	Ex. 3.8
	We will examine the QR decomposition of X
	and notice What remains when we Put it in
	terms of Q2
	国
	$X = QR$, Now if $\hat{Z}_i = \frac{Z_i}{\ Z_i\ }$ (as described by alg 3.1)
•	We have: Q = [\(\hat{Z}_0, \hat{Z}_1,, \hat{Z}_p \) (dim: N x (P+1))
	and by def of D and P?
	We have: $Q = \begin{bmatrix} E_0, E_1,, E_p \end{bmatrix}$ and $D = \begin{bmatrix} \widehat{Z}_0, \widehat{Z}_0, \widehat{X}_1 \\ \widehat{Z}_0, \widehat{X}_1 \end{bmatrix}$, $(\widehat{Z}_0, \widehat{X}_1)$, $(\widehat{Z}_0, \widehat{X}_2)$
	K ₂
	We Will call the first row R1, a 1 x (P+1) Vector
	Then we are left with Op a P (M) vector of O's
	and Ra, the PxP remainder of R.
	Note: This is the County
	Solving Ki Using:
0	$\langle \hat{Z}_0, 1 \rangle = N_{\overline{N}}$ and $\langle \hat{Z}_0, \chi_i \rangle = \sum_{N} \chi_i$
	$\Rightarrow R = [N, \Sigma X_1, \Sigma X_2,, \Sigma X_r]$
	- N /N L IV , Z N. , Z N. , Z N. , Z
	Thus we can decompose QR:
	$X = QR = \hat{Z}_0 R_1 + Q_2 [\hat{O}_0, R_2]$
	$\frac{2}{Z_0}R_1 = \frac{1}{2}\frac{\chi_1}{\chi_2}\frac{\chi_2}{\chi_2}$ (NxP+1)
	(Nx1) (1x(P+1)) :
	$\left[\begin{array}{ccc} 1 & \overline{X}_1 & \overline{X}_2 \end{array} \right]$

