

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number: WO 98/03852
G01N 21/17		(43) International Publication Date: 29 January 1998 (29.01.98)
(21) International Application Number:	PCT/GB97/01890	(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	11 July 1997 (11.07.97)	
(30) Priority Data:		
9615268.1	20 July 1996 (20.07.96)	GB
(71) Applicant (for all designated States except US):	OPTEL INSTRUMENTS LIMITED [GB/GB]; 18 York Place, Edinburgh EH1 3EP (GB).	
(72) Inventors; and		Published
(75) Inventors/Applicants (for US only):	MACKENZIE, Hugh, Alexander [GB/GB]; Optel Instruments Limited, 18 York Place, Edinburgh EH1 3EP (GB). FREEBORN, Scott [GB/GB]; Optel Instruments Limited, 18 York Place, Edinburgh EH1 3EP (GB). HANNIGAN, John [GB/GB]; Optel Instruments Limited, 18 York Place, Edinburgh EH1 3EP (GB).	With international search report.
(74) Agent:	MURGITROYD & COMPANY; 373 Scotland Street, Glasgow G5 8QA (GB).	

(54) Title: MEASUREMENT SENSOR AND METHOD

(57) Abstract

A sensor has a cylindrical body (62) the front of which can be inserted in a body of liquid. Laser pulses are coupled via a fibre optic cable (68) and optical assembly (70) to enter the liquid via a window (60). Interaction of the laser energy with an analyte of interest produces acoustic waves in the region adjacent the window (60) which are detected by an acoustic transducer (64). Preferred forms of transducer and their mounting are disclosed.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

1 "Measurement Sensor and Method"

2

3 This invention relates to the use of a combined optical
4 and acoustic technique for the detection and
5 measurement of selected analytes in fluids.

6

7 It is well known to use techniques in which a pulse of
8 laser light is directed into a liquid, the wavelength
9 of the light being such that it is absorbed by the
10 selected analyte or combinations os analytes and base
11 material, and such absorption generates a transient
12 pressure pulse which can be detected and measured by a
13 suitable pressure sensor, typically a piezoelectric
14 element. The general technique is described, for
15 example, in "Theory of the pulsed optoacoustic
16 technique", H M Lai and K Young, J. Acoust. Soc. Am. 72
17 (6) 2000-2007 (1982).

18

19 Although it is known that such techniques can provide a
20 sensitive analysis of low concentrations of analytes,
21 their use has hitherto largely been restricted to the
22 laboratory and they have not been in common use in
23 industrial situations.

24

25 According to the present invention there is provided a
26 sensor for measuring the concentration of one or more
27 selected analytes within a body of fluid, the sensor
28 comprising a housing adapted to be positioned directly
29 in or near the surface of a body of fluid; light
30 transmission means for receiving light pulses from a
31 laser source; lens means carried by the housing and

1 having optical components to direct the light with a
2 desired geometry and form from the light transmission
3 means to a target location outside the housing, the
4 target location in use being within the body of fluid;
5 acoustic transducer means mounted on the housing so as
6 to be positioned, in use, in the vicinity of said
7 target location; and electric signal means coupling the
8 output of the transducer means to display and/or data
9 processing means remote from the housing.

10

11 Preferably, the transducer means is positioned, in use,
12 within said body of fluid.

13

14 The body of fluid may be a stationary body, such as the
15 liquid within a tank or a borehole, or may be a fluid
16 stream such as a liquid flowing within a pipe.

17

18 In one form of the invention, the housing is of
19 generally cylindrical form and has a front end which
20 forms an open measurement region which, in use, is
21 introduced into a pipeline via a circular port. This
22 is particularly useful in measuring and monitoring
23 applications in an industrial environment, one example
24 being the measurement of small proportions of
25 hydrocarbons in process or produced water, other
26 outfalls and discharges and groundwater.

27

28 The lens means may comprise a lens assembly within the
29 housing operating in conjunction with a fluid-tight
30 optically transmissive window in the housing.

31 Alternatively, a graded (or gradient) refractive index
32 lens may be used, and this may itself form a window in
33 the housing.

34

35 The transducer means may suitably be carried on an
36 extension projecting from the front end of the housing.

1 In one form, the transducer means comprises an element
2 of piezoelectric material (for example, a disc-shaped
3 crystal of lead zirconate titanate or the like) with
4 the disc axis aligned perpendicularly to the optical
5 axis. Preferably, however, the transducer means
6 comprises one or more piezoelectric elements shaped,
7 ideally, to match the wavefront of the acoustic pulse;
8 for example by presenting one or more part-cylindrical
9 surfaces disposed around the optical axis.

10

11 The piezoelectric element(s) preferably have a
12 thickness which is substantially equal to the product
13 of the duration of the compressive part of the acoustic
14 impulse and the velocity of sound in the piezoelectric
15 material.

16

17 An important preferred feature of the invention resides
18 in the provision of damping mass to prevent or reduce
19 ringing of the transducer crystal(s). Preferably, the
20 damping mass is in the form of a volume of lead or
21 other suitable material secured to the rear face of the
22 or each crystal and shaped to inhibit the generation of
23 acoustic resonances.

24

25 From another aspect, the invention provides a method of
26 measuring the concentration of one or more selected
27 analytes within a body of fluid, the method comprising
28 forming pulses of laser light of an optical frequency
29 absorbed by the selected analyte(s), coupling the light
30 pulses into a body of fluid to be focused at a target
31 location within the body of fluid, detecting acoustic
32 pressure pulses at a location adjacent said target
33 location, and analysing the resultant signals to
34 determine the relative concentration of the selected
35 analyte(s).

36

1 The body of fluid may be a stationary body, or a
2 flowing stream.

3

4 Preferably, said pulses have a pulse duration which is
5 shorter than the time required for thermal diffusion
6 across the diameter of the optical interaction region.
7 In general terms, this could be in the range 1ns to
8 less than 1 μ s. In the embodiments discussed herein,
9 the pulse length will typically be in the range 5 -
10 200ns, most preferably 50 - 75ns.

11

12 A particular application of the method is in detecting
13 the presence of hydrocarbons in water, in which case
14 the light pulses may suitably have a vacuum wavelength
15 of 600 to 3500nm.

16

17 The analysis of the acoustic signal may suitably be
18 carried out on values averaged over a number (suitably
19 up to 10,000, and typically between 100 and 5000) of
20 discrete signal samples.

21

22 The analysis may simply be a peak-to-peak measurement,
23 or may include examination of the rise and fall times
24 of the acoustic waveform, or may be based on a Fourier
25 analysis of the waveform, and other temporal properties
26 of the acoustic response.

27

28 Alternatively, the analysis may be based on integration
29 of the acoustic waveform to obtain an energy-related
30 signal.

31

32 The present invention further provides an acoustic
33 sensor comprising means for emitting pulses of light of
34 selected wavelength to produce acoustic pulses in a
35 fluid, and a pressure sensitive element for detecting
36 said acoustic pulses, the pressure sensitive element

1 having a rear face against which is secured a backing
2 element to provide both inertial loading and
3 vibrational damping.

4

5 Typically, the pressure sensitive element is a
6 piezoelectric ceramic crystal, for example of lead
7 zirconate titanate, or other piezoelectric material and
8 the backing element is of lead.

9

10 The backing element is preferably configured to
11 minimise acoustic reflections, as by being formed with
12 non-parallel surfaces, or by any surfaces which are
13 parallel being formed with discontinuities.

14

15 Embodiments of the present invention will now be
16 described, by way of example, with reference to the
17 accompanying drawings, in which:

18

19 Fig. 1 is a schematic cross-sectional side view of
20 one embodiment of photoacoustic detector
21 instrument in accordance with the invention;
22 Fig. 2a is a cross-sectional side view showing
23 part of a second embodiment;

24 Fig. 2b is an end view of the detector of Fig. 2a;

25 Fig. 3a is a cross-sectional side view of a third
26 embodiment;
27 Fig. 3b is an end view of the detector of Fig. 3a;

28 Fig. 3c is a cross-section on C-C of Fig. 3a;
29 Fig. 4 is a cross-sectional side view of a further
30 embodiment of photoacoustic detector instrument;

31 Fig. 5 is a graph illustrating waveforms generated
32 in use of the system.

33

34 Referring to Fig. 1, a detector instrument comprises a
35 generally cylindrical fluid-tight housing 10 formed
36 from two cylindrical members 12 and 14 joined together

1 at flanges 16 and 18. In use, the forward cylindrical
2 member 12 is inserted into a pipeline (not shown)
3 through a conventional ball valve and muff coupling
4 (not shown) with O-rings or other sealing elements and
5 provision for clamping and safety interlocks.

6

7 Light from a laser source is coupled to the instrument
8 via a fibre optic system 20 to a launching unit 22.
9 The launching unit 22 produces a beam which passes via
10 a fluid-tight window 24 into fluid flowing within the
11 pipeline.

12

13 An acoustic sensor 26 is located adjacent the window 24
14 in an extension 28 projecting from the housing 10. The
15 sensor 26 suitably comprises a disc of a piezoelectric
16 ceramic material and is backed by a lead cylinder 30
17 secured within the extension 28 by a plug 32.

18

19 The lead cylinder 30 acts to damp ringing of the PZT
20 crystal and to better perform this function is
21 preferably bonded to the crystal 26, for example by
22 electrically conductive epoxy which acts as an
23 electrical connection to the rear face of the crystal
24 26, from which the piezoelectric signal is obtained.
25 The connection to the front face of the crystal 26 is
26 achieved with wrap-around electrodes which permit
27 contact wires to be bonded via the side of the crystal
28 26.

29

30 It will be appreciated that laser light pulses emerge
31 from the optical assembly in the vicinity of the end of
32 the instrument adjacent the crystal 26. Resulting
33 photoacoustic pressure pulses are detected by the
34 crystal 26 to form analog electrical signals
35 representative of the transient pressure amplitude.
36 The suppression of ringing by the lead backing enables

1 the crystal 26 to operate as a broad band transducer
2 without unduly reducing its sensitivity.
3

4 The electrical output from the crystal 26 is coupled to
5 amplifying electronics mounted on a printed circuit
6 board 34 within the housing 10, to provide output
7 signals via electrical connections 36.
8

9 The optical pulse has an energy of the order of
10 typically a micro-Joule, and generates a low energy
11 photoacoustic signal which propagates radially from the
12 optic axis with a particular acoustic wavefront
13 geometry which depends on the absorption of the analyte
14 and the optical beam geometry.
15

16 Fig. 2 illustrates a modified instrument in which it is
17 sought to improve the interaction between the
18 photoacoustic pulse and the sensor.
19

20 In Fig. 2, once again the instrument is of basically
21 cylindrical form for insertion into a pipeline, and
22 laser light pulses from a fibre optic cable and
23 focusing lens assembly (not seen in the Fig) are
24 transmitted via a window 40 into liquid flowing within
25 the pipeline.
26

27 In this embodiment, the detector comprises a pair of
28 piezoelectric crystals 42 and 44 (suitably of lead
29 zirconate titanate) each of part-tubular shape arranged
30 within part-cylindrical housings 46, 48 forming
31 projections from the main cylindrical housing 50 of the
32 instrument. The housings 46, 48 define between them a
33 passage 52 for flow of liquid within which the
34 photoacoustic interaction occurs. The shape and
35 disposition of the crystals 42, 44 is chosen to
36 maximise the area available for reception of the

1 photoacoustic pulse, to keep the angle of incidence of
2 the acoustic wavefront on the crystal within acceptable
3 limits, and also to minimise timing differences in the
4 pressure wavefront reaching the crystal.

5

6 Each of the crystals 42, 44 is once again provided with
7 damping, in the form of lead backing pieces 54, 56 of
8 complementary shape.

9

10 This embodiment gives improved coupling between the
11 photoacoustic wave and the piezoelectric material for
12 the optical geometry utilised. However, the
13 construction is relatively complex, and the channel 52
14 is relatively restricted.

15

16 Fig. 3 shows a presently preferred embodiment. This
17 follows similar principles to Fig. 2, but has a window
18 60 displaced from the centre line of housing 62, and a
19 single transducer crystal 64 of part-cylindrical shape
20 backed by a lead body 66. The liquid in the vicinity
21 of the instrument is therefore not restricted to a
22 channel, but the coupling efficiency approaches that of
23 Fig. 2.

24

25 In the embodiment of Fig. 3, laser pulses are coupled
26 via a fibre optic cable 68 to a lens assembly 70 which
27 includes a beam splitter 72. The beam splitter 72
28 diverts a known proportion of the laser energy to a
29 photosensitive detector such as a photodiode 74. This
30 permits the applied laser energy to be monitored, and
31 the detected acoustic signal can be normalised in
32 relation to the applied optical energy.

33

34 The housing 62 is suitably of 38mm diameter in
35 stainless steel, and contains an electronics module 76
36 which communicates with a remote processing and display

1 circuit via a multi-way cable 78. The cable 78 may use
2 a combination of fibre optic signal paths and low
3 voltage, low power electrics for intrinsically safe
4 operation in hazardous locations.

5

6 Fig. 4 shows another approach in which a sensor 100 of
7 generally cylindrical form projects into a flow channel
8 (not shown). The sensor body has a cylindrical passage
9 102 transverse to the main axis of the body, and thus
10 aligned with the fluid flow, the passage 102 containing
11 an insert 104 shaped to define a venturi.

12

13 An optical fibre cable 106 delivers laser light to a
14 GRIN (graded refractive index) lens 110 located at the
15 venturi throat. At the opposite side of the throat, a
16 passage 112 communicates with a tubular conduit 114
17 whose other end is open to the fluid flow passage.

18

19 Thus, in use, fluid flow through the venturi causes a
20 reduction in pressure at the venturi throat which draws
21 fluid through the conduit 114.

22

23 An ultrasonic transducer is provided in the form of a
24 lead zirconate titanate tube 108 which is backed by a
25 lead mass 116 and butted against an insulating pad 118
26 and solid end cap 120. The lead mass 116 has the shape
27 of a hollow tapered cylinder, the shape being chosen
28 for effective damping.

29

30 This embodiment has the advantage of using a complete
31 cylinder of piezoelectric material, and thus achieving
32 higher sensitivity and coupling for the optical
33 geometry utilised.

34

35 Similar considerations apply to the operation of all
36 the foregoing sensor assemblies, as will now be

1 discussed.

3 The piezoelectric element should be dimensioned to give
4 an optimum response to the generated acoustic wave.
5 Ideally, the thickness corresponds to the equivalent
6 distance travelled by the compressive part of the
7 acoustic impulse in the particular piezoelectric
8 material; that is, the product of the duration of the
9 compressive part and the velocity of sound in the
10 piezoelectric material.

11

12 The efficiency of operation is maintained by installing
13 the piezoelectric element behind a thin layer of
14 stainless steel, preferably 0.1mm in thickness although
15 thicker layers are possible. An example is illustrated
16 at 150 in Fig. 4.

17

18 The backing or damping material with appropriate
19 acoustic impedance matching to the piezoelectric
20 element(s) should minimise the formation of back
21 reflections or standing waves from the incident
22 acoustic wave, and also damp the natural acoustic
23 resonances of the piezoelectric crystal. This can be
24 approached by using a shape which has a minimum of
25 parallel surfaces, for example as in the shapes of lead
26 backings shown in Figs. 3 and 4. Alternatively, if
27 parallel surfaces occur, additional features such as
28 conical holes may be introduced to disrupt the
29 formation of acoustic resonances.

30

31 A further preferred feature of the invention is the use
32 of very short pulses of laser light. The object is to
33 choose a pulse length which is shorter than the time
34 required for diffusion of thermal energy in the region
35 of interaction in the medium concerned, in order that
36 the process of energy conversion occurs in a very

1 localised way within the optical interaction region.
2 This very rapid heating results in an acoustic impulse
3 which has a distinctive compression followed by a
4 rarefaction without significant bulk thermal expansion
5 taking place. In this regime, the frequency content of
6 the waveform may be used to characterise the components
7 of the system under examination.

8
9 A suitable pulse length, depending on the substances
10 and frequencies involved, may be between 1ns and 1 μ s.
11 Typically, a pulse length of 10 - 200ns will be
12 suitable, and most commonly 50 - 75ns is preferred for
13 best results.

14
15 A further advantage of an ultrashort pulse regime is
16 that the range of frequencies within the acoustic wave
17 is in the ultrasound region, and thus the sensor is
18 substantially immune to the effects of normal
19 mechanical vibration and the effects of turbulence in
20 flowing liquids. In this regime the acoustic signal is
21 also substantially immune to the effects of optical
22 scattering. An additional advantage is that the
23 transient response can be used to characterise the
24 component analytes in the system.

25
26 The choice of laser system to be used will be
27 determined by the analyte(s) under consideration, and
28 may take the form of a set of diode lasers, or a solid
29 state tunable laser such as a Neodymium YAG laser with
30 an optical parametric oscillator (OPO). For the
31 particular application of the monitoring of
32 hydrocarbons in water, the laser source may be a diode
33 laser operating in the near infrared spectral range at
34 wavelengths between 600 and 2500nm. In this form, the
35 invention makes it possible to measure low (ppm)
36 concentrations of hydrocarbons in water, but it can

1 also be optimised for medium (1%) concentrations and
2 high (up to 100%) concentrations.

3

4 The exact choice of laser wavelength depends on the
5 particular hydrocarbon analyte or mixture of analytes
6 in the system. A number of laser sources at different
7 wavelengths may be used as determined by the required
8 measurement accuracy and the particular calibration
9 procedure adopted. The calibration procedure may be in
10 the form of a look-up table, a multiple regression
11 analysis, a neural network procedure, or other
12 statistical procedure.

13

14 It is also possible to use a tunable laser with
15 continuous coverage from the visible to the mid
16 infrared spectral region. This allows the full
17 spectrum of each analyte to be obtained, which makes
18 the sensor useful in analysis of pollutants, and in
19 process control, in (for example) the petrochemical and
20 food processing industries.

21

22 The laser output is coupled to a fibre optic delivery
23 system via a suitable lens system. In the case of
24 multiple diode lasers, a fibre optic wavelength
25 multiplexing or other optical coupling can be used to
26 combine the outputs of the laser sources into a single
27 delivery fibre.

28

29 At the detector head, the optical pulse is finally
30 delivered through a conventional lens assembly as in
31 Fig. 1, or a GRIN lens as in Fig. 4, or other
32 refractive or diffractive optical elements. In each
33 case, the aim is to achieve the optimum optical beam
34 and the optimal pulse duration, based on the optical
35 absorption and acoustic transit time within the beam.

36

1 The end faces of the lens system used may be coated to
2 minimise optical reflections, and/ or to increase
3 abrasion resistance, and/or for inhibition of organic
4 or other fouling. Alternatively, a hard transparent
5 material such as diamond or sapphire may be used.
6

7 To inhibit fouling of the optical system, the output
8 lens can be coupled to an additional piezoelectric
9 element and vibrated to achieve ultrasonic cleaning of
10 the optical element. This facility can be deployed
11 either continuously or intermittently. In the latter
12 case, cleaning may be initiated in response to the
13 appearance of a small preliminary acoustic signal which
14 has been generated at the output interface and
15 transmitted to the main piezoelectric element via the
16 body of the detector head.

17

18 As indicated in Fig. 1, it is preferred to use
19 amplifying electronics within the detector head in
20 close proximity to the piezoelectric element. A
21 suitable arrangement is for the electric signal from
22 the piezoelectric element to be amplified by a voltage
23 or charge pre-amplifier, further amplified in a
24 programmable gain amplifier, and then digitised by an
25 analog-to-digital converter, the digitised signal then
26 being transmitted to a location remote from the
27 detector head for further processing. Suitably, the
28 detector head is connected to the remote location by a
29 flexible umbilical containing both electrical signal
30 paths and optical fibres.

31

32 The detector head may also be provided with means for
33 monitoring the laser pulse energy, to permit the
34 acoustic signal to be normalised to the value of the
35 optical pulse energy. The optical energy may be
36 measured at the point where the diode laser is coupled

1 to the optical fibre, or at the detector head, for
2 example by diverting a small proportion of the light
3 from the main fibre optic path to a photosensitive
4 detector, as in Fig. 3. Alternatively, an interfacial
5 reflection at the fibre output end may be utilised for
6 this purpose via detection at the input end.
7

8 A suitable form of processing is to average the digital
9 signal over a number of samples, which may be up to
10 10,000 (typically between and 100 and 5000) depending
11 on application. The value of the peak to peak voltage
12 of the transducer for the acoustic pulse is then
13 recorded for each of the wavelengths of operation, and
14 divided by the amplitude of a signal which relates to
15 the input energy, for normalisation and comparison with
16 calibration data. Either the full wave form or the
17 peak to peak values can be stored for later analysis.
18

19 Calibration of the system may be carried out through
20 standard routines of comparison, linear regression,
21 multivariate analysis, or a neural network system.
22

23 However, the signal analysis may alternatively be based
24 on analysis of the inherent temporal information
25 contained in the acoustic signal.
26

27 Referring to Fig. 5, the optical pulse 160 results in
28 an acoustic pulse 162 being generated, the acoustic
29 pulse 162 comprising a compressive pulse followed by a
30 rarefaction pulse. One aspect of using the temporal
31 information is to use the time delay T1 between
32 initiation of the optical pulse 160 and the receipt of
33 the acoustic pulse 162 to determine the velocity of
34 sound in the fluid medium. Subsequently, the detail of
35 the rise time T2 of the compressive acoustic wave
36 contains information of the way that the different

1 analytes take up the optical energy.

2
3 Alternatively, the complete waveform can be analysed on
4 a temporal basis. This can be interpreted either
5 directly by measurement of rise and fall times, or via
6 a Fourier analysis to ascertain the characteristic
7 frequencies contained within the waveform and relate
8 them to concentrations of particular analytes.

9
10 A further possibility is to integrate the total area of
11 the average acoustic waveform to obtain a measure of
12 the energy absorption dissipated as thermal energy by
13 the analyte of interest.

14
15 Although described above with particular reference to
16 measurement of fluids flowing within pipes and the
17 like, the invention is not limited to such
18 applications. For example, the same principles can be
19 applied to monitoring industrial outfalls, measuring
20 concentration of alcohol in water (for example in the
21 control of distillation), and the investigation of
22 boreholes.

23
24 Pressure sensors other than piezoelectric crystals may
25 be used, for example piezoelectric polymers such as
26 PVDF, or semiconductor pressure sensors which may be
27 independent or may be part of an integrated
28 semiconductor circuit, or optical methods including
29 fibre optic interferometers.

30
31 Other modifications and improvements may be made within
32 the scope of the present invention.

33

1 CLAIMS

2

3

4 1. A sensor for measuring the concentration of one or
5 more selected analytes within a body of fluid, the
6 sensor comprising a housing adapted to be
7 positioned directly in, or near the surface of, a
8 body of fluid; light transmission means for
9 receiving light pulses from a laser source; lens
10 means carried by the housing and having optical
11 components to direct the light with a desired
12 geometry and form from the light transmission
13 means to a target location outside the housing,
14 the target location in use being within the body
15 of fluid; acoustic transducer means mounted on the
16 housing so as to be positioned, in use, in the
17 vicinity of said target location; and electric
18 signal means coupling the output of the transducer
19 means to display and/or data processing means
20 remote from the housing.

21

22 2. A sensor according to claim 1, in which the
23 transducer means is arranged such that, in use, it
24 is positioned within said body of fluid.

25

26 3. A sensor according to claim 2, in which the
27 housing is of generally cylindrical form and has a
28 front end which forms an open measurement region
29 which, in use, is introduced into a pipeline via a
30 circular port.

31

32 4. A sensor according to any preceding claim, in
33 which the lens means comprises a lens assembly
34 within the housing operating in conjunction with a
35 fluid-tight optically transmissive window in the
36 housing.

- 1 5. A sensor according to any of claims 1 to 3, in
2 which the lens means comprises a graded (or
3 gradient) refractive index lens which itself forms
4 a window in the housing.
5
- 6 6. A sensor according to any preceding claim, in
7 which the transducer means is carried on an
8 extension projecting from the front end of the
9 housing.
10
- 11 7. A sensor according to claim 6, in which the
12 transducer means comprises a disc-shaped or
13 cylindrical element of piezoelectric material with
14 its axis aligned perpendicularly to the optical
15 axis.
16
- 17 8. A sensor according to claim 6, in which the
18 transducer means comprises one or more
19 piezoelectric elements shaped to match
20 substantially the wavefront of the acoustic pulse.
21
- 22 9. A sensor according to claim 8, in which the
23 transducer means presents one or more part-
24 cylindrical surfaces disposed around the optical
25 axis.
26
- 27 10. A sensor according to claim 9, in which the
28 piezoelectric element(s) have a thickness which is
29 substantially equal to the product of the duration
30 of the compressive part of the acoustic impulse
31 and the velocity of sound in the piezoelectric
32 material.
33
- 34 11. A sensor according to any preceding claim, in
35 which a damping mass is secured to the rear face
36 of the or each crystal and shaped to inhibit the

1 generation of acoustic resonances.

2

3 12. A sensor according to claim 11, in which the
4 damping mass is of lead or other suitable
5 acoustically matched material.

6

7 13. A method of measuring the concentration of one or
8 more selected analytes within a body of fluid, the
9 method comprising forming pulses of laser light of
10 an optical frequency absorbed by the selected
11 analyte(s), coupling the light pulses into a body
12 of fluid to be focused at a target location within
13 the body of fluid, detecting acoustic pressure
14 pulses at a location adjacent said target
15 location, and analysing the resultant signals to
16 determine the relative concentration of the
17 selected analyte(s).

18

19 14. The method of claim 13, in which the body of fluid
20 is a stationary body.

21

22 15. The method of claim 13, in which the body of fluid
23 is a flowing stream.

24

25 16. The method of any of claims 13 to 15, in which
26 said pulses have a pulse duration which is shorter
27 than the time required for thermal diffusion
28 across the diameter of the optical interaction
29 region.

30

31 17. The method of claim 16, in which the pulse
32 duration is in the range 1ns to 1 μ s.

33

34 18. The method of claim 17, in which the pulse length
35 is in the range 5 - 200ns.

36

- 1 19. The method of claim 18, in which the pulse length
2 is in the range 50 - 75ns.
- 3
- 4 20. The method of any of claims 13 to 19 for use in
5 detecting the presence of hydrocarbons in water,
6 and in which the light pulses have a vacuum
7 wavelength of 600 to 3500nm.
- 8
- 9 21. The method of any of claims 13 to 20, in which the
10 analysis of the acoustic signal is carried out on
11 values averaged over a number of discrete signal
12 samples.
- 13
- 14 22. The method of claim 21, in which the number of
15 discrete signal samples is up to 10,000.
- 16
- 17 23. The method of claim 22, in which the number of
18 discrete signal samples is between 100 and 5,000.
- 19
- 20 24. The method of any of claims 13 to 23, in which the
21 analysis is a peak-to-peak measurement.
- 22
- 23 25. The method of any of claims 13 to 23, in which the
24 analysis includes examination of the rise and fall
25 times of the acoustic waveform.
- 26
- 27 26. The method of any of claims 13 to 23, in which the
28 analysis is based on a Fourier analysis of the
29 waveform and/or other temporal properties of the
30 acoustic response.
- 31
- 32 27. The method of any of claims 13 to 23, in which the
33 analysis is based on integration of the acoustic
34 waveform to obtain an energy-related signal.
- 35
- 36 28. An acoustic sensor comprising means for emitting

1 pulses of light of selected wavelength to produce
2 acoustic pulses in a fluid, and a pressure
3 sensitive element for detecting said acoustic
4 pulses, the pressure sensitive element having a
5 rear face against which is secured a backing
6 element to provide both inertial loading and
7 vibrational damping.

8

9 29. An acoustic sensor according to claim 28, in which
10 the pressure sensitive element is a piezoelectric
11 crystal and the backing element is of lead.

12

13 30. An acoustic sensor according to claim 29, in which
14 the piezoelectric crystal is of Lead Zirconate
15 Titanate (PZT).

16

17 31. An acoustic sensor according to any of claims 28
18 to 30, in which the backing element is configured
19 to minimise acoustic reflections.

20

21 32. An acoustic sensor according to claim 31, in which
22 the backing element is formed with non-parallel
23 surfaces.

24

25 33. An acoustic sensor according to claim 31, in which
26 any surfaces of the backing element which are
27 parallel are formed with discontinuities.

28

1 / 5

Fig. 1

2 / 5

Fig. 2a

3 / 5

*Fig. 3a**Fig. 3b**Fig. 3c*

4 / 5

Fig. 4

5 / 5

Fig. 5

INTERNATIONAL SEARCH REPORT

International Application No

PCT/GB 97/01890

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6 G01N21/17

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 G01N

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 478 410 A (DOW CHEMICAL CO) 1 April 1992	1-4, 6-9, 11-15, 28, 29
Y	see the whole document	16-23, 26, 27, 30, 31
Y	---	16, 31
A	US 4 303 343 A (PATEL CHANDRA K N ET AL) 1 December 1981 see column 3, line 53 - column 4, line 5 see column 7, line 19 - line 33; figures 2, 4, 5 ---	13, 28
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

1	Date of the actual completion of the international search 14 October 1997	Date of mailing of the international search report 12.11.97
	Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl Fax: (+31-70) 340-3016	Authorized officer Navas Montero, E

INTERNATIONAL SEARCH REPORT

Internat	Application No.
	PCT/GB 97/01890

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 93 22649 A (SIRRAYA INC) 11 November 1993	17-23, 27,30 13,28
A	see page 10, line 20 - line 27 see page 12, line 21 - line 24 see page 13, line 29 - page 14, line 8 see page 18, line 28 - line 14 see page 24, line 8 - line 25 see page 29, line 14 - page 30, line 3; figure 1 ---	
Y	EP 0 464 902 A (CISE SPA) 8 January 1992	26
A	see column 4, line 21 - line 49 ---	28
A	US 4 051 371 A (DEWEY JR C FORBES ET AL) 27 September 1977 see column 2, line 25 - line 36 see column 4, line 13 - line 25; figures 1-3 -----	1,13,28

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal Application No

PCT/GB 97/01890

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0478410 A	01-04-92	US 5125749 A CA 2051713 A DE 69111544 D DE 69111544 T JP 4264236 A	30-06-92 25-03-92 31-08-95 18-01-96 21-09-92
US 4303343 A	01-12-81	NONE	
WO 9322649 A	11-11-93	US 5348002 A AU 4032193 A	20-09-94 29-11-93
EP 0464902 A	08-01-92	IT 1248992 B AT 131932 T DE 69115577 D DE 69115577 T	11-02-95 15-01-96 01-02-96 14-08-96
US 4051371 A	27-09-77	NONE	