Дискретная математика. I Семестр Буглеев Антон 2022

1 Булевы Функции

1.1 Булевы Функции. Базис

Def. Булевой функцией называется функция вида

$$f: \{0,1\}^n \to \{0,1\}.$$

Def. Базис - некоторое множество булевых функций.

Def. Формула над базисом определяется по индукции: База: всякая функция $f \in F$ является формулой над F $Индуктивный переход: если <math>f(x_1,...,x_n)$ - формула над F, а $\Phi_1,...,\Phi_n$ - переменные, либо формулы над F, то тогда $f(\Phi_1,...\Phi_n)$ - тоже формула над F.

1.2 ПК, ДНФ, СДНФ, ПД, КНФ, СКНФ, Многочлен (полином) Жегалкина

Def. Простой конъюнкцией (ПК) называется конъюнкция одной или нескольких переменных или их отрицаний, причём каждая переменная встречается не более одного раза.

Def. Дизъюнктивная нормальная форма (ДНФ) - дизъюнкция простых конъюнкций

Def. Coвершенная дизъюнктивная нормальная форма (СДН Φ) - ДН Φ , в которой в каждой конъюнкции учавствуют все переменные.

Аналогично определяются Простая дизъюнкция (ПД), Конъюнктивная нормальная форма (КНФ), Совершенная конъюнктивная нормальная форма (СКНФ).

Def. Многочлен (полином) Жегалкина - сумма по модулю 2 конъюнкций переменных без повторений слагаемых, а также (необязательно) слагаемое 1.

$$f(x_1,...,x_n) = a \oplus a_1 \wedge x_1 \oplus ... \oplus a_{12} \wedge x_1 \wedge x_2 \oplus ... \oplus a_{1..n} \wedge x_1 \wedge ... \wedge x_n$$

Например, $f(x, y, z) = x \oplus x \land y \land z \oplus 1$

Theorem. Для каждой функции существует единственное представление многочленом Жегалкина.

Proof. . . .

1.3 Замыкание. Замкнутые классы. Полнота

Def. Замыканием [F] базиса F называется множество всех функций, представимых формулой над F

Def. Замкнутый класс - класс, равный своему замыканию: F = [F]

1.
$$T_0 = \{f : f(0, \dots, 0) = 0\}$$

2.
$$T_1 = \{f : f(1, \dots, 1) = 1\}$$

3.
$$S = \{f : f(x_1, \dots, x_n) = \neg f(\neg x_1, \dots, \neg x_n)\}$$

4.
$$M = \{f : \forall \text{ двоичных наборов } \alpha \leq \beta f(\alpha) \leq f(\beta) \}$$

5.
$$L = \{f : f(x_1, \dots, x_n) = x_1 \oplus \dots \oplus x_n \oplus c\}$$
, где $c \in \{0, 1\}$

Theorem. Классы T_0, T_1, S, M, L являются замкнутыми.

Proof.

Def. Множество булевых функций F называется **полной системой**, если все булевы функции выразимы как формулы над данным базисом.

Theorem. Множество булевых функций F является полным тогда и только тогда, когда F не содержится ни в одном из пяти классов T_0, T_1, S, M, L

Proof. 1. \Rightarrow

. .

2. \Leftarrow

. .

2 Комбинаторика