CURS 5 Spaţii liniare

A. Arusoaie

e-mail: andreea.arusoaie@info.uaic.ro

Web: http://profs.info.uaic.ro/~andreea.arusoaie/math.html

Facultatea de Informatică, Universitatea "Alexandru Ioan Cuza" din Iași

25 Octombrie, 2021

Structura cursului

- 🚺 Definiții. Proprietăți
- Combinații liniare
 - Liniară dependență și independență
 - Dimensiunea unui spațiu liniar
 - Bază algebrică
 - Schimbarea coordonatelor
- lacksquare Produs scalar. Norme în \mathbb{R}^n
- Baze ortonormale
 - Procedeul de ortonormalizare Gram-Schmidt

2/48

Structura cursului

- Definiţii. Proprietăţi
- Combinații liniare
 - Liniară dependență și independență
 - Dimensiunea unui spaţiu liniar
 - Bază algebrică
 - Schimbarea coordonatelor
- $oxed{3}$ Produs scalar. Norme în \mathbb{R}^n
- Baze ortonormale
 - Procedeul de ortonormalizare Gram-Schmidt

Un **spațiu liniar (spațiu vectorial)** este o colecție de obiecte, numite *vectori*, ce pot fi adunate între ele și înmulțite cu numere, numite *scalari*.

Cele mai utilizate spații liniare sunt spațiile Euclidiene:

- ℝ dreapta reală spațiu liniar 1-dimensional
- \bullet $\mathbb{R}^2=\mathbb{R}\times\mathbb{R}$ planul real spațiu liniar 2-dimensional
- $\mathbb{R}^3 = \mathbb{R} \times \mathbb{R} \times \mathbb{R}$ spațiul real spațiu liniar 3-dimensional
- ullet $\mathbb{R}^n,\ n\geq 4$ hiperspaţiul real spaţiu liniar n-dimensional

Fie $V \neq \varnothing$ și K un corp comutativ. În general, vom considera $K = \mathbb{R}$ sau $K = \mathbb{C}$.

Definiție

Se numește $\operatorname{spațiu}$ liniar (vectorial) peste corpul K, o mulțime V, înzestrată cu

- o lege internă " + " : $V \times V \rightarrow V, (x,y) \rightarrow x+y, \ \forall x,y \in V,$
- $\text{- o lege extern$\widetilde{\mathbf{a}}$ "\cdot"} : K \times V \to V, \ (\alpha, x) \to \alpha \cdot x, \forall \alpha \in K, x \in V,$

așa încât sunt îndeplinite următoarele cerințe (axiome):

i)
$$\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}, \forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{V};$$

- ii) $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}, \ \forall \mathbf{x}, \mathbf{y} \in \mathbf{V};$
- iii) $\exists 0 \in V, \forall x \in V : x + 0 = 0 + x = x;$
- iv) $\forall \mathbf{x} \in \mathbf{V}, \exists (-\mathbf{x}) \in \mathbf{V} : \mathbf{x} + (-\mathbf{x}) = (-\mathbf{x}) + \mathbf{x} = \mathbf{0};$
- v) $\alpha \cdot (\mathbf{x} + \mathbf{y}) = \alpha \cdot \mathbf{x} + \alpha \cdot \mathbf{y}, \forall \alpha \in K, \mathbf{x}, \mathbf{y} \in V;$
- vi) $(\alpha + \beta) \cdot \mathbf{x} = \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{x}, \forall \alpha, \beta \in K, \mathbf{x} \in V;$
- vii) $\alpha \cdot (\beta \cdot \mathbf{x}) = (\alpha \beta) \cdot \mathbf{x}, \ \forall \alpha, \beta \in K, \ \mathbf{x} \in V;$
- viii) $1 \cdot \mathbf{x} = \mathbf{x}$, $\forall \mathbf{x} \in V$, unde 1 este elementul unitate din K.

6/48

- elementele K-spaţiului liniar V sunt numite vectori;
- elementele lui K se numesc scalari;
- operaţia + se numeşte adunarea vectorilor;
- operația · se numește *multiplicarea cu scalari* .
- ▶ elementul neutru $\mathbf{0} \in V$ se numește *vector nul*;
- ▶ vectorul $-\mathbf{x} \in V$ se numește *vectorul opus* lui $\mathbf{x} \in V$;
- când $K = \mathbb{R}$, V se mai numește *spațiul liniar real*;
- lacktriangle când $K=\mathbb{C}$, V se mai numește *spațiu liniar complex*.

Spațiul euclidian

Propoziție

Fie
$$n \in \mathbb{N}^*$$
 și $\mathbb{R}^n = \underbrace{\mathbb{R} \times \mathbb{R} \times \ldots \times \mathbb{R}}_{\text{de n ori}}.$

Definim operațiile $+: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$ și $\cdot: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ prin

$$\mathbf{x} + \mathbf{y} := (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n),$$

$$\alpha \cdot \mathbf{x} := (\alpha x_1, \alpha x_2, \dots, \alpha x_n),$$

$$\forall \alpha \in \mathbb{R}, \ \forall \mathbf{x} = (x_1, x_2, \dots, x_n), \mathbf{y} = (y_1, y_2, \dots, y_n) \in \mathbb{R}^n.$$

Atunci $(\mathbb{R}^n, \mathbb{R}, +, \cdot)$ este un spațiu liniar.

- Operațiile de mai sus se numesc operații canonice.
- Dacă $\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, atunci vom numi numerele x_1, x_2, \dots, x_n coordonatele lui \mathbf{x} .

8/48

Matematică, Anul I A. Arusoaie FII (UAIC, Iași)

Exemple de spații liniare

- 1. Fie $m,n\in\mathbb{N}^*$ și $\mathcal{M}_{m,n}(\mathbb{R})$ mulțimea matricilor reale cu m linii și n coloane. Fie operațiile
 - + adunarea uzuală a matricelor;
 - · înmulțirea matricelor cu numere reale.

Atunci $(\mathcal{M}_{m,n}(\mathbb{R}),+,\cdot)$ este un spațiu liniar real.

- 2. Fie $\mathbb{R}[X]$ mulțimea tuturor polinoamelor cu coeficienți reali. Dacă
 - + notează adunarea polinoamelor;
 - · reprezintă înmulțirea polinoamelor cu numere reale,

atunci $(\mathbb{R}[X],+,\cdot)$ este un spațiu liniar real.

Exemple de spații liniare

3. Fie $X \neq \emptyset$, $(V,+,\cdot)$ un spațiu liniar și $\mathcal{F}(X,V) = \{f: X \to V\}$. Definim operațiile

$$+: \mathcal{F}(X, V) \times \mathcal{F}(X, V) \to \mathcal{F}(X, V)$$
$$\cdot: \mathbb{R} \times \mathcal{F}(X, V) \to \mathcal{F}(X, V)$$

prin

$$(f+g)(x) = f(x) + g(x), \forall x \in X f, g \in \mathcal{F}(X, V)$$
$$(\alpha \cdot f)(x) = \alpha \cdot f(x), \forall \alpha \in \mathbb{R}, x \in X, f \in \mathcal{F}(X, V),$$

atunci $(\mathcal{F}(X,V),+,\cdot)$ formează un spațiu liniar peste $\mathbb{R}.$

Matematică, Anul I

Exemple de spații liniare

Particularizând X și V definiți în 3., obținem diverse exemple de spații vectoriale:

- Dacă $X=\{1,2,\ldots,m\}\times\{1,2,\ldots,n\}$ și $V=\mathbb{R},\ m,n\in\mathbb{N}$ atunci obținem spațiul liniar $(\mathcal{M}_{m,n}(\mathbb{R}),+,\cdot).$
- Dacă $X\subseteq\mathbb{R}$ și $V=\mathbb{R}$, se obține spațiul liniar $(\mathcal{F}(X,\mathbb{R}),+,\cdot)$ al funcțiilor reale, de o singură variabilă reală, definite pe X.
- Dacă $m,n\in\mathbb{N}^*,\,X\subseteq\mathbb{R}^n$ și $V=\mathbb{R}^m$, atunci $(\mathcal{F}(X,\mathbb{R}^m),+,\cdot)$ este spațiul liniar real al funcțiilor de n variabile cu valori în \mathbb{R}^m .
- Dacă $X=\mathbb{N}$ și $V=\mathbb{R}$, mulțimea $(\mathcal{F}(X,V),+,\cdot)$ spațiul liniar real al șirurilor de numere reale.

11/48

Matematică, Anul I A. Arusoaie FII (UAIC, Iași)

Propoziție

Fie $(V,+,\cdot)$ un spațiu liniar real. Atunci pentru orice $\alpha\in\mathbb{R}$ și orice $\mathbf{x}\in V$:

- i) $0_{\mathbb{R}} \cdot \mathbf{x} = \alpha \cdot \mathbf{0}_V = \mathbf{0}_V$;
- ii) $(-\alpha) \cdot \mathbf{x} = \alpha \cdot (-\mathbf{x}) = -\alpha \cdot \mathbf{x};$
- iii) $(-\alpha) \cdot (-\mathbf{x}) = \alpha \cdot \mathbf{x};$
- iv) $\alpha \cdot \mathbf{x} = \mathbf{0}_V \Rightarrow \alpha = 0_{\mathbb{R}} \text{ sau } \mathbf{x} = \mathbf{0}_V.$

Spații liniare. Subspații liniare

Definiție

Fie $(V,+,\cdot)$ un spațiu liniar și W o submulțime nevidă a lui V. Spunem că $(W,+,\cdot)$ este este **subspațiu liniar** al lui $(V,+,\cdot)$ dacă

 $\forall \alpha \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in W$, avem $\mathbf{x} + \mathbf{y} \in W$ și $\alpha \cdot \mathbf{x} \in W$.

Cu alte cuvinte, spunem că W este un subspațiu liniar al lui V dacă și numai dacă

$$\alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y} \in W, \ \forall \alpha, \beta \in \mathbb{R}, \forall \mathbf{x}, \mathbf{y} \in W.$$

Matematică, Anul I

Exemple de subspații liniare

1) Fie $n \in \mathbb{N}^*$. Mulţimea $\{\mathbf{x} = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid x_1 = 0\}$ este, în raport cu adunarea vectorilor din \mathbb{R}^n și înmulţirea lor cu scalari din \mathbb{R} , un subspaţiu liniar al lui $(\mathbb{R}^n, +, \cdot)$.

2) Mulțimea funcțiilor pare, definită prin

$$\{f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(x) = f(-x), \forall x \in \mathbb{R}\}$$

este un subspațiu liniar al spațiului liniar real $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\cdot)$.

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 14/48

Exemple de subspații liniare

3) Fie $n \in \mathbb{N}^*$ și fie $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$, nu toți nuli (adică, $(\alpha_1, \ldots, \alpha_n) \neq \mathbf{0}$). Multimea

$$H = \{(x_1, x_2, \dots, x_n) \in \mathbb{R}^n \mid \alpha_1 x_1 + \dots + \alpha_n x_n = 0\}$$

este un subspațiu liniar al lui \mathbb{R}^n , numit hiperplan.

Propoziție

Fie W_1 și W_2 două subspații liniare ale lui $(V, +, \cdot)$. Atunci

- i) $W_1 \cap W_2$ este tot un subspațiu liniar al lui V.
- ii) $W_1 \cup W_2$ nu este întotdeauna un subspațiu liniar al lui V.

FII (UAIC, Iasi)

Matematică, Anul I A Arusopie

Structura cursului

- Definiţii. Proprietăţi
- Combinații liniare
 - Liniară dependență și independență
 - Dimensiunea unui spațiu liniar
 - Bază algebrică
 - Schimbarea coordonatelor
- $oxed{3}$ Produs scalar. Norme în \mathbb{R}^n
- Baze ortonormale
 - Procedeul de ortonormalizare Gram-Schmidt

Combinații liniare

Definiție

Fie $(V, +, \cdot)$ un spațiu liniar.

O combinație liniară a vectorilor $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in V$ este un vector $\mathbf{y} \in V$ ce se poate scrie ca

$$\mathbf{y} = \sum_{k=1}^{n} \alpha_k \mathbf{x}_k = \alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \dots + \alpha_n \mathbf{x}_n,$$

unde $n \in \mathbb{N}^*$, iar $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$.

Observație: Dacă W este un subspațiu liniar al lui V, atunci orice combinație liniară a vectorilor $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in W$ este tot din W.

17 / 48

Matematică, Anul I A. Arusoaie FII (UAIC, Iași)

Combinații liniare

Definiție

Fie $(V,+,\cdot)$ un spațiu liniar și U o submulțime nevidă a lui V. Mulțimea $tuturor\ combinațiilor\ liniare\ de\ elemente\ din\ U$,

$$\{\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_n \mathbf{x}_n \mid n \in \mathbb{N}^*, \alpha_1, \ldots, \alpha_n \in \mathbb{R}, \mathbf{x}_1, \ldots, \mathbf{x}_n \in U\}$$

se numește subspațiul liniar generat de U, notat Lin(U) sau Span(U).

- Lin(U) este un subspațiu liniar al lui $(V,+,\cdot)$. În plus, are loc $U\subseteq Lin(U)$.
- ullet Lin(U) este cel mai mic subspațiu al lui V care îl conține pe U.

Exemplu: Dacă $V=\mathbb{R}^3$, subspațiul liniar generat de $U=\{(1,-2,1)\}$ este dreapta $\{(\alpha,-2\alpha,\alpha)\mid \alpha\in\mathbb{R}\}.$

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 18/48

Definiție

Fie $(V,+,\cdot)$ un spațiu liniar și fie $\mathbf{x}_1,\mathbf{x}_2,\ldots,\mathbf{x}_n\in V$.

a) Elementele $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ se numesc *liniar dependente* dacă există $\alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{R}$, dintre care cel puțin unul nenul, astfel încât

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_n \mathbf{x}_n = \mathbf{0}.$$

b) Elementele $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ se numesc *liniar independente* dacă ecuația

$$\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2 + \ldots + \alpha_n \mathbf{x}_n = \mathbf{0},$$

are soluție unică $\alpha_1 = \alpha_2 = \ldots = \alpha_n = 0$.

c) O submulțime U a lui V se numește *liniar independentă* dacă pentru orice vectori $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n \in U$, distincți, $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ sunt liniar independenți.

Matematică, Anul I

Figure: Vectori liniari dependenti în \mathbb{R}^3

Matematică, Anul I

Figure: Vectori liniari independenti în \mathbb{R}^3

Exemplu: Liniară dependență - Liniară independență

O persoană descrie o anume locație astfel:

Acest hotel este la 3 km nord și 4 km est de centrul orașului.

 Avem suficientă informație să identificăm locația, deoarece pot considera sistemul de coordonate ca un spațiu vectorial 2- dimensional (ignorând altitudindea si curvatura Pământului)

Dacă persoana adaugă

Locația este la 5 km nord-est de centru.

- Desi afirmația este corectă, nu putem să ne dăm seama exact de locație.
- 3 km nord și 4 km est sunt vectori liniar independenți; (Vectorul nord nu poate fi scris in funcție de est)
- 5 km nord-est este o combinație liniară a doi vectori, deci este liniar dependent

Dacă am considera și altitudinea, acesta ar fi un al treilea vector liniar independent. În general, pentru a descrie locația într-un spațiu n-dimensional, avem nevoie de n vectori liniar independenți.

22 / 48

Teorema

Vectorii $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ ai unui spațiu liniar sunt liniar dependenți dacă și numai dacă unul dintre vectori se poate scrie ca o combinație liniară a celorlalți.

FII (UAIC, Iasi)

23 / 48

Exemple

- 1. Mulțimea $\{0\}$ este liniar dependentă deoarece are loc $\alpha \cdot 0 = 0, \forall \alpha \in \mathbb{R}$.
- 2. Fie spațiul liniar \mathbb{R}^n , și sistemul de vectori

$$B = {\mathbf{e}_1 = (1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, 0, \dots, 1)}.$$

Atunci, B este liniar independentă .

3. Fie spațiul liniar al tuturor polinoamelor de grad cel mult n. Atunci polinoamele $1, x, x^2, \ldots, x^n$ formează un sistem liniar independent.

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 24/48

Dimensiunea unui spațiu liniar

Definiție

Fie $(V,+,\cdot)$ un spațiu liniar.

- i) Se numește dimensiune (algebrică) a spațiului liniar V numărul maxim de elemente liniar independente din V. Vom nota dimensiunea spațiului V cu $\dim(V)$.
- ii) Spațiul liniar V este numit **infinit-dimensional** dacă există cel puțin o submulțime infinită și liniar independentă a lui V. În caz contrar, V este numit **spațiu liniar finit-dimensional**.

A Arusopie

Exemple:

- 1. $\dim_{\mathbb{R}}(\mathbb{R}^n) = n;$
- 2. $\dim_{\mathbb{R}} \mathcal{M}_{m,n}(\mathbb{R}) = m \cdot n$.

FII (UAIC, Iasi)

25 / 48

Definiție

Fie $(V,+,\cdot)$ un spațiu liniar și fie B o submulțime nevidă a lui V.

B se numește **bază algebrică** a lui V dacă B este o submulțime liniar independentă și Lin(B)=V.

Propoziție

Fie $n\in\mathbb{N}^*$. Atunci mulțimea $\{\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n\}\subseteq\mathbb{R}^n$, este o bază a lui \mathbb{R}^n , numită baza canonică a lui \mathbb{R}^n .

În cazul unui spațiu liniar n-dimensional V, o bază a lui V este o mulțime B alcătuită din n elemente, $\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_n$, liniar independente, din V.

Fiecare element $\mathbf{x} \in V$ se reprezintă atunci, în mod unic, sub forma

$$\mathbf{x} = \sum_{k=1}^{n} \alpha_k \mathbf{b}_k,$$

Scalarii $\alpha_1, \dots \alpha_n$ se numesc *coordonatele lui* $\mathbf x$ *în baza* B .

Orice bază a unui spațiu liniar V are un număr de vectori egal cu dimensiunea lui V.

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 27/48

Dacă notăm

•
$$X_B \stackrel{not}{=} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathcal{M}_{n,1}$$
, unde $\alpha_1, \dots, \alpha_n$ sunt coordonatele lui \mathbf{x} în baza B ;

• $\tilde{B} \stackrel{not}{=} [\mathbf{b}_1^T \ \mathbf{b}_2^T \dots \mathbf{b}_n^T] \in \mathcal{M}_{n,n}$ matricea ce are pe coloana k coordonatele lui \mathbf{b}_k ,

atunci relația

$$\mathbf{x} = \sum_{k=1}^{n} \alpha_k \mathbf{b}_k$$

se poate reda, matriceal, sub forma:

$$\mathbf{x}^T = \tilde{B} \cdot X_B = [\mathbf{b}_1^T \ \mathbf{b}_2^T \dots \mathbf{b}_n^T] \cdot \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_n \end{bmatrix}.$$

Matematică, Anul I A. Arusoaie

28 / 48

Propoziție

Fie $(V,+,\cdot)$ un spațiu liniar cu $\dim(V)=n$. Atunci

- 1. Orice mulțime de m elemente din V, cu m > n, este liniar dependentă;
- 2. Orice mulțime de n elemente din V este bază a lui V dacă și numai dacă este mulțime liniar independentă.
- 3. Orice mulțime de n vectori din V este bază a lui V dacă și numai dacă mulțimea este un sistem de generatori al lui V.

Definiție

Se numește rang al unei mulțimi U, de vectori din spațiul vectorial $(V,+,\cdot)$, dimensiunea subspațiului generat de U, adică

$$rang(U) := dim(Lin(U))$$
.

Exemplu:

Să se arate că mulțimea $\mathcal{B}=\{v_1=(1,0,-1),v_2=(2,1,0),v_3=(0,1,1)\}$ este o bază a spațiului vectorial \mathbb{R}^3 . Determinați coordonatele vectorului v=(1,2,3) în această bază.

Schimbarea bazei

Definiție

Fie $(V,+,\cdot)$ un spațiu liniar cu $dim(V)=n\in\mathbb{N}^*$, fie $B=\{\mathbf{b}_1,\mathbf{b}_2,\ldots,\mathbf{b}_n\}$ o bază a lui V și fie $B'=\{\mathbf{b}_1',\mathbf{b}_2',\ldots,\mathbf{b}_m'\}$ o mulțime de m vectori din V.

Se numește matrice de trecere (schimbare) de la baza B la sistemul de vectori B', matricea

$$S_{B,B'} = \begin{pmatrix} s_{11} & s_{12} & \dots & s_{1m} \\ s_{21} & s_{22} & \dots & s_{2m} \\ \vdots & \vdots & \dots & \vdots \\ s_{n1} & s_{n2} & \dots & s_{nm} \end{pmatrix} \in \mathcal{M}_{n,m}$$

unde, pentru $1 \leq k \leq m$, s_{1k}, \ldots, s_{nk} , sunt coordonatele vectorului \mathbf{b}_k' , în raport cu $\mathbf{b}_1, \ldots, \mathbf{b}_n$.

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 31/48

Schimbarea bazei

Cu alte cuvinte, s_{ij} sunt astfel încât

$$\begin{cases} \mathbf{b}'_{1} &= s_{11}\mathbf{b}_{1} + s_{21}\mathbf{b}_{2} + \ldots + s_{n1}\mathbf{b}_{n} \\ \mathbf{b}'_{2} &= s_{12}\mathbf{b}_{1} + s_{22}\mathbf{b}_{2} + \ldots + s_{n2}\mathbf{b}_{n} \\ \vdots &\vdots &\vdots \\ \mathbf{b}'_{m} &= s_{1m}\mathbf{b}_{1} + s_{2m}\mathbf{b}_{2} + \ldots + s_{nm}\mathbf{b}_{n} \end{cases}$$

Matriceal putem scrie

$$\widetilde{B}' = \widetilde{B} \cdot S_{B,B'},$$

Matriceal putem scrie
$$\widetilde{B}' = \widetilde{B} \cdot S_{B,B'},$$
 unde $\widetilde{B}' = [\mathbf{b}_1'^T \ \mathbf{b}_2'^T \dots \mathbf{b}_m'^T]$ și $\widetilde{B} = [\mathbf{b}_1^T \ \mathbf{b}_2^T \dots \mathbf{b}_n^T].$

32 / 48

Matematică, Anul I A Arusopie FII (UAIC, Iasi)

Schimbarea coordonatelor

Propoziție

Fie $(V, +, \cdot)$ un spațiu liniar finit-dimensional, cu $\dim V = n \in \mathbb{N}^*$.

Dacă $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$, $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$ sunt două baze a lui V, iar $S_{B,B'}$ este matricea de trecere de la B la B', atunci matricea $S_{B,B'}$ este nesingulară $(\det S_{B,B'} \neq 0)$.

Mai mult, matricea S^{-1}_{B,B^\prime} este matricea de trecere de la baza B^\prime la B , adică are loc

$$\widetilde{B} = \widetilde{B}' \cdot S_{B,B'}^{-1}.$$

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 33/48

Schimbarea coordonatelor

În plus, dacă $\mathbf{x} \in V$, iar $\alpha_1, \dots, \alpha_n$ sunt coordonatele lui \mathbf{x} în raport cu baza B, iar $\alpha_1', \dots, \alpha_n'$ sunt coodonatele lui \mathbf{x} în baza B', atunci

$$X_{B'} = S_{B,B'}^{-1} \cdot X_B,$$

$$\text{ unde } X_B \stackrel{not}{=} \left[\begin{array}{c} \alpha_1 \\ \vdots \\ \alpha_n \end{array} \right] \in \mathcal{M}_{n,1}, \text{ iar } X_{B'} \stackrel{not}{=} \left[\begin{array}{c} \alpha_1' \\ \vdots \\ \alpha_n' \end{array} \right] \in \mathcal{M}_{n,1}.$$

- Spunem că bazele B și B' sunt *la fel orientate* dacă determinantul matricii $S_{B,B'}$ de trecere de la B la B' este pozitiv.
- Spunem că bazele B și B' sunt contrar orientate dacă $det(S_{B,B'}) < 0$.

- 4 □ > 4 ∰ > 4 ≧ > 4 ≧ > ≧ • 9 Q ↔

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 34/48

Structura cursului

- Definiții. Proprietăți
- Combinații liniare
 - Liniară dependență și independență
 - Dimensiunea unui spațiu liniar
 - Bază algebrică
 - Schimbarea coordonatelor
- $oldsymbol{3}$ Produs scalar. Norme în \mathbb{R}^n
- Baze ortonormale
 - Procedeul de ortonormalizare Gram-Schmidt

FII (UAIC, Iasi)

35 / 48

Definiție

Fie $(V, +, \cdot)$ un spațiu liniar real.

- a) Se numește produs scalar pe V o aplicație $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$, care satisface următoarele proprietăți:
 - (PS1) $\langle \cdot, \cdot \rangle$ este *pozitiv definită*, adică
 - $\star \langle \mathbf{x}, \mathbf{x} \rangle \geqslant 0, \, \forall \, \mathbf{x} \in V$
 - $\star \langle \mathbf{x}, \mathbf{x} \rangle = 0 \Leftrightarrow \mathbf{x} = \mathbf{0} \in V;$
 - (PS2) $\langle \cdot, \cdot \rangle$ este *simetrică*, adică
 - $\star \langle \mathbf{x}, \mathbf{y} \rangle = \langle \mathbf{y}, \mathbf{x} \rangle, \, \forall \, \mathbf{x}, \mathbf{y} \in V;$
 - (PS3) $\langle \cdot, \cdot \rangle$ este *biliniară*, adică
 - $\star \langle \alpha \cdot \mathbf{x} + \beta \cdot \mathbf{y}, \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{z} \rangle + \beta \langle \mathbf{y}, \mathbf{z} \rangle,$
 - $\star \ \langle \mathbf{x}, \alpha \cdot \mathbf{y} + \beta \cdot \mathbf{z} \rangle = \alpha \langle \mathbf{x}, \mathbf{y} \rangle + \beta \langle \mathbf{x}, \mathbf{z} \rangle, \ \forall \ \alpha, \beta \in \mathbb{R}, \mathbf{x}, \mathbf{y}, \mathbf{z} \in V.$
- **b)** Perechea $(V, \langle \cdot, \cdot \rangle)$, în care V este un spațiu liniar real, iar $\langle \cdot, \cdot \rangle$ este un produs scalar pe V se numește **spațiu prehilbertian** (spațiu euclidian).

Propoziție

Fie $n\in\mathbb{N}^*$ și $\langle\cdot,\cdot\rangle:\mathbb{R}^n imes\mathbb{R}^n\to\mathbb{R}$ definită prin

$$\langle (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \rangle := x_1 y_1 + x_2 y_2 + \dots + x_n y_n,$$

 $\forall (x_1, x_2, \dots, x_n), (y_1, y_2, \dots, y_n) \in \mathbb{R}^n,$

Atunci $\langle \cdot, \cdot \rangle$ este un produs scalar pe \mathbb{R}^n , numit *produsul scalar euclidian* (canonic).

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 37/48

Definiție

Fie $(V,\langle\cdot,\cdot\rangle)$ un spațiu prehilbertian și fie U o submulțime nevidă a lui V.

1) Doi $\textit{vectori}\ \mathbf{x} \in V$ și $\mathbf{y} \in V$ se numesc ortogonali, și notăm $\mathbf{x} \bot \mathbf{y}$, dacă

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0.$$

2) Spunem $\mathbf{x} \in V$ este *ortogonal pe mulțimea* U, și notăm $\mathbf{x} \bot U$, dacă

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0, \ \forall \, \mathbf{y} \in U.$$

3) Vom numi U sistem ortogonal dacă

$$\langle \mathbf{x}, \mathbf{y} \rangle = 0, \ \forall \mathbf{x}, \mathbf{y} \in U, \ \text{cu } \mathbf{x} \neq \mathbf{y}.$$

4) Dacă $U\subseteq V$, atunci prin *suplimentul ortogonal al lui* U, înțelegem mulțimea tuturor vectorilor ortogonali pe U. Altfel scris

$$U^{\perp} := \{ \mathbf{x} \in V \mid \mathbf{x} \perp U \}$$

Definiție

Fie $(V,\langle\cdot,\cdot\rangle)$ un spațiu prehilbertian și $\mathbf{x},\mathbf{y}\in V\setminus\{\mathbf{0}\}.$

Unghiul dintre vectorii \mathbf{x} *și* \mathbf{y} , notat prin $\sphericalangle(\mathbf{x},\mathbf{y})$ sau $\widehat{(\mathbf{x},\mathbf{y})}$, se definește prin relația:

$$\widehat{(\mathbf{x},\mathbf{y})} = \arccos \frac{\langle \mathbf{x},\mathbf{y} \rangle}{\sqrt{\langle \mathbf{x},\mathbf{x} \rangle} \sqrt{\langle \mathbf{y},\mathbf{y} \rangle}}.$$

Observație: Se poate observa cu ușurință că $\widehat{(\mathbf{x},\mathbf{y})} = \widehat{(\mathbf{y},\mathbf{x})}$ și că $\widehat{(\mathbf{x},\mathbf{y})} = \frac{\pi}{2}$ dacă și numai dacă $\mathbf{x} \perp \mathbf{y}$.

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 39/48

Definiție

Fie $(V,+,\cdot)$ un spațiu liniar real. Spunem că aplicația $\|\cdot\|:V\to\mathbb{R}$ este o normă pe V dacă

- N1) $\|\mathbf{x}\| \geqslant 0, \forall \mathbf{x} \in V$
- N2) $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0};$
- N3) $\|\alpha \cdot \mathbf{x}\| = |\alpha| \|\mathbf{x}\|, \ \forall \alpha \in \mathbb{R}, \ \forall \mathbf{x} \in V$ (omogenitate);
- N4) $\|\mathbf{x} + \mathbf{y}\| \leq \|\mathbf{x}\| + \|\mathbf{y}\|$, $\forall \mathbf{x}, \mathbf{y} \in V$ (inegalitatea triunghiulară).

Perechea $(V, \|\cdot\|)$ se numește *spațiu normat*.

Propoziție

Fie $(V,\langle\cdot,\cdot\rangle)$ un spațiu prehilbertian. Atunci aplicația $\|\cdot\|:V\to\mathbb{R}$ definită de

$$\|\mathbf{x}\| = \sqrt{\langle \mathbf{x}, \mathbf{x} \rangle}, \forall \, \mathbf{x} \in V$$

este o normă pe V numită norma indusă de produsul scalar $\langle \cdot, \cdot \rangle$.

 ✓ □ ▷ ✓ ⓓ ▷ ✓ ⓓ ▷ ✓ ⓓ ▷ ☒
 ♦ ♀ ♀ ♀ ♀ ♀

 Matematică, Anul I
 A. Arusoaie
 FII (UAIC, Iași)
 40/48

Propoziție

Fie $n \in \mathbb{N}^*$. Norma indusă de produsul scalar euclidian pe \mathbb{R}^n , definită prin

$$\|\mathbf{x}\|_{2} = \sqrt{x_{1}^{2} + x_{2}^{2} + \ldots + x_{n}^{2}} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}, \forall \mathbf{x} \in \mathbb{R}^{n}, \mathbf{x} = (x_{1}, x_{2}, \ldots, x_{n}),$$

se numește norma euclidiană.

Definiție

Fie $(V,\|\cdot\|)$ un spațiu normat și $\mathbf{x}\in V.$ Elementul \mathbf{x} se numește **versor** dacă $\|\mathbf{x}\|=1.$

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 41/48

Structura cursului

- Definiţii. Proprietăţi
- Combinații liniare
 - Liniară dependență și independență
 - Dimensiunea unui spațiu liniar
 - Bază algebrică
 - Schimbarea coordonatelor
- $oxed{3}$ Produs scalar. Norme în \mathbb{R}^n
- Baze ortonormale
 - Procedeul de ortonormalizare Gram-Schmidt

Matematică, Anul I

Baze ortonormale

Definiție

Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu prehilbertian.

- a) O submulțime nevidă $U\subseteq V$ se numește *sistem ortonormal* dacă U este un sistem ortogonal și fiecare element al lui U este un versor.
- b) Dacă B este o bază a lui V și B este un sistem ortogonal, atunci B se numește bază ortogonală a lui V.
- c) Dacă B este o bază a lui V și B este un sistem ortonormal, atunci B se numește bază ortonormală a lui V.

Cu alte cuvinte, U este *un sistem ortonormal* dacă și numai dacă, pentru orice $\mathbf{x},\mathbf{y}\in U$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \begin{cases} 0, & \text{când } \mathbf{x} \neq \mathbf{y} \\ 1, & \text{când } \mathbf{x} = \mathbf{y} \end{cases}$$

Bineînteles, baza canonică $\{e_1,\ldots,e_n\}$, a lui \mathbb{R}^n , este o bază ortonormală a lui \mathbb{R}^n .

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 43/48

◆□ト ◆圖ト ◆意ト ◆意ト

Baze ortonormale

Definiție

Fie $(V,\langle\cdot,\cdot\rangle)$ un spațiu prehilbertian de dimensiune $n\in\mathbb{N}^*$ și fie $B=\{\mathbf{b}_1,\mathbf{b}_2,\dots\mathbf{b}_n\}$ o bază a lui V. Se numește **determinantul Gram** asociat unei baze B, numărul $\det G\in\mathbb{R}$, unde

$$G = \begin{pmatrix} \langle \mathbf{b}_{1}, \mathbf{b}_{1} \rangle & \langle \mathbf{b}_{1}, \mathbf{b}_{2} \rangle & \dots & \langle \mathbf{b}_{1}, \mathbf{b}_{n} \rangle \\ \langle \mathbf{b}_{2}, \mathbf{b}_{1} \rangle & \langle \mathbf{b}_{2}, \mathbf{b}_{2} \rangle & \dots & \langle \mathbf{b}_{2}, \mathbf{b}_{n} \rangle \\ \vdots & \vdots & \vdots & \vdots \\ \langle \mathbf{b}_{n}, \mathbf{b}_{1} \rangle & \langle \mathbf{b}_{n}, \mathbf{b}_{2} \rangle & \dots & \langle \mathbf{b}_{n}, \mathbf{b}_{n} \rangle \end{pmatrix} \in \mathcal{M}_{n}(\mathbb{R})$$
(1)

- G este o matrice simetrică și nesingulară;
- B este ortonormală dacă și numai dacă G este matricea unitate I_n ;
- \bullet B este ortogonală dacă și numai dacă matricea G este diagonală, adică

$$g_{ij} = 0, \forall i, j \in \overline{\{1, n\}}, i \neq j$$

←□▶←□▶←□▶←□▶
□▶←□▶←□▶
□
●

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 44 / 4

Procedeul de ortonormalizare Gram-Schmidt

Teorema

Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu prehilbertian de dimensiune $n \in \mathbb{N}^*$.

Dacă $B = \{\mathbf{b}_1, \dots \mathbf{b}_n\}$ este o bază a lui V, atunci există o bază ortonormală $B' = \{\mathbf{b}'_1, \dots, \mathbf{b}'_n\}$, astfel încât

$$Lin({\mathbf{b}_1, \dots \mathbf{b}_k}) = Lin({\mathbf{b}'_1, \dots, \mathbf{b}'_k}), \forall k \in {1, 2, \dots, n}.$$

Matematică, Anul I A. Arusoaie

45 / 48

Procedeul de ortonormalizare Gram-Schmidt

Demonstrație: Fie $(V, \langle \cdot, \cdot \rangle)$ un spațiu prehilbertian și $B = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ o bază a lui.

Plecând de la B, se poate construi o bază $B' = \{\mathbf{b}'_1, \mathbf{b}'_2, \dots, \mathbf{b}'_n\}$, ortogonală, a aceluiași spațiu V, utilizând **algoritmul lui Gram-Schmidt**, după cum urmează:

Pasul 1: Fie $b'_1 = b_1$.

Pasul 2: Se determină scalarul $\lambda_1 \in \mathbb{R}$, așa încât vectorul $b_2' = b_2 + \lambda_1 b_1'$ să fie ortogonal pe b_1' , adică să avem $0 = \langle b_1', b_2 \rangle + \lambda_1 \langle b_1', b_1' \rangle$. Așadar,

$$b_2' = b_2 - \frac{\langle b_1', b_2 \rangle}{\langle b_1', b_1' \rangle} b_1'.$$

46 / 48

Procedeul de ortonormalizare Gram-Schmidt

Pasul 3: Se caută scalarii μ_1 și μ_2 din \mathbb{R} , așa încât $b_3' = b_3 + \mu_1 b_1' + \mu_2 b_2'$ să fie ortogonal pe sistemul $\{b_1', b_2'\}$, adică să avem $\langle b_3', b_1' \rangle = 0$ și $\langle b_3', b_2' \rangle = 0$.

Găsim $\mu_1 = -\frac{\langle b_1', b_3 \rangle}{\langle b_1', b_1' \rangle}$ și $\mu_2 = -\frac{\langle b_2', b_3 \rangle}{\langle b_2', b_2' \rangle}$. Prin urmare, avem:

$$b_3'=b_3-\frac{\langle b_1',b_3\rangle}{\langle b_1',b_1'\rangle}b_1'-\frac{\langle b_2',b_3\rangle}{\langle b_2',b_2'\rangle}b_2'.$$

Pasul k: Continuând procedeul, obținem formula generală:

$$\mathbf{b}'_k = \mathbf{b}_k - \sum_{i=1}^{k-1} \frac{\langle \mathbf{b}'_i, \mathbf{b}_k \rangle}{\langle \mathbf{b}'_i, \mathbf{b}'_i \rangle} \mathbf{b}'_i, k = \overline{2, n}.$$

Aşadar, am găsit baza ortogonală B'.

Pentru a obține o bază ortonormală, vom considera $B''=\{\mathbf{b}_1'',\mathbf{b}_2'',\dots,\mathbf{b}_n''\}$, unde

$$\mathbf{b}_k'' = \frac{\mathbf{b}_k'}{\|\mathbf{b}_k'\|}, k = \overline{1, n}$$

iar $\|\cdot\|$ este norma indusă de produsul scalar $\langle\cdot,\cdot\rangle$, considerat pe V, v

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 4

Bibliografie

- D. Bușneag, D. Piciu *Lecții de algebră*, Ed. Universitaria, Craiova, 2002.
- Rodica Luca-Tudorache Analiză matematică, Editura Tehnopress, Iași, 2005.
- Mihai Onucu Drâmbe *Inegalități. Idei și metode.*, Ed. GIL, Zalău, 2003.
- S. Burris, H. P. Sankappanavar A Course in Universal Algebra, The Millenium Edition, 2000.
- F. L. Ţiplea *Introducere în teoria mulțimilor*, Ed. Univ. "Al. I. Cuza", Iași, 1998.
- T. Albu, I.D. Ion *Itinerar elementar in algebra superioară*, Matrix Rom București, 2012.
- J. Harcet, L Heinrichs, P. M. Seiler *Mathematics. Higher Lever*, Oxford Univ. Press, 2012.
- R. Solomon Notes on Ordinals and Cardinals, math.uconn.edu, 2014.

Matematică, Anul I A. Arusoaie FII (UAIC, Iași) 48/48