Using Likelihoods

Prof. Maria Tackett

01.19.22

Click for PDF of slides

Announcements

- Homework 01 due Wednesday at 11:59pm
- Week 03 reading: <u>BMLR: Chapter 3 Distribution Theory</u>
- See <u>syllabus</u> for office hours schedule
 - Office hours online this week
- Team lab tomorrow introducing Mini-Project 01
 - Find a paper using a GLM in their analysis
 - Evaluate the analysis in the paper
 - "Replicate" the analysis the same or similar data
 - Present results in a presentation and short write up
 - More details in lab!

In-person learning 😌

Attendance in lectures and labs is expected as long as you're healthy and not in quarantine

Lectures

- If you're unable to attend, you can watch the recording of the lecture on Panopto (link in Sakai)
- Ask questions on GitHub Discussions or in office hours

Labs

- Labs are not recorded
- On weeks with teamwork: If you are unable to attend lab but are able to participate remotely, work with your teammates to set up a Zoom call

Class Q&A Forum: GitHub Discussions

- Class Q&A forum on <u>GitHub Discussions</u>
 - Place for questions about course content, assignments, etc.
 - Only use email for personal questions (e.g., grades, illness, etc.)
 - Let Prof. Tackett know if you do not have access to the forum

Demo

Homework 01

- Notes on <u>variable transformations</u>
- Exercise 5

This question will be graded based on

The quality of the model selection process, including the exploratory data analysis. A high quality model selection process is accurate, comprehensive, and strategic (e.g., trying all possible interaction terms will not receive full credit).

The quality of the summary. A high quality summary is accurate, comprehensive, answers the primary analysis question, and tells a cohesive story (e.g., a list of interpretations will not receive full credit).

Using Likelihoods

Learning goals

- Describe the concept of a likelihood
- Construct the likelihood for a simple model
- Define the Maximum Likelihood Estimate (MLE) and use it to answer an analysis question
- Identify three ways to calculate or approximate the MLE and apply these methods to find the MLE for a simple model
- Use likelihoods to compare models (next week)

What is the likelihood?

A likelihood is a function that tells us how likely we are to observe our data for a given parameter value (or values).

- Unlike Ordinary Least Squares (OLS), they do not require the responses be independent, identically distributed, and normal (iidN)
- They are <u>not</u> the same as probability functions
 - Probability function: Fixed parameter value(s) + input possible outcomes
 probability of seeing the different outcomes given the parameter value(s)
 - Likelihood: Fixed data + input possible parameter values ⇒ probability of seeing the fixed data for each parameter value

Fouls in college basketball games

The data includes 30 randomly selected NCAA men's basketball games played in the 2009 - 2010 season.

We will focus on the variables **foul1**, **foul2**, and **foul3**, which indicate which team had a foul called them for the 1st, 2nd, and 3rd fouls, respectively.

- **H**: Foul was called on the home team
- V: Foul was called on the visiting team

We are focusing on the first three fouls for this analysis, but this could easily be extended to include all fouls in a game.

Fouls in college basketball games

```
refs <- read_csv("data/04-refs.csv")
refs %>% slice(1:5) %>% kable()
```

game	date	visitor	hometeam	foul1	foul2	foul3
166	20100126	CLEM	BC	V	V	V
224	20100224	DEPAUL	CIN	Н	Н	V
317	20100109	MARQET	NOVA	Н	Н	Н
214	20100228	MARQET	SETON	V	V	Н
278	20100128	SETON	SFL	Н	V	V

We will treat the games as independent in this analysis.

Different likelihood models

Model 1 (Unconditional Model): What is the probability the referees call a foul on the home team, assuming foul calls within a game are independent?

Model 2 (Conditional Conditional Model):

- Is there a tendency for the referees to call more fouls on the visiting team or home team?
- Is there a tendency for referees to call a foul on the team that already has more fouls?

Ultimately we want to decide which model is better.

Exploratory data analysis

```
refs %>%
count(foul1, foul2, foul3) %>% kable()
```

foul1	foul2	foul3	n
Н	Н	Н	3
Н	Н	V	2
Н	V	Н	3
Н	V	V	7
V	Н	Н	7
V	Н	V	1
V	V	Н	5
V	V	V	2

There are

- 46 total fouls on the home team
- 44 total fouls on the visiting team

Model 1: Unconditional model

What is the probability the referees call a foul on the home team, assuming foul calls within a game are independent?

Likelihood

Let p_H be the probability the referees call a foul on the home team.

The likelihood for a single observation

$$Lik(p_H) = p_H^{y_i} (1 - p_H)^{n_i - y_i}$$

Where y_i is the number of fouls called on the home team.

(In this example, we know $n_i = 3$ for all observations.)

Example

For a single game where the first three fouls are H, H, V, then

$$Lik(p_H) = p_H^2 (1 - p_H)^{3-2} = p_H^2 (1 - p_H)$$

Model 1: Likelihood contribution

Foul1	Foul2	Foul3	n	Likelihood Contribution
Н	Н	Н	3	p_H^3
Н	Н	V	2	$p_H^2(1-p_H)$
Н	V	Н	3	$p_H^2(1-p_H)$
Н	V	V	7	A
V	Н	Н	7	В
V	Н	V	1	$p_H(1-p_H)^2$
V	V	Н	5	$p_H(1-p_H)^2$
V	V	V	2	$(1 - p_H)^3$

Fill in A and B.

Model 1: Likelihood function

Because the observations (the games) are independent, the likelihood is

$$Lik(p_H) = \prod_{i=1}^{n} p_H^{y_i} (1 - p_H)^{3 - y_i}$$

We will use this function to find the maximum likelihood estimate (MLE). The MLE is the value between 0 and 1 where we are most likely to see the observed data.

Visualizing the likelihood

Plot

Code

Visualizing the likelihood

Plot

Code

```
p <- seq(0,1, length.out = 100) #sequence of 100 values beto
lik <- p^44 *(1 -p)^46

x <- tibble(p = p, lik = lik)
ggplot(data = x, aes(x = p, y = lik)) +
    geom_point() +
    geom_line() +
    labs(y = "Likelihood",
        title = "Likelihood of p_H")
```


What is your best guess for the MLE, \hat{p}_H ?

A. 0.489

B. 0.500

C. 0.511

D. 0.556

<u>Click here</u> to submit your response.

02:00

Finding the maximum likelihood estimate

There are three primary ways to find the MLE

- Approximate using a graph
- ✓ Numerical approximation
- **✓** Using calculus

Approximate MLE from a graph

Find the MLE using numerical approximation

Specify a finite set of possible values the for p_H and calculate the likelihood for each value

```
# write an R function for the likelihood
ref_lik <- function(ph) {
  ph^46 *(1 - ph)^44
}</pre>
```

```
# use the optimize function to find the MLE
optimize(ref_lik, interval = c(0,1), maximum = TRUE)
```

```
## $maximum
## [1] 0.5111132
##
## $objective
## [1] 8.25947e-28
```


Find MLE using calculus

- Find the MLE by taking the first derivative of the likelihood function.
- This can be tricky because of the Product Rule, so we can maximize the log(Likelihood) instead. The same value maximizes the likelihood and log(Likelihood)

Find MLE using calculus

$$Lik(p_H) = \prod_{i=1}^{n} p_H^{y_i} (1 - p_H)^{3 - y_i}$$

$$\log(Lik(p_H)) = \sum_{i=1}^{n} y_i \log(p_H) + (3 - y_i) \log(1 - p_H)$$

$$= 46 \log(p_H) + 44 \log(1 - p_H)$$

Find MLE using calculus

$$\frac{d}{dp_H} \log(Lik(p_H)) = \frac{46}{p_H} - \frac{44}{1 - p_H} = 0$$

$$\Rightarrow \frac{46}{p_H} = \frac{44}{1 - p_H}$$

$$\Rightarrow 46(1 - p_H) = 44p_H$$

$$\Rightarrow 46 = 90p_H$$

$$\hat{p}_H = \frac{46}{90} = 0.511$$

Model 2: Conditional model

Is there a tendency for the referees to call more fouls on the visiting team or home team?

Is there a tendency for referees to call a foul on the team that already has more fouls?

Model 2: Likelihood contributions

- Now let's assume fouls are <u>not</u> independent within each game. We will specify this dependence using conditional probabilities.
 - \circ Conditional probability: P(A|B) = Probability of A given B has occurred

Define new parameters:

- $p_{H|N}$: Probability referees call foul on home team given there are equal numbers of fouls on the home and visiting teams
- $p_{H|HBias}$: Probability referees call foul on home team given there are more prior fouls on the home team
- \$p_{H|V Bias}: Probability referees call foul on home team given there are more prior fouls on the visiting team

Model 2: Likelihood contributions

Foul1	Foul2	Foul3	n	Likelihood Contribution
Н	Н	Н	3	$(p_{H N})(p_{H HBias})(p_{H HBias}) = (p_{H N})(p_{H HBias})^2$
Н	Н	V	2	$(p_{H N})(p_{H HBias})(1-p_{H HBias})$
Н	V	Н	3	$(p_{H N})(1 - p_{H HBias})(p_{H N}) = (p_{H N})^2(1 - p_{H HBias})$
Н	V	V	7	A
V	Н	Н	7	В
V	Н	V	1	$(1 - p_{H N})(p_{H VBias})(1 - p_{H N}) = (1 - p_{H N})^2(p_{H VBias})$
V	V	Н	5	$(1 - p_{H N})(1 - p_{H VBias})(p_{H VBias})$
\/	V	V	2	$(1 - p_{H N})(1 - p_{H VBias})(1 - p_{H VBias})$
V	V			$= (1 - p_{H N})(1 - p_{H VBias})^2$

Likelihood function

$$Lik(p_{H|N}, p_{H|HBias}, p_{H|VBias}) = [(p_{H|N})^{25} (1 - p_{H|N})^{23} (p_{H|HBias})^{8}$$
$$(1 - p_{H|HBias})^{12} (p_{H|VBias})^{13} (1 - p_{H|VBias})^{9}]$$

(Note: The exponents sum to 90, the total number of fouls in the data)

$$\log(Lik(p_{H|N}, p_{H|HBias}, p_{H|VBias})) = 25 \log(p_{H|N}) + 23 \log(1 - p_{H|N})$$

$$+ 8 \log(p_{H|HBias}) + 12 \log(1 - p_{H|HBias})$$

$$+ 13 \log(p_{H|VBias}) + 9 \log(1 - p_{H|VBias})$$

If fouls within a game are independent, how would you expect \hat{p}_H , $\hat{p}_{H|HBias}$ and $\hat{p}_{H|VBias}$ to compare?

- a. \hat{p}_H is greater than $\hat{p}_{H|HBias}$ and $\hat{p}_{H|VBias}$
- b. $\hat{p}_{H|HBias}$ is greater than \hat{p}_{H} and $\hat{p}_{H|VBias}$
- c. $\hat{p}_{H|VBias}$ is greater than \hat{p}_{H} and $\hat{p}_{H|VBias}$
- d. They are all approximately equal.

If there is a tendency for referees to call a foul on the team that already has more fouls, how would you expect \hat{p}_H and $\hat{p}_{H|HBias}$ to compare?

- a. \hat{p}_H is greater than $\hat{p}_{H|HBias}$
- b. $\hat{p}_{H|HBias}$ is greater than \hat{p}_{H}
- c. They are approximately equal.

<u>Click here</u> to submit your response.

Next time

- Using likelihoods to compare models
- Chapter 3: Distribution theory

Acknowledgements

These slides are based on content in <u>BMLR Chapter 2 - Beyond Least Squares: Using Likelihoods</u>

