Problem Set 9: Analysis

Juan Martin Morelli

April 14, 2016

Exercise 1

Recall that λ is an eigenvalue of A iff $Av = \lambda v$ for some eigenvector $v \in \mathbb{R}^n \neq 0$. The definition of a norm for a matrix is:

$$||A|| = \sup \left\{ \frac{||Ax||}{||x||} : x \in \mathbb{R}^k, x \neq 0 \right\}$$

By fact seen in class, let's focus on ||x|| = 1 and note that by monotonicity of the norm, we can take the supremum of $||Ax||^2$ instead.

Furthermore, we can use Weierstrass theorem to show that the supremum is attainable (i.e. the maximum exists). This is because Ax is a linear operator (thus continuous) over a finite vector space. The same can be said when we take the square of the norm. Then we can apply Weierstrass.

Using the euclidean norm, the Lagrangean would be:

$$\mathcal{L} = X'A'AX + \lambda X'X$$

where λ is the multiplier. Then the FOC is:

$$2X'A'A = 2\lambda X'$$

$$A'AX = \lambda X$$

Any pair of eigenvectors and eigenvalues can satisfy this FOC. If we use the solution in the objective function:

$$\mathcal{L} = 2\lambda X'X$$

But then this function is maximized for the maximum eigenvalue (which has an associated eigenvector).

So $\rho(A'A) = ||A||^2$ and again by monotonicity,

$$\|A\| = \sqrt{\rho \left(A'A\right)}$$

Exercise 2

Let's first show that if $\rho(A) < 1 \Rightarrow \exists r < 1 \text{ and } C \in \mathbb{R} \text{ s.t. } ||A^k|| \leq r^k C$.

Fact:
$$\|A^k\|^{1/k} \to \rho(A)$$

By definition,
$$\forall \epsilon > 0, \ \exists M > 0 \text{ s.t. } \left| \left\| A^k \right\|^{1/k} - \rho \left(A \right) \right| < \epsilon \ \forall k \geq M.$$

But then this means that I can find an $\epsilon > 0$ small enough so that $\rho(A) + \epsilon \equiv r \in (0, 1)$.

$$||A^k||^{1/k} \le r \Rightarrow ||A^k|| \le r^k$$
 by monotonicity.

We already have an upper bound for $k \geq M$. What about k < M?

For
$$k < M$$
, $||A^k|| \le \max_{i \le M} ||A^i|| \Rightarrow ||A^k|| \le \max_{i \le M} ||A^i|| \frac{r^k}{r^M} = Cr^k$.

Hence,
$$||A^k|| \le Cr^k$$
 for any $k \ge 0$.

Finally, given the previous proof,

$$\sum_{k=0}^{\infty} \|A^k\| \le C \sum_{k=0}^{\infty} r^k = \frac{C}{1-r} < \infty$$

Exercise 3

A square matrix is diagonalizable if there exists an invertible matrix P such that $A = PDP^{-1}$ with D diagonal.

In that case, it is clear that $A^k = PD^kP^{-1}$ (just write it down and it is evident).

Furthermore, one of the possible diagonalizations is by taking D to be a diagonal matrix formed by A's eigenvalues, and P the eigenvectors.

Since $\rho(A) < 1$, then all of the eigenvalues are within the unit circle. This implies that $D^k \to 0$ as $k \to \infty$, so $A^k \to 0$.

Finally, by continuity of the norm, if $A^k \to 0 \Rightarrow ||A^k|| \to 0$.

Exercise 4

A symmetric non-negative definite matrix (or positive semi-definite) is one in which for any vector $z \neq 0$, the scalar $z^T M z > 0$.

Let \mathcal{M}^* be the set of such matrices. To show that it is a closed subset of \mathcal{M} , we need to show that every sequence in \mathcal{M}^* that converges, it does so to an element of \mathcal{M}^* .

Assume by contra that $||A - A_j|| \to 0$ but $A \notin \mathcal{M}^*$. That means that $\exists z \neq 0$ s.t. z'Az < 0 while $z'A_jz \geq 0$ for all $j \in \mathbb{N}$.

For the contradiction to work, I need to show that then $||A - A_j|| \rightarrow 0$.

Note that since z'Az < 0 while $z'A_jz \ge 0$, it must be that $||z'(A - A_j)z|| \to 0$.

 $||z'(A - A_j)z|| = ||z'(A - A_j)|| ||z|| = ||(A - A_j)'z|| ||z|| = ||(A - A_j)|| ||z||^2$ Since $||z||^2 \neq 0$, $||(A - A_j)|| \Rightarrow 0$. CONTRADICTION.

Exercise 5

Part 1:

X is symmetric iff X = X'.

 $X^* = AX^*A' + M$ with M symmetric.

$$M = M'$$

$$X - AXA' = X' - AX'A'$$

$$X - X' = A(X - X')A'$$

$$X = X'$$

Part 2:

Let $z_{(j)} \equiv Az_{(j-1)}$ for $j \ge 1$, with $z_{(0)} = z$. Then:

$$z'_{(i)}Xz_{(j)} = z'A^{j}X(A')^{j}z + z'_{(i)}Mz_{(j)}$$

Since $\rho(A) < 1$, $A^j \to \mathbf{0}$ as $j \to \infty$. Then $z'_{(j)}Xz_{(j)} \to 0$ as $j \to \infty$.

Now note the following iteration:

$$z'Xz=z'Mz+z'AXA'z=z'Mz+z_1'Xz_1'$$

$$z_1'Xz_1 = z_1'Mz_1 + z_2'Xz_2'$$

So that $z'Xz = z'Mz + z'_1Mz_1 + z'_2Xz_2$.

If we repeat this until infinity, we get:

$$z'Xz = \sum_{k=0}^{\infty} z'_k M z_k + \lim_{k \to \infty} z'_k X z_k$$

I already showed that $\lim_{k\to\infty} z_k' X z_k = 0$.

Since M is P.S.D., for any $z \neq 0$, it must be that $z'_k M z_k \geq 0$ for any k.

The point now is to show that $\sum_{k=0}^{\infty} z'_k M z_k < \infty$. This should be the case since $\rho(A) < 1$, so $z'_k M z_k \to 0$.

But note that showing $z'_k M z_k < 1$ for each k is not enough. I would have to show that it converges at a rate fast enough.

A way to show this would be to find an upper bound $z_k'Mz_k < a_k$ such that $\sum_{k=0}^{\infty} a_k < \infty$.

Part 3: