Norges teknisk-naturvitenskapelige universitet Institutt for matematiske fag

Side 1 av 3

Faglig kontakt under eksamen: Kristian Gjøsteen 73 55 02 42

EKSAMEN I MA0301 ELEMENTÆR DISKRET MATEMATIKK

Bokmål Torsdag 28. mai 2009 Tid: 0900-1300

Ingen trykte eller håndskrevne hjelpemidler tillatt. Bestemt, enkel kalkulator tillatt.

Alle oppgaver teller likt. Alle svar skal begrunnes.

Oppgave 1 På en eksamen med ti ja/nei-spørsmål må studentene ha minst fire av ti riktige for å stå, og minst ni av ti riktige for å få toppkarakter.

Hvor mange ulike måter kan studentene svare på? Hvor mange av disse svarer til ståkarakter? Hvor mange svarer til ståkarakter, men ikke til toppkarakter?

Oppgave 2

- a) Er $(p \to q) \leftrightarrow (\neg q \to \neg p)$ en tautologi?
- **b)** Bruk logiske regneregler til å vise at $p \leftrightarrow q$ og $(p \land q) \lor (\neg p \land \neg q)$ er logisk ekvivalente.
- c) Vis at konklusjonen $\neg p$ følger fra premissene (i) $p \to q$, (ii) $\neg q \lor \neg r \lor \neg s$, (iii) $s \to r$ og (iv) s.

Oppgave 3 Lag en endelig tilstandsmaskin som gjenkjenner strengene i språket $\{1\}\{01\}^*\{01\}\cup\{0\}\{10\}^*\{1\}$.

Oppgave 4

a) Vis ved induksjon på antall hjørner at antall kanter i den komplette grafen med n hjørner er

$$\sum_{i=1}^{n-1} i.$$

Merk: Når n = 1 tolkes summen som 0.

b) Er følgende to grafer isomorfe? Homeomorfe?

c) Hva er et minimalt utspennende undertre? Bruk Kruskals eller Prims algoritme til å finne et minimalt utspennende undertre for den vektede grafen og den totale vekten i dette undertreet:

Oppgave 5 La $\mathbb N$ være de naturlige tallene $\{0,1,2,\dots\}$ og la $\mathbb Z$ være heltallene $\{\dots,-2,-1,0,1,2,\dots\}$. La \sim være relasjonen på $\mathbb N\times\mathbb N$ gitt ved

$$(a,b) \sim (c,d) \Leftrightarrow a+d=b+c.$$

a) Forklar hva en ekvivalensrelasjon er.

Vis at \sim er en ekvivalensrelasjon.

b) Forklar hva en bijeksjon er.

La S være mengden av ekvivalensklasser til \sim . Vi lar [(x,y)] betegne ekvivalensklassen som inneholder (x,y). La $f:\mathbb{Z}\to S$ være en funksjon gitt ved

$$f(x) = \begin{cases} [(x,0)] & x \ge 0 \\ [(0,-x)] & x < 0. \end{cases}$$

Vis at f er en bijeksjon. Hva er f^{-1} ?