1 Définition d'une matrice diagonalisable

Définition 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On dit que A est diagonalisable s'il existe une matrice inversible P dans $GL_n(\mathbb{K})$ et une matrice diagonale D dans $\mathcal{M}_n(\mathbb{K})$ telle que

$$A = PDP^{-1}.$$

2 Dimension d'un sous-espace propre

Proposition 1

Une matrice carrée A d'ordre n est diagonalisable si et seulement si \mathbb{K}^n est somme directe des sous-espaces propres.

Proposition 2

Soient $A \in \mathcal{M}_n(\mathbb{K})$ et $\lambda \in \mathbb{K}$ une racine de P_A (donc une valeur propre de A) d'ordre de multiplicité α . Alors

$$1 \leq \dim(E_{\lambda}) \leq \alpha$$
.

Remarque 1– Si dim $(E_{\lambda}) = 0$ alors λ n'est pas une valeur propre.

- si λ est une racine simple alors le sous-espace propre E_{λ} est de dimension 1.

3 Condition nécessaire et suffisante de diagonalisation

Théorème 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$, A est diagonalisable si et seulement si

(i) P_A est scindé dans \mathbb{K} , ce qui veut dire que $P_A(X)$ s'écrit

$$P_A(X) = (-1)^n (X - \lambda_1)^{\alpha_1} \cdots (X - \lambda_p)^{\alpha_p}$$

avec $\lambda_1, \ldots, \lambda_p \in \mathbb{K}$ et $\alpha_1 + \ldots + \alpha_p = n$.

(ii) Pour chaque racine (valeur propre) λ_i de multiplicité α_i , on a

$$\dim(E_{\lambda_i}) = \alpha_i.$$

4 Diagonalisation : cas de valeurs propres simples

Théorème 2

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Si A admet n valeurs propres deux à deux distinctes alors A est diagonalisable.