Schur Triangularization

Theorem

Let $A \in M_n$. There exists a unitary matrix U such that A is unitary similar with a $T \in UT(n)$ such that the diagonal entries of T are the eigenvalues of A is a prescribed order.

Proof

By induction on n:

Base case: n = 1

$$[1] [a] [1] = [a] \in UT(1)$$

Assume true for n-1

Consider $A \in M_n$ with eigenvalues $\lambda_1, \ldots, \lambda_n$

Each λ_k is associated with an unit eigenvector \vec{x}_k

Extend the \vec{x}_k to an orthonormal basis for \mathbb{C}^n : $\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$

Let
$$U_1 = \begin{bmatrix} \vec{x}_1 & \vec{x}_2 & \cdots & \vec{x}_n \end{bmatrix}$$

Thus, U_1 is unitary and:

$$AU_{1} = \begin{bmatrix} A\vec{x}_{1} & A\vec{x}_{2} & \cdots & A\vec{x}_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_{1}\vec{x}_{1} & A\vec{x}_{2} & \cdots & A\vec{x}_{n} \end{bmatrix}$$

$$= \begin{bmatrix} \vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & * \\ 0 & A_{2} \end{bmatrix}$$

$$= U_{1} \begin{bmatrix} \lambda_{1} & * \\ 0 & A_{2} \end{bmatrix}$$

$$U_{1}^{*}AU_{1} = \begin{bmatrix} \lambda_{1} & * \\ 0 & A_{2} \end{bmatrix}$$

Where $A_2 \in M_{n-1}$

So by the inductive assumption, there exists unitary matrix U_2 such that:

$$U_2^* A_2 U_2 = \begin{bmatrix} \lambda_2 & * \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}$$

Let
$$U = U_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix}$$

 \boldsymbol{U} is also unitary and we have:

$$U^*AU = \begin{pmatrix} U_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix} \end{pmatrix}^* A \begin{pmatrix} U_1 \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & U_2^* \end{bmatrix} (U_1^*AU_1) \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & U_2^* \end{bmatrix} \begin{bmatrix} \lambda_1 & * \\ 0 & A_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ 0 & U_2^*A_2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & U_2 \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ 0 & U_2^*AU_2 \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ 0 & U_2^*AU_2 \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 & * \\ 0 & U_2^*AU_2 \end{bmatrix}$$