2.16 1) Vu que $10 \equiv -1 \mod 11$, on a $10^k \equiv (-1)^k \mod 11$ pour tout $k \geqslant 0$.

2)
$$a \equiv a_0 + a_1 \cdot 10 + a_2 \cdot 10^2 + \dots + a_{n-1} \cdot 10^{n-1} + a_n \cdot 10^n$$

 $\equiv a_0 + a_1 \cdot (-1) + a_2 \cdot (-1)^2 + \dots + a_{n-1} \cdot (-1)^{n-1} + a_n \cdot (-1)^n$
 $\equiv a_0 - a_1 + a_2 - \dots + (-1)^{n-1} a_{n-1} + (-1)^n a_n$
 $\equiv \alpha(a) \mod 11$

- 3) Soit un entier a. Les affirmations suivantes sont équivalentes :
 - (a) a est divisible par 11;
 - (b) $a \equiv 0 \mod 11$;
 - (c) $\alpha(a) \equiv 0 \mod 11$;
 - (d) la somme alternée des chiffres du nombre a écrit en base 10 est divisible par 11.

On a ainsi démontré un critère de divisibilité par 11 : un nombre est divisible par 11 si et seulement si la somme alternée de ses chiffres est divisible par 11 .

- 4) (a) 2-1+6-5+2-4=0Puisque 11 | 0, le nombre 425612 est divisible par 11.
 - (b) 1-8+7-5+1-4=-8Étant donné que $11 \nmid -8$, le nombre 415781 n'est pas divisible par 11 .