

CHAPTER

12

The p-Block Elements

15th-Group Elements

Nitrogen Family

- In the case of nitrogen, all oxidation states from +1 to +4 tend to disproportionate in acid solution. for example,
 3HNO₂ → HNO₃ + H₂O + 2NO
- 2. In case of phosphorus nearly all intermediate oxidation states disproportionate into +5 and -3 both in alkali and acid.

Compounds of Nitrogen Family

Ammonia (NH₃)

Colorless, Pungent Smell, basic in nature liquified easily, uses as coolant

$$N_2 + 3H_2 = \frac{Fe + Mo}{750 \text{ K}} 2NH_3 + 24KCal}{200-300 \text{ atm}}$$

Nitric Acid (HNO₃)

Preparation

Ostwald's process

(i)
$$4NH_3(g) \xrightarrow{Pt/Rh - guage catalyst} 4NO(g) + 6H_2O(g)$$

(ii)
$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

(iii)
$$3NO_2(g) + H_2O(\ell) \rightarrow 2HNO_3(aq) + NO(g)$$

Properties

 ${\rm HNO_3}$, nitric acid was earlier called as aqua fortis (meaning strong water). It usually acquires yellow colour. Due to its decomposition by sunlight into ${\rm NO_2}$.

It acts as a strong oxidising agent.

Reaction with FeSO_A

$$FeSO_4 + 8HNO_3 \rightarrow Fe_2(SO_4)_3 + 2NO + 4H_2O$$

Reaction with non-metals

Non-metals converted into highest oxyacids by hot and conc.

 $\rm HNO_3\cdot NO_2$ gas is evolved (S to $\rm H_2SO_4$; P to $\rm H_3PO_4$; C to $\rm H_2CO_3$; $\rm I_2$ to $\rm HIO_3$; As to $\rm H_3AsO_4$; Sb to $\rm H_3SbO_4$ and Sn to $\rm H_2SnO_3$). Most of the

metals except noble metals are attacked by HNO₃. It plays double role in action on metals, i.e., it acts as an acids as well as an oxidising agent.

Reaction with Metals

$$3\text{Cu} + 8 \text{ HNO}_3 \text{ (dilute)} \rightarrow 3\text{Cu}(\text{NO}_3)_2 + 2\text{NO} + 4\text{H}_2\text{O}$$
 $\text{Cu} + 4\text{HNO}_3 \text{ (conc.)} \rightarrow \text{Cu}(\text{NO}_3)_2 + 2\text{NO}_2 + 2\text{H}_2\text{O}$
 $4\text{Zn} + 10\text{HNO}_3 \text{ (dilute)} \rightarrow 4\text{Zn}(\text{NO}_3)_2 + 5\text{H}_2\text{O} + \text{N}_2\text{O}$
 $\text{Zn} + 4\text{HNO}_3 \text{ (conc.)} \rightarrow \text{Zn}(\text{NO}_3)_2 + 2\text{H}_2\text{O} + 2\text{NO}_2$

Concentration of nitric acid	Metal	Main products
Very Dilute	Mg, Mn	H ₂ + metal nitrate
HNO ₃	Fe, Zn, Sn	NH ₄ NO ₃ + metal nitrate
	Cu, Ag, Hg	No reaction
Dilute HNO ₃	Fe, Zn	N ₂ O + metal nitrate
	Pb, Cu, Ag	NO + metal nitrate
Conc. HNO ₃	Sn	NO ₂ + H ₂ SnO ₃ (Metastannic acid)
Conc. HNO ₃	Fe, Co, Ni, Cr, Al	rendered passive

Phosphine (PH₃)

Preparation

(i)
$$Ca_3P_2 + 6H_2O \rightarrow 3Ca(OH)_2 = 2PH_3$$

(ii)
$$PH_4I + NaOH \rightarrow NaI + H_2O + PH_3$$

Physical Properties

Colourless gas having smell of garlic or rotten fish, slightly soluble in water and slightly heavier than air.

Chemical Properties

(i)
$$2PH_3 + 4O_2 \rightarrow P_2O_5 + 3H_2O$$

(ii)
$$4PH_3 \xrightarrow{-713 \text{ K}} P_4 + 6H_2$$

(iii)
$$PH_3 + 4Cl_2 \rightarrow PCl_5 + 3HCl$$

❖ On heating, phosphorus acid, H₃PO₃ decomposes into phosphine (PH₃) and phosphoric acid (H₃PO₄).

$$4H_3PO_3 \xrightarrow{\text{Heat}} 3H_3PO_4 + PH_3$$

$$2H_3PO_2 \xrightarrow{\text{Heat}} H_3PO_4 + PH_3$$

❖ Holme's signals: A mixture of Ca₃P₂ and CaC₂ on treatment with H₂O forms PH₃ and P₂H₄ along with C₂H₂. The mixture burns with a bright light

$$Ca_3P_2 + 6H_2O + 3Ca(OH)_2 + 2PH_3$$

 $CaC_2 + H_2O \rightarrow Ca(OH)_2 + C_2H_2$

Smoke screens, involve the use of calcium phosphide, Ca₃P₂. The PH₃ gas obtained from Ca₃P₂ catches fire to give the needed smoke.

PCI₃

PCI₅

16th–Group Elements

- ❖ Sulphur trioxides (SO₃) is a white crystalline solid with melting point 290 K and boiling point 318 K.
- * SO_3 is prepared by the direct oxidation of SO_2 with atmospheric oxygen in presence of finally divided Pt or V_2O_5 at a pressure of 2 bar and temperature 720 K.
- SO₃ reacts with water to produce H₂SO₄ and large amount of heat is evolved.

$$SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

SO₃ reacts with water to produce H₂SO₄ and large amount of heat is evolved.

$$SO_3 + H_2O \rightarrow H_2SO_4 + heat$$

Ozone

* Fishy odour, Highly toxic.

Gases	Absorbent	
O_3	Turpentine Oil/Oil of cinnamon.	
NO	FeSO ₄	
SO_2	NaOH	
CO	Cu_2Cl_2	
O_2	Pyrogallol	

Hydrogen Peroxide

Preparation

(i) $Na_2O_2 + H_2O$ (icecold) $\rightarrow NaOH + H_2O_2$

(ii)
$$BaO_2 + H_2SO_4 \rightarrow BaSO_4 + H_2O_2$$

(Now a day conc. H_3PO_4 is used)

(iii)
$$2H_2SO_4 \rightarrow 2H^+ + 2HSO_4^-$$

Anode:
$$2HSO_4^- \rightarrow H_2S_2O_8 + 2e^-$$

Cathod:
$$2H^+ + e^- \rightarrow H_2$$

$$\mathrm{H_2S_2O_8} + 2\mathrm{H_2O} \rightarrow 2\mathrm{H_2SO_4} + \mathrm{H_2O_2}$$

$$\begin{array}{c}
OH \\
Et \\
H/Pd
\end{array}$$

$$OH \\
+ O_2 \\
+ H_2O_2$$

Properties

Oxidizing Property

(i)
$$H_2O_2 \xrightarrow{PbS} PbSO_4$$

(ii)
$$H_2O_2 \xrightarrow{BaSO_3} BaSO_4 + H_2O$$

(iii)
$$H_2O_2 \xrightarrow{H_2S/HI} S/I_2 + H_2O$$

(iv)
$$H_2O_2 \xrightarrow{F^{+2}/H^-} Fe^{+3} + H_2O$$

(v)
$$H_2O_2 \xrightarrow{Cr^{+3}/OH^-} Cr^{+6} + H_2O$$

Reducing Property

(i)
$$H_2O_2 \xrightarrow{Fe^{+3}/OH^-} Fe^{+2} + O_2$$

(ii)
$$H_2O_2 \xrightarrow{Pb^+ \text{ Grids}} PbO$$

(iii)
$$H_2O_2 \xrightarrow{Cl_2/Br_2} HCl + O_2$$

(iv)
$$H_2O_2 \xrightarrow{MnO_4^-/OH^-} MnO_2 + O_2$$

(v)
$$H_2O_2 \xrightarrow{MnO_4^-/H^+} Mn^{+2} + O_2$$

(vi)
$$H_2O_2 \xrightarrow{Cr_2O_7^{2-}/H^+} Cr^{+3} + O_2$$

❖ Tailing of mercury is due to the formation of mercury oxide when Hg reacts with ozone.

$$2Hg + O_3 \rightarrow Hg_2O + O_2$$

As a result of it, mercury looses it's meniscus and starts sticking to the glass.

❖ The bleaching action of Ozone and H₂O₂ is permanent and is due to oxidation while that of SO₂ is temporary and is due to reduction.

❖ H₂O₂ is used to resture the colour of old lead paintings which have been blackened due to the formation of PbS by the action of H₂S present in the air.

$$PbS_{Black} + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O_4$$

❖ Antichlor action of H₂O₂ is due to its tendency to reduce the excess of chlorine from bleaching powder to HCl.

$$\Rightarrow$$
 NH₂ · NH₂ + H₂O₂ as rocket propellant.

⇒ Storage:

Sulphuric Acid (H₂SO₄)

It is also known as oil of vitriol and king of chemicals.

Manufacture of Sulphuric Acid

Lead chamber process

The various steps involved are:

(a) Production of SO₂: By burning S or iron pyrites.

$$S + O_2 \xrightarrow{\Delta} SO_2$$

 $4FeS_2 + 11O_2 \longrightarrow 2Fe_2O_3 + 8SO_2$

(b) Production of catalyst: Oxides of nitrogen.

$$2\text{NaNO}_3 + \text{H}_2\text{SO}_4 \longrightarrow \text{Na}_2\text{SO}_4 + 2\text{HNO}_3$$

 $2\text{HNO}_3 \stackrel{\Delta}{\longrightarrow} \text{H}_2\text{O} + \text{NO} + \text{NO}_2 + \text{O}_2$

(c) Reaction in lead chamber

$$SO_2 + NO_2 \longrightarrow SO_3 + NO$$

$$SO_3 + H_2O \longrightarrow H_2SO_4$$

$$2NO + O_2 \longrightarrow 2NO_2$$
 (used again)

Contact Process

The steps involved are:

(a) **Production of SO₂:** It is produced by burning sulphur or iron pyrites and purified by treating with steam to remove dust particles.

(b) Conversion of SO₂ to SO₃: It is done in container or catalyst chamber after being pre-heated to 450°C.

$$2SO_2 + O_2 \rightleftharpoons 2SO_3 + x$$
 cal

Catalyst : Formerly, platinised absestos was used which is costly and easily poisoned. These days V_2O_5 is used.

(c) SO₃ is absorbed by conc. H₂SO₄ and then water is added to produce the acid of desired concentration.

$$H_2SO_4 + SO_3 \rightarrow H_2S_2O_7$$

$$H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$$

Properties

Its specific gravity is 1.8 and it is 98% by weight.

It is strong dibasic acid.

$$H_2SO_4 \rightleftharpoons 2H^+ + SO_4^{2-}$$

Uses

In lead storage batteries.

In manufacture of paints and pigments.

In metallurgy for electrolytic refining of metals.

17th-Group Elements

- All halogens are coloured. For example, F₂ has yellow gas, Cl₂ greenish yellow gas, Br₂ red liquid and I₂ violet coloured solid.
- 2. They react with metals and non-metals to form halides and the reactivity of the halogens decreases down the group. i.e. the order is $F_2 > Cl_2 > Br_2 > I_2$.
- 3. In general, a halogen oxidises halide ions of higher atomic number.

$$F_2 + 2X^- \rightarrow 2F^- + X_2 (X = Cl, Br \text{ or } I)$$

 $Cl_2 + 2X^- \rightarrow 2Cl^- + X_2 (X = Br \text{ or } I)$
 $Br_2 + 2I^- \rightarrow 2Br^- + I_2$

- 4. O₂F₂ oxidises plutonium to PuF₆ and the reaction is issued in removing plutonium as PuF₆ from spent nuclear fuel.
- 5. I₂O₅ is a very good oxidising agent and is used in the estimation of carbon monoxide.

Interhalogen Compounds

These compounds are regarded as halides of more electropositive (i.e. less electronegative) halogens.

Types of interhalogen compound:

 AB_7 type : IF_7

Hydrochloric Acid, (HCI)

Preparation: By dissolving hydrogen chloride gas in water. Hydrogen chloride gas required in turn can be prepared by the following methods:

By the direct combination of hydrogen and chlorine.

$$H_2(g) + Cl_2(g) \xrightarrow{Sunlight} 2HCl(g)$$

Hydrogen chloride gas can also be obtained by burning hydrogen in chlorine.

Properties: Hydrogen chloride is a covalent compound but when dissolved in water it ionizes to form hydrogen ions and chloride ions.

$$HCl(aq) \longrightarrow H^{+}(aq) + Cl^{-}(aq)$$

Thus, anhydrous HCl does not show acidic properties. Only aqueous HCl or in pressure of moisture, HCl behaves as an acid.

Metal + Hydrochloric acid → Metal chloride + Hydrogen

$$Mg + 2HCl \longrightarrow MgCl_2 + H_2 \uparrow$$

It react with bases and basic oxides or hydroxides to form their respective chlorides and water.

$$CaO + 2HCl \longrightarrow CaCl_2 + H_2O$$

It reacts with metal carbonates, bicarbonates, sulphides, sulphites, thiosulphates and nitrites, etc, to form their respective chlorides.

$$AgNO_3 + HCl \longrightarrow HNO_3 + AgCl \downarrow$$

Reducing property: HCl is a strong reducing agent.

$$MnO_2 + 4HCl \longrightarrow MnCl_2 + 2H_2O + Cl_2 \uparrow$$

Uses

In the production of dyes, paints, photographic chemicals, etc. Used in the preparation of chlorides, chlorine, aquaregia, etc. Used as a laboratory reagent.

Pseudo Halides

Pseudo halides are uninegative group which show certain characteristics of halide ions. For example Cyanide (CN $^-$), Cyanate (OCN $^-$), Thiocyanate (SCN $^-$), Selencyanate (SeCN $^-$), Azide (N $_3$ $^-$), Aziothnio carbonate (SCSN $_3$ $^-$) and isocyanate (ONC $^-$).

Chlorine (Cl₂)

Preparation: By oxidation of conc. HCl.

$$PbO_2 + 4HCl \rightarrow PbCl_2 + 2H_2O + Cl_2 \uparrow$$

$$2KMnO_4 + 16HCl \rightarrow 2KCl + 2MnCl_2 + 8H_2O + 5Cl_2 \uparrow$$

Manufacture:

Weldon's process: By heating pyrolusite with conc. HCl.

$$MnO_2 + 4HCl \rightarrow MnCl_2 + 2H_2O + Cl_2 \uparrow$$

Deacon process: $2HCl + O_2 \xrightarrow{CuCl_2} Cl_2 \uparrow + H_2O$

Properties: It is a yellowish green gas, poisonous in nature, soluble in water. Its aqueous solution is known as chlorine water which on careful cooling gives chlorine hydrate Cl₂·8H₂O.

Bleaching action and oxidising property

(i)
$$Cl_2 + H_2O \rightarrow HOC1 + HC1$$

 $HOCl \rightarrow HCl + [O]$

 $Coloured\ matter + nascent: [O] \rightarrow Colourless\ matter$

The bleacing action of chlorine is permanent and is due to its oxidising nature.

$$(ii) \ \mathrm{SO_2} + \mathrm{Cl_2} + 2\mathrm{H_2O} \rightarrow \mathrm{H_2SO_4} + 2\mathrm{HCl}$$

Action of hydrogen:

$$H_2 + Cl_2 \xrightarrow[Charcoal\ catalyst]{U.V.\ light} 2HCl$$

Displacement reactions:

$$2KBr + Cl_2 \rightarrow 2KCl + Br_2$$

 $2KI + Cl_2 \rightarrow 2KCl + I_2$

Action of NaOH:

$$2 \underset{\text{(cold \& dil.)}}{\text{NaOH}} + \underset{\text{dry}}{\overset{0}{\text{Cl}_{2}}} \rightarrow \underset{\text{NaCl}}{\text{NaCl}} + \underset{\text{sodium hypochloride}}{\overset{+1}{\text{NaOCl}_{1}}} + \underset{2}{\text{H}_{2}O}$$

$$\underset{(\text{hot \& conc.})}{6NaOH} + 3\overset{0}{\underset{dry}{Cl}_{2}} \rightarrow 5Na\overset{-1}{\underset{sodium \text{ chlorate}}{+5}} + 3\overset{+5}{\underset{sodium \text{ chlorate}}{+5}} + 3\overset{+}{\underset{2}{H}_{2}O}$$

Addition reactions:

$$\begin{aligned} &\mathrm{SO_2} + \mathrm{Cl_2} \rightarrow \mathrm{SO_2Cl_2} \\ &\mathrm{CO} + \mathrm{Cl_2} \rightarrow \mathrm{COCl_2} \end{aligned}$$

* Test for chlorine:

- (a) It is a greenish yellow gas with irritating smell.
- (b) It turns starch iodide paper blue.
- (c) It bleaches litmus paper and indigo solution.

Key Note

O **Action of silica and glass :** Strong solution of HF attacks readily forming silicon fluoride which gives complex fluosilicic acid, H₂SiF₆ with excess HF.

$$SiO_2 + 2H_2F_2 \rightarrow SiF_4 + 2H_2O$$

$$SiF_4 + H_2F_2 \rightarrow H_2SiF_6$$

This is called etching of glass.

O Iodine is slightly soluble in water but much more soluble in KI due to the formation of KI₂.

$$KI + I_2 \rightarrow KI_3$$

The solution behaves as a simple mixture of KI and I₂.

18th–Group Elements

1. Relative Abundance:

$$Ar > Ne > Kr > He > Xe > Rn$$

2. Melting and Boiling point:

- 3. He has the lowest boiling point among all element.
- 5. $O_2[PtF_6]$ is the first noble gas compound.
- 6. Ar, Kr and Xe from clathrate compound when pass in ice with high pressure.

$$A \cdot 6H_2O (A = Ar/Kr/Xe)$$

Preparation of Xe-Fluoride

Properties

Fluoride donor: Eg. $XeF_2 + MF_5 \longrightarrow [XeF_4]^+ [MF_6]^-$

Fluoride acceptor : Eg. $XeF_6 + \underset{(M=Na/K/Rb/Cs)}{MF} \longrightarrow M^+ [XeF_7]^-$

Fluoride agents : Eg. $XeF_4 \xrightarrow{SF_4/Pt} PtF_4/SF_6 + Xe$

Reaction with SiO₂: Eg. $2XeF_6 + SiO_2 \rightarrow SiF_4 + XeOF_4$

Hydrolysis

$$Xe + 2HF + \frac{1}{2}O_{2}$$

$$XeF_{2} \longrightarrow Xe + 2HF + \frac{1}{2}O_{2}$$

$$+ SOCl_{2} \longrightarrow Xe + 2F^{-} + H_{2}O + \frac{1}{2}O_{2}$$

$$6XeF_{4} + 12H_{2}O \longrightarrow 4Xe + 2XeO_{3} + 24HF + 3O_{2}$$

Noble Gases

In Dewar's method, the separation of noble gases is summerized below:

Mixture of noble gases (He, Ne, Ar, Kr, Xe) in contact with coconut charcoal at 173 K Unadsorbed Adsorbed (He, Ne) (Ar, Kr, Xe) in contact with in contact with another charcoal at 93 K charcoal at liquid air temperature In the first charcoal Second charcoal Adsorbed Unadsorbed Kr, Xe. Temp. raised Ar Ne Не to 183 K Evolved Kr Remained adsorbed Xe

The viscosity of He is extremely low, about 1/100th of hydrogen gas.