Algebra - Kolokwium 1

Czas: 150 minut.

W rozwiązaniach zaleca się podawanie kroków pośrednich obliczeń, tak aby były one weryfikowalna nawet w przypadku błędu rachunkowego.

Proszę podpisać wszystkie kartki! (Ta kartka jest przeznaczona na brudnopis).

Zadanie 1 Wyznacz wymiary $LIN(S) \cap LIN(T)$ oraz LIN(S) + LIN(T) dla $S = \{(1, 2, 1, 0), (-1, 1, 1, 1)\}, T = \{(2, -1, 0, 1), (1, -1, 3, 7)\}.$ Podaj (dowolną) bazę LIN(S) + LIN(T).

Zadanie 2 Niech M będzie macierzą wymiaru $n \times n$:

$$M = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 2 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 3 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & n-1 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix} .$$

Oblicz rząd macierzy M^k dla każdego $k \geq 1$.

Zadanie 3 Podaj macierz odwrotną do macierzy:

$$\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 4 & 9 & 0 \end{bmatrix} \ .$$

Zadanie 4 Załóżmy, że dla przestrzeni liniowych U, V (będących podprzestrzeniami W) zachodzi

$$\dim(U+V) = 1 + \dim(U \cap V) .$$

Udowodnij, że suma U + V jest jedną z przestrzeni U, V, a przecięcie $U \cap V$ —drugą.

Zadanie 5 Podaj ilość rozwiązań układu równań w zależności od parametru λ

$$\begin{bmatrix} 1 & \lambda & 1 \\ \lambda & 1 & \lambda \\ \lambda & \lambda & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} \lambda^3 + \lambda^2 \\ \lambda^2 + \lambda \\ 2\lambda \end{bmatrix} .$$

Zadanie 6 Dla macierzy $\begin{bmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ oblicz wartości własne i ich krotności geometryczne; podaj odpowiadające

wektory własne.

Zadanie 7 Rozważmy macierz kwadratową M wymiaru $n \times n$ oraz jej wielomian charakterystyczny $\varphi_M(x) = \det(M - x \operatorname{Id})$. Udowodnij, że:

- współczynnik $\varphi_M(x)$ przy x^n wynosi $(-1)^n$;
- współczynnik $\varphi_M(x)$ przy x^{n-1} wynosi $(-1)^{n-1} \cdot \operatorname{tr}(M)$;
- współczynnik $\varphi_M(x)$ przy x^0 wynosi $\det(M)$.

Dla przypomnienia: tr(M) to suma elementów na przekątnej macierzy M.