Geometría y Álgebra lineal 2. Solución segundo parcial.

25 de junio de 2022.

Ejercicio Verdadero/ Falso

Afirmación 1: La afirmación es falsa. Ya que existen muchas matrices P tales que $D = P^{-1}AP$. Para que se cumpla que $P^t = P^{-1}$ hay que tomar P de forma que las columnas formen una base ortonormal de \mathbb{R}^n .

Por ejemplo, consideramos $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$, entonces $D = P^{-1}AP$ con $D = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix}$ y

una P posible es $P = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$, que claramente no es ortogonal.

Afirmación 2: La afirmación es verdadera. Ya que $\langle T(v), -w \rangle = \langle v, T(w) \rangle$ si y solo si $\langle T(v), w \rangle = \langle v, -T(w) \rangle$. Luego, por definición y unicidad de T^* , se tiene que $T^* = -T$.

Afirmación 3: La afirmación es falsa. Basta tomar $B = \{(cos(\theta), sen(\theta)), (-sen(\theta), cos(\theta))\},$ con $\theta \notin \{0, \pi\}.$

Afirmación 4: La afirmación es falsa. Basta tomar $A = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$.

Afirmación 5: La afirmación es verdadera. Para definir P_S hay que tomar una base $\{s_1, ..., s_r\}$ ortonormal de S y luego $P_S(v) = \sum_{i=1}^r \langle v, s_i \rangle s_i$. Por lo tanto, si v es tal que $P_S(v) = 0$, esto implica que $\langle v, s_i \rangle = 0$ para todo i = 1, ..., r. Lo que implica que $v \in S^{\perp}$.

Ejercicios de múltiple opción.

Ejercicio 1.

El dato T(u) = -2u para todo $u \in S = \{(x, y, z) \in \mathbb{R}^3 : z = 0\}$, implica que -2 es valor propio con multiplicidad algebraica por lo menos dos, ya que dim(S) = 2. Como T es autoadjunta, entonces es diagonalizable. Como tr(T) = -1, se tiene que el otro valor propio es 3. Además se tiene que cumplir (por ser T autoadjunta) que $S_3 \perp S$.

Vamos es descomponer el vector (2,1,1) de la forma $(2,1,1)=u+u^{\perp}$ donde $u\in S$ y $u^{\perp}\in S^{\perp}=S_3$.

Pirmero, hallemos S^{\perp} . Recordemos que $v \in S^{\perp}$ si y solo si $\langle v, s \rangle = 0$ para todo $s \in S$ si y solo si $\langle v, (1, 0, 0) \rangle = \langle v, (0, 1, 0) \rangle = 0$.

Sea v=(x,y,z), entonces $\langle v,(1,0,0)\rangle=x-z.$ Y $\langle v,(0,1,0)\rangle=y.$ Por lo tanto v=(z,0,z) con $z\in\mathbb{R}.$

Luego $(2,1,1) = u + u^{\perp} = (x,y,0) + (z,0,z)$, de donde obtenemos que x + z = 2, y = 1 y z = 1. Resolviendo el sistema, tenemos que (2,1,1) = (1,1,0) + (1,0,1).

Como $(1,1,0) \in S$ entonces T(1,1,0) = -2(1,1,0). Como Como $(1,0,1) \in S^{\perp} = S_3$, entonces T(1,0,1) = 3(1,0,1).

Luego T(2,1,1) = T(1,1,0) + T(1,0,1) = -2(1,1,0) + 3(1,0,1) = (1,-2,3).

Ejercicio 2.

Para que T sea unitaria se tiene que cumplir que

$$\langle T(v), T(w) \rangle = \langle v, w \rangle \ \forall v, w \in \mathbb{C}^3.$$

Si consideramos $v = (\sqrt{2}, 0, 0)$ y w = (0, c, 0) obtenemos

$$0 = \langle (\sqrt{2}, 0, 0), (0, c, 0) \rangle = \langle (a, 0, i), (-1, a, i) \rangle = -a + 1.$$

Si consideramos $v = (\sqrt{2}, 0, 0)$ y $w = (0, 0, -\sqrt{6})$ obtenemos

$$0 = \langle (\sqrt{2}, 0, 0), (0, 0, -\sqrt{6}) \rangle = \langle (a, 0, i), (a, b, -1) \rangle = a^2 - i.$$

Como no existe $a \in \mathbb{R}$ tal que -a+1=0 y $a^2-i=0$, no existe un valor de $a \in \mathbb{R}$ para el cual T sea unitaria. La respuesta correcta es la opción D.

Ejercicio 3.

Recordemos que el vector $s \in S$ que minimiza ||u-s|| se obtiene tomando $s = P_S(u)$. Como $S = \{(x,y,z) \in \mathbb{R}^3 : 2x+y-z=0\}$, entonces $S^{\perp} = [(2,1,-1)]$. Por lo tanto $P_{S^{\perp}}(v) = \langle v, \frac{(2,1,-1)}{\sqrt{6}} \rangle \frac{(2,1,-1)}{\sqrt{6}}$. Luego

$$P_{S^{\perp}}(1,1,1) = \langle (1,1,1), \frac{(2,1,-1)}{\sqrt{6}} \rangle \frac{(2,1,-1)}{\sqrt{6}} = \frac{2}{3}(2,1,-1)$$

Como $u = P_S(u) + P_{S^{\perp}}(u)$. Por lo tanto

$$P_S(u) = u - P_{S^{\perp}}(u) = (1, 1, 1) - \frac{1}{3}(2, 1, -1) = \left(\frac{1}{3}, \frac{2}{3}, \frac{4}{3}\right).$$

Ejercicio 4.

Recordemos que T^* es la única transformación lineal que verifica:

$$\langle T(v), w \rangle = \langle v, T^*(w) \rangle \ \forall v, w \in \mathbb{R}^{2022}.$$

Consideremos $w = (1, 2, \dots, 2022)$, y $v = (x_1, \dots, x_{2022})$. Entonces se debe verificar que

$$\langle T(x_1,\ldots,x_{2022}),(1,2,\ldots,2022)\rangle = \langle (x_1,\ldots,x_{2022}),T^*(1,2,\ldots,2022)\rangle.$$

Como $T(x_1, \ldots, x_{2022}) = (0, x_1, \ldots, x_{2021})$, sustituyendo, se tiene que

$$\langle (0, x_1, \dots, x_{2021}), (1, 2, \dots, 2022) \rangle = \langle (x_1, \dots, x_{2022}), T^*(1, 2, \dots, 2022) \rangle.$$

Como $\langle (0, x_1, \dots, x_{2021}), (1, 2, \dots, 2022) \rangle = 2x_1 + \dots + 2022x_{2021}$ se tiene que

$$\langle (x_1, \dots, x_{2022}), T^*(1, 2, \dots, 2022) \rangle = 2x_1 + \dots + 2022x_{2021}.$$

Luego la opción B, o sea $T^*(1,2,\ldots,2022)=(2,3,\ldots,2022,0)$, es la que verifica la última igualdad.

Ejercicios de desarrollo.

Ejercicio 1. Ver las notas del curso: Transformaciones lineales en espacios con P.I.

Ejercicio 2.

Como $\lambda=1$ es valor propio, existe $v\neq 0$ tal que T(v)=v. Podemos suponer que ||v||=1, si v no tiene norma uno, consideramos $w=\frac{v}{||v||}$. Consideramos $v_1\in\mathbb{R}^2$, con $||v_1||=1$, tal que $\langle v,v_1\rangle=0$. Por lo tanto, $B=\{v,v_1\}$ es una base ortonormal de \mathbb{R}^2 . Luego

$$_B(T)_B = \begin{pmatrix} 1 & a \\ 0 & b \end{pmatrix}.$$

Como B es una base ortonormal y T es ortogonal, entonces las columnas de $_B(T)_B$ tiene que formar una base ortonormal de \mathbb{R}^2 . Esto implica que $a^2+b^2=1$ y $\langle (1,0),(a,b)\rangle=a=0$. Luego b=1 o b=-1. b=-1 no puede ser porque en ese caso $\chi_T(\lambda)=(\lambda-1)(\lambda+1)$. Por lo tanto b=1 y

$${}_B(T)_B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$