Systèmes dynamiques

TD n°7

Yann Chaubet

3 novembre 2020

On supose que pour des contantes C>0 et $\lambda\in(0,1)$ on a pour tout $n\geqslant 1$

$$\|\mathrm{d}f_x v\| \leqslant C\lambda^n \|v\|, \qquad v \in E^s(x),$$

$$\|\mathrm{d}f_x^{-n} v\| \leqslant C\lambda^n \|v\|, \qquad v \in E^u(x).$$

On pose pour tout $x \in M$ et tout $v \in E^s(x)$

$$||v||_{s,x} = \sum_{k=0}^{N} ||\mathrm{d}(f^k)_x v|| \mu^k,$$

où $1 < \mu < \lambda^{-1}$ et $N \geqslant 1$. Alors

$$\|(\mathrm{d}f)_x v\|_{s,f(x)} = \mu^{-1} \sum_{k=1}^{N+1} \|(\mathrm{d}f^k)_x v\| \mu^k$$
$$= \mu^{-1} \|v\|_{s,x} + \mu^{-1} \left(\mu^N \|(\mathrm{d}f^{N+1})_x v\| - \|v\|\right)$$

Or $\|(\mathrm{d}f^{N+1})_xv\| \le C\lambda^{N+1}\|v\|$, donc si N est assez grand de sorte que $\mu^N\lambda^{N+1}C\leqslant 1$, on obtient

$$\|(\mathrm{d}f)_x v\|_{s,f(x)} \le \mu^{-1} \|v\|_{s,x}, \quad x \in M, \quad v \in E^s(x).$$

On définit de même une norme $\|\cdot\|_{u,x}$ sur $E^u(x)$ et on pose

$$\|v\|_{r}^{'} = \|\pi_{s}(x)v\|_{s,x} + \|\pi_{u}(x)v\|_{u,x}, \quad x \in M, \quad v \in T_{x}M,$$

où $\pi_{s/u}(x)$ est la projection $T_xM \to E^{s/u}(x)$.

Puisque $\pi_s(x)$ et $\pi_u(x)$ dépendent continument de x (car $E^s(x)$ et $E^u(x)$ dépendent continument de x), la norme $\|\cdot\|'$ est continue.

On approche la norme $\|\cdot\|'$ par une norme lisse $\|\cdot\|''$ telle que $(1-\varepsilon)\|\cdot\|'' \leq \|\cdot\|' \leq (1+\varepsilon)\|\cdot\|''$.

On a alors, si $x \in M$ et $v \in E^s(x)$, et $\varepsilon > 0$ est assez petit,

$$\|(\mathrm{d}f)_x v\|^{''} \leqslant \frac{1}{1-\varepsilon} \|(\mathrm{d}f)_x v\|^{'} \leqslant \frac{1}{1-\varepsilon} \mu^{-1} \|v\|^{'} \leqslant \underbrace{\frac{1+\varepsilon}{1-\varepsilon} \mu^{-1}}_{\tilde{\lambda}} \|v\|^{''}.$$

1. Soit x tel que $f^n(x) = x$; on pose $g = f^n$. Alors $A = (\mathrm{d}g)_x : T_x M \to T_x M$. Supposons par l'absurde qu'il existe $\lambda \in \mathrm{sp}((\mathrm{d}g)_x)$ avec $|\lambda| = 1$.

Alors on sait qu'il existe $v \in T_x M$ et C > 0 tel que $C^{-1} \leq ||A^k v|| \leq C$ pour tout k, où $|| \cdot ||$ est la norme donnée dans la définition du difféomorphisme d'Anosov.

Alors on a (pour différentes constantes) aussi $C^{-1} \leq ||\pi_s(x)A^kv|| + ||\pi_u(x)A^kv|| \leq C$ pour tout k.

Or A préserve $E^s(x)$ et $E^u(x)$ donc $\pi_s(x)$ et $\pi_u(x)$ commutent avec A de sorte que si $v_s = \pi_s(x)v \in E^s(x)$ et $v_u = \pi_u(x)v \in E^u(x)$ on a $\pi_{s/u}(x)A^kv = A^kv_{s/u}$.

Puisque $v \neq 0$, on a (puisque A est hyperbolique)

$$\lim \sup_{|k| \to +\infty} (\|A^k v_s\| + \|A^k v_u\|) = +\infty,$$

ce qui est absurde.

2. (a) Il suffit de remplacer x_k et y_k par $f^{n(k)}(x_k)$ et $f^{n(k)}(y_k)$ où

$$d\left(f^{n(k)}(x_k), f^{n(k)}(y_k)\right) \geqslant \frac{1}{2} \sup_{n \in \mathbb{Z}} d\left(f^n(x_k), f^n(y_k)\right).$$

- (b) et (c) Par compacité.
- (d) Soient U_+ et U_- des cartes autour de z_+ et z_- . On suppose que j est assez grand de sorte que $f^{\pm n_j^{\pm}}(z)$ soit contenu dans U_{\pm} .

Alors pour tout k assez grand, $f^{\pm n_j^{\pm}}(x_k)$ et $f^{\pm n_j^{\pm}}(y_k)$ sont contenus dans U_{\pm} , et (ici $n_j = n_j^{+}$ ou n_j^{-})

$$f^{\pm n_j^{\pm}}(y_k) - f^{\pm n_j^{\pm}}(x_k) = \left(\mathrm{d}f^{\pm n_j^{\pm}} \right)_{x_k} (y_k - x_k) + o_j(\|x_k - y_k\|).$$

Ainsi,

$$\frac{f^{\pm n_j^{\pm}}(y_k) - f^{\pm n_j^{\pm}}(x_k)}{\|x_k - y_k\|} = \left(df^{\pm n_j^{\pm}}\right)_{x_k} \left(\frac{y_k - x_k}{\|y_k - x_k\|}\right) + o_j(1). \quad (*)$$

On a C > 0 telle que pour tout k

$$\left\| \frac{f^{\pm n_j^{\pm}}(y_k) - f^{\pm n_j^{\pm}}(x_k)}{\|x_k - y_k\|} \right\| \le \frac{Cd\left(f^{\pm n_j^{\pm}}(x_k), f^{\pm n_j^{\pm}}(y_k)\right)}{C^{-1}d(x_k, y_k)} \le 2C,$$

par (a), puisque pour tous x',y' dans un support de carte, on a $C^{-1}\mathrm{d}(x',y')\leqslant \|x'-y'\|\leqslant C\mathrm{d}(x',y')$ pour un certain C (exercice).

On obtient finalement, en faisant tendre k vers $+\infty$ dans (*),

$$\left\| \left(\mathrm{d}f^{\pm n_j^{\pm}} \right)_z v \right\| \leqslant 2C, \quad j \gg 1.$$

Ceci est impossible car pour tout $(x, v) \in TM$ avec $v \neq 0$ on a

$$\lim_{|n| \to +\infty} \inf \| (\mathrm{d}f^n)_x v \| = +\infty,$$

puisque f est d'Anosov.

3. C'est une application directe de l'Exercice 2 du TD n°3, qui donne

$$\limsup_{n} \frac{1}{n} \log(1 + p_n(f)) \leqslant h_{\text{top}}(f).$$

Ceci implique que si $\varepsilon > 0$, on a que pour tout $n > n_0$ assez grand

$$p_n(f) \leqslant \exp((n+\varepsilon)h_{\text{top}}(f)).$$

Si
$$C = \sup_{n \leq n_0} p_n(f) \exp(-(n+\varepsilon)h_{\text{top}}(f))$$
, on obtient

$$p_n(f) \leqslant C \exp((n+\varepsilon)h_{\text{top}}(f)), \quad n \geqslant 1.$$

On écrit

$$T_{(p,p)}Gr(f) = \{((df)_p v, v), v \in T_p M\} \subset T_{(p,p)}(M \times M),$$

et

$$T_{(p,p)}\Delta(M) = \{(v,v), v \in T_pM\}.$$

Ce sont deux sous-espaces vectoriels de $T_{(p,p)}(M \times M)$ de dimension $\dim(M)$. En particulier on a

$$\Delta(M) \pitchfork_{(p,p)} \operatorname{Gr}(f) \iff T_{(p,p)} \operatorname{Gr}(f) \cap T_{(p,p)} \Delta(M) = \{0\}$$

$$\iff \forall v \in T_p M, \quad (\mathrm{d}f_p - \mathrm{id}) \, v = 0 \implies v = 0$$

$$\iff 1 \notin \operatorname{sp}(\mathrm{d}f_p).$$

1. Soit $p = (x, y) \in \mathbb{R}^2$. On écrit

$$F(p + (k, \ell)) = F(p) + (r_p(k, \ell), s_p(k, \ell)), \quad (k, \ell) \in \mathbb{Z}^2,$$

où $r_p, s_p : \mathbb{Z}^2 \to \mathbb{Z}$.

La fonction $p \mapsto F(p+(k,\ell)) - F(p)$ est continue, et à valeurs dans \mathbb{Z}^2 , donc $r_p(k,\ell)$ et $s_p(k,\ell)$ ne dépendent pas de p; on les note $r(k,\ell)$ et $s(k,\ell)$.

On montre que r et s sont additifs. D'un côté on a

$$F(p + (k, \ell) + (k', \ell')) = F(p) + (r(k) + r(k'), s(\ell) + s(\ell')),$$

et de l'autre

$$F(p+(k,\ell)+(k',\ell')) = F(p+(k+k',\ell+\ell')) = F(p) + (r(k+k'),s(\ell+\ell')),$$

de sorte que

$$r(k+k') = r(k) + r(k'), \quad s(\ell+\ell') = s(\ell) + s(\ell'), \quad k, k', \ell, \ell' \in \mathbb{Z}.$$

On note alors $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ où (a,c) = (r,s)(1,0) et (b,d) = (r,s)(0,1). Alors A convient.

2. Montrons d'abord que F est un difféomorphisme de \mathbb{R}^2 . Soit $G: \mathbb{R}^2 \to \mathbb{R}^2$ qui relève f^{-1} . Alors on vérifie que $(x,y) \mapsto (G \circ F)(x,y) - (x,y)$ est à valeurs dans \mathbb{Z}^2 , donc constante, disons égale à (k,ℓ) .

Si $\tilde{G} = G - (k, \ell)$ on a donc $\tilde{G} \circ F = \mathrm{Id}_{\mathbb{R}^2}$ et donc F est un difféomorphisme d'inverse \tilde{G} .

Notons
$$F^{-1}(p+(k,\ell)) = F^{-1}(p) + B(k,\ell)$$
 où $B \in M_2(\mathbb{Z})$. Alors
$$p+(k,\ell) = p + AB(k,\ell), \quad (k,\ell) \in \mathbb{Z}^2.$$

Ceci montre que A est inversible d'inverse B (par densité de \mathbb{Q}^2 dans \mathbb{R}^2 par exemple). Ainsi $|\det(A)| = 1$.

- **3.** L'homotopie $F_t = tF + (1-t)A$ passe au quotient.
- **4.** On pose $p_n = a_n v + b_n w$ où $Av = \lambda v$ et $Aw = \lambda^{-1}$ où $|\lambda| > 1$.

Alors $|\lambda a_n - a_{n+1}| \leq r$ pour tout $n \in \mathbb{Z}$, et donc

$$|a_n - \lambda^{-k} a_{n+k}| \leqslant |a_n - \lambda^{-1} a_{n+1} + \dots + \lambda^{-(k-1)} a_{n+k-1} - \lambda^{-k} a_{n+k}|$$

$$\leqslant r \left(1 + |\lambda|^{-1} + \dots + |\lambda|^{-(k-1)} \right)$$

$$\leqslant \frac{r|\lambda|}{|\lambda| - 1}.$$

On obtient pour tout $k \in \mathbb{N}$ et tout $n \in \mathbb{Z}$,

$$\left|\lambda^{-n}a_n - \lambda^{-(n+k)}a_{n+k}\right| \leqslant \frac{|\lambda|^{-n+1}r}{|\lambda| - 1}, \quad (*)$$

et donc $\lambda^{-n}a_n \to a$ quand $n \to +\infty$ pour un $a \in \mathbb{R}$.

De même on a $\lambda^n b_n \to b$ quand $n \to -\infty$ pour un $b \in \mathbb{R}$.

On pose q = av + bw. Alors $A^n q = \lambda^n av + \lambda^{-n} bw$.

Par (*) (en faisant $k \to +\infty$) on a

$$|\lambda^n a - a_n| \leqslant \frac{|\lambda|r}{|\lambda| - 1}, \quad n \in \mathbb{Z},$$

et la même inégalité est vraie pour $|\lambda^{-n}b - b_n|$.

On conclut que $||A^nq - p_n|| \le C \frac{|\lambda|r}{|\lambda| - 1} = \delta(r)$ pour tout $n \in \mathbb{Z}$.

L'unicité est claire puisque $||A^n(q-q')|| \le 2\delta$ pour tout $n \in \mathbb{Z}$ implique y=y'.

5. Soit $p \in \mathbb{R}^2$. On note $G_p : x \mapsto g(-x) - p$.

Alors $||G_p(x)|| \le ||g||_{\infty} + ||p||$ pour tout $x \in \mathbb{R}^2$.

$$G(\overline{B}(0, \delta + ||p||)) \subset \overline{B}(0, \delta + ||p||).$$

Le théorème de Brouwer donne alors z tel que $G_p(z)=z$, ce qui équivaut à g(-z)-z=p, i.e. $(\mathrm{Id}+g)(-z)=p$.

6. Soit $p \in \mathbb{R}^2$. On note $p_n = F^n(p)$. Alors pour tout $n \in \mathbb{Z}$ on a

$$||Ap_n - p_{n+1}|| = ||AF^n(p) - F^{n+1}(p)|| \le ||F - A||_{\infty}.$$

Puisque $F(p'+(k,\ell)) = F(p') + A(k,\ell)$ pour tout p' et tous k,ℓ on a $r = ||F - A||_{\infty} < \infty$.

Par la question 4. il existe un unique $H(p) \in \mathbb{R}^2$ tel que $\|A^n H(p) - F^n(p)\| \leq \delta(r)$ pour tout $n \in \mathbb{Z}$.

Ceci s'écrit aussi $||A^{n-1}(AH(p)) - F^{n-1}(F(p))|| \le \delta(r)$ pour tout $n \in \mathbb{Z}$ et donc AH(p) = H(F(p)) par unicité.

On vérifie aisément que $H: \mathbb{R}^2 \to \mathbb{R}^2$ passe au quotient en une application $h: \mathbb{T}^2 \to \mathbb{T}^2$, qui vérifie la propriété de semi-conjugaison demandée.

Montrons que H est continue. Soit (p_k) une suite qui tend vers p. Alors la suite $(H(p_k))$ est bornée car $||H(p) - p|| \le \delta(r)$. Soit q une valeur d'adhérence de cette suite.

Soit $n \in \mathbb{Z}$; on a $||A^n H(p_k) - F^n(p_k)|| \le \delta(r)$ et donc en faisant $k \to +\infty$ on obtient $||A^n q - F^n(p)|| \le \delta(r)$.

Ceci implique que q = H(p) par unicité du pistage. Ainsi H(p) est l'unique valeur d'adhérence de la suite $(H(p_k))$ et donc $H(p_k) \to H(p)$.

H est donc continue et H – Id est bornée, on peut donc appliquer la question 5. pour obtenir que H = Id + (H – Id) est surjective.

7. Soit $A \in M_2(\mathbb{Z})$ de déterminant ± 1 . On note $f_A: \mathbb{T}^2 \to \mathbb{T}^2$ l'automorphisme associé. Soit $\varepsilon > 0$ et $f: \mathbb{T}^2 \to \mathbb{T}^2$ tel que $\|f - f_A\|_{\infty} < \varepsilon$. Alors il existe un relevé F de f tel que $\|A - F\|_{\infty} < \varepsilon$.

Par ce qui précède, il existe une semiconjugaison $h: \mathbb{T}^2 \to \mathbb{T}^2$ telle que $h \circ f = f_A \circ h$, qui vérifie de plus que $||h - \operatorname{Id}||_{\infty} < \delta(\varepsilon)$.

Montrons que h est injective : si $p, p' \in \mathbb{T}^2$ vérifient h(p) = h(p') alors $h(f^n(p)) = h(f^n(p'))$ pour tout $n \in \mathbb{Z}$. En particulier

$$d(f^n(p), f^n(p')) < 2\delta(\varepsilon), \quad n \in \mathbb{Z}.$$

Lemme

Soit $f: M \to M$ un difféomorphisme d'Anosov. Alors il existe $\delta > 0$ tel que tout difféomorphisme assez proche de f en norme C^1 est expansif de constante d'expansivité δ .

En admettant le lemme, on obtient que p=p' si $\delta(\varepsilon)<\delta$, ce qui sera vérifié si $\varepsilon>0$ est assez petit. Ainsi h est injective, et donc continue bijective. Par compacité de \mathbb{T}^2 , c'est un homéomorphisme.

Preuve du lemme.

On raisonne par l'absurde et on suppose qu'il existe une suite de fonctions (f_k) qui tend vers f dans $C^1(M, M)$, et des points $x_k \neq y_k$ tels que $d(f_k^n(x_k), f_k^n(y_k)) < 1/k$ pour tout $n \in \mathbb{Z}$ et tout k.

On peut alors adapter la démonstration faite à la question 2. de l'Exercice 2 pour obtenir une contradiction, en écrivant notamment

$$f_k^{\pm n_j^{\pm}}(y_k) - f_k^{\pm n_j^{\pm}}(x_k) = \int_0^1 \left(df^{\pm n_j^{\pm}} \right)_{(1-t)x_k + ty_k} (y_k - x_k) dt + \int_0^1 \left(df_k^{\pm n_j^{\pm}} - df^{\pm n_j^{\pm}} \right)_{(1-t)x_k + ty_k} (y_k - x_k) dt.$$

1. On considère une fonction f définie au voisinage de $0 \in \mathbb{R}^n$ telle que $\mathrm{d} f_0 = 0$, et $\varphi = (\varphi^1, \dots, \varphi^n)$ un difféomorphisme local au voisinage de 0, tel que $\varphi(0) = 0$.

On calcule

$$\begin{split} \partial_k \partial_\ell (f \circ \varphi) &= \sum_i \partial_k \left([(\partial_i f) \circ \varphi] \partial_\ell \varphi^i \right) \\ &= \sum_i [(\partial_i f) \circ \varphi] \partial_k \partial_\ell \varphi^i + \sum_{j,i} [(\partial_i \partial_j f) \circ \varphi] (\partial_k \varphi^i) (\partial_\ell \varphi^j). \end{split}$$

Puisque $df_0 = 0$ on obtient

$$\operatorname{Hess}_{f \circ \varphi}(0) = (\mathrm{d}\varphi_0)^{\top} \operatorname{Hess}_f(0)(\mathrm{d}\varphi_0),$$

ce qui conclut.

2. On remarque qu'une fonction de Morse a un nombre fini de points critiques, car ils sont isolés.

De plus la condition " $\operatorname{Hess}_f(0)$ est non dégénérée" est ouverte, ce qui conclut.

3. On suppose $\varphi_{\tau}(x) = x$ avec $\tau > 0$. Calculons

$$\begin{split} \partial_t f(\varphi_t(x)) &= \mathrm{d} f_{\varphi_t(x)}(X(\varphi_t(x))) \\ &= -\mathrm{d} f_{\varphi_t(x)}(\nabla^g f(\varphi_t(x))) \\ &= -g_{\varphi_t(x)}(\nabla^g f(\varphi_t(x)), \nabla^g f(\varphi_t(x))) \leqslant 0. \end{split}$$

Puisque $f(\varphi_{\tau}(x)) = x$ avec $\tau > 0$ on obtient que pour tout $t \in [0, \tau]$, $\nabla^g f(\varphi_t(x)) = 0$.

4. C'est la même démonstration : f décroît strictement le long des lignes de flots de X qui ne sont pas réduites à un point. Ainsi si $\nabla_g f(x) \neq 0$, on a que $f(\varphi_t(x)) < f(x) - \varepsilon$ pour tout $t > \delta$ (pour certains $\delta, \varepsilon > 0$) et donc $\varphi_t(x)$ ne peut pas repasser près de x pour $t > \delta$.

5. Soit $x \in M$, et p une valeur d'adhérence de $(\varphi_t(x))_{t \ge 0}$. Alors de même que précédemment, on a $\nabla^g f(p) = 0$.

Comme $t \mapsto f(\varphi_t(x))$ décroît, on a $f(\varphi_t(x)) \ge f(p)$ pour tout t.

Par hypothèse, des coordonnées (x^1, \ldots, x^n) autour de p telles que

$$f(x^1, \dots, x^n) = f(p) + \sum_{i=1}^r (x^i)^2 - \sum_{i=r+1}^n (x^i)^2,$$

et

$$-\nabla^g f = 2(-x^1, \dots, -x^r, x^{r+1}, \dots, x^n).$$

Ainsi, le fait que $f(\varphi_t(x)) \ge p$ pour tout t implique que si $\varphi_t(x)$ est assez proche de p, on a nécessairement $\varphi_t(x) \in \{x^{r+1} = \cdots = x^n = 0\}$, car sinon on aurait $f(\varphi_{t'}(x)) < f(p)$ pour un t' > t.

Ceci montre que $\varphi_t(x) \to p$ quand $t \to +\infty$. De même on montre que $\varphi_{-t}(x) \to q$ quand $t \to +\infty$ avec $q \in \text{Crit}(f)$.