Fitting models to different types of data in R

2020/6/12 ECRC Data Science Seminar Chia-Yu Chen, AG Forslund

What kind of model should we fit to each of the different types of data?

Data types

Quantitative	Count	Non-negative integers resulted from countingDiscrete	10 apples80 dogs
	Measurement	Can be measured at finer and finer scaleContinuous	1.6 g/ml9.5 cm
	Proportion	 Ranges from 0 to 1 	25% classified as A10% classified as B
Qualitative	Binary	 Sort things into one of two mutually exclusive categories 	True/FalseReject/Accept
	Ordinal	 Ranked The distance between two categories is not known 	Small/Medium/LargeDislike/Neutral/Like

Simple linear model (LM)

$$y = a + bx + e$$

x: explanatory variable

y: dependent variable

a: intercept of regression line

b: slope of regression line

e: error term

Linear models in R

Math equation:

$$y = a + bx + e$$

R syntax:

$$y \sim x$$

 $model <- lm(formula = y~x, data = your_data)$

Linear models in R

Iris dataset

Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
5.1	3.5	1.4	0.2
4.9	3.0	1.4	0.2
4.7	3.2	1.3	0.2
4.6	3.1	1.5	0.2
5.0	3.6	1.4	0.2
5.4	3.9	1.7	0.4
4.6	3.4	1.4	0.3
5.0	3.4	1.5	0.2
4.4	2.9	1.4	0.2
4.9	3.1	1.5	0.1

Linear models in R

model = lm(formula = Petal.Length ~ Sepal.Length, data = iris) summary(model)

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.10144  0.50666 -14.02  <2e-16 ***

Sepal.Length 1.85843  0.08586  21.65  <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8678 on 148 degrees of freedom

Multiple R-squared: 0.76, Adjusted R-squared: 0.7583

F-statistic: 468.6 on 1 and 148 DF, p-value: < 2.2e-16
```

Petal.Length = -7.1 + 1.9 *Sepal.Length

Simple linear model requirements

$$y_i = a + bx_i + e_i$$

- 1. y is a continuous variable
- 2. y is normally distributed
- 3. A linear relationship between the y and x
- 4. Homogeneity of variance: the variance of y for each value of x is constant
- 5. Errors are normally distributed

However, there are many scenarios where these assumptions are not met. In these cases, fitting data with simple linear model isn't appropriate.

Generalized linear model (GLM)

GLM is a flexible generalization of linear model

- 1. y can be either continuous or discrete
- 2. y doesn't need to be normally distributed
- 3. Doesn't assume a linear relationship between the y and x
- 4. The homogeneity of variance does NOT need to be satisfied.
- 5. Errors doesn't need to be normally distributed

GLM generalizes linear regression by allowing the linear model to be related to the response variable (y) via a link function.

Generalized linear model (GLM)

GLM is made up of a linear predictor and two functions:

1. Linear predictor η_i : linear sum of the effects of one or more explanatory variables

$$\eta_i = a + b_1 x_{1i} + \ldots + b_p x_{pi}$$

2. Link function: describes how the mean of the response (expected value) depends on the linear predictor η_i :

$$g(\mu_i) = \eta_i$$

3. Variance function: describes how the variance of the response depends on the mean (dispersion parameter θ is a constant)

$$var(y_i) = \theta V(\mu)$$

LM is a special case of GLMs

$$y_i = a + b_1 x_{1i} + b_2 x_{2i} + e_i$$

1. Linear predictor:

$$\eta_i = a + b_1 x_{1i} + b_2 x_{2i}$$

2. Link function (identity link, the simplest link function):

$$g(\mu_i) = \mu_i = \eta_i$$

3. Variance function (variance is independent of mean and is a constant)

$$var(y_i) = \theta V(\mu)$$
$$V(\mu_i) = 1$$

Generalized linear model (GLM)

	_	
- W -		

Linear

Logistic

Poisson

Beta

Generalized linear model (GLM) in R

Similar to the Im function, we can fit GLMs with glm function:

model <- glm(formula = y \sim x, family = "poisson", data = your_data)

The choice of family is dependent on the property of y.

It can be binomial, gaussian, poisson, quasi, quasibinomial, Gamma, quasipoisson.....

Data types

Quantitative	Count	Non-negative integers resulted from countingDiscrete	10 apples80 dogs
	Measurement	Can be measured at finer and finer scaleContinuous	1.6 g/ml9.5 cm
	Proportion	 Ranges from 0 to 1 	25% classified as A10% classified as B
Qualitative	Binary	 Sort things into one of two mutually exclusive categories 	True/FalseReject/Accept
	Ordinal	 Ranked The distance between two categories is not known 	Small/Medium/LargeDislike/Neutral/Like

Data types

Count

• Non-negative integers resulted from counting
• Discrete

• 10 apples
• 80 dogs

Count data

- Observations can take only the non-negative integer values (0, 1, 2,)
- These integers arise from counting, not ranking or binary signal
- Skewed distribution: Contain a large number of data points for just a few values, making the frequency distribution skewed
- Sparsity: Many data points are zero

Model for count data: Poisson regression

- Poisson regression assumes the response variable y has a Poisson distribution
- Poisson distribution formula:

$$Pr\{Y=y\} = \frac{e^{-\mu}\mu^y}{y!}$$
 $y = \{0,1,2,...,n\}$

Variance equals to mean

$$var(Y) = \mu$$

- Overdispersion: $var(Y) > \mu$ (variance > mean)
- Ignoring overdispersion causes confidence intervals to be too narrow and inflates the rate of false positives

Model for count data: negative binomial regression

- Generalization of Poisson regression
- Negative binomial distribution formula: y = number of failures before rth success

$$Pr\{Y=y\} = {r+y-1 \choose y} p^{r} (1-p)^{y} \quad y = \{0,1,2,...,n\}$$

Doesn't assume variance equals to mean, allows overdispersion

$$var(Y) = \mu + \frac{\mu^2}{\theta}$$
 $\theta = \text{dispersion parameter}$

Better than Poisson when there's overdispersion

Count data

Individual	Time_point	Microbial_abundance
a	1	0
a	2	3
a	3	5
b	1	8
b	2	14
b	3	29
С	1	0
С	2	35
С	3	6

Negative binomial model

To find out if Time_point is a significant predictor of Microbial_abundance:

```
glmmTMB( Microbial_abundance ~ (1|Individual) + Time_point, family = nbinom2)
```

glmmTMB: A function from glmmTMB package capable of fitting linear and generalized linear mixed models

Mixed effect models

```
abundance ~(1|Individual) + Time

Random effect

Fixed effect
```

- Mixed effect model: Having both fixed effect and random effect in a model
- Random effect: takes the differences between individual study effects into account
- Used when there is non-independence in the data
- Hierarchical structure in data: Each classroom sample 10 students and compare
- Repeated measure: multiple measurement from same patient

Random intercept and random slope

"Patient" as random variable

Definitions of fixed and random effects

Fixed effect

Fixed effects don't change across individuals

When samples exhaust the population, the variable is fixed Example: gender: male/female, dosage: low/high

Fixed effects are those you are interested in

Random effect

Random effects vary across individuals

When the sample only covers a small part of all the possible levels, it's random Example: patients

Random effects are the ones you're not interested in

Random effects are most useful when the grouping variable has more than 5 levels. A binary variable shouldn't be treated as a

random effect.

Mixed effect models in R

	Simple linear model	Generalized linear model
Fixed effect model	lm()	glm()
Mixed effect model	lmer()	glmer(), glmmTMB()

Negative binomial model

```
model <- glmmTMB( abundance ~ (1|Individual) + Time_point, family = nbinom2)

Conditional model:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.8172 0.3466 8.127 4.4e-16 ***

Case2 -1.0914 0.3130 -3.486 0.00049 ***

Case3 -0.3385 0.3114 -1.087 0.27697
```

Anova(model, test.statistic=c("Chisq"))

Analysis of Deviance Table (Type II Wald chisquare tests)

```
Response: value
Chisq Df Pr(>Chisq)
Case 12.69 2 0.001756 **
```

Theta threshold

	Effect size between C2 & C3	Absolute sparsity (n = 46)
Oscillibacter sp. 57_20	0.609	11
Lactobacillus ruminis	0.0435	44

Incorrect power simulation curve

	Effect size	Absolute sparsity
Oscillibacter sp. 57_20	0.609	11
Lactobacillus ruminis	0.0435	44

Power simulation of Effect size = 0.609 using Neg-Binomial and Wald test

Power simulation of Effect size = 0.0435 using Neg-Binomial and Wald test

Theta threshold

Effect size	Absolute sparsity	Theta
0.609	11	2.9
0.565	15	3.0
0.478	11	1.8
0.304	28	0.5
0.0870	42	107827.6
0.0435	44	165287.6
0.000	44	2543.779

Results in extremely low, doubtful p values from models (1e-10, 1e-15...)

False positives with really low effect sizes

Absolute sparsity vs theta in CORONA bacteria data

Negative binomial won't be fitted to the samples in the red area.

Theta threshold

The ones showing significance in negative binomial model

The extremely low p values are excluded

The really low effect sizes are excluded

Data types

Count

• Non-negative integers resulted from counting
• Discrete

• 10 apples
• 80 dogs

Data types

Quantitative

Measurement

- Can be measured at finer and finer
 1.6 g/ml scale
- Continuous

- 9.5 cm

Measurement data

- Could be divided and reduced to finer and finer levels
- $1.5 \text{ kg} \Rightarrow 1.52 \text{ kg}$
- Continuous
- Linear regression (not using generalized linear model!)
- Various types of data: height, weight, concentration, pressure.....
- Normality not guaranteed
- Normalize first

Check distribution

- check_distribution() in the performance package
- Uses an internal random forest model to classify the distribution
- Possible distributions: bernoulli, beta-binomial, chi, exponential, F, gamma, lognormal, normal, negative binomial, poisson,

Check distribution

Metabolite data distribution

	Distribution
serotonin	lognormal
3-hydroxykynurenine	F
5-hydroxytryptophan	uniform
indole-3-propionic	lognormal
indolelactate	lognormal
indoxylsulfate	lognormal
kynurenic	weibull
Kynurenine	lognormal
tryptamin	weibull
tryptophan	lognormal
2-Aminophenol	weibull
3-Hydroxyanthranilate	chi
Melatonin	weibull
Methyltryptamine	weibull

Phenotype data distribution

	Distribution
HDL	beta-binomial
BMI	gamma
LDL	beta-binomial
RR_syst_mobilograph	beta-binomial
BP_sphygm_syst	beta-binomial
BP_sphygm_diast	beta-binomial
weight	gamma
hip_circumference	beta-binomial
waist_circumference	beta-binomial
body_fat_ratio	chi
urate	gamma
creatinine	gamma
eGFR	gamma
cholesterol	beta-binomial

Normalize data

- bestNormalize() in the bestNormalize package
- Selects the best transformation method according to the "Pearson P/df", a relatively interpretable goodness of fit test.
- If the data is close to a normal distribution, "Pearson P/df" will be close to 1.

Distribution before and after normalization

Metabolite data before/after normalization

	Original	Normalized	
3-hydroxykynurenine	F	normal	
5-hydroxytryptophan	uniform	normal	
indole-3-propionic	lognormal	normal	
indolelactate	lognormal	normal	
indoxylsulfate	lognormal	normal	
kynurenic	weibull	normal	
Kynurenine	lognormal	normal	
serotonin	lognormal	normal	
tryptamin	weibull	normal	
tryptophan	lognormal	normal	
2-Aminophenol	weibull	normal	
3-Hydroxyanthranilate	chi	normal	
Melatonin	weibull	normal	
Methyltryptamine	weibull	normal	

Phenotypes data before/after normalization

	Original	Normalized	
RR_syst_mobilograph	beta-binomial	normal	
HDL	beta-binomial	normal	
BMI	gamma	normal	
LDL	beta-binomial	normal	
BP_sphygm_syst	beta-binomial	normal	
BP_sphygm_diast	beta-binomial	normal	
weight	gamma	normal	
hip_circumference	beta-binomial	normal	
waist_circumference	beta-binomial	normal	
body_fat_ratio	chi	normal	
urate	gamma	normal	
creatinine	gamma	normal	
eGFR	gamma	normal	
cholesterol	beta-binomial	normal	

Measurement data

Individual	Time point	Concentration (mg/l)
a	1	1.53
a	2	3.65
a	3	0.98
b	1	0.24
b	2	5.67
b	3	1.20
C	1	9.45
C	2	3.45
С	3	0.52

```
normalized_conc <- bestNormalize(Concentration)

m <- Imer( normalized_conc ~ (1|Individual) + Time_point, REML = F)

Anova(m, test.statistic=c("Chisq"))
```

Quantitative

Measurement

- Can be measured at finer and finer
 1.6 g/ml scale
- Continuous

- 9.5 cm

Quantitative

Proportion

Ranges from 0 to 1

- 25% classified as A
- 10% classified as B

Proportion data

- Observations from 0 ~ 1
- Percentage of mortality
- Infection rates of diseases

Model for proportion data: beta regression

- Beta regression models continuous variables y that assume values in the interval (0,1)
- Beta distribution formula:

$$Pr\{Y=y\} = \frac{\Gamma(p+q)}{\Gamma(p)\Gamma(q)} y^{p-1} (1-y)^{q-1} \qquad \text{p, q > 0, shape parameters}$$

Variance:

$$var(Y) = \frac{\mu(1-\mu)}{(1+\Phi)}$$
 ϕ = dispersion parameter

Models for proportion data: beta regression

Individual	Time point	ratio of CD27+ % of CXCR3- Th17
a	1	0.42
a	2	0.36
a	3	0.97
b	1	0.12
b	2	0.20
b	3	0.98
С	1	0.39
С	2	0.41
С	3	0.68

m <- glmmTMB(ratio ~ (1|Individual) + Time_point, family = beta, REML = F)
Anova(m, test.statistic=c("Chisq"))

Quantitative

Proportion

Ranges from 0 to 1

- 25% classified as A
- 10% classified as B

Binary

• Sort things into one of two mutually exclusive categories

• True/False
• Reject/Accept

Binary data

- Sort things into one of two mutually exclusive categories
- True/False
- Accept/Reject
- Passed/Failed

Model for binary data: binary logistic regression

- The distribution of y is assumed to be binomial
- Binomial distribution formula:

$$Pr\{Y=y\} = \binom{n}{y} p^y (1-p)^{n-y}$$
 n Bernoulli trials p the probability to succeed

Mean and variance:

$$E(Y) = np$$

$$var(Y) = np(1 - p)$$

Models for binary data: binary logistic regression

Individual	Time point	Survived
a	1	1
a	2	1
a	3	0
b	1	1
b	2	1
b	3	1
С	1	1
C	2	1
C	3	0

m <- glmmTMB(survived ~ (1|Individual) + Time_point, family = binomial, REML = F)

Anova(m, test.statistic=c("Chisq"))

Binary

• Sort things into one of two mutually exclusive categories

• True/False
• Reject/Accept

Ordinal data

- The variables have ordered categories and the distances between the categories is not known
- Satisfaction level on a scale of satisfied/indifferent/dissatisfied
- Pain level on a scale of no/mild/moderate/severe pain

Model for ordinal data: proportional odds logistic model

- Extension of the binary logistic model
- Instead of applying the transformation to the response probabilities π_i , we apply it to the cumulative response
- Sum probabilities up to a threshold, making the whole range of ordinal categories binary at that threshold.
- The ordered response is

$$y = 1, 2, ..., J$$

The associated probabilities are

$$\{\pi_1, \pi_2, \ldots, \pi_J\}$$

Cumulative probability of a response less than or equal to j is

$$P(Y \leq J) = \pi_1 + \dots + \pi_J$$

Model for ordinal data: ordinal regression

Individual	Time point	Disease severity
a	1	1
a	2	2
a	3	5
b	1	2
b	2	3
b	3	2
С	1	5
С	2	4
C	3	1

```
library(MASS)
m <- polr(Severity ~ (1|Individual) + Time_point, method="logistic")
```

Anova(m, test.statistic=c("Chisq"))

Quantitative	Count	Non-negative integers resulted from countingDiscrete	10 apples80 dogs
	Measurement	Can be measured at finer and finer scaleContinuous	1.6 g/ml9.5 cm
	Proportion	 Ranges from 0 to 1 	25% classified as A10% classified as B
Qualitative	Binary	 Sort things into one of two mutually exclusive categories 	True/FalseReject/Accept
	Ordinal	 Ranked The distance between two categories is not known 	Small/Medium/LargeDislike/Neutral/Like

Data type	Count	Measurement	Proportion	Binary	Ordinal
Description	Non-negative integers resulted from counting	Continuous data Can be measured at finer scale	Ranges from 0 to 1	Either 0 or 1	Ranks
Example	Bacterial abundance	Height, weight, blood pressure	Immune cell: CD27+ % of CXCR3- Th17	Survived or not	Pain level
Model	Negative binomial model	Normalize first, then apply linear model	Beta model	Binary logistic model	Proportional odds logistic model

Longdat R package

- Longitudinal data analysis
- Takes longitudinal dataset as input
- Analyzes if there is significant change of the features over time
- The output table contains p values, effect sizes, confounders of features.
- Can handle the 5 types of data mentioned
- 1. longdat_disc(): Time as discrete variable. V1, V2, V3...
- 2. longdat_cont(): Time as continuous variable. Day1, day10, day20...
- 3. theta_plot(): For count data, plots theta v.s. non-zero counts

```
longdat_disc(input, data_type, test_var, ...)
```