

ภาควิชาวิทยาการคอมพิวเตอร์ คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยธรรมศาสตร์ ศูนย์รังสิต

ข้อสอบโครงการคอมพิวเตอร์โอลิมปิก สอวน. ค่าย 2/2558

ข้อสอบมี 4 ข้อ ให้ทำทุกข้อ

วันพุธที่ 23 มีนาคม 2559 เวลา 9.00 - 12.00 น.

คีย์ลัด (Shortkey)

บรรจงต้องการหาข้อมูลและทำรายงานส่งอาจารย์ในวิชาประวัติศาสตร์ โดยใช้โปรแกรมคอมพิวเตอร์ในการทำรายงาน มีงานที่ต้องทำตามลำดับทั้งหมด N ขั้นตอน (ขั้นตอนที่ $1, \dots N$) แต่โชคดีที่โปรแกรมคอมพิวเตอร์นี้มีคีย์ ลัดจำนวน K คีย์ซึ่งสามารถช่วยประหยัดเวลาการทำงาน คีย์ลัด [s->e] สามารถทำให้การทำงานขั้นตอนที่ s ถึง ขั้นตอนที่ e เหลือเพียงแค่การทำงานขั้นตอนเดียว ตัวอย่างเช่น หากมีขั้นตอนดั้งเดิมในการทำงานทั้งหมด s ขั้นตอน การทำงานจะเป็นไปตามลำดับ s0 -> s1 -> s2 -> s3 -> s4 -> s5 -> s6 -> s7 -> s8 ดังนั้นถ้าไม่กดคีย์ลัดใดๆ เลยจะต้องทำงานทั้งสิ้น s8 ขั้นตอน แต่ถ้ามีคีย์ลัด s1 -> s2 -> s3 -> s4 -> s5 เหลือเพียง ขั้นตอนเดียว ดังนั้นการทำงานทั้งหมดจะเหลือขั้นตอนทั้งหมดแค่ s8 ขั้นตอน (ลำดับการทำงานคือ s3 -> s4 -> s5 -> s6 -> s7 -> s8)

สมมติให้มีเวลาจำกัดในการทำงานทั้งหมด *M* นาที บรรจงต้องใช้เวลาทำงาน 1 นาทีสำหรับแต่ละขั้นตอน และ เวลาที่คีย์ลัดแต่ละคีย์ใช้ในการทำงานก็เป็น 1 นาทีเช่นกัน บรรจงจะพยายามหาวิธีการใช้คีย์ลัดต่างๆ ที่กำหนดให้ เพื่อให้ได้จำนวนขั้นตอนที่น้อยที่สุดในการทำรายงานเสียก่อน ถ้าไม่สามารถทำขั้นตอนที่เหลือน้อยที่สุดนั้นทั้งหมด ได้ทันภายใน *M* นาที เขาจะหาวิธีการใช้คีย์ลัดอีกแบบเพื่อให้สามารถทำงานให้เสร็จได้มากขั้นตอนที่สุดแทน โดย นับจากจำนวนขั้นตอนเริ่มต้นที่ยังไม่ได้ใช้คีย์ลัด ยกตัวอย่าง เช่น ถ้ามีขั้นตอนการทำงานทั้งหมด 8 ขั้นตอน และมี คีย์ลัด [0->3], [0->4] และ [3->7] จะได้ว่าการใช้คีย์ลัดแรกและคีย์ลัดสุดท้ายจะทำให้งานเหลือขั้นตอนน้อยที่สุด นั่นคือเหลือเพียง 3 ขั้นตอนเท่านั้น (ลำดับการทำงานคือ [0->3] -> [3->7] -> 8) ซึ่งต้องใช้เวลา 3 นาทีในการทำ ให้เสร็จ หากกำหนดเวลาทำงานให้แค่ 1 นาที นั่นจะแปลว่าเขาไม่สามารถทำงานนี้ด้วยขั้นตอนน้อยที่สุดให้เสร็จได้

แต่ถ้าปรับวิธีการใหม่เพื่อทำให้งานเสร็จได้มากขั้นตอนที่สุด ก็จะต้องใช้คีย์ลัดที่สอง [0->4] และจำนวนขั้นตอน ของงานที่เสร็จมากที่สุดก็คือ 4 (ลำดับการทำงานที่เสร็จใน 1 นาทีคือ 0 -> 1 -> 2 -> 3 -> 4)

จงเขียนโปรแกรมเพื่อหาจำนวนขั้นตอนการทำงานที่น้อยที่สุดที่เป็นไปได้ รวมทั้งระบุว่าสามารถทำ ขั้นตอนที่เหลือน้อยที่สุดเหล่านั้นได้ทันเวลาที่มีหรือไม่ และหากไม่ทัน ให้หาจำนวนขั้นตอนการทำงานดั้งเดิมที่ทำ เสร็จได้มากที่สุดด้วย

ข้อมูลนำเข้า

- 1. บรรทัดที่หนึ่ง ประกอบด้วยจำนวนเต็มบวกสามจำนวน ได้แก่ จำนวนขั้นตอนดั้งเดิมในการทำงาน N จำนวนคีย์ลัด K และเวลาที่เหลือ M ตามลำดับ คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง กำหนดให้ 1 $\leq N \leq$ 200,000, $1 \leq K \leq$ 500 และ $1 \leq M \leq$ 1,000,000
- 2. บรรทัดที่สองถึง K+1 ในแต่ละบรรทัดประกอบด้วยจำนวนเต็มบวกสองจำนวน คือ s_i และ e_i สำหรับ คีย์ลัด $[s_{i} > e_i]$ คั่นแต่ละจำนวนด้วยช่องว่างหนึ่งช่อง กำหนดให้ $1 \le i \le K$ และ $0 \le s_i < e_i \le N$

ข้อมูลส่งออก

- 1. บรรทัดที่หนึ่ง แสดงจำนวนเต็มบวก ซึ่งระบุจำนวนขั้นตอนที่น้อยที่สุดที่เป็นไปได้
- 2. บรรทัดที่สอง
 - หากสามารถทำจำนวนขั้นตอนน้อยที่สุดในบรรทัดที่ 1 ได้เสร็จทั้งหมด ให้แสดงเลข 1
 - หากทำจำนวนขั้นตอนเหล่านั้นไม่ทันทั้งหมด ให้แสดงเลข 0 คั่นด้วยช่องว่างหนึ่งช่อง แล้วตาม
 ด้วยจำนวนขั้นตอนดั้งเดิมที่สามารถทำได้เสร็จมากที่สุดที่เป็นไปได้

ตัวอย่างที่ 1 (จากตัวอย่างในโจทย์)

ข้อมูลนำเข้า	ข้อมูลส่งออก
8 3 1	3
0 3	0 4
0 4	
3 7	

ตัวอย่างที่ 2

ข้อมูลนำเข้า	ข้อมูลส่งออก
30 5 20	19
2 5	1
0 4	
5 8	
3 6	
9 16	

ข้อกำหนด

หัวข้อ	เงื่อนไข
ข้อมูลนำเข้า	Standard Input (คีย์บอร์ด)
ข้อมูลส่งออก	Standard Output (จอภาพ)
ระยะเวลาสูงสุดที่ใช้ในการประมวลผล ต่อหนึ่งชุดทดสอบ	1 วินาที
หน่วยความจำสูงสุดที่ใช้ในการประมวลผล ต่อหนึ่งชุดทดสอบ	512 MB
จำนวนชุดทดสอบ (โปรแกรมประมวลผลครั้งละหนึ่งชุดทดสอบ)	10 ชุด
คะแนนสำหรับหนึ่งชุดทดสอบ	10 คะแนน
คะแนนสูงสุดของโจทย์	100 คะแนน
เงื่อนไขการรันโปรแกรม	โปรแกรมจะต้องประมวลผลข้อมูลตามตัวอย่างที่
	ให้มาได้ภายในเวลาที่กำหนดให้
ชื่อไฟล์โปรแกรม	 หากเขียนด้วยภาษา C ให้ใช้ shortkey.c
	■ หากเขียนด้วยภาษา C++ ให้ใช้
	shortkey.cpp

คำสั่งเพิ่มเติม

ผู้เข้าแข่งขันจะต้องระบุส่วนหัวของโปรแกรมให้สอดคล้องกับภาษาและตัวแปลภาษาที่ใช้ ดังนี้

ภาษา C บน Linux	ภาษา C++ บน Linux
/*	/*
TASK: shortkey.c	TASK: shortkey.cpp
LANG: C	LANG: C++
COMPILER: LINUX	COMPILER: LINUX
AUTHOR: YourFirstName YourLastName	AUTHOR: YourFirstName YourLastName
ID: YourCenterID	ID: YourCenterID
*/	*/