・ 情報アクセス論 第11回 「多言語情報アクセス」

Webページの言語別割合(2006)

Source: 早稲田大学山名研究室, Language distributions by TLDs, 2006 http://www.yama.info.waseda.ac.jp/e-society/TLD-Lang Distribution/langdist.html

http://www.garbagenews.net/archives/1489928.html

http://www.garbageriews.newaronives/ 1-100020.num

http://www.garbagenews.net/archives/1489928.html

• • • 多言語情報アクセスとは?

- o 多言語の情報が混在する情報源に対する情報アクセス技術
 - 欧州連合(EU)の公用語は23言語
 - インドの公用語は19言語
- o Web上では言語・国家などによる区分が存在 せず、世界中の様々な言語の情報が混在
 - Wikipediaは281の言語版が存在(2011/6/1現在)
- o 利用者の母国語だけでなく、他の言語に対するアクセスを実現する技術

多言語情報アクセスの課題1: 多言語情報検索

- 利用者が使う言語によって、検索対象が制限 される
 - 日本語だとWeb全体の一部しか検索できない
- ○検索要求によっては、他の言語も探したい
 - ある国のニュースは、その国の言語による ニュースサイトのほうが情報が豊富
- 言語横断情報検索(Cross-Language IR)
 - ある言語で書かれた文書群を別の言語による 問合せで検索

言語横断検索へのアプローチ

o 検索対象の文書を翻訳

Webのように、大規模で多言語かつ更新が頻繁な文書群に対しては非現実的

○ 利用者の問合せを翻訳

- 翻訳された問合せは、既存の検索エンジンに そのまま適用可能
- 辞書で翻訳しただけでは、訳語の曖昧性が生じる
 - bank:銀行,堤防,土手,川岸...
 - crane:鶴(ツル), 起重機(クレーン)

・・・ 訳語曖昧性の解消手法

- 検索対象言語コーパス中における単語の共起傾向を用いる
 - **コーパス:**大量のテキストを集めた言語データ
 - 共起傾向:単語間の関連の強さの統計量
- o 既存のコーパスは分野が限られている
 - 新聞記事, 文学, 特許, 論文, 国会議事録, etc.
- o Web検索エンジンをコーパスとして利用
 - 多様な分野にわたる膨大な量の言語資源
 - 訳語候補の組をWeb検索エンジンで検索した 検索文書数を共起頻度とみなす

問合せ翻訳の流れ

問合せ翻訳モジュール 問合せの 訳語候補 利用者の 問合せ 曖昧性 曖昧性が解消 母国語に 解消 翻訳 された問合せ よる問合せ 銀行 銀行 bank 通貨 堤防 money 単語共起 土手 訳語候補 頻度の 川岸 の取得 取得 対訳辞書 単言語 Web検索 コーパス エンジン

| 共起傾向による曖昧性解消の | 手順

問合せ: (銀行 AND 通貨 AND 貿易) OR (銀行 AND 資産 AND 商売)

前田 亮, 吉川 正俊, 植村 俊亮. 言語横断情報検索におけるWeb文書群による訳語曖昧性解消. 情報処理学会論文誌:データベース, Vol. 41, No. SIG 6 (TOD 7), pp. 12-21, Oct. 2000.

●曖昧性解消の例

- •「神経 再生」という問合せに対して、 各単語の英訳の組み合わせの共起傾向(相互情報量)を 計算
- 上位7件がすべて 正解, それ以下は すべて不正解

順	訳語候補の組		共起
位	神経	再生	傾向
1	nerve	regeneration	2.20
2	nerve	regrowth	1.82
3	"nervous system"	regeneration	1.12
4	nerves	regeneration	0.54
5	nerves	regrowth	0.43
6	"nervous system"	regrowth	-0.17
7	sensation	regrowth	-1.52
8	sensation	reincarnation	-2.33
9	"nervous system"	resuscitation	-2.65
10	sensitivity	playback	-2.95
11	sensitivity	regeneration	-3.07
12	nerve	resuscitation	-3.07
13	sensation	regeneration	-3.09
14	worry	read	-3.27
15	sensation	rebirth	-3.91

再現率-適合率曲線

●●■言語横断情報検索の実例

o Googleの「翻訳して検索」機能

- 利用者が入力した問合せを翻訳して検索
- 52言語への翻訳に対応
- 検索結果のスニペットやページ自体も翻訳して表示
- 後述の機械翻訳機能を用いて問合せを翻訳しているため、曖昧性解消がうまくいかない場合がある
 - 「river bank」→「川銀行」

多言語情報アクセスの課題2: 機械翻訳

- 言語横断情報検索が実現できても、検索結果 の文書を読めなければ意味がない
- ○機械翻訳:コンピュータで,ある言語の文を他の言語の文に翻訳する技術
- ○自然言語処理技術の集大成
 - 形態素解析, 構文解析, 意味解析, 文生成, 辞書, 統計的言語処理, etc.
- 古くから研究されているが、難しい課題
 - 人間にとっても高度に知的な処理

・・・機械翻訳の例

- o「あなたのオフィスに明日行きます」
 - I will go to your office tomorrow.

- I will come to your office tomorrow.
- o「Time flies like an arrow.」(光陰矢のごとし)
 - 「時バエ(time flies)は矢を好む」
 - ●「時は矢のように飛ぶ」
 - 「月日が経つのは矢のように速い」 ()

●● 言語構造の違い(1)

- 語順が異なる
 - 日本語はSOV型, 英語はSVO型
 - 「彼はスーツを着ている」→「He wears a suit.」
- ●必ずしも一対一に対応しない
 - 「play」→「(ピアノを)弾く」「(フルートを)吹く」「(野球を)する」
 - 「服を着る」「眼鏡をかける」「帽子をかぶる」「靴を履く」→「put on one's glasses [hat, coat, shoes, ring, eye shadow]」
 - ●「スープを飲む」→「eat soup」

• • 言語構造の違い(2)

- o 対応する語の品詞が異なる
 - 「3冊の本」(数詞+の+名詞)→「three books」 (形容詞+名詞)
- 1語が2語に対応する
 - 「湯」→「hot water」,「牛・肉」→「beef」
- o 1語が節に対応する
 - ●「efficient」→「効率が良い」

・・・|機械翻訳方式の分類

- の用語の定義
 - 原言語(source language):翻訳元の言語
 - 目的言語(target language):翻訳先の言語
- ・主な機械翻訳方式
 - 単語直接方式
 - トランスファー方式
 - 中間言語方式
 - 実例型機械翻訳
 - 統計的機械翻訳

解析/生成のトライアングル

• • • トランスファー方式

- 機械翻訳の伝統的な方法
- o 解析,変換,生成の3過程からなる
 - 1 原言語の文を解析して文構造を求める
 - 2. 原言語の文構造を目的言語の文構造に変換
 - 3. 目的言語の文構造から訳を生成
- 構文レベルで変換する場合、構文トランスファー 方式と呼ばれる
 - 多くのシステムでは、意味解析も含む

トランスファー方式の概念図

トランスファー方式の処理過程 (1)

1解析

o まず形態素解析が行われ、次に構文解析

2变换

- ○文の変換
 - 文が主節や従属節からなる場合,部分構造を変換し、それらの結果と部分構造の関係により文全体の変換が行われる
 - "He likes mathematics but she doesn't like it."
 - ●「彼は数学が好きだが、彼女はそれを好きではない」

トランスファー方式の処理過程(2)

- ○節(格構造)の変換
 - 格フレーム(動詞がどのような名詞に修飾される かを示す知識)を用いる
 - 動詞と名詞の訳し分け
 - "take a walk"「散歩する」
 - "take a cold"「風邪を引く」
 - ●表層格の対応
 - "take a picture"「写真を撮る」
 - "take a bus"「バスに乗る」

トランスファー方式の処理過程(3)

- ○名詞句の変換
 - 名詞句の構成要素である修飾部と主要部の構造 を変換
 - 修飾部が関係節(埋め込み文)
 - "picture that Mary painted"「メアリが描いた絵」
 - 修飾部が前置詞句(後置詞句)
 - "girl with blond hair"「金髪の少女」

3生成

- 意味構造/構文構造を単語列, 文字列に変換
 - 語順,態,活用形,人称,数の一致,冠詞など

「機械翻訳」のまとめ

- ○単なる自然言語処理ではなく,自然言語理解
- 高度な処理であり、かつ膨大な知識(変換規則 , 辞書)が必要
- 用途を限定すれば、ある程度実用的な精度が 得られる
 - 公文書の翻訳(EC諸国)
 - 英語の天気予報をフランス語に(カナダ)
 - 科学技術論文の日英翻訳(日本)
 - 企業の決算速報の英訳(日本)
- 最近では無料で利用できる検索サービスがある
 - Yahoo!, Google, excite, OCNなどが提供

・・・まとめ

○ 多言語情報アクセス技術は、母国語以外の情報へのアクセスを実現し、問題解決の可能性を向上させる重要な技術

○ 言語横断情報検索は、ある言語による問合せで 別の言語で書かれた情報を検索する技術

機械翻訳技術は、自然言語処理技術の集大成であり、まだ改良の余地は大きい