CS144 An Introduction to Computer Networks

Congestion

Basic Ideas

Outline of next few videos

What is congestion control?

Basic approaches to congestion control

- In the network
- From the end host.

TCP Congestion Control

- TCP Tahoe
- TCP Reno
- TCP RTT Estimation
- Performance in practice

Time Scales of Congestion

Two packets colliding at a router

Flows using up all link capacity

Too many users using a link during a peak hour

What causes congestion?

What causes congestion?

Another example

Congestion is unavoidable

Arguably it's good!

- 1. We use packet switching because it makes efficient use of the links. Therefore, buffers in the routers are frequently occupied.
- 2. If buffers are always empty, delay is low, but our usage of the network is low.
- 3. If buffers are always occupied, delay is high, but we are using the network more efficiently.

Observations

- 1. Congestion is inevitable, and arguably desirable.
- Congestion happens at different time scales from two individual packets colliding, to some flows sending too quickly, to flash crowds appearing in the network.
- 3. If packets are dropped, then retransmissions can make congestion even worse.
- 4. When packets are dropped, they waste resources upstream before they were dropped.
- 5. We need a definition of <u>fairness</u>, to decide how we want flows to share a bottleneck link.

Fairness and throughput

Fairness and throughput

Allocation #2 is "fairer". How can we define fairness?

Max-min Fairness

Definition:

An allocation is <u>max-min fair</u> if you can not increase the rate of one flow without decreasing the rate of another flow with a lower rate.

Max-min fair allocation

Max-min fairness: Single link

Definition is intuitive and simple on a single link.

Goals for congestion control

- 1. High throughput: Keep links busy and flows fast
- 2. Max-min fairness
- 3. Respond quickly to changing network conditions
- 4. Distributed control

<end>