0.1 R2 数学必修

 $\boxed{1}$ $(1)A,B \in S_2(\mathbb{R})$ に対して $^t(A+B)=^tA+^tB=A+B$ より、 $A+B \in S_2(\mathbb{R})$ である。また $k \in \mathbb{R}, A \in S_2(\mathbb{R})$ に対して $^t(kA)=k^tA=kA$ より $kA \in S_2(\mathbb{R})$ である。よって $S_2(\mathbb{R})$ は部分空間。

 $(3)A \in S_2(\mathbb{R})$ に対して $t(^tPAP) = ^tP^tA^t(^tP) = ^tPAP$ である. よって $f_p(S_2(\mathbb{R})) \subset S_2(\mathbb{R})$ である.

 $(5)g_P$ が全射なら ${}^tPAP=E$ を満たす $A\in S_2(\mathbb{R})$ が存在する. $\det^t P\det A\det P=1$ であるから $(\det P)^2\det A=1$ である. よって $\det P\neq 0$ である. よって P は可逆行列.

P が可逆行列なら任意の $Q \in S_2(\mathbb{R})$ に対して $A=^tP^{-1}QP^{-1}$ とすれば, $A \in S_2(\mathbb{R})$ であり, $g_P(A)=Q$ である.よって g_P は全射である.

- 2 (1) G を非空集合, \cdot : $G \times G \to G$ を写像とする. $\langle G, \cdot \rangle$ が群であるとは,次の条件を満たすことである.
- (i)任意の $a, b, c \in G$ に対して $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ である.
- (ii)ある $e \in G$ がただ一つ存在して任意の $a \in G$ に対して $e \cdot a = a \cdot e = a$ である.
- (iii)(ii) の e と任意の $a \in G$ に対して、ある $b \in G$ が存在して $a \cdot b = b \cdot a = e$ である.

 $(2)((x_1,y_1)\cdot(x_2,y_2))\cdot(x_3,y_3)=(x_1+x_2,(-1)^{x_2}y_1+y_2)\cdot(x_3,y_3)=(x_1+x_2+x_3,(-1)^{x_3}((-1)^{x_2}y_1+y_2)+y_3)=(x_1+x_2+x_3,(-1)^{x_2+x_3}y_1+(-1)^{x_3}y_2+y_3)$ である。また $(x_1,y_1)\cdot((x_2,y_2)\cdot(x_3,y_3))=(x_1,y_1)\cdot(x_2+x_3,(-1)^{x_3}y_2+y_3)=(x_1+x_2+x_3,(-1)^{x_3}y_1+(-1)^{x_1}y_2+y_3)$ である。よって (i) を満たす。

 $(x_1,y_1)\cdot(0,0)=(x_1,(-1)^0y_1)=(x_1,y_1)$ である。また $(0,0)\cdot(x_1,y_1)=(0,(-1)^{x_1}y_1)=(x_1,y_1)$ である。逆 に $(x_1,y_1)\cdot(x_2,y_2)=(x_1,y_1)$ なら $x_1=x_1+x_2$ であるから $x_2=0$ である。よって $(-1)^{x_2}y_1+y_2=y_1+y_2=y_1$ より $y_2=0$ である。よって (ii) を満たす。

 (x_1,y_1) に対して $(x_1,y_1)\cdot(-x_1,(-1)^{-x_1+1}y_1)=(0,(-1)^{-x_1}y_1+(-1)^{-x_1+1}y_1)=(0,0),(-x_1,(-1)^{-x_1+1}y_1)\cdot(x_1,y_1)=(0,(-1)^{x_1}y_1+(-1)^{-x_1+1}y_1)=(0,0)$ である。よって (iii) を満たす。すなわち群である。

(3) 任意の $(x_1,y_1) \in G$, $(x,y) \in H$ に対して、 $(-x_1,(-1)^{-x_1+1}y_1) \cdot (x,y) \cdot (x_1,y_1) = (-x_1+x,(-1)^x(-1)^{-x_1+1}y_1+y) \cdot (x_1,y_1) = (x,(-1)^{x_1}((-1)^{x-x_1+1}y_1+y)+y_1) = (x,(-1)^{x+1-2x_1}y_1+(-1)^{x_1}y+y_1)$ である。 $x \in 2F$ であり、 $(-1)^{x+1-2x_1}y_1+(-1)^{x_1}y+y_1 = (-1)^{x_1}y \in 3\mathbb{Z}$ である。よって H は G の正規部分群。

 $\boxed{3}$ $(1)(x,y)=(r\cos\theta,r\sin\theta)$ と極座標変換する.ヤコビアンは r である.積分領域は $D'=\{(r,\theta)\mid 0<$

 $r \le 1, -\pi/3 \le \theta \le \pi/3$ } である. よって

$$\iint_D x |\log(x^2 + y^2)| dx dy = \int_{-\pi/3}^{\pi/3} \int_0^1 r^2 \cos \theta |\log r^2| dr d\theta = [\sin \theta]_{-\pi/3}^{\pi/3} \int_0^1 -r^2 \log r^2 dr$$
$$= -2\sqrt{3} \left(\left[\frac{1}{3} r^3 \log r \right]_0^1 - \int_0^1 \frac{r^2}{3} dr \right) = \frac{2\sqrt{3}}{9}$$

(2) 極座標変換して $0 \le r \le \sqrt{2}, 0 \le \theta < 2\pi$ での $f(r,\theta) = r^2 \cos \theta \sin \theta (3-r^2)$ の最大値,最小値を考える. $0 \le r \le \sqrt{2}$ での $r^2(3-r^2) = -(r^2-3/2)^2 + 9/4$ は $r = \frac{3}{2}$ で最大値 $\frac{9}{4}$ をとり,r = 0 で最小値 0 をとる. $0 \le \theta < 2\pi$ での $\cos \theta \sin \theta = \frac{1}{2} \sin 2\theta$ は $\theta = \pi/4$ で最大値 $\frac{1}{2}$ をとり, $\theta = 3\pi/4$ で最小値 $-\frac{1}{2}$ をとる. よって最大値は $\frac{9}{8}$,最小値は $-\frac{9}{8}$ である.

 $(3)(a_n)_{n=1}^\infty$ がコーシー列であることを示す. n>m とする. $(f(n))_{n=1}^\infty$ は単調減少有界列であるから収束列である. よってコーシー列である. よって

$$|a_n - a_m| = \left| \int_m^n f(x) dx - \sum_{k=m+1}^n f(k) \right| = \left| \sum_{k=m+1}^n \int_{k-1}^k f(x) - f(k) dx \right|$$

$$\leq \left| \sum_{k=m+1}^n f(k-1) - f(k) \right| = |f(m) - f(n)| \to 0 \ (n, m \to \infty)$$

となるからコーシー列である.

- 4 (1) 任意の異なる二点 $(x_1,y_1),(x_2,y_2)\in X\times Y$ をとる. $x_1\neq x_2$ のとき, $x_1\subset U_1,x_2\subset U_2$ なる開集 合 U_1,U_2 で $U_1\cap U_2=\emptyset$ を満たすものが存在する.このとき $(x_1,y_1)\subset U_1\times Y,(x_2,y_2)\subset U_2\times Y$ であり, $U_1\times Y\cap U_2\times Y=\emptyset$ である. $x_1=x_2$ のとき, $y_1\neq y_2$ であり,その場合も同様にできる.よって $X\times Y$ はハウスドルフである.
- $(2)A\subset X$ が有限のとき, $S=\{U_{\lambda}\mid \lambda\in\Lambda\}$ を A の開被覆とする.各 $a\in A$ に対して $a\in U_{\lambda_a}$ なる $\lambda_a\in\Lambda$ が存在するからこれを固定する.このとき $A\subset\bigcup_{a\in A}U_{\lambda_a}$ より A はコンパクト.

A が無限集合なら A の開被覆として $S = \{\{a\} \mid a \in A\}$ とすればこれは有限部分被覆をもたないからコンパクトでない. 対偶をとればコンパクトなら有限集合である.