SEMINAR 8:

SERII DE PUTERI

Soui de putai 1) — naza de convergenta
$$R = \frac{1}{\lim_{n \to \infty} V(ant)}$$
 $\lim_{n \to \infty} V(ant)$

el — interval de convergenta $V(a)$ $V(a)$

interval de convergenta $V(a)$
 $V(a)$

feste cont pe A flixo-R, xo1R1

f este fot de clasa co pe (xo-R) xo +R1

Sais de puter remarcabile:

$$11 \underset{M \ge 0}{\not =} x^m = 1, \forall x \in (-1,1]$$

31
$$\underset{m > 0}{\text{2}} \frac{x^m}{m!} = e^x, \forall x \in \mathbb{R}$$

$$61 \underset{n \geq 0}{\underbrace{\left(\frac{(2n+1)^{n}}{2} \times n + 1}} = \widehat{gn} \times, \forall x \in \mathbb{R}$$

Exacti:

El Sa se det. R. A si f pt. Wmatoalela soii de putai

an =
$$\sqrt{(n+1)}$$
 \sqrt{n} \sqrt{n}

$$X_0 = 0$$
 $(-1)^n$
 $A_0 = 0$
 $(-1)^n$
 $A_0 = 0$
 $A_0 =$

$$1|R = \frac{1}{\left|\lim_{n \to +\infty} \left|\frac{ann}{an}\right|}, \quad \lim_{n \to +\infty} \left|\frac{ann}{an}\right| = \lim_{n \to +\infty} \left|\frac{(n+2)(-1)^{n+1}}{(m+1)(-1)^n}\right| = \lim_{n \to +\infty} \frac{m+2}{m+1}$$

$$= \lim_{n \to +\infty} \frac{1}{\left|\min_{n \to +\infty} \left|\frac{1}{n}\right|} = \lim_{n$$

Pl. co -1
$$\in$$
 A, solia de ma. reale $\underset{m \ge 0}{\mathcal{E}}$ 1-11 n (m) (-1) m este como. este dire.

$$\frac{\mathcal{E}}{m^{20}} \left(-1 \right)^{n} \left(n + 11 \left(-1 \right)^{n} \right) = \frac{\mathcal{E}}{m^{20}} \left(n + 11 \right) \left(\left(-1 \right)^{n+n} \right) = 1 - 11^{2m} = 1 \right)$$

$$\frac{1}{m^{20}} \left(-1 \right)^{n} \left(-1 \right)^{n+n} = 1 - 11^{2m} = 1$$

$$x=1$$
 $= 1$

4)
$$f: H = (1,1) \rightarrow R \cdot (f|X| = \sum_{m \geq 0} (-1)^m (m+1) \cdot X^m$$

$$found pa (-1,1)$$

$$f = \int_{m \geq 0} \int_{m \geq 0}$$