BEST AVAILABLE COPY

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

10-268428

(43) Date of publication of application: 09.10.1998

(51) Int. CI.

G03B 21/62 G02B 5/02

(21) Application number: 09-077856 (71) Applicant: TOPPAN PRINTING CO LTD

(22) Date of filing: 28.03.1997 (72) Inventor: NISHIKAWA YUICHI

(54) LIGHT DIFFUSION LAYER FOR PROJECTION SCREEN

(57) Abstract:

PROBLEM TO BE SOLVED: To impart sufficient light diffusibility to a light diffusion layer without adding a large amt. of light diffusive particulates thereto in the case where this light diffusion layer is applied to a screen by using the light diffusion layer coated with specific light diffusion ink.

0. $5 \mu \text{m} \leq d \wedge \mu \text{m} \leq 7$. $5 \mu \text{m}$

SOLUTION: The light diffusion layer to be used for 2. 0 um d d B u m d 12. 0 um the projection screen consisting of a combination of a Fresnel lens and a lenticular sheet is obtd. by applying the light diffusion ink dispersed with the light diffusive particulates in a light

transparent resin on the front surface of a transparent resin film. At this time, the light diffusive particulates are dispersed into the light transparent resin and ruggedness is formed

4×dAµm≤T≤3.5×cBµm

ĬII '

]]

diffusive particulates consist of the light diffusive particulates A of an average grain size

to project from the surface. Namely, the light

dAum and the light diffusive particulates B of an average grain size dBum satisfying equation I and equation II. The light diffusion layer is constituted by dispersing and compounding the light diffusive particulates A, B in and with the light transparent resin in such a manner that the light diffusive particulates B project from the surface of the light transparent resin. The thickness T of the light diffusion layer consisting of the light diffusion ink satisfies equation III.

LEGAL STATUS

[Date of request for examination]

15. 12. 2003

[Date of sending the examiner's decision

of rejection]

[Kind of final disposal of application other than the examiner's decision of

rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3653924

[Date of registration]

11. 03. 2005

[Number of appeal against examiner's

decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998, 2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開發号

特開平10-268428

(43)公開日 平成10年(1998)10月9日

(51) Int.CL⁶

織別配号

ΡI

G03B 21/62 G02B 5/02

G03B 21/62

G 0 2 B 5/02

B

審査韶球 未韶球 菌泉項の数5 OL (全 8 頁)

(21)出願番号

物頭平9-77856

(71) 出願人 000003193

凸版印刷株式会社

(22)出版日

平成9年(1997) 3月28日

東京都台東区台東1丁目5番1号

(72) 発明者 西川 祐一

東京都台東区台東1丁目5番1号 凸版印

刷株式会社内

(54) 【発明の名称】 プロジェクションスクリーン用光拡散層

(57)【要約】

【課題】透過型液晶プロジェクションスクリーン用片面 レンチキュラーシートの、映像光の出射側となる平坦面 に配置した場合に好適な (特に、ホットスポットのな い) 光拡散層を提供する。

【解決手段】
粒径の異なる2種類の光拡散性微粒子が光 透過性樹脂に分散されてなる光拡散性インキを塗布形成 して光拡散層とする。前記光拡散層により、内部拡散と 表面拡散が同時に実現される。

特開平10-268428

2

【特許請求の範囲】

【謂求項1】プレネルレンズとレンチキュラーシートの 組み合わせから構成されるプロジェクションスクリーン に用いられる光拡散層において、

1

光鉱散性微粒子が光透過性樹脂に分散されてなる光拡散*

- $0.5 \mu \text{m} \leq \text{dA} \mu \text{m} \leq 7.5 \mu \text{m}$
- 2. $0 \mu m \leq dB \mu m \leq 12$. $0 \mu m$

を満足する平均位径dAμmの光拡散性微粒子(A) と、平均粒径dBumの光拡散性微粒子(B)とからな

り、光拡散性微粒子(A)(B)が光透過性制脂に分散※10 光鉱散インキからなる光鉱散層の厚き干が、

 $4 \times dAum \leq T \leq 3$. $5 \times dBum$

を満足することを特徴とするプロジェクションスクリー ン用光拡散層。

【請求項2】光鉱散性微粒子が分散配合されるバインダ ーとなる光透過性樹脂が、アクリル系樹脂、ポリウレタ ン系樹脂、ポリエステル系樹脂、ポリ塩化ビニル系樹 脂、ポリ酢酸ビニル系樹脂の単体あるいは混合体である ことを特徴とする請求項1記載のプロジェクションスク リーン用光拡散層。

【語求項3】光鉱散性微粒子(A)(B)が、シリカ, 炭酸カルシウム、水酸化アルミニウム、アクリル樹脂、 有機シリコーン樹脂、ポリスチレン、尿素樹脂、ポルム アルデヒド縮合物のうちから選択される2種類の組み合 わせからなることを特徴とする請求項1または2に記載 のプロジェクションスクリーン用光拡散層。

【請求項4】片面のみにシリンドリカルレンズ群が形成 され、前記レンズの配列されるピッチがり、25mm以 下であるレンチキュラーシートの反レンズ側の平坦面 に、 語求項1~3の何れかに記載の光鉱散層の透明樹脂 ェクションスクリーン用レンチキュラーシート。

【請求項5】片面のみにシリンドリカルレンズ群が形成。 され、前記レンズの配列されるピッチがり、25mm以 下であるレンチキュラーシートの反レンズ側の平坦面 に、諸求項1~3の何れかに記載の光拡散インキを、直 接塗布形成してなる模成の透過型液晶プロジェクション スクリーン用レンチキュラーシート。

【発明の詳細な説明】

[0001]

レンチキュラーシートの組み合わせから構成されるプロ ジェクションスクリーンに用いられる光拡散層に関し、 特に、透過型液晶プロジェクションテレビで、液晶プロ ジェクターからの投影光を結像(および、光拡散させて) 透過)させて機能する光拡散層の改良に関する。

[0002]

【従来の技術】プロジェクションスクリーンの一般的な 形態としては、フレネルレンズとレンタキュラーシート との組み合わせからなり、プロジェクターからの投影光 *インキが、透明樹脂フィルムの裏面に塗布形成され、光 拡散性微粒子が光透過性樹脂の内部に分散されると共 に、表面から突出して凹凸が形成されており、 光拡散性微粒子が、

······· (1)

..... (2)

※配合され、主として光拡散性微粒子(B)が光透過性樹 脂の表面から突出した構成であり、

----- {3}

拡散層が、スクリーンの何れかの場所に存在する。

【0003】レンチキュラーシートは、シリンドリカル レンズの並設方向(一般には、水平方向)である所定の 角度範囲には投影光を広げられるが、それと垂直な方向 には投影光をほとんど広げられない。水平方向へ光を広 ける補助的な役割、及び垂直方向に光を広げる主役的な 役割を果たすために光拡散層が必要である。また、光拡 散層には、画面の明るさが均一になるように、プロジェ - 20 クターからの入射光の中心点の輝度が局所的に高くな り、シリンドリカルレンズの並設方向に縞状に見える現 象であるホットスポットをなくす役割もある。

- 【0004】光鉱散機能を付与するために、光透過陰樹 脂に屈折率の異なる光拡散性微粒子を分散配合するのは 公知であり、光拡散特性を得るために以下に例示される 様々な手法がある。
- (1) レンチキュラーシートの成形品の内部に光拡散性を 有する機粒子を1種又は2種以上減り込み、色温度特性 を改善することを目的とする特関平4-134440号 フィルム側を貼り合わせてなる構成の透過型液晶プロジ 39 公報、特開平4-134441号公報や、垂直方向に於 ける視野特性の改善を目的とする特開平2-15773 5号公報が提案されている。
 - (2) レンチキュラーシートの成形品の出射面側に、微細 な凹凸を形成(マット処理)し、光利用効率を改善した り、ギラツキ防止と視野特性の改善を目的とする特関平 3-43724号公報,特開平5-61120号公報, 特開平7-270918号公報が提案されている。
- (3) レンチキュラーシートの成形品の前後、特に出射面 側に光拡散性を有する微粒子を分散配合させた樹脂を塗 【発明の属する技術分野】本発明は、フレネルレンズと 40 布形成するか、前記樹脂をフィルム化したものをラミネ ートし、高輝度化、コントラスト改善を目的とする特関 昭63-266442号公報, 特閱平1-166132 8号公報,特開平4-322240号公報があり、光拡 散シートを用いて、簡単に光拡散層を積層させることを 目的とする特開平8-43608号公報が提案されてい
- (4) フレネルレンズやレンチキュラーシート自体に光拡 散機能を付与するのではなく、最も額察者側に位置する 前面バネルの内部に光拡散性を有する微粒子を1種又は を結像(および、光拡散させて透過)させて微能する光 50 2種以上領り込むか、入射面側・出射面側の表面に光拡

(3)

3

散性を有する微粒子を分散配合させた樹脂を塗布形成 し、外光吸収機能の改善、高解像度化、コントラスト改 書、視野特性の改善などを目的とする特関平6-273 852号公報、特関平7-248537号公報が提案さ れている。

【0005】(1) は、入射する投影光を、レンチキュラ ーシート内部の微粒子によって光拡散させる手法である が、以下に挙げる問題を有している。

の前記機粒子を多用することにより入射光の迷光が発生 し、解像度の低下を招くと共に、視覚される映像光(出 19 いる。 射光)の光畳低下によるコントラストを下げる要因とも なる。

②前記機粒子を分散配合させることにより、レンズシー 上の外観不良や、成型精度の低下、強度不足などの問題 も生じることになる。

【りり06】(2) は、入射する投影光を、レンチキュラ ーシート出射面側に微細な凹凸を形成(マット処理)す ることによって光拡散させる手法であるが、以下に挙げ る問題を有している。

のレンズ成形面である内壁に微細な凹凸を形成するのは 競しく、成形用金型の精度の問題、成形品のレンズシー 上の外観不良や、成形精度の低下などの問題が生じるこ とになる。

【0007】(3) は、入射する投影光を、微粒子によっ て光鉱散させる手法であり、成形されたレンズシートの 出射面側に、光拡散層を塗布形成するか、フィルム化し たものをラミネートし、光鉱散させる手法であるが、以 下に挙げる問題を有している。

射面側の非レンス面に形成されるブラックストライプ部 を避けて行う為。マスキングなどしなければならず製造 工程で手間がかかり、塗布精度の問題が生じることにな る。

Øフィルム化したものをラミネートする場合は、フィル ム化への精度は出やすく、簡便ではあるが、両面レンチ キュラーシートへのラミネートは、出射面側のレンズ面 と非レンズ面にあたるブラックストライフ部の高低差 (通常70~150 mm) によって、均一で正確なラミ ネートはできず、いずれ剥離してしまうなどの問題も生 46 じることになる。

【0008】(4) は、入射する投影光を、前面パネルに て微粒子によって光拡散させる手法であるが、以下に挙 げる問題を有している。

の前記微粒子を内部分散配合させるととにより、前面パ ネルの外観不良や、成型結度の低下、強度不足などの問 題が生じることになる。

②前記

協

拉
子
を

前

面

バ

ネ

ル

に

印

即

す

る

場

合

に

は

、

高

底

戻

の 度が得られるμ血オーダーでの拡散層厚みの制御が難し*

 $0.5 \mu m \leq dA \mu m \leq 7.5 \mu m$

*いため、拡散層膜厚の精度が出ず、塗布安定性に欠ける などの問題も生じることになる。

【0009】透過型プロジェクションテレビとして、ブ ロジェクターが3管式のCRT方式の場合には、表裏の レンズでR-G・Bの3色のズレを補正する必要がある ため、両面にシリンドリカルレンズ群が形成されたレン チキュラーシートが用いられるが、近年、透過型液晶プ ロジェクションテレビが普及しつつあり、その映像を観 察するためのプロジェクションスクリーンが要求されて

【0010】映像画質の高錆細化に伴い、液晶プロジェ クターの画素数も従来の数十万画素から100万画素以 上に増加していることから、レンチキュラーシートに対 してもシリンドリカルレンズのファインピッチ化が要求 されている。ファインピッチ化によって、液晶プロジェ クターの画案の周期性とシリンドリカルレンズの周期性 に起因するモアレの現象が低減されることになる。

【りり11】具体的には、り、7mm前後のビッチでシ リンドリカルレンズが配列されているCRT方式でのレ の微細な凹凸を成形品に形成するにあたり、成形用金型 20 ンチキュラーシートを、液晶方式ではり、3 mm以下に ファインピッチ化を図ることが要求されている。それに 伴って、透過型液晶プロジェクションスクリーン用に適 した光拡散層も要求されている。

【①①12】透過型液晶プロジェクションスクリーン向 けの光拡散層にかかる出願として、本出願人による特願 平8-325495号があるが、前記出類は、光拡散層 の上に保護フィルムや着色フィルムをラミネートして、 最終製品としてのスクリーンを完成するにあたって、光 拡散機能の低下しない光拡散層を提供することを目的と ①両面レンチキュラーシートへの塗布成形の場合は、出 30 した出願であって、ホットスポットの問題については一 切考慮していない。

[0013]

【発明が解決しようとする課題】本発明は、以上のよう な技術的背景を考慮してなされたものであり、光鉱散性 微粒子を含まないほぼ透明な材料で形成された透過型液 **晶プロジェクションスクリーン周片面レンチキュラーシ** ートの、映像光の出射側となる平坦面に配置した場合に 好適な光拡散層を提供することを目的とする。特に、透 過型液晶プロジェクションテレビにおけるホットスポッ トへの対策が十分誰じられた光拡散層を提供することを 目的とする。

[0014]

【課題を解決するための手段】本発明では、粒径の異な 、る2 種類の光拡散性微粒子を用いて光拡散性インキを作 製する。すなわち、光拡散性微粒子が光透過性樹脂に分 散されてなる光拡散インキが、透明樹脂フィルムの表面 に塗布形成され、光拡散性微粒子が光透過性樹脂の内部 に分散されると共に、表面から突出して凹凸が形成され ており、光拡散性微粒子が、

----- (<u>]</u> }

特開平10-268428

2. $0 \mu m \leq dB \mu m \leq 12$. $0 \mu m$

..... (2)

を満足する平均锭径 α Α μ m の光拡散性微粒子(Α) と、平均粒径dBumの光拡散性微粒子(B)とからな り、光拡散性微粒子(A)(B)が光透過性樹脂に分散※

4×dAµm≤T≤3. 5×dBµm

を満足するプロジェクションスクリーン用光拡散層であ る。

【①①15】光拡散性微粒子が分散配合されるバインダ ーとなる光透過性樹脂としては、アクリル系樹脂、ポリ ウレタン系樹脂、ポリエステル系樹脂、ポリ塩化ビニル 19 きる。表面光沢度(G)は、20以下であると適当で、 系樹脂,ポリ酢酸ビニル系樹脂の単体あるいは混合体が 好資である。

【りり16】光鉱散ध微粒子(A)(B)としては、シ リカ、炭酸カルシウム,水酸化アルミニウム,アクリル 樹脂、有機シリコーン樹脂、ポリスチレン,尿素樹脂, ホルムアルデヒド縮台物のうちから選択される2種類の 組み合わせが好酒である。

【0017】透過型液晶プロジェクションスクリーン用 レンチキュラーシートへ適用するにあたっては、片面の みにシリンドリカルレンズ群が形成され、前記レンズの 29 配列されるピッチがり、25mm以下であるレンチキュ ラーシートの反レンズ側の平坦面に、上記の光拡散層の 透明樹脂フィルム側を貼り合わせるか、上記の光拡散イ ンキを直接途布形成する。

【①①18】本発明での光鉱散性微粒子が具備すべき要 件には、平均位径が挙げられるが、その前に、本発明の 目的を達成するには、光透過性樹脂と光拡散性微粒子と の屈折率差があることが当然必要である。一般的に、両 者の屈折率差がり、02以上が良好である。屈折率差が 置の添加が必要となり、経済的理由あるいは機械的物性 面からみて好ましくない。以上から、一般的に屈折率差 がり、02以上であることが良好であるとされている。 また、2種類の平均粒径を育する光拡散性微粒子同士の 屈折率差は、あってもなくても特に限定されるものでは なく、ゲインの角度微調整や色温度特性の微調整をする など、要求性能を考慮して組み合わせればよい。

【りり19】光粒散隆微粒子の平均粒径は、光粒散層の 膜厚と表面光沢度にも関係する。光拡散層の膜厚は、高 解像度を得るにはできるだけ薄くすべきであり、光拡散 40 【10026】光拡散層8を構成する光透過性微脂5とし 性微粒子を分散さた光拡散インキを一般的な塗布方式に より、5~35μm程度に形成することが好ましい。

【0020】また、高解像度を得るため、この程度の拡 散層膜厚では、光拡散層の層内に光拡散性微粒子が過も れてしまうと、ゲイン (明るさ) は広い角度に渡って減 衰しないが、ホットスポットが発生しやすい。また、光 拡散層の層内より光拡散性微粒子が突出してしまうと、 ホットスポットは発生しづらく、ゲインの減衰が大き く、狭い範囲でしか高いゲインが得られない。光鉱散層

*配合され、主として光拡散性微粒子(B)が光透過性樹 脂の表面から突出した構成であり、光拡散インキからな る光拡散層の厚さ下が、

······ (3)

拡散」、層内から光拡散性微粒子が突出して衰面に凹凸 が形成された状態を「表面拡散」と称することとする。 【①①21】表面拡散の場合、光拡散性微粒子が光拡散 層より突出する程度は、表面光沢度で表示するととがで 20を超える(平滑に近くなる)とホットスポットが発 生しやすくなる。

【0022】とのように、相対的に粒径の小さな光拡散 性微粒子(内部拡散用)と大きな光拡散性微粒子(表面 拡散用)を適度に組み合わせ、光拡散層の膜厚により、 表面光沢度を副御することで、ゲインは大きい角度まで 減衰せず、ホットスポットも発生しない光拡散層が得ら れることになる。

[0023]

【発明の実施の形態】以下、図面を参照して本発明を説 明する。図1は、本発明に係る透過型液晶プロジェクシ ョンスクリーンの一例を示す断面図である。同図下よ り、プレネルレンズ1(透明)、シリンドリカルレンズ 部2(透明)と透明支持体3とからなるレンチキュラー シート4に、粒径の小さい光拡散性微粒子6、粒径の大 きい光拡散性微粒子?を光透過性後脂5中に分散配合し てなる光拡散層8がフィルム基材11上に塗布され、光 拡散層8と異なる面に施された粘着層10を含めた光拡 散シート12が、ブラックストライプ9(シリンドリカ 0.02未満の場合は、光の拡散効果が小さいため、多 30 ルレンズ部の非果光部に相当する選光パターン)上にラ ミネートされた場合の機成である。

> 【0024】図2は、フィルム基材11を用いず、光拡 散層8を、ブラックストライプ9の形成されたレンチキ ュラーシート4上に直接塗布(または転写により)形成 した場合の構成についての断面図である。

> 【りり25】図1でも図2でも、光拡散層8の機能には 大きく影響しないため、光鉱散層の形成手段は、プロジ ェクションスクリーンの製造工程や要求特性に応じて任 意に使い分ければ良い。

ては、アクリル系樹脂, ポリウレタン系樹脂, ポリエス テル系樹脂、ポリ塩化ビニル系樹脂、ポリ酢酸ビニル系 樹脂、セルロース系樹脂、ポリアミド系樹脂、フッ素系 樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂など が挙げられる。

【10027】とれらのうち、レンチキュラーシート4の 支持体3やフィルム基材11として使用されるポリエチ レンテレフタレート (PET), ポリカーボネイト (P C) などに対して接着性および塗布着性に優れると共

の層内のみに光並散性微粒子が分散された状態を「内部 50 に、光拡散性微粒子の分散遊性(濡れ性)や屈折率差の

特開平10-268428

制御廼姓なども優れたものとして、アクリル系樹脂、ポ リウレタン系樹脂。ポリエステル系樹脂。ポリ塩化ビニ ル系樹脂,ポリ酢酸ビニル系樹脂の単体あるいは混合体 が良好である。

【0028】また、光透過性樹脂5のTg(ガラス転移) 点)としては、50℃以上が整ましく、Tgが50℃余。 満であると、光鉱散層8と他の部材が接触した場合、保 存性に問題が生じたりするため好ましくない。

【0029】光鉱散麿8を構成する光鉱散性微锭子6, ウム、アクリル樹脂,有機シリコーン樹脂,ポリスチレ ン、尿素樹脂、ホルムアルデヒド縮合物を例示すること ができるが、特に限定されるわけではない。

【0030】そして、このうちから遷ばれた2種類を組 み合わせて、相対的に粒径の小さな光鉱散性微粒子と大 きな光拡散性微粒子を適度に組み合わせればよい。光透 過性樹脂5と光鉱散性微粒子との屈折率差は、一般的に (). () 2以上であると良好である。

【りり31】光鉱散層8を形成する方法としては、光透 過性樹脂5と2種類の光鉱散性微粒子6,7を適当な有 29 10を形成した光拡散シートを作製した。光拡散シート 機溶剤(または、水)に溶解または分散させたものを一 般的な塗布方式で塗布・乾燥して得ることが可能であ る。光拡散性微粒子6、7の添加量としては、光透過性 樹脂5に対して各々1~20%重量部が望ましく、要求 特性のピークゲイン(正面のゲイン)及びゲインの減衰 に合わせて分散配合すれば良い。

*【0032】光鉱散層8は、フィルム墓材11上に塗布 しても、レンチキュラーシート4の支持体3上に直接塗 布して形成しても良い。前者の場合には、ポリエテレン テレフタレート (PET)、ポリカーポネイト (PC) などのフィルム基材11の片面に光鉱散層8を塗布・乾 燥して、他面に钻着層10を施してなる光拡散シート を、図1に示すようにレンチキュラーシート4にラミネ ートする。光鉱散層8の塗布膜厚は、表面光积度(G) が20以下になるような膜厚にすることが必要である。 7としては、シリカ、炭酸カルシウム、水酸化アルミニ 10 当然。ラミネート前の光紅散シート12の粘着層10面 には、離型処理を施された剥離フィルムまたは剥離紙が 存在する。

[0033]

【実能例】

<実能例1>両面に易接着処理を施した厚さ25μmの ポリエチレンテレフタレートのフィルム基材11の片面 に、以下に示す組成の光拡散インキを塗布・乾燥させて 光拡散圏8を形成後、他面に粘着剤(東洋インキ製造) 〈妹〉製BPS3233D)を塗布・乾燥させて钻着層 の鮎着層10側を、レンチキュラーシート4の平坦面に ラミネートし、レンチキュラーシートを光学的に評価し た。光拡散シートの光拡散層8の膜厚は乾燥後の膜厚で 15 μm、粘着層11の乾燥後の膜厚は20 μmであ る。

[0034]

光拡散インキ組成

ポリエステル樹脂(泉洋紡績(株)製 バイロン200) 光拡散微粒子(A)

シリコーン樹脂微粒子(泉芝シリコーン(株)製 トスパール120)

? 重查部

光拡散微粒子(B)

ボリスチレンビーズ(積水化成品工業(株)製 SBX-6) 7 重置部 メチルエチルケトン 28重置部 トルエン 28重置部

【①①35】<実施例2>両面に易接着処理を能した厚 ※拡散シートの钻着層10側を、レンチキュラーシート4 材11の片面に、以下に示す組成の光鉱散インキを塗布 ・乾燥させて光鉱散層8を形成後、他面に粘着剤(泉洋 インキ製造 (株) 製BPS3233D) を塗布・乾燥さ 40 μmである。 せて钻着圏10を形成した光拡散シートを作製した。光※

さ25 u mのポリエチレンテレフタレートのフィルム基 の平坦面にラミネートし、レンチキュラーシートを光学 的に評価した。光拡散シートの光拡散層8の膜厚は乾燥 後の競厚で15 µm、粘着層11の乾燥後の膜厚は20

[0036]

光拡散インキ組成

アクリル御脂 (三菱レーヨン (株) 製 ダイヤナール BR - 6 ())

3 () 重置部

光並散微粒子(A)

ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物

((株)日本触媒製 M30) 4 重置部

光拡散微粒子(B)

不定形シリカ(言士シリシア化学(株)製 サイリシア-446)

4 重登部

(5)

特関平10-268428

メチルエチルケトン

10 31重置部

トルエン

31重置部

【①037】<比較例1>両面に易接着処理を縮した厚 さ25μmのポリエチレンテレフタレートのフィルム基 材11の片面に、以下に示す組成の光鉱散インキを塗布 ・乾燥させて光拡散層8を形成後、他面に粘着剤(泉洋) インキ製造(株)製BPS3233D)を塗布・乾燥さ せて結着層10を形成した光拡散シートを作製した。光 |拡散シートの钻着圏10側を、レンチキュラーシート4米|

*の平垣面にラミネートも、レンチキュラーシートを光学 的に評価した。光拡散シートの光拡散層8の膜厚は乾燥 後の膜厚で15 μm、粘着層11の乾燥後の膜厚は20 μmである。両面に易接着処理を施した厚さ25μmの ポリエチレンテレフタレートのフィ

光拡散インキ組成

アクリル樹脂 (三菱レーヨン (株) 製 ダイヤナール BR - 6 ())

[0038]

3 () 重置部

不定形シリカ(富士シリシア化学(株)製 サイリシアー446)

14重置部

メチルエチルケトン

28重置部

トルエン

28重置部

【0039】<比較例2>両面に易接着処理を能した厚 さ25μmのポリエチレンテレフタレートのフィルム基 材11の片面に、以下に示す組成の光拡散インキを塗布 インキ製造(株)製BPS3233D)を塗布・乾燥さ せて钻着圏10を形成した光拡散シートを作製した。光 拡散シートの钻着層10側を、レンチキュラーシート4※

※の平坦面にラミネートし、レンチキュラーシートを光学 的に評価した。光拡散シートの光拡散層8の膜厚は乾燥 後の膜厚で15 μm、粘着層11の乾燥後の膜厚は20 ・乾燥させて光鉱散層8を形成後、他面に粘着剤(泉洋 25 μmである。両面に易接着処理を施した厚さ25μmの ポリエチレンテレフタレートのフィ [0040]

光拡散インキ組成

アクリル勧脂(三菱レーヨン(株)製 ダイヤナールBR-60)

3 () 重置部

ポリスチレンビーズ (積水化成品工業(株)製 SBX-6) 16重置部

トルエン

27重查部

【①①41】<比較例3>両面に易接着処理を能した厚 30★の平坦面にラミネートし、レンチキュラーシートを光学 さ25μmのポリエチレンテレフタレートのフィルム基 ・乾燥させて光鉱散磨8を形成後、他面に粘着剤(泉洋) インキ製造 (株) 製BPS3233D) を塗布・乾燥さ せて钻着層10を形成した光拡散シートを作製した。光 拡散シートの钻着層10側を、レンチキュラーシート4★

的に評価した。光拡散シートの光拡散層8の膜厚は乾燥 材11の片面に、以下に示す組成の光拡散インキを塗布 後の膜厚で15 μm、粘着層11の乾燥後の膜厚は20 μmである。両面に易接着処理を施した厚さ25μmの ポリエチレンテレフタレートのフィ [0042]

光拡散インキ組成

アクリル樹脂 (三菱レーヨン (株) 製 ダイヤナール BR - 60)

3 () 重置部

ベンゾグアナミン・メラミン・ホルムアルデヒド縮合物

((株)日本触媒製 M3()) 6重置部

ヌチルエチルケトン

32重登部

トルエン

32重置部

【①①43】上記の<実施例>及び<比較例>に係る光 拡散シートと、それをラミネートしたレンチキュラーシ ートについての評価結果を下記表1に示す。なお、レン チキュラーシート4は、本出願人による特願平8-27 7484号に係る透過型液晶プロジェクションテレビ向 けのスクリーン用として好酒な樺成のレンチキュラーシー

硬化性樹脂の硬化物からなる凸シリンドリカルレンズが - (ファインピッチで)形成されており、前記支持体の他 面には、各シリンドリカルレンズの非集光部に相当する 位置にストライプ状の遮光パターンが形成され、前記パ ターン上に光拡散層が形成された模成のレンチキュラー シートである。

ートを用いた。すなわち、透明支持体の片面に、放射線 55 【101044】ビークゲイン(正面のゲイン)の測定にあ

特閱平10-268428

たっては、光拡散シート12とレンチキュラーシート4 とのラミネート品を50インチ透過型液晶プロジェクシ ョンテレビの前面に取り付け、白色の信号を写し出し、 距離 1 mの位置から、法律方向の距度を測定し、ゲイン 既知のサンプルより計算した。輝度測定は、色彩輝度計 BM-7((株)トプロン製)を用いた。水平方向のゲ インの減衰を測定するには、レンチキュラーシートのシー リンドリカルレンズの並設方向に () ~5.5% の角度にお けるゲインを測定し、ピークゲインと比較した。垂直方 向のゲインの減衰を測定するには、レンチキュラーシー 19 【表 1】 トのシリンドリカルレンズの並設方向と垂直方向の()~*

11

*35 の角度におけるゲインを測定し、ピークゲインと 比較した。この際、ゲインがピークゲインの1/3とな る角度を食角度とした。

【0045】入射光の中心点の輝度が異常に高くなり縞 状に見える現象であるホットスポットは、ピークゲイン 測定時、目視にて評価した。表面光沢度の評価にあたっ ては、グロスチェッカTMS-723(タスコジャパン (株)製)を用い、6(度計にて測定した。

[0046]

ク3Eの. が同く室田が同りた。 - 本						
		契施例 1	英瓶河2	比較例 1	比較到2	比较网3
光送起性 微脂	屈折率	1. 55	l. 49	1. 49	1. 49	1. 49
光蛇數性 附於子A	医积极	1. 49	1. 57	1. 46	1. 59	1. 57
	平均拉径	2 µm	3 #10	4.5 µm	an ⇒ 9	3 <i>μ</i> m
光灰 放注 数粒子B	型が ・	1. 59	1. 46			
	平均较经	6 cm	4.5 µm			
光砂散展のみの場合						
光位的国際厚		15៤ឆា	I 5 µm	3.5 µm	15#m	15 um
膜原/粒子入癌		7. 0億	5. 0倍	3. 3倍	2. 5倍	5. 0倍
照短/粒子8径		2. 5倍	3. 3倍			
表面光於度		15	1 1	1 4	10	3 0
レンチャュラーシートとのラミネート品						
ホットスポット		無− ○	無三〇	無=〇	無-○	有=×
ピークゲイン		3. 0	3. 6	3. 0	3. 0	3. 8
水平6角度		5 1 ^a	51°	40°	40°	5 2°
重高 8 角度		3 3*	33*	25=	2 3°	3 4°

【10047】上記表1より明らかなよろに、本発明(実 施例) に係る光拡散層は、透過型液晶プロジェクション スクリーン用光拡散層として良好であることが確認され た。実施例1~2は、ホットスポットもなく、ゲインの 滅衰も広い角度まで見受けられない。比較例1~2はホ ットスポットは無いが、ゲインの減衰が狭い角度で見ら れ、比較例3は、ゲインの減衰が広い角度までないが、 ホットスポットがみられる。また、これらの光征散層8 50 方の光学特性が良好であることが判る。

における表面光沢度とホットスポットの関係では、実施 例1~2と比較例1~2は表面光沢度20以下であるの で、ホットスポットは見受けられず、比較例3は20以 上であり、ホットスポットが見受けられる。以上のよう に、ホットスポット対策として有効と差割される表面拡 散と、ゲインを広い角度まで減衰させない上で有効であ ると差割される内部拡散、とを復合させた本発明は、双 (8)

特闘平10-268428

13

[0048]

【発明の効果】光透過性樹脂に、本発明の条件を満たす 2種類の粒径を持つ光拡散性微粒子が分散されてなる光 拡散インキを塗布してなる光拡散層を採用することによ って、 表面拡散と内部拡散の2 種類の拡散特性を持たせ ることができ、前記光拡散層をスクリーンに適用する場 台、光拡散性微粒子を多量に添加することなくして、十 分な光拡散特性を持たせることが可能となり、ホットス ポットのない透過型プロジェクションスクリーン用光拡 散層が提供された。本発明の光拡散層は、映像画質の高 10 6…小さな光拡散性微粒子 精細な液晶プロジェクターを用いた透過型液晶テレビ向 けのプロジェクションスクリーン用レンチキュラーシー トに適用する上で、光学特性が良好である。

[0049]

【図面の簡単な説明】

【図1】透過型液晶プロジェクションスクリーンの一例*

*を示す断面図。

【図2】透過型液晶プロジェクションスクリーンの他例 を示す断面図。

14

【符号の説明】

1…フレネルレンズ

2…シリンドリカルレンズ部

3…透明支持体(シート)

4…レンチキュラーシート

5…光透過性樹脂

7…大きな光鉱散性微粒子

8…光拡散層

9…ブラックストライブ

10…粘着層

11…フィルム墓材

12…光拡散シート

[図1]

12

[図2]

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.