

Visual Question Answering with Various Feature Combinations

Jinwoo Choi and Siddharth Narayanan

Abstract

In this work, we present a Visual Question Answering task. We measure a similarity between two modalities through a multi-modal embedding and is based on deep multi-modal similarity model (DMSM) proposed by Fang et al [1]. Using DMSM, we conduct experiments with different experimental settings comprising of natural images, questions and answers.

Introduction

The goal of our project is to enable machines to understand various combinations of images along with their corresponding questions and answers and respond to them appropriately. We look at all forms of inputs and outputs as opposed to a conventional DMSM model that learns two neural networks by mapping images and text fragments.

Approach

The feature sets of the required combination are aligned, concatenated and fed to the DMSM code-base

No.	Description	Abbreviation		
1	Train embeddings for Images + Questions> Train embeddings for Answer Testing: Given an Image, ask a question -> find Answer Conventional Visual question answering scheme to find an A for a Q within the context of I (VQA Model)	IQ,A		
2	Train embeddings for Images -> Train embeddings for Question + Answer Testing: Given an Image-> find nearest QA embedding For a given image I, find what can be asked about this image? and what is A to that Q for this image I?			
3	Train embeddings for Questions + Answers-> Train for Imageretrieval for context Testing: Given an Question and Answer pair -> find a nearest Image Find image I that has a certain property as specified by Q and A combination (Image Retrieval Model)	QA,I		
4	Train embeddings for Image+ Answer-> Train for embeddings for Questions Testing: Given an Image and Answer pair -> find a nearest Question Given an image I and an answer A, find a corresponding question (Jeopardy Model)	IA,Q		

Experiments

Exp-1 Accuracy =

(Correct # of QA pairs / Total # of QA pairs)

Exp-1, 2, 4 Accuracy =

(Correct # of QA pairs / Total # of QA pairs) within Ktop retrieved documents in descending order

VQA Dataset

		Training questions 2015 v1.0	Training images	
	2,483,490 answers	248,349 questions	82,783 images	
Validation annotations 2015 v1.0		Validation questions 2015 v1.0	Validation images	
	1,215,120 answers	121,512 questions	40,504 images	

Training parameter table

Batchsize: 1024	Target Architecture: 0,0		
Maximum number of Iterations: 100	MIRROR_INIT: 0		
Learning Rate: 0.02	MATH_LIB: CPU		
Source Layer Dimensons: 1000,300	OBJECTIVE: MMI		
Source Architectue: 0,0 #0: Fully Connected 1	SOURCE_ACTIVATION: tanh		
Target Layer Dimensions: 1000,300	TARGET_ACTIVATION: tanh		

Qualitative results

GT: Yes

GT: No

Failure Cases for IQ,A (VQA) model

Pred: Yes

Pred: Wood

Pred: No

GT: Wood

QA pair Retrieval Results for I,QA (QA Retrieval)

Pred: Yes

GT: Yes

Quantitative results

We compare our I+Q answer model with two baseline methods[6]. First baseline is that we select an answer randomly from 18 multiple-choice for each question. Second baseline is we always answer "yes" which is the most common answer.

IQ,A model accuracy

Random Choice		All Yes	IQ,A model	
Accuracy	0.29	26.8	46.41	

I,QA/QA,I/IA,Q model accuracy

Model	Random	K=1	K=10	K=100	K=200	K=1000	K=2000
I,QA	0.004	0.31	2.51	16.37	26.14	59.41	72.53
QA,I	0.004	0.23	1.92	12.59	20.00	47.74	59.85
IA,Q	0.01	0.39	2.62	13.32	20.46	44.83	57.27
	· · · · · ·		-			-	

Image Retrieval for QA,I (Image Retrieval)

Conclusion and Future Work

We have implemented a VQA scheme using datasets of images and their sentence descriptions to learn about the inter-modal correspondences between data. Future and visual language works are generating better prediction accuracy, extend the three - I,QA/QA,I/IA,Q models and find a new domain to apply these models.

References

- [1] H. Fang et al. From Captions to Visual Concepts and Back, CVPR2015
- [2] http://caffe.berkeleyvision.org/
- [3] Jiasen lu, Implementation of DSSM Torch https://github.com/jiasenlu/CDSSM [4] Visual Question Answering Datasets - http://visualqa.org/download.html
- [5] MSR DSSM source code http://research.microsoft.com/en-us/downloads
- [6] S. Antol et al, VQA: Visual Question Answering, ICCV2015 [7] K. Simonyan, Very Deep Convolutional Networks Large-Scale Image Recognition