AMENDMENTS TO THE CLAIMS JC17 Rec'd PCT/PTO 20 SEP 2005

Please amend the claims as follows:

1. (Original) A compound of the Formula (I):

$$\begin{array}{c|c} A & & D \\ \hline & N & & NH_2 \\ \hline & & & \end{array}$$

or a salt, solvate, or physiologically functional derivative thereof wherein:

A is aryl, heteroaryl, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, -CN, halo, -COOH, -C(O)NR⁴R⁵, -NRR', -N(R')S(O)₂R, -N(R')C(O)R, or -N(R')C(O)NR⁴R⁵;

R is –H, C₁-C₆ alkyl, aryl, or heteroaryl;

R' is -H or C₁-C₃ alkyl;

Atty. Docket No.:PR60143USw

 R^2 is -H, halo, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, aryl, heteroaryl, $-S(O)_2NR^4R^5$, -COOH, $-C(O)OR^6$, $-C(O)NR^4R^5$, NRR', -N(H)C(O)NRR', -N(H)C(O)R, or $-N(H)S(O)_2R$; q is 1, 2, 3, or 4;

R³ is –H, C₁-C₃ alkyl, aryl, aralkyl, or heteroaryl;

R⁴ is -H or C₁-C₃ alkyl;

R⁵ is -H or C₁.C₃ alkyl; or

R⁴ and R⁵ together with the nitrogen to which they are attached form a heterocyclyl ring, said ring optionally containing 1 or 2 additional oxygen, S(O)_m, or nitrogen atoms; said nitrogen atoms being optionally substituted by a C₁-C₃ alkyl group; m is 0, 1, or 2; and

R⁶ is C₁₋C₆ alkyl.

2.(New) The compound of claim 1 wherein:

A is aryl optionally substituted with at least one R^1 group, heteroaryl optionally substituted with at least one R^1 group, C_1 - C_6 alkenyl, C_1 - C_6 alkynyl, -CN, halo, -COOH, -C(O)NR⁴R⁵, -NRR', -N(R')S(O)₂R, -N(R')C(O)R, or -N(R')C(O)NR⁴R⁵;

R is –H, C₁-C₆ alkyl, aryl, or heteroaryl;

R' is -H or C_1-C_3 alkyl;

R¹ is C₁-C₆ alkyl, aryl, C₁-C₆ alkoxy, aryloxy, halo, -COOH, -CN, -S(O)₂NR⁴R⁵, -S(O)₂R, -C(O)NR⁴R⁵, -NRR', -N(H)C(O)NR⁴R⁵, -O(CH₂)_nCOOH, -(CH₂)_nCOOH, -COOH, -(CH₂)_nCOOH, -COOH, -CO

n is 1, 2, 3, or 4;

D is selected from the group consisting of:

$$R^3$$
 $(R^2)_q$
 R^3
 $(R^2)_q$
 $(R^2)_q$

 R^2 is -H, halo, C_1-C_6 alkyl, C_1-C_6 alkoxy, heteroaryl, $-S(O)_2NR^4R^5$, -COOH, $-C(O)OR^6$, or $-C(O)NR^4R^5$, NRR', -N(H)C(O)NRR', -N(H)C(O)R, or $-N(H)S(O)_2R$;

q is 1, 2, 3, or 4;

R³ is -H, C₁-C₃ alkyl, aryl, aralkyl, or heteroaryl;

R⁴ is –H or C₁-C₃ alkyl;

R⁵ is –H or C₁₋C₃ alkyl; or

R⁴ and R⁵ together with the nitrogen to which they are attached form a heterocyclyl ring, said ring optionally containing 1 or 2 additional oxygen, S(O)_m, or nitrogen atoms; said nitrogen atoms being optionally substituted by a C₁-C₃ alkyl group;

m is 0, 1, or 2; and

R⁶ is C₁₋C₆ alkyl.

3. (New) The compound of claim 1 wherein:

A is aryl optionally substituted with at least one R¹ group or heteroaryl optionally substituted with at least one R¹ group;

R is -H, C_1 - C_6 alkyl, aryl, or heteroaryl;

R' is -H or C_1-C_3 alkyl;

 $R^{1} \text{ is } C_{1}\text{-}C_{6} \text{ alkyl, aryl, } C_{1}\text{-}C_{6} \text{ alkoxy, aryloxy, halo, -COOH, -CN, -S(O)}_{2}NR^{4}R^{5}, \text{-S(O)}_{2}R, \\ -C(O)NR^{4}R^{5}, \text{-NRR', -N(H)C(O)NR}^{4}R^{5}, \text{-O(CH}_{2})_{n}COOH, \text{-(CH}_{2})_{n}COOH, -COOH, -COOH, -COOOH, -COOH, -C$

D is selected from the group consisting of:

$$R^3$$
 R^3
 R^3

 R^2 is -H, halo, C_1-C_6 alkyl, C_1-C_6 alkoxy, heteroaryl, $-S(O)_2NR^4R^5$, -COOH, $-C(O)OR^6$, or $-C(O)NR^4R^5$, NRR', -N(H)C(O)NRR', -N(H)C(O)R, or $-N(H)S(O)_2R$;

q is 1, 2, 3, or 4;

R³ is −H, C₁-C₃ alkyl, aryl, aralkyl, or heteroaryl;

R⁴ is –H or C₁-C₃ alkyl;

R⁵ is –H or C₁₋C₃ alkyl; or

 R^4 and R^5 together with the nitrogen to which they are attached form a heterocyclyl ring, said ring optionally containing 1 or 2 additional oxygen, $S(O)_m$, or nitrogen atoms; said nitrogen atoms being optionally substituted by a C_1 - C_3 alkyl group;

m is 0, 1, or 2; and

 R^6 is $C_1 \cdot C_6$ alkyl.

4. (New) The compound of claim 1 wherein:

A is C₁-C₆ alkenyl or C₁-C₆ alkynyl;

R is –H, C₁-C₆ alkyl, aryl, or heteroaryl;

R' is -H or C_1-C_3 alkyl;

Atty. Docket No.:PR60143USW

 R^2 is -H, halo, C_1-C_6 alkyl, C_1-C_6 alkoxy, heteroaryl, $-S(O)_2NR^4R^5$, -COOH, $-C(O)OR^6$, or $-C(O)NR^4R^5$, NRR', -N(H)C(O)NRR', -N(H)C(O)R, or $-N(H)S(O)_2R$;

q is 1, 2, 3, or 4;

R³ is –H, C₁-C₃ alkyl, aryl, aralkyl, or heteroaryl;

R⁴ is –H or C₁-C₃ alkyl;

R⁵ is -H or C₁.C₃ alkyl; or

 R^4 and R^5 together with the nitrogen to which they are attached form a heterocyclyl ring, said ring optionally containing 1 or 2 additional oxygen, $S(O)_m$, or nitrogen atoms; said nitrogen atoms being optionally substituted by a C_1 - C_3 alkyl group;

m is 0, 1, or 2; and

R⁶ is C₁₋C₆ alkyl.

5. (New) The compound of claim 1 wherein:

A is -CN, -COOH, or -C(O)NR⁴R⁵;

R is -H, C₁-C₆ alkyl, aryl, or heteroaryl;

R' is -H or C_1-C_3 alkyl;

Atty. Docket No.:PR60143USW

 R^2 is –H, halo, C_1 - C_6 alkyl, -COOH, C_1 - C_6 alkoxy, heteroaryl, -S(O)₂NR⁴R⁵, -C(O)OR⁶, or -C(O)NR⁴R⁵, NRR', -N(H)C(O)NRR', -N(H)C(O)R, or -N(H)S(O)₂R;

q is 1, 2, 3, or 4;

R³ is -H, C₁-C₃ alkyl, aryl, aralkyl, or heteroaryl;

R⁴ is –H or C₁-C₃ alkyl;

R⁵ is -H or C₁-C₃ alkyl; or

 R^4 and R^5 together with the nitrogen to which they are attached form a heterocyclyl ring, said ring optionally containing 1 or 2 additional oxygen, $S(O)_m$, or nitrogen atoms; said nitrogen atoms being optionally substituted by a C_1 - C_3 alkyl group;

m is 0, 1, or 2; and

 R^6 is $C_1 ext{-} C_6$ alkyl.

6. (New) The compound of claim 1 wherein:

A is -NRR', $-N(R')S(O)_2R$, -N(R')C(O)R, or $-N(R')C(O)NR^4R^5$;

R is -H, C₁-C₆ alkyl, aryl, or heteroaryl;

R' is -H or C₁-C₃ alkyl;

Atty. Docket No.:PR60143USW

$$R^3$$
 $(R^2)_q$
 $(R^2)_q$

 $R^2 \text{ is } -H, \text{ halo, } C_1 - C_6 \text{ alkyl, } C_1 - C_6 \text{ alkoxy, heteroaryl, } -S(O)_2 NR^4 R^5, -COOH, -C(O)OR^6, \\ \text{or } -C(O)NR^4 R^5, \text{ NRR', } -N(H)C(O)NRR', -N(H)C(O)R, \text{ or } -N(H)S(O)_2 R; \\ \\$

q is 1, 2, 3, or 4;

R³ is –H, C₁-C₃ alkyl, aryl, aralkyl, or heteroaryl;

R4 is -H or C1-C3 alkyl;

R⁵ is -H or C₁-C₃ alkyl; or

R⁴ and R⁵ together with the nitrogen to which they are attached form a heterocyclyl ring, said ring optionally containing 1 or 2 additional oxygen, S(O)_m, or nitrogen atoms; said nitrogen atoms being optionally substituted by a C₁-C₃ alkyl group;

m is 0, 1, or 2; and

R⁶ is C₁.C₆ alkyl.

7. (New) A pharmaceutical composition comprising a therapeutically effective amount of a compound of claim 1 and one or more of pharmaceutically acceptable carriers, diluents and excipients.

Atty. Docket No.:PR60143USw

8. (New) The compound of claim 1, wherein D is selected from the group consisting of:

$$\mathbb{R}^{3} \setminus \mathbb{R}^{2} \setminus \mathbb{R}^{2}$$

9. (New) The compound of claim 8, wherein D is:

$$\mathbb{R}^{3} \setminus \mathbb{N} \longrightarrow \mathbb{N}^{(\mathbb{R}^{2})_{q}}$$

10. (New) The compound of claim 8, wherein D is:

11. (New) The compound of claim 1, wherein D is selected from the group consisting of:

$$\mathbb{R}^{3}$$

12. (New) The compound of claim 11, wherein D is:

$$\mathbb{R}^{3} \setminus \mathbb{N} \setminus \mathbb{R}^{2})_{q}$$

13. (New) The compound of claim 11, wherein D is:

$$\mathbb{R}^{3}$$

$$\mathbb{N}$$

$$\mathbb{N}$$

$$\mathbb{N}$$

$$\mathbb{N}$$

$$\mathbb{N}$$

$$\mathbb{N}$$

- 14. (New) The compound of claim 1, wherein said compound is selected from the group consisting of:
- 3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-amine;
- 5-bromo-3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-amine;
- 3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-5-phenylpyrazin-2-amine;
- 3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-5-(3,4,5-trimethoxyphenyl)pyrazin-2-amine;
- 3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-5-(4-fluorophenyl)pyrazin-2-amine;
- 3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-5-thien-2-ylpyrazin-2-amine;
- 5-(4-aminophenyl)-3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-amine;
- 3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-5-pyridin-3-ylpyrazin-2-amine;
- 3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-5-(1H-indol-5-yl)pyrazin-2-amine;
- 3-[1-(2-methoxyethyl)-1H-benzimidazol-2-yl]-5-thien-2-ylpyrazin-2-amine;
- 3-(1H-benzimidazol-2-yl)-5-(3-fluorophenyl)pyrazin-2-amine;
- 3-(1H-benzimidazol-2-yl)-5-(4-fluorophenyl)pyrazin-2-amine;

- 4-[5-amino-6-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-yl]-N,N-dimethylbenzenesulfonamide;
- 3-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)-5-[3-(methylsulfonyl)phenyl]pyrazin-2-amine;
- 3-{4-[5-amino-6-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-yl]phenyl}propanoic acid;
- {4-[5-amino-6-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-yl]phenoxy}acetic acid;
- {3-[5-amino-6-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-yl]phenoxy}acetic acid;
- N-{4-[5-amino-6-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-yl]phenyl}methanesulfonamide;
- benzyl 4-[5-amino-6-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-yl]benzoate;
- 5-[4-(benzyloxy)phenyl]-3-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-amine;
- 5-[1,1'-biphenyl-3-yl)-3-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-amine;
- 4-[5-amino-6-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-ylbenzoic acid; tert-butyl 3-[5-amino-6-(1-ethyl-1-H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-yl]benzylcabamate;
- 3 (1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-5-(1H-pyrrol-2-yl)pyrazin-2-amine;
- 3 (1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)-5-(1H-indol-2-yl)pyrazin-2-amine; and
- 5-[(4-aminophenyl)ethynyl]-3-(1-ethyl-1H-imidazo[4,5-c]pyridin-2-yl)pyrazin-2-amine;
- or a salt, solvate, or physiologically functional derivative thereof.
- 15. (New) A method of treating a disorder in a mammal, said disorder being mediated by inappropriate ROCK-1 activity, comprising administering to said mammal a therapeutically effective amount of a compound of claim 1.