

Direct Kinematics - Quaternions

Prof. Dr. Karsten Berns Robotics Research Lab Department of Computer Science University of Kaiserslautern, Germany

Contents:

Quaternions

- Real Quaternions
 - Rotation of Points by Means of Quaternions
 - Converting Quaternion/Rotation matrix
- Dual Quaternions
 - Properties of Dual Quaternions
 - <u>Dual-Quaternion Arithmetic Operations</u>
 - Gimbal lock

Complex Numbers

- Form of Complex number: a + ib
 - a,b are real numbers,
 - *i* is the **imaginary unit** with $i^2 = -1$, $i = \sqrt{-1}$, $(\pm i)^2 = -1$
- Adding: (a + ib) + (c + id) = (a + c) + i(b + d) _{Im}
- Subtracting: (a + ib) (c + id) = (a c) + i(b d)
- Multiplying: $(a + ib) \times (c + id) =$ (ac - bd) + i(ad + bc)
- Complex conjugate: a ib.
- **Dividing:** $1 / (a + ib) = (a ib) / (a^2+b^2)$

Historical Aspects

- Complex number a + ib viewable as point in a plane
- Transfer to space leads to Quaternions
- Quaternion from lat. Word quaternio, -ionis f. "Foursome")
- 1843, Hamilton representation of vector in space through complex numbers
- Multiplication not possible with triples but with quadruples
- Basic rules of multiplication $l^2 = l^2 = k^2 = ijk = -1$
- $Q = r_1 + i \cdot r_2 + j \cdot r_3 + k \cdot r_4$

Quaternions

- Problems of (homogeneous) rotation matrix
 - High redundancy
 - Many arithmetic operations at concatenation
 - Singularities
- Orientation of a rigid body
 - Quaternion: Rotation axis (3 dim. Vector \vec{g}) and angle θ sufficient
 - Reduction of the required computational effort

Real Quaternions

- Quaternions $Q = (r_1, r_2, r_3, r_4)$ with $r_1, r_2, r_3, r_4 \in \mathbb{R}$
- Often represented as a linear vector space over $\mathbb R$
 - $Q = r_1 + i \cdot r_2 + j \cdot r_3 + k \cdot r_4$ (extension of \mathbb{C})
- For basic elements 1, i, j, k the following multiplicative linkage table (not commutative) applies:

Real Quaternions

- Scalar part: r_1 (angle of rotation)
- Vector part: $i \cdot r_2 + j \cdot r_3 + k \cdot r_4$ (axis of rotation)
- Quaternions can be used to display all rotations in which the axis of rotation passes through the origin of the reference system
 - Conjugated: $\overline{Q} = r_1 i \cdot r_2 j \cdot r_3 k \cdot r_4$
 - Magnitude: $|Q| = \sqrt{Q \cdot \bar{Q}}$
 - Inverse: $Q^{-1} = \frac{\bar{Q}}{|Q|^2} \to Q \cdot Q^{-1} = Q^{-1} \cdot Q = 1$

Real Quaternions - Example

- Let us consider: $Q_1 = (3,2,-4,1)$ and $Q_2 = (4,-3,1,-5)$
- It holds:
 - $Q_1 + Q_2 = (7, -1, -3, -4)$
 - $Q_1 \cdot Q_2 = (3 + 2i 4j + k)(4 3i + j 5k) =$ $12 - 9i + 3j - 15k + 8i - 6i^2 + 2ij - 10ik - 16j + 12ji - 4j^2 +$ $20jk + 4k - 3ki + kj - 5k^2 =$ 12 - 9i + 3j - 15k + 8i + 6 + 2k + 10j - 16j - 12k + 4 + 20i + 4k - 3j - i + 5 = (12 + 6 + 4 + 5) + i(-9 + 8 + 20 - 1) +i(3 + 10 - 16 - 3) + k(-15 + 2 - 12 + 4) = (27,18, -6, -21)
 - $Q_2 \cdot Q_1 = (27, -20, -20, -1)$
 - $Q_1^{-1} = \frac{(3-2i+4j-k)}{30}$

Rotation of Points by Means of Quaternions

Unit quaternion : $|Q| = 1 \Rightarrow Q^{-1} = \overline{Q}$, since $|Q|^2 = 1 \rightarrow$ Simple forward / backward calculation

Rotation of point \vec{p} at axis \vec{g} with angle θ

- 1. Create a unique quaternion from \vec{g} and θ
 - (1) Standardization of \vec{g} to 1

(2)
$$Q = \left[\cos\left(\frac{\theta}{2}\right), \sin\left(\frac{\theta}{2}\right)\vec{g}\right]$$
, since $\cos^2(\theta) + \sin^2(\theta) = 1$

2. Represent point \vec{p} as quaternion

$$P = [0, \vec{p}]$$

3. Final rotation:

$$P' = Q \cdot P \cdot Q^{-1} = Q \cdot P \cdot \bar{Q}$$

Rotation of Points by Means of Quaternions

Converting Quaternion/Rotation matrix

- Rotation quaternion Q = (s, (x, y, z))
- From rotation by means of unit quaternion $|Q| = 1 \Rightarrow Q^{-1} = \bar{Q}$ follows the rotation matrix R:

$$R = \begin{bmatrix} 1 - 2(y^2 + z^2) & 2xy - 2sz & 2sy + 2xz \\ 2xy + 2sz & 1 - 2(x^2 + z^2) & -2sx + 2yz \\ -2sy + 2xz & 2sx - 2yz & 1 - 2(x^2 + y^2) \end{bmatrix}$$

Converting Quaternion/Rotation matrix

- From R with the entries r_{ij} , $i,j \in \{1,2,3\}$, the corresponding rotation quaternion is calculated Q = (s,(x,y,z)) as follows:

 - $x = \frac{r_{32} r_{23}}{4s}$
 - $y = \frac{r_{13} r_{31}}{4s}$
 - $z = \frac{r_{21} r_{12}}{4s}$

Dual Quaternions

- Real quaternions are suitable for the description of the orientation, but not the position of an object
- Position and orientation can be expressed by quaternions
- Real numbers are replaced by complex numbers

•
$$Q = (q_1, q_2, q_3, q_4)$$

$$q_i = q_{r_i} + \varepsilon \cdot q_{d_i}$$

•
$$\varepsilon^2 = 0$$

Denote the real part by $q_r=(q_{r_1},q_{r_2},q_{r_3},q_{r_4})$, and the dual part by $q_d=(q_d,q_{d_2},q_{d_3},q_{d_4})$. Then,

$$Q = [q_r, q_d]$$

Dual Quaternions

• d_1 : Angle value and displacement length

d₂, d₃, d₄: Description of a directed straight line in space in which the rotation and translation take place

Properties of Dual Quaternions

- Dual quaternions suitable for location description
- Operations on dual quaternions allow all needed transformations
- Low redundancy, as only 8 characteristics
- Gimbal lock does not exist
- Weaknesses
 - Difficulty for the user to describe a location by specifying a dual quaternion
 - Complex processing rules (e.g. multiplication)

Gimbal Lock

- Loss of one degree of freedom in a three-dimensional threegimbal mechanism
- Occurs when the axes of two of the three gimbals are driven into a parallel configuration, "locking" the system into rotation in a degenerate two-dimensional space.
- The word *lock* is misleading:
 - no gimbal is restrained.
- All three gimbals can still rotate freely about their respective axes of suspension.
- Parallel orientation of two of the gimbals' axes
 - → There is no gimbal available to accommodate rotation about one axis.

Dual-Quaternion Arithmetic Operations

- The elementary arithmetic operations for use to use dualquaternions are:
 - Scalar multiplication: $sq = sq_r + sq_d\varepsilon$
 - Addition: $q_1 + q_2 = q_{r1} + q_{r2} + (q_{d1} + q_{d2})\varepsilon$
 - Multiplication: $q_1q_2 = q_{r1}q_{r2} + (q_{r1}q_{d2} + q_{d1}q_{r2})\varepsilon$ (Multiplication of quaternions)
 - Conjugate: $q^* = q_r^* + q_d^* \varepsilon$

Dual-Quaternion Arithmetic Operations

Magnitude:

$$||q|| = qq^*$$

Unit condition:

$$||q|| = 1$$
$$q_r^* q_d + q_d^* q_r = 0$$

 The unit dual-quaternion is our key concern as it can represent any rigid rotational and translational transformations.

Dual-Quaternions representation

- Rotation around \vec{g} with angle ϕ Then,
 - $q_{rot} = \left[\cos\left(\frac{\phi}{2}\right), g_1 \sin\left(\frac{\phi}{2}\right), g_2 \sin\left(\frac{\phi}{2}\right), g_3 \sin\left(\frac{\phi}{2}\right), 0, 0, 0, 0\right]$
- Transformation by \vec{h} with no rotation

$$q_{trans} = \left[1,0,0,0,0,\frac{h_1}{2},\frac{h_2}{2},\frac{h_3}{2}\right]$$

$$q = q_{trans} \times q_{rot}$$

Direct Kinematics: Example 1

- $i^{-1}_{i}q_{trans} = [1,0,0,0,0,\frac{a_{i}c_{i}}{2},\frac{a_{i}s_{i}}{2},0]$
- Define: $\cos\left(\frac{\theta_i}{2}\right) =: c_{\frac{i}{2}}$
- It follows: ${}^{i-1}_{i}q = [c_{\underline{i}}, 0, 0, s_{\underline{i}}, a_{i}c_{\underline{i}} a_{i}s_{\underline{i}} a_{i}s_{\underline{i}} 0, \frac{2}{2}, \frac{2}{2}, 0]$

Joint	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$oldsymbol{ heta_2}$
3	a_3	0	0	θ_3

Direct Kinematics: Example 1

Then:

$$\begin{array}{ll}
 & \begin{array}{ll}
 & \begin{array}{ll}
 & \begin{array}{ll}
 & 3q & = & \frac{3}{2}q_{1}^{2}q_{0}^{1}q & = \\
 & \begin{array}{ll}
 & \left[c_{123}, 0, 0, s_{123}, \\
 & a_{3}c_{3-2-1} + a_{2}c_{2-1-3} + a_{1}c_{1-2-3} \\
 & 0, & \begin{array}{ll}
 & 2 \\
 & a_{3}s_{3-2-1} + a_{2}s_{2-1-3} + a_{1}s_{1-2-3} \\
 & & \begin{array}{ll}
 & 2 \\
 & \end{array}, \\
 & \begin{array}{ll}
 & a_{3}s_{3-2-1} + a_{2}s_{2-1-3} + a_{1}s_{1-2-3} \\
 & 2 \\
 & \end{array}, 0
\end{array}$$

Joint	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$ heta_2$
3	a_3	0	0	$ heta_3$

Direct Kinematics: Example 1

- And for a vector \vec{x} it holds:

Joint	a_i	α_i	d_i	θ_i
1	a_1	0	0	$ heta_1$
2	a_2	0	0	$ heta_2$
3	a_3	0	0	$ heta_3$

Coming up next...

Exponential Coordinates and Screws

