Representation Theory PSET 1

Nilay Kumar

Last updated: February 10, 2014

Proposition 1. Consider the category of topological abelian groups with continuous homomorphisms between them. Show this category is additive but not abelian.

Proof. \Box

Proposition 2. Let $S \to R$ be a homomorphism of rings. It induces the restriction and induction functors between the corresponding categories of modules, $Res : \mathbf{R}\text{-}\mathbf{Mod} \to \mathbf{S}\text{-}\mathbf{Mod}$ and $Ind : \mathbf{S}\text{-}\mathbf{Mod} \to \mathbf{R}\text{-}\mathbf{Mod}$, where $Ind\ A = R \otimes_S A$ and $Res\ B$ is the module B viewed as an S-module. Show that these functors are adjoint in the sense that $Hom_R(Ind\ A, B) = Hom_S(A, Res\ B)$.

Proposition 3. Show that every module in category \mathcal{O} is finitely generated as a $\mathcal{U}\mathfrak{n}_-$ -module.

Proposition 4. For $V_1, V_2 \in Obj \mathcal{O}$, consider the tensor product $V_1 \otimes V_2$. Show that it is in \mathcal{O} is one of the factors is finite-dimensional, but not in general.

Proposition 5. Consider the action of GL(3) on polynomials of degree d in x_1, x_2, x_3 . Resolve this representation by Verma modules.