Trauen Sie keiner Lösung, die Sie nicht selbst überprüft haben!!

Lösungen zu Übungsblatt 1

rechte Abb.: G_a und G_b sind die ZFG zu Aufg. 2 a) und b); die anderen Geraden sind nach Bedingungen nummeriert

1. $x_1 = 11.0$; $x_2 = 3.0$; G=64.0; $y_2 = 10.0$ Zielfunktionsgerade a

						_														
	x_1	x_2	y_1	y_2	y_3	r. S.		x_1	x_2	y_1	y_2	y_3	r. S.		x_1	x_2	y_1	y_2	y_3	r. S.
y_1	1	1	1	0	0	14	y_1	0	1	1	0	-1	3	x_2	0	1	1	0	-1	3
y_2	4	9	0	1	0	81	y_2	0	9	0	1	-4	37	y_2	0	0	-9	1	5	10
y_3	1	0	0	0	1	11	x_1	1	0	0	0	1	11	x_1	1	0	0	0	1	11
G	-5	-3	0	0	0	0	G	0	-3	0	0	5	55	G	0	0	3	0	2	64

2. a) $x_1 = 5.0$; $x_2 = 7.0$; G=31.0; $y_2 = 11.0$; $y_3 = 5.0$ Zielfunktionsgerade Ga (blau)

•	$\omega_j \omega_1$	0.0	, w ₂	• • • •	, –	o±.0,	g_{Z}	11.0, 9	3 0.0			.056	Ji dae C	· a (5	iuu		
		x_1	x_2	y_1	y_2	y_3	y_4	r. S.		x_1	x_2	y_1	y_2	y_3	y_4	r. S	.
	y_1	2	2	1	0	0	0	24	y_1	4.7	0	1	-0.7	0	0	16	,
	y_2	-4	3	0	1	0	0	12	x_2	-1.3	1	0	0.3	0	0	4	
	y_3	1	0	0	0	1	0	10	y_3	1	0	0	0	1	0	10	1
	y_4	0	1	0	0	0	1	7	y_4	1.3	0	0	-0.3	0	1	3	
	G	-2	-3	0	0	0	0	0	G	-6	0	0	1	0	0	12	
		x_1	x_2	y_1	y_2	: [;	y_3	y_4	r. S.		x_1	x_2	y_1	y_2	y_3	y_4	r.
	y_1	0	0	1	0.5	5	0	-3.5	5.5	y_2	0	0	2	1	0	-7	1

	$ x_1 $	x_2	y_1	y_2	y_3	y_4	r. S.		$ x_1 $	x_2	y_1	y_2	y_3	y_4	r. S.
y_1	0	0	1	0.5	0	-3.5	5.5	y_2	0	0	2	1	0	-7	11
x_2	0	1	0	0	0	1	7	x_2	0	1	0	0	0	1	7
y_3	0	0	0	0.25	1	-0.75	7.75	y_3	0	0	-0.5	0	1	1	5
x_1	1	0	0	-0.25	0	0.75	2.25	x_1	1	0	0.5	0	0	-1	5
G	0	0	0	-0.5	0	4.5	25.5	G	0	0	1	0	0	1	31

b) $x_1 = 10.0$; $x_2 = 2.0$; G=22.0; $y_2 = 46.0$; $y_4 = 5.0$ Zielfunktionsgerade Gb (rot)

		, -		,		, 02		0 1				0			,
	x_1	x_2	y_1	y_2	y_3	y_4	r. S.		x_1	x_2	y_1	y_2	y_3	y_4	r. S.
y_1	2	2	1	0	0	0	24	y_1	0	2	1	0	-2	0	4
y_2	-4	3	0	1	0	0	12	y_2	0	3	0	1	4	0	52
y_3	1	0	0	0	1	0	10	x_1	1	0	0	0	1	0	10
y_4	0	1	0	0	0	1	7	y_4	0	1	0	0	0	1	7
G	-2	-1	0	0	0	0	0	G	0	-1	0	0	2	0	20

	x_1	x_2	y_1	y_2	y_3	y_4	r. S.
x_2	0	1	0.5	0	-1	0	2
y_2	0	0	-1.5	1	7	0	46
x_1	1	0	0	0	1	0	10
y_4	0	0	-0.5	0	1	1	5
G	0	0	0.5	0	1	0	22

3. a) bleibt, da Gerade Ga schon durch B(5|7) geht; G=31.

										Г	П						1	П.		1
y ₁ 2 2 1 0 0 0 244 y ₂ 4 0 0 1 0 -3 -9 y ₃ 1 0 0 0 1 0 10 0 y ₄ 0 1 0 0 0 1 0 0 0 1 0 0		x_1	x_2	y_1	y_2	y_3	y_4	r. S.		٦Ļ		x_1	x_2	y_1	y_2	y_3		<u> </u>]
Ye	y_1	2	2	1	0	0	0	24	Ť	- 7 -										
ys	H_	-4	3	0	1	0	0	12		$\exists \vdash$	<u> </u>					-				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	y_3	1	0	0	0	1	0	10			- 11		_							-
	y_4	0	1	0	0	0	1	7	1	*										_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\overline{G}	-2	-3	0	0	0	0	0	Ť	٦ŀ	G	-2	0	0	0	0		- 11	21	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ x_1 $	x ₂	u_1	l u ₂		la l	u_{4}	r.	S.		$ x_1 $	x_2	u_1		12	$\frac{\mid}{u_3}$	y_{\prime}	l r.	S.
	7/1	_						-			210					_			Ш	
Y3																				I
The state The																				
Sindert sich: Gerade Gb wird nach links verschoben, bis sie durch B(5 7) geht; G=17.			1	0													0	1		I
b) \$indert sich: Gerade Gb wird nach links verschoben, bis sie durch B(5 7) geht; G=17. x_1		0	0	0	-0.!	5	0	4.5	2!	5.5		0	0	1		0	0	1	3	1
								*												
	b) änd	dert s	ich: G	ierade	e Gb v	wird 1	nach	links v	erso	chob	en, bi			<u> </u>	, -	· ·	_		. C	7
Y2		x_1	x_2	y_1	y_2	y_3	y_4	r. S.		∃ŀ						_]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	y_1	2	2	1	0	0	0	24	T	╗┞	- 1									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	y_2	-4	3	0	1	0	0	12												-
Ya	y_3	1	0	0	0	1	0							I		l				-
	y_4	0	1	0	0	0	1	7		*								!_]
Y1	G	-2	-1	0	0	0	0	0			G	-2	U	U	0	U		- 11		-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$ x_1 $	x_2	y_1	y_2	1	/3	y_4	r.	S.		$ x_1$	x_2	y_1		y_2	y_3	y_4	r.	S.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	u_1	0	0						5	.5	y_2	0	0	2		1	0	-7	1	1
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1			1		0						0							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	H	0	0	0	0.2	5	1 .	-0.75	7.	.75		0	0	-0.	5	0	1	1	5	5
a) Gerade Ga wird nach oben verschoben, bis sie durch C(3.4 8.6) geht; G=32.6.		0	1	0	0		0	1		7		0	1	0		0	0	1	7	7
a) Gerade Ga wird nach oben verschoben, bis sie durch C(3.4 8.6) geht; G=32.6.	G	0	0	0	-0.	5	0	2.5	1:	1.5	\overline{G}	0	0	1		0	0	-1	1	7
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								*										*		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	a) Ge	rade (Ga wii	rd na	ch ob	en ve	rscho	oben. b	is s	ie di	ırch (7(3.4	8.6) 8	eht:	G=3	2.6.				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1									П	`			1		4	r. S.		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7/1			-			-		٦ŀ	1/1	2	0							Ħ	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	_								\dashv		-								_	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		1	0	0	0	1	0	10	٦t		1	0	0	0	1)	10	_	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		0	-1	0	0	0	1	-7	٦t		0	1	0	0	0	-:	1	7		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-2	-3	0	0	0	0	0	٦i	G	-2	0	0	0	0	-:	3	21	Ī	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		x_1	x_2	y_1	y_2	į	/3	y_4	r.	S.		$ x_1$	x_2	y	1	y_2	2	y_3	y_4	r. S
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	y_1	_									y_4	11 -						-		1.57
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	x_1			_							x_1							-	-	3.42
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	y_3																			6.57
b) Gerade Gb wird nach links verschoben, bis sie durch B(5 7) geht; G=17.		Ш			1															8.57
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$																0.1	4	0	0	32.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	b) Ge	1								ie at	11	``	Ť		_	1 21	. 1	r S		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									4											
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			l				l	III .	\dashv							- 1	- 11		\perp	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$									\dashv										_	
								11	\dashv											
	94							+	ᆜ┝				+ -				_		╛	

	x_1	x_2	y_1	y_2	y_3	y_4	4	r. S.		x_1	x_2	y_1	y_2	y_3	y_4	r. S.
y_1	0	0	1	0.5	0	3.	5	5.5	y_4	0	0	0.29	0.14	0	1	1.57
x_1	1	0	0	-0.25	0	-0.	75	2.25	x_1	1	0	0.21	-0.14	0	0	3.42
y_3	0	0	0	0.25	1	0.7	75	7.75	y_3	0	0	-0.21	0.14	1	0	6.57
x_2	0	1	0	0	0	-1	L	7	x_2	0	1	0.29	0.14	0	0	8.57
G	0	0	0	-0.5	0	-2.	.5	11.5	G	0	0	0.71	-0.14	0	0	15.42
	x_1	x_2	y_1	y_2	y_3	y_4	r. S	S.								
y_2	0	0	2	1	0	7	11	1								
x_1	1	0	0.5	0	0	1	5									
y_3	0	0	-0.5	0	1	-1	5									
x_2	0	1	0	0	0	-1	7									
G	0	0	1	0	0	1	17	7								

5. Ungleichungen:

$$5x_1 + 9x_2 + 7x_3 \le 190$$

$$5x_1 + 8x_2 + 4x_3 \le 140$$

$$x_1 + 2x_2 \le 10$$

$$4x_1 + 4x_2 + 5x_3 \rightarrow MAX$$

Nichtnegativitätsbedingungen: $x_i \geq 0 \, \forall i$

Ausgangstableau: x_i ist die Anzahl der hergestellten Güter G_i

	x_1	x_2	x_3	y_1	y_2	y_3	rechte Seite	Bedeutung
y_1	5	9	7	1	0	0	190	Rohstoffbegrenzung
y_2	5	8	4	0	1	0	140	Arbeitszeit
y_3	1	2	0	0	0	1	10	Maschine
G	-4	-4	-5	0	0	0	0	

Lösung (überprüfen!)

	x_1	x_2	x_3	y_1	y_2	y_3	rechte Seite		x_1	x_2	x_3	y_1	y_2	y_3	r. S.
x_3	0.71	1.29	1	0.14	0	0	27.14	x_3	0	-0.14	1	0.14	0	-0.71	20
y_2	2.14	2.86	0	-0.57	1	0	31.43	y_2	0	-1,43	0	-0.57	1	-2.14	10
y_3	1	2	0	0	0	1	10	x_1	1	2	0	0	0	1	10
G	-0.43	2.43	0	0.71	0	0	135.71	G	0	3.29	0	0.71	0	0.43	140

d.h. $x_1 = 10$; $x_3 = 20$; G=140; $y_2 = 10$. Es werden also 10 Güter G_1 und 20 Güter G_3 hergestellt. G_2 wird gar nicht produziert. 10 Stunden Arbeitszeit werden nicht genutzt.

6. (Un)Gleichungen:

$$5x_1 + 9x_2 + 7x_3 \le 190$$

$$5x_1 + 8x_2 + 4x_3 \le 140$$

$$x_1 + 2x_2 = 10$$

$$4x_1 + 4x_2 + 5x_3 \rightarrow MAX$$

Nichtnegativitätsbedingungen: $x_i \ge 0 \,\forall i$

Ergebnis wie bei 5.

7. Ungleichungen:

$$5x_1 + 9x_2 + 7x_3 \le 190$$

$$5x_1 + 8x_2 + 4x_3 \le 140$$

$$x_1 + 2x_2 \ge 10$$

$$4x_1 + 4x_2 + 5x_3 \rightarrow MAX$$

Nichtnegativitätsbedingungen: $x_i \ge 0 \, \forall i$

Ausgangstableau:

	x_1	x_2	x_3	y_1	y_2	y_3	rechte Seite
y_1	5	9	7	1	0	0	190
y_2	5	8	4	0	1	0	140
y_3	-1	-2	0	0	0	1	-10
G	-4	-4	-5	0	0	0	0

Lösung (überprüfen!)

	x_1	x_2	x_3	y_1	y_2	y_3	rechte Seite		x_1	x_2	x_3	y_1	y_2	y_3	rechte Seite
y_1	0	-1	7	1	0	5	140	x_3	0	-0.14	1	0.14	0	0.71	20
y_2	0	-2	4	0	1	5	90	y_2	0	-1.43	0	-0.57	1	2.14	10
x_1	1	2	0	0	0	-1	10	x_1	1	2.00	0	0	0	-1.00	10
G	0	4	-5	0	0	-4	40	G	0	3.29	0	0.71	0	-0.43	140

		x_1	x_2	x_3	y_1	y_2	y_3	rechte Seite
	x_3	0	1/3	1	1/3	-1/3	0	16.67
Optimaltableau:	y_3	0	-2/3	0	-0.27	0.47	1	4.67
	x_1	1	4/3	0	-0.27	0.47	0	14.67
	G	0	3	0	0.6	0.2	0	142

d.h. $x_1 = 14.67$ (1.467h an der Maschine); $x_3 = 16.67$; G=142; $y_3 = 4.67$. Es werden also 14.67 Güter G_1 und 16.67 Güter G_3 hergestellt. G_2 wird nach wie vor nicht produziert. 0.467 Stunden Maschinenzeit werden **zusätzlich** (zum Minimum von 1h) genutzt.

Falls die Güter nur in ganzen Stückzahlen produziert werden können, muss ein zusätzliches Verfahren angewendet werden (s. Kapitel 4).

Bemerkung: Empfehlenswerte Simplexrechner finden sich unter

http://www.simplexme.com/de/

http://simplex.tode.cz/en

1. (a)

$$\begin{array}{rcl} M_1 & 5x_1 + 2x_2 & \leqq & 24 \\ M_2 & x_1 + 5x_2 & \leqq & 24 \\ Montage & 6x_1 + 6x_2 & \leqq & 36 \\ & x_1, x_2 & \geqq & 0 \\ G & = & 5x_1 + 8x_2 \Longrightarrow \max \end{array}$$

(b), (c) Ausgangstableau

		x_1	x_2	y_1	y_2	y_3	r.S.
	y_1	5	2	1	0	0	24
u	y_2	1	5	0	1	0	24
	y_3	6	6	0	0	1	36
	G	-5	-8	0	0	0	0

Lösung:

	x_1	x_2	y_1	y_2	y_3	r.S.		x_1	x_2	y_1	y_2	y_3	r.S.
y_1	4.60	0	1	-0.40	0	14.4	y_1	0	0	1	0.75	-0.958	7.5
x_2	0.20	1	0	0.20	0	4.8	x_2	0	1	0	0.25	-0.0417	4.5
y_3	4.80	0	0	-1.20	1	7.2	x_1	1	0	0	-0.25	0.208	1.5
G	-3.40	0	0	1.60	0	38.4	G	0	0	0	0.75	0.708	43.5

D.h. $x_1 = 1.5$, $x_2 = 4.5$ und $y_1 = 7.5$. Die Zielfunktion hat den Wert G = 43.5.

Von A_1 werden 1.5 Stück hergestellt, von A_2 4.5 Stück. Der Gewinn beträgt 43.5GE

verkürzte Version:

	x_1	y_2	r.S.		y_3	y_2	r.S.
y_1	4.60	-0.40	14.4	y_1	-0.958	0.75	7.5
x_2	0.20	0.20	4.8	x_2	-0.0417	0.25	4.5
y_3	4.80	-1.20	7.2	x_1	0.208	-0.25	1.5
G	-3.40	1.60	38.4	G	0.708	0.75	43.5

(d) Die Maschine M_1 steht 7.5 Stunden leer.

2. (a)

$$\begin{array}{rclcrcl} 5x_1 + 2x_2 + 3x_3 & \leqq & 24 \\ x_1 + 5x_2 & \leqq & 24 \\ 6x_1 + 6x_2 & \leqq & 36 \\ x_1 & -x_3 & = & 1 \\ x_1, x_2, x_3 & \geqq & 0 \\ G & = & 5x_1 + 8x_2 + x_3 \Longrightarrow \max \end{array}$$

(b) Ausgangstableau

		x_1	x_2	x_3	y_1	y_2	y_3	y_4	r.5.	
	y_1	5	2	3	1	0	0	0	24	
	y_2	1	5	0	0	1	0	0	24	
ſ	y_3	6	6	0	0	0	1	0	36	
ſ	y_4	1	0	-1	0	0	0	1	1	*
	G	-5	-8	-1	0	0	0	0	0	

Lösung (überprüfen!)

	x_1	x_2	x_3	y_1	y_2	y_3	y_4	r.S.		x_1	x_2	x_3	y_1	y_2	y_3	y_4	r.S.
y_1	0	2	8	1	0	0	-5	19	y_1	0	0	7.6	1	-0.4	0	-4.6	9.8
y_2	0	5	1	0	1	0	-1	23	x_2	0	1	0.2	0	0.2	0	-0.2	4.6
y_3	0	6	6	0	0	1	-6	30	y_3	0	0	4.8	0	-1.2	1	-4.8	2.4
x_1	1	0	-1	0	0	0	1	1	x_1	1	0	-1.0	0	0	0	1.0	1
G	0	-8	-6	0	0	0	5	5	G	0	0	-4.4	0	1.6	0	3.4	41.8
							*									*	

		x_1	x_2	x_3	y_1	y_2	y_3	y_4	r.S.
	y_1	0	0	0	1	1.5	-1.583	3	6
	x_2	0	1	0	0	0.25	-0.0417	0	4.5
	x_3	0	0	1	0	-0.25	0.208	-1	0.5
ĺ	x_1	1	0	0	0	-0.25	0.208	0	1.5
ĺ	G	0	0	0	0	0.5	0.917	-1	44
Ì								*	

Optimaltableau:

D.h. $x_1 = 1.5$, $x_2 = 4.5$, $x_3 = 0.5$ und $y_1 = 6$. Die Zielfunktion hat den Wert G = 44.

Von A_1 werden immer noch 1.5 Stück hergestellt und von A_2 4.5 Stück. Zusätzlich kann pro Tag noch ein halber Artikel A_3 hergestellt werden. Der Gewinn steigt auf 44GE

- (c) Die Maschine M_1 steht nur noch 6 Stunden leer.
- (d) Ohne die zusätzliche Bedingung $x_1-x_3=1$ könnte M_1 vollständig ausgelastet werden. Der Gewinn wäre 46GE. Von A_3 würden 2.5 Stück hergestellt werden.

		,						
		x_1	x_2	x_3	y_1	y_2	y_3	r.S.
	x_3	0	0	1	0.33	0.25	-0.32	2.5
leau:	x_2	0	1	0	0	0.25	-0.04	4.5
	x_1	1	0	0	0	-0.25	0.21	1.5
	G	0	0	0	0.33	1	0.39	46

3.

Optimaltab

$$5u_1 + u_2 + 6u_3 \ge 5$$

$$2u_1 + 5u_2 + 6u_3 \ge 8$$

$$G = 24u_1 + 24u_2 + 36u_3 \Longrightarrow \min$$

Ausgangs- und Optimaltableau

	u_1	u_2	u_3	y_1	y_2	r.S.
y_1	-5	-1	-6	1	0	-5
y_2	-2	-5	-6	0	1	-8
G	24	24	36	0	0	0

	u_1	u_2	u_3	y_1	y_2	r.S.
u_2	-0.75	1	0	0.25	-0.25	0.75
u_3	0.958	0	1	-0.208	0.0417	0.708
G	7.5	0	0	1.5	4.5	-43.5

4.

Uebungen_skript/Abb/II1.ggb.eps

Die Zielfunktionsgerade d darf nicht flacher als Gerade b und nicht steiler als Gerade c werden. Die Steigung von d ist: $m = -\frac{5}{9}$.

Nicht flächer als b mit $m_b=-\frac{1}{5}$: Es muss gelten $\frac{c_1}{c_2} \geq \frac{1}{5}$, also $c_1 \geq \frac{8}{5}$ oder $c_2 \leq 25$. Beachten Sie, dass immer nur ein Koeffizient geändert werden darf.

Nicht steiler als c mit $m_c = -1$: Es muss gelten $\frac{c_1}{c_2} \le 1$, also $c_1 \le 8$ oder $c_2 \ge 5$. Es ergeben sich folgende Intervalle: $c_1 \epsilon \left[\frac{8}{5}; 8 \right]$; $c_2 \epsilon \left[5; 25 \right]$

Die rechten Seiten legen die Lage der Geraden fest. Eine Veränderung bedeutet eine Parallelverschiebung.

Gerade a kann beliebig nach rechts verschoben werden, nach links aber nur, bis sie durch Punkt A(1.5|4.5) geht. Dann ändert sich die Lösung. Dies ergibt: $b_1 \epsilon [16.5; \infty]$.

Gerade b kann nach oben verschoben werden, bis sie durch Punkt C(0|6) geht und nach unten, bis sie durch Punkt B(4|2) geht. Dies ergibt: $b_2 \epsilon [14; 30]$. Beachten Sie, dass sich bei einer Verschiebung von b immer auch der Zielfunktionswert ändert. Der Lösungstyp, also die Basis bleibt erhalten.

Gerade c kann nach links verschoben werden, bis sie durch Punkt E(0|4.8) (und damit auch durch D) geht und nach rechts, bis sie durch den Schnittpunkt von a und b geht.

$$M_2$$
 $c * x_1 + 5x_2$ Ergebnis: $-\infty < c \le 3, 5$

Lösungsidee: Die Gerade darf senkrecht werden $(c \to -\infty)$ und auf der anderen Seite den Schnittpunkt (4|2) schneiden. Ab da wird die Lösung neu.

Erinnerung: Simplexrechner unter http://www.simplexme.com/de/ http://simplex.tode.cz/en

6

1. Kosten sind rechts oben hinzugefügt

(a)	F_1	F_2	F_3	$ F_4 $	136
L_1	5				5
L_2	1	5	2		8
L_3			2	5	7
	6	5	4	5	20

(b)	F_1	F_2	F_3	F_4	116
L_1	5				5
L_2		5		3	8
L_3	1		4	2	7
	6	5	4	5	20

Ergebnisse der einzelnen Iterationen:

(c)	F_1	F_2		F_3	F_4	124
L_1	5					5
L_2	1	5	2	$\rightarrow 0$	$0 \rightarrow 2$	8
L_3			2	$\rightarrow 4$	$5 \rightarrow 3$	7
	6	5		4	5	20
(c)	F_1		F_2	F_3	F_4	108
L_1	$5 \rightarrow$. 3			$0 \rightarrow 2$	5
L_2			5		3	8
L_3	$1 \rightarrow$. 3		4	$2 \rightarrow 0$	7
	6		5	4	5	20

(c)	F_1	F_2	F_3	F_4	116
L_1	5				5
L_2	$1 \rightarrow 0$	5		$2 \rightarrow 3$	8
L_3	$0 \rightarrow 1$		4	$3 \rightarrow 2$	7
	6	5	4	5	20
(0)	\boldsymbol{E}	Γ	T		105

3

8

20

L_3	$1 \rightarrow$	3		4	2	$\rightarrow 0$
	6		5	4		5
(d)	F_1	F_2	$_{2} \mid F$	$\frac{1}{3}$	4	108
L_1	3				2	5
L_2		5			3	8
L_3	3		4	-		7
	6	5	4		5	20

(d)	F_1	F_2	F_3	$ F_4 $	105
L_1			3	2	5
L_2		5		3	8
L_3	6		1		7
	6	5	4	5	20

2. Die Gesamtweglänge ist links oben notiert.

316	1	2	3	4	Σ
1	*	13			13
2		1	6		7
3	9				9
4	8			4	12
5	6				6
6			11	7	18
Σ	23	14	17	11	65

Z	0	-4	-3	0	d				
5	5	1	2	5		-1	0	4	8
7	7	3	4	7		0	0	0	5
3	3	-1	0	3		0	5	6	5
9	9	5	6	9		0	5	1	0
8	8	4	5	8		0	9	0	0
7	7	3	4	7		5	15	4	7

310	1	2	3	4	Σ
1	6	7			13
2		7			7
3	9				9
4	2			10	12
5	6				6
6			17	1	18
Σ	23	14	17	11	65

3. Anfangslösung stur nach Rangfolgeverfahren:

7 tillangsiosang star nach						
T.m.	A_1	A_2	A_3			
P_1		0	1			
P_2		1	0			
P_3	1					

Hier steht ein Wert alleine sowohl in der Zeile als auch in der Spalte, also andere Wahl. Die untere Null gehört zum kleineren Wert der Transportmatrix, wird also beibehalten. Statt der oberen Null wird ein geeigneter Platz mit nächstgrößerem Wert in der Transportmatrix verwendet. Im gegebenen Fall ist das eine der drei Fünfen. Es gibt also auch unter Berücksichtigung der Regeln noch Situationen, die nicht eindeutig sind. Es wird eine beliebige Stelle gewählt (die beiden anderen Möglichkeiten werden unten betrachtet):

T.m.	A_1	A_2	A_3
P_1		*	1
P_2		1	0
P_3	1		0

Z	0	0	1
6	6	6	7
2	2	2	3
4	4	4	5

d			
	-1	-2	0
	3	0	0
	0	2	0

Mit * ist die Stelle in der Transportmatrix gekennzeichnet, die zur neuen Basisvariablen gehört. Diese Stelle konnte erst nach der Berechnung der Differenzmatrix d bestimmt werden.

T.m.	A_1	A_2	A_3
P_1		1	-
P_2		0	1
P_3	1		0

Z	U	U	1
4	4	4	5
2	2	2	3
4	4	4	5

d			
	1	0	2
	3	0	0
	0	2	0

Hier wurde die mit - gekennzeichnete Stelle aus der Basis entfernt (vergl. Werte der Entfernungsmatrix). Alle Werte in der Differenzmatrix sind nun nicht negativ. Die letzte Transportmatrix stellt die optimale Zuordnung dar.

Die beiden anderen Möglichkeiten sind:

	T.m.	A_1	A_2	A_3	Z	0	1	2	[d				
	P_1	0	*	1	5	5	6	7			0	-2	0	
	P_2		1	0	1	1	2	3			4	0	0	
	P_3	1			4	4	5	6			0	1	-1	-
	T.m.	A_1	A_2	A_3	Z	0	-1	0		d				
	P_1	0	1	-	5	5	4	5			0	0	2	
	P_2		0	1	3	3	2	3			2	0	0	
	P_3	1			4	4	3	4			0	3	1	
									_					
	T.m.	A_1	A_2	A_3	Z	0	-3	-2		d				
•	P_1	*		1	9	9	6	7			-4	4 -	-2	0
	P_2	0	1	0	5	5	2	3			()	0	0
	P_3	1			4	4	1	2)	5	3
	T.m.	A_1	A_2	A_3	Z	0	1	2	[d				
	P_1	0	*	1	5	5	6	7			0	-2	0	
	P_2	-	1	0	1	1	2	3			4	0	0	
	P_3	1			4	4	5	6			0	1	-1	
	T.m.	A_1	A_2	A_3	Z	0	-1	0		d				
	P_1	0	1	-	5	5	4	5			0	0	2	
	P_2		0	1	3	3	2	3			2	0	0	
	P_3	1			4	4	3	4			0	3	1	

Lösungen zu Übungsblatt 4

1. (a) $G = 5x_1 + 8x_2 \rightarrow MAX$; $5x_1 + 2x_2 \le 24$; $x_1 + 5x_2 \le 24$; $6x_1 + 6x_2 \le 36$; $x_i \in \mathbb{N}$

Uebungen_skript/Abb/IV1.ggb.eps

- (c) Grafische Lösung, s.o; rechnerisch mit Simplex: relaxiert, also nicht-ganzzahlig: A(1.5|4.5) mit G=43.5. Verzweigung in $x_1 \le 1$ und $x_1 \ge 2$. Ersteres führt auf B(1|4.6) mit G=41.8 und letzteres auf C(2|4) mit G=42. Da C zulässig ist, muss die Lösung B mit kleinerem G nicht mehr verzweigt werden. $x_1 = 2$ und $x_2 = 4$ ist die optimale ganzzahlige Lösung.
- 2. Erste Lösung vor der Verzweigung: s. Lösung Blatt 1 Aufg. 7 x_1 wird geteilt in $x_1 \le 14$ bzw. $x_1 \ge 15$, es ergeben sich die Lösungen (überprüfen!):

	x_1	x_2	x_3	y_1	y_2	y_3	y_4	r.S.		x_1	x_2	x_3	y_1	y_2	y_3	y_4	r.S.
x_3	0	1.29	1	0.14	0	-0.71	0	17.14	y_1	0	-5	0	1	-1.75	-3.75	0	1.25
y_2	0	2.86	0	-0.57	1	-2.14	0	1.43	x_3	0	2	1	0	0.25	1.25	0	16.25
y_4	0	-2	0	0	0	1	1	4	x_1	1	0	0	0	0	-1	0	15
x_1	1	0	0	0	0	1	0	14	y_4	0	-2	0	0	0	-1	1	5
G	0	2.43	0	0.71	0	0.43	0	141.71	G	0	6	0	0	1.25	2.25	0	141.25

nun wird die erste dieser Lösungen bei x_3 geteilt in $x_3 \le 17$ und $x_3 \ge 18$, es ergeben sich die Lösungen:

					_		_			-		_			_				
	x_1	x_2	x_3	y_1	y_2	y_3	y_4	y_5	r.S.		x_1	x_2	x_3	y_1	y_2	y_3	y_4	y_5	r.S.
x_2	0	1	0	0.11	0	-0.56	-0.78	0	0.11	y_5	0	-0.2	0	0.2	0	0	1.4	1	2.8
y_2	0	0	0	-0.89	1	-0.56	2.22	0	1.11	y_2	0	-1	0	-1	1	0	-3	0	4
y_5	0	0	0	0.22	0	-0.11	-1.56	1	4.22	y_3	0	-1.8	0	-0.2	0	1	-1.4	0	1.2
x_3	0	0	1	0	0	0	1	0	17	x_3	0	0	1	0	0	0	-1	0	18
x_1	1	0	0	0	0	1	0	0	14	x_1	1	1.8	0	0.2	0	0	1.4	0	12.8
G	0	0	0	0.44	0	1.78	1.89	0	141.44	G	0	3.2	0	0.8	0	0	0.6	0	141.2

nun wird die erste dieser Lösungen bei x_2 geteilt in $x_2 = 0$ und $x_2 \ge 1$, es ergeben sich die Lösungen:

	x_1	x_2	x_3	y_1	y_2	y_3	y_4	y_5	y_6	r.S.		x_1	x_2	x_3	y_1	y_2	y_3	y_4	y_5	y_6	r.S.
y_1	0	0	0	1	0	-5	-7	0	-9	1	y_5	0	0	0	-0.27	0.47	0	0	1	-0.67	5.33
y_2	0	0	0	0	1	-5	-4	0	-8	2	y_4	0	0	0	-0.33	0.33	0	1	0	-0.33	0.67
y_5	0	0	0	0	0	1	0	1	2	4	y_3	0	0	0	0.27	-0.47	1	0	0	-1.33	0.67
x_3	0	0	1	0	0	0	1	0	0	17	x_3	0	0	1	0.33	-0.33	0	0	0	0.33	16.33
x_1	1	0	0	0	0	1	0	0	0	14	x_1	1	0	0	-0.27	0.47	0	0	0	1.33	13.33
x_2	0	1	0	0	0	0	0	0	1	0	x_2	0	1	0	0	0	0	0	0	-1	1
G	0	0	0	0	0	4	5	0	4	141	G	0	0	0	0.6	0.2	0	0	0	3	139

d.h. die erste Lösung ist die optimale: $x_1 = 14$; $x_2 = 0$ (NBV); $x_3 = 17$; G=141

Beachten Sie: Der andere Ast der ersten Verzweigung mit G=141.25 müsste eigentlich weiter verzweigt werden. Eine zusätzliche Überlegung erübrigt dies jedoch. Da alle Koeffizienten in der Zielfunktion ganze Zahlen sind, muss auch der Zielfunktionswert eine ganze Zahl sein. Der größte Wert wäre also 141, wofür bereits eine zulässige Lösung existiert.

- 3. $Z0\left(1|1|1|1|\frac{3}{4}|0|0\right)$ mit N=28.5 (s. Skript) verzweigt in $Z1\left(0^*|1|1|1|1|0|0\right)$ mit N=22 und $Z2\left(1^*|1|1|1|\frac{3}{4}|0|0\right)$ mit N=28.5. Z2 entspricht somit Z0 bis auf die fest gelegte erste 1. Z1 ist eine zulässige Lösung. Z2 muss weiter verzweigt werden.
 - Z2 verzweigt in Z3 $(1^*|0^*|1|1|1|0|0)$ mit N=24 und Z4 $(1^*|1^*|1|1|\frac{3}{4}|0|0)$ mit N=28.5. Z3 ist eine zulässige Lösung und mit N=24 besser als Z1.
 - Z4 verzweigt in Z5 $(1^*|1^*|0^*|1|1|0|0)$ mit N=26 und Z6 $(1^*|1^*|1^*|1|\frac{3}{4}|0|0)$ mit N=28.5. Z5 ist eine zulässige Lösung und mit N=26 die bisher beste.
 - Z6 verzweigt in $Z7\left(1^*|1^*|1^*|0^*|1|\frac{1}{5}|0\right)$ mit N=25<26 und $Z8\left(1^*|1^*|1^*|1^*|\frac{3}{4}|0|0\right)$ mit N=28.5. Z7 ist zwar unzulässig, muss aber nicht mehr verzweigt werden, da die Lösung mit N=25 schlechter ist als die zulässige Lösung Z5.
 - Z8 verzweigt in $Z9\left(1^*|1^*|1^*|1^*|0^*|\frac{3}{5}|0\right)$ mit N=27 und $Z10\left(1^*|1^*|1^*|1^*|1^*|0|0\right)$ mit G>8.
 - Z9 verzweigt in $Z11(1^*|1^*|1^*|1^*|0^*|0^*|1)$ mit N=25<26 und $Z12(1^*|1^*|1^*|1^*|0^*|1^*|0)$ mit G>8.
 - Z5 ist mit N=26 die beste Lösung.
- 4. Nach Kosten/Nutzen sortiert ergibt sich folgende Reihenfolge:

K	5000	4500	6000	5000	3000	6000
N	40	30	30	20	10	15
$\frac{K}{N}$	125	150	200	250	300	400

 $Z0\left(1|1|\frac{2}{3}|0|0|0\right)$ mit K=13500, ist unzulässig und verzweigt in $Z1\left(1|1|0^*|1|0|0\right)$ mit K=14500 und ist zulässig, sowie in $Z2\left(1|\frac{2}{3}|1^*|0|0|0\right)$ mit K=14000. Z1 ist zulässig. Z2 ist unzulässig und wird weiter verzweigt in $Z3\left(1|0^*|1^*|1|0|0\right)$ mit K=16000>14500 und $Z4\left(\frac{3}{4}|1^*|1^*|0|0|0\right)$ mit K=14250. Z4 wird weiter verzweigt in $Z5\left(0^*|1^*|1^*|1|0|0\right)$ mit K=18500>14500 und $Z6\left(1^*|1^*|1^*|1|0|0|0\right)$ mit K=15500>14500. Damit ist Z1 die optimale Lösung.

1.

Knoten	1	2	3	4	5	6
Entfernung	0	2	4	1	2	6
Vorgänger	-	1	5	1	4	3

Knoten	1	2	3	4	5	6
Entfernung	∞	0	3	3	4	5
Vorgänger	-	-	2	2	4	3

Graph kürzester Wege:

Uebungen_skript/Abb/baumK**uebungen_wkgepV1Abb**&baumKuerzesterWege_V1b.eps

Wenn das Lager in Ort 2 steht, kann über das gerichtete Verkehrsnetz Firma 1 also gar nicht beliefert werden.

2. Entfernungs- und Vorgängermatrix:

0	2	4	1	2	6
∞	0	3	3	4	5
∞	∞	0	∞	∞	2
∞	∞	3	0	1	5
∞	∞	2	∞	0	4
∞	∞	∞	∞	∞	0

1	1	5	1	4	3
0	2	2	2	4	3
0	0	3	0	0	3
0	0	5	4	4	3
0	0	5	0	5	3
0	0	0	0	0	6

3. Entfernungs- und Vorgängermatrix:

D (symmetrisch):

	U		4	1		О
	2	0	3	3	4	5
:	4	3	0	3	2	2
	1	3	3	0	1	5
	2	4	2	1	0	4
	6	5	2	5	4	0

V (nichtsym.):

	1	1	5	1	4	3
	2	2	2	2	4	3
Ī	4	3	3	5	3	3
	4	4	5	4	4	3
	4	4	5	5	5	3
	4	3	6	5	3	6

4. Minimal spannender Baum:

Uebungen_skript/Abb/kruskalBaum.eps

Kruskal: 1-4, 4-5, 1-2, 3-6, 5-3

Uebungen_skript/Abb/kruskalBaumReihenfolge.eps

Prim: 1-4, 4-5, 1-2, 5-3, 3-6

Uebungen_skript/Abb/primBaumReihenfolge.eps

1. Vorwärtsrechnung:

. Vorwärtsred	chnun											
Vorgang	Α	В		C	D	E		F	G	Н	I	Schlange
Dauer	10	5		2	4	4		3	2	5	1	
FAZ	0	$-\infty$) -	∞	$-\infty$	$-\infty$	o -	$-\infty$	$-\infty$	$-\infty$	$-\infty$	
FEZ	0	0	(0	0	0		0	0	0	0	Α
FAZ	0	10	1	.0	10	$-\infty$	o -	$-\infty$	$-\infty$	$-\infty$	$-\infty$	
FEZ	10	0	(0	0	0		0	0	0	0	B, C, D
FAZ	0	10	1	.0	10	$-\infty$	o -	$-\infty$	15	$-\infty$	$-\infty$	
FEZ	10	15		0	0	0		0	0	0	0	C, D, G
FAZ	0	10	1	.0	10	$-\infty$	o -	$-\infty$	15	12	$-\infty$	
FEZ	10	15		.2	0	0		0	0	0	0	D, G, H
FAZ	0	10	1	.0	10	14	Ť	14	15	12	$-\infty$	
FEZ	10	15		.2	14	0		0	0	0	0	G, H, E, F
FAZ	0	10	1	.0	10	14		14	15	12	17	
FEZ	10	15		2	14	0		0	17	0	0	H, E, F, I
FAZ	0	10		.0	10	14	_	14	15	12	17	
FEZ	10	15		2	14	0		0	17	17	0	E, F, I
FAZ	0	10		.0	10	14		14	18	12	17	
FEZ	10	15		2	14	18		0	17	17	0	F, I, G
FAZ	0	10		.0	10	14		14	18	12	17	.,., -
FEZ	10	15		2	14	18		17	17	17	0	I, G
FAZ	0	10		.0	10	14		14	18	12	17	., 0
FEZ	10	15		2	14	18		17	17	17	18	G
FAZ	0	10		.0	10	14		14	18	12	20	
FEZ	10	15		.2	14	18		17	20	17	18	
FAZ	0	10		.0	10	14		14	18	12	20	
FEZ	10	15		.2	14	18		17	20	17	21	
Rückwärtsr			1		17	10		11	20	11	21	
Vorgang	A	B	С	D	E	F	G	Н	I	Sch	lange	
Dauer	10	5	2	4	4	3	2	5	1			
SAZ	0	0	0	0	0	0	0	0	20			=
SEZ	∞	∞	∞	∞	∞	20	20	20	21	F,	G, H	
SAZ	0	0	0	0	0	17	0	0	20			=
SEZ	∞	∞	∞	17	∞	20	20	20	21	G,	H, D	
SAZ	0	0	0	0	0	17	18	0	20			\exists
SEZ	∞	18	18	17	18	20	20	20	21	H, D,	E, C, B	\dashv
SAZ	0	0	0	0	0	17	18	15	20			\exists
SEZ	∞	18	15	17	18	20	20	20	21	D, E	, C, B	-
SAZ	0	0	0	13	0	17	18	15	20			=
SEZ	13	18	15	17	18	20	20	20	21	E, C	, B, A	
SAZ	0	0	0	13	14	17	18	15	20	-		\exists
SEZ	13	18	15	14	18	20	20	20	21	C, B	, A, D	
SAZ	0	0	13	13	14	17	18	15	20	<u> </u>	· · ·	=
SEZ	13	18	15	14	18	20	20	20	21	В.	A, D	\dashv
SAZ	0	13	13	13	14	17	18	15	20	<u> </u>		=
SEZ	13	18	15	14	18	20	20	20	21	Α	., D	-
SAZ	3	13	13	13	14	17	18	15	20		,	\exists
SEZ	13	18	15	14	18	20	20	20	21	D		-
SAZ	3	13	13	10	14	17	18	15	20			\exists
SEZ	10	18	15	14	18	20	20	20	21	A		\dashv
SAZ	0	13	13	10	14	17	18	15	20		- •	\dashv
SEZ	10	18	15	14	18	20	20	20	21			\dashv
JLZ	1 10	10	10	17	10			1 20	-1			

Netzplan:

Kritischer Pfad (oder Weg): A - D - E - G - I

2. Vollständiger Netzplan:

OR-Skript-Abb/NetzplanAufgLsg.eps

	Vorgang	Dauer	Vorgänger
	Α	30	-
	В	5	А
	С	10	В
Tabelle:	D	4	А
	E	1	D
	F	5	C, E
	G	10	А
	Н	1	G, F

Kritischer Pfad: A - B -C -F - H

1. (Neue Aufgabe -> Lösung überprüfen!) Nach Zuschauerverlust/Einnahmen sortiert ergibt sich folgende Reihenfolge:

ZV	300	600	500	280	300	200
Е	3	5	4	2	2	1
$\frac{ZV}{E}$	100	120	125	140	150	200

Maximum: 10 (Mio.)

Е	3	5	4	2	2	1	
ZV	300	600	500	280	300	200	
0	1	1	$\frac{1}{2}$				1150 ->
00	1	1	0*	1			1180
01	1	$\frac{3}{5}$	1*				1160 ->
010	1	0*	1*	1	$\frac{1}{2}$		1230 -
011	$\frac{1}{3}$	1*	1*		_		1200 -

Das Optimum (minimaler Verlust) ergibt sich bei Zweig 00 mit 1180.

2. Zielfunktion $G=10x_1+20x_2+15x_3\to MIN$. Bedingungen: $2x_1+4x_2+x_3\geqq 30$ und $3x_1+2x_2+5x_3\geqq 50$; Nichtnegativitätsbedingungen: $x_i\geqq 0\ \forall i$

 $\text{umformuliert: } -G = -10x_1 - 20x_2 - 15x_3 \to MAX. \text{ Bedingungen: } -2x_1 - 4x_2 - x_3 \leqq -30 \text{ und } -3x_1 - 2x_2 - 5x_3 \leqq -50; \\ \text{umformuliert: } -G = -10x_1 - 20x_2 - 15x_3 \to MAX. \text{ Bedingungen: } -2x_1 - 4x_2 - x_3 \leqq -30 \text{ und } -3x_1 - 2x_2 - 5x_3 \leqq -50; \\ \text{umformuliert: } -G = -10x_1 - 20x_2 - 15x_3 \to MAX. \text{ Bedingungen: } -2x_1 - 4x_2 - x_3 \leqq -30 \text{ und } -3x_1 - 2x_2 - 5x_3 \leqq -50; \\ \text{umformuliert: } -G = -10x_1 - 20x_2 - 15x_3 \to MAX. \\ \text{umformuliert: } -G = -10x_1 - 20x_2 - 15x_3$

Nichtnegativitätsbedingungen: $x_i \ge 0 \,\forall i$

	x_1	x_2	x_3	y_1	y_2	rechte Seite
y_1	-2	-4	-1	1	0	-30
y_2	-3	-2	-5	0	1	-50
G	10	20	15	0	0	0

3. Zielfunktion: $G=100x_1+250x_2 \to MAX$; x_1 beschreibt die Größe der Anbaufläche für Rüben (in ha) und x_2 die für Weizen.

Bedingungen: $x_1 + x_2 \le 40$; $40x_1 + 120x_2 \le 2400$ und $7x_1 + 12x_2 \le 312$; Nichtnegativitätsbedingungen: $x_i \ge 0 \,\forall i$

Ausgangstableau, erste Verbesserung und Optimaltableau:

		,		0. 20 00		6	٠,٠٠													
	x_1	x_2	y_1	y_2	y_3	r.S.		x_1	x_2	y_1	y_2	y_3	r.S.		x_1	x_2	y_1	y_2	y_3	r.S.
y_1	1	1	1	0	0	40	y_1	0.67	0	1	-0.01	0	20	y_1	0	0	1	0.014	-0.22	4
y_2	40	120	0	1	0	2400	x_2	0.33	1	0	0.01	0	20	x_2	0	1	0	0.019	-0.11	12
y_3	7	12	0	0	1	312	y_3	3	0	0	-0.1	1	72	x_1	1	0	0	-0.033	0.33	24
G	-100	-250	0	0	0	0	G	-16.67	0	0	2.08	0	5000	G	0	0	0	1.53	5.56	5400

Die Anbaufläche für Rüben beträgt 24ha und für Weizen 12ha. 4ha bleiben unbebaut. Der Gewinn beträgt 5400€. Könnte man 1€ mehr einsetzen, wäre der Gewinn um 1.53€ höher. Hätte man einen Arbeitstag mehr, stiege der Gewinn um 5.56€.

4. Die Steigung $m=-\frac{5}{3}$, allgemein also $m=-\frac{5}{c_2}$, muss zwischen der Steigung $m_1=-\infty$ und $m_2=-\frac{4}{9}$ liegen: $\frac{4}{9}\leqq\frac{5}{c_2}\leqq\infty$. D.h. $c_2\leqq\frac{45}{4}$ und $c_2\geqq0$; $c_2\epsilon\left[0;\frac{45}{4}\right]$

OR-Skript-Abb/Blatt7Aufg4.eps

5. Die Aufgabe ist ähnlich wie Aufgabe 2 von Übungsblatt 3. Die Anfangslösung hat Transportkosten von K=320. Es gibt zwei Optimallösungen, die beide die minimalen Kosten von K=294 haben. (K=Kapazität, B=Bedarf)

Anfangslösung:

		A_1	A_2	A_3	A_4	A_5	A_6	K
	F_1			9	12		2	23
	F_2	13	1					14
•	F_3		6				11	17
	F_4					6	5	11
	В	13	7	9	12	6	18	65

Z	0	2	-7	-1	2	2
10	10	12	3	9	12	12
1	1	3	-6	0	3	3
2	2	4	-5	1	4	4
5	5	7	-2	4	7	7

d						
	-7	-4	0	0	-4	0
	0	0	10	10	10	5
	4	0	11	4	2	0
	14	5	10	5	0	0

T.m.						
	2	0	9	12	0	0
	11	3	0	0	0	0
	0	4	0	0	0	13
	0	0	0	0	6	5

Z	0	2	0	6	2	2	2		d] [T.m.						
3	3	5	3	9	ĺ	5	5			0	3	0	()	3	7			6	0	9	8	0	0
1	1	3	1	7	3	3	3	Ī		0	0	3	3	3	10	5			7	7	0	0	0	0
2	2	4	2	8	4	4	4			4	0	4	-	3	2	0			0	0	0	4	0	13
5	5	7	5	11		7	7			14	5	3	_	2	0	0			0	0	0	0	6	5
Z	0	2	() (5	5	5]	d								-							
3	3	5	3	3 9	9	8	8			0	3	0	0	C	4	7								
1	1	3	1	L	7	6	6			0	0	3	3	7	2									
-1	-1	1	-	1 !	5	4	4			7	3	7	0	2	0	7								
2	2	4	- 2	2 8	3	7	7			17	8	6	1	C	0									

Alle Werte in der Differenzmatrix sind positiv. Die letzte Transportmatrix ist also optimal.

Bemerkungen: Die hier verwendete Ausgangsmatrix entspricht nicht der ursprünglich angegebenen. Beide sind jedoch nach dem Rangfolgeverfahren korrekt. Die Verschiedenheit ergibt sich aus einigen gleichen Werten in der Entfernungsmatrix, so dass die Reihenfolge der Einträge nicht eindeutig festgelegt ist.

Durch die Iterationen ergibt sich immer nur eine Lösung, in diesem Fall eine der beiden ursprünglich angegebenen.

6. Lösung bitte sorgfältig überprüfen.

Hier können die Teilversicherungen nur im genannten Umfang abgeschlossen werden und jeweils nur ein Mal oder gar nicht.

(a) Es muss das Minimum aus Deckungssumme und erwartetem Schaden genommen werden, da der Schaden höher liegen kann als die Deckungssumme. Dies trifft bei der Gebäudeversicherung zu. Also

Nutzen = Eintrittswahrscheinlichkeit * min(Schaden; Deckungssumme)

(b) kombinatorische Optimierung - Rucksackproblem

	Beitrag	10	8	10	40	3	Z0	1	2	3	4	5	Summe
(c)	Nutzen	50	800	800	1000	60	Beitrag	8	10	40	3	10	40
(c)	Nutzen/Beitrag	5	100	80	25	20	Nutzen	800	800	1000	60	50	2100
	Reihenfolge	5	1	2	3	4	Anzahl	1	1	11/20	0	0	

(d) Es wird folgende Verzweigungsregel verwendet: ein nicht-ganzzahliger Wert wird in einem Zweig auf 0 gesetzt, im anderen auf 1 und dann jeweils von vorne wieder aufgefüllt.

Z1	1	2	3	4	5	Summe
Beitrag	8	10	40	3	10	31
Nutzen	800	800	1000	60	50	1710
Anzahl	1	1	0*	1	1	
Z2	1	2	3	4	5	Summe
Z2 Beitrag	8	2 10	3 40	4	5 10	Summe 40
	1 8 800	_				

; fertig

; fertig

Beide Zweige sind ausgelotet. Das Verfahren ist zu Ende. Zweig Z1 entspricht der optimalen Entscheidung, obwohl nur 31€ eingesetzt werden. Der Nutzen ist aber wesentlich höher als bei Z2, bei dem die 40€ vollständig verwendet werden.

7. Lösung bitte sorgfältig überprüfen.

Hier kann der Versicherungsumfang jeder Teilversicherung selbst gewählt werden. Die 40€ sollen vollständig eingesetzt werden.

- (a) Der Nutzen bei der Gebäudeversicherung muss zu N=0,0025*400000 berechnet werden, da der erwartete Schaden durch die Deckungssumme begrenzt wird. In allen anderen Fällen liegt der erwartete Schaden unterhalb der Deckungssumme, so dass letztere nicht beachtet werden muss.
- (b) Hier sind beliebige nichtganzzahlige Werte möglich, also wird Simplex verwendet.
- (c) Folgende (Un-)Gleichungen beschreiben das System, wobei x_i die Menge der abgeschlossenen Teilversicherung i beschreibt:

Bemerkung: Die dritte und vierte Bedingung könnten weggelassen werden, da sie in der fünften enthalten sind. Ausgangstableau (verkürzte Form):

	x_1	x_2	x_3	x_4	x_5	r.S.	
y_1	1					2	
y_2		3				10	
y_3				4		10	
y_4					45	100	
y_5				400	45	1000	
y_6	10	8	10	40	3	40	*
G	-50	-800	-800	-1000	-60	0	
	Haft	Unfall	Recht	Gebäude	Hausrat		

(d) Das System ist dual zulässig. Im Folgenden wird der verkürzte Simplex verwendet.

Das Sys	tem ist	duai zu	ııassıg.	Im Folg	enaen '	wira	der v	erki	urzte	e Sin	ıpıex	verwe	ndet.						
Ph 0	y_6	x_2	x_3	x_4	x_5	r.	S. [Ph	1	y_6		x_2	x_3	1	y_1	x_5	ı	r.S.	
y_1	-0.1	-0.8	-1	-4	-0.3	-	2	x	4	0.0	3	0.2	0.25	-0	.25	0.07	. (0.5	
y_2	0	3	0	0	0		.0	y_{2}	2	0		3	0		0	0		10	
y_3	0	0	0	4	0		.0	$y_{:}$	3	-0.	1 -	-0.8	-1		1	-0.3		8	
y_4	0	0	0	0	45		00	$y_{\scriptscriptstyle \perp}$	4	0		0	0		0	45		100	
y_5	0	0	0	400	45		000	$y_{:}$	5	-10		-80	-100		.00	15	3	300	
x_1	0.1	8.0	1	4	0.3	_	4	x		0		0	0		1	0		2	
G	5	-760	-750	-800	-45	2	00	G	ì	25	- 1	-600	-550	-2	200	15	(500	
	*									*									
Ph 2	y_6	x_4	x_3	y_1	x	5	r.S.	.]	Ph	2	y_6	x_4	1 a	3	y_2	2	x_5		r.S.
x_2	0.12	5	1.25	-1.2	5 0.3	38	2.5		x_2	2	0	0		0	0.3	33	0		3.33
y_2	-0.38	-15	-3.75	5 3.75	5 -1.	12	2.5		y_1	1	-0.1	4		1	0.2	27	-0.3	3	0.67
y_3	0	4	0	0	(10		y_3	3	0	4		00	0		0		10
y_4	0	0	0	0	4		100		y_4	1	0	0		00	0		45		100
y_5	0	400	0	0	4		100	0	y_{ξ}	- 1	0	40		0	0		45	- 11	1000
x_1	0	0	0	1	()	2		x_{i}		0.1	4		1	-0.2	27	0.3		1.33
G	100	3000	200	-950) 24	10	210	0	G	;	5	-80	0 -7	50	253	.33	-45	5	2733.33
	*										*								
Ph 2	y_6	x_1	x_3	y_2	x_5		r.S.		Ph	2	y_6	x_1	x_4		y_2	x	5	r	.S.
x_2	0	0	0	0.33	0		3.33		x_2	2	0	0	0		0.33	(0		.33
y_1	0	1	0	0	0		2		y_1		0	1	0		0	(0		2
y_3	-0.1	-1	-1	0.27	-0.3		8.67		y_3		0	0	4		0		0		10
y_4	0	0	0	0	45	\perp	100		y_4		0	0	0		0		.5		00
y_5	-10	-100	-100	26.67	15		866.67	7	y_5		0	0	400)	0		.5		000
x_4	0.03	0.25	0.25	-0.07	0.07	$\perp \!\!\! \perp$	0.33	_ L	x_3	<u> </u>	0.1	1	4		-0.27	0	.3	1	.33
G	25	200	-550	200	15	\mathbb{I}	3000	_][G		80	750	220	0	53.33	18	30	373	33.33
	*										*								

Das Ergebnis ist nicht überraschend. Die Unfallversicherung mit ihrem höchsten Nutzen/Beitrag-Verhältnis wird bis an die Grenze genutzt. Der Rest wird in den Rechtsschutz investiert. Man sieht hier allerdings, dass das Ergebnis nicht besonders sinnvoll ist. Der Rechtsschutz hat eine unbegrenzte Deckungssumme, so dass eine weitere Bedingung sinnvoll wäre. Da rein rechnerisch z.B. 1/100 Rechtsschutz immer noch zu einer unbegrenzten Deckungssumme führen würde, was von der Versicherung nicht so gemeint sein kann, muss hier von der Versicherung eine eindeutige Vorgabe gemacht werden. Z.B. könnte dieser Teil immer noch bei einer ja/nein-Entscheidung verbleiben, wie in Aufgabe 1. Dann würde Simplex auf beide Fälle (einmal mit und einmal ohne Rechtsschutz) angewendet werden. Aufgrund des hohen Nutzen/Beitrag-Verhältnisses ist zu erwarten, dass die Berechnung mit Rechtsschutz zu einem höheren Gesamtnutzen führt. Das zu diesem Fall passende Ausgangstableau ist:

	x_1	r	$x_2 \mid x$	3 :	x_4	$\overline{x_5}$	r.S	.	\neg							
111	$\frac{x_1}{1}$	<u> </u>	2 2	3 °	~4 '	~ ວ	2		\exists							
y_1		-	3				10		\dashv							
y_2		<u> </u>	,		4		10		\dashv							
y_3						1 5	100		\dashv							
y_4				4		45 45	100		\dashv							
y_5 y_6	10	5	3 1			3	40		•							
y_7				1	10		1	*	•							
G	-50	-8	00 -8		000 -	60	0		=							
Ph 0			$\frac{x_2}{x_2}$	$\frac{x_3}{x_3}$	$\frac{x_4}{x_4}$	${x}$		r.S.		Ph 0	y_6	x_2	y_7	x_4	x_5	r.S.
y_1	-0		-0.8	-1	-4	-0		-2		y_1	-0.1	-0.8	1	-4	-0.3	-1
y_2			3	0	0			10		y_2	0	3	0	0	0	10
y_3			0	0	4			10		y_3	0	0	0	4	0	10
y_4			0	0	0	4.		100		y_4	0	0	0	0	45	100
y_5			0	0	400	4.		000		y_5	0	0	0	400	45	1000
x_1	0		0.8	1	4	0.		4		x_1	0.1	0.8	-1	4	0.3	3
y_7)	0	1	0	C		1	*	x_3	0	0	1	0	0	1
G		5	-760	-750	-800	-4	15	200		G	5	-760	750	-800	-45	950
	- 11	k	. 00	. 55	300	-	-				*	1.50	*	300		
Ph 1	. 1	/6	x_2	y_7	y_1	Τ	x_5	r.S								
x_4		03	0.2	-0.25	-0.25	+	0.07	0.2!								
y_2)	3	0	0	\top	0	10								
y_3	-C).1	-0.8	1	1	Τ.	-0.3	9								
y_4	()	0	0	0	\top	45	100)							
y_5	-1	10	80	100	100	\top	15	900)							
x_1)	0	0	1		0	2								
x_3)	0	1	0		0	1								
G	2	25	-600	550	-200	Ì	15	115	0							
	1 3	*		*												
Ph 2	2 3	y 6	x_4	y_7	y_1		x_5	r	S.	Ph 2	y_6	x_4	y_7	y_2	x_5	r.S.
x_2	0.	.12	5	-1.25	5 -1.2	5	0.38	1	.25	x_2	0	0	0	0.33	0	3.33
y_2	-0	.38	-15	3.75	3.7	5	-1.12	6	.25	y_1	-0.1	-4	1	0.27	-0.3	1.67
y_3		0	4	0	0		0		LO	y_3	0	4	0	0	0	10
y_4		0	0	0	0		45		00	y_4	0	0	0	0	45	100
y_5		0	400	0	0		45		000	y_5	0	400	0	0	45	1000
x_1		0	0	0	1		0		2	x_1	0.1	4	-1	-0.27	0.3	
x_3		0	0	1	0		0		1	x_3	0	0	1	0	0	1
G	- 11	00	3000	-200	-950)	240	19	900	G	5	-800	750	253.33	-45	3483.33
		*		*							*		*			
Ph 2	2 3	/ 6	x_1	y_7	y_2		x_5	r.:	S.							
x_2)	0	0	0.33		0	3.								
y_1)	1	0	0		0		2							
y_3).1	-1	1	0.27		-0.3	9.								
y_4)	0	0	0		45	10								
y_5		10	-100	100	26.67		15	966								
x_4		03	0.25	-0.25	-0.07		0.07	0.0								
x_3)	0	1	0		0		L							
G		25	200	550	200	T	15	35	50							
		*		*												

Erwartungsgemäß wird nach der obligatorischen Rechtsschutzversicherung zunächst die Unfallversicherung in vollem Umfang genutzt. Es bleibt ein kleiner Rest von ca. 3.33€. Dieser wird in die Gebäudeversicherung investiert, was einen Versicherungsschutz von maximal 33333€ ergibt. Der Nutzen beträgt 3550 und ist damit formal kleiner als im sinnlosen Fall mehrfacher Nutzung des Rechtsschutzes. Andererseits ist er wesentlich höher als im Fall maximal einfacher Nutzung der anderen Teilversicherungen.

Bemerkung (ohne Rechnung): Wenn die Rechtsschutzversicherung nicht genutzt wird, ergibt sich ein maximaler Nutzen von 3000.

8. Lösung bitte sorgfältig überprüfen.

Bei der Ausgangslösung wurden die Einsen nach Rangfolge verteilt, die Nullen (restliche BV) erfüllen lediglich die Muss-Bedingungen (keine BV in Zeile *und* Spalte alleine sowie kein geschlossener rechtwinkliger Polygonzug über die BV möglich); in der Tabelle der Transportmatrix ist links oben die gefahrene Gesamtstrecke vermerkt

	r lab	ene d	er ir	ansp	ortm	ıat	rıx ı	St III	nks c	bben	aie	gerar	ırer	ne Ge	esam	tst	reck	(e \	/ern	ıer	Κt		
26																							
	0	1																					
	1																						
	0		1	,	k																		
	0				1																		
	0			1																			
Z	0	-3	-8	-3	5	,		d							20	6							
6	6	3	-2	3	1	1			0	0	13	10		5			0	1					٦
2	2	-1	-6	-1	7				0	5	23	10	(0			1						٦
12	12	9	4	9	1	7			0	0	0	-1	-1	11		I				1		0	٦
9	9	6	1	6	14	4			0	5	8	1	(0			0					1	٦
6	6	3	-2	3	1:	1			0	5	11	0	-	8			0				1	*	
z	0	-3	3	-3	5		d								26	T				T			Ī
6	6	3	9	3	11	ĺ		C)	0	2	10	Ĺ	5		Ť	0	1		Ì			Ī
2	2	-1	5	-1	7			C) .	5	12	10	()		\top	1						1
1	1	-2	4	-2	6			1	1 1	.1	0	10	()					1			0	1
9	9	6	12	6	14			0) .	5	-3	1	()			*					1	1
6	6	3	9	3	11			C) .	5	0	0	-	8			0				1	0	1
Z	0	-3	-5	T -	3	-3		d					•		\prod	26						П	
6	6	3	1	1	3	3	ĪĪ		0	0	() [10	13	ĪĪ		İ	0	1			Ī	
2	2	-1	-3	-	1	-1	1		0	5	2	0 :	10	8	1			1				\top	
9	9	6	4	(5	6	1		3	3	()	2	0						1	L		0
17	17	14	12	- 1		14			-8	-3	- 1		-7	0				0				*	1
6	6	3	1		3	3			0	5	8	3	0	0				-				1	0
	3V-W	echse	l															_				_	\neg
Z	0	-3	3	5	5	_	L	d					_			9		L	_			\perp	_
6	6	3	9	11	- 1				0	0	2		2	5			0	:	1				
2	2	-1	5	7	7				0	5	12		2	0			1					L	
1	1	-2	4	6	6				11	11	0		2	0						1		0	4
9	9	-6	12	14	- 1			\parallel	0	17	-3		7	0		_	0	-	\perp		1	-	4
-2	-2	-5	1	3	3	,	L	_	8	13	8	()	0							0	1	
z	0	-3	-4	-2	-2		d																
6	6	3	2	4	4			0	0	9	9	12	2										
2	2		-2	0	0	Ī		0	5	19		_											
8	8	5	4	6	6			4	4	0	2	-											
9	9	6	5	7	7			0	5	4	0		- 1										
5	5	2	1	3	3			1	6	8	0	0											

			_		
Ausgangsort	1	2	3	4	5
Bestimmungsort	2	1	3	4	5

9. Dijkstra und FIFO:

а	i=	1	2	3	4	5	М
	D(i)=	0	∞	∞	∞	∞	
-	V(i)=	-	-	-	-	-	1
	D(i)=	0	2	1.5	∞	∞	
1	V(i)=	-	1	1	-	-	2, 3
	D(i)=	0	2	1.5	∞	5.5	
3	V(i)=	-	1	1	-	3	2, 5
	D(i)=	0	2	1.5	4	5.5	
2	V(i)=	-	1	1	2	3	5, 4
	D(i)=	0	2	1.5	4	5	
4	V(i)=	-	1	1	2	4	5

KS	i=	1	2	3	4	5	Schlange
	D(i)=	0	∞	∞	∞	∞	
-	V(i)=	-	-	-	-	-	<1
	D(i)=	0	2	1.5	∞	∞	
1	V(i)=	-	1	1	-	-	<2, 3
	D(i)=	0	2	1.5	4	6	
2	V(i)=	-	1	1	2	2	<3, 4, 5
	D(i)=	0	2	1.5	4	5.5	
3	V(i)=	-	1	1	2	3	<4, 5
	D(i)=	0	2	1.5	4	5	
4	V(i)=	-	1	1	2	4	<5

fertig, da von Knoten 5 keine Kanten ausgehen.

10. Minimal spannender Baum und (mögliche) Reihenfolge, in der die Kanten nach Kruskal und nach Prim (mit Startknoten 1) eingefügt wurden.

Uebungen_skript/Abb/k**WebkagBauskBlpt%Abb/kWebkagBa**

11.

Uebungen_skript/Abb/NetzplanAufg7_7.eps Krit. Pfad A - B - C - D