Práctico 5 - Mínimos Cuadrados

En este práctico se trabaja con sistemas lineales incompatibles: $\nexists x / Ax - b = 0$ Buscamos entonces x que minimice el residuo $||Ax - b||_2$

Ejercicio 1

Demostrar que el conjunto de soluciones del Problema de Mínimos Cuadrados Lineal (PMCL), $\min_x \|Ax - b\|_2^2$ coincide con las soluciones del sistema de ecuaciones normales: $A^TAx = A^Tb$.

Ejercicio 2

Se consideran el modelo $y(t) = \alpha t + \beta$, con n = 2 parámetros y las observaciones $\{(t_i, y_i), i = 1, \ldots, m\}$, $m \ge n$. Obtener la matriz A y el vector b del PMCL asociado y resolverlo en forma exacta (hallando α y β en función de los datos).

Ejercicio 3

Se consideran el modelo $y(t) = \alpha t + \beta t^3 + \gamma$ y las observaciones $\{(t_i, y_i), i = 1, \dots, m\}, m \ge n$.

- 1. Hallar A y b y escribir las ecuaciones normales para este caso particular (no se pide hallar su solución).
- 2. Se tienen los siguientes m=4 datos experimentales: $\{(-1,\frac{7}{2}),(0,\frac{3}{2}),(1,\frac{3}{2}),(2,\frac{11}{2})\}.$
- 3. Utilizando la computadora, resolver las ecuaciones normales para hallar los parámetros del modelo que mejor se ajustan a estos datos. Graficar los datos junto con el modelo obtenido.

Ejercicio 4

Se considera el modelo lineal general $y(t) = \sum_{i=1}^{n} a_i \phi_i(t)$, donde $\phi_i(t)$ son funciones dadas y los a_i son los parámetros del modelo. Se tienen además m datos experimentales $(t_i, y_i), i = 1, \ldots, m$, con $m \ge n$. Obtener la matriz A y el vector b del PMCL asociado.

Ejercicio 5

- 1. Describir en detalle las descomposiciones QR y SVD de una matriz A.
- 2. Explicar cómo utilizaría la descomposición QR para resolver el PMCL.
- 3. Explicar cómo utilizaría la descomposición SVD para resolver el PMCL.
- 4. Hallar ambas descomposiciones QR y SVD de la matriz $A = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$

Eiercicio 6

Se considera ahora el Problema de Mínimos Cuadrados No Lineal (PMCNL).

- 1. Describir el Problema de Mínimos Cuadrados No Lineal
- 2. Describir el método de Gauss-Newton para la resolución del PMCNL
- 3. Implementar el método de Gauss-Newton y utilizarlo para ajustar la función no lineal $y(t) = \alpha(1 e^{-\beta t})$ a los siguientes pares de datos:

$$\{(0,25;0,28);(0,75;0,57);(1,25;0,68);(1,75;0,74);(2,25;0,79)\}.$$