Recall: the tensor product: a vector space VBW and a bilinear map VxW->VBW

if So3 SG3 has 1 V all 1 So3 G3 his GVald (v,w) +> VBW

· if lei] Ifi } boses of V and W, lei@fi } basis of VOW

• {bilinear maps $V*W \longrightarrow U$ } \simeq { linear maps $V*W \longrightarrow U$ } b(V,W) = $\varphi(V*W)$

· rank of a tensor = minimal # of pure tensors needed to express it as \(\subsection \text{ViOWs.} \)

• $V^{\epsilon} \otimes W \simeq Hom(V, W)$ $l \otimes w \mapsto (v \mapsto l(v)w)$ $e_i^{\epsilon} \otimes f_j \mapsto linear map where makes has 1 in partial (j, i), 0 everywhere else.$

V^{*} ⊗ W^{*} ≃ (V ⊗ W)^{*} ≃ { bilinear maps VeW → k}.

· We can now properly define the trace of a linear operator!

In "ordnary" linear algebra classes, one define the trace of an norm matrix $A = (a_{ij})$ to be $tr(A) = \sum_{i=1}^{n} a_{ii}$ sum of dayonal entries, then noting that $tr(AB) = \sum_{i,j} a_{ij}b_{ji} = tr(BA)$ we have tr(P'AP) = tr(A) and so the trace of $T:V \rightarrow V$ is defined to be the trace of M(T) in any basis. We call also try to define the trace via eigenvalues and their multiplicities, over an alg. closed field: in a basis where M(T) is thiangular it is manifest that $tr(T) = \sum_{i} n_{i} \lambda_{i}$

· We can do better (conceptually), by using Horn(V, V) = V®V, and

the contraction linear map V® V → k. Namely, Mere's = natural

bilinear pairing eV: V × V → k and it determines tr: V®V → k

(l, V) → l(V) on pure tensors, l@U → l(V)

This is indeed equivalent to the usual def": choosing a basis (e;) and the

dual basis (e;), tr(e; @e;) = e;(e;) = Si; ← trace of the matrix with

single entry 1 in ps. (j,i).

Def. | A map m: V, x ... x V_k -> W is <u>multilinear</u> if it is linear in each warable separately.

The tensor product $V_1 \otimes ... \otimes V_k$ can be defined as above, either using bases of $V_1 ... V_k$, or as a quotient of a universal vector space by relations,

or via universal property for multilinear maps: there is a millibear map yiV, x... x Vx -> V, @-... &Vx $(v_1,...,v_k) \mapsto v_1 \otimes ... \otimes v_k$ VW vector space, Vm. Vix... × Vk →W multilear, 3! pEHom(Vi@.colk, CV) st. m= 40 µ $V_1 \times ... \times V_k \xrightarrow{\mathsf{M}} W$ ν, 6... 6 V_k 3! φ we have bilinear maps vok vol = vo(k+1) Vk, 1 >0, which taken together define a

In fact nothing new is happening, because (UOV)OW = UO(VOW) = UOVOW. But ... in the special case of $V \otimes ... \otimes V = V^{\otimes n}$ (by convention $V^{\otimes 0} = k$, $V^{\otimes 1} = V$) multiplication on the tensor algebra $T(V) = \bigoplus_{n=0}^{\infty} V^{\otimes n}$ making it a non-commutative ring.

Symmetric algebra:

Remember. We've seen the space of Librar forms $B(V) \simeq V^{\kappa} eV^{\kappa}$ decomposes into B(V) = Bsymm & Bskew (symmetric & skew-symm. Librear firms). Equivalently: there is an involution $\varphi \colon B(V) \to B(V)$ taking $b(x,y) \mapsto b(y,x)$ or on $V^* \otimes V^* : l \otimes l \mapsto l \otimes l$. $\Rightarrow = antonorphism s.t. \varphi^2 = id$.

4 has eighvalues ±1 and eigenspaces Ke-(q-I)=Bsynn, Ke-(q+I)=Bsken. Ue can also do the same or higher tensor powers of V or V* (the latter = multibrear firms)

There is an action of the symmetric group S_d on $V^{\otimes d}$,

i.e. each permutation $\sigma \in S_d$ defines a linear map $V^{\otimes d} \xrightarrow{\sigma} V^{\otimes d}$ + this defines a group homomorphism $S_d \to Aut(V^{\otimes d})$ $v_1 \otimes ... \otimes v_d \mapsto v_{\sigma(1)} \otimes ... \otimes v_{\sigma(d)}$

A Definition: | A tensor $\eta \in V^{\otimes d}$ is symmetric if $\sigma, \eta = \eta \quad \forall \sigma \in S_d$ $Sym^d(V) := \{symmetric tensors\} \subset V^{\otimes d} \quad subspace.$

eg. Symd(V") = {Symmetric multilinear forms m: Ve...«V -> k} ie. m(v_{o(1)},...,v_{o(d)}) = m(v₁,...,v_d)

If char(k)=0, the symmetric part of a tensor can be determined by averaging, $\alpha: V^{\otimes d} \longrightarrow Sym^d V$ linear an pure turns, $\alpha(v_1 \otimes ... \otimes v_d) = \frac{1}{4!} \sum_{\sigma \in C_d} v_{\sigma(1)} \otimes ... \otimes V_{\sigma(d)}$.

* Still assuming char(b)=0, we could instead define Synd(V) as the quotient of (3) Vod by the subspace spanned by elements of the form y-o(y), or Vod, explicitly v, & v_2 & v_3 & . & v_4 - v_2 & v_3 & . & v_4 & same for swapping other factors.

This is liftent from (6st isomorphic to) the present definition * to sottle the question of which definition (as quotiend us subspace of VOd) is Letter: the best deft is again by a universal property. Recall Vod comes with a multilear map p: Vd -> Vod and is characterized by . Hom (Ved, U) ~ {millinear maps Va > U} wing 4 -> 40 pm Now Synd V comes with a symmetric multitrear map Vos Synd V and is characterized by: Hom (Sym V, U) = { symmetric multilinear Vd-sU} The product operations V®k × V®l -> V®k+l induce a product SymtV × Syml V -1 Symt+l V (using & followed by averaging x). These combine to a product operation on $Sym(V) := \bigoplus Sym^d(V)$, called the symmetric algebra of V. Syn'(V) is a commotive ring (+ vector space over k: a k-algebra) (check: product is still accorative despite symmetrization by averaging s $\alpha(\alpha(u\otimes v)\otimes w) = \alpha(u\otimes \alpha(v\otimes \omega)) = \alpha(u\otimes v\otimes w)$ Concretely: if $e_1 \dots e_n$ basis of V, then $Sym^*(V) \simeq K[e_1 \dots e_n]$ polynomial expressions in formal variables $e_1 \dots e_n$. (simply: denoting $\propto (e_{i_1} \otimes ... \otimes e_{i_k})$ by $e_{i_1} ... e_{i_k}$ and considering finite linear combinations of all these). · More explicitly: if e,...en basis of V, then any linear form on V. $l \in V^{\alpha}$, is of the form $v = \sum x_i e_i \longmapsto \ell(v) = \sum q_i x_i$ a degree 1 polymonial. Symmetric multilinear forms of E Symd V" are, likewise, polynomials (with only degree & terms): $v = \sum_{i,\dots,l} \alpha_{i,\dots,l} = \sum_{i,\dots,l} \alpha_{i,\dots,l} x_{i,\dots,l} x$ Exterior algebra: do the same thing for skew-symmetric, also attending, multilinear forms.

Def: $\gamma \in V^{\text{od}}$ is alterating if $\sigma(\gamma) = (-1)^{\sigma} \gamma \quad \forall \sigma \in S_d$. $\Lambda^d(V) = \{\text{alternating tensors}\} \subset V^{\text{od}}$. Sign of $\sigma :: -1$ for transpositions & probable of odd # of them.

. In characteristic zero, we can view $\Lambda^d(V)$ as the image of steer-symmetrization operator $\beta: V^{\otimes d} \longrightarrow \Lambda^d(V)$

 $|S(v_1 \otimes ... \otimes v_d)| = \frac{1}{d!} \sum_{\sigma \in S_d} (-1)^{\sigma} v_{\sigma(1)} \otimes ... \otimes v_{\sigma(d)} \cdot = : v_1 \wedge ... \wedge v_d.$

This is zero whenever $v_i = v_j$ for some $i \neq j$... and so by multilinearity, whenever $v_i ... v_d$ are linearly dependent. Thus $\Lambda d(V) = 0$ whenever d > lin V!

Alterative definitions $\Lambda^d(V) = quotient of V^{\otimes d}$ by the subspace spanned by $v_1 \otimes v_2 \otimes v_3 \otimes ... \otimes v_d + v_2 \otimes v_1 \otimes v_3 \otimes ... \otimes v_d$ and similarly for other transpositions of $\Lambda^d(V)$ vector space with an alterating

Or: Nd(V) vector space with an alterating
multilinear map $V \times ... \times V \longrightarrow N^{d}V$ $(v_1, ..., v_d) \longmapsto v_1 \wedge ... \wedge v_d$

(v, 1 v2 = - v2 1 v, e/c.)

and univered for alterating multilinear maps on Vx.-xV.

· If (e,,,,en) are a basis of V then eign. neig, ig<...<id basis of NV.

• We have a product $\Lambda^k V = \Lambda^k V \longrightarrow \Lambda^{k+\ell} V$ induced by tenor algebra + skew symmetrization. $(v_1 \wedge ... \wedge v_k) \wedge (v_1 \wedge ... \wedge v_\ell) = v_1 \wedge ... \wedge v_k \wedge v_k \wedge ... \wedge v_\ell$.

This makes the exterior algebra $\Lambda^{\bullet}V = \bigoplus_{d \geq 0} \Lambda^{d}V$ into a (skew-commutative) ring ie. if $\eta \in \Lambda^{\dagger}V$, $\xi \in \Lambda^{\dagger}V$ then $\eta \wedge \xi = (-1)^{kl} \xi \wedge \eta$.

(check: $\dim \Lambda^{\circ}V = 2^{\dim V}$).

Now we have a new perspective on volume, determinant, etc ... next time!