

ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Ασυμπτωτική πολυπλοκότητα

Κωνσταντίνος Γιαννουτάκης Επίκουρος Καθηγητής

ΣΥΝΟΨΗ ΔΙΑΛΕΞΗΣ

- Μαθηματικό υπόβαθρο
- Ασυμπτωτική πολυπλοκότητα & κλάσεις πολυπλοκότητας

ΜΑΘΗΜΑΤΙΚΟ ΥΠΟΒΑΘΡΟ

- Μαθηματικοί ορισμοί / Χρήσιμες Συναρτήσεις
- Ασυμπτωτικοί συμβολισμοί
- Κλάσεις πολυπλοκότητας

ΧΡΗΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

- [x] κάτω ακέραιο μέρος: μεγαλύτερος ακέραιος έτσι ώστε $\leq x$
- [x] άνω ακέραιο μέρος: μικρότερος ακέραιος έτσι ώστε $\ge x$

$$|x - 1| < |x| \le x \le |x| < x + 1$$

- $\ln N$: φυσικός λογάριθμος: x τέτοιο ώστε $e^x = N$
- lg N: δυαδικός λογάριθμος: x τέτοιο ώστε $2^x = N$
- $H_N = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{N} \approx \ln N$ (Ν-οστός αρμονικός αριθμός)

ΧΡΗΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ

- $\binom{N}{k} = \frac{N!}{(N-k)!k!}$ (διωνυμικοί συντελεστές)
- $\lg(N!) = \lg 1 + \lg 2 + \lg 3 + \dots + \lg N \approx N \lg N$ (Προσέγγιση Stirling)

ΧΕΙΡΙΣΜΟΣ ΑΘΡΟΙΣΜΑΤΩΝ

- $\sum_{i=1}^{n} 1 = n$
- $\sum_{i=j}^{n} 1 = n j + 1$
- $\sum_{i=1}^{n} i = 1 + 2 + \dots + n = \frac{n(n+1)}{2}$ (Αριθμητική πρόοδος)
- $\sum_{i=0}^{n} r^i = \frac{r^{n+1}-1}{r-1}$, $r \neq 1$ (Γεωμετρική πρόοδος με λόγο r)
- $\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} = \ln n$ (Αρμονική πρόοδος)
- $\sum_{i=0}^{n} f(i) = \sum_{j=m}^{n+m} f(j-m)$ (Αλλαγή μεταβλητής)

MIKPO OMIKPON (o)

Συμβολίζουμε με
$$f(x) = o(g(x))$$
 εάν υπάρχουν $c>0$ και x_0 τέτοια ώστε
$$f(x) < cg(x), \forall x>x_0$$

Εναλλακτικός ορισμός

Συμβολίζουμε με f(x) = o(g(x)) εάν

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

- $x^2 = o(x^5)$
- $\sin(x) = o(x)$
- $\frac{1}{x} = o(1)$
- $23 \ln(x) = o(x^{0.02})$

MEΓΑΛΟ OMIKPON (O)

Συμβολίζουμε με $f(x)=\mathcal{O}(g(x))$ εάν υπάρχουν c>0 και x_0 τέτοια ώστε $f(x)\leq cg(x), \forall x>x_0$

- sin(x) = O(x), αλλά πιο συχνά sin(x) = O(1)
- $x^3 + 5x^2 + 77\cos(x) = O(x^5)$
- $\bullet \quad \frac{1}{1+x^2} = \mathcal{O}(1)$

ΘΗΤΑ (Θ)

Συμβολίζουμε με
$$f(x) = \Theta(g(x))$$
 εάν υπάρχουν $c_1 > 0$, $c_2 > 0$ και x_0 τέτοια ώστε
$$\forall x > x_0 \text{ να ισχύει}$$

$$c_1 g(x) \leq f(x) \leq c_2 g(x)$$

•
$$(x+1)^2 = \Theta(3x^2)$$

$$\bullet \quad \frac{x^2 + 5x + 7}{5x^3 + 7x + 2} = \Theta\left(\frac{1}{x}\right)$$

$$\bullet \quad \sqrt{3 + \sqrt{2x}} = \Theta(x^{1/4})$$

ΜΙΚΡΟ ΩΜΕΓΑ (ω)

Συμβολίζουμε με $f(x) = \omega(g(x))$ εάν υπάρχουν c>0 και x_0 τέτοια ώστε $\forall x>x_0$ να ισχύει cg(x) < f(x)

Εναλλακτικός ορισμός

Συμβολίζουμε με $f(x) = \omega(g(x))$ εάν

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$$

- $x^3 = \omega(x^2)$
- $5x + 6 = \omega(1)$
- $x^{0.02} = \omega(23 \ln(x))$

ΜΕΓΑΛΟ ΩΜΕΓΑ (Ω)

Συμβολίζουμε με $f(x)=\Omega(g(x))$ εάν υπάρχουν c>0 και x_0 τέτοια ώστε $\forall x>x_0$ να ισχύει $cg(x)\leq f(x)$

- $x^3 = \Omega(x^2)$
- $4x^3 + 5 = \Omega(x)$

Δείξτε ότι $x = \mathcal{O}(2^x)$.

Συμβολίζουμε με $f(x)=\mathcal{O}(g(x))$ εάν υπάρχουν c>0 και x_0 τέτοια ώστε $f(x)\,\leq cg(x), \forall x>x_0$

Λύση

Αρκεί να βρούμε c>0 και x_0 έτσι ώστε να ισχύει $x\leq c2^x$, $\forall x>x_0$.

Θεωρούμε τη συνάρτηση $h(x) = 2^x - x$. Η συνάρτηση είναι συνεχής και παραγωγίσιμη με $h'(x) = 2^x \ln 2 - 1$ που είναι θετική για κάθε $x \ge 1$.

Άρα η h είναι γνησίως αύξουσα για $x \ge 1$, άρα h(x) > h(1) = 1 άρα $2^x - x > 1 > 0$ άρα $2^x \ge x$, οπότε επιλέγουμε c = 1 και $x_0 = 1$.

Δείξτε ότι $2x^3 + 100x^2 + x = \mathcal{O}(x^3)$.

Λύση

Αρκεί να βρούμε μια θετική σταθερά c και ένα x_0 έτσι ώστε:

$$2x^3 + 100x^2 + x \le cx^3$$

Έχουμε όμως (για $x \ge 1$):

$$2x^3 + 100x^2 + x \le 2x^3 + 100x^3 + x^3 = 103x^3_{\text{100}}$$

Άρα επιλέγουμε c=103 και $x_0=1$.

Δείξτε ότι
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \mathcal{O}(x^n)$$
.

Λύση

Έχουμε:

$$a_{n}x^{n} + a_{n-1}x^{n-1} + \dots + a_{1}x + a_{0} \le |a_{n}|x^{n} + |a_{n-1}|x^{n-1} + \dots + |a_{1}|x + |a_{0}| \le |a_{n}|x^{n} + |a_{n-1}|x^{n} + \dots + |a_{1}|x^{n} + |a_{0}|x^{n} = (|a_{n}| + |a_{n-1}| + \dots + |a_{1}| + |a_{0}|)x^{n}$$

για $x \ge 1$. Επομένως επιλέγουμε:

$$c = |a_n| + |a_{n-1}| + \dots + |a_1| + |a_0| \text{ Kal } x_0 = 1.$$

Δείξτε ότι
$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 = \Omega(x^n)$$
 για $a_i > 0$.

Λύση

Έχουμε, για $x \ge 1$:

$$a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \ge a_n x^n$$

Άρα επιλέγουμε $c=a_n$ και $x_0=1$.

Δείξαμε ότι το πολυώνυμο
$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$$
 για $a_i > 0$ είναι $\mathcal{O}(x^n)$ και $\Omega(x^n)$. Αυτό σημαίνει ότι είναι $\Theta(x^n)$.

ΙΔΙΟΤΗΤΕΣ

Μεταβατικότητα

- Aν $f = \mathcal{O}(g)$ και $g = \mathcal{O}(h)$ τότε $f = \mathcal{O}(h)$
- Av $f = \Omega(g)$ και $g = \Omega(h)$ τότε $f = \Omega(h)$
- Aν $f = \Theta(g)$ και $g = \Theta(h)$ τότε $f = \Theta(h)$

Αθροίσματα

- Aν $f = \mathcal{O}(h)$ και $g = \mathcal{O}(h)$ τότε $f + g = \mathcal{O}(h)$
- Aν $f = \Omega(h)$ και $g = \Omega(h)$ τότε $f + g = \Omega(h)$
- Aν $f = \Theta(h)$ και $g = \Theta(h)$ τότε $f + g = \Theta(h)$

ΙΔΙΟΤΗΤΕΣ

Συμμετρία

- $f = \Theta(g)$ αν και μόνο αν $g = \Theta(f)$
- $f = \mathcal{O}(g)$ αν και μόνο αν $g = \Omega(f)$

Επιπλέον ιδιότητες

- Εάν $f = \mathcal{O}(g)$ και a > 0 τότε $af = \mathcal{O}(g)$
- Εάν $f_1 = \mathcal{O}(g_1)$ και $f_2 = \mathcal{O}(g_2)$ τότε
 - $f_1 f_2 = \mathcal{O}(g_1 g_2)$
 - $f_1 + f_2 = \mathcal{O}(\max\{g_1, g_2\})$

ΚΛΑΣΕΙΣ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

- Βασικές κλάσεις πολυπλοκότητας
- Χρόνοι εκτέλεσης
- Ρυθμός αύξησης

ΒΑΣΙΚΕΣ ΚΛΑΣΕΙΣ

- Σταθερή: *O*(1)
- Λογαριθμική: $\mathcal{O}(\log n)$
- Γραμμική: O(n)
- n-log-n ή γραμμολογαριθμική: $O(n \log n)$
- Τετραγωνική: $\mathcal{O}(n^2)$
- Κυβική: $\mathcal{O}(n^3)$
- Εκθετική: $\mathcal{O}(2^n)$
- Παραγοντική: $\mathcal{O}(n!)$

Συνήθως, το μέγεθος του προβλήματος εκφράζεται με την ανεξάρτητη μεταβλητή n αντί για x.

ΓΡΑΦΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ

ΧΡΟΝΟΙ ΕΚΤΕΛΕΣΗΣ

Οι χρόνοι εκτέλεσης διαφόρων αλγορίθμων σε έναν επεξεργαστή που εκτελεί **ένα εκατομμύριο εντολές το δευτερόλεπτο**. Όταν ο χρόνος εκτέλεσης υπερβαίνει το 10^{25} sec, θεωρούμε ότι χρειάζεται πάρα πολύ (very long).

	п	$n \log_2 n$	n^2	n^3	1.5 ⁿ	2 ⁿ	n!
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10^{17} years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

ΑΠΛΟΙ ΚΑΝΟΝΕΣ

- Οι πολλαπλασιαστικές σταθερές παραλείπονται
 - To $5n^2$ γίνεται n^2 , το 1000n γίνεται n.
- Εάν a>b, τότε το n^a επικρατεί του n^b
 - Το n^3 επικρατεί του n^2 .
- Ένας εκθετικός όρος επικρατεί έναντι ενός πολυωνύμου
 - Το 3^n επικρατεί έναντι του n^{100} (επικρατεί ακόμη και έναντι του 2^n).
- Ένας πολυωνυμικός όρος επικρατεί έναντι ενός λογαριθμικού
 - Το n επικρατεί έναντι του $(\log n)^3$.
 - Το n^2 επικρατεί έναντι του $n \log n$.

ΧΡΟΝΟΙ ΕΚΤΕΛΕΣΗΣ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ

<i>Τ(n)</i> – Χρόνος εκτέλεσης	$\mathcal{O}(n)$ - Πολυπλοκότητα		
$n^2 + 100n + 1$	$\mathcal{O}(n^2)$		
$0.0000005n^3 + 1000000n^2$	$\mathcal{O}(n^3)$		
100 <i>n</i>	$\mathcal{O}(n)$		
2^{3n}	$\mathcal{O}(8^n)$		
2 ³⁺ⁿ	$\mathcal{O}(2^n)$		
$2\cdot 3^n$	$\mathcal{O}(3^n)$		
$30 \log_{20}(23n)$	$\mathcal{O}(log n)$		
$n^2\log n + n\log(n^2)$	$\mathcal{O}(n^2 log n)$		
$3\log n + 1000\log(\log n)$	$\mathcal{O}(\log n)$		
$5n^{1.5} + n^{1.75}$	$\mathcal{O}(n^{1.75})$		

ΡΥΘΜΟΣ ΑΥΞΗΣΗΣ

Για τη σύγκριση της τάξης αύξησης μεγέθους δυο συναρτήσεων μπορούμε να υπολογίσουμε το όριο

$$\lim_{n\to\infty}\frac{t(n)}{g(n)}=\begin{cases} 0, & \eta\ t(n)\ \text{ecen minder} \ \text{minder} \ \text{minder}$$

 $t(n) \in \Omega(g(n))$

Παράδειγμα

Συγκρίνετε το ρυθμό αύξησης των $\lg n$ και \sqrt{n} .

• Έχουμε
$$\lim_{n\to\infty}\frac{\lg n}{\sqrt{n}}\stackrel{\infty}{=}\lim_{n\to\infty}\frac{\frac{1}{n\ln 2}}{\frac{1}{2}n^{-\frac{1}{2}}}=2\ln 2\lim_{n\to\infty}\frac{\sqrt{n}}{n}=0$$

ΚΛΑΣΕΙΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

- Κλάση Ρ
 - Το σύνολο των προβλημάτων που μπορούν να επιλυθούν από ντετερμινιστικούς αλγορίθμους σε πολυωνυμικό χρόνο
 - P: Polynomial

- Κλάση NP (P⊆NP)
 - Το σύνολο των προβλημάτων που μπορούν να επιλυθούν από μη **ντετερμινιστικούς** αλγορίθμους σε **πολυωνυμικό** χρόνο
 - Μια υποψήφια λύση μπορεί να ελεγχθεί σε πολυωνυμικό χρόνο
 - NP: Nondeterministic Polynomial
 - Ισχύει NP⊆P, δηλαδή P=NP?
 - https://www.claymath.org/library/monographs/MPPc.pdf
- NP-Complete (NP-Πλήρες) προβλήματα
 - Ανήκει στην κλάση ΝΡ
 - Όλα τα υπόλοιπα προβλήματα της κλάσης ΝΡ ανάγονται πολυωνυμικά σε αυτό
 - https://en.wikipedia.org/wiki/List of NP-complete problems

ΚΛΑΣΕΙΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ

ΑΣΚΗΣΗ

Έστω δύο αλγόριθμοι Α και Β με χρόνο εκτέλεσης $T_A(n)=0.1n^2logn$ ms και $T_B(n)=2.5n^2$ ms. Ποιος αλγόριθμος είναι πιο αποδοτικός; Βρείτε το n_0 όπου για κάθε $n>n_0$ ο αλγόριθμος που επιλέξατε είναι πιο αποδοτικός από τον άλλο.

ΑΣΚΗΣΗ

Δίνεται ο χρόνος εκτέλεσης (T(n)) οκτώ αλγορίθμων. Κατατάξτε τους σε αύξουσα σειρά ως προς την πολυπλοκότητά τους (πρώτα αυτός που έχει την μικρότερη πολυπλοκότητα).

Αλγόριθμος	Πολυπλοκότητα
1	$n \log^2 n$
2	n^3
3	$n^2 \log n$
4	8^n
5	n^2
6	$n^{2}/2$
7	$n \log n$
8	2^n

Κωνσταντίνος Γιαννουτάκης

Επίκ. Καθηγητής kgiannou@uom.edu.gr

