TD 4

Exercice 1 Soient X, X' des espaces topologiques et $f: X \to X'$. Montrer que les propriétés suivantes sont équivalentes :

- (i) f est continue;
- (ii) Pour tout $A \subset X'$, $f^{-1}(A) \subset f^{-1}(A)$;
- (iii) Pour tout $A \subset X'$, $\overline{f^{-1}(A)} \subset f^{-1}(\overline{A})$.

Donner un exemple d'application continue f pour laquelle $\overline{f^{-1}(A)} \neq f^{-1}(\overline{A})$.

Exercice 2 Soit X un espace topologique, $A \subset X$ et $\chi_A : X \to \{0,1\}$ sa fonction caractéristique.

- 1. Montrer que χ_A est continue en x si et seulement si $x \notin \partial A$.
- 2. A quelle condition χ_A est-elle continue sur X?
- 3. En déduire l'équivalence entre
 - (i) Les seules parties de X à la fois fermées et ouvertes sont \emptyset et X.
 - (ii) Toute application continue $X \to \{0,1\}$ est constante.

Exercice 3 Soient X et Y des espaces topologiques et $f: X \to Y$.

- 1. Montrer que f est continue en x si et seulement si $f(x) \in \overline{f(A)}$ pour tout $A \subset X$ tel que $x \in \overline{A}$.
- 2. Montrer que f continue si et seulement si $f(\overline{A}) \subset \overline{f(A)}$ pour tout $A \subset X$.

Exercice 4 Soit X et Y des espaces topologiques et $f: X \to Y$. Soit A une partie de X. Montrer les implications

f continue sur $A \implies f_{|A}$ continue $\implies f$ continue sur $\stackrel{\circ}{A}$.

Trouver un contre-exemple aux réciproques.

Exercice 5 Soit X et Y deux espaces topologiques et $f: X \to Y$. Soit A_1 et A_2 deux parties non vides de X séparées par des ouverts, i.e. telles qu'il existe deux ouverts O_1 et O_2 de X, disjoints, tels que $A_i \subset O_i$, i = 1, 2.

- 1. Démontrer que si $f|_{A_1}$ et $f|_{A_2}$ sont continues, alors $f|_{A_1 \cup A_2}$ est continue.
- 2. Donner un exemple de parties non séparées par des ouverts où cette implication est fausse.

Exercice 6 Soit X et Y des espaces topologiques et $(F_i)_{i\in I}$ des fermés de X tels que $X=\cup_{i\in I}F_i$.

- 1. On suppose I fini. Montrer que $f: X \to Y$ est continue si et seulement si pour tout $i \in I$, $f|F_i: F_i \to Y$ est continue.
- 2. Est-ce encore vrai si I est infini?

Exercice 7 Soit X et Y deux espaces topologiques et $f: X \to Y$. On dit que f est ouverte si pout tout ouvert $O \subset X$, f(O) est ouvert dans Y. On dit que f est fermée si pout tout fermé $F \subset X$, f(F) est fermé dans Y.

- 1. On suppose f ouverte. Soit $A \subset X$ un ouvert. Montrer que la restriction $f_{|A}$ est ouverte. Le résultat reste-t-il vrai sans l'hypothèse que A est ouvert?
- 2. On suppose f fermée. Soit $A \subset X$ un fermé. Montrer que la restriction $f_{|A}$ est fermée. Le résultat reste-t-il vrai sans l'hypothèse que A est fermé?

3. On suppose f ouverte et fermée. Montrer que pour tout $B \subset Y$, l'application $x \mapsto f(x)$ de $f^{-1}(B)$ dans B est ouverte et fermée.

Exercice 8 Soit X un ensemble muni de la topologie dont les ouverts sont l'ensemble vide et les parties de complémentaires finis et Y un espace topologique séparé. Montrer que toute application continue $f: X \to Y$ est constante.

Exercice 9 Soit X et Y des espaces topologiques, $A \subset X$ et $B \subset Y$. Montrer que $\overline{A \times B} = \overline{A} \times \overline{B}$.

Exercice 10 Soit $(X_i)_{i\in I}$ une famille d'espaces topologiques, $p_i:\prod_{i\in I}X_i\to X_i$ la projection et Y un espace topologique. Montrer que $f:Y\to\prod_{i\in I}X_i$ est continue si et seulement si $p_i\circ f$ est continue pour tout $i\in I$.

Exercice 11 Donner une fonction $f: \mathbb{R}^2 \to \mathbb{R}$ qui n'est pas continue mais telle que pour tout $x, y \in \mathbb{R}^2$, $x \mapsto f(x, y)$ et $y \mapsto f(x, y)$ sont continues.

Exercice 12 Montrer que $GL(n, \mathbb{R})$ est un ouvert dense dans $M(n, \mathbb{R})$.

Exercice 13 Soit $n \in \mathbb{N}$ et $p \leq n$. Montrer que l'ensemble des matrices de rang inférieur ou égal à p est un fermé de $M(n, \mathbb{R})$.

Exercice 14 Soit X un espace topologique séparé. Montrer que le graphe d'une application continue $f: X \to X$ est fermé dans $X \times X$. La réciproque est-elle vraie?

Exercice 15 Soit (X, d) un espace métrique. Montrer qu'une partie $F \subset X$ est fermée si et seulement s'il existe une fonction continue $f: X \to \mathbb{R}$ telle que $F = f^{-1}(\{0\})$.

Exercice 16 Soit $f:(\mathbb{R}^d,||\cdot||_{\infty})\to(\mathbb{R}^d,||\cdot||_{\infty})$ une application bijective et continue. On suppose que

$$\lim_{||x||_{\infty} \to \infty} ||f(x)||_{\infty} = +\infty,$$

montrer que f est un homéomophisme. 1

Exercice 17 Soit $C:]-1, 1[\times]-1, 1[$ et $B=\{(x,y)\in\mathbb{R}^2, x^2+y^2<1\}$. Existe-t-il un homéomorphisme $C\to B$? un homéomorphisme $B\to\mathbb{R}^2$?

Exercice 18 Soit X un espace topologique et \mathcal{R} une relation d'équivalence sur X.

- 1) Rappeler la définition de la topologique quotient sur X/\mathcal{R} .
- 2) Montrer que c'est l'unique topologie qui rend l'application $p: X \to X/\mathcal{R}$ continue et qui vérifie la propriété suivante : pour tout espace topologique Y et $f: X \to Y$ continue se factorisant en $f = \overline{f} \circ p$ alors $\overline{f}: X/\mathcal{R} \to Y$ est continue.

Exercice 19 Soit $(E_n, d_n)_{n \in \mathbb{N}}$ une famille d'espace métriques et $E = \prod_{n \in \mathbb{N}} E_n$.

- 1) Montrer que $d(e, f) = \sum_{n \in \mathbb{N}} 2^{-n} \frac{d(e_n, f_n)}{1 + d(e_n, f_n)}$ définit une distance sur E.
- 2) Montrer que la topologie induite sur E par d coïncide avec la topologie produit.

Exercice 20 Soit [0,1] muni de la relation d'équivalence $x \sim y$ si et seulement si x = y ou $\{x,y\} = \{0,1\}$. Montrer que l'espace quotient $[0,1]/\sim$ est homéomorphe au cercle unité S^1 de \mathbb{R}^2 .

utiliser la caractérisations à l'aide des suites pour montrer la continuité de f^{-1} : soipul 1

Exercice 21 On munit \mathbb{R}^2 de la relation d'équivalence $(x,y) \sim (x',y')$ si et seulement si $x-x' \in \mathbb{Z}$ et $y-y' \in \mathbb{Z}$. Montrer que \mathbb{R}^2/\sim est homéomorphe à $S^1 \times S^1$.

Exercice 22 Soit X un espace topologique, $A \subset X$. On munit X de la relation d'équivalence $x \sim y$ si et seulement si x = y ou $x, y \in A$. Montrer que X / \sim est séparé si et seulement si A est fermé.

Exercice 23 (Inversion et projection stéréographique) Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. On note $||\cdot||$ la norme euclidienne associée. Soit u un vecteur unitaire de E. On note H l'hyperplan affine d'équation $\langle u, x \rangle = 1$ et S la sphère de diamètre [0, u]. Pour tout $x \in E \setminus \{0\}$, on note inv $(x) = ||x||^{-2}x$.

- 1. Que vaut $||\operatorname{inv}(x)||$?
- 2. Montrer que inv est une involution de $E \setminus \{0\}$.
- 3. Montrer que inv $(H) = S \setminus \{0\}$.
- 4. Montrer que pour tout x et y dans H, $||\operatorname{inv}(x) \operatorname{inv}(y)|| = ||x||^{-1}||y||^{-1}||x y||$. En déduire que inv est continue sur $E \setminus \{0\}$.

Exercice 24 Quelles propriétés sont transportées par un homéomorphisme $f:(X,d_X)\to (Y,d_Y)$?

- (i) (u_n) est une suite convergente de (X, d_X) .
- (ii) (u_n) est une suite bornée de (X, d_X) .
- (iii) (u_n) est une suite de Cauchy de (X, d_X) .
- (iv) $A \subset X$ est une partie dense de (X, d_X)

Mêmes questions avec une application bi-lipschitzienne.

Exercice 25 Soient X un ensemble, Y un espace topologique et $f: X \to Y$. On Pose

$$\mathcal{T}_f = \left\{ f^{-1}(O) \mid O \text{ un ouvert de } Y \right\}$$

- 1) Montrer que \mathcal{T}_f définie une topologie sur X. On l'appelle la topologie tirée en arrière par f.
- 2) Soit \mathcal{T}_X une topologie sur X telle que $f: X \to Y$ continue. Montrer que \mathcal{T}_f est la topologie la plus grossière rendant f continue, i.e. $\mathcal{T}_f \subseteq \mathcal{T}_X$.
- 3) Soit Z un espace topologique et $g: Z \to Y$ une application continue telle qu'il existe $\overline{g}: Z \to X$ telle que $g = f \circ \overline{g}$. Montrer que si on muni X de la topologie \mathcal{T}_f , alors \overline{g} est continue.
- 4) on suppose que X est muni d'une topologie \mathcal{T} contenant strictement \mathcal{T}_f . Trouver un espace topologique Z et une application $\overline{g}: Z \to X$ telle que $f \circ \overline{g}$ continue mais \overline{g} non continue.

Exercice 26 Soit (X, d) un espace métrique, et $f: X \to X$ une bijection. On définit une distance f^*d sur X ($tir\acute{e}$ en $arri\`{e}re$ de d par f) en posant

$$f^*d(x,y) = d(f(x), f(y)).$$

- 1. Montrer que d et f^*d sont topologiquement équivalentes ssi f est un homéomorphisme.
- 2. Montrer que d et f^*d sont équivalentes ssi f est bi-lipschitzienne.

Exercice 27 Soient $E = \mathcal{C}([0,1],\mathbb{R}), a \in [0,1]$ et $Z_a = \{f \in E : f(a) = 0\}$. L'ensemble Z_a est-il dense dans E pour la norme $||\cdot||_{\infty}$? Pour la norme $||\cdot||_{2}$?

Exercice 28 Soit $E = \mathcal{C}([a,b],\mathbb{R})$. Pour $s \in [a,b]$ fixé, on définit $\delta_s : E \mapsto \mathbb{R}$, par $\delta_s(f) = f(s)$. L'application δ_s est une forme linéaire sur E, appelée mesure de Dirac au point s ou fonctionnelle évaluation en s.

- 1) Etudier la continuité de δ_s , lorsque E est muni de $||\cdot||_{\infty}$ ou $||\cdot||_{1}$.
- 2) Même question pour $s \mapsto \delta_s$, lorsque E^* est muni de la norme triple associée.

Exercice 29 Soit E l'espace vectoriel des suites réelles $u=(u_n)$ bornées, et F l'ensemble des suites u telles que $\sum |u_n|$ converge. Pour $u \in E$, on pose $||u||_{\infty} = \sup_n |u_n|$, et pour $u \in F$, on pose $||u||_1 = \sum |u_n|$. On fixe $a \in E$, et on considère l'application $f: E \to E$ qui envoie u sur $au = (a_n u_n)_n$.

- 1) Montrer que F est un sous-espace vectoriel de E.
- 2) Montrer que f est une application linéaire continue, et calculer sa norme.
- 3) Montrer que $f(F) \subset F$, et calculer la norme de la restriction $f_{|F|}$ quand on prend la norme $|| \cdot ||_1$ sur F.

Exercice 30 Soit $E = \mathcal{C}([0,1];\mathbb{R})$ l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} , muni de la norme de la convergence uniforme. Pour tout $f, g \in E$, on note fg la fonction produit de f et g. On dit qu'une forme linéaire φ est multiplicative si $\varphi(fg) = \varphi(f)\varphi(g)$ pour tout f et g de E. Pour $x_0 \in [0,1]$, on définit l'application $\delta_{x_0} : E \to \mathbb{R}$ par $\delta_{x_0}(f) = f(x_0)$.

- 1) Montrer que δ_{x_0} est une forme linéaire continue multiplicative.
- 2) Déterminer $|||\delta_{x_0}|||$.

Soit φ une forme linéaire non identiquement nulle, continue et multiplicative. On cherche à montrer que φ est de la forme δ_{x_0} avec $x_0 \in [0, 1]$.

- 3) Montrer que si $f \in E$ est positive, alors $\varphi(f) \geq 0$.
- 4) Soit 1 l'application constante égale à 1 de [0,1] dans \mathbb{R} . Montrer que $\varphi(1)=1$
- 5) À l'aide des questions précédentes, montrer que φ est continue sur $(E, ||\cdot||_{\infty})$.
- 6) Soient $h: x \mapsto x$ de [0,1] dans \mathbb{R} et $x_0 = \varphi(h)$. Montrer que $x_0 \in [0,1]$.
- 7) Soit $f \in E$. On suppose que f est dérivable au point x_0 . Montrer qu'on peut trouver $g \in E$ telle que $f = f(x_0)\mathbf{1} + (h x_0\mathbf{1})g$. Que vaut $\varphi(f)$?
 - 8) Montrer que $\varphi = \delta_{x_0}$. On pourra utiliser la densité de $\mathcal{C}^1([0,1];\mathbb{R})$ dans $(E,||\cdot||_{\infty})$.

Exercice 31 Soit $E = \mathcal{C}^{\infty}([0,1];\mathbb{R})$ l'espace vectoriel des fonctions C^{∞} de [0,1] dans \mathbb{R} , et D l'endomorphisme de dérivation.

- 1) Montrer qu'il n'existe aucune norme sur E pour laquelle D soit continu. On pourra considérer les applications $f_{\alpha}: x \mapsto e^{\alpha x}$.
- 2) Soit F le sous espace vectoriel des fonctions polynomiales. Trouver une norme sur F pour laquelle $D_{|F}$ soit continu.

Exercice 32 Soit $E = \mathcal{C}([0,1];\mathbb{R})$ l'espace vectoriel des fonctions continues de [0,1] dans \mathbb{R} , muni de la norme de la convergence uniforme. On fixe $g \in E$, et on considère l'application $\varphi : E \to \mathbb{R}$ définie par $\varphi(h) = \int_0^1 g(x)h(x)dx$.

- 1) Montrer que φ est une forme linéaire continue.
- 2) Déterminer la norme $|||\varphi|||$ lorsque g est une fonction positive, puis lorsque g est la fonction $x \mapsto x 1/2$.
 - 3) (*) Que vaut $|||\varphi|||$ pour une fonction $g \in E$ quelconque?
- 4) On note e_n la fonction monôme $e_n(x) = x^n$ restreinte à [0,1], et on suppose que $\varphi(e_n) = 0$ pour tout $n \in \mathbb{N}$.

En utilisant le théorème de Stone-Weierstrass, montrer que $Ker(\varphi) = E$ et g = 0.