N°:_____ Nome: _____

Justifique as suas respostas	cotações indicadas	Duração:	2h00	
------------------------------	--------------------	----------	------	--

Parte I

- 1. Um sinal periódico de tensão v(t) com ω =200 rad/s, média nula e 10W de potência é adicionado a um outro sinal y(t)=2+3,5.sin(200t). Determine o valor eficaz do sinal soma z(t)=v(t)+y(t) sabendo que os sinais v e v são ortogonais, ou seja, $\int_T v(t).y(t)dt = 0$. (1,5 v)
- 2. Enuncie o teorema de Norton na sua formulação para circuitos lineares com excitação sinusoidal. (1,5 v)
- 3. Um circuito eléctrico reúne componentes lineares e não-lineares. Que métodos de análise estudados na disciplina se podem utilizar? Justifique. (1 v)
- 4. Considere o sinal v(t) ilustrado no gráfico seguinte: (2 v)

- a. apresente a respectiva expressão analítica
- b. determine a potência média e o valor eficaz.
- c. Determine os respectivos coeficientes não-nulos da série de Fourier.
- 5. Qual o princípio físico que fundamenta a chamada "Lei das malhas"? (1 v)
 - Princípio da conservação da energia
 - Princípio da conservação da carga
 - Princípio da causalidade
 - teorema da máxima transferência de potência
 - Princípio da incerteza de Heisenberg
 - Princípio do fim

Parte II

Considere o circuito seguinte, alimentado por uma fonte alternada sinusoidal, com os valores dos componentes $R_1 = 10\Omega$, $R_2 = 100\Omega$, $C = 15.9 \mu F$ e L = 7.96 mH.

- 6. Obtenha o equivalente (complexo) de Norton do circuito à esquerda do par de terminais A-B, com $\overline{I_1} = 2 \angle 0^{\circ}..(A)$ e $\omega = 6,28$ K rad/s. (3 v)
- 7. Determine a expressão de $\frac{\overline{V_A(\omega)}}{I_1(\omega)}$ em função da frequência angular ω . (2,5 v)
- 8. Esboce o diagrama fasorial do circuito para o valor de $\omega = 6,28$ K rad/s. (3,5 v)
- 9. Considere que ao circuito acima é aplicado o seguinte sinal de entrada $i_1(t) = 1.\sin(\omega t).u(t)$, com $\omega = 6.28$ K rad/s. Note que os elementos R_1 e C em série com a fonte de corrente não deverão influenciar o resultado, podendo ser substituídos por um curto-circuito.
 - a. Obtenha uma equação diferencial que descreva o funcionamento do circuito, relacionando $i_L(t)$ com $i_I(t)$. (2 v)
 - b. Obtenha a resposta completa do circuito ou seja, $i_L(t)$ considerando a condição inicial $i_L(0) = -0.5A$. (2 v)

Sugestão:

considere a forma da resposta forçada (c/ t>0): $i_{L_f}(t) = K_1 \cos(\omega t) + K_2 \sin(\omega t) + K_3$