

TensorFlow on Google Cloud

May / 2020

Qwiklabs

Extended

with Tensorflow

on GCP?

Context

Our model + Our data

API's

Our model + Our data

Your data

Our model +

API's

AutoML

Our model + Our data

API's

Our model + Your data

AutoML

Your model + Your data

Al Platform

Our model + Our data

API's

Our model + Your data

AutoML

Your model + Your data

Al Platform

Today Presentation

AvenueCode Process

Quick Win	Major Project
	Complexity
Fill In	Thankless Task
	Business Value

AvenueCode Process

AvenueCode Process

AutoML	Al Platform
API's AI Platform	
AutoML	Complexity
API's Al Platform	Al Platform
	Business Value

Problem Example

Problem Example

Is this a plastic bag?

Our model + Our data

API's

Machine Learning APIs

Problem Example

What's the plastic type?

Our model + Your data

AutoML

AutoML

Problem Example

Will this plastic bag be recycled? From today how much time will take?

Your model + Your data

Al Platform

Machine learning pipeline @ GCP

Machine learning pipeline @ GCP

Machine learning pipeline @ GCP

Why TensorFlow on GCP?

"More than 87% of data science projects never make it into production"

- Multiple studies and surveys -

Hidden Technical Debt in Machine Learning Systems

D. Sculley, Gary Holt, Daniel Golovin, Eugene Davydov, Todd Phillips {dsculley, gholt, dgg, edavydov, toddphillips}@google.com Google, Inc.

Dietmar Ebner, Vinay Chaudhary, Michael Young, Jean-François Crespo, Dan Dennison {ebner, vchaudhary, mwyoung, jfcrespo, dennison}@google.com Google, Inc.

Why ML deployment is hard?

Deploying ML models at scale is very challenging

In IT System

Behavior of system is defined by Code

In AI/ML System

Behavior of system is defined by Data

Organization - Managing different ecosystems like programming languages

Compute - Continuous and reliable compute resources (dedicated servers or cloud only option)

Portability - Huge dependencies on legacy systems

Seasonality - ML workloads works in patches; this need auto scaling capabilities

Operational ML: What you first think

ML Code

Operational ML: What really is

Operational ML - end-to-end ML solution on GCP

Excuse me sir, what about TensorFlow?

TensorFlow deals with all kinds of data

TensorFlow deals with main machine learning tasks

Supervised Learning
Unsupervised Learning
Reinforcement Learning
Transfer Learning

TensorFlow provides a end-to-end solution

TF Data Validation

TF Transform

TF Estimator

Build a model

TensorFlow provides a end-to-end solution

Typical TFX-based ML system

Getting Started with TensorFlow

What are tensors?

- Pattern of data in TensorFlow
- N-dimensional array.
- Beyond the numeric representation, tensors carry informations as data types and array's shape.

A tensor is an N-dimensional array of data

Graphs: Brief Introduction

- Math structure to compute relationship between objects...
- Tensorflow generate graphs every time a operation is computed.

TensorFlow Extended

What is TensorFlow Extended?

- General purpose open source machine learning platform implemented by google.
- A set of gluable machine learning components in one platform simplifying machine learning deployment.
- Aims to reduce time to put machine learning in production and cover technical debts in those practices. .

Data Ingestion	TF Data Validation	TF Transform	TF Estimator	TF Model Analysis	Validation Outcome Good	TF Serving
	StatisticsGen			Evaluator		
ExampleGen	SchemaGen	Transform	Trainer		Pusher	Model Server
	Example Validator			Model Validator		

tf.data_validation

Real World Challenges

Challenges

- Schema Validation
- Data contains anomalies
- Label invalid data
- Change feature skew

How TFDV can help?

- tfdv.schema_validation()
- tfdv.display_anomalies()
- tfdv.display_anomalies()
- tfdv.visualize_statistics()

Better Data, Better Models	Automated schema generation	Integration with Facets (<u>live demo</u>)	Anomaly detection
Compute summary statistics for train/test data	Input feature value ranges	Identify train/test/validation set skew	Detect missing values
Drift detection	Type imputation	Unexpected feature values	Out of range values
Training-Serving skew detection	Environment specific schema	Feature by feature analysis	Wrong feature types
	Schema validation	Compare statistics across two or more data sets	Correct non-conforming data
		Supports visualization of large datasets responsively	

tf.transform

About Transform

- Framework for running batch and streaming data processing jobs.
- Uses Apache Beam.
- Easily integrated with Kubeflow. (example)

Feature Engineering @ Scale	Transformations
Transform data before it goes into a model. Output is exported as a TensorFlow graph, used for both training & serving.	tft.scale by min_max(), tft.scale to 0_1(), tft.scale to z_score()
Create feature embeddings & enriching text features	tft. <u>tfidf()</u> , tft. <u>ngrams()</u> , tft. <u>hash_strings()</u>
Builds transformations into TF graph for your model, so same transformations are applied for train & serving.	Convert strings to integers by generating a vocabulary over all input values
Vocabulary generation	tft.compute and apply vocabulary(), tft.string to int()
Normalize values & Bucketization	tft. <u>bucketize()</u>

tf.estimators

About Estimators

- Easily create Estimators using Keras API.
- Sklearn compatible syntax.
- Train models using CPU/ GPU / TPU.
- Perform distributed training.
- Save Summaries on TensorBoard.
- Model checkpoint and failure recover.

tf.model_analysis

About Model Analysis

- Evaluate model performance on large datasets.
- Check performance choosing differents metrics and slices of data.
- Track Performance over the time.
- Friendly Visualization tool.

tf.serving

About Serving

- Low Latency,
- Scalable horizontally.
- Reliable & Robust.
- Load/ host multiple versions of a model.
- Built in A/B testing.

Qwiklabs link

Thank you! Questions?

Tulio Vieira de Souza tulio.souza@avenuecode.com Data Science Engineer

