Classical MD and water models

Professor Kulik hjkulik@mit.edu

Water: simple models

Lab 3

3-site rigid water models:

$$E_{ab} = \sum_{i}^{\text{on } a \text{ on } b} \frac{k_{C} q_{i} q_{j}}{r_{ij}} + \frac{A}{r_{\text{OO}}^{12}} - \frac{B}{r_{\text{OO}}^{6}}$$

Extension to 4 sites: charge is off-center

\mathcal{J}				
Parameters	TIP3P	SPC/E		
d(O-H) (Å)	0.9572	1.0		
H-O-H (°)	104.52	109.47		
q(O) = -2q(H)	-0.834	-0.8476		
A (kcal Å ¹² /mol)	582000	629400		
B (kcal Å ⁶ /mol)	595	625.5		

B (kcai A ^v /moi)	595	625.5
Florible CDC (CDC	2/5). (1.1
Flexible SPC (SPC	J/FW): ∪-	П
stretch and bend a	dded.	

Note: NO such thing as flexible

TIP3P, etc!

Parameters	TIP4P
<i>d</i> (O-H) (Å)	0.9572
H-O-H (°)	104.52
d(O-M) (Å)	0.15
q(M) = -2q(H)	-1.04
A (kcal Å ¹² /mol)	600000
B (kcal Å ⁶ /mol)	610

5- and 6-site water models: charges on lone pair sites + dummy atom.

TIP4PFB: an optimized TIP4P

Lab 3

Optimization History for Lennard-Jones

Wang et al., JPC Lett (2014).

Electrostatic energy

surface

Lab 3

Coulomb interactions between atoms A and B with partial charges:

$$E_{\rm el}(R^{AB}) = \frac{q_{\rm A}q_{\rm B}}{\epsilon_{\rm AB}r_{\rm AB}}$$

Uncertainty, need for restraint:

ε is Effective dielectric constant, typically 1 in vacuum.

Quantum-mechanical electrostatic potential

Reproduce with point charges

RESP: restrained electrostatic potential charges.

Properties from MD runs

Lab 3

Radial distribution function:
$$g(r) = \frac{1}{N} \frac{dn(r)}{4\pi r^2 dr \rho}$$

Probability of finding two species near each other

What we learn:

- Integrate and get coordination number (e.g., Mg²⁺ is coordinated by 6 water molecules for the life of most MD simulation - microseconds).
- Structure: a solid will have zero probability between coordination shells, glass/liquid has diffusion.
- Can compare to experiment.

Properties from MD runs

Lab 3

Autocorrelation functions:

$$C_{AA} = \frac{1}{N} \sum_{i=1}^{N} \frac{\langle A_i(t) A_i(0) \rangle - \langle A_i(0) \rangle^2}{\langle A_i(0) A_i(0) \rangle - \langle A_i(0) \rangle^2}$$

Autocorrelation functions (ACFs) can be defined and calculated for any particle quantity (e.g. v_i) or any system quantity (e.g. U, T, P, r). Starts at 1 and decays usually exponentially with time.

Diffusion coefficient: $D = \frac{1}{3N} \int_0^\infty \left\langle \sum_{i=0}^N \mathbf{v}_i(t) \mathbf{v}_i(0) \right\rangle dt$

Velocity ACF integrated over time can give diffusion coefficient:

Mean squared displacements for phases of matter:

AMBER nuts and bolts

Lab 3

AMBER dat files + Online repository:

force field files, prepin files, to describe proteins, nucleotides, water, and ions.

antechamber/REDS server:

generates force field and prepin files for non-standard ligands and residues

We've done these first two steps for you for water, but you will do these for MgCl₂ salt solutions (time permitting)...

tleap: organize and load in force field properties, solvate, set box dimensions, neutralize, and generate topology/coordinate files

sander or **pmemd.cuda:** run minimizations and molecular dynamics using topology, coordinates, and input parameters.

cpptraj/ptraj: process and analyze output of trajectories.

Reminder to log on to XSEDE

Lab 3

Make sure you can do the following:

ssh <access username>@login.expanse.sdsc.edu

If you have never set a password for Expanse, reset your password on the CILogon page on access-ci.org

Note: We are using a special GPU version of the main sander driver called "pmemd.cuda". In job scripts, we have specified this executable and necessary dependent modules.

Expanse SLURM queue

- Comet uses SLURM as a queueing system.
- We write a job script and then submit it to the queueing system to run when resources are available.
- Example job script:

```
#!/bin/bash
#SBATCH -J watermd
#SBATCH -o equil.out
#SBATCH -partition=qpu-shared
#SBATCH -t 1:00:00
#SBATCH -gres=gpu:1
#SBATCH -ntasks-per-node=1
#SBATCH -A itm101
module load slurm
module load gpu/0.15.4 openmpi/4.0.4
module load amber/20
#Example run command
./exec < input > output
```

Expanse SLURM queue

Lab 3

- We issue commands to the SLURM queue to manage our jobs.
- Submit the job script:

```
sbatch <jobscript>
```

Submit a job that depends on another one:

```
sbatch -d <slurm job #> <jobscript>
```

Check the status of all of your jobs

```
squeue -u `whoami`
```

Check the status of everyone's jobs

```
squeue
```

Check specifics of a running or queued job

```
scontrol show job <slurm job #>
```

Cancel a job

```
scancel <slurm job #>
```

Parts of today's lab

Sections A and B require <u>a lot of</u> compute resources and should be prioritized:

- A. Simulating boxes of water (TIP3P/TIP4PFB)
- B. Running MgCl₂ salt solutions
- C. Typical charges in water and molecular simulations
- D. Processing MD results with cpptraj (can be done after class)

Steps for water equilibration (TIP3P & TIP4PFB)

- Edit "??", in files as discussed in the worksheet, e.g.: nano constV equil.in
- 2. You will run the minimization, NVT, and NpT equilibration schemes.
- 3. Submit the queue script sbatch amber_equil.q
- 4. Check on your job

 squeue -u <username>
- 5. Come back to the script to check that everything worked once you get a spot in the queue, it should take about **5** minutes.

The initial water box

The density will be too low! An important part of our equilibration scheme

What's needed for a calculation

amber_prod.q


```
Topology file (force field parameters/how atoms are connected)
tip3p.prmtop
Coordinate file (initial positions of atoms, could contain
velocities)
tip3p.inpcrd
Equilibration queue script
amber_equil.q
Input files for each step of equilibration in AMBER
unrestrained min.in
constV_equil.in
constP_equil.in
constP run.in
Input file for production in AMBER
constP_production.in
Production queue script
```