

Control System of Self Driving Cars

Modelling Motion with MAP (Motion Aware Prediction)

Learning Objectives

AUGMENTED STARTUPS
Computer Vision | AI | Robotics

- Motion Prediction with Dynamic Objects
 - Definition
 - Importance
 - Requirements
 - Complexities & Solution
 - Cars
 - Pedestrians
- Constant Velocity Prediction Model
 - General Concepts
 - o Algorithm
 - o Example
- Issues with Constant Velocity Prediction Model
- Summary

Motion Prediction – Definition

 Motion prediction of the dynamic object's attempt to estimate the future position, heading, and velocity.

Motion Prediction – Importance

- Creating/Planning a set of motion skills to correctly interact with dynamic objects.
- Collision avoidance on the planned trajectory.

Motion Prediction – Requirement

Mandatory requirements:

- Class of Dynamic Objects
- Current Position, Heading, & Velocity

Motion Prediction – Requirement

- Optional requirements:
 - History of Position, Heading, & Velocity
 - Current High Definition
 Road Map
 - Image of CurrentDynamic Object

- Physics Based Prediction
 - Vehicle must follow a set of physical constraints governing their movement.
 - These vehicle dynamics can be applied to predict their motion.

- Maneuver Based Prediction
 - All motions by vehicle on the road, are made up of a finite set of maneuvers in a restricted domain.
 - Must stay on the road.
 - Must follow the driving rules.

- Interactions Aware Assumptions
 - Same assumptions as maneuver based.
 - Not only evaluate each vehicle independently.
 - Can also incorporate the assumptions that dynamic objects will react & interact with each other.

Examples of Motion Prediction with Different Models

Target	Variables	Challenges	Tools
Interaction Aware	Social ConventionsJoint ActivitiesCommunications	Detecting InteractionsIdentifying InteractionsCombinatorial	Coupled HMMsDynamically Linked
Models		Explosion	HMMs Rule Based Systems
Maneuver Based	IntentionsPerceptionsSurrounding objects & Places	 Un-observability Complexity of	ClusteringPlanning as PredictionHidden Markov ModelsGoal Oriented ModelsReinforcement
Models		Intentional Behavior	Learning
Physical Based Models	 Kinematics Dynamic Properties	 State Estimation from Noisy Sensors Sensitivity of Initial Conditions 	Kalman FiltersMonte Cario Sampling

Differences of Motion Prediction Models with Key Points

Motion Prediction – Complexities & Solution | Pedestrians

- Pedestrians are unpredictable.
- Can rapidly change speed & heading.
- Have right of way but will stop if threatened.
- Use crossings & side walks.

Constant Velocity Prediction Model

- Simple
- Computationally Efficient
- Dynamic Object will Maintain:
 - Magnitude
 - Heading

Constant Velocity Prediction Model –

- Input
 - $T \rightarrow Time\ for\ prediction$
 - $dt \rightarrow Time\ change\ between\ predictions$
 - $x_{obj} \rightarrow Current \ dynamic \ object \ state$
 - $x_{obj-pos} \rightarrow for\ position$
 - $x_{obj-vel} \rightarrow for\ velocity$
- Output
 - $x_{1:T} \rightarrow List \ of \ future \ vehicle \ states$

```
1. x_{obj} \to 0

2. x_o = x_{obj}

3. while t * dt < T do

• t = t + 1

• x_t \cdot pos \to x_{t-1} \cdot pos + dt * x_{t-1} \cdot vel

• x_t \cdot vel \to x_{t-1} \cdot vel

4. end while
```

return $x_{1:T}$

Constant Velocity Prediction Model - Example

- Input
 - T = 3 seconds
 - dt = 1 seconds
 - $-x_{obj}$
- Output
 - Predictions
 - *x*₁
 - *x*₂
 - *x*₃

Constant Velocity Prediction Model – Issues

- Don't account for:
 - Vehicle Dynamics Fully
 - Road (Position Adjustment)
 - Road Signs (Velocity Adjustments)
- Assumptions are too Strong & Incorrect.

Summary

AUGMENTED STARTUPS

Computer Vision | AI | Robotics

- Motion Prediction with Dynamic Objects
 - Definition
 - Importance
 - Requirements
 - o Complexities & Solution
 - Cars
 - Pedestrians
- Constant Velocity Prediction Model
 - General Concepts
 - o Algorithm
 - o Example
- Issues with Constant Velocity Prediction Model
- SUMMARY

Reference

- 1. https://arxiv.org/abs/2109.01510
- 2. https://robomechjournal.springeropen.com/articles/10.1186/s40648-014-0001-z
- 3. https://academic.oup.com/gji/article/168/2/659/689876
- 4. https://arxiv.org/abs/2202.13772
- 5. https://journals.sagepub.com/doi/10.1177/02783
 64920961809
- 6. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC
 6263798/

Thanks