T 4.2. Let X be an IP space. If $u, v \in X$, then $|\langle u, v \rangle|^2 \leq \langle u, u \rangle \langle v, v \rangle$, equality iff u, v are linearly dependent. **P 4.7**. Let M be an orthonormal set in an inner product space X over \mathbb{K} and F be a finite subset of M. Then the following hold for all $u \in X$: (a) $||u - \sum_{v \in F} \langle u, v \rangle v||^2 =$ $||u||^2 - \sum_{v \in F} |\langle u, v \rangle|^2$. (b) If G is also a finite subset of M and $F\subseteq G, ||u-\sum_{v\in F}\langle u,v\rangle v||\geq ||u-\sum_{v\in G}\langle u,v\rangle v||.$ (c) (Bessel's inequality) $\sum_{v \in F} |\langle u, v \rangle|^2 \le ||u||^2$. (d) (Best approximation) For any choice of $\alpha_v \in \mathbb{K}, v \in F, ||u - \sum_{v \in F} \langle u, v \rangle v|| \le ||u - \sum_{v \in F} \alpha_v v||$. **T 4.8**. Let M be an orthonormal basis of the IP space X and $u \in X$. Then, for any $\epsilon > 0$, \exists a finite set $F\subseteq M$ s.t. for all finite sets G with $F\subseteq G\subseteq M, ||u-\sum_{v\in G}\langle u,v\rangle v||\leq \epsilon$ and $||u||^2 \leq \sum_{v \in G} |\langle u, v \rangle|^2 + \epsilon^2$. **T 4.10**. Let M be a denumerable orthonormal basis of the IP space X and $f: \mathbb{N} \to M$ be bijective. Then $u = \sum_{n=1}^{\infty} \langle u, f(n) \rangle f(n)$ (Fourier expansion) and $||u||^2 = \sum_{n=1}^{\infty} |\langle u, f(n) \rangle|^2$ (Parseval's relation) **T 4.11**. Let B be a denumerable orthonormal basis of the IP space $X, I \subseteq \mathbb{R}$, and $u: I \to X$ such that, for all $v \in B, \langle u(t), v \rangle$ is a (uniformly) cont func of $t \in I$. Let $\{\alpha_v; v \in B\}$ be a family in \mathbb{R}_+ such that $|\langle u(t),v\rangle| \leq \alpha_v$ for all $t\in I$ and $v\in B$. Assume that there is some bijective $f: \mathbb{N} \to B$ s.t. the series $\sum_{n=1}^{\infty} \alpha_{f(n)}^2$ converges in \mathbb{R} . Then u is (unif) cont. **Exercise 4.2.1** (Riesz-Fisher Theorem). Let $\{v_m; m \in \mathbb{N}\}$ be an orthonormal set in a Hilbert space H over \mathbb{K} and (α_m) a sequence in \mathbb{K} . Show: The series $\sum_{m=1}^{\infty} \alpha_m v_m$ exists in H iff $\sum_{m=1}^{\infty} |\alpha_m|^2 < \infty$. Further, if one and then both of these statements hold, $||\sum_{m=1}^{\infty} \alpha_m v_m||^2 = \sum_{m=1}^{\infty} |\alpha_m|^2$ *Proof.* We define partial sums in H, $x_n = \sum_{m=1}^n \alpha_m v_m$, and in \mathbb{K} , $\beta_n = \sum_{m=1}^n |\alpha_m|^2$. By the properties of the inner product and orthonormality, $||x_n - x_k||^2 = ||\sum_{m=k+1}^n \alpha_m v_m||^2 = \langle \sum_{m=k+1}^n \alpha_m v_m, \sum_{j=k+1}^n \alpha_j v_j \rangle =$ $\sum_{m=k+1}^{n} \sum_{j=k+1}^{n} \alpha_m \bar{\alpha}_j \langle v_m, v_j \rangle = \sum_{m=k+1}^{n} |\alpha_m|^2 = |\beta_n - \beta_k|.$ This shows that (x_n) is a Cauchy sequence in H iff (β_n) is a Cauchy sequence in \mathbb{R} . Assume that $\sum_{m=1}^{\infty} |\alpha_m|^2$ converges. Then (β_n) is a Cauchy sequence in \mathbb{R} and (x_n) is a Cauchy sequence in H. Since H is complete, (x_n) converges, i.e., $\sum_{n=1}^{\infty} \alpha_n x_n$ converges. The other direction follows similarly. Finally, by continuity of the norm and orthonormality, $||\sum_{m=1}^{\infty} \alpha_m v_m||^2$ $\lim_{n\to\infty} ||x_n||^2 = \lim_{n\to\infty} \sum_{m=1}^{\infty} |\alpha_m|^2 = \sum_{m=1}^{\infty} |\alpha_m|^2 \square$ Exercise **4.2.2.** Let X be a Hilbert space. Let $M = \{v_m; m \in \mathbb{N}\}$ be an orthonormal subset of X. Show: $\sum_{m=1}^{\infty} \langle u, v_m \rangle v_m$ converges for every $u \in X$. Warning: This means that the Fourier series of u converges, but it may happen that it does not equal u (unless M is an orthonormal basis). Proof. Combine Bessel's inequality with Exercise 4.2.1 choosing $\alpha_v = \langle u, v \rangle$ \square Exercise 4.2.3. Let X be an inner product space and M a denumerable orthonormal subset of X. Show (a) If M is an orthonormal basis and $x \in X$, then $\langle x, v \rangle = 0$ for all $v \in M$ implies that x = 0. (b) If X is an Hilbert space and if, for all $x \in X, \langle x, v \rangle = 0$ for all $v \in M$ implies that x = 0, then M is an orthonormal basis. Proof. (a) Let $M = \{v_m; m \in \mathbb{N}\}$ be an orthonormal basis and $x \in X$. Then x is represented by its Fourier series, $x = \sum_{m=1}^{\infty} \langle x, v_m \rangle v_m$. Assume that $\langle x, v \rangle = 0$ for all $v \in M$. Then x = 0. (b) Let $x \in X$. By Exercise 4.2.2, the series $\sum_{m=1}^{\infty} \langle x, v_m \rangle v_m =: y$ converges. By orthonormality and continuity of the inner product, $\langle y, v_k \rangle = \langle x, v_k \rangle$ for all $k \in \mathbb{N}$. So $\langle y - x, v \rangle = 0$ for all $v \in M$. By assumption, y - x = 0 i.e., $x = y = \sum_{m=1}^{\infty} \langle x, v_m \rangle v_m$. This means that M is an orthonormal basis \square **T** 4.12. The set $B = \{v_j; j \in \mathbb{Z}\}$ with $v_i(x) = e^{ijx}$ is an orthonormal basis for the following IP spaces with the IP $\langle f, g \rangle = 1/(2\pi) \int_{-\pi}^{\pi} f(x) \overline{g(x)} dx : X = C([-\pi, \pi], \mathbb{C}), X = L^{2}([-\pi, \pi], \mathbb{C})$ and the space of Riemann integrable functions on $[-\pi, \pi]$ with values in \mathbb{C} . Further the Fourier series $\sum_{j=-\infty}^{\infty} \hat{f}_j e^{ijx}$, $\hat{f}_j = 1/(2\pi) \int_{-\pi}^{\pi} f(x) e^{-ijx} dx$, converges to f in the sense that for every $\epsilon > 0 \exists$ some $N \in \mathbb{N}$ with $\int_{-\pi}^{\pi} |f(x) - \sum_{j=-k}^{m} \hat{f}_{j} e^{ijx}|^{2} dx < \epsilon^{2}$ (4.4) for all $k, m \in \mathbb{N}$ with k, m > N. **P 4.14.** Let $f: \mathbb{R} \to \mathbb{C}$ be Lipschitz cont and 2π -periodic. Then $\sum_{i \in \mathbb{Z}} |\hat{f}_i|$ converges in \mathbb{R} . More precisely, if Λ is a Lipschitz const for f, then $\sum_{j \in M} |\hat{f}_j| \leq 2\Lambda + |\hat{f}_0|$ for all finite subsets M of \mathbb{Z} . **R** 4.15. This proof also shows: If $g: [-\pi, \pi] \to \mathbb{C}$ is absolutely cont and 2π -periodic and $g' \in L^2[-\pi,\pi]$, then $\sum_{j\in\mathbb{Z}} |\hat{g}_j| \leq 2||g'|| + |\hat{g}_0|$. Every Lipschitz cont funct f is absolutely cont with $|f'(x)| \leq \Lambda$ for a.a. x. L 4.16. Let $f: [-L, L] \to \mathbb{C}$ be Lipschitz cont, f(L) = f(-L). Extend f in an 2Lperiodic way, $f(y+2kL)=f(y): k \in \mathbb{Z}, -L < y \leq L$. Extension of f is Lipschitz cont with same Lipschitz const. **T** 4.17. Let $f: [-L, L] \to \mathbb{C}$ be Lipschitz cont, f(-L) = f(L). Then f is the uniform limit of its Fourier series, $f(x) = \sum_{j \in \mathbb{Z}} \hat{f}_j e^{i\lambda_j x}, \hat{f}_j = (1/2L) \int_{-L}^{L} f(y) e^{-i\lambda_j y} dy, \lambda_j = j\pi/L.$

Exercise 4.3.1. Let $B = {\cos(jx); j \in \mathbb{N}} \cup {\sin(jx); j \in \mathbb{N}} \cup {1/\sqrt{2}}.$ Show that B is an orthonormal basis of $L^2([-\pi,\pi],\mathbb{R})$ with inner product $\langle f,g \rangle = (1/\pi) \int_{-\pi}^{\pi} fg$. Hint: Use that $\{e^{ijx}; j \in \mathbb{Z}\}$ is an orthonormal basis of $L^2([-\pi,\pi],\mathbb{C})$ and express $\sin x$ and $\cos x$ in terms of e^{ix} and e^{-ix} . Proof. Recall that $\cos(jx) = (1/2)(e^{ijx} + e^{-ijx}), \sin(jx) = (1/2i)(e^{ijx} - e^{-ijx}).$ Since e^{ijx} and e^{ikx} are orthogonal to each other for $j \neq k$, so are $\cos jx$ and $\cos kx$, and $\cos jx$ and $\sin kx$, and $\sin jx$ and $\sin kx$ for $j \neq k$. $\sin jx$ and $\cos jx$ are orthogonal to each other because their product is odd about 0 and the integral yields 0. Further $(1/\pi)\int_{-\pi}^{\pi}\cos jx\cos jxdx = (1/\pi)\int_{-\pi}^{\pi}(1/4)(e^{ijx} +$ e^{-ijx}) $(e^{ijx} + e^{-ijx})dx$. Notice that $\int_{-\pi}^{\pi} e^{ijx}e^{ijx} = 2\pi \langle e^{ij\cdot}, e^{-ij\cdot} \rangle_{\mathbb{C}} = 0$ and $\int_{-\pi}^{\pi} e^{-ijx} e^{-ijx} = 2\pi \langle e^{-ij\cdot}, e^{ij\cdot} \rangle_{\mathbb{C}} = 0$. Here $\langle \cdot, \cdot \rangle_{\mathbb{C}}$ denotes the inner product for $C([-\pi,\pi],\mathbb{C})$. So $(1/\pi)\int_{-\pi}^{\pi}\cos(jx)\cos(jx)dx=1$. Similarly for the sines. In order to show that this is an orthonormal basis, we use Exercise 4.2.3. Let $f \in L^2([-\pi,\pi],\mathbb{R})$ and $(1/\pi)\int_{-\pi}^{\pi} f(x)\sin(jx)dx =$ $0, (1/\pi) \int_{-\pi}^{\pi} f(x) \cos(jx) dx = 0, j \in \mathbb{N}, (1/\pi) \int_{-\pi}^{\pi} f(x) (1/\sqrt{2}) = 0.$ By Euler's formula, for all $j \in \mathbb{Z}$, $(1/2\pi) \int_{-\pi}^{\pi} f(x) e^{ijx} dx = (1/2\pi) \int_{-\pi}^{\pi} f(x) \cos(jx) dx +$ $i(1/2\pi) \int_{-\pi}^{\pi} f(x) \sin(jx) dx = 0$. Since $\{e^{ijx}; j \in \mathbb{Z}\}$ is an orthonormal basis, f = 0 by Exercise 4.2.3(a). Exercise 4.2.3 (b) implies that B is an orthonormal basis for $L^2([-\pi,\pi],\mathbb{R})$ \square Exercise 4.3.2. Let $f:[a,b]
ightarrow \mathbb{R}$ be continuous and assume that there exists a partition $a = t_0 < \cdots < t_m = b$ such that f is differentiable with bounded derivative on each interval (t_{i-1}, t_i) . Show f is Lipschitz continuous. Proof. Let $x, y \in [z, b], x < y$. Modifying the partition of [a, b], we can find a partition $x = r_0 < \cdots < r_k = y$ such that f is continuously differentiable on each (r_{j-1}, r_j) and $L_j := \sup_{r_{j-1} < s < r_j} |f'(s)| < \infty$. More precisely $r_1, \ldots, r_{k-1} \in \{t_1, \ldots, t_{m-1}\}$. Let $j \in \{0, \ldots, k\}$. and $r_{j-1} \le s < t \le r_j$. By the mean value theorem of calculus, f(t) - f(s) = f'(r)(t-s) for some $r \in (s,t)$. So $|f(t)-f(s)| \leq L_i |t-s|$. Since f is continuous, we can take the limit $s \to r_{j-1}$ and $t \to r_j$ and $|f(r_j) - f(r_{j-1})| \le L_j(r_j - r_{j-1})$. We telescope, $|f(y) - f(x)| = |\sum_{j=1}^{k} [f(r_j) - f(r_{j-1})]| \le \sum_{j=1}^{k} L_j(r_j - r_{j-1}).$ Set $\Lambda = \max_{j=1}^{k} L_{j}$. Then $|f(y) - f(x)| \leq \Lambda \sum_{j=1}^{k} (r_{j} - r_{j-1}) = \Lambda(y - x)$. Here we have telescoped again. **Exercise 4.3.3**. Let $f: [-L, L] \to \mathbb{R}$ be Lipschitz continuous, f(L) = f(-L), and A_i and B_i be the Fourier cosine and sine coefficients respectively. Show: $\sum_{i=0}^{\infty} |A_i| < \infty, \sum_{i=1}^{\infty} |B_i| < \infty$. Hint: Use the analogous result for complex Fourier coefficients. Proof. After a change of variables, we can assume that $L = \pi$. Notice that, for $j \in \mathbb{N}$, $\hat{f}_{j} = 1/(2\pi) \int_{-\pi}^{\pi} f(x) e^{-ijx} dx = 1/(2\pi) \int_{-\pi}^{\pi} f(x) [\cos(jx) - ij] dx$ $i\sin(jx)dx = (1/2)(A_j - iB_j)$. Since f has real values, A_j and B_j are real numbers and $|\hat{f_j}| = (1/2)\sqrt{A_j^2 + B_j^2} \ge (1/2) \max\{|A_j|, |B_j|\}$ Since f is Lipschitz continuous and $f(-\pi) = f(\pi)$, by Theorem 4.14, $\sum_{i=1}^{\infty} |A_j| \leq 2 \sum_{i=1}^{\infty} |\hat{f}_j| \leq 2 \sum_{j=-\infty}^{\infty} |\hat{f}_j| < \infty. \text{ Similarly for } |B_j|. \quad \Box$ **T 4.18.** Let $f: [-L, L] \to \mathbb{R}$ be Lipschitz cont and f(L) = f(-L). Then $f(x) = A_0 + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x) + B_j \sin(\lambda_j x)), \lambda_j = (j\pi/L),$ with the convergence being uniform in $x \in [-L, L]$ and $A_j = (1/L) \int_{-L}^{L} f(y) \cos(\lambda_j y) dy, j \in$ $\mathbb{N}, B_j = (1/L) \int_{-L}^{L} f(y) \sin(\lambda_j y) dy, j \in \mathbb{N}, A_0 = 1/(2L) \int_{-L}^{L} f(y) dy.$ The formula of A_i , the Fourier cosine coef of f, follows by a change of variable from $A_j = (1/\pi) \int_{-\pi}^{\pi} f(yL/\pi) \cos(jy) dy$. Similarly for B_j , the Fourier sine coef of f. L 4.19. Let $f : [0, L] \rightarrow \mathbb{R}$ be Lipschitz continuous, f(0) = 0 = f(L). Then $f(x) = \sum_{j=1}^{\infty} B_j \sin(\lambda_j x), B_j =$ $(2/L) \int_0^L f(y) \sin(\lambda_i y) dy, \lambda_i = (j\pi/L)$, with the convergence being uniform in [0, L]. Proof. Extend f to [-L, L] in an odd fashion by defining f(-x) = -f(x) for $x \in (0, L]$. We first check whether this is also Lipschitz cont. Critical case is $-L \le x \le 0 \le y \le L$. Since $f(0) = 0, |f(y) - f(x)| \le 1$ $|f(y)| + |f(x)| = |f(y) - f(0)| + |f(0) - f(-x)| \le \Lambda(y + (-x)) \le \Lambda(y - x)$ Since f(L) = 0, f(-L) = -f(L) = 0 and f(-L) = f(L). By T 4.18, $f(x) = A_0 + \sum_{i=1}^{\infty} (A_j \cos(\lambda_j x) + B_j \sin(\lambda_j x)), \lambda_j = (j\pi/L),$ with the convergence being uniform in $x \in [-L, L]$ and $A_j = (1/L) \int_{-L}^{L} f(y) \cos(\lambda_j y) dy$, $B_j =$ $(1/L)\int_{-L}^{L} f(y)\sin(\lambda_{j}y)dy$. Since cosine is even and sine is odd, for $j \in \mathbb{N}, A_j = (1/L) \int_0^L (f(y) + f(-y)) \cos(\lambda_j y) dy = 0 \text{ and } B_j =$ $(1/L) \int_0^L (f(y) - f(-y)) \sin(\lambda_i y) dy = (2/L) \int_0^L f(y) \sin(\lambda_i y) dy, A_0 =$ $(1/2L)\int_{-L}^{L} f(y)dy = 0$ \square **R 4.20**. Actually, $\sum_{j=1}^{\infty} |B_j| < \infty$ under

the conds of L 4.19. See Ex 4.3.3. **Exercise 4.3.4**. Let $f:[0,L] \to \mathbb{R}$ be Lipschitz continuous. Show that $f(x) = \sum_{j=0}^{\infty} A_j \cos(jx\pi/L)$ with the convergence being uniform in $[0,L], \sum_{i=0}^{\infty} |A_i| < \infty$, and $A_i =$ $(2/L) \int_0^L f(y) \cos(jy\pi/L) dy, j \in \mathbb{N}, \text{ and } A_0 = (1/L) \int_0^L f(y) dy.$ Proof. We extend f to [-L, L] by defining f(-x) = f(x) for $x \in (0, L]$. We first need to check whether this extension is also Lipschitz continuous. The critical case is $-L \le x < 0 \le y \le L$. By the triangle inequality, $|f(y)-f(x)| \le |f(y)-f(0)|+|f(0)-f(-x)| \le \Lambda(y+(-x)) \le \Lambda(y-x)$. By construction, f(-L) = f(L). By Theorem 4.18, $f(x) = A_0 + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x)) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x)) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x)) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x)) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x)) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x)) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x)) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x) + \sum_{j=1}^{\infty} (A_j \cos(\lambda_j x)) + \sum_{j=1}^{\infty} (A_j \cos(\lambda$ $B_j \sin(\lambda_j x)$, $\lambda_j = (j\pi/L)$, with the convergence being uniform in $x \in [-L, L]$ and $A_j = (1/L) \int_{-L}^{L} f(y) \cos(\lambda_j y) dy$, $B_j = (1/L) \int_{-L}^{L} f(y) \sin(\lambda_j y) dy$. By the previous exercise, $\sum_{j=0}^{\infty} |A_j| < \infty$. Since cosine is even and sine is odd, for $j \in \mathbb{N}, A_j = (1/L) \int_0^L (f(y) + f(-y)) \cos(\lambda_j y) dy = (2/L) \int_0^L f(y) \cos(\lambda_j y) dy$ and $B_j = (1/L) \int_0^L (f(y) - f(-y)) \sin(\lambda_j y) dy = 0, A_0 = 1/(2L) \int_{-L}^L f(y) dy = 0$ $1/(2L) \int_{0}^{L} (f(y) + f(-y)) dy = (1/L) \int_{0}^{L} f(y) dy \square$ Exercise 4.3.6. Show that $\{v_i; j \in \mathbb{Z}_+\}$ with $v_i(x) = \cos(jx)$ and $v_0 = \sqrt{1/2}$ is an orthonormal basis of $L^2([0,\pi],\mathbb{R})$ with the inner product $\langle f,g\rangle=\int_0^\pi f(x)g(x)dx$. Conclude that, for $f \in L^2([0,\pi],\mathbb{R}), \int_0^\pi |f(x)-\sum_{j=0}^m B_j\cos(jx)dx|^2dx \to 0, m \to \infty$ $\infty, B_j = (2/\pi) \int_0^{\pi} f(x) \cos(jx) dx, j \in \mathbb{N}, B_0 = (\sqrt{2}/\pi) \int_0^{\pi} f(x) dx.$ Proof. By Exercise 4.3.1, $B = \{\cos(jx); j \in \mathbb{N}\} \cup \{\sin(jx); j \in \mathbb{N}\} \cup \{1/\sqrt{2}\}$ is an orthonormal basis of $L^2([-\pi,\pi],\mathbb{R})$, with inner product $\langle f,g\rangle=(1/\pi)\int_{-\pi}^{\pi}fg$. In particular $\tilde{B} = \{v_j; j \in \mathbb{N}\}$ is an orthonormal subset of $L^2([-\pi, \pi], \mathbb{R})$. So, for $j \neq k, 0 = \int_{-\pi}^{\pi} v_j(x) v_k(x) dx = 2 \int_{0}^{\pi} v_j(x) v_k(x) dx$, because $v_j v_k$ is an even function. By the same token, for $j \in \mathbb{N}, 1 = (1/\pi) \int_{-\pi}^{\pi} v_j(x)^2 dx =$ $(2/\pi)\int_0^\pi v_j(x)^2 dx$. For j=0 this property easily is directly verified. So \tilde{B} is an orthonormal subset of $L^2([0,\pi],\mathbb{R})$. To show that it is an orthonormal basis, we use Exercise 4.2.3: We let $f = L^2([0,\pi],\mathbb{R})$ with $\int_0^{\pi} f(x)v_j(x)dx = 0$ for all $j \in \mathbb{Z}_+$ and show that f = 0. Extend f to an even function on $[-\pi, \pi]$ by setting f(-x) = f(x) for $x \in (0, \pi]$. Then, for all $j \in \mathbb{Z}, \int_{-\pi}^{\pi} f(x) \sin(jx) dx = 0$, because $f(x) \sin(jx)$ is an odd function of x. For all $j \in \mathbb{Z}_+$, $\int_{-\pi}^{\pi} f(x)v_j(x)dx = 2\int_0^{\pi} f(x)v_j(x)dx = 0$, because $f(x)v_i(x)$ is an even function of x. Since B is an orthonormal basis of $L^2([-\pi,\pi],\mathbb{R}), f=0$ by Exercise 4.2.3 (a). So \tilde{B} is an orthonormal basis by Exercise 4.2.3 (b). \square **D 4.22.** A twice cont diff func $\phi: [0,L] \to \mathbb{R}$ with $\phi(0) = 0 = \phi(L)$ is a test func for the VSE. A func $u: [0,L] \times \mathbb{R} \to \mathbb{R}$ is called a gen sol of (4.5) if $u(t,\cdot) \in L^2[0,L]$ for all $t \in \mathbb{R}, u(x,0) = f(x)$ for a.a. $x \in [0, L]$ and, for every test function ϕ , $\int_0^L \phi(x) u(x, t) dx$ is a twice cont diff func of $t \in \mathbb{R}$ and $(d^2/dt^2) \int_0^L \phi(x) u(x,t) dx = c^2 \int_0^L \phi''(x) u(x,t) dx$ and $(d/dt_{[t=0]}) \int_{0}^{L} \phi(x) u(x,t) dx = \int_{0}^{L} \phi(x) g(x) dx$. **T 4.23**. Any classical sol u of (4.5) is a gen sol of (4.5). A gen sol is uniquely determined by finding its Fourier sine series, $u(x,t) = \sum_{j=1}^{\infty} B_j(t) \sin(\lambda_j x), \lambda_j =$ $j\pi/L$, $B_j(t) = (2/L) \int_0^L u(x,t) \sin(\lambda_j x) dx$, $j \in \mathbb{N}$. (4.7) For each $t \in \mathbb{R}$ the convergence of $\sum_{i=1}^{\infty} B_j(t) \sin(\lambda_j)$ holds in $L^2[0,L]$. Let $j \in \mathbb{N}$ and choose $\phi(x) = \sin(\lambda_j x)$. ϕ is a test func and so the following derivatives exist and satisfy $(d^2/dt^2) \int_0^L u(x,t) \sin(\lambda_j x) dx = c^2 \int_0^L u(x,t) (d^2/dx^2) \sin(\lambda_j x) dx =$ $-c^2\lambda_i^2\int_0^L u(x,t)\sin(\lambda_i x)dx$ and $(d/dt_{[t=0]})\int_0^L u(x,t)\sin(\lambda_i x)dx =$ $\int_0^L g(x)\sin(\lambda_j x)dx, \int_0^L u(x,0)\sin(\lambda_j x)dx = \int_0^L f(x)\sin(\lambda_j x)dx. \Longrightarrow$ Fourier sine coef of a gen sol, $B_i(t)$, satisfy the ODEs $B_i'' + c^2 \lambda_i^2 B_i = 0$ and the ICs $B_j(0) = (2/L) \int_0^L f(y) \sin(\lambda_j y) dy$, $B'_j(0) = (2/L) \int_0^L g(y) \sin(\lambda_j y) dy$. Gen sol, $a_j \cos(c\lambda_j t) + b_j \sin(c\lambda_j t) = B_j(t)$. From IC obtain $a_i = B_i(0) = (2/L) \int_0^L f(y) \sin(\lambda_i y) dy$ (4.8) and $c\lambda_i b_i = B_i'(0) =$ (2/L) $\int_0^L g(y) \sin(\lambda_i y) dy$. (4.9) Subst and get Fourier sine series for any gen sol, $u(x,t) = \sum_{j=1}^{\infty} [a_j \cos(c\lambda_j t) + b_j \sin(c\lambda_j t)] \sin(\lambda_j x)$. (4.10) The d'Alembert form provides a gen sol if f and g are cont on [0, L] and f(0) = 0 = f(L) and g(0) = 0 = g(L) and f and g are extended in an odd and 2L-periodic way. Set v(x,t) = (1/2)(f(x+ct) + f(x-ct)). (4.11) After a change of variables, $\int_0^L \phi(x)v(x,t)dx = (1/2)\int_{ct}^{L+ct} \phi(y-t)dt$ $ct)f(y)dy + (1/2)\int_{-ct}^{L-ct}\phi(y+ct)f(y)dy$. Since ϕ is twice cont diff and f is cont, we can use the Leibnitz rule, \implies expression is diff and

under the int and obtain $(d/dt) \int_0^L \phi(x) w(x,t) dx = \int_0^L \phi(x) (1/2) [g(x+t)] dx$ (ct) + g(x - ct)dx. The same consideration as before with g replacing f (see (4.12)) yields $(d^2/dt^2) \int_0^L \phi(x) w(x,t) dx = (-c/2) \int_{ct}^{L+ct} \phi'(y-t) dt$ $ct)g(y)dy + (c/2)\int_{-ct}^{L-ct} \phi'(y+ct)g(y)dy$. After refersing the subst, $(d^2/dt^2) \int_0^L \phi(x) w(x,t) dx = -\int_0^L \phi'(x) (c/2) [g(x+ct) - g(x-ct)] dx$. Observe from (4.15) that $(d^2/dt^2) \int_0^L \phi(x) w(x,t) dx = -\int_0^L \phi'(x) c^2 \partial_x w(x,t) dx$. We int by parts, recall $w(0,t) = 0 = \tilde{w}(L,t)$, and obtain $(d^2/dt^2) \int_0^L \phi(x) w(x,t) dx = \int_0^L \phi''(x) c^2 w(x,t) dx$. Since u(x,t) = v(x,t) + v(xw(x,t), so $\int_0^L \phi(x)u(x,t)dx$ is twice diff and $(d^2/dt^2)\int_0^L \phi(x)u(x,t)dx =$ $\int_{0}^{L} c^{2} \phi''(x) u(x,t) dx$ and $(d/dt) \int_{0}^{L} \phi(x) u(x,t) dx = \int_{0}^{L} \phi(x) g(x) dx, t = 0$. **Heat** Let L, a > 0. (PDE) $(\partial_t - a\partial_x^2)u = 0, 0 < x < L, t > 0$, (IC) u(x,0) = f(x), 0 < x < L, (BC) u(0,t) = 0 = u(L,t), t > 0 (5.1).The sol, if ∃, can be written as a Fourier sine series (Lemma 4.19, Ex 4.3.5) $u(x,t) = \sum_{j=1}^{\infty} B_j(t) \sin(\lambda_j x), \lambda_j = j\pi/L = j\lambda_1$, with $B_j(t) =$ $(2/L) \int_0^L u(y,t) \sin(\lambda_j y) dy$ (5.2), where, for fixed t, the series converges in the L^2 -sense in x. If u is a sol, it is suff smooth that we can diff under the int, $B_i'(t) = (2/L) \int_0^L \partial_t u(y,t) \sin(\lambda_i y) dy = (2/L) \int_0^L a \partial_u^2 u(y,t) \sin(\lambda_i y) dy$. Since the sines and u satisfy zero boundary cond, we can int by parts twice and obtain the diff eq $B'_{i}(t) = -a\lambda_{i}^{2}B_{i}(t)$. The IC yields $B_j(0) = (2/L) \int_0^L f(y) \sin(\lambda_j y) dy$ (5.3). Solutions $B_j(t) = B_j(0) e^{-a\lambda_j^2 t}$ (5.4). \Longrightarrow sol of (5.1) is uniquely determined. **Existence T 5.1**. Let (c_j) be a seq of non-neg numbers s.t. $\sum_{n=1}^{\infty} c_n < \infty$. Let $D \subseteq \mathbb{R}^N$ and (f_n) be a seq of func $f_n: D \to \mathbb{K}$ s.t. $|f_n(x)| \leq \overline{c_n} \forall x \in D$ and $n \in \mathbb{N}$. Then $\sum_{n=1}^{\infty} f_n(x)$ converges unif in $x \in D$. If each f_n is (unif) cont on D, so is $\sum_{n=1}^{\infty} f_n$. T **5.3.** Let (c_j) be a seq of non-neg numbers s.t. $\sum_{n=1}^{\infty} c_n < \infty$. Let I_1 and I_2 be two bounded nondegenerate intervals and $\overline{(f_n)}$ be a seq of cont funcs $f_n: I_1 \times I_2 \to \mathbb{K}$. Assume that each f_n has partial derivatives wrt the first var and $|\partial_1 f_n(x,t)| \leq c_n$ for all $n \in \mathbb{N}, x \in I_1, t \in I_2$. Assume $\sum_{n=1}^{\infty} f_n$ converges pointwise on $I_1 \times I_2$. Then $\sum_{n=1}^{\infty} f_n$ is partially diff wrt the first var and $\partial_1(\sum_{n=1}^{\infty} f_n) = (\sum_{n=1}^{\infty} \partial_1 f_n)$, with the second series converging uniformly; this partial derivative is bounded. If each $\partial_1 f_n$ is jointly cont on $I_1 \times I_2$, so is $\partial_1(\sum_{n=1}^{\infty} f_n)$. If each f_n is diff with both partial derivatives being cont and $|\partial_j f_n(x,t)| \leq c_n$ for j=1,2, then $\sum_{n=1}^{\infty} f_n$ is cont diff and we can interchange diff and sum (diff term by term). **T** 5.6. Let $f:[0,L]\to\mathbb{R}$ be Lipschitz cont, f(L) = 0 = f(0). Then u is cont on $[0, L] \times [0, \infty)$ and u(x,0) = f(x) for all $x \in [0,L]$. In particular, $u(x,t) \to f(x)$ as $t \to 0$ uniformly in $x \in [0, L]$. The Fourier sine series of u converges to u uniformly on $[0,L]\times[0,\infty)$. T 5.7. Assume that $f:[0,L]\to\mathbb{R}$ is integrable and $\int_0^L |f(x)|^2 dx < \infty$. Then the series u in (5.2) with (5.4) and (5.3) satisfies $\int_0^L |u(x,t)-f(x)|^2 dx \to 0, t \to 0.$ Actually, $u(\cdot,t)$ is a uniformly cont func of $t \in \mathbb{R}_+$ with values in $L^2[0,L]$. Notice that $\int_0^L |f(x)|^2 dx < \infty$ is a stronger assumption than $\int_0^L |f(x)| dx < \infty$ in T 5.4. **T 5.8**. Let u be the sol of the heat eq with zero boundary conditions and initial data $f \in L^2([0, L], \mathbb{R})$. Then $||u(\cdot,t)|| < ||f||e^{-a\lambda_1^2t}, t > 0.$ **T 5.9.** Let $f:[0,L] \to \mathbb{R}$ be integrable and $\int_0^L |f(x)| dx < \infty$ and u the sol of the heat eq from T 5.4. Then $u(x,t) \to 0$ as $t \to \infty$ uniformly in $x \in [0,L]$. Proof. Recall |u(x,t)| = $B_0 \sum_{m=1}^{\infty} e^{-a\lambda_m^2 t}, B_0 = (2/L) \int_0^L |f(x)| dx$. For t > 0, with $\kappa = (\pi/L)^2$, since $\lambda_m^2 \le \kappa^2 m^2$, $|u(x,t)| = B_0 \sum_{m=1}^{\infty} e^{-a\lambda_m^2 t} \le B_0 \sum_{m=1}^{\infty} (e^{-a\kappa t})^m$. Using the

 $(d/dt) \int_0^L \phi(x) v(x,t) dx = (c/2) [\phi(L) f(L+ct) - \phi(0) f(ct)] - (c/2) \int_{ct}^{L+ct} \phi'(y-t) dt$ geometric series formula, for t>0, $|u(x,t)|=B_0(e^{-a\kappa t})/(1-e^{-a\kappa t})\to$ $0, t \to \infty$ \square Exercise 5.1.3. Let L, a > 0. Consider the problem (PDE) $ct)f(y)dy - (c/2)[\phi(L)f(L-ct) - \phi(0)f(-ct)] + (c/2)\int_{-ct}^{L-ct}\phi'(y+ct)f(y)dy.$ $(\partial_t - a\partial_-^2)u = 0, -\pi < x < \pi, t > 0, (IC) u(x, 0) = f(x), -\pi < x < \pi, (BC)$ Since $\phi(0) = 0 = \phi(L), (d/dt) \int_0^L \phi(x) v(x,t) dx = -(c/2) \int_{ct}^{L+ct} \phi'(y-t) dt$ $u(-\pi, t) = u(\pi, t), \partial_x u(-\pi, t) = \partial_x u(\pi, t), t > 0$ (5.15). (a) Use complex $ct)f(y)dy + (c/2)\int_{-ct}^{L-ct}\phi'(y+ct)f(y)dy$ (4.12). This expression is Fourier series to solve (5.15), at least as far as (PDE) and (BC) are concerned, under an appropriate condition for f. (b) Explore two assumptions for f under 0 at t=0. Use Leibnitz rule again, $(d^2/dt^2)\int_0^L \phi(x)v(x,t)dx=$ which (IC) is satisfied in meaningful though not necessarily literal ways. Cf. $-(c^2/2)[\phi'(L)f(L+ct)-\phi'(0)f(ct)]+(c^2/2)\int_{ct}^{L+ct}\phi''(y-ct)f(y)dy$ Theorem 5.6 and 5.7. (c) Show that u is real-valued if f is real-valued. (d) $(c^2/2)[\phi'(L)f(L-ct)-\phi'(0)f(-ct)]+(c^2/2)\int_{-ct}^{L-ct}\phi''(y+ct)f(y)dy$. Since Show that $\int_{-\pi}^{\pi} u(x,t)dx = \int_{-\pi}^{\pi} u(x,0)dx$ for all $t \geq 0$. Hint: These integrals f is odd about 0 and L, the boundary terms cancel each other and, after reare related to the Fourier cosine coefficient of index zero. (e) Show that versing the subst $(d^2/dt^2) \int_0^L \phi(x) v(x,t) dx = \int_0^L c^2 \phi''(x) v(x,t) dx$. (4.13) Set $u(x,t) \to (1/2\pi) \int_{-\pi}^{\pi} f(x) dx$ as $t \to \infty$, uniformly in $x \in [-\pi, \pi]$ provided $w(x,t) = 1/(2c) \int_{x-ct}^{x+ct} g(y) dy$. (4.14) Since g is cont, w is diff wrt t and x and that $\int_{-\pi}^{\pi} |f(x)| dx < \infty$. Proof. (a) We try to find u as a complex Fourier se- $\partial_t w(x,t) = (1/2)[g(x+ct)+g(x-ct)], \ \partial_x w(x,t) = (1/2c)[g(x+ct)-g(x-ct)].$ ries $u(x,t) = \sum_{m \in \mathbb{Z}} C_m(t) e^{imx}, C_m(t) = 1/(2\pi) \int_{-\pi}^{\pi} u(x,t) e^{-imx} dx$ (5.16). (4.15) At t=0, the first expression is g(x). Since $\partial_t w$ is cont, we can diff If $\partial_t u(x,t)$ exists and is continuous on $[-\pi,\pi]\times(0,\infty)$, we can interchange time differentiation and integration, $C'_m(t) = 1/(2\pi) \int_{-\pi}^{\pi} \partial_t u(x,t) e^{-imx} dx =$ $1/(2\pi)\int_{-\pi}^{\pi}a\partial_x^2u(x,t)e^{-imx}dx$. We integrate by parts twice; the boundary terms cancel because of the periodic boundary conditions, $C'_{m}(t) = -am^{2}C_{m}$. Further $C_m(0) = 1/(2\pi) \int_{-\pi}^{\pi} f(x)e^{-imx} dx = \hat{f}_m$. We solve the ordinary differential equation, $C_m(t) = \hat{f}_m e^{imx} e^{-am^2t}$. That the series in (5.16) converges uniformly on $[-\pi,\pi]\times[\epsilon,\infty)$ for any $\epsilon>0$ and solves (PDE) in (5.15) is shown analogously to the proof of Theorem 5.4. Define $u_m(x,t) = \hat{f}_m e^{imx} e^{-am^2t}$. Then u_m is infinitely often differentiable and satisfies the heat equation, $\partial_t u_m(x,t) = -am^2 u_m(x,t) = a\partial_x^2 u_m(x,t)$. For all $k, \ell \in \mathbb{Z}_+$ and $m \in \mathbb{Z}, \partial_x^k \partial_t^\ell u_m(x,t) = \hat{f}_m(im)^k (-am^2)^\ell e^{imx} e^{-am^2t}$ and $|\partial_x^k \partial_t^\ell u_m(x,t)| = |\hat{f}_m| |i|^k |m|^k a^\ell m^{2\ell} |e^{imx}| e^{-am^2 t} < |\hat{f}_m| |m|^{k+2\ell} a^\ell e^{-am^2 t}$ For $m \in \mathbb{Z}, |\hat{f}_m| \leq 1/(2\pi) \int_{-\pi}^{\pi} |f(x)| |e^{-imx}| dx \leq 1/(2\pi) \int_{-\pi}^{\pi} |f(x)| dx =$: A. Let $\epsilon > 0$. For $m \in \mathbb{Z}$ and $k, \ell \in \mathbb{Z}_+$ and $t \in \mathbb{Z}_+$ $[\epsilon, \infty), |\partial_x^k \partial_t^\ell u_m(x, t)| \le A|m|^{k+2\ell} a^\ell e^{-am^2 \epsilon}.$ By the ration test. $\sum_{m=1}^{\infty} Am^{k+2\ell} a^{\ell} e^{-am^2 \epsilon}$ converges in \mathbb{R} . By the Weierstraß test, for each $\ell, k \in \mathbb{Z}_+$, the following series converge uniformly for $x \in [-\pi, \pi], t \in$ $[\epsilon, \infty), \sum_{m=1}^{\infty} \partial_x^k \partial_t^\ell u_m(x, t), \sum_{m=1}^{\infty} \partial_x^k \partial_t^\ell u_{-m}(x, t), \sum_{m \in \mathbb{Z}} \partial_x^k \partial_t^\ell u_m(x, t)$ with the third being the sum of the first and second. By Theorem 5.3, u is infinitely often partially differentiable on $[-\pi,\pi]\times(0,\infty)$ and $\partial_x^k \partial_t^\ell u(x,t) = \sum_{m \in \mathbb{Z}} \partial_x^k \partial_t^\ell u_m(x,t)$. In particular, u satisfies the heat equation on $[-\pi, \pi] \times (0, \infty)$. Since e^{imx} is 2π -periodic for all $m \in \mathbb{Z}$, $u(\pi, t) = u(-\pi, t)$ for all t > 0 follows from the uniform convergence of the series in (5.16) converges uniformly on $[-\pi, \pi] \times [\epsilon, \infty)$ for any $\epsilon > 0$. Further, $\partial_x u(x,t) = \sum_{m \in \mathbb{Z}} C_m(t) mie^{imx}$ with convergence being uniform for $x \in [-\pi, \pi], t \in [\epsilon, \infty)$ for any $\epsilon > 0$. By the same token as before $\partial_x u(\pi,t) = \partial_x u(-\pi,t), t > 0$. (b) This is analogous to Theorem 5.6 and 5.7. We first assume that f is Lipschitz continuous on $[-\pi, \pi]$ and $f(\pi) = f(-\pi)$. By Lemma 4.16, f can be extended to a Lipschitz continuous 2π -periodic function on \mathbb{R} . by Proposition 4.14, the following series converges, $\sum_{m\in\mathbb{Z}}|\hat{f}_m|=|\hat{f}_0|+\sum_{m=1}^{\infty}(|\hat{f}_m|+|\hat{f}_{-m}|)$. For all $m\in$ $\mathbb{Z}, |C_m(t)| \leq |\hat{f}_m| |e^{-am^2 t}| \leq |\hat{f}_m|.$ Thus $|C_m(t)e^{imx}| = |C_m(t)| |e^{imx}| =$ $|C_m(t)| \leq |\hat{f}_m|, m \in \mathbb{Z}$. For all $m \in \mathbb{N}, |C_m(t)e^{imx} + C_{-m}(t)e^{-imx}| \leq$ $|C_m(t)e^{imx}| + |C_{-m}(t)e^{-imx}| \leq |\hat{f}_m| + |\hat{f}_{-m}|$. By the Weierstraß test. $\sum_{m \in \mathbb{Z}} C_m(t)e^{imx} = C_0(t) + \sum_{m=1}^{\infty} (C_m(t)e^{imx} + C_{-m}(t)e^{-imx})$ converges uniformly on $[-\pi,\pi]\times[0,\infty)$. This implies that u is continuous on $[-\pi,\pi]\times[0,\infty)$. We now assume that f is integrable and $\int_{-\pi}^{\pi} |f(x)|^2 dx < \infty$. Let $\langle \phi, \psi \rangle = 1/(2\pi) \int_{-\pi}^{\pi} \phi(x) \overline{\psi(x)} dx$ be the inner product of choice on $L^2([-\pi,\pi],\mathbb{C})$, the space of square integrable functions. Then $\{v_i; j \in \mathbb{Z}\}$ with $v_i(x) = e^{ijx}$ is an orthonormal basis. We intend to apply Theorem 4.11. Notice that $g: \mathbb{N} \to \mathbb{Z}$ with g(2n) = n and $g(2n-1) = -n, n \in \mathbb{N}$, is a bijection. By the considerations at the beginning of this section, $\langle u(\cdot,t),v_m\rangle = \langle f,v_m\rangle e^{-a\lambda_m^2t}$ (5.17), which are uniformly continous functions of $t \in \mathbb{R}_+$. Further $|\langle u(\cdot,t),v_m\rangle| \leq |\langle f,v_m\rangle|$ and, by Parseval's relation (Theorem 4.10), $\sum_{m\in\mathbb{Z}} |\langle f, v_m \rangle|^2 = ||f||^2$. Theorem 4.11 implies that $U: \mathbb{R}_+ \to L^2([-\pi, \pi], \mathbb{C})$ with $U(t) = u(\cdot, t)$ is continuous. (c) This is analogous to Theorem 4.18. For fixed t>0, u(x,t) is the limit (uniformly in $x\in[-\pi,\pi]$) of Fourier sums $\sum_{m=-n}^{n} \hat{f}_m e^{-am^2 t} e^{imx} = \hat{f}_0 + \sum_{m=1}^{n} (\hat{f}_m e^{imx} + \hat{f}_{-m} e^{-imx}) e^{-am^2 t}.$ The

same proof as for Theorem 4.18 shows that $\hat{f}_m e^{imx} + \hat{f}_{-m} e^{-imx}$ is real if f is real-valued. (d) Let $\langle \phi, \psi \rangle = 1/(2\pi) \int_{-\pi}^{\pi} \phi(x) \overline{\psi(x)} dx$ be the inner product on the Hilbert space $L^2([-\pi,\pi],\mathbb{C})$. Let $\{v_m; m \in \mathbb{Z}\}$ be the orthonormal basis with $v_m(x) = e^{imx}$. Notice that $v_0(x) = 1$. By orthonormality and part (a), $\langle u(\cdot,t), v_0 \rangle = C_0(t) = \langle f, v_0 \rangle = \langle u(\cdot,0), v_0 \rangle$. This implies the assertion. (e) For all $t \geq 0$, $|u(x,t)-1/(2\pi)\int_{-\pi}^{\pi} f(x)dx| =$ $|\sum_{0 \neq m \in \mathbb{Z}} \hat{f}_m e^{-am^2 t} e^{imx}| \leq \sum_{0 \neq m \in \mathbb{Z}} |\hat{f}_m| e^{-am^2 t} \leq A \sum_{m=1}^{\infty} e^{-am^2 t}$ with $A = 1/\pi \int_{-\pi}^{\pi} |f(x)| dx$. The estimate can be continued by $\leq A \sum_{m=1}^{\infty} e^{-amt} =$ $\sum_{m=1}^{\infty} A(e^{-at})^m = A(e^{-at})/(1-e^{-at}) \to^{t\to\infty} 0 \quad \Box \ \mathbf{T} \ \mathbf{5.10}. \ \mathrm{Let} \ T \in (0,\infty)$ and $u: \Omega \times (0,T] \to \mathbb{R}$. Assume that u is once partially diff wrt $t \in (0,T]$ and twice partially diff wrt x_k at each $x \in \Omega, t \in (0, T], k = 1, \dots, n$, Let $c: \Omega \times (0,T] \to \mathbb{R}$ be strictly neg. Assume the differential inequality $(\partial_t - L)u \leq c(x,t)u, x \in \Omega, t \in (0,T]$. Then u has no positive max in $\Omega \times (0,T]$: \exists no $t \in (0,T], x \in \Omega$ such that u(x,t) > u(y,s) for all $s \in (0,T], y \in \Omega$, and u(x,t) > 0. **T 5.11**. Let $T \in (0,\infty)$ and $u: \bar{\Omega} \times [0,T] \to \mathbb{R}$ be cont. Let $c: \Omega \times (0,T) \to \mathbb{R}$ be bounded above. Assume that u is once partially diff wrt $t \in (0,T)$ and twice partially diff wrt x_k at each $x \in \Omega, t \in (0,T), k = 1,\ldots,n$. Assume $(\partial_t - L)u \leq cu, x \in \Omega, t \in$ $(0,T), u(x,0) < 0, x \in \bar{\Omega}, u(x,t) < 0, x \in \partial\Omega, t \in (0,T).$ Then u(x,t) < 0 for all $x \in \bar{\Omega}, t \in [0, T]$. **T 5.13.** Let $T \in (0, \infty)$ and $u : \bar{\Omega} \times [0, T] \to \mathbb{R}$ be cont. Let $c, F : \Omega \times (0, T) \to \mathbb{R}$ \mathbb{R} , F bounded and c non-pos. Assume that u is once partially diff wrt $t \in (0,T)$ and twice partially diff wrt x_k at each $x \in \Omega, t \in (0,T), k = 1,\ldots,n$. Assume $(\partial_t - L - c)u = F(x,t), x \in \Omega, t \in (0,T)$. Let M,N > 0 s.t. $|u(x,0)| \leq M, x \in \overline{\Omega}, |u(x,t)| \leq M+tN, x \in \partial\Omega, t \in [0,T), \text{ and } |F(x,t)| \leq N$ for all $x \in \Omega, t \in (0,T)$. Then |u(x,t)| < M+tN for all $x \in \overline{\Omega}, t \in [0,T]$. **T 5.14.** Let $T \in (0, \infty)$ and $u_1, u_2 : \bar{\Omega} \times [0, T] \to \mathbb{R}$ be cont. Let $c, F_1, F_2: \Omega \times (0,T) \to \mathbb{R}, F_i$ bounded and c non-pos and $q_1, q_2: \partial \Omega \times [0,T] \to 0$ $\mathbb{R}, f_1, f_2 : \bar{\Omega} \to \mathbb{R}$. Assume u_1 and u_2 are once partially diff wrt $t \in (0, T)$ and twice partially diff wrt x_k at each $x \in \Omega, t \in (0,T), k = 1,\ldots,n$. Assume, for $j = 1, 2, (\partial_t - L - c)u_i = F_i(x, t), x \in \Omega, t \in (0, T), u_i(x, 0) = f_i(x), x \in$ $\Omega, u_j(x,t) = g_j(x,t), x \in \partial \Omega, t \in (0,T).$ Let $\delta, \epsilon > 0$ and $|F_1(x,t) - F_2(x,t)| \leq$ $\delta, x \in \Omega, t \in (0, T), |f_1(x) - f_2(x)| \le \epsilon, x \in \Omega, |g_1(x, t) - g_2(x, t)| \le \epsilon + \delta t, x \in \Omega$ $\partial\Omega, t\in(0,T)$. Then $|u_1(x,t)-u_2(x,t)|<\epsilon+\delta t$ for all $x\in\bar\Omega, t\in[0,T]$. Ex **5.2.3.** Let T>0 and $u:\overline{\Omega}\times[0,T]$ be cont. Let $c,F:\Omega\times(0,T)\to\mathbb{R}$, F bounded and c bounded above. Assume u is once partially diff wrt $t \in (0,T)$ and twice partially diff wrt x_k at each $x \in \Omega, k = 1, \ldots, n$. Assume $(\partial_t - L - c)u = F(x,t), x \in \Omega, t \in (0,T)$, Let $M, N \geq 0$ such that |u(x,t)| < M whenever $x \in \partial \Omega, t \in [0,T]$ or $x \in \overline{\Omega}, t = 0$ and $|F(x,t)| \leq N$ for all $x \in \Omega, t \in (0,T)$. Show: $|u(x,t)| \leq (M+tN)e^{\kappa t}$ for all $x \in \overline{\Omega}, t \in [0, T], \text{ where } \kappa > 0 \text{ is chosen s.t. } c(x, t) < \kappa \text{ for all } x \in \Omega, t \in (0, T).$ Hint: Consider $v(x,t) = u(x,t)e^{-\kappa t}$. Proof. Define $v(x,t) = u(x,t)e^{-\kappa t}$. Then $\partial_t v(x,t) - (Lv)(x,t) = e^{-\kappa t} (\partial_t u(x,t) - (Lu)(x,t)) - \kappa v(x,t) = (c(x,t) - c(x,t))$ $\kappa v(x,t) + F(x,t)e^{-\kappa t}$. So $\partial_t v(x,t) - (Lv)(x,t) - \tilde{c}(x,t)v(x,t) = \tilde{F}(x,t)$, where $\tilde{c}(x,t) = c(c,t) - \kappa < 0, \tilde{F}(x,t) = F(x,t)e^{-\kappa t}$ and so $|\tilde{F}(x,t)| < 0$ $|F(x,t)| \leq N, x \in \Omega, t \in (0,T)$. Further $|v(x,t)| \leq |u(x,t)| \leq M$ whenever $x \in \partial \Omega, t \in [0,T]$ or $x \in \overline{\Omega}, t = 0$. By T 5.13, $|v(x,t)| \leq M + Nt$. So $|u(x,t)| = |v(x,t)|e^{\kappa t} < (M+Nt)e^{\kappa t}, x \in \bar{\Omega}, t \in [0,T]$ Exercise **5.2.11.** Let L, T > 0 and $u: [0, L] \times [0, T] \to \mathbb{R}$ be continuous, and sufficiently often differentiable and satisfy $0 < \partial_t u(x,t) - x^3 (L-x)^5 \partial_x^2 u(x,t) +$ $a\partial_x u(x,t) + (L-x)u(x,t), 0 < x < L, 0 < t < T, 0 < u(0,t), u(L,t) > 0$ $0, t \in [0,T], 0 \le u(x,0), 0 \le x \le L.$ Here $a \in \mathbb{R}$. Show: $u(x,t) \ge 0$ for all $x \in [0, L], t \in [0, T]$. Do not use the maximum principle, but do the proof from scratch. Proof. By contradiction assume there exists a $y \in [0, L]$ and an $r \in [0,T]$ such that u(y,r) < 0. Consider $u:[0,L] \times [0,r]$. Since u is compact u has a minimum in $[0,L] \times [0,r]$. Denote such a minimum as $u_m = u(x_m,t_m)$ with $x_m \in [0, L]$ and $t_m \in [0, r]$. Therefore $u(x_m, t_m) \leq u(z, s)$ for any $z \in [0, L]$ and $s \in [0, r]$. Particularly, $u(x_m, t_m) \le u(y, r) < 0$. Since u_m is a minimum, $\partial_x u(x,t)|_{(x_m,t_m)}=0$, and $\partial_x^2 u(x,t)|_{(x_m,t_m)}\geq 0$. Now note that $\partial_t u(x,t)|_{(x_m,t_m)}=\lim_{s\to t_m^-}(u(x_m,s)-u(x_m,t_m))/(s-t_m)\leq 0$ because the numerator is positive and the denominator is negative. Having these results, we can evaluate the PDE at the minimum point (x_m, t_m) . $\partial_t u(x_m, t_m)$ $x^{3}(L-x_{m})^{5}\partial_{x}^{2}u(x_{m},t_{m})+a\partial_{x}u(x_{m},t_{m})+(L-x_{m})u(x_{m},t_{m}).$ We have shown that the third term is zero so we are left with $\partial_t u(x_m, t_m) - x^3(L (x_m)^5 \partial_x^2 u(x_m, t_m) + (L - x_m) u(x_m, t_m)$, We have that $(L = x_m) > 0$ and we have shown that the 1st and 3rd terms are negative and so $\partial_t u(x_m, t_m)$ – $x^{3}(L-x_{m})^{5}\partial_{x}^{2}u(x_{m},t_{m})+a\partial_{x}u(x_{m},t_{m})+(L-x_{m})u(x_{m},t_{m})<0$ which

contradicts our PDE \square . Identities Sum and Difference Formula $\sin(A\pm B)=\sin A\cos B\pm\cos A\sin B$. $\cos(A\mp B)=\cos A\cos B\pm\sin A\sin B$. **Double Angle Formula** $\sin(2A) = 2\sin A\cos A$. $\cos(2A) = \cos^2 A - \sin^2 A =$ $2\cos^2 A - 1 = 1 - 2\sin^2 A$. $\tan(2A) = (2\tan A)/(1 - \tan^2 A)$. Half Angle Formula $\sin(A/2) = \pm \sqrt{(1 - \cos A)/2}$. $\cos(A/2) = \pm \sqrt{(1 + \cos A)/2}$.

 $\tan(A/2) = (1 - \cos A)/(\sin A) = (\sin A)/(1 + \cos A). \quad \textbf{Geometric Sum} \qquad x = c_1 \cosh t + c_2 \sinh t, y = c_1 \sinh t + c_2 \cosh t \text{ or } x = c_1 e^t + c_2 e^{-t}, y = c_1 \sinh t + c_2 \sinh$