

PH.D. STUDENT · ELECTRICAL AND COMPUTER ENGINEERING · UNIVERSITY OF BRITISH COLUMBIA (UBC)

4025, 2332 Main Mall, Vancouver, BC, Canada V6T 1Z4

□ (+1) 778-929-7902 | Siphwoo36@ece.ubc.ca | # jeonghyunwoo0306.github.io/ | 10 jeonghyunwoo0306 | 11 LinkedIn | Siphwoo36@ece.ubc.ca

Research Interests

My research broadly spans the area of computer architecture/systems, security, memory systems, and AI/ML, with specific emphasis on the following areas:

- Memory Security: Developing techniques to secure memory systems, with a focus on RowHammer attacks and defenses. Investigating novel security attacks, performance degradation (Denial-of-Service) attacks, and timing-side channel vulnerabilities. Actively developing secure and low-overhead RowHammer mitigations, including per-row activation counting (PRAC)-based solutions, which are expected to become standard RowHammer mitigations for future DRAM products.
- AI/ML Security: Investigating emerging threats in AI/ML security, including LLM Jailbreaking attacks, and developing robust defenses to mitigate these risks.
- Microarchitecture Designs: Designing high-performance, energy-efficient microarchitectures by leveraging advanced compression techniques for prefetching, branch prediction, and cache replacement policies to optimize system efficiency.

Education

University of British Columbia (UBC) Ph.D. IN ELECTRICAL AND COMPUTER ENGINEERING

Vancouver, BC, Canada

Sep. 2022 - Nov. 2026 (Expected)

· Advisor: Prof. Prashant Nair

• GPA: 4.00/4.00

Hanyang University (HYU)

M.S. IN ELECTRONICS AND COMPUTER ENGINEERING

Seoul, South Korea Mar. 2018 - Feb. 2020

Mar. 2012 - Feb. 2018

· Advisor: Prof. Ki-Seok Chung

• Dissertation: Row-hammering Mitigation Architecture for High Reliable DRAM

• GPA: 4.00/4.00

Hanyang University (HYU) Seoul, South Korea

B.S. IN ELECTRONIC ENGINEERING

· Advisor: Prof. Ki-Seok Chung

- · Dissertation: Implementation of an FPGA-based CNN Accelerator using SDSoC
- GPA: 3.89/4.00 (Graduating with Honors Summa Cum Laude)

Publications

PREPRINTS AND IN SUBMISSION

- [P.2] Jeonghyun Woo, Joyce Qu, Gururaj Saileshwar, and Prashant Nair. "When Mitigations Backfire: Timing Channel Attacks and Defense for PRAC-Based Rowhammer Mitigations". In 52nd Annual International Symposium on Computer Architecture (ISCA'25). 2025.
- [P.1] Zachary Coalson, Jeonghyun Woo, Shiyang Chen, Yu Sun, Lishan Yang, Prashant Nair, Bo Fang, and Sanghyun Hong. "PrisonBreak: Jailbreaking Large Language Models with Fewer Than Twenty-Five Targeted Bit-flips". In 34th USENIX Security Symposium (USENIX SEC'25). 2025. [Arxiv]

CONFERENCE PUBLICATIONS

- [C.4] Jeonghyun Woo, Shaopeng (Chris) Lin, Prashant Nair, Aamer Jaleel, and Gururaj Saileshwar. "QPRAC: Towards Secure and Practical PRAC-based Rowhammer Mitigation using Priority Queues". In 31st International Symposium on High-Performance Computer Architecture (HPCA'25). Mar. 2025. (Acceptance Rate: 21.0%). [Code]
- [C.3] Jeonghyun Woo and Prashant Nair. "DAPPER: A Performance-Attack-Resilient Tracker for RowHammer Defense". In 31st International Symposium on High-Performance Computer Architecture (HPCA'25). Mar. 2025. (Acceptance Rate: 21.0%).
- [C.2] Jeonghyun Woo, Gururaj Saileshwar, and Prashant Nair. "Scalable and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation in Memory Systems". In 29th International Symposium on High-Performance Computer Architecture (HPCA'23). Feb. 2023. (Acceptance Rate: 25.0%). [Paper] [Code] [Slides] [Best Paper Award (One of Two Best Papers in 364 Submissions)]

[C.1] Kwangrae Kim, Jeonghyun Woo, Junsu Kim, and Ki-Seok Chung. "HammerFilter: Robust Protection and Low Hardware Overhead Method for RowHammer". In 39th International Conference on Computer Design (ICCD'21). Oct. 2021. (Acceptance Rate: 24.4%). [Paper] [Slides] [Video]

Workshop Publications and Posters

[W.1] Kwangrae Kim, Junsu Kim, Jeonghyun Woo, and Ki-Seok Chung. "HammerFilter: Robust Protection and Low Hardware Overhead Method for Row-Hammering". Work-in-Progress (WIP) poster in 58th Design Automation Conference (DAC'21). Dec. 2021. [Poster]

Domestic (Korean) Conference Publications

- [D.2] Jeonghyun Woo and Ki-Seok Chung. "A Method to Find the Optimal Probability for Probability-driven Additional Row Refresh to **Prevent DRAM Row Hammering"**. In The Korean Institute of Communications and Information Sciences Winter Conference. Jan. 2019.
- [D.1] Changwoo Lee*, Jeonghyun Woo*, Sang-Soo Park, and Ki-Seok Chung. "Implementation of an FPGA-based CNN Accelerator using SDSoC". In The Korean Institute of Communications and Information Sciences Fall Conference. Nov. 2017. (*Equal Contribution). [Code: 300+ Stars]

[Outstanding Paper Award]

Honors and Awards

2023 HPCA 2023 Best Paper Award → One of Two Best Papers in 364 Submissions	Canada
2023, 2025 HPCA 2023 Student Travel Grant	Canada, USA
2022-2024 Faculty of Applied Science Graduate Award, University of British Columbia (UBC) \rightarrow \$16,600 CAD in Total	Canada
2018-2019 Hanyang Graduate School Scholarship $ ightarrow$ 70% of Tuition ($pprox$ \$9,200 CAD per Year)	South Korea
2016, 2017 Hanyang Academic Excellence Award $ ightarrow$ Top 1% ranked in University ($pprox$ 15,000 Students)	South Korea
2016 Hanyang Academic Excellence Award $ ightarrow$ Top 3% ranked in University ($pprox$ 15,000 Students)	South Korea
2016-2017 Hanyang Alumni Association Scholarship $ o$ Full Tuition ($pprox$ \$10,000 CAD per Year)	South Korea
2016 Excellent Tutor Award in Engineering Mathematics Tutoring Program, Hanyang University (HYU)	South Korea
2012-2013 Hanyang University Scholarship $ o$ Full Tuition ($pprox$ \$10,000 CAD per Year)	South Korea

Experience

Systems and Architectures (STAR) Lab, University of British Columbia (UBC)

Vancouver, BC, Canada

Sep. 2022 - Present

- **GRADUATE RESEARCH ASSISTANT**
- · Advisor: Prof. Prashant Nair Conducting research on computer architecture, memory systems, security, and Al/ML.
- Publishing papers in top-tier architecture and security venues and delivering presentations.

University of British Columbia (UBC)

Vancouver, BC, Canada

GRADUATE TEACHING ASSISTANT

Sep. 2022 - Present

- Computer Architecture (CPEN 411): Fall 2022, Fall 2023, and Fall 2024
- Digital Systems and Microcomputers (CPEN 312): Spring 2025

Architecture Research Group (ARG), NVIDIA Research

RESEARCH INTERN

Westford, MA, USA May. 2024 - Aug. 2024

• Manager: Dr. David Nellans and Mentor: Dr. Aamer Jaleel

• Explored secure and low-overhead Per Row Activation Counting (PRAC)-based RowHammer mitigations.

Vertical Systems Research (VSR), Micron Technology

Folsom, CA, USA

SYTEMS RESEARCH ENGINEERING INTERN

May. 2023 - Aug. 2023

• Manager: Ameen Akel and Mentor: Dr. Chun-Yi Liu • Explored RowHammer solutions for future High-Bandwidth Memory (HBM).

Systems Platform Research Group, University of Illinois Urbana-Champaign (UIUC)

Champagin, IL, USA

GRADUATE RESEARCH ASSISTANT

Aug. 2020 - Jan. 2021

· Advisor: Prof. Jian Huang

JANUARY 29, 2025

- Integrated Non-Volatile Memory (NVM) into programmable switch data planes, achieving 2× lower packet latency than the prior TEA approach while maintaining line-rate packet processing.
- Explored crash consistency challenges in integrating NVM into GPUs, demonstrating inefficiencies in existing solutions via architectural simulations.

Embedded System on Chip (ESoC) Lab, Hanyang University (HYU)

GRADUATE RESEARCH ASSISTANT

Seoul, South Korea Mar. 2018 - Feb. 2020

- · Advisor: Prof. Ki-Seok Chung
- Proposed a reliable, low-overhead probabilistic RowHammer mitigation surpassing the state-of-the-art PARA and PROHIT.
- Designed a new efficient retention-aware refresh scheme for highly scaled-down DRAMs.
- Implemented an FPGA-based Foveated Rendering decoder using Verilog for an industry-funded project with LG Display.

Hanyang University (HYU)

Seoul, South Korea

Mar. 2018 - Dec. 2019

GRADUATE TEACHING ASSISTANT

- VLSI Engineering (ELE 3081): Fall 2019
- SoC Design (ITE 4003): Spring 2018

Teaching and Mentoring Experience _____

TEACHING EXPERIENCE

Computer Architecture (CPEN 411)

University of British Columbia (UBC)

TEACHING ASSISTANT 2022 - 2024

· Led labs/tutorials, implemented auto graders for assignments, held office hours, and graded exams and assignments.

VLSI Engineering (ELE 3081)

Hanyang University (HYU)

TEACHING ASSISTANT

Sep. 2019 - Dec. 2019

• Led labs, held office hours, and graded exams and assignments.

SoC Design (ITE 4003)

Hanyang University (HYU)

Mar. 2018 - Jun. 2018 **TEACHING ASSISTANT**

• Developed lab assignments on Altera FPGA boards, led labs, and graded exams and assignments.

Talks

Aug. 2024 Towards Secure and Low-Overhead PRAC-Based RowHammer Mitigations, End-of-Intern Talk at NVIDIA

Westford, USA

Aug. 2023 RowHammer Mitigations for Future High-Bandwidth Memory, End-of-Intern Talk at MICRON

Folsom, USA

Feb. 2023 Scalable and Secure Row-Swap: Efficient and Safe Row Hammer Mitigation in Memory Systems, at HPCA'23 Montreal, Canada

Nov. 2017 Implementation of an FPGA-based CNN Accelerator using SDSoC, at KICS'17 Fall Conference

Daegu, South Korea

Service

Sep. 2024 Student Volunteer, at ISSWC'24

Vancouver, Canada

Mar. 2023 Student Volunteer, at ASPLOS'23

Vancouver, Canada

Academic Projects _____

Investigating the Potential of Data Compression for Optimized LLC Replacement

Advanced Computer Architecture

University of British Columbia (UBC), Instructor: Prof. Mieszko Lis

Jan. 2023 - Apr. 2023

- Conducted a comprehensive evaluation of existing LLC replacement methods to assess their effectiveness and limitations.
- Demonstrated 72.7% of cache lines are compressible by 10B or more, showing the potential of using compression for better replacement policies.
- Proposed a preliminary compression-assisted replacement method to optimize performance while minimizing storage overhead.

Revisiting Address Translation on Intel Optane DC PMEM using Big-Memory Applications

Graduate Operating Systems

UNIVERSITY OF BRITISH COLUMBIA (UBC), INSTRUCTOR: PROF. MARGO SELTZER

Sep. 2022 - Dec. 2022

- · Quantified address translation overhead in Optane DC PMEM systems using graph processing, HPC, and genomics workloads.
- Showed significant overhead with 4KB pages and demonstrated huge pages reduce overhead for applications sized tens of GB.

Implementing Forward Operation of a Modified LeNet-5 in CUDA

Applied Parallel Programming

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN (UIUC)

Nov. 2020 - Dec. 2020

- · Implemented five optimized forward-pass of convolutional layers using CUDA by leveraging shared memory, constant memory, and loop unrolling.
- Performed performance analysis with GPU performance profiling tools Nsight-Systems and Nsight-Compute.
- Source Code: https://github.com/jeonghyunwoo0306/ece408PJ_Fa2020

32-Bit 5-Stage Pipelined MIPS Processor

HANYANG UNIVERSITY (HYU)

• Implemented a 32-bit 5-stage pipelined MIPS processor using Verilog.

• Performed an FPGA demonstration on Xilinx ZedBoard.

8-Bit LCD Password Timer

Microprocessor

Nov. 2013 - Dec. 2013

Computer Architecture

Apr. 2016 - Jun. 2016

HANYANG UNIVERSITY (HYU)

• Implemented an 8-bit LCD password timer using Assembly Language.

Skills

Programming Languages C/C++, Python, Perl, CUDA, Verilog, Bash Script, Assembly Language, Go

Simulators Ramulator, ChampSim, Gem5, DRAMSim2, GPGPU-Sim, MGPUSim

Tools Pin, SimPoint, Xilinx Vivado, Xilinx SDSoC, Intel Quartus

Relevant Coursework

• Advanced Computer Architecture, UBC

• Graduate Operating Systems, UBC

• Applied Parallel Programming, UIUC

• SoC Design, HYU

• Embedded System Design, HYU

• VLSI Engineering, HYU

• Computer Architecture, HYU

• Operating Systems, HYU

• Microprocessor, HYU

• Data Structures, HYU

• Digital Logic Design, HYU