MODEL EVALUATION

1. Logistic Regression

A linear model used for binary classification, making predictions based on the weighted sum of input features. It performs well when the relationship between features and target is linear but struggles with complex data.

- Accuracy: 0.498
- Precision/Recall/F1-score
 - ✓ Positive class (1): High recall (0.96) but poor precision (0.50)
 - ✓ Negative class (0): Very low precision (0.45) and recall (0.03
- Performance Summary
 - ✓ Model leans heavily towards predicting the positive class.
 - ✓ Poor at handling class imbalance or capturing the negative sentiment accurately.

2. Naive Bayes

A probabilistic classifier based on Bayes' theorem, assuming feature independence. It is fast and effective for text classification but can be limited by this strong independence assumption.

- Accuracy: 0.510
- Precision/Recall/F1-score
 - \checkmark Positive class (1): Decent precision (0.51) and recall (0.76).
 - ✓ Negative class (0): Poor recall (0.26).
- Performance Summary
 - ✓ Performs marginally better than Logistic Regression.
 - ✓ It's better at recognizing positive sentiment but still struggles with negative class detection.

3. Support Vector Machine (SVM)

A robust model that finds the best hyperplane to separate data points, suitable for high-dimensional data but slow with large datasets.

- Accuracy: 0.498
- Precision/Recall/F1-score
 - \checkmark Positive class (1): High recall (0.96) but poor precision (0.50).
 - ✓ Negative class (0): Precision (0.46), recall (0.03) are very low.
- Performance Summary
 - ✓ Similar to Logistic Regression, biased towards predicting the positive class.
 - ✓ Struggles with negative sentiment.

4. Random Forest

An ensemble model that builds multiple decision trees and outputs the majority class. It handles non-linear relationships well but may be overfit without proper tuning.

- Accuracy: 0.616
- Precision/Recall/F1-score
 - ✓ Better balance across both classes (e.g., 0.60 precision for negative class, 0.63 for positive).

- ✓ Still struggles with class imbalance, with some decrease in recall for the positive class.
- Performance Summary
 - ✓ Performs better than Naive Bayes, Logistic Regression, and SVM.
 - ✓ Still not ideal but captures both positive and negative sentiments reasonably well.

5. LSTM (Long Short-Term Memory)

A deep learning model designed to learn dependencies in sequential data, particularly effective for text-based tasks like sentiment analysis, though it requires more training time and resources.

- Accuracy: 0.775 (Validation accuracy: 0.788).
- **Loss:** 0.465 (Training) / 0.447 (Validation).
- Performance Summary
 - ✓ Best performing model with an accuracy of 77.5%.
 - ✓ The validation accuracy of 78.8% indicates strong generalization to unseen data.
 - ✓ LSTM, being a deep learning model, excels at capturing long-term dependencies in text, making it well-suited for sentiment analysis.

Overall Comparison

Model Accuracy		Strengths	Weaknesses				
Logistic							
Regression	0.498	Simple to implement	Poor handling of negative sentiment				
Naive Bayes	0.51	Good for text data	Struggles with negative class				
		Works well for binary					
SVM	0.498	classification	Biased towards positive class				
Random		Captures both classes					
Forest	0.616	better	Still suffers from some imbalance				
		Captures complex text					
LSTM	0.775	dependencies	Requires more computational resources				

Conclusion: LSTM is the Best Model

LSTM outperforms all the other models, achieving a significantly higher accuracy of 77.5%. Its ability to model sequential data and understand long-term dependencies makes it ideal for sentiment analysis. While traditional ML models like Logistic Regression and SVM struggle with class imbalance and context, LSTM handles these challenges effectively. Hence, Prediction and Inference Module is based on LSTM model.

TESTING

Note: Recommend running test on google Colab.

Sample output screenshots.

a. Positive Tweets Scenario

b. Negative Tweets Scenario

c. Neutral Tweets Scenario

MODEL EVALUATION RESULTS

Logistic Regression

<pre>n_iter_1 = _check_optimize_result(Logistic Regression Accuracy: 0.497759375</pre>								
	precision	recall	f1-score	support				
0	0.45	0.03	0.06	159494				
1	0.50	0.96	0.66	160506				
accuracy			0.50	320000				
macro avg	0.47	0.50	0.36	320000				
weighted avg	0.47	0.50	0.36	320000				

Naive Bayes

y = column_or_id(y, warn=irue) Naive Bayes Accuracy: 0.510165625									
,	precision	n recall	f1-score	support					
	0 0.52	0.26	0.34	159494					
:	1 0.51	0.76	0.61	160506					
accurac	y		0.51	320000					
macro av	g 0.51	0.51	0.48	320000					
weighted av	g 0.51	0.51	0.48	320000					

Support Vector Machines (SVM)

	y = coium y = coium		or_1d(y, war 0.4989625	n=Irue)		
		٠,٠	precision	recall	f1-score	support
		0	0.46	0.03	0.06	159494
		1	0.50	0.96	0.66	160506
	accurac	y			0.50	320000
	macro av	/g	0.48	0.50	0.36	320000
V	veighted av	/g	0.48	0.50	0.36	320000

Random Forest

0.62

0.61

0.61

320000

320000

320000

0.62

0.62

Doon I	oorning n	nadale lika	T CTM	(Long Short	-Term Memory)
Deep 1	Lear ming n	noueis nke	LISTIVI	(Իրութ ջուր։ Ո	- 1 el III Mielliol y)

0.62

0.62

∑ ▼	Epoch 1/8												
_	1125/1125	293s	257ms/step -	accuracy:	0.7300 -	loss:	0.5298 -	val_accuracy:	0.7784 -	val_loss:	0.4652 -	learning_rate:	0.0010
	Epoch 2/8												
	1125/1125	2895	257ms/step -	accuracy:	0.7617 -	loss:	0.4874 -	val_accuracy:	0.7833 -	val_loss:	0.4564 -	<pre>learning_rate:</pre>	0.0010
	Epoch 3/8												
	1125/1125	2895	257ms/step -	accuracy:	0.7674 -	loss:	0.4785 -	val_accuracy:	0.7860 -	val_loss:	0.4530 -	<pre>learning_rate:</pre>	0.0010
	Epoch 4/8												
	1125/1125	2895	257ms/step -	accuracy:	0.7710 -	loss:	0.4735 -	val_accuracy:	0.7869 -	val_loss:	0.4503 -	<pre>learning_rate:</pre>	0.0010
	Epoch 5/8												
	1125/1125	2895	257ms/step -	accuracy:	0.7732 -	loss:	0.4695 -	val_accuracy:	0.7876 -	val_loss:	0.4483 -	<pre>learning_rate:</pre>	0.0010
	Epoch 6/8												
	1125/1125	2905	258ms/step -	accuracy:	0.7730 -	loss:	0.4691 -	val_accuracy:	0.7880 -	val_loss:	0.4486 -	<pre>learning_rate:</pre>	0.0010
	Epoch 7/8												
	1125/1125	290s	257ms/step -	accuracy:	0.7751 -	loss:	0.4669 -	val_accuracy:	0.7893 -	val_loss:	0.4463 -	<pre>learning_rate:</pre>	0.0010
	Epoch 8/8												
	1125/1125	2895	257ms/step -	accuracy:	0.7751 -	loss:	0.4654 -	val_accuracy:	0.7884 -	val_loss:	0.4478 -	<pre>learning_rate:</pre>	0.0010

Plot Accuracy and Loss Curves (LSTM)

accuracy

macro avg

weighted avg

