Question 1

- a) All resistors produced.
- b) The 1520 resistors tested.
- c) The true proportion of faulty resistors. Symbol: p.

Value: unknown (must be estimated).

d) The proportion of faulty resistors in the *sample*. Symbol: \hat{p} .

Value: $\hat{p} = \frac{18}{1520} \approx 0.012 = 1.2\%$.

e) Only looked at resistors produced during the morning shift. What about other times of the day?

Question 2

- a) All UL students.
- b) The 286 students who responded.
- c) The true mean time spent on Facebook. Symbol: μ .

Value: unknown (must be estimated).

d) The mean time based on the *sample*. Symbol: \bar{x} .

Value: $\bar{x} = 1.5 \text{ hours / day.}$

e) What about the students who didn't reply? Even those who did - do we believe they are telling the truth?

Question 3

Age (years) - numeric discrete

Temperature - numeric continuous

Opinion of maths - categorical

Processor speed (GHz) - numeric continuous

Number of bugs - numeric discrete

Employment status - categorical

Gender - categorical

Time taken - numeric continuous

Distance - numeric continuous

Paying attention in class - categorical

File size (GB) - numeric continuous

Question 4

a)
$$n = 359 + 81 + 24 + 18 + 18 = 500$$
.

	Category	Freq.	R. Freq.
b)	Android	359	$\frac{359}{500} = 0.718$
	Apple	81	$\frac{81}{500} = 0.162$
	Other	24	$\frac{24}{500} = 0.048$
	BlackBerry	18	$\frac{18}{500} = 0.036$
	Windows	18	$\frac{18}{500} = 0.036$
	Total:	n = 500	$\frac{500}{500} = 1.000$

c) $\hat{p}_{\text{(android/apple)}} = 0.718 + 0.162 = 0.88.$

- d) $\hat{p}_{\text{(other)}} = 0.048$.
- e) Value: unknown. Symbol: $p_{\text{(other)}}$.

g) Android now dominates the market.

Question 5

It is usually helpful to rearrange the data:

0.1	0.2	0.2	0.4	0.7	0.7	0.9	1.0	1.0	1.4
1.5	1.6	2.2	2.3	3.0	3.0	3.3	3.4	4.2	5.4
5.6	5.7	6.1	12.9	14.3					

- a) n = 25. $\bar{x} = \frac{\sum x_i}{n} = \frac{81.1}{25} = 3.244$ hours.
- b) width = $\frac{\max(x) \min(x)}{\text{# of classes}} = \frac{14.3 0.1}{5} = \frac{14.2}{5} = 2.84.$

Always round up the width \Rightarrow width = 3.

Starting at $0 \Rightarrow 0$ - 3, 3 - 6, 6 - 9, 9 - 12, 12 - 15.

Classes: 0 - 2.9, 3 - 5.9, 6 - 8.9, 9 - 11.9, 12 - 14.9.

(continued on next page)

Question 5 - continued

	Class	Freq.	R. Freq.
	0 - 2.9	14	$\frac{14}{25} = 0.56$
b)	3 - 5.9	8	$\frac{8}{25} = 0.32$
	6 - 8.9	1	$\frac{1}{25} = 0.04$
	9 - 11.9	0	$\frac{0}{25} = 0.00$
	12 - 14.9	2	$\frac{2}{25} = 0.08$
	Total:	n = 25	$\frac{25}{25} = 1.00$

The data is skewed to the right.

- c) Relative frequencies in table above.
- d) $\hat{p}_{(>6 \text{ hrs})} = 0.04 + 0.00 + 0.08 = 0.12.$
- e) The true proportion is called a parameter. Value: $p_{(>6 \text{ hrs})} = \text{unknown}$.