PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:	A1	(11) International Publication Number: WO 00/2956
C12N 9/28	AI	(43) International Publication Date: 25 May 2000 (25.05.0
 (21) International Application Number: PCT/DKG (22) International Filing Date: 16 November 1999 ((30) Priority Data: PA 1998 01495 16 November 1998 (16.11.9) (71) Applicant: NOVO NORDISK A/S [DK/DK]; No DK-2880 Bagsværd (DK). (72) Inventors: SVENDSEN, Allan; Novo Nordisk A/Allé, DK-2880 Bagsværd (DK). KJÆRULFF Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd BISGÅRD-FRANTZEN, Henrik; Novo Nordisk A/Allé, DK-2880 Bagsværd (DK). ANDERSEN, Novo Nordisk A/S, Novo Allé, DK-2880 Bagsværd 	8) D S, No S, Søre F, Søre F, Søre CASSIC	BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, IKE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MMD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RSD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UUZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, IM, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, ABY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BCH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MNL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GGN, GW, ML, MR, NE, SN, TD, TG). Published With international search report. Before the expiration of the time limit for amending the composition of the time limit for amending the composition of the sime limit for amending the composition

(54) Title: α -AMYLASE VARIANTS

(57) Abstract

The invention relates to a variant of a parent Termamyl-like α -amylase, comprising mutations in two, three, four, five or six regions/positions. The variants have increased stability at high temperatures (relative to the parent). The invention also relates to a DNA construct comprising a DNA sequence encoding an α -amylase variant of the invention, a recombinant expression vector which carries a DNA construct of the invention, a cell which is transformed with a DNA construct of the invention, the use of an α -amylase variant of the invention for washing and/or dishwashing, textile desizing, starch liquefaction, a detergent additive comprising an α -amylase variant of the invention, a manual or automatic dishwashing detergent composition comprising an α -amylase variant of the invention, a method for generating a variant of a parent Termamyl-like α -amylase, which variant exhibits increased.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FT	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	1E	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Tsrael	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
СН	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
СМ	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		•
CU	Cuba	KZ	Kazakstan	RO	Romania .		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LJ	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		
i							

Title: α -amylase variants

FIELD OF THE INVENTION

The present invention relates to novel variants of parent 5 Termamyl-like α -amylases with altered properties relative of the include alpha-amylase. Said properties increased calcium e.g., at low acidic рH, stability, e.q., concentrations and/or high temperatures. Suach variants are suitable for a number of applications, in particular, industrial *s*tarch liquefaction (e.g., processing 10 starch saccharification).

BACKGROUND OF THE INVENTION

 α -Amylases (α -1,4-glucan-4-glucanohydrolases, EC 3.2.1.1) 15 constitute a group of enzymes which catalyze hydrolysis of starch and other linear and branched 1,4-glucosidic oligo- and polysaccharides.

There is a very extensive body of patent and scientific literature relating to this industrially very important class of enzymes. A number of α -amylase such as Termamyl-like α -amylases variants are known from, e.g., WO 90/11352, WO 95/10603, WO 95/26397, WO 96/23873 and WO 96/23874.

WO 96/23874 provides the three-dimensional, X-ray crystal structural data for a Termamyl-like α -amylase which consists of of acid residues the B. N-terminal amino 25 the 300 amyloliquefaciens α -amylase and amino acids 301-483 of the Cterminal end of the B. licheniformis α -amylase comprising the amino acid sequence (the latter being available commercially under the tradename Termamy l^{TM}), and which is thus closely 30 related to the industrially important $\textit{Bacillus}\ \alpha\text{-amylases}$ (which in the present context are embraced within the meaning of the term "Termamyl-like α-amylases", and which include, inter alia, amyloliquefaciens licheniformis, В. В. the stearothermophilus α -amylases). WO 96/23874 further describes 35 methodology for designing, on the basis of an analysis of the

2

structure of a parent Termamyl-like α -amylase, variants of the parent Termamyl-like α -amylase which exhibit altered properties relative to the parent.

5 BRIEF DISCLOSURE OF THE INVENTION

The present invention relates to novel α-amylolytic variants (mutants) of a Termamyl-like α-amylase, in particular variants exhibiting increased stability at acidic pH at high temperatures (relative to the parent) which are advantageous in connection with, e.g., the industrial processing of starch (starch liquefaction, saccharification and the like) as described in US Patent No. 3,912,590 and EP patent publications Nos. 252,730 and 63,909.

15 Starch conversion

A "traditional" starch conversion process degrading starch to lower molecular weight carbohydrate components such as sugars or fat replacers includes a debranching step.

20 "Starch to sugar" conversion

In the case of converting starch into a sugar the starch is depolymerized. A such depolymerization process consists of a pretreatment step and two or three consecutive process steps, viz. a liquefaction process, a saccharification process and dependent on the desired end product optionally an isomerization process.

Pre-treatment of native starch

Native starch consists of microscopic granules which are insoluble in water at room temperature. When an aqueous starch slurry is heated, the granules swell and eventually burst, dispersing the starch molecules into the solution. During this "gelatinization" process there is a dramatic increase in viscosity. As the solids level is 30-40% in a typically industrial process, the starch has to be thinned or "liquefied" so that it can be handled. This reduction in viscosity is today

3

mostly obtained by enzymatic degradation.

Liquefaction

During the liquefaction step, the long chained starch is degraded into branched and linear shorter units (maltodextrins) by an α-amylase (e.g., Termamyl™ SEQ ID NO: 4 herein). The liquefaction process is carried out at 105-110°C for 5 to 10 minutes followed by 1-2 hours at 95°C. The pH lies between 5.5 and 6.2. In order to ensure an optimal enzyme stability under these conditions, 1 mM of calcium is added (40 ppm free calcium ions). After this treatment the liquefied starch will have a "dextrose equivalent" (DE) of 10-15.

Saccharification

- After the liquefaction process the maltodextrins are converted into dextrose by addition of a glucoamylase (e.g., AMG^M) and a debranching enzyme, such as an isoamylase (US Patent 4,335,208) or a pullulanase (e.g., Promozyme^M) (US Patent
- 4.560,651). Before this step the pH is reduced to a value below 4.5, maintaining the high temperature (above 95°C) to inactivate the liquefying α -amylase to reduce the formation of short oligosaccharide called "panose precursors" which cannot be hydrolyzed properly by the debranching enzyme.
- The temperature is lowered to 60°C, and glucoamylase and debranching enzyme are added. The saccharification process proceeds for 24-72 hours.

denaturing the α -amylase after when Normally, liquefaction step about 0.2-0.5% of the saccharification 30 product is the branched trisaccharide 6^2 - α -glucosyl maltose (panose) which cannot be degraded by a pullulanase. If active liquefaction step is present amylase from the saccharification (i.e., no denaturing), this level can be as high as 1-2%, which is highly undesirable as it lowers the 35 saccharification yield significantly.

4

Isomerization

When the desired final sugar product is e.g. high fructose syrup the dextrose syrup may be converted into fructose.

5 After the saccharification process the pH is increased to a value in the range of 6-8, preferably pH 7.5, and the calcium is removed by ion exchange. The dextrose syrup is then converted into high fructose syrup using, e.g., an immmobilized glucoseisomerase (such as SweetzymeTM).

10

In the context of the invention the term "acidic pH" means a pH below 7.0, especially below the pH range in which industrial starch liquefaction processes are traditionally performed, as described above, which is between pH 5.5 and 6.2.

In the context of the present invention the term "low Calcium concentration" means concentrations below the normal level used in traditional industrial starch liquefaction processes, such as between 0-40 ppm, preferably between 10-30 ppm, such as between 15-25 ppm Calcium. Normal concentrations vary depending of the concentration of free Ca²⁺ in the corn. Normally a dosage corresponding to 1mM (40ppm) is added which together with the level in corn gives between 40 and 60 ppm free Ca²⁺.

In the context of the invention the term "high temperature"

25 means temperatures between 95 and 160°C, especially the
temperature range in which industrial starch liquefaction
processes are normally performed, which is between 95 and 105°C.

The invention further relates to DNA constructs encoding variants of the invention, to methods for preparing variants of the invention, and to the use of variants of the invention, alone or in combination with other α -amylolytic enzymes, in various industrial processes, in particular starch liquefaction.

35 Nomenclature

In the present description and claims, the conventional oneletter and three-letter codes for amino acid residues are used.

5

For ease of reference, α -amylase variants of the invention are described by use of the following nomenclature:

Original amino acid(s):position(s):substituted amino acid(s)

According to this nomenclature, for instance the substitution of alanine for asparagine in position 30 is shown as:

Ala30Asn or A30N

a deletion of alanine in the same position is shown as:

Ala30* or A30*

10 and insertion of an additional amino acid residue, such as lysine, is shown as:

Ala30AlaLys or A30AK

A deletion of a consecutive stretch of amino acid residues, such as amino acid residues 30-33, is indicated as (30-33)* or 15 $\Delta(A30-N33)$.

Where a specific α -amylase contains a "deletion" in comparison with other α -amylases and an insertion is made in such a position this is indicated as:

*36Asp or *36D

20 for insertion of an aspartic acid in position 36
Multiple mutations are separated by plus signs, i.e.:

Ala30Asp + Glu34Ser or A30N+E34S representing mutations in positions 30 and 34 substituting alanine and glutamic acid for asparagine and serine, respectively. Multiple mutation may also be separated as follows, i.e., meaning the same as the plus sign:

Ala30Asp/Glu34Ser or A30N/E34S

When one or more alternative amino acid residues may be inserted in a given position it is indicated as

30 A30N, E or

A30N or A30E

Furthermore, when a position suitable for modification is identified herein without any specific modification being suggested, it is to be understood that any amino acid residue may be substituted for the amino acid residue present in the position. Thus, for instance, when a modification of an alanine

6

in position 30 is mentioned, but not specified, it is to be understood that the alanine may be deleted or substituted for any other amino acid, i.e., any one of: R,N,D,A,C,Q,E,G,H,I,L,K,M,F,P,S,T,W,Y,V.

BRIEF DESCRIPTION OF THE DRAWING

Figure 1 is an alignment of the amino acid sequences of six parent Termamyl-like α -amylases in the context of the invention. The numbers on the Extreme left designate the respective amino acid sequences as follows:

- 1: SEQ ID NO: 2,
- 2: amylase
- 3: SEQ ID NO: 1,
- 4: SEQ ID NO: 5,
- 15 5: SEQ ID NO: 4,
 - 6: SEQ ID NO: 3.

Figure 2 shows the PCR strategy used in Example 1.

20 DETAILED DISCLOSURE OF THE INVENTION

The Termamyl-like α-amylase

It is well known that a number of α-amylases produced by Bacillus spp. are highly homologous on the amino acid level. For instance, the B. licheniformis α-amylase comprising the amino acid sequence shown in SEQ ID NO: 4 (commercially available as TermamylTM) has been found to be about 89% homologous with the B. amyloliquefaciens α-amylase comprising the amino acid sequence shown in SEQ ID NO: 5 and about 79% homologous with the B. stearothermophilus α-amylase comprising the amino acid sequence shown in SEQ ID NO: 3. Further homologous α-amylases include an α-amylase derived from a strain of the Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513 or DSM 9375, all of which are described in detail in WO 95/26397, and the α-amylase described by Tsukamoto et al., Biochemical and Biophysical Research Communications, 151 (1988), pp. 25-31.

Still further homologous α -amylases include the α -amylase produced by the B. licheniformis strain described in EP 0252666 (ATCC 27811), and the α -amylases identified in WO 91/00353 and WO 94/18314. Other commercial Termamyl-like B. licheniformis α -amylases are OptithermTM and TakathermTM (available from Solvay), MaxamylTM (available from Gist-brocades/Genencor), Spezym AA^{TM} and Spezyme Delta AA^{TM} (available from Genencor), and KeistaseTM (available from Daiwa).

Because of the substantial homology found between these α -10 amylases, they are considered to belong to the same class of α -amylases, namely the class of "Termamyl-like α -amylases".

Accordingly, in the present context, the term "Termamyl-like α -amylase" is intended to indicate an α -amylase which, at the amino acid level, exhibits a substantial homology to Termamyl™, 15 i.e., the B. licheniformis α -amylase having the amino acid sequence shown in SEQ ID NO: 4 herein. In other words, a Termamyl-like α -amylase is an α -amylase which has the amino acid sequence shown in SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7 or 8 herein, and the amino acid sequence shown in SEQ ID NO: 1 of WO 20 95/26397 (the same as the amino acid sequence shown as SEQ ID NO: 7 herein) or in SEQ ID NO: 2 of WO 95/26397 (the same as the amino acid sequence shown as SEQ ID NO: 8 herein) or in Tsukamoto et al., 1988, (which amino acid sequence is shown in SEQ ID NO: 6 herein) or i) which displays at least 60% homology 25 (identity), preferred at least 70%, more preferred at least 75%, even more preferred at least 80%, especially at least 85%, especially preferred at least 90%, especially at least 95%, even especially more preferred at least 97%, especially at least 99% homology with at least one of said amino acid sequences shown in 30 SEQ ID NOS 1: or 2 or 3 or 4 or 5 or 6 or 7 or 8 and/or ii) displays immunological cross-reactivity with an antibody raised against one or more of said α -amylases, and/or iii) is encoded by a DNA sequence which hybridizes, under the low to very high stringency conditions (said conditions described below) to the

DNA sequences encoding the above-specified \$\alpha\$-amylases which are apparent from SEQ ID NOS: 9, 10, 11, 12, and 32, respectively, of the present application (which encodes the amino acid sequences shown in SEQ ID NOS: 1, 2, 3, 4, and 5 herein, respectively), from SEQ ID NO: 4 of WO 95/26397 (which DNA sequence, together with the stop codon TAA, is shown in SEQ ID NO: 13 herein and encodes the amino acid sequence shown in SEQ ID NO: 8 herein) and from SEQ ID NO: 5 of WO 95/26397 (shown in SEQ ID NO: 14 herein), respectively.

In connection with property i), the "homology" (identity) may be determined by use of any conventional algorithm, preferably by use of the gap progamme from the GCG package version 8 (August 1994) using default values for gap penalties, i.e., a gap creation penalty of 3.0 and gap extension penalty of 0.1 (Genetic Computer Group (1991) Programme Manual for the GCG Package, version 8, 575 Science Drive, Madison, Wisconsin, USA 53711).

The parent Termamyl-like α-amylase backbone may in an embodiment have an amino acid sequence which has a degree of identity to SEQ ID NO: 4 of at least 65%, preferably at least 70%, preferably at least 75%, more preferably at least 80%, more preferably at least 85%, even more preferably at least about 90%, even more preferably at least 95%, even more preferably at least 97%, and even more preferably at least 99% identity determined as described above

A structural alignment between Termamyl® (SEQ ID NO: 4) and be used to identify Termamyl-like α -amylase may equivalent/corresponding positions in other Termamyl-like α amylases. One method of obtaining said structural alignment is 30 to use the Pile Up programme from the GCG package using default values of gap penelties, i.e., a gap creation penalty of 3.0 and gap extension penalty of 0.1. Other structural alignment methods the hydrophobic cluster analysis (Gaboriaud et al., (1987), FEBS LETTERS 224, pp. 149-155) and reverse threading 35 (Huber, T; Torda, AE, PROTEIN SCIENCE Vol. 7, No. 1 pp. 142-149 (1998).

9

For example, the corresponding positions, of target residues found in the C-domain of the B. licheniformis α -amylase, in the amino acid sequences of a number of Termamyl-like α -amylases which have already been mentioned are as follows:

Termamyl-like α -amylase

B. lich. (SEQ ID NO: 4)

B. amylo. (SEQ ID NO: 5)

B. stearo. (SEQ ID NO: 3)

Bac.WO 95/26397 (SEQ ID NO: 2)

Bac.WO 95/26397 (SEQ ID NO: 1)

S356 Y358 E376 S417 A420

---- Y361 ---- ---
S419 ---
Bac.WO 95/26397 (SEQ ID NO: 1)

---- Y363 ---- S419 ----

15

As will be described further below mutations of these conserved amino acid residues are very important in relation to increasing the stability at acidic pH and/or at low calcium concentration at high temperatures.

Property ii) (see above) of the α-amylase, i.e., the immunological cross reactivity, may be assayed using an antibody raised against, or reactive with, at least one epitope of the relevant Termamyl-like α-amylase. The antibody, which may either be monoclonal or polyclonal, may be produced by methods known in the art, e.g., as described by Hudson et al., Practical Immunology, Third edition (1989), Blackwell Scientific Publications. The immunological cross-reactivity may be determined using assays known in the art, examples of which are Western Blotting or radial immunodiffusion assay, e.g., as described by Hudson et al., 1989. In this respect, immunological cross-reactivity between the α-amylases having the amino acid sequences SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7, or 8 respectively, have been found.

The oligonucleotide probe used in the characterization of the Termamyl-like α -amylase in accordance with property iii)

above may suitably be prepared on the basis of the full or partial nucleotide or amino acid sequence of the α -amylase in question.

testing hybridization conditions for Suitable 5 presoaking in 5xSSC and prehybridizing for 1 hour at ~40°C in a solution of 20% formamide, 5xDenhardt's solution, 50mM sodium phosphate, pH 6.8, and 50mg of denatured sonicated calf thymus DNA, followed by hybridization in the same solution supplemented with 100mM ATP for 18 hours at ~40°C, followed by three times 10 washing of the filter in 2xSSC, 0.2% SDS at 40°C for 30 minutes (low stringency), preferred at 50°C (medium stringency), more preferably at 65°C (high stringency), even more preferably at (very high stringency). More details hybridization method can be found in Sambrook et al., Molecular 15 Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989.

In the present context, "derived from" is intended not only to indicate an α -amylase produced or producible by a strain of the organism in question, but also an α -amylase encoded by a DNA sequence isolated from such strain and produced in a host organism transformed with said DNA sequence. Finally, the term is intended to indicate an α -amylase which is encoded by a DNA sequence of synthetic and/or cDNA origin and which has the identifying characteristics of the α -amylase in question. The term is also intended to indicate that the parent α -amylase may be a variant of a naturally occurring α -amylase, i.e., a variant which is the result of a modification (insertion, substitution, deletion) of one or more amino acid residues of the naturally occurring α -amylase.

30 Parent hybrid α-amylases

The parent α -amylase (backbone) may be a hybrid α -amylase, i.e., an α -amylase which comprises a combination of partial amino acid sequences derived from at least two α -amylases.

The parent hybrid α -amylase may be one which on the basis of

WO 00/29560 PO

11

PCT/DK99/00628

amino acid homology and/or immunological cross-reactivity and/or DNA hybridization (as defined above) can be determined to belong to the Termamyl-like α -amylase family. In this case, the hybrid α -amylase is typically composed of at least one part of a Termamyl-like α -amylase and part(s) of one or more other α -amylases selected from Termamyl-like α -amylases or non-Termamyl-like α -amylases of microbial (bacterial or fungal) and/or mammalian origin.

Thus, the parent hybrid α -amylase may comprise a combination of partial amino acid sequences deriving from at least two Termamyl-like α -amylases, or from at least one Termamyl-like and at least one non-Termamyl-like bacterial α -amylase, or from at least one Termamyl-like and at least one fungal α -amylase. The Termamyl-like α -amylase from which a partial amino acid sequence derives may, e.g., be any of those specific Termamyl-like α -amylase referred to herein.

For instance, the parent α -amylase may comprise a C-terminal part of an α -amylase derived from a strain of B. licheniformis, and a N-terminal part of an α -amylase derived from a strain of 20 B. amyloliquefaciens or from a strain of B. stearothermophilus. For instance, the parent α -amylase may comprise at least 430 acid residues of the C-terminal part licheniformis α -amylase. A such hybrid Termamyl-like α -amylase may be identical to the Bacillus licheniformis α -amylase shown 25 in SEO ID NO: 4, except that the N-terminal 35 amino acid residues (of the mature protein) is replaced with the N-terminal 33 amino acid residues of the mature protein of the Bacillus amyloliquefaciens α -amylase (BAN) shown in SEQ ID NO: 5. A such hybrid may also consist of an amino acid segment corresponding 30 to the 68 N-terminal amino acid residues of the B. stearothermophilus α -amylase having the amino acid sequence shown in SEQ ID NO: 3 and an amino acid segment corresponding to the 415 Cterminal amino acid residues of the $\emph{B. licheniformis}$ $\alpha\text{-amylase}$

12

having the amino acid sequence shown in SEQ ID NO: 4.

The non-Termamyl-like α -amylase may, e.g., be a fungal α -amylase, a mammalian or a plant α -amylase or a bacterial α -amylase (different from a Termamyl-like α -amylase). Specific sexamples of such α -amylases include the Aspergillus oryzae TAKA α -amylase, the A. niger acid α -amylase, the Bacillus subtilis α -amylase, the porcine pancreatic α -amylase and a barley α -amylase. All of these α -amylases have elucidated structures which are markedly different from the structure of a typical Termamyl-like α -amylase as referred to herein.

The fungal α -amylases mentioned above, i.e. derived from A. niger and A. oryzae, are highly homologous on the amino acid level and generally considered to belong to the same family of α -amylases. The fungal α -amylase derived from Aspergillus oryzae is commercially available under the tradename FungamylTM.

Furthermore, when a particular variant of a Termamyl-like α -amylase (variant of the invention) is referred to - in a conventional manner - by reference to modification (e.g., deletion or substitution) of specific amino acid residues in the amino acid sequence of a specific Termamyl-like α -amylase, it is to be understood that variants of another Termamyl-like α -amylase modified in the equivalent position(s) (as determined from the best possible amino acid sequence alignment between the respective amino acid sequences) are encompassed thereby.

A preferred embodiment of a variant of the invention is one derived from a B. licheniformis α -amylase (as parent Termamyllike α -amylase), e.g., one of those referred to above, such as the B. licheniformis α -amylase having the amino acid sequence shown in SEQ ID NO: 4.

Altered properties of variants of the invention

30

The following discusses the relationship between alterations/mutations which may be present in variants of the invention, and desirable alterations in properties (relative to

those a parent, Termamyl-like α -amylase) which may result therefrom.

Increased stability at acidic pH and/or low calcium s concentration at high temperatures

The present invention relates to a variant of a parent Termamyl-like α -amylase, which variant α -amylase has been altered in comparison to the parent α -amylase in one or more solvent exposed amino acid residues on the surface of the α -amylase to increase the overall hydrophibicity of the α -amylase and/or to increase the overall numbers of methyl groups in the sidechains of said solvent exposed amino acid residues on the surface.

In a preferred embodiment one or more solvent exposed amino acid residues on a concav surface with inwards bend are altered to more hydrophobic amino acid residues.

In another preferred embodiment one or more solvent exposed amino acid residues on a convex surface are altered to increase the number of methyl groups in the sidechain.

The present invention relates to an α -amylase variant of a parent Termamyl-like α -amylase, comprising an alteration at one or more positions selected from the group of:

E376, S417, A420, S356, Y358;

wherein (a) the alteration(s) are independently

- (i) an insertion of an amino acid downstream of the amino acid which occupies the position,
 - (ii) a deletion of the amino acid which occupies the position, or
- (iii) a substitution of the amino acid which occupies the 30 position with a different amino acid,
 - (b) the variant has α -amylase activity and (c) each position corresponds to a position of the amino acid sequence of the parent Termamyl-like α -amylase having the amino acid sequence of SEQ ID NO: 4.
- In an embodiment the alteration is one of the following

14

substitutions:

E376A, R, D, C, Q, G, H, I, K, L, M, N, F, P, S, T, W, Y, V.

In a preferred embodiment the substitution is: E376K.

In an embodiment the alteration is one of the following substitutions: S417A,R,D,C,E,Q,G,H,I,K,L,M,N,F,P,T,W,Y,V; In a preferred embodiment the substitution is S417T.

In an embodiment the alteration is one of the following substitutions A420R,D,C,E,Q,G,H,I,K,L,M,N,F,P,S,T,W,Y,V;

In a preferred embodiment the substitution is: A420Q,R.

In an embodiment the alteration is one of the following substitutions: S356A,R,D,C,E,Q,G,H,I,K,L,M,N,F,P,T,W,Y,V.

In an embodiment the alteration is one of the following substitutions Y358A,R,D,C,E,Q,G,H,I,K,L,M,N,F,P,S,T,W,V. In a preferred embodiment the substitution is Y358F.

In an embodiment of the invention a variant comprises one or more of the following substitutions: E376K, S417T, A420Q,R, S356A, Y358F.

The increase in stability at acidic pH and/or low calcium concentration at high temperatures may be determined using the method described below in Example 2 illustrating the invention.

The parent Termamyl-like α -amylase used as the backbone for preparing variants of the invention may be any Termamyl-like α -amylases as defined above.

Specifically contemplated are parent Termamyl-like α -25 amylases selected from the group derived from B. licheniformis, such as B. licheniformis strain ATCC 27811, B. amyloliquefaciens, B. stearothermophilus, Bacillus sp. NCIB 12289, NCIB 12512, NCIB 12513 or DSM 9375, and the parent Termamyl-like α -amylases depicted in SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7 and 8.

In an embodiment of the invention the parent Termamyl-like α -amylase is a hybrid α -amylase being identical to the *Bacillus licheniformis* α -amylase shown in SEQ ID NO: 4 (Termamyl), except that the N-terminal 35 amino acid residues (of the mature protein) is replaced with the N-terminal 33 amino acid residues of the mature protein of the *Bacillus amyloliquefaciens* α -amylase (BAN) shown in SEQ ID NO: 5. The parent Termamyl-like

15

hybrid α -amylase may be the above mentioned hybrid Termamyl-like α -amylase which further has the following mutations: H156Y+181T+190F+209V+264S (using the numbering in SEQ ID NO: 4). Said backbone is referred to below as "LE174".

The parent α -amylase may advantageously further have a mutation in one or more of the following positions: K176, I201 and H205 (using the numbering in SEQ ID NO: 4), especially one or more the following substitutions: K176R, I201F, and H205N (using the numbering in SEQ ID NO: 4), such as specifically the following substitutions: K176R+I201F+H205N (using the numbering in SEQ ID NO: 4).

The inventors have found that the above mentioned variants have increased stability at pHs below 7.0 (i.e., acidic pH) and/or at calcium concentration below 1mM (40ppm) (i.e, low calcium concentrations) at temperatures in the range from 95 to 160°C (i.e., high temperatures) relative to the parent Termamyl-like α -amylase.

Alterations (e.g., by substitution) of one or more solvent exposed amino acid residues which 1) increase the overall hydrophobicity of the enzyme, or 2) increase the number of methyl groups in the sidechains of the solvent exposed amino acid residues improve the temperature stability. It is preferred to alter (e.g., by substitution) to more hydrophobic residues on a concav surface with inwards bend. On a convex surface alterations (e.g., by substitution) to amino acid residues with an increased number of methyl groups in the sidechain are preferred.

found the internet Using the program CAST on http://sunrise.cbs.umn.edu/cast/ version 1.0 (release 30 1998), (reference: Jie Liang, Herbert Edelsbrunner, and Clare Anatomy of protein Pockets and Cavities: Woodward. 1998. Measurements of binding site geometry and implications for ligand design. Protein Science, 7, pp. 1884-1897), a concave area which access to the surface can be identified. Access to 35 the surface is in the program defined as a probe with a diameter of 1.4Å can pass in and out. Using default parameters in the CAST program cancave cavities can be found using the Calcium depleted alpha-amylase structure from *B. licheniformis* as found in the Brookhaven database (1BPL):

Three types of interaction can be rationalised:

- 5 A. Interaction between the sidechain of the residue and the protein,
 - B. Interaction between the sidechain of the residue and the surrounding water,
 - C. Interaction between the water and the protein.
- Using the parent Termamyl-like α -amylase shown in SEQ ID NO: 4 as the backbone the following positions are considered to be solvent exposed and may suitably be altered: E376, S417, A420, S356, Y358.

Corresponding and other solvent exposed positions on the surface of other Termamyl-like α-amylase may be identified using the dssp program by W. Kabsch and C. Sander, Biopolymers 22 (1983) pp. 2577-2637. The convex surfaces can be identified using the the AACAVI program part from the WHATIF package (G. Vriend, Whatif and drug design program. J. Mol. Graph. 8, pp. 20 52-56. (1990) version 19980317).

In an embodiment of the invention a variant comprises one or more of the following substitutions: E376K, S417T, A420Q,R, S356A, Y358F.

The inventors have found that the stability at acidic pH and/or low calcium concentration at high temperatures may be increased even more by combining mutations in the above mentioned positions, i.e., E376, S417, A420, S356, Y358, (using the SEQ ID NO: 4 numbering) with mutations in one or more of positions K176, I201, and H205.

The following additional substitutions are preferred:
K176A,R,D,C,E,Q,G,H,I,L,M,N,F,P,S,T,W,Y,V;
I201A,R,D,C,E,Q,G,H,L,K,M,N,F,P,S,T,W,Y,V;
H205A,R,D,C,E,Q,G,I,L,K,M,N,F,P,S,T,W,Y,V;

As also shown in Example 2 illustrating the invention combining the following mutations give increased stability: K176+I201F+H205N+E376K+A420R or

17

K176+I201F+H205N+S417T+A420Q or

K176+I201F+H205N+S356A+Y358F using the hybrid α -amylase referred to as LE174 as the parent Termamyl-like α -amylase.

5 General mutations in variants of the invention

It may be preferred that a variant of the invention comprises one or more modifications in addition to those outlined above. Thus, it may be advantageous that one or more proline residues present in the part of the α -amylase variant which is modified is/are replaced with a non-proline residue which may be any of the possible, naturally occurring non-proline residues, and which preferably is an alanine, glycine, serine, threonine, valine or leucine.

Analogously, it may be preferred that one or more cysteine residues present among the amino acid residues with which the parent α -amylase is modified is/are replaced with a non-cysteine residue such as serine, alanine, threonine, glycine, valine or leucine.

Furthermore, a variant of the invention may - either as the 20 only modification or in combination with any of the above outlined modifications - be modified so that one or more Asp and/or Glu present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID NO: 4 is replaced by an Asn and/or Gln, respectively. Also of interest is the 25 replacement, in the Termamyl-like α -amylase, of one or more of the Lys residues present in an amino acid fragment corresponding to the amino acid fragment 185-209 of SEQ ID NO: 4 by an Arg.

It will be understood that the present invention encompasses variants incorporating two or more of the above outlined modifications.

Furthermore, it may be advantageous to introduce pointmutations in any of the variants described herein.

18

Cloning a DNA sequence encoding an \alpha-amylase of the invention

The DNA sequence encoding a parent α -amylase may be isolated from any cell or microorganism producing the α -amylase in question, using various methods well known in the art. First, a genomic DNA and/or cDNA library should be constructed using chromosomal DNA or messenger RNA from the organism that produces the α -amylase to be studied. Then, if the amino acid sequence of the α -amylase is known, homologous, labelled oligonucleotide probes may be synthesized and used to identify α -amylase-encoding clones from a genomic library prepared from the organism in question. Alternatively, a labelled oligonucleotide probe containing sequences homologous to a known α -amylase gene could be used as a probe to identify α -amylase-encoding clones, using hybridization and washing conditions of lower stringency.

Yet another method for identifying α -amylase-encoding clones would involve inserting fragments of genomic DNA into an expression vector, such as a plasmid, transforming α -amylase-negative bacteria with the resulting genomic DNA library, and then plating the transformed bacteria onto agar containing a substrate for α -amylase, thereby allowing clones expressing the α -amylase to be identified.

Alternatively, the DNA sequence encoding the enzyme may be prepared synthetically by established standard methods, e.g. the phosphoroamidite method described by S.L. Beaucage and M.H. Caruthers (1981) or the method described by Matthes et al. (1984). In the phosphoroamidite method, oligonucleotides are synthesized, e.g., in an automatic DNA synthesizer, purified, annealed, ligated and cloned in appropriate vectors.

Finally, the DNA sequence may be of mixed genomic and synthetic origin, mixed synthetic and cDNA origin or mixed genomic
and cDNA origin, prepared by ligating fragments of synthetic,
genomic or cDNA origin (as appropriate, the fragments
corresponding to various parts of the entire DNA sequence), in
accordance with standard techniques. The DNA sequence may also
be prepared by polymerase chain reaction (PCR) using specific

19

primers, for instance as described in US 4,683,202 or R.K. Saiki et al. (1988).

Site-directed mutagenesis

Once an a-amylase-encoding DNA sequence has been isolated, and desirable sites for mutation identified, mutations may be introduced using synthetic oligonucleotides. These oligonucleotides contain nucleotide sequences flanking the desired mutation sites; mutant nucleotides are inserted during oligonucleotide 10 synthesis. In a specific method, a single-stranded gap of DNA, bridging the a-amylase-encoding sequence, is created in a vector carrying the a-amylase gene. Then the synthetic nucleotide, bearing the desired mutation, is annealed to a homologous portion of the single-stranded DNA. The remaining gap is then 15 filled in with DNA polymerase I (Klenow fragment) and the construct is ligated using T4 ligase. A specific example of this method is described in Morinaga et al. (1984). US 4,760,025 discloses the introduction of oligonucleotides encoding multiple mutations by performing minor alterations of the cassette. How-20 ever, an even greater variety of mutations can be introduced at any one time by the Morinaga method, because a multitude of oligonucleotides, of various lengths, can be introduced.

Another method for introducing mutations into a-amylase-encoding DNA sequences is described in Nelson and Long (1989).

25 It involves the 3-step generation of a PCR fragment containing the desired mutation introduced by using a chemically synthesized DNA strand as one of the primers in the PCR reactions. From the PCR-generated fragment, a DNA fragment carrying the mutation may be isolated by cleavage with restriction endonucleases and reinserted into an expression plasmid.

20

Random Mutagenesis

Random mutagenesis is suitably performed either as localised or region-specific random mutagenesis in at least three parts of the gene translating to the amino acid sequence shown in question, or within the whole gene.

The random mutagenesis of a DNA sequence encoding a parent α -amylase may be conveniently performed by use of any method known in the art.

In relation to the above, a further aspect of the present invention relates to a method for generating a variant of a parent α -amylase, e.g., wherein the variant exhibits altered or increased thermal stability relative to the parent, the method comprising:

- (a) subjecting a DNA sequence encoding the parent α 15 amylase to random mutagenesis,
 - (b) expressing the mutated DNA sequence obtained in step (a) in a host cell, and
- (c) screening for host cells expressing an α -amylase variant which has an altered property (i.e. thermal stability) 20 relative to the parent α -amylase.

Step (a) of the above method of the invention is preferably performed using doped primers.

For instance, the random mutagenesis may be performed by use of a suitable physical or chemical mutagenizing agent, by use of a suitable oligonucleotide, or by subjecting the DNA sequence to PCR generated mutagenesis. Furthermore, the random mutagenesis may be performed by use of any combination of these mutagenizing agents. The mutagenizing agent may, e.g., be one which induces transitions, transversions, inversions, scrambling, deletions, and/or insertions.

21

Examples of a physical or chemical mutagenizing agent suitable for the present purpose include ultraviolet (UV) irradiation, hydroxylamine, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), O-methyl hydroxylamine, nitrous acid, ethyl methane sulphonate (EMS), sodium bisulphite, formic acid, and nucleotide analogues. When such agents are used, the mutagenesis is typically performed by incubating the DNA sequence encoding the parent enzyme to be mutagenized in the presence of the mutagenizing agent of choice under suitable conditions for the mutagenesis to take place, and selecting for mutated DNA having the desired properties.

When the mutagenesis is performed by the use of an oligonucleotide, the oligonucleotide may be doped or spiked with the three non-parent nucleotides during the synthesis of the oligonucleotide at the positions which are to be changed. The doping or spiking may be done so that codons for unwanted amino acids are avoided. The doped or spiked oligonucleotide can be incorporated into the DNA encoding the alpha-amylase enzyme by any published technique, using e.g. PCR, LCR or any DNA polymerase and ligase as deemed appropriate.

Preferably, the doping is carried out using "constant random doping", in which the percentage of wild-type and mutation in each position is predefined. Furthermore, the doping may be directed toward a preference for the introduction of certain nucleotides, and thereby a preference for the introduction of one or more specific amino acid residues. The doping may be made, e.g., so as to allow for the introduction of 90% wild type and 10% mutations in each position. An additional consideration in the choice of a doping scheme is based on genetic as well as protein-structural constraints. The doping scheme may be made by using the DOPE program which, inter alia, ensures that introduction of stop codons is avoided.

When PCR-generated mutagenesis is used, either a chemically treated or non-treated gene encoding a parent α -amylase is subjected to PCR under conditions that increase the misincorporation of nucleotides (Deshler 1992; Leung et al., Technique, Vol.1, 1989, pp. 11-15).

22

A mutator strain of *E. coli* (Fowler et al., Molec. Gen. Genet., 133, 1974, pp. 179-191), *S. cereviseae* or any other microbial organism may be used for the random mutagenesis of the DNA encoding the α-amylase by, e.g., transforming a plasmid containing the parent glycosylase into the mutator strain, growing the mutator strain with the plasmid and isolating the mutated plasmid from the mutator strain. The mutated plasmid may be subsequently transformed into the expression organism.

The DNA sequence to be mutagenized may be conveniently present in a genomic or cDNA library prepared from an organism expressing the parent alpha-amylase. Alternatively, the DNA sequence may be present on a suitable vector such as a plasmid or a bacteriophage, which as such may be incubated with or other-wise exposed to the mutagenising agent. The DNA to be mutagenized may also be present in a host cell either by being integrated in the genome of said cell or by being present on a vector harboured in the cell. Finally, the DNA to be mutagenized may be in isolated form. It will be understood that the DNA sequence to be subjected to random mutagenesis is preferably a cDNA or a genomic DNA sequence.

In some cases it may be convenient to amplify the mutated DNA sequence prior to performing the expression step b) or the screening step c). Such amplification may be performed in accordance with methods known in the art, the presently preferred method being PCR-generated amplification using oligonucleotide primers prepared on the basis of the DNA or amino acid sequence of the parent enzyme.

23

Subsequent to the incubation with or exposure to the mutagenising agent, the mutated DNA is expressed by culturing a suitable host cell carrying the DNA sequence under conditions allowing expression to take place. The host cell used for this 5 purpose may be one which has been transformed with the mutated DNA sequence, optionally present on a vector, or one which was carried the DNA sequence encoding the parent enzyme during the mutagenesis treatment. Examples of suitable host cells are the following: gram positive bacteria such as Bacillus subtilis, 10 Bacillus licheniformis, Bacillus lentus, Bacillus Bacillus alkalophilus, Bacillus Bacillus stearothermophilus, Bacillus coaqulans, Bacillus circulans, amyloliquefaciens, Bacillus lautus, Bacillus megaterium, Bacillus thuringiensis, Streptomyces lividans or Streptomyces murinus; and gram-negative 15 bacteria such as E. coli.

The mutated DNA sequence may further comprise a DNA sequence encoding functions permitting expression of the mutated DNA sequence.

20 Localized random mutagenesis

The random mutagenesis may be advantageously localized to a part of the parent α -amylase in question. This may, e.g., be advantageous when certain regions of the enzyme have been identified to be of particular importance for a given property of the enzyme, and when modified are expected to result in a variant having improved properties. Such regions may normally be identified when the tertiary structure of the parent enzyme has been elucidated and related to the function of the enzyme.

The localized, or region-specific, random mutagenesis is conveniently performed by use of PCR generated mutagenesis techniques as described above or any other suitable technique known in the art. Alternatively, the DNA sequence encoding the part of the DNA sequence to be modified may be isolated, e.g., by insertion into a suitable vector, and said part may be subsequently subjected to mutagenesis by use of any of the mutagenesis methods discussed above.

Alternative methods of providing α-amylase variants

Alternative methods for providing variants of the invention include gene shuffling method known in the art including the methods, e.g., described in WO 95/22625 (from Affymax Technologies N.V.) and WO 96/00343 (from Novo Nordisk A/S).

Expression of α -amylase variants of the invention

According to the invention, a DNA sequence encoding the variant produced by methods described above, or by any alternative methods known in the art, can be expressed, in enzyme form, using an expression vector which typically includes control sequences encoding a promoter, operator, ribosome binding site, translation initiation signal, and, optionally, a repressor gene or various activator genes.

The recombinant expression vector carrying the DNA sequence encoding an α-amylase variant of the invention may be any vector which may conveniently be subjected to recombinant DNA procedures, and the choice of vector will often depend on the host cell into which it is to be introduced. Thus, the vector may be an autonomously replicating vector, i.e., a vector which exists as an extrachromosomal entity, the replication of which is independent of chromosomal replication, e.g., a plasmid, a bacteriophage or an extrachromosomal element, minichromosome or an artificial chromosome. Alternatively, the vector may be one which, when introduced into a host cell, is integrated into the host cell genome and replicated together with the chromosome(s) into which it has been integrated.

In the vector, the DNA sequence should be operably connected to a suitable promoter sequence. The promoter may be any DNA sequence which shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell. Examples of suitable promoters for directing the transcription of the DNA sequence encoding an α -amylase variant of the invention, especially in a bacterial host, are the promoter of the lac operon of E.coli, the $Streptomyces\ coelicolor\ agarase\ gene\ dagA$

promoters, the promoters of the Bacillus licheniformis α-amylase gene (amyL), the promoters of the Bacillus stearothermophilus maltogenic amylase gene (amyM), the promoters of the Bacillus amyloliquefaciens α-amylase (amyQ), the promoters of the Bacillus subtilis xylA and xylB genes etc. For transcription in a fungal host, examples of useful promoters are those derived from the gene encoding A. oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, A. niger neutral α-amylase, A. niger acid stable α-amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase or A. nidulans acetamidase.

The expression vector of the invention may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably connected to the DNA sequence encoding the α -amylase variant of the invention. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.

The vector may further comprise a DNA sequence enabling the vector to replicate in the host cell in question. Examples of such sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1 and pIJ702.

The vector may also comprise a selectable marker, e.g. a gene the product of which complements a defect in the host cell, such as the dal genes from B. subtilis or B. licheniformis, or one which confers antibiotic resistance such as ampicillin, kanamycin, chloramphenicol or tetracyclin resistance. Furthermore, the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and sC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, e.g. as described in WO 91/17243.

While intracellular expression may be advantageous in some respects, e.g. when using certain bacteria as host cells, it is generally preferred that the expression is extracellular. In general, the Bacillus α -amylases mentioned herein comprise a preregion permitting secretion of the expressed protease into the culture medium. If desirable, this preregion may be replaced

26

by a different preregion or signal sequence, conveniently accomplished by substitution of the DNA sequences encoding the respective preregions.

The procedures used to ligate the DNA construct of the invention encoding an α-amylase variant, the promoter, terminator and other elements, respectively, and to insert them into suitable vectors containing the information necessary for replication, are well known to persons skilled in the art (cf., for instance, Sambrook et al., Molecular Cloning: A Laboratory 10 Manual, 2nd Ed., Cold Spring Harbor, 1989).

The cell of the invention, either comprising a DNA construct or an expression vector of the invention as defined above, is advantageously used as a host cell in the recombinant production of an α -amylase variant of the invention. The cell may be 15 transformed with the DNA construct of the invention encoding the variant, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage as the DNA sequence is more likely to be stably maintained in the cell. Integration of 20 the DNA constructs into the host chromosome may be performed according to conventional methods, e.g. by homologous heterologous recombination. Alternatively, the cell may transformed with an expression vector as described above in connection with the different types of host cells.

The cell of the invention may be a cell of a higher organism such as a mammal or an insect, but is preferably a microbial cell, e.g., a bacterial or a fungal (including yeast) cell.

Examples of suitable bacteria are grampositive bacteria such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus, Bacillus megaterium, Bacillus thuringiensis, or Streptomyces lividans or Streptomyces murinus, or gramnegative bacteria such as E.coli. The transformation of the bacteria may, for instance, be effected by protoplast transformation or by using competent cells in a manner known per se.

27

The yeast organism may favourably be selected from a species of Saccharomyces or Schizosaccharomyces, e.g. Saccharomyces cerevisiae. The filamentous fungus may advantageously belong to a species of Aspergillus, e.g. Aspergillus oryzae or Aspergillus niger. Fungal cells may be transformed by a process involving protoplast formation and transformation of the protoplasts followed by regeneration of the cell wall in a manner known per se. A suitable procedure for transformation of Aspergillus host cells is described in EP 238 023.

In a yet further aspect, the present invention relates to a method of producing an α -amylase variant of the invention, which method comprises cultivating a host cell as described above under conditions conducive to the production of the variant and recovering the variant from the cells and/or culture medium.

The medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of the α -amylase variant of the invention. Suitable media are available from commercial suppliers or may be prepared according to published recipes (e.g., as described in catalogues of the American Type Culture Collection).

The α -amylase variant secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulphate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.

30 Industrial Applications

The α -amylase variants of this invention possesses valuable properties allowing for a variety of industrial applications. An enzyme variant of the invention are applicable as a component in washing, dishwashing and hard-surface cleaning detergent compositions. Numerous variants are particularly useful in the production of sweeteners and ethanol from starch, and/or for

28

textile desizing. Conditions for conventional starch- conversion processes, including starch liquefaction and/or saccharification processes, are described in, e.g., US 3,912,590 and in EP patent publications Nos. 252,730 and 63,909.

Production of sweeteners from starch:

A "traditional" process for conversion of starch to fructose syrups normally consists of three consecutive enzymatic processes, viz. a liquefaction process followed by a saccharification process and an isomerization process. During the liquefaction process, starch is degraded to dextrins by an α-amylase (e.g. Termamyl[™]) at pH values between 5.5 and 6.2 and at temperatures of 95-160°C for a period of approx. 2 hours. In order to ensure an optimal enzyme stability under these conditions, 1 mM of calcium is added (40 ppm free calcium ions).

After the liquefaction process the dextrins are converted into dextrose by addition of a glucoamylase (e.g. AMGTM) and a debranching enzyme, such as an isoamylase or a pullulanase (e.g. PromozymeTM). Before this step the pH is reduced to a value below 4.5, maintaining the high temperature (above 95°C), and the liquefying α -amylase activity is denatured. The temperature is lowered to 60°C, and glucoamylase and debranching enzyme are added. The saccharification process proceeds for 24-72 hours.

After the saccharification process the pH is increased to a value in the range of 6-8, preferably pH 7.5, and the calcium is removed by ion exchange. The dextrose syrup is then converted into high fructose syrup using, e.g., an immmobilized glucoseisomerase (such as Sweetzyme^M).

At least 1 enzymatic improvements of this process could be envisaged. Reduction of the calcium dependency of the liquefying α -amylase. Addition of free calcium is required to ensure adequately high stability of the α -amylase, but free calcium strongly inhibits the activity of the glucoseisomerase and needs to be removed, by means of an expensive unit operation, to an extent which reduces the level of free calcium to below 3-5 ppm. Cost savings could be obtained if such an

operation could be avoided and the liquefaction process could be performed without addition of free calcium ions.

To achieve that, a less calcium-dependent Termamyl-like α -amylase which is stable and highly active at low s concentrations of free calcium (< 40 ppm) is required. Such a Termamyl-like α -amylase should have a pH optimum at a pH in the range of 4.5-6.5, preferably in the range of 4.5-5.5.

Detergent compositions

As mentioned above, variants of the invention may suitably be incorporated in detergent compositions. Reference is made, for example, to WO 96/23874 and WO 97/07202 for further details concerning relevant ingredients of detergent compositions (such as laundry or dishwashing detergents), appropriate methods of formulating the variants in such detergent compositions, and for examples of relevant types of detergent compositions.

Detergent compositions comprising a variant of the invention may additionally comprise one or more other enzymes, such as a lipase, cutinase, protease, cellulase, peroxidase or laccase, and/or another α -amylase.

 α -amylase variants of the invention may be incorporated in detergents at conventionally employed concentrations. It is at present contemplated that a variant of the invention may be incorporated in an amount corresponding to 0.00001-1 mg (calculated as pure, active enzyme protein) of α -amylase per liter of wash/dishwash liquor using conventional dosing levels of detergent.

MATERIALS AND METHODS

30 Enzymes:

LE174 hybrid alpha-amylase variant: LE174 is a hybrid Termamyllike alpha-amylase being identical to the Termamyl sequence, i.e., the Bacillus licheniformis α -amylase shown in SEQ ID NO: 4, except that the N-terminal 35 amino acid residues (of the mature protein) has been replaced by the N-terminal 33 residues of BAN (mature protein), i.e., the Bacillus amyloliquefaciens

30

alpha-amylase shown in SEQ ID NO: 5, which further havefollowing mutations: H156Y+A181T+N190F+A209V+Q264S (using the numbering in SEQ ID NO: 4).

5 Construction of pSNK101

This E. coli/Bacillus shuttle vector can be used to introduce mutations without expression of α -amylase in $E.\ coli$ and then be modified in such way that the α -amylase is active in Bacillus. The vector was constructed as follows: The α -10 amylase gene in the pX vector (pDN1528 with the following alterations within amyL: BAN(1-33), H156Y, A181T, N190F, A209V, Q264S, the plasmid pDN1528 is further described in Example 1) was inactivated by interruption in the PstI site in the 5 coding region of the alpha-amylase gene by a 1.2 kb fragment 15 containing an E. coli origin fragment. This fragment was amplified from the pUC19 (GenBank Accession #:X02514) using the forward primer 1: 5'-gacctgcagtcaggcaacta-3' (SEQ ID NO: 28) and the reverse primer 1: 5'-tagagtcgacctgcaggcat-3' (SEQ ID NO: 29). The PCR amplicon and the pX plasmid containing the α -20 amylase gene were digested with PstI at 37°C for 2 hours. The pX vector fragment and the E. coli origin amplicon were ligated at room temperature. for 1 hour and transformed in E. coli by electrotransformation. The resulting vector is pSnK101.

This E. coli/Bacillus shuttle vector can be used to introduce mutations without expression of α-amylase in E. coli and then be modified in such way that the α-amylase is active in Bacillus. The vector was constructed as follows: The α-amylase gene in the pX vector (pDN1528 with the following alterations within amyL: BAN(1-33), H156Y+A181T+N190F+A209V+Q264S, the plasmid pDN1528 is further described in Example 1) was inactivated by interruption in the PstI site in the 5 coding region of the alpha-amylase gene by a 1.2 kb fragment containing an E. coli origin fragment. This fragment was amplified from the pUC19 (GenBank Accession

31

#:X02514) using the forward primer 2: 5´-gacctgcagtcaggcaacta-3´ (SEQ ID NO: 30) and the reverse primer 2: 5´-tagagtcgacctgcaggcat-3´ (SEQ ID NO: 31). The PCR amplicon and the pX plasmid containing the α-amylase gene were digested with PstI at 37°C for 2 hours. The pX vector fragment and the E. coli origin amplicon were ligated at room temperature. for 1 hour and transformed in E. coli by electrotransformation. The resulting vector is designated pSnK101.

10 Low pH filter assay

Bacillus libraries are plated on a sandwich of cellulose acetate (OE 67, Schleicher & Schuell, Dassel, Germany) - and nitrocellulose filters (Protran-Ba 85, Schleicher & Schuell, Dassel, Germany) on TY agar plates with 10 μg/ml chloramphenicol at 37°C for at least 21 hrs. The cellulose acetate layer is located on the TY agar plate.

Each filter sandwich is specifically marked with a needle after plating, but before incubation in order to be able to localize positive variants on the filter and the nitrocellulose 20 filter with bound variants is transferred to a container with citrate buffer, pH 4.5 and incubated at 90°C for 15 min. The cellulose acetate filters with colonies are stored on the TYplates at room temperature until use. After incubation, residual activity is detected on assay plates containing 1% 25 agarose, 0.2% starch in citrate buffer, pH 6.0. The assay plates with nitrocellulose filters are marked the same way as the filter sandwich and incubated for 2 hours. at 50°C. After removal of the filters the assay plates are stained with 10% Lugol solution. Starch degrading variants are detected as white 30 spots on dark blue background and then identified on the storage plates. Positive variants are rescreened twice under the same conditions as the first screen.

Secondary screening

Positive transformants after rescreening are picked from the storage plate and tested in a secondary plate assay.

Positive transformants are grown for 22 hours at 37°C in 5 ml LB + chloramphenicol. The Bacillus culture of each positive transformant and a control LE174 variant were incubated in citrate buffer, pH 4.5 at 90°C and samples were taken at 5 0,10,20,30,40,60 and 80 minutes. A 3 microliter sample was spotted on a assay plate. The assay plate was stained with 10% Lugol solution. Improved variants were seen as variants with higher residual activity detected as halos on the assay plate than the backbone. The improved variants are determined by nucleotide sequencing.

Fermentation and purification of α -amylase variants

A B. subtilis strain harbouring the relevant expression plasmid is streaked on a LB-agar plate with 15 μ g/ml 15 chloramphenicol from -80°C stock, and grown overnight at 37°C. The colonies are transferred to 100 ml BPX media supplemented with 15 μ g/ml chloramphenicol in a 500 ml shaking flask. Composition of BPX medium:

	Potato starch	100 g/I
20	Barley flour	50 g/l
	BAN 5000 SKB	0.1 g/l
	Sodium caseinate	10 g/l
	Soy Bean Meal	20 g/l
	Na_2HPO_4 , 12 H_2O	9 g/l
25	Pluronic™	0.1 g/l

The culture is shaken at 37°C at 270 rpm for 5 days.

Cells and cell debris are removed from the fermentation broth by centrifugation at 4500 rpm in 20-25 minutes. Afterwards the supernatant is filtered to obtain a completely clear solution. The filtrate is concentrated and washed on a UF-filter (10000 cut off membrane) and the buffer is changed to 20mM Acetate pH 5.5. The UF-filtrate is applied on a S-sepharose F.F. and elution is carried out by step elution with 0.2M NaCl in the same buffer. The eluate is dialysed against 10mM Tris, pH 9.0 and applied on a Q-sepharose F.F. and eluted with a linear gradient from 0-0.3M NaCl over 6 column volumes. The fractions

33

which contain the activity (measured by the Phadebas assay) are pooled, pH was adjusted to pH 7.5 and remaining color was removed by a treatment with 0.5% W/vol. active coal in 5 minutes.

5

Stability determination

All the stability trials are made using the same set up. The method is:

The enzyme is incubated under the relevant conditions (1-10 4). Samples are taken at 0, 5, 10, 15 and 30 minutes and diluted 25 times (same dilution for all taken samples) in assay buffer (0.1M 50mM Britton buffer pH 7.3) and the activity is measured using the Phadebas assay (Pharmacia) under standard conditions pH 7.3, 37°C.

The activity measured before incubation (0 minutes) is used as reference (100%). The decline in percent is calculated as a function of the incubation time. The table shows the residual activity after 30 minutes of incubation.

20 Activity determination - (KNU)

One Kilo alpah-amylase Unit (1 KNU) is the amount of enzyme which breaks down 5.26 g starch (Merck, Amylum Solubile, Erg. B 6, Batch 9947275) per hour in Novo Nordisk's standard method for determination of alpha-amylase based upon the following condition:

Substrate soluble starch

Calcium content in solvent 0.0043 M

Reaction time 7-20 minutes

Temperature 37°C

30 pH 5.6

Detailed description of Novo Nordisk's analytical method (AF 9) is available on request.

Specific activity determination

35 Assay for α-Amylase Activity

 $\alpha\text{-amylase}$ activity is determined by a method employing Phadebas tablets as substrate. Phadebas tablets

34

(Phadebas® Amylase Test, supplied by Pharmacia Diagnostic) contain a cross-linked insoluble blue-coloured starch polymer which has been mixed with bovine serum albumin and a buffer substance and tabletted.

For every single measurement one tablet is suspended in a tube containing 5 ml 50 mM Britton-Robinson buffer (50 mM acetic acid, 50 mM phosphoric acid, 50 mM boric acid, 0.1 mM $CaCl_2$, pH adjusted to the value of interest with NaOH). The test is performed in a water bath at the temperature of interest. The α -amylase to be tested is diluted in x ml of 50 mM Britton-Robinson buffer. 1 ml of this α -amylase solution is added to the 5 ml 50 mM Britton-Robinson buffer. The starch is hydrolysed by the α -amylase giving soluble blue fragments. The absorbance of the resulting blue solution, measured spectrophotometrically at 620 nm, is a function of the α -amylase activity.

It is important that the measured 620 nm absorbance after 10 or 15 minutes of incubation (testing time) is in the range of 0.2 to 2.0 absorbance units at 620 nm. In this absorbance range there is linearity between activity and absorbance (Lambert-Beer law). The dilution of the enzyme must therefore be adjusted to fit this criterion. Under a specified set of conditions (temp., pH, reaction time, buffer conditions) 1 mg of a given α -amylase will hydrolyse a certain amount of substrate and a blue colour will be produced. The colour intensity is measured at 620 nm. The measured absorbance is directly proportional to the specific activity (activity/mg of pure α -amylase protein) of the α -amylase in question under the given set of conditions.

30 EXAMPLES

Example 1.

Construction, by random mutagenesis, of Termamyl-like LE174 α -amylase variants having an improved stability at low pH and a reduced dependency on calcium ions for stability compared to the parent enzyme.

5

Random mutagenesis

To improve the stability at low pH and low calcium concentration of the parent LE174 α -amylase variant random mutagenesis in preselected regions was performed.

The regions were:

Region: Residue:
SERI A425-Y438
SERII W411-L424
SERIII G397-G410
15 SERV T369-H382
SERVII G310-F323
SERIX L346-P359

For each six region, random oligonucleotides are synthesized using the same mutation rate (97 % backbone and 1% of each of the three remaining nucleotides giving 3% mutations) in each nucleotide position in the above regions, e.g., 1. position in condon for A425: 97%C, 1%A, 1%T, 1%G. The six random oligonucleotides and if used complementary SOE helping primers are shown in tables1-6: with the four distribution of nucleotides below.

Table 1.

RSERI: 5'-GC GTT TTG CCG GCC GAC ATA 312 234 322 243 333 133 444 233 423 242 212 211 243 343 CAA ACC TGA ATT-3' (SEQ ID NO: 30 15)

Table 2.

RSERII: 5'-GC GTT TTG CCG GCC GAC ATA CAT TCG CTT TGC CCC ACC GGG TCC GTC TGT TAT TAA TGC CGC 311 133 241 122 243 113 341 432 35 423 433 223 332 242 331 GCC GAC AAT GTC ATG GTG-3' (SEQ ID NO: 16)

Table 3.

RSERIII: 5'-GTC GCC TTC CCT TGT CCA 433 413 112 423 124 424 423 411 121 123 124 324 243 233 GTA CGC ATA CTG TTT TCT-3' (SEQ ID 5 NO: 17)

Helping primer FSERIII: 5'-TGG ACA AGG GAA GGC GAC AG-3' (SEQ ID NO: 18)

Table 4.

10 RSERV: 5-TAA GAT CGG TTC AAT TTT 424 222 311 443 144 112 223 434 324 441 423 233 222 342 CCC GTA CAT ATC CCC GTA GAA-3 (SEQ ID NO: 19)

Helping primer FSERV: 5-AAA ATT GAA CCG ATC TTA-3 (SEQ ID NO: 20)

15

Table 5.

FSERVII: 5'-TT CCA TGC TGC ATC GAC ACA GGG AGG CGG CTA TGA TAT GAG GAA ATT GCT GAA 344 213 442 342 223 311 431 233 422 411 123 442 213 122 TGT CGA TAA CCA-3' (SEQ ID NO: 21)

20

Helping primer RSERVII: 5'- TGT CGA TGC AGC ATG GAA - 3' (SEQ ID NO: 22)

Table 6.

25 FSERIX: 5'-GT CCA AAC ATG GTT TAA GCC 432 243 221 343 222 212 232 313 114 441 123 244 121 333 TCA GGT TTT CTA CGG GGA-3' (SEQ ID NO: 23)

Helping primer RSERIX: 5'-GGC TTA AAC CAT GTT TGG AC-3' (SEQ ID NO: 24)

30

Distribution of nucleotides in each mutated nucleotide position 1:97%A, 1%T, 1%C, 1%G

2:97%T, 1%A, 1%C, 1%G

3:97%C, 1%A, 1%T, 1%G

35 4:97%G, 1%A, 1%T, 1%C

Construction of plasmid libraries

37

Two approximately 1.4 kb fragments were PCR amplified using the primer 1B: 5'-CGA TTG CTG ACG CTG TTA TTT GCG-3' and the random oligonucleotide apparent from table 1, respectively the random oligonucleotide apparent from table 2. The vector 5 pSnK101 and the PCR fragments were digested with EcoRV and EagI for 2 hours. The approximately 3.6 kb vector fragment and the approximately 1.3 kb PCR fragments was purified and ligated overnight and transformed in to E.coli and then further transformed into a Bacillus host starin as described below. The 10 random oligonucleotides apparent from Tables 3-6 (which by a common term is designated aSER and bSER in Fig. 2) for each region and specific B. licheniformis primers 1B (SEQ ID NO: 26) and #63: 5'-CTA TCT TTG AAC ATA AAT TGA AAC C-3' (SEQ ID NO: 27) covering the EcoRV and the EagI sites in the LE174 sequence 15 are used to generate PCR-library-fragments by the overlap extension method (Horton et al., Gene, 77 (1989), pp. 61-68) Figure 2 shows the PCR strategy. The PCR fragments are cloned in the E. coli/Bacillus shuttle vector pSNK101 (see Materials and Methods) enabling mutagenesis in E. coli and immediate 20 expression in Bacillus subtilis preventing lethal accumulation of amylases in E. coli. After establishing the cloned PCR fragments in E. coli, a modified pUC19 fragment is digested out of the plasmid and the promoter and the mutated Termamyl gene is physically connected and expression can take place in the 25 Bacillus host .

Screening

The six libraries were screened in the low pH filter assays described in the "Material and Methods" section above.

30

All variants listed in the table in Example 2 below was prepared as described in Example 1.

EXAMPLE 2

35 Measurement of stability

Normally, industrial liquefaction processes is run at pH 6.0-6.2 with addition of about 40 ppm free calcium in order to

improve the stability at 95°C-105°C. Variants of the invention have been made in order to improve the stability at

- 1. lower pH than pH 6.2 and/or
- 2. at free calcium levels lower than 40ppm free calcium.
- An assay which measures the stability at acidic pH, pH 5.0, in the presence of 5ppm free calcium was used to measure the increase in stability.

10 μg of the variant was incubated under the following conditions: A 0.1 M acetate solution, pH adjusted to pH 5.0, containing 5ppm calcium and 5% w/w common corn starch (free of calcium). Incubation was made in a water bath at 95°C for 30 minutes.

Results:

15 Increased stability at pH 5.0, 5 ppm calcium incubated at 95°C

MINUTES OF	LE174	LE174	LE174	LE174
INCUBATION	WITH	WITH	WITH	WITH
	K176R+	K176R+	K176R+	K176R+
	I201F+	I201F+	I201F+	I201F+
	H205N	H205N+	H205N+	H205N+
		E376K+	S417T+	S356A+
		A420R	A420Q	Y358F
0	100	100	100	100
5	65	61	66	66
10	58	53	60	59
15	51	48	55	56
30	36	39	45	49

Specific activity determination.

The specific activity was determined using the Phadebas assay (Pharmacia) (described above) as activity/mg enzyme. The activity was determined using the α -amylase assay described in the Materials and Methods section herein.

LE174 with the following substitutions:

K176R+I201F+H205N

Specific activity determined: 13400NU/mg

LE174 with the following substitutions:

5 K176R+I201F+H205N+E376K+A420R:

Specific activity determined: 14770NU/mg

LE174 with the following substitutions: K176R+I201F+H205N+S417T+A420Q:

10 Specific activity determined:16670NU/mg

LE174 with the following substitutions: K176R+I201F+H205N+S356A+Y358F: Specific activity determined:15300NU/mg

REFERENCES CITED

Klein, C., et al., Biochemistry 1992, 31, 8740-8746, Mizuno, H., et al., J. Mol. Biol. (1993) 234, 1282-1283, Chang, C., et al, J. Mol. Biol. (1993) 229, 235-238,

- 5 Larson, S.B., J. Mol. Biol. (1994) 235, 1560-1584, Lawson, C.L., J. Mol. Biol. (1994) 236, 590-600, Qian, M., et al., J. Mol. Biol. (1993) 231, 785-799, Brady, R.L., et al., Acta Crystallogr. sect. B, 47, 527-535, Swift, H.J., et al., Acta Crystallogr. sect. B, 47, 535-544
- 10 A. Kadziola, Ph.D. Thesis: "An alpha-amylase from Barley and its Complex with a Substrate Analogue Inhibitor Studied by X-ray Chemistry University Crystallography", Department of Copenhagen 1993

MacGregor, E.A., Food Hydrocolloids, 1987, Vol.1, No. 5-6, p.

- 15 B. Diderichsen and L. Christiansen, Cloning of a maltogenic α amylase from Bacillus stearothermophilus, FEMS Microbiol. letters: 56: pp. 53-60 (1988)
 - Hudson et al., Practical Immunology, Third edition (1989), Blackwell Scientific Publications,
- 20 Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor, 1989
 - S.L. Beaucage and M.H. Caruthers, Tetrahedron Letters 22, 1981, pp. 1859-1869

Matthes et al., The EMBO J. 3, 1984, pp. 801-805.

- 25 R.K. Saiki et al., <u>Science</u> <u>239</u>, 1988, pp. 487-491. Morinaga et al., (1984, Biotechnology 2:646-639) Nelson and Long, Analytical Biochemistry 180, 1989, pp. 147-151 Hunkapiller et al., 1984, Nature 310:105-111
- R. Higuchi, B. Krummel, and R.K. Saiki (1988). A general method 30 of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucl. Acids Res. **16**:7351-7367.

Dubnau et al., 1971, <u>J. Mol. Biol.</u> <u>56</u>, pp. 209-221. Gryczan et al., 1978, <u>J. Bacteriol.</u> 134, pp. 318-329.

35 S.D. Erlich, 1977, Proc. Natl. Acad. Sci. 74, pp. 1680-1682. Boel et al., 1990, Biochemistry 29, pp. 6244-6249.

CLAIMS

1. A variant of a parent Termamyl-like α -amylase, which variant α -amylase has been altered in comparison to the parent α -amylase in one or more solvent exposed amino acid residues on the surface of the α -amylase to increase the overall hydrophobicity of the α -amylase and/or to increase the overall numbers of methyl groups in the sidechains of said solvent exposed amino acid residues on the surface.

- 2. The variant according to claim 1, wherein one or more solvent exposed amino acid residues on a concav surface with inwards bend are altered to more hydrophobic amino acid residues.
- 15 3. The variant according to claim 1, wherein one or more solvent exposed amino acid residues on a convex surface are altered to increase the number of methyl groups in the sidechain.
- A variant of a parent Termamyl-like α-amylase, comprising an alteration at one or more positions selected from the group of:
 E376, S417, A420, S356, Y358;
 - wherein (a) the alteration(s) are independently
 - (i) an insertion of an amino acid downstream of the amino acid which occupies the position,
- 25 (ii) a deletion of the amino acid which occupies the position, or
 - (iii) a substitution of the amino acid which occupies the position with a different amino acid,
- (b) the variant has α -amylase activity and (c) each position corresponds to a position of the amino acid sequence of the parent Termamyl-like α -amylase having the amino acid sequence of SEQ ID NO: 4.
- 5. The variant according to claim 4, which variant has an alteration in one or more solvent exposed amino acid residues as defined in any of claims 1-3.

- 6. The variant of any of claims 1-5, wherein the parent Termamyl-like α-amylase is derived from a strain of B. licheniformis, B. amyloliquefaciens, B. stearothermophilus, Bacillus 5 sp. NCIB 12289, NCIB 12512, NCIB 12513 or DSM 9375.
 - 7. The variant accordin to claim 6, wherein the parent α -amylase is derived from B. licheniformis strain ATCC 27811.
- 10 8. The variant according to claims 1-6, wherein the parent Termamyl-like α -amylase is any of the α -amylases selected from the group depicted in SEQ ID NOS: 1, 2, 3, 4, 5, 6, 7, and 8.
- 9. The variant according to any of claims 1-8, wherein the parent Termamyl-like α-amylase has an amino acid sequence which has a degree of identity to SEQ ID NO: 4 of at least 65%, preferably 70%, more preferably at least 80%, even more preferably at least about 90%, even more preferably at least 95%, even more preferably at least 97%, and even more preferably at least 97%.
- 10. The variant according to any of claims 1-10, wherein the parent Termamyl-like α-amylase is encoded by a nucleic acid sequence which hydridizes under medium, preferred high stringency conditions, with the nucleic acid sequence of SEQ ID NO: 12.
- 11. The variant accordint to claims 1-10, wherein the parent Termamyl-like α -amylase is a hybrid of the B. licheniformis α -amylase shown in SEQ ID NO: 4 and B. amyloliquefaciens α -amylase shown in SEQ ID NO: 5.
 - 12. The variant according to claim 11, wherein the parent hybrid Termayl-like $\alpha\text{-amylase}$ is LE174.

43

13. The variant according to any of claims 1-12, wherein the parent α -amylase further has a mutation in one or more of the following positions: K176, I201 and H205 (using the numbering in SEQ ID NO: 4).

- 14. The variant according to claim 13, wherein the parent α -amylase has one or more the following substitutions: K176R, I201F and/or H205N (using the numbering in SEQ ID NO: 4).
- 10 15. The variant according to claim 14, wherein the parent α -amylase has the following substitutions: K176R+I201F+H205N (using the numbering in SEQ ID NO: 4).
- 16. The variant according to claims 1 to 15, wherein the variant 15 has increased stability at pHs below 7.0 (acidic pH) and/or at low calcium concentration and/or at temperatures in the range from 95 to 160°C (high temperatures) relative to the parent α -amylase.
- 20 17. The variant according to any of claims 1 to 16, which variant has one or more of the following substitutions: E376K, S417T, A420Q, R, S356A, Y358F.
- 18. A DNA construct comprising a DNA sequence encoding an α 25 amylase variant according to any one of claims 1 to 17.
 - 19. A recombinant expression vector which carries a DNA construct according to claim 18.
- 30 20. A cell which is transformed with a DNA construct according to claim 18 or a vector according to claim 19.
 - 21. A cell according to claim 20, which is a microorganism.
- 35 22. A cell according to claim 21, which is a bacterium or a fungus.

44

- 23. The cell according to claim 22, which is a grampositive bacterium such as Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Bacillus stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus circulans, Bacillus lautus or Bacillus thuringiensis.
- 24. A detergent additive comprising an α -amylase variant accor-10 ding to any one of claims 1 to 17, optionally in the form of a non-dusting granulate, stabilised liquid or protected enzyme.
 - 25. A detergent additive according to claim 24 which contains 0.02-200 mg of enzyme protein/g of the additive.
- 26. A detergent additive according to claims 24 or 25, which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.

20

- 27. A detergent composition comprising an α -amylase variant according to any of claims 1 to 17.
- 28. A detergent composition according to claim 27 which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.
- 29. A manual or automatic dishwashing detergent composition comprising an α -amylase variant according to any of claims 1 to 30 17.
- 30. A dishwashing detergent composition according to claim 29 which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, another amylolytic enzyme and/or a cellulase.
 - 31. A manual or automatic laundry washing composition comprising

WO 00/29560

PCT/DK99/00628

45

an α -amylase variant according to any of claims 1 to 17.

- 32. A laundry washing composition according to claim 31, which additionally comprises another enzyme such as a protease, a lipase, a peroxidase, an amylolytic enzyme and/or a cellulase.
 - 33. A composition comprising:
- (i) a mixture of the α -amylase from B. licheniformis having the sequence shown in SEQ ID NO: 4 with one or more variants according to any of claims 1 to 17 derived from (as the parent Termamyl-like α -amylase) the B. stearothermophilus α -amylase having the sequence shown in SEQ ID NO: 3; or
- (ii) a mixture of the α -amylase from B. stearothermophilus having the sequence shown in SEQ ID NO: 3 with one or more variants according to any of claims 1 to 17 derived from one or more other parent Termamyl-like α -amylases; or
- (iii) a mixture of one or more variants according any of claims 1 to 17 derived from (as the parent Termamyl-like α -amylase) the B. stearothermophilus α -amylase having the sequence shown in SEQ 20 ID NO: 3 with one or more variants according to the invention derived from one or more other parent Termamyl-like α -amylases.
- 34. The composition comprising a variant of any of claims 1 to 17 wherein the parent α -amylase is a hybrid alpha-amylase 25 comprising a N-terminal part of the B. amyloliquefaciens α -amylase shown in SEQ ID NO: 5 and a C-terminal part of the B. licheniformis α -amylase shown in SEQ ID NO: 4.
- 35. The composition according to claim 34, wherein the parent so hybrid Termamyl-like α -amylase is LE174
 - 36. The composition according to claims 35, wherein the parent Termamyl-like α -amylase is LE174 with an alterantion in one or more of the following positions: K176, I201 and H205.

- 37. The composition according to claims 36, wherein the parent Termamyl-like α -amylase is LE174 with one or more of the following substitutions: K176R, I201F and H205N.
- 38. Use of an α -amylase variant according to any one of claims 1 to 17 or a composition according to claims 33 to 37 for washing and/or dishwashing.
- 10 39. Use of an α -amylase variant according to any one of claims 1 to 17 or a composition according to claims 33 to 37 for textile desizing.
- 40. Use of an α -amylase variant according to any of claims 1 to 15 17 or a composition according to claims 33 to 37 for starch liquefaction.
- 41. A method for generating a variant of a parent Termamyl-like α -amylase, which variant exhibits increased stability at high temperatures relative to the parent, the method comprising:
 - (a) subjecting a DNA sequence encoding the parent Termamyl-like α -amylase to random mutagenesis,
 - (b) expressing the mutated DNA sequence obtained in step (a) in a host cell, and
- 25 (c) screening for host cells expressing a mutated α -amylase which has increased stability at high temperatures relative to the parent Termamyl-like α -amylase.

WO 00/29560

		1				50
	1	HHNGTNGTMM	QYFEWHLPND	GNHWNRLRDD	ASNLRNRGIT	AIWIPPAWKG
5	2	NGTNGTMM	QYFEWYLPND	GNHWNRLRSD	ASNLKDKGIS	AVWIPPAWKG
	3	HHNGTNGTMM	OYFEWYLPND	GNHWNRLRDD	AANLKSKGIT	AVWIPPAWKG
	4	VNGTLM	QYFEWYTPND	GQHWKRLQND	AEHLSDIGIT	AVWIPPAYKG
	5	ANLNGTLM	QYFEWYMPND	GQHWRRLQND	SAYLAEHGIT	AVWIPPAYKG
	6	.AAPFNGTMM	QYFEWYLPDD	GTLWTKVANE	ANNLSSLGIT	ALWLPPAYKG
10						
		51				. 100
	1	TSQNDVGYGA	YDLYDLGEFN	QKGTVRTKYG	TRSQLESAIH	ALKNNGVQVY
	2	ASQNDVGYGA	YDLYDLGEFN	QKGTIRTKYG	TRNQLQAAVN	ALKSNGIQVY
	3	TSQNDVGYGA	YDLYDLGEFN	QKGTVRTKYG	TRNQLQAAVT	SLKNNGIQVY
15	4	LSQSDNGYGP	YDLYDLGEFQ	QKGTVRTKYG	TKSELQDAIG	SLHSRNVQVY
	5	TSQADVGYGA		QKGTVRTKYG	TKGELQSAIK	SLHSRDINVY
	6	TSRSDVGYGV	YDLYDLGEFN	QKGTVRTKYG	TKAQYLQAIQ	AAHAAGMQVY
				•		
		101	•		•	150
20	1		ADATENVLAV	EVNPNNRNQE	ISGDYTIEAW	TKFDFPGRGN
	2		א א מולא אים ידי א רו א		TOOPINGTERNI	TREDEDARAN
		GDVVMNHKGG		EVNPNNRNQE	VSGEYTIEAW	TKFDFPGRGN
	3	GDVVMNHKGG	ADGTEIVNAV	EVNRSNRNQE	TSGEYAIEAW	TKFDFPGRGN
	3 4	GDVVMNHKGG GDVVLNHKAG	ADGTEIVNAV ADATEDVTAV	EVNRSNRNQE EVNPANRNQE	TSGEYAIEAW TSEEYQIKAW	TKFDFPGRGN TDFRFPGRGN
	3 4 5	GDVVMNHKGG GDVVLNHKAG GDVVINHKGG	ADGTEIVNAV ADATEDVTAV ADATEDVTAV	EVNRSNRNQE EVNPANRNQE EVDPADRNRV	TSGEYAIEAW TSEEYQIKAW ISGEHLIKAW	TKFDFPGRGN TDFRFPGRGN THFHFPGRGS
25	3 4	GDVVMNHKGG GDVVLNHKAG	ADGTEIVNAV ADATEDVTAV ADATEDVTAV	EVNRSNRNQE EVNPANRNQE	TSGEYAIEAW TSEEYQIKAW	TKFDFPGRGN TDFRFPGRGN
25	3 4 5	GDVVMNHKGG GDVVLNHKAG GDVVINHKGG ADVVFDHKGG	ADGTEIVNAV ADATEDVTAV ADATEDVTAV	EVNRSNRNQE EVNPANRNQE EVDPADRNRV	TSGEYAIEAW TSEEYQIKAW ISGEHLIKAW	TKFDFPGRGN TDFRFPGRGN THFHFPGRGS TKFDFPGRGN
25	3 4 5 6	GDVVMNHKGG GDVVLNHKAG GDVVINHKGG ADVVFDHKGG	ADGTEIVNAV ADATEDVTAV ADATEDVTAV ADGTEWVDAV	EVNRSNRNQE EVNPANRNQE EVDPADRNRV EVNPSDRNQE	TSGEYAIEAW TSEEYQIKAW ISGEHLIKAW ISGTYQIQAW	TKFDFPGRGN TDFRFPGRGN THFHFPGRGS TKFDFPGRGN
25	3 4 5 6	GDVVMNHKGG GDVVLNHKAG GDVVINHKGG ADVVFDHKGG 151 TYSDFKWRWY	ADGTEIVNAV ADATEDVTAV ADATEDVTAV ADGTEWVDAV HFDGVDWDQS	EVNRSNRNQE EVNPANRNQE EVDPADRNRV EVNPSDRNQE RQFQNRIYKF	TSGEYAIEAW TSEEYQIKAW ISGEHLIKAW ISGTYQIQAW RGDGKAWDWE	TKFDFPGRGN TDFRFPGRGS THFHFPGRGS TKFDFPGRGN 200 VDSENGNYDY
	3 4 5 6	GDVVMNHKGG GDVVLNHKAG GDVVINHKGG ADVVFDHKGG 151 TYSDFKWRWY THSNFKWRWY	ADGTEIVNAV ADATEDVTAV ADATEDVTAV ADGTEWVDAV HFDGVDWDQS HFDGVDWDQS	EVNRSNRNQE EVNPANRNQE EVDPADRNRV EVNPSDRNQE RQFQNRIYKF RKLNNRIYKF	TSGEYAIEAW TSEEYQIKAW ISGEHLIKAW ISGTYQIQAW RGDGKAWDWE RGDGKGWDWE	TKFDFPGRGN TDFRFPGRGS THFHFPGRGS TKFDFPGRGN 200 VDSENGNYDY VDTENGNYDY
25	3 4 5 6	GDVVMNHKGG GDVVLNHKAG GDVVINHKGG ADVVFDHKGG 151 TYSDFKWRWY THSNFKWRWY NHSSFKWRWY	ADGTEIVNAV ADATEDVTAV ADATEDVTAV ADGTEWVDAV HFDGVDWDQS HFDGVDWDQS HFDGTDWDQS	EVNRSNRNQE EVNPANRNQE EVDPADRNRV EVNPSDRNQE RQFQNRIYKF RKLNNRIYKF RQLQNKIYKF	TSGEYAIEAW TSEEYQIKAW ISGEHLIKAW ISGTYQIQAW RGDGKAWDWE RGDGKGWDWE RGTGKAWDWE	TKFDFPGRGN TDFRFPGRGS THFHFPGRGS TKFDFPGRGN 200 VDSENGNYDY VDTENGNYDY VDTENGNYDY
	3 4 5 6 1 2 3 4	GDVVMNHKGG GDVVLNHKAG GDVVINHKGG ADVVFDHKGG 151 TYSDFKWRWY THSNFKWRWY NHSSFKWRWY TYSDFKWHWY	ADGTEIVNAV ADATEDVTAV ADATEDVTAV ADGTEWVDAV HFDGVDWDQS HFDGVDWDQS HFDGTDWDQS HFDGADWDES	EVNRSNRNQE EVNPANRNQE EVDPADRNRV EVNPSDRNQE RQFQNRIYKF RKLNNRIYKF RQLQNKIYKF RKI.SRIFKF	TSGEYAIEAW TSEEYQIKAW ISGEHLIKAW ISGTYQIQAW RGDGKAWDWE RGDGKGWDWE RGTGKAWDWE RGEGKAWDWE	TKFDFPGRGN TDFRFPGRGN THFHFPGRGS TKFDFPGRGN 200 VDSENGNYDY VDTENGNYDY VDTENGNYDY VSSENGNYDY
	3 4 5 6	GDVVMNHKGG GDVVLNHKAG GDVVINHKGG ADVVFDHKGG 151 TYSDFKWRWY THSNFKWRWY NHSSFKWRWY	ADGTEIVNAV ADATEDVTAV ADATEDVTAV ADGTEWVDAV HFDGVDWDQS HFDGVDWDQS HFDGTDWDQS HFDGADWDES HFDGTDWDES	EVNRSNRNQE EVNPANRNQE EVDPADRNRV EVNPSDRNQE RQFQNRIYKF RKLNNRIYKF RQLQNKIYKF	TSGEYAIEAW TSEEYQIKAW ISGEHLIKAW ISGTYQIQAW RGDGKAWDWE RGDGKGWDWE RGTGKAWDWE	TKFDFPGRGN TDFRFPGRGS THFHFPGRGS TKFDFPGRGN 200 VDSENGNYDY VDTENGNYDY VDTENGNYDY

2/4

5		201				250
	1	LMYADVDMDH	PEVVNELRRW	GEWYTNTLNL	DGFRIDAVKH	IKYSFTRDWL
	2	LMYADIDMDH	PEVVNELRNW			
	3	LMYADVDMDH	PEVIHELRNW			_
	4	LMYADVDYDH	PDVVAETKKW	- ·		
10	5		PDVAAEIKRW		DGFRLDAVKH	IKFSFLRDWV
	6		PEVVTELKNW			IKFSFFPDWL
	-				DOLLEDITATE	IKIBIFFDWD
		251		•		300
	1		MFAVAEFWKN	DIGALENVIN	KTNWNHSVFD	
15	$\bar{\hat{2}}$		MFAVAEFWKN	DLGAIENYLN	KTNWNHSVFD	VPLHYNFYNA
	3		MFAVAEFWKN		KTSWNHSAFD	VPLHYNLYNA
	4		MFTVAEYWQN		KTSFNQSVFD	VPLHFNLQAA
	5		MFTVAEYWON		KTNFNHSVFD	
	6		LFTVGEYWSY		KTDGTMSLFD	VPLHYQFHAA APLHNKFYTA
20	J	SIVESQIGE	DF I VGEIWSI	DINKLIMITI	KIDGIMSLID	APLHNKFYTA
20		301				350
	1		KLLNGTVVQK	UDMUNITERD	MIDCODGEGI	350
	2		QIFNGTVVQR			
	3		NILNGSVVQK		NHDSQPEEAL	
25	4					ESFVQQWFKP
25	5	SOUGGIDMR	KLLDGIVVSK	HPEKAVITVE	NHDTQPGQSL	ESTVQTWFKP
	5 6	STOGGGYDMR	KLLNGTVVSK	HPLKSVTFVD	NHDTQPGQSL	ESTVQTWFKP
	0	SKSGGAFDMR	TUMINTLIMED	OPTLAVITYOD	NHDTEPGQAL	QSWVDPWFKP
		251				
	1	351	OGWDGWGDWGD			400
30	1		QGYPSVFYGD		.VPAMKAKID	
	2		QGYPSVFYGD			
	3	LAYALVLTRE		YYGIPTHG	.VPAMKSKID	
	4		SGYPQVFYGD	MYGTKGTSPK		PILKARKEYA
	5		SGYPQVFYGD	MYGTKGDSQR		PILKARKQYA
35	6	LAYAFILTRQ	EGYPCVFYGD	YYGIPQYN	.IPSLKSKID	PLLIARRDYA
				•		
	_	401				450
	1		HNIIGWTREG	NTTHPNSGLA	TIMSDGPGGE	KWMYVGQNKA
	2	YGRQN	• • • • • • • • •	• • • • • • • • •		
40	3		HDIIGWTREG			KWMYVGKNKA
	4		PDVIGWTREG			KRMYAGLKNA
	5		HDIVGWTREG			KRMYVGRQNA
	6	YGTQHDYLDH	SDIIGWTREG	GTEKPGSGLA	ALITDGPGGS	KWMYVGKQHA

Fig. 1 (continued)

3/4

		451				500
5	1	GQVWHDITGN	KPGTVTINAD	GWANFSVNGG	SVSIWVKR	• • • • • • • • •
	2			• • • • • • • • •		• • • • • • • • •
	3	GQVWRDITGN	RTGTVTINAD	GWGNFSVNGG	SVSVWVKQ	
	4	GETWYDITGN	RSDTVKIGSD	GWGEFHVNDG	SVSIYVQ	
	5	GETWHDITGN	RSEPVVINSE	GWGEFHVNGG	SVSIYVQR	
0	6	GKVFYDLTGN	${\tt RSDTVTINSD}$	GWGEFKVNGG	SVSVWVPRKT	TVSTIARPIT
		501	519	9		
-	1					,
	2					
.5	3					
	4			•		
	5					
	6	TROWTGEFVR	WTEPRIVAW			

Fig. 1 (continued)

4/4

Fig. 2

SEQUENCE LISTING

5	(1) GENE	APPI (A) (B) (C) (E) (F)	LICAN NAM STI CON CON POS TEI	NT: ME: 1 REET TY: 1 JNTR! STAL LEPH(NOVO : NOV OK-28 Y: De CODI	NORI VO A: 880 enman E (Z: +45	lle Bags ck IP): 44	DK-2	2880 8 88							
15	(iii)	COMI (A) (B)	BER (PUTEI) MEI) COI	OF SI R REA DIUM MPUTI	EQUEI ADABI TYPI ER:	ICES:	: 32 DRM: loppy PC co	y dia	sk tible	3				•		
20	(2) INFO	SEQU (A) (B) (C)	JENCI LEI TYI STI	E CHA NGTH PE: & RANDI	ARAC' : 489 amino EDNES		STICS ino a id sing:	S: acids	5							
25	(iii	MOLI) Orga SEQU	ECULI anis	TY)	PE: pacil	prote lus s	ein sp.	EQ II	OM C	: 1:						
30	His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	Tyr
	Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Arg	Asp	Asp 30	Ala	Ala
35	Asn	Leu	Lys 35	Ser	Lys	Gly	Ile	Thr 40	Ala	Va1	Trp	Ile	Pro 45	Pro	Ala	Trp
	Lys	Gly 50	Thr	Ser	Gln	Asn	Asp 55	Val	Gly	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Tyr
40	Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	Val 75	Arg	Thr	Lys	Tyr	Gly 80
45	Thr	Arg	Asn	Gln	Leu 85	Gln	Ala	Ala	Val	Thr 90	Ser	Leu	Lys	Asn	Asn 95	Gly
	Ile	Gln	Val	Tyr 100	Gly	Asp	Val	Val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
50	Gly	Thr	Glu 115			Asn							Ser 125		Arg	Asn
	Gln	Glu 130	Thr	Ser	Gly	Glu	Tyr 135	Ala	Ile	Glu	Ala	Trp 140	Thr	Lys	Phe	Asp
55	Phe 145	Pro	Gly	Arg	Gly	Asn 150	Asn	His	Ser	Ser	Phe 155	Lys	Trp	Arg	Trp	Tyr 160
60	His	Phe	Asp	Gly	Thr 165	Asp	Trp	Asp	Gln	Ser 170	Arg	Gln	Leu	Gln	Asn 175	Lys
	Ile	Tyr	Lys	Phe 180	Arg	Gly	Thr	Gly	Lys 185	Ala	Trp	Asp	Trp	Glu 190	Val	Asp
65	Thr	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Val	Asp	Met

		Asp	His 210	Pro	Glu	Val	Ile	His 215	Glu	Leu	Arg	Asn	Trp 220	Gly	Val	Trp	Tyr
5		Thr 225	Asn	Thr	Leu	Asn	Leu 230	Asp	Gly	Phe	Arg	Ile 235	Asp	Ala	Val	Lys	His 240
		Ile	Lys	Tyr	Ser	Phe 245	Thr	Arg	Asp	Trp	Leu 250	Thr	His	Val	Arg	Asn 255	Thr
10		Thr	Gly	Lys	Pro 260	Met	Phe	Ala	Val	Ala 265	Glu	Phe	Trp	Lys	Asn 270	Asp	Leu
15		Gly	Ala	Ile 275	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Ser	Trp	Asn 285	His	Ser	Val
15		Phe	Asp 290	Val	Pro	Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Asn	Ser	Gly
20		Gly 305	Tyr	Tyr	Asp	Met	Arg 310	Asn	Ile	Leu	Asn	Gly 315	Ser	Val	Val	Gln	Lys 320
		His	Pro	Thr	His	Ala 325	Val	Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro
25		Gly	Glu	Ala	Leu 340	Glu	Ser	Phe	Val	Gln 345	Gln	Trp	Phe	Lys	Pro 350	Leu	Ala
30		Tyr	Ala	Leu 3 5 5	Val	Leu	Thr	Arg	Glu 360	Gln	Gly	Tyr	Pro	Ser 365	Val	Phe	Tyr
50		Gly	Asp 370	Tyr	Tyr	Gly	Ile	Pro 375	Thr	His	Gly	Val	Pro 380	Ala	Met	Lys	Ser
35		Lys 385	Ile	Asp	Pro	Leu	Leu 390	Gln	Ala	Arg	Gln	Thr 395	Phe	Ala	Tyr	Gly	Thr 400
		Gln	His	Asp	Tyr	Phe 405	Asp	His	His	Asp	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu
40		Gly	Asn	Ser	Ser 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
45		Gly	Pro	Gly 435	Gly	Asn	Lys	Trp	Met 440	Tyr	Val	Gly	ГÀв	Asn 445	Lys	Ala	Gly
			450					455					460		Val		
50		Asn 465		Asp	Gly	Trp	Gly 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480
		Val	Trp	Val	ГÀЗ	Gln 485											
55	(2)	INFO (i)	SEQ (A (B	UENC) LE) TY	FOR E CH NGTH PE: RAND	ARAC : 48 amin	TERI 5 am o ac	STIC ino id	S: acid	s							
60	(xi)	(iii) TO ECUL anis	POLO E TY m: B	GY: PE: acil	line prot lus	ar ein sp.		: 2:							
65		His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	His

WO 00/29560

	Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Arg	Asp	Asp 30	Ala	Ser
5	Asn	Leu	Arg 35	Asn	Arg	Gly	Ile	Thr 40	Ala	Ile	Trp	Ile	Pro 45	Pro	Ala	Trp
	Lys	Gly 50	Thr	Ser	Gln	Asn	Asp 55	Val	Gly	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Tyr
10	Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	Val 75	Arg	Thr	Lys	Tyr	Gly 80
15	Thr	Arg	Ser	Gln	Leu 85	Glu	Ser	Ala	Ile	His 90	Ala	Leu	Lys	Asn	Asn 95	Gly
	Val	Gln	Val	Tyr 100	Gly	Asp	Val	Val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
20	Ala	Thr	Glu 115	Asn	Val	Leu	Ala	Val 120	Glu	Val	Asn	Pro	Asn 125	Asn	Arg	Asn
	Gln	Glu 130	Ile	Ser	Gly	Asp	Tyr 135	Thr	Ile	Glu	Ala	Trp 140	Thr	Lys	Phe	Asp
25	Phe 145	Pro	Gly	Arg	Gly	Asn 150	Thr	Tyr	Ser	Asp	Phe 155	Lys	Trp	Arg	Trp	Tyr 160
30	His	Phe	Asp	Gly	Val 165	Asp	Trp	Asp	Gln	Ser 170	Arg	Gln	Phe	Gln	Asn 175	Arg
30	Ile	Tyr	Lys	Phe 180	Arg	Gly	Asp	Gly	Lys 185	Ala	Trp	Asp	Trp	Glu 190	Val	Asp
35	Ser	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Val	Asp	Met
	Asp	His 210	Pro	Glu	Val	Val	As n 215	Glu	Leu	Arg	Arg	Trp 220	Gly	Glu	Trp	Tyr
40	Thr 225	Asn	Thr	Leu	Asn	Leu 230	Asp	Gly	Phe	Arg	Ile 235	Asp	Ala	Val	Lys	His 240
45	Ile	Lys	Tyr	Ser	Phe 245	Thr	Arg	Asp	Trp	Leu 250	Thr	His	Val	Arg	Asn 255	Ala
45	Thr	Gly	Lys	Glu 260	Met	Phe	Ala	Val	Ala 265	Glu	Phe	Trp	Lys	Asn 270	Asp	Leu
50	Gly	Ala	Leu 275	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Asn	Trp	Asn 285	His	Ser	Val
	Phe	Asp 290	Val	Pro	Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Asn	Ser	Gly
55	Gly 305	Asn	Tyr	Asp	Met	Ala 310	Lys	Leu	Leu	Asn	Gly 315	Thr	Val	Val	Gln	Lys 320
.	His	Pro	Met	His	Ala 325	Val	Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro
60	Gly	Glu	Ser	Leu 340	Glu	Ser	Phe	Val	Gln 345	Glu	Trp	Phe	Lys	Pro 350	Leu	Ala
65	Tyr	Ala	Leu 355	Ile	Leu	Thr	Arg	Glu 360	Gln	Gly	Tyr	Pro	Ser 365	Val	Phe	Tyr
	Glv	Δsn	Туг	Tyr	Glv	Tle	Pro	Thr	His	Ser	Val	Pro	Ala	Met	Lvs	Ala

			370					375					380				
_		Lys 385	Ile	Asp	Pro	Ile	Leu 390	Glu	Ala	Arg	Gln	Asn 395	Phe	Ala	Tyr	Gly	Th:
5		Gln	His	Asp	Tyr	Phe 405	Asp	His	His	Asn	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu
10		Gly	Asn	Thr	Thr 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
		Gly	Pro	Gly 435	Gly	Glu	Lys	Trp	Met 440	Tyr	Val	Gly	Gln	Asn 445	Lys	Ala	Gly
15			450	-				455					460	Thr			
20		Asn 465	Ala	Asp	Gly	Trp	Ala 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480
		Ile	Trp	Val	Lys	Arg 485											
25	(2)	(i)	SEQUAL (A)	JENCI) LEI) TYI) STI	FOR S E CHA NGTH: PE: 8 RANDI POLOC	ARACT 514 mino EDNES	TERIS am: contact sciences:	STICS ino a id sing	S: acids	5							
30		(ii) (iii) (xi)	Orga	anis	n: Ba	acil.	lus :	stear				18.					
35		Ala 1	Ala	Pro	Phe	Asn 5	Gly	Thr	Met	Met	Gln 10	Tyr	Phe	Glu	Trp	Tyr 15	Leu
		Pro	Asp	Asp	Gly 20	Thr	Leu	Trp	Thr	Lys 25	Val	Ala	Asn	Glu	Ala 30	Asn	Asr
40				35					40					Pro 45			
45		_	50					55					60	Asp			
		65	_				70					75		Lys			80
50		_				85					90			Ala		95	
				-	100					105				Gly	110		
55				115					120					Asp 125			
60			130					135					140	Lys			
		145	_				150					155		Arg			160
65			_	_		165					170			Ser		175	
		Lys	Phe	Arg	Gly	Ile	Gly	Lys	Ala	Trp	Asp	Trp	Glu	Val	Asp	Thr	Glı

				180					185					190		
	Asn	Gly	Asn 195	Tyr	Asp	Tyr	Leu	Met 200	Tyr	Ala	Asp	Leu	Asp 205	Met	Asp	His
5	Pro	Glu 210	Val	Val	Thr	Glu	Leu 215	Lys	Ser	Trp	Gly	Lys 220	Trp	Tyr	Val	Asn
10	Thr 225	Thr	Asn	Ile	Asp	Gly 230	Phe	Arg	Leu	qaA	Ala 235	Val	Lys	His	Ile	Lys 240
	Phe	Ser	Phe	Phe	Pro 245	Asp	Trp	Leu	Ser	Asp 250	Val	Arg	Ser	Gln	Thr 255	Gly
15	Lys	Pro	Leu	Phe 260	Thr	Val	Gly	Glu	Tyr 265	Trp	Ser	Tyr	Asp	Ile 270	Asn	Lys
	Leu	His	Asn 275	Tyr	Ile	Met	Lys	Thr 280	Asn	Gly	Thr	Met	Ser 285		Phe	Asp
20	Ala	Pro 290	Leu	His	Asn	Lys	Phe 295	Tyr	Thr	Ala	Ser	100 100	Ser	Gly	Gly	Thr
25	Phe 305	Asp	Met	Arg	Thr	Leu 310	Met	Thr	Asn	Thr	Leu 315	Met	Lys	Asp	Gln	Pro 320
	Thr	Leu	Ala	Val	Thr 325	Phe	Val	Asp	Asn	His 330	Asp	Thr	Glu	Pro	Gly 335	Gln
30	Ala	Leu	Gln	Ser 340	Trp	Val	Asp	Pro	Trp 345	Phe	Lys	Pro	Leu	Ala 350	Tyr	Ala
25	Phe	Ile	Leu 355	Thr	Arg	Gln	Glu	Gly 360	Tyr	Pro	Сув	Val	Phe 365	Tyr	Gly	Asp
35	Tyr	Tyr 370	Gly	Ile	Pro	Gln	Tyr 375	Asn	Ile	Pro	Ser	Leu 38,0	Lys	Ser	Lys	Ile
40	Asp 385	Pro	Leu	Leu	Ile	Ala 390	Arg	Arg	Asp	Tyr	Ala 395	Tyr	Gly	Thr	Gln	His 400
	Asp	Tyr	Leu	Asp	His 405	Ser	Asp	Ile	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Val
45	Thr	Glu	Lys	Pro 420	Gly	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
50	Gly	Gly	Ser 435	Lys	Trp	Met	Tyr	Val 440	Gly	Lys	Gln	His	Ala 445	Gly	Lys	Val
50	Phe	Tyr 450	Asp	Leu	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	Val 460	Thr	Ile	Asn	Ser
5 5	Asp 465	Gly	Trp	Gly	Glu	Phe 470	Lys	Val	Asn	Gly	Gly 47 5	Ser	Val	Ser	Val	Trp 480
	Val	Pro	Arg	Lys	Thr 485	Thr	Val	Ser	Thr	Ile 490	Ala	Trp	Ser	Ile	Thr 495	Thr
60	Arg	Pro	Trp	Thr 500	Asp	Glu	Phe	Val	Arg 505	Trp	Thr	Glu	Pro	Arg 510	Leu	Val
	Ala	Trp														

⁽²⁾ INFORMATION FOR SEQ ID NO: 4:
(i) SEQUENCE CHARACTERISTICS:

_	/223	(B) (C) (D)	TYI STI	NGTH PE: 6 RANDI POLOG	emino EDNES BY:	o ac: SS: s Linea	id sing: ar		5							
5	(ii) (iii) (xi)	Orga	anis	n: Ba	acil	lus :	lich									
10	Ala 1	Asn	Leu	Asn	Gly 5	Thr	Leu	Met	Gln	Tyr 10	Phe	Glu	Trp	Tyr	Met 15	Pro
	Asn	Asp	Gly	Gln 20	His	Trp	Arg	Arg	Leu 25	Gln	Asn	Asp	Ser	Ala 30	Tyr	Leu
15	Ala	Glu	His 35	Gly	Ile	Thr	Ala	Val 40	Trp	Ile	Pro	Pro	Ala 45	Tyr	Lys	Gly
20	Thr	Ser 50	Gln	Ala	Asp	Val	Gly 55	Tyr	Gly	Ala	Tyr	Asp 60	Leu	Tyr	Asp	Leu
	Gly 65	Glu	Phe	His	Gln	Lys 70	Gly	Thr	Val	Arg	Thr 75	Lys	Tyr	Gly	Thr	Lys 80
25	Gly	Glu	Leu	Gln	Ser 85	Ala	Ile	Lys	Ser	Leu 90	His	Ser	Arg	Asp	Ile 95	Asn
	Val	Tyr	Gly	Asp 100	Val	Val	Ile	Asn	His 105	Lys	Gly	Gly	Ala	Asp 110	Ala	Thr
30	Glu	Asp	Val 115	Thr	Ala	Val	Glu	Val 120	Asp	Pro	Ala	Asp	Arg 125	Asn	Arg	Val
35	ż	130	-	Glu			135	_		-		140				
	145		-	Ser		150					155					160
40		_		Asp	165					170					175	
	Phe	Gln	Gly	Lys 180	Ala	Trp	Asp	Trp	Glu 185	Val	Ser	Asn	Glu	Asn 190	Gly	Asn
45	Tyr	Asp	Tyr 195	Leu	Met	Tyr	Ala	Asp 200	Ile	Asp	Tyr	Asp	His 205	Pro	qaA	Val
50		210		Ile	-	_	215	_		_	_	220				
	225		_	Phe		230					235					240
55				Trp	245					250					255	
	Phe	Thr	Val	Ala 260	Glu	Tyr	Trp	Gln	Asn 265	Asp	Leu	Gly	Ala	Leu 270	Glu	Asn
60	•		275	Lys				280					285			
65		290		Phe			295				_	300	_		_	
	Arg 305	Lys	Leu	Leu	naA	Gly 310	Thr	Val	Val	Ser	Lys 315	His	Pro	Leu	Lys	Ser 320

		Val	Thr	Phe	Val	Asp 325	Asn	His	Asp	Thr	Gln 330	Pro	Gly	Gln	Ser	Leu 335	Glu
5		Ser	Thr	Val	Gln 340	Thr	Trp	Phe	Lys	Pro 345	Leu	Ala	Tyr	Ala	Phe 350	Ile	Leu
		Thr	Arg	Glu 355	Ser	Gly	Tyr	Pro	Gln 360	Val	Phe	Tyr	Gly	Asp 365	Met	Tyr	Gly
10		Thr	Lys 370	Gly	Asp	Ser	Gln	Arg 375	Glu	Ile	Pro	Ala	Leu 380	Lys	His	Lys	Ile
15		Glu 385	Pro	Ile	Leu	Lys	Ala 390	Arg	Lys	Gln	Tyr	Ala 395	Tyr	Gly	Ala	Gln	His 400
		Asp	Tyr	Phe	Asp	His 405	His	Asp	Ile	Val	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Asp
20		Ser	Ser	Val	Ala 420	Asn	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
25		Gly	Gly	Ala 435	Lys	Arg	Met	Tyr	Val 440	Gly	Arg	Gln	Asn	Ala 445	Gly	Glu	Thr
25		Trp	His 450	Asp	Ile	Thr	Gly	Asn 455	Arg	Ser	Glu	Pro	Val 460	Val	Ile	Asn	Ser
30	٠	Glu 465	Gly	Trp	Gly	Glu	Phe 470	His	Val	Asn	Gly	Gly 475	Ser	Val	Ser	Ile	Tyr 480
		Val	Gln	Arg													•
35	(2)	INFOI (i)	SEQUAL (A)	ION I JENCI) LEI) TYI) STI	E CHI NGTH PE: 4	ARAC' : 480 amin	reria 0 am: 5 ac:	STICS ino a id	3: acida	5							
40		(ii) (iii) (xi)	(D) MOLI Orga) TO: ECUL! anis:	POLOGE TY:	GY: : PE: : acil:	linea prote lus	ar ein amyl	pilc	uefa O NO	cien: : 5:	5					
45		Val 1	Asn	Gly	Thr	Leu 5	Met	Gln	Tyr	Phe	Glu 10	Trp	Tyr	Thr	Pro	Asn 15	qaA
50		Gly	Gln	His	Trp 20	Lys	Arg	Leu	Gln	Asn 25	Asp	Ala	Glu	His	Leu 30	Ser	Asp
50		Ile	Gly	Ile 35	Thr	Ala	Val	Trp	Ile 40	Pro	Pro	Ala	Tyr	Lys 45	Gly	Leu	Ser
55		Gln	Ser 50	Asp	Asn	Gly	Tyr	Gly 55	Pro	Tyr	Asp	Leu	Tyr 60	Asp	Leu	Gly	Glu
		Phe 65	Gln	Gln	Lys	Gly	Thr 70	Val	Arg	Thr	Lys	Tyr 75	Gly	Thr	Lys	Ser	Glu 80
60		Leu	Gln	Asp	Ala	Ile 85	Gly	Ser	Leu	His	Ser 90	Arg	Asn	Val	Gln	Val 95	Tyr
		Gly	Asp	Val	Val 100		Asn	His	Lys	Ala 105		Ala	Asp	Ala	Thr 110	Glu	Asp
65					-00												

	Glu	Glu 130	Tyr	Gln	Ile	Lys	Ala 135	Trp	Thr	Asp	Phe	Arg 140	Phe	Pro	Gly	Arg
5	Gly 145	Asn	Thr	Tyr	Ser	Asp 150	Phe	Lys	Trp	His	Trp 155	Tyr	His	Phe	Asp	Gly 160
	Ala	Asp	Trp	Asp	Glu 165	Ser	Arg	Lys	Ile	Ser 170	Arg	Ile	Phe	Lys	Phe 175	Arg
10	Gly	Glu	Gly	Lys 180	Ala	Trp	Asp	Trp	Glu 185	Val	Ser	Ser	Glu	Asn 190	Gly	Asn
15	Tyr	Asp	Tyr 195	Leu	Met	Tyr	Ala	Asp 200	Val	Asp	Tyr	Asp	His 205	Pro	Asp	Val
	Val	Ala 210	Glu	Thr	Lys	Lys	Trp 215	Gly	Ile	Trp	Tyr	Ala 220	Asn	Glu	Leu	Ser
20	Leu 225	Asp	Gly	Phe	Arg	Ile 230	Asp	Ala	Ala	Lys	His 235	Ile	Lys	Phe	Ser	Phe 240
	Leu	Arg	Asp	Trp	Val 245	Gln	Ala	Val	Arg	Gln 250	Ala	Thr	Gly	Lys	Glu 255	Met
25	Phe	Thr	Val	Ala 260	Glu	Tyr	Trp	Gln	Asn 265	Asn	Ala	Gly	Lys	Leu 270	Glu	Asn
30	Tyr	Leu	Asn 275	Lys	Thr	Ser	Phe	Asn 280	Gln	Ser	Val	Phe	Asp 285	Val	Pro	Leu
	His	Phe 290	Asn	Leu	Gln	Ala	Ala 295	Ser	Ser	Gln	Gly	Gly 300	Gly	Tyr	Asp	Met
35	Arg 305	Arg	Leu	Leu	Asp	Gly 310	Thr	Val	Val	Ser	Arg 315	His	Pro	Glu	Lys	Ala 320
	Val	Thr	Phe	Val	Glu 325	Asn	His	Asp	Thr	Gln 330	Pro	Gly	Gln	Ser	Leu 335	Glu
40	Ser	Thr	Val	Gln 340	Thr	Trp	Phe	Lys	Pro 345	Leu	Ala	Tyr	Ala	Phe 350	Ile	Leu
45	Thr	Arg	Glu 355	Ser	Gly	Tyr	Pro	Gln 360	Val	Phe	Tyr	Gly	Asp 365	Met	Tyr	Gly
	Thr	Lys 370	Gly	Thr	Ser	Pro	Lys 375	Glu	Ile	Pro	Ser	Leu 380	Lys	Asp	Asn	Ile
50	Glu 385	Pro	Ile	Leu		Ala 390		Lys	Glu	Tyr	Ala 395	Tyr	Gly	Pro	Gln	His 400
	Asp	Tyr	Ile	Asp	His 405	Pro	Asp	Val	Ile	Gly 410	Trp	Thr	Arg	Glu	Gly 415	Asp
55	Ser	Ser	Ala	Ala 420	Lys	Ser	Gly	Leu	Ala 425	Ala	Leu	Ile	Thr	Asp 430	Gly	Pro
60	Gly	Gly	Ser 435	Lys	Arg	Met	Tyr	Ala 440	Gly	Leu	Lys	Asn	Ala 445	Gly	Glu	Thr
	Trp	Tyr 450		Ile	Thr	Gly	Asn 455	Arg	Ser	Asp	Thr	Val 460	Lys	Ile	Gly	Ser
65	Asp 465	_	Trp	Gly	Glu	Phe 470	His	Val	Asn	Asp	Gly 475	Ser	Val	Ser	Ile	Tyr 480

5	(2)		SEQUAL (A)	JENCI LEN TYI STI	E CHA IGTH: PE: a RANDE	SEQ I ARACT 485 mino CONES SY: 1	TERIS ami aci SS: s	STICS ino a id sing]	3: acids	3							
10		(ii) (iii) (xi)	MOLI	CULI anist	TYIn: Ba	E: p	rote lus s	ein sp.	EQ II	NO:	6:						
15		His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	Tyr
		Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Asn	Ser	Asp 30	Ala	Ser
20		Asn	Leu	Lys 35	Ser	ГÀЗ	Gly	Ile	Thr 40	Ala	Val	Trp	Ile	Pro 45	Pro	Ala	Trp
0.5		Lys	Gly 50	Ala	Ser	Gln	Asn	Asp 55	Val	Gly	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Тут
25		Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	Val 75	Arg	Thr	Lys	Tyr	Gly 80
30		Thr	Arg	Ser	Gln	Leu 85	Gln	Ala	Ala	Val	Thr 90	Ser	Leu	Lys	Asn	Asn 95	Gly
		Ile	Gln	Val	Tyr 100	Gly	Asp	Val	Val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
35		Ala	Thr	Glu 115	Met	Val	Arg	Ala	Val 120	Glu	Val	Asn	Pro	Asn 125	Asn	Arg	Asn
40		Gln	Glu 130	Val	Thr	Gly	Glu	Tyr 135	Thr	Ile	Glu	Ala	Trp 140	Thr	Arg	Phe	Asp
40		Phe 145	Pro	Gly	Arg	Gly	Asn 150	Thr	His	Ser	Ser	Phe 155	Lys	Trp	Arg	Trp	Tyr 160
45		His	Phe	Asp	Gly	Val 165	Asp	Trp	qeA	Gln	Ser 170	Arg	Arg	Leu	Asn	Asn 175	Arg
		Ile	Tyr	Lys	Phe 180	Arg	Gly	His	Gly	Lys 185	Ala	Trp	Asp	Trp	Glu 190	Val	Asp
50		Thr	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Ile	Asp	Met
		Asp	His 210	Pro	Glu	Val	Val	Asn 215	Glu	Leu	Arg	Asn	Trp 220	Gly	Val	Trp	Tyr
55		Thr 225	Asn	Thr	Leu	Gly	Leu 230	Asp	Gly	Phe	Arg	Ile 235	Asp	Ala	Val	Lys	His 240
60		Ile	Lys	Tyr	Ser	Phe 245	Thr	Arg	Asp	Trp	Ile 250	Asn	His	Val	Arg	Ser 255	Ala
		Thr	Gly	Lys	Asn 260	Met	Phe	Ala	Val	Ala 265	Glu	Phe	Trp	Lys	Asn 270	Asp	Leu
65		Gly	Ala	Ile	Glu	Asn	Tyr	Leu	Gln	Lys	Thr	Asn	Trp	Asn 285	His	Ser	Val

		Phe	Asp 290	Val	Pro	Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Lys	Ser	Gly
5		Gly 305	naA	Tyr	Asp	Met	Arg 310	Asn	Ile	Phe	Asn	Gly 315	Thr	Val	Val	Gln	Arg 320
		His	Pro	Ser	His	Ala 325	Val	Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro
ĻΟ		Glu	Glu	Ala	Leu 340	Glu	Ser	Phe	Val	Glu 345	Glu	Trp	Phe	Lys	Pro 350	Leu	Ala
		Tyr	Ala	Leu 355	Thr	Leu	Thr	Arg	Glu 360	Gln	Gly	Tyr	Pro	Ser 365	Val	Phe	Tyr
15		Gly	Asp 370	Tyr	Tyr	Gly	Ile	Pro 375	Thr	His	Gly	Val	Pro 380	Ala	Met	Arg	Ser
20		Lys 385	Ile	Asp	Pro	Ile	Leu 390	Glu	Ala	Arg	Gln	Lys 395	Tyr	Ala	Tyr	Gly	Lys 400
		Gln	Asn	Asp	Tyr	Leu 405	Asp	His	His	Asn	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu
25	-	Gly	Asn	Thr	Ala 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
		Gly	Ala	Gly 435	Gly	Ser	Lys	Trp	Met 440	Phe	Val	Gly	Arg	Asn 445	ГÀЗ	Ala	Gly
30		Gln	Val 450	Trp	Ser	Asp	Ile	Thr 455	Gly	Asn	Arg	Thr	Gly 460	Thr	Val	Thr	Ile
35		Asn 465	Ala	Asp	Gly	Trp	Gly 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480
		Ile	Trp	Val	Asn	Lys 485								٠			
40	(2)	INFO	SEQUAL (A)	JENCI) LEI) TYI	E CHA NGTH: PE: 8	RACT 485 amino	TERIS am: ac:	STICS ino a id	S: acids	3							
45		(iii	(D) MOLI Orga) TOI ECULI anis	RANDI POLOC E TYI m: Ba E DES	Y: : PE: : acil:	linea prote lus a	ar ein sp.		ои с	: 7:						
50		His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	Tyr
		Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Arg	Asp	Asp 30	Ala	Ala
55		Asn	Leu	Lув 35	Ser	Lys	Gly	Ile	Thr 40	Ala	Val	Trp	Ile	Pro 45	Pro	Ala	Trp
60		Lys	Gly 50	Thr	Ser	Gln	Asn	Asp 55	Val	Gly	Tyr	Gly	Ala 60	Tyr	qaA	Leu	Tyr
		Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	Val 75	Arg	Thr	Lys	Tyr	Gly 80
65		Thr	Arg	Asn	Gln	Leu 85	Gln	Ala	Ala	Val	Thr 90	Ser	Leu	Lys	Asn	Asn 95	Gly

	Ile	Gln	Val	Tyr 100	Gly	Asp	Val	Val	Met 105	Asn	His	Lys	Gly	Gly 110	Ala	Asp
5	Gly	Thr	Glu 115	Ile	Val	Asn	Ala	Val 120	Glu	Val	Asn	Arg	Ser 125	Asn	Arg	Asn
	Gln	Glu 130	Thr	Ser	Gly	Glu	Tyr 135	Ala	Ile	Glu	Ala	Trp 140	Thr	ГЛЗ	Phe	Asp
10	Phe 145	Pro	Gly	Arg	Gly	Asn 150	Asn	His	Ser	Ser	Phe 155	Lys	Trp	Arg	Trp	Tyr 160
	His	Phe	Asp	Gly	Thr 165	Asp	Trp	Asp	Gln	Ser 170	Arg	Gln	Leu	Gln	Asn 175	Lys
15	Ile	Tyr	Lys	Phe 180	Arg	Gly	Thr	Gly	Lys 185	Ala	Trp	Asp	Trp	Glu 190	Val	Asp
20	Thr.	Glu	Asn 195	Gly	Asn	Tyr	Asp	Tyr 200	Leu	Met	Tyr	Ala	Asp 205	Val	Asp	Met
	Asp	His 210	Pro	Glu	Val	Ile	His 215	Glu	Leu	Arg	Asn	Trp 220	Gly	Val	Trp	Tyr
25	Thr 225	Asn	Thr	Leu	Asn	Leu 230	Asp	Gly	Phe	Arg	Ile 235	Asp	Ala	Val	Lys	His 240
30	Ile	Lys	Tyr	Ser	Phe 245	Thr	Arg	Asp	Trp	Leu 250		His	Val	Arg	Asn 255	Thr
30	Thr	Gly	Lys	Pro 260	Met	Phe	Ala	Val	Ala 265	Glu	Phe	Trp	Lys	Asn 270	Asp	Leu
35	Gly	Ala	Ile 275	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Ser	Trp	Asn 285	His	Ser	Val
	Phe	Asp 290	Val	Pro	Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Asn	Ser	Gly
40	Gly 305	Tyr	Tyr	Asp	Met	Arg 310	Asn	Ile	Leu	Asn	Gly 315	Ser	Val	Val	Gln	Lys 320
45	His	Pro	Thr	His	Ala 325	Val	Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro
••	Gly	Glu	Ala	Leu 340	Glu	Ser	Phe	Val	Gln 345	Gln	Trp	Phe	ГÀЗ	Pro 350	Leu	Ala
50	Tyr	Ala	Leu 355	Val	Leu					Gly			Ser 365	Val	Phe	Tyr
	Gly	Asp 370	Tyr	Tyr	Gly	Ile	Pro 375	Thr	His	Gly	Val	Pro 380	Ala	Met	Lys	Ser
55	Lys 385	Ile	Asp	Pro	Leu	Leu 390	Gln	Ala	Arg	Gln	Thr 395	Phe	Ala	Tyr	Gly	Thr 400
60	Gln	His	Asp	Tyr	Phe 405	Asp	His	His	Asp	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu
00	Gly	Asn	Ser	Ser 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp
65	Gly	Pro	Gly 435	Gly	Asn	Lys	Trp	Met 440	Tyr	Val	Gly	Lys	Asn 445	Lys	Ala	Gly
	Gln	Val	Trp	Arg	Asp	Ile	Thr	Gly	Asn	Arg	Thr	Gly	Thr	Val	Thr	Ile

			450					455					460				
-		Asn 465	Ala	Asp	Gly	Trp	Gly 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480
5		Val	Trp	Val	Lys	Gln 485											
10	(2)	(ii) (iii) (iii) (xi)	SEQU (A) (B) (C) (D) MOLI	JENCE LENCE TYPE STPE TOPE ECULI ECULI	E CHA IGTH: PE: a RANDE POLOG E TYI n: Ba	RACT 485 mind EDNES EY:] PE: [TERIS ami aci ss: s lines prote	eine a id singl ar ein sp.	3: acids le		: 8:						
20		His 1	His	Asn	Gly	Thr 5	Asn	Gly	Thr	Met	Met 10	Gln	Tyr	Phe	Glu	Trp 15	His
		Leu	Pro	Asn	Asp 20	Gly	Asn	His	Trp	Asn 25	Arg	Leu	Arg	Asp	Asp 30	Ala	Ser
25		Asn	Leu	Arg 35	Asn	Arg	Gly	Ile	Thr 40	Ala	Ile	Trp	Ile	Pro 45	Pro	Ala	Trţ
30		Lys	Gly 50	Thr	Ser	Gln	Asn	Asp 55.	Val	Gly	Tyr	Gly	Ala 60	Tyr	Asp	Leu	Тут
30		Asp 65	Leu	Gly	Glu	Phe	Asn 70	Gln	Lys	Gly	Thr	Val 75	Arg	Thr	Lys	Tyr	Gl ₃ 80
35			•	Ser		85					90					95	
				Val	100					105					110		
40				Glu 115					120					125			
45			130					135					140				
		145		Gly			150					155					160
50				Asp		165					170					175	
			_	Lys	180					185					190		
55				Asn 195					200					205			
60		_	210					215					220				
		225		Thr			230					235					24
65				Tyr		245					250					255	
		Thr	Glv	Lvs	Glu	Met	Phe	Ala	Val	Ala	Glu	Phe	Trp	Lys	Asn	Asp	Lе

				260					265					270			
	Gly	Ala	Leu 275	Glu	Asn	Tyr	Leu	Asn 280	Lys	Thr	Asn	Trp	Asn 285	His	Ser	Val	
5	Phe	Asp 290	Val	Pro	Leu	His	Tyr 295	Asn	Leu	Tyr	Asn	Ala 300	Ser	Asn	Ser	Gly	
10	Gly 305	Asn	Tyr	Asp	Met	Ala 310	Lys	Leu	Leu	Asn	Gly 315	Thr	Val	Val	Gln	Lys 320	
	His	Pro	Met	His	Ala 325	Val	Thr	Phe	Val	Asp 330	Asn	His	Asp	Ser	Gln 335	Pro	
15	Gly	Glu	Ser	Leu 340	Glu	Ser	Phe	Val	Gln 345	Glu	Trp	Phe	Lys	Pro 350	Leu	Ala	
20	Tyr	Ala	Leu 355	Ile	Leu	Thr	Arg	Glu 360	Gln	Gly	Tyr	Pro	Ser 365	Val	Phe	Tyr	
20	Gly	Asp 370	Tyr	Tyr	Gly	Ile	Pro 375	Thr	His	Ser	Val	Pro 380	Ala	Met	Lys	Ala	
25	Lys 385	Ile	Asp	Pro	Ile	Leu 390	Glu	Ala	Arg	Gln	Asn 395	Phe	Ala	Tyr	Gly	Thr 400	
	Gln	His	Asp	Tyr	Phe 405	Asp	His	His	Asn	Ile 410	Ile	Gly	Trp	Thr	Arg 415	Glu	
30	Gly	Àsn	Thr	Thr 420	His	Pro	Asn	Ser	Gly 425	Leu	Ala	Thr	Ile	Met 430	Ser	Asp	
35	_	Pro	435					440					445				
	Gln	Val 450	Trp	His	Asp	Ile	Thr 455	Gly	Asn	Lys	Pro	Gly 460	Thr	Val	Thr	Ile	
40	Asn 465	Ala	Asp	Gly	Trp	Ala 470	Asn	Phe	Ser	Val	Asn 475	Gly	Gly	Ser	Val	Ser 480	
	Ile	Trp	Val	Lys	Arg 485												
45	(2) INFO (i)	SEQ (A (B	UENC:) LE) TY:	E CHI NGTH PB: 1	ARAC' : 14! nucl	reria 55 ba eic a	STIC: ase pacid	s: pair	s								
50	(iii) TO ECUL anis	m: B	GY: PE: : acil	line: DNA lus	ar (gen sp.	omic		: 9:							
55	CATCATAA	TG G	aaca	aatg	G TA	CTAT	GATG	CAA	TATT	TCG 2	AATG	GTAT"	TT G	CCAA	ATGA	2	60
	GGGAATCA	TT G	GAAC	AGGT	T GA	GGGA'	TGAC	GCA	GCTA	ACT '	TAAA	GAGT	AA AA	GGGA'	raac <i>i</i>	A	120
60	GCTGTATG	GA T	CCCA	CCTG	C AT	GGAA	GGGG	ACT	TCCC	AGA .	ATGA'	TGTA	GG T	TATG	GAGC	C	180
60	TATGATTI	A TA	TGAT	CTTG	G AG	AGTT	TAAC	CAG.	AAGG	GGA ·	CGGT	TCGT.	AC A	AAAT	ATGG/	A	240
	ACACGCAA	CC A	GCTA	CAGG	C TG	CGGT	GACC	TCT	TTAA	AAA .	ATAA	CGGC.	T TA	CAGG'	rata:	Г	300
65	GGTGATGT	CG I	CATG	AATC	A TA	AAGG'	TGGA	GCA	GATG	GTA	CGGA	AATT	GT A	AATG	CGGT	A	360
	GAAGTGAA	TC G	GAGC	AACC	g aa	ACCA	GGAA	ACC	TCAG	GAG .	AGTA	TGCA.	AT A	GAAG	CGTG	3	420

	ACAAAGTTTG A	ATTTTCCTGG	AAGAGGAAAT	AACCATTCCA	GCTTTAAGTG	GCGCTGGTAT	480
_	CATTTTGATG G	GACAGATTG	GGATCAGTCA	CGCCAGCTTC	AAAACAAAAT	ATATAAATTC	540
5	AGGGGAACAG G	CAAGGCCTG	GGACTGGGAA	GTCGATACAG	AGAATGGCAA	CTATGACTAT	600
	CTTATGTATG C	CAGACGTGGA	TATGGATCAC	CCAGAAGTAA	TACATGAACT	TAGAAACTGG	660
LO	GGAGTGTGGT A	ATACGAATAC	ACTGAACCTT	GATGGATTTA	GAATAGATGC	AGTGAAACAT	.720
	ATAAAATATA C	CTTTACGAG	AGATTGGCTT	ACACATGTGC	GTAACACCAC	AGGTAAACCA	780
	ATGTTTGCAG T	GGCTGAGTT	TTGGAAAAAT	GACCTTGGTG	CAATTGAAAA	CTATTTGAAT	840
15	AAAACAAGTT C	GAATCACTC	GGTGTTTGAT	GTTCCTCTCC	ACTATAATTT	GTACAATGCA	900
	TCTAATAGCG G	STGGTTATTA	TGATATGAGA	AATATTTTAA	ATGGTTCTGT	GGTGCAAAAA	960
20	CATCCAACAC A	ATGCCGTTAC	TTTTGTTGAT	AACCATGATT	CTCAGCCCGG	GGAAGCATTG	1020
	GAATCCTTTG T	TCAACAATG	GTTTAAACCA	CTTGCATATG	CATTGGTTCT	GACAAGGGAA	1080
	CAAGGTTATC C	CTTCCGTATT	TTATGGGGAT	TACTACGGTA	TCCCAACCCA	TGGTGTTCCG	1140
25	GCTATGAAAT C	TAAAATAGA	CCCTCTTCTG	CAGGCACGTC	AAACTTTTGC	CTATGGTACG	1200
	CAGCATGATT A	ACTTTGATCA	TCATGATATT	ATCGGTTGGA	CAAGAGAGGG	AAATAGCTCC	1260
30	CATCCAAATT C	CAGGCCTTGC	CACCATTATG	TCAGATGGTC	CAGGTGGTAA	CAAATGGATG	1320
	TATGTGGGGA A	AAATAAAGC	GGGACAAGTT	TGGAGAGATA	TTACCGGAAA	TAGGACAGGC	1380
	ACCGTCACAA T	TTAATGCAGA	CGGATGGGGT	AATTTCTCTG	TTAATGGAGG.	GTCCGTTTCG	1440
35	GTTTGGGTGA P	AGCAA					1455
40 45	(ii) MOI (iii) Oro	QUENCE CHAR A) LENGTH: B) TYPE: nu C) STRANDED D) TOPOLOGY LECULE TYPE Ganism: Bac	ACTERISTICS 1455 base pacted acid NESS: singly: linear E: DNA (geno	oairs e e omic)):		
	CATCATAATG C	GACAAATGG	GACGATGATG	CAATACTTTG	AATGGCACTT	GCCTAATGAT	60
50	GGGAATCACT C	GAATAGATT	AAGAGATGAT	GCTAGTAATC	TAAGAAATAG	AGGTATAACC	120
	GCTATTTGGA 7	TTCCGCCTGC	CTGGAAAGGG	ACTTCGCAAA	ATGATGTGGG	GTATGGAGCC	180
	TATGATCTTT A	ATGATTTAGG	GGAATTTAAT	CAAAAGGGGA	CGGTTCGTAC	TAAGTATGGG	240
55	ACACGTAGTC A	AATTGGAGTC	TGCCATCCAT	GCTTTAAAGA	ATAATGGCGT	TCAAGTTTAT	300
	GGGGATGTAG	rgatgaacca	TAAAGGAGGA	GCTGATGCTA	CAGAAAACGT	TCTTGCTGTC	360
60	GAGGTGAATC (CAAATAACCG	GAATCAAGAA	ATATCTGGGG	ACTACACAAT	TGAGGCTTGG	420
	ACTAAGTTTG A	ATTTTCCAGG	GAGGGGTAAT	ACATACTCAG	ACTTTAAATG	GCGTTGGTAT	480
	CATTTCGATG (GTGTAGATTG	GGATCAATCA	CGACAATTCC	AAAATCGTAT	CTACAAATTC	540
65	CGAGGTGATG (STAAGGCATG	GGATTGGGAA	GTAGATTCGG	AAAATGGAAA	TTATGATTAT	600

	TTAATGTATG CAGATGTAGA TATGGATCAT CCGGAGGTAG TAAATGAGCT TAGAAGA	rgg 660
	GGAGAATGGT ATACAAATAC ATTAAATCTT GATGGATTTA GGATCGATGC GGTGAAG	CAT 720
5	ATTAAATATA GCTTTACACG TGATTGGTTG ACCCATGTAA GAAACGCAAC GGGAAAAC	GAA 780
	ATGTTTGCTG TTGCTGAATT TTGGAAAAAT GATTTAGGTG CCTTGGAGAA CTATTTA	AAT 840
	AAAACAAACT GGAATCATTC TGTCTTTGAT GTCCCCCTTC ATTATAATCT TTATAACC	GCG 900
10	TCAAATAGTG GAGGCAACTA TGACATGGCA AAACTTCTTA ATGGAACGGT TGTTCAA	AAG 960
	CATCCAATGC ATGCCGTAAC TTTTGTGGAT AATCACGATT CTCAACCTGG GGAATCA	TTA 1020
15	GAATCATTTG TACAAGAATG GTTTAAGCCA CTTGCTTATG CGCTTATTTT AACAAGAC	3AA 1080
	CAAGGCTATC CCTCTGTCTT CTATGGTGAC TACTATGGAA TTCCAACACA TAGTGTCC	CCA 1140
	GCAATGAAAG CCAAGATTGA TCCAATCTTA GAGGCGCGTC AAAATTTTGC ATATGGAA	ACA 1200
20	CAACATGATT ATTTTGACCA TCATAATATA ATCGGATGGA CACGTGAAGG AAATACCA	ACG 1260
	CATCCCAATT CAGGACTTGC GACTATCATG TCGGATGGGC CAGGGGGAGA GAAATGGA	ATG 1320
25	TACGTAGGGC AAAATAAAGC AGGTCAAGTT TGGCATGACA TAACTGGAAA TAAACCA	GGA 1380
	ACAGTTACGA TCAATGCAGA TGGATGGGCT AATTTTTCAG TAAATGGAGG ATCTGTT	TCC 1440
30	ATTTGGGTGA AACGA	1455
35 40	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii)Organism: Bacillus stearothermophilus	
- •	GCCGCACCGT TTAACGGCAC CATGATGCAG TATTTTGAAT GGTACTTGCC GGATGATC	GGC 60
	ACGTTATGGA CCAAAGTGGC CAATGAAGCC AACAACTTAT CCAGCCTTGG CATCACCC	GCT 120
45	; CTTTGGCTGC CGCCCGCTTA CAAAGGAACA AGCCGCAGCG ACGTAGGGTA CGGAGTA:	TAC 180
	GACTTGTATG ACCTCGGCGA ATTCAATCAA AAAGGGACCG TCCGCACAAA ATACGGA	ACA 240
50	AAAGCTCAAT ATCTTCAAGC CATTCAAGCC GCCCACGCCG CTGGAATGCA AGTGTAC	GCC 300
	GATGTCGTGT TCGACCATAA AGGCGGCGCT GACGGCACGG AATGGGTGGA CGCCGTCC	3AA 360
	GTCAATCCGT CCGACCGCAA CCAAGAAATC TCGGGCACCT ATCAAATCCA AGCATGG	ACG 420
55	; AAATTTGATT TTCCCGGGCG GGGCAACACC TACTCCAGCT TTAAGTGGCG CTGGTAC	CAT 480
	TTTGACGGCG TTGATTGGGA CGAAAGCCGA AAATTGAGCC GCATTTACAA ATTCCGCC	GGC 540
60	TTTGACGGCG TTGATTGGGA CGAAAGCCGA AAATTGAGCC GCATTTACAA ATTCCGCC ATCGGCAAAG CGTGGGATTG GGAAGTAGAC ACGGAAAACG GAAACTATGA CTACTTA	
60	· · · · · · · · · · · · · · · · · · ·	ATG 600
60 65	ATCGGCAAAG CGTGGGATTG GGAAGTAGAC ACGGAAAACG GAAACTATGA CTACTTAI TATGCCGACC TTGATATGGA TCATCCCGAA GTCGTGACCG AGCTGAAAAA CTGGGGGG TGGTATGTCA ACACAACGAA CATTGATGGG TTCCGGCTTG ATGCCGTCAA GCATATTA	ATG 600 AAA 660

16

	ACCGTCGGGG AATATTGGAG CTATGACATC AACAAGTTGC ACAATTACAT TACGAAAACA	840
	GACGGAACGA TGTCTTTGTT TGATGCCCCG TTACACAACA AATTTTATAC CGCTTCCAAA	900
5	TCAGGGGGCG CATTTGATAT GCGCACGTTA ATGACCAATA CTCTCATGAA AGATCAACCG	960
	ACATTGGCCG TCACCTTCGT TGATAATCAT GACACCGAAC CCGGCCAAGC GCTGCAGTCA	1020
	TGGGTCGACC CATGGTTCAA ACCGTTGGCT TACGCCTTTA TTCTAACTCG GCAGGAAGGA	1080
LO	TACCCGTGCG TCTTTTATGG TGACTATTAT GGCATTCCAC AATATAACAT TCCTTCGCTG	1140
	AAAAGCAAAA TCGATCCGCT CCTCATCGCG CGCAGGGATT ATGCTTACGG AACGCAACAT	1200
L5	GATTATCTTG ATCACTCCGA CATCATCGGG TGGACAAGGG AAGGGGGCAC TGAAAAACCA	1260
	GGATCCGGAC TGGCCGCACT GATCACCGAT GGGCCGGGAG GAAGCAAATG GATGTACGTT	1320
	GGCAAACAAC ACGCTGGAAA AGTGTTCTAT GACCTTACCG GCAACCGGAG TGACACCGTC	1380
20	ACCATCAACA GTGATGGATG GGGGGAATTC AAAGTCAATG GCGGTTCGGT TTCGGTTTGG	1440
	GTTCCTAGAA AAACGACCGT TTCTACCATC GCTCGGCCGA TCACAACCCG ACCGTGGACT	1500
25	GGTGAATTCG TCCGTTGGAC CGAACCACGG TTGGTGGCAT GGCCTTGA	1548
30 35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1920 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii) Organism: Bacillus licheniformis (ix) FEATURE: (A) NAME/KEY: CDS (B) LOCATION: 4211872 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 12:	
40	CGGAAGATTG GAAGTACAAA AATAAGCAAA AGATTGTCAA TCATGTCATG	60
	GAGACGGAAA AATCGTCTTA ATGCACGATA TTTATGCAAC GTTCGCAGAT GCTGCTGAAG	120
45	AGATTATTAA AAAGCTGAAA GCAAAAGGCT ATCAATTGGT AACTGTATCT CAGCTTGAAG	180
	AAGTGAAGAA GCAGAGAGGC TATTGAATAA ATGAGTAGAA GCGCCATATC GGCGCTTTTC	240
	TTTTGGAAGA AAATATAGGG AAAATGGTAC TTGTTAAAAA TTCGGAATAT TTATACAACA	300
50	TCATATGTTT CACATTGAAA GGGGAGGAGA ATCATGAAAC AACAAAAACG GCTTTACGCC	360
	CGATTGCTGA CGCTGTTATT TGCGCTCATC TTCTTGCTGC CTCATTCTGC AGCAGCGGCG	420
55	GCA AAT CTT AAT GGG ACG CTG ATG CAG TAT TTT GAA TGG TAC ATG CCC	468
	AAT GAC GGC CAA CAT TGG AGG CGT TTG CAA AAC GAC TCG GCA TAT TTG	516
<i>-</i> n	GCT GAA CAC GGT ATT ACT GCC GTC TGG ATT CCC CCG GCA TAT AAG GGA	564
60	ACG AGC CAA GCG GAT GTG GGC TAC GGT GCT TAC GAC CTT TAT GAT TTA	613
	GGG GAG TTT CAT CAA AAA GGG ACG GTT CGG ACA AAG TAC GGC ACA AAA	660
65	GGA GAG CTG CAA TCT GCG ATC AAA AGT CTT CAT TCC CGC GAC ATT AAC	70
	GTT TAC GGG GAT GTG GTC ATC AAC CAC AAA GGC GGC GCT GAT GCG ACC	75

	GAA	GAT	GTA	ACC	GCG	GTT	GAA	GTC	GAT	CCC	GCT	GAC	CGC	AAC	CGC	GTA	804
-	ATT	TCA	GGA	GAA	CAC	CTA	ATT	AAA	GCC	TGG	ACA	CAT	TTT	CAT	TTT	CCG	852
5	GGG	CGC	GGC	AGC	ACA	TAC	AGC	GAT	TTT	AAA	TGG	CAT	TGG	TAC	CAT	TTT	900
	GAC	GGA	ACC	GAT	TGG	GAC	GAG	TCC	CGA	AAG	CTG	AAC	CGC	ATC	TAT	AAG	948
10	TTT	CAA	GGA	AAG	GCT	TGG	GAT	TGG	GAA	GTT	TCC	AAT	GAA	AAC	GGC	AAC	.996
	TAT	GAT	TAT	TTG	ATG	TAT	GCC	GAC	ATC	GAT	TAT	GAC	CAT	CCT	GAT	GTC	1044
15	GCA	GCA	GAA	ATT	AAG	AGA	TGG	GGC	ACT	TGG	TAT	GCC	AAT	GAA	CTG	CAA	1092
15	TTG	GAC	GGT	TTC	CGT	CTT	GAT	GCT	GTC	AAA	CAC	ATT	AAA	TTT	TCT	TTT	1140
	TTG	CGG	GAT	TGG	GTT	AAT	CAT	GTC	AGG	GAA	AAA	ACG	GGG	AAG	GAA	ATG	1188
20	TTT	ACG	GTA	GCT	GAA	TAT	TGG	CAG	AAT	GAC	TTG	GGC	GCG	CTG	GAA	AAC	1236
	TAT	TTG	AAC	AAA	ACA	AAT	TTT	AAT	CAT	TCA	GTG	TTT	GAC	GTG	CCG	CTT	1284
25	CAT	TAT	CAG	TTC	CAT	GCT	GCA	TCG	ACA	CAG	GGA	GGC	GGC	TAT	GAT	ATG	1332
23	AGG	AAA	TTG	CTG.	AAC	GGT	ACG	GTC	GTT	TCC	AAG	CAT	CCG	TTG	AAA	TCG	1380
	GTT	ACA	TTT	GTC	GAT	AAC	CAT	GAT	ACA	CAG	CCG	GGG	CAA	TCG	CTT	GAG	1428
30	TCG	ACT	GTC	CAA	ACA	TGG	TTT	AAG	CCG	CTT	GCT	TAC	GCT	TTT	ATT	CTC	1476
	ACA	AGG	GAA	TCT	GGA	TAC	CCT	CAG	GTT	TTC	TAC	GGG	GAT	ATG	TAC	GGG	1524
35	ACG	AAA	GGA	GAC	TCC	CAG	CGC	GAA	ATT	CCT	GCC	TTG	AAA	CAC	AAA	ATT	1572
	GAA	CCG	ATC	TTA	AAA	GCG	AGA	AAA	CAG	TAT	GCG	TAC	GGA	GCA	CAG	CAT	1620
	GAT	TAT	TTC	GAC	CAC	CAT	GAC	ATT	GTC	GGC	TGG	ACA	AGG	GAA	GGC	GAC	1668
40	AGC	TCG	GTT	GCA	AAT	TCA	GGT	TTG	GCG	GCA	TTA	ATA	ACA	GAC	GGA	CCC	1716
	GGT	GGG	GCA	AAG	CGA	ATG	TAT	GTC	GGC	CGG	CAA	AAC	GCC	GGT	GAG	ACA	1764
45	TGG	CAT	GAC	ATT	ACC	GGA	AAC	CGT	TCG	GAG	CCG	GTT	GTC	ATC	AAT	TCG	1812
••	GAA	GGC	TGG	GGA	GAG	TTT	CAC	GTA	AAC	GGC	GGG	TCG	GTT	TCA	ATT	TAT	1860
	GTT	CAA	AGA	TAG	AAG	AGCA	GAG A	AGGA	CGGA'	TT TO	CCTGA	AAGG	A AAT	rccg1	TTTT		1912
50	TTT	ATTT	r														1920

(2) INFORMATION FOR SEQ ID NO: 13:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1455 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

- (D) TOPOLOGY: linear
- 60
- (ii) MOLECULE TYPE: DNA (genomic) (iii) Organism: Bacillus sp. (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 13:

CATCATAATG GAACAAATGG TACTATGATG CAATATTTCG AATGGTATTT GCCAAATGAC 60 GGGAATCATT GGAACAGGTT GAGGGATGAC GCAGCTAACT TAAAGAGTAA AGGGATAACA 120

	GCTGTATGGA T	CCCACCTGC	ATGGAAGGGG	ACTTCCCAGA	ATGATGTAGG	TTATGGAGCC	180
	TATGATTTAT A	TGATCTTGG	AGAGTTTAAC	CAGAAGGGGA	CGGTTCGTAC	AAAATATGGA	240
5	ACACGCAACC A	GCTACAGGC	TGCGGTGACC	TCTTTAAAAA	ATAACGGCAT	TCAGGTATAT	300
	GGTGATGTCG T	CATGAATCA	TAAAGGTGGA	GCAGATGGTA	CGGAAATTGT	AAATGCGGTA	360
	GAAGTGAATC G	GAGCAACCG	AAACCAGGAA	ACCTCAGGAG	AGTATGCAAT	AGAAGCGTGG	420
10	ACAAAGTTTG A	TTTTCCTGG	AAGAGGAAAT	AACCATTCCA	GCTTTAAGTG	GCGCTGGTAT	480
	CATTTTGATG G	GACAGATTG	GGATCAGTCA	CGCCAGCTTC	AAAACAAAAT	ATATAAATTC	540
15	AGGGGAACAG G	CAAGGCCTG	GGACTGGGAA	GTCGATACAG	AGAATGGCAA	CTATGACTAT	600
	CTTATGTATG C	AGACGTGGA	TATGGATCAC	CCAGAAGTAA	TACATGAACT	TAGAAACTGG	660
	GGAGTGTGGT A	TACGAATAC	ACTGAACCTT	GATGGATTTA	GAATAGATGC	AGTGAAACAT	720
20	АТААААТАТА G	CTTTACGAG	AGATTGGCTT	ACACATGTGC	GTAACACCAC	AGGTAAACCA	780
	ATGTTTGCAG T	GGCTGAGTT	TTGGAAAAAT	GACCTTGGTG	CAATTGAAAA	CTATTTGAAT	840
25	AAAACAAGTT G	GAATCACTC	GGTGTTTGAT	GTTCCTCTCC	ACTATAATTT	GTACAATGCA	900
	TCTAATAGCG G	STGGTTATTA	TGATATGAGA	AATATTTTAA	ATGGTTCTGT	GGTGCAAAAA	960
	CATCCAACAC A	TGCCGTTAC	TTTTGTTGAT	AACCATGATT	CTCAGCCCGG	GGAAGCATTG	1020
30	GAATCCTTTG T	TCAACAATG	GTTTAAACCA	CTTGCATATG	CATTGGTTCT	GACAAGGGAA	1080
	CAAGGTTATC C	CTTCCGTATT	TTATGGGGAT	TACTACGGTA	TCCCAACCCA	TGGTGTTCCG	1140
35	GCTATGAAAT C	CTAAAATAGA	CCCTCTTCTG	CAGGCACGTC	AAACTTTTGC	CTATGGTACG	1200
	CAGCATGATT A	ACTTTGATCA	TCATGATATT	ATCGGTTGGA	CAAGAGAGGG	AAATAGCTCC	1260
	CATCCAAATT C	CAGGCCTTGC	CACCATTATG	TCAGATGGTC	CAGGTGGTAA	CAAATGGATG	1320
40	TATGTGGGGA A	AAATAAAGC	GGGACAAGTT	TGGAGAGATA	TTACCGGAAA	TAGGACAGGC	1380
	ACCGTCACAA T	TTAATGCAGA	CGGATGGGGT	AATTTCTCTG	TTAATGGAGG	GTCCGTTTCG	1440
45	GTTTGGGTGA A	AGCAA					1455
50	(i) SEC (F (E (C (ii) MOI (iii) Orc	QUENCE CHAR A) LENGTH: B) TYPE: nu C) STRANDEL D) TOPOLOGY LECULE TYPE Danism: Bac	E: DNA (geno	S: pairs le omic)	4 :		
	CATCATAATG (GGACAAATGG	GACGATGATG	CAATACTTTG	AATGGCACTT	GCCTAATGAT	60
	GGGAATCACT (GGAATAGATT	AAGAGATGAT	GCTAGTAATC	TAAGAAATAG	AGGTATAACC	120
60	GCTATTTGGA T	TCCGCCTGC	CTGGAAAGGG	ACTTCGCAAA	ATGATGTGGG	GTATGGAGCC	180
	TATGATCTTT A	ATGATTTAGG	GGAATTTAAT	CAAAAGGGGA	CGGTTCGTAC	TAAGTATGGG	240
65	ACACGTAGTC A	AATTGGAGTC	TGCCATCCAT	GCTTTAAAGA	ATAATGGCGT	TCAAGTTTAT	300
	GGGGATGTAG 7	TGATGAACCA	TAAAGGAGGA	GCTGATGCTA	CAGAAAACGT	TCTTGCTGTC	360

	GAGGTGAATC CAAATAACCG GAATCAAGAA ATATCTGGGG ACTACACAAT TGAGGCTTGG	420
_	ACTAAGTTTG ATTTTCCAGG GAGGGGTAAT ACATACTCAG ACTTTAAATG GCGTTGGTAT	480
5	CATTTCGATG GTGTAGATTG GGATCAATCA CGACAATTCC AAAATCGTAT CTACAAATTC	540
	CGAGGTGATG GTAAGGCATG GGATTGGGAA GTAGATTCGG AAAATGGAAA TTATGATTAT	600
10	TTAATGTATG CAGATGTAGA TATGGATCAT CCGGAGGTAG TAAATGAGCT TAGAAGATGG	.660
	GGAGAATGGT ATACAAATAC ATTAAATCTT GATGGATTTA GGATCGATGC GGTGAAGCAT	720
	ATTAAATATA GCTTTACACG TGATTGGTTG ACCCATGTAA GAAACGCAAC GGGAAAAGAA	780
15	ATGTTTGCTG TTGCTGAATT TTGGAAAAAT GATTTAGGTG CCTTGGAGAA CTATTTAAAT	840
	AAAACAAACT GGAATCATTC TGTCTTTGAT GTCCCCCTTC ATTATAATCT TTATAACGCG	900
20	TCAAATAGTG GAGGCAACTA TGACATGGCA AAACTTCTTA ATGGAACGGT TGTTCAAAAG	960
	CATCCAATGC ATGCCGTAAC TTTTGTGGAT AATCACGATT CTCAACCTGG GGAATCATTA	1020
25	GAATCATTTG TACAAGAATG GTTTAAGCCA CTTGCTTATG CGCTTATTTT AACAAGAGAA	1080
25	CAAGGCTATC CCTCTGTCTT CTATGGTGAC TACTATGGAA TTCCAACACA TAGTGTCCCA	1140
	GCAATGAAAG CCAAGATTGA TCCAATCTTA GAGGCGCGTC AAAATTTTGC ATATGGAACA	1200
30	CAACATGATT ATTTTGACCA TCATAATATA ATCGGATGGA CACGTGAAGG AAATACCACG	1260
	CATCCCAATT CAGGACTTGC GACTATCATG TCGGATGGGC CAGGGGGAGA GAAATGGATG	1320
35	TACGTAGGGC AAAATAAAGC AGGTCAAGTT TGGCATGACA TAACTGGAAA TAAACCAGGA	1380
35	ACAGTTACGA TCAATGCAGA TGGATGGGCT AATTTTTCAG TAAATGGAGG ATCTGTTTCC	1440
	ATTTGGGTGA AACGA	1455
40	(2) INFORMATION FOR SEQ ID NO: 15: (i) SEQUENCE CHARACTERISTICS:	
45	(A) LENGTH: 74 base pairs(B) TYPE: nucleic acid(C) STRANDEDNESS: single(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: other nucleic acid(ix) FEATURE:(A) NAME/ KEY: misc-feature:	
50	(B) OTHER INFORMATION: /desc = "RSERI" (ix) FEATURE:	
55	(A) NAME/KEY: misc-feature (B) LOCATION: 21-62 (D): OTHER INFORMATION: /Note= 1:97%A, 1%T, 1%C, 1%G 2:97%T, 1%A, 1%C, 1%G	
	3:97&C, 1&A, 1&T, 1&G 4:97&G, 1&A, 1&T, 1&C	
60	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 15: GCGTTTTGCC GGCCGACATA 3122343222 4333313344 4233423242 2122112433 43CAAACCTG AATT 74	

(2) INFORMATION FOR SEQ ID NO: 16:
 (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 122 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single

```
(D) TOPOLOGY: linear
   (ii) MOLECULE TYPE: other nucleic acid
   (ix) FEATURE:
        (A) NAME/ KEY: misc-feature:
               (B) OTHER INFORMATION:
                                          /desc = "RSERII"
5
         (ix) FEATURE:
        (A) NAME/KEY: misc-feature
       LOCATION: 63-104
                                       1:97%A, 1%T, 1%C, 1%G
2:97%T, 1%A, 1%C, 1%G
   (D): OTHER INFORMATION: /Note=
10
                                       3:97%C, 1%A, 1%T, 1%G
                                       4:97%G, 1%A, 1%T, 1%C
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 16:
   GCGTTTTGCC GGCCGACATA CATTCGCTTT GCCCCACCGG GTCCGTCTGT
15 TATTAATGCC GC31113324 1122243113 3414324234 3322333224
   2331GCCGAC AATGTCATGG TG
                                                                122
   (2) INFORMATION FOR SEQ ID NO: 17:
         (i) SEQUENCE CHARACTERISTICS:
20
              (A) LENGTH: 78 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
   (ii) MOLECULE TYPE: other nucleic acid
25 (ix) FEATURE:
        (A) NAME/ KEY: misc-feature:
                (B) OTHER INFORMATION: /desc = "RSERIII"
         (ix) FEATURE:
        (A) NAME/KEY: misc-feature
30 (B) LOCATION: 19-60
                                       1:97%A, 1%T, 1%C, 1%G
   (D): OTHER INFORMATION: /Note=
                                       2:97%T, 1%A, 1%C, 1%G
                                       3:97%C, 1%A, 1%T, 1%G
4:97%G, 1%A, 1%T, 1%C
35 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 17:
   GTCGCCTTCC CTTGTCCA43 3413112423 1244244234 1112112312
   4324243233 GTACGCATAC TGTTTTCT
                                                                      78
40 (2) INFORMATION FOR SEQ ID NO: 18:
        (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 20 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
   (ii) MOLECULE TYPE: other nucleic acid
   (ix) FEATURE:
        (A) NAME/ KEY: misc-feature:
                (B) OTHER INFORMATION:
                                         /desc = "FSERIII"
50 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 18:
   TGGACAAGGG AAGGCGACAG
                                                                     20
   (2) INFORMATION FOR SEQ ID NO: 19:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 81 base pairs
55
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: other nucleic acid
60 (ix) FEATURE:
        (A) NAME/ KEY: misc-feature:
                (B) OTHER INFORMATION: /desc = "RSERV"
         (ix) FEATURE:
        (A) NAME/KEY: misc-feature
65 (B) LOCATION: 19-60
                                       1:97%A, 1%T, 1%C, 1%G
2:97%T, 1%A, 1%C, 1%G
   (D): OTHER INFORMATION: /Note=
```

```
3:97%C, 1%A, 1%T, 1%G
4:97%G, 1%A, 1%T, 1%C
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 19:
   TAAGATCGGT TCAATTTT42 4222311443 1441122234 3432444142
 5 3233222342 CCCGTACATA TCCCCGTAGA A
   (2) INFORMATION FOR SEQ ID NO: 20:
        (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 18 base pairs
10
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
   (ii) MOLECULE TYPE: other nucleic acid
  (ix) FEATURE:
        (A) NAME/ KEY: misc-feature:
                (B) OTHER INFORMATION: /desc = "FSERV"
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 20:
                                                                     18
   AAAATTGAAC CGATCTTA
   (2) INFORMATION FOR SEQ ID NO: 21:
        (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 107 base pairs
              (B) TYPE: nucleic acid
25
              (C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
   (ii) MOLECULE TYPE: other nucleic acid
   (ix) FEATURE:
        (A) NAME/ KEY: misc-feature:
30
                                          /desc = "FSERVII"
                (B) OTHER INFORMATION:
         (ix) FEATURE:
        (A) NAME/KEY: misc-feature
        LOCATION: 54-95
   (B)
35 (D): OTHER INFORMATION: /Note=
                                      1:97%A, 1%T, 1%C, 1%G
                                      2:97%T, 1%A, 1%C, 1%G
3:97%C, 1%A, 1%T, 1%G
4:97%G, 1%A, 1%T, 1%C
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 21:
GAA3442134 4234222331 1431233422 4111234422 13122TGTCG
                                                                     108
   ATAACCA
45 (2) INFORMATION FOR SEQ ID NO: 22:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 18 base pairs
              (B) TYPE: nucleic acid
(C) STRANDEDNESS: single
              (D) TOPOLOGY: linear
50
    (ii) MOLECULE TYPE: other nucleic acid
    (ix) FEATURE:
         (A) NAME/ KEY: misc-feature:
                                         /desc = "RSERVII"
                (B) OTHER INFORMATION:
55 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 22:
                                                                     18
   TGTCGATGCA GCATGGAA
    (2) INFORMATION FOR SEQ ID NO: 23:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 80 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
(D) TOPOLOGY: linear
65 (ii) MOLECULE TYPE: other nucleic acid
    (ix) FEATURE:
         (A) NAME/ KEY: misc-feature:
```

```
(B) OTHER INFORMATION:
                                           /desc = "FSERIX"
         (ix) FEATURE:
         (A) NAME/KEY: misc-feature
    (B) LOCATION: 21-62
 5 (D): OTHER INFORMATION: /Note=
                                        1:97%A, 1%T, 1%C, 1%G
                                        2:97%T, 1%A, 1%C, 1%G
                                        3:97%C, 1%A, 1%T, 1%G
4:97%G, 1%A, 1%T, 1%C
   (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 23:
10 GTCCAAACAT GGTTTAAGCC 4322432213 4322221223 2313114441 1232441213 33TCAGGTTT TCTACGGGGA
                                                                  80
   (2) INFORMATION FOR SEQ ID NO: 24:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
15
              (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: other nucleic acid
  (ix) FEATURE:
         (A) NAME/ KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "RSERIX"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 25:
                                                                  20
   GGCTTAAACC ATGTTTGGAC
    (2) INFORMATION FOR SEQ ID NO: 26:
         (i) SEQUENCE CHARACTERISTICS:
              (A) LENGTH: 24 base pairs
              (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single
30
              (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: other nucleic acid
    (ix) FEATURE:
         (A) NAME/ KEY: misc-feature:
                (B) OTHER INFORMATION: /desc = "Primer 1B"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 26:
                                                                  24
   CGATTGCTGA CGCTGTTATT TGCG
    (2) INFORMATION FOR SEQ ID NO: 27:
         (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 25 base pairs
               (B) TYPE: nucleic acid
              (C) STRANDEDNESS: single (D) TOPOLOGY: linear
45 (ii) MOLECULE TYPE: other nucleic acid
    (ix) FEATURE:
         (A) NAME/ KBY: misc-feature:
                (B) OTHER INFORMATION:
                                          /desc = "Primer #63"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 27:
50 CTATCTTTGA ACATAAATTG AAACC
                                                                  25
    (2) INFORMATION FOR SEQ ID NO: 28:
         (i) SEQUENCE CHARACTERISTICS:
               (A) LENGTH: 20 base pairs
               (B) TYPE: nucleic acid
               (C) STRANDEDNESS: single
               (D) TOPOLOGY: linear
    (ii) MOLECULE TYPE: other nucleic acid
   (ix) FEATURE:
         (A) NAME/ KEY: misc-feature:
                 (B) OTHER INFORMATION: /desc = "forward Primer1"
    (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 28:
    gacctgcagt caggcaacta
    (2) INFORMATION FOR SEQ ID NO: 29:
         (i) SEQUENCE CHARACTERISTICS:
```

5	(A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid	
	<pre>(ix) FEATURE:</pre>	
10	tagagtcgac ctgcaggcat 20	•
15	(2) INFORMATION FOR SEQ ID NO: 30: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
20	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (ix) FEATURE: (A) NAME/ KEY: misc-feature:	
20	(B) OTHER INFORMATION: /desc = "forward primer 2" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 30: gacctgcagt caggcaacta 20	
25	(2) INFORMATION FOR SEQ ID NO: 31: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid	
30	(C) STRANDEDNESS: single (D) TOPOLOGY: linear (ii) MOLECULE TYPE: other nucleic acid (ix) FEATURE: (A) NAME/ KEY: misc-feature:	
35	(B) OTHER INFORMATION: /desc = "reverse primer 2" (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 31: tagagtcgac ctgcaggcat 20	
40	(2) INFORMATION FOR SEQ ID NO: 32: (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2084 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single	
45	(D) TOPOLOGY: linear (ii) MOLECULE TYPE: DNA (genomic) (iii)Organism: Bacillus amyloliquefaciens (ix) FEATURE:	
50	(A) NAME/KEY: CDS (B) LOCATION:3431794 (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 32:	
	GCCCCGCACA TACGAAAAGA CTGGCTGAAA ACATTGAGCC TTTGATGACT GATGATTTGG	60
55	CTGAAGAAGT GGATCGATTG TTTGAGAAAA GAAGAAGACC ATAAAAATAC CTTGTCTGTC	120
•	ATCAGACAGG GTATTTTTTA TGCTGTCCAG ACTGTCCGCT GTGTAAAAAT AAGGAATAAA	180
	GGGGGGTTGT TATTATTTTA CTGATATGTA AAATATAATT TGTATAAGAA AATGAGAGGG	240
60	AGAGGAAACA TGATTCAAAA ACGAAAGCGG ACAGTTTCGT TCAGACTTGT GCTTATGTGC	300
	ACGCTGTTAT TTGTCAGTTT GCCGATTACA AAAACATCAG CC GTA AAT GGC ACG	354
	CTG ATG CAG TAT TTT GAA TGG TAT ACG CCG AAC GAC GGC CAG CAT TGG	402
65	AND GOD WEG GAG ARM CAT CCC CAN CAT THA TCC CAT ATC CCA ATC ACT	450

	GCC	GTC	TGG	ATT	CCT	CCC	GCA	TAC	AAA	GGA	TTG	AGC	CAA	TCC	GAT	AAC	498
	GGA	TAC	GGA	CCT	TAT	GAT	TTG	TAT	GAT	TTA	GGA	GAA	TTC	CAG	CAA	AAA	546
5	GGG	ACG	GTC	AGA	ACG	AAA	TAC	GGC	ACA	AAA	TCA	GAG	CTT	CAA	GAT	GCG	594
	ATC	GGC	TCA	CTG	CAT	TCC	CGG	AAC	GTC	CAA	GTA	TAC	GGA	GAT	GTG	GTT	642
	TTG	AAT	CAT	AAG	GCT	GGT	GCT	GAT	GCA	ACA	GAA	GAT	GTA	ACT	GCC	GTC	690
10	GAA	GTC	AAT	CCG	GCC	AAT	AGA	AAT	CAG	GAA	ACT	TCG	GAG	GAA	TAT	CAA	738
	ATC	AAA	GCG	TGG	ACG	GAT	TTT	CGT	TTT	CCG	GGC	CGT	GGA	AAC	ACG	TAC	786
15	AGT	GAT	TTT	AAA	TGG	CAT	TGG	TAT	CAT	TTC	GAC	GGA	GCG	GAC	TGG	GAT	834
	GAA	TCC	CGG	AAG	ATC	AGC	CGC	ATC	TTT	AAG	TTT	CGT	GGG	GAA	GGA	AAA	882
	GCG	TGG	GAT	TGG	GAA	GTA	TCA	AGT	GAA	AAC	GGC	AAC	TAT	GAC	TAT	TTA	930
20	ATG	TAT	GCT	GAT	GTT	GAC	TAC	GAC	CAC	CCT	GAT	GTC	GTG	GCA	GAG	ACA	978
	AAA	AAA	TGG	GGT	ATC	TGG	TAT	GCG	AAT	GAA	CTG	TCA	TTA	GAC	GGC	TTC	1026
25	CGT	ATT	GAT	GCC	GCC	AAA	CAT	ATT	AAA	TTT	TCA	TTT	CTG	CGT	GAT	TGG	1074
	GTT	CAG	GCG	GTC	AGA	CAG	GCG	ACG	GGA	AAA	GAA	ATG	TTT	ACG	GTT	GCG	1122
	GAG	TAT	TGG	CAG	AAT	AAT	GCC	GGG	AAA	CTC	GAA	AAC	TAC	TTG	AAT	AAA	1170
30	ACA	AGC	TTT	AAT	CAA	TCC	GTG	TTT	GAT	GTT	CCG	CTT	CAT	TTC	AAT	TTA	1218
	CAG	GCG	GCT	TCC	TCA	CAA	GGA	GGC	GGA	TAT	GAT	ATG	AGG	CGT	TTG	CTG	1266
35	GAC	GGT	ACC	GTT	GTG	TCC	AGG	CAT	CCG	GAA	AAG	GCG	GTT	ACA	TTT	GTT	1314
	GAA	AAT	CAT	GAC	ACA	CAG	CCG	GGA	CAG	TCA	TTG	GAA	TCG	ACA	GTC	CAA	1362
	ACT	TGG	TTT	AAA	CCG	CTT	GCA	TAC	GCC	TTT	ATT	TTG	ACA	AGA	GAA	TCC	1410
40	GGT	TAT	CCT	CAG	GTG	TTC	TAT	GGG	GAT	ATG	TAC	GGG	ACA	AAA	GGG	ACA	1458
	TCG	CCA	AAG	GAA	ATT	CCC	TCA	CTG	AAA	GAT	AAT	ATA	GAG	CCG	ATT	TTA	1506
45	AAA	GCG	CGT	AAG	GAG	TAC	GCA	TAC	GGG	CCC	CAG	CAC	GAT	TAT	ATT	GAC	1554
	CAC	CCG	GAT	GTG	ATC	GGA	TGG	ACG	AGG	GAA	GGT	GAC	AGC	TCC	GCC	GCC	1602
	AAA	TCA	GGT	TTG	GCC	GCT	TTA	ATC	ACG	GAC	GGA	CCC	GGC	GGA	TCA	AAG	1650
50	CGG	ATG	TAT	GCC	GGC	CTG	AAA	AAT	GCC	GGC	GAG	ACA	TGG	TAT	GAC	ATA	1698
	ACG	GGC	AAC	CGT	TCA	GAT	ACT	GTA	AAA	ATC	GGA	TCT	GAC	GGC	TGG	GGA	1746
55	GAG	TTT	CAT	GTA	AAC	GAT	GGG	TCC	GTC	TCC	ATT	TAT	GTT	CAG	AAA	TAA	1794
	GGTA	ATA	AAA I	AAAC	ACCT	CC A	AGCT	BAGT	G CGC	GTA:	CAG	CTT	GAG	TG (GTT:	TATTT	1854
	TTC	TTCAGCCGTA TGACAAGGTC GGCATCAGGT GTGACAAATA							CGGTATGCTG GCTGTCATAG 1					1914			
60	GTG	ACAA	ATC (CGGG'	rttt(GC GC	CCGT	rtgg	C TT	rttc <i>i</i>	ACAT	GTC	rga T T	rtt 1	rgta:	FAATCA	1974
	ACAC	GCA	CGG 2	AGCC	GGAA'	rc T	rtcg	CCTT	G GA	AAAA:	raag	CGG	CGAT	CGT A	AGCT	CTTCC	2034
65	ידיממ	лтсе:	ልጥጥ (الململة	ልጥሮር	ים אי	רככרי	ייניטיי	ר ידידי	יטידמע	202	CGTO	'ADDE	rcc			2084

INTERNATIONAL SEARCH REPORT

International application No.

PCT/DK 99/00628

		FC17	DK 33/00028			
A. CLAS	SIFICATION OF SUBJECT MATTER					
IPC7: (C12N 9/28 o International Patent Classification (IPC) or to both na	ational classification and IPC				
B. FIELD	OS SEARCHED					
Minimum d	ocumentation searched (classification system followed by	y classification symbols)				
	C12N, C11D					
Documenta	tion searched other than minimum documentation to the	extent that such documents a	are included in the fields searched			
SE,DK,	FI,NO classes as above					
Electronic d	lata base consulted during the international search (name	of data base and, where prac	ticable, search terms used)			
C. DOCU	JMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where app	propriate, of the relevant pa	assages Relevant to claim No.			
X	WO 9510603 A1 (NOVO NORDISK A/S) (20.04.95), see claim 14	1-16,18-41				
A			17			
X	WO 9623873 A1 (NOVO NORDISK A/S) (08.08.96), page 23, line 24	41				
A			1-39			
A	WO 9743424 A1 (GENENCOR INTERNAT 20 November 1997 (20.11.97),	-24				
Furth	ler documents are listed in the continuation of Box	C. X See patent for	amily annex.			
"A" docum	categories of cited documents: ent defining the general state of the art which is not considered of particular relevance	date and not in conflict	ed after the international filing date or priority with the application but cited to understand underlying the invention			
"E" erlier o	ocument but published on or after the international filing date ent which may throw doubts on priority claim(s) or which is o establish the publication date of another citation or other	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone				
special "O" docum means	reason (as specified) ent referring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance: the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art				
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family						
Date of th	e actual completion of the international search	Date of mailing of the int				
	-h 2000	06	- 04- 2000			
	ch 2000 I mailing address of the ISA/	Authorized officer				
Swedish	Patent Office	•				
1	i, S-102 42 STOCKHOLM	Carolina Palmcra Telephone No. +468	ntz/E0 782 25 00			
Lacsimile	No. +46 8 666 02 86	1 010 pilono 1 10 0				

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No. PCT/DK 99/00628

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)							
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:								
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:							
2. 🔀	Claims Nos.: 1							
2. 🖂	because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:							
	see next sheet							
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)							
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:							
1. 🗀	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.							
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.							
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:							
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:							
Remark	on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.							

INTERNATIONAL SEARCH REPORT

International application No. PCT/DK 99/00628

The wording "solvent exposed amino acid residues" of claim 1 may include other (unknown) residues in addition to those given in the present application (c.f. the specification page 16, lines 10-13). Therefore, the search has been incomplete and restricted to those residues specified in the application (c.f. PCT, Article 6).										
	·									

Form PCT/ISA/210 (extra sheet) (July1992)

INTERNATIONAL SEARCH REPORT Information on patent family members

02/12/99

International application No.

PCT/DK 99/00628

	tent document in scarch repor	·t	Publication date		Patent family member(s)		Publication date	
WO	9510603	A1	20/04/95	AU	7807494	A	04/05/95	
				BR	9407767	A	18/03/97	
				CA	2173329	A	20/04/95	
•				CN	1134725	A	30/10/96	
				EP	0722490	Α	24/07/96	
				FI	961524	A	30/05/96	
				JP	9503916	T	22/04/97	
				ÜS	5753460	Ā	19/05/98	
				US	5801043	Ä	01/09/98	
WO	9623873	A1	08/08/96	AU	4483396	A	21/08/96	
WO.	3023073	7,1	00700750	BR		Ä	14/07/98	
				CA		Ä	08/08/96	
				CN		Â	04/02/98	
				EP		Ä	07/01/98	~
				JP	11503003	T ·	23/03/99	
 WO	9743424	A1	20/11/97	AU	2996997	A	05/12/97	
nu	2173767	VI	, 20/11/3/	EP		Ä	07/07/99	
				ÜS	5763385	• •	09/06/98	