Лабораторная работа №1

ПОСТРОЕНИЕ ИНТЕРПОЛИРУЮЩЕГО КУБИЧЕСКОГО СПЛАЙНА

Постановка задачи. Постройте кубический сплайн, интерполирующий следующие функции на следующих отрезках:

а) тестовую функцию $\phi(x)$, заданную формулами

$$\varphi(x) = \begin{cases} x^3 + 3x^2, x \in [-1,0], \\ -x^3 + 3x^2, x \in [0,1]. \end{cases}$$
 (1)

на отрезке $x \in [-1, 1]$ на равномерной сетке с граничными условиями:

$$S''(a) = \varphi''(-1), S''(b) = \varphi''(1)$$
 (2)

b) функцию f(x) на отрезке $x \in [a, b]$ на равномерной сетке с граничными условиями

$$S''(a) = f''(a), S''(b) = f''(b),$$
 (3)

$$S''(a) = 0, S''(b) = 0.$$
 (4)

варианты заданий см. табл. 5;

с) «осциллирующие» функции f(x) + cos10x и f(x) + cos100x на том же отрезке $x \in [a, b]$ на равномерной сетке с условиями (3) (совпадение вторых производных) и (4) (естественные граничные условия).

Используя тестовую функцию а) проверьте и аргументируйте правильность работы программы. Для функций b) и c) проверьте наличие сходимости сплайн-интерполяции и постройте сплайн, аппроксимирующий указанные функции с точностью $\varepsilon = 10^{-6}$. Далее выясните, каков порядок сходимости сплайна к каждой из трех интерполируемых функции. Для отыскания коэффициентов сплайна во всех заданиях используйте метод прогонки.

Вывод результатов. Коэффициенты каждого построенного кубического сплайна должны быть выведены в таблицу следующего вида

Таблица 1

$\mathcal{N}\!$	x_i	x_{i+1}	a_i	b_i	c_i	d_i
1	$x_0 = a$	x_{I}				
	•••	•••				
n	x_{n-1}	$x_n = b$				

Здесь n – число участков, i – номер участка, $[x_i, x_{i+1}]$ – границы участка с номером i; a_i, b_i, c_i, d_i – коэффициенты сплайна. Если сплайн построен на равномерной сетке, границы участков (второй и третий столбцы) в таблице можно не указывать.

Сходство функции и интерполирующего ее сплайна показывает величина

$$\max_{x \in [a,b]} |f(x) - S(x)|, \qquad (5)$$

сходство их производных показывает величина

$$\max_{x \in [a,b]} |f'(x) - S'(x)|. \tag{6}$$

Для *численной оценки* сходства функции и сплайна вводят *дополни- тельную сетку*, которая содержит узлы сетки сплайна и промежуточные узлы. Тогда сходство функции и сплайна и сходство их производных на отрезке [a, b] оценивается величинами

$$\max_{x \in \partial oncem \kappa e} |f(x) - S(x)|, \qquad (7)$$

$$\max_{x \in \partial oncem\kappa e} |f'(x) - S'(x)|. \tag{8}$$

Например, дополнительная сетка может быть выбрана равномерной с шагом по x в 4 раза меньше, чем шаг сетки сплайна. Тогда на каждом участке сплайна для оценки его сходства с функцией появятся по три дополнительных узла.

Результат сравнения функции и интерполирующего ее сплайна должен быть выведен в таблицу следующего вида:

$\mathcal{N}\!$	X	f(x)	S(x)	f(x)-S(x)	f'(x)	S'(x)	f'(x)-S'(x)
0	$x_0 = a$						
•••							
•••							
•••							
N	$x_N = b$						

Сетка сплайна:
$$n= \ll __ \gg _$$
 Дополн. сетка: $N= \ll _ \gg _{x\in [a,b]} |f(x)-S(x)|= \ll _ \gg _{x\in [a,b]} |f'(x)-S'(x)|= \ll _ \gg _$

Для визуальной проверки сплайн-интерполяции программа должна строить график функции и сплайна, а также график их производных.

Задания и порядок их выполнения. Для тестовой функции (1) постройте интерполирующий кубический сплайн с условиями (2) на равномерной сетке отрезка [-1, 1]. Постройте график тестовой функции и сплайна, выведите таблицу коэффициентов (табл. 1) и для некоторого небольшого значения n (например, от 2 до 5) приведите выкладки, подтверждающие правильность работы программы. Замечание: для обоснования правильной работы программы совпадения графиков функции и сплайна недостаточно.

Далее для основной функции f(x) на равномерной сетке отрезка $x \in [a, b]$ постройте интерполирующий кубический сплайн с граничными условиями (3) и (4) при каком-либо значении n. Затем проверьте наличие сходимости сплайн-интерполяции (с целью тестирования программы). Затем число n подберите так, чтобы на dononhumenhhoù cemke сплайн интерполировал функцию с точностью $\varepsilon = 10^{-6}$, т.е.

$$\max_{x \in [a,b]} |f(x) - S(x)| \le \varepsilon. \tag{9}$$

Укажите подобранное Вами число n, а также достигнутые при этом максимальные значения (7) и (8). *Примечание*. При каждом n коэффициенты сплайна должны быть выведены в табл. 1, для сравне-

ния функции и сплайна нужно построить табл. 2 с указанием достигнутых максимальных значений (7) и (8) и построить два графика: график функции и интерполирующего ее сплайна и график их производных.

Для осциллирующих функций f(x) + cos10x и f(x) + cos100x проведите аналогичное исследование: постройте кубический сплайн при том же значении n, проверьте наличие сходимости, затем постройте сплайн, интерполирующий указанные функции с такой же точностью $\varepsilon = 10^{-6}$, указав достигнутые при этом максимальные значения (7) и (8) и построив соответствующие графики и таблицы.

Анализ порядка сходимости. Исследуйте порядок сходимости сплайн интерполяции для функций

$$f(x), f(x) + \cos 10x, f(x) + \cos 100x.$$

С этой целью для каждой из указанных функций постройте интерполирующий кубический сплайн с условиями (3) и (4) соответственно при разных значениях *п*. Закономерность выбора *п* должна быть такой, чтобы оценка порядка сходимости была достаточно убедительной. Результаты расчетов запишите в таблицу 3 и на ее основе определите порядок сходимости сплайна к функции и порядок сходимости производной сплайна к производной функции. Замечание. Табл. 3 заполняется от руки.

Таблица 3

n	$\max_{x \in [a,b]} f(x) - S(x) $	$\max_{x \in [a,b]} f'(x) - S'(x) $
n_1		
n_2 .		
 Порядок сходимости		

По результатам всех проведенных расчетов заполните (от руки) итоговую таблицу 4:

Таблица 4

Вариант « », f(x) = « », [a, b] = [,

$f(x) \qquad f(x) + \cos 10x \qquad f(x) + \cos 100x \qquad \Pi pu \ n = \ll \Rightarrow \qquad \qquad$, ,	, [, -]	()	T^{****}
$\max_{x \in [a,b]} f'(x) - S'(x) $ $\max_{x \in [a,b]} f'(x) - S'(x) $ При достижении точности $\varepsilon = 1$ $\max_{x \in [a,b]} f'(x) - S'(x) $ Оценка порядка сходимости сплайна к функции Порядок сходимости производной сплайна к производной функции Оценка числа узлов, начиная с кото	$(x)+\cos 100x \varphi(x)$	f(x)+cos10x	f(x)	
I При достижении точности $\mathcal{E} = 1$ \mathbf{n} $\mathbf{max}_{x \in [a,b]} f'(x) - S'(x) $ \mathbf{n}	<i>»</i>	При п =		
I При достижении точности $\mathcal{E} = 1$ \mathbf{n} $\mathbf{max}_{x \in [a,b]} f'(x) - S'(x) $ \mathbf{n} Оценка порядка сходимости \mathbf{n} Порядок сходимости \mathbf{n} Сплайна \mathbf{n} функции \mathbf{n} Порядок сходимости \mathbf{n} производной сплайна \mathbf{n} $$				$\max_{x \in [a,b]} f(x) - S(x) $
n $\max_{x \in [a,b]} f'(x) - S'(x) $ O ценка порядка сходимости Γ Порядок сходи Γ Порядок сходимости Γ Порядок сходимости Γ По				$\max_{x \in [a,b]} f'(x) - S'(x) $
$\max_{x \in [a,b]} f'(x) - S'(x) $ Оценка порядка сходимости Порядок сходимости сплайна к функции Порядок сходимости производной сплайна к производной функции Оценка числа узлов, начиная с кото	ocmu $arepsilon=10^{-6}$	и достижении то	Пр	
Оценка порядка сходимости Порядок сходимости сплайна к функции Порядок сходимости производной сплайна к производной функции Оценка числа узлов, начиная с кото				n
Порядок сходимости сплайна к функции Порядок сходимости производной сплайна к производной функции Оценка числа узлов, начиная с кото				$\max_{x \in [a,b]} f'(x) - S'(x) $
сплайна к функции Порядок сходимости производной сплайна к производной функции Оценка числа узлов, начиная с кото	содимости	Оценка порядк		
производной сплайна к производной функции Оценка числа узлов, начиная с кото				=
				производной сплайна
меняется порядок сходимости	ельной погрешности			
n^*				

Отием. В отчете должны быть приведены сведения по теоретическим основам сплайн—интерполяции (определение кубического сплайна, каноническая форма записи, постановка задач интерполяции, виды граничных условий) и описан способ построения сплайна, используемый в Вашей программе.

Для тестовой задачи в отчете приводится таблица коэффициентов сплайна, график тестовой функции и сплайна при некотором n и выкладки, подтверждающие, что сплайн построен правильно.

Для каждой из функций f(x), f(x) + cos10x, f(x) + cos100x в отчете при небольшом фиксированном n должны быть приведены таблицы 1, 2, графики тестовой функции и сплайна и графики их производных.

Для каждой из функций f(x), f(x) + cos10x, f(x) + cos100x в отчете при заданном значении $\varepsilon = 10^{-6}$ должны быть приведены фрагменты таблиц 1, 2 с указанием достигнутых максимальных значений (7) и (8) и графики функции и сплайна и их производных.

Для каждой из функций f(x), f(x) + cos10x, f(x) + cos100x, в отчете должны быть приведены таблицы вида 3 с указанием обнаруженных порядков сходимости и заполнена итоговая таблица 4.

Включите в отчет наблюдения и выводы.

В приложении должен быть приведен код программы (описание исходных данных и алгоритм численного метода).

Построение интерполирующего кубического сплайна. Варианты заданий

$N_{\overline{o}}$	a	b	f(x)	1	а	b	f(x)
1	0	1	$\frac{1}{1+x^4}$	16	1	π	$\frac{\sin^2(x)}{x}$
2	0	1	$\sqrt[3]{1+x^2}$	17	0	1	$\sqrt{1+x^4}$
3	0	1	$\frac{x^3+1}{x+1}$	18	2	4	$\frac{\sqrt{x^2-1}}{x}$
4	0	2	$\frac{\sin(x+1)}{x+1}$	19	0	1	$\frac{x}{1+x}$
5	0	2	$\frac{\ln(x+1)}{x+1}$	20	1	π	$\sqrt{x}\sin(x)$
6	2	4	$\frac{1}{1+x}$	21	0	π	$\cos\frac{x^2}{4}$
7	10	11	$\frac{\ln(x+1)}{x}$	22	0	5	e^{x-3}
8	1	π	$\frac{\sin(x+1)}{x}$	23	0	1	$\frac{\sin(x)}{1+x^2}$
9	0	1	$\sin(\cos x)$	24	0	π/2	$\frac{\cos(x)}{1+x^2}$
10	0	1	$\sin(e^x)$	25	0	π	$\frac{x\sin(x)}{3}$
11	1	3	$\sqrt{e^x-1}$	26	0	2	$\sqrt{1+3x^2}$
12	1	π	$\cos\left(e^{x}\right)$	27	0	2π	$\sqrt{1+3(\sin x)^2}$
13	1	π	$\sqrt{x}\cos(x)$	28	0	π/2	$\sqrt{4-2\sin(x)}$
14	1	5	$\frac{\sin(x)}{x}$	29	0	5	$e^{x-3}\cos(x)$
15	2	4	$\frac{x}{1+2x}$	30	0	π	$\sqrt{3-2\sin^2 x}$