PROJEK PERSAMAAN MODEL STRUKTURAL

PENGGUNAAN STRUCTURAL EQUATION MODELING (SEM) DALAM ANALISIS FAKTOR-FAKTOR YANG MEMENGARUHI KEJADIAN KRIMINALITAS DI PROVINSI ACEH TAHUN 2023

SULISTIA FAHRI

(PREVIEW PROJECT)

PROGRAM STUDI STATISTIKA JURUSAN STATISTIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS SYIAH KUALA, BANDA ACEH 2023

DATA DAN VARIABEL PENELITIAN

1.1 DATA PENELITIAN

Data yang digunakan dalam penelitian ini adalah data sekunder diperoleh dari Badan Pusat Statistik (Badan Pusat Statistika) Aceh atau bersumber dari data provinsi Aceh dalam angka tahun 2023. Adapun tampilan data yang digunakan dalam penelitian adalah sebagai berikut:

Tabel 1.1 Data penelitian

			_	4 640	<i></i>	1 170	a penentian	_		_				
Kabupaten / kota	Kriminal 1			Kepadatan penduduk			Tingkat Partisipasi Kemiskii Angkatan			IPM				
	\mathbf{Y}_{i}	Y.,	\mathbf{X}_{u}	\mathbf{X}_{12}	\mathbf{X}_{υ}	\mathbf{X}_{ts}	Kerja (TPAK) (X2)	$\mathbf{X}_{\mathrm{p}_{1}}$	\mathbf{X}_{s_2}	\mathbf{X}_{α}	\mathbf{X}_{α}	X,,	X,,	
Simeulue	0.009	0.010	0.018	1.18	0.006	1.05	0.043	2.73	0.65	0.042	14.08	9.73	0.032	
Aceh Singkil	0.014	0.018	0.024	1.84	0.007	1.02	0.038	3.18	0.74	0.043	14.34	8.69	0.039	
Aceh Selatan	0.031	0.035	0.044	1.16	0.008	1.01	0.041	1.31	0.23	0.041	14.69	8.89	0.036	
Aceh Tenggara	0.055	0.046	0.042	1.83	0.007	1.01	0.045	1.92	0.44	0.043	14.26	9.92	0.036	
Aceh Timur	0.070	0.078	0.080	1.34	0.009	1.01	0.039	2.78	0.67	0.044	13.06	8.32	0.040	
Aceh Tengah	0.079	0.070	0.041	1.79	0.006	1.03	0.051	2.41	0.59	0.044	14.61	9.87	0.048	
Aceh Barat	0.033	0.033	0.038	1.12	0.009	1.02	0.039	2.22	0.45	0.043	14.63	9.87	0.043	
Aceh Besar	0.070	0.060	0.077	1.2	0.017	1.02	0.044	2.09	0.58	0.044	14.75	10.35	0.043	
Pidie	0.051	0.059	0.082	1.15	0.018	0.98	0.044	3.1	0.75	0.043	14.49	9.02	0.045	
Bireuen	0.064	0.075	0.082	0.92	0.029	0.97	0.043	2.08	0.53	0.045	14.86	9.31	0.041	
Acch Utara	0.138	0.121	0.114	1.06	0.024	1	0.038	2.48	0.57	0.044	14.73	8.73	0.038	
Aceh Barat Daya	0.026	0.025	0.029	1.54	0.013	1.02	0.040	1.69	0.3	0.041	13.66	8.68	0.038	
Gayo Lues	0.015	0.013	0.019	1.97	0.002	1.01	0.053	2.67	0.63	0.042	14.08	8.41	0.040	
Aceh Tamiang	0.079	0.084	0.056	1.32	0.019	1.03	0.044	1.8	0.39	0.044	13.96	9.04	0.038	
Nagan Raya	0.035	0.032	0.032	1.62	0.006	1.02	0.045	3.06	0.76	0.044	14.16	8.95	0.037	
Aceh Jaya	0.011	0.014	0.018	1.67	0.003	1.03	0.046	1.61	0.3	0.043	14.01	8.72	0.044	
Bener Meriah	0.051	0.051	0.031	2.47	0.014	1.03	0.053	3.54	1.09	0.044	13.71	10.01	0.050	
Pidie Jaya	0.023	0.023	0.030	1.5	0.019	0.99	0.039	2.66	0.56	0.045	14.98	9.53	0.047	
Banda Aceh	0.042	0.045	0.048	1.01	0.520	1.02	0.039	1.52	0.48	0.046	17.81	13.03	0.075	
Sabang	0.008	0.010	0.008	2.63	0.035	1.02	0.045	3.3	1.08	0.045	14.4	11.19	0.051	
Langsa	0.053	0.045	0.036	1.95	0.091	1.01	0.043	2.17	0.6	0.044	15.64	11.14	0.054	
Lhokseumawe	0.030	0.042	0.035	0.76	0.131	0.99	0.043	1.33	0.26	0.046	15.27	11.12	0.051	
Subulussalam	0.014	0.013	0.018	2.66	0.008	1.03	0.045	2.45	0.5	0.041	14.81	8.22	0.034	

Sumber: Provinsi Aceh Dalam Angka 2023

1.2 VARIABEL PENELITIAN

Variabel yang digunakan dalam penelitian ini yaitu sebanyak 1 variabel laten endogen dan 4 variabel eksogen. Variabel laten endogen berupa kriminalitas dan variabel laten eksogen berupa Jumlah kepadatan penduduk, jumlah pengangguran, jumlah penduduk miskin, jumlah industri, dan IPM. Rincian variabel yang digunakan dalam penelitian adalah sebagai berikut:

Tabel 1.2 Rincian variabel penelitian

Variabel Laten		Variabel Indikator					
Kriminalitas	Yı	Persentase kasus perselisihan dan pertengkaran terus menerus	%				
ηι	Y ₂	Persentase kasus pemaksaan, perselisihan ekonomi dan lain-lain	%				
Kepadatan	X_{11}	Persentase laju pertumbuhan penduduk	%				
penduduk ξ ₁	X ₁₂	C ₁₂ Rasio jenis kelamin					
ξ ₂ (X ₂)		Tingkat Partisipasi Angkatan Kerja (TPAK)	%				
Kemiskinan	X_{31}	Indeks Kedalaman Kemiskinan	%				
ξ 3	X_{32}	Indeks Keparahan Kemiskinan	%				
	X_{41}	Umur Harapan Hidup	Tahun				
IPM	X ₄₂	Harapan Lama Sekolah	Tahun				
ξ4	X ₄₃	Rata-rata Lama Sekolah	Tahun				
	X44	Pengeluaran Per Kapita	%				

HASIL DAN PEMBAHASAN

2.1 KONVERSI DIAGRAM JALUR MENGGUNAKAN AMOS

Gambar 2.1 Diagram path penelitian

Interpretasi:

Berdasarkan path diagram di atas, dapat diketahui bahwa variabel X₁, X₂, X₃ dan X₄ yaitu Kepadatan Penduduk, Tingkat Partisipasi Angkatan Kerja (TPAK), Kemiskinan, dan Indeks Pembangunan Manusia merupakan variabel eksogen yang akan dilakukan pengujian untuk melihat pengaruhnya terhadap variabel endogen (Y) yaitu Kriminalitas. Variabel Y memiliki 2 variabel manifest atau disebut juga dengan variabel indikator, variabel X₁ dan X₃ masing-masingnya memiliki 2 variabel manifest, variabel X₂ merupakan variabel yang terukur serta variabel X₄ memiliki 4 variabel manifest. Masing-masing variabel manifest memiliki sebuah error measurement.

2.2 NILAI STANDARDIZED LOADING FACTOR

2.2.1 Pengujian validitas

Tabel 2.1 Pengujian Validitas

Variabel	Indikator	Estimasi	Keterangan
Kriminalitas	\mathbf{Y}_1	0.893	Valid
	\mathbf{Y}_2	1,092	Valid
	X11	0.510	Valid

Variabel	Indikator	Estimasi	Keterangan
Kepadatan Penduduk	X ₁₂	0.807	Valid
Kemiskinan	X ₃₁	2.050	Valid
	X ₃₂	0.451	Valid
	X ₄₁	0.84	Valid
IPM	X ₄₂	0.998	Valid
11 141	X ₄₃	0.748	Valid
	X44	0.653	Valid

Interpretasi:

Berdasarkan output di atas, dapat dilihat bahwa nilai Standardized Regression Weights dari semua variabel indikator atau manifest itu memiliki nilai ≥ 0.30 artinya seluruh variabel indikator atau manifest tersebut sudah cukup valid untuk menggambarkan masing-masing dari latennya, maka tidak ada indikator yang perlu dihapus.

2.2.2 Pengujian Reliabilitas

Tabel 2.2. Hasil Uji Reliabilitas

Variabel	Indikator	CR	VE	Keterangan	
Kriminalitas	Y_1	0.0075	0,9945	D-E-b-1	
Kriminalitas	\mathbf{Y}_2	0,9975	0,9945	Reliabel	
V I P I . I .	X_{11}	0.615	0.4562	771 1 1 - 11 1 1	
Kepadatan Penduduk	X_{12}	0,615	0,4562	Tidak reliabel	
	X_{31}		2.4.00	Reliabel	
Kemiskinan	X ₃₂	1,602	2,159		
	X_{41}				
TDA 6	X ₄₂	0.0724	0.0001	B. F. L. I	
IPM	X ₄₃	0,9724	0,9001	Reliabel	
	X44				

Interpretasi:

Construct Reliability

Nilai batas (cut off) uji construct reliability diterima apabila nilainya > 0.70. berdasarkan hasil perhitungan menunjukkan bahwa variabel yang memiliki nilai construct reliability > 0.70 yaitu Kriminalitas (0,9975), kemiskinan (1,602) dan IPM (0,9724) maka indikator-indikator Kriminalitas dan IPM memiliki konsistensi yang baik.

Variance Extracted

Nilai batas (cut off) uji variance extracted yang direkomendasikan > 0.50 artinya jumlah varians dari indikator-indikator yang diekstraksi oleh konstruk laten lebih banyak dibandingkan dengan varians error nya. Berdasarkan perhitungan di atas dapat dilihat bahwa terdapat tiga variabel yang memiliki nilai variance extracted > 0.50. yaitu kriminal sebesar 0.9945, kemiskinan sebesar 2,1569 serta variabel IPM dengan nilai variance extracted sebesar 0,9001.

2.3 MODIFIKASI MODEL

Modifikasi model dapat dilakukan setelah memastikan bahwa data pada penelitian tidak terdapat *outlier* atau dapat dilakukan setelah dilakukan peninjauan atau pengujian asumsi data yang terpenuhi.

2.3.1 Pengujian asumsi

1. Evaluasi ukuran sampel

Asumsi pertama yang perlu dipenuhi adalah jumlah sampel. Sampel adalah bagian dari populasi yang mewakilinya. Sampel dalam penelitian SEM bila pendugaan parameter menggunakan metode *maximum likelihood estimation* maka besar sampel yang disarankan antara 100 hingga 200 atau 5 sampai 10 kali jumlah indikator dari keseluruhan yariable laten.

Notes for Group (Group number 1)

The model is recursive.

Sample size = 23

Gambar 2.2 Evaluasi ukuran sampel

Interpretasi:

Berdasarkan output di atas, dapat dilihat bahwa jumlah sampel adalah sebanyak 23 sampel maka disimpulkan bahwa untuk uji asumsi jumlah sampel tidak terpenuhi (sehingga seharusnya dilakukan penambahan jumlah sampel dalam kasus ini untuk mengatasinya dapat dilakukan penggatian lokasi sampel yang sebelumnya di daerah provinsi Aceh bisa dilakukan di kabupaten/kota pulau Sumatra atau sebagainya untuk menjangkau jumlah sampel yang maksimal. Namun berkaitan dengan lokasi projek saat ini analisis akan dilanjutkan guna mendapatkan kesimpulan pengaruh kriminalitas di daerah Aceh).

2. Evaluasi asumsi outlier

Tabel 2.3. Jarak Mahalanobis

Observation number	Mahalanobis d-squared	pl	p2
19	18,322	,074	,831
23	16,065	,139	,848
1	15,289	,170	,774
11	14,496	,207	,730
20	14,194	,222	,604
***	***	***	•••
8	7,202	,782	,418
2	7,125	,789	,253
15	6,505	,838	,254
21	5,997	,874	,193
7	5,173	,922	,156

Interpretasi:

Nilai chi-square, dengan probabilitas 0.001 dan df yaitu 8, diperoleh sebanyak 26,1245. Maka berdasarkan output pada Tabel di atas, dapat dinyatakan bahwa tidak ada observasi yang nilai dari jarak mahalanobis > (lebih besar dari) chi square sehingga dapat disimpulkan bahwa asumsi outlier terpenuhi.

3. Evaluasi asumsi multikolinearitas

Hipotesis

H0: Tidak terdapat multikolinearitas

H1: terdapat multikolinearitas

Daerah penolakan

Tolak H₀ jika determinant of sample covariance matrix > 0

Statistik uji

Determinant of sample covariance matrix = ,000

Gambar 2.3 Evaluasi asumsi multikolinearitas

Keputusan

Berdasarkan output diatas, diketahui nilai determinant of sample covariance matrix sebesar 0. Sehingga, diperoleh keputusan tidak dapat menolak H₀.

Kesimpulan

Berdasarkan keputusan yaitu tidak dapat menolak H₀, maka dapat disimpulkan bahwa tidak terdapat multikolinearitas pada data.

4. Evaluasi asumsi normalitas multivariat

Hipotesis

Ho: Data tidak berdistribusi normal Multivariat

H₁: Data berdistribusi normal multivariat

Daerah penolakan

Tolak H₀, jika -2,58 < c.r. multivariat < 2,58

Statistik uji

Variable	min	max	skew	c.r.	kurtosis	c.r.
X2	,038	,053	,819	1,603	,130	,128
X41	,041	,046	-,230	-,451	-,553	-,541
X42	13,060	17,810	1,927	3,773	5,574	5,457
X43	8,220	13,030	1,239	2,426	1,354	1,325
X44	,032	,075	1,841	3,604	4,324	4,233
X31	1,310	3,540	,051	,100	-,977	-,956
X32	,230	1,090	,711	1,392	,473	,463
X12	,760	2,660	,690	1,351	-,354	-,347
X14	,970	1,050	-,644	-1,262	,312	,305
Y2	,010	,121	,878	1,720	,438	,428
Y1	,008	,138	1,215	2,378	1,766	1,729
Multivariate					,661	,094

Gambar 2.4 Evaluasi asumsi normalitas multivariat

Keputusan

Berdasarkan output diatas, diperoleh nilai c.r. multivariat (0,094) < 2,58. Sehingga keputusan yang didapatkan adalah tolak H_0 .

Kesimpulan

Berdasarkan keputusan yaitu tolak H₀ maka dapat disimpulkan bahwa data berdistribusi normal multivariat

2.3.2 Modifikasi model

Evaluasi kesesuaian model keseluruhan untuk model modifikasi lanjutan ditampilkan pada tabel berikut 2.4 dan pada lampiran 3.

Tabel 2.4 Evaluasi kesesuaian model modifikasi lanjutan

Ukuran kecocokan	Cut of Values	Estimasi	Tingkat kecocokan	
Statistic chi- square (χ^2)	χ ² diharapkan lebih kecil	37,570	Good fit	
	Probability ≥ 0,05	0,352		
RMSEA	≤ 0,08	0,058	Good fit	
GFI	≥ 0,90	0,796	Marginal fit	
CFI	≥ 0,90	0,988	Good fit	
AGFI	≥ 0,90	0,615	Poor fit	
TLI	≥ 0,90	0,981	Good fit	
Normed Chi- Square	1 ≤ Normed Chi-Square ≤ 5	1,073	Good fit	

Proses modifikasi tidak dapat dilanjutkan dikarenakan tidak adanya korelasi yang disarankan oleh *output software*. Namun pada Tabel 2.4 menunjukkan bahwa uji kecocokan model dominan didapatkan *Good fit* sehingga diasumsikan atau dinyatakan bahwa model secara keseluruhan akan memperoleh hasil yang baik dikarenakan indikator yang digunakan cukup untuk menjelaskan variabel laten yang digunakan dalam penelitian.

2.4 EVALUASI KESESUAIAN MODEL STRUKTURAL UNTUK MODEL MODIFIKASI LANJUTAN

Evaluasi kesesuaian model struktural untuk model modifikasi lanjutan atau pengujian signifikansi pada penelitian menggunakan hipotesis :

Kepadatan penduduk

 $H_{0a}: \gamma_1 = 0$ (Kepadatan penduduk (ξ_1) tidak memengaruhi kriminalitas (η))

 $H_{1a}: \gamma_1 \neq 0$ (Kepadatan penduduk (ξ_1) tidak memengaruhi kriminalitas (η))

b. Tingkat Partisipasi Angkatan Kerja (TPAK)

H_{0b}: γ_2 = 0 (Tingkat Partisipasi Angkatan Kerja (TPAK) (ξ_2) tidak memengaruhi kriminalitas (η))

H_{1b}: γ₂ ≠ 0 (Tingkat Partisipasi Angkatan Kerja (TPAK) (ξ₂) memengaruhi kriminalitas (η))

c. Kemiskinan

 H_{0c} : $\gamma_3 = 0$ (Kemiskinan (ξ_3) tidak memengaruhi kriminalitas (η))

 H_{1c} : $\gamma_3 \neq 0$ (Kemiskinan (ξ_3) memengaruhi kriminalitas (η))

d. Indeks Pembangunan Manusia

 H_{0c} : $\gamma_4 = 0$ (Indeks Pembangunan Manusia (ξ_4) tidak memengaruhi kriminalitas (η))

 H_{1c} : $\gamma_5 \neq 0$ (Indeks Pembangunan Manusia (ξ_4) memengaruhi kriminalitas (η))

Tabel 2.5 Evaluasi kesesuaian model struktural untuk model modifikasi lanjutan

Variabel laten endogen	Variabel laten eksogen	C.R.	P-value	Keterangan
	\mathbf{X}_1	-1,993	0,046	Signifikan
Y	X_2	0,390	0,697	Tidak signifikan
	X_3	0,552	0,581	Tidak signifikan
	X_4	3,040	0,002	Signifikan

Berdasarkan Tabel 2.5 didapatkan bahwa setiap variabel eksogen yang memiliki pengaruh langsung terhadap Y (kriminalitas (η)). Berdasarkan Tabel 2.5 juga dapat diputuskan bahwa dapat menolak H₀ pada X₁ dan X₄ dikarenakan p-value < 0,05 sehingga dapat disimpulkan bahwa Kepadatan penduduk (ξ ₁) dan Indeks Pembangunan Manusia (ξ ₄) yang memiliki pengaruh terhadap kriminalitas (η).

2.5 ANALISIS PERSAMAAN STRUKTURAL

 $X_4 \rightarrow Y$

4

Efek tidak Efek Efek total \mathbb{R}^2 No Variabel langsung langsung $X_1 \rightarrow Y$ 1 -2.9390.000 -2.2182 $X_2 \rightarrow Y$ 2,858 0.000 1,901 0,503 $X_3 -> Y$ 3 0.003 0.000 0.003

Tabel 2.6. Analisis persamaan struktural

Hasil yang didapatkan pada tabel 2.6. mendapatkan model persamaan struktural pada penelitian berupa :

-0.448

$$\eta = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$$

 $Y = -2.939X_1 + 2.858X_2 + 0.003X_3 - 0.448X_4$

0.000

-0.390

Y – -2,939 Kepadatan penduduk (ξ₁)+ 2,858 Tingkat Partisipasi Angkatan Kerja (TPAK) (ξ₂) + 0,003 Kemiskinan (ξ₃) - 0,448 Indeks Pembangunan Manusia (ξ₄) Berdasarkan nilai koefisien determinasi (R²) dapat disimpulkan bahwa 50,3% kriminalitas dapat dijelaskan oleh kepadatan penduduk, Tingkat Partisipasi Angkatan Kerja (TPAK), kemiskinan, dan Indeks Pembangunan Manusia (IPM). Kemudian berdasarkan nilai korelasi yang didapatkan menunjukkan bahwa kepadatan penduduk dan Indeks Pembangunan Manusia (IPM) memiliki pengaruh yang negatif terhadap kriminalitas sedangkan Tingkat Partisipasi Angkatan Kerja (TPAK) dan kemiskinan memiliki pengaruh positif terhadap kriminalitas.

2.7 PERSAMAAN MODEL PENGUKURAN

Hasil persamaan model struktural penelitian dapat dilihat pada Lampiran 6, adapun persamaan yang didapatkan adalah :

$$Y_{11} = 1,00 \text{ Kriminalitas}(\eta) + 0,000$$

 $Y_{12} = 1,125 \text{ Kriminalitas}(\eta) + 0,000$
 $X_{11} = 45,332 \text{ Kepadatan penduduk}(\xi_1) + 0,124$
 $X_{12} = 1,00 \text{ Kepadatan penduduk}(\xi_1) + 0,000$
 $X_{31} = 0,616 \text{ Kemiskinan}(\xi_3) + 0,318$
 $X_{32} = 1,00 \text{ Kemiskinan}(\xi_3) + 0,164$
 $X_{41} = 0,124 \text{ Indeks Pembangunan Manusia}(\xi_4) + 0,000$

 X_{42} = 88,350 Indeks Pembangunan Manusia (ξ_4) + 0,337

 X_{43} = 150,412 Indeks Pembangunan Manusia (ξ_4) + 0,020

 $X_{44} = 1,00$ Indeks Pembangunan Manusia $(\xi_4) + 0,000$

KESIMPULAN

Berdasarkan pembahasan studi kasus yang dilakukan maka dapat diperoleh kesimpulan bahwa penelitian ini menghasilkan model struktural untuk Faktor-faktor yang mempengaruhi tingkat kriminalitas di Provinsi Aceh adalah sebagai berikut:

$$\eta = \gamma_1 + \gamma_2 + \gamma_3 + \gamma_4$$

$$Y = -2.939X_1 + 2.858X_2 + 0.003X_3 - 0.448X_4$$

Model yang diproleh menunjukkan bahwa kepadatan penduduk dan Indeks Pembangunan Manusia (IPM) memiliki pengaruh yang negatif terhadap kriminalitas sedangkan Tingkat Partisipasi Angkatan Kerja (TPAK) dan kemiskinan memiliki pengaruh positif terhadap kriminalitas. Akan tetapi pada uji signifikansi model struktural hanya variabel kepadatan penduduk (ξ_1) dan Indeks Pembangunan Manusia (ξ_4) yang memiliki pengaruh terhadap kriminalitas (η). Untuk nilai koefisien determinasi (R^2) diproleh nilai sebesar 0,503. Persamaan model struktural ini bermakna bahwa 50,3% kriminalitas dapat dijelaskan oleh kepadatan penduduk, Tingkat Partisipasi Angkatan Kerja (TPAK), kemiskinan, dan Indeks Pembangunan Manusia (IPM).

DAFTAR PUSTAKA

- BPS. (2023). Provinsi Aceh Dalam Angka 2023. Banda Aceh: Badan Pusat Statistika Provinsi Aceh.
- BPS. (2023). Provinsi Aceh Dalam Angka 2023. Banda Aceh: Badan Pusat Statistika Provinsi Aceh.

Lampiran

Lampiran 1. Nilai Estimasi

Stanfardierd Regression Weights (Group number 1 - Behalt model)

			Delcarte
Y	1000	XI	-,750
Y	-	333	,052
Y	Sam	364	-,108
Y	-	302	,299
YL	See	Y	,893
Y2	-	Y	1,092
X14	400	X1	,510
XII	Sam	XI.	,807
300	-	338	2,050
X31	See	333	,451
3566	-	366	,939
3(4)	500	354	,998
3040	-	366	,748

Lampiran 2. Evaluasi kesesuaian model keseluruhan

Child											
Mindel	MEAR	CM		P	CMINDE						
Definit model	99	46.9		.195	1,504						
Seterated model	66										
Independence model	11	203.2	N2 39	,000	4,829						
RASK, CPT						ENDEA					
Mindel	EMB	GFI	AGE	POFI							
Default model	,649	,790	,560	,414		Model	RMSEA	1/0/90	HI 90	PCLOSE	
Seterated model	,000	1,000				Defoult model	.117	.000	.289	.156	
Independence model	.103	,421	,309	,339		Independence model	417	367	468	.900	
Reselver Comparisons						and annual	11.41		1.00		
			-			AIC					
Mindel	Debat	ther	Debal	TLI	CFT						
Default model	.823	.730	.952	.921	.948	Model	AIC	BCC	34	IC CA	ac
Seterated model:	1,000		1,000		1,000	Default model	106.934	175,934	140.90	99 170,9	os
Independence model	,000	,000	,000	,000	,000	Saturated model	132,000	290,400			
Partitionary Adjusted The							287,292	313,692			
rarraman conpension race						Independence model	267,294	313,092	279,11	55 519,7	0.0
Medel	PRATE					ECVI					
Delinit model	,65					ECA1					
Senicated model Independence model	1.09										
morphisms moon	1,00	0 /06	9 /00			Model	ECVI	10.90	HI 90	MECAL	
NET						Default model	4,561	4,364	5,854	6,133	
						Saturated model	6,000	6,000	6,000	13,200	
Midel	3903		190	JE 99		Independence model	13,099	10,922	15,538	14.259	
Diclarate model	16,834			14,777		morphisms arest	12900	145400	10,000	3-4-2-7	
Saturated model Independence model	210,293		000	,000		HOGETER					
morphism action according	211,200	100,	200 20	14,641		HOLLING					
EMES							HOLLT	THE PERSON	LTER		
Mindel	EMIN		10.90			Model		05			
Defeat world	2,133	497							.00		
Sement model	.000	,000			00	Default model		24	28		
Independence model	12,089	0.880				Independence model		T	7		

Lampiran 3. Evaluasi kesesuaian model modifikasi lanjutan

CHEN										
Model	MPAR	CMI	N DE		CMINITE					
Definal candel	31	37,87	18 OF	,812	1,079					
Salvenied model	66	.00								
Independence model	31	269,21	G 55	,000	6,828					
OBLOTE										
Model	3548	GFI	ACFT	POPI		ROINEA				
Default model Saturated model	.000 000	.796	.015	.422		Mixel	RMNEA	1.0 90	HI 90	PCLOSE
Independence model	-333	434	.309	353			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
European and annual	-170	1404	1200	200		Definit model	,038	,000	,167	,440
Baseline Comparisons						Independence model	,417	,367	,458	,800
Model	Deltail	SET Their	Delm)	TLE	CFI	ARC				
Default model	.876	.717	.889	.881	.000					
Saturated model	1,000		1,000		1,000	Model	AIC	BCC	B	IC CAL
Independence model	,000	,000	.000	.000	,000	Defail model	99,570	178,970	134,7	20 165,77
						Saturated model	132,000	250,400		
Seriemoni-Adjusted New						Independence model	287,292	313,692	299.7	
Model	PRATE	0 202	1 PCF	1		morbonicae, moses	281,274	Paryera	223,1	230,10
Defeat model	.63			9		ECM				
Saturated model	.00		.000			84.51				
Independency model	1,00	0 ,00	.000	0			-			
ocue						Model	DCVI	LO 90	111 90	MECVI
4.0						Default model	4,526	4,409	5,390	7,906
Model	3403	1.0	90	H1 90		Saturated model.	6,000	6,000	6,000	13,200
Definit model	2.570		200	11,565		Independence model	13.059	10,922	14.516	14.259
Salmested model	,806		000	,000			11000	119-80		
Independence model	219.293	165,	289 26	14,841		BOKLTER				
MEX										
Model	FMIN	12	10 %		W1	Medd	HORE. TO			
Defoal cardel	1,798	.137	.000				J	16	.04	
Rejurnied model	.000	,000	.000		30	Default model	1	10	34	
Independence model	12,099	0.559	7,433			Independence model		9	2	

Lampiran 4. Evaluasi kesesuaian model struktural untuk model modifikasi lanjutan

			5.E.	CR	P	Label	
Y	Same	364	.236	3,040	,002	par 5	
Y	$\pi_{\rm cons}$	302	.201	,199	,697	par 6	
Y	10	XI	,166	-1.990	.046	par_15	
w	-	X1	344	443	460	par 16	

Lampiran 5. Analisis persamaan struktural

Lampiran 6. Persamaan model pengukuran

			Estimate		Estimate
Y	C	X4	-,448	X4	,000
Y	<	X2	2,858	X2	,000
Y	<	X1	-2,939	X1	,000
Y	<	X3	.003	X3	,216
Y1	<	Y	1,000	e15	,000
Y2	S	Y	1,125	e1	,000
X44	<	X4	1,000	e2	,000
X43	· C	X4	150,412	ell	,000
	<	X4	88,350	e12	,020
	ć	X4	.124	e13	,337
	See	XI	1.000	e14	,000
	<	XI	45,332	e16	,000
				e17	,124
	Com		1,000	e18	,164
X31	<	X3	,616	e19	,318