PERSONALITY RESEARCH METHODS

SOGANG UNIVERSITY, FALL 2023

WEEK 3, 09/18/2023

Instructor: Emily K. Hong, Ph.D.

Email: e.hong@soton.ac.uk

Class Hours: Mon 01:30-04:15 PM

MEASURING PERSONALITY: QUALITY OF DATA

- What makes a good measure of personality?
- 3 basic features to consider when thinking about a measure or data

Reliability

Validity

Generalizability

RELIABILITY

- Reliability is an estimate of how consistent a measure is
 - Over time, across items, or across raters
- A good measure should be dependable and stable.
- An unreliable measure will have error that distorts the true score.
 - True score ± error = observed score

UNRELIABLE DATA / MEASURES

- Example: Myers-Briggs Personality Type Indicator (MBTI)
 - You take the MBTI and it tells you that your personality type is INTJ
 - introversion, intuition, thinking, judging
 - 5 weeks later, you take the test again and your type is ISFJ
 - introversion, sensing, feeling, judging
 - [you actually do have about a 50% chance of getting a different result after 5 weeks]
 - Since your result isn't consistent over time, this is an example of low test-retest reliability

TYPES OF RELIABILITY

Type of Consistency	Type of Reliability	Facet of Generalizability
Temporal consistency	Test-retest	Across time
Internal consistency	Parallel forms	Across items (Grit)
	Split-half	
	Cronbach's alpha	
Rater consistency	Interrater reliability	Across raters

CONDITIONS THAT UNDERMINE RELIABILITY

- A poorly constructed measure
 - Might be too ambiguous or too broad
- Contextual factors
 - The state of the participant, experimenter, or environment

RELIABLE DATA / MEASURES

- Reliable data and measurements are consistent across time, items, and raters
- Some examples:
 - height, eye color, religious beliefs

IMPROVING RELIABILITY

- Take care when selecting or constructing a measure
- Measure something important to the person
 - Less likely influenced by contextual variables
- Aggregation
 - Average over multiple assessments

VALIDITY

- Validity is the extent to which a test measures what it is supposed to measure.
- There are different kinds of validity to consider.
 - Construct validity
 - Face validity
 - Criterion validity
 - Convergent validity
 - Discriminant validity

VALIDITY

- For example:
 - Convergent validity
 - A test produces results that are similar to other tests that are supposed to measure the same thing or something related
 - The textbook has more details on the other types of validity.

VALIDITY EXAMPLE

- Phrenology
 - The shape of the skull can tell us about people's personality
 - Different areas associated with different traits or functions
- Can be reliable, but not valid

GENERALIZABILITY

- What are the limitations and boundaries of a test?
- For what purpose is a test valid?
- Is the test valid in different groups of people, or under different conditions?
 - Children vs. adult assessments, different cultural contexts
- Generalizability can also apply to data and results
 - Sampling bias (use of volunteer samples)
 - Gender bias (e.g., more females than males in a study)
 - Cohort effect (shared life experiences of participants)
 - Across cultures

WEIRDOS (JONES, 2010)

- WEIRD
 - Western
 - Educated
 - Industrialized
 - Rich
 - Democratic

In the eye of the beholder. People in industrialized societies often think line A is shorter than line B, but that illusion is weaker or absent in some small-scale societies, whose members perceive the lines as equally long.

RESEARCH DESIGNS

- How do we collect data to test our hypotheses?
 - Case method
 - Experimental method
 - Correlational method

- Case method
 - In depth analyses of individual cases
 - e.g., accidents, unique clients

- Phineas Gage (1823-1860)
 - Railroad construction foreman who had an iron rod driven through his skull in 1848
 - Destroyed much of the left frontal lobe
 - Had profound effects on his personality
 - Friends said he was "no longer Gage"

- Case method
 - Personality theorists often relied on case methods
 - Usually conducted by clinical psychologists
 - Captures the complexities of human personality
 - Useful in understanding the "person" as a whole
 - e.g., studies on US presidents

- Advantages
 - Able to learn more deeply about the person
 - A great way to generate new ideas about how the mind works
- Limitations
 - May not generalize to other people
 - May not be able to confidently identify the cause of the problem

RESEARCH DESIGNS: EXPERIMENTAL

- Experiments
 - Conducted in a controlled environment
 - Randomly assign participants to conditions
 - Each condition varies in an important way
 - Depends on the objective of the study

Papalla, Human Development, 7e. Copyright © 1998. McGraw-Hill Companies, Inc. All Rights Reserved.

Design for an Experiment

RESEARCH DESIGNS: EXPERIMENTAL

Example:

- Does writing about a positive life experience provide health benefits?
- Participants wrote for 20 minutes each day for 3 consecutive days about either a positive life experience (experimental condition) or a control topic (control condition).
- Physical health was assessed 4-6 weeks later (physical complaints).
- People who wrote about a positive life experience had better physical health compared to people who didn't.

RESEARCH DESIGNS: EXPERIMENTAL

- Advantages
 - Better control of the environment
 - Manipulate specific variables
 - Can infer causation
- Disadvantages
 - Artificial environment
 - Difficult or unethical to manipulate personality traits

RESEARCH DESIGNS: CORRELATIONAL

- Correlational Method
 - A way to find and describe relationships among measured variables
 - The degree to which two variables "go together"
 - Commonly used with surveys and pre-existing sources of data

CORRELATIONS

- Measured by correlation coefficient, indicated by the symbol r
- Can be positive or negative, large to small, from I to I
 - Positive Relationships: As one variable goes up, so does the other
 - Negative Relationships: As one variable goes up, the other goes down

Table 1.2 Interpreting Correlations

Negative Correlations	Size	Positive Correlations
.0 to −.3	Small	.0 to .3
3 to 5	Medium	.3 to .5
−.5 to −.9	Large	.5 to .9

Source: From Cohen (1988).

TWO FEATURES OF A CORRELATION

EXAMPLES OF CORRELATIONS

EXAMPLES OF CORRELATIONS SOURCE: MEYER ET AL. (2001)

Associations	r
Test Anxiety and Grades	17
SAT and Grades in College	.20
GRE Quant. and Graduate School GPA	.22
Quality of Marital Relationships and Quality of Parent-Child Relationships	.22
Alcohol and Aggressive Behavior	.23
Home Pregnancy Tests and Accuracy	.38
Height and Weight	.44
Gender and Height	.67

RESEARCH DESIGNS: CORRELATIONAL

- Advantages
 - Can study a wide range of variables and the relationships between them
- Disadvantages
 - Individuals are not studied in-depth
 - Increased problems of reliability and validity of questionnaires
 - Can establish relationships, but not causality

INFERRING CAUSATION

- Correlation ≠ causation
 - Spurious correlation
 - http://www.tylervigen.com/spurious-correlations
 - But it can provide some support
- Possible explanations of a relationship between variables
 - A causes B
 - B causes A
 - C causes A & B
 - It's a fluke and there isn't any kind of causal relationship
- How do we test/demonstrate causation?
 - Experiments

ECOLOGICAL VALIDITY

- Q: Does what happens in the laboratory have anything to do with the real world?
- Lab studies demonstrate what <u>can</u> happen but this is not the same thing as what <u>really</u> happens in the real world.
 - Mundane realism
 - Experimental realism

NEXT CLASS

Read Chapter 3 of the textbook