SI231 Matrix Computations Lecture 5: Eigenvalues, Eigenvectors, and Eigendecomposition

Ziping Zhao

Fall Term 2020-2021

School of Information Science and Technology ShanghaiTech University, Shanghai, China

Lecture 5: Eigenvalues, Eigenvectors, and Eigendecomposition

- facts about eigenvalues and eigenvectors
- eigendecomposition, the case of Hermitian & real symmetric matrices
- Schur decomposition
- variational characterizations of eigenvalues of Hermitian & real symmetric matrices
- similarity transformation
- power iteration, inverse iteration, Rayleigh quotient iteration
- orthogonal iteration
- QR iteration
- PageRank: a case study
- generalized eigenvalue problems

Notation and Conventions

- a square matrix A is said to be symmetric if $a_{ij} = a_{ji}$ for all i, j with $i \neq j$, or equivalently, if $A^T = A$
 - example:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 \\ 0 & -2 & 0.9 \\ 3 & 0.9 & 0 \end{bmatrix}$$

- a square matrix A is said to be Hermitian if $a_{ij}=a_{ji}^*$ for all i,j with $i\neq j$, or equivalently, if $A^H=A$
 - example:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 3 + \mathbf{j}0.7 \\ 0 & -2 & 0.9 - \mathbf{j} \\ 3 - \mathbf{j}0.7 & 0.9 + \mathbf{j} & 0 \end{bmatrix}$$

- ullet we denote the set of all $n \times n$ real symmetric matrices by \mathbb{S}^n
- ullet we denote the set of all $n \times n$ complex Hermitian matrices by \mathbb{H}^n

Notation and Conventions

- note the following subtleties:
 - by definition, a real symmetric matrix is also Hermitian
 - when we say that a matrix is Hermitian, we often imply that the matrix may be complex (at least for this course); a real Hermitian matrix is simply real symmetric
 - we can have a complex symmetric matrix, though we will not study it

Main Results

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is said to admit an eigendecomposition if there exists a nonsingular $\mathbf{V} \in \mathbb{C}^{n \times n}$ and a collection of scalars $\lambda_1, \dots, \lambda_n \in \mathbb{C}$ such that

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1},$$

where $\Lambda = \text{Diag}(\lambda_1, \dots, \lambda_n)$.

- the above $(\mathbf{V}, \mathbf{\Lambda})$ satisfies $\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i$ for $i = 1, \dots, n$, which are eigen-equations
- $\mathbf{v}_1, \dots, \mathbf{v}_n$ are required to be linearly independent
- eigendecomposition does not always exist

Main Results

A real symmetric matrix $\mathbf{A} \in \mathbb{S}^n$ always admits an eigendecomposition

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^T$$

where $\mathbf{V} \in \mathbb{R}^{n \times n}$ is orthogonal; $\mathbf{\Lambda} = \mathrm{Diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i.

A Hermitian matrix $\mathbf{A} \in \mathbb{H}^n$ always admits an eigendecomposition

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H$$

where $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary; $\mathbf{\Lambda} = \mathrm{Diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i.

- differences: a Hermitian or real symmetric matrix always has
 - an eigendecomposition
 - real λ_i 's
 - a ${f V}$ that is not only nonsingular but also unitary

We start with the basic definition of eigenvalues and eigenvectors.

Problem: given a $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), find a vector $\mathbf{v} \in \mathbb{C}^n$ with $\mathbf{v} \neq \mathbf{0}$ such that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}, \qquad \text{for some } \lambda \in \mathbb{C}$$
 (*)

- (*) is called an eigenvalue problem or eigen-equation
- let (\mathbf{v}, λ) be a solution to (*). We call
 - $-(\mathbf{v},\lambda)$ an eigen-pair of \mathbf{A}
 - λ an eigenvalue of A; v an eigenvector of A associated with λ
- if (\mathbf{v}, λ) is an eigen-pair of \mathbf{A} , $(\alpha \mathbf{v}, \lambda)$ is also an eigen-pair for any $\alpha \in \mathbb{C}, \alpha \neq 0$
- \bullet unless specified, we will assume $\|\mathbf{v}\|_2 = 1$ in the sequel

Problem: given a $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), find a vector $\mathbf{v} \in \mathbb{C}^n$ with $\mathbf{v} \neq \mathbf{0}$ such that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}, \qquad \text{for some } \lambda \in \mathbb{C}$$
 (*)

- from (*), action of matrix $\mathbf A$ on a subspace $\mathcal V_\lambda\subseteq\mathbb C^n$ sometimes is equivalent to scalar multiplication
- the subspace V_{λ} satisfying (*) is called the eigenspace of A associated with λ , and any $\mathbf{v} \in V_{\lambda}$ with $\mathbf{v} \neq \mathbf{0}$ is an eigenvector
 - $V_{\lambda} = \mathcal{N}(\mathbf{A} \lambda \mathbf{I})$ since $\mathbf{A}\mathbf{v} = \lambda \mathbf{v} \iff (\mathbf{A} \lambda \mathbf{I})\mathbf{v} = \mathbf{0}$
 - \mathcal{V}_{λ} is an invariant subspace of \mathbf{A} , i.e., $\mathbf{A}\mathcal{V}_{\lambda}\subset\mathcal{V}_{\lambda}$
- the set of all eigenvalues of A, denoted by $\sigma(A) \subseteq \mathbb{C}$, is called the spectrum of A

Fact: Every $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) has n eigenvalues.

• from the eigenvalue problem we see that

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
 for some $\mathbf{v} \neq \mathbf{0}$ \iff $(\mathbf{A} - \lambda\mathbf{I})\mathbf{v} = \mathbf{0}$ for some $\mathbf{v} \neq \mathbf{0}$ \iff $\det(\mathbf{A} - \lambda\mathbf{I}) = 0$

- let $p(\lambda) = \det(\mathbf{A} \lambda \mathbf{I})$, called the characteristic polynomial of \mathbf{A}
- from the determinant def., it can be shown that $p(\lambda)$ is a polynomial of degree n, viz., $p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_n \lambda^n$ where α_i 's depend on \mathbf{A} specifically, $\alpha_0 = \det(\mathbf{A}), \ldots, \alpha_{n-1} = -(-1)^n \operatorname{tr}(\mathbf{A}), \alpha_n = (-1)^n$
- as $p(\lambda)$ is a polynomial of degree n, it can be factored as $p(\lambda) = \prod_{i=1}^{n} (\lambda_i \lambda)$ where $\lambda_1, \ldots, \lambda_n$ are the roots of $p(\lambda)$
 - specifically, $\alpha_0 = \prod_{i=1}^n \lambda_i$, ..., $\alpha_{n-1} = (-1)^{n-1} \sum_{i=1}^n \lambda_i$, $\alpha_n = (-1)^n$
- we have $det(\mathbf{A} \lambda \mathbf{I}) = 0 \iff \lambda \in \{\lambda_1, \dots, \lambda_n\}$
- the spectrum is hence defined by $\sigma(\mathbf{A}) = \{\lambda \in \mathbb{C} \mid \det(\mathbf{A} \lambda \mathbf{I}) = 0\}$

Let $\lambda_1, \ldots, \lambda_n$ denote the *n* eigenvalues of **A**. We write

$$\mathbf{A}\mathbf{v}_i = \lambda_i \mathbf{v}_i, \qquad i = 1, \dots, n,$$

where \mathbf{v}_i denotes an eigenvector of \mathbf{A} associated with λ_i .

- we should be careful about the meaning of n eigenvalues: they are defined as the n roots of the characteristic polynomial $p(\lambda) = \det(\mathbf{A} \lambda \mathbf{I})$
- example: consider

$$\mathbf{A} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

- from the original definition $\mathbf{A}\mathbf{v}=\lambda\mathbf{v}$, one can verify that $\lambda=1$ is the only eigenvalue of \mathbf{A}
- from the characteristic polynomial, which is $p(\lambda)=(1-\lambda)^2$, we see two roots $\lambda_1=\lambda_2=1$ as two eigenvalues
- every matrix has at least one eigenvalue, and every eigenvalue appears at least once in $p(\lambda)$

Fact: an eigenvalue can be complex even if A is real.

- a polynomial $p(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \ldots + \alpha_n \lambda^n$ with real coefficients α_i 's can have complex roots
- example: consider

$$\mathbf{A} = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

- we have $p(\lambda) = \lambda^2 + 1$, so $\lambda_1 = \boldsymbol{j}$, $\lambda_2 = -\boldsymbol{j}$
- similarily, an eigenvalue can be real even if A is complex

Fact: if A is real and there exists a real eigenvalue λ of A, the associated eigenvector v can be taken as real.

- ullet obviously, when ${f A}-\lambda{f I}$ is real we can define ${\cal N}({f A}-\lambda{f I})$ on ${\Bbb R}^n$
- or, if \mathbf{v} is a complex eigenvector of a real \mathbf{A} associated with a real λ , we can write $\mathbf{v} = \mathbf{v}_{\mathrm{R}} + \boldsymbol{j}\mathbf{v}_{\mathrm{I}}$, where $\mathbf{v}_{\mathrm{R}}, \mathbf{v}_{\mathrm{I}} \in \mathbb{R}^{n}$. It is easy to verify that \mathbf{v}_{R} and \mathbf{v}_{I} are eigenvectors associated with λ

Further Discussion: Repeated/Degenerate Eigenvalues

- w.l.o.g., order $\lambda_1, \ldots, \lambda_n$ such that $\{\lambda_1, \ldots, \lambda_k\}$, $k \leq n$, is the set of all distinct eigenvalues of \mathbf{A} ; i.e., $\lambda_i \neq \lambda_j$ for all $i, j \in \{1, \ldots, k\}$, $i \neq j$; $\lambda_i \in \{\lambda_1, \ldots, \lambda_k\}$ for all $i \in \{1, \ldots, n\}$
- ullet denote μ_i as the number of repeated eigenvalues of λ_i , $i=1,\ldots,k$
 - i.e., μ_i is the multiplicity of λ_i as the root of $p(\lambda)$ (λ_i is simple if $\mu_i = 1$)
 - μ_i is called the algebraic multiplicity of the eigenvalue λ_i
- every λ_i can have more than one eigenvector (scaling not counted)
 - denote $\gamma_i = \dim \mathcal{N}(\mathbf{A} \lambda_i \mathbf{I}) = \dim \mathcal{V}_{\lambda_i}$, $i = 1, \dots, k$
 - i.e., we can find γ_i linearly independent \mathbf{v}_i 's in \mathcal{V}_{λ_i}
 - γ_i is called the geometric multiplicity of the eigenvalue λ_i

Property 5.1. We have $\mu_i \geq \gamma_i$ for all i = 1, ..., k (not trivial, requires a proof)

- Implication: no. of repeated eigenvalues \geq no. of linearly indep. eigenvectors

Further Discussion: Repeated/Degenerate Eigenvalues

- eigenvalue λ_i is called defective if $\mu_i > \gamma_i$, i.e., its algebraic multiplicity exceeds its geometric multiplicity
- a matrix is called defective if it has one or more defective eigenvalues
 - example: consider

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$$

We have, or can easily prove, the following properties:

$$\bullet \det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

•
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

- ullet the eigenvalues of ${f A}^k$ are $\lambda_1^k,\ldots,\lambda_n^k$
- $rank(\mathbf{A}) < n$ (i.e., rank-deficient) if and only if 0 is one eigenvalue of \mathbf{A}
- $rank(A) \ge number of nonzero eigenvalues of A$

A matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) is said to be diagonalizable, or admit an eigendecomposition, if there exists a nonsingular $\mathbf{V} \in \mathbb{C}^{n \times n}$ such that

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1},$$

where $\Lambda = \operatorname{Diag}(\lambda_1, \dots, \lambda_n)$. (diagonalization of matrix \mathbf{A} : $\mathbf{V}^{-1}\mathbf{A}\mathbf{V} = \Lambda$)

- a.k.a. eigenvalue decomposition, spectral decomposition
- in defining diagonalizability, we didn't say that $(\mathbf{v}_i, \lambda_i)$ has to be an eigen-pair of \mathbf{A} . But

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1} \iff \mathbf{A} \mathbf{V} = \mathbf{V} \mathbf{\Lambda}, \ \mathbf{V} \ \text{nonsingular}$$
 $\iff \mathbf{A} \mathbf{v}_i = \lambda_i \mathbf{v}_i, \ i = 1, \dots, n, \ \mathbf{V} \ \text{nonsingular} \ (\text{hence, } \mathbf{v}_i \neq \mathbf{0})$

Also, $\lambda_1, \ldots, \lambda_n$ must be the n eigenvalues of \mathbf{A} ; this can be seen from the characteristic polynomial $\det(\mathbf{A} - \lambda \mathbf{I}) = \det(\mathbf{\Lambda} - \lambda \mathbf{I}) = \prod_{i=1}^{n} (\lambda_i - \lambda)$

Theorem 5.1. (the sufficient and necessary condition for the existence of eigendec.) For $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), it admits an eigendcomposition if and only if there exist n linearly independent eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ of \mathbf{A}

If A admits an eigendecomposition, the following properties can be shown (easily):

$$\bullet \det(\mathbf{A}) = \prod_{i=1}^{n} \lambda_i$$

•
$$\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$$

- ullet the eigenvalues of ${f A}^k$ are $\lambda_1^k,\ldots,\lambda_n^k$
- rank(A) = number of nonzero eigenvalues of A (Quiz)
- ullet suppose that ${f A}$ is also nonsingular. Then, ${f A}^{-1}={f V}{f \Lambda}^{-1}{f V}^{-1}$

Note: the first three properties can be shown to be valid for any \mathbf{A} (do not depend on the existence of eigendec.); the fourth property may not be valid when \mathbf{A} does not admit an eigendecomposition (recall the example next page); the third and fifth properties can be used for effcient computations of matrix powers and inversions

Question: Does every $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$) admit an eigendecomposition?

- the answer is no.
- counter example: consider

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

- the characteristic polynomial is $p(\lambda) = -\lambda^3$, so $\lambda_1 = \lambda_2 = \lambda_3 = 0$
- it is easy to see that

$$\mathcal{V}_{\lambda_1} = \mathcal{N}(\mathbf{A} - \lambda_1 \mathbf{I}) = \mathcal{N}(\mathbf{A}) = \mathcal{R}(\mathbf{A}^T)^{\perp} = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix} \right\}$$

- any selection of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \in \mathcal{N}(\mathbf{A})$ is linearly dependent
- A does not admit an eigendecomposition if $\mu_i > \gamma_i$ for some $i \in \{1, \dots, k\}$.

Question: under which conditions of μ_i and γ_i can a matrix admit an eigendec.?

- there exist matrix subclasses in which eigendecomposition is guaranteed to exist
 - one example is the circulant matrix subclass, as seen in Lecture 3
 - another example is the Hermitian matrix subclass, as we will see
- there exist simple sufficient conditions under which eigendecomposition exists

Property 5.2. Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ (or $\mathbb{C}^{n \times n}$), and suppose that λ_i 's are ordered such that $\{\lambda_1, \ldots, \lambda_k\}$ is the set of all distinct eigenvalues of \mathbf{A} . Also, let \mathbf{v}_i be any eigenvector associated with λ_i . Then $\mathbf{v}_1, \ldots, \mathbf{v}_k$ must be linearly independent.

(requires a proof)

Implications:

• (a sufficient condition for existence of eigendec.) if all the eigenvalues of **A** are distinct, i.e.,

$$\lambda_i \neq \lambda_j$$
, for all $i, j \in \{1, \dots, n\}$ with $i \neq j$,

then A admits an eigendecomposition

- to have all the eigenvalues to be distinct is not that hard, as we will see later
- (the sufficient and necessary condition for existence of eigendec.) considering Property 5.1, $\bf A$ admits an eigendcomposition if and only if $\mu_i = \gamma_i$ for all i

Eigendecomposition for Hermitian & Real Symmetric Matrices

Consider the Hermitian matrix subclass.

Property 5.3. Let $\mathbf{A} \in \mathbb{H}^n$.

- 1. the eigenvalues $\lambda_1, \ldots, \lambda_n$ of **A** are real
- 2. suppose that λ_i 's are ordered such that $\{\lambda_1, \ldots, \lambda_k\}$ is the set of all distinct eigenvalues of \mathbf{A} . Also, let \mathbf{v}_i be any eigenvector associated with λ_i . Then $\mathbf{v}_1, \ldots, \mathbf{v}_k$ must be orthogonal (or orthonormal).

(requires a proof)

- ullet the above results apply to real symmetric matrices; recall $\mathbf{A} \in \mathbb{S}^n \Longrightarrow \mathbf{A} \in \mathbb{H}^n$
- ullet Corollary: for a real symmetric matrix, all eigenvectors ${f v}_1,\dots,{f v}_n$ can be chosen as real
- ullet implication: for a Hermitian $oldsymbol{A}$ with all its eigenvalues being distinct, then $oldsymbol{A}$ admit an eigendecomposition with unitary $oldsymbol{V}$.
- In fact, a Hermitian A always admits an eigendecomposition with unitary V, i.e., is always unitarily diagonalizable (or orthogonally diagonalizable for the real case)!

Eigendecomposition for Hermitian & Real Symmetric Matrices

Theorem 5.2. Every $\mathbf{A} \in \mathbb{H}^n$ admits an eigendecomposition

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H$$
,

where $\mathbf{V} \in \mathbb{C}^{n \times n}$ is unitary; $\mathbf{\Lambda} = \mathrm{Diag}(\lambda_1, \dots, \lambda_n)$ with $\lambda_i \in \mathbb{R}$ for all i. Also, if $\mathbf{A} \in \mathbb{S}^n$, \mathbf{V} can be taken as real orthogonal.

- does not require the assumption of distinct eigenvalues
- Corollary: if A is Hermitian or real symmetric, $\mu_i = \gamma_i$ for all i (no. of repeated eigenvalues = no. of linearly indep. eigenvectors)
- Proof? a consequence of a more powerful decomposition, namely, the Schur decomposition; we will go through it next

Schur Decomposition

Theorem 5.3. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$, and let $\lambda_1, \dots, \lambda_n$ be its eigenvalues. The matrix \mathbf{A} admits a decomposition

$$\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$$
,

for some unitary $\mathbf{U} \in \mathbb{C}^{n \times n}$ and for some upper triangular $\mathbf{T} \in \mathbb{C}^{n \times n}$ with $t_{ii} = \lambda_i$ for all i. If \mathbf{A} is real and $\lambda_1, \ldots, \lambda_n$ are all real, \mathbf{U} and \mathbf{T} can be taken as real. (requires a proof)

- we will call the above decomposition the Schur decomposition or Schur unitary triangulation ($\mathbf{U}^H \mathbf{A} \mathbf{U} = \mathbf{T}$ called the Schur form of \mathbf{A}) in the sequel
- exists for any $\mathbf{A} \in \mathbb{C}^{n \times n}$ and can be viewed as a generalization of the eigendecomposition for \mathbf{A} not diagonalizable
- some insight: Suppose **A** can be written as $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$ for some unitary **U** and upper triangular **T**, but it's not known if $t_{ii} = \lambda_i$. Then

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det(\mathbf{T} - \lambda \mathbf{I}) = \prod_{i=1}^{n} (t_{ii} - \lambda)$$

This implies that t_{11}, \ldots, t_{nn} are the eigenvalues of \mathbf{A}

Schur Decomposition

- the Schur decomposition is a powerful tool
- \bullet e.g., we can use it to show that for any square A (with or without eigendec.),
 - $-\det(\mathbf{A}) = \prod_{i=1}^n \lambda_i$
 - $-\operatorname{tr}(\mathbf{A}) = \sum_{i=1}^{n} \lambda_i$
 - the eigenvalues of \mathbf{A}^k are $\lambda_1^k, \dots, \lambda_n^k$
- we may use it to prove the convergence of the power method (to be shown later)
 when eigendecomposition does not exist
- the Jordan canonical form, which we will not teach, requires the Schur decomposition as the first key step

Implications of the Schur Decomposition

- proof of Theorem 5.2:
 - let ${\bf A}$ be Hermitian, and let ${\bf A}={\bf U}{\bf T}{\bf U}^H$ be its Schur decomposition. Observe

$$\mathbf{0} = \mathbf{A} - \mathbf{A}^H = \mathbf{U}\mathbf{T}\mathbf{U}^H - \mathbf{U}\mathbf{T}^H\mathbf{U}^H = \mathbf{U}(\mathbf{T} - \mathbf{T}^H)\mathbf{U}^H \quad \Longleftrightarrow \quad \mathbf{0} = \mathbf{T} - \mathbf{T}^H$$

- since ${f T}$ is upper triangular and ${f T}^H$ is lower triangular, ${f T}={f T}^H$ implies that ${f T}$ is diagonal; thus, the Schur decomposition is also the eigendecomposition
- similar results apply to real symmetric A, except that we use real T, U
- note: ${f T}={f T}^H$ also implies that t_{ii} 's are real; so the proof also confirms that λ_i 's are real

Implications of the Schur Decomposition

ullet even though ${f A}$ does not admit an eigendecomposition, it is not hard to find an approximation of ${f A}$ which admits an eigendecomposition

Proposition 5.1. Let $\mathbf{A} \in \mathbb{C}^{n \times n}$. For every $\varepsilon > 0$, there exists a matrix $\tilde{\mathbf{A}} \in \mathbb{C}^{n \times n}$ such that the n eigenvalues of $\tilde{\mathbf{A}}$ are distinct and

$$\|\mathbf{A} - \tilde{\mathbf{A}}\|_F \leq \varepsilon.$$

- Implication: for any square A, we can always find an \tilde{A} that is arbitrarily close to A and admits an eigendecomposition
- proof:
 - let $\mathbf{D} = \operatorname{Diag}(d_1, \dots, d_n)$ where d_1, \dots, d_n are chosen such that $|d_i| \leq \left(\frac{\varepsilon}{n}\right)^{1/2}$ for all i and such that $t_{11} + d_1, \dots, t_{nn} + d_n$ are distinct
 - let $\mathbf{U}\mathbf{T}\mathbf{U}^H$ be the Schur decomposition of \mathbf{A} , and let $\tilde{\mathbf{A}} = \mathbf{U}(\mathbf{T} + \mathbf{D})\mathbf{U}^H$
 - we have $\|\mathbf{A} \tilde{\mathbf{A}}\|_F^2 = \|\mathbf{D}\|_F^2 \leq \varepsilon$

Implications of the Schur Decomposition

- ullet skew-Hermitian matrices: ${f A}\in \mathbb{C}^{n imes n}$ is said to be skew-Hermitian if ${f A}^H=-{f A}$
 - example:

$$\mathbf{A} = egin{bmatrix} m{j}1 & 0 & -0.7 + m{j}3 \ 0 & -m{j}2 & 1 + m{j}0.9 \ 0.7 + m{j}3 & -1 + m{j}0.9 & 0 \end{bmatrix}$$

- ${f A}$ is Hermitian if and only if ${m j}{f A}$ is skew-Hermitian
- ullet real skew-symmetric matrices: ${f A}\in \mathbb{R}^{n imes n}$ is said to be skew-symmetric if ${f A}^T=-{f A}$
 - example:

$$\mathbf{A} = \begin{bmatrix} 0 & 0 & -3 \\ 0 & 0 & 0.9 \\ 3 & -0.9 & 0 \end{bmatrix}$$

- real skew-Hermitian is simply real skew-symmetric
- by the Schur decomposition, we can show that any skew-Hermitian $\bf A$ admits an eigendecomposition with unitary $\bf V$ and the eigenvalues are (purely) imaginary (i.e., $\Re\{\lambda\}=0$ for $\lambda\in\mathbb{C}$)

Eigenvalue-Revealing Factorizations

- ullet eigenvalue-revealing factorizations of matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$
 - diagonalization (eigendec.) $\mathbf{A} = \mathbf{V} \Lambda \mathbf{V}^{-1}$ (nondefective \mathbf{A} , i.e., $\mu_i = \gamma_i$)
 - unitary diagonalization (eigendec.) $\mathbf{A} = \mathbf{V} \boldsymbol{\Lambda} \mathbf{V}^H$ with unitary \mathbf{V} (normal \mathbf{A} , including Hermitian and skew-Hermitian matrices)
 - unitary triangularization (Schur dec.) $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$ with unitary \mathbf{U} (any \mathbf{A})
 - Jordan canonical/normal form (Jordan dec.) ${\bf A}={\bf SJS}^{-1}$ (any ${\bf A}$), where ${\bf J}$ is block diagonal as

$$\mathbf{J} = egin{bmatrix} \mathbf{J}_1 & & & & \ & \mathbf{J}_2 & & & \ & & \ddots & & \ & & & \mathbf{J}_k \end{bmatrix}$$
 with a square $\mathbf{J}_i = egin{bmatrix} \lambda_i & 1 & & & \ & \lambda_i & \ddots & \ & & \ddots & 1 \ & & & \lambda_i \end{bmatrix}$

- In general, Schur factorization is used, because
 - unitary matrices are involved, so algorithm tends to be more stable

ullet right eigenvector or eigenvector associated with λ

$$\mathbf{A}\mathbf{v} = \lambda\mathbf{v}$$
 for $\mathbf{v} \neq \mathbf{0}$

ullet left eigenvector associated with λ

$$\mathbf{u}^H \mathbf{A} = \lambda \mathbf{u}^H$$
 for $\mathbf{u} \neq \mathbf{0}$

(unless specified, eigenvectors are commonly referred to right eigenvectors)

- given $\mathbf{A} \in \mathbb{C}^{n \times n}$ and its spectrum $\sigma(\mathbf{A}) = \{\lambda \in \mathbb{C} \mid \det(\mathbf{A} \lambda \mathbf{I}) = 0\}$, we have
 - spectral radius of A: $\rho(\mathbf{A}) = \max_{z \in \sigma(\mathbf{A})} |z|$
 - numerical range (field of values) of A: $W(\mathbf{A}) = \{\mathbf{x}^H \mathbf{A} \mathbf{x} \mid \mathbf{x} \in \mathbb{C}^n, \|\mathbf{x}\|_2 = 1\}$
 - * obviously $\sigma(\mathbf{A}) \subseteq W(\mathbf{A})$
 - * (Toeplitz-Hausdorff Theorem) $W(\mathbf{A})$ is a convex set for any $\mathbf{A} \in \mathbb{C}^{n \times n}$
 - numerical radius of A: $r(\mathbf{A}) = \max_{z \in W(\mathbf{A})} |z|$
 - * $\rho(\mathbf{A}) \le r(\mathbf{A})$

we can easily get the following properties on $W(\mathbf{A})$:

- for $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $a, b \in \mathbb{C}$, $W(a\mathbf{A} + b\mathbf{I}) = aW(\mathbf{A}) + b$
- for $\mathbf{A} \in \mathbb{C}^{n \times n}$, $W(\mathbf{A}^T) = W(\mathbf{A})$ and $W(\mathbf{A}^H) = W(\mathbf{A}^*) = W(\mathbf{A})^*$
 - specially, if $\mathbf{A} \in \mathbb{R}^{n \times n}$, then $W(\mathbf{A})$ is symmetric with respect to the real axis
- for A, $B \in \mathbb{C}^{n \times n}$, $W(A + B) \subseteq W(A) + W(B)$
- for $A \in \mathbb{C}^{n \times n}$, $W(A) \subset \mathbb{R}$ iff $A \in \mathbb{H}^n$; in this case, the endpoints of W(A) (a line segment) coincide with the smallest and the largest eigenvalues of A

note: the first and second properties also apply to $\sigma(\mathbf{A})$; we also have if $\mathbf{A} \in \mathbb{R}^{n \times n}$, then $\sigma(\mathbf{A})$ is symmetric with respect to the real axis, i.e., complex eigenvalues of real matrices appear in conjugate pairs

• for any $\mathbf{A} \in \mathbb{C}^{n \times n}$, it can be decomposed as

$$A = H + S$$

where $\mathbf{H} = \frac{1}{2}(\mathbf{A} + \mathbf{A}^H)$ is Hermitian (with real eigenvalues) and $\mathbf{S} = \frac{1}{2}(\mathbf{A} - \mathbf{A}^H)$ is skew-Hermitian (with purely imaginary eigenvalues)

- when n=1, it becomes a=h+s with $h=\Re(a)$ and $s=\mathbf{j}\Im(a)$

Property 5.4. If \mathbf{H} and \mathbf{S} are the Hermitian part and the skew-Hermitian part of $\mathbf{A} \in \mathbb{C}^{n \times n}$, respectively, then

$$\Re(W(\mathbf{A})) = W(\mathbf{H}) \quad \text{and} \quad \Im(W(\mathbf{A})) = -\mathbf{j}W(\mathbf{S}) = W(-\mathbf{j}\mathbf{S}).$$

 $(\Re(\cdot))$ and $\Im(\cdot)$ are used to denote the real and imaginary parts of a set, respectively.) (proof is simple)

Property 5.5. Denote the spectrum of \mathbf{A} , \mathbf{H} , and \mathbf{S} as $\sigma(\mathbf{A})$, $\sigma(\mathbf{H})$, and $\sigma(\mathbf{S})$, and then we have $\lambda_{\min}(\mathbf{H}) \leq \Re(\lambda_i(\mathbf{A})) \leq \lambda_{\max}(\mathbf{H})$ and $\lambda_{\min}(-j\mathbf{S}) \leq \Im(\lambda_i(\mathbf{A})) \leq \lambda_{\max}(-j\mathbf{S})$ for all i.

- it can be hard to compute all the eigenvalues of a matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$, especially in the large-scale case
- Implications: we can estimate the geometrical locations or to find approximations of eigenvalues for any $\mathbf{A} \in \mathbb{C}^{n \times n}$ based on the extreme (i.e., largest and samllest) eigenvalues of \mathbf{H} , $-\mathbf{j}\mathbf{S} \in \mathbb{H}^n$

Notation and Conventions:

• $\lambda_1(\mathbf{A}), \dots, \lambda_n(\mathbf{A})$ denote the eigenvalues of a given $\mathbf{A} \in \mathbb{H}^n$ with ordering

$$\lambda_{\max}(\mathbf{A}) = \lambda_1(\mathbf{A}) \ge \lambda_2(\mathbf{A}) \ge \ldots \ge \lambda_n(\mathbf{A}) = \lambda_{\min}(\mathbf{A}),$$

where $\lambda_{\min}(\mathbf{A})$ and $\lambda_{\max}(\mathbf{A})$ denote the smallest and largest eigenvalues, resp.

• if not specified, $\lambda_1, \ldots, \lambda_n$ will be used to denote the eigenvalues of $\mathbf{A} \in \mathbb{H}^n$; they also follow the ordering

$$\lambda_{\max} = \lambda_1 \ge \lambda_2 \ge \ldots \ge \lambda_n = \lambda_{\min}.$$

Also, $\mathbf{V}\mathbf{\Lambda}\mathbf{V}^H$ will be used to denote the eigendecomposition of $\mathbf{A}\in\mathbb{H}^n$

Variational Characterizations of Eigenvalues

- let $\mathbf{A} \in \mathbb{H}^n$.
- for any $\mathbf{x} \in \mathbb{C}^n$ with $\mathbf{x} \neq \mathbf{0}$, the ratio

$$R(\mathbf{x}) = \frac{\mathbf{x}^H \mathbf{A} \mathbf{x}}{\mathbf{x}^H \mathbf{x}}$$

is called the Rayleigh quotient.

• our interest: quadratic optimization such as

$$\max_{\mathbf{x} \in \mathbb{C}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}} = \max_{\mathbf{x} \in \mathbb{C}^{n}, \|\mathbf{x}\|_{2} = 1} \mathbf{x}^{H} \mathbf{A} \mathbf{x}$$

$$\min_{\mathbf{x} \in \mathbb{C}^{n}, \mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^{H} \mathbf{A} \mathbf{x}}{\mathbf{x}^{H} \mathbf{x}} = \min_{\mathbf{x} \in \mathbb{C}^{n}, \|\mathbf{x}\|_{2} = 1} \mathbf{x}^{H} \mathbf{A} \mathbf{x}$$

• Rayleigh quotient can be used for computing the eigenvalues of A

Variational Characterizations of Eigenvalues: Rayleigh-Ritz

Theorem 5.4 (Rayleigh-Ritz). Let $\mathbf{A} \in \mathbb{H}^n$. It holds that

$$\lambda_{\min} \|\mathbf{x}\|_{2}^{2} \leq \mathbf{x}^{H} \mathbf{A} \mathbf{x} \leq \lambda_{\max} \|\mathbf{x}\|_{2}^{2}$$

$$\lambda_{\min} = \min_{\mathbf{x} \in \mathbb{C}^{n}, \|\mathbf{x}\|_{2} = 1} \mathbf{x}^{H} \mathbf{A} \mathbf{x}, \quad \lambda_{\max} = \max_{\mathbf{x} \in \mathbb{C}^{n}, \|\mathbf{x}\|_{2} = 1} \mathbf{x}^{H} \mathbf{A} \mathbf{x}$$

- ullet provides information about λ_1 and λ_n for ${f A}$
- proof:
 - by a change of variable $\mathbf{y} = \mathbf{V}^H \mathbf{x}$, we have

$$\mathbf{x}^{H}\mathbf{A}\mathbf{x} = \mathbf{y}^{H}\mathbf{\Lambda}\mathbf{y} = \sum_{i=1}^{n} \lambda_{i}|y_{i}|^{2} \le \lambda_{1}\sum_{i=1}^{n} |y_{i}|^{2} = \lambda_{1}\|\mathbf{V}^{H}\mathbf{x}\|_{2}^{2} = \lambda_{1}\|\mathbf{x}\|_{2}^{2}$$

- we thus have $\max_{\|\mathbf{x}\|_2=1} \mathbf{x}^H \mathbf{A} \mathbf{x} \leq \lambda_1$
- since $\mathbf{v}_1^H \mathbf{A} \mathbf{v}_1 = \lambda_1$, the above equality is attained
- the results $\mathbf{x}^H \mathbf{A} \mathbf{x} \ge \lambda_n \|\mathbf{x}\|_2^2$ and $\min_{\|\mathbf{x}\|_2=1} \mathbf{x}^H \mathbf{A} \mathbf{x} = \lambda_n$ are proven by the same way

Variational Characterizations of Eigenvalues: Courant-Fischer

Question: how about λ_k for any $k \in \{1, ..., n\}$? Do we have a similar variational characterization as that in the Rayleigh-Ritz theorem?

Theorem 5.5 (Courant-Fischer Minimax Theorem). Let $\mathbf{A} \in \mathbb{H}^n$, and let \mathcal{S}_k denote any subspace of \mathbb{C}^n and of dimension k. For any $k \in \{1, \ldots, n\}$, it holds that

$$\lambda_k = \min_{\mathcal{S}_{n-k+1} \subseteq \mathbb{C}^n} \max_{\mathbf{x} \in \mathcal{S}_{n-k+1}, \|\mathbf{x}\|_2 = 1} \mathbf{x}^H \mathbf{A} \mathbf{x}$$
$$= \max_{\mathcal{S}_k \subseteq \mathbb{C}^n} \min_{\mathbf{x} \in \mathcal{S}_k, \|\mathbf{x}\|_2 = 1} \mathbf{x}^H \mathbf{A} \mathbf{x}$$

(requires a proof)

ullet Rayleigh-Ritz Theorem 5.4 is a special case of the Courant-Fischer minimax theorem when k=1 and k=n

Some consequences and variants of the Courant-Fischer theorem: for any $\mathbf{A}, \mathbf{B} \in \mathbb{H}^n$, $\mathbf{z} \in \mathbb{C}^n$,

- (Weyl) $\lambda_k(\mathbf{A}) + \lambda_n(\mathbf{B}) \le \lambda_k(\mathbf{A} + \mathbf{B}) \le \lambda_k(\mathbf{A}) + \lambda_1(\mathbf{B})$ for $k = 1, \dots, n$
- (interlacing) $\lambda_{k+1}(\mathbf{A}) \leq \lambda_k(\mathbf{A} \pm \mathbf{z}\mathbf{z}^H)$ for $k = 1, \dots, n-1$, and $\lambda_k(\mathbf{A} \pm \mathbf{z}\mathbf{z}^H) \leq \lambda_{k-1}(\mathbf{A})$ for $k = 2, \dots, n$
- if $\operatorname{rank}(\mathbf{B}) \leq r$, then $\lambda_{k+r}(\mathbf{A}) \leq \lambda_k(\mathbf{A} + \mathbf{B})$ for $k = 1, \dots, n-r$ and $\lambda_k(\mathbf{A} + \mathbf{B}) \leq \lambda_{k-r}(\mathbf{A})$ for $k = r+1, \dots, n$
- (Weyl) $\lambda_{j+k-1}(\mathbf{A} + \mathbf{B}) \le \lambda_j(\mathbf{A}) + \lambda_k(\mathbf{B})$ for $j, k \in \{1, \dots, n\}$ with $j + k \le n + 1$
- for any $\mathcal{I}=\{i_1,\ldots,i_r\}\subseteq\{1,\ldots,n\}$, $\lambda_{k+n-r}(\mathbf{A})\leq\lambda_k(\mathbf{A}_{\mathcal{I}})\leq\lambda_k(\mathbf{A})$ for $k=1,\ldots,r$
- for any semi-unitary $\mathbf{U} \in \mathbb{C}^{n \times r}$, $\lambda_{k+n-r}(\mathbf{A}) \leq \lambda_k(\mathbf{U}^H \mathbf{A} \mathbf{U}) \leq \lambda_k(\mathbf{A})$ for $k=1,\ldots,r$
- many more...

- we have considerd maximization or minimization of a Rayleigh quotient
- sometimes, we are interested in the problem of a sum of Rayleigh quotients:

$$\max_{\substack{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \mathbf{u}_i \neq \mathbf{0} \ \forall i, \ \mathbf{u}_i^H \mathbf{u}_j = 0 \ \forall i \neq j}} \sum_{i=1}^r \frac{\mathbf{u}_i^H \mathbf{A} \mathbf{u}_i}{\mathbf{u}_i^H \mathbf{u}_i}$$

where we want the vectors $\mathbf{u}_1, \dots \mathbf{u}_r$ $(r \leq n)$ to be orthogonal to each other

- it finds applications in matrix factorization and PCA (cf. Lecture 7)
- the Rayleigh quotients can be rewriten as

$$\max_{\mathbf{u}_{i} \neq \mathbf{0} \ \forall i, \ \mathbf{u}_{i}^{H} \mathbf{u}_{j} = 0 \ \forall i \neq j} \sum_{i=1}^{r} \frac{\mathbf{u}_{i}^{H} \mathbf{A} \mathbf{u}_{i}}{\mathbf{u}_{i}^{H} \mathbf{u}_{i}} = \max_{\substack{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \|\mathbf{u}_{i}\|_{2} = 1 \ \forall i, \ \mathbf{u}_{i}^{H} \mathbf{u}_{j} = 0 \ \forall i \neq j}} \sum_{i=1}^{r} \mathbf{u}_{i}^{H} \mathbf{A} \mathbf{u}_{i}$$
$$= \max_{\substack{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \|\mathbf{u}_{i}\|_{2} = 1 \ \forall i, \ \mathbf{u}_{i}^{H} \mathbf{u}_{j} = 0 \ \forall i \neq j}} \operatorname{tr}(\mathbf{U}^{H} \mathbf{A} \mathbf{U}),$$
$$\mathbf{U} \in \mathbb{C}^{n \times r}$$
$$\mathbf{U}^{H} \mathbf{U} = \mathbf{I}$$

where ${f U}$ is semi-unitary

Then, we get an extension of the variational characterization to a sum of eigenvalues:

Theorem 5.6. Let $\mathbf{A} \in \mathbb{H}^n$. it holds that

$$\sum_{i=1}^{r} \lambda_i = \max_{\substack{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \|\mathbf{u}_i\|_2 = 1 \ \forall i, \ \mathbf{u}_i^H \mathbf{u}_i = 0 \ \forall i \neq j}} \sum_{i=1}^{r} \mathbf{u}_i^H \mathbf{A} \mathbf{u}_i = \max_{\substack{\mathbf{U} \in \mathbb{C}^{n \times r} \\ \mathbf{U}^H \mathbf{U} = \mathbf{I}}} \operatorname{tr}(\mathbf{U}^H \mathbf{A} \mathbf{U})$$

- can be proved by the eigenvalue inequality $\lambda_k(\mathbf{U}^H\mathbf{A}\mathbf{U}) \leq \lambda_k(\mathbf{A})$
- can also be proved by convex optimization

(requires a proof)

Some more results (the proofs require more than just the Courant-Fischer theorem):

• (Cachy interlacing) Let

$$\mathbf{A} = egin{bmatrix} \mathbf{B} & \mathbf{y} \ \mathbf{y}^H & a \end{bmatrix} \in \mathbb{H}^n.$$
 Then, $\lambda_1(\mathbf{A}) \geq \lambda_1(\mathbf{B}) \geq \lambda_2(\mathbf{A}) \geq \cdots \geq \lambda_{n-1}(\mathbf{B}) \geq \lambda_n(\mathbf{A}).$

ullet (von Neumann) Let $\mathbf{A},\mathbf{B}\in\mathbb{H}^n.$ It holds that

$$\sum_{i=1}^{n} \lambda_i(\mathbf{AB}) = \operatorname{tr}(\mathbf{AB}) \le \sum_{i=1}^{n} \lambda_i(\mathbf{A})\lambda_i(\mathbf{B}).$$

• (Lidskii) Let $\mathbf{A}, \mathbf{B} \in \mathbb{H}^n$. For any $1 \leq i_1 \leq i_2 \leq \cdots \leq i_k$,

$$\sum_{j=1}^k \lambda_{i_j}(\mathbf{A} + \mathbf{B}) \le \sum_{j=1}^k \lambda_{i_j}(\mathbf{A}) + \sum_{j=1}^k \lambda_j(\mathbf{B}).$$

Similarity Transformation

A matrix $\mathbf{B} \in \mathbb{C}^{n \times n}$ is said to be similar to another matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ if there exists a nonsingular $\mathbf{S} \in \mathbb{C}^{n \times n}$ such that

$$\mathbf{B} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S},$$

and $S^{-1}AS$ called a similarity transformation of A via S.

ullet Similar matrices are similar in the sense that their characteristic polynomials are the same. Specifically, if ${f A}$ is similar to ${f B}$ then we have

$$\det(\mathbf{A} - \lambda \mathbf{I}) = \det(\mathbf{S}^{-1}(\mathbf{A} - \lambda \mathbf{I})\mathbf{S}) = \det(\mathbf{B} - \lambda \mathbf{I}).$$

- It is easy to verify that similar matrices have the following properties:
 - If \mathbf{B} is similar to \mathbf{A} , \mathbf{A} is also similar to \mathbf{B} .
 - If A, B are similar, they have the same set of eigenvalues (with the same algebraic multiplicity and geometric multiplicity)
 - If A, B are similar, then det(A) = det(B). (proof is simple)
- ullet if ${f S}$ is unitary, we say ${f B}$ is *unitarily similar* to ${f A}$ (recall Schur dec. and eigendec. for normal ${f A}$)

Similarity Transformation

• we are more interested in whether a matrix can be similar to a diagonal matrix—obviously because diagonal matrices are easy to deal with

A matrix $\mathbf{A} \in \mathbb{C}^{n \times n}$ is said to be diagonalizable if it is similar to a diagonal matrix; i.e., there exists a nonsingular $\mathbf{S} \in \mathbb{C}^{n \times n}$ and a diagonal $\mathbf{D} \in \mathbb{C}^{n \times n}$ such that

$$\mathbf{D} = \mathbf{S}^{-1} \mathbf{A} \mathbf{S},$$

or equivalently,

$$\mathbf{A} = \mathbf{SDS}^{-1}.$$

- defination of "diagonalizable" based on similarity transformation
- ullet the above equation can be equivalently rewritten as $\mathbf{AS} = \mathbf{SD}$ or

$$\mathbf{A}\mathbf{s}_i = d_i\mathbf{s}_i, \quad i = 1, \dots, n,$$

where d_i denotes the (i, i)th entry of \mathbf{D} . Hence, every (\mathbf{s}_i, d_i) must be an eigen-pair of \mathbf{A} .

- power iteration/method: a method of numerically computing an eigenvector of a given matrix
- simple but provides the idea for a bunch of eigenvalue algorithms
- not the best in convergence speed
 - a comprehensive coverage of various computational methods for the eigenvalue problem can be found in the textbook [Golub-Van Loan'13]
- suitable for large-scale sparse problems, e.g., PageRank

- assumptions:
 - A admits an eigendecomposition $\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^{-1}$
 - λ_i 's are ordered such that $|\lambda_1| \geq |\lambda_2| \geq \ldots \geq |\lambda_n|$
 - $-|\lambda_1|>|\lambda_2|$
 - we have an initial guess x that satisfies $[\mathbf{V}^{-1}\mathbf{x}]_1 \neq 0$ (random guess should do)
- consider $\mathbf{A}^k \mathbf{x}$. Let $\alpha = \mathbf{V}^{-1} \mathbf{x}$, and observe

$$\mathbf{A}^{k}\mathbf{x} = \mathbf{V}\mathbf{\Lambda}^{k}\mathbf{V}^{-1}\mathbf{x} = \sum_{i=1}^{n} \alpha_{i}\lambda_{i}^{k}\mathbf{v}_{i} = \alpha_{1}\lambda_{1}^{k}\left(\mathbf{v}_{1} + \sum_{i=2}^{n} \frac{\alpha_{i}}{\alpha_{1}}\left(\frac{\lambda_{i}}{\lambda_{1}}\right)^{k}\mathbf{v}_{i}\right)$$

where \mathbf{r}_k is a residual and has

$$\|\mathbf{r}_k\|_2 \le \sum_{i=2}^n \left| \frac{\alpha_i}{\alpha_1} \right| \left| \frac{\lambda_i}{\lambda_1} \right|^k \|\mathbf{v}_i\|_2 \le \left| \frac{\lambda_2}{\lambda_1} \right|^k \sum_{i=2}^n \left| \frac{\alpha_i}{\alpha_1} \right|$$

• convergence: let $c_k = \frac{|\alpha_1||\lambda_1|^k}{\alpha_1\lambda_1^k}$ (note $|c_k|=1$). We have

$$\lim_{k \to \infty} c_k \frac{\mathbf{A}^k \mathbf{x}}{\|\mathbf{A}^k \mathbf{x}\|_2} = \mathbf{v}_1$$

```
Algorithm: Power Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} and a starting vector \mathbf{v}^{(0)} \in \mathbb{C}^n k = 0 repeat  \tilde{\mathbf{v}}^{(k+1)} = \mathbf{A}\mathbf{v}^{(k)} \\ \mathbf{v}^{(k+1)} = \tilde{\mathbf{v}}^{(k+1)} / \|\tilde{\mathbf{v}}^{(k+1)}\|_2 \quad \text{% normalization} \\ \lambda^{(k+1)} = R(\mathbf{v}^{(k+1)}) = (\mathbf{v}^{(k+1)})^H \mathbf{A}\mathbf{v}^{(k+1)} \\ k := k+1 \\ \text{until a stopping rule is satisfied} \\ \mathbf{output:} \quad \mathbf{v}^{(k)}, \, \lambda^{(k)}
```

- ullet it can be verified that $\mathbf{v}^{(k)} = rac{\mathbf{A}^k \mathbf{v}^{(0)}}{\|\mathbf{A}^k \mathbf{v}^{(0)}\|_2}$
- it finds the dominant eigen-pair, i.e., dominant eigenvalue (largest eigenvalue in modulus λ_1) and dominant eigenvector \mathbf{v}_1 only, unless \mathbf{v}_1 is orthogonal to $\mathbf{v}^{(0)}$
- complexity per iteration: $\mathcal{O}(n^2)$, or $\mathcal{O}(\operatorname{nnz}(\mathbf{A}))$ for sparse \mathbf{A}

ullet convergence rate depends on $\left|\frac{\lambda_2}{\lambda_1}\right|$

$$- \|\mathbf{v}^{(k)} - \mathbf{v}_1\|_2 = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right) \text{ and } |\lambda^{(k)} - \lambda_1| = \mathcal{O}\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right)$$

- slower if $|\lambda_2|$ is closer to $|\lambda_1|$, i.e., $\left|\frac{\lambda_2}{\lambda_1}\right|$ is closer to 1
- reduction per iteration is a constant, i.e., linear convergence
- now what if $|\lambda_1| = |\lambda_2| = \ldots = |\lambda_K| \geq \ldots \geq |\lambda_n|$ for some K?
 - by extending the convergence analysis, it can be shown $\mathbf{v}^{(k)}$ will converge to a vector in the subspace of $\mathrm{span}\{\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_K\}$
 - An important special case is when $\mathbf{A} \in \mathbb{R}^{2 \times 2}$. If its complex eigenvalues come in conjugate pairs, then $\mathbf{v}^{(k)}$ will always be in the space spanned by the eigenvectors corresponding to the two eigenvalues.

Power Iteration with Deflation

- the power method finds the largest eigenvalue (in modulus) and the correponding eigenvector only
- how can we compute all the eigenvalues and eigenvectors?
- there are many ways and let's first consider a simple method called deflation
- consider a Hermitian ${\bf A}$ with $|\lambda_1|>|\lambda_2|>\ldots>|\lambda_n|$, and note the outer-product representation

$$\mathbf{A} = \mathbf{V} \mathbf{\Lambda} \mathbf{V}^H = \sum_{i=1}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^H.$$

• Hotelling's deflation: use the power iteration to obtain v_1, λ_1 , do the subtraction

$$\mathbf{A} := \mathbf{A} - \lambda_1 \mathbf{v}_1 \mathbf{v}_1^H = \sum_{i=2}^n \lambda_i \mathbf{v}_i \mathbf{v}_i^H,$$

and repeat until all the eigenvectors and eigenvalues are found

- if we want the first k eigen-pairs only, deflation can also do that
- there are more deflation techniques which are not just for Hermitian matrices (learn by yourself)

Power Iteration With Shift

- ${\bf A} \mu {\bf I}$ is with eigenvalue $(\lambda_i \mu)$'s and the same eigenvector ${\bf v}_i$'s as ${\bf A}$
- if λ_1 is known (approximately), convergence can be made faster by applying power iteration for $\mathbf{A} \mu \mathbf{I}$ s.t.
 - $(\lambda_1 \mu)$ is the largest eigenvalue in modulus for $\mathbf{A} \mu \mathbf{I}$
 - $-\max_{i=2,...,n}\left|\frac{\lambda_i-\mu}{\lambda_1-\mu}\right|$ is as smaller as possible than $\left|\frac{\lambda_2}{\lambda_1}\right|$
- ullet obviously, in practice hard to decide μ ; the extent of acceleration is limited
- shift technique is commonly used together with inverse iteration and QR iteration

Inverse Iteration

- $(\mathbf{A} \mu \mathbf{I})^{-1}$ is with eigenvalue $(\lambda_i \mu)^{-1}$'s and the same eigenvector \mathbf{v}_i 's as \mathbf{A}
- inverse (power) iteration with shift: apply power iteration on $(\mathbf{A} \mu \mathbf{I})^{-1}$
- if $\mu \approx \lambda_J$ for some J, $|(\lambda_J \mu)^{-1}|$ may be far larger than $|(\lambda_i \mu)^{-1}|$ for $i \neq J$, so power iteration can converge rapidly

```
Algorithm: Inverse Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} and a starting vector \mathbf{v}^{(0)} \in \mathbb{C}^n k = 0 repeat  \tilde{\mathbf{v}}^{(k+1)} = (\mathbf{A} - \mu \mathbf{I})^{-1} \mathbf{v}^{(k)} \qquad \text{% solve } (\mathbf{A} - \mu \mathbf{I}) \tilde{\mathbf{v}}^{(k+1)} = \mathbf{v}^{(k)}  \mathbf{v}^{(k+1)} = \tilde{\mathbf{v}}^{(k+1)} / \|\tilde{\mathbf{v}}^{(k+1)}\|_2 \qquad \text{% normalization}  \lambda^{(k+1)} = R(\mathbf{v}^{(k+1)}) = (\mathbf{v}^{(k+1)})^H \mathbf{A} \mathbf{v}^{(k+1)}  k := k+1 until a stopping rule is satisfied output: \mathbf{v}^{(k)}, \lambda^{(k)}
```

- ullet converges to eigenvector ${f v}_J$ if parameter μ is close to λ_J
- complexity per iteration: $\mathcal{O}(n^2)$ (matrix $(\mathbf{A} \mu \mathbf{I})$ is processed in advance)

Inverse Iteration

convergence rate with

-
$$\|\mathbf{v}^{(k)} - \mathbf{v}_J\|_2 = \mathcal{O}\left(\left(\max_{i=1,...,n} \left| \frac{\lambda_J - \mu}{\lambda_i - \mu} \right| \right)^k\right)$$

- $|\lambda^{(k)} - \lambda_J| = \mathcal{O}\left(\left(\max_{i=1,...,n} \left| \frac{\lambda_J - \mu}{\lambda_i - \mu} \right| \right)^k\right)$
where λ_J is the closest eigenvalue to μ

- reduction per iteration is a constant, i.e., linear convergence
- standard method for determining any eigenvector given an eigenvalue
- a linear system needs to be solved; similar to power iteration, can only compute one eigenpair
- inverse iteration without shift: taking $\mu=0$ the algorithm converges to the eigenvector corresponding to the smallest eigenvalue of ${\bf A}$ (in modulus)

Rayleigh Quotient Iteration

- ullet parameter μ is constant in inverse iteration, but convergence is better for μ close to the eigenvalue
- ullet improvement: setting μ as the last computed Rayleigh quotient at each iteration

```
 \begin{array}{lll} \textbf{Algorithm:} & \text{Rayleigh Quotient Iteration} \\ \textbf{input:} & \mathbf{A} \in \mathbb{C}^{n \times n} \text{ and a starting vector } \mathbf{v}^{(0)} \in \mathbb{C}^n \\ k = 0 \\ \mu^{(k)} = R(\mathbf{v}^{(k)}) \\ \text{repeat} \\ & \tilde{\mathbf{v}}^{(k+1)} = (\mathbf{A} - \mu^{(k)}\mathbf{I})^{-1}\mathbf{v}^{(k)} \\ & \mathbf{v}^{(k+1)} = \tilde{\mathbf{v}}^{(k+1)}/\|\tilde{\mathbf{v}}^{(k+1)}\|_2 & \text{% normalization} \\ & \mu^{(k+1)} = \lambda^{(k+1)} = R(\mathbf{v}^{(k+1)}) = (\mathbf{v}^{(k+1)})^H\mathbf{A}\mathbf{v}^{(k+1)} \\ & k := k+1 \\ \text{until a stopping rule is satisfied} \\ & \mathbf{output:} & \mathbf{v}^{(k)}, \, \lambda^{(k)} \\ \end{array}
```

- at least quadratic convergence, but uncertain to which eigenvalue it will converge
- \bullet complexity per iteration: $\mathcal{O}(n^3)$ (solving a different linear system each iteration)

- for the previous methods, only find one eigenpair each time
 - what if we want more eigenvalues rather than λ_1
 - what if λ_1 and λ_2 are close or equal and we cannot decide shift μ ; in this case, we might want to look for an invariant subspace associated with λ_1 and λ_2
- subspace iteration: starting with a set of linearly independent vectors or a subspace $\mathcal{V}^{(0)} = \operatorname{span}\{\mathbf{v}_1^{(0)}, \mathbf{v}_2^{(0)}, \cdots, \mathbf{v}_r^{(0)}\}, \ \mathcal{V}^{(k)} = \mathbf{A}^k \mathcal{V}^{(0)}$ will converge (under suitable assumptions) to a subspace spanned by eigenvectors associated with the r largest eigenvalues in magnititude, i.e., dominant invariant subspace
 - in contrast, the power iteration is sometimes called vector iteration
 - use thin QR to get the bases $\mathbf{V}^{(k)}$ as $\mathbf{V}^{(k)}\mathbf{R}^{(k)}=\mathbf{A}^kig[\mathbf{v}_1^{(0)}\ \mathbf{v}_2^{(0)}\ \cdots\ \mathbf{v}_r^{(0)}ig]$
- the above subspace iteration is an unnormalized simultaneous (power) iteration; since all of $\{\mathbf{A}^k\mathbf{v}_1^{(0)},\ \mathbf{A}^k\mathbf{v}_2^{(0)},\ \cdots,\mathbf{A}^k\mathbf{v}_r^{(0)}\}$ will converge to a multiple of \mathbf{v}_1 , columns of $\mathbf{V}^{(k)}$ will form an extremely ill-conditioned basis for $\mathcal{V}^{(k)}$
- in practice, we use the orthogonal (simultaneous power) iteration

• suppose there is a gap between the r $(1 \le r \le n)$ largest eigenvalues in magnititude and λ_{r+1} , i.e, $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_r| > |\lambda_{r+1}|$

- it can be verified that $\mathcal{R}(\mathbf{V}^{(k)}) = \mathcal{R}(\tilde{\mathbf{V}}^{(k)}) = \mathcal{R}(\mathbf{A}\mathbf{V}^{(k-1)})$ (recall Lecture 4)
- then $\mathcal{R}(\mathbf{V}^{(k)}) = \mathcal{R}(\mathbf{A}^k \mathbf{V}^{(0)})$ (verify by yourself)

- denote the Schur decomposition of \mathbf{A} by $\mathbf{A} = \mathbf{U}\mathbf{T}\mathbf{U}^H$, s.t. $|t_{11}| \ge |t_{22}| \ge \cdots \ge |t_{rr}| > |t_{r+1,r+1}| \ge \cdots \ge |t_{nn}|$
- $\mathbf{V}^{(k)}$ converges linearly to an orthonormal basis for the dominant invariant subspace associated with the r largest eigenvalues in magnitude $\mathcal{R}(\mathbf{U}(:,1:r))$

•
$$\left[\lambda_1^{(k)} \ \lambda_2^{(k)} \ \cdots \ \lambda_r^{(k)}\right] = \operatorname{diag}\left(\left(\mathbf{V}^{(k)}\right)^H \mathbf{A} \mathbf{V}^{(k)}\right) \to \left[\lambda_1 \ \lambda_2 \ \cdots \ \lambda_r\right]$$

•
$$\left|\lambda_i^{(k)} - \lambda_i\right| = \mathcal{O}\left(\left(\max_{i=1,\dots,r} \left|\frac{\lambda_{i+1}}{\lambda_i}\right|\right)^k\right)$$
, $i = 1, 2, \dots, r$

- ullet let's take a look at the span of the columns in ${f V}^{(k)}$
- given $\mathbf{V}^{(k+1)}\mathbf{R}^{(k+1)}=\mathbf{A}\mathbf{V}^{(k)}$, notice that the first p $(p=1,\ldots,r)$ columns $\mathbf{V}^{(k+1)}$ satisfies the recurrence

$$\mathbf{V}^{(k+1)}\mathbf{R}^{(k+1)}(:,1:p) = \mathbf{V}^{(k+1)}(:,1:p)\mathbf{R}^{(k+1)}(1:p,1:p) = \mathbf{A}\mathbf{V}^{(k)}(:,1:p)$$
 then $\mathcal{R}(\mathbf{V}^{(k)}(:,1:p)) = \mathcal{R}(\mathbf{A}^k\mathbf{V}^{(0)}(:,1:p))$

- ullet over iterations, the first p columns of ${f V}^{(k)}$ converge to a basis for the dominant p-dimensional invariant subspace
- setting the initial $\mathbf{V}^{(0)} \in \mathbb{C}^{n \times n}$, directly get a n-dimensional invariant subspaces
 - when r = n, orthogonal iteration resembles the QR iteration algorithm

QR Iteration

```
Algorithm: QR Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} \mathbf{A}^{(0)} = \mathbf{A} k = 0 repeat \mathbf{Q}^{(k+1)}\mathbf{R}^{(k+1)} = \mathbf{A}^{(k)} % perform QR for \mathbf{A}^{(k)} \mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)}\mathbf{Q}^{(k+1)} k := k+1 until a stopping rule is satisfied output: \mathbf{A}^{(k)}
```

- $\mathbf{A}^{(k)}$ is unitarily similar to $\mathbf{A}^{(k+1)}$ in that $\mathbf{A}^{(k+1)} = (\mathbf{Q}^{(k+1)})^H \mathbf{A}^{(k)} \mathbf{Q}^{(k+1)}$ and hence to $\mathbf{A}^{(0)}$ since $\mathbf{A}^{(0)} = (\mathbf{Q}^{(1)} \cdots \mathbf{Q}^{(k)}) \mathbf{A}^{(k)} (\mathbf{Q}^{(1)} \cdots \mathbf{Q}^{(k)})^H$
- ullet denote the Schur decomposition of ${f A}$ by ${f A}={f U}{f T}{f U}^H$
- ullet under some mild assumptions, ${f A}^{(k)}$ converges linearly to ${f T}$
 - if our problem is to compute all the eigenvalues of A, picking the diagonal elements of $A^{(k)}$ for a sufficiently large k would do

QR Iteration

- ullet QR iteration is equivalent to orthogonal iteration with ${f V}^{(0)}={f I}$
- the most popular method for computing all the eigenvalues of a general A
 - the practical QR algorithm used in modern software is more sophisticated
- how to find the eigenvectors?
 - for λ_i , solve the eigen-equation $(\mathbf{T} \lambda_i \mathbf{I})\mathbf{v} = \mathbf{0}$, which is an upper-triangular linear system
- as a counterpart to power iteration, to accelerate the convergence speed of orthogonal iteration there exist orthogonal simultaneous inverse iteration, orthogonal simultaneous iteration with shift, etc.
 - in the next we investigate QR iteration with shift

QR Iteration With Shift

Example: consider matrix
$$\mathbf{A} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{A}^{(0)}$$

$$\underbrace{\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}}_{\mathbf{Q}^{(0)}} \underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathbf{R}^{(0)}} = \mathbf{A}^{(0)}$$

$$\mathbf{A}^{(1)} = \mathbf{R}^{(0)} \mathbf{Q}^{(0)} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \mathbf{A}^{(0)}$$

no convergence of $\mathbf{A}^{(k)}$ observed

ullet shift can also help to make QR iteration converge, i.e., ${f A}^{(k)}$ converge to a upper triangular matrix

QR Iteration with Shift

• similar to QR iteration, $\mathbf{A}^{(k)}$ is unitarily similar to $\mathbf{A}^{(k+1)}$

$$- \mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)} \mathbf{Q}^{(k+1)} + \mu^{(k)} \mathbf{I} = (\mathbf{Q}^{(k+1)})^{H} (\mathbf{A}^{(k)} - \mu^{(k)} \mathbf{I}) \mathbf{Q}^{(k+1)} + \mu^{(k)} \mathbf{I} = (\mathbf{Q}^{(k+1)})^{H} \mathbf{A}^{(k)} \mathbf{Q}^{(k+1)}$$

ullet shift $\mu^{(k)}$ may differ from iteration to iteration

QR Iteration with Shift

Raleigh quotient shift

- $\mu^{(k)} = \mathbf{A}^{(k)}(n,n)$ which will converge to the smallest eigenvalue in modulus
- no guarantee on convergence
- if converged, at least quadratic convergence

Wilkinson shift

– denote the lower-rightmost 2×2 matrix of $\mathbf{A}^{(k)}$ by

$$\bar{\mathbf{A}}^{(k)} = \begin{bmatrix} \mathbf{A}^{(k)}(n-1,n-1) & \mathbf{A}^{(k)}(n-1,n) \\ \mathbf{A}^{(k)}(n,n-1) & \mathbf{A}^{(k)}(n,n) \end{bmatrix}$$

- chose the eigenvalue of $\bar{\mathbf{A}}^{(k)}$ closer to $\mathbf{A}^{(k)}(n,n)$
- always converge with at least linear convergence [Wilkinson'68]

QR Iteration

• for $A \in \mathbb{C}^{n \times n}$, each iteration requires $\mathcal{O}(n^3)$ to compute the QR factorization and the matrix multiplication; too computational expensive!

Question: can we directly transform A into an upper triangular matrix (i.e., introducing zeros below the diagonal) based on unitary similarity transformations?

• a naive try via the Householder reflections: let \mathbf{Q}_1 be the Householder reflection matrix that reflects \mathbf{a}_1 to $-\text{sign}(\mathbf{a}_1(1))\|\mathbf{a}_1\|_2\mathbf{e}_1$

Property 5.6. Any $\mathbf{A} \in \mathbb{C}^{n \times n}$ is unitarily similar to an upper Hessenberg matrix \mathbf{H} (i.e., introducing zeros below the first subdiagonal), i.e., $\mathbf{Q}^H \mathbf{A} \mathbf{Q} = \mathbf{H}$.

Hessenberg Reduction

a upper Hessenberg matrix is given as

$$\mathbf{H} = egin{bmatrix} imes & imes$$

• Hessenberg reduction via Householder reflections: let $\tilde{\mathbf{a}}_1 = \mathbf{A}(2:n,1)$ and \mathbf{Q}_1 be the Householder reflection matrix that reflects $\tilde{\mathbf{a}}_1$ to $-\text{sign}(\tilde{\mathbf{a}}_1(1))\|\tilde{\mathbf{a}}_1\|_2\mathbf{e}_1$

- repeat the above procedure: $(\mathbf{Q}_1 \cdots \mathbf{Q}_{n-2})^H \mathbf{A} \underbrace{\mathbf{Q}_1 \cdots \mathbf{Q}_{n-2}}_{\mathbf{Q}} = \mathbf{H}$
- compexity: $\frac{10}{3}n^3 + \mathcal{O}(n^2)$

Hessenberg Reduction

ullet for any $\mathbf{A} \in \mathbb{C}^{n \times n}$, the following algorithm reduces \mathbf{A} to be upper Hessenberg

```
Algorithm: Householder Reduction to Upper Hessenberg Form input: \mathbf{A} \in \mathbb{C}^{n \times n} for k = 1: n-2 \mathbf{x} = \mathbf{A}(k+1:n,k) \mathbf{v}_k = \mathrm{sign}(\mathbf{x}(1)) \|\mathbf{x}\|_2 \mathbf{e}_1 + \mathbf{x} \mathbf{v}_k = \mathbf{v}_k / \|\mathbf{v}_k\|_2 \mathbf{A}(k+1:n,k:n) = \mathbf{A}(k+1:n,k:n) - 2\mathbf{v}_k (\mathbf{v}_k^H \mathbf{A}(k+1:n,k:n)) \mathbf{A}(1:n,k+1:n) = \mathbf{A}(1:n,k+1:n) - 2(\mathbf{A}(1:n,k+1:n)\mathbf{v}_k) \mathbf{v}_k^H end output: \mathbf{A}
```

Property 5.7. Any $A \in \mathbb{H}^{n \times n}$ is unitarily similar to a tridiagonal matrix.

ullet for $\mathbf{A} \in \mathbb{H}^n$, the above algorithm reduces \mathbf{A} to be tridiagonal

Hessenberg QR Iteration

```
Algorithm: Hessenberg QR Iteration input: \mathbf{A} \in \mathbb{C}^{n \times n} \mathbf{H} = \mathbf{Q}^H \mathbf{A} \mathbf{Q}, \ \mathbf{A}^{(0)} = \mathbf{H} % Hessenberg reduction for \mathbf{A} k = 0 repeat \mathbf{Q}^{(k+1)} \mathbf{R}^{(k+1)} = \mathbf{A}^{(k)} % perform QR for \mathbf{A}^{(k)} \mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)} \mathbf{Q}^{(k+1)} k := k+1 until a stopping rule is satisfied output: \mathbf{A}^{(k)}
```

- Fact: $A^{(k)}$ preserves the upper Hessenberg property over iterations
 - $\mathbf{A}^{(k-1)}$ is upper Hessenberg and $\mathbf{R}^{(k)}$ is upper triangular, then $\mathbf{Q}^{(k)}$ is upper Hessenberg; since $\mathbf{R}^{(k)}$ is upper triangular, $\mathbf{A}^{(k)}$ is upper Hessenberge

Hessenberg QR Iteration

- ullet QR factorization step for ${f A}^{(k)}$ and the matrix multiplication step requires ${\cal O}(n^2)$
 - using Givens rotations to compute $\mathbf{A}^{(k+1)} = \left(\mathbf{Q}^{(k+1)}\right)^H \mathbf{A}^{(k)} \mathbf{Q}^{(k+1)}$

• for $A \in \mathbb{H}^n$, QR factorization of a tridiagonal matrix requires only $\mathcal{O}(n)$ flops

 $\mathbf{R}^{(k+1)}\mathbf{G}_{1}$

Ziping Zhao

 $\mathbf{R}^{(k+1)}\mathbf{G}_1\mathbf{G}_2$ $\mathbf{R}^{(k+1)}\mathbf{G}_1\mathbf{G}_2\mathbf{G}_3 = \mathbf{A}^{(k+1)}$

Hessenberg QR Iteration with Shift

```
Algorithm: Hessenberg QR Iteration With Shift input: \mathbf{A} \in \mathbb{C}^{n \times n}
\mathbf{H} = \mathbf{Q}^H \mathbf{A} \mathbf{Q}, \ \mathbf{A}^{(0)} = \mathbf{H} % Hessenberg reduction for \mathbf{A} k = 0 repeat  \begin{array}{c} \text{choose a shift } \mu^{(k)} \\ \mathbf{Q}^{(k+1)} \mathbf{R}^{(k+1)} = \mathbf{A}^{(k)} - \mu^{(k)} \mathbf{I} \\ \mathbf{A}^{(k+1)} = \mathbf{R}^{(k+1)} \mathbf{Q}^{(k+1)} + \mu^{(k)} \mathbf{I} \\ k := k+1 \end{array}  until a stopping rule is satisfied output: \mathbf{A}^{(k)}
```

PageRank: A Case Study

- PageRank is an algorithm used by Google to rank the pages of a search result.
- the idea is to use counts of links of various pages to determine pages' importance.

Source: Wiki.

• further reading: [Bryan-Tanya2006]

PageRank Model

Model:

$$\sum_{j \in \mathcal{L}_i} \frac{v_j}{c_j} = v_i, \quad i = 1, \dots, n,$$

where c_j is the number of outgoing links from page j; \mathcal{L}_i is the set of pages with a link to page i; v_i is the importance score of page i.

• example:

$$\begin{bmatrix}
0 & \frac{1}{2} & 1 & \frac{1}{3} \\
0 & 0 & 0 & \frac{1}{3} \\
0 & \frac{1}{2} & 0 & \frac{1}{3} \\
0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{bmatrix} = \begin{bmatrix}
v_1 \\
v_2 \\
v_3 \\
v_4
\end{bmatrix}.$$

PageRank Problem

- let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be a matrix such that $a_{ij} = 1/c_j$ if $j \in \mathcal{L}_i$ and $a_{ij} = 0$ if $j \notin \mathcal{L}_i$
- Problem: find a non-negative v such that Av = v
 - A is extremely large and sparse, and we want to use the power method

• Questions:

- does a solution to $\mathbf{A}\mathbf{v} = \mathbf{v}$ exist? Or, is $\lambda = 1$ an eigenvalue of \mathbf{A} ?
- does $\mathbf{A}\mathbf{v} = \mathbf{v}$ have a non-negative solution? Or, does a non-negative eigenvector associated with $\lambda = 1$ exist?
- is the solution to $\mathbf{A}\mathbf{v}=\mathbf{v}$ unique? Or, would there exist more than one eigenvector associated with $\lambda=1$?
 - * a unique solution is desired for this problem
- is $\lambda = 1$ the only eigenvalue that is the largest in modulus?
 - * this is required for the power method

Some Notation and Conventions

• notation:

- $-\mathbf{x} \geq \mathbf{y}$ means that $x_i \geq y_i$ for all i
- $-\mathbf{x} > \mathbf{y}$ means that $x_i > y_i$ for all i
- $-\mathbf{x} \not\geq \mathbf{y}$ means that $\mathbf{x} \geq \mathbf{y}$ does not hold
- the same notations apply to matrices

• conventions:

- ${f x}$ is said to be non-negative if ${f x} \ge {f 0}$, and non-positive if $-{f x} \ge {f 0}$
- ${f x}$ is said to be positive if ${f x}>{f 0}$, and negative if $-{f x}>{f 0}$
- the same conventions apply to matrices
- a square ${f A}$ is said to be column-stochastic if ${f A} \geq {f 0}$ and ${f A}^T {f 1} = {f 1}$
 - * a column-stochastic ${\bf A}$ has every column ${\bf a}_i$ satisfying ${\bf a}_i^T{\bf 1}=\sum_{j=1}^n a_{ji}=1$

PageRank Matrix Properties

- in PageRank, A is column-stochastic if all pages have outgoing links
 - see the literature to see how to deal with cases where some pages do not have outgoing links (dangling nodes)

Property 5.8. Let A be column-stochastic. Then,

- 1. $\lambda = 1$ is an eigenvalue of **A**
- 2. $|\lambda| \leq 1$ for any eigenvalue λ of **A**
- Implications:
 - a solution to $A\mathbf{v} = \mathbf{v}$ does exist, though it doesn't say if $\mathbf{v} \geq \mathbf{0}$ or not
 - $\lambda=1$ is an eigenvalue that has the largest modulus, but we don't know if it is the *only* eigenvalue that has the largest modulus
- we resort to non-negative matrix theory to answer the rest of the questions

Non-Negative Matrix Theory

Theorem 5.7 (Perron-Frobenius). Let A be square positive. There exists an eigenvalue ρ of A such that

- 1. ρ is real and $\rho > 0$
- 2. $|\lambda| < \rho$ for any eigenvalue λ of **A** with $\lambda \neq \rho$
- 3. there exists a positive eigenvector associated with ρ
- 4. the algebraic multiplicity of ρ is 1 (so the geometric multiplicity of ρ is also 1)

A weaker result for general non-negative matrices:

Theorem 5.8. Let A be square non-negative. There exists an eigenvalue ρ of A such that

- 1. ρ is real and $\rho \geq 0$
- 2. $|\lambda| \leq \rho$ for any eigenvalue λ of **A**
- 3. there exists a non-negative eigenvector associated with ρ

PageRank Matrix Properties

- further implication by Theorem 5.8:
 - a non-negative solution to $\mathbf{A}\mathbf{v}=\mathbf{v}$ exists, though it doesn't say if there exists another solution
 - even worse, it is not known if there exists another solution ${f v}$ such that ${f v} \not \geq {f 0}$

PageRank Matrix Properties

PageRank actually considers a modified version of A

$$\tilde{\mathbf{A}} = (1 - \beta)\mathbf{A} + \beta \begin{bmatrix} 1/n & \dots & 1/n \\ \vdots & & \vdots \\ 1/n & \dots & 1/n \end{bmatrix}$$

where $0 < \beta < 1$ (typical value is $\beta = 0.15$)

- ullet $ilde{\mathbf{A}}$ is positive
- further implications by Theorem 5.7:
 - $-\lambda = 1$ is the *only* eigenvalue that has the largest modulus
 - there exists *only* one eigenvector associated with $\lambda=1$; that eigenvector is either positive or negative
 - so the power method should work

References

[Golub-Van Loan'13] G. H. Golub and C. F. Van Loan, *Matrix Computations*, 4th edition, JHU Press, 2013.

[Bryan-Tanya2006] K. Bryan and L. Tanya, "The 25,000,000,000 eigenvector: The linear algebra behind Google," *SIAM Review*, vol. 48, no. 3, pp. 569–581, 2006.

[Wilkinson'68] J. H. Wilkinson, "Global convergence of tridiagonal QR algorithm with origin shifts," *Linear Algebra and its Applications*, vol. 1, no. 3, pp. 409–420, 1968.