

Spatial Kinematics – Foundations I

Prof. Dr. Karsten Berns
Robotics Research Lab
Department of Computer Science
University of Kaiserslautern, Germany

Content

- Description object poses in 3D Euclidean space (E_3)
- Description of orientation with 3x3 matrices
- 6-dim. description vector
- Homogenous coordinates and transformation matrix
- Sequences of pose descriptors and their relation to each other

Notation

- Scalars: small letters, e.g. s
- Vectors: with an arrow, e.g. \vec{u}
- Matrices: upper case letters, e.g. A
- Identifier of scalars, vectors and points: indices at bottom right, e.g. $\overrightarrow{u_1}$
- Abbreviation of sine and cosine:
 - $cos(\theta_1) = C\theta_1 = C_1$, $sin(\theta_1) = S\theta_1 = S_1$
- Coordinate systems (frames):
 upper case letters, e.g. B
- Vectors referenced due to a certain frame: Frame upper left, e.g. ${}^{B}\vec{u}$
- Matrix transforming from frame B to frame A: Frames lower and upper left, e.g. ${}_{B}^{A}R$

Subsystems 3 rrlab.cs.uni-kl.de

Description of Objects and Poses in E_3

Base coordinate system (BCS)

3-dim. coordinate system defined by orthogonal unit vectors

Description of Object Poses in E_3

Object coordinate system (OCS)

- Any rigid body can be related to a local coordinate system
- Local coordinate system is defined by orthogonal unit vectors

Reminder: Scalar Product

$$\vec{a} \cdot \vec{b} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n$$
$$\vec{a} \cdot \vec{b} = a \cdot b \cdot \cos \gamma$$

- γ : smallest angle between a and b
- 0, if the vectors are orthogonal
- Commutative and distributive property hold
- Associative does not hold
- With respect to scalars it is: $n(\vec{a} \cdot \vec{b}) = (n \cdot \vec{a}) \cdot \vec{b} = \vec{a} \cdot (n \cdot \vec{b})$
- It holds:
 - $\vec{a} \cdot \vec{a} = |\vec{a}|^2$
 - $\overrightarrow{e_{\chi}} \cdot \overrightarrow{e_{\chi}} = \overrightarrow{e_{\gamma}} \cdot \overrightarrow{e_{\gamma}} = \overrightarrow{e_{z}} \cdot \overrightarrow{e_{z}} = 1$
 - $\overrightarrow{e_x} \cdot \overrightarrow{e_y} = \overrightarrow{e_y} \cdot \overrightarrow{e_z} = \overrightarrow{e_z} \cdot \overrightarrow{e_x} = 0$

ubsystems 6 rrlab.cs.uni-kl.de

Reminder: Cross Product/Vector Product

- Cross product $\vec{a} \times \vec{b}$ in spaces: Vector, which is perpendicular to \vec{a}, \vec{b} and therefore normal to the plane containing them
- Definition for \mathbb{R}^3 : $\vec{a} \times \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta \cdot \vec{e}$
 - θ : angle between the vectors
 - \vec{e} : perpendicular unit vector
- Cross product can be computed component wise for \mathbb{R}^3

$$\vec{a} \times \vec{b} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix} \times \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{bmatrix}$$

ubsystems 7 rrlab.cs.uni-kl.de

Reminder: Cross Product/Vector Product

- Magnitude of the cross product is equal to the area of the parallelogram $A_P = |\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \theta$
- For parallel vectors the cross product is 0
- It holds: $\vec{a} \times \vec{a} = \vec{0}$
- Distributive und anticommutative property hold

$$|\vec{a} \times \vec{b}| = \begin{vmatrix} \overrightarrow{e_1} & a_1 & b_1 \\ \overrightarrow{e_2} & a_2 & b_2 \\ \overrightarrow{e_3} & a_3 & b_3 \end{vmatrix}$$

Subsystems 8 rrlab.cs.uni-kl.de

Reminder: Triple Product

$$V_{\vec{a},\vec{b},\vec{c}} = (\vec{a} \times \vec{b}) \cdot \vec{c} = (\vec{b} \times \vec{c}) \cdot \vec{a} = (\vec{c} \times \vec{a}) \cdot \vec{b} = \det \begin{bmatrix} a_x & b_x & c_x \\ a_y & b_y & c_y \\ a_z & b_z & c_z \end{bmatrix}$$

- Combination of cross and scalar product
- Magnitude: Signed volume (V) of the prism defined by the three vectors
 - V > 0 for right handed coordinate systems
 - V < 0 for left handed coordinate systems
- It holds:
 - for linear dependent vectors it is 0
 - anticommutative property holds

Subsystems 9 rrlab.cs.uni-kl.de

Reminder: Determinant

• Determinant of a $n \times n$ -Matrix (Laplace's formula for i-th row)

$$\det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} \det(A_{ij})$$

Rule of thump for 2 × 2-Matrices: Rule of Sarrus

$$\det\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

Example: Expanding the determinant along row 1:

$$\det \begin{bmatrix} 0 & 3 & 2 \\ 1 & 2 & 3 \\ 2 & 1 & 1 \end{bmatrix} = 0 \cdot \det \begin{bmatrix} 2 & 3 \\ 1 & 1 \end{bmatrix} - 3 \cdot \det \begin{bmatrix} 1 & 3 \\ 2 & 1 \end{bmatrix} + 2 \cdot \det \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$$
$$= -3 \cdot -5 + 2 \cdot -3 = 15 - 6 = 9$$

Subsystems 10 rrlab.cs.uni-kl.de

Properties of a Determinant

- $\det A = \det A^T$
- $\det \lambda A = \lambda^n \det A$
- $\det(A^{-1}) = \frac{1}{\det A} \text{ for } \det A \neq 0$
- Determinant is 0, if
 - all elements of a row/column are 0
 - two rows are linearly dependent
 - Exchanging two rows changes the sign of the determinant

Subsystems 11 rrlab.cs.uni-kl.de

Orthogonal, Cartesian Coordinate Systems

Counterclockwise rotating coordinate system

- Right-hand-rule: Thumb x, index finger y, middle finger z
- $\overrightarrow{e_x} \times \overrightarrow{e_y} = \overrightarrow{e_z}$ with cross product \times
- If not specified otherwise, assume right-handed CS

Orthogonal, Cartesian Coordinate Systems

Clockwise rotating coordinate system

- Left-hand-rule: Thumb x, index finger y, middle finger z
- $\overrightarrow{e_x} \times \overrightarrow{e_y} = -\overrightarrow{e_z}$

Object Poses in Space

- Location in BCS: Position vector from origin of BCS to origin of OCS
- Orientation in BCS: Mapping of unit vectors of OCS to the unit vectors of BCS using rotation matrix
- Pose: Position vector and rotation matrix of the OCS related to the BCS

Transformation

In addition to the BCS, various other local coordinate systems are used for describing robotic applications, e.g. ...

- OCS: Object Coordinate System
- ECS: Effector Coordinate System (TCP Tool Center Point)
- SCS: Sensor Coordinate System

Possible Transformations

- Translation vector: $\overrightarrow{Bu} = {}^{B}a \cdot \overrightarrow{e_{B_{\chi}}} + {}^{B}b \cdot \overrightarrow{e_{B_{\gamma}}} + {}^{B}c \cdot \overrightarrow{e_{B_{Z}}}$
- Rotation matrix: $R = R_{\alpha} \cdot R_{\beta} \cdot R_{\gamma}$
- Rotation angle around coordinate axes: $x, y, z: \alpha_x, \beta_y, \gamma_z$

Rotation of a Coordinate System

- Let BCS and OCS be rotated against each other with unit vectors $\overrightarrow{e_{B_\chi}}$, $\overrightarrow{e_{B_\gamma}}$, $\overrightarrow{e_{B_z}}$ and $\overrightarrow{e_{0_\chi}}$, $\overrightarrow{e_{0_\gamma}}$, $\overrightarrow{e_{0_z}}$
- Given a position vector of a point P, either defined relative to the OCS ${}^{O}\overrightarrow{p}$ or the BCS ${}^{B}\overrightarrow{p}$
 - -> find position vector relative to the other coordinate system

Rotation of a Coordinate System

$$\bullet p = {}^{o}p_{x} \cdot \overrightarrow{e_{B_{x}}} + {}^{o}p_{y} \cdot \overrightarrow{e_{B_{y}}} + {}^{o}p_{z} \cdot \overrightarrow{e_{B_{z}}} \text{ with } {}^{o}\vec{p} = \begin{bmatrix} {}^{o}p_{x} \\ {}^{o}p_{y} \\ {}^{o}p_{z} \end{bmatrix}$$

• ⁰p projection to base vectors of BCS yields to BCS coordinates:

Rotation of a Coordinate System

Transformation from BCS to OCS coordinates:

$$\bullet \quad {}^{O}p_{y} = \overrightarrow{e_{O_{y}}} \cdot \, {}^{B}p = \overrightarrow{e_{O_{y}}} \cdot \overrightarrow{e_{B_{x}}} \cdot \, {}^{B}p_{x} + \overrightarrow{e_{O_{y}}} \cdot \overrightarrow{e_{B_{y}}} \cdot \, {}^{B}p_{y} + \overrightarrow{e_{O_{y}}} \cdot \overrightarrow{e_{B_{z}}} \cdot \, {}^{B}p_{z}$$

Using Matrix Notation

$$\bullet \quad \stackrel{B}{\scriptstyle o}R_1 = \begin{bmatrix} \overrightarrow{e_{B_x}} \cdot \overrightarrow{e_{O_x}} & \overrightarrow{e_{B_x}} \cdot \overrightarrow{e_{O_y}} & \overrightarrow{e_{B_x}} \cdot \overrightarrow{e_{O_z}} \\ \overrightarrow{e_{B_y}} \cdot \overrightarrow{e_{O_x}} & \overrightarrow{e_{B_y}} \cdot \overrightarrow{e_{O_y}} & \overrightarrow{e_{B_y}} \cdot \overrightarrow{e_{O_z}} \end{bmatrix} \text{ and } \stackrel{O}{\vec{p}} = \begin{bmatrix} ^{O}p_x \\ ^{O}p_y \\ ^{O}p_z \end{bmatrix}$$

- Therefore: $R_1 = R_2^{-1}$, $R_2 = R_1^{-1}$ and $R_2 = R_1^T$ (orthogonal matrix)

Rotation around x-Axis with Angle α

Using scalar product: $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \alpha$

$$\overrightarrow{e_{B_x}} \cdot \overrightarrow{e_{O_x}} = 1 \qquad \overrightarrow{e_{B_x}} \cdot \overrightarrow{e_{O_y}} = 0 \qquad \overrightarrow{e_{B_x}} \cdot \overrightarrow{e_{O_z}} = 0$$

$$\overrightarrow{e_{B_{\mathcal{V}}}} \cdot \overrightarrow{e_{O_{\mathcal{X}}}} = 0 \qquad \overrightarrow{e_{B_{\mathcal{V}}}} \cdot \overrightarrow{e_{O_{\mathcal{V}}}} = \cos(\alpha) \qquad \overrightarrow{e_{B_{\mathcal{V}}}} \cdot \overrightarrow{e_{O_{\mathcal{Z}}}} = c(\alpha)$$

$$\overrightarrow{e_{B_z}} \cdot \overrightarrow{e_{O_x}} = 0 \qquad \overrightarrow{e_{B_z}} \cdot \overrightarrow{e_{O_z}} = c(-\alpha) \qquad \overrightarrow{e_{B_z}} \cdot \overrightarrow{e_{O_z}} = \cos(\alpha)$$

•
$$c(\alpha) = \cos(90^{\circ} + \alpha) = -\sin\alpha = \sin(-\alpha)$$

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & C\alpha & -S\alpha \\ 0 & S\alpha & C\alpha \end{bmatrix}$$

•
$$C\alpha = \cos(\alpha)$$
, $S\alpha = \sin(\alpha)$

Rotation Matrix: Geometric Derivation

• Frame $OX_0Y_0Z_0$ resulted from frame $BX_BY_BZ_B$ through rotation around axis z with angle α .

Calculation of coordinates of point $P_0 = ({}^{o}x, {}^{o}y, {}^{o}z)^T$ in

coordinate system B

Rotation around the z-Axis

- Rotation around z axis with angle α
 - Point P_0 with the coordinates $({}^0x, {}^0y, {}^0z)^T$ in OCS receives the coordinates in BCS ...
 - $Bx = {}^{0}x \cdot \cos \alpha {}^{0}y \cdot \sin \alpha$
 - $By = {}^{0}x \cdot \sin \alpha + {}^{0}y \cdot \cos \alpha$
 - $B_z = {}^0z$
 - z coordinate fixed, z axis is axis of rotation

Matrix form:
$${}^{B}\vec{p} = \begin{bmatrix} {}^{B}x \\ {}^{B}y \\ {}^{B}z \end{bmatrix} = \begin{bmatrix} \cos\alpha & -\sin\alpha & 0 \\ \sin\alpha & \cos\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} {}^{O}x \\ {}^{O}y \\ {}^{O}z \end{bmatrix} = {}^{B}_{O}R_{z}(\alpha) \cdot {}^{O}\vec{p}$$

Rotation Matrix

- Rotation matrix $R_z(\gamma) = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$
- Rotation around x and y axes

$$R_{x}(\alpha) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

$$R_{y}(\beta) = \begin{bmatrix} \cos \beta & 0 & \sin \beta \\ 0 & 1 & 0 \\ -\sin \beta & 0 & \cos \beta \end{bmatrix}$$

Rotation Matrix - Properties

- Affine mapping $\mathbb{R}_3 \to \mathbb{R}_3$
- Real matrix
- Quadratic
- Invertible
- Orthogonal
 - Row or column vectors are orthogonal to each other
- Let R be a rotation matrix:
 - Rank $R_{g}(R) = 3$
 - $R^T = R^{-1}$
 - $R \cdot R^{-1} = R^{-1} \cdot R = I$
 - $\det R = 1$

Basic Rotations

Let OCS result based on 2 rotations from BCS

$$R_{y}(-90^{\circ}) = \begin{bmatrix} \cos -\frac{\pi}{2} & 0 & \sin -\frac{\pi}{2} \\ 0 & 1 & 0 \\ -\sin -\frac{\pi}{2} & 0 & \cos -\frac{\pi}{2} \end{bmatrix}, \qquad R_{x'}(180^{\circ}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \pi & -\sin \pi \\ 0 & \sin \pi & \cos \pi \end{bmatrix}$$

Vector Coordinates due to a new Frame

- Calculation of ${}^B\vec{u}$ from ${}^{O2}\vec{u}$

Interpretation of several, elementary Rotations

- Pre-multiplication $R = (R_n(R_{n-1} \dots (R_2R_1) \dots))$:
 - Interpretation rotation around a fixed axis of the original coordinate system
- Post-multiplication $((\cdots (R_1R_2)\cdots R_{n-1})R_n)$:
 - Interpretation rotation around an axis of the rotated CS

Different Notations for Rotations

- Many different notations for rotations exist
- All equivalent, but different benefits
 - Rotation around 1 axis
 - Trade-off between others
 - Quaternions
 - Computationally fast
 - Exponential coordinates
 - More similar to its kinematic
 - Euler angels
 - Follows chained Joint-Setup
 - Roll-Pitch-Yaw
 - Easy to interpret by humans
 - . . .

Rotation around 1 Axis

- Instead of rotation with BCS-axis, rotate around 1 Axis:
- Goal:

```
Find \vec{g} \in \mathbb{R}^3, \|\vec{g}\| = 1, \theta \in [0, 2\pi) such that:
For BCS x, y, z \in \mathbb{R}^3 and arbitrary \alpha, \beta, \gamma \in [0, 2\pi) the following holds:
```

$$R_{\vec{g}}(\theta) = R_z(\gamma)R_y(\beta)R_x(\alpha)$$

Rodrigues Formula:

For
$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

Choose
$$\theta = \cos^{-1}\left(\frac{tr(R)-1}{2}\right) \in [0,\pi]$$
, and $\vec{g} = \frac{1}{2S\theta}\begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$, then:

 $R = R_{\vec{g}}(\theta) = C\theta I_3 + S\theta \vec{g} + (1 - \cos(\theta)) \vec{g} \vec{g}^T$

$$=\begin{bmatrix}g_1^2\eta\theta+C\theta & g_1g_2\eta\theta-S\theta & g_1g_3\eta\theta+g_2S\theta \\ g_1g_2\eta\theta+g_3S\theta & g_2^2\eta\theta+C\theta & g_2g_3\eta\theta-g_1S\theta \\ g_1g_3\eta\theta-g_2S\theta & g_2g_3\eta\theta+g_1S\theta & g_3^2\eta\theta+C\theta\end{bmatrix}$$

With:

$$S\theta = \sin \theta$$
, $C\theta = \cos \theta$, $\eta \theta = 1 - \cos \theta$, $\vec{g} = (g_1, g_2, g_3)^T$

Theorem (Euler):

Every rotation matrix R_3 is equivalent to a rotation around a fixed axis

$$\vec{g} \in \mathbb{R}^3$$
, $\|\vec{g}\| = 1$,

And a rotation angle

$$\theta \in [0,2\pi)$$
.

Proof:

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \stackrel{!}{=} R_{\vec{g}}(\theta)$$

$$=\begin{bmatrix}g_1^2\eta\theta+C\theta&g_1g_2\eta\theta-S\theta&g_1g_3\eta\theta+g_2S\theta\\g_1g_2\eta\theta+g_3S\theta&g_2^2\eta\theta+C\theta&g_2g_3\eta\theta-g_1S\theta\\g_1g_3\eta\theta-g_2S\theta&g_2g_3\eta\theta+g_1S\theta&g_3^2\eta\theta+C\theta\end{bmatrix}$$

The following applies to the trace of the matrices:

$$trR = r_{11} + r_{22} + r_{33} = 3\cos\theta + (1-\cos\theta)\sum_{i} g_i^2 = 1 + 2\cos\theta$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{tr R - 1}{2}\right) \in [0, \pi]$$

This equation can be solved for θ , because the eigenvalues λ_i of R have amount 1 and therefore:

$$-1 \le tr R = \sum \lambda_i \le 3$$

Proof:

To determine the axis of rotation, we use the remaining matrix entries:

$$\begin{array}{c} ! \\ r_{32} - r_{23} = 2g_1S\theta \\ \vdots \\ r_{13} - r_{31} = 2g_2S\theta \\ \vdots \\ r_{21} - r_{12} = 2g_3S\theta \end{array} \right\} \stackrel{\theta=0}{\Longrightarrow} \vec{g} = \frac{1}{2S\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

If $R = I_3$, then trR = 3, and therefore $\theta = 0$. In this case, \vec{g} could be any vector, then $R_{\vec{g}}(0) = I_3$.

Complex Numbers

- Form of Complex number: a + bi
 - a,b are real numbers,
 - *i* is the **imaginary unit** with $i^2 = -1$, $i = \sqrt{-1}$, $(\pm i)^2 = -1$
- Adding: (a + bi) + (c + di) = (a + c) + (b + d)i
- Subtracting: (a + bi) (c + di) = (a c) + (b d)i
- Multiplying: $(a + bi) \times (c + di) =$ (ac - bd) + (ad + bc)i
- **Complex conjugate**: *a bi*.
- **Dividing:** $1/(a+bi) = (a-bi)/(a^2+b^2)$

Historical Aspects

- Complex number a + bi viewable as point in a plane
- Transfer to space leads to Quaternions
- Quaternion from lat. Word quaternio, -ionis f. "Foursome")
- 1843, Hamilton representation of vector in space through complex numbers
- Multiplication not possibly with triples but with quadruples
- Basic rules of multiplication $i^2 = j^2 = k^2 = ijk = -1$
- $Q = r_1 + i \cdot r_2 + j \cdot r_3 + k \cdot r_4$

Quaternions

- Problems of (homogeneous) rotation matrix
 - High redundancy
 - Many arithmetic operations at concatenation
 - Singularities
- Orientation of a rigid body
 - Quaternion: Rotation axis (3 dim. Vector \vec{g}) and angle θ sufficient
 - Reduction of the required computational effort

Quaternions

- Quaternions $Q = (r_1, r_2, r_3, r_4)$ with $r_1, r_2, r_3, r_4 \in \mathbb{R}$
- Often represented as a linear vector space over \mathbb{R}
 - $Q = r_1 + i \cdot r_2 + j \cdot r_3 + k \cdot r_4$ (extension of \mathbb{C})
- For basic elements 1, i, j, k the following multiplicative linkage table (not commutative) applies:

Real Quaternions

- Scalar part: r_1 (angle of rotation)
- Vector part: $i \cdot r_2 + j \cdot r_3 + k \cdot r_4$ (axis of rotation)
- Quaternions can be used to display all rotations in which the axis of rotation passes through the origin of the reference system
 - Conjugated: $\bar{Q} = r_1 i \cdot r_2 j \cdot r_3 k \cdot r_4$
 - Magnitude: $|Q| = \sqrt{Q \cdot \bar{Q}}$
 - Inverse: $Q^{-1} = \frac{\bar{Q}}{|Q|^2} \to Q \cdot Q^{-1} = Q^{-1} \cdot Q = 1$

Real Quaternions - Example

- Let us consider: $Q_1 = (3,2,-4,1)$ and $Q_2 = (4,-3,1,-5)$
- It holds:
 - $Q_1 + Q_2 = (7, -1, -3, -4)$
 - $Q_1 \cdot Q_2 = (3 + 2i 4j + k)(4 3i + j 5k) =$ $12 - 9i + 3j - 15k + 8i - 6i^2 + 2ij - 10ik - 16j + 12ji - 4j^2 +$ $20jk + 4k - 3ki + kj - 5k^2 =$ 12 - 9i + 3j - 15k + 8i + 6 + 2k + 10j - 16j - 12k + 4 + 20i + 4k - 3j - i + 5 = (12 + 6 + 4 + 5) + i(-9 + 8 + 20 - 1) +j(3 + 10 - 16 - 3) + k(-15 + 2 - 12 + 4) = (27,18, -6, -21)
 - $Q_2 \cdot Q_1 = (27, -20, -20, -1)$
 - $Q_1^{-1} = \frac{(3-2i+4j-k)}{30}$

Rotation of Points by Means of Quaternions

Unit quaternion : $|Q| = 1 \Rightarrow Q^{-1} = \overline{Q}$, since $|Q|^2 = 1 \rightarrow$ Simple forward / backward calculation

Rotation of point \vec{p} at axis \vec{g} with angle θ

- 1. Create a unique quaternion from \vec{g} and θ
 - (1) Standardization of \vec{g} to 1

(2)
$$Q = \left[\cos\frac{\theta}{2}, \sin\left(\frac{\theta}{2}\right)\vec{g}\right]$$
, since $\cos^2(\theta) + \sin^2(\theta) = 1$

2. Represent point \vec{p} as quaternion

$$P = [0, \vec{p}]$$

1. Final rotation:

$$P' = Q \cdot P \cdot Q^{-1} = Q \cdot P \cdot \bar{Q}$$

Rotation of Points by Means of Quaternions

Converting Quaternion/Rotation matrix

- Rotation quaternion Q = (s, (x, y, z))
- From rotation by means of unit quaternion $|Q| = 1 \Rightarrow Q^{-1} = \overline{Q}$ follows the rotation matrix R:

$$R = \begin{bmatrix} 1 - 2(y^2 + z^2) & 2xy - 2sz & 2sy + 2xz \\ 2xy + 2sz & 1 - 2(x^2 + z^2) & -2sx + 2yz \\ -2sy + 2xz & 2sx - 2yz & 1 - 2(x^2 + y^2) \end{bmatrix}$$

Converting Quaternion/Rotation matrix

■ From R with the entries r_{ij} , $i,j \in \{1,2,3\}$, the corresponding rotation quaternion is calculated Q = (s,(x,y,z)) as follows:

$$x = \frac{r_{32} - r_{23}}{4s}$$

$$y = \frac{r_{13} - r_{31}}{4s}$$

$$z = \frac{r_{21} - r_{12}}{4s}$$

Exponential coordinates Motivation

- Rotation axis \vec{g} , rotation angle θ
- Motivation:

Rotate a point \vec{q} with a velocity of 1 around an axis \vec{g}

$$\Rightarrow \dot{\vec{q}}(t) = \vec{g} \times \vec{q}(t) =: \vec{g}\vec{q}(t)$$

With:

$$\vec{g} = \begin{bmatrix} 0 & -g_3 & g_2 \\ g_3 & 0 & -g_1 \\ -g_2 & g_1 & 0 \end{bmatrix}$$

Exponential coordinates

• Rotate by angle θ with integral equation:

$$\int_0^\theta g \, \vec{q}(t) dt = e^{g\theta} \vec{q}(0)$$

Where $e^{g\theta}$ is exponential of a matrix.

$$e^{g\theta} := 1 + g\theta + \frac{(g\theta)^2}{2!} + \frac{(g\theta)^3}{3!} + \dots$$
$$= 1 + g\sin\theta + g^2(1 - \cos\theta)$$

Axes of Rotation in Robotics

- Rotation axes usually BCS
- Convention of rotation axes and their order usually in ...
 - Euler-angles
 - Roll, Pitch, Yaw

Euler-Angles (zxz)

- Rotation α around the z axis of BCS: $R_z(\alpha)$
- Rotation β around the new x axis x': $R_{x'}(\beta)$
- Rotation γ around the new z axis z'': $R_{z''}(\gamma)$
- $R_{s} = R_{z}(\alpha) \cdot R_{x'}(\beta) \cdot R_{z''}(\gamma)$

$$R_{s}(\alpha,\beta,\gamma) = \begin{bmatrix} C\alpha C\gamma - C\beta S\gamma S\alpha & -C\alpha S\gamma - C\beta C\gamma S\alpha & S\alpha S\beta \\ S\alpha C\gamma + C\beta S\gamma C\alpha & C\alpha C\beta C\gamma - S\alpha S\gamma & -C\alpha S\beta \\ S\gamma S\beta & C\gamma S\beta & C\gamma S\beta \end{bmatrix}$$

Euler-Angles (zyz)

- Rotation α around the z axis of BCS: $R_z(\alpha)$
- Rotation β around the new y axis y': $R_{y'}(\beta)$
- Rotation γ around the new z axis z'': $R_{z''}(\gamma)$
- $R_{s}(\alpha, \beta, \gamma) = R_{z}(\alpha) \cdot R_{y}, (\beta) \cdot R_{z''}(\gamma)$

$$R_{S}(\alpha,\beta,\gamma) = \begin{bmatrix} C\alpha C\beta C\gamma - S\alpha S\gamma & -C\alpha C\beta S\gamma - S\alpha C\gamma & C\alpha S\beta \\ S\alpha C\beta C\gamma + C\alpha S\gamma & -S\alpha C\beta S\gamma - C\alpha C\gamma & S\alpha S\beta \\ -S\beta C\gamma & S\beta S\gamma & C\beta \end{bmatrix}$$

• Rotation around changed axes $R_{z,\alpha}$, $R_{y',\beta}$, $R_{z'',\gamma}$

Euler-Angles - Example

$$R_S = R_z(0^\circ) \cdot R_{y'}(90^\circ) \cdot R_{z''}(90^\circ)$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Proof: All orientations can be described using Euler-angles

Theorem: If two right-handed Cartesian coordinate systems $R = \{U, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ and $\{U, \overrightarrow{e_1}, \overrightarrow{e_2}, \overrightarrow{e_3}\}$ with a common origin exist, then there exists an orthogonal matrix A that maps R to \overline{R}

Euler-Angles - Coordinate Systems

• Plane E_1 (spanned by $\overrightarrow{e_1}$ and $\overrightarrow{e_2}$) intersects E_2 (spanned by $\overrightarrow{e_1}$ and $\overrightarrow{e_2}$) in line p.

- 1. Rotation around $\overrightarrow{e_3}$ with the positive angle ψ_1 so that $\overrightarrow{e_1}$ is mapped onto $\overrightarrow{f_1}$
 - $\overrightarrow{f_1}$, constructed by positive rotation with ψ_1 with $0 \le \psi_1 \le \pi$, lies on p
 - R transforms into $R = \{U, \overrightarrow{f_n}, \overrightarrow{f_2}, \overrightarrow{f_3} = \overrightarrow{e_3}\}$

$$A_1 = \begin{bmatrix} \cos \psi_1 & -\sin \psi_1 & 0 \\ \sin \psi_1 & \cos \psi_1 & 0 \\ 0 & 0 & 1 \end{bmatrix} R_1 = RA_1$$

• $\overrightarrow{f_1} \perp \overrightarrow{e_3}$ and $\overrightarrow{f_1} \perp \overrightarrow{\overline{e_3}}$

Euler-Angles - Coordinate Systems

- 2. Rotate R_1 around axis $\overrightarrow{f_1}$ with angle ψ_2 so that $\overrightarrow{e_3} = \overrightarrow{f_3}$ falls together with $\overrightarrow{e_3}$
 - R transforms to $R_2 = \{U, \overrightarrow{f_1} = \overrightarrow{h_1}, \overrightarrow{h_2}, \overrightarrow{h_3} = \overrightarrow{\overline{e_3}}\}$

$$A_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \Psi_2 & -\sin \Psi_2 \\ 0 & \sin \Psi_2 & \cos \Psi_2 \end{bmatrix} R_2 = R_1 A_2$$

- $\overrightarrow{f_2}$ is mapped onto $\overrightarrow{h_2}$
- $\overrightarrow{h_2}$ lies in the plane spanned by $\overrightarrow{\overline{e_1}}$ and $\overrightarrow{\overline{e_2}}$

3. Rotate R_3 with the angle ψ_3 , so that R_2 falls together with \bar{R}

$$A_3 = \begin{bmatrix} \cos \psi_3 & -\sin \psi_3 & 0 \\ \sin \psi_3 & \cos \psi_3 & 0 \\ 0 & 0 & 1 \end{bmatrix} R_3 = R_2 A_3$$

- $\bar{R} = (R_1 A_2) A_3 = (R A_1) (A_2 A_3)$
- Let $A = A_1 A_2 A_3$, then $\bar{R} = RA$ with

$$A = \begin{bmatrix} C\psi_1 \ C\psi_3 - S\psi_1 C\psi_2 S\psi_3 & -C\psi_1 S\psi_3 - S\psi_1 C\psi_2 C\psi_3 & S\psi_1 S\psi_2 \\ S\psi_1 C\psi_3 - C\psi_1 \ C\psi_2 S\psi_3 & -S\psi_1 S\psi_3 + C\psi_1 C\psi_2 C\psi_3 & -C\psi_1 S\psi_2 \\ S\psi_2 S\psi_3 & S\psi_2 C\psi_3 & C\psi_2 \end{bmatrix}$$

- Through equating coefficients it is possible to uniquely identify ψ_1, ψ_2, ψ_3 with $0 \le \psi_1 \le \pi$
 - $\cos \psi_2 = a_{33}$

- $\sin \psi_1 \sin \psi_2 = a_{13} \sin \psi_2 \cos \psi_1 = a_{23}$
- $\sin \psi_2 \sin \psi_3 = a_{31}$
- $\sin \psi_2 \cos \psi_3 = a_{32}$

Roll-Pitch-Yaw

- Roll γ around x-axis of BCS: $R_{\chi}(\gamma)$
- Pitch β around y-axis of BCS: $R_y(\beta)$
- Yaw α around z-axis of BCS: $R_z(\alpha)$

Roll-Pitch-Yaw in Robotics

Roll-Pitch-Yaw - Rotation Matrix

$$\mathbf{R}_{S} = \begin{bmatrix} C\alpha \ C\beta & C\alpha \ S\beta \ S\gamma - S\alpha \ C\gamma & C\alpha \ S\beta \ C\gamma + S\alpha \ S\gamma \\ S\alpha \ C\beta & S\alpha \ S\beta \ S\gamma + C\alpha \ C\gamma & S\alpha \ S\beta \ C\gamma - C\alpha \ S\gamma \\ -S\beta & C\beta \ S\gamma & C\beta \ C\gamma \end{bmatrix}$$

- Rotation matrix R_S relative to BCS
- Rotation around unchanged axes

Roll-Pitch-Yaw - Example

$$R_{S} = R_{Z}(90^{\circ}) \cdot R_{y}(90^{\circ}) \cdot R_{x}(0^{\circ})$$

$$= \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}$$

Representation of Orientation

- Roll-Pitch-Yaw:
 - xyz-system
 - Used in aerospace, in mobile robotics
- Euler-angles:
 - zx'z''-system: usual mathematical definition
 - zy'x"-system: programming of numerically controlled manipulators
 - zy'z"-system: programming language VAL, PUMA-robot

Next Lecture

- Basics of spatial kinematics
 - Homogenous coordinates
 - Transformation matrices
 - Pose calculation after several transformations