Universitatea Babeş-Bolyai Cluj-Napoca Facultatea de Matematică și Informatică Specializarea Matematică Informatică

EXAMEN DE LICENȚĂ

Proba scrisă – 3 septembrie 2015 Specializarea Matematică Informatică

- I. (a) Să se arate că mulţimea $\mathbb{Q}(\sqrt{3}) = \{a + b\sqrt{3} \mid a, b \in \mathbb{Q}\}$ este un subcorp al corpului $(\mathbb{R}, +, \cdot)$.
 - (b) Se consideră spațiul vectorial real canonic \mathbb{R}^3 și funcția $f: \mathbb{R}^3 \to \mathbb{R}^3$ definită prin

$$f(x, y, z) = (x + y + z, x + 2y + 3z, 3x + 2y + z).$$

Să se arate că f este o aplicație liniară, să se determine matricea lui f in baza canonică și să se calculeze rangul acestei matrice.

II. (a) Determinati suma seriei de numere reale

$$\sum_{n=1}^{\infty} \left(\frac{1}{2^{n-1}} - \frac{1}{4^{n-1}} \right).$$

(b) Calculați

$$\int_{1}^{3} xe^{x} dx.$$

(c) Fie funcția $f:[-\frac{\pi}{2},\frac{\pi}{2}] \to \mathbb{R}$ definită prin

$$f(x) = \cos x + \sin x.$$

Scrieți formula polinomului lui Taylor de ordin 4 atașat funcției f în punctul $x_0 = 0$. Folosiți notația $T_{4;0}f$.

- III. (a) Determinați ecuațiile laturilor unui triunghi *ABC*, cu vârful A(1,3) știind că două dintre mediane au ecuațiile x 2y + 1 = 0, respectiv y 1 = 0.
 - (b) Determinați ecuația unui cerc care trece prin punctele P(2,3) și Q(-1,1) și are centrul pe dreapta d: x-3y-11=0.

- IV. Scrieți un program într-unul din limbajele de programare C++, Java, C# care:
 - (a) Definește o clasă Echipa având:
 - un atribut **nume** de tip şir de caractere (numele echipei);
 - un atribut **puncte** conținând numărul de puncte realizate;
 - constructor, și un accesor pentru puncte.
 - o funcție pentru afișarea datelor unui obiect de tip Echipa.
 - (b) Definește o funcție care citește nume și puncte și returnează un obiect de tip Echipa.
 - (c) Definește o funcție care inserează un obiect de tip **Echipa** într-un tablou de tip **Echipa** ordonat descrescător. Parametrii funcției vor fi: tabloul, dimensiunea tabloului și obiectul de inserat.
 - (d) Definește o funcție care afișează un tabel cu numele și punctele echipelor în ordine descrescătoare după puncte.
 - (e) Scrieți o aplicație care:
 - citește mai multe obiecte de tip **Echipa** și crează un tablou sortat în ordine descrescătoare după puncte (fără a sorta tabloul ulterior citirii)
 - afișează o tabelă cu numele și punctele echipelor în ordine descrescătoare după puncte.

Timp de lucru efectiv: 3 ore. Fiecare subiect se notează cu o notă de la 1 la 10. Nota finală la proba scrisă este $\frac{2}{3}$ (Nota I + Nota II + Nota III) + $\frac{1}{3}$ Nota IV

Universitatea Babeș-Bolyai Cluj-Napoca Facultatea de Matematică și Informatică Specializarea Matematică Informatică

Examen de licență - Septembrie 2015 BAREM DE CORECTARE

Algebră Oficiu
(a) (i) $ \mathbb{Q}(\sqrt{3}) \ge 2$
(iii) $\forall x, y \in \mathbb{Q}(\sqrt{3}), x - y \in \mathbb{Q}(\sqrt{3})$
(b) (i) f aplicație liniară
(iii) Rangul matricei $[f]_E$
(iii) Rangui matricei $[J]E$
Analiză Matematică
Oficiu
(a) (i) Suma seriei $\sum_{n=1}^{\infty} \frac{1}{2^{n-1}}$
(ii) Suma seriei $\sum_{n=1}^{\infty} \frac{1}{4^{n-1}}$
(iii) Suma seriei $\sum_{n=1}^{\infty} \left(\frac{1}{2^{n-1}} - \frac{1}{4^{n-1}}\right)$
(b) (i) Aplicarea formulei de integrare prin părți 1 punct
(ii) Calcularea integralelor definite
(iii) Rezultatul final
(c) (i) Derivatele de ordinul 1, 2, 3 și 4
(ii) Formula generală a polinomului lui Taylor
(iii) Formula polinomului lui Taylor de grad 4, atașat funcției f în punctul 00.5 puncte
Geometrie
Oficiu
(a) (i) Medianele sunt cele din B și C
(ii) Coordonatele centrului de greutate
(iii) Coordonatele vârfurilor B și C
(iv) Ecuațiile laturilor
(b) (i) Condiția ca P și Q să aparțină cercului
(ii) Condiția ca centrul să fie pe dreaptă
(iii) Coordonatele centrului
(iv) Raza cercului
(v) Ecuația cercului
(v) Deutsjia cereurur punet
Informatică
(a) Definirea clasei Echipa :
(b) Definirea funcției de la punctul (b):
(c) Definirea funcției de la punctul (c):
1

(d) Definirea funcției de la punctul (d):
(e) Aplicație:
Stil:
– respectarea specificațiilor operațiilor
– încapsularea datelor
 nume sugestive, indentări, comentarii dacă este cazul
Oficiu:
Total:
NOTĂ: Orice altă soluție corectă se va puncta corespunzător.