Содержание

1	Вве	едение в дисциплину "Искусственный интеллект"	4		
2	Осн	новные задачи и понятия	4		
	2.1	Задачи ИИ	4		
	2.2	Понятия и термины	5		
3	Задачи обучения				
	3.1	Классификация подходов обучения	7		
	3.2	Формальная постановка задачи обучения с подкрепле-			
		нием	7		
	3.3	Классификация задачи обучения с подкреплением	8		
4	Диі	намическое программирование	10		
	4.1	Введение в ДП	10		
	4.2	Ключевые элементы МППР	10		
	4.3	Оценивание стратегии (Предсказание)	10		
	4.4	Улучшение стратегии	11		
	4.5	Итерация по стратегиям	11		
	4.6	Итерация по ценности	12		
	4.7	Асинхронное ДП	13		
	4.8	Обобщенная итерация по стратегиям (ОИС)	14		
	4.9	Эффективность ДП	14		
5	Me	тоды Монте-Карло	15		
	5.1	Введение в методы Монте-Карло	15		
	5.2	Предсказание методами Монте-Карло	15		
	5.3	Оценивание ценности действий	17		
	5.4	Управление методом Монте-Карло	17		
	5.5	Методы без исследовательских стартов	18		
	5.6	Предсказание с разделенной стратегией	20		

	5.7	Управление с разделенной стратегией	21		
	5.8	Инкрементная реализация	22		
6	Обу	учение на основе временных различий	23		
	6.1	Введение в TD-обучение	23		
	6.2	Преимущества TD-методов	24		
	6.3	Оптимальность $TD(0)$	24		
	6.4	Sarsa: TD-управление с единой стратегией	25		
	6.5	Q-обучение: TD-управление с разделенной стратегией.	26		
	6.6	Expected Sarsa	27		
	6.7	Смещение максимизации и двойное обучение	28		
	6.8	Специальные случаи: Послесостояния	28		
7	Ист	іолнитель-критик	29		
	7.1	REINFORCE с базой	29		
	7.2	Методы исполнитель-критик	29		
	7.3	Сравнение подходов	31		
	7.4	Дополнительные замечания	32		
8	Прогнозирование и аппроксимация функций ценно-				
	сти		32		
	8.1	Концепция обновления функции ценности	32		
	8.2	Обобщение обновлений через аппроксимацию функций	33		
	8.3	Применение методов машинного обучения	33		
	8.4	Проблемы традиционных методов аппроксимации	34		
	8.5	Итоговые требования к методам аппроксимации	35		
9	Стохастические градиентные и полуградиентные ме-				
	тод		35		
	9.1	Основные принципы СГС-методов	35		
	9.2	Условия сходимости СГС	36		
	9.3	Работа с неточными целями U_t	36		

	9.4	Полуградиентные методы: особенности и примеры	37
	9.5	Агрегирование состояний как частный случай СГС	38
	9.6	Преимущества и недостатки методов	39
10	Нел	инейная аппроксимация функций: искусственные	
		ронные сети	4 0
	10.1	Основные понятия ИНС	40
		Универсальная аппроксимация	40
		Обучение ИНС	41
		Проблемы обучения глубоких сетей	42
		Методы улучшения обучения глубоких сетей	42
		Архитектуры ИНС	43
		Применение в обучении с подкреплением	44
11	Пра	ктические примеры применения обучения с под-	
	_	плением	44
	-	TD-Gammon (Нарды)	44
		Программа Сэмюэла (Шашки)	
	11.3	Управление памятью (DRAM)	46
		Персонализация веб-служб	46
		Парение в восходящих потоках	47
19	Orn	аничения подхода обучения с подкреплением	47
14	_	Эволюционные методы	47
		Сравнение методов обучения с подкреплением и эво-	41
	14.4		48
	10.0	люционных подходов	40
	17.3	Оаключение	4.9

1 Введение в дисциплину "Искусственный интеллект"

Искусственный интеллект (ИИ) - чрезвычайно широкая область знаний, которая включает математическую логику, теорию вероятностей, теорию непрерывных функций и практические системы, способные имитировать когнитивные функции человека, такие как восприятие, рассуждение, обучение и действие. Тематика области искусственного интеллекта в настоящее время охватывает огромный перечень научных направлений, от задач самого общего характера (обучение, рассуждение, восприятие и т.д.) и до таких конкретных задач, как игра в шахматы, доказательство математических теорем, сочинение стихов, вождение автомобиля или диагностика заболеваний. Достижения в области ИИ могут найти себе применение при решении любой интеллектуальной задачи, это универсальная научная область.

2 Основные задачи и понятия

2.1 Задачи ИИ

- 1. Решение плохо формализуемых задач.
 - Такие задачи характеризуются высоким уровнем неопределенности, отсутствием полного формального описания и наличием множества параллельных критериев оценки.
 - Пример: принятие стратегических управленческих решений, где невозможно задать чёткий алгоритм из-за динамичности внешних факторов.
- 2. Моделирование поведения интеллектуальных агентов.

- Разработка моделей, способных имитировать когнитивные процессы, такие как **восприятие**, **память**, **обучение** и **планирование**.
- Пример: автономный робот, который анализирует данные с датчиков, планирует маршрут и принимает решения в режиме реального времени.

3. Представление и обработка знаний.

- Формирование структурированных моделей знаний, которые используются для **логического вывода** и **вероятностного рассуждения**.
- Пример: экспертная система для диагностики заболеваний, где знания представлены в виде правил и фактов.

4. Интерактивное взаимодействие с внешней средой.

- Создание систем, способных воспринимать, анализировать и реагировать на окружающие сигналы.
- Пример: системы распознавания образов, анализирующие визуальную информацию и принимающие решения на её основе.

Ключевая задача **ИИ** заключается в выяснении того, как создавать программы, которые в рамках возможного обеспечивают рациональное поведение **агента** с использованием небольшого объема программного кода, а не обширных таблиц с множеством записей.

2.2 Понятия и термины

Плохо формализуемая задача — это задача, для которой сложно или невозможно заранее задать строгие математические модели, четкие правила или алгоритмы решения [1].

Агент — это просто что-то, что действует (слово агент произошло от латинского слова agere - "действовать"). Конечно, все компьютерные программы что-то делают, но ожидается, что компьютерные агенты будут делать больше: работать автономно, воспринимать окружающую среду, сохранять свое существование в течение длительного периода времени, приспосабливаться к изменениям, устанавливать и преследовать определенные цели [1].

Внешняя среда — окружение, в котором действует агент. Среда может быть детерминированной или стохастической, статической или динамической, с полной или частичной информацией.

Поведение — совокупность действий агента в ответ на изменения внешней среды. Может быть заранее заданным, адаптивным или обучаемым.

Модель – формализованное представление реального объекта, процесса или системы, используемое для анализа, прогнозирования или управления. В **ИИ** модель может описывать среду, агента, данные или связи между ними.

Обучение — процесс улучшения поведения или предсказательных способностей системы (агента, алгоритма) на основе опыта, данных или взаимодействия со средой [1].

Знание – информация, которая представлена в виде, пригодном для обработки системой искусственного интеллекта (например, правила, факты, связи, вероятности).

Искусственный нейрон. Элемент нейронной сети, имитирующий биологический нейрон, суммирующий входные сигналы с весовыми коэффициентами и применяющий нелинейную функцию активации [4].

Искусственная нейронная сеть (ИНС). Система взаимосвязанных нейронов, способная моделировать сложные зависимости и решать задачи классификации, регрессии, аппроксимации и оптимизации.

3 Задачи обучения

3.1 Классификация подходов обучения

- 1. **Обучение с учителем (Supervised Learning)** система обучается на размеченных данных, где каждому входу соответствует правильный выход. Примеры: классификация, регрессия.
- 2. **Обучение без учителя (Unsupervised Learning)** система обучается на неразмеченных данных, выявляя структуры и закономерности. Примеры: кластеризация, понижение размерности.
- 3. Обучение с подкреплением (Reinforcement Learning, RL) агент обучается через взаимодействие с внешней средой, получая награды или штрафы за свои действия.
- 4. Обучение с частичным привлечением учителя (Semisupervised Learning) комбинированный подход, где используются как размеченные, так и неразмеченные данные.
- 5. **Обучение с переносом знаний (Transfer Learning)** использование знаний, полученных в одной задаче, для решения другой.

3.2 Формальная постановка задачи обучения с подкреплением

Обучение с подкреплением – это обучение тому, что делать, т. е. как отобразить ситуации на действия, чтобы максимизировать численный сигнал – вознаграждение. Обучаемому не говорят, какие действия предпринимать, он должен сам понять, какие действия

приносят максимальное вознаграждение, пробуя их. В наиболее интересных и трудных случаях действия могут влиять не только на непосредственное вознаграждение, но и на следующую ситуацию, а значит, на все последующие вознаграждения. Эти две характеристики — поиск методом проб и ошибок и отложенное вознаграждение — являются наиболее важными отличительными чертами обучения с подкреплением [3].

Мы формализуем задачу обучения с подкреплением, применяя идеи из теории динамических систем, а точнее как задачу оптимального управления не полностью известным марковским процессом принятия решений. Основную мысль можно сформулировать просто – требуется уловить наиболее важные аспекты реальной проблемы, стоящей перед обучающимся агентом, который взаимодействует во времени с окружающей средой для достижения некоторой цели. Обучающийся агент должен уметь в какой-то степени воспринимать состояние среды и предпринимать действия, изменяющие это состояние. У агента также должна быть цель или несколько целей, как-то связанных с состоянием окружающей среды. Марковские процессы принятия решений включают все три аспекта – восприятие, действие и цель – в простейшей возможной форме, не сводя, однако, ни один аспект к тривиальному. Любой метод, подходящий для решения таких задач, будет рассматриваться нами как метод обучения с подкреплением.

3.3 Классификация задачи обучения с подкреплением

В целом возможные подходы можно классифицировать следующим образом.

• Обучение с подкреплением на основе модели. В этих подходах агент использует модель перехода среды как инстру-

мент, помогающий интерпретировать сигналы вознаграждения и принимать решения о том, как действовать. Изначально эта модель может быть неизвестна, и тогда агент изучает ее посредством наблюдения результатов своих действий, либо она может быть уже определена, - например, программе игры в шахматы могут быть известны все правила этой игры, даже если она еще не обучена выбирать хорошие ходы. В частично наблюдаемых средах модель перехода также будет полезна для оценки состояния.

- Обучение с подкреплением без модели. В этих подходах агент изначально не знает и не изучает модель перехода для окружающей среды. Вместо этого он учится непосредственно представлению о том, как себя вести. Подобный подход возможен в двух вариантах.
 - Изучение полезности действий. Наиболее распространенной формой изучения полезности действий является \mathbf{Q} -обучение, когда агент изучает \mathbf{Q} -функцию или функцию ожидаемой полезности действия Q(s,), определяющую сумму вознаграждений от состояния s и далее, если будет выполнено действие. При известной \mathbf{Q} -функции агент может выбрать, что ему делать в состоянии s, посредством поиска действия s с самым высоким значением ожидаемой полезности s.
 - **Поиск стратегии**. Агент изучает стратегию, непосредственно отображающую состояния на действия.

Рассмотрим методы решения.

4 Динамическое программирование

4.1 Введение в ДП

- ДП семейство алгоритмов для вычисления оптимальных стратегий в марковских процессах принятия решений (МППР).
- Предполагает идеальную модель среды, что ограничивает практическое применение в **обучении с подкреплением** из-за вычислительной сложности.
- Теоретически важен: формирует основу для методов **обучения с подкреплением**, стремящихся достичь эффекта ДП с меньшими затратами и без идеальной модели.

4.2 Ключевые элементы МППР

- Конечный МППР: задается множествами состояний S, действий A, вознаграждений R.
- Динамика среды описывается вероятностями перехода p(s', r|s, a).
- **Функции ценности** инструмент для структурирования поиска стратегий.

4.3 Оценивание стратегии (Предсказание)

- Цель: вычислить функцию ценности $v_{\pi}(s)$ для произвольной стратегии π .
- Алгоритм итеративного оценивания:

- На каждой итерации обновляются ценности всех состояний.
- **Полное обновление**: учитывает все возможные переходы (математическое ожидание по всем следующим состояниям).
- Обновление на месте: перезапись значений в одном массиве, что может ускорить сходимость.
- Сходимость гарантируется только в пределе, но на практике алгоритм останавливают при малых изменениях.

4.4 Улучшение стратегии

- Жадная стратегия π' : выбирает действие, максимизирующее $q_{\pi}(s,a)$ (ожидаемую ценность).
- Теорема об улучшении стратегии: если π' жадная относительно v_{π} , то $v_{\pi} \geq v_{\pi'}$.
- Стохастические стратегии: допускают распределение вероятностей между действиями, максимизирующими ценность.

4.5 Итерация по стратегиям

- Процесс:
 - 1. Оценивание текущей стратегии π для получения v_{π} .
 - 2. Улучшение стратегии до π' , жадной относительно v_{π} .
- Для конечных **МППР** гарантирует сходимость к оптимальной стратегии за конечное число шагов.

• Алгоритм итерации по стратегиям

Инициализация

Для всех состояний $s \in S$:

$$V(s) \in \mathbb{R}$$
 и $\pi(s) \in \mathcal{A}(s)$ выбираются произвольно

Оценивание стратегии Повторять:

$$\Delta \leftarrow 0$$

Для каждого $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \sum_{s',r} p(s', r|s, \pi(s)) [r + \gamma V(s')]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

Пока $\Delta < \theta$ (где θ — параметр точности).

Улучшение стратегии policy-stable \leftarrow true Для каждого $s \in S$:

old-action
$$\leftarrow \pi(s)$$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right]$$

Если old-action $\neq \pi(s)$: policy-stable \leftarrow false

4.6 Итерация по ценности

- Объединяет шаги оценивания и улучшения в одной операции.
- Усеченное оценивание: выполняется один проход обновления (вместо полной сходимости).

- Основана на уравнении оптимальности Беллмана.
- Практически останавливается при малых изменениях функции ценности.

• Алгоритм итерации по ценности

Параметр алгоритма: небольшая пороговая величина $\theta > 0,$ определяющая точность оценки.

Инициализация:

$$V(s)$$
 — произвольные значения для всех $s \in S^+$, где $V(\text{terminal}) = 0$.

Повторять:

$$\Delta \leftarrow 0$$

Для каждого $s \in S$:

$$v \leftarrow V(s)$$

$$V(s) \leftarrow \max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s') \right]$$

$$\Delta \leftarrow \max(\Delta, |v - V(s)|)$$

Пока $\Delta < \theta$.

Вывод: детерминированная стратегия $\pi \approx \pi_*$, где

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a) \left[r + \gamma V(s')\right].$$

4.7 Асинхронное ДП

- Обновления производятся в произвольном порядке, без систематических проходов по состояниям.
- Преимущества:

- **Гибкость**: можно интегрировать с реальным взаимодействием агента со средой.
- Эффективность для больших пространств состояний.
- Условие сходимости: все состояния должны обновляться бесконечно часто.

4.8 Обобщенная итерация по стратегиям (ОИС)

- Два процесса:
 - Оценивание: делает функцию ценности, согласованной со стратегией.
 - Улучшение: делает стратегию жадной относительно функции ценности.
- Взаимодействие процессов приводит к оптимальности:
 - Стабилизация происходит только при достижении оптимальных v^* и π^* .

4.9 Эффективность ДП

- Сложность: полиномиальная от числа состояний n и действий k (в худшем случае).
- Проблемы:
 - **Проклятие размерности**: экспоненциальный рост состояний с увеличением переменных.
 - Однако ДП эффективнее прямого поиска и линейного программирования для больших задач.

• Практика: методы ДП решают задачи с миллионами состояний, особенно при хороших начальных приближениях.

5 Методы Монте-Карло

5.1 Введение в методы Монте-Карло

- Определение: Методы МК решают задачи обучения с подкреплением через усреднение выборочного дохода.
- Область применения: Эпизодические задачи (опыт делится на завершаемые эпизоды).

• Особенности:

- Не требуют знания модели среды.
- Обновления производятся поэпизодно, а не пошагово.
- Основаны на полных доходах, полученных после посещения состояний или пар состояние-действие.

5.2 Предсказание методами Монте-Карло

• **Цель**: Оценка функции ценности состояний $v_{\pi}(s)$ для заданной стратегии π .

• Методы:

- **МК первого посещения**: усредняет доходы, полученные после первого посещения состояния *s* в эпизоде.
- **МК всех посещений**: усредняет доходы после всех посещений s.

• **Сходимость**: Оба метода сходятся к $v_{\pi}(s)$ при бесконечном числе посещений.

• Преимущества:

- Метод первого посещения проще и имеет меньшую дисперсию.
- Метод всех посещений квадратично сходится, но сложнее в реализации.
- Предсказание методом МС первого посещения для оценивания $V \approx v_\pi$

Вход: стратегия π , подлежащая оцениванию.

Инициализация:

 $V(s) \in \mathbb{R}$ (произвольные начальные значения для всех $s \in S$) $Returns(s) \leftarrow$ пустой список для всех $s \in S$

Повторять бесконечно (для каждого эпизода):

1. Сгенерировать эпизод, следуя π :

$$S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T$$

2. Инициализировать возврат:

$$G \leftarrow 0$$

3. Повторять для каждого шага эпизода $t = T - 1, T - 2, \dots, 0$:

$$G \leftarrow \gamma G + R_{t+1}$$

Если $S_t \notin \{S_0, S_1, \dots, S_{t-1}\}$:
Добавить G в $Returns(S_t)$
 $V(S_t) \leftarrow \text{среднеe}(Returns(S_t))$

5.3 Оценивание ценности действий

- Цель: Оценка $q_{\pi}(s,a)$ (ценности пар состояние-действие).
- **Проблема**: При детерминированной стратегии π некоторые действия не выбираются, что делает их оценку невозможной.

• Решение:

- Исследовательские старты: гарантируют, что все пары состояние-действие посещаются с ненулевой вероятностью.
- Требование: Эпизоды начинаются со случайных пар состояниедействие.

5.4 Управление методом Монте-Карло

- Общая идея: Использование обобщенной итерации по стратегиям (ОИС):
 - 1. **Оценивание**: Точная оценка q_{π_k} .
 - 2. **Улучшение**: Построение жадной стратегии π_{k+1} относительно q_{π_k} .
- Гарантии: Сходимость к оптимальной стратегии π^* и функции q^* .

• Ограничения:

- Требует бесконечного числа эпизодов и исследовательских стартов (непрактично).
- Метод Монте-Карло ИС (с исследовательскими стартами) для оценивания $\pi \approx \pi_*$

Инициализация:

 $\pi(s) \in \mathcal{A}(s)$ (произвольная стратегия для всех $s \in S$) $Q(s,a) \in \mathbb{R}$ (произвольные значения для всех $s \in S, a \in \mathcal{A}(s)$) $Returns(s,a) \leftarrow$ пустой список для всех $s \in S, a \in \mathcal{A}(s)$

Повторять бесконечно (для каждого эпизода):

- 1. Выбрать $S_0 \in S$, $A_0 \in \mathcal{A}(S_0)$ случайным образом, так что вероятность любой пары > 0.
- 2. Сгенерировать эпизод, следующий π :

$$S_0, A_0, R_1, S_1, A_1, R_2, \dots, S_{T-1}, A_{T-1}, R_T$$

3. Инициализировать возврат:

$$G \leftarrow 0$$

4. Повторять для каждого шага эпизода $t = T - 1, T - 2, \dots, 0$:

$$G \leftarrow \gamma G + R_{t+1}$$

Если $(S_t, A_t) \notin \{(S_0, A_0), (S_1, A_1), \dots, (S_{t-1}, A_{t-1})\}$:
Добавить G в $Returns(S_t, A_t)$
 $Q(S_t, A_t) \leftarrow \text{среднеe}(Returns(S_t, A_t))$
 $\pi(S_t) \leftarrow \arg\max_a Q(S_t, a)$

5.5 Методы без исследовательских стартов

• Проблема: как обеспечить исследование без искусственных стартов?

- Решение:
 - $-\varepsilon$ -жадные стратегии:
 - * С вероятностью $1-\varepsilon$ выбирается жадное действие.
 - * С вероятностью ε случайное действие.
 - Методы с единой стратегией (on-policy):
 - * Обучают и улучшают текущую стратегию π , которая остается ε -мягкой.
 - * Гарантируют исследование за счет случайных действий.
- Метод управления МС первого посещения (для ε -мягких стратегий) для оценивания $\pi \approx \pi_*$

Параметр алгоритма: небольшое $\varepsilon > 0$.

Инициализация:

 $\pi \leftarrow$ произвольная ε -мягкая стратегия

 $Q(s,a) \in \mathbb{R}$ (произвольные значения для всех $s \in S, a \in \mathcal{A}(s)$) $Returns(s,a) \leftarrow$ пустой список для всех $s \in S, a \in \mathcal{A}(s)$

Повторять бесконечно (для каждого эпизода):

1. Сгенерировать эпизод, следующий π :

$$S_0, A_0, R_1, S_1, A_1, \dots, S_{T-1}, A_{T-1}, R_T$$

2. Инициализировать возврат:

$$G \leftarrow 0$$

3. Повторять для каждого шага эпизода $t=T-1,T-2,\ldots,0$:

$$G \leftarrow \gamma G + R_{t+1}$$

Если
$$(S_t, A_t) \notin \{(S_0, A_0), (S_1, A_1), \dots, (S_{t-1}, A_{t-1})\}$$
:

Добавить G в $Returns(S_t, A_t)$

$$Q(S_t, A_t) \leftarrow \text{среднеe}(Returns(S_t, A_t))$$

 $A^* \leftarrow \arg\max_a Q(S_t, a)$ (неоднозначности разрешаются произвольности

Для всех $a \in \mathcal{A}(S_t)$:

$$\pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \frac{\varepsilon}{|\mathcal{A}(S_t)|} & \text{если } a = A^* \\ \frac{\varepsilon}{|\mathcal{A}(S_t)|} & \text{если } a \neq A^* \end{cases}$$

5.6 Предсказание с разделенной стратегией

- **Цель**: Оценка v_{π} или q_{π} с использованием данных от другой стратегии b.
- Условие покрытия: b должна выбирать все действия, возможные при π .
- Выборка по значимости:
 - Коэффициент значимости
 - Типы оценок:
 - * Обыкновенная выборка
 - * Взвешенная выборка

5.7 Управление с разделенной стратегией

• Цель: Обучение оптимальной стратегии π^* на данных от стратегии b.

• Требования:

- $-\ b$ должна быть мягкой (выбирать все действия с ненулевой вероятностью).
- $-\pi$ жадная стратегия относительно текущей оценки Q.

• Алгоритм:

- 1. Генерация эпизодов по стратегии b.
- 2. Обновление Q с использованием взвешенной выборки по значимости.
- 3. Улучшение π до жадной стратегии.
- Управление методом MC с разделенной стратегией для вычисления оценки $\pi \approx \pi_*$

Инициализация: для всех $s \in S, a \in \mathcal{A}(s)$:

$$Q(s,a) \in \mathbb{R}$$
 (произвольные значения) $C(s,a) \leftarrow 0$ $\pi(s) \leftarrow \operatorname*{argmax}_a Q(s,a)$

Повторять бесконечно (для каждого эпизода):

- 1. $b \leftarrow$ произвольная мягкая стратегия.
- 2. Сгенерировать эпизод, следующий b:

$$S_0, A_0, R_1, S_1, A_1, \dots, S_{T-1}, A_{T-1}, R_T$$

3. Инициализировать переменные:

$$G \leftarrow 0, \quad W \leftarrow 1$$

4. Повторять для каждого шага эпизода $t = T - 1, T - 2, \dots, 0$:

$$G \leftarrow \gamma G + R_{t+1}$$
 $C(S_t, A_t) \leftarrow C(S_t, A_t) + W$ $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \frac{W}{C(S_t, A_t)} [G - Q(S_t, A_t)]$ $\pi(S_t) \leftarrow \operatorname{argmax} Q(S_t, a)$ (неоднозначности разрешаются произвольно

Если $A_t \neq \pi(S_t)$: выйти из внутреннего цикла

$$W \leftarrow W \cdot \frac{1}{b(A_t|S_t)}$$

5.8 Инкрементная реализация

- Особенности:
 - Обновление оценок происходит поэпизодно.
 - Подходит для методов с разделенной стратегией.

• Алгоритм:

- Для каждой пары **состояние-действие** обновляется средневзвешенное значение Q(s,a).
- Используется коэффициент значимости для коррекции весов.

6 Обучение на основе временных различий

Ключевые термины

- **TD-обучение**: Инкрементальное обновление на основе временных различий.
- Бутстрэппинг: Использование текущих оценок для обновления.
- Sarsa/Q-обучение: Алгоритмы управления с единой/разделенной стратегией.
- Смещение максимизации: Артефакт использования максимума оценок.
- Послесостояния: Состояния после действия с известной динамикой.

6.1 Введение в ТD-обучение

- **ТD-обучение** (обучение на основе временных различий) объединяет идеи методов **Монте-Карло** (**МК**) и **динамическо-го программирования** (ДП):
 - Как МК: обучается на опыте без модели окружения.
 - Как $\mathbf{\Pi}$ П: использует **бутстрэппинг** (обновляет оценки на основе других оценок, не дожидаясь конечного результата).
- Ключевое отличие от МК:

- МК ждет конца эпизода для обновления оценки (цель полный доход).
- **TD** обновляет оценки после каждого шага, используя наблюдаемое вознаграждение R_{t+1} и оценку следующего состояния $V(S_{t+1})$.
- Пример: TD(0) (одношаговый TD) базовая версия, где обновление происходит сразу после перехода.

6.2 Преимущества TD-методов

• Против ДП: не требует модели окружения (распределений переходов и вознаграждений).

• Против МК:

- Инкрементальность: Обновления происходят после каждого шага, а не в конце эпизода.
- Эффективен в задачах с длинными эпизодами или непрерывных средах.
- **Сходимость**: На практике TD-методы сходятся быстрее MK на стохастических задачах, хотя строгих доказательств нет.

6.3 Оптимальность TD(0)

- При пакетном обновлении TD(0) сходится к детерминированному решению (при достаточно малом шаге).
- Стохастически эквивалентная оценка (оптимальное решение) требует больших вычислительных ресурсов, но **ТО-методы** аппроксимируют ее с линейной сложностью.

• Табличный $\mathrm{TD}(\mathbf{0})$ для оценивания v_π

Вход: оцениваемая стратегия π .

Параметр алгоритма: размер шага $\alpha \in (0, 1]$.

Инициализация:

V(s) — произвольные значения для всех $s \in S^+$, где V(terminal) = 0.

Повторять для каждого эпизода:

- 1. Инициализировать начальное состояние S.
- 2. Повторять для каждого шага эпизода:

$$A \leftarrow$$
 действие, выбранное π для S Предпринять A , наблюдать R, S' $V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S)\right]$ $S \leftarrow S'$

3. Продолжать, пока S не станет терминальным состоянием.

6.4 Sarsa: TD-управление с единой стратегией

- **Цель**: Оценка функции ценности действий $q_{\pi}(s,a)$ для текущей стратегии π .
- **Сходимость**: Гарантируется при условии бесконечного посещения всех пар (**состояние**—**действие**) и сходимости стратегии к жадной (например, через ε-жадность).
- Sarsa (TD-управление с единой стратегией) для оценивания $Q \approx q_*$

Параметры алгоритма: - Размер шага $\alpha \in (0,1]$ - Небольшое $\varepsilon > 0.$

Инициализация:

Q(s,a) — произвольные значения для всех $s \in S^+, a \in \mathcal{A}(s)$, где Q(termina)

Повторять для каждого эпизода:

- 1. Инициализировать начальное состояние S.
- 2. Выбрать действие A в состоянии S, следуя стратегии на основе Q (например, ε -жадной).
- 3. Повторять для каждого шага эпизода:

Предпринять действие A, наблюдать R,S' Выбрать действие A' в S', следуя стратегии на основе Q $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right]$ $S \leftarrow S', \quad A \leftarrow A'$

4. Продолжать, пока S не станет терминальным состоянием.

6.5 Q-обучение: TD-управление с разделенной стратегией

• Цель: Непосредственная аппроксимация оптимальной функции ценности действий q^* .

• Особенности:

- Стратегия влияет на выбор действий, но оценка Q не зависит от текущей стратегии.
- Сходится к q^* при условии обновления всех пар и выполнения условий стохастической аппроксимации.

• Q-обучение (TD-управление с разделенной стратегией) для оценивания $\pi \approx \pi_*$

Параметры алгоритма:

- Размер шага $\alpha \in (0,1]$
- Небольшое $\varepsilon > 0$

Инициализация:

Q(s,a) — произвольные значения для всех $s \in S^+, a \in \mathcal{A}(s)$, где Q(termina)

Повторять для каждого эпизода:

- 1. Инициализировать начальное состояние S.
- 2. Повторять для каждого шага эпизода:

Выбрать действие A в состоянии S, следуя стратегии на основе Q (на Предпринять действие A, наблюдать R,S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

$$S \leftarrow S'$$

3. Продолжать, пока S не станет терминальным состоянием.

6.6 Expected Sarsa

- Улучшение Sarsa: заменяет случайное следующее действие A_{t+1} на математическое ожидание по стратегии:
- Преимущества:
 - Снижает дисперсию за счет устранения стохастичности A_{t+1} .

• **Гибридность**: при использовании жадной стратегии совпадает с **Q-обучением**.

6.7 Смещение максимизации и двойное обучение

• **Проблема**: Максимизация по оценкам Q приводит к положительному смещению (например, из-за шумных оценок).

• Решение:

— **Двойное Q-обучение**: использует две независимые оценки Q_1 и Q_2 .

6.8 Специальные случаи: Послесостояния

- **Послесостояния**: Состояния после совершения действия, где известны непосредственные последствия (например, ходы в играх).
- Функция ценности послесостояний:
 - Оценивает позиции после действия, а не пары (**состояние**—**действие**).
 - Эффективна в задачах с частично известной динамикой (например, шахматы: известен результат хода, но не ответ противника).
- **Пример**: В крестиках-ноликах разные действия могут приводить к одинаковым послесостояниям, что упрощает обучение.

7 Исполнитель-критик

7.1 REINFORCE с базой

• Основные характеристики:

- Обучает как стратегию (политику), так и функцию ценности состояний.
- Не относится к методам **исполнитель-критик**, так как функция ценности используется только как база (для снижения дисперсии), но не для бутстрэппинга.
- **Бутстрэппинг** обновление оценки ценности состояния на основе оценок последующих состояний. В **REINFORCE** отсутствует, что делает алгоритм несмещенным, но увеличивает дисперсию.

• Преимущества и недостатки:

- Асимптотическая сходимость к локальному минимуму.
- Медленное обучение из-за высокой дисперсии (характерно для методов **Монте-Карло**).
- Неудобен для онлайн-режима и непрерывных задач.

7.2 Методы исполнитель-критик

• Ключевые особенности:

- **Критик** использует бутстрэппинг, что вводит смещение, но снижает дисперсию и ускоряет обучение.
- Сочетает преимущества **ТО-методов** (временных различий) и градиента стратегии.

• Одношаговые методы:

- Аналоги TD(0), Sarsa(0) и Q-обучения.
- Полностью онлайн и инкрементны: обрабатывают состояния, действия и вознаграждения по мере поступления.
- Заменяют полный доход в **REINFORCE** на одношаговый доход (с использованием обученной функции ценности в качестве базы).
- Для обучения функции ценности применяется полуградиентный $\mathbf{TD}(\mathbf{0})$.
- Одношаговый метод исполнитель—критик (эпизодический) для оценивания $\pi_{\theta} \approx \pi_*$

Вход:

- Дифференцируемая параметризация стратегии $\pi(a|s,\theta)$
- Дифференцируемая функция ценности состояний $\hat{v}(s,w)$

Параметры алгоритма: размеры шагов $\alpha^{\theta}>0,\,\alpha^{w}>0.$ Инициализация:

$$\theta \in \mathbb{R}^d$$
, $w \in \mathbb{R}^d$ (например, инициализировать нулями).

Повторять бесконечно (для каждого эпизода):

- 1. Инициализировать начальное состояние S.
- $2. I \leftarrow 1.$

3. Повторять, пока S не станет терминальным:

$$A \sim \pi(\cdot|S,\theta)$$
 Предпринять действие A , наблюдать S',R $\delta \leftarrow R + \gamma \hat{v}(S',w) - \hat{v}(S,w)$ (если S' терминальное, то $\hat{v}(S',w) = 0$) $w \leftarrow w + \alpha^w \delta \nabla \hat{v}(S,w)$ $\theta \leftarrow \theta + \alpha^\theta I \delta \nabla \ln \pi(A|S,\theta)$ $I \leftarrow \gamma I$ $S \leftarrow S'$

• Обобщения:

- **n-шаговые методы**: заменяют одношаговый доход на $G_{t:t+n}$ (многошаговый доход).
- λ -доходный алгоритм: использует G_t^{λ} для гибкого выбора степени бутстрэппинга.
- **Обратное представление**: реализуется через раздельные следы приемлемости для исполнителя и критика (аналогично главе 12).

7.3 Сравнение подходов

- REINFORCE с базой сохраняет теоретическую корректность (несмещенность), но на практике уступает методам исполнителькритик из-за высокой вычислительной нагрузки и ограниченной применимости.
- Методы **исполнитель-критик**, несмотря на смещение, обеспечивают быстрое обучение, низкую дисперсию и гибкость, что делает их предпочтительными в большинстве реальных сценариев, особенно там, где требуется онлайн-адаптация.

7.4 Дополнительные замечания

- **Полуградиентный TD(0)**: Используется для обучения функции ценности в одношаговых методах.
- Следы приемлемости: Позволяют гибко управлять влиянием предыдущих состояний на обновления.
- Алгоритмы: Псевдокод (не приведен в тексте) описывает полностью инкрементные и онлайн-процессы, что устраняет необходимость хранения полной истории эпизодов.

8 Прогнозирование и аппроксимация функций ценности

8.1 Концепция обновления функции ценности

- Все методы предсказания сводятся к корректировке оценки ценности состояний в направлении цели обновления $s \to u$, где:
 - -s состояние, для которого обновляется ценность;
 - -u целевое значение (новая оценка), к которому сдвигается текущая ценность s.

• Примеры методов:

- Монте-Карло.
- $\mathbf{TD}(\mathbf{0})$ (цель немедленная награда + дисконтированная оценка следующего состояния).
- **n-шаговое TD** (цель промежуточный возврат за n шагов).

— Динамическое программирование (ДП) (цель — математическое ожидание для произвольного состояния s, а не только встреченного в опыте).

8.2 Обобщение обновлений через аппроксимацию функций

• Интерпретация обновлений:

- Каждое обновление $s \to u$ рассматривается как обучающий пример, где s вход, u желаемый выход.
- Задача: сделать оценку ценности s ближе к u, используя методы обучения с учителем (аппроксимация функции).

• Отличия от табличных методов:

- В табличном случае обновляется только элемент, соответствующий s.
- При аппроксимации обновление распространяется на множество состояний, что позволяет обобщать опыт.

8.3 Применение методов машинного обучения

• Используемые методы:

- Искусственные нейронные сети, решающие деревья, многомерная регрессия и др.
- Обучающие данные: пары $s \to u$ (состояние цель) для каждого обновления.

• Требования к методам в обучении с подкреплением:

- **Онлайн-обучение**: данные поступают постепенно в процессе взаимодействия со средой (а не статический набор).
- **Работа с нестационарными целями**: целевые значения u могут меняться со временем из-за:
 - * Изменения стратегии π (например, в обобщенной итерации по стратегиям).
 - * Использования бутстрэппинга (методы ДП и TD), где оценка ценности зависит от текущих весов модели.

8.4 Проблемы традиционных методов аппроксимации

• Недостатки классических подходов:

- Многие методы (например, сложные нейросетевые архитектуры) рассчитаны на многопроходное обучение по фиксированным данным.
- Невозможность адаптации к нестационарности целевой функции (например, при изменении стратегии или обновлении весов модели).

• Ключевые ограничения:

– Методы, не способные обучаться инкрементально (постепенно) или учитывать изменяющиеся цели, плохо подходят для задач обучения с подкреплением.

8.5 Итоговые требования к методам аппроксимации

- 1. Эффективность в онлайн-режиме: быстрое обновление модели на лету без полного пересчета.
- 2. **Устойчивость к нестационарности**: адаптация к изменяющимся целевым значениям u.
- 3. Способность к обобщению: перенос информации между состояниями для уменьшения объема вычислений.
- 4. **Совместимость с бутстрэппингом**: работа в условиях, когда цели зависят от текущих оценок модели.

9 Стохастические градиентные и полуградиентные методы

9.1 Основные принципы СГС-методов

• Цель: Корректировка вектора весов **w** для минимизации ошибки аппроксимации функции ценности $v(s, \mathbf{w})$.

• Структура:

- Вектор весов $\mathbf{w} = (w_1, w_2, \dots, w_d)^T$ имеет фиксированную размерность.
- Функция $v(s, \mathbf{w})$ дифференцируема по \mathbf{w} для всех состояний $s \in S$.

• Обновление весов:

- На каждом шаге t обрабатывается пример $S_t \to v_\pi(S_t)$, где S_t состояние, $v_\pi(S_t)$ его истинная ценность (цель).
- Обновление весов происходит по формуле: формула (место для формулы).

9.2 Условия сходимости СГС

• Убывающий шаг α :

- Для гарантии сходимости к локальному оптимуму параметр α должен удовлетворять условиям стохастической аппроксимации: формула (место для формулы).
- Это обеспечивает баланс между исследованием и эксплуатацией.

• Ограничения аппроксиматора:

- Из-за ограниченности ресурсов точное описание всех состояний невозможно.
- Решение должно обобщаться на состояния, не встречавшиеся в примерах.

9.3 Работа с неточными целями U_t

• Общий случай:

- Если цель U_t (например, зашумленная оценка $v_\pi(S_t)$ или бутстрэппинговая цель) несмещенная, то СГС сходится к локальному оптимуму.
- Пример: Метод Монте-Карло, где $U_t = G_t$ (полный возврат), является несмещенной оценкой $v_{\pi}(S_t)$.

• Бутстрэппинговые методы:

- Цели зависят от текущих весов \mathbf{w}_t (например, формула в $\mathrm{TD}(0)$).
- Это приводит к смещению, так как цель U_t не является независимой от \mathbf{w}_t .
- Такие методы называются полуградиентными, так учитывается только часть градиента (игнорируется влияние \mathbf{w}_t на цель).

9.4 Полуградиентные методы: особенности и примеры

• Особенности:

- Не гарантируют сходимость, но на практике часто работают быстрее ${\it C\Gamma C}$.
- Позволяют онлайн-обучение без ожидания завершения эпизода (например, $\mathrm{TD}(0)$).

• Примеры:

- TD(0):
 - * Псевдокод включает обновление весов после каждого шага взаимодействия со средой.
- n-шаговые методы и ДП:
 - * Используют цели, зависящие от нескольких шагов или модели среды, что усиливает смещение.
- Полуградиентный алгоритм TD(0) для оценивания $\hat{v} \approx v_{\pi}$

Вход:

- Оцениваемая стратегия π
- Дифференцируемая функция $\hat{v}: S^+ \times \mathbb{R}^d \to \mathbb{R}$, где $\hat{v}(\text{terminal}, \cdot) = 0$

Параметр алгоритма: размер шага $\alpha > 0$.

Инициализация:

$$w \in \mathbb{R}^d$$
 — произвольные веса (например, $w = 0$).

Повторять для каждого эпизода:

- 1. Инициализировать начальное состояние S.
- 2. Повторять для каждого шага эпизода:

Выбрать действие
$$A \sim \pi(\cdot|S)$$

Предпринять действие A , наблюдать R, S'
 $w \leftarrow w + \alpha \left[R + \gamma \hat{v}(S', w) - \hat{v}(S, w) \right] \nabla \hat{v}(S, w)$
 $S \leftarrow S'$

3. Продолжать, пока S не станет терминальным состоянием.

9.5 Агрегирование состояний как частный случай CГС

- Принцип работы:
 - Состояния группируются, каждой группе соответствует один элемент вектора ${\bf w}.$
 - Оценка ценности состояния равна весу его группы.

— При обновлении корректируется только вес группы текущего состояния S_t .

• Математическая интерпретация:

— Градиент формула (место для формулы) равен 1 для элемента группы S_t и 0 для остальных.

9.6 Преимущества и недостатки методов

• CΓC:

- **Плюсы**: Гарантированная сходимость к локальному оптимуму при несмещенных целях.
- **Минусы**: требует точных целей $v_{\pi}(S_t)$, что редко доступно на практике.

• Полуградиентные методы:

– Плюсы:

- * Возможность онлайн-обучения.
- * Высокая скорость обучения (например, TD(0) быстрее Монте-Карло).

– Минусы:

- * Нет гарантий сходимости из-за смещения.
- * Зависимость от текущих весов усложняет анализ.

10 Нелинейная аппроксимация функций: искусственные нейронные сети

10.1 Основные понятия ИНС

- Структура сетей:
 - Сети прямого распространения (feedforward):
 - * Не содержат циклов: выходы не влияют на входы.
 - * Состоят из входного, скрытых и выходного слоев.
 - Рекуррентные сети:
 - * Содержат циклы, позволяющие обрабатывать последовательности данных.
 - * В книге рассматриваются только сети прямого распространения для упрощения.

• Функции активации:

- Сигмоидная: $f(x) = \frac{1}{1+e^{-x}}$.
- Ректификатор (ReLU): $f(x) = \max(0, x)$.
- **Ступенчатая функция**: f(x) = 1 при $x \ge 0$, иначе 0.
- **Линейные функции** (не используются в скрытых слоях, так как делают сеть эквивалентной однослойной).

10.2 Универсальная аппроксимация

- Теорема Cybenko (1989):
 - ИНС с одним скрытым слоем, содержащим достаточное количество сигмоидных блоков, может аппроксимировать

любую непрерывную функцию на компактной области входного пространства.

– Условие: функция активации должна быть нелинейной.

• Глубокие сети:

- На практике глубокие ИНС (со многими скрытыми слоями) эффективнее для сложных задач (распознавание образов, иерархические признаки).
- Каждый слой формирует более абстрактные представления данных (например, края \rightarrow формы \rightarrow объекты в изображениях).

10.3 Обучение ИНС

• Метод обратного распространения (backpropagation):

- Основан на стохастическом градиентном спуске (СГС).
- Прямой проход: вычисление активаций всех блоков.
- Обратный проход: вычисление градиентов ошибки по весам для их обновления.
- Проблема: градиенты затухают или взрываются в глубоких сетях, что замедляет обучение.

• Целевые функции:

- В обучении с учителем: минимизация ошибки на обучающих данных.
- В обучении с подкреплением: ТD-ошибка, максимизация ожидаемого дохода.

10.4 Проблемы обучения глубоких сетей

• Переобучение:

- Сети с большим числом параметров (весов) запоминают шум в данных.
- Методы борьбы:
 - * Прореживание (dropout): случайное отключение блоков во время обучения для повышения обобщения.
 - * **Регуляризация**: добавление штрафа за большие веса (например, L1/L2).
 - * Ранняя остановка: прекращение обучения при ухудшении качества на валидационных данных.

• Затухание/взрыв градиентов:

- Градиенты становятся слишком малыми (или большими) при передаче через слои.
- Решение: методы инициализации весов, пакетная нормировка, остаточные связи.

10.5 Методы улучшения обучения глубоких сетей

• Пакетная нормировка (batch normalization):

- Нормировка выходов слоев перед передачей на следующий слой (нулевое среднее, единичная дисперсия).
- Ускоряет обучение и стабилизирует градиенты.

• Глубокое остаточное обучение (residual learning):

— Обучение разности между входом и выходом группы слоев: F(x) + x.

- Решает проблему затухания градиентов в глубоких сетях.
- Пример: добавление прямых связей в обход слоев (He et al., 2016).

• Инициализация весов:

- Предобучение слоев с помощью обучения без учителя (например, сети глубокого доверия Hinton et al., 2006).
- Помогает найти хорошие начальные точки для градиентного спуска.

10.6 Архитектуры ИНС

• Глубокие сверточные сети (CNN):

 Предназначены для обработки пространственных данных (изображения, аудио).

– Сверточные слои:

- * Выделяют локальные признаки с помощью фильтров (карты признаков).
- * Веса фильтров разделяются между всеми позициями в карте.

– Слои подвыборки (pooling):

- * Уменьшают размерность данных (например, усреднение или максимум по областям 2×2).
- * Повышают инвариантность к сдвигам и поворотам.
- **Пример**: сеть LeNet-5 (LeCun et al., 1998) для распознавания рукописных цифр:
 - * Чередование сверточных слоев (5×5 фильтры) и слоев подвыборки (2×2).

* Завершается полносвязными слоями.

10.7 Применение в обучении с подкреплением

• Роль ИНС:

- Аппроксимация функций ценности и стратегий в задачах с большими пространствами состояний.
- Примеры: AlphaGo (глава 16), где глубокие CNN использовались для оценки позиций.

• Преимущества:

- Автоматическое извлечение иерархических признаков.
- Возможность обработки неструктурированных данных (изображения, текст).

• Ограничения:

- Высокие вычислительные затраты.
- Сложность интерпретации внутренних представлений.

11 Практические примеры применения обучения с подкреплением

11.1 TD-Gammon (Нарды)

• Основная идея: Программа для игры в нарды, использующая алгоритм $\mathrm{TD}(\ \lambda)$ с нейронной сетью (ИНС) и методом обратного распространения ошибок.

• Особенности:

- Оценка ценности позиции (вероятность выигрыша) через многослойную ИНС с 198 входными параметрами, кодирующими состояние доски.
- Обучение через самоигры: программа генерирует партии, играя против себя, и обновляет веса сети после каждого хода.
- Успехи: TD-Gammon 3.0 достигла уровня сильнейших игроков мира, повлияла на стратегии профессионалов.

• Инновации:

- Использование специализированных признаков для нард (начиная с версии 1.0) улучшило качество игры.
- Комбинация функций ценности, поиска и методов Монте-Карло.

11.2 Программа Сэмюэла (Шашки)

• Исторический контекст: Одна из первых самообучающихся программ (1950-е гг.).

• Методы:

- **Зубрёжка**: Сохранение оценок позиций и их повторное использование для увеличения глубины поиска.
- Обучение обобщением: Корректировка параметров функции ценности через игры против самой себя.
- Минимаксный поиск с эвристиками для оценки позиций.
- Результаты: Программа достигла уровня выше среднего начинающего, но не мастерского.

• **Проблемы**: Отсутствие явного вознаграждения и риск деградации функции ценности.

11.3 Управление памятью (DRAM)

• Задача:Планирование запросов к памяти для минимизации задержек.

• Методы:

- Алгоритм Sarsa с линейной аппроксимацией функции ценности действий.
- Плиточное кодирование для представления состояний (6 признаков: количество запросов чтения/записи, ожидающих строк и т.д.).

• Результаты:

- Самообучающийся контроллер (RL) показал на 7–33% выше производительность, чем традиционные методы (FR-FCFS).
- Онлайновое обучение улучшило результат на 8% по сравнению с фиксированной стратегией.

11.4 Персонализация веб-служб

- Задача: Максимизация кликов (CTR) и пожизненной ценности (LTV).
 - **Жадная оптимизация**: Случайный лес для предсказания кликов.
 - LTV-оптимизация: Алгоритм FQI (подобранная Q-итерация)
 с учётом долгосрочных последствий.

• **Результаты**: LTV-стратегия увеличила вовлечённость пользователей, что подтверждено тестами с высокой достоверностью.

11.5 Парение в восходящих потоках

- **Моделирование**:Турбулентная атмосфера + аэродинамика планера.
- **Метод**: Алгоритм Sarsa с агрегированием состояний (вертикальная скорость/ускорение ветра, крутящий момент).

• Результаты:

- Обученная стратегия позволяет планеру набирать высоту по спирали в восходящем потоке.
- Ключевые признаки: вертикальное ускорение ветра и крутящий момент.

12 Ограничения подхода обучения с подкреплением

12.1 Эволюционные методы

• Примеры: генетические алгоритмы, генетическое программирование, имитация отжига.

• Принцип работы:

- Используются статические стратегии, которые взаимодействуют со средой в течение длительного времени.
- Стратегии с максимальным вознаграждением и их модификации передаются следующему поколению.

– Процесс напоминает биологическую эволюцию.

• Преимущества:

- Эффективны, если пространство стратегий небольшое, хорошо организовано, или поиск может занимать много времени.
- Полезны в задачах, где агент не воспринимает полное состояние среды.

• Недостатки:

- Игнорируют структуру задачи ОП: не используют информацию о состояниях и действиях в процессе взаимодействия.
- Не учитывают, что стратегия должна быть функцией, отображающей состояния в действия.

12.2 Сравнение методов обучения с подкреплением и эволюционных подходов

• Методы ОП:

- Обучаются через взаимодействие со средой, анализируя детали отдельных актов (например, переходы между состояниями, выбор действий).
- Используют информацию о состояниях и действиях, что повышает эффективность поиска оптимальных стратегий.

• Эволюционные методы:

 Не способны извлекать пользу из последовательности состояний и действий. В большинстве случаев менее эффективны, чем методы ОП, из-за игнорирования структуры задачи.

12.3 Заключение

- Фокус на методах обучения с подкреплением, так как они лучше адаптированы для задач, требующих анализа взаимодействий со средой.
- Эволюционные методы рассматриваются как вспомогательные, но не как основное направление из-за их ограничений в использовании информации о состояниях и действиях.

Список литературы

- [1] Рассел С., Норвиг П. Искусственный интеллект: современный подход. 4-е изд., том 1. Решение проблем: знания и рассуждения. СПб.: Диалектика, 2021.
- [2] Рассел С., Норвиг П. Искусственный интеллект: современный подход. 4-е изд., том 3. Обучение, восприятие и действие. СПб.: Диалектика, 2022.
- [3] Саттон Р. С., Барто Э. Д. *Обучение с подкреплением: Введение.* 2-е изд. М.: ДМК Пресс, 2020. 552 с.
- [4] «Искусственные нейронные сети» [Электронный ресурс]. http://bigor.bmstu.ru/?cnt/?doc=NN/base.cou.