Problem R-96A ($C_4H_6Cl_2$) A 75 MHz ¹³C NMR spectrum of an approximately 7:1 mixture of cis-trans isomers of 1,3-dichloro-2-butene is provided below. (Source: Aldrich Spectra Viewer, Solvent: CDCl₃).

(a) Assign the individual carbons, and determine which is the major isomer.

(E	Assignment or <i>Z</i> : 1, 2, 3, or 4))
20.9		4
26.2		ĺ
39.7		Cl 3
40.2		2
122.0		E
123.6		
135.2		
135.6		

 $CI \xrightarrow{3} CI \qquad CI \qquad CI \qquad CI \qquad CI \qquad Z^2$

(b) Explain clearly how you made the E/Z assignment (identify the signal(s) used).

(c) From the frequency and ppm scales, determine the spectrometer frequency (MHz):_____

Problem R-96A (C₄H₆Cl₂) A 75 MHz ¹³C NMR spectrum of an approximately 7:1 mixture of cis-trans isomers of 1,3-dichloro-2-butene is provided below. (Source: Aldrich Spectra Viewer, Solvent: CDCl₃).

(a) Assign the individual carbons, and determine which is the major isomer.

(*E* or *Z*: 1, 2, 3, or 4)

(L 01 Z. 1, Z, 3, 01		
20.9	E-4	
26.2	Z-4	
39.7	E-1	
40.2	Z-1	
122.0	Z-2	
123.6	E-2	
135.2	E-3	
135.6	Z-3	

(b) Explain clearly how you made the E/Z assignment (identify the signal(s) used).

Only the signals at δ 25, which can be assigned to C⁴, have a significant difference in chemical shift in the two isomers - the other differences are probably too small to be useful.

 C^4 should be upfield in the E isomer because of the cis- γ -effect - thus the small peak at 20.9 is the CH₃ (C^4) of the E-isomer, upfield of the Z isomer by 5.3 ppm.

 C^1 sees a γ -effect in both isomers, although in the E isomer it is a Me and in the Z it is a Cl. Hard to predict which is bigger.

(c) From the frequency and ppm scales, determine the spectrometer frequency (MHz): 75 MHz

6000 Hz = 80 ppm 6000/80 = 75