Case Study 4 - Group 4

Annika Janson h11829506 Jan Beck h11814291 Franz Uchatzi h1451890

13.12.2020

2 Model

2.1 Model estimation

2.1.1 and 2.1.2

(See page 2 for model comparison and regression output.)

The R^2 value of model 1 and 2 is **0.348** and **0.828** respectively.

The estimates and standard errors for the non-brand explanatory variables of model 1 and 2 are identical.

The estimates for rq, vo, wa, ju/intercept, education, income, age and price are significant at the 5%-level.

2.2

Model 1: the estimate for kr is -0.287950, which means that on average the rating is changing by -0.2887950 c.p. In other words, we shift the regression line down by 0.2887950.

Model 2: the estimate for kr is 20.560087, this is the intercept for kr. On average, if the brand kr and all other variables were 0, the rating would be 20.560087 c.p.

2.3

We can calculate the regression parameter associated with kr in Model 1 by subtracting the value of ju in Model 2 from the value of kr in Model 2.

This is because ju was our reference group, so the intercept of Model 1 is equivalent to the intercept of ju, which is also shown in Model 2. Model 1 shows us the difference between choosing "kr" or any other group and Model 2 shows us each groups intercept.

 ${\bf Table\ 1:\ Model\ comparison}$

	Dependent variable: rating	
	(1)	(2)
rq	3.884***	24.732***
	(0.312)	(0.478)
VO	3.557***	24.405***
	(0.312)	(0.478)
wa	0.596*	21.444***
	(0.312)	(0.478)
kr	-0.288	20.560***
	(0.312)	(0.478)
ju		20.848***
		(0.478)
education	-0.257	-0.257
	(0.218)	(0.218)
gender	-0.107	-0.107
	(0.200)	(0.200)
income	-0.641^{***}	-0.641***
	(0.205)	(0.205)
age	0.012**	0.012**
	(0.006)	(0.006)
price	-0.303***	-0.303***
	(0.008)	(0.008)
Constant	20.848***	
	(0.478)	
Observations	3,195	3,195
\mathbb{R}^2	0.348	0.828
Adjusted R ²	0.346	0.828
Residual Std. Error $(df = 3185)$	5.584	5.584
F Statistic	$188.881^{***} (df = 9; 3185)$	$1,537.900^{***} (df = 10; 3185)$
Note:		*p<0.1; **p<0.05; ***p<0.05

2.4

```
H0: \beta_{wa} = 0
H1: \beta_{wa} \neq 0
```

In model 1, the p-value for β_{wa} is **0.05641**. Therefore, at the $\alpha = 0.05$, we can not reject the null hypothesis. We conclude, that there is no difference in the average rating between the brands ju and wa c.p.

Bonus question:

```
## Linear hypothesis test
##
## Hypothesis:
## wa - ju = 0
##
## Model 1: restricted model
## Model 2: rating \sim 0 + rq + vo + wa + kr + ju + education + gender + income +
##
      age + price
##
##
    Res.Df
              RSS Df Sum of Sq
                                    F Pr(>F)
## 1
      3186 99433
      3185 99320 1
                        113.58 3.6425 0.05641 .
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
```

The linear hypothesis shows that the p-value again is **0.05641**, which is exactly the p-value we expected, as it was the one we could see in the results of wa in Model 1.

2.5

2.5.1

2.5.2

2.6

[1] "Numeric: lengths (3195, 31950) differ"

```
Not be a second of the second
```

```
##
## Call:
  lm(formula = rating ~ rq + vo + wa + kr + education + gender +
##
       income + age + price, data = marketing)
##
## Residuals:
##
       Min
                                 3Q
                1Q
                    Median
                                        Max
##
  -18.167 -4.118
                     0.827
                             3.931
                                    15.232
##
##
  Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 20.848037
                                     43.640
                                              < 2e-16 ***
                           0.477726
## rq
                3.884194
                           0.312412
                                     12.433
                                              < 2e-16 ***
                3.557121
## vo
                           0.312412
                                     11.386
                                              < 2e-16 ***
                0.596244
                           0.312412
                                       1.909
                                              0.05641
## wa
                                     -0.922
## kr
               -0.287950
                           0.312412
                                              0.35675
               -0.256875
                                      -1.178
                                              0.23902
## education
                           0.218121
## gender
               -0.106798
                           0.199892
                                     -0.534
                                              0.59319
## income
               -0.641044
                           0.204691
                                      -3.132
                                              0.00175 **
                0.012078
                           0.006017
                                       2.007
                                              0.04483 *
## age
## price
               -0.302541
                           0.008232 -36.750
                                              < 2e-16 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.584 on 3185 degrees of freedom
## Multiple R-squared: 0.348, Adjusted R-squared: 0.3462
```

Normal Q-Q Plot


```
##
## Jarque Bera Test
##
## data: resids
## X-squared = 36.524, df = 2, p-value = 1.172e-08
```

Histogramm: Looking at the Histogramm, it seems that the residuals are not normally distributet, as they are located around