

CS120: Computer Networks

Lecture 1. Course Introduction 1

Zhice Yang

General Information

- Instructor:
 - Zhice Yang (杨智策), www.yangzhice.com
 - Office hours:
 - Wednesday 2:30 p.m. 4:30 p.m.
 - yangzhc@shanghaitech.edu.cn
 - 2068 5362
 - Office 1A-404E

General Information (cont.)

- TAs:
 - Ningzhi Zhu (祝宁之)
 - zhunzh@shanghaitech.edu.cn
 - Office Hours: Thursday 7:30 p.m. 8:30 p.m.
 - Xin Li (李鑫)
 - lixin1@shanghaitech.edu.cn
 - Office Hours: Tuesday 7:30 p.m. 8:30 p.m.
- Wechat
 - Q&A
 - Urgent Notifications
- Blackboard (互动教学平台)
 - Notifications
 - Course Materials
 - Homework Submission

Valid until 9/23 and will update upon joining gro...

General Information (cont.)

- Textbook
 - Computer Networks: A System Approach 5th
 - by Larry Peterson, Bruce Davie
 - http://product.dangdang.com/22722782.html (English Version)
- References
 - Computer Networking: A Top-Down Approach 6th
 - by James Kurose, Keith Ross
 - http://product.dangdang.com/23578344.html

Grading

- No Cheating!
 - Once confirmed. Fail the course
- 20% Homework
 - Four Homework Assignments (5% each)
- 30% Final Exam
 - No Midterm
- 50% Course Project
 - Group: <= 2 students
 - email TA (<u>zhunzh@shanghaitech.edu.cn</u>) your group members before Sep. 30
 - 40% for four subprojects (10% each)
 - Submit your project (code) through Blackboard
 - Ask TAs to check and grade your project before submitting your code
 - 10% if you finish all the four subprojects
 - "finish" means: obtain 60% points of the compulsory parts
 - Reference code of project 1 is provided after the due
 - Programming language: No restrictions (Java is suggested)
 - Estimated coding overhead (5000 lines)
 - You can use any open-source code (should be explicitly acknowledged with reference link)
- Up to 30% Bonus Score
 - For finishing optional parts of Course Project
- Delayed Submissions
 - -10 % * N, N is the delayed time in unit of day (N<=10)
 - -5% for the first 0 − 12 Hours
 - -10 % for the first 12 24 Hours

START PROJECT EARLY

Week	Time		Time	
1	Sep. 17	Course Introduction 1	Sep. 19	Course Introduction 2
2	Sep. 24		Sep. 26	Physical Layer
3	Oct. 1		Oct. 3-Sep. 29	Framing & Error Detection
4	Oct. 8	Project Discussion 1	Oct. 10	Project Discussion 2
5	Oct. 15	Reliable Transmission	Oct. 17	Multiple Access 1
6	Oct. 22	Multiple Access 2	Oct. 24	Multiple Access 3
7	Oct. 29	Switching 1	Oct. 31	Switching 2
8	Nov. 5	Routing 1	Nov. 7	Routing 2
9	Nov. 12	Routing 3	Nov. 14	Multicast
10	Nov. 19	TCP & UDP 1	Nov. 21	TCP & UDP 2
11	Nov. 26	TCP & UDP 3	Nov. 28	RPC & RTP
12	Dec. 3	Queuing	Dec. 5	Congestion Control 1
13	Dec. 10	Congestion Control 2	Dec. 12	QoS
14	Dec. 17	Data Presentation & Compression 1	Dec. 19	Data Presentation & Compression 2
15	Dec. 24	DNS	Dec. 26	HTTP & SMTP
16	Dec. 31	FTP & P2P	Jan. 2	Network Security
18	Jan. 14		Jan. 16	

Week	Time		Time	proj1 release
1	Sep. 17	Course Introduction 1	Sep. 19	Course Introduction 2
2	Sep. 24	proj1 due	Sep. 26	Physical Layer
3	Oct. 1	proji dae	Oct. 3 Sep. 29	Framing & Error Detection
4	Oct. 8	Project Discussion 1	Oct. 10	proj2 release on 2
5	Oct. 15	Reliable Transmission	Oct. 17	Multiple Access 1
6	Oct. 22	Multiple Access 2 proj2 due	Oct. 24	Multiple Access 3
7	Oct. 29	Switching 1	Oct. 31	proj3 release
8	Nov. 5	Routing 1	Nov. 7	Routing 2
9	Nov. 12	Routing 3	Nov. 14	Multicast
10	Nov. 19	TCP & UDP 1	Nov. 21	TCP & UDP 2
11	Nov. 26	TCP & UDP 3 proj3 due	Nov. 28	proj4 release
12	Dec. 3	Queuing	Dec. 5	trol 1
13	Dec. 10	Congestion Control 2	Dec. 12	QoS
14	Dec. 17	Data Presentation & Compression 1	Dec. 19	Data Presentation & Compression 2
15	Dec. 24	DNS proj4 due	Dec. 26	HTTP & SMTP
16	Dec. 31	FTP & P2P	Jan. 2	Network Security
18	Jan. 14		Jan. 16	

Withdraw Policy

According to University's Policies

What is a Computer Network

Internet

Device to Device Connections

Outlook Web App

0	This is a public or shared computer This is a private computer
	Use the light version of Outlook Web App
User nan	ne:
Passwore	d:
	Sign in
	nected to Microsoft Exchange 10 Microsoft Corporation. All rights reserved.

Wireless Connections

The Purpose of This Course is

- NOT to teach how to
 - Write network apps
 - Configure network devices

The Purpose of This Course is

to Build a Computer Network

to understand how real computer networks work

Top-Down

Build a HTTP Service from Ground up?

- A Real Network Like Internet is too Complicated to Build
 - Implement an http server (Apache, Nginx…)
 - Implement an http browser (Chrome, IE…)
 - Implement a TCP/IP stack (net/core, socket···)
 - Implement a link layer driver (ath9k, e1000…)
 - Implement a modem chip (ar9285, Intel i210···)

No one can do this in one semester...

About our Project

Acoustic Toy Computer Network (ATNet)

- Acoustic Connection
 - Node to node connection through speakers and microphones

- Multiple Access
 - Efficiently handle the access of multiple nodes

- NAT/Routing
 - Implement a network gateway

- Reliable Delivery and Network Application
 - eg: FTP

FTP Client 1

About the Project

- Requirements of the Acoustic Toy Computer Network (ATNet)
 - Basic Communication
 - Reliability
 - Resource Sharing
 - Scalability
 - etc···

Still Very Challenging ...

Shoulders of Giants

 We introduce and borrow existing designs from state-of-the-art network technologies (especially the Internet)

Layering

- Benefit
 - Divide and Conquer
 - Modular Design

Layering

- Through Protocols
 - One or more protocols implement the functionality of a certain layer
 - A protocol defines a communication service
 - Service Interface
 - Peer to peer Interface

Shoulders of Giants

Layering and Protocols (OSI 7 Layer Model)

Shoulders of Giants

Layering of the Internet

Layerist

Layerist

