Assignment 4 - Solutions

- 1. We know $u_x = 4x + 1 = v_y \Rightarrow v = 4xy + y + C(x)$ and $u_y = -4y = -v_x \Rightarrow v = 4xy + C(y)$. Putting both together we have v(x, y) = 4xy + y + C and v(0, 0) = 0 + 0 + C = 0, giving us that v(x, y) = 4xy + y.
- 2. We know $u_r = \sin \theta = \frac{1}{r}v_\theta \Rightarrow v = -r\cos \theta + C(r)$ and $u_\theta = r\cos \theta = -rv_r \Rightarrow v = -r\cos \theta + C(\theta)$. Putting both together we have $v(r,\theta) = -r\cos \theta + C$ and v(0,0) = 0 + C = 0, giving us that $v(r,\theta) = -r\cos \theta$.
- 3. a) $u_{xx} = 0$, $u_y y = 0$, $v_{xx} = 2$ and $v_{yy} = 2$, so u is harmonic but v isn't so they can't be the real and imaginary parts of an analytic function.
 - b) $u_{xx} = 0$, $u_y y = 0$, $v_{xx} = 2$ and $v_{yy} = -2$, so both u and v are harmonic. However, $u_x = y$ and $v_y = -2y$ so the function could only be differentiable if y = -2y so y = 0 and no disk is contained in that so the function couldn't be analytic anywhere.
- 4. a) Let h(x,y)=f(x,y)+g(x,y). By basic calculus we have $h_{xx}=f_{xx}+g_{xx}$ and $h_{yy}=f_{yy}+g_{yy}$ so $h_{xx}+h_{yy}=f_{xx}+g_{xx}+f_{yy}+g_{yy}=(f_{xx}+f_{yy})+(g_{xx}+g_{yy})=0+0=0$ so h is harmonic.
 - b) It is enough to find f and g harmonic such that fg isn't. Let f = x, g = xy. It is straightforward to check that $f_{xx} = f_{yy} = g_{xx} = g_{yy} = 0$ so f and g are harmonic but $fg = x^2y$ so $fg_{xx} = 2y$ and $fg_{yy} = 0$ so fg is not harmonic.