SDTM Mapping Based on TF-IDF and Neural Network Probabilistic Models Sam Tomioka

NJ CDISC Users Group Meeting

March 12, 2019

Brief Introduction

- Sam Tomioka
- Director, Clinical Data Programming Data Science
- Sunovion Pharmaceuticals

- Current ML Projects
- SDTM Mapping
- Protocol Optimization
- Digital Endpoints (Seizure)

- Past ML Projects
- Adverse Events
- Dose Titration
- Digital Endpoints (Stroke, Depression)
- SDTM Mapping

AGENDA

Problem to Solve

SDTM Mapping with "Machine Learning"

Tools Used

Thought

ENDLESS MAPPING...

SDTM.VS.VSORRES mapping for 12 Sunovion studies delivered by one CRO

20 sources for BMI

"VS.BMI"

"VS.BMI_RAW"

"VS.BMI_Z"

"VS.BMI_Z_RAW"

"VS.BMIS"

"VS.BMIS_RAW"

"VS1.BMI"

"VS1.BMI_RAW"

"VS1.BMI_Z"

"VS1.BMI_Z_RAW"

"VS1.VS1BMI"

"VS2.BMI"

"VS2.BMI_RAW"

"VS2.D_BMI"

"VS2.D_BMI_RAW"

"VS2.VS2BMI"

"VSMSTR.BMI"

"VSMSTR.BMI_RAW"

"VSMSTR.D BMI"

"VSMSTR.D_BMI_RAW"

Started FY 2018 40 Started FY 2018 40 SDTM Automation Project | Started FY 2018 40 | Start

SDTM

Started FY2018 1Q

Global Library Volume Implementation Project

Go Live FY 2018 10

SDTM automation macros

Domain templates

WHAT NEXT?

Can I use **natural language** model and **machine learning** algorithms to map raw data variables to SDTM variables?

AGENDA

Problem to Solve

SDTM Mapping with "Machine Learning"

Tools Used

Thought

ML based SDTM mapping for fast, accurate, consistent SDTM generation

Steps

Create mapping specifications (with Human Intelligence)

Raw Variable	SDTM Variable
PT	AEDECOD
SOC	AEBODSYS
PTNAME	AEDECOD
SOCNAME	AEBODSYS

*illustration purpose only

Natural Language Models

Natural Language Model A TF-IDF algorithm: Weighing terms

 Words occur nearby frequently are important than words that only appear once or twice

Frequency (TF)
$$\operatorname{tf}_{t,d} = \begin{cases} 1 + \log_{10} \operatorname{count}(t,d) & \text{if } \operatorname{count}(t,d) > 0 \\ 0 & \text{otherwise} \end{cases}$$

Words that are too frequent are not important

Inverse Document Frequency (DF)
$$idf_t = log_{10} \left(\frac{N}{df_t} \right)$$

• Weight $w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$

Logistic regression, accuracy=0.64058

The reported or pre-specified name of the adverse event.

0.6331503 0.6105753 0.6247964 0.6611213

Document term matrix of 17 studies data and IG

Natural Language Model B

Figure 1: Neural architecture: $f(i, w_{t-1}, \cdots, w_{t-n+1}) = g(i, C(w_{t-1}), \cdots, C(w_{t-n+1}))$ where g is the neural network and C(i) is the i-th word feature vector.

200,000,000,000 English Google News corpus

Figure from Yoshua Bengio, Réjean Ducharme, Pascal Vincent, Christian Jauvin. <u>A Neural Probabilistic La</u> of Machine Learning Research, 3:1137-1155, 2003.

Natural Language Models

14

Mapping Accuracy on data from 3 new studies using Final Ensemble Model

0.97

More robust approach

AGENDA

Problem to Solve

SDTM Mapping with "Machine Learning"

Tools Used

Thought

Tools used for POC

Programming	IDE	ML Framework	Purpose
S.Sas.	₹ SAS	NA	Metadata extraction from sas7bdat
R	R Studio jupyter	caret	NLP ML Visualizations
? python™	Jupyter	learn learn	Transfer learning ML Visualizations

AGENDA

Problem to Solve

SDTM Mapping with "Machine Learning"

Tools Used

Thought

Summary

- This proof of concept demonstrated that machine learning along with a natural language model can produce a pretty accurate SDTM mapping specification document.
- As in any ML models, as you feed more mapping specs, the model will learn them and become more robust.

Thank You

www.linkedin.com/in/STomioka

Sam.Tomioka @ Sunovion.com

