1. พิจารณา Process 5 processes พร้อมทั้ง CPU-burst time และ priority ดังต่อไปนี้

<u>Process</u>	<u>Burst Time</u>	<u>Priority</u>
P1	10	3
P2	1	1
P3	2	4
P4	1	5
P5	5	2

สมมติให้ทั้งห้า process มาถึงระบบตามลำดับ คือ P1, P2, P3, P4, P5 เมื่อเวลา 0

1.1. จงวาด Gantt chart แสดงลำดับการประมวลผลของ process ทั้งห้า สำหรับแต่ละ scheduling algorithm ดังนี้ FCFS, SPF, SRTF, non-preemptive priority (ค่า priority น้อยกว่าหมายถึงมี priority สูงกว่า), preemptive priority และ RR (quantum = 1)

คำตอบ:

<u>หมายเหตุ</u> หมายเลข 1-5 ที่ปรากฏใน Gantt chart แทน P1, P2, P3, P4, P5 ตามลำดับ FCFS

1	2	3	4	5

 SPN หรือ SJF
 SRTN ให้ผลเหมือนกับ SPN

 2
 4
 3
 5
 1

Priority ทั้ง non-preemptive และ preemptive ให้ผลเหมือนกัน

2	5	1	3	4
				i

RR

1	2	3	4	5	1	3	5	1	5	1	5	1	5	1
													l	

1.2. จงคำนวณหา average turnaround time และ turnaround time ของแต่ละ process คำตอบ:

		Turnaround time FCFS SPN Priority RR											
	FCFS												
P1	10	19	16	19									
P2	11	1	1	2									
P3	13	4	18	7									
P4	14	2	19	4									
P5	19	9	6	14									
Average	13.4	7	12	9.2									

หมายเหตุ SRTN ให้ผลเหมือนกับ SPN และ priority ทั้งสองแบบให้ผลเหมือนกัน

1.3. จงคำนวณหา average waiting time และ waiting time ของแต่ละ process คำตอบ:

		Waitin	g time	
	FCFS	SPN	Priority	RR
P1	0	9	6	9
P2	10	0	0	1
P3	11	2	16	5
P4	13	1	18	3
P5	14	4	1	9
Average	9.6	3.2	8.2	5.4

หมายเหตุ SRTN ให้ผลเหมือนกับ SPN และ priority ทั้งสองแบบให้ผลเหมือนกัน

1.4. อยากทราบในที่นี้ว่า scheduling algorithm ใด ให้ประสิทธิภาพในการทำงานดีที่สุด เพราะเหตุใด คำตอบ:

SPN หรือ SJF เนื่องจากมี average waiting time เป็น 3.2 ซึ่งน้อยกว่าของ algorithm อื่น (ดูตารางในข้อ 1.3)

2. ตอบคำถามในลักษณะเดียวกับข้อ 1 โดยกำหนด arrival time ของทั้งห้า process ดังนี้

Process	Arrival time
P1	3
P2	2
P3	1
P4	4
P5	5

2.1. จงวาด Gantt chart

คำตอบ:

FCFS

FC	.FS																	
3	3	2					1	1	4 5									
SP	SPN หรือ SJF SRTN ให้ผลเหมือนกับ SPN																	
3	3	2	4			5								1				
No	n-pı	reen	emptive Priority															
3	3	2					1	1	5							4		
Pre	eem	ptiv	e Pri	iority	/													
3	2	:	1			5						1					3	4
RR																		
3	2	3	1	4	5	1	5	1	5	1	5	1	5			1		

2.2. จงคำนวณหา average turnaround time และ turnaround time ของแต่ละ process คำตอบ:

			Turnaround time		
	FCFS	SPN	Non-preemptive	Priority	RR
			Priority		
P1	11	16	11	15	17
P2	2	2	2	1	1
P3	2	2	2	18	3
P4	11	1	16	16	2
P5	15	5	14	5	10
Average	8.2	5.2	9	11	6.6

หมายเหตุ SRTN และ SPN ให้ผลเหมือนกัน

2.3. จงคำนวณหา average waiting time และ waiting time ของแต่ละ process คำตอบ:

		Waiting time										
	FCFS	SPN	Non-preemptive	Priority	RR							
			Priority									
P1	1	6	1	5	7							
P2	1	1	1	0	0							
P3	0	0	0	16	1							
P4	10	0	15	15	1							
P5	10	0	9	0	5							
Average	4.4	1.4	5.2	7.2	2.8							

หมายเหตุ SRTN และ SPN ให้ผลเหมือนกัน

2.4. อยากทราบในที่นี้ว่า scheduling algorithm ใด ให้ประสิทธิภาพในการทำงานดีที่สุด เพราะเหตุใด คำตอบ:

SPN หรือ SJF เนื่องจากมี average waiting time เป็น 1.4 ซึ่งน้อยกว่าของ algorithm อื่น (ดูตารางในข้อ 2.3)

3. พิจารณา Process 3 processes พร้อมทั้ง CPU-burst time และ I/O-burst time ในหน่วยมิลลิวินาทีดังต่อไปนี้

<u>Process</u>	CPU-burst1	<u>I/O-burst1</u>	CPU-burst2	<u>I/O-burst2</u>	CPU-burst3	<u>Arrival time</u>
А	2	4	2	2	2	0
В	2	2	3	3	1	1
C	1	2	1	1	1	1

สมมติให้ทั้ง 3 process มาถึงระบบตาม arrival time ที่ระบุ

3.1. จงวาด Gantt chart แสดงลำดับการประมวลผลของ process ทั้งสาม สำหรับแต่ละ scheduling algorithm ดังนี้ FCFS, RR (quantum = 1) และ RR (quantum = 2) โดยในกรณีที่ quantum ของ process หนึ่งหมดลง พร้อมกับการทำ I/O แล้วเสร็จของอีก process หนึ่ง กำหนดให้การแล้วเสร็จของ process ที่ทำ I/O เกิดขึ้นก่อน พร้อมไปกับวาดภาพแสดงสถานะของ ready queue ด้วย

คำตอบ:

FCFS

RR (quantum = 1)

RR (quantum = 2)

1	\ [B 				<i>,</i>	\ 	[3 	(C E	3 4) (Ĵ		Į.	3 7
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	А	А	В	В	С		Α	Α	В	В	С	В	А	Α	С		В
			Α	Α	Α	Α	В	В	С	С	Α	А	С	В	В	В	
A B E			3		(<u> </u>		1									
					(2		1	4			E	3				

- 3.2. จงคำนวณหา average turnaround time และ turnaround time ของแต่ละ process ในแต่ละ scheduling algorithm ที่กำหนดในข้อ 3.1
- 3.3. จงคำนวณหา average waiting time และ waiting time ของแต่ละ process ในแต่ละ scheduling algorithm ที่กำหนดในข้อ 3.1
- 3.4. อยากทราบในที่นี้ว่า scheduling algorithm ใด ให้ประสิทธิภาพในการทำงานดีที่สุด เพราะเหตุใด คำตอบ ข้อ 3.2-3.4:

Process	Waiting time			Turnaround time		
	FCFS	RR (q.=1)	RR (q.=2)	FCFS	RR (q.=1)	RR (q.=2)
А	0+2 = 2	3+2 = 5	0+2 = 2	2+12 = 14	5+12 = 17	2+12= 14
В	1+3 = 4	4+4 = 8	2+3 = 5	4+11 = 15	8+11 = 19	5+11 = 16
С	4+6 = 10	1+5 = 6	4+4 = 8	10+6 = 16	6+6 = 12	8+6 = 14
Average	5.33	6.33	5.00	15	16	14.67

จากตารางพบว่า scheduling algorithm ที่ให้ประสิทธิภาพในการทำงานดีที่สุด ได้แก่ RR ที่มี quantum = 2 เพราะมี Average turnaround time ต่ำที่สุด

3.5. ในกรณีที่กำหนดค่า priority ให้กับแต่ละ process โดยให้ P2 มี priority สูงที่สุด อยากทราบว่าการ scheduling แบบ RR เมื่อ quantum = 1 และ 3 ตามลำดับ จะเกิดการเปลี่ยนแปลงขึ้นหรือไม่ อย่างไร คำตอบ: การ scheduling แบบ RR ให้ความสำคัญกับทุก process เท่ากัน (ตามขนาดของเวลาที่จัดสร CPU ให้ ประมวลผล หรือขนาดของ quantum) ดังนั้นการกำหนดค่า priority ให้กับ process จึงไม่มีผลต่อการทำงานของ

RR ทุกแบบที่กล่าวมา