The Effects of Priors on Cosmological Analysis

Rhys Seeburger

Supervisor: Dr Marika Asgari

Background: Cosmology

- 5 "main" Parameters:
 - $\Omega_{\rm m}$ dark and baryonic matter density ~ 0.308 \pm 0.012
 - $\Omega_{\rm b}$ baryonic matter density ~ 0.0491 \pm 0.0005
 - σ_8 density fluctuation amplitude ~ 0.830 \pm 0.015
 - n_s scalar spectral index (variance of density fluctuations with scale) ~ 0.968 \pm 0.006
 - H_0 Hubble parameter (expansion rate). Takes different values depending on method (between ~ 67 and 74 km MPc⁻¹ s⁻¹)
- Weak lensing: $\Omega_{\rm m}$ and $\sigma_{\rm 8}$

The Banana

Introduction: Bayes' Theorem

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

Motivation

- Problems with Flat Priors:
 - Are Informative
 - Don't work well under parameter transformation
- Jeffrey's Solves transformation problem
- Reference Solves informative problem

Jeffrey's

- Computed from Fisher
 Matrix (describes how sensitive
 Likelihood is to the parameters)
- Either root of determinant or of product diagonal
- Jdet agrees with Jdet, Jdiag with Jdiag

Reference

- Maximises Divergence between Prior and Posterior
- Hard/impossible to do analytically, take a different approach
- Choose priors and calculate
 Divergence to find the "best"
 one

