- Plaintext: Message or data which are in their normal, readable (not crypted) form.
- Encryption: Encoding the contents of the message in such a way that hides its contents from outsiders.
- Ciphertext: The encrypted message

- **Decryption:** The process of retrieving the plaintext back from the ciphertext.
- Key: Encryption and decryption usually make use of a key, and the coding method is such that decryption can be performed only by knowing the proper key.

- Cryptography is the art or science of keeping messages secret. It deals with all aspects of secure messaging, authentication, digital signatures, electronic money, and other applications.
- **Cryptosystems:** A cryptographic system (cryptosystem) consists of a pair of data transformations, namely encryption and decryption.

- **Cryptanalysis:** The art of **breaking** ciphers, i.e. retrieving the plaintext without knowing the proper key.
- Cryptographers: People who do cryptography
- Cryptanalysts: practitioners of cryptanalysis

Conventional Cryptosystem Principles

- An cryptosystem has the following five ingredients:
 - Plaintext
 - Encryption algorithm
 - Secret Key
 - Ciphertext
 - Decryption algorithm
- Security depends on the secrecy of the key, not the secrecy of the algorithm

Conventional Cryptosystem Principles

Classifications

- Classification of cryptosystems
 - Symmetric cryptosystems
 - Asymmetric cryptosystems

Symmetric Cryptosystem

 The same key is used for both encryption and decryption purposes

Symmetric Cryptosystem

• Examples of symmetric cryptosystem are Data Encryption Standard (DES)

• Problem: How do we distribute the key securely?

Key Distribution

- A key could be selected by A and physically delivered to B.
- A third party could select the key and physically deliver it to A and B.
- If A and B have previously used a key, one party could transmit the new key to the other, encrypted using the old key.

Key Distribution

 If A and B each have an encrypted connection to a third party C, C could deliver a key on the encrypted links to A and B.

Session key:

 Data encrypted with a one-time session key. At the conclusion of the session the key is destroyed

Assymmetric Cryptosystem

- Different keys are used for encryption and decryption purposes.
- The pair of keys are mathematically related and consist of a public key that can be published without doing harm to the system's security and a private key that is kept secret.
- Also known as public key cryptosystems

Assymmetric Cryptosystem

- The public key is used for encryption purposes and lies in the public domain.
- Anybody can use the public key to send an encrypted message.
- The private key is used for decryption purposes and remains secret.
- An example of a public cryptosystem is the RSA cryptosystem.

Assymmetric Cryptosystem

Encyption – can it be broken?

- Theoretically, it is possible to devise unbreakable cryptosystems
- However, practical cryptosystems almost always are breakable, given adequate time and computing power
- The trick is to make breaking a cryptosystem hard enough for the intruder

Types of Ciphers

- Ciphers can be broadly classified into the following two categories depending upon whether
 - (i) a symbol of plaintext is immediately converted into a symbol of ciphertext (Stream Ciphers)
 - (ii) or a group of plaintext symbols are converted as a block into a group of ciphertext symbols (Block Ciphers)

Stream Ciphers

 A symbol of plaintext is immediately converted into a symbol of ciphertext

Advantages

- Speed of transformation
- Low error propagation

Disadvantages

- Low diffusion
- Susceptible to malicious insertions and modifications

Block Ciphers

- A group of plaintext symbols are converted as a block into a group of ciphertext symbols
- Advantages
 - Diffusion
 - Immunity to insertions
- Disadvantages
 - Slowness of encryption
 - Error propagation

General Types of Ciphers

Substitution ciphers

 Letters of the plaintext messages are replaced with other letters during the encryption

Transposition ciphers

The order of plaintext letters is rearranged during encryption

General Types of Ciphers

Product ciphers

Combine two or more ciphers to enhance the security of the cryptosystem

Trends

- **Block size:** larger block sizes mean greater security
- **Key Size:** larger key size means greater security
- Number of rounds: multiple rounds offer increasing security

Monoalphabetic Substitution Ciphers

Caesar cipher

$$c_i = E(p_i) = p_i + 3 \mod 26$$

```
Plaintext: A B C D E F G H I J K L M N O P Q R
S T U V W X Y Z

Ciphertext: d e f g h i j k l m n o p q r s t
u v w x y z a b c
```

Example

Plaintext: CRYPTOGRAPHY IS GREAT FUN

Ciphertext: fubswrjudskb lv juhdw

Polyalphabetic Substitution Ciphers

• Flatten the frequency distribution of letters by combining high and low distributions

Example:

```
Plaintext: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Ciphertext1: a d g j m p s v y b e h k n q t w z c f i l o r u x

Ciphertext2: n s x c h m r w b g l q v a f k p u z e j o t y d i
```

Plaintext: VIGENERE TABLEAUX
Ciphertext: lbshnhzh fndqmniy

Transposition Ciphers

• Rearrangement of the letters or a message

Columnar transposition

Plaintext

WHYDO

ESITA

LWAYS

RAINI

NTHEN

ETHER

LANDS

Ciphertext

welrnel

hswatta

yiaihhn

dtyneed

oasinrs

Characteristics of good cipher

Shannon characteristics

- The amount of secrecy should determine the amount of labor appropriate for the encryption and decryption
- The set of keys and encryption algorithm should be free of complexity
- The implementation of the process should be as simple as possible

Characteristics of good cipher

- Errors in encryption should not propagate and cause corruption of further information in the message.
- Ciphertext size should not be larger than plaintext

Confusion

 The change in ciphertext triggered by an alteration in the plaintext should be unpredictable

Characteristics of good cipher

Diffusion

 Change in the plaintext should affect many parts of the ciphertext

Other issues

- Perfect secrecy vs. Effective secrecy
- Redundancy of languages
- Unicity distance

Methods of attack

Ciphertext-only attack

 The attacker gets a ciphertext and tries to find the corresponding plaintext.

Known-plaintext attack

 The attacker has some plaintext and its matching ciphertext. The task is to find a key corresponding to this match.

Methods of attack

Chosen-plaintext attack

Here, the attacker selects a plaintext and ciphers it using the cryptotechinque he attacks. The plaintext may be chosen to ease the task of key finding.

Application of Cryptography

- Confidentiality
- Authentication
- Message Integrity
- Digital Signature