Relations

A relation R from a domain A to a target B is a subset of A x B.

Example:

R:
$$\{1,2,3,4 \rightarrow \{a,b,c,d,e\}$$

$$R = \{(1,b), (1,c), (2,a), (3,b), (3,d)\}$$

Properties of Relations

A relation R over a set A is:

• *Reflexive* if $\forall x \in A: (x, x) \in R$

$$DIVIDES = \{(a, b) : a, b \in \mathbb{N}^+ \land a|b\}$$

• *Symmetric* if $\forall x, y \in A$: $(x, y) \in R \iff (y, x) \in R$

$$CLOSEBY = \{(a, b): a, b \in \mathbb{N} \land |a - b| \le 2\}$$

• *Transitive* if $\forall x, y, z \in A : ((x, y) \in R \land (y, z) \in R) \Rightarrow (x, z) \in R$

$$DIVIDES = \{(a, b): a, b \in \mathbb{N} \land a|b\} \quad IMPLIES = \{(P, Q): P \Rightarrow Q\}$$

Equivalence Relations

A relation R over a set A that is reflexive, symmetric and transitive is called an **equivalence** relation.

Examples:

```
\{(P,Q): P \Leftrightarrow Q\}\{(a,b): rem(a,3) = rem(b,3)\}
```

Reflexive Closure

The *reflexive closure* of relation R is the smallest reflexive relation r(R): $r(R) \supseteq R$.

Example:

$$R = \{(a, a), (a, b), (b, c)\}$$

 $r(R) = R \cup \{(b,b),(c,c)\} = R \cup I$, where I is the identity

Symmetric Closure

The **symmetric closure** of relation R is the smallest symmetric relation $s(R): s(R) \supseteq R$.

Example:

$$R = \{(a, a), (a, b), (b, c)\}\$$

 $s(R) = R \cup \{(b, a), (c, b)\}\ = R \cup R^- \text{ where } R^- \text{ is the inverse of } R$

Transitive Closure

The *transitive closure* of relation R is the smallest transitive relation $R^+ \supseteq R$.

Example:

$$R = \{(a, a), (a, b), (b, c)\}$$

$$R^{+} = R \cup \{(a, c)\}$$

Composing Relations

Given two relations $R: A \rightarrow B$, $S: B \rightarrow C$

we define the composition

$$S \circ R: A \to C$$
 as $\{(a,c): a \in A \land c \in C \land \exists b \in B: (a,b) \in R \land (b,c) \in S\}$

If R is a relation over a set A then $R \circ R = \{(a,b): \exists x \in A \ (a,x) \in R \ \land (x,b) \in R\}$

R: direct flights

 $R \circ R$: one-stop flights

Composing Relations

If R is a relation over a set A then $R \circ R = \{(a,b): \exists x \in A \ (a,x) \in R \ \land (x,b) \in R\}$

$$R \circ (R \circ R) = \{(a,b): \exists x,y \in A \ (a,x) \in R \ \land (x,y) \in R \land (y,b) \in R\}$$

R: direct flights

 $R \circ R = R^2$: one-stop flights

 $R \circ R \circ R = R^3$: two-stop flights

In general: $(a,b) \in \mathbb{R}^k$ iff there is a sequence of k flights from a to b.

Our little airline

 $A = \{\text{EWR, BOS, DCA, LAX, SFO, ORD, DEN, MIA}\}$ $FLIGHTS = \{(\text{EWR, ORD}), (\text{BOS, DCA}), (\text{LAX, SFO}), (\text{DEN, LAX}), (\text{DCA, MIA}), (\text{SFO, EWR}),$ $(\text{ORD, DEN}), (\text{LAX, BOS}), (\text{MIA, SFO})\}$

Composing Relations

Suppose A consists of n cities and that one can fly (directly or indirectly) from a to b Then there is a sequence of k flights where $1 \le k \le n$. (Why not n-1?) In other words, $(a,b) \in R \cup R^2 \cup R^3 \cup \cdots \cup R^n$

Theorem: For any relation R over a set A, |A| = n,

$$R^+ = R \cup R^2 \cup R^3 \cup \cdots \cup R^n$$

Corollary: If R is reflexive then $R^+ = R^n$

since
$$R \subseteq R^2 \subseteq R^3 \cdots \subseteq R^n$$

Functions

A function f from a domain A to a target B is a relation such that:

$$\forall x \in A \exists b \in B : f(x) = b$$

$$\land \quad \forall x \in A, \forall b_1 \in B, \forall b_2 \in B : (f(x) = b_1 \land f(x) = b_2) \Rightarrow b_1 = b_2$$

"Every domain element is mapped to exactly one element in the target."

Example: $Domain = \mathbb{N}, Target = \mathbb{N}$

$$f(x) = x^2$$

Example: $Domain = \mathbb{N}, Target = \mathbb{R}$

$$f(x) = x^2$$

Example: $f(x) = \sqrt{x}$

 $Domain = \mathbb{N}, Target = non - negative reals$

 $Domain = \mathbb{N}, Target = \mathbb{R}$

Functions

$$f: \{1,2,3\} \to \{a,b,c,d\}$$

 $f = \{(1,b), (1,c), (2,a), (3,b), (3,d)\}$

Is f a function?

Types of Functions

Definition 1: A function $f:A \rightarrow B$ is one-to-one (also called *injective*) if $\forall x_1, x_2 \in A: (x_1 \neq x_2) \Rightarrow f(x_1) \neq f(x_2)$

"every domain element is mapped to a unique element in the target."

Definition 2: A function $f:A \rightarrow B$ is onto (also called surjective) if $\forall y \in B \ \exists x \in A: f(x) = y$

"every element in the target is the target of at least one domain element."

Definition 3: A function $f:A \rightarrow B$ is a one-to-one correspondence (also called bijective) if f is both injective and surjective.

"every domain element is matched with exactly one element in the target, and vice versa."

Examples

Let $f: \mathbb{N} \to \mathbb{N}$

$$f(x) = x^2$$
 one-to-one but not onto

$$f(x) = x^2 - 1$$
 not a function!

$$f(x) = (x - 1)^2$$

not one-to-one, not onto!

$$f(x) = x$$
 one-to-one and onto

$$f(0) = 0$$
, $\forall x > 0$: $f(x) = x - 1$ not one-to-one, but onto

The Pigeonhole Principle

If k+1 pigeons occupy k pigeonholes, then at least two pigeons share a pigeonhole.

No function from a domain of size k + 1 to a target of size k is injective.

The well-ordering principle

Every non-empty subset of $\mathbb N$ has a least element.

Theorem:

The pigeonhole principle is logically equivalent to the well-ordering principle.

(We'll see a proof of this later!)

Proof Techniques

To prove that proposition P is a tautology:

A. Direct method: Show that *P* follows logically from known true statements.

Establish that the implication $(True \rightarrow P)$ is true.

B. Proof by contradiction: Show that if *P* is false, then so it True!

Establish that the implication $(\neg P \rightarrow False)$ is true.

Example: Proof by Contradiction

Theorem. $\forall n \in \mathbb{N}: (n > 1 \text{ and } n \text{ is not prime}) \rightarrow n \text{ can be factored as a product of primes.}$

Proof. (By contradiction.) Suppose the statement is false, and that counterexamples exist.

Let *C* be the non-empty set of counterexamples

(numbers that are not prime and cannot be factored into primes).

Then, by the WOP, C has a least element. Let's call it m.

m is not prime and m > 1 and m cannot be factored as a product of primes.

Since m is not prime, $m = a \cdot b$ where 1 < a, b < m.

a, b are not in C: (because m is the smallest element in C)

$$a = p_1 \cdot p_2 \dots p_k$$
 and $b = q_1 \cdot q_2 \dots q_l$, where $\forall i, j \ p_i$ and q_j are primes.

So,
$$m = p_1 . p_2 ... p_k . q_1 . q_2 ... q_l$$

But then, $m \notin C$, a contradiction!

This contradicts the assumption that C is non-empty.

Therefore, C is empty.

Which is bigger?

- 1. {1, 2, 3} or {Alice, Bob, Charlie}
- 2. {10, 20, 25} or {234, 567}
- 3. {10, 20, 25} or {10, 20, 250}
- 4. {0, 1, 2, ...} or {1, 2, 3, ...}
- 5. {0, 2, 3, ...} or {1, 2, 3, ...}

What does it even mean for two sets to be equal in size?