Section 1.1

We motivate the following discussion by noting that the syntax of a program in a language is usually a nested or tree like structure. Recursion is then an important technique in constructing and manipulating such structures.

Inductive specification is a method for specifying a set of values. For example, let's consider a set $S\subseteq\mathbb{N}$. We can define S as follows:

Definition 1. A natural number $n \in S$ if and only if

1.
$$n = 0$$
, or

2.
$$n-3 \in S$$
.

We call this definition the top down definition of S

Definition 2. Define the set S to be the smallest set contained in \mathbb{N} and satisfying the following two properties:

1.
$$0 \in S$$
, and

2. if
$$n \in S$$
, then $(n+3) \in S$.

We call this definition the **bottom up definition** of S

Definition 3.

We call this definition the rules of inference of S

Exercise 1.3 [*] Find a set T of natural numbers such that $0 \in T$, and whenever $n \in T$, then $n + 3 \in T$, but $T \neq S$, where S is the set defined in definition 1.1.2.

Solution 1.3 Let T be the natural numbers. Then $0 \in T$ by definition of the natural numbers. We must show that $n+3 \in T$ whenever $n \in T$.

Let A be the Peano system (A_i, i, S_i) where $i \in \mathbb{N}$ is the distinguished element of A, and S_i is the successor function of A defined by the rule

$$S(n) = n + 3, R(S) = \{n | n \ge i\}$$