实验报告

课程名称: 如河 突马全岛工 实验名称: 弗兰志 一种 流突经验日期: 2024 13_日上午

级:张胜利班

页数:1/7

一、实验目的:

風甘弗兰克-赫益实验证明原子能级(分之态)的存在。

二、实验原理:

个稳定态目。就吸收或 当原子受外界作用而从一个稳定态过渡到另一

出一定频率的电路磁波,

hu = En-Em

武中, En和Em分别为第n和第m激发态, h为 普朗克常数。

实验原理如图25-1所示。 船差一梯兹 管是一种四极管,内部充满氩气。本实验是 用慢电子碰撞氩原子来证明原子能级的。 电子从热阴极发出,阴级从和第二栅极分 之间的加速电压Ugzk使电子加速,并能穿过 第二栅极的栅网。在板极P和第二栅级极 Gz之间加有减速电压UGzP。如果电子的能 量较大,就能克服Uqp到达极板,形成板 极电流上,实验的主要工作就是观察在 一定的加速电压控制下,板流的变化情 况。

号:5

图25-1 Schematic Diagram for Frank-Hertz Experiment

当UGw 电压逐渐增加时,如果原子能级确实存在,就能观察到如图25-2 ηIp

所示的UGK-Ip规则变化曲线。该曲线反映了 氫原子在K-Gz空间与电子进行能量交换的 情形。当Ugy=nU。时,板流就会出现极小值。 相邻的两个极小值对应的UGIK的看差就等 于原子的第一激发电位U。

联系方式:

图25-2 V-L Characteristic Curve in F-H Experiment

实验报告

课程	名称: <u>物理实验团</u>	实验名称: 弗兰克一赫·兹文 实验日期:_ 2024 年_	/O 月_	<u> </u>
班	级:张胜利班	教学班级:		
更	数: 2/7	座	号,5	

三、实验内容与步骤

1.预热

实验前将量程置于10⁻⁶档,所有电位器都逆时针旋转到火,使得各档电压分别降低到最小值。然后开电源,将电压选择开关置于VGIK挡并适当调节(一般为1.5V左右),再拨到VGP档并调节(一般7.5V左右)。预热 F-H管3min后开始预测。

2、观测

- (1)将示波器置于X-Y工作方式。X轴的放大信率凝钮 V/div置于0.2V/div。Y轴的放大倍率V/div可置于20mV/div或50mV/div。然后把X轴和Y轴放大倍率定标,即微调凝钮置于CAL(校准处,这时,X轴和Y轴的实际放大倍率才准确等于旋钮指示值。X轴和Y轴的"ACLDC"选择开关部置于DC处。
- (2)将F-H 实验仪的输出端与示波器的对应输入端端连接。调节后面板上的增益调节旋钮,使屏上的水平队扫描线径延正好为10格,相当于100 V。
- (3)将"选择"开关置于示波器挡将"电压"选择开关置于VF 挂并缓慢调节,一旦发现几个波峰增长较快时,再缴微减小Vf值,直到波形稳定。
- (4)分别读出6(或5)个波谷对应的电压值。然后用逐差法求第一激发电位。示波器的纵轴代表板极电流,读数时记录格数即可。

3、手动方式观测

先用示波器方式观测F-H曲线,调出最佳的处了丝电压Vr,然后将选择"开关置于手动挡,电压选择开关拨到"加速电压"它置,缓慢调节加速电压旋钮。调出第一个峰值时,记录Ip和VG以,再测该点附近的VG以上2V的两个感点然后增大 VGK,调出第一个谷值时,记录Ip和VG以,再测该点附近的VG以上2V的两个点。共测6(或5)个峰值和6(或5)个谷值.记录F-H实验仪上的电流和电压值。

. 联系方式:	指导教师签字:

(-)

实验报告

课程名称: 物理实验BIL 实验名称: 弗兰克·赫兹实 实验日期: 2024 年 10 月 13 日上午

班 级: <u>张凡生利 7月</u> 数学班级:

页 数:3/7

座 号:5

(5)

作出 F-H 实验 曲线, 并求出第一激发电位。

4、加速 电压波形

观察示波器方式下F-H管第二栅极上加速电压的波形。测量其幅度与频率。注意此时示波器应改用Y-t方式。

注意:实验完毕后将灯丝电压VF逆时针调到最小,再天电源。

四、思考题:

- 1. 在减速电压Vap=0日,能否记录到Ip的有规则起伏?
- 2. 分析F-H曲线第三个波谷处,F-H管中电子与氩原子发生非弹性碰撞的位置。
- 3.根据阴极发的射电子的速度分布来解释了峰顶的形状?若假设所有的电子的初速度都为零,那么Ip在下降时,是否会垂直下降?并画出此时的F-H曲线?
- 4. 手动方式和示波器方式,第二栅极上的电压变化各有什么特点?

		实!	验 报	告			<u> </u>
课程名称:1707里了	码全图实验	名称: 弗兰克	一种被实验	:日期: <u>2</u> 02	华 年 /0	月 <u></u> 月	 し _�� <i>午</i>
班 级: 07/12	30 数学	班级:					
反数:4/7	,	大學	J. J.		座号.	· 5	
、原始数据于	军	月	\leq		<i>.</i>		
1、示波器方式:	下午	一晚 上					
波谷	1	2	3	4	5	6.	
Ip (格)	0.7	0.5	0.6	0.7	1.0	1.9	
VGzkUV	19	31	\$ 2 \$4	53	68	80 -	
2.手动记录			, ,	30			
	左	峰	在	左	谷1	右	
I(MA)	18750	187	174	127	71	119	
VERL (V)	12.1	14,1	16.1	17.9	19.9	21.9	
	左	峰2	在	左	谷2	右	
I (Ma)	187	225	204	117	44	98	•
Vak(V)	23,5	25.5	27,5	29.5	31.5	3 3.5	
	左	峰3	在	左	谷ろ	百	
I(MA)	213	264	2 9 6	108	39	112	
Vorten	35.4	37.4	39.4	41.8	43.8	45.8	
	左	4	在 1	左	谷4	莅	
I(MA)	260	3 0 5	269	144	69	142	
VGx(V)	48.1	50.1	52.1	54.2	5 6 .2	58.2	
	左	4 5		左	谷ち	哲	
I LMA)		356	313	203	140	<i>195</i>	
V Gak LV) 61.1	63.1	65./	67.1	69.1	7 1 .	
	左	4 6	在 1	左	公6	右	
联系方式("為)	— 401	425	400	334	273	322	

三号: 3

实验二十五 弗兰克—赫兹实验

(原始数据可以用空白纸记录)

1. 示波器方式: (测连续 6 个波谷加速电压值)

波 谷	1	2	3	4	5	6
I _P (入格)	0.7	0.5	0.6	0.7	1.0	1.9
$V_{G2K}(V)$	19	31	44	56	68	80

 $\Delta V_{G2K} = 1$ V,包含因子 k = 1.645. 用逐差法计算第一激发电位,并正确表达结果:

2. 手动记录: (连续 6 个波峰和波谷、及峰谷两侧±2 V 的加速电压和板级电流值)

	左	峰1	右	左	谷 1	右
<i>I</i> (μA)	150	187	174	127	71	119
$V_{G2K}(V)$	12.1	14.1	16.1	17.9	19.9	21.9
	左	峰 2	右	左	谷 2	右
<i>I</i> (μA)	187	225	204	117	44	98
$V_{G2K}(V)$	23.5	25.5	27.5	29.5	3 1.5	33.5
	左	峰3	右	左	谷 3	右
<i>I</i> (μA)	2/3	264	246	108	39	112
$V_{G2K}(V)$	35.4	37.4	39.4	41.8	43.8	45.8
	左	峰 4	右	左	谷 4	右
<i>I</i> (μA)	260	305	269	144	69	142
$V_{G2K}(V)$	48.1	50.1	52.1	54.2	5 6,2	58.2
	左	峰 5	右	左	谷 5	右
<i>I</i> (μA)	3/5	356	3/3	203	140	/95
$V_{G2K}(V)$	61.1	63.1	65.1	67.1	69.1	71./
	左	峰 6	右	左	谷 6	右
<i>I</i> (μA)	401	925	400	334	273	322
V _{G2K} (V)	74.6	76.6	78.6	80.4	82.4	84.4

 $\Delta V_{G2K} = 0.1 \text{ V}$, 包含因子 k = 1.645.

用坐标纸作图;用逐差法计算第一激发电位;写出主要计算过程;正确表达结果;

思考题: 第3题。

2024年10月13日上午 3世月生刊初

能克-胡立实验

F-H实验曲线

弗兰克赫兹实验数据结果答题卡 度多 ⑤

1. 利用示波器法所测 6 个波谷的电压值计算出第一激 发电位的计算结果为 12.2(0.6) 伏特。要有不确 定度计算。主要计算过程为:

解利服差法计算。

$$\overline{U} = \frac{\frac{6}{5}V_{G_{2}k_{1}} - \frac{3}{5}V_{G_{2}k_{1}}}{3\times3} = 12.22(v)$$

$$U_{A}(\overline{U}) = \int_{\frac{5}{5}||V_{G_{2}k_{1}}||^{2}}^{\frac{5}{5}||V_{G_{2}k_{1}}||^{2}} = 0.|425$$

故最終编录: □= 12.2 (0.6)V

2. 费兰克赫兹曲线请另附坐标纸作图。利用手动法所 测数据中的6个波谷的电压值计算出第一激发电位的 计算结果为 12.5(0.4) 伏特。要有不确定度计 算。主要计算过程为:

有形利用还差偿计算:

$$u_{c}(\bar{v}) = \int_{U_{a}^{1}(\bar{v}) + U_{b}^{1}(\bar{v})} = 0.4206$$

赵最终终结果: U=12.5(0.4)V

3. 思考题 (教材第3题)。

①:解释了特顶形准:并

1.电子从胸极人发射、受第二栅极电压作用和走,各电 子,然底的不一致,分布于一上腹区间内。1.16后,电子 在管的适原于碰撞,当电子格量达到氢原子以近面的 电子会把能影性络药原子, 此时电子能量减少, 无 法到达极极。极极所测电流大小与至此极极电折 见有的能量之和减正的。以上是完验原理的创程。

2. 当增大 Unk时,包分的能量总体上会增加水因的部们 流值具有上规趋势。

然而,专度到电子与影师子的碰撞速度区间内大于气质中 设任所需能量的邓一部分包子会接供能量无法到达极极 花到丛极板对能量很小,这便导致了F-H曲线在的心包 压附近电流会下降。因此便形成了F-H成的设施。

3、波峰的形形和尖锐与专与包子边度的现场是否集中向产。 分布越华, 就会成越多也不同时到达阅值, 减少的能量

此时由于能量仅与第二种极电压标,故所有电子能 量相等,速度相等,速度分布最佳中。由仍能存在时天的所有 电子将同争时至此阈值,如如此,小会垂直下降。

(3): F-H曲线如下:

1/1/1/ > UGZK(V)