Induction Principle

Donato Martinelli

February 19, 2024

Induction Principle

Theorem 0.1. Let A be a property, then $A(\varphi)$ holds for all $\varphi \in PROP$ if

- 1. $\forall i \in \mathbb{N}, A(p_i) \text{ and } A(\perp),$
- 2. $A(\varphi), A(\psi) \Rightarrow A((\varphi \square \psi)),$
- 3. $A(\varphi) \Rightarrow A((\neg \varphi))$.

Note 1. p_i and \perp are called atoms or atomic propositions, meaning they are indivisible. φ and ψ are called meta-variables and indicate both atomic and compound propositions.

We call an application of the previous theorem an induction proof on φ .

Example 0.1. Every proposition has an even number of parentheses.

Proof.

- 1. Every atom has 0 parentheses, and 0 is an even number.
- 2. Suppose φ and ψ have respectively 2n and 2m parentheses, then $(\varphi \square \psi)$ has 2n + 2m + 2 = 2(n + m + 1).

3. Suppose φ has 2n parentheses, then $(\neg \varphi)$ has 2n + 2 = 2(n + 1).

Example 0.2. Every proposition has a formation sequence.

Proof.

1. Let φ be an atom, then the formation sequence of φ consists solely of φ .

- 2. Let $\varphi_0,...,\varphi_n$ and $\psi_0,...,\psi_m$ be formation sequences of φ and ψ , then it follows that $\varphi_0,...,\varphi_n,\ \psi_0,...,\psi_m,\ (\varphi_n\square\psi_m)$ is a formation sequence of $(\varphi_n\square\psi_m)$.
- 3. Let $\varphi_0,...,\varphi_n$ be a formation sequence of φ , then $\bot,\varphi_0,...,\varphi_n$ is a formation sequence of $(\neg\varphi)$.

2