Class10

Bayah Essayem (A17303992)

2025-02-06

Table of contents

T	ne PDB database	1
3.	Intro to Bio3D in R	10
4.	Predicting functional dynamics	12

The PDB database

The main repository of biomolecular structure data is called the PDB found at $\frac{1}{100}$ https://www.rcsb.org

Let's see what this database contains. I went to PDB > Analysis > PDB Statistics > By Exp method and molecular type

```
pdbstats <- read.csv("Data Export Summary.csv")
pdbstats</pre>
```

	Molecular.Type	X.ray	EM	NMR	${\tt Multiple.methods}$	Neutron	Other
1	Protein (only)	169,563	16,774	12,578	208	81	32
2	Protein/Oligosaccharide	9,939	2,839	34	8	2	0
3	Protein/NA	8,801	5,062	286	7	0	0
4	Nucleic acid (only)	2,890	151	1,521	14	3	1
5	Other	170	10	33	0	0	0
6	Oligosaccharide (only)	11	0	6	1	0	4
	Total						

^{1 199,236}

^{2 12,822}

^{3 14,156}

^{4 4,580}

```
5 213
```

6 22

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy. A1: percentage solved by x-ray is 82.83549%, while the Electron Microscopy is 10.75017%

```
pdbstats$X.ray
```

```
[1] "169,563" "9,939" "8,801" "2,890" "170" "11"
```

The comma in these numbers is causing them to be read as characters rather than numeric. This can be fixed by replacing "," with 'sub()' function:

```
x <- pdbstats$X.ray
sum( as.numeric(sub(",", "", x)))</pre>
```

[1] 191374

Or I can use the **reader** package and the 'read.csv' function

```
library(readr)
pdbstats <- read_csv("Data Export Summary.csv")

Rows: 6 Columns: 8
-- Column specification ------
Delimiter: ","
chr (1): Molecular Type
dbl (3): Multiple methods, Neutron, Other
num (4): X-ray, EM, NMR, Total

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
pdbstats</pre>
```

A tibble: 6 x 8 `Molecular Type` NMR `Multiple methods` Neutron Other `X-ray` EM<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>1 Protein (only) 169563 16774 12578 208 81 32 199236 2 Protein/Oligosacc~ 9939 2839 2 34 8 0 12822 3 Protein/NA 8801 5062 286 7 0 14156 0 4 Nucleic acid (onl~ 2890 151 1521 14 3 4580 5 Other 170 10 33 0 0 213 6 Oligosaccharide (~ 11 0 6 1 0 22

I want to clean the column name so they are all lower case and don't have spaces in them

colnames(pdbstats)

[1] "Molecular Type" "X-ray" "EM" "NMR"
[5] "Multiple methods" "Neutron" "Other" "Total"

library(janitor)

Attaching package: 'janitor'

The following objects are masked from 'package:stats':

chisq.test, fisher.test

df <- clean_names(pdbstats) df</pre>

A tibble: 6 x 8 molecular_type nmr multiple_methods neutron other total x_ray em<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> 1 Protein (only) 169563 16774 12578 208 81 32 199236 2 2 Protein/Oligosacchar~ 9939 2839 34 8 0 12822 7 3 Protein/NA 8801 5062 286 0 0 14156 4 Nucleic acid (only) 3 4580 2890 151 1521 14 1 5 Other 170 10 33 0 0 0 213 6 Oligosaccharide (onl~ 11 0 6 1 22

Total number of X-ray structures

```
sum(df$x_ray)
```

[1] 191374

Percentage of structures in the PDB are solved by X-ray

```
sum(df$x_ray)/sum(df$total) * 100
```

[1] 82.83549

Total number of EM (Electron Microscopy)

```
sum(df$em)/sum(df$total) * 100
```

[1] 10.75017

Total number of structures

```
sum(df$total)
```

[1] 231029

Q2: What proportion of structures in the PDB are protein? A2: 0.8623852

```
( df[1, "total"])/sum(df$total)
```

total

1 0.8623852

The main Mol* homepage at: https://molstar.org/viewer/. We can input our own PDB files or just give it a PDB database accession code (4 letter PDB code)

Figure 1: Molecular view of 1HSG $\,$

Figure 2: Clear Ligand

Figure 3: Water 308 Bonding

Figure 4: No Polymer

Figure 5: A&B Residues of Aspartate(ASP25 Amino Acids)

Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure? A4: In this case, the hydrogen atoms are attached at a certain angle that makes them not visible and makes the molecule polar.

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have A5: Yes, it is water 308.

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain and the critical water (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document.

3. Intro to Bio3D in R

We can use the **bio3D** package for structural bioinformatics to read PDB data into R

```
library(bio3d)
pdb <- read.pdb("1hsg")</pre>
  Note: Accessing on-line PDB file
pdb
 Call:
        read.pdb(file = "1hsg")
   Total Models#: 1
     Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)
     Protein Atoms#: 1514 (residues/Calpha atoms#: 198)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 172 (residues: 128)
     Non-protein/nucleic resid values: [ HOH (127), MK1 (1) ]
   Protein sequence:
      PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD
      QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE
      ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP
      VNIIGRNLLTQIGCTLNF
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
     Q7: How many amino acid residues are there in this pdb object? A7: There are
     198 amino acid residues.
length(pdbseq(pdb))
```

[1] 198

Q8: Name one of the two non-protein residues? A8: MK1

Q9: How many protein chains are in this structure? A9:There are 2, chains A and B

Looking at the 'pdb()' object in more detail

```
attributes(pdb)
$names
```

```
[1] "atom" "xyz" "seqres" "helix" "sheet" "calpha" "remark" "call" $class
[1] "pdb" "sse"
```

head(pdb\$atom)

```
type eleno elety alt resid chain resno insert
                                                                                b
                                                         х
                                                                 у
                                                                       z o
1 ATOM
           1
                 N <NA>
                           PRO
                                    Α
                                          1
                                               <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
           2
                CA <NA>
                                              <NA> 30.307 38.663 5.319 1 40.62
                           PRO
                                    Α
                                          1
3 ATOM
           3
                 C <NA>
                           PRO
                                    Α
                                          1
                                              <NA> 29.760 38.071 4.022 1 42.64
4 ATOM
                 O <NA>
                           PRO
                                              <NA> 28.600 38.302 3.676 1 43.40
           4
                                    Α
                                          1
                           PRO
                                              <NA> 30.508 37.541 6.342 1 37.87
5 ATOM
           5
                CB <NA>
                                          1
                                    Α
                                              <NA> 29.296 37.591 7.162 1 38.40
6 ATOM
           6
                CG <NA>
                           PRO
                                    Α
                                          1
  segid elesy charge
   <NA>
            N
                <NA>
1
2
   <NA>
            C
                <NA>
  <NA>
3
            С
                <NA>
  <NA>
            0
                <NA>
  <NA>
            С
                 <NA>
5
   <NA>
            C
                 <NA>
```

Let's try a new function not yet in the bio3d package. It requires the **r3dmol** package that we need to install with 'install.packages("r3dmol")' and 'install.packages("shiny")'

```
#source("https://tinyurl.com/viewpdb")
#view.pdb(pdb, backgroundColor = "white")
```

- Q10. Which of the packages above is found only on BioConductor and not CRAN? A10: BiocManager
- Q11. Which of the above packages is not found on BioConductor or CRAN?: A11. The bio3d package.
- Q12. True or False? Functions from the devtools package can be used to install packages from GitHub and BitBucket? A12. True

4. Predicting functional dynamics

We can use the 'nma()' function in bio3d to predict the large-scale functional motion of biomolecules.

```
adk <- read.pdb("6s36")
  Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE
adk
 Call:
       read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
     Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
   Protein sequence:
      \tt MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
      DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
      VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
m <- nma(adk)
 Building Hessian...
                            Done in 0.01 seconds.
                            Done in 0.22 seconds.
 Diagonalizing Hessian...
plot(m)
```


Write out a trajectory of the predicted molecular motion:

```
meow <- mktrj(m, file="adk_m7.pdb")</pre>
```

- Q13. How many amino acids are in this sequence, i.e. how long is this sequence?
- A13. This sequence is 214 amino acids long.

```
library(bio3d)
aa <- get.seq("1ake_A")</pre>
```

Warning in get.seq("lake_A"): Removing existing file: seqs.fasta

Fetching... Please wait. Done.

aa

	61	•	•	•	•	•	120
pdb 1AKE A	121 VGRRVHAPS		PPKVEGKDDV:				180 IG
					-	•	180
pdb 1AKE A	181 YYSKEAEAC		TKPVAEVRADI				
	181	•		. 214			
Call: read.fast	ta(file = on	utfile)					
Class: fasta							
Alignment of 1 sequence	dimensions: ce rows; 214	4 position	columns (2	214 non-ga	p, 0 gap)		
+ attr: id	, ali, call						