Vector Autoregression (VAR) of Longitudinal Sleep and Self-report Mood Data

Jeff Brozena Brozena@psu.edu

Editor: Could use one

Abstract

Self-tracking is one of many behaviors involved in the long-term self-management of chronic illnesses. As consumer-grade wearable sensors have made the collection of health-related behaviors commonplace, the quality, volume, and availability of such data has dramatically improved. This exploratory longitudinal N-of-1 study quantitatively assesses four years of sleep data captured via the Oura Ring, a consumer-grade sleep tracking device, along with self-reported mood data logged using eMood Tracker for iOS. After assessing the data for stationarity and computing the appropriate lag-length selection, a vector autoregressive (VAR) model was fit along with Granger causality tests to assess causal mechanisms within this multivariate time series. Oura's nightly sleep quality score shown to Granger-cause self-reported presence of depressed mood using a VAR(3) model.

1 Introduction

Long-term self-management of chronic illnesses such as bipolar disorder require persistent awareness of illness state over long periods of time and at varying time scales (Murnane et al., 2016; Morton et al., 2018; Majid et al., 2022). Remaining consistently aware of key indicators signalling the onset of a chronic condition allow individuals a chance at early intervention to reduce the severity of a givene episode. For example, an individual may modify behavior, engage their health practitioners, or adjust medication dosage. However nuanced, bipolar disorder is an illness that often degrades an individual's self-awareness and capacity for self-monitoring during symptomatic periods.

In the context of this specific illness, a volume of prior work has demonstrated the vital role of sleep in order to promote mood stability and prevent symptomatic episodes (Harvey et al., 2009; Murray and Harvey, 2010; Gruber et al., 2011). Although the particulars of this topic fall beyond the scope of this paper, these nuanced relationships may in fact be self-reinforcing and bidirectional — poor sleep may lead to episodic onset, which may also lead to worsening (or shortening) sleep bouts.

Given the importance of sleep in the ongoing management of this illness, accurate consumer-grade alternatives to polysomnography (considered the gold standard of sleep tracking) have emerged over the last few years. Indeed, comparatively inexpensive sleep tracking technologies like the Oura Ring have dramatically improved the quality of information that can be used to augment and inform these self-monitoring activities. Objective sensor-based tracking technology can be complemented with subjective self-report measures in order to form a more complete picture of physical and mental health across time. Given the aforementioned interplay of sleep and mood, this combination of subjective and objective tracking creates the possibility of longitudinal analysis — and potentially deepens one's capacity for self-awareness.

Following four years of consistent sleep and mood tracking, I sought to more formally interpret the data I had collected to quantify what I had previously intuited: that certain mood states could be understood (and potentially even predicted) by recent sleep trends. Indeed, this intuition has been demonstrated quantitatively in existing literature (Bose et al., 2017; Moshe et al., 2021; Jafarlou

et al., 2023). As this work also demonstrates, combining data from consumer wearable technology and subjective self-report logs allows for a more comprehensive picture of health.

2 Methods

A multivariate time series analysis was performed using a vector autoregressive (VAR) model fit using ordinary least squares. An optimal lag order was first obtained using a combination of Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Hannan-Quinn Information Criterion (HQIC), and final prediction error (FPE). After fitting a VAR(3) model on the multiple time series data (outlined below), a Granger causality test was performed in order to assess the predictive relationships between variables. Finally, an impulse response analysis was plotted to further explore the temporal relationships between variables, specifically between sleep, heartrate variability, and self-reported mood. I will outline these analysis steps in greater detail in the sections that follow.

2.1 Dataset Description

The sleep score dataset was created using the second- and third-generation Oura Ring. As detailed in Table 1, my use of the Oura Ring was consistent across time. The proprietary Oura sleep score is on a scale of 1 to 100 and incorporates a variety of sensor-based measures (i.e., heartrate variability, resting heartrate, body temperature) across time. Although the specifics of this algorithm are not public, the Oura Ring has been found to produce accurate measures of sleep timing and heartrate variability when compared against polysomnography (de Zambotti et al., 2019). The dataset contains 1,455 nights of sleep bout data occuring between February, 2019 and March, 2023.

	Value
Total nights	1455
Missing nights	1
Mean	73.82
SD	12.36
Max	97.00
Min	30.00

Table 1: Descriptive statistics of Oura Ring sleep score data

Aliquam tristique, sem id venenatis pellentesque, elit ante auctor arcu, ac commodo tellus ante vel massa. Praesent placerat tristique tellus sed elementum. Etiam vehicula dolor non libero blandit, eu scelerisque felis pulvinar. Ut ac bibendum ante. Integer consequat, nisi in placerat dictum, nibh tellus feugiat est, id tristique risus magna venenatis lectus. Nulla viverra nulla mi, in feugiat velit pharetra dictum. Proin id viverra mauris. Morbi a pellentesque nisl, at volutpat ligula. Donec tristique facilisis felis, et euismod mauris. Suspendisse ac massa quis augue pharetra vestibulum ac ut mi. Phasellus efficitur dignissim nisl. Vivamus ornare ex vel dui rutrum convallis. Sed nec urna fermentum augue facilisis ultricies.

Nam eu varius lacus. Aliquam ultricies diam id nibh vehicula consectetur. Nullam euismod felis a aliquam iaculis. Quisque nibh enim, varius a porta lacinia, lobortis vel nisl. Vestibulum molestie nunc et luctus dapibus. Phasellus eget lectus id ligula sollicitudin consequat et a nunc. Class aptent taciti sociosqu ad litora torquent per confaubia nostra, per inceptos himenaeos. Praesent eros magna, tempor vitae justo condimentum, consectetur fermentum magna. Praesent commodo mauris non massa pulvinar, vitae blandit sem eleifend. Vivamus varius eu nisi in volutpat. Aliquam scelerisque nunc vel orci euismod suscipit.

EMA Categories	Count
irritable	100
anxious	88
depressed	103
elevated	48

Table 2: Count of days where EMA item contains a non-zero value

2.2 Vector Autoregression

(Seabold and Perktold, 2010)

(Lütkepohl, 2005)

Pellentesque est dolor, porttitor sed est at, interdum elementum diam. Sed bibendum enim ante. Sed vestibulum diam at arcu tincidunt, quis aliquet dui lobortis. Donec ultricies ipsum ac eros sodales, et placerat massa suscipit. Etiam luctus arcu quis blandit auctor. In ultricies nisi dignissim enim finibus, sit amet fringilla dolor facilisis. Donec sit amet lectus eu lorem porta vehicula. Cras vel ex vehicula, fermentum mi sed, aliquet ante. Maecenas gravida odio eget mi iaculis, non scelerisque tortor ornare.

Nam eu varius lacus. Aliquam ultricies diam id nibh vehicula consectetur. Nullam euismod felis a aliquam iaculis. Quisque nibh enim, varius a porta lacinia, lobortis vel nisl. Vestibulum molestie nunc et luctus dapibus. Phasellus eget lectus id ligula sollicitudin consequat et a nunc. Class aptent taciti sociosqu ad litora torquent per confaubia nostra, per inceptos himenaeos. Praesent eros magna, tempor vitae justo condimentum, consectetur fermentum magna. Praesent commodo mauris non massa pulvinar, vitae blandit sem eleifend. Vivamus varius eu nisi in volutpat. Aliquam scelerisque nunc vel orci euismod suscipit.

Nam eu varius lacus. Aliquam ultricies diam id nibh vehicula consectetur. Nullam euismod felis a aliquam iaculis. Quisque nibh enim, varius a porta lacinia, lobortis vel nisl. Vestibulum molestie nunc et luctus dapibus. Phasellus eget lectus id ligula sollicitudin consequat et a nunc. Class aptent taciti sociosqu ad litora torquent per confaubia nostra, per inceptos himenaeos. Praesent eros magna, tempor vitae justo condimentum, consectetur fermentum magna. Praesent commodo mauris non massa pulvinar, vitae blandit sem eleifend. Vivamus varius eu nisi in volutpat. Aliquam scelerisque nunc vel orci euismod suscipit.

2.3 Granger Causality

Nunc eget risus nec odio commodo feugiat nec ac arcu. Maecenas laoreet lorem ut mi tristique ultricies. Maecenas lacinia fermentum euismod. Praesent quis ornare urna. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Nunc non ornare risus. Nunc vulputate risus a dapibus eleifend. Aenean justo lacus, dignissim eget gravida sed, laoreet eu neque. Vivamus volutpat risus non ligula feugiat sollicitudin. Ut nec porttitor ipsum.

Nulla lobortis neque blandit dui tristique placerat. Cras a tempor leo, nec vulputate libero. Vivamus efficitur ipsum sit amet enim pretium, eget consequat turpis luctus. Aenean mattis velit vitae odio lobortis, ut sodales augue posuere. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum ac accumsan eros, a mattis lacus. Sed in lectus felis. Fusce quis dui odio. Integer tincidunt vitae tortor a tempus. Nam venenatis eros rutrum quam tristique finibus. Nullam varius vel massa at iaculis. Morbi condimentum, loremh non tempus auctor, mauris arcu tempus libero, ac venenatis odio enim at odio. Maecenas egestas sit amet lorem in aliquet. Aenean nec eros ante.

2.4 Impulse Response Analysis

Nulla lobortis neque blandit dui tristique placerat. Cras a tempor leo, nec vulputate libero. Vivamus efficitur ipsum sit amet enim pretium, eget consequat turpis luctus. Aenean mattis velit vitae odio lobortis, ut sodales augue posuere. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Vestibulum ac accumsan eros, a mattis lacus. Sed in lectus felis. Fusce quis dui odio. Integer tincidunt vitae tortor a tempus. Nam venenatis eros rutrum quam tristique finibus. Nullam varius vel massa at iaculis. Morbi condimentum, loremh non tempus auctor, mauris arcu tempus libero, ac venenatis odio enim at odio. Maecenas egestas sit amet lorem in aliquet. Aenean nec eros ante.

3 Results

Nullam non risus augue. Nunc commodo pharetra eros, non condimentum sem ultrices ut. Nunc pharetra enim eget commodo pharetra. Pellentesque ultricies placerat bibendum. Donec ligula ex, rhoncus vitae finibus eget, malesuada in massa. Nam porta varius ex ac ullamcorper. Vivamus eget neque sit amet ex semper elementum. Aliquam erat volutpat. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Morbi semper ultricies ex, in eleifend erat congue a. Nunc et venenatis sapien. Aliquam vel lectus scelerisque, pellentesque enim ac, sagittis erat. Praesent molestie, velit eget pretium venenatis, est nisl rutrum orci, ut placerat leo odio in nulla. Sed bibendum nunc libero, in vestibulum metus hendrerit at.

3.1 Stationarity, Decomposition, and Autocorrelation

Sed ut lobortis ligula. Nunc vel justo cursus, consequat lectus vel, accumsan libero. Etiam lectus nisl, varius in feugiat nec, varius id ligula. Fusce scelerisque pharetra nisl. Maecenas in finibus nisl, in sagittis dolor. Fusce dictum cursus condimentum. Nullam posuere mauris vel odio pulvinar auctor. Nullam ante tellus, semper non scelerisque et, faucibus quis urna. Duis pulvinar metus vel eleifend aliquet. Aenean cursus nunc vitae porttitor malesuada.

Figure 1: Decomposition of sleep time series

Sed ut lobortis ligula. Nunc vel justo cursus, consequat lectus vel, accumsan libero. Etiam lectus nisl, varius in feugiat nec, varius id ligula. Fusce scelerisque pharetra nisl. Maecenas in finibus nisl, in sagittis dolor. Fusce dictum cursus condimentum. Nullam posuere mauris vel odio pulvinar auctor. Nullam ante tellus, semper non scelerisque et, faucibus quis urna. Duis pulvinar metus vel eleifend aliquet. Aenean cursus nunc vitae porttitor malesuada.

Figure 2: Autocorrelation of sleep time series

Sed ut lobortis ligula. Nunc vel justo cursus, consequat lectus vel, accumsan libero. Etiam lectus nisl, varius in feugiat nec, varius id ligula. Fusce scelerisque pharetra nisl. Maecenas in finibus nisl, in sagittis dolor. Fusce dictum cursus condimentum. Nullam posuere mauris vel odio pulvinar auctor. Nullam ante tellus, semper non scelerisque et, faucibus quis urna. Duis pulvinar metus vel eleifend aliquet. Aenean cursus nunc vitae porttitor malesuada.

Figure 3: Partial autocorrelation of sleep time series

3.2 Lag Order Selection

In congue tristique fermentum. Morbi eleifend tortor justo, sed iaculis ante posuere vitae. Quisque sagittis ex sit amet mi sollicitudin tempor vel in ligula. Morbi porta tincidunt diam, non accumsan lorem maximus eget. Orci varius natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Sed ut tristique leo, eu facilisis massa. Maecenas sed nibh hendrerit, rutrum ipsum sit amet, tempus velit. Ut venenatis dolor nisi, vel egestas est convallis ut. Nulla facilisi. Aenean vestibulum malesuada eleifend. Sed pulvinar elementum maximus. Fusce vulputate justo vel est

accumsan luctus. Nulla rhoncus nisi at lacus scelerisque, et pharetra elit interdum. Donec non ante ac nulla commodo euismod a et neque.

	AIC	BIC	\mathbf{FPE}	HQIC
0	7.314	7.342	1501.	7.325
1	6.080	6.279*	436.9	6.155*
2	6.035	6.404	417.7	6.175
3	6.028*	6.568	414.9*	6.233
4	6.055	6.765	426.1	6.324
5	6.056	6.936	426.6	6.390
6	6.066	7.118	431.2	6.465
7	6.071	7.293	433.3	6.534
8	6.104	7.496	447.6	6.631
9	6.131	7.694	460.4	6.724
10	6.130	7.863	459.6	6.787
11	6.129	8.032	459.5	6.851
12	6.158	8.232	473.0	6.944
13	6.177	8.421	482.2	7.028
14	6.201	8.616	494.2	7.117
15	6.213	8.798	500.3	7.193

Table 3: VAR Order Selection (* highlights the minimum)

Cras pretium imperdiet sem id euismod. In blandit pharetra urna. Integer molestie eleifend ex, nec tincidunt sapien ullamcorper sit amet. Fusce dictum purus elit, ut sagittis diam viverra nec. Vestibulum erat felis, placerat ac ligula eu, dictum lacinia lacus. Maecenas mollis augue sem, sit amet tincidunt ex fringilla ac. Pellentesque vel metus ipsum. Sed sit amet nisi vitae tellus consectetur vulputate. Proin aliquam quam at purus tincidunt, ut pharetra ante posuere. Morbi viverra lacinia leo, ac malesuada eros aliquam vitae. Vivamus vitae nisl dictum, laoreet nisi sed, dapibus odio.

3.3 Vector Autoregression Model

Sed id feugiat tortor. Duis arcu lorem, rutrum ut nunc quis, bibendum mollis metus. In pulvinar ut mauris in malesuada. Curabitur eu massa aliquam, laoreet dui maximus, porta tellus. Aliquam erat volutpat. Proin quis lectus nisl. Mauris sagittis bibendum elit eu accumsan. Aliquam ut dui faucibus, dictum magna id, venenatis metus. Mauris ex mi, tempor vel nunc eu, placerat placerat nunc. Cras facilisis varius bibendum. Sed sollicitudin vel sem in maximus. Aenean aliquam sem ac arcu lacinia, vitae bibendum mauris malesuada. Praesent ac imperdiet erat. Maecenas tincidunt sed sem ac porta. Phasellus in justo orci.

Vestibulum sit amet faucibus purus. Proin ornare nisi et purus pellentesque mollis. Mauris aliquet metus sed sem blandit, quis accumsan justo blandit. Donec vitae lectus commodo, placerat tellus sed, interdum ex. Suspendisse potenti. Suspendisse tincidunt, enim in convallis sollicitudin, metus orci facilisis ex, non tristique nunc est ac magna. Aenean ut lorem interdum dui dictum venenatis. Nullam hendrerit placerat mauris, et tempor neque convallis vitae. Pellentesque vitae ligula id elit hendrerit dapibus. Suspendisse lobortis, dui id ultrices viverra, lorem arcu ornare dui, faucibus vehicula tortor erat sed ex. Morbi ac dolor ut nunc fringilla facilisis nec lobortis urna. Nullam ac tempus turpis.

	coefficient	std. error	t-stat	prob
const	33.675538	2.896460	11.626	0.000
L1.score	0.507601	0.031112	16.315	0.000
L1.average_hrv	-0.050172	0.022424	-2.237	0.025
L1.anxious	-0.078201	0.494593	-0.158	0.874
L1.depressed	0.615468	0.457538	1.345	0.179
L1.irritable	-0.015195	0.457422	-0.033	0.973
L1.elevated	-0.150473	0.729563	-0.206	0.837
L2.score	-0.020902	0.034834	-0.600	0.548
$L2.average_hrv$	-0.027687	0.022370	-1.238	0.216
L2.anxious	0.178654	0.540249	0.331	0.741
L2.depressed	1.427585	0.490653	2.910	0.004
L2.irritable	-0.634113	0.500474	-1.267	0.205
L2.elevated	-0.164427	0.771205	-0.213	0.831
L3.score	0.117166	0.031157	3.760	0.000
$L3.average_hrv$	-0.023210	0.022319	-1.040	0.298
L3.anxious	0.003463	0.492368	0.007	0.994
L3.depressed	0.152999	0.458520	0.334	0.739
L3.irritable	0.406833	0.457032	0.890	0.373
L3.elevated	-0.805440	0.732522	-1.100	0.272

Table 4: VAR results for equation score

Causal Variable	Variable	Test statistic	Critical value	p-value	df
average_hrv	depressed	1.541	2.606	0.202	(3, 6234)
average_hrv	anxious	0.3879	2.606	0.762	(3, 6234)
average_hrv	irritable	0.8046	2.606	0.491	(3, 6234)
average_hrv	elevated	0.6640	2.606	0.574	(3, 6234)
score	depressed	5.155	2.606	0.001	(3, 6234)
score	anxious	2.432	2.606	0.063	(3, 6234)
score	irritable	1.311	2.606	0.269	(3, 6234)
score	elevated	0.7891	2.606	0.500	(3, 6234)

Table 5: Granger Causality Test for HRV and Sleep Score

3.4 Granger Causality

3.5 Impulse Response Analysis

4 Discussion

Fusce consectetur accumsan tincidunt. Donec mollis odio at purus convallis tristique. Phasellus maximus quis tortor quis vehicula. Vivamus eget aliquam odio. Etiam efficitur feugiat aliquet. Cras sit amet turpis id nunc interdum placerat. Duis neque nibh, auctor nec eleifend in, pellentesque eget massa. Duis efficitur urna urna, at commodo massa efficitur sit amet. Curabitur tincidunt justo sem, sit amet hendrerit nisi dictum vitae. Ut sed sagittis dolor, vel aliquam urna. Ut placerat lorem non vehicula vehicula. Pellentesque sed justo sodales, blandit orci eget, porta sapien.

Donec pellentesque ut ipsum rhoncus venenatis. Aliquam eu nisi vel urna pharetra mollis. Nulla eget tempus odio. Sed iaculis diam sit amet accumsan suscipit. Fusce finibus arcu a purus feugiat, at vehicula sapien venenatis. Etiam fermentum lacus nisl, dictum efficitur enim fermentum id. Donec

Figure 4: Plot of Impulse Response Function, Lag 0 to 10

accumsan id arcu eu rhoncus. Donec sed magna posuere, efficitur est eleifend, suscipit nisl. Cras semper sollicitudin condimentum.

Nulla eleifend eros sodales elit mattis varius vel sed felis. Sed eu elit ligula. Pellentesque consectetur arcu at tortor hendrerit venenatis. Praesent luctus dolor eros, mattis pellentesque neque consectetur eu. Sed iaculis porttitor quam, varius blandit ligula. Sed justo ante, laoreet in mattis sit amet, fringilla id lectus. Integer egestas sem ut tortor gravida, a suscipit orci semper.

Nam placerat pellentesque lorem vel iaculis. Aenean congue, nibh ut mattis pharetra, eros velit mattis enim, consequat rutrum velit justo sed leo. Curabitur pretium molestie iaculis. Sed malesuada malesuada nisl nec feugiat. Quisque eu congue erat, id interdum justo. Nam fringilla condimentum tempus. Ut nec eros hendrerit, pulvinar sapien ac, molestie nunc. Maecenas mattis ultricies augue, quis lacinia massa laoreet et. Etiam ut massa vel metus mollis ultrices. Mauris bibendum neque et lectus vestibulum dapibus. Mauris quis lorem eu est tincidunt lacinia.

Integer felis massa, rhoncus quis sagittis quis, fringilla non lorem. Pellentesque feugiat eu nibh eu luctus. Duis faucibus hendrerit justo, ac condimentum turpis viverra non. Suspendisse egestas et risus sit amet luctus. In varius quam efficitur nulla efficitur sodales eget in purus. Quisque sagittis

erat nec bibendum eleifend. Integer gravida nibh a commodo finibus. Nam semper sapien at mauris efficitur pretium. Phasellus quis egestas nunc.

References

- Eliezer Bose, Marilyn Hravnak, and Susan M. Sereika. Vector Autoregressive (VAR) Models and Granger Causality in Time Series Analysis in Nursing Research: Dynamic Changes Among Vital Signs Prior to Cardiorespiratory Instability Events as an Example. *Nursing research*, 66(1):12–19, 2017. ISSN 0029-6562. doi: 10.1097/NNR.0000000000000193. URL https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5161241/.
- Massimiliano de Zambotti, Leonardo Rosas, Ian M. Colrain, and Fiona C. Baker. The Sleep of the Ring: Comparison of the ŌURA Sleep Tracker Against Polysomnography. *Behavioral Sleep Medicine*, 17(2):124–136, March 2019. ISSN 1540-2002. doi: 10.1080/15402002.2017.1300587. URL https://doi.org/10.1080/15402002.2017.1300587. Publisher: Taylor & Francis _eprint: https://doi.org/10.1080/15402002.2017.1300587.
- June Gruber, David J. Miklowitz, Allison G. Harvey, Ellen Frank, David Kupfer, Michael E. Thase, Gary S. Sachs, and Terence A. Ketter. Sleep matters: Sleep functioning and course of illness in bipolar disorder. *Journal of Affective Disorders*, 134(1):416–420, November 2011. ISSN 0165-0327. doi: 10.1016/j.jad.2011.05.016. URL https://www.sciencedirect.com/science/article/pii/S016503271100262X.
- Allison G. Harvey, Lisa S. Talbot, and Anda Gershon. Sleep Disturbance in Bipolar Disorder Across the Lifespan. *Clinical Psychology: Science and Practice*, 16 (2):256–277, 2009. ISSN 1468-2850. doi: 10.1111/j.1468-2850.2009.01164.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1468-2850.2009.01164.x. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1468-2850.2009.01164.x.
- Salar Jafarlou, Jocelyn Lai, Iman Azimi, Zahra Mousavi, Sina Labbaf, Ramesh C. Jain, Nikil Dutt, Jessica L. Borelli, and Amir Rahmani. Objective Prediction of Next-Day's Affect Using Multimodal Physiological and Behavioral Data: Algorithm Development and Validation Study. *JMIR Formative Research*, 7(1):e39425, March 2023. doi: 10.2196/39425. URL https://formative.jmir.org/2023/1/e39425. Company: JMIR Formative Research Distributor: JMIR Formative Research Institution: JMIR Formative Research Label: JMIR Formative Research Publisher: JMIR Publications Inc., Toronto, Canada.
- Helmut Lütkepohl. New introduction to multiple time series analysis. New York: Springer, Berlin, 2005. ISBN 978-3-540-40172-8. OCLC: ocm61028971.
- Shazmin Majid, Richard Morriss, Grazziela Figueredo, and Stuart Reeves. Exploring self-tracking practices for those with lived experience of bipolar disorder: Learning from combined principles of Patient and Public Involvement and HCI. In *Designing Interactive Systems Conference*, pages 1907–1920, Virtual Event Australia, June 2022. ACM. ISBN 978-1-4503-9358-4. doi: 10.1145/3532106.3533531. URL https://dl.acm.org/doi/10.1145/3532106.3533531.
- Emma Morton, Erin E. Michalak, Rachelle Hole, Simone Buzwell, and Greg Murray. 'Taking back the reins' A qualitative study of the meaning and experience of self-management in bipolar disorder. Journal of Affective Disorders, 228:160–165, March 2018. ISSN 0165-0327. doi: 10.1016/j.jad.2017. 12.018. URL https://www.sciencedirect.com/science/article/pii/S0165032717317913.
- Isaac Moshe, Yannik Terhorst, Kennedy Opoku Asare, Lasse Bosse Sander, Denzil Ferreira, Harald Baumeister, David C. Mohr, and Laura Pulkki-Råback. Predicting Symptoms of Depression and

Jeff Brozena

- Anxiety Using Smartphone and Wearable Data. Frontiers in Psychiatry, 12, 2021. ISSN 1664-0640. URL https://www.frontiersin.org/articles/10.3389/fpsyt.2021.625247.
- Elizabeth L Murnane, Dan Cosley, Pamara Chang, Shion Guha, Ellen Frank, Geri Gay, and Mark Matthews. Self-monitoring practices, attitudes, and needs of individuals with bipolar disorder: implications for the design of technologies to manage mental health. *Journal of the American Medical Informatics Association*, 23(3):477–484, May 2016. ISSN 1067-5027. doi: 10.1093/jamia/ocv165. URL https://doi.org/10.1093/jamia/ocv165.
- Greg Murray and Allison Harvey. Circadian rhythms and sleep in bipolar disorder. Bipolar Disorders, 12(5):459-472, 2010. ISSN 1399-5618. doi: 10.1111/j.1399-5618.2010.00843.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1399-5618.2010.00843.x. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1399-5618.2010.00843.x.
- Skipper Seabold and Josef Perktold. statsmodels: Econometric and statistical modeling with python. In 9th python in science conference, 2010.