Supervision 4

Graph algorithms

Let A be an arbitrary node in the graph. Peform a breadth-first search from A. Let B be a furthest node from A. Perform another breadth-first search from B. The maximum distance from B to any node is the diameter of the graph.

In the above graph, the diameter is calculated to be 2 when in fact it is 3.

Betweenness centrality and Newman-Girvan method examples

Node	Centrality
1	1.0
2	1.0
3	1.0
4	1.0
5	1.0
	Controlity
Edge	Centrality
(1,2)	3.0
(1,2)	3.0

Edge Centrality		
(1,5) 3.0		
	2	4
	3	5

Node	Centrality
1	6.0
2	0.0
3	0.0
4	0.0
5	0.0
Edge	Centrality
(1,2)	4.0
(1,3)	4.0
(1,4)	4.0
(. , . ,	

Node	Centrality
1	0.0
2	3.0
3	0.0
4	3.0
5	0.0
E-1	041:4-

Edge	Centrality
(1,2)	4.0
(2,3)	2.0
(2,4)	4.0
(3,4)	2.0
(4.5)	4.0

Node	Centrality
1	0.0
2	3.0
3	4.0
4	0.0
5	0.0
Edge	Centrality
(1,2)	4.0
(2.3)	6.0

(3,4) 3.0
(4,5) 1.0
(3,5) 3.0

Node	Centrality
1	0.0
2	5.0
3	0.0
4	0.0
5	0.0
Edge	Centrality
Edge (1,2)	Centrality 4.0
(1,2)	4.0
(1,2)	4.0

(2,5)

4.0

Random graphs and metrics

Erdős-Rényi

The degree of the nodes is going to be binomally distributed.

Most of the nodes will probably be connected assuming p and n are both large enough. 🔨

The lengths of the shortest paths will be binomially disributed —

There will be little clustering

Watts-Strogatz model

For a given node, its degree will vary from k to a a uniformly random integer as p varies from 0 to 1.

Most of the nodes will be connected.

There will probably be a high degree of clustering \checkmark

Collaboration network

Most of the components will be connected

The shortest paths will also be distributed normally χ

There will be a high degree of clustering