平成 XX 年度 修士論文

日本語タイトル

English Title

提出日平成XX年X月X日

審查員主查 XX XX 教授

審 査 員 XX XX 准教授

所 属 XXX 大学大学院

博士前期課程 工学研究科

XXXX 専攻

学生番号 XXXXXXXX

XX XX

目次

第 1 章	序論	1
1.1	研究背景	1
1.2	本研究の目的	1
1.3	本論文の構成	1
第2章	形状認識と位置・姿勢計測	3
2.1	形状認識・位置・姿勢計測での基本方針...................	3
2.2	反射音圧分布の特徴	3
第3章	ニューラルネットワークによる認識・計測	5
3.1	パーセプトロン	6
3.2	ニューラルネットワーク	6
3.3	ニューラルネットワークの学習	6
3.4	学習を効果的に行うため	6
第4章	畳み込みニューラルネットワーク	7
4.1	全結合層の問題点	7
4.2	畳み込みニューラルネットワークの構成....................	7
4.3	畳み込み層	7
4.4	プーリング層	7
第5章	境界要素法	9
5.1	境界要素法とは	10
5.2	基礎積分方程式	10
5.3	離散化	10
5.4	境界積分	10
5.5	シミュレーション構成	10

•	
lV	目次
- 1	H //

第6章	シミュレーションによるシステム構成の検討	11
6.1	MLP と CNN の構成ごとの比較	12
6.2	学習データが限られた場合の構成ごとの比較	12
6.3	センサアレイ間隔ごとの精度の違い	12
6.4	センサアレイ補間による計測精度の違い	12
6.5	TOF の利用	12
付録 A	おまけ 1	13
付録 B	おまけ 2	15
謝辞		17
参考文献		19
研究業績-	— <u>覧</u>	21

図目次

表目次

第1章

序論

- 1.1 研究背景
- 1.2 本研究の目的
- 1.3 本論文の構成

第2章

形状認識と位置・姿勢計測

- 2.1 形状認識・位置・姿勢計測での基本方針 センサアレイを用いて認識することを説明
- 2.2 反射音圧分布の特徴

物体ごとの反射音圧分布の例を挟みながら説明

- 2.2.1 形状ごとの特徴
- 2.2.2 位置変化ごとの特徴
- 2.2.3 角度変化ごとの特徴

第3章

ニューラルネットワークによる認 識・計測

- 3.1 パーセプトロン
- 3.1.1 パーセプトロンとは
- 3.1.2 パーセプトロンの限界
- 3.1.3 多層パーセプトロン
- 3.2 ニューラルネットワーク
- 3.2.1 ニューラルネットワークとは
- 3.2.2 活性化関数
- 3.2.3 出力層
- 3.3 ニューラルネットワークの学習
- 3.3.1 訓練データとテストデータ
- 3.3.2 損失関数
- 3.3.3 誤差逆伝搬法
- 3.3.4 パラメータ更新
- 3.4 学習を効果的に行うため
- 3.4.1 重みの初期値
- 3/10 ミーバッチ学型

第4章

畳み込みニューラルネットワーク

- 4.1 全結合層の問題点
- 4.2 畳み込みニューラルネットワークの構成
- 4.3 畳み込み層
- 4.3.1 畳み込み層の役割
- 4.3.2 パティング
- 4.3.3 ストライド
- 4.4 プーリング層

第5章

境界要素法

- 5.1 境界要素法とは
- 5.2 基礎積分方程式
- 5.2.1 ヘルムホルツ方程式
- 5.2.2 重み付き残差法
- 5.2.3 グリーン関数
- 5.2.4 音場の境界積分表現
- 5.2.5 境界積分方程式
- 5.2.6 音源項
- 5.3 離散化
- 5.3.1 境界の要素分割
- 5.3.2 境界条件
- 5.3.3 連立方程式
- 5.4 境界積分
- 5.4.1 3次元空間
- 5.4.2 局所座標
- 5.4.3 法線方向微分
- 5.4.4 積分の計算

第6章

シミュレーションによるシステム構 成の検討

6.1 MLP と CNN の構成ごとの比較

学習データとテストデータについて

形状認識結果

位置計測結果

- 6.1.1 角度計測結果
- 6.2 学習データが限られた場合の構成ごとの比較

学習データとテストデータについて

形状認識結果

位置計測結果

- 6.2.1 角度計測結果
- 6.3 センサアレイ間隔ごとの精度の違い

形状認識結果

位置計測結果

- 6.3.1 角度計測結果
- 6.4 センサアレイ補間による計測精度の違い

形状認識結果

位置計測結果

- 6.4.1 角度計測結果
- 6.5 TOF の利用

付録 A

おまけ1

おまけがある場合はここに書く.

付録 B

おまけ2

おまけがある場合はここに書く.

謝辞

ここに謝辞を書く.

参考文献

研究業績一覧

口頭発表

- (1) 口頭発表 1
- (2) 口頭発表 2

查読付論文

- (1) 論文 1
- (2) 論文 2

受賞

- (1) 受賞 1
- (2) 受賞 2