Chương IV. MẠCH ĐIỆN XOAY CHIỀU 3 PHA

- 4.1 Khái niệm chung về mạch điện xoay chiều 3 pha
- 4. 2 Quan hệ giữa các đại lượng dây và pha trong mạch 3 pha đối xứng
- 4.3 Công suất mạch xoay chiều 3 pha
- 4.4. Cách giải mạch 3 pha

4.1 Khái niệm chung về mạch xoay chiều 3 pha

- 1. Phương pháp tạo nguồn 3 pha: Máy phát đồng bộ
- 2. Biểu diễn nguồn 3 pha:
- a. Dạng tức thời:

$$e_{A} = \sqrt{2} E \sin \omega t$$

$$e_{B} = \sqrt{2} E \sin(\omega t - 120^{\circ})$$

$$e_{C} = \sqrt{2} E \sin(\omega t - 240^{\circ})$$

- b. Dạng số phức:
- c. Dang véc to:

$$\overset{\bullet}{E}_{\,A}\,=\,E\,e^{\,j0^\circ}$$

$$E_B = Ee^{-j120^\circ}$$

$$\overset{\bullet}{E}_{C} = Ee^{-j240^{\circ}}$$
 hoặc $\overset{\bullet}{E}_{C} = Ee^{+j120^{\circ}}$

Với nguồn 3 pha đối xứng:

$$e_{A} + e_{B} + e_{C} =$$

$$\vec{E}_{A} + \vec{E}_{B} + \vec{E}_{C} =$$

$$E_{A} + E_{B} + E_{C} =$$

$$0$$

- 3. Cách nối: Sao (Y) và tam giác (ΔD)
- 4. Mạch 3 pha đối xứng

Nguồn đ/x Tải đ/x

Đường dây đ/x

nguồn	tåi
Y	Y
Y	Δ
Δ	Δ
Δ	Y

5. Các đại lượng dây và pha

- Dòng điện dây $I_d(I_A, I_B, I_C)$

- Điện áp dây U_d (U_{AB} , U_{BC} , U_{CA})
- Dòng điện pha
- I_p
- Điện áp pha
- $\mathbf{U}_{\mathbf{p}}$

phụ thuộc cách nối

4. 2 Quan hệ giữa các đại lượng dây và pha trong mạch 3 pha

$$\dot{U}_{O'O} = \frac{\dot{E}_{A} Y_{A} + \dot{E}_{B} Y_{B} + \dot{E}_{C} Y_{C}}{Y_{A} + Y_{B} + Y_{C}} = \frac{Y(\dot{E}_{A} + \dot{E}_{B} + \dot{E}_{C})}{3Y}$$

$$Vi Z_{A} = Z_{B} = Z_{C} = Z$$

$$\dot{U}_{A} = \dot{E}_{A}$$

$$\dot{U}_{B} = \dot{E}_{B}$$

$$\dot{U}_{C} = \dot{E}_{C}$$

$$\begin{split} & \overrightarrow{\mathbf{U}}_{AB} = \overrightarrow{\mathbf{U}}_{A} - \overrightarrow{\mathbf{U}}_{B} \\ & \overrightarrow{\mathbf{U}}_{BC} = \overrightarrow{\mathbf{U}}_{B} - \overrightarrow{\mathbf{U}}_{C} \\ & \overrightarrow{\mathbf{U}}_{CA} = \overrightarrow{\mathbf{U}}_{C} - \overrightarrow{\mathbf{U}}_{A} \end{split}$$

 \overrightarrow{U}_{BC} \overrightarrow{U}_{CA} \overrightarrow{U}_{CA} \overrightarrow{U}_{AB} \overrightarrow{U}_{AB}

5

Trong mạch nối Y:

$$U_{d} = \sqrt{3}U_{f}$$

$$I_{d} = I_{p}$$

+ Góc pha:

$$\vec{U}_{AB}$$
 vượt trước \vec{U}_{A} góc 30° \vec{U}_{BC} vượt trước \vec{U}_{B} góc 30° \vec{U}_{CA} vượt trước \vec{U}_{C} góc 30°

$$\begin{array}{ccc} & \overset{\bullet}{Vi\ du:} & \overset{\bullet}{U}_{B} = Ue^{j0^{\circ}} \\ & \overset{\bullet}{U}_{A} = U\ e^{j120^{\circ}} \\ & \overset{\bullet}{U}_{C} = U\ e^{-j120^{\circ}} \\ & \overset{\bullet}{U}_{AB} = \sqrt{3}\ U\ e^{j150^{\circ}} \\ & \overset{\bullet}{U}_{BC} = \sqrt{3}\ U\ e^{-j90^{\circ}} \\ & \overset{\bullet}{U}_{CA} = \sqrt{3}\ U\ e^{-j90^{\circ}} \\ \end{array}$$

Vòng AABB

$$\begin{aligned} \overrightarrow{U}_{AB} &= \overrightarrow{E}_{AB} \\ \overrightarrow{U}_{BC} &= \overrightarrow{E}_{BC} \\ \overrightarrow{U}_{CA} &= \overrightarrow{E}_{CA} \end{aligned}$$

$$\text{Tại A, B, C}: \left\{ \begin{array}{l} \vec{I}_{A}=\vec{I}_{AB}-\vec{I}_{CA}\\ \\ \vec{I}_{B}=\vec{I}_{BC}-\vec{I}_{AB}\\ \\ \vec{I}_{C}=\vec{I}_{CA}-\vec{I}_{BC} \end{array} \right.$$

7

$$\begin{cases}
\vec{I}_{A} = \vec{I}_{AB} - \vec{I}_{CA} \\
\vec{I}_{B} = \vec{I}_{BC} - \vec{I}_{AB} \\
\vec{I}_{C} = \vec{I}_{CA} - \vec{I}_{BC}
\end{cases}$$

Về trị hiệu dụng:

$$U_{d} = U_{p}$$

$$I_{d} = \sqrt{3}I_{p}$$

 \vec{I}_{A} chậm sau \vec{I}_{AB} góc 30^{o}

Về góc pha : \vec{I}_B chậm sau \vec{I}_{BC} góc 30^o \vec{I}_{C} chậm sau \vec{I}_{CA} góc 30^o

$$\begin{array}{c}
\underline{Vi \, du:} & \stackrel{\bullet}{I_{C}} = 17, 3e^{j0^{\circ}} \\
\stackrel{\bullet}{I_{A}} = 17, 3e^{-j120^{\circ}} \\
\stackrel{\bullet}{I_{B}} = 17, 3e^{j120^{\circ}}
\end{array}$$

$$I_{AB} = 10 e^{-j90^{\circ}}$$
 $I_{BC} = 10 e^{j150^{\circ}}$
 $I_{CA} = 10 e^{j30^{\circ}}$

4.3 Công suất trong mạch điện xoay chiều 3 pha

1. Công suất tác dụng:

$$P_A, P_B, P_C$$

$$P = P_A + P_B + P_C$$

Khi tải đối xứng :
$$P = 3P_p = 3U_p I_p \cos \phi_p = 3RI_p^2$$

Tải nối Y:
$$U_p = \frac{U_d}{\sqrt{3}}$$

Tải nối Y:
$$U_p = \frac{U_d}{\sqrt{3}}$$
 $I_p = I_d \longrightarrow P = \sqrt{3} U_d I_d \cos \phi_p$

Khi tải nối
$$\Delta$$
: $U_p = U_d$

$$I_p = \frac{I_d}{\sqrt{3}}$$

$$P = \sqrt{3}U_d I_d \cos \phi_p$$

$$I_{p} = \frac{I_{d}}{\sqrt{3}}$$

$$P = \sqrt{3} U_d I_d \cos \varphi_p$$

<u>Đo công suất mạch 3 pha :</u>

a. 1 Oát kế:

Đối xứng: $P = 3 P_p$

Không đối xứng: $P = P_A + P_B + P_C$

b. 2 Oát kể:

10

2. Công suất phản kháng:

$$Q_A, Q_B, Q_C$$
 $\rightarrow Q = Q_A + Q_B + Q_C$

Khi tải đối xứng :
$$Q = 3Q_p = 3U_pI_p\sin\phi_p = 3XI_p^2$$

Tải nối Y hay Δ:
$$Q = \sqrt{3} U_d I_d \sin \varphi_p$$

3. Công suất biểu kiến (toàn phần):

$$S = \sqrt{P^2 + Q^2} = \sqrt{3} U_d I_d$$

11

4.4. Giải mạch 3 pha

- 1. Tải nối Y
- a. Đối xứng:

Nguồn đối xứng:

$$E_A + E_B + E_C = 0$$

Tải đối xứng:

$$Z_A = Z_B = Z_C = Z_t$$

Đường dây đối xứng:
$$Z_{dA} = Z_{dB} = Z_{dC} = Z_{d}$$

Thay Z_d nối tiếp Z_t bằng $Z = Z_d + Z_t$

Do
$$\dot{\mathbf{U}}_{o'o} = 0$$
 $\Longrightarrow \dot{\mathbf{I}}_{A} = \frac{\dot{\mathbf{U}}_{A}}{Z} = \frac{\mathbf{U}e^{j0^{\circ}}}{\beta e^{j\phi}} = \mathbf{I}e^{j(-\phi)}$ $\Longrightarrow \dot{\mathbf{I}}_{C} = \mathbf{I}e^{j(-\phi-120^{\circ})}$

Chú ý: 1.
$$U_A = U = U_p = U_d / \sqrt{3}$$

2.
$$\dot{\mathbf{l}}_{A} + \dot{\mathbf{l}}_{B} + \dot{\mathbf{l}}_{C} = \dot{\mathbf{l}}_{N} = 0 \rightarrow \text{C\'o th\'e b\'o dây trung tính}$$

b. Không đối xứng:

Nguồn $DX: E_A + E_B + E_C = 0$

Tải không $DX : Z_A \neq Z_B \neq Z_C$

$$\dot{\mathbf{U}}_{\text{O'O}} = \frac{\dot{\mathbf{E}}_{\text{A}} \mathbf{Y}_{\text{A}} + \dot{\mathbf{E}}_{\text{B}} \mathbf{Y}_{\text{B}} + \dot{\mathbf{E}}_{\text{C}} \mathbf{Y}_{\text{C}}}{\mathbf{Y}_{\text{A}} + \mathbf{Y}_{\text{B}} + \mathbf{Y}_{\text{C}} + \mathbf{Y}_{\text{N}}}$$

* Bổ qua tổng trở dây trung tính

$$Z_N = 0$$
 $Y_N = \infty$ $\rightarrow U_{O'O} = 0$

 \overline{U}_{B}

$$\dot{U}_A = \dot{E}_A$$
, $\dot{U}_B = \dot{E}_B$, $\dot{U}_C = \dot{E}_C$ \rightarrow Điện áp pha đối xứng

 E_{C}

 Z_N

 $U_{o,o}$

 I_N

→ Tính dòng điện trong từng pha riêng biệt

$$\dot{\mathbf{I}}_{A} = \frac{\dot{\mathbf{U}}_{A}}{Z_{A}} \qquad \dot{\mathbf{I}}_{B} = \frac{\dot{\mathbf{U}}_{B}}{Z_{B}} \qquad \dot{\mathbf{I}}_{C} = \frac{\dot{\mathbf{U}}_{C}}{Z_{C}} \qquad \dot{\mathbf{I}}_{N} = \dot{\mathbf{I}}_{A} + \dot{\mathbf{I}}_{B} + \dot{\mathbf{I}}_{C} \neq 0$$

$$\dot{\mathbf{I}}_{N} = \mathbf{I}_{N} e^{j\psi_{N}}$$

 $* \operatorname{Khi} Z_{N} \neq 0 \qquad \overset{\bullet}{U}_{o \cdot o} = \frac{\overset{\bullet}{E}_{A} Y_{A} + \overset{\bullet}{E}_{B} Y_{B} + \overset{\bullet}{E}_{C} Y_{C}}{Y_{A} + Y_{B} + Y_{C} + Y_{N}} \neq 0$ $\overset{\bullet}{U}_{o \cdot o} = U_{o} e^{J \psi_{O}}$ $\overset{\bullet}{U}_{A} = \overset{\bullet}{E}_{A} - \overset{\bullet}{U}_{O \cdot O}$ $\overset{\bullet}{U}_{B} = \overset{\bullet}{E}_{B} - \overset{\bullet}{U}_{O \cdot O}$ $\overset{\bullet}{U}_{C} = \overset{\bullet}{E}_{C} - \overset{\bullet}{U}_{O \cdot O}$ $\overset{\bullet}{U}_{C} = \overset{\bullet}{E}_{C} - \overset{\bullet}{U}_{O \cdot O}$ $\overset{\bullet}{U}_{O \cdot O} = \overset{\bullet}{U}_{O \cdot O}$ $\overset{\bullet}{U}_{O \cdot O} = \overset{\bullet}{U}_{O \cdot O} = \overset{\bullet$

Kết luận: Điện áp pha *không đối xứng*

O'

13

$$\dot{I}_{A} = \frac{\dot{U}_{A}}{Z_{A}}$$

$$\dot{I}_B = \frac{U_B}{Z_B}$$

$$\dot{\mathbf{I}}_{A} = \frac{\dot{\mathbf{U}}_{A}}{Z_{A}}$$
 $\dot{\mathbf{I}}_{B} = \frac{\dot{\mathbf{U}}_{B}}{Z_{B}}$
 $\dot{\mathbf{I}}_{C} = \frac{\dot{\mathbf{U}}_{C}}{Z_{C}}$

Ví dụ: Cho mạch hình bên

Nguồn đối xứng: $U_d = 220 \text{ V}$

Tải không đối xứng : $Z_A = 20 \Omega$; $Z_B = j 20 \Omega$; $Z_C = -j 20 \Omega$

Tìm dòng điện I_A , I_B , I_C , I_N khi k đóng (có dây trung tính, $Z_N = 0$) và k mở (không có dây trung tính)

15

Khi k đóng:
$$U_{O'O} = 0$$

$$\dot{I}_{A} = \frac{\dot{U}_{A}}{Z_{A}} = \frac{127e^{j0^{\circ}}}{20e^{j0^{\circ}}} = 6,35e^{j0^{\circ}}A_{O}$$

$$\dot{I}_{B} = \frac{\dot{U}_{B}}{Z_{B}} = \frac{127e^{-j120^{\circ}}}{j20} = 6,35e^{-j210^{\circ}}A$$

$$\dot{\mathbf{I}}_{C} = \frac{\dot{\mathbf{U}}_{C}}{\mathbf{Z}_{C}} = \frac{127e^{j120^{\circ}}}{-j20} = 6,35e^{j210^{\circ}}\mathbf{A}$$

$$\vec{I}_N = \vec{I}_A + \vec{I}_B + \vec{I}_C = ?$$

$$\vec{I}_B$$
 150^0 Đồ thị
$$\vec{I}_B + \vec{I}_C$$
 \vec{I}_N
 \vec{I}_A

150°
$$\to$$
 \hat{O} thị véc tơ \to $I_N = 0.73.6.35 = 4.64 \text{ A}$

Số phức: $I_N = 4,64e^{j180^{\circ}} = -4,64A$

b. Khi k mở:
$$U_{00} \neq 0$$

$$\dot{I}_{N} = 4,64e^{j180^{\circ}} = -4,64A$$

$$\dot{U}_{O'O} = \frac{\dot{E}_{A} Y_{A} + \dot{E}_{B} Y_{B} + \dot{E}_{C} Y_{C}}{Y_{A} + Y_{B} + Y_{C}}$$

$$Y_{A} = \frac{1}{Z_{A}} = \frac{1}{20} = 0,05S$$

$$Y_{B} = \frac{1}{Z_{B}} = \frac{1}{j20} = -j0,05S$$

$$Y_{C} = \frac{1}{Z_{C}} = \frac{1}{-j20} = j0,05S$$

$$Y_{C} = \frac{1}{Z_{C}} = \frac{1}{-j20} = j0,05S$$

$$U_{O'O} = \frac{-4,64}{0,05} = -92,8V$$

$$Y = Y_A + Y_B + Y_C = 0.05 S$$

$$\overset{\bullet}{\mathrm{U}}_{\mathrm{o'o}} = \frac{-4,64}{0,05} = -92,8 \,\mathrm{V}$$

17

$$U_{00} = -92.8 V$$

$$\dot{U}_{A} = \dot{E}_{A} - \dot{U}_{O'O} = 127 + 92, 8 \approx 220 \text{ V}$$
 $\dot{U}_{A} \approx 220 e^{J0^{\circ}} \text{ V}$

$$U_B = E_B - U_{O'O} = 127e^{-J120^{\circ}} + 92,8 = -63,5 - j110 + 92,8$$

$$= 29, 3 - j110 \text{ V}$$

$$U_C = E_C - U_{O'O} = 127e^{J120^\circ} + 92.8 = -63.5 + j110 + 92.8$$

$$= 29,3 + j110 \text{ V}$$

$$\begin{array}{c}
\bullet \\
U_C = 113,8e^{J75^{\circ}5'}V
\end{array}$$
Adàng điện trong các nhánh

 $\dot{\mathbf{U}}_{\rm B} = 113, 8e^{-J75^{\circ}5'}\mathbf{V}$

→ dòng điện trong các nhánh

$$\dot{I}_{A} = \frac{\dot{U}_{A}}{Z_{A}} = 11A$$

$$\dot{I}_{B} = \frac{\dot{U}_{B}}{Z_{B}} = 5,69 \angle -165^{\circ}5' A$$

$$\dot{I}_{C} = \frac{U_{C}}{Z_{C}} = 5,69 \angle 165^{0}5'A_{18}$$

2. Tải nối Δ

a. Đối xứng:

- Tải đối xứng: $Z_{AB} = Z_{BC} = Z_{CA} = Z_{t}$
- Đường dây đối xứng : $Z_{dA} = Z_{dB} = Z_{dC} = Z_{d}$

* Không kể
$$Z_d$$
 \rightarrow $Z_d = 0$

$$\dot{\mathbf{I}}_{AB} = \frac{\dot{\mathbf{U}}_{AB}}{Z_{t}} = \frac{\mathbf{U}_{d} e^{j0^{\circ}}}{\beta_{t} e^{j\phi}}
= \mathbf{I}_{p} e^{j(-\phi-120^{\circ})} \qquad \dot{\mathbf{I}}_{BC} = \mathbf{I}_{p} e^{j(-\phi-120^{\circ})} \qquad \dot{\mathbf{I}}_{CA} = \mathbf{I}_{p} e^{j(-\phi+90^{\circ})}
\dot{\mathbf{I}}_{CA} = \mathbf{I}_{p} e^{j(-\phi+120^{\circ})} \qquad \dot{\mathbf{I}}_{C} = \sqrt{3} \mathbf{I}_{p} e^{j(-\phi+90^{\circ})}$$

$$I_{BC} = I_p e^{j(-\phi - 120^\circ)}$$

$$\dot{I}_{CA} = I_p e^{j(-\phi + 120^\circ)}$$

$$I_{A} = \sqrt{3}I_{p}e^{j(-\phi-30^{\circ})}$$

$$\dot{\mathbf{I}}_{\mathrm{B}} = \sqrt{3} \mathbf{I}_{\mathrm{p}} e^{\mathrm{j}(-\phi - 150^{\circ})}$$

$$I_{\rm C} = \sqrt{3}I_{\rm p}e^{{\rm j}(-\phi+90^{\circ})}$$

$$\label{eq:interpolation} \stackrel{\bullet}{\prod_{B}} = I_{d} e^{j(-\phi-120^{\circ})}$$

$$\stackrel{\bullet}{I_{C}} = I_{d} e^{j(-\phi+120^{\circ})}$$

$$\begin{split} &\overset{\bullet}{I}_{AB} = \frac{I_d}{\sqrt{3}} \; e^{j(-\phi + 30^\circ)} \\ &\overset{\bullet}{I}_{BC} = \frac{I_d}{\sqrt{3}} e^{j(-\phi - 90^\circ)} \\ &\overset{\bullet}{I}_{CA} = \frac{I_d}{\sqrt{3}} e^{j(-\phi + 150^\circ)} \end{split}$$

20

• Điện áp pha đối xứng

$$\begin{split} \dot{\mathbf{I}}_{AB} &= \frac{\dot{\mathbf{U}}_{AB}}{Z_{AB}} & \dot{\mathbf{I}}_{BC} = \frac{\dot{\mathbf{U}}_{BC}}{Z_{BC}} \\ \dot{\mathbf{I}}_{CA} &= \frac{\dot{\mathbf{U}}_{CA}}{Z_{CA}} & & \dot{\mathbf{I}}_{B} = \dot{\mathbf{I}}_{BC} - \dot{\mathbf{I}}_{AB} \\ \dot{\mathbf{I}}_{CA} &= \dot{\mathbf{I}}_{CA} - \dot{\mathbf{I}}_{BC} & & \dot{\mathbf{I}}_{CA} - \dot{\mathbf{I}}_{BC} \\ \dot{\mathbf{I}}_{AB} + \dot{\mathbf{I}}_{BC} + \dot{\mathbf{I}}_{CA} & \neq \mathbf{0} & & \dot{\mathbf{I}}_{A} + \dot{\mathbf{I}}_{B} + \dot{\mathbf{I}}_{C} = \mathbf{0} \end{split}$$

→ Giải mạch không đối xứng, nối Y, không có dây trung tính

$$\begin{array}{lll} \bullet & \text{T\'{i}} \text{nh} & U_{A}, U_{B}, U_{C} \\ \bullet & \text{T\'{i}} \text{nh} & I_{A}, & I_{B}, & I_{C} \\ \bullet & \text{T\'{i}} \text{nh} & U_{AB}, & U_{BC}, & U_{CA} \\ \end{array} \quad \begin{array}{ll} \mathbf{\dot{I}}_{AB} = \frac{\mathbf{\dot{U}}_{AB}}{Z_{AB}} & \mathbf{\dot{I}}_{BC} = \frac{\mathbf{\dot{U}}_{BC}}{Z_{BC}} & \mathbf{\dot{I}}_{CA} = \frac{\mathbf{\dot{U}}_{CA}}{Z_{CA}} \\ \end{array}$$

Ví dụ 2:

Cho mạch 3 pha đ/x như hình bên

Biết:

$$Z_1 = 12 + j16$$
 $Z_2 = 18 - j24$
 $Z_d = 2 + j2$
 $Q_d = 380 \text{ V}$

Tìm: - Dòng điện: I_1 , I_2 , I_3 , I_4

- P, Q, S và cosφ toàn mạch
- Vẽ đồ thị véc tơ của \vec{I}_A , \vec{I}_B , \vec{I}_C từ \vec{U}_A , \vec{U}_B , \vec{U}_C

23

$$Z_1 = 12 + j16$$
 $Z_2 = 18 - j24$
 $Z_d = 2 + j2$
 $U_d = 380 \text{ V}$

Giải

1. Tìm dòng điện : \mathbf{I}_1 , \mathbf{I}_2 , \mathbf{I}_3 , \mathbf{I}

$$I_1 = \frac{U_f}{\beta_1}$$

Tải 2:

Chuyển Z_2 về $Y: Z_{2Y} =$

Thay: $Z_{d2Y} = Z_d + Z_{2Y} =$

$$I_2 = \frac{U_f}{3_{d2Y}}$$

$$I_2 = \frac{I_2}{I_3}$$

$$Z_1 = 12 + j16$$
 $Z_2 = 18 - j24$
 $Z_d = 2 + j2$
 $U_d = 380 \text{ V}$

2. Tìm P, Q, S và cosφ toàn mạch

$$P = 3(R_{1}I_{1}^{2} + R_{d2Y}I_{2}^{2}) =$$

$$Q = 3(X_{1}I_{1}^{2} - X_{d2Y}I_{2}^{2}) =$$

$$S = \sqrt{P^{2} + Q^{2}} = \cos\phi = \frac{P}{S} =$$

$$I = \frac{S}{\sqrt{3}U_{d}} =$$

25

3. Vẽ đồ thị véc tơ của \vec{I}_A , \vec{I}_B , \vec{I}_C dựa vào \vec{U}_A , \vec{U}_B , \vec{U}_C

VÌ Q = -2904 VAr < 0mang t/c điện dung

dòng vượt trước áp 1 góc ? $\cos \varphi = 0.98$ $\varphi = -11^{\circ} 28'$

