

Winning Space Race with Data Science

<Mohamed MZAOUALI>
<June 11 2022>

Outline

Executive Summary
Introduction
Methodology
Results
Conclusion
Appendix

Executive Summary

Analyzing the 'Space X' success rate and launch behavior by:

- Exploratory Data analysis and Data visualization and presentation.
- Predictive analysis via multiple machine learning algorithms.

These paradigms resulted in:

- Drawing a general picture of launch operation.
- Succeeding the task of predicting the "First Stage Landing of 'Space X' Falcon 9".

Introduction

Project background and context:

The enterprise is an attempt to understand the logic behind the operational and choices of launching behavior of 'Space X'.

Problems you want to find answers:

The possibility of predicting "The "First Stage Landing of 'Space X' Falcon 9".

Methodology

Executive Summary

- Data collection methodology:
 - Web-scrapping Data from various remote Data Sources.
- Perform data wrangling
 - Transforming data by feature engineering some attributes.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate and choosing the best classification model.

Data Collection

The Data was collected using the methods in the flowchart below.

The detailed methods are explained in the following notebooks:

- https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate/blob/main/jupyter_labs_webscraping.ipynb
- https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate/blob/main/jupyter_labs_spacex_data_collection_api.ipynb

Data Collection - SpaceX API

 Requesting Data from SpaceX API calls using custom functions as summarized in the flowchart.

The detailed notebook:

https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate/blob/main/jupyter labs s pacex data collection api.ipynb

Data Collection - Scraping

 Web Scraping Data from Wikipedia using BeautifulSoup package and some custom functions as summarized in the flowchart.

The detailed notebook:

https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate/blob/main/jupyter_labs_webscraping.ipynb

Data Wrangling

The Data Wrangling consisted mainly in feature engineering a new binary variable 'Class' of succeed (1) or failed (0) booster landing as summarized in the flowchart below.

The detailed notebook:

https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate/blob/main/labs jupyter spacex Data wrangling.ipynb

Enumerate Landing Scenarios

Bad/Good Landing Scenarios Classification

Mapping to binary variable 'Class'

EDA with Data Visualization

EDA phase consisted in:

- Exploring visually the relationship between different features.
- · Creating dummy variables to categorical columns.

For details and more:

https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate/blob/main/jupyter labs eda dataviz.ipynb

EDA with SQL

Performed SQL queries:

- SELECT DISTINCT LAUNCH_SITE FROM SPACEXTBL;
- FROM SPACEXTBL WHERE LAUNCH_SITE LIKE "%CCA%" LIMIT 5;
- SELECT SUM(PAYLOAD_MASS__KG_) AS TOTAL_PAYLOAD_NASA FROM SPACEXTBL WHERE Payload LIKE '%CRS%';
- SELECT AVG(PAYLOAD_MASS__KG_) AS AVERAGE_F9_MASS FROM SPACEXTBL WHERE BOOSTER_VERSION = 'F9 v1.1';
- SELECT MIN(DATE) AS FIRST_SUCCESS FROM SPACEXTBL WHERE [LANDING _OUTCOME] = 'Success (ground pad)';
- SELECT DISTINCT Booster_Version FROM SPACEXTBL_WHERE PAYLOAD_MASS__KG__BETWEEN 4000 AND 6000 AND [LANDING_OUTCOME] = 'Success (drone ship)';
- SELECT MISSION_OUTCOME, COUNT(*) AS COUNTS FROM SPACEXTBL GROUP BY MISSION_OUTCOME;
- SELECT BOOSTER_VERSION AS MAX_BOOSTER FROM SPACEXTBL WHERE PAYLOAD_MASS__KG_ == (SELECT MAX(PAYLOAD_MASS__KG_) FROM SPACEXTBL);
- SELECT BOOSTER_VERSION, LAUNCH_SITE FROM SPACEXTBL WHERE [LANDING _OUTCOME] = 'Failure (drone ship)' AND SUBSTR(DATE, 7, 4) = '2015';
- SELECT [LANDING _OUTCOME], COUNT(*) AS COUNTS FROM SPACEXTBL WHERE DATE BETWEEN '04-06-2010 'AND '20-03-2017' AND [LANDING _OUTCOME] LIKE '%Success%' GROUP BY [LANDING _OUTCOME] ORDER BY COUNTS DESC;

· For details and more:

https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate/blob/main/jupyter_labs_eda_sql_coursera_sqllite.ipynb

Build an Interactive Map with Folium

The location (map) analysis was performed via Folium python package by adding:

- Markers and Circles
 - To Mark all launch sites on a map.
 - To Mark the success/failed launches for each site on the map.
- Clusters:
 - To identify the number of launch attempts per each site.
 - To identify success launch attempts per each site.
- Lines
 - Tp calculate the distances between a launch site to its proximities.
- The detailed notebook:
 - https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate/blob/main/lab_jupyter_launch_site_location.ipynb

Build a Dashboard with Plotly Dash

Plotly Dash

Interactive Dash Boards:

Pie Chart

Scatter Plots

Total Launch

Booster Versions

Launch Sites

Outcomes

Pay Loads

Predictive Analysis (Classification)

The classification was performed following the phases summarized in the flowchart.

For more details:

https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate/blob/main/SpaceX_Machine_Learning_Prediction_Part_5.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• The more flight attempts, the greater the likelihood of success.

Payload vs. Launch Site

- The Launch Site 'VAFB SLC 4E' has no Pay Load greater than 10000 kg despite having a good record of success.
- The greater the pay loads comes with a good chance of success.

Success Rate vs. Orbit Type

- The 'ES-L1', 'GEO', 'HEO' and 'SSO' orbits are having a guaranteed success.
- The lower the orbit type, the least the success is expected.

Flight Number vs. Orbit Type

- In the LEO orbit, the Success appears related to the number of flights;
- No relationship between flight number when in GTO orbit.

Payload vs. Orbit Type

- •With heavier payloads, Polar,LEO and ISS mark more success.
- •Unlike GTO orbit, the relationship is inconclusive.

Launch Success Yearly Trend

• A good steady improving of success rate.

All Launch Site Names

```
Task 1
          Display the names of the unique launch sites in the space mission
In [17]:
           %sql
           SELECT DISTINCT LAUNCH SITE
           FROM SPACEXTBL;
           * sqlite:///my data1.db
          Done.
            Launch_Site
Out[17]:
           CCAFS LC-40
           VAFB SLC-4E
             KSC LC-39A
          CCAFS SLC-40
```

Launch Site Names Begin with 'CCA'

Task 2 Display 5 records where launch sites begin with the string 'CCA' In [114... %%sql SELECT * FROM SPACEXTBL WHERE LAUNCH SITE LIKE "%CCA%" LIMIT 5; * sqlite:///my data1.db Done. Landing Out[114... Booster_Version Launch_Site Date Payload PAYLOAD MASS KG Orbit Customer Mission Outcome Outcome CCAFS Failure 04-06-2010 18:45:00 F9 v1.0 B0003 Dragon Spacecraft Qualification Unit LEO SpaceX Success LC-40 (parachute) CCAFS Dragon demo flight C1, two LEO NASA (COTS) Failure 08-12-2010 15:43:00 F9 v1.0 B0004 0 Success LC-40 CubeSats, barrel of Brouere cheese (ISS) NRO (parachute) LEO (ISS) CCAFS 22-05-2012 07:44:00 F9 v1.0 B0005 Dragon demo flight C2 NASA (COTS) No attempt Success LC-40 CCAFS LEO 08-10-2012 00:35:00 F9 v1.0 B0006 SpaceX CRS-1 500 NASA (CRS) Success No attempt (ISS) LC-40 CCAFS NASA (CRS) 01-03-2013 15:10:00 F9 v1.0 B0007 SpaceX CRS-2 Success No attempt (ISS) LC-40

Total Payload Mass

Task 3

Display the total payload mass carried by boosters launched by NASA (CRS)

```
In [25]:
          %%sql
          SELECT SUM(PAYLOAD MASS KG )
          AS TOTAL PAYLOAD NASA
          FROM SPACEXTBL
          WHERE Payload LIKE '%CRS%';
          * sqlite:///my_data1.db
         Done.
Out[25]: TOTAL_PAYLOAD_NASA
                       111268
```

Average Payload Mass by F9 v1.1

Task 4

Display average payload mass carried by booster version F9 v1.1

```
In [35]:
          %%sql
          SELECT AVG(PAYLOAD MASS KG )
          AS AVERAGE F9 MASS
          FROM SPACEXTBL
          WHERE BOOSTER VERSION = 'F9 v1.1';
           * sqlite:///my_data1.db
         Done.
Out[35]: AVERAGE_F9_MASS
                    2928.4
```

First Successful Ground Landing Date

Task 5

List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

```
In [115...
Select Min(DATE) AS FIRST_SUCCESS
FROM SPACEXTBL
WHERE [LANDING _OUTCOME] = 'Success (ground pad)';

* sqlite:///my_datal.db
Done.
FIRST_SUCCESS

01-05-2017
```

Successful Drone Ship Landing with Payload between 4000 and 6000

Task 6

List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000

```
In [66]:
          %%sql
          SELECT DISTINCT Booster Version
          FROM SPACEXTBL
          WHERE PAYLOAD MASS KG BETWEEN 4000 AND 6000 AND [LANDING OUTCOME] = 'Success (drone ship)'
          * sqlite:///my data1.db
          Done.
          Booster_Version
Out[66]:
             F9 FT B1022
             F9 FT B1026
            F9 FT B1021.2
            F9 FT B1031.2
```

Total Number of Successful and Failure Mission Outcomes

```
Task 7
           List the total number of successful and failure mission outcomes
In [771:
           %%sql
            SELECT MISSION OUTCOME, COUNT(*) AS COUNTS
            FROM SPACEXTBL
            GROUP BY MISSION OUTCOME;
            * sqlite:///my data1.db
          Done.
                      Mission Outcome COUNTS
Out[77]:
                        Failure (in flight)
                                            98
                              Success
                              Success
           Success (payload status unclear)
```

Boosters Carried Maximum Payload

Task 8 List the names of the booster versions which have carried the maximum payload mass. Use a subquery In [87]: %%sql SELECT BOOSTER VERSION AS MAX BOOSTER FROM SPACEXTBL WHERE PAYLOAD MASS KG == (SELECT MAX(PAYLOAD MASS KG) FROM SPACEXTBL); * sqlite:///my data1.db Done. MAX BOOSTER Out[87]: F9 B5 B1048.4 F9 B5 B1049.4 F9 B5 B1051.3 F9 B5 B1056.4 F9 B5 B1048.5 F9 B5 B1051.4 F9 B5 B1049.5 F9 B5 B1060.2 F9 B5 B1058.3 F9 B5 B1051.6 F9 B5 B1060.3 F9 B5 B1049.7

2015 Launch Records

Task 9

List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 4, 2) as month to get the months and substr(Date, 7,4)='2015' for year.

```
In [89]:

**sql

SELECT BOOSTER_VERSION, LAUNCH_SITE

FROM SPACEXTBL

WHERE [LANDING _OUTCOME] = 'Failure (drone ship)' AND SUBSTR(DATE, 7, 4) = '2015';

* sqlite:///my_datal.db
Done.

Booster_Version Launch_Site

F9 v1.1 B1012 CCAFS LC-40

F9 v1.1 B1015 CCAFS LC-40
```

Task 10

Rank the count of successful landing_outcomes between the date 04-06-2010 and 20-03-2017 in descending order.

```
In [109...
          %%sql
           SELECT [LANDING OUTCOME], COUNT(*) AS COUNTS
           FROM SPACEXTBL
          WHERE DATE BETWEEN '04-06-2010 ' AND '20-03-2017' AND [LANDING OUTCOME] LIKE '%Success%'
           GROUP BY [LANDING OUTCOME]
          ORDER BY COUNTS DESC;
           * sqlite:///my datal.db
          Done.
           Landing _Outcome COUNTS
Out[109...
                    Success
                                20
          Success (drone ship)
          Success (ground pad)
```


Space X global launch sites

Launching Attempts' Outcomes

Launch site proximity to the ocean

Classification Accuracy

Decision Tree Classification model realizes the highest score of 87.5%.

Confusion Matrix

The model successfully predicted 10 success and 3 failures.

A more attention is needed toward false positives and false negatives.

Conclusions

Appendix

GitHub repo for all the notebooks cited in the presentation:

https://github.com/mzaoualim/IBM-Data-Science-Professional-Certificate

