CS294-158 Deep Unsupervised Learning

Lecture 3b: Likelihood Models III: Latent variable models

Pieter Abbeel, Peter Chen, Jonathan Ho, Aravind Srinivas

UC Berkeley

Latent Variable Models

- Autoregressive models + Flows
 - All random variables are observed
- Latent Variable Models (LVMs):
 - Some random variables are hidden we do not get to observe

Why Latent Variable Models?

 Simpler, lower-dimensional representations of data often possible

Latent variable models hold the promise of automatically identifying

those hidden representations

Obj1 @ (x,y) = Corgi, red & white

Obj2 @ (x,y) = Corgi, red & white, floppy left ear

Background = Wood bench in a park

Obj3 @ (x,y) = Corgi, Tri-color

Why Latent Variable Models?

- AR models are slow to sample because all pixels (observation dims) are assumed to be dependent on each other
- We can make part of observation space independent conditioned on some latent variables
 - Latent variable models can have faster sampling by exploiting statistical patterns

Latent Variable Models

- Sometimes, it's possible to design a latent variable model with an understanding of the causal process that generates data
- In general, we don't know what are the latent variables and how they interact with observations
 - Most popular models make little assumption about what are the latent variables
 - Best way to specify latent variables is still an active area of research

A simple latent variable model

$$z = (z_1, z_2, \dots, z_K) \sim p(z; \beta) = \prod_{k=1}^K \beta_k^{z_k} (1 - \beta_k)^{1 - z_k}$$
$$x = (x_1, x_2, \dots, x_L) \sim p_{\theta}(x|z) \Leftrightarrow \text{Bernoulli}(x_i; \text{DNN}(z))$$

Training LVM

- Now we have a model with parameters, how to train it?
- Maximum Likelihood again!
- Even for small K = 32, it's a summation over 4B terms

$$\log p(x) = \log \left(\sum_{z} p(x|z)p(z) \right)$$

$$z = (z_1, z_2, \dots, z_K)$$

$$p(z; \phi) = \prod_{k=1}^{K} \phi_k^{z_k} (1 - \phi_k)^{1 - z_k}$$

$$\theta \leftarrow \operatorname{argmax}_{\theta} \left[\log p_{\theta}(x) = \log \left(\sum_{z} p_{\theta}(x|z)p(z; \phi) \right) \right]$$

- Recap: we have O(1) access to p(z) and p(x|z) and want to efficiently compute p(x)
- Assume we have an oracle: p(z|x)
 - intuition: what was the z that generates this x?

$$p(x) = \frac{p(x|z)p(z)}{p(z|x)}$$

But how do we obtain p(z|x)?

Given this simple graphical model, we are interested in the posterior distribution of the latent variables.

$$p(z|x) = \frac{p(x,z)}{p(x)} = \frac{p(x,z)}{\sum_{z} p(x|z)p(z)}$$
 Intractable

Key idea in variational inference is to approximate the true posterior with a variational distribution. This results in an optimization problem that minimizes the distance between these two distributions, ex: KL divergence.

- Let $q_{y}(z)$ be our approximation of true posterior p(z|x)
 - Then we pick a divergence to minimize between these two distributions

$$\begin{split} D_{\mathrm{KL}}\left[q_x(z) \parallel p(z|x)\right] &= \mathbb{E}_{z \sim q_x(z)}\left[\log q_x(z) - \log p(z|x)\right] \\ &= \mathbb{E}_{z \sim q_x(z)}\left[\log q_x(z) - \log \frac{p(z,x)}{p(x)}\right] \\ &= \mathbb{E}_{z \sim q_x(z)}\left[\log q_x(z) - \log p(z) - \log p(x|z) + \log p(x)\right] \\ &= \underbrace{\mathbb{E}_{z \sim q_x(z)}\left[\log q_x(z) - \log p(z) - \log p(x|z)\right] + \log p(x)}_{\mathrm{Only this part depends on } z} \end{split}$$

note: the expectation can be approximated by stochastic samples, and every term in expectation can be computed in O(1) now

Variational Lower Bound (VLB)

 We now have an objective amenable to stochastic optimization

$$D_{\mathrm{KL}}\left[q_{x}(z) \parallel p(z|x)\right] = \mathbb{E}_{z \sim q_{x}(z)}\left[\log q_{x}(z) - \log p(z) - \log p(x|z)\right] + \log p(x)$$

Turns out we can get more out of this exercise

$$\log p(x) = -\mathbb{E}_{z \sim q_x(z)} \left[\log q_x(z) - \log p(z) - \log p(x|z) \right] + D_{\text{KL}} \left[q_x(z) \parallel p(z|x) \right]$$

$$= \underbrace{\mathbb{E}_{z \sim q_x(z)} \left[\log p(z) + \log p(x|z) - \log q_x(z) \right]}_{\text{Variational Lower Bound}} + \underbrace{D_{\text{KL}} \left[q_x(z) \parallel p(z|x) \right]}_{\geq 0}$$

• note: the optimal $q_y(z)$ of VLB is p(z|x), at which point VLB is tight (= log p(x))

VLB Maximization

• Given a data distribution $x \sim p_{data}$, we can know train the generative model by maximizing the VLB under data distribution

$$\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[\mathbb{E}_{\mathbf{z} \sim q_x(\mathbf{z})} \left[\log p(\mathbf{z}) + \log p(\mathbf{x} | \mathbf{z}) - \log q_x(\mathbf{z}) \right] \right]$$

$$\leq \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[\log p(\mathbf{x}) \right]$$

Variational Inference

- Core idea: learn an approximation of the intractable posterior
- Widely applicable:
 - learning latent variable generative models
 - estimation / maximization of Mutual Information
 - learnable dequantization

Stochastic optimization of VLB

$$z = (z_1, z_2, \dots, z_K) \sim p(z; \beta) = \prod_{k=1}^K \beta_k^{z_k} (1 - \beta_k)^{1 - z_k}$$
$$x = (x_1, x_2, \dots, x_L) \sim p_{\theta}(x|z) \Leftrightarrow \text{Bernoulli}(x_i; \text{DNN}(z))$$
$$\text{VLB} = \mathbb{E}_{z \sim q(z; \phi(x))} \left[\log p(x|z) - \log q(z; \phi(x)) + \log p(z) \right]$$

In the Bernoulli setting, this becomes:

$$\mathbb{E}_{z \sim q(z;\phi(x))} \left[\log p(x|z;\theta) - \log q(z;\phi(x)) + \log p(z;\beta) \right]$$

Core problem: how to optimize the expectation from which z is drawn

Wake-Sleep algorithm

- Note: VLB was derived from min $KL[q_{y}(z)||p(z|x)]$, hard to optimize because z drawn from $q_{\nu}(z)$
- What if we instead minimize $KL[p(z|x)||q_x(z)]$ for any given x
 - still hard because we don't know p(z|x)
- Trick: we know z if we generate them! $\mathbf{z} \sim p_{\beta}(\mathbf{z}), \mathbf{x} \sim p_{\theta}(\mathbf{x}|\mathbf{z})$
 - caveat x ~ p_{model} instead of x ~ p_{data}
- Problem?
 - VLB is maximized with x drawn from p_{data}
 - minimizing $kl(p \mid \mid q)$ with x drawn from p_{model} doesn't guarantee the bound is tight

Wake-Sleep algorithm

Wake Phase

- Sample $x \sim p_{\text{data}}, z \sim q(z; \phi(x)).$
- Maximize VLB with respect to θ, β .

Sleep Phase (model dreaming samples)

- Sample $z \sim p(z; \beta)$, $x \sim p(x|z; \theta)$.
- Minimize $KL(p(z|x)||q(z;\phi(x)))$ with respect to ϕ now that we have samples from p_{model} .

Reverse KL

$$KL(p(z|x)||q(z;\phi(x)) = E_{z \sim p(z|x)} \left[\underbrace{\log p(z|x)}_{\text{independent of } \phi} - \log q(z;\phi(x)) \right]$$

Amortized Inference

- $q(z;\phi(x))$
 - Not scalable to large dataset
 - Expensive to evaluate new data points
- **Amortized Inference**

$$VLB = \mathbb{E}_{z \sim q_{\phi}(\cdot|x)} \left[\log p_{\theta}(x|z) - \log q_{\phi}(z|x) + \log p(z) \right]$$

Helmholtz Machine

- Helmholtz Machine [Dayan, P., Hinton, G. E.,... 1995]
 - Bernoulli latent code + observation space
 - Learned with Wake-sleep algorithm
- Did not scale to solve more complex problems due to limitations of wake-sleep

Directly optimizing VLB

- Wake-Sleep not effective, especially when p_{model} is far away from p_{data}
- Can we directly optimize VLB?

Recall, we want

$$\phi, \theta \leftarrow \operatorname{argmax}_{\theta, \phi} \left(\mathbb{E}_{z \sim q_{\phi}(\cdot|x)} \left[\log p_{\theta}(x|z) - \log q_{\phi}(z|x) + \log p(z) \right] \right)$$

Optimization with respect to ϕ is of the form

$$\underbrace{ \operatorname{argmax}_{\phi} \mathbb{E}_{z \sim q_{\phi}} \left[f(z) \right] }_{\text{Nell studied problem in reinforcement learning where no assumption on f is made.}$$

Likelihood Ratio Estimator

We are interested in $\operatorname{argmax}_{\phi} \mathbb{E}_{z \sim q_{\phi}(\cdot|x)} [f(z)]$

How do we compute $\nabla_{\phi} \mathbb{E}_{z \sim q_{\phi}(\cdot|x)} [f(z)]$?

$$\nabla_{\phi} \sum_{z} q_{\phi}(z|x) f(z) = \sum_{z} \nabla_{\phi} q_{\phi}(z|x) f(z) = \sum_{z} \underbrace{\frac{\nabla_{\phi} q_{\phi}(z|x)}{q_{\phi}(z|x)}}_{z} f(z) q_{\phi}(z|x)$$

$$\Rightarrow \nabla_{\phi} \mathbb{E}_{z \sim q_{\phi}(\cdot|x)} \left[f(z) \right] = \sum_{z} \left(\nabla_{\phi} \log q_{\phi}(z|x) f(z) \right) q_{\phi}(z|x) = \mathbb{E}_{z \sim q_{\phi}(\cdot|x)} \left[\nabla_{\phi} \log q_{\phi}(z|x) f(z) \right]$$

$$\phi \leftarrow \phi + \alpha \nabla_{\phi} \mathbb{E}_{z \sim q_{\phi}(\cdot|x)} \left[\nabla_{\phi} \log q_{\phi}(z|x) f(z) \right]$$

Issue: High variance gradients, needs many samples of z to form a good estimate [Demo]

Pathwise Derivative (PD)

One other way to optimize this objective when z is continuous is to cast z as a function of a simple fixed noise such as standard gaussian.

$$z = g(\epsilon, \phi), \epsilon \sim \mathcal{N}(0, I)$$

$$\mathbb{E}_{z \sim q_{\phi}(\cdot|x)} [f(z)] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)} [f(g(\epsilon,\phi))]$$

When f is differentiable,

$$\nabla_{\phi} \mathbb{E}_{z \sim q_{\phi}(\cdot|x)} \left[f(z) \right] = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)} \left[\nabla_{\phi} f(g(\epsilon,\phi)) \right]$$

Pathwise Derivative (PD)

- Stochastic gradient possible if z is continuous now (more technical condition?)
 - Common choice: \eps ~ Normal, f(\eps) = \mu + \sigma \eps
 - Any flow that you just learned!
- Also known as reparameterization trick
- Can work with only 1~2 samples
- Demo

PD applied to VI

Variational AutoEncoder

 $q_{\phi}(z|x)$ is modeled as a Gaussian with parameters μ and σ a DNN encoder (parameters ϕ) of x. The DNN decoder $p_{\theta}(x|z)$ is differentiable.

Let
$$z = \Sigma^{1/2}(x; \phi)\epsilon + \mu(x; \phi)$$

$$VLB = \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)} \left[\log p_{\theta}(x|z) - \log q_{\phi}(z|x) + \log p(z) \right]$$

$$= \mathbb{E}_{\epsilon \sim \mathcal{N}(0,I)} \left[\log p_{\theta}(x|z) \right] - KL(q_{\phi}(z|x)||p(z))$$

 ∇_{θ} [VLB] and ∇_{ϕ} [VLB] can now be efficiently computed with SGD.

Why is it called an autoencoder?

- We have seen that a variational autoencoder is a latent variable model with Gaussian prior p(z) and approximate posterior q(z|x).
 - Why is it called an "autoencoder"?

$$\log p_{\theta}(x) \ge \underbrace{\left(E_{z \sim q_{x}(z)} \log p_{\theta}(x|z)\right)}_{\text{Reconstruction loss}} - \underbrace{KL(q_{\phi}(z|x)||p(z))}_{\text{Regularization}}$$

$$L(\theta, \phi) - \text{VAE objective}$$

VAE

$$q_{\phi}(z|x) = \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}(x)) \quad \phi \stackrel{\mathbf{z}}{\longleftarrow} \quad p_{\theta}(x|z) = \mathcal{N}(\mu_{\theta}(z), \sigma_{\theta}(z))$$

VAE

VAE

```
9442222228888800000002
      22555660000002
      223555566666022
      23335555555533
      33333355555533
      3333333555553
      3333333355557
```

Compared to AR

- We now have a family of trainable latent variable models!
- But performance is lacking

Model	NLL Test
DBM 2hl [1]:	≈ 84.62
DBN 2hl [2]:	≈ 84.55
NADE [3]:	88.33
EoNADE 2hl (128 orderings) [3]:	85.10
EoNADE-5 2hl (128 orderings) [4]:	84.68
DLGM [5]:	≈ 86.60
DLGM 8 leapfrog steps [6]:	≈ 85.51
DARN 1hl [7]:	≈ 84.13
MADE 2hl (32 masks) [8]:	86.64
DRAW [9]:	≤ 80.97
PixelCNN:	81.30

Bridging the gap between AR and VAE

- Improve Variational Inference
- Flexible decoder
- More expressive model architectures