

CESE – SOTR I Clase 6: Simulacro de Examen

Ing. Juan Manuel Cruz

jcruz@fi.uba.ar

Gerente de Ingeniería - Cia. Hasar SAIC Profesor Asociado Ordinario - Técnicas Digitales II UTN FRBA Profesor Adjunto Regular - Sistemas Embebidos FIUBA ACSE - Laboratorio de Sistemas Embebidos FIUBA

2024 - ABR - 06

Temario

- Simulacro de examen
- Enunciado
- Implementación

 Implementar un Sistema de Control de Acceso que monitorea & controla el ingreso/egreso de vehículos (sólo un punto de ingreso y sólo un punto de egreso) a un puente estrecho de capacidad limitada (sólo un vehículo)

 Se trata de una ruta de doble sentido que llega a un puente estrecho por el que cabe un solo vehículo

- Para la implementación se sugieren dos tareas (una para cada punto de ingreso/egreso), a saber:
 - void task_a(void *parameters); // Monitoreo y Control ...
 - void task_b(void *parameters); // Monitoreo y Control ...
- Observaciones:
 - Al puente estrecho los vehículos, ingresan/egresan por orden de llegada y uno a la vez
 - La capacidad del puente estrecho está limitada a sólo un vehículo
 - Cada uno de los puntos de ingreso/egreso al puente estrecho cuenta con un semáforo vial a controlar

- A falta de hardware para estimular a las tareas, contamos con una tercera tarea de test (que periódicamente recupera un estímulo de un array y lo envía las otras tareas):
- void task_test(void *parameters);
 - Estímulos => Entry_A, Exit_A, Entry_B, Exit_B
- Project => freertos_app_example_001.zip (foder: app)

IMPORTANTE: Se recomienda implementar con "**semáforos binarios** y **mutex**" y seguir los siguientes pasos:

- Tarea de generación de estímulos task_test()
 - Resolver la generación de estímulos p/probar el funcionamiento de task_a() y task_b()
- Tarea de monitoreo/control de punto de ingreso/egreso task_a()
 - Resolver la sincronización con los estímulos generados por task_test()
 - Resolver el acceso a recursos compartidos con la tarea de monitoreo/control de ingreso/egreso task_b()

- Tarea de monitoreo/control de punto de ingreso/egreso task_b()
 - Resolver la sincronización con los estímulos generados por task_test()
 - Resolver el acceso a recursos compartidos con la tarea de monitoreo/control de ingreso/egreso task_a()
- Indique modificaciones necesarias para gobernar los semáforos viales (Rojo, Verde) en las entradas al puente estrecho
- Subir al Campus: La carpeta app (comprimida en un archivo del tipo ".zip o .rar ", nombrar: freertos_app_example_001-Apellidos_Nombres.zip

- Tarea de generación de estímulos task_test()
 - Resolver la generación de estímulos p/probar el funcionamiento de task_a() y task_b()
 - void task_test (void *parameters);
 - Estímulos => Entry_A, Exit_A, Entry_B, Exit_B
- ¿Qué recursos provee FreeRTOS para sincronizar tarea entre sí o tareas con interrupciones?
 - Semáforos (Binarios, Contadores, Mutex)
 - Colas

- ¿Qué recurso de FreeRTOS elegimos para sincronizar dichas tareas, cuántos necesitamos y qué primitivas usamos?
 - Semáforo Binario, 4 (cuatro), uno para cada estímulo
 - SemaphoreHandle_t xSemaphoreCreateBinary(void)
 - https://www.freertos.org/xSemaphoreCreateBinary.html
 - xSemaphoreGive(SemaphoreHandle_t xSemaphore)
 - https://www.freertos.org/a00123.html
 - xSemaphoreTake(SemaphoreHandle_t xSemaphore, TickType_t xTicksToWait)
 - https://www.freertos.org/a00122.html

- ¿En qué partes del programa usamos c/u de las primitivas y porqué?
 - SemaphoreHandle_t xSemaphoreCreateBinary(void)
 - app_init(void)
 - xSemaphoreGive(SemaphoreHandle_t xSemaphore)
 - void task_test (void *parameters);
 - xSemaphoreTake(SemaphoreHandle_t xSemaphore, TickType_t xTicksToWait)
 - void task_a(void *parameters);
 - void task_b(void *parameters);

Implementación task_test task_a **Estímulo** Wait Entry_ Signal Entry_ Entry_A Acción **Signal** Exit_A Exit_A Wait Exit A Acción Ing. Juan Manuel Cruz 2024 - ABR - 06 11

Example usage:

```
/* A task that uses the semaphore. */
     void vAnotherTask( void * pvParameters )
         /* ... Do other things. */
         if( xSemaphore != NULL )
             /* See if we can obtain the semaphore. If the semaphore is not
             available wait 10 ticks to see if it becomes free. */
             if( xSemaphoreTake( xSemaphore, ( TickType_t ) 10 ) == pdTRUE )
                 /* We were able to obtain the semaphore and can now access the
                  shared resource. */
                 /* ... */
                 /* We have finished accessing the shared resource. Release the
                  semaphore. */
                 xSemaphoreGive( xSemaphore );
             else
                 /* We could not obtain the semaphore and can therefore not access
                 the shared resource safely. */
2024 - ABR - 06
```


- ¿Qué recurso de FreeRTOS elegimos para permitir que un solo vehículo pase por el puente estrecho, cuántos necesitamos y qué primitivas usamos?
 - Semáforo Mutex, 1 (UN), uno para el puente estrecho
 - SemaphoreHandle_t xSemaphoreCreateMutex(void)
 - https://www.freertos.org/CreateMutex.html
 - xSemaphoreGive(SemaphoreHandle_t xSemaphore)
 - https://www.freertos.org/a00123.html
 - xSemaphoreTake(SemaphoreHandle_t xSemaphore, TickType_t xTicksToWait)
- https://www.freertos.org/a00122.html
 2024 ABR 06
 Ing. Juan Manuel Cruz

- ¿En qué partes del programa usamos c/u de las primitivas y porqué?
 - SemaphoreHandle_t xSemaphoreCreateMutex(void)
 - app_init(void)
 - xSemaphoreGive(SemaphoreHandle_t xSemaphore)
 - void task_a(void *parameters);
 - void task_b(void *parameters);
 - xSemaphoreTake(SemaphoreHandle_t xSemaphore, TickType_t xTicksToWait)
 - Idem anterior

Example usage:

```
SemaphoreHandle_t xSemaphore;

void vATask( void * pvParameters )
{
    /* Create a mutex type semaphore. */
    xSemaphore = xSemaphoreCreateMutex();

    if( xSemaphore != NULL )
    {
        /* The semaphore was created successfully and can be used. */
    }
}
```

