7.18. SHOC Bus Download Speed 9800 GTX+

0.052906 0.1662306 0.1662306 0.256688 1.16560 2.26823 2.26823 3.2570 3.2685 3.2570 3.2685 3.2570 3.2685 3.2570 0.01252	OT: 0000
11.000 (1	02.101
trial 6 0.0839895 0.152745 0.551774 0.551774 0.551774 0.551774 0.551774 0.551774 0.551774 0.65175 0.65175 0.65175 0.651774 0.6517	T.0/0.T
trial5 0.083509 0.1083509 0.29068 0.29068 0.9921 1.1.46815 2.20384 3.2632 3.2632 3.2632 3.2633 3.2633 3.2633 3.2633 3.2633 3.2633 3.2633 3.2633 3.2633 3.2633 3.2633 0.01256 0	02.270
trial 4 0.064/327 0.004/327 0.034/16 0.340176 0.340176 0.025690 1.04689 1.04689 1.04689 1.04689 1.04689 1.0475 1.0	04. ZOOT
trial3 0.0796896 0.0796896 0.036418 0.036418 0.036418 0.036418 0.0122 0.01249 0.012494 0.012694 0.0126	0T./200
trial2 0.067364 0.067364 0.067237 0.02237 0.052237 0.07228 0.07228 3.266 3.266 3.262	
triall. 0.0065534 0.00665534 0.00665534 0.00665536 0.00665536 0.00665536 0.00665536 0.00665536 0.00665536 0.00665536 0.006656 0.006656 0.0066666 0.0066666 0.0066666 0.0066666 0.0066666 0.0066666 0.00666666 0.00666666 0.0066666666	04. 200z
trial 0 0.0673894 0.0673894 0.022237 0.22237 0.022237 0.0152802 0.015281 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.080088 0.00088	0T : 0000
10.00513956 0.00513956 0.00513752 0.0051276 0.	0.00000±
0.082579 0.082579 0.160489 0.5296114 0.5296114 0.952278 1.0777 2.03278 2.03242 2.79079 3.11465 3.1259 3.125	02:200
studev 0.0641 0.0641 0.0641 0.0641 0.06422 0.05546 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.0556400 0.05564000 0.05564000 0.05564000 0.05564000000000000000000000000000000000	01.7150
(G) 75 - C	2
units. median- 188 288 888 888 888 3228 3228 5268 5268 5268 5268 5268 5268 5268 5	ONT 1707
test afts Downladspeed Downl	DOWN COOK THE

7.19. SHOC SPMV 9800 GTX+

trial4。	0.492294	0.137234	0.261401	0.109421	0.558854	0.638691	0.210648	0.472682	0100010
trial3 »	0.492394	0.136955	0.262245	0.109568	0.559059	0.639852	0.210774	0.471912	307001 0
trial2» »	0.491884	0.137231»	0.260362	0.109238	0.558687	0.639747	0.210889	0.471018	C03001 0
triall»	0.49285	0.137019	0.223399	0.102147	0.558511>	0.640031	0.210751>	0.472041	O 100746
trialO>>	0.487232	0.134479	0.23735	0.104968	0.555872	0.639339	0.212292	0.471965	ACTOOL 0
× 1	0.49285	0.137312	0.262433	0.109601	0.559661	0.640031	0.212292	0.472941	00001
WIU» »	0.487232	0.134479	0.223399	0.102147	0.555872	0.638691	0.210648	0.470233	2200010
stddev	0.00156929	0.000837205	0.0128315	0.00243434	0.000974549	0.000408259	0.00057479	0.000882654	-7 LC LA LOOO O
mean» »	0.491852	0.136804	0.255234	0.108255	0.558625	0.639539	0.211135	0.471626	03001 0
units median »	Gflop/s=0.492353	Gflop/s=0.137159=	Gflop/s 0.261349	Gflop/s 0.109412	Gflop/s=0.558802>	Gflop/s 0.639735	Gflop/s 0.210868	Gflop/s 0.471938	CF100 /0.0 10072
atts » » »	10485 elements 1024 rows	16832 elements 1024 rows	16832 elements 1024 rows	16832 elements 1024 rows	1000 ACOT 0+0000 to CC021				
test» » » »	CSR-Scalar-SP。。。。。	CSR-Scalar-SP_PCIe» »	CSR-Vector-SP。。	CSR-Vector-SP PCIe»	ELLPACKR-SP » »	Padded CSR-Scalar-SP	Padded_CSR-Scalar-SP_PCIe»	Padded CSR-Vector-SP	Doddod CCD Vooton CD DCTo.

7.20. SHOC MD 9800 GTX+

```
min max krial0 trial1 trial2 trial3 trial4 trial5 trial6 trial6 trial7 trial8 trial9 37.7012 38.5828 37.7012 38.5828 38.5935 38.3632 38.3803 38.2564 38.3818 38.2366 38.4576 28.9218 29.5892 28.9218 29.5892 28.5921 29.5822 38.4297 29.4429 29.3478 29.3478 29.3478 29.3437 29.5021 8.58623 8.64497 8.58632 11.2421 11.248 8.6216 8.6276 8.63976 11.1927 11.2692 11.1927 11.2692 11.2412 11.2592 11.2412 11.2592 11.2858 2.36836 2.42374 2.40342 2.40369 2.40995 2.41102 2.40324 2.41111 2.40199 2.41588
                                   median mean stddev
38.3134 38.2883 0.220931
29.3915 29.3722 0.169483
8.62724 8.6253 0.014716
11.2461 11.2438 0.019774
2.40682 2.40524 0.0138787
                                            units
GFLOPS
GB/S
GFLOPS
N
                                   test: MD-LJ
MD-LJ-Bandwidth: MD-LJ-Bandwidth-PCTe
MD-LJ-PCTe
MD-LJ-Parity: MD-LJ-Parit
```

7.21. SHOC Reduction 9800 GTX+

test。 » »	atts	units	median mean stddev »	min max» trialO triall trial2 trial3 trial4 trial5 trial5 trial9 trial9
Reduction	262144 items	GB/s	45.021» 45.0116»0.042387»	44.9105-45.0758-44.9105-44.968-45.0758-45.0202-45.0219-45.032-45.0407-45.0267-45.0052-45.0153-
Reduction PCIe	262144 items	GB/s	2.79718 2.7812 0.0489921	2. 63522° 2. 80602° 2. 63522° 2. 7905° 2. 79448° 2. 80072° 2. 79929° 2. 80268° 2. 79507° 2. 80602° 2. 80186° 2. 78617°
Reduction Parity	262144 items		15.0988 15.1893 0.28622	15.0465 16.0424 16.0424 15.1147 15.1303 15.0745 15.0833 15.0675 15.1144 15.0465 15.0626 15.1567

7.22. SHOC S3D 9800 GTX+

trial6»	23.1593	19.5184	0.18654
trial5»	22.8426	19, 2929	0.183989
trial4。	23.0669	19.4524	0.185817
trial3» »	23.0713	19.4553	0.185857
trial2» »	23.1074	19.476	0.186453
triall» »	23.0096	19.4123	0.185307
max» trialO»»	23.1593.21.9898	19.5184.18.6752.	0.18654 0.177486
"in"	21,9898	18.6752	0.177486
stddev» »	0.32531	0.234265	0.00254038
mean» »	22.9121>>>	19.3408	0.184621
	GFL0PS 23.0383 »		N 0.185562
atts» »	13824 gridPoints»	13824 gridPoints	13824 gridPoints
test。。	S30-SP	S3D-SP_PCIe	S3D-SP Parity

7.23. SHOC SGEMM 9800 GTX+

```
trial9
227.519
72.4067
2.1423
237.007
73.3411
 trial6 trial7 trial8 tr
7 227.605 226.768 226.646 22
72.4155 72.3306 72.3181 72
2.14304 2.13516 2.13401 2.
9.25.619 236.579 236.806 23
11 73.3039 73.3001 73.3219 73
2.22791 2.22754 2.22967 2.
max [trial0 trial1 trial2 trial3 trial4 trial5 227.877 227.408 227.1 225.331 227.531 226.084 227.877 72.443 72.3955 72.3642.72.1837 72.408 72.2608 72.403 72.443 72.3955 72.3642.72.1837 72.408 72.2608 72.443 2.1456 2.1418 2.13829 2.1216 3.12425 2.12872 2.1456 237.436 236.539 236.299 236.365 237.261 236.819 73.3822 73.3822 73.2962 73.2732 73.2796 73.3655 73.3231 2.23561 2.23561 2.22769 2.22553 2.23396 2.2298
      min
225.331
72.1837
2.12163
236.299
73.2732
2.2249
   mean stddev.
4 226.987.0.752719
9 72.3526.0.0766422
3 2.13722.0.00708732
2 236.773.0.352643
9 73.3187.0.0331872
9 2.22936.0.00331941
    median m 227.254 2 227.254 2 2 2.3393 2 236.712 2 73.3129 7 2.22879 2
      units
GFlops
GFlops
N
GFlops
GFlops
      atts
256
256
256
256
256
256
256
256
256
 test
SGEMM-N PCIE
SGEMM-N Parity
SGEMM-T PCIE
SGEMM-T PCIE
SGEMM-T PCIE
```

7.24. SHOC Sort 9800 GTX+

7.25. SHOC Stencil 2D 9800 GTX+

7.26. SHOC Triad 9800 GTX+

trial5。。	0.779149	1.24678	1.75064	2.24781>>>	2.6071>	2.82546	2.96308	3.0299	2.9267。。	0.129858	0.207797	0.291774	0.374635	0.434517	0.470909	0.493846	0.504984	0.487784
trial4。。	0.77622	1.23306	1.77099	2.25245	2.60395	2.82988	2.96191	3.03114	2.92878	0.12937	0, 205509	0.295164	0.375408	0.433992	0.471646	0.493652	0.505189	0.48813
trial3。	0.762938	1.23663	1.77424>>	2.25356	2.60879	2.83431>>	2.93846	3.02839	2.92819	0.127156	0.206106	0.295707	0.375594	0.434799	0.472386	0.489744	0.504732	0.488031
trial2>>	0.782538	1.22726	1.74641>>	2.25082	2.61179	2.82943	2.9478	3.03397	2.8912	0.130423	0.204544	0.291069	0.375137	0.435298	0.471571	0.4913	0.505662	0.481867
triall> >	0.776422	1.23775	1.77115>>	2.24804	2.6035	2.83089	2.95961	3.03457	2.92537>>	0.129404	0.206291	0.295191	0.374673	0.433916	0.471815	0.493269	0.505762	0.487562
trialO。。	0.777225	1.23093	1.76493	2.25557	2.60767>>	2.82291>>	2.95772	3.03236	2.92909	0.129538	0.205155	0.294154	0.375928	0.434612	0.470485	0.492953	0.505394	0.488181
wax» »	0.775907	1.22538	1.77246	2.25094	2.60908	2.81116	2.96482	3.02181>>	2.87615	0.129318	0.20423	0.29541>>	0.375157	0.434846	0.468527	0.494136	0.503635	0.479358
win»	0.782538	1.24678	1.77424	2.25618	2.61179	2.83431>>	2.96482	3.03457	2.92909	0.130423	0.207797	0.295707	0.37603	0.435298	0.472386	0.494136	0.505762	0.488181
stddev	0.762938	1.22538	1.74641>>>	2.24781	2.60081	2.81116	2.93846	3.02181	2.87615	0.127156	0.20423	0.291069	0.374635	0.433468	0.468527	0.489744	0.503635	0.479358
mean»	0.00488421	0.00610622	0.00893392	0.00299578	0.00300208	0.00654738	0.00896205	0.00375629	0.0197325	0.000814035	0.0010177	0.00148899	0.000499297	0.000500346	0.00109123	0.00149367	0.000626049	0.00328875
median。	0.77593	1.23375	1.76476	2.25177>>	2.60647	2.82806	2.95539	3.02946	2.91495	0.129322	0.205625	0.294126	0.375295	0.434412	0.471343	0.492566	0.50491	0.485824
units	0.776321	1.2345	1.76745	2.2517。。	2.60669	GB/s» 2.83006»	2.95867	3.02942	2.92692	/s=0.129387=	/s 0.20575	/s=0.294575=	/s 0.375283	/s.0.434449	/s>0.471676>	/s=0.493111=	/s>0.504904	/s.0.48782
	GB/S	GB/s	@B/s	cg/gb	@S/89	cs/85	GB/s	@S/89	cg/gb	GFL OP	GFL0P	GFL0P	GFL OP	GFL0P	GFL0P	GFL0P	GFL0P	GFI OP
						Block: 02048KB												
test	TriadBdwth	TriadBdwth	TriadBdwth	TriadBdwth	TriadBdwth	TriadBdwth	TriadBdwth	TriadBdwth	TriadBdwth	TriadFlops	TriadFlops	TriadFlops	TriadFlops	TriadFlops	TriadFlops	TriadFlops	TriadFlops	TriadFloos

7.27. SPEC CPU2006 Integer Results (No Auto-Parallel)

	Iteration #1 [s]	Iteration #2 [s]	Iteration #3 [s]
400.perlbench	398.00	396.00	396.00
401.bzip2	582.00	582.00	581.00
403.gcc	375.00	375.00	375.00
429.mcf	373.00	373.00	371.00
445.gobmk	510.00	511.00	511.00
456.hmmer	869.00	869.00	869.00
458.jeng	595.00	612.00	595.00
462.libquantum	508.00	506.00	506.00
464.h264ref	710.00	706.00	709.00
471.omnetpp	374.00	373.00	374.00
473.atar	494.00	495.00	494.00
483.xalancbmk	268.00	260.00	259.00

7.28. SPEC CPU2006 Integer Results (Auto-Parallel Enabled)

	Iteration #1 [s]	Iteration #2 [s]	Iteration #3 [s]
400.perlbench	410.00	411.00	411.00
401.bzip2	539.00	539.00	538.00
403.gcc	330.00	331.00	334.00
429.mcf	184.00	184.00	184.00
445.gobmk	600.00	601.00	607.00
456.hmmer	213.00	214.00	214.00
458.jeng	508.00	508.00	507.00
462.libquantum	12.20	14.30	13.00
464.h264ref	959.00	959.00	1031.00
471.omnetpp	339.00	340.00	339.00
473.atar	350.00	349.00	349.00
483.xalancbmk	214.00	214.00	214.00

7.29. Speedup of SPEC CPU2006 Integer Results

	Iteration Speedup	#1	Iteration Speedup	#2	Iteration Speedup	#2
400.perlbench	-3.02%		-3.79%		-3.79%	
401.bzip2	7.39%		7.39%		7.40%	
403.gcc	12.00%		11.73%		10.93%	
429.mcf	50.67%		50.67%		50.40%	
445.gobmk	-17.65%		-17.61%		-18.79%	
456.hmmer	75.49%		75.37%		75.37%	
458.jeng	14.62%		16.99%		14.79%	
462.libquantum	97.60%		97.17%		97.43%	
464.h264ref	-35.07%		-35.84%		-45.42%	
471.omnetpp	9.36%		8.85%		9.36%	
473.atar	29.15%		29.49%		29.35%	
483.xalancbmk	20.15%		17.69%		17.37%	
Average	21.72%		21.51%		20.37%	
Increase						
Per Benchmark			21.20%			
Total Average Increase			21.20%			

7.30. SPEC CPU2006 Floating Point Results (No Auto-Parallel)

	Iteration #1 [s]	Iteration #2 [s]	Iteration #3 [s]
416.gamess	937	940	938
433.milc	479	463	489
435.gromacs	579	579	578
436.cactusADM	1372	1441	1338
437.leslie3d	604	604	603
444.namd	496	497	496
447.dealII	430	429	430
450.soplex	270	270	283
453.povray	236	235	237
454.calculix	1484	1484	1484
459.GemsFDTD	517	517	517
465.tonto	652	649	652
470.lbm	378	379	378

482.sphinx3	632	630	632
434.zeusmp	623	625	625

7.31. SPEC CPU2006 Floating Point Results (Auto-Parallel Enabled)

	Iteration #1 [s]	Iteration #2 [s]	Iteration #3 [s]
416.gamess	1238	1185	1197
433.milc	190	189	190
435.gromacs	485	489	482
436.cactusADM	60.9	53.1	50.3
437.leslie3d	87.7	90.5	95.8
444.namd	457	456	457
447.dealII	293	293	293
450.soplex	296	263	286
453.povray	191	191	190
454.calculix	382	292	375
459.GemsFDTD	119	122	121
465.tonto	469	462	469
470.lbm	49.9	49.9	50.1
482.sphinx3	528	544	514
434.zeusmp	93.9	93	90.8

7.32. Speedup of SPEC CPU2006 Floating Point Results

	Iteration #1 Speedup	Iteration #2 Speedup	Iteration #3 Speedup
416.gamess	-32.12%	-26.06%	-27.61%
433.milc	60.33%	59.18%	61.15%
435.gromacs	16.23%	15.54%	16.61%
436.cactusADM	95.56%	96.32%	96.24%
437.leslie3d	85.48%	85.02%	84.11%
444.namd	7.86%	8.25%	7.86%
447.dealII	31.86%	31.70%	31.86%
450.soplex	-9.63%	2.59%	-1.06%
453.povray	19.07%	18.72%	19.83%
454.calculix	74.26%	80.32%	74.73%
459.GemsFDTD	76.98%	76.40%	76.60%
465.tonto	28.07%	28.81%	28.07%
470.lbm	86.80%	86.83%	86.75%

482.sphinx3	16.46%	13.65%	18.67%		
434.zeusmp	84.93%	85.12%	85.47%		
Average Increase Per	42.81%	44.16%	43.95%		
Benchmark					
Total Average Increase	43.64%				

7.33. Rodinia/Burkardt Benchmarks Average Execution Times

	2 threads	4 threads	8 threads	12 threads	24 threads
Leukocyte (s)	11.70	6.11	3.65	2.16	1.67
LU Decomposition (ms)	242.82	130.00	76.40	69.23	145.20
Speckle Reduction (ms)	638.14	415.07	306.41	283.93	492.26
Kmeans (s)	3.35	3.67	2.91	2.16	1.67
Stream Clusters (s)	47.08	25.18	14.61	11.91	10.40
FFT (ms)	76.17	45.41	31.63	27.85	31.36
Primes (s)	2.04	1.17	0.64	0.44	0.36

7.34. Rodinia/Burkardt Benchmarks Speedup between Thread Count

	2-4 threads	4-8 threads	8-12 threads	12-24 threads
Leukocyte (s)	47.78%	40.26%	40.82%	22.69%
LU Decomposition (ms)	46.46%	41.23%	9.38%	-109.74%
Speckle Reduction (ms)	34.96%	26.18%	7.34%	-73.37%
kmeans (s)	-9.55%	20.71%	25.77%	22.69%
Stream Clusters (s)	46.52%	41.98%	18.48%	12.68%
FFT (ms)	40.38%	30.35%	11.95%	-12.60%
Primes (s)	42.65%	45.30%	31.25%	18.18%
Average Increase Between Threads	35.60%	35.14%	20.71%	-17.07%

7.35. FPGA Results

Benchmark	Clk Period (MHz)	Clk Cycles	Throughput (ns)	Delay for valid data (Clock Cycles)	Delay (ns)
FFT	101	1	9.87	12	118
AES	376	1	2.66	1	2.66
FIR	710	1	1.41	8	1.13
FP Mul	550	9	16.4	9	46.4
FIR Core	550	11	20.0	20	36.4

Bibliography

- [1] "The Methodology of Random Logic Design," [Online]. Available: http://www.intel4004.com/mrld.htm. [Accessed 20 January 2012].
- [2] D. Risley, "PCMech," 23 March 2001. [Online]. Available: http://www.pcmech.com/article/a-cpu-history/10/. [Accessed 21 January 2012].
- [3] "AMD," 5 June 2000. [Online]. Available: http://www.amd.com/us/press-releases/Pages/Press_Release_729.aspx. [Accessed 20 January 2012].
- [4] C. S. a. D. Patterson, "Berkley," [Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/1982/CSD-82-106.pdf. [Accessed 20 January 2012].
- [5] M. Schmalz, "University of Florida," [Online]. Available: http://www.cise.ufl.edu/~mssz/CompOrg/CDA-proc.html. [Accessed 21 January 2012].
- [6] J. Tyson, "HowStuffWorks.com," 23 August 2000. [Online]. Available: http://computer.howstuffworks.com/computer-memory4.htm. [Accessed 21 January 2012].
- [7] T. Soderstrom, "Tom's Hardware," 11 December 2006. [Online]. Available: http://www.tomshardware.com/reviews/overclocking-guide-part-1,1379.html. [Accessed 20 January 2012].
- [8] G. Petley, "VlsiTechnology," 22 September 2008. [Online]. Available: http://www.vlsitechnology.org/. [Accessed 22 January 2012].
- [9] "SeachDataCenter," October 2004. [Online]. Available: http://searchdatacenter.techtarget.com/definition/multi-core-processor. [Accessed 23 January 2012].
- [10] B. Barney, "Lawrence Livermore National Laboratory," [Online]. Available: https://computing.llnl.gov/tutorials/parallel_comp/. [Accessed 23 January 2012].
- [11] NVIDIA, "What is GPU Computing?," 2012. [Online]. Available: http://www.nvidia.com/object/GPU_Computing.html. [Accessed 18 1 2012].
- [12] P. Lilly, "From Voodoo to GeForce: The Awsome History of 3D Graphics," 19 5 2009. [Online]. Available: www.maximumpc.com/article/features/voodoo_geforce_awsome_history_3d_graphics. [Accessed 26 1 2012].
- [13] "Graphics Processing Unit," 12 1 2012. [Online]. Available:

- en.wikipedia.oeg/wiki/Grpahics_processing_unit. [Accessed 19 1 2012].
- [14] NVIDIA, "PTX: Parallel Thread Execution ISA Version 2.3," NVIDIA, 2011.
- [15] "NVIDIA CUDA Compute Capability Comparative Table," 6 6 2010. [Online]. Available: www.geeks3d.com/20100606/gpu-computing-nvidia-cuda-compute-capability-comparative-table/. [Accessed 11 12 2011].
- [16] NVIDIA, "NVIDIA's Next Generation CUDA Compute Architecture: Fermi v1.1," NVIDIA, 2009.
- [17] NVIDIA, "NVIDIA CUDA Architecture," NVIDIA, 2009.
- [18] F. E. Allen, "The Greatest Inventors You've Never Heard Of," 2009.
- [19] "FPGA Applications & Consulting Experts," [Online]. Available: http://fpgaace.com/index.php/fpga-history/. [Accessed 27 February 2012].
- [20] "FPGA Central," 2011. [Online]. Available: http://www.fpgacentral.com/docs/fpgatutorial/history-programmable-logic. [Accessed 28 January 2012].
- [21] V. Betz, "University of Toronto," [Online]. Available: http://www.eecg.toronto.edu/~vaughn/challenge/fpga_arch.html. [Accessed February 1 2012].
- [22] "Electrical Engineering Times," October 2008. [Online]. Available: http://www.eetimes.com/electrical-engineers/education-training/courses/4000134/Fundamentals-of-FPGAs. [Accessed 2 February 2012].
- [23] B. C. L. a. A. E. Crews, "The Evolution of Benchmarking as a Computer Performance Evaluation Technique," *MIS Quarterly*, vol. 9, no. 1, pp. 7-16, 1985.
- [24] "SPEC CPU 2006," 7 September 2011. [Online]. Available: http://www.spec.org/cpu2006/. [Accessed 22 January 2012].
- [25] "SPEC," 24 August 2006. [Online]. Available: http://www.spec.org/cpu2006/CINT2006/. [Accessed 22 January 2012].
- [26] "SPEC," 27 September 2006. [Online]. Available: http://www.spec.org/cpu2006/CFP2006/. [Accessed 22 January 2012].
- [27] "Rodinia: Accelerated Compute-Intensive Applications with Accelerators," 16 12 2011. [Online]. Available: https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Main_Page. [Accessed 18 12 2011].
- [28] J. Burkardt, "Florida State University," 03 September 2011. [Online]. Available: http://people.sc.fsu.edu/~jburkardt/. [Accessed 23 January 2012].
- [29] "Scalable HeterOgeneous Computing (SHOC) Benchmarking Suite," Oak Ridge National Laboratory, 11 11 2011. [Online]. Available: ft.ornl.gov/doku/shoc/start. [Accessed 19]

- 12 2011].
- [30] "Parboil Benchmark Suite," Illinois Microarchitecture Project utilizing Advanced Compiler Technology (IMPACT), [Online]. Available: impact.crhc.illinois.edu/parboil.php. [Accessed 18 12 2011].
- [31] "Xilinx," 6 February 2009. [Online]. Available: http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf. [Accessed 12 February 2012].
- [32] "University of Virginia," [Online]. Available: http://www.cs.virginia.edu/!skadron/Papers/boyer_leukocyte_ipdps09.pdf. [Accessed 23 January 2012].
- [33] M. Strickland, "HEARST Electronic Products," 1 March 2010. [Online]. Available: http://www2.electronicproducts.com/The_evolution_of_FPGA_coprocessing-article-FAJH_FPGA_Mar2010-html.aspx. [Accessed January 29 2012].
- [34] J. Sanders and E. Kandrot, CUDA by Example, Boston, MA: Pearson Education, 2011.
- [35] NVIDIA, "NVIDIA CUDA C Programming Guide," NVIDIA, 2011.
- [36] W.-m. Hwu and D. Kirk, Programming Massively Parallel Processors: A Hands-on Approach, Burlington, MA: Morgan Kaufmann, 2010.
- [37] A. Danalis, P. Roth, G. Marin, K. Spafford, C. McCurdy, V. Tipparaju, J. Meredith and J. Vetter, "The Scalabe HeterOgeneous Computing (SHOC) Benchmark Suite," Pittsburgh, PA, 2010.
- [38] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee and K. Skadron, "Rodinia: A Benchmark Suite for Heterogeneous Computing," Dept Computer Science, UVA, 2009.
- [39] F. Abi-Chahla, "A Few Definitions," 18 6 2008. [Online]. Available: www.tomshardware.com/reviews/nvidia-cuda-gpu,1945-7.html. [Accessed 27 1 2012].
- [40] "National Instruments," 19 December 2011. [Online]. Available: http://zone.ni.com/devzone/cda/tut/p/id/6983. [Accessed 27 January 2012].