Package 'nixtlar'

October 29, 2024

Title A Software Development Kit for 'Nixtla"s 'TimeGPT'

Version 0.6.2

Description A Software Development Kit for working with 'Nixtla''s 'TimeGPT', a foundation model for time series forecasting. 'API' is an acronym for 'application programming interface'; this package allows users to interact with 'TimeGPT' via the 'API'. You can set and validate 'API' keys and generate forecasts via 'API' calls. It is compatible with 'tsibble' and base R. For more details visit https://docs.nixtla.io/>.

License Apache License (>= 2.0)

Encoding UTF-8

RoxygenNote 7.2.3

Depends R (>= 2.10)

LazyData true

Imports dplyr, future, future.apply, ggplot2, httr2, lubridate, purrr, rlang, tidyr, tidyselect

Suggests httptest2, knitr, rmarkdown, testthat (>= 3.0.0), usethis

Config/testthat/edition 3

URL https://nixtla.github.io/nixtlar/, https://docs.nixtla.io/,
 https://github.com/Nixtla/nixtlar

VignetteBuilder knitr

 $\pmb{BugReports} \ \text{https://github.com/Nixtla/nixtlar/issues}$

NeedsCompilation no

Author Mariana Menchero [aut, cre] (First author and maintainer), Nixtla [cph] (Copyright held by 'Nixtla')

Maintainer Mariana Menchero <mariana@nixtla.io>

Repository CRAN

Date/Publication 2024-10-28 23:10:02 UTC

2 electricity

Contents

electricity	2
electricity_exo_vars	3
electricity_future_exo_vars	4
infer_frequency	5
nixtla_client_historic	5
nixtla_client_plot	6
nixtla_client_setup	8
nixtla_set_api_key	8
nixtla_validate_api_key	9
1	10

electricity

Electricity dataset

Description

Contains prices of different electricity markets.

Usage

Index

electricity

Format

electricity:

A data frame with 8400 rows and 3 columns:

unique_id Unique identifiers of the electricity markets.

- ds Date in format YYYY:MM:DD hh:mm:ss.
- y Price for the given market and date.

Source

https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short.csv

electricity_exo_vars 3

Description

Contains prices of different electricity markets with exogenous variables.

Usage

```
electricity_exo_vars
```

Format

electricity_exo_vars:

A data frame with 8400 rows and 12 columns:

unique_id Unique identifiers of the electricity markets.

- ds Date in format YYYY:MM:DD hh:mm:ss.
- y Price for the given market and date.

Exogenous1 An external factor influencing prices. For all markets, some form of day-ahead load forecast.

Exogenous2 An external factor influencing prices. For "BE" and "FR" markets, the day-ahead generation forecast. For "NP", the day-ahead wind generation forecast. For "PJM", the day-ahead load forecast in a specific zone. For "DE", the aggregated day-ahead wind and solar generation forecasts.

- day_0 Binary variable indicating weekday.
- day_1 Binary variable indicating weekday.
- day_2 Binary variable indicating weekday.
- day_3 Binary variable indicating weekday.
- day_4 Binary variable indicating weekday.
- day_5 Binary variable indicating weekday.
- day_6 Binary variable indicating weekday.

Source

https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short.csv

electricity_future_exo_vars

Future values for the electricity dataset with exogenous variables

Description

Contains the future values of the exogenous variables of the electricity dataset (24 steps-ahead). To be used with electricity_exo_vars.

Usage

```
electricity_future_exo_vars
```

Format

electricity_future_exo_vars:

A data frame with 120 rows and 11 columns:

unique_id Unique identifiers of the electricity markets.

ds Date in format YYYY:MM:DD hh:mm:ss.

Exogenous1 An external factor influencing prices. For all markets, some form of day-ahead load forecast.

Exogenous2 An external factor influencing prices. For "BE" and "FR" markets, the day-ahead generation forecast. For "NP", the day-ahead wind generation forecast. For "PJM", the day-ahead load forecast in a specific zone. For "DE", the aggregated day-ahead wind and solar generation forecasts.

- day_0 Binary variable indicating weekday.
- day_1 Binary variable indicating weekday.
- day_2 Binary variable indicating weekday.
- day_3 Binary variable indicating weekday.
- day_4 Binary variable indicating weekday.
- day_5 Binary variable indicating weekday.
- day_6 Binary variable indicating weekday.

Source

https://raw.githubusercontent.com/Nixtla/transfer-learning-time-series/main/datasets/electricity-short-future-ex-vars.csv

infer_frequency 5

infer_frequency

Infer frequency of a data frame.

Description

Infer frequency of a data frame.

Usage

```
infer_frequency(df, freq)
```

Arguments

df A data frame with time series data.

freq The frequency of the data as specified by the user; NULL otherwise.

Value

The inferred frequency.

Examples

```
df <- nixtlar::electricity
freq <- NULL
infer_frequency(df, freq)</pre>
```

```
nixtla_client_historic
```

Sequential version of 'nixtla_client_historic' This is a private function of 'nixtlar'

Description

Sequential version of 'nixtla_client_historic' This is a private function of 'nixtlar'

Usage

```
nixtla_client_historic(
   df,
   freq = NULL,
   id_col = NULL,
   time_col = "ds",
   target_col = "y",
   level = NULL,
   quantiles = NULL,
```

6 nixtla_client_plot

```
finetune_steps = 0,
finetune_loss = "default",
clean_ex_first = TRUE,
model = "timegpt-1"
)
```

Arguments

df A tsibble or a data frame with time series data.

freq Frequency of the data.

id_col Column that identifies each series.time_col Column that identifies each timestep.target_col Column that contains the target variable.

level The confidence levels (0-100) for the prediction intervals.

quantiles Quantiles to forecast. Should be between 0 and 1.

finetune_steps Number of steps used to finetune 'TimeGPT' in the new data.

finetune_loss Loss function to use for finetuning. Options are: "default", "mae", "mse",

"rmse", "mape", and "smape".

clean_ex_first Clean exogenous signal before making the forecasts using 'TimeGPT'.

model Model to use, either "timegpt-1" or "timegpt-1-long-horizon". Use "timegpt-1-

long-horizon" if you want to forecast more than one seasonal period given the

frequency of the data.

Value

'TimeGPT"s forecast for the in-sample period.

Examples

```
## Not run:
    nixtlar::nixtla_set_api_key("YOUR_API_KEY")
    df <- nixtlar::electricity
    fcst <- nixtlar::nixtla_client_historic(df, id_col="unique_id", level=c(80,95))
## End(Not run)</pre>
```

nixtla_client_plot

Plot the output of the following nixtla_client functions: forecast, historic, anomaly_detection, and cross_validation.

Description

Plot the output of the following nixtla_client functions: forecast, historic, anomaly_detection, and cross_validation.

nixtla_client_plot 7

Usage

```
nixtla_client_plot(
    df,
    fcst = NULL,
    h = NULL,
    id_col = "unique_id",
    time_col = "ds",
    target_col = "y",
    unique_ids = NULL,
    max_insample_length = NULL,
    plot_anomalies = FALSE
)
```

Arguments

df A tsibble or a data frame with time series data (insample values).

fcst A tsibble or a data frame with the 'TimeGPT' point forecast and the prediction

intervals (if available).

h Forecast horizon.

id_col Column that identifies each series.

time_col Column that identifies each timestep.

target_col Column that contains the target variable.

unique_ids Time series to plot. If NULL (default), selection will be random.

max_insample_length

Max number of insample observations to be plotted.

plot_anomalies Whether or not to plot anomalies.

Value

Plot with historical data and 'TimeGPT"s output (if available).

Examples

```
## Not run:
    nixtlar::nixtla_set_api_key("YOUR_API_KEY")
    df <- nixtlar::electricity
    fcst <- nixtlar::nixtla_client_forecast(df, h=8, id_col="unique_id", level=c(80,95))
    nixtlar::timegpt_plot(df, fcst, h=8, id_col="unique_id")
## End(Not run)</pre>
```

8 nixtla_set_api_key

Description

Set base 'ULR' and 'API' key in global environment

Usage

```
nixtla_client_setup(base_url = NULL, api_key = NULL)
```

Arguments

```
base_url Custom base 'URL'. If NULL, defaults to "https://api.nixtla.io/".

api_key The user's 'API' key. Get yours here: https://dashboard.nixtla.io/
```

Value

A message indicating the configuration status.

Examples

```
## Not run:
    nixtlar::nixtla_client_setup(
        base_url = "Base URL",
        api_key = "Your API key"
)
## End(Not run)
```

nixtla_set_api_key

Set 'API' key in global environment

Description

This function will be deprecated in future versions. Please use nixtla_client_setup instead.

Usage

```
nixtla_set_api_key(api_key)
```

Arguments

api_key

The user's 'API' key. Get yours here: https://dashboard.nixtla.io/

Value

A message indicating the 'API' key has been set in the global environment.

Examples

```
## Not run:
    nixtlar::nixtla_set_api_key("Your API key")

## End(Not run)

nixtla_validate_api_key

Validate 'API' key
```

Description

```
Validate 'API' key
```

Usage

```
nixtla_validate_api_key()
```

Value

TRUE if the API key is valid, FALSE otherwise.

Examples

```
## Not run:
    nixtlar::nixtla_client_setup(api_key = "Your API key")
    nixtlar::nixtla_validate_api_key()
## End(Not run)
```

Index

```
* datasets
        electricity, 2
        electricity_exo_vars, 3
        electricity_future_exo_vars, 4
* private
        nixtla_client_historic, 5

electricity, 2
electricity_exo_vars, 3
electricity_future_exo_vars, 4
infer_frequency, 5

nixtla_client_historic, 5
nixtla_client_plot, 6
nixtla_client_setup, 8
nixtla_set_api_key, 8
nixtla_validate_api_key, 9
```