Esercizio 1 Scrivere tutte le permutazioni di S ₀ e S ₀ che non sono cicii.	Nome e mail	Algebra 2	16 Giugno 2017
	Matricola		
	Esercizio 1 Scrivere tutte le po	ermutazioni di S_5 e S_6	che non sono cicli.

Esercizio 2 Determinare End(A) dove A é uno dei seguenti anelli: $\mathbb{Z}, \mathbb{Q}, \operatorname{Re}, \mathbb{Z}[i], \mathbb{Z}[\sqrt{n}].$

