

College Algebra and Trigonometry

Prof. Liang ZHENG

Fall 2024

- 4.1 Inverse Functions
- 4.2 Exponential Functions
- 4.3 Logarithmic Functions
- 4.4 Properties of Logarithms
- 4.5 Exponential and Logarithmic Equations and Applications

1 Identify One-to-One Functions

Definition of a One-to-One Function:

A function f is a one-to-one function, if for a and b in the domain of f, if $a \neq b$, then $f(a) \neq f(b)$, or equivalently, if f(a) = f(b), then a = b.

Example 1: Determine whether the function is one-to-one.

a)
$$f = \{(1, 4), (2, 3), (-2, 4)\}$$

c)
$$f(x) = 2x - 3$$

b)
$$g = \{(-3, 4), (1, -1), (2, 0)\}$$

d)
$$f(x) = x^2 + 1$$

Horizontal Line Test for a One-to-One Function:

A function defined by y = f(x) is a one-to-one function if no horizontal line intersects the graph more than one point.

Example 2:

Use the horizontal line test to determine if the graph defines y as a one-to-one function of x.

2 Determine whether Two Functions are Inverses

Definition of an Inverse Function:

Let f be a one-to-one function. Then g is the inverse of f if both of the following conditions are true.

- 1) $(f \circ g)(x) = x$ for all x in the domain of g.
- 2) $(g \circ f)(x) = x$ for all x in the domain of f.

Example 4:

Determine whether the functions are inverses.

a)
$$f(x) = 100 + 12x$$
 and $g(x) = \frac{x-100}{12}$

b)
$$h(x) = \sqrt[3]{x-1}$$
 and $k(x) = x^3 - 1$

3 Find the Inverse of a Function

Procedures to find an equation of an inverse of a function:

For a one-to-one function defined by y = f(x), the equation of the inverse can be found as follows:

Step 1: Replace f(x) by y.

Step 2: Interchange x and y.

Step 3: Solve for y.

Step 4: Replace y by $f^{-1}(x)$.

Example 5 and 6:

Write an equation for the inverse function for the following functions:

5)
$$f(x) = 3x - 1$$

6)
$$f(x) = \frac{3-x}{x+3}$$

Example 7 and 8:

Find the equation of the inverse of the following functions:

- 7) Given $m(x) = x^2 + 4$ for $x \ge 0$.
- 8) Given $f(x) = \sqrt{x-1}$.

1 Definition of an Exponential Function

Let b be a constant real number such that b > 0 and $b \ne 1$. Then for any real number x, a function of the form $f(x) = b^x$ is called an exponential function of base b.

Exponential Functions:

$$f(x)=3^x$$

$$g(x) = (1/3)^x$$

$$h(x) = (\sqrt{2})^x$$

Not Exponential Functions:

$$m(x) = x^3$$

$$n(x) = (-1/3)^x$$

$$f(x) = 1^x$$

base is negative

base is 1

Graphs of $f(x) = b^x$

The graph of an exponential function defined by $f(x) = b^x$ (b > 0 and $b \ne 1$) has the following properties.

- 1. If b > 1, f is an increasing exponential function, sometimes called an exponential growth function.
 - If 0 < b < 1, f is a decreasing exponential function, sometimes called an **exponential** decay function.
- 2. The domain is the set of all real numbers, $(-\infty, \infty)$.
- 3. The range is $(0, \infty)$.
- **4.** The line y = 0 (x-axis) is a horizontal asymptote.
- 5. The function passes through the point (0, 1) because $f(0) = b^0 = 1$.

Example 1:

Graph the following functions.

a)
$$f(x) = 2^x$$

$$\mathbf{b}) \ \mathbf{g}(\mathbf{x}) = \left(\frac{1}{2}\right)^{\mathbf{x}}$$

2 Graph an Exponential Function by Transformation

If
$$h > 0$$
, shift to the right.
If $h < 0$, shift to the left.

$$f(x) = ab^{x-h} + k$$

If a < 0, reflect across the x-axis. Shrink vertically if 0 < |a| < 1. Stretch vertically if |a| > 1. If k > 0, shift upward. If k < 0, shift downward.

Example 2:

Graph the function by transformation:

x	$y=3^x$
-2	<u>1</u> 9
-1	$\frac{1}{3}$
0	1
1	3
2	9

Shift 2 units to the right. For example, the point (0, 1) on $y = 3^x$ corresponds to (2, 1) on $y = 3^{x-2}$.

$$f(x)=3^{x-2}+4$$

Shift the graph of $y = 3^{x-2}$ up 4 units. Notice that with the vertical shift, the new horizontal asymptote is y = 4.

3 Evaluate the Exponential Function Base *e*

- There is an important exponential function whose base is an irrational number called e.
- Consider the expression $f(x) = \left(1 + \frac{1}{x}\right)^x$. The value of f(x) for increasingly large values of x approaches a constant called e.
- As $x \to \infty$,

$$f(x) = \left(1 + \frac{1}{x}\right)^x \to e \approx 2.718281828$$

Table 4-6

x	$\left(1+\frac{1}{x}\right)^x$
100	2.70481382942
1000	2.71692393224
10,000	2.71814592683
100,000	2.71826823717
1,000,000	2.71828046932
1,000,000,000	2.71828182710

Example 3:

Graph:
$$f(x) = e^x$$

x	$f(x)=e^x$
-3	0.050
-2	0.135
-1	0.368
0	1.000
1	2.718
2	7.389
3	20.086

Example 4:

Use the properties of exponents to simplify:

a)
$$(e^x)^2$$

b)
$$e^x \cdot e^{-x}$$

b)
$$e^{x} \cdot e^{-x}$$
 c) $(e^{x} - e^{-x})^{2}$

Example 5:

- $e^{x+3h}-e^{x+h}$. a) Factor
- b) Solve $3x^2e^x 2xe^x e^x = 0$.