Part I – Common Source Amplifier

(1) DC Sweep

Fig. 1 Common Source Amplifier

Top: X-axis: $V_{in}(V)$ Y-axis: derivative of $V_{out}(V/V)$

Derivative of $V_{out} = -4.18(V/V)$

 $I_D = 28.1 \text{ uA}$

 $V_{out} = 802 mV$

(2) TF Analysis

**** small-signal transfer characteristics

$$v(vout)/vin$$
 = -4.2110
input resistance at vin = 1.000e+20
output resistance at v(vout) = 33.1222k

Yes, the DC gain A_v is close to the result in (1). Neglecting other nonideal effects,

the DC gain $A_v = -g_m^* R_D$ where $g_m = \frac{\partial ID}{\partial Vov}$. Thus we can we write the later equation

to
$$-g_m*R_D = -\frac{\partial ID}{\partial Vov}*R_D = \frac{\partial (-ID*RD)}{\partial Vov} = \frac{\partial (VDD-ID*RD)}{\partial (Vin-Vth)} = \frac{\partial Vout}{\partial Vin}$$

since V_{DD} and V_{th} is constant. From above math deduction, we can get the conclusion that if we want to get the DC gain, we don't bother to calculate V_{out}/V_{in} but we also have another approach by derivate V_{out} with V_{in} .

(3) Hand Calculation and Discussion

**** mosfets

subckt					
element	0:mn	**** small-signal transfer characteristics			
model	0:n_18.1	Small Signal Cransfer Characteristics	Sindir-Signal transfer Characteristics		
region	Saturation	ortonia Nation		4 0110	
id	28.1149u	v(vout)/vin	=	-4.2110	
ibs	-7.399e-21	input resistance at vin	=	1.000e+20	
ibd	-131.8893a	output resistance at v(vout)	=	33.1222k	
vgs	800.0000m				
vds	801.9205m				
vbs	0.				
vth	395.3452m				
vdsat	334.3371m				
vod	404.6548m	**** resistors	**** resistors		
beta	401.6412u				
gam eff	507.4472m	subckt			
gm	127.1657u	element 0:r			
gds	2.0227u	element 0:r			
gmb	24.0628u	r value 35.5000k			
cdtot	1.8127f	v drop 998.0795m			
cgtot	8.9516f	current 28.1149u			
cstot	10.1795f				
cbtot	4.9404f	power 28.0609u			
cgs	7.8931f				
cgd	465.4772a				

 $\begin{aligned} & \text{Gain A}_{V} = \text{-g}_{m} * R_{D} = \text{-4.514 V/V} & & \text{error: 7.5\%} \\ & V_{\text{out,DC}} = V_{\text{DD}} - I_{D} * R_{D} = 0.8019 \text{ V} & & \text{error: 0\%} \end{aligned}$

Output impedance $R_{out} = R_D || R_o = R_D || (1/g_{ds}) = 33.121 k\Omega$ error: 0%

TABLE I COMMON SOURCE PERFORMANCE TABLE

GOVERNOR GOORGET ERE ORGENINGE INDEE				
Working Item	SPEC	Design	Hand Calculation	
V _{DD}	1.8V	1.8V	1.8V	
$V_{\mathrm{in,DC}}$	0.8V	0.8V	0.8V	
$V_{ m out,DC}$	0.8V	802mV	802mV	
Gain Av	> 3.2(V/V)	4.2(V/V)	4.5(V/V)	
R_D	< 90ΚΩ	35.5ΚΩ	-	
ID	< 30μΑ	28.1μΑ	-	
Ms W/L	-	1.3(m/m)	-	

Design and Result discussion

When I designed this common source amplifier, I opened the AIC handout to check the equation we need first. Then, I set my channel length 1um to prevent the undesirable effect due to the short channel effect.

I thought the most difficult thing is to keep the output bias at 0.8V. Therefore, I set R_D to 10K and change the W/L to get desire output bias. However, the current was over the spec.

Thus, there are two main equations:

- 1. $A_V = -g_m * R_D$ where $g_m \alpha$ (W/L) since V_{ov} is constant in this case
- 2. $\Delta V = V_{DD} V_{out,DC} = I_D * R_D$ where $I_D \alpha$ (W/L)

From these two equations, I simply calculated what proportion I needed to hold the output bias by rising my R_D when reducing the W/L (proportional to I_D). After some tests, I got the result on the Table1. Besides I didn't overcome the problem that the voltage gain didn't meet the spec in the question.

In this lab, we can conclude that in common source stage, output bias, voltage gain and output impedance we calculated is closed to the simulation result. However, the error of output impedance is much larger. I think the reason is that I don't consider the MOS output impedance. Thus, I revise the equation $A_V = -g_m * R_D$ to $A_V = -g_m * R_{out}$. Then, we get the DC gain $A_V = 4.212$, it is almost the same as the V_{out}/V_{in} .

Part II - Common Gate

1. DC Sweep

Fig. 2 Common Gate Amplifier

Top: X-axis: $V_{in}(V)$ Y-axis: derivative of $V_{out}(V/V)$

Mid: X-axis: $V_{in}(V)$ Y-axis: $V_{out}(V)$

Down: X-axis: $V_{in}(V)$ Y-axis: $I_D(A)$

Derivative of $V_{out} = 13.5(V/V)$

 $V_{out} = 901 \text{mV}$

 $I_D = 10.2 \text{ uA}$

2. TF Analysis

**** small-signal transfer characteristics

$$v(vout)/vin$$
 = 13.4401
input resistance at vin = 6.5476k
output resistance at $v(vout)$ = 75.3973k

Yes, the DC gain A_v is close to the result in (1). Using the same method as we do in CS stage.

$$g_m^*R_D = \frac{\partial ID}{\partial Vov} * R_D = \frac{\partial (ID*RD)}{\partial Vov} = \frac{\partial (-VDD+ID*RD)}{\partial ((Vb-Vin)-Vth)} = \frac{\partial Vout}{\partial Vin}$$

since V_{DD} , V_b and V_{th} is constant. From above math deduction, we can get the conclusion that if we want to get the DC gain, we don't bother to calculate V_{out}/V_{in} but we also have another approach by derivate V_{out} with V_{in} .

3. Hand Calculation and Discussion

**** mosfets

subckt						
element	0:mn	**** small-signal transfer characteristi	CS			
model	0:n_18.1					
region	Saturation	v(vout)/vin	=	13,4401		
id	10.2140u		_			
ibs	-1.653e-21	input resistance at vin	=	6.5476k		
ibd	-576.6269a	output resistance at v(vout)	=	75.3973k		
vgs	440.0000m	,				
vds	741.1678m					
vbs	0.	****	and the second s			
vth	384.2957m	**** resistors				
vdsat	90.3048m					
vod	55.7043m	subckt				
beta	3.1078m					
gam eff	507.4460m	element 0:r				
gm	176.3657u	r value 88.0000k				
gds	1.8995u	v drop 898.8322m				
gmb	36.0674u	·				
cdtot	13.2177f	current 10.2140u				
cgtot	63.7850f	power 9.1807u				
cstot	70.4911f	·				
cbtot	37.3373f					
cgs	53.6332f					
cgd	3.5795f					

 $\begin{aligned} & \text{Gain } A_V = g_m * R_{out} = 13.27 \text{ V/V} & & \text{error: } 1.26\% \\ & V_{out} = V_{DD} - I_D * R_D = 0.9012 \text{ V} & & \text{error: } 0.01\% \end{aligned}$

Output impedance $R_{\text{out}} = R_D || R_0 = R_D || (1/g_{ds}) = 75.24 \text{k}\Omega$ error: 0.2%

Input impedance $R_{in} = (1/g_m) = 5.67 k\Omega$ error: 13.4%

TABLE II COMMON GATE PERFORMANCE TABLE

Working Item	SPEC	Design	Hand Calculation
V _{DD}	1.8V	1.8V	1.8V
$V_{ ext{in,DC}}$	0.16V	0.16V	0.16V
$V_{\mathrm{out,DC}}$	0.9V	901mV	901mV
Gain Av	> 10(V/V)	13.4(V/V)	13.3(V/V)
R_{D}	< 90ΚΩ	88ΚΩ	-
ID	< 30μΑ	10.2μΑ	-
V_b	-	0.6 V	-
M _b W/L	-	10(m/m)	-

Design and Result discussion

First, the error of output impedance is too much. Thus, we need to take the channel length modulation into account. Rewriting the input impedance equation to

$$R_{in} = \frac{1}{gm} + \frac{RD}{gm*ro} = 5.67 \text{k}\Omega + 947.8\Omega = 6.618 \text{ k}\Omega$$
 error=1.07%

(we can find this equation in the microelectronic lecture)

The revised error is more acceptable than the old one.

In this common gate amplifier design, I think the most difficult spec to achieve is to get the higher gain with lower I_D. That is, if we want to get the higher gain, the current will be over the spec easily. Using the same method, I write down the equations below.

- 1. $A_V = g_m * R_D$ where $g_m \alpha$ (W/L) when V_{ov} is constant
- 2. $I_D \alpha (W/L) * V_{ov}^2$
- 3. $\Delta V = V_{DD} V_{out,DC} = I_D * R_D$

Since we want to lower the current to meet the spec but we also need to get the higher gain, we must lower the overdrive voltage V_{ov} to decease the current and rise the value of W/L to get the higher gain.(because I_D is more sensitive to V_{ov} due to square law) Thus, I tried to set the V_b to 0.6 V and it led to the sufficient small current to meet the spec. After that, I set the W/L to 10. Fortunately, I got the DC gain about 13.4 and met all the spec.

Part III - Source Follow

(1) DC Sweep

Fig. 3 Source Follow

Top: X-axis: $V_{in}(V)$ Y-axis: derivative of $V_{out}(V/V)$

Mid: X-axis: $V_{in}(V)$ Y-axis: $V_{out}(V)$

Down: X-axis: $V_{in}(V)$ Y-axis: $I_{D}(A)$

Derivative of $V_{out} = 0.773(V/V)$

 $V_{out} = 797 \text{mV}$

 $I_D = 26.6 \text{ uA}$

(2) TF Analysis

**** small-signal transfer characteristics

$$v(vout)/vin$$
 = 772.9930m
input resistance at vin = 1.000e+20
output resistance at $v(vout)$ = 6.4898k

The DC gain A_v is actually the same as the result in (1). Using the same method as we do in CS stage. Thus, we can we rewrite the equation to

$$\frac{\partial \text{Vout}}{\partial Vin} = \frac{\partial (ID * \text{Reff})}{\partial (ID * \text{Reff} + \text{Vth} + \text{Vov})} = \frac{\partial (ID * \text{Reff})}{\partial (ID * \text{Reff} + \text{Vov})} = \frac{\partial (ID * \text{Reff})/\partial (Vov)}{\partial (ID * \text{Reff} + \text{Vov})/\partial (Vov)}$$

$$= \frac{\text{Reff}*\partial(\textit{ID})/\partial(\textit{Vov})}{\text{Reff}*\partial(\textit{ID})/\partial(\textit{Vov}) + \partial(\textit{Vov})/\partial(\textit{Vov})} = \frac{\text{Reff}*\textit{gm}}{\text{Reff}*\textit{gm}+1} = \frac{\text{Reff}}{\text{Reff}+1/\textit{gm}} \text{ where } R_{\text{eff}} = R_L || R_0$$

since V_{th} is constant. From above math deduction, we can get the conclusion that if we want to get the DC gain, we don't bother to calculate V_{out}/V_{in} but we also have another approach by derivate V_{out} with V_{in} .

(3) Hand Calculation and Discussion

**** mosfets

subckt		**** small-signal transfer characterist	ics
element	0:mn		
model	0:n_18.1	v(vout)/vin	= 772.9930m
region	Saturation	V(VOUL)/VIII	- //2.9930111
id	26.5623u	input resistance at vin	= 1.000e+20
ibs	-7.248e-21	output resistance at v(vout)	= 6.4898k
ibd	-157.9096a		
vgs	803.1304m		
vds	1.0031		
vbs	0.		
vth	394.7374m	**** resistors	
vdsat	337.2298m		
vod	408.3930m	and alst	
beta	370.4768u	subckt	
gam eff	507.4472m	element 0:r	
gm	119.1390u	r value 30,0000k	
gds	1.6462u		
gmb	22.4235u	v drop 796.8696m	
cdtot	1.6236f	current 26.5623u	
cgtot	8.2582f	power 21.1667u	
cstot	9.4026f	power 21.100/u	
cbtot	4.5285f		
cgs	7.2783f		
cgd	426.5870a		

Gain
$$A_V = \frac{RL||Ro}{RL||Ro+1/gm} = 0.773 \text{ V/V}$$
 error: 0%

$$V_{out} = I_D * R_L = 0.797 \text{ V}$$
 error: 0%

Output impedance
$$R_{out} = R_L \mid\mid R_o \mid\mid \frac{1}{\mathit{gm}} = 6.4885 k\Omega$$
 error: 0.02%

TABLE III
SOURCE FOLLOWER PERFORMANCE TABLE

Working Item	SPEC	Design	Hand Calculation
V _{DD}	1.8V	1.8V	1.8V
$V_{\mathrm{in,DC}}$	1.6V	1.6V	1.6V
$V_{out,DC}$	0.8V	797mV	797mV
Gain Av	> 0.75(V/V)	0.773 (V/V)	0.773 (V/V)
R_s	< 90ΚΩ	30ΚΩ	-
lD	< 30μΑ	26.6μΑ	-
M _d W/L	-	1.2(m/m)	-

Design and Result discussion

When I conduct the TF analysis, I have considered the channel length modulation. All the error I calculated are negligible.

In this common gate amplifier design, the most difficult spec is to keep output bias at 0.8V but the current may not over 30uA. From the experience, write down the equations that we may use.

- 1. $I_D \alpha (W/L) * V_{ov}^2$
- 2. $V_{ov} = (V_{in}-I_D*R_S-V_{th})$
- 3. $V_{out} = I_D * R_S$

From the above equations, we can believe that V_{ov} be the constant due to the spec requiring us to set the V_{out} to 800 mV. Thus, to meet the spec, we may lower the I_D by reducing the value of (W/L) and increasing R_s to maintain V_{out} . In fact, when I first try this problem, I use $R_s = 88 K\Omega$ (the same as CG stage). However, this R is too big to make V_{out} 0.8V. After some test, I set the Rs to $30 K\Omega$ meeting the current spec but the gain is closed to 0.75. So, I increase the W/L to increase the DC gain with care to keep the current lower than 30 uA.