Міністерство освіти і науки України Національний технічний університет України "Київський політехнічний інститут ім. Ігоря Сікорського" Фізико-технічний інститут

# КРИПТОГРАФІЯ КОМП'ЮТЕРНИЙ ПРАКТИКУМ №1 Експериментальна оцінка ентропії на символ джерела

відкритого тексту

Виконали студенти: ФБ-23 Лишиленко Ангеліна ФБ-23 Тіщенко Олександр

## Мета роботи:

Засвоєння понять ентропії на символ джерела та його надлишковості, вивчення та порівняння різних моделей джерела відкритого тексту для наближеного визначення ентропії, набуття практичних навичок щодо оцінки ентропії на символ джерела.

## Порядок виконання роботи:

- 0. Уважно прочитати методичні вказівки до виконання комп'ютерного практикуму.
- 1. Написати програми для підрахунку частот букв і частот біграм в тексті, а також підрахунку Н1 та Н2 за безпосереднім означенням. Підрахувати частоти букв та біграм, а також значення Н1 та Н2 на довільно обраному тексті російською мовою достатньої довжини (щонайменше 1Мб), де імовірності замінити відповідними частотами. Також одержати значення Н1 та Н2 на тому ж тексті, в якому вилучено всі пробіли.
- 2. За допомогою програми CoolPinkProgram оцінити значення (10) Н, (20) Н, (30) Н.
- 3. Використовуючи отримані значення ентропії, оцінити надлишковість російської мови в різних моделях джерела.

## Хід роботи:

1. Для того, аби виконати підрахунки, ми беремо російській текст. У нашому випадку це "Вечера на хуторе близ Диканьки", Гоголь Н. та починаємо писати кол:

Функція для підрахунку частот букв, в якій ми вибираємо у тексті лише букви російської мови

```
def let_freq(text):
    letter_counts = collections.Counter(text)
    total_letters = sum(letter_counts.values())
    letter_frequencies = {char: count / total_letters for char, count in letter_counts.items()}
    return letter_counts, letter_frequencies
```

Функція обчислює кількість і частоту біграм у тексті, з можливістю обрати варіант із перетином або без нього

```
def bi_freq(text, overlap=False):
    if overlap:
        bigrams = [text[i:i+2] for i in range(len(text)-1)]
    else:
        bigrams = [text[i:i+2] for i in range(0, len(text)-1, 2)]
    bigram_counts = collections.Counter(bigrams)
    total_bigrams = sum(bigram_counts.values())
    bigram_frequencies = {bigram: count / total_bigrams for bigram, count in bigram_counts.items()}
    return bigram_counts, bigram_frequencies
```

Функція обчислює ентропію Н1 на основі частот букв, використовуючи формулу

$$H_1 = -\sum_{i=1}^n p(i) \log_2 p(i)$$

```
def calculate_H1(letter_frequencies):
    return -sum(frequency * math.log2(frequency) for frequency in letter_frequencies.values())
```

Функція обчислює ентропію Н2 на основі частот біграм, формула якої

$$H_2 = -\frac{1}{2} \sum_{i,j} p(i,j) \log_2 p(i,j)$$

```
def calculate_H2(bigram_frequencies):
    return -sum(frequency * math.log2(frequency) for frequency in bigram_frequencies.values()) / 2
```

Далі в нас присутні функції для зберігання результату у cvs форматі, функція для обробки тексту, що повертає всі підрахунки, завантаження тексту та обробка з і без пробілів та виведення значень ентропії

В результаті ми отримуємо 6 таблиць та ось такий текст у консолі

```
ы bigram_bez_peretuny_with_spaces

Обробка тексту з пробілами...
Обробка тексту без пробілів...
Результат записано у CSV файли
Ентропія Н1 з пробілами: 4.724839741754606
Ентропія Н2 без перетину з пробілами: 4.196768910560601
Ентропія Н2 без перетину з пробілами: 4.197330532923184
Ентропія Н1 без пробілів: 4.868141008034572
Ентропія Н2 без перетину без пробілів: 4.411918771868499
Ентропія Н2 з перетином без пробілів: 4.4159115482839795
Ртеss any key to continue . . .
```





### Отже наші значення ентропії

| Ентропія         | з пробілами     | без пробілів    |
|------------------|-----------------|-----------------|
| H1               | 4.7248397417546 | 4.8681410080345 |
| Н2(з перетином)  | 4.1973305329231 | 4.4159115482839 |
| Н2(без перетину) | 4.1967689105606 | 4.4119187718684 |

2. Оцінка значень (10) H, (20) H, (30) H за допомогою програми CoolPinkProgram:

#### (10)H:



### (20)H:



#### (30)H:



|       | Ентропія                                                   | Надлишковість                                                   |
|-------|------------------------------------------------------------|-----------------------------------------------------------------|
| (10)H | 1,7609216260059 <h<2,521103399<br>78607</h<2,521103399<br> | 0.4957793200427859 <r<0,6478156747<br>9882</r<0,6478156747<br>  |
| (20)H | 1,14153173720053 <h<1,82107547<br>724955</h<1,82107547<br> | 0.63578490455009 <r<0.771693652559<br>894</r<0.771693652559<br> |
| (30)H | 1,39303373156825 <h<2,22770755<br>574721</h<2,22770755<br> | 0.5544584888505579 <r<0.7213932536<br>8635</r<0.7213932536<br>  |

#### Висновки:

У ході виконання лабораторної роботи ми закріпили знання з ентропії на символ джерела та надлишковості, також набули практичних навичок в експериментальній оцінці ентропії на символ джерела. Також дізнались про програму CoolPinkProgram яку в подальшому використали для знаходження ентропії.