

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

MAT02214 - Estatística Geral 1 - 2022/2

Plano Aula 21 e 22

(cont... Variáveis Aleatórias)

Variáveis aleatórias contínuas (capítulo 7, Livro Bussab e Morettin)

Definição v.a. contínua: quando o espaço amostral associado a uma v.a. puder assumir valores reais, $\Omega_X \subseteq \mathbb{R}$, ou infinito, denominamos v.a. contínua.

Exemplo 1: X: duração de vida de um tipo de lâmpada, $X \in (0, \infty)$.

Exemplo 2: X: PIB do Brasil, $X \in \mathbb{R}$.

Exemplo 3: Y (consumo) e X (renda), ...

- Geralmente os espaços amostrais, Ω , de experimentos envolvendo observação de v.a. contínuas coincidem com o espaço da própria v.a., Ω_X .
 - No exemplo 1: $\Omega = \Omega_X = (0, \infty)$
 - No **exemplo 2**: $\Omega = \Omega_X = \mathbb{R}$
- Como representar a distribuição de probabilidade de uma v.a. contínua?

1. Função Densidade de Probabilidade (f.d.p)

Definição **função densidade de probabilidade**: a função $f: \Omega_X \to [0,1]$ não negativa, $f(x) \ge 0$ para todo $x \in (-\infty, \infty)$, e $\int_{-\infty}^{\infty} f(x) dx = 1$, é denominada função densidade de probabilidade.

- Probabilidades estão associadas a áreas para v.a. contínuas.
 - A probabilidade de uma v.a. contínua X assumir um particular valor é igual a zero, P(X=x)=0 para todos $X \in \Omega_X$.

2. Esperança e Variância (seção 7.2, Livro Bussab e Morettin)

- Valor esperado, ou média $E(X) = \int_{-\infty}^{\infty} x f(x) dx$;
- Variância $V(X) = E\left\{ [x E(X)]^2 \right\} = E(X^2) [E(X)]^2 = \int_{-\infty}^{\infty} [x E(X)]^2 f(x) dx;$
- Proprieadades:

3. Função de Distribuição (Acumulada) de Probabilidade (seção 7.3, Livro Bussab e Morettin)

Definição **função de distribuição**: a função $F: \Omega_X \to [0,1]$ tal que $F(x) = P(X \le x) = \int_{-\infty}^x f(y) \, dy$ é denominada função de distribuição (acumulada).

- Propriedades: $\lim_{x\to\infty} F(x) = 1$ e $\lim_{x\to-\infty} F(x) = 0$;
 - $P(a \le X \le b) = F(b) F(a);$
 - -F(x) existe para todos os números reais, diferente da f.d.p..

Ler slides e ver vídeos da semana 12.

Fazer lista de exercícios 2-4.