

EE2211 Pre-Tutorial 3

Dr Feng LIN feng_lin@nus.edu.sg

Agenda

- Recap
- Self-learning
- Tutorial 3

Recap

- Linear Algebra
 - Vectors
 - Matrices
 - Linear Equations
- Causality and Simpson's paradox
- Probability
 - Axioms of Probability
 - Random Variable
 - Basic rules
 - Bayes' rule

Vectors

- A vector is an ordered list of scalar values
 - Denoted by a bold character, e.g. x or a
- Vectors can be visualized as, in a multi-dimensional space,
 - arrows that point to some directions, or

e.g. Velocity vector

– points

e.g. color points

Illustrations of three two-dimensional vectors, $\mathbf{a} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$, and $\mathbf{c} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

Matrices

- A matrix is a rectangular array of numbers arranged in rows and columns
 - Denoted with bold capital letters, such as X or W
 - ➤ An example of a matrix with two rows and three columns:

$$\mathbf{X} = \begin{bmatrix} 2 & 4 & -3 \\ 21 & -6 & -1 \end{bmatrix}$$
 e.g. image frame

Note:

- For elements in matrix X, we shall use the indexing $x_{1,1}$ where the first and second indices indicate the row and the column position.
- ➤ Usually, for input data, rows represent samples and columns represent features

Linear Equation

Linear dependence and independence

• A collection of d-vector $\mathbf{x}_1, \dots, \mathbf{x}_m$ (with $m \ge 1$) is called linearly dependent if $\beta_1 \mathbf{x}_1 + \dots + \beta_m \mathbf{x}_m = 0$

Holds for some β_1, \dots, β_m that are not all zeros.

• A collection of d-vector $\mathbf{x}_1, \cdots, \mathbf{x}_m$ (with $m \ge 1$) is called linearly independent if $\beta_1 \mathbf{x}_1 + \cdots + \beta_m \mathbf{x}_m = 0$

only hold for $\beta_1 = \cdots = \beta_m = 0$.

Note: If all rows or columns of a square matrix **X** are linearly **independent**, then **X** is **invertible**.

Causality

- Causality, or causation is:
 - The influence by which one event or process (i.e., cause) contributes to another (i.e. effect),
 - The cause is partly responsible for the effect, and the effect is partly dependent on the cause
- Causality relates to an extremely very wide domain of subjects: philosophy, science, management, humanity.
- Causality research is extremely complex
 - Researcher can never be completely certain that there are no other factors influencing the causal relationship,
 - In most cases, we can only say "probably" causal.

Correlation (vs Causality)

• Linear correlation coefficient, r, which is also known as

the Pearson Coefficient.

$$r = rac{\sum_{i=1}^{n}(x_i - ar{x})(y_i - ar{y})}{\sqrt{\sum_{i=1}^{n}(x_i - ar{x})^2}\sqrt{\sum_{i=1}^{n}(y_i - ar{y})^2}} = rac{s_{xy}}{s_x s_y},$$

strong positive linear correlation	
r = 0.996	
	200
	·
and the second	
200	
1 2 m	
<u> </u>	

https://www.geo.fu-berlin.de/en/v/soga-py/Basics-of-statistics/Descriptive-Statistics/Measures-of-Relation-Between-Variables/Correlation/index.html

Correlation does not imply causation!

 Some great examples of correlations that can be calculated but are clearly not causally related appear at http://tylervigen.com/

Simpson's paradox

 Simpson's paradox is a phenomenon in probability and statistics, in which a trend appears in several different groups of data but disappears or reverses when these groups are combined.

The same set of samples!

Probability

 We describe a random experiment by describing its procedure and observations of its *outcomes*.

Outcome

- Outcomes are mutual exclusive in the sense that only one outcome occurs in a specific trial of the random experiment.
 - This also means an outcome is not decomposable.
 - > All unique outcomes form a sample space.

space

- A subset of sample space S, denoted as A, is an event in a random experiment $A \subset S$, that is meaningful to an application.
 - Example of an event: faces with numbers no greater than 3

Fvent

Axioms of Probability

- Assume events $A \subseteq S$ and $B \subseteq S$.
 - 1. [Nonnegativity] $Pr(A) \ge 0$ for every event A.
 - 2. [Normalization] Pr(S) = 1.
 - 3. [Additivity] If $A \cap B = \emptyset$, then $Pr(A \cup B) = Pr(A) + Pr(B)$.

otherwise
$$Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$$

It can be extended to more events:

If
$$A_1, A_2, ...$$
 are disjoint, then $Pr(\bigcup_{k=1}^{\infty} A_k) = \sum_{k=1}^{\infty} Pr(A_k)$.

Random Variable

- A random variable, usually written as an italic capital letter, like *X*, is a variable whose possible values are numerical outcomes of a random event.
- There are two types of random variables: discrete and continuous.

Discrete Random Variable

- A discrete random variable (DRV) takes on only a countable number of distinct values such as red, orange, blue or 1, 2, 3.
- The probability distribution of a discrete random variable is described by a list of probabilities associated with each of its possible values.
- This list of probabilities is called a probability mass function (pmf).
 - ➤ Like a histogram, except that here the probabilities sum to 1

A probability mass function

Continuous Random Variable

- A continuous random variable (CRV) takes an infinite number of possible values in some interval.
 - Examples include height, weight, and time.
 - The number of values of a continuous random variable X is infinite, the probability Pr(X = c) for any c is 0.
 - Therefore, instead of the list of probabilities, the probability distribution of a CRV (a continuous probability distribution) is described by a **probability density** function (pdf).
 - The pdf is a function whose range is nonnegative and the area under the curve is equal to 1.

A probability density function

Two Basic Rules

Sum Rule

$$Pr(X = x) = \sum_{Y} Pr(X = x, Y = y_i)$$

Product Rule

$$Pr(X = x, Y = y) = Pr(Y = y | X = x) P(X = x)$$

Bayes' Rule

- The conditional probability Pr(Y = y | X = x) is the probability of the random variable Y to have a specific value y, given that another random variable X has a specific value of x.
- The Bayes' Rule (also known as the Bayes' Theorem):

$$Pr(Y = y | X = x) = \frac{Pr(X = x | Y = y) Pr(Y = y)}{Pr(X = x)}$$
posterior
evidence

Summary

- (Very Gentle) Introduction to Linear Algebra
- Causality and Simpson's paradox
- Random Variable, Bayes' Rule

THANK YOU