三角比と三角関数

2022.04.25

2次関数と方程式(復習+)

(1)
$$y = a(x - b)^2 + c$$

$$(1)$$
 $y=a(x-b)^2+c$ $\cdot y=ax^2$ のグラフと形は同じ

- (1) $y = a(x b)^2 + c$
 - ・ $y=ax^2$ のグラフと形は同じ
 - ・x方向にb,y方向にc平行移動

- (1) $y = a(x b)^2 + c$
 - ・ $y=ax^2$ のグラフと形は同じ
 - ・x方向にb,y方向にc平行移動
 - ・頂点は (b, c)

(1)
$$y = a(x - b)^2 + c$$

- • $y=ax^2$ のグラフと形は同じ
- ・x 方向にb, y 方向にc 平行移動
- ・頂点は (b, c)
- (2) $y = ax^2 + bx + c$

(1)
$$y = a(x - b)^2 + c$$

- ・ $y=ax^2$ のグラフと形は同じ
- ・x 方向にb, y 方向にc 平行移動
- ・頂点は (b, c)
- (2) $y = ax^2 + bx + c$
 - ・(1)の形に変形(平方完成)

- (1) $y = a(x b)^2 + c$
 - ・ $y=ax^2$ のグラフと形は同じ
 - ・x 方向にb, y 方向にc 平行移動
 - ・頂点は (b, c)
- (2) $y = ax^2 + bx + c$
 - ・(1)の形に変形(平方完成)
 - •例) $y = x^2 + 4x + 1$

(1)
$$y = a(x - b)^2 + c$$

- ・ $y=ax^2$ のグラフと形は同じ
- ・x 方向にb,y 方向にc 平行移動
- ・頂点は (b, c)

- ・(1)の形に変形(平方完成)
- ・例) $y=x^2+4x+1 = (x^2+4x+4)-4+1$

(1)
$$y = a(x - b)^2 + c$$

- ・ $y=ax^2$ のグラフと形は同じ
- ・x 方向にb,y 方向にc 平行移動
- ・頂点は (b, c)

- ・(1)の形に変形(平方完成)
- ・例) $y=x^2+4x+1$ $=(x^2+4x+4)-4+1=(x+2)^2-3$

- (1) $y = a(x b)^2 + c$
 - ・ $y=ax^2$ のグラフと形は同じ
 - ・x方向にb,y方向にc平行移動
 - ・頂点は (b, c)
- (2) $y = ax^2 + bx + c$
 - ・(1)の形に変形(平方完成)
 - ・例) $y=x^2+4x+1$ $=(x^2+4x+4)-4+1=(x+2)^2-3$ 頂点は(-2,-3)

2次方程式の解

2次方程式の解

• 方程式 $ax^2 + bx + c = 0$ の解は $y = ax^2 + bx + c$ のグラフとx軸との交点のx座標

2次方程式の解

• 方程式 $ax^2 + bx + c = 0$ の解は $y = ax^2 + bx + c$ のグラフとx軸との交点のx座標

[2]
$$y = 2x^2 + 7x - 4$$
, $2x^2 + 7x - 4 = 0$

$$\bullet \ x^2 + 2ax + b = 0$$

•
$$x^2 + 2ax + b = 0$$

 $(x+a)^2 - a^2 + b = 0$

$$ullet x^2 + 2ax + b = 0 \ (x+a)^2 - a^2 + b = 0 \ (x+a)^2 = a^2 - b$$

$$ullet x^2 + 2ax + b = 0 \ (x+a)^2 - a^2 + b = 0 \ (x+a)^2 = a^2 - b \ x+a = \pm \sqrt{a^2 - b}$$

•
$$x^2 + 2ax + b = 0$$

 $(x+a)^2 - a^2 + b = 0$
 $(x+a)^2 = a^2 - b$
 $x + a = \pm \sqrt{a^2 - b}$
よって $x = -a \pm \sqrt{a^2 - b}$

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

例)
$$2x^2-5x+1=0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

例)
$$2x^2 - 5x + 1 = 0$$
 $x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

例)
$$2x^2 - 5x + 1 = 0$$
 $x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{5 \pm \sqrt{17}}{4}$

ullet 2 次方程式 $ax^2+bx+c=0$ の解

$$x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$$

例)
$$2x^2 - 5x + 1 = 0$$
 $x = \frac{5 \pm \sqrt{5^2 - 4 \cdot 2 \cdot 1}}{2 \cdot 2} = \frac{5 \pm \sqrt{17}}{4}$

課題 0425-2 次の2次方程式を解け.

Text P.74

[1]
$$2x^2 + 2x - 3 = 0$$
 [2] $3x^2 + 5x + 1 = 0$

[3]
$$2x^2 + x - 2 = 0$$
 [4] $x^2 + 3x + 1 = 0$

三角比

三平方の定理

● 角 C が直角の直角三角形 △ABC

 \mathbf{A}

三平方の定理

● 角 C が直角の直角三角形 △ABC

三平方の定理

● 角 C が直角の直角三角形 △ABC

• BC = a, CA = b, AB = c とおく

$$\Longrightarrow \boxed{a^2+b^2=c^2}$$

課題 0425-3 次のa, b, cを求めよ

三平方の定理

● 角 C が直角の直角三角形 △ABC

• BC = a, CA = b, AB = c とおく

$$\Longrightarrow \boxed{a^2+b^2=c^2}$$

課題 0425-3 次のa, b, cを求めよ

$$\sin heta = rac{高さ}{斜辺}$$

$$an heta = rac{高さ}$$
底辺

$$\cos heta = rac{$$
 馬辺

$$\sin heta = rac{高さ}{斜辺}$$

$$an heta=rac{高さ}$$
底辺

比だから大きさによらない

$$\sin heta = rac{高さ}{斜辺}$$

$$an heta=rac{高さ}$$
底辺

比だから大きさによらない 角 θ だけで決まる

$$\cos heta = rac{$$
 底辺

$$\sin heta = rac{高さ}{斜辺}$$

$$an heta = rac{高さ}$$
底辺

比だから大きさによらない 角 θ だけで決まる

課題 0425-4 次の三角比を求めよ.

(前ページの図または Text P.105 を用いよ)

 $[1] \cos 30^{\circ}$

 $[2]\,\sin 45^\circ$

 $[3] \tan 60^{\circ}$

練習 (鋭角の三角比)

課題 0425-5 図の三角形について次を求めよ.

 $[1] \,\, x^{\circ}$

[2] 辺AC

[3] 辺AB

 $[4] \tan x \qquad [5] \cos x \qquad [6] \sin x$

 $[7] \tan 59^{\circ}$

 $[8]\,\cos 59^\circ$

 $[9] \sin 59^\circ$

三角比の拡張1

- $(1) \,\, 0^{\circ}$
- $(2) 90^{\circ}$
- (3) 鈍角 $(90^{\circ} < \theta < 180^{\circ}$

三角比の拡張1

- $(1) \,\, 0^{\circ}$
- $(2) 90^{\circ}$
- (3) 鈍角 $(90^{\circ} < \theta < 180^{\circ}$

課題 0425-6 「鈍角等の三角比」で三角比がどうなるかを考 えよ

鈍角等の三角比

• 鈍角のとき, θ を1つの角とする直角三角形ができない

鈍角等の三角比

- 鈍角のとき, θ を1つの角とする直角三角形ができない
- 座標軸をおく
- 頂点 P の座標を (x, y) とする

鈍角等の三角比

- 鈍角のとき, θ を1つの角とする直角三角形ができない
- 座標軸をおく
- 頂点 P の座標を (x, y) とする

• 斜辺 = OP, 底辺 =
$$x$$
, 高さ = y $\cos \theta = \frac{x}{\mathrm{OP}}, \ \sin \theta = \frac{y}{\mathrm{OP}}, \ \tan \theta = \frac{y}{x}$

$$\cos 0^{\circ} =$$

$$\sin 0^{\circ} =$$

$$\tan 0^{\circ} =$$

$$\cos 0^{\circ} = 1$$

$$\sin 0^{\circ} =$$

$$\tan 0^{\circ} =$$

$$\cos 0^{\circ} = 1$$

$$\sin 0^{\circ} = 0$$

$$\tan 0^{\circ} =$$

$$\cos 0^{\circ} = 1$$

$$\sin 0^{\circ} = 0$$

$$\tan 0^{\circ} = 0$$

$$\cos 90^{\circ} =$$

$$\sin 90^{\circ} =$$

$$\tan 90^{\circ} =$$

$$\cos 90^{\circ} = 0$$

$$\sin 90^{\circ} =$$

$$\tan 90^{\circ} =$$

$$\cos 90^{\circ} = 0$$

$$\sin 90^{\circ} = 1$$

$$\tan 90^{\circ} =$$

 $\cos 90^{\circ} = 0$

 $\sin 90^{\circ} = 1$

 $\tan 90^\circ =$ 値がない

cosは

sin は

tan は

cos は —

sin は

tan は

cos は —

sin は +

tan は

cos は —

 $\sin \mathcal{U} +$

tanはー

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

証)
$$\tan \theta = \frac{y}{x} = \frac{\frac{g}{\text{OP}}}{\frac{x}{\text{OP}}}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

証)
$$\tan \theta = \frac{y}{x} = \frac{\frac{y}{\text{OP}}}{\frac{x}{\text{OP}}} = \frac{\sin \theta}{\cos \theta}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

証)
$$\tan \theta = \frac{y}{x} = \frac{\frac{y}{OP}}{\frac{x}{OP}} = \frac{\sin \theta}{\cos \theta}$$

(2)
$$\cos^2\theta + \sin^2\theta = 1$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

証)
$$\tan \theta = \frac{y}{x} = \frac{\frac{y}{\text{OP}}}{\frac{x}{\text{OP}}} = \frac{\sin \theta}{\cos \theta}$$

 \boldsymbol{y}

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $(\cos(\theta))^2 \cos^2 \theta$ と書く

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$\mathbb{H}) an heta = rac{y}{x} = rac{rac{y}{ ext{OP}}}{rac{x}{ ext{OP}}} = rac{\sin heta}{\cos heta}$$

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $\left(\cos(\theta)\right)^2$ を $\cos^2 \theta$ と書く

$$\mathbb{H})\cos^2\theta + \sin^2\theta = \frac{x^2}{\mathrm{OP}^2} + \frac{y^2}{\mathrm{OP}^2}$$

(1)
$$\tan \theta = \frac{\sin \theta}{\cos \theta}$$

$$(2)$$
 $\cos^2 \theta + \sin^2 \theta = 1$ $(\cos(\theta))^2 \cos^2 \theta$ と書く

III)
$$\cos^2 \theta + \sin^2 \theta = \frac{x^2}{\text{OP}^2} + \frac{y^2}{\text{OP}^2} = \frac{x^2 + y^2}{\text{OP}^2} = 1$$

課題 (三角比の相互関係)

課題 0425- $7\cos\theta=rac{1}{3}$ のとき, $\sin\theta$ を求めよ.ただし, θ は鋭角とする $\mathrm{TextP107}$

課題 0425-8 $\sin heta = rac{2}{3}$ とする.次の場合のそれぞれについて $\cos heta$ を求めよ

[1] heta が鋭角のとき [2] heta が鈍角のとき

ullet これまで,角 heta は 2 つの線分の間の角だった $0^\circ \le heta \le 360^\circ$

 \bullet これまで,角 θ は2つの線分の間の角だった

$$0^{\circ} \leqq heta \leqq 360^{\circ}$$

- 角を回転を表す量とすると θ はどんな実数でもよい.
 - $\cdot x$ 軸を始線とする
 - $\cdot \theta > 0^{\circ}$ のとき,反時計回り

 \bullet これまで,角 θ は2つの線分の間の角だった

$$0^{\circ} \leqq heta \leqq 360^{\circ}$$

- 角を回転を表す量とすると θ はどんな実数でもよい.
 - $\cdot x$ 軸を始線とする
 - \cdot $heta > 0^\circ$ のとき,反時計回り
 - \cdot $heta < 0^\circ$ のとき,時計回り

HTML「一般角」で一般角を見てみよう

HTML「一般角」で一般角を見てみよう

• 座標を使う(鈍角の場合と同じ)

• 座標を使う(鈍角の場合と同じ)

例
$$heta=240^\circ$$
 $\cos heta=$
 $\sin heta=$
 $an heta=$

• 座標を使う(鈍角の場合と同じ)

例
$$\theta = -30^{\circ}$$

$$\cos \theta = \\ \sin \theta = \\ \tan \theta =$$

• 座標を使う(鈍角の場合と同じ)

例
$$heta=-30^\circ$$
 $\cos heta=$
 $\sin heta=$
 $an heta=$

課題 0425-10 次の値を求めよ.

 $[1] \cos 240^{\circ}$ $[2] \sin 240^{\circ}$

[3] $\sin(-30^{\circ})$ [4] $\tan(-30^{\circ})$

