Methodology.....

Gradient Reversal Layer

- $L_{final}(\theta_f, \theta_d, \theta_e) = L_d(\theta_f, \theta_d) \lambda L_e(\theta_f, \theta_e)$
- $(\hat{\theta}_f, \hat{\theta}_d) = \underset{\theta_f, \theta_d}{arg \ min} \ L_{final}(\theta_f, \theta_d, \hat{\theta}_e)$
- $\hat{\theta}_e = \underset{\theta_e}{arg \ max} \ L_{final}(\hat{\theta}_f, \hat{\theta}_d, \theta_e)$

- 1. **for** number of training iterations **do**
- 2. Decay learning rate: $\eta' = \frac{\eta}{(1 + \alpha \cdot p)^{\beta}}$
- 3. Update $\theta_f \leftarrow \theta_f \eta (\frac{\partial L_d}{\partial \theta_f} \lambda \frac{\partial L_e}{\partial \theta_f})$
- 4. Update $\theta_e \leftarrow \theta_e \eta \frac{\partial L_e}{\partial \theta_e}$
- 5. Update $\theta_d \leftarrow \theta_d \eta \frac{\partial L_d}{\partial \theta_d}$
- 6. end for

Experiments.

Dataset

- Twitter dataset
- from MediaEval Verifying Multimedia Use benchmark
- Contain text, attach image/video and additional social context information
 - Focus on text and image
 - Remove the tweets without any text or image
- Has two parts: the development and test set, there is no overlapping events among them.

Method	Twitter	Weibo
# of fake News	7898	4749
# of real News	6026	4779
# of image	514	9528

- Weibo dataset
- Fake news posts: 2012.05 ~ 2016.01 verified by Weibo official rumor debunking system
- Real news posts: 2012.05 ~ 2016.01 from Weibo verified by Xinhua News Agency
 - removed duplicated and very small images
- <u>Use single-pass clustering</u> and split whole dataset into training, validation, testing sets = 7:1:2 to ensure that they don't not contain any common event.