Jamiree Harrison

<u>jamiree@ucsb.edu</u> Website: https://jamiree.github.io/

CITIZENSHIP: U.S. Citizen

EDUCATION: University of California, Santa Barbara

2019 - Present

Ph.D. Candidate, Mechanical Engineering

Advisor: Enoch Yeung

- Mechanical Engineering Excellence Fellowship
- GPA: 4.0
- Coursework:
 - ME 203: Operator Theory
 - ME 210 A/B: Numerical Analysis: Matrix Analysis, ODEs, PDEs
 - ME 215 A: Applied Dynamical Systems
 - ME 225EY: Biological Computing
 - ME 225 MM: Mathematical Methods
 - ME 236: Nonlinear Control Systems
 - ME 243 A/B: Linear Control Systems
 - ME 269: Network Systems
 - ECE 283: Machine Learning (Supervised, Unsupervised)
- Teaching Assistantship and Tutoring:
 - ME 14: Statics
 - ME 155a: Control System Design
 - ME 163: Vibrations
 - ECE 179: Robot Dynamics and Control

University of California, San Diego

2015 - 2019

B.S. Math – Applied Science

- Chancellor's Associates Scholarship
- Selected Coursework:
 - MAE 101 A: Intro to Fluid Mechanics
 - MAE 108: Probability and Statistics for Engineers
 - Math 103 A: Intro to Abstract Algebra
 - Math 120 A: Complex Analysis
 - Math 142 A/B: Real Analysis
 - Math 154: Intro to Graph Theory
 - Math 171 A: Linear Optimization

GRADUATE Biological Control Laboratory

Jan 2020 - Present

RESEARCH:

University of California, Santa Barbara

- Designed and built genetic toggle switches with time-varying parameters for the purpose of optimizing plastic degradation done by bacteria.
- · Mathematically modeled parameter varying genetic toggle switches.
- Provided stability analysis of time varying toggle switch models through the framework of Koopman Operator theory.
- · Developed algorithms which fit time varying parameters to the pertinent toggle switch models.
- Built a library of promoters which give distinct gene expression profiles during different bacterial growth phases.

UNDERGRAD

Delplanque Research Group

June 2018 - Aug 2018

RESEARCH:

University of California, Davis (Funded by UC LEADs)

 Carried out numerical simulations of respiratory drug intake in the human trachea using OpenFOAM. · Found correlations between parameters of the simulated particle injections and the evenness of the particle distributions.

Coimbra Research Group

June 2017 – Aug 2017

University of California, San Diego (Funded by UC LEADs)

- · Conducted research on numerical methods to solve variable order differential equations (VODEs) using MATLAB.
- · Devised an efficient numerical method that could solve VODEs 50% faster than conventional methods, so VODE model predictions could be made more quickly, improving the energy efficiency of the system.

Center for Advanced Surgical and Interventional Technology University of California, Los Angeles (Volunteer)

June 2014 - Aug 2014 June 2016 - Aug 2016

- · Assisted in the testing of an innovative way to treat prostate cancer known as focal laser therapy.
- · Used CAD for the modeling of a human head to test remote trans-oral surgery.
- · Developed molds using Solid Works to test the effects of a catheter-fed laser on phantom tissue.
- · Compiled lists of potential treatment candidates within the UCLA health database using SQL.
- · Tested haptic feedback on the da vinci remote surgical robot.

EMPLOYMENT: Supplemental Instructor

Sep 2016 - June 2019

University of California, San Diego

- · Facilitated math workshops for college students consisting of tutoring and support to ensure their academic success.
- · Worked with professors to develop lesson plans for the facilitation of math workshops that supplemented material from courses.
- · Classes Supported: Linear Algebra, Calculus (1,2,3), Pre-Calculus.

PUBLICATIONS: Harrison, J.; Yeung, E. Stability analysis of parameter varying genetic toggle switches using Koopman Operators. Mathematics 2021, 9, 3133. https://doi.org/10.3390/math9233133

PROJECTS:

-Quantitatively assessing wildfire risk (SIAM Grad Student Math Modeling Camp) -Prediction of chronic kidney disease degeneration with machine learning (SIAM Mathematical Problems in Industry | Vironix)

CONFERENCES: Harrison, J., Yeung, E.: Analysis and validation of parameter varying genetic toggle switches using Koopman Operators

· SIAM CSE23 (2023)

Harrison, J., Ruvalcaba, C., Delplanque, J.-P.: Computational simulations for the improvement of respiratory drug intake in the human trachea

- · SACNAS (2018) | UC LEADs Symposium (2019)
- · SACNAS Presentation Award
- · UC LEADs Symposium Honorable Mention.

Harrison, J., Orosco, J., Coimbra, C.F.M.: Efficient Numerical Methods for Solving Variable **Order Differential Equations**

SACNAS (2017) | SCCUR (2017)

AWARDS &

Mechanical Engineering Excellence Fellowship

2019

-Funding given to a select subset of incoming Ph.D. students **DISTINCTIONS:**

Chancellor's Associates Scholarship (UCSD) - 4-year full-ride scholarship	2015 - 2019
University of California's Leadership Excellence through Advanced Degrees Fellowship (UC LEADs) - Funding for 2 Summers of research and travel for conferences	2017 - 2019
Fulfillment Fund Scholarship - 4-year scholarship	2015 - 2019
2018 SACNAS National Diversity in STEM Conference Presentation Award	2018
Bardia Khosravi, Biological Control Lab -Undergraduate research assistant at UCSB, 2023 -Currently in Ryan Stowers' lab -Continuing bachelor's degree at UCSD in fall 2023	
Programming: -Syntax: · Python · MATLAB · Java · SQL · HTML & CSS · Julia -Environment: · Linux · Windows · macOS	
Machine Learning: -PyTorch -TensorFlow -Sci-Kit Learn -SciPy Optimize -Principal Component Analysis -Neural networks for classification and prediction -Logistic Regression -k means Clustering	
Biological Lab Skills: -Bacterial Cell Cultures -Mammalian Cell Cultures -DNA Design -Golden Gate Assembly -Genetic Editing -DNA Sequence Analysis	

MENTORSHIP:

TECHNICAL SKILLSETS:

- -Genetic Circuit Design
- -Gen5 Plate Reader Experiments

Design and Simulation:

- -Geneious Prime
- -Solid Works
- -Meshmixer
- -OpenFOAM
- -3D printing
- -Simulink

Mathematics:

- -Modelling and control of biological and physical processes
- -Verification and falsification of claims through logic and reasoning
- -Probabilistic and statistical methods
- -Numerical analysis
- -Model parameter fitting

Circuits and Electronics:

-μC: Arduino

Graphic Design:

- -Adobe Photoshop
- -Adobe Illustrator