Software Tutorial

Streamlining PWA Workflow and Regularization

Lawrence Ng Jefferson Lab

Continuing from Boris's Tutorial on PWA

$$egin{array}{c} \mathcal{I}(t,m_X,\Phi,ec{ au}) \ rac{(\Phi,ec{ au}) o heta}{(m_X,t) o au} & \mathcal{I}(heta,m_X,\Phi,ec{ au}) \ \mathcal{I}(heta,\xi) \end{array}$$

To ignore a bunch of variable in formulae... Here we assume <u>2 daughters with no spin</u>:

$$\theta$$
 = All angular dependencies

Bin in mass (assume single bin in t) \Rightarrow Describe only angular dependence "Mass independent fit"

 $lpha_m$ "Production coefficients" in m'th $m{\xi}$ bin

These are more formally in Boris's Tutorial \blacksquare $\mathcal{E}\mathcal{T}_{i}^{\lambda_{1}\,\lambda_{2}}(t,m_{X})$

$$^{\varepsilon}\mathcal{T}_{i}^{\lambda_{1}\,\lambda_{2}}(t,m_{X})$$

Intensity Distribution

 θ = All angular dependence

 ξ = (mass, ...) dependence

For a more detailed writeup see

GlueX Doc: 6826

 $lpha_m$ Parameter vector (real/imaginary parts of amplitudes) Dimensionality ~ (2 x N $_{
m partial\ waves}$) part of some $\underline{
m Model}$

 $P(lpha_m)$ We wish to infer the probability distribution

 X_m Set of observed data samples

$$P(X_m | \alpha_m) = \prod_j P(x_{m,j} | \alpha_{m,j}) \; rac{\text{Likelihood}}{\text{given model parameters}} \; \alpha_m$$

$$P(X_m|\alpha_m) = \frac{\bar{N}^N}{N!} \prod_j P(x_{m,j}|\alpha_{m,j})$$
 Total intensity is also a **Random Variable** then multiply by **Poisson distribution** \Rightarrow "Extended likelihood"

$$\hat{\alpha}_m = \underset{\alpha_m}{\operatorname{arg\,min}} \left[-\log P(X_m | \alpha_m) \right]$$

Best guess by maximizing the likelihood (or minimizing the negative log-likelihood)

If we believe some free parameters are small then we can apply pressure on the model -> <u>Regularization</u>

Lasso Regularization (L1 norm of the parameter vector) penalizing non-zero values

$$\hat{\alpha}_m = \operatorname*{arg\,min}_{\alpha_m} \left[-\log P(X|\alpha_m) + \lambda \sum_{i=1}^{D} |\alpha_{m,i}| \right]$$

Ridge Regularization uses the L2 norm

$$\hat{\alpha}_m = \underset{\alpha_m}{\operatorname{arg\,min}} \left[-\log P(X|\alpha_m) + \lambda \sum_{i=1}^D \alpha_{m,i}^2 \right]$$

Nice reference paper on regularization (waveset selection) in PWA:

F. M. Kaspar, B. Grube

Figure 3.4 Plot of the contours of the unregularized error function (blue) along with the constraint region (3.30) for the quadratic regularizer q=2 on the left and the lasso regularizer q = 1 on the right, in which the optimum value for the parameter vector \mathbf{w} is denoted by \mathbf{w}^* . The lasso gives a sparse solution in which $w_1^{\star} = 0$.

Penalization Contour

From **Bishop's** Pattern Recognition and Machine Learning

- So far, these concepts live in the <u>Frequentist framework</u> for Statistics
- Bayesian view: Multiplying the likelihood by a prior distribution
 - You can see this by exp() the penalized log-likelihoods (prev. slide)

Bayesian Framework

$$P(\alpha_m|X_m) \propto P(X_m|\alpha_m) P(\alpha_m) \frac{\text{L2 (Ridge)} \Leftrightarrow \text{Gaussian}}{\text{Prior Distribution}}$$

Posterior Distribution

Likelihood

Prior Distribution

L1 (<u>Lasso</u>) ⇔ <u>Laplace</u>
Prior Distribution
L2 (<u>Ridge</u>) ⇔ <u>Gaussian</u>
Prior Distribution

Normalization constant is generally difficult to evaluate as it is a high dimensional integral (Model Evidence \rightarrow can be used for model selection)

$$Z = P(X_m) = \int P(X_m | \alpha_m) P(\alpha_m) d\alpha_m$$

Markov Chain Monte Carlo performs <u>monte carlo integration</u> to approximate expectation values, i.e. <u>marginalization</u>

$$P(\alpha_{m,i}|X_m) = \int P(\alpha_m|X_m) d\alpha_{m,-i} = \frac{1}{Z} \int P(\alpha_m|X_m) \prod_{j \neq i} d\alpha_{m,j} \approx \text{Histogram}\{\alpha_{m,i}^{(s)}\}_{s=1}^S$$

Bin in mass describe only angula dependence "Mass independent fit"

$$lpha_m$$
 "Production coefficients" in mass bin

$$\theta$$
 = Angular dependence

$$\xi$$
 = (mass, ...) dependence

Alternatively we can describe mass dependence "Mass dependent fit"

Regularization | Mass Dependent Fits

More parameters needed if modeling background and approaches (M bins) \times (2 \times N_{partial waves}) if using piecewise description

Regularization | Bayesian Mass Dependence

<u>Posterior distribution</u> of production coefficients across all mass bins

$$P(\alpha|X) \propto \prod_{j} P(x_{j}|\alpha)P(\alpha)$$

Physical Constraints

- Enforce smoothness by considering correlations between mass bins
- How might this be achieved?

Regularization | Information Field Theory

k(lpha,lpha') Kernel function - <u>correlation</u> between production coefficients in a pair of kinematic bins

Distill.pub: A Visual Exploration of Gaussian Processes

Regularization | Information Field Theory

If bin spacing is uniform (By <u>Wiener-Khinchin theorem</u>) it is sufficient to infer only the <u>power spectral density</u>

Example:

Power spectrum slope parameter

LogNormal(-6, 3)

Draw 8 samples

NIFTy Correlated Field Demo

Regularization | Information Field Theory

$$P(\alpha|X) \propto \prod_{j} P(x_{j}|\alpha)P(\alpha)$$

$$P(lpha)$$
 Smoothness enforced by the prior distribution of power spectral density for each partial wave

Again, for a more detailed writeup see GlueX Doc: 6826

PyAmpTools

Tutorial Link

Motivation

- Partial wave analysis can be complicated (fitting, bookkeeping, result handling, ...)
- PyAmpTools sacrifices flexibility for ease of use and focuses on Python as the core language

· Features:

- Scientific Python ecosystem is massive (achieve most of the benefits of low level languages without the hassle)
- Optimization uses gradients provided by <u>JAX automatic differentiation</u> (scales better than numerical diff.)
- Hooks into several optimization frameworks spanning MLE, MCMC, to Variational Inference
- YAML file is used to configure the analysis for consistency and automation
- Fitting is generally done through the command line

Loading the container

On the JLab farm type this in

```
""bash
apptainer exec --contain --writable-tmpfs \
    --bind /my/working/directory \
    --bind /scratch \
    --bind ~/.cache/fontconfig \
    --env BASH_ENV=/dev/null \
    /w/halld-scshelf2101/lng/WORK/PyAmpTools/pyamptools.sif bash
""
source /etc/bash.bashrc
```

PyAmpTools| Command line

o Fitting is generally done through the command line

bash\$ pa -h

```
Dispatch pyamptools commands. Select a command from the Commands section below. Remaining arguments will be passed to
the selected command.
optional arguments:
  -h, --help show this help message and exit
  -f, --files show command file locations and exit
Commands:
                              Print entries in List[ROOT files] (* wildcard), flag for branch integration
  * nentries
  * fit
                              (AmpTools) Perform a set of MLE fits given an amptools config file
  * fitfrac
                              (AmpTools) Extract fit fractions from a given amptools FitResults file
  * gen_amp
                              (AmpTools) Generate data for a given configuration file
                              (AmpTools) Generate vector-pseduoscalar data for a given configuration file
  * gen_vec_ps
                              Summarize the contents of an IFT results pickle file
  * ift pkl summary
  * calc ps
                              [In Development] Calculate the phase space factor for IFT fits
                                                                                                          YAML Commands of form
                                                                                                           pa run_ift main.yaml
  ==== YAML based commands below (takes a YAML file argument to configure setup) ====
  * from default
                              Copy default vaml to a given location
  * run priorSim
                             Draw sample from NIFTy prior, generate simulated data, and split into kinematic bins
                                                                                                                        Generate/Format
  * run cfgGen
                              (AmpTools) Generate an AmpTools fit configuration file
  * run divideData
                             Divide data into kinematic bins (separate folders)
                                                                                                                        Data
  * run processEvents
                              (AmpTools) Process bins: dump AmpVecs + NormInts to pkl files
  * run_fit
                              (AmpTools) Run MLE fits over kinematic bins using AmpTools
                              Run MLE fits over kinematic bins using variety of optimizers (minuit, lbfgs, ...)
  * run mle
                                                                                                                        Fit the Data
                             Run MCMC fits over kinematic bins using numpyro NUTS sampler
  * run_mcmc
  * run_ift
                             Run IFT fit over kinematic bins
  * run momentInverter
                             Run moment inverter
                                                                                                                        Plot the data
  * run_resultMan
                              Run result manager commands, make all default plots
  * dash ift cmp
                              Compare multiple IFT fits (intensity and phase) using dash package
```

YAML file contains all the knobs

```
defaults location: null
base directory: /w/halld-scshelf2101/lng/WORK/PyAmpTools9/demos/RESULTS # base directory for
data folder: ${base directory}/DATA SOURCES # folder for data sources that will be binned
n processes: 4 # global number of processes to generally use
polarizations:
  "000": 1.0 # polarization magnitude in each orientation
waveset: Sp0+ Sp0- Dp2+ Dp2- # underscore separated list of waves to use
phase reference: Sp0+ Sp0- # reference wave in each reflectivity sector
reaction: Beam Proton Pi0 Eta # amptools reaction scheme
daughters: # Daughter masses
  Pi0: 0.135
  Eta: 0.548
min mass: 1.04 # minimum mass to consider
max mass: 1.72 # maximum mass to consider
n mass bins: 17 # number of mass bins to use
min t: 0.0 # minimum t to consider
max t: 1.0 # maximum t to consider
n t bins: 1 # number of t bins to use
acceptance correct: true # whether to apply acceptance corrections
datareader: ROOTDataReader # data reader to use
coordinate system: cartesian # ['cartesian', 'polar'], dont use polar
bins_per_group: 1 # create group dirs grouping bins allowing nifty to handle finer bins
merge grouped trees: true # remerge the trees in each group
constrain_grouped_production: false # if not remerging, we can choose to constrain amplitude
real waves: "" # same form as waveset, define which waves are purely real
fixed waves: "" # same form as waveset, define which waves are fixed
add amp factor: "" # Add an amplitude factor to every amplitude. For example, OmegaDalitz 0.
append to decay: "" # append this string to the decay amplitude, i.e. 'omega3pi' can be appe
append_to_cfg: "" # append this string to the AmpTools configuration file
```

For <u>vector pseudoscalar</u> just change waves to another format: 1Sp1-1Sp1+

Also see <u>Here</u>

NOTE: data splitting is currently broken for VecPS

Lots more knobs not shown but defaults can be pulled and most work decently well (of course you need dataset, waveset, binning, ...)

Tutorial workflow

- Since IFT model is a <u>Bayesian framework</u> it acts like a <u>Generator</u>
- We can draw samples from the prior and generate MC simulations to <u>rapidly iterate on Input/Output studies</u> and <u>compare optimization</u> <u>frameworks with this toolkit</u>

Draw prior sample and generate samples

pa run_priorSim <yaml_file>

Maximum Likelihood Estimation

pa run_mle <yaml_file>

Markov Chain Monte Carlo

pa run_mcmc <yaml_file>

NIFTy fit

pa run_ift <yaml_file>

ResultManager

Complex amplitudes + intensities
all available as flat pandas
dataframe

from pyamptools.utility.resultManager import ResultManager
yaml_file = "/w/halld-scshelf2101/lng/WORK/PyAmpTools9/OTHE
resultManager = ResultManager(yaml_file)
resultManager.attempt_load_all()

All results loaded as a <u>flat pandas dataframe</u> (intensities, complex amplitudes, moments, etc...)

Have time? Click this Tutorial Link