Domácí úkoly LAL1

4. ledna 2025

Úkol 1

Uvažujme prostor $\mathbb{C}^{2,2}$, jeho standardní bázi $\mathcal{E} = (\mathbb{E}_1, \mathbb{E}_2, \mathbb{E}_3, \mathbb{E}_4)$ a báze $\mathcal{X} = (\mathbb{X}_1, \mathbb{X}_2, \mathbb{X}_3, \mathbb{X}_4)$ a $\mathcal{Y} = (\mathbb{Y}_1, \mathbb{Y}_2, \mathbb{Y}_3, \mathbb{Y}_4)$, kde

$$\mathbb{X}_1 = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \qquad \mathbb{X}_2 = \begin{pmatrix} 0 & 0 \\ 3 & -1 \end{pmatrix} \qquad \mathbb{X}_3 = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \qquad \mathbb{X}_4 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$$

a

$$(\mathbb{Y}_1)_{\mathcal{X}} = \begin{pmatrix} 1\\1\\0\\1 \end{pmatrix} \qquad (\mathbb{Y}_2)_{\mathcal{X}} = \begin{pmatrix} 0\\1\\0\\2 \end{pmatrix} \qquad (\mathbb{Y}_3)_{\mathcal{X}} = \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} \qquad (\mathbb{Y}_4)_{\mathcal{X}} = \begin{pmatrix} -4\\-3\\-2\\-1 \end{pmatrix}.$$

Dále definujme matice $\mathbb{A} \in \mathbb{C}^{2,2}$ a $\mathbb{B} \in \mathbb{C}^{2,2}$ jako

$$(\mathbb{A})_{\mathcal{Y}} = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix} \qquad (\mathbb{B})_{\mathcal{E}} = \begin{pmatrix} 10\\18\\15\\7 \end{pmatrix}.$$

- 1. Najděte A.
- 2. Najděte $(\mathbb{B})_{\mathcal{V}}$.
- 3. Najděte $(\mathbb{E}_1)_{\chi}$.
- 4. Najděte $(\mathbb{E}_2)_{\mathcal{V}}$.
- 5. Najděte bázi prostoru $\mathbb{C}^{2,2}$ obsahující $\mathbb{X}_1, \mathbb{Y}_2, \mathbb{E}_3$.

Úkol 2

Nechť $P \subset\subset \mathbb{R}^5$ a $Q \subset\subset \mathbb{R}^5$, kde

$$P = \begin{bmatrix} \begin{pmatrix} 1 \\ 2 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix}_{\lambda}$$

a

$$Q = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} \in \mathbb{R}^5 \middle| \begin{array}{c} x_1 - x_2 + x_3 + 3x_4 - x_5 = 0 \\ -x_1 + 2x_3 - x_4 + x_5 = 0 \\ 3x_1 - 2x_2 + 7x_4 - 3x_5 = 0 \end{array} \right\}.$$

- 1. Platí $P \subset\subset Q$?
- 2. Najděte dimenzi a bázi $P\cap Q,\,P\cup Q$ a P+Q, pokud jsou to dobře definované prostory.
- 3. Najděte doplněk Q do \mathbb{R}^5 .

$\acute{\mathrm{U}}\mathrm{kol}$ 3

Nechť $A:\mathbb{C}^2_{\mathbb{R}}\to\mathcal{P}_5$ (kde \mathcal{P}_5 označíme prostor reálných polynomů stupně nejvýše 4 s přidáním nulového polynomu) takové, že $\forall \alpha,\beta,\gamma,\delta,t\in\mathbb{R}$ platí

$$\left(A \begin{pmatrix} \alpha + \beta i \\ \gamma + \delta i \end{pmatrix}\right)(t) = (\alpha + \beta) + (\alpha + 4\beta - 2\gamma - \delta)t +
+ (\gamma - \beta)t^2 + (2\alpha + \gamma + \delta)t^3 + (\alpha + \delta)t^4.$$

- 1. Ukažte, že A je lineární zobrazení.
- 2. Najděte hodnost, defekt a jádro A.
- 3. Určete, zda je A monomorfní, epimorfní a izomorfní.
- 4. Popište množinu všech řešení \vec{x} rovnice

$$\forall t \in \mathbb{R} \quad (A\vec{x})(t) = 3 - t + t^2 + 9t^3 + 5t^4.$$