# **Method of Optimization**

### 20.1 Basic Concepts: Optimization

- จุดประสงค์ ของ optimization problem คือการหาค่าที่เหมาะสมที่ทำให้ function มีค่า max. หรือ min. ก็ได้
- function ที่นำมา optimize เรียกว่า ฟังก์ชันจุดประสงค์

#### (objective function)

- ตัวอย่างของ function ที่เราต้องการให้เกิดค่าสูงสุด (maximize)
  - จำนวนลูกค้าเข้ามารับบริการในธนาคารต่อชั่วโมง
  - จำนวนไมล์ที่รถวิ่งไปได้ต่อน้ำมัน 1 แกลลอนของรถชนิดหนึ่ง
  - ปริมาณการผลิตสินค้า ต่อ 1 ช.ม.
- ตัวอย่าง function ที่เราต้องการให้เกิดก่าต่ำสุด (minimize)
  - ต้นทุนต่อหน่วยในการผลิตสินค้า
  - เวลาที่ใช้ในการผลิตสินค้าต่อชิ้น

# **Fields of Optimization**

#### Convex programming studies the case when

- · the objective function is convex
- · the constraints, if any, form a convex set.

#### - Linear programming (LP)

- the objective function f(x) is linear
- · the set of constraints is specified using only linear equalities and inequalities.
- · called a Polyhedron or a Polytope if it is bounded.

#### Quadratic programming

- · the objective function to have quadratic terms,
- · while the set A must be specified with linear equalities and inequalities.

#### - Geometric programming

 objective and inequality constraints expressed as posynomials and equality constraints as monomials can be transformed into a convex program.

#### Nonlinear programming

- · the objective function or the constraints or both contain nonlinear parts.
- This may or may not be a convex program. In general, the convexity of the program affects the difficulty of solving more than the linearity.

#### Stochastic programming

· some of the constraints or parameters depend on random variables.

### 20.1 Basic Concepts: Unconstrained Optimization

objective function แปรตามตัวแปรหลายๆ ตัว เช่น

$$f(x,y)$$
 หรือ  $f(x_1, x_2, ..., x_n)$ 

ตัวแปร  $\mathbf{x},\mathbf{y}$  หรือ  $(x_1,...,x_n)$  ที่เป็นตัวแปรต้นนี้ เรียกว่า control variables เรียก control เพราะเราสามารถเลือกค่าของตัวแปรเหล่านี้ ได้เพื่อให้ ได้ค่า Optimize

 การ optimization คือการหาค่าที่เหมาะสมที่สุด (optimal choice) ของ ตัวแปรต้นเหล่านี้ (control variables) ซึ่งจะทำให้เกิดค่า objective function ที่เหมาะสมที่สุด(max or min) ≥

### 20.1 Basic Concepts: Unconstrained Optimization

- บางปัญหานั้นตัวแปรต้นแต่ละค่า  $(x_1,...,x_n)$  อาจมีเงื่อนไขข้อจำกัด (constraint)
- เงื่อนไขที่กำหนดเพิ่มเติมของตัวแปรต้นแต่ละตัว อาจเกิดโดย ธรรมชาติของตัวแปรต้นนั้น เช่น ถ้า  $x_1$  คือต้นทุน  $x_1 \ge 0$  เพราะต้นทุนไม่มีติดลบ และ ตัวแปรอื่นๆ เช่น น้ำหนัก,ระยะทาง,เวลา ฯลฯ ที่จะไม่มีทางเป็นค่าลบ

# **General Description of Optimization**

- The **function f(x)** can be called,
  - an objective function, cost function, or energy function.
  - A feasible solution that minimizes (or maximizes, if that is the goal) the objective function is called an optimal solution.
- Generally
  - when the feasible region or the objective function of the problem
     not present convexity,
  - there may be several local minima and maxima,
    - · where a local minimum x\* is defined

$$||x-x^*|| \leq \delta$$

$$f(x^*) \le f(x)$$

5

.

# How can an Optimum be found?

- One of **Fermat's theorems** states that
- Optima of unconstrained problems are found at stationary points,
  - where the 1st derivative or the gradient of the objective function is zero
  - More generally, they may be found at **critical points**,
    - where the 1st derivative or gradient of the objective function is zero or
    - · undefined, or on the boundary of the choice set.
- Optima of inequality-constrained problems are instead
  - found on the boundary of the constrained set or
  - found by the gradient values using **Lagrange multiplier** method.

### **CONSTRAINED OPTIMIZATION**

(LINEAR PROGRAMMING)

## **20.2 Linear Programming**

- Mathematics Programming จะประกอบด้วยวิธีสำหรับแก้ปัญหา optimization problem แบบที่มีเงื่อนไขข้อจำกัด (constraint) เพื่อหาค่า max or min สำหรับ objective function z=f(x,,...,x₀)
- Linear Programming (Linear Optimization) หมายถึง Mathematics Programming ที่มื่อ bjective function เป็นฟังก์ชันเชิงเส้น

$$z = f(x_1, ..., x_n) = ax_1 + ... + ax_n$$

และมีข้อจำกัดอยู่ในรูป linear equalities (อสมการเชิงเส้น) เช่น  $3x_1 + 4x_2 \le 36,$ หรือ  $x_1 \ge 0$  เป็นต้น

เนื่องจากปัจจุบันประสิทธิภาพของเครื่องคอมพิวเตอร์มีมากขึ้นดังนั้นเราสามารถใช้คอมพิวเตอร์ ช่วยการคำนวณสมการที่มีตัวแปรเป็นพันๆ ตัวได้

### 20.2 Linear Programming

- วิธีเซ็ตสมการ linear
- และแนวคิดทางเรขาคณิต geometric solution ตามตัวอย่างต่อไปนี้

EX1 บ. Silvex Products ผลิตถังแก๊สโซลีน ชนิด J และ ชนิด K เครื่องจักรมี 2 เครื่อง( คือ  $M_1$ และ  $M_2$ ) แต่ละเครื่องจะใช้เวลาในการผลิตถังแก๊สทั้ง 2 ชนิด ในอัตราการผลิต ที่คงที่ดังนี้คือ

เครื่อง M<sub>1</sub>: ถ้าผลิตถังแก๊ส J จะใช้เวลาในการผลิต 2 นาทีต่อถัง ถ้าผลิตถังแก๊ส K จะใช้เวลาในการผลิต 8 นาทีต่อถัง

เครื่อง M<sub>2</sub>: ถ้าผลิตถังแก๊ส J จะใช้เวลาในการผลิต 5 นาทีต่อถัง ถ้าผลิตถังแก๊ส K จะใช้เวลาในการผลิต 2 นาทีต่อถัง

โดยที่ ถัง J ขายถังละ 40\$ และ ถัง K ขายถังละ 88\$ จงหาจำนวนชิ้นในการผลิตถัง J (x ถัง) และจำนวนชิ้นในการผลิตถัง K (yถัง) ที่จะทำให้เกิดรายได้ต่อ ช.ม. สูงสุด

9

10

# 20.2 Linear Programming

Solution. : จำนวนชิ้นเป็นลบไม่ได้

👶 จะเขียน objective function และconstraint ได้ดังนี้

(0) 
$$z = 40 X_1 + 88 X_2$$

(1) 
$$2 X_1 + 8 X_2 \le 60$$
 (จำนวนนาทีของเครื่อง  $M_1$ )

(2) 
$$5X_1 + 2X_2 \le 60$$
 (จำนวนนาทีของเครื่อง  $M_2$ )

$$(3) x_1 \geq 0$$

$$\mathbf{(4)} \qquad \qquad \mathbf{x}_2 \geq 0$$

# **20.2 Linear Programming**

■ Fig.442 แสดงกราฟที่ plot จากสมการ (0) ถึง สมการ(4)



Fig. 442. Linear programming in Example 1

# **Linear Programming**

- จุด 0 : x₁ =0 และ x₂ =0 ดังนั้น z =0
- สมการที่ (1)
   ตัดจุด C เมื่อ x<sub>1</sub> = 0 ดังนั้น x<sub>2</sub> = 60/8=7.5
- สมการที่ (2)
   ตัดจุด A เมื่อ x<sub>2</sub> = 0 ดังนั้น x<sub>1</sub> = 60/5=12
- ตัดจุด B หาจาก

$$2x_1 + 8x_2 \le 60$$
 (a)

$$5x_1 + 2x_2 \le 60$$
 (b)

$$4 \times (b)$$
;  $20x_1 + 8x_2 \le 240$  (c)

$$(c)-(a); 18x_1 \le 180$$

$$\therefore x_1 = 10$$

instead 
$$x_1 = 10$$
 in (a)

$$\therefore x_2 = 5$$

### 20.2 Linear Programming

- คำตอบที่เกิดประโยชน์สูงสุด หาโดยเลื่อนกราฟรายได้คงที่ขึ้นข้างบนโดยไม่เลย ผ่าน feasibility region จะเห็นว่าค่าสูงสุดที่เป็นไปได้ จะเกิดขึ้นได้ เมื่อเลื่อน เส้นกราฟผ่านมาถึงจุด B ซึ่งเป็นจุดตัดของ (1) และ (2) และ
- จะได้รายได้สูงสุดคือ
   Z = 40(10) + 88(5) = 840 ซึ่งจะเกิดเมื่อแต่ละชั่วโมง จะต้อง ผลิตถังแก๊ส J 10 ถัง และ ผลิตถังแก๊ส K 5 ถัง
- 📱 แต่ถ้ามีตัวแปรหลายตัวคงใช้วิธีดูกราฟลำบากเราจะมาดูวิธีอื่น

13

### 20.2 Linear Programming: Normal Form

- เตรียมความพร้อมของสมการ linear ไม่ให้ติดในรูปอสมการ โดยใช้ slack variable
- Normal Form ของโจทย์ Linear Programming

เงื่อนไขข้อจำกัก(  $\underbrace{constraint}$ ) ของโจทย์ต่างๆ สามารถจัดรูปให้อยู่ในรูปแบบเดียวกันได้ เช่น จาก EX1 เงื่อนไข (1)

🗶 ู คือ ตัวแปรช่วยที่ไม่เป็นลบที่กำหนคขึ้นใหม่เพื่อจะเปลี่ยนอสมการให้อยู่ในรูปสมการตัวแปรนี้ เรียก ตัวแปร slack

# 20.2 Linear Programming :Normal form

Maximize:

$$z = f(\vec{x}) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n \tag{1}$$

ภายใต้เงื่อนไข:

$$a_{m1}x_1 + \cdots + a_{mn}x_n = b_m$$
  
$$x_i \geq 0 \quad (i = 1,...,n)$$

# 20.3 Simplex Method

- 1. จัดรูป Normal Form
- 2. สร้าง Simplex Table
- 3. หา basic variable และ non basic variable แล้วเซ็ตค่า

non basic variable ให้เป็น 0 ทั้งหมดเพื่อหา feasible solution

- 3.1 กรณีหา Maximize: ถ้าไม่มีสมาชิกแถวที่ 1 ใน Simplex Table ไม่มีสมาชิกตัวใดมี ค่า < 0 ให้หยุดการทำงาน ไม่เช่นนั้นไปทำข้อ 4
- 3.2 กรณีหา Minimize: ถ้าไม่มีสมาชิกแถวที่ 1 ใน Simplex Table ไม่มีสมาชิกตัวใคมีค่า > 0 ให้หยดการทำงาน ไม่เช่นนั้นไปทำข้อ 4
- 4 m Pivot
  - 4.1 หาcolumn pivot
  - 4.2 หาrow pivot
- 4.3 ทำ row operation คือการกำจัดสมาชิกตัวอื่นๆ ที่ไม่ได้เป็น pivot ให้มีค่าเป็น 0 แล้วกลับไปทำข้อ 3

20.3 Simplex Method

 วิธีนี้การดำเนินการจาก basic feasible solution หนึ่ง ไปยังอีก basic feasible solution หนึ่ง จะต้องทำให้ objective function มีค่าเพิ่มขึ้นเสมอ

จากโจทย์เดิม

maximize

$$z = 40 x_1 + 88 x_2$$

ภายใต้ constraint

$$2 x_1 + 8 x_2 \le 60$$

$$5 x_1 + 2 x_2 \le 60$$

$$x_1 \geq 0$$

$$x_2 \geq 0$$

17

18

# **20.3** Simplex Method

จะได้ Normal Form ของโจทย์ซึ่งเขียนรวมกับ objective function ใต้ดังนี้

$$z - 40 x_1 + 88 x_2 = 0$$
  
 $2 x_1 + 8 x_2 + x_3 = 60$   
 $5 x_1 + 2 x_2 + x_4 = 60$ 

$$x_i \ge 0$$
 (i=1,2,3,4)

### 20.3 Simplex Method

หา optimal solution จาก augmented matrix ต่อไปนี้

$$T_0 = \begin{bmatrix} x_1 & x_2 & x_3 & x_4 & b \\ \hline 1 & -40 & -88 & 0 & 0 & 0 \\ \hline 0 & 2 & 8 & 1 & 0 & 60 \\ 0 & 5 & 2 & 0 & 1 & 60 \end{bmatrix}$$

ในตาราง simplex table จะมีตัวแปร 2 ชนิค คือ

- basic variable คือ ตัวแปรในคอลัมน์ใคๆ มีสมาชิกที่ไม่เป็น 0 เพียงตัวเคียว เช่น  $\mathbf{x}_3$  และ  $\mathbf{x}_4$  ในตาราง  $\mathbf{T}_0$
- nonbasic variable คือ ตัวแปรอื่นๆที่ไม่ใช่ basic variable
- Feasible solution for which at least n-m of variables  $x_1, ..., x_n$  are zero
- From fig.422 we have n =2, m=4

### **20.3** Simplex Method

ซึ่งหา basic feasible solution ได้โดย เซตค่า nonbasic variable ให้เป็น 0 หมด จะสามารถแก้สมการหาค่า basic feasible solution ได้ดังนี้

$$T_{0} = \begin{bmatrix} 2 & x_{1} & x_{2} & x_{3} & x_{4} & b \\ 1 & -40 & -88 & 0 & 0 & 0 \\ 0 & 2 & 8 & 1 & 0 & 60 \\ 0 & 5 & 2 & 0 & 1 & 60 \end{bmatrix}$$
 (4)

$$x_1 = 0$$
 ,  $x_2 = 0$  ,  $x_3 = 60/1 = 60$  ,  $x_4 = 60/1 = 60$  ,  $z = 0$ 

โดย  $\mathbf{X}_{_{\! 4}}$ หาจาก  $\mathbf{row}_{2}$  ,  $\mathbf{X}_{_{\! 4}}$ หาจาก  $\mathbf{row}_{3}$ 

### 20.3 Simplex Method

 optimal solution หาได้จากการทำ pivoting พิจารณาจาก basic feasible solution ที่ให้ค่า z มากขึ้นจนได้ค่า z ที่สูงที่สุด (ในกรณีที่ต้องการค่า objective function สูงสุด)

#### stepที่เ

Operation O1:เลือก pivot column

แถวที่ 1 เลือก column แรกที่พบว่ามีสมาชิกเป็นค่าติดลบ เช่นในสมการที่ (4) พบที่คอลัมน์ที่ 2 คือค่า -40 นั่นคือ คอลัมน์ที่ 2 เป็น pivot column (กรณี Maximize)

Operation O2: เลือก pivot row โดยหารค่าด้านขวาสุดของแต่ละแถวด้วยสมาชิกของ pivot c olumn (เช่นในสมการที่ (4) คือ 60/2=30,60/5 = 12) เลือกแถวที่ให้ค่าผลหารที่ต่ำสุด ตามตัวอย่างสมการที่ (4) คือแถวที่ 3 เป็น pivot row

Operation 03: ทำการกำจัดด้วยวิธี row operation เพื่อทำให้ค่าที่อยู่ในแถวอื่นๆ ณ ดำแหน่ง pi vot column เป็น 0 ทั้งหมดยกเว้นแถวที่เป็น pivot row จากสมการที่ (4) จะได้

21

### 20.3 Simplex Method

$$T_{1} = \begin{bmatrix} x_{1} & x_{2} & x_{3} & x_{4} & b \\ \hline 1 & 0 & -72 & 0 & 8 & 480 \\ \hline 0 & 0 & 7.2 & 1 & -0.4 & 36 \\ 0 & 5 & 2 & 0 & 1 & 60 \end{bmatrix} Row1 + 8Row3$$

$$Row2 - 0.4Row3$$

■ ในตอนนี้ x ุและ x ุจะเป็น basic variable ทำการ set ค่า non basic variable คือ x ุและ x ูให้เป็น 0 จะได้ค่า basic feasible solution

$$x_1\!=\!60/5\!=\!12$$
 ,  $x_2\!=\!0$  ,  $x_3\!=\!36/1\!=\!36$  ,  $x_4\!=\!0$  ,  $z\!=\!480$  ซึ่งก็คือจุค A ในรูป  $442$ 

### 20.3 Simplex Method

Step ที่ 2 คำตอบที่ได้ ยังไม่ optimal เนื่องจากยังมีค่า -72 ใน row 1 อยู่อีก เราต้องใช้ **O**1 ถึง **O**3 อีกครั้ง

01: เลือก column 3 (เนื่องจาก -72 < 0)

**O**2: เราจะได้สมการ 36/7.2 = 5 และ 60/2 = 30 เลือก7.2 เป็นค่า pivot (เนื่องจากได้ค่าผลหารน้อยกว่า) เลือกแถวที่ 3

O3: ทำการกำจัดด้วยวิธี row operation จะได้

$$z$$
  $x_1$   $x_2$   $x_3$   $x_4$   $b$ 

$$T_{2} = \begin{bmatrix} 1 & 0 & 0 & 10 & 4 & 840 \\ 0 & 0 & 7.2 & 1 & -0.4 & 36 \\ 0 & 5 & 0 & -\frac{1}{36} & \frac{1}{0.9} & 50 \end{bmatrix} Row1 + 10Row2$$

$$Row3 - \frac{2}{7.2}Row2$$

### 20.3 Simplex Method

จะเห็นว่าในตอนนี้  $\mathbf{x}_{_1},\mathbf{x}_{_2}$  เป็น basic และ  $\mathbf{x}_{_3},\mathbf{x}_{_4}$  เป็น non basic set ค่าให้  $\mathbf{x}_{_3},\mathbf{x}_{_4}$  เป็น  $_0$  จะได้ basic feasible solution จาก  $T_2$ 

$$x_1 \! = \! 50/5 \! = \! 10$$
 ,  $x_2 \! = \! 36/7.2 \! = \! 5$  ,  $x_3 \! = \! 0$  ,  $x_4 \! = \! 0$  ,  $z \! = \! 840$  ซึ่งก็คือจุค B ในรูป 442

- เนื่องจาก T2 จะไม่มีค่าลบเหลือใน row 1 อีก
- สรุปได้ว่า z = f (10, 5) = (40)(10) + (88)(5) = 840
   เป็นยอดขายสูงสุดที่เป็นไปได้

### **20.3** Simplex Method

- ถ้าเราต้องการที่จะ minimize z = f (x) (แทนที่จะทำ maximize) เราจะมีการเลือก column ของ pivot โดยดูจากค่าที่เป็นบวกใน row 1
- แต่การเลือกค่า pivot ยังคงเลือกทุกค่าที่ให้ผลหารน้อยสุดเหมือนเดิม

25

# **Simplex Difficulties**

#### ■ Problem #1: Degeneracy

- degenerate feasible solution
  - คือ feasible solution ซึ่งมีตัวแปรที่เป็น 0 มากกว่ากรณีปกติ
  - ทำให้ solve for optimum ไม่ได้

### ■ Problem #2: Difficulties in Starting

 Ex. the constraint condition, it leads to the violation of the constraint condition

# 20.4 Simplex Method:

### Degeneracy, Difficulties in Starting

### 1) Degeneracy (ความเสื่อม)

degenerate feasible solution คือ feasible solution ซึ่งมีตัวแปรที่เป็น 0 มากกว่ากรณีปกติ (คือ มากกว่า n-m ตัวแปร) เมื่อ n คือตัวแปรทั้งหมด และ m คือ จำนวนเงื่อนไขขอบเขต (โดยไม่นับรวมกับเงื่อนไข x  $\geq$ 0) ส่วนปัญหาที่ผ่านมา มี n = 4, m = 2 และมี ตัวแปรที่เป็น 0 เท่ากับ n - m = 2 พคดี ในแต่ละ solution

### **20.4 Simplex Method : Degeneracy**

EX 1 Simplex Method, degenerate solution

บ. AB steel ผลิตเหล็ก 2 ชนิด คือ I1 I2 โดยใช้วัตถุดิบ 3 ชนิด คือ R1 R2 R3 (คือ เหล็กแปรรูป และ สินแร่อีก 2 ชนิด) ดังแสดงในตาราง จงหาวิธีที่ทำให้เกิดกำไรสูงสุดต่อวัน

| Raw                | hand the same of the same                  | rial Needed<br>Ton  | . Raw Material Available per Day (tons) |  |  |  |  |
|--------------------|--------------------------------------------|---------------------|-----------------------------------------|--|--|--|--|
| Material           | Iron I <sub>1</sub>                        | Iron I <sub>2</sub> |                                         |  |  |  |  |
| $R_1$              | 2                                          | drive Parent        |                                         |  |  |  |  |
| $R_2$              | i prod <mark>p</mark> cing .<br>machbaldam |                     | 4. 8 laximize the c                     |  |  |  |  |
| $R_3$              | 0                                          | 1                   | 3.5                                     |  |  |  |  |
| Net profit per ton | \$150                                      | \$300               | 6. Maximize the d Fg (profit \$50 p     |  |  |  |  |

20.4 Simplex Method: Degeneracy

 $\underline{Solution}$  กำหนด  $\mathbf{X}_1$ และ  $\mathbf{X}_2$  คืองำนวนตันที่ผลิต  $\mathbf{I}_1$ ,  $\mathbf{I}_2$  ได้ ในแต่วัน ตามลำดับ จุดประสงค์คือ  $\mathbf{maximize}$  สมการ

(1) 
$$\underline{z} = f(\mathbf{X}) = 150 \ x_1 + 300 \ x_2$$
 โคยอยู่ภายใต้ข้อจำกัด  $\underline{x}_1 \geq 0$  ,  $x_2 \geq 0$  และ 
$$2x_1 + x_2 \leq \underline{16} \ ($$
วัตถุดิน  $R_1)$  
$$x_1 + x_2 \leq \underline{8} \ ($$
วัตถุดิน  $R_2)$  
$$\underline{x}_2 \leq \underline{3.5} \ ($$
วัตถุดิน  $R_3)$ 

30

# **20.4 Simplex Method:**

### **Degeneracy, Difficulties in Starting**

เราจะได้ normal form ของข้อจำกัด คือ

(2)

$$2x_{1} + x_{2} + x_{3} = 16$$

$$x_{1} + x_{2} + x_{4} = 8$$

$$x_{2} + x_{5} = 3.5$$

$$x_{i} \ge 0 (i = 1,2,3,4,5)$$

## 20.4 Simplex Method: Degeneracy

และได้กราฟ



Fig. 443. Example 1, where A is degenerate

## 20.4 Simplex Method : Degeneracy





Fig. 443. Example 1, where A is degenerate

- พบว่า  $\mathbf{x_1}, \mathbf{x_2}$  เป็น nonbasic ส่วน  $\mathbf{x_3}, \mathbf{x_4}, \mathbf{x_5}$  เป็น basic
- ดังนั้นเซ็ตค่า non basic variable ให้เป็น 0 จะได้ basic feasible solution ดังนี้
- $x_1 = 0$ ,  $x_2 = 0$ ,  $x_3 = 16/1 = 16$ ,  $x_4 = 8/1 = 8$ ,  $x_5 = 3.5/1 = 3.5$ ,
- z = 0 ซึ่งก็คือจุด O (0,0) ในรูป 443
- ขณะนี้ เราจะมีตัวแปร x อยู่ n = 5 ตัว และข้อจำกัด m = 3 ตัว และมีตัวแปร x ที่เป็น 0 อยู่ 2 ตัว = 5-3 (n m) พอดี จึงยังคงเป็น non degenerate feasible solution อยู่

# 20.4 Simplex Method : Degeneracy, Difficulties in Starting

ในตอนนี้ เราจะมีตัวแปร x อยู่ n=5 ตัว และข้อจำกัด m=3 ตัว และมีตัวแปร x ที่ เป็น 0 อยู่ 2 ตัว =n-m พอดี จึงยังคงเป็น non degenerate feasible solution อย่

#### Step ที่ 1 ของการทำ pivoting

01: เลือก column ของ pivot จะได้ column 2 ( -150 < 0)

O2: เลือก row ของ pivot จาก 16/2 = 8, 8/1 = 8, 3.5/0 หาค่า

ไม่ได้

ดังนั้นเราควรเลือก row 2 หรือ row 3 ซึ่งให้ค่าเท่ากัน ลองเลือก row 2 (ซึ่งมี pivot = 2) ก่อน

O3: ทำการกำจัดด้วย row operation จะได้ simplex table  $T_1$ 

24

# 20.4 Simplex Method: Degeneracy

|                         | z           | $\mathcal{X}_1$ | $x_2$ | <i>X</i> <sub>3</sub> | $\chi_4$ | <i>X</i> <sub>5</sub> | b    |                                                                                 |
|-------------------------|-------------|-----------------|-------|-----------------------|----------|-----------------------|------|---------------------------------------------------------------------------------|
|                         | Γ1 <b>.</b> | 0               | - 225 | 75                    | 0        | 0                     | 1200 | $\begin{vmatrix} Row1 + 75Row2 \\ Row3 - \frac{1}{2}Row2 \\ Row4 \end{vmatrix}$ |
| T _                     | 0           | 2               | 1     | 1                     | 0        | 0                     | 16   |                                                                                 |
| <i>I</i> <sub>1</sub> – | 0           | 0               | 1/2   | -1/2                  | 1        | 0                     | 0    | $Row3 - \frac{1}{2}Row2$                                                        |
|                         | 0           | 0               | 1     | 0                     | 0        | 1                     | 3.5  | Row4                                                                            |



• จะเห็นว่า  $x_1, x_4, x_5$  เป็น basic และ  $x_2, x_3$  เป็น non basic ดังนั้นเซ็ตค่า non basic ให้เป็น 0 จะได้ basic feasible solution ดังนี้

$$x_1 = 16/2 = 8$$
,  $x_2 = 0$ ,  $x_3 = 0$ ,  $x_4 = 0/1 = 0$ ,  $x_5 = 3.5/1 = 3.5$ ,  $z = 1200$ 

- ซึ่งก็คือ จุด A: (8,0) ในรูป 443
- แต่ solution นี้เป็น degenerate เพราะมีตัวแปรที่เป็น 0 คือ 3 ตัว ซึ่งมากกว่า n m โดยทาง เรขาคณิต เส้นตรง  $x_4 = 0$  ก็ผ่านจุด A ด้วย ทำให้รอบต่อไป เราจึงคาดหวังให้  $x_4$  กลายเป็น non basic เพื่อจะได้ไม่กลับมาพิจารณาซ้ำ เงื่อนไขเดิม

# **20.4 Simplex Method :** Degeneracy, Difficulties in Starting

### Step ที่ 2 ของการทำ pivoting

O1: เลือก column ของ pivot เป็น column 3 (-22.5 < 0)

**O2**: เลือก row ของ pivot โดยพิจารณาจาก 16/1 = 16, 0/  $\frac{1}{2}$  = 0 เลือก  $\frac{1}{2}$  เป็น pivot คือ row 3

O3: ทำการกำจัดด้วย row operation จะได้ simplex table  ${\rm T_2}$ 

# 20.4 Simplex Method: Degeneracy, Difficulties in Starting

$$T_2 = \begin{bmatrix} z & x_1 & x_2 & x_3 & x_4 & x_5 & b \\ \hline 1 & 0 & 0 & -150 & 450 & 0 & 1200 \\ \hline 0 & 2 & 0 & 2 & -2 & 0 & 16 \\ 0 & 0 & 1/2 & -1/2 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 & 1 & 3.5 \end{bmatrix} Row1 + 450Row3$$



Fig. 443. Example 1, where A is degenerate

จะพบว่า basic variable ในตอนนี้คือ  $x_1$  ,  $x_2$  ,  $x_3$  และ non basic variable คือ  $x_3$  ,  $x_4$   $\therefore$   $x_4$  กลายเป็น non basic ตามที่คาดไว้

$$x_1 = 16/2 = 8$$
,  $x_2 = 0/\frac{1}{2} = 0$ ,  $x_3 = 0$ ,  $x_4 = 0$ ,  $x_5 = 3.5/1 = 3.5$ ,  $x_5 = 1200$ 

ชึ่งยังคงเป็นจุก A จุกเดิมอยู่ คือ (8,0) ในรูป 443 และ z ไม่เพิ่มขึ้น แต่เป็นการเปิกทางไปสู่ค่า maximum ใน step ถักไป

### 20.4 Simplex Method: Degeneracy

### Step ที่ 3 ของการทำ pivoting

O₁: เลือก column ของ pivot เป็น column 4 (∵ -150 < 0)

O2: เลือก row ของ pivot โคยพิจารณาจาก

$$16/2 = 8$$
,  $0/(-\frac{1}{2}) = 0$ ,  $3.5/1 = 3.5$  แต่ครั้งนี้ต้องเลือก 1 เป็น pivot (ถ้าเรายังเลือก  $(-\frac{1}{2})$  เราจะไม่สามารถพ้นไปจากจก  $A$  ได้)

O3: ทำการกำจัดด้วย row operation จะได้ simplex table (6)

(6)





Fig. 443. Example 1, where A is degenerate

### 20.4 Simplex Method: Degeneracy

ในตอนนี้  $\underline{\underline{basic}}$  จะเป็น  $x_1, x_2, x_3$  และ non basic จะเป็น  $x_4, x_5$   $\underline{\underline{set}}$  ค่า  $\underline{x_4, x_5}$  ให้เป็น 0 จะได้ basic feasible solution ดังนี้

$$x_1 = 9/2 = 4.5$$
,  $x_2 = 1.75/\frac{1}{2}$ ,  $x_3 = 3.5/1 = 3.5$ ,  $x_4 = 0$ ,

$$x_s = 0$$
,  $z = 1725$ 

ซึ่งจะได้จุด  $\mathbf{B}$ : (4.5,3.5) ในรูป 443 และเนื่องจาก  $\mathbf{row}\ 1$  ใน  $\mathbf{T}_3$  ไม่มีค่าลบเหลืออยู่

🗅 เราจะได้กำไรสูงสุดต่อวัน

$$z_{max} = f(4.5, 3.5) = 150 \cdot 4.5 + 300 \cdot 3.5 = 1725$$

ซึ่งจะได้กำไรสูงสุด โดยผลิต  $I_1 \,\, 4.5$  <u>ตัน และ</u>  $I_2 \,\, 3.5$  ตัน ต่อวัน



Fig. 443. Example 1, where A is degenerate

# 20.4 Simplex Method: Difficulties in Starting

#### Difficulties in Starting ความยากในการเริ่มต้น

ในบางครั้งเป็นการยากที่จะหา basic feasible solution เพื่อที่จะ start ดังเช่นกรณี แนวคิดของ artificial variable

EX 2 Simplex Method : difficult start, artificial variable namaximize

(7) 
$$z = f(\mathbf{X}) = 2x_1 + x_2$$

ภายใต้เงื่อนไขข้อจำกัด  $\mathbf{x}_1 \geq 0$  ,  $\mathbf{x}_2 \geq 0$  และ

$$x_1 - \frac{1}{2} x_2 \ge 1$$

$$\mathbf{x}_1 - \mathbf{x}_2 < 2$$

$$x_1 + x_2 \leq 4$$

Solution ด้วยวิธี slack variable เราจะได้ normal form ของข้อจำกัดคือ

### 20.4 Simplex Method: Difficulties in Starting



Fig. 444. Feasibility region in Example 2

(8) 
$$x_{1} - \frac{1}{2} x_{2} - x_{3} = 1$$

$$x_{1} - \underbrace{x_{2}}_{2} + x_{4} = 2$$

$$\underbrace{x_{1}}_{1} + x_{2} + x_{5} = 2$$

$$x_{4} \ge 0 (i = 1, 2, 3, 4, 5)$$

#### 20.4 Simplex Method: Difficulties in Starting

■ จาก (7) และ (8) จะได้ simplex table

|                  | z | $x_1$ | $x_2$                 | $x_3$ | $\chi_4$ | $x_5$ | b |
|------------------|---|-------|-----------------------|-------|----------|-------|---|
|                  |   |       |                       |       |          |       |   |
| $\boldsymbol{T}$ | 0 | 1     | $-\frac{1}{2}$ $-1$ 1 | - 1   | 0        | 0     | 1 |
| $I_0 =$          | 0 | 1     | $-\frac{2}{1}$        | 0     | 1        | 0     | 2 |
|                  | 0 | 1     | 1                     | 0     | 0        | 1     | 4 |



in Example 2

41

### 20.4 Simplex Method: Difficulties in Starting

x<sub>1</sub>, x<sub>2</sub> เป็น non basic และ x<sub>3</sub>,x<sub>4</sub>,x<sub>5</sub> เป็น basic ∴ set ค่า non basic ให้เป็น 0 จะได้ค่าต่างๆ ดังนี้

$$x_1 = 0$$
,  $x_2 = 0$ ,  $x_3 = 1/(-1) = -1$ ,  $x_4 = 2/1 = 2$ ,  $x_5 = 4/1 = 4$ ,  $x_7 = 0$ 

 $\mathbf{x}_3 < 0$  แสดงว่า จุด (0,0) อยู่นอก feasibility region  $\mathbf{x}_{3} < 0$  เราจะไม่สามารถทำต่อไปได้ แทนที่จะหา basic variable ตัวอื่นๆ ต่อไป

เราจะใช้ idea ต่อไปนี้ ในการแก้สมการแรกใน (8) โดยการจัดรูปสมการเพื่อหา x , จะได้

$$\mathbf{x}_{3} = -1 + \mathbf{x}_{1} - \frac{1}{2} \mathbf{x}_{2}$$

และเพิ่มตัวแปร🗶 เข้าไปทางขวาของสมการ

(9)  $X_3 = -1 + X_1 - \frac{1}{2} X_2 + X_6$  $\mathbf{x}_{\epsilon}$  เรียกว่า artificial variable และอยู่ภายใต้เงื่อนไข  $\mathbf{x}_{\epsilon} \geq 0$ 



### 20.4 Simplex Method: Difficulties in Starting

เราจะต้องคำนึงค้วยว่า  $\mathbf{X}_{\epsilon}$  จะต้องหายไปในตอนท้าย  $\mathbf{\hat{x}}_{\epsilon}$  ไม่ใช่ส่วนหนึ่งของโจทย์ ที่ให้มา ซึ่งจะทำได้โดยเพิ่มพจน์ - Mx, (M มีค่ามากๆ) เข้าไปใน objective function ซึ่งจะทำให้เกิด modified objective function

สำหรับ extended problem นี้ จะได้

$$\hat{z} = z - Mx_6 = 2x_1 + x_2 - Mx_6 = (2 + M)x_1 + (1 - \frac{1}{2}M)x_2 - Mx_3 - M$$
(10)

แปลง Mx6 อยู่ในรูปของตัวแปร slack variable

• จากสมการที่ (9) 
$$x_3 = -1 + x_1 - \frac{1}{2}x_2 + x_6$$

• จากสมการที่ (10) 
$$\hat{z} = z - Mx_6 = 2x_1 + x_2 - Mx_6$$

M x (9); จะได้

$$Mx_3 = M(-1 + x_1 - \frac{1}{2}x_2 + x_6)$$

$$Mx_6 = Mx_3 + M - Mx_1 + \frac{1}{2}Mx_2$$

แทน Mx<sub>6</sub> ลงในสมการที่ (10) จะได้

$$\hat{z} = z - Mx_6 = 2x_1 + x_2 - (Mx_3 + M - Mx_1 + \frac{1}{2}Mx_2)$$

$$\hat{z} = (2+M)x_1 + (1-\frac{1}{2}M)x_2 - Mx_3 - M$$

$$\hat{z} - (2+M)x_1 - (1-\frac{1}{2}M)x_2 + Mx_3 = -M$$

# **Simplex Table**

$$\hat{z} - (2+M)x_1 - (1 - \frac{1}{2}M)x_2 + Mx_3 = -M$$
 (10)

$$x_1 - \frac{1}{2}x_2 - x_3 = 1$$

$$x_1 - x_2$$
  $+ x_4 = 2$   
 $x_1 + x_2$   $+ x_5 = 4$ 

$$+x_2 + x_5 =$$

$$x_3 = -1 + x_1 - \frac{1}{2}x_2 + x_6$$

$$x_1 - \frac{1}{2}x_2 - x_3 + x_6 = 1$$
 (9)

|         | ĝ   | $x_1$ | $x_2$             | $x_3$ | $x_4$ | $\chi_5$ | $\chi_6$ | <u>b</u> |
|---------|-----|-------|-------------------|-------|-------|----------|----------|----------|
|         | 1   | -2-M  | $-1+\frac{1}{2}M$ | M     | 0     | 0        | 0        | -M       |
|         | 0   | 1     | $-\frac{1}{2}$    | -1    | 0     | 0        | 0        | 1        |
| $T_0 =$ | 0   | 1     | $-1^{2}$          | 0     | 1     |          | 0        | 2        |
|         | 0   | 1     | 1                 | 0     | 0     | 1        | 0        | 4        |
|         | 0   | 1     | $-\frac{1}{2}$    | -1    | 0     | 0        | 1        | 1        |
|         | _ ' | 1     | 2                 | 1     |       |          | -        |          |

### 20.4 Simplex Method: Difficulties in Starting

• จาก simplex table คือ

|         | ĉ | $x_{\rm l}$ | $\dot{x}_2$       | $x_3$ | $\chi_4$ | $x_5$ | $\chi_6$ | b   |                   |                   |
|---------|---|-------------|-------------------|-------|----------|-------|----------|-----|-------------------|-------------------|
|         | 1 | -2-M        | $-1+\frac{1}{2}M$ | M     | 0        | 0     | 0        | - M |                   | JATTT-4.          |
|         | 0 | 1           | $-\frac{1}{2}$    |       |          |       |          |     | <b>→</b> (        | $\frac{1}{1} = 1$ |
| $T_0 =$ | 0 | 1           | -1                | 0     | 1        | 0     | 0        | 2   | <br>$\rightarrow$ | $\frac{2}{1} = 2$ |
|         | 0 | 1           | 1                 | 0     | 0        |       | 0        | 4   | $\rightarrow$     | $\frac{4}{1} = 4$ |
|         | 0 | 1           | $-\frac{1}{2}$    | -1    | 0        | 0     | 1        | 1   | $\rightarrow$     | $\frac{1}{1} = 1$ |

พบว่า  $x_4$ ,  $x_5$ ,  $x_6$  เป็น basic และ  $x_1$ , $x_2$ ,  $x_3$  เป็น non basic Column 2 ( row 1) < 0 เลือกเป็น column pivot และ 1/1 < 2/1, < 4/1 เลือก row 2 เป็น row pivot แล้วทำ row operation

### 20.4 Simplex Method: Difficulties in Starting

$$T_{1} = \begin{bmatrix} \frac{\hat{z}}{1} & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & x_{6} & b \\ \hline 1 & 1 & 0 & -2 & 1 & -2 & -0 & -0 & -0 & 2 \\ 0 & 1 & -\frac{1}{2} & -1 & 0 & 0 & 0 & 1 \\ 0 & 0 & -\frac{1}{2} & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & \frac{3}{2} & 1 & 0 & 1 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} R_{1} = R_{1} - (-2 - M)R_{2}$$

พบว่า  $x_1, x_4, x_5, x_6$  เป็น basic และ $x_2, x_3$  เป็น non basic ดังนั้น  $x_2=0$ ,  $x_3=0$  จะได้  $x_1=1$ , row 2

$$x_4 = 1, \text{ row } 3$$

$$x_5 = 3$$
, row 4

$$x_6 = 0$$
, row 5

$$z = 2$$
, row1

ซึ่ง  $x_1 = 1, x_2 = 0$  คือ จุด A ในรูปที่ 444

### 20.4 Simplex Method: Difficulties in Starting

ตัดแถวที่ 5 และคอลัมน์ 7 ทิ้งคงเหลือ Simplex Table ดังนี้

$$T_{2} = \begin{bmatrix} 2 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b \\ \hline 1 & 0 & -2 & -2 & 0 & 0 & 2 \\ 0 & 1 & -\frac{1}{2} & -1 & 0 & 0 & 1 \\ 0 & 0 & -\frac{1}{2} & 1 & 1 & 0 & 1 \\ \hline 0 & 0 & \frac{3}{2} & 1 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{3/3/2=2}$$

ใน column 3 เลือก 3/2 เป็น pivot นั่นคือแถว 4 เป็น row pivot ทำ Row Operation จะได้ตารางในหน้าถัดไป

#### 20.4 Simplex Method: Difficulties in Starting

$$T_{3} = \begin{bmatrix} 1 & 0 & 0 & -\frac{2}{3} & 0 & \frac{4}{3} & 6 \\ 0 & 1 & 0 & -\frac{2}{3} & 0 & \frac{1}{3} & 2 \\ 0 & 1 & 0 & -\frac{3}{3} & 1 & \frac{1}{3} & 2 \\ 0 & 0 & \frac{3}{2} & 1 & 0 & 1 & 3 \end{bmatrix} R_{1} = R_{1} + \frac{4}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{2} = R_{2} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{3} = R_{3} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{3} = R_{3} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{4} = R_{1} + \frac{4}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{5} = R_{1} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{7} = R_{1} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{1} = R_{1} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{2} = R_{3} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{3} = R_{3} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{4} = R_{1} + \frac{4}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{5} = R_{1} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{7} = R_{1} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{8} = R_{1} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

$$R_{1} = R_{1} + \frac{1}{3}R_{4} \longrightarrow \frac{\frac{2}{3}}{3}$$

พบว่า  $x_1, x_2, x_4$  เป็น basic และ $x_3, x_5$  เป็น non basic ดังนั้น  $x_3 = 0, x_5 = 0$  จะได้  $x_1 = 2$  ,row 2

$$x_1 = 2, \text{row } 2$$
  
 $x_4 = 2, \text{row } 3$ 

$$x_2 = (3x2)/3 = 2$$
, row 4

$$z = 6$$
, row1

ซึ่ง  $x_1 = 2, x_2 = 2$  คือ จุด B ในรูปที่ 444,  $x_3, x_4, x_5 = 0$ 

ใน column 4 เลือก 4/3 เป็น pivot และ row 3 เป็น row pivot ทำ row operation ได้ตารางหน้าถัดไป

49

50

### 20.4 Simplex Method: Difficulties in Starting

$$T_{4} = \begin{bmatrix} z & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} & b \\ \hline 1 & 0 & 0 & 0 & 0 & \frac{1}{2} & \frac{3}{2} & 7 \\ 0 & 1 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & \frac{3}{2} & 3 \\ 0 & 0 & 0 & \frac{4}{3} & 1 & \frac{1}{3} & 2 \\ 0 & 0 & \frac{3}{2} & 0 & -\frac{3}{4} & \frac{3}{4} & \frac{3}{2} \end{bmatrix}$$

แถวแรกไม่มีค่าลบแล้วหยุคการหา

จะให้ผลคือ 
$$x_1 = 3$$
,  $x_2 = 1$  (คือจุด C ในรูป 444),

$$x_3 = 3/2, x_4 = 0, x_5 = 0$$

$$f_{max} = f(3,1) = 7$$

# References

- Advanced Engineering Mathematics, 9th edition by Erwin Kreyszig, John Wiley & Sons, Inc., 1999
- Special Thanks to ผศ.ดร.อรัญญา วลัยรัชต์
  - for ppt of Simplex Method
- MIT Math Lecture: Engineering Methods I 31 Method s in Linear Programming
  - Prof. Gilbert Strang
  - http://video.google.com/videoplay?docid=75422656520210339 5#