

- 了解OSPF协议应用场景
- 熟悉掌握OSPF协议原理
- 熟练掌握OSPF协议配置
- 了解OSPF协议故障排查思路及方法

什么是OSPF

- OSPF (Open Shortest Path First, 开放最短路径优先) 是IETF 开发的基于链路状态的自治系统内部路由协议
- OSPF<mark>仅传播对端设备不具备</mark>的路由信息,网络收敛迅速,并有效避免了网络资源浪费
- OSPF直接工作于IP层之上,IP协议号为89
- OSPF以组播地址发送协议包

OSPF协议工作过程概述

OSPF协议工作过程的四个阶段:

- 寻找邻居
- 建立邻接关系
- 链路状态信息传递
- 计算路由

寻找邻居

● 邻居状态达到2-way状态后,R1与R2之间开始建立邻接关系

迈普 建设中国人的安全网络

DR和BDR选举

- Hello包携带路由器优先级,优先级为0的路由器不具备选举资格
- 先选举BDR,再选举DR
- DR和BDR一旦选定,即使OSPF区域内新增优先级更高的路由器, DR和BDR也不重新选举,只有当DR和BDR都失效后,才参与选举

- 以上是R2获得R1 LSA的过程,R1也通过相同的过程获得R2的LSA
- 在R2与R1的LSA信息同步后,R1在R2邻居表内的状态变迁为Full状态

- OSPF协议包具备超时重传机制
- OSPF协议包具备序列号,对重复包不做处理
- LSA更新携带掩码,支持VLSM

(四)每台路由器分别以自己为根节点计算最小生成树

OSPF在大型网络中应用可能遇到的问题

当网络规模变大时,有些问题会从量变到质变:即理论讲是可行,但实际上可能已不能正常工作了

- 缺点1:LSDB非常庞大,占用大量存储空间
 - 相对与DV来说,不仅存储路由信息,还存储链路状态
 - 而DV只存储路由信息,当然DV的每个路由器也不知道全网拓扑结构
- 缺点2: 计算最小生成树耗时增加, CPU负担很重
 - 相对与DV, 计算复杂, 要算出一个树来, 而DV算法只是简单的路由表的加减
 - 有1台路由器链路状态发生变化,全网的所有路由都要重新计算(一有风吹草动,都要重新计算)
- 缺点3:网络拓扑结构经常发生变化,网络经常处于"动荡"之中
 - 就象往湖里投个石子,会波及整个网络
 - 而网络中链路变化是经常的, up或down, 所以, 整个网络不停的动荡

OSPF配置步骤

- 根据需求划分区域
- 启动ospf进程
- 将路由器接口和所属的区域通告出去

OSPF配置

	设备	接口	IP	设备	接口	IP
	R1	Gi0	10.0.0.1/30	R3	Gi0	10.0.0.17/30
		Gi1	10.0.0.5/30		Gi1	10.0.0.6/30
		Gi2	192.168.1.254/24		Gi2	10.0.0.10/30
	Gi0 10.0.0.2/30 Gi0 10.0.0.0	10.0.0.18/30				
	R2	Gi1	10.0.0.13/30	R4	Gi1	10.0.0.14/30
		Gi2	10.0.0.9/30		Gi2	192.168.2.254/24

R1接口配置	R1OSPF配置	描述
interface gigabitethernet0 ip address 10.0.0.1 255.255.255.252 exit	network 10.0.0.4 0.0.0.3 area 0 反掩码)	指定相应OSPF接口和所属区域(注意使用
interface gigabitethernet1 ip address 10.0.0.5 255.255.255.252 exit	network 192.168.1.0 0.0.0.255 area 0 exit	
interface gigabitethernet2 ip address 192.168.1.254 255.255.255.0 exit		

R2	R3
router ospf 1 network 10.0.0.0 0.0.0.3 area 0 network 10.0.0.8 0.0.0.3 area 0 network 10.0.0.12 0.0.0.3 area 1 exit	router ospf 1 network 10.0.0.4 0.0.0.3 area 0 network 10.0.0.8 0.0.0.3 area 0 network 10.0.0.16 0.0.0.3 area 1

R1OSPF配置	R4OSPF配置	描述
router ospf 1 network 10.0.0.0 0.0.0.3 area 0 network 10.0.0.4 0.0.0.3 area 0 network 192.168.1.0 0.0.0.255 area 0 exit	router ospf 1 network 10.0.0.12 0.0.0.3 area 1 network 10.0.0.16 0.0.0.3 area 1 network 192.168.2.0 0.0.0.255 area 1 exit	启用OSPF进程,进程号1 指定相应OSPF接口和所属区域(注意使用反掩码)

OSPF邻居表

设备	邻居表
R1	R1#show ip ospf neighbor OSPF process 1: Neighbor ID Pri State Dead Time Address Interface 10.0.0.13 1 Full/Backup 00:00:34 10.0.0.2 gigabitethernet0 10.0.0.17 1 Full/Backup 00:00:32 10.0.0.6 gigabitethernet1
R4	R4#sh ip ospf neighbor OSPF process 1: Neighbor ID Pri State Dead Time Address Interface 10.0.0.13 1 Full/Backup 00:00:31 10.0.0.13 gigabitethernet1 10.0.0.17 1 Full/DR 00:00:32 10.0.0.17 gigabitethernet0

OSPF邻居表

设备	邻居表
R2	R2#sh ip ospf neighbor OSPF process 1: Neighbor ID Pri State Dead Time Address Interface 192.168.1.254 1 Full/DR 00:00:35 10.0.0.1 gigabitethernet0 10.0.0.17 1 Full/DR 00:00:36 10.0.0.10 gigabitethernet2 192.168.2.254 1 Full/DR 00:00:37 10.0.0.14 gigabitethernet1
R3	Neighbor ID Pri State Dead Time Address Interface 192.168.1.254 1 Full/DR 00:00:36 10.0.0.5 gigabitethernet1 10.0.0.13 1 Full/Backup 00:00:32 10.0.0.9 gigabitethernet2 192.168.2.254 1 Full/Backup 00:00:31 10.0.0.18 gigabitethernet0

设中国人的安全网络

设备
R1

设备	邻居表
R2	O 10.0.0.4/30 [110/2] via 10.0.0.1, 00:18:11, gigabitethernet0 [110/2] via 10.0.0.10, 00:06:51, gigabitethernet2 O 10.0.0.16/30 [110/2] via 10.0.0.14, 00:11:04, gigabitethernet1 O 192.168.1.0/24 [110/2] via 10.0.0.1, 00:18:11, gigabitethernet0 O 192.168.2.0/24 [110/2] via 10.0.0.14, 00:11:04, gigabitethernet1
R3	O 10.0.0/30 [110/2] via 10.0.0.9, 00:11:56, gigabitethernet2 [110/2] via 10.0.0.5, 00:07:30, gigabitethernet1 O 10.0.0.12/30 [110/2] via 10.0.0.18, 00:07:43, gigabitethernet0 O 192.168.1.0/24 [110/2] via 10.0.0.5, 00:07:30, gigabitethernet1 O 192.168.2.0/24 [110/2] via 10.0.0.18, 00:13:46, gigabitethernet0

OSPF路由表

OSPF协议故障排查

OSPF故障排除基本思路

- 分析步骤一: **了解详细的故障现象**。动态路由协议运行在路由器与路由器之间,出现 故障后,首先要定位故障所在,比如路由表中缺少哪些路由、哪些邻居等等。
- 分析步骤二: **确认交互路由的路由器之间链路是否相通**。动态路由协议运行在ip层之上,各个路由器之间要交互路由协议报文,首先链路层要保证相通。
- 分析步骤三: **确认OSPF的配置没有问题。**检查相关邻居的配置,以及OSPF相关的功能配置是否正确。
- 分析步骤四: **确认所有邻居的状态是否为FULL或2way**。在此路由器上使用系统提供的show工具查看相关信息,比如OSPF的接口表,邻居表等等。
- 基本上OSPF问题都是OSPF协商双方参数配置问题。

