0 Preeliminares

En este capítulo se convendrán tanto las notaciones, resultados clásicos y conceptos que se utilizarán a lo largo del texto.

0.1. Conjuntos

Dado un conjunto A, se denotará por $\mathscr{P}(A)$ a su conjunto potencia; además, si B es un conjunto, A^B denotará el conjunto de todas las posibles funciones $f: B \to A$.

Se utilizará la notación estándar para ordinales, cardinales y naturales; esto es, usualmente se reservarán las letras $\alpha, \beta, \gamma, \ldots, \kappa, \lambda, \mu, \ldots$ y n, m, k, \ldots para los números ordinales, cardinales y naturales, respectivamente. Se seguirá la construcción de Von Neumann, así que siempre que α y β sean ordinales, $\alpha < \beta$ significará que $\alpha \in \beta$. El primer ordinal infinito (exactamente el conjunto de números naturales) será denotado por la letra griega ω ; y, se utilizarán las notaciones \aleph_- y ω_- cuando se requiera.

Con frecuencia, en diversas pruebas de este documento se involucrarán tanto inducción como recursión; las versiones de los teormas de recursión que utilizaremos son: primer y segundo Teorema de recursión en ω , segundo Teorema de recursión transfinita y su versión restringida a ω_1 . El lector puede consultar el enunciado completo, y la teoría subyacente, de estos Teoremas en: **JECHHH**.

En ocasiones, se realizarán cálculos de aritmética cardinal; en esto, se utilizarán con frecuencia los teoremas de suma y producto ordinal. El lector interesado puede indagar más al respecto en **AmorIntermedio**.

Dados un conjunto A y un cardinal κ arbitrarios; se utilizarán la notaciones:

$$[A]^{\kappa}, [A]^{\leq \kappa}, [A]^{<\kappa}, [A]^{\geq \kappa}, [A]^{>\kappa}$$

para las colecciones de subconjuntos de A de tamaño: igual a κ ; menor o igual a κ ; menor que κ ; mayor o igual a κ y mayor que κ ; respectivamente. Además, se denotará por $A^{<\kappa}$ al conjunto $\bigcup \{A^{<\alpha} \mid \alpha < \beta\}$.

0.2. Órdenes Parciales

Los órdenes parciales reflexivos serán denotados por \leq ; esto claro, a menos que se indique lo contrario, o bien, que el contexto dicte que " \leq " denota una desigualdad entre ordinales. Los órdenes parciales antirreflexivos se denotarán por < (realizando las mismas consideraciones que con su símbolo análogo); y, en caso alguno de los dos no sea definido, siempre se puede pensar que $\leq = < \cup \Delta$, o bien, $<= \leq \setminus \Delta$. Si (P, \leq) es un conjunto ordenado y $A \subseteq P$ es cualquiera, se denotan (en caso de existir) por mín(A), máx(A), ínf(A) y sup(A) a su elemento mínimo, máximo, ínfimo y supremo, respectivamente; además, se conviene que un elemento $p \in P$ es minimal (maximal, respectivamente) de A si $p \in A$ y no existe $a \in A$ de modo que a < p (p < a, respectivamente).

Si (P, \leq) es un conjunto parcialmente ordenado, un subconjunto $F \subseteq \mathscr{P}(P)$ se dice filtro de (P, \leq) cuando $F \neq \emptyset$, F es cerrado bajo cotas superiores (hay que decir que es esto) y cada vez que $p, q \in F$, existe una cota inferior de $\{p, q\}$ en F. El concepto de ideal es dual; o bien, un ideal es un filtro de (P, \geq) . En el caso en el que un filtro (ideal, respectivamente) esté contenido propiamente en $\mathscr{P}(P)$ se dirá que tal filtro (ideal, respectivamente) es propio.

0.3. Casi contención