Five Band Audio Equalizer

Disssanayake R.K.T.(230164K) Ratnayake R.M.S.H.(230548R) Shehan M.N.N.(230613M) Tennakoon U.G.R.B.(230629R)

Department of Electronic & Telecommunication Engineering University of Moratuwa, Sri Lanka

October 14, 2025

Presentation Structure

Introduction

2 Filter Design

3 Other Circuits

1 NE5532 Operational Amplifier

- Low Noise: $5 \text{ nV}/\sqrt{\text{Hz}}$ suitable for high-fidelity audio
- Bipolar Input: Ensures low offset and distortion in precision audio
- Dual Channel: Two op-amps per IC for compact design
- **High Slew Rate**: $9 V/\mu s$ supports wide dynamic range
- Wide Bandwidth: 10 MHz gain-bandwidth product for audio applications
- Wide Supply: $\pm 3 \, \text{V}$ to $\pm 20 \, \text{V}$ operation for design flexibility
- **High Drive Capability**: Can directly drive 600Ω loads

2 LM3915 Dot/Bar Display Driver

- Logarithmic 3 dB/step response for audio
- Direct LED drive without current-limiting resistors
- Simple setup with minimal external components
- Over-voltage protection (±35V) on input

Component Selection Justification (Cont.)

Figure: NE5532 Operational Amplifier

Figure: LM3915 Dot/Bar Display Driver

Introduction

4 / 20

System Architecture

Filter Design

MFB Band-Pass Filter

MFB Band-Pass Filter (Cont.)

- mid-frequency: $f_m = \frac{1}{2\pi C} \sqrt{\frac{R_1 + R_3}{R_1 R_2 R_3}}$
- gain at f_m : $-A_m = \frac{R_2}{2R_1}$
- filter quality: $Q = \pi f_m R_2 C$
- bandwidth: $B = \frac{1}{\pi R_2 C}$

The MFB band-pass allows to adjust Q, A_m , and f_m independently. Bandwidth and gain factor do not depend on R_3 . Therefore, R_3 can be used to modify the mid frequency without affecting bandwidth, B, or gain, A_m . Furthermore,

$$R_1 = \frac{R_2}{-2A_m}, R_2 = \frac{Q}{\pi f_m C}, R_3 = \frac{-A_m R_1}{2Q^2 + A_m}$$

Fourth-Order Band-Pass Filter (Staggered Tuning)

In order to make Fourth-Order Band-Pass filter, we cascaded two MFB Band-Pass filters.

The mid frequency of filter 1 is:

$$f_{m1} = \frac{f_m}{\alpha}$$

the mid frequency of filter 2 is:

$$f_{m2} = f_m \cdot \alpha$$

with Q being the quality factor of the overall filter.

The individual gain (A_{mi}) at the partial mid frequencies, f_{m1} and f_{m2} , is the same for both filters:

$$A_{mi} = \frac{Q_i}{Q} \sqrt{\frac{A_m}{B_1}}$$

Unity-Gain Sallen-Key Band-Pass Filter (For 20-300 Hz)

For given C_1 and C_2 , the resistor values for R_1 and R_2 are calculated through:

$$R_{1,2} = \frac{a_1 C_2 \mp \sqrt{a_1^2 C_2^2 - 4b_1 C_1 C_2}}{4\pi f_c C_1 C_2}$$

For given C, the resistor values for R_1^* and R_2^* are calculated through:

$$R_1^* = \frac{1}{\pi f_0 C a_1}, R_2^* = \frac{a_1}{4\pi f_0 C b_1}$$

Resistor & Capacitor Values

Resistor & Capacitor values (For Frequency Range: 20 Hz – 300 Hz)

$$R_1 = 1.2 \text{ k}\Omega, R_2 = 2.2 \text{ k}\Omega, C_1 = 220 \text{ nF}, C_2 = 470 \text{ nF}, R_1^* = 47 \text{ k}\Omega, R_2^* = 27 \text{ k}\Omega, C = 220 \text{ nF}$$

Resistor & Capacitor values for 1st MFB Filter

Frequency Range	R_1	R_2	R ₃	С
300 Hz – 1 kHz	2.7 kΩ	10 kΩ	10 kΩ	100 nF
1 kHz – 4 kHz	2.7 kΩ	8.2 kΩ	15 kΩ	33 nF
4 kHz – 10 kHz	2.2 kΩ	6.8 kΩ	$1.2\mathrm{k}\Omega$	15 nF
10 kHz – 20 kHz	$1.8\mathrm{k}\Omega$	$5.6\mathrm{k}\Omega$	470 Ω	10 nF

Resistor & Capacitor Values (Cont.)

Resistor & Capacitor values for 2nd MFB Filter

Frequency Range	R_1	R_2	R ₃	С
300 Hz – 1 kHz	8.2 kΩ	27 kΩ	27 kΩ	10 nF
1 kHz – 4 kHz	2.2 kΩ	8.2 kΩ	15 kΩ	10 nF
4 kHz – 10 kHz	2.2 kΩ	6.8 kΩ	1.2 kΩ	6.8 nF
10 kHz – 20 kHz	$1.5\mathrm{k}\Omega$	$3.9\mathrm{k}\Omega$	390 Ω	6.8 nF

Other Circuits •00000

Gain Controller

Adder & Volume Controller

Hence,

$$V_{out} = -k \sum_{i=1}^{5} V_i$$

LED Display

Figure: Circuit connection for LED display[2]

Pre-Amplifier Circuit¹

¹https://www.homemade-circuits.com

Power Amplifier Circuit²

²https://www.eleccircuit.com/lm386-audio-amplifier-circuit/

References

Texas Instruments, Top Amps for Everyone Design Guide, Rev. 8, Advanced Analog Products, SLOD006B, Aug. 2002. [Online]. Available: https: //web.mit.edu/6.101/www/reference/op_amps_everyone.pdf

Texas Instruments. LM3915 Dot/Bar Display Driver Datasheet, SNVS740C. Revised Mar. 2013. [Online]. Available: https://www.alldatasheet.com/datasheet-pdf/view/558236/ TI/LM3915.html

Thank You!