Module 4: K-space

Image Formation

k-space

K-space

It is important to note that there is not a one-to-one relationship between image and k-space.

Each individual point in image space depends on all of the points contained in the k-space

Superposition of curves

1 Dimension

Period: T

Frequency: $\omega = T^{-1}$

2 Dimensions

K-space

Information content in k-space

 Low spatial frequencies represent parts of the object that change in a spatially slow manner (Contrast).

 High spatial frequencies represent small structures whose size is on the same order as the voxel size (Tissue boundaries).

Spatial Resolution

 32×32 image

1024 points sampled in k-space

64 × 64 image

4096 points sampled in k-space

128 × 128 image

16,384 points sampled in k-space

End of Module

