

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 167 (2007) 157–177

www.elsevier.com/locate/entcs

Computable Riesz Representation for the Dual of C[0;1]

Hong Lu¹,²

Department of Mathematics Nanjing University Nanjing 21009, PR. China

Klaus Weihrauch^{1,3}

Department of Mathematics and Computer Science University of Hagen Hagen, Germany

Abstract

By the Riesz representation theorem for the dual of C[0;1], for every continuous linear operator $F:C[0;1]\to\mathbb{R}$ there is a function $g:[0;1]\to\mathbb{R}$ of bounded variation such that

$$F(f) = \int f \, dg \quad (f \in C[0;1]) \,.$$

The function g can be normalized such that V(g) = ||F||. In this paper we prove a computable version of this theorem. We use the framework of TTE, the representation approach to computable analysis, which allows to define natural computability for a variety of operators. We show that there are a computable operator S mapping g and an upper bound of its variation to F and a computable operator S' mapping F and its norm to some appropriate g.

Keywords: Computable analysis, integration, Riesz representation theorem

¹ The author has been partially supported by the National Natural Science Foundation of China, NSFC 10 420 130 638 and the Deutsche Forschungsgemeinschaft, DFG: CHV 113/240/0-1.

² Email: luhong@nju.edu.cn

³ Email: klaus.weihrauch@fernuni-hagen.de

1 Introduction

The Riesz representation theorem is one of the fundamental theorems in Functional Analysis and General Topology.

Theorem 1.1 (Riesz representation theorem[2]) For every continuous linear operator $F: C[a,b] \to \mathbb{R}$ there is a function $g: [a,b] \to \mathbb{R}$ of bounded variation such that

$$F(f) = \int f \, dg \quad (f \in C[a, b])$$

and

$$V(g) = ||F||.$$

As usual, C[a, b] is the set of continuous functions $h : [a, b] \to \mathbb{R}$ on the real interval [a, b], equipped with the norm $||h|| = \max_{a \le x \le b} |h(x)|$. Its dual C'[a, b] is the set of continuous linear functions $F : C[a, b] \to \mathbb{R}$. The norm of $F \in C'[a, b]$ is defined by $||F|| = \sup\{|F(h)| \mid h \in C[a, b], ||h|| = 1\}$. $\int f \, dg$ is the Riemann-Stieltjes integral and V(g) is the total variation of $g : [a, b] \to \mathbb{R}$. Let BV[a, b] be the set of functions $g : [a; b] \to \mathbb{R}$ of bounded variation.

On the other hand, for every function $g:[a,b] \to \mathbb{R}$ of bounded variation the operator $f \mapsto \int f \, dg$ is linear and continuous on C[a,b]. Therefore, the dual space of the space C'[a,b] can be identified with a space of (appropriately normalized) functions of bounded variation on [a,b].

There are more abstract versions of the Riesz representation theorem, for example, for complex valued continuous functions with compact support on a locally compact Hausdorff space instead of C[a, b] and linear positive operators F [6]. In this article we study aspects of computability of the above simple version which can be found e.g. in [2]. We prove a computable version of this theorem in the framework of TTE. For given natural representations of the spaces we prove that there are computable operators mapping F to F and mapping F to F for formulating and proving we use the concepts of Type-2 Theory of Effectivity, the representation approach to Computable Analysis [9]. Some aspects of computability of functions of bounded variation have been already studied in [5,11]

For convenience we consider only functions on the unit interval [0; 1]. The generalization to arbitrary intervals is straightforward.

In Section 2 we estimate the rate of convergence of a sequence of finite sums approximating the Riemann-Stieltjes integral. Section 3 contains the construction of a function g of bounded variation from F. In Section 4 we outline shortly some concepts of TTE and define the (multi-)representations of the sets we will use. The last section contains the main theorems. Because of the detailed preparations their proofs ar short.

2 Riemann-Stieltjes Integral

In this section we consider the definition of the Riemann-Stieltjes Integral (see for example [7]) and estimate the rate of convergence of a sequence of finite sums converging to the integral. We will need this rate for proving computability.

Let a, b be real numbers such that a < b. A partition of the interval [a; b] is a sequence $Z = (x_0, x_1, \ldots, x_n)$ such that $a = x_0 < x_1 < \ldots < x_n = b$. The partition Z has precision k, if $x_i - x_{i-1} \le 2^{-k}$ for $1 \le i \le n$. A partition $Z' = (x'_0, x'_1, \ldots, x'_m)$ is finer than Z, if $\{x_0, x_1, \ldots, x_n\} \subseteq \{x'_0, x'_1, \ldots, x'_m\}$. A selection for Z is a sequence $T = (t_1, \ldots, t_n)$ such that $x_{i-1} \le t_i \le x_i$. For a real function $g: [a; b] \to \mathbb{R}$ define

$$S(g,Z) := \sum_{i=1}^{n} |g(x_i) - g(x_{i-1})|. \tag{1}$$

The variation of q is defined by

$$V(q) := \sup\{S(q, Z) | Z \text{ is a partition of } [a; b]\}.$$
 (2)

A function $g:[a;b] \to \mathbb{R}$ is of bounded variation if its variation V(g) is finite. In the following let $f:[a;b] \to \mathbb{R}$ be continuous function and let $g:[a;b] \to \mathbb{R}$ be a function of bounded variation. For any partition $Z=(x_0,x_1,\ldots,x_n)$ of [a;b] and any selection T for Z define

$$S(g, f, Z, T) := \sum_{i=1}^{n} f(t_i)(g(x_i) - g(x_{i-1})).$$
(3)

Every continuous function $f:[a;b]\to\mathbb{R}$ has a (uniform) modulus of continuity, i.e., a function $m:\mathbb{N}\to\mathbb{N}$ such that $|f(x)-f(y)|\leq 2^{-k}$ if $|x-y|\leq 2^{-m(k)}$.

Lemma 2.1 Let $f:[a;b] \to \mathbb{R}$ be continuous function with modulus of continuity $m: \mathbb{N} \to \mathbb{N}$. Let $g:[a;b] \to \mathbb{R}$ be a function of bounded variation. Then there is a number $I \in \mathbb{R}$ such that

$$|I - S(g, f, Z, T)| \le 2^{-k} V(g)$$

for each partition Z of [a;b] with precision m(k+1) and each selection T for Z.

Proof: First, we prove that for any two partitions Z_1 , Z_2 of [a; b] with precision m(k+1) and selections T_1 and T_2 , respectively,

$$|S(g, f, Z_1, T_1) - S(g, f, Z_2, T_2)| \le 2^{-k}V(g)$$
.

Let $Z_1 = (x_0, x_1, \dots, x_n)$ with selection $T_1 = (t_1, \dots, t_n)$ and let Z' be a refinement of Z_1 with selection T'. Then Z' can be written as

$$x_0 = y_0^1, y_1^1, \dots, y_{j_1}^1 = x_1 = y_0^2, y_1^2, \dots, y_{j_2}^2 = x_2 \dots \dots = y_0^n, y_1^n, \dots, y_{j_n}^n = x_n$$

 $(j_1, \dots, j_n \ge 1)$ and T' as

$$t_1^1, t_2^1, \dots, t_{j_1}^1, t_1^2, t_2^2, \dots, t_{j_2}^2, \dots \dots t_n^1, t_n^1, \dots, t_{j_n}^n$$

such that $y_{l-1}^i \leq t_l^i \leq y_l^i$. Then

$$\begin{split} &|S(g,f,Z_{1},T_{1})-S(g,f,Z',T')|\\ &=\left|\sum_{i=1}^{n}f(t_{i})\left(g(x_{i})-g(x_{i-1})\right)-\sum_{i=1}^{n}\sum_{l=1}^{j_{i}}f(t_{l}^{i})\left(g(y_{l}^{i})-g(y_{l-1}^{i})\right)\right|\\ &=\left|\sum_{i=1}^{n}f(t_{i})\sum_{l=1}^{j_{i}}\left(g(y_{l}^{i})-g(y_{l-1}^{i})\right)-\sum_{i=1}^{n}\sum_{l=1}^{j_{i}}f(t_{l}^{i})\left(g(y_{l}^{i})-g(y_{l-1}^{i})\right)\right|\\ &=\left|\sum_{i=1}^{n}\sum_{l=1}^{j_{i}}\left(f(t_{i})-f(t_{l}^{i})\right)\left(g(y_{l}^{i})-g(y_{l-1}^{i})\right)\right|\\ &\leq\sum_{i=1}^{n}\sum_{l=1}^{j_{i}}\left|f(t_{i})-f(t_{l}^{i})\right|\,\left|g(y_{l}^{i})-g(y_{l-1}^{i})\right|\\ &\leq2^{-k-1}\sum_{i=1}^{n}\sum_{l=1}^{j_{i}}\left|g(y_{l}^{i})-g(y_{l-1}^{i})\right|&\text{since }|t^{i}-t_{l}^{i}|\leq2^{-m(k+1)}\\ &<2^{-k-1}V(g) \end{split}$$

Now let Z' be a common refinement of Z_1 and Z_2 and let T' be a selection for Z'. Then

$$|S(g, f, Z_1, T_1) - S(g, f, Z_2, T_2)|$$

$$\leq |S(g, f, Z_1, T_1) - S(g, f, Z', T')| + |S(g, f, Z_2, T_2) - S(g, f, Z', T')|$$

$$\leq 2^{-k}V(g)$$

Next, for each $i \in \mathbb{N}$ let Z_i be a partition of [a; b] with precision m(i + 1) and a selection T_i . Then for i > j,

$$|S(g, f, Z_i, T_i) - S(g, f, Z_j, T_j)| \le 2^{-j}V(g)$$
.

Therefore, the sequence $(S(g, f, Z_i, T_i))_i$ is a Cauchy sequence converging to some $I \in \mathbb{R}$. If Z is a partition with precision m(k+1) and selection T, then for each i > k

$$|I - S(g, f, Z, T)| \le |I - S(g, f, Z_i, T_i)| + |S(g, f, Z_i, T_i) - S(g, f, Z, T)|$$

 $\le 2^{-i}V(g) + 2^{-k}V(g)$,

hence
$$|I - S(g, f, Z, T)| \le 2^{-k}V(g)$$
.

Definition 2.2 [Riemann-Stieltjes integral]

$$\int f dg := I$$
 (the real number defined in Lemma 2.1)

3 Construction of a Function of Bounded Variation

In this section for a given continuous linear operator $F: C[0;1] \to \mathbb{R}$ we construct a function $g': \subseteq [0;1] \to \mathbb{R}$ of variation ||F|| such that $F(h) = \int h \, dg$ for every $h \in C[0;1]$ and every extension $g: [0;1] \to \mathbb{R}$ of g' of bounded variation.

Let $F: C[0;1] \to \mathbb{R}$ be a linear continuous operator on the set C[0;1] of continuous functions $f:[0;1] \to \mathbb{R}$. For a function $h \in C[0,1]$, and $0 \le a < b \le 1$ define the function $h_{ab} \in C[0,1]$ as follows. The graph of h_{ab} is the union of the graph of h from 0 to h, the line from the point h, the line from the point h, the line from this point to h, the line from this point to h, the line from h to 1 (see Figure 1).

Lemma 3.1 Suppose $h \in C[0,1]$, $\varepsilon > 0$ and $0 \le c < d \le 1$. Then there are $a, b \in \mathbb{Q}$ such that c < a < b < d and $|F(h - h_{ab})| < \varepsilon$.

Proof: Suppose this is false. Then there are infinitely many pairwise disjoint intervals $(a_i; b_i)$ in the interval (c; d) such that $|F(h - h_{a_ib_i})| \ge \varepsilon$. For each $i \le N$ define

$$h_i := \begin{cases} h - h_{a_i b_i} & \text{if } F(h - h_{a_i b_i}) \ge 0\\ -(h - h_{a_i b_i}) & \text{otherwise.} \end{cases}$$

Since $||h_{a_ib_i}|| \le ||h||$, $||h_i|| \le 2||h||$. Choose $N > 2||F|| ||h||/\varepsilon$. Since $||\sum_{i=0}^{N} h_i|| = \max_{i=0}^{N} ||h_i|| \le 2||h||$, $|F(\sum_{i=0}^{N} h_i)| \le ||F||| ||\sum_{i=0}^{N} h_i|| \le 2||F|| ||h||$. On the other hand, since $F(h_i) \ge \varepsilon$, $|F(\sum_{i=0}^{N} h_i)| = |\sum_{i=0}^{N} F(h_i)| = \sum_{i=0}^{N} F(h_i) \ge N \cdot \varepsilon > 2||F|| ||h||$. Contradiction.

The function $d_{ab} := h - h_{ab}$ has a support in [a; b] and a very small "weight" $|F(d_{ab})|$. It cuts the function h into two pices h_a and h_b with disjoint supports such that F(h) and $F(h_a + h_b)$ are almost the same. Such a cut is possible everywhere in the interval [0; 1].

Let an approximate partition be a sequence $\pi = (a_1, b_1, \ldots, a_n, b_n)$ $(n \ge 1)$ of rational numbers such that $0 < a_1 < b_1 < \ldots < a_n < b_n < 1$. Let $b_0 := 0$ and $a_{n+1} := 1$. An approximate partition π induces an approximate decomposition of the function II, II(x) = 1 for $0 \le x \le 1$, into continuous functions $f_0, \ldots, f_n \in C[0, 1]$, which are polygons defined by the vertices of their graphs as follows (see Figure 2).

Fig. 2. Decomposition of \mathbb{I} by a partition $(a_1, b_1, \ldots, a_n, b_n)$

For $1 \le i < n$,

$$f_0: (0,1), (a_1,1), (a_1 + \frac{b_1 - a_1}{3}), (1,0),$$

$$f_i: (0,0), (b_i - \frac{b_i - a_i}{3}, 0), (b_i, 1), (a_{i+1}, 1), (a_{i+1} + \frac{b_{i+1} - a_{i+1}}{3}, 0), (1,0),$$

$$f_n: (0,0), (b_n - \frac{b_n - a_n}{3}), (b_n, 1), (1, 1).$$

By the next lemma the function II can be partitioned into finitly many functions f_i of Norm 1 with disjoint support, such that $\sum |F(f_i)|$ is arbitrarily close to ||F||, and, in addition, for a given interval $J \in L$ there is some i such that $(a_i; b_i) \subseteq J$.

Lemma 3.2 Let $F: C[0;1] \to \mathbb{R}$ be continuous. For every $\varepsilon > 0$ and every open interval in $J\subseteq [0;1]$ there is an approximate partion $\pi = (a_1, b_1, \ldots, a_n, b_n)$ such that

$$||F|| - \varepsilon < \sum_{i=0}^{n} |F(f_i)| \le ||F||,$$
 (4)

$$(\forall i, \ 1 \le i \le n) \ b_i - a_i < \varepsilon \tag{5}$$

and
$$(\exists i, 1 \le i \le n) [a_i; b_i] \subseteq J.$$
 (6)

Proof: Let $\varepsilon' := \varepsilon/(2 + ||F||)$. Since $||F|| = \sup\{F(h)| ||h|| = 1\}$, there is some $h \in C[0; 1]$ such that ||h|| = 1 and

$$||F|| - \varepsilon' < F(h). \tag{7}$$

Since h is uniformly continuous there is some $\varepsilon_1 > 0$ such that

$$\varepsilon_1 < \varepsilon' \text{ and } |h(x) - h(y)| < \varepsilon' \text{ for } |x - y| \le \varepsilon_1.$$
 (8)

Divide the interval (0;1) into consecutive intervals $(c_j;d_j)$ $(j=1,\ldots,n)$ such that $c_1=0$, $d_j=c_{j+1}$ and $d_n=1$ of length $\leq \min(\varepsilon_1, \operatorname{length}(J))/3$. Apply Lemma 3.1 in turn to each of these intervals $(c_j;d_j)$ $(j=1,\ldots,n)$ with precision ε'/n . The result is a partition as shown in Figure 3.

Fig. 3. Approximate decomposition of \mathbb{I} via h.

Notice that the ranges from a_i to b_i correspond to the range from a to b in Figure 1 and that the distance from E_i to $(b_i,0)$ is $(b_i-a_i)/3$ and the distance from a_{i+1} to F_i is $(b_{i+1}-a_{i+1})/3$. For $1 \le i \le n-1$ define h_i and g_i as follows. The graph of h_i is the union of the line segments from (0,0) to E_i , from E_i to C_i , from D_i to F_i and from F_i to (1,0) and the section of graph(h) from C_i to D_i . The graph of g_i is the union of the line segments from (0,0) to E_i , from E_i to A_i , from A_i to B_i , from B_i to F_i and from F_i to (1,0), where the ordinate of A_i and B_i is min $\{h(x) \mid b_i \le x \le a_{i+1}\}$. The functions h_0, g_0, h_n and g_n are defined accordingly.

By the construction and Lemma 3.1 for the approximate partition $\pi = (a_1, b_1, \ldots, a_n, b_n)$,

$$(\exists i)[a_i; b_i] \in J, \tag{9}$$

$$a_{i+1} - b_i < \varepsilon_1 \qquad \text{for } i = 1, \dots, n$$
 (10)

and
$$|F(h) - \sum_{i=0}^{N} F(h_i)| < \varepsilon'$$
. (11)

It remains to prove (4). By (10) and (8), $||h_i - g_i|| \le \varepsilon'$ for $0 \le i \le n$ and hence $||\sum_{i=0}^{n} (h_i - g_i)|| \le \varepsilon'$ (since the $(h_i - g_i)$ have disjoint supports). We obtain

$$|F(\sum_{i=0}^{n} (h_i - g_i))| \le \varepsilon' ||F|| \tag{12}$$

and

$$||F|| - F \sum_{i=0}^{n} g_i \leq F(h) - F \sum_{i=0}^{n} g_i + \varepsilon' \quad \text{by (7)}$$

$$\leq |F(h) - F(\sum_{i=0}^{n} h_i)| + |F(\sum_{i=0}^{n} h_i) - F \sum_{i=0}^{n} g_i| + \varepsilon'$$

$$< \varepsilon' + |F(\sum_{i=0}^{n} (h_i - g_i))| + \varepsilon' \quad \text{by (11)}$$

$$\leq \varepsilon'(2 + ||F||) \leq \varepsilon \quad \text{by (12)}.$$

For i = 0, ..., n let f_i be the function from the decomposition of II induced by the approximate partition $\pi = (a_1, b_1, ..., a_n, b_n)$. If $g_i = 0$ then $|F(g_i)| = 0 \le |F(f_i)|$. Otherwise,

$$|F(g_i)| = |F(|g_i|)| = ||g_i|| |F(\frac{|g_i|}{||g_i||})|||g_i|| |F(|f_i|)| \le |F(f_i)|$$

Since $||F|| - F \sum g_i < \varepsilon$ (see above),

$$||F|| - \varepsilon < F \sum_i g_i = \sum_i F(g_i) \le \sum_i |F(g_i)| \le \sum_i |F(f_i)|.$$

Finally, for each i there is some $\alpha_i \in \{-1, 1\}$ such that $|F(f_i)| = F(\alpha_i f_i)$. Since $\|\sum \alpha_i f_i\| = 1$,

$$\sum |F(f_i)| = \sum F(\alpha_i f_i) = F(\sum \alpha_i f_i) \le ||F||.$$

Thus we have proved (4).

Since the adjacent intervals (c_j, d_j) have length $\leq \text{length}(J)/3$, there is some i such that $[a_i; b_i] \subseteq J$. This proves (6). Finally $b_i - a_i \leq d_i - c_i < \varepsilon_1 < \varepsilon' < \varepsilon$.

In the proof the differences $a_{i+1} - b_i$ are made small in order to get $\sum h_i$ close to $\sum g_i$. Also the differences $b_i - a_i$ are made small so that the errors by cutting remain small according to Lemma 3.1.

We introduce some terminology. For $d \in C[0;1]$ let $\mathrm{supp}(d)$ (the support of d) be the closure of the set $\{x \mid d(x) \neq 0\}$. For $0 \leq a < b \leq 1$ let (a;b)/3 := (a+(b-a)/3;b-(b-a)/3). The slanted step at (a,b) is the function $s \in C[0;1]$ the graph of of which is a polygon with the vertices (0,1), (a,1), (b,0), (1,0). Let $v(s) := (a;b) \subseteq [0,1]$.

In Lemma 3.2 the operator F has small values for every function the support of which does not intersect the supports of the functions f_i , see also Figure 2.

Corollary 3.3 Let π be the approximate partition from Lemma 3.2.

- (i) If $d \in C[0;1]$ such that $\operatorname{supp}(d) \subseteq \bigcup_{i=1}^n (a_i;b_i)/3$ then $|F(d)| \le \varepsilon ||d||$.
- (ii) If s, s' are slanted steps s.th. $v(s), v(s') \subseteq (a_i; b_i)/3$ for some $1 \le i \le n$, then $|F(s) - F(s')| < \varepsilon$.

Proof: i. This is true for d=0. Assume ||d||=1. There are signs $\sigma, \sigma_i \in \{-1, 1\}$ such that $|F(f_i)| = F(\sigma_i f_i)$ and $F(\sigma d) = |F(d)|$. Since $\|\sigma d + \sum_{i=0}^{n} (\sigma_i f_i)\| = 1,$

$$|F(d)| + \sum_{i=0}^{n} |F(f_i)| = F(\sigma d) + \sum_{i=0}^{n} F(\sigma_i f_i)$$

$$= F\left(\sigma d + \sum_{i=0}^{n} (\sigma_i f_i)\right)$$

$$\leq ||F||.$$

Since $||F|| - \varepsilon \le \sum_{i=0}^{n} |F(f_i)|$ by (4), $|F(d)| \le \varepsilon$. If ||d|| > 0, consider $d' := d/\|d\|.$

ii. Apply i. to
$$d := (s - s')$$
.

Lemma 3.4 For every linear and continuous $F: C[0;1] \rightarrow \mathbb{R}$ and every open interval $J\subseteq [0;1]$ there are a sequence $(\pi^k)_{k\in\mathbb{N}}$, π^k $(a_1^k, b_1^k, a_2^k, b_2^k, \dots, a_{n_k}^k, b_{n_k}^k)$, of approximate partitions, a sequence $(i_k)_{k \in \mathbb{N}}$, $1 \le i_k \le n_k$, of indices and a sequence $(s^k)_{k \in \mathbb{N}}$ of slanted steps such that for all k,

$$||F|| - 2^{-k} < \sum_{i=0}^{n_k} |F(f_i^k)| \le ||F||,$$
 (13)

$$(\forall i) b_i^k - a_i^k < 2^{-k}, \tag{14}$$

$$(a_{i_0}^0; b_{i_0}^0) \subseteq J,$$
 (15)

$$(a_{i_0}^0; b_{i_0}^0) \subseteq J,$$

$$[a_{i_{k+1}}^{k+1}; b_{i_{k+1}}^{k+1}] \subseteq (a_{i_k}^k; b_{i_k}^k)/3$$

$$(15)$$

$$v(s^k) \subseteq (a_{i_k}^k; b_{i_k}^k)/3. \tag{17}$$

Proof: For π^0 and i_0 apply Lemma 3.2 to $\varepsilon = 2^{-0} = 1$ and J. For π^{k+1} and i_{k+1} apply Lemma 3.2 to $\varepsilon=2^{-k-1}$ and $J':=(a_{i_k}^k;b_{i_k}^k)/3$. The slanted steps s^k can be chosen appropriately.

Lemma 3.5 For the slanted steps s^k in Lemma 3.4, $|F(s^m) - F(s^l)| \le 2^{-k}$ if $k \le l \le m$.

Proof: This follows from Corollary 3.3.i and (16,17).

Definition 3.6 For the operator F and the interval J let $(\pi^k)_{k\in\mathbb{N}}$, $(i_k)_{k\in\mathbb{N}}$ and $(s^k)_{k\in\mathbb{N}}$ be the sequences from Lemma 3.4. Define

$$x_J := \bigcap [a_{i_k}^k; b_{i_k}^k], \quad y_J := \lim_{k \to \infty} F(s^k).$$
 (18)

By (16) and Lemma 3.5, the numbers x_J and y_J are well-defined and

$$(\forall k) |y_J - F(s^k)| \le 2^{-k}. \tag{19}$$

Let $(K_i)_{i\in\mathbb{N}}$ be a canonical numbering of the set of all open subintervals $(c,d)\subseteq[0;1]$ with $c,d\in\mathbb{Q}$. For each i let x_{K_i} and y_{K_i} be real numbers defined via sequences $(\pi^k)_{k\in\mathbb{N}}$ and $(i_k)_{k\in\mathbb{N}}$ according to Lemma 3.4 and (18). Then the set of all x_{K_i} is dense in [0;1]. Let

$$G_0 := \{ (x_{K_i}, y_{K_i}) \mid i \in \mathbb{N} \}, \tag{20}$$

$$G' := G_0 \cup \{(0,0), (1, F(\mathbb{I}))\}. \tag{21}$$

Lemma 3.7 (i) The set G_0 is the graph of a continuous function g_0 .

(ii) The function g' with graph G' has variation V(g') = ||F||.

Here, as a generalization of (2), we define the variation V(g') of the function g' with $dom(g')\subseteq [0;1]$ by

$$V(g') := \sup \{ S(g', Z) | (\exists x_0, \dots, x_n \in \text{dom}(g'))$$

 $Z = (x_0, \dots, x_n) \text{ is a partition of } [0; 1] \}.$

Proof: First we show:

$$\lim_{i \to \infty} y_i = y \quad \text{if} \quad (x, y), (x_0, y_0), (x_1, y_1), \dots \in G_0 \quad \text{and} \quad \lim_{i \to \infty} x_i = x \quad (22)$$

Let $\varepsilon > 0$. The pair (x, y) is determined by some sequence of approximate partitions $(\pi^k)_k$ according to Lemma 3.4 and Definition 3.6. Therefore, there some number k and a slanted step s^k such that

$$(x - \varepsilon; x + \varepsilon) \subseteq (a_{i_k}^k; b_{i_k}^k)/3 \text{ for some } \varepsilon > 0,$$
 (23)

$$|y - F(s^k)| \le 2^{-k}$$
 and $v(s^k) \subseteq (a_{i_k}^k; b_{i_k}^k)/3$. (24)

There is some j such that $|x - x_j| < \varepsilon/2$. Let $(\bar{\pi}^m)_m$ be the sequence of approximate partitions defining (x_j, y_j) and let \bar{s}^m be the slanted steps according to Lemma 3.4. Let i be a number such that i > k and $2^{-i} < \varepsilon/2$. By (19)

$$|y_i - F(\bar{s}^i)| \le 2^{-i} \text{ and } v(\bar{s}^i) \subseteq (x - \varepsilon; x + \varepsilon).$$
 (25)

By (23,24,25),

$$v(s^k), \bar{v}(s^i) \subseteq (a_{i_k}^k; b_{i_k}^k)/3$$
.

By Corollary 3.3, $|F(s^k) - F(\bar{s}^i)| \leq 2^{-k}$ Therefore,

$$|y - y_j| \le |y - F(s^k)| + |F(s^k) - F(\bar{s}^i)| + |F(\bar{s}^i) - y_j|$$

 $\le 2^{-k} + 2^{-k} + 2^{-i}$
 $< 2^{-k+2}$.

This proves (22).

Suppose $(x, y), (x, y') \in G_0$. Apply (22) to (x, y) and the sequence

$$(x,y),(x,y'),(x,y),(x,y'),\ldots$$

Then the sequence y, y', y, y', \ldots converges, hence y = y'. Therefore, G_0 is the graph of a function g_0 which is continuous by (22).

ii. First we show $S(g', Z) \leq ||F||$ for any partition $Z = (x_0, x_1, \ldots, x_n)$ in dom(g'). Let $y_i := g'(x_i)$ and $\varepsilon > 0$. Let $c < (x_i - x_{i-1})/2$ for $i = 1, \ldots, n$. For every i there is some slanted steps s_i such that

$$v(s_i) \subseteq (x_i - c; x_i + c) \text{ and } |F(s_i) - y_i| \le \frac{\varepsilon}{2n}.$$
 (26)

Then

$$|y_1 - y_0| = |F(s_1)| + |F(s_1) - y_1| \le |F(s_1)| + \frac{\varepsilon}{2n}$$

$$|y_n - y_{n-1}| = |F(\mathbb{I}) - F(s_n)| + |F(s_n) - y_{n-1}| \le |F(\mathbb{I} - s_n)| + \frac{\varepsilon}{2n}$$

and for 1 < i < n,

$$|y_i - y_{i-1}| \le |y_i - F(s_i)| + |F(s_i) - F(s_{i-1})| + |F(s_{i-1}) - y_{i-1}|$$

 $\le |F(s_i - s_{i-1})| + 2\frac{\varepsilon}{2n}.$

Therefore,

$$\sum_{i=1}^{n} |y_i - y_{i-1}| \le |F(s_1)| + \sum_{i=2}^{n-1} |F(s_i - s_{i-1})| + |F(\mathbb{I} - s_n)| + \varepsilon$$

There are signs $\alpha_i \in \{-1, 1\}$ such that $|F(s_1)| = F(\alpha_1 s_1)$, $|F(\mathbb{II} - s_n)| = F(\alpha_n(\mathbb{II} - s_n))$ and $|F(s_i - s_{i-1})| = F(\alpha_i(s_i - s_{i-1}))$ for 1 < i < n. Since $\|\alpha_1 s_1 + \sum_{i=2}^{n-1} (\alpha_i(s_i - s_{i-1})) + \alpha_n(\mathbb{II} - s_n)\| = 1$,

$$S(g', Z) = \sum_{i=1}^{n} |g'(x_i) - g'(x_{i-1})|$$

$$= |F(s_1)| + \sum_{i=2}^{n-1} |F(s_i - s_{i-1})| + |F(\mathbb{I} - s_n)| + \varepsilon$$

$$= F(\alpha_1 s_1) + \sum_{i=2}^{n-1} F(\alpha_i (s_i - s_{i-1})) + F(\alpha_n (\mathbb{I} - s_n)) + \varepsilon$$

$$= F\left(\alpha_1 s_1 + \sum_{i=2}^{n-1} (\alpha_i (s_i - s_{i-1})) + \alpha_n (\mathbb{I} - s_n)\right) + \varepsilon$$

$$< ||F|| + \varepsilon.$$

Since this is true for all $\varepsilon > 0$ and all $Z, V(g') \leq ||F||$.

For the other direction it suffices to show that $(\forall \varepsilon > 0)(\exists Z) ||F|| - \varepsilon \le S(g', Z)$. By Lemma 3.2 there is an approximate partition $\pi = (a_1, b_1, \ldots, a_n, b_n)$ such that $||F|| - \varepsilon/3 \le \sum_{i=0}^n |F(f_i)|$ (Figure 2). For $1 \le i \le n$ define slanted steps u_i and v_i by the vertices of their graphs as follows:

$$u_i: (0,1), (a_i,1), (a_i + (b_i - a_i)/3, 0), (1,0)$$

 $v_i: (0,1), (b_i - (b_i - a_i)/3, 1), (b_i, 0), (1,0)$.

Then

$$f_0 = u_1, \quad f_i = u_{i+1} - v_i \text{ (for } 1 \le i < n) \text{ and } f_n = \mathbb{I} - v_n$$
 (27)

Since the first projection of G_0 is dense in (0;1) (20), for $1 \le i \le n$ there are pairs $(x_i, y_i) \in G_0$ and slanted steps s_i such that

$$x_i \in (a_i; b_i)/3, \quad v(s_i) \subseteq (a_i; b_i)/3 \quad \text{and} \quad |F(s_i) - y_i| \le \varepsilon'$$
 (28)

for $\varepsilon' := \varepsilon/(6n)$. We consider the partition $Z := (0 = x_0, x_1, \dots, x_n, x_{n+1} = 1)$. Let $\alpha_i, \beta_i, \gamma_i \in \{-1, 1\}$ be signs and let

$$h := \beta_0 u_1 + \gamma_1 (s_1 - u_1)$$

$$+ \sum_{i=1}^{n-1} (\alpha_i (v_i - s_i) + \beta_i (u_{i+1} - v_i) + \gamma_i (s_{i+1} - u_{i+1}))$$

$$+ \alpha_n (v_n - s_n) + \beta_n (\mathbb{I} - v_n)$$

Choose the signs such that $F(\beta_0 u_1) \geq 0$, $F(\gamma_1(s_1 - u_1)) \geq 0$, ..., $F(\beta_n(\mathbb{I} - v_n)) \geq 0$. It is seen easily that ||h|| = 1. Since $|F(f_i)| = F(\beta_i f_i)$,

$$F(h) := |F(f_0)| + |F(s_1 - u_1)|$$

$$+ \sum_{i=1}^{n-1} (|F(v_i - s_i)| + |F(f_i)| + |F(s_{i+1} - u_{i+1})|)$$

$$+ |F(v_n - s_n)| + |F(f_n)|.$$

We obtain

$$||F|| - \varepsilon/3 \le \sum_{i=0}^{n} |F(f_i)| \le F(h) \le ||F||,$$

and therefore,

$$|F(s_1 - u_1)| + \sum_{i=1}^{n-1} (|F(v_i - s_i)| + |F(s_{i+1} - u_{i+1})|) + |F(v_n - s_n)| \le \varepsilon/3 (29)$$

Finally,

$$||F|| - \varepsilon/3 \le \sum_{i=0}^{n} |F(f_{i})|$$

$$= |F(u_{1})| + \sum_{i=1}^{n-1} |F(u_{i+1} - v_{i})| + |F(\mathbb{I} - v_{n})| \quad \text{by (27)}$$

$$\le |y_{1}| + |F(s_{1}) - y_{1}| + |F(u_{1}) - F(s_{1})|$$

$$+ \sum_{i=1}^{n-1} (|F(u_{i+1} - s_{i+1})| + |F(s_{i+1}) - y_{i+1}| + |y_{i+1} - y_{i}|$$

$$+ |y_{i} - F(s_{i})| + |F(s_{i} - v_{i})|$$

$$+ |F(\mathbb{I}) - y_{n}| + |y_{n} - F(s_{n})| + |F(s_{n}) - F(v_{n})|$$

$$\le \sum_{i=1}^{n+1} |y_{i} - y_{i-1}| + 2n\varepsilon' + \varepsilon/3 \quad \text{by (28, 29)}$$

$$= S(q', Z) + 2n\varepsilon' + \varepsilon/3.$$

We obtain $||F|| - \varepsilon \le S(g', Z)$.

Let $g:[0,1]\to\mathbb{R}$ be a function of bounded variation which extends g'.

Lemma 3.8 For every continuous function $h:[0,1] \to \mathbb{R}$, $F(h) = \int h \, dg$.

Proof: Let $K \in \mathbb{N}$. There is some $a \in \mathbb{N}$ such that $V(g) \leq 2^a$. Let $m : \mathbb{N} \to \mathbb{N}$ be an increasing modulus of continuity of the function h. We construct a partition Z of precision m(K+2+a) and a selection T for Z such that

$$|F(h) - S(g, h, Z, T)| \le 2^{-K-1}$$
. (30)

Then by Lemma 2.1, $|F(h) - \int h \, dg| \le |F(h) - S(g, h, Z, T)| + |S(g, h, Z, T)|$

 $\int h \, dg | \leq 2^{-K-1} + 2^{-K-1-a} V(g) \leq 2^{-K}$. Since this is true for all $K, F(h) = \int h \, dg$.

Let $\varepsilon := 2^{-K-1}/((2n+1)\|h\| + \|F\|)$. Since h is unifomly continuous there is some $\varepsilon' > 0$ such that $|h(x) - h(x')| \le \varepsilon$ if $|x - x'| \le \varepsilon'$. By Corollary 3.3, Lemma 3.4 and (19) there are

- $-(x_0,y_0),(x_1,y_1),\ldots,(x_{n+1},y_{n+1})\in G',$
- rational numbers $c_i < d_i \ (1 \le i \le n)$
- and slanted steps $u_i, v_i \ (1 \le i \le n)$

such that $Z = (0 = x_0, x_1, \dots, x_{n+1} = 1)$ is a partition with

$$x_i - x_{i-1} < \varepsilon'/2 \text{ for } i = 1, \dots, n+1$$
 (31)

and for $i = 1, \ldots, n$,

$$c_i < x_i < d_i, d_i - c_i < (x_i - x_{i-1})/2 \text{ for } 1 \le j \le n+1,$$
 (32)

$$v(u_i), v(v_i) \in (c_i; d_i), \quad v(u_i) < v(v_i),$$
 (33)

$$|F(u_i) - y_i| < \varepsilon, \quad |F(v_i) - y_i| < \varepsilon,$$
 (34)

$$|F(d)| < \varepsilon ||d|| \quad \text{if} \quad \text{supp}(d) \subseteq [c_i; d_i].$$
 (35)

Fig. 4. Approximate decomposition of \mathbb{I} via h.

In Figure 4 the slanted step v_{i-1} is given by the line segments via the points (0,1), A, E, (1,0) and u_i by (0,1), C, F, (1,0). Let

$$f_1 := u_1, \quad f_i := u_i - v_{i-1} \quad (2 \le i \le n), \quad f_{n+1} := \mathbb{I} - v_n.$$
 (36)

For example, f_i is given by the points (0,0), D, B, C, F, (1,0).

In each interval $(c_{i-1}; d_{i-1})$ (i = 2, ..., n+1) we "pull" the function h down as shown in the lower part of Figure 4 where the arc from L to G is pulled

down to L, M, D, G. Let e_{i-1} be the continuous function such that $e_{i-1}(x) = 0$ for x left to L and right to G and $e_{i-1}(x) = 0$ is the length the function h has been pulled down at x otherwise. Then

$$\operatorname{supp}(e_i) \subseteq (c_i; d_i) \text{ and } ||e_i|| \le ||h|| \text{ for } 1 \le i \le n.$$
 (37)

The function $h - \sum_{i=1}^{n} e_i$ can be written as $\sum_{i=0}^{n+1} h_i$ with pairwise disjoint supports. In Figure 4 the function h_i is given by the sequence of vertices (0,0), D, G, H, F, (1,0).

Let $T = (t_1, \dots, t_{n+1})$ be a selection for Z. Define

$$g_i := h(t_i)f_i \ [0 \le i \le n+1].$$
 (38)

In Figure 4 the function g_i is given by the sequence of vertices (0,0), D, I, J, F, (1,0).

By (35,37), $|F(e_i)| \le \varepsilon ||h||$. Since $h = \sum_{i=1}^n e_i + \sum_{i=1}^{n+1} h_i$

$$\left| F(h) - F\left(\sum_{i=1}^{n+1} h_i\right) \right| = \left| \sum_{i=1}^{n} F(e_i) \right| \le \sum_{i=1}^{n} |F(e_i)| \le n\varepsilon ||h||.$$
 (39)

Since $|x_i - x_{i-1}| \le \varepsilon'/2$, $||h_i - g_i|| \le \varepsilon$, hence $||\sum_{i=1}^{n+1} h_i - \sum_{i=1}^{n+1} g_i|| \le \varepsilon$. Therefore,

$$\left\| F\left(\sum_{i=1}^{n+1} h_i\right) - F\left(\sum_{i=1}^{n+1} g_i\right) \right\| \le \|F\| \varepsilon. \tag{40}$$

By (36,38),

$$F(g_1) = h(t_1)F(u_1),$$

$$F(g_i) = h(t_i)(F(u_i) - F(v_{i-1})) \quad (2 \le i \le n),$$

$$F(g_{n+1}) = h(t_{n+1})F(\mathbb{I} - v_n).$$

By (34),

$$\left| F\left(\sum_{i=1}^{n+1} g_i\right) - S(g, h, Z, T) \right| = \left| \sum_{i=1}^{n+1} F(g_i) - \sum_{i=1}^{n+1} h(t_i)(y_i - y_{i-1}) \right|
= |h(t_1)(F(u_1) - y_1)
+ \sum_{i=2}^{n} h(t_i)(F(u_i) - F(v_{i-1}) - (y_i - y_{i-1}))
+ h(t_{n+1})(F(\mathbb{I} - v_n) - (F(\mathbb{I}) - y_n))|
\leq |h(t_1)|\varepsilon + \sum_{i=2}^{n} 2|h(t_i)|\varepsilon + |h(t_{n+1})|\varepsilon
\leq (n+1)||h||\varepsilon.$$

As a summary,

$$|F(h) - S(g, h, Z, T)| \le n\varepsilon ||h|| + ||F|| \varepsilon + (n+1)||h|| \varepsilon = 2^{-K-1}.$$

4 The Computability Background

For studying computability we use the representation approach (TTE) to Computable Analysis [9]. Let Σ be a finite alphabet. Computable functions on Σ^* (the set of finite sequences over Σ) and Σ^{ω} (the set of infinite sequences over Σ) are defined by Turing machines which map sequences to sequences (finite or infinite). On Σ^{ω} finite or countable tupling will be denoted by $\langle \ \rangle$ [9]. Sequences are used as "names" of abstract objects. We generalize the concept of representations in [9] to multi-representations and consider computability of multi-functions w.r.t. multi-representations (see [10] for the definition, which differs from that in [8], and [3] for an application).

A multi-function is a triple $f = (A, B, R_f)$ such that $R_f \subseteq A \times B$, which we will denote by $f : \subseteq A \rightrightarrows B$. For $X \subseteq A$ let $f[X] := \{b \in B \mid (\exists a \in X)(a, b) \in R\}$ and for $a \in A$ define $f(a) := f[\{a\}]$. Notice that f is well-defined by the values $f(a) \subseteq B$ for all $a \in A$. We define $\text{dom}(f) := \{a \in A \mid f(a) \neq \emptyset\}$. For muli-functions $f : \subseteq A \rightrightarrows B$ and $g : \subseteq C \rightrightarrows D$ we define the composition $g \circ f : \subseteq A \rightrightarrows D$ by

$$a \in \text{dom}(g \circ f) : \iff a \in \text{dom}(f) \text{ and } f(a) \subseteq \text{dom}(g),$$
 (41)

$$g \circ f(a) := g[f(a)]. \tag{42}$$

Notice that (42) without (41) corresponds to ordinary relational composition of R_f and R_g . For a multi-function $f \subseteq M_1 \implies M_0$ we will usually interpret $f(x) \subseteq B$ as the set of "acceptable" values for the argument $x \in M_1$.

Definition 4.1 [multi-representation]

A multi-representation of a set M is a surjective multi-function $\delta:\subseteq \Sigma^\omega \rightrightarrows M.$

A multi-representation $\delta: \subseteq \Sigma^{\omega} \rightrightarrows M$ can be considered as a naming system for the points of a set M, where each name can encode many points. Therefore, $x \in \delta(p)$ is interpreted as "p is a name of x". We generalize the concept of realization of a function or multi-function w.r.t. (single-valued) representations [9] to multi-representations as follows [10]:

Definition 4.2 [realization]

For multi-representations $\gamma_i : \subseteq Y_i \implies M_i \ (i = 0, ..., k)$, abbreviate $Y := Y_1 \times ... \times Y_k$, $M := M_1 \times ... \times M_k$, and $\gamma(y_1, ..., y_k) : \gamma_1(y_1) \times ... \times \gamma_k(y_k)$. Then a function $h : \subseteq Y \rightarrow Y_0$ is a (γ, γ_0) -realization of a multi-function $f : \subseteq M \implies M_0$, iff for all $p \in Y$ and $x \in M$,

$$x \in \gamma(p) \cap \operatorname{dom}(f) \Longrightarrow f(x) \cap \gamma_0 \circ h(p) \neq \emptyset.$$
 (43)

The multi-function f is called (γ, γ_0) -computable, if it has a computable (γ, γ_0) -realization.

(We will say $(\gamma_1, \ldots, \gamma_k, \gamma_0)$ -computable instead of (γ, γ_0) -computable, etc.)

Fig. 5 illustrates the definition. Whenever p is a γ -name of $x \in \text{dom}(f)$, then h(p) (the sequence of symbols computed by a machine for h) is a γ_0 -name of some $y \in f(x)$.

Fig. 5. h(p) is a name of some $y \in f(x)$, if p is a name of $x \in \text{dom}(f)$.

For two multi-representations $\delta_i \subseteq \Sigma^{\omega} \rightrightarrows M_i$ $(i = 1, 2), \ \delta_1 \leq \delta_2$ ("reducible to") iff $(\forall \ p \in \text{dom}(\delta_1)) \ \delta_1(p) \subseteq \delta_2 h(p)$ for some computable function $h : \subseteq \Sigma^{\omega} \to \Sigma^{\omega}$.

If multi-functions on represented sets have realizations, then their composition is realized by the composition of the realizations. In particular, the computable multi-functions on represented sets are closed under composition. Much more generally, the computable multi-functions on multi-represented sets are closed under flowchart programming with indirect addressing [10]. This result allows convenient informal construction of new computable functions on multi-represented sets from given ones.

For the real numbers we use the Cauchy representation $\rho: \subseteq \Sigma^{\omega} \to \mathbb{R}$, for the set of continuous real functions on the unit interval the Cauchy representation $\delta_C: \subseteq \Sigma^{\omega} \to C[0;1]$ defined via the dense set of rational polygons (Definitions 4.1.5 and 6.1.9 in [9]). For the space \tilde{C} of continuous functions $F: C[0;1] \to \mathbb{R}$ there is a canonical representation $[\delta_C \to \rho]$ (Definitions 3.1.13 in [9]). For this representation we have the type conversion lemma (Theorem 3.3.15 in in [9]).

Lemma 4.3 (type conversion) For every representation δ of the space \tilde{C} , the function eval : $(F, h) \mapsto F(h)$ is (δ, δ_C, ρ) -computable, iff $\delta \leq [\delta_C \to \rho]$.

Since the dulal C'[0;1] is a subset of \tilde{C} , we can use the representation $[\delta_C \to \rho]$ for it. The norm $\| \| : C'[0;1] \to \mathbb{R}$ is $([\delta_C \to \rho], \rho_<)$ -computable (a $\rho_<$ -name of $x \in \mathbb{R}$ is an (encoded) increasing sequence of rational numbers converging to x [9]). The multi-function UB : $C'[0;1] \rightrightarrows \mathbb{R}$, $a \in \mathrm{UB}(F) \iff \|F\| < a$, is $([\delta_C \to \rho], \rho)$ -computable. But the norm is not $([\delta_C \to \rho], \rho)$ -computable [1] since the space $(C'[0;1], \| \|)$ is not separable [4].

For the set $\mathbb{B} = \{m \mid m : \mathbb{N} \to \mathbb{N}\}$ we consider the representation $\delta_{\mathbb{B}}$ defined by $\delta_{\mathbb{B}}(p) = m$, iff $p = 1^{m(0)} 01^{m(1)} 01^{m(2)} 0...$ By Lemma 6.2.7 in [9], a modulus of continuity m can be computed for every function $h \in C[0; 1]$:

Lemma 4.4 The multi-function $MC : C[0;1] \Rightarrow \mathbb{B}$ such that $m \in MC(h)$ iff $m : \mathbb{N} \to \mathbb{N}$ is a uniform modulus of continuity of $h : [0;1] \to \mathbb{R}$ is $(\delta_C, \delta_{\mathbb{B}})$ -computable.

Finally, for the set BV[0;1] of functions $g:[0;1] \to \mathbb{R}$ of bounded variation we define a multi-representation δ_{BV} by $g \in \delta_{\text{BV}}(p)$ iff $p = \langle r_0, r_1, p_0, q_0, p_1, q_1, \ldots \rangle$ such that

```
g(0) = \rho(r_0), \quad g(1) = \rho(r_1),
\{\rho(p_i) \mid i \in \mathbb{N}\} \text{ is dense in } [0; 1],
g\rho(p_i) = \rho(q_i) \text{ for } i \in \mathbb{N}.
```

Remember that by Lemma 2.1 the values of g on a dense set are sufficient to approximate $\int f dg$ for continuous f.

5 The Main Results

First, we show that Riemann-Stieltjes integration $\int h dg$ is computable in h and g. As an additional information for the computation we use some upper bound of V(g), the variation of g.

Theorem 5.1 Define the operator $S : \subseteq BV[0;1] \times \mathbb{R} \to C'[0;1]$ by $dom(S) := \{(g,b) \mid V(g) < b\}$ and and $S(g,b)(h) = \int h \, dg$ for all $h \in C[0;1]$. Then S is $(\delta_{BV}, \rho, [\delta_C \to \rho])$ -computable.

Proof: First we show how $\int h \, dg$ can be computed from g, b and h. We assume that the function g is given by some δ_{BV} -name $p = \langle r_0, r_1, p_0, q_0, p_1, q_1, \ldots \rangle$, the bound b by some ρ -name and the continuous function b by some δ_C -name. For b we can compute some uniform modulus b of continuity (Theorem 6.2.7 in [9]). From b we can compute some $b \in \mathbb{N}$ such that $b \leq 2^l$. From b and b we can compute points

 $(x_0, y_0), (x_1, y_1), \dots, (x_n, y_n) \in \operatorname{graph}(g)$ such that $\pi = (x_0, x_1, \dots, x_n)$ is a partition of precision m(k+1+l). For the selection $T := (x_1, \dots, x_n)$ for π

according to (3) we can compute

$$S(g, h, Z, T) := \sum_{i=1}^{n} f(x_i)(y_i - y_{i-1}).$$

By Lemma 2.1,

$$\left| S(g, h, Z, T) - \int h \, dg \right| \le 2^{-k-l} V(g) \le 2^{-k-l} b \le 2^{-k}$$
.

Therefore, from g, b and h we can compute a sequence $(z_k)_{k \in \mathbb{N}}$ of real numbers such that $|z_k - \int h \, dg| \leq 2^{-k}$. Since the limit of such sequences is computable (Theorem 4.3.7 in [9]) the function $(g, b, h) \mapsto \int h \, dg$ for $V(g) \leq b$ is $(\delta_{\text{BV}}, \rho, \delta_C, \rho)$ -computable. By type conversion, Theorem 3.3.15 in [9], the operator S is $(\delta_{\text{BV}}, \rho, [\delta_C \to \rho])$ -computable.

Theorem 5.2 Define the operator $S' : \subseteq C'[0;1] \times \mathbb{R} \rightrightarrows BV[0;1]$ by $g \in S'(F,c)$, iff c = ||F|| = V(g) and $F(h) = \int h \, dg$ for all $h \in C[0;1]$. Then S' is $([\delta_C \to \rho], \rho, \delta_{BV})$ -computable.

Proof: We assume that F is given by some $[\delta_C \to \rho]$ -name and c by some ρ -name. We want to compute some δ_{BV} -name $p = \langle r_0, r_1, p_0, q_0, p_1, q_1, \ldots \rangle$ of some appropriate function g. Since by Lemma 4.3 $(F, h) \mapsto F(h)$ is computable, the function, mapping each approximate partition $\pi = (a_1, b_1, \ldots, a_n, b_n)$ to $\sum_{i=0}^n |F(f_i)|$, see Section 3, is computable. Since existence is guaranteed by Lemma 3.2, for each interval J with rational end points and for each k by exhaustive search some approximate partition π can be computed such that

$$||F|| - 2^{-k} < \sum_{i=0}^{n} |F(f_i)| \le ||F||,$$
 (44)

$$(\forall i, \ 1 \le i \le n) \ b_i - a_i < 2^{-k}$$
 (45)

and
$$(\exists i, 1 \le i \le n) [a_i; b_i] \subseteq J.$$
 (46)

Since existence is guaranteed by Lemma 3.4, For each m a sequence $(\pi^k)_{k\in\mathbb{N}}$, $\pi^k = (a_1^k, b_1^k, a_2^k, b_2^k, \dots, a_{n_k}^k, b_{n_k}^k)$, of approximate partitions, a sequence $(i_k)_{k\in\mathbb{N}}$, $1 \le i_k \le n_k$, of indices and a sequence $(s^k)_{k\in\mathbb{N}}$ of slanted steps can be computed such that for all k,

$$||F|| - 2^{-k} < \sum_{i=0}^{n_k} |F(f_i^k)| \le ||F||,$$

$$(\forall i) b_i^k - a_i^k < 2^{-k},$$

$$(a_{i_0}^0; b_{i_0}^0) \subseteq K_m,$$

$$[a_{i_{k+1}}^{k+1}; b_{i_{k+1}}^{k+1}] \subseteq (a_{i_k}^k; b_{i_k}^k)/3$$

$$v(s^k) \subseteq (a_{i_k}^k; b_{i_k}^k)/3.$$

Then according to Lemma 3.5 and Definition 3.6 numbers x_{K_i} and y_{K_i} can be computed.

Therefore, from F and c = ||F|| sets

$$G_0 := \{ (x_{K_i}, y_{K_i}) \mid i \in \mathbb{N} \},$$

$$G' := G_0 \cup \{ (0, F(0)), (1, F(\mathbb{I})) \}$$

can be computed such that Lemmas 3.7 holds true. Computing means to find $r_0, r_1, p_i, q_i \in \Sigma^{\omega}$ such that $\rho(r_0) = 0$, $\rho(r_1) = F(\mathbb{I})$, $\rho(p_i) = x_{K_i}$ and $\rho(q_i) = y_{K_i}$. Then for any function $g : [0; 1] \to \mathbb{R}$ of bounded variation which extends q',

$$g \in \delta_{BV}(p), \quad p := \langle r_0, r_1, p_0, q_0, p_1, q_1, \ldots \rangle$$

There is an extension $g[0;1] \to \mathbb{R}$ of g' such that V(g) = V(g') = ||F||. For $x \in [0;1] \setminus \text{dom}(g')$ define $g(x) := \lim\{g'(x') \mid x' < x\}$. By Lemma 3.8, $F(h) = \int h \, dg$ for all $h \in C[0;1]$.

Therefore, the operator S' is $([\delta_C \to \rho], \rho, \delta_{BV})$ -computable.

The above proof uses the norm of F explicitly. As we have already mentioned in Section 4, ||F|| cannot be computed from F.

References

- [1] Brattka, V., Computable versions of the uniform boundedness theorem, in: Z. Chatzidakis, P. Koepke and W. Pohlers, editors, Logic Colloquium 2002, Lecture Notes in Logic 27 (2006).
- [2] Goffman, C. and G. Pedrick, "First Course in Functional Analysis," Prentince-Hall, Englewood Cliffs, 1965.
- [3] Grubba, T. and K. Weihrauch, A computable version of Dini's theorem for topological spaces, in: P. Yolum, T. Güngör, F. Gürgen and C. Özturan, editors, Computer and Information Sciences - ISCIS 2005, Lecture Notes in Computer Science 3733 (2005), pp. 927–936, 20th International Symposium, ISCIS, Istanbul, Turkey, October 2005.
- [4] Heuser, H., "Funktionalanalysis," B.G. Teubner, Stuttgart, 1986, 2. edition.
- [5] Ko, K.-I., "Complexity Theory of Real Functions," Progress in Theoretical Computer Science, Birkhäuser, Boston, 1991.
- [6] Rudin, W., "Real and Complex Analysis," McGraw-Hill, New York, 1974, 2nd edition.

- [7] Schechter, E., "Handbook of Analysis and Its Foundations," Academic Press, San Diego, 1997.
- [8] Schröder, M., Admissible representations for continuous computations, Informatik Berichte 299, FernUniversität Hagen, Hagen (2003), dissertation.
- [9] Weihrauch, K., "Computable Analysis," Springer, Berlin, 2000.
- [10] Weihrauch, K., Multi-functions on multi-represented sets are closed under flowchart programming, in: T. Grubba, P. Hertling, H. Tsuiki and K. Weihrauch, editors, Computability and Complexity in Analysis, Informatik Berichte 326 (2005), pp. 267–300, proceedings, Second International Conference, CCA 2005, Kyoto, Japan, August 25–29, 2005.
- [11] Zheng, X. and R. Rettinger, *Effective Jordan decomposition*, Theory of Computing Systems **38** (2005), pp. 189–209.