

The Stark Effect for a Rigid Asymmetric Rotor

S. Golden and E. Bright Wilson Jr.

Citation: The Journal of Chemical Physics 16, 669 (1948); doi: 10.1063/1.1746974

View online: http://dx.doi.org/10.1063/1.1746974

View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/16/7?ver=pdfcov

Published by the AIP Publishing

Articles you may be interested in

Comment on symmetry of the interaction between an asymmetric rigid rotor and a linear rigid rotor J. Chem. Phys. **103**, 1035 (1995); 10.1063/1.469813

Accurate semiclassical determination of rigid asymmetric rotor eigenvalues

J. Chem. Phys. 83, 2363 (1985); 10.1063/1.449277

A semiclassical determination of the energy levels of a rigid asymmetric rotor

J. Chem. Phys. 68, 745 (1978); 10.1063/1.435747

Stark Effect in Electronic Spectra: The Asymmetric Rotor

J. Chem. Phys. 48, 348 (1968); 10.1063/1.1667928

An Asymptotic Expression for the Energy Levels of the Rigid Asymmetric Rotor

J. Chem. Phys. 16, 78 (1948); 10.1063/1.1746662

The Stark Effect for a Rigid Asymmetric Rotor*

S. Golden** and E. Bright Wilson, Jr.

Mallinckrodt Chemical Laboratory, Harvard University, Cambridge, Massachusetts
(Received March 18, 1948)

The Stark effect, arising from the interaction of a uniform electric field with a permanent electric dipole that is arbitrarily oriented within a rigid asymmetric rotor, and with a dipole induced in the rotor by the field, has been evaluated by perturbation methods. Tables are given for the perturbation of the energy levels so that, for $J \le 2$, the rotational energies of an asymmetric molecule in an electric field may be readily approximated to terms quadratic in the electric field.

The effect of accidental degeneracy upon the Stark effect and line intensities has been considered. A qualitative discussion of certain features of Stark patterns is given that may be useful in the identification of rotational spectral lines.

INTRODUCTION

HE recent progress in microwave spectroscopy has made it possible to observe the Stark effect in the pure rotational spectra of many molecules. The formulas for the influence of an homogeneous electric field upon the rotational energy levels of linear² and symmetricrotor3 molecules are well known. The case of the rigid asymmetric rotor has been treated by Penney.⁴ The purpose of the present paper is to extend this treatment, to give certain general rules that may facilitate the identification of spectral lines and to provide tables from which the Stark effect may be approximated for rotational energy levels up to and including J=2. The results are accurate to and including terms quadratic in the electric field strength.

I. THE PERTURBATION OPERATOR

When an homogeneous electric field is applied to a molecule having a permanent electric dipole

* The support by the Navy Department of the computational work herein reported is gratefully acknowledged. It was carried out under Task Order V of Contract N50ri-76, Office of Naval Research. The authors extend their appreciation to Mrs. Dorothy A. H. Brown, Mrs. Grace C. Ek, Mr. F. C. Merriam and Mr. J. A. Hayman, for carrying out the computations.

out the computations.

** National Research Council Predoctoral Fellow.

Present address: Hydrocarbon Research, Inc., 115 Broadway, New York, N. Y.

¹ Various molecules are: OCS, T. W. Dakin, W. E. Good, D. K. Coles, Phys. Rev. 70, 560 (1946); NH₂ D. K. Coles, W. E. Good, Phys. Rev. 70, 979 (1946); SO₂, B. P. Dailey, S. Golden, E. B. Wilson, Jr., Phys. Rev. 72, 871 (1947); H₂O, S. Golden, T. Wentink, M. W. P. Strandberg, Phys. Rev. 73, 92 (1948).

Strandberg, Phys. Rev. 73, 92 (1948).

² See, for example, J. H. Van Vleck, Electric and Magnetic Susceptibilities (Oxford Press, 1932), p. 152.

³ See for example C. Mannebeck, Physik Zeits, 28.

See, for example, C. Mannebeck, Physik. Zeits. 28, 72 (1927).
 W. G. Penney, Phil. Mag. 11, 602 (1931).

moment μ and a polarizability tensor \mathcal{O} , the Hamiltonian operator will contain the following terms in addition to those involving rotation-vibration.

$$\mathbf{H}' = -E \sum_{g} \Phi_{Zg} \mu_{g} - \frac{1}{2} E^{2} \sum_{g,h} \Phi_{Zg} \Phi_{Zh} P_{gh}$$

$$= E\mathbf{H}^{(1)} + E^{2}\mathbf{H}^{(2)}, \qquad (1)$$

where E is the electric field, assumed to be along the space-fixed Z axis; g, h refer to the molecule-fixed principal axes of inertia x, y, z; μ_g are the components of the permanent dipole moment along the principal axes; P_{gh} are the components of the polarizability tensor referred to the principal axes of inertia; Φ_{Zg} are the direction cosines between the space fixed Z axis and the rotating molecule-fixed principal axes.

The first term in this expression is the orientational energy of the permanent dipole in the field, while the second is that of the induced dipole.

II. PERTURBATION THEORY NON-DEGENERATE CASE

Even when the asymmetric-rotor energy levels are otherwise distinct, they are nevertheless (2J+1)-fold degenerate in the quantum number M. Here J is the total angular-momentum quantum number and M is the magnetic quantum number. However this M degeneracy offers no difficulty to the application of the conventional perturbation theory.

To apply the conventional perturbation theory the matrix elements of Eq. (1) must be evaluated in terms of a basis of asymmetric-rotor wave

TABLE I. The structure of the perturbation energy matrix, $\mathbf{H}^{(1)}$, due to a permanent dipole.

Species	A	B_{\bullet}	$B_{\mathbf{y}}$	B_x
\overline{A}		$\mu_s\Phi_{Z_s}$	$\mu_{y}\Phi_{Z_{y}}$	$\mu_x \Phi_{Zx}$
B_z	$\mu_z\Phi_{Zz}$	• • •	$\mu_x \Phi_{Zx}$	$\mu_{V}\Phi_{Z_{V}}$
$B_{\mathbf{v}}$	$\mu_{y}\Phi_{Zy}$	$\mu_x \Phi_{Zx}$	• • •	$\mu_z \Phi_{Zz}$
B_x	$\mu_x \Phi_{Zx}$	$\mu_y\Phi_{Zy}$	$\mu_z\Phi_{Zz}$	

functions. The latter may be expressed as linear combinations of symmetric-rotor wave functions,⁵ all having the same values of J and M. The matrix elements of the direction cosines Φ_{Zg} evaluated in terms of a symmetric-rotor wave function basis are diagonal in M.⁶ Hence it follows that in terms of the asymmetric-rotor functions the direction-cosine matrix elements are also diagonal in M, and the problem can be treated for each value of M separately.

Now, the asymmetric rotor wave functions belong to the representations A, B_z , B_y , B_z of the Four-Group.⁷ The direction cosines Φ_{Zg} belong to the representations B_z , B_y , and B_z for g=x, y and z, respectively. Since non-vanishing matrix elements can be obtained only if the product of the direction cosine and the wave functions of the connected states belongs to representation A, the results of Table I are obtained for the non-vanishing matrix elements of $\mathbf{H}^{(1)}$.

Similarly, and by use of the fact that $(\Phi_{Z_0})^2$ belongs to representation A, $\Phi_{Z_z}\Phi_{Z_y}$ to B_z , $\Phi_{Z_z}\Phi_{Z_z}$ to B_y , $\Phi_{Z_y}\Phi_{Z_z}$ to B_z , the results of Table II are obtained for the non-vanishing elements of $\mathbf{H}^{(2)}$.

From Table I it is seen that there are no diagonal elements of $\mathbf{H}^{(1)}$. Hence if the energy levels of the unperturbed asymmetric rotor are distinct and widely separated compared to the magnitude of the coupling perturbation, there are no contributions from terms linear in the field. Any first-order effect must arise from degeneracy between two or more levels of the unperturbed rotor. In the non-degenerate second-order perturbation treatment $\mathbf{H}^{(2)}$ will contribute only diagonal elements. A proof is given in Appendix A which shows that terms cubic in the field vanish in the non-degenerate case.

TABLE II. The structure of the perturbation energy matrix, $\mathbf{H}^{(2)}$, due to an induced dipole.

Species	\boldsymbol{A}	B_z	$B_{oldsymbol{v}}$	B_x
A	$\Sigma_g P_{gg}(\Phi_{Zg})^2$	$P_{xy}(\Phi_{Zx})(\Phi_{Zy})$	$P_{xz}(\Phi_{Zz})(\Phi_{Zz})$	$P_{yz}(\Phi_{Zy})(\Phi_{Zz})$
B_{ϵ}	$P_{xy}(\Phi_{Zx})(\Phi_{Zy})$	$\sum_{g} P_{gg}(\Phi_{Zg})^2$	$P_{yz}(\Phi_{Zy})(\Phi_{Zz})$	$P_{xz}(\Phi_{Zx})(\Phi_{Zz})$
B_y	$P_{zz}(\Phi_{Zz})(\Phi_{Zz})$	$P_{yz}(\Phi_{Zy})(\Phi_{Zz})$	$\Sigma_g P_{gg}(\Phi_{Zg})^2$	$P_{xy}(\Phi_{Zx})(\Phi_{Zy})$
B_x	$P_{yz}(\Phi_{Zy})(P_{Zz})$	$P_{xz}(\Phi_{Zx})(\Phi_{Zz})$	$P_{xy}(\Phi_{Zx})(\Phi_{Zy})$	$\Sigma_g \; P_{gg}(\Phi_{Zg})^2$

The formula for the energy levels correct to the second order is, in the absence of accidental degeneracy, the usual perturbation result and is identical with the expression in Eq. (11) below.

III. PERTURBATION THEORY-DEGENERATE CASE

In order to provide a useful tabulation of the Stark effect that will be applicable to most asymmetric molecules, it is necessary to examine the cases of accidental degeneracy that may occur. The energy of the J_{τ} 'th level of the asymmetric rotor is⁷

$$W^{0}_{J\tau} = \frac{(a-c)}{2} E_{\tau}^{J}(\kappa) + \frac{(a+c)}{2} J(J+1), \quad (2)$$

where $a = \hbar^2/2I_a$, $b = \hbar^2/2I_b$, $c = \hbar^2/2I_c$; $I_a \le I_b \le I_c$ are the principal moments of inertia;

$$\kappa = (2b - a - c)/(a - c),$$

the asymmetry parameter; $E_{\tau}^{J}(\kappa)$ is a characteristic value of the asymmetric-rotor problem. It is convenient to write Eq. (2) as

$$W^{0}_{J\tau} = \frac{(a+c)}{2} \left[\alpha E_{\tau}^{J}(\kappa) + J(J+1) \right], \qquad (3)$$

where

$$\alpha = \frac{a-c}{a+c}$$
 and $0 \le \alpha \le +1$.

The lower limit corresponds to the spherically symmetric case while the upper limit corresponds to the linear case. It is readily observed that the terms in brackets in Eq. (3) are dimensionless; they may be thought of as a reduced energy.

Now for degeneracy between a number of unperturbed levels

$$W^{0}_{J\tau} = W^{0}_{J'\tau'} = W^{0}_{J''\tau''} = \cdots$$

or

$$\alpha E_{\tau^J}(\kappa) + J(J+1) = \alpha E_{\tau^J_{\varepsilon^J}}(\kappa) + J'(J'+1) = \cdot \cdot \cdot,$$

⁶ S. C. Wang, Phys. Rev. 34, 243 (1929).
⁶ See, for example, P. C. Cross, R. M. Hainer, G. W. King, J. Chem. Phys. 12, 210 (1944).

⁷ See, for example, G. W. King, R. M. Hainer, P. C. Cross, J. Chem. Phys. 11, 27 (1943).

for $J \neq J'$, $J \neq J''$, etc.,

$$\alpha = \frac{J'(J'+1) - J(J+1)}{E_{\tau}^{J}(\kappa) - E_{\tau'}^{J'}(\kappa)} = \frac{J''(J''+1) - J(J+1)}{E_{\tau}^{J}(\kappa) - E_{\tau'}^{J''}(\kappa)} = \cdots (4)$$

In particular for J = J'

$$\alpha \left[E_{\tau}^{J}(\kappa) - E_{\tau'}^{J'}(\kappa) \right] = 0. \tag{5}$$

In this case (J=J') the degeneracy is never exact except in the symmetric rotor limits but it can be very nearly exact for many pairs of levels even for molecules with the maximum asymmetry.

Equation (4) has been applied to the energy levels for $J \leq 3$ to determine which pairs of levels may become accidentally degenerate in the asymmetric rotor. Table III indicates which component of the permanent dipole becomes important in the accidental degeneracy.

From Table III it is clear that as both κ and α are varied, the frequent appearance of accidental degeneracy, even at low values of J,8 makes it impractical to apply conventional perturbation theory. By a modification of the conventional perturbation theory, such as that employed by Van Vleck⁹ and Jordahl,¹⁰ an entirely satisfactory manner of handling these cases is obtained.

Briefly, the method consists in applying to the matrix to be diagonalized (viz. W^0+H' , where Wo is the diagonal energy matrix of the asymmetric rotor and \mathbf{H}' is the matrix of Eq. (1) evaluated with asymmetric-rotor wave functions) the following matrix.

$$S = I + \lambda S^{(1)} + \lambda^2 S^{(2)}$$
 (6)

where λ is a parameter of smallness (to be associated with the electric field in the present case); **S** is unitary to second order in λ . This requires

$$\mathbf{S}^{(1)\dagger} = -\mathbf{S}^{(1)}, \quad \mathbf{S}^{(2)} = \frac{1}{2} [\mathbf{S}^{(1)}]^2.$$
 (7)

With no loss of generality, S(2) may be taken to be hermitian. Now define S(1) as follows.

$$S_{ij}^{(1)} = H_{ij}^{(1)} / W_i^0 - W_j^0$$
 (8a)

for those values of i and j for which W_i^0 is not near W_i^0 ; for all other values k, l (i.e. the degenerate levels)

$$S_{kl}^{(1)} = 0.$$
 (8b)

With this definition, the application of $S \cdots S^{\dagger}$ to (W^0+H') gives, for results correct to second order, the following matrix to be diagonalized:

$$\mathcal{K} = (\mathbf{W}^0 + E\mathbf{H}_0^{(1)} + E^2\mathbf{H}^{(2)} + E^2\mathbf{H}^{(3)}). \tag{9}$$

Here $\mathbf{H}_0^{(1)}$ consists of those elements of $\mathbf{H}^{(1)}$ coupling degenerate levels, and

$$H_{jk}^{(3)} = \frac{1}{2} \sum_{m} \left(\frac{H_{jm}^{(1)} H_{mk}^{(1)}}{W_{i}^{0} - W_{m}^{0}} + \frac{H_{jm}^{(1)} H_{mk}^{(1)}}{W_{k}^{0} - W_{m}^{0}} \right), (10)$$

TABLE III. Appearances of accidental degeneracy in the asymmetric rotor. a, b, c, denote dipole-moment components along principal axes of least, intermediate, and greatest moment of inertia, respectively. The asterisk denotes no coupling term. Blanks indicate no accidental degeneracy possible.

J_{τ} 00	1_1	10	1+1	2-2	2_1	20	2+1	2+2	
00				`					
1_1									
10	c								
1+1		a		Ī	_				
2_2		b							
2_{-1}				c					
20					a				
2+1						c		,	
2+2							a		
3_3	•				<i>c</i>	b	*	a	
3_2						*	С	<i>b</i>	
31							b	c	
30									
3+1									
3 ₊₂									
3+3									

⁸ The formula given by Penney for J=1, must be

⁹ J. H. Van Vleck, Phys. Rev. **33**, 467 (1929). See also E. C. Kemble, Fundamental Principles of Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1937), p. 394.

10 O. M. Jordahl, Phys. Rev. 45, 87 (1934).

the prime indicating that the summation extends only over levels W_m^0 not degenerate with W_j^0 or W_k^0 .

In diagonalizing %, off-diagonal elements connecting non-degenerate levels will be ignored, since the transformation S has reduced them to second order and they therefore contribute no terms below fourth order to the energy. Consequently, % factors into small matrices, each associated with one group of degenerate levels. The diagonalization of these factors involves the solution of secular equations, usually no larger than second degree.

A. Diagonal Elements of 30

The diagonal elements of 30 are given by11

$$3C(J_{\tau}M) = W^{0}_{J_{\tau}} + E^{2} \sum_{J', \tau', g} \frac{\mu_{g}^{2} \left[(\Phi_{Zg})_{J, \tau, M; J', \tau', M} \right]^{2}}{W^{0}_{J_{\tau}} - W^{0}_{J'\tau'}}$$
$$-E^{2} \sum_{J', \tau', g} \frac{1}{2} P_{gg} \left[(\Phi_{Zg})_{J, \tau, M; J'\tau', M} \right]^{2}, \quad (11)$$

where the prime over the summation indicates

that the summation is to extend only over those values of $J'\tau'$ for which $W^0_{J'\tau'}$ is not near $W^0_{J\tau}$.

No cross products of the dipole moments occur because of symmetry restrictions (see Tables I and II). Consequently, the perturbation energy may be separated according to the components of the permanent and induced dipoles. The second-order perturbation arising from the gth component of the permanent dipole (to the degree of approximation indicated in Eq. (11)) is

$$[W_{g}^{(2)}]_{J\tau M} = (\mu_{g})^{2} E^{2} \sum_{J',\tau'} \frac{[(\Phi_{Zg})_{J,\tau,M;J',\tau'M}]^{2}}{W^{0}_{J,\tau} - W^{0}_{J',\tau'}} (12)$$

and that arising from the ggth component of the induced dipole is

$$\begin{bmatrix} W_{gg}^{(2)} \end{bmatrix}_{J\tau M} = \frac{1}{2} P_{gg} E^2 \sum_{J', \tau'} \left[(\Phi_{Zg})_{J, \tau, M; J', \tau', M} \right]^2, \quad (13)$$

so that Eq. (11) may be written as

$$\mathfrak{F}(J_{\tau}M) = W_{J_{\tau}^{0}} + \sum_{g} [W_{g}^{(2)} - W_{gg}^{(2)}]_{J_{\tau}M}.$$

Making use of Table I of reference (6)

$$\begin{bmatrix} W_{g}^{(2)} \end{bmatrix}_{J\tau M} = \mu_{g}^{2} E^{2} \begin{bmatrix} \frac{(J^{2} - M^{2})}{4J^{2}(4J^{2} - 1)} \sum_{\tau'} \left\{ \frac{\left[(\Phi_{Zg})_{J,\tau;J-1,\tau'} \right]^{2}}{W^{0}_{J\tau} - W^{0}_{J-1,\tau'}} \right\} + \frac{M^{2}}{4J^{2}(J+1)^{2}} \sum_{\tau' \neq \tau} \left\{ \frac{\left[(\Phi_{Zg})_{J,\tau;J,\tau'} \right]^{2}}{W^{0}_{J\tau} - W^{0}_{J\tau'}} \right\} + \frac{(J+1)^{2} - M^{2}}{4(J+1)^{2}(2J+1)(2J+3)} \sum_{\tau'} \left\{ \frac{\left[(\Phi_{Zg})_{J,\tau;J+1,\tau'} \right]^{2}}{W^{0}_{J\tau} - W^{0}_{J+1,\tau'}} \right\} \right]. \quad (14)$$

Similarly

$$\begin{bmatrix} W_{gg}^{(2)} \end{bmatrix}_{J\tau M} = \frac{1}{2} P_{gg} E^{2} \left[\frac{J^{2} - M^{2}}{4J^{2}(4J^{2} - 1)} \sum_{\tau'} \left[(\Phi_{Zg})_{J,\tau;J-1,\tau'} \right]^{2} + \frac{M^{2}}{4J^{2}(J+1)^{2}} \sum_{\tau'} \left[(\Phi_{Zg})_{J,\tau;J,\tau'} \right]^{2} + \frac{(J+1)^{2} - M^{2}}{4(J+1)^{2}(2J+1)(2J+3)} \sum_{\tau'} \left[(\Phi_{Zg})_{J,\tau;J+1,\tau'} \right]^{2} \right]. \tag{15}$$

For computational purposes it is convenient to separate out the coefficient of M^2 and remove the $\frac{1}{2}(a+c)$ from the $W^{0'}$ s (see Eq. (3)). One then obtains for the contribution of the second-order perturbation to the diagonal elements of \mathcal{R}

$$[W_g^{(2)}]_{J\tau M} = \frac{2\mu_g^2 E^2}{a+c} [A_{J\tau}(\kappa,\alpha) + M^2 B_{J\tau}(\kappa,\alpha)]$$
(16)

and

$$[W_{gg}^{(2)}]_{J\tau M} = \frac{1}{2} P_{gg} E^{2} [C_{J\tau}(\kappa) + M^{2}D_{J\tau}(\kappa)]. \quad (17)$$

In Appendix D the quantities A and B are tabulated for various values of the parameters κ and α . The quantities C and D have not been tabulated since, as shown in Appendix B, the terms arising from induced polarization are extremely small compared to those arising from

¹¹ The notation of reference 6 will be used.

the permanent dipole, and may be safely neglected.

B. Energy Calculations

By means of these tabulated quantities, the $\Im(J\tau M)$'s may be obtained. In order to determine energy levels when degeneracy occurs a secular equation must be solved. When, as will probably most frequently be the case, the degeneracy occurs simply between a pair of levels, simple second-degree secular equations are obtained. These have the solutions

$$2W = \Im(J\tau M) + \Im(J'\tau' M)$$

$$\pm \{ \lceil \Im(J\tau M) - \Im(J'\tau' M) \rceil^2 + 4 |\xi^2| E^2 \}^{\frac{1}{2}}. \quad (18)$$

The value of the off-diagonal element ξ is determined by the two states under consideration and will be discussed below.

Except for the fact that the \Re 's are functions of E, Eq. (18) is virtually identical with that given by Penney for cases of slight symmetry.

A discussion of the ξ 's requires the consideration of four separate cases. (Induced polarization terms are neglected.)

$$|\Delta J| = 0$$

Only one type of degeneracy need be considered under this case and that is the limiting symmetric-rotor degeneracy. It must be emphasized, however, that the rotor may be quite asymmetric and still have this near-degeneracy occur. Since these states are adjacent to one another in the energy scale they have different symmetries. Therefore there will be a non-vanishing coupling term from $\mathbf{H}_0^{(1)}$ so that

$$E\xi = 3C_{kl} = EH_{kl}^{(1)} + \frac{E^2}{2} \sum_{m}' H_{km}^{(1)} H_{ml}^{(1)} \times \left(\frac{1}{W_{k}^0 - W_{m}^0} + \frac{1}{W_{l}^0 - W_{m}^0}\right), \quad (19)$$

where k, l, m refer to the unperturbed levels. From Table I, all terms vanish for which m has the same species representation as either k or l. Consequently, the non-vanishing terms of Eq.

(19) contains $H_{kl}^{(1)}$, $H_{km}^{(1)}$, $H_{ml}^{(1)}$ corresponding to the three different direction cosines or dipole components. By Table I, reference 6, one of these only is a pure imaginary while the other two are real. Therefore, no first-order terms appear in $|\xi|^2$ and it reduces to

$$|\xi|^2 = (H_{kl}^{(1)})^2 = \frac{M^2}{4J^2(J+1)^2} \mu_{g^2} |(\Phi_{Zg})_{J\tau;J\tau'}|^2, (20)$$

if second-order terms are neglected. g is determined by the symmetry of the two states. It is seen that there is no "mixing" of the dipole components for this case. Two expansions of Eq. (18) are possible. When $|\Im \mathcal{C}_{(J_{\tau M})} - \Im \mathcal{C}_{(J_{\tau' M})}| \gg 2|\xi E|$ the conventional second-order result is obtained. When the converse is true a term linear in E appears which is proportional to |M|.

(2) $|\Delta J| = 1$; unperturbed states have different symmetries

The results are similar to the previous case except that now

$$|\xi|^{2} = |H_{kl}^{(1)}|^{2} = \frac{(J^{*2} - M^{2})\mu_{g}^{2}|(\Phi_{Zg})_{J\tau; J'\tau'}|^{2}}{4J^{*2}(4J^{*2} - 1)}, (21)$$

where J^* is the larger of the two J's involved, g is determined by the symmetry of the two states.

Here, also, there is no "mixing" of the dipolemoment components. The usual second-order result is obtained when $|\Re_{(J\tau M)} - \Re_{(J'\tau' M)}|$ $\gg 2|\xi E|$. When the converse is true a term linear in E appears which is proportional to $(J^{*2} - M^2)^{\frac{1}{2}}$.

(3) $|\Delta J| = 1$; unperturbed states have the same symmetry

In this case $H_{kl}^{(1)}$, as well as terms for which m has the same species representation as k or l, will vanish. The sum in Eq. (19) will consist of a real linear combination of the squares of the dipole-moment components. Moreover since the direction-cosine matrix elements vanish for $|\Delta J| > 1$, the following form for ξ is obtained

$$\xi = EM[J^{*2} - M^2]^{\frac{1}{2}} \sum_{\sigma} \mu_{\sigma}^2 R_{\sigma}(J, J', \tau, \tau'),$$
 (22)

where J^* is the larger of J, J', g refers to the principal axes of inertia, and R_g depends upon the

¹² See, for example, Appendix I of reference 7. Also, G. H. Dicke and G. B. Kistiakowsky, Phys. Rev. 45, 4 (1934).

quantities indicated (for a given asymmetric rotor).

When M=0, ξ vanishes, so that Eq. (18) gives the conventional second-order result. When the unperturbed energy levels are distinct (i.e. $|W_{J\tau^0}-W_{J'\tau'^0}|\gg 2|\xi E|$) the conventional second-order result is also obtained. However when there is degeneracy, no general conclusions may be drawn regarding the expansion of Eq. (18), This is seen from the fact that $[\mathcal{K}_{(J\tau M)}-\mathcal{K}_{(J'\tau' M)}]$ reduces to terms in E^2 , so that all terms under the radical are of the same order, E^4 . Then only terms quadratic in the electric field are introduced from the radical, so that this case of degeneracy does not give rise to a first-order Stark effect.

$$|\Delta J| = 2$$

This case will not be considered in any great detail except to note that for its dependence upon M and E,

$$|\xi|^2 \propto E^2 [(J+1)^2 - M^2] [(J+2)^2 - M^2]$$
 (23)

where J is the lower of the two J's involved.

Degeneracies for which $|\Delta J| \ge 3$ result in vanishing ξ .

In actual practice the effect of degeneracy may not be as complicated as might be supposed from the foregoing. For example, when the dipole moment lies along one of the principal axes it is easy to show that the sum in Eq. (19) vanishes for states having different symmetries. Another simplification occurs when only certain states are allowed by virtue of nuclear-symmetry restrictions. Then certain degeneracies cannot occur.

IV. INTENSITIES

The intensities of the various component lines in the presence of an electric field involve the elements of the dipole-moment matrix, evaluated in terms of the basis of functions which diagonalize the energy, when the field is applied. For transitions involving non-degenerate levels these matrix elements are simply obtained from $\mathbf{S}\mathbf{H}^{(1)}\mathbf{S}^{\dagger}$. They will contain small terms linear and quadratic in E which are added to $\mathbf{H}^{(1)}$. Only quite small changes in intensity are to be expected due to the field. It is interesting to

observe, however, that non-vanishing elements may be expected, for finite fields, between states having the same symmetry; they may likewise occur as terms linear in E when $|\Delta J| \leq 3$. The selection rule on M is, of course, unchanged.

An important modification of the selection rules (with the exception of those on M) becomes possible when an accidental degeneracy occurs. Consider a pair of degenerate levels that have a non-vanishing element $-EH_{kl}^{(1)}$ connecting them. Then the proper linear combinations of asymmetric-rotor wave functions A_k^0 and A_l^0 are

$$\begin{cases}
A_{1} = \frac{1}{\sqrt{2}} \left(A_{k}^{0} - \frac{H_{kl}^{(1)}}{|H_{kl}^{(1)}|} A_{l}^{0} \right), \\
A_{2} = \frac{1}{\sqrt{2}} \left(\frac{H_{kl}^{(1)}}{|H_{kl}^{(1)}|} A_{k}^{0} + A_{l}^{0} \right).
\end{cases} (24)$$

The elements of the dipole-moment matrix coupling either of these two states to some other state with wave function A_m^0 are

$$\begin{cases}
H_{1m}^{(1)} = \frac{1}{\sqrt{2}} H_{km}^{(1)} - \frac{1}{\sqrt{2}} \frac{H_{kl}^{(1)}}{|H_{kl}^{(1)}|} H_{lm}^{(1)}, \\
H_{2m}^{(1)} = \frac{1}{\sqrt{2}} \frac{H_{kl}^{(1)}}{|H_{kl}^{(1)}|} H_{km}^{(1)} + \frac{1}{\sqrt{2}} H_{lm}^{(1)}.
\end{cases} (25)$$

To make the case non-trivial, it may be assumed that neither $H_{\it km}^{(1)}$ nor $H_{\it lm}^{(1)}$ vanishes, which corresponds to a permitted transition between the unperturbed state m and the unperturbed states k or l. Since $H_{kl}^{(1)} \neq 0$, by hypothesis, k and l correspond to states having different species representations. Only when m corresponds to a state having a species representation that differs from both the states corresponding to kand l will all of the terms in Eqs. (25) be nonvanishing. Then, application of the line of argument immediately following Eq. (19), indicates that the three dipole-moment components must be involved in Eqs. (25). Since only one of these components is a pure imaginary while the other two are real, Eqs. (25) can differ only in phase. If either $H_{km}^{(1)}$ or $H_{lm}^{(1)}$ vanish, again Eqs. (25) differ only in phase.

Since the absolute values of the dipole-moment matrix elements are involved in the expression for the line intensity, either of Eqs. (25) will give the same value. This means, if transitions are normally permitted between, say, state m and state l but not between state m and state k, that transitions between the latter become possible if states k and l are degenerate. Furthermore, since degeneracy may occur between states for which $|\Delta J| = 1$, it is clear that transitions having non-vanishing field-independent probabilities are now possible for $|\Delta J| = 2$.

Other cases of degeneracy require the examination of the secular equation involving the degenerate levels, but will not be carried out here. It is important to observe that the change in selection rules which may be brought about by degeneracy results in a doubling (or, more generally, splitting) of the Stark components of a spectral line. When a first order term is introduced by the degeneracy a symmetrical Stark pattern results. When the degeneracy introduces only second-order terms, a splitting of the Stark components may be expected at higher fields.

V. APPLICATION TO ANALYSIS

Even though quantitative theoretical calculations for J>2 may not be available, it is nevertheless possible to utilize observed Stark effects to advantage in analyzing rotational spectra.

In what follows the effects due to induced polarization will be disregarded. Also, the discussion will be restricted to representative cases of non-degeneracy and of degeneracy¹⁸ with first-order Stark effect (i.e. cases (1) and (2) above). Second-order terms will be neglected when first-order terms arise.

A. Formulas for Transition Frequencies, $\Delta M = 0$

For those transitions in which the electric vector of the radiation is parallel to the electric field the following formulas may be obtained for the frequency displacement of each component, measured relative to the position of the unsplit line.

(a) No Degeneracy

$$\Delta \nu_M = (A' + B'M^2)E^2;$$
 (26a)

(b) Degeneracy,¹³
$$|\Delta J| = 0$$

 $\Delta \nu_M = \pm F' |M| E;$ (26b)

(c) Degeneracy, $|\Delta J| = 1$

$$\Delta \nu_M = \pm \{G'[J^{*2} - M^2]^{\frac{1}{2}}\}E;$$
 (26c)

where A', B', F', G' are coefficients that are independent of M; J^* is the larger of the two J's involved in the degeneracy. A spectral line will, under the influence of an electric field, exhibit significant differences in appearance according to whether case (a), (b), or (c) applies.

Since $|M| \leq J$, a completely resolved spectral line will have (J+1) components for case (a), where J is the smaller of the two J's involved in the transition. When degeneracy occurs, there will be (2J+1) components. If complete resolution is not attained it is nevertheless possible to determine the |M| value of certain of the resolved components. From this information a good estimate of $|M|_{\max}$ may usually be determined, with the result that the smaller of the two J's involved is determined. How this may be accomplished depends upon which of Eq. (26a)-(26c) is applicable. The necessary formulas are given below.

(a) Observe that successive components, when resolved, must differ by unity in their value of M. For two such components, therefore

$$\Delta \nu_M - \Delta \nu_{M\pm 1} = B' E^2 [M^2 - (M\pm 1)^2],$$

= $\mp B' E^2 (2M\pm 1).$ (27a)

If there are at least three components then, ordering the components so that M corresponds to one extreme, $M\pm 1$ to the intermediate and $M\pm 2$ to the other extreme, one obtains

$$r = \frac{\Delta \nu_M - \Delta \nu_{M\pm 1}}{\Delta \nu_{M\pm 1} - \Delta \nu_{M\pm 2}} = \frac{2M \pm 1}{2M \pm 3}.$$
 (27b)

Solving,

$$M = \pm \left(\frac{3r - 1}{2 - 2r}\right). \tag{27c}$$

Consistency of the solution may be determined by evaluating $B'E^2$ and then determining the frequency displacement of the component cor-

 $^{^{13}}$ Specifically, discussion of degeneracy will be restricted to transitions which either involve one non-degenerate level or two degenerate levels whose energy dependence on M is precisely the same.

 $^{^{14}}$ Not all components may be observable; for example when $\Delta J\!=\!0,$ the $M\!=\!0$ transition will be forbidden.

responding to some other value of M and comparing with observation.

In general, experimental errors may be such that Eq. (27c) may not lead to an integral value for M, particularly if M is very large. In such a case, however, certain limits may be imposed upon the smaller J involved in the transition.

(b) For this case one may observe that

$$\Delta \nu_M - \Delta \nu_{M\pm 1} = \pm F'E, \qquad (28a)$$

so that

$$M = \pm \frac{\Delta \nu_M}{\Delta \nu_M - \Delta \nu_{M+1}}.$$
 (28b)

As under case (a) consistency should be established by comparing the frequency displacement computed for another value of M with the observed spectrum.

(c) For this case one readily obtains

$$(\Delta \nu_M)^2 - (\Delta \nu_{M\pm 1})^2 = \pm G'^2 E^2 (2M \pm 1).$$
 (29a)

Proceeding as in case (a),

$$s = \frac{(\Delta \nu_M)^2 - (\Delta \nu_{M\pm 1})^2}{(\Delta \nu_{M\pm 1})^2 - (\Delta \nu_{M\pm 2})^2} = \frac{2M \pm 1}{2M \pm 3}.$$
 (29b)

Solving,

$$M = \pm \frac{3s - 1}{2 - 2s}. (29c)$$

B. Formulas for Transition Intensities, $\Delta M = 0$

To facilitate the analysis, the dependence of the intensity upon the quantum number M may be employed. For the selection rule $|\Delta M| = 0$, the following relationships are obtained (neglecting changes due to frequency).¹⁵

(I)
$$|\Delta J| = 0$$
 transitions.

For these transitions it is known that the line strength is

$$I_{M} = PM^{2}; \tag{30}$$

(II) $|\Delta J| = 1$ transitions.

For these transitions it is known that the line strength is

$$I_{M} = O(J^{*2} - M^{2}), \tag{31}$$

where P, Q are parameters depending upon the

quantum numbers (other than M) and the asymmetry of the molecule; J^* is the larger of the two quantum numbers of the levels involved in the transition.

A factor of $\frac{1}{2}$ must be applied to those transitions for which M=0.

The results previously considered must be modified for case (I). From Eq. (30) it is seen that the component for which M equals zero has a vanishing line strength. Hence, under conditions of complete resolution only J components will be observed for case (a), and 2J components for cases (b) and (c), above.

The following relations may be obtained.

(I) $|\Delta J| = 0$ transitions

$$M = \pm \frac{(I_M/I_{M\pm 1})^{\frac{1}{2}}}{1 - (I_M/I_{M\pm 1})^{\frac{1}{2}}}.$$
 (32)

(II) $|\Delta J| = 1$ transitions

$$M = \pm \left(\frac{3t-1}{2-2t}\right),\tag{33}$$

where

$$t = \left(\frac{I_M - I_{M\pm 1}}{I_{M\pm 1} - I_{M\pm 2}}\right).$$

These relationships together with those given above for the frequency displacements permit the quantum number M to be evaluated by two independent methods. In practice, the formulas involving frequency displacements may be expected to yield somewhat better results since the frequencies are generally capable of being measured more accurately. Equations (32) and (33) may then serve as a convenient means of checking the results so obtained.

The formulas presented above have been arrayed to give a value of the quantum number M corresponding to a particular component of a partially or completely solved line. It should be emphasized, however, that to determine M one must know which of the above cases is actually applicable to a given line. In general, this may not be known beforehand, so it will be necessary to apply each of the formulas until a pair of equations (viz. for frequency displacements and relative intensities) is found that describe the experimental data adequately.

It should be borne in mind that the frequency

¹⁵ Here field-free intensities are employed. See, for example, Table I, reference 6.

displacements and relative intensity measurements give two entirely different kinds of information about the transition giving rise to the spectral line under observation. The frequency displacement measurements give information dealing with the degeneracies among the asymmetric-rotor levels and information leading to a determination of a quantum number J, which is the smaller of the two involved in the transition. The relative intensity measurements give more pertinent information pertaining to the transition itself (i.e. whether $|\Delta J| = 0$ or $|\Delta J| = 1$).

C. Formulas for Transition Frequencies, $|\Delta M| = 1$

For transitions in which the electric vector of the radiation is perpendicular to the electric field, the Stark pattern is moderately more complex than in the cases previously considered. A certain simplification is obtained when it is realized that transitions corresponding to

$$(-|M| \rightarrow -|M|-1)$$
 and $(|M| \rightarrow |M|+1)$

give rise to the same frequency. Similarly for

$$(-|M| \rightarrow -|M|+1)$$
 and $(|M| \rightarrow |M|-1)$.

Accordingly, the frequency displacements may be classified into two groups, as indicated. The following formulas result.

(a') No degeneracy

$$\Delta \nu_{M}^{(+)} = \{ A' + B'M^2 + B'' \mid M \mid \} E^2,$$

$$\Delta \nu_{M}^{(-)} = \{ A' + B'M^2 - B'' \mid M \mid \} E^2;$$
(34a)

(b') Degeneracy,¹⁸
$$|\Delta J| = 0$$

$$\Delta \nu_{M}^{(+)} = \pm \{F' | M| + F'' \} E,$$

$$\Delta \nu_{M}^{(-)} = \pm \{F' | M| - F'' \} E;$$
(34b)

(c') Degeneracy,
$$|\Delta J| = 1$$

$$\Delta\nu_{M}^{(+)} = \pm \{G'(J^{*2} - M^{2})^{\frac{1}{2}} + G''(J^{*2} - (|M| + 1)^{2})^{\frac{1}{2}}\}E$$

$$\Delta\nu_{M}^{(-)} = \pm \{G'(J^{*2} - M^{2})^{\frac{1}{2}} + G''(J^{*2} - (|M| - 1)^{2})^{\frac{1}{2}}\}E$$
(34c)

where $\Delta \nu_M^{(+)}$ corresponds to $|M| \rightarrow |M| + 1$; $\Delta \nu_M^{(-)}$ correspond to $|M| \rightarrow |M| - 1$.

Since $|M| \leq J$, a completely resolved spectral

line will have (2J+1) component for case (a') where J is the smaller of the two J's involved in the transition. For case (b') there will be (4J+2) components if $F''\neq 0$ and (2J+1) components otherwise. A similar statement applies to case (c'), depending upon whether or not G'' vanishes. Presumably, the more frequently occurring cases of (c') will have G''=0, corresponding to a transition that involves at least one non-degenerate level.

D. Formulas for Transition Intensities, $|\Delta M| = 1$

The explicit formulas permitting a solution for |M| can be obtained readily if the $\Delta \nu^{(+)}$ and $\Delta \nu^{(-)}$ groups of components can be distinguished from one another. Fortunately, this can be done on the basis of the relative strengths of the lines. The following relations hold.

$$\begin{split} |\Delta J| &= 0 \ transitions \\ I_{M}^{(+)} &= P\{J^2 - J - M^2 + |M|\}, \qquad (35a) \\ I_{M}^{(-)} &= P\{J^2 - J - M^2 - |M|\}. \qquad (35b) \end{split}$$

From these equations it is readily seen that the $\Delta \nu^{(+)}$ group of components have intensities that are greater than that of the $\Delta \nu^{(-)}$ group (except for M=0, when they are the same).

(II')
$$\Delta J = -1$$
 transitions
$$I_{M}^{(+)} = Q(J - |M|)(J - |M| - 1), \quad (36a)$$

$$I_{M}^{(-)} = Q(J + |M|)(J + |M| - 1); \quad (36b)$$
(II'') $\Delta J = +1$ transitions

$$I_{M}^{(+)} = Q(J+|M|)(J+|M|+1),$$
 (37a)

$$I_{M}^{(-)} = Q(J - |M|)(J - |M| + 1).$$
 (37b)

Here J is the larger of the two J's involved in the transition. Note that in each case the $\Delta \nu^{(+)}$ and $\Delta \nu^{(-)}$ groups may be distinguished from each other on the basis of intensities. However, in case (II') the $\Delta \nu^{(-)}$ group is the more intense group, while in case (II'') it is the $\Delta \nu^{(+)}$ group. The M=0 components of both groups will have the same intensity and frequency displacement.

No detailed formulas will be given from which the M's corresponding to the various components may be determined. However, it may be noted that the mean frequency displacement $(\Delta \nu_M^{(+)})$

 $+\Delta\nu_{M}^{(-)}$) reduces (for cases (a') and (b') above) to formulas already given for $\Delta M=0$ transitions. When it is possible to effect this combination for a number of different M values, those formulas may be used. In addition the frequency displacement differences $(\Delta\nu_{M}^{(+)}-\Delta\nu_{M}^{(-)})$ may serve to check a determination of M. In the particular case where F'' and G'' are zero, the formulas pertaining to $\Delta M=0$ are applicable insofar as frequency displacements are concerned.

APPENDIX A

Proof That the Third-Order Perturbation Terms Vanish in the Non-Degenerate Case

It may be shown that for the non-degenerate case the coefficient of the term cubic in the field strength is

$$\begin{split} W_{ii}^{(3)} &= -\sum_{j \neq i} \frac{H_{ii} H_{ij} H_{ji}}{(W_i{}^0 - W_j{}^0)^2} \\ &+ \sum_{j \neq i} \sum_{k \neq i} \frac{H_{ij} H_{jk} H_{ki}}{(W_i{}^0 - W_i{}^0)(W_i{}^0 - W_k{}^0)}, \end{split}$$

where i, j, k refers to the pairs of quantum numbers J, τ , and H is the matrix element of the dipole moment matrix (see Eq. (1)). For the present case $H_{ii}=0$, so

$$W_{ii}^{(3)} = \sum_{j \neq i} \sum_{k \neq i} \frac{H_{ij} H_{jk} H_{ki}}{(W_{i}^{0} - W_{j}^{0})(W_{i}^{0} - W_{k}^{0})}.$$

Since H is hermitian, this becomes

$$W_{ii}^{(3)} = \sum_{j>k} \sum_{k} \frac{(H_{ij}H_{jk}H_{ki}) + (H_{ij}H_{jk}H_{ki})^*}{(W_{i}^{0} - W_{j}^{0})(W_{j}^{0} - W_{k}^{0})},$$

since those terms for which j=k must vanish (i.e. $H_{jj}=0$).

Now those terms for which any two of i, j, or k correspond to the same species of wave function must also vanish. Consequently, only these terms remain for which i, j, and k correspond to different species of functions. Consequently, H_{ij} , H_{jk} , H_{ki} , must correspond to the three different direction cosines (or dipole-moment components), as indicated in Table I.

Since one of these only (depending upon the representation) is pure imaginary, while the other two are real, it follows that

$$W_{ii}^{(3)} = 0.$$

APPENDIX B

Estimate of the Order of Magnitude of Polarization Terms

Any contribution attributable to polarization will depend upon the departure of the polarizability ellipsoid from a sphere. To make an estimate of the effect under the most favorable conditions, imagine the polarizability ellipsoid degenerating into a line. Then the contribution to the energy is

$$W_p < \frac{1}{2}\alpha \langle \cos^2 \theta \rangle_{AV} E^2$$

where α is the polarizability, θ is the angle between the line of polarization and the direction of the applied electric field E.

To contribute to the Stark effect we require

$$\Delta W_p < \frac{1}{2} \alpha E^2 \Delta \langle \cos^2 \theta \rangle_{\text{Av}}$$

where Δ refers to the difference in the values in the upper and lower states. Clearly, since $\cos^2\theta < 1$

$$\Delta W_p \ll \frac{1}{2} \alpha E^2$$
.

Since $\alpha = 10^{-24}$ e.s.u. in order of magnitude, the frequency displacement for $E = 10^4$ volts/cm.

$$\Delta \nu_p \ll 0.08 \text{ mc/sec.}$$

which can be safely neglected.

APPENDIX C

Use of Tabulated Line Strengths to Evaluate the Direction-Cosine Matrix Elements

When extension to larger values of J of the present tables of Stark coefficients is desired, use may be made of the tables of line strengths of reference 6. From Eq. (14), above, it is seen that the only quantities needed are $(\Phi_{Zg})^2 J_{\tau;J'\tau'}$. From Eq. (19) of reference 6, the line strength is defined as

$$\lambda = \sum_{FMM'} |\Phi_{Fg}|^2 {}_{J\tau M;J'\tau'M'} = 3 |\Phi_{Zg}|^2 {}_{J;J'}$$

$$\times |\Phi_{Z_{\theta}}|^{2}{}_{J\tau;J'\tau'} \times \sum_{M,M'} |\Phi_{Z_{\theta}}|^{2}{}_{J,M;J'M'}$$

Two cases need be considered.

(a) |J-J'|=1. In this case, solving for $|\Phi_{Zg}|^2_{J\tau;J'\tau'}$ and substituting for $|\Phi_{Zg}|^2_{J;J'}$ and $\sum_{M,M'} |\Phi_{Zg}|^2_{JM;J'M}$

making use of Table I of reference 6,

$$|\Phi_{Zg}|^2_{J\tau;J'\tau'}=4J^*\lambda,$$

where J^* is the larger of the pair (J, J'). (b) |J-J'|=0. In this case

$$|\Phi_{Zg}|^2_{J\tau;J\tau'} = \frac{4J(J+1)}{2J+1}\lambda.$$

Substitution into Eq. (14), above with the frequencies determined from term values, or computed, gives immediately $W^{(2)}$.

APPENDIX D

Tables of Reduced Stark Coefficients

In preparing the tables of $A(\kappa, \alpha)$ and $B(\kappa, \alpha)$ the energy matrix of the asymmetric rotor was evaluated in terms of the type I^r representation of symmetric-rotor basis functions, making use of the results given in reference 7. The Wang transformation X was then applied. Since the energy levels of the asymmetric rotor are known as explicit functions of the parameter $\kappa(J < 3)$, it was possible to solve for the elements of the orthogonal transformation matrix T as explicit functions of κ . These elements were then evaluated for $\kappa = -1(0.1) + 1$. The calculations were carried out independently for each element to eight significant figures. The magnitude of the characteristic vectors of T differed from unity by no more than four in the eighth place. The values of the elements were rounded off to the seventh decimal place.

Next, the direction-cosine matrices were evaluated by applying $\mathbf{T}\cdots\mathbf{T}'$ to the matrices $\|(\Phi_{Zg})_{JK;J'K'}\|^{1}$. The rules of spectroscopic stability were applied to check the transformation. The deviations from the sum rule were no more than three in the seventh figure. An additional check was made through the symmetry of the transformed direction-cosine matrices: these matrices for negative κ values have the same

numerical values as for positive values, but have the labelling of the rows and columns inverted.⁶ The deviations between several computed values and those obtained by symmetry did not exceed two in the seventh place.

The reduced energy levels (see Eq. (3)) of the asymmetric rotor were calculated from the explicit formulas for $\kappa = -1(0.1) + 1$. To obtain the energy values for positive κ , use was made of the relation

$$E_{\tau}^{J}(\kappa) = -E_{-\tau}^{J}(-\kappa).$$

The calculations were carried out to eight significant figures and were rounded off to seven. Differences were formed between the various energy levels.

The reduced second-order Stark coefficients were then evaluated with the aid of Eq. (14) for $\kappa = -1(0.2) + 1$ and $\alpha = 0.1(0.2)0.9$. A separate computation was carried out for the accidentally degenerate levels so that Eq. (18) may be applied when degeneracy does occur. The final tabulation was rounded off to six decimal places, and fifth differences taken and smoothed.

In using the tables, the factor (2/a+c) must be applied to take into account the fact that reduced energies have been employed (see Eq. (16)). The various A's and B's are given for each level and dipole-moment component. In addition, a separate tabulation is given for the accidentally degenerate levels which will permit of easier interpolation (viz. interpolation of reciprocal) in regions of degeneracy. To get the entire reduced Stark coefficient for no degeneracy it is necessary to add the contributions from the accidentally degenerate parts to that given for the individual level. The signs given are for the first indicated level of the pair. For the remaining one, the signs should be reversed. For degeneracy, Eq. (18) must be applied.

Reduced Stark coefficients for dipole-moment component along principal axis of smallest moment of inertia.

Level		α\ĸ	-0.9	-0.7	-0.5	-0.3	-0.1	+0.1	+0.3	+0.5	+0.7	+0.9
00	Aa	0.1 0.3 0.5 0.7 0.9	184162 233100 317460 497512 -1.149425	182149 223714 289855 411523 709220	180180 215054 266667 350877 512820	178253 207039 246914 305810 401606	176367 199601 229885 271003 330033	174520 192678 215054 243309 280112	172712 186220 202020 220751 243309	170940 180180 190476 202020 215054	169205 174520 180180 186220 192678	167504 169205 170940 172712 174520

Reduced Stark coefficients for dipole-moment component along principal axis of smallest moment of inertia.—Continued.

Level		α\ĸ	-0.9	-0.7	-0.5	-0.3	-0.1	+0.1	+0.3	+0.5	+0.7	+0.9
_	Aa	0.1 0.3 0.5 0.7 0.9	.110496 .139843 .190401 .298186 .687107	.109278 .134088 .173343 .244913 .416573	.108075 .128671 .158650 .206427 .294253	.106888 .123564 .145856 .177239 .224222	.105717 .118742 .134604 .154294 .178605	.104561 .114182 .124620 .135714 .146318	.103420 .109860 .115685 .120298 .122077	.102294 .105758 .107628 .107243 .103037	.101183 .101858 .100310 .095985 .087524	.10008 .09814 .09361 .08612 .07448
1_1	B_a	0.1 0.3 0.5 0.7 0.9	165745 209786 285696 447681 -1.033846	163931 201307 260727 369870 636058	162154 193458 239662 314762 458179	160412 186171 221649 273667 357260	158704 179386 206065 241826 292176	157030 173054 192445 216410 246664	155389 167130 180436 195638 213001	153779 161575 169764 178326 187050	152199 156354 160213 163661 166390	15065 15143 15161 15106 14951
	A_a	0.1 0.3 0.5 0.7 0.9	055402 070671 097561 157480 408163	055096 069204 093023 141844 298508	054795 067797 088889 129032 235294	054496 066445 085106 118343 194175	054201 065147 081633 109290 165289	053908 063898 078431 101523 143885	053619 062696 075472 094787 127389	053333 061539 072727 088889 114286	053050 060423 070175 083682 103627	05277 05934 06779 07905 09478
19	B_a	0.1 0.3 0.5 0.7 0.9	.013850 .017668 .024390 .039370 .102041	.013774 .017301 .023256 .035461 .074627	.013699 .016949 .022222 .032258 .058824	.013624 .016611 .021277 .029586 .048544	.013550 .016287 .020408 .027322 .041322	.013477 .015974 .019608 .025381 .035971	.013405 .015674 .018868 .023697 .031847	.013333 .015385 .018182 .022222 .028571	.013263 .015106 .017544 .020921 .025907	.01319 .01483 .01694 .01976 .02369
	A_a	0.1 0.3 0.5 0.7 0.9	055096 069204 093023 141844 298508	054201 065147 081633 109290 165289	053333 061539 072727 088889 114286	052493 058309 065574 074906 087336	051680 055402 059702 064725 070671	050891 052770 054795 056980 059347	050125 050378 050633 050891 051151	049383 048193 047059 045977 044944	048662 046189 043956 041929 040080	04796 04434 04123 03853 03616
11	B_a	0.1 0.3 0.5 0.7 0.9	.013774 .017301 .023256 .035461 .074627	.013550 .016287 .020408 .027322 .041322	.013333 .015385 .018182 .022222 .028571	.013123 .014577 .016393 .018727 .021834	.012920 .013850 .014925 .016181 .017668	.012723 .013193 .013699 .014245 .014837	.012531 .012595 .012658 .012723 .012788	.012346 .012048 .011765 .011494 .011236	.012166 .011547 .010989 .010482 .010020	.01199 .01108 .01030 .00963 .00904
	Aa	0.1 0.3 0.5 0.7 0.9	.026284 .033264 .045274 .070819 .162326	.025775 .031617 .040759 .057088 .094060	.025012 .029771 .036457 .046408 .061305	.023958 .027697 .032298 .037683 .041255	.022605 .025422 .028296 .030374 .027418	.020984 .023001 .024498 .024224 .017391	.019157 .020520 .020982 .019129 .010156	.017210 .018079 .017831 .015047 .005209	.015234 .015768 .015111 .011940 .002218	.01330 .01365 .01285 .00974 .00089
2_2	B_a	0.1 0.3 0.5 0.7 0.9	013218 016668 022689 035560 082252	013670 016168 020826 029561 051154	014960 015965 019421 025469 037352	017317 016122 018439 022595 029650	020893 016688 017861 020592 024831	025690 017666 017663 019259 021731	031531 019009 017799 018457 019755	038088 020619 018201 018072 018576	044954 022373 018788 018002 017982	05173 02414 01947 01815 01781
	Aa	0.1 0.3 0.5 0.7 0.9	.013191 .016822 .023211 .037409 .096327	.013115 .016436 .021981 .033124 .066911	.013036 .016033 .020739 .029225 .048725	.012956 .015616 .019498 .025692 .036288	.012873 .015186 .018270 .022487 .027204	.012788 .014747 .017060 .019565 .020186	.012701 .014300 .015872 .016888 .014548	.012612 .013847 .014708 .014419 .009868	.012521 .013388 .013568 .012128 .005871	.01242 .01292 .01245 .00998 .00237
2_1	B_a	0.1 0.3 0.5 0.7 0.9	009160 011685 016129 026029 067393	009110 011438 015362 023381 048894	009059 011198 014650 021168 038094	009008 010964 013987 019291 031002	008958 010736 013368 017678 025980	008908 010513 012789 016274 022227	008858 010297 012246 015041 019309	008809 010086 011735 013948 016969	008759 009880 011254 012970 015045	00871 00967 01080 01208 01342
,	Aa	0.1 0.3 0.5 0.7 0.9	.013118 .016473 .022130 .033699 .070609	.012901 .015474 .019302 .025617 .038016	.012689 .014558 .017011 .020395 .025357	.012480 .013714 .015112 .016724 .018575	.012274 .012933 .013508 .013985 .014309	.012072 .012208 .012128 .011846 .011344	.011874 .011531 .010923 .010113 .009133	.011679 .010897 .009856 .008668 .007394	.011487 .010300 .008898 .007429 .005962	.01129 .00973 .00802 .00634 .00473
20	B_a	0.1 0.3 0.5 0.7 0.9	009110 011442 015379 023445 049305	008961 010768 013483 018026 027181	008817 010165 011991 014612 018691	008677 009622 010787 012262 014194	008542 009132 009793 010543 011405	008410 008686 008958 009230 009503	008281 008278 008246 008192 008119	008156 007904 007631 007349 007064	008035 007560 007094 006649 006229	00791 00724 00661 00605 005550
	Aa	0.1 0.3 0.5 0.7 0.9	026309 033300 045352 071073 164204	026021 031959 041408 058789 101317	025740 030722 038095 050125 073260	025465 029577 035273 043687 057372	025195 028514 032841 038715 047148	024931 027525 030722 034758 040016	024673 026603 028860 031536 034758	024420 025740 027211 028860 030722	024172 024931 025740 026603 027525	02392 02417 02442 02467 02493
21	B_a	0.1 0.3 0.5 0.7 0.9	.002993 .003723 .005053 .007907 .018253	.003617 .003793 .004746 .006636 .011338	.005149 .004177 .004691 .005897 .008394	.007830 .004953 .004919 .005569 .006930	.011813 .006173 .005452 .005589 .006240	.017094 .007833 .006278 .005908 .006038	.023471 .009868 .007354 .006466 .006166	.030614 .012160 .008604 .007192 .006514	.038066 .014564 .009936 .008010 .006990	.04541 .01693 .01126 .00885 .00752

Reduced Stark coefficients for dipole-moment component along principal axis of smallest moment of inertia.—Continued.

Level		α\κ	-0.9	-0.7	-0.5	-0.3	-0.1	+0.1	+0.3	+0.5	+0.7	+0.9
2	Aa	0.1 0.3 0.5 0.7 0.9	026272 033239 045220 070677 161622	025672 031433 040376 056316 092777	024761 029316 035671 045287 061682	023585 027045 031322 036893 044575	022193 024711 027420 030469 034022	020614 022362 023933 025429 026910	018879 020016 020788 021336 021739	017028 017702 017928 017910 017752	015122 015458 015329 014986 014545	013222 013326 012983 012472 011910
22	B_a	0.1 0.3 0.5 0.7 0.9	.002915 .003690 .005021 .007850 .017956	.002812 .003457 .004456 .006231 .010285	.002628 .003154 .003874 .004953 .006783	.002364 .002789 .003294 .003936 .004807	.002021 .002374 .002728 .003106 .003531	.001608 .001918 .002175 .002403 .002615	.001139 .001435 .001639 .001788 .001900	.000633 .000940 .001125 .001240 .001312	.000113 .000453 .000644 .000753	000399 000010 .000203 .000325 .000396
11-10	B_a	0.1 0.3 0.5 0.7 0.9	25.000000 8.333333 5.000000 3.571429 2.777778	8.333333 2.777778 1.666667 1.190476 .925926	5.00000 1.666667 1.00000 .714286 .555556	3.571428 1.190476 .714286 .510204 .396825	2.777778 .925926 .555556 .396825 .308642	2.272727 .757576 .454545 .324675 .252525	1.923076 .641025 .384615 .274725 .213675	1.666667 .555555 .333333 .238095 .185185	1.470588 .490196 .294118 .210084 .163399	1.315789 .438596 .263158 .187970 .146199
20-2-1	B_a	0.1 0.3 0.5 0.7 0.9	.925926 .308642 .185185 .132275 .102881	.308642 .102881 .061728 .044092 .034294	.185185 .061728 .037037 .026455 .020576	.132275 .044092 .026455 .018896 .014697	.102881 .034294 .020576 .014697 .011431	.084175 .028058 .016835 .012025 .009353	.071225 .023742 .014245 .010175 .007914	.061728 .020576 .012346 .008818 .006859	.054466 .018155 .010893 .007781 .006052	.048733 .016244 .009747 .006962 .005415
22-21	B_a	0.1 0.3 0.5 0.7 0.9	288.88888 96.296296 57.777778 41.269829 32.098765	30.453380 10.151128 6.090677 4.350483 3.383710	10.370598 3.456866 2.074120 1.481514 1.152289	4.993661 1.664553 .998732 .713380 .554851	2.843947 .947983 .568789 .406278 .315994	1.789652 .596551 .357930 .255665 .198850	1.204169 .401390 .240834 .172024 .133797	.850946 .283649 .170189 .121564 .094550	.624897 .208299 .124979 .089271 .069433	.473659 .157886 .094732 .067666 .052629
22-33	$A_{\mathfrak{a}}$	0.1 0.3 0.5 0.7 0.9	000012 000029 .000073 .000016 .000009	000104 000226 .001380 .000170 .000091	000247 000500 .022416 .000478 ,000242	000362 000702 011169 .000803 .000388	000395 000747 006789 .000958 .000447	000343 000642 004939 .000867 .000399	000242 000452 003503 .000609 .000280	000133 000251 002263 .000322 .000150	000049 000094 001213 .000111 .000053	000005 000011 000357 .000011
22-3-3	Ba	0.1 0.3 0.5 0.7 0.9	.000001 .000003 000008 000002 000001	.000012 .000025 000153 000019 000010	.000027 .000056 002491 000053 000027	.000040 .000078 .001241 000089 000043	.000044 .000083 .000754 000106 000050	.000038 .000071 .000549 000096 000044	.000027 .000050 .000389 000068 000031	.000015 .000028 .000252 000036 000017	.000005 .000010 .000135 000012 000006	.000001 .000001 .000040 000001 000001

Reduced Stark coefficients for dipole-moment component along principal axis of intermediate moment of inertia.

Lev	el	α\κ	-0.9	-0.7	-0,5	-0.3	-0.1	+0.1	+0.3	+0.5	+0.7	+0.9
00	Аь	0.1 0.3 0.5 0.7 0.9	166667 166667 166667 166667 166667									
1_1	Аь	0.1 0.3 0.5 0.7 0.9	052632 058824 066667 076923 090909									
1-1	B_b	0.1 0.3 0.5 0.7 0.9	.013158 .014706 .016667 .019231 .022727									>
10	A_b	0.1 0.3 0.5 0.7 0.9	.120398 .124601 .128105 .131070 .133611	.123372 .127676 .131201 .134141 .136632	.126692 .131049 .134549 .137423 .139825	.130296 .134647 .138068 .140828 .143103	.134076 .138355 .141641 .144243 .146356	.137894 .142034 .145133 .147539 .149461	.141601 .145543 .148413 .150597 .152314	.145066 .148763 .151379 .153329 .154837	.148195 .151620 .153973 .155690 .156998	.150945 .154085 .156180 .157677 .158799
10	B_b	0.1 0.3 0.5 0.7 0.9	155099 156150 157026 157768 158403	155843 156919 157800 158535 159158	156673 157762 158637 159356 159956	157574 158662 159517 160207 160776	158519 159589 160410 161061 161589	159474 160509 161283 161885 162365	160400 161386 162103 162649 163078	161266 162191 162845 163332 163709	162049 162905 163493 163923 164249	162736 163521 164045 164419 164700
1+1	A_b	0.1 0.3 0.5 0.7 0.9	047619 043478 040000 037037 034483					·- ·- · · · · · · · · · · · · · · · · ·				`
*+1	B_b	0.1 0.3 0.5 0.7 0.9	.011905 .010870 .010000 .009259 .008621									

Reduced Stark coefficients for dipole-moment component along principal axis of intermediate moment of inertia.—Continued.

Leve	els	α\ĸ	-0.9	-0.7	-0.5	-0,3	-0.1	+0.1	+0.3	+0.5	+0.7	+0.9
2_2	Аь	0.1 0.3 0.5 0.7 0.9	031035 036285 043673 054842 073686	031957 037494 045367 057439 078280	032971 038771 047098 060023 082771	034054 040077 048796 062459 086852	035173 041359 050381 064601 090195	036284 042565 051773 066319 092527	037344 043644 052912 067530 093705	038317 044564 053770 068211 093749	039180 045314 054350 068403 092822	039923 045897 054678 068187 091161
4-2	B_b	0.1 0.3 0.5 0.7 0.9	.003448 .004032 .004853 .006094 .008187	.003551 .004166 .005041 .006382 .008698	.003663 .004308 .005233 .006669 .009197	.003784 .004453 .005422 .006940 .009650	.003908 .004596 .005598 .007178 .010022	.004032 .004729 .005753 .007369 .010281	.004149 .004849 .005879 .007503 .010412	.004257 .004952 .005974 .007579 .010417	.004353 .005035 .006039 .007600 .010314	.004436 .005100 .006075 .007576 .010129
2_1	Аъ	0.1 0.3 0.5 0.7 0.9	.030784 .037205 .045272 .055748 .069949	.034885 .041682 .050091 .060876 .075359	.038807 .045837 .054422 .065340 .079920	.042148 .049271 .057892 .068810 .083365	.044760 .051874 .060466 .071293 .085767	.046699 .053751 .062236 .072990 .087373	.048109 .055075 .063466 .074131 .088433	.049129 .056007 .064311 .074899 .089135	.049874 .056669 .064899 .075425 .089609	.050426 .057147 .065315 .075790 .089935
4 -1	B_b	0.1 0.3 0.5 0.7 0.9	010730 012304 014290 016878 020398	011186 012801 014825 017448 021000	011622 013263 015306 017944 021506	-,011993 013644 015692 018329 021889	012283 013934 015976 018605 022156	012499 014142 016174 018794 022334	012655 014289 016311 018921 022452	012769 014393 016405 019006 022530	012852 014467 016470 019064 022583	012913 014520 016517 019105 022619
2.	Аь	0.1 0.3 0.5 0.7 0.9	023810 023810 023810 023810 023810									
20	B_b	0.1 0.3 0.5 0.7 0.9	.002646 .002646 .002646 .002646 .002646				13H /41					
•	A_b	0.1 0.3 0.5 0.7 0.9	.014388 .013980 .013480 .012950 .012419	.015000 .014614 .014116 .013575 .013028	.015806 .015436 .014929 .014368 .013796	.016881 .016513 .015983 .015386 .014774	.018326 .017935 .017356 .016701 .016028	.020264 .019808 .019140 .018391 .017625	.022806 .022218 .021403 .020510 .019611	.025974 .025163 .024127 .023031 .021952	.029595 .028462 .027132 .025779 .024476	.033284 .031754 .030083 .028444 .026902
21	B_b	0.1 0.3 0.5 0.7 0.9	008213 007592 007053 006583 006169	008281 007663 007124 006652 006237	008370 007754 007214 006741 006322	008489 007873 007331 006854 006431	008650 008032 007484 007000 006570	008865 008240 007682 007188 006748	009148 008507 007934 007423 006968	009500 008835 008236 007703 007228	009902 009201 008570 008008 007509	010312 009567 008898 008305 007778
	A_b	0.1 0.3 0.5 0.7 0.9	.013028 .012555 .012029 .011496 .010978	.010569 .010004 .009450 .008928 .008446	.007820 .007187 .006638 .006160 .005742	.004848 .004183 .003676 .003277 .002955	.001760 .001103 .000678 .000392 .000194	001316 001921 002228 002374 002428	004253 004766 004926 004914 004814	006945 007337 007334 007156 006903	009331 009580 009409 009070 008673	011386 011484 011151 010664 010137
22	B_b	0.1 0.3 0.5 0.7 0.9	007874 007237 006692 006221 005811	007188 006527 005976 005510 005110	006421 005746 005198 004746 004366	005590 004912 004381 003953 003601	004722 004055 003551 003158 002843	003850 003208 002743 002393 002120	003009 002404 001988 001686 001459	002229 001672 001308 001057 000876	001529 001025 000718 000517 000379	000921 000471 000218 000064 000034
	A_b	0.1 0.3 0.5 0.7 0.9	020951 031394 062588 830826 .063395	023914 033904 058228 206071 .133895	027223 036800 056771 124148 .664525	030815 039988 056936 098817 373715	034585 043341 058034 087799 180240	038393 046710 059626 082414 133399	042090 049944 061400 079677 113446	045545 052920 063144 078265 102908	048666 055559 064726 077516 096606	051407 057827 066081 077083 092479
10-2-2	B_b	0.1 0.3 0.5 0.7	.005238 .007848 .015647 2.457708 015849	.005979 .008476 .014557 .051518 033474	.006806	.007704	.008646	.009598 .011677 .014906 .020604 .033350	.010523 .012486 .015350 .019919 .028361	.011386 .013230 .015786 .019566 .025727	.012167 .013890 .016182 .019379 .024152	.012852 .014457 .016520 .019271 .023120
11-1-1	B_b	0.1 0.3 0.5 0.7 0.9	1.250000 .416667 .250000 .178571 .138889		Make							
2_1 -3_2	A_b	0.1 0.3 0.5 0.7 0.9	018443 025850 043202 131405 .126148	022539 030071 045165 090681 11.634484	026455 034014 047619 079365 238095	029792 037271 049762 074849 150943	032399 039724 051328 072509 009168	034334 041471 052353 070977 110171	-,035739 042682 052974 069805 102314	036755 043515 053322 068836 097081	037497 044090 053498 068008 093318	038045 044490 053565 067289 090468
·~1 — -33	B_b	0.1 0.3 0.5 0.7 0.9	.002049 .002872 .004800 .014601 014017	.002504 .003341 .005018 .010076 -1.292720	.002939 .003779 .005291 .008818 .026455	.003310 .004141 .005529 .008317 .016772	.003600 .004414 .005703 .008057 .001019	.003815 .004608 .005817 .007886 .012241	.003971 .004742 .005886 .007756 .011368	.004084 .004835 .005925 .007648 .010787	.004166 .004899 .005944 .007556 .010369	.004227 .004943 .005952 .007477 .010052

Reduced Stark coefficients for dipole-moment component along principal axis of intermediate moment of inertia.—Continued.

Level	8	α\κ	-0.9	-0.7	-0.5	-0.3	-0.1	+0.1	+0.3	+0.5	+0.7	+0.9
		0.1	.385824	.326893	.272357	.223059	.179694	.142657	.111948	.087171	.067634	.052491
	73	0.3	.128608	.108964	.090786	.074353	.059898	.047552	.037316	.029057	.022545	.017497
$2_0 - 2_{-2}$	B_b	0.5	.077165	.065379	.054471	.044612	.035939	.028532	.022390	.017434	.013527	.010498
		0.7	.055118 .042869	.046699 .036322	.038908	.031866	.025671	.020380	.015993	.012453	.009662	.007499
		0.9	.042809	.030322	.030262	.024784	.019966	.015851	.012439	.009686	.007515	.005832
		0.1 0.3	.046296) .015432									
$2_1 - 2_{-1}$	B_h	0.5	.009259}-									
21-2-1	Do	0.7	.006614									
		0.9	.005144									
		0.1	003224	003831	004632	005701	~.007143	009076	011614	014778	018396	022081
		0.3	005989	006272	006833	007709	008973	010716	013019	015873	019095	022320
	A_b	0.5	042052	017290	013024	011900	012065	013079	014810	017143	019849	022564
		0.7	.008375	.022854	242173	026073	018409	016780	017172	018634	020665	022813
21-3-1		0.9	.003808	.006880	.016041	.136436	038821	023401	020431	020408	021551	023068
21-3-1	1	0.1	.000358	.000426	.000515	.000634	.000794	.001009	.001291	.001642	.002044	.002454
	_	0.3	.000666	.000697	.000759	.000857	.000997	.001191	.001447	.001764	.002122	.002480
	B_b	0.5	.004672	.001921	.001447	.001322	.001341	.001453	.001646	.001905	.002205	.002507
		0.7	000931	002539	.026908	.002897	.002045	.001864	.001908	.002070	.002296	.002535
		. 0.9	000423	000764	001782	015160	.004314	.002600	.002270	.002268	.002395	.002563
		0.1	.052491	.067634	.087171	.111948	.142657	.179694	.223059	.272357	.326893	.385824
		0.3	.017497	.022545	.029057	.037316	.047552	.059898	.074353	.090786	.108964	.128608
$2_2 - 2_0$	B_b	0.5	.010498	.013527	.017434	.022390	.028532	.035939	.044612	.054471	.065379	.077165
		0.7	.007499	.009662	.012453	.015993	.020380	.025671	.031866	.038908	.046699	.055118
		0.9	,005832	.007515	.009686	.012439	.015851	.019966	.024784	.030262	.036322	.042869
		0.1	002792	002382	001935	001480	001050	000677	000384	000179	000058	000006
		0.3	005501	004578	003651	002757	001944	001253	000715	000337	000111	000011
	Ab	0.5	186936	058776	032184	020158	013102	008448	005226	002974	001420	000375
		0.7	.005845	.005423	.004722	.003795	.002763	.001782	.000984	.000436	.000131	.000012
		0.9	.002878	.002592	.002199	.001734	.001250	.000806	.000450	.000203	.000063	.000006
$2_2 - 3_{-2}$		0.1	.000310	.000265	.000215	.000164	.000117	.000075	.000043	.000020	.000006	.000001
		0.1	.000310	.000263	.000213	.000104	.000117	.000139	.000043	.000020	.000012	.000001
	B_b	0.5	.020771	.006531	.003576	.002240	.000216	.000139	.000581	.000330	.00012	.000042
	26	0.7	000650	000603	000525	000422	000307	000198	000109	000030	000138	000042
		0.9	000320	000288	000323	000193	000307	000090	000109	000023	000013	000001

Reduced Stark coefficients for dipole-moment component along principal axis of largest moment of inertia.

Level		α\κ	-0.9	-0.7	-0.5	-0.3	-0.1	+0.1	+0.3	+0.5	+0.7	+0.9
00	Ac	0.1 0.3 0.5 0.7 0.9	165838 164204 162602 161031 159490	164204 159490 155039 150830 146843	162602 155039 148148 141844 136054	161031 150830 141844 133869 126743	159490 146843 136054 126743 118623	157978 143062 130719 120337 111483	156494 139470 125786 114548 105152	155039 136054 121212 109290 099502	153610 132802 116959 104493 094429	152207 129702 112994 100100 089847
1_1	$A_{\mathfrak{o}}$	0.1 0.3 0.5 0.7 0.9	052219 057307 063492 071174 080972	051414 054496 057971 061920 066445	050633 051948 053333 054795 056338	049875 049628 049383 049140 048900	049140 047506 045977 044543 043197	048426 045558 043011 040733 038685	047733 043764 040404 037523 035026	047059 042105 038095 034783 032000	046404 040568 036036 032415 029455	045767 039139 034188 030349 027285
. 1_1	B_c	0.1 0.3 0.5 0.7 0.9	.013055 .014327 .015873 .017794 .020243	.012854 .013624 .014493 .015480 .016611	.012658 .012987 .013333 .013699 .014085	.012469 .012407 .012346 .012285 .012225	.012285 .011877 .011494 .011136 .010799	.012107 .011390 .010753 .010183 .009671	.011933 .010941 .010101 .009381 .008757	.011765 .010526 .009524 .008696 .008000	.011601 .010142 .009009 .008104 .007364	.011442 .009785 .008547 .007587 .006821
į	Ac	0.1 0.3 0.5 0.7 0.9	047506 043197 039604 036563 033956	047281 042644 038835 035651 032949	047059 042105 038095 034783 032000	046838 041580 037383 033956 031104	046620 041068 036697 033168 030257	046404 040568 036036 032415 029455	046189 040080 035398 031696 028694	045977 039604 034783 031008 027972	045767 039139 034188 030349 027285	045558 038685 033613 029718 026631
10	Bc	0.1 0.3 0.5 0.7 0.9	.011877 .010799 .009901 .009141 .008489	.011820 .010661 .009709 .008913 .008237	.011765 .010526 .009524 .008696 .008000	.011710 .010395 .009346 .008489 .007776	.011655 .010267 .009174 .008292 .007564	.011601 .010142 .009009 .008104 .007364	.011547 .010020 .008850 .007924 .007174	.011494 .009901 .008696 .007752 .006993	.011442 .009785 .008547 .007587 .006821	.011390 .009671 .008403 .007429 .006658
	Ac	0.1 0.3 0.5 0.7 0.9	.117019 .119637 .121606 .123076 .124156	.112960 .112772 .112112 .111126 .109911	.108978 .106291 .103463 .100597 .097754	.105191 .100294 .095693 .091402 .087416	.101720 .094886 .088847 .083489 .078713	.098674 .090147 .082950 .076802 .071492	.096122 .086116 .077988 .071257 .065593	.094081 .082774 .073891 .066729 .060832	.092516 .080054 .070550 .063064 .057014	.091360 .077858 .067834 .060096 .053943
1,	B_c	0.1 0.3 0.5 0.7 0.9	153633 153062 152353 151542 150656	151393 147810 144307 140904 137610	149196 142852 136977 131532 126479	147071 138196 130306 123252 116911	145047 133854 124253 115929 108646	143152 129833 118777 109453 101485	141401 126131 113837 103725 095263	139799 122734 109382 098650 089835	138336 119615 105357 094136 085075	136995 116741 101704 090099 080871

Reduced Stark coefficients for dipole-moment component along principal axis of largest moment of inertia.—Continued.

Leve	ls	α\x	-0.9	-0.7	-0.5	-0.3	-0.1	+0.1	+0.3	+0.5	+0.7	+0.9
2_2	Ac	0.1 0.3 0.5 0.7 0.9	029919 034085 039583 047195 058434	028576 031087 034089 037736 042261	027265 028419 029687 031082 032619	026030 026075 026135 026205 026279	024911 024060 023279 022555 021879	023943 022375 021011 019810 018742	023146 021011 019245 017756 016482	022525 019945 017899 016236 014856	022070 019138 016895 015124 013689	02175' 01854' 01616' 014319 01285
	Be	0.1 0.3 0.5 0.7 0.9	.003324 .003787 .004398 .005244 .006493	.003175 .003454 .003788 .004193 .004696	.003029 .003158 .003299 .003454 .003624	.002892 .002897 .002904 .002912 .002920	.002768 .002673 .002567 .002506 .002431	.002660 .002486 .002334 .002201 .002082	.002572 .002335 .002138 .001973 .001831	.002503 .002216 .001989 .001804 .001651	.002452 .002126 .001877 .001680 .001521	.00241 .00206 .00179 .00159 .00142
2_1	A e .	0.1 0.3 0.5 0.7 0.9	023691 023458 023229 023004 022784	023458 022784 022148 021547 020978	023229 022148 021164 020263 019436	023004 021547 020263 019124 -,018106	022784 020978 019436 018106 016946	022568 020437 018674 017191 015926	022356 019924 017969 016364 015022	022148 019436 017316 015613 014215	021944 018971 016708 014928 013490	021744 018529 016152 014300 012833
	Be	0.1 0.3 0.5 0.7 0.9	040125 011646 005970 003552 002219	032774 009262 004615 002660 001600	025319 006839 003229 001734 000941	018181 004518 001896 000838 000293	011792 002444 000705 000035 .000291	006506 000734 .000272 .000622 .000768	002517 .000547 .000997 .001104 .001114	.000172 .001397 .001466 .001408 .001325	.001712 .001866 .001711 .001555 .001418	.00234(.002035 .00178(.00157(.001418
29	Ae,	0.1 0.3 0.5 0.7 0.9	.026619 .031722 037924 .045623 .055436	.022384 .025637 .029281 .033396 .038087	.018756 .020589 .022476 .024423 .026438	.015989 .016789 .017526 .018209 .018843	.014062 .014124 .014136 .014106 .014045	.012792 .012329 .011884 .011458 .011053	.011977 .011129 .010389 .009739 .009164	.011457 .010314 .009377 .008596 .007935	.011123 .009743 .008668 .007806 .007100	.010904 .009326 .008148 .007234
	Be	0.1 0.3 0.5 0.7 0.9	010211 011484 013032 014955 017406	009628 010418 011305 012311 013460	009117 009503 009905 010324 010762	008704 008758 008806 008848 008885	008388 008168 007957 007754 007560	008147 007698 007294 006931 006601	007961 007315 006766 006291 005883	007809 006994 006333 005786 005326	007681 006717 005968 005369 004880	007568 006472 005654 005019 004517
21	Ac	0.1 0.3 0.5 0.7 0.9	.013846 .013317 .012741 .012164 .011607	.013295 .012568 .011862 .011200 .010590	.012792 .011889 .011073 .010343 .009693	.012341 .011283 .010375 .009592 .008913	.011945 .010753 .009768 .008944 .008245	.011608 .010299 .009251 .008395 .007683	.011331 .009921 .008822 .007941 .007220	.011114 .009618 .008476 .007576	.010956 .009385 .008207 .007293 .006561	.010854 .009218 .008010 .007083 .006348
-1	B_c	0.1 0.3 0.5 0.7 0.9	008137 007479 006916 006430 006006	008044 007319 006712 006196 005753	007957 007169 006521 005980 005522	007877 007029 006345 005782 005310	007802 006899 006182 005601 005119	007735 006779 006033 005435 004945	007674 006669 005897 005285 004788	007621 006569 005773 005149 004646	007574 006479 005660 005026 004519	007534 006397 005559 004915 004404
22	Ae	0.1 0.3 0.5 0.7 0.9	.015148 .014675 .014120 .013542 .012971	.017160 .016529 .015834 .015132 .014451	.019063 .018201 .017431 .016458 .015647	.020717 .019554 .018437 .017397 .016441	.021971 .020449 .019072 .017838 .016736	.022703 .020792 .019147 .017726 .016491	.022880 .020582 .018690 .017109 .015770	.022616 .019965 .017866 .016164 .014757	.022158 .019203 .016942 .015158 .013713	.021769 .018555 .016168 .014325
22	B_c	0.1 0.3 0.5 0.7 0.9	.034293 .006432 .001289 000668 001598	.026356 .003468 000645 002141 002804	.018335 .000507 002550 003572 003958	.010680 002279 004311 004869 004985	.003859 004714 005811 005943 005811	001745 006655 006959 006728 006385	005927 008030 007715 007199 006691	008690 008855 008100 007380 006756	010221 009218 008183 007335 006640	010800 009239 008055 006639 006408
10-1-1	Вс	0.1 0.3 0.5 0.7 0.9	1,315789 .438596 .263158 .187970 .146199	1.470588 .490196 .294118 .210084 .163399	1.666667 .555556 .333333 .238095 .185185	1.923077 .641026 .384615 .274725 .213675	2.272727 .757576 .454545 .324675 .252525	2.777778 .925926 .555556 .396825 .308642	3.571429 1.190476 .714286 .510204 .396825	5.000000 1.666667 1.000000 .714286 .555556	8,333333 2,77778 1,666667 .190476 .925926	25.000000 8.333333 5.000000 3.571428 2.777778
11-2-2	A_c	0.1 0.3 0.5 0.7 0.9	018016 027275 056106 .982747 .050357	014829 021635 039986 263412 .057418	011716 016563 028249 095945 .068712	008792 012106 019430 049179 .092589	006181 008329 012768 027335 .193987	003989 005285 007830 015102 211759	002286 002990 004323 007797 039729	001087 001410 002005 003466 012798	000360 000465 000654 001103 003527	000037 000047 000066 000110 000331
1, 2-2	B _e	0.1 0.3 0.5 0.7 0.9	.004504 .006819 .014027 245687 012589	.003707 .005409 .009997 .065853 014355	.002929 .004141 .007062 .023986 017178	.002198 .003027 .004857 .012295 023147	.001545 .002082 .003192 .006834 048497	.000997 .001321 .001958 .003776 .052940	.000572 .000748 .001081 .001949	.000272 .000353 .000501 .000867	.000090 .000116 .000163 .000276 .000882	.000009 .000012 .000016 .000027
2_1-2-2	B_{c}	0.1 0.3 0.5 0.7 0.9	.473659 .157886 .094732 .067666 .052629	.624897 .208299 .124979 .089271 .069433	.850946 .283649 .170189 .121564 .094550	1.204169 .401390 .240834 .172024 .133797	1.789653 .596551 .357931 .255665 .198850	2.843947 .947983 .568790 .406278 .315994	4.993661 1.664554 .998732 .713380 .554851	10.372655 3.457552 2.074531 1.481808 1.152517	4.350483 3.383710	288.888889 96.296286 57.777778 44.269839 32.098765
20-3-3	A_c	0.1 0.3 0.5 0.7 0.9	014358 020502 035839 142277 .072227	010277 014457 024367 077483 .065674	006803 009524 015873 047619	004190 005891 009918 031360 .026993	002414 003436 005956 022335 .012761	001296 001879 003413 018577 .005394	000633 000939 001820 029454 .002076	000263 000402 000849 .007603 .000694	000078 000123 000291 .000807 .000169	000007 000012 000033 .000044 .000013
	B_e	0.1 0.3 0.5 0.7 0.9	.001595 .002278 .003982 .015809 008025	.001142 .001606 .002708 .008609 007297	.000756 .001058 .001764 .005291 005291	.000466 .000655 .001102 .003484 002999	.000268 .000382 .000662 .002482 001418	.000144 .000209 .000379 .002064 000599	.000070 .000104 .000202 .003273 000231	.000029 .000045 .000094 000845 000077	.000009 .000014 .000032 000090 000019	.000001 .000004 000005 000002

Reduced Stark coefficients for dipole-moment component along principal axis of largest moment of inertia.—Continued.

Level	١.	$\alpha \setminus \kappa$	-0.9	-0.7	-0.5	-0.3	-0.1	+0.1	+0.3	+0.5	+0.7	+0.9
21-29	B_c	0.1 0.3 0.5 0.7 0.9	.048733 .016244 .009747 .006962 .005415	.054466 .018155 .010893 .007781 .006052	.061728 .020576 .012346 .008818 .006859	.071225 .023742 .014245 .010175 .007914	.084175 .028058 .016835 .012025 .009353	.102881 .034294 .020576 .014697 .011431	.132275 .044092 .026455 .018896 .014697	.185185 .061728 .037037 .026455 .020576	.308642 .102881 .061728 .044092 .034294	.925926 .308642 .185185 .132275 .102881
21-3-2	A_c	0.1 0.3 0.5 0.7 0.9	002693 005305 175669 .005647 .002779	002163 004143 048888 .004988 .002373	001684 003145 023771 .004276 .001962	001260 002301 013249 .003527 .001556	000896 001604 007648 .002763 .001170	000593 001044 004334 .002014 .000817	000354 000613 002290 .001320 .000512	000177 000303 001044 .000724 .000269	000063 000106 000341 .000278 .000099	000007 000011 000035 .000033
21 - 3 - 2	B_{c}	0.1 0.3 0.5 0.7 0.9	.000299 .000590 .019519 000627 000309	.000240 .000460 .005432 000554 000264	.000187 .000349 .002641 000475 000218	.000140 .000256 .001472 000392 000173	.000100 .000178 .000850 000307 000130	.000066 .000116 .000482 000224 000091	.000039 .000068 .000255 000147 000057	.000020 .000034 .000116 000081 000030	.000007 .000012 .000038 000031 000011	.000001 .000001 .000004 000004 000001
22-3-1	A_c	0.1 0.3 0.5 0.7 0.9	003094 005750 040563 .008026 .003652	003301 005420 015134 .018433 .005855	003428 005093 009904 178707 .011139	003415 004676 007413 017879 .043408	003194 004091 005686 009319 025827	002718 003296 004186 005733 009095	002002 002324 002769 003426 004490	001169 001313 001496 001739 002076	000443 000478 000520 000570 000630	000048 000051 000056 000061 000067
22-3-1	B_{c}	0.1 03. 0.5 0.7 0.9	.000344 .000639 .004507 000892 000406	.000367 .000602 .001681 002122 000651	.000381 .000566 .001100 .019856 001238	.000379 .000520 .000824 .001987 004823	.000355 .000455 .000632 .001035 .002870	.000302 .000366 .000465 .000637 .001011	.000222 .000258 .000308 .000381 .000499	.000130 .000146 .000166 .000193 .000231	.000049 .000053 .000058 .000063 .000070	.000005 .000006 .000006 .000007 .000008