Matrices Exercises

Dr Jon Shiach

Semester 1

- 1.1 (a) Write down the 3×3 matrix A whose entries are given by $a_{ij} = i + j$.
 - (b) Write down the 4×4 matrix B whose entries are given by $b_{ij} = (-1)^{i+j}$.
 - (c) Write down the 4×4 matrix C whose entries are given by

$$c_{ij} = \begin{cases} -1, & i > j, \\ 0, & i = j, \\ 1, & i < j. \end{cases}$$

- 1.2 The Hilbert matrix is the $n \times n$ matrix H where the value of its elements are $h_{ij} = \frac{1}{i+j-1}$.
 - (a) Write down the 4×4 Hilbert matrix.
 - (b) Show that an $n \times n$ Hilbert matrix is symmetric.
- 1.3 Given the matrices

$$A = \begin{pmatrix} 1 & -3 \\ 4 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 0 \\ -1 & 5 \end{pmatrix},$$

$$C = \begin{pmatrix} 5 \\ 9 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 1 & 3 \\ 4 & -2 & 3 \end{pmatrix},$$

$$E = \begin{pmatrix} 1 & 2 \\ 0 & 6 \\ -2 & 3 \end{pmatrix} \qquad F = \begin{pmatrix} 1 & -2 & 4 \end{pmatrix},$$

$$G = \begin{pmatrix} 4 & 2 & 3 \\ -2 & 6 & 0 \\ 0 & 7 & 1 \end{pmatrix}, \qquad H = \begin{pmatrix} 1 & 0 & 1 \\ 5 & 2 & -2 \\ 2 & -3 & 4 \end{pmatrix}.$$

Calculate the following where possible:

- (a) A+B
- (b) B+C
- (c) A^{T}
- (d) C

- (e) 3B A
- (f) $(F^{\mathsf{T}})^{\mathsf{T}}$
- (g) $A^{\mathsf{T}} + B^{\mathsf{T}}$
- (h) $(A+B)^{\mathsf{T}}$
- 1.4 Using the matrices from exercise 1.3 calculate the following where possible:
 - (a) AB
- (b) BA
- (c) AC
- (d) CA

- (e) $C^{\mathsf{T}}C$
- (f) CC^{T}
- (g) DE
- (h) *GH*

- (i) A(DE)
- (j) (AD)E
- (k) A^3
- (1) G^4
- 1.5 Calculate the determinants of the square matrices from exercise 1.3.
- 1.6 For each non-singular matrix from exercise 1.3 calculate its inverse. Show that your answers are correct.

- 1.7 Show that AA^{T} is a symmetric matrix. Hint: use the properties of matrix transpose.
- 1.8 Show that $(AB)^{-1} = B^{-1}A^{-1}$. Hint: use the associativity law.
- 1.9 If A and B are $n \times n$ matrices is the following equation true?

$$(A+B)^2 = A^2 + 2AB + B^2$$

If not, under what conditions would it be true?

1.10 An involutory matrix is a matrix that is its own inverse, i.e., it satisfies the equation $A^2 = I$. Under what conditions is the following matrix an involutory matrix?

$$A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix}$$

- 1.11 Which of the following statements are true? For the false statements, give one counter example where the statement doesn't hold.
 - (a) If A = B then AC = BC
 - (b) If AC = BC then A = B
 - (c) For $[O]_{ij} = 0$, if AB = O then A = O or B = O
 - (d) If A + C = B + C then A = B
 - (e) If $A^2 = I$ then $A = \pm I$
 - (f) If $B = A^2$ and if A is an $n \times n$ symmetric matrix then $b_{ii} \geq 0$ for i = 1, 2, ..., n
 - (g) If AB = C and if two of the matrices are square then so is the third
 - (h) If AB = C and if C has a single column then so does B
 - (i) If $A^2 = I$ then $A^n = I$ for all integers $n \ge 2$
- 1.12 Given the matrices

$$A = \begin{pmatrix} 1 & -3 \\ 4 & 2 \end{pmatrix}, \qquad B = \begin{pmatrix} 3 & 0 \\ -1 & 5 \end{pmatrix},$$

solve the following equations for X.

- (a) 5X = A (b) X + A = I (c) 2X B = A (d) XA = I (e) BX = A (f) $A^2 = X$ (g) $X^2 = B$ (h) (X + A)B = I