Analysis

Huang LiChuang of Wie-Biotech

Contents

1	摘要	ថ្ម ់	3
2	材料	斗和方法	3
3	研究	它设计流程图	4
4	分析	行结果	4
5	结论	<u> </u>	5
6	附:	分析流程	5
	6.1	测序数据	5
		6.1.1 差异分析	5
		6.1.2 富集分析	10
	6.2	GEO sepsis	13
		6.2.1 GSE237861: Transcriptome analysis of six tissues obtained post mortem from sepsis	
		patients	13
	6.3	整合: 测序数据和 GEO 数据	16
		6.3.1 关联基因	16
		6.3.2 分子对接	17
7	附:	补充分析————————————————————————————————————	18
	7.1	Sepsis 的代谢物研究	18
		7.1.1 Sepsis 差异代谢物	18
		7.1.2 从代谢物到肠道微生物	20
		7.1.3 (选定的)代谢物的富集分析	22
	7.2	Sepsis 的蛋白质研究	24
		7.2.1 Sepsis 差异蛋白	24
	7.3	TNA 治疗靶点和 Sepsis 差异蛋白质的关联(从基因到蛋白质)	25
		7.3.1 交集蛋白(基因)	25
		7.3.2 富集分析	26
	7.4	蛋白质组学和代谢组学的关联性分析	27
	7.5	总结: TNA 治疗 Sepsis 可能涉及的肠道微生物-代谢物-蛋白质关联轴	30

8	附:	补充分析——铁死亡	3 0
	8.1	铁死亡关联方法	31
	8.2	以 FerrDb V2 数据库富集分析	31
		8.2.1 所有的 DEGs 与 FerrDb V2 的交集	32
		8.2.2 所有的 DEGs 的富集分析 (GSEA)	34
		8.2.3 仅 Ferroptosis 相关基因的富集分析	35
	8.3	总结	38
Re	efere	ence	38
$\mathbf{L}^{:}$	ist	of Figures	
	1	Low expression filtering	5
	2	Expression normalization	6
	3	DEGs of model versus control	7
	4	DEGs of treatment versus model	8
	5	Intersection of disease genes expression and treatment effect of TNA $\ldots \ldots \ldots \ldots$	10
	6	KEGG enrichment	11
	7	Genes enriched in hippo signiling pathway	11
	8	DEGs number in sepsis of mutiple tissue of GEO dataset	15
	9	Intersection of DEGs of mutiple tissue of sepsis	15
	10	Target genes of TNA in mutiple tissue of sepsis of Hippo pathway	16
	11	Docking affinity	17
	12	Tanshinone IIA binding with protein DLG4	18
	13	Hited metabolites and microbiota in gutMDisorder	22
	14	FELLA enrichment	23
	15	Intersection of TNA targets and Sepsis significant protein	25
	16	KEGG enrichment of intersection of TNA targets and Sepsis significant protein	
	17	KEGG pathway of Biosynthesis of amino acids	
	18	LITERATURE Integrative network analysis of proteomics and untargeted metabolomics data	29
	19	LITERATURE Schematic diagram of the crucial pathways	30
	20	Proportion of intersected genes of DEGs with Ferrdb	33
	21	All DEGs of GSEA enrichment via FerrDb V2	35
	22	KEGG enrichment over Fitting	36
	23	GO enrichment over Fitting	37
	24	Visualization of pathway of Ferroptosis over Fitting	37
\mathbf{L}_{i}^{t}	ist	of Tables	
	1	Table of DEGs of model versus control	7
	2	Table of DEGs of treatment versus model	8
	3	Metadata of GSE237861	14

4	LITERATURE Positive ionmode Differentially expressed metabolites of the comparison be-	
	tween sepsis patients and NC subjects	19
5	LITERATURE Negtive ion mode Differentially expressed metabolites of the comparison be-	
	tween sepsis patients and NC subjects	20
6	Databse of gutMDisorder	21
7	Table of the hitted compounds	22
8	Table of FELLA enrichment result	23
9	LITERATURE Comparison of protein abundance in patients with sepsis and normal control	
	subjects	24
10	Methods for Ferroptosis	31
11	Database FerrDb V2	32
12	Intersected genes of DEGs with Ferrdb	33
13	Table of All DEGs of GSEA enrichment via FerrDb V2	35
14	Tables of KEGG enrichment over Fitting	36

1 摘要

筛选丹参酮治疗脓毒症(sepsis)的关键差异表达基因及相关信号通路。

注: 补充分析请参考 7 (进一步筛选与肠道微生物和免疫微环境相关的差异表达基因)

2 材料和方法

测序数据: Caco-2 细胞系,对照组 con, 脂多糖组 LPS, 丹参酮组 TNA (LPS+TNA)。

GEO 数据: GSE237861

3 研究设计流程图

4 分析结果

单以测序数据集筛选到 1797 个靶点, 富集分析聚焦到 Hippo 通路 (Fig. 7)。

以 GEO 数据 GSE237861 分析发现,6 种不同组织的 sepsis 病例存在 51 个共同的差异表达基因(Disease vs control)。进一步分析发现:无同时存在于 6 或 5 种组织的 Hippo 通路基因(同时也是 Tanshinone IIA 的作用靶点); *BIRC3、ID1* 在 4 种组织中差异表达; *DLG4* 在 3 种组织中差异表达(Fig. 10)。分子对接显示,SMAD7, SOX2, TGFBR2, DLG4, DLG2 具有良好亲和度(Fig. 11)。综上,*DLG4* 在 3 种 sepsis 组织中差异表达,且 DLG4 可与 Tanshinone IIA 结合,因此,*DLG4* 可能是 TNA 治疗 sepsis 的关键靶点之一,对应信号通路为 Hippo。

5 结论

DLG4 可能是 TNA 治疗 sepsis 的关键靶点,相关信号通路为 Hippo。

6 附:分析流程

6.1 测序数据

6.1.1 差异分析

Figure 1为图 Low expression filtering 概览。

(对应文件为 Figure+Table/Low-expression-filtering.pdf)

Figure 1: Low expression filtering

Figure 2为图 expression normalization 概览。

(对应文件为 Figure+Table/expression-normalization.pdf)

Figure 2: Expression normalization

Figure 3为图 DEGs of model versus control 概览。

(对应文件为 Figure+Table/DEGs-of-model-versus-control.pdf)

Figure 3: DEGs of model versus control $\,$

Table 1为表格 table of DEGs of model versus control 概览。

(对应文件为 Figure+Table/table-of-DEGs-of-model-versus-control.xlsx)

注:表格共有 3865 行 15 列,以下预览的表格可能省略部分数据;表格含有 3865 个唯一'ensembl_gene_id'。

Table 1: Table of DEGs of model versus control

ensem1	ensem2	entre	hgnc	refse	chrom	start	end_p	descr	$\log FC$	
ENSG0	ENST0	4609	MYC		8	12773	12774	MYC p	-1.42	
ENSG0	ENST0	22943	DKK1	NM_01	10	52314281	52318042	dickk	-1.65	
ENSG0	ENST0	10551	AGR2	NM_00	7	16791811	16833433	anter	-1.01	
ENSG0	ENST0	2746	GLUD1	NM_00	10	87050202	87094843	gluta	-0.68	
ENSG0	ENST0	51421	AMOTL2	NM_01	3	13435	13437	angio	0.948	
ENSG0	ENST0	2114	ETS2	NM_00	21	38805183	38824955	ETS p	-1.01	
ENSG0	ENST0	8543	LMO4	NM_00	1	87328880	87348923	LIM d	-0.83	
ENSG0	ENST0	1469	CST1	NM_00	20	23747562	23751268	cysta	-1.87	
ENSG0	ENST0	9388	LIPG		18	49560699	49599185	lipas	-1.16	
ENSG0	ENST0	2877	GPX2		14	64939152	64942746	gluta	-1.66	
ENSG0	ENST0	11163	NUDT4	NM_19	12	93377883	93408146	nudix	-0.93	
ENSG0	ENST0	11260	XPOT	NM_00	12	64404392	64451125	expor	-0.65	

ensem1	ensem2	entre	hgnc	refse	chrom	start	end_p	descr	$\log FC$	
ENSG0	ENST0	25902	MTHFD1L	NM_01	6	15086	15110	methy	-0.84	
ENSG0	ENST0	91461	PKDCC	NM_13	2	42048021	42058517	prote	-0.69	
ENSG0	ENST0	1080	CFTR		7	11728	11771	CF tr	-1.07	

Figure 4为图 DEGs of treatment versus model 概览。

(对应文件为 Figure+Table/DEGs-of-treatment-versus-model.pdf)

Figure 4: DEGs of treatment versus model

Table 2为表格 table of DEGs of treatment versus model 概览。

(对应文件为 Figure+Table/table-of-DEGs-of-treatment-versus-model.xlsx)

注: 表格共有 2762 行 15 列,以下预览的表格可能省略部分数据; 表格含有 2762 个唯一'ensembl_gene_id'。

Table 2: Table of DEGs of treatment versus model

ensem1	ensem2	entre	hgnc	refse	chrom	start	end_p	descr	$\log FC$	
ENSG0	ENST0	4609	MYC		8	12773	12774	MYC p	1.356	
ENSG0	ENST0	2746	GLUD1	NM_00	10	87050202	87094843	gluta	0.722	

ensem1	ensem2	entre	hgnc	refse	chrom	start	end_p	descr	logFC	
ENSG0	ENST0	10551	AGR2	NM_00	7	16791811	16833433	anter	0.989	
ENSG0	ENST0	8614	STC2	NM_00	5	17331	17332	stann	1.067	
ENSG0	ENST0	63910	SLC17A9	NM_02	20	62952707	62969585	solut	0.994	
ENSG0	ENST0	7422	VEGFA		6	43770184	43786487	vascu	0.837	
ENSG0	ENST0	22943	DKK1	NM_01	10	52314281	52318042	dickk	1.283	
ENSG0	ENST0	2118	ETV4	NM_00	17	43527844	43579620	ETS v	1.073	
ENSG0	ENST0	8543	LMO4	NM_00	1	87328880	87348923	LIM d	0.771	
ENSG0	ENST0	2114	ETS2	NM_00	21	38805183	38824955	ETS p	0.891	
ENSG0	ENST0	51421	AMOTL2	NM_01	3	13435	13437	angio	-0.81	
ENSG0	ENST0	336	APOA2		1	16122	16122	apoli	1.352	
ENSG0	ENST0	1152	CKB	NM_00	14	10351	10352	creat	0.602	
ENSG0	ENST0	56649	TMPRSS4		11	11807	11812	trans	0.859	
ENSG0	ENST0	10797	MTHFD2		2	74186172	74217565	methy	0.708	

丹参酮的疗效有两种情况:

- 模型组相比对照组,基因上调;而以丹参酮处理后,基因下调(相比于模型组)。
- 模型组相比对照组,基因下调;而以丹参酮处理后,基因上调(相比于模型组)。

Figure 5为图 intersection of disease genes expression and treatment effect of TNA 概览。

(对应文件为 Figure+Table/intersection-of-disease-genes-expression-and-treatment-effect-of-TNA.pdf)

Figure 5: Intersection of disease genes expression and treatment effect of TNA

取 Fig. 5 的两组交集的合集 (989 + 808),。

6.1.2 富集分析

以上述合集做富集分析。

Figure 6为图 KEGG enrichment 概览。

(对应文件为 Figure+Table/KEGG-enrichment.pdf)

Figure 6: KEGG enrichment

Hippo 通路为显著富集通路。

Figure 7为图 genes enriched in hippo signiling pathway 概览。

(对应文件为 Figure+Table/hsa04390.pathview.png)

Figure 7: Genes enriched in hippo signiling pathway

6.2 GEO sepsis

6.2.1 GSE237861: Transcriptome analysis of six tissues obtained post mortem from sepsis patients

data_processing:

The libraries were quantified by Qubit dsDNA High Sensitivity Assay Kit (Life Technologies Corporation, Carlsbad, CA, United States) and the median sizes were determined by TapeStation 4200 (Agilent Technologies, USA), using the High Sensitivity D1000 Screen-Tape assay, to form an equimolar pool.

data_processing.1:

Sequencing was performed as a 75-bp single-read, single-index run on a NextSeq 500 next-generation sequencer (Illumina, San Diego, CA, United States) with High Output kit.

data_processing.2:

Quality control analysis was performed using FastQC software, showing a Phred value superior to 30

data_processing.3:

Trimmomatic software was used to trim low-quality reads and adapters. Raw reads were aligned to the hg38 reference through HISAT2 software. Quantification of the gene expression data was performed through the function featureCounts of the R package Rsubread and the counts were normalized according to log2CPM.

data_processing.4:

Differential expression analysis was performed by the R package edgeR (FDR < 0.1 was considered significant), comparing each male patient with sepsis with all male uninfected controls and the female patients with sepsis with all female uninfected controls.

$data_processing.5:$

Assembly: hg38

data_processing.6:

Supplementary files format and content: tab-delimited text file contains results of differential expression analysis in edgeR

data_processing.7:

Supplementary files format and content: columns indicate gene ID, logFc, p-value and FDR

Table 3为表格 metadata of GSE237861 概览。

(对应文件为 Figure+Table/metadata-of-GSE237861.csv)

注:表格共有82行2列,以下预览的表格可能省略部分数据;表格含有82个唯一'title'。

Table 3: Metadata of GSE237861

title	tissu
sepsi	prefr
sepsi	hippo
sepsi	heart
sepsi	lung
sepsi	kidney
sepsi	colon
sepsi	brain
sepsi	hippo
sepsi	heart
sepsi	lung
sepsi	kidney
sepsi	brain
sepsi	hippo
sepsi	heart
sepsi	lung
•••	•••

Figure 8为图 DEGs number in sepsis of mutiple tissue of GEO dataset 概览。

(对应文件为 Figure+Table/DEGs-number-in-sepsis-of-mutiple-tissue-of-GEO-dataset.pdf)

Figure 8: DEGs number in sepsis of mutiple tissue of GEO dataset

在六种不同的 sepsis 组织中, 共有 51 个共同的交集基因 (Fig. 9)。

Figure 9为图 intersection of DEGs of mutiple tissue of sepsis 概览。

(对应文件为 Figure+Table/intersection-of-DEGs-of-mutiple-tissue-of-sepsis.pdf)

Figure 9: Intersection of DEGs of mutiple tissue of sepsis

6.3 整合: 测序数据和 GEO 数据

6.3.1 关联基因

以 GSE237861 验证 TNA 作用的 Hippo 通路基因,属于 sepsis 哪些组织的差异表达基因,以确认 TNA 是 否对其具有疗效。

- BIRC3、ID1 在 4 种组织中差异表达
- DLG4 在 3 种组织中差异表达
- ...

Figure 10为图 Target genes of TNA in mutiple tissue of sepsis of Hippo pathway 概览。

(对应文件为 Figure+Table/Target-genes-of-TNA-in-mutiple-tissue-of-sepsis-of-Hippo-pathway.pdf)

Figure 10: Target genes of TNA in mutiple tissue of sepsis of Hippo pathway

6.3.2 分子对接

丹参酮 I (Tanshinone IIA, CID:164676)

以 AutoDock Vina 对 Fig. 10 所示基因的蛋白以 Tanshinone IIA 分子对接。

结果显示, SMAD7, SOX2, TGFBR2, DLG4, DLG2 具有良好亲和度。

结合 Fig. 10 所示的多组织差异表达,DLG4 同时在 3 种组织 sepsis 差异表达,且为 TNA 作用靶点,表现良好对接亲和度,可能是 TNA 治疗的关键靶点之一。

Figure 11为图 docking affinity 概览。

(对应文件为 Figure+Table/docking-affinity.pdf)

Figure 11: Docking affinity

Figure 12为图 Tanshinone IIA binding with protein DLG4 概览。

(对应文件为 Figure+Table/164676_into_1kef.png)

Figure 12: Tanshinone IIA binding with protein DLG4

7 附:补充分析——肠道微生物关联

补充分析: 进一步筛选与肠道微生物和免疫微环境相关的差异表达基因

7.1 Sepsis 的代谢物研究

获取文献相关资料:

- Integrative analysis of metabolomics and proteomics reveals amino acid metabolism disorder in sepsis¹
 - PMID: 35287674
 - Blood samples were collected from patients diagnosed with sepsis at admission to the ICU. Blood samples of patients and NC subjects were drawn using serum separation tubes and allowed to clot at room temperature for 60 min. The samples were centrifuged for 10 min within 30 min (1600×g, 4 °C) to remove insoluble solids. Each aliquot of serum was collected and immediately stored at -80 °C until ultrahigh-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) analysis.

7.1.1 Sepsis 差异代谢物

获取上述文献差异代谢物数据1:

Table 4为表格 LITERATURE Positive ionmode Differentially expressed metabolites of the comparison between sepsis patients and NC subjects 概览。

(对应文件为 Figure+Table/LITERATURE-Positive-ionmode-Differentially-expressed-metabolites-of-the-comparis

注:表格共有 106 行 16 列,以下预览的表格可能省略部分数据;表格含有 106 个唯一'Metabolic'。

Table 4: LITERATURE Positive ion mode Differentially expressed metabolites of the comparison between sepsis patients and NC subjects

Metabmz	rt	Ref_	Na iPir ecu	Score	6 Score	.7 HMDB	KEGO	GSuper	Class	Subclas	5S
M235T1 23 5.1	138.765	His-	[M+H-	0.9955	0.9994	NA	NA	Organ	. Carbo	Amino.	
		Pro									
M246T5 249 6.1	538.772	Tram	ad∮M+H-	0.9466	0.9997	HMDB	0C0715	3Benze	Pheno	. Anisole	S
Maromone 1	014 000	0 (4	 [N.E., TT]	10.0404	0.0050	NT A	DT A	0	Q 1		
M158T2 15 8.1	214.803	2-(4-	[M+H]	+0.9424	0.9952	NA	NA	Organ	. Carbo	. Amino.	•••••
M286T1 28 6.1	167.974	 5N-	[M+H]-	+0.9925	0.9928	NA	NA	NA	NA	NA	
11120011220.1	101.011	ace	[111 11]	10.0020	0.0020	1111	1111	1111	1111	1111	•••
M261T4 26 1.1	430.267	Diave	[M+H]-	+0.9896	1	NA	NA	Benze	Benze	Metho.	
M151T1 45 1.061	6145.860	53-	[M+H-	0.9995	0.9998	HMDB	0C0558	7Benze	Phenols	Metho.	
		met									
M168T4268.1	41.6738	5Phen	y [M+H]	+0.9947	0.9988	HMDB	0C0744	1Benze	Phenols		
				1						hyd	
M430T2 83 0.3			•	•	0.9996	NA	NA	_	. Organ	-	
M207T6 2 07.1	65.8776	Pyrai	te[M+H]	+0.9992	0.9997	NA	C0740	90rgan	. Diazine	sPyrim	
$M334T4 \pmb{33} 4.1$	419.257	Tebuf	f [M+H]	+0.9111	0.9973	NA	C1112	6Benze	Benze	Pheny	
$\rm M257T1\pmb{257}.1$	165.785	Ptero	[M+H]	+0.9503	0.9999	HMDB	0C1028	7NA	NA	NA	
M175T2275.0	219.69	3,6-	[M+H]	+0.8791	0.9514	NA	NA	Organ	Benzo	1-	
		d								ben	
$M229T3 \pmb{27}9.1$	316.932	Tri(p.	[M+Na	.] 0 .9965	0.9997	NA	NA	Organ	Organ	Alcoh	
M225T3 23 5.1	367.111	5Pogos	s [M+H]-	+0.9287	0.9357	HMDB	0NA	Organ	Organ	. Carbo	· ···
M290T290.1	411.129	5Adipo	o [M+H]-	+0.9802	0.9809	NA	NA	Lipid	Fatty	Fatty	

Table 5为表格 LITERATURE Negtive ion mode Differentially expressed metabolites of the comparison between sepsis patients and NC subjects 概览。

ween sepsis patients and NC subjects 概览。

(对应文件为 Figure+Table/LITERATURE-Negtive-ionmode-Differentially-expressed-metabolites-of-the-comparison

注: 表格共有 76 行 16 列,以下预览的表格可能省略部分数据;表格含有 76 个唯一'Metabolic'。

 $\begin{tabular}{ll} Table 5: LITERATURE Negtive ion mode Differentially expressed metabolites of the comparison between sepsis patients and NC subjects \\ \end{tabular}$

Metabmz	rt	Ref_Na	alParecu	Score6	Score7	HMDB	KEGO	Super	Class	Subclas	5S
M287T3 28 7.0	324.445	Oroti	[M-	0.9944	0.9953	HMDB	0NA	NA	NA	NA	
			H]-								
M246T246.074	740.3787	Asp-	[M-	0.9185	0.9955	NA	NA	Organ	Carbo	Amino.	
		Asn	H]-								
M179T179.0	398.696	inositol	[M-	0.9973	0.9977	HMDB	0C0013	7Organ	Organ	Alcoh	
			H]-								
M151T4 1 51.0	40.7983	Creso	[M-	0.9999	0.9999	HMDB	0C1408	8Benze	${\bf Benze}$	Benzo	
			H]-								
M147T9247.0	92.2174	:53-	[M-	0.8552	0.9127	NA	C0772	80rgan	Benzo	2-	
		iso	H]-							ben	
M151T2 115 1.0	210.531	4-	[M-	0.927	0.999	HMDB	0C0064	2Benze	Phenols	1-	
		hyd	H]-							hyd	
M300T300.0	166.016	N-	[M-	0.9797	0.9817	HMDB	0C0425	6NA	NA	NA	
		Ace	H]-								
M165T9 2 65.0	91.6485	Pheny	. [M-	0.9949	0.9951	HMDB	0C0147	9NA	NA	NA	
			H]-								
M245T3 2 45.0	33.9236	Asn-	[M-	0.9475	0.9987	NA	NA	Organ	Carbo	Amino.	
		Asn	H]-								
M415T34715.215	837.4836	Ramipr	•	0.9887	0.9942	HMDB	0NA	Organ	Carbo	Amino.	
			H]-								
M125T3 92 5.0	398.69	1,2,4	[M-	0.9697	0.9755	HMDB	0C0281	4Benze	Phenols	Benze	
			H]-								
M286T2886.1	259.84	Norox		0.908	0.9959	HMDB	0NA	NA	NA	NA	
			H]-								
M144T29 8 4.0	297.591	4-	[M-	0.9479	0.9977	HMDB	0C0294	60rgan	Carbo	Amino.	
		ace	H]-					_			
M190T2 119 0.0	212.844		[M-	0.9816	0.9853	HMDB(0C0271	20rgan	Carbo	Amino.	
		ace	H]-		0.005			0	0	~	
M125T124.9	165.013	5Ethyl	•	0.9683	0.9909	HMDB	0NA	Organ	Organ	Sulfu	
			H]-								
		•••		•••	•••	•••	•••				

7.1.2 从代谢物到肠道微生物

利用 $gutMDisorder^2$ 数据库,检索与差异代谢物相关的肠道微生物。

Table 6为表格 databse of gutMDisorder 概览。

(对应文件为 Figure+Table/databse-of-gutMDisorder.xlsx)

注: 表格共有 724 行 12 列,以下预览的表格可能省略部分数据;表格含有 289 个唯一'Gut Microbiota'。

Table 6: Databse of gutMDisorder

Gut M1	Gut M2	Gut M3	Class	Subst5	Subst6	Subst7	Subst8	
Chris	NA	gm0883	strain	D-Glu	5793	HMDB0	CHEBI	
Chris	NA	gm0883	strain	Salicin	439503	HMDB0	CHEBI	
Chris	NA	gm0883	strain	D-Xylose	135191	HMDB0	CHEBI	
Chris	NA	gm0883	strain	L-Ara	439195	HMDB0	CHEBI	
Chris	NA	gm0883	strain	L-Rha	25310	HMDB0	CHEBI	
Chris	NA	gm0883	strain	D-Man	18950	HMDB0	CHEBI	
Chris	NA	gm0883	strain	D-Glu	5793	HMDB0	CHEBI	
Chris	NA	gm0883	strain	Salicin	439503	HMDB0	CHEBI	
Chris	NA	gm0883	strain	D-Xylose	135191	HMDB0	CHEBI	
Chris	NA	gm0883	strain	L-Ara	439195	HMDB0	CHEBI	
Chris	NA	gm0883	strain	L-Rha	25310	HMDB0	CHEBI	
Chris	NA	gm0883	strain	D-Man	18950	HMDB0	CHEBI	
Enter	1343173	gm0884	species	Orientin	5281675	HMDB0	CHEBI	
Clost	29347	gm0885	strain	Bile	439520		CHEBI	
Clost	29347	gm0885	strain	Choli	221493	HMDB0	CHEBI	

从 gutMDisorder 中匹配 Tab. 4 与 Tab. 5 对应的化合物:

Figure 13为图 hited metabolites and microbiota in gutMDisorder 概览。

(对应文件为 Figure+Table/hited-metabolites-and-microbiota-in-gutMDisorder.pdf)

Figure 13: Hited metabolites and microbiota in gutMDisorder

Table 7为表格 table of the hitted compounds 概览。

(对应文件为 Figure+Table/table-of-the-hitted-compounds.csv)

注:表格共有2行7列,以下预览的表格可能省略部分数据;表格含有2个唯一'Query'。

Table 7: Table of the hitted compounds

Query	Match	HMDB	PubChem	KEGG	SMILES	Comment
Pheny	Alpha	HMDB0	92258	C04148	C1=CC	1
Fumarate	Fumar	HMDB0	444972	C00122	C(=C/	1

7.1.3 (选定的) 代谢物的富集分析

将 Tab. 7 中的两种化合物富集分析。

FELLA (pagerank 算法) 用于差异代谢物的富集分析³。

Figure 14为图 FELLA enrichment 概览。

(对应文件为 Figure+Table/FELLA-enrichment.pdf)

Figure 14: FELLA enrichment

Table 8为表格 table of FELLA enrichment result 概览。

(对应文件为 Figure+Table/table-of-FELLA-enrichment-result.xlsx)

注:表格共有 43 行 7 列,以下预览的表格可能省略部分数据;表格含有 43 个唯一'name'。

Table 8: Table of FELLA enrichment result

name	com	NAME	label	input	abbre	type
hsa00020	1	Citra	Citra	Others	Citra	Pathway
hsa00250	1	Alani	Alani	Others	Alani	Pathway
hsa00360	1	Pheny	Pheny	Others	Pheny	Pathway
hsa01200	1	Carbo	Carbo	Others	Carbo	Pathway
hsa04922	1	Gluca	Gluca	Others	Gluca	Pathway
hsa05211	1	Renal	Renal	Others	Renal	Pathway
hsa05230	1	Centr	Centr	Others	Centr	Pathway
M00029	2	Urea	Urea	Others	${\it Urea}\$	Module
M00044	2	Tyros	Tyros	Others	Tyros	Module
M00048	2	De no	De no	Others	De no	Module

name	com	NAME	label	input	abbre	type
M00049	2	Adeni	Adeni	Others	Adeni	Module
M00051	2	De no	De no	Others	De no	Module
M00148	2	Succi	Succi	Others	Succi	Module
M00173	2	Reduc	Reduc	Others	Reduc	Module
M00374	2	Dicar	Dicar	Others	Dicar	Module

首要关注 "Phenylalanine metabolism" 代谢通路。

7.2 Sepsis 的蛋白质研究

7.2.1 Sepsis 差异蛋白

- Serum proteomics reveals disorder of lipoprotein metabolism in sepsis⁴
 - Blood samples of patients and NC subjects were collected and allowed to clot at room temperature for 60 min. Serum was separated by centrifugation at 1,600g for 10 min within 30 min to remove insoluble solids and stored at -80°C until proteomic analysis and ELISA (Tammen, 2008). Removal of high-abundance proteins in serum, such as albumin and IgG, was performed using ProteoPrep Blue Albumin & IgG Depletion Kit (PROTBA; Sigma-Aldrich) according to the manufacturer's instructions. Removal of impurities from the protein extraction was performed using a 2-D clean kit (GE Healthcare) before the determination of the sample concentration.

从上述文献获取差异蛋白数据4:

Table 9为表格 LITERATURE Comparison of protein abundance in patients with sepsis and normal control subjects 概览。

(对应文件为 Figure+Table/LITERATURE-Comparison-of-protein-abundance-in-patients-with-sepsis-and-normal-co

注: 表格共有 243 行 5 列,以下预览的表格可能省略部分数据;表格含有 243 个唯一'Protein.IDs'。

Table 9: LITERATURE Comparison of protein abundance in patients with sepsis and normal control subjects

Prote	Gene	$\log 2$	P.value	adjus
ENSBT	ENSBT	-0.72	0.007	0.013
P00761	P00761	0.289	0.000	0.000
P02768	ALB	0.144	0.001	0.002
Q28107	Q28107	-1.06	0.000	0.000
Q61782	Q61782	-1.42	6.878	3.783
Q86YZ3	HRNR	-1.04	0.000	0.001
P07996	THBS1	-1.03	3.808	1.523
O14791	APOL1	-0.42	6.701	2.175

Prote	Gene	log2	P.value	adjus
O75460	ERN1	0.777	1.357	4.714
O75636	FCN3	-0.27	0.007	0.014
O75882	ATRN	-0.36	5.825	2.196
O95445	APOM	-1.43	3.389	5.161
O95497	VNN1	-1.19	0.000	0.000
P00326	ADH1C	2.087	0.003	0.007
P00441	SOD1	2.111	6.761	2.176
			•••	

7.3 TNA 治疗靶点和 Sepsis 差异蛋白质的关联(从基因到蛋白质)

7.3.1 交集蛋白(基因)

Figure 15为图 intersection of TNA targets and Sepsis significant protein 概览。

(对应文件为 Figure+Table/intersection-of-TNA-targets-and-Sepsis-significant-protein.pdf)

Figure 15: Intersection of TNA targets and Sepsis significant protein $\,$

Fig. 15, 共有 37 个交集基因 (蛋白质)。

intersection:

APOA2, RBP4, AGT, SERPINA1, TTR, PLTP, ENO1, ITIH2, AHSG, F2, OAF, C4BPA, TKT, CST3, F7, APOC3, MDN1, IGFBP4, ALDOB, ASGR2, HABP2, F12, VWF, APOC1, ALB, APOA4, CFI, CA2, THBS1, HRNR, PDE4DIP, LCAT, IL1RAP, SEMA4B, VASN, C8G, CTBS

7.3.2 富集分析

Figure 16为图 KEGG enrichment of intersection of TNA targets and Sepsis significant protein 概览。

(对应文件为 Figure+Table/KEGG-enrichment-of-intersection-of-TNA-targets-and-Sepsis-significant-protein.pd

Figure 16: KEGG enrichment of intersection of TNA targets and Sepsis significant protein

Fig. 16, 关注到 "Biosynthesis of amino acids" 通路,这一结果与文献 一致。此外,根据 Fig. 17, Phenylalanine 的存在受该通路调控 (Phenylalanine metabolism 在 Fig. 14 中富集)。

因此,这里建立了从差异蛋白到 TNA 治疗的差异表达基因的联系,又联系到了差异代谢物的分析 (7.1.1),而相应代谢物又联系到了肠道微生物 (Fig. 13)。

Figure 17为图 KEGG pathway of Biosynthesis of amino acids 概览。

(对应文件为 Figure+Table/hsa01230.png)

Figure 17: KEGG pathway of Biosynthesis of amino acids

hited_genes:
ENO1, TKT, ALDOB

7.4 蛋白质组学和代谢组学的关联性分析

见文献 4 。这部分,由于原作者 4 未上传代谢物的检测含量数据,因此无法重现代谢物和蛋白质的关联分析。不过,原作者已得出结论,即:

• The characteristic proteins and metabolites identified formed a complex network to depict the crucial immunometabolism linked to sepsis. Amino acid-related pathways, including phenylalanine metabolism, tyrosine metabolism and tryptophan biosynthesis, were illustrated to be essential

mechanisms of sepsis.

因此,蛋白质组学和代谢组学的联合表明,phenylalanine metabolism 是 Sepsis 关键通路之一。

以下为该文献⁴ 提供的 Figure:

Figure 18为图 LITERATURE Integrative network analysis of proteomics and untargeted metabolomics data 概览。

(对应文件为 Figure+Table/literature_omics_fig5.jpeg)

Figure 18: LITERATURE Integrative network analysis of proteomics and untargeted metabolomics data Figure 19为图 LITERATURE Schematic diagram of the crucial pathways 概览。

(对应文件为 Figure+Table/literature_omics_fig6.jpeg)

Figure 19: LITERATURE Schematic diagram of the crucial pathways

7.5 总结: TNA 治疗 Sepsis 可能涉及的肠道微生物-代谢物-蛋白质关联轴

- 以 Sepsis 差异代谢物(Tab. 4, Tab. 5) 和 gutMDisorder 数据库² 发现了 Sepsis 差异代谢物和肠道 菌的联系 (Fig. 13)。
- 上述代谢物(与肠道菌关联的)富集到了通路 Phenylalanine metabolism (Fig. 14)
- TNA 治疗靶点和 Sepsis 差异蛋白的交集共有 37 个基因 (Fig. 15)。
- 上述交集基因富集到通路 Biosynthesis of amino acids (Fig. 16), 涉及 Phenylalanine 及其相关化合物的调控。
- 文献中¹, 蛋白组学和代谢组学分析结果聚焦于 "Amino acid metabolism", 包含化合物 Phenylalanine 等 (Fig. 18, Fig. 19)。

因此, TNA 治疗 Sepsis 可能涉及的肠道微生物-代谢物-蛋白质(基因)关联轴:

- 肠道微生物: Lachnospiraceae
- 代谢物: Phenylacetylglutamine
- 基因 (蛋白): ENO1, TKT, ALDOB
- 通路: Biosynthesis of amino acids

8 附: 补充分析——铁死亡

补充分析: 筛选差异表达基因是否涉及与铁死亡相关的信号通路。

Ferroptosis^{5,6}

• In general, ferroptosis is a type of oxidative cell death driven by lipid peroxidation. Various oxidation and antioxidant pathways couple autophagy and membrane repair mechanisms to shape the process of

lipid peroxidation and plasma membrane damage during ferroptosis

8.1 铁死亡关联方法

铁死亡涉及的信号通路较为复杂,这里为了检测 TNA 治疗的 DEGs 是否涉及铁死亡,调研了涉及 Ferroptosis 检测的方法学文献。

Table 10为表格 Methods for Ferroptosis 概览。

(对应文件为 Figure+Table/Methods-for-Ferroptosis.csv)

注:表格共有 12 行 5 列,以下预览的表格可能省略部分数据;表格含有 12 个唯一'Title'。

.idTitle FullJ... Name Id BMC g... Explo... BMC g... 37430218Ran M... BMC g... Const... BMC g... 37259023 Chen ... BMC g... Compe... BMC g... Chen ... 36755220Nucle... $\operatorname{FerrD}...$ Nucle... Zhou ... 36305834BMC g... Const... BMC g... Shi W... 36414988 BMC g... Ident... BMC g... 35354376Chen ... BMC g... BMC g... Ferro... Xu Y|... 35042463Brief... Brief... Ferro... Tang ... 34553745BMC g... Ident... BMC g... Fan J... 35033021 BMC g... BMC g... Ident... Lin R... 34315405 Nucle... Lipid... Nucle... Lin W... 34048582 BMC g... Compa... BMC g... Zhang... 33952209

Table 10: Methods for Ferroptosis

其中, FerrDb V2⁷ 为 Nucleic Acids Res 2023 年的方法。

8.2 以 FerrDb V2 数据库富集分析

- FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations⁷
 - http://www.zhounan.org/ferrdb/current/

Table 11为表格 database FerrDb V2 概览。

(对应文件为 Figure+Table/database-FerrDb-V2.xlsx)

注:表格共有844行19列,以下预览的表格可能省略部分数据;表格含有4个唯一'term'。

Table 11: Database FerrDb V2

term	symbo	l.id	id	rcd	hgncid	ensgs	evidenc	etestin	pathwa	yconfi	exper	caution	unipr
Ferro	PTGS	2marke:	r1	Ferro	HGNC:	.ENSG0	.Simpl	Humai	nNA	Valid	0	NA	P35354
Ferro	CHAC	marke	r2	Ferro	HGNC:	.ENSG0	Up-	Humai	nNA	Valid	0	NA	Q9BUX1.
							re						
${\rm Ferro}$	SLC40	Anlarke:	r3	${\rm Ferro}$	HGNC:	.ENSG0	.Erast	Mice	NA	Valid	0	Used	Q9NP59
Ferro	TF	marke	r4	Ferro	HGNC:	.ENSG0	.Erast	Mice	NA	Valid	0	Used	P02787
Ferro	TFRC	marke	r5	Ferro	HGNC:	.ENSG0	.Erast	Mice	NA	Valid	0	Used	P02786
-				_		T		2.5.	27.4				D
Ferro	FTH1	marke	r6	Ferro	HGNC:	.ENSG0	.Erast	Mice	NA	Valid	0	Used	P02794
T.	CDV4	,	-	Б	HONO	EMGGO	D /	N 11 ·	A.T. A	3 7 1: 1	0		Dacaca
Ferro	GPX4	marke	r7	Ferro	HGNU:	.ENSG0	.Erast	Mice	NA	Valid	0	Used	P36969
Ferro	нсрв	1marlza	n Q	Forro	HCNC.	FNSCO	.Erast	Mico	NA	Valid	0	 Used	P04792
remo	пого	шатке	10	reno	mano.	.ENSGU	.Liasi	Mice	IVA	vanu	U		1 04/92
Ferro	NFE21	Marke	r9	Ferro	HGNC:	ENSG0	.Erast	Mice	NA	Valid	0	 Used	Q16236
10110	111 1121			10110	110110.			1,1100	1111	, allam			Q10200
Ferro	GPX4	marke	r10	Ferro	HGNC:	.ENSG0	Upreg	Rat	NA	Valid	0		P36969
Ferro					HGNC:			Humai		Valid		NA	P02794
							p						
Ferro	RPL8	driver	1	Ferro	HGNC:	.ENSG0	.Requi	Humai	nRPL8	Valid	0	NA	P62917
Ferro	IREB2	$2 \mathrm{driver}$	2	Ferro	HGNC:	.ENSG0	.Requi	Humai	nIREB2.	Valid	0	NA	P48200
Ferro	ATP51	Month of the second	3	Ferro	HGNC:	84NSG0	.Requi	Humai	nATP5M	[Valid	0	NA	P48201
Ferro	CS	${\rm driver}$	4	Ferro	HGNC:	.ENSG0	.Requi	Humai	nCS	Valid	0	NA	O75390
									:+				
							•••		•••				

Tab. 11 为以下分析所包含的所有 FerrDb V2 数据内容,以及相关文献来源证明等信息。

8.2.1 所有的 DEGs 与 FerrDb V2 的交集

Figure 20为图 Proportion of intersected genes of DEGs with Ferrdb 概览。

(对应文件为 Figure+Table/Proportion-of-intersected-genes-of-DEGs-with-Ferrdb.pdf)

Figure 20: Proportion of intersected genes of DEGs with Ferrdb

Table 12为表格 intersected genes of DEGs with Ferrdb 概览。

(对应文件为 Figure+Table/intersected-genes-of-DEGs-with-Ferrdb.xlsx)

注: 表格共有 140 行 19 列,以下预览的表格可能省略部分数据;表格含有 79 个唯一'symbol'。

Table 12: Intersected genes of DEGs with Ferrdb

term	symbol	.id	id	rcd	hgncid	ensgs	evidenc	etestin	pathwa	yconfi	exper	caution	unipr
Ferro	CHAC1	marke	er2	Ferro	HGNC:	.ENSG0	Up-	Human	NA	Valid	0	NA	Q9BUX1.
							re						
Ferro	HSPB1	marke	er8	Ferro	HGNC:	.ENSG0	.Erast	Mice	NA	Valid	0	Used	P04792
Ferro	NOX1	driver	7	Ferro	HGNC:	.ENSG0	.Suppr	Human	NOX1	Deduce	d)	 The	Q9Y5S8
Ferro	TP53	driver	20	Ferro	HGNC:	.ENSG0	.Inhib	Human	 TP53	Valid	0	p The	P04637
Ferro	TFR2	driver	28	Ferro	HGNC:	.ENSG0	.RNAi	Mice	 TFR2	Valid	0	a NA	Q9UP52
Forms	CT (20 A	\ duizzam	20	Eanna	HONO.	ENCCO	 DNA:	Miss	 CI (220	Wali d	0	NIA	00110110
Ferro	SLC38A	Adriver	29	Ferro	HGNC:	ENSG0		Mice		Valid	0	NA	Q9H2H9.

•••

term	symbol	.id	id	rcd	hgncid	ensgs	evidenc	etestin	pathwa	yconfi	exper	caution	unipr
Ferro	SLC1A	driver	30	Ferro	HGNC:	.ENSG0	.Pharm.	Mice	SLC1A	Valid	0	NA	Q15758
Ferro	CARS1	driver	33	Ferro	HGNC:	.ENSG0	.Requi	Human	CARS1	.Valid	0	NA	P49589
Ferro	TP53	driver	34	Ferro	HGNC:	.ENSG0	.Wild	Human	TP53	Valid	0	NA	P04637
Ferro	HMOX	ldriver	37	Ferro	HGNC:	.ENSG0	 .Zinc 	Human	 .HMOX	1Valid	0	Other	P09601
Ferro	TP53	driver	38	Ferro	HGNC:	.ENSG0		Mice	TP53	Valid	0	NA	P04637
Ferro	TP53	driver	39	Ferro	HGNC:	.ENSG0	.Incub	Human	 TP53 	Valid	0	NA	P04637
Ferro	SLC38A	driver	55	Ferro	HGNC:	.ENSG0	.The	Mice	SLC38.	.Screene	d)	NA	Q9H2H9
							g						
Ferro	GABAF	driver	65	Ferro	HGNC:	.ENSG0	.Poten	Mice	GABAI	RScreene	d)	NA	Q9H0R8
Ferro	WIPI1	driver	67	Ferro	HGNC:	.ENSG0	.Poten	Mice	WIPI1	.Screene	d)	NA	Q5MNZ9.

8.2.2 所有的 DEGs 的富集分析 (GSEA)

将 Fig. 3 的 DEGs 以 FerrDb V2 的基因集用于 GSEA 富集分析。

注:结果均不显著 (Tab. 13),仅用于参考 TNA 的治疗与 Ferroptosis 有哪些联系。

Figure 21为图 All DEGs of GSEA enrichment via FerrDb V2 概览。

(对应文件为 Figure+Table/All-DEGs-of-GSEA-enrichment-via-FerrDb-V2.pdf)

Figure 21: All DEGs of GSEA enrichment via FerrDb V2 $\,$

Table 13为表格 table of All DEGs of GSEA enrichment via FerrDb V2 概览。

(对应文件为 Figure+Table/table-of-All-DEGs-of-GSEA-enrichment-via-FerrDb-V2.xlsx)

注:表格共有3行13列,以下预览的表格可能省略部分数据;表格含有3个唯一'ID'。

Table 13: Table of All DEGs of GSEA enrichment via FerrDb V2

ID	Descr	setSize	enric	NES	pvalue	p.adjust	qvalue	rank	leadi	core	GeneR	Count
Ferro	Ferro	29	0.481	1.841	0.008	0.024	0.017	820	tags=	TSC22	66	19
Ferro	Ferro	28	0.288	1.092	0.367	0.551	0.387	1096	tags=	${\rm SLC7A}$	61	17
Ferro	Ferro	34	0.221	0.869	0.635	0.635	0.445	842	tags=	CHAC1	41	14

8.2.3 仅 Ferroptosis 相关基因的富集分析

注:以下富集是过拟合的,因为预先根据 FerrDb 数据筛选了基因用于分析。仅供参考。

Figure 22为图 KEGG enrichment over Fitting 概览。

(对应文件为 Figure+Table/KEGG-enrichment-over-Fitting.pdf)

Figure 22: KEGG enrichment over Fitting

Table 14为表格 tables of KEGG enrichment over Fitting 概览。

(对应文件为 Figure+Table/tables-of-KEGG-enrichment-over-Fitting.xlsx)

注:表格共有 184 行 9 列,以下预览的表格可能省略部分数据;表格含有 184 个唯一'ID'。

Table 14: Tables of KEGG enrichment over Fitting

ID	Descr	GeneR	BgRatio	pvalue	p.adjust	qvalue	geneID	Count
hsa05208	Chemi	10/63	223/8586	4.372	0.000	0.000	7422/	10
hsa04216	Ferro	5/63	41/8586	1.106	0.001	0.000	55240	5
hsa04211	Longe	5/63	89/8586	0.000	0.023	0.018	83667	5
hsa05418	Fluid	6/63	139/8586	0.000	0.023	0.018	7422/	6
hsa04931	Insul	5/63	108/8586	0.001	0.033	0.026	6513/	5
hsa05166	Human	7/63	222/8586	0.001	0.033	0.026	6513/	7
hsa04136	Autop	3/63	32/8586	0.001	0.033	0.026	23710	3
hsa05230	Centr	4/63	70/8586	0.001	0.033	0.026	6513/	4
hsa04137	Mitop	4/63	72/8586	0.001	0.033	0.026	23710	4
hsa04152	AMPK	5/63	121/8586	0.001	0.033	0.026	5468/	5
hsa04115	p53 s	4/63	74/8586	0.002	0.033	0.026	83667	4
hsa03320	PPAR	4/63	75/8586	0.002	0.033	0.026	5468/	4
hsa05219	Bladd	3/63	41/8586	0.003	0.046	0.036	7422/	3
hsa04151	PI3K	8/63	359/8586	0.004	0.058	0.045	7422/	8
hsa05417	Lipid	6/63	215/8586	0.004	0.058	0.045	5468/	6

Figure 23为图 GO enrichment over Fitting 概览。

(对应文件为 Figure+Table/GO-enrichment-over-Fitting.pdf)

Figure 23: GO enrichment over Fitting

Figure 24为图 visualization of pathway of Ferroptosis over Fitting 概览。

(对应文件为 Figure+Table/hsa04216.pathview.png)

Figure 24: Visualization of pathway of Ferroptosis over Fitting

8.3 总结

- TNA 治疗的 DEGs 包含一部分铁死亡 (Ferroptosis) 相关的基因 (这些基因见 Tab. 12, 包含通路注释和文献佐证等内容), 但是关联并不密切 (不显著) (Fig. 21)。
- 其余分析供参考。

Reference

- 1. Chen, Q. et al. Integrative analysis of metabolomics and proteomics reveals amino acid metabolism disorder in sepsis. Journal of translational medicine 20, (2022).
- 2. Cheng, L., Qi, C., Zhuang, H., Fu, T. & Zhang, X. GutMDisorder: A comprehensive database for dysbiosis of the gut microbiota in disorders and interventions. *Nucleic Acids Research* 48, (2019).
- 3. Picart-Armada, S., Fernandez-Albert, F., Vinaixa, M., Yanes, O. & Perera-Lluna, A. FELLA: An r package to enrich metabolomics data. *BMC Bioinformatics* **19**, 538 (2018).
- 4. Liang, X. et al. Serum proteomics reveals disorder of lipoprotein metabolism in sepsis. Life science alliance 4, (2021).
- 5. Tang, D., Chen, X., Kang, R. & Kroemer, G. Ferroptosis: Molecular mechanisms and health implications. *Cell research* 31, 107–125 (2021).
- 6. Chen, X., Kang, R., Kroemer, G. & Tang, D. Ferroptosis in infection, inflammation, and immunity. *The Journal of experimental medicine* **218**, (2021).
- 7. Zhou, N. et al. FerrDb v2: Update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations. *Nucleic acids research* 51, D571–D582 (2023).