CS699 Lecture 5 Classification 2

Using IF-THEN Rules for Classification

- Represent the knowledge in the form of IF-THEN rules
 - R: IF age = youth AND student = yes THEN buys_computer = yes
 - IF antecedent/precondition/condition
 THEN consequent/conclusion
- Assessment of a rule: coverage and accuracy
 - A tuple is covered by R if it satisfies the antecedent of R
 - $n_{covers} = # of tuples covered by R$
 - $-n_{correct}$ = # of tuples correctly classified by R
 - coverage(R) = $n_{covers}/|D|$ /* D: training data set */
 - accuracy(R) = $n_{correct} / n_{covers}$
 - Refer to Example 8.6, page 356

Using IF-THEN Rules for Classification

- Another example
- R2: IF income = high AND student = no
 THEN buys_computer = no
- R2 covers three tuples
 coverage(R2) = 3/14 = 21.43%

Among these three tuples, two tuples are correctly classified by R2. accuracy(R2) = 2/3 = 66.67%

age	income	student	credit_rating	buys computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Using IF-THEN Rules for Classification

- If more than one rule are triggered, need conflict resolution
 - Size ordering: assign the highest priority to the triggering rules that has the "toughest" requirement (i.e., with the most attribute tests)
 - Class-based ordering: decreasing order of prevalence or misclassification cost per class
 - Rule-based ordering (decision list): rules are organized into one long priority list, according to some measure of rule quality or by experts
 - When a tuple is not covered by any rule, a default rule is used. E.g., a majority class is assigned.

Rule Extraction from a Decision Tree

- One rule is created for each path from the root to a leaf
- Each attribute-value pair along a path forms a conjunction (AND): the leaf holds the class prediction

Rule Extraction from a Decision Tree

Example: Rule extraction from our buys_computer decision-tree

IF age <= 30 AND student = no

IF age <= 30 AND student = yes

IF *age* in 31..40

IF age > 40 AND credit_rating = excellent

IF age > 40 AND credit_rating = fair

THEN buys_computer = no

THEN buys_computer = yes

THEN buys_computer = yes

THEN buys_computer = no

THEN buys_computer = yes

Rule Extraction from the Training Data

- Sequential covering algorithm: Extracts rules directly from training data
- Rules are learned sequentially
- Each rule for a given class will ideally cover many tuples of the class but none (or few) of the tuples of other classes.
- There are many sequential covering algorithms.
- General strategy:
 - Rules are learned one at a time
 - Each time a rule is learned, the tuples covered by the rules are removed
 - The process repeats on the remaining tuples unless termination condition,
 e.g., when no more training examples or when the quality of a rule
 returned is below a user-specified threshold
- Comp. w. decision-tree induction: learning a set of rules *simultaneously*

Simple Covering Algorithm (Example)

•	Examp	le
---	-------	----

• First, *yes* rules.

•	IF?THE	N buys_	_computer =	yes :
---	--------	---------	-------------	-------

age <= 30	2/5
age 3140	4/4
age > 40	3/5
income = low	3/4
<i>income</i> = medium	4/5
income = high	2/4
student = no	3/7
student = yes	6/7
CR = fair	6/8
CR = excellent	3/6

age	income	student	credit_rating	_comp
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

February 27, 2019

Data Minin

Simple Covering Algorithm (Example)

- A new rule is created
- IF age = 31..40THEN buys_computer = yes
- Four tuples covered by this rule are removed and the same is repeated (for yes tuples)
- Once all yes tuples are covered,
 the same is done for no
 tuples

age	income	student	credit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
>40	medium	no	excellent	no

Simple Covering Algorithm (Example)

IF *age* = 31..40

THEN buys_computer = yes

age <= 30 2/5

age > 403/5

2/3 *income* = low

3/5 *income* = medium

0/2 *income* = high

student = no 1/5

4/5 *student* = yes

CR = fair4/6

CR = excellent

IF *age* = 31..40 AND

student = yes

income	student	credit_rating	_comp
high	no	fair	no
high	no	excellent	no
medium	no	fair	yes
low	yes	fair	yes
low	yes	excellent	no
medium	no	fair	no
low	yes	fair	yes
medium	yes	fair	yes
medium	yes	excellent	yes
medium	no	excellent	no
	high high medium low low medium low medium medium	high no high no medium no low yes low yes medium no low yes medium yes medium yes medium yes	high no fair high no excellent medium no fair low yes fair low yes excellent medium no fair low yes fair medium yes fair medium yes fair medium yes excellent

Numeric Prediction

- (Numerical) prediction is similar to classification
 - construct a model
 - use model to predict continuous values
- Prediction is different from classification
 - Classification refers to prediction of categorical class label
 - Prediction models continuous-valued functions
- Major method for prediction: regression
 - model the relationship between one or more *independent* or **predictor** variables and a *dependent* or **response** variable
- Regression analysis
 - Linear and multiple regression
 - Non-linear regression
 - Other regression methods: generalized linear model, Poisson regression, log-linear models, regression trees

Linear Regression

 <u>Linear regression</u>: involves a response variable y and a single predictor variable x

$$y = w_0 + w_1 x$$

where w_0 (y-intercept) and w_1 (slope) are regression coefficients

Method of least squares: estimates the best-fitting straight line

- Multiple linear regression: involves more than one predictor variable
 - Training data is of the form $(\mathbf{X_1}, \mathbf{y_1}), (\mathbf{X_2}, \mathbf{y_2}), ..., (\mathbf{X_{|D|}}, \mathbf{y_{|D|}})$
 - Ex. For 2-D data, we may have: $y = w_0 + w_1 x_1 + w_2 x_2$
 - Many nonlinear functions can be transformed into the above

Other Regression

 Nonlinear regression: some nonlinear models can be modeled by a math function

Example: a polynomial regression model

$$y = w_0 + w_1 x + w_2 x^2 + w_3 x^3$$

- Other Regression-Based Models
 - Logistic regression
 - Regression trees

Classification Example

- Adult
- Car evaluation
- Vote
- Credit screening
- CPU (numeric prediction)
- All from UCI Machine Learning Data Repository

Adult Dataset

- This dataset was extracted from census bureau database.
- 32561 tuples, 15 attributes
- Class attribute: whether earns > 50K or <= 50K

 Attributes: age, workclass, fnlwgt, education, education-num, marital-status, occupation, relationship, race, sex, capital-gain, capital-loss, hours-per-week, native-country, class

Car Evaluation Dataset

 The model evaluates cars according to the following concept structure:

CAR car acceptability

PRICE overall price

buying buying price

maint price of the maintenance

TECH technical characteristics

• COMFORT comfort

– doors number of doors

persons capacity in terms of persons to carry

- lug_boot the size of luggage boot

safety estimated safety of the car

Car Evaluation Dataset

- 1728 tuples, 7 attributes
- Class attribute:
 - car acceptability
 - -values: unacc, acc, good, vgood
- Attributes: buying, maint, doors, persons, lug_boot, safety

Vote Dataset

- This data set includes votes for each of the U.S. House of Representatives Congressmen on the 16 key votes
- 435 tuples, 7 attributes
- Class attribute: Democrat or Republican
- Attributes: handicapped-infants, water-project-costsharing, adoption-of-the-budget-resolution, physician-feefreeze, el-salvador-aid, religious-groups-in-schools, antisatellite-test-ban, aid-to-nicaraguan-contras, mx-missile, immigration, synfuels-corporation-cutback, educationspending, superfund-right-to-sue, crime, duty-free-exports, export-administration-act-south-africa

Credit Screening Dataset

- This file concerns credit card applications. All attribute names and values have been changed to protect confidentiality of the data.
- 690 tuples, 16 attributes
- Class attribute: approved or denied

CPU Dataset

- CPU performance
- 209 tuples, 7 attributes
- Class attribute: relative performance (numeric)
- Attributes:
 - MYCT: cycle times
 - MMIN: minimum main memory (KB)
 - MMAX: maximum main memory (KB)
 - CACH: cache (KB)
 - CHMIN: minimum channels
 - CHMAX: maximum channels

References

- Han, J., Kamber, M., Pei, J., "Data mining: concepts and techniques," 3rd Ed., Morgan Kaufmann, 2012
- http://www.cs.illinois.edu/~hanj/bk3/
- Ian H. Witten, E. Frank, and M.A. Hall, "Data Mining Practical Machine Learning Tools and Techniques,"
 Third Ed., 2011, Morgan Kaufmann