GEOMETRIC QUANTISATION OF HYPERTORIC MANIFOLDS BY SYMPLECTIC CUTTING

GENERAL NOTES

ABSTRACT

Lorem ipsum.

1 Introduction

Lorem ipsum.

2 Background

- 2.1 Hypertoric Geometry
- 2.2 Localisation and Symplectic Cutting

3 Hypertoric Varieties

3.1 Compactification via Symplectic Cutting

We will use the S^1 -action to perform a symplectic cut of the toric hyperkähler manifold $\mathfrak M$ to compactify it, which has the effect of bounding the $\|w\|^2$ -norm component of the real moment map $\bar{\mu}_{\mathbb R}$ by above, and discarding the rest that lies above this bound. Consider the product $\mathfrak M \times \mathbb C$, and let S^1 act on $\mathfrak M \times \mathbb C$ via the diagonal product action, i.e. S^1 acts on M by rotating the cotangent fibre coordinates, and on $\mathbb C$ in the standard way:

$$e^{i\theta} \cdot ([z, w], \xi) = (e^{i\theta} \cdot [z, w], e^{i\theta} \xi) = ([z, e^{i\theta} w], e^{i\theta} \xi).$$

This action is Hamiltonian, and the corresponding moment map $\Phi: \mathfrak{M} \times \mathbb{C} \to \mathbb{R}_{\geq 0}$ for the S^1 -action is

$$\Phi \big([z,w], \xi \big) = \phi[z,w] + |\xi|^2 = \|w\|^2 + |\xi|^2.$$

Then we have

$$\begin{split} \Phi^{-1}(\epsilon) &= \left\{ ([z,w],\xi) \in M \times \mathbb{C} : \|w\|^2 + |\xi|^2 = \epsilon \right\} \\ &= \left\{ [z,w] \in M : \|w\|^2 = \epsilon \right\} \bigsqcup \left\{ ([z,w],\xi) \in M \times \mathbb{C} : |\xi| = \pm \sqrt{\epsilon - \|w\|^2} \right\} \\ &= \left\{ [z,w] \in M : \|w\|^2 = \epsilon \right\} \bigsqcup \left\{ ([z,w],\xi) \in M \times \mathbb{C} : \xi = e^{i\arg(\xi)} \sqrt{\epsilon - \|w\|^2} \right\} \\ &= \phi^{-1}(\epsilon) \bigsqcup \left(\mathfrak{M} \times S^1 \right) \\ &=: \Sigma_1 \sqcup \Sigma_2, \end{split}$$

where we denote the level-set $\phi^{-1}(\epsilon) \subseteq \mathfrak{M}$ by Σ_1 , and $\Sigma_2 \cong \mathfrak{M} \times S^1$ is the trivial S^1 -bundle over Σ_2 given by the globally defined section

$$\mathfrak{M} \to \mathfrak{M} \times S^1, \qquad [z,w] \longmapsto \left([z,w], e^{i\theta} \sqrt{\epsilon - \|w\|^2}\right), \qquad e^{i\theta} \in S^1.$$

Finally, taking the symplectic reduction of $\Phi^{-1}(\epsilon)$ with respect to the S^1 -action, we obtain the symplectic cut of \mathfrak{M} at level- ϵ ,

$$M_{\leq \epsilon} := \Phi^{-1}(\epsilon)/S^1 = \Sigma_1/S^1 \mid \Sigma_2/S^1,$$

where $\Sigma_1/S^1 \cong \phi^{-1}(\epsilon)/S^1$ is just the usual symplectic reduction, and where Σ_2/S^1 is diffeomorphic to \mathfrak{M} for $||w||^2 < \epsilon$, which we will denote by $\mathfrak{M}_{<\epsilon}$.

3.2 The Combinatorics of the Cut Space, $\mathfrak{M}_{<\epsilon}$

Since the residual circle S^1 -action acts as a subtorus S^1_A of the residual torus T^d on each component \mathcal{E}_A of the extended core, the hyperplane arrangement determined in $(\mathfrak{t}^d)^*$ by the real moment map $\bar{\mu}_{\mathbb{R}}$ is compactified by dropping in half-spaces with an inwards-pointing normal vector, given by v_A when taking the cut.

Recall from the previous section that $j_A: S_1 \hookrightarrow T^n$ denoted the inclusion homomorphism of S^1 into the original torus T^n . If we let $j_{A,*}: \mathfrak{s}^1 \to \mathfrak{t}^n$ represent the differential of this inclusion, then

$$j_{A,*}(1) = \sum_{i \in A} e_i \in \mathfrak{t}^n,$$

and the generator $\exp(v_A)$ of the one-parameter subgroup S_A^1 in T^d is

$$\exp(v_A) = \exp\left(\pi_* \circ j_{A,*}(1)\right),\,$$

or to be more concise,

$$S_A^1 = \left\{ \exp\left(r \cdot \sum_{i \in A} u_i\right) \mid r \in \mathbb{R} \right\}.$$

Then the moment map for the restricted S^1 -action to \mathcal{E}_A is

$$\phi_A[z,w] := \phi \Big|_{\mathcal{E}_A}[z,w] = (j_A^* \circ \mu_{\mathbb{R}})[z,w] = \left\langle \bar{\mu}_{\mathbb{R}}[z,w], \sum_{i \in A} u_i \right\rangle,$$

where $j_A^*: (\mathfrak{t}^n)^* \to \mathbb{R}^*$ is the transposed differential of the inclusion, $j_{A,*}$.

As the S_A^1 -action depends combinatorially on the component \mathcal{E}_A , the image of the real moment map in $(\mathfrak{t}^d)^*$ is compactified by inserting a half-space Z_A with inwards-pointing normal $v_A = \sum_{i \notin A} u_i$ determining the orientation, on each component Δ_A .

4 Hypertoric Subvarieties

4.1 Universal Modifications

Let $(M, \omega_{HK}, \Phi_{HK})$ be a tri-Hamiltonian K-manifold, where $\omega_{HK} = \omega_{\mathbb{R}} + \omega_{\mathbb{C}}$ and $\Phi_{HK} = \Phi_{\mathbb{R}} + \Phi_{\mathbb{C}}$. Define $j_{\mathbb{C}}: M \to M \times M \times T^*K_{\mathbb{C}}$ by $j(m) = (m, 1, \Phi_{\mathbb{C}}(m))$, and $j_{\mathbb{R}}: M \to M \times T^*K$ by $j_{\mathbb{R}}(m) = (m, 1, \Phi_{\mathbb{R}})$.

Lemma 4.1. We have an isomorphism of holomorphic symplectic tri-Hamiltonian K-manifolds,

$$j: M \xrightarrow{\sim} (M \times T^* K_{\mathbb{C}}) /\!\!/\!/_{0} K. \tag{1}$$

Here, the right-hand side is the quotient with respect to the diagonal K-action G, where G acts on the left on G is the one induced by the right action on G is the right action of G is the one induced by the right action of G is the right action of G

Proof. The map $m\mapsto (1,\Phi_{\mathbb C}(m))$ sends M to the Lagrangian $\mathfrak k_{\mathbb C}^*\subset T^*K_{\mathbb C}$, so $j_{\mathbb C}$ pulls back the complex-symplectic form $\omega_{\mathbb C}\times 0$ on $M\times \mathfrak k^*\subset M\times T^*K_{\mathbb C}$ to ω_{HK} on M. Thus $j_{\mathbb C}$ is a holomorphic-symplectic embedding.

The complex moment map for the diagonal left K-action on $M \times T^*K_{\mathbb{C}}$ is $\Psi^{\mathcal{L}}_{\mathbb{C}}(m,k,\lambda_{\mathbb{C}}) = \Phi_{\mathbb{C}} - k \cdot \lambda_{\mathbb{C}}$, so $j_{\mathbb{C}}$ maps M into

$$\Phi_{\mathbb{C}}^{-1}(0) = \{ (m, k_{\mathbb{C}}, \lambda_{\mathbb{C}}) \in M \times T^*K_{\mathbb{C}} \mid \Phi_{\mathbb{C}}(m) = k_{\mathbb{C}} \cdot \lambda_{\mathbb{C}} \}.$$

The induced map $\bar{\jmath}_{\mathbb{C}}$ is a [NB: biholomorphism?], and moreover is a holomorphic symplectomorphism as $j_{\mathbb{C}}$ is a holomorphic symplectic embedding.

Moreover,

$$j_{\mathbb{C}}(k_{\mathbb{C}} \cdot m) = (k_{\mathbb{C}} \cdot m, e_{K_{\mathbb{C}}}, \Phi_{\mathbb{C}}(k_{\mathbb{C}} \cdot m)) = (k_{\mathbb{C}} \cdot m, e_{K_{\mathbb{C}}}, k_{\mathbb{C}} \cdot \Phi_{\mathbb{C}}(m)) = \mathcal{L}_{k_{\mathbb{C}}} \mathcal{R}_{k_{\mathbb{C}}} j_{\mathbb{C}}(m),$$

and

$$\Psi_{\mathbb{C}}^{\mathcal{R}}(j(m)) = \Psi_{\mathbb{C}}^{\mathcal{R}}(m, e_{K_{\mathbb{C}}}, \Phi_{\mathbb{C}}(m)) = \Phi_{\mathbb{C}}(m),$$

so $\bar{\jmath}$ is K-equivariant and intertwines the complex moment maps on M and the complex-symplectic quotient, $\Psi^{-1}_{\mathbb{C}}(0)/K = (M \times T^*K_{\mathbb{C}}) /\!\!/ K$.

Proof.

References

[1] N. J. Hitchin, A. Karlhede, U. Lindström, and M. Roček. Hyper-Kähler metrics and supersymmetry. *Comm. Math. Phys.*, 108(4):535–589, 1987.