

Comenzamos la Unidad 3

Introducción al Análisis y Síntesis de Estructuras Lógicas

Representación física

Circuito eléctrico

Analicemos el uso de un interruptor

El proceso de permitir o no el paso de la corriente eléctrica se denomina conmutación

Interruptor "A" presionado	Lampara está encendida
NO	NO
SI	SI

Interruptor "A" presionado	Lampara está encendida
F	F
V	V

Tabla de Verdad

Interruptor "A" presionado	Lampara está encendida
0	0
1	1

Esta convención se denomina lógica positiva

Proposiciones

Aquello de lo cual puede decirse inequívocamente si es verdadero o falso

Proposiciones Simples

- 1) Roma es la capital de Italia
- 2) Los triángulos equiláteros tienen todos sus lados distintos
- 3) Hoy es Viernes

Proposiciones Compuestas

- 1) Puedo desaprobar la materia por inasistencias o por no aprobar los TPO
- 2) Puedo comunicarme por teléfono o por mail o por redes sociales o por videoconferencia
- 3) 3 es un número par y es un número primo

Proposiciones

Conectivo	Operación lógica	Notación	Significado
~	Negación	~ <i>p</i>	$\mathbf{no} p$, o no es cierto que p
٨	Conjunción	$p \wedge q$	$p \mathbf{y} q$
V	Disyunción	$p \lor q$	p o q (en sentido incluyente)
<u>V</u>	Disyunción exclusiva	$p \vee q$	p ó q (en sentido excluyente)
\Rightarrow	Implicación	$p \Rightarrow q$	si p entonces q , o p implica q
\Leftrightarrow	Doble implicación	$p \Leftrightarrow q$	p si y sólo si q

Puede Rendir => Tiene aprobado los TPO

Es un triangulo equilátero <=> Es un triangulo con los 3 lados iguales

Algebra conmutacional y Compuertas Lógicas

La compuerta lógica es el bloque de construcción básico de los sistemas digitales.

Las compuertas lógicas operan con números binarios; por ello suelen llamarse compuertas lógicas binarias.

Todas las tensiones utilizadas en las compuertas lógicas son ALTA ó BAJA. A los fines de nuestro estudio, una tensión ALTA significa un "1" lógico o binario; mientras que una tensión BAJA significa un "0" lógico o binario.

Operador Lógico: y AND

Α	В	E
0	0	0
0	1	0
1	0	0
1	1	1

Tabla de Verdad

Operador Lógico: O OR

A	В	Е
0	0	0
0	1	1
1	0	1
1	1	1

Compuerta

Operador lógico: NO

NOT

Α	E
0	1
1	0

Compuerta

Complemento

Compuerta NOT sobre otra compuerta

NOT OR = NOR

NOT AND = NAND

NOT sobre una entrada

George Boole

Inglés Matemático (1815–1864)

Revisión de Simbología a utilizar:

existe

para todo

3 ∈ pertenece

/ Tal que

=> Implica

^ y

Letras mayúsculas para conjuntos Letras minúsculas para elementos

Postulados de Huntington

2) Conmutativa

2 a)
$$\forall$$
 (a, b) \in C / a + b = b + a
2 b) \forall (a, b) \in C / a . b = b . a

Postulados de Huntington

3) Asociativa

3 a)
$$\forall$$
 (a, b, c) \in C / (a + b) + c = a + (b + c) 3 b) \forall (a, b, c) \in C / (a . b) . c = a . (b . c)

Postulados de Huntington

4) Distributiva

Suma lógica

Producto lógico

Los postulados son los axiomas del álgebra de Boole, son verdades absolutas.

No requieren demostración.

4) Distributiva NO MATEMATICA

Producto lógico

4 b) ∀ (a, b, c) ∈ C /	(a . b) + c =	(a + c) . (b + c)
------------------------	---------------	-------------------

а	b	С	(a.b)	(a.b) + c	a+c	b+c	(a+c) . (b+c)
0	0	0	0	0	0	0	0
0	0	1	0	1	1	1	1
0	1	0	0	0	0	1	0
0	1	1	0	1	1	1	1
1	0	0	0	0	1	0	0
1	0	1	0	1	1	1	1
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1

Dos expresiones son equivalentes cuando tienen la misma tabla de verdad

Los postulados son los axiomas del álgebra de Boole, son verdades absolutas.

No requieren demostración.

Postulados de Huntington

Tabla de Verdad

Comparación entre las Algebras

Álgebra de Boole (binaria)	Teoría de Conjuntos	Cálculo Proposicional	Conmutación (positiva)	Circuitos Lógicos
Trabaja con Elementos	Trabaja con Conjuntos	Trabaja con Proposiciones	Trabaja con Acción, señal	Trabaja con Variables
Suma lógica (+)	Unión (U)	Disyunción (v), "o"	Circuito paralelo	OR
Producto lógico (·)	Intersección (∩)	Conjunción (^), "y"	Circuito serie	AND
Elemento opuesto	Complemento	Negación (No)	Inversor	NOT —
Neutro de la suma	Conjunto Vacío (Ø)	Falsedad (F)	No a la acción	0
Neutro del producto	Conj. Universal ($oldsymbol{u}$)	Certeza (V)	Sí a la acción	1

Teoremas

1) Dualidad

Partiendo de una expresión válida si se cambian:

la expresión seguirá siendo válida

- 1) Definición del Algebra ... (a+b) ∋ C ... (a.b) ∋ C
- 2) Conmutativa a+b=b+a a.b=b.a
- 3) Asociativa a+(b+c)=(a+b)+c a.(b.c)=(a.b).c
- 4) Distributiva a.(b+c)=a.b + a.c a+(b.c)=(a+b). (a+c)
- 5) Elemento Neutro $a+N_{1} = a \rightarrow 0$ $a.N_{2} = a \rightarrow 1$
- 6) Elemento Opuesto $a + \overline{a} = N_{2} \longrightarrow 1$ $a \cdot \overline{a} = N_{1} \longrightarrow 0$

2) Teorema 2 (Unidad)

a + 1 = 1

P6 -> Elemento Opuesto

a +
$$\overline{a}$$

P5 -> Elemento Neutro

a + \overline{a} . 1

P4 -> Distributiva

(a + a). (a + 1)

P6 -> Elemento Opuesto

1. (a + 1)

P5 -> Elemento Neutro

(a + 1)

- 1) Definición del Algebra ... (a+b) ∋ C ... (a.b) ∋ C
- 2) Conmutativa a+b=b+a a.b=b.a
- 3) Asociativa a+(b+c)=(a+b)+c a.(b.c)=(a.b).c
- 4) Distributiva a.(b+c)=a.b + a.c a+(b.c)=(a+b). (a+c)
- 5) Elemento Neutro $a+N_{1} = a \rightarrow 0$ $a.N_{2} = a \rightarrow 1$
- 6) Elemento Opuesto $a + \overline{a} = N_{\overline{2}} \longrightarrow 1$ a . $\overline{a} = N_{\overline{1}} \longrightarrow 0$

3) Unicidad

- 1) Definición del Algebra ... (a+b) ∋ C ... (a.b) ∋ C
- 2) Conmutativa a+b=b+a a.b=b.a
- 3) Asociativa a+(b+c)=(a+b)+c a.(b.c)=(a.b).c
- 4) Distributiva a.(b+c)=a.b + a.c a+(b.c)=(a+b). (a+c)
- 5) Elemento Neutro $a+N_{1} = a \rightarrow 0$ $a.N_{2} = a \rightarrow 1$
- 6) Elemento Opuesto $a + \overline{a} = N_{2} \longrightarrow 1$ $a \cdot \overline{a} = N_{1} \longrightarrow 0$

4) Absorción

$$1 + b = 1$$
 Teorema 2

a + 1 = 1

P6 -> Elemento Opuesto

a +
$$\overline{a}$$

P5 -> Elemento Neutro

a + \overline{a} . 1

P4 -> Distributiva

(a + a). (a + 1)

P6 -> Elemento Opuesto

1. (a + 1)

P5 -> Elemento Neutro
(a + 1)

- 1) Definición del Algebra ... (a+b) ∋ C ... (a.b) ∋ C
- 2) Conmutativa a+b=b+a a.b=b.a
- 3) Asociativa a+(b+c)=(a+b)+c a.(b.c)=(a.b).c
- 4) Distributiva a.(b+c)=a.b + a.c a+(b.c)=(a+b). (a+c)
- 5) Elemento Neutro $a+N_{1} = a \rightarrow 0$ $a.N_{2} = a \rightarrow 1$
- 6) Elemento Opuesto $a + \overline{a} = N_{\overline{2}} \longrightarrow 1$ a . $\overline{a} = N_{\overline{1}} \longrightarrow 0$

5) Doble Negación

6) De Morgan

$$\overline{a+b} = \overline{a} \times \overline{b}$$

$$\frac{}{a \times b} = \frac{}{a + b}$$

Sólo los vamos a enunciar. Pueden ver la demostración en la guía teórica

1) Definición del Algebra ... (a+b) ∋ C ... (a.b) ∋ C

- 2) Conmutativa a+b=b+a a.b=b.a
- 3) Asociativa a+(b+c)=(a+b)+c a.(b.c)=(a.b).c
- 4) Distributiva a.(b+c)=a.b + a.c a+(b.c)=(a+b). (a+c)
- 5) Elemento Neutro $a+N_1=a$ 0 $a.N_2=a$ 1
- 6) Elemento Opuesto $a + \overline{a} = N_{2} \longrightarrow 1$ $a \cdot \overline{a} = N_{1} \longrightarrow 0$

REPASO DE POSTULADOS

- Definición del Algebra
 ... (a+b) ∋ C
 ... (a.b) ∋ C
- 2) Conmutativa a+b=b+a a.b=b.a
- 3) Asociativa a+(b+c)=(a+b)+c a.(b.c)=(a.b).c
- 4) Distributiva a.(b+c)=a.b + a.c a+(b.c)=(a+b). (a+c)
- 5) Elemento Neutro $a+N_1=a$ 0 $a.N_2=a$ 1
- 6) Elemento Opuesto $a + \overline{a} = N_{2}$ 1 $a \cdot \overline{a} = N_{1}$ 0

Resumen

REPASO DE TEOREMAS

- 1) Dualidad $+ \rightarrow x \quad x \rightarrow + \quad 0 \rightarrow 1 \quad 1 \rightarrow 0$
- 2) Teorema 2 a + 1 = 1
- 3) Unicidad a + a = a
- 4) Absorción a + a.b = a
- 5) Doble Negación

 =
 a = a
- 6) De Morgan

$$\frac{a+b}{a \times b} = \frac{a \times b}{a \times b}$$

Ejercicio para Pensar – Vista de un circuito

(a) Diagrama de patillas de un CI 7432

(b) Diagrama de patillas de un CI 7404

Fundamentos de TICs (1030)
Trabajo Práctico Nº 3: Introducción a las Estructuras Lógicas

TRABAJO PRÁCTICO Nº 3

CIRCUITOS LÓGICOS

1.- Indicar cuáles son las expresiones duales de las siguientes expresiones algebraicas:

- a) $\mathbf{a} + \mathbf{a} = \mathbf{a}$ b) $\overline{\mathbf{a}} + \overline{\mathbf{b}} = \overline{\mathbf{a} \cdot \mathbf{b}}$ c) $\mathbf{a} \cdot \mathbf{a} = \mathbf{a}$ d) $\mathbf{a} \cdot \mathbf{0} = \mathbf{0}$
- 2.- Indicar el equivalente a la disyunción en el Álgebra de Boole y en Circuitos Lógicos:
- a) Señales y Compuertas

b) Suma Lógica e Intersección

c) Unión y Compuerta AND

- d) Variables e Hipótesis
- e) Suma Lógica y Compuerta OR
- f) Producto Lógico y Circuito Paralelo
- 3.- Indicar el equivalente a la conjunción en el Álgebra de Boole y en Commutación (positiva): Aclaración: el término "Commutación (positiva)" se refiere a la representación desde el enfoque de circuitos eléctricos con interruptores y lámparas.
- a) Suma Lógica y Compuerta OR
- b) Intersección y Compuerta AND
- c) Elementos y Proposiciones
- d) Producto Lógico y Circuito Serie
- e) Suma Lógica y Compuerta NOT
- f) Producto Lógico y Circuito Paralelo
- 4.- Postulados y Teoremas: para cada una de las siguientes expresiones, escribir cuál es un Postulado y su nombre; y cuál es un Teorema y su nombre.

Expresión	Postulado, Teorema y su nombre	Expresión	Postulado, Teorema y su nombre
$l) \mathbf{a} + \mathbf{a} = \mathbf{a}$		7) a . 1 = a	
$2) \mathbf{a} + \mathbf{a} \cdot \mathbf{b} = \mathbf{a}$		8) $(a.b) + c = (a + c).(b + c)$	
$3) \mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$		9) $a + \overline{a} = 1$	
4) $a + 0 = a$		$10) \ \overline{\mathbf{a}} \cdot \overline{\mathbf{b}} = \overline{\mathbf{a} + \mathbf{b}}$	
5) $a + (b + c) = (a + b) + c$		11) $(a + b) \cdot c = a \cdot c + b \cdot c$	
6) a . a = a		12) a + 1 = 1 y a . 0 = 0	

5.- Dada la siguiente simplificación realizada por medio de los Postulados de Huntington, indicar la opción que muestre los postulados utilizados en la simplificación:

$$F = d \bar{a} + b \bar{a} + a d + a b + c$$

$$F = (d \bar{a} + b \bar{a}) + (a d + a b) + c$$

$$F = (d + b) \cdot \bar{a} + (d + b) \cdot a + c$$

$$F = (d + b) \cdot (\bar{a} + a) + c$$

$$F = d + b + c$$

- a) Distributividad, elemento opuesto del producto, elemento neutro del producto.
- b) Conmutatividad del producto y de la suma, elemento opuesto (de la suma y del producto).

Trabajo Práctico Nº 3

MAS EL 23 Y 24

Fundamentos de TICs (1030) Trabajo Práctico Nº 3: Introducción a las Estructuras Lógicas

- c) Asociatividad, conmutatividad del producto, elemento opuesto de la suma, elemento neutro del producto.
- d) Asociatividad. Recíproca de la distributividad (dos veces), elemento opuesto de la suma, elemento neutro del producto.
- e) Asociatividad, distributividad, conmutatividad del producto y de la suma, elemento opuesto del producto, elemento neutro del producto.
- 6.- El resultado de simplificar la siguiente expresión aplicando los postulados de Huntington, es:

$$f_{(c,b,a)} = \overline{a} \cdot c + a \cdot b \cdot \overline{c} + a \cdot b \cdot c + a \cdot c$$

a)
$$f = c \cdot b + a$$
 b) $f = a + b + c$ c) $f = c + a \cdot b$ d) $f = c + a$ e) $f = b + a \cdot c$

7.- El resultado de simplificar la siguiente expresión aplicando los postulados de Huntington, es:

$$f_{(c,b,a)} = \overline{a} \cdot b \cdot (a + \overline{a}) + c \cdot b + c \cdot \overline{b} + \overline{b} \cdot b$$

a)
$$f = c \cdot b + a$$

b) $f = \overline{a} \cdot b + c$
c) $f = c + a \cdot b$
e) $f = b + a \cdot \overline{c}$

8.- Escribir la expresión booleana correspondiente a la función dada en la siguiente tabla de verdad en sus dos formas canónicas (minitérminos y maxitérminos). Luego, seleccionar la respuesta correcta para cada caso, entre las opciones propuestas.

c	b	a	f	Minitérminos	Maxitérminos
0	0	0	1		
0	0	1	0	a.) Ninguna es correcta	a.) $f = (c+b+a) \cdot (c+b+a) \cdot (c+b+a) \cdot (c+b+a)$
0	1	0	0	b.) f= $(c.b.a) + (c.b.a) + (c.b.a) + (c.b.a)$	b.) f= (c+b+a).(c+b+a).(c+b+a)
0	1	1	0	(c.) f= $(c.b.a)$ + $(c.b.a)$ + $(c.b.a)$ + $(c.b.a)$	
1	0	0	1	c.) - () · ()	c.) $f = (c + b + a) \cdot (c + b + a) \cdot (c + b + a) \cdot (c + b + a)$
1	0	1	1	d.) $f = (c.b.a) + (c.b.a) + (c.b.a) + (c.b.a)$	d.) $f = (c + b + a) \cdot (c + b + a) \cdot (c + b + a) \cdot (c + b + a)$
1	1	0	1		
1	1	1	0	e.) $f = (c.b.a) + (c.b.a) + (c.b.a) + (c.b.a)$	e.) Ninguna es verdadera

- 9.- Simplificar la siguiente expresión: $f_{(c,b,a)} = (a + b) \cdot (c + a \cdot b)$
- · Aplicando los postulados de Huntington.
- Aplicando el método de Karnaugh.
- Expresarla en forma de minitérminos y en forma de maxitérminos.

Seleccionar, luego, la opción correcta entre las siguientes propuestas.

a)
$$f_{(c,b,a)} = \overline{\mathbf{b}} \cdot \overline{\mathbf{a}} + \mathbf{c} \cdot \overline{\mathbf{b}} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \mathbf{b}$$
 $\Sigma_3 (3, 4, 5, 7)$ $\Pi_3 (1, 2, 3, 7)$
b) $f_{(c,b,a)} = \mathbf{c} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{a} + \mathbf{c} \cdot \mathbf{b}$ $\Sigma_3 (3, 5, 6, 7)$ $\Pi_4 (3, 5, 6, 7)$
c) $f_{(c,b,a)} = \mathbf{b} \cdot \mathbf{a} + \mathbf{c} \cdot \overline{\mathbf{b}} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \mathbf{b}$ $\Sigma_3 (2, 3, 4, 5)$ $\Pi_4 (1, 2, 3, 6)$
d) $f_{(c,b,a)} = \mathbf{b} \cdot \mathbf{a} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \overline{\mathbf{b}} + \mathbf{a} \cdot \overline{\mathbf{c}} \cdot \mathbf{b}$ $\Sigma_3 (0, 3, 5, 7)$ $\Pi_4 (1, 2, 3, 6)$

Trabajo Práctico Nº 3

3/29

Finalizamos por Teams...

Seguimos por MIeL ...