2023 12th april shift2

EE24BTECH11066 - YERRA AKHILESH

If the circles $x^2 + y^2 - 2x - 4y + 4 = 0$ and $x^2 + y^2 - 6x - 10y + 20 + 2\sqrt{13} = 0$ touch
each other at the point (a, b) , then $(3a - 2b)^2$ is equal to:

- a) 1
- b) 4
- c) 9
- d) 13

17) If the angle between the line
$$l: \frac{x-1}{2} = \frac{y+1}{1} = \frac{z-2}{2}$$
 and the plane $P: \lambda x + 4y - 7 = 0, \lambda \neq 0$, is $\operatorname{cosec}^{-1}\left(\frac{3}{2}\right)$, then the sum of co-ordinates of the point where line l crosses the plane P is:

- a) -33
- b) -2
- c) 3
- d) 6

18) Let three distinct normal be drawn to the parabola
$$y^2 + 4y - 6x - 8 = 0$$
 from a point (a, b) on the axis of the parabola. Then:

- a) $a \in (1, \infty)$ and b = -2
- b) $a \in (0, \infty)$ and b = -2
- c) $a \in (1, \infty)$ and b = 2
- d) $a \in (2, \infty)$ and b = 2

19) Given
$${}^nC_r = \frac{n!}{r!(n-r)!}$$
, $0 \le r \le n$ and n is a non-negative integer. Then a possible value of k for which the equality ${}^{50}C_{k-1} + \sum_{r=1}^{50} {}^{100-r}C_{k-2} = {}^{100}C_{49}$ holds, is :

- a) 40
- b) 49
- c) 50
- d) 25

20) If an unbiased die, marked with
$$-3, -2, -1, 0, 1, 2$$
 on its faces, is thrown four times, then the probability of getting -1 as the sum of outputs is :

21)
$$(\sin 5^{\circ} \sin 55^{\circ} \sin 65^{\circ} \sin 75^{\circ})^{-1}$$
 is equal to _____

22) If the shortest distance between the lines
$$3x + 2y - 4z - 5 = 0 = 5x - 7y - 17z + 2$$
 and $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+1}{2}$ is $\frac{10}{\sqrt{k}}$, then *k* is equal

- 23) For $p \in \mathbb{N}$, if the angle between pair of tangents drawn to the ellipse $3x^2 + 2y^2 = 5$ from the point (1, p) is $\tan^{-1}\left(\frac{12}{\sqrt{5}}\right)$, then the distance of the vertex of the parabola $y = x^2 px + p + 1$ from the point (-7, 8) is equal to _____
- 24) Let P be a polygon with n vertices such that the line segment joining any two points of P remains entirely in P. If the number of diagonals of P is n + 25, then n is equal to _____
- 25) Let f(x) be a polynomial of degree 5 such that $\lim_{x\to 0} \frac{f(x)}{x^2} = 1$, f(-1) = -1, f(x) 14x has an extrema at x = 1 and f(x) 10x has an extrema at x = -1. Then f(2) is equal to _____
- 26) The number of 7 digits integers formed by using the digits 2, 3, 4, 5 only and having the sum of digits equal to 18 is _____
- 27) The remainder when (556)⁴⁰ is divided by 7 is _____
- 28) Let [t] denote the greatest integer less than or equal to t. Then the value of $10 10 \int_{-2}^{2} [x + x^3] dx$ is _____
- 29) Let $A = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. If $k, l \in \mathbb{N}$ be such that $A^k B^l = I$, then the minimum value of k + l is _____
- 30) Let $A_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, A_2 = \begin{pmatrix} 2 & 3 \\ 4 & 5 \end{pmatrix}, A_3 = \begin{pmatrix} 6 & 7 & 8 \\ 9 & 10 & 11 \\ 12 & 13 & 14 \end{pmatrix}, \cdots$ Then the sum of the diagonal elements of A_{20} is