

INTRODUCTION

L'objectif de ce document est de donner un ensemble d'informations utiles pour réaliser et concevoir les différents systèmes lors de la phase de conception Post TOP PRé-Dim. Il doit être distribué (en version imprimée si possible) à l'ensemble de l'équipe et présenté lors d'une ou plusieurs séances de travail en groupe.

DESSIN DE PIECE SOUS CATIA

Concernant les maquettes CATIA, **JE NE VEUX VOIR AUCUNE ESQUISSE AVEC DES TRAITS BLANCS**, ils doivent tous être verts. Toutes les esquisses doivent être contraintes. Sinon tu as le risque pour tu sais pas quelle raison ton esquisse bouge. Soit tu t'en rend compte avant et ça te fais faire 2 fois le même travail, soit ta pièce part en prod, tu la reçoit et oh surprise, ça marche pas comme tu voulais!

MISES EN PLAN

COMPLETER LE RSP

- 1. Regarder la pièce dans le RSP (Référentiel Standard de Production) qui comporte votre trigramme et mettre le statut sur « MEP en cours », avec votre trigramme
- 2. Une fois faite, la mettre sur le git, et mettre le statut à « vérification de la MEP »

REGLES DE LA MEP

- 1. Faire la mise en plan en prenant le soin d'ajouter un cartouche, ajouter le texte : "Tolérance générale : ISO 2768 mK"
- 2. Mettre une vue isométrique (en bas à gauche à côté du cartouche, vous pouvez changer l'échelle pour la vue isométrique).
- 3. Essayer de tout côter en diamètre pour que le fabricant n'ait pas à jongler entre diamètre et rayon.
- 4. A la fin, enregistrer votre MEP en format pdf et en CATDrawing et d'enregistrer votre pièce au format .igs dans le dossier A VERIFIER puis dans le bon partenaire, la bonne matière et la bonne épaisseur (toutes ces informations sont sur le RSP).

FABRICATION

CONTRAINTES LIEES AU PROCESS

Essayer au plus de prendre des épaisseurs standard pour vos pièces. Exemple porte excentrique 5mm c'est du standard, ça évite de devoir resurfacer la pièce. Si c'est pas possible les partenaires feront avec mais bon : coût et travail en plus.

Si votre pièce est découpée laser : c'est du 2D

Si votre pièce est usinée (tour/fraiseuse) : on ne fait pas les formes que l'on veut, les dimensions que l'on veut partout. On est limité par l'accessibilité/dimensions des outils, les techniques, le maintien en position de ta pièce (ce dernier point est beaucoup moins limitant). Ces problématiques sont surtout pour ce qui est formes internes et moins des contours. Typiquement un trou carré ça n'existe pas. Si tu fais une découpe interne, tu le fais avec une fraise qui est cylindrique. Donc tu auras des congés au minimum du rayon de ta fraise.

Si vous voulez avoir toute la liberté dans les formes, il faut voir du côté de l'impression 3D, mais bon.

Évitez absolument les variations brusques de section (exemple un cylindre de 10mm qui continu directement sur un cylindre de 20mm). Préférez des transitions plus douces : utilisation de congés.

Évitez au plus possible de faire travailler vos pièces en flexion, c'est beaucoup moins résistant que si tu travailles en simple traction compression.

Pour les pièces en tôlerie :

Le rayon de pliage minimum est 2 fois l'épaisseur de la tôle à plier.

STANDARDISATION DES PIECES

Découpe laser acier, épaisseur : 1,5 - 3 - 4 mm

Découpe laser aluminium : 2 - 3 mm

Matériaux de référence : Acier (\$235, \$355, \$700), Aluminium (7075 T6, 2017, 2017 T4)

INTEGRATION SUR LE VEHICULE

Vous concevez des pièces, mais plus largement des assemblages. Pensez que vous allez avoir des éléments de serrage (vis, écrou principalement). Mettez-les autant que possible sur vos maquettes : ça peut montrer des problèmes d'encombrement, de collision, d'impossibilité de mise en place. Et oui, ça ne vient pas comme par magie dans le trou (place pour les doigts, suffisamment de place pour insérer la longueur de la vis).

Et ensuite il faut serrer : pensez que les outils ça prend encore plus de place (diamètre de douille, place pour les clés/cliquets etc).

De manière générale, quand il s'agit d'encombrement au niveau du châssis, passages de gabarits, ou entre sous-systèmes essayez toujours d'avoir un peu de marge. Car la maquette numérique reste parfaite. Dans

le monde réel il y a des défauts de fabrication (notamment au niveau du châssis). Pour ce qui est usinage on est plutôt bon par contre.

DIMENSIONNEMENT DES VIS

Le diamètre/nombre de vis ne sort pas de nulle part. Deux écoles :

- Ta vis fonctionne comme un ressort. Quand tu sers ton écrou avec un certain couple, ça va avoir tendance à déformer ta vis qui va vouloir reprendre sa forme initiale. Donc elle applique une force (dépendante du couple, du filetage, de la lubrification...) qui va comprimer les deux pièces que tu veux boulonner. Loi de coulomb : tant que tu restes dans le cône ça adhère. Combiné à l'effort normal, tes pièces ne bougent pas.
- Tu dimensionnes au cisaillement : si tu as des efforts importants, il va te falloir une vis épaulée.

TABLE DE PASSAGE DE VIS

Dans un monde parfait, une vis M6 a un diamètre de 6 et ça rentre parfaitement dans un perçage de diamètre 6. Vous n'avez pas envie de vous faire chier à reprendre tous les passages de vis de la voiture à la main? Ce qu'on fait dans le monde réel est dans le tableau en annexe, série fine.

Attention le règlement impose 2 filets dépassant de la vis ! Sert pour choisir la longueur minimale de vis.

Si vous avez des questions d'usinage, de conception, que vous ne savez pas trop comment faire une pièce pour telle fonction, ou que vous pensez qu'il pourrait y avoir une meilleure solution, n'hésitez pas à me contacter j'essaierai de répondre du mieux possible. Ça fera gagner du temps à tout le monde ;) En annexe vous trouverez les tables de passage et serrage de vis.

Rédaction:

Arthur Perdereau (Directeur du département Liaison au sol, Vulcanix - Saison 2018)

Maxime Proriol (Directeur Technique, Optimus - Saison 2019)

Nicolas Gameiro (Directeur Projet, Optimus - Saison 2019)

Martin Kawczynski (Directeur Technique, Invictus - Saison 2020)

Thibaud Lassus (Directeur Projet, Invictus - Saison 2020)

TABLE DE PASSAGE DES VIS

Trous de passage pour vis NF EN 20273 (ISO 273)

Trous de passage pour vis ou boulons - EN 20273 (ISO 273) Tableau 15												
Ø de filetage	Ø d	հ du trou de pass	age	Ø de filetage	∅ d₁ du trou de passage							
d (mm)	série fine (H12)*	série moyenne (H13)*	série large (H14)*	d (mm)	série fine (H12)*	série moyenne (H13)*	série large (H14)*					
1	1,1	1,2	1,3	12	13	13,5	14,5					
1,2	1,3	1,4	1,5	14	15	15,5	16,5					
1,4	1,5	1,6	1,8	16	17	17,5	18,5					
1,6	1,7	1,8	2	18	19	20	21					
1,8 2	2	2,1	2,2	20	21	22	24					
2,5	2,2	2,4	2,6	22	23	24	26					
3	2,7	2,9	3,1	24	25	26	28					
3,5 4	3,2	3,4	3,6 4,2	30	28 31	30 33	32 35					
4,5 5	4,3 4,8 5,3	4,5 5 5,5	4,8 5,3 5,8	33 36 39	34 37 40	36 39 42	38 42 45					
6	6,4	6,6	7	42	43	45	48					
7	7,4	7,6	8	45	46	48	52					
8	8,4	9	10	48	50	52	56					
10	10,5	11	12	52	54	56	62					

Clés dynamométriques

Guide de serrage contrôlé

Couple de serrage et force de précharge

- Seule une précharge correcte procure un assemblage fiable :
- précharge trop faible : risque de desserrage
- précharge trop forte : risque de déformation des pièces à assembler, ou de rupture de la vis.
- La précharge est fonction du couple de serrage appliqué sur la vis et du coefficient de frottement.

Qu'est-ce que la précharge ? (Fo)

C'est la force en Newton qui met les pièces en pression lors du serrage de la vis.

Qu'est-ce qu'un couple de serrage ? (Cs)

Le couple "-est une force-" appliquée au bout d'un bras de levier-;

Tableau des couples de serrage :

Les couples de serrage sont calculés à 85 % de la limite élastique (documentation E 25-030).

1. Quel coefficient de frottement?

Choisir le tableau de valeurs en fonction de votre vis (0.10, 0.15, ou 0.20).

Exemple: $\mu = 0.10$

2. Quelle "-classe de qualité-" de vis ?

Les caractéristiques des vis dépendent de leur classe de qualité (les vis 12.9 étant "-les plus performantes-").

Choisir la colonne correspondant à la classe de votre vis.

Exemple : vis d 10, qualité de vis (8,8)

3. Couples de serrage (Cs).

lls sont indiqués, pour chaque type de vis, en Newton x mètre (N.m). Dans l'exemple, on appliquera un couple de serrage de 36 N.m sur

TABLE DE CONVERSIONS

L'unité internationale est le N.m (Newton x mètre).

1. Convertir des N.m

Newton-mètre en Kilogramme-force mètre : 1 N.m = 0,102 kgf.m
Newton-mètre en Pound-force foot : 1 N.m = 0,738 lbf.ft
Newton-mètre en Pound-force inch : 1 N.m = 8,851 lbf.in
Newton-mètre en Ounce-force inch : 1 N.m = 141.61 ozf.in

2. Convertir des kgf.m

Kilogramme-force mètre en Newton-mètre: 1 kgf.m = 9.81 N.m
Kilogramme-force mètre en Pound-force foot: 1 kgf.m = 7.23 lbf.ft
Kilogramme-force mètre en Pound-force inch: 1 kgf.m = 86,8 lbf.in

3. Convertir des lbf.ft

• Pound-force foot en Newton-mètre : 1 lbf.ft = 1.35 N.m • Pound-force foot en Kilogramme-force mètre : 1 lbf.ft = 0.138 kgf.m • Pound-force foot en Pound-force inch : 1 lbf.ft = 12 lbf.in

4. Convertir des Ibf.in

• Pound-force inch en Newton-mètre : 1 lbf.in = 0.1129 N.m

Pound-force inch en Kilogramme-force mètre : 1 lbf.in = 0,0115 kgf.m
Pound-force inch en Pound-force foot : 1 lbf.in = 0,083 lbf.ft
Pound-force inch en Ounce-force inch : 1 lbf.in = 16 ozf.in

 $\mu = 0.10$ tableau de serrage pour visserie phosphatée ou zinquée, lubrification adaptée de bonne qualité (μ = coefficient de frottement moyen)

	ISO 272	2	Classes de qualité boulonnerie acier ISO 898-1													
			5,6		5,8		(6	,8	8	3,8	9,8		(10,9)		12,9	
d mm	ISO mm	mm	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo
1,6**	0,35	3,2	0,060	260	0,084	364	0,096	416	0,128	555	0,144	624	0,189	815	0,221	954
2**	0,40	4	0,126	432	0,177	604	0,202	690	0,270	921	0,303	1 036	0,396	1 352	0,463	1 582
2,5**	0,45	5	0,261	718	0,365	1 006	0,417	1 150	0,556	1 533	0,626	1 724	0,82	2 251	0,96	2 634
3	0,50	5,5	0,44	1 077	0,62	1 508	0,71	1 724	0,95	2 298	1,09	2 586	1,40	3 376	1,64	3 951
4	0,70	7	1,03	1 868	1,44	2 615	1,65	2 988	2,20	3 985	2,49	4 484	3,23	5 853	3,78	6 849
5	0,80	8	2,03	3 053	2,85	4 275	3,25	4 885	4,34	6 514	4,92	7 335	6,3	9 568	7,4	11 196
6	1	10	3,53	4 310	4,95	6 034	5,6	6 896	7,5	9 195	8,53	10 336	11	13 506	12,9	15 805
8	1,25	13	8,5	7 904	11,9	11 066	13,6	12 647	18,2	16 863	20,63	18 968	26	24 768	31	28 984
10	1,50	16	16,8	12 580	23	17 612	27	20 128	36	26 838	41	30 197	52	39 418	61	46 128
12	1,75	18	29	18 337	40	25 672	46	29 339	62	39 119	70	44 022	91	57 457	106	67 236
14	2	21	46	25 175	65	35 245	74	40 280	99	53 707	111	60 251	145	78 882	170	92 309
16	2	24	71	34 597	100	48 436	115	55 356	153	73 808	173	83 165	225	108 406	263	126 858
18	2,5	27	99	42 094	139	58 932	159	67 351	220	92 440			313	131 897	366	154 348
20	2,5	30	140	54 059	196	75 682	225	86 494	311	119 003			440	169 385	515	198 216
22	2,5	34	192	67 511	269	94 515	307	108 017	424	148 374			602	211 534	704	247 540
24	3	36	241	77 845	338	108 983	387	124 552	534	171 437			758	243 914	887	285 432
27	3	41	355	102 393	498	143 350	569	163 829	784	225 110			1 114	320 832	1 304	375 442
30	3,5	46	483	124 491	677	174 287	773	199 185	1 067	274 030			1 515	390 072	1 773	456 467
33	3,5	50	653	155 083	915	217 116	1 046	248 132	1 442	341 347			2 048	485 926	2 397	568 637
36	4	55	841	182 032	1 177	254 845	1 346	291 252	1 855	400 571			2 636	570 369	3 085	667 453
39	4	60	1 088	218 667	1 523	306 135	1 741	349 868	2 399	481 158			3 410	685 159	3 990	801 782
42**	4,5	65	1 348	250 311	1 887	350 435	2 156	400 497	2 965	550 683			4 223	784 306	4 941	917 805
45**	4,5	70	1 681	292 970	2 353	410 158	2 690	468 752	3 698	644 534			5 267	917 973	6 164	1 074 223
48**	5	75	2 032	329 254	2 845	460 956	3 251	526 807	4 470	724 359			6 367	1 031 663	7 450	1 207 265
52**	5	80	2 608	395 006	3 651	553 008	4 172	632 009	5 737	869 013			8 171	1 237 685	9 562	1 448 354
56**	5,5	85	3 255	456 159	4 557	638 622	5 208	729 854	7 161	1 003 549			10 199	1 429 298	11 935	1 672 582
60**	5,5	90	4 032	532 893	5 645	746 050	6 451	852 629	8 871	1 172 365			12 634	1 669 732	14 785	1 953 941
64**	6	95	4 856	602 793	6 798	843 911	7 769	964 470	10 683	1 326 146			15 215	1 888 753	17 805	2 210 243

^{*}Classe 8-8a jusqu'a d=16mm, 8-8b à partir de d=118 mm

Clés dynamométriques

Guide de serrage contrôlé (suite)

 $\mu = 0.15$ tableau de serrage pour visserie noire ou zinguée, lubrification sommaire (état de livraison) (μ =coefficient de frottement MOYEN)

	ISO 272						(Classe de o	qualité bo	té boulonnerie acier ISO898-1								
ŀ ≜ ⁴	1		5,	,6	5,8		(6,	8	8	8	9,8		(10,9)		(12,	9		
d mm	ISO mm	mm	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo		
1,6**	0,35	3,2	0,075	234	0,105	327	0,120	374	0,160	499	0,180	561	0,235	732	0,275	857		
2**	0,40	4	0,159	388	0,222	544	0,254	621	0,339	829	0,381	932	0,498	1 217	0,582	1 424		
2,5**	0,45	5	0,330	648	0,463	907	0,529	1 036	0,705	1 382	0,793	1 555	1,04	2 030	1,21	2 375		
3	0,50	5,5	0,57	972	0,80	1 362	0,91	1 556	1,21	2 075	1,38	2 335	1,79	3 048	2,09	3 567		
4	0,70	7	1,30	1 685	1,83	2 359	2,09	2 696	2,78	3 594	3,16	4 044	4,09	5 279	4,79	6 178		
5	0,80	8	2,59	2 759	3,62	3 862	4,14	4 414	5,5	5 886	6,27	6 626	8,1	8 645	9,5	10 116		
6	1	10	4,49	3 891	6,2	5 448	7,1	6 226	9,5	8 302	10,84	9 334	14,0	12 194	16,4	14 269		
8	1,25	13	10,9	7 145	15,2	10 003	17,4	11 432	23	15 242	26,34	17 146	34	22 388	40	26 198		
10	1,50	16	21	11 379	30	15 930	34	18 206	46	24 275	52	27 313	67	35 655	79	41 724		
12	1,75	18	37	16 594	52	23 231	59	26 550	79	35 401	90	39 835	116	51 995	136	60 845		
14	2	21	59	22 789	83	31 905	95	36 463	127	48 618	143	54 570	187	71408	219	83 563		
16	2	24	93	31 385	130	43 939	148	50 216	198	66 955	224	75 422	291	98 340	341	115 079		
18	2,5	27	128	38 123	179	53 373	205	60 998	283	83 746			402	119 454	471	139 787		
20	2,5	30	182	49 039	254	68 655	291	78 463	402	107 941			570	153 657	667	179 811		
22	2,5	34	250	61 326	350	85 857	400	98 123	552	134 806			783	192 157	917	224 865		
24	3	36	313	70 616	438	98 863	500	112 986	691	155 489			981	221 266	1 148	258 928		
27	3	41	463	93 042	649	130 259	741	148 868	1 022	204 577			1 452	291 534	1 700	341 157		
30	3,5	46	628	113 045	880	158 263	1 005	180 872	1 387	248 811			1 969	354 209	2 305	414 500		
33	3,5	50	854	141 009	1 195	197 412	1 366	225 614	1 884	310 343			2 676	441 828	3 132	517 033		
36	4	55	1 096	165 409	1 534	231 573	1 754	264 655	2 418	363 974			3 435	518 282	4 020	606 501		
39	4	60	1 424	198 910	1 994	278 474	2 279	318 257	3 139	437 669			4 463	623 253	5 223	729 339		
42**	4,5	65	1 760	227 588	2 464	318 624	2 816	364 141	3 872	500 694			5 515	713 110	6 453	834 491		
45**	4,5	70	2 203	266 613	3 085	373 258	3 525	426 580	4 847	586 548			6 903	835 386	8 079	977 579		
48**	5	75	2 659	299 530	3 722	419 342	4 254	479 248	5 849	658 966			8 330	938 528	9 748	1 098 277		
52**	5	80	3 425	359 684	4 795	503 558	5 480	575 495	7 335	791 306			10 731	1 127 011	12 558	1 318 843		
56**	5,5	85	4 270	415 172	5 978	581 240	6 832	664 275	9 394	913 378			13 379	1 300 871	15 656	1 522 296		
60**	5,5	90	5 306	485 416	7 428	679 583	8 490	776 666	11 673	1 067 916			16 625	1 520 971	19 455	1 779 860		
64**	6	95	6 382	548 969	8 935	768 556	10 212	878 350	14 041	1 207 731			19 998	1 720 102	23 402	2 012 885		

 μ = 0.20 tableau de serrage pour visserie revêtue ou non. Montage à sec (μ = coefficient de frottement moyen)

	ISO 272		Classe de qualité boulonnerie acier ISO898-1													
			5	i,6	5	,8	6	(6,8)		8	8 9,8		(10,9)		(12,	
d mm	ISO mm	mm	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo	Cs	Fo
1,6**	0,35	3,2	0,086	210	0,120	294	0,137	335	0,183	447	0,206	503	0,269	657	0,315	769
2**	0,40	4	0,183	349	0,256	488	0,293	558	0,390	744	0,439	837	0,573	1 093	0,671	1 279
2,5**	0,45	5	0,383	582	0,536	815	0,612	931	0,816	1 242	0,918	1 397	1,20	1 824	1,40	2 134
3	0,50	5,5	0,66	874	0,92	1 224	1,06	1 399	1,41	1 866	1,60	2 099	2,07	2 740	2,43	3 207
4	0,70	7	1,51	1 514	2,11	2 120	2,42	2 422	3,22	3 230	3,66	3 635	4,74	4 744	5,5	5 552
5	0,80	8	3,00	2 481	4,20	3 473	4,81	3 970	6,4	5 293	7,27	5 958	9,4	7 774	11,0	9 098
6	1	10	5,2	3 498	7,2	4 893	8,3	5 598	11,1	7 464	12,57	8 392	16,3	10 962	19,1	12 828
8	1,25	13	12,6	6 426	17,7	8 997	20	10 283	27	13 710	30,62	15 423	39	20 137	46	23 565
10	1,50	16	25	10 238	35	14 334	40	16 382	53	21 843	61	24 575	78	32 082	92	37 542
12	1,75	18	43	14 934	60	20 908	69	23 895	92	31 860	105	35 849	136	46 795	159	54 760
14	2	21	69	20 514	97	28 719	111	32 822	148	43 763	167	49 142	218	64 277	255	75 218
16	2	24	108	28 280	152	39 592	174	45 248	232	60 331	262	67 944	341	88 611	399	103 694
18	2,5	27	149	34 324	209	48 054	239	54 919	330	75 421			469	107 549	549	125 856
20	2,5	30	213	44 188	298	61 863	341	70 700	471	97 253			667	138 456	781	162 023
22	2,5	34	293	55 298	411	77 418	470	88 478	648	121 574			920	173 269	1 077	202 762
24	3	36	366	63 630	513	89 083	586	101 809	809	140 084			1 148	199 376	1 343	233 313
27	3	41	544	83 910	762	117 474	871	134 257	1 201	184 517			1 706	262 920	1 997	307 672
30	3,5	46	737	101 914	1 032	142 679	1 180	163 062	1 628	224 292			2 311	319 331	2 704	373 685
33	3,5	50	1 004	127 210	1 406	178 094	1 607	203 536	2 216	279 953			3 148	398 593	3 684	466 438
36	4	55	1 288	149 174	1 803	208 844	2 060	238 679	2 840	328 236			4 036	467 413	4 723	546 973
39	4	60	1 677	179 487	2 348	251 282	2 683	287 179	3 697	394 919			5 255	562 393	6 150	658 119
42**	4,5	65	2 070	205 323	2 898	287 452	3 312	328 516	4 554	451 710			6 486	643 344	7 590	752 849
45**	4,5	70	2 596	240 641	3 635	336 897	4 154	385 025	5 712	529 410			8 136	754 008	9 520	882 350
48**	5	75	3 130	270 321	4 383	378 449	5 009	432 514	6 887	594 706			9 809	847 006	11 478	991 177
52**	5	80	4 041	324 763	5 657	454 668	6 465	519 620	8 889	714 478			12 661	1 017 590	14 816	1 190 797
56**	5,5	85	5 034	374 739	7 048	524 635	8 054	599 582	11 075	824 426			15 773	1 174 182	18 458	1 374 043
60**	5,5	90	6 266	438 337	8 772	613 672	10 026	701 340	13 785	964 342			19 634	1 373 457	22 976	1 607 237
64**	6	95	7 533	495 676	10 546	693 947	12 052	793 082	16 572	1 090 488			23 603	1 553 119	27 620	1 817 480
*Class			16 mm 0 0	h à nartir da	d_110 mm											

^{*}Classe 8-8a jusqu'a d=16 mm, 8-8b à partir de d=118 mm

