15

20

1. A method of inhibiting the growth of tumor cells in a tumor site of a subject, comprising administering to the tumor site an effective amount of an oligoaniline having the following formula:

 $W = \left(\begin{array}{c} A \\ N \end{array} \right) \left(\begin{array}{c} X \\ M \end{array} \right) \left(\begin{array}{c}$

wherein

m is an integer of 1-6;

n is an integer of 1-10;

each A is -H, -Z, -CH₂-CØ-OH, -CH₂-CO-O-Z, -CH₂-CO-S-Z, -CH₂-CO-NH₂, or -CH₂-CO-NH-Z; and each X is H, -O-Z, -S-Z, -NH-Z; Z being -E-D, wherein E is -R-, -R-Ar-, -Ar-R-, or -Ar-; and D is -OH, -SH, -NH₂, -NHOH, -SO₃H, -OSO₃H, -CO₂H, -CONH₂, -CH(NH₂)-CO₂H, -P(OH)₃, -PO(OH)₂, -O-PO(OH)₂, -O-PO(OH)-O-PO(OH)₂, -O-PO(O')-O-CH₂CH₂NH₃⁺, -glycoside, -OCH₃, -OCH₂(CHOH)₄-CH₂OH, -OCH₂(CHOH)₂-CH₂OH, -C₆H₃(OH)₂, -NH₃⁺, -N⁺H₂R_b, -N⁺HR_bR_c, or -N⁺R_bR_cR_d, each of R, R_b, R_c, and R_d, independently, being C₁₋₃₀ alkyl; and Ar being aryl;

W is -H, -CO-B, -CH₂CH(OH)-B, -CO-NH-B, -CS-NH-B, -CO-O-B, CO-CH₂-CH(CO₂H)-B, -CH₂-B -SO₂-B, wherein B is -R₁-O-[Si(CH₃)₂-O-]₁₋₁₀₀, C₁₋₂₀₀₀ alkyl, C₆₋₄₀ aryl, C₇₋₆₀ arylalkyl, (C₁₋₃₀ alkyl ether)₁₋₁₀₀, (C₆₋₄₀ aryl ether)₁₋₁₀₀, (C₇₋₆₀ arylalkyl ether)₁₋₁₀₀, (C₁₋₃₀ alkyl thioether)₁₋₁₀₀, (C₆₋₄₀ aryl thioether)₁₋₁₀₀, (C₇₋₆₀ arylalkyl ether)₁₋₁₀₀, (C₇₋₆₀ arylalkyl ester)₁₋₁₀₀, (C₇₋₆₀ arylalkyl ester)₁₋₁₀₀, (C₈₋₇₀ alkylaryl ester)₁₋₁₀₀, (C₈₋₇₀ arylalkyl ester)₁₋₁₀₀, -R₁-CO-O-(C₇₋₆₀ arylalkyl ester)₁₋₁₀₀, -R₁-CO-O-(C₇₋₆₀ arylalkyl ether)₁₋₁₀₀, -R₁-CO-O-(C₇₋₆₀ arylalkyl ether)₁₋₁₀₀, (C₄₋₅₀ alkyl urethane)₁₋₁₀₀, (C₁₀₋₈₀ alkylaryl urethane)₁₋₁₀₀, (C₁₀₋₈₀ arylalkyl urethane)₁₋₁₀₀, (C₁₀₋₈₀ arylalkyl urethane)₁₋₁₀₀, (C₁₀₋₈₀ arylalkyl urea)₁₋₁₀₀, (C₁₀₋₈₀ arylalkyl amide)₁₋₁₀₀, (C₈₋₇₀ arylalkyl amide)₁₋₁₀₀, (C₈₋₇₀ arylalkyl amide)₁₋₁₀₀, (C₉₋₆₀ arylalkyl amide)₁₋₁₀₀, (C₉₋₆₀

20

alkylaryl anhydride)₁₋₁₀₀, (C₉₋₆₀ arylalkyl anhydride)₁₋₁₀₀, (C₂₋₃₀ alkyl carbonate)₁₋₁₀₀, $(C_{7-50} \text{ aryl carbonate})_{1-100}$, $(C_{8-60} \text{ alkylaryl carbonate})_{1-100}$, $(C_{8-60} \text{ arylalkyl carbonate})_{1-100}$, $-R_1$ -O-CO-NH-(R_2 or Ar- R_2 -Ar)-NH-CO-O-(C_{1-30} alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C₇₋₆₀ arylalkyl ether)₁₋₁₀₀, -R₁-O-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-O- $(C_{2-50}$ alkyl ester, C_{7-60} aryl ester, \mathcal{C}_{8-70} alkylaryl ester, or C_{8-70} arylalkyl ester)₁₋₁₀₀, -R₁-O-CO-NH-(R_2 or Ar- R_2 -Ar)-NH-C \not 0-O-(C_{1-30} alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁₋₁/ b_0 -CO-NH-(R_2 or Ar- R_2 -Ar)-NH-CO-O-, - R_1 -O-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-O-(q_{2-50} alkyl ester, C₇₋₆₀ aryl ester, C₈₋₇₀ alkylaryl ester, or C_{8-70} arylalkyl ester)₁₋₁₀₀- R_3 -Q-CO-NH-(R_2 or Ar- R_2 -Ar)-NH-CO-O-, - R_1 -NH-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-O- (C_{1-30}) alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁₋₁₀₀, $-R_1$ -NH-CO-NH-(R_2 or Ar- R_2 -Ar)-NH-CO-(C_{2-50} alkyl ester, C₇₋₆₀ aryl ester, C₈₋₇₀ alkylaryl ester, or C₈₋₇₀ arylalkyl ester)₁₋₁₀₀, -R₁-NH-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-O-(C_1 / g_0 alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁₋₁₀₀-CO-MH-(R₂ or Ar-R₂-Ar)-NH-CO-O-, -R₁-NH-CO-NH-(R₂ or Ar- R_2 -Ar)-NH-CO-O-(C_{2-50} /alkyl ester, C_{7-60} aryl ester, C_{8-70} alkylaryl ester, or C_{8-70} arylalkyl ester)₁₋₁₀₀-R₃O-CO-NH-(R₂ or Ar--R₂-Ar)-NH-CO-O-, -R₁-O-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-NH-(C₂₋₅₀ alkyl amide, C₇₋₆₀ aryl amide, C₈₋₇₀ alkylaryl amide, or C₈₋₇₀ arylalkyl amide)₁[100, or -R₁-NH-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-NH-(C₂₋₅₀ alkyl amide, C_{7-60} aryl amide, C_{8-70} alkylaryl amide, or C_{8-70} arylalkyl amide)₁₋₁₀₀; wherein each of R_1 , R_2 , and R_3 , independently, is C_{1-30} alkyl; and Ar is aryl;

K is -H, $-[N(X)-C_6H_4]_{1-3}$ -NH₂, $-[N(X)-C_6H_4]_{1-3}$ -NH-C(=S)-SH, $-[N(X)-C_6H_4]_{1-3}$ -N=CH-Ar-SH, or $-[N(X)-C_6H_4]_{1-3}$ -NH-CO-Ar-SH, wherein X is -H, -Z, -CH₂-CO-OH, -CH₂-CO-O-Z, -CH₂-CO-S-Z, -CH₂-CO-NH₂ or -CH₂-CO-NH-Z; and Ar is aryl; and subsequently exposing the tumor site to irradiation.

25

2. The method of claim 1, wherein A is -Z, -CH₂-CO-O-Z, -CH₂-CO-S-Z, or -CH₂-CO-NH-Z; wherein E is -R- or -R-Ar-; and D is -OH, -SH, -NH₂, -NHOH, -SO₃H, -OSO₃H, -CO₂H, -CONH₂ -CH(NH₂)-CO₂H, -P(OH)₃, -PO(OH)₂, -O-PO(OH)₂, -O-PO(OH)-O-PO(OH)₂, or -NH₃⁺.

30

3. The method of claim 1, wherein m is an integer of 2-6.

20

25

5

- 4. The method of claim 1, wherein n is an integer of 1-6.
- 5. The method of claim 2, wherein A is -Z, Z being -E-D, wherein E is -R-, or -R-Ar-; and D is -OH, -SH, -NH₂, -NH_OH, -SO₃H, -OSO₃H, -CO₂H, -CONH₂, -P(OH)₃, -PO(OH)₂, -O-PO(OH)₂, -O-PO(OH)₂, or -NH₃⁺.
- 6. The method of claim 2, wherein n is an integer of 1-6.
- 7. The method of claim 2 wherein m is an integer of 2-6.
- 8. The method of claim 6, wherein m is an integer of 2-6.
- 9. The method of claim 5, wherein E is -R-; and D is -SO₃H, -OSO₃H, -CO₂H, -O-PO(OH)₂, or -O-PO(OH)-O-P ϕ (OH)₂.
- 10. The method of claim 5, wherein m is an integer of 2-6.
- 11. The method of claim 5, wherein n is an integer of 1-6.
- 12. The method of claim 9, wherein E is -C₃H₆-; D is -SO₃H; n is an integer of 1-6; and m is an integer of 2-6.
- 13. The method of claim 12, wherein m is 4.
- 14. The method of claim 13, wherein each of W, X, and K is H.
- 15. The method of claim 3, wherein m is 4.
- 30 16. The method of claim 3, wherein n is an integer of 1-6.

15

20

25

- 17. The method of claim 15, wherein n is an integer of 1-6.
- 18. A pharmaceutical composition for inhibiting the growth of tumor cells, comprising a compound of the following formula:

wherein

m is an integer of 1-6;

n is an integer of 1-10;

each A is -H, -Z, -CH₂-CO-OH, -CH₂-CO-O-Z, -CH₂-CO-S-Z, -CH₂-CO-NH₂, or

- -CH₂-CO-NH-Z; and each X is -H, -O-Z, -S-Z, -NH-Z; Z being -E-D, wherein E is -R-,
- -R-Ar-, -Ar-R-, or -Ar-, and D is -OH, -SH, -NH₂, -NHOH, -SO₃H, -OSO₃H, -CO₂H,
- $-CONH_2$, $-CH(NH_2)-COP_2H$, $-P(OH)_3$, $-PO(OH)_2$, $-O-PO(OH)_2$, $-O-PO(OH)_3$, $-O-PO(OH)_2$, $-O-PO(OH)_3$, $-O-PO(OH)_3$, $-O-PO(OH)_3$, $-O-PO(OH)_4$, $-O-PO(OH)_5$, -O-PO(OH
- -O-PO(O⁻)-O-CH₂CH₂NH₃⁺, -glycoside, -OCH₃, -OCH₂(CHOH)₄-CH₂OH,
- $-OCH_2(CHOH)_2-CH_2OH$, $-C_6H_3(OH)_2$, $-NH_3^+$, $-N^+H_2R_b$, $-N^+HR_bR_c$, or $-N^+R_bR_cR_d$, each
- of R, R_b, R_c, and R_d, independently, being C₁₋₃₀ alkyl; and Ar being aryl;

W is -H, -CO-B, -CH₂CH(OH)-B, -CO-NH-B, -CS-NH-B, -CO-O-B, CO-CH₂-CH(CO₂H)-B, -CH₂-B, -SO₂-B, wherein B is -R₁-O-[Si(CH₃)₂-O-]₁₋₁₀₀, C₁₋₂₀₀₀ alkyl, C₆₋₄₀ aryl, C₇₋₆₀ arylalkyl, (C₁₋₃₀ alkyl ether)₁₋₁₀₀, (C₆₋₄₀ aryl ether)₁₋₁₀₀, (C₇₋₆₀ arylalkyl ether)₁₋₁₀₀, (C₁₋₃₀ alkyl thioether)₁₋₁₀₀, (C₆₋₄₀ aryl thioether)₁₋₁₀₀, (C₇₋₆₀ arylalkyl thioether)₁₋₁₀₀, (C₇₋₆₀ arylalkyl ester)₁₋₁₀₀, (C₇₋₆₀ arylalkyl ester)₁₋₁₀₀, (C₈₋₇₀ alkylaryl ester)₁₋₁₀₀, (C₈₋₇₀ arylalkyl ester)₁₋₁₀₀, -R₁-CO-O-(C₁₋₃₀ alkyl ether)₁₋₁₀₀, -R₁-CO-O-(C₆₋₄₀ aryl ether)₁₋₁₀₀, -R₁-CO-O-(C₇₋₆₀ arylalkyl ether)₁₋₁₀₀, (C₁₀₋₈₀ arylalkyl urethane)₁₋₁₀₀, (C₁₀₋₈₀ arylalkyl urethane)₁₋₁₀₀, (C₁₀₋₈₀ arylalkyl urea)₁₋₁₀₀, (C₁₀₋₈₀ arylalkyl urea)₁₋₁₀₀, (C₁₀₋₈₀ arylalkyl urea)₁₋₁₀₀, (C₈₋₇₀ arylalkyl amide)₁₋₁₀₀, (C₈₋₇₀ arylalkyl amide)₁₋₁₀₀, (C₈₋₇₀ arylalkyl anhydride)₁₋₁₀₀, (C₉₋₆₀ arylalkyl anhydride)₁₋₁₀₀, (C₂₋₃₀ alkyl carbonate)₁₋₁₀₀, (C₇₋₅₀ arylalkyl anhydride)₁₋₁₀₀, (C

15

20

25

5

carbonate)₁₋₁₀₀, $(C_{8-60} \text{ alkylaryl carbonate})_{1-100}$, $(C_{8-60} \text{ arylalkyl carbonate})_{1-100}$, $-R_1$ -O-CO-NH-(R_2 or Ar- R_2 -Ar)-NH-CO-O $\{(C_{1-30} \text{ alkyl ether}, C_{6-40} \text{ aryl ether}, C_{7-60} \text{ alkylaryl ether},$ or C_{7-60} arylalkyl ether)₁₋₁₀₀, $-R_1 \neq O$ -CO-NH-(R_2 or Ar- R_2 -Ar)-NH-CO-O-(C_{2-50} alkyl ester, C₇₋₆₀ aryl ester, C₈₋₇₀ alky aryl ester, or C₈₋₇₀ arylalkyl ester)₁₋₁₀₀, -R₁-O-CO-NH-(R₂) or Ar-R₂-Ar)-NH-CO-O-(C_{1-30} /alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁₋₁₀₀-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-O-, -R₁-O-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-O-(C_{2-50} alkyl ester, C_{7-60} aryl ester, C_{8-70} alkylaryl ester, or C_{8-70} arylalkyl ester)₁₋₁₀₀-R₃-O-CO-NH-(R₂) or Ar-R₂-Ar)-NH-CO-O-, -R₁-NH-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-O-(C_{1-30} alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁₋₁₀₀, $-R_1$ -NH-CO-NH-(R_2 or Ar- R_2 -Ar)-NH-CO-(C_{2-50} alkyl ester, C_{7-60} aryl ester, C_{8-70} alkylaryl ester, or $C_{8/70}$ arylalkyl ester)₁₋₁₀₀, $-R_1$ -NH-CO-NH-(R_2 or Ar- R_2 -Ar)-NH-CO-O-(C_{1-30} alkyl ether, C_{6-40} aryl ether, C_{7-60} alkylaryl ether, or C_{7-60} arylalkyl ether)₁. ₁₀₀-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-O-, -R₁-NH-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-O- $(C_{2-50} \text{ alkyl ester}, C_{7-60} \text{ aryl ester}, C_{8-70} \text{ alkylaryl ester}, \text{ or } C_{8-70} \text{ arylalkyl ester})_{1-100}-R_3O$ CO-NH-(R₂ or Ar--R₂-Ar)-NH-CO-O-, -R₁-O-CO-NH-(R₂ or Ar-R₂-Ar)-NH-CO-NH- $(C_{2-50} \text{ alkyl amide}, C_{7-1/0} \text{ aryl amide}, C_{8-70} \text{ alkylaryl amide}, \text{ or } C_{8-70} \text{ arylalkyl amide})_{1-100}$ or $-R_1$ -NH-CO-NH-(R_2 or Ar- R_2 -Ar)-NH-CO-NH-(C_{2-50} alkyl amide, C_{7-60} aryl amide, C_{8-70} alkylaryl amide) or C_{8-70} arylalkyl amide)₁₋₁₀₀; wherein each of R_1 , R_2 , and R_3 , independently, is $C_1 \not\downarrow_{0}$ alkyl; and Ar is aryl;

K is -H, -[N(X)-C₆H₄]₁₋₃-NH₂, -[N(X)-C₆H₄]₁₋₃-NH-C(=S)-SH, -[N(X)-C₆H₄]₁₋₃-NH-CO-Ar-SH, wherein X is -H, -Z, -CH₂-CO-OH, -CH₂-CO-O-Z, -CH₂-CO-S-Z, -CH₂-CO-NH₂ or -CH₂-CO-NH-Z; and Ar is aryl; and a pharmaceutically acceptable carrier

19. The pharmaceutical composition of claim 18, wherein A is -Z, -CH₂-CO-O-Z, -CH₂-CO-S-Z, or -CH₂-CO-NH-Z; E is -R- or -R-Ar-; and D is -OH, -SH, -NH₂, -NHOH, -SO₃H, -OSO₃H, -CO₂H, -CONH₂, -CH(NH₂)-CO₂H, -P(OH)₃, -PO(OH)₂, -O-PO(OH)₂, or -NH₃⁺.

- 20. The pharmaceutical composition of claim 19, wherein A is -Z; E is -R-; and D is -SO₃H, -OSO₃H, -CO₂H, -CH(NH₂)-CO₂H, -P(OH)₃, -PO(OH)₂, -O-PO(OH)₂, or -O-PO(OH)-O-PO(OH)₂.
- 21. The pharmaceutical composition of claim 20, wherein E is -C₃H₆-; D is -SO₃H; n is an integer of 1-6; m is an integer of 2-6; and each of W, X, and K is H.