

Texto baseado no livro:

Cálculo vol 1 - James Stewart (Editora Cengage Learning)

A função $f(x) = 2^x$ é chamada *função exponencial*, pois a variável x é o expoente.

Ela não deve ser confundida com a função potência $g(x) = x^2$, na qual a variável é a base.

Em geral, uma **função exponencia**l é uma função da forma $f(x) = a^x$ onde a é uma constante positiva.

Vamos recordar o que isso significa:

Se x = n, um inteiro positivo, então

$$a^n = \underbrace{a \cdot a \cdot a \cdot \cdots \cdot a}_{\text{n fatores}}$$

Se x = 0, então $a^0 = 1$, e se x = -n, onde n é um inteiro positivo, então

$$a^{-n} = \frac{1}{a^n}$$

Se x for um número racional, x = p/q, onde p e q são números inteiros e $q \neq 0$, então

$$a^{x} = a^{p/q} = \sqrt[q]{a^{p}} = (\sqrt[q]{a})^{p}$$

Os gráficos dos membros da família de funções $y = a^x$ estão no quadro, para vários valores da base a .

Observe que todos esses gráficos passam pelo mesmo ponto (0, 1), pois $a^0 = 1$, para $a \ne 0$.

Você pode ver que basicamente existem três tipos de função exponencial $y = a^x$.

Se 0 < *a* < 1, a função exponencial decresce;

Se a = 1, ela é uma constante;

Se a > 1, ela cresce.

Seguem as figuras desses três casos.

Observe que se $a \ne 1$, então a função exponencial $y = a^x$ tem o domínio \mathbb{R} e a imagem $(0, \infty)$.

Uma razão para a importância da função exponencial está nas propriedades a seguir.

Se *x* e *y* forem números racionais, então essas propriedades são bem conhecidas da álgebra elementar.

Pode-se demonstrar que elas permanecem verdadeiras para números reais arbitrários x e y.

PROPRIEDADE DOS EXPOENTES

Se *a* e *b* forem números positivos e *x* e *y*, números reais quaisquer, então

1.
$$a^{x+y} = a^x a^y$$

2.
$$a^{x-y} = a^x a^{-y} = a^x / a^y$$

3.
$$(a^x)^y = (a^y)^x = a^{xy}$$

4.
$$(ab)^{x} = a^{x}b^{x}$$

APLICAÇÕES DAS FUNÇÕES EXPONENCIAIS

A função exponencial ocorre com frequência em modelos matemáticos da natureza e da sociedade.

Vamos indicar brevemente aqui como eles surgem na descrição do crescimento populacional.

APLICAÇÕES: POPULAÇÃO DE BACTÉRIAS

Vamos considerar primeiro uma população de bactérias em um meio nutriente homogêneo.

Suponhamos que tomando amostras da população em certos intervalos de tempo fique determinado que a população dobra a cada hora.

APLICAÇÕES: POPULAÇÃO DE BACTÉRIAS

Se o número de bactérias no instante t for p(t), onde t é medido em horas, e a população inicial for p(0) = 1.000, então

$$p(1) = 2p(0) = 2 \times 1000$$

 $p(2) = 2p(1) = 2^{2} \times 1000$
 $p(3) = 2p(2) = 2^{3} \times 1000$

Desse padrão percebemos que, em geral,

$$p(t) = 2^t \times 1000 = (1000)2^t$$

APLICAÇÕES: POPULAÇÃO DE BACTÉRIAS

Sob condições ideais (espaço e alimentos ilimitados e ausência de doenças) esse crescimento exponencial é típico do que ocorre realmente na natureza.

O que pode ser dito sobre a população humana?

A tabela mostra os dados da população mundial do século XX, e a figura mostra o correspondente diagrama de dispersão.

Ano	População (milhões)
	` ′
1900	1 650
1910	1 750
1920	1 860
1930	2 070
1940	2 300
1950	2 560
1960	3 040
1970	3 710
1980	4 450
1990	5 280
2000	6 080

O padrão dos dados da figura sugere um crescimento exponencial.

Assim, se usarmos um software matemático com capacidade para regressão exponencial por mínimos quadrados, obteremos o seguinte modelo exponencial:

 $P = (0.008079266) \cdot (1.013731)^t$

A figura mostra o gráfico dessa função exponencial junto com os pontos originais.

Podemos ver que a curva exponencial se ajusta razoavelmente aos dados.

Os períodos de crescimento populacional lento podem ser explicados pelas duas guerras mundiais e pela depressão dos anos 1930.

O NÚMERO e

Dentre todas as bases possíveis para uma função exponencial, há uma que é mais conveniente para os propósitos do cálculo.

Na escolha de uma base a pesa muito a forma como a função $y = a^x$ cruza o eixo y.

O NÚMERO e

De fato, existe um número assim e ele é denotado pela letra e.

Essa notação foi escolhida pelo matemático suíço Leonhard Euler em 1727, provavelmente por ser a primeira letra da palavra *exponencial*.

 $e \approx 2,71$

O NÚMERO e

Vendo as figuras da esquerda, não nos surpreende que o gráfico de $y = e^x$ esteja entre $y = 2^x$ e $y = 3^x$ (veja a figura à direita).

