Lab04-Matroid

CS214-Algorithm and Complexity, Xiaofeng Gao, Spring 2021.

* Name: Haoyi You Student ID: <u>519030910193</u> Email: yuri-you@sjtu.edu.cn

1. Property of Matroid.

(a) Consider an arbitrary undirected graph G = (V, E). Let us define $M_G = (S, C)$ where S = E and $C = \{I \subseteq E \mid (V, E \setminus I) \text{ is connected}\}$. Prove that M_G is a **matroid**.

Proof.

i. Heredity

Assume $I_1 \subseteq I_2 \subseteq E, I_2 \in C$. That means $(V, E \setminus I_2)$ is connected. We have $E \setminus I_2 \subseteq E \setminus I_1$, so we know that $(V, E \setminus I_1)$ is connected.

ii. Exchange property

Assume $|V| = n, |E| = m, I_1 \subseteq E, I_2 \subseteq E, |I_1| > |I_2|$. If $\forall x \in I_1, \{x\} \cup I_2$ is not connected, then $\forall x \in I_1 - I_2$, x is connected to v_x that $d(v_x) = 1$ in $E - I_2$. Since $E - I_2$ is connected, the x is only connected to one v_x that $d(v_x) = 1$ in $E - I_2$. We divide the set of V into two parts. V_1 includes the v that satisfies d(v) = 1,others are in V_2 .

 $\forall x \in I_1 - I_2$ two vertices of x are v_1, v_2 . From the proof above, we assume $v_1 \in V_1, v_2 \in V_2$. Since $E - I_1$ is connected and (v_1, v_2) is not in $E - I_1$, there exists another vertex v_3 in V_2 that satisfies (v_3, v_1) is in $E - I_1$. So there at least $|V_1|$ edges that are in $E - I_1$ but not in $E - I_2$, these edges are all belongs to $I_2 - I_1$.

As a result, $|I_1| - |I_2| = |I_1 - I_2| - |I_2 - I_1| \le |V_1| - |V_1| = 0$, which is against with the assumption $|I_1| > |I_2|$.

(b) Given a set A containing n real numbers, and you are allowed to choose k numbers from A. The bigger the sum of the chosen numbers is, the better. What is your algorithm to choose? Prove its correctness using **matroid**.

Solution. Let \mathbb{C} be the collection of all subsets of A that contains no more than k elements. Here we prove (A, \mathbb{C}) is a matroid.

i. Heredity

$$\forall E \in \mathbf{C} \Rightarrow |E| \le k$$

$$\forall E_1 \subseteq E, |E_1| \le |E| \Rightarrow E \in \mathbf{C}$$
(1)

ii. Exchange property

If $E_1, E_2 \in \mathbb{C}$, assume $|E_1| = a > b = |E_2|$. $E_1 - E_2$ is not an empty set. So there exists an element $x \in E_1 - E_2$. $|E_1 \cup \{x\}| = b + 1 \le a \le k$, so $E_1 \cup \{x\} \in \mathbb{C}$

So the algorithm can refer to Algorithm ??:

Algorithm 1: Choose k Numbers with Biggest Sum

Input: Array data[n], integer k

Output: Array answer[k]

- $1 \ quicksort(data)$
- 2 Initialize Answer[k]
- \mathbf{s} for i=1 to k do
- $4 \quad | \quad Answer[i] \leftarrow data[i]$
- 5 return Answer;

- 2. Unit-time Task Scheduling Problem. Consider the instance of the Unit-time Task Scheduling Problem given in class.
 - (a) Each penalty ω_i is replaced by $80 \omega_i$. The modified instance is given in Tab. ??. Give the final schedule and the optimal penalty of the new instance using Greedy-MAX.

Table 1: Task

a	i	1	2	3	4	5	6	7
d	i	4	2	4	3	1	4	6
ω	i	10	20	30	40	50	60	70

Solution. The solution is in Tab.??

Table 2: Answer

t	1	2	3	4	5	6	7
task	5	4	6	3	7	2	1

Only task 1 and 2 are delayed, which means the optimal penalty is 30.

(b) Show how to determine in time O(|A|) whether or not a given set A of tasks is independent. (**Hint**: You can use the lemma of equivalence given in class)

Solution. Assume there are n elements in A, so we only need to ensure the complexity of algorithm is O(n).

According to the equivalent theorem, we only need to check $\forall t, 1 \leq t \leq n$, whether $N_t(A) \leq t$ is correct or not. Here is the Algorithm ??

Algorithm 2: Determine whether A is independent

Input: deadline array $\{d_1, d_2...d_n\}$

Output: bool flag

- $1 \ end_number[n] \leftarrow [0, 0....0]$
- 2 for i = 1 to n do
- $\mathbf{s} \mid end_number[d_i] \leftarrow end_number[d_i] + 1$
- 4 $work number \leftarrow 0$
- 5 for i = 1 to n do
- $work_number \leftarrow work_number + end_number[i]$
- 7 | if work number > t then
- 8 | return False
- 9 return True

There are only 2 loops with n times, so the complexity is O(n).

3. MAX-3DM. Let X, Y, Z be three sets. We say two triples (x_1, y_1, z_1) and (x_2, y_2, z_2) in $X \times Y \times Z$ are disjoint if $x_1 \neq x_2$, $y_1 \neq y_2$, and $z_1 \neq z_2$. Consider the following problem:

Definition 1 (MAX-3DM). Given three disjoint sets X, Y, Z and a non-negative weight function $c(\cdot)$ on all triples in $X \times Y \times Z$, **Maximum 3-Dimensional Matching** (MAX-3DM) is to find a collection \mathcal{F} of disjoint triples with maximum total weight.

- (a) Let $D = X \times Y \times Z$. Define independent sets for MAX-3DM.
- (b) Write a greedy algorithm based on Greedy-MAX in the form of pseudo code.
- (c) Give a counter-example to show that your Greedy-MAX algorithm in Q. ?? is not optimal.
- (d) Show that: $\max_{F\subseteq D}\frac{v(F)}{u(F)}\leq 3$. (Hint: you may need Theorem ?? for this subquestion.)

Solution.

(a) i. Definition:

Assume $\mathbf{C} \subseteq D$. \mathbf{C} is an independent set if $\forall a, b \in \mathbf{C}, a, b$ are disjoint.

ii. Proof(Hereditary):

If C is independent, $\forall C' \subseteq C, \forall a, b \in C', a, b$ is also $\in C$, so a, b are disjoint.

Here we can get an independent system (E, \mathcal{C}) .

(b)

Algorithm 3: Greedy Algorithm

Input: A set $D = \{a_1, a_2, \dots, a_n\}$, a value function c()

Output: A set Answer of with maximum total weight

- 1 quicksort(D, c())
- **2** $Answer \leftarrow \emptyset$;
- $\mathbf{3}$ for i=1 to n do
- 4 | if $Answer \cup \{a_i\}$ is independent then
- | $Answer.push(a_i)$
- 6 return Answer;
- (c) Let $\mathbf{D} = \{1, 2\} \times \{1, 2\} \times \{1, 2\}, c(x, y, z) = xyz + |x y| + |y z| + |z x|.$

If we use greedy algorithm, we will first choose (2,2,2) with c(2,2,2) = 8, and then choose (1,1,1). The sum is 8+1=9.

However, if we choose (2, 2, 1) and (1, 1, 2). The sum is c(2, 2, 1) + c(1, 1, 2) = 6 + 4 = 10.

- (d) i. First we define a independent system that (E, \mathcal{I}_1) that $\forall F \in \mathcal{I}_1 \iff$ $F \subseteq E \&\& \forall a, b \in F, a = (x_1, y_1, z_1), b = (x_2, y_2, z_2), x_1 \neq x_2$. According to this we can define another two independent systems (E, \mathcal{I}_2) with $y_1 \neq y_2$ and (E, \mathcal{I}_3) with $z_1 \neq z_2$ in the same way.
 - ii. Here we will prove all of this independent system are matroids. Obviously, We only need to prove (E, \mathcal{I}_1) is a matroid.
 - iii. Hereditary: in the same way as the (E, \mathcal{C}) .
 - iv. Exchange property:

If there are two sets X, Y with |X| = x > y = |Y|, both of them are independent set. Since x > y and $\forall a(x_a, y_a, z_a), b(x_b, y_b, z_b) \in X, x_a \neq y_a$, there are x categories of different $x_i (i \in X)$ in X. But there are less than x element in Y, so there exists an element $t \in X, \forall s \in Y, x_t \neq x_s$, which indicates $Y \cup \{t\}$ is also independent.

v. Refer to ??, $C = \mathcal{I}_1 \cap \mathcal{I}_2 \cap \mathcal{I}_3$. So $\max_{F \subset D} \frac{v(F)}{u(F)} \leq 3$.

Theorem 1. Suppose an independent system (E, \mathcal{I}) is the intersection of k matroids (E, \mathcal{I}_i) , $1 \leq i \leq k$; that is, $\mathcal{I} = \bigcap_{i=1}^k \mathcal{I}_i$. Then $\max_{F \subseteq E} \frac{v(F)}{u(F)} \leq k$, where v(F) is the maximum size of independent subset in F and u(F) is the minimum size of maximal independent subset in F.

Remark: You need to include your .pdf and .tex files in your uploaded .rar or .zip file.