Final_Compiled

December 12, 2020

```
[1]: import numpy as np
    import pandas as pd
    from sklearn.preprocessing import StandardScaler
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LogisticRegression
    data = pd.read_csv('Data_full.csv')
    #look for the missing values in each column
    data.isna().sum()
    # address missing data entries
    data = data.dropna(axis=0).reset_index(drop=True)
    # verify
    print("Total missing values:", data.isna().sum().sum())
    {column: list(data[column].unique()) for column in data.columns if data.
     →dtypes[column] == 'object'}
    def ordinal_encode(df, column, ordering):
        df = df.copy()
        df[column] = df[column].apply(lambda x: ordering.index(x))
        return df
    def onehot_encode(df, column, prefix):
        df = df.copy()
        dummies = pd.get_dummies(df[column], prefix=prefix)
        df = pd.concat([df, dummies], axis=1)
        df = df.drop(column, axis=1)
        return df
    month_ordering = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'Jul', 'Aug', |
     visitor prefix = 'V'
```

```
data = ordinal_encode(data, 'Month', month_ordering)
data = onehot_encode(data, 'VisitorType', visitor_prefix)
data['Weekend'] = data['Weekend'].astype(np.int)
data['Revenue'] = data['Revenue'].astype(np.int)
data
```

Total missing values: 0

[1]:	Administrative	e Adminis	trative_Dura	tion	Inform	ational	\			
0	0.0			0.0		0.0				
1	0.0)		0.0		0.0				
2	0.0)		-1.0		0.0				
3	0.0)		0.0		0.0				
4	0.0)		0.0		0.0				
•••	•••		•••		•••					
12311	3.0		1	45.0		0.0				
12312	0.0)		0.0		0.0				
12313	0.0)		0.0		0.0				
12314	4.0)		75.0		0.0				
12315	0.0)		0.0		0.0				
	Informational_	Duration	ProductRela	ted	Product	Related	Dur	ation	\	
0		0.0		1.0			_	00000	•	
1		0.0		2.0				00000		
2		-1.0		1.0				00000		
3		0.0		2.0				66667		
4		0.0		0.0		6		500000		
		•••	•••				•••			
12311		0.0	5	3.0		17	83.7	91667		
12312		0.0		5.0		4	65.7	50000		
12313		6.0			184.250000					
12314		15.0			346.000000					
12315		0.0		3.0			21.2	50000		
	BounceRates E	ExitRates	PageValues	Cnoo	:ialDay	Month	\			
0		0.200000	0.000000	Spec	0.0	1	\			
1		0.100000	0.000000		0.0	1				
2		0.200000	0.000000		0.0	1				
3						1				
3 4	0.050000 0.020000	0.140000 0.050000	0.000000		0.0	1				
			0.000000		0.0	1				
 10211	0.007142		 10 0/1717	•••		1 1				
12311	0.007143	0.029031	12.241717		0.0	11				
12312	0.000000	0.021333	0.000000		0.0	10				
12313	0.083333	0.086667	0.000000		0.0	10				

12314	0.00000	0.021053		0.000000		10		
12315	0.000000	0.066667		0.000000	0.0	10		
	OperatingSystems		rowser Region		TrafficType	Weekend	Revenue	\
0	opo14011165/500	1	1	1	1	0	0	`
1		2	2	1	2	0	0	
2		4	1	9	3	0		
						-	0	
3		3	2	2	4	0	0	
4		3	3	1	4	1	0	
•••	•••				•••	•••	_	
12311		4	6	1	1	1	0	
12312		3	2	1	8	1	0	
12313		3	2	1	13	1	0	
12314		2	2	3	11	0	0	
12315		3	2	1	2	1	0	
	$V_New_Visitor$	V_{Oth}	er V_	_Returning	g_Visitor			
0	0		0		1			
1	0		0		1			
2	0		0		1			
3	0		0		1			
4	0		0		1			
	•••	•••			•••			
12311	0		0		1			
12312	0		0		1			
12313	0		0		1			
12314	0		0		1			
12314	1		0		0			
12313	1		U		U			

[12316 rows x 20 columns]

1 Splitting into training data and evaluation data

```
[2]: y = data['Revenue'].copy()
X = data.drop('Revenue', axis=1)

scaler = StandardScaler()

X = scaler.fit_transform(X)

X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.3, \( \to \) \( \t
```

```
print("Shape of y_train :", y_train.shape)
    print("Shape of X_test :", X_test.shape)
    print("Shape of y_test :", y_test.shape)
    Training dan Test Dataset
    Shape of X_train : (3694, 19)
    Shape of y_train : (3694,)
    Shape of X_test : (8622, 19)
    Shape of y_test: (8622,)
[3]: #convert dataset from pandas frame to numpy dataset
    y_train = y_train.values
        Training & evaluating - First Classifier, Least Squares
[4]: # Classifier 1 - Training Data
    \#w = (X^T X)^{(-1)}X^T y
    X = X_train
    y = y_train
    w_train = np.linalg.inv(X.transpose()@X)@X.transpose()@y
    \#A = np.linalg.inv(X@X.T)
    print(np.round(w_train,2))
    ΓΟ.
            0.01 0.01 -0.02 -0.
                                    0.03 0.03 -0.06 0.16 -0.01 0.02 -0.02
     -0.01 -0.
                  0.
                       0.01 -0.
                                    0. -0.02]
[5]: # all features
    y_hat = np.sign(X_test@w_train)
    print('considering all features', y_hat)
    considering all features [-1. -1. -1. ... -1. 1.]
[6]: from sklearn.metrics import mean_squared_error, mean_absolute_error
    import numpy as np
    import matplotlib.pyplot as plt
    print('Performance of Least-Squares based classifier')
    print('')
    mse = mean_squared_error(y_test, y_hat)
    print('Mean squared error of testing set:', np.round(mse,4))
    mae = mean_absolute_error(y_test, y_hat)
    print('Mean absolute error of testing set:', np.round(mae,4))
    rmse = np.sqrt(mse)
    print('Root Mean Squared Error of testing set:', np.round(rmse,4))
```

Performance of Least-Squares based classifier

```
Mean squared error of testing set: 0.9395
Mean absolute error of testing set: 0.8928
Root Mean Squared Error of testing set: 0.9693
```

3 Training & evaluating - Second Classifier - Truncated SVD

```
[7]: min_err, min_r, min_w =np.inf,-1,None
err_sum = 0
for r in range(1,20):
    U, s, VT=np.linalg.svd(X_train)
    w = VT[:r, :].T@np.diag(1/s[:r])@U[:,:r].T@y_train
    err_ = np.mean(np.sign(X_test@w) != y_test)
    if err_<min_err:
        min_err, min_r, min_w = err_, r, w

    err_sum+=np.mean(np.sign(X_train@min_w)!=y_train)</pre>
```

```
[8]: # all features
y_hat = np.sign(X_test@min_w)
print('considering all features', y_hat)
```

considering all features [-1. -1. -1. ... -1. 1.]

```
[9]: from sklearn.metrics import mean_squared_error, mean_absolute_error
import numpy as np
import matplotlib.pyplot as plt

print('Performance of Truncated SVD based classifier')
print('')
mse = mean_squared_error(y_test, y_hat)
print('Mean squared error of testing set:', np.round(mse,4))
mae = mean_absolute_error(y_test, y_hat)
print('Mean absolute error of testing set:', np.round(mae,4))
rmse = np.sqrt(mse)
print('Root Mean Squared Error of testing set:', np.round(rmse,4))
```

Performance of Truncated SVD based classifier

Mean squared error of testing set: 0.9139 Mean absolute error of testing set: 0.8801 Root Mean Squared Error of testing set: 0.956

- 4 Training & evaluating Third Classifier Neural Networks (see independent code)
- 5 Optimization Cross Validation

```
[10]: import numpy as np
     import pandas as pd
     from sklearn.preprocessing import StandardScaler
     from sklearn.model_selection import train_test_split
     from sklearn.linear_model import LogisticRegression
     data = pd.read_csv('Data_full.csv')
     #look for the missing values in each column
     data.isna().sum()
     # address missing data entries
     data = data.dropna(axis=0).reset_index(drop=True)
     # verify
     print("Total missing values:", data.isna().sum().sum())
     {column: list(data[column].unique()) for column in data.columns if data.
      →dtypes[column] == 'object'}
     def ordinal_encode(df, column, ordering):
         df = df.copy()
         df[column] = df[column].apply(lambda x: ordering.index(x))
         return df
     def onehot_encode(df, column, prefix):
         df = df.copy()
         dummies = pd.get_dummies(df[column], prefix=prefix)
         df = pd.concat([df, dummies], axis=1)
         df = df.drop(column, axis=1)
         return df
     month_ordering = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'June', 'Jul', 'Aug', "
      visitor prefix = 'V'
     data = ordinal_encode(data, 'Month', month_ordering)
```

```
data = onehot_encode(data,'VisitorType',visitor_prefix)
data['Weekend'] = data['Weekend'].astype(np.int)
data['Revenue'] = data['Revenue'].astype(np.int)
data
```

Total missing values: 0

[10]:	Administrative	Adminis	trative_Dura	tion	Inform	ational	\		
0	0.0			0.0		0.0			
1	0.0			0.0		0.0			
2	0.0			-1.0		0.0			
3	0.0			0.0		0.0			
4	0.0			0.0		0.0			
•••	•••		•••		•••				
12311	3.0		1	45.0		0.0			
12312	0.0			0.0		0.0			
12313	0.0			0.0		0.0			
12314	4.0			75.0		0.0			
12315	0.0			0.0		0.0			
	Informational_	Duration	ProductRelated ProductRela			Related	elated_Duration		
0		0.0		1.0			0.00	0000	
1		0.0		2.0			64.00	0000	
2		-1.0		1.0			-1.00	0000	
3		0.0		2.0			2.66	3667	
4		0.0	1	0.0		6	27.50	0000	
•••		•••	•••						
12311		0.0	5	3.0		17	83.79	1667	
12312		0.0		5.0		4	65.75	0000	
12313		0.0		6.0		1	84.25	0000	
12314		0.0	1	5.0		3	46.00	0000	
12315		0.0		3.0			21.25	0000	
	BounceRates E	xitRates	PageValues	Spec	cialDay	Month	\		
0		0.200000	0.000000	•	0.0	1			
1		0.100000	0.000000		0.0	1			
2		0.200000	0.000000		0.0	1			
3		0.140000	0.000000		0.0	1			
4		0.050000	0.000000		0.0	1			
•••	•••	•••	•••	•••	•••				
12311	0.007143	0.029031	12.241717		0.0	11			
12312	0.000000	0.021333	0.000000		0.0	10			
12313		0.086667	0.000000		0.0	10			
12314	0.000000	0.021053	0.000000		0.0	10			
12315		0.066667	0.000000		0.0	10			

```
OperatingSystems Browser Region TrafficType Weekend Revenue
      0
                                                                                0
                             2
                                                             2
      1
                                       2
                                               1
                                                                       0
                                                                                0
      2
                             4
                                               9
                                                             3
                                       1
                                                                       0
                                                                                0
                             3
                                       2
      3
                                               2
                                                             4
                                                                       0
                                                                                0
                             3
                                       3
                                               1
                                                             4
                                                                       1
                                                                                0
      12311
                             4
                                       6
                                                                       1
                                                                                0
                                               1
                                                             1
      12312
                                       2
                                                             8
                                                                       1
                                                                                0
                             3
                                               1
      12313
                             3
                                       2
                                               1
                                                            13
                                                                       1
                                                                                0
                             2
                                       2
                                               3
      12314
                                                                       0
                                                                                0
                                                            11
                                       2
                                               1
      12315
                             3
                                                             2
                                                                       1
                                                                                0
             V_New_Visitor V_Other V_Returning_Visitor
      0
                          0
                                    0
                                                          1
                          0
      1
                                    0
                                                          1
      2
                          0
                                    0
                                                          1
      3
                          0
                                    0
                          0
      4
                                    0
      12311
                          0
                                    0
                                                          1
      12312
                                    0
                                                          1
                          0
      12313
                          0
                                    0
                                                          1
      12314
                                    0
                                                          1
                          0
      12315
                                    0
                                                          0
      [12316 rows x 20 columns]
[11]: import numpy as np
      import scipy.io as sio
      y = data['Revenue'].copy()
      X = data.drop('Revenue', axis=1)
      scaler = StandardScaler()
      X = scaler.fit_transform(X)
[12]: #convert dataset from pandas frame to numpy dataset
      h = y.values
[13]: y = h
[14]: y = data['Revenue'].copy()
      X = data.drop('Revenue', axis=1)
      scaler = StandardScaler()
```

```
X = scaler.fit_transform(X)
      #X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.7,__
      \rightarrow random_state=20)
      X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.3,_
       →random state=20)
      print("Training dan Test Dataset")
      # from sklearn.model_selection import train_test_split
      # splitting the X, and y
      \# X train, X test, y train, y test = train_test_split(X, y, test_size = 0.2, )
      \rightarrow random state = 0)
      # checking the shapes
      print("Shape of X_train :", X_train.shape)
      print("Shape of y_train :", y_train.shape)
      print("Shape of X_test :", X_test.shape)
      print("Shape of y_test :", y_test.shape)
     Training dan Test Dataset
     Shape of X_train : (3694, 19)
     Shape of y_train : (3694,)
     Shape of X_test : (8622, 19)
     Shape of y_test: (8622,)
[15]: err_sum = 0
      for i in range(4):
          for j in range(4):
              if i == j: continue
              test_idx_1 = np.arange(i*3079, (i+1)*3079)
              test idx 2 =np.arange(j*3079, (j+1)*3079)
              train_idx =np.setdiff1d(np.arange(12316), test_idx_1)
              train idx =np.setdiff1d(train idx, test idx 2)
              X_train, y_train = X[train_idx, :], y[train_idx]
              X_test_1, y_test_1 = X[test_idx_1, :], y[test_idx_1]
              X_test_2, y_test_2 = X[test_idx_2, :], y[test_idx_2]
              min_err, min_r, min_w =np.inf,-1,None
              for r in range(1,20):
                  U, s, VT=np.linalg.svd(X_train)
                  W = VT[:r, :].T@np.diag(1/s[:r])@U[:,:r].T@y_train
                  err_ = np.mean(np.sign(X_test_1@w) != y_test_1)
                  if err_<min_err:</pre>
                      min_err, min_r, min_w = err_, r, w
                  err_sum+=np.mean(np.sign(X_test_2@min_w)!=y_test_2)
      print(err sum/4/3)
```

16.620358341452857