

Highly Efficient Neuromorphic Computing Systems with Emerging Nonvolatile Memories

#### Bonan Yan

Dept. Electrical & Computer Engineering

Duke University

Slides available at: <a href="https://bonanyan.github.io/bn/">https://bonanyan.github.io/bn/</a>

#### Efficiency Is The Key to Ubiquitous Al

Limited Power/Energy

Better Accuracy Comes From Larger Models





2

#### Overhead Dominated by Memories



- Memory is the Bottleneck; Data Movement Is Expensive
- How to overcome the memory bottleneck?

| Float ADD<br>Register File     | 0.9<br>1   | GPIO GPIO                         |
|--------------------------------|------------|-----------------------------------|
| Int Multiply<br>Float Multiply | 3.1<br>3.7 | : Function Unit                   |
| SRAM Cache DRAM Memory         | 5<br>640   | : On-chip Memory : Control Module |



En

Source: AMD, Intel, [Whatmough, ISSCC 2017]

### Specialized Hardware Enhances Efficiency

 $P = \alpha C V_{DD}^2 f$ 

*P*: Power Dissipation

 $\alpha$ : Activity Factor

C: Load Capacitance

 $V_{DD}$ : Power Supply

*f* : Clock Frequency



Multicore to Manycore





**Domain-Specific** 

















Google TPU v3 consumption)









## Uniqueness of Neural Network Execution



#### Make Memory Access Less Expensive



### Key Idea of In-Memory Computing

inputs weights 
$$[V_1 \quad V_2 \quad V_3] \begin{bmatrix} G_{11} & G_{12} & G_{13} \\ G_{21} & G_{22} & G_{23} \\ G_{31} & G_{32} & G_{33} \end{bmatrix} = \begin{bmatrix} I_1 & I_2 & I_3 \end{bmatrix}$$



- Weight Matrix Stored as Conductance G
- Rely on Analog Computation (Kirchhoff's Current Law) for "almost free"
  - Multiplication:  $I = V \cdot G$
  - Addition: $I^{column} = I_1^{row} + I_2^{row} + I_2^{row}$
- Ideal Nanoscale Devices for G:
  - Programmable Conductance
  - Multi-Level Cell
  - Small Footprint/High Density
  - Compatible with Existing CMOS Process

### Memristors for In-Memory Computing

Also Called Resistive Random Access Memory, RRAM or ReRAM





Programmable resistor w/ analog states

ISSCC: Intel adds embedded ReRAM to 22nm portfolio

January 03, 2019

TSMC to start embedded RRAM production in 2019

According to reports, Taiwan Semiconductor Manufacturing Company (TSMC) is aiming to start producing embedded RRAM chips in 2019 using a 22 nm process. This will be initial "risk production" to gauge market reception.

|       | Multi-<br>Level Cell | Cell Area | R/W<br>Speed   |
|-------|----------------------|-----------|----------------|
| SRAM  | ×                    | large     | Fast           |
| DRAM  | ×                    | medium    | Medium         |
| 1T1R  | ٧                    | medium    | Medium<br>Fast |
| Flash | ٧                    | small     | Slow           |



#### My work: Emerging Memory-Centric Design

- Circuits & Systems Implementation
  - Spike-based Interface [DAC'15, DAC'18, DAC'20]
  - Implementation of Neural Networks [VLSI'19, DAC'20]
- Tolerate/Exploit Non-ideal Behavior of Memristors
  - Device Nonlinearity [ISCAS'16, IEDM'17, IEDM'19]
  - Read Disturbance [ICCAD'17], Hard Fault [ITC'19]







#### My work: Emerging Memory-Centric Design

- Circuits & Systems Implementation
  - Spike-based Interface [DAC'15, DAC'18, DAC'20]
  - Implementation of Neural Networks [VLSI'19, DAC'20]
- Tolerate/Exploit Non-ideal Behavior of Memristors
  - Device Nonlinearity [ISCAS'16, IEDM'17, IEDM'19]
  - Read Disturbance [ICCAD'17], Hard Fault [ITC'19]







#### Conventional ADC is Too Large

#### The Level-based Design

- Compatible to existing signal processing
- High speed computation



#### **Actual Layout:**



Based on 1.66MF<sup>2</sup> 8bit ADC by K. Ohhata (JSSC 2019)

#### My Approach: Spiking Interface Circuit

#### **What Better Designs Look Like**

- Compute Parallelly (Massive)
- Need Light-Weight Interface Circuitry



#### The Spike-based Design

- Closer to biological system
- Extremely high power efficiency





### Spike Conversion







Spike Conversion Circuit & Controller 3152x3152 μm<sup>2</sup>



Duke





Tradeoff between large input current range and response speed



Enlarge phase margin tolerating capacitor positive feedback



# How to Use Spiking-Based Design to Execute Neural Networks?



### In Situ Nonlinear Activation (ISNA) Function



Single-layer Inference Operation:

- Step 1: Load data from buffer
- Step 2: Vector-matrix multiplication
- Step 3: Nonlinear activation function
- Step 4: Pooling
- Step 5: Store results to buffer
  - : digital domain (A): analog domain



#### In Situ Nonlinear Activation (ISNA) Function



Single-layer Inference Operation:

- Step 1: Load data from buffer
  - Step 2: Vector-matrix multiplication
  - Step 3: Nonlinear activation function
- Step 4: Pooling
- Step 5: Store results to buffer
  - : digital domain ( ) : analog domain

Combine Step 2 & Step 3 to simplify PE operation: Use linear + nonlinear regions



#### Adjust Activation Function





Measured ISNA behavior

- Vth ↓, Charging/discharging ↑
- Distorted tuning

charging/discharging



Function

#### Chip Architecture



### Chip Summary



| Technology           | 150nm CMOS<br>+HfO <sub>x</sub> RRAM      |  |
|----------------------|-------------------------------------------|--|
| Macro Capacity       | 64K (256×256)                             |  |
| Clock Frequency      | 50MHz                                     |  |
| Energy Efficiency    | 0.257pJ/Mac                               |  |
| Average Power        | 1.52 mW                                   |  |
| Layer-wise Latency   | 200ns                                     |  |
| Real-time Benchmarks | 3-layer perceptrons,<br>LeNet-4, LetNet-5 |  |



Demo video online: <a href="https://bit.ly/AICHIP">https://bit.ly/AICHIP</a>



#### Evaluation: Measured Neural Network Results

#### **MNIST:**

- MLP-1: Single-layer perceptron
- MLP-2: 2-layer perceptron
- CNN-1: 4-Layer LeNet

#### **CIFAR-10:**

• CNN-2: 5-Layer LeNet





#### My work: Emerging Memory-Centric Design

- Circuits & Systems Implementation
  - Spike-based Interface [DAC'15, DAC'18, DAC'20]
  - Implementation of Neural Networks [VLSI'19, DAC'20]
- Tolerate/Exploit Non-ideal Behavior of Memristors
  - Device Nonlinearity [ISCAS'16, IEDM'17, IEDM'19]
  - Read Disturbance [ICCAD'17], Hard Faults [ITC'19]







#### Non-Ideal Memristor - I

Cell Nonlinearity: conductance varies when applied with different voltages



Solution: Current Amplifier to Clamp Cell Voltage (shown in previous circuit design part)



#### Non-Ideal Memristor - II

- Memristance Drift: conductance/memristance gradually deviates from original values under read voltage (read disturbance)
- Characteristic:
  - Very slow to observe







#### How to Mitigate Memristance Drift for Inference?

$$E_{mse} = \sum_{j}^{n} \left( t_{j} - \sum_{i}^{m} w_{ij} x_{i} \right)^{2} \qquad E'_{mse} = \sum_{j}^{n} \left( t_{j} - \sum_{i}^{m} w_{ij} x_{i} - \sum_{i}^{m} \Delta w_{ij} x_{i} \right)^{2} \qquad E_{\text{MSE}}: \text{MSE Error Function}$$

$$Voltage$$

$$\Delta E_{mse} = E'_{mse} - E_{mse}$$

$$= -2 \sum_{j}^{n} \left[ \left( t_{j} - \sum_{i}^{m} w_{ij} x_{i} \right) \left( \sum_{i}^{m} \Delta w_{ij} x_{i} \right) \right]$$



$$\frac{\partial \Delta E_{mse}}{\partial \Delta w_{ij}} = -2\left(t_j - \sum_{i=1}^{m} w_{ij} x_i\right) x_i \le 0$$



0V/0.6V

**Change Column Current Direction** 

### Closed-loop Design to Enhance Weight Stability

**Feedback controller:** Adjust the voltage condition to compensate the memristance drift.



"Arrogant principle": last output is used as the label to determine the sense condition.







#### Summary

- The Past and Now of Al Hardware
  - In-Memory Computing Eliminates Weights Movement
- My Work:
  - Spiking-based In-Memory Computing Engine Offer Very High Energy Efficiency & Good Performance
  - Clever Design Methodologies (e.g., Closed-Loop Sensing) is Effective to Tolerate Nonideal Features of Memristors



### Future Work I: Single Spike Processing Engine

Use Single Spike to Replace Multiple Spikes: ~10x Improvement of Energy Efficiency



"ReSiPE: ReRAM-based Single-Spiking Processing-In-Memory Engine" Simulation Results Coming in July at Design Automation Conference (DAC) 2020



#### Future Work II: In-Memory Compute & Cache





Controller\*

& Router

#### **Prospect Applications:**

**NN Training Acceleration** Self-Updatable In-Memory Computing Engine

Cache RRAM

### Long-Term Prospects

#### Compute

**Control** 

Rethink Compute Memory Hierarchies







**RRAM** 

**PCM** 

**MRAM** 

"Organ" for Compute & Cache w/ different emerging memory types









### Many Thanks for the Support!

#### Advisors:

Prof. Hai "Helen" Li

Prof. **Yiran Chen** 



Prof. **Joe Qiu**Army Research Office

Prof. **Jianhua (Joshua) Yang**UMASS Amherst

Prof. **Krishnendu Chakrabarty**Duke University

Dr. **Qing Wu**Air Force Research Laboratory

Prof. **Meng-Fan Chang**National Tsing-Hua Univ.

Prof. **Weisheng Zhao**Beihang University









**Student Collaborators:** 

Ziru Li, Qilin Zheng, Brady Taylor









# Thanks for Listening & Qs!

slides available at:

https://bonanyan.github.io/bn/

