Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2021/22

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. K. Hübner

Blatt 6

Abgabetermin: Freitag, 3.12.2021, 09.30 Uhr

Aufgabe 1 (6 Punkte).

- (a) Bestimmen Sie die Idealklassengruppe von $\mathbb{Q}(\sqrt{-6})$.
- (b) Zeigen Sie, dass es keine ganzzahligen Lösungen folgender Gleichung gibt:

$$x^3 = y^2 + 6$$

Hinweis: Betrachten Sie die Primidealzerlegung des Hauptideals $(y + \sqrt{-6})$.

Aufgabe 2 (6 Punkte). Sei $K = \mathbb{Q}(\sqrt{d})$ ein quadratischer Zahlkörper (mit d quadratfrei). Zeigen Sie: Das Ideal $(2) \subset \mathcal{O}_K$ ist

- das Quadrat eines Primideals \mathfrak{p} , falls $d \not\equiv 1 \mod 4$;
- das Produkt zweier verschiedener Primideale $\mathfrak{p}_1, \mathfrak{p}_2$, falls $d \equiv 1 \mod 8$;
- prim, falls $d \equiv 5 \mod 8$.

Geben Sie in den jeweiligen Fällen Erzeuger für \mathfrak{p} bzw. $\mathfrak{p}_1, \mathfrak{p}_2$ an.

Aufgabe 3 (6 Punkte). Zeigen Sie, dass die Idealklassengruppe von $\mathbb{Q}(\sqrt{-14})$ isomorph zu $\mathbb{Z}/4\mathbb{Z}$ ist.

Aufgabe 4 (6 Punkte). Es sei K ein Zahlkörper und $[K:\mathbb{Q}]=n$. Zeigen Sie:

- (a) In jedem Primideal (0) $\neq \mathfrak{p} \subset \mathcal{O}_K$ liegt genau eine Primzahl $p \in \mathbb{N}$, und es gilt $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$. Die Norm $\mathfrak{N}(\mathfrak{p})$ ist von der Form p^r mit $r \leq n$.
- (b) Angenommen, K ist ein quadratischer Zahlkörper mit Diskriminante $d_K < 0$. Sei $\mathfrak{p} \subset \mathcal{O}_K$ ein Ideal, für das $\mathfrak{N}(\mathfrak{p})$ eine Primzahl kleiner $-d_K/4$ ist. Dann ist \mathfrak{p} ein Primideal, aber kein Hauptideal.