Моисеев ПИН-22 лаб 4 отчет вариант 16

ЛАБОРАТОРНАЯ РАБОТА №4 ПЕРЕХОДНЫЕ ПРОЦЕССЫ В НЕРАЗВЕТВЛЕННЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ

Цель работы Экспериментальное исследование апериодических и колебательных переходных процессов в линейных электрических цепях первого и второго порядков и сопоставление экспериментальных результатов с предварительно рассчитанными параметрами.

Задание 1 Определение постоянной времени

Для чётных вариантов N: рассчитать переходный процесс в RL-цепи (рисунок 18, а) при U=4 В; $R=R_{\kappa p}=2$, Ом; $C=\inf(100/N)$, мкФ; $L=10\inf(100/N)$, мГн, где N - номер по списку, изобразив на одном рисунке графики функций i(t) и $u_L(t)$. Определить постоянную времени τ RL-цепи и найти значения напряжения $u_L(0_+)$, $u_L(\tau)$, $u_L(2\tau)$ и $u_L(3\tau)$, записав их в таблицу с дополнительной строкой для заполнения экспериментальными данными.

Параметры цепи

N	16	
U	4	В
R	200	Ом
С	0,000006	Ф
L	0,06	Гн
τ = L/R	0,0003	с, постоянная времени
1/ τ = a	3333,333	1/c
10 = U/R	2	A

$$R = R_{\rm Kp} = 2\sqrt{\frac{L}{c}} = 2\sqrt{\frac{0.06}{0.000006}} = 200 \text{ Om}$$

$$\tau = \frac{L}{R} = \frac{60 \cdot 10^{-3}}{200} = 0,0003c$$

$$I_L = I_0 \left(1 - e^{\frac{-t}{\tau}} \right)$$

$$U_L = U \cdot e^{-at}$$

Напряжение на катушке во время переходного процесса зависит от времени по формуле:

$$u_L(t) = U \cdot e^{-\alpha \cdot t} = U \cdot e^{-\frac{t}{\tau}}.$$

Для моментов времени 0+, т, 2т и 3т:

$$u_L(0_+) = U \cdot e^{-\frac{0}{\tau}} = 4B$$

$$u_L(\tau) = U \cdot e^{-\frac{\tau}{\tau}} \approx 1,472B$$

$$u_L(2 \cdot \tau) = U \cdot e^{-\frac{2 \cdot \tau}{\tau}} \approx 541,341 \text{mB}$$

$$u_L(3 \cdot \tau) = U \cdot e^{-\frac{3 \cdot 3\tau}{\tau}} \approx 199,148 \text{MB}$$

	т, мкс	u _L (0+), B	u _L (τ), Β	u _L (2τ), B	u _L (3τ), B
по формулам	300	4	1,472	0,541	0,199
		u _L (0+), B	u _L (τ), B	u _L (2τ), B	u _L (3τ), Β
На модели					
на модели		i _L (0 ₊), A	i _L (τ), Α	i _L (2τ), A	i _L (3τ), Α

I(t) – красный график

U(t) - синий

Задание 2 Расчет коэффициента затухания

$$R < 2\sqrt{L/C}$$

$$R = 0.1R\kappa p$$
, $\alpha = R/2L$

$$\omega_0^2 = 1/LC$$
 $\omega_c = \sqrt{\omega_0^2 - \alpha^2}$

$$i(t) = \frac{U}{\omega_c L} e^{-\alpha t} \sin \omega_c t$$

Задание	2		
R	20	Ом	
a	166,667	1/c	
w0	1666,67		
wc	1658,31	угловая частота	
Тсв	0,00379	С	

Задание 3 RC и RC-цепи

Собрать на рабочем поле схему

Задание 3				
t	0	0,0003	0,0006	0,0009
i(t) multisim	0,0001	0,013	0,01754	0,1916
i(t) по формуле	0	0,019	0,01729	0,019
u(t) multisim	9,972	1,449	0,51066	0,19613
u(t) по формуле	4	1,47152	0,54134	0,19915

Задание 4 RLC-цепь

 $T_{ce}=2\pi/\omega_c$

Задание 4		
R	20	
	Тсв	
multisim	0,004	
по формулам	0,00379	
I1	31,73	mA
i2	9,68	mA
u1	1,271	
u2	0,388	
ai	296,8	
au	296,638	

$$\alpha = \ln(I_{1m}/I_{2m})/T_{ce}$$

Задание 5 Апериодический переходный процесс

I(t) – красный график

U(t) - синий

R = 2Rk

R = 200

крутизна возрастания напряжения выше на осциллограмме с R = 200, тока – при R = 400

Вывод

Во время выполнения лабораторной работы произвели исследование апериодических и колебательных переходных процессов в линейных электрических цепях первого и второго порядков и убедились в том, что при R=2Rкр переходный процесс становится апериодическим нежели колебательным.