피마인디언분석

장태성

적용 라이브러리

```
%load_ext watermark
                                                                       import seaborn as sns
 *watermark -v -p sklearn.numpv.scipv.matplotlib
                                                                       import matplotlib.pyplot as plt
 import matplotlib.pyplot as plt
                                                                       Xmatplotlib inline
plt.rcParams['image.cmap'] = "gray"
from IPvthon.display import display
                                                                       import plotly.offline as py
 import pandas as pd
                                                                       import plotly, graph_objs as go
 import numpy as no
                                                                       from plotly.offline import download_plotlyis, init_notebook_mode, plot, iplot
 import platform
                                                                       import plotly, tools as tls
import matplotlib.pyplot as plt
                                                                       import plotly, figure_factory as ff
 import warnings
                                                                       import plotly, express as px
warnings.filterwarnings('ignore')
                                                                       py.init_notebook_mode(connected=True)
path = "c:/Windows/Fonts/malgun.ttf"
                                                                       import squarify
from matplotlib import font_manager, rc
if platform.system() == 'Darwin':
    rc('font', family='AppleGothic')
elif platform.system() == 'Windows':
    font_name = font_manager.FontProperties(fname=path).get_name()
    rc('font', family=font_name)
                                                                       import scipy, stats as ss
else:
                                                                       from scipy import interp
    print('Unknown system... sorry~~~')
                                                                       from scipy stats import randint as sp randint
plt.rcParams['axes.unicode_minus'] = False
                                                                       from scipy, stats import uniform as sp_uniform
CPvthon 3.7.4
IPvthon 7.8.0
sklearn 0.0
numpy 1.16.5
scipy 1.3.1
matplotlib 3.1.3
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.model_selection import GridSearchCV, cross_val_score, train_test_split, GridSearchCV, RandomizedSearchCV
from sklearn.metrics import precision_score, recall_score, confusion_matrix, roc_curve, precision_recall_curve, accuracy_score, roc_auc_si
import lightgbm as lgbm
from sklearn.ensemble import VotingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import roc curve.auc
from sklearn.model selection import KFold
from sklearn.model_selection import cross_val_predict
from vellowbrick.classifier import DiscriminationThreshold
```

데이터 프레임 살펴보기

원본 데이터 프레임

data['Outo	ome').
das	
Age Outcome	

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
766	1	126	60	0	0	30.1	0.349	47	1
767	1	93	70	31	0	30.4	0.315	23	0

768 rows × 9 columns

data (Outcome')

당뇨병 걸린 사람

not_zero_data

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	вмі	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
2	8	183	64	0	0	23.3	0.672	32	1
4	0	137	40	35	168	43.1	2.288	33	1
6	3	78	50	32	88	31.0	0.248	26	1
8	2	197	70	45	543	30.5	0.158	53	1
755	1	128	88	39	110	36.5	1.057	37	1
757	0	123	72	0	0	36.3	0.258	52	1
759	6	190	92	0	0	35.5	0.278	66	1
761	9	170	74	31	0	44.0	0.403	43	1
766	1	126	60	0	0	30.1	0.349	47	1

268 rows × 9 columns

당뇨병 걸리지 않은 사람

include_zero_data

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
1	1	85	66	29	0	26.6	0.351	31	0
3	1	89	66	23	94	28.1	0.167	21	0
5	5	116	74	0	0	25.6	0.201	30	0
7	10	115	0	0	0	35.3	0.134	29	0
10	4	110	92	0	0	37.6	0.191	30	0
762	9	89	62	0	0	22.5	0.142	33	0
763	10	101	76	48	180	32.9	0.171	63	0
764	2	122	70	27	0	36.8	0.340	27	0
765	5	121	72	23	112	26.2	0.245	30	0
767	1	93	70	31	0	30.4	0.315	23	0

500 rows × 9 columns

변수 분포 살펴보기

변수가 상관관계 분석-heatmap

NaN 값 살펴보기 Missing Values (count & %) Missing Values (count & %) 700 600 600 500 500 NaN 값을 Median으로 채운다. 400 400 300 300 200 200 100 100 적용한 코드 data.loc[(data['Outcome'] == 0) & (data[변수].isnull()), 변수] = 변수별 건강한 사람들의 median 값 data.loc[(data['Outcome'] == 1) & (data[변수].isnull()), 변수] = 변수별 당뇨병 환자들의 median 값 SkinThickness healthy diabetic DiabetesPedigreeFunction

0 2 4 6 8 10 12 14 16

20 30 40 50 60

자료의 종합적 분석과 결과 해석

ROC AUC 값: 0.8743

- 1. 원본 데이터를 불러온 후 'outcome' 컬럼에서 '0'이면 건강한 사람으로, '1'이면 당뇨병 걸린 사람으로 자료를 분리 한다.
- 2. 데이터 분리전의 데이터로 각 컬럼의 4분위표를 그리고 이상값이나 median, 25%, 50%, 75% 분포가 어떻게 되어있는지 등을 확인한다.
- 3. 각 컬럼간 상관관계 분석을하여 heatmap으로 도표를 그려 어떤 변수끼리 상관관계가 가장 큰지를 색깔로 확인한다.
- 4. 원본 데이터에서 'outcome' 컬럼을 제외한 나머지 변수들의 '0' 값을 np.nan으로 변환하여 nan값을 막대그래프로 확인, 앞서 나눴던 데이터 프레임으로 각 컬럼간 분포와 median 값을 구하여 nan 값을 media값으로 채워넣고, train, test 값으로 나눈 후 머신러닝 라이브러리로 분석하여 ROC 커브를 그리고 0.8743 점수를 얻었다.