Introduktion till GIS i samhällsbyggnad

Thomas Gumbricht thomas@karttur.com www.karttur.com

Dagens föreläsning

- Definitioner
- Geografisk information
- Modellering med geografisk information
- Representation av geografisk information
- Skala och upplösning
- Geografisk generalisering
- Datafångst för GIS
- Analog och digital geografi

Definitioner

Geographic Information Systems

A GIS is a computer system capable of assembling, storing, manipulating, managing, and displaying geographic information.

Geographic Information Science

- studies fundamental issues arising from the creation, handling, storage and use of geographic information.
- Geographic Earth's surface and near-surface
- Spatial any space (including geographic) e.g. medical imaging,
- Geospatial synonymous with geographic

Komponenter i GIS

Ett komplett GIS byggs upp av sex komponenter

- Hårdvara
- Mjukvara
- Data
- Männsikor
- Procedurer
- Nätverk

Syfte med GIS

Syftet med GIS

- att integrera och kombinera geospatial data från olika källor
- att manipulera, analysera och visualisera den kombinerade datan

Nästan allting händer någonstans.

Att veta vart händelser äger rum är viktigt.

GIS syfte

GIS kombinerar geospatial och icke-geospatial informaton från olika källor i en geospatial analysis operation för att svara på frågot om:

Identifiering —	→ Vad finns där?	
Lokalisering —	── Var är ?	
Trender & förändringar Optimala	→ Vad har förändrats sedan ?	
ruttter	→ Vad är <mark>bäs</mark> ta vägen från til <mark>l ?</mark>	
Mönster —	→ Vad är förhållandet mellan ?	
Modeller, planering & prognoser	→ Ifall att ?	

Geografisk information

Geografisk Position & attribut för ett objekt eller fenomen på eller i närheten av Jordens yta

Geografisk information

Geografisk information länkar en plats, och ofta tid, med någon egenskap för en given plats (och tid) "Temperaturen vid 28°00′53′′N, 86°55'35" på 8848m över havet klockan 7:00 on 2006-03-29 var –25°C."

Världen är oändligt komplex

- Innehållet i en databas representerar en begränsad syn på verkligheten; en rumslig databas är en av oändligt många möjliga representationer av modeller av verkligheten
- Ontologiska aspekter
- Epistomological aspekter
- Användarens tillgång till och tolkning av en rumslig databas är via ett gränssnitt

Geografisk information

Antalet egenskaper är potentiellt oändliga:

- i GIS kallar vi dem attribut
- attribut kan vara fysiska, sociala, ekonomiska, demografiska, miljörelaterade etc.

Antalet platser och tider är ävenledes oändliga:

- i GIS angiver vi dem i ett koordinatsystem

Ju närmare vi betraktar jordytan, ju mer detaljer ser vi:

- potentiellt ad infinitum
- geogfrafi är således oändligt komplext

Människan har alltid använt olika metoder för att hantera geografisk komplexitet:

GIS är den digitala erans metod för att hantera geografi och dess kompleitet

"Spatial is special"

En rumslig databas kan innehålla

- Digitala abstraktioner av verkliga objekt
 - ex.v. land, vatten, hus, vägar, träd
- Digitala abstraktioner av fiktiva objekt
 - ex.v. politiska gränser, ekosystem

"Spatial is special"

Datatyper i GIS Språk: English **Nominal** Svenska skala Deutch Espanol Mätskalor för icke-spatiala **Ordinal** Klimat: ^o attribute skala hett varmt kyligt kallt Intervall skala Temperatur: °C skala Befolkningstäthet: antalet invånare/km² kvot skala Riktning (horisontell): Cyklisk skala lutningsriktning, vindriktning

Modellering med Geografiska infotmationssystem

Diskreta objekt

- Delar upp världen i diskreta objekt, såsom byggnader, vägar, politiska gränser etc.
- Representaras av matematiska vektorer

Kontinuerliga fält

- Nästan alla naturliga fenomen har en kontinuerlig utbredning i rummer - ex.v. temperature och lufttryck.
- Representeras av matematiska matriser

Den mest fundamentala uppdelningen i geografisk representation.

GIS data modeller

Grundläggande enhet: pixel

GIS data modeller - exempel

Datorer är bra på att lagra diskret data, men sämre på att lagra kontinuerlig data - till syvende och sist är allt lagrat som I eller 0.

- Objekt som är av diskret natur, hus, vägar, distrikt etc, vållar inga problem att representera som diskreta objekt.
- Egenskaper som finns överallt och som varierar kontinuerligt, elevation, temperatur, lufttryck, måste approximeras till en diskret representation.

Diskreteringen av kontinuerliga fenomen är ofta godtycklig

Objektmodell och fältmodell

GIS-samhället har utvecklat konceptuella modeller av verkligheten, sprungna ur kartografi snarare än datalogi:

- Objektmodel punkter, linjer, ytor fyller upp alla delar av rummet
- Fältmodel Värden för varje position

Tesseleringsmodeller

Raster data modellen tillhör en större grupp av fältdatamodeller eller tesseleringsmodeller:

- Grid eller raster
- Hexagonaler
- Triangular Irregular Network (TIN)
- Kvadratträd

Fältmodel

Raster = regelbunden tesselering

- Delar upp världen i rektangulära celler
- Registrerar grid-hörnen till en geografisk punkt
- Representerar diskreta objekt som grupper av celler med eller utan attributkoppling (koppling via indexnummer)
- Representerar fält som cellvärden (utan attributkoppling)
- Värden för varje cell
- Aven celler utan relevant data lagras, som "ingen data"
- Vanligare att använda för fältobjekt
- Lätt att förstå

Raster data struktur

Delar upp världen i rektangulära celler = pixlar

Registrerar grid-hörnen till en geografisk punkt

diskreta objekt grupper av celler

Kontinuerliga fält cellvärdet = fältvärdet

Raster data struktur

- Pixel storlek
 - Storleken på cellen eller bildelementen som definierar den rumsliga detaljeringsgraden/ upplösningen
 - kan vara olika i x och y
- Tilldelning av cellvärden värdet på en cell kan representera
 - medelvärdet för cellens yta
 - typvärdet för cellens yta
 - mittvärdet för cellets yta

Raster data struktur

Cell/pixel storlek = rumslig upplösning

definierar detaljnivå för rumsliga objekt variationer inuti pixeln går förlorad

Raster Mixade pixlar - ett problem med raster

Vatten dominant

٧	V	L
٧	٧	Г
V	٧	L

V	L	L
٧	Ь	Ш
٧	L	L

Segraren tar allt ekotoner som egen klass

V	Е	L
V	Е	Ш
٧	Е	Г

Lagring av rasterdata

- Sekventiell lagring
 - Byte Interleaved by Pixel BIP
 - Byte Interleaved by Line BIL
 - Band Sequential BSQ
- Blockkodning
- Kedjekodning
- Radlängdskodning
 - Kvadratträd

Filstorlek

rader*kolumner*"Byte per pixel" = filstorlek

Storlek på fil med byte-värden (I byte per pixel)

rader*kolumner

metadata och huvudfil

Exempel I: Byte data ERmapper

```
DatasetHeader Begin
                        = "5.5"
     Version
      Description = "NOAA-AVHHR NDVI annual average "
      DataSetType = ERStorage
      DataType
                 = Raster
      ByteOrder = LSBFirst
     CoordinateSpace Begin
            Datum
                              = "CLARKE 1866"
            Projection
                        = "ALBERSEA"
            CoordinateType
                              = EN
            Rotation
                        = 0.0:0.0
     CoordinateSpace End
      RasterInfo Begin
            CellType
                        = Unsigned8BitInteger
            NullCellValue= 0
            CellInfo Begin
                 Xdimension = 8000
                  Ydimension = 8000
           CellInfo End
            NrOfLines = 360
            NrOfCellsPerLine = 450
            RegistrationCoord Begin
                  Eastings
                              = -3920000
                  Northings = 3250000
            RegistrationCoord End
            NrOfBands = I
            Bandld Begin
                              = "Pseudo"
                 Value
            Bandld End
     RasterInfo End
DatasetHeader End
```

metadata och huvudfil

Exempel I: Byte data ArcView

```
;ArcView Image Information
; NOAA-AVHRR NDVI annual average
; Projection: ALBERS (Albers Equal Area Conic)
; Units: METERS
; Spheroid: CLARKE1866
; Ist standard parallel (dms): -19 00 0.000
; 2nd standard parallel (dms): 21 00 0.000
; central meridian (dms): 20 00 0.000
; latitude of projection origin: 1 00 0.000
; false easting (meters): 0.00000
; false northing (meters): 0.00000
NCOLS
           450
NROWS
            360
NBANDS
NBITS
          8
LAYOUT
            BIL
BYTEORDER I
SKIPBYTES 0
MAPUNITS METERS
ULXMAP
            -3916000
ULYMAP
           3246000
XDIM
          8000.00000
YDIM
          8000.00000
```

metadata och huvudfil

Exempel I: Byte data IDRISI

file format: IDRISI Raster A.I

file title: NOAA-AVHHR NDVI annual average

data type : byte file type : binary columns : 450 rows : 360

ref. system: albersaf

ref. units : m

unit dist.: 1.0000000

min. X :-3920000.0000000 max. X :-320000.0000000 min. Y :370000.0000000 max. Y :3250000.0000000

pos'n error : unknown resolution : 8000.0000000

min. value : 0 max. value : 255 display min : 0 display max : 255

value units : unspecified value error : unknown

flag value : none flag def'n : none legend cats : 0

metadata och huvudfil

Exempel I: Byte data ENVI

```
ENVI
description = {
NOAA-AVHHR NDVI annual average }
samples = 450
lines = 360
bands = I
header offset = 0
file type = ENVI Standard
data type = I
interleave = bsq
sensor type = AVHRR
byte order = 0
map info = {Albers NDVI ADDS, 1.0000, 1.0000, -3916000, 3246000, 8.0000000000e+003, 8.0000000000e+003, units=Meters}
projection info = {9, 6378206.4, 6356583.8, 1.000000, 20.000000, 0.0, 0.0, -19.000000, 21.000000, Albers NDVI ADDS, units=Meters}
wavelength units = Unknown
band names = {
NDVI)
```

metadata och huvudfil

Exempel I: Byte data DIVA

Version=4.1

Title=NDVlg Annual mean 2004

Created=20050306

[GeoReference]

Projection=ALBERS

Datum=CLARKE1866

Mapunits=m

Columns=450

Rows=360

MinX=-3920000

MaxX=-32000

MinY=37000

MaxY=3250000

ResolutionX=8000

ResolutionY=8000

[Data]

DataType=BYTE

MinValue=0

MaxValue=255

NoDataValue=-9999

Transparent=1

Units=NDVI

[Application]

Raster

metadata och huvudfil Exempel I: Byte data JPG (*.jpw, *.jpgw) TIF (*.tfw) BMP (*.bmpw)

```
8000
0
0
-8000
-3916000
3246000
```


Raster

metadata och huvudfil

Exempel 2: Integer data ERmapper

```
DatasetHeader Begin
                        = "5.5"
      Version
      Description = "NOAA-AVHHR NDVI annual npp"
      DataSetType = ERStorage
      DataType
                  = Raster
      ByteOrder = LSBFirst
      CoordinateSpace Begin
                              = "CLARKE 1866"
            Datum
            Projection
                        = "ALBERSEA"
            CoordinateType
                              = EN
            Rotation
                        = 0.0:0.0
      CoordinateSpace End
      RasterInfo Begin
                        = Unsigned | 6BitInteger
            CellType
            NullCellValue= 0
            CellInfo Begin
                  Xdimension = 8000
                  Ydimension = 8000
            CellInfo End
            NrOfLines = 360
            NrOfCellsPerLine = 450
            RegistrationCoord Begin
                  Eastings
                              = -3920000
                  Northings = 3250000
            RegistrationCoord End
            NrOfBands = I
            Bandld Begin
                              = "Pseudo"
                  Value
            Bandld End
      RasterInfo End
DatasetHeader End
```

Raster

metadata och huvudfil

Exempel 3: real data ERmapper

```
DatasetHeader Begin
                        = "5.5"
      Version
      Description = "NDVI annual max trend 1982-2004"
      DataSetType = ERStorage
      DataType
                 = Raster
      ByteOrder = LSBFirst
      CoordinateSpace Begin
            Datum
                              = "CLARKE 1866"
            Projection
                        = "ALBERSEA"
            CoordinateType
                              = EN
            Rotation
                        = 0:0:0.0
      CoordinateSpace End
      RasterInfo Begin
                        = IEEE32REAL
            CellType
            NullCellValue= 0
            CellInfo Begin
                 Xdimension = 8000
                  Ydimension = 8000
            CellInfo End
            NrOfLines = 360
            NrOfCellsPerLine = 450
            RegistrationCoord Begin
                  Eastings
                              = -3920000
                  Northings = 3250000
            RegistrationCoord End
            NrOfBands = I
            Bandld Begin
                 Value
                              = "Pseudo"
            Bandld End
      RasterInfo End
DatasetHeader End
```

Verkliga eller fiktiva objekt representerade som punkter, linjer och ytor

- punkter representar objekt utan utbredning, eller med för skalan irrelevant utbredning
- linjer knyter samman punkter till start-, bryt-, och stoppunkter
- ytor (polygoner) byggs upp av slutna linjer

Precision och noggrannhet

- Objekt definieras av x,y koordinater relaterade till ett koordinatsystem (long/lat eller x,y).
- Presicion (upplösning) i koordinater beror på binär lagringsform (6-15 decimaler), men är ofta hög
- Noggrannheten i data oftast mer begränsande än upplösning

Precision och noggrannhet

- Precision är det minsta avstånd mellan två intilliggande objekt som uppmätts och lagrats.
- Noggrannhet är frånvaro av fel
- Osäkerhet är ett mer generellt begrepp, och inkluderar både precision och noggrannhet.

Vektor data model Punktdata

● (x,y)

Flaggstång Byggnad Stad

Vektor data model Linjedata

Vattendrag Väg Järnväg Staket

Areadata

Sjö Skog Stad Fastighet

Tre huvudsakliga modeller för att lagra vektorer

- Enkel (eller spaghetti) data struktur
 - Ingen logik, dubblering av data (inom ett lager)
- Punkt listor
 - Ingen logik, ingen dubblering
- topologisk struktur
 - Logik, ingen dubblering

Spaghetti vektor data model

Varje punkt, linje eller polygon lagras i en post ("record") som innehåller Id och koordinater som definierar geometri (de första GIS-programmen hade spaghetti data struktur)

Pumper

ID Coordinates

- 1 (2,4), (4,3), (3,6), (2,4),
- 2 (3,1), (5,2), (4,3), (3,2), (3,1)

Vektor data model Spaghetti vektor data model

- Fördelar
 - enkelt
 - effektiv för display och utskrift
- Nackdelar
 - Ineffektivt för rumsliga analyser
 - och generaliseringar

Punkt data struktur

Ingen data redundans Ingen topologi

Topologisk data struktur

Nätverkstopologi

kallas även "ark-nod" modellen ark = linje nod = slutpunkt på en linje, eller en punkt där en lijne splittras eller linjer går samman

Vektor data model Topologisk data struktur

registrerar x/y koordinater av rumsliga objekt

Kodar rumsliga relationer:

- vilka arkar kopplar till vilken nod
- vilka ytor ligger på sidorna av en ark
- vilka arkar bygger en polygon

Vektor data model Spaghetti modell och topologisk model

Spaghetti: registrering som 2 eller 3 ytor

Topologiskt: registrering som 3 ytor

Vektor data model topologisk vektor data model

- Fördelar
 - Rumsliga relationer är explicita
 - Rumslig analys utan koordinater möjlig
- Nackdelar
 - komplex data struktur
 - topologi måste omregistreras efter varje uppdatering

Fördelaktigaste systemet för flertalet användare

Jämförelse mellan raster och vektor

Raster

Fördelar

Nackdelar

- Enkel och läsbar lagring.
- Enkelt att analysera
 (algoritmer från fjärranalys och bildbehandling)
 Enkla att kombinera
 (överläggning).
- Kvalitet beror på pixel-storlek.
- Kräver mycket fysisk lagringskapacitet: grid formatet växer kvadratiskt när cellstroleken minskar.

Fördelar

Vektor

Nackdelar

- Enkelt att skala om, kvalitet behålls vid transformaioner.
- Enkelt med topologiska och nätverksberäknignar.
- Effektivt utnyttjande av fysisk lagringskapacitet.

- Beräkningsmässigt mer krävande för flera standardberäkningar (Filtrering, överläggning).

Skala och upplösning

Scale

- The ratio of distance on the map and distance on the ground
- E.g. 1:10 000, 1:50 000, etc.
- constant for paper maps / changeable in a GIS

Resolution

- describes the level of detail at which the data was collected
- spatial resolution = pixel size in a raster surface
- temporal resolution = interval between 2 samplings
 (ex. remote sensing: how often does a satellite fly over Stockholm and can take a picture of this area?)

Geografisk generalisering

Reducing the level of detail in geographic data

Vilka faktorer styr generalisering

Scale – The scale determines what can be fit into the map Map purpose – The purpose determines what is important to show.

Quality and quantity of available data Graphical limits:

- choice of symbol specification
- technical reproduction capabilities

Generalisering i vektordata

Reducerig av detaljnivå

Vektor data struktur - skala och generalisering

Generalisering i vektordata

Datafångst för GIS

One of the most expensive GIS activities

Many diverse sources:

- terrestrial surveys,
- remote sensing data (satellite imagery),
- GPS measurements,
- digitising or scanning existing maps,
- socio-economic and statistical data,

Two capture methods

- physical data,
- environmental data,
- etc.

Primary (direct measurement)

Capture specifically for GIS use

Secondary (indirect derivation)

Recycling and reusing existing data

Datafångst tekniker

	Raster	Vector
Primary	Digital remote sensing images	GNSS measurements
	Digital aerial photographs	Survey measurements
Secondary	Scanned maps	Topographic surveys
	DEMs from maps	Toponymy data sets from atlases

Vector Primary Data Capture

Survey measurements:

- locations of objects determines by angle and distance measurements from known locations
- uses expensive field equipment and crews
- most accurate method for large scale, small areas

Measurements by using GNSS (Global Navigation Satellite Systems):

- collections of satellites used to determine locations on Earth's surface:

GPS (USA) – mostly used

GLONASS (Russia)

Galileo (EU) – under development

- differential GPS used to improve accuracy

Raster Secondary Data Capture

Data collected for other purposes can be converted for use in GIS.

Raster conversion:

- Scanning of maps, aerial photographs, documents, etc
- Important scanning parameters are spatial and spectral (bit depth no. of represented colours) resolution

Vector Secondary Data Capture

Collecting vector objects from maps, photographs, plans, etc.

Digitising:

- Manual (digitising table)
- Vectorisation converting rasters to vector data

Photogrammetry – the science and technology of making measurements from photographs.

Manual digitising:

Traditionell papperskarta jämfört med digital geovisualisering

Analogt

En karta för alla ändamål, i ett format.

Digitalt

Anändaren kan själv skapa sin egen 'karta'.

Analogt – 2D

Digitalt – 3D

Analogt - statiskt

Digitalt - mobilt

Analogt – abstrakt

Digitalt – realistiskt

Analogt – färdiggjort

Digitalt – egenproducerat

Traditionell papperskarta jämfört med digital geovisualisering

Traditionell karta:

- förutbestämd skala
- fast område, närliggande områden på initilliggande blad
- statisk vy
- platt perspektiv
- data kan läggas till på enskilt blad med penna
- en enahanda vy av tema eller topografi

Digital geovisualisering:

- fritt val av skala (zoom)
- fritt val av område, panorering över stora områden (globalt)
- dynamisk visualisering (animering)
- 3D visualiisering
- enkel uppdatering av attributdata
- många olika vyer skapade av olika användare