DETAILED POWER CONSUMPTION ANALYSIS

1. BATTERY SPECIFICATIONS

11.1V 2200mAh LiPo Battery

• Nominal Voltage: 11.1V (3S LiPo)

• Capacity: 2200mAh = 2.2Ah

• Energy Storage: $11.1V \times 2.2Ah = 24.42 Wh$

• Usable Capacity: ~85% (to prevent deep discharge) = 20.76 Wh

• Voltage Range: 12.6V (full) to 9.6V (empty)

2. COMPONENT-BY-COMPONENT POWER ANALYSIS

A. Arduino UNO R4 WiFi (Renesas RA4M1)

Mode	Current Draw	Power @ 12V
Idle	25mA	0.30W
Processing	45mA	0.54W
WiFi Active	80mA	0.96W
Typical Running	50mA	0.60W

B. L298N Motor Driver + DC Motor

Condition	Current Draw	Power @ 12V
Driver Quiescent	35mA	0.42W
Motor Idle	50mA	0.60W
Motor Running (50% PWM)	400mA	4.80W
Motor Turning	600mA	7.20W
Motor Stalled	1200mA	14.40W
Average Navigation	450mA	5.40W

C. Servo Motor SG90 (via LM2596)

State	Current @ 5V	Power @ 5V	Power @ 12V*
Idle	10mA	0.05W	0.06W
Moving	250mA	1.25W	1.47W
Holding Position	100mA	0.50W	0.59W
Average Use	120mA	0.60W	0.71W

D. HC-SR04 Ultrasonic Sensors (×3)

State	Current Each	Total (×3)	Power @ 5V
Idle	2mA	6mA	0.03W
Measuring	15mA	45mA	0.225W
Average	10mA	30mA	0.15W

E. Pixy2 Camera (CMUcam5)

Mode	Current @ 5V	Power @ 5V
Idle	60mA	0.30W
Tracking	140mA	0.70W
LED On	180mA	0.90W
Typical	140mA	0.70W

F. LM2596 Step-Down Regulator

Parameter	Value
Efficiency	85%
Quiescent Current	5mA
Self Power Loss	0.06W
Total Overhead	15% of 5V load

G. System Overhead

Component	Current	Power
Pull-up Resistor	0.5mA	0.0025W
Wiring Losses	~2%	~0.15W
Total	~13mA	~0.15W

3. POWER DISTRIBUTION SUMMARY

12V Rail (Direct from Battery)

Component	Current	Power
Arduino R4 WiFi	50mA	0.60W
L298N + Motor	450mA	5.40W
LM2596 Input*	83mA	1.00W
Total 12V Rail	583mA	7.00W

5V Rail (From Arduino)

Component	Current	Power
3× HC-SR04	30mA	0.15W
Pixy2 Camera	140mA	0.70W
Pull-up	0.5mA	0.0025W
Total 5V Arduino	170.5mA	0.85W

5V Rail (From LM2596)

Component	Current	Power
Servo SG90	120mA	0.60W

4. OPERATING SCENARIOS

Scenario 1: Straight Line Navigation

Arduino: $50mA \times 12V = 0.60W$

Motor (40% PWM): $350mA \times 12V = 4.20W$

Servo (center): $50mA \times 5V = 0.25W (0.29W @ 12V)$

Sensors: $30mA \times 5V = 0.15W$

Pixy2: $140mA \times 5V = 0.70W$

Overhead: 0.15W

TOTAL: $\sim 480 \text{mA}$ @ 12V = 6.19W

Scenario 2: Turning Maneuvers

Arduino: $50mA \times 12V = 0.60W$

Motor (60% PWM): $550mA \times 12V = 6.60W$

Servo (turning): $250mA \times 5V = 1.25W (1.47W @ 12V)$

Sensors: $45\text{mA} \times 5\text{V} = 0.225\text{W}$

Pixy2: $140mA \times 5V = 0.70W$

Overhead: 0.20W

TOTAL: ~750mA @ 12V = 9.58W

Scenario 3: Obstacle Detection & Processing

Arduino (peak): $70mA \times 12V = 0.84W$

Motor (stop): $50mA \times 12V = 0.60W$

Servo (active): $150 \text{mA} \times 5 \text{V} = 0.75 \text{W} (0.88 \text{W} \odot 12 \text{V})$

Sensors (all): $45\text{mA} \times 5\text{V} = 0.225\text{W}$

Pixy2 (LED on): $180mA \times 5V = 0.90W$

Overhead: 0.15W

TOTAL: $\sim 380 \text{mA}$ @ 12 V = 4.56 W

5. BATTERY LIFE CALCULATIONS

Average Power Consumption Profile

Assuming typical maze navigation:

• 60% straight navigation: 6.19W

• 30% turning: 9.58W

• 10% obstacle processing: 4.56W

Weighted Average: $(0.6 \times 6.19) + (0.3 \times 9.58) + (0.1 \times 4.56) = 7.05W$

Battery Runtime Calculations

Usable Energy: 20.76 Wh (85% of 24.42 Wh)

Average Power: 7.05W

Runtime = $20.76 \text{ Wh} \div 7.05 \text{W} = 2.94 \text{ hours}$

6. PEAK CURRENT ANALYSIS

Maximum Simultaneous Draw:

Arduino (WiFi TX): 100mA

Motor (stall): 1200mA

Servo (stall): 300mA (60mA @ 12V via LM2596)

Sensors (all active): 45mA @ 5V

Pixy2 (LED on): 180mA @ 5V

PEAK CURRENT: ~1400mA @ 12V (15.5W)

Battery C-Rating Check:

- Required: $1400 \text{mA} \div 2200 \text{mAh} = 0.64 \text{C}$
- Typical LiPo: 20C capable
- Battery can easily handle peak loads

CONCLUSION

11.1V 2200mAh Battery Performance:

- Adequate Capacity: 2.94 hours typical runtime
- **Sufficient Current**: Can deliver 1.4A peaks easily
- Good Voltage Stability: Maintains >10V for 90% of discharge
- Safety Margin: 20C rating >> 0.64C required

The 11.1V 2200mAh battery is **well-suited** for this application, providing nearly 3 hours of runtime with comfortable current delivery margins. For competition use, this allows multiple runs with battery to spare.