PREDICT CATEGORY

Based Models

Dr. Chelsea Parlett-Pelleriti

Decision Trees

Twenty Questions

Simple Tree

More Complicated Tree

Data Types

Gini Impurity and Entropy

$$GI = 1 - \sum_{i=1}^{n} (p_i)^2$$
 $E = -\sum_{i=1}^{n} p_i * log(p_i)$

Gini Impurity and Entropy

 $\mathrm{GI} = 1 - \sum_{i=1}^n (p_i)^2$ $\mathrm{E} = -\sum_{i=1}^n p_i * log(p_i)$ Figure from the Elements of Statistical Learning (Hastie et al.)

Categorical

cats	pet	wfh	children	income
1	0	1	1	34
0	1	0	1	58.3
1	1	1	0	71.5
0	0	0	1	74.9
0	0	0	1	75.3
1	0	0	1	75.6
0	0	0	1	81
1	1	1	0	82.3
1	1	1	0	85.6

95.4

Categorical

cats	pet	wfh	children	income
1	0	1	1	34
0	1	0	1	58.3
1	1	1	0	71.5
0	0	0	1	74.9
0	0	0	1	75.3
1	0	0	1	75.6
0	0	0	1	81
1	1	1	0	82.3
1	1	1	0	85.6

95.4

Continuous

cats	pet	wfh	children	income
1	0	1	1	34
0	1	0	1	58.3
1	1	1	0	71.5
0	0	0	1	74.9
0	0	0	1	75.3
1	0	0	1	75.6
0	0	0	1	81
1	1	1	0	82.3
1	1	1	0	85.6
1	1	1	1	95.4

Continuous

cats	pet	wfh	children	income
1	0	1	1	34
0	1	0	1	58.3
1	1	1	0	71.5
0	0	0	1	74.9
0	0	0	1	75.3
1	0	0	1	75.6
0	0	0	1	81
1	1	1	0	82.3
1	1	1	0	85.6
1	1	1	1	95.4

Basic Steps

- 1. Calculate Gini Impurity (or Entropy/Information Gain) for each node
- 2. Choose Node with lowest score
- 3. If the parent node has the lowest score, it is a leaf.

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

- 1. How much does this feature reduce node impurity?
- 2. If we shuffle the values of this feature, how much does it reduce the performance?

Regression Trees

Regression Trees

Regression Trees

Instead of checking if splits decrease Gini Impurity, we check if they decrease MSE

ONE

VS. MANY

- Bootstrap Aggregating (Bagging)
- Random Feature Selection

234

BOOTSTRAPPING DATA SELECTROWS WY REPLACEMENT BOOTSTRAPPED SAMPLE

@CHELSE A PARLETT

- Bootstrap Aggregating (Bagging)
- Random Feature Selection

Important Hyperparameters

- # of trees
- # of features per tree

Gradient Boosting Trees

	Age	Initial Guess	Residual
Person 1	20		
Person 2	19		
Person 3	21		
Person 4	20		

	Age	Initial Guess	Residual
Person 1	20	20	
Person 2	19	20	
Person 3	21	20	
Person 4	20	20	

	Age	Initial Guess	Residual
Person 1	20	20	0
Person 2	19	20	-1
Person 3	21	20	1
Person 4	20	20	0

Actual Value = Prediction + Residual

	Age	Initial Guess	Residual
Person 1	20	20	0
Person 2	19	20	-1
Person 3	21	20	1
Person 4	20	20	0

Corrects errors made by

$$z_i = -\frac{\partial L(y, F_i)}{\partial F_i}$$

Let's generalize that math!
Having future trees predict
the error works for a
regression tree using (y-p)²
as it's loss.

$$z_i = -\frac{\partial L(y, F_i)}{\partial F_i}$$

But in all cases, subsequent trees will predict the **negative gradient** (**z**_i) of the Loss with respect to the Ensemble prediction

$$z_i = -\frac{\partial L(y, F_i)}{\partial F_i}$$

But in all cases, subsequent trees will predict the negative gradient (z_i) of the Loss with respect to the Ensemble prediction

$$F_i = \sum_{t=0}^i z_t \qquad F_2 = \boxed{z_0 + z_1 + z_2}$$

$$z_i = -\frac{\partial L(y, F_i)}{\partial F_i}$$

But in all cases, subsequent trees will predict the **negative gradient** (**z**_i) of the Loss with respect to the Ensemble prediction

$$F_i = \sum_{t=0}^{i} z_t$$
 $F_1 = z_0 + z_1$ $F_i = F_{i-1} + z_i$ $F_i = F_{i-1} + z_i$

$$z_i = \frac{\partial L(y, F_i)}{\partial F_i}$$

Negative Gradient of Loss w.r.t. Ensemble Prediction

$$z_i = \frac{\partial L(y, F_i)}{\partial F_i}$$

Negative Gradient of Loss w.r.t. Ensemble Prediction

The Negative Gradient tell us what adjustments we should make to our prediction (F_i) in order to decrease our loss.

$$z_i = -\frac{\partial L(y, F_i)}{\partial F_i}$$

Negative Gradient of Loss w.r.t Ensemble Prediction

The Negative Gradient tell us what adjustments we should make to our prediction (F_i) in order to decrease our loss.

$$L(y,p) = (y-p)^2$$

$$-\frac{\partial L(y,p)}{\partial p} = 2(y-p)$$

Let's choose Squared Error as our Loss

Negative Gradient

$$z_i = -\frac{\partial L(y, F_i)}{\partial F_i}$$

Negative Gradient of Loss w.r.t. Ensemble Prediction

The Negative Gradient tell us what adjustments we should make to our prediction (**F**_i) in order to decrease our loss.

$$L(y,p) = (y-p)^2$$

$$-\frac{\partial L(y,p)}{\partial p} = 2(y-p)$$

Let's choose Squared Error as our Loss

Just the Error!

$$z_i = -\frac{\partial L(y, F_i)}{\partial F_i}$$

With squared loss, **error** *is* **the negative gradient**, but the negative gradient will work in other situations