In [1]:

#imports

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns

In [2]:

trans=pd.read_excel("QVI_transaction_data.xlsx_1")
trans.head()

Out[2]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD_QTY
0	43390	1	1000	1	5	Natural Chip Compny SeaSalt175g	2
1	43599	1	1307	348	66	CCs Nacho Cheese 175g	3
2	43605	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2
3	43329	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	5
4	43330	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	3
4							•

In [3]:

```
#transforming date column
trans["DATE"]=pd.to_datetime(trans["DATE"], origin = "1899-12-30",unit="D")
```

In [4]:

trans

Out[4]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD
0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	
2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	
3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	
4	2018- 08-18	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	
264831	2019- 03-09	272	272319	270088	89	Kettle Sweet Chilli And Sour Cream 175g	
264832	2018- 08-13	272	272358	270154	74	Tostitos Splash Of Lime 175g	
264833	2018- 11-06	272	272379	270187	51	Doritos Mexicana 170g	
264834	2018- 12-27	272	272379	270188	42	Doritos Corn Chip Mexican Jalapeno 150g	
264835	2018- 09-22	272	272380	270189	74	Tostitos Splash Of Lime 175g	

264836 rows × 8 columns

In [5]:

```
trans.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 264836 entries, 0 to 264835

Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	DATE	264836 non-null	<pre>datetime64[ns]</pre>
1	STORE_NBR	264836 non-null	int64
2	LYLTY_CARD_NBR	264836 non-null	int64
3	TXN_ID	264836 non-null	int64
4	PROD_NBR	264836 non-null	int64
5	PROD_NAME	264836 non-null	object
6	PROD_QTY	264836 non-null	int64
7	TOT_SALES	264836 non-null	float64
		7/4) 67 . 44/4)	

dtypes: datetime64[ns](1), float64(1), int64(5), object(1)

memory usage: 16.2+ MB

In [6]:

```
trans.describe()
```

Out[6]:

	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_QTY	тот
count	264836.00000	2.648360e+05	2.648360e+05	264836.000000	264836.000000	264836
mean	135.08011	1.355495e+05	1.351583e+05	56.583157	1.907309	-
std	76.78418	8.057998e+04	7.813303e+04	32.826638	0.643654	;
min	1.00000	1.000000e+03	1.000000e+00	1.000000	1.000000	•
25%	70.00000	7.002100e+04	6.760150e+04	28.000000	2.000000	!
50%	130.00000	1.303575e+05	1.351375e+05	56.000000	2.000000	-
75%	203.00000	2.030942e+05	2.027012e+05	85.000000	2.000000	(
max	272.00000	2.373711e+06	2.415841e+06	114.000000	200.000000	650
4						•

In [7]:

```
#number of nulls in each column
trans.isna().sum()
```

Out[7]:

DATE	0
STORE_NBR	0
LYLTY_CARD_NBR	0
TXN_ID	0
PROD_NBR	0
PROD_NAME	0
PROD_QTY	0
TOT_SALES	0
dtype: int64	

```
In [8]:
```

```
#Categorise Numeric and Categorical Data
```

```
In [9]:
```

```
trans_numerical = list(trans._get_numeric_data().columns)
trans numerical
Out[9]:
```

```
['STORE_NBR', 'LYLTY_CARD_NBR', 'TXN_ID', 'PROD_NBR', 'PROD_QTY', 'TOT_SAL
```

In [10]:

```
trans_cat= set (trans.columns)-set(trans_numerical)
trans_cat
```

Out[10]:

```
{'DATE', 'PROD_NAME'}
```

In [11]:

```
print('numerical data :\n', list (trans_numerical))
print('categorical data :\n', (trans_cat))
```

```
numerical data:
 ['STORE_NBR', 'LYLTY_CARD_NBR', 'TXN_ID', 'PROD_NBR', 'PROD_QTY', 'TOT_SA
LES']
categorical data:
{'DATE', 'PROD_NAME'}
```

In [12]:

```
# Extracting pack size from the Product
import re
def find_number(text):
    num = re.findall(r'[0-9]+',text)
    return " ".join(num)

trans['pack_size']=trans['PROD_NAME'].apply(lambda x: find_number(x))
trans
```

Out[12]:

	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME	PROD
0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	
2	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	
3	2018- 08-17	2	2373	974	69	Smiths Chip Thinly S/Cream&Onion 175g	
4	2018- 08-18	2	2426	1038	108	Kettle Tortilla ChpsHny&Jlpno Chili 150g	
		•••					
264831	2019- 03-09	272	272319	270088	89	Kettle Sweet Chilli And Sour Cream 175g	
264832	2018- 08-13	272	272358	270154	74	Tostitos Splash Of Lime 175g	
264833	2018- 11-06	272	272379	270187	51	Doritos Mexicana 170g	
264834	2018- 12-27	272	272379	270188	42	Doritos Corn Chip Mexican Jalapeno 150g	
264835	2018- 09-22	272	272380	270189	74	Tostitos Splash Of Lime 175g	
264836	rows ×	9 columns					

In [13]:

```
# Create column for brand names
trans['Brand Name'] = trans['PROD_NAME'].str.split(' ').str[0]
```

In [14]:

```
# Check for any duplication or similar bran
trans['Brand Name'].value_counts()
```

Out[14]:

Kettle	41288
Smiths	28860
Pringles	25102
Doritos	24962
Thins	14075
RRD	11894
Infuzions	11057
WW	10320
Cobs	9693
Tostitos	9471
Twisties	9454
Old	9324
Tyrrells	6442
Grain	6272
Natural	6050
Red	5885
Cheezels	4603
CCs	4551
Woolworths	4437
Dorito	3185
Infzns	3144
Smith	2963
Cheetos	2927
Snbts	1576
Burger	1564
GrnWves	1468
Sunbites	1432
NCC	1419
French	1418

Name: Brand Name, dtype: int64

In [15]:

```
#Some Brands are similar like RRD and Red Rock Deli , Let's combine them together as they
trans['Brand Name'] = trans['Brand Name'].str.replace('Red','RRD')
trans['Brand Name'] = trans['Brand Name'].str.replace('Woolworths','WW')
trans['Brand Name'] = trans['Brand Name'].str.replace('INFUZIONS','INFZNS')
trans['Brand Name'] = trans['Brand Name'].str.replace('SMITHS','SMITH')
trans['Brand Name'] = trans['Brand Name'].str.replace('SUNBITES','SNBTS')
trans['Brand Name'] = trans['Brand Name'].str.replace('DORITOS','DORITO')
trans['Brand Name'] = trans['Brand Name'].str.replace('GRNWVES','GRAIN')
```

In [16]:

```
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode(connected=True)
import plotly.offline as offline
offline.init_notebook_mode()
```

In [17]:

```
from plotly.offline import init_notebook_mode, iplot
init_notebook_mode(connected=True)
import plotly.offline as offline
offline.init_notebook_mode()
import cufflinks as cf
cf.go_offline()
```

In [18]:

```
#Histogram for brands
trans['Brand Name'].iplot(kind='hist',xTitle='Brand',yTitle='pack_size',title='Packsize
```

Packsize on brands

In [19]:

```
#correlation heatmap
plt.figure(figsize=(10,6))
sns.heatmap(trans.corr(),cmap='BrBG_r')
```

Out[19]:

<AxesSubplot:>

Examining customer data

In [20]:

```
purchase=pd.read_csv("QVI_purchase_behaviour.csv")
purchase.head()
```

Out[20]:

	LYLTY_CARD_NBR	LIFESTAGE	PREMIUM_CUSTOMER
0	1000	YOUNG SINGLES/COUPLES	Premium
1	1002	YOUNG SINGLES/COUPLES	Mainstream
2	1003	YOUNG FAMILIES	Budget
3	1004	OLDER SINGLES/COUPLES	Mainstream
4	1005	MIDAGE SINGLES/COUPLES	Mainstream

In [21]:

```
purchase.isna().sum()
```

Out[21]:

LYLTY_CARD_NBR 0
LIFESTAGE 0
PREMIUM_CUSTOMER 0

dtype: int64

In [22]:

```
purchase.describe()
```

Out[22]:

LYLTY_CARD_NBR

count	7.263700e+04
mean	1.361859e+05
std	8.989293e+04
min	1.000000e+03
25%	6.620200e+04
50%	1.340400e+05
75%	2.033750e+05
max	2.373711e+06

In [23]:

purchase.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 72637 entries, 0 to 72636
Data columns (total 3 columns):

Column Non-Null Count Dtype
--- ----0 LYLTY_CARD_NBR 72637 non-null int64
1 LIFESTAGE 72637 non-null object

2 PREMIUM_CUSTOMER 72637 non-null object

dtypes: int64(1), object(2)

memory usage: 1.7+ MB

In [24]:

```
purchase['LIFESTAGE'].iplot(kind='hist')
```


In [25]:

```
#Premium customer distribution among customers
import plotly.express as px
fig = px.pie(purchase, values='LYLTY_CARD_NBR', names='PREMIUM_CUSTOMER', title="PREMIUM_fig.show()
```

PREMIUM_CUSTOMER

joining datasets

In [26]:

```
finaldf=pd.merge(trans,purchase)
finaldf.head(5)
```

Out[26]:

DATE STORE_NBR LYLTY_CARD_NBR TXN_ID PROD_NBR PROD_NAME PROD_QTY

0	2018- 10-17	1	1000	1	5	Natural Chip Compny SeaSalt175g	2
1	2019- 05-14	1	1307	348	66	CCs Nacho Cheese 175g	3
2	2018- 11-10	1	1307	346	96	WW Original Stacked Chips 160g	2
3	2019- 03-09	1	1307	347	54	CCs Original 175g	1
4	2019- 05-20	1	1343	383	61	Smiths Crinkle Cut Chips Chicken 170g	2
4							•

In [27]:

```
# convert to csv file
finaldf.to_csv('Final.csv')
```

In [28]:

```
finaldf.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 264836 entries, 0 to 264835
Data columns (total 12 columns):
```

Data	COTUMNIS (COCAT 12	COTUMNIS).				
#	Column	Non-Null Count	Dtype			
0	DATE	264836 non-null	<pre>datetime64[ns]</pre>			
1	STORE_NBR	264836 non-null	int64			
2	LYLTY_CARD_NBR	264836 non-null	int64			
3	TXN_ID	264836 non-null	int64			
4	PROD_NBR	264836 non-null	int64			
5	PROD_NAME	264836 non-null	object			
6	PROD_QTY	264836 non-null	int64			
7	TOT_SALES	264836 non-null	float64			
8	pack_size	264836 non-null	object			
9	Brand Name	264836 non-null	object			
10	LIFESTAGE	264836 non-null	object			
11	PREMIUM_CUSTOMER	264836 non-null	object			
dtypes: datetime64[ns](1), float64(1), int64(5), object(5						
memor	memory usage: 26.3+ MB					

In [29]:

```
#find the total sales based on premium customer
finaldf[['TOT_SALES','PREMIUM_CUSTOMER']].groupby('PREMIUM_CUSTOMER').sum().sort_values(
```

Out[29]:

TOT_SALES

PREMIUM_CUSTOMER

 Mainstream
 750744.50

 Budget
 676211.55

 Premium
 507458.95

Data analysis on customer segments

In [30]:

How many customers are there in each segment?
#How many chips are bought per customer by segment?
#sales based on brand

In [31]:

```
#find the total sales based on premium customer
finaldf[['TOT_SALES','Brand Name']].groupby('Brand Name').sum().sort_values('TOT_SALES',
```

Out[31]:

TOT_SALES

Brand Name	
Kettle	390239.8
Smiths	210076.8
Doritos	201538.9
Pringles	177655.5
RRD	95046.0
Old	90785.1
Thins	88852.5
Twisties	81522.1
Tostitos	79789.6
Infuzions	76247.6
Cobs	70569.8
Tyrrells	51647.4
ww	49343.6
Grain	43048.8
Dorito	40352.0
Cheezels	40029.9
Natural	34272.0
Infzns	22800.0
CCs	18078.9
Cheetos	16884.5
Smith	14583.4
GrnWves	8568.4
NCC	8046.0
French	7929.0
Burger	6831.0
Snbts	5076.2
Sunbites	4600.2

In [32]:

finaldf['Brand Name'].iplot(kind='hist',xTitle='TOT_SALES',yTitle='Brand Name',title='To

Total sales on Brand Name

In [33]:

finaldf[['TOT_SALES','LIFESTAGE']].groupby('LIFESTAGE').sum().sort_values('TOT_SALES',as

Out[33]:

TOT_SALES

LIFESTAGE	
OLDER SINGLES/COUPLES	402426.75
RETIREES	366470.90
OLDER FAMILIES	353767.20
YOUNG FAMILIES	316160.10
YOUNG SINGLES/COUPLES	260405.30
MIDAGE SINGLES/COUPLES	184751.30
NEW FAMILIES	50433.45

In [34]:

fig = px.pie(finaldf, values='TOT_SALES', names='LIFESTAGE', title="LIFE STAGE WISE SALE
fig.show()

LIFE STAGE WISE SALES

In [40]:

#number of customers are from Lifestage and premium customer
NumofCus= pd.DataFrame(finaldf.groupby(['PREMIUM_CUSTOMER', 'LIFESTAGE']).LYLTY_CARD_NBR
NumofCus.rename(columns = {'LYLTY_CARD_NBR': 'Number of Customers'}, inplace = True)

In [41]:

NumofCus

Out[41]:

Number of Customers

PREMIUM_CUSTOMER	LIFESTAGE	
Budget	MIDAGE SINGLES/COUPLES	1504
	NEW FAMILIES	1112
	OLDER FAMILIES	4675
	OLDER SINGLES/COUPLES	4929
	RETIREES	4454
	YOUNG FAMILIES	4017
	YOUNG SINGLES/COUPLES	3779
Mainstream	MIDAGE SINGLES/COUPLES	3340
	NEW FAMILIES	849
	OLDER FAMILIES	2831
	OLDER SINGLES/COUPLES	4930
	RETIREES	6479
	YOUNG FAMILIES	2728
	YOUNG SINGLES/COUPLES	8088
Premium	MIDAGE SINGLES/COUPLES	2431
	NEW FAMILIES	588
	OLDER FAMILIES	2274
	OLDER SINGLES/COUPLES	4750
	RETIREES	3872
	YOUNG FAMILIES	2433
	YOUNG SINGLES/COUPLES	2574

In [37]:

finaldf[['TOT_SALES','pack_size']].groupby('pack_size').sum().sort_values('TOT_SALES',as

Out[37]:

TOT_SALES

pack_size	
125	5733.0
220	6831.0
70	6852.0
180	8568.4
90	9676.4
160	10647.6
190	14412.9
200	16007.5
135	26090.4
250	26096.7
210	43048.8
270	55425.4
380	76719.6
165	101360.6
300	113330.6
330	136794.3
170	146673.0
110	162765.4
134	177655.5
150	304288.5
175	485437.4

```
In [38]:
```

```
finaldf['pack_size'].iplot(kind='hist',xTitle='TOT_SALES',yTitle='pack_size',title='Tota
```

Total sales based on pack size

In [39]:

```
# convert to csv file
finaldf.to_csv('Final.csv')
```

CONCLUSION

After analyzing the data, we found that certain product categories and time periods drove higher sales. We identified distinct customer segments with unique preferences and behaviors. We recommend tailoring marketing strategies to these segments. Packet sizes appear to align with customer preferences. In summary, data-driven decisions can improve business performance, and ongoing monitoring is essential.

In []: