Семинар 12

Вариационное исчисление

О. Если каждой функции y(x) (из некоторого нормированного пространства вещественнозначных функций N) поставлено в соответствие некоторое (вещественное) число V, то говорят, что задан функционал V[y].

Примеры:

a)
$$V[y] = \int_a^b y(x) dx$$
,

б)
$$V[y] = y(0)$$
 — дельта-функция,

B)
$$V[y] = \max_{x \in [a; b]} |y(x)| = ||y||_{C[a; b]}$$

б)
$$V[y] = y(0)$$
 — дельта-функция,
в) $V[y] = \max_{x \in [a; b]} |y(x)| = ||y||_{C[a; b]}$,
г) $V[q] = \int_{t_1}^{t_2} L(t, q(t), \dot{q}(t)) dt$ — действие (интеграл от функции Лагранжа по времени).

Функционал является обобщением понятия функции (это «функция, которая действует не на число, а на функцию»).

Пусть y(x) и $\delta y(x)$ — функции, α — число. Тогда при фиксированных y(x) и $\delta y(x)$ функционал $V[y + \alpha \cdot \delta y]$ будет функцией от числа α .

О.
$$\delta V[y, \delta y] = \left(\frac{d}{d\alpha}V[y + \alpha \cdot \delta y]\right)\Big|_{\alpha=0}$$
 — вариация функционала $V[y]$. Вариация функционала является аналогом дифференциала функции.

Пример 1. Найти вариацию функционала $V[y] = \int_a^b y^2(x) \, dx$, где $y \in C[a; b]$.

$$\delta V[y, \delta y] = \left(\frac{d}{d\alpha}V[y + \alpha \,\delta y]\right)\Big|_{\alpha=0} = \left(\frac{d}{d\alpha}\int_{a}^{b}(y + \alpha \,\delta y)^{2}\,dx\right)\Big|_{\alpha=0} = \left(\int_{a}^{b}\frac{d}{d\alpha}((y + \alpha \,\delta y)^{2})\,dx\right)\Big|_{\alpha=0} = \left(\int_{a}^{b}2(y + \alpha \,\delta y)\delta y\,dx\right)\Big|_{\alpha=0} = 2\int_{a}^{b}y\,\delta y\,dx.$$

Omeem: $\delta V[y, \delta y] = 2 \int_a^b y \, \delta y \, dx$.

Аналогично понятию экстремума функции можно ввести понятие экстремума функциона-

1

Рассмотрим две нормы:

$$||y||_{0} = ||y||_{C[a; b]} = \max_{x \in [a; b]} |y(x)|,$$

$$||y||_{1} = ||y||_{C^{(1)}[a; b]} = \max_{x \in [a; b]} |y(x)| + \max_{x \in [a; b]} |y'(x)|.$$

Сильная и слабая ε -окрестности функции $\bar{y}(x)$

сильная ε -окрестность функции $\bar{y}(x)$ состоит из всех функций y(x) таких, что $\|y - \bar{y}\|_0 < \varepsilon$

слабая ε -окрестность функции $\bar{y}(x)$ состоит из всех функций y(x) таких, что $\|y - \bar{y}\|_1 < \varepsilon$

В сильную ε -окрестность функции $\bar{y}(x)$ входят все функции, значения которых во всех точках близки к значениям функции $\bar{y}(x)$. В слабую ε -окрестность функции $\bar{y}(x)$ входят все функции, у которых не только близки к $\bar{y}(x)$ значения во всех точках, но и производная тоже близка во всех точках к $\bar{y}'(x)$.

О. Функционал V[y] достигает сильного (слабого) локального максимума {минимума} на функции $\bar{y}(x)$, если $\exists \varepsilon > 0$ такое, что для любой функции y(x) из сильной (слабой) ε -окрестности функции $\bar{y}(x)$ выполняется:

$$V[y] \le V[\bar{y}] \{ V[y] \ge V[\bar{y}] \}.$$

Поскольку слабая є-окрестность целиком содержится в сильной є-окрестности, то сильный экстремум (максимум или минимум) является также и слабым экстремумом (обратное неверно).

Вариационное исчисление изучает необходимые и достаточные условия локального экстремума функционалов.

Необходимое условие экстремума (НУЭ) (не достаточ-

ное!). Если функционал V[y] достигает локального экстремума на функции \bar{y} и $\exists \delta V[\bar{y}, \delta y]$, то

$$\delta V[\bar{y}, \delta y] = 0 \quad \forall \ \delta y.$$

 $\overline{\text{(Это аналог НУЭ функции } f\colon df = 0.)}$

Вариационная задача с закреплёнными концами

Простейшая задача вариационного исчисления — задача с закреплёнными концами. Рассмотрим функционал

$$V[y] = \int_{a}^{b} F(x, y, y') dx,$$
 где $F \in C^{(2)}, y(x) \in C^{(2)}[a; b],$ $y(a) = A, y(b) = B.$

Среди всех функций $y(x) \in C^{(2)}[a;b]$, удовлетворяющих КУ y(a) = A, y(b) = B, требуется выбрать такую, на которой функционал V[y] достигает локального экстремума.

НУЭ

 $\delta V[y, \delta y] = 0 \ \forall \ \delta y$ приводится к виду:

$$F_{y} - \frac{d}{dx} (F_{y'}) = 0, \qquad x \in (a; b).$$

Это уравнение называется уравнением Эйлера. В общем случае это ОДУ 2-го порядка.

Функции y(x), ему удовлетворяющие, называются экстремалями. Здесь $\frac{d}{dx}(F_{y'})$ означает *полную* производную по x от функции $F_{y'}(x,y,y')$, с учётом того, что y=y(x).

С учётом КУ получается краевая задача:

$$\begin{cases} F_{y} - \frac{d}{dx} (F_{y'}) = 0, & x \in (a; b), \\ y(a) = A, & y(b) = B. \end{cases}$$

Замечание. Если функционал зависит от нескольких функций:

$$V[y_1, y_2, ..., y_n] = \int_a^b F(x, y_1, y_2, ..., y_n, y_1', y_2', ..., y_n') dx,$$

то НУЭ приводит к системе уравнений Эйлера:

$$F_{y_k} - \frac{d}{dx} \left(F_{y'_k} \right) = 0, \qquad k = 1, \dots, n.$$

Пример 2 (самостоятельно). Найти экстремали функционала $V[y] = \int_1^3 (3x - y)y \, dx$, удовлетворяющие условиям y(1) = 1, y(3) = 4.

Здесь $F(x, y, y') = 3xy - y^2$.

Уравнение Эйлера имеет вид:

$$F_{y} - \frac{d}{dx} \left(F_{y'} \right) = 0.$$

3x - 2y = 0.

Отсюда
$$y = \frac{3}{2}x$$
.

Ho $y(1) \neq 1, y(3) \neq 4$.

Ответ: экстремалей нет.

Пример 3 (самостоятельно). Найти экстремали функционала $V[y] = \int_a^b \left(y + \frac{y^3}{3}\right) dx$, удовлетворяющие условиям y(a) = A, y(b) = B.

Здесь
$$F(x, y, y') = y + \frac{y^3}{3}$$
.

Уравнение Эйлера имеет вид:

$$F_y - \frac{d}{dx}(F_{y'}) = 0.$$

1 + y² = 0.

Это уравнение не имеет вещественных решений.

Ответ: экстремалей нет.

Пример 4 (самостоятельно). Найти экстремали функционала $V[y] = \int_0^1 yy' \, dx$, удовлетворяющие условиям y(0) = A, y(1) = B.

Здесь F(x, y, y') = yy'.

Уравнение Эйлера имеет вид:

$$F_y - \frac{d}{dx}(F_{y'}) = 0.$$

$$y' - \frac{d}{dx}(y) = 0.$$

$$y' - y' = 0.$$

Уравнение выполняется для всех функций y(x). Все дифференцируемые функции y(x), удовлетворяющие краевым условиям y(0) = A, y(1) = B, являются экстремалями. При этом функционал

$$V[y] = \int_{0}^{1} yy' \, dx = \int_{0}^{1} \left(\frac{y^{2}}{2}\right)' \, dx = \frac{y^{2}}{2} \Big|_{x=0}^{x=1} = \frac{B^{2} - A^{2}}{2}$$

не зависит от вида функции y(x).

Ответ: все дифференцируемые функции y(x), удовлетворяющие условиям y(0) = A, y(1) = B.

Пример 5 (самостоятельно). Найти экстремали функционала $V[y] = \int_a^b (xy' + (y')^2) dx$, удовлетворяющие условиям y(a) = A, y(b) = B.

Здесь $F(x, y, y') = xy' + (y')^2$.

Уравнение Эйлера имеет вид:

$$F_{y} - \frac{d}{dx}(F_{y'}) = 0.$$

$$0 - \frac{d}{dx}(x + 2y') = 0.$$

$$\frac{d}{dx}(x + 2y') = 0.$$

$$x + 2y' = 2C_{1}.$$

$$y' = -\frac{x}{2} + C_{1}.$$

$$y = -\frac{x^{2}}{4} + C_{1}x + C_{2}.$$

Константы
$$C_1$$
, C_2 определяются из краевых условий $y(a) = A$, $y(b) = B$:
$$\begin{cases} y(a) = -\frac{a^2}{4} + C_1 a + C_2 = A, \\ y(b) = -\frac{b^2}{4} + C_1 b + C_2 = B. \end{cases}$$

$$C_1 = \frac{B-A}{b-a} + \frac{a+b}{4}, \qquad C_2 = \frac{Ab-Ba}{b-a} - \frac{ab}{4}.$$

$$Omsem: y = -\frac{x^2}{4} + \left(\frac{B-A}{b-a} + \frac{a+b}{4}\right)x + \frac{Ab-Ba}{b-a} - \frac{ab}{4}.$$

Пример 6 (самостоятельно). Найти экстремали функционала

 $V[y] = \int_{-1}^{0} (12xy - (y')^2) dx$, удовлетворяющие условиям y(-1) = 1, y(0) = 0.

Здесь $F(x, y, y') = 12xy - (y')^2$.

Уравнение Эйлера имеет вид:

$$F_{y} - \frac{d}{dx} (F_{y'}) = 0.$$

$$12x - \frac{d}{dx}(-2y') = 0.$$

$$\frac{d}{dx}(y') = -6x.$$

$$y' = -3x^2 + C_1$$
.

$$y = -x^3 + C_1 x + C_2.$$

Краевые условия:

$$(y(-1) = 1 - C_1 + C_2 = 1,$$

$$y(0) = C_2 = 0.$$

Отсюда $C_1 = C_2 = 0$.

Ответ: $v = -x^3$.

Частные случаи уравнения Эйлера

1) Если $\overline{F = F(y')}$, то уравнение Эйлера имеет вид:

$$F_{y} - \frac{\overline{d}}{dx} (F_{y'}) = 0,$$

$$\frac{d}{dx}(F_{y'}) = 0,$$

$$F_{y'y'} \cdot y'' = 0.$$

Это уравнение имеет следующие решения.

a)
$$y'' = 0$$
.

$$y = C_1 x + C_2, \qquad C_1, C_2 \in \mathbb{R}.$$

б) $F_{v'v'}(y') = 0.$

Либо $F_{v'v'} \equiv 0$ (т. е. $F(y') = \alpha y' + \beta$), тогда уравнение выполняется для любых функций y(x); либо это уравнение (не дифференциальное) но y', которое может иметь некоторые корни $y' = \tilde{c}_k$, откуда $y = \tilde{c}_k x + \tilde{c}$, но решения такого вида уже получены в п. а).

Таким образом, если F = F(y') и $F_{y'y'} \not\equiv 0$, то все экстремали являются линейными функциями: $y = C_1 x + C_2$.

2) Если F = F(y, y'), то уравнение Эйлера имеет вид:

$$F_{y} - \frac{d}{dx} (F_{y'}) = 0.$$

Умножим уравнение на y':

$$y'F_y - y'\frac{d}{dx}(F_{y'}) = 0.$$

Прибавим и вычтем $y''F_{v'}$ в левой части уравнения:

$$\underbrace{\frac{y'F_y + y''F_{y'}}{\frac{d}{dx}(F(y,y'))}}_{\underbrace{-\frac{d}{dx}(Y'F_{y'})}} \underbrace{-\frac{y''F_{y'} - y'}{\frac{d}{dx}(Y'F_{y'})}}_{-\frac{d}{dx}(Y'F_{y'})} = 0.$$

$$\underbrace{\frac{d}{dx}(F - y'F_{y'})}_{F - y'F_{y'}} = C_1, \quad C_1 \in \mathbb{R}.$$

Таким образом, порядок уравнения понизился (в общем случае получилось ОДУ 1-го порядка). Полученную формулу можно использовать при решении задач.

Пример 7 (самостоятельно). Найти экстремали функционала $V[y] = \int_a^b \sqrt{1 + (y')^2} \, dx$, удовлетворяющие условиям y(a) = A, y(b) = B.

Функционал представляет собой длину кривой y = y(x), проходящей через точки (a; A) и (b; B). Очевидно, он должен достигать минимума на прямой, соединяющей эти точки. Проверим это.

Здесь $F(x, y, y') = \sqrt{1 + (y')^2}$ — зависит только от y'.

Поскольку $F_{y'y'} \not\equiv 0$ (иначе функция F была бы линейной функцией y'), то экстремали имеют вид:

$$y = C_1 x + C_2.$$

Константы C_1 , C_2 находятся из краевых условий:

$$y(a) = C_1 a + C_2 = A,$$

$$y(b) = C_1 b + C_2 = B.$$

Отсюда

$$C_1 = \frac{B-A}{b-a}, \qquad C_2 = \frac{Ab-Ba}{b-a}.$$
 Omsem: $y = \frac{B-A}{b-a}x + \frac{Ab-Ba}{b-a}.$

ДЗ 12.

1. Найти вариацию функционалов:

a)
$$V[y] = \int_a^b yy' dx$$
,

6)
$$V[y] = y^2(0) + \int_0^1 (xy + (y')^2) dx$$

B)
$$V[y] = \int_0^{\pi} y' \sin y' \, dx$$
.

Эльсгольц «Дифференциальные уравнения и вариационное исчисление», гл. 6, задачи для самостоятельного решения (в конце главы) N 1–4, 6, 11.