Homework 03

DarkSharpness

2023.10.6

目录

T3

充分性: 如果 $\phi: x \longmapsto x^{-1}$ 是 G 的同构映射,则 $\forall x, y \in G$,有 $xy = (y^{-1}x^{-1})^{-1} = \phi(\phi(y)\phi(x)) = \phi(\phi(y))\phi(\phi(x)) = yx$,即 G 是交换群。

必要性: 如果 G 是交换群,那么 $\phi(xy)=(xy)^{-1}=y^{-1}x^{-1}=x^{-1}y^{-1}=\phi(x)\phi(y)$,即 ϕ 是 G 的同构映射。

T4

 $\forall x,y\in G\text{ , } 有 phi(xy)=axya^{-1}=ax(a^{-1}a)ya^{-1}=(axa^{-1})(aya^{-1})=\phi(x)\phi(y)\text{ ,}$ 即 ϕ 是 G 的同构映射。

T6

取 G 和 H 都是 $(\mathbb{N},+)$ 。 真子群为 $(2\mathbb{N},+)$, 取映射 $\phi=2x$ 即可。

T1

- (1) 0 的阶为 1; 其他数的阶为 7。
- (2) 0 的阶为 1; 1, 3, 5, 7 的阶为 8; 2, 6 的阶为 4; 4 的阶为 2.
- (3) 0 的阶为 1; 1, 3, 7, 9 的阶为 10; 2, 4, 6, 8 的阶为 5; 5 的阶为 2.
- (4) 0 的阶为 1; 1, 3, 5, 9, 11, 13 的阶为 14; 2, 4, 6, 10, 12 的阶为 7; 7 的阶为 2.

- (5) 0 的阶为 1 ; 1, 2, 4, 7, 8, 11, 13, 14 的阶为 15 ; 3, 6, 9, 12 的阶为 5 ; 5, 10 的阶为 3 .
- (6) 0 的阶为 1; 1,5,7,11,13,17 的阶为 18; 2,4,8,10,14,16 的阶为 9; 3,15 的阶为 6; 6,12 的阶为 3; 9 的阶为 2.

T5

显然, $U(n)=\{e^{\frac{2ik\pi}{n}}|k\in[n]\}$ 为 n 阶循环群。 循环元为所有 k 与 n 互素的 k , $e^{\frac{2ik\pi}{n}}$ 即为循环元。

T12

若 $(gag^{-1})^k=e$,则展开后得到 $ga^kg^{-1}=e$,即 $ga^k=g$,即等价于 $a^k=e$ 。因此显然 a 与 gag^{-1} 有相同的阶。