(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2002-365820 (43)公開日 平成14年12月18日(2002.12.18)

(P2002-365820A)

(51) Int.Cl.7		義別記号	FΙ		テーマコード(参考)
G 0 3 G	5/06	314	G 0 3 G	5/06	314A 2H068
		372			372
	5/05	104		5/05	104B
	5/14	1.0.1		5/14	1016

審査請求 未請求 請求項の数10 OL (全 12 頁)

(21)出願番号	特願2001-172702(P2001-172702)	(71)出願人	000005049
			シャープ株式会社
(22) 出願日	平成13年6月7日(2001.6.7)		大阪府大阪市阿倍野区長池町22番22号
		(72)発明者	杉村 博
			大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(72)発明者	小幡 孝嗣
			大阪府大阪市阿倍野区長池町22番22号 シ
			ャープ株式会社内
		(74)代理人	100100701
			弁理士 住吉 多喜男 (外3名)
			最終頁に続く

(54) 【発明の名称】 電子写真感光体及びそれを用いた電子写真装置

(57)【專約】

【課題】 高解像度、高感度の電子写真感光体、さらに この電子写真感光体を搭載した高精彩画像を出力する複 写機、プリンタ、FAXを実現する。

【解決手段】 導電性支持体上に感光層を有する電子写 真感光体において、感光層にオキソチタニルフタロシア ニンと一般式(1)で表されるN-ナフチルエナミン化 合物を含有する電子写真感光体並びにかかる感光体を搭 裁した電子写真感光体を搭載することにより1200d pi以上の高精彩画像を出力する複写機、プリンタ、F A X 等の電子写直装置(一般式(1)は省略する)。

【特許請求の範囲】

【請求項1】 導電性支持体上に感光層を有する電子写 真感光体において、感光層にオキソチタニルフタロシア ニンと下記一般式(1)で表されるNーナフチルエナミ ン化合物を含有することを特徴とする電子写真感光体。 【化1】

1

$$\begin{array}{cccc}
(R_c)_h & R_s \\
R_s & R_s
\end{array}$$
(1)

【請求項2】 上記オキソチクニルフタロシアニンのC uーK a條 (波長: 1.5418Å) に対する X線回断 30 スペラトルにおいて、ブラッグ角(20±0.2°)で 9.4°と9.6°の重なったビーク東が最大ビークで あり、かつ、27.2°のビークが第2の最大ビークで あることを特徴とする結晶型オキソチタニルフタロシア ニンである請求項 1記数の電子写真愛光体、

【請求項3】 上記一般式(1)で表される式中の-A rが下記一般式(2)で表される基を有するN-ナフチ ルエナミン化合物である請求項1又は請求項2記載のい ずれかの電子写真感光体。

[式中、日・は置換基を有してもよい炭素数1~5のア ルキル基、炭素数1~5のアルコキシ基、炭素数1~5 のチオアルコキシ基あるいは炭素数1~5のジアルキル アミノ基又は水素原子、mは2~5の整数を表す。] 【請求項4】 上記感光層がオキソチタニルフタロシア ンスをかたえま夢の共用を、触ばしぬか4(1)で本さ 2 れるNーナフチルエナミン化合物を含有する電荷輸送層 とからなる請求項1~請求項3記載のいずいかの電子写真感光体。

【請求項5】 上記感光層が酸化防止剤を含有するもの である請求項1~請求項4記載のいずれかの電子写真感 光体。

【請求項6】 上記酸化防止剤がヒンダードアミン化合 物及び/又はヒンダードフェノール化合物である請求項 5記載の電子写真感者体。

10 【請求項7】 上記酸化防止剤が下記一般式(3)で表されるヒンダードアミン化合物である請求項6記載の電子写真感光体。

 $\begin{array}{cccc}
R_0 & R_0 & R_0 \\
R_0 & R_0 & C \\
A-N & N
\end{array}$ (3)

[式中、A,B及びCは同一又は異なって水素原子又は 一偏の有機残差を表し、R。,R。,Ri。及びR:1 は同一又は異なって水素原子又は遺痍基を有してもよい アルキル基を表し、R:2及びR:3はそれぞれ水素原 子、ハロゲン原子、ヒドロキシル基又は遺換基を有して もよいアルキル基を表す。1

【請求項8】 上記酸化防止剤が下記一般式(4)で表されるヒンダードフェノール化合物である請求項6記載の電子写真感光体。

[式中、R:4は水業原子、アルキル基もしくはアリー ル基、R:5は分枝状アルキル基、R:6、R:7、R 1。及びR:9は同一もしくは異なって水素原子又は置 換基を有してもよいアルキル基、アラルキル基あるいは 40 複素環を多表す。]

【請求項9】 導電性支持体上に酸化チタンを含有する 中間層を有する請求項1~請求項8記載のいずれかの電 子写真感光体。

【請求項10】 請求項1~請求項9記載のいずれかの 感光体を解像度1200dpi以上のプロセスに用いる ことを特徴とする電子写真装置。

【発明の詳細な説明】

[0001]

【請求項4】 上記感光層がオキソチタニルフタロシア 【発明の属する技術分野】本発明は高解像度で高感度な ニンを含有する電荷発生層と、前記一般式(1)で表さ 50 電子写真感光体及びそれを用いた電子写真装置に関する 3

ものである。 【0002】

【従来の技術】C.F.Carlsonの発明による電 子写真技術は、即時性、高品質かつ保存性の高い画像が 得られることなどから、近年では複写機の分野にとどま らず、各種プリンターやファクシミリの分野でも広く使 われ、大きな広がりをみせている。この電子写真プロセ スは基本的に、『①感光体の均一な帯電』、『②像露光 による静電潜像の形成』、『**③**該潜像のトナーによる現 像』、『②該トナー像の紙への転写(中間に転写体を経 10 由する場合もある)及び『SD定着による画像形成』とい う5つのプロセスから構成されている。電子写真技術の 中核となる感光体については、その光導電材料として、 従来からのSe、As-Se含金、CdS、ZnOとい った無機系の光導電材料から、最近では、無公害で成膜 が容易、製造が容易である等の無機系では見られない利 点を有する有機系の光導電材料を使用した感光体が開発 されている。中でも高い電荷発生機能を持つ物質で構成 される電荷発生層と、高い電荷輸送機能を持つ物質で構 成された電荷輸送層とを積層した、いわゆる積層型感光 20 体は、それぞれの層で機能を限定しているため材料の選 択範囲が広く安全性の高い感光体が得られること、より 高感度な感光体が得られること、また塗布による製造が 可能で生産性が高くコスト面でも有利なことから、現在 では感光体の主流となっており大量に生産されている。 【0003】近年、画像情報のデジタル化等に伴って、 従来の白色光に替わって、半導体レーザーあるいはLE Dアレイを記録光源として、半導体レーザー光あるいは LEDアレイ光により感光層を露光して画像情報を記録 することが行われるようになっている。現在、感光層の 30 電光光源として、780nmの近赤外光や650nmの 赤色光源が、最もよく使用されている。デジタル化され た画像情報は、文字等の情報をコンピュータ出力として 直接利用する場合には、光信号に変換されたコンピュー タの出力情報によって感光体上に画像情報が記録される が、原稿の画像情報が入力される場合には、原稿の画像 情報は光情報として読み取られてデジタル電気信号に変 換された後に、再度、光信号に変換されて、その光信号 によって感光体上に画像情報が記録される。

【0004】いずれの場合にも、光記録へッド、記録光 学系等から患光層に照射される微小の光スポットによっ て、画像精酔が感光型に混録されるようになっており、 光スポットが照射された部分がトナーによって現像され 。画像はよ、トナーによって現像された画業と呼ばれる 微小ドットの集合及び配列によって表現される。このた めに、光記録やッド、記録学学系等では、高密度で画像 積報が記録されるようにできるだけ微小なスポットを形 成し得るように高分解能化が進められている。感光層に 画像情報を記録する光学系に関しては、可変スポットレ ーザージ程本す(O p 1) で、F1906で5日) マルチレーザービーム記録方式、超精密及び航空速でリ ゴンミラー(Japan Hardcopy '96論文 集)等が開発されている。その結果、現在では、光学系 によって、1200dpi(dot/inch:1/12 当たりのドット数)以上の記録密度で、患光層に画像 情報を記録するための光学系が開発されている。

4

【0005】上記のように感光層に高密度に画像情報を 記録する光学系が開発されても、画像情報を再現性よく 静電潜像として感光層に記録することは必ずしも容易で はない。近年、プリンタ、複写機の高速化に伴い、高感 度な電荷発生材料が開発されてきている。特にチタニル フタロシアニンは電荷発生能力が高く、結晶型によって は量子効率が0.82という高い値も報告されている。 (Japan Hardcopy' 89論文集103 (1989)) しかし、積層感光体で、このような高感 度な電荷発生材料を用いると、所望の高解像度が得られ ないという欠点がある。この現象の詳細は明らかではな いが、大量の電荷が一度に電荷輸送層界面に蓄積し空間 電荷が形成され表面方向の電界が一時的に低下するため に電荷の横方向への拡散が顕著となり解像度低下してし まうと考えられる。また、電荷輸送材料中に高感度な電 荷発生材料を分散した単層型の感光体においても所望の 高感度化が困難である問題がある。これは電荷輸送材料 への注入効率が低いと、電荷発生材料中で発生したキャ リアがそのまま電荷発生材料中で蓄積し、注入される前 に再結合してしまい高感度化できないと考えられる。こ の電荷発生材料から電荷輸送材料への注入効率について は、電荷発生材料と電荷輸送材料のイオン化ポテンシャ ルによって整理する試みが行われているが、両者の構造 に起因する要素があり一概に整理できないのが現状であ

た画版情報は、文学等の情報をコンピューク出力として 直演利用する場合には、光信号に変換されたコンピュータの出力情報によって恋光体上に画像情報が記録されるが、原稿の画像情報が元はかられてコンピュータの出力情報によって恋光体上に画像情報が記録される。 が、原稿の画像情報が入力される場合には、原稿の画像情報が記録される。 は、持有第2816059号公根、特開平10-691 67-524 特別第210-133401号公根、特問平10-691 67-524 特別第2000-112157号公根あるいは対き 度された後に、再度、光信号を変換されて、その光信号 によって恋光体上に画像情報が記録される。 (0004)いずれの場合にも、光記録ペッド、記録光 字条本から恋光用に顕きされるようになっており、 だえボットが照接された部分がトナーによって現場され あ、画像は、トナーによって現場され。 とが示されているが順厚を書くする必要があり、統り返 も声が高が低するなたがあると、 とが示されているが順厚を書くする必要があり、統り返 も声が高が低するなたがあると、 とが示されているが順厚を書くする必要があり、統り返 も声が高が低するなたがあると、

[0007]

 5

い材料を見出し、高解像度、高感度の電子写真感光体を 実現することにある。さらにこの電子写真感光体の繰返 し使用時の耐久性を向上させることにある。さらにこの 電子写真感光体を搭載することにより1200 dpi以 上の高精彩画像を出力する複写機、プリンタ、FAXを 実現することにある。

[0008]

【課題を解決するための手段】本発明者らは、高感度、 高解像度の感光体を開発すべく、電荷発生材料、電荷輸 送材料について鋭意検討を重ねた結果、電荷発生材料に 10 ム、金、銀、銅、ニッケル、酸化インジウム、酸化錫等 オキシチタニルフタロシアニンを用い、電荷輸送材料と して特定のエナミン化合物を用いることにより、高感度 で高解像度の感光体を実現することに成功した。さら に、特定の添加剤を用いることにより耐久性をも兼ね備 えた電子写真感光体を実現することに成功した。

【0009】すなわち、本発明は、導電性支持体上に感 光層を有する電子写真感光体において、感光層にオキソ チタニルフタロシアニンと下記一般式 (1)で表される N-ナフチルエナミン化合物を含有することを特徴とす る電子写真感光体を提供するものである。

【化5】

「式中、Arは、置換基を有してもよいアリール基、ア ラルキル基、複素環基あるいは炭素数1~5のアルキル 30 基. R・は. 雷磁基を有してもよい炭素数1~5のアル キル基、炭素数1~5のアルコキシ基、炭素数1~5の チオアルコキシ基あるいは炭素数1~5のジアルキルア ミノ基又は水素原子、R2は、置換基を有してもよいア ラルキル基あるいは炭素数1~5のアルキル基又は水素 順子、Roは置換基を有してもよいアリール基 アラル キル基、複素環基あるいは炭素数1~5のアルキル基。 R4は、置換基を有してもよいアリール基、R5及びR 6 は、同一又は異なって、置換基を有してもよいアリー ル基、アラルキル基、複素環基あるいは炭素数1~5の 40 アルキル基又は水素原子、nは0から6の整数を表す。 但し、Ar、Raが共に水素の場合及びRa、Raが共 (こ水素の場合を除く。)

また、本発明は、上記電子写真感光体を解像度1200 dpi以上のプロセスに用いることを特徴とする電子写 直装置を提供するものである。

[0010]

【発明の実施の態様】以下、本発明を詳細に説明する。 本発明の電子写真感光体の構成としては、図1のように 感光層が電荷発生層と電荷輸送層の2層から構成される 50 の製造方法としては、上記フタロシアニン化合物の微粒

積層型電子写真感光体。図2のように感光層中に電荷輸 送物質と電荷発生物質を含有する単層型設けた感光体、 図3のように導電性支持体と感光層の間に中間層として 下引き層を積層型電子写真感光体、あるいは図4のよう に導電性支持体と感光層の間に中間層として下引き層を 設けた単層型電子写真感光体のいずれの構成も取り得る ものである。導電性支持体としては、例えばアルミニウ ム、アルミニウム合金、ステンレス鋼、鉄、金、銀、 銅、亜鉛、ニッケル、チタン等の金属材料やアルミニウ を蒸着したプラスチック基体、ポリエステルフィルム、 紙、又は導電性粒子を含有したプラスチック、紙、ある いは導電性ボリマーを含有するアラスチック等が使用で きる。それらの形状としては、ドラム状、シート状、シ 一ムレスベルト状等のものが使用できる。

【0011】本発明の電荷発生物質としては、下記一般 式(5)で表されるオキソチタニルフタロシアニン化合 物が用いられる.

【化6】

[式中、R20, R21, R22, R23は水素原子、 ハロゲン原子、アルキル基、あるいはアルコキシ基を表 わし、q、r、s、tは0から4の整数を表わす。] このオキソチタニルフタロシアニンは、モーザー及びト ーマスの「フタロシアニン化合物」(Moser an d Thomas. "Phthalocvanine Compounds")に記載されている方法、あるい はその他の種々の公知方法によって合成することができ

【0012】上記一般式(5)で表される化合物のうち 好主しい化合物は、Cu-Kα線(波長: 1,5418 Å)に対するX線回折スペクトルにおいて、ブラッグ角 (2θ±0, 2°)で9, 4°と9, 6°の重なった最 大ピーク束をもち、かつ、27.2°のピークが第2の 最大ピークをもつ結晶型オキソチタニルフタロシアニン である。このオキソチタニルフタロシアニンは、例え ば、特開平10-237347号公報に記載されている 合成法により得ることができる。

【0013】積層型電子写真感光体の場合、電荷発生層

子に有機溶媒を加え、ボールミル、サンドグラインダ ー、ペイントシェーカー、超音波分散機等によって粉 砕、分散して得られる塗液を用い、シートの場合にはべ ーカーアプリケーター、バーコーター、キャスティン グ、スピンコート等により、ドラムの場合にはスプレー 法、垂直リング法、浸漬塗工法等により作製される。こ の際、結着性を増すためにバインダー樹脂として、例え ばポリエステル樹脂、ポリビニルアセテート、ポリアク リル酸エステル、ポリカーボネート、ポリアリレート、 ポリビニルアセトアセタール、ポリビニルプロピオナー 10 ナミン化合物のうち好ましい具体的な例としては、次の ル、ポリビニルブチラール、フェノキシ樹脂、エポキシ 樹脂、ウレタン樹脂、メラミン樹脂、シリコーン樹脂、 アクリル樹脂、セルロースエステル、セルロースエーテ ル、塩化ビニル-酢酸ビニル共重合体樹脂等の各種バイ*

*ンダー樹脂を加えてもよい。その膜厚は通常0.05μ $m\sim5\mu m$ が好ましく、特に $0.1\sim1\mu m$ が好適であ る。また、電荷発生層には必要に応じて、途布性を改善 するためのレベリング剤や酸化防止剤、増感剤等の各種 添加剤を加えてもよい。

【0014】電荷輸送層は、主に電荷輸送物質とバイン ダー樹脂から構成され、電荷輸送物質としては、前記一 吸式(1)で表されるN-ナフチルエナミン化合物が用 いられる。この一般式 (1) で表されるN-ナフチルエ ような化合物が挙げられる。 [0015]

【化71

[0016] ※ ※【化8】

【0017】これらのNーナフチルエナミン化合物は 例えば特許第2816059公報に記載された合成法に より得ることができる。これらの電荷輸送物質は単独で も、また複数の化合物を混合して用いてもよい。複数の 化合物を混合して用いる場合には、類似のエナミン化合 物もしくは、カルバゾール、インドール、イミダゾー ル、オキサゾール、ピラゾール、オキサジアゾール、ピ ラゾリン、チアジアゾール等の複素環化合物、アニリン 化合物、ヒドラゾン化合物、芳香族アミン化合物、スチ らなる基を主緒もしくは側鎖に有する重合体などの電子 供与性物質が挙げられる。好ましくは、N-ナフチルエ ナミン化合物を主成分とする組成が好適である。

【0018】これらの電荷輸送物質がバインダー樹脂に 結着した形で電荷輸送層が形成される。電荷輸送層に使 用されるバインダー樹脂としては、例えばボリカーボネ ート、ポリメチルメタクリレート、ポリスチレン、ポリ 塩化ビニル等のビニル重合体、及びその共重合体、ポリ エステル、ポリエステルカーボネート、ポリアリレー ト、ボリスルホン、ボリイミド、フェノキシ、エボキ *50

*シ、シリコーン樹脂等が挙げられる。またこれらの樹脂 の部分的架橋硬化物も使用できる。バインダー樹脂と電 荷輸送物質の割合は、通常バインダー樹脂100重量部 に対して30~200重量部、好ましくは40~150 重量部の範囲で使用される。また膜厚は一般に5~50 um. 好ましくは10~45 umがよい、これらの電荷 輸送層は、電荷発生層と同様な装置で塗布される。 【0019】なお電荷輸送層には、成膜性、可とう性、 塗布性などを向上させるために周知の可塑剤、酸化防止 リル化合物、エナミン化合物、或いはこれらの化合物か 40 剤、紫外線吸収剤、レベリング剤などの添加剤を含有さ せても良いが、好ましくは酸化防止剤 さらに好ましく はN-ナフチルエナミン化合物の特性を損なうことなく 耐久性を向上させる方法として前記一般式(3)で表さ れるヒンダードアミン化合物もしくはヒンダードフェノ ール化合物を含有させることが好適である。 【0020】前記一般式(3)で表されるヒンダードア ミン化合物の好ましい具体的化合物として次の化合物が 挙げられる。 【化9】

【0021】また、ヒンダードフェノール化合物として *の具体例としては次の化合物が挙げられる。 は前記一般式(4)で表される化合物が好ましい。かか 【化10】 る一般式(4)で表されるヒンダードフェノール化合物*40

(3 - 9)

$$(t)C_{i}H_{g} \xrightarrow{\begin{array}{c} 1 \ 3 \\ OH \\ C_{i}H_{g}(t) \end{array}} (t)C_{i}H_{g} \xrightarrow{\begin{array}{c} OC_{il}H_{g} \\ C_{i}H_{g}(t) \end{array}} (t)C_{i}H_{g} \xrightarrow{\begin{array}{c} OC_{il}H_{g} \\ C_{i}H_{g}(t) \end{array}} (d-1)$$

$$(t)C_4H_6 \longrightarrow OH \longrightarrow C_4H_8(t) \longrightarrow C_4H_8(t) \longrightarrow CH_8 \longrightarrow CH_8 \longrightarrow CH_8$$

$$(t)C_4H_8 \longrightarrow CH_8 \longrightarrow CH_8$$

$$(t)C_4H_8 \longrightarrow CH_8 \longrightarrow CH_8$$

$$(t)C_4H_8 \longrightarrow$$

$$\begin{array}{c} (t)C_{4}H_{9} \\ HO \\ CH_{2}CH_{3}COOCH_{4}CH_{2}OCH_{4} \end{array} \tag{4-5}$$

$$(t)C_tH_0$$

$$HO \longrightarrow NH \longrightarrow N$$

$$N = \begin{cases} S C_tH_0 \\ N = \begin{cases} S C_tH_0 \end{cases} \end{cases}$$

$$(4-7)$$

【00221一方、単層型電子写真感光体の場合には、 感光層として上記のようを配合比からなる電荷輸送層中 に、電荷産生物質としてオネッチタニルフタロシアニン が分散される。その場合の粒径は十分小さいことが必要 であり、好ましくは14m以下で使用される。感光層例 (分散される電荷発生物質の量は過少では感度不足、過 多では滞電性低下、感度低下を誘発する等の弊話があ り、0.5~50重量%。好ましくは1~20重量%で 使用される。感光層の順限ま5~404m、好ましくは 15~304mで使用される。

*【0023】また、この場合にも、好ましくは本発明の 酸化防止剤を含有させるとよい。さらに、成既性、可と う性、機械的強度等を必要するためのと知り可認利、発 留電位を抑制するための添加利、分散安定向上のための 分散補助剤、強症性を改善するためのレベリング剤、界 高性利、例えばシリコーンオイル、ファ索系オイル、 その他の添加利が加えられてもよい、さらに等電性支持 体と感光類との間には中間関が設けられていてもよい、 中間層としては、例えばアルミニウム等極機を他騰、複 *50 化アルミニウム、水酸化アルミニウム等の無機関、ボリ ビニルアルコール、カゼイン、ポリビニルピロリドン、 ポリアクリル酸、セルロース類、ゼラチン、デンプン、 ポリウレタン、ポリイミド、ポリアミド等の有機層が使 用される。また、これらの中間層には、アルミニウム、 銅、錫、亜鉛、チタンなどの金属あるいは金属酸化物な どの導電性または半導電性激粒子を含んでいてもよい が、酸化チタンが特に好ましい。中間層の膜厚は0.1 ~50 mm、好ましくは0.5~20 mmで使用され る。さらに、必要であれば感光層表面を保護するために や、光または熱硬化性樹脂を用いることができる。 【0024】 「実施例] 次に本発明を実施例をあげて具

体的に説明するが、本発明は、その趣旨を超えない限り

以下の実施例に限定されるものではない。

【0025】(製造例1) o-フタロジニトリル40 g. 四塩化チタン18g. α-クロロナフタレン500 m1を窒素雰囲気下200~250℃で3時間加熱撹拌 して反応させ、100~130℃まで放冷後、熱時沪過 1.00℃に加熱したαークロロナフタレン200m 1で洗浄してジクロロチタニウムフタロシアニン粗牛成 20 物を得た。この粗生成物を、室温にてαークロロナフタ レン200m1、次いでメタノール200m1で洗浄 後、さらにメタノール500ml中で1時間熱懸洗を行 沪過後、得られた翔生成物を、水500m1中で、 pHが6~7になるまで、熱懸洗を繰り返した。その 後 乾燥してオキソチタニルフタロシアニン中間結晶を 得た、得られた結晶のX線回折スペクトルを図6に示 す。ブラッグ角(20±0,2°)27,3°に最大回 折ピークを示し、かつ、7.4°、9.7°、27.3 。に回折ビークを有する特開平2-8256号公報や特 30 開平7-271073号公報に記載のY型と呼ばれる結 晶型オキソチタニルフタロシアニンであることが分か

【0026】(製造例2)この結晶を、シクロヘキサノ ンに混合し、ペイントコンディショナー装着(レッドレ ベル計製)により直径2mmのガラスビーズと共にミリ ング処理し、メタノールで洗浄した後、乾燥して本発明 の結晶を得た。得られた結晶のX線回折スペクトルを図 7に示す。ブラッグ角(2θ±0, 2°)9, 4°と 7°の重なったピーク束に最大回折ピークを示し、 かつ、27、2°に第2の最大ピークを示す結晶型のオ キソチタニルフタロシアニンであることが分かる。 【0027】なお、X線回折の測定は、次の条件で行っ

た。 X線源 $CuK\alpha = 1.5418$ Å 電圧 40 k V 電流 50 mA スタート角度 5. 0deg. ストップ角度 30. Odeg. ステップ角度 0.02deg.

測定時間 0.5deg./sec $\theta/2\theta$ スキャン方法 測定方法 【0028】 [実施例1] 酸化チタン(石原産業社製: TT055A) 7重量部と共重合ナイロン(東レ社製: CM8000) 13重量部をメチルアルコール159重 量部と1、3-ジオキソラン106重量部の混合溶剤に 加え、ペイントシェーカーにて8時間分散処理し中間層 用途液を調製した。この途液を塗布槽に満たし、導電性 支持体として直径30mm、全長326.3mmのアル 保護層を設けてもよい。表面保護層には、熱可塑性樹脂 10 ミニウム製のドラム状支持体を、浸漬し引き上げ、自然 乾燥して膜厚1μmの中間層を形成した。そして、電荷 発生材料として製造例2で合成した図7のX線回折スペ クトルを有するオキソチタニルフタロシアニン3重量部 と、ブチラール樹脂(精水化学計製:BL-1)2重量 部をメチルエチルケトン245重量部に混合しペイント シェーカーにて分散して得られた電荷発生層用途液を上 記中間層上に塗布、自然乾燥して膜厚0.4 μmの電荷 発生層を形成した。続いて電荷輸送材料として例示化合 物No. 1-8の構造式で示されるエナミン化合物5重 量部、ポリカーボネート樹脂 (三菱ガス化学社製:PC Z400) 8重量部を混合し、テトラヒドロフラン49 重量部を溶剤として電荷輸送層用塗液を作り、上記電荷 発生層上に途布。110℃にて1時間乾燥し膵厚21 u mの電荷輸送層を形成し、図4に示される構成の電子写

真感光体を作製した。 【0029】 [実施例2]実施例1において電荷輸送材 料を例示化合物No. 1-10の構造式で示されるエナ ミン化合物を用いた他は、実施例1と同様にして、電子 写真感光体を作製した。

【0030】「実施例3]実施例1において電荷輸送材 料を例示化合物No. 1-12の構造式で示されるエナ ミン化合物を用いた他は、実施例1と同様にして、電子 写真感光体を作製した。

【0031】「実施例4]酸化チタン(石原産業社製: TTO55A) 7重量部と共重合ナイロン(東レ社製: CM8000) 13重量部をメチルアルコール159重 量部と1.3-ジオキソラン106重量部の混合溶剤に 加え、ペイントシェーカーにて8時間分散処理し中間層 用塗液を調整した。この塗液を塗布槽に満たし、導電性 40 支持体として直径30mm、全長326.3mmのアル ミニウム製のドラム状支持体を、浸清し引き上げ、自然 乾燥して膜厚1 µmの中間層を形成した。そして電荷発 牛材料として製造例2で合成した図7のX線回折スペク トルを有するオキソチタニルフタロシアニン8重量部を テトラヒドロフラン100重量部に混合しペイントシェ 一カーにて分散処理した後、電荷輸送材料として例示化 合物1-8の構造式で示されるエナミン化合物100重 量部、ポリカーボネート樹脂(三菱ガス化学社製:PC Z400)100重量部、テトラヒドロフラン680重 50 量部を混合し撹拌して感光層用塗液を作製した。この塗 17

液を塗布槽に満たし、導電性支持体として直径30m m、全長326.3mmのアルミニウム製のドラム状支 持体を、浸漬し引き上げ、110℃で1時間、乾燥して 膜厚20 mmの図5に示される構成の単層型感光体を形 成した。

【0032】「実施例5】実施例1において電荷発生材 料として製造例1で合成した図6のX線回折スペクトル を有するオキソチタニルフタロシアニンを用いた他は、 実施例1と同様にして、電子写真感光体を作製した。

【0033】 [実施例6]実施例1において電荷輸送層 10 塗液にさらに例示化合物No. 3-7で示されるヒンダ ードアミン化合物 (三共社製サノールLS440) O. 1 重量部を加えた他は、実施例1と同様にして、電子写 直感光体を作製した。

【0034】 [実施例7] 実施例1において電荷輸送層 途流にさらに例示化合物No. 7-1で示されるヒンダ ードフェノール化合物(住友化学社製スミライザーBH T) 0.5重量部を加えた他は、実施例1と同様にし

て、電子写真感光体を作製した。 【0035】[実施例8]実施例1において電荷輸送材*20 【化12】

【化11】

【0036】 「実施例9】実施例1において電荷輸送層 塗液にさらに下記構造式で示されるヒンダードアミン化 合物(分子量3100~4000;チバ・スペシャルテ イ・ケミカルズ社製チヌビン622LD)0.1重量部 を加えた他は、実施例1と同様にして、電子写真感光体 を作制した。

【0037】(比較例1)実施例1において電荷発生材 料としてX型無金属フタロシアニン(大日本インキ化学 工業社製ファストゲンブルー8120BS)を用いた他 は、実施例1と同様にして、電子写真感光体を作製し

【0038】(比較例2)実施例1において電荷輸送材 料として4-ジベンジルアミノ-2-メチルベンズアル デヒド-1、1-ジフェニルヒドラゾン (アナン社製C TC-191) を用いた他は、実施例1と同様にして、 雷子写直感光体を作製した。

【0039】(比較例3)実施例4において電荷輸送材 料として4-ジベンジルアミノ-2-メチルベンズアル デヒドー1.1ージフェニルヒドラゾン (アナン社製C TC-191)を用いた他は、実施例4と同様にして、 単層電子写直感光体を作製した。

【0040】「評価]

感度の評価

作製した電子写真感光体をドラム感度試験機(GENT EC社製)を用いて感度を評価した。感光体表面をスコ ロトロンチャージャーで一600Vに帯電させ、次い で、露光光源であるハロゲンランプの白色光からバンド パスフィルタを用いて取り出した波長780nmの単色 光を感光体表面に露光して、上記表面電位が1/2にな

※/cm2)とした。また、露光開始から5秒経過時の表 面電位を残留電位Vr(V)として測定した。なお、実 施例4及び比較例3については帯電極性を逆にして正帯 30 電として測定した。結果を表1に示す。この結果から、 本拳明の電子写直感光体は高感度であることがわかる。 また、特に実験例1~3の特定構造のN-ナフチルエナ ミン化合物は、実施例8のN-ナフチルエナミン化合物 よりさらに高感度であることがわかる。 [0041]

【表1】

例	YO	E1/2	Vr	_
	(v)	(µ J/cm2)	(V)	
実施例1	-600	0. 11	-5	_
実施例2	-600	0.13	-9	
実施例3	-600	0.12	1-8	
実施例 4	600	0.17	25	
実施例 5	-600	0.14	-13	
実施例 6	-600	0.12	-10	
突旋例7	-600	0.14	-13	
実施例8	-600	0.15	-15	
実施例 9	-600	0.14	-14	
比較例1	-600	0.35	-70	
比較例2	-600	0.25	-45	i
比較例3	600	0.47	90	

【0042】2. 解像度の評価

作製した電子写真感光体を市販の複写機(シャープ社製 るのに要するエネルギーを、半減露光量E1/2(µJ※50 AR-N200)を1200dpi相当のドットが出力 できるように改造した実験機に搭載し、パソコンにて里 ベタに白 1ドットを書かせるデータ(レーザーを前面走 をし 1ドットのみオンとするデータ)を伸返し、このデ ータをプリンターインターフェースを介して送信し、ア リントアウトされた出力画像を観察した。ただし、実施 個4 及び建放例 3 については、改造した実験機をきら に、正帯電プロセスに改造した後、作製した電子写真感 光体を搭載し、同様な画像評価を行った。評価結果を表 皮画像を出力できることがわかった。

[0043]

*【0044】3. 耐久性の評価

実施例6、実施例7、実施例9、比較例2で作製した電 子写真感光体を前記評価用複写機に搭載し、ハーフトー ンチャートでの画像の確認後、現像槽位置での表面電位 を測定できるように表面電位計(TREK社製Mode 1344) を設置し、初期の帯電電位(VO)、ハーフ トーンチャートをコピーしたときの表面電位(VH)、 黒ベタチャートをコピーした時の表面電位(VL)を測 定した。次に、A41万枚のコピーを行った後、同様な 10 測定を行い、繰返し使用時の変化を評価した。結果を表 3に示す。酸化防止剤を含有させた、実施例6、実施例 7、実施例9の電子写真感光体は、比較例2に比べて縁 返し使用時の耐久性に優れていることがわかる。さら に、実施例6と実施例7のように特定構造の酸化防止剤 を含有させることにより、より安定した電位特性を有す る耐久性に優れた電子写真感光体ができることがわか 3.

【0045】 【表3】

初期			1万枚使用接			ハーフトーン事後	
VO	W	YL.	VO	AH	VL.		
590	355	85	585	360	95	初期、論派し使用後も極めて身好。	
590	360	85			95	初期、無返し使用後も極めて良好。	
590	355	85			106	初期、練運し使用袋も開西な1	
590	400	110	600	460	200	初期は良好だが、鎌返し使用後に顕像濃度係? と周期的な条状の濃度ムラが発生。	
	90 590 590 590 590	VO VH 590 355 590 360 590 355 590 400			590 360 85 590 350 590 355 85 590 370 590 400 110 600 460	590 360 85 590 360 95 590 355 85 590 270 106 590 400 110 600 460 200	

20

[0046]

【発明の効果】以上詳細に説明したように、本発明の感 光層にオキソチタニルフタロンアニンと特定の一般式 (1)で表されるNーナフチルエナミン化合物とを含有 する感光体は、解像度において優れているのみならず、 高い感度を有するという電子写真感光体の基本的特性を 具備し、各ら正別女性に易優れており、したかで、本 発明は、高解像度の画像を実現し、しかも耐久性に優れ た両期的ともいうべき電子写真装置を開発した。 【図面の簡単を説明】

- 【図1】本発明の導電性支持体上に電荷発生層、電荷輸 40 送層の順で積層した積層型感光体の模式的断面図。
- 送層の順で積層した積層型感光体の模式的断面図。 【図2】本発明の導電性支持体上に電荷輸送層、電荷発
- 生層の順で積層した積層型感光体の模式的断面図。 【図3】本発明の単層型感光体の模式的断面図。
- 【図4】本発明の中間層及び電荷発生層と電荷輸送層の※

30※3層からなる積層型感光体の模式的断面図。

【図5】本発明の中間層及び感光層からなる感光体の模式的断面図。

【図6】製造例1で得られたオキソチタニルフタロシア ニンのX線回折スペクトル図。

【図7】製造例2で得られた結晶型オキソチタニルフタロシアニンのX線回折スペクトル図。

- 【符号の説明】
- 1 導電性支持体
- 2 電荷発生材料 3 電荷移動材料
 - 4.4'感光層
 - 5 電荷発生層
 - 「個門元工/何」
- 6 電荷移動層 7 表面保護層
- 8 中間層(下引き層)

【図6】

【図7】

フロントページの続き

(72)発明者 近藤 晃弘 大阪府大阪市阿倍野区長池町22番22号 シ ャープ株式会社内 Fターム(参考) 2H068 AA19 AA20 AA21 AA34 AA35 AA45 BA12 BA13 BA14 BA16 BA39 CA29 FA11