4. Toffoli gate:
or controlled C-NOT

111

controlled swap using Toffoli gate:

(a, b, c) → (a, b)ac) ab, c ac a alo)

The truth table when control is on.

(a>	<ما	16>		۱ ۵ >	16'>	tc'>
		0		1	0	ō
l	0	,		ì	1	O
t	O	1		ť	Ď	1
1	1	0		•	U	,
1	1	1		1	1	1
			\			

considering left most bit to represent top.

on applying CN OT

further

on applying & gate

From here we can conclude that A and B are entangled as can't be represented by tensor product of 2 states.

$$\frac{1}{\sqrt{2}} \left[\begin{array}{ccc} 1 & 1 \\ 1 & -1 \end{array} \right] \left[\begin{array}{ccc} 1 \\ 0 \end{array} \right] = \left[\begin{array}{ccc} 1 \\ 1 \end{array} \right]$$

$$\frac{\lfloor (10 + 11) \otimes 11 \rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} |01 \rangle + \frac{1}{\sqrt{2}} |11 \rangle$$

Further on applying C-NOT with 3rd control bit,

$$= \frac{1}{\sqrt{2}} \left(\frac{\alpha \log (10) + 11)}{\sqrt{2}} + \frac{\beta}{\sqrt{2}} \log (10) + \frac{\alpha}{\sqrt{2}} (10) + \frac{\beta}{\sqrt{2}} (10) + \frac{$$

Thus state at B is as above.

and
$$10> = \frac{1}{3} \left(\propto 11 > + \beta (0>) \right)$$

3. To obtain GHZ state, we can use the following circuit:

$$|0\rangle = \chi$$

$$|0\rangle = \chi$$

$$|0\rangle = \chi$$

Here, on applying H-gate

$$|1000\rangle \rightarrow |+\rangle |00\rangle = \frac{1}{\sqrt{2}} (|000\rangle + |100\rangle) \xrightarrow{\text{CNOT}} \frac{1}{\sqrt{2}} (|000\rangle + |100\rangle)$$

$$\frac{1}{\sqrt{2}} (|000\rangle + |100\rangle)$$