MDI0002 Matemática Discreta

UDESC - Centro de Ciências Tecnológicas Bacharelado em Ciência da Computação

Exercícios Homomorfismos

- 1. Dado $h: \langle A, \oplus \rangle \to \langle B, \otimes \rangle$ um homomorfismo de álgebras, mostre que se $\langle A, \oplus \rangle$ for uma álgebra abeliana então h preserva comutatividade, ou seja, $h(a_1 \oplus a_2) = h(a_2 \oplus a_1)$
- 2. Dado $h: \langle A, \oplus \rangle \to \langle B, \otimes \rangle$ um homomorfismo de álgebras, mostre que se $\langle B, \otimes \rangle$ for uma álgebra abeliana então h preserva comutatividade.
- 3. A composição de homomorfismos de álgebras é dada pela composição das funções sobre os conjuntos suporte das álgebras. Ou seja, se $f:\langle A, \oplus \rangle \to \langle B, \otimes \rangle$ e $g:\langle B, \otimes \rangle \to \langle C, \nabla \rangle$ são homomorfismos de álgebras sendo $f:A\to B$ e $g:B\to C$ as funções sobre os conjuntos suportes, a função $g\circ f:A\to C$ define o homomorfismo de álgebras $g\circ f:\langle A, \oplus \rangle \to \langle C, \nabla \rangle$. Mostre que $g\circ f$ é de fato um homomorfismo de álgebras.
- 4. Generalizando a definição do exercício anterior para homomorfismos de monóides, prove que a composição de homomorfismos de monóides também é um homomorfismo de monóide.
- 5. Mostre que $f: \mathbb{Z} \to \mathbb{Z}$ onde $f(x) = x^2$ é um homomorfismo do monóide $(\mathbb{Z}, *, 1)$ para si mesmo.