Лабораторна робота №5 Моделювання процесу функціонування системи за принципом Δt

Мета роботи — ознайомитися з методами імітаційного моделювання та принципами побудови моделі процесу функціонування системи; побудувати імітаційну модель процесу функціонування системи в часі за принципом Δt .

Короткі теоретичні відомості

Основні методи імітаційного моделювання.

Аналітичний метод застосовується для імітації процесів в основному для малих і простих систем, де відсутній фактор випадковості. Наприклад, коли процес їх функціонування описаний диференціальними або інтегродиференціальними рівняннями. Метод названий умовно, оскільки він об'єднує можливості імітації процесу, модель якого отримана у вигляді аналітично замкнутого розв'язання або розв'язання, отриманого методами обчислювальної математики.

Метод статистичного моделювання спочатку розвивався як метод статистичних випробувань (Монте-Карло). Це числовий метод, що полягає в отриманні оцінок характеристик імовірності, що збігаються з розв'язанням аналітичних задач (наприклад, із розв'язанням рівнянь і обчисленням певного інтеграла). Надалі цей метод став застосовуватися для імітації процесів, що відбуваються в системах, усередині яких є джерело випадковості або які схильні до випадкових дій. Він отримав назву методу статистичного моделювання.

Комбінований метод (аналітико-статистичний) дозволяє об'єднати переваги аналітичного і статистичного методів моделювання. Він застосовується у випадку побудови моделі, яка складається з різних модулів, що являють собою набір як статистичних, так і аналітичних моделей, які взаємодіють як єдине ціле. Причому в набір модулів можуть входити не тільки модулі, що відповідають динамічним моделям, але й модулі, які відповідають статистичним математичним моделям.

Принципи побудови імітаційних моделей

Процес функціонування складної системи можна розглядати як зміну її станів, що описуються її фазовими змінними $Z_1(t)$, $Z_2(t)$, ..., $Z_n(t)$ в n-вимірному просторі.

Задача імітаційного моделювання полягає в отриманні траєкторії руху даної системи в n-мірному просторі (Z_1 , Z_2 , ..., Z_n), а також обчислення деяких показників, залежних від вихідних сигналів системи і їх властивостей. У цьому випадку «рух» системи розуміється в загальному значенні – як будь-яка зміна, що відбувається в ній.

Відомі два принципи побудови моделі процесу функціонування систем.

Принцип Δt . Розглянемо цей принцип спочатку для детермінованих систем. Припустимо, що початковий стан системи відповідає значенням $Z_l(t_0)$, $Z_2(t_0)$, ..., $Z_n(t_0)$. Принцип Δt припускає перетворення моделі системи до такого вигляду, щоб значення Z_1 , Z_2 , ..., Z_n в момент часу $t_1 = t_0 + \Delta t$ можна було обчислити через початкові значення, а у момент $t_2 = t_1 + \Delta t$ через значення на попередньому кроці і так для кожного i-го кроку (Δt =const, $i = \overline{1, n}$).

Для систем, де випадковість ϵ визначальним фактором, принцип Δt поляга ϵ в такому:

- 1. Визначається умовний розподіл імовірності на першому кроці $(t_1 = t_0 + \Delta t)$ для випадкового вектора, позначимо його $(Z_1, Z_2, ..., Z_n)$. Умова полягає в тому, що початковий стан системи відповідає точці траєкторії $(Z_1^2, Z_2^2, ..., Z_n^2)$.
- 2. Обчислюються значення координат точки траєкторії руху системи ($t_1 = t_0 + \Delta t$), як значення координат випадкового вектора, заданого розподілом, знайденим на попередньому кроці.
- 3. Відшукуються умовний розподіл вектора ($Z_1^2, Z_2^2, ..., Z_n^2$) на другому кроці ($t_2 = t_l + \Delta t$), за умови отримання відповідних значень $Z_i^1, i = \overline{1, n}$ на першому кроці і т.д., поки $t_i = t_0 + i\Delta t$ не набуде значення $t_n = t_0 + n\Delta t$.

Принцип Δt ϵ універсальним, застосовним для широкого класу систем. Його недоліком ϵ неекономічність з погляду витрат машинного часу.

Принцип особливих станів (принцип δ_z).

При розгляді деяких видів систем можна виділити два види станів:

- звичайний, в якому система знаходиться більшість часу, при цьому $Z_i(t)$, $(i=\overline{1,n})$ змінюються плавно.
- *особливий*, характерний для системи в деякі моменти часу, причому стан системи змінюється в ці моменти стрибком.

Принцип особливих станів відрізняється від принципу Δt тим, що крок за часом у цьому випадку не постійний, а є величиною випадковою і визначається відповідно до інформації про попередній особливий стан.

Зразками систем, що мають особливі стани, ϵ системи масового обслуговування. Особливі стани з'являються в моменти надходження заявок, у моменти звільнення каналів тощо.

Для таких систем застосування принципу Δt є нераціональним, оскільки при цьому можливі пропуски особливих станів і необхідні методи їх виявлення.

Зразок розв'язання задачі

Задача про охолодження тіла. Швидкість охолодження тіла в повітрі пропорційна різниці між температурою тіла та температурою повітря. Температура повітря дорівнює T. Відомо, що протягом 20 хвилин тіло охолоджується від 100 до 60°С. Закон, за яким визначається температура тіла в будь-який момент часу t, має вигляд:

$$\theta(t) = T + 80 \left(\frac{1}{2}\right)^{\frac{t}{T}}.\tag{5.1}$$

Імітувати процес охолодження тіла в часі з кроком Δt , якщо при t=0 температура тіла θ =100°C. Визначити, через скільки годин тіло повністю охолоне (тобто температура тіла θ буде дорівнювати температурі повітря). Значення Δt вибирається з інтервалу (0; 60) за допомогою генератора псевдовипадкових чисел (ГПВЧ).

Pозв'язування. Для того щоб імітувати процес функціонування системи в часі при заданому Δt , необхідно скористатися такою залежністю:

$$y_i = y(t_0 + i\Delta t). (5.2)$$

За умови, що $t_0 = 0$ та, отриманому за допомогою ГПВЧ, $\Delta t = 25$, отримаємо таку залежність:

$$y_i = y(25i). (5.3)$$

Отже, рівняння (5.1), враховуючи залежність (5.3) для $i = \overline{1, n}$, можна представити у вигляді:

$$\theta_i(t) = T + 80 \left(\frac{1}{2}\right)^{\frac{25i}{T}} \tag{5.4}$$

За допомогою створеної програми отримаємо при T=20 всі значення $\theta_i(t)$ в моменти часу t_i (табл. 5.1) та побудовану траєкторію процесу охолодження тіла (рис. 5.1).

Таблиця 5.1

t	$\theta(t)$
0	100

t	$\theta(t)$
5	87,27171
10	76,56854
15	67,56828
20	60
25	53,63586
30	48,28427
35	43,78414
40	40
45	36,81793
50	34,14214
55	31,89207
60	30
65	28,40896
70	27,07107
75	25,94604
80	25
85	24,20448
90	23,53553
95	22,97302
100	22,5
105	22,10224
110	21,76777
115	21,48651
120	21,25
125	21,05112
130	20,88388
500	20

Рис. 5.1. Графік процесу охолодження тіла

Отже, з отриманих даних у таблиці 5.1 та графіка (рис.5.1), можна зробити висновок, що тіло майже набуде температури повітря через 130 хвилин або 2,5 години, а через 500 хвилин або майже через 8 годин температура тіла повністю дорівнюватиме температурі повітря.

Завдання на роботу

- 1. Побудувати імітаційну модель процесу функціонування системи в часі. Варіант завдання вибирається згідно з номером списку студентів групи в таблиці 5.2.
- 2. На основі отриманих даних, в створеній програмі, побудувати траєкторію процесу функціонування системи.

Примітка. Отримані значення імітаційного процесу таблиці 5.1 не обов'язково виводити на екран. При введенні довільного значення змінної **t** на екран виводиться відповідний результат.

Таблиця 5.2

№	Ромомо
варіанта	Задача
1.	Швидкість v , шлях s та час t пов'язані законом прямолінійного руху тіла в часі: $s(t) = sin(t) + 2cos(t)$. Імітувати процес руху тіла в часі з кроком Δt при початкових значеннях: $t = 0$, $s = 2$. Значення Δt вибирається з інтервалу $(0; 1)$ за допомогою ГПВЧ. Визначити місце знаходження тіла в точці t .
2.	Конденсатор місткістю Q включається в ланцюг з напругою U та опором R . Заряд q конденсатора в момент t після включення має вигляд: $q(t) = UQ \bigg(1 - e^{\frac{-t}{QR}} \bigg).$ Імітувати процес зарядження конденсатора в часі з кроком Δt при початкових
	значеннях: $t=0$, $q=0$. Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ. Визначити заряд конденсатора в момент t . Значення змінних Q , U та R вводяться користувачем.
3.	Швидкість розпаду радію в кожен момент часу пропорційна його наявній масі. Закон розпаду радію, якщо відомо, що в початковий момент $t=0$ було $m=0,332$ грам радію та період напіврозпаду радію (період часу, після закінчення якого розпадається половина наявної маси радію) дорівнює 1590 років, має вигляд: $x(t) = m \cdot 2^{-\frac{t}{1590}}.$
	Імітувати процес розпаду радію в часі з кроком Δt (років). Значення Δt вибирається з інтервалу (500; 1000) за допомогою ГПВЧ. Визначити, в який момент часу t відбудеться частковий (та повний) розпад радію.
4.	У резервуар з водою об'ємом V , неперервно поступає розчин із швидкістю v літрів/хв., в кожному літрі якого міститься m κz солі. Розчин, що поступає в резервуар, змішується з водою, та суміш витікає з резервуару з тією ж швидкістю v . Процес надходження розчину в резервуар відбувається за законом:
	$x(t) = V \cdot m - v \cdot e^{-\frac{t}{5}}$. Імітувати процес надходження розчину в резервуар в часі з кроком Δt , якщо при $t=0$ $x=0$. Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ. Визначити, скільки солі в резервуарі буде через $t \times s$. Значення змінних V , v та m вводяться користувачем.
5.	Швидкість нагрівання води в резервуарі відбувається за законом:

	$\theta(t) = 40 \cdot 2^{\frac{t}{10}} - 20$
	Імітувати процес охолодження тіла в часі з кроком Δt , якщо при t =0 температура води θ =20°C. Визначити, через скільки годин вода закипить (тобто температура води θ набуде 100°C). Значення Δt вибирається з інтервалу (0; 60) за допомогою генератора псевдовипадкових чисел (ГПВЧ).
6.	Швидкість росту речовини прямо пропорційна його кількості. Закон зростання речовини для визначення зміни кількості речовини x залежно від часу t має вигляд: $x(t) = n \cdot 3^{\frac{t}{5}}.$ Вважаючи, що в початковий момент часу при $t=0$ кількість речовини була $n=30$, а протягом 5 годин кількість речовини потроїлася. Імітувати процес зростання речовини в часі з кроком Δt (cod). Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ. Визначити, скільки буде речовини через t $coduh$.
	Процес роботи фільтру в часі відбувається за законом:
7.	$y(t) = 0.04t + 1000$. Імітувати процес роботи фільтру в часі з кроком Δt (<i>xв.</i>) протягом t хвилин. Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ.
8.	У резервуар, що містить m κ_2 солі на V_1 літрів суміші, кожну хвилину поступає v літрів води та витікає V_2 літрів суміші. Процес концентрації розчину відбувається за законом: $x(t) = \frac{V_1(v-V_2)}{(m+t)^2} .$ Імітувати процес концентрації розчину в часі з кроком Δt , якщо при $t=0$ $x=10$. Значення Δt вибирається з інтервалу $(0;1)$ за допомогою ГПВЧ. Визначити, яка кількість солі залишиться в резервуарі через t x_0 , припускаючи, що суміш миттєво змішується. Значення змінних V_1 , V_2 , v та m вводяться користувачем.
9.	Степінь радіоактивності пропорційна кількості радіоактивної речовини, що залишається. Процес зменшення радіоактивності з часом може бути описаний у вигляді закону: $y(t) = 100 \cdot e^{-0.01t}$. Імітувати процес розпаду речовини в часі з кроком Δt , якщо при $t = 0$ $y = 100$. Значення Δt вибирається з інтервалу (1; 10) за допомогою ГПВЧ. Визначити скільки речовини залишиться у момент t .
10.	Резервуар об'ємом V літрів наповнений повітрям (80% азоту та 20% кисню). До резервуару втікає v літрів азоту в секунду, який неперервно змішується з повітрям, що там знаходиться. З резервуару витікає така ж кількість суміші. Процес надходження азоту в резервуар в часі відбувається за законом:
	$y(t) = V - V \cdot v \cdot e^{-\frac{t}{150}}$ Імітувати процес надходження азоту в резервуар в часі з кроком Δt , якщо при $t=0$ складає 80% від $V \pi$.

	Значення Δt вибирається з інтервалу (1; 2) за допомогою ГПВЧ. Визначити, через який час t в резервуарі буде $k\%$ азоту.
	Значення змінних V , v та k вводяться користувачем.
11.	Швидкість розмноження бактерій пропорційна їх кількості. У початковий момент $t=0$ було k бактерій, а протягом n годин їх подвоїлося. Знайти залежність кількості бактерій від часу. Процес зростання бактерій в часі відбувається за законом: $x(t) = k \cdot 2^{\frac{t}{n}}.$ Імітувати процес зростання бактерій в часі з кроком Δt (год). Значення Δt вибирається з інтервалу $(0;1)$ за допомогою ГПВЧ. Визначити, в скільки разів збільшиться кількість бактерій протягом t годин. Значення змінної n вводяться користувачем.
12.	Резервуар ємністю V_l літрів наповнений розчином, який містить m κ_2 розведеної солі. За одну хвилину до резервуару потрапляє V_2 літрів води і стільки ж суміші переливається в інший резервуар такого ж об'єму, заповненого спочатку водою, з якого надлишок виливається. Нехай $x(t)$ — кількість солі в першому резервуарі у момент часу t , тоді $y(t)$ — кількість солі в другому резервуарі у момент часу t . Процес концентрації розчину в часі відбувається за законами: $x(t) = m \cdot e^{-\frac{V_2 t}{V_1}}, \ y(t) = \frac{V_2}{m} t \cdot e^{-\frac{V_2 t}{V_1}}$ Імітувати процес концентрації розчину в часі з кроком Δt , якщо при $x(0)=10$ і $y(0)=0$. Значення Δt вибирається з інтервалу $(0;1)$ за допомогою ГПВЧ. Визначити, в який момент часу t буде відповідна кількість солі в кожному резервуарі, а також коли вона буде однакова в обох резервуарах. Значення змінних V_l , V_2 та m вводяться користувачем.
13.	Швидкість v , шлях s та час t пов'язані законом прямолінійного руху тіла в часі: $s(t) = -\cos(t) + 3$. Імітувати процес руху тіла в часі з кроком Δt при початкових значеннях: $t = 0$, $s = 2$. Значення Δt вибирається з інтервалу $(0; 1)$ за допомогою ГПВЧ. Визначити місце знаходження тіла в точці t .
14.	Швидкість v , шлях s та час t пов'язані законом прямолінійного руху тіла в часі: $s(t) = \frac{1}{2}\sin(2t) + 2$. Імітувати процес руху тіла в часі з кроком Δt при початкових значеннях: $t = 0$, $s = 2$. Значення Δt вибирається з інтервалу $(0; 1)$ за допомогою ГПВЧ. Визначити місце знаходження тіла в точці t .
15.	Швидкість v , шлях s та час t пов'язані законом прямолінійного руху тіла в часі: $s(t) = sin(t) + 2cos(t)$. Імітувати процес руху тіла в часі з кроком Δt при початкових значеннях: $t = 0$, $s = 2$. Значення Δt вибирається з інтервалу $(0; 1)$ за допомогою ГПВЧ. Визначити місце знаходження тіла в точці t .
16.	Конденсатор місткістю Q включається в ланцюг з напругою U та опором R . Заряд q

	,
	конденсатора в момент t після включення має вигляд:
	$q(t) = UQ \left(1 - e^{\frac{-t}{QR}}\right).$
	Імітувати процес зарядження конденсатора в часі з кроком Δt при початкових
	значеннях: $t=0$, $q=0$.
	Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ.
	Визначити заряд конденсатора в момент t . Значення змінних Q , U та R вводяться користувачем.
	Швидкість розпаду радію в кожен момент часу пропорційна його наявній масі. Закон
17.	розпаду радію, якщо відомо, що в початковий момент $t=0$ було $m=0,332$ грам радію та період напіврозпаду радію (період часу, після закінчення якого розпадається половина наявної маси радію) дорівнює 1590 років, має вигляд:
1,,	$x(t) = m \cdot 2^{-\frac{c}{1590}}.$
	Імітувати процес розпаду радію в часі з кроком Δt (років). Значення Δt вибирається з інтервалу (500; 1000) за допомогою ГПВЧ.
	Визначити, в який момент часу t відбудеться частковий (та повний) розпад радію.
	Очищення води в резервуарі з водою відбувається протягом деякого часу t за законом: $y(t) = 0.2t + 250$
18.	Імітувати процес роботи фільтру в часі з кроком Δt (xe .) протягом t хвилин. Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ.
10	У резервуар з водою об'ємом V , неперервно поступає розчин із швидкістю v літрів/хв., в кожному літрі якого міститься m κz солі. Розчин, що поступає в резервуар, змішується з водою, та суміш витікає з резервуару з тією ж швидкістю v . Процес надходження розчину в резервуар відбувається за законом:
19.	$x(t) = V \cdot m - v \cdot e^{-\frac{t}{5}}.$
	Імітувати процес надходження розчину в резервуар в часі з кроком Δt , якщо при $t=0$ $x=0$. Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ. Визначити, скільки солі в резервуарі буде через t x θ . Значення змінних V , v та m вводяться користувачем.
	Швидкість v , шлях s та час t пов'язані законом прямолінійного руху тіла в часі:
	$s(t) = -2\sin(t)-1.$
20.	Імітувати процес руху тіла в часі з кроком Δt при початкових значеннях: $t=0$, $s=2$. Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ. Визначити місце знаходження тіла в точці t .
21.	Резервуар ємністю V_1 літрів наповнений розчином, який містить $m \kappa_2$ розведеної солі.
	За одну хвилину до резервуару потрапляє V_2 літрів води і стільки ж суміші
	переливається в інший резервуар такого ж об'єму, заповненого спочатку водою, з
	якого надлишок виливається. Нехай $x(t)$ — кількість солі в першому резервуарі у момент часу t , тоді $y(t)$ — кількість солі в другому резервуарі у момент часу t . Процес
	концентрації розчину в часі відбувається за законами: $x(t) = m \cdot e^{-\frac{V_2 t}{V_1}}$,
	$y(t) = \frac{V_2}{m}t \cdot e^{-\frac{V_2t}{V_1}}$
	Імітувати процес концентрації розчину в часі з кроком Δt , якщо при $x(0)=10$ і $y(0)=0$.

	Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ. Визначити, в який момент часу t буде відповідна кількість солі в кожному резервуарі, а також коли вона буде однакова в обох резервуарах. Значення змінних V_1 , V_2 та m вводяться користувачем.
22.	У резервуар, що містить $m \kappa_2$ солі на V_1 літрів суміші, кожну хвилину поступає v літрів води та витікає V_2 літрів суміші. Процес концентрації розчину відбувається за законом: $x(t) = \frac{V_1(v - V_2)}{(m+t)^2}.$ Імітувати процес концентрації розчину в часі з кроком Δt , якщо при $t=0$ $x=10$. Значення Δt вибирається з інтервалу $(0;1)$ за допомогою ГПВЧ. Визначити, яка кількість солі залишиться в резервуарі через t x_6 , припускаючи, що суміш миттєво змішується.
23.	Значення змінних V_l , V_2 , v та m вводяться користувачем. Швидкість росту речовини прямо пропорційна його кількості. Закон зростання речовини для визначення зміни кількості речовини x залежно від часу t має вигляд: $x(t) = n \cdot 3^{\frac{t}{5}}$. Вважаючи, що в початковий момент часу при $t=0$ кількість речовини була $n=30$, а протягом 5 годин кількість речовини потроїлася. Імітувати процес зростання речовини в часі з кроком Δt (zod). Значення Δt вибирається з інтервалу $(0; 1)$ за допомогою ГПВЧ. Визначити, скільки буде речовини через t $zoduh$.
24.	Конденсатор місткістю Q включається в ланцюг з напругою U та опором R . Заряд q конденсатора в момент t після включення має вигляд: $q(t) = UQ(1 - \exp(-t/QR))$. Імітувати процес зарядження конденсатора в часі з кроком Δt при початкових значеннях: $t=0$, $q=0$. Значення Δt вибирається з інтервалу $(0;1)$ за допомогою ГПВЧ. Визначити заряд конденсатора в момент t . Значення змінних Q , U та R вводяться користувачем.
25.	Резервуар об'ємом V літрів наповнений повітрям (75% азоту та 25% кисню). До резервуару втікає v літрів азоту в секунду, який неперервно змішується з повітрям, що там знаходиться. З резервуару витікає така ж кількість суміші. Процес надходження азоту в резервуар в часі відбувається за законом: $y(t) = V - V \cdot v \cdot \exp(-t/150)$ Імітувати процес надходження азоту в резервуар в часі з кроком Δt , якщо при $t=0$ складає 75% від V л. Значення Δt вибирається з інтервалу (1; 2) за допомогою ГПВЧ. Визначити, через який час t в резервуарі буде t % азоту. Значення змінних t 0, t 1 та t 2 вводяться користувачем.
26.	Процес бродіння деякої суміші в часі відбувається за законом: $y(t) = 0.3t - 1180$. Імітувати процес бродіння в часі з кроком Δt (xe .) протягом t хвилин. Значення Δt вибирається з інтервалу (0; 1) за допомогою ГПВЧ.

27.	Процес зменшення радіоактивності з часом може бути описаний у вигляді закону: $y(t) = 100 \cdot \exp(-0.01t)$. Степінь радіоактивності пропорційна кількості радіоактивної речовини, що залишається. Імітувати процес розпаду речовини в часі з кроком Δt , якщо при $t=0$ $y=100$. Значення Δt вибирається з інтервалу (1; 10) за допомогою ГПВЧ. Визначити скільки речовини залишиться у момент t .
28.	Швидкість v , шлях s та час t пов'язані законом прямолінійного руху тіла в часі: $s(t)=2cos(t)-sin(2t)$. Імітувати процес руху тіла в часі з кроком Δt при початкових значеннях: $t=0$, $s=4$. Значення Δt вибирається з інтервалу $(0;\ 1)$ за допомогою ГПВЧ. Визначити місце знаходження тіла в точці t .