Laboratory 2: Postlab		
Date 02/02/2022 Name Mingxi Xia	Section 02	

Addressing in MIPS (continued)

In this exercise you will continue exploring addressing in MIPS. You are also required to detail the memory model SPIM implements.

Step 1

As you could see during the inlab exercise, one can not run on the bare machine code that uses the extended instruction set.

Based on *lab2.2.asm* create a new program that will do the same thing but will be able to run on the bare machine. Save this as *lab2.3.asm*. Optimize your code as much as possible.

Q1:

What is the number of instructions executed? Count only instructions between the label 'main' and the last instruction executed from your program.

Instruction Count = 14

Step 2

Create the program *lab2.4.asm* as follows:

- reserve space in memory for two variables called *var1* and *var2* of size word. The initial values of these variables will be the first two digits of your SSN for *var1* and the next two digits of your SSN for *var2*
- also reserve space in memory for two variables called *ext1* and *ext2* of size word. Use the '.extern' declaration for these two variables. The assembler will reserve space for them in the data segment that can be accessed using the \$gp register
- the program copies the values of var1 and var2 in ext2 and ext1 respectively
- use registers \$t0 to \$t8 if you need to
- use the extended instruction set
- each line in the program has a comment indicating what the instruction does

Q 2:

What are the displacements of ext1 and ext2 from the global pointer (\$gp) value?

Variable	Displacement (decimal)	Displacement (hexadecimal)
Ext1	-32768	8000
Ext2	-32764	8004

Q3:

What exactly are the addresses where variables are stored in memory?

Variable	Address (hexadecimal)
var1	10010000
var2	10010004
ext1	10000000
ext2	10000004

Q 4:

How many native instructions are needed for each of the following memory accesses?

Memory Access	Native Instructions
lw \$t0, var1	lui \$1, 4097
	lw \$8, O(\$1)
sw \$t0, ext1	sw \$8, -32768(\$28)

Step 3

Return to your lab instructor copies of *lab2.3.asm* and *lab2.4.asm* together with this postlab description. Ask your lab instructor whether copies of programs must be on paper (hardcopy), e-mail or both.