Name- Kshitij V Darwhekar

Roll No - TETB19

Batch -B2

2. KNN (K Nearest Neighbors) Classification

```
import pandas as pd
from sklearn.datasets import load_iris
iris = load_iris()
```



```
iris.feature_names

['sepal length (cm)',
    'sepal width (cm)',
    'petal length (cm)',
    'petal width (cm)']

iris.target_names

array(['setosa', 'versicolor', 'virginica'], dtype='<U10')

df = pd.DataFrame(iris.data,columns=iris.feature_names)
df.head()</pre>
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)
0	5.1	3.5	1.4	0.2
1	4.9	3.0	1.4	0.2
2	4.7	3.2	1.3	0.2
2	4.6	0.4	4.5	0.0

df['target'] = iris.target
df.head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

df[df.target==1].head()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
50	7.0	3.2	4.7	1.4	1
51	6.4	3.2	4.5	1.5	1
52	6.9	3.1	4.9	1.5	1
53	5.5	2.3	4.0	1.3	1
54	6.5	2.8	4.6	1.5	1

df[df.target==2].head()

_	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target
100	6.3	3.3	6.0	2.5	2
101	5.8	2.7	5.1	1.9	2
102	7.1	3.0	5.9	2.1	2
103	6.3	2.9	5.6	1.8	2
104	6.5	3.0	5.8	2.2	2

df['flower_name'] =df.target.apply(lambda x: iris.target_names[x])
df.head()

		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
0	0	5.1	3.5	1.4	0.2	0	setosa
1	1	4.9	3.0	1.4	0.2	0	setosa
2	2	4.7	3.2	1.3	0.2	0	setosa
3	3	4.6	3.1	1.5	0.2	0	setosa
df[45:5	55]						
_		sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	target	flower_name
4	45	4.8	3.0	1.4	0.3	0	setosa
4	46	5.1	3.8	1.6	0.2	0	setosa
4	47	4.6	3.2	1.4	0.2	0	setosa
4	48	5.3	3.7	1.5	0.2	0	setosa
4	49	5.0	3.3	1.4	0.2	0	setosa
5	50	7.0	3.2	4.7	1.4	1	versicolor
5	51	6.4	3.2	4.5	1.5	1	versicolor
5	52	6.9	3.1	4.9	1.5	1	versicolor
5	53	5.5	2.3	4.0	1.3	1	versicolor
5	54	6.5	2.8	4.6	1.5	1	versicolor

df0 = df[:50]
df1 = df[50:100]
df2 = df[100:]

import matplotlib.pyplot as plt
%matplotlib inline

Sepal length vs Sepal Width (Setosa vs Versicolor)

```
plt.xlabel('Sepal Length')
plt.ylabel('Sepal Width')
plt.scatter(df0['sepal length (cm)'], df0['sepal width (cm)'],color="green",marker='+')
plt.scatter(df1['sepal length (cm)'], df1['sepal width (cm)'],color="blue",marker='.')
```

<matplotlib.collections.PathCollection at 0x7f8d07945f50>

Petal length vs Pepal Width (Setosa vs Versicolor)

```
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.scatter(df0['petal length (cm)'], df0['petal width (cm)'],color="green",marker='+')
plt.scatter(df1['petal length (cm)'], df1['petal width (cm)'],color="blue",marker='.')
```

<matplotlib.collections.PathCollection at 0x7f8d07437910>

Train test split

30

Create KNN (K Neighrest Neighbour Classifier)

```
from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=10)

knn.fit(X_train, y_train)
    KNeighborsClassifier(n_neighbors=10)

knn.score(X_test, y_test)
    0.966666666666667

knn.predict([[4.8,3.0,1.5,0.3]])
    /usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not have valid feature names, but"
    array([0])
```

Plot Confusion Matrix

Text(42.0, 0.5, 'Truth')

Print classification report for precesion, recall and f1-score for each classes

from sklearn.metrics import classification_report

print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	1.00	1.00	1.00	11
1	1.00	0.92	0.96	13
2	0.86	1.00	0.92	6
accuracy			0.97	30
macro avg	0.95	0.97	0.96	30
weighted avg	0.97	0.97	0.97	30