

Pengantar Metode Numerik

Tim Ajar Metode Numerik Jurusan Teknologi Informasi Politeknik Negeri Malang 2024

Garis Besar Metode Numerik

- 1. Pengantar
- 2. Galat
- 3. Persamaan Lanjar Gauss
- 4. Kuis
- 5. Persamaan Gauss Jordan dan Spidel
- 6. Persamaan Non Lanjar Metode Tertutup
- 7. Persamaan Non Lanjar Metode Terbuka
- 8. UTS

Garis Besar Metode Numerik

- 9. Differensial Maju, Mundur, Tengahan
- Differensial Tingkat Tinggi
- **11.** Kuis
- 12. Integrasi Reimann
- 13. Integrasi Trapezoida
- 14. Integrasi Simpson
- 15. Interpolasi
- 16. Regresi
- 17. UAS

Penilaian

1. Kuis : 15%

2. Tugas : 20%

3. UTS : 30%

4. UAS : 35%

Pendahuluan

- Persoalan yang melibatkan model matematika banyak muncul dalam berbagai disiplin ilmu pengetahuan;
- Sering model matematika tersebut rumit dan tidak dapat diselesaikan dengan metode analitik
- Metode Analitik adalah metode penyelesaian model matematika dengan rumus-rumus aljabar yang sudah lazim.

Pendahuluan

- Metode numerik adalah suatu teknik atau metode untuk menyelesaikan masalah yang diformulasikan secara matematis dengan cara operasi hitungan (aritmatik).
- Metode artinya cara, sedangkan numerik artinya angka.
- Jadi inti dari metode numerik adalah cara berhitung dengan menggunakan angka-angka.
- Dengan metode numerik diharapkan bisa mengatasi berbagai kelemahan-kelemahan metode sebelumnya.

Metode Numerik

- Solusi selalu berbentuk angka
- Solusi berupa hampiran atau pendekatan
- Terdapat galat (error)

Metode Analitik

- Solusi dalam bentuk fungsi matematika
- Solusi eksak
- Tidak ada galat (error)

Contoh

Selesaikan integral di bawah ini

$$I = \int_{-1}^{1} (4 - x^2) dx$$

Metode Analitik

$$I = \int_{-1}^{1} (4 - x^2) dx = \left[4x - \frac{x^3}{3} \right]_{x = -1}^{x = 1} = \left\{ 4(1) - \frac{1}{3} \right\} - \left\{ 4(-1) - \frac{(-1)}{3} \right\} = \frac{22}{3}$$

Contoh


```
I \approx p + q + r + s
\approx \{ [f(-1) + f(-1/2)] \times 0.5/2 \} + \{ [f(-1/2) + f(0)] \times 0.5/2 \} +
\{ [f(0) + f(1/2)] \times 0.5/2 \} + \{ [f(1/2) + f(1)] \times 0.5/2 \}
\approx 0.5/2 \{ f(-1) + 2f(-1/2) + 2f(0) + 2f(1/2) + f(1) \}
\approx 0.5/2 \{ 3 + 7.5 + 8 + 7.5 + 3 \}
= 7.25
```

Error = |7.25-7.33| = 0.0833

Tujuan Belajar Metode Numerik

- Dengan metode numerik, manusia terbebas dari hitung menghitung manual yang membosankan, dan menghemat waktu lebih efektif dan efisien.
- Dengan begitu waktu dapat lebih banyak digunakan untuk tujuan yang lebih kreatif, seperti penekanan pada formulasi problem atau interpretasi solusi dan tidak terjebak dalam rutinitas hitung menghitung.

Mengapa Menggunakan Metode Numerik

- Tidak semua permasalahan matematis atau perhitungan dapat diselesaikan dengan mudah.
- Kesulitan menggunakan metode analitik untuk mencari solusi exact dengan jumlah data yang besar,oleh sebab itu metode numerik menjadi penting untuk menyelesaikan permasalahan ini.
- Pemakaian metode analitik terkadang sulit diterjemahkan ke dalam algoritma yang dapat dimengerti oleh komputer.

Mengapa Menggunakan Metode Numerik

- Dibutuhkan metode yang menggunakan analisis-analisis pendekatan persoalan-persoalan non lanjar (non linier) untuk menghasilkan nilai yang diharapkan.
- Metode numerik yang memang berangkat dari pemakaian alat bantu hitung adalah alternatif yang baik dalam menyelesaian persoalan-persoalan perhitungan yang rumit.

PERANAN KOMPUTER DALAM METODE NUMERIK

- ► Tidak semua permasalahan matematis atau perhitungan dapat diselesaikan dengan mudah.
- Kesulitan menggunakan metode analitik untuk mencari solusi exact dengan jumlah data yang besar,oleh sebab itu metode numerik menjadi penting untuk menyelesaikan permasalahan ini.
- Pemakaian metode analitik terkadang sulit diterjemahkan ke dalam algoritma yang dapat dimengerti oleh komputer.

PERANAN KOMPUTER DALAM METODE NUMERIK

- Dibutuhkan metode yang menggunakan analisis-analisis pendekatan persoalan-persoalan non lanjar (non linier) untuk menghasilkan nilai yang diharapkan.
- Metode numerik yang memang berangkat dari pemakaian alat bantu hitung adalah alternatif yang baik dalam menyelesaian persoalan-persoalan perhitungan yang rumit.

Nilai Signifikan atau Angka Penting

- Nilai signifikan adalah suatu nilai dimana jumlah angka ditentukan sebagai batas nilai tersebut diterima atau tidak.
- ► Terdiri dari digit 1,2,3,4,5,6,7,8,9 dan O, untuk O tidak termasuk angka signifikan jika digunakan untuk menentukan titik desimal atau untuk mengisi tempattempat dari digit yang tidak diketahui/dibuang.

Nilai Signifikan atau Angka Pentind

OUTEKNIK NEGERI MAR

Contoh:

- O.00163 , 3 angka penting: 1,6,3
- 5809, 4 angka penting: 5,8,0, 9
- 46100, 3 angka penting 4.61 x 10⁴
- 4 angka penting 4.610 x 10⁴
- 5 angka penting 4.6100 x 10⁴

- Munir, Rinaldi. 2008. Metode Numerik Revisi Kedua. Informatika Bandung: Bandung
- Cahya Rahmad, ST, M.Kom. Dr. Eng, "Diktat Kuliah Matematika Numerik", Program Studi Manajemen Informatika, Politeknik Negeri Malang

Terima kasih