4402

4402 N-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4402 uses advanced trench technology to provide excellent $R_{\text{DS(ON)}}$, low gate charge and operation with gate voltages as low as 2.5V. This device is suitable for use as a load switch or in PWM applications.

Features

 $V_{DS}(V) = 30V$

 $I_D = 12A$

 $R_{DS(ON)}$ < 14m Ω (V_{GS} = 10V)

 $R_{DS(ON)}$ < 16m Ω (V_{GS} = 4.5V)

 $R_{DS(ON)}$ < 22m Ω (V_{GS} = 2.5V)

Parameter		Symbol	Maximum	Units	
Drain-Source Voltage		V_{DS}	30	V	
Gate-Source Voltage		V_{GS}	±12	V	
Continuous Drain	T _A =25°C		12		
Current ^A	T _A =70°C	I _D	10	Α	
Pulsed Drain Current ^B		I _{DM}	80		
	T _A =25°C	P _D	3	W	
Power Dissipation	T _A =70°C		2.1	¬	
Junction and Storage Temperature Range		T _J , T _{STG}	-55 to 150	°C	

Thermal Characteristics							
Parameter		Symbol	Symbol Typ Max		Units		
Maximum Junction-to-Ambient A	t ≤ 10s	$R_{\theta JA}$	23	40	°C/W		
Maximum Junction-to-Ambient A	Steady-State	κ_{θ} JA	48	65	°C/W		
Maximum Junction-to-Lead ^C	Steady-State	$R_{ hetaJL}$	12	16	°C/W		

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions		Min	Тур	Max	Units	
STATIC I	PARAMETERS	•	•				•	
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =250μA, V _{GS} =0V		30			V	
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =24V, V _{GS} =0V				1	μА	
צצטי	Zero Gate Voltage Drain Gurrent		T _J =55°C			5	μΑ	
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V				100	nA	
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_D=250\mu A$		0.6	0.8	1.2	٧	
$I_{D(ON)}$	On state drain current	V _{GS} =4.5V, V _{DS} =5V		60			Α	
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =12A			11.1	14	mΩ	
			T _J =125°C		16	19.2	11122	
		V _{GS} =4.5V, I _D =10A	•		13.1	16	mΩ	
		V_{GS} =2.5V, I_D =8A			21	26	mΩ	
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =5A		25	50		S	
V_{SD}	Diode Forward Voltage	I _S =10A,V _{GS} =0V			0.8	1	V	
Is	Maximum Body-Diode Continuous Current					4.5	Α	
DYNAMI	C PARAMETERS							
C_{iss}	Input Capacitance	V _{GS} =0V, V _{DS} =15V, f=1MHz V _{GS} =0V, V _{DS} =0V, f=1MHz			1630		pF	
Coss	Output Capacitance				201		pF	
C_{rss}	Reverse Transfer Capacitance				142		pF	
R_g	Gate resistance				0.8		Ω	
SWITCH	NG PARAMETERS							
Q_g	Total Gate Charge				19		nC	
Q_{gs}	Gate Source Charge	V _{GS} =4.5V, V _{DS} =15V, I _D =12A			3.3		nC	
Q_{gd}	Gate Drain Charge				5.2		nC	
t _{D(on)}	Turn-On DelayTime	V_{GS} =10V, V_{DS} =15V, R_{L} =1.2 Ω , R_{GEN} =3 Ω			3		ns	
t _r	Turn-On Rise Time				4.7		ns	
t _{D(off)}	Turn-Off DelayTime				33.5		ns	
t _f	Turn-Off Fall Time				6		ns	
t _{rr}	Body Diode Reverse Recovery Time	I _F =10A, dI/dt=100A/μs			21		ns	
Q _{rr}	Body Diode Reverse Recovery Charge	e I _F =10A, dl/dt=100A/μs			11		nC	

A: The value of R_{0JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any a given application depends on the user's specific board design. The current rating is based on the t \leq 10s thermal resistance rating.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6 are obtained using $80\mu s$ pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Fig 1: On-Region Characteristics

Figure 2: Transfer Characteristics

Figure 3: On-Resistance vs. Drain Current and **Gate Voltage**

Figure 4: On-Resistance vs. Junction Temperature

Figure 5: On-Resistance vs. Gate-Source Voltage

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

Figure 11: Normalized Maximum Transient Thermal Impedance

Shenzhen Tuofeng Semiconductor Technology Co., Ltd

4402

SO-8 Package Data

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES				
	MIN	NOM	MAX	MIN	NOM	MAX		
A	1.45	1.50	1.55	0.057	0.059	0.061		
A1	0.00		0.10	0.000		0.004		
A2		1.45			0.057			
b	0.33		0.51	0.013		0.020		
c	0.19		0.25	0.007		0.010		
D	4.80		5.00	0.189		0.197		
E1	3.80		4.00	0.150		0.157		
e		1.27 BSC			0.050 BSC			
E	5.80		6.20	0.228		0.244		
h	0.25		0.50	0.010		0.020		
L	0.40		1.27	0.016		0.050		
aaa			0.10			0.004		
θ	0°		8°	0°		8°		

- NOTE:

 1. LEAD FINISH: 150 MICROINCHES (3.8 um) MIN.
 THICKNESS OF Tin/Lead (SOLDER) PLATED ON LEAD
 2. TOLERANCE ±0.100 mm (4 mil) UNLESS OTHERWISE
 SPECIFIED
- 3. COPLANARITY : 0.1000 mm 4. DIMENSION L IS MEASURED IN GAGE PLANE

Shenzhen Tuofeng Semiconductor Technology Co., Ltd

4402

