AD-A042 427

Piller Andrew

MISCELLANEOUS PAPER N-77-7

EXPLOSIVE DITCHING WITH TNT

Ьу

MAJ Arno M. Müller, Hendrik D. Carleton

Weapons Effects Laboratory
U. S. Army Engineer Waterways Experiment Station
P. O. Box 631, Vicksburg, Miss. 39180

July 1977 Final Report

Approved For Public Release; Distribution Unlimited

Prepared for Office, Chief of Engineers, U. S. Army Washington, D. C. 20314

Destroy this report when no longer needed. Do not return it to the originator.

DEPARTMENT OF THE ARMY WATERWAYS EXPERIMENT STATION, CORPS OF ENGINEERS

P. O. BOX 631 VICKSBURG, MISSISSIPPI 39180

WESAR

14 July 1977

Errata Sheet

No. 1

EXPLOSIVE DITCHING WITH TNT

Miscellaneous Paper N-77-7

July 1977

1. The equation in line 10, page 41, should read as follows:

$$n = \left(\frac{L}{S}\right) + 1 = \frac{2000}{5} + 1 = 401$$

SECURITY CLASSIFICATION OF THIS PAGE (When Dets Entered)		
REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Miscellaneous Paper N-77-7		
4. TITLE (and Subtitle)		S. TYPE OF REPORT & PERIOD COVERED
EXPLOSIVE DITCHING WITH TNT		Final report
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(s)
MAJ Arno M. Müller Hendrik D. Carleton		
9. PERFORMING ORGANIZATION NAME AND ADDRESS		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
U. S. Army Engineer Waterways Experiment Station Weapons Effects Laboratory P. O. Box 631, Vicksburg, Miss. 39180		Project 4A762719AT40, Task Al, Work Unit 012
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Office, Chief of Engineers, U.S. Ar	rmy	July 1977
Washington, D. C. 20314		13. NUMBER OF PAGES 61
14. MONITORING AGENCY NAME & ADDRESS(If different	from Controlling Office)	IS. SECURITY CLASS. (of this report)
		Unclassified
		15. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distribution unlimited.		

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Crateré Dala

High explosives craters

Explosive excavation

TN

Explosives

20. ABSTRACT (Cantibus on reverse side if necessary and identify by block number)

This report enables the comparison of data being developed on new commercial explosives with the military standard TNT explosive. The report presents the current definitions for single and row craters and the soils and rocks classification system for explosive excavation purposes.

The theoretical basis for predicting and designing excavations by means of explosives is developed. Field data for nine different media were reexamined and submitted to a statistical analysis following preestablished criteria. (Continued)

Unclassified SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)	
20. ABSTRACT (Continued).	
The results of this analysis, along with the parameters for optidepth for each medium, are presented in graphic form. Smoothness established for ditching designs, and some sample calculations craters are presented. Appendixes A and B present crater dimenshigh-explosive charge detonations in rock and in soil, respectively gives ditch dimensions from high-explosive row-charge detonations soil.	ss conditions are of single and row sions from single vely. Appendix C

PREFACE

This study was conducted during FY 1976 and the T-Quarter under the sponsorship of the Office, Chief of Engineers, U. S. Army, as a part of the Military Engineering Applications of Commercial Explosives (MEACE) program under Project 4A762719AT40, "Mobility, Soils, and Weapons Effects Technology," Task Al, Work Unit 012. Because of the importance of the explosive TNT as a standard for cratering studies, a meticulous reexamination was made of all available TNT data. These data were converted to the metric system of measurement to allow their direct comparison with data being developed on newer explosives during field tests of the MEACE program. Finally, a uniform application of appropriate computer techniques was made to all of the TNT data. This report has been formatted to be of maximum usefulness to field engineers.

MAJ Arno M. Müller, a Brazilian exchange officer assigned to the Explosive Excavation Division (EED), Weapons Effects Laboratory (WEL), U. S. Army Engineer Waterways Experiment Station (WES), conducted the study and wrote this report under the supervision and with the assistance of Mr. H. D. Carleton, EED, Project Manager for the MEACE program.

Chiefs of EED during the study were MAJ L. C. Webster and Mr. J. W. Brown; Chief of WEL was Mr. W. J. Flathau.

Directors of WES during the conduct of this study and the preparation and publication of this report were COL G. H. Hilt, CE, and COL J. L. Cannon, CE. Technical Director was Mr. F. R. Brown.

CONTENTS

<u>P</u>	age
PREFACE	1
CONVERSION FACTORS, METRIC (SI) TO U. S. CUSTOMARY AND U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT	3
PART I: INTRODUCTION	4
Purpose and Scope	4 4 5
Formation	6 8
PART II: SINGLE-CRATER DESIGN	9
Theoretical Basis	9 11 13 32
PART III: DITCHING DESIGNS	36
Ditch Smoothness	36 39
PART IV: CONCLUSIONS	42
REFERENCES	43
TABLES 1-3	
APPENDIX A: CRATER DIMENSIONS FROM SINGLE HIGH-EXPLOSIVE CHARGE DETONATIONS IN ROCK	Al
APPENDIX B: CRATER DIMENSIONS FROM SINGLE HIGH-EXPLOSIVE CHARGE DETONATIONS IN SOIL	Bl
APPENDIX C: DITCH DIMENSIONS FROM HIGH-EXPLOSIVE ROW-CHARGE DETONATIONS IN ROCK AND SOIL	Cl
APPENDIX D: NOTATION	Dl

CONVERSION FACTORS, METRIC (SI) TO U. S. CUSTOMARY AND U. S. CUSTOMARY TO METRIC (SI) UNITS OF MEASUREMENT

Units of measurement used in this report can be converted as follows:

Multiply	Ву	To Obtain
Metric	(SI) to U.S.	Customary
millimetres	0.03937	inches
metres	3.28084	feet
cubic metres	35.31467	cubic feet
kilograms	2.20462	pounds
metres per kilogram ^{1/3.0}	31.8	feet per ton 1/3.0
metres per kilogram 1/3.2	27.6	feet per ton 1/3.2
metres per kilogram ^{1/3.4}	24.3	feet per ton 1/3.4
kilopascals	0.1450377	pounds (force) per square inch
U. S. Customary to Metric (SI)		
inches	2.54	centimetres
pounds (mass)	0.4535924	kilograms

EXPLOSIVE DITCHING WITH TNT

PART I: INTRODUCTION

Purpose and Scope

1. This report is a guide to the calculation and positioning of TNT charges for cratering and ditching purposes. It is intended to summarize in one publication all information necessary for the prediction and design of TNT craters in a variety of earth materials. Since the included design methods are empirically based, the number of earth media to be included has necessarily been based upon the availability of experimental data.

Background

- 2. Since the first systematic investigations of the cratering effects of large TNT charges began during World War II, a variety of cratering tests have been conducted. The earliest experiments were concerned primarily with the effects of bomb detonations near structures. These early tests led in the late 1940's to the U. S. Army Corps of Engineers Underground Explosion Test Program involving spherically stacked TNT charges in a variety of earth media. Emphasis in these later tests was placed upon the development of design criteria for explosion-resistant underground structures. Also in the late 1940's, a series of TNT cratering tests, the Panama Canal Company's Isthmian Canal Study, was conducted in the Panama Canal Zone to determine the Canal's vulnerability to attack by nuclear weapons.
- 3. TNT cratering tests continued to be an important part of weapons effects studies into the 1950's and 1960's. In addition, TNT cratering and ditching tests were the predominant experiments during the early stages of the U. S. Atomic Energy Commission's Plowshare Program in the 1960's. Though a shift to other chemical explosives for ditching

experiments began during the 1960's and has continued since, TNT is still the only explosive that has a data base broad enough to establish it as a standard for the evaluation of all other cratering explosives.

Cratering Definitions

- 4. The following definitions, most of which are illustrated in Figure 1, are commonly used in explosive excavation literature. $^{1-3}$
 - a. <u>True crater</u>. The boundary of the crater representing the limit of dissociation of the medium by the explosion.
 - b. Apparent crater. Portion of the visible crater below the original ground surface elevation.
 - c. Apparent lip. Portion of the visible crater above the original ground surface elevation. It is composed of two parts: upthrust (true lip) and ejecta.
 - <u>d.</u> <u>Upthrust.</u> Material that has been permanently displaced above the original ground surface elevation.
 - e. Ejecta. Material permanently ejected from the true crater void by the explosion.

Figure 1. Cross section of typical crater in rock, showing nomenclature

- <u>f.</u> <u>Fallback.</u> Material dissociated by the explosion that has fallen back within the true crater void.
- g. Rubble. Material comprising the fallback and ejecta.
- <u>h.</u> Rupture zone. The zone of blast-induced fractures and displacement from true crater boundary outward to the relatively undisturbed in situ material.
- <u>i.</u> Charge burial depth. The emplacement depth at which the charge is fired.
- j. Optimum charge burial depth. The emplacement depth that produces the largest possible crater.
- <u>k.</u> Row shot. A multiple explosion with the charges emplaced in a linear array (row of charges).
- 1. Row crater. A ditch or canal formed by the detonation of charges emplaced in a row shot geometry.

Influence of Charge Burial Depth on Crater Formation

5. From the cratering standpoint, the charge burial depth* B the distance from the center of mass of the charge to the original ground surface. For a given weight of charge, variation in the charge burial depth will result in craters of differing shapes and dimensions. A surface burst (B = 0) forms a shallow depression by crushing, compacting, and scouring the material below the explosion (Figure 2a). At a shallow B the material is thrown out with high velocity, increasing the ejecta volume, and very little material falls back (Figure 2b). When the maximum amount of material is thrown out of the crater and maximum crater dimensions are reached, the corresponding burial depth will be the optimum (Figure 2c). Below this optimum B, a larger quantity of material will be disturbed, but very little of it will be ejected; instead, a crater mound will result from fallback (Figure 2d). If B is increased to the depth at which no fragmented material is thrown out, the contained explosion will create a cavity by compaction and collapse of the disturbed material (Figure 2e).

^{*} For convenience, symbols and unusual abbreviations are listed and defined in the Notation (Appendix D).

Figure 2. Crater profiles as a function of burial depth for the same weight of charge

Classification of Cratered Media

- 6. The available media classification system for explosive excavation in $\operatorname{rock}^{4,5}$ and the Unified Soil Classification System were used as much as possible to define the media for which data were analyzed in this report (Tables 1 and 2).
- 7. The following rock and soil types will be covered in this report. An adjective describing degree of saturation has been added to each soil's designation.

Туре	Classification
]	Rock
Basalt Granite Sandstone Weak sandstones and shales	High-strength rock High-strength rock Intermediate-strength rock Weak rock
<u> 1</u>	<u>Soil</u>
Dry gravelly sand Dry sand Dry sandy clay Wet clay Saturated silty clay	Coarse-grained soil (GW) Coarse-grained soil (*) Coarse-grained soil (SC) Fine-grained soil (OH and MH) Fine-grained soil (*)

^{*} Gradation, plasticity index, and liquid limits unknown.

PART II: SINGLE-CRATER DESIGN

- 8. Criteria for the design of single craters by the use of empirical scaling relationships are developed in the following paragraphs. While single-crater design may be an object in itself, it is more likely in engineering applications that ditching designs will be desired. This part therefore derives its primary importance from the fact that single-crater design is basic to explosive ditching design.
- 9. Computer programs are available that use calculations of mound and cavity growth with a free-fall throw-out model to give cratering phenomena predictions. However, the empirical scaling method offers accuracy comparable to that of computerized methods, 3,7 and is much more convenient and suitable for the use of engineers in the field. Discussions in this report will be limited to those necessary to convey to the prospective user an understanding of the empirical scaling method of crater design.

Theoretical Basis

10. The basic premise of the empirical scaling method is that the ratio between the apparent linear dimensions of two craters caused by the same type explosive in the same medium will be equal to the ratio between the charge weights raised to a power:

$$\frac{x_1}{x_0} = \left(\frac{w_1}{w_0}\right)^{1/a} \tag{1}$$

where

 $x_1, x_0 =$ linear dimensions of the compared craters

 $w_1, w_0 = corresponding charge weights$

1/a = power to which charge weights are raised

For cratering with conventional explosives, the value of a ranges between 3.0 and 3.4, depending upon the characteristics of the cratered

medium. The value of a may range up to 4.0 when the cratering effects of nuclear devices are considered. 3,8

11. By extension of the preceding premise, the ratio between the apparent crater volumes of two craters caused by the same type explosive in the same medium will be equal to the ratio between the charge weights raised to a power equal to three times the power of the corresponding relation for the linear dimensions:

$$\frac{v_1}{v_0} = \left(\frac{w_1}{w_0}\right)^{3/a} \tag{2}$$

where V_1 and V_0 are the apparent crater volumes.

12. Equations 1 and 2 can be rewritten to introduce coefficients as follows:

$$x_1 = c_x w_1^{1/a}$$
, where $c_x = \frac{x_0}{w_0^{1/a}}$ (3)

$$V_1 = c_v W_1^{3/a}$$
, where $c_v = \frac{V_0}{W_0^{3/a}}$ (4)

where

 $c_{_{_{\mathbf{X}}}}$ = coefficient for linear crater dimension

 $c_{_{
m V}}$ = coefficient for apparent volume of single crater The coefficients $c_{_{
m X}}$ and $c_{_{
m V}}$ and the exponent 1/a can be calculated from experimental data. The coefficients will be different for different media and moisture contents, and for different explosives. Once these coefficients and the exponent become available for any given explosive and medium, however, cratering dimensions or volumes may be predicted for any desired charge weight using the simple relationships:

$$x = c_x w^{1/a} \tag{5}$$

and

$$V = c_{v}^{3/a} \tag{6}$$

where 1/a, the exponent, and the c coefficients are known quantities. Transposing Equations 5 and 6 will also make possible the determination of the charge weights required to produce craters of required sizes:

$$w = \left(\frac{x}{c_x}\right)^a \tag{5a}$$

and

$$w = \left(\frac{v}{c_v}\right)^{a/3} \tag{6a}$$

Scaled Dimension Plots

13. The linear dimensions of primary interest for cratering purposes are apparent crater radius R, apparent crater depth D, and charge burial depth B, shown in Figure 3. Coefficients can be computed

Figure 3. Cross section of a single crater

for B , R , D , and V for each experimental crater that results

from a specific combination of explosive and medium after the manner used for Equations 3 and 4:

$$c_b = \frac{B}{w^{1/a}} \tag{7}$$

$$c_r = \frac{R}{w^{1/a}} \tag{8}$$

$$c_{d} = \frac{D}{1/a} \tag{9}$$

$$c_{v} = \frac{v}{\sqrt{3/a}} \tag{10}$$

These coefficients represent the scaled dimensions of the crater actual dimensions. These computations will allow a direct comparison of the cratering effects from charges of various weights, so that the effects of charge burial depth variation can be isolated and studied. Scaled dimensions for all craters within the group to be studied can be plotted on a Cartesian coordinate system to quantify the manner in which crater dimensions vary with changes in charge burial depths. As an example, the curve in Figure 4 (which represents a low-order polynomial function fitted to experimental data points by a least-squares fit) shows the dependence of scaled apparent radius on scaled charge burial depth for a hypothetical explosive/medium combination that scales at a = 3.4. The largest possible crater radii for this explosive in this medium will occur at burial depths corresponding to the scaled charge depth value c, indicated by the arrow at the peak of the curve. The prediction for the radius to be achieved by a given charge weight buried at this scaled depth will be based upon the value of $c_{\mathbf{r}}$ at this point. Both the required burial depth and the predicted crater radius could be calculated from Equation 5 for any given charge weight by appropriate substitution of the values of a , $c_{\rm b}$, and $c_{\rm r}$ given in Figure 4.

Figure 4. Scaled radius curve for a defined explosive and medium for which a = 3.4

Cratering Curves

- 14. Appendixes A and B list all high-explosive single-crater data available from the references listed in this report. A statistical regression analysis has been performed on the TNT data from these appendixes to produce data plots for nine media (Figures 5-13). There are two plots for each medium: (a) a scaled dimension plot (similar to that discussed in paragraph 13) on the left-hand page, and (b) a design chart on the right-hand page of the two-page spread for each medium. Each design chart graphically relates charge weights on the abscissa to crater dimensions and volumes on the ordinate; i.e., these charts solve Equations 5 and 6 graphically for the optimal cratering case. In the analysis of TNT data and the preparation of Figures 5-13, the following criteria were used:
 - a. The metric (SI) system of units was used, i.e., linear dimensions are expressed in metres, volumes in cubic metres, and charge weights in kilograms.
 - <u>b</u>. Data from different sites were grouped together if they represented similar media following the classification presented in Part I.

OPTIMUM BURIAL DEPTH B = 0.52w1/3.0APPARENT RADIUS R = 0.56w1/3.0APPARENT DEPTH D = 0.25w1/3.0APPARENT VOLUME D = 0.13w

Figure 5. Scaled dimension curves and design chart for basalt, a high-strength rock (sheet 1 of 2)

b. Design chart
Figure 5 (sheet 2 of 2)

OPTIMUM BURIAL DEPTH B = $0.65w^{1}/3.0$ APPARENT RADIUS R = $0.97w^{1}/3.0$ APPARENT DEPTH D = $0.42w^{1}/3.0$ APPARENT VOLUME V = 0.40w

Figure 6. Scaled dimension curves and design chart for granite, a high-strength rock (sheet 1 of 2)

b. Design chart
Figure 6 (sheet 2 of 2)

OPTIMUM BURIAL DEPTH B = 0.32w1/3.2

APPARENT RADIUS R = 0.91w1/3.2

APPARENT DEPTH D = 0.36w1/3.2

APPARENT VOLUME V = 0.34w3/3.2

Figure 7. Scaled dimension curves and design chart for sandstone, an intermediate-strength rock (sheet 1 of 2)

b. Design chartFigure 7 (sheet 2 of 2)

OPTIMUM BURIAL DEPTH	B = 0.66 w 1/3.4
APPARENT RADIUS	$R = 1.22 w \frac{1}{3.4}$
APPARENT DEPTH	$D = 0.48 w^{1/3.4}$
APPARENT VOLUME	V = 0.89 w 3/3.4

Figure 8. Scaled dimension curves and design chart for weak sandstones and shales, weak rocks (sheet 1 of 2)

b. Design chart
Figure 8 (sheet 2 of 2)

OPTIMUM BURIAL DEPTH	$B = 0.66w^{1/3.4}$
APPARENT RADIUS	$R = 1.02w^{1/3.4}$
APPARENT DEPTH	$D = 0.49w^{1/3.4}$
APPARENT VOLUME	V = 0.69 w 3/3.4

Figure 9. Scaled dimension curves and design chart for dry gravelly sand, a coarse-grained soil (GW) (sheet 1 of 2)

b. Design chart
Figure 9 (sheet 2 of 2)

$B = 0.60 w^{1/3.4}$
$R = 1.25w^{1/3.4}$
D = 0.53w1/3.4
V = 0.89 w 3/3.4

Figure 10. Scaled dimension curves and design chart for dry sand, a coarse-grained soil (sheet 1 of 2)

b. Design chartFigure 10 (sheet 2 of 2)

 $\begin{array}{lll} \text{OPTIMUM BURIAL DEPTH} & \text{B} = 0.45 \text{w} 1/3.0 \\ \text{APPARENT RADIUS} & \text{R} = 0.73 \text{w} 1/3.0 \\ \text{APPARENT DEPTH} & \text{D} = 0.39 \text{w} 1/3.0 \\ \text{APPARENT VOLUME} & \text{V} = 0.27 \text{w} \end{array}$

Figure 11. Scaled dimension curves and design chart for dry sandy clay, a coarse-grained soil (SC) (sheet 1 of 2)

b. Design chart
Figure 11 (sheet 2 of 2)

OPTIMUM BURIAL DEPTH APPARENT RADIUS APPARENT DEPTH APPARENT VOLUME $B = 0.57w^{1/3.0}$ $R = 1.03w^{1/3.0}$ $D = 0.51w^{1/3.0}$ V = 0.72w

Figure 12. Scaled dimension curves and design chart for wet clay, a fine-grained soil (OH and MH) (sheet 1 of 2)

Figure 12 (sheet 2 of 2)

OPTIMUM BURIAL DEPTH B = 0.68w1/3.0 APPARENT RADIUS R = 1.45w1/3.0 APPARENT DEPTH D = 0.71w1/3.0 APPARENT VOLUME V = 1.77w

Figure 13. Scaled dimension curves and design for saturated silty clay, a fine-grained soil (sheet 1 of 2)

Figure 13 (sheet 2 of 2)

- <u>c</u>. The third-order polynomial fit was chosen to represent the scaled dimension curves.
- d. The least-squares method was used to fit the curves.
- e. The value of a was assumed to be 3.0, 3.1, 3.2...3.6 for each medium, and that value that presented the smallest scatter between data point plots for all charge weights was chosen as the representative value for the considered medium.
- <u>f.</u> In the preparation of the design charts, the optimum burial depth for each medium was considered to be the average of the optimum burial depths for crater radius and depth as determined from the peaks of the curves on the corresponding scaled dimension plot.
- g. Scaled radius and scaled depth curves are presented in the same chart.
- <u>h</u>. Only the parameter obtained from the scaled volume curve is presented, not the curve.
- 15. Table 3 summarizes the results obtained from the scaled dimension plots, and gives additional information regarding the data base used for the analysis of each medium. Necessary charge weights and burial depths and predicted crater dimensions may be calculated for the optimal cratering case in the various media by substitution of the values of appropriate exponents and coefficients from Table 3 into Equations 5 and 6.

Single-Crater Design Examples

Example 1

- 16. <u>Problem.</u> To predict the apparent crater radius and depth to be expected from the detonation of a single charge of 500 kg* of TNT at 6-m burial depth in dry sand.
 - 17. Solution. The following parameters are given:

^{*} A table of factors for converting metric (SI) units of measurement to U. S. customary units and U. S. customary units to metric (SI) units is given on page 3.

$$w = 500 \text{ kg}$$
 $B = 6.0 \text{ m}$
 $a = 3.4 \text{ (Table 3)}$

Using Equation 7, the scaled burial depth may be calculated:

$$c_b = \frac{B}{w^{1/a}} = \frac{6.0}{500^{1/3.4}} = 0.96$$

Entering the scaled dimension curve for dry sand (Figure 10a) with $c_b = 0.96$ gives the corresponding values of c_r and c_d

$$c_r = 1.19 \text{ m/kg}^{1/3.4}$$
 and $c_d = 0.40 \text{ m/kg}^{1/3.4}$

By Equation 5:

$$R = c_{r}w^{1/a} = 1.19 \times 500^{1/3.4} = 7.4 m$$

$$D = c_d w^{1/a} = 0.40 \times 500^{1/3.4} = 2.5 m$$

The resulting single crater will have a 7.4-m apparent radius and a 2.5-m apparent depth.

Example 2

- 18. Problem. To determine the single-charge weight of TNT and charge burial depth necessary to excavate a crater with an apparent radius of at least 5 m and an apparent depth of at least 2.5 m in sandstone.
 - 19. Solution. The following parameters are given:

This problem can be solved using either mathematical procedures or the charts in Figures 5-13.

a. Mathematical.

From Table 3:

$$a = 3.2$$
 $c_b = 0.32$
 $c_r = 0.91$
 $c_d = 0.36$
 $c_v = 0.34$

From Equation 5a:

$$w = \left(\frac{R}{c_r}\right)^a = \left(\frac{5.0}{0.91}\right)^{3.2} = 233.22 \text{ kg}$$

$$w = \left(\frac{D}{c_d}\right)^a = \left(\frac{2.5}{0.36}\right)^{3.2} = 493.45 \text{ kg}$$

These calculations show that a charge of at least 493.45 kg of TNT will be necessary to achieve the required apparent depth of 2.5 m and that the required apparent radius of 5.0 m could be achieved with a 233.22-kg charge. To determine the apparent radius that will be obtained using 493.45 kg of TNT, use Equation 5:

$$R = c_r w^{1/a} = (0.91)(493.45)^{1/3.2} = 6.32 m$$

Also from Equation 5, the required charge burial depth is

$$B = c_h w^{1/a} = (0.32)(493.45)^{1/3.2} = 2.22 m$$

Using Equation 6, the apparent crater volume is

$$V = c_v^{3/a} = (0.34)(493.45)^{3/3.2} = 113.87 \text{ m}^3$$

<u>b.</u> Graphic. Enter Figure 7b at R = 5.0 and read 233 kg on curve R. Enter Figure 7b at D = 2.5 and read ±495 kg on curve D. The value ±495 from curve D is larger than the value 233 from curve R; therefore, a

charge weight of 495 kg must be used. Read values of R , B , and V from the appropriate curves for a charge weight of 495 kg:

$$R = 6.3 \text{ m}$$

$$B = 2.2 m$$

$$v = 113 \text{ m}^3$$

PART III: DITCHING DESIGNS

20. This part develops criteria for the design of ditches based upon the single-crater empirical scaling relationships discussed in Part II. The experimental data base for high-explosive ditching (Appendix C) is not as extensive as that for single craters, and is largely limited to row shots in soils. Thus, conclusions regarding row-crater effects are based largely upon a small number of simultaneously detonated high-explosive tests in soils.

Ditch Smoothness

- 21. Criteria for ditch smoothness have been experimentally developed from row cratering in dry sandy clay. ²⁵ Figure 14 shows a typical row crater with associated nomenclature and notation. It is apparent from this figure that ditch width and depth may vary, with the largest dimensions occurring close to the individual charge locations and the smallest dimensions occurring at "saddles" midway between the individual charge locations. If the spacing between charges S is sufficiently small, saddle dimensions will be approximately as large as near-charge dimensions, and a smooth ditch will be produced. However, it is also true that S must not be reduced any more than is necessary to obtain a smooth ditch, since production times and costs would be unnecessarily increased by closer-than-necessary spacings.
- 22. Figure 15 is a reprint of Figure 11 with experimentally developed row crater smoothness information superimposed. The curve labeled "Spacing Between Row Charges" represents $c_{\rm g}$, the <u>scaled</u> upper limit for S where:

$$\frac{\text{Saddle width}}{\text{Width at charge}} \ge 0.95$$

L = S(n-1)(11)

NOTE: $R_f = AVERAGE$ APPARENT HALF-WIDTH OF ROW CRATER AT CHARGE LOCATIONS

Dr = MAXIMUM APPARENT DEPTH OF ROW CRATER

L = DITCH LENGTH FROM FIRST TO LAST CHARGE LOCATION n = NUMBER OF CHARGES IN ROW

Figure 14. Plan and profile views of a five-charge row crater (n = 5)

Figure 15. Scaled dimension curves for single and row craters for dry sandy clay, a coarse-grained soil (SC)

In other words, spacings S that correspond to values under this curve will yield smooth ditches, i.e., ditches within which widths and depths at the saddles are at least 95 percent as large as those at the charge locations. The shaded area just above this curve is a zone within which the ditches produced will maintain saddle widths of at least 95 percent of widths at charges, but which may have saddle depths as small as 60 percent of depths at charges.

23. From Table 3, scaled optimum burial depth c_b for dry sandy clay is 0.45. The ratio of the values of the scaled spacing between row charges c_s and the scaled apparent radius c_r at abscissa value $c_b = 0.45$ will give the spacing between row charges S in terms of the apparent radius R expected from a single charge emplaced at optimum burial depth in dry sandy clay:

$$\frac{S}{R} = \frac{c_s}{c_r} = \frac{0.90}{0.72} = 1.25$$

or

$$S = 1.25R$$
 (12)

In the absence of comprehensive experimental data from other media, it is assumed that a smooth row crater from charges buried at optimum burial depth in any soil will require a spacing between row charges S of 1.25 times the apparent crater radius R that would be expected from a single charge emplaced at optimum burial depth for that medium. In actual practice with a variety of explosives in a variety of media, this relationship works well.

Ditching Design Example

24. Problem. A drainage ditch is to be excavated in wet clay on flat terrain. A minimum width of 8.0 m and a minimum depth of 1.5 m are required. Ditch length is to be 2000 m. Determine the amount of TNT required to produce the ditch with a single row of charges, and give the

charge size, burial depth, and spacing between charges to produce the ditch.

Given:

Required ditch width $2R_r \ge 8.0 \text{ m}$ Required ditch depth $D_r \ge 1.5 \text{ m}$ Required ditch length L = 2000 m

From Table 3:

$$a = 3.0$$
 $c_b = 0.57$
 $c_r = 1.03$
 $c_d = 0.51$

The corresponding single crater will have:

$$R = R_r = 4.0 \text{ m}$$

$$D = D_r = 1.5 m$$

Using Equation 5a the single charge may be calculated:

$$w = \left(\frac{R}{c_r}\right)^a = \left(\frac{4.0}{1.03}\right)^{3.0} = 58.57 \text{ kg}$$

and

$$w = \left(\frac{D}{c_d}\right)^{a} = \left(\frac{1.5}{0.51}\right)^{3.0} = 25.44 \text{ kg}$$

A charge of at least $58.57~\rm kg$ of TNT will be necessary for each individual charge in the row shot to achieve the required ditch width $2R_{\rm r}=8.0~\rm m$ (the required ditch depth $D_{\rm r}$ could be achieved with $25.44-\rm kg$ charges). To determine the apparent depth that will actually be achieved using $58.57~\rm kg$ of TNT, use Equation 5:

$$D = c_d w^{1/a} = 0.51 \times 58.57^{1/3.0} = 1.98 m$$

Also from Equation 5, required charge burial depth may be calculated:

$$B = c_h w^{1/a} = 0.57 \times 58.57^{1/3.0} = 2.21 m$$

Spacing between charges (from paragraph 23):

$$S = 1.25R = 1.25 \times 4.00 = 5.00 m$$

The length of this ditch will have a uniform cross section and is equal to the distance between the first and last charges. Using Equation 11 (Figure 14), the number of charges n may be calculated.

$$L = S(n - 1)$$

$$n = \left(\frac{L}{S}\right) + 1 \frac{2000}{5} + 1 = 401$$

Four hundred and one 58.57-kg charges will be required to excavate this ditch, or a total of 23,487 kg of TNT. The individual charges should be emplaced 2.21 m deep and spaced 5.00 m apart in the row.

PART IV: CONCLUSIONS

- 25. The large majority of data in the TNT cratering and ditching data base are from tests in dry soils although rock test sites are well represented in the data base. The weakest area is that for wet and saturated soils. TNT cratering data for saturated sand, though available in the data base, were inadequate for the analyses of this study.
- 26. The data base for cratering with single buried TNT charges is the most comprehensive available for any single explosive. It provides the best available basis for the comparison of cratering effects in differing media, and the standard for use in determining the cratering effectiveness of other explosives.

REFERENCES

- 1. Rooke, A. D., Jr., Carnes, B. L., and Davis, L. K., "Cratering by Explosions: A Compendium and an Analysis," Technical Report N-74-1, Jan 1974, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 2. Hughes, B. C., Harrison, W. L., and Paul, R., "Project Tanktrap: A Field Evaluation of Nuclear Terrain Barriers," Technical Report No. 17, Jun 1969, Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, Calif., and Land Locomotion Laboratory, Warren, Mich.
- 3. Johnson, S. M., "Explosive Excavation Technology," Technical Report No. 21, Jun 1971, Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, Calif.
- 4. Briggs, J., "Military Engineering Applications of Commercial Explosives: An Introduction," Technical Report E-73-2, May 1973, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 5. Gates, R. H. and Gardner, C. E., "Media Classification for Explosive Excavation," Technical Memorandum EERO/TM 71-3, Sep 1971, U. S. Army Engineer Explosive Excavation Research Office, Livermore, Calif.
- 6. Office, Chief of Engineers, Department of Defense, "Unified Soil Classification System for Roads, Airfields, Embankments and Foundations," Military Standard MIL-STD-619B, Jun 1968, Washington, D. C.
- 7. Dillon, L. A., "The Influence of Soil and Rock Properties on the Dimensions of Explosion-Produced Craters," Technical Report No. AFWL-TR-71-144, Feb 1972, Air Force Weapons Laboratory, Kirtland Air Force Base, N. Mex.
- 8. Chabai, A. J., "Scaling Dimensions of Craters Produced by Buried Explosions," SC-RR-65-70, Feb 1965, Sandia Corporation, Albuquerque, N. Mex.
- 9. Vortman, L. J. et al., "20-ton and 1/2-ton High Explosive Cratering Experiments in Basalt Rock," SC-4675(RR), Aug 1962, Sandia Corporation, Albuquerque, N. Mex.
- 10. Carlson, R. H. and Jones, G. D., "High Explosive Cratering Studies in Hard Rock," D2-90704-1, Nov 1965, The Boeing Company, Seattle, Wash.
- 11. The Panama Canal Zone, Department of Operation and Maintenance, Special Engineering Division, "Crater Tests in Basalt," I. C. S. Memorandum 284-P, Apr 1948, Diablo Heights, C. Z.
- 12. Engineering Research Associates, Inc., "Underground Explosive Test Program; Granite and Limestone," Technical Report No. 4, Vol 1, Apr 1952, Arlington, Va.

- 13. Engineering Research Associates, Inc., "Underground Explosive Test Program; Sandstone," Technical Report No. 5, Vol 1, Feb 1953, Arlington, Va.
- 14. Murphey, B. F., "High-Explosive Crater Studies: Tuff," SC-4574(RR) Apr 1961, Sandia Corporation, Albuquerque, N. Mex.
- 15. The Panama Canal Zone, Department of Operation and Maintenance, Special Engineering Division, "Crater Tests in Sandstone," I. C. S. Memorandum 285-P, May 1948, Diablo Heights, C. Z.
- 16. ______, "Crater Tests in Cucaracha and Culebra Formations," I. C. S. Memorandum 283-P, Apr 1948, Diablo Heights, C. Z.
- 17. Sachs, D. C. and Swift, L. M., "Small Explosion Tests, Project Mole," AFSWP-291, Vol I and II, Dec 1955, Armed Forces Special Weapons Project, Stanford Research Institute, Menlo Park, Calif.
- 18. Campbell, D. C., "Some HE Tests and Observations on Craters and Base Surges," WT-410, Nov 1951, Armed Forces Special Weapons Project, Kirtland Air Force Base, N. Mex.
- 19. Murphey, B. F., "High Explosive Crater Studies: Desert Alluvium," SC-4614(RR), May 1961, Sandia Corporation, Albuquerque, N. Mex.
- 20. Vortman, L. J. et al., "20-Ton HE Cratering Experiment in Desert Alluvium," SC-4596(RR), May 1962, Sandia Corporation, Albuquerque, N. Mex.
- 21. Perret, W. R. et al., "Project Scooter," SC-4602(RR), Oct 1963, Sandia Corporation, Albuquerque, N. Mex.
- 22. Spruill, J. L. and Videon, F. F., "Project Pre-Buggy II, Studies of Apparent Craters," PNE-315 F, Jun 1965, Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, Calif.
- 23. Engineering Research Associates, Inc., "Underground Explosive Test Program; Soil," Vol 1, Aug 1952, Arlington, Va.
- 24. Rooke, A. D., Jr., and Davis, L. K., "Ferris Wheel Series, Flat Top Event, Crater Measurements," POR-3008, Aug 1966, U. S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Miss.
- 25. Vortman, L. J. and Schofield, L. N., "The Effect of Row Charge Spacing and Depth on Crater Dimensions," SC-4730(RR), Nov 1963, Sandia Corporation, Albuquerque, N. Mex.
- 26. Vortman, L. J., "Crater from an Individually Detonated Multiple-Charge Array," SC-RR-67-727, Nov 1967, Sandia Corporation, Albuquerque, N. Mex.
- 27. "Comparison of Craters from Rows of Charges Detonated Simultaneously and One at a Time," SC-RR-67-728, Nov 1967, Sandia Corporation, Albuquerque, N. Mex.
- 28. , "Craters from Two Charges Buried in Vertical Array," SC-RR-64-1239, Nov 1964, Sandia Corporation, Albuquerque, N. Mex.

- 29. Vortman, L. J., "Craters from Short-Row Charges and Their Interaction with Pre-Existing Craters," SC-RR-66-324, Jul 1966, Sandia Corporation, Albuquerque, N. Mex.
- 30. "Ten Years of High Explosive Cratering Research at Sandia Laboratory," Nuclear Applications and Technology, Vol 7, No. 3, Sep 1969, pp 269-304.
- 31. Flanagan, T. J., "Crater Studies," SC-RR-64-1704, Apr 1966, Sandia Corporation, Albuquerque, N. Mex.
- 32. Carlson, R. H. and Newell, R. T., "Ejecta from Single-Charge Cratering Explosions: Volume 1," SC-RR-69-1, Jun 1970, Sandia Corporation, Albuquerque, N. Mex.
- 33. Vortman, L. J., "Airblast and Craters from Rows of Two to Twenty-Five Charges," SC-RR-68-655, Jan 1969, Sandia Corporation, Albuquerque, N. Mex.
- 34. The Panama Canal Zone, Department of Operation and Maintenance, Special Engineering Division, "Crater Tests in Marine Muck," I. C. S. Memorandum 286-P, May 1948, Diablo Heights, C. Z.
- 35. "Crater Tests in Residual Clay," I. C. S. Memorandum 287-P, May 1948, Diablo Heights, C. Z.
- 36. Carlson, R. H., "Project Toboggan: High-Explosive Ditching from Linear Charges," SC-4483(RR), Jul 1961, Sandia Corporation, Albuquerque, N. Mex.
- 37. Myers, B., "Summary Report Project Row-boat," UCRL-12118, Oct 1964, Lawrence Radiation Laboratory, Livermore, Calif.

Table 1

Media Classification for Explosive Excavation (from Reference 4)

Classification	Description
	Rock Type
Weak	Less than 27,580 kPa (4,000 psi) unconfined compressive strength
Intermediate-strength	Between 27,580 and 110,320 kPa (16,000 psi) unconfined compressive strength
High-strength	Greater than 110,320 kPa unconfined compressive strength
Degree of	Saturation or Water Content for Soils
Dry	Less than 50 percent saturated or less than 10 percent water content for soil or less than 3 percent water content for rock
Wet	Between 50 and 90 percent saturated or greater than 10 percent water content for soil or greater than 3 percent water content for rock
Saturated	Greater than 90 percent

Note: See Table 2 for a discussion of soil types.

Table 2
Summary of Unified Soil Classification System
(Adapted from Reference 6)

Major D)ivisions	Symbol	Soil Type
		GW	Well-graded gravels or gravel-sand mix- tures, little or no fines
	Gravel and	GP	Poorly graded gravels or gravel-sand mix- tures, little or no fines
	Gravelly soils	GM	Silty gravels, gravel-sand-silt mixtures
Coarse-	50115	GC	Clayey gravels, gravel-sands-clay mixtures
grained soils		SW	Well-graded sands or gravelly sands, little or no fines
	Sand and Sandy	SP	Poorly graded sands or gravelly sands, little or no fines
	soils	SM	Silty sands, sand-silt mixtures
		SC	Clayey sands, sand-silt mixtures
	Silts	ML	Inorganic silts and very fine sands, rock flour, silty or clayey fine sands or clayey silts with slight plasticity
	and Clays Liquid limit < 50	CL	Inorganic clays of low to medium plastic- ity, gravelly clays, sandy clays, silty clays, lean clays
Fine- grained soils		OL	Organic silts and organic silt-clays of low plasticity
3	Silts	МН	Inorganic silts, micaceous or diatomaceous fine sandy or silty soils, elastic silts
	and Clays	СН	Inorganic clays or high plasticity, fat clays
	Liquid limit > 50	OH	Organic clays of medium to high plasticity, organic silts
Highly o	rganic soils	PT	Peat and other highly organic soils

Note: Coarse-grained soils: Soils having 50 percent or less passing the No. 200 sieve. The coarse-grained soils include gravels, gravelly soils, sands, and sandy soils. The letter G is used to indicate a gravel, and the letter S is used to indicate sand. Gravel is material between 3 in. in diameter and the No. 4 (4.7 mm) sieve size, and sand is material between the No. 4 sieve size and the No. 200 (0.074 mm) sieve size. Particles larger than 3 in. in diameter are termed cobbles. Sand is divided into coarse, medium, and fine, the divisions being at the No. 10 and 40 sieve sizes.

<u>Fine-grained soils:</u> Soils having more than 50 percent passing the No. 200 sieve. The fine-grained soils are not divided according to grain size but according to plasticity and compressibility.

Table 3 Cratering Parameters for Optimum Burial Depth

								Charge		
		Coeff	Coefficient $(m/kg^{1/a})$	(m/kg	1/a)	No. of		Minimum Weight	Maximum Weight	
Medium Name	ದ	٥	ပုံ	್ಕೆ	٥٩	Used	No. Used	kg	kg	Source
Basalt	3.0	0.52	0.56	0.25	0.13	34	ω	3.6	18,143.7	9-11
Granite	3.0	0.65	0.97	0.42	0,40	11	α	145.1	1,161.2	12
Sandstone	3.2	0.32	0.91	0.36	0.34	33	11	3.6	145,149.6	13-15
Weak sandstones and shales	3.4	99.0	1.22	0.48	0.89	20	77	3.6	7.06	16
Dry gravelly sand	3.4	99.0	1.02	0.49	0.69	91	8	98.0	447,881.7	17-22
Dry sand	3.4	09.0	1.25	0.53	0.89	13	m	145.2	18,143.7	23
Dry sandy clay	3.0	0.45	0.72	0.39	0.27	89	6	29.0	145,149.6	17, 23-33
Wet clay	3.0	0.57	1.03	0.51	0.72	7	4	3.6	1,161.2	17, 23
Saturated silty clay	3.0	0.68	1.45	0.71	1.77	17	5	3.6	7.06	34

Note: For the completeness of the data list, those TNT cratering data not used in the statistical analysis are presented in Appendixes B and C and found in References 35-37.

APPENDIX A: CRATER DIMENSIONS FROM SINGLE HIGH-EXPLOSIVE CHARGE DETONATIONS IN ROCK

Table Al
Crater Dimensions from Single High-Explosive Charge Detonations in Rock

							Charge	Burial		pparent		
Series Name	Shot Designation	Sponsor	Date	Medium	Type of Explosive	Weight lb	Weight kg	Depth m	Radius m	Depth m	Volume m ³	Source
Sthmian	1	Panama Canal	Nov 1946-	Basalt	TNT	8	3.63	0.91	0.98	0.33	1.00	11
Canal Study	2	Zone Special	Apr 1947			75 75	34.02	1.22	1.06	0.21	0.98 5.98	
	14 5*	Engineering Division				25 25	11.34	1.83	2.02	0.88	2.80 Mound	
	6	DIVISION				25	11.34	1.37	0.89	0.26	0.47	
	7 8					25 8	11.34 3.63	2.74	0.72	0.70	0.41	
	9					25 25	11.34 11.34	0.91	0.72	0.37	0.32	
	11*					75	34.02	3.81			Mound	
	12 13					200 25	90.72 11.34	3.66	2.90	0.93	15.49	
	14		D 301-7			25	11.34	0.00	0.61	0.22	0.16	
	15		Dec 1947- Mar			200	90.12	0.00	1.42	0.49	1.40	
	16		1948			200	90.72	0.00	1.62	0.37	1.78	
	17					200	90.72	0.37	1.69	0.40	1.22	
Isthmian	18 1	Panama Canal		Sandstone	TNT	200 25	90.72 11.3 ¹ 4	0.37 2.27	0.33	0.34	0.85	15
Canal	2	Zone		Danastone	1111	8	3.63	0.91	1.17	0.53	1.12	-7
Study	3 4	Special Engineering				75	3.63 34.02	1.52 3.66	0.16	0.27	0.02	
	5 * 6	Division				8 7 5	3.63	2.13	2.56	1.37	Mound 12.14	
	7*					25	11.34	2.74			Mound	
	8 * 9					25 25	11.3 ¹ 4 11.3 ¹ 4	3.20 0.46	1.57	0.68	Mound 2.50	
	10					200 8	90.72 3.63	3.54 0.30	1.51	0.37	5.36 0.70	
	11 12					25	11.34	1.83	1.42	0.42	2.22	
	13 14					25 25	11.34 11.34	1.37 0.91	0.91 1.50	0.43	1.71 1.29	
	15		2010		en en	25	11.34	0.00	1.05	0.26	0.54 3.46	16
Isthmian Canal	1 2	Panama Canal Zone	Apr 1948	Cucaracha formation	TNT	25 8	11.3 ¹ 3.63	2.29 1.22	1.91	0.78	3.91	TO
Study	3 4	Special Engineering						0.91	1.79 1.56	0.73	1.08 2.35	
	5	Division				- 1		2.13	1.26	0.37	0.80	
	6 7					l	ł	1.53 0.30	1.52	0.52	2 .1 6 1 . 33	
	8					25	11.34	1.83	1.86	0.87	5.15 4.76	
	10					25	11.34	1.37	2.90	0.99	11.54	
	11 12					200 7 5	90.72 34.02	3.66 3.66	3.94	1.31	35.48 13.61	
	13 14					25 50	11.34 22.68	0.00	1.12	0.55	1. 1 0 6.69	
	15 16					50	22.68 22.68	0.00	2.68	1.16	4.97	
	16			Culebra	TNT	50 25	11.34	0.18	1.83	0.79	3.59	
	2			formation		25 8	11.34 3.63	1.37	2.99	1.39	16.16 1.57	
	3					25	11.34	0.00	1.30	0.46	1.07	
Dugway (Under-	501* 502*	Department of Defense		Limestone	TNT	320	145.10	2.01	3.41 2.53	2.77	33.98 7.99	
ground Ex-	601*	berense		Granite				-0.76 0.00	0.37	0.05	3.60	
plosion Te Program)	st 602 603							0.76	2.96	0.79	7.42	
	604 605							1.52 3.81	4.42	1.52	31.43 52.67	
	606							7.62	1.58	0.61	1.65	
	607 608					Y	†	0.76 0.76	4.27	1.40	26.82	
	609					2,560	1,161.20	1.52	7.68	3.11	192.55 138.19	
	610 611					2,560 320	1,161.20 145.10	0.76	4.08	1.52	26.45	
	612 801*	Department of		Sandstone	TNT	320 320	145.10 145.10	5.18 -0.76	4.02	2.32	39.64	13
	802	Defense		Danus cone	1111	320	145.10	0.00	1.71	0.70	4.59	
	809 812					1,080 2,560	489.90 1,161.20	1.14	5.79 7.10	2.62 3.35	59.96 1 95 .1 0	1
	813 815					10,000 40,000	4,535.90 18,143.70	2.41 3.81	12.01	4.91 8.20	622.97 3,539.61	
	816					40,000	18,143.70	3.81	16.34	8.38	3,001.59	
	817 818					320,000 320	145,149.60 145.10	7.62 0.76	28.90 5.33	1.83	14,498.23 51.54	
	819 803		13 Nov 51					0.76 0.76	4.75 3.54	1.98	40.78 22.94	
	804		10 Oct 51			-		1.52	4.27	0.62	40.78	3
	805* 807		6 Nov 51 15 Apr 52					3.81 0.76	2.83 4.36		33.70 41.34	
	808		3 May 52			1	*	0.76	3.99	1.77	45.87	

^{*} Data not used in the statistical analysis.

							Charge			pparent	Crater	
Series Name	Shot Designation	Sponsor	Date	Medium	Type of Explosive	Weight	Weight kg	Burial Depth m	Radius		Volume m3	Source
Dugway (Continued	810 811 814 806*	Department of Defense	9 Apr 52 30 Apr 52 4 Jun 52	Sandstone	TNT	2,560 2,560 40,000 320	1,161.20 1,161.20 18,143.70 145.10	1.52 1.52 3.81 7.62	9.94 7.65 17.22	2.96 3.20 8.20	244.94 199.63 3,058.22	13
Tuff	1 2 6 7 11	Sandia Lab- oratories	Spring 1959	Tuff	TNT	256	116.10	2.25 2.93 2.11 3.16 2.84	4.57 4.24 3.57 2.10 3.54	1.49 1.28 1.31 0.70 0.55	35.85 31.15 16.74 3.17 10.11	14
Buckboard	1* 2 3 4 5		23 Jun 60 21 Jun 60 30 Jun 60 16 Aug 60 1 Jul 60	Basalt (Nevada Test Site)	TNT	1,000	453.60	7.50 5.76 4.48 2.93 1.46	1.41 4.77 5.09 4.57	0.43 1.58 1.98 2.29	1.27 50.97 74.19 53.52	9
	6 7 8 9 10		27 Jun 60 30 Jun 60 24 Jun 60 16 Aug 60 6 Jul 60			ļ		7.32 5.67 4.48 2.93 1.46	1.86 3.25 5.16 3.70 4.82	1.58 1.16 2.68 1.46 2.13	5.24 18.52 99.11 22.65 75.32	
	11 12 13		14 Sep 60 27 Sep 60 24 Aug 60			40,000 40,000 40,000	18,143.70 18,143.70 18,143.70	7.77 13.01 17.92	13.61 17.37 11.22	7.59 10.58 4.94	1,535.34 3,822.77 656.95	
080	1* 2*	Boeing Company	Aug 1963	Argillite	TNT	64 64	29.03 29.03	0.00	1.16 1.43	0.43	1.58 1.58	10
Flat Top	I#	Defense Atomic Sup- port Agency	22 Jun 64	Limestone	TNT	40,000	18,144.00	0.00	8.23	3.87	283.17	24
MTCE	S1 (C1) S2a S3a S4a LS	Air Force Weapons Labora- tory	21 Jun 65 17 Jun 65 16 Jul 65 10 Jul 65 8 Jul 65	Basalt	TNT	4,000 4,000 4,000 4,000 16,000	1,814.40 1,814.40 1,814.40 1,814.40 7,257.60	0.00 0.00 0.00 0.00	3.69 3.26 3.47 3.17 5.70	1.10 1.22 1.22 1.22 1.71	20.76 19.03 24.15 17.13 103.61	10
	C2 St 1* St 2a* St 3a*		25 Jun 63 11 Jun 65 14 Jul 65 23 Jun 65	Basalt (Yamika Firing Center)	TNT	4,000 4,000 4,000 4,000	1,814.40 1,814.40 1,814.40 1,814.40	0.67 -0.67 -0.67 -0.67	4.27 1.13 2.07 1.37	1.62 0.40 0.58 0.37	42.48 1.05 3.94 0.71	

^{*} Data not used in the statistical analysis.

APPENDIX B: CRATER DIMENSIONS FROM SINGLE HIGH-EXPLOSIVE CHARGE DETONATIONS IN SOIL

Table Bl
Crater Dimensions from Single High-Explosive Charge Detonations in Soil

							Charge	Burial	Ap	parent		
Series Name	Shot Designation	Sponsor	Date	Medium	Type of Explosive	Weight lb	Weight kg	Depth m	Radius m	Depth m	Volume m3	Source
Isthmian Canal Study	1 2 3 4 5	Panama Canal Zone Special Engineering Division	1948	Marine muck	TNT	8 8 8 8	3.63 3.63 3.63 3.63 11.34	0.30 0.91 1.52 2.13 0.46	1.59 2.01 2.71 1.38 2.70	1.30 1.55 0.49 0.96 2.03	6.57 7.29 4.62 3.91 19.89	34
	6 7 8 9 10							0.91 1.37 1.83 2.29 2.74	2.77 2.36 1.99 3.34 3.61	2.01 1.89 1.84 0.91 0.60	24.82 20.90 16.25 12.62 11.38	
	11 12 13 14* 15 16(1A) 17(2A)					75 75 200 25 50 50	34.02 34.02 90.72 11.34 22.63 22.63	3.20 1.22 3.66 3.66 0.00 0.00	3.43 3.83 5.95 10.09 1.73 2.19 2.33	0.89 2.83 0.80 0.76 1.18 1.52 1.52	8.25 57.53 37.21 96.43 6.15 13.69	
Isthmian Canal Study	1 2 3 4 5	Panama Canal Zone Special Engineering Division		Residual clay (wet)	TNT	25 75 8 75 200	11.34 34.02 3.63 34.02 90.72	0.46 3.66 1.52 2.44 1.83	1.43 3.76 1.33 3.34 5.16	0.90 0.59 0.51 1.52 2.87	2.65 10.59 1.38 21.17 100.49	35
	6 7 8					25 25 8	11.34 11.34 3.63	0.00 1.37 2.13	1.16 2.21 1.07	0.64 0.97 0.76	0.93 6.03 1.59	
Jangle - HE	HE-1 HE-2 HE-3 HE-4* HE-5	Department of Defense/ Stanford Research Institute	25 Aug 51 03 Sep 51 15 Sep 51 9 Sep 51 31 Sep 51	Alluvium (Nevada Test Site Area 10)	TNT	2,560 40,000 2,560	1,161.20 18,143.70 1,161.20	0.62 1.56 2.08 -0.62 1.25	5.64 11.89 6.18 2.10 5.91	2.04 4.57 3.29 0.58 2.29	56.92 991.09 169.90 3.11 113.27	18
	HE-6 HE-7 HE-8* 8-A* HE-9		2 Oct 51 4 Oct 51 13 Oct 51		Pentolite TNT	216 177	98.00 80.10	0.92 0.79 0.33 0.33	2.76	1.86 2.04 ot meas 1.04	7.67	
	9-A* HE-10 10-A*		14 Oct 51		Pentolite TNT Pentolite	216 177 216 177	98.00 80.10 98.00 80.10	0.26 0.26 0.91 0.91	2.53 2.67 3.44 3.09	1.22 1.07 1.68 1.52	7.65 7.22 24.35 14.16	
Dugway	301* 302 303 304 305	Department of Defense	29 Mar 51 2 Apr 51 4 Apr 51 6 Apr 51	Dry clay (Utah)	TNT	320	145.15	-1.07 0.00 0.40 1.07 2.13	0.76 2.21 2.74 3.20 3.58	0.30 1.22 1.68 1.83 2.13	6.80 16.99 23.22 36.81	23
	306 307 308 309 310		12 Apr 51 10 Apr 51 16 Apr 51 18 Apr 51 23 Apr 51			2,560 2,560 320	1,161.22 1,161.22 145.15	4.27' 6.40 7.90 2.13 1.07	4.57 3.05 6.10 6.55 3.35	0.30 0.30 3.66 4.72 2.13	6.68 2.83 152.91 206.71 25.49	
	312 315 318 311 314		4 May 51 10 May 51			2,560 40,000 320,000 8 8	1,161.22 18,143.70 145,149.60 3.63 3.63	2.13 5.33 10.67 0.61 0.76	7.92 19.51 36.58 1.22 1.37	4.57 12.80 18.29 0.76 0.91	368.12 5,380.20 31,148.55 1.87 2.44	
S	316 313 317 319 ymmetry					110 320 2,560 2,560 320	49.90 145.15 1,161.22 1.161.22 145.15	0.75 1.07 2.13 2.13 2.13	2.74 3.89 7.01 7.01 3.81	1.83 2.44 4.72 4.11 2.13	20.95 42.48 311.49 220.87 36.81	
Dugway	101* 102 103 104 105	Department of Defense	7 Jun 51 7 Jun 51 7 Jun 51 7 Jun 51 19 Jun 51	Dry sand	TNT	320	145.15	-1.25 0.00 0.40 1.07 2.13	0.15 2.33 3.32 3.66 4.72	0.02 0.76 1.83 1.98 2.59	7.08 20.39 36.81 73.62	23
	106 107 108 109 110		27 Jun 51 27 Jun 51 10 Jul 51 10 Jul 51 13 Aug 51			2,560 2,560 320	1,161.22 1,161.22 145.15	4.27 6.40 0.79 2.13 1.07	5.11 4.11 5.79 7.54 3.96	1.37 1.07 2.97 2.59 2.29	31.15 22.37 147.25 232.20 45.31	
	112 115 111* 113 114*		27 Jul 51 8 Aug 51			2,560 40,000 8 320 8	1,161.22 18,143.70 3.63 145.15 3.63	2.13 5.33 0.76 1.07 0.76	9.14 22.86 1.83 4.27 1.83	3.67 7.01 1.22 2.06 1.07	368.12 5,097.03 3.96 53.80 4.25	
0	116 .029A-15* .04A-16* .05A-17*	Dengriment of	23 Aug 57	Wet clay	STIANT	320 8 20 40	145.15 3.63 9.07 18.11	2.67 0.76 0.76 0.76	5.64 	2.74	99.11 	22
ne way	402 403 401 405 404	Department of Defense	23 Aug 51 11 Aug 51 21 Aug 51	(Utah)	TNT	320 2,560 8 8 320	145.15 1,161.22 3.63 3.63 145.15	0.76 1.52 0.76 0.76 0.76	5.72 12.73 2.13 1.83 5.33	3.05 3.89 1.52 1.25 3.51	116.10 821.19 8.78 7.65 110.44	23

(Continued)

f * Data not used in the statistical anlaysis.

							Charge	Burial		parent (
Series Name	Shot Designation	Sponsor	Date	Medium	Type of Explosive	Weight 1b	Weight kg	Depth m	Radius m	Depth m	Volume m ³	Source
Mole	101 102 102A 105	Armed Forces Special Weapons Project/ Stanford	28 Jun 52 6 Jul 52 13 Jun 52	Dry clay (Utah)	TNT	256	116.12	1.94 0.97 0.97 1.94	3.22 3.12 2.93 3.29	1.65 1.95 1.63 1.77	21.02 22.95 16.66 24.26	17
	106 107 311 312	Research Institute	19 Jul 52 20 Aug 52 20 Oct 53 22 Oct 53	Moist clay (Califor- nia)	TNT			0.50 0.00 0.97 0.97	2.77 2.01 4.72 5.33	1.89 1.19 3.41 2.77	15.24 6.57 89.13 94.73	
Mole	301* 302 304 305 306	Armed Forces Special Weapons Project/ Stanford	15 Sep 53 18 Sep 53 23 Sep 53 26 Sep 53 8 Oct 53	Wet sand	TNT	256	116.12	0.97 1.45 0.50 0.25	6.10 5.94 4.91 3.99	1.89 2.01 1.92 1.16	95.92 58.62 38.94	17
	307 308* 309 310	Research Institute	8 Oct 53 10 Oct 53 16 Oct 53 17 Oct 53			ļ		0.00 -0.25 0.97 0.97	3.93 2.71 5.09 5.33	1.43 1.22 1.86 1.58	37.30 12.70 76.98 73.57	
Mole	202 203 204 205	Armed Forces Special Weapons Project/ Stanford	14 Sep 52 19 Sep 52 4 Oct 52 8 Oct 52	Alluvium (Nevada Test Site Area 10)	INT	256	116.10	1.94 0.97 0.50 0.25	3.44 2.55 2.88 2.76	1.68 1.20 0.79 0.62	29.59 10.07 10.30 8.49	17
	206 207* 212 401 402	Research Institute	11 Oct 52 15 Oct 52 24 Oct 52 23 Oct 54 26 Oct 54					0.00 -0.25 1.94 0.97 1.45	1.94 1.23 3.57 3.23 3.37	0.52 0.43 1.78 1.68 1.89	3.66 1.06 34.18 23.34 26.69	
	403 404 405 406		28 Oct 54 30 Oct 54 2 Nov 54 4 Nov 54				,	0.25 1.94 0.50 0.97	2.53 3.58 2.80 3.00	1.04 1.83 1.39 1.22	8.31 33.71 14.11 19.05	
Unnamed	209	Sandia Lab- oratories	1959	Alluvium (Albuquer- que:	TNT	256	116.10	3.87	<u>+</u> 5.00	1.16	26.76	30
Sandia Series I	2 3 8 9 10	Sandia Lab- oratories	21 Jan 59 26 Jan 59 20 Jan 59 23 Jan 59 23 Jan 59	Alluvium (Nevada Test Site Area 10)	TNT	256	116.10	2.90 4.85 1.94 2.90 3.87	4.61 3.45 4.00 4.31 4.08	2.40 0.54 2.23 2.18 1.25	60.77 10.42 42.16 54.65 30.95	19
	11 12 15 16 17		24 Jan 59 27 Jan 59 16 Dec 58? 15 Dec 58?					4.85 5.81 7.74 3.87 5.81	1.99 2.85 1.27 4.33 1.73	0.12 0.70 0.14 2.04 0.52	6.68 7.25 0.88 62.86 1.56	
Sandia Series II	1* 2* 3* 4	Sandia Lab- oratories	Aug 59, Sep 59	Alluvium (Nevada Test Site Area 10)	TNT	256	116.10	9.08 8.69 7.96 7.77 7.10	9.45 11.49 9.85 0.72 0.92	-0.19 -0.25 -0.31 0.35 0.09	-16.54 -30.55 -33.61 0.45 0.51	19
	6 7 8 9 10							6.89 6.00 5.79 5.00 4.91	1.34 2.48 3.07 4.36 4.30	0.30 0.31 0.49 0.80 1.39	4.81 3.43 8.41 20.27 30.50	
	11 S-12 S-13						ţ	3.99 0.00 0.00	4.48 2.61 2.54	1.66 0.76 0.79	47.29 4.56 7.56	
Toboggan	E 1a E 1b E 1c E 2a E 2b	Sandia Lab- oratories	23 Nov 59 23 Nov 59 24 Nov 59 24 Nov 59 24 Nov 59	Playa (Yucca Lake)	TNT	8*	3.63*	0.00 0.00 0.00 0.15 0.15	0.47 0.45 0.40 0.78 0.69	0.28 0.20 0.20 0.34 0.32	0.07 0.05 0.04 0.33 0.23	36
	E 2c E 3a E 3b E 3c E 3.5a		24 Nov 59 24 Nov 59 24 Nov 59 24 Nov 59 16 Jun 60					0.15 0.30 0.30 0.30 0.46	0.74 0.85 0.92 0.82 0.87	0.44 0.49 0.47 0.53 0.52	0.33 0.44 0.48 0.44 0.51	
	E 4a E 4.5a E 4b E 4.5b E 4c		24 Nov 59 18 Jun 60 24 Nov 59 18 Jun 60 24 Nov 59					0.61 0.76 0.61 0.76 0.61	1.05 1.14 1.09 1.01 1.12	0.54 0.45 0.59 0.31 0.55	0.75 0.78 0.97 0.37 1.03	
	E 5a E 5b E 5c E 5.5a E 6a		14 Nov 59 15 Nov 59 15 Nov 59 18 Jun 60 15 Nov 59					0.91 0.91 0.91 1.07 1.22	1.12 1.22 1.12 0.96 0.58	0.24 0.55 0.20 0.10 0.06	0.48 1.10 0.39 0.20 0.04	
	E 66 E 6c E 6.5a E 7a		15 Nov 59 15 Nov 59 18 Jun 60 18 Jun 60			•		1.22 1.22 1.37 1.52	0.46 0.73 	0.03	0.01 0.06 	
	1 C 1 C 8 1 D IV 1-1.5 IV 2-1.5	Sandia Lab- oratories	12 Nov 59 29 Jun 59 10 Nov 59 11 Apr 60 14 Apr 60	Alluvium (Albuquer- que)	TNT	8*	3.63	0.30 0.46 0.46 0.46	0.85 0.94 1.08 1.18 1.07	0.37 0.34 0.43 0.3 0.21	0.33 0.27 0.58 0.63 0.28	25

	-				-		Charge	Burial	A _T	parent	Crater	
Series Name	Shot Designation	Sponsor	Date	Medium	Type of Explosive	Weight	Weight kg	Depth	Radius	Depth	Volume m ³	Source
Little Ditch (Contin-	IV 3-1.5 IV 4-1.5 IV 5-1.5	Sandia Lab- oratories	18 Apr 60 19 Apr 60 21 Apr 60	Alluvium (Albuquer- que)	TNT	8*	3.63	0.46 0.46 0.46	1.14 1.05 0.96	0.18 0.18 0.12	0.35 0.26 0.10	25
ued)	IV 6-1.5 IV 7-1.5 IV 8-1.5		25 Apr 60 27 Apr 60 28 Apr 60					0.46 0.46	1.05 1.10 0.99	0.37 0.55 0.15	0.42 0.76 0.19	
	IV 9-1.5 IV 10-1.5 I E P 2A		3 May 60 13 May 60 25 Nov 59 12 Nov 59					0.46 0.46 0.61 0.61	1.04 1.10 1.14 1.11	0.37 0.24 0.15 0.34	0.50 0.37 0.31 0.48	
	P 2B P 2C P 8A IV 1-2.0 IV 2-2.0		23 Nov 59 5 Apr 60 18 Nov 59 11 Apr 60 15 Apr 60					0.61 0.61 0.61 0.61	1.08 1.19 1.05 1.02 1.17	0.21 0.55 0.43 0.15 0.21	0.34 1.14 0.54 0.22 0.41	
	IV 3-2.0 IV 4-2.0 IV 5-2.0 IV 6-2.0 IV 7-2.0		18 Apr 60 20 Apr 60 21 Apr 60 26 Apr 60 27 Apr 60				4	0.61 0.61 0.61 0.61	1.16 0.99 1.18 1.13 1.07	0.18 0.18 0.24 0.49	0.36 0.27 0.51 0.81 0.65	
	IV 8-2.0 IV 9-2.0 IV 10-2.0 1 F IV 1-1.2		2 May 60 3 May 60 12 May 60 18 Feb 60 14 Apr 60				ļ	0.61 0.61 0.61 0.76 0.76	1.05 1.20 1.16 1.23 1.05	0.37 0.21 0.30 0.52 0.30	0.57 0.83 0.56 0.99 0.37	
	IV 2-2.5 14 3-2.5 IV 4-2.5 IV 5-2.5 IV 6-2.5		15 Apr 60 19 Apr 60 20 Apr 60 25 Apr 60 26 Apr 60					0.76 0.76 0.76 0.76 0.76	1.13 1.17 1.21 1.19 1.10	0.30 0.18 0.27 0.61 0.37	0.54 0.37 0.58 1.08 1.57	
	IV 7-2.5 IV 8-2.5 IV 9-2.5 IV 10-2.5 P 3-A		28 Apr 60 2 May 60 12 May 60 13 May 60 9 Nov 59					0.76 0.76 0.76 0.76 0.91	1.14 1.14 1.23 1.10 0.84	0.49 0.61 0.30 0.43 0.15	1.00 1.09 0.65 0.62 0.13	
	P 3-B P 4-A P 4-B* IV 4-3.0 IV 5-3.0		26 Jan 60 7 Dec 59 27 Jan 60 28 Jul 60 28 Jul 60					0.91 1.22 1.22 0.91 0.91	1.21 1.08 1.37 1.23 1.23	0.67 0.12 0.67 0.12 0.12	1.50 0.25 1.88 0.53 0.73	
	IV 6-3.0 IV 1-4.0 IV 2-4.0 IV 3-4.0		29 Jul 60 21 Jun 60 22 Jun 60 23 Jun 60				ļ	0.91 1.22 1.22 1.22	1.16	0.37	0.62	
	III 0.5 III 0.75		8 Jun 60 17 Jun 60			256	116.10	0.97	3.08	1.37	18.21	
	III 1.00 III 1.25 G2-34 III 1.50		13 Jun 60 19 Jul 60 16 Jul 62 15 Jun 60					1.45 1.94 2.42 2.42 2.90	3.26 3.38 3.57 3.57 3.86	2.13 1.68 1.74 1.55 1.07	25.85 27.84 34.26 25.60 23.33	
	G2-35 III 2.0a III 2.0b III 1.25b		18 Jul 62 26 Jul 60 22 Aug 60 8 Aug 60					2.90 3.87 3.87 2.42	3.63 3.54 3.63 3.47	1.49 0.85 0.79 1.58	33.19 15.57 12.40 32.25	
Unnamed	*	Sandia Lab- oratories	1960	Alluvium	TNT	5,000	2,268.00	0.00	5.64	1.45	83.53	30
Stagecoach	1 2 3	Sandia Lab- oratories	15 Mar 60 19 Mar 60 25 Mar 60	Alluvium (Nevada Test Site Area 10)	TNT	40,120 40,240 40,070	18,198.10 18,252.60 18,175.40	24.38 5.21 10.42	17.37 15.39 17.86	2.41 7.19 8.90	1,391.63 2,368.70 4,094.62	20
Scooter		Sandia Lab- oratories	13 Oct 60	Alluvium (Nevada Test Site Area 10)	TNT	987,410	447,881.70	38.10	46.88	22.71	74,813.11	21
Rowboat	7a* 8a*	LRL	26 Jun 61 28 Jun 61	2	TNT	278 278	126.10 126.10	4.54 4.54	6.74 8.75	0.88		37
Pre-Buggy II	F-1* F-2* F-3 F-4	Nuclear Cratering Group	6 Aug 63 6 Aug 63 6 Aug 63 6 Aug 63	Alluvium (Nevada Test Site Area 5)	Nitro- methane TNT	1,000 1,000 950 950	453.60 453.60 430.91 430.91	6.04 6.04 5.64 5.59	6.92 6.46 6.43 6.74	3.60 3.60 3.35 3.29	222.57 170.75 196.80 214.08	22
Unnamed serie	62-60 62-62 62-64	Sandia Lab- oratories	19 Nov 63 26 Nov 63 2 Dec 63	Alluvium (Albuquer- que)	TNT	64 64 64	29.00 29.00 29.00	2.13 2.13 2.13	2.10 2.26 2.10	0.82 0.62 0.62	4.90 5.15 4.59	28
Air Vent	III 1A III 1B III 1C III 1D III 2A	Sandia Lab- oratories	31 Jan 64 31 Jan 64 31 Jan 64 31 Jan 64 11 Jan 64	Playa (French- man Flat)	TNT	64 64 64 64 1,000	29.03 29.03 29.03 29.03 453.60	0.00 0.00 0.00 0.00	1.04 1.04 0.99 1.07 2.85	0.48 0.55 0.55 0.57 1.30	0.68 0.74 0.65 0.80 12.52	31
	III 2B III 2C III 3A III 3B		11 Jan 64 13 Jan 64 8 Jan 64 9 Jan 64			1,000 1,000 6,000 6,000	453.60 453.60 2,721.60 2,721.60	0.00 0.00 0.00 0.00	3.08 2.72 5.01 5.34	1.39 1.30 2.00 2.11	14.64 12.46 71.36 76.54	
Flat Top	III	Sandia Lab- oratories	17 Feb 64 17 Feb 64	Playa (French- man Flat)	TNT	40,000 40,000	18,143.70 18,143.70	0.00	10.9	3.93 5.67	680.45 1,070.38	24
					(Con	tinued)						

							Charge	Burial	Ap	parent		
Series Name	Shot Designation	Sponsor	Date	Medium	Type of Explosive	Weight 1b	Weight kg	Depth m	Radius	Depth m	Volume m ³	Source
Air Vent	I-1 II-1* II-2A II-2B II-3	Defense Ato- mic Support Agency/ Sandia Lab- oratories	14 Dec 63 30 Jan 64 30 Jan 64 29 Jan 64 29 Jan 64	Playa (French- man Flat) (Nevada Test Site Area	TNT	40,000	18,143.70 116.12	5.24 -0.26 0.00 0.00 0.26	14.51 0.98 1.69 1.65 2.05	6.85 0.25 0.73 0.74 1.03	2,052.97 0.37 2.70 2.64 6.67	31
	II-4 II-5A II-5B II-6 II - 7A		29 Jan 64 28 Jan 64 28 Jan 64 28 Jan 64 27 Jan 64	5)				0.48 0.97 0.97 1.45 1.94	2.32 2.69 2.59 2.92 2.99	1.13 1.26 1.33 1.41 1.33	6.99 12.06 10.79 14.64 14.32	
	II-7B II-8 II-9A II-9B II-10A* II-10B*		27 Jan 64 27 Jan 64 24 Jan 64 23 Jan 64 24 Jan 64 23 Jan 64					1.94 2.42 2.90 2.90 3.87	3 03 3.15 3.35 3.36 6.98 8.05	1.37 1.21 1.11 0.71 -1.16 -1.26	15.40 13.68 13.76 9.40 -33.36 -70.79	
	II-11A* II-11B* II-12* II-13* II-14*		16 Jan 64 16 Jan 64 17 Jan 64 17 Jan 64 17 Jan 64					4.85 4.85 5.81 6.77 7.74	6.89 6.80 6.71 7.13 7.53	-1.25 -1.34 -0.81 -0.41 -0.19	-75.83 -77.08 -53.18 -28.40 -25.49	
Pre Capsa	1-1 2-1	Sandia Lab- oratories	3 May 65 6 Jun 65	Alluvium (Albuquer- que)	TNT	256 256	116.10 116.10	2.90 2.90	4.10 3.91	2.13	53.94 50.49	29
Calibration Shots of Row Cra- ters (unnamed series)	C 2 C 3	Sandia Lab- oratories	14 Jun 66 14 Jun 66 1 Jun 66	Alluvium (Albuquer- que)	TNT	64 64 64	29.03 29.03 29.03	1.83 1.83 1.83	2.43 2.51 2.49	1.20 1.35 1.31	12.03 14.27 12.86	26
Calibration Shots of Row Cra- ters (unnamed series)	6-1 7-1 8-1 9-1 10-1	Sandia Lab- oratories	7 Oct 66 11 Oct 66 18 Oct 66 21 Oct 66 25 Oct 66	Alluvium	TNT	64	29.03	1.83 2.13 2.13 1.83 1.83	1.20 2.35 2.55 2.56 2.43	1.20 0.98 1.21 1.30 1.49	9.00 14.53 11.64 11.47	27
Capsa	1 2 3 4	Sandia Lab- oratories	16 Aug 66 18 Aug 66 24 Aug 66 26 Aug 66	Alluvium (Albuquer- que)	TNT	1,000	453.60	4.57 3.81 3.05 5.33	5.74 5.52 5.45 5.84	2.16 3.13 3.20 2.15	114.54 137.05 129.04 111.29	30
	5 6 7 8		31 Aug 66 2 Sep 66 13 Sep 66 16 Sep 66					4.57 5.33 3.05 3.81	6.00 6.01 4.91 5.92	2.16 3.22 2.78 3.24	118.14 168.09 103.67 163.70	
	9 10* 11* 12* 13*		21 May 68 29 May 68 13 Jun 68 25 Jul 68 25 Jul 68		Nitro- methane Comp. B Nitro- methane	30,478 977 981	13,824.60 443.20 445.00	3.81 3.81 14.60 3.81 4.57	5.62 5.91 17.38 6.06 5.89	3.18 3.45 8.76 2.88 2.94	151.18 183.21 3,447.46 162.45 146.74	
TTR-211	40 47 48 49	Sandia Lab- oratories	11 Aug 66 18 May 67 24 May 67 8 Jun 67	Playa (Test Range)	TNT	64 64 64	29.03 29.03 29.03 29.03	1.22 1.52 1.83 2.13	2.43	1.27 1.16 1.27 0.92	7.36 9.23 10.45 5.83	
TTR 211	51 52 53 54*	Sandia Lab- oratories	7 Jul 67 10 Aug 67 9 Jan 68 19 Jan 68	Playa (Tono- pah Test Range)	TNT	1,000 64 8	29.03 453.60 29.03 3.63	0.00 0.00 0.00 0.91	1.10 2.86 0.98 1.11	0.47 1.26 0.45 0.30	0.73 11.30 0.57 0.46	
	55 56 42		21 Mar 68 20 Apr 68 25 Oct 66			256 1,000 64	116.12 453.60 29.03	2.90 0.00 2.10	3.01	1.48 1.46 0.89	25.68 16.79 5.52	

APPENDIX C: DITCH DIMENSIONS FROM HIGH-EXPLOSIVE ROW-CHARGE DETONATIONS IN ROCK AND SOIL

Table Cl Dimensions from High-Explosive Row-Charge Detonations in Rock and Soil

		Source	36				25														arges			ц					
Speddle	Depth	Charge :	:	1 1	1	misfired	0.62	848	0.60	0.10	まる.	8,00	0.33	1.00	86.	888	1.00	0.6	8,8	0.41	between charges	1.04	1.05	1.11 g an uneve	level 1.06 of 0.66 m		1.0	1.13	1.02
Geddle.	Width	Charge	1	; ;	1		1.00	9.5	0.69	1.00	1.00	0.97	0.12	1.00	88	88.8	1.00	88	9.6	0,40	1.00	1.00		0.81 r leaving	ground 1 0.99 height c		1.00	, o 8, g	0.97
prent	0110	Volume m3	5.07	 	155.94	4.33 One	0.68	2.71 1.89 2.78	1.81	3.75	5.44	7.61	3.65	7.39	9.37	4.6	9.48	10.81	10.75	7.45	7.0 with 8.10	6.93	7.82	50 0.15 3.81 0.81 1.11 Fallback filled crater leaving an uneven	surface at original ground level 0.53 7.71 0.99 1.0 Mound with maximum height of 0.	372.31	298.08	6.14	7.34
Average Annarent	Crater	Depta	0.62	0.50	1.59	0.62 0.43	0.22	0.49 0.33 0.37	0.24	0.19	0.53	0.73	0.26	0.64	0.70	0.55	0.79	0.37	0.73	0.37	0.64	0.78	0.59	0.15 back fil	urface at 0.53 found wit	1.98	1.83	0.10	o.3
AVA		WIGEN	3.05	2.13	7.01	1.98	1.31	1.86	1.29	1.36	2.53	2.35	i i g	2.45	9.0 4.5	2.71	2.75	9.39	2.38	1.9	Same a	9.69	2.4	1.56 Fall	2.87		7.47	8.5	2.59
Spacing	Between	cnarges	0.91	1.22	3.87	1.52	0.61	0.76 0.91 1.22	1.52	0.91	0.91	1.22	2.13	1.22	1.37	1.07	1.22	1.22	1.37	44.5	1.22	1.07	1.52	1.3 2.13	1.22	1,36	4.	1.07	1.22
	Depth of	BULIST	0.61	0.61	1.93	0.61	0.00	0.30	0.30	0.46	0.61	0.61	0.61	92.0	0.76	6.0	0.91		0.0 R.R.	0.91	1.07	1.22	1.22	1.22	1.52	2.90	8.8	1.37	1.37
Charge	70 700	weignt kg	6 each at 3.63	6 each at 3.63	6 each at 116.1	6 each at 3.63 6 each at 3.63	7 each at 3.63									•										8 each at 116.1		9 each at 3.63	each at
	And Section	nergue 1b	6 each at 8	6 each at 8	6 each at 256	6 each at 8	7 each at 8							_								-				8 each at 256	8 each at 256	9 each at 8	(Continued)
	Type	Explosive	TNI				TNI																						
		Medium	Plays (Nevada Test	Site - incom Lake)			Alluvium (Albuquerque)																						
		Date	Spring	1909			May	16 Jul 59 01 Sep 59 14 Oct 59	05 Oct 59 24 Sep 59	16 Oct 59 10 Nov 59 9 Mar 60	9 Dec 59	Mer	27 May 60 13 Nov 59			10 Nov 59		Apr Feb	25 Feb 60 4 Mar 60	Mer	Mer	3 Mar 60 6 Apr 60	2 Jun 60	20 May 60	1 Jun 60 20 Mar 61		Dec	6 Mar 61	Mar
		Sponsor	Sandia	Lacoratory			Sandia Laboratories																						
	+040	Designation	A-1	N 60-	4-Q	型 F マー	II A-2 II C-1.5	11 C-2.5 11 C-3 11 C-4	II C-5 II C-5B	II C-7 II D-3 II D-3.5	II E-3.0	II E-4.0	II E-7.0	II F-4.0	H G-3.0	II G-4.0A	II G-4.00	II G-4.08	II G-4.5 II G-6.0	II G-8.0	0.4-8 II	II J-3.5 II J-4.0	II J-5.0	II J-7.0	II 1-4.0 II 1-4.0B	IV 14.3-9.52	V 15.87-9.52	II K-3.5B	0.4-4.0
	4	Name	Toboggan				Little Ditch																						

			1				Charge		Specing	Aver	Average Apparent	rent	Saddle	Saddle	
TAT .	KI	TX	TX	Typ	90			Depth of	Between		Crater		Width		
ohot of	Jo	of	Jo	of		Weight	Weight	Burial	Charges	Width	Depth	Volume	at		
on Sponsor Date Medium	Date Medium	Medium		Explos	ive	1.0	kg	Ħ	Ħ	Ħ	Ħ	ш3	Charge		Source
TNT 2 Jun 61 Alluvium	2 Jun 61 Alluvium	Alluvium	Alluvium	TANT		4 each at 278	4 each at 126.1	3.63	4.36	9.17	1.77	ł	;	1	37
5 Jun 61	5 Jun 61					_	_	3.63	4.36	8.78	2.01	!	!	ļ	
								3.63	6.53	7.47	0.91	ſ	-	1	
								3.63	6.53	7.68	1.13	1	1	:	
7, m. 61	20 Tm 61	20 Jim 61						5.43	4.36	3.99	0.43	1	}	1	
15 m.F. %	19 mi. 99							5.43	4.36	4.1	0.27	!	1	;	
7 mir 99	19 mi 98	% im 61						立.	5.46	4.27	0.30	1	1	;	
8 28 Jun 61	28 Jun 61	28 Jun 61				-	-	古.	5.46	5.49	0.67	ŀ	1	1	
TVT Tendin Test Township Test	Plays (Tonopah Test	Plays (Tonopah Test	Plays (Tonopah Test	TALL		6 each at 64	Et.	1.52	2.44	7.02	1.98	28.52	;	ł	30
Range)	12 May 64 Range)	Range)	Range)			6 each at 64	at	1.83	2.44	6.22	1,14	13.71	1	1	
12 May 64	12 May 64	12 May 64				6 each at 64	at a	2.13	5.44	0.55	0.03	1	1	1	
20 Aug G	SO And G	to and of				each at	et.	1.83	2.44	5.50	1.48	127.00	!	;	33
13 3 Mar 65	3 Mar 65	3 Mar 65				at	11 each at 29.0	1.83	₽.5	5.16	1.20	101.46	:	1	
	70 WAY 65	70 West 67				5 each at 64	5 each at 29.0	2.10	1.8	6.11	1.76	56.97	!	;	
	7 Oct 66	5 Oct. 66				t)	et t	1.83	44.5	5.10	1.27	18.60	;	1	
18 Nov 66	18 Nov 66	18 Nov 66				25 each at 64	25 each at 29.0	1.83	74.5	5.59	1.48	286.45	1	!	
	90 Nov 66	22 Nov 66				5 each at 64	5 each at 29.0	1.83	44.5	5.30	1.53	55.30	:	1	
	24 Peb 67	24 Feb 67				8	11 each at 29.0	2.10	1.60	6.36	8.0	136.57	1	1	
46 27 Mar 67	27 Mar 67	27 Mar 67				2 each at 64	2 each at 29.0	2.10	1.8	5.56	1.57	55.46	1	1	
2 Sandia 19 Mar 65 Alluvium	19 Mar 65 Alluvium	Alluvium	Alluvium	TNI		2 each at 256	2 each at 116.1	8.3	4.15	7.77	1.89	86.51	;	1	53
refories 14 In 65 (Albuquerque)	refories 14 In 65 (Albuquerque)	(Albuquerque)	(Albuquerque)			each at	3 each at 116.1	8.90	4.15	8.14	5.20	130.37	1	1	
5 27 May 65	27 May	27 May 65				at g	t a	8.3	4.15	8.78	2.01	216.88	;	;	

APPENDIX D: NOTATION

Crater and Ditch Dimensions (All in Metres)

- B Charge burial depth
- D Maximum apparent depth of single crater
- $\mathbf{D}_{\mathbf{r}}$ Maximum apparent depth of row crater
 - L Ditch length from first to last charge location
- R Average apparent radius of single crater
- R_{r} Average apparent half-width of row crater at charge locations
 - S Spacing between charges in a row shot
 - x Generalized linear crater dimension

Other Crater and Ditch Design Parameters

- a Reciprocal of scaling exponent
- c_b Coefficient for charge burial depth, metres/kilogram 1/a
- c_d Coefficient for apparent depth of single crater, metres/kilogram^{1/a}

- c Coefficient for linear crater dimension, metres/kilogram 1/a
- n Number of charges in a row shot
- w Single or individual charge weight, kilograms
- V Apparent volume of single crater, cubic metres

In accordance with ER 70-2-3, paragraph 6c(1)(b), dated 15 February 1973, a facsimile catalog card in Library of Congress format is reproduced below.

Muller, Arno M

Explosive ditching with TNT, by Arno M. Muller tand Hendrik D. Carleton. Vicksburg, U. S. Army Engineer Waterways Experiment Station, 1977.

1 v. (various pagings) illus. 27 cm. (U. S. Waterways Experiment Station. Miscellaneous paper N-77-7

Prepared for Office, Chief of Engineers, U. S. Army, Washington, D. C. Includes bibliography.

1. Craters. 2. Explosive excavation. 3. Explosives. 4. High explosives craters. 5. TNT. I. Carleton, Hendrik D., joint author. II. U. S. Army. Corps of Engineers. (Series: U. S. Waterways Experiment Station, Vicksburg, Miss. Miscellaneous paper N-77-7) TA7.W34m no.N-77-7