Opgave 1, s. 166

Let $\{p_n\}_0^{\infty}$ be an orthogonal set in $\mathcal{L}_w^2(a,b)$, where p_n is a polynomial of degree n.

(a) Fix a value of n. Let x_1, x_2, \ldots, x_k be the points in (a, b) where p_n changes sign i.e., where its graph crosses the x-axis, and let $q(x) = \prod_{1}^{k} (x - x_j)$. Show that $p_n q$ never changes sign on (a, b) and hence that $\langle p_n, q \rangle_w \neq 0$.

Da q har samme nulpunkter som p_n og skifter fortegn i samme punkter, så kan der generelt siges, at hvis q og p_n har modsat fortegn for $x < x_1$, så vil produktet af de to være negativt $\forall x$, og hvis de har samme fortegn for $x < x_1$, så vil produktet af de to være positivt $\forall x$.

(b) Show that the number k of sign changes in part (a) is at least n. (Hint: If k < n then $\langle p_n, q \rangle_w = 0$. Why?)

Hvis q har k < n fortegnsskift, så kan det udtrykkes som en lineær kombination af p_1, \ldots, p_k og denne lineære kombination vil derfor være ortogonal på p_n , hvilket giver et indre produkt på 0. Altså opnås modstrid fra (a), og derfor må $k \ge n$.

(c) Conclude that p_n has exactly n distinct zeros, all of which lie in (a, b). (Geometrically, this indicates that p_n becomes more and more oscillatory on (a, b) as $n \to \infty$, rather like $\sin nx$.)

Da q har n fortegnsskift, så er det af grad højst n, og med (b) fås, at $n \le k \le n$.

Opgave fra Moodle

Betragt en vægt w på (a, b) og to tilhørende ortogonale familier af polynomier $\{P_n\}$ og $\{Q_n\}$. Vis, at der findes konstanter $\{c_n\}$ således $P_n = c_n Q_n$.

Vi ved, at Q_n kan skrives som en linearkombination af P_n . Altså

$$Q_n = \sum_{j=0}^n c_j P_j. \tag{1}$$

Det vides jævnfør Lemma 6.1, at de første n-1 led skal være nul, da

$$c_j = \frac{\langle P_j, Q_n \rangle}{||P_j||} = 0. \tag{2}$$

Altså haves, at

$$Q_n = c_n P_n. (3)$$

Opgave 1, s. 173

Show that

$$P_n(x) = \frac{1}{2^n} \sum_{j \le n/2} \frac{(-1)^j (2n - 2j)!}{j! (n - j)! (n - 2j)!} x^{n-2j}$$
(4)