SPRAWOZDANIE SYSY

Laboratorium 3

Jan Czechowski 337066 Bartłomiej Gromulski 331475

1. Zadanie

a)

Częstotliwość graniczna filtru fl = 1/(100 us) = 10 kHz, a najniższą wartością filtru, która nie zniekształca widma sygnału sin, jest fl = 11 kHz.

Rys. 1 Widmo dla szerokości filtru f1 = 11 kHz.

b)

Teoretycznie, zgodnie z twierdzeniem Nyquista, aby nie dopuścić do aliasingu, musimy mieć: $fs \ge 2$ fc = 2 f1.

Dla f1= 11 kHz daje to fs ≥ 22kHz. Jednak w naszym skrypcie mamy narzucone obostrzenie - zarówno szerokość filtru f1, jak i częstotliwość próbkowania fs można podawać tylko jako liczby całkowite w [kHz].

Gdybyśmy mogli ustawić np. f1 = 10,5 kHz, to wymagana teoretycznie częstotliwość próbkowania wynosiłaby: $2\times10,5 = 21$ kHz i dla tej wartości aliasing nie występuje.

Rys. 2 Widma dla częstotliwości próbkowania 21 kHz.

Skoro jednak program nie przyjmuje wartości niecałkowitych, najniższą "legalną" szerokością filtru jest f1 = 11kHz. Dla tej wartości fs = 22 kHz.

Rys. 3 Widma dla częstotliwości próbkowania 22 kHz.

c)

Widmo amplitudowe po próbkowaniu:

Rys. 4 Widmo amplitudowe po próbkowaniu.

d)
Poniższe podpunkty będą liczone dla fs = 22 kHz.

0.5 * fs = 11 kHz:

Błąd średniokwadratowy = 0,4993

Rys. 5 Błąd średniokwadratowy dla 0,5 * fs

Przy połowie teoretycznej częstotliwości próbkowania sygnał jest silnie aliasowany, co skutkuje bardzo wysokim błędem średniokwadratowym. Wynik bliski 0,5 wskazuje na znaczące zniekształcenia sygnału.

$0.9 \text{ fs} \approx 20 \text{ kHz}$:

Błąd średniokwadratowy = 0,49917

Rys. 6 Błąd średniokwadratowy dla 0,9 * fs

Nawet przy 90% fs błąd pozostaje praktycznie na tym samym poziomie, co świadczy o tym, że częstotliwość ta nadal jest zbyt niska, aby poprawnie odwzorować sygnał. Aliasowanie jest nadal dominujące.

1 fs = 22 kHz:

Błąd średniokwadratowy = $5.9655e-05 \approx 0$

Rys. 7 Błąd średniokwadratowy dla1 * fs

Przekroczenie progu Nyquista (1 fs) powoduje gwałtowny spadek MSE. Wartość rzędu 10⁻⁵ wskazuje, że sygnał jest prawidłowo próbkowany i rekonstrukcja przebiegu jest bardzo dokładna.

 $1,2*fs = 26,4 \text{ kHz} \approx 26 \text{ kHz}$:

Błąd średniokwadratowy = $4,6265e-05 \approx 0$

Rys. 8 Błąd średniokwadratowy dla 1,2 * fs

Przy niewielkim nadpróbkowaniu obserwujemy dalszą minimalną redukcję błędu. Choć poprawa jest mniejsza, sygnał jest już bardzo dobrze odtworzony.

2*fs = 44 kHz:

Błąd średniokwadratowy = $1.6018e-07 \approx 0$

Rys. 9 Błąd średniokwadratowy dla 2 * fs

Znaczne nadpróbkowanie (dwukrotność fs) praktycznie eliminuje błąd, osiągając wartość niemal zerową, co potwierdza, że wyższa częstotliwość próbkowania daje jeszcze dokładniejszą rekonstrukcję.

Podsumowując, wyniki te wyraźnie ilustrują, że:

- Przy częstotliwościach poniżej lub nieosiągających wartości Nyquista (0,5 fs oraz 0,9 fs) aliasing jest tak silny, że praktycznie maksymalny błąd (około 0,5) utrzymuje się.
- Próg Nyquista (1 fs) jest kluczowy przekroczenie tej wartości drastycznie poprawia jakość rekonstrukcji, obniżając MSE do poziomu rzędu 10⁻⁵.
- Nadpróbkowanie (1,2 fs, 2 fs) przynosi dalsze, aczkolwiek marginalne, usprawnienia w dokładności rekonstrukcji.

e)

Nie – wyznaczone dla sin f_i =11 kHz i f_s =22 kHz nie wystarczą dla sin². Ponieważ sin^2 zawiera składową o częstotliwości 2 f (okres o połowę krótszy), jego najwyższa składowa to $2\cdot11$ kHz = 22 kHz. Aby uniknąć aliasingu, trzeba mieć

- $f_1 \ge 22 \text{ kHz}$
- $f_s \ge 2.22 \text{ kHz} = 44 \text{ kHz}.$

Zarówno składowa stała, jak i wyższa harmoniczna są zachowane. Wykres w czasie odtwarza typowy kształt sin² bez zniekształceń.

Rys. 10 Sin^2 dla f_1 =22 kHz i f_s =44 kHz

Widmo sygnału zostaje pozbawione składowej wyższej częstotliwości, zostaje jedynie składowa stała. W dziedzinie czasu zamiast charakterystycznych "górek" sin² widzimy niemal poziomy przebieg.

Rys. 11 Sin^2 dla f_1 =11 kHz i f_s =22 kHz

2. Zadanie

Tabela 1 Wartości błędu średniokwadratowego w zależności od częstotliwości próbkowania dla sygnału prostokątnego.

Częstotliwość próbkowania [kHz]	Błąd średniokwadratowy
50	0,83169
75	0,66676
100	0,28739
125	0,021997
150	0,006254
175	0,0017361
200	1,4017E-32
225	2,394E-07
250	1,3616E-32
275	6,0163E-09
300	8,8659E-08

Rys. 12 Błąd średniokwadratowy w zależności od częstotliwości próbkowania dla pojedynczego impulsu prostokątnego.

Z wykresu można odczytać, że:

- 1. **Do ok. 2 × f_Nyquista** (200 kHz) błąd spada gwałtownie wraz ze wzrostem częstotliwości próbkowania.
- 2. **Powyżej 2 × f_Nyquista** błąd praktycznie osiąga wartość zerową i dalszy wzrost częstotliwości próbkowania nie przynosi istotnej poprawy odwzorowania sygnału.

Wniosek: Ustawianie częstotliwości próbkowania powyżej dwukrotnej wartości Nyquista (2 * f_Nyquista) nie jest uzasadnione, bo sygnał nie zyskuje na jakości, choć formalnie nie jest już zniekształcany co potwierdzają wykresy widm amplitudowych poniżej.

Rys. 13 Widmo amplitudowe dla fs = 200 kHz.

Rys. 14 Widmo amplitudowe dla fs = $250 \, kHz$.

Rys. 15 Widmo amplitudowe dla $fs = 300 \, kHz$.

3. Zadanie

W porównaniu z sygnałem z zadania 2, błąd średniokwadratowy dla sygnału wykładniczego osiąga mniejsze wartości i szybciej jego wartość zbliża się do zera.

Tabela 2 Wartości błędu średniokwadratowego w zależności od częstotliwości próbkowania dla sygnału wykładniczego.

Częstotliwość próbkowania	Błąd średniokwadratowy
50	0,27362
75	0,18839
100	0,084317
125	0,0012833
150	0,00015244
175	0,000028105
200	4,836E-33
225	6,2139E-10

250	4,8665E-33
275	2,1284E-10
300	4,7152E-11

Rys. 16 Błąd średniokwadratowy w zależności od częstotliwości próbkowania dla sygnału wykładniczego.

Rys. 17 Widmo amplitudowe dla sygnału wykładniczy, przy częstotliwości próbkowania równej 300 kHz.

4. Zadanie

Aby błąd średniokwadratowy był bliski zera, mimo częstotliwości próbkowania niższej niż wymagana przez twierdzenie o próbkowaniu należy skorzystać z poniższych zależności. Kluczowe jest, by częstotliwość próbkowania była co najmniej około dwukrotnie większa od samej szerokości pasma (w tym wypadku szerokość pasma to 113 kHz – 92 kHz = 21 kHz). Częstotliwość próbkowania musi spełniać nierówność (gdzie f_L to dolna granica pasma, a f_H to górna granica):

$$\frac{2f_H}{n} \le f_S \le \frac{2f_L}{n-1}$$

Dla n spełniającego zależność: $1 \le n \le \left| \frac{f_H}{f_H - f_L} \right|$

Dla n równego 4 otrzymujemy:

$$\frac{2*113kHz}{4} \le f_S \le \frac{2*92kHz}{4-1}$$

Otrzymujemy więc f_S należące do przedziału: $\langle 56,5kHz,61,33kHz \rangle$

Dla f_S równego 59 kHz, oraz filtrów f_1 i f_2 ustawionych odpowiednio na wartości: 114 kHz oraz 91 kHz i 114 kHz. Dla takiego układu błąd średniokwadratowy wynosi 0.0081447.

Rys. 18 Ustawienia filtra i widma dla wartości z zadania 4

Spis treści

1.	Zadanie	2
	a)	
	b)	
	C)	
	d)	
	e)	
	Zadanie	
	Zadanie	
4.	Zadanie	13

Spis rysunków:

Rys. 1 Widmo dla szerokości filtru f1 = 11 kHz	2
Rys. 2 Widma dla częstotliwości próbkowania 21 kHz	3
Rys. 3 Widma dla częstotliwości próbkowania 22 kHz	3
Rys. 4 Widmo amplitudowe po próbkowaniu	4
Rys. 5 Błąd średniokwadratowy dla 0,5 * fs	4
Rys. 6 Błąd średniokwadratowy dla 0,9 * fs	5
Rys. 7 Błąd średniokwadratowy dla1 * fs	5
Rys. 8 Błąd średniokwadratowy dla 1,2 * fs	6
Rys. 9 Błąd średniokwadratowy dla 2 * fs	6
Rys. 10 Sin^2 dla f_1 =22 kHz i f_s =44 kHz	7
Rys. 11 Sin^2 dla f_1 =11 kHz i f_s =22 kHz	8
Rys. 12 Błąd średniokwadratowy w zależności od częstotliwości próbkowania dla	
pojedynczego impulsu prostokątnego.	9
Rys. 13 Widmo amplitudowe dla fs = 200 kHz	10
Rys. 14 Widmo amplitudowe dla fs = 250 kHz	10
Rys. 15 Widmo amplitudowe dla fs = 300 kHz	11
Spis tabel:	
Tabela 1 Wartości błędu średniokwadratowego w zależności od częstotliwości	
próbkowania dla sygnału prostokątnego	8
Tabela 2 Wartości błędu średniokwadratowego w zależności od częstotliwości	
próbkowania dla sygnału wykładniczego	8