NORTH SOUTH UNIVERSITY

Department of Electrical and Computer Engineering CSE 332 / EEE 336

Experiment No: 1

Experiment Name: Design of a 2-bit Logic unit.

Introduction:

In this experiment you will construct a 2-bit logic unit which is actually a part of an ALU. This logic unit will have 4 micro-operations which are AND, OR, XOR and NOT operations. Logic micro operations are very useful for manipulating individual bits or a portion of a word stored in a register. They can be used to change bit values, delete a group of bits or insert a new set of bits in a register. As we are going to design a 2-bit logic unit, we will have two outputs which is one output for each of the 2 bits.

Equipments:

- > Trainer board
- > IC 7404,7408,7432,7486, 74F153
- > Wires for connection.

Truth Table:

Complete the Truth Table according to your theoretical knowledge.

A1	A0	B1	В0	AND1	AND0	OR1	OR0	XOR1	XOR0	NOT	NOT
										A1	A0
0	0	0	0								
0	0	0	1								
0	0	1	0								
0	0	1	1								
0	1	0	0								
0	1	0	1								
0	1	1	0								
0	1	1	1								
1	0	0	0								
1	0	0	1								
1	0	1	0								

1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Logic Diagram:

Procedure:

- 1) Place the ICs on the trainer board.
- 2) Connect V_{cc} and ground to the respective pins of IC.
- 3) Connect the inputs with the switches and the outputs with LEDs.
- 4) Apply various combinations of inputs and observe the outputs.
- 5) Verify the experimental outputs with the Truth Table.

Assignment:

- 1) Prepare the lab report.
- 2) Implement the circuit in Logisim. Take a screenshot and include it in your lab report.

Pin configuration of ICs:

EEE336/CSE232 LAB Dual 4x1 Multiplexer 74F153 Data Sheet

PIN CONFIGURATION

INPUT AND OUTPUT LOADING AND FAN-OUT TABLE

PINS	DESCRIPTION					
10a – 13a	Port A data inputs Port B data inputs Common Select inputs Port A Enable input (active Low) Port B Enable input (active Low) Port A, B data outputs					
10b – 13b						
S0, S1						
Ea						
Eb						
Ya, Yb						

FIGURE 11.1
Digital gates in IC packages with identification numbers and pin assignments