

Oct 06, 2022

HIV WGS - 400bp Amplicon Tiling - Oxford Nanopore Technology Protocol

Eugene Yeboah¹, Noah C Hull²

¹Association of Public health Laboratories, Oregon State Public Health Laboratory;

²Association of Public Health Laboratories

Eugene Yeboah: Contributing authors: Laura Tsaknaridis, Vanda Makris, John Fontana, Shane Sevey;

1 Works for me Share

dx.doi.org/10.17504/protocols.io.e6nvwj5p2lmk/v1

Public Health

Eugene Yeboah

Association of Public health Laboratories, Oregon State Publ...

DISCLAIMER

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to protocols.io is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with protocols.io, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

ABSTRACT

OSPHL in collaboration with APHL, will evaluate the performance of the Oxford Nanopore Technology sequencers for HIV genome sequencing using a modified protocol of the ARTIC amplicon v3:

Nanopore Protocol PCR tiling of SARS-CoV-2 virus with rapid barcoding (SQK-RBK110.96) Library preparation Version: PCTR_9125_v110_revE_24Mar2021

The modifications include:

- Switching to the Nanopore RAPID barcoding, which requires less time (10 min) and fewer reagents.
- HIV Primer sequences designed by Primal Scheme.

HIV-1:

https://www.dropbox.com/sh/xnhpektoen7chdd/AAAT789gnEnwbbCjF_EMuRu8a?

<u>dl=0</u>

HIV-2:

https://www.dropbox.com/sh/2sco4ffr30ids7a/AAD0z-VXSXElamsuys7zsmpLa?dl=0

: Primer Sequences

HIV-1:

Α	В	С	D	Е	F
name	pool	seq	size	%gc	tm (use 65)
HIV- 1_v1.0_1_LEFT	1	TGGTTAGACCAGATCTGAGCCT	22	50	60.48
HIV-	1	TTTCTTTCCCCCTGGCCTTAAC	22	50	60.68
1_v1.0_1_RIGHT		THETHECCCOTGGCCTTAAC	22	30	00.00
HIV-	1	GCTTTAGACAAGATAGAGGAAGAGCA	26	42.31	60.85
1_v1.0_3_LEFT					
HIV-	1	TTCCTGCTATGTCACTTCCCCT	22	50	61.02
1_v1.0_3_RIGHT					
HIV-	1	TTGGATGACAGAAACCTTGTTGG	23	43.48	59.62
1_v1.0_5_LEFT					
HIV-	1	AAGAAAATTCCCTGGCCTTCCC	22	50	61.01
1_v1.0_5_RIGHT					
HIV-	1	ATTAGAAGAAATGAGTTTGCCAGGAA	26	34.62	59.72
1_v1.0_7_LEFT					
HIV-	1	TTCTTTATGGCAAATACTGGAGTATTGT	28	32.14	59.98
1_v1.0_7_RIGHT					
HIV-	1	GAGACACCAGGGATTAGATATCAGT	25	44	59.61
1_v1.0_9_LEFT					
HIV-	1	CCCTGGGTAAATCTGACTTGCC	22	54.55	61.13
1_v1.0_9_RIGHT					
HIV-	1	AGAGCCATTTAAAAATCTGAAAACAGGA	28	32.14	60.77
1_v1.0_11_LEFT					
HIV-	1	CAGTCTTCTGATTTGTTGTCAGT	25	40	60.08
1_v1.0_11_RIGHT					
HIV-	1	GTCAGTGCTGGAATCAGGAAAGT	23	47.83	61.06
1_v1.0_13_LEFT					
HIV-	1	CGTAGCACCGGTGAAATTGCT	21	52.38	61.64
1_v1.0_13_RIGHT					

1.10.7			00	00.1.1	50.77
HIV-	1	AGACATAATAGCAACAGACATACAAACT	28	32.14	59.77
1_v1.0_15_LEFT					
HIV-	1	CCAATCTAGCATCCCCTAGTGG	22	54.55	59.88
1_v1.0_15_RIGHT					
HIV-	1	CAAGCAGGACATAACAAGGTAGGA	24	45.83	60.65
1_v1.0_17_LEFT					
HIV-	1	TCCAGGGCTCTAGTCTAGGATC	22	54.55	59.81
1_v1.0_17_RIGHT					
HIV-	1	TCTCTATCAAAGCAGTAAGTAGTACATGT	29	34.48	60.52
1_v1.0_19_LEFT					
HIV-	1	GCATGTGGGCCCAAACATTAT	22	45.45	60.28
1_v1.0_19_RIGHT					
HIV-	1	AGCGGGAGAATGATAATGGAGAA	23	43.48	59.61
1_v1.0_21_LEFT					
HIV-	1	GCATTGTCCGTGAAATTGACAGA	23	43.48	60.31
1_v1.0_21_RIGHT					
HIV-	1	AGCTAGCAAATTAAGAGAACAATTTGGA	28	32.14	60.61
1_v1.0_23_LEFT					
HIV-	1	TTCACTTCTCCAATTGTCCCTCA	23	43.48	59.86
1_v1.0_23_RIGHT					
HIV-	1	CTATTGAGGCGCAACAGCATCT	22	50	61.5
1_v1.0_25_LEFT					
HIV-	1	ACCTACCAAGCCTCCTACTATCA	23	47.83	60.05
1_v1.0_25_RIGHT					
HIV-	1	ACCACCGCTTGAGAGACTTACT	22	50	61.27
1_v1.0_27_LEFT					
HIV-	1	TGCTCCATGTTTTTCCAGGTCT	22	45.45	60.34
1_v1.0_27_RIGHT					
HIV-	1	CACACACAGGCTACTTCCCTG	22	54.55	61.31
1_v1.0_29_LEFT					
HIV-	1	AACCAGAGAGACCCAGTACAGG	22	54.55	61.01
1_v1.0_29_RIGHT					
HIV-	2	TAGAAGGAGAGATGGGTGCG	22	54.55	61.19
1_v1.0_2_LEFT					
HIV-	2	TTTTGGCTGACCTGATTGCTGT	22	45.45	61.2
1_v1.0_2_RIGHT					
HIV-	2	GCTGCAGAATGGGATAGAGTGC	22	54.55	61.56
1_v1.0_4_LEFT					
HIV-	2	TTCTTCTAGTGTAGCCGCTGGT	22	50	61.33
1_v1.0_4_RIGHT					
HIV-	2	GGAAGGACACCAAATGAAAGATTGT	25	40	60.37
1_v1.0_6_LEFT					
HIV-	2	TGTCCACAGATTTCTATGAGTATCTGA	27	37.04	59.94
1_v1.0_6_RIGHT					

HIV-	2	AGTAGAAATTTGTACAGAGATGGAAAAGG	29	34.48	60.47
1_v1.0_8_LEFT		AGTAGAAATTTGTACAGAGATGGAAAAGG	29	34.40	00.47
	_				
HIV-	2	AAGGCTCTAAGATTTTTGTCATGCT	25	36	59.67
1_v1.0_8_RIGHT					
HIV-	2	CAGCCTATAGTGCTGCCAGAAA	22	50	60.6
1_v1.0_10_LEFT					
HIV-	2	TTTGCACTGCCTCTGTTAATTGT	23	39.13	59.62
1_v1.0_10_RIGHT					
HIV-	2	GGGAGACTAAATTAGGAAAAGCAGGA	26	42.31	61.02
1_v1.0_12_LEFT					
HIV-	2	AGCCATTGCTCTCCAATTACTGT	23	43.48	60.57
1_v1.0_12_RIGHT					
HIV-	2	GGGCAGGAAACAGCATATTTTCT	23	43.48	59.81
1_v1.0_14_LEFT					
HIV-	2	TGCTGTCCCTGTAATAAACCCG	22	50	60.54
1_v1.0_14_RIGHT					
HIV-	2	GGGAAAGCTAGGGGATGGTTTT	22	50	60.48
1_v1.0_16_LEFT					
HIV-	2	TCGTAACACTAGGCAAAGGTGG	22	50	60.47
1_v1.0_16_RIGHT					
HIV-	2	GCAACAACTGCTGTTTATCCATTTT	25	36	59.91
1_v1.0_18_LEFT					
HIV-	2	TTTCCTATATTCTATGATTACTATGGACCAC	31	32.26	59.61
1_v1.0_18_RIGHT					
HIV-	2	TACCTGTGTGGAAGGAAGCAAC	22	50	60.67
1_v1.0_20_LEFT					
HIV-	2	TGCATATTCTTTCTGCACCTTACCT	25	40	60.96
1_v1.0_20_RIGHT					
HIV-	2	GCCAGTAGTATCAACTCAACTGCT	24	45.83	60.94
1_v1.0_22_LEFT					
HIV-	2	ACAGTAGAAAAATTCCCCTCCACA	24	41.67	60.22
1_v1.0_22_RIGHT					
HIV-	2	GGGCTGCTATTAACAAGAGATGGT	24	45.83	61.01
1_v1.0_24_LEFT					
HIV-	2	AGGTATCTTTCCACAGCCAGGA	22	50	61.02
1_v1.0_24_RIGHT					
HIV-	2	TGGGCAAGTTTGTGGAATTGGT	22	45.45	61.41
1_v1.0_26_LEFT					
HIV-	2	ACCAATATTTGAGGGCTTCCCAC	23	47.83	61.14
1_v1.0_26_RIGHT					
HIV-	2	TGGATGGCCTACTGTAAGGGAA	22	50	60.75
1_v1.0_28_LEFT					
HIV-	2	AGCTTGTAGCACCATCCAAAGG	22	50	61.06
1_v1.0_28_RIGHT					

HIV-2:

Α	В	С	D	Е	F
name	pool	seq	size	%gc	tm (use
					65)
HIV-2_v1.0_1_LEFT	1	TGCAAGGGATGTTTTACAGTAGGA	24	41.67	60.28
HIV-	1	CCAAGTATGGTTGTTCCTGTTATTCA	26	38.46	60.01
2_v1.0_1_RIGHT					
HIV-2_v1.0_3_LEFT	1	GCATTGTATTCAGTCGCTCTGC	22	50	60.46
HIV-	1	ACTCCGTCGTGGTTTGTTCCT	21	52.38	62.01
2_v1.0_3_RIGHT					
HIV-2_v1.0_5_LEFT	1	AAAACATATTGTGTGGGCAGCG	22	45.45	60.53
HIV-	1	TCCTCCACTAATTTTACCCATGCAT	25	40	60.73
2_v1.0_5_RIGHT					
HIV-2_v1.0_7_LEFT	1	ATTCGCAGCACCCAATACCAG	21	52.38	61.12
HIV-	1	GCGGTTAGCATCTCTTCTAGGG	22	54.55	60.47
2_v1.0_7_RIGHT					
HIV-2_v1.0_9_LEFT	1	CAGGACACATCATGGCAAACTG	22	50	60.27
HIV-	1	TTGTCCCCTAATTCTATTCCTGCT	24	41.67	59.6
2_v1.0_9_RIGHT					
HIV-	1	GGAAAGATGGACCAAGGCTGAA	22	50	60.74
2_v1.0_11_LEFT					
HIV-	1	CTTCCATCCTTGTGGCAAGACT	22	50	60.74
2_v1.0_11_RIGHT					
HIV-	1	GGGTTTTCTACTCCAGATGAGAAGT	25	44	60.43
2_v1.0_13_LEFT					
HIV-	1	ACTTTTAGGATTTTCTCTTCCTGGTGT	27	37.04	61.14
2_v1.0_13_RIGHT					
HIV-	1	GGTTAACATTTAACCTAGTAGGAGATCCT	29	37.93	60.78
2_v1.0_15_LEFT					
HIV-	1	ACTTGTCTGATGCCTTGACTTACT	24	41.67	60.28
2_v1.0_15_RIGHT					
HIV-	1	TCATTATAGTAGCAGTACATGTTGCAA	27	33.33	59.51
2_v1.0_17_LEFT					
HIV-	1	CATGTTGATTAGTCTTTCTGCTGGG	25	44	60.54
2_v1.0_17_RIGHT					
HIV-	1	ACTGGATAGTAGTCCCCACCTG	22	54.55	60.55
2_v1.0_19_LEFT					10.53
HIV-	1	ATGAGCTTGGGGATAGTTGCAG	22	50	60.61
2_v1.0_19_RIGHT					
HIV-	1	GGGATGTCAGCAAGCTACACAA	22	50	61.06
2_v1.0_21_LEFT					

		T			
HIV-	1	GGTTACATCCCGCTCTGAAGTG	22	54.55	61.17
2_v1.0_21_RIGHT					
HIV-	1	TGGTAGGAATCAGCTGTTTGTTGT	24	41.67	61.01
2_v1.0_23_LEFT					
HIV-	1	ATGTGGGTGGTCTCGAGGTT	20	55	60.85
2_v1.0_23_RIGHT					
HIV-	1	AGCACTATTGGGATGCTATGAGG	23	47.83	60.25
2_v1.0_25_LEFT					
HIV-	1	CTTCCCTCCATCTGCCTCCAAA	22	54.55	62.21
2_v1.0_25_RIGHT					
HIV-	1	AGCAGATAATTAATACCTGGCATAAAGT	28	32.14	59.66
2_v1.0_27_LEFT					
HIV-	1	CTGTTGCTGTTGCACTATC	22	50	60.59
2_v1.0_27_RIGHT					
HIV-	1	AATATGACATGGCAGGAGTGGG	22	50	60.34
2_v1.0_29_LEFT					
HIV-	1	CAAGGCCACAAGTCGTAACCA	21	52.38	60.91
2_v1.0_29_RIGHT					
HIV-	1	ATTCGCGAGGACTACGAGAGAG	22	54.55	61.55
2_v1.0_31_LEFT					
HIV-	1	CCCTTCCTCTTTTTCTAGGTATATGTCT	28	39.29	60.51
2_v1.0_31_RIGHT					
HIV-	1	ACTACAAGGCCTTCACTCTGTAC	23	47.83	60
2_v1.0_33_LEFT					
HIV-	1	AGTACCGGCCAAGTACTGGT	20	55	60.56
2_v1.0_33_RIGHT					
HIV-2_v1.0_2_LEFT	2	GAGTTTGGGCACAAGTCAGGAT	22	50	61
HIV-	2	ACTGGCAGCTTTATTGAAGAGGT	23	43.48	60.5
2_v1.0_2_RIGHT					
HIV-2_v1.0_4_LEFT	2	CGAACAGGGACTTGAAGAGGAC	22	54.55	60.79
HIV-	2	TGGCAACCTTCTTTTGACTCCA	22	45.45	60.54
2_v1.0_4_RIGHT					
HIV-2_v1.0_6_LEFT	2	AAAAGAGGAAACTACCCCGTGC	22	50	60.99
HIV-	2	TCTGTAGATGTTCCCTACCGGT	22	50	60.21
2_v1.0_6_RIGHT					
HIV-2_v1.0_8_LEFT	2	TGGATGACCCAAACGCTGCTA	21	52.38	62.16
HIV-	2	GGGAAGTTGCGAGGCTTCTTTC	22	54.55	62.2
2_v1.0_8_RIGHT	_				
HIV-	2	GTCACAGCGTACATCGAGGATC	22	54.55	61.03
2_v1.0_10_LEFT					
HIV-	2	AGCTGGCCCTCTTTTTCCATTT	22	45.45	60.95
2_v1.0_10_RIGHT					

			I		
HIV-	2	CTGCATTTACCCTACCAGCAGT	22	50	60.54
2_v1.0_12_LEFT					
HIV-	2	GCTTTTGGATGTCATTGACTGTCC	24	45.83	60.93
2_v1.0_12_RIGHT					
HIV-	2	ACCAAGAAGAAAAGAATTAGAGGCA	26	34.62	59.67
2_v1.0_14_LEFT					
HIV-	2	TCCTGCTTTTCCCTCTTTTGACT	23	43.48	60.38
2_v1.0_14_RIGHT					
HIV-	2	AGCAGTCTATGTTGCATGGGTC	22	50	60.86
2_v1.0_16_LEFT					
HIV-	2	GAAGAGTGCTGTCTCCT	22	54.55	62.44
2_v1.0_16_RIGHT					
HIV-	2	ACAATAGAAACAATAGTACTGATGGCAG	28	35.71	60.29
2_v1.0_18_LEFT					
HIV-	2	CCTCCTCTAGGTCTTTTGTTCTGT	24	45.83	60.04
2_v1.0_18_RIGHT					
HIV-	2	TCTTGCTTTACGGCAGGTGAAG	22	50	61.31
2_v1.0_20_LEFT					
HIV-	2	GCAAGTGCACCCTCTCTTGAAA	22	50	61.51
2_v1.0_20_RIGHT					
HIV-	2	GACATGGAGACACCCTTGAAGG	22	54.55	60.8
2_v1.0_22_LEFT					
HIV-	2	CACGCGGGTATGCCATAGAAAA	22	50	61.5
2_v1.0_22_RIGHT					
HIV-	2	TGGCAATGAATTGTAGCAGGGT	22	45.45	60.74
2_v1.0_24_LEFT					
HIV-	2	AGCCTGAATAGTTGGTATCATTACATCT	28	35.71	60.77
2_v1.0_24_RIGHT					
HIV-	2	TGTCAGGATTAGTGTTTCACTCTCA	25	40	60.08
2_v1.0_26_LEFT					
HIV-	2	GCTGGTTACTGTTGATTCACAGG	23	47.83	60.06
2_v1.0_26_RIGHT					
HIV-	2	CGTGCTAGGGTTCTTGGGTTTT	22	50	61.26
2_v1.0_28_LEFT					
HIV-	2	TTCTTGTTGAATTTGGGCTTCTTCT	25	36	60.02
2_v1.0_28_RIGHT					
HIV-	2	CCCGGTTATCTCCAACAGATCC	22	54.55	60.41
2_v1.0_30_LEFT					
HIV-	2	CTTGGAACTGCGAGTATTCCCC	22	54.55	61.18
2_v1.0_30_RIGHT					
HIV-	2	TCACATTTTATAAAAGAAAAAGGGGGACT	29	31.03	60.58
2_v1.0_32_LEFT					
HIV-	2	CCCTCTTGCTTTCAGTTTTGCC	22	50	60.73
2_v1.0_32_RIGHT					

HIV-	2	ACTTTCCAGAAGGGGCTGTAAC	22	50	60.41
2_v1.0_34_LEFT					
HIV-	2	TGCTAGGGATTTTCCTGCCTTG	22	50	60.81
2_v1.0_34_RIGHT					

DOI

dx.doi.org/10.17504/protocols.io.e6nvwj5p2lmk/v1

PROTOCOL CITATION

Eugene Yeboah, Noah C Hull 2022. HIV WGS - 400bp Amplicon Tiling - Oxford Nanopore Technology Protocol. **protocols.io**

•

https://dx.doi.org/10.17504/protocols.io.e6nvwj5p2lmk/v1

MANUSCRIPT CITATION please remember to cite the following publication along with this protocol

Freed, N. E., Vlková, M., Faisal, M. B., & Silander, O. K. (2020). Rapid and inexpensive whole-genome sequencing of SARS-CoV-2 using 1200 bp tiled amplicons and Oxford Nanopore Rapid Barcoding. Biology Methods and Protocols, 5(1), bpaa014.

https://doi.org/10.1093/biomethods/bpaa014CrossRefPubMedGoogle Scholar

KEYWORDS

HIV, Whole Genome Sequecing, WGS, NGS, ONT, Oxford Nanopore Technology

LICENSE

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

CREATED

Oct 05, 2022

LAST MODIFIED

Oct 06, 2022

8

70862

MATERIALS TEXT

EQUIPMENT / SUPPLIES / REAGENTS:

Α	В
-	
Diluent (DIL)	
-	
Elution Buffer (EB)	
-	
Flush Buffer (FB)	
-	
Flush Tether (FLT)	
-	
Loading Beads II (LBII)	
-	
Loading Solution (LS)	
- Danid Adapter F (DAD F)	
Rapid Adapter F (RAP-F)	
Rapid Barcode Plate (RB96)	
- Rapid Balcode Flate (RB90)	
Sequencing Buffer II (SBII)	
-	
SPRI	
beads (SPRI)	
-	
Storage Buffer (S)	
-	
Wash Mix (WMX)	
Absolute Ethanol, 200 proof, Molecular	Cat. # T038181000
Biology Grade	
Biohazard containers for sharps, assorted sizes	
Coverage Spray HB Plus	Steris #1624-77 or VWR
	#4212-963
Disposable powder-free gloves	
Eppendorf® Centrifuge 5430/5430R	Cat. # EP022620645
Eppendorf™	Cat. # 05-403-00
PCR Cooler	34. II 30 100 00
· · · · · · · · ·	

EQUIPMENT	
Flow Cell Wash Kit	Nanopore Cat# EXP- WSH004
Gentle	
rotator mixer or HULA mixer	
HIV-1/HIV-2	IDT - Custom
Primers	
Kim Wipes	
Low Protein Binding Collection Tubes (1.5 ml)	Cat. # 90410
LunaScript® RT	NEB Cat# E3101
SuperMix Kit	
Magnetic Separator, suitable for 1.5ml	
tubes	
MicroAmp™ 8-Cap Strip, clear	Cat. # N8010535
MicroAmp™ Optical 8-Cap Strips	Cat. # 4323032
MicroAmp™ Optical 96-Well Reaction Plate	Cat. # N8010560
myFuge 12 Micro-Centrifuge	Cat. # 50-550-338
ONT Sequencer	
PCR Cabinet – NuAire, model 126-300	Cat. # A35422
Permanent marking pens	
Q5®	NEB Cat# M0494
Hot Start High-Fidelity SX Master Mix	
Qubit® 4.0 Fluorometer	
Qubit™	Cat. # Q33238
Fluorometry 4.0	
Qubit™ 1X dsDNA HS Assay Kit	Cat. # Q33230 or
	Q33231
Rainin	
Multichannel Pipettors – 20ml	
and 200ml	
Rainin	
Pipettors – 2ml,	
20ml,	
200ml	
and 1000ml Rainin	
Repeater Pipettor – 20ml	
and 200ml	
Rainin 1000ml filter tips, Terra rack	Cat. # 17014967
Rainin 200ml filter tips, Terra rack	Cat. # 17014963
Rainin 20ml filter tips, Terra rack	Cat. # 17014961
<u> </u>	
Rapid Barcoding Kit:	Nanopore
	Cat# SQK-RBK110.96

REAGENTS	
RNase Away™	Fisher Scientific #21-
	236-21 or equiv.
SimpliAmp™ Thermal Cycler or similar	Cat. # A35422
SpotON Flow Cell (R9.4.1)	Nanopore Cat# FLO-
	MIN106D
SUPPLIES	
UltraPure™ DNase/RNase-Free Distilled Water	Cat. # 10977015
Vortex	

DISCLAIMER:

DISCLAIMER - FOR INFORMATIONAL PURPOSES ONLY; USE AT YOUR OWN RISK

The protocol content here is for informational purposes only and does not constitute legal, medical, clinical, or safety advice, or otherwise; content added to <u>protocols.io</u> is not peer reviewed and may not have undergone a formal approval of any kind. Information presented in this protocol should not substitute for independent professional judgment, advice, diagnosis, or treatment. Any action you take or refrain from taking using or relying upon the information presented here is strictly at your own risk. You agree that neither the Company nor any of the authors, contributors, administrators, or anyone else associated with <u>protocols.io</u>, can be held responsible for your use of the information contained in or linked to this protocol or any of our Sites/Apps and Services.

1 Reverse Transcription

The LunaScript® RT SuperMix Kit will be used to reverse transcribe HIV RNA for preparation to perform the Primer Pool PCR assay. NOTE: LunaScript® RT SuperMix will be kept in the PCR Clean room.

- 2 Place 96-well PCR plate on an Eppendorf® PCR cooler (stored at -20oC).
- 3 Using a repeater pipettor aliquot 4 μl of LunaScript® RT SuperMix into each sample well of a 96-well PCR plate according to plate map.
- 4 Cover the plate and move the PCR plate containing master mix from the PCR Clean Room to the processing bench for sample addition.

- 5 Add 16 μ l of RNA extract to the appropriate sample well and gently mix by pipetting up and down. If less than 16 μ l is available, make up the volume with nuclease-free water. Total volume = 20 μ l per well.
- 6 Seal the plate with MicroAmp™ 8-cap strips and briefly centrifuge to collect droplets.
- 7 Return the RT plate to the Eppendorf® PCR cooler until thermocycler reaches 25oC.
- 8 10. Load the plate into the SimpliAmp™ thermocycler, then run the "HIV REVERSE TRANSCRIPTION" method with the following parameters: Set heated lid to 105oC / Runtime ~14 minutes

REPS	1	1	1	Hold
TIME	2:00	10:00	1:00	∞
TEMP	25oC	55oC	95oC	4oC

9 PCR Primer Pool Preparation

Combine the following components to prepare the master mix for each primer pool (A or B). (Allow for pipetting loss by adding \sim 4 reactions per 32 samples.)

10 PCR Primer Pool Preparation

Combine the following components to prepare the master mix for each primer pool (A or B). (Allow for pipetting loss by adding ~ 4 reactions per 32 samples.)

NOTE: Use the HIV-1 RT and Primer Pool Preparation Worksheet to calculate the required amount of master mix. This can be made at the same time as the LunaScript® SuperMix RT plate and stored at 4oC until use.

 $@10\mu M$

ComponentVolumeNuclease-free Water8.90 μlHIV-1 Primer Pool (A or B)1.10 μlQ5® Hot Start HF 2X Master Mix12.5 μl

- 15. Place 96-well PCR plate on an Eppendorf® PCR cooler (stored at -20oC).
- 12 16. Using a repeater pipettor aliquot 22.5 μl of each master mix into the appropriate wells of the 96-well plate.
- 13 17. Cover and store at 4oC until reverse transcription protocol is complete.
- 14 18. Remove the RT plate from the thermocycler and centrifuge.
- 15 19. Carefully remove the 8-cap strips and using a multi-channel pipettor transfer 2.5 μ l of the RT reactions into the appropriate wells of the PCR plate containing the primer pools. Gently mix by pipetting the contents of each well up and down. Total volume = 25 μ l per well.

NOTE: It is useful to separate the plate in half with primer pool A in columns 1-6 and primer pool B in columns 7-12.

- 16 21. Seal the plate with 8-cap strips and briefly centrifuge.
- 17 22. Load the plate into the SimpliAmp™ thermocycler, then run the "HIV PCR PRIMERS" method with the following parameters: Set heated lid to 105oC / Runtime ~5 Hours

Α	В	С	D	E
REPS	1	45X		Hold
TIME	0:30	0:15	5:00	∞
TEMP	98oC	98oC	65oC	4oC

24. Repeat the same primer pool preparation from above (Step 1) and aliquot it into the same

- 18 wells as in Step 1 into a new PCR plate in the same wells as the previous plate.
- 19 25. NOTE: Use the HIV-1 RT and Primer Pool Preparation Worksheet to calculate the required amount of master mix.

@10µM

Component	<u>Volume</u>
Nuclease-free Water	8.90 µl
HIV-1 Primer Pool (A or B)	1.10 µl
Q5® Hot Start HF 2X Master Mix	<u>12.5 µl</u>
Total volume per sample	22.5 µl

- 20 26. Remove the cDNA plate from the thermocycler and centrifuge.
- 21 27. Carefully remove the 8-cap strips and using a multi-channel pipettor transfer $2.5\,\mu l$ of the 1st cDNA products into the corresponding wells of the new PCR plate containing the 2nd set of primer pools.
 - (2.5 µl of 1st Pool A or B goes into corresponding 2nd Pool A or B of new plate.)
- 29. Gently mix by pipetting the contents of each well up and down. Total volume = $25 \mu l$ per well.
- 30. Seal the plate with 8-cap strips and briefly centrifuge.
- 31. Load the plate into the SimpliAmp™ thermocycler, then run the "HIV PCR PRIMERS" method again. Same parameters as above.

Set heated lid to 105oC / Runtime ~5 Hours

Α	В	С	D	E
REPS	1	45X		Hold
TIME	0:30	0:15	5:00	∞
TEMP	98oC	98oC	65oC	4oC

25 Addition of rapid barcodes

Thaw Rapid Barcode Plate and bring SPRI beads to room temperature ~ 1 hour before PCR is complete.

- 26 35. Spin down the Rapid Barcode Plate.
- 27 36. Remove the primer-specific cDNA plate from the thermocycler and centrifuge briefly to collect the contents at the bottom of the wells.
- 28 37. Place the plate on an Eppendorf® PCR cooler.
- 38. Carefully remove the 8-cap strips from the cDNA plate to prevent any splashing.
- 30 39. Place a clean 96-well PCR plate on a separate Eppendorf® PCR cooler (stored at -20oC) and combine each 25 μ l cDNA reaction into a single well in the plate. Mix by pipetting up and down and set aside. Total volume per sample = 50 μ l.
- 40. Place another clean PCR 96-well sample plate on a separate Eppendorf® PCR cooler and using a repeater pipettor aliquot 2.5 μl of nuclease-free water into corresponding sample wells. This is the Barcode Attachment Plate (BAP).
- 32 41. Using a multichannel pipette, transfer 5 μl of the pooled cDNA products to the corresponding well of the Barcode Attachment Plate (BAP) and mix by pipetting.
- 42. Using a multichannel pipette, transfer $2.5\,\mu$ l of the appropriate Rapid Barcodes to the corresponding well of the Barcode Attachment Plate (BAP) and mix by pipetting. Be careful not to cross-contaminate the different wells. Total volume per sample = $10\,\mu$ l.
- 34 43. Seal the plate with 8-cap strips and briefly centrifuge.
- 44. Incubate the plate on the thermocycler using the "RAPID BARCODE ATTACHMENT" protocol with the following parameters:

REPS	1	1
TIME	2:00	2:00
TEMP	30oC	80oC

36 Pooling Samples and Clean-up

Remove the Barcode Attachment Plate (BAP) from the thermocycler and centrifuge briefly to collect the contents at the bottom of the wells.

- 47. Carefully remove the 8-cap strips from the BAP plate to prevent any splashing.
- 38 48. Pool the barcoded samples into a 5 ml Eppendorf DNA LoBind tube. ~10 μl per sample
- 39 Pool the barcoded samples into a 5 ml Eppendorf DNA LoBind tube. ~10 μ l per sample For example:

# Samples	24	48	96
Total Volume	~240 µl	~480 µl	~960 µl

- 40 50. Resuspend the SPRI beads by vortexing.
- 41 Add an equal volume of resuspended SPRI beads to the pooled samples and mix by flicking the tube.

For example:

# Samples	24	48	96
Volume of SRPI	~240 µl	~480 µl	~960 µl
beads			

42	53. Incubate at room temperature on a gentle rotator mixer (~700 rpm) for 5 minutes.
43	54. While incubating, prepare 3 ml of fresh 80% ethanol in nuclease-free water (2400 μl ethanol 600 μl water).
44	55. Spin down the sample tube briefly to bring any liquid down from the cap and place it on the magnet. A pellet will form on the side wall of the tube.
45	56. When the solution clears, keep the tube on the magnet and pipette off the supernatant and discard.
46	57. Without disturbing the beads, add 1.5 ml of the freshly prepared 80% ethanol. Rotate the tube on the magnet to move the beads front to back a few times to wash beads. Remove the ethanol using a pipette and discard.
47	58. Repeat the previous step.
48	59. Briefly spin down the tube and place it back on the magnet. Pipette off any residual ethanol. Allow to dry for 30 seconds. Do not over dry the pellet to the point of cracking.
49	60. Remove the tube from the magnet and resuspend the pellet in 30 μ l Elution Buffer (EB). Gently mix by pipetting up and down.
50	61. Incubate for 10 minutes at room temperature.
51	62. Place the tube on the magnet until the eluate is clear and colorless.

- 63. Remove and transfer the 30 μl eluate (containing the DNA library) into a clean 1.5 ml Eppendorf DNA LoBind tube. Dispose of the pelleted beads. Be careful not to transfer any of the beads.
- 53 64. Proceed to quantifying the DNA concentration using the Qubit dsDNA HS Assy Kit. (Or any preferred quantification method)

54 Library quantification and normalization

Analyze 1 µl of the amplified library using the Qubit™ 4.0 Fluorometer and the Qubit™ dsDNA HS Assay Kit. For more information, see the Qubit™ dsDNA HS Assay Kits User Guide

Determine the amplified library concentration using Qubit™ 4.0 Fluorometer: .

- 55 68. Prepare the Qubit™ standards as directed in the user guide (10 μl standard + 190 μl Qubit™ dsDNA HS Buffer), mix well, and incubate for at least 2 minutes.
- 56 69. For each sample, combine 1 μl of the amplified library with 199 μl of Qubit™ dsDNA HS Buffer, mix well, and incubate for at least 2 minutes.
- 57 70. On the Qubit™ 4.0 Fluorometer home screen, select dsDNA then 1x dsDNA High Sensitivity.
- 58 71. Measure the prepared standards.
- 72. Select the sample concentration as "ng/μl" with an input value of 1 μl.
- 60 73. Measure and record the library concentration.

A total volume of 11 μ l is required for the following step.

If concentration of the total pool is less than 600ng/µl, use library pool undiluted.

61 76. Add 1 μl of Rapid Adapter F (RAP F) to the 11 μl normalized barcoded DNA and mix gently.

protocols.io

- 62 77. Incubate at room temperature for 5 minutes.
- 78. After incubation, place the prepared library in a cold rack until ready to load onto the SpotON flowcell.

64 Priming and Loading the SpotON Flow Cell

Thaw the Sequencing Buffer II (SBII), Loading Beads II (LBII) or Loading Solution (LS, if using), Flush Tether (FLT) and Flush Buffer (FB) at room temperature.

- 81. Mix the SBII, FB and FLT tubes by vortexing. Spin down the SBII and FLT tubes.
- 82. Open the ONT sequencer lid and slide the flow cell under the clip. Press down firmly on the flow cell to ensure correct thermal and electrical contact.
- 83. QC the SpotON flowcell using the MinKNOW software before proceeding. QC passes if total active pores are >800.
- 84. After QC is complete, move the unit including the flowcell to the bench for priming and loading.
- 85. Slide the priming port cover clockwise to open the priming port.

7() Prime and load the SpotON Flow Cell

In a 1.5 ml Eppendorf LoBind tube, prepare the flow cell priming mix by adding 30 μ l of Flush Tether (FLT) to 1.17 ml of Flush Buffer (FB) and vortex to mix.

71 88. Open the priming port and check for a small air bubble under the cover. Draw back a small volume to remove any bubbles (a few μ l)

- 72 89. Set a P1000 to 200 μl
- 73 90. Insert the tip into the priming port
- 74 91. Turn the wheel until the dial shows 220-230 μl, or until you can see a small volume of buffer entering the pipette tip.
- 75 92. Visually inspect that there is continuous buffer from the priming port across the sensor array.
- 76 93. Load 800 ul of the priming mix into the flow cell via the priming port without introducing bubbles. Wait 5 minutes.

77 Prepare the library for loading

Thoroughly mix the contents of the Loading Beads II (LBII) by pipetting up and down. The LBII tube contains a suspension of beads that settle very quickly. It is vital that they are mixed immediately before use.

In a new tube, prepare the library for loading as follows:

Reagent	<u>Volume</u>
Sequencing Buff II (SBII)	37.5 µl
Loading Beads II	22.5 µl
DNA Library	<u>12 µl</u>
Total volume	75 µl

78 Complete the flow cell priming

Gently lift the SpotON sample port cover to make the sample port accessible.

- 79 Slowly load 200 ul of the priming mix into the flow cell via the priming port (not the SpotON sample port), avoiding the instruction of bubbles.
- 80 Immediately, mix the prepared library by pipetting up and down gently.

m protocols.io

81	Add $75\mu\text{I}$ of sample to the flow cell via the SpotON port in a dropwise manner. Ensure each
	drop flows into the port before adding the next.

82	Replace the SpotON sample port	cover, making sure it is seated correctly, close the priming
	port, and close the sequencer lid.	Proceed to sequencing