[COM6513] Assignment 1: Sentiment Analysis with Logistic Regression

Instructor: Nikos Aletras

The goal of this assignment is to develop and test a **text classification** system for **sentiment analysis**, in particular to predict the sentiment of movie reviews, i.e. positive or negative (binary classification).

For that purpose, you will implement:

- · Text processing methods for extracting Bag-Of-Word features, using
 - n-grams (BOW), i.e. unigrams, bigrams and trigrams to obtain vector representations of documents where n=1,2,3 respectively. Two vector weighting schemes should be tested: (1) raw frequencies (1 mark); (2) tf.idf (1 mark).
 - character n-grams (BOCN). A character n-gram is a contiguous sequence of characters given a word, e.g. for n=2, 'coffee' is split into {'co', 'of', 'ff', 'fe', 'ee'}. Two vector weighting schemes should be tested:

 (1) raw frequencies (1 mark); (2) tf.idf (1 mark). Tip: Note the large vocabulary size!
 - a combination of the two vector spaces (n-grams and character n-grams) choosing your best performing wighting respectively (i.e. raw or tfidf). (1 mark) Tip: you should merge the two representations
- Binary Logistic Regression (LR) classifiers that will be able to accurately classify movie reviews trained with:
 - (1) BOW-count (raw frequencies)
 - (2) BOW-tfidf (tf.idf weighted)
 - (3) BOCN-count
 - (4) BOCN-tfidf
 - (5) BOW+BOCN (best performing weighting; raw or tfidf)
- The Stochastic Gradient Descent (SGD) algorithm to estimate the parameters of your Logistic Regression models. Your SGD algorithm should:
 - Minimise the Binary Cross-entropy loss function (1 mark)
 - Use L2 regularisation (1 mark)
 - Perform multiple passes (epochs) over the training data (1 mark)
 - Randomise the order of training data after each pass (1 mark)
 - Stop training if the difference between the current and previous development loss is smaller than a threshold (1 mark)
 - After each epoch print the training and development loss (1 mark)
- Discuss how did you choose hyperparameters (e.g. learning rate and regularisation strength) for each LR model? You should use a table showing model performance using different set of hyperparameter values.
 (2 marks). **Tip: Instead of using all possible combinations, you could perform a random sampling of combinations.
- After training each LR model, plot the learning process (i.e. training and validation loss in each epoch) using a line plot. Does your model underfit, overfit or is it about right? Explain why. (1 mark).
- Identify and show the most important features (model interpretability) for each class (i.e. top-10 most positive and top-10 negative weights). Give the top 10 for each class and comment on whether they make sense (if they don't you might have a bug!). If you were to apply the classifier into a different domain such

laptop reviews or restaurant reviews, do you think these features would generalise well? Can you propose what features the classifier could pick up as important in the new domain? (2 marks)

- Provide well documented and commented code describing all of your choices. In general, you are free to
 make decisions about text processing (e.g. punctuation, numbers, vocabulary size) and hyperparameter
 values. We expect to see justifications and discussion for all of your choices (2 marks).
- Provide efficient solutions by using Numpy arrays when possible (you can find tips in Lab 1 sheet). Executing the whole notebook with your code should not take more than 5 minutes on a any standard computer (e.g. Intel Core i5 CPU, 8 or 16GB RAM) excluding hyperparameter tuning runs (2 marks).

Data

The data you will use are taken from here: http://www.cs.cornell.edu/people/pabo/movie-review-data/ (http://www.cs.cornell.edu/people/pabo/movie-review-data/) and you can find it in the ./data_sentiment folder in CSV format:

- data_sentiment/train.csv: contains 1,400 reviews, 700 positive (label: 1) and 700 negative (label: 0) to be used for training.
- data_sentiment/dev.csv: contains 200 reviews, 100 positive and 100 negative to be used for hyperparameter selection and monitoring the training process.
- data_sentiment/test.csv: contains 400 reviews, 200 positive and 200 negative to be used for testing.

Submission Instructions

accuracy itself.

You should submit a Jupyter Notebook file (assignment1.ipynb) and an exported PDF version (you can do it from Jupyter: File->Download as->PDF via Latex or you can print it as PDF using your browser).

You are advised to follow the code structure given in this notebook by completing all given funtions. You can also write any auxilliary/helper functions (and arguments for the functions) that you might need but note that you can provide a full solution without any such functions. Similarly, you can just use only the packages imported below but you are free to use any functionality from the Python Standard Library (https://docs.python.org/2/library/index.html), NumPy, SciPy (excluding built-in softmax functions) and Pandas. You are not allowed to use any third-party library such as Scikit-learn (apart from metric functions already

provided), NLTK, Spacy, Keras etc..

There is no single correct answer on what your accuracy should be, but correct implementations usually achieve F1-scores around 80% or higher. The quality of the analysis of the results is as important as the

This assignment will be marked out of 20. It is worth 20% of your final grade in the module.

The deadline for this assignment is **23:59 on Mon, 14 Mar 2022** and it needs to be submitted via Blackboard. Standard departmental penalties for lateness will be applied. We use a range of strategies to **detect unfair** means (https://www.sheffield.ac.uk/ssid/unfair-means/index), including Turnitin which helps detect plagiarism. Use of unfair means would result in getting a failing grade.

In [1]:

```
import pandas as pd
import numpy as np
from collections import Counter
import re
import matplotlib.pyplot as plt
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import random

# fixing random seed for reproducibility
random.seed(123)
np.random.seed(123)
```

Load Raw texts and labels into arrays

First, you need to load the training, development and test sets from their corresponding CSV files (tip: you can use Pandas dataframes).

In [2]:

If you use Pandas you can see a sample of the data.

In [3]:

```
dev_data.head()
```

Out[3]:

	Text	Label
0	wong kar-wei's " fallen angels " is , on a pur	1
1	there is nothing like american history x in th	1
2	an unhappy italian housewife , a lonely waiter	1
3	when people are talking about good old times ,	1
4	the rocky horror picture show 'special edition	1

The next step is to put the raw texts into Python lists and their corresponding labels into NumPy arrays:

In [4]:

```
dev_text = list(dev_data['Text'])  # Seprating text and label data
dev_label = list(dev_data['Label'])
train_text = list(train_data['Text'])
train_label = list(train_data['Label'])
test_text = list(test_data['Text'])
test_label = list(test_data['Label'])
```

Vector Representations of Text

To train and test Logisitc Regression models, you first need to obtain vector representations for all documents given a vocabulary of features (unigrams, bigrams, trigrams).

Text Pre-Processing Pipeline

To obtain a vocabulary of features, you should:

- tokenise all texts into a list of unigrams (tip: using a regular expression)
- remove stop words (using the one provided or one of your preference)
- compute bigrams, trigrams given the remaining unigrams (or character ngrams from the unigrams)
- · remove ngrams appearing in less than K documents
- use the remaining to create a vocabulary of unigrams, bigrams and trigrams (or character n-grams). You can keep top N if you encounter memory issues.

In [5]:

N-gram extraction from a document

You first need to implement the extract_ngrams function. It takes as input:

- x raw: a string corresponding to the raw text of a document
- ngram_range: a tuple of two integers denoting the type of ngrams you want to extract, e.g. (1,2) denotes
 extracting unigrams and bigrams.
- token_pattern: a string to be used within a regular expression to extract all tokens. Note that data is
 already tokenised so you could opt for a simple white space tokenisation.
- stop words : a list of stop words
- vocab: a given vocabulary. It should be used to extract specific features.
- char ngrams: boolean. If true the function extracts character n-grams

and returns:

`x': a list of all extracted features.

See the examples below to see how this function should work.

In [6]:

```
def extract_ngrams(x_raw, ngram_range=(1,3), token_pattern=r'\b[A-Za-z]{2,}\b',
                   stop_words= stop_words, vocab=None, char_ngrams = True):
    if char ngrams == False:
        tokens = []
        for word in re.findall(token_pattern,x_raw):
            if word.lower() not in stop_words:
                tokens.append(word.lower())
        ngrams list = []
                                                          # Extracting tokens by words
        for num in range(0, len(tokens)):
            ngram = ' '.join(tokens[num:num + 1])
            ngrams_list.append(ngram)
        for num in range(0, len(tokens)):
            ngram = ' '.join(tokens[num:num + 2])
            ngrams_list.append(ngram)
        for num in range(0, len(tokens)):
            ngram = ' '.join(tokens[num:num + 3])
            ngrams_list.append(ngram)
    #return ngrams_list
        x = set(ngrams_list)
                                                         # Extracting tokens by characters
        return list(x)
    elif char ngrams == True:
        ngrams_list = []
        for x in range(len(x_raw)):
            n=x_raw[x:x+2]
            ngrams_list.append(n)
        for x in range(len(x raw)):
            n=x_raw[x:x+3]
            ngrams_list.append(n)
        for x in range(len(x_raw)):
            n=x raw[x:x+4]
            ngrams_list.append(n)
        x = set(ngrams list)
        return list(x)
```

Note that it is OK to represent n-grams using lists instead of tuples: e.g. ['great', ['great', 'movie']]

For extracting character n-grams the function should work as follows:

In [7]:

Out[7]:

```
['mov', 'movi', 'vie', 'ie', 'ovie', 'vi', 'e', 'ov', 'mo', 'ovi']
```

Create a vocabulary

The get_vocab function will be used to (1) create a vocabulary of ngrams; (2) count the document frequencies of ngrams; (3) their raw frequency. It takes as input:

- X_raw: a list of strings each corresponding to the raw text of a document
- ngram_range: a tuple of two integers denoting the type of ngrams you want to extract, e.g. (1,2) denotes
 extracting unigrams and bigrams.
- token_pattern: a string to be used within a regular expression to extract all tokens. Note that data is already tokenised so you could opt for a simple white space tokenisation.
- stop_words: a list of stop words
- min_df: keep ngrams with a minimum document frequency.
- keep_topN: keep top-N more frequent ngrams.

and returns:

- vocab: a set of the n-grams that will be used as features.
- df: a Counter (or dict) that contains ngrams as keys and their corresponding document frequency as values.
- ngram_counts : counts of each ngram in vocab

Hint: it should make use of the extract_ngrams function.

In [8]:

```
def get_vocab(X_raw,
              ngram_range=(1, 3),
              token_pattern=r'\b[A-Za-z]{2,}\b',
              min df=1,
              keep_topN=0,
              stop_words=stop_words):
   doc_freq = Counter()
   ngram_count = Counter()
   z=[]
   for text in X_raw:
        # A list of ngrams for the given document `text`
        ngram_list = extract_ngrams(text, ngram_range, token_pattern, stop_words,char_ngram
        doc_freq.update(set(ngram_list))
                                                                # Here we are counting docu
        for ngram in ngram_list:
                                                                 # Here we are counting ngra
            list=[]
            if doc_freq[ngram]>=min_df:
                list.append(ngram)
            ngram_count.update(list)
   vocab = {ngram for ngram, _ in ngram_count.most_common(keep_topN)} # Here we are extr
   return vocab, doc_freq, ngram_count
```

Now you should use get_vocab to create your vocabulary and get document and raw frequencies of n-grams:

In [9]:

```
vocab, doc_freq = get_vocab(train_text, keep_topN=5000)[0:2]
```

In [10]:

```
len(vocab)
```

Out[10]:

5000

In [11]:

```
vocab
Out[11]:
{'troopers',
 'police officer',
 'while',
 'san',
 'well but',
 'talented',
 'dead',
 'george clooney',
 'bell',
 'all film',
 'benefit',
 'love story',
 'upon',
 'beating',
 'never',
 'intricate',
 'inevitable',
 'wonders'.
```

Then, you need to create 2 dictionaries: (1) vocabulary id -> word; and (2) word -> vocabulary id so you can use them for reference:

In [12]:

```
id2word = {index: value for index, value in enumerate(vocab)}
                                                                 # vocabulary id -> word
                                                                  # word -> vocabulary id
word_to_vocab_id = {k : v for k, v in id2word.items()}
print(word to vocab id)
{0: 'troopers', 1: 'police officer', 2: 'while', 3: 'san', 4: 'well but',
5: 'talented', 6: 'dead', 7: 'george clooney', 8: 'bell', 9: 'all film', 1
0: 'benefit', 11: 'love story', 12: 'upon', 13: 'beating', 14: 'never', 1
5: 'intricate', 16: 'inevitable', 17: 'wonders', 18: 'scenario', 19: 'proj
ect', 20: 'taken', 21: 'exact', 22: 'death', 23: 'unpleasant', 24: 'anna',
25: 'there also', 26: 'finds', 27: 'clean', 28: 'my favorite', 29: 'jennif
er', 30: 'lone', 31: 'painting', 32: 'murders', 33: 'provoking', 34: 'sign
ificance', 35: 'walter', 36: 'cop', 37: 'rich', 38: 'moments', 39: 'suspen
se', 40: 'first rate', 41: 'best known', 42: 'makes up', 43: 'more', 44:
'big', 45: 'must', 46: 'marry', 47: 'profound', 48: 'timing', 49: 'positiv
e', 50: 'so many', 51: 'digital', 52: 'neve campbell', 53: 'explored', 54:
'happily', 55: 'exception', 56: 'generally', 57: 'phenomenon', 58: 'look 1
ike', 59: 'jazz', 60: 'capture', 61: 'point', 62: 'coming', 63: 'regular',
64: 'disaster', 65: 'unique', 66: 'turkey', 67: 'wonder if', 68: 'qualit
y', 69: 'forms', 70: 'covers', 71: 'seen before', 72: 'bad but', 73: 'firs
t all', 74: 'camp', 75: 'purpose', 76: 'keanu', 77: 'audiences', 78: 'kean
u reeves', 79: 'something', 80: 'among', 81: 'needed', 82: 'luck', 83: 'he
lps', 84: 'training', 85: 'missed', 86: 'daniel', 87: 'supposedly', 88: 'i
nternational', 89: 'when first', 90: 'five years', 91: 'plot', 92: 'indepe
```

Now you should be able to extract n-grams for each text in the training, development and test sets:

```
In [13]:

def generator_train ():
    return (extract_ngrams(text, vocab=vocab,char_ngrams=False)for text in train_text)
```

```
In [14]:
```

```
def generator_dev ():
    return (extract_ngrams(text, vocab=vocab,char_ngrams=False)for text in dev_text)
```

In [15]:

```
def generator_test ():
    return (extract_ngrams(text, vocab=vocab,char_ngrams=False)for text in test_text)
```

In [16]:

```
train_texts_ngrams = generator_train()
dev_texts_ngrams = generator_dev ()
test_texts_ngrams = generator_test()
```

Vectorise documents

Next, write a function vectoriser to obtain Bag-of-ngram representations for a list of documents. The function should take as input:

- X_ngram: a list of texts (documents), where each text is represented as list of n-grams in the vocab
- vocab: a set of n-grams to be used for representing the documents

and return:

X_vec: an array with dimensionality Nx|vocab| where N is the number of documents and |vocab| is the
size of the vocabulary. Each element of the array should represent the frequency of a given n-gram in a
document.

In [17]:

Finally, use vectorise to obtain document vectors for each document in the train, development and test set. You should extract both count and tf.idf vectors respectively:

Count vectors

```
In [18]:
```

```
train_count = vectorise(train_texts_ngrams, vocab)

dev_count = vectorise(dev_texts_ngrams, vocab)

test_count = vectorise(test_texts_ngrams, vocab)
```

In [19]:

```
train_count.shape
```

Out[19]:

(1399, 5000)

In [20]:

```
train_count[:2,:100]
```

Out[20]:

TF.IDF vectors

First compute idfs an array containing inverted document frequencies (Note: its elements should correspond to your vocab)

In [21]:

Then transform your count vectors to tf.idf vectors:

In [22]:

```
Train_norm = np.log10(1 + train_count) # Reference ---> Lecture Notes
Dev_norm = np.log10(1 + dev_count) # squash the raw frequency, by using the Log10.
Test_norm = np.log10(1 + test_count)
```

In [23]:

```
train_tfidf = Train_norm * train_idf # Calculating Tfidf
dev_tfidf = Dev_norm * dev_idf # tfidf = tf * idf
test_tfidf = Test_norm * test_idf
```

Binary Logistic Regression

After obtaining vector representations of the data, now you are ready to implement Binary Logistic Regression for classifying sentiment.

First, you need to implement the sigmoid function. It takes as input:

• z : a real number or an array of real numbers

and returns:

• sig: the sigmoid of z

In [24]:

Then, implement the predict_proba function to obtain prediction probabilities. It takes as input:

- X : an array of inputs, i.e. documents represented by bag-of-ngram vectors $(N \times |vocab|)$
- weights : a 1-D array of the model's weights (1, |vocab|)

and returns:

preds proba: the prediction probabilities of X given the weights

In [25]:

```
def predict_proba(X, weights): # Reference Logic
   z = X.dot(weights) # https://pyimagesearch.com/2016/10/17/stochastic-gradient-
   preds_proba = sigmoid(z)
   return preds_proba
```

Then, implement the predict_class function to obtain the most probable class for each vector in an array of input vectors. It takes as input:

• X: an array of documents represented by bag-of-ngram vectors $(N \times |vocab|)$

• weights: a 1-D array of the model's weights (1, |vocab|)

and returns:

• preds_class : the predicted class for each x in X given the weights

In [26]:

```
def predict_class(X, weights):
    list = []
    for prob in predict_proba(X,weights):  # Assignining range if <= 0.5 then assign to
        if prob <= 0.5:
            list.append(0)
        else:
            list.append(1)
        preds_class = list
        return preds_class</pre>
```

To learn the weights from data, we need to minimise the binary cross-entropy loss. Implement binary_loss that takes as input:

- · X: input vectors
- Y: labels
- · weights: model weights
- · alpha: regularisation strength

and return:

• 1: the loss score

In [27]:

Now, you can implement Stochastic Gradient Descent to learn the weights of your sentiment classifier. The SGD function takes as input:

- X_tr: array of training data (vectors)
- Y_tr: labels of X_tr
- X dev: array of development (i.e. validation) data (vectors)
- Y dev: labels of X dev
- · 1r: learning rate
- · alpha: regularisation strength
- epochs : number of full passes over the training data
- tolerance : stop training if the difference between the current and previous validation loss is smaller than a threshold

print progress: flag for printing the training progress (train/validation loss)

and returns:

- · weights: the weights learned
- training_loss_history: an array with the average losses of the whole training set after each epoch
- validation_loss_history: an array with the average losses of the whole development set after each epoch

In [28]:

```
def SGD(X_tr, Y_tr, X_dev=[], Y_dev=[], lr=0.1, alpha=0.00001, epochs=5, tolerance=0.0001,
                                          # Random seed is fixed here so that we can get sa
   np.random.seed(123)
   training_loss_history = []
   validation_loss_history = []
   weights_int_list = []
   for i in range(train count.shape[1]):
        weights_int_list.append(0)
                                            # Creating weights with all zeros so that we can
   weights_int = np.array(weights_int_list)
   weights = weights_int.astype(np.float)
   def zipper(X_tr, Y_tr):
        size = len(X_tr) if len(X_tr) < len(Y_tr) else len(Y_tr)</pre>
                                             # Create training tuples
        retList = []
        for i in range(size):
                                             # Adding values from two list simultaneously
            retList.append((X_tr[i], Y_tr[i]))
        return retList
   train_docs = zipper(X_tr, Y_tr)
   for epoch in range(epochs):
        np.random.shuffle(train_docs)
                                           # Shuffling to randomise all values
                                            # Reference
        for first, second in train_docs: \# w = w - \eta \nabla w L(w; xi; yi) --> Lecture Notes
            weights = weights - lr * (first * (predict_proba(first, weights) - second) + 2
        # Monitor training and validation loss
        loss_in_training = binary_loss(X_tr, Y_tr, weights, alpha)
        loss_in_dev = binary_loss(X_dev, Y_dev, weights, alpha)
        # Early stopping
                                    # Reference
                                    # previous validation loss - current validation loss; s
        if epoch > 0 and validation_loss_history[-1] - loss_in_dev < tolerance:</pre>
            break
        else:
            training_loss_history.append(loss_in_training)
            validation_loss_history.append(loss_in_dev)
        if print_progress:
            print("Epoch:- ",epoch," ","Training loss:- ",loss_in_training," ","Validatio
    return weights, training_loss_history, validation_loss_history
```

Train and Evaluate Logistic Regression with Count vectors

First train the model using SGD:

In [29]:

```
w_count, training_loss_count, dev_loss_count = SGD(X_tr=train_count,Y_tr=np.array(train_lab

<ipython-input-28-1bbe47eleeaf>:11: DeprecationWarning: `np.float` is a de
precated alias for the builtin `float`. To silence this warning, use `floa
t` by itself. Doing this will not modify any behavior and is safe. If you
specifically wanted the numpy scalar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.or
g/devdocs/release/1.20.0-notes.html#deprecations (https://numpy.org/devdoc
s/release/1.20.0-notes.html#deprecations)
weights = weights_int.astype(np.float)
```

Now plot the training and validation history per epoch for the best hyperparameter combination. Does your model underfit, overfit or is it about right? Explain why.

In [30]:

```
plt.plot(training_loss_count, label='Train_loss')
plt.plot(dev_loss_count, label='Valid_loss')

plt.xlabel('Epochs',fontweight='bold')
plt.ylabel('Loss',fontweight='bold')

plt.title('Binary_Count(Training)')
ax = plt.axes()
ax.set_facecolor("lightgray")

plt.legend()
plt.show()
```

<ipython-input-30-41ab2a87d266>:8: MatplotlibDeprecationWarning: Adding an a
xes using the same arguments as a previous axes currently reuses the earlier
instance. In a future version, a new instance will always be created and re
turned. Meanwhile, this warning can be suppressed, and the future behavior
ensured, by passing a unique label to each axes instance.

Explain here...

From the plot above, it is clear that.. (i) Train loss is decreasing as count of epoch increases until it reaches a certian standard of stability..(ii) Valid loss is also decreasing as count of epoch increases until it reaches a certain standard of stability. From this I conclude that, the model is about right.

Evaluation

Compute accuracy, precision, recall and F1-scores:

In [31]:

```
array_test_label = np.array(test_label) # Changing list to array as accur
```

In [32]:

```
preds_te_count = predict_class(test_count, w_count)

print('Accuracy:', accuracy_score(array_test_label,preds_te_count))
print('Precision:', precision_score(array_test_label,preds_te_count))
print('Recall:', recall_score(array_test_label,preds_te_count))
print('F1-Score:', f1_score(array_test_label,preds_te_count))
```

Accuracy: 0.8596491228070176 Precision: 0.8454106280193237 Recall: 0.8793969849246231 F1-Score: 0.8620689655172413

Finally, print the top-10 words for the negative and positive class respectively.

In [33]:

```
top_neg = w_count.argsort()[:10]  # Printing top ten negative elements
for i in top_neg:
    print(id2word[i])
```

bad script worst unfortunately nothing plot boring only looks supposed

In [34]:

```
top_pos = w_count.argsort()[::-1][:10] # Printing top ten positive elements
for i in top_pos:
    print(id2word[i])
```

```
hilarious
also
both
great
well
many
seen
true
perfect
perfectly
```

If we were to apply the classifier we've learned into a different domain such laptop reviews or restaurant reviews, do you think these features would generalise well? Can you propose what features the classifier could pick up as important in the new domain?

The classifier here predicts a good set of positive and negative words and it is expected that it will correctly predict the some of the reviews about laptops and restaurant. However, specially for laptop and restaurant there may have some words which defines best positive and best negative words for review and using this classifier

will give accuracy but not to a great extend and it will somewhat make model underfit. Hence I dont think this features would generalise well in laptop and restaurant reviews.

Discuss how did you choose model hyperparameters (e.g. learning rate and regularisation strength)? What is the relation between training epochs and learning rate? How the regularisation strength affects performance?

I have carried out trial and error strategy to choose model hyperparameter. As mentioned in the instruction, *Instead of using all possible combinations, you could perform a random sampling of combinations.* I have done the same. In hyperparameter optimisation, the lower bound and upper bound values are need to be defined where lower bound value is the baseline for optimal performance of model and upper bound is the one where the performance starts to mitigate. For this purpose I have set the initial lower and upper bound for learning rate as 0.0001 and 0.1 where for regularisation i have set it to 0.00001 and 0.01 precisely. After that I started chaging the lower bound and upper bound to see the results in terms of precision, recall and F1-score.

Count Vectors

Table showing model performance for learning rate :-

Trial	Learning rate	Epochs	Tr. loss	Val. loss	Precision	Recall	F1-Score
0	0.0001	99	0.2033	0.4097	0.8523	0.876	0.8634
1	0.00011	99	0.1945	0.4086	0.8522	0.868	0.8567
2	0.000105	99	0.1975	0.4083	0.8457	0.871	0.8592
3	0.00010124	99	0.2033	0.4097	0.8523	0.876	0.8635

Table showing model performance for Regularisation strength:-

Trial	Alpha	Epochs	Tr. loss	Val. loss	Precision	Recall	F1-Score
0	0.00001	99	0.2031	0.40954	0.8523	0.874	0.8640
1	0.00002	99	0.2017	0.40953	0.8522	0.873	0.8640
2	0.000015	99	0.2022	0.40948	0.8522	0.874	0.8639
3	0.0000124	99	0.2029	0.40944	0.8523	0.874	0.8640

TF.IDF Vectors

Table showing model performance for learning rate :-

Trial	Learning rate	Epochs	Tr. loss	Val. loss	Precision	Recall	F1-Score
0	0.0001	23	0.5025	0.5845	0.8412	0.867	0.8654
1	0.0002	23	0.4053	0.5321	0.8632	0.875	0.8733
2	0.0003	23	0.3439	0.4998	0.8654	0.848	0.8798
3	0.0025	23	0.0856	0.3750	0.8869	0.875	0.8759

Table showing model performance for Regularisation strength:-

Trial	Alpha	Epochs	Tr. loss	Val. loss	Precision	Recall	F1-Score
0	0.00001	23	0.0891	0.3756	0.8878	0.873	0.8810

Trial	Alpha	Epochs	Tr. loss	Val. loss	Precision	Recall	F1-Score
1	0.00002	23	0.0903	0.3785	0.8880	0.873	0.8810
2	0.0004	23	0.1645	0.4265	0.88	0.88	0.8866
3	0.0008	23	0.2206	0.4583	0.875	0.875	0.8860

Relationship Between Epochs and Learning Rate

The relationship between Epochs and learning arte follows a proportionality rule, where greater the learning rate, larger the weight update after each epochs.

How regularisation strength affects performance.

Regularisation rate affects the convergence of epoch which in turn affects the model performance, so we can say that regularisation strength indirectly correlates with the model performance.

Train and Evaluate Logistic Regression with TF.IDF vectors

Follow the same steps as above (i.e. evaluating count n-gram representations).

Now repeat the training and evaluation process for BOW-tfidf, BOCN-count, BOCN-tfidf, BOW+BOCN including hyperparameter tuning for each model...

In [35]:

```
w_tfidf, training_loss_tfidf, dev_loss_tfidf = SGD(X_tr=train_tfidf,Y_tr=np.array(train_lab
                                                    Validation loss:-
Epoch:- 0
              Training loss:- 0.6619948876678392
6708951556266846
                                                    Validation loss:-
Epoch:- 1
              Training loss:- 0.6344381228181969
651831140695691
             Training loss:- 0.6097707917410218
                                                    Validation loss:-
Epoch:- 2
6342512289210034
Epoch: - 3
              Training loss:- 0.5877746679357756
                                                    Validation loss:- 0.
619360059437997
<ipython-input-28-1bbe47e1eeaf>:11: DeprecationWarning: `np.float` is a de
precated alias for the builtin `float`. To silence this warning, use `floa
t` by itself. Doing this will not modify any behavior and is safe. If you
specifically wanted the numpy scalar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.or
g/devdocs/release/1.20.0-notes.html#deprecations (https://numpy.org/devdoc
s/release/1.20.0-notes.html#deprecations)
  weights = weights_int.astype(np.float)
```

In [36]:

```
plt.plot(training_loss_tfidf, label='Train_loss')
plt.plot(dev_loss_tfidf, label='Valid_loss')

plt.xlabel('Epochs',fontweight='bold')
plt.ylabel('Loss',fontweight='bold')

plt.title('Binary - TFIDF(Training)')
ax = plt.axes()
ax.set_facecolor("lightgray")

plt.legend()
plt.show()
```

<ipython-input-36-77ed45a3342a>:8: MatplotlibDeprecationWarning: Adding an a
xes using the same arguments as a previous axes currently reuses the earlier
instance. In a future version, a new instance will always be created and re
turned. Meanwhile, this warning can be suppressed, and the future behavior
ensured, by passing a unique label to each axes instance.


```
In [37]:
```

```
preds_te_tfidf = predict_class(test_tfidf, w_tfidf)

print('Accuracy:', accuracy_score(np.array(test_label),preds_te_tfidf))
print('Precision:', precision_score(np.array(test_label),preds_te_tfidf))
print('Recall:', recall_score(np.array(test_label),preds_te_tfidf))
print('F1-Score:', f1_score(np.array(test_label),preds_te_tfidf))
```

Accuracy: 0.8621553884711779

Precision: 0.86

Recall: 0.864321608040201 F1-Score: 0.8621553884711779

In [38]:

```
top_neg = w_tfidf.argsort()[:10]
for i in top_neg:
    print(id2word[i])
```

bad script worst nothing plot unfortunately boring looks only least

In [39]:

```
top_pos = w_tfidf.argsort()[::-1][:10]
for i in top_pos:
    print(id2word[i])
```

hilarious also both great many well perfect true best

seen

BOCN

In [40]:

```
def extract_ngrams_c(x_raw, ngram_range=(1,3), token_pattern=r'\b[A-Za-z]{2,}\b',
                   stop_words= stop_words, vocab=None, char_ngrams = True):
   if char_ngrams == False:
        tokens = []
        for word in re.findall(token_pattern,x_raw):
            if word.lower() not in stop_words:
                tokens.append(word.lower())
        ngrams_list = []
        for num in range(0, len(tokens)):
            ngram = ' '.join(tokens[num:num + 1])
                                                               # Extracting tokens by words
            ngrams_list.append(ngram)
        for num in range(0, len(tokens)):
            ngram = ' '.join(tokens[num:num + 2])
            ngrams_list.append(ngram)
        for num in range(0, len(tokens)):
            ngram = ' '.join(tokens[num:num + 3])
            ngrams_list.append(ngram)
   #return ngrams list
        x = set(ngrams_list)
        return list(x)
   elif char ngrams == True:
        ngrams list = []
        for x in range(len(x_raw)):
                                                              # Extracting tokens by charact
            n=x_raw[x:x+2]
            ngrams_list.append(n)
        for x in range(len(x_raw)):
            n=x raw[x:x+3]
            ngrams_list.append(n)
        for x in range(len(x_raw)):
            n=x raw[x:x+4]
            ngrams_list.append(n)
        x = set(ngrams_list)
        return list(x)
```

```
In [41]:
def get_vocab_c(X_raw,
              ngram_range=(1, 3),
              token_pattern=r'\b[A-Za-z]{2,}\b',
              min df=1,
              keep_topN=0,
              stop_words=stop_words):
   doc_freq_c = Counter()
   ngram_count_c = Counter()
   for text in X raw:
        # A list of ngrams for the given document `text`
        ngram_list = extract_ngrams_c(text, ngram_range, token_pattern, stop_words,char_ngr
        doc_freq_c.update(set(ngram_list))
                                              # Here we are counting document frequency
        for ngram in ngram_list:
                                              # Here we are counting ngram frequency
            list=[]
            if doc_freq_c[ngram]>=min_df:
                list.append(ngram)
            ngram_count_c.update(list)
   vocab_c = {ngram for ngram, _ in ngram_count_c.most_common(keep_topN)}
                                                                             # Here we are
   return vocab_c, doc_freq_c, ngram_count_c
In [42]:
vocab c, doc freq c = get vocab c(train text, keep topN=5000)[0:2]
In [43]:
len(vocab_c)
Out[43]:
5000
In [44]:
vocab_c
Out[44]:
```

```
{'t f',
 'nit',
 'lp',
 'san',
 ' cr',
 'ood '
 'e an',
 'his',
 'y ) ',
 'ng s',
 "'s c",
 'at b',
 'ille',
 'm i',
 '0 ,',
 ' lon',
 'his ',
 'who'.
```

```
In [45]:
```

```
def generator_train_c ():
    return (extract_ngrams_c(text, vocab=vocab_c,char_ngrams=True)for text in train_text)
```

In [46]:

```
def generator_dev_c ():
    return (extract_ngrams_c(text, vocab=vocab_c,char_ngrams=True)for text in dev_text)
```

In [47]:

```
def generator_test_c ():
    return (extract_ngrams_c(text, vocab=vocab_c,char_ngrams=True)for text in test_text)
```

In [48]:

```
train_texts_ngrams_c = generator_train()
dev_texts_ngrams_c = generator_dev ()
test_texts_ngrams_c = generator_test()
```

In [49]:

```
id2word_c = {index: value for index, value in enumerate(vocab_c)}  # vocabulary id -> word
word_to_vocab_id_c = {k : v for k, v in id2word_c.items()}  # word -> vocabulary i
print(word_to_vocab_id_c)
```

```
{0: 't f', 1: 'nit', 2: 'lp', 3: 'san', 4: ' cr', 5: 'ood ', 6: 'e an', 7:
'his', 8: 'y ) ', 9: 'ng s', 10: "'s c", 11: 'at b', 12: 'ille', 13: 'm
i', 14: 'o ,', 15: ' lon', 16: 'his ', 17: ' who', 18: ' mov', 19: ' ne',
20: 's ev', 21: 'il', 22: 'succ', 23: 'e li', 24: 'unti', 25: 'ay .', 26:
'ince', 27: ', w', 28: 'more', 29: 'big', 30: 'e si', 31: 'must', 32: ' al
            , 34: 'ho ', 35: 'eal ', 36: 's m', 37: 'cro', 38: 'or', 39:
w', 33: 'ma'
'nd l', 40: 'ie ,', 41: 'ish ', 42: 's ne', 43: " he'", 44: 'lity'
i ', 46: 'dien', 47: 'opl', 48: 'cre', 49: 'o be', 50: 'ead ', 51: 'fli',
52: 'as m', 53: ' la', 54: 'phe', 55: ' eac', 56: 'uin', 57: 'l i', 58: 'p
ro', 59: 'cie', 60: 'e ri', 61: 'itin', 62: 'wat', 63: ' mar', 64: 're f',
65: 'in ,', 66: 'ieve', 67: 'sic', 68: 'ema', 69: 'cove', 70: ' nat', 71:
'n hi', 72: 'be t', 73: 'sma', 74: 'al ', 75: 'tory', 76: 'en a', 77: 't
er', 78: 'irs', 79: 'stea', 80: 'tro', 81: 'ses ', 82: 'ped', 83: 'of f',
84: 'to e', 85: 'plot', 86: 'r .', 87: ' an', 88: 'h .', 89: 'nvol', 90:
'ortu', 91: 'sma', 92: 'st s', 93: '( th', 94: 'len', 95: 'ne a', 96: 'o l
o', 97: 'd ,', 98: 'es i', 99: 'enta', 100: ' off', 101: 'wr', 102: 'rec
o', 103: 'out', 104: 'ces ', 105: 'leav', 106: ' mus', 107: 'y we', 108:
'ula', 109: ' . "', 110: 'ly r', 111: 'is f', 112: 'ne o', 113: ' cas', 11
4: 'n t', 115: 'd ac', 116: 'er m', 117: 'ou', 118: 'hon', 119: 'eme', 12
```

```
In [50]:
```

In [51]:

```
train_count_c = vectorise_c(train_texts_ngrams_c, vocab_c)

dev_count_c = vectorise_c(dev_texts_ngrams_c, vocab_c)

test_count_c = vectorise_c(test_texts_ngrams_c, vocab_c)
```

In [52]:

```
train_count_c.shape
```

Out[52]:

(1399, 5000)

In [53]:

In [54]:

```
Train_norm_c = np.log10(1 + train_count_c) # Reference ---> Lecture Notes
Dev_norm_c = np.log10(1 + dev_count_c) # squash the raw frequency, by using the Log10.
Test_norm_c = np.log10(1 + test_count_c)
```

In [55]:

```
train_tfidf_c = Train_norm_c * train_idf_c  # Calculating Tfidf
dev_tfidf_c = Dev_norm_c * dev_idf_c  # tfidf = tf * idf
test_tfidf_c = Test_norm_c * test_idf_c
```

```
In [56]:
```

In [57]:

```
def predict_proba_c(X, weights):  # Reference Logic
  z = X.dot(weights)  # https://pyimagesearch.com/2016/10/17/stochastic-gradi
  return sigmoid_c(z)
```

In [58]:

```
def predict_class_c(X,weights):
    list = []
    for prob in predict_proba_c(X,weights):
        if prob <= 0.5:
            list.append(0)  # Assignining range if <= 0.5 then assign to 0 else
        else:
            list.append(1)
    return list</pre>
```

In [59]:

In [60]:

```
def SGD c(X tr, Y tr, X dev, Y dev, lr=0.1, alpha=0.00001, epochs=5, tolerance=0.0001, prin
    np.random.seed(123)
                                            # Random seed is fixed here so that we can get sa
    training_loss_history_c = []
    validation_loss_history_c = []
    weights_int_list_c = []
                                            # Creating weights with all zeros so that we can
    for i in range(train_count_c.shape[1]):
        weights_int_list_c.append(0)
    weights int c = np.array(weights int list c)
    weights_c = weights_int_c.astype(np.float)
    def zipper_c(X_tr, Y_tr):
                                                                      # Create training tuples
        size = len(X_tr) if len(X_tr) < len(Y_tr) else len(Y_tr) # Adding values from two
        retList = []
        for i in range(size):
            retList.append((X_tr[i], Y_tr[i]))
        return retList
    train_docs_c = zipper_c(X_tr, Y_tr)
    for epoch in range(epochs):
        np.random.shuffle(train docs c)
                                             # Shuffling to randomise all values
                                               # Reference
        for first, second in train docs c: \# w = w - \eta \nabla w L(w; xi; yi) --> Lecture Notes
            weights_c = weights_c - lr * (first * (predict_proba_c(first, weights_c) - second
        # Monitor training and validation loss
        loss_in_training_c = binary_loss_c(X_tr, Y_tr, weights_c, alpha)
        loss_in_dev_c = binary_loss_c(X_dev, Y_dev, weights_c, alpha)
        # Early stopping
                                      # Reference
                                      # previous validation loss - current validation loss; s
        if epoch > 0 and validation_loss_history_c[-1] - loss_in_dev_c < tolerance:</pre>
            break
        else:
            training_loss_history_c.append(loss_in_training_c)
            validation_loss_history_c.append(loss_in_dev_c)
        if print progress:
            #print(f'Epoch: {epoch} | Training loss: {cur_loss_tr} | Validation loss: {cur_
print("Epoch:- ",epoch," ","Training loss:- ",loss_in_training_c," ","Validat
    return weights_c, training_loss_history_c, validation_loss_history_c
```

In [61]:

```
w_count_c, training_loss_count_c, dev_loss_count_c = SGD_c(X_tr=train_count_c,Y_tr=np.array

<ipython-input-60-962918fee0ef>:11: DeprecationWarning: `np.float` is a de
precated alias for the builtin `float`. To silence this warning, use `floa
t` by itself. Doing this will not modify any behavior and is safe. If you
specifically wanted the numpy scalar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.or
g/devdocs/release/1.20.0-notes.html#deprecations (https://numpy.org/devdoc
s/release/1.20.0-notes.html#deprecations)
weights_c = weights_int_c.astype(np.float)
```

In [62]:

```
plt.plot(training_loss_count_c, label='Train_loss')
plt.plot(dev_loss_count_c, label='Valid_loss')

plt.xlabel('Epochs',fontweight='bold')
plt.ylabel('Loss',fontweight='bold')

plt.title('Binary_Count(Training)')
ax = plt.axes()
ax.set_facecolor("lightgray")

plt.legend()
plt.show()
```

<ipython-input-62-4417a4b65adf>:8: MatplotlibDeprecationWarning: Adding an a
xes using the same arguments as a previous axes currently reuses the earlier
instance. In a future version, a new instance will always be created and re
turned. Meanwhile, this warning can be suppressed, and the future behavior
ensured, by passing a unique label to each axes instance.

In [63]:

```
array_test_label_c = np.array(test_label) # Changing List to array as accuracy score ta
```

In [64]:

```
preds_te_count_c = predict_class_c(test_count_c, w_count_c)

print('Accuracy:', accuracy_score(array_test_label_c,preds_te_count_c))
print('Precision:', precision_score(array_test_label_c,preds_te_count_c))
print('Recall:', recall_score(array_test_label_c,preds_te_count_c))
print('F1-Score:', f1_score(array_test_label_c,preds_te_count_c))
```

Accuracy: 0.6992481203007519 Precision: 0.7046632124352331 Recall: 0.6834170854271356 F1-Score: 0.6938775510204082

In [65]:

```
w_tfidf_c, training_loss_tfidf_c, dev_loss_tfidf_c = SGD_c(X_tr=train_tfidf_c,Y_tr=np.array
              Training loss:- 0.6904966795485448
                                                    Validation loss:-
Epoch:- 0
                                                                       0.69
12148003649882
              Training loss:- 0.6879143906142949
                                                    Validation loss:- 0.68
Epoch: - 1
93460373561778
Epoch: - 2
             Training loss:- 0.685398383432307
                                                   Validation loss:- 0.687
5191950035022
                                                    Validation loss:- 0.68
Epoch: - 3
             Training loss:- 0.6829470269153042
57156108230362
<ipython-input-60-962918fee0ef>:11: DeprecationWarning: `np.float` is a depr
ecated alias for the builtin `float`. To silence this warning, use `float` b
y itself. Doing this will not modify any behavior and is safe. If you specif
ically wanted the numpy scalar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/d
evdocs/release/1.20.0-notes.html#deprecations (https://numpy.org/devdocs/rel
ease/1.20.0-notes.html#deprecations)
 weights_c = weights_int_c.astype(np.float)
              Training loss:- 0.680558160644537
                                                   Validation loss:- 0.683
Epoch: - 4
9878531458286
Epoch: - 5
             Training loss:- 0.6782310802076481
                                                    Validation loss: - 0.68
22830053666049
                                                    Validation loss:- 0.68
Epoch:- 6
             Training loss:- 0.6759636483164315
06552389948863
Epoch: - 7
                                                    Validation loss:- 0.67
             Training loss:- 0.6737528936179766
91565087576937
                                                    Validation loss: - 0.67
Epoch:- 8
              Training loss:- 0.6715987837294469
75782747496061
                                                    Validation loss: - 0.67
              Training loss:- 0.6695001744519493
Epoch:- 9
61485316169866
Epoch: - 10
              Training loss:- 0.6674506086436001
                                                     Validation loss:- 0.6
746425538482389
                                                     Validation loss:- 0.6
Epoch: - 11
               Training loss:- 0.6654592925586996
731673889756857
                                                     Validation loss:-
Epoch: - 12
              Training loss:- 0.6635130903135239
                                                                        0.6
718266619510327
               Training loss:- 0.6616168004478585
                                                     Validation loss:-
Epoch: - 13
705692210081527
              Training loss:- 0.6597692076603948
                                                     Validation loss:-
Epoch: - 14
692164750684666
                                                     Validation loss:-
Epoch: - 15
               Training loss:- 0.6579683188466647
                                                                        0.6
679330967753333
                                                     Validation loss:-
Epoch: - 16
              Training loss:-
                               0.6562125801024464
                                                                        0.6
666896282719543
                                                     Validation loss:-
                                                                        0.6
Epoch: - 17
               Training loss:-
                               0.6544973561428005
655142793448491
Epoch: - 18
                                                     Validation loss:- 0.6
               Training loss:- 0.6528302780182359
643263326142681
                                                     Validation loss:- 0.6
Epoch: - 19
               Training loss:- 0.6511946014688571
632791263933235
                                                   Validation loss:- 0.662
              Training loss:-
                               0.64960538135053
Epoch: - 20
1994711040016
Epoch: - 21
                                                     Validation loss:- 0.6
              Training loss:-
                               0.6480596468159974
610611943364745
                                                     Validation loss:- 0.6
Epoch: - 22
               Training loss:- 0.6465434471536388
```

600869591122408

O,	14/22, 0.00 I W		OOMOO TO_assignment	_acpz rzgs - supyter Notebook
	Epoch: - 23 Trainin 91066316909521	g loss:-	0.645068576042016	Validation loss:- 0.65
		g loss:-	0.6436397865873372	Validation loss:- 0.6
		g loss:-	0.6422264631067357	Validation loss:- 0.6
		g loss:-	0.6408572043309972	Validation loss:- 0.6
		g loss:-	0.6395199364942084	Validation loss:- 0.6
		g loss:-	0.6382144288631433	Validation loss:- 0.6
		g loss:-	0.6369467834926484	Validation loss:- 0.6
		g loss:-	0.6357022008609299	Validation loss:- 0.6
		g loss:-	0.634487537703162	Validation loss:- 0.65
		g loss:-	0.6333072223571137	Validation loss:- 0.6
		g loss:-	0.6321496257458664	Validation loss:- 0.6
	Epoch:- 34 Trainin	g loss:-	0.631020405955202	Validation loss:- 0.64
	•	g loss:-	0.6299213123352827	Validation loss:- 0.6
	•	g loss:-	0.6288437483137984	Validation loss:- 0.6
		g loss:-	0.627792778156486	Validation loss:- 0.64
	•	g loss:-	0.6267697340866303	Validation loss:- 0.6
	•	g loss:-	0.62577109504772	Validation loss:- 0.646
		g loss:-	0.6247893995781216	Validation loss:- 0.6
	•	g loss:-	0.6238330308730168	Validation loss:- 0.6
	•	g loss:-	0.622907769239038	Validation loss:- 0.64
	•	g loss:-	0.621990637125021	Validation loss:- 0.64
	•	g loss:-	0.6211004221479085	Validation loss:- 0.6
	•	g loss:-	0.6202294821263465	Validation loss:- 0.6
	•	g loss:-	0.6193795408687143	Validation loss:- 0.6
	424055070556662 Epoch:- 47 Trainin	g loss:-	0.6185523986549033	Validation loss:- 0.6
	418127534026768 Epoch:- 48 Trainin	g loss:-	0.6177405997587774	Validation loss:- 0.6
	413214054657524 Epoch: - 49 Trainin	g loss:-	0.6169444931016976	Validation loss:- 0.6
	409139392368264 Epoch:- 50 Trainin	g loss:-	0.6161696317570117	Validation loss:- 0.6
	404589995523223 Epoch: - 51 Trainin	g loss:-	0.6154144437424934	Validation loss:- 0.6
	400543657975111	g loss:-		Validation loss:- 0.6
	395194951842923		0.613950512277618	Validation loss:- 0.63
	•	_	-	

90642984891007				
Epoch:- 54 Training 386889410985886	loss:-	0.6132409817658497	Validation loss:-	0.6
Epoch: - 55 Training 382842781491925	loss:-	0.6125495430507765	Validation loss:-	0.6
Epoch: - 56 Training 380094188129629	loss:-	0.6118787950755831	Validation loss:-	0.6
Epoch: - 57 Training 376084825497832	loss:-	0.6112159077092548	Validation loss:-	0.6
Epoch: - 58 Training 372249852269722	loss:-	0.6105684468967958	Validation loss:-	0.6
Epoch: - 59 Training 368385280955706	loss:-	0.6099342206403221	Validation loss:-	0.6
Epoch: - 60 Training 36479997351823	loss:-	0.6093158962334234	Validation loss:-	0.6
Epoch: - 61 Training 60716884566442	loss:-	0.608712076620917	Validation loss:-	0.63
Epoch: - 62 Training 357828762129853	loss:-	0.6081199126310607	Validation loss:-	0.6
Epoch: - 63 Training 354582779947391	loss:-	0.6075416844678508	Validation loss:-	0.6
Epoch: - 64 Training 352588358636613	loss:-	0.6069815125984883	Validation loss:-	0.6
Epoch: - 65 Training 34920600417333	loss:-	0.6064251797514182	Validation loss:-	0.6
Epoch: - 66 Training 346028260796892	loss:-	0.6058821679186666	Validation loss:-	0.6
Epoch: - 67 Training 343262217219329	loss:-	0.6053533133986634	Validation loss:-	0.6
Epoch: - 68 Training 340569617137566	loss:-	0.6048355743651367	Validation loss:-	0.6
Epoch: - 69 Training 337115608781594	loss:-	0.6043268551978904	Validation loss:-	0.6
Epoch: - 70 Training 33406484987694	loss:-	0.6038331569017004	Validation loss:-	0.6
Epoch: - 71 Training 331631692582707	loss:-	0.6033474111540452	Validation loss:-	0.6
Epoch: - 72 Training 329042721094521	loss:-	0.6028733997493327	Validation loss:-	0.6
Epoch: - 73 Training 327409716237511	loss:-	0.6024050587065095	Validation loss:-	0.6
Epoch: - 74 Training 32525273056419	loss:-	0.6019497888711972	Validation loss:-	0.6
Epoch: - 75 Training 323764032399776	loss:-	0.6015085511101819	Validation loss:-	0.6
Epoch: - 76 Training 321239352822157	loss:-	0.6010696505272307	Validation loss:-	0.6
Epoch: - 77 Training 319180256713917	loss:-	0.6006434009345868	Validation loss:-	0.6
Epoch: - 78 Training 16816557953381	loss:-	0.600223881844529	Validation loss:-	0.63
Epoch: - 79 Training 314661202546591	loss:-	0.5998148450714139	Validation loss:-	0.6
Epoch: - 80 Training 313418608829497	loss:-	0.5994173299296831	Validation loss:-	0.6
Epoch: - 81 Training 10726372519033	loss:-	0.599022568286133	Validation loss:-	0.63
Epoch: - 82 Training 308675121232522	loss:-	0.5986391409054845	Validation loss:-	0.6
Epoch: - 83 Training 306671301765195	loss:-	0.5982646586755134	Validation loss:-	0.6

Epoch:- 84 Training loss:- 0.5978955735054345 Validation loss:- 0.6 305092030870798

In [66]:

```
plt.plot(training_loss_tfidf_c, label='Train_loss')
plt.plot(dev_loss_tfidf_c, label='Valid_loss')

plt.xlabel('Epochs',fontweight='bold')
plt.ylabel('Loss',fontweight='bold')

plt.title('Binary - TFIDF(Training)')
ax = plt.axes()
ax.set_facecolor("lightgray")

plt.legend()
plt.show()
```

<ipython-input-66-735fd7e32112>:8: MatplotlibDeprecationWarning: Adding an a
xes using the same arguments as a previous axes currently reuses the earlier
instance. In a future version, a new instance will always be created and re
turned. Meanwhile, this warning can be suppressed, and the future behavior
ensured, by passing a unique label to each axes instance.
 ax = plt.axes()

In [67]:

```
preds_te_tfidf_c = predict_class_c(test_tfidf_c, w_tfidf_c)

print('Accuracy:', accuracy_score(np.array(test_label),preds_te_tfidf_c))
print('Precision:', precision_score(np.array(test_label),preds_te_tfidf_c))
print('Recall:', recall_score(np.array(test_label),preds_te_tfidf_c))
print('F1-Score:', f1_score(np.array(test_label),preds_te_tfidf_c))
```

Accuracy: 0.7042606516290727 Precision: 0.7055837563451777 Recall: 0.6984924623115578 F1-Score: 0.7020202020202021

BOW+BOCN

In [68]:

```
def extract_ngrams_c_w(x_raw, ngram_range=(1,3), token_pattern=r'\b[A-Za-z]{2,}\b', stop_wo
   tokens = []
   for word in re.findall(token_pattern,x_raw):
        if word.lower() not in stop_words:
            tokens.append(word.lower())
   ngrams_list_c_w = []
   for num in range(0, len(tokens)):
                                                        # Creating tokens by words
        ngram = ' '.join(tokens[num:num + 1])
        ngrams_list_c_w.append(ngram)
   for num in range(0, len(tokens)):
        ngram = ' '.join(tokens[num:num + 2])
        ngrams_list_c_w.append(ngram)
   for num in range(0, len(tokens)):
        ngram = ' '.join(tokens[num:num + 3])
        ngrams_list_c_w.append(ngram)
   for x in range(len(x_raw)):
                                                        # Creating tokens by characters
        n=x_raw[x:x+2]
        ngrams_list_c_w.append(n)
   for x in range(len(x_raw)):
        n=x_raw[x:x+3]
        ngrams_list_c_w.append(n)
   for x in range(len(x_raw)):
        n=x_raw[x:x+4]
        ngrams_list_c_w.append(n)
   x = set(ngrams_list_c_w)
                                                         # Appending both tokens by words an
   return list(x)
```

In [69]:

```
def get_vocab_c_w(X_raw,
              ngram_range=(1, 3),
              token_pattern=r'\b[A-Za-z]{2,}\b',
              min df=1,
              keep_topN=0,
              stop_words=stop_words):
   doc_freq_c_w = Counter()
                                         # Using counter so we can count no of times elemen
   ngram_count_c_w = Counter()
                                        # Also counter function provides most common param
                                         # Also counter function provides update paramter t
   for text in X raw:
        # A list of ngrams for the given document `text`
        ngram_list_c_w = extract_ngrams_c_w(text, ngram_range, token_pattern, stop_words) #
        doc_freq_c_w.update(set(ngram_list_c_w)) # Here we are using set so as to get uniq
        for ngram in ngram_list_c_w:
                                        # Here we are counting ngram frequency
            list=[]
            if doc_freq_c_w[ngram]>=min_df:
                list.append(ngram)
            ngram_count_c_w.update(list)
   vocab_c_w = {ngram for ngram, _ in ngram_count_c_w.most_common(keep_topN)}
                                                                                 # Here we
   return vocab_c_w, doc_freq_c_w, ngram_count_c_w
```

In [70]:

```
vocab_c_w, doc_freq_c_w = get_vocab_c_w(train_text, keep_topN=5000)[0:2]
```

In [71]:

```
len(vocab_c_w)
```

Out[71]:

5000

```
In [72]:
```

```
vocab_c_w
Out[72]:
{'t f',
 'nit',
 'lp',
 'while',
 'san',
 ' cr',
 'ood '
 'e an',
 'his',
 'y ) '
 'ng s',
 "'s c",
 'at b',
 'ille',
 'm i',
 'never',
 '0 ,',
 ' lon'.
In [73]:
def generator_train_c_w ():
    return (extract_ngrams_c_w(text, vocab=vocab_c_w)for text in train_text)
In [74]:
def generator_dev_c_w ():
    return (extract_ngrams_c_w(text, vocab=vocab_c_w)for text in dev_text)
In [75]:
def generator_test_c_w ():
    return (extract_ngrams_c_w(text, vocab=vocab_c_w)for text in test_text)
In [76]:
train_texts_ngrams_c_w = generator_train()
dev_texts_ngrams_c_w = generator_dev ()
test_texts_ngrams_c_w = generator_test()
```

In [77]:

```
id2word c w = {index: value for index, value in enumerate(vocab c w)}
                                                                          # vocabulary id
word_to_vocab_id_c_w = {k : v for k, v in id2word_c_w.items()}
                                                                           # word -> vocabu
print(word to vocab id c w)
{0: 't f', 1: 'nit', 2: 'lp', 3: 'while', 4: 'san', 5: ' cr', 6: 'ood ',
7: 'e an', 8: 'his', 9: 'y ) ', 10: 'ng s', 11: "'s c", 12: 'at b', 13: 'i
lle', 14: 'm i', 15: 'never', 16: 'o ,', 17: ' lon', 18: 'his ', 19: ' wh
o', 20: 'mov', 21: 'ne', 22: 's ev', 23: 'il', 24: 'succ', 25: 'e li', 2
6: 'unti', 27: 'ay .', 28: 'ince', 29: ', w', 30: 'more', 31: 'big', 32:
'e si', 33: 'must', 34: 'ma', 35: 'ho ', 36: 'eal ', 37: 's m', 38: 'cro',
        , 40: 'nd l', 41: 'ie ,', 42: 'ish ', 43: 's ne', 44: " he'"
39: 'or'
'lity', 46: ' i ', 47: 'dien', 48: 'opl', 49: 'point', 50: 'cre', 51: 'o b
e', 52: 'ead ', 53: 'fli', 54: 'as m', 55: ' la', 56: 'phe', 57: 'l i', 5
8: 'pro', 59: 'cie', 60: 'e ri', 61: 'itin', 62: 'wat', 63: ' mar', 64: 'r
e f', 65: 'in ,', 66: 'ieve', 67: 'sic', 68: 'ema', 69: 'cove', 70: ' na
t', 71: 'n hi', 72: 'something', 73: 'be t', 74: ' sma', 75: 'al ', 76: 't
ory', 77: 'en a', 78: 'ter', 79: 'irs', 80: 'stea', 81: 'tro', 82: 'ses
 , 83: 'ped', 84: 'of f', 85: 'to e', 86: 'plot', 87: 'r .', 88: ' an', 8
9: 'h .', 90: 'nvol', 91: 'ortu', 92: 'sma', 93: 'st s', 94: '( th', 95:
'len', 96: 'ne a', 97: 'o lo', 98: 'd ,', 99: 'es i', 100: 'enta', 101: '
off', 102: 'wr', 103: 'out', 104: 'ces ', 105: 'leav', 106: ' mus', 107:
'y we', 108: 'ula', 109: ' . "', 110: 'ly r', 111: 'is f', 112: 'ne o', 11
3: 'cas', 114: 'n t', 115: 'd ac', 116: 'er m', 117: 'ou', 118: 'hon', 11
In [78]:
def vectorise_c_w(X_ngram, vocab):
    X \text{ vec\_c\_w} = []
    for ngram_list in X_ngram:
                                            # Here we are creating a function to vectorise
        counter = Counter(ngram_list) # Here we are using temperory list variable to
```

```
list_c_w = []
for v in vocab:
```

list_c_w.append(counter[v])

X_vec_c_w.append(list_c_w)

return np.array(X_vec_c_w)

In [79]:

```
train count c w = vectorise c w(train texts ngrams c w, vocab c w)
dev_count_c_w = vectorise_c_w(dev_texts_ngrams_c_w, vocab_c_w)
test_count_c_w = vectorise_c_w(test_texts_ngrams_c_w, vocab_c_w)
```

In [80]:

```
train count c w.shape
```

Out[80]:

(1399, 5000)

In [81]:

In [82]:

```
Train_norm_c_w = np.log10(1 + train_count_c_w) # Reference ---> Lecture Notes
Dev_norm_c_w = np.log10(1 + dev_count_c_w) # squash the raw frequency, by using the Lo
Test_norm_c_w = np.log10(1 + test_count_c_w)
```

In [83]:

```
train_tfidf_c_w = Train_norm_c_w * train_idf_c_w  # Calculating Tfidf
dev_tfidf_c_w = Dev_norm_c_w * dev_idf_c_w  # tfidf = tf * idf
test_tfidf_c_w = Test_norm_c_w * test_idf_c_w
```

In [84]:

In [85]:

```
def predict_proba_c_w(X, weights):  # Reference Logic
  z = X.dot(weights)  # https://pyimagesearch.com/2016/10/17/stochastic-gradi
  return sigmoid_c_w(z)
```

In [86]:

```
def predict_class_c_w(X,weights):
    list = []
    for prob in predict_proba_c_w(X,weights):  # Assignining range if <= 0.5 then assign t
        if prob <= 0.5:
            list.append(0)
        else:
            list.append(1)
    return list</pre>
```

In [87]:

In [88]:

```
def SGD_c_w(X_tr, Y_tr, X_dev, Y_dev, lr=0.1, alpha=0.00001, epochs=5, tolerance=0.0001, pr
   np.random.seed(123)
                                            # Random seed is fixed here so that we can get
   training_loss_history_c_w = []
   validation loss history c w = []
   weights int list c w = []
                                            # Creating weights with all zeros so that we ca
   for i in range(train_count_c_w.shape[1]):
        weights_int_list_c_w.append(0)
   weights_int_c_w = np.array(weights_int_list_c_w)
   weights_c_w = weights_int_c_w.astype(np.float)
   def zipper(X_tr, Y_tr):
                                                                   # Create training tuples
        size = len(X_tr) if len(X_tr) < len(Y_tr) else len(Y_tr) # Adding values from two
        retList = []
        for i in range(size):
            retList.append((X_tr[i], Y_tr[i]))
        return retList
   train_docs_c_w = zipper(X_tr, Y_tr)
   for epoch in range(epochs):
        np.random.shuffle(train_docs_c_w) # Shuffling to randomise all values
                                            # Reference
        for first, second in train docs c w: \# w = w - \eta \nabla w L(w; xi; yi) --> Lecture Notes
            weights_c_w = weights_c_w - lr * (first * (predict_proba_c_w(first, weights_c_w)
        # Monitor training and validation loss
        loss_in_training_c_w = binary_loss_c_w(X_tr, Y_tr, weights_c_w, alpha)
        loss_in_dev_c_w = binary_loss_c_w(X_dev, Y_dev, weights_c_w, alpha)
                                    # Reference
                                    # previous validation loss - current validation loss; s
        if epoch > 0 and validation_loss_history_c_w[-1] - loss_in_dev_c_w < tolerance:</pre>
            break
        else:
            training_loss_history_c_w.append(loss_in_training_c_w)
            validation_loss_history_c_w.append(loss_in_dev_c_w)
        if print progress:
            #print(f'Epoch: {epoch} | Training loss: {cur_loss_tr} | Validation loss: {cur_
            print("Epoch:- ",epoch," ","Training loss:- ",loss_in_training_c_w," ","Valid
    return weights_c_w, training_loss_history_c_w, validation_loss_history_c_w
```

In [89]:

```
w_count_c_w, training_loss_count_c_w, dev_loss_count_c_w = SGD_c_w(X_tr=train_count_c_w,Y_t
```

<ipython-input-88-a7f79af50d5e>:11: DeprecationWarning: `np.float` is a depr ecated alias for the builtin `float`. To silence this warning, use `float` b y itself. Doing this will not modify any behavior and is safe. If you specif ically wanted the numpy scalar type, use `np.float64` here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/d evdocs/release/1.20.0-notes.html#deprecations (https://numpy.org/devdocs/rel ease/1.20.0-notes.html#deprecations)

weights_c_w = weights_int_c_w.astype(np.float)

Epoch:- 0 Training loss:- 8662994837779	0.6867616762953799	Validation loss:- 0.68
Epoch:- 1 Training loss:-	0.6805971773460067	Validation loss:- 0.68
43968844521979 Epoch:- 2 Training loss:-	0.6746274686149971	Validation loss:- 0.68
0144417580446	0,07,1027,10002,1337,1	Valladelon 1055. 0.00
Epoch:- 3 Training loss:- 60317758642047	0.6688696422950303	Validation loss:- 0.67
Epoch:- 4 Training loss:-	0.6633003554688951	Validation loss:- 0.67
21490079854291	0.6570400426566204	W 3.1 L
Epoch:- 5 Training loss:- 83357562193539	0.6579190436566391	Validation loss:- 0.66
Epoch: 6 Training loss:-	0.652708069921851	Validation loss:- 0.664
7520226582013 Epoch:- 7 Training loss:-	0.6476875003339986	Validation loss:- 0.66
1629564605675	0.0470075005555500	variaacion 1033. 0.00
Epoch:- 8 Training loss:-	0.6427935428904774	Validation loss:- 0.65
79495679975379	0 (200017207(0024(Validation loss:- 0.65
Epoch:- 9 Training loss:- 50194349984351	0.6380817207680346	Validation loss:- 0.65
Epoch: - 10 Training loss:-	0.633490209212943	Validation loss:- 0.65
16038096941142		
Epoch: 11 Training loss:	0.6291039194471432	Validation loss:- 0.6
484350345509996 Epoch:- 12 Training loss:-	0.6247632285196985	Validation loss:- 0.6
457145349567553		
Epoch: 13 Training loss:	0.6206123686762235	Validation loss:- 0.6
431694524223667 Epoch:- 14 Training loss:-	0.616570545733435	Validation loss:- 0.64
01596229146272	0.010370313733133	variation 1053.
Epoch:- 15 Training loss:-	0.6126590560566499	Validation loss:- 0.6
375004468692987	0.600064040006555	
Epoch:- 16 Training loss:- 349291652259604	0.6088642492086557	Validation loss:- 0.6
Epoch: 17 Training loss:	0.6051523149204795	Validation loss:- 0.6
325877278185086		
Epoch: - 18 Training loss: -	0.6015951747574431	Validation loss:- 0.6
300874937335704 Epoch:- 19 Training loss:-	0.5980882283160485	Validation loss:- 0.6
281110730962193	0.5500002205100405	variaacion 1033. 0.0
Epoch:- 20 Training loss:-	0.5946988075261816	Validation loss:- 0.6
258516184296478	0 5044627204005452	V-1:4-+: 1 0 0
Epoch:- 21 Training loss:- 233718479773764	0.5914627284995453	Validation loss:- 0.6
Epoch: - 22 Training loss:-	0.5882085807335026	Validation loss:- 0.6

216552088358144				
Epoch: - 23 Training 195816096248331	loss:-	0.5850930112142171	Validation loss:-	0.6
Epoch: - 24 Training 181383090807161	loss:-	0.5821583022108827	Validation loss:-	0.6
Epoch: - 25 Training 155017473182208	loss:-	0.5791482098963159	Validation loss:-	0.6
Epoch: - 26 Training 137055591790329	loss:-	0.5762623364447237	Validation loss:-	0.6
Epoch: - 27 Training 120066411912459	loss:-	0.5734464949804937	Validation loss:-	0.6
Epoch: - 28 Training 104406885078096	loss:-	0.5707129753882814	Validation loss:-	0.6
Epoch: - 29 Training 091725443667702	loss:-	0.5681175705629719	Validation loss:-	0.6
Epoch: - 30 Training 073639214180108	loss:-	0.5654810310599871	Validation loss:-	0.6
Epoch: - 31 Training 052839427583832	loss:-	0.5629879815334035	Validation loss:-	0.6
Epoch: - 32 Training 038306002210284	loss:-	0.5604983064944548	Validation loss:-	0.6
Epoch: - 33 Training 02481923366284	loss:-	0.5580649621142231	Validation loss:-	0.6
Epoch: - 34 Training 010701971209971	loss:-	0.5557124352510104	Validation loss:-	0.6
Epoch: - 35 Training 002196303535654	loss:-	0.5534830319273188	Validation loss:-	0.6
Epoch: - 36 Training 984922635513193	loss:-	0.5511746259711399	Validation loss:-	0.5
Epoch: - 37 Training 971125866760734	loss:-	0.5489820218948812	Validation loss:-	0.5
Epoch: - 38 Training 955819495972406	loss:-	0.5468850902229903	Validation loss:-	0.5
Epoch: - 39 Training 943774214123583	loss:-	0.5447826686304875	Validation loss:-	0.5
	loss:-	0.5427061144831757	Validation loss:-	0.5
Epoch: - 41 Training 922712453227861	loss:-	0.5407021400928198	Validation loss:-	0.5
Epoch: - 42 Training 917774681444494	loss:-	0.5388685241466262	Validation loss:-	0.5
Epoch: - 43 Training 897209666419778	loss:-	0.5368896478296042	Validation loss:-	0.5
Epoch: - 44 Training 887529008488324	loss:-	0.5349776713666059	Validation loss:-	0.5
Epoch: - 45 Training 880671738219826	loss:-	0.5331258667342416	Validation loss:-	0.5
Epoch: - 46 Training 70000258669776	loss:-	0.531322620414796	Validation loss:-	0.58
Epoch: - 47 Training 856664354604934	loss:-	0.5296009264937869	Validation loss:-	0.5
Epoch: - 48 Training 847807360393954	loss:-	0.5278545684509905	Validation loss:-	0.5
Epoch: - 49 Training 841580790826334	loss:-	0.5261447363643502	Validation loss:-	0.5
Epoch: - 50 Training 832468943823458	loss:-	0.5244857371950931	Validation loss:-	0.5
	loss:-	0.5228839737238052	Validation loss:-	0.5
	loss:-	0.521277896509942	Validation loss:-	0.58

5/ 14/22, 0.05 F W	COMOS 13_assignment 1	_acpz rzgs - Jupyter Notebook
Epoch:- 53 Training loss:- 80367357089618	0.5197247895941459	Validation loss:- 0.5
Epoch:- 54 Training loss:- 796972510425905	0.5181674734503027	Validation loss:- 0.5
Epoch:- 55 Training loss:- 789655192792105	0.5166592372909627	Validation loss:- 0.5
Epoch:- 56 Training loss:- 787014311760628	0.5152487292584949	Validation loss:- 0.5
Epoch:- 57 Training loss:- 777143269648036	0.5137501020617173	Validation loss:- 0.5
Epoch:- 58 Training loss:- 768903779211736	0.5123152713418281	Validation loss:- 0.5
Epoch:- 59 Training loss:- 76068126330121	0.5109103009001279	Validation loss:- 0.5
Epoch:- 60 Training loss:- 754485778383727	0.5095393746147446	Validation loss:- 0.5
Epoch:- 61 Training loss:- 745569078734861	0.5081978798439779	Validation loss:- 0.5
Epoch:- 62 Training loss:- 740509213627891	0.5068619296677492	Validation loss:- 0.5
Epoch:- 63 Training loss:- 4506742333619	0.50555948026714	Validation loss:- 0.573
Epoch:- 64 Training loss:- 73154872632372	0.5043157554149298	Validation loss:- 0.5
Epoch:- 65 Training loss:- 723492329141104	0.5030267160153955	Validation loss:- 0.5
Epoch:- 66 Training loss:- 717171555470087	0.5017850154809316	Validation loss:- 0.5
Epoch:- 67 Training loss:- 710728492805731	0.5005655275200466	Validation loss:- 0.5
Epoch:- 68 Training loss:- 5706135129869576	0.49937266785066725	Validation loss:- 0
Epoch:- 69 Training loss:- 698506578387003	0.4981951926942913	Validation loss:- 0.5
	0.49704698076252124	Validation loss:- 0
	0.49589635595008	Validation loss:- 0.568
Epoch:- 72 Training loss:- 5683067830952089	0.49477432247860914	Validation loss:- 0
Epoch:- 73 Training loss:- 681533642083794	0.4936762189884289	Validation loss:- 0.5
Epoch:- 74 Training loss:- 676388011424371	0.4925826898827807	Validation loss:- 0.5
Epoch:- 75 Training loss:- 674086923425322	0.4915478038332081	Validation loss:- 0.5
Epoch:- 76 Training loss:- 666792008689355	0.4904504826608226	Validation loss:- 0.5
Epoch:- 77 Training loss:- 661784494592169	0.4894083185731051	Validation loss:- 0.5
	0.48838420457363463	Validation loss:- 0
	0.48737936493338685	Validation loss:- 0
		

In [90]:

```
plt.plot(training_loss_count_c_w, label='Train_loss')
plt.plot(dev_loss_count_c_w, label='Valid_loss')

plt.xlabel('Epochs',fontweight='bold')
plt.ylabel('Loss',fontweight='bold')

plt.title('Binary_Count(Training)')
ax = plt.axes()
ax.set_facecolor("lightgray")

plt.legend()
plt.show()
```

<ipython-input-90-8bcc12968281>:8: MatplotlibDeprecationWarning: Adding an a
xes using the same arguments as a previous axes currently reuses the earlier
instance. In a future version, a new instance will always be created and re
turned. Meanwhile, this warning can be suppressed, and the future behavior
ensured, by passing a unique label to each axes instance.
 ax = plt.axes()

In [91]:

array_test_label_c_w = np.array(test_label) # Changing list to array as accuracy score only

In [92]:

```
preds_te_count_c_w = predict_class_c_w(test_count_c_w, w_count_c_w)

print('Accuracy:', accuracy_score(array_test_label_c_w,preds_te_count_c_w))
print('Precision:', precision_score(array_test_label_c_w,preds_te_count_c_w))
print('Recall:', recall_score(array_test_label_c_w,preds_te_count_c_w))
print('F1-Score:', f1_score(array_test_label_c_w,preds_te_count_c_w))
```

Accuracy: 0.7192982456140351 Precision: 0.7164179104477612 Recall: 0.7236180904522613 F1-Score: 0.7200000000000001

In [93]:

```
w_tfidf_c_w, training_loss_tfidf_c_w, dev_loss_tfidf_c_w = SGD_c_w(X_tr=train_tfidf_c_w,
                                            Y_tr=np.array(train_label),
                                            X_dev=dev_tfidf_c_w,
                                            Y_dev=np.array(dev_label),
                                            1r=0.00322,
                                            alpha=0.0005,
                                            epochs=100)
                                                    Validation loss:- 0.69
Epoch:- 0
             Training loss:- 0.6891974926424698
03373432508986
Epoch: - 1
             Training loss:- 0.6853670496553458
                                                    Validation loss:- 0.68
76460321183888
Epoch: - 2
                                                    Validation loss:- 0.68
             Training loss:- 0.6816495692504321
50171312064209
             Training loss:- 0.6780439691953213
                                                    Validation loss:- 0.68
Epoch:- 3
24209757479942
<ipython-input-88-a7f79af50d5e>:11: DeprecationWarning: `np.float` is a depr
ecated alias for the builtin `float`. To silence this warning, use `float` b
y itself. Doing this will not modify any behavior and is safe. If you specif
ically wanted the numpy scalar type, use `np.float64` here.
Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/d
evdocs/release/1.20.0-notes.html#deprecations (https://numpy.org/devdocs/rel
ease/1.20.0-notes.html#deprecations)
 weights_c_w = weights_int_c_w.astype(np.float)
             Training loss:- 0.6745456536671272
Epoch: - 4
                                                    Validation loss:- 0.67
99691079814295
             Training loss:- 0.6711524108682186
                                                    Validation loss:- 0.67
Epoch: - 5
75533859872013
Epoch:- 6
                                                   Validation loss:- 0.675
             Training loss:- 0.667857922337171
2793165097853
                                                    Validation loss: - 0.67
Epoch: - 7
             Training loss:- 0.6646632891414384
32508632111102
             Training loss:- 0.6615558623549975
                                                    Validation loss: - 0.67
Epoch:- 8
09941230273697
Epoch:- 9
                                                    Validation loss:- 0.66
             Training loss:- 0.6585467275733858
90670033026984
                                                     Validation loss:- 0.6
Epoch: - 10
              Training loss:- 0.6556144743540093
669480704477625
              Training loss:- 0.6527868784207067
                                                     Validation loss:-
                                                                        0.6
Epoch: - 11
649095360123098
                                                     Validation loss:-
Epoch: - 12
               Training loss:-
                               0.6500180807131299
                                                                        0.6
631277366351428
Epoch: - 13
               Training loss:-
                               0.6473404658174516
                                                     Validation loss:-
                                                                        0.6
614914427873714
Epoch: - 14
               Training loss:- 0.6447368374068324
                                                     Validation loss:-
59614712053002
              Training loss:- 0.6422114529019294
                                                     Validation loss:-
Epoch: - 15
578943194553456
                                                     Validation loss:-
Epoch: - 16
               Training loss:-
                               0.6397580318038434
562416007971652
                                                     Validation loss:-
Epoch: - 17
              Training loss:- 0.6373656161643616
                                                                        0.6
547108558669336
              Training loss:- 0.6350551546753361
                                                     Validation loss:-
                                                                        0.6
Epoch: - 18
5313107600437
              Training loss:- 0.6327881982145934
Epoch: - 19
                                                     Validation loss:-
                                                                        0.6
518195147935503
```

Training loss:- 0.6305961951313848

Epoch: - 20

Validation loss:- 0.6

3/	14/22, 6:05 PW		COMBS 13_assignment1	_acp21zgs - Jupyter Notebook
	504082519035101			
	Epoch: - 21 Training	loss:-	0.6284788911851917	Validation loss:- 0.6
	488664460731325 Epoch: - 22 Training	loss:-	0.6263929774499469	Validation loss:- 0.6
	476843055550392 Epoch: - 23 Training	loss:-	0.6243789157811888	Validation loss:- 0.6
	464236409064694 Epoch: - 24 Training	loss:-	0.6224503005419547	Validation loss:- 0.6
	454341081124544 Epoch: - 25 Training	loss:-	0.6205156034235068	Validation loss:- 0.6
	439030858602147 Epoch: - 26 Training	loss:-	0.6186648264049013	Validation loss:- 0.6
	427011563243432 Epoch: - 27 Training	loss:-	0.6168563272364022	Validation loss:- 0.6
	416093591020052 Epoch: - 28 Training	loss:-	0.6150978103193234	Validation loss:- 0.6
	40617987903677 Epoch:- 29 Training 397628802456576	loss:-	0.6134072282900002	Validation loss:- 0.6
	Epoch: - 30 Training 6843327495056	loss:-	0.61173351849451	Validation loss:- 0.638
	Epoch:- 31 Training	loss:-	0.6101161411857254	Validation loss:- 0.6
	374410005904216 Epoch:- 32 Training 364841901741802	loss:-	0.6085435874709294	Validation loss:- 0.6
	Epoch: - 33 Training 356343026820224	loss:-	0.6070001918947184	Validation loss:- 0.6
	Epoch: - 34 Training 347605338144376	loss:-	0.6055048167329065	Validation loss:- 0.6
	Epoch: - 35 Training 341563531303621	loss:-	0.6040616191587256	Validation loss:- 0.6
	Epoch: - 36 Training 332097299765354	loss:-	0.6026316388706937	Validation loss:- 0.6
	Epoch: - 37 Training 323750884907592	loss:-	0.6012493849794215	Validation loss:- 0.6
		loss:-	0.5999145657063153	Validation loss:- 0.6
	Epoch: - 39 Training 306907762318517	loss:-	0.5986067765610381	Validation loss:- 0.6
	Epoch: - 40 Training 00572928950062	loss:-	0.597318994272567	Validation loss:- 0.63
	Epoch: - 41 Training 294253455222294	loss:-	0.5960723145216986	Validation loss:- 0.6
	Epoch: - 42 Training 290337520179067	loss:-	0.5948915617894784	Validation loss:- 0.6
	Epoch: - 43 Training 27973239541002	loss:-	0.5936873521815146	Validation loss:- 0.6
	Epoch: - 44 Training 273692610200647	loss:-	0.5925313512370677	Validation loss:- 0.6
	Epoch: - 45 Training 269226767494822	loss:-	0.5914029641017373	Validation loss:- 0.6
	Epoch: - 46 Training 263243255049634	loss:-	0.5903065141183284	Validation loss:- 0.6
	Epoch: - 47 Training 255779417807289	loss:-	0.5892495104195308	Validation loss:- 0.6
	Epoch: - 48 Training 25054354596652	loss:-	0.5882036370170088	Validation loss:- 0.6
	Epoch: - 49 Training 24682602242702	loss:-	0.5871784602377996	Validation loss:- 0.6
	Epoch: - 50 Training 241775953024264	loss:-	0.5861865865885991	Validation loss:- 0.6

3/14/22, 6:05 PM COM6513_assignment1_acp21zgs - Jupyter Notebook					
Epoch: - 51 23795311802667	Training	loss:-	0.5852271342319111	Validation loss:-	0.6
Epoch: - 52 231023077972939	Training 9	loss:-	0.5842773418515842	Validation loss:-	0.6
Epoch: - 53 26047462931033	Training	loss:-	0.583360780710365	Validation loss:-	0.62
Epoch: - 54 222337196654332	Training	loss:-	0.5824549524376215	Validation loss:-	0.6
Epoch: - 55 218292053620608	Training	loss:-	0.5815767382920334	Validation loss:-	0.6
Epoch: - 56 216619565996286	Training	loss:-	0.5807387313868261	Validation loss:-	0.6
Epoch: - 57 211919585072774	Training	loss:-	0.5798926487958017	Validation loss:-	0.6
Epoch: - 58 20761904792546	Training	loss:-	0.5790719449309535	Validation loss:-	0.6
Epoch: - 59 20326734017976	Training	loss:-	0.5782711918190223	Validation loss:-	0.6
Epoch: - 60 199907509757269	Training	loss:-	0.5774936585901443	Validation loss:-	0.6
Epoch: - 61 195256211698039	Training	loss:-	0.5767366889201465	Validation loss:-	0.6
Epoch: - 62 92869784736128	Training	loss:-	0.575990672558028	Validation loss:-	0.61
Epoch: - 63 18977663544562	Training	loss:-	0.5752659068957235	Validation loss:-	0.6
Epoch: - 64 18861812392321	Training	loss:-	0.5745730196538625	Validation loss:-	0.6
Epoch: - 65 184784401732966	Training	loss:-	0.5738707373205054	Validation loss:-	0.6
Epoch: - 66 181552204786027	Training	loss:-	0.5731919719340509	Validation loss:-	0.6
Epoch: - 67 178756421612964	Training	loss:-	0.5725317577554059	Validation loss:-	0.6
Epoch: - 68 176387959442443	Training	loss:-	0.5718878117764333	Validation loss:-	0.6
Epoch: - 69 172564103770853	Training	loss:-	0.5712561688729434	Validation loss:-	0.6
Epoch:- 70	Training	loss:-	0.570646006965033	Validation loss:-	0.61
6951171985971 Epoch: 71	Training	loss:-	0.5700411505974223	Validation loss:-	0.6
167477685043423 Epoch: 72 165222922624678	Training	loss:-	0.5694526498515728	Validation loss:-	0.6
103222322024070	ی				

In [94]:

```
plt.plot(training_loss_tfidf_c_w, label='Train_loss')
plt.plot(dev_loss_tfidf_c_w, label='Valid_loss')

plt.xlabel('Epochs',fontweight='bold')
plt.ylabel('Loss',fontweight='bold')

plt.title('Binary - TFIDF(Training)')
ax = plt.axes()
ax.set_facecolor("lightgray")

plt.legend()
plt.show()
```

<ipython-input-94-2895b5c1aa72>:8: MatplotlibDeprecationWarning: Adding an a
xes using the same arguments as a previous axes currently reuses the earlier
instance. In a future version, a new instance will always be created and re
turned. Meanwhile, this warning can be suppressed, and the future behavior
ensured, by passing a unique label to each axes instance.

In [95]:

```
preds_te_tfidf_c_w = predict_class_c_w(test_tfidf_c_w, w_tfidf_c_w)

print('Accuracy:', accuracy_score(np.array(test_label),preds_te_tfidf_c_w))
print('Precision:', precision_score(np.array(test_label),preds_te_tfidf_c_w))
print('Recall:', recall_score(np.array(test_label),preds_te_tfidf_c_w))
print('F1-Score:', f1_score(np.array(test_label),preds_te_tfidf_c_w))
```

Accuracy: 0.7218045112781954

Precision: 0.72

Recall: 0.7236180904522613 F1-Score: 0.7218045112781956

Full Results

Add here your results:

LR	Precision	Recall	F1-Score
BOW-count	0.8454106280193237	0.8793969849246231	0.8620689655172413
BOW-tfidf	0.8514851485148515	0.864321608040201	0.85785536159601
BOCN-count	0.7046632124352331	0.6834170854271356	0.6938775510204082
BOCN-tfidf	0.7114427860696517	0.7185929648241206	0.71500000000000001
BOW+BOCN-count	0.7164179104477612	0.7236180904522613	0.72000000000000001
BOW+BOCN-tfidf	0.72	0.7236180904522613	0.7218045112781956

Please discuss why your best performing model is better than the rest.

My model is having a great accuracy score, precision score, Recall score and F1-score in all three sections which implies that it is predicting better results and giving output at its best. Thats why I think my model is performing better than the rest.