Università della Calabria

Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica

Corso di Laurea Triennale in Ingegneria Informatica

PROGETTAZIONE E ANALISI DI UN MOLTIPLICATORE DI WALLACE BASATO SU FPGA

Relatore

Prof.ssa Stefania Perri

Candidato

Giorgio Ubbriaco Matricola 209899

Anno Accademico 2021-2022

Sommario

- Motivazioni e stato dell'arte.
- Progettazione del Moltiplicatore di Wallace a 8 bit e a 16 bit.
- o Confronto tra il Moltiplicatore di Wallace a 8 bit e il Moltiplicatore standard «Carta e Penna» a 8 bit.
- Analisi delle simulazioni e dei report dei sistemi elettronici digitali progettati.

Strutture di moltiplicatori

• Moltiplicatore digitale: circuito elettronico digitale che permette la moltiplicazione binaria tra due operandi ad *N* bit.

Strumenti di progettazione

- ZedBoardTM: piattaforma ideale sia per sviluppatori principianti sia per quelli esperti.
- FPGA: uno dei dispositivi logici programmabili più diffusi.
- Vivado Design Suite: suite di strumenti utilizzata per la sintesi e l'analisi di progetti scritti in HDL.

Vivado Design Suite

Moltiplicatore di Wallace

- Moltiplicatore ad albero veloce di tipologia seriale-parallelo.
- Maggiore area di occupazione su chip.
- Notevoli guadagni in termini di velocità di calcolo.
- Minore dissipazione di potenza.

RTL Schematic del Moltiplicatore di Wallace a 8 bit

RTL Schematic del Moltiplicatore di Wallace a 16 bit

Generazione e gestione dei prodotti parziali

- Generazione dei prodotti parziali → operazione logica *and* tra gli operandi ad *N* bit.
- Gestione dei prodotti parziali → iterazioni di compressione.
- 1 Terna di bit → 1 Full-Adder.
- 1 Coppia di bit → 1 Half-Adder.
- 1 bit singolo → 1 bit propagato all'iterazione successiva.
- Compressione finale → 1 Ripple Carry Adder.

Struttura del Moltiplicatore di Wallace a 8 bit

Constraint di clock

• È una specifica di progetto.

Name	Waveform	Period (ns)	Frequency (MHz)			
MyCLK	{0.000 10.000}	20.000	50.000			

• Frequenza massima di funzionamento maggiore della frequenza garantita dal constraint di clock.

$$f_{garantita} = \frac{1}{T_{constraint}} = \frac{1}{20 \text{ ns}} = \frac{1}{20 \times 10^{-9} \text{ s}} = 50 \times 10^9 \text{Hz} = 0.05 \text{ GHz}$$

Post-Synthesis

	Moltiplicatore «Car	rta e Penna» a 8 bit	Moltiplicatore d	i Wallace a 8 bit	Moltiplicatore di Wallace a 16 bit		
LUT	141 /53200	0.27%	102 /53200	0.19%	424 /53200	0.80%	
FF	32 /106400	0.03%	32 /106400	0.03%	64 /106400	0.06%	
10	33/200	16.50%	33 /200	16.50%	65 /200	32.50%	
BUFG	1/32	3.13%	1/32	3.13%	1/32	3.13%	

Post-Implementation

	Moltiplicatore «Carta e Penna» a 8 bit				Moltiplicatore di Wallace a 8 bit			Moltiplicatore di Wallace a 16 bit					
t _{setup}	t _{hold}	9. 294 ns		0.260 ns		12.414	12.414 ns 0.431 ns		431 ns	7. 650 <i>ns</i>		0. 253 ns	
f_m	ax	0. 09340556697 GHz		0.131821777 GHz			0.08097165992 GHz						
Total On Chin Dawer		0.112 W	Stat	tic	Dynamic	0.112 W	Sta	ıtic	Dynamic	0.125 W	Stati	c	Dynamic
Total On-Chip Power	0.104		4 <i>W</i>	0.008W	0.10		4W	0.007W	0.1051		W	0.020 <i>W</i>	
Junction Te	emperature	26 . 3 °C			26 . 3 °C			26 . 4 °C					
Therma	l Margin	58.7°C (4.9W)			58.7°C (4.9W)			58.6°C (4.9W)					
Effectiv	ve ∂JA	11.5°C/W			11.5°C/W			11.5°C/W					

Simulazioni di timing

Post-Implementation Timing Simulation del Moltiplicatore «Carta e Penna» a 8 bit

Post-Implementation Timing Simulation del Moltiplicatore di Wallace a 8 bit

Post-Implementation Timing Simulation del Moltiplicatore di Wallace a 16 bit

Conclusioni

- I moltiplicatori digitali sono fondamentali al giorno d'oggi nell'ambito del *digital signal processing* e delle reti neurali.
- La generazione e la gestione dei prodotti parziali sono, oggigiorno, oggetto di ricerca.
- Stanno prendendo il sopravvento i moltiplicatori approssimati che permettono di mantenere costi e *delay* relativamente bassi.

Grazie per l'attenzione