Introducción a las Tecnologías del Habla

Trabajo Práctico 3: Aprendizaje Automático

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

> Leandro Lovisolo LU 645/11

Segundo Cuatrimestre de 2012

Introducción

El objetivo de este trabajo práctico es construir un sistema de reconocimiento automático del género de una persona a partir de una grabación corta de su habla, aplicando técnicas de aprendizaje automático.

Para la realización del sistema se dispone de un corpus de grabaciones recolectadas por todos los alumnos de esta materia durante el TP 1, de las cuales se extrayeron el género del hablante y un conjunto de atributos acústicos que serán utilizados como referencia para entrenar el sistema y evaluar su eficacia.

El sistema deberá implementarse sobre la suite de aprendizaje automático Weka¹, en la que se deberá construir un clasificador que tome como entrada los atributos acústicos de una grabación, y decida en base a estos el género de la persona.

En primer lugar, se deberá implementar como sistema baseline un clasificador de reglas RIPPER² utilizando como único atributo la media de la frecuencia fundamental del hablante. En el TP1 habíamos visto que la diferencia de este atributo para cada género era significativa y grande. Ahora veremos cuál es su poder predictivo en esta tarea.

Finalmente, se deberá experimentar con diferentes clasificadores y diferentes conjuntos de atributos, en busca de una configuración que arroje buenos resultados. La tasa de aciertos deberá ser mayor o igual a 94%.

Materiales y métodos

Las instancias en la base de datos corresponden a los segmentos del habla sin pausas (inter-pausal units o IPUs) de todas las grabaciones. Cada instancia registra el género del hablante y 1582 atributos acústicos.

Los atributos acústicos en la base de datos fueron extraídos de los archivos de audio con la herramienta openSMILE³, usando la configuración para el INTERSPEECH 2010 Paralinguistic Challenge⁴, y almacenados en formato ARFF para facilitar su lectura desde Weka. Para más información, ver las páginas 30 y 31 del openSMILE book⁵.

La base de datos de atributos acústicos, junto con el enunciado completo del TP, pueden descargarse desde la siguiente URL: http://habla.dc.uba.ar/gravano/ith-2012/tp3/

Sistema baseline

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

¹http://www.cs.waikato.ac.nz/ml/weka/

²Repeated Incremental Pruning to Produce Error Reduction (RIPPER.) Ver http://wiki.pentaho.com/display/DATAMINING/ JRip

³http://opensmile.sourceforge.net/

 $^{^{4} \}verb|http://emotion-research.net/sigs/speech-sig/paralinguistic-challenge|$

⁵http://sourceforge.net/projects/opensmile/files/openSMILE_book_1.0.0.pdf

Mejor sistema desarrollado

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.