Задача дискретного логарифмирования и основанные на ней криптосистемы: система Диффи-Хеллмана обмена ключами, системы Мэсси-Омура и

Эль-Гамаля

Задача 1.

Пусть $G = \mathbb{Z}_{29}^*$, g = 2. Размер группы достаточен, чтобы закодировать все буквы латинского алфавита, а также пробел и точку. Закодируем их при помощи следующей таблицы:

a	b	c	d	e	f	g	h	i	j	k	1	m	n	О	p	\mathbf{q}	r	s
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
t	u	v	w	x	у	\mathbf{z}												
20	21	22	23	24	25	26	27	28										

Вам прислали открытый ключ $g^b=12$. Вы выбрали закрытый ключ a=10, вычислили g^a и послали в ответ.

Найдите общий секрет $s=g^{ab}$. Найдите s^{-1} . Расшифруйте сообщение, в котором каждый символ был умножен вашим корреспондентом на s, при помощи найденного вами s^{-1} :

Решение 1.

$$s = q^{ab} = (q^b)^a = 12^{10} = 28$$

Найдем обратный:

$$ss^{-1} = 1 \pmod{29}$$

$$28s^{-1} = 1 \pmod{29}$$

$$-s^{-1} = -28 \pmod{29}$$

$$s^{-1} = 28 \pmod{29}$$

Расшифруем сообщение, домножив каждый элемент на s^{-1} :

eternal wanderer.

Задача 2.

Пусть $G = \mathbb{Z}_{29}^*$, g = 2, латинский алфавит закодирован при помощи таблицы из прошлого задания. Вы перехватили зашифрованное сообщение $< 6\ 24\ 20\ 25\ 21\ 1>$. К сожалению, вы не знаете секретные ключи. Каким могло быть истинное сообщение? Перебирайте все возможные s^{-1} по возрастанию, начиная от 2 и пока не найдёте осмысленное английское слово.

```
Решение 2. Переберем s^{-1}:
```

```
from alph import alph
```

```
encrypted = [6, 24, 20, 25, 21, 1]
for descr in range(2, 29):
    print(descr, end=':_')
    for el in encrypted:
        print(alph[el * descr % 29], end='')
    print()
```

При $s^{-1} = 5$ Получилось осмысленное слово:

admire

Задача 3.

Алиса хочет получить от Сири сообщение, состоящее из секретного (неизвестного нам) числа M. Для общения с Сири она использует схему Эль-Гамаля. Она сгенерировала случайное простое число p=149 и его первообразный корень g=59, а также случайное целое число x=41 (на интервале от 1 до p-1, взаимно простое с p-1). После этого она вычислила $y=g^x \mod p=134$. Таким образом, открытым ключом является (p,g,y)=(149,59,134), а закрытый ключ равен x=41. Сири при шифровании своего сообщения M получила пару чисел $(M\cdot g^{xt},g^t)=(83,57)$.

Выступая в роли Алисы, расшифруйте сообщение, то есть найдите M. Все вычисления производятся в группе \mathbb{Z}_p^* , то есть мультипликативной группе поля \mathbb{Z}_p .

Решение 3. Алиса знает x. Тогда домножим $M \cdot g^{xt}$ на $(g^t)^{|\mathbb{Z}_p^*|-x}$:

$$M \cdot g^{xt} \cdot (g^t)^{|\mathbb{Z}_p^*|-x} = M \cdot g^{xt} \cdot (g^t)^{|\mathbb{Z}_p^*|} \cdot g^{-xt} = M \cdot g^{xt} \cdot e \cdot g^{-xt} = M \cdot e = M$$

С дргуой стороны:

$$M \cdot g^{xt} \cdot (g^t)^{|\mathbb{Z}_p^*|-x} = 83 \cdot 57^{149-1-41} = 83 \cdot 57^{107} = 83 \cdot 43 = 142$$

Получили:

$$M = 142$$