NOTE ON DUCROS' BOOK — CHAPTER 4

MINGCHEN XIA

Contents

1. Introduction	1
2. Notes	1
References	$_3$

1. Introduction

These are a series of notes on the book [Duc24].

2. Notes

Let k be a non-Archimedean analytic field. Consider a k-analytic curve X. Unlike Ducros' book, we assume that X is good.

- **4.1.1.** Line 17, $\mathbb{P}_k^{1,\text{an}}$ should be \mathbb{P}_k^1 .
- **4.2.1.** Line 4, $\varphi^{-1}(\varphi((x)))$ should be $\varphi^{-1}(\varphi(x))$.
- **4.2.3.** Line 5, φ should be f.
- **4.2.4.1.** Line 6, = 0 should be removed. Line 8, X' should be X_0 .
- **4.2.5.1.** The existence of function mentioned in the first paragraph is constructed in 3.5.9.
- **4.2.9.** Line 3, $\mathbb{P}_{\mathscr{H}(x)}$ should be $\mathbb{P}_{\mathscr{H}(x)/k}$.
- **4.2.16.** The reduction in the first paragraph of the proof is not quite correct, and is not what we need in the sequel. The correct version is the following:

Notons pour commencer que l'on peut, pour montrer 1), 2) i) et 2) ii), remplacer X par X_{red} et Y par $Y \times_X X_{\text{red}}$; cela permet de se ramener, pour montrer toutes les assertions, au cas où la courbe X est génériquement réduite, et l'on distingue alors deux cas selon la nature du point x.

- **4.2.16.1.** Line 5, the second y should be x.
- Line 5, U est une composante connexe de $\varphi^{-1}(x)$ should be V est une composante connexe de $\varphi^{-1}(U)$.
- **4.2.16.2.** Line 26, $\varphi^{-1}U$ should be $\varphi^{-1}(U)$.
- **4.2.19.** In iii), $X_{[23]}$ should be $X_{[2,3]}$.

The second part of iii) follows from the fact that $(\kappa(x), | \bullet |)$ is Henselian, a very general fact proved by Berkovich [Ber93, Theorem 2.3.3].

Line 8 in the proof, remove est fini et.

Line 17 in the proof, the left parenthesis should be larger.

Line -4 in the proof follows from 2.3.12.

¹This is proved in Ducros' book based on Temkin's goodness criterion. I cannot understand the proof of the latter as explained in my note on graded reductions.

```
4.2.19.2. Line 5, 4.2.9 should be 4.2.3. Line 6, \frac{b}{a} should be \frac{a}{a}.
```

4.2.20. There is a serious issue here. The whole proposition only works if both germs (Y, y) and (X, x) are boundaryless.

The proof below implicitly assumed that y is of type 2. If y is of type 3, there is really nothing to prove in view of 4.2.19 iii).

The germ (X', x') is normal thanks to [Stacks, Tag 034F]. In particular, the reduction at the end of this part makes sense.

- **4.2.20.1.** The second displayed formula follows from 2.3.14 ii).
- **4.3.3.** In the statement of the theorem, p is the exponential characteristic of k. In the third paragraph of the proof, add si $p \neq 1$ after par p.
- **4.3.4.1.** Line 4, x_i should be x_i' .
- **4.3.5.2.** Line 1, 3) should be 1).
- **4.3.6.4.** Line 8, $|\mathcal{O}_X(Z)^{\times}|$ should be $|\mathcal{O}_X(Z)^{\times}|_b$.
- **4.3.9.1.** Line 18, Y^{an} should be $S^{\text{an}}(Y)$. Line 19, X^{an} should be $S^{\text{an}}(X)$.
- **4.3.11.1.** Line 7, b should be y.

Line 8, a should be x.

Line 8, le lemma should be la proposition.

- **4.4.3.1.** Line 8, U should be $X \setminus \{x\}$. Line 9, U should be Z.
- **4.4.5.** Line 4, $H^1(\kappa(x), \mu_{\ell})$ should be $H^1(\kappa(x), \mu_{\ell})$.
- **4.4.5.3.** Line 2, $H^1(X,x)_{\text{\'et}}, \mu_{\ell}$) should be $H^1((X,x)_{\text{\'et}}, \mu_{\ell})$.
- **4.4.8.3.** Line 10, H^1 should be H^1 .

In the displayed formula, $T^{\ell} - f(x)$ should be $(T^{\ell} - f(x))$.

- **4.4.10.4.** Line 5, remove the first sentence.
- **4.4.14.** Line 3, Y should be X.

Line 9, the formula should be $H^1((X,x)_{\text{\'et}},\mu_\ell) \sim H^1(\mathcal{H}(x),\mu_\ell)$.

- **4.4.23.** Line 6, t should be T.
- **4.5.4.** Line 6, coronaire should be une couronne virtuelle.
- **4.5.12.** Line 1, $p\colon X\to X_{\widehat{k^a}}$ should be $p\colon X_{\widehat{k^a}}\to X$.

The finiteness of the fiber over $x \in X_{[0,2,3]}$ is due to the fact that x is Abhyankar. See 3.2.15.4.

REFERENCES 3

References

Berk93

[Ber93] V. G. Berkovich. Étale cohomology for non-Archimedean analytic spaces. *Inst. Hautes Études Sci. Publ. Math.* 78 (1993), 5–161 (1994). URL: http://www.numdam.org/item?id=PMIHES_1993__78__5_0.

DucCurve cks-project

[Duc24] A. Ducros. La structure des courbes analytiques. 2024. arXiv: 2405.10619 [math.AG].

[Stacks] T. Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu. 2020.

Mingchen Xia, Chalmers Tekniska Högskola and Institute of Geometry and Physics, USTC

Email address, xiamingchen2008@gmail.com

Homepage, https://mingchenxia.github.io/home/.