组会报告

徐益

2018年11月5日

1 工作内容

- 1. 学习自适应调制编码相关内容;
- 2. 测试 5GNR 自适应调制编码各 CQI 门限 SNR。
- 3. 搭建基于 C 的 5GNR 自适应调制编码参数测试平台。

2 学习自适应调制编码相关内容

2.1 LTE 下行链路自适应传输系统

图 1: MAC-LTE 下行链路自适应传输系统框图

2.2 自适应调制编码

2.2.1 获得各 CQI 值对应的门限值

在 AWGN 信道中的各个 CWER-SNR 曲线上,读出各个 MCS 在 CWER=0.1 处的门限,用 $SNR_{th,index}$ 表示,其中 index = 0, 1, ..., 31。

2.2.2 计算各 CQI 对应的等效信噪比

首先根据当前信道矩阵和预编码矩阵算出各个资源上的信干噪比 $SINR_{k,n,l}$,再根据式 (1) 的 EESM 映射方法,得到不同 CQI 对应的等效信噪比,用 $SNR_{eff,index}$ 表示,其中 index=0,1,...,31。

$$SNR_{eff} = -\beta \ln\left(\frac{1}{LKN} \sum_{l=0}^{L-1} \sum_{k=0}^{K-1} \sum_{n=0}^{N-1} exp\left(-\frac{SINR_{k,n,l}}{\beta}\right)\right)$$
(1)

其中 L 是层数,K 是子载波个数,N 是 OFDM 符号数, β 是修正因子,获取需要两个步骤:

第一,生成足够多的信道实现以确保能够遍历所有的信道状态,在每个信道实现以保证能够遍历所有的信道状态,在每个信道下通过链路级仿真得到相应的 BLER,用 $BLER_i$ 表示, $i=1,...,N_C$, N_C 为信道实现的个数,查找 AWGN 信道下与该 MCS 对应的 BLER-SNR 曲线得到 $BLER_i$ 相应的等效信噪比,用 $SNR_{AWGN,i}$ 表示。

第二,对每个信道实现,利用式 (1) 计算出 EESM 预测得到的等效信噪比,用 $SNR_{EESM,i}$ 表示。将 EESM 得到的等效信噪比与实际仿真得到的信噪比进行比较,为使 EESM 方法有准确的近似,最优的 β 应使两者的均方误差最小:

$$\beta_{opt} = \arg\min_{\beta} \sum_{i=0}^{N_C} |SNR_{AWGN,i} - SNR_{EESM,i}|^2$$
 (2)

2.2.3 确定 CQI

对应比较第一步得到的 $SNR_{th,index}$ 和第二步得到的 $SNR_{eff,index}$, UE 反馈的 CQI 为使得 $SNR_{eff,index}$ 超过 $SNR_{th,index}$ 最大的 index, 即

$$CQI = \arg \max_{index \in \{0, \dots, 31\}} SNR_{eff, index} \ge SNR_{th, index}$$
(3)

3 测试 5GNR 自适应调制编码各 CQI 门限 SNR

图 2: AWGN 信道下各 CQI 的 BLER-SNR 曲线

表 1: 不同 CQI 的门限 SNR 值

表 1: 不同 CQI 的门限 SNR 值			
CQI	Q	R	$SNR_{th}(\mathrm{dB})$
0	2	120	-5.41
1	2	157	-4.18
2	2	193	-3.36
3	2	251	-2.18
4	2	308	-1.14
5	2	379	-0.03
6	2	449	0.87
7	2	586	1.81
8	2	602	2.70
9	2	679	3.57
10	4	340	4.26
11	4	378	4.93
12	4	434	5.83
13	4	490	6.70
14	4	553	7.68
15	4	616	8.62
16	4	658	9.24
17	6	438	10.18
18	6	466	10.73
19	6	517	11.64
20	6	567	12.54
21	6	616	13.52
22	6	666	14.34
23	6	719	15.31
24	6	772	16.17
25	6	822	17.05
26	6	873	17.97
27	6	910	18.84
28	6	948	20.04

4 搭建基于 C 的 5GNR 自适应调制编码参数测试平台

问题:

```
SNR:-3.90:
                       BER:
                                   4.08e-01(418239/1024000)
                                                                                   BLER:
                                                                                              9.16e-01(916/1000)
                                                                                                                                  1.566751
SNR:-3.80:
                       BER:
                                   4.01e-01(410240/1024000)
                                                                                              8.82e-01(882/1000)
                                                                                                                                  1.548817
                                                                                   BLER:
                                                                                              7.65e-01(765/1000)
6.67e-01(667/1000)
4.86e-01(486/1000)
3.95e-01(395/1000)
2.80e-01(280/1000)
                                   3.47e-01(355121/1024000)
SNR:-3.70:
                       BER:
                                                                                   BLER:
                                                                                                                                  1.531087
                                   3.02e-01(309051/1024000)
2.16e-01(221673/1024000)
1.63e-01(167333/1024000)
1.07e-01(109531/1024000)
SNR:-3.60:
                       BER:
                                                                                                                                  1.513561
                                                                                   BLER:
SNR:-3.50:
                       BER:
                                                                                   BLER:
                                                                                                                                  1.496236
SNR:-3.40:
                                                                                  BLER:
                                                                                                                                  1.479108
                       BER:
SNR:-3.30:
                                                                                  BLER:
                                                                                                                                  1.462177
                       BER:
                                   5.45e-02(55763/1024000) BLER:
SNR:-3.20:
                       BER:
                                                                                   1.82e-01(182/1000)
                                                                                                                      1.445440
                                   3.46e-02(35438/1024000) BLER:
                                                                                                                      1.428894
SNR:-3.10:
                       BER:
                                                                                   1.35e-01(135/1000)
                                   1.58e-02(16161/1024000) BLER:
6.29e-03(6441/1024000) BLER:
3.50e-03(3586/1024000) BLER:
                                                                                  1.00e-01(100/1000)
6.70e-02(67/1000)
5.70e-02(57/1000)
                                                                                                                      1.412538
SNR:-3.00:
                       BER:
SNR:-2.90:
SNR:-2.80:
                       BER:
                                                                                                                      1.396368
                       BER:
                                                                                                                       1.380384
```

图 3: C 平台上测试 SNR 门限信噪比的问题