Part III-B: Medicine AI

Lecture by None Note by THF

2024年10月5日

目录

1	导论																	1	
	1.1	监督学	习										 					2)
		1.1.1	数据挖掘										 					3)
		1.1.2	数据选择										 					3)
		1.1.3	数据表征										 					3	;

1 导论

Notation. 机器学习的流程:

- 1. 确立目标
- 2. 收集数据
- 3. 数据预处理
- 4. 数据分析
- 5. 模型训练
- 6. 模型评估优化
- 7. 预测

机器学习和人工智能的关系:

机器学习算法包含: 无监督学习、监督学习、强化学习

1.1 监督学习

Notation. 机器学习选择数据要求:

- 1. 了解数据类型、属性、量纲
- 2. 分析分布特性
- 3. 选择高可信度数据
- 4. 进行数据表征(将原始数据转换为计算机可识别数据)

Example. 医药领域对小分子、蛋白质、核酸进行特征数字化方法

1.1.1 数据挖掘

- 1. 通过数据分析与统计学规律
- 2. 通过爬虫与自动化程序

1.1.2 数据选择

通过一部分数据来体现总体数据

1.1.3 数据表征

Example. 分子指纹:

首先提取分子结构特征(官能团等),使用分子结构特征生成比特向量,每 个比特元素对应一种分子片段,通过对比比特向量的相似度来记录分子特征

分子指纹分类:基于子结构、拓扑或路径、药效集团的分子指纹和圆形分子指纹

Notation. SMILES/简化分子线性输入规范: SMILES 是一种 ASCII 字符串,具体规则如下

SMILES RULE

1. 简单规则

原子:原子缩写符号

Example. Au, Pt, C, N

离子:原子加上电荷数,外接中括号

Example. Fe^{3+} : [Fe+++]

 $C^-:[C_-]$

 $Pt^{6+}: [Pt+++++]$

H 原子: 省略

相邻原子: 直接连接

Example. Dodecane: CCCCCCCCCC (12 Carbons)

分支: 以小括号表示

Example. Write in git style:

SMILES: AB(EFG)CD

单键:直接省略

双键: "=" 三键: "#"

芳香键 = 单键(直接省略)

Notation. 部分软件芳香键使用单双键交替表示

Example. hex-2-en-4-yne/戊-2-烯-4-炔 (不分顺反): CC=CC#CC

2. 立体结构

环状结构: 将环断开形成线性结构, 以数字标记断开的原子

Example. Cyclohexane: C1CCCC1

同位素: [核电荷数 + 元素符号]

Example. ¹³C: [13C]

Z/E 构象:使用"/"和"\"代表单键方向

Example. (2E)-hex-2-en-4-yne: C/C=C/C#CC

(2Z)-hex-2-en-4-yne: $C/C=C\setminus C\#CC$

手性异构: @ 表示 S, @@ 代表 R

图 1: S&R

Example. $-CH_3$ 最小,放在最后,对基团大小比较:

 $F>NH_2>COOH.$

为 R 构型, 即: N[C@@](F)(C)C(=O)O