Modele predykcji cen nieruchomości

Metody wyboru hiperparametórw

Hiperparpetry dla każdego modelu wybieraliśmy metodą random search

Ocena modeli

Do wyboru najlepszych modeli posłużyliśmy się metryką RMSE czyli pierwiastkiem błędu kwadratowego

Poza RMSE obliczaliśmy także metrykę MAE oraz sporządziliśmy wykres pokazujący jak bardzo różniła się predykcja od wartości z obserwacji dla każdej z nich

Random Forest

Problem z prepocessingiem

Pomimo skorzystania z funkcji preprocessingu, dane i tak nie były w formacie jaki przyjmowała funkcja budująca model. Teoretycznie funkcja preprocessing zawiera funkcję usuwającą wartości NA, jednak i tak mimo to trzeba było ręcznie się usunąć kilku kolumn które wciąż zawierały takie dane.

Random Forest - model pierwszy

Hiperparametry:

- num.trees = 600
- max.depth = 3
- min.node.size = 7
- splitrule = "extratrees",

Treningowy:

- RMSE = 49542.65
- MAE = 33107.8

- RMSE = 38349.32
- MAE = 31416.25

Random Forest - model pierwszy

Random Forest - model drugi

Hiperparametry:

- num.trees = 700
- max.depth = 4
- min.node.size = 3
- splitrule = "extratrees",

Treningowy:

- RMSE = 43751.19
- MAE = 29260.3

- RMSE = 43696.35
- MAE = 35905.39

Random Forest - model drugi

Random Forest - model trzeci

Hiperparametry:

- num.trees = **700**
- max.depth = 5
- min.node.size = 3
- splitrule = "extratrees",

Treningowy:

- RMSE = 43422.84
- MAE = 29046.91

- RMSE = 44024.12
- MAE = 35923.84

Random Forest - model trzeci

Random Forest - model czwarty

Hiperparametry:

- num.trees = 1000
- max.depth = 5
- min.node.size = 5
- splitrule = "variance",

Treningowy:

- RMSE = 30349.42
- MAE = 19958.47

- RMSE = 55754.17
- MAE = 44370.54

Random Forest - model czwarty

Random Forest - model piąty

Hiperparametry:

- num.trees = 400
- max.depth = 5
- min.node.size = 10
- splitrule = "variance",

Treningowy:

- RMSE = 30553.19
- MAE = 19950.2

- RMSE = 55836.22
- MAE = 44281.23

Random Forest - model piąty

XGBoost

Preprocessing

Wykonanie preprocessingu, który opracowaliśmy przy okazji EDA, w tym:

- Zakodowanie braków danych jako wartości Absent lub -1.
- Zakodowanie zmiennych wyrażających ocenę
- Wybór faktycznie numerycznych zmiennych

Alley ‡	BsmtCond ‡	MiscFeature ‡	KitchenQual	
Absent	3	Absent		3
Absent	3	Shed		3
Absent	3	Absent		3
Absent	3	Absent		4
Absent	3	Absent		3
Absent	3	Absent		3
Pave	3	Absent		4
Absent	3	Absent		4

Proces tuningu

Baseline i wstępne zapoznanie z modelem

Treningowy RMSE: 32475.83 Treningowy RMSE: 3937.696

Strojenie parametrów z pakietem caret

```
Parametry: eta, max_depth, gamma, colsample_bytree,
min child tree, subsample, nrounds
```

Wytrenowaliśmy 200 modeli używając pakietu caret. Użyliśmy losowego doboru parametrów dla metody xgbTree z cross-walidacją.

Proces tuningu

- Wybór 40 najlepszych modeli i dopasowanie parametrów do funkcji xgb_function i xgb_predict
- Selekcja 5 najlepszych pod względem RMSE i MAE

eta 🗧	max_depth	‡	gamma ÷	colsample_bytree ‡	min_child_weight ‡	subsample ‡	nrounds ‡
0.10218812		2	3.090181	0.4472218	14	0.4589773	882
0.21937280		3	7.104679	0.4028896	1	0.5223975	95
0.04540008		8	8.428732	0.4297441	1	0.8770274	863
0.50138441		7	1.939117	0.5310363	12	0.5939928	820
0.37003314		5	6.501581	0.4433426	9	0.3200797	814

XGBoost - model pierwszy

Hiperparametry:

- eta = 0.04462844
- max_depth = 3
- gamma = 3.580246
- colsample_bytree = 0.6035825
- min_child_weight = 1
- subsample = 0.5339151
- nrounds = 464

Treningowy:

- RMSE = 12005.92
- MAE = 8635.486

- RMSE = 28219.85
- MAE = 13464.82

XGBoost - model pierwszy

XGBoost - model drugi

Hiperparametry:

- eta = 0.05525418
- max_depth = 3
- gamma = 1.062662
- colsample_bytree = 0.6054747
- min_child_weight = 10
- subsample = 0.9131714
- nrounds = **305**

Treningowy:

- RMSE = 13583.38
- MAE = 9194.638

- RMSE = 30127.77
- MAE = 13843.16

XGBoost - model drugi

XGBoost - model trzeci

Hiperparametry:

- eta = 0.1959231
- max_depth = 2
- gamma = 8.52637
- colsample_bytree = 0.6626087
- min_child_weight = 16
- subsample = 0.5217781
- nrounds = 81

Treningowy:

- RMSE = 22388.00
- MAE = 15754.058

- RMSE = 34033.15
- MAE = 18774.92

XGBoost - model trzeci

XGBoost - model czwarty

Hiperparametry:

- eta = 0.2041176
- max_depth = 2
- gamma = 3.240579
- colsample_bytree = 0.6905933
- min_child_weight = 1
- subsample = 0.6497563
- nrounds = 405

Treningowy:

- RMSE = 10474.84
- MAE = 7800.387

- RMSE = 29589.40
- MAE = 14618.19

XGBoost - model czwarty

XGBoost - model piąty

Hiperparametry:

- eta = 0.08603091
- max_depth = 2
- gamma = 3.549911
- colsample_bytree = 0.4167207
- min_child_weight = 0
- subsample = 0.6369859
- **nrounds** = **163**

Treningowy:

- RMSE = 24614.30
- MAE = 18319.235

- RMSE = 36718.85
- MAE = 21625.45

XGBoost - model piąty

LightGBM

Preprocessing

• Próba użycia naszego preprocessingu na zbiorze

Wniosek: Najlepsze wyniki na surowych danych

Treningowy RMSE: 42142.3 Testowy RMSE: 17196.23

Wykorzystanie parametrów autofacotr i forceconvert

Proces tuningu

 Ręczne dobranie siatki parametrów, z uwzględnieniem zasad dobierania w LightGBM.

Zadbaliśmy, aby wskazówki, których nauczyliśmy się podczas przygotowania prezentacji do odpowiedniego modyfikowania siatki parametrów. Dlatego zastosowaliśmy odpowiednie ograniczenia, a niektóre parametry uzależniliśmy od innych. (np. num leaves od max depth)

Proces tuningu

Trenowanie 200 modeli z najoptymalniejszą siatką parametrów

```
max_depth = sample(3:10, 1)
num_leaves = sample(ceiling((2^max_depth)/10):2^max_depth, 1)
bagging_fraction = runif(1, 0.4, 1)
feature_fraction = runif(1, 0.4, 1)
learning_rate = runif(1, 0.05, 0.3)
num_iterations = sample(
    ceiling(log(1/learning_rate)*25):ceiling(log(1/learning_rate)*250), 1)
min_data_in_leaf = sample(0:40, 1)
lambda_l1 = rexp(1, 1)
```

Selekcja 5 najlepszych pod względem RMSE i MAE

max_depth	Ť 1	num_leaves	†	bagging_fraction ‡	feature_fraction ‡	learning_rate ‡	num_iterations ‡	min_data_in_leaf 🕏	lambda_l1 🗘
	3		2	0.5724640	0.4015881	0.06619538	242	31	1.37272030
	4		2	0.5591560	0.7143656	0.18479657	182	39	0.02852181
	4		2	0.8445833	0.6481415	0.14623834	54	27	1.24955739
	3		2	0.5978079	0.4352913	0.17079440	347	33	0.72251183
	3		2	0.9925450	0.6002572	0.14964913	98	21	0.40267346

LightGBM - model pierwszy

Hiperparametry:

- max_depth = 3
- num_leaves = 2
- bagging_fraction = 0.572464
- feature_fraction = 0.4015881
- learning_rate = 0.06619538
- num_iterations = 242
- min_data_in_leaf = 31
- lambda_l1 = 1.37272030

Treningowy:

- RMSE = 39869.42
- MAE = 28334.95

- RMSE = 39968.16
- MAE = 28310.39

LightGBM - model pierwszy

LightGBM - model drugi

Hiperparametry:

- max_depth = 4
- num_leaves = 2
- bagging_fraction = 0.559156
- feature_fraction = 0.7143656
- learning_rate = 0.1847966
- num_iterations = 182
- min_data_in_leaf = 39
- lambda_l1 = 0.02852181

Treningowy:

- RMSE = 39101.91
- MAE = 28035.95

- RMSE = 40065.58
- MAE = 28835.33

LightGBM - model drugi

LightGBM - model trzeci

Hiperparametry:

- max_depth = 4
- num_leaves = 2
- bagging_fraction = 0.8445833
- feature_fraction = 0.6481415
- learning_rate = 0.1462383
- num_iterations = 54
- min_data_in_leaf = 27
- lambda_l1 = 1.24955739

Treningowy:

- RMSE = 40663.25
- MAE = 28951.90

Testowy:

- RMSE = 41350.35
- MAE = 28899.82

LightGBM - model trzeci

LightGBM - model czwarty

Hiperparametry:

- max_depth = 3
- num_leaves = 2
- bagging_fraction = 0.5978079
- feature_fraction = 0.4352913
- learning_rate = 0.1707944
- num iterations = 347
- min_data_in_leaf = 33
- lambda_l1 = 0.7225118

Treningowy:

- RMSE = 37729.43
- MAE = 27384.05

Testowy:

- RMSE = 41060.23
- MAE = 29089.3

LightGBM - model czwarty

LightGBM - model piąty

Hiperparametry:

- max_depth = 3
- num_leaves = 2
- bagging_fraction = 0.992545
- feature_fraction = 0.6002572
- learning_rate = 0.1496491
- num_iterations = 98
- min_data_in_leaf = 21
- lambda_l1 = 0.40267346

Treningowy:

- RMSE = 39295.34
- MAE = 28323.76

Testowy:

- RMSE = 41700.98
- MAE = 29010.35

LightGBM - model piąty

Catboost

Rozpoznanie

```
catboost_grid <- expand.grid(
  iterations = c(100, 500, 1000),
  depth = c(3, 4, 6, 8, 10),
  l2_leaf_reg = c(1e-1, 1e-2, 1e-3, 1e-4, 1e-5),
  learning_rate = c(1e-1, 1e-2, 1e-3),</pre>
```

- Preprocessing przez wypełnienie wszystkich braków
 - O Domyślne zachowanie w funkcji preprocessingowej to było usuwanie wierszy
 - Na naszym zbiorze zostały całe 2 wiersze
- Wykorzystaliśmy pakiet caret
 - o catboost nie udostępnia niektórych parametrów do caret
 - Zwłaszcza tych ciekawiej brzmiących, jak bagging_temperature
- Najpierw przeszukaliśmy całą kratę z kilkoma wartościami (225 kombinacji)
- Potem przyjrzeliśmy się jak te bardziej wpływowe hiperparametry mają wpływ
- A następnie przeprowadziliśmy trochę random search (100 modeli)

Mało wpływowe

Bardziej wpływowe

Sprawdzenie wielu wartości

Wyniki

A tibb	le: 6 x 12										
depth	learning_rate	l2_leaf_reg	rsm	border_count	iterations	RMSE	Rsquared	MAE	RMSESD	RsquaredSD	MAESD
<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
5	0.1	0.05	0.75	254	800	<u>29</u> 862.	0.877	<u>18</u> 322.	<u>4</u> 798.	0.0359	<u>1</u> 309.
5	0.1	0.05	0.75	254	700	<u>29</u> 875.	0.877	<u>18</u> 307.	<u>4</u> 804.	0.0360	<u>1</u> 292.
5	0.1	0.05	0.75	254	500	<u>29</u> 891.	0.877	<u>18</u> 275.	<u>4</u> 757.	0.035 <u>6</u>	<u>1</u> 235.
4	0.1	0.01	0.9	254	<u>1</u> 400	<u>29</u> 981.	0.875	<u>18</u> 319.	<u>6</u> 360.	0.0492	<u>1</u> 906.
6	0.1	0.01	0.9	254	<u>1</u> 200	<u>30</u> 034.	0.875	<u>18</u> 142.	<u>6</u> 348.	0.049 <u>6</u>	<u>1</u> 658.

Wyniki bez kroswalidacji były lepsze, około 24 tyś RMSE na zbiorach testowych

Wykresy

Błędy - podobne

m1

