

Thermodynamik II - Gruppenübung 11

Thema: Exergie/ Anergie, Totalenthalpie

Wissensfragen

- 1) Zeichnen Sie ein Exergie-Anergie-Flussbild einer realen Wärmekraftmaschine. Zeichnen Sie ein Exergie-Anergie-Flussbild eines AC/DC-Wandlers mit Wirkungsgrad von 95%. Die Wärme wird bei der Umgebungstemperatur $T_{\rm U}$ abgeführt.
- 2) Markieren Sie in dem gegebenen T,s-Diagramm die spezifische Wärme q_{12} sowie die spezifische Exergie der Wärme ex_{q12} der dort abgebildeten isobaren und reversiblen Zustandsänderung. Die isobare Zustandsänderung kann als linear angenommen werden. Es gilt weiterhin $T_U < T_1 < T_2$. Geben Sie eine Berechnungsvorschrift für die eingezeichnete spezifische Exergie der Wärme an.

Aus Aufgabensammlung:

10.2 Dampfturbine II

Betrachtet wird eine Turbine, die mit Wasserdampf ($p_1 = 180 \,\mathrm{bar}$, $\vartheta_1 = 580 \,^{\circ}\mathrm{C}$, $\dot{m} = 120 \,\frac{\mathrm{kg}}{\mathrm{s}}$, $\rho = 50 \,\frac{\mathrm{kg}}{\mathrm{m}^3}$) beschickt wird. Die Turbine kann als adiabat betrachtet werden. Der isentrope Turbinenwirkungsgrad sei $\eta_{\mathrm{s,T}} = 0.92$. Der Dampfgehalt nach der Turbine sei x = 0.9.

- a) Welche Leistung gibt die Turbine ab, wenn der Wasserdampf bei Umgebungsdruck $p_{\rm U} = 1$ bar abströmt?
- b) Berechnen Sie die spezifische kinetische Energie des zuströmenden Dampfes (Rohrdurchmesser $d=0,2\,\mathrm{m}$) und setzen Sie diese ins Verhältnis zur spezifischen Enthalpie des Dampfes.
- c) Zeichnen Sie die Zustandsänderung des Wasserdampfes sowie die Totalenthalpie am Eintritt in ein h,s-Diagramm für Wasserdampf.
- d) Berechnen Sie den Exergiegehalt des zuströmendes Dampfes ($T_{\rm U}=298\,{\rm K}$) und geben Sie an, wie viel Wellenleistung maximal aus diesem Dampfmassenstrom gewonnen werden könnte. Welcher Austrittszustand stellt sich in diesem Fall ein?
- e) Berechnen Sie den Exergieverluststrom der Turbine.
- f) Welche Wärmeenergie könnte man erhalten, wenn der Wasserdampf nicht einer Turbine zugeführt wird, sondern in einem Wärmeübertrager auf $T_{\rm U}$ und $p_{\rm U}$ abgekühlt wird?

Stoffdaten von Wasser:

$p_{\rm s}/{\rm bar}$	$\vartheta_{\rm s}/^{\circ}{\rm C}$	$h'/rac{ ext{kJ}}{ ext{kg}}$	$h'' / \frac{\mathrm{kJ}}{\mathrm{kg}}$	$s'/\frac{\mathrm{kJ}}{\mathrm{kg}\cdot\mathrm{K}}$	$s'' / \frac{\mathrm{kJ}}{\mathrm{kg \cdot K}}$	p/bar	ϑ/°C	$h/rac{\mathrm{kJ}}{\mathrm{kg}}$	$s/rac{\mathrm{kJ}}{\mathrm{kg}\cdot\mathrm{K}}$
1	99,606	417,5	2674,9	1,3028	7,3588	1	24,85	104,29	0,3651
	'	'	'	•	'	180	580	3502,2	6,5087