Programmation 1

TD n°1

Amrita Suresh*

15/09/2020

Exercise 1: Language discovery

For each of the following program or fragment of program, please indicate: (a) What the fragment does (b) Is it written using the imperative or functional paradigm (c) In which language the fragment is written.

```
1. PROGRAM HELLO
  WRITE(6,*) 'HELLO WORLD'
  STOP
  END
2.
      PROGRAM FACT
       J=1
      DO 1 I=1,10
       J=J*I
      CONTINUE
      WRITE(6,2) J
  2
      FORMAT(I8)
      STOP
      END
3. 001 IDENTIFICATION DIVISION.
  002
       PROGRAM-ID. 'HELLO'.
  003
       ENVIRONMENT DIVISION.
  004
       CONFIGURATION SECTION.
       SOURCE-COMPUTER.
  005
                          IBM-360.
  006
       OBJECT-COMPUTER.
                           IBM-360.
  0065 SPECIAL-NAMES.
  0066
            CONSOLE IS CNSL.
  007
       DATA DIVISION.
       WORKING-STORAGE SECTION.
  800
  009
       77 HELLO-CONST PIC X(12) VALUE 'HELLO, WORLD'.
       PROCEDURE DIVISION.
  075
  090
       000-DISPLAY.
            DISPLAY HELLO-CONST UPON CNSL.
  100
  110
            STOP RUN.
4. (defun fact (n)
      (do* ((i 1 (+ i 1)) (j 1 (* j i)))
           ((>= i n) j)))
5. \square \leftarrow */\iota 10
6. def factorial(n):
       result = 1
```

^{*}Majority of the material has been gathered with help from the TAs of this course over the past few years.

```
for i in range(1, n+1):
           result *= i
       return result
7. int fact (int n)
   {
     int i, j;
     j = 1;
     for (i=1; i<=n; i++)
        j *= i;
     return j;
8. fact :: Int -> Int
   fact 1 = 1
   fact n = n * fact (n-1)
9. let rec fact n =
        if n==1
           then 1
        else n * fact (n-1);;
10. fact(1, 1).
   fact(N, M) :- N > 1, fact(N-1, M1), M=M1*N.
11. counter=$1
   factorial=1
   while [ $counter -gt 0 ]
      factorial=$(( $factorial * $counter ))
      counter=$(( $counter - 1 ))
   done
   echo $factorial
12. /factorial {
     dup 1 eq {}{
     dup 1 sub factorial mul
     } ifelse
   } def
13. function fac(n){
       return(n<2)?1:fac(n-1)*n;
   }
```

Exercise 2: Representation of numbers

- 1. How many values can a 1 bit integer take? What about 3 bits? What about n bits?
- 2. You're building a fence 100 feet long, with posts every 10 feet. How many posts do you need?

Unsigned numbers

The sequence $\vec{a} \triangleq a_{n-1} \cdots a_0$ of digits is interpreted as

$$[\vec{a}]_u \triangleq \sum_{k=0}^{n-1} a_k 2^k$$

Two's complement. AKA signed numbers

The sequence $\vec{a} \triangleq a_{n-1} \cdots a_0$ of digits is interpreted as

$$[\![\vec{a}]\!]_{tc} \triangleq -a_{n-1}2^{n-1} + \sum_{k=0}^{n-2} a_k 2^k$$

- 3. What values can a natural number represented using n bits take? What about a signed number?
- 4. Compute the following additions on 4 bit unsigned numbers:
 - (a) 0010 + 0110
 - (b) 0101 + 1010
 - (c) 1011 + 1101
 - (d) 1010 + 0110

One's complement

The sequence $\vec{a} \triangleq a_{n-1} \cdots a_0$ of digits is interpreted as

$$[\![\vec{a}]\!]_{tc} \triangleq \begin{cases} \sum_{k=0}^{n-2} a_k 2^k & \text{if } a_{n-1} = 0\\ \sum_{k=0}^{n-2} (a_k - 1) 2^k & \text{otherwise} \end{cases}$$

- 5. How does one write 1 using One's complement? What about -1? How can you negate a number?
- 6. What is a huge drawback of this representation?
- 7. Using previous examples, build an algorithm to add two numbers in One's complement. (Hint: the question is, how to handle the carry).
- 8. Why does your algorithm terminate?
- 9. What is printed by the Java program below?

```
byte i = 101, j = 87, k = -101, l = -99;
byte m, n, o;
m = i+j; n = j+k; o = k+l;
System.out.println(m);
System.out.println(n);
System.out.println(o);
```

Exercise 3: Representation of text

1. Decode the following ASCII string (written using hexadecimal codes)

64 6f 6e 27 74 20 70 61 6e 69 63

2. What could be the shortcomings of UTF-32?

```
UTF-8 encoding

— U+0000 à U+007F : 0xxxxxxx

— U+0080 à U+07FF : 110xxxxx 10xxxxxx

— U+0800 à U+FFFF : 1110xxxx 10xxxxxx 10xxxxxx

— U-10000 à U-1FFFFF : 11110xxx 10xxxxxx 10xxxxxx
```

3. Decode the following UTF-8 chain

```
70 65 6E 20 70 69 6E 65 61 70 70 6C 65
```

- 4. Does UTF-8 have the same shortcomings as UTF-32? How and why?
- 5. When fetching the following webpage

```
https://projects.lsv.ens-cachan.fr/topology/wp-admin/post.php?post=251&action=edit
```

my web browser displays :

Now remember that $(x_i)_{i:n,l,\mathcal{L}}$ converges to x if and only if every open subset U that contains x is such that x_i is eventually in U. One obtains an equivalent definition by stating that every neighborhood A of x (i.e., in N_x) is such that x_i is eventually in A. In other words, if and only if N_x is included in the convergence filter of the net.

However, the server projects.lsv.ens-cachan.fr sent to my browser the following (extract) of code:

```
Now remember that (<em>x<sub>i</sub></em>) <em><sub>i</sub></em></sub></em></sub></em> converges to <em>x</em> if and only if every open subset <em>U</em> that contains <em>x</em> is such that <em>x<sub>i</sub></em> is eventually in <em>U</em>. One obtains an equivalent definition by stating that every neighborhood <em>A</em> of <em>x</em> (i.e., in <em>N<sub>x</sub></em>) is such that <em>x</em> in <em>X
```

How does it compare to Unicode?

6. Going back to the first example of HTML, the file started with :

```
<?
$EXTRA_HEAD="antispam.html";
$ARG_BODY="onload=\"onLoad()\"";
SETLANG("fr");
STYLEDPTINFO();
HEAD("Conf&eacute;rences de rentr&eacute;e 2015");
ADDTITLE("Conf&eacute;rences de rentr&eacute;e 2015");
MKPAGEDPTINFO();
</pre>
```

This is not HTML. What language is used? What does it compute?