Disciplinas: Algoritmos de Reconhecimento de Padrões e Redes Neurais Profundas

Dynamic Bird Game

INSTITUTO DE INFORMÁTICA UFG

Bruno B. S. Martins, Rafael M. das Dores

Introdução

Mídias interativas como videogames têm se tornado cada vez mais comum no cotidiano das pessoas. O mercado de jogos no Brasil, seu faturamento cresceu quase 25% entre 2014 e 2016. Neste sentido, desenvolvedores têm evoluído seus produtos a fim de mantê-los interessantes e inovadores, tanto que, em oito anos o número de empresas desenvolvedoras de jogos aumentou em quase 600%[2].

Sendo assim, o presente estudo explora a adição de um novo elemento na interatividade dos jogos - as emoções do jogador, e objetiva integrar o jogo *Flappy Bird* com o algoritmo de reconhecimento facial, pois espera-se que sendo possível verificar se a experiência do jogar é agradável ou não, a partir da leitura de suas reações em tempo real, o jogo poderia adaptar seu nível de dificuldade à medida que o jogador avança, melhorando, assim, o engajamento do jogador com a realidade virtual apresentada a ele.

Materiais e Métodos

Para execução deste estudo, foi selecionado um jogo casual com curva de aprendizado simples – o *Flappy Bird*, para aplicar-se a dificuldade dinâmica, executar um algoritmo de reconhecimento de emoções faciais associado a conceitos de redes neurais profundas (*Deep Learning*) e integrar todos estes elementos resultando na aplicação final.

Flappy Bird

O jogo consiste em fazer seu personagem, um pássaro, passar entre canos (seus obstáculos) se os tocar para ganhar pontos, porém, quando há choque contra estes canos, o jogador pede e deve reiniciar o jogo. Na figura 1, há a imagem da tela inicial do jogo, desenvolvido na linguagem *Python*.

Figura 1: Tela Inicial Flappy Bird

Flappy Bird, originalmente, não possui níveis de dificuldade, sendo assim, foram implementadas diferentes velocidades no jogo (devagar, normal e rápido) como parâmetros que afetam diretamente a atenção e habilidades exigidas do jogador, servindo como conceitos de dificuldade para o jogo.

Reconhecimento Facial de Emoções

Para reconhecimento de emoções por meio de expressões faciais é feito com a aplicação de um algoritmo com conceitos de redes neurais profundas com uso da arquitetura *mini-Xception*. Desta forma, construiu-se uma rede neural *fully convolutional* composta por 1 módulo base de entrada com 4 módulos de processamento de saída; a camada de entrada possui 2 filtros convolucionais, utilizando função de ativação *ReLU* e normalização.; 1 módulo de saída com ativação *softmax*, que normaliza o valor de saída da rede (entre -1 e 1) para realizar a predição da imagem processada. Desta forma cada modulo possui um filtro convolucional, uma camada de ativação *ReLU*, uma camada de normalização e uma camada de *max pooling*, que extrai o maior valor e o insere na próxima camada.[4]. A figura 2 mostra a arquitetura da rede neural profunda aplicada.

Figura 2: Arquitetura RNP

O modelo utilizado no treinamento do algoritmo possui cerca de 60 mil parâmetros treináveis e apresentou precisão de 66% sobre uma base de dados com 35887 imagens, em escala cinza, na qual cada imagem era classificada em emoções primitivas (raiva, desgosto, medo, tristeza, felicidade, surpresa e neutro). O modelo de estado da arte para essa base de dados alcançou acurácia de 71%[1].

Experimento

No presente estudo, utilizou-se as emoções raiva, tristeza, felicidade e surpresa, cada uma correspondendo a uma respectiva mudança na dificuldade do jogo, desta forma, raiva e tristeza tornarão o jogo mais fácil, felicidade o deixará mais difícil e surpresa manterá a dificuldade em nível médio. A aplicação foi desenvolvida em *Python* para *desktop* e utilizou-se *Webcam USB* comum na tarefa de reconhecimento facial. As emoções detectadas são, então, exibidas no console ao lado do jogo, no formato de *log*.

Conclusão e Resultados

Cumprindo seu objetivo, o jogo teve sua dificuldade alterada em tempo real por meio da leitura facial do usuário. Por limitação técnica de *hardware*, a exibição da câmera na tela foi retirada, mas a detecção das emoções foi registrada e exibida no console durante sua aplicação, não havendo influência sobre o resultado do experimento.

O treinamento da rede neural profunda de reconhecimento facial de emoções apresentou precisão de 66%, sendo considerado satisfatório face o apresentado pelo estado da arte.

Trabalhos Futuros

Com o crescimento do mercado de realidade virtual em diversas instâncias, sugere-se que sejam desenvolvidas portabilidades deste experimento para dispositivos móveis, adequando-os aos recursos disponíveis. Esta estratégia pode, ainda, ser aplicada a diversos jogos oferecendo dinamismo nos graus de dificuldade e desafio, engajando os jogadores ao longo da experiência integrando inovação e diversão. Além de poder contribuir com a detecção de condições que alteram o humor, esse novo conceito, aplicado à realidade virtual pode aprimorar os serious games na sua função de educação e promoção em saúde, visto que o engajamento do usuário é um grande obstáculos nesta tecnologia. [3, 5]

Referências

- [1] Ian Goodfellow et al. "Challenges in Representation Learning: A report on three machine learning contests". Em: (2013).
- [2] Rio de Janeiro Daniel Silveira G1. *Número de desenvolvedores de games cresce 600% em 8 anos, diz associação*. 2017. URL: https://goo.gl/fFMfFu.
- [3] Neri, S. G., Cardoso, J. R., Cruz, L., Lima, R. M., de Oliveira, R. J., Iversen, M. D., Carregaro, R. L. "Do virtual reality games improve mobility skills and balance measurements in community-dwelling older adults? Systematic review and meta-analysis." Em: (2017).
- [4] Paul G. Plöger Octavio Arriaga. "Real-time Convolutional Neural Networks for Emotion and Gender Classification". Em: (2016).
- [5] Tolentino, G., Ventura, A., Cruz, L., Vidal, S., Valeriano, R., Battaglini, C., Jacó de Oliveira, R. *The Serious Games Applied for Health*. 2015. DOI: http://dx.doi.org/10.4018/978-1-4666-5888-2.ch557.