Advances in Digital Signal Processing: Imaging and Image Processing

Exercise 2: Radar Signal Processing

Due date: 01.06.2015

Problem 1 - Parameter Estimation

A Gaussian mixture model can be used to model the effect of deviations from the model assumptions, such as the impulsive noise. Mathematically it is defined as

$$Q = (1 - \epsilon)P_1 + \epsilon P_2,$$

where ϵ is the contamination factor $0 < \epsilon < 1$, $P_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ is the normal distribution and $P_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ is the contaminating distribution. The following code part creates one sample from the Gaussian mixture model.

$$\begin{aligned} &\text{if rand(1)} < \epsilon \\ &\text{sample=} \ \mu_2 + \sigma_2 \text{*randn(1);} \\ &\text{else} \\ &\text{sample=} \ \mu_1 + \sigma_1 \text{*randn(1);} \end{aligned}$$

In the following questions we want to estimate the mean of a signal which is distributed as P_1 , however corrupted by another signal which is distributed as P_2 .

- a) Using the given code part, write a function, function **samples = gmm** $(\epsilon, \mu_1, \mu_2, \sigma_1, \sigma_2, N)$ which creates N samples from the Gaussian mixture model.
- b) Using the function **gmm**, create random vectors for $\epsilon = 0.1$, $\mu_1 = 0$, $\sigma_1 = 1$, $\mu_2 = 2.5$, $\sigma_2 = 3$ when N = 10, N = 1000, N = 100000.
- c) Now use **hist** command in MATLAB and estimate the histogram of the random vectors which you found in b). How does the histogram change with the number of samples?
- d) The *sample mean* estimator, $\frac{1}{N} \sum_{i=1}^{N} x_i$, is the maximum likelihood estimator for the mean μ of the Gaussian distributed signal (no contamination $\epsilon = 0$ in gmm model). Use this estimator and estimate μ_1 from the random vectors that you obtained in b).
- e) Consider the *median* estimator and repeat the experiments in d). **Hint:** Use the **median** command in MATLAB.
- f) For varying $\epsilon, \epsilon \in \{0.2, 0.3\}$ repeat the parts b), d) and e).
- g) Compare the *bias, variance* and the *mean squared error* (MSE) of both estimators for all conducted experiments. Which estimator is more suitable for the considered problem? Why? **Hint:** Expectation can be estimated by repeating and averaging the experiments.

Problem 2 - Detection in Range

In the following task, you will implement a range detection system as found in sonar or radar applications. For convenience, we consider the complex chirp signal p(t)

$$p(t) = a(t) \exp\{j\beta t + j\alpha t^2\}$$

where a(t) = 1 for $0 \le t \le T_p$ and zero otherwise. The duration of the pulse is denoted by T_p .

- a) The instantaneous angular frequency $\omega(t)$ for a(t)=1 is given by $\omega(t)=\frac{\mathrm{d}\left(j^{-1}\ln p(t)\right)}{\mathrm{d}t}$. Compute $\omega(t)$. What are the bounds of $\omega(t)$ and what is the center frequency ω_c ?
- b) Next, find an expression for β depending on ω_c , α and T_p .
- c) What is the bandwidth B? Give an expression for α depending on B and T_p .

Given these values, we can start to implement this system in MATLAB. Note that the values in **problem02.m** are provided as frequencies f in [Hz] and $\omega = 2\pi f$.

d) First, we simulate the response ee(t) of all targets defined by

$$ee(t) = \sum_{n=1}^{N} \frac{1}{d_n} r_t p(t - t_{d,n})$$

Compute all *N* distances between the target-receiver pairs d_n . The respective time delay is $t_{d,n} = 2d_n/c$ where *c* is the propagation speed. The target reflectivity $r_t = 0.1$ is constant for all targets.

e) Next, the signal has to be demodulated. Remember that this is easily achieved by a shift in the frequency domain by f_c .

Hint: In our case it is easier to perform this task in the time domain, i.e. $ee_b(t) = ee(t) \exp\{-j2\pi f_c t\}$.

f) The focused signal ss(t) is obtained by pulse compression. For this purpose, we first define the matched filter in the base band

$$h_m(t) = p(-t)^* \exp\{-j2\pi f_c t\}$$

and convolve it with $ee_h(t)$.

Hint: Note that convolution extends the signal. Make sure that you extract the correct interval.

g) What happens when B is decreased from 8000Hz to 3000Hz? Comment on your results.