ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КИВЕРНЕТИКИ

Ответы на 100 вопросов.

Работу выполнили: Державин Андрей Андреевич, группа Б01-901 Хайдари́ Фарид Гулович, группа Б01-901 Шурыгин Антон Алексеевич, группа Б01-909

Лирисма́н Карина Сергеевна, группа Б03-001

Долгопрудный, 2021

Содержание

1	Ваши фамилия, имя, отчество, номер группы	4
2	Фамилия, имя, отчество лектора.	4
3	Чем отличается микроконтроллер от микропроцессора	4
4	Какие тактовые частоты могут быть у ATmega8535	4
5	Какие таймеры есть у ATmega8535	4
6	Внутренняя структура МК	4
7	Какие значения записаны в TCCR после сигнала RESET	5
8	Порт А. Сколько прерываний и сколько регистров ввода/вывода принадлежит порту А. Назначение этих регистров ввода/вывода	5
9	Регистр SREG. Назначение его разрядов	5
10	Почему после сигнала RESET все прерывания запрещены	6
11	Приведите пример использования разряда Т в регистре SREG	6
12	Таймер 0. Режимы работы, количество прерываний, регистры ввода/вывода, принадлежащие таймеру 0	7
13	В каких режимах таймера 0 порог изменяется не сразу (двойная буферизация записи) при записи нового значения в регистр порога с помощью команды OUT	7
14	Откуда приходит сигнал на вход TCNT0	7
15	Как можно разрешить (запретить) прерывания по переполнению таймера 0	8
16	Написать программу с использованием таймера 0 , вырабатывающую симметричное прямоугольное колебание на одном из выходов порта $A.\ \dots \dots \dots \dots \dots$	8
17	Какие коэффициенты деления частоты позволяет получать предварительный делитель таймера 0	8
18	Какой режим таймера 0 позволяет вырабатывать треугольные колебания, используя дополнительную интегрирующую цепочку	9
19	Как запрограммировать предварительный делитель таймера 0	9
20	Режим 0 таймера 0	9
21	Режим 1 таймера 0	9
22	Режим 2 таймера 0	9

23	Режим 3 таймера 0	10
24]	Когда меняется порог в режиме 3 таймера 0	10
25]	Можно ли писать в TCNT0 без остановки счета	10
26]	Как можно остановить счет в таймере 0	10
27	Система прерываний микроконтроллера ATmega8535	10
28	Сколько всего прерываний у ATmega8535	11
2 9	Как организовать вложенные прерывания	11
30 [Как можно разрешить (запретить) одновременно все прерывания	11
31	Как организована система приоритетов при обработке прерываний	11
32]	Какое минимальное время требуется для преобразования в АЦП	11
33	Чем сигнальный процессор отличается от МК	11
	Зачем в программе надо устанавливать начальное значение Stack Pointer и чему это значение должно быть равно	
35	Сторожевой таймер и особенности его работы	12
36	Что такое SPI и зачем он нужен	12
37 .	Как инициировать передачу байта в SPI	12
38	Сколько прерываний и сколько регистров ввода/вывода принадлежит SPI	12
39 ,	Далее пойдут вопросы про однопроводный интерфейс (сеть MicroLAN)	13
40	Сколько проводов необходимо для реализации однопроводного интерфейса	13
41	Как выглядит физический ноль и физическая единица	13
	Как в однопроводном интерфейсе передается информационный ноль и информационная единица? Какова максимальная скорость передачи?	
43	Что такое серийный номер в однопроводном интерфейсе и какова его структура	13
44	Какая команда позволяет Master определить номера всех Slave в сети MicroLAN	13
45	Как выглялит сигнал сброса в сети MicroLAN	13

Ответы:

1 Ваши фамилия, имя, отчество, номер группы.

- Державин Андрей Андреевич, группа Б01-901
- Хайдари Фарид Гулович, группа Б01-901
- Шурыгин Антон Алексеевич, группа Б01-909
- Лирисма́н Карина Сергеевна, группа Б03-001

2 Фамилия, имя, отчество лектора.

Донов Геннадий Иннокентьевич.

3 Чем отличается микроконтроллер от микропроцессора.

Микропроцессор – вычислительное ядро без переферии. В то время как микроконтроллер помимо ядра включает в себя таймеры, порты ввода-вывода, АЦП.

4 Какие тактовые частоты могут быть у ATmega8535.

1, 2, 4 М Γ ц от внутреннего генератора. 0.1 - 16 М Γ ц от внешнего генератора.

5 Какие таймеры есть у ATmega8535.

У ATmega8535 есть следующие таймеры:

- два 8-разрядных таймера
- один 16-разрядный таймер

6 Внутренняя структура МК.

Многие современные МК имеют структуру, приведённую на рис. 1. Отмеченные на рисунке блоки, входящие в состав микроконтроллера, выполняют следующие функции:

• Процессор

Обеспечение обработки информации путём выполнения команды в соответствии с системой команд микроконтроллера.

• Память программ

Хранение программы, в соответствии с которой работает микроконтроллер.

ОЗУ

Другое название — RAM (Random Access Memory). Хранение промежуточных результатов.

• Порты ввода/вывода

Осуществление обмена информацией с внешним миром.

Рис. 1 Внутрення структура микроконтроллера.

- *Блок управления питанием*Обеспечение правильности запуска микроконтроллера после включения питания.
- *Влок управления сбросом*Установка вместе с входом RESET микроконтроллера в некоторое исходное состояние.
- *Блок синхронизации*Выработка тактовых сигналов, необходимых для правильного взаимодействия всех внутренних блоков микроконтроллера.

7 Какие значения записаны в TCCR после сигнала RESET.

После сигнала RESET все разряды будут установлены в нулевое значение.

8 Порт А. Сколько прерываний и сколько регистров ввода/вывода принадлежит порту А. Назначение этих регистров ввода/вывода.

Для порта A не предназначено ни одного прерывания. Три регистра: PORTA, DDRA, PINA. DDRn - на вход или выход работает вывод, PORTn - выходное значение, PINn - входное значение.

9 Регистр SREG. Назначение его разрядов.

Регистр SREG — 8-разрядный регистр признаков (регистр флагов). Назначение разрядов приведено на рис. 2 Рассмотрим подробнее назначение разрядов:

Рис. 2 Назначение разрядов регистра SREG

Бит 7 – I

Глобальное разрешение прерываний. Если в этом разряде нуль, то никакие прерывания не будут обрабатываться. Вит обнуляется при возникновении любого прерывания, и автоматически выставляется в единицу при выходе из прерывания.

Бит 6 – Т

Временное хранение бита. С помощью команд BST и BLD позволяет передавать бит из одного регистра общего назначения в другой. Например, следующий код:

bst r31, 7 ; запись значения седьмого разряда регистра r31 в T bld r0, 3 ; запись из T в третий разряд регистра r0

Равен сумме по модулю 2 содержимого третьего и второго разряда регистра SREG.

Бит 5 – Н Признак переноса между полубайтами.

- Вит 4 S
- Бит 3 V Признак переполнения.
- Бит 2 N Признак отрицательного результата.
- Бит 1 Z
 Признак нуля.
- Бит 0 С
 Признак переноса.

10 Почему после сигнала RESET все прерывания запрещены.

Для обеспечения корректной инициализации работы микроконтроллера.

11 Приведите пример использования разряда T в регистре SREG.

bst r30, 5 ; запись значения пятого разряда регистра r30 в T

12 Таймер 0. Режимы работы, количество прерываний, регистры ввода/вывода, принадлежащие таймеру 0.

Режимы работы:

• Normal (0)

Счётчик TCNT0 функционирует как обычный суммирующий счётчик.

• PWM Phase Correct (1)

Режим ШИМ с точной фазой. Предназначен для генерации сигналов с широтно-импульсной модуляцией.

• CTC – Clear Timer on Compare match (2) Режим счёта по модулю, который определяется содержимым регистра ОСR0.

• Fast PWM (3)

Выстродействующий ШИМ. Позволяет генерировать высокочастотный сигнал с широтно-импульсной модуляцией.

Прерывания:

- TIMERO OVF переполнение таймера
- TIMERO_COMP содержимое счётчика TCNT0 совпадает с содержимым регистра OCR0.

Имеет 3 регистра ввода-вывода. Ещё 2 регистра используются совместно с таймерами 1 и 2:

- TCCR0 Регистр контроля
- SFIOR Регистр обнуления
- TIMSK Регистр прерывания
- TIFR Регистр флагов прерываний

Также есть возможность использования двух выводов микроконтроллера:

- вход T0 Timer/Counter0 External Counter Input вывод РВ0
- выход ОС0 Timer/Counter0 Output Compare Match Output вывод РВ3
- 13 В каких режимах таймера 0 порог изменяется не сразу (двойная буферизация записи) при записи нового значения в регистр порога с помощью команды OUT.
 - PWM Phase Correct (1)
 Режим ШИМ с точной фазой. Предназначен для генерации сигналов с широтно-импульсной модуляцией.
 - Fast PWM (3)
 Выстродействующий ШИМ. Позволяет генерировать высокочастотный сигнал с широтно-импульсной модуляцией.

14 Откуда приходит сигнал на вход TCNT0.

Сигналы на вход TCNT0 приходят с выхода управляемого предварительного делителя частоты.

15 Как можно разрешить (запретить) прерывания по переполнению таймера 0.

```
Разрешить:

ldi r16, 1 << TOIE0

out TIMSK, r16

Запретить:

ldi r16, 0 << TOIE0

out TIMSK, r16
```

16 Написать программу с использованием таймера 0, вырабатывающую симметричное прямоугольное колебание на одном из выходов порта A.

```
#include <avr/io.h>
#include <avr/interrupt.h>
.global TIMERO_COMP_vect
        TIMERO_COMP_vect:
                           in r16, PORTA
                          eor r16, r17
                          out PORTA, r16
                          reti
.global main
        main:
                          sei ; разрешить прерывания
                          sbi DDRA, DDAO ; PAO - выход
                          cbi PORTA, PORTAO ; PAO = 0
                          ldi r17, 1 << PORTAO
                          ldi r16, 1 << OCIE0 ; разрешить прервание по сарвнению
                          out TIMSK, r16
                          ldi r16, 0x7f; treshold on half-way
                          out OCRO, r16
                          ldi r16, 1 << WGM00 | 1 << CS00 ; phase-correct PWM
                          out TCCRO, r16
loop:
                          nop
                          nop
                          rjmp loop
```

17 Какие коэффициенты деления частоты позволяет получать предварительный делитель таймера 0.

```
1, 8, 64, 256, 1024
```

18 Какой режим таймера 0 позволяет вырабатывать треугольные колебания, используя дополнительную интегрирующую цепочку.

В режимах Normal и СТС – нужно поставить ОС0 изменяется при совпадении с порогом.

В ШИМ режимах – выставить порог в половину максимального.

19 Как запрограммировать предварительный делитель таймера 0.

В разряды 2:0 регистра ТСС R0 записать значение от 1 до 5.

20 Режим 0 таймера 0.

Режим Normal. В этом режиме счётчик TCNT0 функционирует как обычный суммирующий счётчик. По каждому импульсу тактового сигнала, поступающего с выхода предварительного делителя, содержимое TCNT0 увеличивается на единицу. При переходе через значение \$FF возникает переполнение, и счёт продолжается со значения \$00. Переполнение вызывает установку в единицу флага переполнения TOV0.

При совпадении значения TCNT0 со значением OCR0 флаг прерывания OCF0 в регистре TIFR устанавливается в единицу, при разрешении прерывание начинает обрабатываться.

21 Режим 1 таймера 0.

Режим PWM Phase Correct — режим ШИМ с точной фазой. Предназначен для генерации сигналов с широтно-импульсной модуляцией. ТСNT0 — реверсивный счётчик, изменение его состояния осуществляется по каждому импульсу тактового сигнала, поступающего от предварительного делителя. Состояние сначала изменяется от \$00 до \$FF, затем обратно до \$00. При достижении максимального (минимального) значения счётчиком, происходит смена направления счёта. После достижения значения \$00 дополнительно устанавливается в единицу флаг прерывания TOV0 регистра TIFR.

При совпадении значения счётчика TCNT0 со значением порога (регистр OCR0), флаг OCF0 выставляется в 1 и состояние выхода OC0 изменяется.

Особенность режима — двойная буферизация записи в регистр OCR0. Буферизация заключается в том, что записываемое число на самом деле сохраняется в специальном буферном регистре.

Изменение содержимого регистра порога происходит после достижения счётчиком TCNT0 максимального значения.

22 Режим 2 таймера 0.

Режим СТС — Clear Timer on Compare Match, режим счета по модулю, который определяется содержимым регистра OCR0. TCNT0 обнуляется после того как его содержимое сравняется с содержимым регистра OCR0. Далее счет продолжается от \$00 до нового совпадения с порогом. При совпадении содержимого счетчика TCNT0 и регистра порога OCR0, устанавливается в \$1» флаг OCF0 и прерывание (если разрешено) начинает обрабатываться.

Счетчик считает от 0 до OCR0. Генерируется прерывание по сравнении и при OCR0 = 255 полностью совпадающим с режимом 0

23 Режим 3 таймера 0.

Режим Fast PWM — быстродействующий ШИМ. Позволяет генерировать высокочастотный сигнал с широтно-импульсной модуляцией. Используется в регулировании мощности, выпрямлении, цифроаналоговом преобразовании и др.

Значение счётчика TCNT0 изменяется от \$00 до \$FF, после чего обнуляется и счёт начинается сначала.

Особенность режима — двойная буферизация записи в регистр OCR0. Буферизация заключается в том, что записываемое число на самом деле сохраняется в специальном буферном регистре.

Изменение содержимого регистра порога происходит после достижения счётчиком TCNT0 максимального значения.

24 Когда меняется порог в режиме 3 таймера 0.

Состояние счетчика TCNT0 изменяется от \$00 до \$FF, после чего он обнуляется и счет повторяется. При переходе к состоянию \$00 устанавливается флаг прерывания TOV0 в регистре TIFR.

25 Можно ли писать в TCNT0 без остановки счета.

В ТСПТО можно писать без остановки счёта.

26 Как можно остановить счет в таймере 0.

Для остановки таймера 0 записывают все нули в младшие разряды TCCR0.

27 Система прерываний микроконтроллера ATmega8535.

NN	Адрес	Источник	Причина прерывания
1	\$000	RESET	Сигнал на входе RESET,
		Automorphism in the second	включение питания,
		SHOOTH MANY THE	сигнал от сторожевого таймера
2	\$001	INT0	Внешний запрос прерывания 0
3	\$002	INT1	Внешний запрос прерывания 1
4	\$003	TIMER2 COMP	Достижение порога в таймере 2
5	\$004	TIMER2 OVF	Переполнение в таймере 2
6	\$005	TIMER1 CAPT	Запоминание содержимого
	anoden .	Magharoonan and	таймера 1 в регистре ICR1
7	\$006	TIMER1 COMPA	Достижение порога А в таймере 1
8	\$007	TIMERI COMPB	Достижение порога В в таймере 1
9	\$008	TIMER1 OVF	Переполнение в таймере 1
10	\$009	TIMERO OVF	Переполнение в таймере 0
11	\$00A	SPI, STC	SPI передачу закончил
12	\$00B	USART, RXC	USART прием закончил
13	\$00C	USART, UDRE	Регистр данных USART пуст
14	\$00D	USART, TXC	USART передачу закончил
15	\$00E	ADC	Аналого-цифровое преобразова ние завершено
16	\$00F	EE RDY	ЕЕРROМ готов к новой записи
17	\$010	ANA COMP	Аналоговый компаратор
18	\$011	TWI	Прерывание двухпроводного интерфейса
19	\$012	INT2	Внешний запрос прерывания 2
20	\$013	TIMER0_COMP	Достижение порога в таймере 0
21	\$014	SPM_RDY	Память программ готова к записи

Рис. 3 Таблица прерываний.

На рис. З представлена таблица прерываний. При выполнении некой программы иногда возникают события или запросы прерывания (нажатие кнопки INT0 или переполнение таймера). В результате чего система прерываний должна остановить работу основной программы и запустить программу обработки прерываний. Для каждого действия своя. Все запросы поступают на блок обработки (Interrupt Unit), который определяет номер запроса (1-21) и возможность выполнения. В случае разрешенного прерывания чувствительность ко всем прерываниям запрещается (в 7-й разряд регистра флагов записывается 0). Текущее содержимое записывается в стек, на его место заносится адрес прерывания из таблицы векторов прерываний. Если необходимо несколько прерываний, то они будут выполнены в порядке приоритета от наименьшего номера.

RJMP – команда к началу прерывания (относится к командам безусловной передачи управления) NOP – нет операции

28 Сколько всего прерываний у АТтеда8535.

Всего 21 прерывание. Среди них 4 – внешние и вызываются сигналами, приходящими на выводы микроконтроллера INTO, INT1, INT2, RESET. Остальные 17 – внутренние, обслуживают дополнительные блоки.

29 Как организовать вложенные прерывания.

Вложенные прерывания становятся возможными в начале программы обработки прерывания, тогда можно осуществить разрешение прерываний. Однако возможно переполнение стека (512 байт) при большом уровне вложенности.

30 Как можно разрешить (запретить) одновременно все прерывания.

Прерывания не будут обрабатываться если в разряде 7 регистра флагов стоит 0 (общее запрещение прерываний). Осуществляется командами:

sei ; разрешить прерывания cli ; запретить прерывания

31 Как организована система приоритетов при обработке прерываний.

Если одновременно возникает несколько прерываний, то первым будет обрабатываться прерывание, имеющее наименьший номер в таблице прерываний, представленной на рис. 3

32 Какое минимальное время требуется для преобразования в АЦП.

Минимальное время преобразования аналого-цифрового преобразователя составляет 65 микросекунд.

33 Чем сигнальный процессор отличается от МК.

Сигнальный процессор обеспечивает обработку информации, выполняя команды в соответствии с системой команд микроконтроллера. МК — интегральная схема, которая может принимать сигналы от датчиков, обрабатывать и выдавать управляющие сигналы на исполнительные механизмы для выполнения поставленной задачи (работает с периферией).

34 Зачем в программе надо устанавливать начальное значение Stack Pointer и чему это значение должно быть равно.

Указатель стека SP (Stack Pointer) предназначен для работы со стеком, имеет 10 разрядов, состоит из 2-х 8-разрядных регистров (SPH-старший байт, SPL-младший байт). Обращение через команды IN, OUT. После команды RESET значение 0. Текущее содержимое SP определяет положение вершины стека.

35 Сторожевой таймер и особенности его работы.

WatchDog Timer – предназначен для ликвидации сбоев в работе МК, возникающих из-за различного рода помех. WDT через определенный заданный промежуток времени вырабатывает сигнал сброса (RESET) МК, перезапуская рабочую программу. Для обнаружения сбоев и предотвращения перезапуска при правильной работе в нее включают команду WDR (Watch Dog Reset) осуществляющей сброс сторожевого таймера, в результате отсчет времени начинается заново.

36 Что такое SPI и зачем он нужен.

Последовательный синхронный интерфейс SPI - serial peripheral interface или интерфейс связи устройств, позволяет передавать данные с высокой скоростью между МК и внешними устройствами. Свойства:

- 1. Полнодуплексная (одновременно в 2-х направлениях) 3-х проводная синхронная передача данных.
- 2. Предельная скорость передачи данных СК/4 бит/сек
- 3. Передача осуществляется байтами.
- 4. Передавать можно старшим либо младшим битом вперед
- 5. По окончании вырабатывается прерывание (адрес \$008)
- 6. Имеется флаг конфликтов при записи WCOL (Write Collision Flag)

37 Как инициировать передачу байта в SPI.

Для нормального подключения необходимо:

- Для MASTER настроить MOSI, SCL, SS на выход, MISO на вход.
- Для SLAVE настроить MOSI, SCL, SS на выход, MISO на выход.
- \bullet При соединении одноименные выводы подключаются друг к другу, выставив SS на ведомом устройстве в 0.

38 Сколько прерываний и сколько регистров ввода/вывода принадлежит SPI.

Одно прерывание: SPIE – Interrupt Enable. Разрешение прерывания после передачи байта. (SPE – SPI Enable. Разрешение работы SPI. Если в этом разряде 0, то никакие функции SPI не будут реализованы)

3 регистра:

1. SPI STATUS REGISTER (SPSR) - контрольный, можно использовать только для чтения, после RESET все 0.

- 2. SPI CONTROL REGISTER (SPCR) состояния можно использовать для чтения и записи, после RESET все 0.
- 3. SPI Data Register (SPDR) под данные можно использовать для чтения и записи, после RESET все 0.

39 Далее пойдут вопросы про однопроводный интерфейс (сеть MicroLAN).

Ждёмс

40 Сколько проводов необходимо для реализации однопроводного интерфейса.

Для уменьшения количества физических соединений в микропроцессорных системах энергонезависимая память, устройства контроля доступа, датчики температуры, цифровые переключатели, мониторы аккумуляторных батарей и многие другие узлы часто подключаются с помощью всего двух проводов, используемых как для питания, так и передачи информации. Поскольку один из проводов является общим, то такой способ подключения стал называться однопроводным.

41 Как выглядит физический ноль и физическая единица.

Физический ноль – низкое напряжение, физическая единица – высокое.

42 Как в однопроводном интерфейсе передается информационный ноль и информационная единица? Какова максимальная скорость передачи?

В однопроводном интерфейсе передаются информационный ноль и информационная единица — логически; максимальная скорость передачи 0 — длинный импульс физического нуля (60 мкс), 1 - короткий (15 мкс).

43 Что такое серийный номер в однопроводном интерфейсе и какова его структура.

Серийный номер в однопроводном интерфейсе – 64 бита: 8 бит – код семейства, 48 бит – серийный номер, 8 бит – контрольная сумма - уникальный идентификатор устройства, чтобы можно было выбрать устройство.

44 Какая команда позволяет Master определить номера всех Slave в сети MicroLAN.

Search ROM

45 Как выглядит сигнал сброса в сети MicroLAN.

Сигнал сброса в сети MicroLAN: Долгий импульс нуля (480 мкс), потом долгий импульс единицы, в течении которой master проверяет, есть ли кто-нибудь в сети.