THE UNIVERSITY OF HONG KONG DEPARTMENT OF STATISTICS AND ACTUARIAL SCIENCE

STAT8003 Time Series Forecasting

Assignment 1

(Due date: October 24, 2022)

- 1. Are the following time series $\{Z_t\}$ weakly stationary?
 - (a) $Z_t = 5 + 2t + X_t$, where $\{X_t\}$ is a zero-mean stationary series with ACVF $\{\gamma_k\}$.
 - (b) $Z_t = a_t + (a_{t-1})^{\theta_t}$, where $\{a_t\}$ and $\{\theta_t\}$ are two independently and identically distributed sequences, a_t follows the standard normal distribution and $P(\theta_t = 1) = P(\theta_t = 2) = 0.5$.
 - (c) $Z_t = e^{a_t} + 2a_{t-1}$, where $\{a_t\}$ are independent and identically distributed with the standard normal distribution.
- 2. Let $Z_t = e^{a_t} 2e^{a_{t-1}}$, where $\{a_t\}$ is sequence of *i.i.d.* normal random variables with mean zero and variance one.
 - (a) Is $\{Z_t\}$ stationary?
 - (b) Calculate the ACF ρ_k with k=1 if it is stationary.
- 3. Find the ACF of the following MA processes.
 - (a) $Z_t = a_t 0.5a_{t-1}$.
 - (b) $Z_t = a_t a_{t-1} + 0.5a_{t-2}$.
 - (c) $Z_t = a_t + 0.5a_{t-1} a_{t-2} + 3a_{t-3}$.
- 4. Consider AR(2) model, $Z_t = 0.9 + 0.2Z_{t-1} 0.6Z_{t-2} + a_t$, where $\{a_t\} \sim WN(0, \sigma_a^2)$.
 - (a) Is it stationary?
 - (b) Find out its MA representation if possible.
 - (c) Calculate the autocovariance function γ_k with $k \geq 0$.
 - (d) Find out the variance for the sample mean $\overline{Z}_4 = (Z_1 + Z_2 + Z_3 + Z_4)/4$.
- 5. Consider an ARMA(2,2) model,

$$Z_t = 0.5Z_{t-1} + 0.25Z_{t-2} + a_t - 1.5a_{t-1} + 0.75a_{t-2}$$

where $\{a_t\}$ is the white noise with mean zero and variance σ_a^2 .

- (a) Calculate the expectation $E(Z_t)$.
- (b) Is it stationary? Is it invertible?
- (c) Find out the MA and AR representations if they exist.

6. Consider a time series model

$$Z_t = 5 + 0.3Z_{t-1} + 0.5Z_{t-2} + e^{a_t},$$

where $\{a_t\}$ is an i.i.d. sequence with the standard normal distribution.

- (a) Is it an AR model? Rewrite it in the standard form if your answer is positive.
- (b) Is the model stationary? Specify the reasons for your answers.
- (c) Find out the general linear process form if it exist.