#### **Binary Search Trees**

# Review: Dynamic Sets

- Next few lectures will focus on data structures rather than straight algorithms
- In particular, structures for *dynamic sets* 
  - Elements have a key and satellite data
  - Dynamic sets support *queries* such as:
    - Search(S, k), Minimum(S), Maximum(S),
       Successor(S, x), Predecessor(S, x)
  - They may also support *modifying operations* like:
    - $\circ$  *Insert*(S, x), *Delete*(S, x)

# Review: Binary Search Trees

- Binary Search Trees (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, elements have:
  - key: an identifying field inducing a total ordering
  - *left*: pointer to a left child (may be NULL)
  - right: pointer to a right child (may be NULL)
  - *p*: pointer to a parent node (NULL for root)

#### Review: Binary Search Trees

- BST property: key[leftSubtree(x)] ≤ key[x] ≤ key[rightSubtree(x)]
- Example:



#### **Inorder Tree Walk**

• What does the following code do?

```
TreeWalk(x)
    TreeWalk(left[x]);
    print(x);
    TreeWalk(right[x]);
```

- A: prints elements in sorted (increasing) order
- This is called an *inorder tree walk* 
  - *Preorder tree walk*: print root, then left, then right
  - Postorder tree walk: print left, then right, then root

#### **Inorder Tree Walk**



- How long will a tree walk take?
- Prove that inorder walk prints in monotonically increasing order

# Operations on BSTs: Search

• Given a key and a pointer to the root node, returns an element with that key or NULL:

```
TreeSearch(x, k)
   if (x = NULL or k = key[x])
      return x;
   if (k < key[x])
      return TreeSearch(left[x], k);
   else
      return TreeSearch(right[x], k);</pre>
```

# BST Search: Example

• Search for *D* and *C*:



# Operations on BSTs: Search

• Here's another function that does the same:

```
TreeSearch(x, k)
    while (x != NULL and k != key[x])
        if (k < key[x])
            x = left[x];
    else
            x = right[x];
    return x;</pre>
```

• Which of these two functions is more efficient?

#### Operations with BST: Insert

- Adds an element x to the tree so that the binary search tree property continues to hold
- The basic algorithm
  - Like the search procedure above
  - Insert x in place of NULL
  - Use a "trailing pointer" to keep track of where you came from (like inserting into singly linked list)
- Like search, takes time O(h), h =tree height

# BST Insert: Example

• Example: Insert *C* 



# BST Search/Insert: Running Time

- What is the running time of TreeSearch() or TreeInsert()?
- A: O(h), where h = height of tree
- What is the height of a binary search tree?
- A: worst case: h = O(n) when tree is just a linear string of left or right children
  - We'll keep all analysis in terms of h for now
  - Later we'll see how to maintain  $h = O(\lg n)$

#### Sorting With Binary Search Trees

• Informal code for sorting array A of length n: BSTSort(A)

```
for i=1 to n
    TreeInsert(A[i]);
InorderTreeWalk(root);
```

- What will be the running time in the
  - Worst case?
  - Average case? (hint: remind you of anything?)

# Sorting With Binary Search Trees – contd.

- Worst case:  $\Theta(n^2)$  occurs when a linear chain of nodes results from the repeated **TreeInsert** operations.
- Best case:  $\Theta(n \mid g \mid n)$  occurs when a binary tree of height  $\Theta(\lg n)$  results from the repeated **TreeInsert** operations.

# Sorting With BSTs

- Average case analysis
  - It's a form of quicksort!

for i=1 to n
 TreeInsert(A[i]);
InorderTreeWalk(root);





# Sorting with BSTs

- Same partitions are done as with quicksort, but in a different order
  - In previous example
    - Everything was compared to 3 once
    - Then those items < 3 were compared to 1 once
    - o Etc.
  - Same comparisons as quicksort, different order!
    - Example: consider inserting 5

#### Sorting with BSTs

- Since run time is proportional to the number of comparisons, same time as quicksort: O(n lg n)
- Which do you think is better, quicksort or BSTsort? Why?

#### Sorting with BSTs

- Since run time is proportional to the number of comparisons, same time as quicksort: O(n lg n)
- Which do you think is better, quicksort or BSTSort? Why?
- A: quicksort
  - Better constants
  - Sorts in place
  - Doesn't need to build data structure

# Review: Sorting With BSTs

- Basic algorithm:
  - Insert elements of unsorted array from 1..n
  - Do an inorder tree walk to print in sorted order
- Running time:
  - Best case:  $\Omega(n \lg n)$  (it's a comparison sort)
  - Worst case: O(n²)
  - Average case:  $O(n \lg n)$  (it's a quicksort!)

#### More BST Operations

- BSTs are good for more than sorting. For example, can implement a priority queue
- What operations must a priority queue have?
  - Insert
  - Minimum
  - Extract-Min

# More BST Operations

- Minimum:
  - Find leftmost node in tree
- Successor:
  - x has a right subtree: successor is minimum node in right subtree
  - x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
    - Intuition: As long as you move to the left up the tree, you're visiting smaller nodes.
- Predecessor: similar to successor

# **BST Operations: Minimum**

- How can we implement a Minimum() query?
- What is the running time?

# **BST Operations: Successor**

- For deletion, we will need a Successor() operation
- Draw Fig 12.2
- What is the successor of node 3? Node 15? Node 13?
- What are the general rules for finding the successor of node x? (hint: two cases)

# Deletion is a bit tricky 3 cases: x has no children: Remove x x has one child: Splice out x x has two children: Swap x with successor

o Perform case 1 or 2 to delete it

# **BST Operations: Delete**

- Why will case 2 always go to case 0 or case 1?
- A: because when x has 2 children, its successor is the minimum in its right subtree
- Could we swap x with predecessor instead of successor?
- A: yes. Would it be a good idea?
- A: might be good to alternate

#### The End

• Up next: guaranteeing a O(lg n) height tree