الإسم: فراس سميد رمعنان سليم M: x1-113/11/4 الرضم الجامعي: PEDODA A) x = (-1)(1) + (8)(1) + (1)(3) + (4)(1) 1 = -1+4+3+4 6 = -1+3+3+4 62 9+6 4 =0 B) x = x = mode c) x |2 |2 |2 |2 |3 |3 |3 | 30 X2 42 2 4.2 D) x 1 1 1 1 1 1 5220 X=1 E) x 12/2/2 rang 20 X 2 2 a+b+c=15 (9+c=7) F) MERA 25 + 9+6+0 25 median: 8-7 (628) range 211 - c-azII a+c = 3 -a+c 211 4 9+627 26218 9+927 (C29

(92-2)

$\frac{1}{1} \frac{1}{184} \frac{1}{108} \frac{1}{1$
$\overline{X} = \frac{1639}{800}$
$\frac{2}{2} \frac{2.048}{2}$
mode: disadvantage
3: -3,-2,0,1,2,3,4,5,5,6,14 A) mean: X= \(\frac{\x}{\Lambda}\)
235

$$\Phi$$
 3: -3, -2, 0, 1, 2, 3, 4, 5, 5, 6, 14
A) mean: $\bar{X} = \frac{\sum X}{\Lambda}$

$$= \frac{35}{3.18}$$

median: 3

mode: 5

B)
$$\frac{x \mid x - \overline{x} \mid (x - \overline{x})^2}{-3 \mid -6.18 \mid 39.79}$$
 $-2 \mid -5.18 \mid 26.83$
 $0 \mid -3.18 \mid 10.11$
 $1 \mid -2.18 \mid 4.75$
 $-3.18 \mid 1.39$
 $-0.18 \mid 0.03$
 $0.82 \mid 0.67$
 $5 \mid 1.82 \mid 3.31$
 $5 \mid 1.82 \mid 3.31$
 $6 \mid 2.82 \mid 7.95$
 $14 \mid 10.82 \mid 117.07$
 $14 \mid 10.82 \mid 117.07$

$$S = \sqrt{\frac{\sum (x-\bar{x})^2}{n-1}}$$

$$= \sqrt{\frac{213.61}{10}}$$

$$= \sqrt{21.361}$$

$$= 4.62$$

C) 0,1,34,5,6,7,8,8,9,17

mean
$$\bar{x} = \frac{0+1+2+4+5+6+7+8+8+9+17}{11}$$

$$= \frac{68}{11}$$

$$= 6.18$$

median = 6

mode = 8

Standard:

: X	X-X	(x-x)
0	-6.18	38.19
١ ١	-5.18	26.83
3	-3.18	10.11
4	-2.18	4,75
5	-1,18	1.39
Ь	10.18	0.03
7		067
8		3131
8	1182	3,31
9		7,95
1.	1 10,82	117,07
total	1	213,61

$$52\sqrt{\frac{2(x-\bar{x})^2}{1-1}}$$

$$52\sqrt{\frac{213.61}{10}}$$

$$2\sqrt{21.361}$$

$$24,62$$

mode : = 20

median: = 20

Q4: 53, 68,69, 70,70,70,75,76,77,80,82,82,85,85,88,92,93,96,100

Q5:

×	18	XE	xf	1x: f
-5	2	25	-10	50
-3	11	19	-3	9
-2	13	14	-6	12
-1	12	1	-2	2
0	4	0	0	0
1	1	1	1	2
3)	9	3	32
4	2	16		
5	1	25	15	25
total	12		-4	1140

$$Z = \frac{3+0.23}{17.28}$$

$$= \frac{3.23}{17.28}$$

$$Z = 0.18$$

96:

Variance:
$$5^2 = \frac{5 \times x}{n-1}$$

 $5 \times x = 5 \times x^2 \cdot f = \frac{(5 \times x \cdot f)^2}{n}$
= $8723 - \frac{(479)^2}{4}$
= $8723 - 57360.25$
= -48637.25

$$x_{2} = \frac{2x \cdot f}{1}$$
 $x_{2} = \frac{4}{1}$
 $x_{3} = \frac{4}{1}$
 $x_{4} = \frac{4}{1}$
 $x_{5} = \frac{5xx}{1}$
 $x_{7} = \frac{5xx}{1}$
 $x_{1} = \frac{5xx}{1}$
 $x_{1} = \frac{5x}{1}$
 $x_{1} = \frac{1}{1}$
 $x_{1} = \frac{1}{1}$
 $x_{2} = \frac{5xx}{1}$
 $x_{3} = \frac{1}{1}$
 $x_{4} = \frac{1}{1}$
 $x_{5} = \frac{1}{1}$

$$5 = \sqrt{\frac{8x - \overline{x}}{1.5}}$$
= 1.22

98: x	191	x- x/ y- ÿ	$ (x-\bar{x}) $	U.T.V.	
0	0	-4 / -3.6	14.4	4-8) (x-x)	2/ xy
3	3/	-2 -0.6	0.6	/ 4	6
total 9	8	5 4.4	2.8	4	24
,	20/18	3 / /	39	50	72
1) /		/		1	111

B) cov(x,y) >0 Positive.

C)
$$cov(x,y) = \underbrace{\sum xy - \underbrace{\sum x \le y}_{1}}_{111 - (20)(18)}$$

$$= \underbrace{111 - (20)(18)}_{2111 - 211}$$

$$= \underbrace{111 - 211}_{2111 - 211}$$

D)
$$y = ax + b$$

 $a = \frac{\sum (x - \bar{x})(y - \bar{y})}{\sum (x - \bar{x})^2}$

$$9 = \frac{39}{50}$$
 $6 = \frac{39}{50}$
 $6 = \frac{3.6 * (0.78)(4)}{50}$
 $6 = 0.48$

9=6.78)(X)+0.48

$$\hat{y} = \frac{\xi y}{5}$$
 $\hat{y} = \frac{\xi x}{5}$
 $\hat{y} = \frac{30}{5}$
 $\hat{y} = \frac{30}{5}$
 $\hat{y} = \frac{30}{5}$
 $\hat{y} = \frac{30}{5}$

- A) 4and 8 = 68%.
- B) 2adlo ~ 95%
- c) Below 10 = 2-5%. 97.5%
- D) Above 4 = 97.5%

Q 10:

- A) is based on the Empirical Rule and therefore it might not be correct.
- B) is direct application of Part (1) of cheby shevis Theorem because (X-25, X+25) = (113, 165). It must be correct.
- c) It cannot be 10% because according to the law it is approximately 67%.
 - D) It can be said that the ratio between the highest and lowest ratio is approximately 97%.