Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики

Отчет по заданию N_06

«Сборка многомодульных программ. Вычисление корней уравнений и определенных интегралов.»

Вариант 7 / 1 / 3

Выполнила: студентка 103 группы Травникова А. С.

> Преподаватель: Дудина И. А.

Содержание

Постановка задачи	2
Математическое обоснование	3
Результаты экспериментов	5
Структура программы и спецификация функций	6
Сборка программы (Маке-файл)	8
Отладка программы, тестирование функций	9
Программа на Си и на Ассемблере	10
Список цитируемой литературы	11

Постановка задачи

Основной задачей работы является реализация численного метода для вычисления с точностью ε площади плоской фигуры, ограниченной треми кривыми, заданными уравнениями: $y = \ln(x)$, y = -2 * x + 14, $y = \frac{1}{2-x} + 6$.

ми, заданными уравнениями: $y = \ln(x)$, y = -2 * x + 14, $y = \frac{1}{2-x} + 6$. Для вычисления определенного интеграла используется формула Симпсона, для поиска абсцисс точек пересечения функций - метод деления отрезка пополам. Определение пределов итегрирования, отрезков для поиска точек пересечения кривых и точнестей ε_1 и ε_2 вычисления корней и интегралов выполняется аналитически. Помимо написания функций, необходимо организовать их тестирование и привести математическое обоснование используемых методов.

Математическое обоснование

Проанализируем набор кривых, заданных уравнениями: $y = \ln(x)$, y = -2 * x + 14, $y = \frac{1}{2-x} + 6$, для вычисления площади плоской фигуры ограниченной ими.

Во-первых, необходимо определить абсциссы точек пересечения кривых методом деления отрезка пополам. Для каждой пары кривых f, g нужно корректно определить границы отрезка [a,b], на котором функция F(x) = f(x) - g(x) имеет ровно 1 корень (достаточно, чтобы на концах отрезка функция F(x) принимала значения разного знака, а ее производная сохраняла знак на всем отрезке). Более подробное описание работы метода деления отрезка пополам приводится в книге [1].

В таблице 1 приведены численные обоснования выбора отрезков для поиска точек пересечения каждой пары кривых:

Кривые	F(x)	отрезок	знак $F(a)$	знак $F(b)$	F'(x)	знак $F'(x)$
1 и 2	$\ln(x) + 2 * x - 14$	[2, 7]	_	+	$\frac{1}{x} + 2$	+
2 и 3	$\frac{1}{2-x} + 2 * x - 8$	[3, 5]	_	+	$\frac{1}{(2-x)^2} + 2$	+
1 и 3	$\frac{1}{2-x} + 6 - \ln(x)$	[2.1, 3]	_	+	$\frac{1}{(2-x)^2} + \frac{1}{x}$	+

Таблица 1: Отрезки для поиска точек пересечения

Во-вторых, нужно приближенно вычислить определенные интегралы формулы Симпсона. В качестве пределов интегрирования берутся абсциссы точек пересечения кривых. Подробное описание вычисления по формуле Симпсона приводится в книге [1].

В таблице 2 приведены пределы интегрирования для каждой кривой:

Кривая	нижний предел	верхний предел
1	2.1917	6.0961
2	4.2247	6.0961
3	2.1917	4.2247

Таблица 2: Пределы интегрирования

В-третьих, необходимо подобрать такие значения ε_1 и ε_2 погрешностей поиска абсцисс точек пересечения и вычисления определенных интегралов, чтобы гарантировалось вычисление площади плоской фигуры, ограниченной 3 заданными кривыми, с точностью $\varepsilon = 0.001$.

На чертеже (рис. 1) изображены графики функций и вертикальные прямые, проходящие через точки $x_i - \varepsilon_1$, $x_i + \varepsilon_1$, где $x_i - \varepsilon_1$ действительные точки пересечения кривых: f2, f3; f1, f3; и f1, f2. Пунктирные прямоугольники построены на отрезках $[x_i - \varepsilon_1, x_i + \varepsilon_1]$, а их высота равна $m_j = 1$

 $max(fj(x_i - \varepsilon_1), fj(x_i + \varepsilon_1))$, где максимум берется по j не равном i. Приближенное значение корня x i лежит в отрезке [x $i - \varepsilon_1, x$ $i + \varepsilon_1]$

Пусть S - точное значение площади, S_1 - приближенное, которое отличается от S не более, чем на площади 3 построенных прямоугольников. Тогда $|S-S1|<=(m_1+m_2+m_3)*2*\varepsilon_1<=3*M*2*\varepsilon_1$, где M можно оценить как 7, так как все значения всех заданных функций на отрезке [2.1,7] не превосходят 7. Получим $|S-S1|<=42*\varepsilon_1$ Далее приближенно вычисляем S1 и получаем S2 такое, что $|S2-S1|<=3*\varepsilon_2$, так как вычисления будет состоять из 3 интегралов. Тогда $|S-S2|<=42*\varepsilon_1+2*\varepsilon_2$. Таким образом, $\varepsilon<=42*\varepsilon_1+2*\varepsilon_2$.

Тогда значения $\varepsilon_1=0.0001$ и $\varepsilon_2=0.0001$ гарантирую итоговую точность $\varepsilon=0.001$. Для достижения лучшей точности в программе возьмем $\varepsilon_1=0.0001$ и $\varepsilon_2=0.00001$

Рис. 1: Плоская фигура, ограниченная графиками заданных уравнений

Результаты экспериментов

Приведенная ниже таблица содержит результаты произведенных вычислений координат точек пересечения кривых на отрезке [2,7] с точностью $\varepsilon_1=0.0001$:

Кривые	x	y
1 и 2	6.0961	1.8077
2 и 3	4.2247	5.5505
1 и 3	2.1917	0.7847

Таблица 3: Координаты точек пересечения

Результаты вычисления площади фигуры представлены на графике (рис. 2):

Рис. 2: Плоская фигура, ограниченная графиками заданных уравнений

Структура программы и спецификация функций

В данном разделе приведен список модулей и функций, использованный в написании программы.

- 1. Модуль f.asm содежит описание 6 глобальных функций на языке ассемблера:
 - double f1(double x) функция, вычисляющая значение выражения $\ln(x)$
 - double f2(double x) функция, вычисляющая значение выражения -2*x+14
 - \bullet double f3(double x) функция, вычисляющая значение выражения $\frac{1}{2-x}+6$
 - double f4(double x) функция, вычисляющая значение выражения 5*x-14, и необходимая для тестирования
 - double f5(double x) функция, вычисляющая значение выражения $2*x^2-10*x+13$, и необходимая для тестирования
 - double f6(double x) функция, вычисляющая значение выражения $8*x^3 + 2*x^2 10*x 14$, и необходимая для тестирования
- 2. Модуль integral.c содержит 1 функцию на языке си:
 - double integral(double f(double), double a, double b, double eps2) функция, вычисляющая приближенное значение определенного интеграла функции f на отрезке [a,b] с точностью eps2
- 3. Модуль root.c содержит 1 функцию на языке си:
 - double root(double f(double), double g(double), double a, double b, double eps2) функция, вычисляющая приближенное значение абсциссы точки пересечения функций f и g на отрезке [a,b] с точностью eps1, а также считающая количество итераций, требуемых для их нахождения
- 4. Модуль functions.h содержит объявления функций f1, f2, f3, f4, f5, f6, integral, root, описанных в модулях f.asm, integral.c, root.c
- 5. Модуль main.c содержит 1 функцию:
 - int main(int count, char **key) функция, которая обрабатывает ключи key и в зависимости от их значенияи может выполнять следующие действия:
 - ключ -help печать всех допустимых ключей
 - ключ -test root тестирование функции root
 - ключ -test integral тестирование функции integral
 - ключ -ans печать ответа на задачу

- ключ -roots печать абсцисс точек пересечения кривых
- ключ -iters печать количества итераций, требуемых для нахождения точек пересечения

На диаграмме (рис. 3) изображено разбиение программы на модули и связь между ними:

Рис. 3: Модули программы

Сборка программы (Маке-файл)

Текст Make-файла:

```
CC=gcc
ASM=nasm
CFLAGS=-g -O2 -m32
ASMFLAGS=-g -f elf32
all: main

main: main.o integral.o root.o f.o
$(CC) $(CFLAGS) $< -o $@

integral.o: integral.c
$(CC) $(CFLAGS) $< -o $@

root.o: root.c
$(CC) $(CFLAGS) $< -o $@

f.o: f.asm
$(ASM) $(ASMFLAGS) $< -o $@

clean:
rm -rf *.o main
```

На диаграмме (рис. 4) отображены зависимости между модулями программы:

Рис. 4: Зависимости между модулями программы

Отладка программы, тестирование функций

Тестирование функций гоот и integral происходит на наборе из тестов для 3 кривых, заданных уравнениями: $y=5*x-14,\ y=2*x^2-10*x+13,\ y=8*x^3+2*x^2-10*x-14.$

В приведенных ниже таблицах 4 отображен выбор с обоснованием отрезков для поиска корней уравнения F(x) = 0, ответ, вычисленный аналитическим путем, и ответ, который выдает программа при запуске тестирования функции root с соответствующими параметрами.

Кривые	F(x)	отрезок	знак $F(a)$	знак $F(b)$
4 и 5	$2*x^2 - 15*x + 27$	[2, 4]	+	_
5 и 6	$8*x^3-27$	[1, 2]	_	+
4 и 6	$8*x^3 + 2*x^2 - 5*x$	[-1, 1]	_	+

Кривые	F'(x)	знак $F'(x)$	ответ аналитически	ответ программы
4 и 5	4 * x - 15	_	3	3
5 и 6	$24 * x^2$	+	1.5	1.5
4 и 6	$24 * x^2 + 4 * x$	+	0	0

Таблица 4: Тестирование функции root

В таблице 5 приведен неопределенный интеграл для каждой функции, выбранные пределы интегрирования, определенный интеграл, вычисленный аналитическим путем, и ответ, который выдает программа при запуске тестирования функции integral с соответствующими параметрами.

Кривая	неопр. итеграл	отрезок	опр. интеграл	ответ программы
4	$\frac{10}{2} * x^2 - 14 * x$	[1,4]	-4.5	-4.5
5	$\frac{2}{3} * x^{3} - 5 * x^{2} + 13 * x$	[-1, 1]	$27\frac{1}{3}$	$27\frac{1}{3}$
6	$2 * x^4 + \frac{2}{3} * x^3 - 5 * x^2 - 14 * x$	[0, 1]	$-16\frac{1}{3}$	$-16\frac{1}{3}$

Таблица 5: Тестирование функции integral

Программа на Си и на Ассемблере

Все исходные тексты программы содержатся в архиве Отчет. Травникова.
103, приложенном к данному отчёту.

Список литературы

[1] Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ. Т. 1 — Москва: Наука, 1985.