Wydział FiIS	1. Mikołaj Gralczyk 2. Karolina Nowosad		Rok III	Grupa VII	Zespół III
Pracownia Izotopowa WFiIS	Tema	Nr ćwiczenia 12			
Data wykonania 25.03.2015	Data oddania 8.04.2015	Zwrot do popr.	Data oddania	Data zaliczenia	OCENA

0. Cel ćwiczenia

Celem ćwiczenia było:

- wydzielenie ²³⁴Th, z azotanu uranylu metodą beznośnikowej ekstrakcji rozpuszczalnikiem,
- oznaczenie współczynnika ekstrakcji Th(NO₃)₄.

1. Wstęp teoretyczny

²³⁴**Th** jest jednym z produktów rozpadu promieniotwórczego uranu. Próbka oczyszczonych chemicznie związków naturalnego uranu po upływie pewnego czasu zawiera kilka izotopów promieniotwórczych z rodziny uranowców, znajdujących się we wzajemnej równowadze.

Metody wyodrębniania mikroilości pierwiastków promieniotwórczych:

- nośnikowe (otrzymuje się preparaty o niższej aktywności właściwej),
- beznośnikowe (można otrzymać preparaty o wysokiej aktywności właściwej).

Najczęściej stosowanymi metodami beznośnikowymi wydzielania izotopów są:

- metody chromatograficzne (chromatografia jonowymienna, chromatografia gazowa)
- metody ekstrakcji rozpuszczalnikiem.

Ekstrakcja rozpuszczalnikiem obejmuje ekstrakcję w układzie ciecz – ciecz, oraz ciecz – ciało stałe (ługowanie). Podczas ekstrakcji stykanie się roztworu zawierającego jedną lub więcej dających się ekstrahować substancji z nie mieszającym się rozpuszczalnikiem doprowadza do podziału ekstrahowanej substancji pomiędzy obie te fazy (wodną i organiczną).

Prawo podziału Nersta(współczynnik podziału)

$$k = \frac{C_1}{C_2}$$
 (1) gdzie: C_1 – stężenie (aktywność) substancji w rozpuszczalniku (I), C_2 – stężenie (aktywność) substancji w rozpuszczalniku (II).

Współczynnik ekstrakcji D

$$D = \frac{\sum C_1}{\sum C_2} \quad (2)$$

Jeżeli substancja nie ulega w czasie procesu ekstrakcji żadnym zmianom w obu fazach, wodnej i organicznej, to współczynnik ekstrakcji jest równy współczynnikowi podziału.

Procent ekstrakcji

$$E = \frac{m_1}{m_0}$$
 (3) gdzie: m_1 – ilość związku, która przeszła z fazy wodnej do fazy organicznej, m_0 – początkowa ilość związku w fazie wodnej.

Zależność między procentem ekstrakcji, a współczynnikiem podziału

$$E = \frac{D \cdot 100}{D + V_1 / V_2}$$
 (4) gdzie: V_1 – objętość fazy wodnej, V_2 – objętość fazy organicznej.

Prawo przenoszenia niepewności

$$u(y) = \sqrt{\sum_{i} \left[\left(\frac{\delta y}{\delta x_{i}} \right)^{2} \cdot u(x_{i})^{2} \right]}$$
 (5)

2. Układ pomiarowy

W skład układu pomiarowego wchodzą:

- urządzenie do pomiaru aktywności z licznikiem scyntylacyjnym,
- rozdzielacz,
- szklane i automatyczne pipety o różnych objętościach,
- cylinder, zlewki.

Odczynniki wykorzystane podczas ćwiczenia:

- 10% roztwór azotanu uranylu,
- nasycony roztwór (NH₄)₂CO₃,
- 3M HNO₃,
- 6% roztwór cupferronu,
- · chloroform,
- · woda bromowa.

3. Metody pomiaru

W pierwszej kolejności do zlewki odmierzono 10 cm³ roztworu azotanu uranylu. Następnie kroplami dodano nasycony roztwór węglanu amonowego, nastąpiło wytrącenie osadu, który z dalszym dozowaniem mieszaniny uległ rozpuszczeniu. Roztwór przelano do rozdzielacza, dodano 2 cm³ 6 % roztworu cupferronu i 10 cm³ chloroformu. Otrzymaną mieszaninę wytrzęsiono przez 8 minut i zostawiono do rozdzielenia. Następnie oddzielono fazę chloroformową (dolna warstwa) zawierającą ²³⁴Th od wodnej, pobrano 4 cm³ każdej z faz i zmierzono ich aktywność.

W drugiej części ćwiczenia do fazy chloroformowej dodano 10 cm³ 3M HNO₃ i 4 cm³ wody bromowej. Otrzymaną mieszaninę przelano do rozdzielacza, wytrzęsiono przez 8 minut i zostawiono do rozdzielenia. Następnie oddzielono fazę chloroformową (dolna warstwa) od wodnej, pobrano 4 cm³ każdej z faz i zmierzono ich aktywność.

4. Wyniki pomiarów

tabela 1

Zestawienie wyników pomiarów dla fazy wodnej(W) i organicznej(O) dla pierwszej i drugiej części ćwiczenia.

	area	u(area) [%]	integral
O_1	10540	1,39	16980
\mathbf{W}_{1}	310	10,70	770
O_2	109	19,10	299
W_2	7167	1,65	11160

5. Opracowanie wyników

5.1. Współczynnik ekstrakcji D azotanu toru w układzie chloroform/woda

Wyliczono za pomocą wzoru (2) i (5), przy czym we wzorze (2) współczynnik ekstrakcji jest równy współczynnikowi podziału, ponieważ substancja nie ulega w czasie procesu ekstrakcji żadnym zmianom w obu fazach, wodnej i organicznej.

5.1.1. Współczynnik pierwszej ekstrakcji D₁ wraz z niepewnością

$$D_1 = \frac{C_1}{C_2} = \frac{A_{OI}}{A_{WI}} = \frac{16980}{770} = 22,05$$

Niepewność wyliczono za pomocą wzoru (6).

$$u(D_{1}) = \sqrt{\left[\frac{\delta D_{1}}{\delta A_{OI}} \cdot u(A_{01})\right]^{2} + \left[\frac{\delta D_{1}}{\delta A_{WI}} \cdot u(A_{WI})\right]^{2}} = \sqrt{\left[\frac{1}{A_{WI}} \cdot \sqrt{A_{01}}\right]^{2} + \left[\frac{-A_{OI}}{A_{WI}^{2}} \cdot \sqrt{A_{WI}}\right]^{2}}$$

$$\sqrt{\left[\frac{1}{770} \cdot \sqrt{16980}\right]^{2} + \left[\frac{-16980}{770^{2}} \cdot \sqrt{770}\right]^{2}} = 0.81$$

5.1.2. Współczynnik drugiej ekstrakcji D₂ wraz z niepewnością

$$D_2 = \frac{C_1}{C_2} = \frac{A_{O2}}{A_{W2}} = \frac{299}{11160} = 0.03$$

Niepewność wyliczono za pomocą wzoru (6).

$$u(D_{2}) = \sqrt{\left[\frac{\delta D_{2}}{\delta A_{O2}} \cdot u(A_{02})\right]^{2} + \left[\frac{\delta D_{2}}{\delta A_{W2}} \cdot u(A_{W2})\right]^{2}} = \sqrt{\left[\frac{1}{A_{W2}} \cdot \sqrt{A_{02}}\right]^{2} + \left[\frac{-A_{O2}}{A_{W2}^{2}} \cdot \sqrt{A_{W2}}\right]^{2}}$$

$$\sqrt{\left[\frac{1}{11160} \cdot \sqrt{299}\right]^{2} + \left[\frac{-299}{11160^{2}} \cdot \sqrt{11160}\right]^{2}} = 0,0016$$

5.2. Procent ekstrakcji toru wraz z niepewnością

Do wyliczenia procentu ekstrakcji wykorzystano wzór (4). Objętość fazy wodnej wynosi 14,7 cm³, natomiast fazy organicznej wynosi 10 cm³.

$$E\% = \frac{D_1 \cdot 100}{D_1 + \frac{V_1}{V_2}} = \frac{22,05 \cdot 100}{22,05 + \frac{14,7 \text{ cm}^3}{10 \text{ cm}^3}} = 93,75\%$$

Niepewność wyliczono za pomocą wzoru (5).

$$u(E\%) = \sqrt{\left[\frac{\delta E\%}{\delta D_1} \cdot u(D_1)\right]^2 + \left[\frac{\delta E\%}{\delta V_1} \cdot u(V_1)\right]^2 + \left[\frac{\delta E\%}{\delta V_2} \cdot u(V_2)\right]^2}$$

$$\sqrt{\left[\frac{100 \cdot \left(D_{1} + \frac{V_{1}}{V_{2}}\right) - 100 \cdot D_{1}}{\left(D_{1} + \frac{V_{1}}{V_{2}}\right)^{2}} \cdot u\left(D_{1}\right)\right]^{2} + \left[\frac{-100 \cdot D_{1}}{V_{2} \cdot \left(D_{1} + \frac{V_{1}}{V_{2}}\right)^{2}} \cdot u\left(V_{1}\right)\right]^{2} + \left[\frac{100 \cdot D_{1} \cdot V_{1}}{V_{2}^{2}} \cdot \left(D_{1} + \frac{V_{1}}{V_{2}}\right)^{2} \cdot u\left(V_{2}\right)\right]^{2} = 1$$

5.3. Masy toru i protaktynu w badanej próbce

Dane istotne do wyliczania szukanych mas:

$$t_{238}_{U} = 4,5 \cdot 10^{9} \, lat, \ \lambda_{238}_{U} = 4,88 \cdot 10^{-19} \, \frac{1}{s},$$

$$t_{234}_{Th} = 24 \, dni, \ \lambda_{234}_{Th} = 3,3 \cdot 10^{-7} \, \frac{1}{s},$$

$$t_{234}_{Pa} = 1,2 \, min, \ \lambda_{234}_{Pa} = 9,6 \cdot 10^{-3} \, \frac{1}{s},$$

dla roztworu $UO_2(NO_3)_2 \cdot 6H_2O$:

$$\begin{split} & \rho = 1 \frac{g}{cm^3} \,, \\ & C = 10 \,\%, \\ & m = 238 \,\mathrm{g} + 2 \cdot 16 \,\mathrm{g} + 2 \cdot (14 \,\mathrm{g} + 3 \cdot 16 \,\mathrm{g}) + 6 \cdot (2 \cdot 1 \,\mathrm{g} + 16 \,\mathrm{g}) = 502 \,\mathrm{g} \,, \end{split}$$

$$m_{238}_{U} = 10\% \cdot \frac{1 \frac{g}{cm^{3}} \cdot 10 cm^{3}}{502 g} \cdot 238 g = 0,474 g$$

Skorzystano z informacji, że próbka oczyszczonych chemicznie związków naturalnego uranu po pewnym czasie zawiera kilka izotopów promieniotwórczych z rodziny uranowców, które znajdują się w równowadze.

$$A(^{238}U) = A(^{234}Th) = A(^{234}Pa)$$
 (6)

Następnie, korzystając z podstawowego wzoru na aktywność $A = \lambda \cdot N$ (7) wyznaczono zależność:

$$\lambda_{238} U \cdot N_{238} U = \lambda_{234} Th \cdot N_{234} Th = \lambda_{234} Pa$$

Liczbę cząstek uranu wyliczono korzystając z poniższego wzoru (8), z uwzględnienie informacji, że 1 mol zawiera 6,02*10²³ cząsteczek.

$$N_{238}{}_{U} = \frac{m_{238}{}_{U}}{M_{238}{}_{U}} 6,02 \cdot 10^{23} = \frac{0,474}{238} \cdot 6,02 \cdot 10^{23} = 1,19 \cdot 10^{21} cząsteczek$$
 (8)

Mając wyliczoną liczbę cząsteczek, oraz masę uranu, skorzystano z zależności 7, aby obliczyć liczbę cząsteczek toru i protaktynu.

$$N_{234}{}_{Th} = \frac{\lambda_{238}{}_{U} \cdot N_{238}{}_{U}}{\lambda_{234}{}_{Th}} = \frac{4,88 \cdot 10^{-19} \cdot 1,19 \cdot 10^{21}}{3,3 \cdot 10^{-7}} = 1,76 \cdot 10^{10} cząsteczek$$

$$N_{234}{}_{Pa} = \frac{\lambda_{238}{}_{U} \cdot N_{238}{}_{U}}{\lambda_{234}{}_{Pa}} = \frac{4,88 \cdot 10^{-19} \cdot 1,19 \cdot 10^{21}}{9,6 \cdot 10^{-3}} = 6,05 \cdot 10^{5} cząsteczek$$

Korzystając z przekształcenia wzoru (8) wyliczono masy szukanych pierwiastków.

$$m_{234 Pa} = \frac{N_{234 Th} \cdot M_{234 Th}}{6,02 \cdot 10^{23}} = \frac{1,76 \cdot 10^{10} \cdot 234}{6,02 \cdot 10^{23}} = 6,84 \cdot 10^{-12} g$$

$$m_{238 Pa} = \frac{N_{234 Pa} \cdot M_{234 Pa}}{6,02 \cdot 10^{23}} = \frac{6,05 \cdot 10^{5} \cdot 234}{6,02 \cdot 10^{23}} = 2,35 \cdot 10^{-16} g$$

Wyniki zbiorcze zamieszczono w tabeli 2 na następnej stronie.

Tabela 2 Wyniki zbiorcze

6. Wnioski

- fff
- fff
- fff
- fff