Automatic Text Summarization

Abeer Ahmad (38) Mohammed Deifallah (59)

- Recap
 - Problem Definition
 - Followed Technique
 - Dataset
 - Evaluation Metric
 - State-of-the-Art Results
- Model Architecture
- Training
 - Hyperparameters
 - Loss Function
- Evaluation
- Best Result
- How to Extend?

Problem Definition

Text summarization is the process of creating a short and coherent version of a longer document. For example:

- Input: the sri lankan government on wednesday announced the closure of government schools with immediate effect as a military campaign against tamil separatists escalated in the north of the country.
- Output: sri lanka closes schools as war escalates

Followed Technique

In our problem, we followed the single-document generic abstractive approach:

- Single-Document → input length is short.
- Generic \rightarrow model makes no assumption about the domain of input text most common so far.
- Abstractive → model forms its own phrases and sentences to offer a more coherent summary more appealing, but much more difficult than extractive summarization.

Dataset

- CNN, part of <u>DeepMind Q&A</u> dataset was our first choice. This dataset contains different CNN articles, supplemented with multiple highlights.
- We then sticked to a preprocessed version of the <u>Gigaword</u> dataset, a larger (4x) but easier-to-handle dataset than the CNN; as it has its ground truth labels as single-sentence summaries.
 - Article: "south korea 's nuclear envoy kim sook urged north korea monday to restart work to disable its nuclear plants and stop its `` typical '' brinkmanship in negotiations #"
 - Ground Truth Summary: "envoy urges north korea to restart nuclear disablement"
- This way, it is more like "Headline Generation" problem.

Evaluation Metric

- Nearly all approaches taken to tackle similar problems use ROUGE as an evaluation metric.
- We used the same metric for our model evaluation:
 - o ROUGE-1
 - o ROUGE-2
 - o ROUGE-L

State-of-the-Art Results

	ROUGE-1	ROUGE-2	ROUGE-L
Pretraining-Based Model (2019)	41.71	19.49	38.79
GAN Model (2018)	39.92	17.65	36.71
Pointer-Generator Model (2017)	39.53	17.28	36.38

• These results are all based on text summarization models trained over the CNN dataset.

- Recap
 - Problem Definition
 - Followed Technique
 - Dataset
 - Evaluation Metric
 - State-of-the-Art Results
- Model Architecture
- Training
 - Hyperparameters
 - Loss Function
- Evaluation
- Best Result
- How to Extend?

Model Architecture

Encoder-Decoder Seq2Seq Network

<u>Source</u>

Model Architecture - A Closer Look

Input Embeddings for Both Articles [1] and Summaries [2]
Stacked Forward LSTM
Stacked Backward LSTM
Attention Layer

■ LSTM

Dense Layer (Output)

- Recap
 - Problem Definition
 - Followed Technique
 - Dataset
 - Evaluation Metric
 - State-of-the-Art Results
- Model Architecture
- Training
 - Hyperparameters
 - Loss Function
- Evaluation
- Best Result
- How to Extend?

Training

Hyperparameters

- number of stacked LSTM layers (default 2)
- number of LSTM hidden units (default 150)
- emeddings
 - learned VS. pretrained
 - o size (default 300)
- batch size (default 64)
- learning rate (default 0.01)
- dropout keep-probability (default 0.8)

Loss Function

sparse softmax cross entropy

- Recap
 - Problem Definition
 - Followed Technique
 - Dataset
 - Evaluation Metric
 - State-of-the-Art Results
- Model Architecture
- Training
 - Hyperparameters
 - Loss Function
- Evaluation
- Best Result
- How to Extend?

- To evaluate our model, we first trained it under various combinations of hyperparameter values that we anticipated would make significant difference in the obtained results.
- For each trained model, we used it to generate summaries for our test set articles, and evaluated the resulting summaries compared to the ground truth titles using ROUGE.
- Following are some of the trials we performed...

- pretrained GloVe embeddings
- 512-sample batch
- 3 epochs
- others -- default

Average Training Time per Epoch:

o 3 hours

• Results:

o ROUGE-1: 31

o ROUGE-2: 12.53

o ROUGE-L: 27.27

- 200-feature self-learned embeddings
- 100-unit LSTM
- 64-sample batch
- 1 epoch
- others -- default

Average Training Time per Epoch:

o 5 hours

• Results:

ROUGE-1: 19.77ROUGE-2: 6.02ROUGE-L: 16.7

- pretrained GloVe embeddings
- 4-layer stacked LSTM
- 512-sample batch
- 3 epochs
- others -- default

• Average Training Time per Epoch:

o 3 hours

• Results:

ROUGE-1: 19.37
ROUGE-2: 5.55
ROUGE-L: 17.02

- Recap
 - Problem Definition
 - Followed Technique
 - Dataset
 - Evaluation Metric
 - State-of-the-Art Results
- Model Architecture
- Training
 - Hyperparameters
 - Loss Function
- Evaluation
- Best Result
- How to Extend?

Best Result

ROUGE

• ROUGE-1: 31

ROUGE-2: 12.53

• ROUGE-L: 27.27

Model Configuration

- number of stacked LSTM layers (default 2)
- number of LSTM hidden units (default 150)
- emeddings
 - pretrained (GloVe)
 - o size (default 300)
- batch size (512)
- learning rate (default 0.01)
- dropout keep-probability (default 0.8)

- Recap
 - Problem Definition
 - Followed Technique
 - Dataset
 - Evaluation Metric
 - State-of-the-Art Results
- Model Architecture
- Training
 - Hyperparameters
 - Loss Function
- Evaluation
- Best Result
- How to Extend?

How to Extend?

- Apply "Beam Search" technique for better sequence generation.
- Support "Pointer-Generator" method to tackle factual errors, OOV (out-of-vocab) words and repeating.
- Generalize decoder network to work on CNN and other datasets with multi-sentence summaries.

Thank You