

Reading: Stechmann 4.3.4, 5.1

$$(x) \quad u_{++} = c^2 u_{xx} = F(x,+) \quad (\text{or} \quad (\partial_{+}^2 - c^2 \partial_{x}^2) u = F)$$

$$u_{+}(x,0) = 0$$

$$u_{+}(x,0) = 0$$

Recall Duhamel's principle: the solution can be constructed using a family of unforced wave equations with different initial conditions.

The Family: \{\(\forall V(x,+;\(\sigma)\)\}_{\sigma=0}

Where For a given 5 (Family member),

$$\left(\partial_{+}^{2}-c^{2}\partial_{x}^{2}\right)U(x,+;s)=0+>s$$

$$U(x,t=s;s) = 0$$

 $U_{+}(x,t=s;s) = F(x,s)$

We already know how to solve this:

$$U(x,+;s) = \frac{1}{2c} \int_{x-c(+s)}^{x+c(+s)} F(x,s) dx'$$

Finally, u(x,t) in (X) is given by:

$$u(x,t) = \int_{s-o}^{t} U(x,t;s) ds$$

$$=\frac{1}{2c}\int_{S=0}^{+}\int_{X-c(+s)}^{X+c(+s)}f(x',s)dx'ds$$

Miltern Review, Part I	
The midtern will be split into 3 questions, one on each of the 3 PDEs we've studied so far.	
Plus some T/F.	
D Heat equation / Diffusion equation	
Ut = KD2m	
· Total heat is conserved	
d SD udV = SD ut dV = SD K2ndV = SD KD. (An) dV	
= SKN-DUDS = 0 as 1201 - D (if u > 0 Fast enough)	
Fundamental solution	
$ \underbrace{\overline{T}_{+} = k \sqrt{2} \overline{T}}_{K} = k \sqrt{2} \overline{T}_{K} + \infty $	
$(x) = k \nabla^{2} \overline{\underline{F}} \qquad \overline{\chi} \in \mathbb{R}^{n}, + > 0.$ $(x) = \overline{\underline{F}}(\overline{\chi}, 0) = \overline{S}(\overline{\chi})$ $\overline{\underline{F}} \to 0 \text{ as } \overline{\chi} \to 0.$	
Solution: \$\Phi(\timex,t)=\frac{1}{4\pi\chi\gamma^2\pi}e^{-\frac{1\times^2}{4\pi}t}	
• IVP:	
$(u \rightarrow 0 \text{ as } x) \rightarrow \infty$	
Solution: $u(\vec{x},t) = g * \vec{\Phi} = \int_{\mathbb{R}^n} g(\vec{y}) \vec{\Phi}(\vec{x}-\vec{y},t) dV_{\vec{y}}$	
e.g. In 1D, u(x,t)= \(\int_{-\infty}^{\infty} = \(\frac{1}{4\pi k+} \) \(\f	
·	
· Speed of information: Infinite!	

· Forced problem:
2 5(1) -4 1
$(x) = f(x,t) \qquad x \in \mathbb{R}^n, t > 0$ $(x) = u(x,0) = 0$ $u \to 0 \text{as} x \to \infty$
$(*) \qquad (\forall,0) = 0$
→ Duhamel's principle.
u(x,+)=(+)U(x,+,s)ds (*')
$\begin{cases} (\partial_{+} - k \nabla^{2}) \nabla (\bar{x}, +; s) = 0 & \bar{x} \in \mathbb{R}^{n}, + > s \end{cases}$
where $\begin{cases} (\partial_{+}-kv^{2})U(\overline{x},+js)=0 & \overline{x} \in \mathbb{R}^{n}, +>s \\ U(\overline{x},sjs)=f(\overline{x},s) \\ U\to 0 & as \overline{x} \to \infty. \end{cases}$
() = 0 as x = 0.
Proof? Just plug (*) into (*) and use the above.
, -
Then, finally, $u(\bar{x},+) = \int_0^+ \int_{\mathbb{R}^n} f(\bar{y},s) \underline{\mathcal{F}}(\bar{x}-\bar{y},+-s) dv_{\bar{y}} ds$
· Forced IVP?
$U_{+} = K \sqrt{2} u + F(x, +)$ $= u (x, 0) = g(x)$ $u \rightarrow 0 \text{as } (x) \rightarrow \infty$
$\geq u(\vec{x},0) = g(\vec{x})$
$(u \rightarrow 0 $
The PDE is linear, so let u= u, +u2.
THE IDE IS THESE, SO HET W- WITHOUT.
U, satisfies (*) above, uz satisfies the previous IVP.