學號: R06921083 系級: 電機碩一 姓名: 鄭克宣

請實做以下兩種不同feature的模型,回答第(1)~(3)題:

- (1) 抽全部9小時內的污染源feature的一次項(加bias)
- (2) 抽全部9小時內pm2.5的一次項當作feature(加bias)

備註:

- a. NR請皆設為0,其他的數值不要做任何更動
- b. 所有 advanced 的 gradient descent 技術(如: adam, adagrad 等) 都是可以用的
- 1. (2%)記錄誤差值 (RMSE)(根據kaggle public+private分數),討論兩種feature的影響 ANS:
 - 1) RMSE:

	18 feature	1 feature
public+private	6.611151042	6.514489721

2) Feature 的影響:

由上述的結果不難看出,variance 的數目多並不代表訓練的結果可以最好,而是要看 資訊本身是否適合做為訓練的 feature ,如果做 feature selection 的話,可以有更好的 結果。在這很明顯的前 9 小時的 P.M. 2.5 可能就是些很好的特徵。

2. (1%)將feature從抽前9小時改成抽前5小時,討論其變化

ANS:

1) RMSE:

	18 feature	1 feature
public+private	6.623875413	6.744909392

2) 變化:

很明顯的當天數減少時, RMSE 都有些許上升了, 所以可以猜測 P.M. 2.5 的預測跟前面多個小時的值相當有關係。

3. (1%)Regularization on all the weight with λ =0.1、0.01、0.001、0.0001,並作圖 **ANS**:

1) RMSE:

	λ=0.1	$\lambda = 0.01$	$\lambda = 0.001$	$\lambda = 0.0001$
18 feature	6.530476185	6.515069757	6.513548519	6.513398534
1 feature	6.617300235	6.598338885	6.596447767	6.596256964

2) RMSE變化圖

4. (1%)在線性回歸問題中,假設有 N 筆訓練資料,每筆訓練資料的特徵 (feature) 為一向量 x^n ,其標註(label)為一存量 y^n ,模型參數為一向量w (此處忽略偏權值 b),則線性回歸的損失函數(loss function)為 $\sum\limits_{n=1}^N (y^n-x^n\cdot w)^2$ 。若將所有訓練資料的特徵值以矩陣 $X=[x^1\ x^2\ ...\ x^N]^T$ 表示,所有訓練資料的標註以向量 $y=[y^1\ y^2\ ...\ y^N]^T$ 表示,請問如何以 X 和 y 表示可以最小化損失函數的向量 w ?請寫下算式並選出正確答案。(其中 X^TX 為 invertible)

- (a) $(X^TX)X^Ty$
- (b) $(X^{T}X)^{-0}X^{T}y$
- (c) $(X^TX)^{-1}X^Ty$
- (d) $(X^TX)^{-2}X^Ty$

ANS: C

minimize 11 g - Xw11 ⇔ Xw = proj, g

∵ b∈ R(X) , 全 b=Xw′