Lecture 4

- Read: Chapter 2.3-2.7.
- Discrete Random Variables
 - Some Useful Discrete Random Variables
 - Cumulative Distribution Function (CDF)
 - Averages
 - Functions of a Random Variable
 - Expected Value of a Derived Random Variable

Bernoulli RV

A RV is a Bernoulli RV if it can take only two values, often identified with success or failure, such that

e.g.,
$$p_X(x) = \begin{cases} 1-p & \text{, } x=0 \\ p & \text{, } x=1 \\ 0 & \text{, otherwise} \end{cases}$$

We say $X \sim \text{Bernoulli}(p)$, where " \sim " signifies X has a Bernoulli PMF with parameter p.

Example:

- Get the phone number of a random student
- Let X = 0 if the last digit is even
- Otherwise, let X = 1

With multiple Bernoulli trials, we can construct more complicated RVs.

Geometric RV

Consider repeatedly performing Bernoulli trials each with probability p of success. How many trials Y does it take until we see our first success?

Example:

- Suppose a circuit is rejected with probability p
- Let Y = # of circuits tested up to and including the first rejection $p \nearrow r$ •Y=1 $p \nearrow r$ •Y=2 $p \nearrow r$ •Y=3

- $S_Y = \{1, 2, 3, 4, ...\}$
- P[Y=1] = p, P[Y=2] = (1-p)p, $P[Y=3] = (1-p)^2p$, and in general, $P[Y=y] = (1-p)^{y-1}p$ $p_Y(y) = \begin{cases} (1-p)^{y-1}p & \text{, } y=1,2...\\ 0 & \text{, otherwise} \end{cases}$

Geometric RV (cont.)

• Y is referred to as a geometric RV because the probabilities in the PMF decline geometrically

Binomial RV

Consider performing n successive Bernoulli trials each with success probability p. How many successes K will you see? Example:

- Test n circuits, each circuit is rejected with probability p
- Let K = # of rejected circuits $S_K = \{0, 1, 2, ..., n 1, n\}$

$$p_K(k) = \begin{cases} \underbrace{\binom{n}{k}}_{\text{no. of seq. with } k \text{ successes}} & \underbrace{p^k (1-p)^{n-k}}_{\text{prob. of seq. with } k \text{ successes}} & \text{, } k = 0, ..., n \\ 0 & \text{, otherwise} \end{cases}$$

Binomial RV (cont.)

Binomial RV Example: Service Facility Design

- n: customers
- p: probability customer requires service
- s: no. of service persons
- X: no. of service requests (RV)

$$P[X > s] = P[X = s + 1] + ... + P[X = n]$$

$$= p_X(s + 1) + ... + p_X(n)$$

$$= \sum_{i=s+1}^{n} {n \choose i} p^i (1 - p)^{n-i}$$

Pascal RV

Consider repeatedly performing Bernoulli trials, each with probability p of success. How many trials L until you have seen k successes?

Example:

- Suppose a circuit is rejected with probability p
- Let L= # of tests until we see k rejects

$$P[L=I] = P[k-1 \text{ rejects in } I-1 \text{ attempts, success on attempt } I]$$

$$= {\binom{I-1}{k-1}} p^{k-1} (1-p)^{I-1-(k-1)} \times p$$

•
$$S_L = \{k, k+1, k+2, ...\}$$

$$p_L(I) = \begin{cases} \binom{l-1}{k-1} p^k (1-p)^{l-k} & , l=k, k+1, k+2, ... \\ 0 & , \text{ otherwise} \end{cases}$$

Random Variable Examples: Lottery

Example: Lottery \rightarrow 2 possible outcomes: Win or Lose

1. What distribution would you use to model 1 play of the lottery?

$$\Rightarrow$$
 Bernoulli $X = egin{cases} 1 & \text{, with probability } p \ 0 & \text{, with probability } (1-p) \end{cases}$

$$1 = \text{win}, p \text{ is small (e.g., } 10^{-12})$$

- 2. I keep playing the lottery until I win. How long until I win for the first time?
 - ⇒ Geometric
- 3. How long until I have won k times?
 - \Rightarrow Pascal
- 4. How many times will I win if I play n times?
 - \Rightarrow Binomial

Random Variable Examples: Summary

- Bernoulli: Number of successes in one trial
- Geometric: Number of trials until first success
- Binomial: Number of successes in *n* trials
- Pascal: Number of trials until success k

Discrete Uniform RV

X is a discrete uniform random variable if the PMF of X has the form

$$p_X(x) = \begin{cases} \frac{1}{(I-k+1)} & \text{, } x = k, k+1, k+2, ..., I \\ 0 & \text{, otherwise} \end{cases}$$

where the parameters k and l are integers such that k < l

Example:

- Roll a fair die
- N is a discrete uniform random variable with k=1 and l=6

Poisson RV

- Used to count arrivals (of something)
 - Arrival of information requests at a WWW server, initiation of telephone calls, emission of particles from a radioactive source
- Arrival rate, λ arrivals/second and a time interval, T seconds
 - In this time interval, the number of arrivals X has a Poisson PMF with $\alpha = \lambda T =$ "avg # of arrivals"
- X is a Poisson random variable if its PMF is

$$p_X(x) = egin{cases} rac{(\lambda T)^x}{x!} e^{-\lambda T} & \text{, } x = 0, 1, 2, ... \\ 0 & \text{, otherwise} \end{cases}$$

Poisson RV (cont.)

 While the time of each occurrence is completely random, there is a known average number of occurrences per unit time

- ullet Arrival rate, λ arrivals/second and a time interval, T seconds
 - In this time interval, the number of arrivals X has a Poisson PMF with $\alpha = \lambda T =$ "avg # of arrivals"

Poisson RV (cont.)

• The PMF $e^{-\lambda}\lambda^k/k!$ of the Poisson random variable for different values of λ :

- If $\lambda < 1$, then the PMF is monotonically decreasing.
- If $\lambda > 1$, the PMF first increases and then decreases as the value of k increases.

Example 2.20

The number of database queries processed by a computer in any 10-second interval is a Poisson random variable, K, with $\alpha = 5$ queries. What is the probability that there will be no queries processed in a 10-second interval?

• The PMF of K is

$$p_K(k) = egin{cases} rac{5^k e^{-5}}{k!} & \text{, } k = 0, 1, 2, ... \\ 0 & \text{, otherwise} \end{cases}$$

• Therefore, $P[K = 0] = p_K(0) = e^{-5} = 0.0067$.

Example 2.20 (cont.)

The number of database queries processed by a computer in any 10-second interval is a Poisson random variable, K, with $\alpha = 5$ queries. What is the probability that at least two queries will be processed in a 2-second interval?

- To answer the question about the 2-second interval, we note in the problem definition that $\alpha = 5$ queries = λT with T = 10 seconds.
- Therefore, λ = 0.5 queries per second.
- If N is the number of queries processed in a 2-second interval, $\alpha=2\lambda=1$ and N is the Poisson(1) random variable with PMF

$$p_N(n) = \begin{cases} \frac{1^n e^{-1}}{n!} & \text{, } n = 0, 1, 2, \dots \\ 0 & \text{, otherwise} \end{cases}$$

Therefore,

$$P[N \ge 2] = 1 - p_N(0) - p_N(1) = 1 - e^{-1} - e^{-1} = 0.264$$

Binomial and Poisson Distributions

- Poisson(np) is an approximation for Binomial(np) as n becomes large for a fixed np.
- For example, when modeling telephone calls generated by a large population.

Binomial and Poisson Distributions (cont.)

Theorem:

- Perform n Bernoulli trials
- In each trial, let the probability of success be α/n , where $\alpha>0$ is a constant and $n>\alpha$
- Let the random variable K_n be the number of successes in the n trials
- As $n \to \infty$, $p_{K_n}(k)$ converges to the PMF of a Poisson(α) random variable

Discrete RV and PMF Summary

- RV \rightarrow assigns a number X to each outcome
- Discrete RVs o take discrete set of values S_X
- PMF of X: $p_X(x) = P[X = x]$

Cumulative Distribution Function (CDF)

• **Definition:** The CDF of a RV X is a function

$$F_X(x) = P[X \le x]$$

• Example: At the discontinuities r = 0 and r = 2, $F_R(r)$ takes on the upper values (right-hand limit)

$$P[R \le 0] = 1/4$$

 $P[R \le r] = 1/4$, for $0 \le r < 2$
 $P[R \le 2] = P[R = 0] + P[R = 2] = 1$

CDF Properties

For any discrete RV, with range $S_X = \{x_1, x_2, x_3, ...\}$ satisfying $x_1 < x_2 < x_3 < ...$

1.
$$F_X(-\infty) = 0$$
, $F_X(+\infty) = 1$

2. If $x' \ge x$, then $F_X(x') \ge F_X(x)$

CDF Properties (cont.)

3. For $x_i \in S_X$ and an arbitrarily small positive number, $\epsilon > 0$

$$F_X(x_i) - F_X(x_i - \epsilon) = P[x_i - \epsilon < X \le x_i]$$

= $p_X(x_i) = P[X = x_i]$

4. $F_X(x) = F_X(x_i)$ for all x such that $x_i \le x < x_{i+1}$

CDF Properties in Words

- 1. Going from left to right on the x-axis, $F_X(x)$ starts at 0 and ends at 1.
- 2. The CDF never decreases as it goes from left to right.
- 3. For a discrete random variable X, there is a jump (discontinuity) at each value of $x_i \in S_X$. The height of the jump at x_i is $p_X(x_i)$.
- 4. Between jumps, the graph of the CDF of the discrete random variable *X* is a horizontal line.

Another Important Consequence of Definition of CDF

The difference between the CDF evaluated at two points is the probability that the random variable takes on a value between these two points:

For all
$$b \ge a$$
, $P[a < X \le b] = F_X(b) - F_X(a)$

Discrete RVs

- sample space S
- an outcome $s \in S$
- an event $A \subset S$
- Probability measure assigns a number between [0,1] to each event
 - $P: A \mapsto P[A]$
 - satisfies three axioms
- random variable: X assigns a real number to each outcome
 - $X : S \mapsto \mathbb{R}$ (not necessarily a 1-1 function) $s \mapsto X(s)$

Discrete RVs

• discrete random variable: RV such that its range S_X is countable

• PMF:
$$p_X(x) = P[X = x] = P[\underbrace{\{s \in S | X(s) = x\}}_{\text{this is an event, i.e., a subset of } S}]$$

• e.g.,
$$p_X(1) = P[X = 1] = P[\{s_1, s_2\}]$$

- **geometric** RV: X is such that $p_X(x) = (1-p)^{x-1}p$, x = 1, 2, 3, ...
- CDF of a RV X: $F_X(x) = P[X \le x] = P[\underbrace{\{s \in S | X(s) \le x\}}_{\text{event}}]$

Discrete RVs: Example

Example:

- Box contains: 2 red balls, 1 yellow, 1 blue
- Experiment: select a ball out of the box at random
- *S* = {red, yellow, blue}

•
$$P[\{\text{red}\}] = \frac{1}{2}$$
 $P[\{\text{yellow}\}] = \frac{1}{4} = P[\{\text{blue}\}]$
 $P[\{\text{red},\text{blue}\}] = \frac{3}{4}$

$$\begin{array}{c} \mathsf{X} \colon \mathsf{red} \mapsto 1 \\ \mathsf{blue} \mapsto 1 \\ \mathsf{yellow} \mapsto -\pi \end{array}$$

Discrete RVs: Example (cont.)

• What is PMF of X?

$$S_X = \{-\pi, 1\}$$
 $p_X(1) = P[X = 1] = P[\{s \in S | X(s) = 1\}] = P[\{\text{red,blue}\}] = \frac{3}{4}$
 $p_X(-\pi) = P[X = -\pi] = P[\{\text{yellow}\}] = \frac{1}{4}$

Averages: Example

 For one quiz, 10 students have the following grades (on a scale of 0 to 10):

• Find the mean, the median, and the mode.

- mean = (9+5+10+8+4+7+5+5+8+7)/10 = 68/10 = 6.8
- median = 7 (since there are four scores below 7 and four scores above 7 \rightarrow 4 5 5 5 7 7 8 8 9 10)
- mode = 5 (since that score occurs more often than any other)

Average and Expected Value

- Preceding comments on averages apply to sets of data collected by an experimenter.
- Corresponding to these averages are mathematical quantities that describe the random variables and their probability models.
 - Each average is a number that can be computed from the PMF or CDF of the RV.
- The most important of these is the **expectation**, or **expected** value, of an RV.
 - We will work with expectations throughout the course.

Mode and Median

• Mode: A mode, x_{mode} of RV X is a number that satisfies $p_X(x_{mode}) \ge p_X(x)$ for all x ("value most likely to occur").

• Median: A median, x_{median} of RV X is the number that satisfies $P[X < x_{median}] = P[X > x_{median}]$. (1/2 probability that the outcome is above the median, 1/2 probability that the outcome is below the median.)

- . E[S] = "can be large due to outlier"
- mode = 30K
- median ≈ 30K

Mode and Median (cont.)

- If we read the definitions of mode and median carefully, we will observe that neither the mode nor the median of an RV need be unique.
 - A random variable can have several modes or medians.

Expected Value

- Corresponds to adding up a number of measurements and dividing by the number of terms in the sum
- Two notations: E[X] and μ_X
- Synonyms: Expectation and mean value
- <u>Definition:</u>(Expected Value) The expected value of X is

$$E[X] = \mu_{x} = \sum_{x \in S_{x}} x \underbrace{p_{X}(x)}_{\text{possible}}$$
 possible likelihood or probability value that that x is taken

 Note: It is important to understand that E[X] is one number that describes the entire probability model of X. However, since E[X] is just one number, it does not provide a complete description of the RV X.

Expected Value: Example

• Expected value of X is

$$E[X] = \sum_{x \in S_X} x p_X(x)$$

$$= 1 \cdot \frac{1}{4} + 2 \cdot \frac{1}{4} + 3 \cdot \frac{1}{4} + 4 \cdot \frac{1}{4} = 2.5$$

Expected Value: Center of Mass Interpretation

- The definition of expected value may look familiar from physics (mechanics).
- Think of point masses on a line with a mass of $p_X(x)$ kg at a distance of x meters from the origin.
- In this model, μ_{x} in the definition above is the center of mass.
 - This is why $p_X(x)$ is called probability mass function.

Expected Value & Sum of a Collection of Measurements

- To understand how this definition of expected value corresponds to the notion of adding up a set of measurements, suppose we have an experiment that produces an RV X and we perform n independent trials of this experiment.
- We denote the value that x takes on in the ith trial by x(i).
 - We say that x(1), ..., x(n) is a set of n sample values of X.
 - Corresponding to the average of a set of numbers, we have after n trials of the experiment, the sample average

$$m_n = \frac{1}{n} \sum_{i=1}^n x(i)$$

- Each x(i) takes values from the set S_x . Out of the n trials, assume that each $x \in S_x$ occurs N_x times.
- Then, the sum above becomes

$$m_n = \frac{1}{n} \sum_{x \in S} N_x x = \sum_{x \in S} \frac{N_x}{n} x$$

Expected Value and Relative Frequency (I)

- Recall our discussion of the "relative frequency" interpretation of probability.
- If in n observations of an experiment, the event A occurs N_A times, we can interpret the probability of A as:

$$P[A] = \lim_{n \to \infty} \frac{N_A}{n}$$

• This is the relative frequency of A. In the notation of RVs, we have the corresponding observation that

$$p_X(x) = \lim_{n \to \infty} \frac{N_x}{n}$$

Expected Value and Relative Frequency (II)

This suggests that

$$\lim_{n\to\infty} m_n = \sum_{x\in S_x} x p_X(x) = E[X]$$

- The equation above says that the definition of E[X]
 corresponds to a model of doing the same experiment
 repeatedly.
- After each trial, we add up all the observations to date and divide by the number of trials.
- The result approaches the expected value as the number of trials increases without limit.

Expected Values of RVs

- We can use the definition of expected value to derive the expected value of each family of random variables.
- Theorem: The expected value of Bernoulli RV X is E[X] = p.
 - **Proof:** $E[X] = 0 \cdot p_X(0) + 1 \cdot p_X(1) = 0(1-p) + 1(p) = p$.
- Theorem: The expected value of geometric RV X is E[X] = 1/p.
 - **Proof:** $X \sim \text{geometric}(p), p_X(x) = (1-p)^{x-1}p$, x = 1, 2, ...

$$E[X] = \sum_{x=1}^{\infty} x \cdot p_X(x) = \sum_{x=1}^{\infty} x(1-p)^{x-1}p = p\left[\sum_{x=1}^{\infty} x(1-p)^{x-1}\right]$$

Let q = 1 - p.

$$E[X] = p \left[\sum_{x=1}^{\infty} xq^{x-1} \right]$$

Expected Values of RVs (cont.)

$$\sum_{x=0}^{\infty} q^x = \frac{1}{1-q}$$

Taking the partial derivative of both sides,

$$\frac{\partial}{\partial q} \left(\sum_{x=0}^{\infty} q^{x} \right) = \frac{\partial}{\partial q} \left(\frac{1}{1-q} \right)$$
$$\left(\sum_{x=0}^{\infty} x q^{x-1} \right) = \frac{1}{(1-q)^{2}} = \frac{1}{p^{2}}$$

Thus,

$$E[X] = p \cdot \frac{1}{p^2} = \frac{1}{p}$$

If the probability of rejecting a circuit is p=1/5, to observe the first reject, we have to conduct on average E[Y]=1/p=5 tests (if p=1/10, we must conduct 10 tests).

Expected Values of RVs (cont.)

- Theorem: The expected value of Poisson RV X is $E[X] = \alpha$.
- Theorem: (a) For binomial RV X, E[X] = np.
 - (b) For Pascal RV X, E[X] = k/p.
 - (c) For discrete uniform RV X, E[X] = (k + I)/2.

Derived Random Variables

- Idea: An RV that is a function of another RV.
- <u>Definition</u>: (Derived RV) Each sample value y of a derived RV Y is a mathematical function g(x) of a sample value x of another RV X. We adopt the notation Y = g(X) to describe the relationship of the two RVs.

Example: Signal-noise ratio of a radio receiver, x,

we observe as the ratio of two strengths. We convert to decibel using $y=10log_{10}x$.

$$X \longrightarrow g(\cdot) \longrightarrow Y = g(X)$$

• Suppose we know the PMF of X. What is the PMF of Y = g(X)?

$$p_Y(y) = P[Y = y] = P[\{x \in S_x \mid g(x) = y\}]$$

$$= \sum_{x:g(x)=y} p_X(x)$$
Sum for all outcomes $X = x$ for which $Y = y$

PMF of Derived Random Variable: Example

Example:

$$X = \begin{cases} -1 & \text{, with probability } 1/3 \\ 0 & \text{, with probability } 1/3 \\ 1 & \text{, with probability } 1/3 \end{cases}$$

- $p_X(-1) = 1/3$
- Let $g(x) = x^2$ and $Y = g(X) = X^2$.
- Note: $S_Y = \{0,1\}$.
- $p_Y(0) = P(Y=0) = P(X=0) = 1/3$
- $p_Y(1) = P(Y=1) = P(X=-1) + P(X=1) = 2/3$

Expected Value of a Derived Random Variable: Example

- Suppose the PMF of X is given. What is the expected value of Y = g(X)?
- Theorem: $E[Y] = \sum_{x \in S_x} g(x) p_X(x)$
- Example: Using the theorem,

$$E[Y] = g(-1) \cdot \frac{1}{3} + g(0) \cdot \frac{1}{3} + g(1) \cdot \frac{1}{3} = 1 \cdot \frac{1}{3} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{3} = \frac{2}{3}$$
OR

$$E[Y] = 1 \cdot P[Y = 1] + 0 \cdot P[Y = 0] = 1 \cdot \frac{2}{3} + 0 \cdot \frac{1}{3} = \frac{2}{3}$$
$$= \sum_{y \in S_Y} y p_Y(y)$$

Derived Random Variables

$$X \longrightarrow g(\cdot) \longrightarrow Y = g(X)$$

Two types of problems:

- 1. Given $p_X(x)$ and g(), find $p_Y(y)$.
- 2. Given $p_X(x)$ and g(), find E[Y].

Derived Random Variables: Problem Examples

$$X = \begin{cases} -1 & \text{, with probability } 1/6 \\ 0 & \text{, with probability } 1/3 \\ 1 & \text{, with probability } 1/2 \end{cases}$$

g(x) = |x| (absolute value of x)

• Problem 1:
$$Y = |X|$$
, so $S_Y = \{0, 1\}$.
 $p_Y(0) = P[Y = 0] = P[|X| = 0] = P[X = 0] = p_X(0) = 1/3$
 $p_Y(1) = P[Y = 1] = P[\{X = -1\} \cup \{X = 1\}]$
 $= p_X(1) + p_X(-1) = 2/3$

$$\frac{\text{blem 2:}}{E[Y]} = \sum_{y \in S_Y} y p_Y(y) \stackrel{\text{using result of Problem 1}}{\stackrel{\downarrow}{=}} \frac{1}{3} \cdot 0 + \frac{2}{3} \cdot 1 = \frac{2}{3}$$

Alternatively,
$$E[Y] = \sum_{x \in S_x} g(x) p_X(x) = g(-1) \cdot \frac{1}{6} + g(0) \cdot \frac{1}{3} + g(1) \cdot \frac{1}{2}$$
$$= 1 \cdot \frac{1}{6} + 0 \cdot \frac{1}{3} + 1 \cdot \frac{1}{2} = \frac{2}{3}$$

Derived Random Variable Examples: Expectation & Variance

• Examples:

1.
$$Y = aX + b$$
, also given $p_X(x)$

$$E[Y] = \sum_{x \in S_X} (ax + b)p_X(x)$$

$$= a \sum_{x \in S_X} xp_X(x) + b \sum_{x \in S_X} p_X(x)$$

$$= aE[X] + b$$

$$Y = (X - \mu_x)^2$$
, Note: $\mu_x = E[X]$

$$E[Y] = \sum_{x \in S} (x - \mu_x)^2 p_X(x) = Var[X] = \sigma_x^2$$

Expectation: Classic Mistake

- Caution: In general, $E[g(X)] \neq g(E[X])$.
- Example: It is NOT true, in general, that $E[X^2] = (E[X])^2$, since this means that Var[X] = 0.

Expectation: Classic Mistake Example

 Let us drive a distance of 200 km, at a constant but random speed V.

Expectation: Classic Mistake Example

What is the expected time E[T] to get from A to B?

$$T = \frac{200}{V}$$

$$E[T] = \sum_{v \in S_V} \frac{200}{v} p_V(v) = \frac{200}{5} \cdot \frac{1}{2} + \frac{200}{100} \cdot \frac{1}{2} = \underline{21 \text{ hours}}$$

Mistake:

$$E[V] = \frac{1}{2} \cdot 5 + \frac{1}{2} \cdot 100 = 52.5 \text{ km/hr}$$

$$\implies E[T] \neq \frac{200}{E[V]} = \frac{200}{52.5} = 3.8 \text{ hours}$$