Теоретическая информатика - 1

Реберные раскраски, Паросочетания с предпочтениями

C — множество цветов Реберная раскраска: $c: E \to C$ (красим ребра). Раскраска c правильная, если $c(e) \neq c(e')$ для всяких смежных ребер e, e'.

C — множество цветов Реберная раскраска: $c: E \to C$ (красим ребра). Раскраска c правильная, если $c(e) \neq c(e')$ для всяких смежных ребер e, e'.

C — множество цветов Реберная раскраска: $c: E \to C$ (красим ребра). Раскраска c правильная, если $c(e) \neq c(e')$ для всяких смежных ребер e, e'.

Иными словами, для каждого цвета множество ребер, раскрашенных в данный цвет — это паросочетание.

Theorem 1 (Кенига о раскраске ребер)

В двудольном графе $G = (V_1, V_2, E)$ существует правильная раскраска ребер в D цветов, где D — наибольшая степень вершины.

Базис: d=D, т.е. D-регулярный граф. Покажем, что он удовлетворяет условию теоремы Холла:

Базис: d = D, т.е. D-регулярный граф. Покажем, что он удовлетворяет условию теоремы Холла:

- lacktriangle всякое множество $U_1\subseteq V_1$ соединено со своими соседками из V_2 ровно $D|U_1|$ ребрами,
- lacktriangle так как у каждой соседки степень тоже D, этих соседок всего не менее чем $rac{D|U_1|}{D}=|U_1|$.

По теореме Холла есть совершенное паросочетание.

Базис: d=D, т.е. D-регулярный граф. Покажем, что он удовлетворяет условию теоремы Холла:

- lacktriangle всякое множество $U_1\subseteq V_1$ соединено со своими соседками из V_2 ровно $D|U_1|$ ребрами,
- так как у каждой соседки степень тоже D, этих соседок всего не менее чем $\frac{D|U_1|}{D} = |U_1|$.

По теореме Холла есть совершенное паросочетание.

Удаляем ребра паросочетания, остается (D-1)-регулярный двудольный граф, в нем опять есть совершенное паросочетание, и т.д.

Полученные D непересекающихся паросочетаний образуют искомую раскраску ребер G.

Шаг индукции: d < D. Пусть $G = (V_1, V_2, E)$ — граф.

Шаг индукции: d < D. Пусть $G = (V_1, V_2, E)$ — граф.

ightharpoonup Строим копию этого графа: $G' = (V'_1, V'_2, E')$.

Шаг индукции: d < D. Пусть $G = (V_1, V_2, E)$ — граф.

- ightharpoonup Строим копию этого графа: $G' = (V_1', V_2', E')$.
- lacktriangle Эти два графа объединяются в граф $G'' = (V_1 \cup V_2', V_2 \cup V_1', E \cup E' \cup E_0)$, где E_0 содержит по ребру (v,v') для каждой вершины $v \in V_1 \cup V_2$ степени d.

В G'' наибольшая степень вершины D, а наименьшая d+1.

Шаг индукции: d < D. Пусть $G = (V_1, V_2, E)$ — граф.

- ightharpoonup Строим копию этого графа: $G' = (V_1', V_2', E')$.
- lacktriangle Эти два графа объединяются в граф $G'' = (V_1 \cup V_2', V_2 \cup V_1', E \cup E' \cup E_0)$, где E_0 содержит по ребру (v,v') для каждой вершины $v \in V_1 \cup V_2$ степени d.

В $G^{\prime\prime}$ наибольшая степень вершины D, а наименьшая d+1.

По предположению индукции его ребра красятся.

Из его раскраски извлекается раскраска ребер G.

Theorem 2 (Визинг, 1964)

Во всяком графе существует правильная раскраска ребер в D+1 цвет, где D — наибольшая степень вершины.

Theorem 2 (Визинг, 1964)

Во всяком графе существует правильная раскраска ребер в D+1 цвет, где D — наибольшая степень вершины.

Замечание: теорема дает очень точную оценку, так как D цветов, очевидно, необходимо.

Лемма 1

Пусть G=(V,E) гра ϕ , и пусть

- v вершина степени не более чем k,
- степень каждого из соседей v также не превосходит k
- причем степень к достигается не более чем для одного из соседей v.

Тогда если ребра графа $G\setminus \{v\}$ можно покрасить в k цветов, то и ребра графа G можно покрасить в k цветов.

Базис, k=1: v — или изолированная вершина, или вершина, связанная ребром с другой вершиной степени 1.

Раскраска графа $G' = G \setminus \{v\}$ в один цвет дополняется покраской дополнительного ребра в единственный цвет.

Базис, k=1: v — или изолированная вершина, или вершина, связанная ребром с другой вершиной степени 1.

Раскраска графа $G' = G \setminus \{v\}$ в один цвет дополняется покраской дополнительного ребра в единственный цвет.

Индуктивный переход.

Пусть $m=\deg v$, u_1,\ldots,u_m — соседи v в G: $\deg u_1\leq k$, а $\deg u_i\leq k-1 \ \forall i=2,\ldots m$.

Базис, k=1: v — или изолированная вершина, или вершина, связанная ребром с другой вершиной степени 1.

Раскраска графа $G' = G \setminus \{v\}$ в один цвет дополняется покраской дополнительного ребра в единственный цвет.

Индуктивный переход.

Пусть $m=\deg v$, u_1,\ldots,u_m — соседи v в G: $\deg u_1\leq k$, а $\deg u_i\leq k-1$ $\forall i=2,\ldots m$.

B G': $\deg u_1 \leq k-1$, a $\deg u_1 \leq k-2 \ \forall i=2,\ldots m$.

Базис, k=1: v — или изолированная вершина, или вершина, связанная ребром с другой вершиной степени 1.

Раскраска графа $G' = G \setminus \{v\}$ в один цвет дополняется покраской дополнительного ребра в единственный цвет.

Индуктивный переход.

Пусть $m=\deg v$, u_1,\ldots,u_m — соседи v в G: $\deg u_1\leq k$, а $\deg u_i\leq k-1$ $\forall i=2,\ldots m$.

B G': $\deg u_1 \leq k-1$, a $\deg u_1 \leq k-2 \ \forall i=2,\ldots m$.

Пусть c — раскраска ребер G' в цвета $\{1,\ldots,k\}$.

Базис, k=1: v — или изолированная вершина, или вершина, связанная ребром с другой вершиной степени 1.

Раскраска графа $G' = G \setminus \{v\}$ в один цвет дополняется покраской дополнительного ребра в единственный цвет.

Индуктивный переход.

Пусть $m=\deg v$, u_1,\ldots,u_m — соседи v в G: $\deg u_1\leq k$, а $\deg u_i\leq k-1$ $\forall i=2,\ldots m$.

B G': $\deg u_1 \leq k-1$, a $\deg u_1 \leq k-2 \ \forall i=2,\ldots m$.

Пусть c — раскраска ребер G' в цвета $\{1,\ldots,k\}$.

Можем считать, что $\deg u_1=k$, а $\deg u_i=k-1$ $\forall i=2,\ldots m$.

Если какие-то степени меньше, то можно добавить в граф G' дополнительные вершины, соединить их ребрами с u_i и произвольно раскрасить эти ребра в свободные цвета.

Тогда

- $ightharpoonup u_1$ степени k-1 попадает ровно в одно из X_1,\ldots,X_k ,
- u_2, \ldots, u_m степени k-2 попадают ровно в два из этих множеств.

Тогда

- lacktriangle u_1 степени k-1 попадает ровно в одно из X_1,\ldots,X_k ,
- u_2, \dots, u_m степени k-2 попадают ровно в два из этих множеств.

Отсюда
$$\sum_{i=1}^k |X_i| = 2 \mathrm{deg} v - 1 < 2k$$
.

Тогда

- lacktriangle u_1 степени k-1 попадает ровно в одно из X_1,\ldots,X_k ,
- u_2, \dots, u_m степени k-2 попадают ровно в два из этих множеств.

Отсюда
$$\sum_{i=1}^{k} |X_i| = 2 \mathrm{deg} v - 1 < 2k$$
.

Пусть $\exists i,j \colon |X_i| > |X_j| + 2$ (цвет i встречается реже).

Тогда

- lacktriangle u_1 степени k-1 попадает ровно в одно из X_1,\ldots,X_k ,
- u_2, \dots, u_m степени k-2 попадают ровно в два из этих множеств.

Отсюда
$$\sum_{i=1}^{k} |X_i| = 2 \mathrm{deg} v - 1 < 2k$$
.

Пусть $\exists i,j \colon |X_i| > |X_j| + 2$ (цвет i встречается реже).

Рассмотрим подграф $G'_{i,j}$ графа G', образованный ребрами цветов i и j.

Для цвета i:

 $X_i \subseteq \{u_1, \dots, u_m\} :=$ подмножество всех соседей убранной вершины v, т.ч. никакие инцидентные им ребра не раскрашены в цвет i.

Тогда

- lacktriangle u_1 степени k-1 попадает ровно в одно из X_1,\ldots,X_k ,
- u_2, \dots, u_m степени k-2 попадают ровно в два из этих множеств.

Отсюда $\sum_{i=1}^{k} |X_i| = 2 \text{deg} v - 1 < 2k$.

Пусть $\exists i,j \colon |X_i| > |X_j| + 2$ (цвет i встречается реже).

Рассмотрим подграф $G'_{i,j}$ графа G', образованный ребрами цветов i и j.

Каждая КС в $G'_{i,j}$ — это или простой путь, или простой цикл; в них чередуются i-ребра и j-ребра. Каждая вершина $\notin X_i \cap X_i$, попадет в одну из этих КС.

Эта КС — простой путь, начинающийся с j-ребра в X_i и заканчивающийся или другим j-ребром в другой вершине из X_i , или за пределами $X_i \cup X_i$.

Эта КС — простой путь, начинающийся с j-ребра в X_i и заканчивающийся или другим j-ребром в другой вершине из X_i , или за пределами $X_i \cup X_j$.

Перекрасим путь, поменяв местами цвета i и j.

При этом $|X_i|$ уменьшится на 1 или на 2, а $|X_j|$ на столько же увеличится.

Эта КС — простой путь, начинающийся с j-ребра в X_i и заканчивающийся или другим j-ребром в другой вершине из X_i , или за пределами $X_i \cup X_j$.

Перекрасим путь, поменяв местами цвета i и j.

При этом $|X_i|$ уменьшится на 1 или на 2, а $|X_j|$ на столько же увеличится.

Применяя такое перекрашивание необходимое число раз к наиболее редкому цвету i и наиболее частому цвету j, получим

$$||X_i|-|X_j||\leq 2$$

для любых двух цветов.

Эта КС — простой путь, начинающийся с j-ребра в X_i и заканчивающийся или другим j-ребром в другой вершине из X_i , или за пределами $X_i \cup X_j$.

Перекрасим путь, поменяв местами цвета i и j.

При этом $|X_i|$ уменьшится на 1 или на 2, а $|X_j|$ на столько же увеличится.

Применяя такое перекрашивание необходимое число раз к наиболее редкому цвету i и наиболее частому цвету j, получим

$$||X_i|-|X_j||\leq 2$$

для любых двух цветов.

 $\sum_{i=1}^{k} |X_i|$ нечетно $\Rightarrow \exists i : |X_i|$ нечетно.

Эта КС — простой путь, начинающийся с j-ребра в X_i и заканчивающийся или другим j-ребром в другой вершине из X_i , или за пределами $X_i \cup X_j$.

Перекрасим путь, поменяв местами цвета i и j.

При этом $|X_i|$ уменьшится на 1 или на 2, а $|X_j|$ на столько же увеличится.

Применяя такое перекрашивание необходимое число раз к наиболее редкому цвету i и наиболее частому цвету j, получим

$$||X_i|-|X_j||\leq 2$$

для любых двух цветов.

 $\sum_{i=1}^k |X_i|$ нечетно $\Rightarrow \exists i$: $|X_i|$ нечетно. $\Rightarrow \exists i$: $|X_i|=1$, поскольку в противном случае все слагаемые ≥ 2 , и их сумма $\geq 2k$.

Пусть $X_i = \{u_l\}$, то есть ни одно из ребер G', инцидентных u_l , не покрашено в цвет i.

Пусть $X_i = \{u_l\}$, то есть ни одно из ребер G', инцидентных u_l , не покрашено в цвет i.

Строим граф $\tilde{G}=(V,\tilde{E})$: удаляем из G ребро (u_l,v) , а также все ребра, покрашенные в G' в цвет i.

Пусть $X_i = \{u_l\}$, то есть ни одно из ребер G', инцидентных u_l , не покрашено в цвет i.

Строим граф $\tilde{G}=(V,\tilde{E})$: удаляем из G ребро (u_I,v) , а также все ребра, покрашенные в G' в цвет i.

Степень v уменьшилась на единицу, и степени всех соседей v также уменьшились на единицу \Rightarrow по предположению индукции ребра \tilde{G} раскрашиваются в k-1 цветов.

Пусть $X_i = \{u_l\}$, то есть ни одно из ребер G', инцидентных u_l , не покрашено в цвет i.

Строим граф $\tilde{G}=(V,\tilde{E})$: удаляем из G ребро (u_I,v) , а также все ребра, покрашенные в G' в цвет i.

Степень ν уменьшилась на единицу, и степени всех соседей ν также уменьшились на единицу \Rightarrow по предположению индукции ребра \tilde{G} раскрашиваются в k-1 цветов.

Остается вернуть все удаленные из G ребра и покрасить их в цвет i.

Пусть G=(V,E) граф, где $V=\{v_1,\ldots,v_n\}$, и пусть $D=\max_i \mathrm{deg} v_i$.

Пусть G_i — подграф G на вершинах v_1,\ldots,v_i .

Пусть G=(V,E) граф, где $V=\{v_1,\ldots,v_n\}$, и пусть $D=\mathrm{max}_i\mathrm{deg}v_i.$

Пусть G_i — подграф G на вершинах v_1,\ldots,v_i .

Докажем, что ребра каждого G_i можно раскрасить в D+1 цветов. Индукция по i.

Пусть G=(V,E) граф, где $V=\{v_1,\ldots,v_n\}$, и пусть $D=\mathrm{max}_i\mathrm{deg}v_i.$

Пусть G_i — подграф G на вершинах v_1, \ldots, v_i .

Докажем, что ребра каждого G_i можно раскрасить в D+1 цветов. Индукция по i.

Базис: G_1 — это одинокая вершина, раскрасить можно.

Пусть G=(V,E) граф, где $V=\{v_1,\ldots,v_n\}$, и пусть $D=\mathrm{max}_i\mathrm{deg}v_i.$

Пусть G_i — подграф G на вершинах v_1, \ldots, v_i .

Докажем, что ребра каждого G_i можно раскрасить в D+1 цветов. Индукция по i.

Базис: G_1 — это одинокая вершина, раскрасить можно.

Шаг индукции: если G_{i-1} можно раскрасить, то, по лемме для графа G_i , вершины $v=v_i$ и числа k=D+1, граф G_i тоже можно раскрасить в D+1 цветов.

Теорема Визинга \Rightarrow два класса графов:

ightharpoonup Класс 1: ребра красится в D цветов,

ightharpoonup Класс 2: в D+1 цвет.

Теорема Визинга \Rightarrow два класса графов:

- ightharpoonup Класс 1: ребра красится в D цветов,
 - двудольные графы
 - почти все случайные графы
 - lacktriangle планарные графы при $D \geq 7$
- ▶ Класс 2: в D + 1 цвет.
 - lacktriangle некоторые планарные графы при $D \leq 5$

Теорема Визинга \Rightarrow два класса графов:

- ightharpoonup Класс 1: ребра красится в D цветов,
 - двудольные графы
 - почти все случайные графы
 - lacktriangle планарные графы при $D \geq 7$
- ▶ Класс 2: в D + 1 цвет.
 - lacktriangle некоторые планарные графы при $D \leq 5$

Открытые вопросы

Планарные графы с D=6?

Теорема Визинга \Rightarrow два класса графов:

- ightharpoonup Класс 1: ребра красится в D цветов,
 - двудольные графы
 - почти все случайные графы
 - lacktriangle планарные графы при $D \geq 7$
- ▶ Класс 2: в D + 1 цвет.
 - lacktriangle некоторые планарные графы при $D \leq 5$

Открытые вопросы

Планарные графы с D=6?

Задача проверки, имеет ли произвольный граф класс 1, является NP-полной задачей (не известно полиномиального по времени алгоритма) — снова 1000000 от института Клэя за решение.

Паросочетания с предпочтениями

У каждой вершины можно задать порядок на множестве инцидентных ей ребер: $<_{\it v} \subseteq \it E \times \it E$ (предпочтения).

Паросочетание M называется устойчивым, если не существует $(v_1, v_2) \in E \backslash M$, которое удовлетворяет следующим условиям:

- ightharpoonup ребро (v_1,v_2) у v_1 стоит выше в списке предпочтений, чем его текущая пара $(v_1,v_2')\in M$ (либо v_1 не состоит в паре);
- симметричное условие для v_2 : ребро (v_1, v_2) у него стоит выше в списке предпочтений, чем его текущая пара $(v_1', v_2) \in M$ (либо v_2 не состоит в паре)

Варианты:

- ightharpoonup n мужчин, n женщин, полный порядок $(K_{n,n})$
- ориентированные ребра

Паросочетания с предпочтениями

У каждой вершины можно задать порядок на множестве инцидентных ей ребер: $<_{\it v}\subseteq \it E\times \it E$ (предпочтения).

Паросочетание M называется устойчивым, если не существует $(v_1, v_2) \in E \setminus M$, которое удовлетворяет следующим условиям:

- ▶ ребро (v_1, v_2) у v_1 стоит выше в списке предпочтений, чем его текущая пара $(v_1, v_2') \in M$ (либо v_1 не состоит в паре);
- симметричное условие для v_2 : ребро (v_1,v_2) у него стоит выше в списке предпочтений, чем его текущая пара $(v_1',v_2)\in M$ (либо v_2 не состоит в паре)

Варианты:

- ightharpoonup n мужчин, n женщин, полный порядок $(K_{n,n})$
- ориентированные ребра

Теорема 1 (об устойчивых браках, Гейл и Шепли, 1962)

Во всяком двудольном графе $G=(V_1,V_2,E)$, для всяких предпочтений $\{\leq_v\}_{v\in V_1\cup V_2}$ существует устойчивое паросочетание.

 $extit{Доказательство}.$ Алгоритм, строящий такое паросочетание (V_1 — юноши, V_2 — невесты).

 $extit{Доказательство}.$ Алгоритм, строящий такое паросочетание $(V_1$ — юноши, V_2 — невесты).

Описание алгоритма:

Первый шаг:

- каждый юноша делает предложение первой девушке в своем списке
- каждая девушка заключает помолвку с наиболее предпочтительным женихом из сделавших ей предложение.

 $extit{Доказательство}.$ Алгоритм, строящий такое паросочетание $(V_1$ — юноши, V_2 — невесты).

Описание алгоритма:

Первый шаг:

- каждый юноша делает предложение первой девушке в своем списке
- каждая девушка заключает помолвку с наиболее предпочтительным женихом из сделавших ей предложение.

Каждый следующий шаг:

 каждый не помолвленный юноша делает предложение следующей девушке в своем списке — неважно, помолвлена она или нет. $extit{Доказательство}.$ Алгоритм, строящий такое паросочетание $(V_1 - ext{юноши}, \ V_2 - ext{невесты}).$

Описание алгоритма:

Первый шаг:

- каждый юноша делает предложение первой девушке в своем списке
- каждая девушка заключает помолвку с наиболее предпочтительным женихом из сделавших ей предложение.

Каждый следующий шаг:

- каждый не помолвленный юноша делает предложение следующей девушке в своем списке — неважно, помолвлена она или нет.
- ► Если девушка получает предложение от более предпочтительного жениха, чем ее текущий жених, то она расторгает текущую помолвку и заключает помолвку с наиболее предпочтительным женихом из тех, кто сделал ей предложение.

Постепенно заключаются помолвки, все более предпочтительные для невест, и все менее предпочтительные для женихов. Ни один юноша не делает предложения одной и той же девушке дважды.

Постепенно заключаются помолвки, все более предпочтительные для невест, и все менее предпочтительные для женихов. Ни один юноша не делает предложения одной и той же девушке дважды.

Корректность алгоритма:

Конечность алгоритма: Алгоритм завершается, поскольку на каждом шаге хотя бы один юноша делает предложение какой-то девушке, а так как каждый юноша последовательно движется по своему списку предпочтений, общее число шагов ограничено сверху суммой длин этих списков.

 v_1 никогда не делал предложения $v_2 \Rightarrow$ к моменту завершения алгоритма у него была более предпочтительная невеста, чем v_2 , и, женившись на ней, менять ее на v_2 он не захочет. Т.е. существует v_2' , т.ч. $(v_1, v_2') \in M$, и это ребро выше в предпочтении v_1 , чем (v_1, v_2) .

- v_1 никогда не делал предложения $v_2 \Rightarrow$ к моменту завершения алгоритма у него была более предпочтительная невеста, чем v_2 , и, женившись на ней, менять ее на v_2 он не захочет. Т.е. существует v_2' , т.ч. $(v_1, v_2') \in M$, и это ребро выше в предпочтении v_1 , чем (v_1, v_2) .
- v_1 делал предложение v_2 , но получил отказ \Rightarrow к этому моменту у v_2 был более предпочтительный жених, которого она могла сменить только на еще более предпочтительного. Т.е. $\exists v_1'$, т.ч. $(v_1', v_2) \in M$, и это ребро выше в предпочтении v_2 , чем (v_1, v_2) .

- v_1 никогда не делал предложения $v_2 \Rightarrow \kappa$ моменту завершения алгоритма у него была более предпочтительная невеста, чем v_2 , и, женившись на ней, менять ее на v_2 он не захочет. Т.е. существует v_2' , т.ч. $(v_1, v_2') \in M$, и это ребро выше в предпочтении v_1 , чем (v_1, v_2) .
- v_1 делал предложение v_2 , но получил отказ \Rightarrow к этому моменту у v_2 был более предпочтительный жених, которого она могла сменить только на еще более предпочтительного. Т.е. $\exists v_1'$, т.ч. $(v_1', v_2) \in M$, и это ребро выше в предпочтении v_2 , чем (v_1, v_2) .
- v_1 делал предложение v_2 , получил согласие, а потом был брошен ею \Rightarrow у v_2 есть более предпочтительный жених. Т.е. $\exists v_1'$, т.ч. $(v_1', v_2) \in M$, и это ребро выше в предпочтении v_2 , чем (v_1, v_2) .

Свойства полученного устойчивого паросочетания

ightharpoons для $K_{n,n}$ образуется n пар

Свойства полученного устойчивого паросочетания

- ightharpoonup для $K_{n,n}$ образуется n пар
- оптимально для мужчин (т.е. каждый мужчина женат на наиболее предпочтительной им женщине среди всех устойчивых паросочетаний)

Свойства полученного устойчивого паросочетания

- ightharpoonup для $K_{n,n}$ образуется n пар
- оптимально для мужчин (т.е. каждый мужчина женат на наиболее предпочтительной им женщине среди всех устойчивых паросочетаний)
- самое худшее для женщин (т.е. каждая женщина замужем за наименее предпочтительным мужчиной среди всех устойчивых паросочетаний)

Доказательство оптимальности для мужчин

Возможная пара (m,w): \exists стабильное паросочетание с такой парой.

Доказательство оптимальности для мужчин

Возможная пара (m,w): \exists стабильное паросочетание с такой парой.

Наилучший возможный партнер w = best(m) для m: наиболее предпочтительный среди возможных пар (m, w).

Доказательство оптимальности для мужчин

Возможная пара (m, w): \exists стабильное паросочетание с такой парой.

Наилучший возможный партнер w = best(m) для m: наиболее предпочтительный среди возможных пар (m, w).

Предположим, что в паросочетании GS, выданным алгоритмом, есть мужчина, который не с наилучшей возможной партнершей. Значит, его наилучшая возможная партнерша ему отказала.

Рассмотрим первое событие X, когда мужчине отказала наилучшая возможная партнерша во время работы GS: w = best(m) отказала m, чтобы быть (или продолжать быть) с мужчиной m', более предпочтительным, чем m.

Так как (m, w) возможная пара, то \exists стабильное паросочетание S' с такой парой.

Алгоритм $\mathsf{GS} \Rightarrow \mathsf{во} \mathsf{время} \mathsf{события} X$

ightharpoonup m' еще не был отвергнут $\operatorname{best}(m') \Rightarrow$ и никем из возможных партнерш, в том числе w'

Алгоритм $\mathsf{GS} \Rightarrow \mathsf{во} \mathsf{время} \mathsf{события} X$

- ightharpoonup m' еще не был отвергнут $\operatorname{best}(m') \Rightarrow$ и никем из возможных партнерш, в том числе w'
- ightharpoonup m' состовит в паре с w, т.е. мужчине m' отказали все женщины в его списке предпочтений выше w
- $\Rightarrow w'$ после w в списке m'.

Алгоритм $\mathsf{GS} \Rightarrow \mathsf{во} \mathsf{время} \mathsf{события} X$

- ightharpoonup m' еще не был отвергнут $\mathrm{best}(m') \Rightarrow$ и никем из возможных партнерш, в том числе w'
- ightharpoonup m' состовит в паре с w, т.е. мужчине m' отказали все женщины в его списке предпочтений выше w

 $\Rightarrow w'$ после w в списке m'.

Противоречие со стабильностью S': $(m,w),(m',w')\in S'$, но оба w и m' предпочитают друг друга относительно их пар в S'. Оптимальность для мужчин доказана.

Алгоритм $\mathsf{GS} \Rightarrow \mathsf{во} \mathsf{время} \mathsf{события} X$

- ightharpoonup m' еще не был отвергнут $\mathrm{best}(m') \Rightarrow$ и никем из возможных партнерш, в том числе w'
- ightharpoonup m' состовит в паре с w, т.е. мужчине m' отказали все женщины в его списке предпочтений выше w

 \Rightarrow w' после w в списке m'.

Противоречие со стабильностью S': $(m,w),(m',w')\in S'$, но оба w и m' предпочитают друг друга относительно их пар в S'. Оптимальность для мужчин доказана.

Доказательство "наихудшести" для женщин: упражнение (аналогично с использованием оптимальности GS для мужчин) Случай $K_{n,n}$: упражнение.