III B. Tech I Semester Regular/Supplementary Examinations, NOV - 2022 DIGITAL IMAGE PROCESSING (Common to CSM)

Time: 3 Hours Max. Marks: 60

Note: Answer **ONE** question from each unit $(5 \times 12 = 60 \text{ Marks})$

UNIT-I Explain the fundamental steps involved in a typical digital image 1. [6M] processing system along with distinguishing between image processing and image analysis Define gray level resolution and explain what happens if it is not [6M] adequate in the quality of the image. (OR) Explain the concepts and types of adjacency, path and 2. [6M]a) connectivity in basic pixel relationships. What are various imaging sensors? Explain how images are [6M] acquired using those sensors. UNIT-II What is gamma correction? Why is it necessary for display devices 3. a) [6M] and how it is done? Given the histogram $P_r(r) = \begin{cases} \frac{2r}{(L-1)^2} & 0 \le r \le L-1 \\ 0 & otherwise \end{cases}$ b) [6M] Derive the transformation function needed for its equalization. (OR) Why flattening of histogram components across the entire gray 4. [6M] scale is necessary for an image to have good contrast? A 3-bit image of size 64x64 has the following histogram. Derive [6M] transformation function needed for its equalization. Also plot the transformation function obtained along with both histograms. H(r_k)={790, 1023, 850, 656, 329, 245, 122, 81 **UNIT-III** What is the purpose of image restoration? Explain the model of | [6M] 5. image degradation and restoration process using suitable block diagram.

	b)	Discuss the ordered statistic filters suitable for the removal of different types of noises.	[6M]
(OR)			
6.	a)	How degradation can be estimated?	[6M]
	b)	Using Weiner filter how a degraded image can be restored?	[6M]
UNIT-IV			
7.	a)	Distinguish between point, line and edge features of an image.	[6M]
	b)	Derive the sequence of application of Opening and Closing operations involved in the detection of a particular binary pattern in fixed orientation.	[6M]
		Hint: Pixels which you Hit are the shape pixels and which you Miss are doesn't.	
(OR)			
8.	a)	What is the purpose of image segmentation?	[6M]
	b)	Define the morphological operation and Explain the following: (i) Erosion, (ii) Dilation	[6M]
UNIT-V			
9.	a)	Discuss the fidelity criteria used in the quality assessment of compression techniques.	[6M]
	b)	Describe arithmetic coding with an example for compression of image.	[6M]
(OR)			
10.	a)	What are different types of redundancies present in digital images? Explain.	[6M]
	b)	With the help of a block diagrams explain image compression and decompression systems.	[6M]

* * * * *