# Sprawozdanie 1 Modele liniowe

### Katarzyna Stasińska

### 2023-10

### zadanie 1

Aby wygenerować 1000 wektorów losowych z rozkładu dwuwymiarowego normalnego  $N(0, I_{2\times 2})$  wystarczy posłużyć się funkcją mvrnorm z biblioteki MAAS.

```
library(MASS)
mean=rep(c(0),2)
var=diag(2)
X=mvrnorm(1000, mean,var)
plot(X,asp=1)
```



### zadanie 2

Chcemy znaleźć Y takiego, że  $Y \sim N(\mu, \Sigma)$ . Można opisać to prostym przekształceniem liniowym Y = AX + B, gdzie  $B = \mu$ , a A uzyskamy używając rozkładu Choleskiego. Poniżej przedstawiam jak chmura zachowuje

się dla kolejnych  $\rho$ . Zielone proste wyznaczają osie symetrii chmur. Parametr  $\rho$  wpływa na zakrzywienie pierwotnej chmury (opisuje korelację między współrzędnymi).

parametr: 0.5



parametr: -0.5



parametr: 0.9



# parametr: -0.9



### zadanie 3

Analogicznie jak w zadaniu 2 wyznaczamy przekształcenie liniowe. Poniżej prezentuję wykresy dla kolejnych  $\sigma$ . Zwróćmy uwagę, że dla  $\sigma=3$  nasze przekształcenie wygląda w następujący sposób:

$$Y = \begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} X + \begin{bmatrix} 4 \\ 2 \end{bmatrix}$$

Oznacza to, że wartość współrzędnej y każdego punktu z chmury pozostaje niezmieniona, a wartość x zostaje zwiększona trzy razy. Następnie ma miejsce translacja o wektor  $\begin{bmatrix} 4\\2 \end{bmatrix}$ . Oznacza to, że nasza chmura została rozciągnięta wzdłuż osi X trzy razy ( $\sigma$  razy). Analogicznie w przypadku  $\sigma=4$ .





### zadanie 4

Poniżej prezentuję funkcję, która implementuje rozkład Choleskiego. Zwróćmy uwagę, że zwracając macierz mogłabym jej nie transponować, ale trzymając się ściśle tego jak działa funkcja chol() w R zdecydowałam się na to. Na samym końcu zamieściłam porównanie dwóch macierzy, jedna znich została otrzymana przy użyciu funkcji chol() na pewnej macierzy, druga z nich została otrzymana przy użyciu mojej funkcji na tej samej macierzy.

#### ## [1] TRUE

Wykresy przedstawiają próbkową wariancję współrzędnych oraz próbkową kowariancję współrzędnych. Zwróćmy uwagę, że na pierwszym z nich wartości oscylują w okolicy 1, a na drugim w okolicy 0.9, co spełania założenia zadania. Środkami histogramów nie są odpowiednio 1 i 0.9, ponieważ danych jest niewiele i są bardzo ze sobą skorelowane. Patrząc na wektor pierwszych współrzędnych, wektor drugich współrzędnych, wektor n-tych współrzędnych, możemy zauważyć, że wszystkie są bardzo podobne do siebie, są tak naprawdę wektorem pierwszych współrzędnych z delikatnymi zmianami.

## Histogram of wariancjaprobkow Histogram of kowariancjaprobkov

