

ARM Cortex-M3 STM32F407

サンプルソース説明書

株式会社日昇テクノロジー

http://www.csun.co.jp info@csun.co.jp 2015/12/22

copyright@2015

株式会社日昇テクノロジー

低価格、高品質が不可能?

日昇テクノロジーなら可能にする

• 修正履歴

NO	バージョン	修正内容	修正日
1	Ver1.0	新規作成	2015/12/22

※ この文書の情報は、文書を改善するため、事前の通知なく変更されることが あります。最新版は弊社ホームページからご参照ください。

[http://www.csun.co.jp]

※ (株)日昇テクノロジーの書面による許可のない複製は、いかなる形態においても厳重に禁じられています。

株式会社日昇テクノロジー

低価格、高品質が不可能? 日昇テクノロジーなら可能にする

目 次

(1)	Template	. {
(2)	WaterLED	. {
(3)	KEY	. {
(4)	UART	. {
(5)	INT	. 7
(6)	Watchdog	. 7
(7)	WinWatchdog.	
(8)	Timer	. 8
(9)	PWM	. 8
(10)	Input	. 8
(11)	TFT LCD	. 8
	USMART	
(13)	RTC	1(
(14)	RandomGen	1
(15)	ADC	1
(16)	Temprature.	12
(17)	DAC	12
(18)	PWM DAC	13
(19)	DMA	13
(20)	SPI	13
(21)	TouchPane1	14
(22)	NRF24L01	14
(23)	FLASH2EEPROM	1
(24)	SRAM	16
(25)	Memory	16
(26)	SD	1
(27)	FATFS	18
(29)	IMAGE	19
(30)	AVP1ay	20
(31)	FPU(Julia)	22
(32)	DSP	23
(33)	HandWriter	2!
(35)	USBCardReader(S1ave)	26
(37)	UCOSII1-1-EventCall	2
(38)	UCOSII-1-2-EventOther	2'

(1) Template

このサンプルはプロジェクトを新規作成時ご参考ください。

ベースは STM32F4 のファームウェアの V1.3.0 のプロジェクト。

注意事項:プロジェクトを新規作成時、Option for target xxxのC/C++タグの全てのマクロ定義のDefineの所はSTM32F40_41xxx,USE_STDPERIPH_DRIVERにする必要。

(2) WaterLED

このサンプルはSTM32F407開発ボードの2つのLED (DS0とDS1) をコントロールし、 交替的に点滅する。

(3) KEY

このサンプルは STM32F407 開発ボードの 2つのボタン (KEYO、KEY1) を通じて、ボードの 2つの LED (DSO と DS1) をコントロールする。

KEY1 ボタンは DS1 をコントロールし、一回押すと点灯、再度押すと消灯。

KEYO ボタンは DSO をコントロールし、一回押すと点灯、再度押すと消灯。

(4) UART

このサンプルではシリアルポート1はメッセージをPCに送信し続ける、同時にシリアルポートからデータを受信して、受信したデータをPCに送信する。

注意:シリアルポートのポーレートを 115200bps に設定する。

ハードウェア:

STM32F407 開発ボード

RS232C-TTL レベル変換基板

USB RS232 変換ケーブル(D サブオス)

4ピン配列変換ケーブル

接続方法: STM32F407 開発ボードのシリアルポート1の RX と RS232C-TTL レベル変換基板の RX を繋ぐ、シリアルポート1の TX と変換基板の TX を繋ぐ。VCC と GND は 5V 電源と GND と

ホームページ: http://www.csun.co.jp メール: info@csun.co.jp 5

接続する。

ハードウェア接続イメージ:

シリアルポート出力イメージ:

ホームページ: http://www.csun.co.jp

株式会社日昇テクノロジー

低価格、高品質が不可能?

日昇テクノロジーなら可能にする

(5) INT

このサンプルは外部割込みで STM32<mark>F4</mark>07 開発ボードの 2 つのボタン(KEYO、KEY1)を通じて、ボードの 2 つの LED(DSO と DS1)をコントロールする。

KEY1 ボタンは DS1 をコントロールし、一回押すと点灯、再度押すと消灯。

KEYO ボタンは DSO と DS1 を同時にコントロールし、一回押すと点灯、再度押すと消灯。

(6) Watchdog

このサンプルはウォッチドッグ(watchdog)をリセットしなければ、DSO はずっと点灯する。WK_UP ボタンを押すと、フィードする。WK_UP ボタンを続けて押す場合、watchdog はずっと リセットせず、DSO もずっと点灯する。一旦 watchdog 設置時間(1 秒)を超えて WK_UP ボタンを押さなかった場合、プログラムは再起動になり、DSO は一度消灯になる。

(7) WinWatchdog

このサンプルは DSO を通じて、STM32 がリセットされたかを示す。もしリセットされたら DSO を 300ms 点灯する。

DS1 は割込みウォッチドッグを示す。割込み発生する度 DS1 を一回回転する。 STM32 がリセットしなければ、DS0 はずっと消灯する。

(8) Timer

このサンプルは DSO でプロジェクト実行を示し、周期は 400ms。DS1 はタイマー割込みの実行を示す。割込みで回転する。周期は 1000ms。実行後の現象は、DSO は速く点滅し、DS1 は少しゆっくり点滅する。

(9) PWM

このサンプルは TIM14_CH1 を使用して PWM を作成し、DSO の輝度をコントロールする。実行後の現象は暗く \rightarrow 明るく \rightarrow 暗く \rightarrow 明るく \rightarrow の循環である。

(10) Input

このサンプルは TIM15_CH1 を使用して PAO のハイレベルを取得する。W_UP を押してハイレベルを作成する。シリアルポートからハイレベルのパルス幅を出力する。 前節と同じ PWM の処理も残している。

シリアルポートの出力例 (WK UP キーを押された時間が出力される):

(11) TFT LCD

このサンプルは JFTLCD の表示を実現する。実行後、LCD にテキスト情報を表示し、背景色を自動で切り替える。またシリアルポートからリセットする度に LCD ドライバの ID を出力する。

実行イメージ:

ホームページ: http://www.csun.co.jp メール: info@csun.co.jp

シリアルポート出力:

(12) USMART

このサンプルは usmart を使用して MCU 内蔵関数をコールして LCD と LED の表示及び遅延を コントロールする。

実行例:シリアルポートから delay_ms (2000) を発送すると、DSO の状態は延長される。 シリアルポート出力状態:

ホームページ: http://www.csun.co.jp メール: info@csun.co.jp

株式会社日昇テクノロジー

低価格、高品質が不可能?

日昇テクノロジーなら可能にする

(13) RTC

このサンプルは TFTLCD で RTC 時間を表示する。また usmart を使用して RTC 時間を設定できる。

実行例:

時間設定前の表示:

シリアルポートから時間設定後の表示:

11

シリアルポート情報:

(14) RandomGen

このサンプルは STM32F4 内蔵のハードウェアのランダム数生成器 (RNG) でランダム数を生成して、LCD に表示する。KEYO キーを押してランダム数を取得する。また 0~9 の範囲内でランダム数を取得して、LCD に表示する。DO はプログラム実行状態を示す。

実行イメージ:

(15) ADC

このサンプルは ADC1 でチャネル 5 (PA5) の電圧を取得して、LCD に ADC 変換値及び変換後の電圧値を表示する。

注意:本テストの参考電圧は3.3V。他の参考電圧を使用する場合、STM32F4ボードのP7ポートで設定できる。他の参考電圧を設定した後、入力電圧は参考電圧の最大値を超えない様に注意する必要。

実行イメージ:

STM32F4
ADC TEST
www.csun.co.jp
2015/08/09
ADC1_CH5_VAL: 916
ADC1_CH5_VOL:0.737V

(16) Temprature

このサンプルは ADC1 のチャネル 16 で STM32F4 内部温度センサーの電圧値を取得して温度に変換し、LCD に表示する。

実行イメージ:

STM32F4
ADC TEST
www.csun.co.jp
2015/08/06

TEMPERATE: 26.18C

(17) DAC

このサンプルはキー或いは USMART で STM32F4 内蔵 DAC のチャネル 1 の出力電圧をコントロールする。ADC1 のチャネル 5 で DAC の出力電圧を採取して LCD に表示する。また Usmart で Dacl_Set_Vol 関数をコールして DAC の出力電圧を設定できる。

注意:ボードの PA4 と PA5 ピンをショートする必要。

ホームページ: http://www.csun.co.jp

STM32F4
DAC TEST
www.csun.co.jp
2014/5/6
WK_UP:+ KEY1:DAC VAL: 0
DAC VOL:0.000V

ADC VOL:0.000V

(18) PWM DAC

このサンプルはキー或いは USMART で STM32F4 の TIM9_CH2 の PWM 出力をコントロールする。 RC フィルターした後 DAC 出力に変換して ADC1 のチャネル 5 で PWM DAC の出力電圧を採取して LCD に表示する。

注意:ボードの PA3 と PA5 ピンをショートする必要。

(19) DMA

このサンプルは KEYO キーで DMA シリアルポート1のデータ送信をコントロールする。KEYO を押したら、DMA 転送が始まる、同時に LCD 上に転送進捗を表示する。シリアルデバッグツールで DMA 転送の内容を受信できる。

注意1:シリアルのボーレットは115200。

(20) SPI

このサンプルは KEY1 キーで W25Q16 への書き込をコントロールする。KEY0 キーで W25Q16 からの読出しをコントロールする。同時に LCD 上に情報を表示する。

STM32F4
SPI TEST
www.csun.co.jp
2015/08/06
KEY1:Write KEY0:Read
W25Q16 Ready!
The Data Readed Is:
STM32F4 SPI TEST

(21) TouchPanel

このサンプルはまずLCD IDによって静電気タッチパネルか、抵抗式タッチパネルかを確認して関連の検査を行う。デフォルトは抵抗式タッチパネルです。校正したかを確認して、してなければ校正を行う。校正した場合は手書きプログラムに入る。スクリーン上にクリアエリア (RST) があり、ここをクリックすると全てクリアされる。また KEYO で校正を実行する。

(22) NRF24L01

このサンプルは起動する時は先ず、NRF24L01 モジュールが存在するか確認する。NRF24L01 モジュールを検測した後、KEY0 と KEY1 の設置によってモジュールの動作モードを確認し、動作モードを正確に設定した後、継続的にデータを送信/受信することができ、同時に DS0 で実行していることを示す。

注意:

本テストは2セットの開発ボード+2つのNRF24L01無線モジュールで、正常にテストすることができる。1つの開発ボードと1つのモジュールではテストすることができない。

ホームページ: http://www.csun.co.jp メール: info@csun.co.jp

(23) FLASH2EEPROM

このサンプルは起動する時は先ず、提示の情報を画面に表示し、それからメインループの中で2つのボタンを測定し、1つのボタン(KEY1)は FLASH の書き込を実行する。もう1つのボタン(KEY0)は読み出しを実行する。TFTLCD上で関連情報を表示する。DSOで実行していることを示す。

STM32F4
FLASH EEPROM TEST
www.csun.co.jp
2015/08/09
KEY1:Write KEY0:Read

(24) SRAM

このサンプルは起動した後に、提示の情報を画面に表示して、KEYO キーを押したら、外部 SRAM 容量のサイズを測定し、LCD 上で表示する。KEY1 キーを押したら、予め保存した外部 SRAM のデータを表示する。DSO で実行していることを示す。

STM32F4
SRAM TEST
www.csun.co.jp
2015/08/14
KEY0:Test Sram
KEY1:Test Data

(25) Memory

このサンプルは起動した後に、提示の情報を画面に表示し、外部入力を待つ。KEYO はメモリを申し込む。毎回 2K バイトのメモリを申請する。KEY1 の機能は申請したのメモリの中にデータを書く。KEY_UP は操作メモリエリア(内部 SRAM メモリ/外部 SRAM メモリ/内部 CCMメモリ)を切り替えることを実現する。同時に DSO で実行していることを示す。

ホームページ: http://www.csun.co.jp

(26) SD

このサンプルは起動する時は先に SD カードを初期化する。成功すれば、LCD が初期化することを提示し、KEYO を押し、SD カードのセクターO のデータを読み取って、シリアルポートで PC に発送する。もし初期化できないと、LCD の上で失敗した情報を表示する。DSO で実行していることを示す。

LCD 表示内容:

シリアルポート出力イメージ (KEYO を押した場合):

ホームページ: http://www.csun.co.jp

株式会社日昇テクノロジー

低価格、高品質が不可能?

日昇テクノロジーなら可能にする

(27) FATFS

このサンプルは起動する時は先にSDカードを初期化する。成功すれば、2つのワークエリアを登録し(一つはSDカード用、一つはSPIFLASH用のため)、SDカードの容量と余裕空間を測定し、LCD上で表示し、最後 USMART からのコマンドでテストを行う。DSO で実行していることを示す。

注意:

- 1、一つのSDカードを用意してください。
- 2、USMART を通じ、各種の fatfs をコールしてテストする。

STM32F4

FATES TEST

www.csun.co.jp 2015/08/15

Use USMART for test

FATES OK!

SD Total Size: 3637MB

SD Free Size: 3088MB

(29) IMAGE

このサンプルは起動する時 SD カードの存在するかどうかを確認する。存在する場合、SD カードのルート・ディレクトリの下の PICTURE フォルダをを探す。見つけるとこのフォルダの下の画像のファイル (bmp、jpg、jpeg あるいは gif をサポートする) をループで表示し、KEYO と KEY1 で、PICTURE を閲覧できる。WK_UP キーは一時停止/再生の機能で、DS1 は当面の状態を一時停止かどうかを指示する。もし PICTURE フォルダ/画像のファイルが見つからないと、エラーの提示を表示する。本テストは DSO で実行していることを示す。

注意:

- 1、本テストは一つのSDカードをご用意ください。そしてSDカードでルート・ディレクト リでPICTUREフォルダ作り、いくつかの画像(BMP/JPG/JPEG/GIF)を入れ てください。
- 2、もし一部 jpg/jpeg を読み取れなったら、Windows XP のペイントツールで開いて保存してくだざい。
- 3、JPEG/JPG/BMP は LCD の解像度によって自動的にズームすることができる。GIF は LCD の解像度の以下でないとで読み取れない。

ホームページ: http://www.csun.co.jp

(30) AVP1ay

このサンプルソースは次の機能を実現する:立ち上げた後、まずは周辺装置を初期化する。若し問題がなければ、TFカードにある VIDEO ファイルの中のビデオ (avi フォーマット)を再生しはじめる。

ビデオを再生する時、TFT LCD 上に当ビデオの名前、番号、ビデオの総数、サウンドトラック数、オーディオサンプリングレード、フレームレート、再生時間と総時間などの情報も示す。KEY0 キーを押して次のビデオを再生する。WK_UP キーは早送り、KEY1 キーは早戻しができる。

注意:

- 1、TFカードー枚を用意する必要。
- 2、TF カードのルート目録に VIDEO フォルダーを作成し、AVI ビデオファイル (ビデオは MJPG しかサポートしない、オーディオは PCM でなければならない。そして、ビデオの解像 度は LCD の解像度より小さい又は同じでなければならない) を入れる。
- 3、本ボードでは、オーディオ・デコードが搭載してないので、音声は確認できない。

実行する際のイメージ

1、TFカード挿入してない場合:

2、avi ファイル保存してある TF カード挿入した場合:

シリアルポートから出力した情報:

(31) FPU(Julia)

このサンプルソースは次の機能を実現する:立ち上げた後、反復回数よりカラーテーブル (RGB565) を作成し、そして、ジュリア分形を計算して LCD 上に表示する。また、観察比較をし易いように、1フレームがかかる時間を統計する為に、プログラムはタイマー3を起動し、1フレームのジュリア分形図面を表示し終わった後、プログラムの実行時間、FPUが使用されているかどうかとズーム倍率などの情報を示す。KEYO/KEY1でズーム倍率を調節することができる。WK_UPで自動ズームと手動ズームを設定する。DSO はプログラムの実行状態を示す。

注意:

1、「46_1_FPU(Julia)_openHardwareFPU」と「46_2_FPU(Julia)_closeHardwareFPU」のソースコードは全く同じ、ただハードウェア FPU をオン・オフしただけ。

2、テストする時、まずは一つをダウンロードして、対応する時間とパラメーターを記録 する。そしてもう一つをダウンロードして、同じパラメーター、特に時間を見て、比較で きる。

46_1_FPU(Julia)_openHardwareFPU を実行時: 46_2_FPU(Julia)_closeHardwareFPU を実行時:

(32) DSP

47_1_DSP-BasicMath について

STM32F4 の DSP ライブラリの基本数学函数: arm_cos_f32 と arm_sin_f32、と標準ライブラ リの基本数学函数: cosf と sinf のスピード差を確認して、二つの計算がかかる時間を LCD に表示する。DSO はプログラムが実行状態である事を指示する。

47 2 DSP-FFT について

STM32F4 の DSP ライブラリの FFT 函数をテストする。プログラム実行後、1024 点検査序列が自動的に作成する。そして、KEYO を押すたびに、DSP ライブラリの FFT 計算法 (基 4 法)を呼び出して FFT 計算を実行する。LCD に計算時間を表示して、同時に FFT の結果をシリアルポートからも出力する。DSO はプログラムが実行状態である事を指示する。

実行イメージ:

低価格、高品質が不可能?

25

日昇テクノロジーなら可能にする

シリアルポート出力:

(33) HandWriter

このサンプルソースは次の機能を実現する:立ち上げて、タッチパネルの校正モードに入る。画面提示に従って、十字マークを4回クリックする。10秒間入力しない場合は自動で終わる。そして、入力待つ状態になる。LCDの手書きエリア内に数字あるいはカャラクタを入力する。入力し終わったたびに、自動的に識別状態に入って識別する。また識別の結果をLCDに表示する(同時にシリアルポートにも出力する)。KEYOを押すと、モードを切り替えることができる(4種類のモードがある)、KEY1を押すと、タッチパネルの校正モードに入る。DSOはプログラムが実行している状態を指示する。

注意:静電容量式タッチスクリーンを調整する必要がないので、静電容量式スクリーンを使用する時、KEY1を押しても反応が出ない。

ホームページ: http://www.csun.co.jp メール: info@csun.co.jp

実行イメージ:

(35) USBCardReader (Slave)

このサンプルソースは次の機能を実現する:立ち上げる時、SD カードと SPI FLASH が存在するかどうかを検査する、もし存在する場合、その容量を LCD に表示する。(存在しない場合、エラーを知らせる)。その後、USB を設定し始める。設定が成功したあと、PC 上に 2つのリムーバブルディスクが見つける。DS1 で USB がアクセスしていることを示して、LCD にも表示する。DS0 はプログラムが実行している状態を示す。

注意:

- 1、SD カード1枚を準備してください。(もしないなら、ボードに搭載した SPI FLASH ディスクしか使えない)。
- 2、ボードと PC を USB ケーブルで繋ぐ必要。

ホームページ: http://www.csun.co.jp

(37) UCOSII1-1-EventCall

このサンプルは下記機能を実現する。UCOSIIで3つのタスクを作成する:スタートタスク、 LEDO タスクと LED1 タスク。スタートタスクはその他のタスク (LEDO タスクと LED1 タスク) を作成後ハングする。LEDO タスクは DSO LED をコントロールする、1 秒間 80ms 点灯する。 LED1 タスクは DS1 LED をコントロールする、300ms 点灯して 300ms 消灯する。 本テストで使用した ucosii バージョンは V2.91 である。

(38) UCOSII-1-2-EventOther

このサンプルは下記機能を実現する。UCOSIIで3つのタスクを作成する:スタートタスク、 LED タスクと KEY タスク。スタートタスクはその他のタスク (LED タスクと KEY タスク)を 作成後ハングする。LED タスクは DSO/DS1 LED をコントロールする。KEYO を押して LED タ スクをハングして消灯する。KEY1を押してLEDタスクを再起動して点灯する。 本テストで使用した ucosii バージョンは V2.91 である。

(39) UCOSII-2-SemaphoreMailbox

このサンプルは下記機能を実現する。UCOSIIで6つのタスクを作成する:スタートタスク、

ホームページ: http://www.csun.co.jp

低価格、高品質が不可能?

日昇テクノロジーなら可能にする

LED タスク、タッチパネルタスク、BEEP タスク、メインタスクと KEY タスク。スタートタスクはその他のタスクを作成後ハングする。LED タスクは DSO LED をコントロールする。BEEP タスクはセマフォを申請する。タッチパネルタスクは Handwritting と CPU の使用量をテストする。KEY タスクはキーをスキャンする、優先順位が一番高い、キーをスキャン後、Mailbox で発送する。メインタスクは Mailbox でキーを検索して各種のタスクをコントロールする。

KEYO で DS1 の点滅をコントロールする。KEY1 でセマフォを申請する、LCD でカレント値を表示する、同時に Handwritting エリアの表示をクリアする。WK_UP でタッチパネルの校正を行う。

本テストで使用した ucosii バージョンは V2.91 である。

以

ホームページ: http://www.csun.co.jp