Bioinformatics Compendium

compiled by: Alexander Larsen

A rough guideline of topic refreshers and tools to help with the breadth of bioinformatics. This compendium was originally made after a few self directed courses in 2017-2018 and further updated as my personal knowledge grew. Much of the later half is a more superficial overview of concepts with brief notes.

Overview:

- 1. Sequence Assembly
 - 1.1. DNA genomic
 - 1.2. RNA transcriptome specific
- 2. Alignment
 - 2.1. NGS Alignment
 - 2.1.1. Short Sequence illumine, ion
 - 2.1.2. Splice capable illumine, ion
 - 2.1.3. Long Sequence pacbio, nanopore
 - 2.2. Single Alignment
 - 2.3. Multiple Sequence Alignment
 - 2.4. Long Sequence Alignment
- 3. Artificial Read Generators
- 4. Phylogenetic Analysis
 - 4.1. Methods
 - 4.2. Programs
- 5. Biological Networks
- 6. Probability of sequence observations
- 7. Clustering
- 8. Motif Analysis
- 9. Epigenomic Analysis
- 10. RNA structure analysis
- 11. Mass Spectrometry Analysis
- 12. Protein Structure predition

Sequence Assembly

- De Novo without reference to a database, produces sometimes novel sequences.
 - o Greedy algorithm assemblers
 - o De Bruijin graph assembler- most popular with next gene sequencing
 - o a short list of *some* De Novo assemblers
 - https://en.wikipedia.org/wiki/De novo sequence assemblers
 - Spades
 - Ray
 - AbySS
 - ALLPATHS-LG
 - Trinity

- There are some De Novo transcriptome assembly programs that are separate, for RNA-Seq. This is the wiki list as of 2020
 - Annotaters
 - Blast2GO
 - Goanna
 - **KEGG** for metabolic pathways following annotation
 - SeqMan Ngen
 - SOAPdenovo-Trans
 - Velvet/Oases
 - Trans-AbySS
 - Trinity

Alignment

- NGS Alignment
 - Short sequence alignment illumine, ion
 - **BWA** various different versions to this aligner, benchmarks strongly
 - **Bowtie2** Fairly fast and memory safe, Burrows Wheeler
 - o Splice-capable
 - STAR Alternate splice site, different versions can handle short and long NGS reads
 - **Hisat2** Can handle alternate splice sites
 - Tophat2 Can handle alternate splice sites... depreciated in favor of Hisat2
 - BBMap
 - GMap
 - Long read alignment pacbio, nanopore
 - Minimap2
 - NGMLR
 - GraphMap
 - LAST
 - deSALT
- Single alignment(576)
 - Matrix Types
 - Substitution matrix, chance of alignment
 - BLOSUM45
 - BLOSUM50
 - BLOSUM62**empirically works the best
 - **PAM** position weighted c/sum(c)
 - BLOck sUbstitution Matrix (BLOSUM) 62
 - Needleman-Wunsch Global alignment
 - Smith-waterman local alignment
 - derived from set of aligned ungapped regions from protein familis called BLOCKS
 - calculate substition frequencies
 - positive for chemically similar substitution
 - common amino aids have low weights
 - rare amino acids have high weights
 - Assigning significance to alignment score
 - Bayesian framework
 - Classical approach

- Extreme Value distribtuion
 - look at the probablility of a random score, if it is less likey than our alignment score then the score is considered significant. Plot all your scores vs randoms and get a distribution of these comparative scores.
 - Bayes theorem
- Heuristic Algorithms
 - BLAST
 - basic local alignment search tool
 - compile a leist of high scoring words of score at least T, index database then **extend hits.**
 - A tradeoff between running time and sensitivity
 - don't extend a hit when the score falls below a specified threshold

FASTA

- starts with exact seed matches instead of inexact matches that satisfy a threshold
- extends like blast
- join high sccoring seeds allowing for gaps
- re-align high scoring matches using dynaimc programming
- Different kinds of BLAST programs(program Query from Database)
 - **BLASTP** protein from protein
 - **BLASTN** DNA from DNA
 - **BLASTX** translated DNA from protein
 - **TBLASTN** protein from translated DNA
 - TBLASTX translated DNA from translated DNA
- Sequence databases
 - Web portals, knowledge bases
 - NCBI
 - EBI
 - Sanger
 - Nucleotide sequences
 - Genbank
 - **EMBL-EBI** nucleotide sequence database
 - Comprise ~ 8% of the total database
 - Protein sequences
 - UniProtKB
- Mutliple sequence alignment(576)
 - Methods
 - Build phylogenetic trees
 - Algorithms
 - Progressive alignment algorithms
 - Star alignment
 - Guide tree approach- similar to phylo
 - Iterative alginment algorithms
 - Such as those employed in CLUSTAL omega can account for early bias in leaf nodes during tree construction
 - Dynamic programming is not feasible for larger and more reads O(n^k2^k)

- o Scoring
 - Entorypy based scores- best when we are most uncertain
 - sum of pairs for a deterministic even, more certain(BLOSUM and PAM do this
- o Programs incomplete list
 - https://www.ebi.ac.uk/Tools/msa/
 - Clustal omega- guide tree based alignemnt
 - Kalign-large alignmetns
 - MAFFT
 - MUSCLE-fast and has good quality alignment
 - Mauve fast and lightweight
 - PSAlign
- Long Sequence Alingment(776)
 - o MUMmer System
 - Indexing maximal unique matches to a myriad of large matches using preprocessed strings. Then extend these strings. Do normal substitution matrix scoring afterward to fill in some of the gaps
 - Suffix tree
 - Comparative models and operating time(fastest to slowest)
 - LIS- Longest increasing subsequence
 - Suffix tree
 - Smith-Waterman
 - FASTA -dead last by a couple orders of magnitude
 - o LAGAN(slightly better at covering alignment compared to MUMmer
 - Three step method using 10-mer alignment allowing one mismatch
 - utilizes a trie to represent all the 3-mers of the sequence
- Multiple Whole Genome Alignment(776)
 - o MLAGAN
 - requires phylogenetic tree
 - Greedy solution with local refinement
 - Mercator
 - Define probablistic model to solve globally
 - Inference is intractable, resort to approximations

Artificial Reads Generator

- DWGSIM (http://sourceforge.net/projects/dnaa/)
- ART
- Wgsim (https://github.com/lh3/wgsim)

Phylogenetic Trees

- Methods
 - Distance-based
 - o UPGMA often incorrect because ultrametric notion of distance overfits
 - o Neighbor joining/nearest neighbor unrooted trees
 - o Assume additivity and sometims a "molecular clock"
 - o Alignment-based methods
 - o Parsimony weighted
 - many more methods than graph search but

- hill-climbing
- Branch and bound
- o Probabilistic
 - so this seems to be what all the programs actually utilize, Bayes and maximum likelihood
 - felsensteins algorithm
- o Rooting a tree(afterward)
- o use a speciest that is distantly related enough to show the fork
- Programs
 - o PAML maximum likelihood
 - o **BEAST2** Bayesian
 - o **phytools** maximum likelihood
 - o COUNT maximum Parsimony, maximum likelihood
 - o ANGES Local Parsimony
 - o https://en.wikipedia.org/wiki/List_of_phylogenetics_software
 - o https://en.wikipedia.org/wiki/List of phylogenetic tree visualization software

Biological Networks

- Molecular networks (Omic networks)
 - Physical Networks
 - o Transcirptional regulatory networks(overlap between metabolic network modeling tools)
 - Nodes regulatory protein like a TF or target gene
 - Edges -TF A regulates C
 - Directed, signed, weighted graph
 - BioCyc
 - o Protein protein
 - Vertices proteins
 - Edges Protein U physically interacts with protein X
 - Undirected graph
 - Signaling networks
 - Vertices enzymes and other proteins
 - Edges Enzyme P modifies protein Q
 - Directed graph
 - PathLinker- prediction algorithms
 - Literome
 - Chilibot
 - iHOP
 - eQTL electrical diagrams
 - HotNet random walks/ network diffusion/ circuits
 - o Alternative pathway identification papers
 - Physical Network
 - http://online.liebertpub.com/doi/abs/10.1089/1066527041410382
 - Maximum Edge Orientation http://nar.oxfordjournals.org/content/39/4/e22.full
 - Signaling ane Dynamic Regulatory Events Miner http://www.genome.org/cgi/doi/10.1101/gr.138628.112
 - Steiner forest
 - http://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002887
 - Omics Integrator http://dx.doi.org/10.1371/journal.pcbi.1004879
 - shortest paths+ steiner tree ANAT http://msb.embopress.org/content/5/1/248

- Functional Networks
- Metabolic network modeling
 - Vertices enzymes
 - Enzyme M and N share a metabolite
 - Undirected and weighted graph
 - PathoLogic
 - ERGO in combination with libraries like MetaCyc
 - PathwayTools
 - databases
 - Kyoto encyclopedia of genes and genomes
 - Biocyc, EcoCyc, and MetaCyc
 - BRENDA
 - BiGG
 - metaTIGER
- o Genetic interaction networks (https://en.wikipedia.org/wiki/Gene_regulatory_network)
 - SGNSim, stochastic gene networks simulator
 - Gillespie algorithm
- Bayesian Networks
 - o A graph which is directed and acyclic
 - o hill climbing search algorithm not as good
 - o Sparse candidate- for larger data sets like bioinformatics
 - A set of conditional distributions
- Module Networks
 - Type of bayesian networks but Conditional probability distribution represents a cluster of genes instead of individual nodes
 - o sequential update, best to cluster by 10 modules for best results
 - o Outperform many basic Bayesian networks
 - o LeMoNe Learning Module Networks
 - LIRNET Learning a Prior on Regulatory Potenetial from eQTL data
 - o how to find dense subgraphs with large numbers of connection
 - o **HOTNET** A set cover approach
 - o NETBAG Network based analysis of genetic associations
- Dependency networks Regression
 - o GENIE3 algorithm for learning a dependncy network from expression data'
 - TIGRESS
- Mutual Information
 - ARACNE
- General applications of Networks
 - o Differential subgraph identification
 - o given gene expression from disease and normal studies
 - o identify pathways that are most differentially altered between conditions
 - Module detection
 - Dense subgraph identification
 - Interpretation of gene sets
 - Identification of novel pathways
 - Set cover based methods
 - Network information flow
 - Sparse subgraph identification

- o Interpretation of gene sets
- o Prioritization of genes

Probability of sequence observations/ Gene Finding

- HMM
 - o How likely is an HMM to have generated a given sequence
 - forward algorithm
 - what is the most likely "path" for generating a sequence of observations
 - Viterbi algorithm
 - Parameter estimation: How can we learn an HMM from a set of sequences?
 - Forward backward or Baum-Welch (an EM algorithm)
- Phylo-HMM multiple sequence conserved elements in the genome
 - o emmissoin is a column of a multiple sequence alignment
 - o Probability of an alignment and path
 - o Phastcons: a phylo-hmm for finding conserved sequenece elements
 - o MutationTaster-free
 - o PhastCons/PHAST compgen.cshl.edu/phast/
- ChromHMM/ Histone code HMM epigentic markers
 - o used with ChIP-seq FASTQC
 - o file type called FASTQ which is the standard as of 2016
 - o then genomic Co-ordinates uses "bam"
 - o segmentation (transformation) uses "wig"
 - o last is actual analysis, statistic, visualization.
- Interpolated MM
 - o GLIMMER
 - o 8th order, inhomogenous, interpolated markov chain models
 - o essentially ORF classification
- Eukaryotic gene finding
 - o GENSCAN HMM
 - o Pair HMMs

Clustering

- Motivation
 - o Exploratory data analysis
 - o visualization
 - o understanding general characteristics of data
 - Generalization
 - o infer something about a omic set based on how it relates to other objects
 - o sense of k then use
 - o Gausian or k-means
 - o control for the extent of dissimilarity
 - o hierarchial
 - o deterministic
 - Hierarchical
- Flat
 - o K-means- hard clustering algorithm
 - o sklearn import Kmeans
 - Model-based clustering
 - o Gaussian mixture models -soft clustering algorithm
 - o utilizes EM algorithm to learn GMM parameters

- o Python module sklearn import GMM
- Hierarchical
 - o Top-down (divisive)
 - o Bottom up (agglomerative)
 - o python module scikit
 - o python module SciPy
- how to measure transcriptomes
 - o microarrays-older tech that's still used in diagnostics
 - o cDNA/Spotted arrays
 - This is hybridized usually between a control and normal on plate
 - o Oligonucleotide arrays
 - o uses ssDNA spanning the entire genome
 - Affymetrix Most common microarray
 - o Nimblegen
 - o Sequencing
 - o RNA-seq
 - few drawbacks

Motif Analysis

- Learning Sequence Motif Model Using Expectation (EM) (MEME)
 - o MEME Suite***
- Mutual Information motif FIRE (Promoters and terminators)
 - O Tons of tools at: https://molbiol-tools.ca/Promoters.htm
- Quantitative trait loci (continuous phenotypes) Gene exp and metabolite abundance *incomplete list*
 - o https://omictools.com/qtl-mapping-category
 - RASQUAL
 - o WEBOT
 - o R/qtl
 - o Ogene
- GWAS studies(discrete phenotypes) IE disease status is binary

Epigenomic Analysis

- Algorithms
 - o ChromHMM
 - Segway: Dynamic Bayesian network
- Database
 - o RegulomeDB
- Programs
 - o CLCbio Qiagen *** Helpful for a variety of things in gene mapping
- Protein Interaction Quantification(PIQ)
 - o PIQ http://piq.csail.mit.edu/download.html
 - Eukaryotic
 - o bacterial
 - o Prokaryotic
 - o ROC curve confusion matrix statistic
 - HINT-performs best
 - o Dnase2TF
 - Neph
 - Wellington

- o **CENTIPEDE**
- Gaussian bivariate
 - o https://github.com/SheffieldML/GPy
- Combined Annotation Dependent Depletion (CADD)
 - o Example of an algorithm that integrates multiple types of evidence into a single score
 - Conservation
 - o Epigenetic information
 - o Protein Function scores for coding variants
 - o Algorithms/programs
 - o DeepSEA
 - o DeepLIFT

RNA-Seq

- RNA-Seq- Reverse-transcriptase-PCR
- multireads can be recovered
- RSEM
 - o RNA-Seq by Expectation-Maximization- a generative probabilistic model
- Public sources of RNA-Seq data
 - o Gene Expression Omnibus (GEO): http://www.ncbi.nlm.nih.gov/geo/
 - O Sequence Read Archive (SRA): http://www.ncbi.nlm.nih.gov/sra
 - O ArrayExpress: https://www.ebi.ac.uk/arrayexpress/

Mass spectrometry Analysis

- applications
 - Targeted proteomics
 - Metabolomics
 - Lipidomics
 - Quantify abundance or state of all(many) proteins
- SEQUEST/PSM(peptides spectrum match)
 - peptide matching

RNA structure Analysis

- General Algorithms
 - Nussinov
 - Energy Minimization
 - Mfold
 - RNAfold
- Grammer
 - CFG context free grammer
 - SCFG stochiastic
 - Algorithms- all have parallels with vitebi/forward-backward HMM algorithms
 - how likely The Inside algorithm
 - most proxaxle parse Cocke- Younger-Kasami (CYK) algorithm
 - what are SCFG parameters given a grammar and a set of sequences Inside-Outside algorithm
 - CONTRAfold
- Software
 - Vienna
 - Nupack

- https://en.wikipedia.org/wiki/List of RNA structure prediction software
 - MASSIVE list with a myriad of programs
- CenterFOLD
- CentroidHomfold
- CyloFold

Protein Structure Prediction

- Experimentally determined by expensive methods
 - x-ray crystalligraphy
 - ruclear magnetic resonance (NMR)
 - cryo-electron microscopy
- Prediction in 3D (https://en.wikipedia.org/wiki/List of protein structure prediction software)
 - Homology modeling
 - Protein threading
 - modified branch and bound
 - IntFOLD
 - RaptorX
 - Denovo Structure prediction
 - AlphaFold
 - RoseTTAFold
 - Fold recognition
 - alphafold
 - Foldit.it
 - IntFOLD
 - RaptorX
 - Fragment assembly
 - Rosetta
 - http://boinc.bakerlab.org
 - Evfold
 - QUARK
 - FALCON
 - Molecular dynamics
 - Folding@home
 - http://folding.stanford.edu
 - Abalone
- Secondary structure prediction
 - https://en.wikipedia.org/wiki/List of protein secondary structure prediction programs
 - SPIDER2
 - RaptorX-SS8
 - ∘ s2D