Estimating user-defined nonlinear regression models in Stata and in Mata

A. Colin Cameron Univ. of Calif. - Davis

Prepared for 2008 West Coast Stata Users' Group Meeting, San Francisco, November 13-14, 2008. Based on A. Colin Cameron and Pravin K. Trivedi, Microeconometrics using Stata, Stata Press.

November 14, 2008

1. Introduction

- Consider nonlinear cross-section regression of y_i on \mathbf{x}_i .
- Example is $y_i | \mathbf{x}_i \sim \text{Poisson}$ with mean $\mu_i = \exp(\mathbf{x}_i' \boldsymbol{\beta})$.
- This talk demonstrates various ways to code up the estimator,
 - using Stata command ml
 - and Mata command optimize

Outline

- Introduction
- Built-in command poisson
- Command ml method lf
- Checking program by simulation
- Command ml methods d0, d1, d2
- Newton-Raphson algorithm in Mata
- Mata command optimize
- NL2SLS example

2. Built-in command poisson

- Data from 2002 U.S. Medical Expenditure Panel Survey (MEPS).
 Data due to Deb, Munkin and Trivedi (2006)
- Aged 25-64 years working in private sector but not self-employed and not receiving public insurance (Medicare and Medicaid)
- Model docvis annual number of doctor visits.

- . use mus10data.dta, clear
- . quietly keep if year02==1
- . describe docvis private chronic female income

variable name	display format	value label	variable label
docvis private chronic female income	%8.0g %8.0g %8.0g %8.0g %9.0g		number of doctor visits = 1 if private insurance = 1 if a chronic condition = 1 if female Income in \$ / 1000

. summarize docvis private chronic female income

Variable	Obs	Mean	Std. Dev.	Min	Max
docvis private chronic female income	4412 4412 4412 4412 4412	3.957389 .7853581 .3263826 .4718948 34.34018	7.947601 .4106202 .4689423 .4992661 29.03987	0 0 0 0 0 -49.999	134 1 1 1 280.777

Built-in command poisson

. poisson docvis private chronic female income, vce(robust)

```
Iteration 0: log pseudolikelihood = -18504.413
Iteration 1: log pseudolikelihood = -18503.549
Iteration 2: log pseudolikelihood = -18503.549
```

Poisson regression Number of obs = 4412wald chi2(4) = 594.72Prob > chi2 = 0.0000

docvis	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
private	.7986652	.1090014	7.33	0.000	.5850263	1.012304
chronic	1.091865	.0559951	19.50	0.000	.9821167	1.201614
female	.4925481	.0585365	8.41	0.000	.3778187	.6072774
income	.003557	.0010825	3.29	0.001	.0014354	.0056787
_cons	2297262	.1108732	-2.07	0.038	4470338	0124186

Note: Nonrobust standard errors are (erroneously) much smaller.

Marginal effects for nonlinear model: $\partial E[y|\mathbf{x}]/\partial x_j = \beta_i \times \exp(\mathbf{x}'\boldsymbol{\beta})$.

. mfx

Marginal effects after poisson y = predicted number of events (predict) = 3.0296804

variable	dy/dx	Std. Err.	Z	P> z	[95%	C.I.]	Х
private*	4.200068	.20441	9.68	0.000	1.57755	2.37881	.785358
chronic*		.27941	15.03	0.000	3.65243	4.7477	.326383
female*		.17758	8.61	0.000	1.18036	1.87645	.471895
income		.00331	3.25	0.001	.00428	.017274	34.3402

- (*) dy/dx is for discrete change of dummy variable from 0 to 1 $\,$
- . margeff

Average marginal effects on E(docvis) after poisson

docvis	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
private	2.404721	.2438573	9.86	0.000	1.926769	2.882672
chronic	4.599174	.2886176	15.94	0.000	4.033494	5.164854
female	1.900212	.2156694	8.81	0.000	1.477508	2.322917
income	.0140765	.004346	3.24	0.001	.0055585	.0225945

3. Command ml method If

• First write a program we call lfpois. This constructs the log-likelihood

$$\textstyle \sum_{i=1}^N \ln f(y_i|\mathbf{x}_i, \boldsymbol{\beta}) = \sum_{i=1}^N \{-\exp(\mathbf{x}_i'\boldsymbol{\beta}) + y_i\mathbf{x}_i'\boldsymbol{\beta} - \ln y_i!\}.$$

- Then give commands
 - ml model lf lfpois (docvis = private chronic female income), vce(robust)
 - ml check
 - ml search
 - ml maximize
- The ml check and ml search are optional.

- y is stored in global macro ML_y1.It is referred to as \$ML_y1
- 2 x is combined with β as the index $\mathbf{x}_i'\beta$ It is referred to as the program argument theta1
- \bullet In $f(y|\mathbf{x}, \boldsymbol{\beta})$ is referred to as the program argument 1f

Arguments, temporary variables and local variables are local macros, referenced in single quotes.

Compute the estimator

. ml maximize

A. Colin Cameron

```
initial:
               log pseudolikelihood = -23017.072
               log pseudolikelihood = -23017.072
rescale:
               log pseudolikelihood = -23017.072
Iteration 0:
               log pseudolikelihood = -19777.405
Iteration 1:
Iteration 2:
               log pseudolikelihood = -18513.54
Iteration 3:
               log pseudolikelihood = -18503.556
               log pseudolikelihood = -18503.549
Iteration 4:
Iteration 5:
               log pseudolikelihood = -18503.549
```

Log pseudolikelihood = -18503.549

Number of obs 4412 wald chi2(4) 594.72 Prob > chi2 0.0000

docvis	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
private chronic female income _cons	.7986654 1.091865 .4925481 .003557 2297263	.1090015 .0559951 .0585365 .0010825 .1108733	7.33 19.50 8.41 3.29 -2.07	0.000 0.000 0.000 0.001 0.038	.5850265 .9821167 .3778187 .0014354 4470339	1.012304 1.201614 .6072775 .0056787

• Command ml is not restricted to likelihood functions. e.g. For OLS maximize $-\sum_{i=1}^{N}(y_i - \mathbf{x}_i'\boldsymbol{\beta})^2$. quietly replace 'lnf' = -('y'-exp('theta1'))^2 But must then use robust standard errors.

• Command ml can handle models with more than one index. e.g. For negative binomial have two indexes $\mathbf{x}_i'\boldsymbol{\beta}$ and $\boldsymbol{\alpha}$. args lnf theta1 a and ml model lf lfnb (docvis = private chronic female income) ()

Number of numerical derivatives = number of indexes.
 Fast if few indexes.

4. Check program by simulation

Generate sample of size N from

$$y_i \sim \text{Poisson}[\exp(\alpha + \beta x_i)]$$

 $x_i \sim \text{N}[0, 0.5^2]$
 $\alpha = 2; \beta = 1.$

- To check consistency
 - Set *N* = 100,000
 - Does $\widehat{\alpha}=1$? Does $\widehat{\beta}=1$?

- ullet To check computation of the standard errors $s_{\widehat{lpha}}$ and $s_{\widehat{eta}}$.
 - Set N = 500.
 - Draw 2,000 samples of size N and obtain 2,000 estimates using command simulate or command postfile
 - Does $\sqrt{\frac{1}{1999}\sum_{s=1}^{2000}(\widehat{\beta}^{(s)}-\overline{\widehat{\beta}})^2}=\frac{1}{2000}\sum_{s=1}^{2000}s_{\widehat{\beta}}^{(s)}$?
 - i.e. Over the simulations does the st. deviation of $\widehat{\beta}=$ the average st. error of $\widehat{\beta}$?

5. Command ml methods d0, d1, d2

- More general.
- Computes the log-density for each observation.
 This then needs to be summed using mlsum
- Enters parameters β directly, rather than via index $\mathbf{x}'\beta$.
- ullet Method d0 needs to compute q numerical derivatives if q parameters.
- Can provide first derivatives (method d1) and second derivatives (method d2).
 - This speeds up computation.

- For method d0 extra arguments is todo
- ullet mleval converts $oldsymbol{eta}$ to $\mathbf{x}'oldsymbol{eta}$
- mlsum converts $\mathbf{x}_i'\boldsymbol{\beta}$ to $\sum_{i=1}^N \mathbf{x}_i'\boldsymbol{\beta}$.

```
* Method d0: Program d0opois to be called by command ml method d0
program define d0pois
1. version 10.0
2. args todo b lnf // todo is not used, b=b, lnf=lnL
3. tempvar theta1 // theta1=x'b given in eq(1)
4. mleval `theta1' = `b', eq(1)
5. local y $ML_y1 // Define y so program more readable
6. mlsum `lnf' = -exp(`theta1') + `y'* `theta1' - lnfactorial(`y')
7. end
```

- . ml model d0 d0pois (docvis = private chronic female income)
- . ml maximize

```
initial:
               log likelihood = -33899.609
alternative:
               log likelihood = -28031.767
rescale:
               log likelihood = -24020.669
Iteration 0:
               log likelihood = -24020.669
               loa likelihood = -18845.464
Iteration 1:
               log likelihood = -18510.257
Iteration 2:
Iteration 3:
               log likelihood = -18503.552
               log likelihood = -18503.549
Iteration 4:
Iteration 5:
               log likelihood = -18503.549
```

Log likelihood = -18503.549

Number of obs = 4412 Wald chi2(4) = 8052.34 Prob > chi2 = 0.0000

docvis	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
private	.7986653	.027719	28.81	0.000	.7443371	.8529936
chronic	1.091865	.0157985	69.11	0.000	1.060901	1.12283
female	.4925481	.0160073	30.77	0.000	.4611744	.5239218
income	.003557	.0002412	14.75	0.000	.0030844	.0040297
_cons	2297263	.0287022	-8.00	0.000	2859815	173471

- Preceding gives nonrobust standard errors.
- To get robust standard errors need to use method d1 or d2.

```
* Method d2: Program d2pois to be called by command ml method d2
program define d2pois
      version 10.0
      args todo b lnf g negH
                                        // Add g and negH to the arguments list
 tempvar theta1
                                        // theta1 = x'b where x given in eg(1)
      mleval `theta1' = `b', eq(1)
     local y $ML_y1
      local y ML_y1 // Define y so program more readable mlsum `lnf' = -exp(`theta1') + `y'* theta1' - lnfactorial(`y')
      if (`todo'==0 | `lnf'>=.) exit // d1 extra code from here
 8.
      tempname d1
      mlvecsum \inf' d1' = y' - \exp(\theta1')
9.
      matrix `q' = (`d1')
10.
      if ('todo'==0 | 'lnf'>=.) exit // d2 extra code from here
11.
12.
     tempname d11
      mlmatsum `lnf' `d11' = exp(`theta1')
13.
14.
      matrix `negH' = `d11'
15. end
```

6. Newton-Raphson algorithm using Mata

- ullet Iterative algorithms are rules to compute $\widehat{ heta}_{s+1}$ given $\widehat{ heta}_s$.
- Gradient methods use a rule of the form

$$\widehat{m{ heta}}_{s+1} = \widehat{m{ heta}}_s + \mathbf{A}_s \mathbf{g}_s$$

where \mathbf{g}_s is the gradient of the objective function evaluated at $\widehat{m{ heta}}_s$.

• Newton-Raphson (NR) method approximates the objective function at $\widehat{\theta}_s$ by a quadratic function. It chooses $\widehat{\theta}_{s+1}$ to maximize this approximation.

Then

$$\widehat{m{ heta}}_{s+1} = - \mathbf{H}_s^{-1} \mathbf{g}_s$$

where \mathbf{H}_s is the Hessian evaluated at $\widehat{\boldsymbol{\theta}}_s$.

Poisson objective function, gradient and Hessian are:

$$\begin{array}{ll} Q(\pmb{\beta}) &= \sum_{i=1}^N \{-\exp(\mathbf{x}_i'\pmb{\beta}) + y_i\mathbf{x}_i'\pmb{\beta} - \ln y_i!\} \\ \mathbf{g}(\pmb{\beta}) &= \sum_{i=1}^N (y_i - \exp(\mathbf{x}_i'\pmb{\beta}))\mathbf{x}_i \\ \mathbf{H}(\pmb{\beta}) &= \sum_{i=1}^N - \exp(\mathbf{x}_i'\pmb{\beta})\mathbf{x}_i\mathbf{x}_i'. \end{array}$$

So NR is

$$\begin{split} \widehat{\pmb{\beta}}_{s+1} &= \widehat{\pmb{\beta}}_s - \mathbf{H}(\widehat{\pmb{\beta}}_s)^{-1} \times \mathbf{g}(\widehat{\pmb{\beta}}_s) \\ &= \widehat{\pmb{\beta}}_s + \left[\sum_{i=1}^N \exp(\mathbf{x}_i' \widehat{\pmb{\beta}}_s) \mathbf{x}_i \mathbf{x}_i' \right]^{-1} \times \sum_{i=1}^N (y_i - \exp(\mathbf{x}_i' \widehat{\pmb{\beta}}_s)) \mathbf{x}_i. \end{split}$$

Core Mata code is

- Define y and x
 generate cons = 1
 local y docvis
 local xlist private chronic female income cons
- Read these in to Mata using st_view

```
: st_view(y=., ., "'y'")
: st_view(X=., ., tokens("'xlist'"))
```

- Do the analysis and compute b and V
- Pass these back to Stata using st_matrix st_matrix("b",b') st_matrix("V",vb)
- Post results using command ereturn

Do the NR iterations to compute $\widehat{\beta}$.

```
* Complete Mata code for Poisson MLE NR iterations
mata
                                              — mata (type end to exit)
  st_view(y=., ., "`y'")
                                     // read in stata data to y and X
  st_view(X=., ., tokens("`xlist'"))
  b = J(cols(X), 1, 0)
                                     // compute starting values
  n = rows(x)
  iter = 1
                                     // initialize number of iterations
                                     // initialize stopping criterion
  cha = 1
  do {
     mu = exp(x*b)
     grad = X'(y-mu)
                                     // kx1 gradient vector
     hes = makesymmetric((x:*mu)'x) // negative of the kxk hessian matrix
     hold = h
     b = bold + cholinv(hes)*(grad)
     cha = (bold-b)'(bold-b)/(b'b)
     iter = iter + 1
  } while (cha > 1e-16)
                                     // end of iteration loops
```

Compute the variance-covariance matrix of β .

```
mu = exp(x*b)
   hes = (x:*mu)'x
   vgrad = ((X:*(y-mu))'(X:*(y-mu)))
   vb = cholinv(hes)*vgrad*cholinv(hes)*n/(n-cols(X))
                                      // num iterations
   iter
 13
   cha
                                      // stopping criterion
 1.11465e-24
   st_matrix("b",b')
                                      // pass results from Mata to Stata
                                      // pass results from Mata to Stata
   st_matrix("V",vb)
: end
```

User-defined models in Stata

Present results nicely formatted.

- . * Present results, nicely formatted using Stata command ereturn . matrix colnames b = `xlist'
- . matrix colnames V = `xlist'
- . matrix rownames V = `xlist'
- . ereturn post b V
- . ereturn display

	Coef.	Std. Err.	z	P> z	[95% Conf.	Interval]
private	.7986654	.1090509	7.32	0.000	.5849295	1.012401
chronic	1.091865	.0560205	19.49	0.000	.9820669	1.201663
female	.4925481	.058563	8.41	0.000	.3777666	.6073295
income	.003557	.001083	3.28	0.001	.0014344	.0056796
cons	2297263	.1109236	-2.07	0.038	4471325	0123202

24 / 36

7. Mata command optimize

- Mata command optimize uses same optimizer as command ml, but different syntax.
- Minimal syntax is
 void evaluator(todo, p, v, g, H)
 where
 p is parameter vector
 v defines objective function, and
 if todo = 0 then gradient g and Hessian H are optional.
- Type v evaluator provides formula for 1 × N vector v, where e'v = f(p).
 Suited to m-estimators (MLE, LS, just-identified NLIV).
- Type d evaluator provides formula for scalar v where $v = f(\mathbf{p})$. Suited to over-identified generalized method of moments (GMM).

Declare the function poissonmle and st_view data

Initialize command optimize and optimize using v2 evaluator.

```
optimize init evaluator(S. &poissonmle())
    optimize init evaluatortype(S. "v2")
    optimize_init_argument(S, 1, y)
    optimize_init_argument(S, 2, X)
    optimize_init_params(S, J(1,cols(X),0))
    b = optimize(S)
Iteration 0: f(p) = -33899.609
Iteration 1:
             f(p) = -19668.697
             f(p) = -18585.609
Iteration 2:
Iteration 3:
             f(p) = -18503.779
Iteration 4:
             f(p) = -18503.549
Iteration 5:
              f(p) = -18503.549
```

S = optimize init()

Compute variance covariance matrix and list results.

```
Vbrob = optimize_result_V_robust(S)
:
    serob = (sqrt(diagonal(vbrob)))'
    b \ serob
                   1
                                   2
                                                   3
                                                                                   5
        .7986653788
                        1.091865108
                                        .4925480693
                                                        .0035570127
                                                                       -.2297263376
 1
        .1090014507
                        .0559951312
                                         .0585364746
                                                        .0010824894
                                                                         .1108732568
: end
```

Note: Can st_matrix back to Stata and ereturn display results.

8. NL2SLS example

- Poisson MLE inconsistent if $E[y \exp(\mathbf{x}'\boldsymbol{\beta})|\mathbf{x}] \neq 0$, due to endogenous regressors.
- Assume there are instruments z such that

$$\mathsf{E}[\mathbf{z}_i(y_i - \exp(\mathbf{x}'\boldsymbol{\beta}))] = 0.$$

• Define the $r \times 1$ vector

$$\mathbf{h}(\boldsymbol{\beta}) = \left[\sum_{i} \mathbf{z}_{i}(y_{i} - \exp(\mathbf{x}_{i}'\boldsymbol{\beta}))\right].$$

• In just-identified case: # instruments = # regressors (r = K) use the nonlinear instrumental variabels (NLIV) estimator that solves

$$\mathbf{h}(\widehat{\pmb{\beta}}) = \mathbf{0}.$$

• In over-identified case (r > K) the GMM estimator minimizes

$$Q(\boldsymbol{\beta}) = \mathbf{h}(\boldsymbol{\beta})' \mathbf{W} \mathbf{h}(\boldsymbol{\beta}).$$

GMM estimator minimizes

$$Q(\boldsymbol{\beta}) = \mathbf{h}(\boldsymbol{\beta})' \mathbf{W} \mathbf{h}(\boldsymbol{\beta}).$$

• The $K \times 1$ gradient vector is

$$\mathbf{g}(oldsymbol{eta}) = \partial Q(oldsymbol{eta})/\partial oldsymbol{eta} = \mathbf{G}(oldsymbol{eta})' \mathbf{Wh}(oldsymbol{eta}).$$

• The $K \times K$ expected Hessian is

$$\mathsf{H}(\pmb{\beta}) = \partial^2 Q(\pmb{\beta})/\partial \pmb{\beta} \partial \pmb{\beta}' = \mathsf{G}(\pmb{\beta})' \mathsf{WG}(\pmb{\beta})'.$$

Where

$$\mathbf{G}(\boldsymbol{\beta}) = -\sum_{i} \exp(\mathbf{x}_{i}'\boldsymbol{\beta})\mathbf{z}_{i}\mathbf{x}_{i}'$$

$$\mathbf{h}(\boldsymbol{\beta}) = \sum_{i} \mathbf{z}_{i}(y_{i} - \exp(\mathbf{x}_{i}'\boldsymbol{\beta}))$$

$$\mathbf{W} = (\mathbf{Z}'\mathbf{Z})^{-1} = \left(\sum_{i} \mathbf{z}_{i}\mathbf{z}_{i}'\right)^{-1}$$

Declare the function pgmm and st_view data

```
. mata
```

```
mata (type end to exit) -
void pgmm(todo, b, y, X, Z, Qb, g, H)
  xb = x*b'
 mu = exp(xb)
  h = Z'(y-mu)
  W = cholinv(cross(Z.Z))
  Qb = h'w*h
  if (todo == 0) return
  G = -(mu:*Z)'X
  a = (\hat{G}'W*h)'
  if (todo == 1) return
  H = G'W*G
  _makesymmetric(H)
st_view(y=., ., "`y'")
st_view(X=., ., tokens("`xlist'"))
st_view(Z=., ., tokens("`zlist'"))
```

Initialize command optimize and optimize using d2 evaluator.

```
S = optimize init()
    optimize_init_which(S, "min")
    optimize_init_evaluator(S, &pgmm())
    optimize_init_evaluatortype(S, "d2")
    optimize_init_argument(S, 1, y)
    optimize_init_argument(S, 2, X)
    optimize_init_argument(S, 3, Z)
    optimize_init_params(S, J(1,cols(X),0))
    optimize init technique(S."nr")
    b = optimize(S)
Iteration 0:
              f(p) =
                      71995.212
Iteration 1:
              f(p) =
                      9259.0408
Iteration 2:
              f(p) = 1186.8103
Iteration 3:
              f(p) = 3.4395408
Iteration 4:
              f(p) = .00006905
Iteration 5:
              f(p) = 5.672e-14
              f(p) =
                      1.953e-27
Iteration 6:
```

Compute variance covariance matrix (manually) and list results.

```
Compute robust estimate of VCE and se's
 xb = x*b'
 mu = exp(xb)
 h = Z'(y-mu)
 W = cholinv(cross(Z.Z))
 G = -(mu:*Z)'X
 Shat = ((y-mu):*Z)'((y-mu):*Z)*rows(X)/(rows(X)-cols(X))
 Vb = luinv(G'W*G)*G'W*Shat*W*G*luinv(G'W*G)
 seb = (sqrt(diagonal(Vb)))'
 b \ seb
                                2
                                                3
                                                                               5
                1
      1.340291853
                     1.072907529
                                      .477817773
                                                     .0027832801
                                                                   -.6832461817
2
      1.559899278
                     .0763116698
                                     .0690784466
                                                     .0021932119
                                                                    1.350370916
```

User-defined models in Stata

: end

33 / 36

PRAVIN K. TRIVEDI

Book Outline

- 1. Stata basics
- 2. Data management and graphics
- 3. Linear regression basics
- 4. Simulation
- 5. GLS regression
- 6. Linear instrumental variable regression
- 7. Quantile regression
- 8. Linear panel models
- 9. Nonlinear panel models

- 10. Nonlinear regression methods
- 11. Nonlinear optimization methods
- **12.** Testing methods
- 13. Bootstrap methods
- 14. Binary outcome models
- 15. Multinomial models
- 16. Tobit and selection models
- 17. Count models
- 18. Nonlinear panel models
 - A. Programming in Stata
 - B. Mata