Arquitectura de Computadoras

(Cód. 5561) 1° Cuatrimestre 2018

Dra. Dana K. Urribarri DCIC - UNS

Simulador

Logisim-evolution

https://github.com/reds-heig/logisim-evolution

- Compuerta (gate): circuito electrónico que opera sobre una o más señales de entrada para proveer una señal de salida.
- El voltaje y la corriente son señales analógicas, toman valores de un rango continuo.
- Los sistemas digitales responden a dos niveles de voltaje bien diferenciados: V_{HIGH} y V_{LOW}. Uno se corresponderá al valor 1 lógico y el otro, al 0 lógico.

- Se asocia un rango de valores analógicos a cada valor lógico (0 o 1).
- Una compuerta típica no garantiza niveles de voltaje perfectos.
- Puede producir un voltaje dentro de un subrango que garantiza ser reconocido por la compuerta de entrada.
- La diferencia entre los rangos se denomina margen de ruido.

- Las compuertas AND, OR y NOT entienden voltajes V_{HIGH} y V_{LOW}
- El voltaje de salida en respuesta a los voltajes de entrada es fijo para cada compuerta.
- La interpretación lógica de los voltajes no es fija.
- Lógica Negativa (LN):
 - $-V_H \rightarrow 0$
 - $-V_L \rightarrow 1$

- Lógica Positiva (LP):
 - $-V_H \rightarrow 1$
 - $-V_L \rightarrow 0$

 Tenemos una compuerta con el siguiente comportamiento eléctrico:

Α	В	Salida
V_H	V_{H}	V_{H}
V _H	V_{L}	V_{L}
V _L	V_{H}	V_{L}
V _L	V_{L}	V_{L}

Lógica positiva

Lógica negativa

Α	В	Salida
1	1	1
1	0	0
0	1	0
0	0	0

Α	В	Salida
0	0	0
0	1	1
1	0	1
1	1	1

AND

ЭR

La especificación de los fabricantes es siempre en lógica positiva.

- ¿Lógica mixta?
- Entradas y salidas con diferente lógica:
 - Entradas lógica positiva
 - Salidas lógica negativa
 o
 - Entradas lógica negativa
 - Salidas lógica positiva

Lógica positiva		LN
Α	В	Salida
1	1	0
1	0	1
0	1	1
0	0	1

NAND

Lógica negativa		LP
Α	В	Salida
0	0	1
0	1	0
1	0	0
1	1	0

NOR

Compuertas más comunes (LP)

Name	Distinctive-Shape Graphics Symbol	Algebraic Equation	Truth Table
AND	X F	F = XY	X Y F 0 0 0 0 1 0 1 0 0 1 1 1
OR	х F	F = X + Y	X Y F 0 0 0 0 1 1 1 0 1 1 1 1
NOT (inverter)	x — F	$F = \overline{X}$	X F 0 1 1 0

Compuertas más comunes (LP)

NAND	Х F	$F = \overline{X \cdot Y}$	X Y F 0 0 1 0 1 1 1 0 1 1 1 0
NOR	Х YF	$F = \overline{X + Y}$	X Y F 0 0 1 0 1 0 1 0 0 1 1 0
Exclusive-OR (XOR)	$X \longrightarrow F$	$F = X\overline{Y} + \overline{X}Y$ $= X \oplus Y$	X Y F 0 0 0 0 1 1 1 0 1 1 1 0
Exclusive-NOR (XNOR)	XF	$F = X\underline{Y} + \overline{X}\overline{Y}$ $= X \oplus Y$	X Y F 0 0 1 0 1 0 1 0 0 1 1 1

Ejemplo (LP)

- F = A' B + C'
- Implementación con AND, OR e INV

Ejemplo (LP)

- F = A' B + C'
- Implementación con NOR e INV

Dana K. Urribarri AC 2018

Bibliografía

- <u>Capítulo 2.</u> Morris Mano, Kime & Martin. Logic and computer design fundamentals. Prentice Hall (5ta Ed, 2015)
- <u>Capítulo 3.</u> M. Rafiquzzaman. Fundamentals of Digital Logic And Microcontrollers. Wiley (2014, 6ta Ed.)
- <u>Capítulo suplementario "More Optimization".</u>
 Morris Mano, Kime & Martin. Logic and computer design fundamentals.

http://wps.pearsoned.com/ecs_mano_lcdf_5/248/63706/16308896.cw/index.html