Statistical Moments

Boundary Description using Statistical Moments

$$\mu_n(v) = \sum_{i=0}^{A-1} (v_i - m)^n p(v_i)$$
 n-th moment of v

$$m = \sum_{i=1}^{A-1} v_i p(v_i)$$

Internal Descriptors

Region Descriptors - Simple

- Area
- Perimeter
- Compactness (perimeter)²/Area
- Circularity Ratio
- Mean/Median intensity
- Max/Min intensity
- Normalized area

 $C: 4\pi$

 5π

16

$$R_c = \underbrace{\frac{A}{P^2 / 4\pi}}$$

 $P^2/4\pi$ R_c :

$$\frac{4}{5} \approx 0.8$$

$$\frac{\pi}{4} \approx 0.78$$

Area of circle with same perimeter as the shape Digital Image Processing (CSE/ECE 478)

Lecture-18: Multi-scale Image Processing

Ravi Kiran

Center for Visual Information Technology (CVIT), IIIT Hyderabad

It's all about scale!

Real-world objects exist as meaningful entities over certain ranges of scale.

Objects in the world appear in different ways depending on the scale of observation

Has important implications if one aims at describing objects

Form of description strongly dependent upon scale at which the world is considered

- C.f.: idealized mathematical concepts, such as 'point' and 'line'
 - independent of the scale of observation

- Information extracted from image depends upon
 - Size of actual structures in data
 - Size of information extractors/operators
 - 3 x 3, 5 x 5

- Until now ...
 - focus of approach on <u>small-scale</u> image structures
 - Smallest scale in digital images = Pixel scale
 - E.g. Spatial operators use discrete kernels with size very close to this scale, such as 3×3 kernels

Objects in real world occur at multiple scales

Many images contain information at different scales or levels of detail (e.g., people vs buildings)

Canaletto's San Marco square

https://www.cs.cmu.edu/~peiyunh/tiny/

- Until now ...
 - focus of approach on <u>small-scale</u> image structures
 - Smallest scale in digital images = Pixel scale
 - E.g. Spatial operators use discrete kernels with size very close to this scale, such as 3×3 kernels
 - How to control the scale with which operators 'look' at a digital image
 - How to get "best of all scales"?

Multi-scale Analysis

 Analyzing information at the same scale will not be effective.

Use windows of different size (i.e., vary scale)

Multi-(scale)/(resolution) Analysis

Alternative: Same window size, but analyze at different resolutions

Small size objects should be examined at a <u>high</u> resolution

Low resolution

Large size objects should be examined at a low resolution

Multi-scale Analysis

- Two techniques for representing multi-scale information efficiently
 - Pyramidal coding
 - Sub-band coding

Basic idea behind multi-scale analysis

- If no prior information is available about what are the appropriate scales for a given data set, then the only reasonable approach for an uncommitted vision system is to represent the input data at multiple scales.
 - Tony Lindeberg

Implication: <u>original signal</u> should be embedded into a one-parameter (scale) family of <u>derived signals</u>, in which fine-scale structures are successively suppressed

Successively smoothing a signal with Gaussian kernels of increasing width

Trajectories of zero-crossings (of second derivative) in scale-space

Scale-space: illustration

Levels in the scale-space representation of a image at scale levels t = 0, 2, 8, 32, 128, 512; <u>local minima</u> at each scale are right panel of each pair.

Scale-space (Multi-resolution) representation

- Observation: A large amount of smoothing reduces frequency of image features
- No need to keep all the pixels around!
- Strategy: Subsample!

Subsampling (by factor 2)

- Observation: A large amount of smoothing reduces frequency of image features
- No need to keep all the pixels around!
- Strategy: Subsample! (then upsample, to keep same image size)

Naïve Subsampling (by factor 2)

Aliasing

https://blogs.mathworks.com/steve/2017/01/09/aliasing-and-image-resizing-part-2/

Anti-aliasing

Solution: filter the image, then subsample

original image 262x195

downsampled (left)
vs. smoothed then
downsampled (right)
131x97

Image Pyramids

Idea: Represent NxN image as a "pyramid" of $1x1, 2x2, 4x4,..., 2^kx2^k$ images (assuming N=2^k)

The Gaussian Pyramid

Space Required for Pyramids

$$N^2 + \frac{1}{4}N^2 + \frac{1}{16} + N^2 + \dots = 1\frac{1}{3}N^2$$

The retina measures on many resolutions simultaneously

What are they good for?

Applications of scaled representations

Search for correspondence

· look at coarse scales, then refine with finer scales

Edge tracking

 a "good" edge at a fine scale has parents at a coarser scale

Control of detail and computational cost in matching

- e.g. finding stripes
- · important in texture representation
- Image Blending and Mosaicing
- Data compression (laplacian pyramid)

Template Matching with Image Pyramids

Input: Image, Template

1. Match template at current scale

2. Downsample image

3. Repeat 1-2 until image is very small

4. Take responses above some threshold, perhaps with non-maxima suppression

Basic idea: different scales are appropriate for describing different objects in the image, and we may not know the correct scale/size

ahead of time.

Example: Detecting "Blobs" at Different Scales.

- Most problems in CV & IP, are faced with the question: -
 - What operators to use ?
 - Where to apply them ?
 - How large (scale or range of scales) should they be ?
 - How to relate (interpret) to the actual structure
- In the absence of prior information
 - use empirical methods; represent data at multiple scales.
- Scale-space method attempts to represent data at all scales simultaneously

Gaussian vs Laplacian Pyramid

Shown in opposite order for space.

Pyramidal coding (cont'd)

Approximation pyramid (based on Gaussian filter)

Prediction residual pyramid (based on bilinear interpolation)

Note: the last level is the same as that of the approximation pyramid

Pyramidal coding (cont'd)

In the absence of quantization errors, the approximation pyramid can be re-constructed from the prediction residual pyramid.

- We only need to keep the prediction residual pyramid only!
 - More efficient representation

Multi-scale Analysis

- Two techniques for representing multi-scale information efficiently
 - Pyramidal coding
 - Sub-band coding

Subband coding

 Decompose an image (or signal) into different frequency bands (analysis step).

- Decomposition is performed so that the subbands can be reassembled to reconstruct the original image without error (synthesis step)
- Need to choose appropriate filters (i.e., "filter bank")

Subband coding (cont'd)

approximation

horizontal detail

vertical detail

diagonal detail

References

- https://staff.fnwi.uva.nl/r.vandenboomgaard/IPCV2 0172018/LectureNotes/IP/ScaleSpace/index.html
- https://docs.opencv.org/2.4/doc/tutorials/imgproc/ pyramids/pyramids.html
- https://www.pyimagesearch.com/2015/03/16/imag e-pyramids-with-python-and-opency/