Question Number	Answer		Mark
2(a)	Uses $T = 2\pi \sqrt{\frac{l}{g}}$ with $l = H - h$	(1)	
	Clear algebra leading to formula	(1)	2
	Example of derivation		
	$T = 2\pi \sqrt{\frac{l}{g}} \text{ where } l = H - h$		
	So $T = 2\pi \sqrt{\frac{H-h}{g}}$		
	$\therefore T^{2} = 4\pi^{2} \left(\frac{H - h}{g} \right) = \frac{4\pi^{2} H - 4\pi^{2} h}{g} = \frac{4\pi^{2} H}{g} - \frac{4\pi^{2} h}{g}$		
2(b)	1. Use a metre rule to measure <i>h</i>	(1)	
	2. Ensure metre rule is vertical using a set square Or Use a set square to read off the scale Or Measure to the bottom of the bob and add the radius of the bob	(1)	
	3. Use a (timing) marker (at the centre of the oscillation)	(1)	
	 4. Measure (time for) multiple oscillations and divide by the number of oscillations Or Repeat the measurement of <i>T</i> and calculate the mean Or Start timing the oscillations once the oscillations have settled 	(1)	
	5. Determine <i>T</i> for (at least) 5 different values of <i>h</i>	(1)	
	6. Plot a graph of T^2 against h and determine the intercept (to calculate H)	(1)	6
	[ANNOTATE WITH MPs AWARDED]		
2(c)	The recording can be viewed in slow motion	(1)	
	Judging when an oscillation is complete will be more accurate	(1)	2
	Total for question 2		10