MASSACHUSETTS MATHEMATICS LEAGUE **CONTEST 2 - NOVEMBER 2006 SOLUTION KEY**

Round 3

A) Drop perpendiculars from A and D to base BC, creating a rectangle and two special right triangles as indicated in the diagram. $EF = 40 - (7 + 32) = 1 \rightarrow AD = 1$. Thus, Area(trapezoid) =

$$\frac{1}{2}h(b_1 + b_2) = \frac{1}{2}(24)[40 + 1] = \underline{492}.$$

Failing to specify that AD < BC and that \overline{AD} and \overline{BC} are bases, allows additional solutions.

$$\frac{1}{2}(24)[40+33+32] = \underline{1260}$$

$$\frac{1}{2}(24)[40+33+32] = \underline{1260} \qquad \frac{1}{2}(24)[40+47+32] = \underline{1428}$$

$$\frac{1}{2}(24)[25+40+17] = \underline{984}$$

Are there others?

B) Note that the intersection of the two equilateral triangles is a regular hexagon, which can be subdivided into 6 congruent equilateral triangles by drawing the 3 indicated diagonals. It's easy to argue that FPQR is a parallelogram and, therefore, $\triangle FPR \cong \triangle QRP$ and all 12 equilateral triangles are congruent. Thus, the ratio of the

area of the entire star to the area of the original $\triangle ABC$ is 12 : 9 = 4:3 C) Triangles ADC and ADB have the same altitude from point A and, therefore,

By the angle bisector theorem,
$$\frac{DC}{\sqrt{3}} = \frac{DB}{2} \Rightarrow \frac{DC}{DB} = \frac{\sqrt{3}}{2}$$

Area($\triangle ADC$) + Area($\triangle ADB$) = $\sqrt{3}x + 2x = 6 \Rightarrow x = \frac{6}{2 + \sqrt{3}} = 6(2 - \sqrt{3})$

Ε

В

and Area(
$$\triangle ADC$$
) = $\sqrt{3} x = 12\sqrt{3} - 18$ or $6(2\sqrt{3} - 3)$

Round 4

- A) As the difference of perfect squares, $(a^2 3a + 1)^2 1 = (a^2 3a)(a^2 3a + 2)$ = a(a-3)(a-2)(a-1) - in any order
- B) Let A = (x + 1). Then, grouping in pairs, $A^3 A^2 9A + 9 = A^2(A 1) 9(A 1)$ = $(A 1)(A^2 9) = (A 1)(A + 3)(A 3)$ Substituting for A, we have x(x + 4)(x 2).
- C) Treat the equation as a quadratic equation in x and complete the square.

$$x(x+2y) = 1 \rightarrow x^2 + (2y)x + y^2 = 1 + y^2 \rightarrow (x+y)^2 = 1 + y^2 \rightarrow x + y = \pm \sqrt{1+y^2}$$

 $x = -y \pm \sqrt{1+y^2}$

Since $\sqrt{1+y^2} > \sqrt{y^2} = |y|$, it follows that $\sqrt{1+y^2} > y$ or $\sqrt{1+y^2} - y > 0$ and the only solution giving x < 0 is $x = -y - \sqrt{1 + y^2}$