IMU-based Speed and Distance Estimation Analysis

1. Data Overview

Sampling Rate: 149.73 Hz Total Duration: 423.18 seconds Number of Samples: 63364 Nyquist Frequency: 74.87 Hz

2. Signal Processing Pipeline

2.1 Pre-processing:

- Butterworth Low-pass Filter (IMU data)
 Removes high-frequency noise, preserves motion dynamics.
- Nyquist Theorem: Sampling rate must be at least twice the highest frequency of interest.

2.2 Orientation Estimation:

• Gyroscope Integration (Euler angles): Simple numerical integration to estimate roll, pitch, yaw.

2.3 Coordinate Transformation:

• Body to World Frame: 3D rotation matrix compensates for device orientation.

2.4 Acceleration Processing:

• High-pass Filter: Removes integration drift.

2.5 Visual: Raw and Filtered Accelerometer Magnitude

Figure: Shows the effect of low-pass filtering on the accelerometer signal. Filtering is crucial for removing noise before integration.

3. Machine Learning Analysis

3.1 Feature Extraction:

• Window Size: 1.0 seconds

• Features: Mean, Std, Max, Min, Peak-to-peak of IMU signals

3.2 Model: Random Forest Regressor **3.3 Performance:** RMSE = 0.089 m/s

3.4 Visual: Speed Estimation Comparison

Figure: Comparison of speed estimated by GPS, ML, and basic integration. ML can learn to correct for drift and noise.

4. Methods Comparison

Method	Total Distance (m)	Relative Error (%)
GPS (Ground Truth)	432.13	0.00
ML Method	431.20	0.22
Basic Method	421.14	2.54

4.1 Visual: 2D Path Comparison (GPS, Basic, ML)

Figure: Comparison of reconstructed paths using GPS, basic integration, and ML-predicted velocities. ML can reduce drift and error compared to basic integration.

5. Error Analysis & Signal Processing Concepts

5.1 Sources of Error:

- Integration Drift: Small errors in acceleration accumulate over time.
- Sensor Noise: IMU noise is filtered using Butterworth filters.
- Orientation Errors: Gyroscope drift affects coordinate transformation.

5.2 Signal Processing Concepts:

- Filtering: Butterworth filters are used for both low-pass (noise removal) and high-pass (drift removal).
- Sampling Theorem: Ensures no aliasing in digital signals.
- Numerical Integration: Trapezoidal rule is used for velocity and position estimation.
- Feature Engineering: Statistical features from IMU signals are used for ML.