Introduction

blah blah

Chapter 1

Preliminaries

1.1 von Neumann Algebras

Definition 1. Let H be a Hilbert space. For any subset \mathcal{M} of $\mathcal{B}(H)$,

- 1. \mathcal{M}' denotes the set of all bounded operators on H commutes with any element of \mathcal{M} .
- 2. The set $Z(M) = M \cap \mathcal{M}'$ is called the *center* of \mathcal{M}

Definition 2. A von Neumann algebra on a Hilbert space H is a subset \mathcal{A} of $\mathcal{B}(H)$ such that

- 1. $I \in \mathcal{A}$,
- 2. $\alpha A + \beta B \in \mathcal{A}$ whenever $A, B \in \mathcal{A}, \alpha, \beta \in \mathbb{D}$,
- 3. if $A \in \mathcal{A}$, then $A^* \in \mathcal{A}$,
- 4. \mathcal{A} is closed in the weak operator topology.

1.2 Elements of Quantum Logic

Let L be a poset. For $a, b \in L$, the operations $a \wedge b = \inf\{a, b\}$ and $a \vee b = \sup\{a, b\}$ are called *meet* and *join* respectively. In general,

$$\bigwedge_{i \in I} a_i = \inf\{a_i : i \in I\}$$

and

$$\bigvee_{i \in I} a_i = \sup\{a_i : i \in I\}$$

for any family $\{a\}_{i\in I}$ of elements of a poset L.

Definition 3 (Lattice). Let L be a poset. $\mathcal{L} = (L, \wedge, \vee)$ is sad to be a lattice if both $a \wedge b$ and $a \vee b$ exist in L for any $a, b \in L$. \mathcal{L} is said to be a σ -lattice or a complete lattice if both $\bigwedge_{i \in I} a_i$ and $\bigvee_{i \in I} a_i$ exist in L for any family $\{a_i\}_{i \in I}$ of elements of L with a countable or abitrary index set I.

Definition 4. We say that a mapping $\perp: L \to L$ is said to be an *orthocomplementation* on a poset L with 0 and 1 if

- 1. $(a^{\perp})^{\perp} = a$ for any $a \in L$,
- 2. if $a \leq b$, then $b^{\perp} \leq a^{\perp}$,
- 3. $a \vee a^{\perp} = 1$ for any $a \in L$.

Definition 5 (Orthomodular poset; OMP). An *orthomodular poset* is the lattice $\mathcal{L} = (L, \wedge, \vee)$ satisfying the othormodular condition,

$$b = a \vee (b \wedge a^{\perp})$$