Increasing Functions and Decreasing Functions

As another corollary to the Mean Value Theorem, we show that functions with positive derivatives are increasing functions and functions with negative derivatives are decreasing functions. A function that is increasing or decreasing on an interval is said to be monotonic on the interval.

COROLLARY 3 Suppose that f is continuous on [a, b] and differentiable on (a, b).

If f'(x) > 0 at each point $x \in (a, b)$, then f is increasing on [a, b].

If f'(x) < 0 at each point $x \in (a, b)$, then f is decreasing on [a, b].

First Derivative Test for Local Extrema

Suppose that c is a critical point of a continuous function f, and that f is differentiable at every point in some interval containing c except possibly at c itself. Moving across this interval from left to right,

- 1. if f' changes from negative to positive at c, then f has a local minimum at c;
- 2. if f' changes from positive to negative at c, then f has a local maximum at c;
- 3. if f' does not change sign at c (that is, f' is positive on both sides of c or negative on both sides), then f has no local extremum at c.

= x²/

y*>0

The Second Derivative Test for Concavity

Let y = f(x) be twice-differentiable on an interval I.

If f" > 0 on I, the graph of f over I is concave up.
 If f" < 0 on I, the graph of f over I is concave down.

If y = f(x) is twice-differentiable, we will use the notations f'' and y'' interchangeably when denoting the second derivative.

EXAMPLE 1

- (a) The curve $y = x^3$ (Figure 4.24) is concave down on $(-\infty, 0)$ where y'' = 6x < 0 and concave up on $(0, \infty)$ where y'' = 6x > 0.
- (b) The curve $y = x^2$ (Figure 4.25) is concave up on $(-\infty, \infty)$ because its second derivative y'' = 2 is always positive.

EXAMPLE 2 Determine the concavity of $y = 3 + \sin x$ on $[0, 2\pi]$.

Solution The first derivative of $y = 3 + \sin x$ is $y' = \cos x$, and the second derivative is $y'' = -\sin x$. The graph of $y = 3 + \sin x$ is concave down on $(0, \pi)$, where $y'' = -\sin x$ is negative. It is concave up on $(\pi, 2\pi)$, where $y'' = -\sin x$ is positive (Figure 4.26).

Points of Inflection

The curve $y = 3 + \sin x$ in Example 2 changes concavity at the point $(\pi, 3)$. Since the first derivative $y' = \cos x$ exists for all x, we see that the curve has a tangent line of slope -1 at the point $(\pi, 3)$. This point is called a *point of inflection* of the curve. Notice from Figure 4.26 that the graph crosses its tangent line at this point and that the second derivative $y'' = -\sin x$ has value 0 when $x = \pi$. In general, we have the following definition.

sign of y" to y (Example 2).

DEFINITION A point (c, f(c)) where the graph of a function has a tangent line and where the concavity changes is a point of inflection.

We observed that the second derivative of $f(x) = 3 + \sin x$ is equal to zero at the inflection point $(\pi, 3)$. Generally, if the second derivative exists at a point of inflection (c, f(c)), then f''(c) = 0. This follows immediately from the Intermediate Value Theorem whenever f'' is continuous over an interval containing x = c because the second derivative changes sign moving across this interval. Even if the continuity assumption is dropped, it is still true that f''(c) = 0, provided the second derivative exists (although a more advanced argument is required in this noncontinuous case). Since a tangent line must exist at the point of inflection, either the first derivative f'(c) exists (is finite) or the graph has a vertical tangent at the point. At a vertical tangent neither the first nor second derivative exists. In summary, we conclude the following result.

At a point of inflection (c, f(c)), either f''(c) = 0 or f''(c) fails to exist.

The next example illustrates a function having a point of inflection where the first derivative exists, but the second derivative fails to exist.

THEOREM 5—Second Derivative Test for Local Extrema Suppose f'' is continuous on an open interval that contains x = c.

- 1. If f'(c) = 0 and f''(c) < 0, then f has a local maximum at x = c.
- 2. If f'(c) = 0 and f''(c) > 0, then f has a local minimum at x = c.
- 3. If f'(c) = 0 and f''(c) = 0, then the test fails. The function f may have a local maximum, a local minimum, or neither.