LES FONCTIONS EXPONENTIELLES E01

EXERCICE N°1

Soit la fonction g définie pour tout réel x par $g(x) = 0.5^x$. Calculer l'image de $\frac{2}{3}$ par g.

EXERCICE N°2

Soit la fonction h définie pour tout réel x par $h(x) = (\sqrt{3})^x$ Calculer h(1,5) et $h(\pi)$.

EXERCICE N°3 Le lien avec les suites géométriques

Rémi place $500 \in$ au taux annuel de 4,5% pendant n années avec 0 < n < 18. Soit u_n le capital à l'année n.

- 1) Montrer que (u_n) est une suite géométrique.
- 2) Quel est le capital de Rémi au bout de 3 ans ? De 17 ans ?
- 3) Soit f la fonction définie pour tout réel x par : $f(x) = 500 \times 1,045^x$
- Calculer f(1,5) et $f(\frac{1}{3})$ 3.a)
- 3.b) Interpréter concrètement les résultats précédents.

EXERCICE N°4

- 1) Représenter par un nuage de points les 5 premiers termes de la suite géométrique u de raison $r_1 = \frac{3}{2}$ et de premier terme $u_0 = 1$.
- 2) Représenter par un nuage de points les 5 premiers termes de la suite géométrique v de raison $r_2 = 1.5$ et de premier terme $v_0 = -2$.

EXERCICE N°5

- 1) Tracer la représentation graphique de $f: \begin{cases}]-2 \ ; \ 5[\to \mathbb{R} \\ x \to 1,5^x \end{cases}$ sur $]-2 \ ; \ 5[$.

 2) Tracer la représentation graphique de $f: \begin{cases}]-2 \ ; \ 5[\to \mathbb{R} \\ x \to -2 \times 1,5^x \end{cases}$ sur $]-2 \ ; \ 5[$.

EXERCICE Nº6

Soit a un réel strictement positif et f la fonction définie pour tout réel x par : $f(x) = -3 \times a^x$

Expliquer pourquoi 2 n'a pas d'antécédent par la fonction f.

LES FONCTIONS EXPONENTIELLES E01

EXERCICE N°1

Soit la fonction g définie pour tout réel x par $g(x) = 0.5^x$. Calculer l'image de $\frac{2}{3}$ par g.

EXERCICE N°2

Soit la fonction h définie pour tout réel x par $h(x) = (\sqrt{3})^x$ Calculer h(1,5) et $h(\pi)$.

EXERCICE N°3 Le lien avec les suites géométriques

Rémi place $500 \in$ au taux annuel de 4,5% pendant n années avec 0 < n < 18. Soit u_n le capital à l'année n.

- 1) Montrer que (u_n) est une suite géométrique.
- 2) Quel est le capital de Rémi au bout de 3 ans ? De 17 ans ?
- 3) Soit f la fonction définie pour tout réel x par : $f(x) = 500 \times 1,045^x$
- Calculer f(1,5) et $f(\frac{1}{3})$ 3.a)
- 3.b) Interpréter concrètement les résultats précédents.

EXERCICE N°4

- 1) Représenter par un nuage de points les 5 premiers termes de la suite géométrique u de raison $r_1 = \frac{3}{2}$ et de premier terme $u_0 = 1$.
- 2) Représenter par un nuage de points les 5 premiers termes de la suite géométrique v de raison $r_2 = 1.5$ et de premier terme $v_0 = -2$.

EXERCICE N°5

- 1) Tracer la représentation graphique de $f: \begin{cases}]-2 \ ; \ 5[\to \mathbb{R} \\ x \to 1,5^x \end{cases}$ sur $]-2 \ ; \ 5[$.

 2) Tracer la représentation graphique de $f: \begin{cases}]-2 \ ; \ 5[\to \mathbb{R} \\ x \to -2 \times 1,5^x \end{cases}$ sur $]-2 \ ; \ 5[$.

EXERCICE Nº6

Soit a un réel strictement positif et f la fonction définie pour tout réel x par : $f(x) = -3 \times a^x$

Expliquer pourquoi 2 n'a pas d'antécédent par la fonction f.