

# 第5章 时序逻辑电路

- 5.1 概述
- 5.2 时序逻辑电路的分析方法
- 5.3 时序逻辑电路的设计方法
- 5.4 若干常用的时序逻辑电路



# 5.1 概述

#### 一、时序逻辑电路的定义

电路任意时刻的输出信号不仅取决于该时刻的输入信号,还与电路的原来状态有关。

#### 引例:



——受到时钟脉冲控制的多位加法电路,蜕变成了时序逻辑电路。 冷作 進承 求實 創新



#### 二、时序逻辑电路方框图



合作追取求實創新



# 三、逻辑方程

# 1. 输出方程

$$y_{1}=f_{1}(x_{1},x_{2},...,x_{n},q_{1},q_{2},...,q_{l})$$

$$y_{2}=f_{2}(x_{1},x_{2},...,x_{n},q_{1},q_{2},...,q_{l})$$

$$Y=F(X,Q)$$

$$y_{m}=f_{m}(x_{1},x_{2},...,x_{n},q_{1},q_{2},...,q_{l})$$



# 2. 驱动方程

$$z_1 = g_1(x_1, x_2, \dots, x_n, q_1, q_2, \dots, q_l)$$

$$z_2 = g_2(x_1, x_2, \dots, x_n, q_1, q_2, \dots, q_l)$$

$$z_k = g_k(x_1, x_2, \dots, x_n, q_1, q_2, \dots, q_l)$$

$$z_k = g_k(x_1, x_2, \dots, x_n, q_1, q_2, \dots, q_l)$$



# 3. 状态方程

$$q_{1}^{n+1} = h_{1}(z_{1}, z_{2}, \dots, z_{n}, q_{1}^{n}, q_{2}^{n}, \dots, q_{l}^{n})$$

$$q_{2}^{n+1} = h_{2}(z_{1}, z_{2}, \dots, z_{n}, q_{1}^{n}, q_{2}^{n}, \dots, q_{l}^{n})$$

$$q_{1}^{n+1} = h_{1}(z_{1}, z_{2}, \dots, z_{n}, q_{1}^{n}, q_{2}^{n}, \dots, q_{l}^{n})$$

$$Q^{n+1} = H(Z, Q^{n})$$



# 四、时序逻辑电路的分类

1. 根据存储电路中触发器的动作特点:

同步时序逻辑电路: 所有触发器的状态在同一时刻发生变化

异步时序逻辑电路: 触发器的状态不是在同一时刻发生变化

2. 根据输出变量的特点:

米利型(Mealy): Y=F(X,Q)

穆尔型(Moore): Y=F(Q)



# 5.2 同步 时序逻辑电路的分析方法

#### 分析的任务:

根据给定的时序逻辑电路,找出其变化规律

#### 二、分析的步骤:

- 1. 写出驱动方程
- 2. 写出输出方程
- 3. 求状态方程
- 4. 计算状态转换表
- 5. 画状态转换图
- 6. 画时序图
- 7. 说明其逻辑功能



 $J_2 = Q_1$ 

# 例:试分析如图所示时序逻辑电路的功能。



 $K_2 = Q_1 \cdot \overline{Q_3}$ 

 $J_3=Q_1Q_2$ (同时输入)  $K_3=Q_2$ 

合作追取求實創新



#### 3. 求状态方程

#### -把驱动方程分别代入触发器的特性方程求得

$$Q_i^{n+1} = J_i \overline{Q_i^n} + \overline{K_i} Q_i^n$$

$$Q_1^{n+1} = \overline{Q_2 \cdot Q_3} \cdot \overline{Q_1}$$

$$Q_2^{n+1} = Q_1 \cdot \overline{Q_2} + \overline{Q_1} \cdot \overline{Q_3} \cdot Q_2$$

$$Q_3^{n+1} = Q_1 \cdot Q_2 \cdot \overline{Q_3} + \overline{Q_2} Q_3$$



#### 4. 计算状态转换表

#### ——通常设初态都是0

| $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_3^{n+}$ | $-1Q_2^{n+}$ | $Q_1^{n+1}$ | Y |
|---------|---------|---------|------------|--------------|-------------|---|
| 0       | 0       | 0       | 0          | 0            | 1           | 0 |
| 0       | 0       | 1       | 0          | 1            | 0           | 0 |
| 0       | 1       | 0       | 0          | 1            | 1           | 0 |
| 0       | 1       | 1       | 1          | 0            | 0           | 0 |
| 1       | 0       | 0       | 1          | 0            | 1           | 0 |
| 1       | 0       | 1       | 1          | 1            | 0           | 0 |
| 1       | 1       | 0       | 0          | 0            | 0           | 1 |
| 1       | 1       | 1       | U          | 0            | 0           | 1 |

$$\begin{aligned} Q_1^{n+1} &= \overline{Q_2} \cdot \overline{Q_3} \cdot \overline{Q_1} \quad \mathbf{Y} = \mathbf{Q_2} \mathbf{Q_3} \\ Q_2^{n+1} &= Q_1 \cdot \overline{Q_2} + \overline{Q_1} \cdot \overline{Q_3} \cdot Q_2 \\ Q_3^{n+1} &= Q_1 \cdot Q_2 \cdot \overline{Q_3} + \overline{Q_2} Q_3 \end{aligned}$$

## 5. 画状态转换图

|         |         |         |             |               |             |   |    |       |       | ,         | . , | i |
|---------|---------|---------|-------------|---------------|-------------|---|----|-------|-------|-----------|-----|---|
| $Q_3^n$ | $Q_2^n$ | $Q_1^n$ | $Q_3^{n-1}$ | $+1Q_2^{n+1}$ | $Q_1^{n+1}$ | Y | CP | $Q_3$ | $Q_2$ | $Q_1$     | Y   |   |
| 0       | 0       | 0       | 0           | 0             | 1           | 0 | 0  | 0     | 0     | 0         | 0   | - |
| 0       | 0       | 1       | 0           | 1             | 0           | 0 | 1  | 0     | 0     | 1         | 0   |   |
| 0       | 1       | 0       | 0           | 1             | 1           | 0 | 2  | 0     | 1     | 0         | 0   |   |
| 0       | 1       | 1       | 1           | 0             | 0           | 0 | 3  | 0     | 1     | 1         | 0   |   |
| 1       | 0       | 0       | 1           | 0             | 1           | 0 | 4  | 1     | 0     | 0         | 0   |   |
| 1       | 0       | 1       | 1           | 1             | 0           | 0 | 5  | 1     | 0     | 1         | Ŏ   |   |
| 1       | 1       | 0       | 0           | 0             | 0           | 1 | 6  | 1     | Ĭ     | $\hat{0}$ | 1   | _ |
| 1       | 1       | 1       | 0           | 0             | 0           | 1 | 7  | 0     | 0     | 0         | 0   |   |
|         |         |         | 1           |               |             |   |    |       |       |           | 1 F | 4 |







#### 例2: 试分析图示的同步时序电路的逻辑功能。



#### 解: 1. 写出电路的三大方程

$$\begin{cases} D_1 = \overline{Q}_1 \\ D_2 = A \oplus Q_1 \oplus Q_2 \end{cases} \begin{cases} Q_1^{n+1} = D_1 = \overline{Q}_1 \\ Q_2^{n+1} = D_2 = A \oplus Q_1 \oplus Q_2 \end{cases}$$

$$Y = \overline{\overline{\overline{AQ_1Q_2}} \cdot \overline{A\overline{Q_1}\overline{Q_2}}} = \overline{\overline{AQ_1Q_2} + A\overline{\overline{Q_1}\overline{Q_2}}} = \overline{\overline{AQ_1Q_2} + A\overline{\overline{Q_1}\overline{Q_2}}} = \overline{\overline{AQ_1Q_2} + A\overline{\overline{Q_1}\overline{Q_2}}} = \overline{\overline{AQ_1Q_2}} + A\overline{\overline{Q_1Q_2}} = \overline{\overline{AQ_1Q_2}} = \overline{\overline{AQ_1Q_2}} + A\overline{\overline{Q_1Q_2}} = \overline{\overline{AQ_1Q_2}} = \overline{\overline{AQ_1Q_2}} = \overline{\overline{AQ_1Q_2}} + A\overline{\overline{Q_1Q_2}} = \overline{\overline{AQ_1Q_2}} = \overline{\overline{AQ_1Q_2}} = \overline{\overline{AQ_1Q_2}} + A\overline{\overline{Q_1Q_2}} = \overline{\overline{AQ_1Q_2}} = \overline{\overline{AQ_1Q_1Q_2}} = \overline{\overline{AQ_1Q_1Q_2}} = \overline{\overline{AQ_1Q_1Q_2}} = \overline{\overline{AQ_1Q_1Q_2}} = \overline{\overline{AQ_1Q_1Q_2}} = \overline{\overline{AQ_1Q_$$



#### 2 .求出电路的状态取值转换关系





#### ② 时序波形图



#### 3. 功能分析:

四进制可逆计数器。A=0,电路是两位二进制加法计数器;A=1,电路是两位二进制减法计数器。



## 5.3 时序逻辑电路的设计方法

时序逻辑电路的设计的任务

要求设计者根据给出的具体逻辑问题,求出实现这一逻辑功能的逻辑电路。

二、时序逻辑电路的设计的原则

所得到的设计电路结果应力求简单。

SSI设计: 电路最简的标准是所用的触发器和门电路的数目最少,而且触发器和门电路的输入端数目也最少。

MSI设计: 电路最简的标准则是使用的集成电路数目最少,种类最少。而且互相间的连线也最少。

# SOUTH DAINE BRILLY

# 三、同步时序逻辑电路的设计步骤

#### 1)逻辑抽象

- a. 分析给定的逻辑问题, 确定输入变量、输出变量以及电路的状态数。
  - b. 定义输入、输出变量和状态的含义,并将电路状态顺序编号
- c. 按照题意列出电路的状态转换表或画出电路的状态转换图。

#### 2) 状态化简

若两个电路状态在相同的输入下有相同的输出,并且转换到同样一个次态。则称这两个状态为等价状态。显然等价状态 是重复的,可以合并为一个。

# 3)状态分配

#### 用状态变量表示电路的状态的过程

首先,需要确定状态变量的数目n。因为n个状态变量 共有2n种状态组合,所以为获得时序电路所需的M个状态, 必须取

#### $2^{n-1} < M < 2^n$

- 4)选定触发器的类型,求出电路的状态方程、驱动方程和输出方程
- 5) 根据驱动方程和输出方程画出电路图
- 6)检查设计的电路能否自启动



# 例:设计一个同步五进制加法计数器。

- 1)逻辑抽象:电路的状态数共有5个;
- 2) 状态化简: 电路的最简状态数有5个;
- 3) 状态分配:确定状态变量的数目N=3;
- 4)选定触发器的类型,求出电路的状态方程、驱动方程和输出方程
- 5) 根据驱动方程和输出方程画出电路图。

——慕课学习



# 导入

时序逻辑电路在实际数字系统(或计算机系统)中的应用十分广泛,为了提高电路工作的效率和保证性能的可靠性,把这些常用的电路制成了中规模集成电路。



## 5.4 若干常用时序逻辑电路

5.4.1 寄存器

是由触发器组成的用来暂存一组二进制数码的逻辑部件,它是构成计算机CPU中最基本的逻辑部件

- 1. 寄存器的功能:
- •清除数码
- •接收数码
- •暂存数码
- •输出数码
- •移位功能



# 2. 寄存器的工作模式

LD

- 1) 两拍接收工作模式
  - (1) 发清零脉冲
- 准备数据
  - (2) 发接收脉冲





- 2) 单拍接收工作模式
- •准备数据
- •发接收脉冲





#### 3)多位数码接收工作模式

#### 并出



合作追取求實創新



#### 4) 串行移位接收工作模式



$$CP_i = CP$$
,  $D_i = Q_{i-1}$ ,  $D_0 = X$ 



# 5) 环形移位工作模式



连接方式:  $CP_i = CP$ ,  $D_i = Q_{i-1}$ ,  $D_0 = Q_{n-1}$ 



# 6) 扭环形移位工作模式



CPi=CP, Di=Qi-1, D0= $\overline{Q}$ n-1



# 3. 寄存器类型

1) 数码寄存器



#### 74LS175功能表及说明

|    |          |      |                   | 计分类话 |
|----|----------|------|-------------------|------|
| Rd | СР       | 功能   | 说明                | 并行数据 |
|    |          |      |                   |      |
| 0  | ×        | 直接清零 | Q3Q2Q1Q0=0品步(直接   | )清零  |
| 1  | <b>↑</b> | 并行送数 | $Q_i^{n+1} = D_i$ |      |

送数脉冲端





# 3) 双向移位寄存器

左移串行数码输入端

 $Q_3$   $D_{IL}$ 

 $S_0$ 

 右移串行数码输入端
 DIR Q0 Q1 Q2

 CP
 74LS194

 Rd D0 D1 D2

 Rd CP S1 S0 功 能 说 明

|                 | 1 12 2 3 1 7 3 11 2 7 5 7 3 |            |    |    |       |                            |                      |  |  |  |
|-----------------|-----------------------------|------------|----|----|-------|----------------------------|----------------------|--|--|--|
| $\overline{Rd}$ | CP                          | <b>S</b> 1 | So | 功  | 们     | 说                          | 明                    |  |  |  |
| 0               | ×                           | X          | X  | 直接 | 清零    | Qi=0                       |                      |  |  |  |
| 1               | <b>↑</b>                    | 1          | 1  | 并行 | 送数    | $Q_i^{n+1} =$              | $D_{i}$              |  |  |  |
| 1               | <b>↑</b>                    | 0          | 1  | 右  | 移     | $Q_i^{n+1}=Q_{i-1}^n,Q$    | $Q_0^{n+1} = D_{IR}$ |  |  |  |
| 1               | <b>↑</b>                    | 1          | 0  | 左  | 移     | $Q_i^{n+1} = Q_{i+1}^n, Q$ | $Q_3^{n+1} = D_{IL}$ |  |  |  |
| 1               | X                           | 0          | 0  | 保  | 持     | $Q_i^{n+1} = Q$            | $Q_i^n$              |  |  |  |
| 1               | 0                           | X          | X  | 保  | <br>持 | $O_i^{n+1} = C$            | ) <sup>n</sup>       |  |  |  |

追取求實創

控制端

# 4. 寄存器的应用

1) 串行输入数据





# 2) 乘2运算



#### 合作追取求實創新







# 4)构成环形移位寄存器





# 5) 构成扭环形移位寄存器

