Mask-Predict: Parallel Decoding of Conditional Masked Language Models

Marjan Ghazvininejad* Omer Levy* Yinhan Liu* Luke Zettlemoyer*

Autoregressive VS non-autoregressive

Multimodality problem

Неавторегрессионные модели делают сильное предположение о том, что предсказание токенов условно независимо друг от друга. Как результат модель предсказывает несколько одинаковых токенов в разных позициях.

Multimodality problem

$$P(Y_{mask}^{(0)}|X,Y_{obs}^{(0)}) = P(Y|X)$$

4

Training

- 1. Encoder-decoder transformer, где разрешено смотреть decoder на весь контекст, в отличии от авторегрессионной версии.
- 2. Маскируем k токенов, по формуле k = N · (T-t)/T, где T выбранное кол-во итераций, t текущая итерация
- 3. Предсказать токен длины последовательности в encoder
- 4. Предсказание токенов, которые были закрыты маской

Masking

\overline{src}	Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen .
t = 0	The departure of the French combat completed completed on 20 November.
t = 1	The departure of French combat troops was completed on 20 November.
t=2	The withdrawal of French combat troops was completed on November 20th.

Analysis

Length	WMT'14 EN-DE		Length WMT'1		WMT'1	6 EN-RO
Candidates	BLEU	LP	BLEU	LP		
$\ell=1$	26.56	16.1%	32.75	13.8%		
$\ell=2$	27.03	30.6%	33.06	26.1%		
$\ell=3$	27.09	43.1%	33.11	39.6%		
$\ell=4$	27.09	53.1%	32.13	49.2%		
$\ell = 5$	27.03	62.2%	33.08	57.5%		
$\ell=6$	26.91	69.5%	32.91	64.3%		
$\ell=7$	26.71	75.5%	32.75	70.4%		
$\ell = 8$	26.59	80.3%	32.50	74.6%		
$\ell = 9$	26.42	83.8%	32.09	78.3%		
Gold	27.27	_	33.20	-		

WMT'14 EN-DE

	T=4	T = 4 $T = 10$
$1 \le N < 10$ $10 \le N < 20$ $20 \le N < 30$ $30 \le N < 40$ $40 \le N$	$10 \le N < 20$ 24.6 $20 \le N < 30$ 24.9 $30 \le N < 40$ 24.9	$10 \le N < 20$ 24.6 25.9 $20 \le N < 30$ 24.9 26.7 $30 \le N < 40$ 24.9 26.7

Model performance

Model	Dimensions (Model/Hidden)			WMT'14 EN-DE DE-EN		WMT'16 EN-RO RO-EN	
NAT w/ Fertility (Gu et al., 2018)	512/512	1	19.17	23.20	29.79	31.44	
CTC Loss (Libovický and Helcl, 2018)	512/4096	1	17.68	19.80	19.93	24.71	
Iterative Refinement (Lee et al., 2018)	512/512	1	13.91	16.77	24.45	25.73	
	512/512	10	21.61	25.48	29.32	30.19	
(Dynamic #Iterations)	512/512	?	21.54	25.43	29.66	30.30	
Small CMLM with Mask-Predict	512/512	1	15.06	19.26	20.12	20.36	
	512/512	4	24.17	28.55	30.00	30.43	
	512/512	10	25.51	29.47	31.65	32.27	
Base CMLM with Mask-Predict	512/2048	1	18.05	21.83	27.32	28.20	
	512/2048	4	25.94	29.90	32.53	33.23	
	512/2048	10	27.03	30.53	33.08	33.31	
Base Transformer (Vaswani et al., 2017)	512/2048	N	27.30				
Base Transformer (Our Implementation)	512/2048	N	27.74	31.09	34.28	33.99	
Base Transformer (+Distillation)	512/2048	N	27.86	31.07			
Large Transformer (Vaswani et al., 2017)	1024/4096	N	28.40				
Large Transformer (Our Implementation)	1024/4096	N	28.60	31.71			

Model performance

Список литературы

- 1) https://arxiv.org/pdf/1904.09324.pdf
- 2) https://arxiv.org/pdf/1901.07291.pdf
- 3) https://github.com/zomux/lanmt
- 4) https://www.aclweb.org/anthology/events/emnlp-2019/

Вопросы

- 1) Опишите Multimodality problem.
- 2) В чем заключается преимущество CMLM перед one-to-one декодированием? С чем связано?
- 3) Как изменили стандартную архитектуру трансформера, авторы статьи.