# Deep Generative Models

Lecture 11

Roman Isachenko



2024, Summer

Let perturb original data by normal noise  $q(\mathbf{x}_{\sigma}|\mathbf{x}) = \mathcal{N}(\mathbf{x}, \sigma^2 \cdot \mathbf{I})$   $q(\mathbf{x}_{\sigma}) = \int \pi(\mathbf{x}) q(\mathbf{x}_{\sigma}|\mathbf{x}) d\mathbf{x}.$ 

Then the solution of

$$\frac{1}{2}\mathbb{E}_{q(\mathbf{x}_{\sigma})}\big\|\mathbf{s}_{\boldsymbol{\theta},\sigma}(\mathbf{x}_{\sigma}) - \nabla_{\mathbf{x}_{\sigma}}\log q(\mathbf{x}_{\sigma})\big\|_{2}^{2} \rightarrow \min_{\boldsymbol{\theta}}$$

satisfies  $\mathbf{s}_{\theta,\sigma}(\mathbf{x}_{\sigma}) \approx \mathbf{s}_{\theta,0}(\mathbf{x}_{0}) = \mathbf{s}_{\theta}(\mathbf{x})$  if  $\sigma$  is small enough.

## Theorem (denoising score matching)

$$\begin{split} \mathbb{E}_{q(\mathbf{x}_{\sigma})} & \left\| \mathbf{s}_{\boldsymbol{\theta}, \sigma}(\mathbf{x}_{\sigma}) - \nabla_{\mathbf{x}_{\sigma}} \log q(\mathbf{x}_{\sigma}) \right\|_{2}^{2} = \\ & = \mathbb{E}_{\pi(\mathbf{x})} \mathbb{E}_{q(\mathbf{x}_{\sigma}|\mathbf{x})} & \left\| \mathbf{s}_{\boldsymbol{\theta}, \sigma}(\mathbf{x}_{\sigma}) - \nabla_{\mathbf{x}_{\sigma}} \log q(\mathbf{x}_{\sigma}|\mathbf{x}) \right\|_{2}^{2} + \operatorname{const}(\boldsymbol{\theta}) \end{split}$$

Here  $\nabla_{\mathbf{x}_{\sigma}} \log q(\mathbf{x}_{\sigma}|\mathbf{x}) = -\frac{\mathbf{x}_{\sigma} - \mathbf{x}}{\sigma^2} = -\frac{\epsilon}{\sigma}$ .

- ▶ We do not need to compute  $\nabla_{\mathbf{x}_{\sigma}} \log q(\mathbf{x}_{\sigma})$  at the RHS.
- $ightharpoonup \mathbf{s}_{\theta,\sigma}(\mathbf{x}_{\sigma})$  tries to **denoise** a corrupted sample.

#### Noise conditioned score network

- ▶ Define the sequence of noise levels:  $\sigma_1 < \sigma_2 < \cdots < \sigma_T$ .
- ▶ Train denoised score function  $\mathbf{s}_{\theta,\sigma_t}(\mathbf{x}_t)$  for each noise level:

$$\sum_{t=1}^{T} \sigma_{t}^{2} \cdot \mathbb{E}_{\pi(\mathbf{x})} \mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x})} \big\| \mathsf{s}_{\boldsymbol{\theta}, \sigma_{t}}(\mathbf{x}_{t}) - \nabla_{\mathsf{x}_{t}} \log q(\mathbf{x}_{t}|\mathbf{x}) \big\|_{2}^{2} \rightarrow \min_{\boldsymbol{\theta}}$$

▶ Sample from **annealed** Langevin dynamics (for t = 1, ..., T).



Song Y. et al. Generative Modeling by Estimating Gradients of the Data Distribution, 2019

## NCSN training

- 1. Get the sample  $\mathbf{x}_0 \sim \pi(\mathbf{x})$ .
- 2. Sample noise level  $t \sim U\{1, T\}$  and the noise  $\epsilon \sim \mathcal{N}(0, I)$ .
- 3. Get noisy image  $\mathbf{x}_t = \mathbf{x}_0 + \sigma_t \cdot \boldsymbol{\epsilon}$ .
- 4. Compute loss  $\mathcal{L} = \sigma_t^2 \cdot \|\mathbf{s}_{\theta,\sigma_t}(\mathbf{x}_t) + \frac{\epsilon}{\sigma_t}\|^2$ .

## NCSN sampling (annealed Langevin dynamics)

- ▶ Sample  $\mathbf{x}_0 \sim \mathcal{N}(0, \sigma_T^2 \cdot \mathbf{I}) \approx q(\mathbf{x}_T)$ .
- ► Apply *L* steps of Langevin dynamic

$$\mathbf{x}_{l} = \mathbf{x}_{l-1} + \frac{\eta_{t}}{2} \cdot \mathbf{s}_{\boldsymbol{\theta}, \sigma_{t}}(\mathbf{x}_{l-1}) + \sqrt{\eta_{t}} \cdot \boldsymbol{\epsilon}_{l}.$$

▶ Update  $\mathbf{x}_0 := \mathbf{x}_L$  and choose the next  $\sigma_t$ .

#### Forward gaussian diffusion process

Let 
$$\mathbf{x}_0 = \mathbf{x} \sim \pi(\mathbf{x}), \ \beta_t \in (0,1), \ \alpha_t = 1 - \beta_t \ \text{and} \ \bar{\alpha}_t = \prod_{s=1}^t \alpha_s.$$

$$\begin{split} \mathbf{x}_t &= \sqrt{1-\beta_t} \cdot \mathbf{x}_{t-1} + \sqrt{\beta_t} \cdot \boldsymbol{\epsilon}, \quad \text{where } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}); \\ \mathbf{x}_t &= \sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0 + \sqrt{1-\bar{\alpha}_t} \cdot \boldsymbol{\epsilon}, \quad \text{where } \boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}). \end{split}$$

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\sqrt{1-\beta_t} \cdot \mathbf{x}_{t-1}, \beta_t \cdot \mathbf{I});$$
  
$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0, (1-\bar{\alpha}_t) \cdot \mathbf{I}).$$

- 1.  $\mathbf{x}_0 = \mathbf{x} \sim \pi(\mathbf{x});$
- 2.  $\mathbf{x}_t = \sqrt{1 \beta_t} \cdot \mathbf{x}_{t-1} + \sqrt{\beta_t} \cdot \epsilon$ , where  $\epsilon \sim \mathcal{N}(0, \mathbf{I})$ ,  $t \ge 1$ ;
- 3.  $\mathbf{x}_T \sim p_{\infty}(\mathbf{x}) = \mathcal{N}(0, \mathbf{I})$ , where T >> 1.

If we are able to invert this process, we will get the way to sample  $\mathbf{x} \sim \pi(\mathbf{x})$  using noise samples  $p_{\infty}(\mathbf{x}) = \mathcal{N}(0, \mathbf{I})$ .

#### Outline

- 1. Diffusion denoising score matching
- 2. Reverse gaussian diffusion process

3. Gaussian diffusion model as VAE

4. Reparametrization of gaussian diffusion model

#### Outline

1. Diffusion denoising score matching

Reverse gaussian diffusion process

3. Gaussian diffusion model as VAE

4. Reparametrization of gaussian diffusion model

# Denoising score matching

#### **NCSN**

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_0, \sigma_t^2 \cdot \mathbf{I}), \quad q(\mathbf{x}_1) \approx \pi(\mathbf{x}), \quad q(\mathbf{x}_T) \approx \mathcal{N}(0, \sigma_T^2 \cdot \mathbf{I}).$$

$$abla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}) = -rac{\mathbf{x}_t - \mathbf{x}}{\sigma_t^2}$$

#### Gaussian diffussion

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0, (1 - \bar{\alpha}_t) \cdot \mathbf{I}), \quad q(\mathbf{x}_1) \approx \pi(\mathbf{x}), \quad q(\mathbf{x}_T) \approx \mathcal{N}(0, \mathbf{I})$$

$$abla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}_0) = -\frac{\mathbf{x}_t - \sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0}{1 - \bar{\alpha}_t}$$

## Theorem (denoising score matching)

$$\begin{split} \mathbb{E}_{q(\mathbf{x}_t)} \big\| \mathbf{s}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t) \big\|_2^2 &= \\ &= \mathbb{E}_{\pi(\mathbf{x})} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x})} \big\| \mathbf{s}_{\boldsymbol{\theta},t}(\mathbf{x}_t) - \nabla_{\mathbf{x}_t} \log q(\mathbf{x}_t|\mathbf{x}) \big\|_2^2 + \text{const}(\boldsymbol{\theta}) \end{split}$$

**Note:** We are able to apply NCSN approach with annealed Langevin dynamics to get diffusion denoising model.

#### Outline

- 1. Diffusion denoising score matching
- 2. Reverse gaussian diffusion process

3. Gaussian diffusion model as VAE

4. Reparametrization of gaussian diffusion model

# Reverse gaussian diffusion process



#### Forward process

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}\left(\sqrt{1-eta_t}\cdot\mathbf{x}_{t-1},eta_t\cdot\mathbf{I}\right).$$

#### Reverse process

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t) = \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1})q(\mathbf{x}_{t-1})}{q(\mathbf{x}_t)} \approx p(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta})$$

 $q(\mathbf{x}_{t-1}), \ q(\mathbf{x}_t)$  are intractable:

$$q(\mathbf{x}_t) = \int q(\mathbf{x}_t|\mathbf{x}_0)\pi(\mathbf{x}_0)d\mathbf{x}_0$$

## Reverse gaussian diffusion process

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t) = \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1})q(\mathbf{x}_{t-1})}{q(\mathbf{x}_t)}$$

#### Theorem (Feller, 1949)

diffusion GANs. 2021

If  $\beta_t$  is small enough,  $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$  will be Gaussian (that is why diffusion needs  $T \approx 1000$  steps to converge).



Feller W. On the theory of stochastic processes, with particular reference to applications, 1949

Xiao Z., Kreis K., Vahdat A. Tackling the generative learning trilemma with denoising

## Reverse gaussian diffusion process



Let define the reverse process:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t) pprox p(\mathbf{x}_{t-1}|\mathbf{x}_t, oldsymbol{ heta}) = \mathcal{N}\left(oldsymbol{\mu}_{oldsymbol{ heta},t}(\mathbf{x}_t), \sigma^2_{oldsymbol{ heta},t}(\mathbf{x}_t)
ight)$$

Feller theorem shows that it is a reasonable assumption.

#### Forward process

## Reverse process

1. 
$$\mathbf{x}_0 = \mathbf{x} \sim \pi(\mathbf{x})$$
;

1. 
$$\mathbf{x}_T \sim p_{\infty}(\mathbf{x}) = \mathcal{N}(0, \mathbf{I});$$

2. 
$$\mathbf{x}_t = \sqrt{1 - \beta_t} \cdot \mathbf{x}_{t-1} + \sqrt{\beta_t} \cdot \boldsymbol{\epsilon};$$

2. 
$$\mathbf{x}_t = \sqrt{1 - \beta_t} \cdot \mathbf{x}_{t-1} + \sqrt{\beta_t} \cdot \epsilon$$
; 2.  $\mathbf{x}_{t-1} = \sigma_{\theta, t}(\mathbf{x}_t) \cdot \epsilon + \mu_{\theta, t}(\mathbf{x}_t)$ ;

3. 
$$\mathbf{x}_T \sim p_{\infty}(\mathbf{x}) = \mathcal{N}(0, \mathbf{I})$$
. 3.  $\mathbf{x}_0 = \mathbf{x} \sim \pi(\mathbf{x})$ ;

3. 
$$\mathbf{x}_0 = \mathbf{x} \sim \pi(\mathbf{x})$$

Note: The forward process does not have any learnable parameters!

Weng L. What are Diffusion Models?, blog post, 2021

#### Outline

1. Diffusion denoising score matching

2. Reverse gaussian diffusion process

3. Gaussian diffusion model as VAE

4. Reparametrization of gaussian diffusion model

#### Gaussian diffusion model as VAE

Let treat  $\mathbf{z} = (\mathbf{x}_1, \dots, \mathbf{x}_T)$  as a latent variable (**note**: each  $\mathbf{x}_t$  has the same size). Probabilistic model is

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z}|\boldsymbol{\theta})$$



#### Forward diffusion

► Variational posterior distribution (encoder)

$$q(\mathbf{z}|\mathbf{x}) = q(\mathbf{x}_1, \dots, \mathbf{x}_T|\mathbf{x}_0) = \prod_{t=1}^{T} q(\mathbf{x}_t|\mathbf{x}_{t-1}).$$

▶ **Note:** there is no learnable parameters.

## Gaussian diffusion model as VAE

Let treat  $\mathbf{z} = (\mathbf{x}_1, \dots, \mathbf{x}_T)$  as a latent variable (**note**: each  $\mathbf{x}_t$  has the same size). Probabilistic model is

$$p(\mathbf{x}, \mathbf{z}|\boldsymbol{\theta}) = p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta})p(\mathbf{z}|\boldsymbol{\theta})$$



#### Reverse diffusion

► Generative distribution (decoder)

$$p(\mathbf{x}|\mathbf{z}, \boldsymbol{\theta}) = p(\mathbf{x}_0|\mathbf{x}_1, \boldsymbol{\theta}).$$

Prior distribution

$$p(\mathbf{z}|\boldsymbol{\theta}) = \prod_{t=2}^{T} p(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \boldsymbol{\theta}) \cdot p(\mathbf{x}_{T}).$$

## Conditioned reverse distribution

$$\begin{split} q(\mathbf{x}_{t-1}|\mathbf{x}_t) &= \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1})q(\mathbf{x}_{t-1})}{q(\mathbf{x}_t)} \\ q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) &= \frac{q(\mathbf{x}_t|\mathbf{x}_{t-1}, \mathbf{x}_0)q(\mathbf{x}_{t-1}|\mathbf{x}_0)}{q(\mathbf{x}_t|\mathbf{x}_0)} \\ &= \frac{\mathcal{N}(\sqrt{1-\beta_t} \cdot \mathbf{x}_{t-1}, \beta_t \mathbf{I}) \cdot \mathcal{N}(\sqrt{\bar{\alpha}_{t-1}} \cdot \mathbf{x}_0, (1-\bar{\alpha}_{t-1}) \cdot \mathbf{I})}{\mathcal{N}(\sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0, (1-\bar{\alpha}_t) \cdot \mathbf{I})} \\ &= \mathcal{N}(\tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\beta}_t \cdot \mathbf{I}) \\ \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) &= \frac{\sqrt{\bar{\alpha}_t}(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t} \cdot \mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1-\alpha_t)}{1-\bar{\alpha}_t} \cdot \mathbf{x}_0; \end{split}$$

 $q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)$  defines how to denoise a noisy image  $\mathbf{x}_t$  with access to what the final, completely denoised image  $\mathbf{x}_0$  should be.

 $\tilde{\beta}_t = \frac{(1-\alpha_t)(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t} = \text{const.}$ 

#### Standard ELBO

$$\log p(\mathbf{x}|oldsymbol{ heta}) \geq \mathbb{E}_{q(\mathbf{z}|\mathbf{x})} \log rac{p(\mathbf{x},\mathbf{z}|oldsymbol{ heta})}{q(\mathbf{z}|\mathbf{x})} = \mathcal{L}(q,oldsymbol{ heta}) 
ightarrow \max_{q,oldsymbol{ heta}}$$

#### Derivation

$$\begin{split} \mathcal{L}(q,\theta) &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \log \frac{p(\mathbf{x}_0,\mathbf{x}_{1:T}|\theta)}{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \log \frac{p(\mathbf{x}_T) \prod_{t=1}^T p(\mathbf{x}_{t-1}|\mathbf{x}_t,\theta)}{\prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})} \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \log \frac{p(\mathbf{x}_T) \prod_{t=1}^T p(\mathbf{x}_{t-1}|\mathbf{x}_t,\theta)}{\prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)} \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_0)} \log \frac{p(\mathbf{x}_T) p(\mathbf{x}_0|\mathbf{x}_1,\theta) \prod_{t=2}^T p(\mathbf{x}_{t-1}|\mathbf{x}_t,\theta)}{q(\mathbf{x}_1|\mathbf{x}_0) \prod_{t=2}^T q(\mathbf{x}_t|\mathbf{x}_{t-1},\mathbf{x}_0)} \end{split}$$

We add conditioning on  $\mathbf{x}_0$  to make reverse distribution  $q(\mathbf{x}_{t-1}|\mathbf{x}_t)$  tractable and to get KL divergences.

#### Derivation (continued)

$$\begin{split} \mathcal{L}(q, \boldsymbol{\theta}) &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \log \frac{p(\mathbf{x}_{T})p(\mathbf{x}_{0}|\mathbf{x}_{1}, \boldsymbol{\theta}) \prod_{t=2}^{T} p(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \boldsymbol{\theta})}{q(\mathbf{x}_{1}|\mathbf{x}_{0}) \prod_{t=2}^{T} q(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \mathbf{x}_{0})} = \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \log \frac{p(\mathbf{x}_{T})p(\mathbf{x}_{0}|\mathbf{x}_{1}, \boldsymbol{\theta}) \prod_{t=2}^{T} p(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \boldsymbol{\theta})}{q(\mathbf{x}_{1}|\mathbf{x}_{0}) \prod_{t=2}^{T} \frac{q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})q(\mathbf{x}_{t}|\mathbf{x}_{0})}{q(\mathbf{x}_{t-1}|\mathbf{x}_{0})} = \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \log \frac{p(\mathbf{x}_{T})p(\mathbf{x}_{0}|\mathbf{x}_{1}, \boldsymbol{\theta}) \prod_{t=2}^{T} p(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \boldsymbol{\theta})}{q(\mathbf{x}_{T}|\mathbf{x}_{0}) \prod_{t=2}^{T} q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})} = \\ &= \mathbb{E}_{q(\mathbf{x}_{1:T}|\mathbf{x}_{0})} \left[ \log p(\mathbf{x}_{0}|\mathbf{x}_{1}, \boldsymbol{\theta}) + \log \frac{p(\mathbf{x}_{T})}{q(\mathbf{x}_{T}|\mathbf{x}_{0})} + \sum_{t=2}^{T} \log \left( \frac{p(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \boldsymbol{\theta})}{q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})} \right) \right] = \\ &= \mathbb{E}_{q(\mathbf{x}_{1}|\mathbf{x}_{0})} \log p(\mathbf{x}_{0}|\mathbf{x}_{1}, \boldsymbol{\theta}) + \mathbb{E}_{q(\mathbf{x}_{T}|\mathbf{x}_{0})} \log \frac{p(\mathbf{x}_{T})}{q(\mathbf{x}_{T}|\mathbf{x}_{0})} + \\ &+ \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_{t-1},\mathbf{x}_{t}|\mathbf{x}_{0})} \log \left( \frac{p(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \boldsymbol{\theta})}{q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})} \right) \end{split}$$

$$\begin{split} \mathcal{L}(q, \theta) &= \mathbb{E}_{q(\mathbf{x}_{1}|\mathbf{x}_{0})} \log \rho(\mathbf{x}_{0}|\mathbf{x}_{1}, \theta) + \mathbb{E}_{q(\mathbf{x}_{T}|\mathbf{x}_{0})} \log \frac{\rho(\mathbf{x}_{T})}{q(\mathbf{x}_{T}|\mathbf{x}_{0})} + \\ &+ \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_{t-1},\mathbf{x}_{t}|\mathbf{x}_{0})} \log \left( \frac{\rho(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \theta)}{q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})} \right) = \\ &= \mathbb{E}_{q(\mathbf{x}_{1}|\mathbf{x}_{0})} \log \rho(\mathbf{x}_{0}|\mathbf{x}_{1}, \theta) - \mathcal{K}L(q(\mathbf{x}_{T}|\mathbf{x}_{0})||\rho(\mathbf{x}_{T})) - \\ &- \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \mathcal{K}L(q(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{x}_{0})||\rho(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \theta)) \\ &\xrightarrow{\mathcal{L}_{t}} \end{split}$$

First term is a decoder distribution

$$\log p(\mathbf{x}_0|\mathbf{x}_1, \boldsymbol{\theta}) = \log \mathcal{N}\big(\mathbf{x}_0|\boldsymbol{\mu}_{\boldsymbol{\theta},t}(\mathbf{x}_1), \boldsymbol{\sigma}_{\boldsymbol{\theta},t}^2(\mathbf{x}_1)\big).$$

Second term is constant  $(p(\mathbf{x}_T))$  is a standard Normal,  $q(\mathbf{x}_T|\mathbf{x}_0)$  is a non-parametrical Normal).

$$\mathcal{L}(q, \theta) = \mathbb{E}_{q(\mathbf{x}_1|\mathbf{x}_0)} \log p(\mathbf{x}_0|\mathbf{x}_1, \theta) - KL(q(\mathbf{x}_T|\mathbf{x}_0)||p(\mathbf{x}_T)) - \sum_{t=2}^{T} \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} KL(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)||p(\mathbf{x}_{t-1}|\mathbf{x}_t, \theta))$$



#### Outline

1. Diffusion denoising score matching

2. Reverse gaussian diffusion process

3. Gaussian diffusion model as VAE

4. Reparametrization of gaussian diffusion model

$$\mathcal{L}_t = \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \mathsf{KL} \big( q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) || p(\mathbf{x}_{t-1}|\mathbf{x}_t,\boldsymbol{\theta}) \big)$$

 $\mathcal{L}_t$  is the mean of KL between two normal distributions:

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}|\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\boldsymbol{\beta}}_t \mathbf{I}),$$
$$p(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}_{t-1}|\boldsymbol{\mu}_{\boldsymbol{\theta}, t}(\mathbf{x}_t), \sigma_{\boldsymbol{\theta}, t}^2(\mathbf{x}_t))$$

Here  $\tilde{\mu}_t(\mathbf{x}_t,\mathbf{x}_0)$ ,  $\tilde{\beta}_t=\frac{\beta_t(1-\bar{\alpha}_{t-1})}{1-\bar{\alpha}_t}$  have analytical expressions. Let assume

$$\sigma_{\theta,t}^2(\mathbf{x}_t) = \tilde{\beta}_t \mathbf{I} \quad \Rightarrow \quad p(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}_{t-1}|\boldsymbol{\mu}_{\theta,t}(\mathbf{x}_t), \tilde{\beta}_t \mathbf{I}).$$

Theoretically optimal  $\sigma_{\theta,t}^2(\mathbf{x}_t)$  lies in the range  $[\tilde{\beta}_t, \beta_t]$ :

- ▶  $β_t$  is optimal for  $\mathbf{x}_0 \sim \mathcal{N}(0, \mathbf{I})$ ;
- $ightharpoonup ilde{eta}_t$  is optimal for  $\mathbf{x}_0 \sim \delta(\mathbf{x}_0 \mathbf{x}^*)$ .

$$q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0) = \mathcal{N}(\mathbf{x}_{t-1}|\tilde{\boldsymbol{\mu}}_t(\mathbf{x}_t, \mathbf{x}_0), \tilde{\boldsymbol{\beta}}_t \mathbf{I});$$
$$p(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta}) = \mathcal{N}(\mathbf{x}_{t-1}|\boldsymbol{\mu}_{\boldsymbol{\theta}, t}(\mathbf{x}_t), \tilde{\boldsymbol{\beta}}_t \mathbf{I}).$$

Use the formula for KL between two normal distributions:

$$\mathcal{L}_{t} = \mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \mathcal{K}L\left(\mathcal{N}\left(\tilde{\boldsymbol{\mu}}_{t}(\mathbf{x}_{t},\mathbf{x}_{0}),\tilde{\boldsymbol{\beta}}_{t}\mathbf{I}\right)||\mathcal{N}\left(\boldsymbol{\mu}_{\boldsymbol{\theta},t}(\mathbf{x}_{t}),\tilde{\boldsymbol{\beta}}_{t}\mathbf{I}\right)\right)$$

$$= \mathbb{E}_{q(\mathbf{x}_{t}|\mathbf{x}_{0})} \left[\frac{1}{2\tilde{\boldsymbol{\beta}}_{t}} \|\tilde{\boldsymbol{\mu}}_{t}(\mathbf{x}_{t},\mathbf{x}_{0}) - \boldsymbol{\mu}_{\boldsymbol{\theta},t}(\mathbf{x}_{t})\|^{2}\right]$$

$$\mathbf{x}_{t} = \sqrt{\bar{\alpha}_{t}} \cdot \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t}} \cdot \boldsymbol{\epsilon} \quad \Rightarrow \quad \mathbf{x}_{0} = \frac{\mathbf{x}_{t} - \sqrt{1 - \bar{\alpha}_{t}} \cdot \boldsymbol{\epsilon}}{\sqrt{\bar{\alpha}_{t}}}$$

$$\tilde{\boldsymbol{\mu}}_{t}(\mathbf{x}_{t},\mathbf{x}_{0}) = \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} \cdot \mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_{t})}{1 - \bar{\alpha}_{t}} \cdot \mathbf{x}_{0}$$

$$= \frac{1}{\sqrt{\alpha_{t}}} \cdot \mathbf{x}_{t} - \frac{1 - \alpha_{t}}{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t})} \cdot \boldsymbol{\epsilon}$$

$$\mathcal{L}_t = \mathbb{E}_{q(\mathsf{x}_t|\mathsf{x}_0)} \left[ rac{1}{2 ilde{eta}_t} ig\| ilde{oldsymbol{\mu}}_t(\mathsf{x}_t,\mathsf{x}_0) - oldsymbol{\mu}_{oldsymbol{ heta},t}(\mathsf{x}_t) ig\|^2 
ight]$$

#### Reparametrization

$$\begin{split} \tilde{\mu}_t(\mathbf{x}_t, \mathbf{x}_0) &= \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t (1 - \bar{\alpha}_t)}} \cdot \epsilon \\ \mu_{\theta, t}(\mathbf{x}_t) &= \frac{1}{\sqrt{\alpha_t}} \cdot \mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{\alpha_t (1 - \bar{\alpha}_t)}} \cdot \epsilon_{\theta, t}(\mathbf{x}_t) \\ \mathcal{L}_t &= \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{I})} \left[ \frac{(1 - \alpha_t)^2}{2\tilde{\beta}_t \alpha_t (1 - \bar{\alpha}_t)} \left\| \epsilon - \epsilon_{\theta, t}(\mathbf{x}_t) \right\|^2 \right] \\ &= \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{I})} \left[ \frac{(1 - \alpha_t)^2}{2\tilde{\beta}_t \alpha_t (1 - \bar{\alpha}_t)} \left\| \epsilon - \epsilon_{\theta, t} \left( \sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon \right) \right\|^2 \right] \end{split}$$

At each step of reverse diffusion process we try to predict the noise  $\epsilon$  that we used in the forward diffusion process!

$$\begin{split} \mathcal{L}(q, \boldsymbol{\theta}) &= \mathbb{E}_{q(\mathbf{x}_1|\mathbf{x}_0)} \log p(\mathbf{x}_0|\mathbf{x}_1, \boldsymbol{\theta}) - \mathit{KL}\big(q(\mathbf{x}_T|\mathbf{x}_0)||p(\mathbf{x}_T)\big) - \\ &- \sum_{t=2}^T \mathbb{E}_{q(\mathbf{x}_t|\mathbf{x}_0)} \mathit{KL}\big(q(\mathbf{x}_{t-1}|\mathbf{x}_t, \mathbf{x}_0)||p(\mathbf{x}_{t-1}|\mathbf{x}_t, \boldsymbol{\theta})\big) \\ \mathcal{L}_t &= \mathbb{E}_{\epsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})} \left[ \frac{(1 - \alpha_t)^2}{2\tilde{\beta}_t \alpha_t (1 - \bar{\alpha}_t)} \Big\| \epsilon - \epsilon_{\boldsymbol{\theta}, t} \big(\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \epsilon\big) \Big\|^2 \right] \end{split}$$

#### Simplified objective

$$\mathcal{L}_{\mathsf{simple}} = \mathbb{E}_{t \sim \mathcal{U}\{2, T\}} \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \mathbf{I})} \Big\| \epsilon - \epsilon_{\theta, t} \big( \sqrt{\bar{\alpha}_t} \cdot \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \cdot \epsilon \big) \Big\|^2$$

## Summary

- Denoising score matching is applicable to gaussian diffusion process.
- Reverse process allows to sample from the real distribution  $\pi(\mathbf{x})$  using samples from noise, but it is intractable.
- We will use approximation to get the reverse process.
- ▶ Diffusion model is a VAE model which reverts gaussian diffusion process using variational inference.
- ▶ ELBO of DDPM could be represented as a sum of KL terms.
- DDPM is a VAE model with hierarchical latent variables.
- ▶ At each step DDPM predicts the noise that was used in the forward diffusion process.