G: GC E: Earth S: SN **B**: Boosted point β : off-centered angle $d\cos\theta$ θ : open-angle (will be integrated out) α : the deflection angle $(\theta$ -dependent) D = ct (SNv propagtion length) *r'*: the distance from B to $d\cos\theta$ G, will be used to calcu $h\sin\varphi$ late $n_{\nu}(r')$. This term varies with φ . When R_{\oplus} $\varphi = 0$, it is special $\ell \sin \iota - h \sin \phi$ with r' = r.

In the limit of SN at GC (S = G), we have $\beta = 0$ and $R_{\star} = R_{\oplus}$. Thus we recover

$$\ell = R_{\oplus} - d\cos\theta$$

$$r^2 = h^2 + \ell^2 = d^2\sin^2\theta + (R_{\oplus} - d\cos\theta)^2$$

$$= R_{\oplus}^2 + d^2 - R_{\oplus}d\cos\theta = D^2$$

$$\therefore r = D \text{ as desired!}$$

 $= \ell^2 + h^2 \sin^2 \phi + h^2 \cos^2 \phi$

 $=\ell^2+h^2=r^2$ as desired!