PYTHON ROBOTICS

WORKSHOP 4

HUISWERK

- Maak wandvolgen werkend.
- Stop als minder dan 300mm van de achterwand bent.
- Geef de status van de regeling weer via de led's.

Bonuspunten:

Maak wandvolgen beter.

HUISWERK

- Maak wandvolgen werkend.
- Stop als minder dan 300mm van de achterwand bent.
- Geef de status van de regeling weer via de led's.

Bonuspunten:

Maak wandvolgen beter.

```
def Test():
    print("Test1", aap)

aap = 7

Test()

7
8
```

```
1 def Test():
2    print("Test1", aap)
3
4    aap = 7
5    Test()
6
7
```

```
9 def Test():
10    aap = 8
11    print("Test1", aap)
12
13    aap = 7
14    Test()
15    print("Test2", aap)
16
```

```
1 def Test():
2    print("Test1", aap)
3
4    aap = 7
5    Test()
6
7
8
```

```
9 def Test():
10    aap = 8
11    print("Test1", aap)
12
13    aap = 7
14    Test()
15    print("Test2", aap)
16
```

```
17 # error
18 def Test():
19     aap = aap + 1
20     print("Test1", aap)
21
22     aap = 7
23 Test()
24
```

```
>>> Traceback (most recent call last):
   File "main.py", line 23, in <module>
   File "main.py", line 19, in Test
NameError: local variable referenced before assignment
```

```
def Test():
    print("Test1", aap)

aap = 7

Test()

8
```

```
17 # error
18 def Test():
19     aap = aap + 1
20     print("Test1", aap)
21
22     aap = 7
23 Test()
24
```

```
9  def Test():
10    aap = 8
11    print("Test1", aap)
12
13    aap = 7
14  Test()
15  print("Test2", aap)
16
```

```
25 def Test():
26    global aap
27    aap = aap + 1
28    print("Test1", aap)
29
30    aap = 7
31    Test()
32    print("Test2", aap)
```

VARIABELE SCOPE

- Je kunt in functies globale variabelen <u>lezen</u>.
- Variabelen waar je in functies iets aan toekent, zijn default lokaal.
- Met het keyword 'global' in een functie geef je aan dat een variabele niet lokaal is.

MYQUEEN API

GetEncoders()

GetFloorSensors()

RGB(ColourL, ColourR)

Servo(Nr, Degrees)

Motors(SpeedL, SpeedR)

Rotate(Degrees, Speed)

SpeedDistance(Speed, Distance)

Stop()

IsDone()

return: list met waarde van linkse en rechtse encoder

return: list met 6 analoge waarden, link->rechts

Stuur RGB Leds, kleurenbits: 1=rood, 2=groen, 4=blauw

Stuur servo, Nr = 1..3

Cmd: stuur motors met gegeven snelheid

Cmd: roteer robot 'Degrees' graden met gevraagde snelheid

Cmd: Rij gegeven afstand met gevraagde snelheid

Cmd: Stop robot

Takt & controle status, geeft True terug als commando klaar

VLOERSENSOR

Op lichte ondergrond:

```
>>>
>>> f = Mq.GetFloorSensors()
>>> f
(3677, 3330, 3786, 3798, 3769, 3634)
>>> print(f[1])
3330
>>>
```

SERVO'S

>>> Mq.Servo(3, 0)

>>> Mq.Servo(3, 170)

HEEN EN WEER – DE OPGAVE

HEEN EN WEER – TWEE NIEUWE STATES

```
def SeqenceTerugNaarStart(S):
      if S.IsNewState('SeqenceReturnToStart') :
41
         Mq.RGB(3, 3)
42
         Mq.Rotate(180, 40) # draai 180 graden
43
44
     if Mq.IsDone() :
45
         S.Goto(SeqenceRijTerugNaarStart)
47
  def SeqenceRijTerugNaarStart(S):
      if S.IsNewState('SegenceRijTerugNaarStart') :
50
         Mq.RGB(2, 2)
51
         Mq.SpeedDistance(100, 9999) # rechtuit rijden, heel ver
52
53
     # stop als we dichtbij een obstakel (wand A) zien
54
     if Sensoren.UsAfstand < 300 :
55
         Mq.Stop()
         S.Return()
57
58
     Mq.IsDone() # Dit zorgt er voor dat SpeedDistance goed werkt
59
```

HEEN EN WEER

4.HeenWeer.py

HEEN EN WEER - OEFENING

HEEN EN WEER - OPLOSSING

Sm.Goto([SequenceWachtA, SeqenceVolgWand, SeqenceTerugNaarStart])

69

70

WHILE LOOP

```
1 i = 1
2 while i < 6:
3  print(i)
4  i += 1</pre>
```

```
Running: tmp.py

1
2
3
4
5
>>>
```

BREAK, CONTINUE

```
1 i = 1
2 while i < 6:
3    print(i)
4    if i == 3:
5        break
6    i += 1</pre>
```

```
8 i = 0
9 while i < 6:
10 i += 1
11 if i == 3:
12 continue
13 print(i)</pre>
```

FOR LOOP

Loop door 'Containers'

```
fruits = ["apple", "banana", "cherry"]
for x in fruits:
   print(x)
```

FOR (BREAK)

```
fruits = ["apple", "banana", "cherry"]
for x in fruits:
  print(x)
  if x == "banana":
    break
```

RANGE()

```
for x in range(6):
    print(x)

for x in range(2, 6):
    print(x)

for x in range(2, 30, 3):
    print(x)
```

https://www.w3schools.com/python/

DICTIONARY

```
1 OdoConfig = {
2    "TickToDistance": 0.0353 ,
3    "TickCorrectLR": 1.00073552,
4    "TickToHeading": 0.00015841
5 }
```

Opslaan op je pc:

```
with open('data.json', 'w') as fp:
    json.dump(OdoConfig, fp)
```

```
7 print(OdoConfig)
8
9 print(OdoConfig['TickToDistance'])
10
11 print(OdoConfig.keys())
```

```
{'TickToDistance': 0.0353, 'TickCorrectLR': 1.00073552, 'TickToHeading': 0.00015841}
0.0353
dict_keys(['TickToDistance', 'TickCorrectLR', 'TickToHeading'])
```

LISTIGE DATATYPES OP EEN RIJ

• overzicht van datatypes, aantal zijn we al tegengekomen.

		Mutable	Ordered	Indexing / Slicing	Duplicate Elements
>>> MyList = [1, 2, "aap"]	List	✓	/	/	/
>>> >>> MyTuple = (9, 10, "Noot")—————	Tuple	×	√	√	/
>>> >>> MySet = {"Boom", "Roos", "Vis"}——	Set	√	×	X	X
>>> >>>					
>>> MyDict = {"Boom": 11, "Roos": 13, "	Vis":	17}			

ROBORAMA T-TIJD

T-TIJD ROUTE

SIMULATIE MET 85 GRADEN I.P.V. 90

T-TIJD STATES

T-TIJD STATE MACHINE

ROBORAMA LIJNVOLGEN

LIJNVOLGEN

GEBRUIK LIJNSENSOR

ROBORAMA – 22 APRIL 2023

PYTHON ROBOTICS

EINDE...