Contents

1. Background	2
1.1. Notes on second quantisation	2
2	3
3. Quantum Ising model	3
3.1. Brilloin-Wigner perturbation theory	4

Themes:

- quantum matter
 - ► topological order (TO)
- quantum computing
 - quantum error correction (QEC)
 - topological quantum computing

Methods:

- mostly operator algebra (Pauli operators, Fermion operators)
- some field theory (second quantisation, path integrals)
- just a little band theory

1. Background

1.1. Notes on second quantisation

We can define an action of S_n on an n qudit state (a representation of the n-qudit Hilbert space by S_n) linearly by

$$\sigma|i_1...i_n\rangle = |i_{\sigma(1)}...i_{\sigma(n)}\rangle.$$

Definition 1.1 A **boson** is a quantum state $|\psi\rangle$ that is invariant under the action of S_n (symmetric under permutations), i.e.

$$\forall \sigma \in S_n, \quad \sigma |\psi\rangle = |\psi\rangle.$$

Definition 1.2 A **fermion** is a quantum state $|\varphi\rangle$ that is anti-symmetric under permutations, i.e. invariant under even permutations and is negated under odd permutations:

$$\begin{split} \forall \sigma \in A_n, \quad \sigma |\varphi\rangle &= |\varphi\rangle \\ \forall \tau \in S_n \setminus A_n, \quad \tau |\varphi\rangle &= -|\varphi\rangle \end{split}$$

Definition 1.3 The symmetrisation of a state $|\chi\rangle$ is

$$S_{\pm}|\chi\rangle = \frac{1}{|S_n|} \sum_{\sigma \in S_n} (\pm 1)^{\operatorname{sgn}(\sigma)} \sigma |\chi\rangle$$

where $\operatorname{sgn}(\sigma)$ denotes the sign of the permutation σ . S_+ results in a boson, S_- results in a fermion.

Notation 1.4 Second quantisation is a compact way of expressing bosons and fermions:

$$\left|n_1,...,n_d\right\rangle_{\pm} = S_{\pm}|i_1...i_n\rangle$$

where n_j denotes the number of single qudit states that are in state $|j\rangle$, in any basis state of $|n_1,...,n_d\rangle_+$. The number of qudits is $n=\sum_{j=1}^d n_j$.

The states $|n_1,...,n_d\rangle_{\pm}$ are called **occupation (number) states**.

Proposition 1.5 Occupation states satisfy:

$$\begin{array}{l} 1. \ \, \langle n_1,...,n_d \, | \, m_1,...,m_d \rangle = \delta_{n_1m_1} \cdot \cdot \cdot \delta_{n_dm_d}. \\ 2. \ \, \sum_{n_1+\cdots+n_d=n} |n_1,...,n_d\rangle \langle n_1,...,n_d| = I. \end{array}$$

Definition 1.6 For a fixed number of qudits n, the space of all occupated number states is called **Fock space**.

Define the creation and annihilation operators

$$\begin{split} \hat{a}_j^\dagger |..., n_j, ...\rangle_{_{\pm}} &= \sqrt{n_j + 1} |..., n_j + 1, ...\rangle_{_{\pm}} \\ \hat{a}_j |..., n_j + 1, ...\rangle_{_{\pm}} &= \sqrt{n_j + 1} |..., n_j, ...\rangle_{_{\pm}} \end{split}$$

This gives

$$\begin{split} \left[\hat{a}_i,\hat{a}_j\right] &= \left[\hat{a}_i^\dagger,\hat{a}_j^\dagger\right] = 0, \quad \left[\hat{a}_i,\hat{a}_j^\dagger\right] = \delta_{ij} \quad \text{for bosons} \\ \left\{\hat{a}_i,\hat{a}_j\right\} &= \left\{\hat{a}_i^\dagger,\hat{a}_j^\dagger\right\} = 0, \quad \left\{\hat{a}_i,\hat{a}_j^\dagger\right\} = \delta_{ij} \quad \text{for bosons} \end{split}$$

A corollary of $\left\{\hat{a}_{j}^{\dagger},\hat{a}_{j}^{\dagger}\right\}=2\hat{a}_{j}^{\dagger}\hat{a}_{j}^{\dagger}=0$ is the Pauli principle that no single particle state can be occupied by more than one fermion.

Definition 1.7 The occupation number operator is $\hat{n}_j = \hat{a}_j^{\dagger} \hat{a}_j$. Note that $\hat{n}_{j}|...,n_{j},...\rangle = n_{j}|...,n_{j},...\rangle.$

Example 1.8 The total particle number operator is

$$\hat{n} = \sum_{j} \hat{n}_{j}$$

For a single-qudit operator $\hat{T} = \sum_{i,j} t_{ij} |i\rangle\langle j|$, we have

$$\hat{T} = \sum_{ij} t_{ij} \hat{a}_i^{\dagger} \hat{a}_j$$

(since $|i\rangle\langle j||k\rangle = \hat{a}_i^{\dagger}\hat{a}_i|k\rangle$)

Noting that $|\varphi\rangle=\sum_i\langle i\,|\varphi\rangle|i\rangle,$ we define

$$\hat{a}_{arphi}^{\dagger} = \sum_{i} \langle i | \lambda
angle \hat{a}_{i}^{\dagger}$$

(note this is analogous to a basis transformation)

2.

Notation 2.1 When working with N qubits (an N site system), write X_i, Y_j, Z_i for the Pauli X, Y, Z on site j, e.g. $X_j = 1 \otimes \cdots \otimes 1 \otimes X \otimes 1 \otimes \cdots \otimes 1$.

3. Quantum Ising model

TODO: familiarise with classical Ising model

Quantum ising model: $H = -J \sum_{i,j,nn} Z_i Z_j - h \sum_j Z_j, \ J > 0. \ nn$ denotes nearest neighbours. We have $H|\{z_j\}\rangle = E(\{z_j\})|\{z_j\}\rangle, \ Z_i|\{z_j\}\rangle = z_i|\{z_j\}\rangle$ where $z_i \in \{-1,1\}$.

Transverse field Ising model: $H=-J\sum_{i,j:nn}Z_iZ_j-h\sum_jX_j,\ J>0$ (feromagn), h>0. It has a \mathbb{Z}_2 symmetry: $P=\prod_jX_j,\ HP=PH,\ P^2=I.$

$$P|\left\{z_{j}\right\}\rangle = |\left\{-z_{j}\right\}\rangle$$
 (spin flip).

If J=0: ground state is $|GS\rangle = \bigotimes_{j=1}^{N} |+\rangle_{j} =: |\underline{X}\rangle$. Denote $|0\rangle = |\uparrow\rangle, |1\rangle = |\downarrow\rangle$.

If h=0: ground states are $|\uparrow\rangle=\bigotimes_{j=1}^N|0\rangle_j,\,|\Downarrow\rangle=\bigotimes_{j=1}^N|1\rangle_j,$ or any linear combination of these.

We have $P|\underline{X}\rangle = \underline{X}$, and $\langle \underline{X}|Z_j|\underline{X}\rangle = 0$, since $Z_j|+\rangle_j = |-\rangle_j$. So order param (z_j) is 0, can think of as paramagnet.

Also, $P|\uparrow\rangle = |\downarrow\rangle$, and $\langle \uparrow | Z_j | \uparrow \rangle \neq 0$, so order param (z_j) is not 0, so can think of as feromagnet.

Since [H,P]=0, so there exists a basis $|\psi_{E,P}\rangle$ such that $H|\psi_{E,P}\rangle=E_P|\psi_{E,P}\rangle$, and $P|\psi_{E,P}\rangle=p|\psi_{E,P}\rangle$, where $p\in\{-1,1\}$.

The ground states are $|GS_{\pm}\rangle = \frac{1}{\sqrt{2}}(|\uparrow\uparrow\rangle + |\downarrow\downarrow\rangle)$. We have $P|GS_{\pm}\rangle = \pm |GS_{\pm}\rangle$, and $\langle GS_{\pm}|Z_{i}|GS_{\pm}\rangle = 0$.

Now consider $H = H_0 + \delta H$, where $H_0 = -J \sum_{i,j:nn} Z_i Z_j$, and $\delta H = -h \sum_j X_j$, where $|h| \ll J$. δH is the perturbation, with coupling h.

3.1. Brilloin-Wigner perturbation theory

Write the eigenstates of H_0 as $H_0|n\rangle = E_n|n\rangle$, and $H|\tilde{n}\rangle = E_{\tilde{n}}|\tilde{n}\rangle$. Write $P = \sum_{n \in S} |n\rangle \langle n|$ and $Q = P^{\perp} = I - P = \sum_{n \in S^{\perp}} |n\rangle \langle n|$. Denote perturbed ground state energies by $E_{\tilde{m}}$. Let $|\widetilde{m}^{(n)}\rangle$ denote unnormalised perturbed ground-space eigenstates, i.e. $H|\widetilde{m}^{(n)}\rangle = E_{\tilde{m}}|\widetilde{m}^{(n)}\rangle$, and $|\psi_{\tilde{m}}\rangle := P|\widetilde{m}^{(n)}\rangle$ is normalised.

We have $(H_0 + \delta H)|\widetilde{m}^{(n)}\rangle = E_{\widetilde{m}}|\widetilde{m}^{(n)}\rangle$, so $(E_{\widetilde{m}} - H_0)|\widetilde{m}^{(n)}\rangle = \delta H|\widetilde{m}^{(n)}\rangle$. So

$$(E_{\widetilde{m}}-E_n)\langle n\,|\,\widetilde{m}^{(n)}\,\rangle = \langle n\,|\,\delta H\,|\,\widetilde{m}^{(n)}\,\rangle$$

. If $|n\rangle \in S^{\perp}$, then $|n\rangle\langle n|\widetilde{m}^{(n)}\rangle = \frac{|n\rangle\langle n|}{E_{\widetilde{m}}-E_n}\delta H|\widetilde{m}^{(n)}\rangle$ and so $\sum_{|n\rangle \in S^{\perp}}|n\rangle\langle n|\widetilde{m}^{(n)}\rangle = \sum_{|n\rangle \in S^{\perp}}\frac{|n\rangle\langle n|}{E_{\widetilde{m}}-E_n}\delta H|\widetilde{m}^{(n)}\rangle$. We rewrite this as $Q|\widetilde{m}^{(n)}\rangle = G\delta H|\widetilde{m}^{(n)}\rangle$. So $|\widetilde{m}^{(n)}\rangle = |\psi_{\widetilde{m}}\rangle + G\delta H|\widetilde{m}^{(n)}\rangle$, and so we have

$$|\widetilde{m}^{(n)}\rangle = (I - G\delta H)^{-1} |\psi_{\widetilde{m}}\rangle$$

Now for
$$|n\rangle \in S$$
, we have $(E_{\widetilde{m}} - E_0)\langle n | \widetilde{m}^{(n)} \rangle = \langle n | \underbrace{\delta H (I - G \delta H)^{-1}}_{=:A^{(\widetilde{m})}} | \psi_{\widetilde{m}} \rangle = \sum_{n' \in S} \underbrace{\langle n | A^{(\widetilde{m})} | n' \rangle \langle n' | \widetilde{m}^{(n)} \rangle}_{H_{nn'}^{\text{eff}}}.$ $H_{nn'}^{\text{eff}}$ is a $d_G \times d_G$ "effective" Hamiltonian.