TP4 - PPG for pHealth Apps Informática Clínica e Sistemas de Tele-Saúde

Jorge Melo Xavier Pinho

December 2019

1 Introdução

O objetivo deste projeto é explorar o potencial do fotopletismograma (PPG) para avaliar a função do sistema nervoso autónomo (ANS).

Uma vez que o ritmo cardíaco é regulado pelo ANS, podemos apurar o comportamento do sistema nervoso simpático e parassimpático com base na variabilidade do ritmo cardíaco (HRV). Trata-se de um problema com domínio nas escalas temporal e de frequência, por isso pode ser abordado de diferentes formas. Existem diferentes métodos computacionais aceites pela comunidade científica para calcular medidas que representam a HRV. No domínio temporal considerámos o desvio padrão da média dos intervalos NN (SDNN), raiz da média elevada ao quadrado de diferenças sucessivas (RMSSD), o desvio padrão de diferenças sucessivas (SDSD), o número de pares de intervalos NN sucessivos que diferem em mais de 50 milissegundos (NN50) e a proporção de NN50 dividida pelo número total de intervalos NN (pNN50). No domínio das frequências considerámos o rácio entre as bandas de alta frequência (0.15Hz a 0.4Hz) e baixa frequência (0.04Hz a 0.15Hz) (RaLH).

Os dados de eletrocardiograma (ECG) e PPG utilizados neste trabalho correspondem a 6 indivíduos (3 masculinos e 3 femininos) que foram sujeitos a um período de descanço (REST), durante 5 minutos, seguido de um período de stress (STRESS), durante o qual tiveram que responder a questões matemáticas, com a mesma duração do período anterior.

Na primeira parte do projeto, extraímos os intervalos NN do ECG recolhido, com recurso a um algoritmo baseado no trabalho desenvolvido por Pan and Tompkins [PT85] desenvolvido nas aulas anteriores. De seguida, extraímos pontos de referência do sinal PPG, dentro dos quais: PPG20%, PPG50%, PPG80%, PPGpeak, PPGonset e PPGderiv. Por fim, calculámos as diferentes medidas propostas em cima, de forma a obter a variabilidade do ritmo do fotopletismograma (PRV) e comparámos com as diferentes medidas do HRV. Para além disto, tentámos perceber se existe diferença estatística entre o HRV/PRV em REST e STRESS.

2 Resultados

2.1 Correlação entre HRV e PRV

O primeiro objetivo deste trabalho é avaliar se o PRV é uma boa ferramenta para aceder à função cardíaca e, para isso, procedemos a uma análise de correlação entre os intervalos NN dos vários pontos de referência do PPG e os intervalos NN do ECG, nas diferentes métricas. Os resultados estão apresentados na tabela 1.

2.2 Testes estatísticos e Boxplots

Após a análise entre PRV e HRV, avaliámos se estas métricas são adequadas para a classificação do estado do paciente entre REST e STRESS. Trata-se de um problema de classificação binário e, por isso, começámos por verificar se as variáveis contínuas seguiam uma distribuição normal, com recurso ao teste Kolmogorov-Smirnov. Os valores mostram que os dados não seguem uma distribuição normal, uma vez que p<0.05 para todas as métricas, como mostra a tabela 2. Sabendo isto, aplicámos o teste Kruskal Wallis H (não paramétrico), de forma a averiguar se existem diferenças significativas entre os valores de cada métrica para pacientes em REST ou STRESS. Observando os p-values das métricas Mean, NN50 e pNN50, permitem-nos rejeitar a hipótese nula deste teste estatístico para todos os pontos, ou seja, existe diferença entre os grupos REST e STRESS. Os resultados estão apresentados na tabela 3 e na figura 1.

3 Discussão

Com base nos resultados obtidos, podemos concluir que, de facto, os pontos de referência do sinal PPG podem ser utilizados como alternativa ao sinal ECG para o cálculo da HRV, uma vez que os valores de PRV apresentam elevada correlação, nomeadamente todos os pontos de referência associados à Mean, os PPGpeak, PPG80, PPG50, PPG20 e PPGonset associados às métricas NN50 e pNN50. Em contrapartida as méticas que apresentam piores valores de correlação são SDNN, RMSSD e SDSD. Para além disto, conseguimos encontrar diferenças significativas entre a HRV/PRV de pacientes de REST e STRESS, uma vez que os p-values do teste Kruskal Wallis foram inferiores a 0,05 para todos os pontos de referência associados à métrica Mean, NN50 e pNN50. Com este trabalho, concluímos que as melhores métricas são as que simultaneamente apresentam elevados valores de correlação entre HRV e PRV e valores de p-value inferiores a 0.05 para o teste de Kruskal Wallis, designadamente PPGpeak associado à métrica Mean; PPG80, PPG50, PPG20, PPGderiv e PPGonset associados às métricas Mean, NN50 e pNN50.

4 Tabelas e Figuras

	PPGpeak	PPG80	PPG50	PPG20	PPGderiv	PPGonset	
Mean	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	
SDNN	0,3067	0,3752	0,4468	0,4487	0,3159	0,4451	
RMSSD	0,3445	0,4072	0,5208	0,5261	0,3454	0,5076	
SDSD	0,3444	0,4071	0,5207	0,5261	0,3454	0,5076	
NN50	0,4951	0,8583	0,9251	0,9691	0,8465	0,8850	
pNN50	0,5764	0,8872	0,9402	0,9761	0,8832	0,9212	
RaLH	0,1210						

Table 1: Valor de correlação de Pearson entre os pontos de referência do PPG e o intervalo NN ECG para cada métrica.

	ECGpeak	PPGpeak	PPG80	PPG50	PPG20	PPGderiv	PPGonset
Mean	1,44E-157						
SDNN	1,44E-157						
RMSSD	1,44E-157						
SDSD	1,44E-157						
NN50	1,34E-122	3,81E-157	2,26E-135	1,88E-116	1,18E-114	2,28E-145	5,15E-137
pNN50	1,04E-39	2,32E-40	6,59E-40	1,04E-39	1,04E-39	6,04E-40	1,04E-39
RaLH	2,44E-88	1,38E-150					

Table 2: Teste de Kolmogorov-Smirnov e respectivos p-values.

	ECGpeak	PPGpeak	PPG80	PPG50	PPG20	PPGderiv	PPGonset
Mean	2,15E-05	2,15E-05	2,07E-05	2,09E-05	2,11E-05	2,12E-05	2,12E-05
SDNN	2,12E-05	1,21E-01	5,79E-01	5,25E-01	4,86E-01	5,52E-01	5,19E-01
RMSSD	1,76E-10	1,02E-01	6,24E-02	3,79E-02	3,82E-02	1,15E-01	9,52E-02
SDSD	1,69E-10	1,02E-01	6,12E-02	3,77E-02	3,82E-02	1,15E-01	9,41E-02
NN50	1,83E-06	5,62E-02	7,60E-04	5,86E-04	4,18E-04	1,44E-02	2,15E-03
pNN50	5,70E-07	8,08E-03	4,17E-04	1,42E-04	2,16E-04	1,16E-03	5,57E-04
RaLH	0,60	0,03					

Table 3: Teste de Kruskal Wallis H e respectivos p-values.

Figure 1: Boxplots para algumas métricas.

References

[PT85] Jiapu Pan and Willis J. Tompkins. "A Real-Time QRS Detection Algorithm". In: IEEE Transactions On Biomedical Engineering BME-32.3 (1985), pp. 230–236.