3.)
$$n \text{ kightea}$$
 $A \text{ bijela}$
 $X \sim \left(\frac{1}{n} \frac{n-d}{n}, \frac{1}{d} \frac{n-k}{n}, \frac{1}{n}\right)$
 $P(X=k) = \frac{1}{n}$
 $P(X=k) = \frac$

12.) POISSON = P(A-6) =
$$\frac{\lambda^{6}}{6!}e^{-\lambda}$$

P(X=1)=P(X=2)

 $\frac{\lambda^{1}}{1!}e^{\lambda} = \frac{\lambda^{1}}{2!}e^{\lambda}$
 $\frac{E(X)}{2!}=\lambda$
 $\frac{\lambda^{1}}{1!}e^{\lambda} = \frac{\lambda^{1}}{2!}e^{\lambda}$
 $\frac{E(X)}{2!}=\lambda$
 $\frac{\lambda^{1}}{1!}e^{\lambda} = \frac{\lambda^{1}}{2!}e^{\lambda}$
 $\frac{E(X)}{2!}=\lambda$
 $\frac{\lambda^{1}}{1!}e^{\lambda} = \frac{\lambda^{1}}{2!}e^{\lambda}$
 $\frac{\lambda^{1}}{2!}e^{\lambda} = \frac{\lambda^{1}}{2!}e^{\lambda}$
 $\frac{\lambda^{$

21.)
$$\lambda = 4000 \cdot 0,005 = 20$$

$$\beta(M0 \le X \le 40) = 7$$

$$P(X) = \sum_{k=10}^{17} \frac{20^{k}}{k!} e^{-20} = 0,99998$$
22.) $90_{pathod}/h$

$$\lambda = \frac{90}{60} \cdot 2 = 1,5 \cdot 2 = 3$$

$$P(X \ge 5) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3) - P(X = 4)$$

$$P(X \ge 5) = 1 - \frac{3}{2!} e^{-3} - \frac{3!}{4!} e^{-3} - \frac{3^{2}}{2!} e^{-3} - \frac{3^{3}}{3!} e^{-3} - \frac{3^{4}}{4!} e^{-3}$$

$$P(X \ge 5) = 0,1847$$
23) $300 \times R$, 1000×6865866

$$\lambda = \frac{4000}{300} = \frac{3}{6}$$

$$P(X > 3) = 1 - P(X = 0) - P(X = 1) - P(X = 2) - P(X = 3)$$

$$= 1 - \frac{36}{6!} e^{-36} - \frac{36}{6!} e^{-36} - \frac{36}{2!} e^{-36} - \frac{36}{3!} e^{-36} = \frac{36}{3!}$$

SLUŽBENA RJEŠENJA:

\S 4. Primjeri dskretnih razdioba

2.
$$E(X) = r \frac{q}{p}$$
, $D(X) = r \frac{q}{p^2}$.

3.
$$P(X = k) = \frac{1}{n}, k = 1, ..., n;$$
 $E(X) = \frac{n+1}{2}.$

4.
$$E(X) = \frac{1}{p} = \frac{1}{0.4} = 2.5$$

5.
$$E(X) = a$$
; $D(X) = a(a+1)$.

6.
$$p_k = P(X = k) = \frac{\binom{M}{k} \binom{N-M}{n-k}}{\binom{N}{n}}$$
.

7. a)
$$E(X) = \frac{nM}{N}$$
, $D(X) = \frac{nM}{N} \cdot \frac{N-M}{N}$.

b)
$$E(X) = \frac{nM}{N}, D(X) = \frac{nM}{N} \cdot \frac{N-M}{N} \cdot \frac{N-M}{N-1}.$$

8.
$$2.11 \cdot 10^{-4}$$
.

9. 18,
$$\frac{2}{3}$$
.

10. 0.961.

11.
$$E(Y) = e(e^2p + q)^n$$
, $D(Y) = e^2(e^4p + q)^n - e^2(e^2p + q)^{2n}$.

12. 2; 0.143

13. 0.333; 0.366; 0.301

14. 0.143

15. 0.960

16. 0.019

17. 0.9044; 0.0043

18.
$$\frac{1-e^{-\lambda}}{\lambda}$$

19. 0.019.

20. 0.185.

21. 0.55

22. 0.185.

23. 0.4989, 3 greške.

24. 0.4031, 0.9844.

25.
$$\binom{n}{k} \left(\frac{\lambda_1}{\lambda_1 + \lambda_2} \right)^k \left(\frac{\lambda_2}{\lambda_1 + \lambda_2} \right)^{n-k}$$

LITERATURA:

- [1] Neven Elezović: Diskretna vjerojatnost, Element 2010.godine
- [2] Wikipedia, Geometrijska razdioba: http://en.wikipedia.org/wiki/Geometric distribution
- [3] Wikpedia, Binomna razdioba: http://en.wikipedia.org/wiki/Binomial_distribution
- [4] Wikipedia, Poissonova razdioba: http://en.wikipedia.org/wiki/Poisson_distribution
- [5] MathWorld, jednakostraničan trokut u krugu (*vezano za 10.zadatak*) : http://mathworld.wolfram.com/EquilateralTriangle.html