

INF4420: Éléments de Sécurité Informatique

Exercices Sécurité Web + Corrigé

Exercice 1 : Comprendre l'authentification dans les serveurs Web

- Objectif:
 - Connaître la structure des certificats
 - Comprendre à quoi servent les certificats
 - Comprendre à quoi servent les infrastructures à clé publique (PKI – Public Key Infrastructure)

- Exercice 1 : Comprendre l'authentification dans les serveurs Web
- Vous souhaitez accéder au site web de votre banque
- Vous saisissez l'URL de votre banque dans votre navigateur
- Votre navigateur fait la demande de connexion avec le serveur de la banque via le protocole HTTPS

- Question 1 : Que se passe-t-il toujours immédiatement après la demande de connexion du client ?
 - 1. Le serveur envoie sa clé de chiffrement symétrique au client
 - Le serveur envoie son certificat au client
 - 3. Le serveur demande au client de s'authentifier
 - 4. Le serveur demande au client de lui envoyer son certificat

- Réponse question 1 : Le serveur envoie son certificat X.509 au client
- Le serveur peut demander son certificat au client
 - C'est optionnel

- Question 2 : Qu'est-ce qu'un certificat X.509 ne contient jamais ?
 - La clé publique du serveur
 - La date de validité du certificat
 - La clé symétrique qui va permettre d'établir une connexion sécurisée entre le client et le serveur
 - La signature électronique des informations contenues dans le certificat

- Réponse question 2 : Un certificat ne contient jamais la clé symétrique de session
- La clé symétrique pour établir la session sécurisée entre le client et le serveur sera générée ensuite par le client
- Le client utilisera la clé publique transmise par le serveur dans son certificat pour transmettre la clé de session au serveur
- Voir plus tard la présentation du protocole SSL-TSL dans le cours de sécurité réseau 2

- Question 3 : Que fait le client lorsqu'il reçoit le certificat du serveur ?
 - Le navigateur du client consulte sa base de certificats pour vérifier s'il en possède un qui est le même que celui envoyé par le serveur
 - 2. Le navigateur du client consulte sa base de certificats pour vérifier s'il existe une autorité de certification qui confirme la signature du client
 - 3. Le navigateur n'a pas de base de certificats. Il doit envoyer le certificat à une autorité de certification pour vérification

- Réponse question 3 : Réponse 2
 - Le navigateur du client consulte sa base de certificats (la plupart est intégrée par défaut à l'installation du navigateur)
 - Le certificat envoyé par le serveur annonce une autorité de certification
 - Si le navigateur a le certificat de cette autorité dans sa base, il utilise la clé publique de cette autorité pour vérifier la signature du certificat envoyée par le serveur
- Comment consulter cette base de certificats?
 - Sous Firefox : Menu → Options
 - Vie privée et sécurité → Certificats → Afficher les certificats

- Structure d'un certificat X.509
 - DN (Distinguished Name) de l'entité détentrice du certificat (le serveur)
 - DN du délivreur (autorité de certification)
 - Validité (dates limites)
 - Pas avant
 - Pas après
 - Informations sur la clé publique
 - Algorithme de la clé publique
 - Clé publique proprement dite
 - Divers
 - Numéro de série
 - Algorithme de signature du certificat
 - Version
 - Extensions (optionnel, à partir de X.509v3)
 - Liste des extensions
 - Identifiant unique du signataire (optionnel, X.509v2)
 - Identifiant unique du détenteur du certificat (optionnel, X.509v2)
 - Signature des informations ci-dessus par l'autorité de certification

- Question 4 : Une fois que le navigateur du client a vérifié que le certificat du serveur est signé par une autorité valide, le client va consulter cette autorité de certification ?
 - 1. Vrai
 - 2. Faux

- Réponse question 4 : C'est vrai
- Le client demande à l'autorité de certification de confirmer que le certificat n'a pas été révoqué par l'autorité

- Remarque : il peut arriver que certains sites utilisent leur clé privée pour signer leur certificat
 - On parle alors de certificat auto-signé
 - En général, c'est une anomalie que votre navigateur va vous signaler
 - A vous de décider ! (soyez prudent)

- Hiérarchie d'autorités de certification et autorités racines
 - Certaines autorités de certification jouent le rôle d'autorités racines
 - Ce sont les seuls certificats qui devraient pouvoir être autosignés
- Exemple de certificats racines installés par défaut :
 - VeriSign
 - Entrust.net
 - Equifax Secure
 - GlobalSign
 - GTE CyberTrust Root et Global Root
 - Secure Server (RSA)
 - Thawte Premium Server

Conséquence 1

- Le serveur n'a peut-être pas un certificat signé par une autorité racine
- Dans ce cas, c'est une chaine de certificats remontant jusqu'à une autorité racine que le serveur doit envoyer au client
- Le client doit vérifier tout la chaine pour valider le certificat du serveur
- On parle alors de certificats chainés

- Conséquence 2 et question 5 : Que se passe-t-il si une autorité de certification se fait voler sa clé privée ?
 - Game over!
 - 2. Il faut réinstaller le navigateur
 - 3. L'autorité doit immédiatement révoquer tous ses certificats
 - 4. L'autorité et toutes les autorités ayant des certificats chainés avec cette autorité doivent révoquer leurs certificats

- Réponse question 5 : Réponse 4
 - Si une autorité se fait voler son certificat, c'est toute la chaine de certificats issues de cette autorité qui est potentiellement corrompue!
 - C'est pourquoi il est très important que le client vérifie auprès de l'autorité de certification que le certificat n'a pas été révoqué

- Infrastructures de Gestion de Clés (IGC)
 - En Anglais : Public Key Infrastructure (PKI)
- Une autorité de certification est un cas particulier d'IGC
 - Modèle de PKI reposant sur les certificats X.509
 - Il existe d'autres modèles de PKI notamment PKI distribuée
 - Toile de confiance avec OpenPGP
 - Blockchain-based PKI