Anthony Ventresque anthony.ventresque@ucd.ie

Operating Systems
COMP30640

File/Storage Management

School of Computer Science, UCD

Scoil na Ríomheolaíochta, UCD

Disk Storage

Data on a disk is *persistent* which requires special access mechanisms

File Allocation and Management

- Similar to memory management:
 - contiguous allocation (deprecated)
 - external fragmentation
 - internal fragmentation
 - non-contiguous allocation
 - blocks/sectors instead of pages
 - Same algorithms for allocation
- The main difference is the access to addresses:
 - memory: random access time is ~ sequential access time
 - disk: sequential access faster than random access (no need for a **seek** operation)

- data partitioned in stripes (blocks) distributed across the disks
 - no fault tolerance
 - performance of reading and writing better

- "Mirroring"
 - increases performance of reading
 - writing not impacted
 - one failure is possible

- blocks + parity disk which checks the values on all blocks of the same strip (using XOR)
 - reading is distributed
 - writing is a bottleneck as parity disk is always accessed
 - only 1 failure is possible at a time

Parity Checking

parity disk

1 XOR 0 XOR 0 = 1

Parity Checking

parity disk

1 XOR 0 XOR ? = 0

- Same as RAID 4 (blocks) but distributed parity
 - write performance is increased (not always the same parity disk that is accessed when a write)

