Interpretable Machine Learning of PET Imaging for Individualized Predictions of Seizure Outcomes after Temporal Lobe Epilepsy Surgery

Huanhua Wu Prof. Hao Xu*

The First Affiliated Hospital of Jinan University

2023-02-13

Introduction

The Data

The Model

The Explanation

Conclusion

Introduction

Background

Figure 1: Epilepsy Epidemiology

Aims

Figure 2: Black-box of AI

Figure 3: Learning Performance Versus Explainability Trade-Off of AI

Scheme

Figure 4: Flowchart of TLE Postsurgical IML

The Data

 Introduction
 The Data
 The Model
 The Explanation
 Conclusion
 References

 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○

Combined of PET Radiomics and Clinical Features

Figure 5: PET Radiomics Score and Clinical-PET Features

 ntroduction
 The Data
 The Model
 The Explanation
 Conclusion
 References

 ○○○○
 ○○○
 ○○○○
 ○○○○
 ○○○○

Exploratory Data Analysis

Figure 6: Heatmap of Clinical-PET Features

The Model

Benchmark

Table 1: Performance Comparison Eleven ML Algorithms

Model	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	APC
Ada Boost Classifier	0.883	0.789	0.4	0.433	0.393	0.345	0.357	0.59
Extreme Gradient Boosting	0.884	0.777	0.3	0.4	0.333	0.287	0.295	0.607
Random Forest Classifier	0.884	0.763	0.2	0.35	0.25	0.217	0.23	0.612
Gradient Boosting Classifier	0.89	0.762	0.35	0.483	0.39	0.346	0.36	0.591
Light Gradient Boosting Machine	0.859	0.749	0.25	0.325	0.267	0.211	0.221	0.512
Logistic Regression	0.878	0.669	0.05	0.1	0.067	0.055	0.059	0.448
Extra Trees Classifier	0.884	0.662	0.1	0.2	0.133	0.118	0.127	0.443
K Neighbors Classifier	0.865	0.646	0.2	0.2	0.183	0.14	0.149	0.283
Linear Discriminant Analysis	0.884	0.642	0.1	0.2	0.133	0.119	0.128	0.418
Naive Bayes	0.251	0.586	0.9	0.129	0.226	0.014	0.072	0.332
Decision Tree Classifier	0.798	0.584	0.3	0.264	0.259	0.158	0.167	0.218
Std	0.047	0.172	0.320	0.490	0.367	0.368	0.384	0.200

AdaBoost Algorithm

Figure 7: Illustration of AdaBoost Algorithm

 AdaBoostClassifier(algorithm='SAMME', base_estimator=None, learning_rate=0.2, n_estimators=230, random_state=123)

 Introduction
 The Data
 The Model
 The Explanation
 Conclusion
 References

 ○○○
 ○○○
 ○○○
 ○○○
 ○○○
 ○○○○

Tuned AdaBoost

Table 2: K-folds Cross-validation of the Selected AdaBoost

Tuned_Ada	Accuracy	AUC	Recall	Prec.	F1	Kappa	MCC	APC
1	0.882	0.733	0.000	0.000	0.000	0.000	0.000	0.361
2	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
3	0.824	0.550	0.000	0.000	0.000	-0.085	-0.091	0.183
4	0.875	0.893	0.000	0.000	0.000	0.000	0.000	0.500
5	0.938	0.929	0.500	1.000	0.667	0.636	0.683	0.750
6	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
7	0.875	0.554	0.000	0.000	0.000	0.000	0.000	0.321
8	0.938	0.964	0.500	1.000	0.667	0.636	0.683	0.833
9	0.938	1.000	0.500	1.000	0.667	0.636	0.683	1.000
10	0.938	0.679	0.500	1.000	0.667	0.636	0.683	0.591
Mean	0.914	0.827	0.350	0.600	0.433	0.410	0.432	0.637
Std	0.047	0.172	0.320	0.490	0.367	0.368	0.384	0.200

The Explanation

 Introduction
 The Data
 The Model
 The Explanation
 Conclusion
 References

 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○

Permutation Importance

Weight Feature
0.0394 ± 0.0329 Al_radscore
0.0197 ± 0.0138 Lat_radscore
0.0085 ± 0.0138 Durmon
0.0085 ± 0.0138 SGS
0.0028 ± 0.0113 Onsetmon
0 ± 0.0000 Freq
0 ± 0.0000 side
0 ± 0.0000 Sex
0 ± 0.0000 MRI
0 ± 0.0000 history_of_previous_surgery
0 ± 0.0000 early_brain_injury
0 ± 0.0000 familial_epilepsy
0 ± 0.0000 brain_hypoxia
0 ± 0.0000 Central_Nervous_System_Infections
0 ± 0.0000 traumatic_brain_injury
0 ± 0.0000 SE
-0.0028 ± 0.0113 Surgmon

Figure 8: Permutation Importance of AdaBoost

Partial Dependence Plot

Partial Dependence Plot

Partial Dependence Plot

 Introduction
 The Data
 The Model
 The Explanation
 Conclusion
 References

 ○○○○
 ○○○○
 ○○○○
 ○○○○
 ○○○○

Partial Dependence Plot

Conclusion

Key Points

 Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;

Key Points

- Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;
- Combination of PET Radiomics and Clinical Features are more robust;

Key Points

- Metabolic radiomics are helpful to predict the postsurgical seizure outcomes;
- Combination of PET Radiomics and Clinical Features are more robust;

 IML technique can further deepen the understanding of the principle of ML models and the decision-making process for professional and intuitive interpretation

Limitations

• More data, especially external validation cohort;

Limitations

- More data, especially external validation cohort;
- Fusion of PET/MRI multimodal imaging;

Limitations

- More data, especially external validation cohort;
- Fusion of PET/MRI multimodal imaging;
- Other subtypes of drug-resistant epilepsy

For more theoretical approaches to machine learning model explanation, see Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, refer to (Beghi et al., 2019), (Rajpurkar, 2021), (Marc Becker, 2022), (Molnar, 2022).

Email: wane199@outlook.com

References I

Beghi, E., Giussani, G., Nichols, E., Abd-Allah, F., Abdela, J., Abdelalim, A., Abraha, H. N., Adib, M. G., Agrawal, S., Alahdab, F., et al. (2019). Global, regional, and national burden of epilepsy, 1990–2016: a systematic analysis for the global burden of disease study 2016. *The Lancet Neurology*, 18(4):357–375.

Marc Becker, e. a. (2022). mlr3book.

Molnar, C. (2022). *Interpretable Machine Learning*. 2 edition.

Rajpurkar, P. S. (2021). *Deep Learning for Medical Image Interpretation*. Stanford University.

