Amortized Analysis

He Sun

Stack Operations ————————————————————————————————————				
0144011	o por anomo			

Stack Operations ——

lacktriangle PUSH (S,x)

- lacktriangle PUSH (S,x)
 - $\blacksquare \ \, \text{pushes object} \, x \, \, \text{onto stack} \, S$

- **PUSH** (*S*, *x*)
 - lacktriangledown pushes object x onto stack S
 - total cost of 1

- **PUSH** (*S*, *x*)
 - lacktriangle pushes object x onto stack S
 - total cost of 1
- **POP** (S)

- **PUSH** (*S*, *x*)
 - pushes object x onto stack S
 - total cost of 1
- **POP** (S)
 - $\ ^{\blacksquare}$ pops the top of (a non-empty) stack S

- PUSH (S, x)
 - pushes object x onto stack S
 - total cost of 1
- **POP** (S)
 - lacktriangle pops the top of (a non-empty) stack S
 - total cost of 1

- **PUSH** (*S*, *x*)
 - lacktriangle pushes object x onto stack S
 - total cost of 1
- **POP** (S)
 - pops the top of (a non-empty) stack S
 - total cost of 1
- MULTIPOP (S, k)

- PUSH (S, x)
 - pushes object x onto stack S
 - total cost of 1
- **POP** (S)
 - lacktriangle pops the top of (a non-empty) stack S
 - total cost of 1
- MULTIPOP (S, k)
 - pops the k top objects (S non-empty)

- PUSH (S, x)
 - pushes object x onto stack S
 - total cost of 1
- POP (S)
 - \blacksquare pops the top of (a non-empty) stack S
 - total cost of 1
- MULTIPOP (S, k)
 - pops the k top objects (S non-empty)
 - \Rightarrow total cost of min{|S|, k}

Stack Operations

- **PUSH** (*S*, *x*)
 - pushes object x onto stack S
 - total cost of 1
- **POP** (S)
 - pops the top of (a non-empty) stack S
 - total cost of 1
- MULTIPOP (S, k)
 - pops the k top objects (S non-empty)
 - \Rightarrow total cost of min{|S|, k}
- 0: MULTIPOP (S, k)
- 1: while not S empty() and k > 0
- 2: POP (S)
- 3: k = k 1

MULTIPOP(S,4)

Stack Operations -

- **PUSH** (*S*, *x*)
 - pushes object x onto stack S
 - total cost of 1
- **POP** (S)
 - pops the top of (a non-empty) stack S
 - total cost of 1
- MULTIPOP (S, k)
 - pops the k top objects (S non-empty)
 - \Rightarrow total cost of min{|S|, k}

What is the largest possible cost of a sequence of n stack operations (starting from an empty stack)?

Stack Operations

- **PUSH** (*S*, *x*)
 - pushes object x onto stack S
 - total cost of 1
- **POP** (S)
 - pops the top of (a non-empty) stack S
 - total cost of 1
- MULTIPOP (S, k)
 - pops the k top objects (S non-empty)
 - \Rightarrow total cost of min{|S|, k}

What is the largest possible cost of a sequence of n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$

Stack Operations

- **PUSH** (*S*, *x*)
 - pushes object x onto stack S
 - total cost of 1
- POP (S)
 - pops the top of (a non-empty) stack S
 - total cost of 1
- MULTIPOP (S, k)
 - pops the k top objects (S non-empty)
 - \Rightarrow total cost of min{|S|, k}

What is the largest possible cost of a sequence of n stack operations (starting from an empty stack)?

Simple Worst-Case Bound (stack is initially empty):

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

Amortized Analysis		

Amortized Analysis ——

analyse a sequence of operations

Data structure operations (Heap, Stack, Queue etc.)

Amortized Analysis -

analyse a sequence of operations

Amortized Analysis —

- analyse a sequence of operations
- show that average cost of an operation is small

Amortized Analysis —

- analyse a sequence of operations
- show that average cost of an operation is small

Amortized Analysis ____

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques

Amortized Analysis -

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
 - Aggregate Analysis
 - Potential Method

Amortized Analysis ——————

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
 - Aggregate Analysis
 - Potential Method

A new Analysis Tool: Amortized Analysis

Amortized Analysis

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
 - Aggregate Analysis
 - Potential Method

Aggregate Analysis ———

 Determine an upper bound T(n) for the total cost of any sequence of n operations

A new Analysis Tool: Amortized Analysis

Amortized Analysis ——

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
 - Aggregate Analysis
 - Potential Method

- Aggregate Analysis ——
- Determine an upper bound T(n) for the total cost of any sequence of n operations
- \blacksquare amortized cost of each operation is the average $\frac{T(n)}{n}$

A new Analysis Tool: Amortized Analysis

Amortized Analysis -

- analyse a sequence of operations
- show that average cost of an operation is small
- concrete techniques
 - Aggregate Analysis
 - Potential Method

Aggregate Analysis ----

- Determine an upper bound T(n) for the total cost of any sequence of n operations
- \blacksquare amortized cost of each operation is the average $\frac{T(n)}{n}$

Even though operations may be of different types/costs

Amortized Analysis

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

$$T(n) \leq$$

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

$$T(n) \le T_{POP}(n) + T_{PUSH}(n)$$

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

 $\mathsf{MULTIPOP}(k) \text{ contributes } \min\{k,|S|\} \text{ to } T_{POP}(n)$

$$T(n) \le T_{POP}(n) + T_{PUSH}(n)$$

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

$$T(n) \le T_{POP}(n) + T_{PUSH}(n) \le 2 \cdot T_{PUSH}(n)$$

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

$$T(n) \le T_{POP}(n) + T_{PUSH}(n) \le 2 \cdot T_{PUSH}(n) \le 2 \cdot n.$$

Simple Worst-Case Bound:

- largest cost of an operation: n
- cost is at most $n \cdot n = n^2$ (correct, but not tight!)

Aggregate Analysis: The amortized cost per operation is $\frac{T(n)}{n} \leq 2$

$$T(n) \le T_{POP}(n) + T_{PUSH}(n) \le 2 \cdot T_{PUSH}(n) \le 2 \cdot n.$$

Potential Method

- Potential Method -

allow different amortized costs

Potential Method

- allow different amortized costs
- store (fictitious) credit in the data structure to cover up for expensive operations

Potential Method

- allow different amortized costs
- → store (fictitious) credit in the data structure
 to cover up for expensive operations

Potential of a data structure can be also thought of as

- amount of potential energy stored
- distance from an ideal state

Potential Method

- allow different amortized costs
- → store (fictitious) credit in the data structure
 to cover up for expensive operations

Potential of a data structure can be also thought of as

- amount of potential energy stored
- distance from an ideal state

Potential Method in Detail

• c_i is the actual cost of operation i

- c_i is the actual cost of operation i
- \widetilde{c}_i is the amortized cost of operation i

$$c_i < \widetilde{c}_i, \, c_i = \widetilde{c}_i \text{ or } c_i > \widetilde{c}_i \text{ are all possible!}$$

- c_i is the actual cost of operation i
- ullet \widetilde{c}_i is the amortized cost of operation i

- c_i is the actual cost of operation i
- \widetilde{c}_i is the amortized cost of operation i
- Φ_i is the potential stored after operation i ($\Phi_0 = 0$)

- c_i is the actual cost of operation i
- \widetilde{c}_i is the amortized cost of operation i
- Φ_i is the potential stored after operation i ($\Phi_0 = 0$)

Function that maps states of the data structure to some value

- c_i is the actual cost of operation i
- \widetilde{c}_i is the amortized cost of operation i
- Φ_i is the potential stored after operation i ($\Phi_0 = 0$)

- c_i is the actual cost of operation i
- \widetilde{c}_i is the amortized cost of operation i
- Φ_i is the potential stored after operation i ($\Phi_0 = 0$)

$$\Phi_i = \Phi_{i-1} + \widetilde{c}_i - c_i$$

$$\sum_{i=1}^{n} \widetilde{c}_i = \sum_{i=1}^{n} (c_i + \Phi_i - \Phi_{i-1})$$
$$= \sum_{i=1}^{n} c_i + \Phi_n - \Phi_0$$

If $\Phi_n \geq 0$ for all n, sum of amortized costs is an upper bound for the sum of actual costs!

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH —

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

PUSH -

• actual cost: $c_i = 1$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} =$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\widehat{c}_i =$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

PUSH

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) =$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

PUSH

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

•
$$c_i = 1$$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- $c_i = 1$
- $\Phi_i \Phi_{i-1} =$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$
- $\hat{c}_i = c_i + (\Phi_i \Phi_{i-1}) =$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

$\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

POP

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$
- $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

Stack is non-empty!

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

POP

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

- MULTIPOP(k) -

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

POP

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

- MULTIPOP(k) -

 $c_i = \min\{k, |S|\}$

 $\Phi_i = \text{\# objects in the stack after } i \text{th operation } (= \text{\# coins})$

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- POP

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$
- $\hat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

- MULTIPOP(k)

- $c_i = \min\{k, |S|\}$
- $\Phi_i \Phi_{i-1} =$

 $\Phi_i = \text{\# objects in the stack after } i \text{th operation } (= \text{\# coins})$

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

POP

- $c_i = 1$
- $\bullet \Phi_i \Phi_{i-1} = -1$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

MULTIPOP(k)

- $c_i = \min\{k, |S|\}$
- $\Phi_i \Phi_{i-1} = -\min\{k, |S|\}$

 $\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

POP

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

MULTIPOP(k)

- $c_i = \min\{k, |S|\}$
- $\Phi_i \Phi_{i-1} = -\min\{k, |S|\}$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) =$

$\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: c_i = 1
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- POP

- $c_i = 1$
- $\Phi_i \Phi_{i-1} = -1$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

- MULTIPOP(k) -

- $c_i = \min\{k, |S|\}$
- $\Phi_i \Phi_{i-1} = -\min\{k, |S|\}$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = \min\{k, |S|\} \min\{k, |S|\} = 0$

$\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- POP

- $c_i = 1$
- Amortized Cost $\leq 2 \Rightarrow T(n) \leq 2n$
- $\bullet \Phi_i \Phi_{i-1} = -1$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

MULTIPOP(k)

- $c_i = \min\{k, |S|\}$
- $\Phi_i \Phi_{i-1} = -\min\{k, |S|\}$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = \min\{k, |S|\} \min\{k, |S|\} = 0$

$\Phi_i = \#$ objects in the stack after *i*th operation (= # coins)

- PUSH -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- POP

•
$$c_i = 1$$

n/2 PUSH, n/2 POP $\Rightarrow T(n) \leq n$

- $\Phi_i \Phi_{i-1} = -1$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 1 = 0$

MULTIPOP(k)

- $c_i = \min\{k, |S|\}$
- $\Phi_i \Phi_{i-1} = -\min\{k, |S|\}$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = \min\{k, |S|\} \min\{k, |S|\} = 0$

Binary Counter ————

• Array $A[k-1], A[k-2], \ldots, A[0]$ of k bits

$$A[3]A[2]A[1]A[0]$$

1 0 1 1 1 11

Binary Counter —

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- lacktriangle Use array for counting from 0 to 2^k-1

Binary Counter —

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC

Binary Counter —

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one

Binary Counter ———

- Array A[k-1], A[k-2], ..., A[0] of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one

Binary Counter ———

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one

0: INC (A)

1: i = 0

2: while i < k and A[i] ==1

3: A[i] = 04: i = i + 1

5: A[i] = 1

Binary Counter ———

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one
 - total cost: ??

0: INC(A)

1: i = 0

2: while i < k and A[i] ==1

3: A[i] = 04: i = i + 1

5: A[i] = 1

A[3]A[2]A[1]A[0]1 0 1 1 1 11

INC

A[3]A[2]A[1]A[0]

1 1 0 0

12

Binary Counter ———

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one
 - total cost: < k</p>

1:
$$i = 0$$

2: while
$$i < k$$
 and A[i] ==1

3:
$$A[i] = 0$$

4:
$$i = i + 1$$

5:
$$A[i] = 1$$

11

$$A[3]A[2]A[1]A[0] \\$$

Binary Counter ———

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one
 - total cost: number of flips (smallest index of a zero)

1: i = 0

2: while i < k and A[i] ==1

3: A[i] = 0

4: i = i + 1

5:
$$A[i] = 1$$

$$A[3]A[2]A[1]A[0]$$

1 0 1 1 11

INC

Binary Counter _____

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one
 - total cost: number of flips (smallest index of a zero)

What is the total cost of a sequence of n INC operations?

Binary Counter ———

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one
 - total cost: number of flips (smallest index of a zero)

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

- largest cost of an operation: k
- cost is at most $n \cdot k$

Binary Counter _____

- Array $A[k-1], A[k-2], \dots, A[0]$ of k bits
- Use array for counting from 0 to $2^k 1$
- only operation: INC
 - increases the counter by one
 - total cost: number of flips (smallest index of a zero)

What is the total cost of a sequence of n INC operations?

Simple Worst-Case Bound:

- largest cost of an operation: k
- cost is at most $n \cdot k$ (correct, but not tight!)

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7

Counter									Total
Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Cost
value									COSt
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8

Counter	4 [m]	4[c]	4[=]	4 [4]	4[9]	4[0]	4[1]	4[0]	Total
Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	A[1]	А[0]	A[0]	71[4]	A[0]	A[L]	Л[1]	A[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	A[I]	А[0]	A[0]	71[4]	A[0]	A[L]	Л[1]	A[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	11[1]	11[0]	11[0]	11[1]	11[0]	11[2]	11[1]	11[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11

Counter Value A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0	Total
value 0 0 0 0 0 0 0 0	
	Cost
1 0 0 0 0 0 0 1	0
	1
2 0 0 0 0 0 0 1 0	3
3 0 0 0 0 0 0 1 1	4
4 0 0 0 0 0 1 0 0	7
5 0 0 0 0 0 1 0 1	8
6 0 0 0 0 0 1 1 0	10
7 0 0 0 0 0 1 1 1	11

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	A[I]	А[0]	A[0]	71[4]	A[0]	A[L]	Л[1]	A[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	A[I]	А[0]	A[0]	71[4]	A[0]	A[L]	Л[1]	A[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value									Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19

Counter Value	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0	0	0	0	0
0	_	-	-	-	-	-			0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19

Counter									Total
	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	
Value									Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22

Counter									Total
	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	
Value									Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	11[1]	21[0]	11[0]	71[1]	71[0]	11[2]	71[1]	71[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23

_									
Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	1.1	11[0]	21[0]	21[4]	21[0]	11[2]	11[1]	11[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23

Counter									
Oddillei	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	21[1]	21[0]	11[0]	A[4]	A[0]	A[2]	A[1]	A[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	A[I]	л[0]	A[0]	71[4]	A[0]	A[2]	Л[1]	A[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	21[1]	71[0]	11[0]	21[1]	71[0]	21[2]	71[1]	71[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	71[1]	21[0]	11[0]	71[1]	11[0]	11[2]	71[1]	71[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	21[1]	21[0]	21[0]	21[1]	71[0]	21[2]	71[1]	71[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

Counter	A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	Total
Value	21[1]	21[0]	21[0]	21[1]	71[0]	21[2]	71[1]	71[0]	Cost
0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	1	0	3
3	0	0	0	0	0	0	1	1	4
4	0	0	0	0	0	1	0	0	7
5	0	0	0	0	0	1	0	1	8
6	0	0	0	0	0	1	1	0	10
7	0	0	0	0	0	1	1	1	11
8	0	0	0	0	1	0	0	0	15
9	0	0	0	0	1	0	0	1	16
10	0	0	0	0	1	0	1	0	18
11	0	0	0	0	1	0	1	1	19
12	0	0	0	0	1	1	0	0	22
13	0	0	0	0	1	1	0	1	23
14	0	0	0	0	1	1	1	0	25
15	0	0	0	0	1	1	1	1	26
16	0	0	0	1	0	0	0	0	31

Counter	A[3]	A[2]	A[1]	A[0]	Total
Value					Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Counter Value	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Counter	4[9]	4[0]	, L 4[1]	4[0]	Total
Value	A[3]	A[2]	A[1]	A[0]	Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

Counter Value	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

r l ar	A[3] $A[2]$	A[1]	A[0]	Total
] A[1] .	a[0]	Cost
0	0 0	0	0	0
0	0 0	0	1	1
0	0 0	1	0	3
0	0 0	1	1	4
0	0 1	0	0	7
0	0 1	0	1	8
0	0 1	1	0	10
0	0 1	1	1	11
0 0	0 0 0 0 0 0 0 1 0 1 0 1	0 1 1 0 0	1 0 1 0	1 3 4 7 8

Counter Value	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

 $\blacksquare \ \, \text{Bit} \,\, A[i] \,\, \text{is only flipped every} \,\, 2^i \,\, \text{increments}$

Counter	A[3]	A[2]	A[1]	A[0]	Total
Value					Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit A[i] is only flipped every 2^i increments
- In a sequence of n increments from 0, bit A[i] is flipped $\lfloor \frac{n}{2^i} \rfloor$ times

Counter	A[3]	A[2]	A[1]	A[0]	Total
Value					Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit A[i] is only flipped every 2^i increments
- In a sequence of n increments from 0, bit A[i] is flipped $\lfloor \frac{n}{2i} \rfloor$ times

 $T(n) \leq$

Counter	A[3]	A[2]	A[1]	A[0]	Total
Value	21[0]	11[0] 11[2] 11[1] 11	21[0]	Cost	
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit A[i] is only flipped every 2^i increments
- In a sequence of n increments from 0, bit A[i] is flipped $\lfloor \frac{n}{2i} \rfloor$ times

$$T(n) \le \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor$$

Counter	A[3]	A[2]	A[1]	A[0]	Total
Value	[-1		1 1	[-1	Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit A[i] is only flipped every 2^i increments
- In a sequence of n increments from 0, bit A[i] is flipped $\lfloor \frac{n}{2^i} \rfloor$ times

$$T(n) \le \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor \le \sum_{i=0}^{k-1} \frac{n}{2^i}$$

Counter Value	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit A[i] is only flipped every 2^i increments
- In a sequence of n increments from 0, bit A[i] is flipped $\lfloor \frac{n}{2^i} \rfloor$ times

$$T(n) \le \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor \le \sum_{i=0}^{k-1} \frac{n}{2^i} = n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{k-1}}\right)$$

Counter Value	A[3]	A[2]	A[1]	A[0]	Total Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

- Bit A[i] is only flipped every 2^i increments
- In a sequence of n increments from 0, bit A[i] is flipped $\lfloor \frac{n}{2^i} \rfloor$ times

$$T(n) \le \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor \le \sum_{i=0}^{k-1} \frac{n}{2^i} = n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{k-1}} \right) \le 2 \cdot n.$$

Amortized Analysis He Sun

12

Counter	A[3]	A[2]	A[1]	4[0]	Total
Value	A[3]	A[2]	A[1]	A[0]	Cost
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	3
3	0	0	1	1	4
4	0	1	0	0	7
5	0	1	0	1	8
6	0	1	1	0	10
7	0	1	1	1	11

■ Bit A[i] is only flipped every 2ⁱ increments

Aggregate Analysis: The amortized cost per operation is $\frac{T(n)}{2} \le 2$.

$$T(n) \le \sum_{i=0}^{k-1} \left\lfloor \frac{n}{2^i} \right\rfloor \le \sum_{i=0}^{k-1} \frac{n}{2^i} = n \cdot \left(1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{k-1}} \right) \le 2 \cdot n.$$

$$\Phi_i =$$

 Φ_i = # ones in the binary representation of i

$$\Phi_i = \mbox{\#}$$
 ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over -

• actual cost: $c_i = 1$

1 1 0 0

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over -

• actual cost: $c_i = 1$

 $\Phi_i =$ # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} =$

 $\Phi_i =$ # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$

 $\Phi_i =$ # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\widehat{c}_i =$

 Φ_i = # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) =$

 Φ_i = # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

•
$$c_i = x + 1$$
, (x lowest index of a zero)

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

•
$$c_i = x + 1$$
, (x lowest index of a zero)

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} =$

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over —

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} = -x + 1$

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over -

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} = -x + 1$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) =$

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} = -x + 1$
- $\widehat{c}_i = c_i + (\Phi_i \Phi_{i-1}) = 1 + x x + 1$

$$\Phi_i =$$
 # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} = -x + 1$
- $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + x x + 1 = 2$

Binary Counter: Analysis via Potential Function

 $\Phi_i =$ # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over —

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

Increment with Carry-Over

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} = -x + 1$
- $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + x x + 1 = 2$

Binary Counter: Analysis via Potential Function

 $\Phi_i =$ # ones in the binary representation of i

$$\Phi_0 = 0 \checkmark \quad \Phi_i \ge 0 \checkmark$$

Increment without Carry-Over —

- actual cost: $c_i = 1$
- potential change: $\Phi_i \Phi_{i-1} = 1$
- amortized cost: $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + 1 = 2$

Increment with Carry-Over

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} = -x + 1$
- $\hat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + x x + 1 = 2$

Binary Counter: Analysis via Potential Function

Increment with Carry-Over

- $c_i = x + 1$, (x lowest index of a zero)
- $\Phi_i \Phi_{i-1} = -x + 1$
- $\widehat{c_i} = c_i + (\Phi_i \Phi_{i-1}) = 1 + x x + 1 = 2$

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

- Aggregate Analysis -----

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis -

• Determine an absolute upper bound T(n)

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

E.g. by bounding the number of expensive operations

- Aggregate Analysis -

• Determine an absolute upper bound T(n)

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis -

- Determine an absolute upper bound T(n)
- every operation has amortized cost $\frac{T(n)}{n}$

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis —

- Determine an absolute upper bound T(n)
- every operation has amortized cost $\frac{T(n)}{n}$

T(n)

Potential Method

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis —

- Determine an absolute upper bound T(n)
- every operation has amortized cost $\frac{T(n)}{n}$

T(n)

Potential Method -

 use savings from cheap operations to compensate for expensive ones

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis —

- Determine an absolute upper bound T(n)
- every operation has amortized cost $\frac{T(n)}{n}$

Potential Method -

 use savings from cheap operations to compensate for expensive ones

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis -

- Determine an absolute upper bound T(n)
- every operation has amortized cost $\frac{T(n)}{n}$

T(n)

Potential Method -

- use savings from cheap operations to compensate for expensive ones
- operations may have different amortized cost

Amortized Analysis

- Average costs over a sequence of n operations
- overcharge cheap operations and undercharge expensive operations
- no probability/average case analysis involved!

Aggregate Analysis -

- Determine an absolute upper bound T(n)
- every operation has amortized cost $\frac{T(n)}{n}$

T(n)

Full power of this method will become clear later!

Potential Method —

- use savings from cheap operations to compensate for expensive ones
- operations may have different amortized cost

