Aplicación de Autocorrelación Espacial Análisis de Gastos Agrícolas en la Región Puno

Yhack Bryan Aycaya Paco

07 de octubre de 2025

Estudiante: Yhack Bryan Aycaya Paco Docente: Dr. Fred Torres Cruz Curso: Estadística Espacial

Institución: Universidad Nacional del Altiplano (UNA PUNO)

Fecha de Entrega: 15 de octubre de 2025, 05:00 PM

Resumen

Aplicación de cuatro técnicas de estadística espacial: (1) Matrices de Pesos Espaciales, (2) Índice I de Moran, (3) Índice C de Geary, y (4) Análisis de Hotspots, utilizando datos de gastos agrícolas de 90 distritos de la región Puno (ENA 2024).

1. Datos

Cuadro 1: Estadísticas Descriptivas del Gasto Total

Estadístico	Valor (S/)
Mínimo	300
1er Cuartil	5,478
Mediana	$29,\!297$
Media	50,143
3er Cuartil	74,759
Máximo	373,484
N	90 distritos

2. [1] Matrices de Pesos Espaciales

2.1. Concepto

Las matrices de pesos espaciales (W) definen las relaciones de vecindad entre unidades espaciales.

$$W = \begin{pmatrix} w_{11} & w_{12} & \cdots & w_{1n} \\ w_{21} & w_{22} & \cdots & w_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n1} & w_{n2} & \cdots & w_{nn} \end{pmatrix}$$

2.2. Código

Matriz KNN (k=5):

```
coords <- st_coordinates(datos_sf)
vecinos_knn <- knn2nb(knearneigh(coords, k = 5))
pesos_knn <- nb2listw(vecinos_knn, style = "W", zero.policy = TRUE)</pre>
```

Matriz por Distancia:

```
umbral_dist <- max(unlist(nbdists(vecinos_knn, coords))) * 1.2
vecinos_dist <- dnearneigh(coords, 0, umbral_dist)
pesos_dist <- nb2listw(vecinos_dist, style = "W", zero.policy = TRUE)</pre>
```

2.3. Resultados

Cuadro 2: Matrices de Pesos Implementadas

Característica	KNN	Distancia
Promedio de vecinos	5.0	43.44
Umbral	k=5	1.0 km

3. [2] Índice I de Moran

3.1. Concepto

Mide la autocorrelación espacial global.

$$I = \frac{n}{\sum_{i} \sum_{j} w_{ij}} \cdot \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x})(x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})^2}$$

3.2. Código

3.3. Resultados

Cuadro 3: Índice I de Moran

Estadístico	Valor
I de Moran	0.0927
Valor esperado	-0.0112
Z-score	1.8076
P-valor	0.0353

Figura 1: Diagrama de dispersión de Moran (I = 0.0927, p = 0.035)

4. [3] Índice C de Geary

4.1. Concepto

Mide autocorrelación espacial con mayor sensibilidad a diferencias locales.

$$C = \frac{(n-1)\sum_{i}\sum_{j}w_{ij}(x_{i}-x_{j})^{2}}{2\sum_{i}\sum_{j}w_{ij}\sum_{i}(x_{i}-\bar{x})^{2}}$$

4.2. Código

4.3. Resultados

Cuadro 4: Índice C de Geary

Estadístico	Valor
C de Geary	0.8588
Valor esperado	1.0000
Z-score	-1.6497
P-valor	0.0495

Cuadro 5: Comparación Moran vs Geary

Estadístico	Moran I	Geary C
Valor	0.0927	0.8588
P-valor	0.0353	0.0495

5. [4] Análisis de Hotspots

5.1. Concepto

Identifican áreas con concentraciones estadísticamente significativas de valores altos (hotspots) o bajos (coldspots).

5.2. Método 1: Local Moran (LISA)

Código:

Resultados:

Cuadro 6: Clasificación LISA

Categoría	N° Distritos	%
High-High (Hotspot)	3	3.33
Low-High (Outlier)	2	2.22
No Significativo	85	94.44

Figura 2: Mapa de hotspots según LISA

5.3. Método 2: Getis-Ord Gi*

Código:

Resultados:

Cuadro 7: Clasificación Getis-Ord Gi*

Categoría	N° Distritos	%
Hotspot (99%)	4	4.44
Hotspot (95%)	1	1.11
Hotspot (90%)	3	3.33
Coldspot (90%)	1	1.11
No Significativo	81	90.00

Figura 3: Mapa de análisis Getis-Ord Gi*

Cuadro 8: Comparación LISA v
s Gi^*

Característica	LISA	Gi*
Hotspots	3	8
Coldspots	0	1
Outliers	2	0

6. Distribución Espacial

Figura 4: Distribución espacial de gastos agrícolas en la región Puno

7. Conclusiones

- 1. **Matrices de Pesos:** Se implementaron matriz KNN (k=5) y matriz por distancia (umbral 1.0 km).
- 2. Índice I de Moran: I = 0.0927, p = 0.0353 (autocorrelación espacial positiva significativa).
- 3. Índice C de Geary: C = 0.8588, p = 0.0495 (autocorrelación espacial positiva).
- 4. Hotspots: LISA identificó 3 hotspots (3.33%). Gi* identificó 8 hotspots (8.89%).