Dependent Substitutes - linear

$$V(a,b) = \alpha a + \beta b$$
 $MV_a = \alpha$
 $MV_b = \beta$
 $MV_b = \beta$

 $mRS_{ab} = -mU_a = - \alpha a b^{-1}$ $mU_b = - \alpha a b^{-1}$

MUS

xa d-1 b

9-22-23 Friday

· Utility functions

1.
$$U(m,c) = \min \{2m, c\}$$
. $2m + 4c = 6$

max $\min \{2m, c\}$. $2m + 4c = 6$

optimal ratio: $2m = c$
 $c + 4c = 6$
 $c = \frac{6}{7}$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$
 $(2m + 4 - \frac{6}{7} = 6) - 7$

a b -

$$b^{\frac{1}{2}} = 1$$

$$b^{\frac{1}{2}} = 1$$

$$b = \left(1 - a^{\frac{1}{2}}\right)^{2}$$

$$b = (1 - a^{\frac{1}{2}})^{\frac{1}{2}}$$

consume More

1ess

04

$$b = (1 - a^{\frac{1}{2}})^{\frac{1}{2}}$$
4. $U(a,b) = ab^{2}$, $Y = 20$

$$U(a,b)=ab^{2}, \quad Y=0$$

$$U(a,b) = ab^{2}, \quad Y = 20$$

Sumes
$$a=0$$

 $\gamma \to 0$
 $\alpha = \frac{\gamma}{z}$, $b = \frac{\gamma}{z}$

a===

b = (1-.767)2

= .08