Puzzler

You are given a chess board and 32 dominoes. Each domino covers exactly two squares of the chess board. If two of the corners are removed from the board and we discard one of the dominoes, is it still possible to completely cover the remaining 62 squares of the chess board with the remaining 31 dominoes?

Introduction to Audio and Music Engineering

Lecture 4

- Musical Intervals
- Just Pentatonic Scale
- Pythagorean Scale
- Equally tempered scale
- Placing the frets on a guitar

Musical Intervals and Scales

The simplest musical interval is the octave:

$$\frac{f_2}{f_1} = \frac{2}{1}$$

The next is the "perfect" fifth:

$$\frac{f_2}{f_1} = \frac{3}{2}$$

then the perfect fourth:

$$\frac{f_2}{f_1} = \frac{4}{3}$$

Note that fifth + fourth = octave

$$\frac{3}{2} \times \frac{4}{3} = 2$$

Intervals are added by multiplying the frequency ratios.

Just Intervals

Harmonic: f 2f 3f 4f 5f 6f Frequency: 1 2 3 4 5 6

Ratio: 2/1 3/2 4/3 5/4 6/5

Interval: Octave M5 M4 M3 m3

Just Pentatonic Scale

- 1. Start with any note: C
- 2. Introduce the 4th: $\times 4/3 \rightarrow F$
- 3. Introduce the 5th: \times 3/2 \rightarrow G
- 4. Go down a 4th from G to reach D $3/2 \div 4/3 = 3/2 \times 3/4 = 9/8$; D = $9/8 \times C$
- 5. Go up a 5th from D to reach A $9/8 \times 3/2 = 27/16$; A = $27/16 \times C$

"I've Got Rhythm"

http://www.youtube.com/watch?v=vIpNepgmCQA

Pythagorean Diatonic Scale

Extend the Just Pentatonic Scale

- 6. Add E by going down a fourth from A $E = 27/16 \times 3/4 = 81/64 C$
- 7. Add B by going up a fifth from E $B = 3/2 \times 81/64 = 243/128$

Pythagorean Dodecaphonic Scale (12 tones)

- 1. Start on the tonic (C)
- 2. Go up by fifths, but ÷ 2 to stay in octave

Note	С	G	D	Α	E	В	F#		C#	G#	D#	A#	E#	B#
up by 5'ths	<u>1</u>	<u>3</u>	<u>9</u>	<u>27</u>	<u>81</u>	<u>243</u>	<u>729</u>		<u>2187</u>	<u>6561</u>	<u> 19683</u>	<u>59049</u>	<u>177147</u>	<u>531441</u>
	1	2	4	8	16	32	64		128	256	512	1024	2048	4096
within	<u>1</u>	<u>3</u>	<u>9</u>	<u>27</u>	<u>81</u>	<u>243</u>	<u>729</u>		<u>2187</u>	<u>6561</u>	<u> 19683</u>	59049	<u>177147</u>	<u>531441</u>
octave	1	2	8	16	64	128	512		2048	4096	16384	32768	131072	524288
ratio	1	1.5	1.125	1.6875	1.2656	1.8984	1.4238	•	1.0679	1.6018	1.2014	1.802	1.3515	1.0136433

Note that $(3/2)^{12} = 531,441/4096$

Bring back to octave:

 $\div 128 \rightarrow 531,441/524,288 = 1.0136433$ (Pythagorean Comma)

Cycle of fifths does not come back to the same pitch.

Infinite spiral of fifths

Fifth = 3/2

$$\left(\frac{3}{2}\right)^{12} = \frac{129.7463}{2^7} = 1.0136$$
Pythagorean comma

Go up by a fifth 12x and you do NOT come back back to the same pitch!

Cycle of fourths

- 1. Start on the tonic (C)
- 2. Go up by fourths, (x 4/3), but \div 2 to stay in octave

Note	С	F	Bb	Eb	Ab	Db	Gb	В	Ε	Α	D	G	С
up by 4'ths	<u>1</u>	<u>4</u>	<u>16</u>	<u>64</u>	<u>256</u>	1024	<u>4096</u>	<u>16384</u>	<u>65536</u>	<u> 262144</u>	<u>1048576</u>	4194304	<u> 16777216</u>
	1	3	9	27	81	243	729	2187	6561	19683	59049	177147	531441
within	<u>1</u>	<u>4</u>	<u>16</u>	<u>32</u>	128	<u>256</u>	1028	<u>4096</u>	<u>8192</u>	32768	<u>65536</u>	<u> 262144</u>	1048576
octave	1	3	9	27	81	243	729	2187	6561	19683	59049	177147	531441
ratio	1	1.3333	1.7778	1.1852	1.5802	1.0535	1.4102	1.8729	1.2486	1.6648	1.109858	1.479811	1.9730807

This time $(4/3)^{12} = 16,777,216/531,441$

Bring back into the octave:

 $\div 16 \rightarrow 1,048,576/531,441 = 1.974184$ (Short of the octave)

Note that 2/1.974184 = 1.0130768 Compare to the Pythagorean comma 1.0136433

Pythagorean Scale

		Pythagorean (choose smaller ratios)							ratios)					
					C		1	1	1					
					Db)	256	243	1.0535					
					D		9	8	1.125					
					Eb	1	32	27	1.1852					
					Е		81	64	1.2656					
					F		4	3	1.3333					
				(Wolf T	one) F#	/Gb	729	512	1.4238					
				(Wolf T	one) F#	/Gb	1028	729	1.4102					
					G		3	2	1.5					
					Ab)	128	81	1.5802					
					Α		27	16	1.6875					
					Bb)	16	9	1.7778					
					В		243	128	1.8984					
					С		2	1	2					
Note	С	G	D	Α	Ε	В	F#		C#	G#	D#	A#	E#	B#
up by 5'ths	<u>1</u> 1	<u>3</u> 2	<u>9</u> 4	<u>27</u> 8	<u>81</u> 16	<u>243</u> 32	729		<u>2187</u>	<u>6561</u>	<u> 19683</u>	59049	<u>177147</u>	<u>531441</u>
	1						64		128	256	512	1024	2048	4096
within	<u>1</u>	<u>3</u> 2	<u>9</u> 8	<u>27</u> 16	<u>81</u>	<u>243</u>	<u>729</u>		<u>2187</u>	<u>6561</u>	<u>19683</u>	<u>59049</u>	<u>177147</u>	<u>531441</u>
octave	1				64	128	512		2048	4096	16384	32768	131072	524288
ratio	1	1.5	1.125	1.6875	1.2656	1.8984	1.4238		1.0679	1.6018	1.2014	1.802032	1.351524	1.0136433
		_					0.1		_	_	_	_		
Note	С	F	Bb	Eb	Ab	Db	Gb		B	Е	Α	D	G	C
up by 4'ths	<u>1</u> 1	<u>4</u> 3	<u>16</u> 9	<u>64</u> 27	<u>256</u>	1024	<u>4096</u>		<u>16384</u>	<u>65536</u>	262144	1048576	4194304	<u>16777216</u>
wi+bip	1				81 120	243	729		2187	6561	19683	59049	177147	531441
within	<u> </u>	<u>4</u> 3	<u>16</u> 9	<u>32</u> 27	<u>128</u> 81	<u>256</u> 243	<u>1028</u> 729		<u>4096</u> 2187	<u>8192</u> 6561	32768	<u>65536</u> 59049	<u>262144</u> 177147	1048576
octave ratio	1	1.3333	1.7778	1.1852	1.5802	1.0535	1.4102		1.8729	1.2486	19683 1.6648	1.109858	1.479811	531441 1.9730807
iatio		1.3333	1.///0	1.1032	1.3002	1.0333	1.4102		1.0729	1.2400	1.0040	1.103030	1.4/3011	1.9730007

Just Tuning

The thirds in the Pythagorean Scale are somewhat dissonant:

Pyth: $C \rightarrow E$: 81/64 = 1.265625

Just: $C \rightarrow E$: 5/4 = 1.25

Adjust the thirds, and make intervals ratios of smaller numbers.

Just Intonation	<u>n</u>				
С	1	1	1		
C#	16	15	1.0667		
Dd	10	9	1.1111		
D	9	8	1.125		
Eb	6	5	1.2		
E	5	4	1.25		
F	4	3	1.3333		
F#	45	32	1.4063		
Gb	64	45	1.4222		
G	3	2	1.5		
Ab	8	5	1.6		
Α	5	3	1.6667		
A#	7	4	1.75		
A#/Bb	16	9	1.7778		
Bb	9	5	1.8		
В	15	8	1.875		
С	2	1	2		
Choose tone according to key					

Stop the madness!

Equal temperament - divide the octave into 12 equal intervals

$$2^{1/12} = 1.059463...$$

$$(2^{1/12})^{12} = 2$$
 Fixes the Pythagorean comma problem!

All of the intervals are a little out of tune, but transposition is not a problem any longer.

Cents ... 1200 cents per octave One half step = 100 cents

Comparison of Pythagorean, Just and Equal Temperament

Pythagorean (choose smaller ratios)						
С	1	1	1			
Db	256	243	1.0535			
D	9	8	1.125			
Eb	32	27	1.1852			
E	81	64	1.2656			
F	4	3	1.3333			
F#/Gb	729	512	1.4238			
F#/Gb	1028	729	1.4102			
G	3	2	1.5			
Ab	128	81	1.5802			
Α	27	16	1.6875			
Bb	16	9	1.7778			
В	243	128	1.8984			
С	2	1	2			

Just Intonation					
С	1	1	1		
C#	16	15	1.0667		
Dd	10	9	1.1111		
D	9	8	1.125		
Eb	6	5	1.2		
E	5	4	1.25		
F	4	3	1.3333		
F#	45	32	1.4063		
Gb	64	45	1.4222		
G	3	2	1.5		
Ab	8	5	1.6		
Α	5	3	1.6667		
A#	7	4	1.75		
A#/Bb	16	9	1.7778		
Bb	9	5	1.8		
В	15	8	1.875		
С	2	1	2		
Choose tone according to key					

Equal Tempered					
С	1				
Db	1.0594631				
D	1.122462				
Eb	1.1892071				
E	1.259921				
F	1.3348399				
F#	1.4142136				
G	1.4983071				
Ab	1.5874011				
Α	1.6817928				
Bb	1.7817974				
В	1.8877486				
С	2				

Guitar Fret Placement

Back to the string ...

The speed of a bending wave propagation is determined by mass and tension of string.

$$c \equiv \sqrt{\frac{\tau}{\mu}}$$

The frequency is determined by c and the length of the string.

$$f_0 = \frac{c}{2l}$$

To raise the pitch by 1 half-tone shorten the string by a factor of $2^{1/12}$.

Raise the frequency ½ tone

$$\frac{f_1}{f_0} = \frac{2^{1/12} f_0}{f_0} = 2^{1/12}$$

The frequency is proportional to 1/length of the string

$$f \propto \frac{1}{L}$$

So the length must change in inverse proportion to the frequency

$$\frac{L_0}{L_1} = 2^{1/12}$$

$$L_1 = \frac{L_0}{2^{1/12}} = 0.94387 L_0$$

Vincenzo Galileo's rule of 18

Reduce the length of a string by 1/18th for each half tone.

$$\zeta_{1} = \left(1 - \frac{1}{18}\right) \zeta_{0} = 0.9444 \zeta_{0}$$

Compare to: $L_1 = 0.94387 L_0$ for equal temperament

Close, but the error accumulates: $(0.9444)^{12} = 0.5036$

Not 0.5 as it should be for the octave.