Paige_Tarjan

L'articolo presenta algoritmi risolutivi per tre problemi differenti.

L'algoritmo presentato migliora quello presentato da Hopcroft, pur utilizzando una strategia simile (ma migliorata).

Sia $S\subset U$ con U insieme finito, sia R una relazione binaria su U (cioè $R\subset U\times U$), e sia Q una partizione di U.

$$split(S,Q) = \begin{cases} B & \text{se B \`e un blocco di Q stabile rispetto a S (rispetto a R)} \\ \{B \cap R^{-1}(S), B - R^{-1}(S)\} & \text{altrimenti} \end{cases}$$

Diremo che S è uno splitter di Q se split(S,Q)
eq Q.

Proprietà di split

- 1. S è uno splitter per $Q \iff split(S,Q)
 eq Q \iff Q$ è instabile rispetto a S
- 2. Se Q' è una rifinitura di Q, e Q è stabile rispetto a $S \implies Q'$ è stabile rispetto a S
- 3. Se Q è stabile rispetto a $S_1, S_2 \implies Q$ è stabile rispetto a $S_1 \cup S_2$
- 4. Monotonia: se Q' è una rifinitura di $Q \implies split(S,Q')$ è una rifinitura di split(S,Q)
- 5. Commutatività: split(S, split(Q, P)) = split(Q, split(S, P))

Algoritmo "naive"

Finchè è possibile trovare un insieme S tale che $S=\alpha\cup\beta$ con α,β blocchi di Q, e tale che S è uno splitter di Q, sosituisci Q con split(S,Q).

Non è necessario usare come splitter unioni di blocchi della partizione attuale, ma questo consente di sviluppare l'algoritmo più veloce.

Algoritmo "fast"

Innanzitutto si preprocessa la partizione iniziale P dell'insieme U, sostituendo ogni blocco B con

$$B' = B \cap E^{-1}(U), \qquad B'' = B - E^{-1}(U)$$

E' evidente che tutti i blocchi B'' contengono tutti gli elementi $x: \nexists y \in U: E(x,y)$. Di conseguenza questi blocchi non verranno mai toccati da split, in quanto sono già stabili rispetto a qualsiasi sottoinsieme di U: prendendo un $S \subset U$ si ha che $B'' \cap E^{-1}(S) = \emptyset$ per qualsiasi B''

Allora l'insieme dei B' è una partizione di $E^{-1}(U)$, e possiamo usare l'algoritmo soltanto su questi blocchi. Non possiamo unire i blocchi B'' perchè violeremmo la condizione che la partizione risultante deve essere una rifinitura della partizione iniziale.

Il miglioramente consiste nel mantenere due partizioni X,Q di U.Q è sempre una rifinitura di X, e Q è stabile rispetto ad ogni blocco di X. Inizialmente Q=P,X=U (cioè X contiene un unico blocco). Si ripete il seguente algoritmo finchè non si ottiene Q=X

- 1. Trova un blocco $S \in X: S
 otin Q$
- 2. Trova un blocco $B \in Q: B \subset S \wedge |B| \leq |S|/2$
- 3. Rimpiazza S in X $\cos B$, S-B
- 4. Rimpiazza B in Q con split(S-B,split(B,Q))

L'obiettivo è scegliere gli splitter in modo più intelligente (scegliendoli casualmente, anche con il pre-processamente l'algoritmo sarebbe O(mn)).

Osservazione

Se P è formato da un unico blocco P stesso è il suo coarsest stable refinement.

Osservazione

Ogni blocco B usato come splitter ha cardinalità al più dimezzata rispetto al B del passaggio precedente.

Caso funzionale (da Hopcroft)

Suppongo che

$$\forall x \in U | E(\{x\}) | = 1$$
, cioè $\forall x \ \exists ! y \in U : E(x, y)$ (1)

Sia Q una partizione di U. Sia $S=\cup_{i=1}^n b_i$ con $b_i\in Q$. Suppongo Q stabile rispetto a S. Sia $B\subset S$.

Allora

$$split(B,Q)$$
 è stabile rispetto a $S-B$

Infatti, sia $B_1 \in Q$.

- ullet se B_1 era un blocco di Q già stabile rispetto a B (quindi B_1 non è cambiato), allora
 - $\circ \ B_1\subset E^{-1}(B) \implies B_1\cap E^{-1}(S-B)=\emptyset$, perchè $B\cap S-B=\emptyset$ e per l'ipotesi (1)
 - $\circ \ B_1 \cap E^{-1}(B) = \emptyset.$ Ricordando che B_1 era già un blocco di Q stabile rispetto a S
 - lacksquare Non può essere $B_1\subset E^{-1}(S)$, perchè $B_1\cap E^{-1}(B)=\emptyset$ e $B\subset S$
 - $lacksquare B_1\cap E^{-1}(S)=\emptyset \implies B_1\cap E^{-1}(S-B)=\emptyset$

- se B_1 è stato generato da uno split
 - $\circ \ B_1=\widetilde{B}\cap E^{-1}(B)$ per qualche blocco $\widetilde{B}\in Q \implies$ deve essere chiaramente $B_1\cap E^{-1}(S-B)=\emptyset$ per la (1)
 - $\circ \ \ B_1 = \widetilde{B} E^{-1}(B)$ per qualche blocco $\widetilde{B} \in Q$
 - $\widetilde{B}\subset E^{-1}(S) \implies \widetilde{B}-E^{-1}(B)\subset E^{-1}(S-B)$
 - $\widetilde{B} \cap E^{-1}(S) = \emptyset \implies \widetilde{B} \cap E^{-1}(B) = \emptyset \implies B_1 = \widetilde{B} E^{-1}(B) = \widetilde{B},$ ma questo caso è già stato trattato.

Lemma 3

Suppongo Q stabile rispetto ad un insieme S (che nel caso dell'algoritmo è uno dei blocchi di X, e Q è stabile rispetto a tutti i blocchi di X). Sia $B \subset S$. Allora per l'operazione split(S-B,split(B,Q)) valgono i seguenti risultati

1. Un blocco $D\in Q$ viene rifinito rispetto a $B\iff D\cap E^{-1}(B)\neq\emptyset\land D-E^{-1}(B)\neq\emptyset$ (per definizione di split). In questo caso

$$D o egin{cases} D_1 = D \cap E^{-1}(B) \ D_2 = D - E^{-1}(B) = D - D_1 \end{cases}$$

2. Un blocco di tipo $D_1 \in split(B,Q)$ viene rifinito rispetto a $S-B \iff D_1 \cap E^{-1}(S-B) \neq \emptyset \wedge D_1 - E^{-1}(S-B) \neq \emptyset$ (per definizione di split). In questo caso

$$D_1
ightarrow egin{cases} D_{11} = D_1 \cap E^{-1}(S-B) \ D_{12} = D_1 - E^{-1}(S-B) = D_1 - D_{11} \end{cases}$$

3. I blocchi di tipo D_2 non vengono toccati da $split(S-B,D_2)$. Poichè D è stabile rispetto a $S,D\subset E^{-1}(S)\vee D\cap E^{-1}(S)=\emptyset$ Se D viene diviso in $D_1,D_2\implies D\cap E^{-1}(B)\neq\emptyset$, con $B\subset S$, quindi il secondo caso è impossibile. Allora $D_2\cap E^{-1}(B)=\emptyset$ per costruzione, quindi $D_2\subset E^{-1}(S-B)$ perchè $D_2\subset D\subset E^{-1}(S)$.

4. E' sufficiente fare un disegno per verificare che

$$\begin{cases}
D_{11} = D_1 - (E^{-1}(B) - E^{-1}(S - B)) \\
D_{12} = D_1 \cap (E^{-1}(B) - E^{-1}(S - B))
\end{cases}$$

Strutture dati

Record	$y \in U$	xEy	$B \in Q$	$S \in X$
			•	

Record	$y \in U$	xEy	$B \in Q$	$S \in X$
Pointer 1	[(a,y),(b,y),]	x	B	$egin{array}{l} < B_i > \ : B_i \subset \ S \end{array}$
Pointer 2	$B\in Q:y\in B$	$count(x,S)$ (con $S\in X:y\in S$)	$a,b,> \ \subset B$	
Pointer 3	$count(y,S) = S \cap E(\{y\}) \ (\operatorname{con} S \in X : y \in S)$		$S \in X: B \subset S$	

 ${\rm Dove} < .. > {\rm denota} \ {\rm una} \ {\rm doubly} \ {\rm linked} \ {\rm list}.$

Queste strutture richiedono uno spazio O(m) (supponendo il pre-processamento, quindi $m \geq n$).