Modelos y Optimización I Trabajo práctico: Análisis de sensibilidad

de Valais, Ezequiel (94463) — Rozanec, Matias (97404)

Noviembre 2017

ANÁLISIS DE SENSIBILIDAD

A partir de la siguiente modelización del problema y su correspondiente resolución por el método Simplex:

Planteo inicial:

COMPONENTES) 15 X1 + 5 X2 + 5 X3 <= 3000

TECNICOS) 3 X1 + 3 X2 + 3 X3 <= 480

MAX SM) X3 <= 120

 $MIN_SM) X3 >= 40$

MAX MM) $X2 \le 80$

Z(MAX) 400 X1 + 250 X2 + 200 X3

siendo

X1 = cantidad de servicios BM a lanzar [servicios/mes]

X2 = cantidad de servicios MM a lanzar [servicios/mes]

X3 = cantidad de servicios SM a lanzar [servicios/mes]

<u>Nota</u>: el planteo puede diferir del que hayan realizado en la primera entrega. Se pide trabajar con este planteo ya que se utilizará nuevamente en la evaluación escrita.

Tabla Óptima:

400 250 200

Ck	Xk	Bk	A ₁	A ₂	A ₃	A ₄	A 5	A 6	A ₇	A 8
400	X_1	120	1	1	0	0	1/3	0	1	0
200	Х3	40	0	0	1	0	0	0	-1	0
	X ₄	1000	0	-10	0	1	-5	0	-10	0
	X 6	80	0	0	0	0	0	1	1	0
	X8	80	0	1	0	0	0	0	0	1
Z	= 5	6.000	0	150	0	0	400/3	0	200	0

Se pide responder, justificando claramente e indicando los cálculos realizados sobre las tablas:

- a- Graficar la variación de la cantidad de servicios SM, del valor marginal de técnicos y del funcional, al variar la disponibilidad de componentes entre 1000 y 4000. Indicar el valor de las pendientes señalando en qué parte de la tabla se encuentran. Exclusivamente para este punto, se pide correr el modelo en un software y relacionar la información de la corrida con la información de la tabla óptima utilizada para graficar el rango en que dicha tabla es válida.
- b- Dada la situación de la disponibilidad de técnicos, se evalúan dos alternativas excluyentes: conseguir 300 más pagando un costo total de \$45.000 o enviar 400 técnicos a un socio comercial que nos pagaría un valor de \$500.000. ¿Cuál de las dos alternativas es más conveniente?
- c- La empresa evalúa una reingeniería de procesos que llevaría la ganancia de los servicios MM a \$450. Indicar cómo afectaría esta situación al plan óptimo y al beneficio total.

1. Relación entre variables del primal y del dual:

X1 - Y6

X2 - Y7

X3 - Y8

X4 - Y1

X5 - Y2

X6 - Y3

X7 - Y4

X8 - Y5

Tabla óptima del dual:

			3000	480	120	-40	80			
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8
480	Y2	400/3	5	1	0	0	0	-1/3	0	0
-40	Y4	200	10	0	-1	1	0	-1	0	1
0	Y7	150	10	0	0	0	-1	-1	1	0
	Z=560	000	-1000	0	-80	0	-80	-120	0	-40

Parametrizamos C1.

Estudiamos intervalo de confianza.

• $2000 - C1 \le 0 \iff C1 \ge 2000$ $Con \ C1 \in [2000; \infty)$:

$$X1=120$$

$$Z = 56000$$

$$Y2 = 400/3$$

Tabla con C1 = 2000:

		71 — 200	2000	480	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
480	Y2	400/3	5	1	0	0	0	-1/3	0	0	80/3
-40	Y4	200	10	0	-1	1	0	-1	0	1	20
0	Y7	150	10	0	0	0	-1	-1	1	0	15
	Z = 560	000	0*	0	-80	0	-80	-120	0	-40	

Entra Y1, sale Y7.

			C1	480	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
480	Y2	175/3	0	1	0	0	1/2	1/6	-1/2	0	
-40	Y4	50	0	0	-1	1	1	0	-1	1	ĺ
C1	Y1	15	1	0	0	0	-1/10	-1/10	1/10	0	ĺ
Z=50	6000 +	+ 15 C1	0	0	-80	0	120-C1/10	80-C1/10	-200+C1/10	-40	

- $120 C1/10 \le 0 \iff C1 \ge 120$
- $80 C1/10 \le 0 \iff C1 \ge 800$

• $-200 + C1/10 \le 0 \iff C1 \le 2000$ Con $C1 \in [1200; 2000]$:

$$X1 = |80 - C1/10|$$

 $Z = 56000 + 15C1$
 $Y2 = 175/3$

			1200	480	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
480	Y2	175/3	0	1	0	0	1/2	1/6	-1/2	0	350/3
-40	Y4	50	0	0	-1	1	1	0	-1	1	50
1200	Y1	15	1	0	0	0	-1/10	-1/10	1/10	0	-
7	Z = 740	00	0	0	-80	0	0*	-40	-80	-40	

Entra Y5, sale Y4

			C1	480	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
480	Y2	100/3	0	1	1/2	-1/2	0	1/6	0	-1/2	
80	Y5	50	0	0	-1	1	1	0	-1	1	
C1	Y1	20	1	0	-1/10	1/10	0	-1/10	0	1/10	
Z=20	0000 -	+ 20 C1	0	0	40-C1/10	-120+C1/10	0	80-C1/10	-80	-160+C1/10	

- $40 C1/10 \le 0 \iff C1 \ge 400$
- $-120 + C1/10 \le 0 \iff C1 \le 1200$
- $80 C1/10 \le 0 \iff C1 \ge 800$
- $-160 + C1/10 \le 0 \iff C1 \le 1600$ Con $C1 \in [800; 1200]$:

$$X1 = |80 - C1/10|$$

 $Z = 20000 + 20C1$
 $Y2 = 100/3$

A continuación, se incluye la salida de software del análisis de sensibilidad. Debido a que no se logra mostrar correctamente en el informe, se adjunta además junto al presente documento.

1	GLPK 4.57 – SENSITIVITY ANALYSIS REPORT			Page	1
2					
3	Problem: PLC				
4	Objective: z = 56000 (MAXimum)				
5					
6	No. Row name St Activity Obj value at Limiting	Slack	Lower bound	Activity	Obj coef
7		Marginal	Upper bound	range	range
			point variable		
8					
9		1000.00000	— I n f	1200.00000	-15.00000
	26000.00000 X2				
10		·	3000.00000 +Inf	2000.00000	+ I n f

$\frac{11}{12}$	2 TECNICOS NU 8000.00000 X1			$-\operatorname{In} f$	120.00000	-133.33333
13	8000.00000 A1			480.00000 66667 COMPONENT		+ I n f
14 15	3 MAX.SM BS	40.00000		- I n f	40.00000	— I n f
16	— I n f			120.00000		200.00000
17 18	4 MIN_SM NL	40.00000		40.00000 MIN_SM		— Inf
19	64000.00000 X			+Inf	120.00000	
20				0000 MAX.SM	120.00000	200.00000
21	5 MAX_MM BS 56000.00000		80.00000	$-\operatorname{In} f$		$-\operatorname{I}\operatorname{n}\operatorname{f}$
22			. 560	80.00000 000.00000 X2	120.00000	150.00000
23 24			-56000.00000	$-\operatorname{In} f$	40000.00000	-1.00000
25	•	MIN_SM		$^{+\operatorname{Inf}}_{+\operatorname{Inf}}$	56000.00000	$+\operatorname{I}\operatorname{n}\operatorname{f}$
26 27	GLPK 4.57 - SENSITIVITY	ANALYSIS REPO	RT	1		
00					Page	2
28 29 30	Problem: PLC Objective: $z = 56000$ (MAXimum)			Page	2
29	Objective: $z = 56000$ (No. Column name St	Activity	Obj coef	Lower bound	Ü	
29 30 31	Objective: $z = 56000$ (Activity	Marginal	Lower bound Upper bound point variable	Activity	
29 30 31 32	Objective: $z = 56000$ (No. Column name St	Activity	Marginal	Upper bound	Activity	Obj coef
29 30 31 32 33	Objective: z = 56000 (No. Column name St Obj value at Li 1 X3 BS	Activity miting 40.00000	Marginal	Upper bound point variable	Activity	Obj coef
29 30 31 32 33	Objective: z = 56000 (No. Column name St Obj value at Li	Activity miting 40.00000	Marginal break	Upper bound point variable	Activity range	Obj coef range
29 30 31 32 33 34 35	Objective: z = 56000 (No. Column name St Obj value at Li 1 X3 BS -Inf	Activity miting 40.00000	Marginal break	Upper bound point variable	Activity range	Obj coef range
29 30 31 32 33 34 35 36 37	Objective: z = 56000 (No. Column name St	Activity miting 40.00000	Marginal break 200.00000 . 646 250.00000 -150.00000	Upper bound point variable	Activity range	Obj coef range
29 30 31 32 33 34 35 36 37 38	Objective: z = 56000 (No. Column name St Obj value at Li 1 X3 BS -Inf	Activity miting 40.00000	Marginal break 200.00000 . 646 250.00000 -150.00000	Upper bound point variable . +Inf 000.00000 MIN_SM	Activity range 40.00000 120.00000 -100.00000	Obj coef range
29 30 31 32 33 34 35 36 37 38 39	Objective: z = 56000 (No. Column name St Obj value at Li 1 X3 BS -Inf	Activity miting 40.00000	Marginal break 200.00000 . 646 250.00000 -150.00000	Upper bound point variable +Inf 000.00000 MIN_SM +Inf	Activity range 40.00000 120.00000 -100.00000	Obj coef range
29 30 31 32 33 34 35 36 37 38 39 40 41 42	Objective: z = 56000 (No. Column name St Obj value at Li 1 X3 BS -Inf 2 X2 NL 71000.00000 C	Activity miting 40.00000	Marginal break 200.00000 . 640 250.00000 -150.00000 44000.0	Upper bound point variable +Inf 000.00000 MIN_SM +Inf	Activity range 40.00000 120.00000 80.00000 40.00000	Obj coef range
29 30 31 32 33 34 35 36 37 38 39 40 41	Objective: z = 56000 (No. Column name St Obj value at Li 1 X3 BS -Inf 2 X2 NL 71000.00000 C	Activity miting 40.00000	Marginal break 200.00000 . 64(250.00000 -150.00000 44000.0	Upper bound point variable	Activity range 40.00000 120.00000 80.00000 40.00000	Obj coef range

Se toma el ACTVITY de SM teniendo en cuenta el activity range de componentes para generar el gráfico de variaciones de la cantidad de servicios SM Se toma el marginal de TECNICOS teniendo en cuenta el activity range de componentes para generar el gráfico de valores marginales de tecnicos Se toma el Objective: z teniendo en cuenta el activity range de componentes para generar el gráfico de variacion de funcional

1 Gráficos

Figure 1: Variación de la cantidad de servicios SM al variar la disponibilidad de componentes.

Figure 2: Variación del valor marginal de técnicos al variar la disponibilidad de componentes.

2. Caso 1:

			3000	780	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	heta
780	Y2	400/3	5	1	0	0	0	-1/3	0	0	400/15
-40	Y4	200	10	0	-1	1	0	-1	0	1	20
0	Y7	150	10	0	0	0	-1	-1	1	0	15
	Z=560	000	500	0	-80	0	-80	-220	0	-40	

Entra Y1, sale Y7

				3000	780	120	-40	80				
	Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
,	780	Y2	175/3	0	1	0	0	1/2	1/6	-1/2	0	
.	-40	Y4	50	0	0	-1	1	1	0	-1	1	
3	8000	Y1	15	1	0	0	0	-1/10	-1/10	1/10	0	
	Z	Z = 885	00	0	0	-30	0	-80	-170	-130	-40	

Llegamos a la tabla óptima.

Ganamos $88500 - 45000 = 43500 < 56000 \Rightarrow$ No conviene.

Caso 2:

			3000	80	120	-40	80				
Ck	Yk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
80	Y2	400/3	5	1	0	0	0	-1/3	0	0	400/15
-40	Y4	200	10	0	-1	1	0	-1	0	1	20
0	Y7	150	10	0	0	0	-1	-1	1	0	15
Z=8	000/3	= 2666.6	-3000	0	-80	0	-80	40/3	0	-40	

Como el dual tiene solución óptima no acotada el primal no tiene soluciones posibles. Por lo tanto este opción tampoco sirve.

Se puede validar esto dado que no se llegue a proveer la demanda de 40 SM (X3) con solo 40 técnicos. Se necesitan por lo menos 120 técnicos para cubrir la demanda.

3. Trabajamos en el primal.

			400	450	200						
Ck	Xk	Bk	A1	A2	A3	A4	A5	A6	A7	A8	θ
400	X1	120	1	1	0	0	1/3	0	1	0	120
200	X3	40	0	0	1	0	0	0	-1	0	-
0	X4	1000	0	-10	0	1	-5	0	-10	0	-
0	X6	80	0	0	0	0	0	1	1	0	-
0	X8	80	0	1	0	0	0	0	0	1	80
Z	Z = 560	00	0	-50	0	0	400/3	0	200	0	

			400	450	200						
Ck	Xk	$_{\mathrm{Bk}}$	A1	A2	A3	A4	A5	A6	A7	A8	θ
400	X1	40	1	0	0	0	1/3	0	1	-1	
200	X3	40	0	0	1	0	0	0	-1	0	
0	X4	1800	0	0	0	1	-5	0	-10	10	
0	X6	80	0	0	0	0	0	1	1	0	
450	X2	80	0	1	0	0	0	0	0	1	
Z=60000			0	0	0	0	400/3	0	200	50	

Llegamos a la tabla óptima. El beneficio es de 60000 y se aumentó la ganancia en 4000 \Rightarrow Conviene.