Groepen theorie

Luc Veldhuis

11 April 2017

Definitie

Kies $A \subseteq G$, geen groep.

Dan is $\langle A \rangle = \bigcap_{H \leqslant G, A \subseteq G} H$ de doorsnede van alle ondergroepen van

G die A bevatten.

Dit is de kleinste ondergroep van G die A bevat.

Opmerking

- $\langle \emptyset \rangle = \{e\}$
- Uit de definitie volgt dat als $H \leqslant G$, dan geldt $\langle A \rangle \subseteq H \leftrightarrow A \subseteq H$

Uitleg

 $\langle A \rangle$ heet de ondergroep voortgebracht door A.

$$\mathsf{Zij}\ \overline{A} = \{a_1^{e_1}a_2^{e_2}\dots a_n^{e_n}\ \mathsf{met}\ \mathsf{alle}\ a_i \in A, n \geq 0, e_i = \pm 1\}$$

Dan is \overline{A} een ondergroep van G.

 $e \in \overline{A}$, want met n = 0, leeg product is e.

Als
$$A \neq \emptyset$$
, $e = aa^{-1} \forall a \in A$

- *A* is gesloten onder producten.
- \bullet \overline{A} is gesloten onder inverses.

Als
$$a_1^{e_1} \dots a_n^{e_n} \in \overline{A}$$
, dan is $(a_1^{e_1} \dots a_n^{e_n})^{-1} = a_n^{-e_n} \dots a_1^{-e_1}$ weer in \overline{A} met $-e_i = \pm 1$

Opmerking

Als G abels is en $A = \{a_1, \ldots, a_n\}$, dan is $\overline{A} = \{a_1^{m_1} a_2^{m_2} \ldots a_n^{m_n} | m_i \in \mathbb{Z}\}$ (Raap alle $a_i^{\pm 1}$ samen)

Bewijs

Claim: $\overline{A} = \langle A \rangle$ voor elke $A \subseteq G$ $\overline{A} \leqslant G$ en $A \subseteq \overline{A}$ $\langle A \rangle \subset \overline{A}$

 $A \subseteq \langle A \rangle$ en $\langle A \rangle$ is een ondergroep.

 $a_1^{e_1}\dots a_n^{e_n}\in \langle A
angle$ en in $\overline{A}\Rightarrow \overline{A}\subseteq \langle A
angle\Rightarrow \langle A
angle=\overline{A}$

Opmerking

Als $H \leq G$, dan geldt $\langle A \rangle \subseteq H \Leftrightarrow A \subseteq H$

Voorbeeld

• $G = \mathbb{Z}$, dan krijg je $e_1 a_1 + e_2 a_2 + \dots e_n + a_n$, omdat \mathbb{Z} een optel groep is.

$$\begin{split} A &= \{6,8\} \Rightarrow \langle A \rangle = \langle 6,8 \rangle \text{ (= } \langle \{6,8\} \rangle \text{)} \\ \langle 6,8 \rangle &= \{6m + 8n | m, n \in \mathbb{Z}\} = \langle 2 \rangle \text{ want} \\ \langle 6,8 \rangle &\subseteq \langle 2 \rangle \leftrightarrow \{6,8\} \subseteq \langle 2 \rangle \text{ en } \langle 2 \rangle \subseteq \langle 6,8 \rangle \leftrightarrow \{2\} \subseteq \langle 6,8 \rangle \end{split}$$

- $G=D_12$, $A=\{s,sr\}$, dan $\langle s,sr\rangle=D_12$: $s,sr\in H$, dus $ssr=r\in H\Rightarrow r^i\in H$ met $i\in\mathbb{Z}$. Dus $sr^i\in H$ met $i\in\mathbb{Z}$ Maar $\{s^{m_1}(sr)^{m_2} \text{ met } m_i\in\mathbb{Z}\}=\{e,r,s,sr\}$ is veel te klein.
- $S_n = \langle (1 \ 2)(1 \ 2 \ 3 \ \dots \ n) \rangle$ als $n \ge 2$

§2.5 De graaf van ondergroepen

G eindige groep $\Rightarrow G$ heeft eindig veel ondergroepen. Maak deze graaf:

• Punten \leftrightarrow ondergroepen

 $\leftrightarrow H_3 = \langle H_1, H_2 \rangle$: $H_1 \leqslant H_3, H_2 \leqslant H_3$, dus $\langle H_1, H_2 \rangle \leqslant H_3$ Omdat er geen ondergroep is tussen H_1 en H_3 en $H_2 \not\leqslant H_1$ volgt er dat $H_3 = \langle H_1, H_2 \rangle$

§2.5 De graaf van ondergroepen

Maak deze graaf:

• Lijnen \leftrightarrow $B \leqslant A$ en $\not \exists$ ondergroep C met $B \leqslant C \leqslant A$ ldem:

$$\leftrightarrow H_3 = H_1 \cup H_2$$

§2.5 De graaf van ondergroepen

Voorbeeld

• $G = \mathbb{Z}/12\mathbb{Z} = \langle \overline{1} \rangle$ is cyklisch. Ondergroepen corresponderen met positieve delers van $12 = 2^2 \cdot 3$ Namelijk: $\langle \overline{0} \rangle = \langle \overline{12} \rangle, \langle \overline{1} \rangle, \langle \overline{2} \rangle, \langle \overline{3} \rangle, \langle \overline{4} \rangle, \langle \overline{6} \rangle$

De graaf van ondergroepen

Voorbeeld (vervolg)

• $G = Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$ Cyklische ondergroepen:

$$\langle 1 \rangle, \langle -1 \rangle, \langle i \rangle = \langle -i \rangle, \langle -j \rangle = \langle -j \rangle, \langle k \rangle = \langle -k \rangle$$

Idee

 $n \ge 2$, dan is $\mathbb{Z}/n\mathbb{Z}$ een optelgroep via $\overline{a} + \overline{b} = def \overline{a+b}$, dus de optelling op $\mathbb{Z}/n\mathbb{Z}$ komt uit de optelling op \mathbb{Z} .

Je wilt $H \leq G$ en 'klassen' $\overline{X} = X$ modulo H en groepsbewerking $\overline{X} \cdot \overline{Y} = \overline{XY}$ (Tussen XY geldt de werking van G). Dat werkt als H aan een voorwaarde voldoet. (NL: Normaaldeler, EN: Normal subgroup)

Homomorfisme

$$K = \operatorname{Ker} (\phi) = \{g \in G | \phi(g) = e_H\} \leqslant G$$

Voor $h \in H$ heet $\phi^{-1}(h) = \phi^{-1}(\{h\}) = \{g \in G | \phi(g) = h\}$ de vezel van ϕ bij h .
 $\phi^{-1}(h) = \emptyset \Leftrightarrow h \notin \operatorname{Im}(\phi)$

$$\phi^{-1}(h) = \emptyset \Leftrightarrow h \not\in \operatorname{Im}(\phi)$$

Opmerking

$$\phi^{-1}(e_H) = K$$

Gevolg

Als $h \in \text{Im}(\phi)$ en $\phi(g) = h$, dan is $\phi^{-1}(h) = g \cdot K = K \cdot g$ met $gK = \{gk | k \in K\}$ en $Kg = \{kg | k \in K\}$

Voorbeeld

- $\phi^{-1}(h) = gK$, $gK \subseteq \phi^{-1}(h)$: Neem gk met $k \in K$ en pas ϕ toe: $\phi(gk) = \phi(g)\phi(k) = he_H = h$
- $\phi^{-1}(h) \subseteq gK$: Neem $x \in \phi^{-1}(h)$, dus $\phi(x) = h \ x = gk$ voor een $k \in K$. Te bewijzen: dan moet $k = g^{-1}x \in K = \text{Ker } (\phi)$ zijn.

$$\phi^{-1}(g^{-1}x) = \phi(g^{-1})\phi(x) = h^{-1}h = e_H.$$

Dus het klopt: $x = gk \text{ met } k = g^{-1}x \in K$

Voorbeeld

$$\begin{split} &G=\mathbb{Z}\text{m }H=\mathbb{Z}/n\mathbb{Z}\text{ met }n\geq 2\\ &\phi:\mathbb{Z}\to\mathbb{Z}/n\mathbb{Z}\text{ met }\phi(a)\mapsto \overline{a}\\ &\text{Vezel boven }\overline{0}=\phi^{-1}(\overline{0})=n\mathbb{Z}\\ &\text{Vezel boven }\overline{1}=\phi^{-1}(\overline{1})=1+n\mathbb{Z}\text{ want }\phi(1)=\overline{1}\\ &\text{Stel }n=3\text{ dan}\\ &\phi^{-1}(\overline{0})=3\mathbb{Z}=\{\ldots,-6,-3,0,3,6,\ldots\}\\ &\phi^{-1}(\overline{1})=1+3\mathbb{Z}==\{\ldots,-5,-2,1,4,7,\ldots\}\\ &\phi^{-1}(\overline{2})=2+3\mathbb{Z}==\{\ldots,-4,-1,2,5,8,\ldots\}=5+3\mathbb{Z} \end{split}$$

Definitie

```
G een groep en H \leqslant G en g \in G

Zij gH = \{gh|h \in H\}

Zij Hg = \{hg|h \in H\}

gH heet de linker nevenklasse van H voor g

Hg heet de rechter nevenklasse van H voor g

Een element van een nevenklasse heet een representant van die klasse
```

Voorbeeld

$$G = S_3$$
 en $H = \langle (1\ 2) \rangle = \{e, (1\ 2)\}$

Linker nevenklasse:

$$eH = H = \{e, (1\ 2)\} = (1\ 2)H$$

$$(1\ 3)H = \{(1\ 3), (1\ 2\ 3)\} = (1\ 2\ 3)H$$

$$(2\ 3)H = \{(2\ 3), (1\ 3\ 2)\} = (1\ 3\ 2)H$$

Rechter nevenklasse:

$$He = H = \{e, (1\ 2)\} = H(1\ 2)$$

$$H(1\ 3) = \{(1\ 3), (1\ 3\ 2)\} = H(1\ 3\ 2)$$

$$H(2\ 3) = \{(2\ 3), (1\ 2\ 3)\} = H(1\ 2\ 3)$$