Evaluating RNN Performance in Unlabeled Time-Series Anomaly Detection Applications in NYC Taxi Volume Data

Nick Vastine

DTSA5511 – Intro to Deep Learning Final Project April 29, 2025

Agenda

- Problem Statement
- Data
- Exploratory Data Analysis Plotting, Distributions
- Modeling
 - Hyperparameter tuning
 - Convolution Layer
 - Feature Engineering
- Results & Analysis
- Conclusion & Future Work

Problem Statement

 Use RNN's to detect anomalies in unlabeled, time-series data using prediction error

- Evaluate RNN variations
 - Hyperparameter Tuning
 - Sequence Length
 - Number of RNN Units
 - 1-D Convolutional Layer
 - Feature Engineering
 - Rolling Average, Rate of Change
 - Season-Trend Decomposition using LOESS (STL)

Data

- Data was sourced from NYC Open Data, reporting every individual Yellow Cab taxi trip in 2019.
 - Data should show weekly cycles, long term trends, and anomalies from holidays like Thanksgiving or Christmas.
- Data was aggregated into daily totals using PostgreSQL.

	month	day	count	datetime	weekday
0	1	1	189035	2019-01-01	1
1	1	2	197852	2019-01-02	2
2	1	3	222879	2019-01-03	3
3	1	4	235053	2019-01-04	4
4	1	5	236041	2019-01-05	5
5	1	6	208194	2019-01-06	6
6	1	7	227762	2019-01-07	0

Exploratory Data Analysis

 Daily plot reveals anomalies for model to identify.

 Distribution plots emphasize variation between weekday and weekend.

Modeling – Detecting Anomalies

Data is normalized and sequenced

 The distribution of prediction errors can label points as anomalies using an anomaly threshold.

Modeling - Managing overfitting

• Base Model – 50 RNN units + 1 Dense unit to predict

- Avoid overfitting!
 - Overfitting predicts all points precisely, even anomalies.
 - However, variations can improve training rate which is useful for complex problems.
- Models are run for 55 epochs for consistency.

Modeling - Hyperparameters

- Varying sequence length controls the points leading up to the prediction
 - Longer better, but barely so.

 Decreasing RNN reduces performance after decreasing past minimum.

Modeling – Convolutional Layer

 Adding the convolution layer drastically improved training time!

...which results in overfitting.

Modeling – Feature Engineering

Additional features improved modeling (more information)

Modeling – STL Decomposition

 Season-Trend Decomposition using LOESS (STL) is a way to process data into three component parts.

Modeling – STL Decomposition (2)

 The residual component is an alternative approach to anomaly detection, independent from an RNN implementation.

STL improved training speed most of the variations tested.

Results & Analysis

- Rate of Learning Comparison
 - More units and longer sequences learn faster (to an extent)
 - 1-D Convolutional layer 2nd best improvement (also adds parameters)
 - STL performed best, but more features better

Results & Analysis (2)

- Model Anomaly Comparison
 - Overfitting adds harder to interpret anomalies, while underfitting misses some critical anomalies
 - Note variation in each, in part due to randomness of model training

Conclusion & Future Work

- RNN is suitable for anomaly detection via prediction.
- Model training may be improved, in order, by:
 - Pre-processing with STL
 - Implementing a 1-D Convolutional Layer
 - Engineering Features
 - increasing epochs, RNN units, sequence length... but only marginally
- Concern with anomaly detection is overfitting, which then labels non-anomalous points as anomalies.
- Future work can consider other regularization techniques, various architectures on complex data, and non-neural network approaches such as one class classification.

Thank you for listening!

Questions, clarifications, concerns

Nick Vastine

DTSA5511 – Intro to Deep Learning Final Project April 29, 2025

