QEEWiki

Search this site

Navigation

Home

My Projects

Leonard Birchall Exhibit PLC [Hardware Project] Q's MAX7456 Img Gen Briefcase Controller [In Development]

3D Printing

SolidWorks Projects

My Books

AVR GUIDE

My Bike

Shadow RS Saddlebag Mounts

Viper Security System Fail

Datasheet Library Friends Tutorials

Components

Usefull Engineering Stuff

Resources Sparkfun

Sparktun

Arduino Reference EEVBlog

Fritzing Projects

Ada Fruit

Pololu Atmel

Atmega8 Datasheet ATMega168/328 Datasheet

AVR Freaks

Software Links

None EE Faves

Minecraft !!!

Escapist Magazine

Ongoing History of New Music

There Will Be BRAWL

White Wolf Ent.

The Game Overthinker

My Books > AVR GUIDE >

Timers on the ATmega168/328

INTRODUCTION:

The timers are the heart of automation. We have seen in previous chapters how we could take in an input, perform mathematical functions on the data and, perform an action. Timers give us an extra level of control by giving us not only control over what happens but when it happens. We can put a time delay on a self destruct in our evil lair, we can control the flash rate of our seizure causing robot and, we could ensure that our death-ray isn't fired before its fully charged. We have control of time MUA HAHAHAHAH.!!!

THEORY OF OPERATION:

A quick review of the previous tutorial (COMMON TIMER/COUNTER THEORY). The clock source (from the internal clock or an external source) sends pulses to the prescaler which divides the pulses by a determined amount. This input is sent to the control circuit which increments the TCNTn register. When the register hits its TOP value it resets to 0 and sends a TOVn (timer overflow) signal which could be used to trigger an interrupt.

Unfortunately, the AVR timer does process time in hours, minutes or seconds (what we are use to). However, being evil masterminds we have the solution, it just requires a bit of math and our old friend, the prescaler.

OCRn = [(clock speed / Prescaler value) * Desired time in Seconds] - 1

Now for the bad news OCRn has to be a whole number. If you end up with a decimal number it means that your desired timer will not be exact. The other thing is that your number has to be able to fit into the register. So 255 for an 8bit timers and 65535 for the 16bit timer.

Normal Mode:

When the prescaler receives a pulse from a clock cycle and passes it onto the Control Logic. The Control Logic increments the TCNTn register by 1. When TCNTn hits the TOP (0xFF in the 8 bit timers and 0xFFFF in the 16 bit timer) it overflows to 0 and sets the TOVn bit in the TIFR register.

The problem with Normal Mode is that it is very hard to use for an exact interval, because of this Normal Mode is only useful if you need a none-specific time interval (say you don't care if it happens every 1 or 2 ms as long as it happens at the same time each time) its nice and easy option. Because, of this limitation many programmers choose to use CTC mode for their timers.

CTC Mode:

CTC stands for "Clear Timer on Compare" and it does the following. When the prescaler receives a pulse from a clock cycle and passes it onto the Control Logic. The Control Logic increments the TCNTn register by 1. The TCNTn register is compared to the OCRn register, when a compare match occurs the TOVn bit is set in the TIFR register.

TIMERO (8BIT PWM):

Figure 1: Timer0 on the ATmega168/328

Unlike the ATmega168/328's Timer0 does have a OCR0 register therefore it is capable of running in normal and CTC mode.

TOV0 can generate a Timer Overflow interrupt. In order to activate the timer0 interrupts you need to SET(1) the TOIE0 bit within the TIMSK register.

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCCR0A	COM0A1	COM0A0	COM0B1	СОМ0В0	-	-	WGM01	WGM00

Timer/Counter Control Register 0 A

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCCR0B	FOC0A	FOC0B	-	-	WGM02	CS02	CS01	CS00

Timer/Counter Control Register 0 B

MODE	WGM02	WGM01	WGM00	DESCRIPTION	TOP
0	0	0	0	Normal	0xFF
1	0	0	1	PWM, Phase Corrected	0xFF
2	0	1	0	СТС	OCR0A
3	0	1	1	Fast PWM	0xFF
4	1	0	0	Reserved	-
5	1	0	1	Fast PWM, Phase Corrected	OCR0A
6	1	1	0	Reserved	-
7	1	1	1	Fast PWM	OCR0A

Waveform Generator Mode bits

CS02	CS01	CS00	DESCRIPTION
0	0	0	Timer/Counter0 Disabled
0	0	1	No Prescaling
0	1	0	Clock / 8
0	1	1	Clock / 64
1	0	0	Clock / 256
1	0	1	Clock / 1024
1	1	0	External clock source on T0 pin, Clock on Falling edge
1	1	1	External clock source on T0 pin, Clock on rising edge

CS bits

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TIMSK0	-	-	-	-	-	OCIE0B	OCIE0A	TOIE0

Timer/Counter Interrupt Mask Register

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TIFR0	-	-	-	-	-	OCF0B	OCF0A	TOV0

Timer/Counter Interrupt Flag Register

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCNT0								

Timer/Counter Register (stores the counter value)

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
OCR0A								

Output Compare Register

Software:

```
ATmega168/328 Code:
```

```
// this code sets up a timer0 for lms @ 16Mhz clock cycle
// in order to function as a time delay at the begining of the main loop
// using no interrupts

#include <avr/io.h>

int main(void)
{
    while (1)
    {
        // Set the Timer Mode to CTC
        TCCR0A |= (1 << WGM01);
        // Set the value that you want to count to
        OCR0A = 0xF9;
        // start the timer</pre>
```

```
TCCR0B \mid= (1 << CS01) \mid (1 << CS00); 
// set prescaler to 64 and start the timer
           while ( (TIFR0 \& (1 << T0V0) ) > 0)
                                                                        // wait for the overflow event
           TIFR0 &= ~(1 << TOV0);
// reset the overflow flag
}
```

ATmega168/328 Code:

```
// this code sets up a timer0 for 4ms @ 16Mhz clock cycle // an interrupt is triggered each time the interval occurs.
#include <avr/io.h>
#include <avr/interrupt.h>
int main(void)
{
     // Set the Timer Mode to CTC TCCR0A \mid= (1 << WGM01);
     // Set the value that you want to count to OCROA = 0xF9;
                                         //Set the ISR COMPA vect
     TIMSKO \mid = (1 \ll OCIEOA);
                         //enable interrupts
     sei();
     TCCR0B \mid= (1 << CS02); // set prescaler to 256 and start the timer
     while (1)
          //main loop
     }
ISR (TIMER0_COMPA_vect) // timer0 overflow interrupt
     //event to be exicuted every 4ms here
}
```

TIMER1 (16BIT PWM):

Figure 2: Timer1 on the ATmega168/328

Timer/Counter1 is the big daddy of timers. It can run in Normal mode (0xFFFF) and 2 CTC modes. The difference between the 2 CTC modes that mode 4 uses the OCR1A register for its compare value and mode 12 uses the ICR1 register.

In normal mode TOV1 can generate a Overflow interrupt. In order to activate the timer1 overflow interrupts you need to SET(1) the TOIE1 bit within the TIMSK1 register.

In CTC (mode 4) mode OCIF1A can generate an interrupt when it detects a compare match. In order to activate the timer1 CTC interrupt SET(1) the OCF1A bit within the TIMSK1 register.

In CTC (mode 12) mode TICIE1 can generate an interrupt when it detects a compare match. In order to activate the timer1 CTC interrupt SET(1) the TICIE1 bit within the TIMSK1 register.

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	-	-	WGM11	WGM10

Timer/Counter Control Register 1 A

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10

Timer/Counter Control Register 1 B

0	Normal	0xFFFF
4		• • • • •
1	PWM, Phase Corrected, 8bit	0x00FF
0	PWM, Phase Corrected, 9bit	0x01FF
1	PWM, Phase Corrected, 10bit	0x03FF
0	СТС	OCR1A
1	Fast PWM, 8bit	0x00FF
0	Fast PWM, 9bit	0x01FF
1	Fast PWM, 10bit	0x03FF
0	PWM, Phase and Frequency Corrected	ICR1
1	PWM, Phase and Frequency Corrected	OCR1A
0	PWM, Phase Correct	ICR1
1	PWM, Phase Correct	OCR
	1 0 1 0 1 0 1 0 1	0 PWM, Phase Corrected, 9bit 1 PWM, Phase Corrected, 10bit 0 CTC 1 Fast PWM, 8bit 0 Fast PWM, 9bit 1 Fast PWM, 10bit 0 PWM, Phase and Frequency Corrected 1 PWM, Phase and Frequency Corrected 0 PWM, Phase Correct

12	1	1	0	0	стс	ICR1
13	1	1	0	1	RESERVED	
14	1	1	1	0	Fast PWM	ICR1
15	1	1	1	1	Fast PWM	OCR1A

Waveform Generator Mode bits

CS12	CS11	CS10	DESCRIPTION
0	0	0	Timer/Counter1 Disabled
0	0	1	No Prescaling
0	1	0	Clock / 8
0	1	1	Clock / 64
1	0	0	Clock / 256
1	0	1	Clock / 1024
1	1	0	External clock source on T1 pin, Clock on Falling edge
1	1	1	External clock source on T1 pin, Clock on rising edge

CS bits

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCCR1C	FOC1A	FOC1B	-	-	-	-	-	-

Timer/Counter Control Register 1 C

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE0

Timer/Counter Interrupt Mask Register

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TIFR1	-	-	ICF1	-	-	OCF1B	OCF1A	TOV1

Timer/Counter Interrupt Flag Register

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCNT1H								
TCNT1L								

Timer/Counter Register (stores the counter value, 16 bit)

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
OCR1AH								
OCR1AL								

Output Compare Register A (stores the compare value, 16 bit)

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
ICR1								
ICR1								

Input Compare Register (can be used to stores the compare value, 16 bit)

Software:

ATmega168/328 Code:

```
// this code sets up timer1 for a 1s @ 16Mhz Clock (mode 4)

#include <avr/io.h>
#include <avr/interrupt.h>

int main(void)
{
    OCR1A = 0x3D08;
    TCCR1B |= (1 << WGM12);
    // Mode 4, CTC on OCR1A
    TIMSK1 |= (1 << OCIE1A);
    //Set interrupt on compare match
    TCCR1B |= (1 << CS12) | (1 << CS10);
    // set prescaler to 1024 and start the timer

    sei();
    // enable interrupts

    while (1)
    {
        // we have a working Timer
    }
}</pre>
```

```
ISR (TIMER1_COMPA_vect)
{
    // action to be done every 1 sec
}

ATmega168/328 Code:

// this code sets up timer1 for a 200ms @ 16Mhz Clock (Mode 12)

#include <avr/io.h>
#include <avr/interrupt.h>

int main(void)
{
    ICR1 = 0x30D3;
    TCCR1B |= (1 << WGM12);
    // Mode 4, CTC on OCR1A

    TIMSK1 |= (1 << ICIE1);
    //Set interrupt on compare match

    TCCR1B |= (1 << CS12);
    // set prescaler to 256 and starts the timer

    sei();
    // enable interrupts</pre>
```

TIMER2 (8BIT PWM):

while (1)

ISR (TIMER1_COMPA_vect)

}

// we have a working Timer

// action to be done every 200ms

Figure 3: Timer2 on the ATmega168/328

Timer/Counter2 is the preferred timer among programmers for short time delays because, its prescaler has the greatest number of options . It can run in Normal mode or CTC modes.

In normal mode TOV2 can generate a Overflow interrupt. In order to activate the timer1 overflow interrupts you need to SET(1) the TOIE1 bit within the TIMSK2 register.

In CTC mode OCIF2 can generate an interrupt when it detects a compare match. In order to activate the timer1 CTC interrupt SET(1) the OCF2 bit within the TIMSK register.

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCCR	A COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20

Timer/Counter Control Register 2

MODE	WGM21	WGM20	DESCRIPTION	TOP
0	0	0	Normal	0xFF
1	0	1	PWM Phase Corrected	
2	1	0	стс	OCR2
3	1	1	Fast PWM	

Waveform Generator Mode bits

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20

Timer/Counter Control Register 2

CS22	CS21	CS20	DESCRIPTION
0	0	0	Timer/Counter2 Disabled
0	0	1	No Prescaling
0	1	0	Clock / 8
0	1	1	Clock / 32
1	0	0	Clock / 64
1	0	1	Clock / 128
1	1	0	Clock / 256
1	1	1	Clock / 1024

CS bits

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2

Timer/Counter Interrupt Mask Register 2

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2

Timer/Counter Interrupt Flag Register 2

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
TCNT2								

Timer/Counter Register 2 (stores the counter value)

	7 bit	6 bit	5 bit	4 bit	3 bit	2 bit	1 bit	0 bit
OCR2								

Output Compare Register 2 (stores the compare value)

Software:

```
Timers on the ATmega168/328 - QEEWiki
  ISR (TIMER2_COMPA_vect)
        // action to be done every 250 usec
  Thanks all folks.
Cheers.
                                                       Comments? Questions? Problems with content? <a href="mailto:q.qeewiki@gmail.com">q.qeewiki@gmail.com</a>
```

Комментарии

У вас нет прав для добавления комментариев.

Войти | Пожаловаться | Печать страницы | На основе Google Сайтов