

Woods to wheels

Ravikrishnan Elangovan,

Department of Biochemical Engg and Biotechnology

Indian Institute of Technology - Delhi

Diminishing fossil fuels

C. Cleveland and R. Kaufmann, Fundamental principles of energy, 2008, Encyclopedia of Earth

Bio-ethanol

Gasoline

100%

Ethanol

67%

Biodiesel

86%

World Ethanol Production by Country, 2005	
Country	Production
	Million Litres
United States	16,214
Brazil	16,067
China	3,800
India	1,700
France	910
Russia	750
South Africa	390
Spain	376
Germany	350
Thailand	300
United Kingdom	290
Ukraine	245
Canada	230
Poland	220
Indonesia	170
Saudi Arabia	170
Argentina	165
Italy	150
Australia	125
Japan	113
Other Countries	2,139
World	44,875

Source: F. O. Licht, "Ethanol: World Production, by Country," table, **World Ethanol and Biofuels Report**, vol. 4, no. 17 (9 May 2006), p. 395, and the Earth Policy Institute.

Why Biofuels?

Biofuels, including cellulosic ethanol, are one of a small handful of petroleum alternatives that can provide:

- (inter) national security advantages
- large greenhouse gas reductions
- economic advantages (lower cost fuels than petroleum fuels)

Currently cellulosic ethanol is gaining major traction

- From agricultural and forestry residues
- From "energy crops"

Sugar cane bioethanol

- Brazil produces **3,96 billion gallons** of ethanol from sugar cane
- Production cost **\$0.87/gallon**, the lowest in the world
- Fossil fuel energy used to make the fuel (input) compared with energy in the fuel (output) **1:8**
- Green house emission during production and use 56% less compared with gasoline

Benefits of Cellulosic Ethanol

- ✓ Access to wider array of potential feedstock, including waste cellulosic materials and dedicated cellulosic crops.
- ✓ Greater avoidance of conflicts with land use for food production
- ✓ Greater displacement of fossil energy per litre of fuel, due to nearly completely biomass-powered systems.
- ✓ Much lower net greenhouse gas emissions than with grain-to-ethanol production powered primarily by fossil energy.

Cellulosic Biofuels

- Cellulose is the most abundant biological material on Earth
- X Found in cell walls
- X Lack efficient way to break down plant material and convert it into fuel
- X Cell wall composition varies

.

Plant Cell Wall Structure

- Cellulose—primary carbohydrate goal for extraction
- X Hemicellulose carbohydrate, harder to convert to fuel
- Lignin—may be burned for heat/electricity, converted into useful chemicals

Cellulose

Hemicellulose

Lignin

Bioconversion of biomass to ethanol (pretreatment)

Pretreatment-"disruption"

Helps in separation of main biomass components (cellulose, hemicellulose and lignin)

Increase available surface area

Reduce particle size

Steam explosion

Treatment of biomass with high-pressure steam for a short period of time followed by sudden decompression

Acid (H₂SO₄, SO₂) impregnation of biomass increases SE efficiency

Typical conditions:

Temperature: 170-250°C, 338-482 F

• Time: 10sec-10min

Steam gun

Receiving

n vessel

Receiving vessel

Pretreated corn stover

Enzyme Digestion (Hydrolysis)

Cellulose must be broken into individual glucose molecules using enzymes before fermentation can occur.

What are cellulases?

Produced by many strains of bacteria and fungi

Catalyzes the depolymerization of cellulose chains

- Endoglucanases
- Exoglucanases
- β-glucosidases

Fermentation

Defined as:

Cellular metabolism under anaerobic conditions (absence of oxygen) for the production of energy and metabolic intermediates

Many organisms can "ferment" (i.e., grow anaerobically)

Not all produce ethanol as an end-product of fermentation

Strain selection

Choice of microorganism for ethanol production has traditionally been a Yeast

Yeast:

- Single cell microorganism
- Fungi
- Facultative anaerobe

Most common industrial fermenter is Saccharomyces cerevisiae (baker's or brewer's yeast)

Fermentation

Conversion factor 0.51

1g/L of glucose: 0.51g/L ethanol (maximum)

Cellulose Process Corn Process Sugar Cane Process Sugar Ferment-**Ethanol** Sugar Distillation **Drying** ation Cane Starch **Co-Product** Conversion Recovery Corn (Cook or **Animal Feed** Kernels **Enzymatic Chemicals** Hydrolysis) Cellulose Cellulose Conversion Cellulose Pretreatment **Hydrolysis**

- Crop residues: corn stover, rice straw, wheat straw, etc.
- Forestry residues/slash
- Energy crops: switchgrass, poplar, *Miscanthus,* many others
- Municipal & construction wastes, etc

Cellulose Process Corn Process Sugar Cane Process Sugar Ferment-Sugar **Ethanol** Distillation Drying Cane ation Starch **Co-Product** Conversion Recovery Corn (Cook or **Animal Feed** Kernels **Enzymatic Chemicals** Hydrolysis) Cellulose Cellulose Conversion Cellulose **Pretreatment Hydrolysis** Corn Stover Switchgrass **Thermochemical** Heat and Power • MSW Conversion Fuels and Chemicals Forest Residues Ag Residues Wood Chips

RE. FORM. ENERCY

Capturing Local Benefits from Biofuels

Some issues for farmers/local interests

- If farmers merely supply biomass, they will not benefit much from the biofuels revolution
- Investment required for cellulosic ethanol biorefinery is huge ~ \$250 million and up—difficult for farmers to participate

Some issues for biofuel firms/larger society

- Supply chain issues are enormous—need 5,000 ton/day from ~1,000 farmers: chemicals/fuels industries have zero experience with such large agricultural systems
- Cellulosic biomass is bulky, difficult to transport
- Need to resolve "food vs. fuel" problem: actually "animal feed and fuel opportunity"

Is there a common solution?

- Regional Biomass Processing Center concept worthy of study
- Pretreat biomass for biorefinery & ruminant (cattle) feeding
- Much lower capital requirements—accessible to rural interests
- Develop additional products over time—animal feed protein, enzymes, nutraceuticals, biobased composites, etc