第二章 熵与互信息.

entropy mutual information

2.1 熵

熵,是随机变量《不确定度的度量。

定义: - 个离散型随机变量X的熵H(X): H(X)=- ∑ p(x) log p(x)

log用的底是2,单位:比特 e 条特(nat)

注: $H(X) = E_p \log p(X)$ X的熵又解释为随机变量 $\log p(X)$ 的期望值 p(X)是X的概率密度函数 $E_p \log p(X) = \sum_{X \in X} \log p(X)$ p(X)

= H(X) 引理 2.31.1 H(X) ≥0 :: O≤p(X)≤1 :: log p(X) ≥0

引理 2.1.2 Ho(X)=(logba) Ha(X)

定理: 当 P.#=P.#=…= P.#= - 时, H [P.#, P.#, ..., P.#] > H [P., P., ..., P.]

证明: 拉格朗日常数店: max H(P, P2, ~, Ph)

£ Pi=1, Pi30

 $L(P_1, P_2, \dots P_n) = H(P_1, P_2, \dots, P_n) + \lambda(\sum_{i=1}^n P_i - 1)$

OF = OH + 2. JP2 (SiPi-1)

= - logPi-1+2 = 0

: logfi= 2-1

: P=P2= -- = Pn

即門二十

设X是一个离散型随机变量,其概率论中的 取值空间为X,根决密度函数p(x)=p(X=x) p(x)和p(y)指两个不同的随机变量 分别表示不同的概率密度函数

引理2.1.3: X~{Pa}a=1 H[X]=-盖品的Pa>0 且H[P1,P2,…,Ph]为的元凹函数

证明: OH = - (loge Pa +1)

 $\frac{\partial^2 H}{\partial P_a \partial P_B} = -\frac{1}{P_a} S_{ab} \qquad S_{ab} = 1 a = \beta \\ = 0, a \neq \beta$

 $\sum_{\substack{A,\beta=1\\A,\beta=1}}^{n} \xi_{A} \xi_{B} \frac{\partial^{2} H}{\partial \beta_{A} \partial \beta_{B}} = -\sum_{\substack{A=1\\A=1}}^{n} \xi_{A}^{2} \cdot \frac{1}{\beta_{A}} < 0$

: 员定矩阵

·H为约剂凹函数

VERSION 2 - VERSION !

联合熵与条件熵 将(X,Y)视为单个向量值随机变量

定义:对于服从联合分布为p(x,y)的一对离散随机变量(X,Y),其联合熵 H(XY)力

$$H(X,Y) = -\sum_{x \in X} \sum_{y \in Y} p(x,y) \log p(x,y)$$

注: H(X,Y)=-Eplogp(X,Y)

应x: 若(X,Y)~p(X,y),条件熵H(Y|X)定X:

$$H(Y|X) = \sum_{x \in X} p(x) \cdot H(Y|X=x)$$

= - E log p(YIX)

定理2.2.1 (链式该则)

H(X,Y) = H(X) + H(Y|X) = H(Y) + H(PX|Y)

一对随机变量的熵等于其中一个随机变量的熵加上另一个随机变量的条件熵。

#:由すの得: H(X)- H(X|Y) = H(Y)- H(Y|X) なご 大: 由すの得: H(X)- H(X|Y) = H(Y)- H(Y|X) なご

2.3. 互信息 I(X:Y)

互信息: mutual information

一个随机变量包含另一个随机变量信息量的度量

在给定另一随机变量知识的条件下,原随机变量不确定度的缩减量

定义:考虑两个随机变量X和Y,它们的联合概率密度函数为P(X,y) 其边际概率密度函数分别是P(X)和P(y),则

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

2.4 熵与互信息的关系:

$$I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$$

= -H(X|Y) + H(X)

= H(X) - H(X|Y) 以至信息 I(X;Y) 是在给定 Y 知识下 X 的不确定度的缩减量 = H(Y) - H(Y|X)

Z: H(X, Y) = H(X) + H(Y(X)

$A \rightarrow I(X;Y) = H(X) + H(Y) - H(X,Y)$

灾理 2.4.1

I(X;Y) = H(X) - H(X|Y) I(X;Y) = H(Y) - H(Y|X) I(X;Y) = H(X) + H(Y) - H(X,Y) I(X;Y) = I(Y;X) I(X;X) = H(X)


```
互信息量 I(X;Y) 的性质:
            I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}
          (i) I(X; Y) 30
           引理:若{Pi}; / (智); 是概率分布,
                M & Pi log Pi >0
        证明: $ Pilog Pi
                                     = \sum_{i=1}^{n} q_i \cdot \frac{p_i}{q_i} \log \frac{p_i}{q_i} 
                                                                                                f(Xi)
     f(x) = x \log x 

f'(x) = \log x + 1 f'(x) = \frac{1}{x} > 0 

f'(x) = \log x + 1 f'(x) = \frac{1}{x} > 0 

f'(x) = \log x + 1 f'(x) = \frac{1}{x} > 0 

f'(x) = \log x + 1 f'(x) = \frac{1}{x} > 0 

f'(x) = \log x + 1 f'(x) = \frac{1}{x} > 0 

f'(x) = \log x + 1 f'(x) = \frac{1}{x} > 0 

f'(x) = \log x + 1 f'(x) = \frac{1}{x} > 0 f'(x) = \frac{1}{x} \log x + 1 f'(x) = \frac{1}{x} \log 
 小f(x)是凸函数
· 对对了一个(是 ?i. ?i)
                                                                                                                                                                                                             由引理证 I(X;Y) >0
                                                                                                                                                                                                 " = Px = 1 = Py=1
                                                                                  =0 小引理得证. 二至 Rr B= (至Px)(量B)=1
          1. I(X; Y) 30
                                                                                                                                                                                    : & Pi= pixiy), Qi = pixi-piy)
     (ii) 互信息量的证义: ②任何一个变化对另一个蕴含的大小. I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x) p(y)}
                                                          = \( \sum_{\text{xext}} \frac{\mathcal{E}}{\text{yey}} \) \( \log p(x,y) \) \( \log p(x) - \( \mathcal{E} \) \( \mathcal
                                                       =-H(X,Y)-\supple p(x) logp(x)-\supple p(y) logp(y)
                                                          =H(X)+H(Y)-H(X,Y)>0 0 1(X;Y)=H(X)+H(Y)-H(X,Y) 现实的不确定 1(X;Y)=H(X)+H(Y)-H(X,Y)
                                           : HIX,Y] < HIX] + HIY]
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         程度
                                                                                                                                                                                                                                                                                                      = HIX]+ "HIY]
     若p(x,y)=p(x)·p(y),取
                     H[X,Y) = - \ \frac{\frac{1}{2}}{\frac{1}{2}} \frac{\frac{1}{2}}{\frac{1}{2}} \frac{1}{2} p(x,y) \log \( p(x,y) \)
                                                                        = - \( \sum_{\text{X}} \sum_{\text{y}\in \text{Y}} \) \( \text{Dy (x,y) \log p(x)} \) - \( \sum_{\text{X}} \sum_{\text{Y}\in \text{Y}} \) \( \text{Dy (x,y) \log p(y)} \)
```

2.5 熵与互信息的链对法则

一组随机变量的熵等于条件熵之和

定理25.1 (熵的链式法则)

设随机变量 X_1, X_2, \dots, X_n , 服从 $p(X_1, X_2, \dots, X_n)$ 则 $H(X_1, X_2, \dots, X_n) = \sum_{i=1}^n H(X_i | X_{i+1}, \dots, X_i)$

证明: 0 H(X₁,X₂)=H(X₁)+H(X₂|X₁)

 $H(X_1, X_2, X_3) = H(X_1) + H(X_2, X_3|X_1)$ = $H(X_1) + H(X_2|X_1) + H(X_3|X_1, X_2)$

 $H(X_1,X_2,\cdots,X_n) = \sum_{i=1}^n H(X_i|X_{i+1}\cdots X_i)$

法②由 p(x1, x2, …, xn)= 介 p(xx/xx1, …, x1)可得 H(X1, X2, …, Xn)

=- \(\sum_{\text{X_1, \text{X_2, \cdots}}} \, p(\text{X_1, \text{X_2, \cdots}}, \text{X_n}) \log p(\text{X_1, \text{X_2, \cdots}}, \text{X_n})

=- = p(x1, x2, ..., xn) log in p(x2) x1-1, ..., x1)

= - \sum_{\frac{1}{2}=1} \frac{5}{2} p(\frac{1}{2},\fr

=- = P(X1, X2, ..., Xn) logp(Xi/Xi+, ..., X1)

= - \frac{h}{2-1} \frac{\sum_{1,\sum_{1}}}{\sum_{1,\sum_{1}}} p(\lambda_{1},\lambda_{2},\ldots,\lambda_{1},\ldots,

 $= \sum_{i=1}^{n} H(X_i|X_{i+1},...,X_i)$

条件互信息: 在给定区时由于Y的知识而引起关于X的不确定度的缩减量

定义: 随机变量 X 和 Y 在给定随机变量 Z 时的条件互信息;

J(X;Y|Z) = H(X|Z) - H(X|Y,Z)

2.6 Jensen 不等式 及其结果

若对于任意的 χ1, χ2 € (a, b) 及 0 ≤ 入≤1, 满足 $f(\lambda x_1 + (1-\lambda) \lambda_2) \leq \lambda f(x_1) + (1-\lambda) f(x_2)$ 则称函数fix)在区间(a,b)上是凸的.(convex)

定义:如果一f为凸函数,则称函数f是凹的。如果函数总是位于任何一条强的下面, 则函数是凸的;如果函数总是位于任何一条弦上面,则该函数是凹的.

凸函数: x2, |X|, ex, X logX

凹函数: logx, xx

定理2.6.1 如果函数f在某个区间上存在非负(正)的二阶导数,则f为该区间的凸函数.

证明: f(x) = f(x0) + (x-x0)·f'(x0) + f''(xi) (x-x0)2 表勒级数展开。 x*位于x0与x2间 由假设于"(X)>,0可知, 本多0

设χο=λχι+(1-λ)χ2,取x=χ1,可得:f(χ1) > f(λχ1+(1-λ)χ2)+(1-λ)(χ1+χ2)f(λχ1+(1-λ)χ = f(x0) + (1-2)(x1 = x2) f'(x0)

取本松,可得. f(x2) ~ f(x6) +入(x2-X1) f'(x6)

: Af(x)+(1-X)f(x2) > Af(x0)+(1-X)f(x0)

 $=f(x_0)$

E:数学期望

定理 2.6.2 (Jensen 不等寸) 若给定 凸函数 f 和一个随机变量 X ,则 E $X = \int x f(x) dx$

对于两点分布,不等才变为: pif(xi)+pif(xi) > f(pixi+pixi),由凸函数定义可直接得到.

假定当分布点个数为k-1 时,定理成之,此时记为= 1-2 (i=1, 2, ..., k-1) = Pif(PXi) = Prf(Xx)+ (1-px) = Pi f(Xi) プタをf(Xe) + (1-Pe) f(差 Pi xi) 旧納假设 ラ f(PRXx+(1-PR) を Pixi) 日性 =f(& Pixi)

推论(互信息的非负性):

对任意两个随机变量X和Y, I(X;Y)>0

当且仅当X与Y相互独立,等号成立.

推论: I(X; Y(Z) >0

当且仅当对给定随机变量区,X和Y是条件独立的,等号成立

定理2.65条件作用使熵减小(信息不会有负面影响)

 $H(X|Y) \leq H(X)$, 当且仅当 X与Y相互独立,等号成立.

" I(X; Y) = H(X) - H(X|Y) 70

: H(X) > H(X)Y)

定理 2.6.6. (熵的 独立界)

设 X_1, X_2, \dots, X_n 服从 $p(X_1, X_2, \dots, X_n)$,则 $H(X_1, X_2, \dots, X_n) \leq \frac{p}{p-1} H(X_i)$,当且仅当 X_i 相互独立,等号成立.

由 链式 点则: H(X,,X25…, Xn)=H(Xi)+H(X2|Xi)+…

 $= \sum_{i=1}^{n} H(X_i | X_{i-1}, \dots, X_i)$ $\leq \sum_{i=1}^{n} H(X_i)$

2.7 对数和不等才及其应用。

定理 2.7.3 (熵的凹性)

H(p) 是关于p的凹函数. 熵作为分布的函数时,具有凹性.

定理 2.7.4

设(X,Y)~p(x,y)=p(x)p(y/x)。

如果固定 p(y|x), 则互信息 I(X; Y) 是关于 p(x) 的凹函数 而如果固定 p(x), 则互信息 I(X; Y) 是关于 p(y|x) 的凸函数

信道 信愿的随机 Pylx: 噪声報機成年

 Py = 至 P(x,y) = 至 P(y1x) P(x)

 Xex P(y1x) P(x) Pylx I(X; Y) = \(\sum_{\text{X}} \sum_{\text{Y}} \sum_{\text{Y}} \sum_{\text{Y}} \rightarrow \frac{P(\text{X}, y)}{P(\text{X}) \cdot P(\text{Y})} \lightarrow \frac{P(\text{X}, y)}{P(\text{X}) \cdot P(\text{Y})} 在通信领域, 圆定p(ylx), = \(\sum_{\text{X}} \sum_{\text{Y}} \text{Y} \t 则I(X;Y)是转p(X)的凹函数 证明: I(X;Y) 是关于p(x)的凹函数 $\frac{\partial L}{\partial p(x)} = \frac{\partial}{\partial p(x)} \cdot \sum_{x' \in \chi} \sum_{y \in y} p(y|x') \cdot p(x') \log \frac{p(y|x')}{p(y)}$ = 3 pix). \(\sum_{\text{Y'ex}} \frac{\sum_{\text{Ey}}}{\text{Yex}} \frac{\sum_{\text{P(y(x')}} \ng p(\text{y(x')} - \log p(\text{y(x)})}{\text{P(x')} \log p(\text{y(x')} - \log p(\text{y(x)})} = E E ptylk's log ptylk's Ply) = & Plylx). Plx) Sugar prylx) log prylx) - 2 Sugar Sugar prylx') - prx') log Pry) = \(\superset \text{P(y(x) bog p(y)} + \sum \sum \(\sum \text{P(y(x)} \) \(\text{P(y(x))} \) \(\text{P(y(x))} \) = \(\sum_{\text{yey}} \) \(\rightarrow \text{p(y(x)} \) \(\rightarrow \) \(\frac{\sum_{\text{yey}}}{\text{yey}} \) \(\frac{\sum_{\text{yey}}}{\text{y = G - \(\sum_{\text{Yey}} p(\text{y|x}) \log p(\text{y}) - C_2 C2 (卷数) $\frac{\partial I^2}{\partial P(x) \partial P(x')} = -\frac{\partial}{\partial P(x')} \sum_{y \in y} P(y|x) \cdot \log P(y)$ = - \(\superpresent p(y/x) \frac{\partial}{\partial} p(x) \log p(y) = - S pylx). Pylx) 负定矩阵:

 $\sum_{X_1,X_1'} \S_{X_1'} \frac{\partial I^2}{\partial D(X_1')} = -\sum_{y \in Y} \frac{1}{P(Y)} (\sum_{X_1} \S_{X_1} P_{Y|X_1})^2 \leq 0$

2.8 数据处理不等式

马尔可夫过程 定义:

随机序列中的每个随机变量仅依赖于它的前一个随机变量,而条件独立于其他前面的所有随机变量。

定义: 如果对 N=1,2,…, 及所有的 X1, X2,…, Xn E XD, 有 Pr (Xn= Xn+1 = Xn+1 | Xn= Xn, Xn+1 = Xn+1, …, X1= X1)

= Pr (Xntl = xntl | Xn = xn)

则称离散随机过程 X1, X2, 为马尔·铁链或马尔可夫过程.

弥可夫过程:

 $\cdots \rightarrow \chi_{n+} \rightarrow \chi_n \rightarrow \chi_{n+1} \rightarrow \chi_{n+2} \rightarrow \cdots$

P(Xntk1, ..., Xntkt | Xn-j,, Xn-jz,..., Xn-js) (j<j2<...<js)

= P(Xntk1, ..., Xntkt | Xn-ji)

性质: [1] 四国尔可夫的任何子序列仍是马尔可夫序列

(2) 逆向序列仍是马尔可夫序列

P(Xn-ji, Xn-jz, ... Xn-js | Xntki, Xntkz, ..., Xntkt) (k, <kz < ... < kt)

= P(Xn-j, Xn-j2, ..., Xn-js | Xn+k,)

丘: 若引尔可夫链 X,→X2→X3,两

P(X3 | X1, X2) = P(X3 | X2),

 $\#\beta \angle_1 \ X_1 \in --- X_2 \in --- X_3$, $P(X_1|X_2,X_3) = P(X_1|X_2)$

iF明: $P(X_1|X_2,X_3) = \frac{P(X_1,X_2,X_3)}{P(X_2,X_3)} = \frac{P(X_3|X_2,X_1) \cdot P(X_2,X_1)}{P(X_2,X_3)}$

 $= \frac{P(X_3|X_2) \cdot P(X_1|X_2) \cdot P(X_2)}{P(X_3|X_2) \cdot P(X_2)}$

= P(X1 | X2)

性质(3) $X_1 \rightarrow X_2 \rightarrow X_3$ 是马尔可夫链,则 $I(X_1; X_2) \gg I(X_1; X_3)$ $I(X_2; X_3) \gg I(X_1; X_3)$

证明:

$$\begin{split}
& I(X_{1}; X_{2}) - \overline{I}(X_{1}; X_{3}) = \sum_{X_{1} \in X_{1}} \sum_{X_{2} \in X_{2}} P(X_{1}, X_{2}) \log \frac{P(X_{1}, X_{2})}{P(X_{1})P(X_{2})} - \sum_{X_{1} \in X_{1}} \sum_{X_{2} \in X_{2}} P(X_{1}, X_{3}) \log \frac{P(X_{1}, X_{2}) \cdot P(X_{1}) \cdot P(X_{2})}{P(X_{1}) \cdot P(X_{2})} \\
&= \sum_{X_{1}} \sum_{X_{2}} \sum_{X_{3}} P(X_{1}, X_{2}, X_{3}) \log \frac{P(X_{1}|X_{2})}{P(X_{1}|X_{3})} \\
&= \sum_{X_{1}} \sum_{X_{2}} \sum_{X_{3}} P(X_{2}, X_{3}) \cdot P(X_{1}|X_{2}, X_{3}) \cdot \log \frac{P(X_{1}|X_{2})}{P(X_{1}|X_{3})} \\
&= \sum_{X_{2}} \sum_{X_{3}} P(X_{2}, X_{3}) \cdot P(X_{1}|X_{2}, X_{3}) \cdot \log \frac{P(X_{1}|X_{2})}{P(X_{1}|X_{3})} \\
&= \sum_{X_{2}} \sum_{X_{3}} P(X_{2}, X_{3}) \left(\sum_{X_{1}} P(X_{1}|X_{2}) \log \frac{P(X_{1}|X_{2})}{P(X_{1}|X_{3})} \right) \geqslant 0 \\
&= \sum_{i=1}^{n} P_{i} \log \frac{P_{i}}{q_{i}} \geqslant 0 \quad \left\{ \sum_{i=1}^{n} P_{i} = 1 \right\} \\
&= 0 \end{split}$$

总结: