Đại học Khoa học Tự nhiên Đại học Quốc gia TP. HCM

KHOA CÔNG NGHỆ THÔNG TIN LỚP 19CTT4

Tài liệu ôn thi cuối kỳ môn Hệ thống máy tính

PHẦN 4: MẠCH LOGIC

Ngày 05/07/2021

Mạch Logic 19CTT4

Mục lục

1	Khá	ái niệm mạch số	2
	1.1	Cổng luận lý(Logic gate)	2
	1.2	Bảng chân trị	2
	1.3	Một số đẳng thức cơ bản	4
2	Mạc	ch tổ hợp	4
	2.1	Khái niệm	4
	2.2	Độ trễ mạch	4
	2.3	Các bước thiết kế	5
	2.4	Ví dụ thiết kế mạch	6
	2.5	Môt số mạch tổ hợp cơ bản: mạch công	7

Mạch Logic 19CTT4

1 Khái niệm mạch số

Là thiết bị điện tử hoạt động với 2 mức điện áp:

- Cao: thể hiện bằng giá trị luận lý (quy ước) là 1.
- \bullet Thấp: thể hiện bằng giá trị luận lý (quy ước) là 0.

Được xây dựng từ những thành phần cơ bản là cổng luận lý (logic gate)

- Cổng luận lý là thiết bị điện tử gồm 1/ nhiều tín hiệu đầu vào (input) 1 tín hiệu đầu ra output.
- $output = F(input_1, input_2, ..., input_n)$.
- Tùy thuộc vào cách xử lý của hàm F sẽ tạo ra nhiều loại cổng luận lý.

Hiện nay linh kiện cơ bản tạo ra mạch số là transistor.

1.1 Cổng luận lý(Logic gate)

Tên cổng	Hình vẽ đại diện	Hàm đại số Bun
AND	-	\x.y hay \xy
OR	→	x + Y
XOR	1	\oplus
NOT	-	
NAND	-D-	
NOR		
NXOR		

1.2 Bảng chân trị

Example: This is a box

• AND

A	В	out
0	0	0
0	1	0
1	0	0
1	1	1

• OR

A	В	out
0	0	0
0	1	1
1	0	1
1	1	1

• NOT

A	out
0	1
1	0

• NAND

A	В	out
0	0	1
0	1	1
1	0	1
1	1	0

• NOR

Mạch Logic 19CTT4

A	В	out
0	0	1
0	1	0
1	0	0
1	1	0

A	В	out
0	0	0
0	1	1
1	0	1
1	1	0

1.3 Một số đẳng thức cơ bản

2 Mạch tổ hợp

2.1 Khái niệm

- \bullet Gồm n ngõ vào (input); m ngõ ra (output)
 - Mỗi ngõ ra là 1 hàm luận lý của các ngõ vào
- Mạch tổ hợp không mang tính ghi nhớ: Ngõ ra chỉ phụ thuộc vào Ngõ vào hiện tại, không xét những giá trị trong quá khứ

2.2 Độ trễ mạch

- Độ trễ mạch (Propagation delay/ gate delay) = Thời gian điểm tín hiệu ra ổn định thời điểm tín hiệu vào ổn định.
- Mục tiêu thiết kế mạch: làm giảm thời gian độ trễ mạch.

2.3 Các bước thiết kế

Thường trải qua 3 bước:

• Bước 1: Lập bảng chân trị:

A	В	F
0	0	1
0	1	1
1	0	1
1	1	0

• Bước 2: Viết hàm luận lý

$$F = \overline{AB}$$

• Bước 3: Vẽ sơ đồ mạch và thử nghiệm

2.3.1 SOP - Sum of Products

Giả sử đã có bảng chân trị cho mạch n đầu vào $x_1, ..., x_n$ và 1 đầu ra f.

- Ta dễ dàng lập công thức (hàm) logic theo thuật toán sau:
 - Úng với mỗi hàng của bảng chân trị có đầu ra = 1, ta tạo thành 1 tích có dạng $u_1.u_2...u_n$ với:

$$f(x) = \begin{cases} x_i, & \text{n\'eu } x_i = 1\\ \overline{x_i}, & \text{n\'eu} x_i = 0 \end{cases}$$

ullet Cộng các tích tìm được lại thành tổng -> Công thức của f

Ví dụ:

STT

$$x_1$$
 x_2
 x_3
 f

 0
 0
 0
 0
 0

 1
 0
 0
 1
 $1 \rightarrow \overline{x_1}.\overline{x_2}.x_3$

 2
 0
 1
 0
 $1 \rightarrow \overline{x_1}.x_2.\overline{x_3}$

 3
 0
 1
 1
 0

 4
 1
 0
 0
 0

 5
 1
 0
 1
 $1 \rightarrow x_1.\overline{x_2}.x_3$

 6
 1
 1
 0
 0

 7
 1
 1
 1
 0

$$f = \overline{x_1}.\overline{x_2}.x_3 + \overline{x_1}.x_2.\overline{x_3} + x_1.\overline{x_2}.x_3$$

- 2.3.2 POS Product of Sum
- 2.3.3 Đơn giản hóa hàm logic
- 2.3.3.1 Đại số Bun
- 2.3.3.2 Bản đồ Karnaugh

2.4 Ví dụ thiết kế mạch

Ví dụ 1: Thiết kế mạch cộng 2 bits không nhớ

• Bước 1: Lập bảng chân trị

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

• Bước 2: Lập biểu thức

$$F = \overline{A}.B + A.\overline{B}$$
$$= A \oplus B$$

• Bước 3: Vẽ mạch

Ví dụ 2: Thiết kế mạch kiểm tra số nguyên không dấu 3 bits có chia hết cho 3

• Bước 1: Lập bảng chân trị

A	В	F
0	0	0
0	1	1
1	0	1
1	1	0

• Bước 2: Lập biểu thức

$$F = \overline{A}.B + A.\overline{B}$$
$$= A \oplus B$$

Mạch Logic

 $19\mathrm{CTT4}$

• Bước 3: Vẽ mạch

$$\begin{array}{c} A \\ B \end{array} \hspace{-1em} \longrightarrow \hspace{-1em} \hspace{-1e$$

2.5~ Một số mạch tổ hợp cơ bản: mạch cộng,...