

Week 05. Linguistic Structure - Dependency parsing

발표자: 김소민, 임세영

목치

#01 Parsing

#02 Constituency Parsing

#03 Dependency Parsing

#04 Dependency Grammar

#05 Dependency Parsing Method

Parsing

Parsing 정의

Parsing 이란?

각 문장의 문법적인 구성 또는 구문을 분석하는 과정 -> 구문분석 트리를 구성하는 것

- Constituency Parsing 문장 구조 파악하기
- Dependency Parsing 단어 간 관계를 파악하기

Tokenizing vs Pos Tagging vs Parsing

Tokenizing

텍스트에 대해 특정 기준 단위로 문장을 나누는 것을 의미

Ex)

- 문장을 단어로
- 글을 문장 단위로

Pos Tagging

품사 태깅(Part-of-Speech Tagging)

토큰(Token)들에게 품사를 붙여주는 작업을 뜻한다.

Tokenizing vs Pos Tagging vs Parsing

Tokenizing

```
test_text = ['All', 'rights', 'reserved', '.']
```

Pos Tagging

```
[[('All', 'DT'), ('rights', 'NNS'), ('reserved', 'VBN'),
('.', '.')]]
```

```
등위 접속사
                                                                            coordinating conjunction
         기본 숫자
                                                                            cardinal digit
DT
EX
         existential there (장소를 뜻하는 there이 아닌, '~이 있다'라는 뜻의 there)
                                                                            existential there (like: "there is" ... think of it like "there exists")
         전치사/종속 접속사
                                                                            preposition/subordinating conjunction
         형용사 // 'big'
                                                                            adjective 'big'
         비교 형용사 // 'bigger'
                                                                            adjective, comparative 'bigger'
         최상급 형용사 // 'biggest'
                                                                            adjective, superlative 'biggest'
         리스트 마커 // 1)
                                                                            list marker 1)
         조동사 // could, will
                                                                            modal could, will
         단수 명사 // 'desk'
                                                                            noun, singular 'desk'
         복수 명사 // 'desks'
                                                                            noun plural 'desks'
```


Constituency Parsing

Constituency Parsing

- 문장을 중첩된 성분으로 나누어 문장의 구조를 파악
- 어순이 고정적인 언어에서 주로 사용 (ex. 영어)
- 재귀적으로 적용 가능
- css224n 18강에서 추후 다뤄짐

Dependency Parsing

Dependency Parsing

- 단어 간 관계 파악
 -> 각 단어 간 의존 or 수식 관계를 파악 가능
- 자유 어순을 가지거나 문장 성분이 생략 가능한 언어에서 주로 사용됨 (ex. 한국어)

- 화살표가 향하는 방향: 수식 <mark>하는 방향</mark>

```
ate \longrightarrow I (Subject) ate \longrightarrow sandwich (Object) sandwich \longrightarrow the (determiner)
```

Head Dependent governor Modifier

Dependency Parsing

- 단어 간 관계 파악-> 각 단어 간 의존 or 수식 관계를 파악 가능
- 자유 어순을 가지거나 문장 성분이 생략 가능한 언어에서 주로 사용됨 (ex. 한국어)

Dependency 파싱이 필요한 이유

언어를 올바르게 이해하기 위해서

- → 인간들은 작은 단어들을 큰 단어로 조합함으로써 복잡한 아이디어를 표현하고 전달함
- → 어떤 단어가 무엇과 연결되었는지 정확히 이해해야, 그 의미를 정확하게 알 수 있음

파싱이 필요한 이유 - ambiguity

Coordination Scope Ambiguity

- 특정 단어가 수식하는 대상의 범위가 모호
- 중의적으로 해석 *작용역 중의성

[Shuttle veteran and longtime Nasa executive] Fred Gregory appointed to board. 우주선 베테랑이자 오랜 나사의 임원인 Fred Gregory가 이사로 임명 되었다.

[Shuttle veteran] and [longtime Nasa executive] Fred Gregory appointed to board. 우주선 베테랑과 오랜 나사의 임원인 Fred Gregory가 이사로 임명 되었다.

파싱이 필요한 이유 - ambiguity

Phrase Attachment Ambiguity

- 형용사구, 동사구, 전치사구 등이 어떤 단어를 수식하는지에 따라 의미가 모호함

San Jose cops kill man with knife

- 1. 산호세 경찰들은 칼을 든 남자를 죽였다.
- 2. 산호세 경찰들은 남자를 칼로 죽였다.

#1 Grammar and Structure

Dependency Structure는 두가지 형태로 표현 가능

- 1. 수식하는 단어를 화살표로 표현하는 방식
- 2. 트리 형태로 parsing output을 도출하는 방식

#1 Grammar and Structure

화살표: head > dependent (수식을 받는 단어) (수식을 하는 단어)

#1 Grammar and Structure

화살표 위 label은 dependency (단어간 문법적 관계)를 의미

#1 Grammar and Structure

ROOT: 어떠한 단어의 수식도 받지 않는 단어를 위해 만들어짐 > 모든 단어가 최소한 1개 node의 dependent

#1 Grammar and Structure

화살표는 순환하지 않음
> Parsing 결과물을 tree 형태로 표현 가능

#2 Universal Feature

What are the sources of information for dependency parsing?

- 1. Bilexical affinities
 - [issues > the] is plausible
- 2. Dependency distance
 - mostly with nearby words
- 3. Intervening material
 - Dependencies rarely span intervening verbs or punctuation
- 4. Valency of heads
 - How many dependents on which side are usual for a head?

#3 Tree Bank Dataset

Figure 1: Slider for selecting sentiments in range 0-25

Figure 2: Recursive models computing parent vector in a bottom up approach

짧은 문장의 극성을 예측하고 문장의 어순을 무시하는 bag-of-words 접근 방식 > 어려운 부정 예제를 분류하는 효율적인 모델 생성

감성 분석 작업의 이진 분류 정확도 상승

#1 Main Method

Transition-based

두 단어의 <mark>의존여부를 순서대로 결정</mark>하며 점진적으로 구문분석 트리를 구성

Graph-based

가능한 <mark>의존 관계를 모두 고려</mark>한 뒤 가장 확률이 높은 구문분석 트리 선택

Root John saw Mary yesterday . Root John saw Mary yesterday .

Root John saw Mary yesterday .

Root John saw Mary yesterday

#1 Main Method

두 단어의 <mark>의존여부를 순서대로 결정</mark>하며 점진적으로 구문분석 트리를 구성

Graph-based에 비해

속도가 빠르지만 정확도가 낮음

#2 Transition-based Parsing

"John hit the ball"

$$c = (\sigma, \beta, A)$$

State (c)

모든 decision은 State c 를 input으로 하는 함수 f(c) 를 통해 이루어짐 (ex: SVM, NN)

ROOT

John hit the ball

STACK (σ)

BUFFER (β)

Set of Arcs (A)

#2 Transition-based Parsing

"John hit the ball"

 $c = (\sigma, \beta, A)$ State (c)

decision

- 1. Shift
- 2. Right-Arc nsubj (주어) Dobj (직접목적어) det (한정사) acomp (형용사보어)
- 3. Left-Arc nsubj (주어) Dobj (직접목적어) det (한정사) acomp (형용사보어)

1 개 N_I 개 N_I 개

> 2N₁ + 1 개

ROOT

John hit the ball

Ø

URON

#2 Transition-based Parsing

Right-arc 또는 Left-arc Decision은 Stack top 1,2 단어를 대상으로 이루어짐

STACK (σ)

Input Sentence

"John hit the ball"

$$c = (\sigma, \beta, A)$$

State (c)

ROOT John — John hit the ball

BUFFER (β)

Set of Arcs (A)

Decision Process

shift

#2 Transition-based Parsing

ROOT token은 BUFFER가 비워질 때까지 decision의 대상이 되지 않음

"John hit the ball"

$$c = (\sigma, \beta, A)$$

State (c)

ROOT John hit

hit the ball

Ø

STACK (σ)

BUFFER (β)

Set of Arcs (A)

Decision Process

shift -> shift

#2 Transition-based Parsing ROOT Input Sentence hit dobj "John hit the ball" nsubj John ball $c = (\sigma, \beta, A)$ det f(c) State (c) the John hit the ball **ROOT (John hit)** STACK (σ) BUFFER (β) Set of Arcs (A) **Decision Process** shift -> shift -> ?

#2 Transition-based Parsing

"John hit the ball"

 $c = (\sigma, \beta, A)$

State (c)

(hit, nnsubj, John)

Set of Arcs (A)

ROOT John hit

STACK (σ)

John hit the ball

BUFFER (β)

Decision Process

shift -> shift -> Left-Arc (nsubj)

#2 Transition-based Parsing

"John hit the ball"

$$c = (\sigma, \beta, A)$$

State (c)

ROOT hit the the ball

STACK (σ)

BUFFER (β)

(hit, nnsubj, John)

Set of Arcs (A)

Decision Process

shift -> shift -> Left-Arc (nsubj) -> shift

#2 Transition-based Parsing

ROOT (hit the)

Input Sentence

"John hit the ball"

$$c = (\sigma, \beta, A)$$

f(c) State (c)

Shn hit the ball

STACK (σ)

(hit, nnsubj, John)

Set of Arcs (A)

Decision Process

shift -> shift -> Left-Arc (nsubj) -> shift -> ?

#2 Transition-based Parsing

"John hit the ball"

$$c=(\sigma,\beta,A)$$

State (c)

ROOT hit the ball

STACK (σ)

John hit the ball

BUFFER (β)

(hit, nnsubj, John)

Set of Arcs (A)

Decision Process

shift -> shift -> Left-Arc (nsubj) -> shift -> shift

#2 Transition-based Parsing

Input Sentence

"John hit the ball"

$$c = (\sigma, \beta, A)$$

f(c) State (c)

hit the ball ROOT hit (the ball)

STACK (σ)

BUFFER

(hit, nnsubj, John)

Set of Arcs (A)

Decision Process

shift -> shift -> Left-Arc (nsubj) -> shift -> shift -> ?

#2 Transition-based Parsing

remove

STACK (σ)

ROOT hit the ball

"John hit the ball"

 $c = (\sigma, \beta, A)$

State (c)

John hit the ball

BUFFER (β)

(hit, nnsubj, John) (ball, det, the)

Set of Arcs (A)

Decision Process

shift -> shift -> Left-Arc (nsubj) -> shift -> shift -> Left-Arc (det)

#2 Transition-based Parsing

"John hit the ball"

remove

$$c = (\sigma, \beta, A)$$

State (c)

ROOT hit the ball

John hit the ball

(hit, nnsubj, John) (ball, det, the) (hit, dobj, ball)

STACK (σ)

BUFFER (β)

Set of Arcs (A)

Decision Process

shift -> shift -> Left-Arc (nsubj) -> shift -> shift -> Left-Arc (det)
-> Right-Arc (dobj)

#2 Transition-based Parsing

Input Sentence

"John hit the ball"

$$c=(\sigma,\beta,A)$$

State (c)

remove

ROOT hit the ball

STACK (σ)

John hit the ball

BUFFER (β)

(hit, nnsubj, John) (ball, det, the) (hit, dobj, ball) (ROOT, root, hit)

Set of Arcs (A)

Decision Process

shift -> shift -> Left-Arc (nsubj) -> shift -> shift -> Left-Arc (det)

-> Right-Arc (dobj) -> Right-Arc (dobj)

#2 Transition-based Parsing

Input Sentence

"John hit the ball"

ROOT hit the ball

STACK (σ)

John hit the ball

BUFFER (β)

(hit, nnsubj, John) (ball, det, the) (hit, dobj, ball) (ROOT, root, hit)

Set of Arcs (A)

Decision Process

shift -> shift -> Left-Arc (nsubj) -> shift -> shift -> Left-Arc (det)

-> Right-Arc (dobj) -> Right-Arc (dobj)

#3 Conventional Feature Representation

Notations

$s_1.w$	Stack의 첫번째 단어
$b_1.w$	Buffer의 첫번째 단어
$s_1.t$	Stack의 첫번째 단어의 POS Tag
$lc(s_1).w$	Stack의 첫번째 단어의 left-child 단어
$rc(s_1).w$	Stack의 첫번째 단어의 right-child 단어
$lc(s_1).t$	Stack의 첫번째 단어의 left-child 단어의 POS Tag

Example

$S_1.W$	$b_1.t$	$lc(s_2).w$	$rc(s_2).t$
the	NN	John	NULL

#3 Conventional Feature Representation

Indicator Features

1
$$s_1.w =$$
the $s_1.t =$ DT
0 $s_2.w =$ hit $s_2.t =$ VBD $b_1.t =$ DT
0 $lc(s_2).w =$ John $lc(s_1).w =$ hit
1 $lc(s_2).w =$ John $lc(s_1).t =$ NNP

- Binary & Sparse representation
- 일반적으로 1~3개 요소가 결합된 indicator features
- 계산비용 높음
- 단어 또는 POS Tag의 의미 반영 못함

#4 Neural Dependency Parser

1. Feature Selection

#4 Neural Dependency Parser

Feature Template

- STACK과 BUFFER의 top 3 단어 (6개) s_1 , s_2 , s_3 , b_1 , b_2 , b_3 [over, quick, ROOT, the, lazy, dog]
- STACK top 1, 2 단어의 1st and 2nd left and right child 단어 (8개) $lc_1(s_1)$, $rc_1(s_1)$, $lc_2(s_1)$, $rc_2(s_1)$ $lc_1(s_2)$, $rc_1(s_2)$, $lc_2(s_2)$, $lc_2(s_2)$
- STACK top 1, 2 단어의 (left of left) and (right of right) child 단어 (4개) $lc_1(lc_1(s_1))$, $rc_1(rc_1(s_1))$, $lc_1(lc_1(s_2))$, $rc_1(rc_1(s_2))$ [Null, Null] [the, Null]
- 선택된 word feature에 해당하는 POS Tag (18개)
 [IN(전치사), JJ(형용사), ROOT, DT(한정사), ···, Null, DT(한정사), Null]
- STACK과 BUFFER의 6개 단어를 제외하고 선택된 word에 달린 arc-label (12개) [Null, Null, ···, nsubj(주어), conj(접속사), cop(연결사), cc(등위), ···, Null]

Example State (c)

Input Sentence

"The brown fox is quick and he is jumping over the lazy dog"

STACK (σ)
ROOT quick over

the lazy dog

BUFFER (β)

#4 Neural Dependency Parser

Word Features

 $S^{w} = [$ over, quick, ROOT, the, ..., and, Null, Null, the, Null]

 $S'^w \in \mathbb{R}^{18 \times N_w}$

One-hot Representation

POS Tag Features

 $S^t = [IN, JJ, ROOT, DT, JJ, \cdots, CC, Null, Null, DT, Null]$

	Null	ROOT	DT	NN		JJ	VBD
IN	0	0	0	0	0	0	0
JJ	0	0	0	0	0	1	0
ROOT	0	1	0	0	0	0	0
Null	1	0	0	0	0	0	0
DT	0	0	1	0	0	0	0
Null	1	0	0	0	0	0	0

 $S'^t \in \mathbb{R}^{18 \times N_t}$

Arc-label Features

 $S^{l} = [\text{Null, Null, Null, } \cdots, \text{nsubj, } \text{conj, cop, cc, Null, } \cdots]$

	Null	ROOT	nsubj	СС		сор	conj
Null	1	0	0	0	0	0	0
Null	1	0	0	0	0	0	0
Null	1	0	0	0	0	0	0
nsubj	0	0	1	0	0	0	0
conj	0	0	0	0	0	0	1
cop	0	0	0	0	0	1	0

$$S'^l \in \mathbb{R}^{12 \times N_l}$$

#4 Neural Dependency Parser

[Neural Dependency Parser]

Chen and Manning (2014)

2. Feature Embedding

X

#4 Neural Dependency Parser

Feature Embedding

Word Features

	Null	ROOT	and	the		over	quick
over	0	0	0	0	0	1	0
quick	0	0	0	0	0	0	1
ROOT	0	1	0	0	0	0	0
Null	1	0	0	0	0	0	0
The	0	0	0	1	0	0	0
Null	1	0	0	0	0	0	0

 $S'^w \in \mathbb{R}^{18 \times N_w}$

Word Embedding Matrix

Null	0.2	0.1	0.7	0.7	1.2	0.1
ROOT	0.3	0.8	2.3	1.2	0.1	1.3
and	0.7	1.0	1.1	0.2	0.6	0.1
the	0.7	0.4	0.3	2.1	0.3	1.0
over	0.3	0.2	0.5	1.0	0.2	0.7
quick	1.2	0.8	0.2	2.0	0.3	0.6

 $E^w \in \mathbb{R}^{d \times N_w}$

Embedded Matrix

$e_{w_1}^w$	0.3	0.2	0.5	1.0	0.2	0.7
$e_{w_2}^w$	1.2	8.0	0.2	2.0	0.3	0.6
$e_{w_3}^w$	0.3	8.0	2.3	1.2	0.1	1.3
$e_{w_{16}}^w$	0.2	0.1	0.7	0.7	1.2	0.1
$e_{w_{17}}^w$	0.7	0.4	0.3	2.1	0.3	1.0
$e_{w_{18}}^w$	0.2	0.1	0.7	0.7	1.2	0.1

$$x^w = [e^w_{w_1}; e^w_{w_2}; \dots; e^w_{w_{18}}]$$

#4 Neural Dependency Parser

Embedded Matrix

$e_{w_1}^w$	0.3	0.2	0.5	1.0	0.2	0.7
$e_{w_2}^w$	1.2	8.0	0.2	2.0	0.3	0.6
$e_{w_3}^w$	0.3	8.0	2.3	1.2	0.1	1.3
$e^w_{w_{16}}$	0.2	0.1	0.7	0.7	1.2	0.1
$e^w_{w_{17}}$	0.7	0.4	0.3	2.1	0.3	1.0
$e_{w_{18}}^w$	0.2	0.1	0.7	0.7	1.2	0.1

#4 Neural Dependency Parser

3. Hidden Layer

#4 Neural Dependency Parser

Hidden Layer : 일반적인 feed forward network

- Embedding vector * weight matrix + bias vector
- ReLU, Sigmoid, Tanh와 같은 일반적인 activation function을 사용하지 않음
- word, POS tag, arc-label 간 상호작용을 반영할 수 있는 cube function을 사용함

$$h = (W_1[x^w; x^t; x^l] + b)^3$$

$$= (w_1x_1 + w_1x_2 + \dots + w_{48}x_{48} + b)^3$$

$$= \sum_{i,j,k} (w_iw_jw_k)x_ix_jx_k + \sum_{i,j} b(w_iw_j)x_ix_j + \dots$$
각 word, POS tag, arc-label의 조합

#4 Neural Dependency Parser

[Neural Dependency Parser]

Chen and Manning (2014)

4. Softmax Layer

#4 Neural Dependency Parser

Softmax Layer

- Hidden layer를 거친 feature vecto를 linear projection 후 softmax function 적용
- Shift, Left-Arc, Right-Arc 중 가장 확률값이 높은 경우의 수를 output으로 산출

#4 Neural Dependency Parser

Evaluation Measures

- Unlabeled Attachment Score (UAS): Arc 방향만 예측 Shift Left-Arc Right-Arc
- Labeled Attachment Score (LAS): Arc 방향과 함께 label 예측
 Shift Left-Arc (nsubj) Left-Arc (det) ··· Right-Arc (det) ···

Results (English Penn Treebank Datasets)

Parser	UAS	LAS	Sentence / sec.	비고
MaltParser (2007)	89.8	87.2	469	Transition-based Parser (Indicator Feature)
MSTParser (2007)	91.4	88.1	10	Graph-based Parser
TurboParser (2010)	92.3	89.6	8	Graph-based Parser
Chen and Manning (2014)	92.0	89.7	654	Transition-based Parser (Dense Feature)

#4 Neural Dependency Parser

Ablation Studies

- Cube function이 타 activation function보다 높은 성능 기록
- Pre-trained word vector (Word2Vec)를 사용하는 것이 random initialization보다 더 높은 성능 기록
- Word, POS, label 정보 모두 활용하는 것이 가장 높은 성능 기록

POS and Label Embedding

- Random Initialization된 POS tag와 Arc-label vector가 학습이 진행되면서 의미적 유사성 내포
- t-SNE를 통해 2차원 공간상에 표현했을 때 <mark>유사한 요소들</mark>이 가까이 위치

