[UFMG] Summergimurne?

Bruno Monteiro, Emanuel Silva e Bernardo Amorim

Índice			1.16 Split-Merge Set	
			1.17 Treap	17
1 Es	truturas	5	1.18 Treap Persistent Implicita	19
1.	DSU	5	1.19 SQRT-decomposition	20
1.5	BIT	5	1.20 RMQ $\langle O(n), O(1) \rangle$ - cartesian tree	20
1.3	S SQRT Tree	6	1.21 MergeSort Tree	
1.4	Min queue - stack	6	1.22 Split-Merge Set - Lazy	22
1.5	Sparse Table	7	1.23 SegTree 2D Iterativa	25
1.6	BIT com update em range	7	1.24 SegTree PA	26
1.	Splay Tree	8	1.25 SegTree Esparsa - Lazy	27
1.8	3 Treap Implicita	9	1.26 SegTree Esparsa - O(q) memoria	28
1.9	Range color	10	1.27 SegTree Iterativa com Lazy Propagation	29
1.	0 Li-Chao Tree	11	1.28 SegTree Colorida	30
1.	1 BIT 2D	12	1.29 SegTree Iterativa	32
1.	2 Order Statistic Set	12	1.30 SegTree Beats	32
1.3	3 Splay Tree Implicita	12	1.31 SegTree Persistente	34
1.3	4 Sparse Table Disjunta	15	1.32 SegTree	34
1.	5 Min queue - deque	15	1.33 SegTreap	36

	1.34 DSU Persistente	37		2.20 LCA com HLD	53
	1.35 RMQ <0(n), O(1)> - min queue $\ \ldots \ \ldots \ \ldots \ \ldots$	38		2.21 MinCostMaxFlow	53
	1.36 Wavelet Tree	38		2.22 Algoritmo de Kuhn	55
0		20		2.23 Functional Graph	56
2	Grafos	39		2.24 Euler Path / Euler Cycle	57
	2.1 Dinic	39		2.25 Dominator Tree - Kawakami	58
	2.2 Kruskal	40		2.26 Line Tree	59
	2.3 Sack (DSU em arvores)	40		2.27 Isomorfismo de arvores	60
	2.4 Block-Cut Tree	41		2.28 Link-cut Tree - vertice	60
	2.5 Topological Sort	42		2.29 Link-cut Tree - aresta	
	2.6 Max flow com lower bound nas arestas	42		2.30 Link-cut Tree	
	2.7 Prufer code	43		2.31 Centro de arvore	
	2.8 Tarjan para SCC	43		2.32 Kosaraju	
	2.9 Dijkstra	44		2.33 Euler Tour Tree	
	2.10 Floyd-Warshall	44		2.34 Centroid	
	2.11 Virtual Tree	45			
	2.12 Bellman-Ford	46		2.35 Vertex cover	
	2.13 AGM Direcionada	46		2.36 Centroid decomposition	69
	2.14 Blossom - matching maximo em grafo geral	47	3	Problemas	69
	2.15 LCA com RMQ	48		3.1 Inversion Count	69
	2.16 Heavy-Light Decomposition sem Update	49		3.2 Gray Code	70
	2.17 Heavy-Light Decomposition - aresta	50		3.3 Points Inside Polygon	70
	2.18 LCA com binary lifting	51		3.4 Sweep Direction	71
	2.19 Heavy-Light Decomposition - vertice	52		3.5 Area da Uniao de Retangulos	72

3.6	LIS - Longest Increasing Subsequence	73		3.29 Closest pair of points	88
3.7	Distinct Range Query - Persistent Segtree	73		3.30 Segment Intersection	89
3.8	Coloracao de Grafo de Intervalo	74		3.31 Distinct Range Query - Wavelet	90
3.9	MO - DSU	74		3.32 RMQ com Divide and Conquer	90
3.10	Distancia maxima entre dois pontos	75		3.33 Distinct Range Query com Update	91
3.11	Conectividade Dinamica	76		3.34 Angle Range Intersection	92
3.12	Arpa's Trick	77	4	4 Matematica	92
3.13	Simple Polygon	77		4.1 Division Trick	92
3.14	Algoritmo MO - queries em caminhos de arvore	78		4.2 Produto de dois long long mod m	93
3.15	Palindromic Factorization	79		4.3 Avaliacao de Interpolacao	93
3.16	Area Maxima de Histograma	79		4.4 Equacao Diofantina Linear	93
3.17	LIS2 - Longest Increasing Subsequence	80		4.5 Fast Walsh Hadamard Transform	94
3.18	Mininum Enclosing Circle	80		4.6 Logaritmo Discreto	94
3.19	Conj. Indep. Maximo com Peso em Grafo de Intervalo . .	81		4.7 2-SAT	95
3.20	Conectividade Dinamica 2	81		4.8 Variacoes do crivo de Eratosthenes	96
3.21	Mo - numero de distintos em range	83		4.9 Algoritmo de Euclides estendido	97
3.22	Algoritmo Hungaro	84		4.10 Karatsuba	98
3.23	Dominator Points	85		4.11 Exponenciacao rapida	98
3.24	Min fixed range	85		4.12 Inverso Modular	98
3.25	DP de Dominacao 3D	86		4.13 FFT	99
3.26	Binomial modular	87		4.14 Simplex	99
3.27	Triangulos em Grafos	88		4.15 Binomial Distribution	100
3.28	Heap Sort	88		4.16 Miller-Rabin	101

	4.17	Deteccao de ciclo - Tortoise and Hare	101		6.6	String Hashing	112
	4.18	Totiente	102		6.7	eertree	113
	4.19	Eliminacao Gaussiana	102		6.8	Suffix Array Dinamico	113
	4.20	Teorema Chines do Resto	103		6.9	KMP	116
	4.21	Integração Numerica - Metodo de Simpson $3/8$	103		6.10	Suffix Array - $O(n)$	116
	4.22	Ordem de elemento do grupo	103		6.11	Aho-corasick	119
	4.23	Pollard's Rho Alg	104		6.12	Suffix Array - O(n log n)	120
	4.24	Eliminacao Gaussiana Z2	104		6.13	Algoritmo Z	120
	4.25	Algoritmo de Euclides	105		6.14	Automato de Sufixo	121
=	DP		105	7	Dnir	mitivas	122
)				'	FIII		
	5.1	SOS DP	105		7.1	Aritmetica Modular	122
	5.2	Longest Common Subsequence	106		7.2	Primitivas Geometricas Inteiras	123
	5.3	Divide and Conquer DP	107		7.3	Primitivas de Polinomios	125
	5.4	Mochila	107		7.4	Primitivas de matriz - exponenciacao	133
	5.5	Convex Hull Trick Dinamico	107		7.5	Big Integer	134
	5.6	Convex Hull Trick (Rafael)	108		7.6	Complex	137
_	a. •	a. ·			7.7	Primitivas de fracao	138
6	Stri		109		7.8	Primitivas Geometricas	138
	6.1	Aho-corasick - Automato	109		7.9	Primitivas Geometricas 3D	149
	6.2	$\label{eq:min_max_suffix_cyclic} \begin{aligned} & \operatorname{Min/max} \ \operatorname{suffix/cyclic} \ \operatorname{shift} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	110		1.0		112
	6.3	String Hashing - modulo 2^61 - 1	110	8	Ext	ra	143
	6.4	Manacher	111		8.1	fastIO.cpp	143
	6.5	Trie	112		8.2	vimrc	143

8.3	cand.cpp	43
8.4	template.cpp	44
8.5	debug.cpp	44
8.6	stress.sh	44
8.7	makefile	44
8.8	${ m nash.sh.}$	44

1 Estruturas

1.1 DSU

```
// Une dois conjuntos e acha a qual conjunto um elemento
   pertence por seu id
//
// dsu_build: O(n)
// find e unite: O(a(n)) \sim = O(1) amortizado
// c196e5
int id[MAX], sz[MAX];
void dsu_build(int n) { for(int i=0; i<n; i++) sz[i] = 1,</pre>
   id[i] = i; }
int find(int a) { return id[a] = a == id[a] ? a :
   find(id[a]); }
void unite(int a, int b) {
    a = find(a), b = find(b);
    if(a == b) return;
    if(sz[a] < sz[b]) swap(a,b);
    sz[a] += sz[b];
    id[b] = a;
}
```

1.2 BIT

```
// BIT de soma 1-based, v 0-based
 // Para mudar o valor da posicao p para x,
   // faca: poe(x - query(p, p), p)
4 \mid // \text{ l_bound(x)} retorna o menor p tal que
   // \text{ query}(1, p+1) > x  (0 based!)
4 \mid //
   // Complexidades:
  // build - O(n)
   // poe - O(\log(n))
   // query - 0(log(n))
   // l_bound - O(log(n))
   // d432a4
   int n;
   int bit[MAX];
   int v[MAX];
   void build() {
       bit[0] = 0;
       for (int i = 1; i <= n; i++) bit[i] = v[i - 1];
       for (int i = 1; i <= n; i++) {
           int j = i + (i & -i);
           if (j <= n) bit[j] += bit[i];</pre>
       }
   }
   // soma x na posicao p
   void poe(int x, int p) {
       for (; p <= n; p += p & -p) bit[p] += x;</pre>
   }
   // soma [1, p]
   int pref(int p) {
       int ret = 0;
       for (; p; p -= p & -p) ret += bit[p];
       return ret;
   }
   // soma [a, b]
```

```
int query(int a, int b) {
    return pref(b) - pref(a - 1);
}
int l_bound(ll x) {
    int p = 0;
    for (int i = MAX2; i+1; i--) if (p + (1 << i) <= n
        and bit[p + (1 << i)] <= x) x -= bit[p += (1 << i)];
    return p;
}
```

1.3 SQRT Tree

```
// RMQ em O(log log n) com O(n log log n) pra buildar
// Funciona com qualquer operacao associativa
// Tao rapido quanto a sparse table, mas usa menos memoria
// (log log (1e9) < 5, entao a query eh praticamente O(1))
//
// build - O(n log log n)
// query - O(log log n)
// 8ff986
namespace sqrtTree {
    int n, *v;
    int pref[4][MAX], sulf[4][MAX], getl[4][MAX],
       entre [4] [MAX], sz [4];
    int op(int a, int b) { return min(a, b); }
    inline int getblk(int p, int i) { return
       (i-getl[p][i])/sz[p]; }
    void build(int p, int l, int r) {
        if (1+1 >= r) return;
        for (int i = 1; i <= r; i++) getl[p][i] = 1;</pre>
        for (int L = 1; L <= r; L += sz[p]) {</pre>
            int R = min(L+sz[p]-1, r);
            pref[p][L] = v[L], sulf[p][R] = v[R];
            for (int i = L+1; i <= R; i++) pref[p][i] =</pre>
                op(pref[p][i-1], v[i]);
            for (int i = R-1; i >= L; i--) sulf[p][i] =
                op(v[i], sulf[p][i+1]);
```

```
build(p+1, L, R);
        for (int i = 0; i <= sz[p]; i++) {</pre>
            int at = entre[p][l+i*sz[p]+i] =
               sulf[p][l+i*sz[p]];
            for (int j = i+1; j <= sz[p]; j++)</pre>
                entre[p][1+i*sz[p]+j] = at =
                    op(at, sulf[p][1+j*sz[p]]);
        }
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        for (int p = 0; p < 4; p++) sz[p] = n2 = sqrt(n2);
        build(0, 0, n-1);
    }
    int query(int 1, int r) {
        if (1+1 >= r) return 1 == r ? v[1] : op(v[1], v[r]);
        int p = 0;
        while (getblk(p, 1) == getblk(p, r)) p++;
        int ans = sulf[p][1], a = getblk(p, 1)+1, b =
           getblk(p, r)-1;
        if (a \le b) ans = op(ans,
           entre[p][getl[p][1]+a*sz[p]+b]);
        return op(ans, pref[p][r]);
   }
}
1.4 Min queue - stack
    stack<pair<T, T>> s;
```

```
// Tudo O(1) amortizado
// 45ac9c
template < class T> struct minstack {
    void push(T x) {
        if (!s.size()) s.push({x, x});
        else s.push({x, std::min(s.top().second, x)});
    }
    T top() { return s.top().first; }
```

```
T pop() {
        T ans = s.top().first;
        s.pop();
        return ans;
    int size() { return s.size(); }
    T min() { return s.top().second; }
};
template < class T> struct minqueue {
    minstack <T> s1, s2;
    void push(T x) { s1.push(x); }
    void move() {
        if (s2.size()) return;
        while (s1.size()) {
            T x = s1.pop();
            s2.push(x);
        }
    T front() { return move(), s2.top(); }
    T pop() { return move(), s2.pop(); }
    int size() { return s1.size()+s2.size(); }
    T min() {
        if (!s1.size()) return s2.min();
        else if (!s2.size()) return s1.min();
        return std::min(s1.min(), s2.min());
};
```

1.5 Sparse Table

```
// Resolve RMQ
// MAX2 = log(MAX)
//
// Complexidades:
// build - O(n log(n))
// query - O(1)
// 7aa4c9
```

1.6 BIT com update em range

```
// Operacoes 0-based
// query(1, r) retorna a soma de v[1..r]
// update(l, r, x) soma x em v[l..r]
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - 0(log(n))
// f91737
namespace bit {
    11 bit[2][MAX+2];
    int n;
    void build(int n2, int* v) {
        n = n2;
        for (int i = 1; i <= n; i++)</pre>
             bit [1] [min(n+1, i+(i\&-i))] += bit[1][i] +=
                v[i-1];
    }
    11 get(int x, int i) {
        11 \text{ ret} = 0;
        for (; i; i -= i&-i) ret += bit[x][i];
```

```
return ret;
}

void add(int x, int i, ll val) {
    for (; i <= n; i += i&-i) bit[x][i] += val;
}

ll get2(int p) {
    return get(0, p) * p + get(1, p);
}

ll query(int l, int r) {
    return get2(r+1) - get2(l);
}

void update(int l, int r, ll x) {
    add(0, l+1, x), add(0, r+2, -x);
    add(1, l+1, -x*l), add(1, r+2, x*(r+1));
}
};</pre>
```

1.7 Splay Tree

```
// SEMPRE QUE DESCER NA ARVORE, DAR SPLAY NO
// NODE MAIS PROFUNDO VISITADO
// Todas as operacoes sao O(log(n)) amortizado
// Se quiser colocar mais informacao no node,
// mudar em 'update'
// 4ff2b3
template < typename T > struct splaytree {
    struct node {
        node *ch[2], *p;
        int sz;
        T val;
        node(T v) {
            ch[0] = ch[1] = p = NULL;
            sz = 1;
            val = v;
        void update() {
            sz = 1;
            for (int i = 0; i < 2; i++) if (ch[i]) {
                sz += ch[i] -> sz;
```

```
};
node* root;
splaytree() { root = NULL; }
splaytree(const splaytree& t) {
    throw logic_error("Nao copiar a splaytree!");
\simsplaytree() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->ch[0]), q.push_back(x->ch[1]);
        delete x:
    }
}
void rotate(node* x) { // x vai ficar em cima
    node *p = x->p, *pp = p->p;
    if (pp) pp - ch[pp - ch[1] == p] = x;
    bool d = p -> ch[0] == x;
    p - ch[!d] = x - ch[d], x - ch[d] = p;
    if (p->ch[!d]) p->ch[!d]->p = p;
    x->p = pp, p->p = x;
    p->update(), x->update();
}
node* splay(node* x) {
    if (!x) return x;
    root = x;
    while (x->p) {
        node *p = x->p, *pp = p->p;
        if (!pp) return rotate(x), x; // zig
        if ((pp->ch[0] == p)^(p->ch[0] == x))
            rotate(x), rotate(x); // zigzag
        else rotate(p), rotate(x); // zigzig
    }
    return x;
}
node* insert(T v, bool lb=0) {
```

```
if (!root) return lb ? NULL : root = new node(v);
    node *x = root, *last = NULL;;
    while (1) {
        bool d = x -> val < v;
        if (!d) last = x;
        if (x->val == v) break;
        if (x->ch[d]) x = x->ch[d];
        else {
            if (lb) break;
            x - ch[d] = new node(v);
            x - ch[d] - p = x;
            x = x -> ch[d];
            break;
        }
    }
    splay(x);
    return lb ? splay(last) : x;
int size() { return root ? root->sz : 0; }
int count(T v) { return insert(v, 1) and root->val == v;
   }
node* lower_bound(T v) { return insert(v, 1); }
void erase(T v) {
    if (!count(v)) return;
    node *x = root, *1 = x -> ch[0];
    if (!1) {
        root = x - > ch[1];
        if (root) root->p = NULL;
        return delete x;
    }
    root = 1, 1->p = NULL;
    while (1->ch[1]) 1 = 1->ch[1];
    splay(1);
    1 - ch[1] = x - ch[1];
    if (1->ch[1]) 1->ch[1]->p = 1;
    delete x;
    1->update();
}
int order_of_key(T v) {
    if (!lower_bound(v)) return root ? root->sz : 0;
    return root -> ch [0] ? root -> ch [0] -> sz : 0;
}
```

```
node* find_by_order(int k) {
        if (k >= size()) return NULL;
        node* x = root;
        while (1) {
            if (x->ch[0] \text{ and } x->ch[0]->sz >= k+1) x =
                x - > ch[0];
            else {
                 if (x->ch[0]) k -= x->ch[0]->sz;
                if (!k) return splay(x);
                k--, x = x->ch[1];
            }
        }
    }
    T min() {
        node* x = root;
        while (x->ch[0]) x = x->ch[0]; // max -> ch[1]
        return splay(x)->val;
    }
};
```

1.8 Treap Implicita

```
// Todas as operacoes custam
// O(log(n)) com alta probabilidade
// 63ba4d
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T> struct treap {
    struct node {
        node *1, *r;
        int p, sz;
        T val, sub, lazy;
        bool rev;
        node(T v) : l(NULL), r(NULL), p(rng()), sz(1),
           val(v), sub(v), lazy(0), rev(0) {}
        void prop() {
            if (lazy) {
                val += lazy, sub += lazy*sz;
```

```
if (1) 1->lazy += lazy;
             if (r) r->lazy += lazy;
        }
        if (rev) {
             swap(1, r);
             if (1) 1->rev ^= 1;
             if (r) r->rev ^= 1;
        }
        lazy = 0, rev = 0;
    }
    void update() {
        sz = 1, sub = val;
        if (1) 1 - prop(), sz += 1 - prop(), sz += 1 - prop();
        if (r) r \rightarrow prop(), sz += r \rightarrow sz, sub += r \rightarrow sub;
    }
};
node* root;
treap() { root = NULL; }
treap(const treap& t) {
    throw logic_error("Nao copiar a treap!");
\simtreap() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
int size() { return size(root); }
void join(node* 1, node* r, node*& i) { // assume que 1
   < r
    if (!1 or !r) return void(i = 1 ? 1 : r);
    1->prop(), r->prop();
    if (1->p > r->p) join(1->r, r, 1->r), i = 1;
    else join(1, r - > 1, r - > 1), i = r;
    i->update();
```

```
}
    void split(node* i, node*& 1, node*& r, int v, int key =
        if (!i) return void(r = 1 = NULL);
        i->prop();
        if (key + size(i->1) < v) split(i->r, i->r, r, v,
            key+size(i->1)+1), l = i;
        else split(i \rightarrow 1, l, i \rightarrow 1, v, key), r = i;
        i->update();
    }
    void push_back(T v) {
        node* i = new node(v);
        join(root, i, root);
    }
    T query(int 1, int r) {
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        T ans = M->sub;
        join(L, M, M), join(M, R, root);
        return ans;
    }
    void update(int 1, int r, T s) {
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        M->lazy += s;
        join(L, M, M), join(M, R, root);
    }
    void reverse(int 1, int r) {
        node *L, *M, *R;
        split(root, M, R, r+1), split(M, L, M, 1);
        M \rightarrow rev ^= 1;
        join(L, M, M), join(M, R, root);
   }
};
```

1.9 Range color

```
// update(l, r, c) colore o range [l, r] com a cor c,
// e retorna os ranges que foram coloridos {l, r, cor}
// query(i) returna a cor da posicao i
```

```
//
// Complexidades (para q operacoes):
// update - O(log(q)) amortizado
// query - O(log(q))
// 9e9cab
template < typename T> struct color {
    set < tuple < int , int , T >> se;
    vector<tuple<int, int, T>> update(int 1, int r, T val) {
        auto it = se.upper_bound({r, INF, val});
        if (it != se.begin() and get<1>(*prev(it)) > r) {
            auto [L, R, V] = *--it;
            se.erase(it);
            se.emplace(L, r, V), se.emplace(r+1, R, V);
        it = se.lower_bound({1, -INF, val});
        if (it != se.begin() and get<1>(*prev(it)) >= 1) {
            auto [L, R, V] = *--it;
            se.erase(it);
            se.emplace(L, l-1, V), it = se.emplace(l, R,
               V).first;
        }
        vector<tuple<int, int, T>> ret;
        for (; it != se.end() and get<0>(*it) <= r; it =</pre>
           se.erase(it))
            ret.push_back(*it);
        se.emplace(1, r, val);
        return ret;
    T query(int i) {
        auto it = se.upper_bound({i, INF, T()});
        if (it == se.begin() or get<1>(*--it) < i) return</pre>
            -1: // nao tem
        return get <2>(*it);
    }
};
```

1.10 Li-Chao Tree

```
// Adiciona retas (ax+b), e computa o minimo entre as retas
// em um dado 'x'
// Cuidado com overflow!
// Se tiver overflow, tenta comprimir o 'x' ou usar
// convex hull trick
// O(log(MA-MI)), O(n) de memoria
// 59ba68
template<11 MI = 11(-1e9), 11 MA = 11(1e9)> struct lichao {
    struct line {
        ll a, b;
        array < int, 2 > ch;
        line(ll a_{-} = 0, ll b_{-} = LINF):
            a(a_{-}), b(b_{-}), ch(\{-1, -1\})  {}
        11 operator ()(11 x) { return a*x + b; }
    };
    vector<line> ln;
    int ch(int p, int d) {
        if (ln[p].ch[d] == -1) {
            ln[p].ch[d] = ln.size();
            ln.emplace_back();
        return ln[p].ch[d];
    }
    lichao() { ln.emplace_back(); }
    void add(line s, ll l=MI, ll r=MA, int p=0) {
        11 m = (1+r)/2;
        bool L = s(1) < ln[p](1);
        bool M = s(m) < ln[p](m);
        bool R = s(r) < ln[p](r);
        if (M) swap(ln[p], s), swap(ln[p].ch, s.ch);
        if (s.b == LINF) return;
        if (L != M) add(s, l, m-1, ch(p, 0));
        else if (R != M) add(s, m+1, r, ch(p, 1));
    }
    ll query(int x, ll l=MI, ll r=MA, int p=0) {
        11 m = (1+r)/2, ret = ln[p](x);
        if (ret == LINF) return ret;
        if (x < m) return min(ret, query(x, 1, m-1, ch(p,</pre>
```

```
0)));
    return min(ret, query(x, m+1, r, ch(p, 1)));
};
```

1.11 BIT 2D

```
// BIT de soma 1-based
// Para mudar o valor da posicao (x, y) para k,
// faca: poe(x, y, k - sum(x, y, x, y))
// Complexidades:
// poe - O(\log^2(n))
// \text{ query - O(log^2(n))}
// 752bf6
int n;
int bit[MAX][MAX];
void poe(int x, int y, int k) {
    for (int y2 = y; x <= n; x += x & -x)
        for (y = y2; y \le n; y += y \& -y)
            bit[x][y] += k;
}
int sum(int x, int y) {
    int ret = 0;
    for (int y2 = y; x; x -= x & -x)
        for (y = y2; y; y -= y & -y)
            ret += bit[x][y];
    return ret;
}
int query(int x, int y, int z, int w) {
    return sum(z, w) - sum(x-1, w)
        - sum(z, y-1) + sum(x-1, y-1);
}
```

1.12 Order Statistic Set

```
// Funciona do C++11 pra cima
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
// para declarar:
ord_set < int > s;
// coisas do set normal funcionam:
for (auto i : s) cout << i << endl;</pre>
cout << s.size() << endl;</pre>
// k-esimo maior elemento O(\log|s|):
// k=0: menor elemento
cout << *s.find_by_order(k) << endl;</pre>
// quantos sao menores do que k O(log|s|):
cout << s.order_of_key(k) << endl;</pre>
// Para fazer um multiset, tem que
// usar ord_set<pair<int, int>> com o
// segundo parametro sendo algo para diferenciar
// os ementos iguais.
// s.order_of_key({k, -INF}) vai retornar o
// numero de elementos < k
1.13 Splay Tree Implicita
// vector da NASA
// Um pouco mais rapido q a treap
// O construtor a partir do vector
// eh linear, todas as outras operacoes
// custam O(log(n)) amortizado
// a3575a
template < typename T> struct splay {
```

struct node {

```
node *ch[2], *p;
    int sz;
    T val, sub, lazy;
    bool rev;
    node(T v) {
        ch[0] = ch[1] = p = NULL;
        sz = 1;
        sub = val = v;
       lazv = 0;
       rev = false;
    }
    void prop() {
        if (lazy) {
            val += lazy, sub += lazy*sz;
            if (ch[0]) ch[0]->lazy += lazy;
            if (ch[1]) ch[1]->lazy += lazy;
        }
        if (rev) {
            swap(ch[0], ch[1]);
            if (ch[0]) ch[0]->rev ^= 1;
            if (ch[1]) ch[1]->rev ^= 1;
        lazy = 0, rev = 0;
    void update() {
        sz = 1, sub = val;
        for (int i = 0; i < 2; i++) if (ch[i]) {
            ch[i]->prop();
            sz += ch[i]->sz;
            sub += ch[i] -> sub;
       }
    }
};
node* root;
splay() { root = NULL; }
splay(node* x) {
    root = x;
    if (root) root->p = NULL;
}
splay(vector < T > v) { // O(n)}
```

```
root = NULL:
    for (T i : v) {
        node* x = new node(i);
        x \rightarrow ch[0] = root;
        if (root) root->p = x;
        root = x;
        root ->update();
    }
}
splay(const splay& t) {
    throw logic_error("Nao copiar a splay!");
\simsplay() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->ch[0]), q.push_back(x->ch[1]);
        delete x;
   }
}
int size(node* x) { return x ? x->sz : 0; }
void rotate(node* x) { // x vai ficar em cima
    node *p = x->p, *pp = p->p;
    if (pp) pp->ch[pp->ch[1] == p] = x;
    bool d = p \rightarrow ch[0] == x;
    p - ch[!d] = x - ch[d], x - ch[d] = p;
    if (p->ch[!d]) p->ch[!d]->p = p;
    x - p = pp, p - p = x;
    p->update(), x->update();
node* splaya(node* x) {
    if (!x) return x:
    root = x, x->update();
    while (x->p) {
        node *p = x - p, *pp = p - p;
        if (!pp) return rotate(x), x; // zig
        if ((pp->ch[0] == p)^(p->ch[0] == x))
            rotate(x), rotate(x); // zigzag
        else rotate(p), rotate(x); // zigzig
    }
```

```
return x;
node* find(int v) {
    if (!root) return NULL;
    node *x = root;
    int key = 0;
    while (1) {
        x->prop();
        bool d = key + size(x->ch[0]) < v;
        if (\text{key} + \text{size}(x->\text{ch}[0]) != v \text{ and } x->\text{ch}[d]) {
             if (d) key += size(x->ch[0])+1;
             x = x - ch[d];
        } else break;
    return splaya(x);
}
int size() { return root ? root->sz : 0; }
void join(splay<T>& 1) { // assume que l < *this</pre>
    if (!size()) swap(root, l.root);
    if (!size() or !l.size()) return;
    node* x = 1.root;
    while (1) {
        x->prop();
        if (!x->ch[1]) break;
        x = x -> ch[1];
    }
    1.splaya(x), root->prop(), root->update();
    x - ch[1] = root, x - ch[1] - p = x;
    root = 1.root, 1.root = NULL;
    root ->update();
node* split(int v) { // retorna os elementos < v</pre>
    if (v <= 0) return NULL;</pre>
    if (v >= size()) {
        node* ret = root;
        root = NULL;
        ret->update();
        return ret;
    }
    find(v);
    node*1 = root -> ch[0];
    root -> ch [0] = NULL;
```

```
if (1) 1->p = NULL;
        root ->update();
        return 1:
    }
    T& operator [](int i) {
        find(i);
        return root -> val;
    }
    void push_back(T v) { // 0(1)
        node* r = new node(v);
        r - > ch[0] = root;
        if (root) root->p = r;
        root = r, root->update();
    }
    T query(int 1, int r) {
        splay <T > M(split(r+1));
        splay<T> L(M.split(1));
        T ans = M.root->sub;
        M. join(L), join(M);
        return ans;
    }
    void update(int 1, int r, T s) {
        splay <T> M(split(r+1));
        splay <T> L(M.split(1));
        M.root->lazy += s;
        M. join(L), join(M);
    }
    void reverse(int 1, int r) {
        splay <T> M(split(r+1));
        splay <T> L(M.split(1));
        M.root->rev ^= 1;
        M.join(L), join(M);
    }
    void erase(int 1, int r) {
        splay <T > M(split(r+1));
        splay <T> L(M.split(1));
        join(L);
    }
};
```

1.14 Sparse Table Disjunta

```
// Resolve qualquer operacao associativa
// MAX2 = log(MAX)
//
// Complexidades:
// build - O(n log(n))
// query - O(1)
// fd81ae
namespace sparse {
    int m[MAX2][2*MAX], n, v[2*MAX];
    int op(int a, int b) { return min(a, b); }
    void build(int n2, int* v2) {
        n = n2;
        for (int i = 0; i < n; i++) v[i] = v2[i];</pre>
        while (n&(n-1)) n++;
        for (int j = 0; (1<<j) < n; j++) {
            int len = 1<<j;</pre>
            for (int c = len; c < n; c += 2*len) {</pre>
                m[j][c] = v[c], m[j][c-1] = v[c-1];
                for (int i = c+1; i < c+len; i++) m[j][i] =</pre>
                    op(m[j][i-1], v[i]);
                for (int i = c-2; i >= c-len; i--) m[j][i] =
                    op(v[i], m[j][i+1]);
            }
        }
    int query(int 1, int r) {
        if (1 == r) return v[1];
        int j = __builtin_clz(1) - __builtin_clz(l^r);
        return op(m[j][1], m[j][r]);
}
```

1.15 Min queue - deque

```
// Tudo O(1) amortizado // 263801
```

```
template < class T> struct minqueue {
    deque<pair<T, int>> q;
    void push(T x) {
        int ct = 1;
        while (q.size() and x < q.front().first)</pre>
            ct += q.front().second, q.pop_front();
        q.push_front({x, ct});
    void pop() {
        if (q.back().second > 1) q.back().second--;
        else q.pop_back();
    T min() { return q.back().first; }
};
1.16 Split-Merge Set
// Representa um conjunto de inteiros nao negativos
// Todas as operacoes custam O(log(N)),
// em que N = maior elemento do set,
// exceto o merge, que custa O(\log(N)) amortizado
// Usa O(min(N, n log(N))) de memoria, sendo 'n' o
// numero de elementos distintos no set
// 2d2d8a
template < typename T, bool MULTI = false, typename SIZE_T = int >
   struct sms {
    struct node {
        node *1, *r;
        SIZE_T cnt;
        node() : 1(NULL), r(NULL), cnt(0) {}
        void update() {
            cnt = 0;
            if (1) cnt += 1->cnt;
            if (r) cnt += r->cnt;
        }
    };
    node* root;
```

```
T N:
sms() : root(NULL), N(0) {}
sms(T v) : sms() { while (v >= N) N = 2*N+1; }
sms(const sms& t) : root(NULL), N(t.N) {
    for (SIZE_T i = 0; i < t.size(); i++) {</pre>
        T at = t[i];
        SIZE_T qt = t.count(at);
        insert(at, qt);
        i += qt-1;
    }
}
sms(initializer_list<T> v) : sms() { for (T i : v)
   insert(i); }
\simsms() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
friend void swap(sms& a, sms& b) {
    swap(a.root, b.root), swap(a.N, b.N);
sms& operator =(const sms& v) {
    sms tmp = v;
    swap(tmp, *this);
    return *this;
SIZE_T size() const { return root ? root->cnt : 0; }
SIZE T count(node* x) const { return x ? x->cnt : 0: }
void clear() {
    sms tmp;
    swap(*this, tmp);
}
void expand(T v) {
    for (; N < v; N = 2*N+1) if (root) {
        node* nroot = new node();
        nroot ->1 = root;
```

```
root = nroot;
        root ->update();
   }
}
node* insert(node* at, T idx, SIZE_T qt, T 1, T r) {
    if (!at) at = new node();
    if (1 == r) {
        at->cnt += qt;
        if (!MULTI) at->cnt = 1;
        return at:
    T m = 1 + (r-1)/2;
    if (idx \le m) at->1 = insert(at->1, idx, qt, 1, m);
    else at->r = insert(at->r, idx, qt, m+1, r);
    return at ->update(), at;
}
void insert(T v, SIZE_T qt=1) { // insere 'qt'
   ocorrencias de 'v'
    if (qt <= 0) return erase(v, -qt);</pre>
    assert(v >= 0);
    expand(v);
    root = insert(root, v, qt, 0, N);
}
node* erase(node* at, T idx, SIZE_T qt, T 1, T r) {
    if (!at) return at;
    if (1 == r) at->cnt = at->cnt < qt ? 0 : at->cnt -
    else {
        T m = 1 + (r-1)/2;
        if (idx \le m) at->1 = erase(at->1, idx, qt, 1,
        else at->r = erase(at->r, idx, qt, m+1, r);
        at->update();
    if (!at->cnt) delete at, at = NULL;
    return at;
void erase(T v, SIZE_T qt=1) { // remove 'qt'
   ocorrencias de 'v'
    if (v < 0 or v > N or !qt) return;
```

```
if (qt < 0) insert(v, -qt);</pre>
    root = erase(root, v, qt, 0, N);
void erase_all(T v) { // remove todos os 'v'
    if (v < 0 \text{ or } v > N) return;
    root = erase(root, v, numeric_limits < SIZE_T >:: max(),
       O, N);
}
SIZE_T count(node* at, T a, T b, T l, T r) const {
    if (!at or b < l or r < a) return 0;
    if (a <= 1 and r <= b) return at->cnt;
    T m = 1 + (r-1)/2;
    return count(at->1, a, b, 1, m) + count(at->r, a, b,
       m+1. r):
}
SIZE_T count(T v) const { return count(root, v, v, 0,
   N); }
SIZE_T order_of_key(T v) { return count(root, 0, v-1, 0,
SIZE_T lower_bound(T v) { return order_of_key(v); }
const T operator [](SIZE_T i) const { // i-esimo menor
   elemento
    assert(i >= 0 and i < size());</pre>
    node* at = root;
    T 1 = 0, r = N;
    while (1 < r) {
        T m = 1 + (r-1)/2;
        if (count(at->1) > i) at = at->1, r = m;
        else {
            i -= count(at->1);
            at = at->r; l = m+1;
        }
    }
    return 1;
}
node* merge(node* 1, node* r) {
    if (!l or !r) return 1 ? 1 : r;
    if (!1->1 \text{ and } !1->r) \{ // \text{ folha} \}
        if (MULTI) 1->cnt += r->cnt;
```

```
delete r:
            return 1;
        1->1 = merge(1->1, r->1), 1->r = merge(1->r, r->r);
        1->update(), delete r;
        return 1;
    }
    void merge(sms& s) { // mergeia dois sets
        if (N > s.N) swap(*this, s);
        expand(s.N);
        root = merge(root, s.root);
        s.root = NULL;
    }
    node* split(node*& x, SIZE_T k) {
        if (k <= 0 or !x) return NULL;</pre>
        node* ret = new node();
        if (!x->l \text{ and } !x->r) x->cnt -= k, ret->cnt += k;
        else {
            if (k \le count(x->1)) ret->1 = split(x->1, k);
            else {
                ret->r = split(x->r, k - count(x->1));
                swap(x->1, ret->1);
            ret->update(), x->update();
        }
        if (!x->cnt) delete x, x = NULL;
        return ret;
    }
    void split(SIZE_T k, sms& s) { // pega os 'k' menores
        s.clear();
        s.root = split(root, min(k, size()));
        s.N = N;
    }
   // pega os menores que 'k'
    void split_val(T k, sms& s) { split(order_of_key(k), s);
};
```

1.17 Treap

```
// Todas as operacoes custam
// O(log(n)) com alta probabilidade, exceto meld
// meld custa O(log^2 n) amortizado com alta prob.,
// e permite unir duas treaps sem restricao adicional
// Na pratica, esse meld tem constante muito boa e
// o pior caso eh meio estranho de acontecer
// bd93e2
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T> struct treap {
    struct node {
        node *1, *r;
        int p, sz;
        T val, mi;
        node(T \ v) : l(NULL), r(NULL), p(rng()), sz(1),
           val(v), mi(v) {}
        void update() {
            sz = 1;
            mi = val;
            if (1) sz += 1->sz, mi = min(mi, 1->mi);
            if (r) sz += r->sz, mi = min(mi, r->mi);
        }
    };
    node* root;
    treap() { root = NULL; }
    treap(const treap& t) {
        throw logic_error("Nao copiar a treap!");
    \simtreap() {
        vector < node *> q = {root};
        while (q.size()) {
            node* x = q.back(); q.pop_back();
            if (!x) continue;
            q.push_back(x->1), q.push_back(x->r);
            delete x;
        }
    }
```

```
int size(node* x) { return x ? x->sz : 0; }
int size() { return size(root); }
void join(node* 1, node* r, node*& i) { // assume que 1
    if (!1 or !r) return void(i = 1 ? 1 : r);
    if (1->p > r->p) join(1->r, r, 1->r), i = 1;
    else join(1, r\rightarrow 1, r\rightarrow 1), i = r;
    i->update();
}
void split(node* i, node*& 1, node*& r, T v) {
    if (!i) return void(r = 1 = NULL);
    if (i\rightarrow val < v) split(i\rightarrow r, i\rightarrow r, r, v), l = i;
    else split(i - > 1, 1, i - > 1, v), r = i;
    i->update();
}
void split_leq(node* i, node*& 1, node*& r, T v) {
    if (!i) return void(r = 1 = NULL);
    if (i-val \le v) split_leq(i-vr, i-vr, r, v), l = i;
    else split_leq(i \rightarrow l, l, i \rightarrow l, v), r = i;
    i->update();
}
int count(node* i, T v) {
    if (!i) return 0;
    if (i->val == v) return 1;
    if (v < i->val) return count(i->l, v);
    return count(i->r, v);
}
void index_split(node* i, node*& 1, node*& r, int v, int
   kev = 0) {
    if (!i) return void(r = l = NULL);
    if (key + size(i->1) < v) index_split(i->r, i->r, r,
        v, key+size(i->1)+1), l = i;
    else index_split(i \rightarrow 1, 1, i \rightarrow 1, v, key), r = i;
    i->update();
}
int count(T v) {
    return count(root, v);
}
void insert(T v) {
    if (count(v)) return;
    node *L, *R;
    split(root, L, R, v);
```

```
node* at = new node(v);
        join(L, at, L);
        join(L, R, root);
    void erase(T v) {
        node *L, *M, *R;
        split_leq(root, M, R, v), split(M, L, M, v);
        if (M) delete M;
        M = NULL;
        join(L, R, root);
    void meld(treap& t) { // segmented merge
        node *L = root, *R = t.root;
        root = NULL;
        while (L or R) {
            if (!L or (L and R and L->mi > R->mi))
               std::swap(L, R);
            if (!R) join(root, L, root), L = NULL;
            else if (L->mi == R->mi) {
                node* LL;
                split(L, LL, L, R->mi+1);
                delete LL;
            } else {
                node* LL;
                split(L, LL, L, R->mi);
                join(root, LL, root);
            }
        t.root = NULL;
    }
};
```

1.18 Treap Persistent Implicita

```
// Todas as operacoes custam
// O(log(n)) com alta probabilidade
// fb8013

mt19937_64 rng((int)
    chrono::steady_clock::now().time_since_epoch().count());
```

```
struct node {
    node *1, *r;
    ll sz, val, sub;
    node(ll v) : l(NULL), r(NULL), sz(1), val(v), sub(v) {}
    node(node* x) : l(x->l), r(x->r), sz(x->sz),
       val(x->val), sub(x->sub) {}
    void update() {
        sz = 1, sub = val;
        if (1) sz += 1->sz, sub += 1->sub;
        if (r) sz += r->sz, sub += r->sub;
        sub \% = MOD;
   }
};
ll size(node* x) { return x ? x->sz : 0; }
void update(node* x) { if (x) x->update(); }
node* copy(node* x) { return x ? new node(x) : NULL; }
node* join(node* 1, node* r) {
    if (!1 or !r) return 1 ? copy(1) : copy(r);
    node* ret;
   if (rng() % (size(l) + size(r)) < size(l)) {</pre>
        ret = copy(1);
        ret->r = join(ret->r, r);
    } else {
        ret = copv(r);
        ret -> 1 = join(1, ret -> 1);
    }
    return update(ret), ret;
}
void split(node* x, node*& 1, node*& r, ll v, ll key = 0) {
    if (!x) return void(l = r = NULL);
    if (key + size(x->1) < v) {
        1 = copy(x);
        split(1->r, 1->r, r, v, key+size(1->1)+1);
    } else {
        r = copy(x);
        split(r->1, l, r->l, v, key);
    update(1), update(r);
```

```
vector<node*> treap;

void init(const vector<ll>& v) {
    treap = {NULL};
    for (auto i : v) treap[0] = join(treap[0], new node(i));
}
```

1.19 SQRT-decomposition

```
// Resolve RMQ
// 0-indexed
// MAX2 = sqrt(MAX)
// O bloco da posicao x eh
// sempre x/q
//
// Complexidades:
// build - O(n)
// query - 0(sqrt(n))
int n, q;
int v[MAX];
int bl[MAX2];
void build() {
    q = (int) sqrt(n);
    // computa cada bloco
    for (int i = 0; i <= q; i++) {</pre>
        bl[i] = INF;
        for (int j = 0; j < q and q * i + j < n; j++)
            bl[i] = min(bl[i], v[q * i + j]);
}
int query(int a, int b) {
    int ret = INF;
```

```
// linear no bloco de a
    for (; a <= b and a % q; a++) ret = min(ret, v[a]);</pre>
    // bloco por bloco
    for (; a + q <= b; a += q) ret = min(ret, bl[a / q]);</pre>
    // linear no bloco de b
    for (; a <= b; a++) ret = min(ret, v[a]);</pre>
    return ret;
}
1.20 RMQ \langle O(n), O(1) \rangle - cartesian tree
// O(n) pra buildar, query O(1)
// Para retornar o indice, basta
// trocar v[...] para ... na query
// 56c607
template < typename T> struct rmq {
    vector <T> v;
    int n, b;
    vector < int > id, st;
    vector < vector < int >> table;
    vector < vector < int >>> entre;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }
    rmq(vector<T>& v_) {
        v = v_{-}, n = v.size();
        b = (\_builtin\_clz(1) - \_builtin\_clz(n) + 1)/4 + 1;
        id.resize(n):
        table.assign(4*b, vector<int>((n+b-1)/b);
        entre.assign(1<<b<<b, vector<vector<int>>(b,
           vector < int > (b, -1));
        for (int i = 0; i < n; i += b) {
            int at = 0, 1 = min(n, i+b);
            st.clear();
            for (int j = i; j < 1; j++) {
                 while (st.size() and op(st.back(), j) == j)
                    st.pop_back(), at *= 2;
```

```
st.push_back(j), at = 2*at+1;
            }
            for (int j = i; j < 1; j++) id[j] = at;</pre>
            if (entre[at][0][0] == -1) for (int x = 0; x <</pre>
               l-i; x++) {
                entre[at][x][x] = x;
                for (int y = x+1; y < 1-i; y++)
                    entre[at][x][y] =
                       op(i+entre[at][x][y-1], i+y) - i;
            table[0][i/b] = i+entre[at][0][1-i-1];
        for (int j = 1; (1<<j) <= (n+b-1)/b; j++)
            for (int i = 0; i+(1<<j) <= (n+b-1)/b; i++)
                table[j][i] = op(table[j-1][i],
                   table[j-1][i+(1<<(j-1))]);
    }
    T query(int i, int j) {
        if (i/b == i/b) return
           v[i/b*b+entre[id[i]][i%b][j%b]];
        int x = i/b+1, y = j/b-1, ans = i;
        if (x <= y) {
            int t = __builtin_clz(1) - __builtin_clz(y-x+1);
            ans = op(ans, op(table[t][x],
               table[t][y-(1<<t)+1]));
        }
        ans = op(ans, op(i/b*b+entre[id[i]][i\%b][b-1],
           j/b*b+entre[id[j]][0][j%b]));
        return v[ans];
    }
};
1.21 MergeSort Tree
// Se for construida sobre um array:
        count(i, j, a, b) retorna quantos
        elementos de v[i..j] pertencem a [a, b]
        report(i, j, a, b) retorna os indices dos
        elementos de v[i..j] que pertencem a [a, b]
```

//

retorna o vetor ordenado

```
// Se for construida sobre pontos (x, y):
        count(x1, x2, y1, x2) retorna quantos pontos
//
//
        pertencem ao retangulo (x1, y1), (x2, y2)
//
        report(x1, x2, y1, y2) retorna os indices dos pontos
   que
//
        pertencem ao retangulo (x1, y1), (x2, y2)
//
        retorna os pontos ordenados lexicograficamente
        (assume x1 <= x2, y1 <= y2)
//
//
// kth(y1, y2, k) retorna o indice do ponto com k-esimo menor
// x dentre os pontos que possuem y em [y1, y2] (0 based)
// Se quiser usar para achar k-esimo valor em range,
   construir
// com ms_tree t(v, true), e chamar kth(l, r, k)
// Usa O(n log(n)) de memoria
//
// Complexidades:
// construir - O(n log(n))
// count - O(log(n))
// report - O(log(n) + k) para k indices retornados
// kth - O(log(n))
// 1cef03
template <typename T = int> struct ms_tree {
    vector<tuple<T, T, int>> v;
    vector < vector < tuple < T, T, int >>> t; // {y, idx, left}
    vector <T> vy;
    ms_tree(vector<pair<T, T>>& vv) : n(vv.size()), t(4*n),
       vy(n) {
        for (int i = 0; i < n; i++)</pre>
           v.push_back({vv[i].first, vv[i].second, i});
        sort(v.begin(), v.end());
        build(1, 0, n-1);
        for (int i = 0; i < n; i++) vy[i] =</pre>
           get <0>(t[1][i+1]);
    ms_tree(vector<T>& vv, bool inv = false) { // inv:
       inverte indice e valor
        vector<pair<T, T>> v2;
```

```
for (int i = 0; i < vv.size(); i++)</pre>
        inv ? v2.push_back({vv[i], i}) :
           v2.push_back({i, vv[i]});
    *this = ms_tree(v2);
}
void build(int p, int 1, int r) {
    t[p].push_back({get<0>(v[1]), get<0>(v[r]), 0}); //
       {min_x, max_x, 0}
    if (1 == r) return t[p].push_back({get<1>(v[1]),
       get <2>(v[1]), 0});
    int m = (1+r)/2;
    build (2*p, 1, m), build (2*p+1, m+1, r);
    int L = 0, R = 0;
    while (t[p].size() \le r-l+1) {
        int left = get<2>(t[p].back());
        if (L > m-1 \text{ or } (R+m+1 \le r \text{ and } t[2*p+1][1+R] \le
           t[2*p][1+L])) {
            t[p].push_back(t[2*p+1][1 + R++]);
            get <2 > (t[p].back()) = left;
            continue;
        }
        t[p].push_back(t[2*p][1 + L++]);
        get < 2 > (t[p].back()) = left + 1;
    }
}
int get_l(T y) { return lower_bound(vy.begin(),
   vy.end(), y) - vy.begin(); }
int get_r(T y) { return upper_bound(vy.begin(),
   vy.end(), y) - vy.begin(); }
int count(T x1, T x2, T y1, T y2) {
    function < int (int, int, int) > dfs = [&] (int p, int 1,
       int r) {
        if (1 == r or x2 < get < 0 > (t[p][0]) or
           get <1>(t[p][0]) < x1) return 0;
        if (x1 \le get<0>(t[p][0]) and get<1>(t[p][0]) <=
           x2) return r-1;
        int nl = get<2>(t[p][1]), nr = get<2>(t[p][r]);
        return dfs(2*p, nl, nr) + dfs(2*p+1, l-nl, r-nr);
    };
```

```
return dfs(1, get_l(y1), get_r(y2));
    }
    vector<int> report(T x1, T x2, T y1, T y2) {
        vector<int> ret;
        function < void(int, int, int) > dfs = [&](int p, int
           1, int r) {
            if (1 == r or x2 < get<0>(t[p][0]) or
                get<1>(t[p][0]) < x1) return;</pre>
            if (x1 \le get<0>(t[p][0]) and get<1>(t[p][0]) \le
               x2) {
                for (int i = 1; i < r; i++)</pre>
                    ret.push_back(get<1>(t[p][i+1]));
                return;
            }
            int nl = get < 2 > (t[p][1]), nr = get < 2 > (t[p][r]);
            dfs(2*p, nl, nr), dfs(2*p+1, l-nl, r-nr);
        };
        dfs(1, get_l(y1), get_r(y2));
        return ret;
    }
    int kth(T y1, T y2, int k) {
        function < int (int, int, int) > dfs = [&] (int p, int l,
           int r) {
            if (k >= r-1) {
                k = r-1;
                return -1;
            }
            if (r-l == 1) return get<1>(t[p][l+1]);
            int nl = get<2>(t[p][1]), nr = get<2>(t[p][r]);
            int left = dfs(2*p, nl, nr);
            if (left != -1) return left;
            return dfs(2*p+1, l-nl, r-nr);
        };
        return dfs(1, get_l(y1), get_r(y2));
    }
};
```

1.22 Split-Merge Set - Lazy

// Representa um conjunto de inteiros nao negativos

```
// Todas as operacoes custam O(log(N)),
// em que N = maior elemento do set,
// exceto o merge e o insert_range, que custa O(log(N))
   amortizado
// Usa O(min(N, n log(N))) de memoria, sendo 'n' o
// numero de elementos distintos no set
// 3828d0
template < typename T > struct sms {
    struct node {
        node *1, *r;
        int cnt;
        bool flip;
        node() : 1(NULL), r(NULL), cnt(0), flip(0) {}
        void update() {
             cnt = 0;
            if (1) cnt += 1->cnt;
            if (r) cnt += r->cnt;
        }
    };
    void prop(node* x, int size) {
        if (!x or !x->flip) return;
        x \rightarrow flip = 0;
        x \rightarrow cnt = size - x \rightarrow cnt;
        if (size > 1) {
             if (!x->1) x->1 = new node();
             if (!x->r) x->r = new node();
            x - > 1 - > flip ^= 1;
            x->r->flip ^= 1;
        }
    }
    node* root;
    T N;
    sms() : root(NULL), N(0) {}
    sms(T v) : sms() { while (v >= N) N = 2*N+1; }
    sms(sms& t) : root(NULL), N(t.N) {
         for (int i = 0; i < t.size(); i++) insert(t[i]);</pre>
    }
    sms(initializer_list<T> v) : sms() { for (T i : v)
```

```
insert(i): }
void destroy(node* r) {
    vector < node *> q = {r};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
~sms() { destroy(root); }
friend void swap(sms& a, sms& b) {
    swap(a.root, b.root), swap(a.N, b.N);
sms& operator =(const sms& v) {
    sms tmp = v;
    swap(tmp, *this);
    return *this;
}
int count(node* x, T size) {
    if (!x) return 0;
    prop(x, size);
    return x->cnt;
}
int size() { return count(root, N+1); }
void clear() {
    sms tmp;
    swap(*this, tmp);
}
void expand(T v) {
    for (; N < v; N = 2*N+1) if (root) {
        prop(root, N+1);
        node* nroot = new node();
        nroot ->1 = root;
        root = nroot;
        root ->update();
    }
}
node* insert(node* at, T idx, T 1, T r) {
    if (!at) at = new node();
```

```
else prop(at, r-l+1);
    if (1 == r) {
        at -> cnt = 1;
        return at;
    }
    T m = 1 + (r-1)/2;
    if (idx \le m) at >1 = insert(at > 1, idx, 1, m);
    else at->r = insert(at->r, idx, m+1, r);
    return at->update(), at;
void insert(T v) {
    assert(v >= 0);
    expand(v);
    root = insert(root, v, 0, N);
}
node* erase(node* at, T idx, T 1, T r) {
    if (!at) return at;
    prop(at, r-l+1);
    if (1 == r) at -> cnt = 0;
    else {
        T m = 1 + (r-1)/2;
        if (idx \le m) at->1 = erase(at->1, idx, 1, m);
        else at->r = erase(at->r, idx, m+1, r);
        at ->update();
    }
    return at;
void erase(T v) {
    if (v < 0 \text{ or } v > N) return;
    root = erase(root, v, 0, N);
}
int count(node* at, T a, T b, T l, T r) {
    if (!at or b < l or r < a) return 0;</pre>
    prop(at, r-l+1);
    if (a <= 1 and r <= b) return at->cnt;
    T m = 1 + (r-1)/2:
    return count(at->1, a, b, 1, m) + count(at->r, a, b,
       m+1, r);
}
int count(T v) { return count(root, v, v, 0, N); }
```

```
int order_of_key(T v) { return count(root, 0, v-1, 0,
   N); }
int lower_bound(T v) { return order_of_key(v); }
const T operator [](int i) { // i-esimo menor elemento
    assert(i >= 0 and i < size());</pre>
    node* at = root;
    T 1 = 0, r = N;
    while (1 < r) {
        prop(at, r-l+1);
        T m = 1 + (r-1)/2;
        if (count(at->1, m-1+1) > i) at = at->1, r = m;
        else {
            i -= count(at->1, r-m);
            at = at->r; l = m+1;
        }
    }
    return 1;
}
node* merge(node* a, node* b, T tam) {
    if (!a or !b) return a ? a : b;
    prop(a, tam), prop(b, tam);
    if (b->cnt == tam) swap(a, b);
    if (tam == 1 or a->cnt == tam) {
        destroy(b);
        return a;
    a - > 1 = merge(a - > 1, b - > 1, tam > > 1), a - > r = merge(a - > r,
       b \rightarrow r, tam >> 1);
    a->update(), delete b;
    return a;
}
void merge(sms& s) { // mergeia dois sets
    if (N > s.N) swap(*this, s);
    expand(s.N);
    root = merge(root, s.root, N+1);
    s.root = NULL;
}
node* split(node*& x, int k, T tam) {
    if (k <= 0 or !x) return NULL;</pre>
```

```
prop(x, tam);
    node* ret = new node();
    if (tam == 1) x -> cnt = 0, ret -> cnt = 1;
    else {
        if (k \le count(x->1, tam>>1)) ret->1 =
           split(x->1, k, tam>>1);
            ret -> r = split(x -> r, k - count(x -> l,
               tam>>1), tam>>1);
            swap(x->1, ret->1);
        ret->update(), x->update();
    }
    return ret;
void split(int k, sms& s) { // pega os 'k' menores
    s.clear():
    s.root = split(root, min(k, size()), N+1);
    s.N = N;
// pega os menores que 'k'
void split_val(T k, sms& s) { split(order_of_key(k), s);
   }
void flip(node*& at, T a, T b, T l, T r) {
    if (!at) at = new node();
    else prop(at, r-l+1);
    if (a <= 1 and r <= b) {
        at ->flip ^= 1;
        prop(at, r-l+1);
        return;
    if (r < a or b < 1) return;
    T m = 1 + (r-1)/2;
    flip(at->1, a, b, 1, m), flip(at->r, a, b, m+1, r);
    at->update();
void flip(T 1, T r) { // flipa os valores em [1, r]
    assert(1 >= 0 \text{ and } 1 <= r);
    expand(r);
    flip(root, 1, r, 0, N);
}
```

```
// complemento considerando que o universo eh [0, lim]
    void complement(T lim) {
        assert(lim >= 0);
        if (lim > N) expand(lim);
        flip(root, 0, lim, 0, N);
        sms tmp;
        split_val(lim+1, tmp);
        swap(*this, tmp);
    }
    void insert_range(T 1, T r) { // insere todo os valores
       em [1, r]
        sms tmp;
        tmp.flip(l, r);
        merge(tmp);
   }
};
```

1.23 SegTree 2D Iterativa

```
// Consultas 0-based
// Um valor inicial em (x, y) deve ser colocado em
   seg[x+n][y+n]
// Query: soma do retangulo ((x1, y1), (x2, y2))
// Update: muda o valor da posicao (x, y) para val
// Nao pergunte como que essa coisa funciona
//
// Para query com distancia de manhattan <= d, faca
// nx = x+y, ny = x-y
// Update em (nx, ny), query em ((nx-d, ny-d), (nx+d, ny+d))
//
// Se for de min/max, pode tirar os if's da 'query', e fazer
// sempre as 4 operacoes. Fica mais rapido
//
// Complexidades:
// build - O(n^2)
// query - O(log^2(n))
// update - O(log^2(n))
// 67b9e5
int seg[2*MAX][2*MAX], n;
```

```
void build() {
    for (int x = 2*n; x; x--) for (int y = 2*n; y; y--) {
         if (x < n) seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
         if (y < n) seg[x][y] = seg[x][2*y] + seg[x][2*y+1];
}
int query(int x1, int y1, int x2, int y2) {
    int ret = 0, y3 = y1 + n, y4 = y2 + n;
    for (x1 += n, x2 += n; x1 <= x2; ++x1 /= 2, --x2 /= 2)
         for (y1 = y3, y2 = y4; y1 \le y2; ++y1 /= 2, --y2 /=
            2) {
             if (x1\%2 == 1 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x1][y1];
             if (x1\%2 == 1 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x1][y2];
             if (x2\%2 == 0 \text{ and } y1\%2 == 1) \text{ ret } += \text{seg}[x2][y1];
             if (x2\%2 == 0 \text{ and } y2\%2 == 0) \text{ ret } += \text{seg}[x2][y2];
         }
    return ret;
}
void update(int x, int y, int val) {
    int y2 = y += n;
    for (x += n; x; x /= 2, y = y2) {
         if (x \ge n) seg[x][y] = val;
         else seg[x][y] = seg[2*x][y] + seg[2*x+1][y];
         while (y /= 2) seg[x][y] = seg[x][2*y] +
            seg[x][2*y+1];
    }
}
1.24 SegTree PA
// Segtree de PA
// update_set(1, r, A, R) seta [1, r] para PA(A, R),
// update_add soma PA(A, R) em [1, r]
// query(1, r) retorna a soma de [1, r]
```

```
// PA(A, R) eh a PA: [A+R, A+2R, A+3R, ...]
//
// Complexidades:
// construir - O(n)
// update_set, update_add, query - O(log(n))
// bc4746
struct seg_pa {
    struct Data {
        ll sum:
        ll set_a, set_r, add_a, add_r;
        Data() : sum(0), set_a(LINF), set_r(0), add_a(0),
           add r(0) {}
    };
    vector < Data > seg;
    int n;
    seg_pa(int n_) {
        n = n_{-};
        seg = vector < Data > (4*n);
    }
    void prop(int p, int l, int r) {
        int tam = r-l+1;
        ll &sum = seg[p].sum, &set_a = seg[p].set_a, &set_r
           = seg[p].set_r,
            &add_a = seg[p].add_a, &add_r = seg[p].add_r;
        if (set_a != LINF) {
            set_a += add_a, set_r += add_r;
            sum = set_a*tam + set_r*tam*(tam+1)/2;
            if (1 != r) {
                int m = (1+r)/2;
                seg[2*p].set_a = set_a;
                seg[2*p].set_r = set_r;
                seg[2*p].add_a = seg[2*p].add_r = 0;
                seg[2*p+1].set_a = set_a + set_r * (m-l+1);
                seg[2*p+1].set_r = set_r;
                seg[2*p+1].add_a = seg[2*p+1].add_r = 0;
```

```
set_a = LINF, set_r = 0;
        add_a = add_r = 0;
    } else if (add_a or add_r) {
        sum += add_a*tam + add_r*tam*(tam+1)/2;
        if (1 != r) {
            int m = (1+r)/2;
            seg[2*p].add_a += add_a;
            seg[2*p].add_r += add_r;
             seg[2*p+1].add_a += add_a + add_r * (m-l+1);
            seg[2*p+1].add_r += add_r;
        }
        add_a = add_r = 0;
    }
}
int inter(pair<int, int> a, pair<int, int> b) {
    if (a.first > b.first) swap(a, b);
    return max(0, min(a.second, b.second) - b.first + 1);
}
11 set(int a, int b, ll aa, ll rr, int p, int l, int r) {
    prop(p, 1, r);
    if (b < l or r < a) return seg[p].sum;</pre>
    if (a \le 1 \text{ and } r \le b) \{
        seg[p].set_a = aa;
        seg[p].set_r = rr;
        prop(p, 1, r);
        return seg[p].sum;
    }
    int m = (1+r)/2;
    int tam_l = inter({1, m}, {a, b});
    return seg[p].sum = set(a, b, aa, rr, 2*p, 1, m) +
        set(a, b, aa + rr * tam_l, rr, 2*p+1, m+1, r);
void update_set(int 1, int r, ll aa, ll rr) {
    set(1, r, aa, rr, 1, 0, n-1);
11 add(int a, int b, ll aa, ll rr, int p, int l, int r) {
    prop(p, 1, r);
    if (b < l or r < a) return seg[p].sum;</pre>
    if (a \le 1 \text{ and } r \le b) {
```

```
seg[p].add_a += aa;
             seg[p].add_r += rr;
            prop(p, 1, r);
            return seg[p].sum;
        int m = (1+r)/2;
        int tam_l = inter({1, m}, {a, b});
        return seg[p].sum = add(a, b, aa, rr, 2*p, 1, m) +
             add(a, b, aa + rr * tam_l, rr, 2*p+1, m+1, r);
    }
    void update_add(int 1, int r, 11 aa, 11 rr) {
        add(1, r, aa, rr, 1, 0, n-1);
    }
    ll query(int a, int b, int p, int l, int r) {
        prop(p, 1, r);
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        if (a <= l and r <= b) return seg[p].sum;</pre>
        int m = (1+r)/2;
        return query (a, b, 2*p, 1, m) + query (a, b, 2*p+1,
            m+1, r);
    }
    11 query(int 1, int r) { return query(1, r, 1, 0, n-1); }
};
```

1.25 SegTree Esparsa - Lazy

```
// Query: soma do range [a, b]
// Update: flipa os valores de [a, b]
// O MAX tem q ser Q log N para Q updates
//
// Complexidades:
// build - O(1)
// query - O(log(n))
// update - O(log(n))
// dc37e6

namespace seg {
   int seg[MAX], lazy[MAX], R[MAX], L[MAX], ptr;
   int get_l(int i){
      if (L[i] == 0) L[i] = ptr++;
```

```
return L[i];
    int get_r(int i){
        if (R[i] == 0) R[i] = ptr++;
        return R[i];
    }
    void build() { ptr = 2; }
    void prop(int p, int 1, int r) {
        if (!lazy[p]) return;
        seg[p] = r-l+1 - seg[p];
        if (1 != r) lazy[get_l(p)]^=lazy[p],
            lazy[get_r(p)]^=lazy[p];
        lazy[p] = 0;
    }
    int query(int a, int b, int p=1, int 1=0, int r=N-1) {
        prop(p, 1, r);
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        if (a <= 1 and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, get_l(p), l, m)+query(a, b,
            get_r(p), m+1, r);
    }
    int update(int a, int b, int p=1, int l=0, int r=N-1) {
        prop(p, 1, r);
        if (b < 1 or r < a) return seg[p];</pre>
        if (a \le 1 \text{ and } r \le b) {
            lazy[p] ^= 1;
            prop(p, 1, r);
            return seg[p];
        }
        int m = (1+r)/2;
        return seg[p] = update(a, b, get_l(p), l,
            m)+update(a, b, get_r(p), m+1, r);
};
```

1.26 SegTree Esparsa - O(q) memoria

```
// Query: min do range [a, b]
// Update: troca o valor de uma posicao
// Usa O(q) de memoria para q updates
// Complexidades:
// query - O(log(n))
// update - 0(log(n))
// 072a21
template < typename T > struct seg {
    struct node {
        node* ch[2];
        char d;
        T v;
        T mi;
        node(int d_, T v_, T val) : d(d_), v(v_) {
            ch[0] = ch[1] = NULL;
            mi = val;
        node(node* x) : d(x->d), v(x->v), mi(x->mi) {
            ch[0] = x -> ch[0], ch[1] = x -> ch[1];
        void update() {
            mi = numeric_limits <T>::max();
            for (int i = 0; i < 2; i++) if (ch[i])
                mi = min(mi, ch[i]->mi);
        }
    };
    node* root;
    char n;
    seg() : root(NULL), n(0) {}
    \simseg() {
        std::vector<node*> q = {root};
        while (q.size()) {
            node* x = q.back(); q.pop_back();
            if (!x) continue;
```

```
q.push_back(x->ch[0]), q.push_back(x->ch[1]);
        delete x;
    }
}
char msb(T v, char l, char r) { // msb in range (l, r]
    for (char i = r; i > 1; i--) if (v>>i&1) return i;
    return -1;
}
void cut(node* at, T v, char i) {
    char d = msb(v ^a at -> v, at -> d, i);
    if (d == -1) return; // no need to split
    node* nxt = new node(at);
    at -> ch[v>>d&1] = NULL;
    at - ch[!(v > d&1)] = nxt:
    at -> d = d:
}
node* update(node* at, T idx, T val, char i) {
    if (!at) return new node(-1, idx, val);
    cut(at, idx, i);
    if (at -> d == -1) { // leaf }
        at->mi = val;
        return at;
    }
    bool dir = idx>>at->d&1;
    at->ch[dir] = update(at->ch[dir], idx, val, at->d-1);
    at->update();
    return at;
}
void update(T idx, T val) {
    while (idx >> n) n++;
    root = update(root, idx, val, n-1);
}
T query(node* at, T a, T b, T l, T r, char i) {
    if (!at or b < l or r < a) return</pre>
       numeric_limits <T>::max();
    if (a <= l and r <= b) return at->mi;
    T m = 1 + (r-1)/2;
    if (at->d < i) {</pre>
        if ((at->v>>i\&1) == 0) return query(at, a, b, 1,
```

1.27 SegTree Iterativa com Lazy Propagation

```
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
// Para mudar, mudar as funcoes junta, poe e query
// LOG = ceil(log2(MAX))
//
// Complexidades:
// build - O(n)
// query - 0(log(n))
// update - 0(log(n))
// 6dc475
namespace seg {
    11 \text{ seg}[2*MAX], lazy[2*MAX];
    int n;
    ll junta(ll a, ll b) {
        return a+b:
    }
    // soma x na posicao p de tamanho tam
    void poe(int p, ll x, int tam, bool prop=1) {
        seg[p] += x*tam;
        if (prop and p < n) lazy[p] += x;</pre>
    }
    // atualiza todos os pais da folha p
    void sobe(int p) {
        for (int tam = 2; p /= 2; tam *= 2) {
```

```
seg[p] = junta(seg[2*p], seg[2*p+1]);
        poe(p, lazy[p], tam, 0);
    }
}
// propaga o caminho da raiz ate a folha p
void prop(int p) {
    int tam = 1 << (LOG-1);
    for (int s = LOG; s; s--, tam /= 2) {
        int i = p >> s;
        if (lazy[i]) {
            poe(2*i, lazy[i], tam);
            poe(2*i+1, lazy[i], tam);
            lazy[i] = 0;
        }
    }
}
void build(int n2, int* v) {
    n = n2;
    for (int i = 0; i < n; i++) seg[n+i] = v[i];
    for (int i = n-1; i; i--) seg[i] = junta(seg[2*i],
       seg[2*i+1]);
    for (int i = 0; i < 2*n; i++) lazy[i] = 0;</pre>
}
ll query(int a, int b) {
    11 \text{ ret} = 0;
    for (prop(a+=n), prop(b+=n); a \le b; ++a/=2, --b/=2)
       {
        if (a%2 == 1) ret = junta(ret, seg[a]);
        if (b\%2 == 0) ret = junta(ret, seg[b]);
    }
    return ret;
}
void update(int a, int b, int x) {
    int a2 = a += n, b2 = b += n, tam = 1;
    for (; a <= b; ++a/=2, --b/=2, tam *= 2) {
        if (a\%2 == 1) poe(a, x, tam);
        if (b\%2 == 0) poe(b, x, tam);
    }
```

```
sobe(a2), sobe(b2);
};
```

1.28 SegTree Colorida

```
// Cada posicao tem um valor e uma cor
// O construtor receve um vector de {valor, cor}
// e o numero de cores (as cores devem estar em [0, c-1])
// query(c, a, b) retorna a soma dos valores
// de todo mundo em [a, b] que tem cor c
// update(c, a, b, x) soma x em todo mundo em
// [a, b] que tem cor c
// paint(c1, c2, a, b) faz com que todo mundo
// em [a, b] que tem cor c1 passe a ter cor c2
//
// Complexidades:
// construir - O(n log(n)) espaco e tempo
// query - O(log(n))
// update - O(log(n))
// paint - O(log(n)) amortizado
// 2938e8
struct seg_color {
    struct node {
        node *1, *r;
        int cnt;
        ll val, lazy;
        node() : 1(NULL), r(NULL), cnt(0), val(0), lazy(0) {}
        void update() {
            cnt = 0, val = 0;
            for (auto i : {1, r}) if (i) {
                i->prop();
                cnt += i->cnt, val += i->val;
            }
        void prop() {
            if (!lazy) return;
            val += lazy*(ll)cnt;
            for (auto i : {1, r}) if (i) i->lazy += lazy;
```

```
lazv = 0:
    }
};
int n;
vector < node *> seg;
seg_color(vector<pair<int, int>>& v, int c) :
   n(v.size()), seg(c, NULL) {
    for (int i = 0; i < n; i++)</pre>
        seg[v[i].second] = insert(seg[v[i].second], i,
           v[i].first, 0, n-1);
}
\simseg_color() {
    queue < node *> q;
    for (auto i : seg) q.push(i);
    while (q.size()) {
        auto i = q.front(); q.pop();
        if (!i) continue;
        q.push(i->1), q.push(i->r);
        delete i;
    }
}
node* insert(node* at, int idx, int val, int l, int r) {
    if (!at) at = new node();
    if (l == r) return at->cnt = 1, at->val = val, at;
    int m = (1+r)/2;
    if (idx \le m) at->1 = insert(at->1, idx, val, 1, m);
    else at->r = insert(at->r, idx, val, m+1, r);
    return at ->update(), at;
11 query(node* at, int a, int b, int l, int r) {
    if (!at or b < l or r < a) return 0;</pre>
    at->prop();
    if (a <= l and r <= b) return at->val;
    int m = (1+r)/2:
    return query (at -> 1, a, b, 1, m) + query (at -> r, a, b,
       m+1, r);
11 query(int c, int a, int b) { return query(seg[c], a,
   b, 0, n-1); }
```

```
void update(node* at, int a, int b, int x, int 1, int r)
    if (!at or b < l or r < a) return;
    at->prop();
    if (a <= 1 and r <= b) {
        at - > lazv += x;
        return void(at->prop());
    int m = (1+r)/2;
    update(at->1, a, b, x, 1, m), update(at->r, a, b, x,
       m+1, r);
    at->update();
}
void update(int c, int a, int b, int x) { update(seg[c],
   a, b, x, 0, n-1); }
void paint(node*& from, node*& to, int a, int b, int l,
   int r) {
    if (to == from or !from or b < l or r < a) return;</pre>
    from ->prop();
    if (to) to->prop();
    if (a <= 1 and r <= b) {
        if (!to) {
            to = from;
            from = NULL;
            return;
        }
        int m = (1+r)/2;
        paint(from->1, to->1, a, b, 1, m),
           paint(from->r, to->r, a, b, m+1, r);
        to->update();
        delete from;
        from = NULL;
        return;
    if (!to) to = new node();
    int m = (1+r)/2;
    paint(from->1, to->1, a, b, 1, m), paint(from->r,
       to->r, a, b, m+1, r);
    from ->update(), to ->update();
}
void paint(int c1, int c2, int a, int b) {
   paint(seg[c1], seg[c2], a, b, 0, n-1); }
```

```
};
```

1.29 SegTree Iterativa

```
// Consultas 0-based
// Valores iniciais devem estar em (seg[n], ..., seg[2*n-1])
// Query: soma do range [a, b]
// Update: muda o valor da posicao p para x
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log(n))
// 779519
int seg[2 * MAX];
int n;
void build() {
    for (int i = n - 1; i; i--) seg[i] = seg[2*i] +
       seg[2*i+1];
}
int query(int a, int b) {
    int ret = 0:
    for (a += n, b += n; a <= b; ++a /= 2, --b /= 2) {
        if (a % 2 == 1) ret += seg[a];
        if (b \% 2 == 0) ret += seg[b];
    return ret;
}
void update(int p, int x) {
    seg[p += n] = x;
    while (p /= 2) seg[p] = seg[2*p] + seg[2*p+1];
}
```

1.30 SegTree Beats

```
// \text{ query(a, b)} - \{\{\min(v[a..b]), \max(v[a..b])\}, \sup(v[a..b])\}
// updatemin(a, b, x) faz com que v[i] <- min(v[i], x),</pre>
// para i em [a, b]
// updatemax faz o mesmo com max, e updatesum soma x
// em todo mundo do intervalo [a, b]
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log^2 (n)) amortizado
// (se nao usar updatesum, fica log(n) amortizado)
// 41672b
#define f first
#define s second
namespace beats {
    struct node {
        int tam;
        ll sum, lazy; // lazy pra soma
        ll mi1, mi2, mi; // mi = #mi1
        ll ma1, ma2, ma; // ma = #ma1
        node(11 x = 0) {
            sum = mi1 = ma1 = x;
            mi2 = LINF, ma2 = -LINF;
            mi = ma = tam = 1;
            lazv = 0;
        node(const node& 1, const node& r) {
            sum = 1.sum + r.sum, tam = 1.tam + r.tam;
            lazy = 0;
            if (1.mi1 > r.mi1) {
                mi1 = r.mi1, mi = r.mi;
                mi2 = min(1.mi1, r.mi2);
            } else if (1.mi1 < r.mi1) {</pre>
                mi1 = l.mi1, mi = l.mi;
                mi2 = min(r.mi1, l.mi2);
            } else {
                mi1 = l.mi1, mi = l.mi+r.mi;
                mi2 = min(1.mi2, r.mi2);
```

```
if (1.ma1 < r.ma1) {
            ma1 = r.ma1, ma = r.ma;
            ma2 = max(1.ma1, r.ma2);
        } else if (1.ma1 > r.ma1) {
            ma1 = 1.ma1, ma = 1.ma;
            ma2 = max(r.ma1, l.ma2);
        } else {
            ma1 = 1.ma1, ma = 1.ma+r.ma;
            ma2 = max(1.ma2, r.ma2);
        }
    }
    void setmin(ll x) {
        if (x >= ma1) return;
        sum += (x - ma1)*ma;
        if (mi1 == ma1) mi1 = x;
       if (mi2 == ma1) mi2 = x;
        ma1 = x:
    }
    void setmax(ll x) {
        if (x <= mi1) return;</pre>
        sum += (x - mi1)*mi;
       if (ma1 == mi1) ma1 = x;
       if (ma2 == mi1) ma2 = x;
        mi1 = x;
   }
    void setsum(ll x) {
        mi1 += x, mi2 += x, ma1 += x, ma2 += x;
        sum += x*tam;
        lazy += x;
    }
};
node seg[4*MAX];
int n, *v;
node build(int p=1, int l=0, int r=n-1) {
   if (1 == r) return seg[p] = {v[1]};
    int m = (1+r)/2;
   return seg[p] = \{build(2*p, 1, m), build(2*p+1, m+1,
       r)};
}
void build(int n2, int* v2) {
```

```
n = n2, v = v2;
    build();
}
void prop(int p, int l, int r) {
    if (1 == r) return;
    for (int k = 0; k < 2; k++) {
        if (seg[p].lazy) seg[2*p+k].setsum(seg[p].lazy);
        seg[2*p+k].setmin(seg[p].ma1);
        seg[2*p+k].setmax(seg[p].mi1);
    seg[p].lazy = 0;
}
pair < pair < 11, 11 >, 11 > query (int a, int b, int p=1, int
   1=0, int r=n-1) {
    if (b < 1 or r < a) return {{LINF, -LINF}, 0};</pre>
    if (a <= 1 and r <= b) return {{seg[p].mi1,</pre>
        seg[p].ma1}, seg[p].sum};
    prop(p, 1, r);
    int m = (1+r)/2;
    auto L = query(a, b, 2*p, 1, m), R = query(a, b, auto L)
        2*p+1, m+1, r);
    return {{min(L.f.f, R.f.f), max(L.f.s, R.f.s)},
       L.s+R.s;
}
node updatemin(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
   if (b < l or r < a or seg[p].ma1 <= x) return seg[p];</pre>
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].ma2 < x) {
        seg[p].setmin(x);
        return seg[p];
    prop(p, 1, r);
    int m = (1+r)/2;
    return seg[p] = \{updatemin(a, b, x, 2*p, 1, m),
                     updatemin(a, b, x, 2*p+1, m+1, r)};
}
node updatemax(int a, int b, ll x, int p=1, int l=0, int
   r=n-1) {
    if (b < l or r < a or seg[p].mi1 >= x) return seg[p];
    if (a \le 1 \text{ and } r \le b \text{ and } seg[p].mi2 > x) {
        seg[p].setmax(x);
        return seg[p];
```

```
}
        prop(p, 1, r);
        int m = (1+r)/2;
        return seg[p] = \{updatemax(a, b, x, 2*p, 1, m),
                         updatemax(a, b, x, 2*p+1, m+1, r)};
    node updatesum(int a, int b, ll x, int p=1, int l=0, int
       r=n-1) {
        if (b < l or r < a) return seg[p];</pre>
        if (a \le 1 \text{ and } r \le b) {
            seg[p].setsum(x);
            return seg[p];
        }
        prop(p, 1, r);
        int m = (1+r)/2;
        return seg[p] = \{updatesum(a, b, x, 2*p, 1, m),
                         updatesum(a, b, x, 2*p+1, m+1, r)};
    }
};
```

1.31 SegTree Persistente

```
// SegTree de soma, update de somar numa posicao
//
// query(a, b, t) retorna a query de [a, b] na versao t
// update(a, x, t) faz um update v[a]+=x a partir da
// versao de t, criando uma nova versao e retornando seu id
// Por default, faz o update a partir da ultima versao
//
// build - O(n)
// query - O(log(n))
// update - O(log(n))
// 5f1bc4

const int MAX = 3e4+10, UPD = 2e5+10, LOG = 20;
const int MAXS = 4*MAX+UPD*LOG;

namespace perseg {
    ll seg[MAXS];
    int rt[UPD], L[MAXS], R[MAXS], cnt, t;
```

```
int n, *v;
    ll build(int p, int l, int r) {
        if (1 == r) return seg[p] = v[1];
        L[p] = cnt++, R[p] = cnt++;
        int m = (1+r)/2;
        return seg[p] = build(L[p], 1, m) + build(R[p], m+1,
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        rt[0] = cnt++;
        build(0, 0, n-1);
    }
    ll query(int a, int b, int p, int l, int r) {
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        if (a <= 1 and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, L[p], 1, m) + query(a, b, R[p],
           m+1, r);
    }
    11 query(int a, int b, int tt) {
        return query(a, b, rt[tt], 0, n-1);
    11 update(int a, int x, int lp, int p, int l, int r) {
        if (l == r) return seg[p] = seg[lp]+x;
        int m = (1+r)/2;
        if (a \ll m)
            return seg[p] = update(a, x, L[lp], L[p]=cnt++,
               1, m) + seg[R[p]=R[lp]];
        return seg[p] = seg[L[p]=L[lp]] + update(a, x,
           R[lp], R[p] = cnt ++, m+1, r);
    }
    int update(int a, int x, int tt=t) {
        update(a, x, rt[tt], rt[++t]=cnt++, 0, n-1);
        return t:
    }
};
```

1.32 SegTree

```
// Recursiva com Lazy Propagation
// Query: soma do range [a, b]
// Update: soma x em cada elemento do range [a, b]
//
// Complexidades:
// build - O(n)
// query - O(log(n))
// update - O(log(n))
namespace seg {
    11 seg[4*MAX], lazy[4*MAX];
    int n, *v;
    ll build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = v[1];
        int m = (1+r)/2;
        return seg[p] = build(2*p, 1, m) + build(2*p+1, m+1,
           r);
    }
    void build(int n2, int* v2) {
        n = n2, v = v2;
        build();
    void prop(int p, int 1, int r) {
        seg[p] += lazy[p]*(r-l+1);
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazv[p];
        lazy[p] = 0;
    }
    ll query(int a, int b, int p=1, int l=0, int r=n-1) {
        prop(p, 1, r);
        if (a <= 1 and r <= b) return seg[p];</pre>
        if (b < 1 or r < a) return 0;
        int m = (1+r)/2:
        return query(a, b, 2*p, 1, m) + query(a, b, 2*p+1,
           m+1, r);
    }
    11 update(int a, int b, int x, int p=1, int 1=0, int
       r=n-1) {
        prop(p, 1, r);
        if (a \le 1 \text{ and } r \le b) {
```

```
lazy[p] += x;
            prop(p, 1, r);
            return seg[p];
        if (b < 1 or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = update(a, b, x, 2*p, 1, m) +
            update(a, b, x, 2*p+1, m+1, r);
   }
};
// Se tiver uma seg de max, da pra descobrir em O(log(n))
// o primeiro e ultimo elemento >= val numa range:
// primeira posicao >= val em [a, b] (ou -1 se nao tem)
int get_left(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
   if (b < 1 or r < a or seg[p] < val) return -1;</pre>
    if (r == 1) return 1;
    int m = (1+r)/2;
   int x = get_left(a, b, val, 2*p, 1, m);
    if (x != -1) return x;
    return get_left(a, b, val, 2*p+1, m+1, r);
}
// ultima posicao >= val em [a, b] (ou -1 se nao tem)
int get_right(int a, int b, int val, int p=1, int l=0, int
   r=n-1) {
   if (b < l or r < a or seg[p] < val) return -1;</pre>
    if (r == 1) return 1;
    int m = (1+r)/2;
    int x = get_right(a, b, val, 2*p+1, m+1, r);
    if (x != -1) return x;
    return get_right(a, b, val, 2*p, 1, m);
}
// Se tiver uma seg de soma sobre um array nao negativo v,
   da pra
// descobrir em O(log(n)) o maior j tal que
   v[i]+v[i+1]+...+v[j-1] < val
int lower_bound(int i, ll& val, int p, int l, int r) {
```

```
if (r < i) return n;
if (i <= l and seg[p] < val) {
    val -= seg[p];
    return n;
}
if (l == r) return l;
int m = (l+r)/2;
int x = lower_bound(i, val, 2*p, l, m);
if (x != n) return x;
return lower_bound(i, val, 2*p+1, m+1, r);
}</pre>
```

1.33 SegTreap

```
// Muda uma posicao do plano, e faz query de operacao
// associativa e comutativa em retangulo
// Mudar ZERO e op
// Esparso nas duas coordenadas, inicialmente eh tudo ZERO
// Para query com distancia de manhattan <= d, faca
// nx = x+y, ny = x-y
// Update em (nx, ny), query em ((nx-d, ny-d), (nx+d, ny+d))
// Valores no X tem que ser de O ateh NX
// Para q operacoes, usa O(q log(NX)) de memoria, e as
// operacoes custa O(log(q) log(NX))
// 75f2d0
const int ZERO = INF:
const int op(int 1, int r) { return min(1, r); }
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T > struct treap {
    struct node {
        node *1, *r;
        int p;
        pair<11, 11> idx; // {y, x}
        T val, mi;
```

```
node(ll x, ll y, T val_) : l(NULL), r(NULL),
       p(rng()),
        idx(pair(y, x)), val(val_), mi(val) {}
    void update() {
        mi = val;
        if (1) mi = op(mi, 1->mi);
        if (r) mi = op(mi, r->mi);
   }
};
node* root;
treap() { root = NULL; }
\simtreap() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
treap(treap&& t) : treap() { swap(root, t.root); }
void join(node* 1, node* r, node*& i) { // assume que 1
   < r
    if (!l or !r) return void(i = 1 ? l : r);
    if (1->p > r->p) join(1->r, r, 1->r), i = 1;
    else join(1, r->1, r->1), i = r;
    i->update();
}
void split(node* i, node*& 1, node*& r, pair<11, 11>
   idx) {
    if (!i) return void(r = 1 = NULL);
    if (i->idx < idx) split(i->r, i->r, r, idx), l = i;
    else split(i\rightarrow 1, l, i\rightarrow 1, idx), r = i;
    i->update();
}
void update(ll x, ll y, T v) {
    node *L, *M, *R;
    split(root, M, R, pair(y, x+1)), split(M, L, M,
       pair(y, x));
```

```
if (M) M \rightarrow val = M \rightarrow mi = v;
        else M = new node(x, y, v);
        join(L, M, M), join(M, R, root);
    T query(ll ly, ll ry) {
        node *L, *M, *R;
        split(root, M, R, pair(ry, LINF)), split(M, L, M,
            pair(ly, 0));
        T ret = M ? M->mi : ZERO;
        join(L, M, M), join(M, R, root);
        return ret;
    }
};
template < typename T > struct segtreap {
    vector < treap < T >> seg;
    vector < int > ch[2];
    11 NX;
    segtreap(ll NX_) : seg(1), NX(NX_) {
       ch[0].push_back(-1), ch[1].push_back(-1); }
    int get_ch(int i, int d){
        if (ch[d][i] == -1) {
            ch[d][i] = seg.size();
            seg.emplace_back();
            ch[0].push_back(-1), ch[1].push_back(-1);
        return ch[d][i];
    }
    T query(11 1x, 11 rx, 11 ly, 11 ry, int p, 11 1, 11 r) {
        if (rx < 1 or r < 1x) return ZERO;</pre>
        if (lx <= l and r <= rx) return seg[p].query(ly, ry);</pre>
        11 m = 1 + (r-1)/2;
        return op(query(lx, rx, ly, ry, get_ch(p, 0), l, m),
                 query(lx, rx, ly, ry, get_ch(p, 1), m+1, r));
    }
    T query(11 lx, 11 rx, 11 ly, 11 ry) { return query(1x,
       rx, ly, ry, 0, 0, NX); }
```

```
void update(ll x, ll y, T val, int p, ll l, ll r) {
    if (l == r) return seg[p].update(x, y, val);
    ll m = l + (r-l)/2;
    if (x <= m) update(x, y, val, get_ch(p, 0), l, m);
    else update(x, y, val, get_ch(p, 1), m+1, r);
    seg[p].update(x, y, val);
}
void update(ll x, ll y, T val) { update(x, y, val, 0, 0, NX); }
};</pre>
```

1.34 DSU Persistente

```
// Persistencia parcial, ou seja, tem que ir
// incrementando o 't' no une
//
// Complexidades:
// build - O(n)
// find - O(log(n))
// une - O(log(n))
// fd757b
int n, p[MAX], sz[MAX], ti[MAX];
void build() {
    for (int i = 0; i < n; i++) {</pre>
        p[i] = i;
        sz[i] = 1;
        ti[i] = -INF;
   }
}
int find(int k, int t) {
    if (p[k] == k or ti[k] > t) return k;
    return find(p[k], t);
}
void une(int a, int b, int t) {
    a = find(a, t); b = find(b, t);
    if (a == b) return;
```

```
if (sz[a] > sz[b]) swap(a, b);
    sz[b] += sz[a];
    p[a] = b;
    ti[a] = t;
}
1.35 RMQ \langle O(n), O(1) \rangle - min queue
// O(n) pra buildar, query O(1)
// Se tiver varios minimos, retorna
// o de menor indice
// bab412
template < typename T > struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] \le v[y] ? x : y; }
    int msb(int x) { return
       __builtin_clz(1)-__builtin_clz(x); }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1)); }
    rmq() {}
    rmq(const vector<T>& v_) : v(v_), n(v.size()), mask(n),
       t(n) {
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {</pre>
             at = (at << 1) & ((1 << b) -1);
             while (at and op(i-msb(at&-at), i) == i) at ^=
                at&-at;
```

for (int i = 0; i < n/b; i++) t[i] = small(b*i+b-1);

for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;

i+(1<<j) <= n/b; i++)

int index_query(int 1, int r) {

t[n/b*j+i] = op(t[n/b*(j-1)+i],

if (r-l+1 <= b) return small(r, r-l+1);</pre>

t[n/b*(j-1)+i+(1<<(j-1))]);

```
int x = 1/b+1, y = r/b-1;
        if (x > y) return op(small(l+b-1), small(r));
        int j = msb(y-x+1);
        int ans = op(small(1+b-1), op(t[n/b*j+x],
           t[n/b*j+y-(1<<j)+1]));
        return op(ans, small(r));
   T query(int 1, int r) { return v[index_query(1, r)]; }
};
1.36 Wavelet Tree
// Usa O(sigma + n log(sigma)) de memoria,
// onde sigma = MAXN - MINN
// Depois do build, o v fica ordenado
// count(i, j, x, y) retorna o numero de elementos de
// v[i, j) que pertencem a [x, y]
// kth(i, j, k) retorna o elemento que estaria
// na poscicao k-1 de v[i, j), se ele fosse ordenado
// sum(i, j, x, y) retorna a soma dos elementos de
// v[i, j) que pertencem a [x, y]
// sumk(i, j, k) retorna a soma dos k-esimos menores
// elementos de v[i, j) (sum(i, j, 1) retorna o menor)
//
// Complexidades:
// build - O(n log(sigma))
// count - O(log(sigma))
// kth - O(log(sigma))
// sum - O(log(sigma))
// sumk - O(log(sigma))
// 782344
int n, v[MAX];
vector < int > esq[4*(MAXN-MINN)], pref[4*(MAXN-MINN)];
void build(int b = 0, int e = n, int p = 1, int l = MINN,
   int r = MAXN) {
```

int m = (1+r)/2; esq[p].push_back(0);

pref[p].push_back(0);

for (int i = b; i < e; i++) {</pre>

```
esq[p].push_back(esq[p].back()+(v[i] <= m));
        pref[p].push_back(pref[p].back()+v[i]);
    if (1 == r) return;
    int m2 = stable_partition(v+b, v+e, [=](int i){return i
       <= m;}) - v;
    build(b, m2, 2*p, 1, m), build(m2, e, 2*p+1, m+1, r);
}
int count(int i, int j, int x, int y, int p = 1, int l =
   MINN, int r = MAXN) {
    if (y < 1 \text{ or } r < x) \text{ return } 0;
    if (x <= l and r <= y) return j-i;</pre>
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return count(ei, ej, x, y, 2*p, 1, m)+count(i-ei, j-ej,
       x, y, 2*p+1, m+1, r);
}
int kth(int i, int j, int k, int p=1, int l = MINN, int r =
   MAXN) {
    if (1 == r) return 1;
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return kth(ei, ej, k, 2*p, 1, m);
    return kth(i-ei, j-ej, k-(ej-ei), 2*p+1, m+1, r);
}
int sum(int i, int j, int x, int y, int p = 1, int l = MINN,
   int r = MAXN) {
    if (y < 1 \text{ or } r < x) return 0;
    if (x <= 1 and r <= y) return pref[p][j]-pref[p][i];</pre>
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    return sum(ei, ej, x, y, 2*p, 1, m) + sum(i-ei, j-ej, x,
       y, 2*p+1, m+1, r);
}
int sumk(int i, int j, int k, int p = 1, int l = MINN, int r
   = MAXN)
    if (1 == r) return l*k;
    int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
    if (k <= ej-ei) return sumk(ei, ej, k, 2*p, 1, m);</pre>
    return pref[2*p][ej]-pref[2*p][ei]+sumk(i-ei, j-ej,
       k-(ej-ei), 2*p+1, m+1, r);
```

2 Grafos

}

2.1 Dinic

```
// O(min(m * max_flow, n^2 m))
// Grafo com capacidades 1 -> O(sqrt(n)*m)
// 2bf9c4
struct dinic {
    const bool scaling = false; // com scaling -> 0(nm
       log(MAXCAP)),
    int lim;
                                // com constante alta
    struct edge {
        int to, cap, rev, flow; // para, capacidade, id da
           reversa, fluxo
        bool res; // se a aresta eh residual
        edge(int to_, int cap_, int rev_, bool res_)
            : to(to_), cap(cap_), rev(rev_), flow(0),
               res(res_) {}
    };
    vector < vector < edge >> g;
    vector<int> lev, beg;
    11 F;
    dinic(int n) : g(n), F(0) {}
    void add(int a, int b, int c) { // de a pra b com cap. c
        g[a].push_back(edge(b, c, g[b].size(), false));
        g[b].push_back(edge(a, 0, g[a].size()-1, true));
    }
    bool bfs(int s, int t) {
        lev = vector<int>(g.size(), -1); lev[s] = 0;
        beg = vector<int>(g.size(), 0);
        queue < int > q; q.push(s);
        while (q.size()) {
            int u = q.front(); q.pop();
            for (auto& i : g[u]) {
```

```
if (lev[i.to] != -1 or (i.flow == i.cap))
                continue:
            if (scaling and i.cap - i.flow < lim)</pre>
                continue;
            lev[i.to] = lev[u] + 1;
            q.push(i.to);
        }
    }
    return lev[t] != -1;
int dfs(int v, int s, int f = INF){
    if (!f or v == s) return f;
    for (int& i = beg[v]; i < g[v].size(); i++) {</pre>
        auto& e = g[v][i];
        if (lev[e.to] != lev[v] + 1) continue;
        int foi = dfs(e.to, s, min(f, e.cap - e.flow));
        if (!foi) continue;
        e.flow += foi, g[e.to][e.rev].flow -= foi;
        return foi;
    }
    return 0;
11 max_flow(int s, int t) {
    for (lim = scaling ? (1 << 30) : 1; lim; lim /= 2)
        while (bfs(s, t)) while (int ff = dfs(s, t)) F
           += ff;
    return F;
vector<pair<int, int> > get_cut(int s, int t) {
    max_flow(s, t);
    vector<pair<int, int> > cut;
    vector<int> vis(g.size(), 0), st = {s};
    vis[s] = 1;
    while (st.size()) {
        int u = st.back(); st.pop_back();
        for (auto e : g[u]) if (!vis[e.to] and e.flow <</pre>
           e.cap)
            vis[e.to] = 1, st.push_back(e.to);
    for (int i = 0; i < g.size(); i++) for (auto e :</pre>
       g[i])
        if (vis[i] and !vis[e.to] and !e.res)
```

```
cut.push_back({i, e.to});
return cut;
}
```

2.2 Kruskal

```
// Gera e retorna uma AGM e seu custo total a partir do
   vetor de arestas (edg)
// do grafo
//
// O(m log(m) + m a(m))
// 945aa9
vector<tuple<int, int, int>> edg; // {peso,[x,y]}
// DSU em O(a(n))
void dsu_build();
int find(int a);
void unite(int a, int b);
pair<11, vector<tuple<int, int, int>>> kruskal(int n) {
    dsu_build(n);
    sort(edg.begin(), edg.end());
    11 cost = 0;
    vector<tuple<int, int, int>> mst;
    for (auto [w,x,y]: edg) if (find(x) != find(y)) {
        mst.push_back({w,x,y});
        cost += w;
        unite(x,y);
    }
    return {cost,mst};
}
```

2.3 Sack (DSU em arvores)

// Responde queries de todas as sub-arvores

```
// offline
// O(n log(n))
// bb361f
int sz[MAX], cor[MAX], cnt[MAX];
vector < int > g[MAX];
void build(int k, int d=0) {
    sz[k] = 1;
    for (auto& i : g[k]) {
        build(i, d+1); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]]) swap(i, g[k][0]);
   }
}
void compute(int k, int x, bool dont=1) {
    cnt[cor[k]] += x;
   for (int i = dont; i < g[k].size(); i++)</pre>
        compute(g[k][i], x, 0);
}
void solve(int k, bool keep=0) {
    for (int i = int(g[k].size())-1; i >= 0; i--)
        solve(g[k][i], !i);
    compute(k, 1);
        // agora cnt[i] tem quantas vezes a cor
        // i aparece na sub-arvore do k
    if (!keep) compute(k, -1, 0);
}
```

2.4 Block-Cut Tree

```
// Cria a block-cut tree, uma arvore com os blocos
// e os pontos de articulacao
// Blocos sao componentes 2-vertice-conexos maximais
// Uma 2-coloracao da arvore eh tal que uma cor sao
// os blocos, e a outra cor sao os pontos de art.
```

```
// art[i] responde se i eh ponto de articulação
// Funciona pra grafo nao conexo, e ja limpa tudo
// Primeiros block.size() da arvore sao os blocos
// Arvore tem no maximo 2n vertices
//
// O(n+m)
// 9c9ff4
vector < int > g[MAX];
stack<int> s;
int id[MAX], art[MAX], pos[MAX];
vector < vector < int >> blocks, tree;
int dfs(int i, int &t, int p = -1) {
    int lo = id[i] = t++;
    s.push(i);
    for (int j : g[i]) if (j != p) {
        if (id[j] == -1) {
            int val = dfs(j, t, i);
            lo = min(lo, val);
            if (val >= id[i]) {
                art[i]++;
                blocks.emplace_back(1, i);
                while (blocks.back().back() != j)
                    blocks.back().push_back(s.top()),
                       s.pop();
            // if (val > id[i]) aresta i-j eh ponte
        else lo = min(lo, id[j]);
    if (p == -1 and art[i]) art[i]--;
    return lo:
}
void build(int n) {
    for (int i = 0; i < n; i++) id[i] = -1, art[i] = 0;
    blocks.clear(), tree.clear();
    while (s.size()) s.pop();
    int t = 0;
```

2.5 Topological Sort

```
// Retorna uma ordenacaoo topologica de g
// Se g nao for DAG retorna um vetor vazio
//
// O(n + m)
// bdc95e
vector < int > g[MAX];
vector<int> topo_sort(int n) {
    vector < int > ret(n,-1), vis(n,0);
    int pos = n-1, dag = 1;
    function < void(int) > dfs = [&] (int v) {
        vis[v] = 1;
        for (auto u : g[v]) {
            if (vis[u] == 1) dag = 0;
            else if (!vis[u]) dfs(u);
        ret[pos--] = v, vis[v] = 2;
    };
    for (int i=0; i<n; i++) if (!vis[i]) dfs(i);</pre>
```

```
if (!dag) ret.clear();
   return ret;
}
```

2.6 Max flow com lower bound nas arestas

```
// add(a, b, l, r):
// adiciona aresta de a pra b, onde precisa passar f de
   fluxo, 1 <= f <= r
// add(a, b, c):
// adiciona aresta de a pra b com capacidade c
// Mesma complexidade do Dinic
// 3f0b15
struct lb_max_flow : dinic {
    vector < int > d;
    lb_max_flow(int n) : dinic(n + 2), d(n, 0) {}
    void add(int a, int b, int l, int r) {
        d[a] -= 1;
        d[b] += 1;
        dinic::add(a, b, r - 1);
    }
    void add(int a, int b, int c) {
        dinic::add(a, b, c);
    bool has_circulation() {
        int n = d.size();
        11 cost = 0;
        for (int i = 0; i < n; i++) {</pre>
            if (d[i] > 0) {
                cost += d[i];
                dinic::add(n, i, d[i]);
            } else if (d[i] < 0) {</pre>
                dinic::add(i, n+1, -d[i]);
        }
        return (max_flow(n, n+1) == cost);
```

```
}
bool has_flow(int src, int snk) {
    dinic::add(snk, src, INF);
    return has_circulation();
}
};
```

2.7 Prufer code

```
// Traduz de lista de arestas para prufer code
// e vice-versa
// Os vertices tem label de O a n-1
// Todo array com n-2 posicoes e valores de
// O a n-1 sao prufer codes validos
//
// O(n)
// 49de6d
vector<int> to_prufer(vector<pair<int, int>> tree) {
    int n = tree.size()+1;
    vector < int > d(n, 0);
    vector < vector < int >> g(n);
    for (auto [a, b] : tree) d[a]++, d[b]++,
        g[a].push_back(b), g[b].push_back(a);
    vector < int > pai(n, -1);
    queue < int > q; q.push(n-1);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int v : g[u]) if (v != pai[u])
            pai[v] = u, q.push(v);
    }
    idx = x = find(d.begin(), d.end(), 1) - d.begin();
    vector<int> ret;
    for (int i = 0; i < n-2; i++) {
        int y = pai[x];
        ret.push_back(y);
        if (--d[y] == 1 \text{ and } y < idx) x = y;
        else idx = x = find(d.begin()+idx+1, d.end(), 1) -
            d.begin();
```

```
}
    return ret;
}
vector<pair<int, int>> from_prufer(vector<int> p) {
    int n = p.size()+2;
    vector < int > d(n, 1);
    for (int i : p) d[i]++;
    p.push_back(n-1);
    int idx, x;
    idx = x = find(d.begin(), d.end(), 1) - d.begin();
    vector<pair<int, int>> ret;
    for (int y : p) {
        ret.push_back({x, y});
        if (--d[y] == 1 \text{ and } y < idx) x = y;
        else idx = x = find(d.begin()+idx+1, d.end(), 1) -
           d.begin();
    }
    return ret;
}
     Tarjan para SCC
// O(n + m)
// 573bfa
vector < int > g[MAX];
stack<int> s;
int vis[MAX], comp[MAX];
int id[MAX];
// se quiser comprimir ciclo ou achar ponte em grafo nao
   direcionado,
// colocar um if na dfs para nao voltar pro pai da DFS tree
int dfs(int i, int& t) {
    int lo = id[i] = t++;
    s.push(i);
    vis[i] = 2;
```

for (int j : g[i]) {

```
if (!vis[j]) lo = min(lo, dfs(j, t));
        else if (vis[j] == 2) lo = min(lo, id[j]);
    }
    // aresta de i pro pai eh uma ponte (no caso nao
       direcionado)
    if (lo == id[i]) while (1) {
        int u = s.top(); s.pop();
        vis[u] = 1, comp[u] = i;
        if (u == i) break;
    }
    return lo;
}
void tarjan(int n) {
    int t = 0;
    for (int i = 0; i < n; i++) vis[i] = 0;
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i, t);</pre>
}
```

2.9 Dijkstra

```
// encontra menor distancia de x
// para todos os vertices
// se ao final do algoritmo d[i] = LINF,
// entao x nao alcanca i
//
// O(m log(n))
// e193d3

ll d[MAX];
vector<pair<int,int>> g[MAX]; // {vizinho, peso}

int n;

void dijkstra(int x) {
  for (int i=0; i < n; i++) d[i] = LINF;
  d[x] = 0;</pre>
```

```
priority_queue < pair < ll, int >> pq;
pq.push({0,x});

while (pq.size()) {
    auto [ndist,u] = pq.top(); pq.pop();
    if (-ndist > d[u]) continue;

    for (auto [idx,w] : g[u]) if (d[idx] > d[u] + w) {
        d[idx] = d[u] + w;
        pq.push({-d[idx], idx});
    }
}
```

2.10 Floyd-Warshall

```
// encontra o menor caminho entre todo
// par de vertices e detecta ciclo negativo
// returna 1 sse ha ciclo negativo
// d[i][i] deve ser 0
// para i != j, d[i][j] deve ser w se ha uma aresta
// (i, j) de peso w, INF caso contrario
//
// O(n^3)
// ea05be
int n;
int d[MAX][MAX];
bool floyd_warshall() {
    for (int k = 0; k < n; k++)
    for (int i = 0; i < n; i++)
    for (int j = 0; j < n; j++)
        d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
    for (int i = 0; i < n; i++)</pre>
        if (d[i][i] < 0) return 1;</pre>
    return 0;
}
```

2.11 Virtual Tree

```
// Comprime uma arvore dado um conjunto S de vertices, de
   forma que
// o conjunto de vertices da arvore comprimida contenha S e
// minimal e fechado sobre a operacao de LCA
// Se |S| = k, a arvore comprimida tem O(k) vertices
// O(k log(k))
// 5daf36
template < typename T > struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }</pre>
    int msb(int x) { return
       __builtin_clz(1) - __builtin_clz(x); }
    rmq() {}
    rmq(const vector < T > \& v_) : v(v_), n(v.size()), mask(n),
       t(n) {
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {</pre>
            at = (at << 1) &((1 << b) -1);
            while (at and op(i, i-msb(at&-at)) == i) at ^=
                at&-at;
        }
        for (int i = 0; i < n/b; i++) t[i] =
           b*i+b-1-msb(mask[b*i+b-1]);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<<j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
                t[n/b*(j-1)+i+(1<<(j-1))]);
    }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1));}
    T query(int 1, int r) {
        if (r-l+1 <= b) return small(r, r-l+1);</pre>
        int ans = op(small(l+b-1), small(r));
        int x = 1/b+1, y = r/b-1;
        if (x <= y) {
```

```
int j = msb(y-x+1);
            ans = op(ans, op(t[n/b*j+x],
                t[n/b*j+y-(1<<j)+1]));
        return ans;
    }
};
namespace lca {
    vector < int > g[MAX];
    int v[2*MAX], pos[MAX], dep[2*MAX];
    int t;
    rmq<int> RMQ;
    void dfs(int i, int d = 0, int p = -1) {
        v[t] = i, pos[i] = t, dep[t++] = d;
        for (int j : g[i]) if (j != p) {
            dfs(j, d+1, i);
            v[t] = i, dep[t++] = d;
        }
    }
    void build(int n, int root) {
        t = 0;
        dfs(root);
        RMQ = rmq < int > (vector < int > (dep, dep + 2*n-1));
    }
    int lca(int a, int b) {
        a = pos[a], b = pos[b];
        return v[RMQ.query(min(a, b), max(a, b))];
    }
    int dist(int a, int b) {
        return dep[pos[a]] + dep[pos[b]] - 2*dep[pos[lca(a,
           b)]];
    }
}
vector<int> virt[MAX];
#warning lembrar de buildar o LCA antes
int build_virt(vector<int> v) {
    auto cmp = [&](int i, int j) { return lca::pos[i] <</pre>
       lca::pos[j]; };
```

2.12 Bellman-Ford

```
// Calcula a menor distancia
// entre a e todos os vertices e
// detecta ciclo negativo
// Retorna 1 se ha ciclo negativo
// Nao precisa representar o grafo,
// soh armazenar as arestas
//
// O(nm)
// 03059b
int n, m;
int d[MAX];
vector<pair<int, int>> ar; // vetor de arestas
vector < int > w;
                          // peso das arestas
bool bellman_ford(int a) {
    for (int i = 0; i < n; i++) d[i] = INF;</pre>
    d[a] = 0;
    for (int i = 0; i <= n; i++)</pre>
        for (int j = 0; j < m; j++) {</pre>
            if (d[ar[j].second] > d[ar[j].first] + w[j]) {
                if (i == n) return 1;
                 d[ar[j].second] = d[ar[j].first] + w[j];
```

2.13 AGM Direcionada

```
// Fala o menor custo para selecionar arestas tal que
// o vertice 'r' alcance todos
// Se nao tem como, retorna LINF
// O(m log(n))
// dc345b
struct node {
    pair<ll, int> val;
    ll lazy;
    node *1, *r;
    node() {}
    node(pair<int, int> v) : val(v), lazy(0), l(NULL),
       r(NULL) {}
    void prop() {
        val.first += lazy;
        if (1) 1->lazy += lazy;
        if (r) r->lazy += lazy;
        lazy = 0;
    }
};
void merge(node*& a, node* b) {
    if (!a) swap(a, b);
    if (!b) return;
    a->prop(), b->prop();
    if (a->val > b->val) swap(a, b);
    merge(rand()%2 ? a->1 : a->r, b);
pair<11, int> pop(node*& R) {
    R->prop();
    auto ret = R->val;
```

```
node* tmp = R:
    merge(R->1, R->r);
    R = R - > 1;
    if (R) R->lazy -= ret.first;
    delete tmp;
    return ret;
void apaga(node* R) { if (R) apaga(R->1), apaga(R->r),
   delete R; }
11 dmst(int n, int r, vector<pair<pair<int, int>, int>>& ar)
    vector<int> p(n); iota(p.begin(), p.end(), 0);
    function < int(int) > find = [&](int k) { return
       p[k] == k?k:p[k] = find(p[k]); };
    vector < node *> h(n);
    for (auto e : ar) merge(h[e.first.second], new
       node({e.second, e.first.first}));
    vector < int > pai(n, -1), path(n);
    pai[r] = r;
    11 \text{ ans} = 0;
    for (int i = 0; i < n; i++) { // vai conectando todo
       mundo
        int u = i, at = 0;
        while (pai[u] == -1) {
            if (!h[u]) { // nao tem
                for (auto i : h) apaga(i);
                return LINF;
            path[at++] = u, pai[u] = i;
            auto [mi, v] = pop(h[u]);
            ans += mi;
            if (pai[u = find(v)] == i) { // ciclo}
                while (find(v = path[--at]) != u)
                     merge(h[u], h[v]), h[v] = NULL,
                        p[find(v)] = u;
                pai[u] = -1;
            }
        }
    }
```

```
for (auto i : h) apaga(i);
   return ans;
}
```

2.14 Blossom - matching maximo em grafo geral

```
// \Omega(n^3)
// Se for bipartido, nao precisa da funcao
// 'contract', e roda em O(nm)
// 4426a4
vector < int > g[MAX];
int match[MAX]; // match[i] = com quem i esta matchzado ou -1
int n, pai[MAX], base[MAX], vis[MAX];
queue < int > q;
void contract(int u, int v, bool first = 1) {
    static vector < bool > bloss;
    static int 1;
    if (first) {
        bloss = vector < bool > (n, 0);
        vector < bool > teve(n, 0);
        int k = u; l = v;
        while (1) {
            teve[k = base[k]] = 1;
            if (match[k] == -1) break;
            k = pai[match[k]];
        while (!teve[l = base[l]]) l = pai[match[l]];
    }
    while (base[u] != 1) {
        bloss[base[u]] = bloss[base[match[u]]] = 1;
        pai[u] = v;
        v = match[u];
        u = pai[match[u]];
    if (!first) return;
    contract(v, u, 0);
    for (int i = 0; i < n; i++) if (bloss[base[i]]) {</pre>
        base[i] = 1;
```

```
if (!vis[i]) q.push(i);
        vis[i] = 1;
}
int getpath(int s) {
    for (int i = 0; i < n; i++) base[i] = i, pai[i] = -1,</pre>
       vis[i] = 0;
    vis[s] = 1; q = queue < int > (); q.push(s);
    while (q.size()) {
        int u = q.front(); q.pop();
        for (int i : g[u]) {
            if (base[i] == base[u] or match[u] == i)
                continue;
            if (i == s or (match[i] != -1 and pai[match[i]]
                 contract(u, i);
            else if (pai[i] == -1) {
                pai[i] = u;
                if (match[i] == -1) return i;
                i = match[i];
                vis[i] = 1; q.push(i);
            }
        }
    }
    return -1;
}
int blossom() {
    int ans = 0:
    memset(match, -1, sizeof(match));
    for (int i = 0; i < n; i++) if (match[i] == -1)</pre>
        for (int j : g[i]) if (match[j] == -1) {
            match[i] = j;
            match[j] = i;
            ans++:
            break:
        }
    for (int i = 0; i < n; i++) if (match[i] == -1) {</pre>
        int j = getpath(i);
        if (j == -1) continue;
        ans++:
```

```
while (j != -1) {
    int p = pai[j], pp = match[p];
    match[p] = j;
    match[j] = p;
    j = pp;
}
return ans;
}
```

2.15 LCA com RMQ

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// dist(a, b) retorna a distancia entre a e b
// Complexidades:
// build - O(n)
// lca - 0(1)
// dist - 0(1)
// 22cde8
template < typename T > struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
    int op(int x, int y) { return v[x] < v[y] ? x : y; }
    int msb(int x) { return
       __builtin_clz(1) - __builtin_clz(x); }
    rmq() {}
    rmq(const vector < T > \& v_) : v(v_), n(v.size()), mask(n),
       t(n) {
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {
            at = (at << 1) & ((1 << b) -1);
            while (at and op(i, i-msb(at&-at)) == i) at ^=
                at&-at;
        for (int i = 0; i < n/b; i++) t[i] =</pre>
           b*i+b-1-msb(mask[b*i+b-1]);
```

```
for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<< j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
               t[n/b*(j-1)+i+(1<<(j-1))]);
    }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1)); }
    T query(int 1, int r) {
        if (r-l+1 <= b) return small(r, r-l+1);</pre>
        int ans = op(small(1+b-1), small(r));
        int x = 1/b+1, y = r/b-1;
        if (x <= y) {
            int j = msb(y-x+1);
            ans = op(ans, op(t[n/b*j+x],
               t[n/b*j+y-(1<<j)+1]));
        }
        return ans;
    }
};
namespace lca {
    vector < int > g[MAX];
    int v[2*MAX], pos[MAX], dep[2*MAX];
    int t;
    rmq<int> RMQ;
    void dfs(int i, int d = 0, int p = -1) {
        v[t] = i, pos[i] = t, dep[t++] = d;
        for (int j : g[i]) if (j != p) {
            dfs(j, d+1, i);
            v[t] = i, dep[t++] = d;
        }
    }
    void build(int n, int root) {
        t = 0;
        dfs(root):
        RMQ = rmq < int > (vector < int > (dep, dep + 2*n - 1));
    int lca(int a, int b) {
        a = pos[a], b = pos[b];
        return v[RMQ.query(min(a, b), max(a, b))];
    }
```

2.16 Heavy-Light Decomposition sem Update

```
// query de min do caminho
//
// Complexidades:
// build - O(n)
// query_path - O(log(n))
// f4c2ef
#define f first
#define s second
namespace hld {
    vector<pair<int, int> > g[MAX];
    int pos[MAX], sz[MAX];
    int sobe[MAX], pai[MAX];
    int h[MAX], v[MAX], t;
    int men[MAX], seg[2*MAX];
    void build_hld(int k, int p = -1, int f = 1) {
        v[pos[k] = t++] = sobe[k]; sz[k] = 1;
        for (auto& i : g[k]) if (i.first != p) {
            sobe[i.first] = i.second; pai[i.first] = k;
            h[i.first] = (i == g[k][0] ? h[k] : i.first);
            men[i.first] = (i == g[k][0] ? min(men[k],
               i.second) : i.second);
            build_hld(i.first, k, f); sz[k] += sz[i.first];
            if (sz[i.first] > sz[g[k][0].first] or
               g[k][0].first == p)
                swap(i, g[k][0]);
        if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
```

```
void build(int root = 0) {
        t = 0;
        build_hld(root);
        for (int i = 0; i < t; i++) seg[i+t] = v[i];</pre>
        for (int i = t-1; i; i--) seg[i] = min(seg[2*i],
           seg[2*i+1]);
    int query_path(int a, int b) {
        if (a == b) return INF;
        if (pos[a] < pos[b]) swap(a, b);</pre>
        if (h[a] != h[b]) return min(men[a],
           query_path(pai[h[a]], b));
        int ans = INF, x = pos[b]+1+t, y = pos[a]+t;
        for (; x \le y; ++x/=2, --y/=2) ans = min({ans,
           seg[x], seg[y]});
        return ans;
    }
};
```

2.17 Heavy-Light Decomposition - aresta

```
// SegTree de soma
// query / update de soma das arestas
//
// Complexidades:
// build - O(n)
// query_path - O(log^2 (n))
// update_path - O(log^2 (n))
// query_subtree - O(log(n))
// update_subtree - O(log(n))
// 3e2b4b

namespace seg { ... }

namespace hld {
   vector<pair<int, int> > g[MAX];
   int pos[MAX], sz[MAX];
   int sobe[MAX], pai[MAX];
   int h[MAX], v[MAX], t;
```

```
void build_hld(int k, int p = -1, int f = 1) {
    v[pos[k] = t++] = sobe[k]; sz[k] = 1;
    for (auto& i : g[k]) if (i.first != p) {
        auto [u, w] = i;
        sobe[u] = w; pai[u] = k;
        h[u] = (i == g[k][0] ? h[k] : u);
        build_hld(u, k, f); sz[k] += sz[u];
        if (sz[u] > sz[g[k][0].first] or g[k][0].first
            swap(i, g[k][0]);
    }
    if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
void build(int root = 0) {
    t = 0:
    build_hld(root);
    seg::build(t, v);
}
ll query_path(int a, int b) {
    if (a == b) return 0;
    if (pos[a] < pos[b]) swap(a, b);</pre>
    if (h[a] == h[b]) return seg::query(pos[b]+1,
       pos[a]);
    return seg::query(pos[h[a]], pos[a]) +
       query_path(pai[h[a]], b);
}
void update_path(int a, int b, int x) {
    if (a == b) return;
    if (pos[a] < pos[b]) swap(a, b);
    if (h[a] == h[b]) return (void) seg::update(pos[b]+1,
       pos[a], x);
    seg::update(pos[h[a]], pos[a], x);
       update_path(pai[h[a]], b, x);
}
ll query_subtree(int a) {
    if (sz[a] == 1) return 0;
    return seg::query(pos[a]+1, pos[a]+sz[a]-1);
}
```

```
void update_subtree(int a, int x) {
    if (sz[a] == 1) return;
    seg::update(pos[a]+1, pos[a]+sz[a]-1, x);
}
int lca(int a, int b) {
    if (pos[a] < pos[b]) swap(a, b);
    return h[a] == h[b] ? b : lca(pai[h[a]], b);
}</pre>
```

2.18 LCA com binary lifting

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// MAX2 = ceil(log(MAX))
//
// Complexidades:
// build - O(n log(n))
// lca - O(log(n))
vector < vector < int > > g(MAX);
int n, p;
int pai[MAX2][MAX];
int in[MAX], out[MAX];
void dfs(int k) {
    in[k] = p++;
    for (int i = 0; i < (int) g[k].size(); i++)</pre>
        if (in[g[k][i]] == -1) {
            pai[0][g[k][i]] = k;
            dfs(g[k][i]);
    out[k] = p++;
}
void build(int raiz) {
    for (int i = 0; i < n; i++) pai[0][i] = i;</pre>
    p = 0, memset(in, -1, sizeof in);
    dfs(raiz);
```

```
// pd dos pais
    for (int k = 1; k < MAX2; k++) for (int i = 0; i < n;
        pai[k][i] = pai[k - 1][pai[k - 1][i]];
}
bool anc(int a, int b) { // se a eh ancestral de b
    return in[a] <= in[b] and out[a] >= out[b];
}
int lca(int a, int b) {
    if (anc(a, b)) return a;
    if (anc(b, a)) return b;
    // sobe a
    for (int k = MAX2 - 1; k >= 0; k--)
        if (!anc(pai[k][a], b)) a = pai[k][a];
    return pai[0][a];
}
// Alternativamente:
// 'binary lifting' gastando O(n) de memoria
// Da pra add folhas e fazer queries online
// 3 vezes o tempo do binary lifting normal
//
// build - O(n)
// kth, lca, dist - O(log(n))
int d[MAX], p[MAX], pp[MAX];
void set_root(int i) { p[i] = pp[i] = i, d[i] = 0; }
void add_leaf(int i, int u) {
    p[i] = u, d[i] = d[u]+1;
    pp[i] = 2*d[pp[u]] == d[pp[pp[u]]]+d[u] ? pp[pp[u]] : u;
}
int kth(int i, int k) {
    int dd = max(0, d[i]-k);
    while (d[i] > dd) i = d[pp[i]] >= dd ? pp[i] : p[i];
    return i;
```

```
}
int lca(int a, int b) {
    if (d[a] < d[b]) swap(a, b);</pre>
    while (d[a] > d[b]) a = d[pp[a]] >= d[b] ? pp[a] : p[a];
    while (a != b) {
        if (pp[a] != pp[b]) a = pp[a], b = pp[b];
        else a = p[a], b = p[b];
    }
    return a;
}
int dist(int a, int b) { return d[a]+d[b]-2*d[lca(a,b)]; }
vector < int > g[MAX];
void build(int i, int pai=-1) {
    if (pai == -1) set_root(i);
    for (int j : g[i]) if (j != pai) {
        add_leaf(j, i);
        build(j, i);
    }
}
```

2.19 Heavy-Light Decomposition - vertice

```
// SegTree de soma
// query / update de soma dos vertices
//
// Complexidades:
// build - O(n)
// query_path - O(log^2 (n))
// update_path - O(log^2 (n))
// query_subtree - O(log(n))
// update_subtree - O(log(n))
// f22b7a

namespace seg { ... }

namespace hld {
```

```
vector < int > g[MAX];
int pos[MAX], sz[MAX];
int peso[MAX], pai[MAX];
int h[MAX], v[MAX], t;
void build_hld(int k, int p = -1, int f = 1) {
    v[pos[k] = t++] = peso[k]; sz[k] = 1;
    for (auto& i : g[k]) if (i != p) {
        pai[i] = k;
        h[i] = (i == g[k][0] ? h[k] : i);
        build_hld(i, k, f); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]] or g[k][0] == p) swap(i,
           g[k][0]);
    if (p*f == -1) build_hld(h[k] = k, -1, t = 0);
}
void build(int root = 0) {
    t = 0;
    build_hld(root);
    seg::build(t, v);
}
ll query_path(int a, int b) {
    if (pos[a] < pos[b]) swap(a, b);</pre>
    if (h[a] == h[b]) return seg::query(pos[b], pos[a]);
    return seg::query(pos[h[a]], pos[a]) +
       query_path(pai[h[a]], b);
}
void update_path(int a, int b, int x) {
    if (pos[a] < pos[b]) swap(a, b);
    if (h[a] == h[b]) return (void)seg::update(pos[b],
       pos[a], x);
    seg::update(pos[h[a]], pos[a], x);
       update_path(pai[h[a]], b, x);
}
ll query_subtree(int a) {
    return seg::query(pos[a], pos[a]+sz[a]-1);
void update_subtree(int a, int x) {
    seg::update(pos[a], pos[a]+sz[a]-1, x);
```

```
}
int lca(int a, int b) {
    if (pos[a] < pos[b]) swap(a, b);
    return h[a] == h[b] ? b : lca(pai[h[a]], b);
}</pre>
```

2.20 LCA com HLD

```
// Assume que um vertice eh ancestral dele mesmo, ou seja,
// se a eh ancestral de b, lca(a, b) = a
// Para buildar pasta chamar build(root)
// anc(a, b) responde se 'a' eh ancestral de 'b'
//
// Complexidades:
// build - O(n)
// lca - O(log(n))
// anc - 0(1)
// fb22c1
vector < int > g[MAX];
int pos[MAX], h[MAX], sz[MAX];
int pai[MAX], t;
void build(int k, int p = -1, int f = 1) {
    pos[k] = t++; sz[k] = 1;
    for (int& i : g[k]) if (i != p) {
        pai[i] = k;
        h[i] = (i == g[k][0] ? h[k] : i);
        build(i, k, f); sz[k] += sz[i];
        if (sz[i] > sz[g[k][0]] or g[k][0] == p) swap(i,
           g[k][0]);
    if (p*f == -1) t = 0, h[k] = k, build(k, -1, 0);
}
int lca(int a, int b) {
    if (pos[a] < pos[b]) swap(a, b);</pre>
    return h[a] == h[b] ? b : lca(pai[h[a]], b);
```

```
bool anc(int a, int b) {
    return pos[a] <= pos[b] and pos[b] <= pos[a]+sz[a]-1;
}</pre>
```

2.21 MinCostMaxFlow

```
// min_cost_flow(s, t, f) computa o par (fluxo, custo)
// com max(fluxo) <= f que tenha min(custo)</pre>
// min_cost_flow(s, t) -> Fluxo maximo de custo minimo de s
// Se for um dag, da pra substituir o SPFA por uma DP pra nao
// para O(nm) no comeco
// Se nao tiver aresta com custo negativo, nao precisa do
   SPFA
//
// O(nm + f * m log n)
// 697b4c
template < typename T> struct mcmf {
    struct edge {
        int to, rev, flow, cap; // para, id da reversa,
           fluxo, capacidade
        bool res; // se eh reversa
        T cost; // custo da unidade de fluxo
        edge(): to(0), rev(0), flow(0), cap(0), cost(0),
           res(false) {}
        edge(int to_, int rev_, int flow_, int cap_, T
           cost_, bool res_)
            : to(to_), rev(rev_), flow(flow_), cap(cap_),
               res(res_), cost(cost_) {}
    };
    vector < vector < edge >> g;
    vector<int> par_idx, par;
    T inf:
    vector <T> dist;
    mcmf(int n) : g(n), par_idx(n), par(n),
```

```
inf(numeric limits <T>::max()/3) {}
void add(int u, int v, int w, T cost) { // de u pra v
   com cap w e custo cost
    edge a = edge(v, g[v].size(), 0, w, cost, false);
    edge b = edge(u, g[u].size(), 0, 0, -cost, true);
    g[u].push_back(a);
    g[v].push_back(b);
vector<T> spfa(int s) { // nao precisa se nao tiver
   custo negativo
    deque < int > q;
    vector < bool > is_inside(g.size(), 0);
    dist = vector<T>(g.size(), inf);
    dist[s] = 0;
    q.push_back(s);
    is_inside[s] = true;
    while (!q.empty()) {
        int v = q.front();
        q.pop_front();
        is_inside[v] = false;
        for (int i = 0; i < g[v].size(); i++) {</pre>
            auto [to, rev, flow, cap, res, cost] =
               g[v][i];
            if (flow < cap and dist[v] + cost <</pre>
               dist[to]) {
                dist[to] = dist[v] + cost;
                if (is_inside[to]) continue;
                if (!q.empty() and dist[to] >
                   dist[q.front()]) q.push_back(to);
                else q.push_front(to);
                is_inside[to] = true;
            }
    }
    return dist;
```

```
}
bool dijkstra(int s, int t, vector < T > & pot) {
    priority_queue < pair < T, int > , vector < pair < T, int > > ,
        greater<>> q;
    dist = vector <T>(g.size(), inf);
    dist[s] = 0;
    q.emplace(0, s);
    while (q.size()) {
         auto [d, v] = q.top();
         q.pop();
        if (dist[v] < d) continue;</pre>
        for (int i = 0; i < g[v].size(); i++) {</pre>
             auto [to, rev, flow, cap, res, cost] =
                g[v][i];
             cost += pot[v] - pot[to];
             if (flow < cap and dist[v] + cost <</pre>
                dist[to]) {
                 dist[to] = dist[v] + cost;
                 q.emplace(dist[to], to);
                 par_idx[to] = i, par[to] = v;
        }
    return dist[t] < inf;</pre>
}
pair < int , T > min_cost_flow(int s, int t, int flow = INF)
    vector <T> pot(g.size(), 0);
    pot = spfa(s); // mudar algoritmo de caminho minimo
        aqui
    int f = 0;
    T ret = 0:
    while (f < flow and dijkstra(s, t, pot)) {</pre>
        for (int i = 0; i < g.size(); i++)</pre>
             if (dist[i] < inf) pot[i] += dist[i];</pre>
        int mn_flow = flow - f, u = t;
         while (u != s){
             mn_flow = min(mn_flow,
                 g[par[u]][par_idx[u]].cap -
```

```
g[par[u]][par_idx[u]].flow);
                 u = par[u];
            ret += pot[t] * mn_flow;
            u = t;
            while (u != s) {
                g[par[u]][par_idx[u]].flow += mn_flow;
                g[u][g[par[u]][par_idx[u]].rev].flow -=
                    mn_flow;
                u = par[u];
            }
            f += mn_flow;
        }
        return make_pair(f, ret);
    }
    // Opcional: retorna as arestas originais por onde passa
       flow = cap
    vector<pair<int,int>> recover() {
        vector < pair < int , int >> used;
        for (int i = 0; i < g.size(); i++) for (edge e :</pre>
           g[i])
            if(e.flow == e.cap && !e.res) used.push_back({i,
                e.to});
        return used;
    }
};
```

2.22 Algoritmo de Kuhn

```
// Computa matching maximo em grafo bipartido
// 'n' e 'm' sao quantos vertices tem em cada particao
// chamar add(i, j) para add aresta entre o cara i
// da particao A, e o cara j da particao B
// (entao i < n, j < m)
// Para recuperar o matching, basta olhar 'ma' e 'mb'</pre>
```

```
// recover() recupera o min vertex cover como um par de
// {caras da particao A, caras da particao B}
// O(|V| * |E|)
// Na pratica, parece rodar tao rapido quanto o Dinic
// 67ebb9
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
struct kuhn {
    int n, m;
    vector < vector < int >> g;
    vector<int> vis, ma, mb;
    kuhn(int n_, int m_) : n(n_), m(m_), g(n),
        vis(n+m), ma(n, -1), mb(m, -1) {}
    void add(int a, int b) { g[a].push_back(b); }
    bool dfs(int i) {
        vis[i] = 1;
        for (int j : g[i]) if (!vis[n+j]) {
            vis[n+j] = 1;
            if (mb[j] == -1 or dfs(mb[j])) {
                ma[i] = j, mb[j] = i;
                return true;
        }
        return false;
    }
    int matching() {
        int ret = 0, aum = 1;
        for (auto& i : g) shuffle(i.begin(), i.end(), rng);
        while (aum) {
            for (int j = 0; j < m; j++) vis[n+j] = 0;
            aum = 0;
            for (int i = 0; i < n; i++)</pre>
                if (ma[i] == -1 and dfs(i)) ret++, aum = 1;
        return ret;
    }
```

```
pair < vector < int >, vector < int >> recover() {
    matching();
    for (int i = 0; i < n+m; i++) vis[i] = 0;
    for (int i = 0; i < n; i++) if (ma[i] == -1) dfs(i);
    vector < int > ca, cb;
    for (int i = 0; i < n; i++) if (!vis[i])
        ca.push_back(i);
    for (int i = 0; i < m; i++) if (vis[n+i])
        cb.push_back(i);
    return {ca, cb};
}
</pre>
```

2.23 Functional Graph

```
// rt[i] fala o ID da raiz associada ao vertice i
// d[i] fala a profundidade (0 sse ta no ciclo)
// pos[i] fala a posicao de i no array que eh a concat. dos
   ciclos
// build(f, val) recebe a funcao f e o custo de ir de
// i para f[i] (por default, val = f)
// f_k(i, k) fala onde i vai parar se seguir k arestas
// path(i, k) fala o custo (soma) seguir k arestas a partir
// Se quiser outra operacao, da pra alterar facil o codigo
// Codigo um pouco louco, tenho que admitir
//
// build - O(n)
// f_k - O(\log(\min(n, k)))
// path - O(log(min(n, k)))
// 51fabe
namespace func_graph {
    int n;
    int f[MAX], vis[MAX], d[MAX];
    int p[MAX], pp[MAX], rt[MAX], pos[MAX];
    int sz[MAX], comp;
    vector < vector < int >> ciclo;
    11 val[MAX], jmp[MAX], seg[2*MAX];
```

```
11 op(ll a, ll b) { return a+b; }; // mudar a operacao
void dfs(int i, int t = 2) {
    vis[i] = t;
    if (vis[f[i]] \ge 2) \{ // comeca ciclo - f[i] eh o
       rep.
        d[i] = 0, rt[i] = comp;
        sz[comp] = t - vis[f[i]] + 1;
        p[i] = pp[i] = i, jmp[i] = val[i];
        ciclo.emplace_back();
        ciclo.back().push_back(i);
    } else {
        if (!vis[f[i]]) dfs(f[i], t+1);
        rt[i] = rt[f[i]];
        if (sz[comp]+1) { // to no ciclo
            d[i] = 0;
            p[i] = pp[i] = i, jmp[i] = val[i];
            ciclo.back().push_back(i);
        } else { // nao to no ciclo
            d[i] = d[f[i]]+1, p[i] = f[i];
            pp[i] = 2*d[pp[f[i]]] ==
               d[pp[pp[f[i]]]+d[f[i]] ? pp[pp[f[i]]] :
               f[i];
            jmp[i] = pp[i] == f[i] ? val[i] : op(val[i],
               op(jmp[f[i]], jmp[pp[f[i]]]));
        }
    if (f[ciclo[rt[i]][0]] == i) comp++; // fim do ciclo
    vis[i] = 1;
}
void build(vector<int> f_, vector<int> val_ = {}) {
    n = f_size(), comp = 0;
    if (!val_.size()) val_ = f_;
    for (int i = 0; i < n; i++)</pre>
        f[i] = f_[i], val[i] = val_[i], vis[i] = 0,
           sz[i] = -1;
    ciclo.clear();
    for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);</pre>
    int t = 0;
    for (auto& c : ciclo) {
        reverse(c.begin(), c.end());
```

```
for (int j : c) {
            pos[j] = t;
            seg[n+t] = val[j];
        }
    for (int i = n-1; i; i--) seg[i] = op(seg[2*i],
       seg[2*i+1]);
}
int f_k(int i, ll k) {
    while (d[i] and k) {
        int big = d[i] - d[pp[i]];
       if (big <= k) k -= big, i = pp[i];</pre>
        else k--, i = p[i];
    }
    if (!k) return i;
    return ciclo[rt[i]][(pos[i] - pos[ciclo[rt[i]][0]] +
       k) % sz[rt[i]];
ll path(int i, ll k) {
    auto query = [&](int 1, int r) {
        11 q = 0;
        for (1 += n, r += n; 1 <= r; ++1/=2, --r/=2) {
            if (1\%2 == 1) q = op(q, seg[1]);
            if (r\%2 == 0) q = op(q, seg[r]);
        }
        return q;
   };
    ll ret = 0;
    while (d[i] and k) {
        int big = d[i] - d[pp[i]];
        if (big <= k) k -= big, ret = op(ret, jmp[i]), i</pre>
           = pp[i];
        else k--, ret = op(ret, val[i]), i = p[i];
    if (!k) return ret;
    int first = pos[ciclo[rt[i]][0]], last =
       pos[ciclo[rt[i]].back()];
    // k/sz[rt[i]] voltas completas
    if (k/sz[rt[i]]) ret = op(ret, k/sz[rt[i]] *
```

```
query(first, last));

k %= sz[rt[i]];
   if (!k) return ret;
   int l = pos[i], r = first + (pos[i] - first + k - 1)
        % sz[rt[i]];
   if (l <= r) return op(ret, query(l, r));
    return op(ret, op(query(l, last), query(first, r)));
}</pre>
```

2.24 Euler Path / Euler Cycle

```
// Para declarar: 'euler < true > E(n); ' se quiser
// direcionado e com 'n' vertices
// As funcoes retornam um par com um booleano
// indicando se possui o cycle/path que voce pediu,
// e um vector de {vertice, id da aresta para chegar no
   vertice}
// Se for get_path, na primeira posicao o id vai ser -1
// get_path(src) tenta achar um caminho ou ciclo euleriano
// comecando no vertice 'src'.
// Se achar um ciclo, o primeiro e ultimo vertice serao
// Se for um P3, um possiveo retorno seria [0, 1, 2, 0]
// get_cycle() acha um ciclo euleriano se o grafo for
   euleriano.
// Se for um P3, um possivel retorno seria [0, 1, 2]
// (vertie inicial nao repete)
//
// O(n+m)
// fe2fba
template < bool directed = false > struct euler {
    vector < vector < pair < int , int >>> g;
    vector < int > used;
    euler(int n_) : n(n_), g(n) {}
    void add(int a, int b) {
```

```
int at = used.size();
        used.push_back(0);
        g[a].push_back({b, at});
        if (!directed) g[b].push_back({a, at});
#warning chamar para o src certo!
    pair < bool, vector < pair < int , int >>> get_path(int src) {
        if (!used.size()) return {true, {}};
        vector<int> beg(n, 0);
        for (int& i : used) i = 0;
        // {{vertice, anterior}, label}
        vector<pair<int, int>, int>> ret, st = {{src,
           -1}, -1}};
        while (st.size()) {
            int at = st.back().first.first;
            int& it = beg[at];
            while (it < g[at].size() and
               used[g[at][it].second]) it++;
            if (it == g[at].size()) {
                if (ret.size() and ret.back().first.second
                    return {false, {}};
                ret.push_back(st.back()), st.pop_back();
            } else {
                st.push_back({{g[at][it].first, at},
                   g[at][it].second));
                used[g[at][it].second] = 1;
            }
        }
        if (ret.size() != used.size()+1) return {false, {}};
        vector<pair<int, int>> ans;
        for (auto i : ret) ans.push_back({i.first.first,
           i.second});
        reverse(ans.begin(), ans.end());
        return {true, ans};
    pair < bool, vector < pair < int, int >>> get_cycle() {
        if (!used.size()) return {true, {}};
        int src = 0;
        while (!g[src].size()) src++;
        auto ans = get_path(src);
        if (!ans.first or ans.second[0].first !=
```

```
ans.second.back().first)
    return {false, {}};
ans.second[0].second = ans.second.back().second;
ans.second.pop_back();
return ans;
}
};
```

2.25 Dominator Tree - Kawakami

```
// Se vira pra usar ai
//
// build - O(n)
// dominates - O(1)
// 57a0d3
int n;
namespace DTree {
    vector < int > g[MAX];
    // The dominator tree
    vector<int> tree[MAX];
    int dfs_l[MAX], dfs_r[MAX];
    // Auxiliary data
    vector < int > rg[MAX], bucket[MAX];
    int idom[MAX], sdom[MAX], prv[MAX], pre[MAX];
    int ancestor[MAX], label[MAX];
    vector<int> preorder;
    void dfs(int v) {
        static int t = 0;
        pre[v] = ++t;
        sdom[v] = label[v] = v;
        preorder.push_back(v);
        for (int nxt: g[v]) {
            if (sdom[nxt] == -1) {
                prv[nxt] = v;
                dfs(nxt);
```

```
}
        rg[nxt].push_back(v);
}
int eval(int v) {
    if (ancestor[v] == -1) return v;
    if (ancestor[ancestor[v]] == -1) return label[v];
    int u = eval(ancestor[v]);
    if (pre[sdom[u]] < pre[sdom[label[v]]]) label[v] = u;</pre>
    ancestor[v] = ancestor[u];
    return label[v];
}
void dfs2(int v) {
    static int t = 0;
    dfs_1[v] = t++;
    for (int nxt: tree[v]) dfs2(nxt);
    dfs r[v] = t++:
}
void build(int s) {
    for (int i = 0; i < n; i++) {</pre>
        sdom[i] = pre[i] = ancestor[i] = -1;
        rg[i].clear();
        tree[i].clear();
        bucket[i].clear();
    }
    preorder.clear();
    dfs(s);
    if (preorder.size() == 1) return;
    for (int i = int(preorder.size()) - 1; i >= 1; i--) {
        int w = preorder[i];
        for (int v: rg[w]) {
            int u = eval(v);
            if (pre[sdom[u]] < pre[sdom[w]]) sdom[w] =</pre>
                sdom[u]:
        bucket[sdom[w]].push_back(w);
        ancestor[w] = prv[w];
        for (int v: bucket[prv[w]]) {
            int u = eval(v);
            idom[v] = (u == v) ? sdom[v] : u;
        bucket[prv[w]].clear();
```

```
for (int i = 1; i < preorder.size(); i++) {</pre>
            int w = preorder[i];
            if (idom[w] != sdom[w]) idom[w] = idom[idom[w]];
            tree[idom[w]].push_back(w);
        idom[s] = sdom[s] = -1;
        dfs2(s);
    }
    // Whether every path from s to v passes through u
    bool dominates(int u, int v) {
        if (pre[v] == -1) return 1; // vacuously true
        return dfs_1[u] <= dfs_1[v] && dfs_r[v] <= dfs_r[u];</pre>
    }
};
2.26 Line Tree
// Reduz min-query em arvore para RMQ
// Se o grafo nao for uma arvore, as queries
// sao sobre a arvore geradora maxima
// Queries de minimo
//
// build - O(n log(n))
// query - O(log(n))
// b1f418
int n:
namespace linetree {
```

int id[MAX], seg[2*MAX], pos[MAX];
vector<int> v[MAX], val[MAX];

b}}): }

void build() {

vector<pair<int, pair<int, int> > ar;

sort(ar.rbegin(), ar.rend());

void add(int a, int b, int p) { ar.push_back({p, {a,

for (int i = 0; i < n; i++) id[i] = i, $v[i] = {i}$,

```
val[i].clear();
        for (auto i : ar) {
            int a = id[i.second.first], b =
               id[i.second.second];
            if (a == b) continue;
            if (v[a].size() < v[b].size()) swap(a, b);</pre>
            for (auto j : v[b]) id[j] = a, v[a].push_back(j);
            val[a].push_back(i.first);
            for (auto j : val[b]) val[a].push_back(j);
            v[b].clear(), val[b].clear();
        }
        vector < int > vv;
        for (int i = 0; i < n; i++) for (int j = 0; j < 1
           v[i].size(); j++) {
            pos[v[i][j]] = vv.size();
            if (j + 1 < v[i].size()) vv.push_back(val[i][j]);</pre>
            else vv.push_back(0);
        }
        for (int i = n; i < 2*n; i++) seg[i] = vv[i-n];
        for (int i = n-1; i; i--) seg[i] = min(seg[2*i],
           seg[2*i+1]);
    int query(int a, int b) {
        if (id[a] != id[b]) return 0; // nao estao conectados
        a = pos[a], b = pos[b];
        if (a > b) swap(a, b);
        b--;
        int ans = INF;
        for (a += n, b += n; a <= b; ++a/=2, --b/=2) ans =
           min({ans, seg[a], seg[b]});
        return ans;
    }
};
```

2.27 Isomorfismo de arvores

```
// thash() retorna o hash da arvore (usando centroids como
  vertices especiais).
// Duas arvores sao isomorfas sse seu hash eh o mesmo
//
```

```
// O(|V|.log(|V|))
// 8fb6bb
map < vector < int > , int > mphash;
struct tree {
    int n;
    vector < vector < int >> g;
    vector < int > sz, cs;
    tree(int n_{-}): n(n_{-}), g(n_{-}), sz(n_{-}) {}
    void dfs_centroid(int v, int p) {
        sz[v] = 1;
        bool cent = true;
        for (int u : g[v]) if (u != p) {
             dfs_centroid(u, v), sz[v] += sz[u];
            if(sz[u] > n/2) cent = false;
        if (cent and n - sz[v] \le n/2) cs.push_back(v);
    }
    int fhash(int v, int p) {
        vector < int > h;
        for (int u : g[v]) if (u != p) h.push_back(fhash(u,
           v));
        sort(h.begin(), h.end());
        if (!mphash.count(h)) mphash[h] = mphash.size();
        return mphash[h];
    }
    11 thash() {
        cs.clear();
        dfs_centroid(0, -1);
        if (cs.size() == 1) return fhash(cs[0], -1);
        11 h1 = fhash(cs[0], cs[1]), h2 = fhash(cs[1],
            cs[0]):
        return (min(h1, h2) << 30) + max(h1, h2);
    }
};
```

2.28 Link-cut Tree - vertice

```
// Valores nos vertices
// make_tree(v, w) cria uma nova arvore com um
// vertice soh com valor 'w'
// rootify(v) torna v a raiz de sua arvore
// query(v, w) retorna a soma do caminho v--w
// update(v, w, x) soma x nos vertices do caminho v--w
// Todas as operacoes sao O(log(n)) amortizado
// f9f489
namespace lct {
    struct node {
        int p, ch[2];
        ll val, sub;
        bool rev;
        int sz;
        ll lazy;
        node() {}
        node(int v) : p(-1), val(v), sub(v), rev(0), sz(1),
           lazv(0) {
           ch[0] = ch[1] = -1;
        }
    };
    node t[MAX];
    void prop(int x) {
        if (t[x].lazy) {
            t[x].val += t[x].lazy, t[x].sub +=
               t[x].lazy*t[x].sz;
            if (t[x].ch[0]+1) t[t[x].ch[0]].lazy +=
               t[x].lazy;
            if (t[x].ch[1]+1) t[t[x].ch[1]].lazy +=
               t[x].lazy;
        }
        if (t[x].rev) {
            swap(t[x].ch[0], t[x].ch[1]);
            if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
            if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
        t[x].lazy = 0, t[x].rev = 0;
    }
```

```
void update(int x) {
    t[x].sz = 1, t[x].sub = t[x].val;
    for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {</pre>
        prop(t[x].ch[i]);
        t[x].sz += t[t[x].ch[i]].sz;
        t[x].sub += t[t[x].ch[i]].sub;
    }
}
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
}
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
}
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0]} == x) ? x : p);
        rotate(x);
    }
    return prop(x), x;
}
int access(int v) {
    int last = -1:
    for (int w = v; w+1; update(last = w), splay(v), w =
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
void make_tree(int v, int w) { t[v] = node(w); }
int find_root(int v) {
    access(v), prop(v);
```

```
while (t[v].ch[0]+1) v = t[v].ch[0], prop(v);
    return splay(v);
bool connected(int v, int w) {
    access(v), access(w);
    return v == w ? true : t[v].p != -1;
void rootify(int v) {
    access(v);
    t[v].rev ^= 1;
}
11 query(int v, int w) {
    rootify(w), access(v);
    return t[v].sub;
void update(int v, int w, int x) {
    rootify(w), access(v);
    t[v].lazy += x;
void link(int v, int w) {
    rootify(w);
    t[w].p = v;
void cut(int v, int w) {
    rootify(w), access(v);
    t[v].ch[0] = t[t[v].ch[0]].p = -1;
int lca(int v, int w) {
    access(v);
    return access(w);
}
```

2.29 Link-cut Tree - aresta

}

```
// Valores nas arestas
// rootify(v) torna v a raiz de sua arvore
// query(v, w) retorna a soma do caminho v--w
// update(v, w, x) soma x nas arestas do caminho v--w
//
```

```
// Todas as operacoes sao O(log(n)) amortizado
// 9ce48f
namespace lct {
    struct node {
        int p, ch[2];
        ll val, sub;
        bool rev;
        int sz, ar;
        ll lazy;
        node() {}
        node(int v, int ar_) :
        p(-1), val(v), sub(v), rev(0), sz(ar_), ar(ar_),
           lazy(0) {
            ch[0] = ch[1] = -1;
        }
    };
    node t[2*MAX]; // MAXN + MAXQ
    map<pair<int, int>, int> aresta;
    int sz;
    void prop(int x) {
        if (t[x].lazy) {
            if (t[x].ar) t[x].val += t[x].lazy;
            t[x].sub += t[x].lazy*t[x].sz;
            if (t[x].ch[0]+1) t[t[x].ch[0]].lazy +=
               t[x].lazv;
            if (t[x].ch[1]+1) t[t[x].ch[1]].lazy +=
               t[x].lazy;
        }
        if (t[x].rev) {
            swap(t[x].ch[0], t[x].ch[1]);
            if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
            if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
        t[x].lazy = 0, t[x].rev = 0;
    }
    void update(int x) {
        t[x].sz = t[x].ar, t[x].sub = t[x].val;
        for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {</pre>
            prop(t[x].ch[i]);
```

```
t[x].sz += t[t[x].ch[i]].sz:
        t[x].sub += t[t[x].ch[i]].sub;
    }
}
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
}
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0] == x)} ? x : p);
        rotate(x);
    }
    return prop(x), x;
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
    return last;
void make_tree(int v, int w=0, int ar=0) { t[v] =
   node(w, ar); }
int find_root(int v) {
    access(v), prop(v);
    while (t[v].ch[0]+1) v = t[v].ch[0], prop(v);
    return splay(v);
}
```

```
bool conn(int v, int w) {
    access(v), access(w);
    return v == w ? true : t[v].p != -1;
}
void rootify(int v) {
    access(v);
    t[v].rev ^= 1;
}
11 query(int v, int w) {
    rootify(w), access(v);
    return t[v].sub;
}
void update(int v, int w, int x) {
    rootify(w), access(v);
    t[v].lazy += x;
}
void link_(int v, int w) {
    rootify(w);
    t[w].p = v;
}
void link(int v, int w, int x) { // v--w com peso x
    int id = MAX + sz++;
    aresta[make_pair(v, w)] = id;
    make_tree(id, x, 1);
    link_(v, id), link_(id, w);
}
void cut_(int v, int w) {
    rootify(w), access(v);
    t[v].ch[0] = t[t[v].ch[0]].p = -1;
}
void cut(int v, int w) {
    int id = aresta[make_pair(v, w)];
    cut_(v, id), cut_(id, w);
}
int lca(int v, int w) {
    access(v);
    return access(w);
}
```

}

2.30 Link-cut Tree

```
// Link-cut tree padrao
//
// Todas as operacoes sao O(log(n)) amortizado
// e4e663
namespace lct {
    struct node {
        int p, ch[2];
        node() { p = ch[0] = ch[1] = -1; }
    };
    node t[MAX];
    bool is_root(int x) {
        return t[x].p == -1 or (t[t[x].p].ch[0] != x and
           t[t[x].p].ch[1] != x);
    }
    void rotate(int x) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
        bool d = t[p].ch[0] == x;
        t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
        if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
        t[x].p = pp, t[p].p = x;
    }
    void splay(int x) {
        while (!is_root(x)) {
            int p = t[x].p, pp = t[p].p;
            if (!is_root(p)) rotate((t[pp].ch[0] ==
               p)^{(t[p].ch[0]} == x) ? x : p);
            rotate(x);
        }
    }
    int access(int v) {
        int last = -1;
        for (int w = v; w+1; last = w, splay(v), w = t[v].p)
            splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
        return last;
    }
    int find_root(int v) {
```

```
access(v);
    while (t[v].ch[0]+1) v = t[v].ch[0];
    return splay(v), v;
}

void link(int v, int w) { // v deve ser raiz
    access(v);
    t[v].p = w;
}

void cut(int v) { // remove aresta de v pro pai
    access(v);
    t[v].ch[0] = t[t[v].ch[0]].p = -1;
}
int lca(int v, int w) {
    return access(v), access(w);
}
```

2.31 Centro de arvore

```
// Retorna o diametro e o(s) centro(s) da arvore
// Uma arvore tem sempre um ou dois centros e estes estao no
   meio do diametro
//
// O(n)
// cladeb
vector < int > g[MAX];
int d[MAX], par[MAX];
pair<int, vector<int>> center() {
    int f, df;
    function < void(int) > dfs = [&] (int v) {
        if(d[v] > df) f = v, df = d[v];
        for(int u : g[v]) if(u != par[v])
            d[u] = d[v] + 1, par[u] = v, dfs(u);
    };
    f = df = par[0] = -1, d[0] = 0;
    dfs(0);
    int root = f;
```

```
f = df = par[root] = -1, d[root] = 0;
dfs(root);

vector < int > c;
while (f != -1) {
    if (d[f] == df/2 or d[f] == (df+1)/2) c.push_back(f);
    f = par[f];
}

return {df, c};
}
```

2.32 Kosaraju

```
// O(n + m)
// a4f310
int n;
vector < int > g[MAX];
vector<int> gi[MAX]; // grafo invertido
int vis[MAX];
stack<int> S;
int comp[MAX]; // componente conexo de cada vertice
void dfs(int k) {
    vis[k] = 1;
    for (int i = 0; i < (int) g[k].size(); i++)</pre>
        if (!vis[g[k][i]]) dfs(g[k][i]);
    S.push(k);
}
void scc(int k, int c) {
    vis[k] = 1;
    comp[k] = c;
    for (int i = 0; i < (int) gi[k].size(); i++)</pre>
        if (!vis[gi[k][i]]) scc(gi[k][i], c);
}
void kosaraju() {
```

```
for (int i = 0; i < n; i++) vis[i] = 0;
for (int i = 0; i < n; i++) if (!vis[i]) dfs(i);

for (int i = 0; i < n; i++) vis[i] = 0;
while (S.size()) {
   int u = S.top();
   S.pop();
   if (!vis[u]) scc(u, u);
}</pre>
```

2.33 Euler Tour Tree

```
// Mantem uma floresta enraizada dinamicamente
// e permite queries/updates em sub-arvore
// Chamar ETT E(n, v), passando n = numero de vertices
// e v = vector com os valores de cada vertice (se for vazio,
// constroi tudo com 0
// link(v, u) cria uma aresta de v pra u, de forma que u se
   torna
// o pai de v (eh preciso que v seja raiz anteriormente)
// cut(v) corta a resta de v para o pai
// query(v) retorna a soma dos valores da sub-arvore de v
// update(v, val) soma val em todos os vertices da
   sub-arvore de v
// update_v(v, val) muda o valor do vertice v para val
// is_in_subtree(v, u) responde se o vertice u esta na
   sub-arvore de v
// Tudo O(log(n)) com alta probabilidade
// c97d63
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
template < typename T> struct ETT {
   // treap
    struct node {
```

```
node *1, *r, *p;
    int pr, sz;
    T val, sub, lazy;
    int id;
    bool f; // se eh o 'first'
    int qt_f; // numero de firsts na subarvore
    node(int id_, T v, bool f_ = 0) : l(NULL), r(NULL),
       p(NULL), pr(rng()),
        sz(1), val(v), sub(v), lazy(), id(id_), f(f_),
            qt_f(f_) {}
    void prop() {
        if (lazy != T()) {
            if (f) val += lazy;
            sub += lazy*sz;
            if (1) 1->lazy += lazy;
            if (r) r->lazy += lazy;
        }
        lazy = T();
    }
    void update() {
        sz = 1, sub = val, qt_f = f;
        if (1) 1 - \text{prop}(), sz += 1 - \text{sz}, sub += 1 - \text{sub},
            qt_f += l->qt_f;
        if (r) r \rightarrow prop(), sz += r \rightarrow sz, sub += r \rightarrow sub,
            qt_f += r->qt_f;
    }
};
node* root;
int size(node* x) { return x ? x->sz : 0; }
void join(node* 1, node* r, node*& i) { // assume que 1
   < r
    if (!l or !r) return void(i = 1 ? l : r);
    1->prop(), r->prop();
    if (1->pr > r->pr) join(1->r, r, 1->r), 1->r->p = i
    else join(1, r->1, r->1), r->1->p = i = r;
    i->update();
void split(node* i, node*& 1, node*& r, int v, int key =
   0) {
```

```
if (!i) return void(r = 1 = NULL);
    i->prop();
    if (key + size(i->1) < v) {</pre>
        split(i->r, i->r, r, v, key+size(i->l)+1), l = i;
        if (r) r - p = NULL;
        if (i->r) i->r->p = i;
    } else {
        split(i->1, 1, i->1, v, key), r = i;
        if (1) 1->p = NULL;
        if (i->1) i->1->p = i;
    }
    i->update();
}
int get_idx(node* i) {
    int ret = size(i->1);
    for (; i->p; i = i->p) {
        node* pai = i->p;
        if (i != pai->1) ret += size(pai->1) + 1;
    return ret;
}
node* get_min(node* i) {
    if (!i) return NULL;
    return i->l ? get_min(i->l) : i;
}
node* get_max(node* i) {
    if (!i) return NULL;
    return i->r ? get_max(i->r) : i;
}
// fim da treap
vector < node *> first, last;
ETT(int n, vector<T> v = {}) : root(NULL), first(n),
   last(n) {
    if (!v.size()) v = vector < T > (n);
    for (int i = 0; i < n; i++) {</pre>
        first[i] = last[i] = new node(i, v[i], 1);
        join(root, first[i], root);
    }
}
ETT(const ETT& t) { throw logic_error("Nao copiar a
```

```
ETT!"): }
\simETT() {
    vector<node*> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
pair < int , int > get_range(int i) {
    return {get_idx(first[i]), get_idx(last[i])};
void link(int v, int u) { // 'v' tem que ser raiz
    auto [lv, rv] = get_range(v);
    int ru = get_idx(last[u]);
    node* V;
    node *L, *M, *R;
    split(root, M, R, rv+1), split(M, L, M, lv);
    V = M;
    join(L, R, root);
    split(root, L, R, ru+1);
    join(L, V, L);
    join(L, last[u] = new node(u, T() /* elemento neutro
       */), L);
    join(L, R, root);
void cut(int v) {
    auto [1, r] = get_range(v);
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    node *LL = get_max(L), *RR = get_min(R);
    if (LL and RR and LL->id == RR->id) { // remove
       duplicata
         if (last[RR->id] == RR) last[RR->id] = LL;
         node *A, *B;
         split(R, A, B, 1);
         delete A;
```

```
R = B:
    join(L, R, root);
    join(root, M, root);
}
T query(int v) {
    auto [1, r] = get_range(v);
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    T ans = M->sub;
    join(L, M, M), join(M, R, root);
    return ans;
}
void update(int v, T val) { // soma val em todo mundo da
   subarvore
    auto [1, r] = get_range(v);
    node *L, *M, *R;
    split(root, M, R, r+1), split(M, L, M, 1);
    M->lazy += val;
    join(L, M, M), join(M, R, root);
}
void update_v(int v, T val) { // muda o valor de v pra
   val
    int l = get_idx(first[v]);
    node *L, *M, *R;
    split(root, M, R, l+1), split(M, L, M, 1);
    M \rightarrow val = M \rightarrow sub = val;
    join(L, M, M), join(M, R, root);
}
bool is_in_subtree(int v, int u) { // se u ta na subtree
   de v
    auto [lv, rv] = get_range(v);
    auto [lu, ru] = get_range(u);
    return lv <= lu and ru <= rv:
}
void print(node* i) {
    if (!i) return;
    print(i->1);
    cout << i->id+1 << " ";
    print(i->r);
}
```

```
void print() { print(root); cout << endl; }
};</pre>
```

2.34 Centroid

```
// Computa os 2 centroids da arvore
// O(n)
// e16075
int n, subsize[MAX];
vector < int > g[MAX];
void dfs(int k, int p=-1) {
    subsize[k] = 1;
    for (int i : g[k]) if (i != p) {
        dfs(i, k);
        subsize[k] += subsize[i];
   }
}
int centroid(int k, int p=-1, int size=-1) {
    if (size == -1) size = subsize[k];
    for (int i : g[k]) if (i != p) if (subsize[i] > size/2)
        return centroid(i, k, size);
    return k;
}
pair < int , int > centroids(int k=0) {
    dfs(k);
    int i = centroid(k), i2 = i;
    for (int j : g[i]) if (2*subsize[j] == subsize[k]) i2 =
       j;
    return {i, i2};
}
```

2.35 Vertex cover

```
// Encontra o tamanho do vertex cover minimo
// Da pra alterar facil pra achar os vertices
// Parece rodar com < 2 s pra N = 90
// O(n * 1.38^n)
// 9c5024
namespace cover {
    const int MAX = 96;
    vector < int > g[MAX];
    bitset < MAX > bs [MAX];
    int n;
    void add(int i, int j) {
        if (i == j) return;
        n = max({n, i+1, j+1});
        bs[i][j] = bs[j][i] = 1;
    }
    int rec(bitset < MAX > m) {
        int ans = 0;
        for (int x = 0; x < n; x++) if (m[x]) {
            bitset < MAX > comp;
            function < void(int) > dfs = [&](int i) {
                comp[i] = 1, m[i] = 0;
                for (int j : g[i]) if (m[j]) dfs(j);
            };
            dfs(x);
            int ma, deg = -1, cyc = 1;
            for (int i = 0; i < n; i++) if (comp[i]) {</pre>
                int d = (bs[i]&comp).count();
                if (d \le 1) cyc = 0;
                if (d > deg) deg = d, ma = i;
            if (deg <= 2) { // caminho ou ciclo</pre>
                 ans += (comp.count() + cyc) / 2;
                 continue;
            }
             comp[ma] = 0;
            // ou ta no cover, ou nao ta no cover
```

2.36 Centroid decomposition

```
// decomp(0, k) computa numero de caminhos com 'k' arestas
// Mudar depois do comentario
//
// O(n log(n))
// fe2541
vector < int > g[MAX];
int sz[MAX], rem[MAX];
void dfs(vector<int>& path, int i, int l=-1, int d=0) {
    path.push_back(d);
    for (int j : g[i]) if (j != l and !rem[j]) dfs(path, j,
       i, d+1);
}
int dfs_sz(int i, int l=-1) {
    sz[i] = 1;
    for (int j : g[i]) if (j != l and !rem[j]) sz[i] +=
       dfs_sz(j, i);
    return sz[i];
}
```

```
int centroid(int i, int 1, int size) {
    for (int j : g[i]) if (j != l and !rem[j] and sz[j] >
       size / 2)
        return centroid(j, i, size);
    return i;
}
11 decomp(int i, int k) {
    int c = centroid(i, i, dfs_sz(i));
    rem[c] = 1;
    // gasta O(n) aqui - dfs sem ir pros caras removidos
    11 \text{ ans} = 0;
    vector < int > cnt(sz[i]);
    cnt[0] = 1:
    for (int j : g[c]) if (!rem[j]) {
        vector < int > path;
        dfs(path, j);
        for (int d : path) if (0 \le k-d-1 \text{ and } k-d-1 \le sz[i])
             ans += cnt[k-d-1];
        for (int d : path) cnt[d+1]++;
    }
    for (int j : g[c]) if (!rem[j]) ans += decomp(j, k);
    rem[c] = 0;
    return ans;
}
```

3 Problemas

3.1 Inversion Count

```
// Computa o numero de inversoes para transformar
// l em r (se nao tem como, retorna -1)
//
// O(n log(n))
// eef01f
```

```
template < typename T > 11 inv_count(vector < T > 1, vector < T > r =
   {}) {
    if (!r.size()) {
        r = 1:
        sort(r.begin(), r.end());
    int n = l.size();
    vector < int > v(n), bit(n);
    vector<pair<T, int>> w;
    for (int i = 0; i < n; i++) w.push_back({r[i], i+1});
    sort(w.begin(), w.end());
    for (int i = 0; i < n; i++) {</pre>
        auto it = lower_bound(w.begin(), w.end(),
            make_pair(l[i], 0));
        if (it == w.end() or it->first != l[i]) return -1;
            // nao da
        v[i] = it -> second:
        it->second = -1;
    }
    11 \text{ ans} = 0;
    for (int i = n-1; i \ge 0; i--) {
        for (int j = v[i]-1; j; j -= j\&-j) ans += bit[j];
        for (int j = v[i]; j < n; j += j\&-j) bit[j]++;
    }
    return ans;
}
```

3.2 Gray Code

```
// Gera uma permutacao de 0 a 2^n-1, de forma que
// duas posicoes adjacentes diferem em exatamente 1 bit
//
// O(2^n)
// 840 df4

vector < int > gray_code (int n) {
    vector < int > ret(1 < n);
    for (int i = 0; i < (1 < n); i++) ret[i] = i^(i >> 1);
    return ret;
```

3.3 Points Inside Polygon

```
// Encontra quais pontos estao
// dentro de um poligono simples nao convexo
// o poligono tem lados paralelos aos eixos
// Pontos na borda estao dentro
// Pontos podem estar em ordem horaria ou anti-horaria
//
// O(n log(n))
// a342f4
typedef long long 11;
const ll N = 1e9+10;
const int MAX = 1e5+10;
int ta[MAX];
namespace seg {
    unordered_map<11, int> seg;
    int query(int a, int b, ll p, ll l, ll r) {
        if (b < 1 or r < a) return 0;
        if (a <= l and r <= b) return seg[p];</pre>
        11 m = (1+r)/2;
        return query (a, b, 2*p, 1, m) + query (a, b, 2*p+1,
           m+1, r);
    }
    int query(ll p) {
        return query(0, p+N, 1, 0, 2*N);
    int update(ll i, int x, ll p, ll l, ll r) {
        if (i < l or r < i) return seg[p];</pre>
        if (1 == r) return seg[p] += x;
        11 m = (1+r)/2;
        return seg[p] = update(i, x, 2*p, 1, m)+update(i, x,
           2*p+1, m+1, r);
    }
    void update(ll a, ll b, int x) {
        if (a > b) return;
```

```
update(a+N, x, 1, 0, 2*N);
        update(b+N+1, -x, 1, 0, 2*N);
};
void pointsInsidePol(vector<pair<int, int>>& pol,
   vector < pair < int , int >> & v) {
    vector<pair<int, pair<int, pair<int, int>> > ev; //
       {x, {tipo, {a, b}}}
    // -1: poe ; id: query ; 1e9: tira
    for (int i = 0; i < v.size(); i++)</pre>
        ev.pb({v[i].first, {i, {v[i].second, v[i].second}}});
    for (int i = 0; i < pol.size(); i++) {</pre>
        pair < int , int > u = pol[i] , v = pol[(i+1)%pol.size()];
        if (u.second == v.second) {
            ev.pb({min(u.first, v.first), {-1, {u.second,
                u.second}}});
            ev.pb({max(u.first, v.first), {N, {u.second,
                u.second}}});
            continue;
        }
        int t = N;
        if (u.second > v.second) t = -1;
        ev.pb({u.first, {t, {min(u.second, v.second)+1,
           max(u.second, v.second)}});
    }
    sort(ev.begin(), ev.end());
    for (int i = 0; i < v.size(); i++) ta[i] = 0;</pre>
    for (auto i : ev) {
        pair < int , pair < int , int >> j = i.second;
        if (j.first == -1) seg::update(j.second.first,
            j.second.second, 1);
        else if (j.first == N) seg::update(j.second.first,
            j.second.second, -1);
        else if (seg::query(j.second.first)) ta[j.first] =
           1; // ta dentro
}
```

3.4 Sweep Direction

```
// Passa por todas as ordenacoes dos pontos definitas por
   "direcoes"
// Assume que nao existem pontos coincidentes
//
// O(n^2 \log n)
// 6bb68d
void sweep_direction(vector<pt> v) {
    int n = v.size():
    sort(v.begin(), v.end(), [](pt a, pt b) {
        if (a.x != b.x) return a.x < b.x;
        return a.y > b.y;
    });
    vector < int > at(n);
    iota(at.begin(), at.end(), 0);
    vector<pair<int, int>> swapp;
    for (int i = 0; i < n; i++) for (int j = i+1; j < n; j++)
        swapp.push_back({i, j}), swapp.push_back({j, i});
    sort(swapp.begin(), swapp.end(), [&](auto a, auto b) {
        pt A = rotate90(v[a.first] - v[a.second]);
        pt B = rotate90(v[b.first] - v[b.second]);
        if (quad(A) == quad(B) \text{ and } !sarea2(pt(0, 0), A, B))
           return a < b;</pre>
        return compare_angle(A, B);
   });
    for (auto par : swapp) {
        assert(abs(at[par.first] - at[par.second]) == 1);
        int 1 = min(at[par.first], at[par.second]),
            r = n-1 - max(at[par.first], at[par.second]);
        // l e r sao quantos caras tem de cada lado do par
           de pontos
        // (cada par eh visitado duas vezes)
        swap(v[at[par.first]], v[at[par.second]]);
        swap(at[par.first], at[par.second]);
    }
}
```

3.5 Area da Uniao de Retangulos

```
// O(n log(n))
// bea565
namespace seg {
    pair < int , 11 > seg[4*MAX];
    ll lazy[4*MAX], *v;
    int n;
    pair<int, ll> merge(pair<int, ll> l, pair<int, ll> r){
        if (1.second == r.second) return {1.first+r.first,
           1.second}:
        else if (l.second < r.second) return l;</pre>
        else return r;
    }
    pair < int, 1l > build(int p=1, int l=0, int r=n-1) {
        lazy[p] = 0;
        if (1 == r) return seg[p] = {1, v[1]};
        int m = (1+r)/2;
        return seg[p] = merge(build(2*p, 1, m), build(2*p+1,
           m+1, r));
    void build(int n2, l1* v2) {
        n = n2, v = v2;
        build();
    void prop(int p, int l, int r) {
        seg[p].second += lazy[p];
        if (1 != r) lazy[2*p] += lazy[p], lazy[2*p+1] +=
           lazv[p]:
        lazy[p] = 0;
    pair < int, ll > query (int a, int b, int p=1, int l=0, int
       r=n-1) {
        prop(p, 1, r);
        if (a <= l and r <= b) return seg[p];</pre>
        if (b < l or r < a) return {0, LINF};</pre>
        int m = (1+r)/2;
        return merge(query(a, b, 2*p, 1, m), query(a, b,
            2*p+1, m+1, r));
```

```
}
    pair < int , ll > update(int a, int b, int x, int p=1, int
       1=0, int r=n-1) {
        prop(p, 1, r);
        if (a <= 1 and r <= b) {</pre>
            lazy[p] += x;
            prop(p, 1, r);
            return seg[p];
        }
        if (b < 1 or r < a) return seg[p];</pre>
        int m = (1+r)/2;
        return seg[p] = merge(update(a, b, x, 2*p, 1, m),
                update(a, b, x, 2*p+1, m+1, r));
   }
};
11 seg_vec[MAX];
11 area_sq(vector<pair<pair<int, int>, pair<int, int>>> &sq){
    vector<pair<int, int>, pair<int, int>>> up;
   for (auto it : sq){
        int x1, y1, x2, y2;
        tie(x1, y1) = it.first;
        tie(x2, y2) = it.second;
        up.push_back({{x1+1, 1}, {y1, y2}});
        up.push_back({{x2+1, -1}, {y1, y2}});
    }
    sort(up.begin(), up.end());
    memset(seg_vec, 0, sizeof seg_vec);
    11 H_MAX = MAX;
    seg::build(H_MAX-1, seg_vec);
    auto it = up.begin();
    11 \text{ ans} = 0;
    while (it != up.end()){
        11 L = (*it).first.first;
        while (it != up.end() && (*it).first.first == L){
            int x, inc, y1, y2;
            tie(x, inc) = it->first;
            tie(y1, y2) = it -> second;
            seg::update(y1+1, y2, inc);
            it++;
        }
```

```
if (it == up.end()) break;
ll R = (*it).first.first;

ll W = R-L;
auto jt = seg::query(0, H_MAX-1);
ll H = H_MAX - 1;
if (jt.second == 0) H -= jt.first;
ans += W*H;
}
return ans;
}
```

3.6 LIS - Longest Increasing Subsequence

```
// Calcula e retorna uma LIS
// O(n.log(n))
// 4749e8
template < typename T > vector <T > lis(vector <T > & v) {
    int n = v.size(), m = -1;
    vector <T> d(n+1, INF);
    vector < int > l(n);
    d[0] = -INF;
    for (int i = 0; i < n; i++) {</pre>
        // Para non-decreasing use upper_bound()
        int t = lower_bound(d.begin(), d.end(), v[i]) -
            d.begin();
        d[t] = v[i], l[i] = t, m = max(m, t);
    }
    int p = n;
    vector <T> ret;
    while (p--) if (l[p] == m) {
        ret.push_back(v[p]);
    reverse (ret.begin(), ret.end());
```

```
return ret:
}
     Distinct Range Query - Persistent Segtree
// build - O(n (log n + log(sigma)))
// query - O(log(sigma))
// c6f365
const int MAX = 3e4+10, LOG = 20;
const int MAXS = 4*MAX+MAX*LOG;
namespace perseg {
    11 seg[MAXS];
    int rt[MAX], L[MAXS], R[MAXS], cnt, t;
    int n, *v;
    ll build(int p, int l, int r) {
        if (1 == r) return seg[p] = 0;
        L[p] = cnt++, R[p] = cnt++;
        int m = (1+r)/2;
        return seg[p] = build(L[p], 1, m) + build(R[p], m+1,
           r);
    }
    void build(int n2) {
        n = n2;
        rt[0] = cnt++;
        build(0, 0, n-1);
    }
    11 query(int a, int b, int p, int l, int r) {
        if (b < 1 \text{ or } r < a) \text{ return } 0;
        if (a <= l and r <= b) return seg[p];</pre>
        int m = (1+r)/2;
        return query(a, b, L[p], 1, m) + query(a, b, R[p],
           m+1, r);
    }
    11 query(int a, int b, int tt) {
        return query(a, b, rt[tt], 0, n-1);
    }
    11 update(int a, int x, int lp, int p, int l, int r) {
```

```
if (l == r) return seg[p] = seg[lp]+x;
        int m = (1+r)/2;
        if (a \le m)
            return seg[p] = update(a, x, L[lp], L[p]=cnt++,
               1, m) + seg[R[p]=R[lp]];
        return seg[p] = seg[L[p]=L[lp]] + update(a, x,
           R[lp], R[p] = cnt++, m+1, r);
    }
    void update(int a, int x, int tt=t) {
        update(a, x, rt[tt], rt[++t]=cnt++, 0, n-1);
};
int qt[MAX];
void build(vector<int>& v) {
    int n = v.size();
    perseg::build(n);
    map < int , int > last;
    int at = 0;
    for (int i = 0; i < n; i++) {</pre>
        if (last.count(v[i])) {
            perseg::update(last[v[i]], -1);
            at++;
        }
        perseg::update(i, 1);
        qt[i] = ++at;
        last[v[i]] = i;
    }
}
int query(int 1, int r) {
    return perseg::query(1, r, qt[r]);
}
3.8 Coloração de Grafo de Intervalo
```

```
// Colore os intervalos com o numero minimo
// de cores de tal forma que dois intervalos
```

```
// que se interceptam tem cores diferentes
// As cores vao de 1 ate n
// O(n log(n))
// 83a32d
vector<int> coloring(vector<pair<int, int>>& v) {
    int n = v.size();
    vector<pair<int, pair<int, int>>> ev;
    for (int i = 0; i < n; i++) {</pre>
        ev.push_back({v[i].first, {1, i}});
        ev.push_back({v[i].second, {0, i}});
    }
    sort(ev.begin(), ev.end());
    vector < int > ans(n), avl(n);
   for (int i = 0; i < n; i++) avl.push_back(n-i);</pre>
    for (auto i : ev) {
        if (i.second.first == 1) {
            ans[i.second.second] = avl.back();
            avl.pop_back();
        } else avl.push_back(ans[i.second.second]);
    }
    return ans;
    MO - DSU
// Dado uma lista de arestas de um grafo, responde
// para cada query(1, r), quantos componentes conexos
// o grafo tem se soh considerar as arestas 1, 1+1, ..., r
// Da pra adaptar pra usar MO com qualquer estrutura
   rollbackavel
//
// O(m sqrt(q) log(n))
// f98540
struct dsu {
    int n, ans;
    vector<int> p, sz;
    stack<int> S;
```

```
dsu(int n_-) : n(n_-), ans(n), p(n), sz(n) 
        for (int i = 0; i < n; i++) p[i] = i, sz[i] = 1;
    int find(int k) {
        while (p[k] != k) k = p[k];
        return k;
    void add(pair<int, int> x) {
        int a = x.first, b = x.second;
        a = find(a), b = find(b);
        if (a == b) return S.push(-1);
        ans --;
        if (sz[a] > sz[b]) swap(a, b);
        S.push(a);
        sz[b] += sz[a];
        p[a] = b;
    int query() { return ans; }
    void rollback() {
        int u = S.top(); S.pop();
        if (u == -1) return;
        sz[p[u]] -= sz[u];
        p[u] = u;
        ans++;
};
int n:
vector<pair<int, int>> ar; // vetor com as arestas
vector<int> MO(vector<pair<int, int>> &q) {
    int SQ = ar.size() / sqrt(q.size()) + 1;
    int m = q.size();
    vector < int > ord(m);
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&](int 1, int r) {
        if (q[1].first / SQ != q[r].first / SQ) return
           q[l].first < q[r].first;
        return q[1].second < q[r].second;</pre>
    });
    vector < int > ret(m):
```

```
for (int i = 0; i < m; i++) {</pre>
         dsu D(n);
        int fim = q[ord[i]].first/SQ*SQ + SQ - 1;
        int last_r = fim;
        int j = i-1;
        while (j+1 < m and q[ord[j+1]].first / SQ ==</pre>
            q[ord[i]].first / SQ) {
             auto [1, r] = q[ord[++j]];
             if (1 / SQ == r / SQ) {
                 dsu D2(n):
                 for (int k = 1; k <= r; k++) D2.add(ar[k]);</pre>
                 ret[ord[i]] = D2.query();
                 continue:
             }
             while (last_r < r) D.add(ar[++last_r]);</pre>
             for (int k = 1; k <= fim; k++) D.add(ar[k]);</pre>
             ret[ord[i]] = D.query();
             for (int k = 1; k <= fim; k++) D.rollback();</pre>
        i = j;
    }
    return ret;
}
```

3.10 Distancia maxima entre dois pontos

```
11 \text{ ans} = 0;
    int n = v.size(), j = 0;
    for (int i = 0; i < n; i++) {</pre>
        while (!ccw(v[(i+1)%n]-v[i], pt(0, 0),
           v[(j+1)%n]-v[j])) j = (j+1)%n;
        ans = \max(\{ans, dist2(v[i], v[j]), dist2(v[(i+1)%n],
           v[j])});
    }
    return ans;
}
// Distancia de Manhattan
template < typename T> T max_dist_manhattan(vector < pair < T, T>>
   v) {
    T min_sum, max_sum, min_dif, max_dif;
    min_sum = max_sum = v[0].first + v[0].second;
    min_dif = max_dif = v[0].first - v[0].second;
    for (auto [x, y] : v) {
        min_sum = min(min_sum, x+y);
        max_sum = max(max_sum, x+y);
        min_dif = min(min_dif, x-y);
        max_dif = max(max_dif, x-y);
    return max(max_sum - min_sum, max_dif - min_dif);
}
```

3.11 Conectividade Dinamica

```
// Offline com Divide and Conquer e
// DSU com rollback
// O(n log^2(n))
// 043d93

typedef pair < int, int > T;

namespace data {
   int n, ans;
   int p[MAX], sz[MAX];
   stack < int > S;
```

```
void build(int n2) {
        n = n2;
        for (int i = 0; i < n; i++) p[i] = i, sz[i] = 1;
    }
    int find(int k) {
        while (p[k] != k) k = p[k];
        return k;
    }
    void add(T x) {
        int a = x.first, b = x.second;
        a = find(a), b = find(b);
        if (a == b) return S.push(-1);
        ans --;
        if (sz[a] > sz[b]) swap(a, b);
        S.push(a);
        sz[b] += sz[a];
        p[a] = b;
    }
    int query() {
        return ans;
    }
    void rollback() {
        int u = S.top(); S.pop();
        if (u == -1) return;
        sz[p[u]] -= sz[u];
        p[u] = u;
        ans++;
   }
};
int ponta[MAX]; // outra ponta do intervalo ou -1 se for
int ans[MAX], n, q;
T qu[MAX];
void solve(int l = 0, int r = q-1) {
    if (1 >= r) {
        ans[1] = data::query(); // agora a estrutura ta certa
        return;
   }
    int m = (1+r)/2, qnt = 1;
```

3.12 Arpa's Trick

```
// Responde RMQ em O((n+q)log(n)) offline
// Adicionar as queries usando arpa::add(a, b)
// A resposta vai ta em ans[], na ordem que foram colocadas
// 11a509
int n, v[MAX], ans[MAX];
namespace arpa {
    int p[MAX], cnt;
    stack<int> s;
    vector<pair<int, int>> 1[MAX];
    int find(int k) { return p[k] == k ? k : p[k] =
       find(p[k]); }
    void add(int a, int b) { 1[b].push_back({a, cnt++}); }
    void solve() {
        for (int i = 0; (p[i]=i) < n; s.push(i++)) {
            while (s.size() and v[s.top()] >= v[i])
               p[s.top()] = i, s.pop();
            for (auto q : l[i]) ans[q.second] =
               v[find(q.first)];
        }
```

3.13 Simple Polygon

```
// Verifica se um poligono com n pontos eh simples
//
// O(n log n)
// c724a4
bool operator < (const line& a, const line& b) { //
   comparador pro sweepline
   if (a.p == b.p) return ccw(a.p, a.q, b.q);
    if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or a.p.x+eps
       < b.p.x))
        return ccw(a.p, a.q, b.p);
    return ccw(a.p, b.q, b.p);
}
bool simple(vector<pt> v) {
    auto intersects = [&](pair<line, int> a, pair<line, int>
       b) {
        if ((a.second+1)%v.size() == b.second or
            (b.second+1)%v.size() == a.second) return false;
        return interseg(a.first, b.first);
    };
    vector<line> seg;
    vector<pair<pt, pair<int, int>>> w;
    for (int i = 0; i < v.size(); i++) {</pre>
        pt at = v[i], nxt = v[(i+1)%v.size()];
        if (nxt < at) swap(at, nxt);</pre>
        seg.push_back(line(at, nxt));
        w.push_back({at, {0, i}});
        w.push_back({nxt, {1, i}});
        // casos degenerados estranhos
        if (isinseg(v[(i+2)%v.size()], line(at, nxt)))
           return 0:
        if (isinseg(v[(i+v.size()-1)%v.size()], line(at,
           nxt))) return 0;
    }
    sort(w.begin(), w.end());
    set < pair < line, int >> se;
    for (auto i : w) {
        line at = seg[i.second.second];
        if (i.second.first == 0) {
```

3.14 Algoritmo MO - queries em caminhos de arvore

```
// Problema que resolve: https://www.spoj.com/problems/COT2/
//
// Complexidade sendo c = O(update) e SQ = sqrt(n):
// O((n + q) * sqrt(n) * c)
// 395329

const int MAX = 40010, SQ = 400;
vector<int> g[MAX];
namespace LCA { ... }

int in[MAX], out[MAX], vtx[2 * MAX];
bool on[MAX];

int dif, freq[MAX];
vector<int> w;

void dfs(int v, int p, int &t) {
   vtx[t] = v, in[v] = t++;
   for (int u : g[v]) if (u != p) {
```

```
dfs(u, v, t):
    vtx[t] = v, out[v] = t++;
}
void update(int p) { // faca alteracoes aqui
    int v = vtx[p];
    if (not on[v]) { // insere vtx v
        dif += (freq[w[v]] == 0);
        freq[w[v]]++;
    }
    else { // retira o vertice v
        dif -= (freq[w[v]] == 1);
        freq[w[v]]--;
    }
    on[v] = not on[v];
}
vector<tuple<int, int, int>> build_queries(const
   vector<pair<int, int>>& q) {
   LCA::build(0);
    vector<tuple<int, int, int>> ret;
    for (auto [1, r] : q){
        if (in[r] < in[l]) swap(l, r);</pre>
        int p = LCA::lca(l, r);
        int init = (p == 1) ? in[1] : out[1];
        ret.emplace_back(init, in[r], in[p]);
    }
    return ret;
}
vector<int> mo_tree(const vector<pair<int, int>>& vq){
    int t = 0;
    dfs(0, -1, t);
    auto q = build_queries(vq);
    vector<int> ord(q.size());
    iota(ord.begin(), ord.end(), 0);
    sort(ord.begin(), ord.end(), [&] (int 1, int r) {
        int bl = get<0>(q[1]) / SQ, br = <math>get<0>(q[r]) / SQ;
        if (bl != br) return bl < br;</pre>
```

```
else if (bl % 2 == 1) return get<1>(q[1]) <</pre>
        get <1>(q[r]);
    else return get<1>(q[1]) > get<1>(q[r]);
});
memset(freq, 0, sizeof freq);
dif = 0;
vector < int > ret(q.size());
int 1 = 0, r = -1;
for (int i : ord) {
    auto [ql, qr, qp] = q[i];
    while (r < qr) update(++r);</pre>
    while (1 > q1) update (--1);
    while (1 < q1) update(1++);</pre>
    while (r > qr) update (r--);
    if (qp < 1 \text{ or } qp > r)  { // se LCA estah entre as
       pontas
        update(qp);
        ret[i] = dif;
        update(qp);
    }
    else ret[i] = dif;
}
return ret;
```

3.15 Palindromic Factorization

}

```
// Precisa da eertree
// Computa o numero de formas de particionar cada
// prefixo da string em strings palindromicas
//
// O(n log n), considerando alfabeto O(1)
// 9e6e22
struct eertree { ... };
ll factorization(string s) {
```

```
eertree PT(n);
    vector \langle int \rangle diff (n+2), slink (n+2), sans (n+2), dp (n+1);
    dp[0] = 1;
    for (int i = 1; i <= n; i++) {</pre>
        PT.add(s[i-1]);
        if (PT.size()+2 > sz) {
            diff[sz] = PT.len[sz] - PT.len[PT.link[sz]];
            if (diff[sz] == diff[PT.link[sz]])
                 slink[sz] = slink[PT.link[sz]];
            else slink[sz] = PT.link[sz];
            sz++:
        }
        for (int v = PT.last; PT.len[v] > 0; v = slink[v]) {
            sans[v] = dp[i - (PT.len[slink[v]] + diff[v])];
            if (diff[v] == diff[PT.link[v]])
                 sans[v] = (sans[v] + sans[PT.link[v]]) % MOD;
            dp[i] = (dp[i] + sans[v]) % MOD;
        }
    }
    return dp[n];
3.16 Area Maxima de Histograma
// Assume que todas as barras tem largura 1,
// e altura dada no vetor v
//
// O(n)
// e43846
11 area(vector<int> v) {
    11 \text{ ret} = 0;
    stack<int> s;
    // valores iniciais pra dar tudo certo
    v.insert(v.begin(), -1);
    v.insert(v.end(), -1);
    s.push(0);
    for(int i = 0; i < (int) v.size(); i++) {</pre>
```

int n = s.size(), sz = 2;

3.17 LIS2 - Longest Increasing Subsequence

```
// Calcula o tamanho da LIS
//
// O(n log(n))
// 402def

template < typename T > int lis(vector < T > &v) {
    vector < T > ans;
    for (T t : v) {
        // Para non-decreasing use upper_bound()
        auto it = lower_bound(ans.begin(), ans.end(), t);
        if (it == ans.end()) ans.push_back(t);
        else *it = t;
    }
    return ans.size();
}
```

3.18 Mininum Enclosing Circle

```
// O(n) com alta probabilidade
// b0a6ba

const double EPS = 1e-12;
mt19937 rng((int)
    chrono::steady_clock::now().time_since_epoch().count());
struct pt {
```

```
double x, y;
    pt(double x_{=} = 0, double y_{=} = 0) : x(x_{=}), y(y_{=}) {}
    pt operator + (const pt& p) const { return pt(x+p.x,
       y+p.y); }
   pt operator - (const pt& p) const { return pt(x-p.x,
       y-p.y); }
   pt operator * (double c) const { return pt(x*c, y*c); }
   pt operator / (double c) const { return pt(x/c, y/c); }
};
double dot(pt p, pt q) { return p.x*q.x+p.y*q.y; }
double cross(pt p, pt q) { return p.x*q.y-p.y*q.x; }
double dist(pt p, pt q) { return sqrt(dot(p-q, p-q)); }
pt center(pt p, pt q, pt r) {
   pt a = p-r, b = q-r;
   pt c = pt(dot(a, p+r)/2, dot(b, q+r)/2);
   return pt(cross(c, pt(a.y, b.y)), cross(pt(a.x, b.x),
       c)) / cross(a, b);
}
struct circle {
    pt cen;
    double r;
    circle(pt cen_, double r_) : cen(cen_), r(r_) {}
    circle(pt a, pt b, pt c) {
        cen = center(a, b, c);
        r = dist(cen, a);
    }
   bool inside(pt p) { return dist(p, cen) < r+EPS; }</pre>
};
circle minCirc(vector<pt> v) {
    shuffle(v.begin(), v.end(), rng);
    circle ret = circle(pt(0, 0), 0);
   for (int i = 0; i < v.size(); i++) if</pre>
       (!ret.inside(v[i])) {
        ret = circle(v[i], 0);
        for (int j = 0; j < i; j++) if (!ret.inside(v[j])) {</pre>
            ret = circle((v[i]+v[j])/2, dist(v[i], v[j])/2);
            for (int k = 0; k < j; k++) if
                (!ret.inside(v[k]))
```

```
ret = circle(v[i], v[j], v[k]);
}
return ret;
}
```

3.19 Conj. Indep. Maximo com Peso em Grafo de Intervalo

```
// Retorna os indices ordenados dos
// intervalos selecionados
// Se tiver empate, retorna o que minimiza o comprimento
   total
//
// O(n log(n))
// c4dbe2
vector < int > ind_set(vector < tuple < int, int, int >> & v) {
    vector<tuple<int, int, int>> w;
    for (int i = 0; i < v.size(); i++) {</pre>
        w.push_back(tuple(get<0>(v[i]), 0, i));
        w.push_back(tuple(get<1>(v[i]), 1, i));
    sort(w.begin(), w.end());
    vector < int > nxt(v.size());
    vector<pair<ll, int>> dp(v.size());
    int last = -1;
    for (auto [fim, t, i] : w) {
        if (t == 0) {
            nxt[i] = last;
            continue;
        }
        dp[i] = \{0, 0\};
        if (last != -1) dp[i] = max(dp[i], dp[last]);
        pair<ll, int> pega = {get<2>(v[i]), -(get<1>(v[i]) -
           get<0>(v[i]) + 1);
        if (nxt[i] != -1) pega.first += dp[nxt[i]].first,
           pega.second += dp[nxt[i]].second;
        if (pega > dp[i]) dp[i] = pega;
```

```
else nxt[i] = last;
        last = i;
    pair<11, int> ans = {0, 0};
    int idx = -1;
    for (int i = 0; i < v.size(); i++) if (dp[i] > ans) ans
       = dp[i], idx = i;
    vector<int> ret;
    while (idx != -1) {
        if (get < 2 > (v[idx]) > 0 and
             (nxt[idx] == -1 or get<1>(v[nxt[idx]]) <</pre>
                get <0>(v[idx]))) ret.push_back(idx);
        idx = nxt[idx];
    }
    sort(ret.begin(), ret.end());
    return ret;
}
```

3.20 Conectividade Dinamica 2

```
// Offline com link-cut trees
// O(n log(n))
// d38e4e
namespace lct {
    struct node {
        int p, ch[2];
        int val, sub;
        bool rev:
        node() {}
        node(int v) : p(-1), val(v), sub(v), rev(0) { ch[0]}
           = ch[1] = -1;
    };
    node t[2*MAX]; // MAXN + MAXQ
    map<pair<int, int>, int> aresta;
    int sz;
    void prop(int x) {
        if (t[x].rev) {
```

```
swap(t[x].ch[0], t[x].ch[1]);
        if (t[x].ch[0]+1) t[t[x].ch[0]].rev ^= 1;
        if (t[x].ch[1]+1) t[t[x].ch[1]].rev ^= 1;
    }
    t[x].rev = 0;
void update(int x) {
    t[x].sub = t[x].val;
    for (int i = 0; i < 2; i++) if (t[x].ch[i]+1) {
        prop(t[x].ch[i]);
        t[x].sub = min(t[x].sub, t[t[x].ch[i]].sub);
    }
}
bool is_root(int x) {
    return t[x].p == -1 or (t[t[x].p].ch[0] != x and
       t[t[x].p].ch[1] != x);
}
void rotate(int x) {
    int p = t[x].p, pp = t[p].p;
    if (!is_root(p)) t[pp].ch[t[pp].ch[1] == p] = x;
    bool d = t[p].ch[0] == x;
    t[p].ch[!d] = t[x].ch[d], t[x].ch[d] = p;
    if (t[p].ch[!d]+1) t[t[p].ch[!d]].p = p;
    t[x].p = pp, t[p].p = x;
    update(p), update(x);
int splay(int x) {
    while (!is_root(x)) {
        int p = t[x].p, pp = t[p].p;
        if (!is_root(p)) prop(pp);
        prop(p), prop(x);
        if (!is_root(p)) rotate((t[pp].ch[0] ==
           p)^{(t[p].ch[0] == x)} ? x : p);
        rotate(x):
    }
    return prop(x), x;
}
int access(int v) {
    int last = -1;
    for (int w = v; w+1; update(last = w), splay(v), w =
        splay(w), t[w].ch[1] = (last == -1 ? -1 : v);
```

```
return last;
   }
    void make_tree(int v, int w=INF) { t[v] = node(w); }
    bool conn(int v, int w) {
        access(v), access(w);
        return v == w ? true : t[v].p != -1;
   }
    void rootify(int v) {
        access(v);
        t[v].rev ^= 1;
   }
    int query(int v, int w) {
        rootify(w), access(v);
        return t[v].sub;
   }
    void link_(int v, int w) {
        rootify(w);
        t[w].p = v;
   }
    void link(int v, int w, int x) { // v--w com peso x
        int id = MAX + sz++;
        aresta[make_pair(v, w)] = id;
        make_tree(id, x);
        link_(v, id), link_(id, w);
   }
    void cut_(int v, int w) {
        rootify(w), access(v);
        t[v].ch[0] = t[t[v].ch[0]].p = -1;
   }
    void cut(int v, int w) {
        int id = aresta[make_pair(v, w)];
        cut_(v, id), cut_(id, w);
   }
void dyn_conn() {
    int n, q; cin >> n >> q;
    vector<int> p(2*q, -1); // outra ponta do intervalo
    for (int i = 0; i < n; i++) lct::make_tree(i);</pre>
    vector < pair < int , int >> qu(q);
   map<pair<int, int>, int> m;
    for (int i = 0; i < q; i++) {
```

}

```
char c; cin >> c;
    if (c == '?') continue;
    int a, b; cin >> a >> b; a--, b--;
    if (a > b) swap(a, b);
    qu[i] = {a, b};
    if (c == '+') {
        p[i] = i+q, p[i+q] = i;
        m[make_pair(a, b)] = i;
    } else {
        int j = m[make_pair(a, b)];
        p[i] = j, p[j] = i;
    }
}
int ans = n;
for (int i = 0; i < q; i++) {</pre>
    if (p[i] == -1) {
        cout << ans << endl; // numero de comp conexos</pre>
        continue;
    }
    int a = qu[i].first, b = qu[i].second;
    if (p[i] > i) { // +
        if (lct::conn(a, b)) {
            int mi = lct::query(a, b);
            if (p[i] < mi) {</pre>
                p[p[i]] = p[i];
                 continue;
            lct::cut(qu[p[mi]].first, qu[p[mi]].second),
                ans++;
            p[mi] = mi;
        lct::link(a, b, p[i]), ans--;
    } else if (p[i] != i) lct::cut(a, b), ans++; // -
}
```

3.21 Mo - numero de distintos em range

```
// Para ter o bound abaixo, escolher // SQ = n / sqrt(q)
```

}

```
//
// O(n * sqrt(q))
// fa02fe
const int MAX = 3e4+10;
const int SQ = sqrt(MAX);
int v[MAX];
int ans, freq[MAX];
inline void insert(int p) {
   int o = v[p];
   freq[o]++;
    ans += (freq[o] == 1);
}
inline void erase(int p) {
    int o = v[p];
    ans -= (freq[o] == 1);
    freq[o]--;
}
inline ll hilbert(int x, int y) {
    static int N = (1 \ll 20);
   int rx, ry, s;
   11 d = 0;
    for (s = N/2; s>0; s /= 2) {
        rx = (x \& s) > 0;
        ry = (y \& s) > 0;
        d += s * 11(s) * ((3 * rx) ^ ry);
        if (ry == 0) {
            if (rx == 1) {
                x = N-1 - x;
                y = N-1 - y;
            }
            swap(x, y);
        }
    }
    return d;
#define HILBERT true
```

```
vector<int> MO(vector<pair<int, int>> &q) {
    ans = 0;
    int m = q.size();
    vector < int > ord(m);
    iota(ord.begin(), ord.end(), 0);
#if HILBERT
    vector < ll> h(m);
    for (int i = 0; i < m; i++) h[i] = hilbert(q[i].first,</pre>
       q[i].second);
    sort(ord.begin(), ord.end(), [&](int 1, int r) { return
       h[1] < h[r]; });
#else
    sort(ord.begin(), ord.end(), [&](int 1, int r) {
        if (q[1].first / SQ != q[r].first / SQ) return
            q[l].first < q[r].first;</pre>
        if ((q[1].first / SQ) % 2) return q[1].second >
            q[r].second;
        return q[1].second < q[r].second;</pre>
    });
#endif
    vector < int > ret(m);
    int 1 = 0, r = -1;
    for (int i : ord) {
        int ql, qr;
        tie(ql, qr) = q[i];
        while (r < qr) insert(++r);</pre>
        while (1 > q1) insert(--1);
        while (1 < q1) erase(1++);</pre>
        while (r > qr) erase(r--);
        ret[i] = ans;
    return ret;
}
      Algoritmo Hungaro
3.22
// Resolve o problema de assignment (matriz n x n)
// Colocar os valores da matriz em 'a' (pode < 0)</pre>
```

```
// assignment() retorna um par com o valor do
```

```
// assignment minimo, e a coluna escolhida por cada linha
//
// O(n^3)
// 64c53e
template < typename T > struct hungarian {
    int n;
    vector < vector < T >> a;
    vector <T> u, v;
    vector < int > p, way;
    T inf:
    hungarian(int n_{-}): n(n_{-}), u(n+1), v(n+1), p(n+1),
        way(n+1) {
        a = vector < vector < T >> (n, vector < T > (n));
        inf = numeric_limits <T>::max();
    }
    pair <T, vector <int >> assignment() {
        for (int i = 1; i <= n; i++) {</pre>
             p[0] = i;
             int j0 = 0;
             vector <T> minv(n+1, inf);
             vector < int > used(n+1, 0);
             do {
                 used[j0] = true;
                 int i0 = p[j0], j1 = -1;
                 T delta = inf;
                 for (int j = 1; j <= n; j++) if (!used[j]) {</pre>
                     T cur = a[i0-1][j-1] - u[i0] - v[j];
                     if (cur < minv[j]) minv[j] = cur, way[j]</pre>
                         = j0;
                     if (minv[j] < delta) delta = minv[j], j1</pre>
                         = j;
                 for (int j = 0; j <= n; j++)
                     if (used[j]) u[p[j]] += delta, v[j] -=
                         delta:
                      else minv[j] -= delta;
                 j0 = j1;
             } while (p[j0] != 0);
             do {
                 int j1 = way[j0];
```

```
p[j0] = p[j1];
                j0 = j1;
            } while (j0);
        vector < int > ans(n);
        for (int j = 1; j \le n; j++) ans[p[j]-1] = j-1;
        return make_pair(-v[0], ans);
};
```

Dominator Points

```
// Se um ponto A tem ambas as coordenadas >= B, dizemos
// que A domina B
// is_dominated(p) fala se existe algum ponto no conjunto
// que domina p
// insert(p) insere p no conjunto
// (se p for dominado por alguem, nao vai inserir)
// o multiset 'quina' guarda informacao sobre os pontos
// nao dominados por um elemento do conjunto que nao dominam
// outro ponto nao dominado por um elemento do conjunto
// No caso, armazena os valores de x+y esses pontos
//
// Complexidades:
// is_dominated - O(log(n))
// insert - O(log(n)) amortizado
// query - O(1)
// 09ffdc
struct dominator_points {
    set < pair < int , int >> se;
    multiset < int > quina;
    bool is_dominated(pair<int, int> p) {
        auto it = se.lower_bound(p);
        if (it == se.end()) return 0;
        return it->second >= p.second;
    void mid(pair<int, int> a, pair<int, int> b, bool rem) {
        pair < int , int > m = {a.first+1, b.second+1};
```

```
int val = m.first + m.second;
        if (!rem) quina.insert(val);
        else quina.erase(quina.find(val));
    }
    bool insert(pair<int, int> p) {
        if (is_dominated(p)) return 0;
        auto it = se.lower_bound(p);
        if (it != se.begin() and it != se.end())
            mid(*prev(it), *it, 1);
        while (it != se.begin()) {
            it--;
            if (it->second > p.second) break;
            if (it != se.begin()) mid(*prev(it), *it, 1);
            it = se.erase(it);
        it = se.insert(p).first;
        if (it != se.begin()) mid(*prev(it), *it, 0);
        if (next(it) != se.end()) mid(*it, *next(it), 0);
        return 1;
    }
    int query() {
        if (!quina.size()) return INF;
        return *quina.begin();
    }
};
3.24 Min fixed range
```

```
// https://codeforces.com/contest/1195/problem/E
//
// O(n)
// ans[i] = min_{0} <= j < k v[i+j]
// d4db55
vector<int> min_k(vector<int> &v, int k){
    int n = v.size();
    deque < int > d;
    auto put = [&](int i){
        while (!d.empty() && v[d.back()] > v[i])
            d.pop_back();
```

```
d.push_back(i);
};
for (int i = 0; i < k-1; i++)
    put(i);
vector<int> ans(n-k+1);
for (int i = 0; i < n-k+1; i++){
    put(i+k-1);
    while (i > d.front()) d.pop_front();
    ans[i] = v[d.front()];
}
return ans;
}
```

3.25 DP de Dominação 3D

```
// Computa para todo ponto i,
// dp[i] = 1 + max_{j} dominado por i dp[j]
// em que ser dominado eh ter as 3 coordenadas menores
// Da pra adaptar facil para outras dps
// O(n log^2 n), O(n) de memoria
// badad8
void lis2d(vector<vector<tuple<int, int, int>>>& v,
   vector < int > & dp, int 1, int r) {
    if (1 == r) {
        for (int i = 0; i < v[1].size(); i++) {</pre>
            int ii = get <2>(v[1][i]);
            dp[ii] = max(dp[ii], 1);
        }
        return;
    int m = (1+r)/2;
    lis2d(v, dp, l, m);
    vector<tuple<int, int, int>> vv[2];
    vector < int > Z;
    for (int i = 1; i <= r; i++) for (auto it : v[i]) {</pre>
        vv[i > m].push_back(it);
        Z.push_back(get<1>(it));
```

```
}
    sort(vv[0].begin(), vv[0].end());
    sort(vv[1].begin(), vv[1].end());
    sort(Z.begin(), Z.end());
    auto get_z = [&](int z) { return lower_bound(Z.begin(),
       Z.end(), z) - Z.begin(); };
    vector < int > seg(2*Z.size());
    int i = 0;
    for (auto [y, z, id] : vv[1]) {
        while (i < vv[0].size() and get<0>(vv[0][i]) < y) {</pre>
            auto [y2, z2, id2] = vv[0][i++];
            int p = get_z(z2) + Z.size();
            seg[p] = max(seg[p], dp[id2]);
            while (p /= 2) seg[p] = max(seg[2*p],
                seg[2*p+1]);
        }
        int q = 0, a = 0, b = get_z(z) - 1;
        for (a += Z.size(), b += Z.size(); a <= b; ++a/=2,
           --b/=2) {
            if (a%2 == 1) q = max(q, seg[a]);
            if (b\%2 == 0) q = max(q, seg[b]);
        dp[id] = max(dp[id], q + 1);
    }
    lis2d(v, dp, m+1, r);
}
vector<int> solve(vector<tuple<int, int, int>> v) {
    int n = v.size();
    vector<tuple<int, int, int, int>> vv;
    for (int i = 0; i < n; i++) {</pre>
        auto [x, y, z] = v[i];
        vv.emplace_back(x, y, z, i);
    sort(vv.begin(), vv.end());
    vector < vector < tuple < int , int , int >>> V;
    for (int i = 0; i < n; i++) {</pre>
        int j = i;
        V.emplace_back();
        while (j < n and get <0 > (vv[j]) == get <0 > (vv[i])) {
```

3.26 Binomial modular

```
// Computa C(n, k) mod m em O(m + log(m) log(n))
// = O(rapido)
// 3d8155
11 divi[MAX];
ll expo(ll a, ll b, ll m) {
    if (!b) return 1;
    ll ans = expo(a*a\%m, b/2, m);
    if (b\%2) ans *= a;
    return ans%m;
}
11 inv(ll a, ll b){
    return 1<a ? b - inv(b%a,a)*b/a : 1;
}
ll gcde(ll a, ll b, ll& x, ll& y) {
    if (!a) {
        x = 0;
        y = 1;
        return b;
    }
    11 X, Y;
    ll g = gcde(b \% a, a, X, Y);
    x = Y - (b / a) * X;
    y = X;
```

```
return g;
}
struct crt {
    ll a, m;
    crt(ll a_, ll m_) : a(a_), m(m_) {}
    crt operator * (crt C) {
        11 x, y;
        ll g = gcde(m, C.m, x, y);
        if ((a - C.a) \% g) a = -1;
        if (a == -1 \text{ or } C.a == -1) \text{ return } crt(-1, 0);
        11 lcm = m/g*C.m;
        ll ans = a + (x*(C.a-a)/g \% (C.m/g))*m;
        return crt((ans % lcm + lcm) % lcm, lcm);
    }
};
pair < 11, 11 > divide_show(11 n, int p, int k, int pak) {
    if (n == 0) return {0, 1};
    11 blocos = n/pak, falta = n%pak;
    ll periodo = divi[pak], resto = divi[falta];
    11 r = expo(periodo, blocos, pak)*resto%pak;
    auto rec = divide_show(n/p, p, k, pak);
    ll y = n/p + rec.first;
    r = r*rec.second % pak;
    return {y, r};
}
11 solve_pak(ll n, ll x, int p, int k, int pak) {
    divi[0] = 1:
    for (int i = 1; i <= pak; i++) {</pre>
        divi[i] = divi[i-1];
        if (i%p) divi[i] = divi[i] * i % pak;
    }
    auto dn = divide_show(n, p, k, pak), dx = divide_show(x,
       p, k, pak),
         dnx = divide_show(n-x, p, k, pak);
```

```
11 y = dn.first-dx.first-dnx.first, r =
        (dn.second*inv(dx.second, pak)%pak)*inv(dnx.second,
           pak)%pak;
    return expo(p, y, pak) * r % pak;
}
ll solve(ll n, ll x, int mod) {
    vector<pair<int, int>> f;
    int mod2 = mod;
    for (int i = 2; i*i <= mod2; i++) if (mod2%i==0) {</pre>
        int c = 0;
        while (mod2\%i==0) mod2 /= i, c++;
        f.push_back({i, c});
    }
    if (mod2 > 1) f.push_back({mod2, 1});
    crt ans(0, 1);
    for (int i = 0; i < f.size(); i++) {</pre>
        int pak = 1;
        for (int j = 0; j < f[i].second; j++) pak *=
           f[i].first;
        ans = ans * crt(solve_pak(n, x, f[i].first,
           f[i].second, pak), pak);
    return ans.a;
}
```

Triangulos em Grafos 3.27

```
// get_triangles(i) encontra todos os triangulos ijk no grafo
// Custo nas arestas
// retorna {custo do triangulo, {j, k}}
// O(m sqrt(m) log(n)) se chamar para todos os vertices
// f84ba1
vector<pair<int, int>> g[MAX]; // {para, peso}
#warning o 'g' deve estar ordenado
vector<pair<int, pair<int, int>>> get_triangles(int i) {
    vector<pair<int, pair<int, int>>> tri;
```

```
for (pair<int, int> j : g[i]) {
        int a = i, b = j.first;
        if (g[a].size() > g[b].size()) swap(a, b);
        for (pair<int, int> c : g[a]) if (c.first != b and
           c.first > j.first) {
            auto it = lower_bound(g[b].begin(), g[b].end(),
               make_pair(c.first, -INF));
            if (it == g[b].end() or it->first != c.first)
               continue;
            tri.push_back({j.second+c.second+it->second, {a
               == i ? b : a, c.first}});
        }
    }
    return tri;
3.28
     Heap Sort
// O(n log n)
// 385e91
void down(vector<int>& v, int n, int i) {
    while ((i = 2*i+1) < n) {
        if (i+1 < n \text{ and } v[i] < v[i+1]) i++;
        if (v[i] < v[(i-1)/2]) break;
        swap(v[i], v[(i-1)/2]);
    }
}
void heap_sort(vector<int>& v) {
    int n = v.size();
    for (int i = n/2-1; i \ge 0; i--) down(v, n, i);
    for (int i = n-1; i > 0; i--)
        swap(v[0], v[i]), down(v, i, 0);
}
      Closest pair of points
```

// O(nlogn)

```
// 03f835
```

```
pair <pt, pt> closest_pair_of_points(vector <pt> &v){
    #warning changes v order
    int n = v.size();
    sort(v.begin(), v.end());
    for (int i = 1; i < n; i++) {
        if (v[i] == v[i-1]){
            return make_pair(v[i-1], v[i]);
        }
    }
    auto cmp_y = [&](const pt &1, const pt &r){
        if (1.y != r.y) return 1.y < r.y;</pre>
        return l.x < r.x;</pre>
    }:
    set < pt, decltype(cmp_y) > s(cmp_y);
    int 1 = 0, r = -1;
    11 d2_min = numeric_limits < ll >:: max();
    pt pl, pr;
    const int magic = 5;
    while (r+1 < n)
        auto it = s.insert(v[++r]).first;
        int cnt = magic/2;
        while (cnt-- && it != s.begin())
            it--;
        cnt = 0;
        while (cnt++ < magic && it != s.end()){</pre>
            if (!((*it) == v[r])){
                11 d2 = dist2(*it, v[r]);
                if (d2_min > d2){
                     d2_min = d2;
                     pl = *it;
                     pr = v[r];
                }
            }
            it++;
        }
        while (1 < r \&\& sq(v[1].x-v[r].x) > d2_min)
            s.erase(v[1++]);
    return make_pair(pl, pr);
}
```

3.30 Segment Intersection

```
// Verifica, dado n segmentos, se existe algum par de
   segmentos
// que se intersecta
// O(n log n)
// 3957d8
bool operator < (const line& a, const line& b) { //
   comparador pro sweepline
   if (a.p == b.p) return ccw(a.p, a.q, b.q);
   if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or a.p.x+eps
       < b.p.x))
        return ccw(a.p, a.q, b.p);
    return ccw(a.p, b.q, b.p);
}
bool has_intersection(vector<line> v) {
    auto intersects = [&](pair<line, int> a, pair<line, int>
       b) {
        return interseg(a.first, b.first);
    };
    vector<pair<pt, pair<int, int>>> w;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (v[i].q < v[i].p) swap(v[i].p, v[i].q);</pre>
        w.push_back({v[i].p, {0, i}});
        w.push_back({v[i].q, {1, i}});
    }
    sort(w.begin(), w.end());
    set < pair < line, int >> se;
    for (auto i : w) {
        line at = v[i.second.second];
        if (i.second.first == 0) {
            auto nxt = se.lower_bound({at, i.second.second});
            if (nxt != se.end() and intersects(*nxt, {at,
               i.second.second})) return 1;
            if (nxt != se.begin() and intersects(*(--nxt),
               {at, i.second.second})) return 1;
            se.insert({at, i.second.second});
        } else {
            auto nxt = se.upper_bound({at,
```

3.31 Distinct Range Query - Wavelet

```
// build - O(n (log n + log(sigma)))
// query - O(log(sigma))
// e5e76b
int v[MAX], n, nxt[MAX];
namespace wav {
    vector < int > esq[4*(1+MAXN-MINN)];
    void build(int b = 0, int e = n, int p = 1, int l =
       MINN, int r = MAXN) {
        if (1 == r) return;
        int m = (1+r)/2; esq[p].push_back(0);
        for (int i = b; i < e; i++)</pre>
            esq[p].push_back(esq[p].back()+(nxt[i]<=m));
        int m2 = stable_partition(nxt+b, nxt+e, [=](int
            i) {return i <= m;}) - nxt;
        build(b, m2, 2*p, 1, m), build(m2, e, 2*p+1, m+1, r);
    }
    int count(int i, int j, int x, int y, int p = 1, int l =
       MINN, int r = MAXN) {
        if (y < 1 or r < x) return 0;</pre>
        if (x \le 1 \text{ and } r \le y) \text{ return } j-i;
        int m = (1+r)/2, ei = esq[p][i], ej = esq[p][j];
        return count(ei, ej, x, y, 2*p, 1, m)+count(i-ei,
           j-ej, x, y, 2*p+1, m+1, r);
}
```

```
void build() {
    for (int i = 0; i < n; i++) nxt[i] = MAXN+1;
    vector < pair < int, int >> t;
    for (int i = 0; i < n; i++) t.push_back({v[i], i});
    sort(t.begin(), t.end());
    for (int i = 0; i < n-1; i++) if (t[i].first ==
        t[i+1].first)
        nxt[t[i].second] = t[i+1].second;

    wav::build();
}
int query(int a, int b) {
    return wav::count(a, b+1, b+1, MAXN+1);
}</pre>
```

3.32 RMQ com Divide and Conquer

```
// Responde todas as queries em
// O(n log(n))
// 5a6ebd
typedef pair<pair<int, int>, int> iii;
#define f first
#define s second
int n, q, v[MAX];
iii qu[MAX];
int ans[MAX], pref[MAX], sulf[MAX];
void solve(int l=0, int r=n-1, int ql=0, int qr=q-1) {
    if (1 > r or q1 > qr) return;
    int m = (1+r)/2;
   int qL = partition(qu+ql, qu+qr+1, [=](iii x){return
       x.f.s < m; \}) - qu;
   int qR = partition(qu+qL, qu+qr+1, [=](iii x){return
       x.f.f <=m;}) - qu;
    pref[m] = sulf[m] = v[m];
```

3.33 Distinct Range Query com Update

```
// build - O(n log(n))
// query - O(log^2(n))
// update - O(log^2(n))
// 2306f3
#include <ext/pb_ds/assoc_container.hpp>
#include <ext/pb_ds/tree_policy.hpp>
using namespace __gnu_pbds;
template <class T>
    using ord_set = tree<T, null_type, less<T>, rb_tree_tag,
    tree_order_statistics_node_update>;
int v[MAX], n, nxt[MAX], prv[MAX];
map<int, set<int> > ocor;
namespace bit {
    ord_set < pair < int , int >> bit [MAX];
    void build() {
        for (int i = 1; i <= n; i++)</pre>
            bit[i].insert({nxt[i-1], i-1});
        for (int i = 1; i <= n; i++) {</pre>
             int j = i + (i\&-i);
            if (j <= n) for (auto x : bit[i])</pre>
                bit[j].insert(x);
    }
```

```
int pref(int p, int x) {
        int ret = 0;
        for (; p; p -= p\&-p) ret += bit[p].order_of_key({x,}
        return ret;
    }
    int query(int 1, int r, int x) {
        return pref(r+1, x) - pref(1, x);
    }
    void update(int p, int x) {
        int p2 = p;
        for (p++; p \le n; p += p\&-p) {
             bit[p].erase({nxt[p2], p2});
             bit[p].insert({x, p2});
        }
    }
}
void build() {
    for (int i = 0; i < n; i++) nxt[i] = INF;</pre>
    for (int i = 0; i < n; i++) prv[i] = -INF;</pre>
    vector < pair < int , int >> t;
    for (int i = 0; i < n; i++) t.push_back({v[i], i});</pre>
    sort(t.begin(), t.end());
    for (int i = 0; i < n; i++) {</pre>
        if (i and t[i].first == t[i-1].first)
             prv[t[i].second] = t[i-1].second;
        if (i+1 < n \text{ and } t[i].first == t[i+1].first)
             nxt[t[i].second] = t[i+1].second;
    }
    for (int i = 0; i < n; i++) ocor[v[i]].insert(i);</pre>
    bit::build();
}
void muda(int p, int x) {
    bit::update(p, x);
    nxt[p] = x;
}
int query(int a, int b) {
```

```
return b-a+1 - bit::query(a, b, b+1);
}
void update(int p, int x) { // mudar valor na pos. p para x
    if (prv[p] > -INF) muda(prv[p], nxt[p]);
    if (nxt[p] < INF) prv[nxt[p]] = prv[p];</pre>
    ocor[v[p]].erase(p);
    if (!ocor[x].size()) {
        muda(p, INF);
        prv[p] = -INF;
    } else if (*ocor[x].rbegin() < p) {</pre>
        int i = *ocor[x].rbegin();
        prv[p] = i;
        muda(p, INF);
        muda(i, p);
    } else {
        int i = *ocor[x].lower_bound(p);
        if (prv[i] > -INF) {
            muda(prv[i], p);
            prv[p] = prv[i];
        } else prv[p] = -INF;
        prv[i] = p;
        muda(p, i);
    }
    v[p] = x; ocor[x].insert(p);
}
```

3.34 Angle Range Intersection

```
// Computa intersecao de angulos
// Os angulos (arcos) precisam ter comprimeiro < pi
// (caso contrario a intersecao eh estranha)
//
// Tudo O(1)
// 5e1c85

struct angle_range {
    static constexpr ld ALL = 1e9, NIL = -1e9;
    ld l, r;</pre>
```

```
angle_range() : 1(ALL), r(ALL) {}
    angle_range(ld l_, ld r_) : l(l_-), r(r_-) { fix(l),
       fix(r); 
    void fix(ld& theta) {
        if (theta == ALL or theta == NIL) return;
        if (theta > 2*pi) theta -= 2*pi;
        if (theta < 0) theta += 2*pi;</pre>
    }
    bool empty() { return l == NIL; }
    bool contains(ld q) {
        fix(q);
        if (1 == ALL) return true;
        if (1 == NIL) return false;
        if (1 < r) return 1 < q and q < r;
        return q > 1 or q < r;</pre>
    }
    friend angle_range operator &(angle_range p, angle_range
       q) {
        if (p.l == ALL or q.l == NIL) return q;
        if (q.l == ALL or p.l == NIL) return p;
        if (p.1 > p.r \text{ and } q.1 > q.r) \text{ return } \{\max(p.1, q.1),
            min(p.r, q.r)};
        if (q.1 > q.r) swap(p.1, q.1), swap(p.r, q.r);
        if (p.1 > p.r) {
            if (q.r > p.l) return {max(q.l, p.l) , q.r};
            else if (q.1 < p.r) return {q.1, min(q.r, p.r)};</pre>
            return {NIL, NIL};
        if (max(p.1, q.1) > min(p.r, q.r)) return {NIL, NIL};
        return {max(p.1, q.1), min(p.r, q.r)};
    }
};
```

4 Matematica

4.1 Division Trick

```
// Gera o conjunto n/i, pra todo i, em O(sqrt(n))
```

```
// copiei do github do tfg50

for(int l = 1, r; l <= n; l = r + 1) {
    r = n / (n / l);
    // n / i has the same value for l <= i <= r
}</pre>
```

4.2 Produto de dois long long mod m

4.3 Avaliacao de Interpolacao

```
// Dado 'n' pontos (i, y[i]), i \in [0, n),
// avalia o polinomio de grau n-1 que passa
// por esses pontos em 'x'
// Tudo modular, precisa do mint
//
// O(n)
// 4fe929
mint evaluate_interpolation(int x, vector<mint> y) {
    int n = y.size();
    vector<mint> sulf(n+1, 1), fat(n, 1), ifat(n);
    for (int i = n-1; i >= 0; i--) sulf[i] = sulf[i+1] * (x
       - i);
    for (int i = 1; i < n; i++) fat[i] = fat[i-1] * i;</pre>
    ifat[n-1] = 1/fat[n-1];
    for (int i = n-2; i >= 0; i--) ifat[i] = ifat[i+1] * (i
       + 1);
```

```
mint pref = 1, ans = 0;
for (int i = 0; i < n; pref *= (x - i++)) {
    mint num = pref * sulf[i+1];

    mint den = ifat[i] * ifat[n-1 - i];
    if ((n-1 - i)%2) den *= -1;

    ans += y[i] * num * den;
}
return ans;</pre>
```

4.4 Equacao Diofantina Linear

```
// Encontra o numero de solucoes de a*x + b*y = c,
// em que x \in [lx, rx] e y \in [ly, ry]
// Usar o comentario para recuperar as solucoes
// (note que o b ao final eh b/gcd(a, b))
// Cuidado com overflow! Tem que caber o quadrado dos valores
// O(log(min(a, b)))
// 2e8259
template < typename T> tuple < 11, T, T> ext_gcd(11 a, 11 b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd < T > (b%a, a);
    return \{g, y - b/a*x, x\};
}
// numero de solucoes de a*[lx, rx] + b*[ly, ry] = c
template < typename T = 11> // usar __int128 se for ate 1e18
ll diophantine(ll a, ll b, ll c, ll lx, ll rx, ll ly, ll ry)
    if (lx > rx or ly > ry) return 0;
    if (a == 0 \text{ and } b == 0) \text{ return } c ? 0 :
       (rx-lx+1)*(ry-ly+1);
    auto [g, x, y] = ext_gcd < T > (abs(a), abs(b));
    if (c % g != 0) return 0;
    if (a == 0) return (rx-lx+1)*(ly <= c/b and c/b <= ry);
    if (b == 0) return (ry-ly+1)*(lx <= c/a and c/a <= rx);
```

```
x *= a/abs(a) * c/g, y *= b/abs(b) * c/g, a /= g, b /= g;
auto shift = [\&](T qt) \{ x += qt*b, y -= qt*a; \};
auto test = [&](T& k, ll mi, ll ma, ll coef, int t) {
    shift((mi - k)*t / coef);
    if (k < mi) shift(coef > 0 ? t : -t);
    if (k > ma) return pair<T, T>(rx+2, rx+1);
    T x1 = x;
    shift((ma - k)*t / coef);
    if (k > ma) shift(coef > 0 ? -t : t);
    return pair<T, T>(x1, x);
};
auto [11, r1] = test(x, lx, rx, b, 1);
auto [12, r2] = test(y, ly, ry, a, -1);
if (12 > r2) swap(12, r2);
T 1 = max(11, 12), r = min(r1, r2);
if (1 > r) return 0;
ll k = (r-1) / abs(b) + 1;
return k; // solucoes: x = 1 + [0, k)*|b|
```

4.5 Fast Walsh Hadamard Transform

}

```
// FWHT<'\!'>(f) eh SOS DP
// FWHT<'&'>(f) eh soma de superset DP
// Se chamar com ^, usar tamanho potencia de 2!!
//
// O(n log(n))
// ffb1d0

template<char op, bool inv = false, class T> vector<T>
    FWHT(vector<T> f) {
    int n = f.size();
    for (int k = 0; (n-1)>>k; k++) for (int i = 0; i < n;
        i++) if (i>>k&1) {
        int j = i^(1<<k);
        if (op == '^') f[j] += f[i], f[i] = f[j] - 2*f[i];
        if (op == '|') f[i] += (inv ? -1 : 1) * f[j];
        if (op == '&') f[j] += (inv ? -1 : 1) * f[i];</pre>
```

```
}
  if (op == '^' and inv) for (auto& i : f) i /= n;
  return f;
}
```

4.6 Logaritmo Discreto

```
// Resolve logaritmo discreto com o algoritmo baby step
   giant step
// Encontra o menor x tal que a^x = b (mod m)
// Se nao tem, retorna -1
//
// O(sqrt(m) * log(sqrt(m))
// 739fa8
int dlog(int b, int a, int m) {
    if (a == 0) return b ? -1 : 1; // caso nao definido
    a \%= m, b \%= m;
    int k = 1, shift = 0;
    while (1) {
        int g = gcd(a, m);
        if (g == 1) break;
        if (b == k) return shift;
        if (b % g) return -1;
        b \neq g, m \neq g, shift++;
        k = (11) k * a / g % m;
   }
    int sq = sqrt(m)+1, giant = 1;
    for (int i = 0; i < sq; i++) giant = (11) giant * a % m;
    vector < pair < int , int >> baby;
    for (int i = 0, cur = b; i <= sq; i++) {
        baby.emplace_back(cur, i);
        cur = (11) cur * a % m;
    }
    sort(baby.begin(), baby.end());
```

```
for (int j = 1, cur = k; j <= sq; j++) {
    cur = (11) cur * giant % m;
    auto it = lower_bound(baby.begin(), baby.end(),
        pair(cur, INF));
    if (it != baby.begin() and (--it)->first == cur)
        return sq * j - it->second + shift;
}
return -1;
}
```

4.7 2-SAT

```
// solve() retorna um par, o first fala se eh possivel
// atribuir, o second fala se cada variavel eh verdadeira
// O(|V|+|E|) = O(\#variaveis + \#restricoes)
// ef6b3b
struct sat {
    int n, tot;
    vector < vector < int >> g;
    vector<int> vis, comp, id, ans;
    stack < int > s;
    sat() {}
    sat(int n_{-}) : n(n_{-}), tot(n), g(2*n) {}
    int dfs(int i, int& t) {
        int lo = id[i] = t++:
        s.push(i), vis[i] = 2;
        for (int j : g[i]) {
            if (!vis[j]) lo = min(lo, dfs(j, t));
             else if (vis[j] == 2) lo = min(lo, id[j]);
        }
        if (lo == id[i]) while (1) {
            int u = s.top(); s.pop();
            vis[u] = 1, comp[u] = i;
            if ((u>1) < n \text{ and } ans[u>1] == -1) ans[u>1] = \sim
                u&1;
```

```
if (u == i) break:
    return lo;
}
void add_impl(int x, int y) { // x -> y = !x ou y
    x = x >= 0 ? 2*x : -2*x-1;
    y = y >= 0 ? 2*y : -2*y-1;
    g[x].push_back(y);
    g[y^1].push_back(x^1);
}
void add_cl(int x, int y) { // x ou y
    add_impl(\sim x, y);
void add_xor(int x, int y) { // x xor y
    add_cl(x, y), add_cl(\simx, \simy);
}
void add_eq(int x, int y) { // x = y
    add_xor(\simx, y);
}
void add_true(int x) { // x = T
    add_impl(\sim x, x);
void at_most_one(vector<int> v) { // no max um verdadeiro
    g.resize(2*(tot+v.size()));
    for (int i = 0; i < v.size(); i++) {</pre>
        add_impl(tot+i, \simv[i]);
        if (i) {
             add_impl(tot+i, tot+i-1);
             add_impl(v[i], tot+i-1);
        }
    tot += v.size();
}
pair < bool, vector < int >> solve() {
    ans = vector < int > (n, -1);
    int t = 0:
    vis = comp = id = vector<int>(2*tot, 0);
    for (int i = 0; i < 2*tot; i++) if (!vis[i]) dfs(i,</pre>
    for (int i = 0; i < tot; i++)</pre>
```

```
if (comp[2*i] == comp[2*i+1]) return {false, {}};
return {true, ans};
};
```

4.8 Variações do crivo de Eratosthenes

```
// "O" crivo
// Encontra maior divisor primo
// Um numero eh primo sse divi[x] == x
// fact fatora um numero <= lim
// A fatoração sai ordenada
//
// crivo - O(n log(log(n)))
// fact - O(log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;</pre>
    for (int i = 2; i <= lim; i++) if (divi[i] == 1)
        for (int j = i; j <= lim; j += i) divi[j] = i;</pre>
}
void fact(vector<int>& v, int n) {
    if (n != divi[n]) fact(v, n/divi[n]);
    v.push_back(divi[n]);
}
// Crivo linear
// Mesma coisa que o de cima, mas tambem
// calcula a lista de primos
// O(n)
int divi[MAX];
vector<int> primes;
```

```
void crivo(int lim) {
    divi[1] = 1;
    for (int i = 2; i <= lim; i++) {</pre>
        if (divi[i] == 0) divi[i] = i, primes.push_back(i);
        for (int j : primes) {
            if (j > divi[i] or i*j > lim) break;
            divi[i*j] = j;
        }
    }
}
// Crivo de divisores
// Encontra numero de divisores
// ou soma dos divisores
//
// O(n log(n))
int divi[MAX];
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) divi[i] = 1;
    for (int i = 2; i <= lim; i++)</pre>
        for (int j = i; j <= lim; j += i) {</pre>
            // para numero de divisores
            divi[j]++;
            // para soma dos divisores
            divi[j] += i;
        }
// Crivo de totiente
// Encontra o valor da funcao
// totiente de Euler
// O(n log(log(n)))
int tot[MAX];
```

```
void crivo(int lim) {
    for (int i = 1; i <= lim; i++) tot[i] = i;</pre>
    for (int i = 2; i <= lim; i++) if (tot[i] == i)</pre>
        for (int j = i; j <= lim; j += i)</pre>
            tot[j] -= tot[j] / i;
}
// Crivo de função de mobius
//
// O(n log(log(n)))
char meb[MAX];
void crivo(int lim) {
    for (int i = 2; i <= lim; i++) meb[i] = 2;</pre>
    meb[1] = 1:
    for (int i = 2; i <= lim; i++) if (meb[i] == 2)</pre>
        for (int j = i; j <= lim; j += i) if (meb[j]) {</pre>
            if (meb[j] == 2) meb[j] = 1;
            meb[j] *= j/i\%i ? -1 : 0;
        }
}
// Crivo linear de funcao multiplicativa
//
// Computa f(i) para todo 1 <= i <= n, sendo f
// uma funcao multiplicativa (se gcd(a,b) = 1,
// entao f(a*b) = f(a)*f(b)
// f_prime tem que computar f de um primo, e
// add_prime tem que computar f(p^(k+1)) dado f(p^k) e p
// Se quiser computar f(p^k) dado p e k, usar os comentarios
//
// O(n)
vector<int> primes;
int f[MAX], pot[MAX];
//int expo[MAX];
void sieve(int lim) {
    // Funcoes para soma dos divisores:
    auto f_prime = [](int p) { return p+1; };
```

```
auto add_prime = [](int fpak, int p) { return fpak*p+1;
   };
//auto f_pak = [](int p, int k) {};
f[1] = 1;
for (int i = 2; i <= lim; i++) {</pre>
    if (!pot[i]) {
        primes.push_back(i);
        f[i] = f_prime(i), pot[i] = i;
        //\exp[i] = 1;
    }
    for (int p : primes) {
        if (i*p > lim) break;
        if (i%p == 0) {
            f[i*p] = f[i / pot[i]] *
               add_prime(f[pot[i]], p);
            // se for descomentar, tirar a linha de cima
               tambem
            //f[i*p] = f[i / pot[i]] * f_pak(p,
               expo[i]+1);
            //\exp [i*p] = \exp [i]+1;
            pot[i*p] = pot[i] * p;
            break;
        } else {
            f[i*p] = f[i] * f[p];
            pot[i*p] = p;
            //\exp[i*p] = 1;
        }
   }
}
```

4.9 Algoritmo de Euclides estendido

```
// Acha x e y tal que ax + by = mdc(a, b) (nao eh unico)
// Assume a, b >= 0
//
// O(log(min(a, b)))
// 35411d
```

```
tuple < 11, 11, 11 > ext_gcd(11 a, 11 b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd(b%a, a);
    return \{g, y - b/a*x, x\};
}
```

4.10 Karatsuba

```
// Os pragmas podem ajudar
// Para n \sim 2e5, roda em < 1 s
// O(n^1.58)
// 8065d6
//#pragma GCC optimize("Ofast")
//#pragma GCC target ("avx,avx2")
template < typename T > void kar(T* a, T* b, int n, T* r, T*
   tmp) {
    if (n <= 64) {
        for (int i = 0; i < n; i++) for (int j = 0; j < n;
            r[i+j] += a[i] * b[j];
        return;
    int mid = n/2;
    T * atmp = tmp, *btmp = tmp+mid, *E = tmp+n;
    memset(E, 0, sizeof(E[0])*n);
    for (int i = 0; i < mid; i++) {</pre>
        atmp[i] = a[i] + a[i+mid];
        btmp[i] = b[i] + b[i+mid];
    }
    kar(atmp, btmp, mid, E, tmp+2*n);
    kar(a, b, mid, r, tmp+2*n);
    kar(a+mid, b+mid, mid, r+n, tmp+2*n);
    for (int i = 0; i < mid; i++) {</pre>
        T \text{ temp} = r[i+mid];
        r[i+mid] += E[i] - r[i] - r[i+2*mid];
        r[i+2*mid] += E[i+mid] - temp - r[i+3*mid];
}
```

```
template < typename T > vector < T > karatsuba(vector < T > a,
   vector<T> b) {
    int n = max(a.size(), b.size());
    while (n&(n-1)) n++;
    a.resize(n), b.resize(n);
    vector \langle T \rangle ret (2*n), tmp (4*n);
    kar(&a[0], &b[0], n, &ret[0], &tmp[0]);
    return ret;
}
     Exponenciacao rapida
4.11
```

// (x^y mod m) em O(log(y))

```
ll pow(ll x, ll y, ll m) { // iterativo
    11 \text{ ret} = 1;
    while (y) {
        if (y & 1) ret = (ret * x) % m;
        y >>= 1;
        x = (x * x) % m;
    }
    return ret;
}
ll pow(ll x, ll y, ll m) { // recursivo
    if (!y) return 1;
    ll ans = pow(x*x\%m, y/2, m);
    return y%2 ? x*ans%m : ans;
}
```

4.12 Inverso Modular

```
// Computa o inverso de a modulo b
// Se b eh primo, basta fazer
// a^{(b-2)}
ll inv(ll a, ll b) {
```

```
return a > 1? b - inv(b\%a, a)*b/a : 1;
}
// computa o inverso modular de 1..MAX-1 modulo um primo
11 inv[MAX]:
inv[1] = 1;
for (int i = 2; i < MAX; i++) inv[i] = MOD -</pre>
   MOD/i*inv[MOD%i]%MOD;
4.13 FFT
// chamar com vector < cplx > para FFT, ou vector < mint > para NTT
// O(n log(n))
// 40a2bd
template < typename T > void fft(vector < T > &a, bool f, int N,
   vector < int > &rev) {
    for (int i = 0; i < N; i++)</pre>
        if (i < rev[i])</pre>
             swap(a[i], a[rev[i]]);
    int 1, r, m;
    vector <T> roots(N);
    for (int n = 2; n \le N; n *= 2) {
        T \text{ root} = T :: rt(f, n, N);
        roots[0] = 1;
        for (int i = 1; i < n/2; i++)
             roots[i] = roots[i-1]*root;
        for (int pos = 0; pos < N; pos += n) {
            1 = pos+0, r = pos+n/2, m = 0;
             while (m < n/2) {
                 auto t = roots[m]*a[r];
                 a[r] = a[1] - t;
                 a[1] = a[1] + t;
                 l++; r++; m++;
            }
        }
    if (f) {
        auto invN = T(1)/N;
```

```
for(int i = 0; i < N; i++) a[i] = a[i]*invN;</pre>
    }
}
template < typename T > vector < T > convolution(vector < T > &a,
   vector <T> &b) {
    vector <T> l(a.begin(), a.end());
    vector <T> r(b.begin(), b.end());
    int ln = 1.size(), rn = r.size();
    int N = ln+rn+1;
    int n = 1, log_n = 0;
    while (n \le N) \{ n \le 1; \log_n + +; \}
    vector < int > rev(n);
    for (int i = 0; i < n; ++i){</pre>
        rev[i] = 0;
        for (int j = 0; j < log_n; ++j)
            if (i & (1<<j))
                 rev[i] = 1 << (log_n-1-j);
    }
    assert(N <= n);
    l.resize(n);
    r.resize(n);
    fft(l, false, n, rev);
    fft(r, false, n, rev);
    for (int i = 0; i < n; i++)</pre>
        l[i] *= r[i];
    fft(l, true, n, rev);
    return 1;
}
4.14 Simplex
// Maximiza c^T x s.t. Ax <= b, x >= 0
// O(2^n), porem executa em O(n^3) no caso medio
// 3a08e5
const double eps = 1e-7;
```

namespace Simplex {

```
vector < vector < double >> T;
int n, m;
vector < int > X, Y;
void pivot(int x, int y) {
    swap(X[y], Y[x-1]);
    for (int i = 0; i <= m; i++) if (i != y) T[x][i] /=
       T[x][v];
    T[x][y] = 1/T[x][y];
    for (int i = 0; i <= n; i++) if (i != x and
       abs(T[i][y]) > eps) {
        for (int j = 0; j <= m; j++) if (j != y) T[i][j]
            -= T[i][y] * T[x][j];
        T[i][y] = -T[i][y] * T[x][y];
    }
}
// Retorna o par (valor maximo, vetor solucao)
pair < double , vector < double >> simplex(
        vector < vector < double >> A, vector < double >> b,
            vector < double > c) {
    n = b.size(), m = c.size();
    T = vector(n + 1, vector < double > (m + 1));
    X = vector < int > (m);
    Y = vector < int > (n);
    for (int i = 0; i < m; i++) X[i] = i;</pre>
    for (int i = 0; i < n; i++) Y[i] = i+m;</pre>
    for (int i = 0; i < m; i++) T[0][i] = -c[i];
    for (int i = 0; i < n; i++) {</pre>
        for (int j = 0; j < m; j++) T[i+1][j] = A[i][j];
        T[i+1][m] = b[i];
    while (true) {
        int x = -1, y = -1;
        double mn = -eps;
        for (int i = 1; i <= n; i++) if (T[i][m] < mn)</pre>
            mn = T[i][m], x = i;
        if (x < 0) break;
        for (int i = 0; i < m; i++) if (T[x][i] < -eps)
           { y = i; break; }
        if (y < 0) return {-1e18, {}}; // sem solucao</pre>
```

```
para Ax <= b
            pivot(x, y);
        while (true) {
            int x = -1, y = -1;
            double mn = -eps;
            for (int i = 0; i < m; i++) if (T[0][i] < mn) mn</pre>
               = T[0][i], y = i;
            if (y < 0) break;
            mn = 1e200;
            for (int i = 1; i <= n; i++) if (T[i][y] > eps
               and T[i][m] / T[i][y] < mn)</pre>
                mn = T[i][m] / T[i][y], x = i;
            if (x < 0) return {1e18, {}}; // c^T x eh
               ilimitado
            pivot(x, y);
        vector < double > r(m);
        for(int i = 0; i < n; i++) if (Y[i] < m) r[Y[i]] =
           T[i+1][m];
        return {T[0][m], r};
   }
}
4.15 Binomial Distribution
// binom(n, k, p) retorna a probabilidade de k sucessos
// numa binomial(n, p)
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
```

}

double logfact[MAX];

logfact[0] = 0;

for (int i = 1; i < MAX; i++)</pre>

logfact[i] = logfact[i-1] + log(i);

void calc(){

```
double binom(int n, int k, double p){
    return exp(logfact[n] - logfact[k] - logfact[n-k] + k *
       log(p) + (n-k) * log(1 - p));
}
int main(){//if you want to sample from a bin(n, p)
    calc();
    int n; double p;
    cin >> n >> p;
    binomial_distribution < int > distribution(n, p);
    int IT = 1e5;
    vector<int> freq(n+1, 0);
    for (int i = 0; i < IT; i++){</pre>
        int v = distribution(rng);
        //P(v == k) = (n \text{ choose } k)p^k (1-p)^(n-k) = binom(n,
           k, p)
        freq[v]++;
    cout << fixed << setprecision(5);</pre>
    for (int i = 0; i <= n; i++)
        cout << double(freq[i])/IT << " \sim= " << binom(n, i,
            p) << endl;
}
```

4.16 Miller-Rabin

```
// Testa se n eh primo, n <= 3 * 10^18
//
// O(log(n)), considerando multiplicacao
// e exponenciacao constantes
// 4ebecc

ll mul(ll a, ll b, ll m) {
    ll ret = a*b - ll((long double)1/m*a*b+0.5)*m;
    return ret < 0 ? ret+m : ret;
}

ll pow(ll x, ll y, ll m) {
    if (!y) return 1;
    ll ans = pow(mul(x, x, m), y/2, m);</pre>
```

```
return y%2 ? mul(x, ans, m) : ans;
bool prime(ll n) {
    if (n < 2) return 0;
    if (n <= 3) return 1;
    if (n % 2 == 0) return 0;
    ll r = \__builtin\_ctzll(n - 1), d = n >> r;
    // com esses primos, o teste funciona garantido para n
    // funciona para n <= 3*10^24 com os primos ate 41
    for (int a: {2, 325, 9375, 28178, 450775, 9780504,
       795265022}) {
        11 x = pow(a, d, n);
        if (x == 1 \text{ or } x == n - 1 \text{ or a } \% n == 0) continue;
        for (int j = 0; j < r - 1; j++) {
            x = mul(x, x, n);
            if (x == n - 1) break;
        if (x != n - 1) return 0;
    }
    return 1;
}
```

4.17 Deteccao de ciclo - Tortoise and Hare

```
// Linear no tanto que tem que andar pra ciclar,
// O(1) de memoria
// Retorna um par com o tanto que tem que andar
// do f0 ate o inicio do ciclo e o tam do ciclo
// 899f20

pair<ll, ll> find_cycle() {
    ll tort = f(f0);
    ll hare = f(f(f0));
    ll t = 0;
    while (tort != hare) {
        tort = f(tort);
    }
}
```

```
hare = f(f(hare)):
    t++;
11 st = 0;
tort = f0;
while (tort != hare) {
    tort = f(tort);
    hare = f(hare);
    st++;
}
ll len = 1;
hare = f(tort);
while (tort != hare) {
    hare = f(hare):
    len ++;
}
return {st, len};
```

4.18 Totiente

}

```
// 0(sqrt(n))
// faeca3

int tot(int n){
   int ret = n;

   for (int i = 2; i*i <= n; i++) if (n % i == 0) {
      while (n % i == 0) n /= i;
      ret -= ret / i;
   }
   if (n > 1) ret -= ret / n;

return ret;
}
```

4.19 Eliminacao Gaussiana

```
// Resolve sistema linear
// Retornar um par com o numero de solucoes
// e alguma solucao, caso exista
//
// O(n^2 * m)
// 1d10b5
template < typename T>
pair<int, vector<T>> gauss(vector<vector<T>> a, vector<T> b)
    const double eps = 1e-6;
    int n = a.size(), m = a[0].size();
    for (int i = 0; i < n; i++) a[i].push_back(b[i]);</pre>
    vector<int> where(m, -1);
    for (int col = 0, row = 0; col < m and row < n; col++) {
        int sel = row:
        for (int i=row; i<n; ++i)</pre>
            if (abs(a[i][col]) > abs(a[sel][col])) sel = i;
        if (abs(a[sel][col]) < eps) continue;</pre>
        for (int i = col; i <= m; i++)</pre>
             swap(a[sel][i], a[row][i]);
        where [col] = row;
        for (int i = 0; i < n; i++) if (i != row) {
            T c = a[i][col] / a[row][col];
            for (int j = col; j <= m; j++)</pre>
                a[i][j] -= a[row][j] * c;
        }
        row++;
    }
    vector <T> ans(m, 0);
    for (int i = 0; i < m; i++) if (where[i] != -1)
        ans[i] = a[where[i]][m] / a[where[i]][i];
    for (int i = 0; i < n; i++) {</pre>
        T sum = 0:
        for (int j = 0; j < m; j++)
            sum += ans[j] * a[i][j];
        if (abs(sum - a[i][m]) > eps)
            return pair(0, vector<T>());
    }
```

```
for (int i = 0; i < m; i++) if (where[i] == -1)
    return pair(INF, ans);
return pair(1, ans);
}</pre>
```

4.20 Teorema Chines do Resto

```
// Combina equacoes modulares lineares: x = a (mod m)
// 0 m final eh o lcm dos m's, e a resposta eh unica mod o
// Os m nao precisam ser coprimos
// Se nao tiver solucao, o 'a' vai ser -1
// c775b2
tuple < 11, 11, 11 > ext_gcd(11 a, 11 b) {
    if (!a) return {b, 0, 1};
    auto [g, x, y] = ext_gcd(b\%a, a);
    return \{g, y - b/a*x, x\};
}
struct crt {
    ll a, m;
    crt() : a(0), m(1) {}
    crt(ll a_, ll m_) : a(a_), m(m_) {}
    crt operator * (crt C) {
        auto [g, x, y] = ext_gcd(m, C.m);
        if ((a - C.a) \% g) a = -1;
        if (a == -1 or C.a == -1) return crt(-1, 0);
        11 lcm = m/g*C.m;
        ll ans = a + (x*(C.a-a)/g \% (C.m/g))*m;
        return crt((ans % lcm + lcm) % lcm, lcm);
};
```

4.21 Integração Numerica - Metodo de Simpson 3/8

```
// Integra f no intervalo [a, b], erro cresce proporcional a
    (b - a)^5

const int N = 3*100; // multiplo de 3
ld integrate(ld a, ld b, function<ld(ld)> f) {
    ld s = 0, h = (b - a)/N;
    for (int i = 1; i < N; i++) s += f(a + i*h)*(i%3 ? 3 :
        2);
    return (f(a) + s + f(b))*3*h/8;
}</pre>
```

4.22 Ordem de elemento do grupo

```
// Calcula a ordem de a em Z_n
// O grupo Zn eh ciclico sse n =
// 1, 2, 4, p^k ou 2 p^k, p primo impar
// Retorna -1 se nao achar
//
// O(sqrt(n) log(n))
int tot(int n); // totiente em O(sqrt(n))
int expo(int a, int b, int m); // (a^b)%m em O(log(b))
// acha todos os divisores ordenados em O(sqrt(n))
vector < int > div(int n) {
    vector < int > ret1, ret2;
    for (int i = 1; i*i <= n; i++) if (n % i == 0) {
        ret1.push_back(i);
        if (i*i != n) ret2.push_back(n/i);
    }
    for (int i = ret2.size()-1; i+1; i--)
       ret1.push_back(ret2[i]);
    return ret1;
}
int ordem(int a, int n) {
    vector < int > v = div(tot(n));
    for (int i : v) if (expo(a, i, n) == 1) return i;
    return -1;
```

}

4.23 Pollard's Rho Alg

```
// Usa o algoritmo de deteccao de ciclo de Floyd
// com uma otimizacao na qual o gcd eh acumulado
// A fatoracao nao sai necessariamente ordenada
// O algoritmo rho encontra um fator de n,
// e funciona muito bem quando n possui um fator pequeno
//
// Complexidades (considerando mul constante):
// rho - esperado O(n^{(1/4)}) no pior caso
// fact - esperado menos que O(n^{(1/4)} \log(n)) no pior caso
// b00653
ll mul(ll a, ll b, ll m) {
    ll ret = a*b - ll((long double)1/m*a*b+0.5)*m;
    return ret < 0 ? ret+m : ret;</pre>
}
ll pow(ll x, ll y, ll m) {
    if (!y) return 1;
    ll ans = pow(mul(x, x, m), y/2, m);
    return y%2 ? mul(x, ans, m) : ans;
}
bool prime(ll n) {
    if (n < 2) return 0;
    if (n <= 3) return 1;
    if (n % 2 == 0) return 0;
    ll r = \_builtin\_ctzll(n - 1), d = n >> r;
    for (int a: {2, 325, 9375, 28178, 450775, 9780504,
       795265022}) {
        ll x = pow(a, d, n);
        if (x == 1 or x == n - 1 or a % n == 0) continue;
        for (int j = 0; j < r - 1; j++) {
            x = mul(x, x, n);
            if (x == n - 1) break;
```

```
if (x != n - 1) return 0;
    return 1;
}
ll rho(ll n) {
    if (n == 1 or prime(n)) return n;
    auto f = [n](11 x) {return mul(x, x, n) + 1;};
    11 x = 0, y = 0, t = 30, prd = 2, x0 = 1, q;
    while (t \% 40 != 0 or gcd(prd, n) == 1) {
       if (x==y) x = ++x0, y = f(x);
        q = mul(prd, abs(x-y), n);
        if (q != 0) prd = q;
        x = f(x), y = f(f(y)), t++;
    }
    return gcd(prd, n);
}
vector<ll> fact(ll n) {
    if (n == 1) return {};
    if (prime(n)) return {n};
    11 d = rho(n);
    vector < 11 > 1 = fact(d), r = fact(n / d);
    1.insert(1.end(), r.begin(), r.end());
    return 1;
4.24 Eliminacao Gaussiana Z2
// D eh dimensao do espaco vetorial
// add(v) - adiciona o vetor v na base (retorna se ele jah
   pertencia ao span da base)
// coord(v) - retorna as coordenadas (c) de v na base atual
   (basis^T.c = v)
// recover(v) - retorna as coordenadas de v nos vetores na
   ordem em que foram inseridos
```

// coord(v).first e recover(v).first - se v pertence ao span

```
// Complexidade:
// add, coord, recover: O(D^2 / 64)
// d0a4b3
template < int D> struct Gauss_z2 {
    bitset <D> basis[D], keep[D];
    int rk, in;
    vector < int > id;
    Gauss_z2 () : rk(0), in(-1), id(D, -1) {};
    bool add(bitset < D > v) {
        in++:
        bitset <D> k;
        for (int i = D - 1; i >= 0; i--) if (v[i]) {
            if (basis[i][i]) v ^= basis[i], k ^= keep[i];
            else {
                 k[i] = true, id[i] = in, keep[i] = k;
                 basis[i] = v, rk++;
                 return true;
            }
        }
        return false;
    pair < bool, bitset < D >> coord(bitset < D >> v) {
        bitset <D> c;
        for (int i = D - 1; i \ge 0; i--) if (v[i]) {
            if (basis[i][i]) v ^= basis[i], c[i] = true;
            else return {false, bitset <D>()};
        }
        return {true, c};
    pair < bool, vector < int >> recover(bitset < D > v) {
        auto [span, bc] = coord(v);
        if (not span) return {false, {}};
        bitset <D> aux:
        for (int i = D - 1; i >= 0; i--) if (bc[i]) aux ^=
           keep[i];
        vector < int > oc;
        for (int i = D - 1; i >= 0; i--) if (aux[i])
            oc.push_back(id[i]);
        return {true, oc};
```

```
}
};
4.25 Algoritmo de Euclides
// O(log(min(a, b)))
// 7dbc22
int mdc(int a, int b) {
    return !b ? a : mdc(b, a % b);
}
    DP
5.1 SOS DP
// O(n 2^n)
// ff5b34
// soma de sub-conjunto
vector<ll> sos_dp(vector<ll> f) {
    int N = __builtin_ctz(f.size());
    assert((1<<N) == f.size());
    for (int i = 0; i < N; i++) for (int mask = 0; mask <
       (1 << N): mask++)
        if (mask>>i&1) f[mask] += f[mask^(1<<i)];</pre>
    return f:
}
// soma de super-conjunto
vector<ll> sos_dp(vector<ll> f) {
    int N = __builtin_ctz(f.size());
    assert((1<<N) == f.size());
```

for (int i = 0; i < N; i++) for (int mask = 0; mask <

(1 << N); mask++)

```
if (~mask>>i&1) f[mask] += f[mask^(1<<i)];
    return f;
}</pre>
```

5.2 Longest Common Subsequence

```
// Computa a LCS entre dois arrays usando
// o algoritmo de Hirschberg para recuperar
// O(n*m), O(n+m) de memoria
// 337bb3
int lcs_s[MAX], lcs_t[MAX];
int dp[2][MAX];
// dp[0][j] = max lcs(s[li...ri], t[lj, lj+j])
void dp_top(int li, int ri, int lj, int rj) {
    memset(dp[0], 0, (rj-lj+1)*sizeof(dp[0][0]));
    for (int i = li; i <= ri; i++) {</pre>
        for (int j = rj; j >= lj; j--)
            dp[0][j-1j] = max(dp[0][j-1j],
            (lcs_s[i] == lcs_t[j]) + (j > lj ? dp[0][j-1 -
               lj]: 0));
        for (int j = 1j+1; j \le rj; j++)
            dp[0][j-1j] = max(dp[0][j-1j], dp[0][j-1
               -li]);
    }
}
// dp[1][j] = max lcs(s[li...ri], t[lj+j, rj])
void dp_bottom(int li, int ri, int lj, int rj) {
    memset(dp[1], 0, (rj-lj+1)*sizeof(dp[1][0]));
    for (int i = ri; i >= li; i--) {
        for (int j = lj; j <= rj; j++)</pre>
            dp[1][j - lj] = max(dp[1][j - lj],
            (lcs_s[i] == lcs_t[j]) + (j < rj ? dp[1][j+1 -
               lj] : 0));
        for (int j = rj-1; j >= lj; j--)
            dp[1][j-1j] = max(dp[1][j-1j], dp[1][j+1-
               lj]);
```

```
}
void solve(vector<int>& ans, int li, int ri, int lj, int rj)
   ₹
    if (li == ri){
        for (int j = lj; j <= rj; j++)</pre>
            if (lcs_s[li] == lcs_t[j]){
                 ans.push_back(lcs_t[j]);
                 break:
            }
        return;
    }
    if (li == ri){
        for (int i = li; i <= ri; i++){</pre>
            if (lcs_s[i] == lcs_t[lj]){
                 ans.push_back(lcs_s[i]);
                 break;
            }
        }
        return;
    }
    int mi = (li+ri)/2;
    dp_top(li, mi, lj, rj), dp_bottom(mi+1, ri, lj, rj);
    int i_{-} = 0, mx = -1;
    for (int j = lj-1; j <= rj; j++) {
        int val = 0;
        if (j >= lj) val += dp[0][j - lj];
        if (j < rj) val += dp[1][j+1 - lj];
        if (val >= mx) mx = val, j_ = j;
    }
    if (mx == -1) return:
    solve(ans, li, mi, lj, j_), solve(ans, mi+1, ri, j_+1,
       rj);
}
vector < int > lcs(const vector < int > & s, const vector < int > & t) {
    for (int i = 0; i < s.size(); i++) lcs_s[i] = s[i];</pre>
    for (int i = 0; i < t.size(); i++) lcs_t[i] = t[i];</pre>
```

```
vector < int > ans;
solve(ans, 0, s.size()-1, 0, t.size()-1);
return ans;
}
```

5.3 Divide and Conquer DP

```
// Particiona o array em k subarrays
// minimizando o somatorio das queries
// O(k n log n), assumindo quer query(1, r) eh O(1)
// 4efe6b
11 dp[MAX][2];
void solve(int k, int l, int r, int lk, int rk) {
    if (1 > r) return;
    int m = (1+r)/2, p = -1;
    auto& ans = dp[m][k&1] = LINF;
    for (int i = max(m, lk); i <= rk; i++) {</pre>
        int at = dp[i+1][\sim k\&1] + query(m, i);
        if (at < ans) ans = at, p = i;</pre>
    solve(k, l, m-1, lk, p), solve(k, m+1, r, p, rk);
}
11 DC(int n, int k) {
    dp[n][0] = dp[n][1] = 0;
    for (int i = 0; i < n; i++) dp[i][0] = LINF;</pre>
    for (int i = 1; i <= k; i++) solve(i, 0, n-i, 0, n-i);</pre>
    return dp[0][k&1];
}
```

5.4 Mochila

```
// Resolve mochila, recuperando a resposta // O(n * cap), O(n + cap) de memoria
```

```
// 400885
int v[MAX], w[MAX]; // valor e peso
int dp[2][MAX_CAP];
// DP usando os itens [1, r], com capacidade = cap
void get_dp(int x, int 1, int r, int cap) {
    memset(dp[x], 0, (cap+1)*sizeof(dp[x][0]));
    for (int i = 1; i \le r; i++) for (int j = cap; j \ge 0;
       j - -)
       if (j - w[i] >= 0) dp[x][j] = max(dp[x][j], v[i] +
           dp[x][i - w[i]]);
}
void solve(vector<int>& ans, int 1, int r, int cap) {
    if (1 == r) {
        if (w[1] <= cap) ans.push_back(1);</pre>
        return;
    }
    int m = (1+r)/2;
    get_dp(0, 1, m, cap), get_dp(1, m+1, r, cap);
    int left_cap = -1, opt = -INF;
    for (int j = 0; j <= cap; j++)</pre>
        if (int at = dp[0][j] + dp[1][cap - j]; at > opt)
            opt = at, left_cap = j;
    solve(ans, 1, m, left_cap), solve(ans, m+1, r, cap -
       left_cap);
}
vector < int > knapsack(int n, int cap) {
    vector < int > ans;
    solve(ans, 0, n-1, cap);
    return ans;
}
```

5.5 Convex Hull Trick Dinamico

```
// para double, use LINF = 1/.0, div(a, b) = a/b
// update(x) atualiza o ponto de intersecao da reta x
// overlap(x) verifica se a reta x sobrepoe a proxima
```

```
// add(a, b) adiciona reta da forma ax + b
// query(x) computa maximo de ax + b para entre as retas
// O(log(n)) amortizado por insercao
// O(log(n)) por query
// 978376
struct Line {
    mutable ll a, b, p;
    bool operator<(const Line& o) const { return a < o.a; }</pre>
    bool operator<(ll x) const { return p < x; }</pre>
};
struct dynamic_hull : multiset < Line, less <>> {
    ll div(ll a, ll b) {
        return a / b - ((a ^ b) < 0 and a % b);
    }
    void update(iterator x) {
        if (next(x) == end()) x->p = LINF;
        else if (x->a == next(x)->a) x->p = x->b >=
            next(x)->b ? LINF : -LINF;
        else x \rightarrow p = div(next(x) \rightarrow b - x \rightarrow b, x \rightarrow a - b)
            next(x)->a);
    }
    bool overlap(iterator x) {
        update(x);
        if (next(x) == end()) return 0;
        if (x->a == next(x)->a) return x->b >= next(x)->b;
        return x - p >= next(x) - p;
    }
    void add(ll a, ll b) {
        auto x = insert({a, b, 0});
        while (overlap(x)) erase(next(x)), update(x);
        if (x != begin() and !overlap(prev(x))) x = prev(x),
            update(x);
        while (x != begin() and overlap(prev(x)))
            x = prev(x), erase(next(x)), update(x);
    }
```

```
11 query(11 x) {
         assert(!empty());
         auto 1 = *lower_bound(x);
         return 1.a * x + 1.b;
};
```

5.6 Convex Hull Trick (Rafael)

```
// linear
// 30323e
struct CHT {
    int it;
    vector < ll > a, b;
    CHT():it(0){}
    ll eval(int i, ll x){
        return a[i]*x + b[i];
    }
    bool useless(){
        int sz = a.size();
        int r = sz-1, m = sz-2, 1 = sz-3;
        return (b[1] - b[r])*(a[m] - a[1]) <
            (b[1] - b[m])*(a[r] - a[1]);
    }
    void add(ll A, ll B){
        a.push_back(A); b.push_back(B);
        while (!a.empty()){
            if ((a.size() < 3) || !useless()) break;</pre>
            a.erase(a.end() - 2);
            b.erase(b.end() - 2);
        }
    }
    11 get(11 x){
        it = min(it, int(a.size()) - 1);
        while (it+1 < a.size()){</pre>
            if (eval(it+1, x) > eval(it, x)) it++;
            else break;
        return eval(it, x);
```

```
};
```

6 Strings

6.1 Aho-corasick - Automato

```
// query retorna o numero de matches sem overlap
//
// insert - 0(|s|)
// build - 0(n * SIGMA), onde n = somatorio dos tamanhos das
   strings
// 39ce76
namespace aho {
    const vector<pair<char, char>> vt = {
        {'a', 'z'},
        {'A', 'Z'},
        {'0', '9'}
    };//example of alphabet
    void fix(char &c){
        int acc = 0:
        for (auto p : vt){
            if (p.first <= c && c <= p.second){</pre>
                c = c - p.first + acc;
                return;
            }
            acc += p.second - p.first + 1;
        }
    void unfix(char &c){
        int acc = 0;
        for (auto p : vt){
            int next_acc = acc + p.second - p.first;
            if (acc <= c && c <= next_acc){</pre>
                c = p.first + c - acc;
                return;
            }
```

```
acc = next acc + 1:
    }
    void fix(string &s){ for (char &c : s) fix(c); }
    void unfix(string &s){ for (char &c : s) unfix(c); }
    const int SIGMA = 70; //fix(vt.back().second) + 1;
    const int MAXN = 1e5+10;
    int to[MAXN][SIGMA];
    int link[MAXN], end[MAXN];
    int idx;
    void init(){
#warning dont forget to init before inserting strings
        memset(to, 0, sizeof to);
        idx = 1:
    }
    void insert(string &s){
        fix(s);
        int v = 0;
        for (char c : s){
            int &w = to[v][c];
           if (!w) w = idx++;
            v = w;
        }
        end[v] = 1;
    void build(){
#warning dont forget to build after inserting strings
        queue < int > q;
        q.push(0);
        while (!q.empty()){
            int cur = q.front(); q.pop();
            int l = link[cur];
            end[cur] |= end[1];
            for (int i = 0; i < SIGMA; i++){</pre>
                int &w = to[cur][i];
                if (w){
                    link[w] = ((cur != 0) ? to[1][i] : 0);
                    q.push(w);
```

```
else w = to[l][i]:
            }
        }
    int query(string &s){
        fix(s);
        int v = 0;
        int counter = 0;
        for (char c : s){
            v = to[v][c];
            if (end[v]) {
                counter++;
                v = 0;
            }
        }
        return counter;
}
```

6.2 Min/max suffix/cyclic shift

```
// Computa o indice do menor/maior sufixo/cyclic shift
// da string, lexicograficamente
//
// O(n)
// af0367

template < typename T > int max_suffix(T s, bool mi = false) {
    s.push_back(*min_element(s.begin(), s.end())-1);
    int ans = 0;
    for (int i = 1; i < s.size(); i++) {
        int j = 0;
        while (ans+j < i and s[i+j] == s[ans+j]) j++;
        if (s[i+j] > s[ans+j]) {
            if (!mi or i != s.size()-2) ans = i;
        } else if (j) i += j-1;
    }
    return ans;
}
```

```
template < typename T> int min_suffix(T s) {
   for (auto& i : s) i *= -1;
    s.push_back(*max_element(s.begin(), s.end())+1);
   return max_suffix(s, true);
}

template < typename T> int max_cyclic_shift(T s) {
   int n = s.size();
   for (int i = 0; i < n; i++) s.push_back(s[i]);
   return max_suffix(s);
}

template < typename T> int min_cyclic_shift(T s) {
   for (auto& i : s) i *= -1;
   return max_cyclic_shift(s);
}
```

6.3 String Hashing - modulo 2⁶¹ - 1

```
// Quase duas vezes mais lento
//
// Complexidades:
// build - O(|s|)
// operator() - 0(1)
//
// d3c0f0
const ll MOD = (111<<61) - 1;</pre>
ll mulmod(ll a, ll b) {
    const static 11 LOWER = (111<<30) - 1, GET31 = (111<<31)
    11 \ 11 = a\&LOWER, h1 = a>>30, 12 = b\&LOWER, h2 = b>>30;
    11 m = 11*h2 + 12*h1, h = h1*h2;
    ll ans = 11*12 + (h>>1) + ((h&1)<<60) + (m>>31) +
       ((m\&GET31) << 30) + 1;
    ans = (ans\&MOD) + (ans>>61), ans = (ans\&MOD) + (ans>>61);
    return ans - 1;
}
mt19937_64
```

```
rng(chrono::steady_clock::now().time_since_epoch().count())
ll uniform(ll 1, ll r) {
    uniform_int_distribution < 11 > uid(1, r);
    return uid(rng);
}
struct str_hash {
    static 11 P;
    vector<ll> h, p;
    str_hash(string s) : h(s.size()), p(s.size()) {
        p[0] = 1, h[0] = s[0];
        for (int i = 1; i < s.size(); i++)</pre>
            p[i] = mulmod(p[i - 1], P), h[i] = (mulmod(h[i -
               1], P) + s[i])%MOD;
    11 operator()(int 1, int r) { // retorna hash s[1...r]
        ll hash = h[r] - (l ? mulmod(h[l - 1], p[r - l + 1])
           : 0);
        return hash < 0 ? hash + MOD : hash;</pre>
};
11 str_hash::P = uniform(256, MOD - 1); // 1 > |sigma|
6.4 Manacher
```

```
// manacher recebe um vetor de T e retorna o vetor com
  tamanho dos palindromos
// ret[2*i] = tamanho do maior palindromo centrado em i
// ret[2*i+1] = tamanho maior palindromo centrado em i e i+1
//
// Complexidades:
// manacher - O(n)
// palindrome - <O(n), O(1)>
// pal_end - O(n)
// 897841

template < typename T > vector < int > manacher (const T& s) {
  int l = 0, r = -1, n = s.size();
  vector < int > d1(n), d2(n);
```

```
for (int i = 0; i < n; i++) {
        int k = i > r ? 1 : min(d1[l+r-i], r-i);
        while (i+k < n \&\& i-k >= 0 \&\& s[i+k] == s[i-k]) k++;
        d1[i] = k--;
        if (i+k > r) l = i-k, r = i+k;
    }
    1 = 0, r = -1;
    for (int i = 0; i < n; i++) {</pre>
        int k = i > r ? 0 : min(d2[1+r-i+1], r-i+1); k++;
        while (i+k \le n \&\& i-k \ge 0 \&\& s[i+k-1] == s[i-k])
           k++:
        d2[i] = --k;
        if (i+k-1 > r) l = i-k, r = i+k-1;
    }
    vector < int > ret(2*n-1);
    for (int i = 0; i < n; i++) ret[2*i] = 2*d1[i]-1;</pre>
    for (int i = 0; i < n-1; i++) ret[2*i+1] = 2*d2[i+1];
    return ret;
}
// verifica se a string s[i..j] eh palindromo
template < typename T> struct palindrome {
    vector < int > man;
    palindrome(const T& s) : man(manacher(s)) {}
    bool query(int i, int j) {
        return man[i+j] >= j-i+1;
    }
};
// tamanho do maior palindromo que termina em cada posicao
template < typename T> vector < int > pal_end(const T& s) {
    vector < int > ret(s.size());
    palindrome <T> p(s);
    ret[0] = 1:
    for (int i = 1; i < s.size(); i++) {</pre>
        ret[i] = min(ret[i-1]+2, i+1);
        while (!p.query(i-ret[i]+1, i)) ret[i]--;
    }
    return ret;
}
```

6.5 Trie

```
// trie T() constroi uma trie para o alfabeto das letras
   minusculas
// trie T(tamanho do alfabeto, menor caracter) tambem pode
   ser usado
//
// T.insert(s) - O(|s|*sigma)
// T.erase(s) - O(|s|)
// T.find(s) retorna a posicao, 0 se nao achar - O(|s|)
// T.count_pref(s) numero de strings que possuem s como
   prefixo - O(|s|)
//
// Nao funciona para string vazia
// 979609
struct trie {
    vector < vector < int >> to;
    vector<int> end, pref;
    int sigma; char norm;
    trie(int sigma_=26, char norm_='a') : sigma(sigma_),
       norm(norm_) {
        to = {vector < int > (sigma)};
        end = \{0\}, pref = \{0\};
    void insert(string s) {
        int x = 0:
        for(auto c : s) {
            int &nxt = to[x][c-norm];
            if(!nxt) {
                nxt = to.size();
                to.push_back(vector<int>(sigma));
                end.push_back(0), pref.push_back(0);
            x = nxt, pref[x]++;
        end[x]++;
    void erase(string s) {
        int x = 0;
        for(char c : s) {
            int &nxt = to[x][c-norm];
```

```
x = nxt, pref[x] --;
            if(!pref[x]) nxt = 0;
        end[x]--;
    }
    int find(string s) {
        int x = 0;
        for(auto c : s) {
            x = to[x][c-norm];
            if(!x) return 0;
        }
        return x;
    }
    int count_pref(string s) {
        return pref[find(s)];
    }
};
6.6 String Hashing
// Complexidades:
// construtor - O(|s|)
// operator() - 0(1)
//
// 7b7cb6
mt19937 rng((int)
   chrono::steady_clock::now().time_since_epoch().count());
int uniform(int 1, int r) {
    uniform_int_distribution < int > uid(1, r);
    return uid(rng);
}
template < int MOD> struct str_hash {
    static int P;
    vector<ll> h, p;
```

str_hash(string s) : h(s.size()), p(s.size()) {

for (int i = 1; i < s.size(); i++)</pre>

p[0] = 1, h[0] = s[0];

```
p[i] = p[i - 1]*P\%MOD, h[i] = (h[i - 1]*P +
                s[i])%MOD;
    11 operator()(int 1, int r) { // retorna hash s[1...r]
        ll\ hash = h[r] - (l\ ?\ h[l\ -\ 1]*p[r\ -\ l\ +\ 1]%MOD : 0);
        return hash < 0 ? hash + MOD : hash;</pre>
    }
};
template < int MOD > int str_hash < MOD > :: P = uniform (256, MOD -
   1); // l > |sigma|
6.7 eertree
// Constroi a eertree, caractere a caractere
// Inicializar com a quantidade de caracteres maxima
// size() retorna a quantidade de substrings pal. distintas
// depois de chamar propagate(), cada substring palindromica
// ocorre qt[i] vezes. O propagate() retorna o numero de
// substrings pal. com repeticao
//
// O(n) amortizado, considerando alfabeto O(1)
// a2e693
struct eertree {
    vector < vector < int >> t;
    int n, last, sz;
    vector < int > s, len, link, qt;
    eertree(int N) {
        t = vector(N+2, vector(26, int()));
        s = len = link = qt = vector < int > (N+2);
        link[0] = 1, len[0] = 0, link[1] = 1, len[1] = -1;
        sz = 2, last = 0, n = 1;
    }
    void add(char c) {
        s[n++] = c -= 'a';
        while (s[n-len[last]-2] != c) last = link[last];
        if (!t[last][c]) {
```

```
int prev = link[last];
            while (s[n-len[prev]-2] != c) prev = link[prev];
            link[sz] = t[prev][c];
            len[sz] = len[last]+2;
            t[last][c] = sz++;
        qt[last = t[last][c]]++;
    }
    int size() { return sz-2; }
    11 propagate() {
        11 \text{ ret} = 0;
        for (int i = n; i > 1; i--) {
            qt[link[i]] += qt[i];
            ret += qt[i];
        return ret;
    }
};
```

6.8 Suffix Array Dinamico

```
// Mantem o suffix array, lcp e rank de uma string,
// premitindo push_front e pop_front
// O operador [i] return um par com sa[i] e lcp[i]
// lcp[i] tem o lcp entre sa[i] e sa[i-1] (lcp[0] = 0)
//
// Complexidades:
// Construir sobre uma string de tamanho n: O(n log n)
// push_front e pop_front: O(log n) amortizado
// 4c2a2e
struct dyn_sa {
    struct node {
        int sa, lcp;
        node *1, *r, *p;
        int sz, mi;
        node(int sa_, int lcp_, node* p_) : sa(sa_),
           lcp(lcp_),
           1(NULL), r(NULL), p(p_), sz(1), mi(lcp) {}
        void update() {
```

```
sz = 1, mi = lcp;
        if (1) sz += 1->sz, mi = min(mi, 1->mi);
        if (r) sz += r->sz, mi = min(mi, r->mi);
    }
};
node* root;
vector<ll> tag; // tag of a suffix (reversed id)
string s; // reversed
dyn_sa() : root(NULL) {}
dyn_sa(string s_) : dyn_sa() {
    reverse(s_.begin(), s_.end());
    for (char c : s_) push_front(c);
}
\sim dyn_sa() {
    vector < node *> q = {root};
    while (q.size()) {
        node* x = q.back(); q.pop_back();
        if (!x) continue;
        q.push_back(x->1), q.push_back(x->r);
        delete x;
    }
}
int size(node* x) { return x ? x->sz : 0; }
int mirror(int i) { return s.size()-1 - i; }
bool cmp(int i, int j) {
    if (s[i] != s[j]) return s[i] < s[j];</pre>
    if (i == 0 \text{ or } j == 0) \text{ return } i < j;
    return tag[i-1] < tag[j-1];</pre>
void fix_path(node* x) { while (x) x->update(), x =
   f: a < -x
void flatten(vector<node*>& v, node* x) {
    if (!x) return:
    flatten(v, x->1);
    v.push_back(x);
    flatten(v, x->r);
void build(vector < node *> & v, node * & x, node * p, int L,
   int R, 11 1, 11 r) {
```

```
if (L > R) return void(x = NULL);
    int M = (L+R)/2;
    11 m = (1+r)/2;
    x = v[M];
    x - p = p;
    tag[x->sa] = m;
    build(v, x - > 1, x, L, M - 1, 1, m - 1), build(v, x - > r, x,
       M+1, R, m+1, r);
    x->update();
}
void fix(node*& x, node* p, ll l, ll r) {
    if (3*max(size(x->1), size(x->r)) \le 2*size(x))
       return x->update();
    vector<node*> v;
    flatten(v. x):
    build(v, x, p, 0, v.size()-1, 1, r);
}
node* next(node* x) {
    if (x->r) {
        x = x - > r;
        while (x->1) x = x->1;
        return x;
    while (x->p \text{ and } x->p->r == x) x = x->p;
    return x->p;
}
node* prev(node* x) {
    if (x->1) {
        x = x -> 1;
        while (x->r) x = x->r;
        return x;
    while (x-p \text{ and } x-p-1 == x) x = x-p;
    return x->p;
}
int get_lcp(node* x, node* y) {
    if (!x or !y) return 0; // change defaut value here
    if (s[x->sa] != s[y->sa]) return 0;
    if (x->sa == 0 \text{ or } y->sa == 0) return 1;
    return 1 + query(mirror(x->sa-1), mirror(y->sa-1));
}
```

```
void add_suf(node*& x, node* p, int id, ll l, ll r) {
    if (!x) {
        x = new node(id, 0, p);
        node *prv = prev(x), *nxt = next(x);
        int lcp_cur = get_lcp(prv, x), lcp_nxt =
           get_lcp(x, nxt);
        if (nxt) nxt->lcp = lcp_nxt, fix_path(nxt);
        x->lcp = lcp_cur;
        tag[id] = (1+r)/2;
        x->update();
        return;
    }
    if (cmp(id, x->sa)) add_suf(x->1, x, id, 1,
       tag[x->sa]-1);
    else add_suf(x->r, x, id, tag[x->sa]+1, r);
    fix(x, p, l, r);
}
void push_front(char c) {
    s += c;
    tag.push_back(-1);
    add_suf(root, NULL, s.size() - 1, 0, 1e18);
}
void rem_suf(node*& x, int id) {
    if (x->sa != id) {
        if (tag[id] < tag[x->sa]) return rem_suf(x->1,
           id);
        return rem_suf(x->r, id);
    }
    node* nxt = next(x);
    if (nxt) nxt -> lcp = min(nxt -> lcp, x -> lcp),
       fix_path(nxt);
    node *p = x - p, *tmp = x;
    if (!x->1 \text{ or } !x->r) {
        x = x->1 ? x->1 : x->r;
        if (x) x->p = p;
    } else {
        for (tmp = x->1, p = x; tmp->r; tmp = tmp->r) p
        x->sa = tmp->sa, x->lcp = tmp->lcp;
        if (tmp->1) tmp->1->p = p;
```

```
if (p->1 == tmp) p->1 = tmp->1;
         else p->r = tmp->1;
    fix_path(p);
    delete tmp;
}
void pop_front() {
    if (!s.size()) return;
    s.pop_back();
    rem_suf(root, s.size());
    tag.pop_back();
}
int query(node* x, 11 1, 11 r, 11 a, 11 b) {
    if (!x \text{ or } tag[x->sa] == -1 \text{ or } r < a \text{ or } b < 1) \text{ return}
        s.size():
    if (a <= l and r <= b) return x->mi;
    int ans = s.size();
    if (a \le tag[x->sa]  and tag[x->sa] \le b) ans =
        min(ans, x->lcp);
    ans = min(ans, query(x->1, 1, tag[x->sa]-1, a, b));
    ans = min(ans, query(x->r, tag[x->sa]+1, r, a, b));
    return ans;
}
int query(int i, int j) { // lcp(s[i..], s[j..])
    if (i == j) return s.size() - i;
    ll a = tag[mirror(i)], b = tag[mirror(j)];
    int ret = query(root, 0, 1e18, min(a, b)+1, max(a, b)
       b));
    return ret;
}
// optional: get rank[i], sa[i] and lcp[i]
int rank(int i) {
    i = mirror(i);
    node* x = root:
    int ret = 0;
    while (x) {
        if (tag[x->sa] < tag[i]) {</pre>
             ret += size(x->1)+1;
             x = x -> r;
        } else x = x - > 1;
    }
```

```
return ret;
    pair<int, int> operator[](int i) {
        node* x = root;
        while (1) {
            if (i < size(x->1)) x = x->1;
            else {
                 i = size(x->1);
                if (!i) return {mirror(x->sa), x->lcp};
                i--, x = x->r;
            }
        }
    }
};
6.9 KMP
// mathcing(s, t) retorna os indices das ocorrencias
// de s em t
// autKMP constroi o automato do KMP
// Complexidades:
// pi - O(n)
// match - 0(n + m)
// construir o automato - O(|sigma|*n)
// n = |padrao| e m = |texto|
// ff2832
template < typename T > vector < int > pi(T s) {
    vector < int > p(s.size());
    for (int i = 1, j = 0; i < s.size(); i++) {</pre>
        while (j \text{ and } s[j] != s[i]) j = p[j-1];
        if (s[j] == s[i]) j++;
        p[i] = j;
    }
    return p;
}
```

template < typename T> vector < int > matching(T& s, T& t) {

vector < int > p = pi(s), match;

```
for (int i = 0, j = 0; i < t.size(); i++) {</pre>
        while (j \text{ and } s[j] != t[i]) j = p[j-1];
        if (s[j] == t[i]) j++;
        if (j == s.size()) match.push_back(i-j+1), j =
           p[j-1];
    }
    return match;
}
struct KMPaut : vector<vector<int>> {
    KMPaut(){}
    KMPaut (string& s) : vector < vector < int >> (26,
       vector < int > (s.size()+1)) {
        vector<int> p = pi(s);
        auto& aut = *this;
        aut[s[0]-'a'][0] = 1;
        for (char c = 0; c < 26; c++)
            for (int i = 1; i <= s.size(); i++)</pre>
                 aut[c][i] = s[i] - 'a' == c ? i+1 :
                    aut[c][p[i-1]];
    }
};
6.10 Suffix Array - O(n)
// Rapidao
// Computa o suffix array em 'sa', o rank em 'rnk'
// e o lcp em 'lcp'
// query(i, j) retorna o LCP entre s[i..n-1] e s[j..n-1]
//
// Complexidades
// O(n) para construir
// query - 0(1)
// fa533e
template < typename T> struct rmq {
    vector <T> v;
    int n; static const int b = 30;
    vector < int > mask, t;
```

```
int op(int x, int y) { return v[x] \le v[y] ? x : y; }
    int msb(int x) { return
       __builtin_clz(1)-__builtin_clz(x); }
    int small(int r, int sz = b) { return
       r-msb(mask[r]&((1<<sz)-1)); }
    rmq() {}
    rmq(const vectorT>\&v_{-}) : v(v_{-}), n(v.size()), mask(n),
        for (int i = 0, at = 0; i < n; mask[i++] = at |= 1) {</pre>
            at = (at << 1) &((1 << b) -1);
            while (at and op(i-msb(at&-at), i) == i) at ^=
               at&-at;
        }
        for (int i = 0; i < n/b; i++) t[i] = small(b*i+b-1);
        for (int j = 1; (1<<j) <= n/b; j++) for (int i = 0;
           i+(1<<j) <= n/b; i++)
            t[n/b*j+i] = op(t[n/b*(j-1)+i],
               t[n/b*(j-1)+i+(1<<(j-1))]);
    int index_query(int 1, int r) {
        if (r-l+1 \le b) return small(r, r-l+1);
        int x = 1/b+1, y = r/b-1;
        if (x > y) return op(small(l+b-1), small(r));
        int j = msb(y-x+1);
        int ans = op(small(1+b-1), op(t[n/b*j+x],
           t[n/b*j+v-(1<<j)+1]));
        return op(ans, small(r));
    T query(int 1, int r) { return v[index_query(1, r)]; }
};
struct suffix_array {
    string s;
    int n;
    vector < int > sa, cnt, rnk, lcp;
    rmq<int> RMQ;
    bool cmp(int a1, int b1, int a2, int b2, int a3=0, int
       b3=0) {
        return a1 != b1 ? a1 < b1 : (a2 != b2 ? a2 < b2 : a3
           < b3);
    }
```

```
template < typename T> void radix(int* fr, int* to, T* r,
   int N, int k) {
    cnt = vector < int > (k+1, 0);
    for (int i = 0; i < N; i++) cnt[r[fr[i]]]++;</pre>
    for (int i = 1; i <= k; i++) cnt[i] += cnt[i-1];</pre>
    for (int i = N-1; i+1; i--) to [--cnt[r[fr[i]]]] =
       fr[i];
}
void rec(vector<int>& v, int k) {
    auto &tmp = rnk, &m0 = lcp;
    int N = v.size()-3, sz = (N+2)/3, sz2 = sz+N/3;
    vector < int > R(sz2+3);
    for (int i = 1, j = 0; j < sz2; i += i%3) R[j++] = i;
    radix(&R[0], &tmp[0], &v[0]+2, sz2, k);
    radix(&tmp[0], &R[0], &v[0]+1, sz2, k);
    radix(&R[0], &tmp[0], &v[0]+0, sz2, k);
    int dif = 0;
    int 10 = -1, 11 = -1, 12 = -1;
    for (int i = 0; i < sz2; i++) {</pre>
        if (v[tmp[i]] != 10 or v[tmp[i]+1] != 11 or
            v[tmp[i]+2] != 12)
            10 = v[tmp[i]], 11 = v[tmp[i]+1], 12 =
                v[tmp[i]+2], dif++;
        if (tmp[i]%3 == 1) R[tmp[i]/3] = dif;
        else R[tmp[i]/3+sz] = dif;
    }
    if (dif < sz2) {</pre>
        rec(R, dif);
        for (int i = 0; i < sz2; i++) R[sa[i]] = i+1;</pre>
    } else for (int i = 0; i < sz2; i++) sa[R[i]-1] = i;</pre>
    for (int i = 0, j = 0; j < sz2; i++) if (sa[i] < sz)
       tmp[j++] = 3*sa[i];
    radix(&tmp[0], &m0[0], &v[0], sz, k);
    for (int i = 0; i < sz2; i++)</pre>
        sa[i] = sa[i] < sz ? 3*sa[i]+1 : 3*(sa[i]-sz)+2;
    int at = sz2+sz-1, p = sz-1, p2 = sz2-1;
    while (p \ge 0 \text{ and } p2 \ge 0) {
```

```
if ((sa[p2]%3==1 and cmp(v[m0[p]], v[sa[p2]],
           R[m0[p]/3],
            R[sa[p2]/3+sz])) or (sa[p2]\%3==2 and
                cmp(v[m0[p]], v[sa[p2]],
            v[m0[p]+1], v[sa[p2]+1], R[m0[p]/3+sz],
                R[sa[p2]/3+1]))
            sa[at--] = sa[p2--];
        else sa[at--] = m0[p--];
    }
    while (p >= 0) sa[at--] = m0[p--];
    if (N%3==1) for (int i = 0; i < N; i++) sa[i] =</pre>
       sa[i+1];
}
suffix_array(const string& s_) : s(s_), n(s.size()),
   sa(n+3).
        cnt(n+1), rnk(n), lcp(n-1) {
    vector < int > v(n+3);
    for (int i = 0; i < n; i++) v[i] = i;
    radix(&v[0], &rnk[0], &s[0], n, 256);
    int dif = 1;
    for (int i = 0; i < n; i++)</pre>
        v[rnk[i]] = dif += (i and s[rnk[i]] !=
           s[rnk[i-1]]);
    if (n \ge 2) rec(v, dif);
    sa.resize(n);
    for (int i = 0; i < n; i++) rnk[sa[i]] = i;</pre>
    for (int i = 0, k = 0; i < n; i++, k -= !!k) {
        if (rnk[i] == n-1) {
            k = 0;
            continue;
        }
        int j = sa[rnk[i]+1];
        while (i+k < n \text{ and } j+k < n \text{ and } s[i+k] == s[j+k])
           k++:
        lcp[rnk[i]] = k;
    }
    RMQ = rmq < int > (lcp);
}
int query(int i, int j) {
```

```
if (i == j) return n-i;
    i = rnk[i], j = rnk[j];
    return RMQ.query(min(i, j), max(i, j)-1);
}
pair < int, int > next(int L, int R, int i, char c) {
    int 1 = L, r = R+1;
    while (1 < r) {
        int m = (1+r)/2;
        if (i+sa[m] >= n \text{ or } s[i+sa[m]] < c) l = m+1;
        else r = m;
    if (1 == R+1 \text{ or } s[i+sa[1]] > c) \text{ return } \{-1, -1\};
    L = 1;
    1 = L, r = R+1;
    while (1 < r) {
        int m = (1+r)/2;
        if (i+sa[m] >= n \text{ or } s[i+sa[m]] <= c) l = m+1;
        else r = m;
    R = 1-1;
    return {L, R};
}
// quantas vezes 't' ocorre em 's' - O(|t| log n)
int count_substr(string& t) {
    int L = 0, R = n-1;
    for (int i = 0; i < t.size(); i++) {</pre>
        tie(L, R) = next(L, R, i, t[i]);
        if (L == -1) return 0;
    }
    return R-L+1;
}
// exemplo de f que resolve o problema
//
   https://codeforces.com/edu/course/2/lesson/2/5/practice/com
ll f(ll k) { return k*(k+1)/2; }
11 dfs(int L, int R, int p) { // dfs na suffix tree
   chamado em pre ordem
    int ext = L != R ? RMQ.query(L, R-1) : n - sa[L];
```

```
// Tem 'ext - p' substrings diferentes que ocorrem
           'R-L+1' vezes
        // O LCP de todas elas eh 'ext'
        ll ans = (ext-p)*f(R-L+1);
        // L eh terminal, e folha sse L == R
        if (sa[L]+ext == n) L++;
        /* se for um SA de varias strings separadas como
           s#t$u&, usar no lugar do if de cima
           (separadores < 'a', diferentes e inclusive no
        while (L \leq R && (sa[L]+ext == n || s[sa[L]+ext] \leq
           'a')) {
           L++:
        } */
        while (L <= R) {
            int idx = L != R ? RMQ.index_query(L, R-1) : -1;
            if (idx == -1 \text{ or } lcp[idx] != ext) idx = R;
            ans += dfs(L, idx, ext);
            L = idx+1;
        }
        return ans;
    }
    // sum over substrings: computa, para toda substring t
       distinta de s.
    // \sum f(# ocorrencias de t em s) - 0 (n)
    ll sos() { return dfs(0, n-1, 0); }
};
```

6.11 Aho-corasick

```
// query retorna o somatorio do numero de matches de
// todas as stringuinhas na stringona
//
// insert - O(|s| * log(SIGMA))
// build - 0(n * SIGMA), onde n = somatorio dos tamanhos das
```

```
strings
// query - 0(|s|)
// e9bb4e
namespace aho {
    map < char , int > to[MAX];
    int link[MAX], idx, term[MAX], exit[MAX], sobe[MAX];
    void insert(string& s) {
        int at = 0;
        for (char c : s) {
            auto it = to[at].find(c);
            if (it == to[at].end()) at = to[at][c] = ++idx;
            else at = it->second;
        term[at]++, sobe[at]++;
    }
#warning nao esquece de chamar build() depois de inserir
    void build() {
        queue < int > q;
        q.push(0);
        link[0] = exit[0] = -1;
        while (q.size()) {
            int i = q.front(); q.pop();
            for (auto [c, j] : to[i]) {
                int l = link[i];
                while (1 != -1 and !to[1].count(c)) 1 =
                   link[1];
                link[j] = 1 == -1 ? 0 : to[1][c];
                exit[j] = term[link[j]] ? link[j] :
                   exit[link[j]];
                if (exit[j]+1) sobe[j] += sobe[exit[j]];
                q.push(j);
            }
        }
    }
    int query(string& s) {
        int at = 0, ans = 0;
        for (char c : s){
            while (at != -1 and !to[at].count(c)) at =
               link[at];
            at = at == -1 ? 0 : to[at][c];
```

```
ans += sobe[at]:
        }
        return ans;
}
```

6.12 Suffix Array - O(n log n)

```
// kasai recebe o suffix array e calcula lcp[i],
// o lcp entre s[sa[i],...,n-1] e s[sa[i+1],..,n-1]
// Complexidades:
// suffix_array - O(n log(n))
// kasai - O(n)
// d3a6ce
vector<int> suffix_array(string s) {
    s += "$";
    int n = s.size(), N = max(n, 260);
    vector < int > sa(n), ra(n);
    for(int i = 0; i < n; i++) sa[i] = i, ra[i] = s[i];</pre>
    for (int k = 0; k < n; k ? k *= 2 : k++) {
        vector < int > nsa(sa), nra(n), cnt(N);
        for (int i = 0; i < n; i++) nsa[i] = (nsa[i]-k+n)%n,
            cnt[ra[i]]++;
        for(int i = 1; i < N; i++) cnt[i] += cnt[i-1];</pre>
        for(int i = n-1; i+1; i--) sa[--cnt[ra[nsa[i]]]] =
           nsa[i]:
        for(int i = 1, r = 0; i < n; i++) nra[sa[i]] = r +=
           ra[sa[i]] !=
            ra[sa[i-1]] or ra[(sa[i]+k)%n] !=
                ra[(sa[i-1]+k)%n];
        ra = nra;
        if (ra[sa[n-1]] == n-1) break;
    return vector < int > (sa.begin()+1, sa.end());
}
```

```
vector<int> kasai(string s, vector<int> sa) {
    int n = s.size(), k = 0;
    vector < int > ra(n), lcp(n);
    for (int i = 0; i < n; i++) ra[sa[i]] = i;</pre>
    for (int i = 0; i < n; i++, k -= !!k) {
        if (ra[i] == n-1) { k = 0; continue; }
        int j = sa[ra[i]+1];
        while (i+k < n and j+k < n and s[i+k] == s[j+k]) k++;
        lcp[ra[i]] = k;
    }
    return lcp;
}
```

6.13 Algoritmo Z

```
// Complexidades:
// z - O(|s|)
// \text{ match - } O(|s| + |p|)
// 553ece
vector<int> get_z(string s) {
    int n = s.size();
    vector<int> z(n, 0);
    int 1 = 0, r = 0;
    for (int i = 1; i < n; i++) {</pre>
        if (i \le r) z[i] = min(r - i + 1, z[i - 1]);
        while (i + z[i] < n \text{ and } s[z[i]] == s[i + z[i]])
            z[i]++:
        if (i + z[i] - 1 > r) l = i, r = i + z[i] - 1;
    }
    return z;
// quantas vezes p aparece em s
int match(string s, string p) {
    int n = s.size(), m = p.size();
```

```
vector < int > z = get_z(p + s);
int ret = 0;
for (int i = m; i < n + m; i++)
    if (z[i] >= m) ret++;

return ret;
}
```

6.14 Automato de Sufixo

```
// Automato que aceita os sufixos de uma string
// Todas as funcoes sao lineares
// c37a72
namespace sam {
    int cur, sz, len[2*MAX], link[2*MAX], acc[2*MAX];
    int nxt[2*MAX][26];
    void add(int c) {
        int at = cur;
        len[sz] = len[cur]+1, cur = sz++;
        while (at != -1 and !nxt[at][c]) nxt[at][c] = cur,
           at = link[at]:
        if (at == -1) { link[cur] = 0; return; }
        int q = nxt[at][c];
        if (len[q] == len[at]+1) { link[cur] = q; return; }
        int qq = sz++;
        len[qq] = len[at]+1, link[qq] = link[q];
        for (int i = 0; i < 26; i++) nxt[qq][i] = nxt[q][i];
        while (at != -1 and nxt[at][c] == q) nxt[at][c] =
           qq, at = link[at];
        link[cur] = link[q] = qq;
    void build(string& s) {
        cur = 0, sz = 0, len[0] = 0, link[0] = -1, sz++;
        for (auto i : s) add(i-'a');
        int at = cur;
        while (at) acc[at] = 1, at = link[at];
    }
```

```
// coisas que da pra fazer:
    11 distinct_substrings() {
        11 \text{ ans} = 0;
        for (int i = 1; i < sz; i++) ans += len[i] -
           len[link[i]];
        return ans;
    }
    string longest_common_substring(string& S, string& T) {
        build(S);
        int at = 0, 1 = 0, ans = 0, pos = -1;
        for (int i = 0; i < T.size(); i++) {</pre>
            while (at and !nxt[at][T[i]-'a']) at = link[at],
               1 = len[at];
            if (nxt[at][T[i]-'a']) at = nxt[at][T[i]-'a'],
            else at = 0, 1 = 0;
            if (1 > ans) ans = 1, pos = i;
        return T.substr(pos-ans+1, ans);
    }
    11 dp[2*MAX];
    ll paths(int i) {
        auto& x = dp[i];
        if (x) return x;
        x = 1;
        for (int j = 0; j < 26; j++) if (nxt[i][j]) x +=
           paths(nxt[i][j]);
        return x;
    }
    void kth_substring(int k, int at=0) { // k=1 : menor
       substring lexicog.
        for (int i = 0; i < 26; i++) if (k and nxt[at][i]) {
            if (paths(nxt[at][i]) >= k) {
                cout << char('a'+i);</pre>
                kth_substring(k-1, nxt[at][i]);
                return:
            k -= paths(nxt[at][i]);
    }
};
```

7 Primitivas

7.1 Aritmetica Modular

```
// O mod tem q ser primo
// e690f1
template < int p> struct mod_int {
    ll pow(ll b, ll e) {
        if (e == 0) return 1;
        ll r = pow(b*b%p, e/2);
        if (e\%2 == 1) r = (r*b)\%p;
        return r;
    }
    ll inv(ll b) { return pow(b, p-2); }
    using m = mod_int;
    int v;
    mod_int() : v(0) {}
    mod_int(ll v_) {
        if (v_ >= p || v_ <= -p) v_ %= p;</pre>
        if (v_{-} < 0) v_{-} += p;
        v = v_{:}
    }
    m& operator+=(const m &a) {
        v += a.v;
        if (v >= p) v -= p;
        return *this;
    m& operator -= (const m &a) {
        v -= a.v;
        if (v < 0) v += p;
        return *this;
    }
    m& operator*=(const m &a) {
        v = (v*ll(a.v))%p;
        return *this;
    }
    m& operator/=(const m &a) {
        v = (v*inv(a.v))%p;
        return *this;
```

```
}
    m operator-(){ return m(-v); }
    m& operator^=(ll e) {
        if (e < 0){
            v = inv(v);
            e = -e;
        v = pow(v, e\%(p-1));
        return *this;
    }
    bool operator == (const m &a) { return v == a.v; }
    bool operator!=(const m &a) { return v != a.v; }
    friend istream &operator>>(istream &in, m& a) {
        11 val; in >> val;
        a = m(val);
        return in;
    }
    friend ostream &operator << (ostream &out, m a) {</pre>
        return out << a.v;</pre>
    }
    friend m operator+(m a, m b) { return a+=b; }
    friend m operator-(m a, m b) { return a-=b; }
   friend m operator*(m a, m b) { return a*=b; }
   friend m operator/(m a, m b) { return a/=b; }
    friend m operator^(m a, ll e) { return a^=e; }
    static m rt(bool f, int n, int N){
        if (p == 998244353){
            m r(102292); // an element of order N
            int ord = (1 << 23);
            while (ord != N){
                r = r*r;
                ord /= 2;
            if (f) r = r^{-1};
            return r^(N/n);
        return -1;
   }
};
```

```
typedef mod_int<(int)1e9+7> mint;
```

7.2 Primitivas Geometricas Inteiras

```
#define sq(x) ((x)*(11)(x))
struct pt { // ponto
    int x, y;
    pt(int x_{-} = 0, int y_{-} = 0) : x(x_{-}), y(y_{-}) {}
    bool operator < (const pt p) const {</pre>
        if (x != p.x) return x < p.x;
        return y < p.y;</pre>
    }
    bool operator == (const pt p) const {
        return x == p.x and y == p.y;
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y); }
    pt operator * (const int c) const { return pt(x*c, y*c);
    11 operator * (const pt p) const { return x*(11)p.x +
       y*(11)p.y; }
    11 operator ^ (const pt p) const { return x*(11)p.y -
       y*(11)p.x; }
    friend istream& operator >> (istream& in, pt& p) {
        return in >> p.x >> p.y;
    }
}:
struct line { // reta
    pt p, q;
    line() {}
    line(pt p_, pt q_) : p(p_), q(q_) {}
    friend istream& operator >> (istream& in, line& r) {
        return in >> r.p >> r.q;
};
```

```
// PONTO & VETOR
11 dist2(pt p, pt q) { // quadrado da distancia
   return sq(p.x - q.x) + sq(p.y - q.y);
}
ll sarea2(pt p, pt q, pt r) { // 2 * area com sinal
    return (q-p)^(r-q);
}
bool col(pt p, pt q, pt r) { // se p, q e r sao colin.
    return sarea2(p, q, r) == 0;
}
bool ccw(pt p, pt q, pt r) { // se p, q, r sao ccw
    return sarea2(p, q, r) > 0;
}
int quad(pt p) { // quadrante de um ponto
    return (p.x<0)^3*(p.y<0);
}
bool compare_angle(pt p, pt q) { // retorna se ang(p) <</pre>
   ang(q)
    if (quad(p) != quad(q)) return quad(p) < quad(q);</pre>
    return ccw(q, pt(0, 0), p);
}
pt rotate90(pt p) { // rotaciona 90 graus
    return pt(-p.y, p.x);
}
// RETA
bool isinseg(pt p, line r) { // se p pertence ao seg de r
    pt a = r.p - p, b = r.q - p;
    return (a ^ b) == 0 and (a * b) <= 0;
}
bool interseg(line r, line s) { // se o seg de r intersecta
   o seg de s
    if (isinseg(r.p, s) or isinseg(r.q, s)
```

```
or isinseg(s.p, r) or isinseg(s.q, r)) return 1;
    return ccw(r.p, r.q, s.p) != ccw(r.p, r.q, s.q) and
            ccw(s.p, s.q, r.p) != ccw(s.p, s.q, r.q);
}
int segpoints(line r) { // numero de pontos inteiros no
   segmento
    return 1 + _{-gcd}(abs(r.p.x - r.q.x), abs(r.p.y - r.q.y));
}
double get_t(pt v, line r) { // retorna t tal que t*v
   pertence a reta r
    return (r.p^r.q) / (double) ((r.p-r.q)^v);
}
// POLIGONO
// quadrado da distancia entre os retangulos a e b (lados
   paralelos aos eixos)
// assume que ta representado (inferior esquerdo, superior
   direito)
11 dist2_rect(pair<pt, pt> a, pair<pt, pt> b) {
    int hor = 0, vert = 0;
    if (a.second.x < b.first.x) hor = b.first.x - a.second.x;</pre>
    else if (b.second.x < a.first.x) hor = a.first.x -</pre>
       b.second.x;
    if (a.second.y < b.first.y) vert = b.first.y -</pre>
       a.second.v;
    else if (b.second.y < a.first.y) vert = a.first.y -</pre>
       b.second.y;
    return sq(hor) + sq(vert);
}
11 polarea2(vector<pt> v) { // 2 * area do poligono
    11 \text{ ret} = 0;
    for (int i = 0; i < v.size(); i++)</pre>
        ret += sarea2(pt(0, 0), v[i], v[(i + 1) % v.size()]);
    return abs(ret);
}
// se o ponto ta dentro do poligono: retorna O se ta fora,
```

```
// 1 se ta no interior e 2 se ta na borda
int inpol(vector < pt > & v, pt p) { // O(n)
    int qt = 0;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (p == v[i]) return 2;
        int j = (i+1)%v.size();
        if (p.y == v[i].y and p.y == v[j].y) {
            if ((v[i]-p)*(v[j]-p) <= 0) return 2;</pre>
             continue:
        bool baixo = v[i].y < p.y;</pre>
        if (baixo == (v[j].y < p.y)) continue;</pre>
        auto t = (p-v[i])^(v[j]-v[i]);
        if (!t) return 2;
        if (baixo == (t > 0)) qt += baixo ? 1 : -1;
    }
    return qt != 0;
}
vector<pt> convex_hull(vector<pt> v) { // convex hull - O(n
   log(n))
    if (v.size() <= 1) return v;</pre>
    vector<pt> 1, u;
    sort(v.begin(), v.end());
    for (int i = 0; i < v.size(); i++) {</pre>
        while (l.size() > 1 \text{ and } !ccw(l[l.size() -2],
           1.back(), v[i]))
            l.pop_back();
        1.push_back(v[i]);
    }
    for (int i = v.size() - 1; i >= 0; i--) {
        while (u.size() > 1 \text{ and } !ccw(u[u.size()-2],
           u.back(), v[i]))
            u.pop_back();
        u.push_back(v[i]);
    1.pop_back(); u.pop_back();
    for (pt i : u) l.push_back(i);
    return 1;
}
11 interior_points(vector<pt> v) { // pontos inteiros dentro
```

```
de um poligono simples
   11 b = 0;
    for (int i = 0; i < v.size(); i++)</pre>
        b += segpoints(line(v[i], v[(i+1)\%v.size()])) - 1;
    return (polarea2(v) - b) / 2 + 1;
}
struct convex_pol {
    vector<pt> pol;
    convex_pol(vector<pt> v) : pol(convex_hull(v)) {}
    bool is_inside(pt p) { // se o ponto ta dentro do hull -
       O(\log(n))
        if (pol.size() == 1) return p == pol[0];
        int 1 = 1, r = pol.size();
        while (1 < r) {
            int m = (1+r)/2:
           if (ccw(p, pol[0], pol[m])) 1 = m+1;
            else r = m;
        }
        if (1 == 1) return isinseg(p, line(pol[0], pol[1]));
        if (l == pol.size()) return false;
        return !ccw(p, pol[1], pol[1-1]);
};
bool operator <(const line& a, const line& b) { //
   comparador pra reta
    // assume que as retas tem p < q
    pt v1 = a.q - a.p, v2 = b.q - b.p;
    bool b1 = compare_angle(v1, v2), b2 = compare_angle(v2,
       v1):
    if (b1 or b2) return b1;
    return ccw(a.p, a.q, b.p); // mesmo angulo
}
bool operator ==(const line& a, const line& b) {
    return !(a < b) and !(b < a);</pre>
}
// comparador pro set pra fazer sweep line com segmentos
struct cmp_sweepline {
    bool operator () (const line& a, const line& b) const {
```

7.3 Primitivas de Polinomios

```
#include <bits/stdc++.h>
using namespace std;
namespace algebra {
    const int inf = 1e9;
    const int magic = 500; // threshold for sizes to run the
       naive algo
    namespace fft {
        const int maxn = 1 << 18;</pre>
        typedef double ftype;
        typedef complex <ftype > point;
        point w[maxn];
        const ftype pi = acos(-1);
        bool initiated = 0;
        void init() {
            if(!initiated) {
                 for(int i = 1; i < maxn; i *= 2) {</pre>
                     for(int j = 0; j < i; j++) {</pre>
```

```
w[i + j] = polar(ftype(1), pi * j /
                    i);
            }
        }
        initiated = 1;
    }
}
template < typename T>
    void fft(T *in, point *out, int n, int k = 1) {
        if(n == 1) {
             *out = *in;
        } else {
            n /= 2:
            fft(in, out, n, 2 * k);
            fft(in + k, out + n, n, 2 * k);
            for(int i = 0; i < n; i++) {</pre>
                 auto t = out[i + n] * w[i + n];
                 out[i + n] = out[i] - t;
                out[i] += t;
            }
        }
    }
template < typename T>
    void mul_slow(vector<T> &a, const vector<T> &b) {
        vector <T> res(a.size() + b.size() - 1);
        for(size_t i = 0; i < a.size(); i++) {</pre>
             for(size_t j = 0; j < b.size(); j++) {</pre>
                res[i + j] += a[i] * b[j];
            }
        }
        a = res;
    }
template < typename T>
    void mul(vector<T> &a, const vector<T> &b) {
        if(min(a.size(), b.size()) < magic) {</pre>
            mul_slow(a, b);
             return:
        }
        init();
```

```
static const int shift = 15. mask = (1 <<
                shift) - 1;
            size_t n = a.size() + b.size() - 1;
            while(__builtin_popcount(n) != 1) {
                n++;
            }
            a.resize(n);
            static point A[maxn], B[maxn];
            static point C[maxn], D[maxn];
            for(size_t i = 0; i < n; i++) {</pre>
                A[i] = point(a[i] & mask, a[i] >> shift);
                if(i < b.size()) {</pre>
                     B[i] = point(b[i] & mask, b[i] >>
                        shift):
                } else {
                     B[i] = 0:
                }
            fft(A, C, n); fft(B, D, n);
            for(size_t i = 0; i < n; i++) {</pre>
                point c0 = C[i] + conj(C[(n - i) \% n]);
                point c1 = C[i] - conj(C[(n - i) \% n]);
                point d0 = D[i] + conj(D[(n - i) \% n]);
                point d1 = D[i] - conj(D[(n - i) \% n]);
                A[i] = c0 * d0 - point(0, 1) * c1 * d1;
                B[i] = c0 * d1 + d0 * c1;
            fft(A, C, n); fft(B, D, n);
            reverse(C + 1, C + n);
            reverse (D + 1, D + n);
            int t = 4 * n;
            for(size_t i = 0; i < n; i++) {</pre>
                int64_t A0 = llround(real(C[i]) / t);
                T A1 = llround(imag(D[i]) / t);
                T A2 = llround(imag(C[i]) / t);
                a[i] = A0 + (A1 << shift) + (A2 << 2 *
                    shift):
            }
            return;
template < typename T>
```

}

```
T bpow(T x. size t n) {
        return n ? n \% 2 ? x * bpow(x, n - 1) : bpow(x *
           x, n / 2) : T(1);
template < typename T>
   T bpow(T x, size_t n, T m) {
        return n ? n % 2 ? x * bpow(x, n - 1, m) % m :
           bpow(x * x % m, n / 2, m) : T(1);
   }
template < typename T>
   T gcd(const T &a, const T &b) {
        return b == T(0) ? a : gcd(b, a \% b);
   }
template < typename T>
   T nCr(T n, int r) { // runs in O(r)}
        T res(1):
        for(int i = 0; i < r; i++) {</pre>
            res *= (n - T(i));
           res /= (i + 1);
        return res;
   }
template < int m>
   struct modular {
        int64_t r;
        modular() : r(0) {}
        modular(int64_t rr) : r(rr) \{if(abs(r) >= m) r\}
           %= m; if(r < 0) r += m;}
        modular inv() const {return bpow(*this, m - 2);}
        modular operator * (const modular &t) const
           {return (r * t.r) % m;}
        modular operator / (const modular &t) const
           {return *this * t.inv();}
        modular operator += (const modular &t) {r +=
           t.r; if(r >= m) r -= m; return *this;}
        modular operator -= (const modular &t) {r -=
           t.r; if (r < 0) r += m; return *this;}
        modular operator + (const modular &t) const
           {return modular(*this) += t;}
        modular operator - (const modular &t) const
           {return modular(*this) -= t;}
```

```
modular operator *= (const modular &t) {return
           *this = *this * t;}
        modular operator /= (const modular &t) {return
           *this = *this / t;}
        bool operator == (const modular &t) const
           {return r == t.r;}
        bool operator != (const modular &t) const
           {return r != t.r;}
        operator int64_t() const {return r;}
   }:
template < int T >
    istream& operator >> (istream &in, modular <T> &x) {
        return in >> x.r:
template < typename T>
    struct poly {
        vector <T> a;
        void normalize() { // get rid of leading zeroes
            while(!a.empty() && a.back() == T(0)) {
                a.pop_back();
        }
        polv(){}
        poly(T a0) : a{a0}{normalize();}
        polv(vector<T> t) : a(t){normalize();}
        poly operator += (const poly &t) {
            a.resize(max(a.size(), t.a.size())):
            for(size_t i = 0; i < t.a.size(); i++) {</pre>
                a[i] += t.a[i];
            normalize();
            return *this;
        poly operator -= (const poly &t) {
            a.resize(max(a.size(), t.a.size()));
```

```
for(size_t i = 0; i < t.a.size(); i++) {</pre>
        a[i] -= t.a[i];
    normalize();
    return *this;
poly operator + (const poly &t) const {return
   polv(*this) += t;}
poly operator - (const poly &t) const {return
   polv(*this) -= t;}
poly mod_xk(size_t k) const { // get same
   polynomial mod x^k
   k = min(k, a.size());
    return vector<T>(begin(a), begin(a) + k);
poly mul_xk(size_t k) const { // multiply by x^k
    poly res(*this);
    res.a.insert(begin(res.a), k, 0);
    return res;
}
poly div_xk(size_t k) const { // divide by x^k,
   dropping coefficients
   k = min(k, a.size());
   return vector<T>(begin(a) + k, end(a));
poly substr(size_t l, size_t r) const { //
   return mod_xk(r).div_xk(1)
   1 = min(1, a.size());
   r = min(r, a.size());
    return vector<T>(begin(a) + 1, begin(a) + r);
poly inv(size_t n) const { // get inverse series
   mod x^n
    assert(!is zero()):
    poly ans = a[0].inv();
    size_t a = 1;
    while (a < n) {
        poly C = (ans * mod_xk(2 * a)).substr(a,
           2 * a):
        ans -= (ans * C).mod_xk(a).mul_xk(a);
        a *= 2:
```

```
}
    return ans.mod_xk(n);
poly operator *= (const poly &t) {fft::mul(a,
   t.a); normalize(); return *this;}
polv operator * (const polv &t) const {return
   polv(*this) *= t;}
poly reverse(size_t n, bool rev = 0) const { //
   reverses and leaves only n terms
    poly res(*this);
    if(rev) { // If rev = 1 then tail goes to
        res.a.resize(max(n, res.a.size())):
    std::reverse(res.a.begin(), res.a.end());
    return res.mod_xk(n);
}
pair < poly , poly > divmod_slow(const poly &b)
   const { // when divisor or quotient is small
    vector <T> A(a);
    vector<T> res:
    while(A.size() >= b.a.size()) {
        res.push_back(A.back() / b.a.back());
        if(res.back() != T(0)) {
            for(size_t i = 0; i < b.a.size();</pre>
               i++) {
                A[A.size() - i - 1] -=
                   res.back() * b.a[b.a.size() -
                   i - 1];
            }
        A.pop_back();
    std::reverse(begin(res), end(res));
    return {res, A};
}
pair < poly, poly > divmod(const poly &b) const {
   // returns quotiend and remainder of a mod b
```

```
if(deg() < b.deg()) {
        return {poly{0}, *this};
    int d = deg() - b.deg();
    if(min(d, b.deg()) < magic) {</pre>
        return divmod_slow(b);
    poly D = (reverse(d + 1) * b.reverse(d +
       1).inv(d + 1)).mod_xk(d + 1).reverse(d +
       1, 1);
    return {D, *this - D * b};
}
poly operator / (const poly &t) const {return
   divmod(t).first;}
poly operator % (const poly &t) const {return
   divmod(t).second;}
poly operator /= (const poly &t) {return *this =
   divmod(t).first;}
poly operator %= (const poly &t) {return *this =
   divmod(t).second;}
poly operator *= (const T &x) {
    for(auto &it: a) {
        it *= x;
    normalize();
    return *this;
poly operator /= (const T &x) {
    for(auto &it: a) {
        it /= x;
    normalize();
    return *this;
poly operator * (const T &x) const {return
   poly(*this) *= x;}
poly operator / (const T &x) const {return
   poly(*this) /= x;}
void print() const {
    for(auto it: a) {
```

```
cout << it << ', ';
    cout << endl;</pre>
T eval(T x) const { // evaluates in single point
    T res(0);
    for(int i = int(a.size()) - 1; i >= 0; i--) {
        res *= x;
        res += a[i];
    return res;
}
T& lead() { // leading coefficient
    return a.back();
}
int deg() const { // degree
    return a.empty() ? -inf : a.size() - 1;
bool is_zero() const { // is polynomial zero
    return a.empty();
T operator [](int idx) const {
    return idx >= (int)a.size() || idx < 0 ?</pre>
       T(0) : a[idx];
}
T& coef(size_t idx) { // mutable reference at
   coefficient
    return a[idx];
bool operator == (const poly &t) const {return a
   == t.a:}
bool operator != (const poly &t) const {return a
   != t.a:}
poly deriv() { // calculate derivative
    vector <T> res;
    for(int i = 1; i <= deg(); i++) {</pre>
        res.push_back(T(i) * a[i]);
    }
```

```
return res:
poly integr() { // calculate integral with C = 0
    vector < T > res = {0};
    for(int i = 0; i <= deg(); i++) {</pre>
        res.push_back(a[i] / T(i + 1));
    return res;
}
size_t leading_xk() const { // Let p(x) = x^k *
   t(x), return k
    if(is_zero()) {
        return inf;
    int res = 0;
    while (a[res] == T(0)) {
        res++;
    }
    return res;
poly log(size_t n) { // calculate log p(x) mod
   x^n
    assert(a[0] == T(1));
    return (deriv().mod_xk(n) *
       inv(n)).integr().mod_xk(n);
poly exp(size_t n) { // calculate exp p(x) mod
   x^n
    if(is_zero()) {
        return T(1);
    assert(a[0] == T(0));
    poly ans = T(1);
    size t a = 1:
    while (a < n) {
        poly C = ans.log(2 * a).div_xk(a) -
           substr(a, 2 * a);
        ans -= (ans * C).mod_xk(a).mul_xk(a);
        a *= 2;
    return ans.mod_xk(n);
```

```
}
poly pow_slow(size_t k, size_t n) { // if k is
    return k ? k % 2 ? (*this * pow_slow(k - 1,
       n)).mod_xk(n): (*this *
       *this).mod_xk(n).pow_slow(k / 2, n):
       T(1);
}
poly pow(size_t k, size_t n) { // calculate
   p^k(n) mod x^n
    if(is_zero()) {
        return *this;
    }
    if(k < magic) {</pre>
        return pow_slow(k, n);
    int i = leading_xk();
    T j = a[i];
    poly t = div_xk(i) / j;
    return bpow(j, k) * (t.log(n) *
       T(k) .exp(n).mul_xk(i * k).mod_xk(n);
poly mulx(T x) { // component-wise
   multiplication with x^k
    T cur = 1;
    polv res(*this);
    for(int i = 0; i <= deg(); i++) {</pre>
        res.coef(i) *= cur;
        cur *= x;
    return res;
poly mulx_sq(T x) { // component-wise
   multiplication with x^{k^2}
    T cur = x;
    T \text{ total} = 1;
    T xx = x * x;
    poly res(*this);
    for(int i = 0; i <= deg(); i++) {</pre>
        res.coef(i) *= total;
        total *= cur;
        cur *= xx;
```

```
}
    return res;
vector<T> chirpz_even(T z, int n) { // P(1),
   P(z^2), P(z^4), ..., P(z^2(n-1))
   int m = deg();
    if(is_zero()) {
        return vector <T>(n, 0);
    }
    vector < T > vv(m + n);
    T zi = z.inv();
    T zz = zi * zi;
    T cur = zi:
    T \text{ total} = 1;
    for (int i = 0; i \le max(n - 1, m); i++) {
        if(i \le m) \{vv[m - i] = total:\}
        if(i < n) {vv[m + i] = total;}</pre>
        total *= cur;
        cur *= zz;
    poly w = (mulx_sq(z) * vv).substr(m, m +
       n).mulx_sq(z);
    vector <T> res(n);
    for(int i = 0; i < n; i++) {</pre>
        res[i] = w[i];
    }
    return res;
vector<T> chirpz(T z, int n) { // P(1), P(z),
   P(z^2), ..., P(z^{(n-1)})
    auto even = chirpz_even(z, (n + 1) / 2);
    auto odd = mulx(z).chirpz_even(z, n / 2);
    vector < T > ans(n);
    for(int i = 0; i < n / 2; i++) {</pre>
        ans [2 * i] = even[i]:
        ans [2 * i + 1] = odd[i];
    }
    if(n % 2 == 1) {
        ans [n - 1] = even.back();
    return ans;
}
```

```
template < typename iter >
    vector<T> eval(vector<poly> &tree, int v,
       iter 1, iter r) { // auxiliary evaluation
       function
       if(r - 1 == 1) {
            return {eval(*1)};
        } else {
            auto m = 1 + (r - 1) / 2;
            auto A = (*this \% tree[2 *
               v]).eval(tree, 2 * v, 1, m);
            auto B = (*this \% tree[2 * v +
               1]).eval(tree, 2 * v + 1, m, r);
            A.insert(end(A), begin(B), end(B));
            return A:
        }
   }
vector<T> eval(vector<T> x) { // evaluate
   polynomial in (x1, ..., xn)
   int n = x.size();
   if(is_zero()) {
        return vector <T>(n, T(0));
   vector < poly > tree(4 * n);
    build(tree, 1, begin(x), end(x));
   return eval(tree, 1, begin(x), end(x));
template < typename iter >
    poly inter(vector <poly> &tree, int v, iter
       1, iter r, iter ly, iter ry) { //
       auxiliary interpolation function
       if(r - 1 == 1) {
            return {*ly / a[0]};
       } else {
            auto m = 1 + (r - 1) / 2:
            auto my = ly + (ry - ly) / 2;
            auto A = (*this \% tree[2 *
               v]).inter(tree, 2 * v, 1, m, ly,
               mv):
            auto B = (*this \% tree[2 * v +
               1]).inter(tree, 2 * v + 1, m, r,
               mv, rv);
            return A * tree[2 * v + 1] + B *
```

```
tree[2 * v]:
                }
             }
    };
template < typename T>
    poly<T> operator * (const T& a, const poly<T>& b) {
        return b * a;
    }
template < typename T>
    poly<T> xk(int k) { // return x^k
        return poly<T>{1}.mul_xk(k);
    }
template < typename T>
    T resultant(poly<T> a, poly<T> b) { // computes
       resultant of a and b
        if(b.is zero()) {
            return 0;
        } else if(b.deg() == 0) {
            return bpow(b.lead(), a.deg());
        } else {
            int pw = a.deg();
            a \%= b;
            pw -= a.deg();
            T \text{ mul} = bpow(b.lead(), pw) * T((b.deg() &
                a.deg() & 1) ? -1 : 1);
            T ans = resultant(b, a);
            return ans * mul;
        }
template < typename iter >
    poly<typename iter::value_type> kmul(iter L, iter R)
       \{ // \text{ computes } (x-a1)(x-a2)...(x-an) \text{ without } 
       building tree
        if (R - L == 1) {
             return vector < typename
                iter::value_type>{-*L, 1};
        } else {
             iter M = L + (R - L) / 2;
             return kmul(L, M) * kmul(M, R);
        }
```

```
template < typename T, typename iter >
        poly<T> build(vector<poly<T>> &res, int v, iter L,
           iter R) { // builds evaluation tree for
           (x-a1)(x-a2)...(x-an)
            if(R - L == 1) {
                return res[v] = vector<T>{-*L, 1};
                iter M = L + (R - L) / 2;
                return res[v] = build(res, 2 * v, L, M) *
                    build(res, 2 * v + 1, M, R);
            }
    template < typename T>
        poly<T> inter(vector<T> x, vector<T> y) { //
           interpolates minimum polynomial from (xi, yi)
           pairs
            int n = x.size();
            vector<poly<T>> tree(4 * n);
            return build(tree, 1, begin(x),
                end(x)).deriv().inter(tree, 1, begin(x),
                end(x), begin(y), end(y));
        }
};
using namespace algebra;
const int mod = 1e9 + 7;
typedef modular < mod > base;
typedef poly<base> polyn;
using namespace algebra;
signed main() {
    ios::sync_with_stdio(0);
    cin.tie(0);
    int n = 100000;
    polyn a;
    vector < base > x;
    for(int i = 0; i <= n; i++) {</pre>
        a.a.push_back(1 + rand() % 100);
        x.push_back(1 + rand() \% (2 * n));
```

```
}
sort(begin(x), end(x));
x.erase(unique(begin(x), end(x)), end(x));
auto b = a.eval(x);
cout << clock() / double(CLOCKS_PER_SEC) << endl;
auto c = inter(x, b);
polyn md = kmul(begin(x), end(x));
cout << clock() / double(CLOCKS_PER_SEC) << endl;
assert(c == a % md);
return 0;
}
</pre>
```

7.4 Primitivas de matriz - exponenciacao

```
#define MODULAR false
template < typename T> struct matrix : vector < T>> {
    int n, m;
    void print() {
        for (int i = 0; i < n; i++) {</pre>
             for (int j = 0; j < m; j++) cout <<</pre>
                (*this)[i][j] << " ";
             cout << endl;</pre>
        }
    }
    matrix(int n_, int m_, bool ident = false) :
             vector < vector < T >> (n_, vector < T > (m_, 0)), n(n_),
        if (ident) {
             assert(n == m);
             for (int i = 0; i < n; i++) (*this)[i][i] = 1;</pre>
        }
    matrix(const vector < vector < T >> & c) :
       vector < vector < T >> (c),
        n(c.size()), m(c[0].size()) {}
    matrix(const initializer_list<initializer_list<T>>& c) {
        vector < vector < T >> val;
        for (auto& i : c) val.push_back(i);
```

```
*this = matrix(val);
    }
    matrix<T> operator*(matrix<T>& r) {
        assert(m == r.n);
        matrix<T> M(n, r.m);
        for (int i = 0; i < n; i++) for (int k = 0; k < m;
            for (int j = 0; j < r.m; j++) {
                T \text{ add} = (*this)[i][k] * r[k][j];
#if MODULAR
#warning Usar matrix<11> e soh colocar valores em [0, MOD)
   na matriz!
                M[i][j] += add%MOD;
                if (M[i][j] >= MOD) M[i][j] -= MOD;
#else
                M[i][i] += add;
#endif
            }
        return M;
    }
    matrix<T> operator^(ll e){
        matrix<T> M(n, n, true), at = *this;
        while (e) {
            if (e\&1) M = M*at;
            e >>= 1;
            at = at*at;
        return M;
    }
    void apply_transform(matrix M, ll e){
        auto& v = *this;
        while (e) {
            if (e\&1) v = M*v;
            e >>= 1:
            M = M * M:
        }
    }
};
```

7.5 Big Integer

```
// Complexidades: (para n digitos)
// Soma, subtracao, comparacao - O(n)
// Multiplicacao - O(n log(n))
// Divisao, resto - O(n^2)
struct bint {
    static const int BASE = 1e9;
    vector<int> v;
    bool neg;
    bint() : neg(0) {}
    bint(int val) : bint() { *this = val; }
    bint(long long val) : bint() { *this = val; }
    void trim() {
        while (v.size() and v.back() == 0) v.pop_back();
        if (!v.size()) neg = 0;
    }
    // converter de/para string | cin/cout
    bint(const char* s) : bint() { from_string(string(s)); }
    bint(const string& s) : bint() { from_string(s); }
    void from_string(const string& s) {
        v.clear(), neg = 0;
        int ini = 0;
        while (ini < s.size() and (s[ini] == '-' or s[ini]
           == '+' or s[ini] == '0'))
            if (s[ini++] == '-') neg = 1;
        for (int i = s.size()-1; i >= ini; i -= 9) {
            int at = 0;
            for (int j = max(ini, i - 8); j \le i; j++) at =
               10*at + (s[j]-'0');
            v.push_back(at);
        if (!v.size()) neg = 0;
    string to_string() const {
        if (!v.size()) return "0";
        string ret;
        if (neg) ret += '-';
```

```
for (int i = v.size()-1; i >= 0; i--) {
        string at = ::to_string(v[i]);
        int add = 9 - at.size();
        if (i+1 < v.size()) for (int j = 0; j < add;</pre>
           j++) ret += '0';
        ret += at;
    return ret;
}
friend istream& operator>>(istream& in, bint& val) {
    string s; in >> s;
    val = s;
    return in;
friend ostream& operator << (ostream& out, const bint&</pre>
    string s = val.to_string();
    out << s;
    return out;
}
// operators
friend bint abs(bint val) {
    val.neg = 0;
    return val;
}
friend bint operator - (bint val) {
    if (val != 0) val.neg ^= 1;
    return val;
}
bint& operator=(const bint& val) { v = val.v, neg =
   val.neg; return *this; }
bint& operator=(long long val) {
    v.clear(), neg = 0;
    if (val < 0) neg = 1, val *= -1;</pre>
    for (; val; val /= BASE) v.push_back(val % BASE);
    return *this;
}
int cmp(const bint& r) const { // menor: -1 | igual: 0 |
   maior: 1
    if (neg != r.neg) return neg ? -1 : 1;
    if (v.size() != r.v.size()) {
```

```
int ret = v.size() < r.v.size() ? -1 : 1;</pre>
        return neg ? -ret : ret;
    for (int i = int(v.size())-1; i >= 0; i--) {
        if (v[i] != r.v[i]) {
            int ret = v[i] < r.v[i] ? -1 : 1;</pre>
            return neg ? -ret : ret;
    }
    return 0;
friend bool operator < (const bint& 1, const bint& r) {
   return 1.cmp(r) == -1; }
friend bool operator>(const bint& 1, const bint& r) {
   return 1.cmp(r) == 1; }
friend bool operator <= (const bint& 1, const bint& r) {</pre>
   return 1.cmp(r) <= 0; }</pre>
friend bool operator >= (const bint& 1, const bint& r) {
   return 1.cmp(r) >= 0;}
friend bool operator == (const bint& 1, const bint& r) {
   return 1.cmp(r) == 0; }
friend bool operator!=(const bint& 1, const bint& r) {
   return 1.cmp(r) != 0; }
bint& operator +=(const bint& r) {
    if (!r.v.size()) return *this;
    if (neg != r.neg) return *this -= -r;
    for (int i = 0, c = 0; i < r.v.size() or c; i++) {</pre>
       if (i == v.size()) v.push_back(0);
        v[i] += c + (i < r.v.size() ? r.v[i] : 0);
        if ((c = v[i] >= BASE)) v[i] -= BASE;
    return *this;
friend bint operator+(bint a, const bint& b) { return a
   += b: }
bint& operator -=(const bint& r) {
    if (!r.v.size()) return *this;
    if (neg != r.neg) return *this += -r;
    if ((!neg and *this < r) or (neg and r < *this)) {
        *this = r - *this;
        neg ^= 1;
```

```
return *this;
    for (int i = 0, c = 0; i < r.v.size() or c; i++) {
        v[i] = c + (i < r.v.size() ? r.v[i] : 0);
        if ((c = v[i] < 0)) v[i] += BASE;</pre>
    trim();
    return *this;
}
friend bint operator-(bint a, const bint& b) { return a
   -= b; }
// operators de * / %
bint& operator *=(int val) {
    if (val < 0) val *= -1, neg ^= 1;</pre>
    for (int i = 0, c = 0; i < v.size() or c; i++) {</pre>
        if (i == v.size()) v.push_back(0);
        long long at = (long long) v[i] * val + c;
        v[i] = at % BASE;
        c = at / BASE;
    }
    trim();
    return *this;
}
friend bint operator *(bint a, int b) { return a *= b; }
friend bint operator *(int a, bint b) { return b *= a; }
using cplx = complex < double >;
void fft(vector<cplx>& a, bool f, int N, vector<int>&
   rev) const {
    for (int i = 0; i < N; i++) if (i < rev[i])</pre>
       swap(a[i], a[rev[i]]);
    vector < cplx > roots(N);
    for (int n = 2; n <= N; n *= 2) {</pre>
        const static double PI = acos(-1);
        for (int i = 0; i < n/2; i++) {</pre>
            double alpha = (2*PI*i)/n;
            if (f) alpha = -alpha;
            roots[i] = cplx(cos(alpha), sin(alpha));
        for (int pos = 0; pos < N; pos += n)</pre>
            for (int l = pos, r = pos+n/2, m = 0; m <
                n/2; 1++, r++, m++) {
```

```
auto t = roots[m]*a[r]:
                 a[r] = a[1] - t;
                 a[1] = a[1] + t;
            }
    }
    if (!f) return;
    auto invN = cplx(1)/cplx(N);
    for (int i = 0; i < N; i++) a[i] *= invN;</pre>
}
vector<long long> convolution(const vector<int>& a,
   const vector < int > & b) const {
    vector < cplx > l(a.begin(), a.end()), r(b.begin(),
       b.end());
    int ln = l.size(), rn = r.size(), N = ln+rn+1, n =
       1, \log_n = 0;
    while (n \le N) n \le 1, \log_n + 1;
    vector < int > rev(n);
    for (int i = 0; i < n; i++) {</pre>
        rev[i] = 0;
        for (int j = 0; j < log_n; j++) if (i >> j & 1)
            rev[i] = 1 << (log_n-1-j);
    }
    l.resize(n), r.resize(n);
    fft(1, false, n, rev), fft(r, false, n, rev);
    for (int i = 0; i < n; i++) l[i] *= r[i];</pre>
    fft(1, true, n, rev);
    vector<long long> ret;
    for (auto& i : 1) ret.push_back(round(i.real()));
    return ret;
vector < int > convert_base (const vector < int > & a, int from,
   int to) const {
    static vector < long long > pot(10, 1);
    if (pot[1] == 1) for (int i = 1; i < 10; i++) pot[i]
       = 10*pot[i-1];
    vector<int> ret;
    long long at = 0;
    int digits = 0;
    for (int i : a) {
        at += i * pot[digits];
        digits += from;
        while (digits >= to) {
```

```
ret.push_back(at % pot[to]);
            at /= pot[to];
            digits -= to;
        }
    }
    ret.push_back(at);
    while (ret.size() and ret.back() == 0)
       ret.pop_back();
    return ret;
}
bint operator*(const bint& r) const { // O(n log(n))
    ret.neg = neg ^ r.neg;
    auto conv = convolution(convert_base(v, 9, 4),
       convert_base(r.v, 9, 4));
    long long c = 0;
    for (auto i : conv) {
        long long at = i+c;
        ret.v.push_back(at % 10000);
        c = at / 10000;
    }
    for (; c; c /= 10000) ret.v.push_back(c%10000);
    ret.v = convert_base(ret.v, 4, 9);
    if (!ret.v.size()) ret.neg = 0;
    return ret;
}
bint& operator*=(const bint& r) { return *this = *this *
   r; };
bint& operator/=(int val) {
    if (val < 0) neg ^{-} 1, val *= -1;
    for (int i = int(v.size())-1, c = 0; i >= 0; i--) {
        long long at = v[i] + c * (long long) BASE;
        v[i] = at / val;
        c = at % val;
    }
    trim();
    return *this;
friend bint operator/(bint a, int b) { return a /= b; }
int operator %=(int val) {
    if (val < 0) val *= -1;</pre>
    long long at = 0;
```

```
for (int i = int(v.size())-1; i >= 0; i--)
        at = (BASE * at + v[i]) \% val;
    if (neg) at *= -1;
    return at;
}
friend int operator%(bint a, int b) { return a %= b; }
friend pair <bint, bint > divmod(const bint& a_, const
   bint b_{-} { // O(n^2)
    if (a_ == 0) return {0, 0};
    int norm = BASE / (b_.v.back() + 1);
    bint a = abs(a_) * norm;
    bint b = abs(b_) * norm;
    bint q, r;
    for (int i = a.v.size() - 1; i >= 0; i--) {
        r *= BASE, r += a.v[i];
        long long upper = b.v.size() < r.v.size() ?</pre>
           r.v[b.v.size()] : 0;
        int lower = b.v.size() - 1 < r.v.size() ?</pre>
           r.v[b.v.size() - 1] : 0;
        int d = (upper * BASE + lower) / b.v.back();
        r \rightarrow b*d;
        while (r < 0) r += b, d--; // roda 0(1) vezes
        q.v.push_back(d);
    reverse(q.v.begin(), q.v.end());
    q.neg = a_.neg ^ b_.neg;
    r.neg = a_.neg;
    q.trim(), r.trim();
    return {q, r / norm};
bint operator/(const bint& val) { return divmod(*this,
   val).first: }
bint& operator/=(const bint& val) { return *this = *this
   / val: }
bint operator%(const bint& val) { return divmod(*this,
   val).second: }
bint& operator%=(const bint& val) { return *this = *this
   % val; }
```

};

7.6 Complex

```
struct cplx{
    double r, i;
    cplx(complex < double > c):r(c.real()), i(c.imag()){}
    cplx() : r(0), i(0){}
    cplx(double r_{-}, double i_{-} = 0):r(r_{-}), i(i_{-})
    double abs(){ return hypot(r, i); }
    double abs2(){ return r*r + i*i; }
    cplx inv() { return cplx(r/abs2(), i/abs2()); }
    cplx& operator+=(cplx a){
        r += a.r; i += a.i;
        return *this;
    }
    cplx& operator -=(cplx a){
        r -= a.r; i -= a.i;
        return *this;
    }
    cplx& operator*=(cplx a){
        double r_{-} = r*a.r - i*a.i;
        double i_ = r*a.i + i*a.r;
        r = r_{-};
        i = i_{-};
        return *this;
    }
    cplx conj(){
        return cplx(r, -i);
    cplx& operator/=(cplx a){
        auto a_ = a.inv();
        return (*this)*=a_;
    }
    cplx operator-() { return cplx(-r, -i); }
    cplx& operator = (double e){
        return *this = pow(complex < double > (r, i), e);
    }
    friend ostream &operator << (ostream &out, cplx a){</pre>
        return out << a.r << " + " << a.i << "i";
    friend cplx operator+(cplx a, cplx b){ return a+=b; }
    friend cplx operator-(cplx a, cplx b){ return a-=b; }
```

```
friend cplx operator*(cplx a, cplx b){ return a*=b; }
friend cplx operator/(cplx a, cplx b){ return a/=b; }
friend cplx operator^(cplx a, double e){ return a^=e; }

//fft
static int fft_len(int N){
   int n = 1, log_n = 0;
   while (n <= N) { n <<= 1; log_n++; }
   return log_n;
}
static cplx rt(bool f, int n, int N){
   const static double PI = acos(-1);
   double alpha = (2*PI)/n;
   if (f) alpha = -alpha;
   return cplx(cos(alpha), sin(alpha));
}
};</pre>
```

7.7 Primitivas de fração

```
// Funciona com o Big Int
// a626d1
template < typename T = int > struct frac {
    T num, den;
    template < class U > frac(U num_ = 0, U den_ = 1) :
       num(num_), den(den_) {
        assert(den != 0);
        if (den < 0) num *= -1, den *= -1;
        T g = gcd(abs(num), den);
        num \neq g, den \neq g;
    }
    friend bool operator < (const frac& 1, const frac& r) {</pre>
        return l.num * r.den < r.num * l.den;</pre>
    friend frac operator+(const frac& 1, const frac& r) {
        return {1.num*r.den + 1.den*r.num, 1.den*r.den};
    friend frac operator-(const frac& 1, const frac& r) {
```

```
return {l.num*r.den - l.den*r.num, l.den*r.den};
}
friend frac operator*(const frac& l, const frac& r) {
    return {l.num*r.num, l.den*r.den};
}
friend frac operator/(const frac& l, const frac& r) {
    return {l.num*r.den, l.den*r.num};
}
friend ostream& operator<<(ostream& out, frac f) {
    out << f.num << '/' << f.den;
    return out;
}
};</pre>
```

7.8 Primitivas Geometricas

```
typedef double ld;
const ld DINF = 1e18;
const ld pi = acos(-1.0);
const ld eps = 1e-9;
#define sq(x) ((x)*(x))
bool eq(ld a, ld b) {
    return abs(a - b) <= eps;</pre>
}
struct pt { // ponto
    ld x, y;
    pt(1d x_{-} = 0, 1d y_{-} = 0) : x(x_{-}), y(y_{-}) {}
    bool operator < (const pt p) const {</pre>
        if (!eq(x, p.x)) return x < p.x;
        if (!eq(y, p.y)) return y < p.y;</pre>
        return 0;
    }
    bool operator == (const pt p) const {
        return eq(x, p.x) and eq(y, p.y);
    pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y); }
```

```
pt operator - (const pt p) const { return pt(x-p.x,
       { ; (v.q-v
    pt operator * (const ld c) const { return pt(x*c , y*c
    pt operator / (const ld c) const { return pt(x/c , y/c
       ): }
    ld operator * (const pt p) const { return x*p.x + y*p.y;
    ld operator ^ (const pt p) const { return x*p.y - y*p.x;
    friend istream& operator >> (istream& in, pt& p) {
        return in >> p.x >> p.y;
    }
};
struct line { // reta
    pt p, q;
    line() {}
    line(pt p_, pt q_) : p(p_), q(q_) {}
    friend istream& operator >> (istream& in, line& r) {
        return in >> r.p >> r.q;
};
// PONTO & VETOR
ld dist(pt p, pt q) { // distancia
    return hypot(p.y - q.y, p.x - q.x);
}
ld dist2(pt p, pt q) { // quadrado da distancia
    return sq(p.x - q.x) + sq(p.y - q.y);
}
ld norm(pt v) { // norma do vetor
    return dist(pt(0, 0), v);
}
ld angle(pt v) { // angulo do vetor com o eixo x
    ld ang = atan2(v.v, v.x);
    if (ang < 0) ang += 2*pi;</pre>
    return ang;
```

```
}
ld sarea(pt p, pt q, pt r) { // area com sinal
    return ((q-p)^(r-q))/2;
}
bool col(pt p, pt q, pt r) { // se p, q e r sao colin.
    return eq(sarea(p, q, r), 0);
}
bool ccw(pt p, pt q, pt r) { // se p, q, r sao ccw
    return sarea(p, q, r) > eps;
}
pt rotate(pt p, ld th) { // rotaciona o ponto th radianos
    return pt(p.x * cos(th) - p.y * sin(th),
            p.x * sin(th) + p.y * cos(th));
}
pt rotate90(pt p) { // rotaciona 90 graus
    return pt(-p.y, p.x);
}
// RETA
bool isvert(line r) { // se r eh vertical
    return eq(r.p.x, r.q.x);
bool isinseg(pt p, line r) { // se p pertence ao seg de r
    pt a = r.p - p, b = r.q - p;
    return eq((a \hat{b}), 0) and (a * b) < eps;
}
ld get_t(pt v, line r) { // retorna t tal que t*v pertence a
    return (r.p^r.q) / ((r.p-r.q)^v);
}
pt proj(pt p, line r) { // projecao do ponto p na reta r
   if (r.p == r.q) return r.p;
    r.q = r.q - r.p; p = p - r.p;
```

```
pt proj = r.q * ((p*r.q) / (r.q*r.q));
    return proj + r.p;
}
pt inter(line r, line s) { // r inter s
    if (eq((r.p - r.q) ^ (s.p - s.q), 0)) return pt(DINF,
    r.q = r.q - r.p, s.p = s.p - r.p, s.q = s.q - r.p;
    return r.q * get_t(r.q, s) + r.p;
}
bool interseg(line r, line s) { // se o seg de r intersecta
   o seg de s
    if (isinseg(r.p, s) or isinseg(r.q, s)
        or isinseg(s.p, r) or isinseg(s.q, r)) return 1;
    return ccw(r.p, r.q, s.p) != ccw(r.p, r.q, s.q) and
            ccw(s.p, s.q, r.p) != ccw(s.p, s.q, r.q);
}
ld disttoline(pt p, line r) { // distancia do ponto a reta
    return 2 * abs(sarea(p, r.p, r.q)) / dist(r.p, r.q);
}
ld disttoseg(pt p, line r) { // distancia do ponto ao seg
    if ((r.q - r.p)*(p - r.p) < 0) return dist(r.p, p);
    if ((r.p - r.q)*(p - r.q) < 0) return dist(r.q, p);
    return disttoline(p, r);
}
ld distseg(line a, line b) { // distancia entre seg
    if (interseg(a, b)) return 0;
    ld ret = DINF:
    ret = min(ret, disttoseg(a.p, b));
    ret = min(ret, disttoseg(a.q, b));
    ret = min(ret, disttoseg(b.p, a));
    ret = min(ret, disttoseg(b.q, a));
    return ret;
}
```

```
// POLIGONO
// distancia entre os retangulos a e b (lados paralelos aos
   eixos)
// assume que ta representado (inferior esquerdo, superior
   direito)
ld dist_rect(pair<pt, pt> a, pair<pt, pt> b) {
    ld hor = 0, vert = 0;
    if (a.second.x < b.first.x) hor = b.first.x - a.second.x;</pre>
    else if (b.second.x < a.first.x) hor = a.first.x -
       b.second.x:
    if (a.second.y < b.first.y) vert = b.first.y -</pre>
       a.second.y;
    else if (b.second.y < a.first.y) vert = a.first.y -</pre>
       b.second.v:
    return dist(pt(0, 0), pt(hor, vert));
}
ld polarea(vector<pt> v) { // area do poligono
    1d ret = 0;
    for (int i = 0; i < v.size(); i++)</pre>
        ret += sarea(pt(0, 0), v[i], v[(i + 1) % v.size()]);
    return abs(ret):
}
// se o ponto ta dentro do poligono: retorna O se ta fora,
// 1 se ta no interior e 2 se ta na borda
int inpol(vector<pt>& v, pt p) { // O(n)
    int qt = 0;
    for (int i = 0; i < v.size(); i++) {</pre>
        if (p == v[i]) return 2;
        int j = (i+1)%v.size();
        if (eq(p.y, v[i].y) and eq(p.y, v[j].y)) {
            if ((v[i]-p)*(v[j]-p) < eps) return 2;
            continue:
        bool baixo = v[i].y+eps < p.y;</pre>
        if (baixo == (v[j].y+eps < p.y)) continue;</pre>
        auto t = (p-v[i])^(v[j]-v[i]);
        if (eq(t, 0)) return 2;
        if (baixo == (t > eps)) qt += baixo ? 1 : -1;
    }
```

```
return qt != 0;
}
bool interpol(vector<pt> v1, vector<pt> v2) { // se dois
   poligonos se intersectam - O(n*m)
    int n = v1.size(), m = v2.size();
    for (int i = 0; i < n; i++) if (inpol(v2, v1[i])) return</pre>
    for (int i = 0; i < n; i++) if (inpol(v1, v2[i])) return
       1:
    for (int i = 0; i < n; i++) for (int j = 0; j < m; j++)
        if (interseg(line(v1[i], v1[(i+1)%n]), line(v2[j],
           v2[(j+1)%m]))) return 1;
    return 0:
}
ld distpol(vector<pt> v1, vector<pt> v2) { // distancia
   entre poligonos
    if (interpol(v1, v2)) return 0;
    ld ret = DINF;
    for (int i = 0; i < v1.size(); i++) for (int j = 0; j <
       v2.size(); j++)
        ret = min(ret, distseg(line(v1[i], v1[(i + 1) %
           v1.size()]),
                    line(v2[j], v2[(j + 1) % v2.size()])));
    return ret;
}
vector<pt> convex_hull(vector<pt> v) { // convex hull - O(n
   log(n)
    if (v.size() <= 1) return v;</pre>
    vector<pt> 1, u;
    sort(v.begin(), v.end());
    for (int i = 0; i < v.size(); i++) {</pre>
        while (l.size() > 1 and !ccw(l[l.size()-2],
           1.back(), v[i]))
            1.pop_back();
        l.push_back(v[i]);
    }
    for (int i = v.size() - 1; i >= 0; i--) {
```

```
while (u.size() > 1 \text{ and } !ccw(u[u.size()-2],
           u.back(), v[i]))
            u.pop_back();
        u.push_back(v[i]);
    }
    1.pop_back(); u.pop_back();
    for (pt i : u) l.push_back(i);
    return 1;
}
struct convex_pol {
    vector<pt> pol;
    convex_pol(vector<pt> v) : pol(convex_hull(v)) {}
    bool is_inside(pt p) { // se o ponto ta dentro do hull -
       O(log(n))
        if (pol.size() == 1) return p == pol[0];
        int 1 = 1, r = pol.size();
        while (1 < r) {
            int m = (1+r)/2;
            if (ccw(p, pol[0], pol[m])) l = m+1;
            else r = m;
        if (1 == 1) return isinseg(p, line(pol[0], pol[1]));
        if (1 == pol.size()) return false;
        return !ccw(p, pol[1], pol[1-1]);
   }
};
// CIRCUNFERENCIA
pt getcenter(pt a, pt b, pt c) { // centro da circunf dado 3
   pontos
    b = (a + b) / 2:
    c = (a + c) / 2;
   return inter(line(b, b + rotate90(a - b)),
            line(c, c + rotate90(a - c)));
}
vector<pt> circ_line_inter(pt a, pt b, pt c, ld r) { //
   intersecao da circunf (c, r) e reta ab
    vector<pt> ret;
```

```
b = b-a, a = a-c:
    1d A = b*b;
    1d B = a*b;
    1d C = a*a - r*r;
    1d D = B*B - A*C;
   if (D < -eps) return ret;</pre>
    ret.push_back(c+a+b*(-B+sqrt(D+eps))/A);
    if (D > eps) ret.push_back(c+a+b*(-B-sqrt(D))/A);
    return ret;
}
vector<pt> circ_inter(pt a, pt b, ld r, ld R) { //
   intersecao da circunf (a, r) e (b, R)
    vector<pt> ret;
    1d d = dist(a, b);
   if (d > r+R or d+min(r, R) < max(r, R)) return ret;</pre>
    1d x = (d*d-R*R+r*r)/(2*d);
   1d y = sqrt(r*r-x*x);
    pt v = (b-a)/d;
    ret.push_back(a+v*x + rotate90(v)*y);
    if (y > 0) ret.push_back(a+v*x - rotate90(v)*y);
    return ret;
}
bool operator <(const line& a, const line& b) { //
   comparador pra reta
   // assume que as retas tem p < q</pre>
    pt v1 = a.q - a.p, v2 = b.q - b.p;
    if (!eq(angle(v1), angle(v2))) return angle(v1) <</pre>
       angle(v2);
    return ccw(a.p, a.q, b.p); // mesmo angulo
bool operator ==(const line& a, const line& b) {
    return !(a < b) and !(b < a):
}
// comparador pro set pra fazer sweep line com segmentos
struct cmp_sweepline {
    bool operator () (const line& a, const line& b) const {
        // assume que os segmentos tem p < q
        if (a.p == b.p) return ccw(a.p, a.q, b.q);
        if (!eq(a.p.x, a.q.x) and (eq(b.p.x, b.q.x) or
```

```
a.p.x+eps < b.p.x))
    return ccw(a.p, a.q, b.p);
    return ccw(a.p, b.q, b.p);
};

// comparador pro set pra fazer sweep angle com segmentos
pt dir;
struct cmp_sweepangle {
    bool operator () (const line& a, const line& b) const {
        return get_t(dir, a) + eps < get_t(dir, b);
    }
};</pre>
```

7.9 Primitivas Geometricas 3D

```
typedef double ld;
const ld DINF = 1e18;
const ld pi = acos(-1.0);
const ld eps = 1e-9;
#define sq(x) ((x)*(x))
bool eq(ld a, ld b) {
    return abs(a - b) <= eps;</pre>
}
struct pt { // ponto
    ld x, y, z;
    pt(1d x_{-} = 0, 1d y_{-} = 0, 1d z_{-} = 0) : x(x_{-}), y(y_{-}),
       z(z) {}
    bool operator < (const pt p) const {</pre>
        if (!eq(x, p.x)) return x < p.x;
        if (!eq(y, p.y)) return y < p.y;</pre>
        if (!eq(z, p.z)) return z < p.z;
        return 0;
    }
    bool operator == (const pt p) const {
        return eq(x, p.x) and eq(y, p.y) and eq(z, p.z);
```

```
pt operator + (const pt p) const { return pt(x+p.x,
       y+p.y, z+p.z); }
    pt operator - (const pt p) const { return pt(x-p.x,
       y-p.y, z-p.z); }
    pt operator * (const ld c) const { return pt(x*c , y*c
       , z*c ); }
    pt operator / (const ld c) const { return pt(x/c , y/c
       , z/c ); }
    1d operator * (const pt p) const { return x*p.x + y*p.y
       + z*p.z; }
    pt operator ^ (const pt p) const { return pt(y*p.z -
       z*p.y, z*p.x - x*p.z, x*p.y - y*p.x); }
};
// converte de coordenadas polares para cartesianas
// (angulos devem estar em radianos)
// phi eh o angulo com o eixo z (cima) theta eh o angulo de
   rotação ao redor de z
pt convert(ld rho, ld th, ld phi) {
    return pt(sin(phi) * cos(th), sin(phi) * sin(th),
       cos(phi)) * rho;
}
// distancia
ld dist(pt a, pt b) {
    return sqrt(sq(a.x-b.x) + sq(a.y-b.y) + sq(a.z-b.z));
}
// rotaciona p ao redor do eixo u por um angulo a
pt rotate(pt p, pt u, ld a) {
    u = u / dist(u, pt());
    return u * (u * p) + (u ^ p ^ u) * cos(a) + (u ^ p) *
       sin(a);
}
```

8 Extra

8.1 fastIO.cpp

```
int read_int() {
    bool minus = false;
    int result = 0;
    char ch;
    ch = getchar();
    while (1) {
        if (ch == '-') break;
        if (ch >= '0' && ch <= '9') break;
        ch = getchar();
    }
    if (ch == '-') minus = true;
    else result = ch-'0';
    while (1) {
        ch = getchar();
        if (ch < '0' || ch > '9') break;
        result = result *10 + (ch - '0');
    }
    if (minus) return -result;
    else return result;
}
```

8.2 vimrc

set ts=4 si ai sw=4 number mouse=a
syntax on

8.3 rand.cpp

```
mt19937 rng((int)
    chrono::steady_clock::now().time_since_epoch().count());
int uniform(int 1, int r){
    uniform_int_distribution<int> uid(1, r);
```

```
return uid(rng);
}
8.4 template.cpp
#include <bits/stdc++.h>
using namespace std;
#define _ ios_base::sync_with_stdio(0);cin.tie(0);
#define endl '\n'
typedef long long 11;
const int INF = 0x3f3f3f3f;
const 11 LINF = 0x3f3f3f3f3f3f3f3f3f11;
int main() { _
    exit(0);
}
     debug.cpp
8.5
void debug_out(string s, int line) { cerr << endl; }</pre>
template < typename H, typename ... T>
void debug_out(string s, int line, H h, T... t) {
    if (s[0] != ',') cerr << "Line(" << line << ") ";</pre>
    do { cerr << s[0]; s = s.substr(1);</pre>
    } while (s.size() and s[0] != ',');
    cerr << " = " << h;
    debug_out(s, line, t...);
```

#define debug(...) debug_out(#__VA_ARGS__, __LINE__,

#ifdef DEBUG

#else

#endif

__VA_ARGS__)

#define debug(...)

8.6 stress.sh

```
make ${P} ${P}2 gen || exit 1
for ((i = 1; ; i++)) do
    ./gen $i > in
    ./${P} < in > out
    ./${P}2 < in > out2
    if (! cmp -s out out2) then
        echo "--> entrada:"
        cat in
        echo "--> saida1:"
        cat out
        echo "--> saida2:"
        cat out2
        break;
    fi
    echo $i
done
```

8.7 makefile

```
CXX = g++
CXXFLAGS = -fsanitize=address,undefined
   -fno-omit-frame-pointer -g -Wall -Wshadow -std=c++17
   -Wno-unused-result -Wno-sign-compare -Wno-char-subscripts
#-fuse-ld=gold
```

8.8 hash.sh

```
# Para usar (hash das linhas [11, 12]):
# ./hash.sh arquivo.cpp 11 12
sed -n $2','$3' p' $1 | cpp -dD -P -fpreprocessed | tr -d
   '[:space:]' | md5sum | cut -c-6
```