Структурна теорія цифрових автоматів Лабораторна робота N94

Тема: Проектування і дослідження лічильників

Куценко Євгеній, ІПС-31

Варіант: 11 (001011): $a_6=0,\,a_5=0,\,a_4=1,\,a_3=0,\,a_2=1,\,a_1=1$

1

			Стан	и лічил	ьника				Фун	кції	збуд	женн	я три	 герів	1
Q_4^S	Q_3^S	Q_2^S	Q_1^S	Q_4^{S+1}	Q_3^{S+1}	Q_2^{S+1}	Q_1^{S+1}	T_4	T_3	T_2	T_1	D_4	D_3	D_2	D_1
0	0	0	1	0	0	1	0	0	0	1	1	0	0	1	0
0	0	1	0	0	0	1	1	0	0	0	1	0	0	1	1
0	0	1	1	0	1	0	0	0	1	1	1	0	1	0	0
0	1	0	0	0	1	0	1	0	0	0	1	0	1	0	1
0	1	0	1	0	1	1	1	0	0	1	0	0	1	1	1
0	1	1	1	1	0	0	0	1	1	1	1	$\parallel 1$	0	0	0
1	0	0	0	1	0	1	1	0	0	1	1	$\parallel 1$	0	1	1
1	0	1	1	1	1	0	0	0	1	1	1	\parallel 1	1	0	0
1	1	0	0	1	1	1	0	0	0	1	0	$\parallel 1$	1	1	0
1	1	1	0	0	0	0	1	1	_ 1	1	1	0	0	0	1
Q_4^S	Q_3^S	Q_2^S	Q_1^S	Q_4^{S+1}	Q_3^{S+1}	Q_2^{S+1}	Q_1^{S+1}	J_4	J_3	J_2	J_1	K_4	K_3	K_2	K_1
0	0	0	1	0	0	1	0	0	0	1	*	*	*	*	1
0	0	1	0	0	0	1	1	0	0	*	1	*	*	0	*
0	0	1	1	0	1	0	0	0	1	*	*	*	*	1	1
0	1	0	0	0	1	0	1	0	*	0	1	*	0	*	*
0	1	0	1	0	1	1	1	0	*	1	*	*	0	*	0
0	1	1	1	1	0	0	0	1	*	*	*	*	1	1	1
1	0	0	0	1	0	1	1	*	0	1	1	0	*	*	*
1	0	1	1	1	1	0	0	*	1	*	*	0	*	1	1
1	1	0	0	1	1	1	0	*	*	1	0	0	0	*	*
1	1	1	0	0	0	0	1	*	*	*	1	1	1	1	*

Мінімізуємо функції $T_i,\,D_i,\,J_i,\,K_i,\,(i=\overline{1,4})$ методом Карно-Вейча

7	T_4		Q_2Q_1					
			01	11	10			
	00	*	0	0	0			
Q_4Q_3	01	0	0	1	*			
0	11	0	*	*	1			
	10	0	*	0	*			

D_4		Q_2Q_1					
	4	00	01	11	10		
	00	*	0	0	0		
Q_4Q_3	01	0	0	1	*		
Ò	11	1	*	*	0		
	10	1	*	1	*		

	J_4		Q_2Q_1					
			01	11	10			
	00	*	0	0	0			
Q_4Q_3	01	0	0	1	*			
0	11	*	*	*	*			
	10	*	*	*	*			

L	K_4		Q_2Q_1					
1			01	11	10			
	00	*	*	*	*			
Q_4Q_3	01	*	*	*	*			
0	11	0	*	*	1			
	10	0	*	0	*			

$$T_4 = J_4 = K_4 = Q_3 Q_2 = \overline{(\overline{Q_3 Q_3 Q_2})}$$

7	T_3		Q_2Q_1					
			01	11	10			
	00	*	0	1	0			
Q_4Q_3	01	0	0	1	*			
0	11	0	*	*	1			
	10	0	*	1	*			

D_3		Q_2Q_1					
		00	01	11	10		
	00	*	0	1	0		
Q_4Q_3	01	1	1	0	*		
0	11	1	*	*	0		
	10	0	*	1	*		

	J_3		Q_2Q_1					
			01	11	10			
	00	*	0	1	0			
Q_4Q_3	01	*	*	1	*			
0	11	*	*	*	*			
	10	0	*	1	*			

K_3		Q_2Q_1						
1	$\mathbf{\Lambda}_3$		00 01		10			
	00	*	*	*	*			
Q_4Q_3	01	0	0	1	*			
0	11	0	*	*	1			
	10	*	*	*	*			

$$T_3 = Q_3Q_2 \vee Q_2Q_1 = \overline{Q_3Q_3Q_2 \vee Q_2Q_2Q_1} = \overline{(Q_3Q_3Q_2) \cdot (Q_2Q_2Q_1)} \cdot \overline{(Q_2Q_2Q_1)} \cdot \overline{(Q_2Q_2Q_1)}$$

$$J_3 = Q_2Q_1 = \overline{(\overline{Q_2Q_2Q_1})}$$

$$K_3 = Q_2$$

7	T_2		Q_2Q_1					
	2	00	01	11	10			
	00	*	1	1	0			
Q_4Q_3	01	0	1	1	*			
Ò	11	1	*	*	1			
	10	1	*	1	*			

	J_2		Q_2Q_1					
			01	11	10			
	00	*	1	*	*			
Q_4Q_3	01	0	1	*	*			
O	11	1	*	*	*			
	10	1	*	*	*			

I	D_2		Q_2Q_1					
			00 01		10			
	00	*	1	0	1			
Q_4Q_3	01	0	1	0	*			
0	11	1	*	*	0			
	10	1	*	0	*			

K_2		Q_2Q_1				
1	112		01	11	10	
	00	*	*	1	0	
Q_4Q_3	01	*	*	1	*	
0	11	*	*	*	1	
	10	*	*	1	*	

$$T_2 = J_2 = K_2 = Q_4 \vee Q_1 = \overline{\overline{Q_4 \vee Q_1}} = \overline{(\overline{Q_4 Q_4 Q_1})}$$

T_1		Q_2Q_1				
	1 1		01	11	10	
	00	*	1	1	1	
Q_4Q_3	01	1	0	1	*	
0	11	0	*	*	1	
	10	1	*	1	*	

J_1		Q_2Q_1			
		00	01	11	10
	00	*	*	*	1
Q_4Q_3	01	1	*	*	*
0	11	0	*	*	*
	10	1	*	*	*

D_1		Q_2Q_1				
D_1		00	01	11	10	
	00	*	0	0	1	
Q_4Q_3	01	1	1	0	*	
0	11	0	*	*	1	
	10	1	*	0	*	

K_1		Q_2Q_1				
		00	01	11	10	
	00	*	1	1	*	
Q_4Q_3	01	*	0	1	*	
0	11	*	*	*	*	
	10	*	*	1	*	

$$T_1 = Q_2 \vee \overline{Q_3} \vee \overline{Q_4 Q_1} = \dots$$

$$J_1 = \overline{Q_4} \vee \overline{Q_4} \vee Q_2 = \overline{\overline{\overline{Q_4}} \vee \overline{Q_3} \vee Q_2} = \overline{(Q_4 Q_3 \overline{Q_2})}$$

$$K_1 = \overline{Q_3} \vee Q_2 = \overline{\overline{\overline{Q_3}} \vee \overline{Q_2}} = \overline{(Q_3 Q_3 \overline{Q_2})}$$

Обираємо $J_i, K_i, i = \overline{1,4}$

Q_4	Q_3	Q_2	Q_1	DEC	HEX
0	0	0	1	1	1
0	0	1	0	2	2
0	0	1	1	3	3
0	1	0	0	4	4
0	1	0	1	5	5
0	1	1	1	7	7
1	0	0	0	8	8
1	0	1	1	11	В
1	1	0	0	12	С
1	1	1	0	14	Ε

Рис. 1:

Будуємо збільшувальний лічильник з природним порядком рахунку по модулю 31 шляхом виключення стану $a_5a_4a_3a_2a_1=01011$ з таблиці станів лічильника з природним порядком рахунку по модулю 32.

Кількість розрядів: $n = \lceil log_2 31 \rceil = 5$

Обираємо паралельний спосіб переносів і запишемо функції $T_i, i = \overline{1,4}$ для вихідного лічильника:

$$T_1 = 1$$

$$T_2 = Q_1$$

$$T_3 = Q_2 Q_1$$

$$T_4 = Q_3 Q_2 Q_1$$

$$T_5 = Q_4 Q_3 Q_2 Q_1$$

Позначимо стани:

$$A = 01010, \quad f_A = \overline{Q_5}Q_4\overline{Q_3}Q_2\overline{Q_1}$$

$$B = 01011$$

$$C = 01100$$

Тоді за правилами модифікації T_i отримаємо:

$$T_1^* = T_1 \cdot \overline{f_A} = \overline{(\overline{Q_5}Q_4\overline{Q_3}Q_2\overline{Q_1})}$$

$$T_2^* = T_2 \vee f_A = Q_1 \vee \overline{Q_5} Q_4 \overline{Q_3} Q_2 \overline{Q_1}$$

$$T_3^* = T_3 \vee f_A = Q_2 Q_1 \vee \overline{Q_5} Q_4 \overline{Q_3} Q_2 \overline{Q_1}$$

$$T_4^* = T_4 = Q_3 Q_2 Q_1$$

$$T_5^* = T_5 = Q_4 Q_3 Q_2 Q_1$$

Рис. 2:

Будуємо кільцевий лічильник з коефіцієнтом перерахунку $K=4+2a_2+a_1=7$ $n=\lceil log_27 \rceil=3$

Розглядаємо наступні цикли довжини 7:

- $1. \ 000 \ 100 \ 110 \ 011 \ 101 \ 010 \ 001$
- 2. 111 011 001 100 010 101 110

Q_3	Q_2	Q_1	f_1	f_2
0	0	0	1	*
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	*	0

f_1			Q_2Q_1				
		00	01	11	10		
\mathcal{L}_3	0	1	0	1	0		
	1	1	0	*	0		

f_2		Q_2Q_1				
J:	2	00	01	11	10	
Q_3	0	*	1	0	1	
	1	0	1	0	1	

Обираємо f_1 , знайдемо операторне представлення на елементах 2AБO-HI:

$$\begin{split} f_1 &= \overline{Q_2 Q_1} \vee Q_2 Q_1 = \overline{\overline{\overline{Q_2 Q_1}} \vee Q_2 Q_1} = \overline{(Q_2 \vee Q_1) \cdot (\overline{Q_2} \vee \overline{Q_1})} = \overline{Q_2 \overline{Q_1} \vee Q_2 \overline{Q_1}} = \\ &= \overline{(\overline{\overline{Q_2} \overline{Q_1}})} \vee \overline{(\overline{Q_1} \overline{Q_2})} = \overline{(\overline{Q_2} \vee Q_1) \vee (\overline{Q_1} \vee Q_2)} \end{split}$$

Рис. 3: