

4. Übungsblatt

Upload: 09.05.2023.

Deadline: 23.05.2023, 10:00 Uhr (im Abgabeordner bei stud.ip).

Aufgabe 4.1 (1,5+1,5+1,5+1,5)

Untersuchen Sie die folgenden Mengen auf Offenheit, Abgeschlossenheit, Beschränktheit und Kompaktheit.

- (a) $A = (0,4] \subseteq \mathbb{R}$.
- (b) $B = \bigcup_{i \in \mathbb{N}} (i 2^{-i}, i + 2^i) \subseteq \mathbb{R}$.
- (c) $C = \{z \in \mathbb{C} | -2 \le \operatorname{Im}\{z\} \le 2\} \subseteq \mathbb{C}$.
- (d) $D = \{r \cdot e^{i\varphi} \in \mathbb{C} | r \in [2,3], \varphi \in [0,2\pi)\} \subseteq \mathbb{C}.$

Aufgabe 4.2 (1.5 + 1.5 + 3)

Beweisen Sie mit Hilfe von Definition VI.5 und ohne Verwendung von Satz VI.6, dass

- (a) $f:[1,\infty)\to\mathbb{R},\ x\mapsto\frac{1}{x}$, in $[1,\infty)$ stetig ist,
- (b) $g: \mathbb{R} \to \mathbb{R}$, $x \mapsto g(x)$ definiert durch

$$g(x) := \begin{cases} x^2, & x \le 2, \\ x, & x > 2 \end{cases}$$

unstetig ist in $x_0 = 2$.

- (c) Begründen Sie, welche der folgenden Funktionen $f_j: U_j \to \mathbb{R}$ sich stetig auf die reellen Zahlen erweitern lassen für j=1,2,3, d.h. für welche eine in \mathbb{R} stetige Funktion $\tilde{f}_j: \mathbb{R} \to \mathbb{R}$ existiert, sodass $\tilde{f}_j(x) = f_j(x), \forall x \in U_j$, und geben Sie ggf. diese Erweiterung an:
 - (i) $U_1 = \mathbb{R}$, $f_1(x) = x^2 \cdot \sin(4 x)$.
 - (ii) $U_2 = \mathbb{R} \setminus \{-1, 1\}, \ f_2(x) = -x \cdot e^{-\frac{1}{x^2 1}}.$
- (iii) $U_3 = \mathbb{R} \setminus \{-1\}, f_3(x) = \frac{e^x(x^2-1)}{x+1}.$

Aufgabe 4.3 (2 + 2 + 2)

(a) Es sei $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$ gegeben durch

$$f(x) := \begin{cases} 1, & x \le 2, \\ x, & x > 2. \end{cases}$$

Geben Sie einen Punkt $x_0 \in \mathbb{R}$ und Folgen $(a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ so an, dass

$$\left(\lim_{n\to\infty} a_n = x_0 = \lim_{n\to\infty} b_n\right) \wedge \left(\lim_{n\to\infty} f(a_n) \neq \lim_{n\to\infty} f(b_n)\right)$$

gilt.

(b) Nutzen Sie die Folgenstetigkeit, um die Grenzwerte der Folgen $(c_n)_{n=1}^{\infty}, (d_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ zu berechnen:

(i)
$$c_n = \sin(\sqrt[n]{n}\pi)$$
.

(ii)
$$d_n = \cos \left[\exp(\frac{1}{\sqrt[n]{n!}}) \frac{2n^2+1}{n^2+3n} \pi \right].$$

(c) Es seien $g,h:\mathbb{R}\to\mathbb{R}$ zwei stetige Funktionen für die

$$\forall x \in \mathbb{Q} : g(x) = h(x)$$

gilt. Beweisen Sie, dass g und h auf ganz $\mathbb R$ übereinstimmen.

Aufgabe 4.4 (1.5 + 1.5 + 3)

(a) Beweisen Sie, dass $f:(0,\infty)\to\mathbb{R}$, $x\mapsto\frac{1}{x}$, auf $(0,\infty)$ differenzierbar ist und berechnen Sie die Ableitung durch Bildung des Grenzwertes des Differenzenquotienten.

(b) Es sei $g: \mathbb{R} \to \mathbb{R}$, $x \mapsto g(x)$ gegeben durch

$$g(x) := \begin{cases} 0, & x \le 1, \\ x - 1, & x > 1. \end{cases}$$

Geben Sie einen Punkt $x_0 \in \mathbb{R}$ und Nullfolgen $(a_n)_{n=1}^{\infty}, (b_n)_{n=1}^{\infty} \in \mathbb{R}^{\mathbb{N}}$ so an, dass

$$\lim_{n\to\infty}\frac{g(x_0+a_n)-g(x_0)}{a_n}\neq\lim_{n\to\infty}\frac{g(x_0+b_n)-g(x_0)}{b_n}.$$

(c) Berechnen Sie die Ableitungen der Funktionen $f,g,h:\mathbb{R}\to\mathbb{R}$:

(i)
$$f(x) = x^5 \sin(-3x)$$
.

(ii)
$$g(x) = x^{3x+2}$$
.

(iii)
$$h(x) = \frac{x^2\sqrt{x}}{\cos(x^3)+2}$$
.