Decision Tree Classification: How to assess the quality of split?

· Classification Error made by each newly created region.

where p(K|Ri) is % training pts in Ri that are labeled class k

Example:

	Class 1	C1ass 2	Error (ilj,tj)
RI	0	6	1- Max 76/6,0/6}=0
Rz	5	8	1- max { 5/13, 8/13} = 5/13

We can now try to find predictor; and threshold to that minimizes the average classification error over 2 regions, weighted by the population of the regions:

where Nj is the number of training points inside region Ri.

· Gini Index: impurity of each created region.

Example :

Class 1 Class 2 Gini (ilj.tj)

RI 0 6
$$1-[(6/6)^2+(0/6)^2]=0$$

R2 5 8 $1-[(5/13)^2+(8/13)^2]=80/169$

We can now try to find predictor; and threshold to that minimizes the average Gini Index over 2 regions, weighted by the population of the regions.

· Entropy of the class distribution in each newly created region.

Example :

	Class 1	Class 2	Entropy(ilj,tj)
Ri	O	6	Entropy(ilj,tj) -(6/109,6/6+%109,2%)=0
RZ	5	8	$-(5/13\log_2 5/13 + 8/13\log_2 8/13) = 1.38$

We can now try to find predictor; and threshold to that minimizes the average Entropy over 2 regions, weighted by the population of the regions.

min
$$\begin{cases} \frac{N_1}{N} & \text{Entropy}(||j|,t_j) + \frac{N_2}{N} & \text{Entropy}(|2||j|,t_j) \end{cases}$$

Comparison of Criteria:

Entropy penalizes impurity the most.