Assignment 1

183139-耿冬冬

2019年5月17日

1

设 Television Day Time Unit 为 x_1 , Prime Time Unit 为 x_2 , Radio Unit 为 x_3 , Magazines Unit 为 x_4 .

$$\max z = 400000x_1 + 900000x_2 + 500000x_3 + 200000x_4$$

$$\begin{cases}
4000x_1 + 75000x_2 + 3000x_3 + 15000x_4 \leqslant 800000 \\
300000x_1 + 400000x_2 + 200000x_3 + 100000x_4 \geqslant 200000 \\
4000x_1 + 75000x_2 \le 500000 \\
x_1 \geqslant 3 \quad x_2 \geqslant 2 \\
5 \leqslant x_3, x_4 \leqslant 10
\end{cases}$$

2

产销平衡的运输问题。

设 w_i 到 s_j 的运输量为 x_{ij} . 设 a_i 为 w_i 的容量, n_j 为 s_j 的需求量, c_{ij} 为 w_i 到 s_j 的 cost. 其中 $i=1,2,3,\quad j=1,\ldots 5$. 根据题意可知

$$a = [100, 200, 50] \quad n = [80, 90, 70, 60, 50]$$

$$c = \begin{bmatrix} 1 & 2 & 4 & 3 & 6 \\ 5 & 2 & 4 & 4 & 4 \\ 1 & 1 & 1 & 3 & 2 \end{bmatrix}$$

$$\min z = \sum_{i=1}^{3} \sum_{j=1}^{5} c_{ij} x_{ij}$$

$$\begin{cases} \sum_{j=1}^{5} x_{ij} = a_i & (i = 1, 2, 3) \\ \sum_{i=1}^{3} x_{ij} = n_j & (j = 1, 2, \dots, 5) \\ x_{ij} \geqslant 0 & (i = 1, 2, 3; j = 1, 2, \dots, 5) \end{cases}$$

3

- (1)max z = x s.t. $\{1 \le x \le 2 \mid x < 0\}$, remove constraint 2, it is feasible.
- (2) $\max z = x$ s.t. $\{x \ge 2 \mid x \le 1\}$, remove constraint 2, it is unbounded.
- (3) 同(1)
- (4)max z = x + y s.t. $\{x + y \le 1 \mid x + y \ge 2 \mid x, y \ge 0\}$, remove constraint 2, it has an infinite number of optimal solutions.
- (5)No Exist.
- (6) $\max z = x$ s.t. $\{1 \le x \le 2\}$, add constraint $\{x < 0\}$, it is infeasible.
- (7) $\max z = x + y$ s.t. $\{2x + y \le 2 \mid x, y \ge 0\}$, add constraint $\{x + y \le 1\}$, it has an infinite number of optimal solutions.
- (8)max z = x + y s.t. $\{x + y \le 1 \mid x, y \ge 0\}$, add constraint $\{x + 2y \le 1\}$, it has exactly one optimal solution.
- (9)No Exist.
- (10)No Exist.
- (11)min z = x s.t. $\{x \ge 1\}$, change objective function max z = x, it is unbounded.
- (12)max z=x $s.t.\{x \ge 1\}$, change objective function min z=x, it has exactly one optimal solution.
- (13)max z = x + y s.t. $\{x + y \ge 1 \mid x, y \ge 0\}$, change objective function minz = x + y, it has an infinite number of optimal solutions.

4

标准型为:

$$\max z = -x_1 - x_2 + 4x_3 + 0x_4 + 0x_5 + 0x_6$$

$$\begin{cases} x_1 + x_2 + 2x_3 + x_4 = 9 \\ x_1 + x_2 - x_3 + x_5 = 2 \\ -x_1 + x_2 + x_3 + x_6 = 4 \\ x_1, x_2 \cdots x_6 \geqslant 0 \end{cases}$$

simplex table 如下:

			-1	-1	4	0	0	0	
C_B	\mathbf{x}_B	b	x_1	x_2	x_3	x_4	x_5	x_6	
0	x_4	9	1	1	2	1	0	0	$\frac{9}{2}$
0	x_5	2	1	1	-1	0	1	0	_
0	x_6	4	-1	1	[1]	0	0	1	4
c_j –	z_j		-1	-1	4	0	0	0	
0	x_4	1	[3]	-1	0	1	0	-2	$\frac{1}{3}$
0	x_5	6	0	2	0	0	1	1	_
4	x_3	4	-1	1	1	0	0	1	_
c_j –	z_j		3	-5	0	0	0	-4	
-1	x_1	$\frac{1}{3}$	1	$-\frac{1}{3}$	0	$\frac{1}{3}$	0	$-\frac{2}{3}$	
0	x_5	6	0	2	0	0	1	1	
4	x_3	$\frac{13}{3}$	0	$\frac{2}{3}$	1	$\frac{1}{3}$	0	$\frac{1}{3}$	
c_j –	$\overline{z_j}$		0	-4	0	-1	0	-2	

所以当 $X = (\frac{1}{3}, 0, \frac{13}{3}, 0, 0, 0)^T$ 时,z 取最小值为 -17.

5

(1) 由题意可得 (1): $x_1 + x_3 - x_4 = 3 + 3\beta$, (2): $x_2 - x_3 = 1 - \beta$. 由此可得 simplex table with $X = (x_1, x_2)^T$ 如下:

			α	2	1	-4	
	x_B		l .			x_4	
α	x_1	$3 + 3\beta$ $1 - \beta$	1	0	1	-1	
2	x_2	$1-\beta$	0	1	-1	0	
c_j –	z_j		0	0	$3-\alpha$	$\alpha - 4$	

(2) 由
$$\begin{cases} 3 - \alpha \leqslant 0 \\ \alpha - 4 \leqslant 0 \end{cases}$$
, α 的取值为 $3 \leqslant \alpha \leqslant 4$.
(3) 由
$$\begin{cases} 3 + 3\beta \geqslant 0 \\ 1 - \beta \geqslant 0 \end{cases}$$
, β 的取值为 $-1 \leqslant \beta \leqslant 1$

(3) 由
$$\begin{cases} 3+3\beta \ge 0 \\ 1-\beta \ge 0 \end{cases}$$
 , β 的取值为 $-1 \le \beta \le 1$

6

(1) 根据题意得 simplex table 如下:

		x_1	x_2	x_3	x_4	x_5	x_6	RHS
	1	-6	0	0	0	-1		-14
x_6	0	3	0	$-\frac{14}{3}$	0	1	1	7
x_2	0	6	1	2	0	$\frac{5}{2}$	0	5
x_4	0	0	0	$-\frac{14}{3}$ 2 $\frac{1}{3}$	1	0	0	0

得 $a=7, b=-6, c=0, d=1, e=0, f=\frac{1}{3}, g=0.$

(2) 由 simplex table 可知

$$\boldsymbol{B^{-1}} = \begin{bmatrix} 3 & 0 & -\frac{14}{3} \\ 6 & 1 & 2 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}$$

(3)
$$\frac{\partial x_2}{\partial x_1} = -6$$
 $\frac{\partial z}{\partial x_5} = -1$ $\frac{\partial x_6}{\partial b_3} = 0$
(4) $\mathbf{a}_5 = \mathbf{a}_6 + \frac{5}{2}\mathbf{a}_2$

(4)
$$a_5 = a_6 + \frac{5}{2}a_2$$

7

(1) 对偶问题为:

$$\max 6y_1 + 3y_2$$

$$\begin{cases} 2y_1 + y_2 \leqslant 3 \\ -y_1 + y_2 \leqslant 4 \\ y_1 + 2y_2 \leqslant 6 \\ 6y_1 + y_2 \leqslant 7 \\ -5y_1 + 2y_2 \leqslant 1 \\ y_1, y_2 \geqslant 0 \end{cases}$$

(2) 由 w = (1,1) 可知 dual problem constraint 1 和 4 为紧约束, 由对偶问题的性质可得:

$$\begin{cases} 2x_1 + 6x_4 = 6 \\ x_1 + x_4 = 3 \end{cases}$$

解得原问题最优解为 $X^* = (3,0,0,0,0)^T$, $\min = 9$.

8

- (1)False
- (2)False
- (3)True

原问题和对偶问题解的关系如下表:

对偶问题
有可行解,且有最优解
无可行解
无可行解
有可行解,但无最优解

9

(1)
$$\boldsymbol{a}_{2}^{'} = \boldsymbol{B}^{-1}\boldsymbol{a}_{2} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$$

$$\sigma_2 = C_2 - C_B B^{-1} a_2 = -5 < 0$$

最优解不变,单纯型表如下:

	z	x_1	x_2	x_3	x_4	x_5	RHS
Z	1	0	-5	-1	-2	0	-12
$\overline{x_1}$	0	1	2	1	1	0	6
x_5	0	0	7	1	1	0	10

(2) 原问题变为 unbounded, simplex table 如下:

			2	-1	1	0	0	
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5	
1	x_3	6	0	1 2	1	1	0	-
0	$\begin{vmatrix} x_3 \\ x_5 \end{vmatrix}$	4	-1	2	0	0	1	-
$c_j - z_j$			2	-2	0	0	0	

(3)simplex table 如下:

			2	-1	1	0	0	
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5	
1	x_3		3	1	1	1	0	
0	x_5	2	3	1	0	0	1	
$c_j - z_j$			-1	-2	0	-1	0	

最优解为 $\boldsymbol{X}^{\star} = (0,0,6,0,2)^T, \min = -6$

(4)simplex table 如下:

			2	-1	1	0	0	-1	
C_B	x_B	b	x_1	x_2	x_3	x_4	x_5	x_6	
0	x_4	6	[1]	1	1	1	0	-1	6
0	x_5	4	-1	2	0	0	1	2	_
c_j –	z_j		-2	1	-1	0	0	-1	
2	x_1	6	1	1	1	1	0	-1	-
0	x_5	10	0	3	1	1	1	[1]	10
c_j –	z_j	•	0	-3	-1	-2	0	1	
2	x_1	16	1	4	2	2	1	0	
-1	x_6	10	0	3	1	1	1	1	
c_j –	$\overline{z_j}$		0	-9	-3	-3	-1	0	

最优解为 $X^* = (16, 0, 0, 0, 0, 10)^T$, min = -22.