

INGENIERÍA EN COMPUTACIÓN

PATRONES DE DISEÑO DE SOFTWARE DRA. MARIA LIZBETH GALLARDO LÓPEZ

PRÁCTICA. MODELO PARA MEDICIÓN DE LA EFICIENCIA DE ALGORITMOS DE ORDENAMIENTO

ZURITA PRADO ISAI OBED

2223029036

25 DE OCTUBRE DEL 2025

Tabla de contenido

Descripción del problema	3
Análisis del problema	3
Escenario de uso	4
Caso de uso	5
Diagrama de clases	6
Diagramas de secuencia	
Mockups de la Interfaz Gráfica	8

Descripción del problema

Existen diferentes algoritmos de ordenamiento que pueden adaptarse de mejor o peor manera según el tipo de problema que se desee analizar. En esta práctica se analizarán algunos de los más conocidos, evaluando su complejidad y comportamiento en función del tiempo. Usando algunos gráficos se buscará comprender cómo varía su eficiencia y cuál resulta más conveniente utilizar en conjuntos de datos de gran tamaño. Además, se aplicará el diseño orientado a objetos junto con patrones de diseño para estructurar de manera robusta este pequeño sistema.

Análisis del problema

Tabla de frases nominales

Frase nominal	Clase	Atributo	Pertenece a
Estrategia de ordenamiento	EstrategiaOrdenamiento	>	ContextoOrdenamiento
Burbuja	BubbleSort	X	EstrategiaOrdenamiento
Inserción	InsertionSort	X	EstrategiaOrdenamiento
Selección	SelectionSort	X	EstrategiaOrdenamiento
Merge	MergeSort	X	EstrategiaOrdenamiento
Quick	QuickSort	X	EstrategiaOrdenamiento
Contexto de ordenamiento	ContextoOrdenamiento	\	AnalizadorEficiencia
Analizador de eficiencia	AnalizadorEficiencia	✓	AnalizadorEficiencia
Gestor de resultados	GestorResultados	✓	GestorResultados
Arreglo	Arreglo		AnalizadorEficiencia
Resultado	Resultado	✓	Resultado
Gráfica	Gráfica	✓	Grafica
Tiempo inicial	x	✓	Resultado
Tiempo final	x	✓	Resultado
Archivo de resultados	x	✓	GestorResultados

Tabla de frases verbales

Frase verbal	Método	Pertenece a
Ordenar arreglo	Ordenar	EstrategiaOrdenamiento
Cambiar estrategia	setEstrategia	ContextoOrdenamiento
Ejecutar estrategia	ejecutarEstrategia	ContextoOrdenamiento
Generar arreglos	generarArreglo	AnalizadorEficiencia

Llenar arreglo aleatorio	llenarAleatorio	Arreglo
Comparar algoritmos	compararAlgoritmos	AnalizadorEficiencia
Generar gráfica	generarGrafica	Gráfica
Mostrar gráfica	mostrarGrafica	ControladorEjecucion
Medir tiempo	medirTiempo	AnalizadorEficiencia
Exportar resultados	exportarArchivo	GestorResultados

Escenario de uso

Título: Iniciar sistema comparador de algoritmos de ordenamiento

Actor: Usuario

Descripción: El sistema inicia con la petición del usuario después de que éste proporcione un número n para el tamaño de un arreglo, el sistema ejecuta su petición, uno por uno, con un total de 5 algoritmos, mide cada uno de los tiempos de ejecución y almacena los resultados para su comparación y futura visualización.

Flujo normal:

- 1. El usuario introduce el tamaño del arreglo "n" en la interfaz principal y presiona iniciar.
- 2. El sistema genera un arreglo con valores aleatorios y después inicia un "loop" por cada uno de los algoritmos de ordenamiento (burbuja, inserción, selección, mezcla y quick).
- 3. En cada iteración se ordena el arreglo generado, se ejecuta el algoritmo correspondiente y se mide el tiempo exacto de la ejecución.
- 4. El resultado, que consta del nombre del algoritmo, el tamaño del arreglo y el tiempo, se registran en el sistema.
- 5. El proceso de comparación termina una vez que todos los algoritmos han sido ejecutados y registrados.
- 6. Si el usuario así lo desea puede tener una representación visual de los tiempos que tomó a cada algoritmo ejecutarse.

Caso de uso

Diagrama de clases

PRESENTACIÓN

Diagramas de secuencia

Diagrama de Secuencia: Iniciar Prueba

Diagrama de Secuencia: Mostrar Gráficas

Mockups de la Interfaz Gráfica

*Los diagramas se pueden apreciar con total resolución en el siguiente enlace:

https://drive.google.com/file/d/1ZdGKIMX10al0V7XvLe4N-jkchKW3h4i3/view?usp=share_link