Лабораторная работа №9

Использование протокола STP. Агрегирование каналов

Шуваев Сергей Александрович

Содержание

1	Цель работы	4
2	Задание	5
3	Выполнение лабораторной работы	6
4	Выводы	18
5	Контрольные вопросы	19

Список иллюстраций

3.1	Логическая схема локальнои сети с резервным соединением	6
3.2	Настройка trunk-порта на интерфейсе Gig0/2 коммутатора msk-	
	donskaya-sw-3	7
3.3	Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 ком-	
	мутатора msk-donskaya-sw-1	7
3.4	Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 ком-	
	мутатора msk-donskaya-sw-4	7
3.5	Пингование сервера mail и web	8
3.6	Режим симуляции движения пакетов ІСМР	9
3.7	Режим симуляции движения пакетов ІСМР	9
3.8	Просмотр состояния протокола STP для vlan 3	10
3.9	Настройка коммутатора msk-donskaya-sw-1 корневым	10
3.10	Режим симуляции движения пакетов ICMP к серверу web	11
3.11	Режим симуляции движения пакетов ICMP к серверу mail	11
3.12	Настройка режима Portfast	12
3.13	Настройка режима Portfast	12
3.14	Пингование mail.donskaya.rudn.ru	13
3.15	Разрыв соединения	13
	Время восстановления соединения	14
	Режим работы по протоколу Rapid PVST+	14
	Режим работы по протоколу Rapid PVST+	14
	Режим работы по протоколу Rapid PVST+	14
	Режим работы по протоколу Rapid PVST+	15
	Режим работы по протоколу Rapid PVST+	15
	Пингование mail.donskaya.rudn.ru	15
	Разрыв соединения	15
	Время восстановления соединения	16
3.25	Логическая схема локальной сети с агрегированным соединением	16
3.26	Настройка агрегирования каналов на msc-donskaya-shuvayev-sw-1	16
3.27	Настройка агрегирования каналов на msc-donskaya-shuvayev-sw-1	16
3.28	Настройка агрегирования каналов на msc-donskaya-shuvayev-sw-4	17
5 1	Просмотр состояния протокола STP для vlan 3	19

1 Цель работы

Изучить возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

2 Задание

- 1. Сформировать резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3.
- 2. Настроить балансировку нагрузки между резервными соединениями.
- 3. Настроить режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы.
- 4. Изучить отказоустойчивость резервного соединения.
- 5. Сформировать и настроить агрегированное соединение интерфейсов Fa0/20 Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4.
- 6. При выполнении работы необходимо учитывать соглашение об именовании.

3 Выполнение лабораторной работы

Сформируем резервное соединение между коммутаторами msk-donskayasw-1 и msk-donskaya-sw-3 (рис. 3.1). Для этого:

- заменим соединение между коммутаторами msk-donskaya-sw-1(Gig0/2) и msk-donskaya-sw-4 (Gig0/1) на соединение между коммутаторами msk-donskaya-sw-1 (Gig0/2) и msk-donskaya-sw-3 (Gig0/2);
- сделаем порт на интерфейсе Gig0/2 коммутатора msk-donskaya-sw-3 транковым (рис. 3.2);
- соединение между коммутаторами msk-donskaya-sw-1 и msk-donskayasw-4 сделаем через интерфейсы Fa0/23, не забыв активировать их в транковом режиме (рис. 3.3).

Рис. 3.1: Логическая схема локальной сети с резервным соединением

```
User Access Verification

Password:

msc-donskaya-shuvayev-sw-3>en
Password:
msc-donskaya-shuvayev-sw-3#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-shuvayev-sw-3(config)#int g0/2
msc-donskaya-shuvayev-sw-3(config-if)#switchport mode trunk
msc-donskaya-shuvayev-sw-3(config-if)#exit
msc-donskaya-shuvayev-sw-3(config)#exit
msc-donskaya-shuvayev-sw-3#
%SYS-5-CONFIG_I: Configured from console by console
write m
Building configuration...
[OK]
msc-donskaya-shuvayev-sw-3#
```

Рис. 3.2: Настройка trunk-порта на интерфейсе Gig0/2 коммутатора msk-donskayasw-3

```
msc-donskaya-shuvayev-sw-1(config-if) #int fa0/23
msc-donskaya-shuvayev-sw-1(config-if) #switchport mode trunk
msc-donskaya-shuvayev-sw-1(config-if) #
**CDP-4-NATIVE_VLAN_MISMATCH: Native VLAN mismatch discovered on FastEthernet0/23 (1), with msc-donskaya-shuvayev-sw-4 FastEthernet0/23 (104).
```

Рис. 3.3: Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 коммутатоpa msk-donskaya-sw-1

```
donskaya-shuvayev-sw-1 FastEthernet0/23 (1).

msc-donskaya-shuvayev-sw-4(config)#int fa0/23
msc-donskaya-shuvayev-sw-4(config-if)#switchport mode trunk
```

Рис. 3.4: Настройка trunk-порта на интерфейсе на интерфейсе Fa0/23 коммутатора msk-donskaya-sw-4

С оконечного устройства dk-donskaya-1 пропингуем серверы mail и web (рис. 3.5).

```
Pinging 10.128.0.2 with 32 bytes of data:
Request timed out.
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.0.2:
   Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>www.donskaya.rudn.ru
Invalid Command.
C:\>ping www.donskaya.rudn.ru
Pinging 10.128.0.2 with 32 bytes of data:
Reply from 10.128.0.2: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.0.2:
   Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
   Minimum = 0ms, Maximum = 0ms, Average = 0ms
C:\>ping mail.donskaya.rudn.ru
Pinging 10.128.0.4 with 32 bytes of data:
Request timed out.
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Ping statistics for 10.128.0.4:
    Packets: Sent = 4, Received = 3, Lost = 1 (25% loss),
Approximate round trip times in milli-seconds:
   Minimum = Oms, Maximum = Oms, Average = Oms
```

Рис. 3.5: Пингование сервера mail и web

В режиме симуляции проследим движение пакетов ICMP. Убедимся, что движение пакетов происходит через коммутатор msk-donskaya-sw-2 (рис. 3.6).

Рис. 3.6: Режим симуляции движения пакетов ІСМР

Рис. 3.7: Режим симуляции движения пакетов ІСМР

На коммутаторе msk-donskaya-sw-2 посмотрим состояние протокола STP для vlan 3 (рис. 3.8):

Рис. 3.8: Просмотр состояния протокола STP для vlan 3

В качестве корневого коммутатора STP настроем коммутатор msk-donskayasw-1 (рис. 3.9):

```
msc-donskaya-shuvayev-sw-l#show spanning-tree
VLAN0001
  Spanning tree enabled protocol ieee
              Priority 32769
Address 0009.7CA4.DC61
  Root ID
                Address
                Cost 4
Port 26(GigabitEthernet0/2)
                Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
  Bridge ID Priority 32769 (priority 32768 sys-id-ext 1)
Address 000B.BE67.5772
               Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
Aging Time 20
Interface
                    Role Sts Cost
                                          Prio.Nbr Type
Fa0/24 Desg FWD 19 128.24 P2p
Fa0/23 Desg FWD 19 128.23 P2p
Gi0/1 Desg FWD 4 128.25 P2p
Gi0/2 Root FWD 4 128.26 P2p
Fa0/1 Desg FWD 19 128.1 Shr
VLAN0002
  Spanning tree enabled protocol ieee
              Priority 32770
Address 0009.7CA4.DC61
  Root ID
               Address 0009./cm...

Cost 4
26 (GigabitEthernet0/2)

Max Age 20 sec
               Hello Time 2 sec Max Age 20 sec Forward Delay 15 sec
  Bridge ID Priority 32770 (priority 32768 sys-id-ext 2)
 --More--
```

Рис. 3.9: Настройка коммутатора msk-donskaya-sw-1 корневым

Используя режим симуляции, убедимся, что пакеты ICMP пойдут от хоста dk-

donskaya-1 до mail через коммутаторы msk-donskaya-sw-1 и mskdonskaya-sw-3, а от хоста dk-donskaya-1 до web через коммутаторы msk-donskaya-sw-1 и msk-donskaya-sw-2 (рис. 3.10).

Рис. 3.10: Режим симуляции движения пакетов ICMP к серверу web

Рис. 3.11: Режим симуляции движения пакетов ICMP к серверу mail

Настроим режим Portfast на тех интерфейсах коммутаторов, к которым подключены серверы (рис. 3.12):

```
User Access Verification
Password:
msc-donskaya-shuvayev-sw-2>en
msc-donskaya-shuvayev-sw-2#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-shuvayev-sw-2(config) #int f0/1
msc-donskaya-shuvayev-sw-2(config-if) #spanning-tree portfast
%Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION
%Portfast has been configured on FastEthernetO/1 but will only
have effect when the interface is in a non-trunking mode.
msc-donskaya-shuvayev-sw-2(config-if) #int f0/2
msc-donskaya-shuvayev-sw-2(config-if) #spanning-tree portfast
%Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION
%Portfast has been configured on FastEthernet0/2 but will only
have effect when the interface is in a non-trunking mode. msc-donskaya-shuvayev-sw-2(config-if) #exit
msc-donskaya-shuvayev-sw-2(config) #exit
msc-donskaya-shuvayev-sw-2#
%SYS-5-CONFIG_I: Configured from console by console
write m
Building configuration...
[OK]
msc-donskaya-shuvayev-sw-2#
```

Рис. 3.12: Настройка режима Portfast

```
User Access Verification
Password:
msc-donskava-shuvavev-sw-3>en
Password:
msc-donskaya-shuvayev-sw-3#conf t
Enter configuration commands, one per line. End with {\tt CNTL/Z.}
msc-donskava-shuvavev-sw-3(config) #int f0/1
msc-donskaya-shuvayev-sw-3(config-if) #spanning-tree portfast
%Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this
interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION
%Portfast has been configured on FastEthernet0/1 but will only
have effect when the interface is in a non-trunking mode.
msc-donskaya-shuvayev-sw-3(config-if)#int f0/2
msc-donskaya-shuvayev-sw-3(config-if) #spanning-tree portfast
%Warning: portfast should only be enabled on ports connected to a single
host. Connecting hubs, concentrators, switches, bridges, etc... to this interface when portfast is enabled, can cause temporary bridging loops.
Use with CAUTION
%Portfast has been configured on FastEthernet0/2 but will only
have effect when the interface is in a non-trunking mode.
msc-donskaya-shuvayev-sw-3(config-if) #exit
msc-donskaya-shuvayev-sw-3 (config) #exit
msc-donskaya-shuvayev-sw-3#
%SYS-5-CONFIG I: Configured from console by console
write m
Building configuration...
msc-donskaya-shuvayev-sw-3#
```

Рис. 3.13: Настройка режима Portfast

Изучим отказоустойчивость протокола STP и время восстановления соединения при переключении на резервное соединение. Для этого используем команду ping -n 1000 mail.donskaya.rudn.ru на хосте dk-donskaya-1 (рис. 3.14), а разрыв соединения обеспечим переводом соответствующего интерфейса коммутатора в состояние shutdown (рис. 3.15).

```
C:\>ping -n 1000 mail.donskaya.rudn.ru
Pinging 10.128.0.4 with 32 bytes of data:
Reply from 10.128.0.4: bytes=32 time=10ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=17ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=12ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<lms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=15ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<lms TTL=127
Reply from 10.128.0.4: bytes=32 time=12ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
```

Рис. 3.14: Пингование mail.donskaya.rudn.ru

```
[OK]
msc-donskaya-shuvayev-sw-3#en
msc-donskaya-shuvayev-sw-3#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-shuvayev-sw-3(config)#int g0/2
msc-donskaya-shuvayev-sw-3(config-if)#shutdown
msc-donskaya-shuvayev-sw-3(config-if)#shutdown
msc-donskaya-shuvayev-sw-3(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/2, changed state to administratively down
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/2, changed state to down
```

Рис. 3.15: Разрыв соединения

Видно, что на время восстановления соединения потребовалось 4 пинга, что достаточно долго (рис. 3.16). После восстановление пингование продолжило работать, как и в начале.

```
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=12
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Request timed out.
Reply from 10.128.0.4: bytes=32 time<1ms TTL=127
Reply from 10.128.0.4: bytes=32 time=1ms TTL=12
```

Рис. 3.16: Время восстановления соединения

Переключим коммутаторы в режим работы по протоколу Rapid PVST+ (рис. 3.17):

```
msc-donskaya-shuvayev-sw-l(config) #spanning-tree mode rapid-pvst
msc-donskaya-shuvayev-sw-l(config) #
```

Рис. 3.17: Режим работы по протоколу Rapid PVST+

```
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-shuvayev-sw-2(config) #spanning-tree mode rapid-pvst
msc-donskaya-shuvayev-sw-2(config) #
```

Рис. 3.18: Режим работы по протоколу Rapid PVST+

```
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-shuvayev-sw-3(config) #spanning-tree mode rapid-pvst
msc-donskaya-shuvayev-sw-3(config) #
```

Рис. 3.19: Режим работы по протоколу Rapid PVST+

```
msc-donskaya-shuvayev-sw-4#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-donskaya-shuvayev-sw-4(config)#spanning-tree mode rapid-pvst
msc-donskaya-shuvayev-sw-4(config)#
```

Рис. 3.20: Режим работы по протоколу Rapid PVST+

```
msc-pavlovskaya-shuvayev-swl>en
Password:
msc-pavlovskaya-shuvayev-swl#conf t
Enter configuration commands, one per line. End with CNTL/Z.
msc-pavlovskaya-shuvayev-swl(config) #spanning-tree mode rapid-pvst
msc-pavlovskaya-shuvayev-swl(config) #
```

Рис. 3.21: Режим работы по протоколу Rapid PVST+

Изучим теперь отказоустойчивость протокола Rapid PVST+ и время восстановления соединения при переключении на резервное соединение (рис. 3.22).

```
Reply from 10.128.0.4: bytes=32 time=13ms TTL=127 Reply from 10.128.0.4: bytes=32 time<1ms TTL=127 Request timed out.

Reply from 10.128.0.4: bytes=32 time<1ms TTL=127 Reply from 10.12
```

Рис. 3.22: Пингование mail.donskaya.rudn.ru

```
msc-donskaya-shuvayev-sw-3>en
Password:
msc-donskaya-shuvayev-sw-3#conf t
Enter configuration commands, one per line. End with CNTL/2.
msc-donskaya-shuvayev-sw-3(config)#int g0/2
msc-donskaya-shuvayev-sw-3(config-if)#shutdown
msc-donskaya-shuvayev-sw-3(config-if)#no shutdown
```

Рис. 3.23: Разрыв соединения

Сразу после разрыва соединения задержки по времени вообще не было, сесть моментально перестроилась.

А вот, когда обратно вернули старое соединение потребовался 1 пинг, что достаточно быстро (рис. 3.24). После восстановление пингование продолжило работать, как и в начале.

```
msc-donskaya-shuvayev-sw-3(config-if)#no shutdown
msc-donskaya-shuvayev-sw-3(config-if)#
%LINK-5-CHANGED: Interface GigabitEthernet0/2, changed state
%LINEPROTO-5-UPDOWN: Line protocol on Interface GigabitEthernet0/2
```

Рис. 3.24: Время восстановления соединения

Сформируем агрегированное соединение интерфейсов Fa0/20 – Fa0/23 между коммутаторами msk-donskaya-sw-1 и msk-donskaya-sw-4 (рис. 3.25).

Рис. 3.25: Логическая схема локальной сети с агрегированным соединением

Настроим агрегирование каналов (режим EtherChannel) (рис. 3.24):

```
Enter configuration commands, one per line. End with CNTL/Z. msc-donskaya-shuvayev-sw-l(config)#int f0/23 msc-donskaya-shuvayev-sw-l(config-if)#no switchport mode trunk
```

Рис. 3.26: Настройка агрегирования каналов на msc-donskaya-shuvayev-sw-1

```
%LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/23, changed sta exit

msc-donskaya-shuvayev-sw-1(config) #interface port-channel 1

msc-donskaya-shuvayev-sw-1(config-if) #switchport mode trunk

msc-donskaya-shuvayev-sw-1(config-if) #exit

msc-donskaya-shuvayev-sw-1(config) #exit

msc-donskaya-shuvayev-sw-1#

%SYS-5-CONFIG_I: Configured from console by console

write m
```

Рис. 3.27: Настройка агрегирования каналов на msc-donskaya-shuvayev-sw-1

```
msc-donskaya-shuvayev-sw-4(config) #int range f0/20 - 23
msc-donskaya-shuvayev-sw-4(config-if-range) #no switchport access vlan 104
msc-donskaya-shuvayev-sw-4(config-if-range) #exit
msc-donskaya-shuvayev-sw-4(config) #exit
msc-donskaya-shuvayev-sw-4#
%SYS-5-CONFIG_I: Configured from console by console
write m
Building configuration...
[OK]
msc-donskaya-shuvayev-sw-4#
```

Рис. 3.28: Настройка агрегирования каналов на msc-donskaya-shuvayev-sw-4

4 Выводы

В результате выполнения лабораторной работы я изучил возможности протокола STP и его модификаций по обеспечению отказоустойчивости сети, агрегированию интерфейсов и перераспределению нагрузки между ними.

5 Контрольные вопросы

1. Какую информацию можно получить, воспользовавшись командой определения состояния протокола STP для VLAN (на корневом и не на корневом устройстве)? Приведите примеры вывода подобной информации на устройствах.

С помощью этой команды вы можете просмотреть общую информацию о протоколе ST на коммутаторе. Вы можете просмотреть идентификатор Root, корневой мост и интерфейсные порты коммутатора, а также просмотреть состояния портов интерфейсов коммутатора.

Кроме того, если корневой мост настроен вручную, вы можете проверить значение приоритета коммутатора с помощью этой команды.

Рис. 5.1: Просмотр состояния протокола STP для vlan 3

2. При помощи какой команды можно узнать, в каком режиме, STP или Rapid

PVST+, работает устройство? Приведите примеры вывода подобной информации на устройствах.

При помощи команды show ru просмотр текущей конфигурации.

3. Для чего и в каких случаях нужно настраивать режим Portfast?

Portfast – функция, которая позволяет порту пропустить состояния listening и learning и сразу же перейти в состояние forwarding. Настраивается на портах уровня доступа, к которым подключены пользователи или сервера. Цель функции PortFast минимизировать время, которое необходимо для того чтобы порт перешел в состояние forward. Поэтому она эффективна только когда применена к портам, к которым подключены хосты.

4. В чем состоит принцип работы агрегированного интерфейса? Для чего он используется?

Агрегирование каналов — это технология объединения нескольких параллельных каналов передачи данных в сетях Ethernet в один логический. Она позволяет увеличить пропускную способность и повысить надёжность.

Основное применение технологии агрегации — объединение каналов в сетевых коммутаторах. Также можно настроить агрегирование для компьютерных сетевых адаптеров.

5. В чём принципиальные отличия при использовании протоколов LACP (Link Aggregation Control Protocol), PAgP (Port Aggregation Protocol) и статического агрегирования без использования протоколов?

LACP и PAgP - динамические протоколы, управляющие созданием и управлением агрегированных соединений. Статическое агрегирование настраивается вручную без использования протоколов.

6. При помощи каких команд можно узнать состояние агрегированного канала EtherChannel?

Команды show etherchannel summary и show etherchannel port-channel.