2010 BdMO Summer Math Camp Number Theory Exercises

1. Divisibility: For any integer n, prove that (21n + 4)/(14n + 3) is irreducible (cannot be be broken up into smaller pieces).

Hint: Recall Bezout Bhai: if ax + by = 1, then (x, y) = 1.

2. Let n be a positive integer. Prove that GCD(n! + 1, (n + 1)! + 1) = 1.

Hint: Bezout: $(n+1) \cdot n! - 1 \cdot ((n+1)! + 1) = n$. The the gcd divides n

3. Let $F_k = 2^{2^k} + 1$, $k \ge 0$. Prove that if $m \ne n$, then $GCD(F_m, F_n) = 1$.

Hint: If m < n then $2^m + 1 \mid 2^n - 1$ then translate this in terms of F_m and F_n .

4. Let a > 1, m, n > 0, prove that: $D = GCD(a^m - 1, a^n - 1) = a^{GCD(m,n)} - 1$.

Hint: (1) To show that $D = a^{\gcd(m,n)} - 1$, show that $a^{\gcd(m,n)} - 1 \mid D$ and $D \mid a^{\gcd(m,n)} - 1$. (2) Let $d = \gcd(m,n)$ then let $\alpha m - \beta n = d$ and since $D \mid a^m - 1$ it also divides $a^{\alpha m} - 1$ and thus divides $a^{\alpha m} - a^{\beta n}$.

5. Let m, n > 0, $mn \mid (m^2 + n^2)$, show that m = n.

Hint: Let $d = \gcd(m, n)$, then $m = m_1 d$ and $n = dn_1$ and $(m_1, n_1) = 1$ and $m_1 n_1 \mid m_1^2 + n_1^2$.

6. Suppose that the GCD of the positive integers a, b, c is 1, and a = a + b is a perfect square.

Hint: Use the relation 1 = (a, b, c) = ((a, b), c) = (d, c) where d = (a, b) and thus $ab = a_1b_1d^2$.

7. Let k be a positive odd integer. Prove that $1+2+\cdots+n$ divides $1^k+2^k+\cdots+n^k$

Hint: We want $\frac{n(n+1)}{2} \mid 1^k + \dots + n^k$ which is equivalent to $n(n+1) \mid 2(1^k + \dots + n^k)$. Use the pairing trick $2(1^k + \dots + n^k) = (1^k + n^k) + (2^k + (n-1)^k) + \dots + (n^k + 1^k)$.

8. **Unique Factorization:** Show that among the infinite sequence 10 001, 100 010 001,..., there is no prime number.

Hint: Let the *n*th term be a_n . Then $a_{2k} = \frac{10^{8k}-1}{10^4-1} = \frac{10^{8k}-1}{10^8-1} \cdot \frac{10^8-1}{10^4-1}$ and do the same a_{2k+1} .

9. Suppose that positive a, b, c, and d satisfy ab = cd. Prove that a + b + c + d is not prime.

Hint: Let a/c = d/b = m/n then a = um, b = un, d = vm, b = vn.

10. Prove that if positive integers a, b satisfy $2a^2 + a = 3b^2 + b$ then a - b and 2a + 2b + 1 are perfect squares.

1

Hint: Factoring $b^2 = (a - b)(2a + 2b + 1)$, let $d = \gcd(a - b, 2a + 2b + 1)$. If $p \mid d$ then $p \mid b$.

11. Let n, a and b be integers, and $a \neq b$. Prove that $n \mid \frac{a^n - b^n}{a - b}$ if $n \mid (a^n - b^n)$.

Hint: Let p^e be the largest power of the prime p dividing n. Suppose p divides t = (a - b). Use the binomial theorem to expand $\frac{a^n - b^n}{t}$ in powers of t to show that there are enough powers of t so that p^e divides $\frac{a^n - b^n}{t}$.

12. Let m, n be non-zero integers. Prove using algebraic methods that $\frac{(2m)!(2n)!}{m!n!(m+n)!}$ is an integer.

Hint: Map this problem to
$$\sum_{k} \left(\left\lfloor \frac{2m}{p^k} \right\rfloor + \left\lfloor \frac{2n}{p^k} \right\rfloor \right) \ge \sum_{k} \left\lfloor \frac{m}{p^k} \right\rfloor + \left\lfloor \frac{n}{p^k} \right\rfloor + \left\lfloor \frac{m+n}{p^k} \right\rfloor$$

- 13. **Indeterminate equations**: If a positive integer, after adding 100 becomes a perfect square, and after adding 168, becomes another perfect square, find this number.
- 14. Find all integer solutions of the following indeterminate equation: $x^4 + y^4 + z^4 = 2x^2y^2 + 2y^2z^2 + 2z^2x^2 + 24$.

Hint: Factor $(x+y+z)(x+y-z)((y+z-x)(z+x-y)=3\cdot 2^3$. Check whether any two of factors on the left have the same parity by adding them together.

15. Prove that the product of two consecutive positive integers is neither a perfect square nor a perfect cube.

Hint: Let $x(x+1) = y^3$. Since (x, x+1) = 1, x and x+1 must be cubes.

16. Prove that the equation $y^2 + y = x + x^2 + x^3$ has no integer solutions for $x \neq 0$.

Hint: Factor into $(y-x)(x+y+1) = x^3$, show that the gcd(y-x,x+y+1) = 1. let $u^3 = y-x$ and $v^3 = x+y+1$. Then use a "size" argument to show that $v^3 - u^3 = 2x+1$ which gives $2uv+1 = (v-u)(v^2+uv+u^2)$ cannot hold since v > u.

17. Let k be a given positive integer, $k \ge 2$. Prove that (a) the product of 3 consecutive integers is not a k-th power of some integers; (b) the product of 4 consecutive integers is not a k-th power of some integers also.

Hint: (a) $(x^2 - 1, x) = 1$ and $u^k = x^2 - 1$, $v^k = x$, then $1 = u^k - v^k = (u - v)(u^{k-1} + \dots + v^{k-1})$, now use a size argument to show that this product cannot be 1. (b) again factor and use a size argument.

- 18. Congruences: Let a, b, c, d be positive integers. Prove that $a^{4b+d} a^{4c+d}$ is divisible by 240.
- 19. Let a, b, c be integers such that a + b + c = 0. Set $d = a^{1999} + b^{1999} + c^{1999}$. Prove that |d| is not prime.
- 20. Assume that the integers x, y, z satisfy (x y)(y z)(z x) = x + y + z.
- 21. Let n > 1, prove that $a = 111 \cdots 1$ is not a perfect square. There are n ones in a.
- 22. Using the digits 1, 2, 3, 4, 5, 6, 7 we can get 7-digit numbers and every digit is used only once in every such 7-digit number. Prove that none of these numbers are multiples of each other.
- 23. Assume that the sequence $\{x_n\}$ is 1,3,5,11,... and satisfies the recursion relation $x_{n+1} = x_n + 2x_{n-1}$ for $n \geq 2$. The sequence $\{y_n\}$ is 7, 17, 55, 161,... and satisfies the recursion relation: $y_{n+1} = 2y_n + 3y_{n-1}$ for $n \geq 2$. Prove that these 2 sequences have no common terms.

- 24. Let p be a positive integer. Determine the minimum positive value of $(2p)^{2m} (2p-1)^n$, where m, n are any positive integers.
- 25. By connecting the vertices of a regular n-gon we get a closed n-line. Prove that if n is even then among the connecting lines, there are only two parallel lines among the connecting lines, and that if n is odd then there are more than 2 parallel lines among the connecting lines.
- 26. Let n > 3 be an odd number. Prove that after arbitrarily taking out one element out from the n-element set $S = \{0, 1, ..., n-1\}$, we can always separate the rest of the elements into 2 groups, every group consists of (n-1)/2 numbers, and the sums of the numbers in two groups are equal modulo n.
- 27. Fermat, Euler, and Chinese Remainder Theorems: Prove Fermat's theorem, Euler's theorem and state the Chinese Remainder Theorem.
- 28. Let p be prime. Prove that in the sequence $\{2^n n\}$, $n \ge 1$ there are infinitely many composite numbers.
- 29. Prove that in the sequence 1,31, 331, 3331,... there are infinitely many composite numbers.
- 30. Show that for any given positive number n, there are n consecutive positive integers such that every such positive integer has a square divisor greater than 1.
- 31. For any given positive integer n, there are n consecutive positive integers such that all such numbers are not power numbers (a power number has a prime factorization where the power of each prime is greater than 1).
- 32. For a given positive integer n, let f(n) be the minimal positive integer such that $\sum_{k=1}^{f(n)} k$ is divisible by n. Prove that f(n) = 2n 1 if and only if n is a power of 2.
- 33. Let n and k be given integers such that n > 0 and k(n-1) is even. Prove that there are x and y such that GCD(x, n) = GCD(y, n) = 1 and $x + y = k \pmod{n}$
- 34. **Order**: Let GCD(a, n) = 1, then show that there is an $1 \le r \le n 1$ such that $a^r \equiv 1 \pmod{n}$. Show that (1) if there is an N such that $a^N = 1 \pmod{n}$ then $r \mid N$; (2) r divides $\phi(n)$ and $r \mid (n-1)$ if n is prime.
- 35. Assume n > 1 and $n \mid (2^n + 1)$ show that $3 \mid n$.
- 36. For n > 1, show that n doesn't divide $2^n 1$.
- 37. Use infinite descent and contradiction to find another proof of the previous problem.
- 38. Let n > 1, and n be odd. Show that for any integer m that n doesn't divide $m^{n-1} + 1$.
- 39. Let p be an odd prime. Prove that any positive divisor of $(p^{2p} + 1)/(p^2 + 1)$ is congruent to 1 modulo 4p.