

Signalling Activity (% Activity) or Glucose Remaining (%)

Relative Light Units

6/38

9/38

10/38

11/38

12/38

FIG. 12

V.h.	V.h. BB120	1 MPLLDSFTVDHTRMMAPAVRVAKTMQTPRGDTITVFDLRFTAPNKDILSEKGIHTLEHLYAGFMRNHLNGDSVIIDISPMGCRTG
ы С	E.c. MG1655	1 MPLLDSFTVDHTRMEAPAVRVAKTMQTPMGDAITVFDLRFCVPNL <u>EVMPERGIHTLEHLFAGFMRNHLNGNG</u> VEIIDISPMGCRTG
면 이	E.c. 0157:H7	1 MPLLDSFTVDHTRMEAPAVRVAKTMQTPMGDAITVFDLRFCVPNLEVMPERGIHTLEHLFAGFMRNHLNGNGVEIIDISPMGCRTG
S.t.	LT2	1 NSDHTRMQAPAVRVAKTMQTPMGDAITVFDLRFCIPNKEVMPEKGIHTLEHLFAGFMRDHLNGNGVEIIDISPMGCRTG
ы С	E.c. DH5α	1 MPLLDSFTVDHTRMEAPAVRVAKTMQTPMGDAITVFDLRFCVPNLEVMPERGIHTLEHLFAGFMRNHLNGNGVEIIDISPMGCRTG
		13
		/ 38
		8
V.h.	V.h. BB120	87 FYMSLIGTPSKQQVADAWIAAMEDVLKVENQNKIPELNEYQCGTAAMHSLDEAKQIAKNILEVGVAVNKNDELALPESMLRELRID
д С	E.c. MG1655	87 FYMSLIGTP <u>DKQR</u> VADAWKAAMEDVLKVQ <u>D</u> QNQIPELN <u>V</u> YQCGT <u>YQ</u> MHSLQEAQDIARSILE <u>RDVRI</u> NSNEELALP <u>KEK</u> LQEL <u>H</u> I
已	0157:H7	87 FYMSLIGTP <u>DKQRVADVWKAAMEDVLKVQDQ</u> NQIPELN <u>VYQCGTYQMHSLQEAQDIARSILERDVRI</u> NSNEELALP <u>KEK</u> LQEL <u>H</u> I
S.t. LT2	LT2	87 FYMSLIGTPDKQRVADAWKAAMADVLKVQDQNQIPELNVYQCGTYQMHSLSEAQDIARHILERDVRVNSNKELALPKEKLQELHI
표 o.	E.c. DH5α	87 FYMSILVROMSSVLIMPKGKROWKTC

14 / 38

FIG. 14

Autoinducer Production and Response Phenotypes of V. harveyi Lux mutants

Bassler, et al.

17/38

FIG. 16A

FIG. 16B

Bassler, et al.

18/38

FIG. 16C

FIG. 16D

9: 2,3-dimethyl-2-cyclopenten-1-one 31: 4S-Acetoxy-2-cyclopenten-1-one 2-pentyl-2-cyclopenten-1-one 18: 6: 2-hydroxy-3-ethyl-2-cyclopenten-1-one 10: 3-methyl-2-cyclopenten-1-one 15: cis-Jasmone

c/C. 1/2

20 / 38

FIG. 18

COMPOUNDS AND METHODS FOR REGULATING BACTERIAL GROWTH AND PATHOGENESIS Bassler, et al.

Appl. No.: unknown Atty Docket: PUNIV.4DVIC1

	ı		
			Q.b
Compound Name	inhibition)	Active?	Structure
Cis -jasmone	6ug/ml(52x)	У ,	CH ₃ CH ₂ CH ₃
2-pentyl-2- cyclopenten-1-one	6ug/ml(20x)	У	CH ₂ (CH ₂) ₃ CH ₃
2-acetylcyclopentenone	25ug/ml(6x)	У	CH ₃
Croconic Acid	25ug/ml(29x)	У	но
B006	0.4ug/ml(9x)	У	
2-ethoxytetrahydrofuran	100ug/ml(87x)	У	CH3
3-methyl-1, 2-cyclopentanedione (2)	>=100ug/ml	у?	CH ₃
2,3,4,5 tetramethyl-2-cyclopentenone (8)	>=100ug/ml	y?	H ₃ C CH ₃
3-methyl- 2-cyclopenten-1-one (10)	>=100ug/ml	у?	CH ₃
(19)	>100ug/ml	n	OCH ₃
2-cyclopenten-1-one (5)	>100ug/ml	n	CH ₃
	2-acetylcyclopentenone Croconic Acid B006 2-ethoxytetrahydrofuran 3-methyl-1, 2-cyclopentanedione (2) 2,3,4,5 tetramethyl-2-cyclopentenone (8) 3-methyl- 2-cyclopentenone (10) 2-methyltetrahydrofuran-3-one (19) 3-methoxy- 2-cyclopenten-1-one (5)	Compound Name inhibition) Cis -jasmone 6ug/ml(52x) 2-pentyl-2- cyclopenten-1-one 6ug/ml(20x) 2-acetylcyclopentenone 25ug/ml(6x) Croconic Acid 25ug/ml(29x) B006 0.4ug/ml(9x) 2-ethoxytetrahydrofuran 100ug/ml(87x) 3-methyl-1, 2-cyclopentanedione (2) >=100ug/ml 2,3,4,5 tetramethyl-2- cyclopentenone (8) >=100ug/ml 3-methyl- 2-cyclopenten-1-one (10) >=100ug/ml 2-methyltetrahydrofuran-3-one (19) 3-methoxy- 2-cyclopenten-1-one	Cis -jasmone 6ug/ml(52x) y 2-pentyl-2- cyclopenten-1-one 6ug/ml(20x) y 2-acetylcyclopentenone 25ug/ml(6x) y Croconic Acid 25ug/ml(29x) y B006 0.4ug/ml(9x) y 2-ethoxytetrahydrofuran 100ug/ml(87x) y 3-methyl-1, 2-cyclopentenone (2) >=100ug/ml y? 2,3,4,5 tetramethyl-2- cyclopentenone (8) >=100ug/ml y? 3-methyl- 2-cyclopentenone (8) >=100ug/ml y? 2-methyltetrahydrofuran-3-one (10) >=100ug/ml n 3-methoxy- 2-cyclopenten-1-one (5) >100ug/ml n

COMPOUNDS AND METHODS FOR REGULATING BACTERIAL GROWTH AND PATHOGENESIS Bassler, et al.

Appl. No.: unknown Atty Docket: PUNIV.4DV1C1

6	3-ethyl-2-hydroxy- cyclopenten-1-one (6)	>100ug/ml	n	О ОН СН ₂ СН ₃
9	2,3-dimethyl- cyclopenten-1-one (9)	>100ug/ml	n	СН ₃
11	2-methyl- cyclopenten-1-one (11)	>100ug/ml	n	^O CH ₃
17	alpha-hydroxy- gamma-butyrolactone(17)	>100ug/ml	n	OH
1	4,4-dimethyl-cyclopenten-1-one(1)	>100ug/ml	n	H ₃ C H ₃ C
. 13	D-erythronic gamma- lactone (13)	>100ug/ml	n	но он
25	(s) (+) dihydro- 5-hydroxymethyl 2(3H) furanone (25)	>100ug/ml	n	HOH ₂ C O
27	methyltetrahydrofurfurylether (27)	>100ug/ml	n	СH3
26	R-(-)gamma- ethoxycarbonyl- gamma-butyrolactone	>100ug/ml	n	O CH3
32C	3-acetyl- 4-cyclopenten-1- hydroxy	>100ug/ml	n	OH O CH ₃
29	2,5- diethoxytetrahydrofuran	>100ug/ml	n	H3C^O_O_O\CH3

COMPOUNDS AND METHODS FOR REGULATING BACTERIAL GROWTH AND PATHOGENESIS Bassler, et al.

23 / 38

3	1,4 anhydroerythritol (3)	>100ug/ml	n	но он
4	3- hydroxytetrahydrofuran (4)	>100ug/ml	n	ОН
7	(s)-(+)-3 hydroxytetrahydrofuran (7)	>100ug/ml	n	ОН
14	3-methyl 2,4-pentanedione(14)	>100ug/ml	n	CH ₃
16	3-ethyl 2,4-pentanedione(16)	>100ug/ml	n	CH ₂ CH ₃
21	2 methyl-1,3 cyclopentanedione (21)	>100ug/ml	n	OCH ₃ O
22	(3AS) (7AS) -+-hexahydro- 3Ahydroxy-7 Amethyl 1,5 indiandione (22)	>100ug/ml	n	HO CH3
23	4-hydroxy-5-methyl-4-cyclopentene 1,3 dionemonohydrate(23)	>100ug/ml	n	о он
24	1,3 cyclopentanedione (24)	>100ug/ml	n	

COMPOUNDS AND METHODS FOR REGULATING BACTERIAL GROWTH AND PATHOGENESIS Bassler, et al.

Appl. No.: Unknown Atty. Docket: PUNIV.004DV1C1

FIG. 20

FIG. 22

27 / 38

Group A Strep. Protease

FIG. 23

28 / 38

FIG. 24

29 / 38

FIG. 25A

FIG. 25B

-1G. 26

31 / 38

7(C. 27

FIG. 28

33 / 38

FIG. 29

34 / 38

FIG. 30

FIG. 31

36 / 38

⁻16, 32

37 / 38

38 / 38

