Theory of Automata

Shakir Ullah Shah

- Text Book
 - Recommendedubookes), Daniel I. A Cohen, John Wiley and Sons, Inc., Second Edition
- Reference Book(s)
 - John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, Introduction Automata Theory, Languages and Computation, Second Edition. Addison-Wesley, 2001.
 - John C. Martin. Introduction to Languages and the Theory of Computation. McGraw-Hill, 2003.
- Introduction to the Theory Computation, Michael Sipser, 2nd edition, 2
 FAST National University of Computer and Emerging Sciences, Peshawar

Objectives

- To introduce the basic parts of formal languages
- To describe the various methods to define a language
- To teach different formal models of computation such as Finite Automata and Turing Machines
- To build mathematical models and then to study their limitations
- To understand about the various

Outcomes

- Understand a language and its basic parts
- How to define languages
- Finding the language
 - successful inputs of a machine
- Language processing machines, including FSA, TG, Mealy & Moore machines
- Comparison of various Languages

Tentative Class Policy

Grading

Assignments	10%
– Quizzes	10%
Class Participation	5%
Project	10%
Sessional Exams	25%
Final Exams.	40%

What does Theory of automata mean?

- The word "Theory" means that this subject is a more mathematical subject and less practical.
- It is not like your other courses such as programming. However, this subject is the foundation for many other practical subjects.
- Automata is the plural of the word Automaton which means "self-acting"
- In general, this subject focuses on the

Theory of Automa Applications

- This subject plays a major role in:
 - Theory of Computation
 - Compiler Construction
 - Parsing
 - Formal Verification
 - Defining computer languages

Background

- In this course we will consider a
 mathematical model of computing,
 called machines, and then to study
 their limitations by analyzing the
 types of inputs on which they can
 operate successfully.
- The collection of these successful inputs is called the language of the machine.
- These theoretical models

Background (cont.)

- Every time we introduce a new machine, we will learn its language; and every time we develop a new language, we will try to find a machine that corresponds to it.
- This interplay between languages and machines will be our way of investigating problems and their potential solutions by automatic 9

Background (cont.)

- We will arrive at what we may believe to be the most powerful machine possible. When we do, we will be surprised to find tasks that even such machine cannot perform.
- Our ultimate result is that no matter what machine we build, there will always be questions that are simple to state and that the machine can

What do automata mean?

 It is the plural of automaton, and it means "something that works automatically"

Automaton

Automaton

Types of languages

- There are two types of languages
 - Formal Languages are used as a basis for defining computer languages
 - · A predefined set of symbols and string
 - Formal language theory studies purely syntactical aspects of a language (e.g., word abcd)
 - Informal Languages such as English has many different versions.

Basic Element of a Formal Language – Alphabets

Definition:

A finite non-empty set of symbols (letters), is called an alphabet. It is denoted by Greek letter sigma Σ .

• Example:

```
\Sigma = \{1,2,3\}

\Sigma = \{0,1\} //Binary digits

\Sigma = \{i,j,k\}
```

Basic Element of a Formal Language – Alphabets • Alphabet:

	Alphabet	Symbols	Symbol Name	String Name
	binary	01	bit	Bit string
	Eng .Alph.	abcdefghijklm nopqrstuvwxy z ABCDEFGHIJKL MNOPQRSTUV WXYZ	letter	word
	decimal	0123456789	digit	integer
	special	~!@#\$ %^&*() +={[}] \:;"'<, >.?/		
	keyboard	Eng .Alph. + decimal + special+	keystroke	typescript

String

- A string over the alphabet Σ means a string all of whose symbols are in Σ
- Example:

- The set of all strings of length 2 over the alphabet {a,b} is
 - {aa, ab, ba, bb}

What is an EMPTY or NULL String

- A string with no symbol is denoted by (Small Greek letter Lambda) λ or (Capital Greek letter Lambda) Λ. It is called an empty string or null string.
- We will prefer Λ in this course. Please don't confuse it with logical operator 'and'.
- One important thing to note is that we never allow Λ to be part of alphabet of a language

Substring, prefix and suffix

Substring:

- any consecutive sequence of symbols that occurs anywhere in a string. For example,
 - ab and bc are substrings in abc while cb or ac are not.

Prefix and Suffix:

A beginning of a string (upto any symbol) is called prefix and ending is called suffix, if w=xy with |x|,|y|

Word

 Words are strings belonging to some language.

Example:

```
If \Sigma= {a} then a language L can be defined as L={a<sup>n</sup>: n=1,2,3,....} or L={a,aa,aaa,...} Here a,aa,... are the words of L but not ab.
```

Ambiguity (Cont'd...)

- Example: an alphabet may contain letters consisting of group of symbols for example
- $\Sigma_1 = \{A, aA, bab, d\}.$
- Now consider an alphabet
 Σ₂= {A, Aa, bab, d} and a string AababA.

Ambiguity (Cont'd...)

- This string can be factored in two different ways
 - (Aa), (bab), (A)
 - (A), (abab), (A)
 - Which shows that the second group cannot be identified as a string, defined over $\Sigma = \{a, b\}$.
- This is due to ambiguity in the defined alphabet Σ_2

Ambiguity (Cont'd...)

- Why Ambiguity comes: A computer program first scans A as a letter belonging to Σ_2 , while for the second letter, the computer program would not be able to identify the symbols correctly.
- Ambiguity Rule:- The Alphabets should be defined in a way that letters consisting of more than one symbols should not start with a letter, already FAST National University of Computer and Emerging Sciences, Peshawar

Ambiguity Examples

- $\Sigma_1 = \{A, aA, bab, d\}$
- Σ₂= {A, Aa, bab, d}

 Σ_1 is a valid alphabet while Σ_2 is an in-valid alphabet.

Similarly,

- $\Sigma_1 = \{a, ab, ac\}$
- $\Sigma_2 = \{a, ba, ca\}$

In this case, Σ_1 is a invalid alphabet while Σ_2 is a valid alphabet.

Length

We define the function **length** of a string to be the number of letters in the string s, denoted by |s|.

Example:

```
\Sigma = \{a,b\}

s = ababa

|s| = 5

In any language that includes the null word \Lambda, then length(\Lambda) = 0
```

For any word w in any language, if length(w) = 0 then $w = \Lambda$.

Word Length Example

Example:

```
\Sigma= {A, aA, bab, d}
s=AaAbabAd
Factoring=(A), (aA), (bab), (A), (d)
|s|=5
```

 One important point to note here is that aA has a length 1 and not 2.

Length of strings over n alphabets

- Formula: Number of strings of length 'm' defined over alphabet of 'n' letters is n^m
- Examples:
 - The language of strings of length 2, defined over $\Sigma = \{a,b\}$ is $L = \{aa, ab, ba, bb\}$ *i.e.* number of strings = 2^2
 - The language of strings of length 3, defined over $\Sigma = \{a,b\}$ is $L = \{aaa, aab, aba, baa, abb, bab, bba, bbb} i.e. number of strings = <math>2^3$

 Concatenation: wy, w^k Let $w = w_1 \dots w_k$ and $y = y_1 \dots y_k$ be two strings over some alphabet Σ . Then the concatenation of w and y (in symbols w · y, or just wy) is the string $W_1 \dots W_k Y_1 \dots Y_k$ • If $w = a1....a_n$ and $y = b1....b_m$ then w.y (or wy) $= a1...a_{n}b1...b_{m}$

k times

The reverse of a string s denoted by Rev(s) or s^R , is defined as as follows:

```
If s = \Lambda then s^R = \Lambda otherwise If s = s_1 ... s_k then s^R = s_k ... s_1
```

s^R is obtained by writing the letters of s in reverse order.

Example 1:

If s=abc is a string defined over $\Sigma = \{a,b,c\}$ then Rev(s) or $s^R = cba$

Example:

```
Σ= {A, aA, bab, d}
s=AaAbabAd
Rev(s)=dAbabaAA or
Rev(s)= dAbabAaA
```

Which one is correct?

About Null

- The empty set Ø is a language which has no strings.
- Let L= Ø then It is not true that ∧ is a word in the language Ø since this language has no words at all.
- The set {Λ } is a language which has one string, namely Λ . So it is not empty.
- If a certain language L does not

Defining Languages

- The rules for defining a language can be of two kinds:
 - They can tell us how to test if a string of alphabet letters is a valid word, or
 - They can tell us how to construct all the words in the language by some clear procedures.

Defining Languages (contd.)

- The languages can be defined in different ways, such as
- 1. Descriptive definition,
- 2. Recursive definition,
- 3. Regular Expressions(RE)
- 4. Finite Automaton(FA) etc.
- Descriptive Definition:
 The language is defined by describing the conditions imposed on its words.

Descriptive definition of language

Examples

1. The language L of strings of odd length, defined over $\Sigma = \{a\}$, can be written as

2. The language L of strings that does not start with a, defined over $\Sigma = \{a,b,c\}$

$$L2 = \{\Lambda, b, c, ba, bb, bc, ca, cb, cc, ...\}$$

Descriptive definition of language

4. The language L of strings ending in 0, defined over $\Sigma = \{0,1\}$, can be written as

L4={0,00,10,000,010,100,110, ...}

5. The language **EQUAL**, of strings with number of a's equal to number of b's, defined over $\Sigma = \{a,b\}$

L5={Λ,ab,aabb,abab,baba,abba,

Descriptive definition of language

8. The language FACTORIAL, of strings defined over $\Sigma = \{a\}$, as $\{a^{n!}: n=1,2,3,...\}$, can be written as