Radio atómico y radio iónico

Estructura de la materia

septiembre 2019

Contenido

- Definición.
- Magnitud comparada. Desarrollo de intuición.
- Tendencias periódicas.
- Ejercicios.

Radio atómico

Contexto:

- Propiedades físicas relacionadas con el tamaño de los átomos
 - Densidad.
 - Punto de fusión.
 - Punto de ebullición.
- Determinar el tamaño de los átomos es un proceso complejo.

• **Propuesta de tamaño atómico**: el volumen que contienen alrededor del 90% de la densidad electrónica total alrededor del núcleo.

• **Propuesta de tamaño atómico**: el volumen que contienen alrededor del 90% de la densidad electrónica total alrededor del núcleo.

Contexto:

- Para 1920 es posible determinar el tamaño atómico por difracción de rayos X.
- Se sugiere que todos los átomos de un mismo elemento tienen el mismo radio.
- En **1923** se determinó que la aproximación de un átomo como una esfera no se mantiene necesariamente cuando se compara el mismo átomo en cristales con diferentes estructuras.

Radio atómico

Mitad de la distancia internuclear de dos átomos adyacentes del mismo elemento.

Para los **elementos cuyos átomos** se unen **formando una red tridimensional**, el rádio atómico es la **mitad de la distancia entro los núcleos** de dos átomos vecinos.

Para los **elementos que esisten como moléculas diatómicas**, el radio atómico es la mitad de la distancia emtre los **centros de los átomos en la molécula**.

¿Cómo cambia el radio atómico entre elementos vecinos?

Tendencias periódicas

Ejercicio

Ordene los siguientes elementos de menor a mayor radio atómico B, F, I.

- F > B > I
- $Z^* = F: 5.1; B: 2.421; I: 11.612$

Radio iónico

Radio Iónico

- Es el radio de un catión o un anión.
- Afecta las propiedades físicas y químicas de un compuesto iónico.
- Cuando un átomo neutro se convierte en un ion, se espera un cambio en el tamaño.
 - La nube electrónica se contrae o se expande.

Cambio de radio en un catión

- La carga nuclear Z permanece constante.
- Pero al perder electrones:
 - disminuye el efecto de apantallamiento aumentando así la carga nuclear efectiva,
 - el efecto de la repulsión entre electrones disminuye, así
- Disminuye el radio del ion.

Cambio de radio en un anión

- La carga nuclear Z permanece constante.
- Pero al agregar electrones:
 - aumenta el efecto de apantallamiento disminuyendo así la carga nuclear efectiva,
 - el efecto de la repulsión entre electrones se incrementa, así
- Aumenta el radio del ion.

Comparación de radios atómicos y radios iónicos

Ejercicio

En una tabla de datos se dice que los radios de los iones ${\rm Ti}^{2+}$ y ${\rm Ti}^{3+}$ son 0.60 y 0.90 angstroms, pero no se indica qué valor corresponde a qué ión. Realiza una asignación razonable de valores.

- 0.9 angstroms corresponde a Ti^{2+}
- \bullet 0.6 angstroms corresponde a Ti $^{3+}$

Ejercicio

Los iones S^{2-} , CI^- , K^+ y Ca^{2+} son isoelectricos. Es decir, tienen la misma estructura electrónica, la del argón. Indique el orden correcto de sus radios atómicos.

•
$$S^{2-} > CI^- > K^+ > Ca^{2+}$$

• $S^{2-} > CI^- > K^+ > Ca^{2+}$

• S²⁻:(16p / 18e); Cl⁻:(17p / 18e); K⁺:(19p / 18e); Ca²⁺:(20p / 18e)

•
$$S^{2-} > CI^- > K^+ > Ca^{2+}$$

S²⁻ (16p/18e): 1s2 2s2 2p6 3s2 3p6

11.236

Cl⁻ (17p/18e): 1s2 2s2 2p6 3s2 3p6

In [5]: Zef = 17 - S3p; Zef

K⁺ (19p/18e): 1s2 2s2 2p6 3s2 3p6

In [6]: Zef = 19 - S3p; Zef

Ca²⁺ (20p/18e): 1s2 2s2 2p6 3s2 3p6

In [7]: Zef = 20 - S3p; Zef

Out[7]: 8.764

• $Z^* = S^{2-}$:4.764; CI⁻:5.764; K⁺:7.764; Ca²⁺:8.764