Further Error-Correction Techniques

Or "How to be wrong but not that wrong"

Featuring:

- Realm Review
- Decreasing wrongness for less LUT space (ECALE method)
- Further error correction techniques.
- Matlab Guide
- (Potentially) Decreasing wrongness using (QSAM method)

REALM

Low relative error & low area (1% relative error with M = 16)

Short crit-path

Arbitrarily configurable Error at the cost of space

> Error ∝ 1/M Space $\propto M^2$

But at what cost?

For q = 8191:

Maximum product is 8191*8191 = 67 092 481

=> Need relative error of 0.003% => \sim 9600² = 92 160 000 correction terms.

Can't fit in all block ram & distributed ram & LUT's combined

(Derivation Later for those interested)

Looking elsewhere...

Approximate Error corrected, Log

and exponential

(ECALE)

Multiplication

As easy as $2^{\log(x) + \log(y)} = xy$ eclog: 'error corrected by'

ECALE 2^x (ecExp)

- Input is fixed point binary.
- Truncation length is
 - = Length of fractional part.
 - = Length of correction values
 - > Maximum integer part number. For max precision.
 - · > bitlenx2+1

ECALE log₂x (ecLog)

- Should have same truncation length as ecExp
- Can have a different number of LUT values to ecExp.

Precise LUT log₂x

- "Let's memorize every possible value of log"
- Use if need $M_L > q/2$ (Quite probable)
- LUT's on the Kintex-7 Are 6-bit
 => 64 possible values

ECALE Summary

Pros:

Realm Space OCM² ECALE FM +M

Significantly decreased error vs space complexity

Cons:

- Triples number of LUT's needed compared to realm
- Increases critical path by one LUT, and one adder
- Possible to implement, but still not space efficient for LWE

Excels when low range relative error rates are needed.

Question/Break time!

Further considerations:

- One look up table to rule them all?
- How can multiple resources share the same table?

• LUT Delay

- Block ram _> clockyng
- Pipelining

Truncation length

2*bitlen + 1 for max precision

Bit splitting

$$9+1=2^{13}$$
 $9+1=2^{13}$
 $9+1=2^{13}=1 \mod 819$

12

$$m=6, n=7$$

010101101001 -> 010101 | 101001

•
$$(a2^n + b)(c2^m + d) = ac2^{n+m} + ad2^n + bc2^m + bd$$

- Precise logarithms achieved earlier
- Take advantage of modulus operation to reduce 2^{n+m} term
- Mixing in precise / approximate multiplication

$$ad2^{n} + bc2^{m} + bd + ac$$
Recise

Approximate addition

Multipliers on the Kintex-7 are fast 6.5 n SIntroduce errors in addition instead?

To achieve full range of errors, want to break at different locations.

Other points

- Sacrifice Security
 - Decrease size of #samples or q to reduce error
- Do more research!
 - Tons more designs exist in the wild.

Solution is
$$2^{(N+y)} - 9(N-y)$$
 for y many y many

Derivations of REALM ballpark

For q = 8191:

Maximum product is 8191*8191 = 67 092 481

Want absolute error to be much less than q/4

 \therefore Relative error < $(q/4)/q^2 = 0.003\%$.

Compare against Realm's 1.8% max error @ M = 16. Recall Error x M ∝ 1

- ∴ Need M x 0.003% > 1.8% x 16
- ∴ M >9600

Recall realm #Terms = M²

∴ 9600² correction terms

Can't fit in all block ram & distributed ram & LUT's combined