Odd-Frequency Pairing in Periodically-Driven Systems

Eslam Ahmed

June 8, 2022

Department of Applied Physics School of Engineering Nagoya University

Table of Contents

Odd-Frequency pairing

Topological Superconductors

Floquet Theorem

Floquet superconductors

Floquet Topological Superconductors

Odd-Frequency pairing

Anomalous Green Function

An important quantity in superconductors is the anomalous Green function

$$F_{\sigma_1,\sigma_2;\eta_1,\eta_2}(t,x) = \langle \mathcal{T} c_{\sigma_1,\eta_1}(t,x) c_{\sigma_2,\eta_2}(0,0) \rangle$$

Due to Fermi statistics, we have:

$$F_{\sigma_2,\sigma_1;\eta_2,\eta_1}(-t,-x) = -F_{\sigma_1,\sigma_2;\eta_1,\eta_2}(t,x)$$

Frequency dependence of anomalous Green's function

[RevModPhys.**91**.045005]

Paramagnetic Meissner effect

Meissner effect (Even frequency pairing)

Paramagnetic Meissner effect (Odd frequency pairing)

Topological Superconductors

Majorana Bound states

Topological superconductors are characterized by having Majorana fermion states located at the boundary. Majorana fermions are real(not complex) fermions that are their own anti-particles.

$$\gamma^{\dagger} = \gamma$$

Because of the particle-hole symmetry in superconductors, these Majorna fermions

must be localized exactly at zero energy.

$$H = \sum_{i} t(c_{i}^{\dagger}c_{i+1} + \mathbf{h.c.}) + i\Delta (c_{i}^{\dagger}c_{i+1}^{\dagger} - c_{i}c_{i+1})$$

5/1

5

Spectral Bulk Boundary correspondence

For chiral symmetric systems, we have $\{H, \Gamma\} = 0$

Winding number

$$w(z) = \frac{1}{2i} \operatorname{Tr}_k \left[\Gamma g(z, k) \partial_k g^{-1}(z, k) \right]$$

Odd-frequency correlation at the edge

$$F(z) = \text{Tr}_{\text{edge}} [\Gamma G(z)]$$

 $G(z) = (z - H)^{-1}, \ F(-z) = -F(z).$

Generalized Spectral Bulk Boundary correspondence

For non-chiral symmetric systems, we have $H = H_c + H_{ac}$ where

$$\{\Gamma, H_{ac}\} = [\Gamma, H_c] = 0$$

Winding number

$$w(z) = \frac{1}{2i} \operatorname{Tr}_k \left[\operatorname{\Gamma} g(z, k) i [g^{-1}(z, k), \hat{X}] \right]$$

Odd-frequency correlation at the edge

[PhysRevB.**104**.165125]

$$F(z) = \text{Tr}_{\text{edge}} [\Gamma(1 - H_c)G(z)]$$

 $G(z) = (z - H)^{-1}, \ F(-z) = -F(z).$

Rashba nanowire

The model hamiltonian is given by

$$H = \left(\frac{k^2}{2m} - \mu\right)\eta_z + \lambda k\sigma_z + B\eta_z\sigma_x + \Delta\eta_y\sigma_y$$

where σ_i, η_i are Pauli matrices acting on spin and particle-hole degrees of freedom respectively

[NaturePhys **8**,887–895(2012)]

Figure 1: Schematic diagram of Rashba nanowire

Periodically-driven Rashba nanowire

We introduce a time-periodic chemical potential

$$\mu(t) = egin{cases} \mu_1 & nT < t < (n + rac{1}{2})T \ \mu_2 & (n + rac{1}{2})T < t < (n + 1)T \end{cases}. \ n \in \mathcal{Z}$$

[PhysRevLett.**106**.220402]

Because of the periodicity in time, Majorana edge states appear at energies $=0,\pi$

9/14

9

Floquet Theorem

Floquet theorem

Assume that we have a hamiltonian that is periodic in time

$$H(t+T)=H(t)$$

Floquet theorem states that the eigenstates of this hamiltonian are given by

$$|\psi_j(t)\rangle = e^{-i\epsilon_j(t-t_0)} |u_j(t)\rangle$$

with $|u_j(t+T)\rangle = |u_j(t)\rangle$, $\epsilon_j \in \left\{-\frac{\pi}{T}, \frac{\pi}{T}\right\}$

Proof of Floquet Theorem

Let H(t + T) = H(t). The propagator is

$$U(t) = \mathcal{T} \exp \left\{ -i \int_0^t H(t') \mathrm{d}t' \right\}$$

We define the one period propagator $F=U(T)=\exp\{-iH_fT\}$

Let $|u_i\rangle$ be eigenstate of F with eigenvalue $e^{-i\epsilon_jT}$

The propagator can be rewritten as

$$U(t) = U(t) \exp\{iH_f t\} \exp\{-iH_f t\} = P(t) \exp\{-iH_f T\}$$

It follows that the solution to Schrodinger equation is

$$|\psi_j(t)\rangle = e^{-i\epsilon_j(t-t_0)}|u_j(t)\rangle$$

with $|u_j(t)\rangle = P(t)|u_j\rangle$, $\epsilon_j \in \left\{-\frac{\pi}{T}, \frac{\pi}{T}\right\}$

Extended Hilbert space

By extending the Hilbert space \mathcal{H} to $L^2[0,T]\otimes\mathcal{H}$, it is possible to turn the time-dependent Schrodinger equation into a time-independent problem. The effective hamiltonian is

$$K(t') = H(t') - i\partial_{t'}$$

The eigenstates are

$$|\psi_j(t,t')\rangle = e^{i\epsilon_j t} |u_j(t')\rangle$$

The extended Hilbert space formalism reduces to the time-dependent solution for Schrodinger equation when $t=t^\prime$

$$|\psi_j(t,t'=t)\rangle = |\psi_j(t)\rangle$$

Floquet superconductors

Floquet superconductivity

Any time-periodic system can be turned into a static system using Floquet theorem. The static system has infinite number of Floquet bands. These Floquet bands are coupled to each other by the driving force.

Odd-frequency Pairing symmetries in Floquet superconductors

class	Floquet index	Frequency	Spin	Momentum
Cls	$(n,m) \rightarrow (-m,-n)$	$\omega \to -\omega$	$s=\pm 1$	${m k}_1 o {m k}_2$
1	Even	Odd	Triplet	Even
2	Even	Odd	Singlet	Odd
3	Odd	Odd	Triplet	Odd
4	Odd	Odd	Singlet	Even

Table 1: All possible odd-frequency pairing in Floquet superconductors allowed by Fermi statistics

Floquet Topological Superconductors