1. Algorithm A has running time

$$T_A(n) = 3T_A(n/3) + O(n),$$

to which we can apply the general recurrence formula, giving $T_A(n) = O(n \log n)$.

Algorithm B has running time

$$T_B(n) = T_B(n-1) + O(n).$$

To solve this one, let's expand it out:

$$T_B(n) = T_B(n-1) + n$$

= $T_B(n-2) + (n-1) + n$
= $T_B(n-3) + (n-2) + (n-1) + n$

and so on. Eventually we get $T_B(n) = T_B(1) + (2 + 3 + 4 + \cdots + n) = O(n^2)$.

Algorithm C has running time

$$T_C(n) = 2T_C(n/3) + O(n^2),$$

for which the general recurrence formula gives $T_C(n) = O(n^2)$.

Algorithm D has running time

$$T_D(n) = 5T_D(n/4) + O(n),$$

which, by the general recurrence formula, comes out to $T_D(n) = n^{\log_4 5}$.

Of the four, Algorithm A is the quickest.

- 2. Let L(n) be the number of lines. Then L(n) = 3L(n/2) + 1 so that $L(n) = O(n^{\log_2 3})$.
- 3. Textbook problem 2.24(a,b).
 - (a) Here's the quicksort procedure.

 $\frac{\text{function quicksort}}{Input: \text{ array of numbers}} (S[1 \cdots n])$ Output: sorted array

If $n \leq 1$: return S Pick v at random from S Split S into three pieces:

 $S_L =$ elements less than v

 $S_v = {\it elements equal to} \ v$

 $S_R =$ elements greater than v

Return quicksort $(S_L) \circ S_v \circ \text{quicksort}(S_R)$

(b) Each iteration through the recursive procedure takes linear time, but the number of recursive calls varies according to the particular split elements chosen.

A particularly unlucky scenario is when the elements of S are distinct, and the split element is always the largest element of S. Then S_R is always empty, S_v contains a single element, and S_L has everything else. We thus get a running time

$$T(n) = T(n-1) + O(n),$$

which works out to $O(n^2)$.

4. Randomized binary search.

(a) Here's the algorithm, given an array S[1...n] and a number x.

```
Let \ell=1, r=n // current search interval is [\ell,r] While r\geq l:
   Pick p at random from \{\ell,\ell+1,\ldots,r\} If S[p]=x: halt and output ''yes'' If S[p]>x: let r=p-1 If S[p]< x: let \ell=p+1 Output ''no''
```

(b) Let T(n) denote the expected running time on an array of size n. On any given iteration, a constant amount of work is done, and there is a 1/2 probability that the randomly chosen position p lies in the central half of the search interval $[\ell, r]$. If this happens, the search interval shrinks to at most 3/4 its size on that iteration. If not, then at the very worst the interval doesn't shrink at all. We can thus write

$$T(n) \leq \frac{1}{2}T\left(\frac{3n}{4}\right) + \frac{1}{2}T(n) + O(1)$$

which means $T(n) \le T((3/4)n) + O(1)$ and thus $T(n) = O(\log n)$.

- 5. Textbook problem 2.23.
 - (a) Solving the problem in $O(n \log n)$ time.

Suppose we divide array A into two halves, A_L and A_R . Then:

```
A has a majority element x\iff x appears more than n/2 times in A
\implies x \text{ appears more than } n/4 \text{ times in either } A_L \text{ or } A_R \text{ (or both)}
\iff x \text{ is a majority element of either } A_L \text{ or } A_R \text{ (or both)}
```

This suggests a divide-and-conquer algorithm:

```
function majority (A[1 \dots n])
if n=1: return A[1]
let A_L, A_R be the first and second halves of A
M_L = \text{majority}(A_L) and M_R = \text{majority}(A_R)
if M_L is a majority element of A:
return M_L
if M_R is a majority element of A:
return M_R
return ''no majority''
```

Running time: $T(n) = 2T(n/2) + O(n) = O(n \log n)$.

(b) A linear-time algorithm.

```
\begin{array}{l} \textit{function majority } (A[1 \ldots n]) \\ x = \texttt{prune}(A) \\ \text{if } x \text{ is a majority element of } A \text{:} \\ \text{return } x \\ \text{else:} \\ \text{return ''no majority''} \\ \\ \textit{function prune } (S[1 \ldots n]) \\ \text{if } n = 1 \text{:} \\ \text{return } S[1] \\ \text{if } n \text{ is odd:} \\ \text{if } S[n] \text{ is a majority element of } S \text{:} \\ \text{return } S[n] \\ n = n - 1 \end{array}
```

```
S'=[ ] (empty list) for i=1 to n/2: if S[2i-1]=S[2i]: add S[2i] to S' return prune(S')
```

Justification: We'll show that each iteration of the **prune** procedure maintains the following invariant: if x is a majority element of S then it is also a majority element of S'. The rest then follows.

Suppose x is a majority element of S. In an iteration of **prune**, we break S into pairs. Suppose there are k pairs of Type One and l pairs of Type Two:

- Type One: the two elements are different. In this case, we discard both.
- Type Two: the elements are the same. In this case, we keep one of them.

Since x constitutes at most half of the elements in the Type One pairs, x must be a majority element in the Type Two pairs. At the end of the iteration, what remains are l elements, one from each Type Two pair. Therefore x is the majority of these elements.

Running time. In each iteration of **prune**, the number of elements in S is reduced to $l \le |S|/2$, and a linear amount of work is done. Therefore, the total time taken is $T(n) \le T(n/2) + O(n) = O(n)$.

6. Closest pair.

(a) We know that any two points in L are at distance $\geq d$ from each other. Now consider any $d \times d$ square, and divide it into four smaller squares of side length d/2:

Each smaller square can contain at most one point of L, since any two points in the smaller square are at distance $\leq d/\sqrt{2}$. Therefore the $d \times d$ square contains at most four points of L.

(b) To show correctness of the algorithm, we only need to show that if the closest pair p, q has $p \in L$ and $q \in R$, then this pair will be found.

So assume this is the case. By construction, the distance between $p = (x_p, y_p)$ and $q = (x_q, y_q)$ is less than d. Suppose $y_p < y_q$ (the other case is symmetric). Then the configuration is as shown below:

In the picture, B_L and B_R are squares of side-length d whose top-right and top-left corners, respectively, are at the point (v, y_p) . Since p, q are within distance d of each other, point q must lie within B_R . We know from part (a) that B_L and B_R each contain at most four points. In short, y_q must be one of the 7 y-values closest to y_p .

- (c) The steps involved in solving the problem on n points are:
 - Finding the median x value: O(n).
 - Recursing on two subproblems of size n/2: this is 2T(n/2).
 - Discarding some points: O(n).
 - Sorting y values: $O(n \log n)$.
 - Iterating through a list of y values and doing seven computations for each: O(n).

This gives $T(n) = 2T(n/2) + O(n \log n)$.