Solution to Gaussian Elimination

Given the set of linear equations:

```
E_{1j}: 2x_1 + 8x_2 - 5x_3 = 53

E_{2j}: 3x_1 - 6x_2 + 4x_3 = -48

E_{1,1}: x_1 + 2x_2 - x_3 = 13
```

Let's look at the solution graphically first.

Figure 1 is the plane of E1, Figure 2 is the plane of E3, and Figure 3 is the plane of E3.

al result will be the intersection of the three planes:

One way of solving the equations:

1. Divide E, by 2; multiply E, by 3 and subtract it from E, to cancel E, from E2; subtract the new E, from E4 to cancel _{xi}from _{E3j}:

2. Divide E,by -18; multiply E,by 2 and add it to E,to cancel E,from E,:

$$E_{ij}$$
: $x_1 + 4x_2 = \begin{cases} x_3 = \frac{12}{3} \\ E_{ij}$: $x_2 = \begin{cases} x_3 = \frac{12}{3} \\ E_{ij} \end{cases}$

3. Now, solve for x_1 , $x_2 + 4x_2 - \frac{5}{2}x_3 = \frac{35}{2}$ substitute it into x_2 , to solve for x_3 ; then substitute x_3 and x_4 into x_4 and solve for x_5 :

So, $x_1 = -2$, $x_2 = 9$ and $x_3 = 3$.

Solving the equations in a matrix:

Two main steps are involved in this solution. The Gaussian elimination is performed first, followed by the Back-sub stituti $[0, n]: -\frac{2}{6} \begin{bmatrix} -\frac{1}{4} \\ -\frac{4}{5} \end{bmatrix} \begin{bmatrix} -\frac{13}{4} \\ -\frac{43}{5} \end{bmatrix}$

• Reducing[the-mair|x wi]h Gaussian elimination

$$E_{3j} + \frac{1}{3}E_{2j}$$
 $\begin{bmatrix} 1 & 2 & -1 & 13 \\ 0 & -12 & 7 & -87 \\ 0 & 0 & -\frac{2}{3} & -2 \end{bmatrix}$

Back-substitution

Reading from the matrix:

• finding _{z3}

$$\frac{-2}{3}x_3 = -2$$
 $x_3 = 3$

• finding _{x1}

$$x_1 + 2x_2 - x_3 = 13$$

 $x_1 + 2(9) - 3 = 13$
 $x_2 - 2$

So, $z_1 = -2$, $z_2 = 9$ and $z_3 = 3$. As expected, the two different methods give the same answer.

*John M. Stockie

Fri Sep 8 14:25:44 PDT 1995*