Trabajo práctico

Alejandro García Marra, Padrón Nro. 91.516 alemarra@gmail.com Sebastián Javier Bogado, Padrón Nro. 91.707 sebastian.j.bogado@gmail.com 1er. Cuatrimestre de 2013 71.14 Modelos y Optimization I Facultad de Ingeniería, Universidad de Buenos Aires

1. Ejercicio Principal

1.1. Análisis del caso

CAMBIAR

Una refinería tiene una producción diaria de distintos tipos de combustibles y aceites a partir de petróleo crudo de dos tipos distintos. A lo largo de los distintos procesos de destilación se consiguen los diversos productos. Cuanto más refinado es el producto, mas valioso es para su venta.

1.2. Objetivo

Determinar la cantidad de barriles de los distintos tipos de combustible, fueloil y lubricante a producir, así como la composición de los combustibles para maximizar las utilidades de la refinería por día.

1.3. Hipótesis y Aclaraciones

- Precio constante en el día
- No tengo stock inicial
- Se vende todo lo producido y, por ende, se puede hablar de fracciones de barril
- Se dispone de dinero suficiente para comprar toda la materia prima necesaria
- Puedo comprar cantidades fraccionarias de la materia prima
- Las máquinas no se rompen ni los empleados se rebelan
- Al hablar de "barriles" para refererirse a cantidad, un barril de un producto es igual al de otro
- No hay perdidas de producción ni transporte, excepto las indicadas en la destilación
- En las mezclas no se agrega nada que no esté mencionado, entonces las proporciones deben sumar 1
- El centro de destilación puede alternar entre crudo de tipo 1 y tipo 2 sin pérdidas de tiempo o costos adicionales. Lo mismo aplica para el centro de reformado y craqueo respecto de sus distintas entradas
- A menos que se indique lo contrario, puede no producirse alguno de los productos finales

1.4. Variables

1.4.1. Compra

C1 = Barriles de Crudo 1 por día

C2 = Barriles de Crudo 2 por día

1.4.2. Destilado

NL = Barriles de Nafta Liviana por día

 $NL^{REF}=$ Barriles de Nafta Liviana para Reformado por día

 NL^{PR} = Barriles de Nafta Liviana para producir Premium por día

 $NL^{SU}=\mbox{Barriles}$ de Nafta Liviana para producir Super por día

NM = Barriles de Nafta Mediana por día

 NM^{REF} = Barriles de Nafta Mediana para Reformado por día

 NM^{PR} = Barriles de Nafta Mediana para producir Premium por día

 $NM^{SU}=$ Barriles de Nafta Mediana para producir Super por día

NP = Barriles de Nafta Pesada por día

 NP^{REF} = Barriles de Nafta Pesada para Reformado por día

 NP^{PR} = Barriles de Nafta Pesada para producir Premium por día

 NP^{SU} = Barriles de Nafta Pesada para producir Super por día

AL = Barriles de Aceite Liviano por día

 $AL^{AV}=$ Barriles de Aceite Liviano para Aviones por día

 AL^{GCRA} = Barriles de Aceite Liviano para Gasolina Craqueada por día

 AL^{ACRA} = Barriles de Aceite Liviano para Aceite Craqueado por día

 AL^{FO} = Barriles de Aceite Liviano para Fueloil por día

AP = Barriles de Aceite Mediano por día

 AP^{AV} = Barriles de Aceite Pesado para Aviones por día

 AP^{GCRA} = Barriles de Aceite Pesado para Gasolina Craqueada por día

 AP^{ACRA} = Barriles de Aceite Pesado para Aceite Craqueado por día

 AP^{FO} = Barriles de Aceite Pesado para Fueloil por día

 $RDES = {\it Barriles}$ de Residuo Destilado por día

 $RDES^{AV}$ = Barriles de Residuo Destilado para Aviones por día

 $RDES^{LU} =$ Barriles de Residuo Destilado para Lubricante por día

 $RDES^{FO} = Barriles de Residuo Destilado para Fueloil por día$

1.4.3. Reformado

GREF = Barriles de Gasolina Reformada por día

 $GREF^{PR}=$ Barriles de Gasolina Reformada para nafta Premium por día

 $GREF^{SU}=$ Barriles de Gasolina Reformada para nafta Super por día

1.4.4. Craqueo

GCRA = Barriles de Gasolina Craqueada por día

 $GCRA^{PR}$ = Barriles de Gasolina Craqueada para nafta Premium por día

 $GCRA^{SU}=$ Barriles de Gasolina Craqueada para nafta Super por día

ACRA = Barriles de Aceite Craqueado por día

 $ACRA^{AV}$ = Barriles de Aceite Craqueado para Aviones por día

 $ACRA^{FO}$ = Barriles de Aceite Craqueado para Fueloil por día

1.4.5. Ventas

PR = Barriles de Combustible Premium por día

SU = Barriles de Combustible Super por día

AV = Barriles de Combustible para Aviones por día

FO =Barriles de Fueloil por día

LU = Barriles de Lubricante por día

1.4.6. Constantes

1.5. Ecuaciones

1.5.1. Destilado

$$\begin{split} NL &= 0, 1 \ C1 \ + 0, 15 \ C2 \\ NM &= 0, 2 \ C1 \ + 0, 25 \ C2 \\ NP &= 0, 2 \ C1 \ + 0, 18 \ C2 \\ AL &= 0, 12 \ C1 \ + 0, 08 \ C2 \\ AP &= 0, 1 \ C1 \\ RDES &= 0, 13 \ C1 \ + 0, 12 \ C2 \\ \end{split} = \begin{split} NL^{REF} + NL^{PR} + NL^{SU} \\ = NM^{REF} + NM^{PR} + NM^{SU} \\ = NP^{REF} + NP^{PR} + NP^{SU} \\ = AL^{AV} + AL^{GCRA} + AL^{ACRA} + AL^{FO} \\ = AP^{AV} + AP^{GCRA} + AP^{ACRA} + AP^{FO} \\ = RDES^{AV} + RDES^{LU} + RDES^{FO} \end{split}$$

1.5.2. Reformado

$$GREF = 0.6 \ NL^{REF} + 0.52 \ NM^{REF} + 0.45 \ NP^{REF} = GREF^{PR} + GREF^{SU}$$

1.5.3. Craqueo

$$\begin{aligned} GCRA &= 0.28 \ AL^{GCRA} \ + 0.2 \ AP^{GCRA} \end{aligned} &= GCRA^{PR} + GCRA^{SU} \\ ACRA &= 0.68 \ AL^{ACRA} \ + 0.75 \ AP^{ACRA} \end{aligned} &= ACRA^{AV} + ACRA^{FO}$$

1.5.4. Ventas

$$PR = NL^{PR} + NM^{PR} + NP^{PR} + GCRA^{PR} + GREF^{PR}$$

$$SU = NL^{SU} + NM^{SU} + NP^{SU} + GCRA^{SU} + GREF^{SU}$$

$$1,8 \ FO = AL^{FO}$$

$$6 \ FO = AP^{FO}$$

$$4,5 \ FO = ACRA^{FO}$$

$$18 \ FO = RDES^{FO}$$

$$AV = AL^{AV} + AP^{AV} + ACRA^{AV} + RDES^{AV}$$

$$LU = RDES^{LU}$$

1.5.5. Funcional

$$Z = 700 \text{ } / \text{B} \cdot PR + 600 \text{ } / \text{B} \cdot SU + 400 \text{ } / \text{B} \cdot AV + 350 \text{ } / \text{B} \cdot FO + 150 \text{ } / \text{B} \cdot LU$$

1.6. Restricciones

$$C1 \le 20000 \ B/d$$

 $C2 \le 30000 \ B/d$
 $C1 + C2 \le 45000 \ B/d$

$$\begin{split} NL^{REF} + NM^{REF} + NP^{REF} & \leq 10000~B/d\\ AL^{GCRA} + AL^{ACRA} + AP^{GCRA} + AP^{ACRA} & \leq 8000~B/d \end{split}$$

$$500B/d~\leq LU \leq~1000~B/d$$

$$PR \ge 0.4 \ SU$$

$$\begin{split} PR \cdot 98 \ Oct \ \leq OCTNL \cdot NL^{PR} + OCTNM \cdot NM^{PR} + OCTNP \cdot NP^{PR} + \\ OCTCRA \cdot GCRA^{PR} + OCTREF \cdot GREF^{PR} \end{split}$$

$$SU \cdot 95 \ Oct \ \leq OCTNL \cdot NL^{SU} + OCTNM \cdot NM^{SU} + \\ OCTNP \cdot NP^{SU} + OCTCRA \cdot GCRA^{SU} + OCTREF \cdot GREF^{SU} \ \leq SU \cdot 97,99 \ Oct$$

$$AV \cdot 1 \ Kg/cm^2 \geq PRESAL \cdot AL^{AV} + PRESAP \cdot AP^{AV} + \\ PRESACRA \cdot ACRA^{AV} + PRESRDES \cdot RDES^{AV}$$

1.7. Corrida de Prueba

Corrida de prueba del archivo tp2.mod con el software GLPK.

Problem: tp2;

Rows: 39; Columns: 42; Non-zeros: 149

Status: OPTIMAL

Objective: Z = 18971019,9(MAXimum)

No Row	name	St	Activity	Lower bound	Upper bound	Marginal
1	Z	В	\$18971019.9			
2	inProduccionNL	NS	0	-0	=	725.539
3	$\operatorname{outProduccionNL}$	NS	0	-0	=	-725.539
4	inProduccionNM	NS	0	-0	=	597.844
5	$\operatorname{outProduccionNM}$	NS	0	-0	=	-597.844
6	inProduccionNP	NS	0	-0	=	470.149
7	$\operatorname{outProduccionNP}$	NS	0	-0	=	-470.149
8	inProduccionAL	NS	0	-0	=	400
9	$\operatorname{outProduccionAL}$	NS	0	-0	=	-400
10	inProduccionAP	NS	0	-0	=	400
11	$\operatorname{outProduccionAP}$	NS	0	-0	=	-400
12	inProduccionRDES	NS	0	-0	=	400
13	${\bf outProduccionRDES}$	NS	0	-0	=	-400
14	in Produccion GREF	NS	0	-0	=	1044.78
15	out Produccion GREF	NS	0	-0	=	-1044.78
16	in Produccion GCRA	NS	0	-0	=	1428.57
17	out Produccion GCRA	NS	0	-0	=	-1428.57
18	in Produccion ACRA	NS	0	-0	=	533.333
19	${\bf outProduccion} {\bf ACRA}$	NS	0	-0	=	-533.333
20	finalPR	NS	0	-0	=	-551.41
21	finalSU	NS	0	-0	=	-551.41
22	ALpartFO	NS	0	-0	=	400
23	APpartFO	NS	0	-0	=	400
24	ACRApartFO	NS	0	-0	=	533.333
25	RDESpartFO	NS	0	-0	=	400
26	finalAV	NS	0	-0	=	400
27	$\operatorname{finalLU}$	NS	0	-0	=	400
28	dispCrudo1	NU	20000		20000	3.23383
29	dispCrudo2	В	25000		30000	
30	\max Destilado	NU	45000		45000	422.919
31	\max Reformado	В	7412.94		10000	
32	maxCraqueo	В	0		8000	
33	minLub	NL	500	500		-250
34	\max Lub	В	500		1000	
35	minPremium	В	20422.9	-0		
36	$\min OCTPR$	NU	0		-0	12.7695
37	$\min OCTSU$	NU	0		-0	12.7695
38	$\max OCTSU$	В	0	-0		
39	$\max PresAV$	В	5645	-0		

No. Column	name	St	Activity	Lower bound	Upper bound	Marginal
1	C1	В	20000	0		
2	C2	В	25000	0		
3	NL	В	5750	0		
4	NLREF	NL	0	0		-98.6733
5	NLPR	В	5750	0		
6	NLSU	NL	0	0		<eps< td=""></eps<>
7	NM	В	10250	0		
8	NMREF	NL	0	0		-54.5605
9	NMPR	В	10250	0		
10	NMSU	NL	0	0		<eps< td=""></eps<>
11	NP	В	8500	0		
12	NPREF	В	7412.94	0		
13	NPPR	В	1087.06	0		
14	NPSU	В	0	0		
15	AL	В	4400	0		
16	ALAV	В	4400	0		
17	ALGCRA	В	0	0		
18	ALACRA	NL	0	0		-37.3333
19	ALFO	В	0	0		
20	AP	В	2000	0		
21	APAV	В	2000	0		
22	APGCRA	NL	0	0		-114.286
23	APACRA	В	0	0		
24	APFO	В	0	0		
25	RDES	В	5600	0		
26	RDESAV	В	5100	0		
27	RDESLU	В	500	0		
28	RDESFO	В	0	0		
29	GREF	В	3335.82	0		
30	GREFPR	В	3335.82	0		
31	GREFSU	В	0	0		
32	GCRA	В	0	0		
33	GCRAPR	NL	0	0		-511.49
34	GCRASU	NL	0	0		-511.49
35	ACRA	В	0	0		
36	ACRAAV	NL	0	0		-133.333
37	ACRAFO	В	0	0		
38	PR	В	20422.9	0		
39	SU	NL	0	0		-61.6915
40	AV	В	11500	0		
41	FO	NL	0	0		-12370
42	LU	В	500	0		

2. Ejercicio Complementario

2.1. Análisis del caso

Pepe desea fabricar sidra de manera artesanal para luego venderla a una cadena re locales gourmet. Para esto, cuenta con tres tipos distintos de manzanas como materia prima, a partir de las cuales se pueden obtener tanto sidra natural como sidra dulce. La diferencia entre una y otra surge de cambios en la proporción de las diferentes manzanas utilizadas.

2.2. Objetivo

Determinar la cantidad de sidra de uno y otro tipo a producir de forma tal de maximizar las ganancias que obtiene Pepe en un período. (En este caso utilizaremos un período de una semana, ya que lo consideramos razonable.)

2.3. Hipótesis

- Dispone del dinero para comprar toda la materia prima necesaria
- Dispone de tiempo suficiente para realizar toda la producción indicada
- No tiene stock previo
- La cadena de locales comprará toda la produccón obtenida
- No hay pérdidas de materia prima en el proceso ni en el transporte
- No hay pérdidas de producción
- Los precios son constantes dentro del período.

2.4. Variables

2.4.1. Venta

```
SN = \text{Litros/Sem} de Sidra Natural SD = \text{Litros/Sem} de Sidra Dulce
```

2.5. Ecuaciones

$$\begin{array}{l} 0.25 \, \cdot \, SD \, + \, 0.50 \, \cdot \, SN \, \, \leq \, 15 \\ 0.50 \, \cdot \, SD \, + \, 0.50 \, \cdot \, SN \, \, \leq \, 60 \\ 0.25 \, \cdot \, SD \, \, \leq \, 15 \\ SD \, \geq \, 10 \\ \\ Z_{MAX} = 20 \, \$/L \cdot \, SN + 15 \, \$/L \cdot \, SD \end{array}$$