## Math 435 09/22/2025 Notes

September 22, 2025

Timothy Tarter James Madison University Department of Mathematics

## Review

**Definition 1.** A space  $(X, \mathcal{U})$  is Hausdorff if given  $x \neq y \in X$ , there exists  $U, V \in \mathcal{U}$  with  $x \in U$  and  $y \in U$  such that U and V are disjoint.

## Today

- Quotient spaces
- Quotient spaces of Hausdorff spaces



Figure 1: Mapping the fundamental strip to a Torus

**Definition 2.** Let X be a space and let A be a set (not necessarily a subset of X). Let  $p: X \to A$  be a surjective function. The quotient topology on A has  $U \subseteq A$  open iff  $p^{-1}(A)$  is open in X, by definition. We call p the quotient map of X onto A.

**Theorem 1.** The quotient topology is a topology.

**Proof:** Let  $p: X \to A$  be surjective and let  $\mathscr{U} = \{U \subseteq A \mid p^{-1}(U) \overset{\circ}{\subset} X\}$ .  $\emptyset \in \mathscr{U}$  since  $p^{-1}(\emptyset) = \emptyset$ . Moreover,  $A \in \mathscr{U}$  since p is surjective which implies  $p^{-1}(A) = X$ . (The rest of the proof is an exercise.)

**Example 1.** Let  $X = \mathbb{R}$  under the standard topology, and let  $A = \{a, b, c\}$ . Then let

$$p(x) = \begin{cases} a & \text{if } x < 0 \\ b & \text{if } x = 0 \\ c & \text{if } x > 0 \end{cases}$$
 (1)

Thus,  $p^{-1}(a) = (-\infty, 0)$ ,  $p^{-1}(b) = \{0\}$ ,  $p^{-1}(c) = (0, \infty)$ . But  $p^{-1}(b)$  isn't open in  $\mathbb{R}$ . So the topology on  $\{a, b, c\}$  must be  $\mathscr{U} = \{a, c, a \cup c, \emptyset, a \cup b \cup c\}$ .

**Definition 3.** A partition of a set A is a collection of disjoint, nonempty subsets that cover A.

Often, for quotient spaces, we let A be a partition of X. Foreshadowing: if X = [0, 1] with the subspace topology from  $\mathbb{R}$ , and we let our partition  $X^*$  of A be  $X^* = \{\{x\} | 0 < x < 1\} \cup \{0, 1\}$ , we can make the Riemann sphere.