Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

18 de janeiro de 2018

Plano de Aula

- Revisão
 - O Problema da Parada

Método da Diagonalização

Sumário

- Revisão
 - O Problema da Parada

2 Método da Diagonalização

Descrição

Dadas duas linguagem L_1 e L_2 , identificar se $L_1 = L_2$.

Problema aplicado a AFDs

$$EQ_{AFD} = \{ \langle A, B \rangle \mid A \in B \text{ são AFDs e } L(A) = L(B) \}$$

Estratégia de Resolução

Decidir se $\langle A, B \rangle \in EQ_{AFD}$.

Teorema 4.5

EQ_{AFD} é uma linguagem decidível.

Lema 4.1

Iremos construir um AFD C a partir de A e B de forma que C aceita as cadeias que são aceitas por A ou por B, mas não por ambas. Consequentemente, se A e B reconhecem a mesma linguagem, C não aceitará nada. A linguagem de C é

$$L(C) = \left(L(A) \cap \overline{L(B)}\right) \cup \left(\overline{L(A)} \cap L(B)\right)$$

Corolário

$$L(C) = \emptyset \leftrightarrow L(A) = L(B)$$

FIGURA 4.6

A diferença simétrica de L(A) e L(B)

Teorema 4.5

 EQ_{AFD} é uma linguagem decidível.

Prova

A seguinte MT F decide EQ_{AFD} .

 $F = \text{``Sobre a entrada } \langle A, B \rangle$, em que $A \in B$ são AFDs:

- Construa o AFD C conforme descrito no Lema 4.1;
- 2 Rode MT T do Teorema 4.4 sobre a entrada $\langle C \rangle$;
- Se T aceita, aceite. Caso contrário, rejeite."

Teoremas sobre GLC

Teorema 4.7

A_{GLC} é uma linguagem decidível.

Teorema 4.8

 V_{GLC} é uma linguagem decidível.

Teorema 4.9

Toda LLC é decidível.

Cuidado!

EQ_{GLC} não é uma linguagem decidível.

Relacionamento entre as classes de linguagens

FIGURA **4.10**

O relacionamento entre classes de linguagens

Problema da aceitação para MT

Dada uma MT M e uma cadeia de entrada ω , identificar se M aceita ω .

Problema

 $A_{MT} = \{\langle M, \omega \rangle \mid M \text{ \'e uma MT que aceita a cadeia de entrada } \omega \}$

Teorema 4.11

AMT é indecidível.

Considerações sobre o Teorema 4.11

 A_{MT} é Turing-reconhecível. Pois é possível construir U da seguinte forma:

U= "Sobre a entrada $\langle M,\omega \rangle$, em que M é uma MT e ω uma cadeia:

- Simule M sobre a entrada ω ;
- Se M em algum momento entra no seu estado de aceitação, aceite; se M em algum momento entra em seu estado de rejeição, rejeite."

Problema da Parada

Não é possível construir uma MT que decida A_{MT} .

Máquina de Turing Universal

É uma MT capaz de simular qualquer outra MT.

A MT *U* apresentada anteriormente é uma MT Universal.

Contribuição importante

A MT Universal estimulou o desenvolvimento de computadores com programas armazenado.

Figura: Arquitetura de von Neumann (1945).

Sumário

- Revisão
 - O Problema da Parada

Método da Diagonalização

Contribuição

Criou o método da diagonalização em 1873.

Quem?

George Cantor (1845-1918)

Matemático russo.

Problema

Se temos dois conjuntos infinitos, como podemos dizer se um conjunto é maior que o outro (ou se eles têm o mesmo tamanho)?

Problema

Se temos dois conjuntos infinitos, como podemos dizer se um conjunto é maior que o outro (ou se eles têm o mesmo tamanho)?

Conjuntos finitos

Podemos utilizar o método da contagem.

Problema

Se temos dois conjuntos infinitos, como podemos dizer se um conjunto é maior que o outro (ou se eles têm o mesmo tamanho)?

Conjuntos finitos

Podemos utilizar o método da contagem.

Proposta de Cantor

Dois conjuntos finitos têm o mesmo tamanho se os elementos de um deles puder ser emparelhados com os elementos do outro. Basta estendermos essa ideia para os conjuntos infinitos!

Função um-para-um

Sejam dois conjuntos A e B e uma função f de A para B. Dizemos que f é **um-para-um** se ela nunca mapeia dois elementos diferentes para um mesmo lugar (ou seja, $f(a) \neq f(b)$ sempre que $a \neq b$).

Função um-para-um

Sejam dois conjuntos A e B e uma função f de A para B. Dizemos que f é **um-para-um** se ela nunca mapeia dois elementos diferentes para um mesmo lugar (ou seja, $f(a) \neq f(b)$ sempre que $a \neq b$).

Função Sobrejetora

Uma função f é **sobrejetora** se ela atinge todo elemento de B (ou seja, se para todo $b \in B$ existir um $a \in A$ tal que f(a) = b).

Correspondência

Uma correspondência é uma função que é tanto um-para-um, quanto sobrejetora. Em uma correspondência $f:A\to B$, todo elemento de A é mapeado para um único elemento de B e cada elemento de B tem um único elemento de A mapeando para ele.

Correspondência

Uma correspondência é uma função que é tanto um-para-um, quanto sobrejetora. Em uma correspondência $f:A\to B$, todo elemento de A é mapeado para um único elemento de B e cada elemento de B tem um único elemento de A mapeando para ele.

Tamanho de conjuntos

Dois conjuntos A e B são de **mesmo tamanho** se existe uma correspondência de A para B.

Exemplo 1

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $P = \{x \mid x \text{ \'e par }\}$

Exemplo 1

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $P = \{x \mid x \text{ \'e par }\}$

lacksquare N e P têm o mesmo tamanho

Exemplo 1

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $P = \{x \mid x \text{ é par } \}$

N e P têm o mesmo tamanho

• É possível encontrar uma correspondência entre \mathbb{N} e P;

Exemplo 1

- $\mathbb{N} = \{1, 2, 3, ...\}$
- $P = \{x \mid x \text{ \'e par }\}$

\mathbb{N} e P têm o mesmo tamanho

- É possível encontrar uma correspondência entre № e P;
- $f: \mathbb{N} \to P$ em que f(n) = 2n;

n	f(n)
1	2
2	4
3	6
÷	÷

Figura: Visualização de f através de uma tabela.

Considerações

• Pode parecer contra-intuitivo, pois $P \subseteq \mathbb{N}$;

Considerações

- Pode parecer contra-intuitivo, pois $P \subseteq \mathbb{N}$;
- Mas é possível fazer a correspondência entre os conjuntos;

Considerações

- Pode parecer contra-intuitivo, pois $P \subseteq \mathbb{N}$;
- Mas é possível fazer a correspondência entre os conjuntos;
- Logo, declaramos que esses conjuntos têm o mesmo tamanho.

Considerações

- Pode parecer contra-intuitivo, pois $P \subseteq \mathbb{N}$;
- Mas é possível fazer a correspondência entre os conjuntos;
- Logo, declaramos que esses conjuntos têm o mesmo tamanho.

Conjunto Contável

Um conjunto A é **contável** se é finito ou se tem o mesmo tamanho de \mathbb{N} .

Exemplo 2

Seja $\mathcal{Q}=\{m/n\mid m,n\in\mathbb{N}\}$ o conjunto dos racionais positivos.

Exemplo 2

Seja $\mathcal{Q} = \{m/n \mid m, n \in \mathbb{N}\}$ o conjunto dos racionais positivos.

Q é contável (curiosamente)

Logo $\mathcal Q$ é finito ou tem o mesmo tamanho de $\mathbb N$.

Considerações

 Ao ver o exemplo de Q, há uma ligeira impressão de que qualquer conjunto é contável;

Considerações

- Ao ver o exemplo de Q, há uma ligeira impressão de que qualquer conjunto é contável;
- Mas existe conjuntos incontáveis;

Considerações

- Ao ver o exemplo de Q, há uma ligeira impressão de que qualquer conjunto é contável;
- Mas existe conjuntos incontáveis;
- Cantor provou que R é incontável introduzindo o método da diagonalização.

Considerações

- Ao ver o exemplo de Q, há uma ligeira impressão de que qualquer conjunto é contável;
- Mas existe conjuntos incontáveis;
- Cantor provou que R é incontável introduzindo o método da diagonalização.

Teorema 4.17

 \mathbb{R} é incontável.

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria da Computação Bacharelado em Ciência da Computação

18 de janeiro de 2018

