Dassault Mirage 2000-5 Aerodynamic data built from vspaero; CG (8.56, 0, 0.5)M, 2020-01-10 07:37

Richard Harrison, rjh@zaretto.com, ZDAT/AED/2017/09-08.

Copyright (C) 2017 Richard Harrison, All rights reserved

AeroDetail=Full, Flaps, Gear, GroundEffect, Mach, Variable Wing Geometry, WakeIterations=3

Model summary

Dependent variable	Independent variables	Axis	Description
CFXB	alpha	DRAG	BASIC DRAG
CFXDED1L	alpha,beta,DED1L	DRAG	DRAG DUE TO ELEVON 1L
CFXDED1R	alpha,beta,DED1R	DRAG	DRAG DUE TO ELEVON 1R
CFXDED2L	alpha,beta,DED2L	DRAG	DRAG DUE TO ELEVON 2L
CFXDED2R	alpha,beta,DED2R	DRAG	DRAG DUE TO ELEVON 2R
CFXDSD1L	alpha	DRAG	DRAG DUE TO LE SLAT 1
CFXDSD2L	alpha	DRAG	DRAG DUE TO LE SLAT 2
CFXDSBL	alpha	DRAG	DRAG DUE TO LOWER SPEEDBRAKE DEFLECTION
CFXmn	mach,alpha	DRAG	DRAG DUE TO MACH
CFXDSBU	alpha	DRAG	DRAG DUE TO UPPER SPEEDBRAKE DEFLECTION
CFXGEAR	alpha	DRAG	DRAG INCREMENT DUE TO GEAR
CFZB	alpha	LIFT	BASIC LIFT
CFZDED1L	alpha,beta,DED1L	LIFT	LIFT DUE TO ELEVON 1L
CFZDED1R	alpha,beta,DED1R	LIFT	LIFT DUE TO ELEVON 1R
CFZDE2L	alpha,beta,DED2L	LIFT	LIFT DUE TO ELEVON 2L
CFZDE2R	alpha,beta,DED2R	LIFT	LIFT DUE TO ELEVON 2R
CFZDSD1L	alpha	LIFT	LIFT DUE TO LE SLAT 1
CFZDSD2L	alpha	LIFT	LIFT DUE TO LE SLAT 2
CFZDEL	alpha	LIFT	LIFT DUE TO LOWER SPEEDBRAKE DEFLECTION
CFZmn	mach,alpha	LIFT	LIFT DUE TO MACH
CFZDSBU	alpha	LIFT	LIFT DUE TO UPPER SPEEDBRAKE DEFLECTION
CFZGEAR	alpha	LIFT	LIFT INCREMENT DUE TO GEAR
CMM1	alpha	PITCH	BASIC PITCHING MOMENT
CMMQ	alpha	PITCH	PITCH DAMPING DERIVATIVE
CMMmnw	mach,alpha	PITCH	PITCH DUE TO MACH
CMMDED1L	alpha,beta,DED1L	PITCH	PITCH MOMENT DUE TO ELEVON 1L
CMMDED1R	alpha,beta,DED1R	PITCH	PITCH MOMENT DUE TO ELEVON 1R
CMMDED2L	alpha,beta,DED2L	PITCH	PITCH MOMENT DUE TO ELEVON 2L
CMMDED2R	alpha,beta,DED2R	PITCH	PITCH MOMENT DUE TO ELEVON 2R
CMMDSD1L	alpha	PITCH	PITCH MOMENT DUE TO LE SLAT 1

CMMDSD2L	alpha	PITCH	PITCH MOMENT DUE TO LE SLAT 2
CMMDSBL	alpha	PITCH	PITCH MOMENT DUE TO LOWER SPEEDBRAKE DEFLECTION
CMMDSBU	alpha	PITCH	PITCH MOMENT DUE TO UPPER SPEEDBRAKE DEFLECTION
CMMGEAR	alpha	PITCH	PITCHING MOMENT INCREMENT DUE TO GEAR
CML1	alpha,beta	ROLL	BASIC ROLLING MOMENT
CMLP	alpha	ROLL	ROLL DAMPING DERIVATIVE
CMLmnw	mach,alpha	ROLL	ROLL DUE TO MACH
CMLDED1L	alpha,beta,DED1L	ROLL	ROLLING MOMENT DUE TO ELEVON 1L DEFLECTION
CMLDED1R	alpha,beta,DED1R	ROLL	ROLLING MOMENT DUE TO ELEVON 1R DEFLECTION
CMLDED2L	alpha,beta,DED2L	ROLL	ROLLING MOMENT DUE TO ELEVON 2L DEFLECTION
CMLDED2R	alpha,beta,DED2R	ROLL	ROLLING MOMENT DUE TO ELEVON 2R DEFLECTION
CMLDRD	alpha,beta,DRD	ROLL	ROLLING MOMENT DUE TO RUDDER DEFLECTION
CMLR	alpha	ROLL	ROLLING MOMENT DUE TO YAW RATE
CMLGEAR	alpha	ROLL	ROLLING MOMENT INCREMENT DUE TO GEAR
CFYB	alpha,beta	SIDE	BASIC SIDE FORCE
CFYDED1L	alpha,beta,DED1L	SIDE	SIDE FORCE DUE TO ELEVON 1L DEFLECTION
CFYDED1R	alpha,beta,DED1R	SIDE	SIDE FORCE DUE TO ELEVON 1R DEFLECTION
CFYDED2L	alpha,beta,DED2L	SIDE	SIDE FORCE DUE TO ELEVON 2L DEFLECTION
CFYDED2R	alpha,beta,DED2R	SIDE	SIDE FORCE DUE TO ELEVON 2R DEFLECTION
CFYmn	mach,alpha	SIDE	SIDE FORCE DUE TO MACH
CFYP	alpha	SIDE	SIDE FORCE DUE TO ROLL RATE
CFYDRD	alpha,beta,DRD	SIDE	SIDE FORCE DUE TO RUDDER DEFLECTION
CFYR	alpha	SIDE	SIDE FORCE DUE TO YAW RATE
CFYGEAR	alpha	SIDE	SIDE FORCE INCREMENT DUE TO GEAR
CMN1	alpha,beta	YAW	BASIC YAW ING MOMENT
CMNR	alpha	YAW	YAW DAMPING DERIVATIVE
CMNmnw	mach,alpha	YAW	YAW DUE TO MACH
CMNDED1L	alpha,beta,DED1L	YAW	YAW MOMENT DUE TO ELEVON 1L
CMNDED1R	alpha,beta,DED1R	YAW	YAW MOMENT DUE TO ELEVON 1R
CMNDED2L	alpha,beta,DED2L	YAW	YAW MOMENT DUE TO ELEVON 2L
CMNDED2R	alpha,beta,DED2R	YAW	YAW MOMENT DUE TO ELEVON 2R
CMNP	alpha	YAW	YAW ING MOMENT DUE TO ROLL RATE
CMNDRDr	alpha,beta,DRD	YAW	YAWING MOMENT DUE TO RUDDER DEFLECTION
CMNGEAR	alpha	YAW	YAWING MOMENT INCREMENT DUE TO GEAR

Coefficient Buildup

Axis Buildup

LIFT	CFZDSD1L*DSD1L + CFZDSD2L*DSD2L + CFZDSBU*DSBU + CFZDEL*DSBL + CFZGEAR*gear + CFZB + CFZDED1L + CFZDED1R + CFZDE2L + CFZDE2R + CFZmn
PITCH	$ {\sf CMMDSD1L*DSD1L+CMMDSD2L*DSD2L+CMMDSBU*DSBU+CMMDSBL*DSBL+CMMGEAR*gear+CMM1+CMMQ*QB+CMMDED1L+CMMDED1R+CMMDED2L+CMMDED2R+CMMDSBL*DSBL*DSBL*DSBL*DSBL*DSBL*DSBL*DSBL*$
SIDE	CFYGEAR*gear + CFYB + CFYDED1L + CFYDED1R + CFYDED2L + CFYDED2R + CFYDRD + CFYP*PB + CFYR*RB + CFYmn
ROLL	CMLGEAR*gear + CML1 + CMLDED1L + CMLDED1R + CMLDED2L + CMLDED2R + CMLDRD + CMLP*PB + CMLR*RB + CMLmnw + (DLNB*BETA)
YAW	CMNGEAR*gear + CMN1 + CMNDED1L + CMNDED1R + CMNDED2L + CMNDED2R + CMNDRDr + CMNP*PB + CMNR*RB + CMNmnw +

LIFT

(DCNB*BETA)

LIFT DUE TO ELEVON 1L

LIFT DUE TO ELEVON 1L

CFZDED1L (alpha,beta,DED1L=0)

CFZDED1L (alpha,beta,DED1L=25)

LIFT DUE TO ELEVON 1R

vsp beta -7 vsp beta -2 vsp beta 2 vsp beta 7 vsp beta 5 vsp beta 5 vsp beta 5

CFZDED1R (alpha,beta,DED1R=-16)

LIFT DUE TO ELEVON 1R

CFZDED1R (alpha,beta,DED1R=0)

LIFT DUE TO ELEVON 1R

CFZDED1R (alpha,beta,DED1R=25)

LIFT DUE TO ELEVON 2L

CFZDE2L (alpha,beta,DED2L=-16)

LIFT DUE TO ELEVON 2L

vsp beta -7 vsp beta -2 vsp beta 2 vsp beta 7 vsp beta 5 vsp beta 0 vsp beta 5

CFZDE2L (alpha,beta,DED2L=0)

LIFT DUE TO ELEVON 2L

CFZDE2L (alpha,beta,DED2L=25)

LIFT DUE TO ELEVON 2R

LIFT DUE TO ELEVON 2R

CFZDE2R (alpha,beta,DED2R=-16)

LIFT DUE TO ELEVON 2R

LIFT DUE TO LE SLAT 1

CFZDSD1L(alpha)

LIFT DUE TO LE SLAT 2

LIFT DUE TO LOWER SPEEDBRAKE DEFLECTION

CFZDSD2L(alpha)

CFZDEL(alpha)

LIFT DUE TO MACH

LIFT DUE TO UPPER SPEEDBRAKE DEFLECTION

CFZmn(mach,alpha)

LIFT INCREMENT DUE TO GEAR

CFZGEAR(alpha)

DRAG

DRAG DUE TO ELEVON 1L

DRAG DUE TO ELEVON 1L

DRAG DUE TO ELEVON 1L

CFXDED1L (alpha,beta,DED1L=0)

DRAG DUE TO ELEVON 1R

DRAG DUE TO ELEVON 1R

CFXDED1R (alpha,beta,DED1R=-16)

vsp beta -7
 vsp beta -2
 vsp beta 2
 vsp beta 7
 vsp beta 5
 vsp beta 5

DRAG DUE TO ELEVON 1R

CFXDED1R (alpha,beta,DED1R=25)

0.057 0.050 0.043 0.036 0.029 0.021 0.014

DRAG DUE TO ELEVON 2L

CFXDED2L (alpha,beta,DED2L=-16)

DRAG DUE TO ELEVON 2L

vsp beta -7 vsp beta -2 vsp beta 2 vsp beta 7 vsp beta 5 vsp beta 0 vsp beta 5

15

20 25 30 35 40 45 50 55 60

0.000

-0.007

CFXDED2L (alpha,beta,DED2L=0)

DRAG DUE TO ELEVON 2L

CFXDED2L (alpha,beta,DED2L=25)

DRAG DUE TO ELEVON 2R

DRAG DUE TO ELEVON 2R

CFXDED2R (alpha,beta,DED2R=-16)

DRAG DUE TO ELEVON 2R

DRAG DUE TO LE SLAT 1

CFXDED2R (alpha,beta,DED2R=25)

CFXDSD1L(alpha)

DRAG DUE TO LE SLAT 2

DRAG DUE TO LOWER SPEEDBRAKE DEFLECTION

CFXDSD2L(alpha)

CFXDSBL(alpha)

DRAG DUE TO MACH

DRAG DUE TO UPPER SPEEDBRAKE DEFLECTION

CFXDSBU(alpha)

DRAG INCREMENT DUE TO GEAR

CFXGEAR(alpha)

SIDE

BASIC SIDE FORCE

CFYB(alpha,beta)

SIDE FORCE DUE TO ELEVON 1L DEFLECTION

CFYDED1L (alpha,beta,DED1L=-16)

SIDE FORCE DUE TO ELEVON 1L DEFLECTION

SIDE FORCE DUE TO ELEVON 1L DEFLECTION

CFYDED1L (alpha,beta,DED1L=0)

SIDE FORCE DUE TO ELEVON 1R DEFLECTION

SIDE FORCE DUE TO ELEVON 1R DEFLECTION

CFYDED1R (alpha,beta,DED1R=-16)

SIDE FORCE DUE TO ELEVON 1R DEFLECTION

CFYDED1R (alpha,beta,DED1R=25)

SIDE FORCE DUE TO ELEVON 2L DEFLECTION

CFYDED2L (alpha,beta,DED2L=-16)

SIDE FORCE DUE TO ELEVON 2L DEFLECTION

CFYDED2L (alpha,beta,DED2L=0)

SIDE FORCE DUE TO ELEVON 2L DEFLECTION

CFYDED2L (alpha,beta,DED2L=25)

SIDE FORCE DUE TO ELEVON 2R DEFLECTION

SIDE FORCE DUE TO ELEVON 2R DEFLECTION

CFYDED2R (alpha,beta,DED2R=-16)

SIDE FORCE DUE TO ELEVON 2R DEFLECTION

SIDE FORCE DUE TO MACH

CFYDED2R (alpha,beta,DED2R=25)

SIDE FORCE DUE TO ROLL RATE

SIDE FORCE DUE TO RUDDER DEFLECTION

CFYP(alpha)

CFYDRD (alpha,beta,DRD=0)

SIDE FORCE DUE TO YAW RATE

CFYR(alpha)

--- CFYR

SIDE FORCE INCREMENT DUE TO GEAR

CFYGEAR(alpha)

PITCH

BASIC PITCHING MOMENT

PITCH DAMPING DERIVATIVE

CMMQ(alpha)

PITCH DUE TO MACH

PITCH MOMENT DUE TO ELEVON 1L

0.050

0.031

0.013

-0.006

-0.025 -0.044

-0.062 -0.081

-0.100 -

0.7

0.95

1.2

1.45

1.7

1.95

2.2

0.45

PITCH MOMENT DUE TO ELEVON 1L

PITCH MOMENT DUE TO ELEVON 1L

CMMDED1L (alpha,beta,DED1L=0)

PITCH MOMENT DUE TO ELEVON 1R

PITCH MOMENT DUE TO ELEVON 1R

CMMDED1R (alpha,beta,DED1R=-16)

PITCH MOMENT DUE TO ELEVON 1R

CMMDED1R (alpha,beta,DED1R=25)

-0.017 -0.037 -0.057

-0.077

-0.097

PITCH MOMENT DUE TO ELEVON 2L

CMMDED2L (alpha,beta,DED2L=-16)

PITCH MOMENT DUE TO ELEVON 2L

vsp beta -7 vsp beta -2 vsp beta 2 vsp beta 7 vsp beta 5 vsp beta 0 vsp beta 5

30 35 40 45 50 55 60

CMMDED2L (alpha,beta,DED2L=0)

PITCH MOMENT DUE TO ELEVON 2L

CMMDED2L (alpha,beta,DED2L=25)

PITCH MOMENT DUE TO ELEVON 2R

PITCH MOMENT DUE TO ELEVON 2R

CMMDED2R (alpha,beta,DED2R=-16)

CMMDED2R (alpha,beta,DED2R=0)

PITCH MOMENT DUE TO ELEVON 2R

PITCH MOMENT DUE TO LE SLAT 1

CMMDED2R (alpha,beta,DED2R=25)

CMMDSD1L(alpha)

PITCH MOMENT DUE TO LE SLAT 2

PITCH MOMENT DUE TO LOWER SPEEDBRAKE DEFLECTION

CMMDSD2L(alpha)

` .

CMMDSBL(alpha)

CMMDSBL*DSBL

PITCH MOMENT DUE TO UPPER SPEEDBRAKE DEFLECTION

CMMDSBU(alpha)

CMMDSBU*DSBU

PITCHING MOMENT INCREMENT DUE TO GEAR

CMMGEAR(alpha)

ROLL

BASIC ROLLING MOMENT

CML1(alpha,beta)

ROLL DAMPING DERIVATIVE

CMLP(alpha)

ROLL DUE TO MACH

vsp beta -,
vsp beta -5

vsp beta 7

CMLmnw(mach,alpha)

ROLLING MOMENT DUE TO ELEVON 1L DEFLECTION

CMLDED1L (alpha,beta,DED1L=-16)

ROLLING MOMENT DUE TO ELEVON 1L DEFLECTION

ROLLING MOMENT DUE TO ELEVON 1L DEFLECTION

CMLDED1L (alpha,beta,DED1L=0)

CMLDED1L (alpha,beta,DED1L=25)

ROLLING MOMENT DUE TO ELEVON 1R DEFLECTION

CMLDED1R (alpha,beta,DED1R=-16)

ROLLING MOMENT DUE TO ELEVON 1R DEFLECTION

CMLDED1R (alpha,beta,DED1R=0)

ROLLING MOMENT DUE TO ELEVON 1R DEFLECTION

CMLDED1R (alpha,beta,DED1R=25)

-0.006 -0.016 -0.026 -0.036 -0.046 -10 -5 0 5 10 15 20 25 30 35 40 45 50 55 60

ROLLING MOMENT DUE TO ELEVON 2L DEFLECTION

CMLDED2L (alpha,beta,DED2L=-16)

ROLLING MOMENT DUE TO ELEVON 2L DEFLECTION

-- vsp beta -7 -- vsp beta -2 -- vsp beta 2 -- vsp beta 7
-- vsp beta -5 -- vsp beta 0 -- vsp beta 5

CMLDED2L (alpha,beta,DED2L=0)

ROLLING MOMENT DUE TO ELEVON 2L DEFLECTION

CMLDED2L (alpha,beta,DED2L=25)

ROLLING MOMENT DUE TO ELEVON 2R DEFLECTION

ROLLING MOMENT DUE TO ELEVON 2R DEFLECTION

CMLDED2R (alpha,beta,DED2R=-16)

ROLLING MOMENT DUE TO ELEVON 2R DEFLECTION

ROLLING MOMENT DUE TO RUDDER DEFLECTION

ROLLING MOMENT DUE TO RUDDER DEFLECTION

ROLLING MOMENT DUE TO RUDDER DEFLECTION

CMLDRD (alpha,beta,DRD=0)

CMLDRD (alpha,beta,DRD=25)

ROLLING MOMENT DUE TO YAW RATE

CMLR(alpha)

. .

ROLLING MOMENT INCREMENT DUE TO GEAR

CMLGEAR(alpha)

YAW

BASIC YAWING MOMENT

YAW DAMPING DERIVATIVE

CMN1(alpha,beta)

CMNR(alpha)

YAW DUE TO MACH

YAW MOMENT DUE TO ELEVON 1L

YAW MOMENT DUE TO ELEVON 1L

YAW MOMENT DUE TO ELEVON 1L

CMNDED1L (alpha,beta,DED1L=0)

CMNDED1L (alpha,beta,DED1L=25)

YAW MOMENT DUE TO ELEVON 1R

YAW MOMENT DUE TO ELEVON 1R

CMNDED1R (alpha,beta,DED1R=-16)

YAW MOMENT DUE TO ELEVON 1R

CMNDED1R (alpha,beta,DED1R=25)

YAW MOMENT DUE TO ELEVON 2L

CMNDED2L (alpha,beta,DED2L=-16)

YAW MOMENT DUE TO ELEVON 2L

vsp beta -7 vsp beta -2 vsp beta 2 vsp beta 7 vsp beta 5 vsp beta 0 vsp beta 5

CMNDED2L (alpha,beta,DED2L=0)

YAW MOMENT DUE TO ELEVON 2L

CMNDED2L (alpha,beta,DED2L=25)

YAW MOMENT DUE TO ELEVON 2R

YAW MOMENT DUE TO ELEVON 2R

CMNDED2R (alpha,beta,DED2R=-16)

CMNDED2R (alpha,beta,DED2R=0)

YAW MOMENT DUE TO ELEVON 2R

YAWING MOMENT DUE TO ROLL RATE

CMNDED2R (alpha,beta,DED2R=25)

CMNP(alpha)

YAWING MOMENT DUE TO RUDDER DEFLECTION

YAWING MOMENT DUE TO RUDDER DEFLECTION

YAWING MOMENT DUE TO RUDDER DEFLECTION

vsp beta 5

vsp beta 0

--- vsp beta -5

vsp beta 7

YAWING MOMENT INCREMENT DUE TO GEAR

vsp beta 0

--- vsp beta -5

vsp beta -2 vsp beta 2 vsp beta 5

vsp beta 5

- vsp beta 7

CMNGEAR(alpha)

References

1. Richard Harrison, rjh@zaretto.com: Mirage 2000-5 Aerodynamic data built from vspaero; AeroRP (8.56, 0, 0.5)M, ZDAT/AED/2017/09-08, $September, 2017: \ http://www.zaretto.com/sites/zaretto.com/files/Mirage2000-data-data/rjh-zaretto-Mirage2000-aerodynamic-data-vspaero.pdf$

Aircraft Metrics

Element	X	Υ	Z	Unit
Aerodynamic Reference Point (CoP)	8.56	0.00	0.50	М
Aircraft CG	8.56	0.00	0.50	М

Element		Unit
Wingspan	7.87	М
Wing Area	28.17	M2
Chord	3.58	М
ClMax	-1.00	ND

Mass and balance

Element					Unit	
Empty Weight			28000.00		LBS	
IXX			6262.00		KG*M2	
IYY			75686.00		KG*M2	
IZZ			78802.00		KG*M2	
IXZ			2141.00		KG*M2	
Element	X	Υ	Z	Unit	Weight	

Ground Reactions

Element	X	Υ	Z	Unit	Index
NOSE_LG	4.01	0.00	-2.73	М	0
LEFT_MLG	8.96	-1.80	-2.65	М	1
RIGHT_MLG	8.96	1.80	-2.65	М	2
LEFT_WING_TIP	11.71	-4.53	-0.25	М	3
RIGHT_WING_TIP	11.71	4.53	-0.25	М	4
CANOPY	4.27	0.00	1.46	М	5
REAR_CANOPY	5.05	0.00	1.58	М	6
RADOME_FRONT	0.00	0.00	0.00	М	7
VERTICAL_TAIL_FRONT	13.06	0.00	3.63	М	8
VERTICAL_TAIL_REAR	13.72	0.00	3.54	М	9
REAR_BODY_LEFT	13.63	-0.50	0.53	М	10
REAR_BODY_RIGHT	13.63	0.50	0.53	М	11
LOWER_REAR_BODY	13.63	0.00	0.03	М	12
LOWER_MID_REAR_BODY	11.56	0.00	-0.32	М	13
REFUEL_PROBE	1.53	0.55	1.17	М	14
LEFT_STRAKE	5.21	-1.13	0.64	М	15
RIGHT_STRAKE	5.21	1.13	0.64	М	16
FRONT_LOWER_ANTENNA	2.35	0.00	-0.39	М	17
VSTAB_FRONT_ANTENNA	11.98	0.00	3.06	М	18
VSTAB_REAR_ANTENNA	13.74	0.00	2.98	М	19
СНИТЕ	13.83	0.00	1.21	М	20

Propulsion

Element	X	Y	Z	Unit	Feed
SNECMA_M53-P2	18.11	0.00	0.50	М	Feed line [0],External Tank [1],Right Wing Tank [2],Left Wing Tank [3],Main Tank [4]

Tanks

Element	x	Υ	Z	Unit	Capacity	Id	Priority	Standpipe
Feed line	8.56	0.00	0.50	М	10 LBS	0	1	
External Tank	8.56	0.00	0.01	М	1200 KG	1	2	50 KG
Right Wing Tank	8.56	4.00	0.10	М	385 LBS	2	3	100 LBS
Left Wing Tank	8.56	-4.00	0.10	М	385 LBS	3	3	100 LBS
Main Tank	8.56	0.00	0.50	М	2128 KG	4	4	50 KG

Systems

Name

Mirage-2000-hydraulics Mirage-2000-electrics Mirage-2000-avionics Mirage-2000-ecs Mirage-2000-fadec Mirage-2000-engines-Snecma-M53

Mirage-2000-fcs

Independent variables

Name
aero/alpha-deg
aero/beta-deg
aero/pb
aero/qb
aero/rb
fcs/airbrake-lower
fcs/airbrake-upper
fcs/elevon-1L-pos-deg
fcs/elevon-1R-pos-deg
fcs/elevon-2L-pos-deg
fcs/elevon-2R-pos-deg
fcs/rudder-pos-deg
fcs/slat-1L-pos-deg
fcs/slat-2L-pos-deg

gear/gear-pos-norm

velocities/mach