Lecture 18: Test Conversion and Pivotal Quantities

Mathematical Statistics II, MATH 60062/70062

Thursday April 7, 2022

Reference: Casella & Berger, 9.2.1-9.2.2

Recap: Interval estimate and interval estimator

An **interval estimate** of a real-valued parameter θ is any pair of functions

$$L(\mathbf{x}) = L(x_1, \dots, x_n)$$

$$U(\mathbf{x}) = U(x_1, \dots, x_n),$$

satisfying $L(x) \leq U(x)$ for all $x \in \mathcal{X}$. When X = x is observed, the inference

$$L(\boldsymbol{x}) \le \theta \le U(\boldsymbol{x})$$

is made. The random version of the interval $[L(\boldsymbol{X}), U(\boldsymbol{X})]$ is called an **interval estimator**.

Sometimes a one-sided interval estimate may be formed.

- If $L(x) = -\infty$, then the interval is $(-\infty, U(x)]$ with the assertion that $\theta \leq U(x)$.
- If $U(x) = \infty$, then the interval is $[L(x), \infty)$ with the assertion that $\theta \geq L(x)$.

Interval estimation methods

Methods of finding interval estimators

- Inverting a test statistic
 - There is a strong duality between hypothesis testing and confidence intervals.
- Using pivotal quantities
- Pivoting a CDF
- Bayesian credible intervals

Methods of evaluating interval estimators

- Coverage probability
- Interval length

Inverting a test statistic

Consider testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$ using the level α test function

$$\phi(\boldsymbol{x}) = I(\boldsymbol{x} \in R_{\theta_0}) = \begin{cases} 1 & \boldsymbol{x} \in R_{\theta_0} \\ 0 & \boldsymbol{x} \in R_{\theta_0}^c, \end{cases}$$

where $P_{\theta_0}(\boldsymbol{X} \in R_{\theta_0}) = E_{\theta_0}[\phi(\boldsymbol{X})] = \alpha$. The rejection region depends on the value of θ_0 —hence the notation R_{θ_0} .

Let $A_{\theta_0}=R_{\theta_0}^c$ be the "acceptance region" of this level α test, that is, the set of $\boldsymbol{x}\in\mathcal{X}$ that do *not* lead to H_0 being rejected.

For each $x \in \mathcal{X}$, define a set C(x) in the parameter space by

$$C(\boldsymbol{x}) = \{\theta_0 : \boldsymbol{x} \in A_{\theta_0}\}.$$

From the definition $C(x) = \{\theta_0 : x \in A_{\theta_0}\}$, clearly,

$$\theta_0 \in C(\boldsymbol{x}) \iff \boldsymbol{x} \in A_{\theta_0}.$$

Therefore, based on the duality,

$$P_{\theta_0}(\theta_0 \in C(\mathbf{X})) = P_{\theta_0}(\mathbf{X} \in A_{\theta_0})$$

= 1 - P_{\theta_0}(\mathbf{X} \in R_{\theta_0})
= 1 - \alpha.

The same argument holds for all $\theta_0 \in \Theta$. Therefore,

$$C(\boldsymbol{X}) = \{ \theta \in \Theta : \boldsymbol{x} \in A_{\theta} \}$$

is a $1-\alpha$ confidence set.

Inverting a two-sided test

Suppose X_1,\ldots,X_n are iid $\mathcal{N}(\mu,\sigma^2)$, where $-\infty<\mu<\infty$ and $\sigma^2>0$. Both parameters are unknown.

Consider testing $H_0: \mu = \mu_0$ versus $H_1: \mu \neq \mu_0$ using the test function of the level α likelihood ratio test (LRT)

$$\phi(\boldsymbol{x}) = \begin{cases} 1 & \frac{|\bar{x} - \mu_0|}{s/\sqrt{n}} \ge t_{n-1,\alpha/2} \\ 0 & \text{otherwise.} \end{cases}$$

Inverting a two-sided test

Suppose X_1, \ldots, X_n are iid $\mathcal{N}(\mu, \sigma^2)$, where $-\infty < \mu < \infty$ and $\sigma^2 > 0$. Both parameters are unknown.

Consider testing $H_0: \mu=\mu_0$ versus $H_1: \mu\neq\mu_0$ using the test function of the level α likelihood ratio test (LRT)

$$\phi(oldsymbol{x}) = egin{cases} 1 & rac{|ar{x} - \mu_0|}{s/\sqrt{n}} \geq t_{n-1,lpha/2} \ 0 & ext{otherwise}. \end{cases}$$

The acceptance region for the LRT is

$$A_{\mu_0} = \left\{ \boldsymbol{x} \in \mathcal{X} : \frac{|\bar{x} - \mu_0|}{s/\sqrt{n}} < t_{n-1,\alpha/2} \right\},\,$$

where

$$P_{\mu_0}(\mathbf{X} \in A_{\mu_0}) = P_{\mu_0} \left(\frac{|X - \mu_0|}{S/\sqrt{n}} < t_{n-1,\alpha/2} \right) = 1 - \alpha.$$

Thus, by inverting the acceptance region for the test, a $1-\alpha$ confidence set for μ is expressed as

$$C(\mathbf{x}) = \{ \mu \in \mathbb{R} : \mathbf{x} \in A_{\mu} \}$$

$$= \left\{ \mu : -t_{n-1,\alpha/2} < \frac{\bar{x} - \mu}{s/\sqrt{n}} < t_{n-1,\alpha/2} \right\}$$

$$= \left\{ \mu : -t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} < \bar{x} - \mu < t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \right\}$$

$$= \left\{ \mu : \bar{x} - t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} < \mu < \bar{x} + t_{n-1,\alpha/2} \frac{s}{\sqrt{n}} \right\}.$$

The random version of this confidence set (interval) is

$$\left(\bar{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}, \bar{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}\right).$$

Correspondence between testing and interval estimation

Both procedures look for consistency between sample statistics and population parameters.

- The hypothesis test fixes the parameter and asks what sample values (the acceptance region) are consistent with that fixed value.
- The confidence set fixes the sample value and asks what parameter values (the confidence interval) make this sample value most plausible.

Correspondence between testing and interval estimation

Both procedures look for consistency between sample statistics and population parameters.

- The hypothesis test fixes the parameter and asks what sample values (the acceptance region) are consistent with that fixed value.
- The confidence set fixes the sample value and asks what parameter values (the confidence interval) make this sample value most plausible.

There is *no* guarantee that the confidence set obtained from converting an acceptance region is an interval, but in most cases

- One-sided tests give one-sided intervals.
- Two-sided tests give two-sided intervals.

Inverting a one-sided test

Suppose X_1, \ldots, X_n are iid $\mathcal{N}(\mu, \sigma^2)$, where $-\infty < \mu < \infty$ and $\sigma^2 > 0$. Both parameters are unknown.

Consider testing $H_0: \mu = \mu_0$ versus $H_1: \mu < \mu_0$ using the test function of the level α LRT (exercise):

$$\phi(\boldsymbol{x}) = \begin{cases} 1 & \frac{\bar{x} - \mu_0}{s/\sqrt{n}} \leq -t_{n-1,\alpha} & \text{LRT is a one-} \\ 0 & \text{otherwise.} & \text{sided test} \end{cases}$$

The acceptance region for the LRT is

$$A_{\mu_0} = \left\{ \boldsymbol{x} \in \mathcal{X} : \frac{\bar{x} - \mu_0}{s / \sqrt{n}} > -t_{n-1,\alpha} \right\},\,$$

where

$$P_{\mu_0}(\mathbf{X} \in A_{\mu_0}) = P_{\mu_0}\left(\frac{X - \mu_0}{S/\sqrt{n}} > -t_{n-1,\alpha}\right) = 1 - \alpha.$$

Inverting the acceptance region for the test gives a $1-\alpha$ confidence set for μ :

$$C(\boldsymbol{x}) = \{ \mu \in \mathbb{R} : \boldsymbol{x} \in A_{\mu} \}$$

$$= \left\{ \mu : \frac{\bar{x} - \mu}{s / \sqrt{n}} > -t_{n-1,\alpha} \right\}$$

$$= \left\{ \mu : \mu < \bar{x} + t_{n-1,\alpha} \frac{s}{\sqrt{n}} \right\}.$$

Thus, the random version of this confidence set (one-sided interval) is

$$\left(-\infty, \bar{X} + t_{n-1,\alpha} \frac{S}{\sqrt{n}}\right).$$

Interval estimation methods

Methods of finding interval estimators

- Inverting a test statistic
- Using pivotal quantities
- Pivoting a CDF
- Bayesian credible intervals

Methods of evaluating interval estimators

- Coverage probability
- Interval length

Pivotal quantities

A random variable $Q = Q(X, \theta)$ is a **pivotal quantity** (or **pivot**) if the distribution of Q is independent of θ .

If $Q=Q(\boldsymbol{X},\theta)$ is pivot, then a $1-\alpha$ confidence interval can be found by setting

$$1 - \alpha = P_{\theta}(a \leq Q(\boldsymbol{X}, \theta) \leq b),$$

where a and b are quantiles of the distribution of Q that satisfy the condition (there are many of them).

Uniform pivotal interval

Suppose that X_1, \ldots, X_n are iid $\mathrm{Unif}(0, \theta)$, where $\theta > 0$.

We already showed that

$$Q = Q(X, \theta) = \frac{X_{(n)}}{\theta} \sim \text{Beta}(n, 1).$$

The distribution of Q is free of θ , so it is a pivot.

Uniform pivotal interval

Suppose that X_1, \ldots, X_n are iid $\mathrm{Unif}(0, \theta)$, where $\theta > 0$.

We already showed that

$$Q = Q(\boldsymbol{X}, \boldsymbol{\theta}) = \frac{X_{(n)}}{\boldsymbol{\theta}} \sim \mathrm{Beta}(n, 1).$$

The distribution of Q is free of θ , so it is a pivot.

Let $b_{n,1,1-\alpha/2}$ and $b_{n,1,\alpha/2}$ be the lower and upper $\alpha/2$ quantiles of $\mathrm{Beta}(n,1)$, respectively. We have

$$1-\alpha = P_{\theta}\left(b_{n,1,1-\alpha/2} \leq \frac{X_{(n)}}{\theta} \leq b_{n,1,\alpha/2}\right) = P_{\theta}\left(\frac{X_{(n)}}{b_{n,1,\alpha/2}} \leq \theta \leq \frac{X_{(n)}}{b_{n,1,1-\alpha/2}}\right)$$

Therefore,

$$\left(\frac{X_{(n)}}{b_{n,1,\alpha/2}}, \frac{X_{(n)}}{b_{n,1,1-\alpha/2}}\right)$$

is a $1 - \alpha$ confidence interval for θ .

Normal pivotal intervals

Suppose X_1, \ldots, X_n are iid $\mathcal{N}(\mu, \sigma^2)$, where $-\infty < \mu < \infty$ and $\sigma^2 > 0$. Both parameters are unknown. Set $\theta = (\mu, \sigma^2)$.

We know that

$$Q_1 = \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}.$$

The distribution of Q_1 is free of θ , so it is a pivot. Therefore

$$\begin{split} 1 - \alpha &= P_{\pmb{\theta}} \left(-t_{n-1,\alpha/2} \leq \frac{\bar{X} - \mu}{S/\sqrt{n}} \leq t_{n-1,\alpha/2} \right) \\ &= P_{\pmb{\theta}} \left(\bar{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \leq \mu \leq \bar{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}} \right), \end{split}$$

which gives a $1-\alpha$ confidence interval for μ ,

$$C_1(\boldsymbol{X}) = \left(\bar{X} - t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}, \bar{X} + t_{n-1,\alpha/2} \frac{S}{\sqrt{n}}\right).$$

We also know that

$$Q_2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

The distribution of Q_2 is free of θ , so it is a pivot. Therefore

$$1 - \alpha = P_{\theta} \left(\chi_{n-1, 1-\alpha/2}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{n-1, \alpha/2}^2 \right)$$
$$= P_{\theta} \left(\frac{(n-1)S^2}{\chi_{n-1, \alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1, 1-\alpha/2}^2} \right),$$

which gives a $1-\alpha$ confidence interval for σ^2 ,

$$C_2(\mathbf{X}) = \left(\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}\right).$$

We also know that

$$Q_2 = \frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2.$$

The distribution of Q_2 is free of θ , so it is a pivot. Therefore

$$1 - \alpha = P_{\theta} \left(\chi_{n-1, 1-\alpha/2}^2 \le \frac{(n-1)S^2}{\sigma^2} \le \chi_{n-1, \alpha/2}^2 \right)$$
$$= P_{\theta} \left(\frac{(n-1)S^2}{\chi_{n-1, \alpha/2}^2} \le \sigma^2 \le \frac{(n-1)S^2}{\chi_{n-1, 1-\alpha/2}^2} \right),$$

which gives a $1-\alpha$ confidence interval for σ^2 ,

$$C_2(\mathbf{X}) = \left(\frac{(n-1)S^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)S^2}{\chi_{n-1,1-\alpha/2}^2}\right).$$

Suppose we wanted to find a confidence set for $\theta = (\mu, \sigma^2)$ simultaneously. Is $C_1(\mathbf{X}) \times C_2(\mathbf{X})$ a $1 - \alpha$ confidence set for θ ?