

Text-to-ESQ: A Two-Stage Controllable Approach for Efficient Retrieval of Vaccine Adverse Events from NoSQL Database

Wenlong Zhang¹, Kangping Zeng², Xinming Yang¹, Tian Shi, Ping Wang¹

¹Dept. of Computer Science, Stevens Institute of Technology, Hoboken, NJ, USA

²School of Business, Stevens Institute of Technology, Hoboken, NJ, USA

Outline

- Introduction
- Challenges
- Contribution
- Experiments
- Conclusion

Vaccine Adverse Events Report System (VAERS)

Vaccine Adverse Event Reporting System(VAERS1) co-managed by the U.S. FDA and CDC is an important platform for reporting and analyzing side effects after getting vaccines.

The VAERS data has been continuously updated since 1990,including structured information such as demographic information, vaccine details, and various coded symptoms, as well as narrative text descriptions. Currently, the VAERS data can be accessed via the CDC's WONDER system.

limitations

However, there are several limitations to such a system

- (1) Complicated to use
- (2) Inflexible to extend
- These limitations can be potentially addressed by Text-to-SQL, which aims to automatically translate natural language questions to SQL queries with different NLP techniques. However, Text-to-SQL is primarily designed for retrieving information from SQL databases with relational tables.

Challenges with Text-to-SQL

Traditional research focus on SQL database

Limitation

- Text-to-SQL capabilities are limited by the data structures and functionality of SQL databases
- It is difficult to incorporate external knowledge bases (KBs) into relational tables

Solution

No-SQL database

- Handle large volumes of data at high speed with a scale-out architecture
- Store unstructured, semi-structured, or structured data

Contribution

Text-to-ESQ: A Two-Stage Controllable Approach for Efficient

Retrieval of Vaccine Adverse Events from NoSQL Database

Formally propose and formulate the Text-to-ESQ task

Propose a two-stage controllable (TSC) framework consisting of two modules for Textto-ESQ Create a large-scale dataset VAERSESQ for Text-to-ESQ task for retrieving information from VAERS data.

Conduct an extensive experimental analysis

Our Contributions

Task

• Formally propose and formulate the Text-to-ESQ task

Module

• Propose a two-stage controllable (TSC) framework consisting of two modules for Text-to-ESQ

Dataset

• Create a large-scale dataset VAERSESQ for Text-to-ESQ task for retrieving information from VAERS data.

Experiment

• Conduct an extensive experimental analysis

VAERSESQ Data Generation

- Question Template Collection and Population.
 - How many people have [SYMPTOM] after vaccination?
 - Give me all the patients who got [VAX_NAME_1] vaccine and [VAX_NAME_2] vaccine.
 - Search all the patients who are diagnosed of [HISTORY].
- Natural Language Question Generation with Back-Translation.

Data	Value
# of tables	3
# of fields/columns in tables ^a	35/8/11
Number of template/natural questions	13,040
Average template question length (in words)	12.13
Average NL question length (in words)	11.52
Average query length (including template keywords)	167.65

■ Elasticsearch Query Generation.

when generating the template questions, the corresponding Elasticsearch queries are generated at the same time by populating the placeholders in the query templates.

VAERSESQ Data Generation

Question Template
Collection and
Population.

- How many people have [SYMPTOM] after vaccination?
- Give me all the patients who got [VAX_NAME_1] vaccine and [VAX_NAME_2] vaccine.
- Search all the patients who are diagnosed of [HISTORY].

Natural Language
Question
Generation with
Back-Translation.

- Number of template/natural questions:13040
- Average template question length (in words):12.13
- Average NL question length (in words):11.52

Elasticsearch Query Generation.

• when generating the template questions, the corresponding Elasticsearch queries are generated at the same time by populating the placeholders in the query templates.

Dataset

• The VAERSESQ dataset is publicly available at https://github.com/LEAF-Lab-Stevens/Text2ESQ.

An example from VAERSESQ data.

Question Template

'Return all the cases where the [VAX NAME] recipients was reported [SYMPTOM_TEXT].

Question

'Return all the cases where the COVID-19 recipients was reported headache.

Elasticsearch Search Query

```
POST scripts/7
{"script": {
 "lang": "mustache",
  "source": {
   "track total hits":
                                {"match":[
                                "{{field}}": {
"true".
   "query": {
                                 "query": "{{text}}",
     "bool":{
                                   "fuzziness":
                                      "AUTO"
      "must":
      {"match": {
                                 "operator": "AND",
                                 "prefix length": 2}}]}},
      "{{field}}": {
                                params": {
       "query": "{{text}}",
                                "field": "SYMPTOMS ",
       "fuzziness":
                                 "text": "headache"
"AUTO",
   "operator": "AND",
                                "field": " VAX NAME ",
                                 "text": "COVID-19"}}}
  "prefix length": 2 }}},
```

TSC Model

11

Experiments

Results of Stage1: Question to Question translation

Methods	Development		Testing			
	Overall	Value	Overall	Value		
Seq2Seq	0.73	0.35	0.70	0.36		
M2M	0.92	0.60	0.90	0.63		
Q2Q	0.88	0.65	0.85	0.63		

An example of translating the natural language questions (NLQ) into template questions (TQ) with the Q2Q module

Methods	Question
NLQ	Which type of reaction is most common after a COVID vaccine?
Ground	Which symptom is most common after a
Truth TQ	COVID-19 vaccine?
Seq2Seq	Which symptom is most common after a?
M2M	Which symptom is most common after a COVID vaccine?
Q2Q	Which symptom is most common after a COVID-19 vaccine?

Most challenge part: we employ strict rules, including thorough punctuation and spacing checks based on the ground truth, to evaluate the results.

Experiments

Results of Stage2: ESQ Condition Extraction

Type	Method	Development			Testing		
		Overall	Field	Value	Overall	Field	Value
0)	Seq2Seq	0.515	0.646	0.316	0.690	0.740	0.640
ate	RoBERTa	0.959	0.986	0.991	0.956	0.979	0.986
լժս	RoBERTa+Bi-LSTM	0.967	0.982	0.992	0.967	0.982	0.992
Template	DistilBERT	0.981	0.993	0.995	0.975	0.989	0.992
	ECE	0.982	0.992	0.998	0.983	0.989	0.999
	Seq2Seq+Seq2Seq	0.351	0.350	0.231	0.301	0.324	0.287
	Seq2Seq+RoBERTa	0.355	0.358	0.357	0.360	0.366	0.362
	Seq2Seq+RoBERTa+Bi-LSTM	0.352	0.357	0.354	0.358	0.360	0.359
	Seq2Seq+DistilBERT	0.343	0.346	0.349	0.342	0.347	0.347
ge .	Seq2Seq+ECE	0.343	0.348	0.349	0.348	0.350	0.350
Natural language	M2M+Seq2Seq	0.389	0.374	0.291	0.351	0.404	0.307
ng	M2M+RoBERTa	0.544	0.551	0.552	0.471	0.476	0.477
la	M2M+RoBERTa+Bi-LSTM	0.547	0.551	0.551	0.477	0.478	0.479
ral	M2M+DistillBERT	0.552	0.554	0.554	0.475	0.479	0.478
atr	M2M+ECE	0.553	0.553	0.554	0.476	0.478	0.479
Ž	Q2Q+Seq2Seq	0.469	0.588	0.288	0.473	0.537	0.304
	Q2Q+RoBERTa	0.599	0.612	0.609	0.593	0.601	0.602
	Q2Q+RoBERTa+Bi-LSTM	0.606	0.612	0.610	0.596	0.602	0.604
	Q2Q+DistilBERT	0.609	0.613	0.612	0.598	0.604	0.603
	Q2Q+ECE	0.601	0.612	0.612	0.601	0.605	0.605

The TSC model outperforms the baseline in terms of performance, and there remains untapped potential for further exploration.

13

Conclusion

- Introduce the Text-to-ESQ task, facilitating NLQ on NoSQL databases.
- Introduces the novel Two-Stage Controllable (TSC) framework
- Contributes a substantial VAERSESQ dataset for Textto-ESQ
- A comprehensive experimental analysis

♦ STEVENS INSTITUTE of TECHNOLOGY

THANK YOU

Link to VAERSESQ dataset and codes:

https://github.com/LEAF-Lab-Stevens/Text2ESQ

Please feel free to send questions and suggestions to:

wzhang71@stevens.edu

pwang44@stevens.edu