1. Generate N = 500, 2-D random data points and plot its corresponding Gaussian PDF.

$$f(x,y) = \frac{\exp\left\{\frac{-1}{2(1-\rho^2)}\left[\left((x-\mu_x)/\sigma_x\right)^2 - 2*T\right]\right\}}{2\pi\sigma_x\sigma_y\sqrt{1-\sigma^2}}$$
(1)

$$T = \rho \left(\frac{x - \mu_x}{\sigma_x} \right) \left(\frac{y - \mu_y}{\sigma_y} \right) + \left(\frac{y - \mu_y}{\sigma_y} \right)^2 \tag{2}$$

2. Generate N = 500, 2-dimensional data points that are distributed according to the Gaussian distribution N(m,S), with mean $m = [0,0]^T$ and covariance matrix

$$S_1 = \begin{bmatrix} \sigma_1^2 & \sigma_{12} \\ \sigma_{21} & \sigma_2^2 \end{bmatrix}$$

- 3. Considering iris dataset (Click here to download), D of size N × M, with N: number of samples and M: number of features, design a Bayesian classifier to classify the test data. Divide the dataset into training and testing data into (a) 70:30 ratio (b) 80:20 ratio, calculating the accuracy and error rate.
- 4. Considering a loss function L(y,a), pick the action with minimum expected loss (risk) for the following prior-probabilities

	У			
		None $(\omega 1)$	Lung Caner $(\omega 2)$	Breast Cancer $(\omega 3)$
a	Surgery	100	20	10
	No Surgery	0	50	50