Apuntes de clase

José Antonio de la Rosa Cubero

Teorema 1 (Segundo teorema de isomorfía o del doble cociente). Sea G un grupo y N un subgrupo normal de G. Sea $H \in \mathrm{Sub}(G)$ tal que $N \leq H$. Entonces:

$$H/N \le G/N \iff H \le G$$

Además en tal caso

$$G/H \cong (G/N)(H/N)$$

Demostración. Vamos a empezar por la implicación hacia la izquierda. Sea $N \subseteq G$ y $H \subseteq G$ con $N \subseteq G$ y tenmos que ver que $H/N \subseteq G/N$. Sea $aN \in H/N$ y $xN \in G/N$.

$$(xN)(aN)(xN)^{-1} = (xax^{-1})N$$

y $xax^{-1} \in H$. Es decir, $(xN)H/N(xN)^{-1} \leq H/N$ y por tanto $H/N \leq G/N$. Veamos el recírpoco. Suponemos $H/N \leq G/N$ y consideramos:

$$G \to^p G/N \to^q (G/N)/(H/N)$$

y consideramos el homomorfismo $f=q\circ p$ que f(a)=(aN)H/N. f es un epimorfismo por ser composición de epimorfismos.

$$\ker(f) = \{a \in G : f(a) = H/N\}$$

= $\{a \in G : (aN)H/N = H/N\}$
= $\{a \in G : aN \in H/N\}$

Veamos que $H=\ker(f)$ por doble inclusión. Es claro que $H\leq \ker(f)$. Sea $a\in \ker(f)$ entonces $aN\in H/N$ implica que existe un $b\in H$ tal que aN=bN. Esto solo ocurre si $b^{-1}a\in N\leq H$ y $b\in H$. Por tanto $a=b(b^{-1}a)\in H$ con lo que $\ker(f)\leq H$.

Consecuentemente, $H = \ker(f)$ lo que implica $H \leq G$. Aplicando el primer teorema de isomorfía a f:

$$G/H = G/\ker(f) \cong \operatorname{Im}(f) = (G/N)/(H/N)$$

pues f es epimorfismo.

Teorema 2 (Tercer teorema de isomorfía). Sea G un grupo y N, $K \in Sub(G)$ con $N \triangleleft G$. Entonces:

- 1. KN es un subgrupo de G y $N \triangleleft KN$.
- $2. K \cap N \leq K.$
- 3. Existe un isomorfismo $K/(K \cap N) \cong KN/N$.

Demostración. Recordemos que si KN=NK, entonces $KN\leq N$. Pero esta igualdad es inmediata puesto que $N \subseteq G$.

Por tanto, $KN \in \operatorname{Sub}(G)$. Es claro que $N \leq KN$. Como $N \subseteq G$, entonces $N \subseteq KN$.

Veamos los siguientes apartados. Consideremos los homomorfismos

$$K \to^{\iota} G \to^{p} G/N$$

Y sea $g = p \circ i$. g(a) = aN para todo $a \in K$.

$$\ker(g) = \{a \in K : a \in N\} = K \cap N$$

y entonces $K \cap N \leq K$ y tenemos el segundo punto. Aplicando el primer teorema de isomorfía,

$$K/(K \cap N) \cong \operatorname{Im}(q)$$

$$Im(g) = \{g(a) : a \in K\} = \{aN : a \in K\} = ?KN/N$$

Puesto que $K \leq KN$, es claro que $\operatorname{Im}(g) \leq KN/N$. Recíprocamente, sea $xN \in KN/N$ es decir $x \in KN$.

Si $x \in KN$, existe un $a \in K$ y un $b \in N$ tal que x = ab. Entonces $xN = (ab)N = (aN)(bN) = (aN)N = aN \in \text{Im}(g)$. $KN/N \leq \text{Im}(g)$.

$$K/(K \cap N) \cong KN/N$$

Proposición 1. Sea N un subgrupo normal de G tal que N y G/N son abelianos. Sea H un subgrupo cualquiera de G. Demostrar que existe un subgrupo normal $K \subseteq H$ tal que K y H/K son abelianos.

Demostración. Sea G y $N, H \in \text{Sub}(G)$ y $N \subseteq G$. $N \cap H \subseteq H$ y $NH/N \cong H/(N \cap H)$.

Tomamos $K = N \cap H \subseteq H$. Como $K \subseteq N$ y N es abeliano, K es abeliano. Por otro lado $H/K = H(N \cap K) \cong HN/N \subseteq G/N$. Como G/N es abeliano, entonces HN/N es abeliano. H/K es abeliano.

Proposición 2. Sea G un grupo finito, y sean H, K subgrupos de G, con K normal y tales que |H| y [G:K] son primos relativos. Demostrar que H está contenido en K.

Demostración. Sea G un grupo finito, $K, N \in \operatorname{Sub}(G)$ con $N \subseteq G$. Suponemos que |K| y [G:N] son primos relativos.

Demostramos que $K \leq N$.

Sabemos que

$$K/(K \cap N) \cong KN/N$$

por el tercer teorema de isomorfía. Entonces

$$[K:K\cap N] = [KN:N] = r$$

Como $KN/N \leq G/N$, entonces

$$r = |KN/N| \, |\, |G/N| = [G:N]$$

Por otro lado,

$$r = [K:K\cap N] = \frac{|K|}{|K\cap N|}$$

y en particular, $|K| = r |K \cap N|$. Entonces r |K|. Como $\gcd(|K|, [G:N]) = 1$ entonces r = 1. Tenemos entonces

$$|K/(K \cap N)| = 1 \implies K = K \cap N$$

lo que prueba lo que se quería probar.