

Discrete Mathematics MH1812

Topic 2.1 - Propositional Logic I Dr. Gary Greaves

What's in store...

P roposition and Paradox

L)ogical Operators

D e Morgan's Laws

C)ontradiction and Tautology

E) quivalent Expressions

By the end of this lesson, you should be able to...

- Explain what is a proposition and a paradox.
- Use logical operators to combine statements.
- Apply De Morgan's Laws.
- Explain what is a contradiction and a tautology.
- Identify equivalent expressions.
- Demonstrate that two expressions are equivalent.

Proposition and Paradox: Logic

- Accepted rules for making precise statements
- Logic for computer science:
 - Programming
 - Artificial intelligence
 - Logic circuits
 - Database
- Logic:
 - Represents knowledge precisely
 - Helps to extract information (inference)

Proposition and Paradox: Proposition

A proposition is a declarative statement that is either true or false.

Examples of propositions

- "1 + 1 = 2"... True
- "1 + 1 > 3"... False
- "Singapore is in Europe."... False

```
gap> (5>3);
true
gap> (1>3);
false
gap>
```

Proposition and Paradox: Proposition

A proposition is a declarative statement that is either true or false.

Examples that are not propositions

- "1 + 1 > x"... X
- "What a great book!"...X
- "Is Singapore in Asia?"...X

Proposition and Paradox: Paradox

A declarative statement that cannot be assigned a truth value is called a paradox.

- A paradox is not a proposition.
- E.g., the liar paradox: "This statement is false".

Relativity Lattice (M.C. Escher)

Logical Operators: Symbolic Logic

Use symbols to represent statements (both have the same truth values)

Use logical operators to combine statements:

Compound Propositions

Propositions Combined with Logical Operator(s)

Logical Operators: Three Basic Operators

Logical Operators: Negation

• Negation (not) of $p: \neg p$ ($\sim p$ is also used)

р	¬р
Т	F
г	т

Truth Table

¬*p*: You may not enter

Logical Operators: Disjunction

Disjunction (or) of p with q: p ∨ q

p	q	pVq	q V p
Т	Т	Т	Т
Т	F	Т	Т
F	Т	Т	Т
F	F	F	F

True when "at least one" of them is true

Truth Table

```
p \lor q \equiv q \lor p i.e., operator \lor commutes

Means "equivalent"
```

```
gap>
gap> (5>3) or (1>5);
true
gap>
```

Logical Operators: Conjunction

Conjunction (and) of p with q: p ∧ q

p	q	p∧q	$q \wedge p$
Т	Т	Т	Т
Т	F	F	F
F	Т	F	F
F	F	F	F

True only when "both" of them are true

Truth Table

∧ is also commutative:

$$p \land q \equiv q \land p$$

```
gap> (5>3) and (7>5);
true
gap>
gap>
gap> (5>3) and (1>5);
false
```


De Morgan's Laws: Definition

pq	¬р	$\neg q$	pΛq	$\neg (p \land q)$	$\neg p \lor \neg q$
TT	F	F	Т	F	F
ΤF	F	Т	F	Т	Т
FΤ	Т	F	F	Т	Т
FF	Т	Т	F	Т	Т

Augustus De Morgan (1806 - 1871)

Augustus De Morgan by Sophia Elizabeth De Morgan under WikiCommons (PD-US)

Contradiction and Tautology: Definition

A compound proposition that is always false is called a contradiction.

This course is easy "and" this course is not easy.

$$p \wedge (\neg p) \equiv F$$

р	¬р	р∧¬р
Т	F	F
F	Т	F

Contradiction and Tautology: Definition

A compound proposition that always gives a true value is called a tautology.

$$p \lor (\neg p) \equiv \mathsf{T}$$

p	¬р	$p \lor \neg p$	
Т	F	Т	Always
F	Т	Т_	true!

Equivalent Expressions: Bob and Alice

1. Alice is not married but Bob is not single.

$$\neg h \land \neg b$$

2. Bob is not single and Alice is not married.

$$\neg b \land \neg h$$

3. Neither Bob is single nor Alice is married.

$$\neg (b \lor h)$$

These three statements are equivalent.

$$\neg h \wedge \neg b \equiv \neg b \wedge \neg h \equiv \neg (b \vee h)$$

Alice

Equivalent Expressions: The Statements

These three statements are equivalent:

$$\neg h \land \neg b \equiv \neg b \land \neg h \equiv \neg (b \lor h)$$

b h	$\neg b$	\neg_h	b V h	$\neg h \land \neg b$	$\neg b \land \neg h$	$\neg (b \lor h)$
TT	F	F	Т	F	F	F
ΤF	F	Т	Т	F	F	F
FΤ	Т	F	Т	F	F	F
FF	Т	Т	F	Т	Т	Т

Let's recap...

- We have covered:
 - Proposition (Compound Propositions)
 - Paradox
 - Contradiction
 - Tautology
 - Equivalent Expressions
- Basic logical operators (and De Morgan's laws):
 - Negation
 - Conjunction
 - Disjunction

