Problem Set 7 - Life Cycle Model

ECON 7395-I, Spring 2018 Presented by Hamza Zahid

March 08, 2018

Problem 1

▶ Agent's finite horizon problem in recursive form:

$$V^{t}(a) = \max_{n,a'} \left[\frac{c^{1-\sigma}}{1-\sigma} \right] + \beta V^{t+1}(a')$$

$$s.t. \quad c + a' = (1+r)a + w\epsilon$$

$$a_0 = 0, a_{T+1} = 0$$

Factor prices (wages w and interest rate r). Work efficiency ϵ_t changes deterministically with age. Agent dies at T+1.

Parameter Values: $\sigma = 2$, $\beta = 1$, r = 0.03, w = 1Agent lives from age 16 - 90

Determining Work Efficiency, ϵ_t

- Convert weekly salary data for each age from Bureau of Labor Statistics to hourly wage.
- ► Get coefficients q0, q1 and q2 of quadratic that fits this data.
- ▶ Compute for each t, $\epsilon_t = q_0 + q_1t + q_2t^2$ to get the hourly wage series.

Characterizing Equations

Lagrangian

$$L = \max_{c_t, a_{t+1}} \sum_{t=0}^{T} \beta^t \left[\left(\frac{c^{1-\sigma}}{1-\sigma} \right) + \lambda_t [(1+r)a_t + w\epsilon_t - c_t - a_{t+1}] \right]$$

First Order Conditions

$$c_t: \qquad \beta^t c_t^{-\sigma} - \beta^t \lambda_t^{-\sigma} = 0 \tag{1}$$

$$a_{t+1}: \qquad \beta^t \lambda_t + \beta^{t+1} \lambda_{t+1} (1+r) = 0$$
 (2)

$$\lambda_t: (1+r)a_t + w\epsilon_t - c_t - a_{t+1} = 0$$
 (3)

Simplifying the f.o.cs to get:

$$((1+r)a_{t+1} + w\epsilon_{t+1} - a_{t+2})^{\sigma} = \beta(1+r)((1+r)a_t + w\epsilon_t - a_{t+1})^{\sigma}$$
 (4)

Forward Iteration

Solution Method

- 1. Guess (a_1) , given $(a_0 = 0)$ and the parameter values.
- 2. Compute
 - i a_{t+2} using equation (4)

$$a_{t+2} = (1+r)a_{t+1} + w\epsilon_{t+1} - (\beta(1+r))^{\frac{1}{\sigma}}((1+r)a_t + w\epsilon_t - a_{t+1})$$

ii c_t using the budget constraint

$$c_t = (1+r)a_t + w\epsilon_t - a_{t+1}$$

- 3. Do step 2 recursively to get consumption and asset sequences: $\{c_t\}_{t=0}^T$ and $\{a_t\}_{t=1}^{T+1}$
- 4. Check if the last element of sequence a_t , satisfies the boundary condition, i.e. $a_{T+1}=0$
- 5. Thus $F: a_1 \to a_{T+1}$. Find roots of F using bisection method.

Brute Force

Solution Method

1. Vectorize the system of Euler equations

$$(1+r)a_{t+1} + w\epsilon_{t+1} - a_{t+2} - (\beta(1+r))^{\frac{1}{\sigma}}((1+r)a_t + w\epsilon_t - a_{t+1}) = 0$$

2. Initial and final asset levels are given $a_0 = 0$ and $a_{T+1} = 0$

$$m{a_t} = \left[egin{array}{c} 0 \\ a_1 \\ \vdots \\ a_{T-1} \end{array}
ight], \quad m{a_{t+1}} = \left[egin{array}{c} a_1 \\ a_2 \\ \vdots \\ a_T \end{array}
ight], \quad m{a_{t+2}} = \left[egin{array}{c} a_2 \\ a_3 \\ \vdots \\ 0 \end{array}
ight].$$

3. Use *fsolve* to solve the system and get the vector of assets. Use budget constraint to retrieve the consumption vector.

Solution

Problem 2

Agent's finite horizon problem in recursive form:

$$V^{t}(h, a) = \max_{n, a'} \left[\frac{c^{1-\sigma}}{1-\sigma} + \frac{(1-n)^{1-\gamma}}{1-\gamma} \right] + \beta V^{t+1}(h', a')$$
s.t. $c + a' = (1+r)a + hn$

$$h' = G(h, n), \quad n \in [0, 1]$$

$$a_{0} = 0, a_{T+1} = 0, h_{0} \equiv 1$$

Three learning technologies:

(1)
$$h' = (1 - \delta)h + \theta n^{\alpha}$$
.

[learning-by-doing]

(2)
$$h' = (1 - \delta)h + \theta(1 - n)^{\alpha}$$
, [learning-by-not-doing]

(3)
$$h' = (1 - \delta)h + \theta n^{\alpha} (1 - n)^{1 - \alpha}$$
, [Both]

Parameter Values:

$$\sigma=$$
 2, $\beta=$ 1, $r=$ 0.03, $w=$ 1 $\delta=$ 0.025, $\theta=$ 0.8, $\alpha=$ 0.75, $\gamma=$ 0.8 Agent lives from age 16 $-$ 90

Characterizing Equations

Lagrangian

$$\begin{split} L = \max_{c_t, n_t, a_{t+1}, h_{t+1}} \sum_{t=0}^T \beta^t \left(\frac{c^{1-\sigma}}{1-\sigma} + \frac{(1-n)^{1-\gamma}}{1-\gamma} \right) + \lambda_t [(1+r)a_t + h_t n_t - c_t - a_{t+1}] \\ + \mu_t [(1-\delta)h + \theta(1-n)^{\alpha} - h_{t+1}] \end{split}$$

Simplifying the f.o.cs to get:

$$c_{t+1} = [\beta(1+r)]^{\frac{1}{\sigma}} c_t \tag{5}$$

$$h_{t+1} = (1 - \delta)h_t + \theta n_t^{\alpha} \tag{6}$$

$$a_{t+1} = (1+r)a_t + h_t n_t - c_t (7)$$

$$\frac{1}{\alpha\theta} n_t^{1-\alpha} \left((1-n_t)^{-\gamma} - c_t^{-\sigma} h_t \right) = \beta c_{t+1}^{-\sigma} n_{t+1} + \beta (1-\delta) \left[\frac{1}{\alpha\theta} n_{t+1}^{1-\alpha} \left((1-n_{t+1})^{-\gamma} - c_{t+1}^{-\sigma} h_{t+1} \right) \right]$$
(8)

Backward Iteration

- 1. Guess (c_T, h_{T+1}) , given $a_{T+1} = 0$ and the parameter values.
- 2. Compute
 - i n_t and h_t solving the two equations (6) and (8)

$$\frac{1}{\alpha \theta} n_{t}^{1-\alpha} \left((1 - n_{t})^{-\gamma} - c_{t}^{-\sigma} h_{t} \right) = \beta c_{t+1}^{-\sigma} n_{t+1} + \beta (1 - \delta) \left[\frac{1}{\alpha \theta} n_{t+1}^{1-\alpha} \left((1 - n_{t+1})^{-\gamma} - c_{t+1}^{-\sigma} h_{t+1} \right) \right]$$

$$h_{t+1} = (1 - \delta) h_{t} + \theta n_{s}^{\alpha}$$

- Check if corner exists: $n_t>0$ or $n_t\leq 0$
- Set value of n_t accordingly.
- ii a_t using equation (7)

$$a_t = (c_t + a_{t+1} - h_t n_t)/(1+r)$$

iii c_t using equation (5)

$$c_t = \left[\beta(1+r)\right]^{-\frac{1}{\sigma}} c_{t+1}$$

- 3. Go back recursively to get sequence of $\{c_t, h_t, a_t, n_t\}$, and period 0 assets and human capital (a_0, h_0) .
- 4. Thus $F:(c_T,h_{T+1})\to (a_0,h_0-1)$. Find roots of F.

Forward Iteration

- 1. Guess (c_0, n_0) , given $(a_0 = 0, h_0 = 1)$ and the parameter values.
- 2. Compute
 - i c_{t+1} using equation (5)

$$c_{t+1} = \left[\beta(1+r)\right]^{\frac{1}{\sigma}} c_t$$

ii h_{t+1} using equation (6)

$$h_{t+1} = (1 - \delta)h_t + \theta n_t^{\alpha}$$

iii a_{t+1} using equation (7)

$$a_{t+1} = (1+r)a_t + h_t n_t - c_t$$

iv n_{t+1} solving the non-linear equation (8)

$$\frac{1}{\alpha\theta}n_t^{1-\alpha}\left(\left(1-n_t\right)^{-\gamma}-c_t^{-\sigma}h_t\right)=\beta c_{t+1}^{-\sigma}n_{t+1}+\beta(1-\delta)\left[\frac{1}{\alpha\theta}n_{t+1}^{1-\alpha}\left(\left(1-n_{t+1}\right)^{-\gamma}-c_{t+1}^{-\sigma}h_{t+1}\right)\right]$$

- Check if corner exists: $n_{t+1}>0$ or $n_{t+1}\leq 0$
- Set value of n_{t+1} accordingly.
- 3. Repeat step 2 to get sequence of $\{c_t, h_t, a_t, n_t\}$, and period T+1 assets (a_{T+1}) which is the last element of sequence a_t .
- 4. Thus $F:(c_0,n_0)\to a_{T+1}$. Find roots of F.

Solution - Learning By Doing

Solution - Learning By Not Doing

