実解析第2同演習・演習第10回

2023年1月6日

問 A-1

 $1 について, Banach 空間 <math>(L^p(X), \|\cdot\|_p)$ を考える.

- (1) 関数 $A:L^p(X)\to\mathbb{R}$ が $f_0\in L^p(X)$ で連続であることの定義を述べよ.
- (2) 連続関数 $Z:L^p(X)\to\mathbb{R}$ について、稠密な部分集合 $D\subset L^p(X)$ が存在して任意の $f\in D$ に対し Z(f)=0 が成り立つとする.このとき任意の $f\in L^p(X)$ に対して Z(f)=0 が成り立つことを示せ.

問 A-2

 $1 とする. <math>\mu(X) = 1$ となるとき、任意の非負値関数 $h \in L^p(X, \mu)$ に対し、

$$\left(\int_{Y} h \mathrm{d}\mu\right)^{p} \leq \int_{Y} h^{p} \mathrm{d}\mu$$

を示せ.

問B-1

- (1) 関数 $\log:(0,\infty)\to\mathbb{R}$ は上に凸であることを示せ.
- (2) 正値関数 $f, g \in L^1(X, \mu)$ が

$$\int_X f \mathrm{d}\mu = \int_X g \mathrm{d}\mu = 1$$

を満たせば

$$\int_{X} f \log \frac{f}{g} d\mu \ge 0$$

であることを示せ(これは Gibbs の不等式と呼ばれる).

(3) $||f||_{L^1} = 1$ となる正値関数 $f \in L^1(\mathbb{R})$ に対し、

$$\int_{\mathbb{R}} x^2 f(x) \mathrm{d}x < \infty$$

であれば

$$H(f) := -\int_{\mathbb{R}} f \log f \mathrm{d}x < \infty$$

であることを示せ.

(4) 定数 $a \in \mathbb{R}, b > 0$ に対し,

$$\int_{\mathbb{R}} x f(x) dx = a$$

$$\int_{\mathbb{R}} (x - a)^2 f(x) dx = b$$

をみたし、 $||f||_{L^1}=1$ となる正値関数 $f\in L^1(\mathbb{R})$ のうち、H(f) を最大にするものを求めよ.

問B-2

 $1 \leq p < \infty$ について、Banach 空間 $(L^p(\mathbb{R}), \|\cdot\|_p)$ を考える。各 $f \in L^p(\mathbb{R})$ と $t \in \mathbb{R}$ に対し、平行移動を(f(s+t) が定義されているときは)

$$(\tau_t f)(s) := f(s+t)$$

で定義する.

- (1) 任意の $t \in \mathbb{R}$ に対し、 $\tau_t f \in L^p(\mathbb{R})$ を示せ. なお、 $\tau_t f$ の可測性は認めてよい. (これにより、任意の $t \in \mathbb{R}$ に対し写像 $\tau_t : L^p(\mathbb{R}) \to L^p(\mathbb{R})$ が定義できることがわかる.)
- (2) 任意の可測集合 $E \subset \mathbb{R}$ に対し $\tau_t \chi_E = \chi_{E-t}$ を示せ. ただし $E-t := \{x-t \mid x \in E\}$ と定義する.
- (3) f が simple function であるとき、 $(L^p(\mathbb{R})$ の位相で) $t\to 0$ のとき $\tau_t f\to f$ であることを示せ.
- (4) 任意の $f \in L^p(\mathbb{R})$ に対し $t \to 0$ のとき $\tau_t f \to f$ であることを示せ.(ヒント:simple function が L^p で稠密であることを用いる.また τ_t は L^p ノルムを保ち,線形であることに注意.)