

به نام خرا

دانشگاه رازی

موضوع ارائه: ردیابی اشیاه و پروژه آن

استاد: نسرین نادریان

ارائه دهندگان: پارسا لرستانی و آرین ناصری

مفهوم ردیابی اشیاء

•تعریف ردیابی اشیاء :تشخیص و دنبال کردن موقعیت و وضعیت اشیاء در دنبالهای از تصاویر یا فریمهایی از یک ویدیو

•هدف :نگهداشتن شی موردنظر در میدان دید و تخمین موقعیت آن در طول زمان

کاربردهای ردیابی اشیاء

• خودروهای خودران: شناسایی عابران پیاده، خودروهای دیگر، علائم جادهای

· نظارت تصویری و امنیتی: دنبال کردن افراد در محیطهای عمومی و خصوصی

• واقعیت افزوده و مجازی: دنبالکردن حرکت سر و دست کاربر برای تعامل بهتر

· پردازش ورزشی: تحلیل حرکات ورزشکاران و توپ در مسابقات زنده

مراحل ردیابی اشیاء

تکنیک های ردیابی اشیاء

ردیابی مبتنی بر ویژگی :(Feature-based) استفاده از نقاط کلیدی یا الگوها

ردیابی مبتنی بر مدل :(Model-based) ایجاد مدلی برای تشخیص شکل، اندازه یا حرکت شیء

•ردیابی مبتنی بر یادگیری عمیق :(Deep Learning-based) استفاده از شبکههای عصبی کانولوشنی (CNNs)و یادگیری ژرف برای دقت بالاتر

الگوریتمهای رایج در ردیابی اشیاء

• Mean Shift: ردیابی با استفاده از توزیع رنگ

- نقاط کلیدی:KLT (Kanade-Lucas-Tomasi) ۰
- سیستمهای مبتنی بر شبکههای عصبی (مانند P-CNN): استفاده از یادگیری عمیق برای دقت و سرعت بالا

ابزارها و كتابخانهها

· OpenCV:کتابخانهای محبوب برای پردازش تصویر و ویدئو

• TensorFlow و PyTorch: ابزارهای یادگیری عمیق

• Dlib ابزارهای کاربردی و ساده برای ردیابی •

معرفی YOLO

• YOLO چیست؟ YOLO یکی از روشهای پیشرفته و سریع برای تشخیص و ردیابی اشیاء است • که به صورت بلادرنگ کار میکند.

•مخفف YOLO:به معنی "فقط یکبار نگاه کن" که نشان میدهد الگوریتم فقط یکبار به تصویر نگاه میکند تا همه اشیاء را شناسایی کند.

ویژگی های اصلی YOLO

•تشخیص سریع و بلادرنگ: سرعت بالای پردازش که برای کاربردهای بلادرنگ بسیار مناسب است.

•تشخیص و ردیابی همزمان YOLO :بهطور همزمان اشیاء را تشخیص داده و موقعیت آنها را ردیابی میکند.

• دقت بالا در فریمهای متوالی : دقت در تشخیص شیء در فریمهای پیدرپی برای ردیابی بهینه

نحوه کارکرد YOLO

نحوه كاركرد YOLO

کاربردهای YOLOدر ردیابی اشیاء

• وسایل نقلیه خودران: تشخیص و ردیابی عابران، خودروها، تابلوهای جاده و اشیاء دیگر

• نظارت امنیتی و دوربینهای مدار بسته: شناسایی و دنبال کردن افراد و اشیاء در محیطهای عمومی

• واقعیت افزوده: تشخیص موقعیت و دنبال کردن اشیاء در زمان واقعی برای تجربه واقعیت افزوده بهتر

• تحلیل ورزشی: دنبال کردن توپ و بازیکنان در مسابقات ورزشی

مزایا و معایب YOLO

مزایا:

- سرعت بسیار بالا و مناسب برای کاربردهای بلادرنگ
 - قابلیت شناسایی چندین شیء بهطور همزمان
- بهینهسازی بالا برای اجرا روی پردازندههای گرافیکی

معایب:

- کاهش دقت در تشخیص اشیاء کوچک یا با پیچیدگی بالا
 - حساسیت به نور و شرایط محیطی متغیر
- نسبت به برخی الگوریتمها دقت کمتری در تشخیص جزئیات دقیق دارد

کتابخانه های استفاده شده برای پروژه ردیابی اشیاء

NumPy

یک کتابخانه بنیادی برای انجام محاسبات ریاضی ، با پشتیبانی از ماتریس ها ، آریه ها و بسیاری از فانکشن ها یا توابع

Ultralyticts

برای استفاده از مدل های یولو

OpenCV

یک کتابخانه منبع باز برای پردازش تصویر در ماشین لرنینگ که به ما توابع مختلف برای کار بر روی فریم های مختلف و ظبط ویدیو را خواهد داد.

cvzone

یک کتاب خانه پردازش تصویر دیگر برای انجام کار های ساده تر و ابتدایی

sort

یک الگوریتم برای ردیابی اشیاء در تصاویر که توسط آقای (Alex Beweley)

طراحی و نوشته شده

بارگذاری ویدیو ، مدل، تصویر ماسک و ایجاد tracker

```
cap = cv2.VideoCapture("../Videos/cars.mp4")

model = Y0L0("../Yolo-Weights/yolov8m.pt")

classNames = ["car", "motorbike", "bus", "truck"]

mask = cv2.imread("mask_picture.png")
```

Model	size (pixels)	mAP ^{val} 50-95	Speed CPU ONNX (ms)	Speed A100 TensorRT (ms)	params (M)	FLOPs (B)
YOLOv8n	640	37.3	80.4	0.99	3.2	8.7
YOLOv8s	640	44.9	128.4	1.20	11.2	28.6
YOLOv8m	640	50.2	234.7	1.83	25.9	78.9
YOLOv8I	640	52.9	375.2	2.39	43.7	165.2
YOLOv8x	640	53.9	479.1	3.53	68.2	257.8

ایجاد دنبال کننده

```
# Tracking
tracker = Sort(max_age=20, min_hits=3, iou_threshold=0.3)
limits = [210, 242, 530, 200]
totalCount = []
```

- max_age : مشخص میکند که هر شئ اگر در چند فریم تشخیص داده نشود ردیابی آن متوقف شود .
 - min_hits : حداقل در چند فریم تشخیص داده شود تا ردیابی معتبر باشد .
- lou_threshold : همپوشانی جعبه های مرزی اشیاء کمتر از میزان مشخص شده باشد به عنوان اشیاء متفاوت در نظر گرفته شود .

حلقه اصلی پردازش ویدیو

```
while True:
    success, img = cap.read()
    imgRegion = cv2.bitwise_and(img, mask)

results = model(imgRegion, stream=True)

detections = np.empty((0, 5))
```


پردازش نتایج تشخیص اشیاء

```
for r in results:
   boxes = r.boxes
   for box in boxes:
       x1, y1, x2, y2 = box.xyxy[0]
       x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
       w, h = x2 - x1, y2 - y1
       # Confidence
       conf = math.ceil((box.conf[0] * 100)) / 100
       # Class Name
       cls = int(box.cls[0])
       currentClass = classNames[cls]
       if currentClass == "car" or currentClass == "truck" or currentClass == "bus" \
               or currentClass == "motorbike" and conf > 0.3:
           currentArray = np.array([x1, y1, x2, y2, conf])
           detections = np.vstack((detections, currentArray))
```


آپدیت ، رسم جعبه های مرزی و خروجی

resultsTracker = tracker.update(detections)

```
for result in resultsTracker:
   x1, y1, x2, y2, id = result
   x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
   print(result)
   w, h = x2 - x1, y2 - y1
   cvzone.cornerRect(img, bbox: (x1, y1, w, h), l=9, rt=2, colorR=(255, 0, 255))
   cvzone.putTextRect(img, text: f' {int(id)}', pos: (max(0, x1), max(35, y1)),
                      scale=2, thickness=3, offset=10)
   cx, cy = x1 + w // 2, y1 + h // 2
   cv2.circle(img, center: (cx, cy), radius: 5, color: (255, 0, 255), cv2.FILLED)
   if limits[0] < cx < limits[2] and limits[1] - 15 < cy < limits[1] + 15:
       if totalCount.count(id) == 0:
           totalCount.append(id)
           cv2.line(img, pt1: (limits[0], limits[1]), pt2: (limits[2], limits[3]), color: (0, 255, 0), thickness: 5)
```


آینده ردیابی اشیاء

- · افزایش دقت و سرعت با یادگیری عمیق
 - ردیابی چند شیء و تعامل بین آنها
- · استفادههای نوظهور: مانند ردیابی در دستگاههای پوشیدنی و واقعیت افزوده

ممنون از توجه شما

پایان