Knowledge, action, and the frame problem

Reasoning about Actions

Francesco Petri, Charlotte Primiceri and Flavio Maiorana

May 30, 2024

Table of Contents

- ► Scherl and Levesque's Approach Introduction Knowledge as a fluent Defining a successor state axiom for K
- Theorems and Reasoning Theorems
 Regression
- Example: The Gardening Robot Axiomatization
 Instantiation

Outline

Situation calculus provides a framework for reasoning about actions.

This work presents an expansion to handle the *knowledge* possessed or acquired by the agent, and allow it to shape the agent's decisions.

- Knowledge is represented by one additional fluent
- Uniform axiomatization with the rest of sitcalc
- Ordinary actions and knowledge-producing ones are strictly separated
- Easy expansion of regression as defined in [Reiter2001]
- Desirable properties are direct consequences of the axiomatization (e.g. knowledge persistence / memory)

The K fluent

Defines an accessibility relation between situations.

(Informal) definition

 $\mathrm{K}(s',s)$ is true if an agent in situation s could mistake the current situation for the other s', given its current knowledge.

Knowledge

Definition of knowledge

A fluent is known to be true (false) in a situation s if and only if it is true (false) in all situations accessible from s.

Shorthand notation: $\mathbf{Knows}(\phi, s) \stackrel{\text{def}}{=} \forall s' \ \mathrm{K}(s', s) \rightarrow \phi(s')$

Actions that have an effect on the agent's knowledge

SENSE actions

Learn the truth value of a formula. Example: check if a door is open or closed.

$$\mathsf{Knows}(\mathsf{P}, \mathsf{DO}(\mathsf{SENSE}_\mathsf{P}, s)) \lor \mathsf{Knows}(\neg \mathsf{P}, \mathsf{DO}(\mathsf{SENSE}_\mathsf{P}, s))$$

READ actions

Learn the value of a term. Example: read a number on a sheet of paper.

$$\exists x \, \mathsf{Knows}(\tau = x, \mathsf{DO}(\mathsf{READ}_{\tau}, s))$$

Knowledge effects

In order to complete the specification of the K fluent, we need to define its successor state axiom, determining how ordinary actions and knowledge-producing actions affect it.

Consider this case study with three accessible situations. The agent is in S1.

$$\mathsf{Knows}(\mathrm{P},S1) \land \neg \mathsf{Knows}(\mathrm{Q},S1)$$

Ordinary actions

Assume the agent performs a DROP action.

Informal idea

The agent cannot distinguish the current situation s from all the other s' accessible from it. Therefore, after executing the action, the agent may believe to be in any situation resulting from any s' after executing DROP.

Axiomatization

$$K(s'', DO(DROP, s)) \equiv \exists s' (POSS(DROP, s') \land K(s', s) \land s'' = DO(DROP, s'))$$

Ordinary actions

The only knowledge gained is that the DROP action has been performed, as well as anything that can be derived from the action effects.

For example, if DROP makes P false:

$$P(do(a, s)) \equiv a \neq drop \land P(s)$$

then

$$\mathsf{Knows}(\neg P, \mathtt{DO}(\mathtt{DROP}, S1))$$

but no extra knowledge is gained about Q.

Consider an action SENSE_Q that provides information on whether Q is true or false. We define a **sensing result function** to represent the signal received by the agent in response:

Sensing result function

$$\operatorname{SR}(\operatorname{SENSE}_{\mathbf{Q}},s) = r \equiv (r = \operatorname{``YES"} \wedge \mathbf{Q}(s)) \vee (r = \operatorname{``NO"} \wedge \neg \mathbf{Q}(s))$$

When the agent executes SENSEQ, what are the accessible situations afterwards?

Informal definition

Initially, the agent cannot distinguish the current situation s from all the other s' accessible from it. Therefore, after executing \mathtt{SENSE}_Q , the agent may believe to be in any situation that:

- ullet results from any s' after executing the action,
- AND would yield the same sensing result as the one that has been observed.

Axiomatization

$$K(s'', do(sense_Q, s)) \equiv \exists s' (Poss(sense_Q, s') \land K(s', s) \land s'' = do(sense_Q, s') \land sr(sense_Q, s) = sr(sense_Q, s'))$$

After executing $\mathrm{SENSE}_{\mathbf{Q}}$, only situations with the same truth value for \mathbf{Q} are accessible.

Thus, in addition to knowing that SENSE_Q has been performed, the agent now knows the truth value of Q as well, by definition.

 $\mathsf{Knows}(\mathrm{Q}, \mathrm{DO}(\mathrm{SENSE}_{\mathrm{Q}}, S1))$

Sensing results in general

The concept of sensing result extends to all types of action, allowing for a uniform axiomatization.

Ordinary actions

$$SR(DROP, s) = r \equiv r = "OK"$$

SENSE-type knowledge-producing actions

$$SR(SENSE_{Q}, s) = r \equiv (r = "YES" \land Q(s)) \lor (r = "NO" \land \neg Q(s))$$

READ-type knowledge-producing actions

$$SR(SENSE_{\tau}, s) = r \equiv r = \tau(s)$$

The successor state axiom for K

Putting it all together, the definitive form is as follows:

Successor state axiom for the K fluent

$$K(s'', do(a, s)) \equiv \exists s' (Poss(a, s') \land K(s', s) \land s'' = do(a, s') \land sr(a, s) = sr(a, s'))$$

What about...

...mixing ordinary and knowledge effects?

We assume that ordinary and knowledge actions are disjoint: each action is going to be axiomatized as either affecting \emph{only} the K fluent or as not affecting it at all. This does not cause loss of generality.

...knowledge of arbitrary formulae?

They already work within this system.

Example: $\mathsf{Knows}(\forall x(\mathtt{MAN}(x) \to \mathtt{MORTAL}(x)) \land \mathtt{MAN}(Socrates), s)$

Table of Contents

- Scherl and Levesque's Approach Introduction
 Knowledge as a fluent
 Defining a successor state axiom for K
- ► Theorems and Reasoning Theorems Regression
- Example: The Gardening Robot Axiomatization

Theorem 1 (Knowledge-producing effects). For all situations s, all fluents P (other than K) and knowledge-producing action terms α , if P(s) then $P(DO(\alpha, s))$.

Theorem 2 (Default persistence of ignorance). For an action α and a situation s, if $\neg \mathbf{Knows}(P, s)$ holds and the axiomatization entails

$$\forall s \ P(s) \equiv P(DO(\alpha, s))$$

and

$$\forall y \neg \mathbf{Knows}((\mathrm{Poss}(\alpha) \land \mathrm{SR}(\alpha) = y) \rightarrow \mathrm{P}, s)$$

then

$$\neg$$
Knows(P, DO(α , s))

holds as well.

Theorem 3 (Knowledge incorporation). For a knowledge-producing action α , a fluent or the negation of a fluent F, a fluent or the negation of a fluent P, and a situation s, if the axiomatization entails

$$\exists y \; \mathbf{Knows} (\mathbf{F} \equiv \mathbf{SR}(\alpha) = y, s)$$

and also

$$F(s)$$
, $Poss(\alpha, s)$,

and

Knows(
$$F \rightarrow P, s$$
)

hold, then

Knows(P,
$$DO(\alpha, s)$$
)

holds as well.

Theorem 4 (Memory). For all fluents P and situations s, if **Knows**(P, s) holds then **Knows**(P, DO(α , s)) holds as long as the axiomatization entails

$$\forall s \ P(s) \equiv P(DO(\alpha, s))$$

Theorem 5 (Knowledge of effects of actions). If α is an ordinary (not a knowledge-producing) action, and if the axiomatization entails

$$\forall s \ \phi[s] \rightarrow P(DO(\alpha, s))$$

where ϕ is an arbitrary formula with situation terms suppressed⁸ and P is a fluent or its negation, then the following is also entailed:

$$\mathbf{Knows}((\mathsf{Poss}(\alpha) \land \phi), s) \to \mathbf{Knows}(\mathsf{P}, \mathsf{DO}(\alpha, s))$$

Reasoning Tasks

Projection Task

Determing if a sentence G is true in the situation resulting from the execution of an action sequence is represented by the query:

$$F \models G(\mathsf{DO}([\alpha_1,\ldots,\alpha_n],S_0))$$

Reasoning Tasks

Projection Task

Determing if a sentence G is true in the situation resulting from the execution of an action sequence is represented by the query:

$$F \models G(\mathsf{DO}([\alpha_1,\ldots,\alpha_n],S_0))$$

Legality Task

The situation term

$$\mathsf{DO}(\alpha_m, \mathsf{DO}(\alpha_{m-1} \dots \mathsf{DO}(\alpha_1, S_0) \dots))$$

is a legal situation iff

$$[\alpha_1,\ldots,\alpha_m]$$

is a legal action sequence

Regression

- Reduce Reasoning about future situations to reasoning about the initial situation;
- Sound and Complete Reasoner.

Regression

Definition of Regressor Operator through:

- Ordinary Actions
- Knowledge-Producing Actions

Regression Theorem

Theorem

For any ground situation term

$$F \models G(s_{gr}) \quad iff \quad F - F_{SS} \models R_{\theta}^*[G(s_{gr})]$$

Proof.

It suffices to show the preservation of logical equivalence

$$F \models G(s_{qr}) \equiv R_{\theta}^*[G(s_{qr})]$$

Regression Theorem

Theorem (Regression-Ordinary Actions)

$$R_{\theta}^*[\textit{Knows}(W, DO(a, s))] \equiv$$

Knows(
$$POSS(a) \rightarrow R_{\theta}^*[W[DO(a, s')]], s)$$

Regression-Ordinary Actions

Proof.

- 1. **Knows**(W, DO(a, s))
- 2. by the definition of **Knows**:

$$\forall s'' \ \mathsf{K}(s'', \mathsf{DO}(a, s)) \ \to \mathsf{W}[s'']$$

Regression-Ordinary Actions

Proof.

3. by Successor State Axiom:

$$\mathsf{K}(s'',\mathsf{DO}(a,s)) \equiv \exists s'(\mathsf{K}(s',s) \land \mathsf{POSS}(a,s) \land s'' = \mathsf{DO}(a,s'))$$

$$\forall s''(\exists s'(\mathsf{K}(s',s) \land \mathsf{POSS}(a,s') \land s'' = \mathsf{DO}(a,s')) \to \mathsf{W}[s''])$$

the axiomatization entails:

$$\forall s, s' \mathsf{SR}(a, s) = \mathsf{SR}(a, s')$$

$$\forall s'(\mathsf{K}(s',s) \land \mathsf{POSS}(a,s') \to W[\mathsf{DO}(a,s')])$$

Regression-Ordinary Actions

Proof.

5. Inductive Hypothesis:

$$\forall s'(\mathsf{K}(s',s) \land (\mathsf{POSS}(a,s'))) \rightarrow \mathsf{R}_{\theta}[W[\mathsf{DO}(a,s')]]$$

$$\forall s'(\mathsf{K}(s',s) \land (\mathsf{POSS}(a,s'))) \rightarrow \mathsf{R}_{\theta}[W[\mathsf{DO}(a,s')]]^{-1}$$

6. again by definition of **Knows**:

Knows(POSS
$$(a) \rightarrow \mathsf{R}_{\theta}[W[\mathsf{DO}(a,s')]]^{-1},s)$$

Regression Theorem

Theorem (Regression- Knowledge Producing Actions)

$$R_{\theta}[\textit{Knows}(W, DO(SENSE_i, s))] =$$

$$\exists y \; \mathit{SR}(\mathit{SENSE}_i, s) = y \; \land$$

Knows
$$((POSS(a) \land SR(SENSE_i) = y) \rightarrow R_{\theta}[W[DO(SENSE_i)]]^{-1}, s)$$

Regression- Knowledge Producing Actions

(vi) $\mathbf{Knows}(W, DO(SENSE_i, s))$

by the definition of Knows

$$\forall s'' \ \mathbf{K}(s'', \mathsf{DO}(\mathsf{SENSE}_i, s)) \rightarrow W[s'']$$

by the successor state axiom for K (sentence (18)), and also and the inductive hypothesis

$$\forall s' \left(\mathsf{K}(s',s) \land \\ \mathsf{Poss}(\mathsf{SENSE}_i,s') \land \mathsf{SR}(\mathsf{SENSE}_i,s) = \mathsf{SR}(\mathsf{SENSE}_i,s') \right) \rightarrow \\ \mathcal{R}_{\Theta} \left[W[\mathsf{Do}(\mathsf{SENSE}_i,s')] \right]$$

by the definition of equality and the existential quantifier

$$\forall s' \left(\mathsf{K}(s',s) \land \\ \mathsf{Poss}(\mathsf{SENSE}_i,s') \land \exists y \ \mathsf{SR}(\mathsf{SENSE}_i,s) = y \\ \land \mathsf{SR}(\mathsf{SENSE}_i,s') = y \right) \rightarrow \mathcal{R}_{\Theta} \left[W[\mathsf{DO}(\mathsf{SENSE}_i,s')] \right]$$

Regression- Knowledge Producing Actions

by the definition of the connectives and quantifiers

$$\forall y \text{ SR}(\text{SENSE}_i, s) = y \rightarrow \\ \forall s' \left(K(s', s) \land \text{POSS}(\text{SENSE}_i, s') \land \text{SR}(\text{SENSE}_i, s') = y \right) \rightarrow \\ \mathcal{R}_{\Theta} \left[W[\text{DO}(\text{SENSE}_i, s')] \right]$$

by the definition of the connectives, quantifiers, and the fact that there can only be one denotation of $SR(SENSE_i, s)$

$$\exists y \ \text{SR}(\text{SENSE}_i, s) = y \land \forall s' \left(K(s', s) \rightarrow \text{Poss}(\text{SENSE}_i, s') \land \text{SR}(\text{SENSE}_i, s') = y \right) \rightarrow \mathcal{R}_{\Theta} \left[W[\text{DO}(\text{SENSE}_i, s')] \right]$$

by the definitions of Knows

$$\exists y \ \text{SR}(\text{SENSE}_i, s) = y \land \\ \textbf{Knows}((\text{Poss}(\text{SENSE}_i) \land \text{SR}(\text{SENSE}_i) = y) \\ \rightarrow \mathcal{R}_{\Theta}[W[\text{Do}(\text{SENSE}_i, s')]]^{-1}, s) \quad \Box$$

Legality Testing

Method

Given n actions, the action precondition axioms are:

$$\forall x_n \; \mathsf{POSS}(A_n(x_n), s) \equiv \Pi A_n(x_n, s)$$

A sequence is a legal action sequence iff:

$$F \models \Pi(\alpha_1)[s \to S_0] \land \Pi(\alpha_2)[s \to \mathsf{DO}(\alpha_1, S_0)] \land \dots$$

$$\wedge \Pi(\alpha_m)[s \to \mathsf{DO}([\alpha_1, \dots, \alpha_{m-1}], S_0)]$$

So iff, by Regression:

$$F - F_{SS} \models \Pi(\alpha_1)[s \rightarrow S_0] \land \mathsf{R}^*_{\theta}[\Pi(\alpha_2)[s \rightarrow \mathsf{DO}(\alpha_1, S_0)]] \land \dots$$

$$\wedge \mathsf{R}_{\theta}^*[\Pi(\alpha_m)[s \to \mathsf{DO}([\alpha_1, \dots, \alpha_{m-1}], S_0)]]$$

Table of Contents

- Scherl and Levesque's Approach Introduction
 Knowledge as a fluent
 Defining a successor state axiom for K
- Theorems and Reasoning Theorems Regression
- ► Example: The Gardening Robot Axiomatization Instantiation

The Problem

- A robot has to manage n plants in a garden.
- The robot performs an action on one plant at a time.
- A plant can be watered only if it is dry and the temperature is known.
- The robot has access to a watering can with unlimited capacity.
- The robot performs action on an object only if it is near it.
- The robot can hold only one object at a time.

(Non)Fluents

Fluents

- NEAR(x,s) oRobot is near object x in situation s
- $\operatorname{HOLDING}(x,s) \to \operatorname{Robot}$ is holding object x in situation s
- $\mathrm{Moist}(p,s) o \mathsf{Plant}\ \mathsf{p}\ \mathsf{is}\ \mathsf{moist}\ \mathsf{in}\ \mathsf{situation}\ \mathsf{s}$
- lacktriangle TEMPERATURE(p,s) o Temperature value of the spot near plant lacktriangle
- MoistPlants $(s) o \mathsf{Number}$ of moist plants

Non-Fluents

- WATERINGCAN $(x) \rightarrow \mathsf{Object} \times \mathsf{is}$ a watering can
- THERMOMETER $(x) \rightarrow \mathsf{Object} \times \mathsf{is}$ a thermometer
- Moisturemeter $(x) \rightarrow \mathsf{Object} \times \mathsf{is} \mathsf{a} \mathsf{moisturemeter}$

Actions

All actions are to be axiomatized as affecting only either the K fluent or other fluents.

Normal

- GOTO $(x) \rightarrow$ Go to object x
- WATER $(p) \to \mathsf{Water} \mathsf{plant} \mathsf{p}$
- PICKUP $(x) \rightarrow \text{Pick up object } x$
- PUTDOWN $(x) \rightarrow \text{Put down object } x$

Knowledge

- CHECKMOISTURE $(p) o \mathsf{Check}$ moisture of plant p
- ullet Checktemperature $(p) o \mathsf{Check}$ the temperature of the spot near plant p

Effects

Sensing Result Axioms

- $SR(GOTO(x), s) = r \equiv r = "OK"$
- SR(CHECKMOISTURE $(p), s) = r \equiv (r = "YES" \land MOIST(p, s)) \lor (r = "NO" \land \neg MOIST(p, s))$
- $SR(CHECKTEMPERATURE(p), s) = r \equiv r = TEMPERATURE(p, s)$

Knowledge Action Effects

- Kwhether(Moist(p), Do(CHECKMOISTURE(p), s))
- Kref(Temperature(p), do(checktemperature(p), s))

Preconditions

- Poss (water(p), s) ≡ Near(p, s) \wedge Holding(x, s) \wedge WateringCan(x) \wedge Knows(¬Moist(p), s) \wedge Kref(Temperature(p), s)
- Poss (pickup(x), s) \equiv Near(x, s) $\land \neg \exists y$. Holding(y, s)
- Poss (putdown(x), s) \equiv Holding(x, s)
- Poss (checkmoisture(p), s) \equiv Near(p, s) \wedge Holding(x, s) \wedge Moisturemeter(x)
- Poss (checktemperature(p), s) \equiv Near(p, s) \wedge Holding(x, s) \wedge Thermometer(x)

Successor State Axioms

In general $F(x, DO(\alpha, s)) \equiv \Phi_F^+(x, a, s) \vee (F(x, s) \wedge \neg \Phi_F^-(x, a, s))$

- Near $(x, do(\alpha, s)) \equiv \alpha = goto(x) \lor (Near(x, s) \land \neg \exists y. \alpha = goto(y))$
- HOLDING $(x, DO(\alpha, s)) \equiv \alpha =$ PICKUP $(x) \lor (Holding(x, s) \land \neg \exists r. \alpha = PUTDOWN(x))$
- $MOIST(p, DO(\alpha, s)) \equiv \alpha = WATER(p) \lor (MOIST(p, s) \land \neg \exists r. \alpha = WATER(p))$
- Temperature $(p, do(\alpha, s)) \equiv Temperature(p, s)$
- MoistPlants $(p, \text{do}(\alpha, s)) = n \equiv$ (MoistPlants $(p, s) = n 1 \land \alpha = \text{water}(p)) \lor (\text{MoistPlants}(p, s) = n)$

- 1. Knowledge-producing actions do not change the state of the world. If P(s) then $P(DO(\alpha, s))$, given that α is knowledge-producing and P is not K
- 2. Nothing is learned about P by doing action α , as long as α does not affect P.
- 3. Agents know the consequences of knowledge acquired through knowledge-producing actions.
- 4. If the agent knows P at s, then P is also known at $DO(\alpha, s)$ as long as the effect of α is not to make P false.
- 5. Agents know the effects of (ordinary) actions.

Initial Situation

- WateringCan(c)
- Thermometer(t)
- Moisturemeter(m)
- PLANT (p_1) :
- PLANT (p_n)
- Near(c)

Goal

Have n moist plants, namely MOISTPLANTS(p, s) = n

Solution

For every plant p, with the following situations

```
\begin{split} \mathbf{S}_1 &= \\ &\mathrm{DO}(\mathrm{PUTDOWN}(m), \mathrm{DO}(\mathrm{CHECKMOISTURE}(p), \\ &\mathrm{DO}(\mathrm{GOTO}(p), \mathrm{DO}(\mathrm{PICKUP}(m), \mathrm{DO}(\mathrm{GOTO}(m), \mathbf{S}_0)))))\\ \mathbf{S}_2 &= \\ &\mathrm{DO}(\mathrm{PUTDOWN}(t), \mathrm{DO}(\mathrm{CHECKTEMPERATURE}(p), \\ &\mathrm{DO}(\mathrm{PICKUP}(t), \mathrm{DO}(\mathrm{GOTO}(t), \mathbf{S}_1))))\\ \mathbf{S}_3 &= \\ &\mathrm{DO}(\mathrm{PUTDOWN}(c), \mathrm{DO}(\mathrm{WATER}(p), \\ &\mathrm{DO}(\mathrm{PICKUP}(c), \mathrm{DO}(\mathrm{GOTO}(c), \mathbf{S}_2)))) \end{split}
```

In the end, we need to entail that MOISTPLANTS(p, s) = nWe can use the successor state axioms for that

Legality testing (with a different S_0)


```
\begin{aligned} & \text{DO}(\text{WATER}(p), \text{DO}(\text{PICKUP}(c), \text{DO}(\text{GOTO}(c), \text{DO}(\text{PUTDOWN}(t), S_0))))} \\ & \qquad \qquad & \qquad \qquad \\ & \text{We need to entail} \\ & \text{Near}(p, S_0) \land \text{Holding}(t, S_0) \land \text{Thermometer}(t, S_0) \land \textbf{Knows}(\neg \text{Moist}(p, S_0)) \land \\ & \textbf{Kref}(\text{Temperature}(p), \text{DO}(\text{Checktemperature}(p), S_0)) \\ & \qquad \qquad \downarrow \\ & \exists y.y = \text{Temperature}(p, s) \end{aligned}
```

Instantiation

Golog


```
1: while \neg \mathbf{Knows}(\mathsf{HEALTHYPLANTS} = n) do
      (\Pi p) \text{ GOTO}(p);
        CHECKMOISTURE(p):
 3:
         if \mathsf{Knows}(\neg \mathsf{Moist}(p))
 4:
           GOTO(t);
 5:
 6:
              PICKUP(t);
              GOTO(p);
 7:
              CHECKTEMPERATURE(p):
 8:
              PUTDOWN(t);
 9:
           GOTO(c);
10:
              PICKUP(c);
11:
              GOTO(p);
12:
              WATER(p);
13:
              PUTDOWN(c):
14:
15: end while
```

Knowledge, action, and the frame problem

Thank you for listening!
Any questions?