CLASSICAL FOURIER ANALYSIS: INTERPOLATION OF L^p SPACES

YANNIS BÄHNI

Abstract. In this written seminar work I will basically follow the section Interpolation in the book Classical Fourier Analysis, third Edition by Loukas Grafakos. I will review three basic but important theorems on interpolation of operators on L^p spaces, namely the Marcinkiewicz Interpolation Theorem, the Riesz-Thorin Interpolation Theorem and finally an extension of the Riesz-Thorin Interpolation Theorem to analytic families of operators (the so-called Stein's theorem on interpolation of analytic families of operators). We are mainly concerned with the notion of linear operators as well as slight generalizations of them.

Contents

I	List of Figures	1
1		
	1.1 Linear Operators	2
2	The Real Method	2
	2.1 The Marcinkiewicz Interpolation Theorem	2
3	3 The Complex Method	8
	3.1 Hadamard's Three Lines Lemma	
	3.2 The Riesz-Thorin Interpolation Theorem	11
	3.3 Young's inequality	14
4		
	4.1 Extension of Hadamard's Three Lines Lemma	16
	4.1.1 Auxiliary Lemmata	16
	4.1.2 The Lemma	19
	4.2 Stein's Theorem on Interpolation of Analytic Families of Operators 2	24
A	Appendix A Limit superior and limit inferior revisited	26
A	Appendix B Measure Theory	27
F	References	28
	T 4.73	
	List of Figures	
1	Hadamard's three lines lemma: sketch of the rectangle \overline{R}	10

(Yannis Bähni) University of Zurich, Rämistrasse 71, 8006 Zurich *E-mail address*: yannis.baehni@uzh.ch.

1. Introduction and Basic Definitions. If $1 \le p < q < r \le \infty$, then

$$(L^p \cap L^r) \subset L^q \subset (L^p + L^r)$$

(see [Fol99, p. 185]). Thus if we have a linear operator T defined on $L^p + L^r$, that is bounded simultaniously on L^p and L^r it is usefull to know under what circumstances T is also bounded on L^q . This question will be answered in the two main theorems: the Marcinkiewicz interpolation theorem and the Riesz-Thorin interpolation theorem. The next section will provide the fundamental definitions used later on.

1.1. Linear Operators. First we need to have a precise and suitable idea of *linear operators* in the generalized setting of measure spaces.

DEFINITION 1.1. Let (X, μ) and (Y, ν) be measure spaces. Further let T be an operator defined on a linear space of complex-valued measurable functions on X and taking values in the set of all complex-valued, finite almost everywhere, measurable functions on Y. Then T is called linear if for all functions f and g in the domain of T and all $z \in \mathbb{C}$ holds

$$T(f+g) = T(f) + T(g) \qquad T(zf) = zT(f) \tag{1}$$

and quasi-linear if

$$|T(f+g)| \le K(|T(f)| + |T(g)|)$$
 $|T(zf)| = |z||T(f)|$ (2)

holds for some real constant K > 0. If K = 1, T is called sublinear.

- 2. The Real Method. A first important theorem on the subject of interpolation of L^p spaces will be the so-called Marcinkiewicz Interpolation Theorem which uses only real variables techniques for its proof (this stands in contrast to the complex variables techniques used for prooving the other interpolation theorems).
- **2.1.** The Marcinkiewicz Interpolation Theorem. This theorem applies to sublinear operators (aswell as for quasilinear operators by a slight change of the constant), which is in comparison to the linearity assumed by the other interpolation theorems more generally applicable.

THEOREM 2.1. (The Marcinkiewicz Interpolation Theorem) Let (X, μ) be a σ -finite measure space, (Y, ν) another measure space and $0 < p_0 < p_1 \le \infty$. Further let T be a sublinear operator defined on

$$L^{p_0} + L^{p_1} := \{ f_0 + f_1 : f_0 \in L^{p_0}(X, \mu), f_1 \in L^{p_1}(X, \mu) \}$$

and taking values in the space of measurable functions on Y. Assume that there exist $A_0, A_1 < \infty$ such that

$$\forall f \in L^{p_0}(X, \mu) \ \|T(f)\|_{L^{p_0, \infty}} \leqslant A_0 \|f\|_{L^{p_0}} \tag{3}$$

$$\forall f \in L^{p_1}(X, \mu) \ \|T(f)\|_{L^{p_1, \infty}} \leqslant A_1 \|f\|_{L^{p_1}} \tag{4}$$

Then for all $p_0 and for all <math>f \in L^p(X, \mu)$ we have the estimate

$$||T(f)||_{L^p} \leqslant A ||f||_{L^p}$$
 (5)

where

$$A := 2\left(\frac{p}{p - p_0} + \frac{p}{p_1 - p}\right)^{1/p} A_0^{\frac{\frac{1}{p} - \frac{1}{p_1}}{\frac{1}{p_0} - \frac{1}{p_1}}} A_1^{\frac{\frac{1}{p_0} - \frac{1}{p}}{\frac{1}{p_0} - \frac{1}{p_1}}}$$
(6)

Proof. Let us first consider the case $p_1 < \infty$. Fix $f \in L^p(X, \mu)$, $\alpha > 0$ and $\delta > 0$ (δ will be determined later). We split f using so-called *cut-off* functions, by stipulating $f \equiv f_0(\cdot; \alpha, \delta) + f_1(\cdot; \alpha, \delta)$, where $f_0(\cdot; \alpha, \delta)$ is the *unbounded part of* f and $f_1(\cdot; \alpha, \delta)$ is the *bounded part of* f, defined by

$$f_0(x; \alpha, \delta) := \begin{cases} f(x), & |f(x)| > \delta \alpha, \\ 0, & |f(x)| \leq \delta \alpha. \end{cases}$$

$$f_1(x; \alpha, \delta) := \begin{cases} f(x), & |f(x)| \leq \delta \alpha, \\ 0, & |f(x)| > \delta \alpha. \end{cases}$$

$$(7)$$

for $x \in X$. To facilitate reading I will omit the dependency of $f_0(\cdot; \alpha, \delta)$ and $f_1(\cdot; \alpha, \delta)$ upon the parameters α and δ in what follows and simply write f_0 , f_1 respectively.

LEMMA 2.1. The functions f_0 and f_1 defined above satisfy $f_0 \in L^{p_0}(X,\mu)$ and $f_1 \in L^{p_1}(X,\mu)$ respectively.

Proof. Since $p_0 < p$ we have

$$||f_{0}||_{L^{p_{0}}}^{p_{0}} = \int_{X} |f_{0}|^{p_{0}} d\mu = \int_{X} |f|^{p_{0}} \cdot \chi_{\{|f| > \delta\alpha\}} d\mu \stackrel{(\dagger)}{=} \int_{\{|f| > \delta\alpha\}} |f|^{p_{0}} d\mu$$

$$= \int_{\{|f| > \delta\alpha\}} |f|^{p} |f|^{p_{0} - p} d\mu = \int_{\{|f| > \delta\alpha\}} \frac{|f|^{p}}{|f|^{p - p_{0}}} d\mu$$

$$\leq \frac{1}{(\delta\alpha)^{p - p_{0}}} \int_{\{|f| > \delta\alpha\}} |f|^{p} d\mu = (\delta\alpha)^{p_{0} - p} \int_{X} |f|^{p} \cdot \chi_{\{|f| > \delta\alpha\}} d\mu$$

$$\leq (\delta\alpha)^{p_{0} - p} \int_{X} |f|^{p} d\mu = (\delta\alpha)^{p_{0} - p} ||f||_{L^{p}}^{p} < \infty$$
(8)

Thus $f_0 \in L^{p_0}(X,\mu)$. Analogously it can be checked, that $f_1 \in L^{p_1}(X,\mu)$ by the estimate $||f_1||_{L^{p_1}}^{p_1} \leq (\delta\alpha)^{p_1-p}||f||_{L^p}^p$.

Proof of the equality (†). Assume μ is defined on the σ -algebra \mathcal{A} . We have to proove that $\{|f| > \delta\alpha\} \in \mathcal{A}^1$. Since f is complex-valued, we may write $f \equiv \operatorname{Re} f + i \operatorname{Im} f$ and thus $|f|^2 \equiv \operatorname{Re}^2 f + \operatorname{Im}^2 f$. Since f is measurable by hypothesis this implies that $\operatorname{Re} f$ and $\operatorname{Im} f$ are measurable². Further for measurable real-valued functions $f, g: (X, \mathcal{A}) \to (\overline{\mathbb{R}}, \overline{\mathfrak{B}})^3$ the functions f+g and $f \cdot g$ are measurable⁴ and thus $|f|^2$ is measurable. Hence $\{\operatorname{Re}^2 f + \operatorname{Im}^2 f > \lambda\} \in \mathcal{A}^5$ for any $\lambda \in \mathbb{R}$. So especially for $\lambda := (\delta\alpha)^2$ we have $\{|f| > \delta\alpha\} \in \mathcal{A}^6$. In a similar manner it can also be prooven that $\{|f| \leqslant \delta\alpha\} \in \mathcal{A}$. Let us next proove a useful lemma.

LEMMA 2.2. Let $A \in \mathcal{P}(X)$ and $\chi_A : (X, \mathcal{A}) \to (\mathbb{C}, \mathfrak{B}^2)$ be the characteristic function of the set A. Then χ_A is measurable if and only if A is measurable.

Proof. Assume χ_A is measurable. Then $\text{Re}\chi_A$ and $\text{Im}\chi_A$ are measurable. Especially for $0 < \lambda < 1$ we have that $\{\text{Re}\chi_A > \lambda\} = A \in \mathcal{A}$. Conversly, assume A is measurable. For $\lambda < 0$ we have $\{\text{Re}\chi_A > \lambda\} = X \in \mathcal{A}, \ \lambda \in [0,1[, \{\text{Re}\chi_A > \lambda\} = A \in \mathcal{A} \text{ and } \{\text{Re}\chi_A > \lambda\} = \emptyset \in \mathcal{A} \text{ for } \lambda \geqslant 1$. Since $\text{Im}\chi_A \equiv 0$ we have $\{\text{Im}\chi_A > \lambda\} = X \in \mathcal{A} \text{ if } \lambda < 0$ and $\{\text{Im}\chi_A > \lambda\} = \emptyset \in \mathcal{A} \text{ if } \lambda \geqslant 0$.

By Lemma 2.2 and the fact that $f \cdot g$ is measurable for two measurable functions $f, g : (X, \mathcal{A}) \to (\mathbb{C}, \mathfrak{B}^2)^7$, f_0 and f_1 are measurable since $f_0 \equiv f \cdot \chi_{\{|f| > \delta\alpha\}}$ and $f_1 \equiv f \cdot \chi_{\{|f| \le \delta\alpha\}}$.

One subtility is left to clear: the μ -integrability of either $|f_1|^{p_0}$ or $|f_1|^{p_1}$ requires that $|f_0|^{p_0}$ and $|f_1|^{p_1}$ are measurable functions. By the fact that any continuous map $g:(X,d_X)\to (Y,d_Y)$ between metric spaces is Borel-measurable (see [Els11, p. 86]) and that the composition of measurable functions is again measurable (see [Els11, p. 87]), the measurability of either f_0 or f_1 follows by $|f_0|^{p_0}\equiv \cdot^{p_0}\circ |f\cdot\chi_{\{|f|>\delta\alpha\}}|$ and $|f_1|^{p_1}\equiv \cdot^{p_1}\circ |f\cdot\chi_{\{|f|\leqslant\delta\alpha\}}|$ by stipulating $\cdot^p:(\mathbb{R}_{\geqslant 0},|\cdot|)\to (\mathbb{C},|\cdot|), \ x^p:=\exp(p\log(x))$ for p>0 and $x\in\mathbb{R}_{>0}$ and $x^p:=0$ if x=0.

By lemma (2.1) we therefore have $f \equiv f_0 + f_1 \in L^{p_0} + L^{p_1}$.

LEMMA 2.3. For fixed $\alpha > 0$, the distribution function $d_{T(f)}(\alpha)$ obeys an upper bound of the form

$$d_{T(f)}(\alpha) \leqslant \left(\frac{A_0}{\alpha/2}\right)^{p_0} \|f_0\|_{L^{p_0}}^{p_0} + \left(\frac{A_1}{\alpha/2}\right)^{p_1} \|f_1\|_{L^{p_1}}^{p_1}$$

¹ For $Y \in \mathcal{A}$ the μ -integral of $f: X \to \mathbb{C}$ over Y is defined to be $\int_Y f d\mu := \int_X f \cdot \chi_Y d\mu$. For more details see [Els11, pp. 135–136].

²For a proof see [Els11, p. 106]

 $^{{}^{3}\}overline{\mathfrak{B}}:=\sigma(\overline{\mathbb{R}}) \text{ and } \overline{\mathfrak{B}}=\{B\cup E:B\in\mathfrak{B},E\subseteq\{\pm\infty\}\}.$

⁴For a proof see [Els11, p. 107].

⁵For a proof see [Els11, pp. 105–106]

⁶This follows from the fact that x < y if and only if $x^n < y^n$ for $n \in \mathbb{N}_{>0}$ and some real numbers x, y > 0 (see [Zor04, p. 119]).

 $^{^{7}}$ Els11, p. 107.

Proof. Since T is a sublinear operator we have $|T(f)| = |T(f_0 + f_1)| \le |T(f_0)| + |T(f_1)|$. Thus for any $y \in Y$ with $|T(f)(y)| > \alpha$ we therefore have either $|T(f_0)(y)| > \alpha/2$ or $|T(f_1)(y)| > \alpha/2$. Hence

$$\{|T(f)| > \alpha\} \subseteq \{|T(f_0)| > \alpha/2\} \cup \{|T(f_1)| > \alpha/2\}$$

and so by the monotonicity and subadditivity property of the measure μ we have

$$d_{T(f)}(\alpha) = \mu(\{|T(f)| > \alpha\})$$

$$\leq \mu(\{|T(f_0)| > \alpha/2\} \cup \{|T(f_1)| > \alpha/2\})$$

$$\leq \mu(\{|T(f_0)| > \alpha/2\}) + \mu(\{|T(f_1)| > \alpha/2\})$$

$$= d_{T(f_0)}(\alpha/2) + d_{T(f_1)}(\alpha/2)$$
(9)

Now by hypothesis (3) we can estimate $d_{T(f_0)}(\alpha/2)$ as follows

$$d_{T(f_{0})}(\alpha/2) = \left(\frac{\alpha/2}{\alpha/2}\right)^{p_{0}} d_{T(f_{0})}(\alpha/2)$$

$$\leqslant \left(\frac{1}{\alpha/2}\right)^{p_{0}} \left[\sup\left\{\gamma d_{T(f_{0})}(\gamma)^{1/p_{0}} : \gamma > 0\right\}\right]^{p_{0}}$$

$$= \left(\frac{1}{\alpha/2}\right)^{p_{0}} \|T(f_{0})\|_{L^{p_{0}},\infty}^{p_{0}}$$

$$\leqslant \left(\frac{A_{0}}{\alpha/2}\right)^{p_{0}} \|f_{0}\|_{L^{p_{0}}}^{p_{0}}$$
(10)

Analogously, we get $d_{T(f_1)}(\alpha/2) \leqslant \left(\frac{A_1}{\alpha/2}\right)^{p_1} \|f_1\|_{L^{p_1}}^{p_1}$ by hypothesis (4).

By

$$\int_{0}^{\frac{1}{\delta}|f|} \alpha^{p-p_{0}-1} d\lambda = \begin{cases}
\frac{1}{p-p_{0}} \frac{1}{\delta^{p-p_{0}}} |f|^{p-p_{0}}, & p \geqslant p_{0} + 1 \\
= \lim_{\omega \to 0^{+}} \int_{\omega}^{\frac{1}{\delta}|f|} \alpha^{p-p_{0}-1} d\lambda \\
= \lim_{\omega \to 0^{+}} \left[\frac{1}{p-p_{0}} \alpha^{p-p_{0}} \right]_{\omega}^{\frac{1}{\delta}|f|} \\
= \frac{1}{p-p_{0}} \left[\frac{1}{\delta^{p-p_{0}}} |f|^{p-p_{0}} - \lim_{\omega \to 0^{+}} \omega^{p-p_{0}} \right] \\
= \frac{1}{p-p_{0}} \frac{1}{\delta^{p-p_{0}}} |f|^{p-p_{0}}, & p_{0}$$

and

⁸Without loss of generality assume $|T(f_0)(y)| \leq |T(f_1)(y)|$. Then we have $\alpha < |T(f)(y)| \leq |T(f_0)(y)| + |T(f_1)(y)| \leq 2|T(f_1)(y)|$ (this is possible since \mathbb{R} is an ordered field).

$$\int_{\frac{1}{\delta}|f|}^{\infty} \alpha^{p-p_1-1} d\lambda = \lim_{\omega \to \infty} \left[\frac{1}{p-p_1} \alpha^{p-p_1} \right]_{\frac{1}{\delta}|f|}^{\omega}
= \frac{1}{p-p_1} \left[\lim_{\omega \to \infty} \omega^{p-p_1} - \frac{1}{\delta^{p-p_1}} |f|^{p-p_1} \right]
= \frac{1}{p_1-p} \frac{1}{\delta^{p-p_1}} |f|^{p-p_1}$$
(12)

and the representation $||f||_{L^p}^p = p \int_0^\infty \alpha^{p-1} d_f(\alpha) d\lambda$ for 0 we get

$$||T(f)||_{L^{p}}^{p} = p \int_{0}^{\infty} \alpha^{p-1} d_{T(f)} d\lambda$$

$$\leq p (2A_{0})^{p_{0}} \int_{0}^{\infty} \alpha^{p-p_{0}-1} \int_{\{|f| > \delta\alpha\}} |f|^{p_{0}} d\mu d\lambda$$

$$+ p (2A_{1})^{p_{1}} \int_{0}^{\infty} \alpha^{p-p_{1}-1} \int_{\{|f| < \delta\alpha\}} |f|^{p_{1}} d\mu d\lambda$$

$$= p (2A_{0})^{p_{0}} \int_{\{|f| > 0\}} |f|^{p_{0}} \int_{0}^{\frac{1}{\delta}|f|} \alpha^{p-p_{0}-1} d\lambda d\mu$$

$$+ p (2A_{0})^{p_{0}} \int_{\{|f| = 0\}} |f|^{p_{0}} \int_{0}^{\frac{1}{\delta}|f|} \alpha^{p-p_{0}-1} d\lambda d\mu$$

$$+ p (2A_{1})^{p_{1}} \int_{X} |f|^{p_{1}} \int_{\frac{1}{\delta}|f|}^{\infty} \alpha^{p-p_{1}-1} d\lambda d\mu$$

$$= p (2A_{0})^{p_{0}} \int_{X} |f|^{p_{0}} \int_{0}^{\frac{1}{\delta}|f|} \alpha^{p-p_{0}-1} d\lambda d\mu$$

$$+ p (2A_{1})^{p_{1}} \int_{X} |f|^{p_{1}} \int_{\frac{1}{\delta}|f|}^{\infty} \alpha^{p-p_{1}-1} d\lambda d\mu$$

$$= \frac{p (2A_{0})^{p_{0}}}{p-p_{0}} \frac{1}{\delta^{p-p_{0}}} \int_{X} |f|^{p_{0}} |f|^{p-p_{0}} d\mu$$

$$+ \frac{p (2A_{1})^{p_{1}}}{p_{1}-p} \frac{1}{\delta^{p-p_{1}}} \int_{X} |f|^{p_{1}} |f|^{p-p_{1}} d\mu$$

$$= p \left(\frac{(2A_{0})^{p_{0}}}{p-p_{0}} \frac{1}{\delta^{p-p_{0}}} + \frac{(2A_{1})^{p_{1}}}{p_{1}-p} \delta^{p_{1}-p}}\right) ||f||_{L^{p}}^{p}$$

We pick $\delta > 0$ such that $(2A_0)^{p_0} \delta^{p_0-p} = (2A_1)^{p_1} \delta^{p_1-p}$. Solving for δ yields

$$\delta = \frac{1}{2} \left(\frac{A_0}{A_1} \right)^{p_1/(p_1 - p_0)} \tag{14}$$

Substituting this in estimate (13) leads to

$$||T(f)||_{L^{p}}^{p} \leq p \left(\frac{(2A_{0})^{p_{0}}}{p - p_{0}} \frac{2^{p - p_{0}} A_{1}^{\frac{p_{1}(p - p_{0})}{p_{1} - p_{0}}}}{A_{0}^{\frac{p_{0}(p - p_{0})}{p_{1} - p_{0}}}} + \frac{(2A_{1})^{p_{1}}}{p_{1} - p} \frac{A_{0}^{\frac{p_{0}(p_{1} - p)}{p_{1} - p_{0}}}}{2^{p_{1} - p} A_{1}^{\frac{p_{1}(p_{1} - p)}{p_{1} - p_{0}}}} \right) ||f||_{L^{p}}^{p}$$

$$= 2^{p} p \left(\frac{A_{0}^{\frac{p_{0}(p_{1} - p)}{p_{1} - p_{0}}} A_{1}^{\frac{p_{1}(p - p_{0})}{p_{1} - p_{0}}}}{p - p_{0}} + \frac{A_{0}^{\frac{p_{0}(p_{1} - p)}{p_{1} - p_{0}}} A_{1}^{\frac{p_{1}(p - p_{0})}{p_{1} - p_{0}}}}{p_{1} - p} \right) ||f||_{L^{p}}^{p}$$

$$(15)$$

And taking the p-th power further

$$||T(f)||_{L^{p}} \leq 2 \left(\frac{p}{p-p_{0}} + \frac{p}{p_{1}-p}\right)^{1/p} A_{0}^{\frac{p_{0}(p_{1}-p)}{p(p_{1}-p_{0})}} A_{1}^{\frac{p_{1}(p-p_{0})}{p(p_{1}-p_{0})}} ||f||_{L^{p}}$$

$$= 2 \left(\frac{p}{p-p_{0}} + \frac{p}{p_{1}-p}\right)^{1/p} A_{0}^{\frac{p_{0}(p_{1}-p)}{p(p_{1}-p_{0})} \frac{p_{1}}{p_{1}}} A_{1}^{\frac{p_{1}(p-p_{0})}{p(p_{1}-p_{0})} \frac{p_{0}}{p_{0}}} ||f||_{L^{p}}$$

$$= 2 \left(\frac{p}{p-p_{0}} + \frac{p}{p_{1}-p}\right)^{1/p} A_{0}^{\frac{p_{1}-p}{p_{1}}} A_{1}^{\frac{p-p_{0}}{p_{0}}} ||f||_{L^{p}}$$

$$= 2 \left(\frac{p}{p-p_{0}} + \frac{p}{p_{1}-p}\right)^{1/p} A_{0}^{\frac{1}{p}-\frac{1}{p_{0}}} A_{1}^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} ||f||_{L^{p}}$$

$$= 2 \left(\frac{p}{p-p_{0}} + \frac{p}{p_{1}-p}\right)^{1/p} A_{0}^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} A_{1}^{\frac{1}{p_{0}}-\frac{1}{p_{1}}} ||f||_{L^{p}}$$

Assume $p_1 = \infty$. We again use the cut-off functions defined in (7) to decompose f. Since $\{|f_1| > \delta \alpha\} = \emptyset$, we have

$$||T(f_1)||_{L^{\infty}} \leq A_1 ||f_1||_{L^{\infty}} = A_1 \inf \{B > 0 : \mu(\{|f_1| > B\}) = 0\} \leq A_1 \delta \alpha = \alpha/2$$

Provided we stipulate $\delta:=1/(2A_1)$. Therefore the set $\{|T(f_1)|>\alpha/2\}$ has measure zero (this is immediate since $\|T(f_1)\|_{L^\infty}=\inf\{B>0:\mu(\{|T(f_1)|>B\})=0\}\leqslant\alpha/2$ and any subset of a set with measure zero has itself measure zero). Thus similar to part **b.** of (i.) we get $d_{T(f)}(\alpha)\leqslant d_{T(f_0)}(\alpha/2)$.

Hypothesis (3) yields the estimate $d_{T(f_0)}(\alpha/2) \leqslant \left(\frac{A_0}{\alpha/2}\right)^{p_0} \int_{\{2A_1|f|>\alpha\}} |f|^{p_0} d\mu$. Thus by **a.** and **b.**

$$||T(f)||_{L^{p}}^{p} = p \int_{0}^{\infty} \alpha^{p-1} d_{T(f)} d\lambda$$

$$\leq p(2A_{0})^{p_{0}} \int_{0}^{\infty} \alpha^{p-p_{0}-1} \int_{\{2A_{1}|f|>\alpha\}} |f|^{p_{0}} d\mu d\lambda$$

$$= p(2A_{0})^{p_{0}} \int_{X} |f|^{p_{0}} \int_{0}^{2A_{1}|f|} \alpha^{p-p_{0}-1} d\lambda d\mu$$

$$= \frac{2^{p} p A_{0}^{p_{0}} A_{1}^{p-p_{0}}}{p-p_{0}} \int_{X} |f|^{p} d\mu$$

$$= \frac{2^{p} p A_{0}^{p_{0}} A_{1}^{p-p_{0}}}{p-p_{0}} ||f||_{L^{p}}^{p}$$

$$(17)$$

That the constant $2^p p A_0^{p_0} A_1^{p-p_0}/(p-p_0)$ found in (17) is the p-th power of the one stated in the theorem can be seen by passing the constant (6) to the limit $p_1 \to \infty$:

$$\lim_{p_1 \to \infty} A = \lim_{p_1 \to \infty} \left[2 \left(\frac{p}{p - p_0} + \frac{p}{p_1 - p} \right)^{1/p} A_0^{\frac{\frac{1}{p} - \frac{1}{p_1}}{\frac{1}{p_0} - \frac{1}{p_1}}} A_1^{\frac{\frac{1}{p_0} - \frac{1}{p}}{\frac{1}{p_0} - \frac{1}{p_1}}} \right]$$

$$= 2 \exp \left[\frac{1}{p} \log \left(\frac{p}{p - p_0} + \lim_{p_1 \to \infty} \frac{1}{p_1} \frac{p}{1 - p} \lim_{p_1 \to \infty} \frac{1}{p_1} \right) \right]$$

$$\cdot \lim_{p_1 \to \infty} A_0^{\frac{\frac{1}{p} - \frac{1}{p_1}}{\frac{1}{p_0} - \frac{1}{p_1}}} \cdot \lim_{p_1 \to \infty} A_1^{\frac{\frac{1}{p_0} - \frac{1}{p}}{\frac{1}{p_0} - \frac{1}{p_1}}}$$

$$= 2 \left(\frac{p}{p - p_0} \right)^{1/p} \exp \left[\frac{\frac{1}{p} - \lim_{p_1 \to \infty} \frac{1}{p_1}}{\frac{1}{p_0} - \lim_{p_1 \to \infty} \frac{1}{p_1}} \log(A_0) \right]$$

$$\cdot \exp \left[\frac{\frac{1}{p_0} - \frac{1}{p}}{\frac{1}{p_0} - \lim_{p_1 \to \infty} \frac{1}{p_1}} \log(A_1) \right]$$

$$= 2 \left(\frac{p}{p - p_0} \right)^{1/p} A_0^{\frac{p_0}{p}} A_1^{1 - \frac{p_0}{p}}$$

3. The Complex Method. This theorem will unfortunately only be applicable to linear operators but will yield a more natural bound of the operator on the intermediate space. The proof will make strong use of complex variables technique. A major tool will be an application of the maximum modulus principle, known as *Hadamard's three lines lemma*.

3.1. Hadamard's Three Lines Lemma. A complex-valued function f is said to be holomorphic in $\Omega \subseteq \mathbb{C}$ open, if f'(z) exists for any $z \in \Omega$.

LEMMA 3.1. (Hadamard's three lines lemma) Let F be a holomorphic function in the strip $S := \{z \in \mathbb{C} : 0 < \operatorname{Re} z < 1\}$, continuous and bounded on \overline{S} , such that $|F(z)| \leq B_0 \text{ when } \operatorname{Re} z = 0 \text{ and } |F(z)| \leq B_1 \text{ when } \operatorname{Re} z = 1, \text{ for some } 0 < B_0, B_1 < \infty.$ Then $|F(z)| \leq B_0^{1-\theta} B_1^{\theta}$ when $\text{Re } z = \theta$, for any $0 \leq \theta \leq 1$.

Proof. For $z \in \overline{S}$ define

$$G(z) := \frac{F(z)}{B_0^{1-z}B_1^z}$$
 $G_n(z) := G(z)e^{(z^2-1)/n}, \ n \in \mathbb{N}_{>0}$

G(z) and $G_n(z)$ are holomorphic in S by

$$G'(z)=\frac{F'(z)-F(z)\log{(B_1/B_0)}}{B_0^{1-z}B_1^z}\qquad G'_n(z)=G'(z)e^{\left(z^2-1\right)/n}+\frac{2}{n}zG_n(z)$$
 and $e^z\neq 0$ for every $z\in\mathbb{C}$. Further, we have

$$|B_0^{1-z}B_1^z| = (B_0^{1-z}B_0^{1-\overline{z}}B_1^zB_1^{\overline{z}})^{1/2} = B_0^{1-\operatorname{Re} z}B_1^{\operatorname{Re} z}$$

Consider $0 \le \text{Re } z \le 1$ and $B_0 \ge 1$. Then $B_0^{1-\text{Re } z} \ge 1$ and $B_0^{1-\text{Re } z} \ge B_0$ in the case $B_0 < 1$. Similarly, $B_1^{\text{Re } z} \ge 1$ if $B_1 \ge 1$ and $B_1^{\text{Re } z} \le B_1$ if $B_1 < 1$. Hence

$$|B_0^{1-z}B_1^z| \geqslant \min\{1, B_0\} \min\{1, B_1\} > 0$$
(18)

for all $z \in \overline{S}$. Since F is bounded on \overline{S} , we have $|F(z)| \leq L$ for some L > 0 and all $z \in \overline{S}$. Thus by (18)

$$|G(z)| = \frac{|F(z)|}{|B_0^{1-z}B_1^z|} \le \frac{L}{\min\{1, B_0\}\min\{1, B_1\}} =: M$$

for every $z \in \overline{S}$. Fix $n \in \mathbb{N}_{>0}$ and write $z := x + iy \in \overline{S}$. Then

$$|G_n(z)| \le M \left(e^{\left(x^2 + 2ixy - y^2 - 1\right)/n} e^{\left(x^2 - 2ixy - y^2 - 1\right)/n}\right)^{1/2} = Me^{-y^2/n} e^{\left(x^2 - 1\right)/n} \le Me^{-y^2/n}$$
 for $0 \le x \le 1$. Thus

$$\lim_{y \to \pm \infty} \sup\{|G_n(z)| : 0 \leqslant x \leqslant 1\} = 0$$

by the pinching-principle. Hence there exist $C_0, C_1 \in \mathbb{R}$, such that

$$\sup\{|G_n(z)|:0\leqslant x\leqslant 1\}\leqslant 1$$

when $y > C_0$ or $y < C_1$. Letting

$$C(n) := \max\{|C_0| + 1, |C_1| + 1\}$$

we conclude $|G_n(z)| \le 1$ for all $0 \le x \le 1$ when $|y| \ge C(n)$. Now consider the rectangle $R := (0,1) \times (-C(n),C(n))$. We have $|G_n(z)| \le 1$ on the lines $[0,1] \times \{\pm C(n)\}$. By

$$|G_n(iy)| = \frac{|F(iy)|}{\left|B_0^{1-iy}B_1^{iy}\right|}e^{-(y^2+1)/n} \leqslant 1 \qquad |G_n(1+iy)| = \frac{|F(1+iy)|}{\left|B_0^{-iy}B_1^{1+iy}\right|}e^{-y^2/n} \leqslant 1$$

we have $|G_n(z)| \leq 1$ on the lines $\{0\} \times [-C(n), C(n)], \{1\} \times [-C(n), C(n)]$. Thus $|G_n(z)| \leq 1$ on ∂R . Since $|G_n(z)|$ is continuous on \overline{R} , holomorphic in R and R is a bounded region, the maximum modulus theorem implies

$$|G_n(z)| \leq \sup\{|G_n(z)| : z \in \partial R\} \leq 1$$

for every $z \in R$. Therefore $|G_n(z)| \le 1$ on \overline{R} and so $|G_n(z)| \le 1$ on \overline{S} . Since inequalities are preserved by limits and the modulus is a continuous function, we have that $|G(z)| = \lim_{n \to \infty} |G_n(z)| \le 1$ for $z \in \overline{S}$. We conclude by

$$|F(\theta+it)| = |G(\theta+it)| \left| B_0^{1-\theta-it} B_1^{\theta+it} \right| \leqslant B_0^{1-\theta} B_1^{\theta}$$

whenever $0 \leq \theta \leq 1$, $t \in \mathbb{R}$.

FIGURE 1. Sketch of the rectangle \overline{R} .

3.2. The Riesz-Thorin Interpolation Theorem. Now we are able to proove the Riesz-Thorin Interpolation theorem without an interruption. To simplify notation, let Σ_X , Σ_Y denote the set of all finitely simple functions on X and Y respectively.

THEOREM 3.1. (Riesz-Thorin Interpolation Theorem) Let (X, μ) be a measure space, (Y, ν) a semifinite measure space and T be a linear operator defined on Σ_X and taking values in the set of measurable functions on Y. Let $1 \leq p_0, p_1, q_0, q_1 \leq \infty$ and assume that

$$||T(f)||_{L^{q_0}} \leqslant M_0 ||f||_{L^{p_0}} \qquad ||T(f)||_{L^{q_1}} \leqslant M_1 ||f||_{L^{p_1}} \tag{19}$$

for all $f \in \Sigma_X$ and $M_0, M_1 < \infty$. Then for all $0 < \theta < 1$ we have

$$||T(f)||_{L^q} \leqslant M_0^{1-\theta} M_1^{\theta} ||f||_{L^p}$$
(20)

for all $f \in \Sigma_X$, where

$$\frac{1}{p} = \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \qquad \frac{1}{q} = \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$$
 (21)

Proof. Fix

$$f :\equiv \sum_{i=1}^{n} a_{i} e^{i\alpha_{i}} \chi_{A_{i}} \in \Sigma_{X} \qquad g :\equiv \sum_{k=1}^{m} b_{k} e^{i\beta_{k}} \chi_{B_{k}} \in \Sigma_{Y}$$

where $a_j, b_k > 0$ and $\alpha_j, \beta_k \in \mathbb{R}$ for every $j = 1, \dots, n, k = 1, \dots, m$. Define

$$P(z) := \frac{p}{p_0}(1-z) + \frac{p}{p_1}z$$
 $Q(z) := \frac{q'}{q'_0}(1-z) + \frac{q'}{q'_1}z$

for $z \in \overline{S}$ (if $p, q' = \infty$ then also $p_0, p_1, q'_0, q'_1 = \infty$ and hence P, Q are well defined). Further let

$$f_z :\equiv \sum_{j=1}^n a_j^{P(z)} e^{i\alpha_j} \chi_{A_j} \qquad g_z :\equiv \sum_{k=1}^m b_k^{Q(z)} e^{i\beta_k} \chi_{B_k}$$
 (22)

and

$$F(z) := \int_{Y} T(f_z)(y)g_z(y)d\nu(y) \tag{23}$$

By the linearity of the operator T we have

$$F(z) = \sum_{j=1}^{n} \sum_{k=1}^{m} a_j^{P(z)} b_k^{Q(z)} e^{i\alpha_j} e^{i\beta_k} \int_Y T(\chi_{A_j})(y) \chi_{B_k}(y) d\nu(y)$$

and by Hölder's inequality ⁹

$$\left| \int_{Y} T(\chi_{A_{j}})(y) \chi_{B_{k}}(y) d\nu(y) \right| \leq \int_{Y} \left| T(\chi_{A_{j}})(y) \chi_{B_{k}}(y) \right| d\nu(y)$$

$$= \left\| T(\chi_{A_{j}}) \chi_{B_{k}} \right\|_{L^{1}}$$

$$\leq \left\| T(\chi_{A_{j}}) \right\|_{L^{q_{0}}} \left\| \chi_{B_{k}} \right\|_{L^{q'_{0}}}$$

$$\leq M_{0} \left\| \chi_{A_{j}} \right\|_{L^{p_{0}}} \left\| \chi_{B_{k}} \right\|_{L^{q'_{0}}}$$

$$\stackrel{p_{0}, q'_{0} \neq \infty}{=} M_{0} \mu \left(A_{j} \right)^{1/p_{0}} \nu \left(B_{k} \right)^{1/q'_{0}}$$

$$< \infty$$

for each $j=1,\ldots,n,\ k=1,\ldots,m$. In the case where either $p_0=\infty$ or $q_0'=\infty$, consider that $\|\chi_{A_j}\|_{L^\infty}$, $\|\chi_{B_k}\|_{L^\infty}\leqslant 1$. Thus the function F is well-defined on \overline{S} . Let $t\in\mathbb{R}$. For $p,p_0\neq\infty$

$$||f_{it}||_{L^{p_0}} = \left(\sum_{j=1}^n \int_X |f_{it}|^{p_0} d\mu + \int_{X \setminus \bigcup_{j=1}^n A_j} |f_{it}|^{p_0} d\mu\right)^{1/p_0}$$

$$= \left(\sum_{j=1}^n \left| a_j^{P(it)} e^{i\alpha_j} \right|^{p_0} \int_X \chi_{A_j} d\mu\right)^{1/p_0}$$

$$= \left(\sum_{j=1}^n a_j^{p_0 \operatorname{Re} P(it)} \mu (A_j)\right)^{1/p_0}$$

$$= \left(\sum_{j=1}^n a_j^p \mu (A_j)\right)^{p/(p_0 p)}$$

$$= ||f||_{L^p}^{p/p_0}$$

holds. Let $p_0 = \infty$, $p \neq \infty$. Then either $||f_{it}||_{L^{\infty}} = 0$ or $||f_{it}||_{L^{\infty}} = 1$. In the former case $f \equiv 0$ μ -a.e which implies $\mu(A_j) = 0$ for any $j = 1, \ldots, n$ and thus $||f_{it}||_{L^{\infty}} = 0$ and in the latter case $||f_{it}||_{L^{\infty}} = 1$ by the simple observation that $|a_j^{P(it)}| = a_j^{p/p_0} = 1$ and that there exists some index j, such that $\mu(A_j) \neq 0$. If $p = \infty$, observe that P(z) = 1 and thus $||f_{it}||_{L^{\infty}} = ||f||_{L^{\infty}}$. By the same considerations we see that $||g_{it}||_{L^{q'_0}} = ||g||_{L^{q'_0}}^{q'/q'_0}$ any legitime q_0, q . Hence

⁹A proof can be found in [Els11, p. 223].

$$|F(it)| \leq \int_{Y} |T(f_{it})(y)g_{it}(y)| \, d\nu(y)$$

$$= ||T(f_{it})g_{it}||_{L^{1}}$$

$$\leq ||T(f_{it})||_{L^{q_{0}}} ||g_{it}||_{L^{q'_{0}}}$$

$$\leq M_{0} ||f_{it}||_{L^{p_{0}}} ||g_{it}||_{L^{q'_{0}}}$$

$$= M_{0} ||f||_{L^{p}}^{p/p_{0}} ||g||_{L^{q'}}^{q'/q'_{0}}$$

$$< \infty$$

by Hölder's inequality. In an analogous manner s we can estimate

$$||f_{1+it}||_{L^{p_1}} = ||f||_{L^p}^{p/p_1} \qquad ||g_{1+it}||_{L^{q'_1}} = ||g||_{L^{q'_1}}^{q'/q'_1}$$

and thus

$$|F(1+it)| \leq M_1 ||f||_{L^p}^{p/p_1} ||g||_{L^{q'}}^{q'/q'_1}$$

Further

$$\begin{split} |F(z)| &\leqslant \int_{Y} |T(f_{z})(y)g_{z}(y)| \, d\nu(y) = \|T(f_{z})g_{z}\|_{L^{1}} \leqslant \|T(f_{z})\|_{L^{q_{0}}} \|g_{z}\|_{L^{q'_{0}}} \\ &\leqslant M_{0} \|f_{z}\|_{L^{p_{0}}} \|g_{z}\|_{L^{q'_{0}}} \stackrel{p_{0},q'_{0} \neq \infty}{=} M_{0} \left(\int_{X} |f_{z}|^{p_{0}} \, d\mu \right)^{1/p_{0}} \left(\int_{Y} |g_{z}|^{q'_{0}} \, d\nu \right)^{1/q'_{0}} \\ &= M_{0} \left(\sum_{j=1}^{n} a_{j}^{p_{0} \operatorname{Re} P(z)} \mu(A_{j}) \right)^{1/p_{0}} \left(\sum_{k=1}^{m} b_{k}^{q'_{0} \operatorname{Re} Q(z)} \nu(B_{k}) \right)^{1/q'_{0}} \\ &= M_{0} \left(\sum_{j=1}^{n} a_{j}^{p_{1} - \operatorname{Re} z) + (pp_{0} \operatorname{Re} z)/p_{1}} \mu(A_{j}) \right)^{1/p_{0}} \left(\sum_{k=1}^{m} b_{k}^{q'_{1} - \operatorname{Re} z) + (q'q'_{0} \operatorname{Re} z)/q'_{1}} \nu(B_{k}) \right)^{1/q'_{0}} \\ &\leqslant M_{0} \left(\sum_{j=1}^{n} a_{j}^{p_{1} + (pp_{0})/p_{1}} \mu(A_{j}) \right)^{1/p_{0}} \left(\sum_{k=1}^{m} b_{k}^{q'_{1} + (q'q'_{0})/q'_{1}} \nu(B_{k}) \right)^{1/q'_{0}} \\ &= M_{0} \|f\|_{L^{p+(pp_{0})/p_{1}}}^{p/p_{0} + p/p_{1}} \|g\|_{L^{q'_{1} + (q'q'_{0})/q'_{1}}}^{q'_{1} + (q'q'_{0})/q'_{1}} =: C(f, g) \end{split}$$

by Hölder's inequality and in the edge cases

$$p_{0} = \infty, q'_{0} \neq \infty : \qquad C(f,g) := M_{0} \max_{j=1,\dots,n} a_{j}^{p/p_{1}} \|g\|_{L^{q'+(q'q'_{0})/q'_{1}}}^{q'/q'_{0}+q'/q'_{1}}$$

$$p_{0} \neq \infty, q'_{0} = \infty : \qquad C(f,g) := M_{0} \|f\|_{L^{p+(pp_{0})/p_{1}}}^{p/p_{0}+p/p_{1}} \max_{k=1,\dots,m} b_{k}^{q'/q'_{1}}$$

$$p_{0} = \infty, q'_{0} = \infty : \qquad C(f,g) := M_{0} \max_{j=1,\dots,n} a_{j}^{p/p_{1}} \max_{k=1,\dots,m} b_{k}^{q'/q'_{1}}$$

Hence F is bounded on \overline{S} . By

$$F'(z) = \sum_{j=1}^{n} \sum_{k=1}^{m} a_{j}^{P(z)} \log(a_{j}) \left(\frac{p}{p_{1}} - \frac{p}{p_{0}}\right) b_{k}^{Q(z)} \log(b_{j}) \left(\frac{q'}{q'_{1}} - \frac{q'}{q'_{0}}\right) e^{i\alpha_{j}} e^{i\beta_{k}}$$
$$\int_{Y} T(\chi_{A_{j}})(y) \chi_{B_{k}}(y) d\nu(y)$$

it is immediate, that F is an entire function (see [Rud87, p. 198]) and thus holomorphic in S and continuous on \overline{S} . Therefore Hadamard's three lines lemma (??) yields

$$|F(z)| \leqslant \left(M_0 \|f\|_{L^p}^{p/p_0} \|g\|_{L^{q'}}^{q'/q'_0} \right)^{1-\theta} \left(M_1 \|f\|_{L^p}^{p/p_1} \|g\|_{L^{q'}}^{q'/q'_1} \right)^{\theta}$$

$$= M_0^{1-\theta} M_1^{\theta} \|f\|_{L^p} \|g\|_{L^{q'}}$$
for Re $z = \theta$. By $P(\theta) = Q(\theta) = 1$ and

$$M_{q}(T(f)) = \sup \left\{ \left| \int_{Y} T(f)gd\nu \right| : g \in \Sigma_{Y}, \|g\|_{L^{q'}} = 1 \right\}$$

$$= \sup \left\{ |F(\theta)| : g \in \Sigma_{Y}, \|g\|_{L^{q'}} = 1 \right\}$$

$$\leq M_{0}^{1-\theta} M_{1}^{\theta} \|f\|_{L^{p}}$$

$$< \infty$$

we conclude $||T(f)||_{L^q} = M_q(T(f))$ for any $f \in \Sigma_X$ using [Fol99, p. 189] (observe, that $T(f)g \in L^1$ for any $g \in \Sigma_Y$ by either one of the hypotheses on the linear operator T). \square

REMARK 3.1. It is necessary to have $0 < \theta < 1$, since for example choosing $q_1 = 1$ and $q_0 > 1$ arbitrary leads for $\theta = 1$ to q = 1 but then the function g can be choosen so, that the integral in the definition (23) is ∞ .

3.3. Young's inequality. Using the Riesz-Thorin interpolation theorem, we can give an alternative proof of Young's inequality [Gra14, pp. 22–23].

Theorem 3.2. (Young's inequality) Let G be a locally compact group, which is a countable union of compact subsets, and let η be a left invariant Haar measure. Let $1 \leq p, q, r \leq \infty$

$$\frac{1}{q} + 1 = \frac{1}{p} + \frac{1}{r} \tag{24}$$

Then for all $f \in L^p(G, \eta)$ and all $g \in L^r(G, \eta)$ satisfying $||g||_{L^r} = ||\tilde{g}||_{L^r}$ we have f * g exists η -a.e. and satisfies

$$||f * g||_{L^q} \leqslant ||g||_{L^r} ||f||_{L^p} \tag{25}$$

Proof. Fix $g \in L^r(G, \eta)$ and let T(f) := f * g be defined on $L^1(G, \eta) + L^{r'}(G, \eta)$. Obviously, T is a linear operator by the linearity of the integral. By Minkowski's integral inequality (see exercise 1.1.6 [Gra14, p. 13]) we get

$$||T(f)||_{L^{r}} = \left(\int_{G} \left| \int_{G} f(y)g(y^{-1}x)d\eta(y) \right|^{r} d\eta(x) \right)^{1/r}$$

$$\leq \int_{G} \left(\int_{G} |f(y)|^{r} |g(y^{-1}x)|^{r} d\eta(x) \right)^{1/r} d\eta(y)$$

$$= \int_{G} |f(y)| \left(\int_{G} |g(y^{-1}x)|^{r} d\eta(y^{-1}x) \right)^{1/r} d\eta(y)$$

$$= \int_{G} |f(y)| \left(\int_{G} |g(z)|^{r} d\eta(z) \right)^{1/r} d\eta(y)$$

$$\leq ||f||_{L^{1}} ||g||_{L^{r}}$$
(26)

for $f \in L^1(g,\mu)$ and $1 \leq p < \infty$ (since (G,η) is σ -finite). The case $r = \infty$ follows from

$$|(f * g)(x)| = \left| \int_{G} f(y)g(y^{-1}x)d\eta(y) \right| \le \int_{G} |f(y)||g(y^{-1}x)|d\eta(y) \le ||g||_{L^{\infty}} ||f||_{L^{1}}$$
 (27)

By stipulating $h(y) := g(y^{-1}x)$ we have

$$|(f * g)(x)| = \left| \int_{G} f(y)g(y^{-1}x)d\eta(y) \right| \le \int_{G} |f(y)g(y^{-1}x)|d\eta(y)$$

$$= ||fh||_{L^{1}} \le ||f||_{L^{r'}} ||h||_{L^{r}} = ||f||_{L^{r'}} ||\tilde{g}||_{L^{r}} = ||g||_{L^{r}} ||f||_{L^{r'}}$$
(28)

for $r < \infty$ and $f \in L^{r'}(g, \eta)$, since

$$||h||_{L^r}^r = \int_G |g(y^{-1}x)|^r d\eta(y) = \int_G |\tilde{g}(x^{-1}y)| d\eta(y) = ||\tilde{g}||_{L^r}^r$$

The Riesz-Thorin interpolation theorem now yields for any $0 < \theta < 1$

$$||f * g||_{L^q} = ||T(f)||_{L^q} \leqslant ||g||_{L^r}^{1-\theta} ||g||_{L^r}^{\theta} ||f||_{L^p} = ||g||_{L^r} ||f||_{L^p}$$
(29)

where

$$\frac{1}{p} = \frac{1-\theta}{1} + \frac{\theta}{r'} \qquad \frac{1}{q} = \frac{1-\theta}{r} + \frac{\theta}{\infty}$$

and by

$$\frac{1}{p} = 1 - \frac{\theta}{r} \qquad \frac{1}{q} = \frac{1}{r} - \frac{\theta}{r}$$

we get

$$\frac{1}{q} + 1 = \frac{1}{p} + \frac{1}{r}$$

REMARK 3.2. The proof would be much shorter if we just used Minkowski's inequality [Gra14, pp. 21–22] instead of Minkowski's integral inequality. However, the proof given here is an alternative version of the one given already for Minkowski's inequality.

- 4. Interpolation of Analytic Families of Operators. The generalization of the classical Riesz-Thorin interpolation theorem to analytic families of operators is due to $E.\ M.$ Stein and Guido Weiss¹⁰. Crucial for its proof is again an applicatio of advanced topics in complex analysis.
- **4.1. Extension of Hadamard's Three Lines Lemma.** This lemma is inspired by a lemma originally proposed by I.I.Hirschman. I will stick for the most part to the proof given in [Gra14, pp. 43–45], but for some parts I will use the paper by Stein and Weiss.
- **4.1.1. Auxiliary Lemmata.** To shorten the proof of the extension of Hadamard's three lines lemma, I will summarize the most important facts used during the proof.

LEMMA 4.1. Let $D := \{z \in \mathbb{C} : |z| < 1\}$ be the open unit disc and

$$h(z) := \frac{1}{\pi i} \log \left(i \frac{1+z}{1-z} \right)$$

for $z \in \overline{D} \setminus \{\pm 1\}$ where we are taking that continuous branch of $\log z$ in the complex plane slit along the negative imaginary axis, $\mathbb{C} \setminus (\{0\} \times [0, \infty))$. Then h is a holomorphic function in D which maps $\overline{D} \setminus \{\pm 1\}$ bijectively onto the closure \overline{S} of the strip $S := \{z \in \mathbb{C} : 0 < \operatorname{Re} z < 1\}$.

Proof. Define $f(z) := i \frac{1+z}{1-z}$. If we write $z := x + iy \in \overline{D} \setminus \{\pm 1\}$, we have

$$f(z) = \frac{-2y}{(1-x)^2 + y^2} + i\frac{1-x^2 - y^2}{(1-x)^2 + y^2}$$
(30)

Hence Im $f(z) \ge 0$ on $\overline{D} \setminus \{\pm 1\}$. Stipulating x := 1 - y for y satisfying $y^2 < y$, we get

¹⁰https://projecteuclid.org/euclid.tmj/1178244785, last accessed September 3, 2016.

$$\lim_{y^2 < y, y \to 0^+} \operatorname{Im} f(z) = \lim_{y^2 < y, y \to 0^+} \left(\frac{1}{y} - 1\right) = \infty$$

using the same definition of x we get

$$\lim_{y^2 < y, y \to 0^+} \text{Re} \, f(z) = -\lim_{y^2 < y, y \to 0^+} \frac{1}{y} = -\infty$$

and by stipulating x := 1 + y

$$\lim_{y^2 < -y, y \to 0^-} \operatorname{Re} f(z) = -\lim_{y^2 < -y, y \to 0^-} \frac{1}{y} = \infty$$

Since $2i \neq 0$, f is a linear fractional transformation (see [Rud87, p. 279]) with

$$f^{-1}(z) = \frac{z-i}{z+i}$$

Therefore f maps $\overline{D} \setminus \{\pm 1\}$ onto the punctured closed upper half plane $\{z \in \mathbb{C} : \text{Im } z \geqslant 0\} \setminus \{0\}$. The preceding logarithm maps this upper half plane onto the strip $\{z \in \mathbb{C} : 0 \leq \text{Im } z \leq \pi\}$. Thus h(z) maps $\overline{D} \setminus \{\pm 1\}$ onto the strip \overline{S} . By

$$h'(z) = \frac{2}{\pi i} \frac{1}{1 - z} \tag{31}$$

we see that h is a holomorphic function in D. Furthermore, we have

$$h^{-1}(z) = \frac{e^{\pi i z} - i}{e^{\pi i z} + i}$$

LEMMA 4.2. The mapping $\Phi: \mathbb{R} \to (-\pi, 0)$ defined by $\Phi(t) := -i \log (h^{-1}(it))$ is a C^1 -Diffeomorphism with $|D\Phi(t)| = \pi \operatorname{sech}(\pi t)$. In an analogous manner we have that $\Psi: \mathbb{R} \to (0,\pi)$, $\Psi(t) := -i \log (h^{-1}(1+it))$ is a C^1 -Diffeomorphism with $|D\Psi(t)| = \pi \operatorname{sech}(\pi t)$.

Proof. It is easier to consider $\Phi^{-1}(\varphi) = -ih(e^{i\varphi})$ and $\Psi^{-1}(\varphi) = -i\left(h(e^{i\varphi}) - 1\right)$ (this already shows that Φ is a bijective mapping). Since $|e^{i\varphi}| = 1$ it is immediate by the representation (30) and y < 0 that $\operatorname{Im} \Phi(\varphi) = 0$. Furthermore, $\lim_{\varphi \to -\pi} \Phi(\varphi) = \infty$ and $\lim_{\varphi \to 0} \Phi(\varphi) = -\infty$. By (31) Φ is clearly continuously differentiable. Using

$$h^{-1}(it) = \frac{e^{-\pi t} - i}{e^{-\pi t} + i}$$

we get

$$|D\Phi(t)| = \pi \left| \frac{e^{-\pi t}}{e^{\pi t} - i} - \frac{e^{-\pi t}}{e^{-\pi t} + i} \right| = \pi \left| \frac{2e^{-\pi t}}{e^{-2\pi t} + 1} \right| \pi \left| \frac{2}{e^{-\pi t} + e^{\pi t}} \right| = \pi \operatorname{sech}(\pi t)$$

LEMMA 4.3. Let $1/(2e-1) \leqslant \rho < 1$ and $\zeta = \rho e^{i\theta}$. Then

$$\left|\log\left|\frac{1+\zeta}{1-\zeta}\right|\right| \leqslant 1 + \log\frac{1}{|\cos(\theta/2)|} + \log\frac{1}{|\sin(\theta/2)|}$$

Proof. This proof is due to Prof. Schlein. We have on the one hand

$$|1 + \zeta| \le 1 + |\zeta| = 1 + \rho$$

and on the other hand

$$|1 - \zeta| \geqslant |\operatorname{Im} \zeta| = \rho |\sin(\theta)|$$

Hence

$$\begin{split} \log \frac{|1+\zeta|}{|1-\zeta|} &\leqslant \log \frac{1+\rho}{\rho \left| \sin(\theta) \right|} \\ &= \log \frac{1+\rho}{2\rho \left| \sin(\theta/2) \right| \left| \cos(\theta/2) \right|} \\ &= \log \frac{1+\rho}{2\rho} + \log \frac{1}{\left| \sin(\theta/2) \right|} + \log \frac{1}{\left| \cos(\theta/2) \right|} \\ &\leqslant 1 + \log \frac{1}{\left| \sin(\theta/2) \right|} + \log \frac{1}{\left| \cos(\theta/2) \right|} \end{split}$$

since

$$\frac{1+\rho}{2\rho} = \frac{1}{2} + \frac{1}{2\rho} \leqslant e$$

Now by

$$-\log\frac{|1+\zeta|}{|1-\zeta|} = \log\frac{|1-\zeta|}{|1+\zeta|}$$

which corresponds to considering $-\zeta = e^{i\pi}\zeta = e^{i(\pi+\theta)}$ in the first case, yields by invoking the identities

$$\cos\left(\frac{\pi+\theta}{2}\right) = -\sin(\theta/2)$$
 $\sin\left(\frac{\pi+\theta}{2}\right) = \cos(\theta/2)$

the bound

$$-\log\frac{|1+\zeta|}{|1-\zeta|} \leqslant 1 + \log\frac{1}{|\sin(\theta/2)|} + \log\frac{1}{|\cos(\theta/2)|}$$

and we are done.

4.1.2. The Lemma. Recall, that a real-valued function f, defined on a topological space X, is said to be *upper semicontinuous* at a point $a \in X$, if for each k > f(a) there is a neighbourhood V of a such that k > f(x) for each $x \in V$.

LEMMA 4.4. (Hadamard's three lines lemma, extension) Let F be a holomorphic function in the strip $S:=\{z\in\mathbb{C}:0<\mathrm{Re}z<1\}$ and continuous on \overline{S} , such that for some $0< A<\infty$ and $\tau_0\in(0,\pi)$ we have $\log|F(z)|\leqslant Ae^{\tau_0|\operatorname{Im}z|}$ for every $z\in\overline{S}$. Then

$$|F(z)| \leqslant \exp\left(\frac{\sin(\pi x)}{2} \int_{-\infty}^{\infty} \left[\frac{\log |F(it+iy)|}{\cosh(\pi t) - \cos(\pi x)} + \frac{\log |F(1+it+iy)|}{\cosh(\pi t) + \cos(\pi x)} \right] d\lambda(t) \right)$$
 whenever $z := x + iy \in S$.

Proof. We will first proove the case $\underline{y}=0$. Assume F to be not identically zero (the case where F is identically zero is trivial). Let h be as in lemma (4.1). By composition, $F \circ h$ is holomorphic in D and thus by [Rud87, p. 336] $\log |F \circ h|$ is subharmonic in D. Let $\zeta = \rho e^{i\theta}$, $0 \le \rho < 1$. Since $\zeta \in D$, we have $0 < \operatorname{Re} h(\zeta) < 1$ and thus the hypothesis on F and lemma (4.3) yields

$$\log|F(h(\zeta))| \leqslant Ae^{\frac{\tau_0}{\pi}\left|\log\left|\frac{1+\zeta}{1-\zeta}\right|\right|} \leqslant Ae^{\tau_0/\pi} \frac{1}{\left|\cos(\theta/2)\right|^{\tau_0/\pi}} \frac{1}{\left|\sin(\theta/2)\right|^{\tau_0/\pi}}$$
(32)

for $1/(2e-1) \leq \rho$. Since $0 < \tau_0 < \pi$, inequality (32) asserts, that $\log |F(h(\zeta))|$ is bounded from above by an integrable function of θ , independently of $\rho \geq 1/(2e-1)$. Set R := 1/(2e-1) and consider the function

$$H(\rho e^{i\theta}) := \begin{cases} \log \left| F(h(Re^{i\theta})) \right| & \rho = R, \\ \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left| F(h(Re^{i\varphi})) \right| \frac{R^2 - \rho^2}{R^2 - 2R\rho\cos(\theta - \varphi) + \rho^2} d\lambda(\varphi) & 0 \leqslant \rho < R \end{cases}$$

Then H is continuous for $|z| \leq R$ and harmonic for |z| < R (see [Rud87, pp. 234–235]). Since $\log |F(h(Re^{i\theta}))| = H(Re^{i\theta})$ is continuous on the circle with radius R, by [Rud87, p. 336] we have

$$\log \left| F(h(\rho e^{i\theta})) \right| \leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left| F(h(Re^{i\varphi})) \right| \frac{R^2 - \rho^2}{R^2 - 2R\rho \cos(\theta - \varphi) + \rho^2} d\lambda(\varphi)$$

$$\leqslant \frac{Ae^{\tau_0/\pi}}{2\pi} \int_{-\pi}^{\pi} \frac{1}{|\cos(\varphi/2)|^{\tau_0/\pi}} \frac{1}{|\sin(\varphi/2)|^{\tau_0/\pi}} \frac{R^2 - \rho^2}{R^2 - 2R\rho \cos(\theta - \varphi) + \rho^2} d\lambda(\varphi)$$

for $0 \le \rho < R$. Using

$$\frac{R-\rho}{R+\rho} \leqslant \frac{R^2 - \rho^2}{R^2 - 2R\rho\cos(\theta - \varphi) + \rho^2} \leqslant \frac{R+\rho}{R-\rho}$$

which holds for $0 \le \rho < R < 1$ (see [Rud87, p. 236]), we conclude

$$\log \left| F(h(\rho e^{i\theta})) \right| \leqslant g(\theta)$$

for all $\rho < 1$, where $g \in L^1[-\pi, \pi]$. Thus for ρ fixed, we have

$$\log \left| F(h(Re^{i\varphi})) \right| \frac{R^2 - \rho^2}{R^2 - 2R\rho\cos(\theta - \varphi) + \rho^2} \leqslant G(\varphi)$$

where $G \in L^1[-\pi, \pi]$. For R < 0 let

$$f_R(\varphi) := \log \left| F(h(Re^{i\varphi})) \right| \frac{R^2 - \rho^2}{R^2 - 2R\rho\cos(\theta - \varphi) + \rho^2}$$

and for $\varphi \neq 0, \pi$

$$f(\varphi) := \log \left| F(h(e^{i\varphi})) \right| \frac{1 - \rho^2}{1 - 2\rho \cos(\theta - \varphi) + \rho^2}$$

The upper semicontinuity of $\log |F \circ h|$ (by [Bou95, p. 360] continuity at a point a is equivalent to lower and upper semicontinuity of a function at a and $\log |F \circ h|$ is continuous on $\overline{D} \setminus \{\pm 1\}$) implies¹¹

$$\limsup_{R \uparrow 1} f_R(\varphi) = \limsup_{R \uparrow 1} \left[\log \left| F(h(Re^{i\varphi})) \right| \frac{R^2 - \rho^2}{R^2 - 2R\rho\cos(\theta - \varphi) + \rho^2} \right]
= \limsup_{R \uparrow 1} \log \left| F(h(Re^{i\varphi})) \right| \lim_{R \uparrow 1} \frac{R^2 - \rho^2}{R^2 - 2R\rho\cos(\theta - \varphi) + \rho^2}
= \log \left| F(h(e^{i\varphi})) \right| \frac{1 - \rho^2}{1 - 2\rho\cos(\theta - \varphi) + \rho^2}
= f(\varphi)$$

using an extension of [Bou95, p. 359]. The functions $G-f_R$ being non-negative, an application of Fatou's lemma yields

$$\int_{-\pi}^{\pi} \liminf_{R \uparrow 1} \left[G(\varphi) - f_R(\varphi) \right] d\lambda(\varphi) \leqslant \liminf_{R \uparrow 1} \int_{-\pi}^{\pi} \left[G(\varphi) f_R(\varphi) \right] d\lambda(\varphi)$$

By [Bou95, p. 354], we get

$$-\int_{-\pi}^{\pi} \limsup_{R \uparrow 1} \left[f_R(\varphi) - G(\varphi) \right] d\lambda(\varphi) \leqslant -\limsup_{R \uparrow 1} \int_{-\pi}^{\pi} \left[f_R(\varphi) - G(\varphi) \right] d\lambda(\varphi)$$

and thus

¹¹ By [Bou95, p. 360] if f is upper semicontinuous at a point, then -f is lower semicontinuous at the same point. Hence by [Bou95, p. 363] we have $\limsup_{x\to a} f(x) = -\liminf_{x\to a} (-f)(x) = -(-f)(a) = f(a)$.

$$\begin{split} \limsup_{R\uparrow 1} \int_{-\pi}^{\pi} f_R(\varphi) d\lambda(\varphi) - \int_{-\pi}^{\pi} G(\varphi) d\lambda(\varphi) \\ &= \limsup_{R\uparrow 1} \int_{-\pi}^{\pi} f_R(\varphi) d\lambda(\varphi) + \liminf_{R\uparrow 1} \int_{-\pi}^{\pi} \left(-G(\varphi)\right) d\lambda(\varphi) \\ &\leqslant \limsup_{R\uparrow 1} \int_{-\pi}^{\pi} \left[f_R(\varphi) - G(\varphi) \right] d\lambda(\varphi) \leqslant \int_{-\pi}^{\pi} \limsup_{R\uparrow 1} \left[f_R(\varphi) - G(\varphi) \right] d\lambda(\varphi) \\ &\leqslant \int_{-\pi}^{\pi} \limsup_{R\uparrow 1} f_R(\varphi) d\lambda(\varphi) + \int_{-\pi}^{\pi} \limsup_{R\uparrow 1} \left(-G(\varphi)\right) d\lambda(\varphi) \\ &= \int_{-\pi}^{\pi} \limsup_{R\uparrow 1} f_R(\varphi) d\lambda(\varphi) - \int_{-\pi}^{\pi} G(\varphi) d\lambda(\varphi) \end{split}$$

by [Bou95, p. 358]. Hence

$$\limsup_{R\uparrow 1} \int_{-\pi}^{\pi} f_R(\varphi) d\lambda(\varphi) \leqslant \int_{-\pi}^{\pi} \limsup_{R\uparrow 1} f_R(\varphi) d\lambda(\varphi)$$

and so

$$\log \left| F(h(\rho e^{i\theta})) \right| \leqslant \frac{1}{2\pi} \int_{-\pi}^{\pi} \log \left| F(h(e^{i\varphi})) \right| \frac{1 - \rho^2}{1 - 2\rho \cos(\theta - \varphi) + \rho^2} \tag{33}$$

The lemma will now follows from (33) by a change of variables. By stipulating $x:=h\left(\zeta\right)$ we obtain 12

$$\zeta = h^{-1}(x) = \frac{e^{\pi i x} - i}{e^{\pi i x} + i} = \frac{\cos(\pi x) + i\sin(\pi x) - i}{\cos(\pi x) + i\sin(\pi x) + i} \\
= \frac{\cos(\pi x) + i\sin(\pi x) - i}{\cos(\pi x) + i\sin(\pi x) + i} \frac{\cos(\pi x) - i\sin(\pi x) - i}{\cos(\pi x) - i\sin(\pi x) - i} = -i\frac{\cos(\pi x)}{1 + \sin(\pi x)} \\
= \left(\frac{\cos(\pi x)}{1 + \sin(\pi x)}\right) e^{-i\pi/2} \tag{34}$$

by

$$(\cos(\pi x) + i\sin(\pi x) - i)(\cos(\pi x) - i\sin(\pi x) - i)$$

$$= \cos^{2}(\pi x) - i\sin(\pi x)\cos(\pi x) - i\cos(\pi x) + i\sin(\pi x)\cos(\pi x)$$

$$+ \sin^{2}(\pi x) + \sin(\pi x) - i\cos(\pi x) - \sin(\pi x) - 1 = -2i\cos(\pi x)$$

and

¹² Recall, that for $z \in \mathbb{C}$ the trigonometric functions are defined by $\sin(z) := \frac{e^{iz} - e^{-iz}}{2i}$ and $\cos(z) := \frac{e^{iz} + e^{-iz}}{2}$. Hence the identities $e^{iz} = \cos(z) + i\sin(z)$ and $\cos^2(z) + \sin^2(z) = 1$ holds for any $z \in \mathbb{C}$ (see [Ahl79, pp. 42–44]).

$$(\cos(\pi x) + i\sin(\pi x) + i)(\cos(\pi x) - i\sin(\pi x) - i)$$

$$= \cos^{2}(\pi x) - i\sin(\pi x)\cos(\pi x) - i\cos(\pi x) + i\sin(\pi x)\cos(\pi x)$$

$$+ \sin^{2}(\pi x) + \sin(\pi x) + i\cos(\pi x) + \sin(\pi x) + 1 = 2 + 2\sin(\pi x)$$

From equality (34) we deduce $\rho = \frac{\cos(\pi x)}{1+\sin(\pi x)}$, $\theta = \frac{\pi}{2}$ if $0 < x \leqslant \frac{1}{2}$ and $\rho = -\frac{\cos(\pi x)}{1+\sin(\pi x)}$, $\theta = \frac{\pi}{2}$ if $\frac{1}{2} \leqslant x < 1$. Let $0 < x \leqslant \frac{1}{2}$. Then we have

$$\begin{split} \frac{1 - \rho^2}{1 - 2\rho \cos(\theta - \varphi) + \rho^2} \\ &= \frac{1 + 2\sin(\pi x) + \sin^2(\pi x) - \cos^2(\pi x)}{1 + 2\sin(\pi x) + \sin^2(\pi x) + 2\cos(\pi x)\sin(\varphi)(1 + \sin(\pi x)) + \cos^2(\pi x)} \\ &= \frac{\sin(\pi x) + \sin^2(\pi x)}{1 + \sin(\pi x) + \cos(\pi x)\sin(\varphi)(1 + \sin(\pi x))} = \frac{\sin(\pi x)}{1 + \cos(\pi x)\sin(\varphi)} \end{split}$$

since $\cos(-\pi/2 - \varphi) = -\sin(\varphi)$. That the case $\frac{1}{2} \le x < 1$ yields the same result is due to $\cos(\pi/2 - \varphi) = \sin(\varphi)$. Let Φ and Ψ be defined as in lemma (4.2). We have

$$e^{i\Phi(t)} = h^{-1}(it) = \frac{e^{-\pi t} - i}{e^{-\pi t} + i} \frac{e^{-\pi t} - i}{e^{-\pi t} - i} = \frac{e^{-2\pi t} - 2ie^{-\pi t} - 1}{e^{-2\pi t} + 1} = \frac{e^{-2\pi t} - 1}{e^{-2\pi t} + 1} - \frac{2ie^{-\pi t}}{e^{-2\pi t} + 1}$$
$$= \frac{e^{-2\pi t} - 1}{e^{-2\pi t} + 1} - \frac{2i}{e^{-\pi t} + e^{\pi t}} = \frac{1 - e^{2\pi t}}{1 + e^{2\pi t}} - \frac{2i}{e^{-\pi t} + e^{\pi t}} = -\tanh(\pi t) - i\operatorname{sech}(\pi t)$$

and thus

$$\sin(\Phi(t))\cosh(\pi t) = \sin(-i\log(-\tanh(\pi t) - i\operatorname{sech}(\pi t)))\cosh(\pi t)$$

$$= \frac{1}{2i} \left[-\tanh(\pi t) - i\operatorname{sech}(\pi t) + \frac{1}{\tanh(\pi t) + i\operatorname{sech}(\pi t)} \right] \cosh(\pi t)$$

$$= \frac{1}{2i} \left[\frac{\cosh(\pi t) - \tanh(\pi t)\sinh(\pi t) - 2i\tanh(\pi t) + \operatorname{sech}(\pi t)}{\tanh(\pi t) + i\operatorname{sech}(\pi t)} \right]$$

$$= \frac{1}{2i} \left[\frac{\cosh^2(\pi t) - \sinh^2(\pi t) - 2i\sinh(\pi t) + 1}{\sinh(\pi t) + i} \right]$$

$$= \frac{1 - i\sinh(\pi t)}{i\sinh(\pi t) - 1}$$

$$= -1$$

Therefore the transformation formula yields

$$\frac{1}{2\pi} \int_{-\pi}^{0} \frac{\sin(\pi x)}{1 + \cos(\pi x)\sin(\varphi)} \log |F(h(e^{i\varphi}))| d\lambda(\varphi)$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin(\pi x)}{\cosh(\pi t) - \cos(\pi x)} \log |F(it)| d\lambda(t) \quad (35)$$

and in a similar manner

$$\frac{1}{2\pi} \int_0^{\pi} \frac{\sin(\pi x)}{1 + \cos(\pi x)\sin(\varphi)} \log |F(h(e^{i\varphi}))| d\lambda(\varphi)$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} \frac{\sin(\pi x)}{\cosh(\pi t) + \cos(\pi x)} \log |F(1 + it)| d\lambda(t) \quad (36)$$

holds since

$$\sin(\Psi(t))\cosh(\pi t) = \sin\left(-i\log\left(-\tanh(\pi t) + i\operatorname{sech}(\pi t)\right)\right)\cosh(\pi t)$$

$$= \frac{1}{2i} \left[-\tanh(\pi t) + i\operatorname{sech}(\pi t) - \frac{1}{-\tanh(\pi t) + i\operatorname{sech}(\pi t)} \right] \cosh(\pi t)$$

$$= \frac{1}{2i} \left[\frac{-\cosh(\pi t) + \tanh(\pi t)\sinh(\pi t) - 2i\tanh(\pi t) - \operatorname{sech}(\pi t)}{-\tanh(\pi t) + i\operatorname{sech}(\pi t)} \right]$$

$$= \frac{1}{2i} \left[\frac{-\cosh^2(\pi t) + \sinh^2(\pi t) - 2i\sinh(\pi t) - 1}{i - \sinh(\pi t)} \right]$$

$$= \frac{1 + i\sinh(\pi t)}{1 + i\sinh(\pi t)}$$

$$= 1$$

Thus the case y = 0 is prooven.

The case $y \neq 0$ follows easily from the previous one. Fix $y \neq 0$ and define G(z) := F(z+iy) for $z \in \overline{S}$. Then G is a holomorphic function in S and continuous on \overline{S} as a composition of continuous and holomorphic functions. Moreover, the hypothesis on F yields

$$\log|G(z)| = \log|F(z+iy)| \leqslant Ae^{\tau|\operatorname{Im} z+y|} \leqslant Ae^{\tau|\operatorname{Im} z|}e^{\tau|y|}$$
(37)

for all $z \in \overline{S}$. The previous case yields for G with A replaced by $Ae^{\tau|y|}$

$$|G(x)| \leqslant \exp\left(\frac{\sin(\pi x)}{2} \int_{-\infty}^{\infty} \left[\frac{\log|G(it)|}{\cosh(\pi t) - \cos(\pi x)} + \frac{\log|G(1+it)|}{\cosh(\pi t) + \cos(\pi x)} \right] d\lambda(t) \right)$$
(38)

Now, observing G(x) = F(x+iy), G(it) = F(it+iy) and G(1+it) = F(1+it+iy) yields the desired result.

4.2. Stein's Theorem on Interpolation of Analytic Families of Operators. Because of the complex nature of the proof of the Riesz-Thorin Interpolation Theorem (3.1), Elias M. Stein realized quickly, that the restriction to consider only one linear operator T could easily be omited and instead, an analytic family of operators T_z depending on some complex parameter z could be considered.

DEFINITION 4.1. (Analytic family, admissible growth) Let (X, μ) be a measure space, (Y, ν) be a semifinite measure spaces and $(T_z)_{z \in \overline{S}}$, where T_z is defined Σ_X and taking values in the space of all measurable functions on Y such that

$$\int_{Y} |T_z(\chi_A)\chi_B| \, d\nu \tag{39}$$

whenever $\mu(A), \nu(B) < \infty$. The family $(T_z)_{z \in \overline{S}}$ is said to be analytic if for all $f \in \Sigma_X$, $g \in \Sigma_Y$ we have that

$$z \mapsto \int_{Y} T_z(f)gd\nu$$
 (40)

is analytic on S and continuous on \overline{S} . Further, an analytic family $(T_z)_{z\in\overline{S}}$ is called of admissible growth, if there is a constant $\tau_0\in(0,\pi)$, such that for all $f\in\Sigma_X$, $g\in\Sigma_Y$ a constant C(f,g) exists with

$$\log \left| \int_{Y} T_{z}(f)gd\nu \right| \leqslant C(f,g)e^{\tau_{0}|\operatorname{Im}z|} \tag{41}$$

for all $z \in \overline{S}$.

Now we are able to write down the theorem.

THEOREM 4.1. (Stein's Theorem on Interpolation of Analytic Families of Operators) Let $(T_z)_{z\in\overline{S}}$ be an analytic family of admissible growth, $1 \leqslant p_0, p_1, q_0, q_1 \leqslant \infty$ and suppose that M_0 , M_1 are positive functions on the real line such that for some $\tau_1 \in (0,\pi)$

$$\sup \left\{ e^{-\tau_1|y|} \log M_0(y) : y \in \mathbb{R} \right\} < \infty \qquad \sup \left\{ e^{-\tau_1|y|} \log M_1(y) : y \in \mathbb{R} \right\} < \infty \quad (42)$$

Fix $0 < \theta < 1$ and define

$$\frac{1}{p} := \frac{1-\theta}{p_0} + \frac{\theta}{p_1} \qquad \frac{1}{q} := \frac{1-\theta}{q_0} + \frac{\theta}{q_1}$$
 (43)

Further suppose that for all $f \in \Sigma_X$ and $y \in \mathbb{R}$ we have

$$||T_{iy}(f)||_{L^{q_0}} \leq M_0(y)||f||_{L^{p_0}} \qquad ||T_{1+iy}(f)||_{L^{q_1}} \leq M_1(y)||f||_{L^{p_1}}$$
 (44)
Then for all $f \in \Sigma_X$ we have

$$||T_{\theta}(f)||_{L^q} \leqslant M(\theta)||f||_{L^p}$$

where for 0 < x < 1

$$M(x) = \exp\left(\frac{\sin(\pi x)}{2} \int_{-\infty}^{\infty} \left[\frac{\log M_0(t)}{\cosh(\pi t) - \cos(\pi x)} + \frac{\log M_1(t)}{\cosh(\pi t) + \cos(\pi x)} \right] d\lambda(t) \right)$$

Proof. Fix $0 < \theta < 1$ and $f \in \Sigma_X$, $g \in \Sigma_Y$ with $||f||_{L^p} = ||g||_{L^{q'}} = 1$. Define f_z , g_z as in (22) and for $z \in \overline{S}$

$$F(z) := \int_{Y} T_z(f_z) g_z d\nu \tag{45}$$

Observe, that $\left|a_j^{P(z)}\right|\leqslant a_j^{p/p_0+p/p_1}$ and $\left|b_k^{Q(z)}\right|\leqslant b_k^{q'/q_0'+q'/q_1'}$ for $z\in\overline{S}.$ Hence

$$\begin{split} \log |F(z)| &= \log \left| \sum_{j=1}^{n} \sum_{k=1}^{m} a_{j}^{P(z)} b_{j}^{Q(z)} e^{i\alpha_{j}} e^{i\beta_{k}} \int_{Y} T_{z}(\chi_{A_{j}})(y) \chi_{B_{k}}(y) d\nu(y) \right| \\ &\leqslant \log \left(\sum_{j=1}^{n} \sum_{k=1}^{m} a_{j}^{p/p_{0}+p/p_{1}} b_{k}^{q'/q'_{0}+q'/q'_{1}} \left| \int_{B_{k}} T_{z}(\chi_{A_{j}}) d\nu \right| \right) \\ &\leqslant \log \left(\sum_{j=1}^{n} \sum_{k=1}^{m} a_{j}^{p/p_{0}+p/p_{1}} b_{k}^{q'/q'_{0}+q'/q'_{1}} e^{c(A_{j},B_{k})e^{\tau_{0}|\operatorname{Im}z|}} \right) \\ &\leqslant \log \left(\sum_{j=1}^{n} \sum_{k=1}^{m} e^{\left| \log \left(a_{j}^{p/p_{0}+p/p_{1}} b_{k}^{q'/q'_{0}+q'/q'_{1}} \right) \right| + c(A_{j},B_{k})e^{\tau_{0}|\operatorname{Im}z|}} \right) \\ &\leqslant \log \left(mne^{\sum_{j=1}^{n} \sum_{k=1}^{m} \log \left(a_{j}^{p/p_{0}+p/p_{1}} b_{k}^{q'/q'_{0}+q'/q'_{1}} \right) + c(A_{j},B_{k})e^{\tau_{0}|\operatorname{Im}z|}} \right) \\ &= \log (mn) + \sum_{j=1}^{n} \sum_{k=1}^{m} \left| \log \left(a_{j}^{p/p_{0}+p/p_{1}} b_{k}^{q'/q'_{0}+q'/q'_{1}} \right) \right| + c(A_{j},B_{k})e^{\tau_{0}|\operatorname{Im}z|} \end{split}$$

Since $\tau_0 \in (0, \pi)$ and thus $e^{\tau_0|\operatorname{Im} z|} > 1$, F satisfies the hypotheses of the extension of Hadamard's three lines lemma (4.4) with

$$A = \log(mn) + \sum_{j=1}^{n} \sum_{k=1}^{m} \left(\frac{p}{p_0} + \frac{p}{p_1}\right) |\log(a_j)| + \left(\frac{q'}{q'_0} + \frac{q'}{q'_1}\right) |\log(b_k)| + c(A_j, B_k)$$

The same calculations as in the proof of the Riesz-Thorin interpolation theorem (3.1) yields for $y \in \mathbb{R}$

$$||f_{iy}||_{L^{p_0}} = ||f||_{L^p}^{p/p_0} = 1 = ||g||_{L^{q'}}^{q'/q'_0} = ||g_{iy}||_{L^{q'_0}}$$

and

$$||f_{1+iy}||_{L^{p_1}} = ||f||_{L^p}^{p/p_1} = 1 = ||g||_{L^{q'}}^{q'/q'_1} = ||g_{1+iy}||_{L^{q'_1}}$$

Further

$$|F(iy)| \leq ||T_{iy}(f_{iy})||_{L^{q_0}} ||g_{iy}||_{L^{q'_0}} \leq M_0(y) ||f_{iy}||_{L^{p_0}} ||g_{iy}||_{L^{q'_0}} = M_0(y)$$

and

$$|F(1+iy)| \le ||T_{1+iy}(f_{1+iy})||_{L^{q_1}} ||g_{1+iy}||_{L^{q'_1}} \le M_1(y) ||f_{1+iy}||_{L^{p_1}} ||g_{1+iy}||_{L^{q'_1}} = M_1(y)$$

by Hölder's inequality and the hypotheses on the analytic family $(T_z)_{z \in \overline{S}}$. Therefore the extension of Hadamard's three lines lemma (4.4) yields

$$|F(x)| \leqslant \exp\left(\frac{\sin(\pi x)}{2} \int_{-\infty}^{\infty} \left[\frac{\log M_0(t)}{\cosh(\pi t) - \cos(\pi x)} + \frac{\log M_1(t)}{\cosh(\pi t) + \cos(\pi x)} \right] d\lambda(t) \right) = M(x)$$

for every 0 < x < 1. Furthermore observe that

$$F(\theta) = \int_{Y} T_{\theta}(f) g d\nu$$

and thus by [Fol99, p. 189] (Σ_Y denotes the set of all finitely simple functions on the semifinite space Y)

$$M_{q}(T_{\theta}(f)) = \sup \left\{ \left| \int_{Y} T_{\theta}(f)g \right| : g \in \Sigma_{Y}, \|g\|_{L^{q'}} \right\}$$
$$= \sup \left\{ |F(\theta)| : g \in \Sigma_{Y}, \|g\|_{L^{q'}} \right\}$$
$$\leqslant M(\theta)$$

Since $M(\theta)$ is an absolutely convergent integral for any $0 < \theta < 1$, $M_q(T_{\theta}(f)) < \infty$ and thus $M_q(T_{\theta}(f)) = \|T_{\theta}(f)\|_{L^q}$ (this is incorporated by the growth conditions on M_0 and M_1). The general statement follows by replacing f with $f/\|f\|_{L^p}$ when $\|f\|_{L^p} \neq 0$. The theorem is trivially true when $\|f\|_{L^p} = 0$.

Appendix A. Limit superior and limit inferior revisited

DEFINITION A.1. Let (X,d) a metric space, $E \subseteq X$, $f: E \to \mathbb{R}$ and $a \in X$ be a limit point of E. Then we define the upper limit of f at a as

$$\limsup_{x \to a} f(x) := \lim_{\varepsilon \downarrow 0} \left[\sup \left\{ f(x) : x \in E \cap \dot{B}_{\varepsilon}(a) \right\} \right]$$

and the lower limit of f at a as

$$\liminf_{x \to a} f(x) := -\limsup_{x \to a} (-f)(x)$$

PROPOSITION A.1. Let (X,d) a metric space, $E \subseteq X$, $f,g: E \to \mathbb{R}$, where f is bounded and $a \in X$ be a limit point of E. Then

$$\limsup_{x\to a}(fg)(x)=\limsup_{x\to a}f(x)\lim_{x\to a}g(x)$$
 whenever both sides exist and $\lim_{x\to a}g(x)\geqslant 0$.

Proof. Write

$$fg = f \lim_{x \to a} g(x) + f \left[g - \lim_{x \to a} g(x) \right]$$

By [Bou95, p. 358] we have

$$\begin{split} \lim\sup_{x\to a}\left(fg\right)(x) &= \limsup_{x\to a}\left(f(x)\lim_{x\to a}g(x) + f(x)\left[g(x) - \lim_{x\to a}g(x)\right]\right) \\ &= \lim\sup_{x\to a}\left(f(x)\lim_{x\to a}g(x)\right) + \lim_{x\to a}\left(f(x)\left[g(x) - \lim_{x\to a}g(x)\right]\right) \\ &= \lim\sup_{x\to a}\left(f(x)\lim_{x\to a}g(x)\right) \end{split}$$

since $\lim_{x\to a} [g(x) - \lim_{x\to a} g(x)] = 0$ and f is bounded. Fix $\varepsilon > 0$. Further by [Bou95, p. 357] and $\lim_{x\to a} g(x) \geqslant 0$

$$\sup \left\{ f(x) \lim_{x \to a} g(x) : x \in E \cap \dot{B}_{\varepsilon}(a) \right\} = \sup \left\{ f(x) : x \in E \cap \dot{B}_{\varepsilon}(a) \right\} \lim_{x \to a} g(x)$$

Hence

$$\limsup_{x \to a} (fg)(x) = \limsup_{x \to a} \left(f(x) \lim_{x \to a} g(x) \right)$$

$$= \lim_{\varepsilon \downarrow 0} \left[\sup \left\{ f(x) \lim_{x \to a} g(x) : x \in E \cap \dot{B}_{\varepsilon}(a) \right\} \right]$$

$$= \lim_{\varepsilon \downarrow 0} \left[\sup \left\{ f(x) : x \in E \cap \dot{B}_{\varepsilon}(a) \right\} \right] \lim_{x \to a} g(x)$$

$$= \lim_{\varepsilon \to a} \sup_{x \to a} f(x) \lim_{x \to a} g(x)$$
(46)

Appendix B. Measure Theory

Let (X, μ) be a measure space. Recall, that if for each measurable set E with $\mu(E) = \infty$ there exists a measurable set $F \subseteq E$ and $0 < \mu(F) < \infty$, μ is called *semifinite*.

Lemma B.1. Every σ -finite measure is semifinite.

Proof. Let $X = \bigcup_{n \in \mathbb{N}} X_n$ where $\mu(X_n) < \infty$ and E be measurable with $\mu(E) = \infty$. By letting $Y_n := \bigcup_{k \le n} X_k$, Y_n is an increasing sequence. Then $E \cap Y_n$ is measurable and since $E \cap Y_n \subseteq Y_n$, $\mu(E \cap Y_n) < \infty$ for each $n \in \mathbb{N}$. By the continuity from below (see [Coh13, p. 10] or [Fol99, p. 26]) we have

$$\infty = \mu(E) = \mu(E \cap X) = \mu\left(E \cap \left(\bigcup_{n \in \mathbb{N}} Y_n\right)\right) = \mu\left(\bigcup_{n \in \mathbb{N}} (E \cap Y_n)\right) = \lim_{n \to \infty} \mu\left(E \cap Y_n\right)$$

Hence for every C>0 there exists $N\in\mathbb{N}$, such that $\infty>\mu(E\cap Y_n)>C$ for n>N. \square

References

- [Ahl79] Lars V. Ahlfors. *Complex Analysis*. Third Edition. Mc Graw Hill Education, 1979.
- [Bou95] Nicolas Bourbaki. General Topology Chapters 1-4. Elements of Mathematics. Springer-Verlag Berlin Heidelberg, 1995.
- [Coh13] Donald L. Cohn. Measure Theory. Second edition. Springer, 2013.
- [Els11] Jürgen Elstrodt. Mass- und Integrationstheorie. 7.,korrigierte und aktualisierte Auflage. Springer Verlag, 2011.
- [Fol99] Gerald B. Folland. *Real Analysis*. Second Edition. John Wiley & Sons, Inc., 1999
- [Gra14] Loukas Grafakos. Classical Fourier Analysis. Third Edition. Springer Science + Business Media New York, 2014.
- [Rud87] Walter Rudin. Real and Complex Analysis. Third Edition. McGraw-Hill Book Company, 1987.
- [Zor04] Vladimir A. Zorich. *Mathematical Analysis I.* Springer-Verlag Berlin Heidelberg, 2004.