Learning for Two-Stage Stochastic Programming (2SP)

Published at NeurIPS 2022. Joint work with Rahul Patel, Elias Khalil, and Merve Bodur

Stochastic Facility Location Problem

Objective: Determine the optimal set of facilities to Onavailable Client construct given uncertainty in client requests.

Learning for Two-Stage Robust Optimization (2RO)

Under review. Joint work with Esther Julien, Jannis Kurtz, and Elias Khalil

Robust Facility Location Problem

Objective: Determine the optimal set of facilities to open under the worst-case facility disruption.

Overall framework

Data Collection

Constructed Facility

- Sample decisions + uncertainty.
- Solve subproblems with off-the-shelf solvers. GUROBI

 Train an NN using off-the-shelf ML packages.

Optimization Formulation

Actual Facility Location

Objective: Determine optimal first-stage decisions that minimize sum of the first-stage cost and expected second-stage cost.

Challenge: Exact optimization becomes exponentially harder with the number of observed scenarios, K. Integer decision further aggravates intractability.

Challenge: Solving the nested optimization problem is intractable and specialized algorithms only exists for a limited classes of problems.

Experimental Results

Stochastic Programming

Reduction factor in solving time over baseline (Integer L-shaped/EF) (higher is better).

• ML finds OPT on most SSLP instances and best known solutions on most CFLP instances.

Machine Learning Methodology

ML Solution: Replace the expected stage-cost value function with a neural network approximation.

Neural Network Architecture:

 $\min \left\{ \mathbf{c}^{\intercal} \mathbf{x} + \mathrm{NN}(\mathbf{x}, \{\boldsymbol{\xi}_k\}_{k=1}^K) : \mathbf{x} \in \mathcal{X} \right\}$ **Surrogate Optimization Model:**

ML Solution: Replace the worst-case response optimization problem with a neural network approximation.

Neural Network Architecture: Low dimensional embeddings Worst-case response Embedding $\min \left\{ \mathbf{d}(\boldsymbol{\xi})^{\mathsf{T}} \mathbf{y} : \mathbf{y} \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}) \right\}$ Scenario Scenario Embedding

Surrogate Optimization Model: $\min_{\mathbf{x}, \mathbf{v}, \boldsymbol{\xi}_a} \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{d}(\boldsymbol{\xi}_a) : \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}_a), \boldsymbol{\xi}_a \in \arg\max_{\boldsymbol{\xi} \in \Xi'} \left\{ \frac{\mathsf{NN}(\mathbf{x}, \boldsymbol{\xi})}{\mathsf{NN}(\mathbf{x}, \boldsymbol{\xi})} \right\} \right\}$

- Optimization problem solved via constraint generation of small networks.
- Worst-case scenarios determined via adversarial problem $(\max_{\xi \in \Xi} NN(\hat{\mathbf{x}}, \xi))$.

Robust Optimization

Reduction factor in solving time over baseline (branch-and-price/k-adaptability) (higher is better).

ML finds best solutions on difficult instances; near OPT on easy instances.

Data Collection: 1. Sample decision + uncertainty 2. Solve subproblems with off-the-shelf solvers GUROBI Supervised Learning: Train an NN using off-the-shelf ML packages SSLP_10_50 **Evaluation on new instances:** SSLP_15_45 Solve the surrogate MILP with an SSLP_5_25 off-the-shelf solver SSLP_15_45 SSLP_5_25 # Scenarios

(these can be presented visually using a flowchart and logos for Gurobi/PyTorch to make it more concrete)

- . Data collection using off-the-shelf solvers
- 2. Supervised training of NN using off-the-shelf ML packages
- 3. Given a new instance: solving the surrogate MILP with an off-the-shelf solver

Justin

Learning for Two-Stage Stochastic Programming (2SP) Published at NeurIPS 2022. Joint work with Rahul Patel, Elias Khalil, and Merve Bodur

Stochastic Facility Location Problem

Objective: Determine the optimal set of facilities to construct given uncertainty in client requests.

Learning for Two-Stage Robust Optimization (2RO)

Under review. Joint work with Esther Julien, Jannis Kurtz, and Elias Khalil

Robust Facility Location Problem

Objective: Determine the optimal set of facilities to open under the worst-case facility disruption.

Overall framework

Data Collection

- Sample decisions + uncertainty.
- Solve subproblems with off-the-shelf solvers. GUROBI

 Solve the surrogate MILP with an off-the-shelf solver.

Optimization Formulation

Objective: Determine optimal first-stage decisions that minimize sum of the first-stage cost and expected second-stage cost.

Challenge: Exact optimization becomes exponentially harder with the number of observed scenarios, K. Integer decision further aggravates intractability.

Objective: Determine optimal first-stage decisions that minimize the sum of the first-stage cost and worst-case cost.

Challenge: Solving the nested optimization problem is intractable and specialized algorithms only exists for a limited classes of problems.

Experimental Results

Stochastic Programming

Reduction factor in computing time over baseline (Integer L-shaped/EF) (higher is better).

- ML finds OPT on most instances.
- ML finds best solutions on most instances.

Machine Learning Methodology

ML Solution: Replace the expected stage-cost value function with a neural network approximation.

Neural Network Architecture:

 $\min \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathrm{NN}(\mathbf{x}, \{\boldsymbol{\xi}_k\}_{k=1}^K) : \mathbf{x} \in \mathcal{X} \right\}$ **Surrogate Optimization Model:**

ML Solution: Replace the worst-case response optimization problem with a neural network approximation.

Neural Network Architecture: Low dimensional Decision embeddings Worst-case response Embedding Network $\min_{\mathbf{x}} \left\{ \mathbf{d}(\boldsymbol{\xi})^{\intercal} \mathbf{y} : \mathbf{y} \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}) \right\}$ Scenario Scenario Embedding

Surrogate Optimization Model: $\min_{\mathbf{x}, \mathbf{v}, \boldsymbol{\xi}_a} \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{d}(\boldsymbol{\xi}_a) : \mathbf{x} \in \mathcal{X}, \mathbf{y} \in \mathcal{Y}(\mathbf{x}, \boldsymbol{\xi}_a), \boldsymbol{\xi}_a \in \arg\max_{\boldsymbol{\xi} \in \Xi'} \left\{ \frac{\mathsf{NN}(\mathbf{x}, \boldsymbol{\xi})}{\mathsf{NN}(\mathbf{x}, \boldsymbol{\xi})} \right\} \right\}$

- Optimization problem solved via constraint generation of small networks.
- Worst-case scenarios determined via adversarial problem $(\max_{\xi \in \Xi} NN(\hat{\mathbf{x}}, \boldsymbol{\xi}))$.

Robust Optimization

Reduction factor in computing time over baseline (branch-and-price/k-adaptability) (higher is better).

• Time reductions on the order of 10-100x the state-of-the-art baselines.

Learning for Two-Stage Stochastic Programming (2SP)

Published at NeurIPS 2022. Joint work Rahul Patel, Elias Khalil, and Merve Bodur

Stochastic Facility Location Problem

Objective: Determine the optimal set of facilities to Onavailable Client construct given uncertainty in client requests.

Learning for Adjustable Robust Optimization (2RO)

Robust Facility Location Problem

Objective: Determine the optimal set of facilities to open under the worst-case facility disruption.

Overall framework

Data Collection

Constructed Facility

- Sample decisions + uncertainty.
- Solve subproblems with off-the-shelf solvers.

Evaluation on new instances

 Solve the surrogate MILP with an off-the-shelf solver.

Optimization Formulation

Actual Facility Location

Objective: Determine optimal first-stage decisions that minimize sum of the first-stage cost and expected second-stage cost.

Challenge: Exact optimization becomes exponentially harder with the number of observed scenarios, K. Integer decision further aggravates intractability.

Objective: Determine optimal first-stage decisions that minimize the sum of the first-stage cost and worst-case cost.

Challenge: Solving the nested optimization problem is intractable and specialized algorithms only exists for a limited classes of problems.

Experimental Results

Stochastic Programming

Reduction factor in computing time over baseline (Integer L-shaped/EF) (higher is better).

- NN is up to 1,000x faster than baseline.
- Approximation finds optimal solutions on most instances.
- Approximation finds better solutions than baseline.

Machine Learning Methodology

ML Solution: Replace the expected stage-cost value function with a neural network approximation.

Neural Network Architecture:

 $\min \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathrm{NN}(\mathbf{x}, \{\boldsymbol{\xi}_k\}_{k=1}^K) : \mathbf{x} \in \mathcal{X} \right\}$ Surrogate Optimization Model:

ML Solution: Replace the worst-case cost with a neural network approximation.

Neural Network Architecture:

 $\min \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \eta : \mathbf{x} \in \mathcal{X}, \eta \geq \mathrm{NN}(\mathbf{x}, \boldsymbol{\xi}), \forall \boldsymbol{\xi} \in \Xi \right\}$ Surrogate Optimization Model:

- Optimization problem solved with row generation.
- Worst-case scenarios determined by sampling or adversarial problem.

Robust Optimization

Reduction factor in computing time over problem specific decomposition (higher is better).

• Time ratio and relative solution quality improve as problem sizes increase or correlation increases difficult of problem.

Potential Facility Location

Learning for Two-Stage Stochastic Programming (2SP)

Stochastic Facility Location Problem

Objective: Determine the optimal set of facilities to construct given uncertainty

Learning for Adjustable Robust Optimization (ARO)

Robust Facility Location Problem

Objective: Determine the optimal set of facilities to open under the worst-case facility disruption.

Formulation

Objective: Determine optimal first-stage decisions that minimize sum of first-stage cost and expected second-stage cost.

Challenge: Exact optimization becomes exponentially harder with the number of observed scenarios, K. Integer decision further aggravates intractability.

IIIIaiatioii

Objective: Determine optimal first-stage decisions that minimize sum of first-stage cost and worst-case scenario..

Challenge: Exact optimization becomes exponentially harder with the number of observed scenarios, K. Integer decision further aggravates intractability.

Learning Model

Potential clients

and facilities

Surrogate Optimization Model

$$\min_{\mathbf{x}} \left\{ \mathbf{c}^\intercal \mathbf{x} + \mathrm{NN}(\mathbf{x}, \{m{\xi}_k\}_{k=1}^K) : \mathbf{x} \in \mathcal{X}
ight\}$$
Add details about how optimization problem is solved and pros/cons

Methodology

Surrogate Optimization Model

$$\min_{\mathbf{x}} \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \eta : \mathbf{x} \in \mathcal{X}, \eta \geq \text{NN}(\mathbf{x}, \boldsymbol{\xi}), \forall \boldsymbol{\xi} \in \Xi \right\}$$

Add details about how optimization problem is solved and pros/cons

Experimental Results

Gap: Mean % difference in solution quality relative to baseline (lower is better).

Bars: Reduction in computing time over baseline (higher is better).

Average Optimality Gaps:
Uncorrelated: 3.96%
Weakly Correlated: 7.25%
Almost Strongly Correlated: 5.63%
Strongly Correlated: 4.69%

Potential Facility Location

Actual Facility Location

Learning for Two-Stage Stochastic Programming (2SP)

Stochastic Facility Location Problem

Objective: Determine the optimal set of facilities to construct given uncertainty in client requests.

Formulation

Objective: Determine optimal first-stage decisions that minimize sum of first-stage cost and expected second-stage cost.

Challenge: Exact optimization becomes exponentially harder with the number of observed scenarios, K. Integer decision further aggravates intractability.

Methodology

Learning Model

Surrogate Optimization Model

Add details about how optimization problem is solved and pros/cons

$$\min_{\mathbf{x}} \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathbf{NN}(\mathbf{x}, \{\boldsymbol{\xi}_k\}_{k=1}^K) : \mathbf{x} \in \mathcal{X} \right\}$$

Experimental Results

Gap: Mean % difference in solution quality relative to baseline (lower is better).

Bars: Reduction in computing time over baseline (higher is better).

Learning for Adjustable Robust Optimization (ARO)

Robust Facility Location Problem

Objective: Determine the optimal set of facilities to open under the worst-case facility disruption.

Formulation

Objective: Determine optimal first-stage decisions that minimize sum of first-stage cost and worst-case scenario..

Challenge: Exact optimization becomes exponentially harder with the number of observed scenarios, K. Integer decision further aggravates intractability.

Methodology

Learning Model

Surrogate Optimization Model

$$\min_{\mathbf{x}} \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \eta : \mathbf{x} \in \mathcal{X}, \eta \geq \text{NN}(\mathbf{x}, \boldsymbol{\xi}), \forall \boldsymbol{\xi} \in \Xi \right\}$$

Add details about how optimization problem is solved and pros/cons

Experimental Results

Average Optimality Gaps:
Uncorrelated: 3.96%
Weakly Correlated: 7.25%
Almost Strongly Correlated: 5.63%
Strongly Correlated: 4.69%

Learning for Two-Stage Stochastic Programming (2SP)

Published at NeurIPS 2022. Joint work Elias Khalil, Merve Bodur, and Rahul Patel

Stochastic Facility Location Problem

Objective: Determine the optimal set of facilities to construct given uncertainty in client requests.

Learning for Adjustable Robust Optimization (ARO)

Under review (you can updated this to an arxiv link for the conference)

Robust Facility Location Problem

Objective: Determine the optimal set of facilities to open under the worst-case facility disruption.

Overall framework

Data Collection:

- Sample decisions + uncertainty
- Solve subproblems with off-the-shelf solvers

Train an NN using off-the-shelf ML packages

Optimization Formulation

Actual Facility Location

Objective: Determine optimal first-stage decisions that minimize sum of first-stage cost and expected second-stage cost.

Challenge: Exact optimization becomes exponentially harder with the number of observed scenarios, *K*. Integer decision further aggravates intractability.

Objective: Determine optimal first-stage decisions that minimize first-stage cost and under the worst-case cost.

Challenge:

Experimental Results

Stochastic Programming

Reduction factor in computing time over baseline (WHICH) (higher is better).

Machine Learning Methodology

ML Solution: Replace the expected stage-cost value function with a neural network approximation.

Neural Network Architecture:

Surrogate Optimization Model:

 $\min_{\mathbf{x}} \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \mathrm{NN}(\mathbf{x}, \{\boldsymbol{\xi}_k\}_{k=1}^K) : \mathbf{x} \in \mathcal{X} \right\}$

ML Solution: Replace the worst-case cost with a neural network approximation.

Neural Network Architecture:

Surrogate Optimization Model: $\min_{\mathbf{x}} \left\{ \mathbf{c}^{\mathsf{T}}\mathbf{x} + \eta : \mathbf{x} \in \mathcal{X}, \eta \geq \mathrm{NN}(\mathbf{x}, \boldsymbol{\xi}), \forall \boldsymbol{\xi} \in \Xi \right\}$

Robust Optimization

Average Optimality Gaps:
Uncorrelated: 3.96%
Weakly Correlated: 7.25%
Almost Strongly Correlated: 5.63%
Strongly Correlated: 4.69%

