

Complementi di Matematica: EDO e loro applicazioni

Studio analitico di un sistema di oscillatori attraverso le EDO e sistemi numerici per risoluzione numerica

Studenti:

Cairone Giuseppe Rossi Gianmarco Scuola Superiore di Studi Universitari e di Perfezionamento Sant'Anna

Indice

1	Introduzione	2
2	Oscillazioni libere	2
	2.1 Energia del Sistema	2
	2.2 Lagrangiana del Sistema	3
3	Risoluzione numerica	3
	3.1 Metodo numerico	3
	3.2 Implementazione	3

1 Introduzione

Per questo progetto si intende studiare un sistema composto da n pendoli, ciascuno con massa m e braccio di lunghezza l (non massivo), fissati ad un supporto di massa M.

Figura 1: Condizione iniziale per 4 pendoli

Il sistema ha quindi n+1 gradi di libertà, uno legato al moto orizzontale del supporto e uno per ogni pendolo. Il primo è determinato dalla posizione x(t) del supporto, i gradi di libertà associati ai pendoli sono determinati dall'angolo del pendolo rispetto alla verticale $\theta_i(t)$. Per ciò che si è interessati a studiare poniamo x(0) = 0, $\dot{x}(0) = 0$. Dunque lo stato iniziale è determinato da $\theta_i(0)$, $\dot{\theta}_i(0)$ per ogni *i*-esimo pendolo con $1 \le i \le n$.

2 Oscillazioni libere

Per studiare il sistema si fa uso delle equazioni di Eulero-Lagrange, le quali ci permettono, a partire dall'energia cinetica e quella potenziale, di ricavare le equazioni del moto per il sistema.

2.1 Energia del Sistema

Si parte quindi andando a scrivere le equazioni per ricavare l'energia cinetica del sistema che risulta essere

$$K = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}\sum_{i=0}^{n} mv_i^2$$

dove le varie v_i sono le velocità delle masse nel sistema di riferimento del laboratorio quindi:

$$v_i^2 = \left(l\dot{\theta}_i \sin \theta_i\right)^2 + \left(\dot{x} + l\dot{\theta}_i \cos \theta_i\right)^2$$

L'energia potenziale la calcoliamo ponendo lo zero del potenziale nel vertice di oscillazione dei pendoli in modo da semplificare l'espressione della stessa e quindi anche i calcoli. In definitiva si ottiene che:

$$U = -\sum_{i=0}^{n} mgl\cos\theta_i$$

Da notare che non viene considerata l'energia potenziale del supporto perché rimane costante nel tempo. Interessando a noi la differenza di energia potenziale tutti i termini costanti possono quindi essere omessi.

2.2 Lagrangiana del Sistema

Una volta scritte le equazioni delle energie possiamo procedere a scirvere la lagrangiana del sistema ovvero:

$$L(x, \dot{x}, \theta_i, \dot{\theta}_i) = K - U = \frac{1}{2}M\dot{x}^2 + \frac{1}{2}\sum_{i=0}^{n} mv_i^2 + \sum_{i=0}^{n} mgl\cos\theta_i$$

Per ottenere il sistema di equazioni differenziali del moto applico l'equazione di Eulero-Lagrange ad ogni coordinata

$$\frac{\partial L}{\partial q_i}(\mathbf{q}, \dot{\mathbf{q}}, t) - \frac{d}{dt} \frac{\partial L}{\partial \dot{q}_i}(\mathbf{q}, \dot{\mathbf{q}}, t) = 0$$

Si ottiene quindi il sistema

$$\begin{cases} \frac{\partial L}{\partial \theta_{1}} = \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_{1}} \\ \dots \\ \frac{\partial L}{\partial \theta_{n}} = \frac{d}{dt} \frac{\partial L}{\partial \dot{\theta}_{n}} \end{cases} \Rightarrow \begin{cases} \ddot{\theta}_{1} = \frac{g sin(\theta_{1}) - \ddot{x} cos(\theta_{1})}{l} \\ \dots \\ \ddot{\theta}_{n} = \frac{g sin(\theta_{n}) - \ddot{x} cos(\theta_{n})}{l} \\ \ddot{\theta}_{n} = \frac{g sin(\theta_{n}) - \ddot{x} cos(\theta_{n})}{l} \\ \ddot{x} = \sum_{i=1}^{n} \frac{m l \dot{\theta}_{i}^{2} sin(\theta_{i}) - m g sin(2\theta_{i})}{M + m sin^{2}(\theta_{i})} \end{cases}$$

Andando a risolvere per le coordinate x(t) e $\theta_i(t)$ si ottiene l'evoluzione del sistema

3 Risoluzione numerica

Una volta analizzato analiticamente il sistema dinamico si procede a risolvere le equazioni. Dato che non esiste una funzione esplicita che risolva le equazioni differenziali ottenute. Si usa quindi un sistema numerico per ottenere un risultato.

3.1 Metodo numerico

Per risolvere numericamente le equazioni differenziali abbiamo scelto di usare il metodo numerico di Runge-Kutta di ordine 4. Questo metodo garantisce la simpletticità del sistema ovvero che l'energia totale del sistema rimanga quanto più costante e limitata nel tempo. Proprio quest'ultimo fattore è importante in quanto il sistema iniziale prevede una conservazione dell'energia totale, aspetto che deve rispecchiarsi anche nel metodo numerico.

3.2 Implementazione

```
cdef cnp.ndarray k3 = h*fun(yn + (1/2)*k2)

cdef cnp.ndarray k4 = h*fun(yn + k3)

# calcola la nuova posizione e la restituisce per l'iterazione successiva

return yn + (1/6)*k1 + (1/3)*k2 + (1/3)*k3 + (1/6)*k4
```