

MEASUREMENTS OF A RADIO FREQUENCY NEUTRAL GAS TEMPERATURE MICRO-THRUSTER

A. Greig, C. Charles, R. Boswell, R. Hawkins SP3, ANU, Canberra, Australia

M. Bowden, Y. Sutton Open University, Milton Keynes, UK

Background

Electric Propulsion (EP) has high specific impulse (I_{sp}) Smaller satellites require smaller propulsion systems Thrust in the order of µNs to mNs

Current EP examples:

Hall/gridded ion thruster: Efficiency decreases when scaled down Resistojet/Arcjet: Limited lifetimes due to erosion and thermal

Pulsed Plasma Thrusters: Electromagnetic broadband radiation

Pocket Rocket

Capacitively coupled radio-frequency (rf) argon discharge Produces weakly ionised plasma (~1%)

Pocket Rocket Thrust Estimates

Rocket Equation
$$T = v_{ex} \frac{d m_{\rho}}{dt}$$
 with $v_{ex} = \left(\frac{8kT_g}{\pi M}\right)^{\frac{1}{2}}$

Cold Gas Thruster Effect: $\frac{d m_p}{dt} = 3 mg \text{ s}^{-1} \rightarrow T \approx 1 \text{ mN}$

Power to kinetic energy calculations [1]:

$$P_{\text{in}} = 10 \, \text{W} = 10 \, \text{Js}^{-1} \text{ of KE } \rightarrow v_{\text{ex}} = 2600 \, \text{ms}^{-1}$$

 $v_{\text{ex},z} = \frac{v_{\text{ex}}}{2} \approx 860 \, \text{ms}^{-1} \rightarrow T_g = 1430 \, \text{K and } T \approx 2.6 \, \text{mN}$

Langmuir Probe experiment (10W, 1.5Torr) [1]:

Electron temperature $T_e = 3eV$

Estimates $T_g = 3200 \text{K} \rightarrow v_{ex_z} = 1290 \, \text{ms}^{-1} \rightarrow \text{and } T \approx 3.8 \text{mN}$

Pocket Rocket Thrust Estimates

Particle Balance:

$$T_e$$
= 2eV gives $T_g \approx 300 \text{K} \rightarrow T$ = 1mN
 T_e = 2.5eV gives $T_g \approx 1430 \text{K} \rightarrow T$ = 2.6mN

Neutral gas heating occurring?

~92 collisions across 4.2mm discharge diameter Ion neutral collisions $\lambda_{mfp} = 45 \, \mu \, m$ at 1.5 Torr ~46 ion-neutral charge exchange collisions

Direct thrust measurements ideal

-engineering challenges prevent at this time

Electronic transition $(E', v', J') \rightarrow (E'', v'', J'')$

spectrum shape then $T_r \approx T_g$ Find T_r and T_v from band

Adapted from http://www.pci.tu-bs.de

Electronic transition $(E', v', J') \rightarrow (E'', v'', J'')$

spectrum shape then $T_r \approx T_g$ Find T_r and T_v from band

Adapted from http://www.pci.tu-bs.de

Electronic transition $(E', v', J') \rightarrow (E'', v'', J'')$

spectrum shape then $T_r \approx T_g$ Find T_r and T_v from band

Adapted from http://www.pci.tu-bs.de

Electronic transition $(E', v', J') \rightarrow (E'', v'', J'')$

Intensity vibrations $\Delta J = 0, \pm 1$ evel vibrational -V=3 evel rotational level J' 0 = **0** (**∀**) **∧ ∧** rotational [evel J" electronic state E` excited electronic state E" ower

spectrum shape then $T_r \approx T_g$ Find T_r and T_v from band

Adapted from http://www.pci.tu-bs.de

2nd positive N₂ system

Power: 5-40W, Pressure: 0.5-4Torr

~10% N_2 (too high, ideal <5%)

Monochromator SPEX 500M

PMT

Vin=900V

2nd positive N₂ system

Power: 5-40W, Pressure: 0.5-4Torr

~10% N_2 (too high, ideal <5%)

Monochromator SPEX 500M

PMT

Vin=900V

2nd positive N₂ system

Power: 5-40W, Pressure: 0.5-4Torr

~10% N_2 (too high, ideal <5%)

SPEX 500M Monochromator

2nd positive N₂ system

Power: 5-40W, Pressure: 0.5-4Torr

~10% N_2 (too high, ideal <5%)

SPEX 500M Monochromator

Space Plasma, Power & Propulsion

1) Wavelengths
$$\lambda = \left\{ n_a \sum_{pq} Y_{pq}^c(v' + \frac{1}{2})^p \left[J'(J' + 1) \right]^q - Y_{pq}^B(v'' + \frac{1}{2})^p \left[J''(J'' + 1) \right]^q \right\}^{-1}$$

2) Intensity
$$l = \frac{D}{\lambda^4} q_{v',v''} \exp\left[\frac{-E_{v'}}{kT_v}\right] S_{J',J''} \exp\left[\frac{-E_{J'}}{kT_r}\right]$$

3) Line broadening function
$$g(\Delta \lambda) = \frac{a - (2\Delta \lambda/W)}{a + (a - 2)(2\Delta \lambda/W)^2}$$

1) Wavelengths
$$\lambda = \left\{ n_a \sum_{pq} Y_{pq}^c(v' + \frac{1}{2})^p \left[J'(J' + 1) \right]^q - Y_{pq}^B(v'' + \frac{1}{2})^p \left[J''(J'' + 1) \right]^q \right\}^{-1}$$

2) Intensity
$$l = \frac{D}{\lambda^4} q_{v',v'} \cdot \exp\left[\frac{-E_{v'}}{kT_v}\right] S_{J',J''} \cdot \exp\left[\frac{-E_{J'}}{kT_r}\right]$$

3) Line broadening function
$$g(\Delta \lambda) = \frac{a - (2\Delta \lambda/W)^2}{a + (a - 2)(2\Delta \lambda/W)^2}$$

Space Plasma, Power & Propulsion

1) Wavelengths
$$\lambda = \left\{ n_a \sum_{pq} Y_{pq}^c(v' + \frac{1}{2})^p [J'(J' + 1)]^q - Y_{pq}^B(v'' + \frac{1}{2})^p [J''(J'' + 1)]^q \right\}$$

2) Intensity
$$I = \frac{D}{\lambda^4} q_{v',v''} \exp\left[\frac{-E_{v'}}{kT_v}\right] S_{J',J''} \exp\left[\frac{-E_{J'}}{kT_r}\right]$$

3) Line broadening function
$$g(\Delta \lambda) = \frac{a - (2\Delta \lambda/W)}{a + (a - 2)(2\Delta \lambda/W)^2}$$

1) Wavelengths
$$\lambda = \left\{ n_a \sum_{pq} Y_{pq}^c(v' + \frac{1}{2})^p [J'(J' + 1)]^q - Y_{pq}^B(v'' + \frac{1}{2})^p [J''(J'' + 1)]^q \right\}$$

2) Intensity
$$I = \frac{D}{\lambda^4} q_{v',v'} \cdot \exp\left[\frac{-E_{v'}}{kT_v}\right] S_{J',J''} \cdot \exp\left[\frac{-E_{J'}}{kT_r}\right]$$

3) Line broadening function
$$g(\Delta \lambda) = \frac{a - (2\Delta \lambda/W)^2}{a + (a - 2)(2\Delta \lambda/W)^2}$$

Space Plasma, Power & Propulsion

1) Wavelengths
$$\lambda = \left\{ n_a \sum_{pq} Y_{pq}^c(v' + \frac{1}{2})^p \left[J'(J' + 1) \right]^q - Y_{pq}^B(v'' + \frac{1}{2})^p \left[J''(J'' + 1) \right]^q \right\}$$

2) Intensity
$$I = \frac{D}{\lambda^4} q_{v',v''} \exp\left[\frac{-E_{v'}}{kT_v}\right] S_{J',J''} \exp\left[\frac{-E_{J'}}{kT_r}\right]$$

3) Line broadening function
$$g(\Delta \lambda) = \frac{a - (2\Delta \lambda/W)^2}{a + (a - 2)(2\Delta \lambda/W)^2}$$

Measured and Simulated Comparison (10W, 1.5Torr)

Measured and Simulated Comparison (10W, 1.5Torr)

Space Plasma, Power & Propulsion

 SP_3

Preliminary Results

Pressure and Power

Bohm velocity
$$v_B = \left(\frac{e^T e}{M_i}\right)^{\frac{1}{2}} \approx 2700 \text{ms}^{-1}$$

Mean free path
$$\lambda_{ce} = \frac{1}{n_g \sigma_{ce}}$$

Powe

Mode change (rotational to vibrational) $\rightarrow T_g$ decreases T_e relatively constant → v_B and T_α constant

Pressur

 $\mathsf{T}_{\!\scriptscriptstyle\mathrm{e}}$ decreases with increasing pressure $ightarrow \mathsf{v}_{\!\scriptscriptstyle\mathrm{B}}$ and $\mathsf{T}_{\!\scriptscriptstyle\mathrm{d}}$ lower BUT n_g increases $\rightarrow \lambda_{CE}$ decreases $\rightarrow T_g$ increases

Ceramic heating may also occur

Conclusions

Model for finding T_a has been developed Matches independent code results Good T_a estimates

Preliminary Results

Neutral gas heating occurs in PR discharge Power and pressure dependence

Future works:

Refine method to reduce noise issues – CCD array If neutral gas heating found work on direct thrust measurements

Investigate other gases such as CO₂ using same method

Acknowledgements

Aspects of this research made use of software developed by the Inversion Laboratory (ilab). Ilab is part of the Auscope AGOS project - an initiative of the Australian Government funded through the Education Investment Fund.

Kari Niemi from York Plasma Institute for his assistance with a third independent code for checking the data

Peter Alexander from SP3 for being such a wonderful technician