Supporting Information:

Velocity Map Imaging Spectroscopy of C₂H⁻ and C₂D⁻: a benchmark study of vibronic coupling interactions

Benjamin A. Laws,*,†,‡ Zachariah D. Levey,† Andrei M. Sanov,¶ John F. Stanton,§ Timothy W. Schmidt,† and Stephen T. Gibson‡

†School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia

‡Research School of Physics, The Australian National University, Canberra ACT 2601, Australia

¶Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721,

United States

§Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States

E-mail: b.laws@unsw.edu.au

Contents

Re	eferences	S-5
2	C ₂ D ⁻ Spectral Assignments	S-2
1	C ₂ H ⁻ Spectral Assignments	S-2

1 C₂H⁻ Spectral Assignments

Spectral assignments for all peaks resolved in the photoelectron spectra of C_2H^- from this work are presented in Table S1. Peaks are labelled with respect to the photoelectron spectrum of C_2H^- at 300 nm in Figure S1. The experimental binding energy of each transition is given, alongside the anisotropy (+/-), the corresponding vibronic symmetry, and the calculated energy from Ref. S1. Assignments are given as $\tilde{X}(v_1, v_2, v_3)\tilde{A}(v_1, v_2, v_3)$ where superscripts represent hot-band transitions.

Figure S1: Photoelectron spectrum of C_2H^- at 300 nm, showing the labelling of peaks used in this work.

2 C_2D^- Spectral Assignments

Spectral assignments for all peaks resolved in C_2D^- from this work are presented in Table S2. Peaks are labelled with respect to the photoelectron spectrum of C_2D^- at 355 nm in Figure S2. The experimental binding energy of each transition is given, alongside the anisotropy (+/-), the corresponding vibronic symmetry, and the calculated energy from Ref. S1.

Table S1: Peak positions (cm $^{-1}$), and assignments for the C_2H^- photoelectron spectra from this work. The sign of the anisotropy parameter is shown for each transition, along with it's vibronic symmetry, and the calculated position from Ref. S1.

Peak	eBE (cm ⁻¹)	$v \text{ (cm}^{-1})$	β	Symmetry	$v_{\rm calc}^{\ a}$	Assignment			
	23 591	-231	+	Σ^+		$\tilde{X}(0, 2^2, 0)$			
	23 685	-137	+	Σ^+		$\tilde{X}(0,1^1,0)$			
	23 823	0	+	Σ^+	0	$ ilde{X}(0,0,0)$			
	24 184	361	_	Π	371	$ ilde{X}(0,1,0)$			
	24 630	807	+	Σ^+	794	$ ilde{X}(0,2,0)$			
	25 663	1840	+	Σ^+	1838	$ ilde{X}(0,0,1)$			
	25 916	2093	_	Π	2096	$ ilde{X}(0,1,1)$			
	25 993	2170	_	Π	2166	$ ilde{X}(0,5,0)$			
	26 362	2539	+	Σ^+	2536	$ ilde{X}(0,2,1)$			
	26 757	2934	_	Π	2933	$\tilde{X}(0,3,1)$			
	26 929	3106	_	Π	3104	$ ilde{X}(0,7,0)$			
	27 175	3352	+	Σ^+	3371	$ ilde{X}(0,4,1)$			
a	27 430	3607	_	Π	3604	$\tilde{X}(0,1,2)\tilde{X}(1,1,0)\tilde{A}(0,0,0)$			
b	27 515	3692	_	Π	3690	$\tilde{X}(1,1,0)\tilde{X}(0,1,2)\tilde{A}(0,0,0)$			
c	27 612	3788	_	Π	3790	$ ilde{X}(0,5,1) ilde{A}(0,0,0)$			
d	27 851	4028	_	Π	4011	$\tilde{X}(0,9,0)\tilde{X}(0,5,1)\tilde{A}(0,0,0)$			
e	27 941	4118	_	Π	4093	$\tilde{X}(0,9,0)\tilde{A}(0,0,0)$			
f	28 200	4377	+	Σ^+	4375	$\tilde{X}(0,6,1)$			
g	28 349	4526	+	Σ^+	4524	$ ilde{X}(0,10,0)$			
h	28 423	4600	_	Π	4593	$ ilde{X}(0,3,2) ilde{A}(0,0,0)$			
i	28 562	4739	_	Π	4702	$\tilde{X}(0,7,1)\tilde{A}(0,1,0)$			
j	28 714	4891	_	Π	4879	$\tilde{X}(0,7,1)$			
k	28 834	5011	_	Π	5004	$\tilde{X}(0,11,0)$			
1	29 049	5226	_	Π	5222	$ ilde{X}(0,1,3) ilde{A}(0,0,1)$			
m	29 227	5404	+	Σ^+	5406	$\tilde{X}(0,12,0)\tilde{A}(0,1,0)$			
n	29 283	5460	_	П	5445	$\tilde{X}(0,5,2)\tilde{A}(0,0,1)$			
o	29 465	5642	_	П	5630	$\tilde{X}(0,9,1)\tilde{A}(0,0,1)$			
p	29 740	5917	_	П	5914	$\tilde{X}(0,13,0)$			
q	29 844	6021	+	Σ^+	6054	$\tilde{X}(0,6,2)\tilde{X}(0,2,3)$			
r	30 021	6198	_	П	6200	$\tilde{X}(0,3,3)\tilde{A}(0,2,0)$			
S	30 086	6263	_	П	6266	$ ilde{X}(1,7,0)$			
a from calculations of Ref S1									

^a from calculations of Ref. S1

Table S2: Peak positions (cm $^{-1}$) and assignments for the C_2D^- photoelectron spectra from this work. The sign of the anisotropy parameter is shown for each transition, along with it's vibronic symmetry, and calculated position from Ref. S1 .

Peak	$eBE (cm^{-1})$	$v (\mathrm{cm}^{-1})$	β	Symmetry	$v_{\rm calc}^{\ a}$	Assignment
	23 751	-197	+	Σ +		$\tilde{X}(0, 2^2, 0)$
	23829	-120	+	Σ^+		$ ilde{X}(0,2^1,0)$
	23 949	0	+	Σ^+	0	$\tilde{X}(0,0,0)$
	24 227	278	_	Π	287	$ ilde{X}(0,1,0)$
	24 577	629	+	Σ^+	615	$\tilde{X}(0,2,0)$
	24 906	957	_	Π	953	$\tilde{X}(0,3,0)$
	25 506	1557	+			
	25 688	1740	+	Σ^+	1744	$ ilde{X}(0,0,1)$
	25 901	1952	_	Π	1962	$ ilde{X}(0,1,1)$
	26 245	2297	+	Σ^+	2302	$ ilde{X}(0,2,1)$
	26 556	2607	_	Π	2612	$ ilde{X}(0,3,1)$
	26 747	2798	_	Π	2796	$ ilde{X}(1,1,0)$
a	27 253	3304	_	Π	3309	$ ilde{X}(0,5,1)$
b	27 369	3420	_	Π	3426	$\tilde{X}(1,3,0)$
c	27 450	3501	_	Π	3511	$ ilde{X}(0,1,2)$
d	27 552	3603	_			
e	27 793	3844	_	Π	3838	$ ilde{A}(0,0,0)$
f	27 906	3957	+	Σ^+	3967	$ ilde{X}(0,2,2)$

^a from calculations of Ref. S1

Figure S2: Photoelectron spectrum of C_2D^- at 266 nm, showing the labelling of peaks used in this work.

References

(S1) Tarroni, R.; Carter, S. Theoretical calculation of vibronic levels of C_2H and C_2D to 10,000 cm⁻¹. The Journal of Chemical Physics **2003**, 119, 12878–12889.