$\sigma_{1}^{\#1}{}_{\alpha\beta}$	$\sigma_{1}^{\#2}$	${\tau_1^*}^{\!$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1}^{\#2}{}_{lpha}$	$\tau_{1}^{\#1}{}_{\alpha}$	$ au_1^{\#2}$
	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
-2	$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
<u>i</u> (2	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{-2k^2(r_1+r_5)+t_1}{(t_1+2k^2t_1)^2}$	0	$-\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$
	0	0	0	0	0	0
	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k(2k^2(r_1+r_5)\cdot t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4(r_1+r_5)+2k^2t_1}{(t_1+2k^2t_1)^2}$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1}\dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	$\frac{2}{2k^2r_1+t_1}$

	$\omega_{0^+}^{\#1}$	$f_{0}^{#1}$	$f_{0}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0^+}^{\#1}\dagger$	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$-t_1$

	$\sigma_{0}^{\#1}$	$\tau_{0}^{\#1}$	$ au_0^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$-\frac{1}{(1+2k^2)^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
$\tau_{0}^{\#1}$ †	$-\frac{i \sqrt{2} k}{(1+2k^2)^2 t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_0^{\#1}$ †	0	0	0	$-\frac{1}{t_1}$

Lagrangian density	$-t_1\ \omega_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	$\frac{2}{3} r_1 \partial^{\beta} \omega^{\theta \alpha}_{ \alpha} \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} - \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_{\theta} \omega_{\alpha\beta}^{ \kappa} \partial_{\kappa} \omega^{\theta\alpha\beta} -$	$r_5\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\theta\kappa\lambda} + r_5\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial_\kappa\omega^{\theta\kappa\lambda} - r_5\partial_\alpha\omega_\lambda^{\ \alpha}_{\ \ \theta}\partial_\kappa\omega^{\kappa\lambda\theta} + 2r_5\partial_\theta\omega_\lambda^{\ \alpha}_{\ \ \alpha}\partial_\kappa\omega^{\kappa\lambda\theta} -$	$rac{1}{2}t_1\partial^{lpha}f_{ heta\kappa}\partial^{\kappa}f_{$	$t_1 \; \omega_{\kappa\lambda}^{\;\;\lambda} \; \partial^{\kappa} f'_{\;\;\prime} + 2 t_1 \partial^{\alpha} f_{\;\;\kappa\alpha} \partial^{\kappa} f'_{\;\;\prime} - t_1 \partial_{\kappa} f^{\lambda}_{\;\;\lambda} \partial^{\kappa} f'_{\;\;\prime} + 2 t_1 \; \omega_{\;\;\kappa\theta} \; \partial^{\kappa} f^{\;\prime\theta} -$	$t_1\;\omega_{_{I}\alpha}^{\alpha}\;\partial^{\kappa}f'_{}}-t_1\;\omega_{_{I}\lambda}^{}\lambda}\;\partial^{\kappa}f'_{}\kappa}+\frac{1}{2}\;t_1\;\partial^{\alpha}f^{\lambda}_{}\kappa}\;\partial^{\kappa}f_{\alpha}}+\frac{1}{2}\;t_1\;\partial_{\kappa}f_{\alpha}}^{}\lambda}\partial^{\kappa}f_{\alpha}}^{}\lambda}+$	$\frac{1}{2}t_1\partial_\kappa f^\lambda_{\ \ \theta}\partial^\kappa f_\lambda^{\ \ \theta} - t_1\partial^\alpha f^\lambda_{\ \ \alpha}\partial^\kappa f_{\lambda\kappa} + \frac{2}{3}r_1\partial_\kappa\omega^{\alpha\beta\theta}\partial^\kappa\omega_{\alpha\beta\theta} - \frac{2}{3}r_1\partial_\kappa\omega^{\theta\alpha\beta}\partial^\kappa\omega_{\alpha\beta\theta} +$	$\frac{2}{3} r_1 \partial^\beta \omega_{\alpha}^{\ \alpha \lambda} \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} - \frac{8}{3} r_1 \partial^\beta \omega_{\lambda}^{\ \lambda \alpha} \partial_\lambda \omega_{\alpha\beta}^{\ \ \prime} + r_5 \partial_\alpha \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega_{\kappa}^{\theta \kappa} - r_5 \partial_\theta \omega_{\lambda}^{\ \alpha} \partial^\lambda \omega^{\theta \kappa}_{\kappa}$
--------------------	--	--	--	---	--	---	---	--

$\omega_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \omega_{2^{-}\alpha\beta\chi}^{\#1}$									
$\omega_{2}^{\#1}\dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0						
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0						
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$						
Source co	onstrai	nts							

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	3
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3
$\tau_{2+}^{\#1\alpha\beta} - 2 \bar{i} k \sigma_{2+}^{\#1\alpha\beta} = 0$	5
Total #:	16

$f_{1^{ ext{-}}}^{\#2}$	0	0	0	$i k t_1$	0	0	0
$\omega_{1}^{\#2}{}_{lpha}f_{1}^{\#1}{}_{lpha}$	0	0	0	0	0	0	0
$\omega_{1^{\bar{-}}\alpha}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}\alpha}^{\#1}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$- ilde{\it i} k t_1$
$f_{1}^{\#1}_{+}\alpha\beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}_{+\alpha\beta}\ f_{1}^{\#1}_{+\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1+}^{\#1} +^{\alpha\beta} k^2 (2 r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	0	0	0
	$\omega_{1}^{\#1} +^{\alpha\beta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_1^{#1} + \alpha^{\beta}$	$\omega_{1}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_{1}^{\#2} +^{\alpha}$

(No massless particles)