Theorem 1. If $\mathcal{G} = (G, \mathcal{L})$ is the minimizing right resolving presentation of an irreducible sofic shift X and X is and N-step shift of finite type, then $X_G \cong X_G$.

Proof. Let x, y be walks in X_G . If $\mathcal{L}_{\infty}(x) = \mathcal{L}_{\infty}(y)$, then for any i, the paths $x_{[i-n,i-1]}$ and $y_{[i-n,i-1]}$ present the same word. Because that word is of length N, the word is synchronizing for \mathcal{G} (from 3.4.17), so those paths end at the same vertex. Since $\mathcal{L}(x_{[i]}) = \mathcal{L}(y_{[i]})$, \mathcal{G} is right resolving, and $x_{[i-n,i-1]}$ and $y_{[i-n,i-1]}$ end at the same vertex, then $x_{[i]} = y_{[i]}$ and hence x = y, so \mathcal{L}_{∞} is injective. By definition, \mathcal{L}_{∞} is surjective. Therefore, \mathcal{L}_{∞} is bijective and a conjugacy from X_G to X_G .

Definition 2. A graph G is a finite set of verticies $\mathcal{V} = \mathcal{V}(G)$ and a finite set of edges $\mathcal{E} = \mathcal{E}(G)$ with each $e \in \mathcal{E}$ starting at a vertex $i(e) \in \mathcal{V}$ and terminating at a vertex $t(e) \in \mathcal{V}$. Note that two edges can start at terminate at the same vertex.

Definition 3. Let G and H be graphs. A graph isomorphism from G to H is a bijective pair of maps $\partial \Phi : \mathcal{V}(G) \to \mathcal{V}(H)$ and $\Phi : \mathcal{E}(G) \to \mathcal{E}(H)$ such that $i(\Phi(e)) = \partial \Phi(i(e))$ and $t(\Phi(e)) = \partial \Phi(t(e))$ for all $e \in \mathcal{E}(G)$. If there exists a graph isomorphism between G and H, then G and H are graph isomorphic and is denoted $G \cong H$.

Definition 4. Let $\mathcal{G} = (G, \mathcal{L}_G)$ and $\mathcal{H} = (H, \mathcal{L}_H)$ be labeled graphs. A label-graph isomorphism is a graph isomorphism $(\partial \Phi, \Phi) : G \to H$ such that $\mathcal{L}_H(\Phi(e)) = \mathcal{L}_G(e)$ for all $e \in \mathcal{E}(G)$, which is denoted $(\partial \Phi, \Phi) : \mathcal{G} \to \mathcal{H}$. If there exists a label-graph isomorphism between \mathcal{G} and \mathcal{H} , then \mathcal{G} and \mathcal{H} are label-graph isomorphic (or just isomorphic) and is denoted $\mathcal{G} \cong \mathcal{H}$.

Theorem 5. If $(\partial \Phi, \Phi) : G \to H$ is a graph isomorphism from G to H, then $(\partial \Phi^{-1}, \Phi^{-1}) : H \to G$ is a graph isomorphism from H to G.

Proof. For an edge $e_G \in \mathcal{E}(G)$, we have

$$\partial\Phi(i(e)) = i(\Phi(e))$$
$$\partial\Phi^{-1}(\partial\Phi(i(e))) = \partial\Phi^{-1}(i(\Phi(e)))$$
$$i(e) = \partial\Phi^{-1}(i(\Phi(e)))$$

Hence, for an edge $e_H \in \mathcal{E}(H)$, $\Phi^{-1}(e_H) \in \mathcal{E}(G)$ so

$$i(\Phi^{-1}(e_H)) = \partial \Phi^{-1}(i(\Phi(\Phi^{-1}(e_H))))$$

= $\partial \Phi^{-1}(i(e_H))$

A similar argument shows that $t(\Phi^{-1}(e_H)) = \partial \Phi^{-1}(t(e))$.

Theorem 6. Let $\mathcal{G} = (G, \mathcal{L}_G)$ and $\mathcal{H} = (H, \mathcal{L}_H)$ be labeled graphs. If $\mathcal{G} \cong \mathcal{H}$, then $X_{\mathcal{G}} = X_{\mathcal{H}}$.

Proof. For $x \in \mathsf{X}_{\mathcal{G}}$, there exists a $y \in \mathsf{X}_{G}$ such that $x_i = \mathcal{L}_{G}(y_i) = \mathcal{L}_{H}(\Phi(y_i))$. Note that for all $i \in \mathbb{Z}$,

$$t(y_i) = i(y_{i+1})$$
$$\partial \Phi(t(y_i)) = \partial \Phi(i(y_{i+1}))$$
$$t(\Phi(y_i)) = i(\Phi(y_{i+1}))$$

so $\Phi_{\infty}(y) \in X_H$ and therefore $x = (\mathcal{L}_H \circ \Phi)_{\infty}(y) \in X_H$.