

Task History

Initiating Search

August 14, 2025, 11:19 AM

Search:

Filtered By:

Yield: Reaction Mapping: 90-100%, 80-89%, 70-79% Mapping Data Available

Catalyst: Palladium diacetate,

Tris(dibenzylideneacetone)dipalladium, Palladium, tris[μ -[(1,2- η :4,5- η)-(1E,4E)-1,5-diphenyl-1,4-pentadien-3-one]]di-, compd. with trichloromethane (1:1), Palladium, [7,9-bis[2,6-bis(1-methylethyl)phenyl]-7,9-dihydro-8H-acenaphth[1,2-d]imidazol-8-ylidene]bromo[2-(4,5-dihydro-4,4-

dimethyl-2-oxazolyl-κ N^3)-1-naphthalenyl-

к*C*]-, (SP-4-4)-, Bis(tri-tert-

butylphosphine)palladium, Palladium, Palladium, bromo[dicyclohexyl[3-(1,1-dimethylethoxy)-6-methoxy-2',6'-bis(1-methylethyl)[1,1'-biphenyl]-2-yl- $\kappa \mathcal{L}^{1}$]phosphine- κP][4-[[2-

(trimethylsilyl)ethoxy]carbonyl]phenyl]-, (*SP*-4-2)-, Stereoisomer of [(4 *S*,5*S*)-1,3-bis[2,6-bis(1-methylethyl)phenyl]-4,5-

diphenyl-2-

imidazolidinylidene]chloro[(1,2,3-η)-1-phenyl-2-propen-1-yl]palladium

Document

Type:

Publication

2023 to 2024

Journal

Year:

Structure Match: Substructure

Search Tasks

Task	Result Type	View
Exported: Returned Reaction Results + Filters (1,278)	■ Reactions	View Results

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.

Reactions (100)

View in CAS SciFinder

📜 Suppliers (62)

Steps: 1 Yield: 76%

31-614-CAS-36922435

1.1 Reagents: Potassium carbonate

Catalysts: Palladium diacetate, Tri-tert-butylphosphine

Solvents: Toluene; 24 h, reflux

Suppliers (93)

Experimental Protocols

Molecular design of phenazine-5,10-diyl-dibenzonitriles and the impact on their thermally activated delayed fluorescence properties

📜 Suppliers (26)

By: Pueschel, Dietrich; et al

Journal of Materials Chemistry C: Materials for Optical and Electronic Devices (2023), 11(26), 8982-8991.

31-614-CAS-35114301

Steps: 1 Yield: 76% Reagents: Potassium tert-butoxide, Tri-tert-butylphosphine

Catalysts: Tris(dibenzylideneacetone)dipalladium

Solvents: Toluene; 15 min, rt

1.2 Reagents: Tri-tert-butylphosphine Solvents: Toluene; 18 h, 110 °C

Experimental Protocols

A general arene C-H functionalization strategy via electron donor-acceptor complex photoactivation

By: Dewanji, Abhishek; et al

Nature Chemistry (2023), 15(1), 43-52.

Steps: 1 Yield: 76%

31-614-CAS-35774671

Steps: 1 Yield: 76%

Reagents: Lithium bis(trimethylsilyl)amide Catalysts: Tris(dibenzylideneacetone)dipalladium, [2',6'-Bis(1-

methylethoxy)[1,1'-biphenyl]-2-yl]dicyclohexylphosphine

Solvents: 1,4-Dioxane; rt; 24 h, 100 °C

Experimental Protocols

Machine-Learning Classification for the Prediction of Catalytic Activity of Organic Photosensitizers in the Nickel(II)-Salt-**Induced Synthesis of Phenols**

By: Noto, Naoki; et al

Angewandte Chemie, International Edition (2023), 62(11), e202219107.

Scheme 4 (1 Reaction)

Suppliers (77) Suppliers (85) Suppliers (4)

31-614-CAS-36413341

Steps: 1 Yield: 76%

Solvents: Dimethylformamide; overnight, 60 °C

1.2 Reagents: Hydrogen Catalysts: Palladium Solvents: Methanol; 3 h, rt

Reagents: Potassium carbonate

Experimental Protocols

Design, Synthesis, and Evaluation of (R)-8-((Tetrahydrofuran-2-yl)methyl)pyrido[2,3-d]pyrimidin-7-ones as Novel Selective ACK1 Inhibitors to Combat Acquired Resistance to the Third-Generation EGFR Inhibitor

By: Li, Qian; et al

Journal of Medicinal Chemistry (2023), 66(10), 6905-6921.

Scheme 5 (1 Reaction)

31-614-CAS-43376620

Steps: 1 Yield: 76%

Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, X-Phos

Solvents: Toluene; 10 - 30 min, 150 °C

Experimental Protocols

Microwave-Assisted Buchwald-Hartwig Double Amination: A Rapid and Promising Approach for the Synthesis of TADF Compounds

By: Mohd Jamel, Nor Shafiq; et al

ACS Omega (2024), 9(51), 50446-50457.

Scheme 6 (1 Reaction)

31-614-CAS-43159476

Steps: 1 Yield: 76%

1.1 Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine]

Solvents: 1,4-Dioxane; rt → 90 °C; 24 h, 90 °C

Experimental Protocols

Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of Fused Heteroarenes

By: Luo, Chenguang; et al

Journal of the American Chemical Society (2024), 146(51), 35043-35056.

Scheme 7 (1 Reaction)

📜 Suppliers (83)

31-614-CAS-36261971

Steps: 1 Yield: 75%

1.1 **Reagents:** Sodium *tert*-butoxide

Catalysts: Palladium diacetate, Tri-tert-butylphosphonium

tetrafluoroborate

Solvents: Toluene; overnight, 105 °C

Experimental Protocols

V-shaped donor-acceptor organic emitters. A new approach towards efficient TADF OLED devices

By: Derkowski, Wojciech; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(19), 2815-2818.

Scheme 8 (1 Reaction)

+

📜 Suppliers (96)

31-614-CAS-43376637

Steps: 1 Yield: 75%

1.1 **Reagents:** Sodium *tert*-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, X-Phos

Solvents: Toluene; 30 min, 130 °C

Experimental Protocols

Microwave-Assisted Buchwald-Hartwig Double Amination: A Rapid and Promising Approach for the Synthesis of TADF Compounds

By: Mohd Jamel, Nor Shafiq; et al

ACS Omega (2024), 9(51), 50446-50457.

Scheme 9 (1 Reaction)

 \rightarrow

📜 Suppliers (74)

Steps: 1 Yield: 75%

1.1 Reagents: Sodium tert-butoxide, 2'-(Dicyclohexylphosphino)-

N,N-dimethyl[1,1'-biphenyl]-2-amine

Catalysts: Tris(dibenzylideneacetone)dipalladium

Solvents: Toluene; rt; 16 h, 95 °C

1.2 Reagents: Ammonium chloride

Solvents: Water

Experimental Protocols

Iron-Catalyzed Synthesis of Conformationally Restricted Bicyclic N-Heterocycles via [2+2]-Cycloaddition: Exploring Ring Expansion-Mechanistic Insights and Challenges

By: Hertwig, Leif E.; et al

ACS Catalysis (2023), 13(9), 6416-6429.

Scheme 10 (1 Reaction)

$$\rightarrow$$

N-O

Double bond geometry shown

31-614-CAS-40129215

1.1 Catalysts: Palladium diacetate, (-)-BINAP

Solvents: Toluene; 20 min, rt

1.2 Reagents: Cesium carbonate Solvents: Toluene; 5 min, rt

1.3 5 min, rt; 18 h, 60 °C

Experimental Protocols

Steps: **1** Yield: **75%**

Pd-Catalyzed Asymmetric Amination of Enamines: Expedient Synthesis of Structurally Diverse N-C Atropisomers

By: Zhang, Peng; et al

ACS Catalysis (2023), 13(11), 7680-7690.

Scheme 11 (1 Reaction)

Suppliers (32)

Suppliers (109)

Steps: 1 Yield: 75%

Steps: **1** Yield: **75%**

Steps: 1 Yield: 75%

Isomer and substituent engineering of TADF emitters toward tunable room-temperature phosphorescence

By: Feng, Quanyou; et al

Chemical Engineering Journal (Amsterdam, Netherlands) (2023), 471, 144352.

31-614-CAS-37385835

1.1 Reagents: Sodium tert-butoxide

Catalysts: Palladium diacetate, Tri-tert-butylphosphonium

tetrafluoroborate

Solvents: Toluene; 24 h, 120 °C; 120 °C → rt

1.2 Solvents: Water; rt

Experimental Protocols

Scheme 12 (1 Reaction)

Br E

Double bond geometry shown

Double bond geometry shown

Steps: 1 Yield: 75%

1.1 Reagents: Cesium carbonate

Catalysts: 2,2'-Bipyridine, Tris(dibenzylideneacetone)dipall

adium

Solvents: Tetrahydrofuran; 24 h, 50 °C

Experimental Protocols

[3+2] Cycloaddition of Vinyl Cyclopropane and Hydroxy lamines via Isocynate Intermediate to y-Lactams

By: Huang, Xiaobing; et al

Chinese Journal of Chemistry (2023), 41(16), 1937-1942.

Scheme 13 (1 Reaction)

Double bond geometry shown

31-614-CAS-40129296

Steps: **1** Yield: **75%**

1.1 Reagents: Potassium carbonate, Sodium hydroxide Catalysts: Palladium diacetate, (-)-BINAP Solvents: Toluene, 1,4-Dioxane; 18 h, 60 °C

Experimental Protocols

Pd-Catalyzed Asymmetric Amination of Enamines: Expedient Synthesis of Structurally Diverse N-C Atropisomers

By: Zhang, Peng; et al

ACS Catalysis (2023), 13(11), 7680-7690.

Scheme 14 (1 Reaction)

📜 Suppliers (68)

Steps: 1 Yield: 75%

Steps: **1** Yield: **75%**

Steps: 1 Yield: 75%

31-614-CAS-39519123

1.1 Reagents: Cesium carbonate

Solvents: 1,4-Dioxane; 2 h, 110 °C

1.2 **Catalysts:** Palladium diacetate, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine] **Solvents:** 1,4-Dioxane; overnight, 110 °C

1.3 Reagents: Ammonium chloride Solvents: Water

Experimental Protocols

Synthesis of highly functionalized dihydroquinolinones via a tandem benzylation/intramolecular C-N coupling strategy

By: Gao, Pei-Sen; et al

Tetrahedron (2024), 155, 133865.

Scheme 15 (1 Reaction)

Suppliers (67)

Steps: 1 Yield: 75%

Absolute stereochemistry shown

Steps: 1 Yield: 75%

1.1 Reagents: Potassium carbonate

Catalysts: Palladium diacetate, Tris(2-furyl)phosphine, Bicyclo [2.2.1]hept-2-ene-2-carboxylic acid, methyl ester, (1 *R*,4 *R*)-

Solvents: Acetonitrile; 12 h, 100 °C

Experimental Protocols

Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides

By: Tian, Qingyu; et al

Angewandte Chemie, International Edition (2024), 63(41), e202409366.

Scheme 16 (1 Reaction)

Double bond geometry shown

31-614-CAS-35547330

1.1 Catalysts: 1,1-Bis(diphenylphosphino)ferrocene, Tris (dibenzylideneacetone)dipalladium Solvents: Dichloromethane; 24 h, 40 °C

Experimental Protocols

Steps: **1** Yield: **75%**

Palladium-catalyzed [4 + 2] cycload dition of amido-tethered allylic carbonates with oxazol-5-(4H)-ones: synthesis of piperi dine-2,6-dione derivatives

By: Wang, Lan; et al

Organic Chemistry Frontiers (2023), 10(3), 813-818.

Scheme 17 (1 Reaction)

📜 Suppliers (48)

Steps: 1 Yield: 75%

31-614-CAS-38625340

1.1 Reagents: Cesium carbonate

Catalysts: Palladium diacetate, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine]

Solvents: 1,4-Dioxane; overnight, rt → 90 °C

Experimental Protocols

Fragment-Based Screening Identifies New Quinazolinone-Based Inositol Hexakisphosphate Kinase (IP6K) Inhibitors

By: Heitmann, Tyler; et al

ACS Medicinal Chemistry Letters (2023), 14(12), 1760-1766.

Scheme 18 (1 Reaction)

► Suppliers (78)

Suppliers (85)

Steps: 1 Yield: 75%

31-614-CAS-42625416

Steps: 1 Yield: 75%

1.1 Reagents: Isoamyl nitrite; 12 h, 60 °C

1.2 Reagents: Silver tetrafluoroborate

Catalysts: Palladium diacetate, Glycine, N-[(1,6-dihydro-5-

nitro-6-oxo-2-pyridinyl)carbonyl]-, methyl ester

Solvents: 1,1,1,3,3,3-Hexafluoro-2-propanol; 24 h, 100 °C

Experimental Protocols

Efficient Construction of β -Arylethylamines via Selective C (sp3)-H Arylation of Aliphatic Amines

By: Tu, Hua; et al

ACS Catalysis (2024), 14(23), 17535-17546.

Scheme 19 (1 Reaction)

Double bond geometry shown

31-614-CAS-40129285

Steps: 1 Yield: 75%

1.1 Reagents: Potassium carbonate, Sodium hydroxide

Catalysts: Palladium diacetate, (-)-BINAP Solvents: Toluene, 1,4-Dioxane; 18 h, 40 °C

Experimental Protocols

Pd-Catalyzed Asymmetric Amination of Enamines: Expedient Synthesis of Structurally Diverse N-C Atropisomers

By: Zhang, Peng; et al

ACS Catalysis (2023), 13(11), 7680-7690.

Scheme 20 (1 Reaction)

Suppliers (69)

31-614-CAS-36610941

Steps: 1 Yield: 75%

1.1 **Reagents:** Sodium *tert*-butoxide, Tri-*tert*-butylphosphonium

tetrafluor oborate

Catalysts: Palladium diacetate Solvents: Toluene; 30 h, 150 °C

Experimental Protocols

Molecular engineering of locked alkyl aryl carbonyl-based thermally activated delayed fluorescence emitters via a cascade C-H activation process

By: Zhang, Yunxi; et al

Chemical Science (2023), 14(19), 5125-5131.

Scheme 21 (1 Reaction)

■ Suppliers (19)

Steps: 1 Yield: 75%

1.1 Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, [2',6'-Bis(1-methylethoxy)[1,1'-biphenyl]-2-yl]dicyclohexylphosphine

Solvents: Toluene; overnight, 120 °C

Experimental Protocols

Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters

By: Wu, Lin; et al

Angewandte Chemie, International Edition (2024), 63(18), e202402020.

Scheme 22 (1 Reaction)

Suppliers (68)

➤ Suppliers (71)

31-614-CAS-39519097

Steps: **1** Yield: **75%**

1.1 Reagents: Cesium carbonate Solvents: 1,4-Dioxane; 1 h, 110 °C

1.2 **Catalysts:** Palladium diacetate, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine]

Solvents: 1,4-Dioxane; 10 h, 110 °C

1.3 Reagents: Ammonium chloride Solvents: Water

Experimental Protocols

Synthesis of highly functionalized dihydroquinolinones via a tandem benzylation/intramolecular C-N coupling strategy

By: Gao, Pei-Sen; et al

Tetrahedron (2024), 155, 133865.

Scheme 23 (1 Reaction)

► Suppliers (67)

► Suppliers (70)

Steps: **1** Yield: **75%**

Steps: 1 Yield: 75%

31-614-CAS-40866795

Steps: 1 Yield: 75%

.1 Reagents: Sodium *tert*-butoxide Catalysts: Palladium diacetate Solvents: 1,4-Dioxane; 24 h, 105 °C

Experimental Protocols

Red phenanthrenequinone dyes with high thermal and photo-stability for LCD color filters

By: Li, Sunfan; et al

Dyes and Pigments (2024), 224, 112023.

Scheme 24 (1 Reaction)

➤ Suppliers (19)

➤ Suppliers (96)

31-614-CAS-41860556

Steps: 1 Yield: 75%

Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, Tri-tert-

butylphosphonium tetrafluoroborate Solvents: Toluene; overnight, 110 °C

Experimental Protocols

Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters

By: Wu, Lin; et al

Angewandte Chemie, International Edition (2024), 63(18), e202402020.

Scheme 25 (1 Reaction)

Double bond geometry shown

31-614-CAS-40129210

Steps: 1 Yield: 75%

Pd-Catalyzed Asymmetric Amination of Enamines: Expedient

Catalysts: Palladium diacetate, (-)-BINAP Solvents: Toluene; 20 min, rt

Reagents: Cesium carbonate 1.2 Solvents: Toluene; 5 min, rt

5 min, rt; 18 h, 60 °C

Experimental Protocols

Synthesis of Structurally Diverse N-C Atropisomers

By: Zhang, Peng; et al

ACS Catalysis (2023), 13(11), 7680-7690.

Scheme 26 (1 Reaction)

Suppliers (3)

Suppliers (88)

31-614-CAS-41860576

Steps: 1 Yield: 75%

Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, [2',6'-Bis(1methylethoxy)[1,1'-biphenyl]-2-yl]dicyclohexylphosphine

Solvents: Toluene; overnight, 110 °C

Experimental Protocols

Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters

By: Wu, Lin; et al

Angewandte Chemie, International Edition (2024), 63(18), e202402020.

Scheme 27 (1 Reaction)

Absolute stereochemistry shown

□ Suppliers (42)

Suppliers (58)

Steps: 1 Yield: 75%

Absolute stereochemistry shown

Steps: 1 Yield: 75%

Steps: 1 Yield: 75%

31-614-CAS-40593940

Steps: 1 Yield: 75%

1.1 Reagents: Cesium carbonate

Catalysts: Palladium diacetate, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine]
Solvents: 1,4-Dioxane; 5 min, rt; overnight, 90 °C

Experimental Protocols

Discovery of Linvencorvir (RG7907), a Hepatitis B Virus Core Protein Allosteric Modulator, for the Treatment of Chronic HB V Infection

By: Zhang, Weixing; et al

Journal of Medicinal Chemistry (2023), 66(6), 4253-4270.

Scheme 28 (1 Reaction)

Suppliers (38)

31-614-CAS-41716083

Steps: 1 Yield: 75%

1.1 Reagents: Triethylamine

Catalysts: Palladium, tris[μ -[(1,2- η :4,5- η)-(1*E,4E*)-1,5-diphenyl-1,4-pentadien-3-one]]di-, compd. with trichloromethane (1:1), 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylp

hosphine]

Solvents: Dichloromethane; 12 h, 25 °C

Experimental Protocols

Pd-catalyzed sequential intramolecular annulation/interm olecular [3+2] cycloaddition of 5-allenyloxazolidine-2,4-diones with dipoles: synthesis of spiroheterocycles

By: Dong, Yujie; et al

Chemical Communications (Cambridge, United Kingdom) (2024), 60(76), 10516-10519.

Scheme 29 (1 Reaction)

+ F Br → Suppliers (83)

Suppliers (79)

Suppliers (2)

31-614-CAS-41429354

1.1 Reagents: Potassium *tert*-butoxide Catalysts: Palladium diacetate, BINAP Solvents: Toluene; 24 h, 100 °C

1.2 **Reagents:** Water

Experimental Protocols

Steps: 1 Yield: 75% Gi

Green approach to the synthesis of α -aminophosphonate-tetrahydroisoquinoline hybrids and their anti-cholinesterase activity

By: Marchan-Garcia, Joaquin; et al

Bioorganic Chemistry (2024), 143, 107008.

Scheme 30 (1 Reaction)

+ Br $N \rightarrow N$

□ Suppliers (88)

Suppliers (93)

Steps: 1 Yield: 75%

Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, BINAP

Solvents: Toluene; 12 h, 80 °C; 80 °C → rt

Reagents: Water; rt

Experimental Protocols

Discovery of (2S)-N-(6-cyano-5-(trifluoromethyl)pyridin-3-yl)-3-(6-(4-cyanophenyl)-3,6-diazabicyclo[3.1.1]heptan-3-yl)-2hydroxy-2-methylpropanamide as a Highly Potent and Selective Topical Androgen Receptor Antagonist for Androg enetic Alopecia Treatment

By: Zhang, Wenqiang; et al

Journal of Medicinal Chemistry (2024), 67(1), 322-348.

Scheme 31 (1 Reaction)

Steps: 1 Yield: 75%

Suppliers (25)

Suppliers (68)

31-614-CAS-39432311

Steps: 1 Yield: 75%

Tunable multimode emission induced by charge transfer and

Reagents: Sodium tert-butoxide

Catalysts: Tri-tert-butylphosphonium tetrafluoroborate

Solvents: Toluene; 15 min, 80 °C

Catalysts: Tris(dibenzylideneacetone)dipalladium; 12 h, 120 °C

Experimental Protocols

multiple resonance effect

By: Zhang, Fuzheng; et al

Dyes and Pigments (2024), 222, 111902.

Scheme 32 (1 Reaction)

Double bond geometry shown **>** Supplier (1)

Suppliers (69)

31-614-CAS-39786388

Reagents: Hydrogen

Catalysts: Palladium

Solvents: Methanol; overnight, rt

1.2 Reagents: Methylmagnesium bromide

Solvents: Diethyl ether; $rt \rightarrow 0$ °C; 0 °C; 0 °C; 0 °C $\rightarrow rt$;

overnight, rt

1.3 Reagents: Hydrochloric acid

Solvents: Water; rt **Experimental Protocols**

Steps: 1 Yield: 75%

Tertiary Amides as Directing Groups for Enantios elective C-H Amination using Ion-Paired Rhodium Complexes

Angewandte Chemie, International Edition (2024), 63(14), e202317489.

By: Paterson, Kieran J.; et al

Scheme 33 (1 Reaction)

+

Suppliers (3)

Br

> Suppliers (65)

Steps: 1 Yield: 75%

31-614-CAS-41860572

1.1 Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, [2',6'-Bis(1-methylethoxy)[1,1'-biphenyl]-2-yl]dicyclohexylphosphine

Solvents: Toluene; overnight, 110 °C

Experimental Protocols

Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters

By: Wu, Lin; et al

Angewandte Chemie, International Edition (2024), 63(18), e202402020.

Scheme 34 (1 Reaction)

+ Br

📜 Suppliers (66)

Suppliers (96)

Steps: **1** Yield: **75%**

31-614-CAS-36474312

Steps: 1 Yield: 75%

Reagents: Sodium *tert*-butoxide, Tri-*tert*-butylphosphine Catalysts: Tris(dibenzylideneacetone)dipalladium

Solvents: Xylene; 12 h, 80 °C

Experimental Protocols

Fluorogenic Phenothiazine-Derivative as Radical Sensors

By: Desoky, Mohamed M. H.

ChemistrySelect (2023), 8(17), e202204638.

Scheme 35 (1 Reaction)

+

➤ Suppliers (68)

Steps: **1** Yield: **75%**

31-614-CAS-34602567

I.1 Reagents: Sodium tert-butoxide

Catalysts: Palladium diacetate, Tri-tert-butylphosphonium

tetrafluoroborate

Solvents: Toluene; 48 h, 125 °C

Experimental Protocols

Steps: **1** Yield: **75%**

Molecular engineering of blue diphenylsulfone-based emitter with aggregation-enhanced emission and thermally activated delayed fluorescence characteristics: impairing intermo lecular electron-exchange interactions using steric hindrance

By: Huo, Jinnan; et al

Chemical Engineering Journal (Amsterdam, Netherlands) (2023), 452(Part 1), 138957.

Steps: 1 Yield: 75%

Steps: 1 Yield: 75%

Scheme 36 (1 Reaction)

Steps: 1 Yield: 75%

Suppliers (87)

Absolute stereochemistry shown

31-614-CAS-42232623

1.1 Reagents: Sodium tert-butoxide
 Catalysts: Palladium diacetate, Tris(2-furyl)phosphine, Bicyclo
 [2.2.1]hept-2-ene-2-carboxylic acid, methyl ester, (1 R,4R)-Solvents: Toluene; 12 h, 100 °C

Experimental Protocols

Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides

By: Tian, Qingyu; et al

Angewandte Chemie, International Edition (2024), 63(41), e202409366.

Scheme 37 (1 Reaction)

> Suppliers (68)

📜 Suppliers (76)

31-614-CAS-37097215

1.1 Reagents: Sodium tert-butoxide

Catalysts: Palladium diacetate, Tri-tert-butylphosphonium

tetrafluoroborate

Solvents: Toluene; 24 h, reflux

Experimental Protocols

Steps: 1 Yield: 75% Alternating Thermally Activated Delayed Fluorescence Copolymers Featuring Through-Space Charge Transfer

Copolymers Featuring Through-Space Charge Transfer for Efficient Electroluminescence

By: Yu, Maolin; et al

Macromolecules (Washington, DC, United States) (2023), 56(14), 5381-5389.

Scheme 38 (1 Reaction)

► Suppliers (62)

📜 Suppliers (88)

Steps: 1 Yield: 75%

Suppliers (38)

31-614-CAS-35436069

1.1 **Reagents:** Sodium *tert*-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, Tri-tert-

butylphosphonium tetrafluoroborate Solvents: Toluene; 24 h, rt \rightarrow 115 °C

Experimental Protocols

Aggregation Effect on Multiperformance Improvement in Aryl-Armed Phenazine-Based Emitters

By: Wan, Qing; et al

Journal of the American Chemical Society (2023), 145(3), 1607-1616.

Steps: 1 Yield: 75%

Steps: 1 Yield: 75%

Scheme 39 (1 Reaction)

Suppliers (32)

Steps: 1 Yield: 75%

📜 Suppliers (65)

31-614-CAS-38999227

Reagents: Cesium carbonate

Catalysts: Tris(dibenzylideneacetone)dipalladium, Dicycl ohexyl[3,6-dimethoxy-2',4',6'-tris(1-methylethyl)[1,1'-biphenyl]

-2-yl]phosphine

Solvents: 1,4-Dioxane; overnight, 100 °C

Experimental Protocols

Discovery, Optimization, and Evaluation of Potent and Selective DNA-PK Inhibitors in Combination with Chemot herapy or Radiotherapy for the Treatment of Malignancies

By: Liu, Kongjun; et al

Journal of Medicinal Chemistry (2024), 67(1), 245-271.

Scheme 40 (1 Reaction)

Suppliers (68)

Steps: 1 Yield: 75%

31-614-CAS-37237548

Reagents: Potassium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, Tri-tert-

butylphosphonium tetrafluoroborate Solvents: Toluene; 12 h, rt → 110 °C

Experimental Protocols

Achieving ultra-narrow band deep blue emission by designing D-π-D molecular-structure with conjugated donors

By: Yan, Lei; et al

Tetrahedron (2023), 140, 133475.

Scheme 41 (1 Reaction)

Supplier (1)

Absolute stereochemistry shown

31-614-CAS-42232611

Steps: 1 Yield: 75%

1.1 Reagents: Sodium tert-butoxide

Catalysts: Palladium diacetate, Tris(2-furyl)phosphine, Bicyclo [2.2.1]hept-2-ene-2-carboxylic acid, methyl ester, (1 R,4R)-

Solvents: Toluene; 12 h, 100 °C

Experimental Protocols

Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides

By: Tian, Qingyu; et al

Angewandte Chemie, International Edition (2024), 63(41), e202409366.

Steps: 1 Yield: 75%

Steps: 1 Yield: 75%

Scheme 42 (1 Reaction)

Br

Suppliers (19)

Steps: 1 Yield: 75%

31-614-CAS-41860628

1.1 **Reagents:** Sodium *tert*-butoxide

 $\label{lem:catalysts:} \textbf{Catalysts: Tris} (dibenzylideneacetone) dipalladium, [2',6'-Bis(1-methylethoxy)[1,1'-biphenyl]-2-yl] dicyclohexylphosphine$

Solvents: Toluene; overnight, 120 °C

Experimental Protocols

Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters

By: Wu, Lin; et al

Angewandte Chemie, International Edition (2024), 63(18), e202402020.

Scheme 43 (1 Reaction)

> Suppliers (19)

Steps: 1 Yield: 75%

31-614-CAS-41860616

.1 Reagents: Sodium *tert*-butoxide

 $\label{lem:catalysts:} \textbf{Catalysts: Tris} (dibenzylideneacetone) dipalladium, [2',6'-Bis(1-methylethoxy)[1,1'-biphenyl]-2-yl] dicyclohexylphosphine$

Solvents: Toluene; overnight, 120 °C

Experimental Protocols

Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters

By: Wu, Lin; et al

Angewandte Chemie, International Edition (2024), 63(18), e202402020.

Scheme 44 (1 Reaction)

F OH

➤ Suppliers (32)

➤ Suppliers (88)

Steps: 1 Yield: 75%

Na

□ Suppliers (17)

31-614-CAS-38558290

.1 Reagents: Potassium carbonate

Catalysts: Palladium diacetate, Bis[2-(diphenylphosphino)

phenyl] ether

Solvents: Dimethylformamide; 5 h, 95 °C

Experimental Protocols

Synthesis of N-substituted phthalimides via Pd-catalyzed [4+1] cycloaddition reaction

By: Hu, Chengxian; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(100), 14839-14842.

Steps: 1 Yield: 75%

Scheme 45 (1 Reaction)

Suppliers (83)

Steps: 1 Yield: 75%

31-614-CAS-35421851

1.1 Reagents: Potassium carbonate

Catalysts: Tris(dibenzylideneacetone)dipalladium, 2'-(Dicyclo hexylphosphino)-*N*,*N*-dimethyl[1,1'-biphenyl]-2-amine

Solvents: 1,4-Dioxane; 80 °C

Experimental Protocols

Solvent-Dependent Selective Synthesis of CF₃-Tethered Indazole Derivatives Based on Multiple Bond Activations

By: Li, Hao; et al

Organic Letters (2023), 25(5), 720-725.

Scheme 46 (1 Reaction)

Steps: 1 Yield: 75%

31-614-CAS-39786419

1.1 **Reagents:** Hydrogen **Catalysts:** Palladium

Solvents: Methanol; overnight, rt

1.2 **Reagents:** Methylmagnesium bromide

Solvents: Diethyl ether; $rt \rightarrow 0$ °C; 0 °C; 0 °C; 0 °C $\rightarrow rt$;

overnight, rt

1.3 **Reagents:** Hydrochloric acid

Solvents: Water; rt

Experimental Protocols

Tertiary Amides as Directing Groups for Enantios elective C-H Amination using Ion-Paired Rhodium Complexes

By: Paterson, Kieran J.; et al

Angewandte Chemie, International Edition (2024), 63(14),

e202317489.

Scheme 47 (1 Reaction)

Suppliers (19)

+

Suppliers (57)

Steps: 1 Yield: 75%

1.1 Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, Tri-tert-

butylphosphonium tetrafluoroborate Solvents: Toluene; overnight, 110 °C

Experimental Protocols

Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters

By: Wu, Lin; et al

Angewandte Chemie, International Edition (2024), 63(18), e202402020.

Scheme 48 (1 Reaction)

Steps: **1** Yield: **75%**

Suppliers (17)

31-614-CAS-37486994

Steps: 1 Yield: 75%

1.1 **Reagents:** Triethylamine

Catalysts: Palladium diacetate, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine]

Solvents: Toluene

1.2 Reagents: Formic acid, Triethylamine, Methanesulfonyl chloride; 10 min, rt; rt \rightarrow 100 °C; 18 h, 100 °C

Experimental Protocols

Accessing Dihydropyrrolo[3,4-b]indol-1(2H)-ones via Pd-Catalyzed Intramolecular Aminocarbonylative Ring Closure

By: Alam, Ryan M.; et al

European Journal of Organic Chemistry (2023), 26(34), e202300646.

Scheme 49 (1 Reaction)

Steps: **1** Yield: **75%**

Steps: 1 Yield: 75%

Double bond geometry shown

31-614-CAS-40129302

Steps: 1 Yield: 75%

1.1 Reagents: Potassium carbonate, Sodium hydroxide Catalysts: Palladium diacetate, (-)-BINAP

Solvents: Toluene, 1,4-Dioxane; 18 h, 40 °C

Experimental Protocols

Pd-Catalyzed Asymmetric Amination of Enamines: Expedient Synthesis of Structurally Diverse N-C Atropisomers

By: Zhang, Peng; et al

ACS Catalysis (2023), 13(11), 7680-7690.

Scheme 50 (1 Reaction)

📜 Suppliers (81)

Steps: 1 Yield: 75%

1.1 Reagents: Sodium *tert*-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, 2'-(Dicyclo hexylphosphino)-*N*,*N*-dimethyl[1,1'-biphenyl]-2-amine

Solvents: Toluene; 18 h, 100 °C

Experimental Protocols

Fragment growth-based discovery of novel TNIK inhibitors for the treatment of colorectal cancer

By: Teng, Yaxin; et al

European Journal of Medicinal Chemistry (2024), 268, 116240.

Scheme 51 (1 Reaction)

> Suppliers (3)

Suppliers (68)

Steps: 1 Yield: 75%

Steps: 1 Yield: 75%

31-614-CAS-39519117

1.1 Reagents: Cesium carbonate Solvents: 1,4-Dioxane; 2 h, 110 °C

1.2 **Catalysts:** Palladium diacetate, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine] **Solvents:** 1,4-Dioxane; overnight, 110 °C

1.3 **Reagents:** Ammonium chloride **Solvents:** Water

Experimental Protocols

Synthesis of highly functionalized dihydroquinolinones via a tandem benzylation/intramolecular C-N coupling strategy

By: Gao, Pei-Sen; et al

Tetrahedron (2024), 155, 133865.

Scheme 52 (1 Reaction)

HN

📜 Suppliers (101)

Steps: **1** Yield: **75%**

31-614-CAS-38711461

Steps: **1** Yield: **75%**

 $\textbf{Catalysts:} \ \mathsf{Tris} (\mathsf{dibenzylidene} acetone) \\ \mathsf{dipalladium,} \ \mathsf{BINAP}$

Solvents: Tetrahydrofuran; 18 h, 55 °C

Reagents: Sodium tert-butoxide

Experimental Protocols

Synthesis and vectorial functionalization of pyrazolo[3,4-c] pyridines

By: Bedwell, Elizabeth V.; et al

RSC Advances (2023), 13(49), 34391-34399.

Scheme 53 (1 Reaction)

Absolute stereochemistry shown

➤ Suppliers (42)

□ Suppliers (88)

Steps: 1 Yield: 75%

Absolute stereochemistry shown

Steps: 1 Yield: 75%

Reagents: Cesium carbonate

Catalysts: Palladium diacetate, 1,1'-(9,9-Dimethyl-9Hxanthene-4,5-diyl)bis[1,1-diphenylphosphine] Solvents: 1,4-Dioxane; 5 min, rt; overnight, 90 °C

Experimental Protocols

Discovery of Linvencorvir (RG7907), a Hepatitis B Virus Core Protein Allosteric Modulator, for the Treatment of Chronic HB V Infection

By: Zhang, Weixing; et al

Journal of Medicinal Chemistry (2023), 66(6), 4253-4270.

Scheme 54 (1 Reaction)

31-614-CAS-43159502

Steps: 1 Yield: 75%

Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine]

Solvents: 1,4-Dioxane; rt → 90 °C; 24 h, 90 °C

Experimental Protocols

Ruthenium-Catalyzed Carbocycle-Selective Hydrogenation of **Fused Heteroarenes**

By: Luo, Chenguang; et al

Journal of the American Chemical Society (2024), 146(51), 35043-35056.

Scheme 55 (1 Reaction)

Absolute stereochemistry shown

Steps: 1 Yield: 75%

📜 Suppliers (87)

31-614-CAS-42232608

Steps: 1 Yield: 75%

Reagents: Sodium tert-butoxide Catalysts: Palladium diacetate, Tris(2-furyl)phosphine, Bicyclo [2.2.1]hept-2-ene-2-carboxylic acid, methyl ester, (1 R,4R)-Solvents: Toluene; 12 h, 100 °C

Experimental Protocols

Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides

By: Tian, Qingyu; et al

Angewandte Chemie, International Edition (2024), 63(41), e202409366.

Scheme 56 (1 Reaction)

📜 Supplier (1)

Suppliers (89)

Steps: 1 Yield: 75%

1.1 Reagents: Cesium carbonate, 1,1-Bis(diphenylphosphino)

ferrocene

Catalysts: Tris(dibenzylideneacetone)dipalladium

Solvents: o-Xylene; 24 h, 140 °C

Experimental Protocols

Low amplified spontaneous emission threshold coupled with efficient electroluminescence from a solution-processable bisstilbene-derived dye

By: Wu, Houlin; et al

Organic Electronics (2024), 135, 107141.

Scheme 57 (1 Reaction)

31-614-CAS-37847448

Steps: 1 Yield: 75%

1.1 Reagents: Cesium carbonate

Catalysts: 1,1-Bis(diphenylphosphino)ferrocene, Tris (dibenzylideneacetone)dipalladium, Rhodium, tetrakis[µ-

(octanoato-κ*O*:κ*O*')]di-, (*Rh-Rh*) **Solvents:** Acetonitrile; 12 h, 60 °C

Experimental Protocols

Rh(II)/Pd(0) Dual-Catalyzed Regio-Divergent Three-Component Propargylic Substitution

By: Xu, Jie; et al

JACS Au (2023), 3(10), 2862-2872.

Scheme 58 (1 Reaction)

➤ Suppliers (78)

31-614-CAS-42232633

Steps: 1 Yield: 75%

1.1 Reagents: Potassium carbonate

Catalysts: Palladium diacetate, Tris(2-furyl)phosphine, Bicyclo [2.2.1]hept-2-ene-2-carboxylic acid, methyl ester, (1 *R*,4*R*)-

Solvents: Toluene; 12 h, 105 °C

Experimental Protocols

Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides

By: Tian, Qingyu; et al

Angewandte Chemie, International Edition (2024), 63(41), e202409366.

Steps: 1 Yield: 75%

Steps: 1 Yield: 75%

Scheme 59 (1 Reaction)

F

+ F F H O →

Steps: 1 Yield: 75%

Double bond geometry shown

Double bond geometry shown

31-614-CAS-36837154

1.1 Reagents: Cesium carbonate

 $\textbf{Catalysts:}\ 2,2\text{'-Bipyridine, Tris} (dibenzy lideneace tone) dipall$

adium

Solvents: Tetrahydrofuran; 24 h, 50 °C

Experimental Protocols

[3+2] Cycloaddition of Vinyl Cyclopropane and Hydroxy lamines via Isocynate Intermediate to y-Lactams

By: Huang, Xiaobing; et al

Chinese Journal of Chemistry (2023), 41(16), 1937-1942.

Scheme 60 (1 Reaction)

➤ Suppliers (101)

📜 Suppliers (87)

Steps: 1 Yield: 75%

31-614-CAS-39940483

1.1 Reagents: Sodium tert-butoxide Catalysts: Palladium diacetate, BINAP Solvents: Toluene; 10 min, rt; 3 h, rt → 100 °C

1.2 Reagents: Water

Experimental Protocols

Photoinduced Palladium-Catalyzed 1,2-Difunctionalization of Electron-Rich Olefins via a Reductive Radical-Polar Crossover Reaction

By: Fang, Hao; et al

ACS Catalysis (2023), 13(9), 6445-6451.

Scheme 61 (1 Reaction)

> Suppliers (44)

Suppliers (68)

Steps: 1 Yield: 75%

31-614-CAS-36221263

.1 Reagents: Sodium tert-butoxide

Catalysts: Palladium diacetate, 2-Dicyclohexylphosphino-2',6'-

dimethoxybiphenyl

Solvents: Toluene; 24 h, 120 °C

Medium-Ring Strategy Enables Multiple Resonance Emitters with Twisted Geometry and Fast Spin-Flip to Suppress Efficiency Roll-Off

By: Lei, Bowen; et al

Angewandte Chemie, International Edition (2023), 62(12), e202218405.

Steps: 1 Yield: 75%

Scheme 62 (1 Reaction)

Suppliers (83)

31-614-CAS-41335321

Suppliers (54)

Steps: 1 Yield: 75%

1.1 **Catalysts:** Palladium, tris[μ-[(1,2-η:4,5-η)-(1*E*,4*E*)-1,5-diphenyl-1,4-pentadien-3-one]]di-, compd. with trichloromethane (1:1), (2R)-1-[(1R)-1-[Bis(1,1-dimethylethyl)phosphino]ethyl]-2-(di-2furanylphosphino)ferrocene

Solvents: tert-Butyl methyl ether; 30 min, rt

Reagents: Tripotassium phosphate; 36 h, 90 °C

Experimental Protocols

Intermolecular Buchwald-Hartwig Reactions for Enantios elective Synthesis of Diverse Atropis omers: Rerouting the C-N Forming Mechanism to Substrate Oxygen-Assisted Reductive Elimination

By: Wang, Wei; et al

Journal of the American Chemical Society (2024), 146(24), 16567-16580.

Scheme 63 (1 Reaction)

31-614-CAS-35639584

Steps: 1 Yield: 75%

Reagents: Sodium tert-butoxide

Catalysts: Palladium diacetate, Tri-tert-butylphosphonium

tetrafluoroborate

Solvents: Toluene; 24 h, reflux

Experimental Protocols

Crystalline Unipolymer Monolayer with High Modulus and Conductivity

By: Wang, Jinxin; et al

Angewandte Chemie, International Edition (2023), 62(4), e202216838.

Scheme 64 (1 Reaction)

31-614-CAS-38558264

Steps: 1 Yield: 75%

Reagents: Potassium carbonate

Catalysts: Palladium diacetate, Bis[2-(diphenylphosphino)

phenyl] ether

Solvents: Dimethylformamide; 5 h, 95 °C

Experimental Protocols

Synthesis of N-substituted phthalimides via Pd-catalyzed [4+1] cycloaddition reaction

By: Hu, Chengxian; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(100), 14839-14842.

Steps: 1 Yield: 75%

Steps: 1 Yield: 75%

Scheme 65 (1 Reaction)

📜 Suppliers (87)

Steps: 1 Yield: 75%

Absolute stereochemistry shown

31-614-CAS-42232629

1.1 Reagents: Potassium carbonate Catalysts: Palladium diacetate, Tris(2-furyl)phosphine, Bicyclo [2.2.1]hept-2-ene-2-carboxylic acid, methyl ester, (1 R,4R)-

Experimental Protocols

Solvent-Controlled Enantiodivergent Construction of P(V)-Stereogenic Molecules via Palladium-Catalyzed Annulation of Prochiral N-Aryl Phosphonamides with Aromatic Iodides

By: Tian, Qingyu; et al

Angewandte Chemie, International Edition (2024), 63(41), e202409366.

Scheme 66 (1 Reaction)

Solvents: Toluene; 12 h, 105 °C

31-614-CAS-39194521

Steps: **1** Yield: **75%**

1.1 Reagents: Potassium carbonate

Catalysts: Palladium diacetate, Tris(2-furyl)phosphine, Ethyl

(1*S*,4*R*)-bicyclo[2.2.1]hept-2-ene-2-carboxylate **Solvents:** Tetrahydrofuran; 5 min, rt; 48 h, 90 °C

Experimental Protocols

Asymmetric Two-Component Alkenyl Catellani Reaction for the Construction of C-N Axial Chirality

By: Wu, Chenggui; et al

Chinese Journal of Chemistry (2024), 42(7), 699-704.

Scheme 67 (1 Reaction)

31-614-CAS-42014412

Steps: 1 Yield: 75%

1.1 Catalysts: Phenylboronic acid, Palladium diacetate, 1 *H*-Indole, 3-(dicyclohexylphosphino)-1-methyl-2-(2,3,4-trimetho xyphenyl)-

Solvents: Dichloromethane; rt

1.2 **Reagents:** Sodium *tert*-butoxide

Solvents: Toluene; rt; 24 h, 135 °C; 135 °C → rt

1.3 Solvents: Water; rt

Experimental Protocols

Application of indole-based monophosphine in ppm level Pdcatalyzed C-N bond formation

By: Li, Cheuk Long; et al

Journal of Organometallic Chemistry (2024), 1011, 123124.

Steps: 1 Yield: 75%

1.1 Reagents: Potassium carbonate

Catalysts: Palladium

Solvents: Dimethylformamide, Xylene; 15 h, 130 °C

Experimental Protocols

Supported Palladium-Catalyzed Tandem Synthesis of 2-(Alkylamino/amino)-3-arylquinazolin-4(3H)-ones Employing C O Source

By: Shaifali; et al

Chemistry - An Asian Journal (2023), 18(6), e202201288.

Scheme 69 (1 Reaction)

Steps: 1 Yield: 74%

31-614-CAS-38006378 Steps: **1** Yield: **74%**

1.1 **Reagents:** Sodium *tert*-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, Tri-tert-

butylphosphonium tetrafluoroborate **Solvents:** *o*-Xylene; 24 h, 130 °C

Experimental Protocols

One-Shot Construction of BN-Embedded Heptadecacene Framework Exhibiting Ultra-narrowband Green Thermally Activated Delayed Fluorescence

By: Sano, Yusuke; et al

Journal of the American Chemical Society (2023), 145(21), 11504-11511.

Scheme 70 (1 Reaction) Steps: 1 Yield: 74%

Double bond geometry shown

31-614-CAS-40129316

.1 Reagents: Potassium hydroxide

Catalysts: Palladium diacetate, (-)-BINAP

Solvents: Toluene; 20 min, rt 1.2 Solvents: Toluene; 5 min, rt

1.3 5 min, rt; 18 h, 60 °C

Experimental Protocols

Pd-Catalyzed Asymmetric Amination of Enamines: Expedient Synthesis of Structurally Diverse N-C Atropisomers

By: Zhang, Peng; et al

ACS Catalysis (2023), 13(11), 7680-7690.

Scheme 71 (1 Reaction)

Suppliers (38)

Suppliers (71)

Steps: **1** Yield: **74%**

Steps: 1 Yield: 74%

Steps: 1 Yield: 74%

1.1 Catalysts: Palladium, tris[μ-[(1,2-η:4,5-η)-(1*E,4E*)-1,5-diphenyl-1,4-pentadien-3-one]]di-, compd. with trichloromethane (1:1), (2*R*)-1-[(1*R*)-1-[Bis(1,1-dimethylethyl)phosphino]ethyl]-2-(di-2-furanylphosphino)ferrocene
 Solvents: Toluene; 30 min, rt

1.2 Reagents: Cesium carbonate; 36 h, 90 °C

Experimental Protocols

31-614-CAS-41335327

Intermolecular Buchwald-Hartwig Reactions for Enantios elective Synthesis of Diverse Atropis omers: Rerouting the C-N Forming Mechanism to Substrate Oxygen-Assisted Reductive Elimination

By: Wang, Wei; et al

Journal of the American Chemical Society (2024), 146(24), 16567-16580.

Scheme 72 (1 Reaction)

> Suppliers (23)

Suppliers (123)

Steps: 1 Yield: 74%

31-614-CAS-38970058

1.1 Reagents: Sodium *tert*-butoxide

Catalysts: Palladium, [7,9-bis[2,6-bis(1-methylethyl)phenyl]-7, 9-dihydro-8*H*-acenaphth[1,2-d]imidazol-8-ylidene]bromo[2-(4, 5-dihydro-4,4-dimethyl-2-oxazolyl- κN^3)-1-naphthalenyl- κC]-,

(*SP*-4-4)-

Solvents: 1,4-Dioxane; 24 h, 100 °C

Experimental Protocols

A General Protocol toward Synthesis of 3- Methylindoles Using Acenaphthoimidazolyidene-Ligated Oxazoline Palladacycle

By: Fan, Ruogian; et al

Organic Letters (2024), 26(1), 22-28.

Steps: 1 Yield: 74%

Steps: 1 Yield: 74%

Scheme 73 (1 Reaction)

> Suppliers (17)

31-614-CAS-37487007

Steps: 1 Yield: 74%

Accessing Dihydropyrrolo[3,4-b]indol-1(2H)-ones via Pd-Catalyzed Intramolecular Aminocarbonylative Ring Closure

1.1 Reagents: Triethylamine

Catalysts: Palladium diacetate, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine]

Solvents: Toluene

1.2 Reagents: Formic acid, Triethylamine, Methanesulfonyl

chloride; 10 min, rt; rt \rightarrow 100 °C; 18 h, 100 °C

Experimental Protocols

By: Alam, Ryan M.; et al

European Journal of Organic Chemistry (2023), 26(34), e202300646.

Scheme 74 (1 Reaction)

CI

➤ Suppliers (101)

📜 Suppliers (59)

Steps: 1 Yield: 74%

31-614-CAS-37909650

.1 Reagents: Tripotassium phosphate

Catalysts: Tris(dibenzylideneacetone)dipalladium, 2'-(Dicyclo hexylphosphino)-*N*,*N*-dimethyl[1,1'-biphenyl]-2-amine; 12 h,

100 °C

Experimental Protocols

Unleashing the Potential of 1,3-Diketone Analogues as Selective LH2 Inhibitors

By: Lee, Juhoon; et al

ACS Medicinal Chemistry Letters (2023), 14(10), 1396-1403.

Scheme 75 (1 Reaction)

> Suppliers (84)

□ Suppliers (83)

31-614-CAS-38927532

Reagents: Potassium carbonate Solvents: Dimethylformamide; rt

Reagents: Ammonium chloride 1.2

Solvents: Water; rt

Reagents: Cesium carbonate 1.3

> Catalysts: Palladium diacetate, X-Phos Solvents: Toluene; 16 h, 116 °C

Experimental Protocols

Rhodium-Catalyzed C(sp²)-O Cross Couplings of Diazo Quinones with Phenols to Construct Diaryl Ethers

By: Fu, Zhen; et al

Organic Letters (2024), 26(1), 292-297.

Scheme 76 (1 Reaction)

31-614-CAS-41834116

Reagents: Sodium tert-butoxide

Catalysts: 1,1-Bis(diphenylphosphino)ferrocene, Tris

(dibenzylideneacetone)dipalladium Solvents: Toluene; 2 d, 130 °C

Experimental Protocols

Steps: 1 Yield: 74%

Ratiometric Imaging Detection of Amyloid-β Fibrils by a Dual-**Emissive Tris-Heteroleptic Ruthenium Complex**

Steps: 1 Yield: 74%

By: Wu, Si-Hai; et al

Inorganic Chemistry (2024), 63(39), 17983-17992.

Scheme 77 (1 Reaction)

31-614-CAS-38558294

Steps: 1 Yield: 74%

Reagents: Potassium carbonate

Catalysts: Palladium diacetate, Bis[2-(diphenylphosphino)

phenyl] ether

Solvents: Dimethylformamide; 5 h, 95 °C

Experimental Protocols

Synthesis of N-substituted phthalimides via Pd-catalyzed [4+1] cycloaddition reaction

By: Hu, Chengxian; et al

Chemical Communications (Cambridge, United Kingdom) (2023), 59(100), 14839-14842.

Scheme 78 (1 Reaction)

Suppliers (72)

📜 Suppliers (89)

31-614-CAS-36398804 Steps: 1 Yield: 74% 1.1 Reagents: Cesium carbonate Catalysts: Palladium diacetate, BINAP

neuraminidase inhibitors with improved drug resistance profiles and favorable drug-like properties

By: Jia, Ruifang; et al

European Journal of Medicinal Chemistry (2023), 252, 115275.

Discovery of N-substituted oseltamivir derivatives as novel

Experimental Protocols

Solvents: Toluene; 12 h, 100 °C

Scheme 79 (1 Reaction)

Steps: 1 Yield: 74%

HIN O CI

N=N
Suppliers (112)

Steps: 1 Yield: 74%

31-614-CAS-36749009

1.1 **Reagents:** Sodium *tert*-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, [2',6'-Bis(1-methylethoxy)[1,1'-biphenyl]-2-yl]dicyclohexylphosphine

Solvents: 1,4-Dioxane; overnight, heated

Experimental Protocols

Structure-Activity relationships of replacements for the triazolopyridazine of Anti-Cryptosporidium lead SLU-2633

By: Oboh, Edmund; et al

Bioorganic & Medicinal Chemistry (2023), 86, 117295.

Steps: 1 Yield: 74%

31-614-CAS-35649888

1.1 Reagents: Potassium carbonate

Catalysts: Palladium

Solvents: Dimethylformamide, Xylene; 15 h, 130 °C

Experimental Protocols

Supported Palladium-Catalyzed Tandem Synthesis of 2-(Alkylamino/amino)-3-arylquinazolin-4(3H)-ones Employing C O Source

By: Shaifali; et al

Chemistry - An Asian Journal (2023), 18(6), e202201288.

Steps: 1 Yield: 74%

Steps: 1 Yield: 74%

Scheme 81 (1 Reaction)

📜 Suppliers (88)

📜 Suppliers (89)

Steps: 1 Yield: 74%

31-614-CAS-36398813

1.1 Reagents: Cesium carbonate

Catalysts: Palladium diacetate, BINAP Solvents: Toluene; 12 h, 100 °C

Experimental Protocols

Discovery of N-substituted oseltamivir derivatives as novel neuraminidase inhibitors with improved drug resistance profiles and favorable drug-like properties

By: Jia, Ruifang; et al

European Journal of Medicinal Chemistry (2023), 252, 115275.

Scheme 82 (1 Reaction)

Absolute stereochemistry shown

☐ Suppliers (65)

Steps: 1 Yield: 74%

Absolute stereochemistry shown

31-614-CAS-36363940

1.1 Catalysts: Palladium diacetate, BINAP

Solvents: Toluene; 4 h, rt

1.2 **Reagents:** Potassium *tert*-butoxide

Solvents: Toluene; 24 h, 110 °C

1.3 Reagents: Water

1.4 Reagents: Hydrochloric acid

Solvents: Methanol, Water; rt; overnight, 35 °C

1.5 Reagents: Ammonium hydroxide

Solvents: Water; pH 10

Experimental Protocols

Palladium-Catalyzed Synthesis, Acetylcholinesterase Inhibition, and Neuroprotective Activities of N-Aryl Galantamine Analogues

By: Zhang, Yang; et al

Journal of Natural Products (2023), 86(4), 939-946.

Scheme 83 (1 Reaction)

Double bond geometry shown

Steps: 1 Yield: 74%

N ·

Double bond geometry shown

31-614-CAS-36837157

1.1 Reagents: Cesium carbonate

Catalysts: 2,2'-Bipyridine, Tris(dibenzylideneacetone)dipall

adium

Solvents: Tetrahydrofuran; 24 h, 50 °C

Experimental Protocols

[3+2] Cycloaddition of Vinyl Cyclopropane and Hydroxy lamines via Isocynate Intermediate to y-Lactams

By: Huang, Xiaobing; et al

Chinese Journal of Chemistry (2023), 41(16), 1937-1942.

Steps: 1 Yield: 74%

Scheme 84 (1 Reaction)

Absolute stereochemistry shown

N O

📜 Suppliers (83)

Steps: 1 Yield: 74%

S (S) (R)

Absolute stereochemistry shown

31-614-CAS-37656909

1.1 **Reagents:** Sodium *tert*-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, X-Phos; 24

า, 80 °C

1.2 Reagents: Ammonium chloride

Solvents: Water

Experimental Protocols

Practical Synthesis and Antifungal Investigation of Drimane Meroterpenoids Enabled by Nickel-Catalyzed Decarboxylative Coupling

By: Sun, Shengxin; et al

Journal of Natural Products (2023), 86(6), 1420-1427.

Scheme 85 (1 Reaction)

> Suppliers (69)

31-614-CAS-46090916

Steps: **1** Yield: **74%**

.1 Reagents: Sodium *tert*-butoxide

Catalysts: Palladium diacetate, Tri-tert-butylphosphonium

tetrafluoroborate

Solvents: Toluene; 20 h, reflux

Experimental Protocols

Synthesis of Ce(IV) Heteroleptic Double-Decker Complex with a New Helical Naphthalocyanine as a Potential Gearing Subunit

By: Subramaniam, Jeevithra Dewi; et al

Chemistry - A European Journal (2024), 30(55), e202402470.

Scheme 86 (1 Reaction)

> Supplier (1)

📜 Suppliers (81)

Steps: 1 Yield: 74%

31-614-CAS-42383736

.1 Reagents: Sodium *tert*-butoxide

Catalysts: Palladium diacetate, [2',6'-Bis(1-methylethoxy)[1,1'-

biphenyl]-2-yl]dicyclohexylphosphine **Solvents:** *tert*-Butanol; 1 h, 85 °C

Experimental Protocols

Synthetic Routes to 2-aryl-1H-pyrrolo[2,3-b]pyridin-4-amines:

Cross-Coupling and Challenges in SEM-Deprotection

By: Merugu, Srinivas Reddy; et al

Molecules (2024), 29(19), 4743.

Scheme 87 (1 Reaction)

Suppliers (3)

Suppliers (80)

Steps: 1 Yield: 74%

31-614-CAS-41860573

Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, [2',6'-Bis(1methylethoxy)[1,1'-biphenyl]-2-yl]dicyclohexylphosphine

Solvents: Toluene; overnight, 110 °C

Experimental Protocols

Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters

By: Wu, Lin; et al

Angewandte Chemie, International Edition (2024), 63(18), e202402020.

Scheme 88 (1 Reaction)

Steps: 1 Yield: 74%

Steps: 1 Yield: 74%

□ Suppliers (41)

Suppliers (71)

31-614-CAS-41335330

Steps: 1 Yield: 74%

Catalysts: Palladium, tris[μ -[(1,2- η :4,5- η)-(1*E*,4*E*)-1,5-diphenyl-1,4-pentadien-3-one]]di-, compd. with trichloromethane (1:1), (2R)-1-[(1R)-1-[Bis(1,1-dimethylethyl)phosphino]ethyl]-2-(di-2furanylphosphino)ferrocene

Solvents: Toluene; 30 min, rt

Reagents: Cesium carbonate; 36 h, 90 °C

Experimental Protocols

Intermolecular Buchwald-Hartwig Reactions for Enantios elective Synthesis of Diverse Atropis omers: Rerouting the C-N Forming Mechanism to Substrate Oxygen-Assisted Reductive Elimination

By: Wang, Wei; et al

Journal of the American Chemical Society (2024), 146(24), 16567-16580.

Scheme 89 (1 Reaction)

Suppliers (17)

Steps: 1 Yield: 74%

1.1 Reagents: Triethylamine

Catalysts: Palladium diacetate, 1,1'-(9,9-Dimethyl-9*H*-xanthene-4,5-diyl)bis[1,1-diphenylphosphine]

Solvents: Toluene

1.2 **Reagents:** Formic acid, Triethylamine, Methanesulfonyl

chloride; 10 min, rt; rt → 100 °C; 18 h, 100 °C

Experimental Protocols

Accessing Dihydropyrrolo[3,4-b]indol-1(2H)-ones via Pd-Catalyzed Intramolecular Aminocarbonylative Ring Closure

By: Alam, Ryan M.; et al

European Journal of Organic Chemistry (2023), 26(34),

e202300646.

Scheme 90 (1 Reaction)

Steps: **1** Yield: **74%**

31-614-CAS-36514165

Steps: 1 Yield: 74%

Reagents: Sodium *tert*-butoxide

Catalysts: Triphenylphosphine, Tris(dibenzylideneacetone)

dipalladium

Solvents: 1,4-Dioxane; 15 min, rt

1.2 Solvents: 1,4-Dioxane; 18 h, 100 °C

Experimental Protocols

Discovery of a potent and selective allosteric inhibitor targeting the SHP2 tunnel site for RTK-driven cancer treatment

By: Luo, Ruixiang; et al

European Journal of Medicinal Chemistry (2023), 253, 115305.

Steps: 1 Yield: 74%

Scheme 91 (1 Reaction)

+ H₂N →

Suppliers (46)

31-614-CAS-38947669

Steps: 1 Yield: 74%

1.1 **Reagents:** Potassium *tert*-butoxide

Catalysts: Palladium diacetate, 1,3-Bis(diphenylphosphino)

propane

Solvents: Toluene; 15 h, 110 °C

Experimental Protocols

Synthesis and Photophysical Properties of 3-Substituted-1H-Indazoles: A Pd-Catalyzed Double C-N Bond Formation Strategy via 1,6-Conjugate Addition

By: Kayastha, Nasib; et al

Journal of Organic Chemistry (2024), 89(1), 402-413.

Scheme 92 (1 Reaction)

+

📜 Suppliers (68)

Steps: 1 Yield: 74%

Reagents: Sodium tert-butoxide, Tri-tert-butylphosphonium

tetrafluoroborate

Catalysts: Palladium diacetate Solvents: Toluene; 48 h, 110 °C

Experimental Protocols

Unveiling the TADF Emitters with Apparent Negative Singlet-Triplet Gaps: Implications for Exciton Harvesting and OLED Performance

By: Chen, Xinrui; et al

Advanced Optical Materials (2024), 12(6), 2301784.

Scheme 93 (1 Reaction)

31-614-CAS-38006388

Steps: 1 Yield: 74%

1.1 Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, 2-Dicycloh

exylphosphino-2',6'-dimethoxybiphenyl

Solvents: Toluene; 2 h, 100 °C

Experimental Protocols

One-Shot Construction of BN-Embedded Heptadecacene Framework Exhibiting Ultra-narrowband Green Thermally Activated Delayed Fluorescence

By: Sano, Yusuke; et al

Journal of the American Chemical Society (2023), 145(21), 11504-11511.

Scheme 94 (1 Reaction)

📜 Suppliers (61)

Steps: 1 Yield: 74%

Steps: 1 Yield: 74%

31-614-CAS-38947660

Steps: 1 Yield: 74%

Reagents: Potassium tert-butoxide

Catalysts: Palladium diacetate, 1,3-Bis(diphenylphosphino)

propane

Solvents: Toluene; 15 h, 110 °C

Experimental Protocols

Synthesis and Photophysical Properties of 3-Substituted-1H-Indazoles: A Pd-Catalyzed Double C-N Bond Formation Strategy via 1,6-Conjugate Addition

By: Kayastha, Nasib; et al

Journal of Organic Chemistry (2024), 89(1), 402-413.

Scheme 95 (1 Reaction)

Steps: 1 Yield: 74%

31-614-CAS-38556063

Steps: 1 Yield: 74%

Preparation of pyridopyrazines through tandem Pd-catalyzed C-N/C-C coupling reactions of Ugi adducts

Reagents: Potassium carbonate 1.1 Catalysts: Palladium diacetate

Solvents: Dimethylformamide; 12 h, 110 °C

Experimental Protocols

By: Takallou, Ahmad; et al

Organic & Biomolecular Chemistry (2023), 21(48), 9530-9533.

Scheme 96 (1 Reaction)

Double bond geometry shown

31-614-CAS-40129295

Reagents: Potassium carbonate, Sodium hydroxide Catalysts: Palladium diacetate, (-)-BINAP

Solvents: Toluene, 1,4-Dioxane; 18 h, 40 °C

Experimental Protocols

Pd-Catalyzed Asymmetric Amination of Enamines: Expedient Synthesis of Structurally Diverse N-C Atropisomers

By: Zhang, Peng; et al

ACS Catalysis (2023), 13(11), 7680-7690.

Scheme 97 (1 Reaction)

Steps: 1 Yield: 74%

31-614-CAS-41071010

Steps: 1 Yield: 74%

Reagents: Norbornene, Silver sulfate Catalysts: Tris(dibenzylideneacetone)dipalladium, (45,4'5)-4,4', 5,5'-Tetrahydro-4,4'-bis(1-methylethyl)-1,1'-bis[3-(trifluor

omethyl)phenyl]-2,2'-bi-1 H-imidazole Solvents: Toluene, Water; 36 h, 80 °C

Experimental Protocols

Chiral dinitrogen ligand enabled asymmetric Pd/norbornene cooperative catalysis toward the assembly of C-N axially chiral scaffolds

By: Jin, Liang; et al

Nature Communications (2024), 15(1), 4908.

Scheme 98 (1 Reaction)

31-614-CAS-41301353

Steps: 1 Yield: 74%

Discovery of Novel 1-Phenylpiperidine Urea-Containing Deriva tives Inhibiting β-Catenin/BCL9 Interaction and Exerting Antitumor Efficacy through the Activation of Antigen Presen tation of cDC1 Cells

By: Zhu, Wenhua; et al

Journal of Medicinal Chemistry (2024), 67(15), 12485-12520.

Reagents: Cesium carbonate

Catalysts: Tris(dibenzylideneacetone)dipalladium, [2',6'-Bis(1methylethoxy)[1,1'-biphenyl]-2-yl]dicyclohexylphosphine

Solvents: Toluene; 48 h, 90 °C

Experimental Protocols

Double bond geometry shown

31-614-CAS-40129306

1.1 Reagents: Potassium carbonate, Sodium hydroxide Catalysts: Palladium diacetate, (-)-BINAP Solvents: Toluene, 1,4-Dioxane; 18 h, 40 °C

Experimental Protocols

Pd-Catalyzed Asymmetric Amination of Enamines: Expedient Synthesis of Structurally Diverse N-C Atropisomers

By: Zhang, Peng; et al

ACS Catalysis (2023), 13(11), 7680-7690.

Scheme 100 (1 Reaction)

Suppliers (91)

➤ Suppliers (98)

Suppliers (11)

31-614-CAS-41860662

1.1 Reagents: Sodium tert-butoxide

Catalysts: Tris(dibenzylideneacetone)dipalladium, Tri-tert-

butylphosphonium tetrafluoroborate Solvents: Toluene; overnight, 110 °C

Experimental Protocols

Steps: 1 Yield: 74%

Steps: 1 Yield: 74%

Orienting Group Directed Cascade Borylation for Efficient One-Shot Synthesis of 1,4-BN-Doped Polycyclic Aromatic Hydrocarbons as Narrowband Organic Emitters

By: Wu, Lin; et al

Angewandte Chemie, International Edition (2024), 63(18), e202402020.

Copyright © 2025 American Chemical Society (ACS). All Rights Reserved.

Internal use only. Redistribution is subject to the terms of your CAS SciFinder License Agreement and CAS information Use Policies.