Les Combinaisons linéaires- Enveloppe linéaire et ensembles générateurs

MAT1741 A Automne 2012

Joseph Khoury Departement des Mathmatiques Université d'Ottawa

Rappel:

• $S = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + z = 0\}$ est un sous-espace vectoriel de

$$S = \{(2y - z, y, z) | y, z \in \mathbb{R}\}\$$

= \{y(2, 1, 0) + z(-1, 0, 1) | y, z \in \mathbb{R}\}

On dit que pour tout $y, z \in \mathbb{R}$,

$$y(2,1,0) + z(-1,0,1)$$

est une combinaison linéaire de (2,1,0) et (-1,0,1).

• $W = \{ \begin{pmatrix} a & b \\ b & d \end{pmatrix} \in M_{2,2} \mid a,b,d \in \mathbb{R} \}$ est un sous-espace vectoriel de $M_{2,2}$.

$$W = \left\{ a \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + b \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + c \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \mid a, b, d \in \mathbb{R} \right\}$$

On dit que pour tout $a, b, d \in \mathbb{R}$,

$$a\left(\begin{array}{cc}1&0\\0&0\end{array}\right)+b\left(\begin{array}{cc}0&1\\1&0\end{array}\right)+c\left(\begin{array}{cc}0&0\\0&1\end{array}\right)$$

est une combinaison linéaire de

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right).$$

Définition

• Soient v_1, v_2, \ldots, v_k , des vecteurs dans un espace vectoriel V et a_1, a_2, \ldots, a_k des scalaires. Le vecteur

$$a_1v_1 + a_2v_2 + \ldots + a_kv_k$$

est appelé une combinaison linéaire des vecteurs v_1, v_2, \ldots, v_k .

Définition

• Pour v_1, v_2, \dots, v_k des vecteurs donnés de l'espace vectoriel V, l'ensemble

$$\mathcal{L}\{v_1, v_2, \dots, v_k\}$$

$$= \{a_1v_1 + a_2v_2 + \dots + a_kv_k \mid a_1, a_2, \dots, a_k \in \mathbb{R}\}$$

est appelé l'enveloppe linéaire de $\{v_1, v_2, \ldots, v_k\}$ (en anglais – SPAN). On dit que l'ensemble $\{v_1, v_2, \ldots, v_k\}$ est un ensemble générateur de $\mathcal{L}\{v_1, v_2, \ldots, v_k\}$.

Définition

• On dit qu'un espace vectoriel W est engendré par les vecteurs $v_1, v_2, \ldots, v_k \in W$ si

$$W = \mathcal{L}\{v_1, v_2, \dots, v_k\}$$

c.à.d. si et seulement si chaque vecteur de W est une combinaison linéaire de v_1, v_2, \ldots, v_k .

•
$$S = \{y(2,1,0) + z(-1,0,1) \mid y,z \in \mathbb{R}\}$$

$$\Rightarrow S = \mathcal{L}\{\underbrace{(2,1,0)}_{v_1},\underbrace{(-1,0,1)}_{v_2}\}$$

- S est engendré par v_1 et v_2
- $\{v_1, v_2\}$ est un ensemble générateur de S
- $\{v_1, v_2\}$ engendre S

•
$$W = \left\{ \begin{pmatrix} a & b \\ b & d \end{pmatrix} \mid a, b, d \in \mathbb{R} \right\}$$

$$W = \left\{ a \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{v_1} + b \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{v_2} + d \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_3} \mid a, b, d \in \mathbb{R} \right\}$$

$$\Rightarrow W = \mathcal{L} \left\{ \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{v_1}, \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{v_2}, \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{v_3} \right\}$$

Remarque

$$S = \mathcal{L}\{\underbrace{(2,1,0)}_{v_1},\underbrace{(-1,0,1)}_{v_2}\}$$
$$S = \mathcal{L}\{v_1,v_2\} = \mathcal{L}\{v_1,v_2,v_1+v_2\}$$

Pour voir ceci, on constate que si $(x, y, z) \in S$, alors

$$(x, y, z) = yv_1 + zv_2 + 0(v_1 + v_2)$$

- Montrez que $\mathbb{R}^2 = \mathcal{L}\{(1,0),(0,1)\}.$
- Montrez que $\mathbb{R}^2 = \mathcal{L}\{(1, -1), (1, 1)\}.$

Exemple

$$\mathbb{P}_2 = \{a_2x^2 + a_1x + a_0 \mid a_0, a_1, a_2 \in \mathbb{R}\}$$
 On voit 3 éléments fixés dans \mathbb{P}_2

$$v_1 = x^2 \in \mathbb{P}_2, \quad v_2 = x \in \mathbb{P}_2, \quad v_3 = 1 \in \mathbb{P}_2$$

Alors,

$$\mathbb{P}_2 = \mathcal{L}\{1, x, x^2\}.$$

Théorème

Soit V un espace vectoriel et $\{v_1, v_2, \dots, v_k\} \subset V$.

- $U = \mathcal{L}\{v_1, v_2, \dots, v_k\}$ est un sous-espace vectoriel de V.
- ② Si W est n'importe lequel sous-espace vectoriel de V t.q. $\{v_1, v_2, \ldots, v_k\} \subset W$, alors $\mathcal{L}\{v_1, v_2, \ldots, v_k\} \subset W$. En d'autre mots : $\mathcal{L}\{v_1, v_2, \ldots, v_k\}$ est le "plus petit" sous-espace vectoriel de V qui contient $\{v_1, v_2, \ldots, v_k\}$.

<u>Démonstration</u>: On utilise le test du sous-espace vectoriel.

$$\bullet \ 0 \in \mathcal{L}\{v_1, v_2, \dots, v_k\} ?$$

Oui, car
$$0 \in V = 0 \in \mathbb{R} v_1 + 0 \in \mathbb{R} v_2 + \ldots + 0 \in \mathbb{R} v_k$$
.

• $\mathcal{L}\{v_1, v_2, \dots, v_k\}$ fermé par l'addition ?

Oui, soient
$$u, v \in \mathcal{L}\{v_1, v_2, \dots, v_k\}$$
, alors
$$u = a_1v_1 + a_2v_2 + \dots + a_kv_k$$

$$v = b_1v_1 + b_2v_2 + \dots + b_kv_k$$

$$u + v = (a_1 + b_1)v_1 + (a_2 + b_2)v_2 + \dots + (a_k + b_k)v_k$$

$$\Rightarrow u + v \in \mathcal{L}\{v_1, v_2, \dots, v_k\}.$$

Démonstration (suite) :

• $\mathcal{L}\{v_1, v_2, \dots, v_k\}$ fermé pour la multiplication par les scalaires ?

Oui, soit
$$u \in \mathcal{L}\{v_1, v_2, \dots, v_k\}$$
 et $l \in \mathcal{R}$, alors $u = a_1v_1 + a_2v_2 + \dots + a_kv_k$ $lu = (la_1)v_1 + (la_2)v_2 + \dots + (la_k)v_k$ c.à.d. $lu \in \mathcal{L}\{v_1, v_2, \dots, v_k\}$

Alors, $\mathcal{L}\{v_1, v_2, \dots, v_k\}$ est un sous-espace vectoriel de V.

- $\mathcal{L}\{(1,0,0,1),(1,1,0,0)\}$ est un sous-espace vectoriel de \mathbb{R}^4 . Notez que $\mathcal{L}\{(1,0,0,1),(1,1,0,0)\}$ = $\{a_1(1,0,0,1)+a_2(1,1,0,0)\,|\,a_1,a_2\in\mathbb{R}\}$ = $\{(a_1+a_2,a_2,0,a_1)\,|\,a_1,a_2\in\mathbb{R}\}$
- Dans \mathbb{P}_2 , $\mathcal{L}\{x^2,1\}$ est un sous-espace de \mathbb{P}_2 . Notez que $\mathcal{L}\{x^2,1\} = \{a_2x^2+a_0\,|\,a_0,a_2\in\mathbb{R}\}$

Dépendance et indépendance linéaire

Rappel: Deux vecteurs u et v sont colinéaires si et seulement si u = kv ou v = lu. (k, l scalaires).

C'est la même chose que de dire :

Il existe des scalaires $a,b\in\mathbb{R}$, au moins un de ces deux scalaires est non-nul, tels que

$$au + bv = \underbrace{0}_{vecteur}$$

La contreposée de cet énoncé est aussie très importante :

Deux vecteurs sont non-collinéaire si et seulement si au + bv = 0 implique a = b = 0.

Les concepts de dépendance linéaire et d'indépendance linéaire sont des généralisations de la collinéarité.

Définition

Soit V un espace vectoriel et soient v_1, v_2, \ldots, v_m des vecteurs appartenant à V.

 On dit quer l'ensemble {v₁, v₂,..., v_m} est linéairement dépendant, ou que les vecteurs v₁, v₂,..., v_m sont linéairement dépendants, s'il existe des scalaires a₁, a₂,..., a_m AVEC AU MOINS UN DE CES SCALAIRES QUI EST NON-NUL, tel que

$$a_1v_1 + a_2v_2 + \ldots + a_mv_m = 0$$
 (vecteur).

Définition (suite)

• On dit que l'ensemble $\{v_1, v_2, \dots, v_m\}$ est linéairement indépendant, ou que les vecteurs v_1, v_2, \dots, v_m sont linéairement indépendant, si et seulement si

$$a_1v_1 + a_2v_2 + \ldots + a_mv_m = 0$$
 (vecteur)
 $\Leftrightarrow a_1 = a_2 = \ldots = a_m = 0$ (scalaire).

À notez qu'un ensemble donné de vecteurs est soit lin. ind., ou lin. dép..

Exemple

Déterminer si les ensembles suivants sont linéairement dépendant ou linéairement indépendant.

- $\{(1,0),(0,1)\}\ dans\ \mathbb{R}^2$,
- $\{(1,-1),(1,1)\}\$ dans \mathbb{R}^2 ,
- $\{(1,0),(0,1),(1,1)\}$ dans \mathbb{R}^2 ,

$$\bullet \ \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\} \ \mathsf{dans} \ \mathit{M}_{2,2},$$

$$\bullet \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right) \right\} \text{ dans } M_{2,2},$$

- $\{1, \sin x, \cos x\}$ dans $F([0, 2\pi])$,
- $\{1, \cos^2 x, \sin^2 x\}$ dans $F([0, 2\pi])$,

Exemple (suite)

- $\{(1,2,1)\}$ dans \mathbb{R}^3 ,
- $\{(1,2,3,-2),(0,0,0,0)\}\ dans\ \mathbb{R}^4$.

Théorème

Soit v un espace vectoriel,

- $si \ v \in V$, $\{v\}$ est linéairement indépendant $\Leftrightarrow v \neq 0$.
- tout ensemble de vecteurs de V qui contient le vecteur 0 est linéairement dépendant.