GRUPO: TECNOLIFE

ELISA FERNANDES
KEITH CARVALHO
LUCAS VILLAR
NAYANE GETIRANA
VALMON GAUDENCIO

SistemasTecnoLife.blogspot.com

Paradigmas de linguagem de programação

ALUNA:

ELISA CRAVO FERNANDES

Sistem as Tecno Life. blog spot. com

Introdução à LP's

Conteúdo Programático

- 1. O que é Paradigma?
- 2. O que é Paradigma de Programação?
- 3. Características de Paradigma de Programação
- 4. História
- 5. Por que estudar LP's?
- 6. Para que servem as LP's?
- 7. Propriedades Desejáveis
- 8. Por que tanta linguagem?

O que é um Paradigma?

- Modelo, padrão
- É um modelo imperativo de uma realidade
- Permite organizar as idéias com vista:
 - Ao atendimento dessa realidade
 - À determinação de qual é a melhor forma de atuar sobre essa realidade

O que é Paradigma de Programação?

- Modelo, padrão ou estilo de programação suportado por linguagens que agrupam certas características comuns.
- Uma linguagem de programação é um método padronizado para expressar instruções para um computador. É um conjunto de regras sintáticas e semânticas usadas para definir um programa de computador.

Características de Paradigmas de Programação

 Gramática e significado bem definidos [sintaxe: gramática (forma); semântica: significado]

Implementável (executável) com eficiência "aceitável"

Universal: deve ser possível expressar todo problema computável

História

A primeira linguagem de programação para computadores foi provavelmente Plankalkül, criada por Konrad Zuse na Alemanha Nazista, mas que teve pouco ou nenhum impacto no futuro das linguagens de programação.

A primeira linguagem de programação de alto nível amplamente usada foi Fortran, criada em 1954.

Por que estudar LP's ?

- Programação é central para computação
- Linguagens de consulta a banco de dados têm muitos dos conceitos de linguagens de programação
- Linguagens de comando de sistemas operacionais têm muitos dos conceitos de linguagens de programação
- Linguagens de descrição de hardware têm muitos dos conceitos de linguagens de programação
- Processamento de linguagem natural é relacionado a processamento de linguagens de programação

Para que servem as LP's ?

- Permitem que programadores tenham uma maior produtividade, ajudando-os a expressar suas intenções mais facilmente do que quando comparado com a linguagem que um computador entende nativamente (código de máquina).
- Tornam os programas menos dependentes de computadores ou ambientes computacionais específicos

Propriedades Desejáveis em uma LP

- Legibilidade
- Regibilidade
- Confiabilidade
- Eficiência
- Facilidade de aprendizado
- Ortogonalidade
- Reusabilidade
- Modificabilidade
- Portabilidade

Por que tantas LP's ?

- Propósitos diferentes
- Avanços tecnológicos
- Interesses comercias

Cultura e background científico

ALUNO:

LUCAS VILLAR

Sistem as Tecno Life. blog spot. com

Programação Imperativa e Orientada a Objeto

Conteúdo

- O paradigma Imperativo
- Vantagens e Desvantagens do modelo Imperativo
- Alguns exemplos de linguagens do modelo imperativo
- O paradigma Orientado a Objeto
- Vantagens e Desvantagens do modelo OO
- Alguns exemplos de linguagens do modelo OO

O Paradigma Imperativo

- Programas centrados no conceito de um estado (modelado por variáveis) e ações (comandos) que manipulam o estado
- Paradigma também denominado de procedural, por incluir sub-rotinas ou procedimentos como mecanismo de estruturação
- Primeiro paradigma a surgir
 - Ainda é muito utilizado

Modelo Computacional do Paradigma Imperativo

Vantagens do modelo imperativo

- Eficiência (embute modelo de Von Neumann)
- Modelagem "natural" de aplicações do mundo real
- Paradigma dominante e bem estabelecido

Desvantagens do paradigma imperativo

- Relacionamento indireto entre E/S resulta em:
 - difícil legibilidade
 - erros introduzidos durante manutenção
 - descrições demasiadamente operacionais focalizam o como e não o que

Alguns exemplos de linguagens do modelo imperativo

- Ada
- Algol
- Basic
- Cobol
- Fortran
- Pascal

O Paradigma Orientado a Objetos

- Não é um paradigma no sentido estrito: é uma subclassificação do imperativo
- A diferença é mais de metodologia quanto à concepção e modelagem do sistema
- A grosso modo, uma aplicação é estruturada em módulos (classes) que agrupam um estado (atributos) e operações (métodos) sobre este
- Classes podem ser estendidas e/ou usadas como tipos (cujos elementos são objetos)

Modelo Computacional do Paradigma Orientado a Objetos

Vantagens do Paradigma Orientado a Objetos

- Todas as do estilo imperativo
- Classes estimulam projeto centrado em dados: modularidade, reusabilidade e extensibilidade
- Aceitação comercial crescente.

Problemas do Paradigma OO

 Semelhantes aos do paradigma imperativo, mas amenizadas pelas facilidades de estruturação

Alguns exemplos de linguagens do modelo 00

- Ada
- Algol
- Basic
- Cobol
- Fortran

ALUNO:

VALMON GAUDENCIO

Sistemas Tecno Life. blog spot. com

Paradigma Paralelo e Distribuído

Conteúdo Programático

- □ 1. Introdução
- 2. Paradigma Paralelo
- 3. Paradigma Distribuído

Introdução à Paradigma Paralelo e Distribuído

- Paradigma Paralelo e Distribuído
- Vantagens e Dificuldades
- Plataformas de Execução

Panorama Atual

Paradigma paralelo

- □ O que é?
- Consiste em executar simultaneamente várias partes de uma mesma aplicação.
- Tornou-se possível a partir do desenvolvimento de sistemas operacionais multi-tarefa, multi-thread e paralelos.
- Aplicações são executadas paralelamente:
- Em um mesmo processador.
- Em uma máquina multiprocessada.
- Em um grupo de máquinas interligadas que se comporta como uma só máquina.

Paradigma Distribuído

- □ O que é?
- Consiste em executar aplicações cooperantes em máquinas diferentes.
- Tornou-se possível a partir da popularização das redes de computadores.
- Aplicações são executadas em máquinas diferentes interligadas por uma rede.
- Intranets
- Internet
- Outras redes públicas ou privadas

Diferenças

Acoplamento

- Sistemas paralelos são fortemente acoplados: compartilham hardware ou se comunicam através de um barramento de alta velocidade
- Sistemas distribuídos são fracamente acoplados

Previsibilidade

O comportamento de sistemas paralelos é mais previsível; já os sistemas distribuídos são mais imprevisíveis devido ao uso da rede e a falhas.

Influência do Tempo

- Sistemas distribuídos são bastante influenciados pelo tempo de comunicação pela rede; em geral não há uma referência de tempo global.
- Em sistemas paralelos o tempo de troca de mensagens pode ser desconsiderado.

Controle

 Em geral em sistemas paralelos se tem o controle de todos os recursos computacionais; já os sistemas distribuídos tendem a empregar também recursos de terceiros.

Vantagens

- Usam melhor o poder de processamento.
- Apresentam um melhor desempenho.
- Permitem compartilhar dados e recursos.
- Podem apresentar maior confiabilidade.
- Permitem reutilizar serviços já disponíveis.
- Atendem um maior número de usuários.
- □ ...

Dificuldades

- Desenvolver, gerenciar e manter o sistema.
- Controlar o acesso concorrente a dados e a recursos compartilhados.
- Evitar que falhas de máquinas ou da rede comprometam o funcionamento do sistema.
- Garantir a segurança do sistema e o sigilo dos dados trocados entre máquinas.
- Lidar com a heterogeneidade do ambiente.
- □ ...

Platafomas de Execução

- Um S.O. multitarefa permite simular o paralelismo em um único processador, alternando a execução de processos.
- Um processador com núcleo múltiplo permite paralelismo real entre processos, executando múltiplas instruções por ciclo.

Plataformas de Execução

Uma Placa-Mãe Multiprocessador permite que cada processador execute um processo.

Plataformas de Execução

 Computação Distribuída é possível em redes, como numa Intranet e na Internet.

ALUNA:

KEITH CARVALHO

Sistemas Tecno Life. blog spot. com

Paradigma funcional

Linguagem funcional

- É um paradigma de programação baseada em funções matemáticas.
- Paradigma funcional tem sido mais usado academicamente que no desenvolvimento de software.
- O interpretador de linguagem funcional atua como uma calculadora: lê, calcula e mostra o resultado.

Vantagens do Paradigma funcional

 As linguagens funcionais fornecem um alto nível de abstração, o que faz com que os programas funcionais sejam mais pequenos, claros, rápidos.

Desvantagem do Paradigma funcional

Os programas funcionais podem ser menos eficientes.

Exemplos

- Lisp, ML, Miranda e Haskell
- Lisp: A primeira LP funcional criada por john
 Macharthy no fim dos anos 50.
- Haskell: surgiu no fim dos anos 80.

ALUNA:

NAYANE GETIRANA

Sistemas Tecno Life. blog spot. com

Paradigma Lógico

O Paradigma Lógico

- Programas são relações entre E/S
- Estilo declarativo, como no paradigma funcional
- Na prática, inclui características imperativas, por questão de eficiência
- Aplicações: prototipação em geral, sistemas especialistas, banco de dados, ...

Modelo Computacional do Paradigma Lógico

Visão Crítica do Paradigma Lógico

Vantagens

Em princípio, todas do paradigma funcional Permite concepção da aplicação em um alto nível de abstração (através de associações entre E/S)

Problemas

Em princípio, todos do paradigma funcional Linguagens usualmente não possuem tipos, nem são de alta ordem

Exemplo mais conhecidos

Prolog

Tendências

- Integração de paradigmas
 - Aumentar o domínio da aplicação
- Cautela
 - Não violar os princípios básicos do paradigma