1. Actividad Práctica Nº1 Representación de sistemas y controladores PID

Se debe redactar un informe individual por cada estudiante. Dicho informe debe contener:

- 1- todos los resultados correctos de las consignas dadas.
- 2- un resumen de las lecciones aprendidas.
- 3- detalles de problemas que fueron resueltos, las fuentes de datos, enlaces, repositorios GitHub con las Recomendaciones finales y Conclusiones de la actividad.

Titular el archivo del informe del modo Apellido_Nombre_TPN1.pdf y subir un único archivo en la solapa correspondiente con los ejercicios resueltos.

Caso de estudio 1. Sistema de dos variables de estado

Fig. 1-1. Esquemático del circuito RLC.

Sea el sistema eléctrico de la Fig. 1-1, con las representaciones en variables de estado

$$\dot{\mathbf{x}} = \mathbf{A} \ \mathbf{x}(\mathbf{t}) + \mathbf{b} \ \mathbf{u}(\mathbf{t}) \tag{1-1}$$

$$y = c^{T} x(t) \tag{1-2}$$

donde las matrices contienen a los coeficientes del circuito,

$$A = \begin{bmatrix} -R/L & -1/L \\ 1/C & 0 \end{bmatrix}, b = \begin{bmatrix} 1/L \\ 0 \end{bmatrix},$$
 (1-3)

$$\mathbf{c}^{\mathrm{T}} = \begin{bmatrix} \mathbf{R} & \mathbf{0} \end{bmatrix} \tag{1-4}$$

Fig. 1-2. Curvas del circuito RLC para una entrada de 12V.

Ítem [1] Asignar valores a $R=47\Omega$, $L=1\mu Hy$, y C=100nF. Obtener simulaciones que permitan estudiar la dinámica del sistema, con una entrada de tensión escalón de 12V, que cada 1ms cambia de signo.

Ítem [2] En el archivo Curvas_Medidas_RLC.xls (datos en la hoja 1 y etiquetas en la hoja 2) están las series de datos que sirven para deducir los valores de R, L y C del circuito. Emplear el método de la respuesta al escalón, tomando como salida la tensión en el capacitor.

Ítem [3] Una vez determinados los parámetros R, L y C, emplear la serie de corriente desde 0.05seg en adelante para validar el resultado superponiendo las gráficas.

Caso de estudio 2. Sistema de tres variables de estado

Dadas las ecuaciones del motor de corriente continua con torque de carga T_L no nulo, con los parámetros $L_{AA}=366\ 10^{-6};\ J=5\ 10^{-9};\ R_A=55,6;\ B=0;\ K_i=6,49\ 10^{-3};\ K_m=6,53\ 10^{-3}$:

$$\frac{di_{a}}{dt} = -\frac{R_{A}}{L_{AA}}i_{a} - \frac{K_{m}}{L_{AA}}\omega_{r} + \frac{1}{L_{AA}}v_{a}$$
 (1-5)

$$\frac{d\omega_{\rm r}}{dt} = \frac{K_{\rm i}}{J} i_{\rm a} - \frac{B_{\rm m}}{J} \omega_{\rm r} - \frac{1}{J} T_{\rm L} \tag{1-6}$$

$$\frac{d\theta_{t}}{dt} = \omega_{r}.$$
(1-7)

Implementar un algoritmo de simulación para inferir el comportamiento de las variables interés mediante integración Euler con $\Delta t=10^{-7}$ segundos para calcular su operación con un controlador:

Ítem [4] Obtener el torque máximo que puede soportar el motor modelado mediante las Ecs. (1-5) (1-6) y (1-7) cuando se lo alimenta con 12V, graficando para 5 segundos de tiempo la velocidad angular y corriente i_a para establecer su valor máximo como para dimensionar dispositivos electrónicos.

Ítem [5] A partir de las curvas de mediciones de las variables graficadas en la Fig. 1-4, se requiere obtener el modelo del sistema considerando como entrada un escalón de 12V, como salida a la velocidad angular, y al torque de carga T_L aplicado una perturbación. En el archivo Curvas_Medidas_Motor.xls están las mediciones, en la primer hoja los valores y en la segunda los nombres. Se requiere obtener el modelo dinámico, para establecer las constantes del modelo (1-5) (1-6).

Ítem [6] Implementar un PID en tiempo discreto para que el ángulo del motor permanezca en una referencia de 1 radian sometido al torque descripto en la Fig. 1-4. (Tip: partir de $K_P=0,1$; $K_i=0,01$; $K_D=5$).

Fig. 1-3. Circuito eléctrico que representa al motor de CC.

Fig. 1-4. Curvas de un motor CC para una entrada de 12V.

Ítem [7] Implementar un sistema en variables de estado que controle el ángulo del motor, para consignas de $\pi/2$ y $-\pi/2$ cambiando cada 2 segundos y que el T_L de 1,15 10^{-3} aparece sólo para $\pi/2$, para $-\pi/2$ es nulo. Hallar el valor de integración Euler adecuado. El objetivo es lograr la dinámica del controlador adecuada.

Ítem [8] Considerando que no puede medirse la corriente y sólo pueda medirse el ángulo, por lo que debe implementarse un observador. Obtener la simulación en las mismas condiciones que en el punto anterior, y superponer las gráficas para comparar.