

Localizing Visual Sounds the Easy Way

Shentong Mo¹, Pedro Morgado^{1,2}

¹Carnegie Mellon University & ²University of Wisconsin-Madison

Code & pre-trained models are available: https://github.com/stoneMo/EZ-VSL

Contributions

- ♦ We present a simple yet effective multiple instance learning framework for unsupervised sound source visual localization, which we call EZ-VSL.
- ♦ We propose a novel object-guided localization scheme that favors object regions, which are more likely to contain sound

- **Training**: the audio-visual feature extractor computes global audio and localization visual features. Audio-visual alignment is learned by a *multiple instance contrastive learning* objective.
- Inference: At inference time, we use another visual encoder pre-trained on object recognition to compute object

localization maps, which are combined with audio-visual localization maps for the final prediction.

Comparison with state-of-the-arts

Ablation Study

√ 78.31 61.74 35.96	20.20
	38.20
$\sqrt{}$ 78.31 61.17 36.77 $\sqrt{}$ 75.10 58.18 35.13	$38.69 \\ 38.08$
\checkmark \checkmark 81.93 62.50 38.58 \checkmark \checkmark 83.94 63.60 39.34	39.59 39.78

Qualitative Visualizations

Cross-dataset Generalization

Test set	Training set	Method	$\mathrm{CIoU}(\%)$	$\mathrm{AUC}(\%)$
	VGG-Sound 10k	LVS [6]	61.80	53.60
		EZ-VSL	78.71	61.56
Elialan CarradNat	VGG-Sound 144k	LVS [6]	71.90	58.20
Flickr SoundNet		EZ-VSL	84.34	63.77
	VGG-Sound Full	LVS [6]	73.59	59.00
		EZ-VSL	83.94	63.60
Flickr 10k VGG-SS Flickr 144k	LVS [6]	18.71	30.29	
	Flickr 10k	EZ-VSL	35.54	38.18
	Flickr 144k	LVS [6]	26.95	34.30
		EZ-VSL	38.62	39.20

Open Set Source Localization

Test class	Method	CIoU(%)	AUC(%)
Heard 110	LVS [6]	28.90	36.20
	EZ-VSL	37.25	38.97
Unheard 110	LVS [6]	26.30	34.70
	EZ-VSL	39.57	39.60

A-V Matching Strategies

AV metabing stretogy	Flickr SoundNet		VGG-SS	
AV matching strategy	CIoU(%)	$\mathrm{AUC}(\%)$	$\mathrm{CIoU}(\%)$	$\mathrm{AUC}(\%)$
$ extstyle{ t sim}(\operatorname{MaxPool}_{xy}(V_{xy}),A)$	49.40	48.97	12.72	27.10
$\operatorname{AvgPool}_{xy}(\operatorname{\texttt{sim}}(V_{xy},A))$	33.33	37.56	6.03	19.44
$\operatorname{MaxPool}_{xy}(\operatorname{ exttt{sim}}(V_{xy},A))$	78.31	$\boldsymbol{61.74}$	35.96	38.20

Project Website

Feel free to scan for more details!

