Investigation 2 2017

Vector Applications

Solutions

Take Home Section

Complete this Take Home Component on file paper showing all working out and reasoning. Use of CAS calculator to aid calculation is assumed, particularly for Questions 2 to 5. On completion of Part 1 there will be a Validation Task (Part 2). For Part 2, CAS calculators will be allowed in the calculator section of the validation, but no other notes will be permitted.

Part 1: Take Home Component

- 1. Given two points A<-9,3> and P<3,-3> determine
- a) the vector \overline{AP} $\overline{AP} = \begin{pmatrix} 3 \\ -3 \end{pmatrix} \begin{pmatrix} -9 \\ 3 \end{pmatrix} = \begin{pmatrix} 12 \\ -6 \end{pmatrix} \text{ ov } |2i 6j|$
- b) the exact distance between A and P $12^{2} + (-6)^{2} / = \sqrt{180} \text{ or } 6\sqrt{5} / \sqrt{180}$
- c) the unit vector \overrightarrow{AP} $= \frac{1}{6\sqrt{5}} \begin{pmatrix} 12 \\ -6 \end{pmatrix} \text{ or } \begin{pmatrix} \frac{2}{\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{pmatrix} \checkmark$
- d) the vector equation of the line containing both points

Point C lies on the line AP such that \overline{CO} is perpendicular to \overline{AP} , 0 being the Origin.

e) Determine the coordinates of point C.

f) Determine
$$|\vec{cq}|$$
 $|\vec{cq}|$ $|$

2. The position vectors (r) and velocity vectors (v) of two ships A and B at 9.00 a.m. on a particular day were as follows:

$$r_{A} = 30i + 30j \text{ km}$$
 $v_{A} = 12i - 4j \text{ km/h}.$

$$r_B = -10i + 35j$$
 km $v_B = 20i - 5j$ km/h.

Show that if the two ships continue with these velocity vectors they will collide.

$$r_A(t) = \begin{pmatrix} 30 + 12t \\ 30 - 4t \end{pmatrix}$$
 $r_B(t) = \begin{pmatrix} -10 + 20t \\ 35 - 5t \end{pmatrix}$
Equating i components $30 + 12t = -10 + 20t$
 $\Rightarrow t = 5$
Equating j components $30 - 4t = 35 - 5t$
 $\Rightarrow t = 5$
Since both times are the same, the ships will collide $\sqrt{2}$

3. The position vectors (r) and velocity vectors (v) of two ships A and B at 9.00 a.m. on a particular day were as follows:

$$r_{\lambda} = 10i + 15j$$
 km $v_{\lambda} = 12i + 4j$ km/h.

$$r_B = -10i + 35j$$
 km $v_B = 20i + 5j$ km/h.

Show that if the two ships continue with these velocity vectors their paths will cross but they will not collide.

Figurating
$$L$$
 components

Figurating L compo

3b)4.

Determine the angle between the ships' respective direction vectors, giving your

answer to the nearest degree. Full working must be shown for

$$V_A = \begin{pmatrix} 12 \\ 4 \end{pmatrix} \quad V_B = \begin{pmatrix} 20 \\ 5 \end{pmatrix}$$
 $COSO = \frac{V_A \cdot V_B}{|V_A||V_B|} = \frac{\begin{pmatrix} 12 \\ 4 \end{pmatrix}| \begin{pmatrix} 20 \\ 5 \end{pmatrix}}{|\begin{pmatrix} 12 \\ 4 \end{pmatrix}| \times |\begin{pmatrix} 20 \\ 5 \end{pmatrix}|}$
 $= \frac{260}{4 \times 10} \times 5 \times 17$
 $SO = 4.398705355^\circ$
 $SO = 4^\circ (Odp)$

Particle P starts moving from a point with position vector < 10, 14 > metres with constant velocity < 5, 2 > metres per second. P continues with this velocity passing a stationary object at A< 34,12 > metres. Determine the closest distance between P and A. State the position of the closest point to A and when this occurs.

$$P(t) = \begin{pmatrix} 10 + 5t \\ 14 + 2t \end{pmatrix} \qquad r_{A} = \begin{pmatrix} 34 \\ 12 \end{pmatrix}$$

$$\overrightarrow{AP} = \begin{pmatrix} 10 + 5t - 34 \\ 14 + 2t - 12 \end{pmatrix} = \begin{pmatrix} 5t - 24 \\ 2t + 2 \end{pmatrix}$$

$$V_{P} \cdot \overrightarrow{AP} = O$$

$$So \quad \begin{pmatrix} 5 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 5t - 24 \\ 2t + 2 \end{pmatrix} = O$$

$$So \quad \begin{cases} 5 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 5t - 24 \\ 2t + 2 \end{pmatrix} = O$$

$$So \quad \overrightarrow{AP} = \begin{pmatrix} 5 \times 4 - 24 \\ 2 \times 4 + 2 \end{pmatrix} = \begin{pmatrix} -4 \\ 10 \end{pmatrix} \checkmark$$

$$|\overrightarrow{AP}| = 2\sqrt{29} \quad \text{of} \quad 10.77032961 \text{ m}$$

$$Pomt \quad P \quad \text{is} \quad \begin{pmatrix} 10 + 5 \times 4 \\ 14 + 2 \times 4 \end{pmatrix} = \begin{pmatrix} 30 \\ 22 \end{pmatrix} \checkmark$$

Closest point to A is 30i + 22j m. after 4 seconds

5. S. Objects P and Q start moving from points with position vectors < -5, -15 > m and < 10, 20 > m with constant velocities < 3, 4 > m/s and < 1, -5 > m/s respectively. By using relative positions and relative velocities and a scalar product method, determine the closest distance between P and Q. State the positions of P and Q at the time and when this occurs.

$$\Gamma_{P} = \begin{pmatrix} -5 \\ -15 \end{pmatrix} \quad \Gamma_{0} = \begin{pmatrix} 10 \\ 20 \end{pmatrix} \quad P_{0} = \begin{pmatrix} -3 \\ -4 \end{pmatrix} \quad V_{0} = \begin{pmatrix} -15 \\ -15 \end{pmatrix} \\
= \begin{pmatrix} -5 \\ -15 \end{pmatrix} - \begin{pmatrix} 10 \\ 20 \end{pmatrix} = \begin{pmatrix} -15 \\ -35 \end{pmatrix} \quad Stopping everything relative to Q$$

$$P_{0} = \begin{pmatrix} 3 \\ -4 \end{pmatrix} - \begin{pmatrix} 1 \\ -5 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad V$$

$$C_{1} = \begin{pmatrix} 10 \\ 20 \end{pmatrix} \quad C_{2} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} \quad V$$

$$C_{3} = \begin{pmatrix} 10 \\ 20 \end{pmatrix} \quad C_{4} = \begin{pmatrix} 10 \\ -15 \end{pmatrix} = \begin{pmatrix} 10 \\ 10 \end{pmatrix} \quad C_{5} = \begin{pmatrix} 10 \\$$

So
$$\left(-\frac{15+2t}{-35+t}\right)$$
. $\left(\frac{2}{1}\right)=0$

Solve gives
$$t=13$$

So $r_p = \begin{pmatrix} -5 + 3 \times 13 \\ -15 - 4 \times 13 \end{pmatrix} = \begin{pmatrix} 34 \\ -67 \end{pmatrix}$
 $r_0 = \begin{pmatrix} 10 + 1 \times 13 \\ 20 - 5 \times 13 \end{pmatrix} = \begin{pmatrix} 23 \\ -45 \end{pmatrix}$

Closest distance =
$$\begin{pmatrix} 34 \\ -67 \end{pmatrix} - \begin{pmatrix} 23 \\ -45 \end{pmatrix}$$

== 1155 or 24.59674775 m

Pisar 34i-67j and Qaf 23i-45j when the distance is least, at 24.597m(3dp) after 13 seconds,