Ejercicios de derivación de funciones

Matemáticas - 11 2019

Resumen

Resolver el taller propuesto (con procedimientos), hallando la derivada de cada función respecto a la variable indicada.

Reglas básicas de derivadas 0.

Regla para función	Derivada	
Constante	$\frac{d}{dx}(c)$	= 0
Lineal	$\frac{d}{dx}(x)$	= 1
Potencia	$\frac{d}{dx}(x^n)$	$= nx^{n-1}$
Múltiplo constante	$\frac{d}{dx}(cf)$	= cf'
Suma(Resta)	$\frac{d}{dx}[f \pm g]$	$= f' \pm g'$
Producto	$\frac{d}{dx}(fg)$	= f'g + fg'
Cociente $(g \neq 0)$	$\frac{d}{dx}(\frac{f}{g})$	$=\frac{f'g-fg'}{g^2}$

Derivada de una constante, múltiplo constante, potencia

1.
$$f(x) = 5$$

4.
$$y = \frac{1}{3x^2}$$

$$7. \quad f(u) = \frac{1}{\sqrt{u}}$$

$$2. \quad g(x) = \pi$$

$$5. \quad y = \frac{5}{t^5}$$

8.
$$g(t) = \frac{1}{t\sqrt{t}}$$

3.
$$h(x) = -2x$$

6.
$$y = \sqrt{s}$$

9.
$$h(s) = -2s + 3s$$

Derivada suma o resta de funciones

$$1. \quad f(x) = -2x + 2$$

5.
$$w = \frac{r^3 + 2}{3}$$

$$2. \quad g(x) = -\frac{7}{2}x - 3$$

6.
$$z = \sqrt[3]{s^2} + \sqrt{s}$$

3.
$$h(t) = -2t^2 - 5$$

7.
$$u = \frac{5}{p^5} + \frac{3}{p^2}$$

4.
$$y(x) = 2x^4 + x^3 - x^2 + 4$$

7.
$$u = \frac{1}{p^5} + \frac{1}{p^5}$$

3. Derivadas sucesivas

- 1. Hallar la quinta derivada (es decir, $y^{(5)}$) de la función $y = x^{12}$.
- 2. Hallar la sexta derivada $(y^{(6)})$ de la función $y = \frac{1}{x}$.
- 3. Del punto 1, generalize la derivada de la potencia para obtener la *m-ésima* derivada $(y^{(m)})$ de la función $y = x^n$ siendo n > m.
- 4. Del punto 2, generalize la derivada *m-ésima* $(y^{(m)})$ de la función $y = \frac{1}{x}$.

Ayuda. Puntos 3 y 4, puede ser conveniente usar la definicón del producto factorial $n! = 1 \cdot 2 \cdot \ldots \cdot n$ y/o la fórmula de las permutaciones ${}_{n}P_{m}$.

4. Derivada de producto de funciones

1.
$$f(x) = (5x^2 - 3)(x^2 + x + 4)$$

2.
$$g(x) = (x^2 - 1)(x^3 + 3x)$$

3.
$$h(t) = (2t - 1)(3t^3 - 4t^2 + 3)$$

4.
$$k(s) = (2s^3 + 1)(s^4 - 3)(5s^2 - 1)$$

5. Derivada de cociente de funciones

$$1. \quad f(x) = \frac{x+1}{x-1}$$

$$2. \quad h(t) = \frac{5t+2}{4t^2-1}$$

3.
$$g(u) = \frac{1 + \frac{1}{u}}{\frac{1}{u^2} - 1}$$

4.
$$r(\theta) = \frac{3\theta^3 + \theta + 2}{5\theta^2 + 1}$$

5.
$$s(t) = \frac{(t-1)(t+3)}{t-5}$$

6. Regla de la cadena

6.1. Con la derivada de una potencia

1.
$$f(x) = (x^2 + 3x - 2)^4$$

2.
$$g(x) = \frac{3(x^2+2)^3}{5}$$

6.2. Con la derivada de una raíz

1.
$$f(x) = \sqrt{x^2 - 2x + 3}$$

2.
$$g(t) = \sqrt[4]{t^5 - t^3 - 2}$$

3.
$$h(s) = \sqrt[3]{\frac{s^2 + 1}{s^2 - 1}}$$

$$4. \quad y = \frac{\sqrt{x-1}}{x+1}$$

2