

Próbny egzamin maturalny z matematyki 2010

Klucz punktowania do zadań zamkniętych oraz schemat oceniania do zadań otwartych

Klucz punktowania do zadań zamkniętych

Nr zadania	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
Odpowiedź	С	В	D	A	С	A	A	В	В	A	D	A	C	В	D	C	С	A	С	В	С	С	A	В	D

Schemat oceniania do zadań otwartych

Zadanie 26. (2 pkt)

Rozwiąż nierówność $x^2 + 11x + 30 \le 0$.

I sposób rozwiązania

Obliczamy pierwiastki trójmianu kwadratowego:

• obliczamy wyróżnik trójmianu kwadratowego i pierwiastki tego trójmianu:

$$\Delta = 1$$
, $x_1 = \frac{-11-1}{2} = -6$, $x_2 = \frac{-11+1}{2} = -5$

albo

• stosujemy wzory Viète'a:

$$x_1 + x_2 = -11$$
 oraz $x_1 \cdot x_2 = 30$
i stąd $x_1 = -6$, $x_2 = -5$

albo

- rozkładamy trójmian na czynniki, np.:
 - o grupując wyrazy i wyłączając wspólny czynnik,
 - o korzystając z postaci kanonicznej

$$\left(x+\frac{11}{2}\right)^2-\frac{1}{4}=\left(x+\frac{11}{2}-\frac{1}{2}\right)\left(x+\frac{11}{2}+\frac{1}{2}\right)=\left(x+5\right)\left(x+6\right),$$

Podajemy zbiór rozwiązań nierówności:

• rysujemy fragment wykresu funkcji kwadratowej z zaznaczonymi miejscami zerowymi i odczytujemy zbiór rozwiązań

albo

• rozwiązujemy nierówność $(x+5)(x+6) \le 0$ analizując znaki czynników.

Zbiorem rozwiązań nierówności jest przedział $\langle -6, -5 \rangle$.

Schemat oceniania I sposobu rozwiązania

• poda zbiór rozwiązań nierówności: $\langle -6, -5 \rangle$ lub $x \in \langle -6, -5 \rangle$ lub $(x \ge -6 \text{ i } x \le -5)$

albo

• zapisze zbiór rozwiązań nierówności w postaci $x \ge -6$, $x \le -5$, o ile towarzyszy temu ilustracja geometryczna (oś liczbowa, wykres)

albo

 poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

II sposób rozwiązania

Zapisujemy nierówność w postaci

$$\left(x + \frac{11}{2}\right)^2 - \frac{1}{4} \le 0,$$

a następnie $\left(x + \frac{11}{2}\right)^2 \le \frac{1}{4}$

$$\left|x + \frac{11}{2}\right| \le \frac{1}{2}$$
, a stad

$$x + \frac{11}{2} \le \frac{1}{2}$$
 i $x + \frac{11}{2} \ge -\frac{1}{2}$.

Zatem $x \le -5$ i $x \ge -6$.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje2 pkt gdy:

- poda zbiór rozwiązań nierówności: $\langle -6, -5 \rangle$ lub $x \in \langle -6, -5 \rangle$ lub $(x \ge -6 \text{ i } x \le -5)$ albo
 - zapisze zbiór rozwiązań nierówności w postaci $x \ge -6$, $x \le -5$, o ile towarzyszy temu ilustracja geometryczna (oś liczbowa, wykres)

albo
poda zbiór rozwiązań nierówności w postaci graficznej z poprawnie zaznaczonymi końcami przedziałów.

Zadanie 27. (2 pkt)

Rozwiąż równanie $x^3 + 2x^2 - 5x - 10 = 0$.

<u>I sposób rozwiązania</u> (metoda grupowania)

Przedstawiamy lewą stronę równania w postaci iloczynowej stosując metodę grupowania wyrazów

$$(x+2)(x^2-5)=0$$

Stad x = -2 lub $x = -\sqrt{5}$ lub $x = \sqrt{5}$.

Schemat oceniania I sposobu rozwiązania

Zdający otrzymuje1 pkt gdy:

• poda poprawną postać iloczynową wielomianu po lewej stronie równania $(x+2)(x^2-5)=0$ lub $(x+2)(x-\sqrt{5})(x+\sqrt{5})=0$ i na tym poprzestanie lub dalej popełnia błędy

albo

 zapisze postać iloczynową z błędem (o ile otrzymany wielomian jest stopnia trzeciego i ma trzy różne pierwiastki) i konsekwentnie do popełnionego błędu poda rozwiązania równania.

II sposób rozwiązania (metoda dzielenia)

Stwierdzamy, że liczba -2 jest pierwiastkiem wielomianu. Dzielimy wielomian $x^3 + 2x^2 - 5x - 10$ przez dwumian x + 2 i otrzymujemy $x^2 - 5$. Zapisujemy równanie w postaci $(x+2)(x^2-5) = 0$. Stąd x = -2 lub $x = -\sqrt{5}$ lub $x = \sqrt{5}$.

Schemat oceniania II sposobu rozwiązania

Zdający otrzymuje1 pkt gdy

• podzieli wielomian $x^3 + 2x^2 - 5x - 10$ przez dwumian x + 2 otrzymując $x^2 - 5$ i na tym poprzestanie lub dalej popełnia błędy

albo

 podzieli wielomian z błędem (o ile otrzymany iloraz jest stopnia drugiego i ma dwa różne pierwiastki) i konsekwentnie do popełnionego błędu poda rozwiązanie równania.

Uwaga:

1. Jeżeli zdający zapisze $x(x^2-5)2(x^2-5)=0$ (brak znaku przed liczbą 2) lub $x^2(x+2)5(x+2)=0$ (brak znaku przed liczbą 5) i na tym zakończy, to otrzymuje

- **0 punktów**. Jeżeli natomiast kontynuuje rozwiązanie i zapisze $(x+2)(x^2-5)=0$, to oceniamy to rozwiązanie tak, jakby ten błąd nie wystąpił.
- 2. Jeśli zdający wykonał dzielenie przez dwumian x p nie zapisując, że p jest jednym z rozwiązań równania $x^3 + 2x^2 5x 10 = 0$ i w końcowej odpowiedzi pominie pierwiastek p podając tylko pierwiastki trójmianu kwadratowego, to przyznajemy **2 punkty**.

Zadanie 28. (2 pkt)

Przeciwprostokątna trójkąta prostokątnego jest dłuższa od jednej przyprostokątnej o 1 cm i od drugiej przyprostokątnej o 32 cm. Oblicz długości boków tego trójkąta.

Rozwiazanie

Niech x oznacza długość przeciwprostokątnej. Z twierdzenia Pitagorasa otrzymujemy równanie

$$(x-1)^2 + (x-32)^2 = x^2$$
 i $x > 32$

Po przekształceniach otrzymujemy równanie

$$x^2 - 66x + 1025 = 0$$
.

Wtedy $x_1 = 25$ (sprzeczne z założeniem) oraz $x_2 = 41$.

Odpowiedź: Przeciwprostokątna ma długość 41 cm, jedna przyprostokątna ma długość 9 cm a druga ma długość 40 cm.

Uwagi:

- 1. Jeżeli zdający zapisze równanie $x^2 + (x+31)^2 = (x+32)^2$, gdzie x+32 jest długością przeciwprostokątnej, to po przekształceniach otrzyma równanie $x^2 2x 63 = 0$. Wtedy x = 9 lub x = -7.
- 2. Jeżeli zdający zapisze równanie $x^2 + (x-31)^2 = (x+1)^2$, gdzie x+1 jest długością przeciwprostokątnej, to po przekształceniach otrzyma równanie $x^2 64x + 960 = 0$, gdy x+1 jest długością przeciwprostokątnej. Wtedy x=40 lub x=24.

Schemat oceniania

To równanie w zależności od przyjętych oznaczeń może mieć postać:

$$(x-1)^2 + (x-32)^2 = x^2$$
, gdy x jest długością przeciwprostokątnej

albo

$$x^{2} + (x+31)^{2} = (x+32)^{2}$$
, gdy $x+32$ jest długością przeciwprostokątnej

albo

$$x^{2} + (x-31)^{2} = (x+1)^{2}$$
, gdy $x+1$ jest długością przeciwprostokątnej.

Zadanie 29. (2 pkt)

Dany jest prostokąt ABCD. Okręgi o średnicach AB i AD przecinają się w punktach A i P (zobacz rysunek). Wykaż, że punkty B, P i D leżą na jednej prostej.

I sposób rozwiązania

Łączymy punkt P z punktami A, B i D. Kąt APD jest oparty na półokręgu, więc $| \not \prec APD | = 90^\circ$. Podobnie kąt APB jest oparty na półokręgu, więc $| \not \prec APB | = 90^\circ$. Zatem

 $| \not < DPB | = | \not < APD | + | \not < APB | = 90^\circ + 90^\circ = 180^\circ$, czyli punkty B, P i D są współliniowe. Uwaga.

Po uzasadnieniu, że trójkąty APD i APB są prostokątne możemy również zastosować twierdzenie Pitagorasa dla tych trójkątów i trójkąta ABD, otrzymując równość |BD| = |BP| + |PD|, która oznacza współliniowość punktów B, P i D.

Schemat oceniania I sposobu rozwiązania

II sposób rozwiązania (jednokładność)

Niech O i S będą środkami obu okręgów i R będzie punktem przecięcia odcinków AP i OS.

Odcinek OS łączący środki okręgów dzieli ich wspólną cięciwę na połowy, więc |AR| = |RP|. Wtedy punkty D, P i B są obrazami punktów współliniowych O, R, S w jednokładności o środku A i skali 2, więc są współliniowe.

Schemat oceniania II sposobu rozwiązania

III sposób rozwiązania (metoda analityczna)

Umieszczamy okręgi w układzie współrzędnych, tak jak na rysunku.

Zapisujemy układ równań (równania okręgów):

$$\begin{cases} (x-a)^2 + y^2 = a^2 \\ x^2 + (y-b)^2 = b^2 \end{cases}$$

Rozwiązując ten układ równań otrzymujemy współrzędne punktu *P*:

$$P = \left(\frac{2ab^2}{a^2 + b^2}, \frac{2a^2b}{a^2 + b^2}\right).$$

Równanie prostej *BD* ma postać $\frac{x}{2a} + \frac{y}{2h} = 1$.

Ponieważ

 $\frac{1}{2a} \cdot \frac{2ab^2}{a^2 + b^2} + \frac{1}{2b} \cdot \frac{2a^2b}{a^2 + b^2} = \frac{b^2}{a^2 + b^2} + \frac{a^2}{a^2 + b^2} = 1,$ wiec punkt *P* leży na prostej *BD*.

Schemat oceniania III sposobu rozwiązania

Zdający otrzymuje2 pkt gdy wykaże, że punkt *P* leży na prostej *BD*.

IV sposób rozwiązania

Przyjmijmy oznaczenia jak na rysunku.

Odcinki NA i NP są promieniami okręgu o średnicy AD, więc |AN| = |PN|. Podobnie odcinki MA i MP są promieniami okręgu o średnicy AB, więc |AM| = |PM|. Zatem czworokąt AMPN jest deltoidem. Stąd wynika, że $| \ll NAM | = | \ll NPM |$. Ale $| \ll NAM | = 90^{\circ}$, więc

$$| \langle NPM | = 90^{\circ}$$

Trójkąty NPD i MBP są równoramienne, bo |PN| = |DN| oraz |PM| = |BM|. Stąd wynika, że

(2)
$$\left| \angle NPD \right| = \frac{180^{\circ} - \left| \angle PND \right|}{2} \text{ oraz } \left| \angle MPB \right| = \frac{180^{\circ} - \left| \angle PMB \right|}{2}.$$

Z faktu, że AMPN jest deltoidem wynika ponadto, że

$$|\angle AMN| = |\angle PMN| \text{ oraz } |\angle ANM| = |\angle PNM|.$$

Trójkąt AMN jest prostokątny, więc

$$| \angle ANM | + | \angle AMN | = 90^{\circ}.$$

Obliczmy teraz miarę kata BPD

$$\begin{split} \big| \not \propto BPD \big| &= \big| \not \propto MPB \big| + \big| \not \propto NPM \big| + \big| \not \propto NPD \big| \stackrel{(1),(2)}{=} \frac{180^{\circ} - \big| \not \sim PMB \big|}{2} + 90^{\circ} + \frac{180^{\circ} - \big| \not \sim PND \big|}{2} = \\ &= 270^{\circ} - \frac{1}{2} \Big(\big| \not \sim PMB \big| + \big| \not \sim PND \big| \Big) \stackrel{(3)}{=} 270^{\circ} - \frac{1}{2} \Big(180^{\circ} - 2 \cdot \big| \not \sim AMN \big| + 180^{\circ} - 2 \cdot \big| \not \sim ANM \big| \Big) = \\ &= 90^{\circ} + \Big(\big| \not \sim AMN \big| + \big| \not \sim ANM \big| \Big) \stackrel{(4)}{=} 90^{\circ} + 90^{\circ} = 180^{\circ} \; . \end{split}$$

To oznacza, że punkty B, P i D są współliniowe.

Schemat oceniania IV sposobu rozwiązania

Zadanie 30. (2 pkt)

Uzasadnij, że jeśli $(a^2+b^2)(c^2+d^2)=(ac+bd)^2$, to ad=bc.

Rozwiązanie

Przekształcając $(a^2+b^2)(c^2+d^2)=(ac+bd)^2$ otrzymujemy kolejno: $a^2c^2+a^2d^2+b^2c^2+b^2d^2=a^2c^2+2abcd+b^2d^2$ $a^2d^2-2abcd+b^2c^2=0$ $(ad-bc)^2=0$ ad=bc

Schemat oceniania

Zdający otrzymuje2 pkt gdy przeprowadzi pełny dowód twierdzenia.

Uwagi:

- 1. Jeżeli zdający przeprowadzi rozumowanie pomijając niektóre przypadki np. rozważy tylko dodatnie wartości iloczynów *ad* i *bc* , to przyznajemy **1 punkt**.
- 2. Jeżeli zdający sprawdzi prawdziwość twierdzenia dla konkretnych wartości *a*, *b*, *c*, *d*, to przyznajemy **0 punktów**.

Zadanie 31. (2 pkt)

Ile jest liczb naturalnych czterocyfrowych, w zapisie których pierwsza cyfra jest parzysta a pozostałe nieparzyste?

Rozwiązanie

W zapisie danej liczby na pierwszym miejscu może wystąpić jedna z cyfr: 2, 4, 6, 8, czyli mamy 4 możliwości. Na drugim miejscu może być jedna z cyfr: 1, 3, 5, 7, 9, czyli mamy 5 możliwości. Tak samo na trzecim i czwartym miejscu. Zatem mamy $4 \cdot 5^3 = 500$ takich liczb.

Schemat oceniania

Zdający otrzymuje1 pkt gdy:

 poprawnie obliczy, ile jest możliwości wystąpienia cyfry na pierwszym miejscu i dalej popełnia błąd lub na tym poprzestanie albo

• poprawnie obliczy, ile jest możliwości wystąpienia cyfry na drugim, trzecim i czwartym miejscu a popełni błąd podając liczbę cyfr na pierwszym miejscu.

Zadanie 32. (*4 pkt*)

Ciąg (1, x, y-1) jest arytmetyczny, natomiast ciąg (x, y, 12) jest geometryczny. Oblicz x oraz y i podaj ten ciąg geometryczny.

I sposób rozwiązania

Z własności ciągu arytmetycznego otrzymujemy równanie $x = \frac{1+y-1}{2}$, czyli y = 2x,

a z własności ciągu geometrycznego wynika równanie $y^2 = x \cdot 12$.

Rozwiązujemy układ równań $\begin{cases} y = 2x \\ y^2 = 12x \end{cases}$

Otrzymujemy równanie kwadratowe $4x^2 - 12x = 0$, a stąd x = 3 lub x = 0.

Zatem układ równań ma dwa rozwiązania $\begin{cases} x = 0 \\ y = 0 \end{cases}$ lub $\begin{cases} x = 3 \\ y = 6 \end{cases}$

Pierwsze rozwiązanie nie spełnia warunków zadania, gdyż ciąg (0,0,12) nie jest geometryczny.

Zatem x = 3 i y = 6, stad otrzymujemy ciąg geometryczny (3,6,12).

II sposób rozwiązania

Korzystając z definicji ciągów arytmetycznego i geometrycznego otrzymujemy układ równań

$$\begin{cases} x = 1 + r \\ y - 1 = x + r \\ y = x \cdot q \end{cases}$$
 przy czym $x \neq 0$ i $y \neq 0$, $r \neq -1$ i $q \neq 0$.
$$12 = y \cdot q$$

Rozwiązujemy ten układ i otrzymujemy

$$\begin{cases} x = 3 \\ y = 6 \\ q = 2 \end{cases}$$

Zatem x = 3 i y = 6. Stąd otrzymujemy ciąg geometryczny (3,6,12).

Schemat oceniania I i II sposobu rozwiązania

•
$$x = \frac{1+y-1}{2}$$
 albo równań, np.: $x = 1+r$ i $y-1 = x+r$

albo

• $y^2 = x \cdot 12$ albo równań, np.: $y = x \cdot q$ i $12 = y \cdot q$.

Rozwiązanie, w którym jest istotny postęp2 pkt Zapisanie układu równań pozwalającego obliczyć x i y, np.:

$$\begin{cases} y = 2x \\ y^2 = 12x \end{cases} \text{ albo } \begin{cases} y = 2x \\ y = x \cdot q \\ 12 = y \cdot q \end{cases} \text{ albo } \begin{cases} x = 1+r \\ y-1 = x+r \\ y^2 = 12x \end{cases} \text{ albo } \begin{cases} x = 1+r \\ y-1 = x+r \\ y = x \cdot q \\ 12 = y \cdot q \end{cases}$$

Uwaga

Zdający nie musi zapisywać układu równań, wystarczy, że zapisze wszystkie konieczne zależności

Pokonanie zasadniczych trudności zadania......3 pkt Zapisanie i rozwiązanie równania kwadratowego z jedną niewiadomą, np.:

•
$$4x^2 - 12x = 0$$
, stad $x = 3$ lub $x = 0$

albo

•
$$y^2 - 6y = 0$$
, stad $y = 0$ lub $y = 6$.

Rozwiązanie pełne4 pkt Obliczenie x = 3 i y = 6 oraz zapisanie ciągu geometrycznego (3,6,12).

Uwaga

Przyznajemy 4 punkty, gdy zdający obliczy x = 3 i y = 6 i poda ciąg geometryczny w postaci $a_n = 3 \cdot 2^{n-1}$.

III sposób rozwiązania

Z własności ciągu arytmetycznego otrzymujemy równanie

$$x = \frac{1+y-1}{2}$$
, czyli $y = 2x$,

natomiast z własności ciągu geometrycznego równanie

$$\frac{12}{y} = \frac{y}{x}$$
, przy czym $x \neq 0$ oraz $y \neq 0$.

Rozwiązujemy układ równań $\begin{cases} y = 2x \\ \frac{12}{y} = \frac{y}{x} \end{cases}$ Otrzymujemy kolejno $\begin{cases} y = 2x \\ \frac{12}{2x} = \frac{2x}{x} \end{cases}, \begin{cases} y = 2x \\ \frac{12}{2x} = 2 \end{cases}, \text{ zatem } x = 3 \text{ i } y = 6.$

Stad otrzymujemy ciąg geometryczny (3,6,12).

Schemat oceniania III sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania......1 pkt

Wykorzystanie własności ciągu arytmetycznego (definicji lub wzoru na n-ty wyraz) albo wykorzystanie własności ciągu geometrycznego (definicji lub wzoru na n-ty wyraz) i zapisanie:

•	równania, np.:	<i>x</i> =	$\frac{1+y-1}{2}$
•	równania, np.:	<i>x</i> =	$\frac{1+y-}{2}$

albo

• równania, np.: $\frac{12}{y} = \frac{y}{x}$

$$\begin{cases} y = 2x \\ \frac{12}{y} = \frac{y}{x} \end{cases}$$

Uwaga

Zdający nie musi zapisywać układu równań, wystarczy, że zapisze wszystkie konieczne zależności.

$$\frac{12}{2x} = \frac{2x}{x}$$
 i $x = 3$.

IV sposób rozwiązania:

Z własności ciągu arytmetycznego otrzymujemy równanie

$$x = \frac{1+y-1}{2}$$
, czyli $y = 2x$.

Ciąg (x, y, 12) jest geometryczny i y = 2x, zatem iloraz q tego ciągu jest równy 2.

Z własności ciągu geometrycznego otrzymujemy $y = \frac{12}{2} = 6$ i $x = \frac{12}{4} = 3$.

Zatem x = 3 i y = 6, a stąd otrzymujemy ciąg geometryczny (3,6,12).

Schemat oceniania IV sposobu rozwiązania

Wykorzystanie własności ciągu arytmetycznego i zapisanie równania, np.: $x = \frac{1+y-1}{2}$.

Rozwiązanie, w którym jest istotny postęp2 pkt

• zapisanie ciągu geometrycznego (x,2x,12)

albo

• obliczenie ilorazu q tego ciągu: q = 2.

Zadanie 33. (4 *pkt***)**

Punkty A = (1,5), B = (14,31), C = (4,31) są wierzchołkami trójkąta. Prosta zawierająca wysokość tego trójkąta poprowadzona z wierzchołka C przecina prostą AB w punkcie D. Oblicz długość odcinka BD.

I sposób rozwiązania

Wyznaczamy równanie prostej AB: y = 2x + 3.

Wyznaczamy równanie prostej *CD*, prostopadłej do prostej *AB*: $y = -\frac{1}{2}x + 33$.

Obliczamy współrzędne punktu D: D = (12, 27).

Obliczamy długość odcinka BD: $|BD| = 2\sqrt{5}$.

Schemat oceniania I sposobu rozwiązania

II sposób rozwiazania

Wyznaczamy równanie prostej AB: y = 2x + 3.

Wyznaczamy równanie prostej *CD*, prostopadłej do prostej *AB*: $y = -\frac{1}{2}x + 33$.

Obliczamy odległość punktu B = (14,31) od prostej CD o równaniu x + 2y - 66 = 0:

$$\frac{|14 + 2 \cdot 31 - 66|}{\sqrt{5}} = 2\sqrt{5}$$
, wiec $|BD| = 2\sqrt{5}$.

Schemat oceniania II sposobu rozwiązania

III sposób rozwiązania

Wyznaczamy równanie prostej AB: y = 2x + 3.

Obliczamy odległość punktu C = (4,31) od prostej AB o równaniu 2x - y + 3 = 0:

$$|CD| = \frac{|2 \cdot 4 - 31 + 3|}{\sqrt{5}} = \frac{20}{\sqrt{5}}.$$

Obliczamy długość odcinka CB: |CB| = 10.

Korzystając z twierdzenia Pitagorasa dla trójkąta CDB obliczamy długość odcinka BD:

$$\left(\frac{20}{\sqrt{5}}\right)^2 + |BD|^2 = 10^2$$
, wiec $|BD| = 2\sqrt{5}$.

Schemat oceniania III sposobu rozwiązania

$$|CD| = \frac{|2 \cdot 4 - 31 + 3|}{\sqrt{5}}$$
 lub $|CD| = \frac{20}{\sqrt{5}}$ lub $|CD| = 4\sqrt{5}$.

IV sposób rozwiazania

Obliczamy długość odcinka CB oraz wysokość trójkąta ABC opuszczoną z wierzchołka A: $|CB| = 10, h_A = 26$.

Obliczamy pole trójkąta *ABC*: $P_{ABC} = \frac{10.26}{2} = 130$.

Obliczamy długość odcinka AB: $|AB| = \sqrt{845}$.

Pole trójkąta *ABC* możemy zapisać: $P_{ABC} = \frac{|AB| \cdot |CD|}{2}$. Zatem $\frac{13\sqrt{5} \cdot |CD|}{2} = 130$.

Stad $|CD| = 4\sqrt{5}$.

Korzystając z twierdzenia Pitagorasa dla trójkąta CDB obliczamy długość odcinka BD:

$$(4\sqrt{5})^2 + |BD|^2 = 10^2$$
, wiec $|BD| = 2\sqrt{5}$.

Schemat oceniania IV sposobu rozwiązania

V sposób rozwiązania

Obliczamy długości wszystkich boków trójkąta ABC: $|AB| = \sqrt{845}$, $|AC| = \sqrt{685}$, |CB| = 10. Korzystając z twierdzenia Pitagorasa dla trójkątów CDB i ADC zapisujemy układ równań:

$$\begin{cases} |CB|^2 = |BD|^2 + |CD|^2 \\ |CA|^2 = (|AB| - |BD|)^2 + |CD|^2 \end{cases}$$

Wyznaczając $|CD|^2$ z pierwszego równania i podstawiając do drugiego równania otrzymujemy:

$$(\sqrt{685})^2 = (\sqrt{845} - |BD|)^2 + 10^2 - |BD|^2$$
.
Stad $|BD| = 2\sqrt{5}$.

Schemat oceniania V sposobu rozwiązania

Rozwiązanie, w którym postęp jest niewielki, ale konieczny na drodze do pełnego rozwiązania zadania pkt Obliczenie długości wszystkich boków trójkąta ABC: $|AB| = \sqrt{845}$, $|AC| = \sqrt{685}$, |CB| = 10.

$$\begin{cases}
|CB|^2 = |BD|^2 + |CD|^2 \\
|CA|^2 = (|AB| - |BD|)^2 + |CD|^2
\end{cases}$$

Pokonanie zasadniczych trudności zadania 3 pkt Zapisanie równania z niewiadomą BD: $\left(\sqrt{685}\right)^2 = \left(\sqrt{845} - \left|BD\right|\right)^2 + 10^2 - \left|BD\right|^2$.

Rozwiązanie pełne4 pkt

Obliczenie długości odcinka *BD*: $|BD| = 2\sqrt{5}$ lub $|BD| = \frac{10}{\sqrt{5}}$.

Zadanie 34. (5 *pkt*)

Droga z miasta A do miasta B ma długość 474 km. Samochód jadący z miasta A do miasta B wyrusza godzinę później niż samochód z miasta B do miasta A. Samochody te spotykają się w odległości 300 km od miasta B. Średnia prędkość samochodu, który wyjechał z miasta A, liczona od chwili wyjazdu z A do momentu spotkania, była o 17 km/h mniejsza od średniej prędkości drugiego samochodu liczonej od chwili wyjazdu z B do chwili spotkania. Oblicz średnią prędkość każdego samochodu do chwili spotkania.

I sposób rozwiązania

Niech v oznacza średnią prędkość samochodu, który wyjechał z miasta B i niech t oznacza czas od chwili wyjazdu tego samochodu do chwili spotkania.

Obliczamy, jaką drogę do chwili spotkania pokonał samochód jadący z miasta A: 174 km.

Zapisujemy układ równań

$$\begin{cases} v \cdot t = 300 \\ (v-17)(t-1) = 174 \end{cases}$$

Przekształcając drugie równanie uwzględniając warunek $v \cdot t = 300$ otrzymujemy:

v = 143 - 17t.

Otrzymaną wartość v podstawiamy do pierwszego równania i otrzymujemy:

$$17t^2 - 143t + 300 = 0.$$

Rozwiązaniami tego równania są liczby:

$$t_1 = \frac{75}{17} = 4\frac{7}{17} \text{ i } t_2 = 4.$$

Stad
$$v_1 = 68$$
, $v_2 = 75$.

Odpowiedź: pierwsze rozwiązanie: $v_A = 51$ km/h, $v_B = 68$ km/h,

drugie rozwiązanie: $v_A = 58$ km/h, $v_B = 75$ km/h,

gdzie v_A oznacza prędkość samochodu jadącego z miasta A, a v_B oznacza prędkość samochodu jadącego z miasta B.

Uwaga

Możemy otrzymać inne równania kwadratowe z jedną niewiadomą:

$$17t_A^2 - 109t_A + 174 = 0 \quad \text{lub} \quad v_A^2 - 109v_A + 2958 = 0 \quad \text{lub} \quad v_B^2 - 143v_B + 5100 = 0.$$

Schemat oceniania I sposobu rozwiązania

<u>Uwaga</u>

W poniżej zamieszczonym schemacie używamy niewiadomych v_A , t_A oznaczających odpowiednio: prędkość i czas dla samochodu jadącego z miasta A oraz niewiadomych v_B , t_B oznaczających odpowiednio: prędkość i czas dla samochodu jadącego z miasta B. Oczywiście w pracach maturalnych te niewiadome mogą być oznaczane w inny sposób. Nie wymagamy, by te niewiadome były wyraźnie opisane na początku rozwiązania, o ile z postaci równań jasno wynika ich znaczenie.

$$(v_B - 17)(t_B - 1) = 174$$
 lub $(v_A + 17)(t_A + 1) = 300$.

<u>Uwaga</u>

Przyznajemy **0 pkt,** jeżeli zdający zapisze tylko równanie $v_B \cdot t_B = 300$ lub $v_A \cdot t_A = 174$ lub odpowiednio zapisze, że $(v_B + 17) \cdot (t_B + 1) = 174$ lub $(v_A - 17) \cdot (t_A - 1) = 300$.

Rozwiązanie, w którym jest istotny postęp2 pkt Zapisanie układu równań np.

$$\begin{cases} (v_B - 17)(t_B - 1) = 174 \\ v_B \cdot t_B = 300 \end{cases} \text{ lub } \begin{cases} v_A \cdot t_A = 174 \\ (v_A + 17)(t_A + 1) = 300 \end{cases}$$

$$\left(\frac{174}{t_A} + 17\right)(t_A + 1) = 300 \text{ lub } (v_A + 17)\left(\frac{174}{v_A} + 1\right) = 300$$

$$\text{lub } \left(\frac{300}{t_B} - 17\right)(t_B - 1) = 174 \text{ lub } (v_B - 17)\left(\frac{300}{v_B} - 1\right) = 174.$$

Uwaga

Zdający nie musi zapisywać układu równań, może bezpośrednio zapisać równanie z jedną niewiadomą.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)......4 pkt

- \bullet rozwiązanie równania z niewiadomą v_{B} z błędem rachunkowym i konsekwentnie do popełnionego błędu obliczenie prędkości obu samochodów albo
- rozwiązanie równania z niewiadomą t_A bezbłędnie: $t_A = 3 h$ lub $t_A = \frac{58}{17} h = 3 \frac{7}{17} h$ i nieobliczenie prędkości samochodu jadącego z miasta A albo
- rozwiązanie równania z niewiadomą t_B bezbłędnie: $t_B = 4h$ lub $t_B = \frac{75}{17}h = 4\frac{7}{17}h$ i nieobliczenie prędkości samochodu jadącego z miasta B albo
 - obliczenie t_A lub t_B z błędem rachunkowym i konsekwentne obliczenie prędkości v_A , v_B

albo

• rozwiązanie równania kwadratowego i przyjęcie tylko jednego rozwiązania lub prędkości tylko jednego samochodu.

Obliczenie prędkości obu samochodów:
$$\begin{cases} v_A = 58 \text{ km/h} \\ v_B = 75 \text{ km/h} \end{cases}$$
 lub
$$\begin{cases} v_A = 51 \text{ km/h} \\ v_B = 68 \text{ km/h} \end{cases}$$

Uwaga

Zdający otrzymuje 5 punktów **tylko w przypadku**, gdy prawidłowo przyporządkuje prędkości.

II sposób rozwiązania

Niech v_A oznacza średnią prędkość samochodu, który wyjechał z miasta A, zaś v_B oznacza średnią prędkość samochodu, który wyjechał z miasta B oraz niech t oznacza czas od chwili wyjazdu samochodu z miasta B do chwili spotkania samochodów.

Obliczamy, jaką drogę do chwili spotkania pokonał samochód jadący z miasta A: 174 km.

Zapisujemy równania:
$$v_A = \frac{174}{t-1}$$
, $v_B = \frac{300}{t}$, wówczas otrzymujemy równanie

$$\frac{174}{t-1} + 17 = \frac{300}{t}$$
.

Przekształcamy to równanie do równania kwadratowego $17t^2 - 143t + 300 = 0$.

Rozwiązaniami tego równania są liczby:
$$t_1 = \frac{75}{17} = 4\frac{7}{17}$$
, $t_2 = 4$.

Dla
$$t_1 = \frac{75}{17} = 4\frac{7}{17}$$
 otrzymujemy $v_A = 51$, $v_B = 68$ oraz dla $t_2 = 4$ otrzymujemy $v_A = 58$, $v_B = 75$.

Odpowiedź: Pierwsze rozwiązanie
$$v_A = 51 \text{ km/h}, v_B = 68 \text{ km/h}.$$

Drugie rozwiązanie
$$v_A = 58 \text{ km/h}, v_B = 75 \text{ km/h}.$$

Schemat oceniania II sposobu rozwiązania

Uwaga

W poniżej zamieszczonym schemacie używamy niewiadomych v_A , v_B , t oznaczających odpowiednio: prędkość dla samochodu jadącego z miasta A, prędkość dla samochodu jadącego z miasta B oraz czas dla samochodu jadącego z miasta B.

Oczywiście w pracach maturalnych te niewiadome mogą być oznaczane w inny sposób. Nie wymagamy, by te niewiadome były wyraźnie opisane na początku rozwiązania, o ile z postaci równań jasno wynika ich znaczenie.

Obliczenie, jaką drogę do chwili spotkania pokonał samochód jadący z miasta A: 174 km . Zapisanie równań na średnie prędkości samochodów wyjeżdżających z miasta A i z miasta B, np.

$$v_B = \frac{300}{t}, \ v_A = \frac{174}{t-1}.$$

<u>Uwaga</u>

Przyznajemy **0 pkt**, jeżeli zdający zapisze tylko równanie $v_B = \frac{300}{t}$ lub $v_A = \frac{174}{t-1}$ albo odpowiednio zapisze, że $v_A = \frac{174}{t+1}$.

Rozwiązanie zadania do końca, lecz z usterkami, które jednak nie przekreślają poprawności rozwiązania (np. błędy rachunkowe)......4 pkt

- rozwiązanie równania z błędem rachunkowym i konsekwentnie do popełnionego błędu obliczenie prędkości obu samochodów
- albo

 rozwiązanie równania i przyjęcie tylko jednego rozwiązania lub prędkości tylko jednego samochodu.

Uwaga

Zdający otrzymuje 5 punktów **tylko w przypadku**, gdy prawidłowo przyporządkuje prędkości.