

Structural and Electrical Characterization of Sn doped ZnS Thin Films Synthesized by Chemical Bath Deposition (CBD)

Presented by

Farzana Akter Sohaly
Department of Electrical &
Electronic Engineering
University of Dhaka

Outlines

- Introduction of thin films
- Various deposition techniques of thin films
- Applications
- Fabrication process of Sn doped ZnS thin films
- Results & Discussion

Define Thin film!

- A **thin film** is a layer of materials ranging from fractions of a nanometer(monolayer) to several micrometer in thickness.
- Thin film technology is a 'self organizing' structural evolution.

Fig.1: Thin film using material Cu,Sn,Zn,S developed by IBM

Fig.2: Smallest solar cells thinner than human hair

Source: [1]https://inhabitat.com/ibm-releases-cheaper-40-more-efficient-thin-film-solar-cell/

[2]https://www.pinterest.com/pin/27443878952279610/

Thin film Market Demand

Fig.3: The prospects of solar energy industry globally

Fig.4: Demand for using thin film and printed batteries

Applications

- ZnS thin film can be used as
 - Antireflection coating for solar cell
 - 2. Optoelectronic devices
 - 3. photosynthetic coating
 - photoluminescence devices and many more
- Our main goal is to apply Sn doped
 ZnS thin film as a buffer layer in solar
 cell

Fig.5: The configuration of a typical CIGS solar cell

Credit: Copyright (C) 2015 Toyohashi University Of Technology

Thin film deposition technique

Why Chemical Bath Deposition??

• Chemical bath deposition (CBD) is a method to deposit thin films and nanomaterials by chemical reaction. It is also known as Chemical Solution Deposition (CSD).

• Substrates are immersed in a chemical bath containing precursor solution.

• It requires low cost and low temperature (highest 90 °C).

Advantages

- ✓ Solution containers and substrate mounting device
- ✓ Stable, adherent, uniform and hard films
- ✓ Suitable method for highly efficient film
- ✓ No need of vacuum environment

Disadvantages

- ✓ Waste of solution
- ✓ Substrate cleaning

Chemical Bath Deposition Process

Fig.6: Chemical Bath Deposition Set-up

Fig.7: A Sample of Sn doped ZnS thin film

Deposition processes is done to controllably transfer atoms from a source to a substrate

Source: [8]https://www.researchgate.net/figure/Schematic-of-Chemical-Bath-Deposition_fig1_303843308

X-ray Powder Diffraction Pattern

Fig.9: X-ray diffraction pattern for a)Undoped ZnS,

Fig.10: Left shift of 2-theta angle for (111) plane

XRD Analysis

- The crystal structure is cubic (zinc blend).
- The crystallite size is calculated from

Debye-Scherrer's formula for (111) plane-

Crystallite Size, $D = 0.9\lambda/\beta \cos\theta$,

Dislocation density, $\delta = 1/D^2$

Microtrain, $\varepsilon = \beta \cos \theta/4$

Fig.11: Crystal structure of Zinc Blende

For plane(111) at 2θ = 27.9 °				
Thin film	Crystallite size, nm	Dislocation density, m ⁻²	Microstrain	
Undoped ZnS	112.14	7.95x10 ¹³	3.09x10 ⁻⁴	
20% Sn doped ZnS	136.44	5.37x10 ¹³	2.54x10 ⁻⁴	
30% Sn doped ZnS	146.24	4.67x10 ¹³	2.37x10 ⁻⁴	

UV-Visible Spectrophotometer Spectra

Fig.12: Transmission spectra for a blank sample

Fig.13: A graph of transmittance (%) against wavelength(nm)

Fig.15: A graph of Reflectance(%) against wavelength(nm)

Fig. 14: Reflectance spectra for a blank sample

Absorbance

Absorbance is calculated by the relation

T+R+A=1

or, A= 1-(T+R)

Fig.16: A graph of absorbance (%) against wavelength (nm) a) Undoped ZnS b) 20% Sn: ZnS c) 30% Sn: ZnS

Direct Band Gap

The value of Eg can get by usually the Tauc relation,

ahv = A (hv - Eg)ⁿ Where
$$n=1/2$$

Film	Eg = hv(eV)
Undoped ZnS	3.9 eV
20% Sn doped ZnS	4.2 eV
30% Sn doped ZnS	3.7 eV

Fig.17: Graphical determination of band gap a) undoped

ZnS,b) 20% doped ZnS, c) 30% doped ZnS

Refractive index pattern

Refractive indexes across wavelength are calculated by

 $\eta = (1 + \sqrt{R})/(1 - \sqrt{R})$

Where,

R= Reflectance

Extinction Coefficient, $K = \alpha \lambda / 4\pi$

here, α = Absorption coefficient

λ= Corresponding wavelength

Absorption Coefficient, $\alpha = 2.303*A/t$

Here, A= Absorbance

t= Film thickness

Fig.18: A graph of refractive indexes along wavelength (nm)

4 - Point Probe Measurement

Resistivity ,p is calculated by the formula $\rho = a2\pi s \; (V/I)$ or $\rho = 4.53t \; (V/I)$ Where , $t = Wafer \; thickness$ $s = Distance \; between \; two \; successive \; probe$

Thin film	Temperature	Resistivity, ρ(Ω.m)
☐ 30% Sn doped	20 °C	1.44
ZnS	25 °C	0.724
☐ 20% Sn doped ZnS	20 °C	8.285
	25 °C	0.3

Acknowledgement

- Department of Electrical & Electronic Engineering, University of Dhaka
- Experimental Physics Division, Atomic Energy Centre, Dhaka
- Centre for Advanced Research in Sciences(CARS), University of Dhaka
- Materials Science Division, Atomic Energy Centre, Dhaka

THANK YOU FOR YOUR TIME