DA3 Exercise1

Peter Kaiser

2022 01 23

Introduction

This is a report about building models to predict the hourly wage of the driving jobs with multiple predictor variables in the cps data set. In the end we horse race the models to see which is the best one. It checks the BIC and the RMSE on the whole data set and the RMSE with 4 fold cross validation.

Data cleaning, Feature engineering

- Target Variable (Y): Hourly wage
- Predictor variables (X): Education (High school graduate as base), Race (White as base), Age, Sex (Male as base), Marital Status (Married as base), Union Status (Not in union as base)
- For more information see in Appendix

Models

- Model 1: age, age squared
- Model 2: age, age squared, sex
- Model 3: age, age squared, sex, union, marital status
- Model 4: age, age squared, sex, union, marital status, race, education
- Model 5: age, age squared, sex, union, marital status, race, education, interaction age and female, interaction with age and union

Appendix

Distribution of the hourly wages

Density of Hourly Wage

The distribution is normal with right long tail

Histogram of the Job types

Histogram of the Races

Density of the Ages

Histogram of the Sexes

Histogram of the Marital status

Histogram of the Union Status

Prediction performance and model compexity

Resample	RMSE	RMSE.1	RMSE.2	RMSE.3	RMSE.4
Fold1	8.590490	8.474870	8.338192	8.293919	8.297041
Fold2	8.926210	8.814151	8.682432	8.744360	8.745257
Fold3	8.309046	8.223868	8.162299	8.162094	8.186240
Fold4	8.664158	8.685491	8.634376	8.647591	8.676497
Average	8.625277	8.552521	8.457033	8.465423	8.479631

With 5-fold cross validation Model 3 has the best RMSE

Evaluation of the models using all the sample

	reg1	reg2	reg3	reg4	reg5
Dependent Var.:	earnho	earnho	earnho	earnho	earnho
Intercept	1.915 (2.392) 0.6876***	1.676 (2.371) 0.7182***	3.992 (2.504) 0.6146***	3.407 (2.563) 0.6460***	-2.449 (9.631) 1.095
age squared	(0.1157) -0.0069*** (0.0013)	(0.1149) -0.0072*** (0.0013)	(0.1172) -0.0063*** (0.0013)	(0.1187) -0.0067*** (0.0013)	(0.7073) -0.0173 (0.0167)
female		-3.639*** (0.4378)	-4.000*** (0.4510)	-4.073*** (0.4575)	-4.134* (1.917)
unionized			3.532*** (0.4268)	3.543*** (0.4212)	0.4839 (1.890)
divorced never married			0.4361 (0.4939) -0.9001*	0.3766 (0.4937) -0.7635	0.3872 (0.4928) -0.7563
other marital status			(0.4349) -0.1950	(0.4357) -0.1103	(0.4352) -0.1091
black			(0.5845)	(0.5855) -0.8400* (0.3966)	(0.5852) $-0.8445*$ (0.3972)
asian				-1.219 (1.022)	-1.175 (1.023)
other race college drop-out				-1.991* (0.8207) 0.5206	-2.073* (0.8215) 0.5151
occupational degree				(0.3849) -1.838***	(0.3854) -1.849***
academic degree				(0.5385) 2.000* (0.8355)	(0.5381) $2.019*$ (0.8368)
age cubed .				,	7.87e-5 (0.0001)
age x female					0.0012 (0.0428)
age x unionized .					0.0645 (0.0396)
S.E. type AIC BIC	Heterob. 21,297.8 21,315.8	Heterob. 21,243.4 21,267.4	Heterob. 21,173.7 21,221.7	Heterob. 21,157.6 21,241.6	Hetrob. 21,160.7 21,262.7
RMSE R2 Observations No. Variables	$8.6150 \\ 0.01795 \\ 2,980 \\ 2$	8.5339 0.03636 2,980 3	$8.4234 \\ 0.06115 \\ 2,980 \\ 7$	8.3837 0.06997 2,980 13	8.3797 0.07085 2,980 16

According to BIC, Model 3 is the best. According to RMSE Model 5 is the best.