COM 525000 – Statistical Learning Lecture 3 – Linear Regression

Y.-W. Peter Hong

Recall Example

Example: (Advertising Data Set)

 Sales in 200 different markets versus the advertising budgets for TV, radio, and newspaper.

Simple Linear Regression

- Goal: Predict a quantitative response Y on the basis
 of a single predictor X under a linear model.
- Linear Model:

$$Y = \beta_0 + \beta_1 X + \epsilon$$

where β_0 , β_1 are the model coefficients and ϵ is the error that captures noise and model mismatches.

E.g., sales
$$\approx \beta_0 + \beta_1 \times TV$$

- \rightarrow β_0 is the intercept and β_1 is the slope.
- With estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ obtained from training data, a prediction of Y on the basis of X=x is given by

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x.$$

Statistical Learning

2

Estimating Coefficients

- Let $\mathcal{D} = \{(x_1, y_1), \dots, (x_n, y_n)\}$ be a set of n training data points.
- Find coefficient estimates $\hat{\beta}_0$ and $\hat{\beta}_1$ such that the predictions

$$\hat{y}_1, \hat{y}_2, \dots, \hat{y}_n$$

where $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ are as *close* as possible to observed responses

$$y_1, y_2, \ldots, y_n$$
.

 Closeness can be measured using residual sum of squares (RSS):

$$RSS(\hat{\beta}_0, \hat{\beta}_1) = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)^2.$$

Least Squares Approach

• Least squares (LS) approach: Choose $\hat{\beta}_0$ and $\hat{\beta}_1$ to minimize the RSS. The solution is given by

$$\hat{\beta}_{1}^{(\mathcal{D})} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} \quad \text{and} \quad \hat{\beta}_{0}^{(\mathcal{D})} = \bar{y} - \hat{\beta}_{1}^{(\mathcal{D})} \bar{x}$$

where $\bar{x} \triangleq \frac{1}{n} \sum_{i=1}^{n} x_i$ and $\bar{y} \triangleq \frac{1}{n} \sum_{i=1}^{n} y_i$.

Proof:

Statistical Learning

5

Population vs LS Regression Lines

- Recall that, in linear regression, the model is given by $Y = \beta_0 + \beta_1 X + \epsilon.$
- $f(X) = \beta_0 + \beta_1 X$ is the population regression line, and $\hat{f}(X; \mathcal{D}) = \hat{\beta}_0^{(\mathcal{D})} + \hat{\beta}_1^{(\mathcal{D})} X$ is the LS regression line.

Statistical Learning

6

Bias & Standard Error

• In general, the estimate $\hat{\theta}^{(\mathcal{D})}$ of an unknown parameter θ has mean squared error (MSE) $E[(\theta - \hat{\theta}^{(\mathcal{D})})^2] =$

- $\hat{\theta}^{(\mathcal{D})}$ is an unbiased estimator if $E[\hat{\theta}^{(\mathcal{D})}] = \theta$.
 - It does not systematically over- or under-estimate.
 - For independent data sets $\mathcal{D}_1, \mathcal{D}_2, \ldots$, we have $\frac{1}{M} \sum_{m=1}^M \hat{\theta}^{(\mathcal{D}_m)} \to \theta$ as $M \to \infty$.
- Standard error $SE(\hat{\theta}^{(D)})$ measures how far off a single estimate may be.

Statistical Learning

7

Example

Example: Let μ be the (population) mean of random variable Z, and let $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} z_i$ (sample mean) be an estimate μ , where z_1, \ldots, z_n are n i.i.d. observations of Z. Show that $\hat{\mu}$ is unbiased and its standard error is

$$SE(\hat{\mu}) = \sqrt{Var(\hat{\mu})} = \sqrt{\frac{\sigma^2}{n}}$$

where $\sigma^2 = \operatorname{Var}(Z)$.

Standard Errors of LS Coefficients

- **Assumptions:** (i) in the model $Y = \beta_0 + \beta_1 X + \epsilon$, ϵ is independent of X; (ii) among observations y_1, \ldots, y_n , where $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, $\epsilon_1, \ldots, \epsilon_n$ are i.i.d. $\mathcal{N}(0, \sigma^2)$.
- The LS coefficients are *unbiased*, i.e., $E[\hat{\beta}_i] = \beta_i$, i = 1, 2,
- The standard errors (squared) are

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i - \bar{x})^2} \right]$$
$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

where $\sigma^2 = \text{Var}(\epsilon)$. (\rightarrow shown later)

Statistical Learning

9

Confidence Intervals (1/2)

• In practice, σ is unknown, but can be estimated by the residual standard error (RSE)

$$\hat{\sigma} \triangleq \sqrt{\frac{\text{RSS}}{n-2}} \ (= \text{RSE}).$$

- $ightharpoonup \hat{\sigma}^2 = \frac{\mathrm{RSS}}{(n-2)}$ is an unbiased estimate of $\sigma^2 (\Rightarrow \widehat{\mathrm{SE}}(\hat{\beta}_i)^2)$
- A *h*%-confidence interval is a range of values that contains the true unknown parameter with *h*% prob.
- For linear regression, the 95%-confidence interval is

$$[\hat{\beta}_i - 2 \cdot \operatorname{SE}(\hat{\beta}_i), \hat{\beta}_i + 2 \cdot \operatorname{SE}(\hat{\beta}_i)]$$

$$\approx [\hat{\beta}_i - 2 \cdot \widehat{\operatorname{SE}}(\hat{\beta}_i), \hat{\beta}_i + 2 \cdot \widehat{\operatorname{SE}}(\hat{\beta}_i)], \text{ for } i = 1, 2.$$

- E.g., in sales vs TV advertising, they are [6.130, 7.935] and [0.042, 0.053] for $\hat{\beta}_0$ and $\hat{\beta}_1$, respectively.

Confidence Intervals (2/2)

More precisely, we want to find c such that

$$\Pr\left(\hat{\beta}_i - c \cdot \widehat{SE}(\hat{\beta}_i) \le \beta_i \le \hat{\beta}_i + c \cdot \widehat{SE}(\hat{\beta}_i)\right) = h\%$$

 \rightarrow Approaches $\mathcal{N}(0,1)$ as degrees of freedom increases.

Statistical Learning

11

Testing Significance of the Input (1/2)

 To test the significance of the input on the output, we perform the hypothesis test:

 \mathcal{H}_0 : No relation between X and Y (i.e., $\beta_1 = 0$)

 \mathcal{H}_1 : Some relation between X and Y (i.e., $\beta_1 \neq 0$)

That is, each hypothesis assumes different models:

$$\mathcal{H}_0: Y = \beta_0 + \epsilon$$

 $\mathcal{H}_1: Y = \beta_0 + \beta_1 X + \epsilon$

• Key idea: Observe how far $\hat{\beta}_1$ is to 0 relative to $\widehat{SE}(\hat{\beta}_1)$.

$$\rightarrow$$
 t-statistic: $t = \frac{\hat{\beta}_1 - 0}{\widehat{SE}(\hat{\beta}_1)}$ (under \mathcal{H}_0).

- Under \mathcal{H}_0 , t follows the *student t-distribution* with n-2 degrees of freedom.

Testing Significance of the Input (2/2)

- Question: How large should t be in order to reject the null hypothesis?
- Answer: Compute the p-value

$$p = \Pr\left(|T| \ge |t|; \mathcal{H}_0\right).$$

and reject \mathcal{H}_0 if p is small.

- \rightarrow Typical cutoff values: 5% or 1% (i.e., |t| = 2 or 2.75).
- E.g., sales vs TV advertising example:

sales
$$\approx \beta_0 + \beta_1 \times TV$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	7.0325	0.4578	15.36	< 0.0001
TV	0.0475	0.0027	17.67	< 0.0001

Statistical Learning

13

Assess Model Accuracy (1/2)

The above discussion is based on the linear model

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- → Question: Does the linear model fit the data well?
- Residual Standard Error (RSE):

RSE
$$\triangleq \sqrt{\frac{\text{RSS}}{n-2}} = \sqrt{\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2}}.$$

→ RSE measures the *lack of fit* of the model.

(<u>Note:</u> The true model may be nonlinear, or may depend on other predictors not considered here.)

Assess Model Accuracy (2/2)

• R² Statistic:

$$R^2 \triangleq \frac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{TSS}} = 1 - \frac{\mathrm{RSS}}{\mathrm{TSS}} \in [0, 1]$$

where $TSS \triangleq \sum_{i=1}^{n} (y_i - \bar{y})^2$ is the total sum of squares.

- $ightharpoonup R^2$ measures the proportion of variability in Y that is explained by performing regression.
- F Statistic: $F \triangleq \frac{\mathrm{TSS} \mathrm{RSS}}{\mathrm{RSS}/(n-2)}$.

E.g., sales vs TV advertising

Quantity	Value
Residual standard error	3.26
R^2	0.612
F-statistic	312.1

Statistical Learning

15

Multiple Linear Regression

Linear model with p predictors:

$$Y=\beta_0+\beta_1X_1+\cdots+\beta_pX_p+\epsilon$$
 (e.g., sales $=\beta_0+\beta_1\times {\sf TV}+\beta_2\times {\sf radio}+\beta_3\times {\sf newspaper}+\epsilon$)

- By letting $X = (1, X_1, \dots, X_p)^T$ and $\beta = (\beta_0, \beta_1, \dots, \beta_p)^T$, we can express the model as $Y = X^T \beta + \epsilon$.
- Goal: Find $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)^T$ that minimizes the RSS

$$RSS(\hat{\beta}) = \sum_{i=1}^{n} (y_i - x_i^T \hat{\beta})^2 = \|\mathbf{y} - \mathbf{X}\hat{\beta}\|^2$$

where (x_i, y_i) 's are the training data points.

ightharpoonup Here, $\mathbf{y} = (y_1, \dots, y_n)^T$, $\mathbf{X} = (x_1, \dots, x_n)^T$, and $x_i = (1, x_{i1}, \dots, x_{ip})^T$.

LS Solution for Multiple Linear Regression

• For \mathbf{X} with full column rank, minimizing RSS yields the least squares (LS) solution

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Proof: (Differentiate RSS w.r.t. $\hat{\beta}$ and set it to zeros.)

→ The fitted values at the n training inputs are $\hat{\mathbf{y}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$

Statistical Learning

17

Geometric Interpretation

- Let $\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_p$ (with $\mathbf{x}_0 = \mathbf{1}$) be the columns of \mathbf{X} .
- Finding $\hat{\mathbf{y}} = \mathbf{X}\hat{\beta}$ to minimize $RSS = \|\mathbf{y} \hat{\mathbf{y}}\|^2$ is equivalent to finding the orthogonal projection of \mathbf{y} onto the subspace $\operatorname{span}\{\mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_p\}$.

→ Insight applies even if X is not full column rank.

Simple vs Multiple Linear Regression

Simple regression of sales on radio

	Coefficient	Std. error	t-statistic	p-value
Intercept	9.312	0.563	16.54	< 0.0001
radio	0.203	0.020	9.92	< 0.0001

Simple regression of sales on newspaper

	Coefficient	Std. error	t-statistic	p-value
Intercept	12.351	0.621	19.88	< 0.0001
newspaper	0.055	0.017	3.30	< 0.0001

	Coefficient	Std. error	t-statistic	p-value
Intercept	2.939	0.3119	9.42	< 0.0001
TV	0.046	0.0014	32.81	< 0.0001
radio	0.189	0.0086	21.89	< 0.0001
newspaper	-0.001	0.0059	-0.18	0.8599

Statistical Learning

19

Properties of $\hat{\beta}$

- Assumption: (i) ϵ is independent of X; (ii) $\epsilon_1, \dots, \epsilon_n$ are i.i.d. $\mathcal{N}(0, \sigma^2)$ (i.e., $\epsilon = (\epsilon_1, \dots, \epsilon_n)^T \sim \mathcal{N}(\mathbf{0}, \sigma^2\mathbf{I})$).
- Given \mathcal{D} (or \mathbf{X}), we have $\hat{\beta} \sim \mathcal{N}(\beta, (\mathbf{X}^T\mathbf{X})^{-1}\sigma^2)$. *Proof:*

igoplus The standard error of \hat{eta}_j is

$$SE(\hat{\beta}_j) = \sqrt{Var(\hat{\beta}_j)} = \sqrt{\{(\mathbf{X}^T\mathbf{X})^{-1}\sigma^2\}_{jj}}.$$

Noise Variance Estimation

• In practice, σ^2 is unknown, but can be estimated by

$$\hat{\sigma}^2 = \frac{1}{n-p-1} \sum_{i=1}^n (y_i - \hat{y}_i)^2.$$

• It can be shown that $(n-p-1)\hat{\sigma}^2 \sim \sigma^2 \chi^2_{n-p-1}$ (and thus $E[\hat{\sigma}^2] = \sigma^2$).

Statistical Learning

21

Testing Significance of Inputs (1/2)

• For each coefficient β_j , we can test the hypothesis that $\beta_j = 0$ by computing the t-statistic

$$t_j = \frac{\hat{\beta}_j - 0}{\widehat{\mathrm{SE}}(\hat{\beta}_j)} = \frac{\hat{\beta}_j}{\hat{\sigma}\sqrt{\{(\mathbf{X}^T\mathbf{X})^{-1}\}}_{jj}}.$$
 t-distribution with $n-p-1$ degrees of freedom under \mathcal{H}_0

Testing Significance of Groups of Coefficients:

$$\mathcal{H}_0: \ \beta_j = 0, \ j = p - q + 1, \dots, p$$

$$\mathcal{H}_1: \ \exists j \in \{p - q + 1, \dots, p\}, \ \beta_j \neq 0$$
 Use F-statistic:
$$F \triangleq \frac{[\mathrm{RSS}(\hat{\beta}_{1:p-q}) - \mathrm{RSS}(\hat{\beta})]/q}{\mathrm{RSS}(\hat{\beta})/(n-p-1)}.$$

- \rightarrow The normalized RSS reduction due to the q inputs.
- $ightharpoonup F = t^2$ when p = q = 1.

Statistical Learning

23

Testing Significance of Inputs (2/2)

• Under the null hypothesis \mathcal{H}_0 ,

$$RSS(\hat{\beta}_{1:p-q}) - RSS(\hat{\beta}) \sim \sigma^2 \chi_q^2$$

$$RSS(\hat{\beta}) \sim \sigma^2 \chi_{n-p-1}^2$$

and, thus, F follows an F-distribution with (q, n-p-1) degrees of freedom.

- This implies that $E\left[[RSS(\hat{\beta}_{1:p-q}) RSS(\hat{\beta})]/q\right] = \sigma^2$ and $E\left[RSS(\hat{\beta})/(n-p-1)\right] = \sigma^2$ under \mathcal{H}_0 .
- Reject null hypothesis $\mathcal{H}_0: \beta_j = 0, \ j = p q + 1, \dots, p$ if $p = \Pr(\mathcal{F} \geq F; \mathcal{H}_0) \leq 0.05$ (for example).

Joint vs Individual Tests of Significance

Question: Why do we need to test multiple inputs together as opposed to separately?

Statistical Learning

25

Gauss-Markov Theorem (1/2)

• Theorem (Gauss-Markov): Suppose that

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

where $E(\epsilon) = \mathbf{0}$ and $\mathrm{Var}(\epsilon) = E[\epsilon \epsilon^T] = \sigma^2 \mathbf{I}$ (i.e., uncorrelated and equal variance (homoscedastic)). The LS solution $\hat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ is the **best linear unbiased estimator (BLUE)**. That is, for any $\tilde{\beta} = \mathbf{C}\mathbf{y}$ such that $E[\tilde{\beta}] = \beta$, we have $\mathrm{Var}(\tilde{\beta}) - \mathrm{Var}(\hat{\beta}) \succeq \mathbf{0}$. *Proof:*

Gauss-Markov Theorem (2/2)

Statistical Learning

27

Questions for Linear Regression (1/3)

Question 1: Is at least one of a set/subset of predictors useful in predicting the response?

$$\mathcal{H}_0: \ \beta_j = 0, \ j \in \mathcal{Q}$$

 $\mathcal{H}_1: \ \exists j \in \mathcal{Q}, \ \beta_j \neq 0$

→ Compute F-statistic and see if p-value is less than 5%.

Question 2: Given that the subset of predictors may be useful, which ones are most important?

- → Variable selection (Chapter 6)
- \rightarrow Mallow's C_p , Akaike information criterion (AIC), Bayesian information criterion (BIC), adjusted R^2 etc.
- → Forward, backward, and mixed selection.

Questions for Linear Regression (2/3)

Question 3: How well does the model fit the data?

→ Measured by

$$R^2 \triangleq rac{\mathrm{TSS} - \mathrm{RSS}}{\mathrm{TSS}}$$
 and $\mathrm{RSE} = \sqrt{rac{1}{n-p-1}}\mathrm{RSS}.$

Statistical Learning

29

Questions for Linear Regression (3/3)

Question 4: Given new predictor values, what should our prediction be? How accurate is it?

Let $Y = f(X) + \epsilon$ be the true model, $X^T \beta$ be the best linear approx. to f(X), and $X^T \hat{\beta}^{(\mathcal{D})}$ be our prediction.

The mean squared error (MSE) is

$$E[(Y - X^T \hat{\beta}^{(\mathcal{D})})^2] = E[(X^T \hat{\beta}^{(\mathcal{D})} - E_{\mathcal{D}}[X^T \hat{\beta}^{(\mathcal{D})} | X])^2] + E[(f(X) - E_{\mathcal{D}}[X^T \hat{\beta}^{(\mathcal{D})} | X])^2] + Var(\epsilon).$$

- $\rightarrow E_{\mathcal{D}}[X^T \hat{\beta}^{(\mathcal{D})}|X] = X^T \beta$ since $\hat{\beta}^{(\mathcal{D})}$ is unbiased.
- Variance: $E[(X^T\hat{\beta}^{(\mathcal{D})} X^T\beta)^2]$
- Model Bias: $E[(f(X) X^T\beta)^2]$

Statistical Learning

30

Qualitative Predictors (1/2)

Credit card data set:

age, cards, income

quantitative gender, student, ethnicity → qualitative

E.g., predict balance by gender

$$x_i = \begin{cases} 1, & \text{if } i \text{th person is female,} \\ 0, & \text{if } i \text{th person is male.} \end{cases}$$

The model becomes

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i, & \text{if } i \text{th person is female,} \\ \beta_0 + \epsilon_i, & \text{if } i \text{th person is male.} \end{cases}$$

		5 10 15 20		2000 8000 140	
					1
Age					
	Cards				
		Education		The second secon	
Section 6			Income	AND THE RESERVE OF THE PERSON	
				Limit	1
				/	Rating
		Cards	Cards	Cards Education	Cards Education Income

	Coefficient	Std. error	t-statistic	p-value
Intercept	509.80	33.13	15.389	< 0.0001
<pre>gender[Female]</pre>	19.73	46.05	0.429	0.6690

Statistical Learning

Qualitative Predictors (2/2)

For qualitative predictors with more than two levels, e.g., ethnicity (Asian, Caucasian, African American)

$$x_{i1} = \begin{cases} 1, & \text{if } i \text{th person is Asian,} \\ 0, & \text{if } i \text{th person is not Asian.} \end{cases}$$

$$x_{i2} = \begin{cases} 1, & \text{if } i \text{th person is Caucasian,} \\ 0, & \text{if } i \text{th person is not Caucasian.} \end{cases}$$

The model becomes

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i, & \text{if Asian,} \\ \beta_0 + \beta_2 + \epsilon_i, & \text{if Caucasian,} \\ \beta_0 + \epsilon_i, & \text{if African American.} \end{cases}$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	531.00	46.32	11.464	< 0.0001
ethnicity[Asian]	-18.69	65.02	-0.287	0.7740
ethnicity[Caucasian]	-12.50	56.68	-0.221	0.8260

Extensions of the Linear Model (1/3)

- Two main assumptions: (i) additivity and (ii) linearity.
- Removing the additive model:
 - Additivity implies that the changes in response Y due to changes in some X_i is independent of other predictors.
 - Interaction among variables may exist. (E.g., spending money on TV ads may increase effectiveness of radio ads)

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon \qquad (R^2 = 89.7\%)$$
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \epsilon \qquad (R^2 = 96.8\%)$$

	Coefficient	Std. error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${\tt TV}{ imes{\tt radio}}$	0.0011	0.000	20.73	< 0.0001

Statistical Learning

Extensions to the Linear Model (2/3)

E.g., predicting balance using income (quantitative) and student status (qualitative)

No interaction:

balance_i $\approx \beta_0 + \beta_1 \times \text{income}_i + \begin{cases} \beta_2 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$ if ith person is not a student

Interaction:

if not student

Extensions to the Linear Model (3/3)

Incorporating nonlinear relationships:

- Linearity implies that changes in response Y due to changes in X_j does not depend on its current value.
- E.g., polynomial regression

$$mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \epsilon$$

	Coefficient	Std. error	p-value
Intercept	56.9001	1.8004	< 0.0001
horsepower	-0.4662	0.0311	< 0.0001
${\tt horsepower}^2$	0.0012	0.0001	< 0.0001

Statistical Learning

35

36

Potential Problems - Nonlinearity

1. Nonlinearity of Data:

- The true model is far from linear.
- Residual plot $e_i = y_i \hat{y}_i$ versus x_i (or fitted value \hat{y}_i)

Potential Problems – Error Correlation

2. Correlation of the Error Terms

- $-\epsilon_1, \ldots, \epsilon_n$ are correlated → under-estimated standard error → narrower confidence interval, and lower p-value.
- E.g., adjacent samples in a time series, samples from the same group (e.g., family), or spatial location (environment)

Statistical Learning

37

Potential Problems - Heteroscedasticity

3. Non-Constant Variance of Error Terms:

- $-\epsilon_1,\ldots,\epsilon_n$ have different variance (heteroscedasticity)
- Use nonlinear transformations, such as $\log Y$ or \sqrt{Y} .

→ weighted least squares, i.e., minimize

$$RSS(\hat{\beta}) = (\mathbf{y} - \mathbf{X}\hat{\beta})^T \mathbf{W} (\mathbf{y} - \mathbf{X}\hat{\beta})$$

Potential Problems - Outliers

4. Outliers

- May cause dramatic increase in RSE and R^2 . (e.g., RSE is 0.77 (without) or 1.09 (with))
- → Affects confidence interval and p-value computation.

Statistical Learning

39

Potential Problems – High Leverage Points

5. High Leverage Points

- Leverage statistic for ith data point is $h_i = \{\mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\}_{i,i}$. For p=1, $h_i = \frac{1}{n} + \frac{(x_i \bar{x})^2}{\sum_{i'=1}^n (x_i \bar{x})^2}$.
- Notice that $Var(e_i) = Var(y_i \hat{y}_i) = \sigma^2(1 h_i)$.
- The studentized residual is $t_i = \frac{e_i}{\hat{\sigma}\sqrt{1-h_i}}$.

Potential Problems – Collinearity (1/2)

6. Collinearity

- The situation in which two or more predictor variables are closely related to each other.
- Difficult to see how each separately affects the response.

Statistical Learning

41

Potential Problems – Collinearity (1/2)

Increases the uncertainty of the coefficient estimates (i.e.,

standard error).

smaller t-statistic (null hypothesis more likely)

 Collinearity (or multicollinearity) can be assessed using the variance inflation factor (VIF) defined as

$$VIF(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2}$$

where $R^2_{X_j\mid X_{-j}}$ is the R^2 from a regression of X_j onto all of the other predictors

42

Comparison with kNN (1/4)

The k-nearest neighbor (kNN) prediction for new input x_0 is defined as

$$\hat{y}_0 = \hat{f}(x_0) = \frac{1}{k} \sum_{i: x_i \in \mathcal{N}_k(x_0)} y_i$$
 where $\mathcal{N}_k(x_0)$ represents the set of k nearest $x_i's$ in

in the vicinity of x_0 .

Statistical Learning

Comparison with kNN (2/4)

Linear regression (parameter) outperforms kNN (non-parametric) when the true model is linear.

Comparison with kNN (3/4)

kNN performs well under high nonlinearity.

Statistical Learning

45

Comparison with kNN (4/4)

• Linear regression also may perform better in higher dimensions.

 Linear regression also be preferable in terms of interpretability.