

U.S. DEPARTMENT OF COMMERCE National Technical Information Service

AD-A033 535

QUAM: A SIMULATION MODEL FOR THE NAVY QUICKTRANS SYSTEM USER'S MANUAL

DAVID W. TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CENTER, BETHESDA, MD

NOVEMBER 1976

10

(m) (m) (-)

-

SHIELASION NORTH CONTRACTOR SAVERESS STREET, STREET

C

REPRODUCED BY
NATIONAL TECHNICAL
INFORMATION SERVICE
U. S. DEPARTMENT OF COMMERCE
SPRINGFIELD, VA. 22161

MAY THE OTHER CONDINGENTED THE CONTENTS

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	N PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
DTNSRDC Report 76-0136	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) QUAM: A SIMULATION MODEL FOR THE		5. TYPE OF REPORT & PERIOD COVERED
SYSTEM USER'S MANUA	AL	6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
Raymond E. Melton		
9. PERFORMING ORGANIZATION NAME AND ADDRE David W. Taylor Naval Ship Reseat		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
and Development Center	· ·	1-1867-011-06
Bethesda, Maryland 20084		1-1807-011-07
11. CONTROLLING OFFICE NAME AND ADDRESS		November 1976
		13. NUMBER OF PAGES
14. MONITORING AGENCY NAME & ADDRESS(II ditter	ent from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION DOWNGRADING

. . .

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identity by block number)

QUICKTRANS, computerized simulation, cargo, load factors

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

QUAM, the acronym for QUICKTRANS Airlift Model, is a computerized simulation of the Naval Quick Response Transportion System (QUICKTRANS) developed to permit forecasting of system operating costs, vehicle utilization, and route scheduling load factors for proposed routes and vehicles.

This simulation, written in FORTRAN IV, accepts (as input data) terminals, routes, cargo quantities, numbers of vehicles by type, and unit (Continued on reverse side)

LCHRITY CLASSIFICATION OF THIS PAGE(When Date Entered)

(Block 20 continued)

costs. The execution routines compute the time-distance-tonnage relationships for the stated input data to establish cargo loaded, transloaded, and off-loaded at each terminal; utilization for both vehicles (by type) and routes; costs per ton-mile, ton-milage, and both route and system operating costs. The output can provide the entire histographic record and/or management summaries in desired formats for information at terminals, along route segments, routes and for the entire system.

The simulation has been used in the analysis of the requirements for servicing an expanded QUICKTRANS network.

This report describes the model's logic elements and all the inputs needed by $\ensuremath{\text{QUAM}}\xspace.$

TABLE OF CONTENTS

				Page
1.	INTR	ODUCTION	N	1
	1.1	BACKGRO	OUND	1
	1.2	PURPOSI	E	1
	1.3	METHOD		2
2.	DESC	RIPTION	OF INPUT DATA	6
	2.1	DESCRI	PTION OF INPUT CARDS	6
		2.1.1	Identification Card	6
		2.1.2	General Information Card	6
		2.1.3	Terminal Code Cards	6
		2.1.4	Cargo Modification Cards	7
		2.1.5	Load Factor Limits Cards	7
		2.1.6	Distance Table Cards (DIST)	7
		2.1.7	Itinerary Cards	8
		2.1.8	Route Cards	8
		2.1.9	Vehicle Cards	9
		2.1.10	Cargo Flow Cards	9
	2.2	SAMPLE	INPUT DECK SETUP	10
3.	OUTP	UT		11
4.	COMP	UTER SYS	STEM INFORMATION	12
APP	ENDIX	A - PR	ROGRAM LISTINGS	13
APP	ENDIX	В - СО	OMPUTER RUN	25
			LIST OF FIGURES	
1 -	- Inp	ut Deck	Setup	10
2	- QUI	CKTRANS	Route Diagram	25
				23
			LIST OF TABLES	
1	- OUI	CKTRANS	Terminals	4

1. INTRODUCTION

1.1 BACKGROUND

QUICKTRANS¹ is the Navy air-truck transportation network, designed to provide a controlled, flexible, and responsive means of transporting urgently required cargo between terminals of major Navy interest within the continental United States (CONUS). The goal of the QUICKTRANS transport facility is to move high priority cargo between any two QUICKTRANS terminals in a time interval no greater than 48 hours. The QUICKTRANS transportation system utilizes both air and truck transport units and operates daily on predetermined time schedules and routes between commercial and military terminals.

Currently the information required to develop the QUICKTRANS route structure is computed manually at considerable expense in manpower and time. A need has thus existed for a more efficient and reliable method of determining QUICKTRANS route patterns and airlift requirements information for planning purposes. Accordingly, a simulation model, QUAM, has been developed to provide a computer-based approach to facilitate and reduce the time required for these calculations.

The QUICKTRANS system model has, since its development, been exercised for the sponsor, NAVSUP 052, for 1) purposes of debugging, orientation, and familiarization, 2) determining the management summary formats and their utility, 3) extending their in-house route analysis capabilities, and 4) forecasting their capabilities in meeting projected demands in FY 76 and 77.

1.2 PURPOSE

The QUICKTRANS Airlift Model (QUAM), a simulation model written in FORTRAN IV, depicts CONUS theater of operation. It is designed to forecast the QUICKTRANS system's cost, vehicle utilization, and route/schedule

¹"United States OUICKTRANS Airfreight System, STANDARD OPERATING PROCE-DURES." Naval Systems Command, NAVSUP Publication 387, July 1971.

load factors for proposed routes, and transport units or vehicles. The goal of QUAM is to produce a more efficient and economical route-planning and vehicle-selection system. By employing QUAM, the analyst may predict the efficiency of route patterns and, in particular, route and segment load factors, cost per carried ton of cargo, cost per carried ton/mile of cargo, and utilization of vehicles.

1.3 METHOD

The solution to simulating the operation of QUICKTRANS for planning purposes may be approached in many ways. Because of the fixed route segment structure of QUICKTRANS, a static accumulation method was selected for this study.

Since the cargo flow is given with respect to origin and destination terminals and their related transload terminals, and the proposed route structure consists of flow patterns between terminals, the task of selecting routes and vehicles reduces to a comparison of available segment transport space and cargo space required. Cargo/route assignment is made with respect to the cargo delivery flow patterns and the number of route segments used to move cargo from its origin to destination terminals. Direct cargo movement from origin to destination terminals is considered first and remaining cargo movements are ordered by increasing number of transloads needed for delivery.

The projected cargo flow patterns are determined from historic cargo load data collected by the QUICKTRANS Center, Norfolk, Virginia, and analyzed and edited by the Logistics Group at DTNSRDC.

QUAM describes the nodes (terminals) and links (segments) within the QUICKTRANS system and is able to accommodate several types of planning problems. It incorporates node distance tables. Time-distance-tonnage relationships are computed for specified input and are presented in segment/management summaries.

The input data include node linkages (segments), routes (sequential aggregations of segments), vehicle characteristics and their numbers, nodes (terminals) and their characteristics, cargo quantitites, transload points, and unit costs.

Execution of this simulation computes: the amount of cargo on-loaded, transloaded, and off-loaded at each node along every route; costs for cargo movement and handling; and the percentage of each vehicle's cargo capacity used along each route segment. The items calculated include vehicle load factors; cargo throughput at nodes, along segments and routes; ton-mileage figures; cost per ton-mile; and average distance of moved cargo (miles). Table 1 gives terminals currently considered by QUICKTRANS.

Costs computed by the model are of two types, terminal and travel. Travel cost is determined from the cost in dollars per statute mile for a given vehicle type multiplied by the distance traveled (in statute miles). Terminal costs include all expenses incurred by the vehicle while at the terminal; i.e., entry fees, vehicle-servicing charges, and cargo-handling costs.

TABLE 1 - QUICKTRANS TERMINALS

Program ID Number	Terminal Name	Transport Code Name
1	Quonset Point	NCO
2	Wilmington	ILG
3	Patuxent River	NHK
4	Norfolk	NGU
5	Charleston	CHS
6	Jacksonville	NIP
7	Patrick AFB	COF
8	MacDill AFB	MCF
9	Key West	NQX
10	Pensacola	NPA
11	Dallas	NBF
12	Indianapolis	IND
13	San Diego	NZY
14	Point Mugu	NTD
15	Lemoore	NLC
16	Alameda	NGZ
17	Paine Field	PAE
18	Boston	BOS
19	Philadelphia	PHL
20	McGuire	WRI
21	Dover	DOV
22	Washington, D.C.	DCA
23	Cherry Point	NKT
24	Albany	NAB
25	Corpus Christi	NGP
26	Long Beach	LGR
27	Travis AFB	suu
28	McChord AFB	TCM
29	Whidbey Island	NUW
30	Bremerton	PWT

TABLE 1 - QUICKTRANS TERMINALS (Continued)

Program ID Number	Terminal Name	Transport Code Name
31	Atlanta	ATL
32	Red River	TXK
33	Tinker	OKC
34	Pueblo	PUB
35	Toole	SLC
36	Umatilla	PDT

2. DESCRIPTION OF INPUT DATA

2.1 DESCRIPTION OF INPUT CARDS

2.1.1 Identification Card (IDENT)

IDENT gives the computer run identification information. Its format is alpha-numeric, and it may have 1 to 27 characters.

2.1.2 General Information Card (GEN)

GEN gives the limits of variables to be input and the control constants.

NTERM	NROUTE	NITIN	NKGOGN	NVAT	CLAND	CCONVF	TCOST	ADJT	IT				
1 5	6 10	11 15	16 20	21 25	26 35	36 45	46 55	56 65	66 68	8 69 80			
Variabl	e For	mat				Descr	iption						
NTERM	1	5	N	Number of terminals in simulation (1 to 99).									
NROUTE	1	5	Nı	Number of routes (1 to 40).									
NITIN	1	15	n	umbers	given	eraries, in order e informa	of vehi	icle en	counte				
NKGOGN	1	15	N	Number of cargo flow entries (1 to 3000).									
NVAT	1	5	N	Number of vehicle types (1 to 9).									
CLAND	I	710.2	Co	Cost (\$) per aircraft landing.									
CCONVF F10.2 Conversation factor, lb/cu ft of car													
TCOST	I	710.2	Te	Total terminal cost (\$).									
ADJT	1	12	A	Aircraft cost adjustment factor.									

2.1.3 Terminal Code Cards (TERM)

IT

The TERM cards give the three-letter transportation code for each terminal considered.

Cargo flow table indicator; IT = 1, Table printed.

2.1.4 Cargo Modification Card (PERC).

The PERC cards adjust the amount of cargo generated at each terminal without changing the original cargo generation input data. PERC gives the percent of increase or decrease of cargo originating at a given terminal. If there are no changes, cards are blank.

PERC at terminal			PERC at terminal 2				PERC at terminal 12			
1	6	7	1	2	13	65		72	3	80
Variable			Format			Desci	ription			

PERC at terminal

12F6.0

Percent of increase or decrease of

1 to 99 cargo at each originating terminal.

2.1.5 Load Factor Format Cards (CAPV).

The CAPV cards give the maximum load factor allowed for each route.

LOADF1		LOADI	F2				LOAD1	5		
1	5	6	10	11		71		75	76	80
Variable			Forma	t	De	escri	ption			
LOADF1 for routes			15F5.	0	Maximum	load	factor	for	each	route

2.1.6 Distance Table Cards (DIST)

The DIST cards give the distance in miles between terminals. DIST cards contain packed data, three data items per word.

-	DIST1		DIST2		DIST3			D	DIST16		DIST17		DIST18		
1	4	5	8	9	12	13	60	61	64	65	68	69	72	73	80
V	ariable				For	rmat			Descri	pti	on				
D	DIST1,,DIST99					L2	Dis	tanc	e in mi	les	betwe	en	termina	ls	

2.1.7 Itinerary Cards (ITN)

The ITN cards give the terminals in order of encounter to be serviced on a route. The maximum number of terminals on a given itinerary is 20.

NTRN	TERM	T	ERM2	TERM20
1 3	4 6	, ,	9	61 63 64 80
Variab	le		Forma	t Description
NTRN			13	Number of terminals on this itinerary
TERM1,	,TERM	120	201	3 Terminals on itinerary in order of encounter.

2.1.8 Route Cards (RTE)

The RTE cards give all information necessary to describe the routes. The maximum number of routes is 40.

NTRIPS	17	n	I T Y RID P E		REP	EAT		REPEAT		EAT	REPEAT			
1 8	9	10	11	12	14	15	28	29	42	43	56	57 70 71 80		
Variable	e			Fo	rmat			Description						
NTRIPS					110			the	route	e in the	e time	cle to make on e period consid- sentation		
ITN I2								Itinerary number.						
ITYPE	I1					Vehicle type								
RID I3 Route identification number							number.							

2.1.9 Vehicle Cards (VEH)

The VEH cards give all information necessary to describe lift capabilities of each vehicle. The maximum number of vehicle types allowed is 9.

CAPACV	CAI	PACW	C	STM	VNAM	REF	PEAT				
1 10	11	20	21	30	31 36	37	72	83		80	
Variable		For	rmat		Description						
CAPACV	CAPACV F10.0				Usable space in cu ft						
CAPACW		F10	0.0		Maximum weight in 1b						
CSTM	CSTM F10.0					Cost per mile to operate vehicle, \$/mi					
VNAM A6									chicle is this field.		

2.1.10 Cargo Flow Cards (CARG)

The CARG cards give the quantity of cargo to be shipped from a generation (origin) terminal and delivered at a destination terminal. CARG cards also specify all terminals at which the cargo is to change routes. These terminals are defined as transload terminals. The maximum number of cargo generations allowed is 1000.

	I T R N S	I T R N S	I T R N S	I O R I G	I D E S	CTONS	REPEAT	REPEAT					
1 4	5 6	7 8	9 10	11 12	13 14	15 22	23 44	45 66	67	80			
Vari	Lab1	e		Form	at	Descript	Description						
ITR	NS1-	ITRN	S3	312		Transloa	Transload terminals in order of encounte						
IOR	[G			12		Originat	ing termin	nal					
IDES I2						Final de	stination	terminal					
CTONS F8.2						Tons of cargo to be shipped							

2.2 SAMPLE INPUT DECK SETUP

Figure 1 shows arrangement of the input deck.

Figure 1 - Input Deck Setup

3. OUTPUT

QUAM output consists of the following parts:

- (a) Cargo flow table
- (b) Routing Error trace gives all entries in the cargo flow table for which routing from origin to destination terminals cannot be accomplished.
- (c) System Cargo Summary
- (d) Segment Operations Summary (columns given as "ton/miles Overflow Upon Departure" and "Pounds Overflow Upon Departure" give ton/miles and pounds of cargo assigned to route in excess of an 80% load factor).
- (e) Aircraft Management Summary
- (f) Truck Management Summary
- (g) Overall Management Summary
- (h) Cargo Movement Diagnostics specifies computer representation of incomplete cargo shipment.

4. COMPUTER SYSTEM INFORMATION

QUAM is written in FORTRAN IV to run on the CDC 6600 computer. Average running time is 9 seconds CPU time at a cost of \$3.00 per run. QUAM has been expanded to consider a maximum of 99 terminals and 40 routes. If the above variable limits are reduced to an average QUICKTRANS case of 20 terminals and 10 routes, core allocation can be reduced to 60K.

APPENDIX A PROGRAM LISTING

```
PROGRAM QUAM (INPUT, OUTPUT, TAPES=INPUT, TAPE6= OUTPUT, TAPE7)
                                                                             QAM
     DIMENSION ITNAM (99), IDIST(99, 33), CAPACV(9), CAPACV(9), CSTR(9),
                                                                             OAM
                                                                                    10
    1 NPITIN (40), NPITN1 (40,20)
                                                     ,IROUTE (40),
                                                                             QAM
                                                                                    15
    2 KGOGN1(7000).CGOGN2(7000).CGOGN3(7000).ISEG(40,19,2).SEGA(40,19)
                                                                            . QAH
                                                                                    20
    3 SEGU(40,19) .SHTP(99).GEN(99),DEL(99),TRANS(99) ,JSEG(40,19,3)
                                                                             MAD
                                                                                    25
    5. IDRUN(12) , VNAM(9), VEH(2)
                                                                             MAP
                                                                                    30
    4,RMI (40),TMAV (40),TMUS (40),TEMP(9)
                                                 ,STAN(99), TOT(10),US(99)
                                                                             MAP
                                                                                    35
    6. VEHS (9.8) . VSUMC (9)
                            .CAPCV(40) ,PERIC(99),CR(9)
                                                                             MAP
                                                                                    40
     DATA VEH/6HAIRCRF, 6HTRUCK /
                                                                             DAM
                                                                                    45
      READ(5,7777) IDRUN
                                                                             MAP
                                                                                    50
7777 FORMAT (12A6)
                                                                             QAM
                                                                                    55
      READ (5, 1000) NTFRM. NROUTE. NITIN. NKGOGN. NVAT. CLAND. CCONVF.
                                                                             MAD
                                                                                    60
    1 TCOST. ACJT. IT
                                                                             QAM
                                                                                    65
1000 FORMAT (515,4F10.2,12)
                                                                             QAM
      READ(5,1001) (ITNAM(I), I=1,NTERM)
                                                                             QAM
                                                                                    75
1001 FORMAT (1984)
                                                                             DAM
                                                                                    80
     READ(5, 1007) (PERIC(I), I=1, NTERM)
                                                                             QAM
                                                                                    85
                                                                             QAH
1007 FORMAT(12F6.0)
                                                                                    90
      READ(5,1999) (CAPCV(I), I=1, NROUTE)
                                                                             CAM
                                                                                    95
1999 FORMAT(15F5.0)
                                                                             DAM
                                                                                   100
     IC=FLOAT (NTERM) /3.+.9
                                                                             QAH
                                                                                   105
     DO 10 I=1.NTERM
                                                                             QAM
                                                                                   110
  10 READ (5, 1002) (IDIST (I,J), J=1,IC)
                                                                             MAG
                                                                                   115
1002 FORMAT(6112,8X)
                                                                             DAM
                                                                                   120
     READ (5, 1003) (NPITIN(I), (NPITN1(I, J), J=1,20), I=1, NITIN)
                                                                             QAH
                                                                                   125
1003 FORMAT(2113,17X)
                                                                             QAM
                                                                                   130
      READ(5,1004) (IROUTE(I), I=1, NROUTE)
                                                                             MAD
                                                                                   135
1004 FORMAT(5114,10X)
                                                                             QAH
                                                                                   140
     READ (5.1005) (CAPACV(I).CAPACW(I).CSTR(I).VNAM(I).I=1.NVAT)
                                                                             MAP
                                                                                   145
                                                                                   150
1005 FORMAT (2(3F10.0,A6))
                                                                             DAM
     READ (5, 1006) (KGOGN1 (I), CGOGN2 (I), I=1, NKGOGN)
                                                                             DAM
                                                                                   155
1005 FORMAT(3(114,F8.2))
                                                                             QAM
                                                                                   160
     10 242 I=1 NKGOGN
                                                                             MAD
                                                                                   165
                                                                             GAM
     IORIG=MOC(KGOGN1(I)/100,100)
                                                                                   170
 242 CGOGN2(1)=CGOGN2(1)+PERIC(IORIG)+CGOGN2(I)
                                                                             MAP
                                                                                   175
     IF (IT.EO.1) CALL TABLE (NTERH, ITNAM, NKGOGN, KGOGN1, CGOGN2, IDENT)
                                                                             MAD
                                                                                   180
     CALL LINKS (NITIN, NKGOGN, NPITIN, NPITN1, KGOGN1, ITNAM)
                                                                             QAM
                                                                                   185
      ICOUNT = 0
                                                                             QAM
                                                                                   190
      DO 240 K=1.NKGOGN
                                                                             RAM
                                                                                   195
     IORIG= MOC (KGOGN1(K)/100, 100)
                                                                             DAM
                                                                                   200
      CGOGN3 (K) = (CGOGN2 (K) +2000.)/CCONVF
                                                                             MAD
                                                                                   205
                                                                             MAD
      CGEN=CGEN+CGOGN3(K)
                                                                                   210
                                                                             CAM
      GEN(TORIG) = GEN(TORIG) + CGOGN3(K)
                                                                                   215
      IDES=MOC(KGOGN1(K),100)
                                                                             DAM
                                                                                   220
     IDES1=MOD(KGOGN1(K)/10000,100)
                                                                             MAD
                                                                                   225
     IDES2=MOC(KGOGN1(K)/1000000,100)
                                                                             MAD
                                                                                   230
     IDES3=MOD(KGOGN1(K)/10**8,100)
                                                                             DAM
                                                                                   235
      IF(IDES1.LE.0) GO TO 240
                                                                             QAM
                                                                                   240
      IF(IDES2. NE.0) GO TO 241
                                                                             MAD
                                                                                   245
      ICOUNT = ICOUNT+1
                                                                                   250
                                                                             MAG
                                                                                   255
      KGOGN1 (NKGOGN+ICOUNT)=1000000000+IDES+IDES1*10000000
                                                                             GAH
       CGOGN3 (NKGOGN+ICOUNT)=CGOGN3 (K)
                                                                             DAM
                                                                                   260
      GO TO 240
                                                                             QAH
                                                                                   265
 241 IF (IDES3.NE.0) GO TO 141
                                                                             QAH
                                                                                   270
```

```
ICOUNT= ICOUNT+1
                                                                            MAP
                                                                                  275
     KGOGN1 (NKGOGN+ICOUNT)=10000000000+IDES1+100000000+IDES2+10000
                                                                             MAP
                                                                                  280
     CGOGN3 (NKGOGN+ICOUNT)=CGOGN3(K)
                                                                             QAM
                                                                                  285
     TCOUNT = TCOUNT+1
                                                                             MAP
                                                                                  290
      KGOGN1 (NKGOGN+ICOUNT) = IDES+IDES2*10000000
                                                                             MAP
                                                                                  295
     CGOGN3 (NKGOGN+ICOUNT)=CGOGN3(K)
                                                                            DAM
                                                                                  300
    60 TO 240
                                                                            GAM
                                                                                  305
141 KGOGN1(K)=MOD(KGOGN1(K),1000000)
                                                                             MAP
                                                                                  310
    ICOUNT= ICOUNT+1
                                                                            MAP
                                                                                  315
    KGOGN1 (NKGOGN+I COUNT) = 10 ** 10 + IDES1 * 10 ** 8 + IDES2* 10000
                                                                            MAD
                                                                                  320
     CGOGN3 (NKGOGN+ICOUNT) = CGOGN3 (K)
                                                                             QAM
                                                                                  325
    ICOUNT= I COUNT+1
                                                                            MAD
                                                                                  330
    KGOGN1 (NKGOGN+ICOUNT) =IDES2*10**8+ IDES3*10000
                                                                            QAH
                                                                                  335
     CGOGN3 (NKGOGN+ICOUNT) = CGOGN3 (K)
                                                                             MAP
                                                                                  340
    TCOUNT=ICOUNT+1
                                                                            QAM
                                                                                  345
    KGOGN1 (NKGOGN+ICOUNT) = 10 ++10+IDES3 +10 ++8+IDES
                                                                            DAN
                                                                                  350
     CGOGN3 (NKGOGN+ ICOUNT) = CGOGN3 (K)
                                                                            RAM
                                                                                  355
240 CONTINUE
                                                                             QAM
                                                                                  360
     NKGOGN=NKGOGN+ICOUNT
                                                                            MAP
                                                                                  365
     DO 200 L=1.4
                                                                            MAD
                                                                                  370
     DO 202 J=1.NROUTE
                                                                            MAP
                                                                                  375
     DAY=FLOAT (TROUTE(J) /1000000) *.01
                                                                            MAP
                                                                                  380
204 ITN=MOD (IROUTE (J)/10000,100)
                                                                                  385
                                                                            QAM
     ITYPE=MCD (IROUTE (J)/1000,10)
                                                                            QAH
                                                                                  390
     TOTL=CAPACH(ITYPE) *DAY
                                                                            QAH
                                                                                  395
     IF(L.EQ.1) TOTL=TOTL .. 50
                                                                            DAM
                                                                                  400
     NIT=NPITIN(ITN)
                                                                            CAM
                                                                                  405
     IF(L.NE.1) GC TO 325
                                                                            QAH
                                                                                  410
      JTN=NIT-1
                                                                            MAG
                                                                                  415
     00 205 K=1.JTN
                                                                            MAP
                                                                                  420
    TSEG(J.K.1)=CAPACH(ITYPE)*DAY *CAPCV(J)
                                                                             MAP
                                                                                  425
     SEGA(J.K) = SEGA(J.K) + CAPACV(ITYPE) + DAY
                                                   +.5
                                                                            MAD
                                                                                  430
205 TSEG(J,K,2)=CAPACV(ITYPE)*DAY *CAPCV(J)
                                                                            DAM
                                                                                  435
325 00 206 K=1, NKGOGN
                                                                            MAD
                                                                                  440
     IF (CGOGN3 (K).LE.0.0) GO TO 206
                                                                            MAD
                                                                                  445
     NORIG= 0
                                                                            DAM
                                                                                  450
     NOEL=0
                                                                            DAM
                                                                                  455
     NTRANS=0
                                                                            MAD
                                                                                  460
                                                                            MAD
                                                                                  465
     NTRAN= 0
    IORIG=MOD(KGOGN1(K)/100,100)
                                                                            MAD
                                                                                  470
     IORIGT="00(KGOGN1(K)/100000000,100)
                                                                            QAH
                                                                                  475
      IDEST=MOD(KGOGN1(K),100)
                                                                            MAD
                                                                                  480
    IDESTT=MCD (KGOGN1 (K)/10000,100)
                                                                            MAD
                                                                                  485
     GO TO (501,502,503, 555),L
                                                                            QAM
                                                                                  490
501 IF (IORIGT.NF.0) GO TO 206
                                                                            MAD
                                                                                  495
                                                                                  500
    IF (IDESTT.NE.0) GO TO 206
                                                                            MAG
                                                                            MAD
     GO TO 555
                                                                                  505
      IF (IORIGT.EQ. 0. AND. IDESTT. NE. 0) GO TO 555
                                                                            MAP
                                                                                  510
     GO TO 206
                                                                            DAM
                                                                                  515
                                                                            MAP
503 IF (IORIGT.NE.O.ANO.IDESTT.NE.O) GO TO 555
                                                                                  520
     GO TO 206
                                                                            MAP
                                                                                  525
     ICHECK=KGOGN1(K)/1000000000
                                                                            MAD
                                                                                  530
                                                                            RAM
                                                                                  535
     ISTART=0
     IEND=0
                                                                            DAM
                                                                                  540
     DO 207 KK=1,NIT
                                                                            MAP
                                                                                  545
```

	NTRH=NPITN1 (ITN.KK)	QAH	550
	IF(ISTART.NE.O) GO TO 210	MAD	555
	IF (IORIG. EQ. NTRM) GO TO 209	MAD	560
	IF(IORIGT.EQ.NTRM) GO TO 219	GAH	565
	GO TO 207	DAM	570
200	ISTART=KK		575
204		MAD	
	NORIG=NTRM	MAG	580
	GO TO 207	QAH	585
219	ISTART=-KK	MAD	590
	NORIG= NTRH	QAH	595
	IF(ICHECK.LE.O) NTRAN=NTRH	MAD	600
	GO TO 207	MAG	605
210	IF(IDEST.EQ.NTRN) GO TO 211	QAH	610
	IF(IDESTI.EQ.NTRM) GO TO 221	QAH	615
	60 10 207	MAD	620
211	TEND=KK	QAH	625
	NDEL=NTRM	QAH	630
	GO TO 226	QAN	635
221	IEND=-KK	QAH	640
	IF(ICHECK.LE.O) NTRANS=NTRM	QAM	645
	GO TO 226	MAD	650
207	CONTINUE	MAD	655
	GO TO 206	MAD	660
226	LIM1=JABS(ISTART) +1	MAD	665
	LIM2=IARS(IEND)-1	MAD	670
	DO 505 KK=LIH1.LIM2	QAM	675
	IF (NORIG.NE.NPITN1 (ITN.KKI) GO TO 505	DAM	680
	IF(ISTART.GT.O) ISTART=KK	MAD	685
	IF(ISTART.LT.O) ISTART=-KK	MAD	690
	60 TO 227	DAH	695
	CONTINUE	DAH	700
		100000000000000000000000000000000000000	0.000
221	TI=IABS(ISTART) +1	MAD	705
	JJ=IABS(IEND)-1	QAM	710
	WT=ISEG(J, II-1,1)	DAM	715
	CURES=ISEG(J. II-1, 2)	MAG	720
	IF(JJ.LT.II) GO TO 436	MAD	725
	DO 230 KK=II,JJ	MAD	730
	IF (WT.GT.ISEG(J,KK,1)) WT=ISEG(J,KK,1)	QAM	735
	IF (CURES GT. ISEG(J.KK.2)) CUBES=ISEG(J.KK.2)	MAD	740
	CONTINUE	MAD	745
436	IF (L.EQ. 1. AND. NT. GT. TOTL) WT=TOTL	QAM	750
	IF (WT/CCONVF.LT.CUBES) CUBES=WT/CCONVF	QAH	755
	II=II-1	MAD	760
	IF(CUBFS.LT.CGOGN3(K)) GO TO 228	MAD	765
	CUBES= CGOGN3(K)	MAD	770
	CGOGN3 (K) = 0.	QAM	775
	GO TO 229	MAD	780
258	CGOGN3(K)=CGOGN3(K)-CUBES	QAM	785
229	ICUBES=CUBFS+.5	MAD	790
	JSEG(J,II,1)=JSEG(J,II,1)+ICUBES	MAD	795
	IF(IEND.GT.O) JSEG(J.JJ.2)=JSEG(J.JJ.2)+ICUBES	QAM	800
	IF(IEND.LT.0) JSEG(J.JJ.3)=JSEG(J.JJ.3)+ICUBES	MAD	805
	DO 231 KK=II,JJ	MAD	810
	ISEG(J, KK, 1)=ISEG(J, KK, 1)-CUBES+CCONVF	GAM	815
	ISEG(J.KK.2)=ISEG(J.KK.2)-CUBES	MAG	820

```
231 SEGUIJ.KKI=SEGUIJ.KKI+CUBES
                                                                             DAM
                                                                                  825
     LM1=IABS(ISTART)
                                                                             DAM
                                                                                  830
     LM2=IARS (IENO) -1
                                                                             RAM
                                                                                  8 35
     DO 20 LK=LM1,LM2
                                                                             MAD
                                                                                  840
     LM3=LM1+1
                                                                             MAP
                                                                                  845
     LM4=LM2+1
                                                                             MAD
                                                                                  850
     TORG=NPITN1 (ITN,LK)
                                                                             QAH
                                                                                  855
     DO 25 MM=LM3.LM4
                                                                             QAH
                                                                                  860
     IDES=NPITH1 (ITH, MM)
                                                                             QAM
                                                                                  865
  25 WRITE(7,7000) IORG, IDES, CUBFS
                                                                             QAH
                                                                                  870
7000 FORMAT(215.F10.2)
                                                                             MAD
                                                                                  875
  20 CONTINUE
                                                                             QAH
                                                                                  880
     IF (ISTART.GT.0)
                                                                             QAH
                                                                                  885
    1 SHIP(NORIG)=SHIP(NORIG)+CUBES
                                                                             QAH
                                                                                  890
      IF (NDEL.NF.0) DEL (NDEL) =DEL (NDEL) +CUBES
                                                                             MAP
                                                                                  8 95
      IF (NTRANS.NE.O) TRANS(NTRANS) = TRANS(NTRANS) + CUBES
                                                                             MAD
                                                                                  900
      IF (NTRAN.NE.O) TRANS (NTRAN) = TRANS (NTRAN) + CUBES
                                                                             QAM
                                                                                  905
      IF(NTRAN.NE.0) CTRANS= CTRANS+CUBES
                                                                             DAM
                                                                                  910
      IF(NTRANS.NF.O) CTRANS=CTRANS
                                         +CUBES
                                                                             MAD
                                                                                  915
      IF(NDFL.NE.0) CDEL=CDEL+CUBES
                                                                             QAH
                                                                                  920
      CSHIP=CSHIP+CUBES
                                                                             QAH
                                                                                  925
 206 CONTINUE
                                                                             MAD
                                                                                  930
 202 CONTINUE
                                                                             MAD
                                                                                  935
 200 CONTINUE
                                                                             QAM
                                                                                  940
     ENDFILE 7
                                                                             MAD
                                                                                  945
      WRITE (6,4000)
                            IDRUN
                                                                             QAH
                                                                                  950
4000 FORMAT (1H1, 4X, 12A6
                                                                             QAM
                                                                                  955
                .25(/).50x, *QUICKTRANS AIR-LIFT MODEL*//60x, *(QUAM)*)
                                                                             MAD
    1
                                                                                  960
      WRITE(6,2006)
                                                                             GAM
                                                                                  965
      DO 400 I=1.NTERM
                                                                             MAD
                                                                                  970
                                                                             QAH
      STAN(I)=0
                                                                                  975
      DO 415 JJ=1,NKGOGN
                                                                             DAM
                                                                                  980
      IF (CGOGN3(JJ).LE.0.0) GO TO 415
                                                                             MAD
                                                                                  985
      IF (MOD (KGOGN1(JJ)/100 .100) .NE.I) GO TO 416
                                                                             QAH
                                                                                  990
      STAN(I)=STAN(I)+CGOGN3(JJ)
                                                                             MAD
                                                                                  995
      GO TO 415
                                                                             QAH 1000
 416 TF(MOD(KGOGN1(JJ)/100000000,100).EQ.I) US(I)=US(I)+CGOGN3(JJ)
                                                                             QAH 1005
 415 CONTINUE
                                                                             QAH 1010
      TEMP(6)=US(I) +CCONVF
                                                                             QAM 1015
                                                                             QAH 1020
      TEMP(5) =STAN(I)
                             *CCONVF
      TEMP(3)=GFN(I) *CCONVF
                                                                             QAH 1025
      TEMP(2)=SHIP(I) *CCONVF
                                                                             Q4H 1030
      TEMP(1)=DEL(T) *CCONVF
                                                                             QAH 1035
      TEMP(4) =TRANS(I) *CCONVF
                                                                             QAM 1040
      00 500 LL=1,6
                                                                             QAM 1045
 500 TOT (LL) = TOT (LL) +TEMP (LL)
                                                                             QAM 1050
 400 WRITE(6,2007) ITNAM(I),(TEMP(J),J=1,6)
                                                                             QAM 1055
      WRITE(6,3000) (TOT(LL),LL=1,6)
                                                                             QAM 1060
      00 300 I=1, NROUTE
                                                                             QAM 1065
      RMI(I) = 0
                                                                             QAM 1070
      THAV(I)=0
                                                                             QAM 1075
                                                                             QAH 1080
      TMUS(I)=0
          J=MOC(IROUTE(I),1000)
                                                                             QAM 1085
      K=MOD ( IROUTF (I) /1000,10)
                                                                             QAM 1090
      WRITE(6,2000) J
                            .VNAM (K)
                                                                             QAH 1095
```

```
MOD(IROUTE(I)/10000,100)
      ITN=
                                                                             QAH 1100
      NT=NPITIN(ITN)
                         -1
                                                                             QAH 1105
     00 302 JJ=1.4
                                                                             QAM 1110
302 TOT (JJ) = 0.0
                                                                             QAM 1115
      00 301 J=1.NT
                                                                             QAH 1120
     TORIG=MPTTN1(ITN,J)
                                                                             QAH 1125
     TDES=NPITN1 (TTN, J+1)
                                                                             QAM 1130
306 TEMP(1)=FLOAT (IROUTE (T)/1000000) +. 01
                                                                             QAH 1135
      K=FLOAT(IDES)/3.+.9
                                                                             QAM 1140
      ITYPE=MCD(IROUTE(I)/1000,10)
                                                                             QAH 1145
       M=MOD (IDES, 3)
                                                                             QAM 1150
       IF (M.LE.D) M=3
                                                                             QAH 1155
      TEMP(2) = MOD(IDIST(IORIG, K) /10000++(M-1),10000)
                                                                             QAH 1160
      TEMP(3)=CAPACH(ITYPE) * TEMP(1)
                                                                            QAH 1165
      RMI(I) = RMI(I) + TEMP(2) + TEMP(1)
                                                                             QAH 1170
      TEMP(4) =TEMP(2) +TEMP(3) /2000.
                                                                             QAH 1175
      TEMP(5) = SEGU(I.J) *CCONVF
                                                                             QAH 1180
      THAV(I)=THAV(I)+TEMP(4)
                                                                             QAH 1185
      TEMP(6)=TEMP(5)+TEMP(2)/2000.
                                                                             QAH 1190
       THUS ([] = THUS ([] + TEMP (6)
                                                                             QAM 1195
      IF (TEMP(2).GT.0.0) TEMP(7) =TEMP(6)/TEMP(4)+100.
                                                                             QAM 1200
      TEMP(8)=0.
                                                                            QAH 1205
      IF(TEMP(4) +.8.LE.TEMP(6)) TEMP(8) = TEMP(6) - (.8+TEMP(4))
                                                                             QAH 1210
      IF(TEMP(2).LE.0.0) GO TO 301
                                                                             QAH 1215
      TEMP(9)=TEMP(8)+2000. /TEMP(2)
                                                                             QAM 1220
     00 303 JJ=1.8
                                                                             QAH 1225
                                                                             QAM 1230
     IF(JJ.EQ.6) GO TO 303
                                                                             QAM 1235
     TOT (JJ) = TOT (JJ) +TEMP (JJ+1)
                                                                             QAH 1240
303 CONTINUE
 301 WRITE(6,2001) ITNAM(IORIG), ITNAM(IDES), (TEMP(L), L=1,9)
                                                                             QAM 1245
     IF (THAV (1) . GT. 0) TOT (6) = THUS (1) / THAV (1) +100.
                                                                             QAH 1250
     WRITE(5,2011) (TOT(J), J=1,8)
                                                                             QAH 1255
2011 FORMAT(//5x,*TOTAL*,16x,F6.0,1x,2(?x,F12.0),2F12.0,4X,F8.3,
                                                                             QAM 1260
    1 F14.0, 2X, F14.01
                                                                             QAM 1265
                                                                             QAH 1270
      WRITE(6,2002)
      ON= 0
                                                                             QAH 1275
                                                                             QAM 1280
      OFF=0
     00 318 LL=1,6
                                                                             QAH 1285
 318 TOT(LL) =0
                                                                             QAH 1290
                                                                             QAN 1295
     NT=NT+1
                                                                             QAM 1300
       00 309 J=1.NT
                                                                             QAM 1305
     IORIG=NPITN1(ITN,J)
     TEMP(2) =FLOAT (JSEG(I,J,1)) *CCONVF
                                                                             QAM 1310
     IF (J.E C.1) SAVE=TEMP(2)
                                                                             QAM 1315
                                                                             QAM 1320
     TEMP(3) = SAVE
     TEMP(1) =0
                                                                             QAH 1325
                                                                             QAM 1330
     IF (J.EQ. 1) GO TO 315
     TEMP(1)=FLOAT (JSEG(I,J-1,2)+JSEG(I,J-1,3)) *CCONVF
                                                                             QAM 1335
                                                                             QAH 1340
315 OFF=OFF+TEMP(1)
      ON=ON+ TEMP(2)
                                                                             QAH 1345
     TEMP (5) = 0
                                                                             QAM 1350
     TEMP (6) = 0
                                                                             QAH 1355
     SAVE =ON-OFF-FLOAT (JSEG(I,J,2)+JSEG(I,J,3))+CCONVF
                                                                            QAH 1360
 321 TEMP(4) = ON-OFF
                                                                             QAM 1365
     IF (J.EQ.1) GO TO 320
                                                                             QAM 1370
```

```
TEMP(5) =FLOAT(JSFG(I.J-1.2)) +CCONVF
                                                                              QAH 1375
     TEMP (6) FLOAT (JSFG (I.J-1.3) ) CCONVF
                                                                               QAH 1380
 320 NO 319 LL=1.6
                                                                               QAH 1385
 319 TOT (LL) = TOT (LL) + TEMP (LL)
                                                                              QAM 1390
 309 WRITE(6.2003) ITNAM(IORIG),
                                                 (TEMP(L) ,L=1,6)
                                                                              QAH 1395
       WRITE (5, 2009) (TOT (LL), LL=1,6)
                                                                               QAH 1400
 300 CONTINUE
                                                                              QAH 1405
      TMD=0
                                                                              QAH 1410
     00 326 K=1.2
                                                                              QAH 1415
      00 327 LL=1,10
                                                                              QAN 1420
 327 TOT (LL) = 0.0
                                                                              QAH 1425
     WRITE(6,2010) VEH(K)
                                                                              QAH 1430
2010 FORMAT(1H1, 4X, A6, * REPORT*//)
                                                                              QAM 1435
                                                                              QAH 1440
      WRITE(6,2004)
     DO 316 I=1.NPOUTE
                                                                              QAM 1445
      ITYPE=MCD (IROUTE (I)/1000,10)
                                                                              QAM 1450
     CR(ITYPE)=CSTR(ITYPE)
                                                                              QAH 1455
     IF (K.EQ.1.AND. VNAM (ITYPE).EQ. VFH(2)) GO TO 316
                                                                              QAH 1460
     TF(K.EQ. 2. AND. VNAM (ITYPE) . NE. VEH(2)) GO TO 316
                                                                              QAH 1465
                                                                              QAH 1470
      NAME=MOC(TROUTE(I),1000)
      FEE=0.
                                                                              QAH 1475
      TC=0
                                                                              QAH 1480
      DAY= FLOAT (TROUTE (T)/1000000) *.01
                                                                              QAM 1485
                                                                              QAM 1490
      ITN=MOD (IROUTE (I) /10000,100)
      LAND=(NPITIN(ITN)-1) + DAY
                                                                              QAM 1495
                                                                              QAM 1500
      FL=TMUS(I)/
                         THAV(I)
                                     -100.
                                                                              QAH 1505
      TMC=0.
      TM=0.0
                                                                              QAM 1510
     IF (VEH(2).EQ. VNAM(ITYPE)) GO TO 317
                                                                              QAH 1515
      TH=RMI(I) *CSTR(ITYPE)
                                                                              QAM 1520
      FEE=CLAND*FLOAT (LAND)
                                                                              QAH 1525
                                                                              QAH 1530
     GO TO 1317
                                                                              QAN 1535
 317 TH=CSTR(ITYPE) +DAY
                                                                              QAM 1540
     CR (ITYPE)=TM/RMI(I)
1317 TC=FEE+TH
                                                                              QAN 1545
                                                                              QAH 1550
      CSTSYS=CSTSYS+TC
                                                                              QAH 1555
      TMD=TMD+TMUS(I)
      IF (THUS(I).GT.0.0) THC=TC/THUS(I)
                                                                              QAM 1560
      IF (THAV(I).GT.D) THAC=TC/THAV(I)
                                                                              QAM 1565
      TOT (1) = TOT (1) + LAND
                                                                              QAM 1570
      TOT (2) = TOT (2) + RMI (1)
                                                                              QAH 1575
      TOT(3) = TOT(3) + TMAV(1)
                                                                              QAH 1580
      TOT (4) = TOT (4) +THUS (1)
                                                                              QAH 1585
      TOT (6) = TOT (6) + TM
                                                                              QAN 1590
      TOT (7) = TOT (7) +FEE
                                                                              QAN 1595
                                                                              QAM 1600
      TOT(8) = TOT(8) +TC
     VSUMC(ITYPE) = VSUMC (ITYPE) +TC
                                                                              QAM 1605
     VEHS(ITYPE, 1) = VEHS(ITYPE, 1) +LAND
                                                                              QAM 1610
     VEHS(ITYPE, ?) = VEHS(ITYPE, 2)+RMI(I)
                                                                              QAH 1615
     VEHS(ITYPE,3)=VEHS(ITYPE,3)+THAV(I)
                                                                              QAM 1620
                                                                              QAN 1625
     VEHS (ITYPE, 4) = VEHS (ITYPE, 4) +
                                       THUS(I)
     VEHS(ITYPE,6)=VEHS(ITYPE,6)+TM
                                                                              QAM 1630
     VEHS(ITYPE,7)=VEHS(ITYPE,7)+FEE
                                                                              QAN 1635
                                                                              QAH 1640
     VEHS(ITYPE, 8) = VEHS(ITYPE, 8) +TC
     WRITE(6,2005) NAME, LAND, ITYPE, RMI(I), THAV(I), THUS(I), FL,
                                                                              QAN 1645
```

```
CR(ITYPE) . TH, FEE . TC . THAC . THC
                                                                              QAH 1650
316 CONTINUE
                                                                              QAN 1655
     IF (TOT(3).GT.0) TOT(9)=TOT(8)/TOT(3)
                                                                              QAH 1660
     IF (TOT (4).GT.0) TOT (10)=TOT (8) /TOT (4)
                                                                              QAH 1665
      IF (TOT (3) .GT.0) TOT (5)=TOT (4) /TOT (3) *100.
                                                                              QAM 1670
      WRITE(6,2012) (TOT(J),J=1,10)
                                                                              QAM 1675
2012 FORMAT(//5x, *TOTAL *,1x, F6.0, 4x, 3F11.0, 2x, F6.2, 7x, F12.2, F10.0,
                                                                              QAH 1680
    1 10x,F10.0,1X,2F10.3)
                                                                              QAM 1685
     IF (K.NE.1) GO TO 326
                                                                              QAH 1690
     COSTA=ADJT*TOT(8)
                                                                              QAH 1695
     TOT(8) = TOT(8) + COSTA
                                                                              QAH 1700
     CSTSYS=CSTSYS+COSTA
                              +TCOST
                                                                              QAH 1705
     WRITE(6,999) ADJT, COSTA, TOT(8)
                                                                              QAH 1710
 999 FORMAT(///5x, *AIRCRAFT COST ADJUSTMENT FACTOR =*, F10.3,
                                                                              QAH 1715
    1 *.COST INCREASE =*,F15.3,*, TOTAL AIRCRAFT COST =*,F15.3)
                                                                              QAH 1720
 326 CONTINUE
                                                                              QAH 1725
     00 888 KK=1.10
                                                                              DAM 1730
 888 TOT (KK) = 0
                                                                              QAM 1735
     WRITE (6.2013)
                                                                              QAM 1740
     00 329 JJ=1,NVAT
                                                                              QAH 1745
     IF (VEHS (JJ. 3).GT.0) TEMP(1)=VSUMC(JJ) /VEHS(JJ.3)
                                                                              QAM 1750
      IF (VEHS (JJ.4).GT.0) TEMP(2)=VSUMC (JJ)/VEHS(JJ.4)
                                                                              QAM 1755
     IF (VEHS (JJ. 3) . GT. 0) VEHS (JJ. 5) = VEHS (JJ. 4) / VEHS (JJ. 3) +100.
                                                                              QAM 1760
     00 655 KK=1.8
                                                                              QAM 1765
 655 TOT (KK) = TOT (KK) + VEHS (JJ,KK)
                                                                              QAM 1770
 329 WRITE(6,2014) VNAM(JJ), (VEHS(JJ,KK), KK=1,5), CR(JJ)
                                                                              QAM 1775
    1. (VEHS(JJ, KK), KK=6,8), TEMP(1), TEMP(2)
                                                                              QAM 1780
      WRITE(5,5555) TOOST,COSTA
                                                                              DAN 1785
5555 FORMAT(92x,1H+,F8.0,1H+,F11.0,+ (TAX AOJ)+)
                                                                              QAH 1790
                                                                              QAM 1795
     TOT (5) = TCT (4) / TOT (3) *100.
     TEMP(1) = TOT (6) / TOT (2)
                                                                              QAM 1800
     TOT (8) = TCT (4) + COSTA
                             +TCOST
                                                                              QAM 1805
      TOT (9) = TCT (8) / TOT (3)
                                                                              QAH 1810
                                                                              QAM 1815
     TOT(10) = TOT(8) / TOT(4)
     WRITE(6,4444) (TOT(KK),KK=1,5),TEMP(1),(TOT(KK),KK=6,7)
                                                                              QAM 1820
    1,TCOST, (TOT (KK),KK=8,10)
                                                                              QAM 1825
4444 FORMAT(//4x,*TOTAL*,F9.0,F11.0,1X,2F12.0,2X,F6.2,1X,F7.4,F13.2,
                                                                              QAM 1830
    1 F10.0, F8.0, F12.0, 1X.2F10.3)
                                                                              GAN 1835
2013 FORMAT(1H1,4x, *MANAGEMENT SUMMARY*/5x,18(1H-)//57x,*LOAD*,
                                                                              QAM 1840
    13X, *RATE*,6X, *TOTAL*/5X, *V/A*,14X, *MILES*,3X,2(3X, *TON/MILES*),2X,QAM 1845
                                                                              QAN 1850
    2#FACTOR*,2x,*PER*,6x,*MILEAGE*,4X,*LANDING *,2X,*TERMINAL*,3X,
    4*TOTAL *, 2(3x, *TON/ MILFS*)/
                                                                              QAM 1855
    45X. *TYPF*, 4X. *STOPS*, 3X.
                                                                              QAM 1860
    5*TRAVELFD*.4X, *AVAILABLE*.5X, *MOVED*,4X, *ACHVED*,2X, *MILE*.6X,
                                                                              QAM 1865
    6*COST*, 8x, *FEES*, 2(5x, *COSTS*), 3x, *(AV) COST*, 3x, *(HV) COST*)
                                                                              QAM 1870
2014 FORMAT(4X, A6, F8.0, F11.0.1X, 2F12.0.2X,
                                                                              QAM 1875
    1F6.2,1X,F7.4,F13.2,F10.0,8X,F12.0,1X,2F10.3)
                                                                              QAH 1886
      TEMP(1) = CGFN+CCONVF
                                                                              QAH 1885
      TEMP(2) = CSHIP + CCONVE
                                                                              QAM 1890
       TEMP(3) = CDEL + CCONVF
                                                                              QAM 1895
      TEMP(4) =CTRANS +CCONVF
                                                                              QAM 1900
      TEMP(5)=CSTSYS
                                                                              QAH 1905
      TEMP(6) = CSTSYS/THD
                                                                              DAM 1910
       TEMP(7) = CSTSYS/(TEMP( 3)/2000.)
                                                                              QAM 1915
        WRITE (6, 2008) (TEMP(J), J=1,7)
                                                                              DAM 1920
```

```
2008 FORMAT(///5X,*TOTAL POUNDS GENERATED = + ,F20.2/5X,
1 *TOTAL FOUNDS SHIPPED = + ,F20.2/5X, *TOTAL POUNDS DELIVERED = *, QAM 1930
    2F12.2/5X, *TOTAL POUNDS TRANSLOADED = *F20.2/5X,
                                                                             QAM 1935
    3 TOTAL SYSTEM COST (IN DOLLARS) = +,F20.4/5x, TOTAL COST PER TON/HOAM 1940
    4TLE = *.F12.4/5x.*TOTAL COST PER TON = *.F12.4)
                                                                             QAM 1945
2002 FORMAT (////8x, *TERMINAL*,6x,
                                                                             QAH 1950
    1*OFF LOAD*,4x,*ON LOAD*,4x,* THRU *,4x,*DEPART*,
                                                                             QAH 1955
    2 4x, *DELVY UNLOAD*, 4x, *TRANSLOAD*/
                                                                             QAH 1960
                             *POUNDS*,6x, *POUNDS*,4x, *POUNDS*,
                                                                             QAM 1965
    3 4x, *POUNDS*7x, *POUNDS*, 8x, *POUNDS*)
                                                                             QAH 1970
2009 FORMAT(/// 5x, +TOTAL+,7x,
                                                                             QAM 1975
                          F12.0,F11.0,F10.0,4X,F12.0,F13.0,F13.0)
                                                                             QAM 1980
2003 FORMAT (8x. A4.6x.
                          F12.0,F11.0,F10.0,2X,F12.0,F13.0,F13.0)
                                                                             QAM 1985
2000 FORMAT(1H1.4x. + SEGMENT OPERATIONS SUMMARY + /5x, 26(1H-)
                                                                             QAN 1990
    1///57X.16.5X.A6 //8X.+SEGMENT+.4X.+TRIPS+.3X.+MILES+.2 (3X.+TOTAL AQAM 1995
    2VAIL+1,3x,+TOTAL LIFT+,5x,+TOTAL+,8x,+LOAD+
                                                                             QAH 2000
    1,5X, *TON/HILES*, 8X, *POUNDS*/5X, *FROM*, 6X.
                                                                             QAM 2005
        *TO*,18X,*CABIN LOAD*,5X,*TON/MILES*,5X,*UTILIZED*4X,*TON/MILESQAM 2010
    5+,5X,+FACTOR+,4X,+OVERFLOWN+,6X,+OVERFLOWN+/
                                                                             QAM 2015
                    37X. *POUNDS*, 22X, *POUNDS*, 7X, *MOVED*, 6X, *ACHIEVED*
                                                                            QAM 2020
    6.1X. *UPON DEPARTURE*, 2X, *UPON DEPARTURE* )
                                                                             QAH 2025
2001 FORMAT(5x, A4, 4x, A4, F7.2 , 3x, F5.0, 1x, 2 (3x, F11.0), 2F12.0,
                                                                             QAM 2030
                    4X,F8.3,F14.0,2X,F14.0)
                                                                             QAH 2035
2004 FORMATI
                 5x, *MANAGEMENT SUMMARY*/5x, 18 (1H-)//57x, *LOAD*,
                                                                             QAM 2040
    13X, *RATE*, 4X, *TOTAL*/19X, *V/A*, 4X, *MILES*, 4X, 2(*TON/MILES*, 1X), 1X, QAM 2045
    2 FACTOR + ,2 X, *PER + ,4 X, *MILEAGE + ,4 X, *LANDING +,2 X, *TERMINAL +, 3 X,
                                                                             QAH 2050
    4*TOTAL*,2(3X,*TON/HILES*)/
                                                                             QAH 2055
                                  5x, *ROUTE*, 2x, *STOPS*, 2x, *TYPE*, 2x,
                                                                             QAM 2060
    STTRAVELED+,2X, TAVAILABLE+,3X, THOVED+,4X, TACHVED+,2X, THILET,4X,
                                                                             QAM 2065
    6+COST+, 8x, +FEES+,2(5x,+COSTS+),3x,+(AV) COST+,3x,+(HV) COST+)
                                                                             QAM 2070
2005 FORMAT(4x, 15, 2x, 14, 2x, 14, 1x,
                                         F9.0,1X,F10.0,1X,F9.0,2X,
                                                                             QAH 2075
    1F6.2,1X,F7.4,1X,F10.2,1X,F9.0,12X,F8.0,1X,2F10.3)
                                                                             Q805 MAD
2006 FORMAT (1+1, *SYSTEM CARGO SUMMARY*/1X, 21 (1H-) ///5X, *TERMINAL *, 5X,
                                                                            QAM 2085
    1*CARGO*,2(8X,*CARGO*),9X,*CARGO*,10X,*CARGO*,10X,*CARGO*
                                                                             QAH 2090
                                        /7X, *CODE*, 5X, *DEL (LBS) *, 3X,
                                                                             QAH 2095
    2*SHIPD (LBS)*,3X,
                                                                             QAH 2100
    2*GEN (LBS)*,3X,*TRNSLD (LBS)*,3X,*UNMOVED (LBS)*,3X,*UNSHIPD (LBS)QAM 2105
                                    /5X,8H-----,3X,9H-----,
                                                                             QAM 2110
    43x,11H-----,3x,9H-----,3X,12H-----,
                                                                             QAH 2115
    5 2 (3X+13H-----))
                                                                             QAH 2120
3000 FORMAT(6x, *TOTAL*
                                                                             QAH 2125
                                                                             QAM 2130
                  .2F14.0,F12.0,3F15.0)
2007 FORMAT (7x, A4, 2F14.0, F12.0, 3F15.0)
                                                                             QAH 2135
                                                                             QAH 2140
     WRITE(6,666)
 666 FORMAT (1H1)
                                                                             QAH 2145
     WRITE(6,777) (KGOGN1(I),CGOGN3(I),T=1,NKGOGN)
                                                                             QAM 2150
                                                                             QAH 2155
 777 FORMAT(4(I15,F10.0))
      STOP
                                                                            QAH 2160
                                                                             QAH 2165
      END
```

	SUBROUTINE LINKS(NP, NLINK , NPT, NPT1, LINK, ITNAM) DIMENSION NPT(40), NPT1(40,20), LINK(3000), ISAVE(5), ITNAM(99) WRITE(6,4000)	LNK LNK LNK	5 10 15
4000	FORMAT(1H1,4X, FERROR TRACE - INCOMPLETE ROUTING #///	LNK	20
1	L5x, *COMPLETED SEGMENTS*, 5x, *ORIGIN SEGMENTS ROUTED*)	LNK	25
	DO 10 I=1.NLINK	LNK	30
	ISAVE(1) = MOD(LINK(I)/100,100)	LNK	35
	ISAVE(2)=MOD(LINK(I)/10000,100)	LNK	40
	TSAVE(3)=MOD(LINK(I)/1000000.100)	LNK	45
	ISAVE(4) = MOD(LINK(I)/10++8.100)	LNK	50
	ISAVE(5) =MOD(LINK(I),100)	LNK	55
	TCNT=0		
		LNK	60
	NSAVE=4	LNK	65
	IF(ISAVE(2).GT.0) GO TO 16	LNK	70
	ISAVE(2)=ISAVE(5)	LNK	75
	MSAVE=1	LNK	80
	60 TO 15	LNK	85
16	TF(ISAVE(3).GT.0) GO TO 17	LNK	90
	NSAVE=2	LNK	95
	ISAVE(3)=ISAVE(5)	LNK	100
	GO TO 15	LNK	105
17	IF(ISAVE(4).GT.0) GO TO 15	LNK	110
	NSAVE=3	LNK	115
	ISAVE(4)=ISAVE(5)	LNK	120
15	NO 20 J=1,NSAVE	LNK	125
	00 30 K=1,NP	LNK	130
	NN P=NPT (K)	LNK	135
	TCK=0	LNK	140
	DO 35 L=1,NNP	LNK	145
	IF(ICK.EQ.0) GO TO 36	LNK	150
	IF(ISAVE(J+1).NE.NPT1(K,L)) GO TO 35	LNK	155
	ICNT=ICNT+1	LNK	160
	60 TO 20	LNK	165
36	IF(ISAVE(J).NE.NPT1(K.L)) GO TO 35	LNK	170
	ICK=1	LNK	
35	CONTINUE	LNK	_
75000	CONTINUE	LNK	
	CONTINUE	LNK	190
	IF(NSAVE.EQ.ICNT) GO TO 10	LNK	
	MSAVE=NSAVE+1	LNK	
	DO 40 J=1.NSAVE	LNK	100000000000000000000000000000000000000
	KK=ISAVE (J)	LNK	
40	ISAVE(J)=ITNAM(KK)	LNK	
40	WRITE(6,2000) ICNT, (ISAVE(K), K=1, NSAVE)	LNK	
2000	FORMAT(13x, 15, 7x, 5A4)	LNK	
	CONTINUE	LNK	
10	RETURN		235
		LNK	
	END	LNK	240

```
SUBROUTINE TABLE (NTERM, ITNAM, NCGN, KG, CG, IDENT)
                                                                              TAB
      DIMENSICH LINE (100,3), ITNAM(99), KG(7000), CG(7000), IDENT(12)
                                                                              TAB
                                                                                    10
    1.XLINE(100), SMSH(99), SMDL(99)
                                                                              TAB
                                                                                     15
     DO 666 I=1.NTERM
                                                                              TAB
                                                                                    20
     SM5 4(1) =0
                                                                              TAR
                                                                                     25
666 SMDL (I) = 0
                                                                              TAB
                                                                                     30
     SMD=0
                                                                              TAB
     SMG=0
                                                                              TAB
                                                                                     40
     WRITE(6,2000) (IDENT(I), I=1,12)
                                                                              TAB
                                                                                     45
2000 FORMAT(1H1,59X,12A6///)
                                                                              TAB
                                                                                     50
     ICHECK= 0
                                                                              TAB
                                                                                    55
     LIM1=1
                                                                              TAB
                                                                                     60
     LIM2=6
                                                                              TAB
                                                                                    65
400 IF (NTERM.LT.LIM2) LIM2=NTERM
                                                                              TAB
                                                                                     70
     TF(ICHECK.EQ.0) GO TO 10
                                                                              TAB
                                                                                    75
      WRITE(6,2001)(ITNAM(I), I=LIH1, LIM2)
                                                                              TAB
                                                                                     80
2001 FORMAT(1H1.1X.////5X.6(+++,7X,A4.7X))
                                                                              TAB
                                                                                     85
     WRITE(6,2003)
                                                                              TAB
                                                                                    90
     GO TO 15
                                                                              TAR
                                                                                    95
  10 WRITE(6,4002) (ITNAM(I), I=LIM1, LIM2)
                                                                              TAB
                                                                                   100
4002 FORMAT(5x,6(+++,7x,A4,7X))
                                                                              TAB
                                                                                   105
     WRITE(6,2003)
                                                                              TAB
                                                                                   110
  15 DO 100 I=1.NTERM
                                                                              TAB
                                                                                   115
     00 150 KK=1.NTERM
                                                                              TAB
                                                                                   120
     XLINE(KK)=0
                                                                              TAB
                                                                                   125
     00 150 JJ=1,3
                                                                              TAB
                                                                                   1 30
 150 LINE (KK, JJ) = 0
                                                                              TAB
                                                                                   135
     00 200 J=LIM1.LIM2
                                                                              TAB
                                                                                   140
     IF (I.EQ.J) GO TO 200
                                                                              TAB
                                                                                   1 45
     JCHECK= J+I*100
                                                                              TAB
                                                                                   150
     DO 300 K=1, NCGN
                                                                              TAB
                                                                                   155
     IF(CG(K) .LF.0.0) GO TO 300
                                                                              TAB
                                                                                   160
     IF (JCHECK. NE. MOD (KG(K), 10000)) GO TO 300
                                                                              TAB
                                                                                   165
     XLINE(J)=XLINE(J)+CG(K)
                                                                              TAB
                                                                                   170
     ID3=MOD (KG(K)/10**8.100)
                                                                              TAB
                                                                                   175
     IF(103.GT.0) LINE(J.3)=ITNAH(103)
                                                                              TAB
                                                                                   1 80
     ID1=MOD (KG(K)/10000.100)
                                                                              TAB
                                                                                   185
     TD2=HOD (KG(K)/1000000,100)
                                                                              TAB
                                                                                   190
                                                                              TAR
     IF (ID1. GT. 0) LINE (J. 1) = ITNAH(ID1)
                                                                                   195
      IF(ID2.GT.O) LINE(J.2)=ITNAM(ID2)
                                                                              TAB
                                                                                   200
     SMSH(I)=SMSH(I)+CG(K)
                                                                              TAB
                                                                                   205
                                                                              TAB
     SMOL (J) = SMOL (J) +CG(K)
                                                                                   210
     SMG=SMG+CG(K)
                                                                              TAB
                                                                                   215
     SMD=SMD+CG(K)
                                                                              TAB
                                                                                   220
 300 CONTINUE
                                                                              TAB
                                                                                   225
 200 CONTINUE
                                                                              TAR
                                                                                   230
     IF (LIM2.EQ.NTERM) GO TO 410
                                                                              TAB
                                                                                   235
     WRITE(6,2002) ITNAM(I), (XLINE(J), (LINE(J,K),K=1,3),J=LIP1,LIM2)
                                                                              TAB
                                                                                   240
2002 FORMAT(1x, 44,6(1H., F6.1, 344))
                                                                              TAR
                                                                                   245
     WRITE(6,2003)
                                                                              TAB
                                                                                   250
                           ,18(6H-----), *----*)
2003 FORMAT(5x,*+*
                                                                              TAB
                                                                                   255
     GO TO 100
                                                                              TAB
                                                                                   260
 410 WRITE(6,2002) ITNAM(I), (XLINE(J), (LINE(J,K),K=1,3),J=LIM1,LIM2)
                                                                              TAB
                                                                                   265
     WRITE(6,2003)
                                                                              TAB
                                                                                   270
```

100	CONTINUE		TAB	275
	IF (LIM2.NE.NTERM) GO TO 160		TAB	280
	WRITE(6,2004) (ITNAM(I), SMSH(I), SMOL(I), I=1, NTERM)		TAB	285
	WRITE(6,2005) SHG, SHD		TAB	290
2004	FORMAT(1H1,4x, *CARGO GEN/DEL SUMMARY*//5x, *TERMINAL	GENERATED+	TAB	295
	1* DELIVERED*/(9x, A4, 2F12.1)//)		TAB	300
2005	FORMAT(5x,*TOTAL*,3x,2F12.1)		BAT	305
	RETURN		TAB	310
160	LIM1=LIM2+1		TAB	315
	LIM2=LIM1+5		TAB	320
	ICHECK=1		TAB	325
	GO TO 400		TAB	330
	ENO		TAB	335

APPENDIX B

SAMPLE COMPUTER RUNS

Proposed QUICKTRANS transport network of October 1975 is given as sample run. Figure 2 is a related network diagram of sample.

QUICKTRANS STRUCTURE FY 75

SCHEDULED TRUCK FEEDER
L-100 30 ROUTES

Figure 2 - QUICKTRANS Route Diagram

JACK CUNNINGHAM 30 OCT 1975 (TRUCKS/AIRCRAFT)

QUICKTRANS AIR-LIFT HODEL

(DUAN)

SYSTEM CARGO SUMMARY

CARGO	UNSHIPO (LBS)		•	:	•	:	363682.	:	•	:	•	:	•		767669
CARGO	UNHOVED (LBS)	***********	•	•		•		12000.	40500.	257848.	•	:	:	•	TABLE
CARGO	TRNSLO (LBS)	***********	.0	1607302.			264250.	•	-			39948	828782.	•	2702274
CARGO	GEN (LBS)		946372.	2264304.	182040.	650168.	541280.	12000.	+0500	257040.	192000.	1457688.	2069040	683620.	939664
CARGO	SHIPD (LBS)	***************************************	946372.	2264304.	182040.	650168.	541280.	-	.0	•	192000.	1457688.	2069040.	683620.	- 10866
CARGO	DEL (185)		1307406.	2133680.	166078.	680808.	606198.			•	193512.	1355384.	1643794.	855502	1012162
TERMI NAL	2002		000	NGU	ING	CHS	MIP	100	XON	MPA	NBE	AZH	Suu	101	TOTAL

•		00A	•		NGU	+		UNI	٠		CHS	•		MIP				50
000	0.0 .000	0.0	•	. 209.5			12.3			50.1 NGU	D D N		27.6 NGU	0.0		1.0 NGU NIP		Ş
MGU.	NGU. 300.1			9.0			12.9		-	144.3		-	148.1			9.0 NIP	Z	0
IND.	IND. 11.1 NGU	NGU		24.4			0.0			8.9			, ,			0.0		
CHS.	88.5	CHS. 88.5		97.0			6.1 NGU	NGU		0.0			6.1			4.9 NIP	7	
MIP.	NIP. 28.5			137.4			2.7 NGU	NGU	٠	8.2			0.0			0		
COF	COF. 0.0			din e.	NIP		0.0		٠	•	- B NIP		0.0			0.0		
NOX.	MOX. 1.5 NIP	MIP	•	11.3 NTP	P		•	NIP NGU	•	din 8.	MIP		0.0			0.0		
NPA.	NPA. 17.6 NIP	MIP		47.9 NIP	MIP		1.3	1.3 NIP NGU		15.1 NIP	dIN		0.0			0.0		
NBE.	NBE. 12.0 NGU	. 12.0 NGU		19.0		٠	1.0 NGU	NGU		1.0 NGU	NGU		16.0 NGU	O.	٠	0.0		
NZY.	49.3	NZV. 49.3 NGU		220.6			13.7		•	31.5			35.6			4.1 NIP	N	
Suu.	121.0	1. 121.0 NGU	•	244.2			24.6			66.6 NGU	NGU		59.9 NGU	O.		13.3 NGU	S	MIP
TCH.	M. 23.9 SUU	TCM. 23.9 SUU NGU	•	55.9 Suu	Suu		9.0	8.0 SUU NGU	٠	13.3	13.3 SUU NGU		5.3 S	5.3 SUU NGU		2.7 SUU	SE	MGU NIP

•		XON	•		MPA	•		N BE	•		NZN	٠		SUU				TCH	
DOV.	0.1	DOV. 1.0 NGU NIP	•	16.4	NGU	16.4 NGU NIP	2.0 NGU	NGU	•	63.4		•	62.3			27	27.6 SUU	5	
MGU.	9.0	NGU. 9.0 NIP	٠	43.8	43.8 NIP		18.0		٠	. 189.3		٠	198.4			59	59.2 SW	2	
TWO.	IND. 0.0		٠	1:1	1.1 MIP		1.1 NGU	NGU	٠	20.0		٠	11.1			•	8.9 SUU	2	
CHS.	CHS. 0.0		٠	3.6	3.6 NIP		0.0		•	17.0 NGU	NGU	٠	61.9	61.9 NGU		3	40.0 NGU	nos no	>
MIP.	NIP. 0.0		٠	0.0			19.0 NGU	NGU	•	29.9 NGU	NGU	٠	34.0	34.0 NGU		=	10.9 NGU	300	,
COF.	COF. 0.0	0.0	٠	0.0			0.0		•	1.5	1.5 NIP NGU	•	3.0	3.0 NIP NGU	5		0.0		
NOX.	NOX. 0.0	0.0 X	٠	0.0			0.0		•	5.3	5.3 NIP NGU		•	.8 NIP NGU	35	•	•		
MP A.	MPA. 0.0	D.0 .4		0.0			12.6	12.6 NIP NGU	•	15.1			15.1	15.1 NIP NGU	5	"	3.6 MIP	2	MGU SUU
MBE.	NBE. 0.0	0.0	٠	13.0	NGU	19.0 NGU NTP	0.0		•	0.0		•	17.0	17.0 NZY			5.0 NZV	38 7	,
HZY.	NZV. 5.5 NIP	MIP	٠	26.0	26.0 NTP		11.0		•	0.0		•	253.5			7	78.1 SUU	2	
Suu.	SUU. 1.1 NIP	NIP	٠	20.0	20.0 NIP		26.6 NZY	NZV	•	263.1		٠	0.0			194.3	m		
TCH.	0.0		•	1.3	SUU	1.3 SUU NGU NIP.	1.3	1.3 SUU NZY	•	65.2 SUU	Suu	•	164.9			•	0.0		

CARGO GEN/DEL SUMMARY

TERHINAL	GENERATED	DELIVERED
00 V	473.2	653.7
NGU	1132.2	1066.8
IND	91.0	83.0
CHS	325.1	340.4
NIP	270.6	303.1
COF	6.0	35.0
мах	20.3	16.6
NPA	128.5	130.2
NBE	96.0	91.8
NZY	728.8	677.7
รูบบ	1034.5	821.9
TCH	341.8	427.8
TOTAL	4648.0	4648.0

ERROR TRACE - INCOMPLETE ROUTING

COMPLETED SEGMENTS	ORIGIN SEGMENTS ROUTED
2	NBE NGU NIP NPA
2	NPA NIP NGU NBE
2	DOV NGU NIP COF
2	DOV NGU NIP NQ X
2	DOV NGU NIP NPA
1	NGU NIP COF
1	NGU NIP NQX
1	NGU NIP NPA
1	IND NIP NPA
1	CHS NIP COF
1	CHS NIP NPA
1	COF NIP NGU
1	NOX NIP DOY
1	NQX NIP NGU
2	NOX NIP NGU IND
1	NOX NIP CHS
2	NOX NIP NGU NZY
2	NOX NIP NGU SUU
1	NPA NIP DOV
1	MPA NIP NGU
2	NPA NIP NGU IND
1	NPA NIP CHS
2	NPA NIP NGU NZY
2	NPA NIP NGU SUU
3	NPA NIP NGU SUU TCH
1	NZY NIP COF
1	NZY NIP NQX
1	NZY NIP NPA
1	COF NIP CHS
2 2 2	COF NIP NGU NZY
2	COF NIP NGU SUU
2	SUU NGU NIP COF
1	SUU NIP NQX
1	SUU NIP NPA
3	TCM SUU NGU NIP COF
3	TCM SUU NGU NIP NPA

SEGHENT OPERATIONS SUMMARY

	POUNDS OVERFLOWN UPON DEPARTURE	•	•				
	LOAD TON/MILES FACTOR OVERFLOWN ACHIEVED UPON DEPARTURE	•	٠				
			73.687	TRANSLOAD POUNDS		;	:
	=	276038.	278038.		•	• >> 0.00	955502.
10 TRUCK	TOTAL LIFT UTILIZED POUNDS		. 855502.	DEPART DELVY UNLOAD POUNDS		•	855502.
	TOTAL AVAIL TON/HILES	377325.	377325.	THRU DEPAR			
	TOTAL AVAIL CABIN LOAD POUNDS	1161000.	1161000.	POUNDS POU	•		55502. 855502.
	MILES	.059	.050	POUNDS OF			855502. 85
	SEEMENT TRIPS	TCM 38.70					•
	SE EME FROM	nns	TOTAL	TERMINAL	Su	5	TOTAL

SEGMENT OPERATIONS SUMMARY

	POUNDS OVERFLOWN UPON DEPARTURE 64428.	64428.		
	TON/HILES OVERFLOWN DUPON DEPARTURE 3 20936.	21936.		
	FACTOR ACHIEVED 88.323	88.323	TRANSLOAD Pounds 353768.	353788.
	TOTAL TOM/HILES HOVED 222177.	222177.		329848. 3
TRUCK	TOTAL LIFT UTILIZED POUNDS 683620.	683620.	DEL VY UNLOAD POUNDS 0. 329640.	
=	TOTAL AVAIL TON/MILES	251550.	DEPART DEL Pounds 663620.	683620.
	CABIN LOAD TO POUNDS 774.000.	774000.	THRU S POUNDS 683620.	683620.
			ON LOAD POUNGS 683620.	683628.
	*	69	OFF LOAD POUNTS 683620.	683620.
	SEGMENT TRIPS FROM TO TCH SUU 25.80	TOTAL	TERHINAL TCH SUU	TOTAL

SEGNENT OPERATIONS SUMMARY

	SEGNENT TRIPS FROM TO	NZV NBE 12 NBE NGU 12	TOTAL	TERRITINAL N ZY N GU	TOTAL
	IPS MILES	12.90 1208. 12.90 1239.	2447.	OFF LOAD POUNDS 77860. 386999.	464859.
	CABIN LOAD POUNDS			ON LOAD POUNDS 332859. 132000.	464859.
		.000.	. 2000 - 2	THRU POUNDS 332.659. 254.999. 0.	587858.
11	TOTAL AVAIL TON/HILES	233748.	473495.	DEPART DEI FOUNDS 332859. 386999.	719858.
TRUCK	TOTAL LIFT UTILIZED POUNDS	332859	719858.	>2	
*	T TOTAL TON/MILES HOVED		. 440793.		307360.
				TRANSLOAD POUNDS 157499.	157499.
	LOAD FACTOR ACHIEVED U	96.010	93. 894		
	TOM/HILES R OVERFLOWN ED UPON DEPARTURE U	14848-	61997.		
	POUNDS OVERFLOWN	23259.	11055.		

SEGMENT OPERATIONS SUMMARY

TRUCK

15

POUNDS OVERFLOWN UPON DEPARTURE 2668.	588		
TON/HILES OVERFLONN UPON DEPARTURE 1653.	1653.		
FACTOR ACHIEVED 80.345 74.447	77.433	Q	***************************************
TOTAL TOW/MILES MOVED 385247.	733282.	TRANSLOAD POUNDS 0.	
TOTAL LIFT UTILIZED TO POUNDS 621868. 576216.	1198084.	DELVY UNLOAD POUNDS 105652. 532216.	637868
TOTAL AVAIL TO TON/MILES U 479493.	946989.	DEPART DEL POUNDS 621868. 576216.	1198084
	1548000.	THRU POUNDS 621868.	681868. 1138084.
TOTAL AVAIL CABIN LOAD POUNDS 774000	151	ON LOAD POUNDS 621668. 60000.	681868.
HILES 1239. 1208.	2447.	OFF LOAD POUNDS 185652. 576216.	681868.
25.80 25.80		P. T. 4. R.	9
SEGNENT N TO U NBE	J	ERNÍNAL NGU NZY	
FROM	TOTAL	F	TOTAL

SEGMENT OPERATIONS SUMMARY

TRUCK

16

POUNDS OVERFLOWN RE UPON DEPARTURE					
LOAD TOW/MILES FACTOR OVERFLOWN ACHIEVED UPON DEPARTURE	196627.				
LOAD FACTOR ACHIEVED	100.000	9	90	.6669	386999.
TOTAL TON/HILES HOVED	984140.		POUNDS		
TOTAL LIFT UTILIZED POUNDS		A0 1811 94	POUNDS	38700	367660.
	984141.	1910	POUNDS	6	773999.
	774000.	5	POUNDS		773999.
TOTAL AVAIL CABIN LOAD POUNDS	3 2		POUNDS	•	773999.
	2543.	-	POUNDS	3999.	773999.
TRIPS	23.80	990	2	"	173
EGNEN	TOTAL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	THE STATE OF THE S	ngn	TOTAL

2	1
₹	ì
Ē	í
SUMMARY	
S	1
Z	1
ĭ	1
=	
OPERATIONS	ļ
ā	1
0	1
E	-
EGMENT	1
5	Ì
w	ľ

	POUNDS OVERFLOWN UPON DEPARTURE	32060.	3216.				
	LOAD TOW/MILES FACTOR OVERFLOWN ACHIEVED UPON DEPARTURE	. \$224.	5724.				
	LOAD FACTOR ACHIEVED	84.94	64. 94.	040		:	•
	TOTAL TON/HILES HOVED	98259.	96259.	AD TRANSLOAD POUNDS		•	550468.
TRUCK	TOTAL LIFT UTILIZED POUNDS	550468.	550468.	DELVY UNLOAD POUNDS		. 550468.	
11	TOTAL AVAIL T	115668.	115668.	DEPART DE	550468		550468.
		.0000.	.0000.	POUNDS			550468.
	CABIN LOAD POUNDS			ON LOAD	550468.	:	550468.
	S MTLES	357.	357.	OFF LOAD	•	550468.	550468.
	SEGHENT TRIPS	CHS 21.60					•
	SEGMENT FROM	O NON	TOTAL	TERMINAL	NGN	S.	TOTAL

SEGMENT OPERATIONS SUMMARY

	POUNDS OVERFLOWN	•	•			
	LOAD TON/MILES FACTOR OVERFLOWN ACHIEVED UPON DEPARTME	•	•			
	FACTOR ACHIEVED	68.512	68.512	A0	70.	249878.
	TOTAL TON/HILES HOVED	79247.	79247.	TRANSLOAD	249878.	
TRUCK	TOTAL LIFT UTILIZED TO POUNDS		**3958*	DELVY UNLOAD	194080	194080.
18	TOTAL AVAIL TO TON/HILES	115668.	115668.	DEPART D	443958.	443958
		.000	.0000	POUNDS	443958.	443958.
	TOTAL AVAIL CABIN LOAD POUNDS	648090.	49	POUNDS	443958.	**3958.
	S MILES	157.	357.	DEF LOAD POUNDS	443958.	**3958.
	TRIP	NGU 21.60		-		*
	SEGMENT TRIPS FROM TO	CHS NGU	10TAL	TERMINAL	S SS	TOTAL

SEGNENT OPERATIONS SUMMARY

	POUNDS OVERFLOWN UPON DEPARTURE	249486.	249486.		
	TON/MILES OVERFLOWN UPON DEPARTURE	0. 9. 21082.	21082.		
		64.339 73.984 98.866	76.997	TRANSLOAD POUNDS 6. 311380.	311380.
	TOTAL TON/HILES HOVED	174637. 110476.	373173.	ANG ANG	1751446. 3
1-100	TOTAL LIFT UTILIZED POUNDS	850820. 978356. 1307406.	3136564.	DELVY UNLOAD POUNDS 60. 49560. 66. 394480. 0. 1307466.	
672	TOTAL AVAIL TON/MILES	136868. 236048.	484660.	DEPART POUNDS 8508 9763 13074	3136584.
	CABIN LOAD POUNDS	1322400. 1322400. 1322400.	3967200.	THRU POUNDS 850820. 801260. 272498.	062826. 1924578.
				ON LOAD POUNDS 85050 177098 1034909	2062826.
	PS HILES	40 207. 40 357. 40 169.	733.	OFF LOAD POUNTS 69560- 705860- 1307406-	2062826.
	SEGNENT TRIPS H TO	CHS 30.40	_	FEPMINAL NIP CMS CMS DOV	
	FROM	KEN	TOTAL		TOTAL

SEGMENT OPERATIONS SUMMARY

	POUNDS OVERFLOWN UPON DEPARTURE	202401.	33542.	243605.	
	TON/HILES OVERFLCHN UPON DEPARTURE	50398.	9861. 0	67354.	
	LOAD FACTOR ACHIEVED		82.536 77.250 73.342	82.235	NSLOAD UNDS 55940. 305322. 363682.
	TOTAL TON/HILES HOVED	313820.	320890. 182346. 100383.	1904168.	40
1-100	TOTAL LIFT UTILIZED POUNDS	1260321.	1091462. 1021548. 969880.	5408793.	DELVY UNLOAD POUNDS 0 656480 76240 509600 80780
172	TOTAL AVAIL TO		366766. 236048. 136868.	2315522.	DEPART D POUNDS 1260321. 1065582. 1091462. 969880. 6608797.
		1322400.	1322400. 1322400. 1322400.	6612000.	ON LOAD THRU POUNDS 1260321.517681.547901.102120.969342.745088.276540.2940768.
	CABIN LOAD				ON LOAD POUNDS 1260321 517681 102120 745008 29112
	PS MILES		40 588. 40 357.	3502.	OFF LOAD POUNGS 712420. 76240. 814972. 80780. 969880.
	NT TRIPS		NGU 30.40 CHS 30.40 NIP 30.40		
	SECHENT FROM	NZN nns	CHSC	TOTAL	FERMINAL SUU NZV IND NGU CMS CMS NIP

SEGNENT OPERATIONS SUMMARY

	POUNDS OVERFLONN UPON DEPARTURE		1194242.	
	TON/HILES OVERFLOWN UPON DEPARTURE	56613. 169120. 100036.	*18776*	
	LOAD FACTOR ACHIEVED	71.565 94.562 93.812 134.676	8. 99.293	FRAMSLOAD POUNDS 0. 196224. 663226.
L-100		946372. 79966. 1258482. 367642. 1248564. 1146762. 1788956. 445458.	5216374. 2839838.	DEL VY UNLOAD TR POUNDS 0. 419820. 89836. 16686. 1313954.
171	TOTAL AVAIL TOTAL TON/MILES UTIL POU	111743. 94 386766. 125 1224542. 124 329278. 178	2054348. 521	OEPART DEL POUNDS 946372, 1250402, 1760956, 1780956,
	CABIN LOAD TON POUNDS	1322400. 1322400. 1322400.	5289600.	POUNDS POUNDS 195372. 19554. 331128. 79920. 1073876. 0.000. 1073876. 0.000. 1073876.
	MILES	169. 586. 1852. 498.	3107.	OFF LOAD ON LOAD POUNDS POUNDS 615244. 919354. 819536. 707080. 1780956. 707080.
	SEGMENT TRIPS	MGU 30.40 TMO 30.40 NZY 30.40 SUU 30.40		#I # # # # # # # # # # # # # # # # # #
	FROH	NZW TWO	TOTAL	TE NE S S S S S S S S S S S S S S S S S S

AIRCRE REPORT

-	
-	
	ı

	TOW/MILES	INV) COST	.272	.217	.178	.204
	SA /HILES	IAVI COST	.209	.179	.177	.181
		COSTS				879170.
	TERMINAL	COSTS				
	LANDING	FEES	22750.	37750.	30250.	90750.
TOTAL	MILEAGE	COST	78713.18	376062.13	333645.07	788420.38
RATE	PER	HILE	3.5324	3.5324	3.5324	
1040	FACTOR	ACHVED	77.00	82.23	63.66	88.93
	TON AN TLES	MOVED	373173.	1904168.	20398 10.	4317171.
		AVAILABLE				4854530.
	MILES	TRAVELEN	22283.	106461.	94453.	223197.
	4/A	TYPE		-	-	
		STOPS	16	151	121	363.
		ROUTE	219	172	171	TOTAL

912578.851

33408-474. TOTAL AIRCRAFT COST =

.038.COST INCREASE =

AIRCRAFT COST ADJUSTMENT FACTOR =

TRUCK REPORT

MANAGENENT SUMMARY

TON/HILES	760.		. 159		. 152	.154	.191	
TON/HILES	.072	.072		.151	250.	.131	.131	.063
TOTAL	27.090.	18868.	25600.	51600.	51600.	15120.	15120.	204390.
TERMINAL	51500							
LANDING	•	:		•			•	•
TOTAL	27090.00	18060.00	25800.00	51600.00	51600.00	15120.00	15120.00	204390.00
RATE	1.0769	1.0769	.8173	.8173	.7865	1.9608	1.9608	
FACTOR	73.69	88.32	93.09	77.43	00.00	84.95	68.51	96.86
TONMILES	27 80 38.	222177.	440793.	733242.	984140.	98259.	79247.	2835934.
TON/HILES	377325.	251550.	473495.	946 389.	984141.	115668.	115668.	3264836.
HTLES	25155.	16770.	31566.	63133.	62619.	7711.	7711.	217656.
*	2 2	~	m	•	•	~	2	
	38	52	52	51	52	21	12	286.
	10016	11	1.	15	16	11	18	TOTAL

ON/HILES	HVI COST	*82*	111.	.060		\$22 •
ON/HILES	AVI COST	.101	990.	150.	(TAX ADJ)	198
TOTAL	COSTS	879170.	75390.	129000.	33408.	1605802.
TERMINAL					458833.	488833.
LANDING					•	90750.
TOTAL	COST	788420.38	75390.00	129000.00		992810.38
RATE	HILE	3.5324	1.9608	.7865		2.2520
FACTOR	ACHVED	88.93	78.79	89.75		88.10
TON/MILES	MOVED	4317171.	677720.	2158214.		7153104.
TON/MILES	AVAILABLE	4854530.	860211.	2404625.		8119366.
HILES	TRAVELED	223197.	57347.	160308.		** 0853.
	STOPS	363.	105.	101.		569.
***	TYPE	L-109	TRUCK	TRUCK		TOTAL

TOTAL POUNDS GENERATED = 9296044.00

TOTAL POUNDS SHIPPEC = 11824069.00

TOTAL POUNDS DELIVERED = 8932362.00

TOTAL POUNDS TRANSLOADED = 5792274.00

TOTAL SYSTEM COST (IN OOLLARS) = 1605301.8506

TOTAL COST PER TON/MILE = .2245

	:.	:		: -		•		:			•		•	3000	10500.	2520.	1560.	•		1500.	•	•	:							5044.	32704.	91284.	: .	: .	: -	: -		:	.0	.0	.0228	•	:	•		•	:	•	
20904	116001	68602	601101	5020187	110112	205	210	302	311	704	80408	109	20510	50701	2050710	2050803	50812	1004	51008	\$0905	1103	21107	2111201	2111205	1020000001	102000201	110000011	1050005000	600000001	200000006	20000000	80000000001	21100000111	0100000000	210000011	105000501	20000010	10500000001	10500020000	10500020000	10500000006	1050000001	10500020000	1020005000	11100020000	20000003	500000002	11100020000	
:	: .	:.	:		: 4		•			•			:	1500.	1500.	95760.	30240.	:		:	•	•	•	•	0	•	•	:		:	•	16032.	2220	• • • • • • • • • • • • • • • • • • • •					:	•			•		39960.	•	:	5320.	•
20903	016	602	1001	201	111	201	50208	20301	50308	107	90406	11020412	204	20905	50704	20805	2050811	1003	51007	21101	1102	5021106	1112	2111204	111210	10200000000	11000110000	1020000000	11100100000	1020002000	10200050000	1000000001	1050000000	000000000	710000011	1 050000000	10500020000	100000001	1050000004	20000011	1020000001	11100000011	20000010	102000000501	1050000000	11100020000	11100020000	10 500000000	1 1100000010
66	: .		• 00000					•		•	•	:	:	:	1500.	35280.	30240.	•	•	:	.0009	•		:		•	•	.	•	•	2044.	16032.		•	5 6	: -				•	•	52060.		0.	2220.			•	2660.
206	2050202	60102	600000	1171	110	50%	50207	110212	305	110312	50%	20411	20503	11020512	2050703	50801	2050810	1002	51006	111012	2050611	21105	1110	2111203	111208	10200000001	11000000011	1020000000	110000000011	10200000001	20000000	10500000000	1050000001	900000001	10500110000	105000001	10500000000	20000011	20000003	10500020000	11100000012	10500000001	10500020000	10200000001	1050000001	11100000002	200000000	200050000	10500000008
:	: .	•	•	•				•	•	•	9.	•	•	•	22500.	1500.	30240.	:		:	3000.	•	:	•	•	•	36000.	•		•	•	•	•	•	•			•			0.	109601		0.	26640.	••			:
20901	50402	21600111	60600	2011101	S0 2010A	203	50206	211	304	310	20403	20410	205	20511	20102	2050711	20804	210012	1005	1011	2050610	21104	51108	111202	111206	1020000003	200000000	10200000000	50000002	1020000000	102000200	11100000112	21000000111	50000000000	11000000201	200000000000000000000000000000000000000	20000003	105000 20000	10500020000	200000010	200110000	10500000001	1050000000	200000011	500000005	200000001	11100020000111	11100050000	200020000

