



# Initial sensitivity contours with resolution binning

Numu group, Sep. 2016

Luke Vinton, University of Sussex

#### Version details

#### Running in development to pick up recent changes

#### Using FD decafs:

```
/pnfs/nova/persistent/production/concat/R16-03-03-prod2reco.d/
prod_decaf_R16-03-03-
prod2reco.e_fd_genie_nonswap_fhc_nova_v08_epoch1-3c_numu_contain_v1_
prod2-snapshot.root
```

```
/pnfs/nova/persistent/production/concat/R16-03-03-prod2reco.d/
prod_decaf_R16-03-03-
prod2reco.e_fd_genie_fluxswap_fhc_nova_v08_epoch1-3c_numu_contain_v1_
prod2-snapshot.root
```

#### **Outline**

- Description of resolution paramerisation method
- Selections used
- Plot of (neutrino resolution)/(neutrino energy)
- Sensitivity contours for separation into 4 resolution bins
- Bin by bin energy resolution
- Sensitivity to exclusion of maximal mixing for the SA numu result parameters
- Plots used for the neutrino resolution parameterisation are in backup



### Energy resolution parameterisation

Using the MC to measure the the abs. resolution (reco-true) of muon and hadronic energy vs. (muon or had.) energy. Fit a polynomial to the res. vs energy plot, the fit is used to "look up" the resolution for a given energy

Absolute neutrino energy resolution is defined for each event as:

$$\sigma_{v} = \sqrt{(\sigma_{\mu}(E_{\mu})^{2} + \sigma_{had.}(E_{had.})^{2})}$$

(Assuming no correlation)

 $\sigma_{v}/E_{v}$  is then used to define the energy resolution for each event

#### Using truth selection for resolution parameterisation

Note: At this stage parameterisation is done without applying oscillations to the FD MC



#### Selection

As mentioned in DocDB (15961) the standard numu FD selection (kNumuFD) and also the truth selection (kIsNumuCC) are applied to parameterise the neutrino energy.\*

The following sensitivities are produced with the standard numu FD selection.

\*Use the truth selection to remove troublesome background. In particular the NC events, for which the true muon energy will be zero. That's a problem when we want to measure (reco. E – true E)



#### **Neutrino energy resolution**





# First test: separate events into 4 quantile bins and make simple noExtrap sensitivity contours

Note: using PredictionNoExtrap throughout this talk and also ignoring systematics for now

#### No oscillation predictions



Clear sign of energy dependence of current energy resolution paremterisation. Energy spectrum shifts to higher energies for better resolved events.

University of Sussex

#### ~Max mixing (ssqth23 = 0.5) predictions





#### ~Max mixing (ssqth23 = 0.5) sensitivity





#### SA numu result paramters (ssqth23 = 0.4022) prediction









## Now try splitting events into resolution quantiles for each neutrino energy bin

## Now try splitting events into resolution quantiles for each neutrino energy bin



Ex: Quantile containing the 25% best resolved events between 1 and 1.25 GeV

#### No oscillations prediction





#### $Sin^2\theta_{23}=0.5$ prediction



#### ~Max mixing (ssqth23 = 0.5) sensitivity













Non max. mixing, default osc. calc.



**2.73** sigma

- **2.90 sigma**



Luke Vinton

#### **Summary**

- Prelimanary stage, no extrapolation or oscillations at this stage
- Sensitivity for ssth23=0.5 and for the SA numu parameters is improved slightly with a simple 4 bin resolution separation
- Sensitivity further improved with introduction of reco. E bin-by-bin energy resolution separation
  - rejection of maximal mixing increased from 2.73 to 2.90  $\sigma$

#### **Future plan**

- Repeat study including extrapolation and systematics
- Optimise number of energy resolution bins for rejection of maximal mixing



### **Backup**

#### Muon energy resolution



#### Hadronic energy resolution



University of Sussex Luke VIIIIOII 24

#### **Neutrino energy resolution**





University of Sussex

Luke Vinton

#### True neutrino energy resolution



#### **Neutrino energy resolution**



