FORMAL LANGUAGES AND AUTOMATA, 2025 FALL SEMESTER

Lec 06. Minimum DFA, Myhill-Nerode and MSO logic

Eunjung Kim

REDUCING THE NUMBER OF STATES OF DFA

- Why does this procedure works? (i.e. produces an equivalent automaton)
- Given a DFA M, the procedure leads to a unique outcome?
- Is this a DFA with the minimum possible number of states?
- Does the procedure leads to the same (minimum) DFA regardless of the starting DFAs?

WHY DOES THIS PROCEDURE WORKS?

We observe

- Any pair marked as distinguishable are indeed distinguishable.
 - → By induction, we argue that any marked pair has a distinguishing string.

- Any pair unmarked at the end of procedure are indistinguishable.
 - \sim Suppose not, and unmarked pair p, q of states is distinguished by a string w of length n. Consider the sequence of states in the computation histories of (p, w) and (q, w)...

WHY DOES THIS PROCEDURE WORKS?

Now the "groups" in Q are indeed the equivalence classes of \sim .

- Let Q_1, \ldots, Q_ℓ be the equivalence classes.
- Key fact: For $p, p' \in Q_i$ (i.e. $p \sim p'$), $\delta(p, a) \sim \delta(p', a)$ for every $a \in \Sigma$.
- So the "quotient M/\sim of M is well-defined; this is our new DFA.

$$\delta'([p],a) := [\delta(p,a)]$$

well-defined;
$$\delta'([p], a) = [\delta(p, a)] = [\delta(q, a)] = \delta'([q], a)$$

- Uniqueness of the procedure's outcome from a given DFA follows.
- Check yourself that $L(M) = L(M/\sim)$.

Is this a DFA with the minimum # states?

New states of M/\sim are distinguishable

- Choose two inequivalent states of M, i.e. $q_1 \nsim q_2$, and let w be a string distinguishing q, q'.
- For any $q_1' \sim q_1$, w also distinguishes q_1' and q_2 . (Why?)
- \rightsquigarrow every pair of new states in M/\sim are distinguishable.

Is this a DFA with the minimum # states?

Let p_0, p_1, \dots, p_ℓ be the states of $M' = (Q', \Sigma, \delta', p_0, F')$ (our new DFA obtained from M).

Suppose there is another DFA D with $q < \ell$ states.

- Choose ℓ strings $s_1, \ldots, s_\ell \in \Sigma^*$ such that $\hat{\delta}'(p_0, s_i) = p_i$ for each $i \in [\ell]$.
- Such strings exist because every state of M' is accessible from p_0 .
- Run D on these ℓ strings; there exist two strings s_i, s_j s.t. D ends up in the same state upon s_i and s_i .
- Note that there is a string distinguishing p_i and p_j for any pair $0 \le i < j \le \ell$ by the previous observation.
- What are the states you reach when you run D on $s_i \circ w$ and $s_j \circ w$?

DOES THE PROCEDURE LEADS TO THE SAME (MINIMUM) DFA REGARDLESS OF THE STARTING DFAS?

- Here, we are asking if there is a unique minimum DFA (up to renaming the states).
- Answer via so-called Myhill-Nerode Theorem.
- Myhill-Nerode Theorem can also be used as an alternative approach for establishing non-regularity of a language.

MYHILL-NERODE THEOREM

Fix an alphabet Σ and let L be a language over Σ .

Indistiguishability of two strings by L

We say that two strings $x, y \in \Sigma^*$ is indistinguishable by L if for all $z \in \Sigma^*$,

$$x \cdot z \in L$$
 if and only if $y \cdot z \in L$,

written as $x \equiv_L y$.

DISTIGUISHABILITY OF TWO STRINGS BY L

We say that $z \in \Sigma^*$ is a distinguishing extension of two strings $x, y \in \Sigma^*$ for L if

$$x \circ z \in L$$
 and $y \circ z \notin L$, or vice versa.

Note that $x \not\equiv_L y$ if and only if there is a distinguishing extension of them.

MYHILL-NERODE THEOREM

MYHILL-NERODE THEOREM

L is regular if and only if the number of equivalence classes of \equiv_L is finite.

- (\leftarrow) Build a DFA $D=(Q,\Sigma,\delta,q_0,F)$ from the equivalence classes of \equiv_L . Use the fact that $x\equiv_L y$ implies $x\circ a\equiv_L y\circ a$ for every $a\in\Sigma$ (why?).
 - Q = the set of the equivalence classes of \equiv_L (often written as Σ^*/\equiv_L).
 - $q_0 = ???$.
 - $\delta([x], a) = ????$ for each $a \in \Sigma$.
 - $F \subseteq Q$: $[x] \in F$ for every $x \in L$.

MYHILL-NERODE THEOREM

MYHILL-NERODE THEOREM

L is regular if and only if the number of equivalence classes of \equiv_L is finite. Moreover, the number of equivalence classes equals the number of states in a minimal (minimum) DFA.

 $(\rightarrow$, also the second part) Consider any DFA M with L(M)=L. Note that if $\hat{\delta}(q_0,x)\sim\hat{\delta}(q_0,y)$ for two strings $x,y\in\Sigma^*$, then $x\equiv_L y$.

MYHILL-NERODE THEOREM FOR NON-REGULARITY

MYHILL-NERODE THEOREM, IN CONTRAPOSITION

L is non-regular if and only if there is an infinite set $S \subseteq \Sigma^*$ consisting of pairwise distinguishable strings.

MYHILL-NERODE THEOREM FOR NON-REGULARITY

MYHILL-NERODE THEOREM, IN CONTRAPOSITION

L is non-regular if and only if there is an infinite set $S \subseteq \Sigma^*$ consisting of pairwise distinguishable strings.

- Mind that we seek for distinguishable strings, which are not necessarily in L.
- For pairwise distinguishable strings $S = \{s_1, \dots, s_m, \dots\}$, a distinguishing extension for (s_i, s_j) might be in general different from a distinguishing extension for (s_j, s_k) .

MYHILL-NERODE THEOREM FOR NON-REGULARITY, EXAMPLE

- $L_1 = \{0^n 1^n \mid n \ge 1\}$
- $L_2 = \{ w \in \{0,1\}^* \mid w \text{ is a palindrome} \}$

Strategy: find an infinite subset of Σ^* which consists of pairwise distinguishable (inequivalent) strings.

We saw several, all equivalent, characterization of regular language.

- DFA / NFA (algorithm)
- Regular expression (composability via basic operations)
- Recognizability by monoid (algebraic property)
- Myhill-Nerode Theorem
- Generated by left/right linear grammar (not covered, yet)
- Definability by Monadic Second Order logic

MSO LOGIC ON STRINGS, BY EXAMPLE

We want to express the language

 $L = \{w \in \{0,1\}^* \mid w \text{ does not contain 11 as a substring}\}$

with an Mso-sentence.

MSO-SENTENCE

$$\varphi = \forall x \forall y \ (x < y) \rightarrow \big(\exists z \ (x < z < y) \lor P_0(x) \lor P_0(y)\big)$$

Here, $P_0(x)$ is read as "the *x*-th symbol in the string is 0".

Likewise, $P_1(y)$ is read as "the *y*-th symbol in in the string is 1".

10010 satisfies φ whereas 1101 not, which we denote as 10010 $\models \varphi$ and 1101 $\not\models \varphi$.

MSO LOGIC ON STRINGS, BY EXAMPLE

We want to express that a set S of positions in the given string forms an "interval".

MSO-FORMULA

$$\varphi_{int}(S) = \forall x \ \forall y \ (x \in S \land y \in S \land x \leq y) \rightarrow \left(\forall z \ (x \leq z \leq y) \rightarrow z \in S\right)$$

Note that the validity of $\varphi_{int}(S)$ depends not only on the given string, but also the variable S.

We first express a string $s \in \Sigma^*$ as a logical structure (often called "relational structure").

STRING W AS A LOGICAL STRUCTURE

Universe = [n], where n is the length of the string.

• That is, each "position" (from 1 to n) in the string is an element in the universe. If $w = \epsilon$, the universe is \emptyset .

A binary relation < and $|\Sigma|$ unary relations P_a for all $a \in \Sigma$ on the universe.

- x < y: "the x-th position precedes the y-th position in the string."
- $P_0(x)$ is true if "the x-th symbol is 0."

 $\tau = \{<\} \cup \{P_a \mid a \in \Sigma\}$ is called the vocabulary on Σ -strings.

MSO-FORMULA ON Σ -STRINGS

An Mso-formula on strings is a <u>well-formed</u> string that can be constructed using from <u>atomic formulas</u> for (infinite supply of) individual variables x, y, z..., and set variables X, Y, Z... i.e.

- x < y; note that $< \in \tau$,
- $P_a(x)$ for each $a \in \Sigma$,
- x = y, and $x \in X$.

by applying

- the logical connectives $\land, \lor, \neg, \rightarrow$; $\varphi_1 \land \varphi_2, \neg \varphi$, etc,
- the universal and existential quantifier \forall , \exists ; in the form $\exists x \varphi$, $\exists X \varphi$, etc.

An Mso-formula in which all variables are quantified (by \forall or \exists) is called an Mso-sentence.

A property = the set of all Σ -strings which has the property.

A PROPERTY ON STRINGS AS AN MSO-SENTENCE

We say that a property $L\subseteq \Sigma^*$ on strings (a.k.a. a language) is <u>expressible</u>, <u>or equivalently definable</u>, in <u>Mso</u> if there is an Mso-sentence φ on Σ -strings such that

$$w \in L$$
 if and only if $w \models \varphi$

for every string $w \in \Sigma^*$.

MSO LOGIC ON STRINGS, BY EXAMPLE

Let us express the property L on $\{0,1\}$ -strings having even number of 1's, i.e.

 $L = \{w \in \{0,1\}^* \mid \text{there are even number of 1's in } w\}.$

Use the fact that $w \in L$ if and only if

- either $w = \epsilon$,
- or the positions of 1's in w can be "uniquely colored" in RED or BLUE so that two colors alternate.

MSO LOGIC ON STRINGS, BY EXAMPLE

MSO-FORMULA DEFINING L

- $\bullet \ \varphi_{\epsilon} = \neg \exists x \ (x = x)$
- $\varphi_{color}(R,B) = \forall x \ (P_1(x) \rightarrow (x \in R \lor x \in B)) \land (P_0(x) \rightarrow \neg (x \in R \lor x \in B))$
- $\bullet \ \varphi_{\textit{unique}}(R,B) = \forall x \ (x \in R \to \neg x \notin B) \land (x \in B \to \neg x \notin R)$
- $\varphi_{alternate}(R,B) = ??????$

Finally, we get a sentence φ_L defining L as

$$arphi_L = arphi_\epsilon ee \exists R \ \exists B arphi_{color}(R,B) \land arphi_{unique}(R,B) \land arphi_{alternate}(R,B)$$