The magic of non-principal ultrafilters (BMath Meetup 16/10/24, 60 minutes)

Let's consider some good old sequences, for ne N:

$$(a_n) = (2, 1, 1, 0, 3, -1, repeat ...)$$

$$C^{N} = (-1)^{N}$$

$$(d_n) = (-1, 2, 0, 1, -2, 0, repeat...)$$

None of there are convergent but they all have accumulation points. Remember.

(xn) converges to xEIR (=> AE>O =NEIN: AN=N: |x-xn| < E

 (\times_n) accumulates at $\times \in \mathbb{R}$ (=> $\forall \varepsilon > 0 : \{n \in \mathbb{N} \mid |x-x_n| < \varepsilon\}$ is infinite

Get the audience to pick an accumulation point of each of the above sequences.

Does anyone notice relationships between the above sequences ?

 $b_n = a_n + c_n$ and $d_n = b_n \cdot c_n$

Remember:

If
$$(x_n)$$
 and (y_n) converge then so do $z_n := x_n + y_n$ and $w_n := x_n \cdot y_n$
 $\lim_{n \to \infty} z_n = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$ and $\lim_{n \to \infty} w_n = (\lim_{n \to \infty} x_n) \cdot (\lim_{n \to \infty} y_n)$

What about accumulation points ?

If (x_n) accumulates at x and (y_n) accumulates at y then $z_n := x_n + y_n$ does not necessarily accumulate at x + y and $w_n := x_n \cdot y_n$ does not necessarily accumulate at $x \cdot y$. Need not even have accumulation points.

think:
$$\times_n = (-1)^n$$
, $y_n = (-1)^{n+1}$, $z_n = 0$, $w_n = -1$

or:
$$x_n = (1, 1, 1, 2, 1, 3, 1, 4, ...)$$
 $y_n = (1, 1, 2, 1, 3, 1, 4, 1, ...)$ $z_n = (2, 2, 3, 3, 4, 4, 5, 5, ...)$ $w_n = (1, 1, 2, 2, 3, 3, 4, 4, ...)$

However: Bolzano-Weierstrass: every bounded sequence has an accountation point.

Let $\Gamma(N,R)$ be the set of all bounded, real-valued sequences.

For example, $(a_n), (b_n), (c_n), (d_n) \in \Gamma(N, R)$.

Is there a map $q: \Gamma(N, R) \to R$ such that

· cp ((xn)) is an accumulation point of (xn)

• $\operatorname{ch}\left(\left(x^{N}\right)+\left(\lambda^{N}\right)\right)=\operatorname{ch}\left(\left(x^{N}\right)\right)\cdot+\operatorname{ch}\left(\left(\lambda^{N}\right)\right)$

 $\cdot \quad \mathsf{cp} \left(\left(\mathsf{x}_{\mathsf{N}} \right) \cdot \left(\mathsf{y}_{\mathsf{N}} \right) \right) \ = \ \mathsf{cp} \left(\left(\mathsf{x}_{\mathsf{N}} \right) \right) \ \cdot \ \mathsf{cp} \left(\left(\mathsf{y}_{\mathsf{N}} \right) \right)$

Did the choices of op from the start work ?

0 ‡ 3 + -1

2 ‡ 0 . --

The magic trick didn't work -- but could it have ? For example

2 = 1 +

2 = 2 .

Can we extend this choice to T(N, R) 2 Or some other choice ?

Non-principal ultrafilters

Let X be a set. A filter on X is a collection $\mathcal{F} \subseteq \mathcal{P}(X)$ of

subsets of X such that

(F1) $\phi \notin \mathcal{F}$, $X \in \mathcal{F}$

(F1) $F_1, F_2 \in \mathcal{F} \implies F_1 \cap F_2 \in \mathcal{F}$

 $(F3) FeF, F'\subseteq X, F'\supseteq F \Rightarrow F'eF$

A filter is an altrafilter if it is maximal with respect to inclusion. For example, for $x \in \mathbb{R}^2$ and $\varepsilon > 0$:

 $\mathcal{F}_{1} := \{A \subseteq \mathbb{R}^{2} \mid A \ge B(x, \varepsilon)\}$ is a filter on \mathbb{R}^{2} . It is non-principal.

 $\mathcal{F}_2 := \{A \in \mathbb{R}^2 \mid x \in A\}$ is an ultrafilter on \mathbb{R}^2 (can't make bigger

{A filter is non-principal if it contains no finite sets.} converts about topology: Household/compact 2/

Suppose F is a non-principal ultrafilter on M. Given a sequence $(x_n) \in \Gamma(N, R)$ define the set $F - \lim_{n \to \infty} (x_n) := \{x \in R \mid \forall \epsilon > 0 : \{n \in M \mid |x - x_n| < \epsilon \} \in F\}$

Lemma: If $(x_n) \in \Gamma(N, R)$ then $F - \lim_{n \to \infty} (x_n)$ contains exactly one point $x \in R$ and this x is an accumulation point of (x_n) .

Proof: Suppose $x \in \mathcal{F}$ -lim (x_n) . Then for every $\varepsilon > 0$ the set $\S n \in \mathbb{N} \mid |x-x_n| < \varepsilon \S$ is in \mathcal{F} and therefore infinite because \mathcal{F} is non-principal. So x is an accumulation point of (x_n) . Now suppose $x, y \in \mathcal{F}$ -lim (x_n) and $x \neq y$. Choose $\varepsilon > 0$ so that $|x-y| \geq \varepsilon$. Then $F_n := \S n \in \mathbb{N} \mid |x-x_n| < \frac{\varepsilon}{2} \S$ and $F_2 := \S n \in \mathbb{N} \mid |y-x_n| < \frac{\varepsilon}{2} \S$ are in \mathcal{F} . Hence so is $F_n \cap F_2$ by (F2) but $F_n \cap F_2 = \emptyset$ in contradiction to (F4).

Coing back, [define] $cp: \Gamma(N,R) \to R$ by $cp((x_n)) = \mathcal{F}-\lim_{n \to \infty} (x_n)$. By Lemma, $cp((x_n))$ is an accumulation point of (x_n) .

Do sums and products work out?

Let (x_n) , $(y_n) \in \Gamma(N, R)$ and \mathcal{F} -lim $(x_n) = x$, \mathcal{F} -lim $(y_n) = y$. Put $z_n = x_n + y_n$ We show that \mathcal{F} -lim $(z_n) = x + y$. Let $\varepsilon > 0$. We need that

 $F = \{ n \in \mathbb{N} \mid |x+y-z_n| < \epsilon \} \in \mathcal{F}.$

The set ξ contains $\{n \in \mathbb{N} \mid |x-x_n| < \frac{\xi}{2}\}$ of $\{n \in \mathbb{N} \mid |y-y_n| < \frac{\xi}{2}\}$ and $\xi \in \mathcal{F}$

hence is contained in I by (F2) and (F3).

Products work out similarly.

Magical (to construct F, apply Zorn's Lemma to the filter of calinite subsets of M)