MASSACHUSETTS MATHEMATICS LEAGUE CONTEST 6 – MARCH 2013 SOLUTION KEY

Round 5

A) The nine vertices of regular polygon DECATHLON divide circle P into $\frac{360^{\circ}}{9} = 40^{\circ}$ arcs. Since the measure of an angle formed by intersecting chords of a circle equals the average of the intercepted arcs, we have $m\angle DQC = m\angle OQT = \frac{80+120}{2} = \underline{100}^{\circ}$.

B) $\angle 1$ in $\triangle BAD$ is congruent to $\angle 2$, 4 or C in $\triangle ADC$. As an exterior angle of $\triangle BAD$, $\angle 4$ can not be congruent to $\angle 1$ (or $\angle B$). If $\angle 1$ were congruent to $\angle 2$, then $\angle C$ would have to be congruent to $\angle B$ and $\angle 3$ would have to be congruent to $\angle 4$, forcing $\triangle BAD \cong \triangle CAD$ and AB = AC which is not the case. Thus, $m\angle 1 \neq m\angle 2$. The only alternative left is

The only alternative left is $m\angle 1 = m\angle C \Rightarrow m\angle 2 = m\angle B = 37^\circ$, $m\angle 3 = m\angle 4 = 90^\circ$ and $m\angle 1 = 53^\circ$. Thus, the required sum is $\underline{143}^\circ$.

Alternate Solution: $\triangle BAD \sim \triangle ACD$ (Other correspondences lead to contradictions as argued above.) Thus, $m \angle C = m \angle 1$. In $\triangle BAD$, since $m \angle B = 37^{\circ}$, $m \angle BDA = 143 - m \angle 1 = 143 - m \angle C$,

Transposing, $m \angle BDA + m \angle C = 143$. A more accurate diagram is shown above.

3

- C) Let (BD, BC, AB) = (x, y, z) as indicated in the diagram.
 - Drop a perpendicular (h) from D to \overline{AB} . Then: $x = \frac{5}{2}z$, $x = \frac{5}{4}y$

Since $DE = 6\sqrt{3}$, the required area is $2 \cdot \frac{1}{2} \cdot 6\sqrt{3} \cdot y + \frac{1}{2}zh = 6\sqrt{3} \cdot y + \frac{zh}{2}$

$$\begin{cases} y^2 + 108 = x^2 \\ x = \frac{5}{4}y \end{cases} \Rightarrow \frac{9}{16}y^2 = 108 \Rightarrow y^2 = 16(12) \Rightarrow y = 8\sqrt{3}, x = 10\sqrt{3}$$

and $z = 4\sqrt{3}$ Thus, $h^2 = 300 - 12 = 288 = 144(2) \Rightarrow h = 12\sqrt{2}$.

The required area is $48(3) + 24\sqrt{6} = 24(6 + \sqrt{6}) \Rightarrow (24, 6, 6)$.

