# **Turning Points Codebook**

Maria L. Schweer-Collins, PhD — Jonathan A. Pedroza, PhD

# Contents

|   |      | 0.0.1          | Missing Data Rule                  | 2        |
|---|------|----------------|------------------------------------|----------|
| 1 | Men  | tal He         | alth                               | 3        |
|   | 1.1  | BSI.           |                                    | 3        |
|   |      | 1.1.1          | BSI Description                    | 3        |
|   |      | 1.1.2          | BSI Missing Data                   | 4        |
|   |      | 1.1.3          | BSI Scale & Subscale Distributions | 4        |
|   |      | 1.1.4          | BSI Internal Reliability           | 8        |
|   | 1.2  | CESD           |                                    | 8        |
|   |      | 1.2.1          | CESD Description                   | 8        |
|   |      | 1.2.2          | CESD Missing Data                  | 10       |
|   |      | 1.2.3          | CESD Scale & Suscale Distributions | 13       |
|   |      | 1.2.4          | CESD Cutoffs                       | 15       |
|   |      | 1.2.5          | CESD Internal Reliability          | 16       |
| 2 | cov  | /ID-19         |                                    | 17       |
|   | 2.1  | CIQ            |                                    | 17       |
|   |      | 2.1.1          | CIQ Description                    | 17       |
|   |      | 2.1.2          | CIQ Missing Data                   | 18       |
|   |      | 2.1.3          | CIQ Scale Distribution             | 18       |
|   |      | 2.1.4          | CIQ Internal Reliability           | 19       |
| 3 | Subs | stance         | Use                                | 20       |
|   |      |                |                                    |          |
|   | 3.1  | DAST           | '                                  | -20      |
|   | 3.1  | DAST 3.1.1     |                                    | 20<br>20 |
|   | 3.1  |                | DAST Description                   | 20       |
|   | 3.1  | 3.1.1<br>3.1.2 | DAST Description                   | 20<br>21 |
|   | 3.1  | 3.1.1          | DAST Description                   | 20       |

| 4 | Chil   | d Abus | e                                              | 27 |
|---|--------|--------|------------------------------------------------|----|
|   | 4.1    | BCAP   | )                                              | 27 |
|   |        | 4.1.1  | BCAP Description                               | 27 |
|   |        | 4.1.2  | BCAP Missing Data                              | 28 |
|   |        | 4.1.3  | BCAP Scale & Subscale Distributions            | 29 |
|   |        | 4.1.4  | BCAP Cutoffs                                   | 39 |
|   |        | 4.1.5  | BCAP Internal Reliability                      | 42 |
| 5 | Part   | ner Re | lationships                                    | 45 |
|   | 5.1    | DYAD   | OC                                             | 45 |
|   |        | 5.1.1  | DYADC Description                              | 45 |
|   |        | 5.1.2  | DYADC Missing Data                             | 48 |
|   |        | 5.1.3  | DYADC Scale & Subscale Distributions           | 49 |
|   |        | 5.1.4  | DYADC Cutoffs                                  | 54 |
|   |        | 5.1.5  | DYADC Internal Reliability                     | 55 |
|   | 5.2    | CTS2S  | 5                                              | 57 |
|   |        | 5.2.1  | CTS2S Description                              | 57 |
|   |        | 5.2.2  | CTS2S Missing Data                             | 59 |
|   |        | 5.2.3  | CTS2S Severity Distributions (Individual [TC]) | 60 |
|   |        | 5.2.4  | CTS2S Severity Distributions (Partner)         | 64 |
|   |        | 5.2.5  | CTS2S Prevalence Distributions                 | 68 |
|   |        | 5.2.6  | CTS2S Mutuality Distributions                  | 73 |
|   |        | 5.2.7  | CTS2S Internal Reliability                     | 77 |
| R | eferer | ices   |                                                | 77 |

#### 0.0.1 Missing Data Rule

- For scales with  $\underline{10}$  or more items, a composite score (average/total) is computed for **TC** that have less than  $\underline{20\%}$  of the items from that measure missing
- For scales with  $\underline{7}$  to  $\underline{9}$  items, a composite score (average/total) is computed for  $\mathbf{TC}$  that have less than 30% of the items from that measure missing
- For scales with  $\underline{3}$  to 6 items, a composite score (average/total) is computed for  $\mathbf{TC}$  that have less than  $\underline{33\%}$  of the items from that measure missing
- For scales with only 2 items, composite scores (average/total) are calculated on a  $\underline{\text{case}}$  by case basis

# 1 Mental Health

#### 1.1 BSI

#### 1.1.1 BSI Description

- Variables for BSI scale
  - bsi1, bsi2, bsi3, bsi4, bsi5, bsi6, bsi7, bsi8, bsi9, bsi10, bsi11, bsi12, bsi13, bsi14, bsi15, bsi16, bsi17, bsi18, bsi19
  - Variable Scale
    - \* 0 "Not at all"
    - \* 1 "A little bit"
    - \* 2 "Moderately"
    - \* 3 "Quite a bit"
    - \* 4 "Very much"
- Total scores should range from 0 to 76
- Revere Scoring
  - N/A
- Subscales
  - Somatization: bsi2, bsi3, bsi10, bsi11, bsi12, bsi13, bsi15
  - Anxiety: bsi1, bsi5, bsi9, bsi16, bsi17, bsi18
  - Depression: bsi4, bsi6, bsi7, bsi8, bsi14, bsi19
- Missing Data Rule:
  - N/A
- Reference: Derogatis and Melisaratos (1983)

## 1.1.2 BSI Missing Data

```
data %>%
   select(
    id:bsi19
   ) %>%
   pct_miss_fum(
   id = 'id',
        n_items = 19
   )

# A tibble: 0 x 3
# ... with 3 variables: id <chr>, missing_n <int>, miss_pct <dbl>
# i Use `colnames()` to see all variable names
```

## 1.1.3 BSI Scale & Subscale Distributions

```
complete %>%
  composite_hist(
    x = bsi_total
  ) +
  labs(title = 'Distribution of Total Scores for BSI Measure')
```

# Distribution of Total Scores for BSI Measure



```
complete %>%
  composite_hist(x = bsi_soma_total) +
  labs(title = 'Distribution for BSI Somatization Subscale')
```

# Distribution for BSI Somatization Subscale



```
complete %>%
  composite_hist(x = bsi_anx_total) +
  labs(title = 'Distribution for BSI Anxiety Subscale')
```

# Distribution for BSI Anxiety Subscale



```
complete %>%
  composite_hist(x = bsi_dep_total) +
  labs(title = 'Distribution for BSI Depression Subscale')
```

# Distribution for BSI Depression Subscale



# 1.1.4 BSI Internal Reliability

Alpha Values for BSI Entire Scale & Subscales

| Scale              | Alpha |
|--------------------|-------|
| BSI                | 0.885 |
| BSI - Somatization | 0.741 |
| BSI - Anxiety      | 0.795 |
| BSI - Depression   | 0.849 |

## **1.2 CESD**

## 1.2.1 CESD Description

- Variables for CESD scale
  - $-\ {\tt c1,\,c2,\,c3,\,c4,\,c5,\,c6,\,c7,\,c8,\,c9,\,c10,\,c11,\,c12,\,c13,\,c14,\,c15,\,c16,\,c17,\,c18,\,c19,\,c20}$
  - Variable Scale
    - \* 0 "Rarely or none of the time"

- \* 1 "Some or a little of the time"
- \* 2 "Occasionally or a moderate amount of time"
- \* 3 "Most or all of the time"
- Total scores should range from 0 to 60
- Revere Scoring
  - Items c4, c8, c12, and c16 are reverse scored
- Variables For Other Items
  - c21, c22, c23, c24
    - \* if response is No to item c21, then TC moved on to item c24
  - Variable Scale
    - \* 0 No
    - \* 1 Yes
    - \* 2 Declined to Answer
- Subscales
  - Positive Affect

- Depressive Symptoms

- Missing Data Rule:
  - N/A
- Reference: Radloff (1977)
  - Additional References:
    - \* Cutoff Information: Henry, Grant, and Cropsey (2018)
    - \* Items for Potential Subscales: Canady, Stommel, and Holzman (2009)

#### 1.2.2 CESD Missing Data

Missing Data
By Each Participant

| id    | missing_n | miss_pct |
|-------|-----------|----------|
| P858  | 2         | 10       |
| HR204 | 1         | 5        |

Missing data for suicidal ideation, plan, and attempt items.

Missing Data By Each Participant

| id    | missing_n | $miss\_pct$ |
|-------|-----------|-------------|
| HR208 | 3         | 15          |
| P849  | 3         | 15          |
| HR103 | 2         | 10          |
| HR108 | 2         | 10          |
| HR113 | 2         | 10          |
| HR114 | 2         | 10          |
| HR117 | 2         | 10          |
| HR119 | 2         | 10          |
| HR120 | 2         | 10          |
| HR124 | 2         | 10          |
| HR128 | 2         | 10          |
| HR131 | 2         | 10          |
| HR132 | 2         | 10          |
| HR133 | 2         | 10          |
| HR135 | 2         | 10          |
| HR139 | 2         | 10          |
| HR140 | 2         | 10          |
| HR141 | 2         | 10          |
| HR143 | 2         | 10          |
| HR144 | 2         | 10          |
| HR147 | 2         | 10          |
| HR150 | 2         | 10          |
| HR153 | 2         | 10          |
| HR162 | 2         | 10          |
| HR163 | 2         | 10          |
| HR172 | 2         | 10          |
| HR175 | 2         | 10          |
| HR176 | 2         | 10          |
| HR177 | 2         | 10          |
| HR179 | 2         | 10          |
| HR185 | 2         | 10          |
| HR186 | 2         | 10          |
| HR199 | 2         | 10          |
| HR200 | 2         | 10          |
| HR204 | 2         | 10          |
| HR210 | 2         | 10          |
| HR212 | 2         | 10          |
| HR216 | 2         | 10          |
| HR219 | 2         | 10          |
| HR223 | 2         | 10          |
| P802  | 2         | 10          |

| P803  | 2             | 10 |
|-------|---------------|----|
| P805  | 2             | 10 |
| P806  | 2             | 10 |
| P815  | 2             | 10 |
| P816  | 2             | 10 |
| P818  | 2             | 10 |
| P821  | 2             | 10 |
| P822  | 2             | 10 |
| P824  | 2             | 10 |
| P826  | 2             | 10 |
| P828  | 2             | 10 |
| P829  | 2             | 10 |
| P830  | 2             | 10 |
| P832  | 2             | 10 |
| P833  | 2             | 10 |
| P836  | 2             | 10 |
| P844  | 2             | 10 |
| P846  | 2             | 10 |
| P847  | 2             | 10 |
| P854  | 2             | 10 |
| P855  | 2             | 10 |
| P856  | 2             | 10 |
| P858  | 2             | 10 |
| P859  | 2             | 10 |
| P860  | 2             | 10 |
| P861  | 2             | 10 |
| P862  | 2             | 10 |
| P863  | 2             | 10 |
| P864  | 2             | 10 |
| P865  | 2             | 10 |
| P866  | 2             | 10 |
| P867  | 2             | 10 |
| P868  | 2             | 10 |
| P869  | 2             | 10 |
| P871  | 2             | 10 |
| P874  | 2             | 10 |
| P875  | $\frac{2}{2}$ | 10 |
| P880  | 2             | 10 |
| P882  | $\frac{1}{2}$ | 10 |
| P884  | $\frac{1}{2}$ | 10 |
| P885  | 2             | 10 |
| P888  | $\frac{1}{2}$ | 10 |
| P893  | 2             | 10 |
| 1 000 | <b>-</b>      | 10 |

| P894 | 2 | 10 |
|------|---|----|
| P898 | 2 | 10 |
| P899 | 2 | 10 |
| P900 | 2 | 10 |
| P901 | 2 | 10 |
| P902 | 2 | 10 |
| P813 | 1 | 5  |

# 1.2.3 CESD Scale & Suscale Distributions

```
complete %>%
  composite_hist(cesd_total) +
  labs(
    title = 'CESD Total Score Distribution'
  )
```

# **CESD Total Score Distribution**



```
complete %>%
  composite_hist(
    cesd_dep_symp_total
    ) +
```

```
labs(
  title = 'Total Score Distribution',
    subtitle = 'Depressive Symptoms Subscale'
)
```

# Total Score Distribution

# Depressive Symptoms Subscale



```
complete %>%
  composite_hist(
    cesd_pos_aff_total,
    bins = 10
    ) +
  labs(
    title = 'Total Score Distribution',
        subtitle = 'Depressive Symptoms Subscale'
    )
```

# Total Score Distribution



#### 1.2.4 CESD Cutoffs

```
complete %>%
  cutoff_plot(
    x = cesd_total,
    cutoff = 16,
    cutoff_other = 23
) +
  labs(
    title = 'Cutoff Scores for CESD Total Scores',
    caption = 'Cutoffs are 16 and/or 23\nSee references for literature on cutoff scores.'
)
```

# **Cutoff Scores for CESD Total Scores**



Cutoffs are 16 and/or 23 See references for literature on cutoff scores.

#### 1.2.5 CESD Internal Reliability

```
cesd_alpha <-
  complete %>%
  select(c1:c16_r) %>%
  psych::alpha(check.keys = TRUE)

cesd_dep_alpha <-
  complete %>%
  select(c1:c20) %>%
  psych::alpha(check.keys = TRUE)

cesd_pos_aff_alpha <-
  complete %>%
  select(c4_r, c8_r, c12_r, c16_r) %>%
  psych::alpha(check.keys = TRUE)

cesd_alpha_table <- tibble(
  Scale = c('CESD', 'CESD - Depressive Symptoms', 'CESD - Positive Affect'),</pre>
```

Alpha Values for CESD Entire Scale & Subscales

| Scale                      | Alpha |
|----------------------------|-------|
| CESD                       | 0.937 |
| CESD - Depressive Symptoms | 0.917 |
| CESD - Positive Affect     | 0.882 |

## 2 COVID-19

## 2.1 CIQ

#### 2.1.1 CIQ Description

- Variables for BSI COVID-19 items
  - ciq1, ciq2, ciq3
  - Variable Scale
    - \* 1 "Not true of me at all"
    - \* 2
    - \* 3
    - \* 4
    - \* 5
    - \* 6
    - \* 7 "Very true of me"

- Total score should range from 3 to 21
- Reverse Scoring
  - item ciq3 should be reverse scored
- Reference: Conway III, Woodard, and Zubrod (2020)

## 2.1.2 CIQ Missing Data

## 2.1.3 CIQ Scale Distribution

```
complete %>%
  composite_hist(
    x = ciq_psych_total,
    bins = 10
    ) +
  labs(title = 'Distribution for CIQ Psychological Scale')
```

# Distribution for CIQ Psychological Scale



## 2.1.4 CIQ Internal Reliability

```
ciq_alpha <-
   complete %>%
   select(ciq1, ciq2, ciq3_r) %>%
   psych::alpha(check.keys = TRUE)

ciq_alpha_table <- tibble(
   Scale = 'CIQ - Psychological Scale',
   Alpha = round(ciq_alpha$total$raw_alpha, 3)
)

ciq_alpha_table %>%
   gt::gt() %>%
   gt::tab_header(
        title = 'Alpha Values for CIQ - Psychological Scale'
   )
```

Alpha Values for CIQ - Psychological Scale
Scale
Alpha

## 3 Substance Use

#### **3.1 DAST**

#### 3.1.1 DAST Description

- Variables for DAST scale
  - d00, d1a, d2a, d2b, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16, d17, d18, d19, d20
  - Variable scale

```
* 1 - "Yes"
```

- Total scores should range from 0 to 20
- Reverse scoring
  - \* Items d4 and d5 are reverse coded
  - \* both were renamed to d4\_r and d5\_r respectively
- d2a and d2b are skip logic questions based on responses for d1a

```
* d1a = 1 moved on to respond to d2a
```

- \* d1a = 0 or d1a = -77 moved on to respond to d2b
- Subscales
  - No subscales were created for this measure as there was a lack of evidence supporting a subscale structure
- Missing Data Rule:
  - Applied. Calculations were completed only with participants that had less then 20% missing data (this includes -77 responses)
- Reference: Gavin, Ross, and Skinner (1989)

# 3.1.2 DAST Missing Data

```
data %>%
    select(
    id,
    d1a:d3,
    d6:d5_r
        ) %>%
    pct_miss_fun(
    id = 'id',
        n_items = 21
    ) %>%
    gt::gt() %>%
    gt::tab_header(
        title = 'DAST Missing Data',
        subtitle = 'By Participant'
    )
```

DAST Missing Data By Participant

| id    | missing_n | $miss\_pct$ |
|-------|-----------|-------------|
| HR119 | 21        | 100.000000  |
| HR131 | 21        | 100.000000  |
| HR185 | 21        | 100.000000  |
| HR208 | 21        | 100.000000  |
| P816  | 21        | 100.000000  |
| P824  | 21        | 100.000000  |
| P860  | 21        | 100.000000  |
| P882  | 21        | 100.000000  |
| HR103 | 19        | 90.476190   |
| HR108 | 19        | 90.476190   |
| HR113 | 19        | 90.476190   |
| HR117 | 19        | 90.476190   |
| HR120 | 19        | 90.476190   |
| HR124 | 19        | 90.476190   |
| HR128 | 19        | 90.476190   |
| HR133 | 19        | 90.476190   |
| HR139 | 19        | 90.476190   |
| HR140 | 19        | 90.476190   |
| HR141 | 19        | 90.476190   |
| HR144 | 19        | 90.476190   |
|       |           |             |

| HR147 | 19 | 90.476190 |
|-------|----|-----------|
| HR150 | 19 | 90.476190 |
| HR153 | 19 | 90.476190 |
| HR156 | 19 | 90.476190 |
| HR175 | 19 | 90.476190 |
| HR176 | 19 | 90.476190 |
| HR177 | 19 | 90.476190 |
| HR178 | 19 | 90.476190 |
| HR186 | 19 | 90.476190 |
| HR200 | 19 | 90.476190 |
| HR210 | 19 | 90.476190 |
| HR212 | 19 | 90.476190 |
| HR214 | 19 | 90.476190 |
| HR216 | 19 | 90.476190 |
| HR219 | 19 | 90.476190 |
| HR223 | 19 | 90.476190 |
| P813  | 19 | 90.476190 |
| P815  | 19 | 90.476190 |
| P818  | 19 | 90.476190 |
| P821  | 19 | 90.476190 |
| P822  | 19 | 90.476190 |
| P828  | 19 | 90.476190 |
| P829  | 19 | 90.476190 |
| P832  | 19 | 90.476190 |
| P833  | 19 | 90.476190 |
| P836  | 19 | 90.476190 |
| P846  | 19 | 90.476190 |
| P849  | 19 | 90.476190 |
| P854  | 19 | 90.476190 |
| P855  | 19 | 90.476190 |
| P856  | 19 | 90.476190 |
| P858  | 19 | 90.476190 |
| P859  | 19 | 90.476190 |
| P862  | 19 | 90.476190 |
| P864  | 19 | 90.476190 |
| P866  | 19 | 90.476190 |
| P867  | 19 | 90.476190 |
| P868  | 19 | 90.476190 |
| P869  | 19 | 90.476190 |
| P880  | 19 | 90.476190 |
| P888  | 19 | 90.476190 |
| P896  | 19 | 90.476190 |
| P898  | 19 | 90.476190 |
|       |    |           |

| P899  | 19 | 90.476190 |
|-------|----|-----------|
| P901  | 19 | 90.476190 |
| P847  | 17 | 80.952381 |
| P874  | 2  | 9.523810  |
| HR104 | 1  | 4.761905  |
| HR114 | 1  | 4.761905  |
| HR121 | 1  | 4.761905  |
| HR132 | 1  | 4.761905  |
| HR135 | 1  | 4.761905  |
| HR143 | 1  | 4.761905  |
| HR155 | 1  | 4.761905  |
| HR162 | 1  | 4.761905  |
| HR163 | 1  | 4.761905  |
| HR171 | 1  | 4.761905  |
| HR172 | 1  | 4.761905  |
| HR179 | 1  | 4.761905  |
| HR183 | 1  | 4.761905  |
| HR194 | 1  | 4.761905  |
| HR199 | 1  | 4.761905  |
| HR201 | 1  | 4.761905  |
| HR204 | 1  | 4.761905  |
| HR207 | 1  | 4.761905  |
| P802  | 1  | 4.761905  |
| P803  | 1  | 4.761905  |
| P805  | 1  | 4.761905  |
| P806  | 1  | 4.761905  |
| P826  | 1  | 4.761905  |
| P830  | 1  | 4.761905  |
| P835  | 1  | 4.761905  |
| P839  | 1  | 4.761905  |
| P844  | 1  | 4.761905  |
| P845  | 1  | 4.761905  |
| P853  | 1  | 4.761905  |
| P861  | 1  | 4.761905  |
| P863  | 1  | 4.761905  |
| P865  | 1  | 4.761905  |
| P871  | 1  | 4.761905  |
| P873  | 1  | 4.761905  |
| P875  | 1  | 4.761905  |
| P884  | 1  | 4.761905  |
| P885  | 1  | 4.761905  |
| P887  | 1  | 4.761905  |
| P893  | 1  | 4.761905  |

| P894 | 1 | 4.761905 |
|------|---|----------|
| P897 | 1 | 4.761905 |
| P900 | 1 | 4.761905 |
| P902 | 1 | 4.761905 |

# 3.1.3 DAST Scale & Subscale Distributions

```
complete %>%
  composite_hist(
    x = dast_total
  ) +
  labs(
    title = 'Distribution of Total Scores for DAST Measure'
)
```

# Distribution of Total Scores for DAST Measure



## 3.1.4 DAST Severity

```
complete %>%
 severity_plot(
 x = dast_total,
 bins = 20,
 low_xmin = 1,
 low_xmax = 5.5,
 medium_xmin = 5.5,
 medium_xmax = 10.5,
 large_xmin = 10.5,
 large_xmax = 15.5,
 critical_xmin = 15.5,
 critical_xmax = 20) +
 annotate(
   geom = 'text',
   color = 'Black',
   x = 3
   y = -1.5,
   label = 'Low'
  ) +
 annotate(
   geom = 'text',
   color = 'Black',
   x = 8,
   y = -1.5,
    label = 'Intermediate'
  ) +
  annotate(
   geom = 'text',
   color = 'Black',
   x = 13,
   y = -1.5,
   label = 'Substantial'
  ) +
 annotate(
   geom = 'text',
   color = 'Black',
   x = 18,
   y = -1.5,
    label = 'Severe'
```

```
) +
labs(
   title = 'Severity Categories',
   subtitle = 'Based on DAST',
   caption = 'Cutoffs are:\nLow = 1-5,\nIntermediate = 6-10,\nSubstantial = 11-15,\nSever
)
```

# **Severity Categories**

## Based on DAST



Cutoffs are: Low = 1-5, Intermediate = 6-10, Substantial = 11-15, Severe = 16-20

## 3.1.5 DAST Internal Reliability

```
dast_alpha <-
  complete %>%
  select(
    d1a:d3,
    d6:d5_r
        ) %>%
  psych::alpha(check.keys = TRUE)

dast_alpha_table <-
  tibble(</pre>
```

```
Scale = 'DAST',
Alpha = round(dast_alpha$total$raw_alpha, 3)
)

dast_alpha_table %>%
  gt::gt() %>%
  gt::tab_header(
    title = 'Alpha Values for DAST Scale'
)
```

Alpha Values for DAST Scale

| Scale | Alpha |
|-------|-------|
| DAST  | 0.893 |

#### 4 Child Abuse

#### **4.1 BCAP**

#### 4.1.1 BCAP Description

- Variables for the BCAP measure
  - q1,q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15, q16, q17, q18, q19, q20, q21, q22, q23, q24, q25, q26, q27, q28, q29, q30, q31, q32, q33, q34
  - Variable Scale
    - \* 1 "Agree"
    - \* 0 "Disagree"
    - \* -77 "Decline to respond"
  - Total scores should range from 0 to 24
    - \* total scale score is the BCAP risk scale with all the items that are not part of the lie and random responding subscales
    - \* q1, q3, q4, q5, q6, q7, q8, q10, q11, q12, q13, q14, q16, q17, q19, q20, q22, q23, q24, q25, q27, q29, q30, q31, q32, q33
  - Reverse coding
    - \* Items q1, q2, q23, and q29 should be reverse coded
- Subscales
  - Happiness (reverse coded)

```
* q1, q23, q29
```

- Feelings of persecution

- Loneliness

- Family conflict

- Rigidity

- Distress

$$* \ q8, \, q11, \, q16, \, q19, \, q27$$

- Poverty

- Additional subscales to remove invalid cases
  - Lie

- Random responding

- Missing Data Rule:
  - Applied. Calculations were completed only with participants that had less then 20% missing data (this includes -77 responses)
- Reference: Ondersma et al. (2005)

## 4.1.2 BCAP Missing Data

```
data %>%
    select(
    id,
    q3:q22,
```

BCAP Missing Data By Participant

| By Tarticipant |           |             |
|----------------|-----------|-------------|
| id             | missing_n | $miss\_pct$ |
| P847           | 6         | 17.647059   |
| P896           | 5         | 14.705882   |
| HR103          | 4         | 11.764706   |
| HR113          | 4         | 11.764706   |
| P885           | 4         | 11.764706   |
| HR121          | 3         | 8.823529    |
| HR204          | 3         | 8.823529    |
| HR144          | 2         | 5.882353    |
| HR155          | 2         | 5.882353    |
| HR156          | 2         | 5.882353    |
| P821           | 2         | 5.882353    |
| P856           | 2         | 5.882353    |
| P865           | 2         | 5.882353    |
| HR162          | 1         | 2.941176    |
| P815           | 1         | 2.941176    |
| P861           | 1         | 2.941176    |
| P897           | 1         | 2.941176    |
|                |           |             |

#### 4.1.3 BCAP Scale & Subscale Distributions

```
complete %>%
  composite_hist(
    x = bcap_risk_total
) +
```

```
labs(
   title = 'Distribution of Total Scores for BCAP Risk Scale'
)
```

# Distribution of Total Scores for BCAP Risk Scale



```
complete %>%
  composite_hist(
    x = bcap_happy_total,
    bins = 5
) +
labs(
    title = 'Distribution For BCAP Happiness Subscale'
)
```

# Distribution For BCAP Happiness Subscale



```
complete %>%
  composite_hist(
    x = bcap_feel_pers_total,
    bins = 5
) +
labs(
    title = 'Distribution For BCAP Feelings of Persecution Subscale'
)
```

# Distribution For BCAP Feelings of Persecution Subscale



```
complete %>%
  composite_hist(
    x = bcap_lonely_total,
    bins = 5
) +
labs(
    title = 'Distribution For BCAP Loneliness Subscale'
)
```

# Distribution For BCAP Loneliness Subscale



```
complete %>%
  composite_hist(
    x = bcap_fam_conf_total,
    bins = 5
) +
labs(
    title = 'Distribution For BCAP Family Conflict Subscale'
)
```

# Distribution For BCAP Family Conflict Subscale



```
complete %>%
  composite_hist(
    x = bcap_rigid_total,
    bins = 5
) +
labs(
    title = 'Distribution For BCAP Rigidity Subscale'
)
```

# Distribution For BCAP Rigidity Subscale



```
complete %>%
  composite_hist(
    x = bcap_distress_total,
    bins = 5
) +
labs(
    title = 'Distribution For BCAP Distress Subscale'
)
```

# Distribution For BCAP Distress Subscale



```
complete %>%
  composite_hist(
    x = bcap_poverty_total,
    bins = 5
) +
labs(
    title = 'Distribution For BCAP Poverty Subscale'
)
```

# Distribution For BCAP Poverty Subscale



```
complete %>%
  composite_hist(
    x = bcap_lie_total,
    bins = 5
) +
labs(
    title = 'Distribution For BCAP Lying Subscale'
)
```

# Distribution For BCAP Lying Subscale



```
complete %>%
  composite_hist(
    x = bcap_random_total,
    bins = 5
) +
labs(
    title = 'Distribution For BCAP Random Responding Subscale'
)
```

## Distribution For BCAP Random Responding Subscale



### 4.1.4 BCAP Cutoffs

```
complete %>%
  cutoff_plot(
    x = bcap_risk_total,
    cutoff = 9,
    cutoff_other = 12
) +
  labs(
    title = 'Cutoff Values for BCAP Scale',
    caption = 'Cutoffs are 9 and 12\nSee references for literature on cutoff scores.'
)
```

### Cutoff Values for BCAP Scale



Cutoffs are 9 and 12 See references for literature on cutoff scores.

```
complete %>%
  cutoff_plot(
    x = bcap_lie_total,
    cutoff = 4
) +
  labs(
    title = 'Cutoff Values for BCAP Lie Subscale',
    caption = 'If 4 or more (score of 4) items are endorsed,\ncase may be invalid'
)
```

### Cutoff Values for BCAP Lie Subscale



If 4 or more (score of 4) items are endorsed, case may be invalid

```
complete %>%
  cutoff_plot(
    x = bcap_random_total,
    cutoff = 0
) +
  labs(
    title = 'Cutoff Values for BCAP Random Responding Subscale',
    caption = 'If any of these items are endorsed (score > 0),\ncase may be invalid'
)
```

## Cutoff Values for BCAP Random Responding Subscale



If any of these items are endorsed (score > 0), case may be invalid

### 4.1.5 BCAP Internal Reliability

```
bcap_alpha <-
  complete %>%
  select(
    q1_r,
    q2_r,
    q3:q22,
    q23_r,
    q24:q28,
    q29_r,
    q30:q34
  ) %>%
  psych::alpha(check.keys = TRUE)
bcap_risk_alpha <-
  complete %>%
  select(
    q1_r,
    q3,
    q5:q8,
```

```
q10:q14,
    q16:q17,
    q19:q20,
    q22,
    q23_r,
    q24:q25,
    q27,
    q29_r,
    q30:q33
    ) %>%
  psych::alpha(check.keys = TRUE)
bcap_happy_alpha <-</pre>
  complete %>%
  select(q1_r, q23_r, q29_r) %>%
  psych::alpha(check.keys = TRUE)
bcap_feel_pers_alpha <-</pre>
  complete %>%
  select(q3, q25, q33) %>%
  psych::alpha(check.keys = TRUE)
bcap_lonely_alpha <-
  complete %>%
  select(q5, q12, q22, q31) %>%
  psych::alpha(check.keys = TRUE)
bcap_fam_conf_alpha <-
  complete %>%
  select(q6, q13, q17) %>%
  psych::alpha(check.keys = TRUE)
bcap_rigid_alpha <-
  complete %>%
  select(q7, q14, q20, q32) %>%
  psych::alpha(check.keys = TRUE)
bcap_distress_alpha <-
  complete %>%
  select(q8, q11, q16, q19, q27) %>%
  psych::alpha(check.keys = TRUE)
```

```
bcap poverty alpha <-
  complete %>%
  select(q10, q30) %>%
  psych::alpha(check.keys = TRUE)
bcap_lie_alpha <-
  complete %>%
  select(q4, q9, q15, q21, q26, q34) %>%
  psych::alpha(check.keys = TRUE)
bcap_random_alpha <-</pre>
  complete %>%
  select(q2_r, q19, q28) %>%
  psych::alpha(check.keys = TRUE)
bcap_alpha_table <-
  tibble(
    Scale = c('BCAP Complete Scale', 'BCAP Risk Scale',
              'Happiness Subscale', 'Feelings of Persecution Subscale',
              'Loneliness Subscale', 'Family Conflict Subscale',
              'Rigidity Subscale', 'Distress Subscale',
              'Poverty Subscale',
              'Lying Subscale', 'Random Responding Subscale'),
    Alpha = c(round(bcap_alpha$total$raw_alpha, 3),
              round(bcap_risk_alpha$total$raw_alpha, 3),
              round(bcap_happy_alpha$total$raw_alpha, 3),
              round(bcap_feel_pers_alpha$total$raw_alpha, 3),
              round(bcap_lonely_alpha$total$raw_alpha, 3),
              round(bcap_fam_conf_alpha$total$raw_alpha, 3),
              round(bcap_rigid_alpha$total$raw_alpha, 3),
              round(bcap_distress_alpha$total$raw_alpha, 3),
              round(bcap_poverty_alpha$total$raw_alpha, 3),
              round(bcap_lie_alpha$total$raw_alpha, 3),
              round(bcap_random_alpha$total$raw_alpha, 3))
  )
bcap_alpha_table %>%
  gt::gt() %>%
  gt::tab_header(
    title = 'Alpha Values for BCAP Scale & Subscales'
  )
```

Alpha Values for BCAP Scale & Subscales

| Scale                            | Alpha |
|----------------------------------|-------|
| BCAP Complete Scale              | 0.908 |
| BCAP Risk Scale                  | 0.909 |
| Happiness Subscale               | 0.830 |
| Feelings of Persecution Subscale | 0.714 |
| Loneliness Subscale              | 0.926 |
| Family Conflict Subscale         | 0.718 |
| Rigidity Subscale                | 0.502 |
| Distress Subscale                | 0.833 |
| Poverty Subscale                 | 0.228 |
| Lying Subscale                   | 0.612 |
| Random Responding Subscale       | 0.126 |

### 5 Partner Relationships

#### 5.1 DYADC

#### 5.1.1 DYADC Description

- Variables for DYADC scale
  - e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15, e16, e17, e18, e19, e20, e21, e22, e23, e24, e25, e26, e27, e28, e29, e30, e31, e32
- Variable Scale
  - For items e1 to e15
    - \* 5 "Always Agree"
    - \* 4 "Almost Always Agree"
    - \* 3 "Occasionally Disagree"
    - $\ast\,$  2 "Frequently Disagree"
    - \* 1 "Almost Always Disagree"
    - $\ast\,$ 0 "Always Disagree"
    - \* -77 "Declined to Respond"
  - Items e16 to e22, except e18 and e19 are reverse scored

- \* 0 "All the time"
- \* 1 "Most of the time"
- \* 2 "More often than not"
- \* 3 "Occasionally"
- \* 4 "Rarely"
- \* 5 "Never"
- \* -77 "Declined to Respond"
- Items e23 and e24 are both on the following scale
  - \* 4 "Every day"
  - \* 3 "Almost every day"
  - \* 2 "Occasionally"
  - \* 1 "Rarely"
  - \* 0 "Never"
  - $\ast$  -77 "Declined to Respond"
- Items e25 to e28
  - \* 0 "Never"
  - \* 1 "Less than once a month"
  - \* 2 "Once or twice a month"
  - $\ast\,$  3 "Once or twice a week"
  - \* 4 "Once a day"
  - \* 5 "More often"
  - \* -77 "Declined to Respond"
- Items e29 and e30
  - \* 0 "Yes"
  - \* 1 "No"
- e31
  - \* 0 "Extremely Unhappy"
  - \* 1 "Fairly Unhappy"

- \* 2 "A Little Unhappy"
- \* 3 "Happy"
- \* 4 "Very Happy"
- \* 5 "Extremely Happy"
- \* 6 "Perfect"
- \* -77 "Declined to Respond"

#### - e32

- \* 5 "I want desperately for my relationship to succeed, and would go to almost any length to see that it does."
- \* 4 "I want very much for my relationship to succeed, and will do all I can to see that it does."
- \* 3 "I want very much for my relationship to succeed, and will do my fair share to see that it does."
- \* 2 "It would be nice if my relationship succeeded, but I can't do much more than I'm doing now to help it succeed."
- \* 1 "It would be nice if it succeeded, but I refuse to do any more than I am doing now to keep the relationship going."
- \* 0 "My relationship can never succeed, and there is no more that I can do to keep the relationship going."
- \* -77 "Declined to Respond"
- Total scores should range from 0 to 151
- Reverse Coding
  - e18 and e19 are reverse coded
- Subscales
  - Dyadic Consensus
    - \* e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13
  - Affective Expression
    - \* e4, e6, e29, e30
  - Dyadic Satisfaction
    - \* e16, e17, e18, e19, e20, e21, e22, e23, e31, e32

- Dyadic Cohesion
  - \* e24, e25, e26, e27, e28
- Missing Data Rule:
  - Applied. Calculations were completed only with participants that had less then 20% missing data (this includes -77 responses)
- Reference: Spanier (1976)

#### 5.1.2 DYADC Missing Data

```
data %>%
    select(
        id,
        e1:e32
) %>%
    pct_miss_fun(
        id = 'id',
        n_items = 32
) %>%
    gt::gt() %>%
    gt::tab_header(
        title = 'DYADC Missing Data',
        subtitle = 'By Participant'
)
```

DYADC Missing Data By Participant

| id    | $missing\_n$ | $miss\_pct$ |
|-------|--------------|-------------|
| HR121 | 32           | 100.000     |
| HR132 | 32           | 100.000     |
| HR139 | 32           | 100.000     |
| HR140 | 32           | 100.000     |
| HR141 | 32           | 100.000     |
| HR144 | 32           | 100.000     |
| HR150 | 32           | 100.000     |
| HR153 | 32           | 100.000     |
| HR175 | 32           | 100.000     |
| HR183 | 32           | 100.000     |
| HR199 | 32           | 100.000     |

| HR201 | 32 | 100.000 |
|-------|----|---------|
| HR204 | 32 | 100.000 |
| HR212 | 32 | 100.000 |
| HR214 | 32 | 100.000 |
| P830  | 32 | 100.000 |
| P845  | 32 | 100.000 |
| P869  | 32 | 100.000 |
| P874  | 32 | 100.000 |
| P885  | 32 | 100.000 |
| P896  | 32 | 100.000 |
| P813  | 12 | 37.500  |
| P847  | 9  | 28.125  |
| P854  | 8  | 25.000  |
| P861  | 5  | 15.625  |
| P815  | 4  | 12.500  |
| HR194 | 3  | 9.375   |
| HR155 | 2  | 6.250   |
| P821  | 2  | 6.250   |
| HR156 | 1  | 3.125   |
| HR162 | 1  | 3.125   |
| P860  | 1  | 3.125   |

### 5.1.3 DYADC Scale & Subscale Distributions

```
complete %>%
  composite_hist(
    x = dyadc_total
  ) +
  labs(
    title = 'Distribution for DYADC Scale'
)
```

### Distribution for DYADC Scale



```
complete %>%
  composite_hist(
    x = dyadc_con_total
) +
  labs(
    title = 'Distribution for DYADC Consensus Subscale'
)
```

### Distribution for DYADC Consensus Subscale



```
complete %>%
  composite_hist(
    x = dyadc_aff_exp_total,
    bins = 10
) +
labs(
    title = 'Distribution for DYADC Affectional Expression Subscale'
)
```

# Distribution for DYADC Affectional Expression Subscale



```
complete %>%
  composite_hist(
    x = dyadc_satis_total
  ) +
  labs(
    title = 'Distribution for DYADC Satisfaction Subscale'
  )
```

### Distribution for DYADC Satisfaction Subscale



```
complete %>%
  composite_hist(
    x = dyadc_cohes_total
  ) +
  labs(
    title = 'Distribution for DYADC Cohesion Subscale'
  )
```

### Distribution for DYADC Cohesion Subscale



### 5.1.4 DYADC Cutoffs

```
complete %>%
  cutoff_plot(
    x = dyadc_total,
    cutoff = 92,
    cutoff_other = 107
) +
  labs(
    title = 'Cutoff Values for DYADC Scale',
    caption = 'Cutoffs are 92 and 107\nSee references for literature on cutoff scores.'
)
```

### Cutoff Values for DYADC Scale



Cutoffs are 92 and 107 See references for literature on cutoff scores.

### 5.1.5 DYADC Internal Reliability

```
dyadc_alpha <-
  complete %>%
  select(
    e1:e32
  ) %>%
  psych::alpha(check.keys = TRUE)
dyadc_con_alpha <-
  complete %>%
  select(
    e1:e13
  ) %>%
  psych::alpha(check.keys = TRUE)
dyadc_aff_exp_alpha <-</pre>
  complete %>%
  select(
    e4, e6, e29, e30
  ) %>%
```

```
psych::alpha(check.keys = TRUE)
dyadc_satis_alpha <-
  complete %>%
  select(
    e16:e23,
    e31,
    e32
  ) %>%
 psych::alpha(check.keys = TRUE)
dyadc_cohes_alpha <-
  complete %>%
  select(
    e24:e28
  ) %>%
  psych::alpha(check.keys = TRUE)
dyadc_alpha_table <-
 tibble(
    Scale = c('DYADC',
              'DYADC - Consensus',
              'DYADC - Affectional Expression',
              'DYADC - Satisfaction',
              'DYADC - Cohesion'
    ),
    Alpha = c(round(dyadc_alpha$total$raw_alpha, 3),
              round(dyadc_con_alpha$total$raw_alpha, 3),
              round(dyadc_aff_exp_alpha$total$raw_alpha, 3),
              round(dyadc_satis_alpha$total$raw_alpha, 3),
              round(dyadc_cohes_alpha$total$raw_alpha, 3))
  )
dyadc_alpha_table %>%
 gt::gt() %>%
  gt::tab_header(
    title = 'Alpha Values for DYADC Scale & Subscales'
```

Alpha Values for DYADC Scale & Subscales

| Scale                          | Alpha |
|--------------------------------|-------|
| DYADC                          | 0.941 |
| DYADC - Consensus              | 0.887 |
| DYADC - Affectional Expression | 0.640 |
| DYADC - Satisfaction           | 0.916 |
| DYADC - Cohesion               | 0.792 |

#### 5.2 CTS2S

#### 5.2.1 CTS2S Description

- Variables in CTS2S
  - ct1, ct2, ct3, ct4, ct5, ct6, ct7, ct8, ct9, ct10, ct11, ct12, ct13, ct14, ct15, ct16, ct17, ct18, ct19, ct20
- Variable Scale
  - 1 "Once in the past year"
  - -2 "Twice in the past year"
  - 3 "3-5 times in the past year"
  - -4 "6-10 times in the past year"
  - 5 "11-20 times in the past year"
  - 6 "More than 20 times in the past year"
  - 7 "Not in the past year, but it did happen before"
  - 8 "This has never happened"
  - -77 "Declined to Respond"
- Subscales (Individual/Participant/TC)
  - Psychological Aggression
    - \* ct3, ct13
  - Physical Injury
    - \* ct5, ct15
  - Assault
    - \* ct9, ct11

- Sexual Cohesion
  - \* ct17, ct19
- Negotiation
  - \* ct1, ct7
- Subscales (Partner)
  - Psychological Aggression
    - \* ct4, ct14
  - Physical Injury
    - \* ct6, ct16
  - Assault
    - \* ct10, ct12
  - Sexual Cohesion
    - \* ct18, ct20
  - Negotiation
    - \* ct2, ct8
- CTS2S should not have a calculated total/average composite score
- CTS2S has three different ways of scoring (Prevalence, Severity, Mutuality)
  - Prevalence
    - \* assessed for both individual/participant/TC and partner
    - \* assessed by whether any behavior within each subscale occurred in the past year
  - Severity
    - \* assessed for both individual/participant/TC and partner
    - \* assessed as either no instance of the behavior, minor instance of the behavior, or severe instance of the behavior for each subscale
    - \* 0 "No"
    - \* 1 "Minor"
    - \* 2 "Severe"

- Mutuality
  - \* assessed by combining responses from both individual/participant/TC and partner
  - $\ast$  assessed as either none, male/partner only, female/individual/participant/TC only, both
  - \* 0 "None"
  - \* 1 "Partner only"
  - \* 2 "Individual/Participant/TC only"
  - \* 3 "Both"
- Missing Data Rule:
  - Applied. Calculations were completed only with participants that had less then 20% missing data (this includes -77 responses)
- Reference: Straus and Douglas (2004)

#### 5.2.2 CTS2S Missing Data

```
data %>%
    select(
    id,
    ct1:ct20
) %>%
    pct_miss_fun(
    id = 'id',
        n_items = 20
) %>%
    gt::gt() %>%
    gt::tab_header(
        title = 'CTS2S Missing Data',
        subtitle = 'By Participant'
)
```

CTS2S Missing Data
By Participant

| id    | missing_n | miss_pct |
|-------|-----------|----------|
| HR132 | 20        | 100      |

| HR139 | 20 | 100 |
|-------|----|-----|
| HR140 | 20 | 100 |
| HR144 | 20 | 100 |
| HR150 | 20 | 100 |
| HR153 | 20 | 100 |
| HR175 | 20 | 100 |
| HR183 | 20 | 100 |
| HR199 | 20 | 100 |
| HR201 | 20 | 100 |
| HR204 | 20 | 100 |
| HR212 | 20 | 100 |
| P830  | 20 | 100 |
| P845  | 20 | 100 |
| P869  | 20 | 100 |
| P874  | 20 | 100 |
| P896  | 20 | 100 |
| HR162 | 2  | 10  |
| P847  | 1  | 5   |

### 5.2.3 CTS2S Severity Distributions (Individual [TC])

```
complete %>%
 mutate(
   cts_psy_agg_ind_sev = case_when(
     cts_psy_agg_ind_sev == 0 ~ 'No Psychological Aggression',
     cts_psy_agg_ind_sev == 1 ~ 'Minor Psychological Aggression',
     cts_psy_agg_ind_sev == 2 ~ 'Severe Psychological Aggression'
    ),
   cts_psy_agg_ind_sev = as.factor(cts_psy_agg_ind_sev),
   cts_psy_agg_ind_sev = relevel(cts_psy_agg_ind_sev, 'No Psychological Aggression')
 ) %>%
 ggplot(
   aes(
     cts_psy_agg_ind_sev
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Individual (TC) Psychological Aggression Severity',
      x = '')
```

### Distribution of Individual (TC) Psychological Aggression Severit



```
complete %>%
 mutate(
   cts_injury_ind_sev = case_when(
     cts_injury_ind_sev == 0 ~ 'No Injury',
     cts_injury_ind_sev == 1 ~ 'Minor Injury',
     cts_injury_ind_sev == 2 ~ 'Severe Injury'
    ),
    cts_injury_ind_sev = as.factor(cts_injury_ind_sev),
    cts_injury_ind_sev = relevel(cts_injury_ind_sev, 'No Injury')
 ) %>%
 ggplot(
    aes(
      cts_injury_ind_sev
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Individual (TC) Physical Injury Severity',
      x = ''
```

### Distribution of Individual (TC) Physical Injury Severity



```
complete %>%
 mutate(
    cts_assault_ind_sev = case_when(
      cts_assault_ind_sev == 0 ~ 'No Assault',
     cts_assault_ind_sev == 1 ~ 'Minor Assault',
     cts_assault_ind_sev == 2 ~ 'Severe Assault'
    ),
    cts_assault_ind_sev = as.factor(cts_assault_ind_sev),
    cts_assault_ind_sev = relevel(cts_assault_ind_sev, 'No Assault')
 ) %>%
 ggplot(
    aes(
      cts_assault_ind_sev
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Individual (TC) Assault Severity',
      x = ''
```

### Distribution of Individual (TC) Assault Severity



```
complete %>%
 mutate(
   cts_sex_ind_sev = case_when(
      cts_sex_ind_sev == 0 ~ 'No Sexual Cohesion',
     cts_sex_ind_sev == 1 ~ 'Minor Sexual Cohesion',
     cts_sex_ind_sev == 2 ~ 'Severe Sexual Cohesion'
    ),
    cts_sex_ind_sev = as.factor(cts_sex_ind_sev),
    cts_sex_ind_sev = relevel(cts_sex_ind_sev, 'No Sexual Cohesion')
 ) %>%
 ggplot(
   aes(
      cts_sex_ind_sev
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Individual (TC) Sexual Cohesion Severity',
      x = ''
```

### Distribution of Individual (TC) Sexual Cohesion Severity



### 5.2.4 CTS2S Severity Distributions (Partner)

```
complete %>%
 mutate(
    cts_psy_agg_part_sev = case_when(
     cts_psy_agg_part_sev == 0 ~ 'No Psychological Aggression',
     cts_psy_agg_part_sev == 1 ~ 'Minor Psychological Aggression',
      cts_psy_agg_part_sev == 2 ~ 'Severe Psychological Aggression'
    ),
    cts_psy_agg_part_sev = as.factor(cts_psy_agg_part_sev),
    cts_psy_agg_part_sev = relevel(cts_psy_agg_part_sev, 'No Psychological Aggression')
    ) %>%
 ggplot(
   aes(
      cts_psy_agg_part_sev
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Partner Psychological Aggression Severity',
      x = ''
```

### Distribution of Partner Psychological Aggression Severity



No Psychological Addinesis Psychological Segress Psychological Aggression NA

```
complete %>%
 mutate(
    cts_injury_part_sev = case_when(
      cts_injury_part_sev == 0 ~ 'No Injury',
     cts_injury_part_sev == 1 ~ 'Minor Injury',
     cts_injury_part_sev == 2 ~ 'Severe Injury'
    ),
    cts_injury_part_sev = as.factor(cts_injury_part_sev),
    cts_injury_part_sev = relevel(cts_injury_part_sev, 'No Injury')
 ) %>%
 ggplot(
    aes(
      cts_injury_part_sev
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Partner Physical Injury Severity',
      x = ''
```

### Distribution of Partner Physical Injury Severity



```
complete %>%
 mutate(
    cts_assault_part_sev = case_when(
      cts_assault_part_sev == 0 ~ 'No Assault',
     cts_assault_part_sev == 1 ~ 'Minor Assault',
     cts_assault_part_sev == 2 ~ 'Severe Assault'
    ),
    cts_assault_part_sev = as.factor(cts_assault_part_sev),
    cts_assault_part_sev = relevel(cts_assault_part_sev, 'No Assault')
 ) %>%
 ggplot(
    aes(
      cts_assault_part_sev
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Partner Assault Severity',
      x = ''
```

### Distribution of Partner Assault Severity



```
complete %>%
 mutate(
   cts_sex_part_sev = case_when(
     cts_sex_part_sev == 0 ~ 'No Sexual Cohesion',
     cts_sex_part_sev == 1 ~ 'Minor Sexual Cohesion',
     cts_sex_part_sev == 2 ~ 'Severe Sexual Cohesion'
   ),
   cts_sex_part_sev = as.factor(cts_sex_part_sev),
   cts_sex_part_sev = relevel(cts_sex_part_sev, 'No Sexual Cohesion')
 ) %>%
 ggplot(
   aes(
     cts_sex_part_sev
   )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Partner Sexual Cohesion Severity',
      x = ''
```

### Distribution of Partner Sexual Cohesion Severity



#### 5.2.5 CTS2S Prevalence Distributions

```
complete %>%
 pivot_longer(
   cols = c(cts_psy_agg_ind_prev, cts_psy_agg_part_prev),
   names_to = 'ind_part',
   values_to = 'prevalence'
 ) %>%
 mutate(
   ind_part = case_when(
     ind_part == 'cts_psy_agg_ind_prev' ~ 'Individual (TC)',
      ind_part == 'cts_psy_agg_part_prev' ~ 'Partner'
    )
 ) %>%
  group_by(ind_part) %>%
 mutate(
    sum_prev = sum(prevalence)
  ) %>%
 ungroup() %>%
  ggplot(
    aes(
```

```
ind_part, sum_prev
)
) +
geom_col(
  aes(fill = ind_part),
  position = 'dodge'
) +
labs(title = 'Distribution of Psychological Aggression Prevalence')
```

### Distribution of Psychological Aggression Prevalence



```
complete %>%
  pivot_longer(
    cols = c(cts_injury_ind_prev, cts_injury_part_prev),
    names_to = 'ind_part',
    values_to = 'prevalence'
) %>%
  mutate(
    ind_part = case_when(
        ind_part == 'cts_injury_ind_prev' ~ 'Individual (TC)',
        ind_part == 'cts_injury_part_prev' ~ 'Partner'
    )
) %>%
```

```
group_by(ind_part) %>%
mutate(
    sum_prev = sum(prevalence)
) %>%
ungroup() %>%
ggplot(
    aes(
        ind_part, sum_prev
)
) +
geom_col(
    aes(fill = ind_part),
    position = 'dodge'
) +
labs(title = 'Distribution of Physical Injury Prevalence')
```

## Distribution of Physical Injury Prevalence



```
complete %>%
  pivot_longer(
    cols = c(cts_assault_ind_prev, cts_assault_part_prev),
    names_to = 'ind_part',
    values_to = 'prevalence'
```

```
) %>%
mutate(
  ind_part = case_when(
    ind_part == 'cts_assault_ind_prev' ~ 'Individual (TC)',
    ind_part == 'cts_assault_part_prev' ~ 'Partner'
  )
) %>%
group_by(ind_part) %>%
mutate(
  sum_prev = sum(prevalence)
) %>%
ungroup() %>%
ggplot(
  aes(
    ind_part, sum_prev
) +
geom_col(
 aes(fill = ind_part),
  position = 'dodge'
) +
labs(title = 'Distribution of Assault Prevalence')
```

### Distribution of Assault Prevalence



```
complete %>%
 pivot_longer(
   cols = c(cts_sex_ind_prev, cts_sex_part_prev),
   names_to = 'ind_part',
   values_to = 'prevalence'
 ) %>%
 mutate(
   ind_part = case_when(
     ind_part == 'cts_sex_ind_prev' ~ 'Individual (TC)',
     ind_part == 'cts_sex_part_prev' ~ 'Partner'
    )
 ) %>%
 group_by(ind_part) %>%
 mutate(
   sum_prev = sum(prevalence)
 ) %>%
 ungroup() %>%
 ggplot(
   aes(
      ind_part, sum_prev
    )
 ) +
 geom_col(
  aes(fill = ind_part),
   position = 'dodge'
 ) +
 labs(title = 'Distribution of Sexual Cohesion Prevalence')
```

### Distribution of Sexual Cohesion Prevalence



#### 5.2.6 CTS2S Mutuality Distributions

```
complete %>%
 mutate(
   cts_psy_agg_mutual = case_when(
     cts_psy_agg_mutual == 0 ~ 'Neither',
     cts_psy_agg_mutual == 1 ~ 'Male Only',
     cts_psy_agg_mutual == 2 ~ 'Female Only',
     cts_psy_agg_mutual == 3 ~ 'Both'
   ),
    cts_psy_agg_mutual = as.factor(cts_psy_agg_mutual),
    cts_psy_agg_mutual = relevel(cts_psy_agg_mutual, 'Neither')
 ) %>%
 ggplot(
   aes(
      cts_psy_agg_mutual
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Mutual Psychological Aggression')
```

### Distribution of Mutual Psychological Aggression



```
complete %>%
 mutate(
    cts_injury_mutual = case_when(
      cts_injury_mutual == 0 ~ 'Neither',
     cts_injury_mutual == 1 ~ 'Male Only',
     cts_injury_mutual == 2 ~ 'Female Only',
     cts_injury_mutual == 3 ~ 'Both'
    ),
    cts_injury_mutual = as.factor(cts_injury_mutual),
    cts_injury_mutual = relevel(cts_injury_mutual, 'Neither')
 ) %>%
 ggplot(
   aes(
      cts_injury_mutual
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Mutual Injury')
```

### Distribution of Mutual Injury



```
complete %>%
 mutate(
    cts_assault_mutual = case_when(
      cts_assault_mutual == 0 ~ 'Neither',
      cts_assault_mutual == 1 ~ 'Male Only',
     cts_assault_mutual == 2 ~ 'Female Only',
     cts_assault_mutual == 3 ~ 'Both'
    ),
    cts_assault_mutual = as.factor(cts_assault_mutual),
    cts_assault_mutual = relevel(cts_assault_mutual, 'Neither')
 ) %>%
 ggplot(
   aes(
      cts_assault_mutual
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Mutual Assault')
```

### Distribution of Mutual Assault



```
complete %>%
 mutate(
    cts_sex_mutual = case_when(
      cts_sex_mutual == 0 ~ 'Neither',
     cts_sex_mutual == 1 ~ 'Male Only',
     cts_sex_mutual == 2 ~ 'Female Only',
     cts_sex_mutual == 3 ~ 'Both'
    ),
    cts_sex_mutual = as.factor(cts_sex_mutual),
    cts_sex_mutual = relevel(cts_sex_mutual, 'Neither')
 ) %>%
 ggplot(
   aes(
      cts_sex_mutual
    )
 ) +
 geom_bar() +
 labs(title = 'Distribution of Mutual Sexual Cohesion')
```

#### Distribution of Mutual Sexual Cohesion



#### 5.2.7 CTS2S Internal Reliability

• authors describe that internal reliability is not appropriate for the CTS2S measure.

### References

Canady, Renée B, Manfred Stommel, and Claudia Holzman. 2009. "Measurement Properties of the Centers for Epidemiological Studies Depression Scale (CES-d) in a Sample of African American and Non-Hispanic White Pregnant Women." *Journal of Nursing Measurement* 17 (2): 91–104.

Conway III, Lucian Gideon, Shailee R Woodard, and Alivia Zubrod. 2020. "Social Psychological Measurements of COVID-19: Coronavirus Perceived Threat, Government Response, Impacts, and Experiences Questionnaires."

Derogatis, Leonard R, and Nick Melisaratos. 1983. "The Brief Symptom Inventory: An Introductory Report." *Psychological Medicine* 13 (3): 595–605.

Gavin, Douglas R, Helen E Ross, and Harvey A Skinner. 1989. "Diagnostic Validity of the Drug Abuse Screening Test in the Assessment of DSM-III Drug Disorders." *British Journal of Addiction* 84 (3): 301–7.

Henry, Samantha K, Merida M Grant, and Karen L Cropsey. 2018. "Determining the Optimal Clinical Cutoff on the CES-d for Depression in a Community Corrections Sample." *Journal of Affective Disorders* 234: 270–75.

- Ondersma, Steven J, Mark J Chaffin, Sharon M Mullins, and James M LeBreton. 2005. "A Brief Form of the Child Abuse Potential Inventory: Development and Validation." *Journal of Clinical Child and Adolescent Psychology* 34 (2): 301–11.
- Radloff, Lenore Sawyer. 1977. "The CES-d Scale: A Self-Report Depression Scale for Research in the General Population." Applied Psychological Measurement 1 (3): 385–401.
- Spanier, Graham B. 1976. "Measuring Dyadic Adjustment: New Scales for Assessing the Quality of Marriage and Similar Dyads." *Journal of Marriage and the Family*, 15–28.
- Straus, Murray A, and Emily M Douglas. 2004. "A Short Form of the Revised Conflict Tactics Scales, and Typologies for Severity and Mutuality." Violence and Victims 19 (5): 507–20.