C6: Les transformations physiques

Dans ce chapitre et les suivants, on va distinguer 3 types de transformations de la matière, celles qui modifient l'état physique des espèces, celles qui modifient la composition chimique des espèces, et celles qui modifient le noyau d'un atome.

1 Changements d'états de la matière.

A. Écriture symbolique.

La matière existe sous trois états physiques :

- solide
- liquide
- gaz

On indique l'état physique d'une espèce dans sa formule chimique à l'aide de (s), (l) ou (g)

Exemples:

- H₂O (s) est l'eau solide(glace)
- CO₂ (g) est le dioxyde de carbone gazeux

Remarque : Lorsqu'une espèce chimique est est en solution on écrit (aq)

Définition

Le changement d'état physique, de la matière est représenté par une équation de transformation.

Exemple : La fusion de l'eau est symbolisée par: H_2O (s) $\rightarrow H_2O(I)$

B. Noms des changements d'états

Attention à ne pas confondre :

- Fusion et dissolution.
- Évaporation (vaporisation lente) et ébullition (vaporisation rapide)

C. Modélisation microscopique.

- Pour un solide, les entités chimiques sont proches et fixes (en moyenne)
- Pour un **liquide**, les entités chimiques sont proches mais peuvent se déplacer les unes par rapport aux autres.
- Pour un gaz les entités chimiques, sont libres.

2 Aspect énergétique.

A. Transfert d'énergie lors d'un changement d'état.

Lors d'un changement d'état physique :

Définition

- Un système qui passe d'un état dispersé vers un état condensé **libère** de l'énergie, on dit que la transformation est exothermique.
- Un système qui passe d'un état condensé vers un état dispersé absorbe de l'énergie, on dit que la transformation est endothermique.

Remarque: Pour le système étudié, l'énergie échangée a une valeur positive si elle est reçue et négative si elle est perdue.

B. Énergie massique.

Définition

L'énergie échangée par le système lors d'un changement d'état est proportionnelle à sa masse :

où Q est l'énergie échangée (J), m la masse (kg) et L l'énergie massique (ou chaleur latente) (J.kg-1)

Exemple: Pour l'eau à 100°C L_{vaporisation} = 2,3×10⁶ J.kg⁻¹

Pour la glace à 0°C L_{fusion} =3,3×10⁵ J.kg⁻¹

Remarque: Les énergies massiques de liquéfaction et de solidification sont négatives

Lycée Kleber (HW 2025) 1 / 2

C6: Activité et Exercices

▲ Méthode de travail à suivre :

- Lire la partie cours et suivre les explications du professeur.
- Rédiger les réponses aux questions Q1.. sur une feuille de travail. Ne pas attendre la correction pour commencer!
- Réaliser une carte mentale (ou un résumé) du cours
- Faire les exercices dans l'ordre (sur une feuille)

Exercice 1: Changement d'état de la matière.

- 1) Donner le nom du changement d'état dans la transformation $I_2(s) \rightarrow I_2(q)$
- 2) Écrire l'équation de la fusion du fer (symbole Fe)
- 3) Écrire l'équation de condensation de l'eau (symbole H₂O)
- **4)** Un gaz occupe tout le volume disponible, comment l'expliquez-vous ?

Exercice 2: Interpréter un phénomène physique.

1) On dépose un colorant à la surface d'un bécher rempli d'eau. Au bout de quelques minutes toute l'eau est colorée alors que le récipient n'a pas été agité. Quelle conclusion pouvez-vous en tirer ?

- 2) Lorsqu'on sort d'une piscine, on ressent généralement un important effet de refroidissement (même en été) ce phénomène est encore plus important s'il y a du vent. Interprétez ce phénomène.
- 3) La rosée est un phénomène naturel lors duquel apparaissent des gouttelettes d'eau sur les végétaux exposés à l'air libre le matin ou le soir. Interprétez ce phénomène.

Exercice 3: Aspect énergétique d'un changement d'état.

Données : Pour l'eau à 100° C L_{vaporisation} = 2.3×10^{6} J.kg⁻¹ pour la glace à 0° C L_{fusion} = 3.3×10^{5} J.kg⁻¹

- 1) Quelle énergie faut-il fournir à 250 mL de l'eau à 100°C pour la vaporiser ?
- 2) La vaporisation est-elle exothermique ou endothermique ? (Justifier)
- 3) Est-il possible de faire fondre entièrement un glaçon de 75 g à 0°C en lui apportant 12 kJ ? Si non, calculer la masse de glace qui a fondu.

Exercice 4: Refroidir un verre de jus d'orange.

Un élève se demande combien il doit mettre de glaçons dans son verre de 25 cL jus d'orange qui est à 20°C pour le refroidir de sorte que sa température finale soit de 10°C.

Données: La masse volumique de l'eau est 10 g.cl.-1

- 1) On suppose que le jus d'orange se comporte comme de l'eau. Calculer la masse du jus d'orange en gramme.
- 2) L'énergie échangée par une masse m d'eau est : Q = m x c x (T_{finale} - T_{initiale})avec c=4,18 J/°C/g. Calculer l'énergie que doit perdre de jus d'orange pour atteindre la température désirée.
- 3) Le graphique suivant donne la valeur de l'énergie échangée par l'eau (en kJ) lorsque la glace a entièrement fondu. L'utiliser pour déterminer la masse de glace nécessaire.

- 1) La masse d'un glaçon est de 7,0 g. Répondre à la question initiale.
- 2) Si on verse 45 g de glace quelle serai la température du jus d'orange ?

Exercice 5: Énergie et changement d'état.

Données: Pour l'eau à 100°C $L_{vaporisation}$ = 2,3.10° kJ.kg-1 pour la glace à 0°C L_{fusion} =3,3.10° kJ.kg-1 Masse volumique de la glace ρ_{glace} = 0,92 kg.L -1 masse volumique de l'eau liquide ρ =1,00 kg.L -1

- 1) On sort un bloc de glace à -15 °C d'un congélateur, son volume est V=1,5 L. Calculer la masse de ce bloc de alace.
- **2)** Expliquer pourquoi le bloc de glace ne va pas fondre immédiatement.
- 3) Lorsqu'on lui apporte une énergie Q₁=43 kJ la température du bloc de glace augmente et il commence à fondre. Calculer la valeur de l'énergie Q₂ nécessaire pour qu'il fonde entièrement.
- 4) Après avoir apporté une énergie supplémentaire Q₃ = 580 kJ la température de l'eau arrive à 100 °C et commence à bouillir. Calculer la valeur de l'énergie Q₄ nécessaire pour vaporiser toute l'eau.
- **5)** En utilisant les réponses précédentes, calculer la valeur **totale** de l'énergie nécessaire pour vaporiser le bloc de glace de volume 1,5 L initialement à 15 °C.

Lycée Kleber (HW 2025) 2 / 2