Analyzing wildfire activities in Australia

October 19, 2024

1 Practice Assignement Part I

```
[3]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import folium
%matplotlib inline
```

1.1 Dataset

Historical Wildfires This wildfire dataset contains data on fire activities in Australia starting from 2005. Variables: * Region: the 7 regions * Date: in UTC and provide the data for 24 hours ahead * Estimated_fire_area: daily sum of estimated fire area for presumed vegetation fires with a confidence > 75% for a each region in km2 * Mean_estimated_fire_brightness: daily mean (by flagged fire pixels(=count)) of estimated fire brightness for presumed vegetation fires with a confidence level > 75% in Kelvin * Mean_estimated_fire_radiative_power: daily mean of estimated radiative power for presumed vegetation fires with a confidence level > 75% for a given region in megawatts * Mean_confidence: daily mean of confidence for presumed vegetation fires with a confidence level > 75% * Std_confidence: standard deviation of estimated fire radiative power in megawatts * Count: daily numbers of pixels for presumed vegetation fires with a confidence level of larger than 75% for a given region * Replaced: Indicates with an Y whether the data has been replaced with standard quality data when they are available (usually with a 2-3 month lag). Replaced data has a slightly higher quality in terms of locations

Importing Data

```
[5]: URL = "https://cf-courses-data.s3.us.cloud-object-storage.appdomain.cloud/

□IBMDeveloperSkillsNetwork-DV0101EN-SkillsNetwork/Data%20Files/

□Historical_Wildfires.csv"

df = pd.read_csv(URL)

print('Data read into a pandas dataframe!')
```

Data read into a pandas dataframe!

```
[6]: df.head()
```

```
Estimated_fire_area
[6]:
       Region
                                               Mean_estimated_fire_brightness \
                   Date
               1/4/2005
     0
          NSW
                                      8.68000
                                                                     312.266667
     1
          NSW
               1/5/2005
                                     16.61125
                                                                     322.475000
     2
          NSW
               1/6/2005
                                      5.52000
                                                                     325.266667
     3
          NSW
               1/7/2005
                                      6.26400
                                                                     313.870000
     4
          NSW
               1/8/2005
                                      5.40000
                                                                     337.383333
        Mean_estimated_fire_radiative_power
                                               Mean_confidence
                                                                Std_confidence
     0
                                                     78.666667
                                                                       2.886751
                                   42.400000
     1
                                   62.362500
                                                     85.500000
                                                                       8.088793
     2
                                                     78.333333
                                                                       3.214550
                                   38.400000
     3
                                   33.800000
                                                     92.200000
                                                                       7.529940
     4
                                                     91.000000
                                                                       7.937254
                                  122.533333
        Var_confidence Count Replaced
     0
              8.333333
                             3
     1
             65.428571
                             8
                                      R.
     2
             10.333333
                             3
                                      R
     3
             56.700000
                             5
                                      R.
     4
             63.000000
                             3
                                      R
[7]: df.columns
[7]: Index(['Region', 'Date', 'Estimated_fire_area',
            'Mean_estimated_fire_brightness', 'Mean_estimated_fire_radiative_power',
            'Mean_confidence', 'Std_confidence', 'Var_confidence', 'Count',
            'Replaced'],
           dtype='object')
     df.dtypes
[8]: Region
                                               object
     Date
                                               object
     Estimated_fire_area
                                              float64
     Mean_estimated_fire_brightness
                                              float64
     Mean_estimated_fire_radiative_power
                                              float64
     Mean_confidence
                                              float64
     Std_confidence
                                              float64
     Var confidence
                                              float64
     Count
                                                int64
     Replaced
                                               object
     dtype: object
[9]: import datetime as dt
     df['Year'] = pd.to_datetime(df['Date']).dt.year
     df['Month'] = pd.to_datetime(df['Date']).dt.month
```

```
[10]: df.columns
[10]: Index(['Region', 'Date', 'Estimated_fire_area',
             'Mean_estimated_fire_brightness', 'Mean_estimated_fire_radiative_power',
             'Mean_confidence', 'Std_confidence', 'Var_confidence', 'Count',
             'Replaced', 'Year', 'Month'],
            dtype='object')
[11]: df.dtypes
[11]: Region
                                               object
     Date
                                               object
                                              float64
      Estimated_fire_area
     Mean_estimated_fire_brightness
                                              float64
      Mean_estimated_fire_radiative_power
                                              float64
      Mean_confidence
                                              float64
      Std_confidence
                                              float64
      Var_confidence
                                              float64
      Count
                                                int64
     Replaced
                                               object
     Year
                                                int32
      Month
                                                int32
      dtype: object
```

2 Practice Tasks

2.1 TASK 1.1: Let's try to understand the change in average estimated fire area over time (use pandas to plot)

```
plt.figure (figsize=(12, 6))
#grouping the data by "Year" and calculating the mean of 'Estimated_fire_area'
df_new= df.groupby("Year")['Estimated_fire_area'].mean()
#plotting the data
df_new.plot(x=df_new.index, y=df_new.values)
plt.xlabel('Year')
plt.ylabel('Average Estimated Fire Area (km²)')
plt.title('Estimated Fire Area over Time')
plt.show()
```


2.2 TASK 1.2: You can notice the peak in the plot between 2010 to 2013. Let's narrow down our finding, by plotting the estimated fire area for year grouped together with month.

```
plt.figure (figsize=(15, 6))

# Grouping the data by both 'Year' and 'Month', and calculating the mean of defined in the data of defined in the data defined in the da
```


2.3 TASK 1.3: Let's have an insight on the distribution of mean estimated fire brightness across the regions use the functionality of seaborn to develop a barplot

2.4 TASK 1.4: Let's find the portion of count of pixels for presumed vegetation fires vary across regions we will develop a pie chart for this

Percentage of Pixels for Presumed Vegetation Fires by Region $_{\rm NT}^{\rm VC}$

2.5 TASK 1.5: See the percentage on the pie is not looking so good as it is overlaped for Region SA, TA, VI

Percentage of Pixels for Presumed Vegetation Fires by Region

2.6 TASK 1.6: Let's try to develop a histogram of the mean estimated fire brightness Using Matplotlib to create the histogram

2.7 TASK 1.7: What if we need to understand the distribution of estimated fire brightness across regions? Let's use the functionality of seaborn and pass region as hue

```
[22]: sns.histplot(data=df, x='Mean_estimated_fire_brightness', hue='Region') plt.show()
```



```
[23]: sns.histplot(data=df, x='Mean_estimated_fire_brightness', hue='Region', u 

⇔multiple='stack')
plt.show()
```


2.8 TASK 1.8: Let's try to find if there is any correlation between mean estimated fire radiative power and mean confidence level?

```
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df, x='Mean_confidence',
y='Mean_estimated_fire_radiative_power')
plt.xlabel('Mean Estimated Fire Radiative Power (MW)')
plt.ylabel('Mean Confidence')
plt.title('Mean Estimated Fire Radiative Power vs. Mean Confidence')
plt.show()
```


2.9 TASK 1.9: Let's mark these seven regions on the Map of Australia using Folium

```
[25]:
        region
                      Lat
                                   Lon
                            147.286949
           NSW -31.875984
      0
      1
            QL -22.164678
                            144.584490
      2
            SA -30.534367
                            135.630121
      3
            TA -42.035067
                            146.636689
      4
            VI -36.598610
                            144.678005
      5
            WA -25.230300
                           121.018725
            NT -19.491411
                           132.550964
```

```
[26]: # instantiate a feature group
      aus_reg = folium.map.FeatureGroup()
      # Create a Folium map centered on Australia
      Aus_map = folium.Map(location=[-25, 135], zoom_start=4)
      # loop through the region and add to feature group
      for lat, lng, lab in zip(reg.Lat, reg.Lon, reg.region):
          aus_reg.add_child(
              folium.features.CircleMarker(
                  [lat, lng],
                  popup=lab,
                  radius=5, # define how big you want the circle markers to be
                  color='red',
                  fill=True,
                  fill_color='blue',
                  fill_opacity=0.6
              )
          )
      # add incidents to map
      Aus_map.add_child(aus_reg)
```

[26]: <folium.folium.Map at 0x238a71b51c0>