

Lecture 3:

Chapter 2: Boolean Algebra and Logic Gates

Mirvat Al-Qutt, Ph.D Computer Systems Department, FCIS, Ain Shams University

▶ The Postulates Boolean Algebra

Table 2.1Postulates and Theorems of Boolean Algebra

Postulate 2	(a)	x + 0 = x	(b)	$x \cdot 1 = x$
Postulate 5	(a)	x + x' = 1	(b)	$x \cdot x' = 0$
Theorem 1	(a)	x + x = x	(b)	$x \cdot x = x$
Theorem 2	(a)	x + 1 = 1	(b)	$x \cdot 0 = 0$
Theorem 3, involution		(x')' = x		
Postulate 3, commutative	(a)	x + y = y + x	(b)	xy = yx
Theorem 4, associative	(a)	x + (y + z) = (x + y) + z	(b)	x(yz) = (xy)z
Postulate 4, distributive	(a)	x(y+z)=xy+xz	(b)	x + yz = (x + y)(x + z)
Theorem 5, DeMorgan	(a)	(x + y)' = x'y'	(b)	(xy)' = x' + y'
Theorem 6, absorption	(a)	x + xy = x	(b)	x(x + y) = x

- Duality Principle (DeMorgan's Theorem)
- Verify DeMorgan's Theorem

$$(x + y)' = x'y' = x + y = (x'y')' = x' + y' = (x' + y')'$$

x	y	<i>x</i> '	<i>y</i> '	<i>x</i> + <i>y</i>	(x+y),	<i>x'y'</i>	Xy	x'+y'	(xy) '
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

- Duality Principle (DeMorgan's Theorem)
- Verify DeMorgan's Theorem

Consensus Theorem

$$(x+y)\cdot(x'+z)\cdot(y+z)=(x+y)\cdot(x'+z)$$

Proof:

Operator Precedence

- The operator precedence for evaluating Boolean Expression is
 - Parentheses
 - NOT
 - AND
 - ▶ OR
- Examples
 - $\rightarrow x y' + z$
 - (x y + z)'

- A Boolean function my include:
 - Binary variables
 - Binary operators OR and AND
 - Unary operator NOT
 - Parentheses
- Examples

$$F_1 = x y z'$$

$$F_2 = x + y'z$$

$$F_3 = x'y'z + x'yz + xy'$$

$$F_4 = x y' + x' z$$

- The truth table of 2ⁿ entries (n=number of variables)
- Two Boolean expressions may specify the same function $F_3 = F_4$

\mathcal{X}	y	Z	F_1	F_2	F_3	F_4
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0
						7

- Different representation of Boolean Function
 - Boolean Expression (Many)
 - Truth Table (Unique)
 - Logic Gates Diagram (Many)_
- Examples

$$F_1 = x y z'$$

$$F_2 = x + y'z$$

$$F_3 = x'y'z + x'yz + xy'$$

$$F_4 = x y' + x' z$$

$\boldsymbol{\mathcal{X}}$	y	z	F_1	F_2	F_3	F_4
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

Implementation with logic gates

FIGURE 2.1

Gate implementation of $F_1 = x + y'z$

Implementation with logic gates

$$F_3 = x' y' z + x' y z + x y'$$

= x' z (y'+y) + x y'
= x' z (1) + x y'
= x' z + x y'

Economical

(a)
$$F_2 = x'y'z + x'yz + xy'$$

Simplification

(b) $F_2 = xy' + x'z$

Simplify the following functions

Complement of a Function

- The complement of a function F is F' and is obtained from an interchange of 0's for 1's and 1's for 0's in the value of F.
- The complement of a function may be derived algebraically through DeMorgan's theorems,
 - 3 variables DeMorgan's theorem

```
(A+B+C)' = (A+X)'
= A'X'
by theorem 5(a) (DeMorgan's)
= A'(B+C)'
substitute B+C = X
= A'(B'C')
by DeMorgan's theorem
= A'B'C'
by associative theorem
```

Complement of a Function

The complement of a function F is F' and is obtained from an interchange of 0's for 1's and 1's for 0's in the value of F.

- Generalization: a function is obtained by interchanging AND and OR operators and complementing each literal.
 - F = A+B+C+D+ ... Then F' = (A+B+C+D+ ...)' = A'B'C'D'...
 - F = ABCD ... Then F' = (ABCD ...)' = A' + B' + C' + D' ...

Complement of a Function

- Find the Complement of the following functions
- $F_1 = x' y z' + x' y' z$

$$F_2 = x(y'z' + yz)$$

$$\mathsf{F} \qquad = \mathsf{x'} \; \mathsf{y'}$$

x	y	<i>x'</i>	y'	F
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

$$F = x' y' + x'y$$

x	y	<i>x'</i>	y'	x'y'	x'y	F
0	0	1	1	1	0	1
0	1	1	0	0	1	1
1	0	0	1	0	0	0
1	1	0	0	0	0	0

$$F = x' y' + x'y + xy'$$

χ	y	<i>x'</i>	<i>y'</i>	x'y'	x'y	xy'	F
0	0	1	1	1	0	0	1
0	1	1	0	0	1	0	1
1	0	0	1	0	0	1	1
1	1	0	0	0	0	0	0

$$F = x'y' + x'y + xy' + xy$$

x	y	<i>x'</i>	y'	F
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

$$F = x' y' z'$$

x	y	z	<i>x'</i>	y'	z'	F
0	0	0	1	1	1	1
0	0	1	1	1	0	0
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

$$F = x' y' z' + x'y'z$$

x	y	z	<i>x'</i>	y'	z'	F
0	0	0	1	1	1	1
0	0	1	1	1	0	1
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

Minterms

- A minterm (standard product): an AND term consists of all literals in their normal form or in their complement form.
- For example,
- two binary variables x and y,
 - xy, xy', x'y, x'y'
- It is also called a standard product.
- n variables can be combined to form 2^n minterms.

x	у	Term	Symbol
0	0	x'y'	m ₀
0	I	x'y	m _I
I	0	xy'	m ₂
I	I	хy	m ₃

Minterms and Maxterms for Three Binary Variables

			M	interms
X	y	z	Term	Designation
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	x'yz xy'z' xy'z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

Minterms

Sum of minterms for each combination of variables that produces a (I) in the function

Minterms and Maxterms for Three Binary Variables

			M	interms
x	y	z	Term	Designation
0	0	0	x'y'z'	m_0
0	0	1	x'y'z	m_1
0	1	0	x'yz'	m_2
0	1	1	x'yz	m_3
1	0	0	xy'z'	m_4
1	0	1	xy'z	m_5
1	1	0	xyz'	m_6
1	1	1	xyz	m_7

$$F = x' y'$$

x	y	<i>x'</i>	y'	F
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	0	0	0

$$\mathsf{F} = \sum m_0$$

$$F = x' y' + x'y$$

x	y	x'	y'	F
0	0	1	1	1
0	1	1	0	1
1	0	0	1	0
1	1	0	0	0

$$\mathsf{F} \qquad = \sum (m_0, m_1) \qquad \qquad \mathsf{F}$$

F = x' y' + x'y
=(00,01)
=
$$\sum (m_0, m_1)$$

Drive truth table of the following function

$$F = x'y' + x'y + xy' + xy$$

x	y	x'	y'	F
0	0	1	1	1
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

$$F = \sum (m_0, m_1, m_2, m_3)$$

Much More Compact Form F = I

$$F = x' y' z' = \sum (m_0)$$

x	y	z	<i>x'</i>	<i>y'</i>	z'	F
0	0	0	1	1	1	1
0	0	1	1	1	0	0
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

$$F = x' y' z' + x'y'z = \sum (m_0, m_1)$$
000, 001

x	y	z	<i>x'</i>	y'	z'	F
0	0	0	1	1	1	1
0	0	1	1	1	0	1
0	1	0	1	0	1	0
0	1	1	1	0	0	0
1	0	0	0	1	1	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	0

Write the following function in terms sum of its minterms

x	y	z	F 1	F 1	F3
0	0	0	1	0	1
0	0	1	1	1	1
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	0	0	1
1	1	0	0	0	1
1	1	1	1	0	1

FI =
$$\sum (m_0, m_1, m_7)$$

FI = x'y'z' + x'y'z+ xyz

F2 =
$$\sum (m_1, m_4)$$

F2 = x'y'z+ xy'z'

F3 =
$$\sum (m_{0}, m_{1}, m_{5}, m_{6}, m_{7})$$

Minterms and Maxterms

A minterm (standard product): an AND term consists of all literals in their normal form or in their complement form.

Sum means ORing

- A maxterm (standard sums): an OR term
 - It is also called a standard sum.
 - \triangleright 2ⁿ maxterms.

Product means ANDing

$$F = x + y$$

x	y	<i>x'</i>	y'	F
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1

$$F = (x + y) (x + y')$$

\boldsymbol{x}	y	<i>x'</i>	y'	<i>x</i> + <i>y</i>	<i>x</i> + <i>y</i> ′	F
0	0	1	1	0	1	0
0	1	1	0	1	0	0
1	0	0	1	1	1	1
1	1	0	0	1	1	1

▶ Each maxterm is the complement of its corresponding minterm, and vice versa.

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			M	interms	Maxterms		
x	y	Z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

- **Challenge**
- Express the following functions in terms
- sum of standard product terms (minterms)
- product of standard sum terms (Maxterms)

Table 2.4 Functions of Three Variables

X	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

FI=
$$\sum (m_1, m_4, m_7)$$

= x'y'z + xy'z'+ xyz
= $\prod (M_0 M_2 M_3 M_5 M_6)$
=(x+y+z) (x+y'+z) (x+y'+z')
(x'+y+z') (x'+y'+z)

Challenge

Convert from any form to the other

Table 2.4Functions of Three Variables

x	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$FI = \sum (m_1, m_4, m_7)$$

$$FI=x'y'z + xy'z' + xyz$$

$$FI = (x+y+z) (x+y'+z)$$

(x+y'+z')(x'+y+z') (x'+y'+z)

$$\mathsf{FI} = \prod (M_0 M_2 M_3 M_5 M_6)$$

- Express the following functions in terms of
- sum of its minterms
- 2. product of its Maxterms

Table 2.4 *Functions of Three Variables*

X	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

$$F2 = \sum (m_3, m_5, m_6, m_7)$$
$$= \prod (M_0 M_1 M_2 M_4)$$

- Any Boolean function can be expressed as:
 - A sum of minterms expressions ("sum" meaning the ORing of terms)

A product of maxterms expressions ("product" meaning the ANDing of terms).

$$F=(X+Y+Z).(X+Y'+Z).(X'+Y'+Z')$$

▶ Both Boolean functions are said to be in Canonical form.

Sum of Minterms

- Sum of minterms: there are 2^n minterms and 2^{2n} combinations of functions with n Boolean variables.
- Example : express F = A + B'C as a sum of **minterms**.

2

$$F = A+B'C$$

$$= A (B+B') + B'C$$

$$= AB + AB' + B'C$$

$$=AB(C+C') + AB'(C+C') + (A+A')B'C$$

$$=ABC+ABC'+AB'C+AB'C'+A'B'C$$

$$= A'B'C + AB'C' + AB'C + ABC' + ABC'$$

$$= m_1 + m_4 + m_5 + m_6 + m_7$$

$$= \Sigma(1, 4, 5, 6, 7)$$

or, built the truth table first

Truth Table for F = A + B'C

A B C	F
0 0 0	0
0 0 1	1
0 1 0	0
0 1 1	0
1 0 0	1
1 0 1	1
1 1 0	1
1 1 1	1

Sum of Minterms

- Sum of minterms: there are 2^n minterms and 2^{2n} combinations of functions with n Boolean variables.
- Example: express F = A + B'C as a product of **maxterms**

F = A+B'C = (A+B')(A+C) = (A+B'+CC')(A+C+BB'') = (A+B'+C)(A+B'+C')(A+B+C)(A+B'+C') $= \prod (M_0M_2M_3)$

or, built the truth table first Table 2.5

Truth Table for F = A + B'C

A	В	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	1

Product of Maxterms

- Product of maxterms: using distributive law to expand.
- Example : express F = xy + x'z as a product of **maxterms**.

F =
$$xy + x'z$$

= $(xy + x')(xy + z)$
= $(x+x')(y+x')(x+z)(y+z)$
= $(x'+y)(x+z)(y+z)$
= $(x'+y+zz')(x+z+yy')(y+z+xx')$
= $(x'+y+z)(x'+y+z')(x+z+y)(x+z+y')(y+z+x)$
 $(y+z+x')$
= $(x+y+z)(x+y'+z)(x'+y+z)(x'+y+z')$
= $M_0M_2M_4M_5$
= $\Pi(0, 2, 4, 5)$

or, built the truth table first

Table 2.6 *Truth Table for F* = xy + x'z

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Complement of a Function Expressed in Canonical Forms

- The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.
 - $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$
 - $F(A, B, C) = \Pi(0, 2, 3)$

Thus,

- $F'(A, B, C) = \Sigma(0, 2, 3)$
- $F'(A, B, C) = \Pi(1, 4, 5, 6, 7)$
- ▶ By DeMorgan's theorem $m_j' = M_j$

	_			
x	у	Z	FI	FI'
0	0	0	0	ı
0	0	I	I	0
0	I	0	0	ı
0	I	I	0	ı
I	0	0	I	0
I	0	I	I	0
I	I	0	I	0
			I	0

Conversion between Canonical Forms

- To convert from one canonical form to another: interchange the symbols Σ and Π and list those numbers missing from the original form
 - $\triangleright \Sigma$ of I's
 - ▶ ∏ of 0's

Conversion between Canonical Forms

Example

$$F = xy + x'z$$

$$F(x, y, z) = \Sigma(1, 3, 6, 7)$$

$$F(x, y, z) = \Pi(0, 2, 4, 6)$$

Table 2.6 Truth Table for F = xy + x'z

X	y	z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Canonical Forms vs. Standard Forms

Canonical Forms

- Each minterm or maxterm must contain all the variables either complemented or uncomplemented,
- Sum of minterms (Product terms)
- OR Product of Maxterms (sum terms)

Standard forms

- the terms that form the function may obtain one, two, or any number of literals,.
- There are two types of standard forms:
 - Sum of products:

$$F_1 = y' + xy + x'yz'$$

Product of sums:

$$F_2 = x(y'+z)(x'+y+z')$$

Standard Forms

A Boolean function may be expressed in a nonstandard form

$$F_3 = AB + C(B + A)$$

But it can be changed to a standard form by using The distributive law

$$F_3 = AB + C(B + A) = AB + BC + AC$$

And it can be changed to a canonical form by using The distributive law after adding missing literal

```
F_3 = AB + BC + AC = AB(C+C')+BC(A+A')+AC(B+B')
```

- =ABC+ABC'+ABC'+A'BC+ABC+AB'C
- =ABC+ABC'+A'BC+AB'C'

Implementation

Two-level implementation

Multi-level implementation

SOP

POS

Sum of minterms

$$F = \sum (m_0, m_2, \dots m_i)$$

Sum of terms that function gives I

Minterms (Locate I's)

$$m_0 = x'y'z' = 000$$

$$m_1 = x'y'z = 001$$

. . . .

$$m_7 = xyz = | | |$$

Convert Boolean function to SOP

By multiplying each term by the missing variable Ored with its complement

$$F = xy = xy(z+z') = xyz + xyz'$$

Logic Diagram:

- 2 level implantation
- Level of AND gates followed by one OR gate

Product of Maxterms

$$F = \prod (M_0 M_1 \dots M_i)$$

Product of terms that function gives 0

Maxterms (Locate 0's)

$$M_0 = x+y+z = 000$$

$$M_1 = x+y+z' = 001$$

. . . .

$$M_7 = x' + y + z' = | | | |$$

Convert Boolean function to POS

By expanding using distributive law and then for each term add the missing variable

ANDed with its complement

$$F = x + y = x + y + zz' = (x + y + z)(x + y + z')$$

Logic Diagram:

- 2 level implantation
- Level of OR gates followed by one AND gate

Other Logic Operations

- 2ⁿ rows in the truth table of n binary variables.
- ▶ 2^{2ⁿ} functions for n binary variables.
- ▶ 16 functions of two binary variables.

Table 2.7 *Truth Tables for the 16 Functions of Two Binary Variables*

X	y	F ₀	F ₁	F ₂	F ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F 9	F 10	<i>F</i> ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
1	1	0 0 0 0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1

All the new symbols except for the exclusive-OR symbol are not in common use by digital designers.

Boolean Expressions

Table 2.8 *Boolean Expressions for the 16 Functions of Two Variables*

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$	·	Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y, then x
$F_{12} = x'$	x'	Complement	Not <i>x</i>
$F_{13} = x' + y$	$x\supset y$	Implication	If x, then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15} = 1$	•	Identity	Binary constant 1

