Lovely Professional University, Punjab

Course Code	Course Title	Course Planner
CSE211	COMPUTER ORGANIZATION AND DESIGN	22157::Gunseerat Kaur

Course Outcomes :Through this course students should be able to

CO1:: illustrate the design of the various functional units and components of computers.

CO2:: teach the basics of organizational and architectural issues of a digital computer and Classify and compute the performance of machines, Machine Instructions.

CO3:: examine the elements of modern instructions sets and their impact on processor design.

CO4 :: compare the design issues in terms of speed, technology, cost, performance.

CO5 :: identify the performance of various classes of Memories, build large memories using small memories for better performance and analyze arithmetic for ALU implementation

CO6:: understand the concepts of parallel processing, pipelining and interprocessor communication.

	TextBooks (T)					
Sr No	Title	Author	Publisher Name			
T-1	COMPUTER SYSTEM ARCHITECTURE	MORRIS MANO	PRENTICE HALL			
	Reference Books (R)					
Sr No	Title	Author	Publisher Name			
R-1	COMPUTER ARCHITECTURE A QUANTITATIVE APPROACH	HENNESSY,J.L,DAVID A PATTERSON, AND GOLDBERG	PEARSON			
R-2	COMPUTER ORGANIZATION AND ARCHITECTURE- DESIGNING FOR PERFORMANCE	WILLIAM STALLINGS	PRENTICE HALL			

Other Read	ing (OR)					
Sr No	Journals articles as Compulsary reading (specific articles, complete reference)					
OR-1	http://www.svecw.edu.in/Docs%5CITIIBTechIISemLecCOA.pdf ,					
OR-2	http://www.pvpsiddhartha.ac.in/dep_it/lecturenotes/CSA/unit-2.pdf ,					
OR-3	https://ieeexplore.ieee.org/document/8468702,					

An instruction plan is only a tentative plan. The teacher may make some changes in his/her teaching plan. The students are advised to use syllabus for preparation of all examinations. The students are expected to keep themselves updated on the contemporary issues related to the course. Upto 20% of the questions in any examination/Academic tasks can be asked from such issues even if not explicitly mentioned in the instruction plan.

OR-4	https://leeexplore.leee.org/abstract/document/464688,							
OR-5	https://ieeexplore.ieee.org/abstract/document/6522302,	https://ieeexplore.ieee.org/abstract/document/6522302,						
Relevant W	Vebsites (RW)							
Sr No	(Web address) (only if relevant to the course)	Salient Features						
RW-1	https://www.lkouniv.ac.in/site/writereaddata/siteContent/202004221613338445rohit_engg_pipelining_and_hazzard.pdf	Pipelining process						
RW-2	https://www.britannica.com/technology/cache-memory	cache memory						

LTP week distribution: (LTP	Weeks)
Weeks before MTE	7
Weeks After MTE	7
Spill Over (Lecture)	

Detailed Plan For Lectures

Week Number	Lecture Number	Broad Topic(Sub Topic)	Chapters/Sections of Text/reference books	Other Readings, Relevant Websites, Audio Visual Aids, software and Virtual Labs	Lecture Description	Learning Outcomes	Pedagogical Tool Demonstration/ Case Study / Images / animation / ppt etc. Planned	Live Examples
Week 1	Lecture 1	Basics Of Digital Electronics(Registers.)	T-1		Introduction to the course Introduction of digital computer, Logic gates and flip flops	Students will understand about course contents and basic of digital electronics	Demonstration with PPT	Digital electronics is based entirely on the fundamental principles of Boolean logic. Consider the following devices: i . A soda machine which accepts coins and dispenses cans of soda ii. a microwave oven with programmable power levels and timers iii. a hand-held calculator

An instruction plan is only a tentative plan. The teacher may make some changes in his/her teaching plan. The students are advised to use syllabus for preparation of all examinations. The students are expected to keep themselves updated on the contemporary issues related to the course. Upto 20% of the questions in any examination/Academic tasks can be asked from such issues even if not explicitly mentioned in the instruction plan.

Week 1	Lecture 1	Basics Of Digital Electronics(Introduction to combinational circuit)	T-1	Introduction to the course Introduction of digital computer, Logic gates and flip flops	Students will understand about course contents and basic of digital electronics	Demonstration with PPT	Digital electronics is based entirely on the fundamental principles of Boolean logic. Consider the following devices: i . A soda machine which accepts coins and dispenses cans of soda ii. a microwave oven with programmable power levels and timers iii. a hand-held calculator
		Basics Of Digital Electronics(introduction to sequential circuits)	T-1	Introduction to the course Introduction of digital computer, Logic gates and flip flops	Students will understand about course contents and basic of digital electronics	Demonstration with PPT	Digital electronics is based entirely on the fundamental principles of Boolean logic. Consider the following devices: i . A soda machine which accepts coins and dispenses cans of soda ii. a microwave oven with programmable power levels and timers iii. a hand-held calculator

Week 1	Lecture 2	Basics Of Digital Electronics(Registers.)	T-1	Introduction to the course Introduction of digital computer, Logic gates and flip flops	Students will understand about course contents and basic of digital electronics	Demonstration with PPT	Digital electronics is based entirely on the fundamental principles of Boolean logic. Consider the following devices: i . A soda machine which accepts coins and dispenses cans of soda ii. a microwave oven with programmable power levels and timers iii. a hand-held calculator
		Basics Of Digital Electronics(Introduction to combinational circuit)	T-1	Introduction to the course Introduction of digital computer, Logic gates and flip flops	Students will understand about course contents and basic of digital electronics	Demonstration with PPT	Digital electronics is based entirely on the fundamental principles of Boolean logic. Consider the following devices: i . A soda machine which accepts coins and dispenses cans of soda ii. a microwave oven with programmable power levels and timers iii. a hand-held calculator

Week 1	Lecture 2	Basics Of Digital Electronics(introduction to sequential circuits)	T-1		Introduction to the course Introduction of digital computer, Logic gates and flip flops	Students will understand about course contents and basic of digital electronics	Demonstration with PPT	Digital electronics is based entirely on the fundamental principles of Boolean logic. Consider the following devices: i . A soda machine which accepts coins and dispenses cans of soda ii. a microwave oven with programmable power levels and timers iii. a hand-held calculator
	Lecture 3	Basics Of Digital Electronics(Multiplexers and De multiplexers)	T-1		Introduction to multiplexers, Decoders, Flip flops	Students will understand how Muxs, Decoders, Flip flops function	Demonstration with diagrams	
		Basics Of Digital Electronics(Decoder and Encoder)	T-1		Introduction to multiplexers, Decoders, Flip flops	Students will understand how Muxs, Decoders, Flip flops function	Demonstration with diagrams	
Week 2	Lecture 4	Basics Of Digital Electronics(Multiplexers and De multiplexers)	T-1		Introduction to multiplexers, Decoders, Flip flops	Students will understand how Muxs, Decoders, Flip flops function	Demonstration with diagrams	
		Basics Of Digital Electronics(Decoder and Encoder)	T-1		Introduction to multiplexers, Decoders, Flip flops	Students will understand how Muxs, Decoders, Flip flops function	Demonstration with diagrams	
	Lecture 5	Register Transfer and Micro Operations(Register Transfer Language and Register Transfer)	T-1	OR-1	Discussion on Bus and Memory Transfers, Bus selection and three state bus buffers	understand transfer	Demonstration with images	

Week 2	Lecture 5	Register Transfer and Micro Operations(Bus and Memory Transfer)	T-1		Discussion on Bus and Memory Transfers, Bus selection and three state bus buffers	i. Students will understand transfer between Processor registers through buses ii. Understand transfer between Processor register and memory through buses	Demonstration with images	
	Lecture 6	Register Transfer and Micro Operations(Register Transfer Language and Register Transfer)	T-1	OR-1	Discussion on Bus and Memory Transfers, Bus selection and three state bus buffers	i. Students will understand transfer between Processor registers through buses ii. Understand transfer between Processor register and memory through buses	Demonstration with images	
		Register Transfer and Micro Operations(Bus and Memory Transfer)	T-1		Discussion on Bus and Memory Transfers, Bus selection and three state bus buffers	i. Students will understand transfer between Processor registers through buses ii. Understand transfer between Processor register and memory through buses	Demonstration with images	
Week 3	Lecture 7	Basics Of Digital Electronics(shift registers)	T-1 R-1		Operations are performed on the binary data stored in the register	Understand transfer between Processor register and memory through buses	Demonstration with images	
	Lecture 8	Register Transfer and Micro Operations(Logic Micro Operations)	T-1		Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
		Register Transfer and Micro Operations(Shift Micro Operations)	T-1		Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	

Week 3	Lecture 8	Register Transfer and Micro Operations(Design of arithmetic logic unit.)	T-1	OR-2	Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
		Register Transfer and Micro Operations(arithmetic microoperations)	T-1		Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
	Lecture 9	Register Transfer and Micro Operations(Logic Micro Operations)	T-1		Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
		Register Transfer and Micro Operations(Shift Micro Operations)	T-1		Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
	Lecture 10	Register Transfer and Micro Operations(Design of arithmetic logic unit.)	T-1	OR-2	Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
		Register Transfer and Micro Operations(arithmetic microoperations)	T-1		Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
Week 4		Register Transfer and Micro Operations(Logic Micro Operations)	T-1		Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
		Register Transfer and Micro Operations(Shift Micro Operations)	T-1		Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	

eek 4	Lecture 10	Register Transfer and Micro Operations(Design of arithmetic logic unit.)	T-1	OR-2	Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
		Register Transfer and Micro Operations(arithmetic microoperations)	T-1		Operations are performed on the binary data stored in the register	Student will learn about the 16 micro- operations and practice its applications on ALSU	Peer learning, Flipped classroom, Demonstration with images	
	Lecture 11	Computer Organization (instruction codes)	T-1 R-2		Introduction to basic computer organization and show how its operation can be specified with register transfer statement.	i. Students will understand about internal registers,control structure and instruction . ii. Understanding of Common bus system	Flipped classroom, demonstration with images	
		Computer Organization (computer registers)	T-1 R-2		Introduction to basic computer organization and show how its operation can be specified with register transfer statement.	i. Students will understand about internal registers,control structure and instruction . ii. Understanding of Common bus system	Flipped classroom, demonstration with images	
		Computer Organization (common bus system)	T-1 R-2		Introduction to basic computer organization and show how its operation can be specified with register transfer statement.	i. Students will understand about internal registers,control structure and instruction . ii. Understanding of Common bus system	Flipped classroom, demonstration with images	
	Lecture 12	Computer Organization (computer instructions)	T-1 R-2		Explain the basics of instruction execution on a computer.	Understand the characteristics of an instruction set and how it maps to underlying hardware. ii. Identify and analyze the design and function of the basic instruction execution elements of a modern processor	Peer learning, demonstration with images	

Week 4	Lecture 12	Computer Organization (timing and control)	T-1 R-2	instruction execution on a computer. character instruction execution on a computer. character instruction with the computer in	restand the cteristics of an ction set and t maps to lying hardware. ntify and ze the design anction of the instruction tion elements Peer learning, demonstration with images demonstration with images	
		Computer Organization (instruction cycle)	T-1 R-2	instruction execution on a computer. character instruction execution on a computer. chow it underlii. Ider analyz and further instruction execution of character instruction execution of character instruction execution of character instruction execution on character instruction execution on a computer.	restand the cteristics of an ction set and t maps to lying hardware. ntify and ze the design unction of the instruction tion elements Peer learning, demonstration with images demonstration with images	
Week 5	Lecture 13	Computer Organization (memory reference instructions)	T-1 R-1	reference instructions and an design of the instructions	ction execution htts of a modern key concepts	
		Computer Organization (input-output and interrupt)	T-1 R-1	reference instructions and an design of the instructions	ction execution https://execution.com/reserved.com/reserv	
	Lecture 14	Computer Organization (memory reference instructions)	T-1 R-1	reference instructions and an design of the instructions	ction execution hts of a modern key concepts	

Week 5	Lecture 14	Computer Organization (input-output and interrupt)	T-1 R-1		Discussion on memory reference instructions and interrupt cycle	Students will identify and analyze the design and function of the basic instruction execution elements of a modern processor	thorough knowledge and understanding of	
	Lecture 15				Online Assignment			
Week 6	Lecture 16	Central Processing Unit (Addressing Modes)	T-1		Describing about different modes of transfer and categories of computer instruction	Students will learn about computer instruction and data transfer instruction	Students will learn about computer instruction and data transfer instruction	
	Lecture 17	Central Processing Unit (General Register Organization)	T-1		Introduction to various data processing operations performed in CPU and storage device that store information	i) Understand the organization and architecture of CPU. ii) To understand stack based processor organization. ii. Instruction set of a stack organized processor	Discussion with examples, peer learning, demonstration with images	
		Central Processing Unit (Stack Organization)	T-1		Introduction to various data processing operations performed in CPU and storage device that store information	i) Understand the organization and architecture of CPU. ii) To understand stack based processor organization. ii. Instruction set of a stack organized processor	Discussion with examples, peer learning, demonstration with images	
	Lecture 18	Central Processing Unit (Reduced instruction set computer)	T-1 R-1	OR-3 OR-4	CISC and RISC variable length instructions in multiple cycles	Students will understand the CISC and RISC Architecture	peer learning, demonstration with images	
		Central Processing Unit (Complex instruction set computer)	T-1 R-1	OR-5	CISC and RISC variable length instructions in multiple cycles	Students will understand the CISC and RISC Architecture	peer learning, demonstration with images	
Week 7	Lecture 19	Central Processing Unit (instruction formats)	T-1		Describing about different modes of transfer and categories of computer instruction including program control instructions	Students will learn about computer instruction and data transfer instruction	Demonstration with images, real examples, peer learning	

				SPILL OVER		
eek 7	Lecture 21			Spill Over		
			1	MID-TERM		
Veek 8	Lecture 22	Input-Output Organization (Peripheral Devices)	T-1 R-1 R-2	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with images, PPTs
		Input-Output Organization (Input Output Interface)	T-1 R-1 R-2	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with images, PPTs
		Input-Output Organization (Data Transfer Schemes)	T-1 R-1 R-2	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with images, PPTs
		Input-Output Organization (Program Control and Interrupts)	T-1 R-1 R-2	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with images, PPTs
	Lecture 23	Input-Output Organization (Input/Output processor.)	T-1	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with PPT, videos
		Input-Output Organization (modes of data transfer)	T-1	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with PPT, videos

Week 8	Lecture 23	Input-Output Organization (Processor status word)	T-1	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with PPT, videos	
	Lecture 24	Input-Output Organization (Input/Output processor.)	T-1	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with PPT, videos	
		Input-Output Organization (modes of data transfer)	T-1	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with PPT, videos	
		Input-Output Organization (Processor status word)	T-1	Introduction to input output subsystem of a computer	Students will understand the mode of communication between the central system and out side environment	Demonstration with PPT, videos	
Week 9	Lecture 25			Online Assignment			

					I	1	
Week 9	Lecture 26	Input-Output Organization	T-1	Discussion on types	i. Students will	Demonstration	A sound card
		(Direct Memory Access	R-1		understand the	with PPT, videos,	may need to
		Transfer and Input/Output		and Discussion on DMA	concept of Direct	flipped classroom	access data
		Processor)		used when multiple	memory		stored in the
				bytes are to be	access to memory for		computer's
				transferred between	data transfers		RAM, but since
				memory and IO devices	ii. Learn how DMA		it can process
					used when multiple		the data itself, it
					bytes are		may use DMA
					to be transferred		to bypass the
					between memory and		CPU. Video
					IO		cards that
					devices		support DMA
					iii. Learn DMA Data		can also access
					transfer mechanism		the system
					between		memory and
					I/O devices and		process graphics
					system memory with		without needing
					the least		the CPU. Ultra
					processor		DMA hard
					intervention using		drives use DMA
					DMAC		to transfer data
							faster than
							previous hard
							drives that
							required the data
							to first be run
							through the
							CPU

Week 9	Lecture 26	Input-Output Organization	T-1	Discussion on types	i. Students will	Demonstration	A sound card
		(Priority interrupt)	R-1	of data transfer schemes	understand the	with PPT, videos,	may need to
				and Discussion on DMA	concept of Direct	flipped classroom	access data
				used when multiple	memory		stored in the
				bytes are to be	access to memory for		computer's
				transferred between	data transfers		RAM, but since
				memory and IO devices	ii. Learn how DMA		it can process
					used when multiple		the data itself, it
					bytes are		may use DMA
					to be transferred		to bypass the
					between memory and		CPU. Video
					IO		cards that
					devices		support DMA
					iii. Learn DMA Data		can also access
					transfer mechanism		the system
					between		memory and
					I/O devices and		process graphics
					system memory with		without needing
					the least		the CPU. Ultra
					processor		DMA hard
					intervention using		drives use DMA
					DMAC		to transfer data
							faster than
							previous hard
							drives that
							required the data
							to first be run
							through the
							CPU

					I	l .	
Week 9	Lecture 26	Input-Output Organization	T-1	Discussion on types	i. Students will	Demonstration	A sound card
		(Direct memory access	R-1		understand the	with PPT, videos,	may need to
		transfer)		and Discussion on DMA	concept of Direct	flipped classroom	access data
				used when multiple	memory		stored in the
				bytes are to be	access to memory for		computer's
				transferred between	data transfers		RAM, but since
				memory and IO devices	ii. Learn how DMA		it can process
					used when multiple		the data itself, it
					bytes are		may use DMA
					to be transferred		to bypass the
					between memory and		CPU. Video
					IO		cards that
					devices		support DMA
					iii. Learn DMA Data		can also access
					transfer mechanism		the system
					between		memory and
					I/O devices and		process graphics
					system memory with		without needing
					the least		the CPU. Ultra
					processor		DMA hard
					intervention using		drives use DMA
					DMAC		to transfer data
							faster than
							previous hard
							drives that
							required the data
							to first be run
							through the
							CPU

W1 C	I	M II. 4/M	T. 1	D	G(1(. 1111	D	C
Week 9	Lecture 27	Memory Unit(Memory	T-1	Describing about	Students will learn	Demonstration	Content
		Hierarchy and Processor Vs	R-1	RAM and ROM chips,	about content	with PPTs, videos	addressable
		Memory Speed)		Auxiliary memory is	addressable memory		memory is often
				also discussed.			used in
				Associative			computer
				memoryDescribing			networking
				about			devices. For
				Argument register			example, when a
				Match			network switch
				Logic etc			receives a data
							frame from one
							of its ports, it
							updates an
							internal table
							with the frame's
							source MAC
							address and the
							port it was
							received on. It
							then looks up
							the destination
							MAC address in
							the table to
							determine what
							port the frame
							needs to be
							forwarded to,
							and sends it out
							on that port. The
							MAC address
							table is usually
							implemented
							with a binary
							CAM so the
							destination port
							can be found
							very quickly,
							reducing the
							switch's latency

Week 9	Lecture 27	Memory Unit(Memory Management)	T-1 R-1	Describing about RAM and ROM chips, Auxiliary memory is also discussed. Associative memoryDescribing about Argument register Match Logic etc	Students will learn about content addressable memory	Demonstration with PPTs, videos	Content addressable memory is often used in computer networking devices. For example, when a network switch receives a data frame from one of its ports, it updates an internal table with the frame's source MAC address and the port it was received on. It then looks up the destination MAC address in the table to determine what port the frame
							the destination MAC address in the table to determine what

Week 9		Memory Unit(main memory)	T-1 R-1	DW 2	Describing about RAM and ROM chips , Auxiliary memory is also discussed. Associative memoryDescribing about Argument register Match Logic etc	Students will learn about content addressable memory	Demonstration with PPTs, videos	Content addressable memory is often used in computer networking devices. For example, when a network switch receives a data frame from one of its ports, it updates an internal table with the frame's source MAC address and the port it was received on. It then looks up the destination MAC address in the table to determine what port the frame needs to be forwarded to, and sends it out on that port. The MAC address table is usually implemented with a binary CAM so the destination port can be found very quickly, reducing the switch's latency
Week 10	Lecture 28	Memory Unit(Cache Memory)	T-1 R-2	RW-2	Discussion on types of mapping techniques in cache memory	Students will learn about basic concepts of cache memory	Peer learning, Demonstration with PPTs	
		Memory Unit(Associative memory)	T-1 R-2		Discussion on types of mapping techniques in cache memory	Students will learn about basic concepts of cache memory	Peer learning, Demonstration with PPTs	

Week 10	Lecture 29	Memory Unit(Cache Memory)	T-1 R-2	RW-2	Discussion on types of mapping techniques in cache memory	Students will learn about basic concepts of cache memory	Peer learning, Demonstration with PPTs	
		Memory Unit(Associative memory)	T-1 R-2		Discussion on types of mapping techniques in cache memory	Students will learn about basic concepts of cache memory	Peer learning, Demonstration with PPTs	
	Lecture 30	Memory Unit(Virtual memory)	T-1		Introduction to Virtual memory	Students will learn basic paging, frames and virtual memory	demonstration with PPT, videos, flipped classroom	
		Memory Unit(auxiliary memory)	T-1		Introduction to Virtual memory	Students will learn basic paging, frames and virtual memory	demonstration with PPT, videos, flipped classroom	
Week 11	Lecture 31	Introduction to Parallel Processing(Pipelining)	T-1	RW-1	Detailed discussion on instruction pipelining in computer.	Introduction to pipelining and its types	Peer Learning	
		Introduction to Parallel Processing(parallel processing)	T-1		Detailed discussion on instruction pipelining in computer.	Introduction to pipelining and its types	Peer Learning	
	Lecture 32	Introduction to Parallel Processing(Characteristics of multiprocessors)	T-1 R-1		Introduction to parallel processing and multiprocessors	Amdahl's law, chracteristics of multiprocessors	discussion with exampples	
	Lecture 33	Introduction to Parallel Processing(Interconnection Structures)	T-1		Various multiprocessor interconnection structures	Students will learn about Time-shared, Multiport memory, crossbar switch, hypercube interconnection	Discussions with images and diagrams	
Week 12	Lecture 34				Online Assignment			
	Lecture 35	Multiprocessors (Categorization of multiprocessors (SISD,MIMD,SIMD.SPMD) , Introduction to GPU)	T-1		Different categories of multiprocessors, introduction to GPU	Students will learn about multiprocessor calssification, and GPU	Discussion with images	
	Lecture 36	Latest technology and trends in computer architecture (multi-cores processor.)	T-1		Different categories of multiprocessors, introduction to GPU	Students will learn about multiprocessor calssification, and GPU	discussion with images	
Week 13	Lecture 37	Latest technology and trends in computer architecture (microarchitecture)	T-1 R-1		Latest processor architecture study is done	Student will learn about latest processor architectures	Demonstration and discussions	

An instruction plan is only a tentative plan. The teacher may make some changes in his/her teaching plan. The students are advised to use syllabus for preparation of all examinations. The students are expected to keep themselves updated on the contemporary issues related to the course. Upto 20% of the questions in any examination/Academic tasks can be asked from such issues even if not explicitly mentioned in the instruction plan.

Week 13	Lecture 38	Latest technology and trends in computer architecture (latest processor for smartphone or tablet and desktop)	T-1	Discussion on new nonvolatile memory technology and discussion on various processors	Students will learn about new processor and new memory technology with there architectures	Peer Learning
	Lecture 39	Latest technology and trends in computer architecture (next generation processors architecture)	T-1 R-1	Discussion on new nonvolatile memory technology and discussion on various processors	Students will learn about new processor and new memory technology with there architectures	peer learning
Week 14	Lecture 40	Latest technology and trends in computer architecture (next generation processors architecture)	T-1 R-1	Discussion on new nonvolatile memory technology and discussion on various processors	Students will learn about new processor and new memory technology with there architectures	peer learning
				SPILL OVER		
Week 14	Lecture 42			Spill Over		
Week 15	Lecture 43			Spill Over		
	Lecture 44			Spill Over		
	Lecture 45			Spill Over		

Plan for Tutorial: (Please do not use these time slots for syllabus coverage)

Tutorial No.	Lecture Topic	Type of pedagogical tool(s) planned (case analysis,problem solving test,role play,business game etc)
Tutorial1	Problem Solving on Logic Gates	Problem Solving
Tutorial2	Problems based on Bus and Memory transfer and Arithmetic and shift Micro operations	Problem Solving
Tutorial3	Problem Solving on Register transfer and Register transfer language and Instruction Codes	Problem Solving
Tutorial4	Problem Solving on Control Timing Signals and Instruction Cycle	Problem Solving
Tutorial5	Problem Solving on Memory Reference Instructions and Input Output interrupt	Problem Solving
Tutorial6	Problem Solving on program and Micro Program Control,	Problem Solving
Tutorial7	Problem Solving on Data Transfer, Manipulation and Addressing Modes	Problem Solving

After Mid-Term			
Tutorial8	Problem Solving on Data Transfer Schemes, Program Control and Interrupts	Problem Solving	
Tutorial9	Problem Solving on Direct Memory Access and Memory Hierarchy	Problem Solving	
Tutorial10	Problem Solving on Cache Memory, Associative Memory and Virtual Memory	Problem Solving	
Tutorial11	Problem Solving on Pipelining	Problem Solving	
Tutorial12	Problem Solving on Performance of Processors with pipelining	Problem Solving	
Tutorial13	Problem solving on interconnection structures	Problem Solving	
Tutorial14	Problem Solving on GPU	Problem Solving	