Domaine et définition

Random Process : Famille de variable aléatoires $\{X_t : t \in T\}$ qui associe un espace d'états Ω à un ensemble S.

 Ω : L'espace d'états Ω est composé des événements possible de la variable aléatoire X.

Par exemple, lorsqu'on lance une pièce de monnaie $\Omega = \{ \text{Face}, \text{Pile} \}.$

S: L'ensemble S est l'ensemble des probabilités des événements dans Ω .

Par exemple, lorsqu'on lance une pièce de monnaie $S = \{\frac{1}{2}, \frac{1}{2}\}.$

iid: Les variables aléatoire X_t doivent être indépendantes et identiquement distribuées. Ceci est dénoté par *i.i.d.*.

indépendant : Si X_t est une variable aléatoire iid alors, pour 2 variables aléatoire X_i et X_j , où $i, j \in T$, le résultat de X_i n'a aucun impact sur le résultat de X_j pour tout $t \in T$.

identiquement distribué : L'ensemble S est l'ensemble des probabilités des événements dans Ω .

Probabilité de X_t : La probabilité d'un événement X_t est dénoté $Pr(X_t)$. Ces probabilité forment l'ensemble S.

Propriété: $\sum_{i=-\infty}^{\infty} \Pr(X_i) = 1$

Types de variables aléatoire : Il y a 2 types de variables aléatoire, les distributions *discrètes* et *continues*.

Discrète: Si l'ensemble S est dénombrable, c'est-à-dire que $S = \{s\}$, alors la variable aléatoire X est dite **discrète.**

Continue : Si l'ensemble *S* n'est pas dénombrable alors la variable aléatoire *X* est dite **continue**.

Probabilité conditionnelle

Conditionnel : La probabilité que *A* arrive *sa-chant* que *B* est arrivé est :

$$\Pr(A|B) = \frac{\Pr(A \cap B)}{\Pr(B)}$$

où la probabilité que B arrive est nonnulle, Pr(B) > 0.

Indépendant : Les événements *A* et *B* sont indépendant si :

$$Pr(A \cap B) = Pr(A) \cdot Pr(B)$$

Avec la première définition de la probabilité conditionnelle, on peut trouver ces résultats :

relation probabilité conditionnelle : La probabilité que l'événement E_2 ai lieu sachant que l'événement E_1 à déjà eu lieu est équivalent à la probabilité que l'événement E_1 ai lieu sachant que E_2 à déjà eu lieu multiplié par la probabilité que l'événement E_2 ai lieu peu importe E_1 .

Le tout est encore pondéré par la probabilité que l'événement E_1 ai lieu peu importe si E_2 y a.

$$Pr(E_2|E_1) = \frac{Pr(E_2 \cap E_1)}{Pr(E_1)}$$
$$= \frac{Pr(E_1|E_2) Pr(E_2)}{Pr(E_1)}$$

Loi des probabilités totale : Les probabilités liées à la variable aléatoire *E* lorsqu'elles sont conditionnelles à la variable aléatoire discrète *F* est dénoté comme suit :

$$\Pr(E) = \sum_{i=1}^{n} \Pr(E|F_i) \Pr(F_i)$$

Formule de Bayes : On combine les deux résultats précédent :

$$\Pr(F_i|E) = \frac{\Pr(E|F_i)}{\sum_{i=1}^n \Pr(E|F_i) \Pr(F_i)}$$