Name: _____

__ / 12

- There are 12 points possible on this proficiency: one point per problem with no partial credit.
- You have 30 minutes to complete this proficiency.
- No aids (book, calculator, etc.) are permitted.
- You do **not** need to simplify your expressions.
- Your final answers should start with f'(x) = dy/dx = or something similar.
- **1. [12 points]** Compute the derivatives of the following functions.

a.
$$f(x) = \frac{x^e}{5} + 7e^x + \sqrt{5}$$

b.
$$f(t) = \frac{t^3 - t^{\frac{3}{2}} + 1}{t}$$

c.
$$f(x) = (x^4 - 2x)\tan(x)$$

Math 251: Derivative Proficiency

PRACTICE

d.
$$f(x) = \frac{1 + e^{-3x}}{\cos(3x)}$$

e.
$$f(x) = \frac{1}{\sqrt{x}} + \left(\frac{2}{3x}\right)^2 + \sec(x)$$

f. $f(t) = \tan^{-1}(2t) + t \ln(at + b)$ where a and b are a fixed constants

g.
$$f(x) = \frac{\ln(x^2 + 1)^4}{\csc(x)}$$

h.
$$f(z) = \sin^{-1}(\sqrt{z})$$

i.
$$f(t) = \ln(\tan(1+t^2))$$

j.
$$f(x) = \sin^5(e^{-x} + x)$$

k.
$$f(x) = \frac{1}{4x^2} + \left(\frac{3-x}{2}\right)^2$$

I. Compute dy/dx if $e^y + x^2 = 1 - xy$. You must solve for dy/dx.