SUBSTITUTE SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: GENSET SA
 - (B) STREET: 24 RUE ROYALE
 - (C) CITY: PARIS
 - (E) COUNTRY: FRANCE
 - (F) POSTAL CODE: 75008
- (ii) TITLE OF INVENTION: HUMAN DEFENSIN DEF-X GENE AND DNAG COMPOSITION CONTAINING SAME AND DIAGNOSTIC AND THERAPEUTIC APPLICATIONS
 - (iii) NUMBER OF SEQUENCES: 6
 - (iv) CORRESPONENCE ADDRESS:
 - (A) ADDRESSEE: Saliwanchik, Lloyd & Saliwanchik
 - (B) STREET: 2421 N.W. 41st Street, Suite A-1
 - (C) CITY: Gainesville
 - (D) STATE: Florida
 - (E) COUNTRY: USA
 - (F) ZIP: 32606
 - (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERARATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
 - (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER (unassigned)
 - (B) FILING DATE: OCTOBER 18, 2001
 - (vii) PRIORITY APPLICATION DATA:
 - (A) APPLICATION NUMBER 09/486,580
 - (B) FILING DATE: FEBRUARY 25, 2000
 - (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Frank C. Eisenschenk, Ph.D.
 - (B) REGISTRATION NUMBER: 45,332
 - (C) REFERENCE/DOCKET NUMBER: GEN-100D1
 - (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 4415 BASE PAIRS
 - (B) TYPE: NUCLEOTIDE
 - (C) STRANDEDNESS: DOUBLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: DNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (ix) FEATURE:
 - (A) NAME/KEY: Exon 1
 - (B) LOCATION: 1836..1874

1	احداثا		ב א	TI	JRE	
1	. 1 X	1 1	ĿΑ	L L	ノスピ	:

(A) NAME/KEY: Exon 2

(B) LOCATION: 3394..3577

(ix) FEATURE:

(A) NAME/KEY: Exon 3

(B) LOCATION: 4161..4380

(ix) FEATURE:

- (A) NAME/KEY: start CDS
 (B) LOCATION: 3406..3408

(ix) FEATURE:

- (A) NAME/KEY: stop CDS
 (B) LOCATION: 4276..4278

(ix) FEATURE:

- (A) NAME/KEY: polyadenylation site(B) LOCATION: 4374..4379
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:

ACACCATTTG	TCTTCATGTA	ACCCCATTAG	CTATACCCTC	TAGTGCAAGG	AAACCATAGG	60
GCCTAGGTCA	CACCATGAGG	CTGCNCTTAC	AAGTTATGCA	AAAACTATGG	ACTTGGGAGA	120
CCTGTGCGTA	ACAACATCAC	ACNCCAAATT	TAACCAGCTC	TCCCCATAAC	AGCACGCTCA	180
TGTGTTACTG	AGGAAATGCC	TGTGGATTGG	AGTGTGTTCT	GTGTGCAGGA	GGCTGGTCCA	240
GGTTTCACTT	CTGCAGGACA	CTGGACGTTT	CCCAAAACCA	GCAGACTTTC	CCCACGTGCA	300
CACACACCCC	TTCTCATTTT	GCCTCTACAT	CCATATCCAC	TGGGCCCTTC	AGGCACCTAC	360
TAATGCCCTA	GAACCTAAAA	CCATCATCTG	GGGCCCAGTT	CCCTGAATGG	CCCTAATCTC	420
TTCCTCTGCT	GGAATGAGTC	CAGTGCCCAC	TTCCTCCAAC	GGTGAAATTG	CTGGGCTGCT	480
ACAGATCAGG	AACTCACTGC	TTCCTCATAG	GGGCAGCCGA	CTTCACTGCT	CTGCAACAGC	540
GACCACCCCT	AGCGAGGCTT	GAGATGCCTC	TTGCCTCCTT	AAGACTGAGG	GAGACGCTTC	600
AGCTCTCACT	CCACTGCCCC	AAGTCCTCCA	CAGCGCGGTG	CCTGCTGCCT	TCACACAGAG	660
CTGCAGGGGN	AGGTCCTGTG	TATCCGGCCT	GCTGGACCAG	CGCTGTGCAC	AACCCTCCCA	720
TGGCAACAGT	GGCTGCCCGG	CCTGCACACT	GGGCTTGGCA	ACCTCGCTGT	AGGTATTTAT	780
TCCCTCAGGA	GTGACTGCAT	TCTTTTCCCA	TTTCCAGAAA	ACTGATGCCA	TTTACCTCAC	840
TATGAGGAGG	AGGAGGAGGA	GGAGGGTGGA	GAGTGGTACA	TTTTAAAATG	TGCACTATTC	900
TCCCTAGGAC	TCCCCCTCAA	ATAACCCAGG	AGGGACCATA	CCAGCTCATT	CCTGTGTATC	960
CCAAGCATAN	GAGTAATCAT	CCCACTCATG	CTGAGTGTAT	GGTGGCCATT	AAGCCTGCCC	1020
TGAACTGGCT	TTAGAACAAG	GTGTTTGAGC	ACACAGCACC	GTCTTGCTGC	CACCTTGGCC	1080
CCCTCCCTTG	TGAGACCTCT	GAGACACATT	NAGGTCTCAC	CTAAAAATCT	CAGGATTTCT	1140

3 GEN-100D1

AGGCCCAAAN	CGGTCCTAAA	AAATTGTTCA	GTCTGAACTC	TCTAAGGTCA	AGAGAAGAGG	1200
TGGTTGCTCC	CTCTAAGAAA	CCACATGTTG	CATGTACATO	CTTAATTCCC	GAAAGTCCAA	1260
CAAACCTGCC	CTGCTTAGCA	ACACAAGCCG	AGGTGGTACT	CCTCTCACCC	GGGCATTCTC	1320
CAACACACCT	GTTTGTCCAA	ACAGCTTTGA	TTTGTTTTTA	TAGTTGGACC	CCAGGTTCCC	1380
AGGAGGCTGG	TTCAGGCCAT	ATTCCAAATC	CTCATCTGTG	TGTGAGTGGC	ATTCTTAGCC	1440
TAGCCTCCTT	ACAGGGTGGA	TACTATGATA	CACAGCCAGG	CTGTCCCAGT	GGCTTTCAAT	1500
ATTCTTTTGG	TCCAGATAGT	TCAGCCTCAG	CACCAGTGTA	GGCATCACAG	GGTCAATTGT	1560
CTTAGGAGTC	ATGGAGAATT	CATAGTTGGT	AGCTACCTGG	GCCTGGCCAG	GGCTGACCAT	1620
AGACAAGGCA	TCCCTCTGTG	AACTCCTATT	TTAATGCCAG	CTTCCCAACA	AATTTCTCAA	1680
CTGCTCTTAC	CAGCAGGTAT	TTAAACTACT	CAATAGAAAG	TAACCCTGAA	AATTAGGACA	1740
CCTGTTCCCA	AAAGACCCTT	AAATAGGGGA	AGTCCTTTCN	CTGCTTGTGC	ACAGCTGCTG	1800
ATGTGGCAAC	ATGAGGCCTG	GGACAGGGGA	CTGTCCTCTG	CCCACTCTGG	TAGCCTCACG	1860
TAGCTTAACA	ATCTGTCAGT	AATACAATAC	ААААСТТААА	CTTTCATACT	GCGGTTCCAC	1920
CCAGGAAGCT	GTGTTCCCAA	TCTGACCCGT	GATTATGGGG	CCACCTCAGA	GGGNACCCAG	1980
TGAGGGAATA	TTTTGCCATC	TGGGACTGTT	GGTTGCTGGG	GGCAGTGGCT	ATGAGCTCAG	2040
TTAATAAACT	CAAGCAGTTT	CCTTCCAAAC	ACACATGTCC	TACTTAACGT	GTCCAACAGA	2100
GATGATCATA	CTCATANGCT	GCTAAAACAT	TANTTTTATT	TTGAGAAAAG	TCTATTCATG	2160
TTCTTGGCCC	ATGGAGTTTT	CATTTNATTA	NTTTATTTAT	TTTGCAGAGA	TGGAGTCTCA	2220
CTATGTTGCT	CAAGCTGGTC	TCCAACTCCT	GGGCTCAAGC	GATCTTCCTA	CTTTGGCCTT	2280
TGAAAGCGCT	GAGATTGCCT	GTGTGAGCCA	TCATGGGGGC	TCACTGGCCC	ACTGATTAAT	2340
CAGATTAATT	GTTTTTTGCT	ATTGAANTTG	TTTGACTTCC	TTGTATATTC	GGATATTTAC	2400
CCATTCTAAC	ACGTAGGGTT	TGCAAATATT	TTCTCTCATG	TTCTGTGTTG	CCTTTTCACT	2460
CAGTTGATGG	TTTCCTTTGC	TGTGCAGGTG	CTTTAGTGTT	CAACGCAGCC	CCGCTTGTCT	2520
ATTTTCCATT	TTATTGCCTG	TCCCTTTGAT	GTCATAGCCA	AGAAATAATT	GCCCAGATTA	2580
ATGTCAAAAA	GCTTTATCCC	TATATATTCT	TCTAGTAGTT	TATGGTTTCA	GATCTTATGT	2640
TTAGGTCTTC	AATCCATTGA	GTTGATTTTT	GTATGTGGTA	TAAGAAAAA	GACCACATGT	2700
ATACATATCT	САААТТСТАА	GGTAGTATAT	ATTAGACACA	TACAATGTGT	CTATTTACAC	2760
ACATTGAGCT	GAAAATAATA	AACATATTTT	TATCTTTCAA	TCAACTCTAT	CTCTATCTCA	2820
CTGAACTTGT	TTCACCTATA	GCCTGATGAG	GTTGCTGTCC	TCTCTACCCC	AGCTCCTATA	2880
GGAGACTGCT	CATCCCCTAA	CCTCAAAAAC	CCCTTCATGA	GGGTGATAAT	GCCCTTGAAT	2940
CCTGCAATGA	ATTAGTTCTC	TACTACAGTG	GAATTCAGGT	CTGTTATGAG	GGTCTGGATC	3000

rctgaagaga	AGAGCTCTCA	TTTTCAGAAA	ATAAGCAGGA	TTTATTCCCT	GAAATTACTG	3060
AATTAAATCA	CTGTTTCGAT	TACTTTTTGC	AATATTAAAA	GTAAATATTT	AAACAGGTAA	3120
AAACAGAAAT	AATGGTAGGG	TCCTTATCAT	CACCGTGAAT	TCCAAGCTAG	CATAGACACT	3180
AAACCTAGAG	ATTCACACTA	GAATGAAAGC	TGGGAGAGCA	GAGGAGTCTC	AGAAGGATGT	3240
GGAGGCCAAT	GGACACCTGC	AACCTCTCCA	ACGAAATGCC	TACCTCCTCT	CACTGCAGCA	3300
rccatctctg	AGCCTTCTCG	CAGCAGAGCT	ATAAATTCAG	CCTGGCTCCT	CCGTTCCCAC	3360
ACATCCACTC	CTGCTCTCCC	TCCTCTCCTC	CAGGTGACTA	CAGTTATGAG	GACCCTCACC	3420
CTCCTCTCTG	CCTTTCTCCT	GGTGGCCCTT	CAGGCCTGGG	CAGAGCCGCT	CCAGGCAAGA	3480
GCTCATGAGA	TGCCAGCCCA	GAAGCAGCCT	CCAGCAGATG	ACCAGGATGT	GGTCATTTAC	3540
TTTTCAGGAG	ATGACAGCTG	CTCTCTTCAG	GTTCCAGGTG	AGAGATGCCA	GCATGCAGAG	3600
CTACAGACTA	GACAGAAGGA	CAGGAGACAG	GCTCTGGAAT	TGGATCTCAG	TGGCAGATGT	3660
CACTTAGGTG	GCTATACTTA	ACATCTCTGG	TCCTGGATTT	TCTCATATCT	AAATGGAATA	3720
GAGAACCAAA	GAAATCTAAG	AGATTTTTCT	TTCTCCAAAA	ACTTGATTCC	AAGATATGAC	3780
TGTGAAATTC	ACTAGATTTA	AGATATAAGG	AGATGCTACC	TAGTTCCTTC	TGGAGCCAGA	3840
CAAACAAGCT	TAAGTATATA	GGAAAATATT	TCACCCTGTC	TATATAGGAG	GTTTTAGAAC	3900
CTGGAGAGGA	GCCTAAGAAT	GTGTTCAGGT	GTGTGTGA	TGGGCAGGAA	TGCAGAAAAG	3960
GAAGCAAAG	GAGAATGAGT	CTCGAATCCT	GTGTGACCAG	CACTGCTCTG	TGTATTTATT	4020
CCTATTGACT	GAGATTGTTT	GTGCTACCGG	CTGTAATACA	GCCAACATCA	CTCATCAGCC	4080
ACATGTGAC	TTCTCCAAGA	TTCCCTTTAC	CACCCACTGC	TGNACCCCGT	ACTCAGTTTC	4140
GATGCTCTC	TCTGGGTCCC	CAGGCTCAAC	AAAGGGCTTG	ATCTGCCATT	GCAGAGTACT	4200
TACTGCATT	TTTGGAGAAC	ATCTTGGTGG	GACCTGCTTC	ATCCTTGGTG	AACGCTACCC	4260
AATCTGCTGC	TACTAAGCTT	GCAGACTAGA	GAAAAAGAGT	TCATAATTTT	CTTTGAGCAT	4320
TAAAGGGAAT	TGTTATTCTT	ATACCTTGTC	CTCGATTTCC	TGTCCTCATC	CCAAATAAAT	4380
CTTGGTAAC	ATGATTTCCG	GGTTTTTTT	TTTTT			4415

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTIC:
 - (A) LENGTH: 453 BASE PAIRS
 - (B) TYPE: NUCLEOTIDE
 - (C) STRANDEDNESS: DOUBLE (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: cDNA
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

CTCT	rgcco	CAC 1	rctgo	GTAGO	CC TO	CACGT	rage"	TAT 1	ACAAT	rctg	TGAG	CTACA	AGT T		G AGG E Arg	57
	CTC Leu															105
GCA Ala	GAG Glu 20	CCG Pro	CTC Leu	CAG Gln	GCA Ala	AGA Arg 25	GCT Ala	CAT His	GAG Glu	ATG Met	CCA Pro 30	GCC Ala	CAG Gln	AAG Lys	CAG Gln	153
	CCA Pro															201
	TGC Cys															249
	AGA Arg															297
	ATC Ile											TAA * 95	GCT	rgca(GAC	346
TAG	AGAA	AAA (GAGT:	CATA	AA T	rttci	rttg <i>i</i>	A GC	ATTA	AAGG	GAAT	TGT	TAT	CTT	ATACCT	406
TGT	CCTC	GAT T	rtcc:	rgrco	CT CA	ATCC	CAAAC	LAA 1	ATACI	rtgg	TAAC	CATG				453

(2) INFORMATION FOR SEQ ID NO: 3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 94 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: PROTEIN
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (ix) FEATURE:
 - (A) NAME/KEY: SIGNAL PEPTIDE
 - (B) LOCATION: 1..19
- (ix) FEATURE:
 - (A) NAME/KEY: PRO REGION
 - (B) LOCATION: 20..63
- (ix) FEATURE:
 - (A) NAME/KEY: MATURE PEPTIDE

(B) LOCATION: 64..94

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 3:

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln $_{1}$ 5 10 15

Ala Trp Ala Glu Pro Leu Gln Ala Arg Ala His Glu Met Pro Ala Gln 20 25 30

Lys Gln Pro Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly $\frac{35}{40}$

Asp Asp Ser Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu Ile 50 55 60

Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly Gly 65 70 75 80

Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr 85 90

(2) INFORMATION FOR SEQ ID NO: 4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 19 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
- (ii) MOLECULE TYPE: SIGNAL PEPTIDE
- (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Arg Thr Leu Thr Leu Leu Ser Ala Phe Leu Leu Val Ala Leu Gln

Ala Trp Ala

- (2) INFORMATION FOR SEQ ID NO: 5:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 44 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: PRO REGION
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 5:

Pro Ala Asp Asp Gln Asp Val Val Ile Tyr Phe Ser Gly Asp Asp Ser $20 \\ 0 \\ 30$

Cys Ser Leu Gln Val Pro Gly Ser Thr Lys Gly Leu 35 40

- (2) INFORMATION FOR SEQ ID NO: 6:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 31 AMINO ACIDS
 - (B) TYPE: AMINO ACID
 - (C) STRANDEDNESS: SINGLE
 - (D) TOPOLOGY: LINEAR
 - (ii) MOLECULE TYPE: MATURE PEPTIDE
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Homo sapiens
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 6:

Ile Cys His Cys Arg Val Leu Tyr Cys Ile Phe Gly Glu His Leu Gly
1 5 10 15

Gly Thr Cys Phe Ile Leu Gly Glu Arg Tyr Pro Ile Cys Cys Tyr 20 25 30