: [a] \to [b] \to [(a,b)]$$

> $zip ['a', 'b', 'c'] [1,2,3,4]$
 $[('a',1), ('b',2), ('c',3)]$

 Usando zip podemos definir una función que retorna la lista de pares de elementos adyacentes:

pairs
$$:: [a] \rightarrow [(a, a)]$$

pairs $xs = zip \ xs \ (tail \ xs)$

pairs
$$[1,2,3] = [(1,2),(2,3)]$$

Podemos usar pairs para decidir si una lista esta ordenada

$$sorted$$
 :: Ord $a \Rightarrow [a] \rightarrow Bool$
 $sorted$ $xs = and$ $[x \leqslant y \mid (x, y) \leftarrow pairs$ xs]

La función zip

ullet Podemos usar zip para generar una función que retorne la listas de posiciones de un valor determinado

positions
$$x$$
 $xs = [i \mid (x', i) \leftarrow zip \ xs \ [0..], x \equiv x']$

$$> positions \ 0 \ [1, 0, 0, 1, 0, 1, 1, 0]$$

 $[1, 2, 4, 7]$

Cadenas

- Una String es una lista de caracteres [Char].
- "abc" :: String significa ['a', 'b', 'c'] :: [Char]

Todas las funciones sobre listas son aplicables a String

$$\begin{array}{c} \mathit{length} \text{ "abcde"} \\ 5 \end{array}$$

Las listas por comprensión también pueden usarse para String.

$$count \ x \ xs = length \ [x' \mid x' \leftarrow xs, x \equiv x']$$

$$> count \ \text{`s' "Mississippi"}$$

$$4$$

 Como hemos visto hasta ahora las funciones pueden definirse en termino de otras funciones.

```
factorial\ n = product\ [1..n]
```

 Las expresiones son evaluadas por pasos al aplicar las funciones a sus argumentos.

```
fac \ 4
= product \ [1..4]
= product \ [1,2,3,4]
= 1 * 2 * 3 * 4
= 24
```

 En Haskell las funciones pueden ser definidas en termino de ellas mismas (recursión)

```
factorial \ 0 = 1
factorial \ n = n * factorial \ (n - 1)
```

 Factorial mapea 0 en 1, y cualquier otro entero al producto de si mismo y el factorial de su predecesor.

```
factorial 3

= 3 * factorial 2

= 3 * (2 * factorial 1)

= 3 * (2 * (1 * factorial 0))

= 3 * (2 * (1 * 1))

= 3 * (2 * 1)

= 3 * 2

= 6
```

 La definición recursiva diverge en el caso <0 por que el caso base nunca se alcanza.

$$> factorial (-1)$$

** * Exception : $stack \ overflow$

Recursión sobre listas

```
\begin{array}{l} product :: \mathsf{Num} \ a \Rightarrow [\, a\,] \rightarrow a \\ product \ [\,] = 1 \\ product \ (n: ns) = n * product \ ns \end{array}
```

Usando la recursión podemos definir el reverso de una lista.

```
reverse :: [a] \rightarrow [a]
reverse [] = []
reverse (x : xs) = reverse xs ++ [x]
```

• reverse mapea la lista vacia [] en la lista vacia [], y las no vacías al reverso de su cola tail concatenada con su cabeza head.

```
reverse [1,2,3]
= reverse [2,3] + [1]
= (reverse [3] + [2]) + [1]
= ((reverse [] + [3]) + [2]) + [1]
= (([] + [3]) + [2]) + [1]
= [3,2,1]
```

 Funciones que toman más de un argumento también pueden ser definidas en forma recursiva.

$$\begin{aligned} &zip :: [a] \rightarrow [b] \rightarrow [(a,b)] \\ &zip \ [] \ _ = [] \\ &zip \ _ [] = [] \\ &zip \ (x : xs) \ (y : ys) = (x,y) : zip \ xs \ ys \end{aligned}$$

$$> zip [1,2,3,4] ['a','b','c'] [(1,'a'),(2,'b'),(3,'c')]$$

Quicksort

- El algoritmo de ordenación Quicksort:
 - La lista vacía está ordenada
 - Las listas no vacías pueden ser ordenadas, ordenando los valores de la cola ≤ que la cabeza, ordenando los valores > que la cabeza y rearmando el resultado con las listas resultantes a ambos lados de la cabeza.
- Su implementación:

```
\begin{array}{ll} qsort & :: \mathsf{Ord} \ a \Rightarrow [\, a\,] \rightarrow [\, a\,] \\ qsort \ [\,] & = [\,] \\ qsort \ (x:xs) = qsort \ chicos \ ++ [\, x\,] \ ++ \ qsort \ grandes \\ \mathbf{where} \ chicos \ = [\, a \mid a \leftarrow xs, \, a \leqslant x\,] \\ qsordes = [\, b \mid b \leftarrow xs, \, b > x\,] \end{array}
```