Dimension Reduction: Principal Component Analysis

CS434

Unsupervised dimensionality reduction

- Consider a collection of data points in a high dimensional feature space (e.g., 5000-d)
 - Try to find a more compact data representation
 - Create new features defined as functions over all of the original features

Why?

- Visualization: need to display low-dimensional version of a data set for visual inspection
- Preprocessing: learning algorithms (supervised and unsupervised) often work better with smaller numbers of features both in terms of runtime and accuracy (why?)

Principal Component Analysis

- A classic dimensionality reduction technique
- It linearly projects n-dimensional data onto a k-dimensional space while preserving information (assuming k is given):
 - e.g., project space of 10k words onto a 3-dimensional space
- How to preserve information?
 - Suppose we have two features f_1 and f_2 , and we can only keep one
 - For f_1 , most examples have similar value (small variance)
 - For f_2 , most examples differ from each other
 - Which one to keep?
 - f_2 : because it retains information about the data items
- Basic idea for PCA: find a linear projection that retains the most information (variance) in data

First, what is a linear projection

- 1. A linear projection with a projection vector ${f u}$ can be viewed as rotating the co-ordinate system to align the axis with ${f u}$
- 2. It can be used with or without **translation** moving the origin of the coordinate system.

A Conceptual Algorithm

- Find a line such that when data is projected to that line, we preserve the maximum variance
- the variance of the projected data is considered as retained by the projection, the rest is lost

Conceptual Algorithm

 Once you have found the first projection line, we continue to search for the next projection line by:

Finding a new line, **orthogonal** to the first, that has maximum projected variance:

In this case, we have to stop after two iterations, because the original data is 2-d.

But you can imagine this procedure being continued for higher dimensional data.

Repeat Until k Lines

• The projected position of a point on these lines gives the coordinates in the new (reduced) k-d space

How can we **compute** this set of projection lines?

Basic PCA algorithm

- Start from n by d data matrix: $X = \begin{bmatrix} x_1^T \\ ... \\ x_n^T \end{bmatrix}$
 - Each row is a data point, each column is dimension
- Compute the center of the data: $\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Compute the Covariance matrix

$$\Sigma = \frac{1}{n} \sum_{i} (x_i - \mu)(x_i - \mu)^T$$

- Compute the eigen-vectors and eigen-values of Σ
 - An eigen vector of Σ satisfies: $\Sigma v_j = \lambda_j v_j$ where λ_j is its eigen-value
- Sort the Eigenvalues in decreasing order $\lambda_1 \ge \lambda_2 \ge \lambda_3 \dots$
- $v_1, v_2, ..., v_k$ are the top k PCA projection directions

Dimension Reduction Using PCA

- Given data, pack it into $n \times d$ matrix
 - Rows correspond to examples, columns correspond to features
- Compute the $d \times d$ covariance matrix Σ
- Calculate the eigen vectors/values of Σ
- Rank the eigen values in decreasing order
 - -i-th eigen value = the variance of data after projecting onto i-th eigenvector
 - Choose the highest -> retain the most variance
- Select the top k eigenvectors
- If we don't have a fixed k, choose k to be the smallest k such that $\frac{\sum_{i=1}^{\kappa} \lambda_i}{\sum_{i=1}^{d} \lambda_i} > \alpha$ where α is a threshold, e.g., 85%

You might loose some info. But if the eigenvalues are small, not much is lost.

Example: Face Recognition

- An typical image of size 256 x 128 is described by n = 256x128 = 32768 dimensions – each dimension described by a grayscale value
- Each face image lies somewhere in this highdimensional space
- Images of faces are generally similar in overall configuration, thus
 - They should not be randomly distributed in this space
 - We should be able to describe them in a much lower dimensional space

PCA for Face Images: Eigen-faces

- Database of 128 carefullyaligned faces.
- Here are the mean and the first 15 eigenvectors.
- Each eigenvector (32768 –d vector) can be shown as an image – each element is a pixel on the image
- These images are face-like, thus called eigen-faces

Face Recognition in Eigenface space

(Turk and Pentland 1991)

- Nearest Neighbor classifier in the eigenface space
- Training set always contains 16 face images of 16 people, all taken under the same set of conditions of lighting, head orientation and image size
- Accuracy:
 - variation in lighting: 96%
 - variation in orientation: 85%
 - variation in image size: 64%

Face Image Retrieval

- Left-top image is the query image
- Return 15 nearest neighbor in the eigenface space
- Able to find the same person despite
 - different expressions
 - variations such as glasses

Summary on PCA

- An unsupervised dimension reduction
 - Do not use class labels
 - Goal is to maximize variance after reduction
- PCA is useful for various reasons
 - Reducing dimension can reduce overfitting
 - Reducing dimension reduces computational complexity
 - It can be used to reduce noise in data
 - After PCA, the projected features becomes uncorrelated
- Possible downfall: completely unsupervised, if the class separation is not along the large variance direction, PCA can lead to loss of separation between classes.

For this example, applying PCA to reduce to 1 dimension will choose the x axis, and loose class separation