Collection of formulas, 1MA165

Trigonometry:

$$\tan x = \frac{\sin x}{\cos x}$$

$$\sin^2 x + \cos^2 x = 1 \quad \sin(-x) = -\sin x \qquad \cos(-x) = \cos x$$

$$\sin(\pi - x) = \sin x \quad \cos(\pi - x) = -\cos x \quad \sin(\frac{\pi}{2} - x) = \cos x$$

$$\cos(\frac{\pi}{2} - x) = \sin x \quad \sin^2 x = \frac{1 - \cos 2x}{2} \qquad \cos^2 x = \frac{1 + \cos 2x}{2}$$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y$$

$$\cos(x + y) = \sin x \cos y + \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$
$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \cos^2 x - \sin^2 x$$

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1
$\sin x$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0

Power and logarithm rules:

If
$$a, b > 0$$
 is :

$$a^0 = 1$$
 $a^{x+y} = a^x a^y$ $a^{x-y} = \frac{a^x}{a^y}$ $(a^x)^y = a^{xy}$ $(ab)^x = a^x b^x$ $\left(\frac{a}{b}\right)^x = \frac{a^x}{b^x}$

If a > 0, $a \neq 1$, b > 0 och $b \neq 1$ is:

$$\log_a 1 = 0 \qquad \log_a(xy) = \log_a x + \log_a y$$

$$\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y \qquad \log_a(x^y) = y \log_a x$$

$$\log_a(x) = \frac{\log_b(x)}{\log_b(a)}$$

Useful limits:

$$\lim_{x \to \infty} x^{\alpha} = \infty \quad \text{if } \alpha > 0 \qquad \lim_{x \to \infty} x^{\alpha} = 0 \quad \text{if } \alpha < 0$$

$$\lim_{x \to \infty} a^{x} = \infty \quad \text{if } a > 1 \qquad \lim_{x \to \infty} a^{x} = 0 \quad \text{if } 0 < a < 1$$

$$\lim_{x \to \infty} \log_{a} x = \infty \quad \text{if } a > 1 \qquad \lim_{x \to \infty} \log_{a} x = -\infty \quad \text{if } 0 < a < 1$$

$$\lim_{x \to \infty} \frac{a^{x}}{x^{\alpha}} = \infty \quad \text{if } a > 1 \qquad \lim_{x \to \infty} \frac{x^{\alpha}}{\log_{a} x} = \infty \quad \text{if } \alpha > 0, a > 1$$

$$\lim_{x \to \infty} \frac{a^{n}}{n!} = 0, \quad a \in \mathbf{R} \qquad \lim_{x \to 0^{+}} x^{\alpha} \log_{a} x = 0 \quad \text{if } \alpha > 0, a > 1$$

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1 \qquad \lim_{x \to 0} \frac{e^{x}-1}{x} = 1$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Rules of differentiation:

$$\frac{d}{dx}(f(x) + g(x)) = f'(x) + g'(x) \qquad \frac{d}{dx}(cf(x)) = cf'(x)$$

$$\frac{d}{dx}(f(x)g(x)) = f'(x)g(x) + f(x)g'(x) \qquad \frac{d}{dx}\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x)g(x) - f(x)g'(x)}{\left(g(x)\right)^2}$$

$$\frac{d}{dx}f(g(x)) = f'(g(x))g'(x)$$

Rules of integration:

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx \quad \int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$
$$\int_{a}^{b} f(x)g(x) dx = \left[F(x)g(x) \right]_{a}^{b} - \int_{a}^{b} F(x)g'(x) dx \quad \text{if } F'(x) = f(x)$$

Derivatives and antiderivatives:

g(x)	g'(x)	g(x)	g'(x)
x^a	ax^{a-1}	$\ln x$	$\frac{1}{x}$
e^x	e^x	a^x	$a^x \ln a, a > 0$
$\sin x$	$\cos x$	$\cos x$	$-\sin x$
$\tan x$	$1 + \tan^2 x = \frac{1}{\cos^2 x}$	$\cot x$	$-1 - \cot^2 x = -\frac{1}{\sin^2 x}$
$\arcsin x$	$\frac{1}{\sqrt{1-x^2}}$	$\arccos x$	$-\frac{1}{\sqrt{1-x^2}}$
$\arctan x$	$\frac{1}{1+x^2}$	$\operatorname{arccot} x$	$-\frac{1}{1+x^2}$

Taylor expansion:

$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + \dots + x^n + O(x^{n+1})$$

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n + O(x^{n+1})$$

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + (-1)^{n-1} \frac{x^n}{n} + O(x^{n+1})$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + O(x^{n+1})$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \dots + (-1)^n \frac{x^{2n}}{(2n)!} + O(x^{2n+2})$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + O(x^{2n+3})$$

$$\arctan x = x - \frac{x^3}{3} + \frac{x^5}{5} - \dots + (-1)^n \frac{x^{2n+1}}{2n+1} + O(x^{2n+3})$$

Summation formulas:

$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
$$\sum_{k=0}^{n} r^k = \frac{1-r^{n+1}}{1-r}, \quad r \neq 1$$

Tangent and tangent plane equationer:

The tangent to the curve y = f(x) at the point (a, f(a)):

$$y = f'(a)(x - a) + f(a).$$

The tangent plane at the surface z = f(x, y) at the point (a, b, f(a, b)):

$$z = \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b) + f(a,b).$$

Second order differential equations with constant coefficients:

Consider the differential equation

$$ay''(x) + by'(x) + cy(x) = 0, (1)$$

where a, b and c are real constants. Let r_1, r_2 be the roots to the characteristic equation

$$ar^2 + br + c = 0.$$

(i) If r_1 and r_2 are real and $r_1 \neq r_2$, then

$$y(x) = Ae^{r_1x} + Be^{r_2x},$$

is the general solution to (1).

(ii) If r_1 and r_2 are real and $r_1 = r_2$, then

$$y(x) = (Ax + B)e^{r_1x},$$

is the general solution to (1).

(iii) If $r_1 = \alpha + i\beta$ and $r_2 = \alpha - i\beta$, $\beta \neq 0$, then

$$y(x) = e^{\alpha x} (A\cos(\beta x) + B\sin(\beta x)),$$

is the general solution to (1).