Определить основные характеристики стационарного информационного потока с заданным распределением по некоторым известным параметрам распределения:

Характе ристики	Равноме рный	Экспоненц . Пуасона	Эрланга	Гиперэкспоненц.	Выро жден ный
Mt	<u>b</u> 2	$\frac{1}{\alpha}$	$\frac{k}{\alpha}$	$\frac{1}{\alpha}$	а
Dt	$\frac{b^2}{12}$	$\frac{1}{\alpha^2}$	$\frac{k}{\alpha^2}$	$\frac{1}{\alpha^2} \left(1 + \frac{\left(1 - 2\wp \right)^2}{2\wp \left(1 - \wp \right)} \right)$	0
$\lambda = \frac{1}{Mt}$	2 b	α	$\frac{\alpha}{k}$	α	$\frac{1}{a}$
$g = \frac{Dt}{Mt^2}$	<u>1</u> 3	1	$\frac{1}{k}$	$1 + \frac{(1 - 2\wp)^2}{2\wp(1 - \wp)}$ $\wp_{1,2} = \frac{1}{2} \mp \sqrt{\frac{1}{4} - \frac{1}{2g + 2}}$	0

Выпишем формулы

$$M_{t} = \int_{0}^{\infty} tf(t)dt$$

$$D_{t} = \int_{0}^{\infty} (t - M_{t})^{2} f(t)dt$$

$$\lambda = \frac{1}{M_{t}} g = \frac{D_{t}}{M_{t}^{2}}$$

Пример.

Поток Эрланга пятого порядка с Мт = 0.01 с.

1)
$$Mt = 0.01 [c]$$

2)
$$\lambda = 1/Mt = 100 [1/c]$$

$$\lambda = \alpha/k \ (k=5) => \alpha = 5*100 = 500 \ [1/c]$$

3) Dt =
$$\frac{k}{\alpha^2}$$
 = 5/250000 = 1/50000

$$4) g = 1/k = 1/5$$
 (данную формулу нужно вывести)

$$g = \frac{D_t}{M_t^2} = \frac{\frac{1}{50000}}{\left(\frac{1}{100}\right)^2} = \frac{10000}{50000} = \frac{1}{5}$$

Определить основные характеристики однородной марковской цепи, заданной отмеченным графом-диаграммой следующего вида:

Доопределим граф, приняв за условие, что $\sum\limits_{j}P_{j}$ =1 где ј — номер

выходной дуги.

$$P11 = 1 - P12 - P14 = 1 - 0.05 - 0.1 = 0.85$$

 $P22 = 1 - P21 - P23 = 1 - 0.01 - 0.04 = 0.95$
 $P33 = 1 - P31 = 1 - 0.2 = 0.8$
 $P44 = 1 - P43 = 1 - 0.01 = 0.99$

В результате получим:

Запишем систему уравнений для определения вероятности нахождения системы в определенном состоянии:

P1 + P2 + P3 + P4 = 1 P1 = 0.85*P1 + 0.01*P2 + 0.2*P3P2 = 0.95*P2 + 0.1*P1

P3 = 0.8*P3 + 0.04*P2 + 0.01*P4 --- вычеркиваем P4 = 0.99*P4 + 0.05*P1

Выразим все через Р1

P1 + 2*P1 + (13/20)*P1 + 5*P1 = 1

P2 = 2*P1

P3 = P1*(13/20)

P4 = 5*P1

Тогда:

P1 = 20/173

P2 = 2*P1 = 40/173

P3 = (13/20) *P1 = 13/173

P4 = 5*P1 = 100/173

Проверка:

$$P1 + P2 + P3 + P4 = 20/173 + 40/173 + 13/173 + 100/173 = 1$$

Определить основные характеристики марковской и полумарковской моделей FIFO-системы по заданным параметрам входного и выходного информационного потоков:

4 основных характеристики СМО (Формулы для FIFO):

Марковская	Полумарковская			
$N_s = \frac{\rho}{1 - \rho}$	$N_s = \rho + \frac{\rho^2 (1+g)}{2(1-\rho)}$			
$D_n = \frac{\rho}{(1-\rho)^2}$	Не нужно, тк лишком сложные вычисления			
$T_s = \frac{1}{\lambda} N_s$	$T_s = \frac{1}{\mu} + \frac{\rho(1+g)}{2\mu(1-\rho)}$			
$T_{w}(\hat{t}_{s}) = \hat{t}_{s} + T_{Q}$				

Вспомогательные формулы

$$T_{Q} = \frac{1}{\mu} N_{s} T_{w} \left(\hat{t}_{s} = \frac{1}{\mu} \right) = T_{s} T_{ex}^{cp} = \frac{1}{\lambda} \rho = \frac{\lambda}{\mu} \mu = \frac{1}{T_{ofc}^{cp}}$$

Пример.

Условие:

Марковская модель

$$\lambda = 20 \text{ cof./c}$$

$$tz = 0.18 c$$

$$\rho = 0.9$$

Решение:

$$\mu = \frac{\lambda}{\rho} = \frac{20}{0.9} = \frac{200}{9}$$

1)
$$N_s = \frac{\rho}{1-\rho} = \frac{0.9}{1-0.9} = 9$$

2)
$$D_n = \frac{\rho}{(1-\rho)^2} = \frac{0.9}{(1-0.9)^2} = 90$$

3)
$$T_s = \frac{1}{\lambda} N_s = \frac{1}{20} * 9 = \frac{9}{20}$$

4)
$$T_Q = \frac{1}{u} N_s = \frac{9}{200} * 9 = \frac{81}{200}$$

$$T_w = \hat{t}_s + T_Q = \frac{9}{50} + \frac{81}{200} = \frac{36 + 81}{200} = \frac{117}{200}$$

Определить основные характеристики FIFO- и PS- систем и построить график зависимости Tw(ts) времени ответа систем на конкретное задание по заданным параметрам входного и выходного информационный потоков:

Формулы аналогичны в задаче типа 3.

Пример.

Условие:

Марковская модель

$$\lambda = 20 \text{ cof./c}$$

$$tz = 0.18 c$$

$$\rho = 0.9$$

Решение:

$$\mu = \frac{\lambda}{\rho} = \frac{20}{0.9} = \frac{200}{9} \quad \frac{1}{\mu} = \frac{9}{200}$$

1)
$$N_s = \frac{\rho}{1-\rho} = \frac{0.9}{1-0.9} = 9$$

2)
$$D_n = \frac{\rho}{(1-\rho)^2} = \frac{0.9}{(1-0.9)^2} = 90$$

3)
$$T_s = \frac{1}{\lambda} N_s = \frac{1}{20} * 9 = \frac{9}{20}$$

4)
$$T_Q = \frac{1}{u} N_s = \frac{9}{200} * 9 = \frac{81}{200}$$

$$T_w^{FIFO}(\hat{t}_s) = \hat{t}_s + T_Q = \hat{t}_s + \frac{81}{200}$$

$$T_w^{PS} = \frac{\hat{t}_s}{1 - \rho} = \frac{\hat{t}_s}{1 - 0.9} = 10$$

Построим график:

Для сети Петри, заданной графом следующего вида, построить дерево достижимости и определить конкретные формализованные свойства, которыми обладает данная сеть Петри.

Сеть Петри:

Определим начальную маркировку сети

M0 = 010010

Определим основные свойства

- 1) Безопасность СП. Во всех достижимых маркировках все элементы вектора $Mi \le 1$, следовательно сеть безопасна.
- 2) Ограниченность СП. Так как сеть безопасна и $Mi \le 1$, то сеть также и ограничена и N=1.
- 3) Строгая сохраняемость СП. Сеть Петри не строго-сохраняемая, так как $\sum_{i=1}^n m_i^1 \neq \sum_{i=1}^n m_i^0$

- 4) Сохраняемость относительно вектора взвешивания. W = (1,2,1,1,2,1). Сеть Петри сохраняемая относительно вектора взвешивания W. $\sum_{i=1}^n \omega_i$ =4
- 5) Активность(пассивность) СП. Данная сеть Петри активна, так как не имеет терминальных маркировок.
- 6) Конфликтность СП. Данная сеть Петри не конфликтна, так как на протяжении работы сети не встречаются конфликты разрешенных переходов.
- 7) Достижимость в СП. Для определения достижимости определенной маркировки в СП необходимо задать эту маркировку.
- 8) Покрываемость в СП. Для определения покрываемости определенной маркировки в СП необходимо задать эту маркировку.

Для сети Петри, заданной графом следующего вида, построить дерево достижимости и определить структуру однородной марковской цепи, порождаемой в данной сети Петри при многократном выполнении заданий.

Сеть Петри:

Определим начальную маркировку сети M0 = 010010

Построим дерево достижимости

Определим структуру марковской цепи

