Α.

Proposition A.1. If $F(\alpha)$ and $G(\alpha)$ are generating functions related by $F(\alpha) = \phi(G(\alpha) - G(0))$ where ϕ is a scalar function with Taylor expansion $\phi(x) = \phi_0 + \sum_{k=1}^{\infty} \frac{1}{k!} \phi_k x^k$, their generalized moments are related by

$$f(Q) = \sum_{k=1}^{n} \phi_k \sum_{(Q_1 \cdots Q_k)}^{\mathcal{P}_k(Q)} (-)^{t_{\mathbf{Q}}} g(Q_1) \cdots g(Q_k)$$

Proof: Denote the Taylor expansions of F and G as

$$F(\boldsymbol{\alpha}) = f_0 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{i_1 \cdots i_n} \alpha_{i_1} \cdots \alpha_{i_n} f(q_{i_1} \cdots q_{i_n})$$

$$G(\boldsymbol{\alpha}) = g_0 + \sum_{n=1}^{\infty} \frac{1}{n!} \sum_{i_1 \cdots i_n} \alpha_{i_1} \cdots \alpha_{i_n} g(q_{i_1} \cdots q_{i_n})$$

and define $G_n \equiv \frac{1}{n!} \sum_{i_1 \cdots i_n} \alpha_{i_1} \cdots \alpha_{i_n} g(q_{i_1} \cdots q_{i_n})$ so that $G(\alpha) - G(\mathbf{0}) = \sum_{n=1}^{\infty} G_n$. Then

$$F = \phi(\sum_{n} G_{n}) = \phi_{0} + \sum_{k=1}^{\infty} \frac{1}{k!} \phi_{k} \left(\sum_{n} G_{n}\right)^{k} = \phi_{0} + \sum_{k=1}^{\infty} \frac{1}{k!} \phi_{k} \sum_{n_{1} \cdots n_{k}} G_{n_{1}} \cdots G_{n_{k}} = \phi_{0} + \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{1}{k!} \phi_{k} \sum_{(n_{1} \cdots n_{k})}^{C_{k}(n)} G_{n_{1}} \cdots G_{n_{k}}$$

where the last step sorts the sum into powers of α . $\mathcal{C}(n)$ denotes the set of integer compositions of n, i.e. the set of all ordered tuples (n_1, n_2, \cdots) of positive integers that add up to n. $\mathcal{C}_k(n) \subset \mathcal{C}(n)$ is the set of k-tuple integer compositions of n, i.e. all (n_1, \ldots, n_k) of fixed length k such that $n_1 + \cdots + n_k = n$. For each term in the sum