2020

Introducción a los sistemas gestores de bases de datos

JAGD IES Vista Alegre 21/09/2020

Contenido

n	troducción a los sistemas gestores de bases de datos	2
	Sistemas Gestores de bases de datos Relacionales (SQL)	3
	MySQL	3
	MariaDB	3
	SQLite	4
	PostgreSQL	5
	Microsoft SQL Server	5
	Oracle	5
	Sistemas Gestores de bases de datos No Relacionales (NoSQL)	7
	MongoDB	7
	Redis	8
	Cassandra	8
	Otros SGBD NoSQL	9
	Utilización de SGBD	9
	SQL vs. NoSQL	9
	Most Popular Databases	. 10
	Tareas principales de ASGBD	. 10

Introducción a los sistemas gestores de bases de datos

Un Sistema Gestor de Base de Datos (SGBD) o DataBase Managenent System (DBMS) es un sistema que permite la creación, gestión y administración de bases de datos, así como la elección y manejo de las estructuras necesarias para el almacenamiento y búsqueda de información del modo más eficiente posible.

En la actualidad, existen multitud de SGBD y pueden ser clasificados según la forma en que administran los datos en:

- Relacionales (SQL)
- No relacionales (NoSQL)

Sistemas Gestores de bases de datos Relacionales (SQL)

Desde que se comenzó a usar el modelo de **bases de datos relacionales**, en 1970, ha ido sufriendo una serie de transformaciones hasta convertirse, hoy en día, en el **modelo más utilizado** para administrar bases de datos.

Este modelo se basa fundamentalmente en establecer **relaciones o vínculos** entre los datos, imaginando una tabla aparte por cada relación existente con sus propios registros y atributos.

Los principales Sistemas gestores de bases de datos relacionales (**SGBD SQL**) actualmente son:

MySQL

Es el sistema gestor de bases de datos relacional por excelencia.

Es un SGBD **multihilo y multiusuario** utilizado en la gran parte de las páginas web actuales. Además es el más usado en aplicaciones creadas como software libre.

Las principales **ventajas** de este Sistema Gestor de Bases de datos son:

- Facilidad de uso y gran rendimiento
- Facilidad para instalar y configurar
- Soporte multiplataforma
- Soporte SSL

La principal **desventaja** es la escalabilidad, es decir, no trabaja de manera eficiente con bases de datos muy grandes que superan un determinado tamaño.

MariaDB

Este SGBD es una **derivación de MySQL** que cuenta con la mayoría de características de este e incluye varias extensiones.

Nace a partir de la adquisición de MySQL por parte de Oracle para seguir la filosofía **Open Source** y tiene la ventaja de que es totalmente compatible con MySQL.

Entre las principales **características** de este Sistema Gestor de Bases de datos se encuentran:

- Aumento de motores de almacenamiento
- Gran escalabilidad
- Seguridad y rapidez en transacciones
- Extensiones y nuevas características relacionadas con su aplicación para Bases de datos NoSQL.

No tiene desventajas muy aparentes salvo algunas pequeñas incompatibilidades en la migración de MariaDB y MySQL o pequeños atrasos en la liberación de versiones estables.

SQLite

Más que un Sistema Gestor de bases de datos como tal, SQLite es una **biblioteca** escrita en C **que implementa un SGBD** y que permite transacciones sin necesidad de un servidor ni configuraciones

Es una biblioteca utilizada en multitud de aplicaciones actuales ya que es **open source** y las consultas son muy eficientes.

Las principales características de SQLite son:

- El tamaño, al tratarse de una biblioteca, es mucho menor que cualquier SGBD
- Reúne los cuatro criterios ACID (Atomicidad, Consistencia, Aislamiento y Durabilidad) logrando gran estabilidad
- Gran portabilidad y rendimiento

La gran **de sventaja** de SQLite es la escalabilidad ya que no soporta bases de datos que sean muy grandes.

PostgreSQL

Este sistema gestor de base de datos relacional está **orientado a objetos** y es libre, publicado bajo la licencia BSD.

Sus principales características son:

- Control de Concurrencias multiversión (MVCC)
- Flexibilidad en cuanto a lenguajes de programación
- Multiplataforma
- Dispone de una herramienta (pgAdmin, https://www.pgadmin.org/) muy fácil e intuitiva para la administración de las bases de datos.
- Robustez, Eficiencia y Estabilidad.

La principal **desventaja** es la lentitud para la administración de bases de datos pequeñas ya que está optimizado para gestionar grandes volúmenes de datos.

Microsoft SQL Server

Es un sistema gestor de bases de datos relacionales basado en el lenguaje **Transact-SQL**, capaz de poner a disposición de muchos usuarios grandes cantidades de datos de manera simultánea.

Es un sistema propietario de **Microsoft**. Sus principales **características** son:

- Soporte exclusivo por parte de Microsoft.
- Escalabilidad, estabilidad y seguridad.
- Posibilidad de cancelar consultas.
- Potente entorno gráfico de administración que permite utilizar comandos DDL y DMI
- Aunque es nativo para Windows puede utilizarse desde hace ya un tiempo en otras plataformas como Linux o Docker.

Su principal **de sventaja** es el precio. Cuenta con un plan gratuito (Express) pero lo normal es la elección de alguno de los **planes de pago** disponibles.

Oracle

Tradicionamente, Oracle ha sido el **SGBD por excelencia para el mundo empresarial**, considerado siempre como el más **completo y robusto**, destacando por:

- Soporte de transacciones.
- Estabilidad.

- Escalabilidad.
- Multiplataforma.

ORACLE

La principal **desventaja**, al igual que SQL Server, es el coste del software ya que, aunque cuenta con una versión gratuita (Express Edition o XE), sus principales opciones son de pago.

Algunas opciones de pago disponibles son:

- Standard Edition (SE)
- Personal Edition (PE)
- Lite Edition (LE)
- Entreprise Edition (EE)

Sistemas Gestores de bases de datos No Relacionales (NoSQL)

Una base de datos no relacional (NoSQL) es aquella base de datos que:

- No requiere de estructuras de datos fijas como tablas
- No garantiza completamente las características ACID
- Escala muy bien horizontalmente.

Se utilizan en **entornos distribuidos** que han de estar siempre disponibles y operativos y que gestionan un **importante volumen de datos**.

Para la administración de este tipo de bases de datos, actualmente los principales sistemas gestores de bases de datos (**SGBD NoSQL**) son:

MongoDB

Estamos ante el Sistema Gestor de Bases de Datos no relacionales (SGBD NoSQL) más **popular y utilizado** actualmente.

MongoDB es un SBGD NoSQL orientado a ficheros que almacena la información en estructuras BSON* con un esquema dinámico que permite su facilidad de integración.

BSON-Binary JSON o Notación de objetos JavaScript binaria, la principal diferencia entre JSON y BSON es que BSON contiene tipos no presentes en JSON como fecha y hora varios tipos numéricos etc.

Empresas como **Google**, **Facebook**, **eBay**, **Cisco o Adobe** utilizan MongoDB como Sistema Gestor de Bases de datos.

Las principales características de MongoDB son:

- Indexación y replicación
- Balanceo de carga
- Almacenamiento en ficheros
- Consultas ad hoc
- Escalabilidad horizontal
- Open Source

Como **desventaja** principal, MongoDB no es un SGBD adecuado para realizar transacciones complejas.

Redis

Redis está basado en el **almacenamiento clave-valor**. Podríamos verlo como un vector enorme que almacena todo tipo de datos, desde cadenas, hashses, listas, etc.

El principal uso de este SGBD es para el almacenamiento en memoria caché y la administración de sesiones.

Las características principales son:

- Atomicidad y persistencia
- Gran velocidad
- Simplicidad
- Multiplataforma

Cassandra

Al igual que Redis, Cassandra también utiliza **almacenamiento clave-valor**. Es un SGBD NoSQL **distribuido y masivamente escalable**.

Facebook, Twitter, Instagram, Spotify o Netflix utilizan Cassandra.

Dispone de un lenguaje propio para las consultas denominado **CQL** (Cassandra Query Languaje).

Las principales características de este SGBD NoSQL son:

- Multiplataforma
- Propio lenguaje de consultas (CQL)
- Escalado lineal y horizontal
- Es un SGBD distribuido
- Utiliza una arquitectura peer-to-peer

Otros SGBD NoSQL

Otros Sistemas Gestores de bases de datos no relacionales muy utilizados son:

- Azure Cosmos DB
- RavenDB
- ObjectDB
- Apache CouchDB
- Neo4j
- Google BigTable
- Apache Hbase
- Amazon DynamoDB

Utilización de SGBD

SQL vs. NoSQL

SQL Database Use: 60.48% NoSQL Database Use: 39.52%

Most Popular Databases

Fuente: https://db-engines.com/en/ranking

358 systems in ranking, September 2020

	Rank				Score		
Sep 2020	Aug 2020	Sep 2019	DBMS	Database Model	Sep 2020	Aug 2020	Sep 2019
1.	1.	1.	Oracle 😷	Relational, Multi-model 🛐	1369.36	+14.21	+22.71
2.	2.	2.	MySQL #	Relational, Multi-model 🛐	1264.25	+2.67	-14.83
3.	3.	3.	Microsoft SQL Server ☐	Relational, Multi-model 🛐	1062.76	-13.12	-22.30
4.	4.	4.	PostgreSQL []	Relational, Multi-model 🛐	542.29	+5.52	+60.04
5.	5.	5.	MongoDB 🚹	Document, Multi-model 🔞	446.48	+2.92	+36.42
6.	6.	6.	IBM Db2 €	Relational, Multi-model 🛐	161.24	-1.21	-10.32
7.	7.	1 8.	Redis 😷	Key-value, Multi-model 🔞	151.86	-1.02	+9.95
8.	8.	4 7.	Elasticsearch 🚹	Search engine, Multi-model 👔	150.50	-1.82	+1.23
9.	9.	1 11.	SQLite [+	Relational	126.68	-0.14	+3.31
10.	↑ 11.	10.	Cassandra 😷	Wide column	119.18	-0.66	-4.22

Para el cálculo se han utilizado los siguientes **indicadores**:

- Número de menciones del sistema en sitios web
- Frecuencia de búsquedas
- Frecuencia de las discusiones técnicas sobre el sistema.
- Ofertas de trabajo en las que se menciona el sistema.
- Número de perfiles en redes profesionales, en los que se menciona el sistema.
- Relevancia en redes sociales.

Tareas principales de ASGBD

Como Administradores de SGBD es importante entender que, para elegir el SGBD más adecuado, se debe comenzar por el **estudio del tipo de datos** que se van a almacenar y **cómo se van a administrar**.

Entre los Sistemas Gestores de Base de Datos citados seguro que encontrarás el que más se **adapta** a tus necesidades de acuerdo a la inversión a realizar, volumen de información a almacenar, tipo de consultas a realizar, etc