07 | 性能好,效率高的一对多通讯该如何实现?

2020-05-13 陶辉

系统性能调优必知必会

进入课程 >

讲述: 陶辉

时长 13:17 大小 12.17M

你好,我是陶辉。从这一讲开始,我们将从单机进入网络层面的性能优化。

我们接触过的绝大多数通讯方式,无论是面向连接的 HTTP 协议,还是无连接的 DNS 协议,都是一对一收发消息的。其实,除了一对一,还有一对多的通讯方式,它在网络资源的利用上效率要比一对一高得多。这种一对多的通讯方式,在局域网中有很广泛的应用,常见的 ARP 欺骗、泛洪攻击等,都是通过一对多通讯进行的。

当应用场景中用一对多代替一对一通讯时,发送方性能会获得很大的提升,整个局域 □ ↓ 率也会提高。比如,源主机的带宽只有 1Gbps,如果采用一对一的方式向 100 个客户端发送流媒体,这 100 台主机的带宽之和不会超过 1Gbps。但采用一对多传输时,总带宽就可以达到 100Gbps。

除了能提升性能以外,由于一对多通讯可同时向所有主机发送消息,这就在功能层面上可以替换许多人工操作。比如分布式系统的服务发现,使用人工配置既容易出错,速度也慢,而用广播就可以轻松实现自动化服务发现。

一对多通讯协议一直在发展,在运营商的 IPTV 网络的视频直播中,它就得到了广泛的应用。即使你暂时不会用到一对多这种方式,也应当了解下它是怎么工作的,熟悉它的工作原理后,还能更深入地理解一对一通讯协议。

这一讲,我们就来学习如何实现一对多通讯。

广播是怎么实现的?

一对多通讯分为两种:对局域网内所有主机发送消息的叫做**广播**,而对部分主机发送消息的,则叫做**组播**。我们先来看一下广播是怎么实现的。

使用广播要改用 UDP 协议。可能你会问,为什么不能使用最熟悉的 TCP 协议呢?这要从 TCP 协议的分层说起。

1978 年在 TCP 协议迭代了 3 个版本后,才被 Jon Postel (IANA 创始人)提出违反了网络分层原则,网络层和传输层耦合在一起很难扩展。于是在 TCP 的第 4 个迭代版本中把协议一分为二,包括网络层 IP 协议和传输层 TCP 协议(这也是今天的 IP 协议被称为 IPv4的原因)。

当你访问 Internet 站点时, IP 协议会将数据通过网络设备穿越多个卫星、光纤等网络, 才能送到服务器。而网络设备天然就拥有广播能力, 当它在一个网络端口上收到主机发来的报文时, 可以向其他端口上的所有主机重发一遍, 这就是广播, 如下图所示:

虽然 IP 协议已经具有广播功能,但实际编程中并不会直接使用 IP 协议发送广播,因为它很难与进程关联起来。

根据网络分层模型,上层协议可以使用下层协议的功能,所以传输层协议拥有 IP 协议的广播能力。同时,传输层通过端口号把网络报文和进程关联在了一起,就像 TCP 的 80 端口,把 HTTP 消息与 Nginx 等 Web Server 关联在一起。

应用层	НТТР	FTP	DNS	SNMP
传输层 端口	TCP		UDP	
网路层 IP地址	APP	IP		IGMP
数据链路层 MAC地址	以太网		ATM网	

然而,传输层的 TCP 协议为了保证可靠性,建立了逻辑上的连接概念,由于一个连接上只能有两方,所以 TCP 无法进行一对多通讯。而传输层的 UDP 协议无需建立连接,所以我们常用 UDP 协议发送广播。

广播的性能高有两个原因: 首先,交换机直接转发给接收方,要比从发送方到接收方的传输路径更短。其次,原本需要发送方复制多份报文再逐一发送至各个接受者的工作,被交换机完成了,这既分担了发送方的负载,也充分使用了整个网络的带宽。

那么,交换机收到消息后,怎么知道这是广播报文并转发给整个网络呢?我们知道,以太网中的数据链路层,通过硬件的 MAC 地址来传播消息,交换机就通过报文的 MAC 地址来确定是否需要广播。当交换机收到目标 MAC 地址是 ff:ff:ff:ff:ff:ff 的报文时,便知道这是一个广播报文,才会将它转发给局域网中的所有主机,否则只会转发给 MAC 地址对应端口上的主机。

不过,我们写代码时无法控制底层的 MAC 地址,只能填写目标 IP 地址。什么样的目标 IP 地址,会生成广播 MAC 地址呢? 如果只是对所在子网进行广播,那么使用受限广播地址 255.255.255.255 就可以了;如果局域网划分了多个子网,主机需要向其他子网广播,则需要正确地设置直接广播地址(路由器需要打开直接广播功能)。

如何正确地设置直接广播 IP 地址?

怎么设置直接广播的 IP 地址呢? 我们首先得了解 IP 地址的构成。

由于 IP 协议需要跨越多个网络工作,所以 IP 地址被一分为二,包括前边的网络 ID 和后边的主机 ID,其中,**网络 ID 用于不同网络间的寻址,而主机 ID 则用于在本地局域网内通**讯。

举个例子,如果你的局域网 IP 地址是 192.168.0.101,那么网络 ID 就是 192.168.0,而主机 ID 则是 101(这里假定网络管理员没有继续划分 C 类子网)。

这是因为,以 192.168 打头的 IP 地址,被称为 C 类地址,而 C 类地址中,最后 1 个十进制数字代表主机 ID。如果 IP 地址是 172.16.20.227,这就是 B 类地址,此时,172.16 是网络 ID,而 20.227 才是主机 ID。

所以, IP 地址的前缀数字不同, 主机 ID 的划分位置也不同。事实上, IP 地址一共被划分为 A、B、C、D、E, 5 个类别, 它的划分依据正是 IP 地址转换为二进制后, 用前 4 个比特位作为依据的。如果第 1 个比特位为 0, 这就是 A 类地址, 它的网络 ID 是 IP 地址的第1 到第 8 比特位, 而主机 ID 则是随后的 24 个比特位。如果局域网 IP 地址第 1 个数字是10, 这就是 A 类私有地址(局域网中的地址不能在公网中使用, 统称为私有地址或者内网地址)。

类似的, 若前 2 个比特位是 10,则是 B 类地址,它的主机 ID 是后 16 位;如果前 3 个比特位为 110,这就是 C 类地址,它的主机 ID 是后 8 位。显然,以 192 打头的地址,前 3 位正是 110,所以这是 C 类地址。

二进制 11000000 10101000 00000000 01100101 点分十进制 192 168 0 101

此外还有 D 类组播地址和 E 类预留实验地址。

清楚了划分方法后,再来看如何通过修改主机 ID 将 IP 地址改为直接广播地址。如果你留心观察 IP 地址,会发现主机 ID 不会出现全 0 和全 1 这两种情况,这是因为全 0 和全 1 有特殊用途,其中全 0 特指它自己(所以 0.0.0.0 可以指代本机 IP),而全 1 表示全部主机。

所以, 主机 ID 的比特位全部设为 1 后就是广播地址。比如, 192.168.0.101 是 C 类地址, 把主机 ID 从 101 改为 255 后, 就可以用 192.168.0.255 发送广播了。

然而,事情到这并没有完。一个 A 类网络可以容纳干万台主机,B 类网络则只能容纳 6 万多台主机,C 类网络则最多容纳 254 台主机。仅有的三类网络中主机数量差距太大,而世界上存在各种规模的企业,它们所需网络中的主机规模干差万别,上述划分方式太过单一,无法满足各类企业的需求,于是诞生了 CIDR 这种新的划分方式,它通过子网掩码(或者叫 Netmask),可以在任意的位置将 IP 地址拆分为网络 ID 和主机 ID,扩展了 A、B、C 三类网络的用法。

当你查看主机的 IP 地址时,就会看到其后跟着一个类似 IP 地址的子网掩码。子网掩码必须把它展开成二进制才能使用,这样,掩码前 N 位为 1 时,就表示 IP 地址的前 N 位是网络 ID,而掩码后面剩余的位全是 0,表示 IP 地址对应的位是主机 ID。

比如,若 192.168.0.101 的子网掩码是 255.255.255.192,就表示 IP 地址的前 26 位是网络 ID,后 6 位是主机 ID,将主机 ID 置为全 1 后,就得到了它的广播地址 192.168.0.127,如下图所示:

二进制 IP地址	11000000	10101000	00000000	01100101
点分十进制 IP地址	192	168	0	101
二进制 子网掩码	11111111	11111111	11111111	11000000
点分十进制 子网掩码	255	255	255	192
二进制 广播地址	11000000	10101000	00000000	01111111
点分十进制 广播地址	192	168	0	127

到这里,我们设置好 IP 地址后,再把 socket 句柄设置 SO_BROADCAST 属性,就可以发送广播了。广播虽然有很多优点,可是一旦被滥用,很容易产生网络风暴,所以路由器默认是不转发广播报文的。

用更精准的组播来做服务发现

当你用 UDP 广播来做分布式系统的服务发现,会遇到这样一个问题:若并非网络内的所有主机都属于分布式系统,那么,当指定了端口的 UDP 广播报文到达其他主机时,会怎么样呢?这些广播报文在这 3 个步骤后会被丢弃:

第 1 步,网卡设备收到报文后,查看报文中的目标 MAC 地址是否与本机的 MAC 地址 匹配,如果不匹配就会丢弃。广播 MAC 地址默认匹配,继续交由上层的 IP 协议栈处理;

第 2 步, IP 协议栈查看目标 IP 地址是否为本机 IP 地址,不匹配也会丢弃报文。上文介绍过的广播 IP 地址同样默认匹配,交由传输层协议继续处理。

第3步,传输层检查目标端口是否有进程在监听,如果没有则丢弃报文,反之则交付给进程处理。不属于集群的主机自然不会启动服务监听端口,在这一步才会丢弃广播报文。

可见,对于不属于分布式集群的主机而言,广播报文既占用了它们的带宽,这 3 步协议栈的操作也消耗了 CPU 的计算力。有什么办法能缩小广播的范围,消除它加在无关主机上的负载呢?

组播可以做到。组播是一种"定向广播",它设定了一个虚拟组,用组播 IP 来标识。这个虚拟组中可以包含多个主机的 IP,当向对应的组播 IP 发送消息时,仅在这个组内的主机才能收到消息。

组播 IP 与常见的单播 IP 不同,它是前文介绍过 5 类 IP 地址中的 D 类地址,32 位 IP 地址的前 4 位必须是 1110,因此组播 IP 地址的范围是从 224.0.0.0 到 239.255.255.255。

当设置好组播 IP 地址后,还要通过管理组播地址的 IGMP 协议(Internet Group Management Protocol),将主机 IP 地址添加进虚拟组中。编程语言提供的 setsockopt

函数,就可以操作 IGMP 协议管理组播地址。比如,使用参数 IP_ADD_MEMBERSHIP 就能够向虚拟组中增加 IP,而 IP DROP MEMBERSHIP 则可以从组中去除某个主机的 IP。

②这里有一个可运行的 python 测试代码,供你参考。如果你想进一步了解组播的细节,可以观看 ②《Web 协议详解与抓包实战》第 117 课。

组播相对于广播而言 ,除了能够更精准的管理组播范围,还能够跨越多个网络工作。当然,如果将多个网络中的 IP 加入同一虚拟组时,需要涉及到的路由器都可以正确地处理这些 IP 地址,且都能支持 IGMP 协议。

小结

最后我们对这一讲做一个总结。

由于一对多通讯能够充分利用整体网络的性能,而且通过交换机能够同时向许多主机发送消息,所以在局域网内有广泛的应用。

在 TCP 协议分层后, IP 协议天然就支持一对多通讯方式。TCP 协议面向连接的特性使它放弃了一对多的通讯方式, 而 UDP 协议则继承了 IP 协议的这一功能。所以, 在一对多通讯场景中, 我们会选择 UDP 协议。

正确输入广播地址的前提,是理解 IP 地址如何划分为网络 ID 和主机 ID。当主机 ID 所有的比特位改为全 1 时,IP 地址就表示该网络下的所有主机,这就是广播地址。当向广播地址发送 UDP 消息时,网络中的所有主机都会收到。广播在局域网中有广泛的应用,转换 IP 地址与 MAC 地址的 ARP 协议就是用广播实现的。

广播对无关的主机增加了不必要的负担,而组播可以更精准地"定向"广播。组播地址也被称为 D 类地址,它描述的虚拟组要通过 IGMP 协议管理。网络 API 中的 setsockopt 函数可以通过 IGMP 协议,向虚拟组中添加或者删除 IP 地址。当路由器支持 IGMP 协议时,组播就可以跨越多个网络实现更广泛的一对多通讯。

广播和组播能够充分地使用全网带宽,也通过交换机等网络设备分散了发送主机的负载。但它很难对每台接收主机提供定制化服务,这样可靠传输就很难实现。这使得它们在更关注及时性、对丢包不敏感的流媒体直播中更有应用前景。

这一讲我们介绍了许多网络概念,这些也是理解后续内容的基础。从下一讲开始,我们将进入更复杂的一对一通讯协议。

思考题

最后,请你思考下,你使用或者了解过哪些一对多的通讯协议?它们的优缺点,以及未来的发展方向又是什么?欢迎你留言与我探讨。

感谢阅读,如果你觉得今天学习的内容对你有帮助,也欢迎把它分享给你的朋友。

课程预告

6月-7月课表抢先看 充 ¥500 得 ¥580

赠「¥ 118 月球主题 AR 笔记本」

【点击】图片, 立即查看 >>>

⑥ 版权归极客邦科技所有,未经许可不得传播售卖。 页面已增加防盗追踪,如有侵权极客邦将依法追究其法律责任。

上一篇 06 | 锁:如何根据业务场景选择合适的锁?

下一篇 08 | 事件驱动: C10M是如何实现的?

精选留言 (10)

1、基于TCP的组播功能,是在应用层做的。

优点是可以精准控制需要组播的对象,缺点是使用节点少的情况。要是在分布式环境下, 管理上万个节点的集群,那么可能性能没那么好。

2、基于UDP的组播功能,这个是利用了UDP的组播特性。...

展开٧

我来也

2020-05-13

读大学时就学习了IP地址的划分,和子网掩码的介绍. 后面在配置路由器,或阿里云上的VPC时,就比较清楚网段的容量.

之前在工作中未接触过组播,今天第一次见.

看了老师关于<多播与IGMP协议>的视频课程,有一个新的疑问:...

展开٧

安排

2020-05-13

广域网可以实现组播吗?如果可以那这样组播地址有可能冲突吗?比如我随便用一个D类地址把自己加入组播组,那在公网上不就有可能偷听到别人的消息了?公网组播有应用场景吗?

小林coding

2020-05-23

我工作是做IPTV流媒体的,对UDP组播接触很多,甚至还有RTP组播、RTSP组播传输

作者回复: 可以给大家分享下你对UDP组播应用及发展方向的看法哈^ ^

carol

2020-05-18

【源主机的带宽只有 1Gbps,如果采用一对一的方式向 100 个客户端发送流媒体,这 100 台主机的带宽之和不会超过 1Gbps。但采用一对多传输时,总带宽就可以达到 100Gbp s。】老师,这个能再细一点吗?

我们做应用对多一点,一对多通讯的应用,搞过websocket的服务器推送。但websocke... 展开~

作者回复: 你好carol, websocket也是一对一通讯协议,只是将TCP的双工能力暴露到了应用层。 这节课里的一对多协议,其实是指OSI网络层实现的一对多协议,之所以能实现一对多,是靠二 层、三层网络设备的转发实现的,目前还都无法跟踪公网,只能在局域网中使用。

介重返归途

2020-05-17

UDP属于无状态传输没有握手过程,相当于只是单向传输,若客户机同时向主机响应时, 会有瓶颈么?

介重返归途

2020-05-17

广播功能属于双工么? 但多个客户机向主机响应时, 会有性能瓶颈么?

作者回复: 你好重返归途,广播不是双工,因为广播是由网络设备实现的,所以服务器无法感知到每个客户端的响应,因此客户端对服务器的响应,与本次广播消息链路无关,它必须是另一个通道

leslie

2020-05-16

其实目前在思考一个问题,我们谈及更多的是私有云的这些场景;可是最近学习公有云时 发现和私有云在这块还是有区别,甚至曾经用过私有云的方式在公有云上去排查问题,结 果效果并不好;这直接触发了我去专门学习公有云的课程。

故而记得曾经有课程提及"私有云的东西迁移到公有云上不能照搬",下一步的IPV6目前只是展示和位数不同其真正的影响到底在哪儿?记得曾经有新闻提及说因此其实标准同… 展开 >

作者回复: 公有云刚发展时,laas是主体,Paas很不成熟。而laas基本是标准化的。 到现在,Paas是主要组成,而Paas是干差万别的,就是同一种关系数据库,都有许多版本,开启 的功能特性也不相同。因此,从这个角度,现在从一个云迁移至另一个云,不能完全照搬。

ம

对分布式的服务发现还不太了解,但是根据文章内容应该是基于UDP协议,与我们后端一般使用TCP去处理请求不太一样。

展开~

作者回复: 是的,因为UDP很多同学不太了解,但UDP有很多独道的优势,比如多播,它也给应用 层更大的自由

夜空中最亮的星(华仔...

2020-05-13

干货满满

展开~

