

INSTITUTO POLITÉCNICO NACIONAL

Escuela Superior de Cómputo

Tarea 02

PLATAFORMAS IOT

Materia || Embedded Systems - IoT

Profesor || Miguel Ángel Alemán Arce

Alumno || Areli Alejandra Guevara Badillo

VIERNES, ABRIL 04, 2025

INTRODUCCIÓN

Las plataformas IoT en la nube son el núcleo de la transformación digital, permitiendo la conexión, gestión y análisis de miles de millones de dispositivos inteligentes. Este reporte profundiza en los tres líderes globales (AWS IoT, Azure IoT y Google Cloud IoT), explora alternativas relevantes y ofrece una comparativa detallada basada en servicios, costos, seguridad y casos de uso. El objetivo es facilitar una decisión informada para empresas y desarrolladores.

PLATAFORMAS

AMAZON WEB SERVICES (AWS) IOT

WS IoT es la plataforma líder de Amazon para conectar dispositivos a la nube, diseñada para escalabilidad global y alta seguridad. Ofrece un ecosistema completo que integra gestión de dispositivos, procesamiento de datos en tiempo real y edge computing.

Servicios Clave:

- AWS IoT Core:
 - Conecta dispositivos mediante MQTT/HTTP.
 - Gestiona "sombras" de dispositivos para almacenar estados actuales y deseados.
- AWS Greengrass:
 - o Extiende la nube al edge, permitiendo procesamiento local con funciones Lambda.
- AWS IoT Analytics:
 - o Limpia, transforma y analiza datos IoT para generar insights.
- AWS IoT Device Defender:
 - Monitorea y protege dispositivos contra amenazas.

Modelo de Costos:

- Conectividad: USD 0.08 por millón de minutos de conexión.
- Mensajería: Desde USD 1.00 por millón de mensajes (hasta 5 kB).
- Ejemplo: 100,000 dispositivos envían 325 mensajes/día → ≈ USD 1,876/mes.

Ventajas:

- Integración con 200+ servicios AWS (Lambda, S3, DynamoDB).
- Escalabilidad global (25 regiones).
- Certificaciones de seguridad líderes (ISO 27001, SOC 2).

Desventajas:

- Curva de aprendizaje pronunciada para principiantes.
- Costos pueden aumentar rápidamente en proyectos intensivos.

Casos de Uso Ideales:

- Proyectos empresariales complejos que requieren integración con múltiples servicios.
- Aplicaciones industriales con necesidad de edge computing.

MICROSOFT AZURE IOT

Azure IoT es la solución de Microsoft para implementar aplicaciones IoT con enfoque en simplicidad y precios predecibles. Destaca por su plataforma SaaS (IoT Central) y herramientas para análisis avanzado.

Servicios Clave:

- Azure IoT Hub:
 - o Soporta MQTT, AMQP y HTTP para comunicación bidireccional.
 - o Enruta datos a servicios como Cosmos DB o Machine Learning.
- Azure IoT Central:
 - Plataforma sin código para crear soluciones IoT con plantillas sectoriales (salud, retail).
- Azure IoT Edge:
 - o Ejecuta modelos de IA y lógica de negocio en dispositivos locales.

Modelo de Costos:

- Dispositivos:
 - 0-5: Gratis.
 - 100,000+ dispositivos: €0.5/dispositivo/mes (incluye 50,000 mensajes).
- Mensajería adicional: €4.217 por millón de mensajes.
- Ejemplo: 1,000 dispositivos envían 500 mensajes/día → ≈ €900/mes.

Ventajas:

- Interfaz intuitiva con IoT Central.
- Precios transparentes para grandes flotas.
- Integración con Power BI para visualización de datos.

Desventajas:

- Menor flexibilidad en edge computing comparado con AWS.
- Limitaciones en el plan gratuito (máximo 5 dispositivos).

Casos de Uso Ideales:

- Empresas que priorizan simplicidad y costos predecibles.
- Proyectos de retail o salud con necesidad de dashboards personalizados.

GOOGLE CLOUD IOT

Google Cloud IoT se centra en el análisis masivo de datos y machine learning, aprovechando herramientas como BigQuery y Dataflow. Es ideal para proyectos que requieren procesamiento avanzado de información.

Servicios Clave:

- Cloud IoT Core:
 - Gestiona dispositivos mediante MQTT/HTTP.
 - o Integra datos con Cloud Pub/Sub para flujos en tiempo real.
- Cloud Dataflow:
 - o Transforma y analiza datos en tiempo real.
- BigQuery y AutoML:
 - Almacenamiento escalable y modelos predictivos.

Modelo de Costos:

- Mensajería:
 - o Primeros 250 MB: Gratis.
 - o 250 MB-5 TB: USD 0.0045/MB.
- Ejemplo: 50,000 dispositivos envían 200 mensajes/día → ≈ USD 27,000/mes (60 TB).

Ventajas:

- Enfoque en Big Data y machine learning integrado.
- Costos competitivos para grandes volúmenes.
- Compatibilidad con dispositivos populares (Raspberry Pi, Arduino).

Desventajas:

- Soporta solo MQTT/HTTP (menos protocolos que Azure).
- Documentación menos detallada que AWS/Azure.

Casos de Uso Ideales:

- Proyectos de análisis predictivo o inteligencia artificial.
- Soluciones de smart cities que requieren procesamiento de datos masivo.

OTRAS PLATAFORMAS IOT RELEVANTES

Además de los gigantes globales como AWS, Azure y Google Cloud, existen plataformas IoT especializadas que ofrecen soluciones únicas para nichos específicos o requisitos empresariales particulares. Estas alternativas destacan por su enfoque en áreas como la analítica avanzada, la integración con sistemas legacy, la personalización total o la reducción de costos mediante modelos de código abierto.

- **IBM Watson IoT**: Combina IoT con analítica cognitiva y blockchain, ideal para entornos industriales complejos como la gestión de cadenas de suministro o la optimización de procesos en tiempo real.
- **Cisco IoT Cloud**: Centrado en redes industriales y conectividad segura, es clave para aplicaciones en *smart cities* o infraestructuras críticas.
- Salesforce IoT: Integra dispositivos IoT con herramientas de CRM, permitiendo automatizar acciones comerciales basadas en datos de sensores (ej: alertas de mantenimiento o personalización de ofertas).
- Kaa (Open Source): Plataforma flexible y gratuita para proyectos personalizados, ideal para PYMES o desarrolladores que buscan evitar costos de licencia.

Estas plataformas complementan el ecosistema IoT global, ofreciendo opciones para casos donde las soluciones estándar de los grandes proveedores pueden resultar inflexibles, costosas o insuficientes. Su adopción depende de factores como la necesidad de especialización, la integración con tecnologías existentes o la priorización de la escalabilidad frente a la personalización.

Plataforma	Fortalezas	Casos de Uso Ideales	
IBM Watson IoT	Analítica cognitiva, integración con blockchain.	Industria 4.0, cadena de suministro.	
Cisco IoT Cloud	Redes industriales, gestión de conectividad.	Manufactura, smart cities.	
Kaa (Open Source)	Personalización total, sin costos de licencia.	Proyectos personalizados o PYMES.	
Salesforce IoT	Integración con CRM, automatización de procesos.	Retail, servicio al cliente.	

COMPARATIVA DETALLADA DE LAS TRES PRINCIPALES

Plataforma	Protocolos	Plataformas Certificadas	Seguridad/ Autenticación	Documentación Configuración	Modelo de Precios
Amazon	НТТР, МОТТ	Dispositivos de fabricantes líderes: Broadcom, Marvell, Renesas, Texas Instruments, Intel, Qualcomm, entre otros.	Autenticación mediante TLS y certificados X.509	Documentación exhaustiva y detallada.	Costos basados en uso: conectividad, mensajes, operaciones y reglas.
		Lidera en diversidad de fabricantes.		Ofrecen guías detalladas.	Ideal para proyectos con tráfico variable.
Azure	HTTP, AMQP (ideal para integraciones complejas), MQTT	Compatibilidad con hardware diverso: Raspberry Pi, Intel, Texas Instruments, BeagleBoard y soluciones empresariales.	TLS con certificados X.509	Documentación clara y bien estructurada.	Tarifas por dispositivo y mensajes adicionales.
				Ofrecen guías detalladas.	Costos predecibles para flotas grandes.
Google	HTTP, MQTT	Soporte para dispositivos populares: Arduino, Raspberry Pi, placas de Particle y Adafruit, NXP,	Seguridad con TLS y autenticación X.509	Documentación funcional pero menos extensa.	Precios escalables según volumen de datos transmitidos.
		etc. Prioriza dispositivos de código abierto		Se enfoca en ejemplos prácticos.	Ventajoso para aplicaciones con alto volumen de datos.

RECOMENDACIONES POR ESCENARIO

- 1. Proyectos Empresariales Grandes:
 - o AWS IoT para integración con un ecosistema robusto y escalabilidad.
- 2. Flotas Masivas de Dispositivos:
 - o **Azure IoT** por su modelo de precios predecible.
- 3. Análisis de Datos en Tiempo Real:
 - o Google Cloud IoT por su sinergia con BigQuery y Machine Learning.
- 4. Proyectos Personalizados con Presupuesto Limitado:
 - o Kaa (Open Source) para flexibilidad sin costos de licencia.

CONCLUSIÓN

La elección de una plataforma IoT depende de factores críticos como el volumen de dispositivos, necesidades de procesamiento (edge vs. cloud), presupuesto y requisitos de integración. **AWS IoT** lidera en flexibilidad y escalabilidad, **Azure IoT** brinda simplicidad para flotas grandes, y **Google Cloud IoT** destaca en análisis avanzado. Plataformas como IBM Watson o Kaa ofrecen soluciones especializadas para nichos específicos. Evaluar estos aspectos garantizará una implementación eficiente y costo-efectiva.