

Dataware Networking

Presented by Anil Madhavapeddy
University of Cambridge

Joint work with Richard Mortier, James Goulding and Derek McAuley (Nottingham),

Jon Crowcroft, Steve Hand, Malte Schwarzkopf (Cambridge)

What is Horizon?

- A Digital Economy Research Centre at the University of Nottingham comprising:
 - A Digital Economy Hub
 - £20m from RCUK and university
 - Spokes at Cambridge, Reading, Exeter, Brunel
 - A Doctoral Training Centre
 - £15m from RCUK and university
 - 20 PhD students per year for 5 years
 - Now 120+ partner companies, from 40 in initial bid
 - 3 TEDDI projects
 - ... + future Digital Economy projects

Our Digital Footprints

"Every time we register for a new web service, or upload our photos and videos, we are enlarging our own digital footprints"

- Whether "informed" or not
 - Facebook, Google
- Digital footprint poses major societal challenges
- ...but also opportunity for economic growth

From Digital Nomads...

...to Digital Yurts

Generational Computing

Dataware Research Program

- We make information about our lives available online
 - Whether or not we realise it
 - Often in very large, very rich data silos (e.g., Facebook)
- There are more opportunities for mutually beneficial exploitation of digital personal data
 - E.g., Shopping basket optimizer;
 Boots medical prescription conflict detector

Key Challenge:

How do we enable individuals to control collection and exploitation of both *their data* and *data about them*?

1) Dataware: nodes

2) Dataware: network

3) Dataware: computation

Evolution or Revolution?

- One way to put this in context is via Van Jacobson's content centric networking:
 - Telephones care about building paths (not calls)
 - Internet cared about connections (not data)
 - Content centric networking cares about data (not results)

Dataware cares about results

- Computation is as mobile as data, if not more so
- cf. datacentre computing, map-reduce and CIEL

1) Nodes: placement

No single "best platform"

Platform	Google AppEngine	Amazon EC2	Home Computer	Mobile Phone
Storage	Moderate	Moderate	High	Low
Bandwidth	High	High	Limited	Low
Accessibility	Always on	Always on	Variable	Poor
Computation	Limited	Flexible, Plentiful	Flexible, Limited	Limited
Cost	Free	Expensive	Cheap	Cheap
Relability	Medium	High	Medium (failure)	Low (loss)

1) Nodes: design principles

- Nodes run in several locations (cloud, home, phone)
- No expert management available
- Minimize external dependencies on third parties.
- Support incremental deployment

1) Nodes: architecture

File access protocols

Messaging protocols

CIFS/NFS

WebDAV

IMAP

Mutable "snapshots"

HTTP/JSON

XMPP

Filesystem

Key/

Immutable (like git)

Conflict-free Sync

Content Addressable Store

1) Nodes: multi-scale portability

1) Nodes: clean slate protocols

1) Node: screen shot

1) Nodes: formal methods

- Since there are few expert users, may be years between software updates.
 - Secure language: MirageOS (<u>openmirage.org</u>)
 - Privilege separation: Capsicum (USENIX Security 2010), TESLA (under submission)
 - Hardware/software co-design: CHERI MIPS processor (DARPA CRASH)
 - Single user: one server, one person. Simple authentication.

2) Naming: personal cloud

- Many devices per user:
 - Laptop
 - Desktop
 - Phone
 - Home Devices

- Host support for route setup is very inflexible.
 - SSH tunnels or IPSec VPNs
 - Kerberos, Active Directory
 - HTTP proxys, website auth

2) Naming: approach

- Goal: secure auto-configuration of devices to a user's personal cloud, including route management
 - Use DNSSEC to give every user a global ID
 - Similar to XMPP XID (e.g. anil.recoil.org)
 - Extend OS to support user-level application flows
 - Context-aware scheduler to figure out user activities
 - MarcoPolo: http://www.symonds.id.au/marcopolo/
 - Shelf: http://code.movieos.org/shelf/

2) Naming: DNS cookies (WIP)

2) Naming: discussion

- DNS cookies combine name resolution + sockets into flows ("host OpenFlow")
- Delayed resolution lets kernel establish
 VPN based on a named service
- Interacts well with real-world (e.g. internal DNS at workplace) that currently fails.
- Still several issues (socket handoff) that are very platform-kernel specific.

3) Computation: registration

3) Computation: routing requests

Prototypes: Shim Login

Prototypes: Shim Permission

Prototypes: Web Interface

Dataware Summary

- So conceptually, a dataware application is:
 - A network of running components,
 - Each processing your personal data,
 - In a manner acceptable to you
- Your dataware implements your personal container:
 - Defining APIs to your data,
 - Enabling third-parties to process your data,
 - While ensuring you retain control,
 - And they don't get copies of your data
 - (unless you want them to!)