Decisions Under Ignorance

- In a decision under ignorance, the decision maker :
 - knows what the alternative acts and possible states are, and what outcomes they may result it, but
 - **unable** to **assign** any *probabilities* to the states corresponding to the outcomes
- Ordinal scale is sufficient when we are going to apply the dominance.
- There are no difference between *principle* and *rule*.

Notation

- The notations represent the rationality relationship between two acts instead of numbers.
- ➤ succeed
- ≽ equal to
- ~ similar
- $a_i > a_j$: it is **more rational** to perform the act a_i rather than the act a_j .
- $a_i \ge a_j$: the act a_i is **at least as rational as** the act a_j .
- $a_i \sim a_j$: the two acts are **equally rational**.

Dominance Principle

- Dominated acts must not chosen.
- Dominated acts : acts
 - whose all outcomes under every state are at least as rational as other outcomes of other acts under every state
 - and there are some outcomes under some states are less rational than outcomes of other acts under those states
- Let $v(a_i, s_j)$ be the **value of the outcome** corresponding to the act a_i and the state s_j .
- Notice if one act does not dominate another act in one state while it can
 dominate another act in others state,
 - the domination process terminate

Weak Dominance

• *Weak Dominance* : $a_i \ge a_j$ if and only if $v(a_i, s) \ge v(a_j, s)$ for every state s.

Strong Dominance

• *Strong Dominance* : $a_i \succ a_j$ if and only if $v(a_i, s_m) \ge v(a_j, s_m)$ for every state s_m , and there is some state s_n such that $v(a_i, s_n) > v(a_j, s_n)$.

Advantage and Disadvantage

- It can also be applied to decision under risk.
- It cannot always single out an act as the most rational.

Example

• Neither a3 nor a4 are dominated each other because $v(a_4, s_2) >$

Maximin Principle

- When decision makers cannot choose an act that is more rational among other acts by using *Dominance Principle*,
- The maximin principle focuses on the *worst* possible outcome of each act.
- One should *maximize* the *minimal* value obtainable with each act.
- If the worst possible outcome of an act is better than the worst possible outcome of another act, the first act should be chosen.
- This should not be used in *decision under risk*.

	S ₁	S ₂	S ₃	S ₄	S ₅
a_i	3	1	-2	0	7
a_2	11	4	5	-3	1
a_3	1	2	5	6	8
a_4	2	0	7	3	12

- Formally speaking : $a_i \succeq a_j$ if an only if $\min(a_i) \geq \min(a_j)$.
- If the minimum value corresponding to the outcomes of two or more acts are the same, the maximin principle ranks the acts as equally rational.

Leximin Rule

- Extended version of Maximin Principle
- Let $min^1(a_i)$ be the value of the worst outcome of act a_i ,
- $min^2(a_i)$ be the value of its second worst outcome,
- In general, $min^n(a_i)$ be the value of its n-th worst outcome

- ullet $a_i \ a_j$ if and only if there is some positive integer n such that
 - $ullet min^n(a_i) > min^n(a_j)$
 - regardless $min^m(a_i) = min^m(a_j)$ for all m < n

Example

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆
a_i	7	-1	7	3	2	7
a_2	15	2	-1	4	7	10
a_3	-1	10	8	5	5	1
a_4	10	4	2	12	7	-1

The worst outcomes

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆
a_i	7	-1	7	3	2	7
a_2	15	2	-1	4	7	10
a_3	-1	10	8	5	5	1
a_4	10	4	2	12	7	-1

• The second worst outcomes

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆
a_i	7	-1	7	3	2	7
a_2	15	2	-1	4	7	10
a_3	-1	10	8	5	5	1
a_4	10	4	2	12	7	-1

• The third worst outcomes

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆
a_i	7	-1	7	3	2	7
a_2	15	2	-1	4	7	10
a_3	-1	10	8	5	5	1
a_4	10	4	2	12	7	-1

• The fourth worst outcomes

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆
a_1	7	-1	7	3	2	7
a_2	15	2	-1	4	7	10
a_3	-1	10	8	5	5	1
a_4	10	4	2	12	7	-1

• The fifth worst outcomes

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆
a_i	7	-1	7	3	2	7
a_2	15	2	-1	4	7	10
a_3	-1	10	8	5	5	1
a_4	10	4	2	12	7	-1

· The sixth worst outcomes

Maximax principle

- The maximax principle focuses on the best outcomes.
- Rationality requires us to prefer alternatives in which the best possible outcome is as good as possible.
- You should maximize the maximal value obtainable with an act.

Optimism-pessimism principle

- A decision maker's degree of optimism can be represented by a **real number** α between 0 and 1.
- $\alpha = 1$: maximal optimism
- $\alpha = 0$: maximal pessimism
- $\max(a_i)$: the best outcome of act a_i
- $\min(a_i)$: the worst outcome of act a_i
- The value of act $a_i = [\alpha \cdot \max(a_i)] + [(1 \alpha) \cdot \min(a_i)]$
 - $\alpha \cdot max(a_i)$ is optimism part on act a_i
 - $(1-\alpha) \cdot min(a_i)$ is pessimism part on act a_i
- α is a subjective interpretation
- α : an agent's optimism index
- $[\alpha \cdot \max(a_i)] + [(1 \alpha) \cdot \min(a_i)]$: an act's α -index (subjective)
- Principle definition : $a_i > a_j$ if and only if α -index $(a_i) > \alpha$ -index (a_j)

$$[lpha \cdot (a_i)] + [(1-lpha) \cdot min(a_i)] > [lpha \cdot (a_j)] + [(1-lpha) \cdot min(a_j)]$$

- If lpha=1, evaluate lpha-index $o max(a_i)$ which means the optimism pessimism rule collapses to the maximax rule.
- If $\alpha=0$, evaluate α -index $\to min(a_i)$ which means the optimism pessimism rule collapses to the maximin rule.

- Note that, in order for this rule to work, the value of outcomes should be measured on an interval scale.
- Is it rational to focus just on the best and the worst cases?
- Determine a series of α , α_1 , α_2 , ..., α_n , such that $\alpha_1 + \alpha_2 + \ldots + \alpha_n = 1$, then define α -index of an act a_i as

$$\alpha_1 \cdot max^1(a_i) + \alpha_2 \cdot max^2(a_i) + \ldots + \alpha_n \cdot min(a_i)$$

- then choose the act with the **greatest** α -index
- Note that $\alpha_1, \alpha_2, ..., \alpha_n$ are *not probabilities*
 - similar to (subjective) probabilities
 - but not equivalent to probabilities
- They are chosen only according to how much importance the decision maker attaches to the best, the second best, ..., and the worst outcome of each act.
- The **relative importance** of an outcome **doesn't necessarily correspond** to its probability.

Example

	s ₁	s ₂	s ₃	s ₄	s ₅
a_1	10	75	5	2	10
a_2	10	21	43	71	16

- $\alpha = 0.5$
- α -index(a_1) = (0.5 · 75) + [(1-0.5)· 2] = 38.5
- α -index(a₂) = (0.5 · 71) + [(1-0.5)· 10] = 40.5
- Therefore, a₂ > a₁

	s ₁	s ₂	s ₃	s ₄	s ₅
a_1	10	75	5	2	10
a_2	10	21	43	71	16

- $\alpha = 0.7$
- α -index(a_1) = (0.7 · 75) + [(1-0.7) · 2] = 53.1
- α -index(a_2) = (0.7 · 71) + [(1-0.7)· 10] = 52.7
- Therefore, $a_1 > a_2$

	s ₁	s ₂	s ₃	s ₄	s ₅
a_1	10	75	5	2	10
a_2	10	21	43	71	16

- $\alpha = 0.2$
- α -index(a_1) = (0.2 · 75) + [(1-0.2) · 2] = 16.6
- α -index(a₂) = (0.2 · 71) + [(1-0.2)· 10] = 22.2
- Therefore, a₂ > a₁

Minimax Regret

- The best alternative is one that **minimizes** the **maximum** amount of regret.
- $a_i \succ a_j$ if and only if the maximum regret of a_i is less than the maximum regret of a_j , or to put it formally:

$$max\{(v(a_i,s_1) - max(s_1), (v(a_i,s_2) - max(s_2)), \dots\} < max\{(a_j,s_1) - max(s_1), (v(a_j,s_2) - max(s_2)), \dots\} < max\{(a_j,s_1) - max(s_2), (v(a_j,s_2) - max(s_2)), \dots\} < max\{(a_j,s_2) - max(s_2), \dots\} < max\{(a_j,s_2) - max(s_2)$$

Procedure

- The value of regret for each outcome is calculated by subtracting the value of the best outcome of each state from the value of the outcome in question.
 - This obtains the *regret matrix*
- The act chosen based on Minimax Regret principle is an act whose maximum regret for all states is minimum among other acts for all states.
 - Find the maximum regret for each act.
 - Choose the act with the least maximum regret.

	s ₁	s ₂	s ₃	s ₄
a_1	15	13	1	5
a_2	21	10	9	9
a_3	9	10	0	12

	s ₁	s ₂	s ₃	s ₄
a_1	-6	13	1	5
a_2	0	10	9	9
a_3	-12	10	0	12

	s_1	s ₂	s ₃	s ₄
a_1	-6	13	1	5
a_2	0	10	9	9
a_3	-12	10	0	12

Irrelevant Alternatives

- The ranking of the alternatives cannot be changed by adding a non optimal alternative.
- In other words, the **addition** of a new act, which is **not regarded as better** than the original ones, should **not change** a rational agent's ranking of the **old acts**.
- Minimax regret violates the axiom of *Irrelevant Alternatives

	s ₁	s ₂	s ₃
a_1	8	-1	3
a_2	15	7	0
a_3	12	8	-3

	s_1	s ₂	s ₃
a_1	-7	-9	0
a_2	0	-1	-3
a_3	-3	0	-6

	s ₁	s ₂	s ₃
a_1	8	-1	3
a_2	15	7	0
a_3	12	8	-3
a_4	-2	6	15

	s ₁	s ₂	s ₃
a_1	-7	-9	-12
a_2	0	-1	-15
a_3	-3	0	-18
a_4	-17	-2	0

• The ranking of the old acts is changed. a_1 is the best act rather a_2 in the original one after a_4 is added.

The principle Of Insufficient Reason

- If one has no reason to think that one state of the world is **more probable than another**, then all states should be assigned **equal** probability.
- By applying the principle of insufficient reason, an initial decision problem under **ignorance** is transformed into a decision problem under **risk**.
- If one advocates the principle of maximizing expected value as the best rule for decisions under risk, then the principle of insufficient reason can be stated as:
- $a_i \succ a_j$ if and only if $\sum_{x=1}^n rac{1}{n} v(a_i,s_x) > \sum_{x=1}^n rac{1}{n} v(a_j,s_x)$

	s ₁	s ₂	s ₃
a_1	17	6	12
a_2	8	19	7
a_3	4	15	10

- $EV(a_1)=(0.33 \cdot 17)+(0.33 \cdot 6)+(0.33 \cdot 12)=11.67$
- $EV(a_2)=(0.33 \cdot 8)+(0.33 \cdot 19)+(0.33 \cdot 7)=11.33$
- $EV(a_3)=(0.33 \cdot 4)+(0.33 \cdot 15)+(0.33 \cdot 10)=9.67$

- Problem: it makes a decision problem very sensitive to how the states are individuated.
- Problem: if one has no reason to think that one state is more probable than another, does it follow that the probabilities are equal?