Χ

yashraj.devrat.aids.2020@vpkbiet.org >

NPTEL (https://swayam.gov.in/explorer?ncCode=NPTEL) » Data Base Management System (course)

Course outline

How does an NPTEL online course work? ()

Week 0 ()

Week 1 ()

Week 2 ()

- Lecture 6: Introduction to SQL/1 (unit? unit=27&lesson=28)
- Lecture 7 :
 Introduction
 to SQL/2
 (unit?
 unit=27&lesson=29)
- Lecture 8 :
 Introduction
 to SQL/3
 (unit?
 unit=27&lesson=30)
- Lecture 9 : Intermediate SQL/1 (unit? unit=27&lesson=31)

Week 2: Assignment 2

The due date for submitting this assignment has passed.

Due on 2022-09-07, 23:59 IST.

Assignment submitted on 2022-09-06, 22:01 IST

1) 2 points

Consider the following instance:

books					
genre	title	author	theme		
horror	The haunting	Steve K	forest horror		
comedy	Echoing Laughters	Charles G	friends comedy		
comedy	Happiens	Carl	parody		
lifestyle	CookBook	Julien S	Recipes		
lifestyle	CookBook	Julien S	Recipes		
thriller	The Cause	Julien S	Treasure Mystery		

Consider the query:

SELECT title, author FROM books

WHERE theme LIKE "%y" AND genre NOT LIKE "%r" ORDER BY theme DESC Which title will be present in the first (topmost) tuple of the output produced by the above query?

- a) The Cause
- b) Happiens
- c) Echoing Laughters
- d) The haunting
- (a)
- (b)
- (c)

O Lecture 10: Intermediate SQL/2 (unit? unit=27&lesson=32)

- Lecture material of Week 2 (unit? unit=27&lesson=33)
- Quiz: Week 2 : Assignment (assessment? name=110)
- Feedback Form (unit? unit=27&lesson=34)
- Assignment 2 Solution (unit? unit=27&lesson=35)

Week 3 ()

Week 4 ()

Week 5 ()

Week 6 ()

Week 7 ()

Week 8 ()

DOWNLOAD VIDEOS ()

Text Transcripts ()

Books ()

Live Interactive Session ()

Problem Solving Session () (d)

Yes, the answer is correct.

Score: 2

Accepted Answers:

2) 2 points

Consider the following instance:

books					
genre	title	author	theme		
horror	The haunting	Steve K	forest horror		
comedy	Echoing Laughters	Charles G	friends comedy		
comedy	Happiens	Carl	parody		
lifestyle	CookBook	Julien S	Recipes		
lifestyle	CookBook	Julien S	Recipes		
thriller	The Cause	Julien S	Treasure Mystery		

Consider the following queries:

CREATE VIEW THEMEVIEW AS

SELECT theme FROM books WHERE author LIKE "% %";

SELECT COUNT(*) FROM THEMEVIEW;

What is the final output after the two queries are executed?

- a) 3
- b) 4
- c) 5
- d) 6
- (a)
- (b)
- (c)
- (d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

c)

Consider the following instance:

scoreboard				
gameID	TeamName	Score	Day	
1	RacerLeague	87	1	
1	HeroZ	12	1	
2	HeroZ	42	2	
2	Legend21	72	2	
3	Legend21	90	1	

Which is the correct option to change the value of gameID from 3 to 2?

- a) UPDATE scoreboard SET gameID=2 WHERE gameID=3
- b) ALTER TABLE scoreboard SET gameID=2 WHERE gameID=3
- c) ALTER scoreboard SET gameID=2 WHERE gameID=3
- d) UPDATE TABLE scoreboard SET gameID=2 WHERE gameID=3
- (a)
- (b)
- (c)
- (d)

Yes, the answer is correct.

Score: 2

Accepted Answers:

a)

Consider the following instance:

scoreboard				
gameID	TeamName	Score	Day	
1	RacerLeague	87	1	
1	HeroZ	12	1	
2	HeroZ	42	2	
2	Legend21	72	2	
2	Legend21	90	1	

The query

''SELECT X, AVG(Score) FROM scoreboard GROUP BY X" produces the following tuples as output:

1	63
2	57

Which attribute(s) is (are) represented by X in the above query?

- a) gameID
- b) gameID, Day
- c) Day
- d) Day, Score

(a)

(b)

(c)

(d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

c)

Consider the following two tables:

Supplier				
sup_id	sup_name	sup_city		
18	Order All	Boston		
15	Jack Hill Ltd	London		
16	Akas Foods	Delhi		
17	Foodies.	London		
19	sip-n-Bite.	New York		

Product			
p_id	p_id p_name		
6	Cheez-It	15	
2	BN Biscuit	15	
3	Mighty Munch	16	
5	Jaffa Cakes	18	
7	Salt n Shake	17	
8	Marie Biscuit	20	

An operation on these two tables generates the following output. Identify the correct operation.

output					
sup_id	sup_name	sup_city	p_id	p_name	
18	Order All	Boston	5	Jaffa Cakes	
15	Jack Hill Ltd	London	6	Cheez-It	
15	Jack Hill Ltd	London	2	BN Biscuit	
16	Akas Foods	Delhi	3	Mighty Munch	
17	Foodies.	London	7	Salt n shake	
19	sip-n-Bite.	New York			

- a) Supplier NATURAL LEFT OUTER JOIN Product
- b) Supplier INNER JOIN Product
- c) Supplier NATURAL RIGHT OUTER JOIN Product
- d) Supplier NATURAL FULL OUTER JOIN Product
 - (a)
 - (b)
 - (c)
 - (d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

a)

6) 2 points

Consider the following schema:

player(<u>p_id</u>, tournament_code, month, match_count)
In the player schema, p_id uniquely identifies every record.

Given that a player cannot play more than 5 matches in a month for a tournament, identify the correct CHECK constraint for the create query of this table.

- a) CONSTRAINT CK_mat_count for CHECK (if match_count < 6)
- b) CONSTRAINT CK_mat_count for CHECK (if match_count < 6 is true)
- c) CONSTRAINT CK_mat_count CHECK (if match_count < 6)
- d) CONSTRAINT CK_mat_count CHECK (match_count < 6)
 - (a)
 - (b)

```
( c)
  (d)
Yes, the answer is correct.
Score: 2
Accepted Answers:
d)
7)
                                                                                2 points
 Consider the following schema:
    Football_Club(fc_code, fc_name, fc_address)
    Player(p_id, name, dob, match_count, fc_code)
 You want to design the Player table in such a way that if a fc_code value needs to be deleted
 from the Football_Club table, the corresponding records in the Player table that use this
 fc_code will also be deleted.
Identify the correct CREATE statement(s) for the Player table from the following.
a) CREATE TABLE Player(
   p_id INT,
   name VARCHAR(30) NOT NULL,
   dob DATE,
   match_count INT,
   fc_code INT,
   PRIMARY KEY(p_id),
   FOREIGN KEY (fc_code) REFERENCES Football_Club(fc_code)
   ON DELETE CASCADE);
b) CREATE TABLE Player(
   p_id INT,
   name VARCHAR(30) NOT NULL,
   dob DATE,
   match_count INT,
   fc_code INT,
   PRIMARY KEY(p_id),
   FOREIGN KEY (fc_code) REFERENCES Football_Club(fc_code));
c) CREATE TABLE Player(
   p_id INT NOT NULL,
   name VARCHAR(30),
   dob DATE,
   match_count INT,
   FOREIGN KEY (fc_code) REFERENCES Football_Club(fc_code)
   ON DELETE CASCADE);
d) CREATE TABLE Player(
   p_id INT,
   name VARCHAR(30) NOT NULL,
   dob DATE,
   match_count INT,
   fc_code INT,
   PRIMARY KEY(p_id),
   FOREIGN KEY (fc_code) REFERENCES Football_Club(fc_code)
   ON DELETE SET NULL);
  (a)
  (b)
  ( c)
  (d)
```

No, the answer is incorrect.

Score: 0

Accepted Answers:

a)

8) 2 points

Consider the following instance of the relation BookDetails.

BookDetails (BOOK_ID, YEAR_PUB, BOOK_TITLE, AUTHOR_NAME, TOTAL_SOLD_COPIES)

	BookDetails				
BOOK_ID	YEAR_PUB	BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES	
1001	2010	DBMS	KORTH	15000	
1002	2010	OPERATING SYSTEM	GALVIN	25000	
1003	2020	COMPILER	ULLMAN	12000	
1004	1995	DATA STRUCTURES	CORMEN	20000	
1005	1995	DATA STRUCTURES	ULLMAN	20000	
1006	1990	COMPUTER NETWORKS	FOROUZAN	15000	
1007	2010	MACHINE LEARNING	MITCHELL	18000	

Identify the correct statement(s) to get the following output:

	BookDetails					
BOOK_ID	YEAR_PUB	BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES		
1001	2010	DBMS	KORTH	15000		
1002	2010	OPERATING SYSTEM	GALVIN	25000		
1003	2020	COMPILER	ULLMAN	12000		
1005	1995	DATA STRUCTURES	ULLMAN	20000		
1007	2010	MACHINE LEARNING	MITCHELL	18000		

a) SELECT * FROM BookDetails WHERE YEAR_PUB=2010 AND AUTHOR_NAME='ULLMAN';

- b) SELECT * FROM BookDetails
 WHERE YEAR_PUB=2010 OR AUTHOR_NAME='ULLMAN';
- c) (SELECT * FROM BookDetails WHERE YEAR_PUB=2010)

INTERSECT

(SELECT * FROM BookDetails

WHERE AUTHOR_NAME='ULLMAN');

d) (SELECT * FROM BookDetails WHERE YEAR_PUB=2010)

UNION

(SELECT * FROM BookDetails
WHERE AUTHOR_NAME='ULLMAN');

- _ a)
- ✓ b)
- _ c)
- _ d)

Partially Correct.

Score: 1

Accepted Answers:

- b)
- d)

Consider the following instance of the relation BookDetails.

BookDetails (BOOK_ID, YEAR_PUB, BOOK_TITLE, AUTHOR_NAME, TOTAL_SOLD_COPIES)

	BookDetails				
BOOK_ID	YEAR_PUB	BOOK_TITLE	AUTHOR_NAME	TOTAL_SOLD_COPIES	
1001	2010	DBMS	KORTH	15000	
1002	2010	OPERATING SYSTEM	GALVIN	25000	
1003	2020	COMPILER	ULLMAN	12000	
1004	1995	DATA STRUCTURES	CORMEN	20000	
1005	1995	DATA STRUCTURES	ULLMAN	20000	
1006	1990	COMPUTER NETWORKS	FOROUZAN	15000	
1007	2010	MACHINE LEARNING	MITCHELL	18000	

Identify the correct SQL command to find the BOOK_ID with BOOK_TITLE of BookDetails whose AUTHOR_NAME is neither 'ULLMAN' nor 'KORTH' and have TOTAL_SOLD_COPIES is at least 18000

a) SELECT BOOK_ID, BOOK_TITLE FROM BookDetails WHERE AUTHOR_NAME NOT BETWEEN ('ULLMAN', 'KORTH') AND (TOTAL_SOLD_COPIES > 18000);

- b) SELECT BOOK_ID, BOOK_TITLE
 FROM BookDetails
 WHERE AUTHOR_NAME NOT IN ('ULLMAN', 'KORTH')
 AND (TOTAL_SOLD_COPIES >= 18000);
- c) SELECT BOOK_ID, BOOK_TITLE
 FROM BookDetails
 WHERE AUTHOR_NAME NOT AS ('ULLMAN', 'KORTH')
 AND (TOTAL_SOLD_COPIES >= 18000);
- d) SELECT BOOK_ID, BOOK_TITLE FROM BookDetails WHERE AUTHOR_NAME NOT IN ('ULLMAN', 'KORTH') AND (TOTAL_SOLD_COPIES > 18000);
 - (a)
 - (b)
 - (c)
 - (d)

No, the answer is incorrect.

Score: 0

Accepted Answers:

b)

Consider the following relation schema: BookDetails(BOOK_ID, YEAR_PUB, BOOK_TITLE, AUTHOR_NAME, TOTAL_SOLD_COPIES). Identify the correct statement to create an INDEX on BOOK_ID and BOOK_TITLE of BookDetails relation named as 'Books'. a) Create INDEX Books TO BookDetails(BOOK_ID, BOOK_TITLE); b) Create INDEX Books ON BookDetails(BOOK_ID, BOOK_TITLE); c) Create INDEX Books AS BookDetails(BOOK_ID, BOOK_TITLE); d) Create INDEX Books OF BookDetails(BOOK_ID, BOOK_TITLE); (a) (b) (c) (d) Yes, the answer is correct. Score: 2 Accepted Answers: b)