Prove: P Given an undirected graph 6, with a vertices { bu, b, ..., bin}, using the greedy coloring algorithm there is no edge uv 5.t. F(n) = f(v)
where f(v;) dendes the educing of vertex v; Proof by contradiction: If we assume P is fealse (7P)
and reach 2 contradictory assertions Q and 7G and therefore P most be correct, Assume: There is an edge uv in 6 such that f(n)=f(v). (7P) Assertion: Q = in the ith iteration, the algorithm assigns Vi the smallest color (i.e. positive integer) K, s.t. none of its neighbors that are already colored have color K. Assertion: S = Since there is an edge uv s.t. flubflus, colored with the same k. han been Assertion: 7Q = since s is the given the assemption TP, Q must be fulse, as a vertex war u has been adored the same as one of its already colored reighbors. .: 7Q Contradiction: Since Q and 7Q are both the under the assumption 7P, 7P must be filse. because it produces a contradiction. Therefore, P must be true.

HW Solution

CS/ECE 374: Algorithms & Models of Computation, Spring 2019

Submitted by:

- \ll Alan Lee \gg : \ll alanlee2 \gg
- «Joshua Burke»: «joshuab3»
- «Gerald Kozel»: «gjkozel2»

(100 PTS.) Greedy coloring

Given an undirected graph G with n vertices, the greedy coloring algorithm order the vertices of G in an arbitrary order v_1, \ldots, v_n . Initially all the vertices are not colored. In the ith iteration, the algorithm assigns v_i the smallest color (i.e., positive integer) k such that none of its neighbors that are already colored have color k. Let $f(v_i)$ denote the assigned color to v_i .

Version: 1.0

1 (30 PTS.) Prove that the above algorithm computes a valid coloring of the graph (i.e., there are is no edge uv in G such that f(u) = f(v)).

Solution:

- See first page (handwritten).
- 2 (30 PTS.) Prove that if a vertex v is colored by color k, then there is a simple path in the graph $u_1, u_2, \ldots, u_k = v$, such that for $i = 1, \ldots, k$, we have $f(u_i) = i$ (and $u_i u_{i+1} \in \mathsf{E}(\mathsf{G})$ for all $i = 1, \ldots, k-1$).

Solution:

Prove that if a vertex v is colored by color k, then there is a simple path in the graph $u_1, u_2, \ldots, u_k = v$, such that for $i = 1, \ldots, k$, we have $f(u_i) = i$ (and $u_i u_{i+1} \in \mathsf{E}(\mathsf{G})$ for all $i = 1, \ldots, k-1$).

- 1. We will prove by induction on K.
- 2. Base case: K = 1, then there is a simple path $u_1, ..., u_k = u_1 = v$ S.T. for i = k we have $f(u_i) = i$ because $f(u_1) = 1$.
- 3. Inductive hypothesis: let $k \ge 1$ be a positive integer. Assume there exists a path in the graph $u_1, ..., u_k$ such that for i = 1, ..., k we have $f(u_i) = i$, and that this holds for $i \le k$.
- 4. Inductive step: we will prove the inductive hypothesis holds for i = k + 1. In the i^{th} iteration where $(i = k + 1) \ge 2$, the algorithm assigns v_i the smallest color k s.t. none of its neighbors that are already colored have color k. In the i^{th} iteration, the vertex u_{k+1} is assigned the smallest color, k + 1, therefore this shows that $f(u_{k+1}) = k + 1$. Because of the algorithm's criteria, we also know that the neighbor set of u_{k+1} must include vertices of all colors 1, ..., k. This means a vertex u_k where $f(u_k) = k$ is a neighbor of u_{k+1} , and being a neighbor, there is a path between u_k and u_{k+1} . Using the assumption of the inductive hypothesis, we know there is a valid path to u_k : $u_1, ..., u_k$ such that for i = 1, ..., k we have $f(u_i) = i$. Since there is also a path from u_k to u_{k+1} , we can concatenate these paths, and therefore there exists a path in $G(u_1, ..., u_k, u_{k+1})$ such that for i = 1, ..., k, k+1, we have $f(u_i) = i$. Because this path exists between consecutive vertices in V(G) from $u_1, ..., u_{i+1}$, then for every i = 1, ..., k+1 there exists an edge $u_i u_{i+1} \in E(G)$.
- **3** (40 PTS.) Prove that G either have a simple path of length $\lfloor \sqrt{n} \rfloor$, G contains an independent set of size $\lfloor \sqrt{n} \rfloor$. A set of vertices $X \subseteq V(G)$ is *independent* if no two vertices $x, y \in X$ form an edge in G.

Solution:

We will prove by contradiction that graph G either has a simple path of $\lfloor \sqrt{n} \rfloor$ or that G has an independent set of size $\lfloor \sqrt{n} \rfloor$. Let P be the condition that graph G has a simple path of $\lfloor \sqrt{n} \rfloor$. Let Q be the condition that G has an independent set of size $\lfloor \sqrt{n} \rfloor$. Simplifying this, we will prove that graph G must satisfy P \parallel Q.

Proof by contradiction: Assume G has neither condition true $(\neg P \text{ and } \neg Q)$

Assertion: if $\neg P$, then G may have at most $\lfloor \sqrt{n} \rfloor$ colors.

In our proof for 1b, we proved that if a vertex in G exists with color k, G has a simple path of at least length k-1. Using the contrapositive of this claim, we can say that if G does not have a simple path of length k-1 (or more specifically, $\lfloor \sqrt{n} \rfloor$); then it has no vertex colored with k (i.e, at most $\lfloor \sqrt{n} \rfloor$ colors in G).

We can define an independent set within G as all vertices sharing a single color, as those vertices cannot share an edge. This satisfies the definition of a set of vertices $X \subseteq V(G)$ being *independent* if no two vertices $x, y \in X$ form an edge in G.

If G has n vertices and at most $\lfloor \sqrt{n} \rfloor$ colors, then the largest independent set in G contains at least $n/|\sqrt{n}|$ vertices.

It logically follows that:

$$n/|\sqrt{n}| \ge n/\sqrt{n} = \sqrt{n} \ge |\sqrt{n}|$$

Therefore the largest independent set in G must contain more than $\lfloor \sqrt{n} \rfloor$ vertices, and Q must be true.

We've arrived at a contradiction. We've shown that Q must be true, but to get there we've assumed $\neg Q$. Therefore, P and Q may not both be false. Therefore, P or Q must be true.

In other words, graph G either has a simple path of $\lfloor \sqrt{n} \rfloor$ or G has an independent set of size $\lfloor \sqrt{n} \rfloor$.