PINN aplicada a sistemas de Compressão de Gás Natural

Matheus Marinho Bezerra, Rodrigo Lima Meira, Leonardo Silva de Souza, Márcio André Fernandes Martins

8 de outubro de 2025

Contexto e Objetivo do Trabalho

Contexto Histórico na Indústria do Petróleo:

- Importância do Transporte de Gás Natural: movimentar o gás até consumidores finais (indústrias, usinas, centros urbanos) é um processo essencial, porém com alto custo operacional.
- Limitações dos Modelos Tradicionais: métodos numéricos apresentam elevado tempo computacional (Marfatia e Li 2022), enquanto modelos aproximados sacrificam precisão.
- Avanços com Redes Neurais: desde os anos 90, redes neurais têm sido aplicadas no setor (Mohaghegh et al. 1996), buscando equilíbrio entre precisão e eficiência.
- Physics-Informed Neural Networks (PINNs): propostas por Raissi, Perdikaris e Karniadakis 2017, integram dados experimentais às leis físicas, aumentando a precisão e reduzindo o tempo de simulação.

Objetivo Principal

Construir uma PINN (Physics Informed Neural Network) que modele o comportamento dinâmico de um sistema de compressão de gás natural.

Sistema de Compressão e Gás Natural

Figura 1: Sitema de Compressão retirado de Meira 2022

Composição do gás

O gás natural utilizado é rico em metano, com composição baseada em Chaczykowski 2009:

• CH₄: 98,34% C₂H₆: 0,61%

● C₃H₈: 0,15% iC₄H₁₀: 0,03%

1041110. 0,007

● nC₄H₁₀: 0,03% CO₂: 0,80%

Traços de: iC₅H₁₂, nC₅H₁₂, N₂

A equação de estado de Soave 1972 foi utilizada para modelar o comportamento termodinâmico do gás:

$$P = \frac{RT}{V - b} - \frac{a(T)}{V(V + b)}$$

com:

 \bullet a(T): fator de correção das forças intermoleculares

• b: correção do volume molecular

Equações e Variáveis do Modelo de Meira 2022

Equações que descrevem a dinâmica do sistema:

$$\frac{d\dot{m}}{dt} = \frac{A_1}{L_c}(P_2 - P_P)$$

$$\frac{dV_P}{dt} = -\frac{V_P^2}{v_{PM}} \left(\dot{m} - \alpha k_v \sqrt{P_P - P_{\text{out}}} \right)$$

$$\begin{split} \frac{dT_{P}}{dt} &= \begin{array}{c} \frac{V_{P}\dot{m}}{dt} \left(\frac{h_{c} - h_{p}}{C_{V}}\right) + \\ &+ \frac{R_{a}T_{P}}{C_{V}} \left[T_{P} \left(\frac{\partial Z_{P}}{\partial T}\right)_{V_{P}} + Z_{P}\right] \frac{V_{P}}{v_{P}M} \left(\dot{m} - \alpha k_{v} \sqrt{P_{P} - P_{\mathsf{out}}}\right) \end{split}$$

$$0 = f(x, z, u)$$
 (equações algébricas)

Variáveis estimadas pelo modelo:

- m. vazão mássica
- (1)• T_P , V_P , P_P : variáveis no plenum
 - \bullet P_2 , T_2 , V_2 : saída do compressor
- (2) T_{2s} , V_{2s} : pós-compressão isentrópica
 - T_{imp} , V_{imp} : impelidor
 - T_{dif} , V_{dif} : difusor

Observação: Variáveis em azul correspondem às entradas da rede neural, obtidas por medição.

Estrutura da Rede Neural Proposta

Figura 2: Diagrama da arquitetura da PINN.

Função de Loss e Hiperparâmetros da Rede

A função de perda é composta por quatro parcelas:

$$\mathsf{Loss} = \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(\hat{y}_{d,i}^* - y_{d,i}^* \right)^2}_{\mathsf{Mensuráveis differenciais}} + \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(\hat{y}_{a,i}^* - y_{a,i}^* \right)^2}_{\mathsf{Mensuráveis algébricas}} + \underbrace{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{d\hat{x}_i}{dt} - \frac{d\hat{x}_i^{an}}{dt} \right)^2}_{\mathsf{Consistência com as EDOs}} + \underbrace{\frac{1}{N} \sum_{i=1}^{N} (\hat{z}_i - z_i)^2}_{\mathsf{Variáveis algébricas estimadas}}$$

Onde:

- \hat{y}_{d}^{*} : variáveis diferenciais mensuráveis (ex: \dot{m} , T_{P});
- \hat{y}_a^* : variáveis algébricas mensuráveis (ex: P_2 , T_2);
- \hat{x}_i : variáveis diferenciais com derivada temporal avaliada numericamente;
- \hat{z}_i : variáveis algébricas previstas pela rede;
- z_i: variáveis algébricas calculadas pelo solver externo.

Hiperparâmetros do Modelo

Parâmetro	Valor
Nº de camadas (LSTM)	1
Learning Rate inicial	$1 \cdot 10^{-4}$
Tamanho do mini batch	64
Neurônios por camada	100
Nº de épocas	200
Otimizador	Adam

Resultados de Previsão – Parte 1

Figuras 3 e 4: Comparação entre os valores previstos pelo modelo e os dados reais para as variáveis associadas ao plenum (T_P, V_P, P_P) , saída do compressor (P_2) e impelidor (T_{imp}, V_{imp}) .

Resultados de Previsão – Parte 2

Figuras 5 e 6: Comparação entre os valores previstos pelo modelo e os dados reais para as variáveis do difusor (T_{dif} , V_{dif} , T_2), do plenum (\dot{m}), e da pós-compressão isentrópica (T_{2s} , V_{2s}), além da saída do compressor (P_2).

Distribuição do Tempo de Simulação

Figura 5: Distribuição do tempo de simulação dos experimentos/modelos.

Conclusão

- A técnica PINN apresentou um desempenho superior em termos de tempo de execução quando comparada aos métodos tradicionais. Enquanto manteve previsões com boa precisão.
- Em média, a PINN foi:
 - aproximadamente 20 vezes mais rápida que o IDAS.

Agradecimentos

Agradeço à Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP), no âmbito do PRH 35.1, PRH 41/UFBA pelo suporte financeiro e apoio desenvolvimento deste ao trabalho.

Bibliografia I

- Chaczykowski, M. (2009). "Sensitivity of pipeline gas flow model to the selection of the equation of state". Em: *Chemical Engineering Research and Design* 87.12, pp. 1596–1603. ISSN: 0263-8762.
- Marfatia, Zaid e Xiang Li (2022). "Data-Driven Natural Gas Compressor Models for Gas Transport Network Optimization". Em: *Digital Chemical Engineering* 3, p. 100030. ISSN: 2772-5081.
- Meira, Rodrigo Lima (2022). "Modelagem rigorosa em regime dinâmico e controle preditivo de sistemas de transporte de fluidos compressíveis integrados a compressores centrífugos". Tese (Doutorado em Engenharia Industrial). Universidade Federal da Bahia.
- Mohaghegh, Shahab et al. (1996). "Petroleum reservoir characterization with the aid of artificial neural networks". Em: *Journal of Petroleum Science and Engineering* 16.4, pp. 263–274.

Bibliografia II

- Raissi, Maziar, Paris Perdikaris e George Em Karniadakis (2017). "Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations". Em: arXiv preprint arXiv:1704.03718.
- Soave, G. (1972). "Equilibrium constants from a modified Redlich-Kwong equation of state". Em: Chemical Engineering Science 27.6, pp. 1197–1203. ISSN: 0009-2509.