2009 年试题参考答案

一、选择

1-5BDDAA 6-10BBDCB 11-15 AACAC 16-20ACABD 21-25ACDBD26-30CDDDC 部分题目解析:

3、平均功率 R(0) 或 $E[x^2(t)]$,直流功率 $R(\infty)$ 或 $E^2[x(t)]$,交流功率 $R(0)-R(\infty)$ 或

 $E[x^2(t)] - E^2[x(t)]$, 注意题干条件均值为 0, 因此平均功率 $E[x^2(t)] = D[x(t)]$

7、多径传播危害: 频率弥散、频率选择性衰落和瑞利衰落。

8、各调制信号带宽为(fm为信号最高频率)

 $SSB: f_m, AM \neq DSB: 2f_m, VSB: f_m < B < 2f_m, FM: 2(\Delta f + f_m)$

14、平顶抽样又称瞬时抽样,曲顶抽样又称自然抽样。

二、判断题

 $1-5 \checkmark \times \times \times \checkmark 6-10 \times \checkmark \times \times \times$

三、简答题

1、时域
$$h(kT_s) = \begin{cases} 1 & k = 0 \\ 0 & \text{其他} \end{cases}$$
,频域 $\sum_{i=-\infty}^{+\infty} H(w + \frac{2\pi i}{T_s}) = T_s \quad |w| \le \frac{\pi}{T_s}, \eta = \frac{2}{1+\alpha} baud / hz$

2、最大似然准则

3、预编码 $b_n=a_n\oplus b_{n-2}$,相关编码 $c_n=b_n-b_{n-2}$,译码 $a_n'=[c_n]_{\mathrm{mod}\,2}$

4、m 序列特点: ①均衡性: 0 的数目与 1 的数目基本相等; ②游程分布: 长度为 k 的游程数目出现的概率为 $\frac{1}{2^k}$; ③自相关函数: 仅有两种取值(1 和 $-\frac{1}{m}$);

④功率谱密度: $T_0 \to \infty$, $\frac{m}{T_0} \to \infty$ 时, 近似于白噪声特性; ⑤移位相加性:

 $M_p \oplus M_q = M_s$,其中 M_p 和 M_q 是经任意次延迟产生的序列且 $M_p \neq M_q$ 。

5、平方环法:用锁相环代替平方变换法中的 2fc 窄带滤波器。

四、

$$1, Y(t) = X(t) - X(t - T_d)$$

$$\begin{split} R_Y(\tau) &= E[Y(t)Y(t+\tau)] = E\{[X(t) - X(t-T_d)][X(t+\tau) - X(t-T_d+\tau)]\} \\ &= E[X(t)X(t+\tau) - X(t)X(t-T_d+\tau) - X(t-T_d)X(t+\tau) + X(t-T_d)X(t-T_d+\tau)] \\ &= 2R_Y(\tau) - R_Y(\tau - T_d) - R_Y(\tau + T_d) \end{split}$$

2.
$$P_Y(w) = 2P_X(w) - P_X(w)e^{-jwT_d} - P_X(w)e^{jwT_d} = 2P_X(w)(1-\cos wT_d)$$

3、由
$$Y(t) = X(t) - X(t - T_d)$$
进行傅立叶变换 $Y(w) = X(w) - X(w)e^{-jwT_d}$

$$H(w) = \frac{Y(w)}{X(w)} = 1 - e^{-jwT_d}$$

五、

1、抽样频率
$$f_s=8khz$$
,帧长 $T_s=\frac{1}{f_s}=125\mu s$, 时隙 $\tau=\frac{T_s}{20}=6.25\mu s$,量化位数

$$\log_2 64 = 6$$

2、码元周期
$$T = \frac{\tau}{6}$$
,传码率 $R_B = \frac{1}{T} = 960kbaud$

3、奈奎斯特带宽
$$B = \frac{R_B}{2} = 480 khz$$

六、

1.
$$f_1 = f_c + \frac{f_s}{4} = 2R_B + \frac{1}{4}R_B = \frac{9}{4}R_B$$
, $f_2 = f_c - \frac{f_s}{4} = \frac{7}{4}R_B$

2、 $f_1 = 2f_s$, $f_2 = 1.5f_s$,用 f_1 表示"1", f_2 表示"-1",图形如下:

3、

七、

1、
$$R_B = \frac{1}{T} = 0.5$$
Mbaud, $f_s = 10$ khz 设量化位数为 N, $10 \times \log_2 N \times f_s \le R_B$,N=32

2、 ΔM 系统可看做由一位二进制编码表示的 PCM, $20f_{s_\Delta} \leq R_B \Rightarrow f_{s_\Delta} = 25khz$ 八、

1.
$$\pm B = \frac{R_B}{2} \Rightarrow R_B = 2Bbaud$$

2、抽样速率
$$f_s = 2f_m$$
, 设码组长度为 n, $nf_s = R_B \Rightarrow n = \frac{B}{f_m}$

3、量化信号功率
$$S = \frac{1}{T_s^2} \frac{M^2 \Delta V^2}{12}$$
,量化噪声功率 $N = \frac{1}{T_s^2} \frac{\Delta V^2}{12}$, $M = 2^n$,

$$\frac{S}{N} = M^2 = 2^{2n} = 2^{\frac{2B}{f_m}}$$