	N.Y.	3.6 . 1 1	
Lognome	Nome	Matricola	

Informatica Teorica I (Informatica Teorica primo modulo) Esame del 13 novembre 2003

Tempo a disposizione: 120 minuti

Regole del gioco: Libri e quaderni chiusi, vietato scambiare informazioni con altri; indicare su tutti i fogli, con chiarezza, nome e numero di matricola; <u>consegnare solo i fogli con le domande (questi)</u>.

Esercizio 1 (20%) Determina le espressioni regolari che descrivono i seguenti linguaggi su $\Sigma = \{a,b\}$:

1.1 Stringhe lunghe esattamente tre caratteri.

```
(a+b)(a+b)(a+b)
oppure aaa+bbb+abb+bab+baa+aba+aab
```

1.2 Stringhe la cui lunghezza è un multiplo di tre (anche zero).

```
((a+b)(a+b)(a+b))*
oppure (aaa+bbb+abb+bab+baa+aba+aab)*
```

1.3 Stringhe la cui lunghezza è pari (anche zero).

```
((a+b)(a+b))*
oppure (aa+ab+ba+bb)*
```

1.4 Stringhe per le quali la lunghezza di ogni sottosequenza di sole \mathbf{a} è pari (esempio: $\mathbf{\epsilon}$, \mathbf{aa} , $\mathbf{aaaabaa}$, $\mathbf{bbaabbbaaaa}$, ...)

```
(aa+b)*
oppure ((aa)*b*)*
```

1.5 Stringhe per le quali la lunghezza di ogni sottosequenza di sole **a** è pari e non esistono due **b** consecutive (esempio: ε, aa, aabaabaaaab, baaaabaa, ...)

```
(b+ε)(aa+aab)*
oppure (aa+baa)*(b+ε)
oppure b(aa+aab)* + (aa+aab)*
```

Esercizio 2 (20%) Determina un'espressione regolare che descriva il linguaggio generato dalla seguente grammatica regolare.

 $S \rightarrow aS \mid bA \mid bB \mid bC \mid \epsilon$

 $A \rightarrow aS$

 $B \rightarrow bA$

 $C \rightarrow bD$

 $D \rightarrow bD \mid aS$

 $S = aS + bA + bB + bC + \epsilon$

A = aS

B = bA

C = bD

D = bD + aS

D=b*aS

C=bb*aS

B = baS

 $S = aS + baS + bbb*aS + \epsilon$

S = (a+ba+bba+bbb*a)* = (b*a)*

Esercizio 3 (20%)

3.1) Costruisci un ASF deterministico che riconosca il linguaggio delle stringhe di $(\mathbf{a}+\mathbf{b})^*$ tali che ogni sequenza di due o più \mathbf{b} è seguita da almeno una \mathbf{a} . Esempi di stringhe del linguaggio sono: $\mathbf{\epsilon}$, \mathbf{b} , \mathbf{aaa} , \mathbf{bbba} , $\mathbf{bbaabbbaa}$.

3.2) \mathcal{A} Costruisci un ASF (deterministico o non deterministico) che riconosca l'intersezione del linguaggio L_1 descritto al punto precedente con il linguaggio L_2 delle stringhe di $(\mathbf{a}+\mathbf{b})^*$ lunghe almeno un carattere e terminanti con \mathbf{a} .

il linguaggio L_2 delle stringhe su $(a+b)^*$ terminanti con a è un sottoinsieme del linguaggio L_1 , in quanto in una stringa di L_2 ogni sequenza di due o più b è sempre seguita da una a. Dunque l'intersezione di L_1 e L_2 coincide con L_2

Un automa riconoscitore è il seguente:

<u>Esercizio 4 (20%)</u> Come dimostreresti che qualsiasi espressione regolare definisce un linguaggio regolare? (Puoi supporre nota l'identità tra grammatiche regolari e automi a stati finiti).

Presa un'espressione regolare generica essa può essere ricondotta, considerando la sua definizione ricorsiva, all'unione, alla concatenazione e alla chiusura stella dei linguaggi elementari $\{\epsilon\}$ e $\{a\}$, per ogni $a\in\Sigma$.

Tali linguaggi sono regolari (perché generabili tramite grammatiche regolari o perché riconoscibili da opportuni automi a stati finiti elementari).

Le proprietà di chiusura ci assicurano così che l'espressione regolare definisce effettivamente un linguaggio regolare.

N.B.: il fatto che da una grammatica regolare è possibile generare un'espressione regolare, non è sufficiente a dimostrare che OGNI espressione regolare definisce un linguaggio regolare. Occorrerebbe dimostrare che dalle grammatiche regolari si possono ottenere TUTTE le espressioni regolari.

Esercizio 5 (20%) Mostra le classi di equivalenza di Myhill-Nerode per il linguaggio

su $\Sigma = \{a\}$ riconosciuto dal seguente ASF

Costruisco le classi di equivalenza di R_{M}

```
C_0 = \{(aaaa)^*\} \rightarrow (aaaa)^* + aa(aaaa)^* = (aa)^*

C_1 = \{a(aaaa)^*\} \rightarrow a(aaaa)^* + aa(aaaa)^* = a(aa)^*

C_2 = \{aa(aaaa)^*\} \rightarrow a(aaaa)^* + aa(aaaa)^* = a(aa)^*

C_3 = \{aaa(aaaa)^*\} \rightarrow a(aaaa)^* + aaa(aaaa)^* = a(aa)^*
```

(+) = "che mi danno una stringa di L se concatenate con il suffisso...")

ora noto che le stringhe di C_0 e C_2 sono equivalenti in R_L ("ammettono gli stessi completamenti"). Lo stesso dicasi per le stringhe di C_1 e C_3 . Ne segue che le classi di equivalenza di Myhill-Nerode sono:

$$C_{0,2} = \{(aaaa)^* + aa(aaaa)^*\}$$

 $C_{1,3} = \{a(aaaa)^* + aaa(aaaa)^*\}$

Che si possono riscrivere anche

$$C_{0,2} = \{(aa)^*\}$$

 $C_{1,3} = \{a(aa)^*\}$

Tali classi di equivalenza corrispondono all'AFS con il numero minimo di stati seguente:

N.B.: per questo linguaggio non c'è la classe $C = \{w \mid \forall z \in \Sigma, wz \notin L\}$ in quanto non esiste una sequenza di 'a' che non possa essere completata in modo da generare una stringa del linguaggio