

F.E. Semester – I (Revised in 2007-08) Examination, May/June 2015 BASIC ELECTRICAL ENGINEERING

Duration: 3 Hours Total Marks: 100

Instructions: 1) Answer any five questions with atleast one question from each module.

2) Assume suitable additional data if necessary.

MODULE-I

- a) Define capacitance from its energy and geometrical viewpoints. Derive the expression for equivalent capacitance, when two capacitances are connected in series.
 - b) R_1 , R_2 and R_3 are the resistances of the three arms of a star. The star is converted into an equivalent delta, the resistances of which are R_a , R_b and R_c . Derive the expressions for R_a , R_b and R_c in terms of R_1 , R_2 and R_3 .
 - c) Using Thevenin's theorem, find the current in the $20\,\Omega$ resistor for the circuit given in fig (1c).

- 2. a) State the explain Norton's theorem with the help of neat sketches.
 - b) In the circuit given in fig. (2b), find the value of resistance R if the current flowing through it is 0.8 Amps.

6

6

8

6

8

6

7

8

6

6

c) An inductor of 0.1 H has current waveform as shown in fig. (2c). Sketch the voltage waveform in time synchronism across the inductor.

MODULE - II

- 3. a) State and explain Ampere's circuital law.
 - b) Explain how energy is stored in a magnetic field. Derive the expression for energy stored in a magnetic field.
 - c) Two coils having 1000 turns and length of magnetic path of 100 cm are placed side by side. The cross-sectional area of their core is 500 cm². The mutual inductance between them is 25 mH. Find the self inductances of the coils and the coefficient of coupling between them. What are magnetically coupled coils?
- 4. a) State the similarities and differences between electric and magnetic circuits.
 - b) Derive the expression for equivalent inductance. When two coils are coupled in series and the direction of current through them is opposite.
 - c) An iron ring has a mean length of 50 cm and a uniform cross-sectional area of 5 cm². The ring is uniformly wound with 240 turns and a magnetising current of 2A, produces a flux of 0.4 mwb. calculate
 - i) Reluctance of the magnetic circuit
 - ii) Relative permeability of iron.

MODULE-III

5.	a)	Derive the relationships between phase and line currents and also between phase and line voltages in a delta connected balanced three phase system.	8
	b)	The expressions for instantaneous values of two currents are given by $i_1 = 30 \sin(\omega t + 60^\circ)$ and $i_2 = 10 \sin(\omega t - 45^\circ)$. Find the expression for the instantaneous value of resultant current by addition of the two currents.	5
	c)	A circuit consists of a resistance of 20Ω , an inductance of $0.05H$ connected in series. A supply of 230 V at 50 Hz is applied across the circuit. Find the current, power factor and power consumed by the circuit. Draw the phasor diagram.	7
6.	a)	Explain the concept of phasors and show how an ac quantity can be	
	u)	represented by a phasor.	6
	b)	Show that, in a single phase c-circuit, the current leads the applied voltage by 90°. Draw the phasor diagram and the waveforms of instantaneous values of voltage and current.	7
	c)	When three balanced impedances are connected in star, across a 3-phase, 415 V, 50 Hz supply, the line current drawn is 20 A, at a lagging power factor of 0.4. Determine the parameters of the impedance in each phase.	7
		MODULE - IV	
7.	-a)	With the help of a neat sketch, explain the construction and working of dynamometer type instruments. Mention its advantages.	10
	b)	Describe the construction of a core type and shell type single phase transformer.	6
	c)	The primary winding of a 25 KVA transformer has 200 turns and is connected to 230 V, 50 Hz supply. The secondary turns are 50. Calculate: i) Full load primary and secondary currents ii) Flux density in the core, if the cross-sectional area of the core is 60 cm ² .	4
8.	a)	Write a short note on open and short circuit tests on a single phase transformer.	8
	b)	Explain the following terms related to transformer. i) Voltage regulation ii) Efficiency	
		iii) Transformation ratio, step up and step down transformer.	6
	c)	A 3-phase load takes an input power of 40 kW at 0.45 P.F. lag. Find the reading of each of the two single phase wattmeters connected to measure the input power.	6