New ITO Supplier Qualification Results

Roy Chancellor

- Background and Motivation
- Qualification test
 - Green Ys
 - Test procedure
- Analysis and Results
- Conclusions and Recommendations

- Background and Motivation
 - Solidify ITO supply chain by qualifying a second source (equivalent to existing)
 - Previous attempts to qualify ### material were hampered by
 - Material problems (ITO formulation; oxygen level)
 - Test uncertainties
 - Objective
 - Perform a statistically designed reliability test that compares Supplier A to Supplier B (current standard)

Qualification test

- Green YS (Green = color of money)
 - Sheet resistivity (Ω / square)
 - Dogbone resistance $(k\Omega)$
 - Lamp luminance @ t=0 (fL)
 - Lamp luminance decay in high temp / high humidity environment
 - Time to formation of defects in HT/HH environment
- Test procedure
 - Emphasis on blindness to ensure impartiality
 - Randomization to avoid time-related biases

- Test materials
 - Three lots of Standard chosen at random
 - Five lots of NEW
 - Two production lots from machine NV1
 - Three lots with different b* value from NV2
- Panels sampled from the beginning, middle, and end of the rolls

Blind ID	Supplier	Lot #	Common ID	
300		NV1-1787-A3	NV1-A3	
764		NV1-1787-A1	NV1-A1	
113		NV2-344-A2	$b^* = 3.0$	
699		NV2-344-A3	$b^* = 0.0$	
469		NV2-344-A1	$b^* = 1.0$	
400		5310283-1D	283-1D	
103	/	5310274-1L	274-1L	
627		5310259-1G	259-1G	

Panel ID	
1	
2	
3	
4	Beginning of Roll
5	(First 12')
6	
7	
8	

9	
10	
11	
12	Middle of Roll
13	(Middle 12')
14	
15	
16	

17	
18	
19	
20	End of Roll
21	(Last 12')
22	
23	
24	

- Analysis and Results
 - Dogbone resistance
 - Luminance at t=0
 - Time to defects (reliability)
 - Luminance decay

Green Y = Dogbone Resistance, $k\Omega$ (measure of Degree of Etch)

Family of Variation

- Dogbone resistance
 - Dwell time of 22 seconds is the "best"
 - ITO is fully etched
 - No evidence of over-etched edges
 - Achieved easily in production
 - b* lots had more side-side variation
 - Made on NV2 -> is this significant?
 - 52" roll cut into two 24" rolls
 - Resistance of NV1 rolls is consistent and equivalent to the three STD rolls
- Look at panels etched at 22 seconds for more detail...

- Analysis and Results
 - Dogbone resistance
 - Luminance at t=0
 - Time to defects (reliability)
 - Luminance decay

Green Y = Luminance @ t = 0, fL

ITO Qualification Plan: Luminance Measurement Plan

ITO Qualification Plan: Luminance Measurement Plan

Family of Variation

Family of Variation

Family of Variation

- Analysis and Results
 - Dogbone resistance
 - Luminance at t=0
 - Time to defects (reliability)
 - Luminance decay

- Sampling plan
 - Select lamps with 22 sec dwell only
 - NEW: b* 1.0, NV1-A1, NV1-A3 (b* 0 and b* 3 were NOT tested)
 - STD: all three lots
 - Random panel selection (web position and panel replicate)
 - Four lamps per panel (one per quadrant)
- Test conditions
 - 65 C / 95% RH
 - 85 C / 95% RH
 - 100% duty cycle, 80 V, 200 Hz
- Measurements
 - Luminance (decay)
 - Cosmetic defects (black spots)
 - Pictures with digital camera
 - Time it first occurred
- Measurement frequency
 - Luminance: per standard protocol
 - Cosmetics: once per 24 hour period
- Total test time
 - 65-95: 380 hours
 - 85-95: 330 hours

Probability Plot for Time to Defective

Probability Plot for Time to Defective

Examples of Defects (Unlit Keypad Segments)

- Analysis and Results
 - Dogbone resistance
 - Luminance at t=0
 - Time to defects (reliability)
 - Luminance decay

$$Lum = \frac{L_0}{(1 + \beta \cdot t^{\gamma})}$$

$$Lum = \frac{(L_0 + \lambda_E E + \lambda_D D + \lambda_S S)}{\left[1 + (\beta_0 + \beta_E E + \beta_D D + \beta_S S) \cdot t^{\gamma_0 + \gamma_E E + \gamma_D D + \gamma_S S}\right]}$$

Coefficient Estimates								
Coeff	Est	Diff	Coeff	Est	Diff	Coeff	Est	Diff
λ_0	8.707		β_0	0.00198		γo	1.079	
λ_Env	0.0869	1.00%	β_Env	0.0073	370.8%	γ_Env	-0.066	-6.1%
λ_Des	-0.0816	-0.94%	β_Des	-0.0000295	-1.49%	γ_Des	0.001729	0.16%
λ_Sup	0.0093	0.11%	β_Sup	0.0000545	2.75%	γ_Sup	-0.00482	-0.45%

- Only the environment affects luminance decay
- Design and supplier effects are not significant

- Background and Motivation
- Qualification test
 - Green Ys
 - Test procedure
- Analysis and Results
- Conclusions and Recommendations

Etchability

- Variation in sheet resistivity in three b* lots
 - NV1 lots are quite consistent
 - NV2 lots had more side-side variation in dogbone resistance
- Resistance of b* 3.0 lot is too high
 - Does not have a significant impact on luminance; not tested in environments
- b* between 0 and 1 is good (maybe -0.5 to 2.0 is acceptable range)

Luminance

No significant difference between suppliers (all lots tested)

Defects in environments

- Significant practical difference in time to defects due to lamp design
 - Keypad design performed worse than rectangle design
- Statistical difference due to supplier
 - ITO has lower time to formation of defects
 - Practical difference is difficult to determine (e.g. how does environmental performance translate to field performance?)
 - How would b* 0 perform?

Recommendations

- Conditional approval of NEW material
 - Non-automotive applications until additional testing is performed
- Specification for b* needs to be finalized and control plan implemented