Step 1: Define the Problem

- Identify what you want to predict (e.g., predicting house prices, classifying emails as spam or not).
- Decide on the type of machine learning: **Supervised** (labeled data) or **Unsupervised** (no labels).

Step 2: Collect and Prepare Data

- Gather relevant data (e.g., CSV files, databases, APIs).
- Clean the data (handle missing values, remove duplicates).
- Convert categorical data (e.g., "Male", "Female") into numerical form.

Step 3: Split the Data

- Divide the dataset into:
 - \circ Training set (used to train the model) 70-80% of data
 - \circ **Test set** (used to evaluate the model) 20-30% of data

Step 4: Choose a Model

- Select an algorithm based on your problem type:
 - Regression (predicting numbers): Linear Regression
 - Classification (predicting categories): Decision Tree, Random Forest, Logistic Regression
 - Clustering (grouping similar data): K-Means
 - **Deep Learning** (complex problems like image recognition): Neural Networks

Step 5: Train the Model

• Feed the training data into the model.

- Adjust parameters to minimize errors.
- Use techniques like **Gradient Descent** to improve performance.

Step 6: Evaluate the Model

- Test the model on unseen data (test set).
- Measure performance using metrics:
 - Accuracy (for classification)
 - Mean Squared Error (MSE) (for regression)
 - Precision & Recall (for imbalanced data)

Step 7: Improve the Model

- Tune hyperparameters (e.g., learning rate, number of trees in a Random Forest).
- Use feature engineering (create new meaningful features).
- Apply cross-validation (train the model on different data splits).

Step 8: Deploy the Model

- Save the trained model.
- Deploy it in an application (e.g., a website, mobile app).
- Continuously monitor and update the model with new data.

Splitting the Data in Machine Learning

When building a machine learning model, we need to **split the dataset** into two parts:

- 1. **Training Set** (70-80% of the data)
 - Used to train the model
 - The model learns patterns and relationships from this data.
- 2. **Test Set** (20-30% of the data)
 - Used to evaluate how well the model performs on unseen data.
 - Ensures the model does not just memorize the training data (avoids overfitting).

Why Do We Split the Data?

- 1. **Prevent Overfitting**: If we train on 100% of the data, the model might just memorize the data instead of learning patterns.
- 2. **Assess Performance**: The test set helps us measure how well the model generalizes to new, unseen data.
- 3. **Avoid Data Leakage**: If we evaluate the model on the same data it was trained on, we get misleadingly high accuracy.

How to Split Data in Python

use train test split from the sklearn.model selection module.

How Does the Split Work?

- train_test_split(X, y, test_size=0.2, random_state=42)
 - \circ **X** \rightarrow Features (independent variables).

- \circ y \rightarrow Target (dependent variable).
- $test_size=0.2 \rightarrow 20\%$ of data is for testing.
- o random_state=42 → Ensures the same split every time for reproducibility.

Training set \rightarrow Helps the model learn.

Test set \rightarrow Evaluates model performance.

Use train_test_split to split data easily.

Keep random_state fixed for consistent results.

Variable	Meaning
X_train	Training data (features) – used to train the model (80%)
X_test	Testing data (features) – used to test the model (20%)
y_train	Training labels (actual answers for training data)
y_test	Testing labels (actual answers for testing data)