■ t.md

CSE141L Lab 3 Caching Optimizations

. Laure a	Ot and and ID
Name:	Student ID:

Instructions

- Complete this worksheet while reading/working through the lab write up. The worksheet doesn't make sense without the lab.
- The point values are listed for each question. Altering the size of the cells will cost you 1 point. There are 75 points total for the write up portion of the lab.

Cache and dataset characteristics

P1 (4pt) Find out the dimensions (number of data elements) of the following tensors/vectors used in fc_layer_t::activate for the cifar100 dataset and fill the following table

Tensor/Vector	Number of Data Elements
in	
out	
weights	
activation_input	

P2 (4pt) Calculate the size (in Bytes) of the following tensors/vectors used in fc_layer_t::activate for the cifar100 dataset and fill the following table

Tensor/Vector	Size in Bytes
in	
out	
weights	
activation_input	

P3 (4pt) Refer to the lecture slides to find the cache sizes for the skylake processor we are using for this class.

Cache level	Size in Bytes			
L1 Cache				
L2 Cache				
L3 Cache				

P4 (4pt) How much of each of these data structures used in fc_layer_t::activate() will fit in the L1 and L2 cache?

	tensor	% that'll fit in L1	% that'll fit in L2	
--	--------	---------------------	---------------------	--

tensor	% that'll fit in L1	% that'll fit in L2
in		
out		
weights		
activation_input		

Understanding Tensor_t

Given tensor_t<double> foo(tdsize(4,3,5,7)), answer the following (double are 8 bytes):

P1 (1pt) How many elements are there in **foo**?

P2 (1pt) What's the linear index of element (1,1,1,1)?

P3 (1pt) How far apart are elements that differ by 1 in each dimension?

dim.	distance in bytes	distance in linear index
Х		
У		
Z		
b		

Tier 1: Reordering and Tiling loops in fc_layer_t::activate

P1 (4pt) Change the order of loops from b i n to b n i in fc_layer_t::activate and report the speedup.

Speedup after loop reordering : _____

P2 (4pt) Block the loop n in fc_layer_t::activate with the tile sizes 1, 2, 4, 8, 16 and fill out the table below.

Dataset	Step size	Blocked implementation time	Speedup vs step size == 1
cifar100	1		
cifar100	2		
cifar100	4		
cifar100	8		
cifar100	16		

P3 (4pt) In a single line graph, plot the speed up against the different block sizes for blocking the loop **n** in **fc_layer_t::activate**. Block size is the independent vairable.

Your graph here

localhost:6419 2/4

2/10/2020 t.md - Grip

P4 (4pt) Cons	sider the bloc	ksize which gave maximum sp	eedup in the previous question I	P4 and fill out	the following table
1 Rase impl	ementation ti	me :			
-		your optimized solution :			
		1 misses :			
		misses :			
4. Todi laste	St Solution Li				
Tier 2: Op	timizing	calc_grads			
P1 (4pt) Chan		of loops from b i n to b n	i in the the triply-nested loop	n fc_layer	_t::calc_grads and
Speedup after	loop reorderi	ing :			
P2 (4pt) Block following table		he the triply-nested loop in fo	c_layer_t::calc_grads with	different step	sizes and fill out the
Function	Step size	Base implementation time	Blocked implementation time	Speedup	
calc_grads					
fc_layer_t			size for blocking the loop n in tl gives maximum speedup. Block		
Best block size	e:				
Tier 3: Ap	plying M	ore Optimizations			
P1 (5pt) Give	a brief descri	iption of two additional loops y	ou tried blocking. Report the spo	eedup you acl	nieved for each one.
Your ar	nswer here				

localhost:6419

2/10/2020 t.md - Grip

P2 (5pt) Give a brief description of an additional optimization you implemented to speedup training.

Your answer here

Lab Reflection

Follow this link 24 hours before or after the due date to fill out the reflection survey. It is worth 5% of your lab grade.

https://forms.gle/VUkpAdC6gUQC94Fd8