Video

Operación sobre múltiples imágenes

Imágenes en movimiento

El cerebro humano percibe movimiento de 2 formas:

- El encendido y apagado de luces o puntos de forma secuencial
- La transición rápida entre imágenes

Transición rápida entre imágenes

Los videos son transiciones de imágenes hechas a la velocidad requerida para que el ojo humano perciba el movimiento, si no se cumple esta velocidad el cerebro comienza a ver cada imagen y no un video

http://www.mediacollege.com/video/frame-rate/

Transición rápida entre imágenes

Cada una de las imágenes que compone un video es conocido como fotograma o frame y la velocidad de transición de cada fotograma es conocida como fotogramas por segundo o FPS

https://www.geeksaresexy.net/wp-content/uploads /2015/06/fpsdemo1.gif

Captura de la cámara

Para acceder a la cámara en OpenCv debe hacerse uso de un ciclo infinito que se actualice cada a una velocidad específica.

```
10 #Se crea un objeto tipo captura y se especifica el dispositivo
11 captura = cv2.VideoCapture(0)
12 entrada = cv2.imread("Fondo.jpg")
13
14 #Se crea un ciclo infinito
15 while(True):
      #Se captura el fotograma actual
16
      disponible, fotograma = captura.read()
17
18
      if (disponible == True):
19
           cv2.imshow('Captura', fotograma)
20
           salida = cv2.addWeighted(entrada,0.35,fotograma,0.65,0)
22
           cv2.imshow('Resultado',salida)
23
24
      else:
25
           print("Cámara no disponible")
26
27
      if cv2.waitKey(1) & 0xFF == ord('q'):
28
           break
30 # Cuando finaliza libera la cámara y destruye las ventanas
31 captura.release()
32 cv2.destroyAllWindows()
```

Video

Operación matemáticas entre imágenes

Resta

La resta es una operación usada entre imágenes para encontrar diferencias.

Se recomienda usar la resta del valor absoluto ya que permite encontrar las diferencias entre ambas imágenes y no sólo de una respecto a la otra. Revisar: absdiff

C=B-A

Resta

La resta de un fotograma con el fotograma anterior permite la detección del movimiento

Suma y división (promedio)

La suma y división (promedio) permite reducir el ruido y eliminar parcialmente la lluvia de las imágenes

Multiplicación

Usada para el trabajo con máscaras (trabajo futuro)

Desafíos

Implementación de operaciones

Desafíos

- 1. Utilizar la cámara (o video) para segmentar el color azul o verde.
- Capturar video e Implementar la resta de un fotograma con el fotograma anterior (tiempo real)}
- 3. Calcular el promedio de n fotogramas
- 4. Restar la imagen capturada con el promedio

Para el promedio pueden cargarse n imágenes usando un arreglo de imágenes y un ciclo FOR

```
entradas = []
total = 5
for i in range(0,total):
    entradas.append(cv2.imread("Lena" + str(i) + ".jpg"))
```

```
import cv2
 9 def nothing(x):
10
       pass
12 #Se crea la ventana donde estarán los sliders
13 cv2.namedWindow('Resultado')
14
15 #Se crea el slider. Nombre, ventana, rango
16 cv2.createTrackbar('Valor X', 'Resultado', 0, 255, nothing)
18 #Se obtiene la posición del slider deseado
19 x = cv2.getTrackbarPos('Valor X', 'Resultado')
```

Para el promedio puede crearse una imagen vacía (salida) y se calcula el promedio como:

salida = salida + (1/n)*imagen;

Esta operación se realiza con cada imagen

Pseudo código de detección de movimiento:

fotograma2 = fotograma1

fotograma1 = Captura cámara

salida = absdiff(fotograma2,fotograma1)

Referencias

Usar siempre la referencia de 3.0 con el buscador de la página

http://docs.opencv.org/3.0-beta/modules/refman.html

En algunos casos puede usarse la documentación de 2.4

http://docs.opencv.org/2.4/modules/core/doc/operations on arrays.html