ESERCIZI DI ANALISI REALE - FOGLIO 2

CORSO DI LAUREA TRIENNALE IN MATEMATICA

A.A. 2017-18

ANDREA DAVINI

Sommario. Eventuali commenti, suggerimenti e segnalazioni di errori sono graditi. Gli esercizi contrassegnati con un asterisco sono più difficili

Esercizio 1. Sia \mathcal{A} un'algebra. Dimostrare che \mathcal{A} è una σ -algebra se e solo se è chiusa per unione numerabile crescente (i.e. se $(A_n)_{n\in\mathbb{N}}\subset\mathcal{A}$ e $A_1\subseteq A_2\subseteq\cdots$, allora $\bigcup_{n=1}^{\infty}A_n\in\mathcal{A}$).

Esercizio 2. Sia \mathcal{E} una famiglia di sottoinsiemi di X e indichiamo con $\mathcal{M}(\mathcal{E})$ la σ -algebra generata da \mathcal{E} (cioè, la minima σ -algebra che contiene \mathcal{E}). Dimostrare che

$$\mathcal{M}(\mathcal{E}) = \bigcup_{\mathcal{F}} \left\{ \mathcal{M}(\mathcal{F}) \, : \, \mathcal{F} \subset \mathcal{E}, \, \, \mathcal{F} \, \, \mathrm{numerabile} \, \, \right\}.$$

[Suggerimento: verificare che il termine di destra è una $\sigma\text{--algebra}.]$

Esercizio 3. Sia (X, \mathcal{M}, μ) uno spazio di misura e sia $(E_n)_{n \in \mathbb{N}} \subset \mathcal{M}$. Dimostrare che

- $\circ \mu(\liminf_n E_n) \leqslant \liminf_n \mu(E_n);$
- $\circ \mu(\limsup_n E_n) \geqslant \limsup_n \mu(E_n) \quad \text{purch\'e} \quad \mu\left(\bigcup_{n=1}^{+\infty} E_n\right) < +\infty.$

Si ricorda che $\limsup_n E_n := \bigcap_{k=1}^{+\infty} \left(\bigcup_{n=k}^{+\infty} E_n \right)$ e $\liminf_n E_n := \bigcup_{k=1}^{+\infty} \left(\bigcap_{n=k}^{+\infty} E_n \right)$.

Esercizio 4. Sia (X, \mathcal{M}, μ) uno spazio di misura e siano $E, F \in \mathcal{M}$. Verificare che $\mu(E) + \mu(F) = \mu(E \cup F) + \mu(E \cap F)$.

Esercizio 5. Dato uno spazio di misura (X, \mathcal{M}, μ) ed $E \in \mathcal{M}$, definiamo $\mu L E(A) := \mu(A \cap E)$ per ogni $A \in \mathcal{M}$. Verificare che $\mu L E$ è una misura.

Esercizio 6. Siano μ^* una misura esterna su uno spazio X e \mathcal{M} una σ -algebra di insiemi di X, e supponiamo che la restrizione $\mu := \mu_{|\mathcal{M}|}^*$ di μ^* a \mathcal{M} sia una misura. Verificare che se $\{N \subseteq X : \mu^*(N) = 0\} \subset \mathcal{M}$, allora μ è completa.

Esercizio* 7. Si dia un esempio di funzione $\tau: \mathcal{A} \to [0, +\infty]$, dove \mathcal{A} è una opportuna famiglia di sottoinsiemi di uno spazio X, tale che la misura esterna da essa generata sia strettamente più piccola di τ su \mathcal{A} .

Date: 12 ottobre 2017.

Esercizio* 8. Sia (X, \mathcal{M}, μ) uno spazio di misura σ -finito. Indichiamo con μ^* la misura esterna indotta da μ , con \mathcal{M}^* la σ -algebra degli insiemi μ^* -misurabili, e con $\nu := \mu^*_{|\mathcal{M}^*}$. Poniamo

$$\mathcal{N} := \{ Z \subset X \mid \text{ esiste } N \in \mathcal{M} \text{ tale che } Z \subseteq N \text{ e } \mu(N) = 0 \}.$$

Lo scopo di questo esercizio è quello di mostrare che (\mathcal{M}^*, ν) è il completamento di (\mathcal{M}, μ) , cioè che ν è una misura completa su \mathcal{M}^* e che

$$\mathcal{M}^* = \{ E \cup Z : E \in \mathcal{M}, Z \in \mathcal{N} \}.$$

- (a) Dimostrare che $\mathcal{N} = \{ Z \subset X \mid \mu^*(Z) = 0 \}.$
- (b) Sia $E \in \mathcal{M}^*$. Dimostrare che esiste $G \in \mathcal{M}$ tale che $E \subseteq G$ e $G \setminus E \in \mathcal{N}$. [Suggerimento: sfruttare che \mathcal{M} è σ -finita per ricondursi al caso $\mu^*(E) < +\infty$.]
- (c) Sia $E \in \mathcal{M}^*$. Dimostrare che esiste $F \in \mathcal{M}$ tale che $F \subseteq E$ e $E \setminus F \in \mathcal{N}$. [Suggerimento: passare al complementare per sfruttare il punto precedente.]
- (d) Concludere.

Esercizio 9. Sia \mathcal{A} la collezione di unioni finite di insiemi della forma $(a, b] \cap \mathbb{Q}$, con $-\infty \leq a \leq b \leq +\infty$. Provare le seguenti affermazioni:

- $\circ \mathcal{A}$ è un'algebra in \mathbb{Q} ;
- \circ la σ -algebra $\mathcal{M}(\mathcal{A})$ generata da $\mathcal{A} \stackrel{.}{e} \mathscr{P}(\mathbb{Q})$;
- o la funzione $\mu_0: \mathcal{A} \to [0, +\infty]$ definita come $\mu(\emptyset) = 0$ e $\mu_0(A) = +\infty$ se $A \neq \emptyset$ è una premisura su \mathcal{A} ;
- o esiste più di una misura su $\mathscr{P}(\mathbb{Q})$ la cui restrizione ad \mathcal{A} è μ_0 .

Esercizio* 10. Sia \mathcal{A} un'algebra di sottoinsiemi di uno spazio X e $\mu_0: \mathcal{A} \to [0, +\infty]$ una premisura. Si indichi con $\mu^*: \mathscr{P}(X) \to [0, +\infty]$ la misura esterna indotta da (μ_0, \mathcal{A}) e con \mathcal{M} la σ -algebra degli insiemi μ^* -misurabili alla Carathéodory. Sia ora \mathcal{N} una σ -algebra contenente \mathcal{A} tale che la restrizione di μ^* ad \mathcal{N} è una misura. Dimostrare che $\mathcal{N} \subseteq \mathcal{M}$.