Mean Estimation from One-bit Measurements

Alon Kipnis (Stanford) John Duchi (Stanford)

> Allerton October 2017

Table of Contents

Introduction Motivation Preliminary

Adaptive Encoding

Distributed Encoding

Summary

Motivation

Point estimation under communication constraints:

$$p_{\theta}(x) \to X_1, \dots, X_n \longrightarrow \begin{array}{|l|l|l|} \hline limited & bits \\ per sample & \hline \theta & \hline \end{array}$$

Estimation error is due to:

- (i) limited data
- (ii) limited bits

Relevant scenarios:

- ▶ big data
- low-power sensors
- distributed computing / optimization (bottleneck is due to communication between processing units)

This talk:

Estimating the mean θ of a normal distribution $\mathcal{N}(\theta, \sigma^2)$ from one-bit per sample $(\sigma \text{ is known})$

Three Encoding Scenarios

▶ Distributed: $M_i = f_i(X_i)$

Three Encoding Scenarios

- ▶ Distributed: $M_i = f_i(X_i)$
- ▶ Centralized: $M^n = (M_1, ..., M_n) = f(X_1, ..., X_n)$

Three Encoding Scenarios

- ▶ Distributed: $M_i = f_i(X_i)$
- ▶ Centralized: $M^n = (M_1, ..., M_n) = f(X_1, ..., X_n)$
- ▶ Adaptive / Sequential: $M_i = f_i(X_i, M^{i-1})$

Related Work

- ► Estimation via compressed information [Han '87], [Zhang & Berger '88]
- Distributed hypothesis testing under quantization [Tsitsiklis '88]
- Estimation from multiple machines subject to a bit constraint [Zhang, Duchi, Jordan, Wainwright '13]
- Remote multiterminal source coding (CEO) [Berger, Zhang, Wiswanathan '96], [Oohama '97]

Consistency

Q: in what setting consistent estimation is possible?

Consistency

Q: in what setting consistent estimation is possible?

A: all!

$$M_i = \mathbf{1}(X_i > 0), \quad i = 1, \dots, n$$

(as in the distributed setting)

$$\frac{1}{n}\sum_{i=1}^{n} M_i \to \mathbb{P}\left(X < 0\right) = \Phi\left(X/\sigma < \frac{\theta}{}\right)$$

Efficiency

Definition: asymptotic relative efficiency (ARE) of an estimator:

$$ARE(\widehat{\theta}) \triangleq \lim_{n \to \infty} \frac{\mathbb{E}\left[\left(\widehat{\theta} - \theta\right)^2\right]}{\sigma^2/n}$$

 (σ^2/n) is the minimax risk without communication constraints)

Efficiency

Definition: asymptotic relative efficiency (ARE) of an estimator:

$$\mathrm{ARE}(\widehat{\theta}) \triangleq \lim_{n \to \infty} \frac{\mathbb{E}\left[\left(\widehat{\theta} - \theta\right)^2\right]}{\sigma^2/n}$$

 (σ^2/n) is the minimax risk without communication constraints)

Q: in what scenarios the ARE is finite?

Efficiency

Definition: asymptotic relative efficiency (ARE) of an estimator:

$$\mathrm{ARE}(\widehat{\theta}) \triangleq \lim_{n \to \infty} \frac{\mathbb{E}\left[\left(\widehat{\theta} - \theta\right)^2\right]}{\sigma^2/n}$$

 $(\sigma^2/n$ is the minimax risk without communication constraints)

Q: in what scenarios the ARE is finite?

This talk: all three scenarios

ARE under Centralized Encoding

Proposition

If the parameter space Θ is bounded, then the ARE under centralized encoding is 1

Proof:

$$\mathbb{E}\left(\theta - \widehat{\theta}\right)^{2} = \underbrace{\mathbb{E}\left(\theta - \overline{\theta}\right)^{2}}_{\sigma^{2}/n} + \mathbb{E}\left(\overline{\theta} - \widehat{\theta}\right)^{2}$$

- ▶ Encoder is required to describe $\bar{\theta}$ using n bits
 - divide parameter space Θ into 2^n regions of equal size
 - send region index where $\bar{\theta}$ falls
- ▶ MSE in estimating $\bar{\theta}$ decreases exponentially in n

Note: globally optimal strategy for a finite n is hard to derive since mean of $\bar{\theta}$ is unknown

Relation to CEO

Assume:

- \bullet $\theta \sim \mathcal{N}(0, \sigma_{\theta}^2)$,
- $ightharpoonup Z_1, \ldots, Z_n \overset{\text{i.i.d}}{\sim} \mathcal{N}(0, \sigma^2)$

Encode k instances:

$$ightharpoonup R_1 = \ldots = R_n = 1$$

$$D_{CEO} = \frac{1}{k} \sum_{j=1}^{k} \mathbb{E} \left(\theta_j - \widehat{\theta}_j \right)^2$$

From [K., Rini, Goldsmith '17]:

$$D_{CEO} \le \frac{4}{3} \frac{\sigma^2}{n} + o(1)$$

ARE of 4/3 can be attained in a fully distributed encoding (with encoding over blocks of multiple problem instances)

Conclusion

Distributed encoding is almost not a limiting factor (although inability to exploit concentration of measure in high dimension – might!)

Table of Contents

Introduction Motivation Preliminary

Adaptive Encoding

Distributed Encoding

Summary

Main Results (adaptive encoding)

Theorem (converse)

No estimator have ARE lower than $\pi/2$

Theorem (achievability)

Assume that Θ is a bounded interval. There exists an estimator with ARE equals to $\pi/2$

Theorem (one-step optimal strategy)

The next step one-bit message that minimizes the MSE is of the form $M = \mathrm{sign}(X - \tau)$ where τ satisfies the fixed-point equation

$$\tau = \frac{1}{2} \left(\frac{\int_{-\infty}^{\tau} \theta \pi(d\theta)}{\int_{-\infty}^{\tau} \pi(d\theta)} + \frac{\int_{\tau}^{\infty} \theta \pi(d\theta)}{\int_{\tau}^{\infty} \pi(d\theta)} \right)$$

Proof

converse (ARE $\geq \pi/2$)

Assume a prior $\pi(d\theta)$ on Θ with location Fisher information I_π . The van-Trees inequality (e.g. [Tsybakov '08]) implies

$$\mathbb{E}\left(\theta - \widehat{\theta}\right)^2 \ge \frac{1}{\mathbb{E}I_{\theta}(M^n) + I_{\pi}} \ge \frac{1}{\sum_{i=1}^n I_{\theta}(M_i|M^{i-1}) + I_{\pi}}$$

Lemma

$$I_{\theta}(M_i|M^{i-1}) \le 2/(\pi\sigma^2)$$

(proof by induction over a finite set of intervals approximating ${\cal M}_i^{-1}(1)$ given ${\cal M}^{i-1})$

Proof

achievability (existence of an estimator with ARE $=\pi/2$)

[Polyak & Juditsky '92]:

$$\begin{cases} \theta_i = \theta_{i-1} + \gamma_i \varphi(X_i - \theta_i) & i = 1, \dots, n \\ \widehat{\theta} = \frac{1}{n} \sum_{i=1}^n \theta_i \end{cases}$$

where:

- (i) $\gamma_n \to 0^+$ "not too slow"
- (ii) $\psi(x) = \mathbb{E}\varphi(x+Z)$
- (iii) $\chi(x) = \mathbb{E}\varphi^2(x+Z)$
- (iv) some regularity conditions on φ , χ , ψ

Then

$$\sqrt{n}(\theta - \widehat{\theta}) \to \mathcal{N}(0, V)$$

where $V = \chi(0)/\psi'^{2}(0)$.

Proof

achievability (existence of an estimator with ARE $=\pi/2$)

[Polyak & Juditsky '92]:

$$\begin{cases} \theta_i = \theta_{i-1} + \gamma_i \varphi(X_i - \theta_i) & i = 1, \dots, n \\ \widehat{\theta} = \frac{1}{n} \sum_{i=1}^n \theta_i \end{cases}$$

where:

- (i) $\gamma_n \to 0^+$ "not too slow"
- (ii) $\psi(x) = \mathbb{E}\varphi(x+Z)$
- (iii) $\chi(x) = \mathbb{E}\varphi^2(x+Z)$
- (iv) some regularity conditions on φ , χ , ψ

Then

$$\sqrt{n}(\theta - \widehat{\theta}) \to \mathcal{N}(0, V)$$

where $V = \chi(0)/\psi'^{2}(0)$.

Proof of theorem: take $\varphi(x) = \operatorname{sign}(x)$

One-step optimality

Theorem

Let $\pi(\theta)$ be an absolutely continuous log-concave distribution. For $X \sim \mathcal{N}(\theta, \sigma^2)$ let

$$M = \operatorname{sign}(X - \tau)$$

where au is the unique solution to

$$\tau = \frac{1}{2} \left(\frac{\int_{-\infty}^{\tau} \theta \pi(d\theta)}{\int_{-\infty}^{\tau} \pi(d\theta)} + \frac{\int_{\tau}^{\infty} \theta \pi(d\theta)}{\int_{\tau}^{\infty} \pi(d\theta)} \right)$$

Then for any $M'(X) \in \{-1,1\}$ and $\widehat{\theta}(M')$:

$$\mathbb{E}\left(\theta - \widehat{\theta}(M')\right)^2 \ge \mathbb{E}\left(\theta - \mathbb{E}[\theta|M]\right)^2$$

Interpertation:

The optimal one-bit message is a threshold detector. The threshold is the fixed-point that balances conditional center of masses given the message

One-step Optimal Scheme

Initialization: $P_0(t) = \pi(\theta)$ Repeat for $n \ge 1$:

(i)
$$P_n(t) = \mathbb{P}(\theta = t | M^n) = \alpha_n P_{n-1}(t) \Phi\left(M_n \frac{t - \tau_{n-1}}{\sigma}\right)$$

(ii)
$$\widehat{\theta} = \mathbb{E}[\theta|M^n] = \int tP_n(t)dt$$

(iii) Find τ_n from

$$\tau_n = \frac{1}{2} \left(\frac{\int_{-\infty}^{\tau} t P_n(t) dt}{\int_{-\infty}^{\tau} P_n(t) dt} + \frac{\int_{\tau}^{\infty} t P_n(t) dt}{\int_{\tau}^{\infty} P_n(t) dt} \right)$$

(iv)
$$M_{n+1} = \operatorname{sign}(X_{n+1} - \tau_n)$$

Numerical Example

Normalized empirical risk versus number of samples n (500 Monte Carlo experiments)

Table of Contents

Introduction Motivation Preliminary

Adaptive Encoding

Distributed Encoding

Summary

Distributed Encoding

Threshold Detection

We consider only messages of the form

$$M_i = \mathsf{sign}(X_i - t_i), \quad i = 1, \dots, n$$
 $M_i = -1$ t_i $M_i = 1$

Assume:

$$\lambda_n([a,b]) = \frac{1}{n} |[a,b] \cap \{t_i\}|$$

converges weakly to a probability distribution $\boldsymbol{\lambda}$

Distributed Encoding

Threshold Detection

We consider only messages of the form

$$M_i = \mathsf{sign}(X_i - t_i), \quad i = 1, \dots, n$$

$$M_i = -1 \qquad t_i \qquad \qquad M_i = 1$$

Assume:

$$\lambda_n([a,b]) = \frac{1}{n} |[a,b] \cap \{t_i\}|$$

converges weakly to a probability distribution λ

Example: t_1, \ldots, t_n are drawn independently from a probability distribution λ on $\mathbb R$

Main Results (distributed encoding)

Theorem

(i) For any estimator $\widehat{\theta}$:

$$\liminf_{c \to \infty} \liminf_{n \to \infty} \sup_{\tau : |\tau - \theta| \le \frac{c}{\sqrt{n}}} n \mathbb{E} \left(\widehat{\theta} - \tau \right)^2 \ge \sigma^2 / K(\theta),$$

where:

$$K(\theta) = \int_{\mathbb{R}} \eta \left(\frac{t - \theta}{\sigma} \right) \lambda(dt)$$
$$\eta(x) = \frac{\phi^{2}(x)}{\Phi(x)\Phi(-x)}$$

(ii) The Maximum likelihood estimator $\widehat{ heta}_{ML}$ satisfies

$$\sqrt{n}(\theta - \widehat{\theta}_{ML}) \to \mathcal{N}\left(0, \sigma^2/K(\theta)\right)$$

Interpretations

- ML estimator is local asymptotically minimax
- \blacktriangleright ARE of ML is $1/K(\theta)$ depends only in the asymptotic threshold density λ

$$1/K(\theta) = \frac{1}{\int \eta\left(\frac{t-\theta}{\sigma}\right)\lambda(dt)} \geq \frac{1}{\int \eta\left(0\right)\lambda(dt)} = \pi/2$$
 (attained by $\lambda(dt) = \delta_{\theta}$)

▶ Minimax λ for $\theta \in (-b\sigma, b\sigma)$:

$$\begin{aligned} & \underset{\tau \in (-b,b)}{\inf} \int \eta(t-\tau) \lambda(dt) \\ & \text{subject to} \quad \lambda(dt) \geq 0, \quad \int \lambda(dt) \leq 1. \end{aligned}$$

Minimax λ

support of optimal threshold density λ^\star

$$K^* = \inf_{\theta} K^*(\theta) = \inf_{\theta} \int \eta(t - \theta) \lambda^*(dt)$$

Minimax λ

Minimax ARE vs size of parameter space

▶ ARE increases with size of parameter space

Table of Contents

Introduction Motivation Preliminary

Adaptive Encoding

Distributed Encoding

Summary

Summary

- Asymptotic relative efficiency in adaptive setting is $\pi/2$ regardless of size of parameter space only ~ 1.57 more samples are required due to 1-bit constraints
- One-step optimal one-bit message is a threshold detector
- ARE in distributed setting is finite
- ML estimator is local asymptotically optimal for threshold detection
- ARE of ML is characterized by asymptotic density of threshold values
- Minimax ARE of ML depends on size of parameter space

Open question

Is there a distributed encoding scheme with ARE that is both finite and independent of size of parameter space ?