Chapter Contents

Digital Systems Binary Numbers Number Base Conversion Octal and Hexadecimal Number **Complements Signed Binary Numbers Binary Codes Binary Storage and Registers Binary Logic and Logic Gates Timing Diagrams**

Analog and Digital Systems

- Real world is analog but digital circuits are found in an astonishingly wide range of electronic systems.
- **Analog systems** process information that varies continuously. Examples of analog represented variables are:
 - a mercury thermometer
 - needle speedometer of cars
 - sine wave voltages indicated on a galvanometer
 - audio amplifier
 - simple light dimmer switch

Analog and Digital Systems

- **Digital systems** process discrete information. Discrete means distinct or separated as opposed to continuous or connected. The examples are:
 - telephone switching exchanges
 - Speedometer of cars with numerical readout
 - electronic calculators
 - digital computers

Digital Systems

- Digital Systems have such a prominent role in everyday life that we refer to the present technological period as the digital age.
- Digital systems manipulate discrete elements of information and have wide applications.
 - Digital systems are used in communication, business transactions, traffic control, space guidance, medical treatment, weather monitoring, the Internet, and many other commercial, industrial, and scientific enterprises.
 - We have digital telephones, digital television, digital versatile discs, digital cameras, and digital computers.
- The discrete elements of information are represented in a digital system by physical quantities called signals i.e voltage and current.
- The signals in present-day electronic digital systems use just two discrete values and are therefore said to be binary. A binary digit, called a bit, has two values: 0 and 1.

Why binary?

- reliability: a transistor circuit is either ON or OFF (two stable states)

Digital Computer

- The digital computer is one of the most well known digital systems.
- The digital computer consists of the following components:
 - Memory unit
 - Central processing unit
 - Input and output units
- The digital computer can perform both arithmetic and logical operations.

A digital computer

- stored program
- control unit
- arithmetic computations and logical operations

Digital Systems

- Digital Systems represent systems that understand, represent and manipulate discrete elements.
 - A discrete element is any set that has a finite number of elements, for example 10 decimal digits, 26 letters of the alphabet, etc.
- Discrete elements are represented by signals, such as electrical signals (voltages and currents)
- The signals in most electronic digital systems use two discrete values, termed binary.
- Digital Systems takes a set of discrete information inputs and discrete internal information (system state) and generates a set of discrete information outputs.

Digital Systems

Signals

- A collection of information variables mapped to some physical quantity.
- For digital systems, the quantities take on discrete values. Two level, or binary values are the most prevalent values in digital systems.
- The binary values are represented abstractly by digits 0 and 1.

• other physical signals represented by 1 and 0?

- CPU Voltage

Disk
 Magnetic Field Direction

- CD Surface Pits/Light

Dynamic RAM Electrical Charge

Why Digital Components?

- Why do we choose to use digital components?
 - The main reason for using digital components is that they can easily be programmed, allowing a single hardware unit to be used for many different purposes.
 - Advances in circuit technology decrease the price of technology dramatically.
 - Digital integrated circuits can perform at speeds of hundreds of millions of operations per second.
 - Error-checking and correction can be used to ensure the reliability of the machine.

Binary Digits

- A binary digit, called a bit, is represented by one of two values: 0 or 1.
 - Discrete elements can be represented by groups of bits called binary codes.
 For example the decimal digits 0 to 9 are represented as follows:

Decimal	Binary Code		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		

Different Bases

• In order to represent numbers of different bases, we surround a number in parenthesis and then place a subscript with the base of the number.

```
-A decimal number (9233)_{10}
```

-A binary number $(11011)_2$

-A base 5 number $(3024)_5$

- Decimal number digits are 0 through 9
- Binary number digits are 0 through 1
- Base (radix) r number digits are 0 through r 1

Commonly Used Bases

Name	Radix	Digits (0 through r-1)	
Binary	2	0,1	
Octal	8	0,1,2,3,4,5,6,7	
Decimal	10	0,1,2,3,4,5,6,7,8,9	
Hexadecimal	16	0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F	

Decimal Numbers

- A decimal number such as 5723 represents a quantity equal to:
 - -5 thousands
 - -7 hundreds
 - -2 tens
 - -3 ones

$$-5 \times 10^{3} + 7 \times 10^{2} + 2 \times 10^{1} + 3 \times 10^{0}$$

- The 5, 7, 2, and 3 represent coefficients.
- The decimal number system is said to be of base or radix 10 because it uses the 10 digits (0..9) and the coefficients are multiplied by powers of 10.

Binary Numbers

- The binary system contains only two values in the allowed coefficients (0 and 1).
- The binary system uses powers of 2 as the multipliers for the coefficients.
- For example, we can represent the binary number 10111.01₂ as:

$$-1 \times 2^{4} + 0 \times 2^{3} + 1 \times 2^{2} + 1 \times 2^{1} + 1 \times 2^{0} + 0 \times 2^{-1} + 1 \times 2^{-2} = 23.25_{10}$$

Understanding Binary Numbers

- Binary numbers are made of binary digits (bits):
 - 0 and 1
- How many items does an binary number represent?
 - $-(1011)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 = (11)_{10}$
- What about fractions?
 - $-(110.10)_2 = 1x2^2 + 1x2^1 + 0x2^0 + 1x2^{-1} + 0x2^{-2}$
- Groups of eight bits are called a byte
 - (11001001)₂
- Groups of four bits are called a nibble.
 - $(1101)_{2}$

Understanding Binary Numbers (Cont...)

- Each digit (bit) is either 1 or 0
- Each bit represents a power of 2
- MSB LSB 101100101011100 15 0

- Bit numbering
- MSB: most significant bit
- LSB: least significant bit

Why Binary Numbers?

- Easy to represent 0 and 1 using electrical values.
- Possible to tolerate noise.
- Easy to transmit data
- Easy to build binary circuits.

Powers of Two

n	2 ⁿ	n	2 ⁿ	n	2 ⁿ
0	1	8	256	16	65,536
1	2	9	512	17	131,072
2	4	10	1,024	18	262,144
3	8	11	2,048	19	524,288
4	16	12	4,096	20	1,048,576
5	32	13	8,192	21	2,097,152
6	64	14	16,384	22	4,194,304
7	128	15	32,768	23	8,388,608

Important Powers of Two are:

- ■2¹⁰ is referred to as Kilo, called "K"
- ■2²⁰ is referred to as Mega, called "M"
- ■2³⁰ is referred to as Giga, called "G"
- ■2⁴⁰ is referred to as Tera, called "T"

Octal Numbers

- The octal number system is a base-8 system that contains the coefficient values of 0 to 7.
- The octal system uses powers of 8 as the multipliers for the coefficients.
- For example, we can represent the octal number 72032₈ as:

$$7 \times 8^4 + 2 \times 8^3 + 0 \times 8^2 + 3 \times 8^1 + 2 \times 8^0 = (29722)_{10}$$

Hexadecimal Numbers

- The hexadecimal number system is a base-16 system that contains the coefficient values of 0 to 9 and A to F.
- The letters A, B, C, D, E, F represent the coefficient values of 10, 11, 12, 13, 14, and 15, respectively.
- The hexadecimal system uses powers of 16 as the multipliers for the coefficients.
- For example, we can represent the hexadecimal number C34D₁₆ as:
 - $-12 \times 16^3 + 3 \times 16^2 + 4 \times 16^1 + 13 \times 16^0 = (49997)_{10}$

Your Turn

Find Decimal Equivalent of the following:-

```
(1011.11)<sub>2</sub>
(147.3)<sub>8</sub>
(3301.13)<sub>5</sub>
```