Model regresji liniowej

Martyna Śpiewak Bootcamp Data Science

Teoria uczenia statystycznego

Y - odpowiedź, zmienna zależna, zmienna wyjaśniana;

 X_1, X_2, \dots, X_p - predyktory, zmienne niezależne, zmienne wyjaśniające, cechy;

$$Y = f(X) + \varepsilon,$$

gdzie f jest nieznaną funkcją predyktorów X_1, X_2, \ldots, X_p oraz ε to błąd losowy.

Teoria uczenia statystycznego

Istnieją dwa główne powody, dla których chcemy oszacować postać f:

- predykcja (ang. prediction), oraz
- · wnioskowanie (ang. inference).

Predykcja

Niech \hat{Y} oznacza przewidzianą wartość zmiennej zależnej Y, zaś \hat{f} , to założona/wyestymowana postać nieznanej funkcji f:

$$\hat{Y} = \hat{f}(X)$$
.

Dokładność prognozy Ŷ zależy od dwóch wielkości:

- błędu redukowalnego (postać \hat{f} zazwyczaj nie jest idealnym oszacowaniem funkcji f, ta niedokładność wprowadza pewien błąd do predykcji);
- błędu nieredukowalnego (wartość Y zależy od pewnego nieznanego błędu ε).

$$\begin{split} \mathbb{E}(\mathbf{Y} - \hat{\mathbf{Y}})^2 &= \mathbb{E}[f(\mathbf{X}) + \varepsilon - \hat{f}(\mathbf{X})]^2 \\ &= \underbrace{[f(\mathbf{X}) - \hat{f}(\mathbf{X})]^2}_{\text{błąd redukowalny}} + \underbrace{\text{Var}(\varepsilon)}_{\text{błąd nieredukowalny}} \end{split}$$

Wnioskowanie

Często oprócz predykcji nieznanych wartości Y, jesteśmy również zainteresowani zrozumieniem relacji pomiędzy zmienną zależną a zmiennymi niezależnymi.

Wówczas jesteśmy zainteresowani odpowiedzią na następujące pytania:

• Które zmienne niezależne są powiązane ze zmienną odpowiedzi? Ważny elementem analizy jest określenie podzbioru dostępnych predyktorów, które istotnie są związane ze zmienną odpowiedzi Y.

5

Wnioskowanie

Często oprócz predykcji nieznanych wartości Y, jesteśmy również zainteresowani zrozumieniem relacji pomiędzy zmienną zależną a zmiennymi niezależnymi.

Wówczas jesteśmy zainteresowani odpowiedzią na następujące pytania:

- Które zmienne niezależne są powiązane ze zmienną odpowiedzi? Ważny elementem analizy jest określenie podzbioru dostępnych predyktorów, które istotnie są związane ze zmienną odpowiedzi Y.
- Jaki jest związek między zmienną odpowiedzi a każdym predyktorem? Niektóre zmienne niezależne mogą mieć pozytywny wpływ na zmienną odpowiedzi (np. wzrost wartości zmiennej X wiąże się ze wzrostem wartości zmiennej Y), inne predyktory mogą mieć odwrotny związek.

5

Wnioskowanie

• Czy związek między zależną Y a każdą zmienną odpowiedzi X_i można przedstawić jako liniowy? Czy też związek jest bardziej złożony? Historycznie wiele metod zakładała liniową postać funkcji f. W niektórych sytuacjach takie założenie jest uzasadnione. Jednakże, w większości przypadków prawdziwy związek jest bardziej skomplikowany, wówczas model liniowy może być niewystarczający do odpowiedniego określenia związku między zmiennymi wejściowymi i wyjściowymi.

Zbiór danych Advertising

Zbiór danych **Advertising** zawiera dane ze sprzedaży reklamy pewnego produktu na 200 różnych rynkach wraz z budżetami reklamowymi tego produktu w każdym z nich dla trzech różnych typów mediów: telewizji, radia i gazety.

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9

Zbiór danych Advertising

Zbiór danych Advertising

- 1. Czy istnieje związek między budżetem przeznaczonym na reklamę a wielkością sprzedaży?
- 2. Jak silny jest związek między budżetem a wielkością sprzedaży?
- 3. Które rodzaje mediów wpływają na sprzedaż?
- 4. Jak dokładnie możemy przewidzieć wpływ każdej formy mediów na wielkość sprzedaży?
- 5. Jak dokładnie możemy przewidzieć wielkość przyszłej sprzedaży?
- 6. Czy związek między zmienną odpowiedzi a zmiennymi niezależnymi jest liniowy?

Model regresji prostej

$$Y = \beta_0 + \beta_1 X + \varepsilon,$$

gdzie $\varepsilon \sim \mathcal{N}(0, \sigma)$.

W praktyce, współczynniki β_0 i β_1 są nieznane.

Cel: Przy użyciu par $(x_1, y_1), (x_2, y_2), \dots (x_n, y_n)$ odpowiadającym pomiarom, odpowiednio, zmiennej X i Y, wyznaczyć współczynniki b_0, b_1 tak, aby

$$y_i \approx b_0 + b_1 x_i$$

Zapis:

 $\hat{y}_i = b_0 + b_1 x_i$ – wartość prognozowana Y na podstawie *i*-tej wartości X $e_i = y_i - \hat{y}_i$ – *i*-te rezyduum (wartość resztowa)

Model regresji prostej — zbiór Advertising

Niech

- X będzie zmienną niezależną opisującą wysokość budżetu przeznaczonego na reklamę w telewizji (TV),
- Y będzie zmienną zależną opisującą wysokość sprzedaży pewnego produktu (Sales).

Zakładamy, że prawdziwy jest związek:

Sales
$$\approx b_0 + b_1 \cdot \mathsf{TV}$$
.

Jak wyznaczyć b_0 i b_1 ?

Suma kwadratów błędów (ang. residual sum of squares):

RSS =
$$e_1^2 + e_2^2 + ... + e_n^2$$

= $(y_1 - \hat{y}_1)^2 + (y_2 - \hat{y}_2)^2 + ... + (y_n - \hat{y}_n)^2$

Funkcja kryterialna:

$$(b_0, b_1) = \arg\min_{(b_0, b_1)} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

=
$$\arg\min_{(b_0, b_1)} \sum_{i=1}^{n} (y_i - (b_0 + b_1 x_i))^2$$

Metoda najmniejszych kwadratów

Metoda najmniejszych kwadratów wyznacza b_0, b_1 minimalizując RSS, tj.

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}},$$

$$b_{0} = \overline{y} - b_{1}\overline{x}$$

gdzie
$$\bar{x} = \frac{1}{n}x_i$$
 oraz $\bar{y} = \frac{1}{n}y_i$

Dep. Variable:		9	Sales	R-sq	uared:		0.612
Model:			0LS	Adi.	R-squared:		0.610
Method:		Least Squ	lares	_	atistic:		312.1
Date:		Sun, 16 Feb			(F-statistic):		1.47e-42
Time:		•	50:53		Likelihood:		-519.05
		11::		_	LIKE (INOOU:		
No. Observation	ns:		200	AIC:			1042.
Df Residuals:			198	BIC:			1049.
Df Model:			1				
Covariance Type	e:	nonro	obust				
===============							
	coef	std err		t	P> t	[0.025	0.975]
Intercept	7.0326	0.458	15	.360	0.000	6.130	7.935
TV	0.0475	0.003	17	.668	0.000	0.042	0.053
Omnibus:		(9.531	Durb	in-Watson:		1.935
Prob(Omnibus):			9.767		ue-Bera (JB):		0.669
Skew:			0.089		(JB):		0.716
Kurtosis:		7	2.779	Cond	. No.		338.
					==========		

Model regresji prostej — zbiór Advertising

Stopnie swobody

Dep. Variable	:		S	ales	R-sq	uared:		0.612
Model:				0LS	Adj.	R-squared:		0.610
Method:		Lea	st Squ	iares	F-st	atistic:		312.1
Date:		Sun, 1	6 Feb	2020	Prob	(F-statistic)	:	1.47e-42
Time:			11:5	0:53	Log-	Likelihood:		-519.05
No. Observation	ons:			200	AIC:			1042.
Df Residuals:				198	BIC:			1049.
Df Model:				1				
Covariance Ty	oe:		nonro	bust				
	coe	f st	d err		t	P> t	[0.025	0.975]
Intercept	7.032	 5	0.458	15	360	0.000	6.130	7.935
TV	0.047	5	0.003	17	.668	0.000	0.042	0.053
Omnibus:			===== 6	.531	Durb	======== in-Watson:		1.935
Prob(Omnibus)				7.767		ue-Bera (JB):		0.669
Skew:	-			0.089		(JB):		0.716
Kurtosis:			_	.779		. No.		338.
			=====					

Stopnie swobody

Df Model — liczba stopni swobody modelu, wyrażona jako

р,

Df Residuals — liczba stopni swobody, wyrażona jako

$$n - p - 1$$

gdzie n oznacza liczbę obserwacji w modelu, zaś p to liczba predyktorów w modelu.

Współczynnik determinacji R²

				-				
Dep. Variable	2:		Sales	5	R-squ	ared:		0.612
Model:			OLS	5	Adj.	R-squared:		0.610
Method:		Leas	t Squares	5	F-sta	tistic:		312.1
Date:		Sun, 16	Feb 2020)	Prob	(F-statistic):		1.47e-42
Time:			11:50:53	3		ikelihood:		-519.05
No. Observati	ons:		200)	AIC:			1042.
Df Residuals:			198	3	BIC:			1049.
Df Model:			1	l				
Covariance Ty	/pe:		nonrobust	t				
				-				
	coef	std	err		t	P> t	[0.025	0.975]
Intercept	7.0326	5 0	.458	15	.360	0.000	6.130	7.935
TV	0.0475	5 0	.003	17	.668	0.000	0.042	0.053
Omnibus:			 0.53	 L	Durbi	======== .n-Watson:	======	1.935
Prob(Omnibus)	:		0.767	7		ie-Bera (JB):		0.669
Skew:			-0.089		Prob(0.716
Kurtosis:			2.779	9	Cond.	•		338.
=========			=======					

Współczynnik determinacji R²

$$R^2 = \frac{\mathsf{TSS} - \mathsf{RSS}}{\mathsf{TSS}} = 1 - \frac{\mathsf{RSS}}{\mathsf{TSS}},$$

gdzie

$$TSS = \sum_{i=1}^{n} (y_i - \overline{y})^2,$$

to całkowita suma kwadratów (ang. total sum of squares).

- 1. $0 \le R^2 \le 1$
- 2. TSS mierzy zmienność zmiennej Y przed zastosowaniem regresji
- 3. RSS mierzy wielkość zmienności, która jest niewyjaśniana przez model regresji
- 4. TSS RSS mierzy wielkość zmienności, która jest wyjaśniana przez model regresji
- 5. R^2 mierzy stosunek zmienności Y, która może być wyjaśniona przez X

Funkcja wiarogodności

Dan Vaniable					-1						0.613
Dep. Variable	:			5	ales			uared:			0.612
Model:					0LS		Adj.	R-squa	red:		0.610
Method:		L	east	Squ	iares		F-st	atistic	:		312.1
Date:		Sun,	16	Feb	2020		Prob	(F-sta	tistic)		1.47e-42
Time:				11:5	0:53		Log-	Likelih	ood:		-519.05
No. Observation	ons:				200		AIC:				1042.
Df Residuals:					198		BIC:				1049.
Df Model:					130		DIC.				1045.
					L +						
Covariance Typ	pe:		n	onro	bust						
	coe	f	std	err			t	P>	t	[0.025	0.975]
Intercept	7.032	5	0.	458		15	. 360	0.0	900	6.130	7.935
TV .	0.047	5	0.	003		17	. 668	Θ.	900	0.042	0.053
		- 		====		==:			======		
Omnibus:					.531		Durh	in-Wats	on :		1.935
Prob(Omnibus)	:				.767			ue-Bera	(JR):		0.669
Skew:				- 6	0.089			(JB):			0.716
Kurtosis:				2	.779		Cond	. No.			338.
			====	====		==:					

Funkcja wiarogodności

Zgodnie z założenia regresji

$$Y \sim \mathcal{N}(\beta_0 + \beta_1 X, \sigma).$$

wówczas funkcja wiarogodności ma postać

$$L(y_1, y_2 \dots, y_n, \sigma) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} \exp\left\{\frac{-(y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}\right\}.$$

Mamy

$$l(y_1, y_2, \dots, y_n, \sigma) = \ln L = -\frac{n}{2} \ln (2\pi) - n \ln \sigma - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2.$$

Funkcja wiarogodności

Można pokazać, że wartości b_0 i b_1 maksymalizujące funkcję l, to:

$$\hat{\beta}_1 = b_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}, \quad \hat{\beta}_0 = b_0 = \overline{y} - b_1 \overline{x}.$$

Wówczas szukając postaci ENW dla σ^2 postępujemy następująco:

1.
$$\frac{\partial l}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
;

2.
$$\frac{\partial l}{\partial \sigma} = 0 \implies \sigma_0^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$
.

3.
$$\left. \frac{\partial^2 l}{\partial \sigma^2} \right|_{\sigma^2 = \sigma_0^2} = -\frac{2n}{\sigma_0^2} < 0.$$

Estymatorem największej wiarogodności wariancji σ^2 jest:

$$\hat{\sigma}^2 = \frac{\text{RSS}}{n}.$$

AIC i BIC

Dep. Variable: Model:	Sales OLS	R-squared: Adj. R-squared:	0.612 0.610
Method:	Least Squares	F-statistic:	312.1
Date:	Sun, 16 Feb 2020	Prob (F-statistic):	
Time:	11:50:53	Log-Likelihood:	-519.05
No. Observations:	200	AIC:	1042.
Df Residuals:	198	BIC:	1049.
Df Model:	1		
Covariance Type:	nonrobust		
=======================================			
co	ef std err	t P> t	[0.025 0.975]
Intercept 7.03	26 0.458	15.360 0.000	6.130 7.935
TV 0.04	75 0.003	17.668 0.000	0.042 0.053
Omnibus:	0.531	Durbin-Watson:	1.935
Prob(Omnibus):	0.767	Jarque-Bera (JB):	0.669
Skew:	-0.089	Prob(JB):	0.716
Kurtosis:	2.779	Cond. No.	338.
=======================================			

AIC i BIC

Kryterium Akaike (ang. Akaike Information Criterion):

$$AIC = -2\ln L + 2p$$

Kryterium Schwarza (ang. Bayesian Information Criterion):

$$BIC = -2\ln L + \ln(n)p,$$

gdzie p jest liczbą parametrów w modelu, n jest liczbą obserwacji, a L jest funkcją wiarygodności.

Współczynniki regresji

```
Dep. Variable:
                               Sales R-squared:
                                                                        0.612
Model:
                                 OLS Adj. R-squared:
                                                                        0.610
Method:
                       Least Squares F-statistic:
                                                                        312.1
                    Sun, 16 Feb 2020 Prob (F-statistic):
                                                                     1.47e-42
Date:
                            11:50:53 Log-Likelihood:
Time:
                                                                      -519.05
No. Observations:
                                 200 AIC:
                                                                        1042.
Df Residuals:
                                                                        1049
                                  198 BTC:
Df Model:
Covariance Type:
                           nonrobust
```

	coef		t	P> t	[0.025	0.975]
Intercept	7.0326	0.458	15.360	0.000	6.130	7.935
TV	0.0475	0.003	17.668		0.042	0.053

Omnibus:	0.531	Durbin-Watson:	1.935
Prob(Omnibus):	0.767	Jarque-Bera (JB):	0.669
Skew:	-0.089	Prob(JB):	0.716
Kurtosis:	2.779	Cond. No.	338.

Odchylenie standardowe estymatorów współczynników β_0 i β_1

$$SE(\hat{\beta}_0) = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right],$$

$$SE(\hat{\beta}_1) = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2},$$

gdzie $\sigma^2 = \text{Var}(\varepsilon)$.

95% przedziały ufności dla parametrów regresji:

$$\hat{\beta}_1 \pm 2 \cdot \text{SE}(\hat{\beta}_1), \quad \hat{\beta}_0 \pm 2 \cdot \text{SE}(\hat{\beta}_0).$$

Istotność współczynników regresji

$$H_0: \beta_1 = 0,$$

 $H_1: \beta_1 \neq 0.$

W przypadku prostej regresji liniowej, hipoteza służy do oceny, czy istnieje związek między zmienną X i Y.

Jeśli $\beta_1=0$ wówczas model regresji redukuje się do Y = $\beta_0+\varepsilon$ i X nie jest związana ze zmienną Y.

Będziemy używać statystyki testowej:

$$t = \frac{\hat{\beta}_1 - 0}{\mathsf{SE}(\hat{\beta}_1)}.$$

Przy prawdziwości hipotezy zerowej statystyka t ma rozkład t-Studenta z n-2 stopniami swobody.

Testy normalności — Omnibus

Dep. Variable	e:		Sales		iared:		0.612
Model:			0LS	Adj.	R-squared:		0.610
Method:		Least Sq	uares	F-sta	tistic:		312.1
Date:		Sun, 16 Feb	2020	Prob	(F-statisti	c):	1.47e-42
Time:		11:	50:53	Log-L	ikelihood:		-519.05
No. Observati	ions:		200	AIC:			1042.
Df Residuals			198	BIC:			1049.
Df Model:			1				
Covariance Ty	/pe:	nonr	obust				
	coef	std err		t	P> t	[0.025	0.975]
Intercept	7.0326		_	5.360	0.000	6.130	7.935
TV	0.0475	0.003	1	7.668	0.000	0.042	0.053
Omnibus:			0.531	Durhi	======= .n-Watson:	======	1.935
Prob(Omnibus)	١.		0.767		ie-Bera (JB)		0.669
Skew:			0.089	Prob(•	0.716
Kurtosis:			2.779		•		338.
Kui (0313)			2.//J				336.

Test normalności – Omnibus

Test typu omnibus D'Agostino-Pearsona oparty o kurtozę i skośność.

Łącząc dwa testy otrzymuje się test czuły na odstępstwa od normalności zarówno w postaci niezerowej skośności jak i kurtozy istotnie różniej od 3.

Statystyką testową jest

$$K^2 = (Z(\sqrt{b_1}))^2 + (Z(b_2))^2,$$

gdzie $Z(\sqrt{b_1})$ to statystyka testowa testu opartego o skośność a $Z(b_2)$ to statystyka testowa testu opartego o kurtozę.

Asymptotyczny rozkład tej statystyki to rozkład χ^2 .

Ponadto:
$$m_k = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^k$$
, $\sqrt{b_1} = \frac{m_3}{m_2^{3/2}}$, $b_2 = \frac{m_4}{m_2^2} - 3$.

Test normalności – Jarque-Bera

Dep. Variable: Model: Method: Date: Time: No. Observation Df Residuals: Df Model: Covariance Typ	ons:		Sast Squal 16 Feb 1 11:50	2020 0:53 200 198 1	F-sta Prob	ared: R-squared: tistic: (F-statistic): ikelihood:		0.612 0.610 312.1 1.47e-42 -519.05 1042. 1049.
=========	coe	f s1	td err		t	P> t	[0.025	0.975]
Intercept TV	7.032 0.047		0.458 0.003		.360 .668	0.000 0.000	6.130 0.042	7.935 0.053
Omnibus: Prob(Omnibus): Skew: Kurtosis:			0 - 0	.531 .767 .089 .779				1.935 0.669 0.716 338.

Test normalności — Jarque-Bera

Innym testem opartym o kurtozę i skośność jest **test Jarque-Bera**. Statystyka testowa w przypadku tego testu ma łatwiejszą postać niż dla testu D'Agostino-Pearsona. Traci się jednak na niedokładnym oszacowaniu wartości krytycznych przy niewielkich wielkościach próby. Asymptotycznie ten test jest tak samo mocny jak test D'Agostino-Pearsona, ale na asymptotykę można liczyć jedynie w przypadku dużych prób.

Statystyka testowa ma postać:

$$JB = \frac{n}{6} \left((\sqrt{b_1})^2 + \frac{1}{4} (b_2 - 3)^2 \right).$$

Statystyka Durbina-Watsona

Dep. Variable:			S	ales		uared:		0.612
Model:				0LS	Adj.	R-squared:		0.610
Method:		Least	Squ	ares	F-sta	atistic:		312.1
Date:		Sun, 16	Feb :	2020	Prob	(F-statistic):		1.47e-42
Time:			11:5	0:53	Log-l	_ikelihood:		-519.05
No. Observatio	ns:			200	AIC:			1042.
Df Residuals:				198	BIC:			1049.
Df Model:				1				
Covariance Typ	e:	n	onro	bust				
	coe	f std	err		t	P> t	[0.025	0.975]
Intercept	7.0326	5 0.	458	15	.360	0.000	6.130	7.935
TV	0.0475	ō 0.	003	17	.668	0.000	0.042	0.053
Omnibus:				===== .531	Durch	======== in-Watson:		1.935
Prob(Omnibus):				.767		ue-Bera (JB):		0.669
Skew:				.089		(JB):		0.716
Kurtosis:			_	.779		(JB):		338.
Kui tusis:				. / / 9	Cond	. NO.		330.

Statystyka Durbina-Watsona

Test Durbina-Watsona (statystyka) służy do oceny występowania korelacji pomiędzy resztami. Wzór na statystykę testu Durbina-Watsona ma postać:

$$DW = \frac{\sum_{i=1}^{n-1} \left((y_{i+1} - \hat{y}_{i+1}) - (y_i - \hat{y}_i) \right)^2}{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$$

Jeżeli statystyka DW ≈ 2 , możemy uznać **brak autokorelacji** pomiędzy resztami w modelu.

Wielowymiarowy model regresji liniowej

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_p x_{ip} + \varepsilon,$$

gdzie $\varepsilon_i \sim \mathcal{N}(0, \sigma)$.

Zapis macierzowy:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon},$$

gdzie

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_{11} & x_{12} & \dots & x_{1p} \\ 1 & x_{21} & x_{22} & \dots & x_{2p} \\ 1 & \vdots & \vdots & \dots & \vdots \\ 1 & x_{n1} & x_{n2} & \dots & x_{np} \end{bmatrix},$$

$$\beta^{\mathsf{T}} = (\beta_0, \beta_1, \dots, \beta_p)^{\mathsf{T}} \text{ oraz } \varepsilon^{\mathsf{T}} = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)^{\mathsf{T}}.$$

Metoda najmniejszych kwadratów

Funkcja kryterialna:

$$\mathbf{b} = \underset{\mathbf{b}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
$$= \underset{\mathbf{b}}{\operatorname{argmin}} \sum_{i=1}^{n} (y_i - \mathbf{X}_i \beta)^2,$$

wówczas

$$b = (X'X)^{-1}X'y$$

Wielowymiarowy model regresji liniowej – zbiór Advertising

Dopasowujemy model

Sales
$$\approx b_0 + b_1 \cdot \mathsf{TV} + b_2 \cdot \mathsf{Radio} + b_3 \cdot \mathsf{Newspaper}$$
.

		OLS Re	egression Re	sults		
Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals	sions:	Sa Least Squa Sun, 16 Feb 2 12:24	OLS Adj. ares F-sta 2020 Prob 1:33 Log-L 200 AIC: 196 BIC:			0.897 0.896 570.3 1.58e-96 -386.18 780.4 793.6
Df Model: Covariance T	··	nonrol std err	3 oust t	P> t	[0.025	 0.975]
Intercept TV Radio Newspaper	2.9389 0.0458 0.1885 -0.0010	0.312 0.001 0.009 0.006	9.422 32.809 21.893 -0.177	0.000 0.000 0.000 0.860	2.324 0.043 0.172 -0.013	3.554 0.049 0.206 0.011
Omnibus: Prob(Omnibus Skew: Kurtosis:	5):	0 -1				2.084 151.241 1.44e-33 454.

Wielowymiarowy model regresji liniowej

Dopasowując model regresji wielokrotnej ważnym jest odpowiedzenie na następujące pytania:

1. Czy przynajmniej jeden z predyktorów X_1, \ldots, X_p jest przydatny w przewidywaniu zmiennej odpowiedzi Y?

Dep. Variabl	e:		Sales		uared:		0.897
Model:			0LS		R-squared:		0.896
Method:		Least S	quares	F-st	atistic:		570.3
Date:		Sun, 16 Fe	b 2020	Prob	(F-statistic)	:	1.58e-96
Time:		12	:24:33	Log-	Likelihood:		-386.18
No. Observat	ions:		200	AIC:			780.4
Df Residuals	:		196	BIC:			793.6
Df Model:			3				
Covariance T	ype:	non	robust				
	coef	std er	r	t	P> t	[0.025	0.975]
Intercept	2.9389			9.422		2.324	3.554
TV	0.0458	0.00	1 3	32.809	0.000	0.043	0.049
Radio	0.1885	0.00	9 2	21.893	0.000	0.172	0.206
Newspaper	-0.0010	0.00	6 -	0.177	0.860	-0.013	0.011
Omnibus:			====== 60.414	Durb	======== in-Watson:		2.084
Prob(Omnibus	١.		0.000		ue-Bera (JB):		151.241
Skew:	, .		-1.327		(JB):		1.44e-33
Kurtosis:			6.332		. No.		454.
Kui tusis:			0.332	Cond	. NO.		454.

$$H_0: \beta_1 = \beta_2 = \ldots = \beta_p = 0$$

 H_1 : co najmniej jeden współczynnik eta_j jest niezerowy

Do weryfikacji hipotezy korzystamy ze statystyki

$$F = \frac{\mathsf{TSS} - \mathsf{RSS}}{p} : \frac{\mathsf{RSS}}{n - p - 1},$$

która przy prawdziwości hipotezy zerowej ma rozkład F-Snedecora z (p,n-p-1) stopniami swobody.

Wielowymiarowy model regresji liniowej

Dopasowując model regresji wielokrotnej ważnym jest odpowiedzenie na następujące pytania:

- 1. Czy przynajmniej jeden z predyktorów X_1, \ldots, X_p jest przydatny w przewidywaniu zmiennej odpowiedzi Y?
- 2. Które zmienne niezależne X_1, \ldots, X_p są istotne w wyjaśnianiu zmiennej odpowiedzi Y?

Istotność zmiennych niezależnych

Dep. Variable:	Sales	R-squared:	0.897
Model:	0LS	Adj. R-squared:	0.896
Method:	Least Squares	F-statistic:	570.3
Date:	Sun, 16 Feb 2020	Prob (F-statistic):	1.58e-96
Time:	12:24:33	Log-Likelihood:	-386.18
No. Observations:	200	AIC:	780.4
Df Residuals:	196	BIC:	793.6
Df Model:	3		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	2.9389	0.312	9.422	0.000	2.324	3.554
TV	0.0458	0.001	32.809	0.000	0.043	0.049
Radio	0.1885	0.009	21.893	0.000	0.172	0.206
Newspaper	-0.0010	0.006	-0.177	0.860	-0.013	0.011

Omnibus:	60.414	Durbin-Watson:	2.084
Prob(Omnibus):	0.000	Jarque-Bera (JB):	151.241
Skew:	-1.327	Prob(JB):	1.44e-33
Kurtosis:	6.332	Cond. No.	454.

Istotność współczynników regresji

$$H_0: \beta_i = 0,$$

$$H_1: \beta_i \neq 0,$$

dla i = 1, ..., p.

Używamy statystyki testowej:

$$t = \frac{\hat{\beta}_i - 0}{\mathsf{SE}(\hat{\beta}_i)},$$

która przy prawdziwości hipotezy zerowej statystyka t ma rozkład t-Studenta z n-2 stopniami swobody.

Wielowymiarowy model regresji liniowej

Dopasowując model regresji wielokrotnej ważnym jest odpowiedzenie na następujące pytania:

- 1. Czy przynajmniej jeden z predyktorów X_1, \ldots, X_p jest przydatny w przewidywaniu zmiennej odpowiedzi Y?
- 2. Które zmienne niezależne X_1, \ldots, X_p są istotne w wyjaśnianiu zmiennej odpowiedzi Y?
- 3. Jak dobrze model jest dopasowany do danych?

Dopasowanie modelu

Dep. Variab	le:		Sales	R-sa	uared:		0.897
Model:			0LS		R-squared:		0.896
Method:		Least	Squares		atistic:		570.3
Date:		Sun, 16 F	eb 2020	Prob	(F-statistic):	1.58e-96
Time:		1	2:24:33	Log-	Likelihood:		-386.18
No. Observat	tions:		200	AIC:			780.4
Df Residuals	5:		196	BIC:			793.6
Df Model:			3				
Covariance 1	Гуре:	no	nrobust				
	coe.	f std e	rr	t	P> t	[0.025	0.975]
Intercept	2.9389	9 0.3	12	9.422	0.000	2.324	3.554
TV	0.0458			32.809	0.000	0.043	0.049
Radio	0.188			21.893	0.000	0.172	0.206
Newspaper	-0.001	0.0	06	-0.177	0.860	-0.013	0.011
Omnábu a			60 414	Db	in Waters		2.004
Omnibus:	-) -		60.414		in-Watson:		2.084
Prob(Omnibus	5):		0.000		ue-Bera (JB):		151.241
Skew:			-1.327		(JB):		1.44e-33
Kurtosis:			6.332	cona	. No.		454.

Materiały na podstawie

- Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An Introduction to Statistical Learning with Applications in R, Springer 2014.
- Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning, Springer 2009.