UAV Velocity Prediction Using Audio data

Eunyoung Bang

JeongYoun Seo

Yeongmin Seo

Raymond Zeng

Aminata Bineta Bibi NIANG

Yaqin Wang

Eric T. Matson

IEEE-IRC 2022

Naples, Italy

12/05/2022

AGENDA

01	02	03	04
Introduction	Methodology	hodology Result	
Background Motivation	Dataset Models	MFCC Result Accuracy result	Summary

Introduction

Background Motivation

Problem Statement

Drone crashes into Russian oil refinery in possible attack [1]

FBI says PA electricity station likely 'target' of drone incident [2]

Problem Statement

How can we protect ourselves from the malicious UAVs?

Our goal is

Our goal is

UAV Velocity Prediction Using Audio data

How to Experiment

The U.S. FAA set UAV speed limit **100mph.**

100mph over speed
UAV is
a high probability that
malicious UAV

Why Audio data? [3], [4], [5]

- Audio data obtain relatively results at less cost than other methods.
- Even with noise limitations, it provides good results for distinguishing the drone's sound.

Methodology

Dataset Models

Overview

Train models

Microphone	Speed gun	Place
Dell XPS15 9570 SAMSUNG Ion 2020 NT950XCR-G58A	Bushnell Velocity Speed Gun (Accuracy: +/- 1 mph)	Indoor lab

Methods for Collecting Drone Data

Change the length of the dataset

How many collect Dataset?

Speed Type	Fast	Slow	Ratio
Train Data	776	639	80%
Validation Data	261	210	10%
Test Data	261	210	10%

A Feature Engineering Focused System for Acoustic UAV Detection [6]

Feature	Accuracy average (SVM, GNB, KNN, NN)
Chroma_stft	0.878
Mel	0.831
MFCC	0.994
Contrast	0.854
tonnetz	0.731

Models

Models

Layer Description

	Layer	In Channels	Kernel	Padding	Stride	Activate
Layer1	Conv1D	20	5	2	1	ReLU
Layer2	Conv1D	11	5	2	1	ReLU
Layer3	Conv1D	5	5	2	1	Sigmoid

Result

MFCC Result Result Graph

MFCC Result

Velocity	Feature 0	Feature 1	Feature 2	Feature 3	Feature 4
Slow	-48.16	-25.84	19.66	0.91	-17.52
Fast	-55.64	-11.42	25.14	-3.21	-23.56
(time: 3sec)	Feature 5	Feature 6	Feature 7	Feature 8	Feature 9
	21.85	-10.59	20.11	-15.26	9.50
	22.03	-14.79	14.18	-18.04	7.65
	Feature 10	Feature 11	Feature 12	Feature 13	Feature 14
	-0.63	-9.87	7.72	-1.24	-1.62
	-3.59	- 6.54	1.83	-1.03	-5.80
	Feature 15	Feature 16	Feature 17	Feature 18	Feature 19
	0.52	-4.19	-6.14	-3.47	1.66
	-0.25	-5.22	-2.39	-3.67	0.12

MFCC Result

Velocity	Feature 0	Feature 1	Feature 2	Feature 3	Feature 4
Slow	-48.16	-25.84	19.66	0.91	-17.52
Fast	-55.64	-11.42	25.14	-3.21	-23.56
(time: 3sec)	Feature 5	Feature 6	Feature 7	Feature 8	Feature 9
	21.85	-10.59	20.11	-15.26	9.50
	22.03	-14.79	14.18	-18.04	7.65
	Feature 10	Feature 11	Feature 12	Feature 13	Feature 14
	-0.63	-9.87	7.72	-1.24	-1.62
	-3.59	-6.54	1.83	-1.03	-5.80
	Feature 15	Feature 16	Feature 17	Feature 18	Feature 19
	0.52	-4.19	-6.14	-3.47	1.66
	-0.25	-5.22	-2.39	-3.67	0.12

Result Graph

Machine Learning and Deep Learning Result

Model	Accuracy	Precision	Recall	F-1 Score
SVM	0.987	0.977	1.000	0.988
Random Forest	0.997	0.996	1.000	0.998
LGBM	0.995	0.992	1.000	0.996
CNN	1.000	1.000	1.000	1.000

Result Graph

Machine Learning and Deep Learning Result

Model	Accuracy	Precision	Recall	F-1 Score
SVM	0.987	0.977	1.000	0.988
Random Forest	0.997	0.996	1.000	0.998
LGBM	0.995	0.992	1.000	0.996
CNN	1.000	1.000	1.000	1.000

Result Graph

Machine Learning and Deep Learning Result

Model	Accuracy	Precision	Recall	F-1 Score
SVM	0.987	0.977	1.000	0.988
Random Forest	0.997	0.996	1.000	0.998
LGBM	0.995	0.992	1.000	0.996
CNN	1.000	1.000	1.000	1.000

Conclusion

Summary Future Work

Summary

- Why we decided to do this project?
 - Drone Strike, Kamikaze attack
- How to solve the problem?
 - Predicting the velocity of the UAVs
- What does result means?
 - Possibility of prediction of UAV velocity

REFERENCE

- [1] L. Harding, "Drone crashes into Russian oil refinery in possible attack" The Guardian https://www.theguardian.com/world/2022/jun/22/russian-novoshakhtinsk-oil-refinery-struck-drone-possible-attack-inside-borders (accessed July. 24, 2022)
- [2] B. Crumley, "FBI says PA electricity station likely 'target' of drone incident," dronedj.com. https://dronedj.com/2021/11/04/fbi-says-pa-electricity-station-likely-target-of-drone-incident/ (accessed May. 17, 2022)
- [3] E. E. Case, A. M. Zelnio, and B. D. Rigling, "Low-cost acoustic array for small uav detection and tracking," in 2008 IEEE Nat. Aerosp. and Electronics Conf. IEEE, 2008, pp. 110-113.
- [4] A. Bernardini, F. Mangiatordi, E. Pallotti, and L. Capodiferro, "Drone detection by acoustic signature identification," Electronic Imaging, vol. 2017, no. 10, pp. 60-64, 2017.
- [5] Y. Seo, B. Jang, and S. Im, "Drone detection using convolutional neural networks with acoustic stft features," in 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). IEEE, 2018, pp. 1-6.
- [6] Wang, Y., Fagian, F. E., Ho, K. E., & Matson, E. T. "A Feature Engineering Focused System for Acoustic UAV Detection," *In 2021 Fifth IEEE Inter. Conf. on Robotic Comput. (IRC)*, 2020, pp. 125-130.

REFERENCE

[7] H. Fayek, Speech Processing for Machine Learning: Filter banks, Mel-Frequency Cepstral Coefficients (MFCCs) and What's In-Between, haythamfayek, last modified 05/09, 2022, accessed Apr 21, 2016, https://haythamfayek.com/2016/04/21/speech-processing-for-machine-learning.html

[8] holehouse, "Stanford Machine Learning", holehouse.org. http://www.holehouse.org/mlclass/ (accessed June. 02, 2022)

[9] jhkim0759. "RandomForest, XGBoost, LGBM, CatBoost뭐가 다를까?," tistory.com, https://jhkim0759.tistory.com/12 (accessed July. 18, 2022)

[10] Eunji L., "XGBoost vs. LightGBM, 어떤 알고리즘이 더 좋을까?", github.com, https://assaeunji.github.io/machine%20learning/2021-01-07-xgboost/ (accessed July. 18, 2022)

[11] A. Kumar, "Different Types of CNN Architectures Explained: Examples", vitalflux.com, https://vitalflux.com/different-types-of-cnn-architectures-explained-examples/ (accessed July. 18, 2022)

Thank you for listening

Q&A

