Mesoscale-Microscale coupling:
A new time for the atmospheric modeling

80 m above ground

80 m above ground

80 m above ground: 1 year analysis

Wind resource assessment approach: mesoscale models

A new age: CFD

Average

Adapted from Maries, A., Haque, M. A., Yilmaz, S. L., Nik, M. B., Marai, G. E.: New Developments in the Visualization and Processing of Tensor Fields, Springer, pp. 137-156, D. Laidlaw, A. Villanova. 2012

Different tools for different applications

A new age: Mesoscale-Microscale coupling

Coupling mesoscale-LES: Challenges

- Lateral boundary conditions
- Surface layer and Land Surface Model
- ► Terra-Incognita

Coupling mesoscale-LES: Challenges

- Lateral boundary conditions
- Surface layer and Land Surface Model
- ► Terra-Incognita

Lateral boundary conditions

Lateral boundary conditions

Lateral boundary conditions

A new age: Mesoscale-Microscale coupling

Vortex approach

Vortex approach

80 m above ground

80 m above ground

80 m above ground: 1 year analysis

Validation exercise

1-year validation

Wind speed validated at 96 sites at different mest-mast heights Turbulence validated at 56 sites at different mest-mast heights

Wind speed: Metrics

		Bias (%)	RMSE (ms-1)	R ²
All (100%)	10-min		2.6	0.605
	Hourly	2.4	2.5	0.637
	Daily		1.7	0.807
Off-shore (3.1%)	10-min		1.9	0.837
	Hourly	0.4	1.8	0.855
	Daily		1.1	0.937
Flat (41.7%)	10-min		2.5	0.593
	Hourly	-3.4	2.4	0.625
	Daily		1.6	0.811
Complex (25.0%)	10-min		7.1	0.590
	Hourly	0.5	7.2	0.623
	Daily		7.1	0.790
Complex Forest (30.2%)	10-min		6.6	0.610
	Hourly	0.4	6.8	0.646
	Daily		6.9	0.805

Wind speed: Weibull

		A (%)	k (%)	Freq. (sm ⁻¹)
All (100%)	10-min	2.8	2.3	0.015
Off-shore (3.1%)	10-min	0.3	8.3	0.007
Flat (41.7%)	10-min	-3.2	1.0	0.018
Complex (25.0%)	10-min	8.0	7.7	0.014
Complex Forest (30.2%)	10-min	6.8	-2.9	0.014

$$f(x) = \frac{k}{A} \left(\frac{x}{A}\right)^{k-1} \exp\left(-\left(\frac{x}{A}\right)^k\right)$$

Wind direction: Metrics and rose

				Real	Vortex-LES	Site016
		Bias (deg)	MAE (deg)	16% - 12% - 8% - 4% -	N	Wind Speed (m/s) (0,3] (3,6]
All (100%)	10-min	3	34		W	(6,9] (9,12] (12,15]
Off-shore (3.1%)	10-min	-2	18	s	s	(15,18] (18,19.8]
Flat (41.7%)	10-min	0	34	Real	Vortex-LES	Site078
Complex (25.0%)	10-min	2	34	25% - 20% -	N	Wind Speed (m/s) (0,3]
Complex Forest (30.2%)	10-min	10	31	15% - 10% - 5% - 0% - W	W	(3,6] (6,9] (9,12] (12,15]
						(15,18] (18,21] (21,24]
				s	S	(24,25.6]

Wind speed: Vertical profiles

Wind standard deviation: Metrics

	Bias (ms ⁻¹)	RMSE (ms ⁻¹)	R ² (-)
All (100%)	-0.05	0.5	0.278
Rainfed croplands (16.4%)	-0.1	0.4	0.223
Cropland (50-70%) Vegetation (20-50%) (10.9%)	0.0	0.5	0.171
Vegetation (50-70%) Cropland (20-50%) (10.9%)	0.0	0.4	0.251
Deciduous forest (40%, >5m) (9.1%)	-0.1	0.5	0.261
Evergreen forest (40%, >5m) (10.9%)	-0.1	0.6	0.309
Forest (50-70%) Grassland (20-50%) (7.3%)	-0.1	0.5	0.416
Grassland (50-70%) Forest (20-50%) (1.8%)	-0.1	0.6	0.260

Turbulence intensity

Turbulence Intensity

TI(%) validated at 58 sites

Which metric to use?

- MAE between TI-model against TI-obs weighted by bin-ocurrence
- 2. MAE at 15 m/s bin

	Average	Std Dev
MAE	1.8	0.9
MAE-15	1.9	1.1

Mesoscale-Microscale coupling:
A new time for the atmospheric modeling

