1

2)

 $L=\{w\in\{a,b\}^*\mid |w|_a\geq |w|_b\}$ $xyz=a^nb^n,\ |xy|\leq n,\ |y|>0 \Rightarrow x=a^m,\ m< n\Rightarrow xz=a^mb^n\not\in L\Rightarrow$ по лемме о накачке язык нерегулярный.

4)

 $L = \{w \in \{a,b\}^* \mid |w|_a \neq |w|_b\}$ $xyz = a^nb^n, |xy| \leq n, |y| > 0 \Rightarrow x = a^m, m \neq n \Rightarrow xz = a^mb^n \notin L \Rightarrow$ язык нерегулярный.

6)

$$L = \{\alpha \cdot \alpha \cdot \beta \mid \alpha, \beta \in \{\alpha, b\}^*, |\alpha|_b > |\beta|_a\} = (\alpha|b)^*b(\alpha|b)^*ab^* = R$$

• $L \subset R$

Рассмотрим $\alpha \cdot \alpha \cdot \beta \in L$. Заметим, что $|\alpha|_b > |\beta|_a \ge 0 \Rightarrow |\alpha|_b \ge 1 \Rightarrow \alpha \in (a|b)^*b(a|b)^*$.

$$-\ \beta \in b^* \Rightarrow \alpha \cdot \alpha \cdot \beta \in R$$

$$a \in \beta \Rightarrow \beta \in (a|b)^*ab^* \Rightarrow \alpha \cdot a \cdot \beta \in \alpha \cdot a \cdot (a|b)^* \cdot a \cdot b^* \Rightarrow$$
 обозначим $\alpha' = \alpha \cdot a \cdot (a|b)^* = (a|b)^*b(a|b)^* \cdot a \cdot (a|b)^* = (a|b)^*b(a|b)^*$, $\beta' = b^* \Rightarrow \alpha' \cdot a \cdot \beta' \in R$

 \bullet R \subset L

Рассмотрим произвольное слово w из языка R: $w=\gamma\cdot b\cdot \delta\cdot a\cdot \beta$, где $\gamma,\delta\in (a|b)^*,\ \beta\in b^*.$ Обозначим $\alpha=\gamma\cdot b\cdot \delta$, тогда $|\alpha|_b\geq 1>0=|\beta|_a$, значит, $w\in L$.

Следовательно, язык регулярный.

8)

 $L = \{w \cdot a^{\mathfrak{m}} \mid 1 \leq |w|_{b} \leq \mathfrak{m}\}$ $xyz = b^{\mathfrak{n}}a^{\mathfrak{n}}, \ |xy| \leq \mathfrak{n}, \ |y| > 0 \Rightarrow x = b^{k}, \ y = b^{\mathfrak{l}}, \ k + \mathfrak{l} = \mathfrak{n} \Rightarrow xy^{2}z = b^{k+2\mathfrak{l}}a^{\mathfrak{n}} \not\in L \Rightarrow$ язык нерегулярный.

2

1) $(a|b)^* (a (a|b)^* a | b (a|b)^* b) = (a|b)^* (ab^*a | ba^*b)$

 (\subset) $w=\alpha\alpha\beta\alpha$, α , $\beta\in(a|b)^*\Rightarrow$ выделим самую правую α из $\alpha\beta$: $\alpha\beta\in(a|b)^*\alpha b^*\Rightarrow w\in\alpha(a|b)^*\alpha b^*\alpha=(a|b)^*\alpha b^*\alpha$. Аналогично при $w=\alpha b\beta b$ получаем $(a|b)^*b\alpha^*b$.

(⊃) Очевидно.

2) $\epsilon \mid a (a \mid ba)^* (\epsilon \mid b) = (a \mid ab)^*$

Слова данного языка — это ϵ и все слова, начинающиеся с \mathfrak{a} , в которых нет двух \mathfrak{b} подряд. Упрощённое регулярное выражение описывает то же множество слов.

3) $\epsilon \mid e e^* \mid f f^* = e^* \mid f^*$

$$(\subset)$$
 $\epsilon \in e^*$, $ee^* \in e^*$, $ff^* \in f^*$

$$(\supset)\; w \in e^* \Rightarrow \left[egin{array}{ll} w = \varepsilon & \Rightarrow \mathrm{ok} \\ w = ee^* & \Rightarrow \mathrm{ok} \end{array} \right., \, w \in \mathsf{f}^* - ext{aналогичнo}.$$