Effect of ¹²C+¹²C Rate & Convective Mixing on the Mass of ONe WD Progenitors

Ghina M. Halabi

PhD candidate
PhD supervisor: Prof. Mounib El Eid
American University of Beirut

CSSP 13 Sinaia, Romania 2014

Siess 2008

② 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

A 1.05 M_☉ COMPANION TO PSR J2222-0137: THE COOLEST KNOWN WHITE DWARF?

DAVID L. KAPLAN¹, JASON BOYLES^{2,3}, BART H. DUNLAP⁴, SHRIHARSH P. TENDULKAR⁵, ADAM T. DELLER⁶, SCOTT M. RANSOM7, MAURA A. McLaughlin^{2,9}, Duncan R. Lorimer^{2,9}, and Ingrid H. Stairs⁸

Department of Physics, University of Wisconsin-Milwaukee, 1900 East Kenwood Boulevard, Milwaukee, WI 53211, USA; kaplan@uwm.edu

² Department of Physics and Astronomy, West Virginia University, White Hall, Box 6315, Morgantown, WV 26506-6315, USA

³ Physics and Astronomy Department, Western Kentucky University, 1906 College Heights Boulevard #11077, Bowling Green, KY 42101-1077, USA Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255, USA

Space Radiation Laboratory, California Institute of Technology, 1200 East California Boulevard, MC 249-17, Pasadena, CA 91125, USA 6 ASTRON, P.O. Box 2, 7990 AA Dwingeloo, The Netherlands

National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475, USA

Begartment of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1, Canada Received 2014 April 4: accepted 2014 May 20; published 2014 June 20

Importance of M_{up} Astrophysical consequences

- Important for the theory of novae outbursts in cataclysmic variables when these stars belong to close binary systems
- Mass limits of WDs and their progenitors
- Mass limits of SNe and their progenitors
- Chemical yield of massive AGB stars and enrichment of ISM.
- For the SNe Rates: SNIa explosion requires a CO WD growing to the Chandrasekhar mass, which is favoured with a higher $M_{\rm up}$
- A lot of debate over M_{up}
- Etc...

What Affects M_{up}?

- Rates: eg. ¹²C+¹²C Convective mixing
- Metallicity
- **Binarity**
- Rotation
- Multi-dimensional simulations
- Mass-loss (?)

¹²C+¹²C: Current Status

- CF88 (Caughlan & Fowler 1988)
- Pignatari et al. 2013 (ApJ, 762, 31), M. Wiescher:

Possible **strong cluster resonance** at

 $E_{cm} = 1.5 MeV$ (Perez-Torres et al. 2006)

Upper limit (CU)

Pronounced ¹²C+¹²C resonance structure reported in the p and α channels, at $E_{cm} = 2.138 \, MeV$ (Spillane et al. 2007)

Recommended rate (CR)

Existence of a **hindrance term** for low energy fusion processes

Lower limit (CL)

Evolution of a 9M_o model

with the CF88 rate ...

 $9M_{\odot}$ Z=Z_{\odot} CF88 rate

Black zones: convective White zones: radiative

with the CR rate ...

Determination of M_{up}

Effect of the ¹²C+¹²C rate

Rate	M _{up} (Standard mixing)	
CF88	$8.5~\mathrm{M}_{\odot}$	
CR	$8.3~{\rm M}_{\odot}$	
CU	$7 M_{\odot}$	
CL	$9 M_{\odot}$	

Effect of core overshooting

$$\frac{dX_i}{dt} = \frac{\partial}{\partial M_r} \left[(4\pi r^2 \rho)^2 D \frac{\partial X_i}{\partial M_r} \right]$$

D = 0 in radiative zones

D ≠ 0 in convective zones

D in convective boundaries given by:

$$D_{os \text{ region}}(z) = D_{conv \ boundary} e^{\frac{-2z}{fH_p}}$$

f free parameter, H_p pressure scale height.

$$z = 0.1H_p$$

Halabi, El Eid, Champagne, ApJ (2012) Halabi AIP Conf. Proc (2014)

Effect of the ¹²C+¹²C rate + Overshooting

Rate	M _{up} (Standard mixing)	M _{up} (Core overshooting)
CF88	$8.5~\mathrm{M}_{\mathrm{\odot}}$	$8 M_{\odot}$
CR	$8.3~{\rm M}_{\odot}$	$7.5~{ m M}_{\odot}$
CU	$7 \mathrm{M}_{\odot}$	
CL	$9 M_{\odot}$	

Comments on Mass-loss

No mass-loss		
"low" mass-loss	Reimer's (η=0.5) +Bowen	10 ⁻⁶ -10 ⁻⁷ M _⊙ /yr + 10 ⁻⁵ M _⊙ /yr
"high" mass-loss	Reimer's (η=1.0) +Bowen	2x(10 ⁻⁶ -10 ⁻⁷)M _o /yr + 2x10 ⁻⁵ M _o /yr

M_{up} is not affected by mass-loss BUT

"high" mass-loss suppresses thermal pulsation (envelope mass cannot support effective He-shell burning)

"low" mass-loss has slight effect on central abundances

```
eg. prior to carbon burning for M_{initial} = 8.3 M_{\odot}
^{12}C = 0.4869 \text{ and } ^{16}O = 0.4886 \text{ (no mass-loss)}
^{12}C = 0.5072 \text{ and } ^{16}O = 0.4682 \text{ ("low" mass-loss)}
(M_{TP-AGB} = 7.98 M_{\odot})
```

Conclusions and Future work

- The determination of M_{up} is important and has several astrophysical consequences.
- M_{up} is affected by the uncertainty in the carbon-fusion rate. We need Better experimental determination & more insight on the probability of the α and p channels.
- M_{up} is also affected by the efficiency of convective mixing during the helium and hydrogen burning phases. Other factors are worth investigating.
- Mass-loss affects the core composition and thus, the composition of resulting ONe WD.
- SAGB evolution is extremely computationally demanding (high spatial and temporal resolutions)- we hope to investigate more masses/effects in the near future.
- The consequences on novae eruptions will be investigated through a collaboration with Prof. Jordi Jose, Universitat Politècnica de Catalunya, Barcelona (Halabi, El Eid, Jose 2014, in preparation).