Módulo 4: Introducción a programación No Lineal y Análisis Convexo

Departamento MACC

Matemáticas Aplicadas y Ciencias de la Computación

Universidad del Rosario

Primer Semestre de 2021

Agenda

- Introducción
- 2 Definiciones
- Condiciones de optimalidad local
 - Condición necesaria de primer orden
- 4 Introducción
 - Condición necesaria de segundo orden
 - Condición suficiente de segundo orden

Introducción (cont.)

• $f(p) = 100p - 2p^2$

Introducción (cont.)

- $f(p) = 100p 2p^2$
- Máximo beneficio (sin restricciones)?
- Primera derivada: $\frac{df}{dp} = 100 4p = 0$
- ullet \Rightarrow $p^* = \frac{100}{4}$
- Máximo? Mínimo?
- \Rightarrow Segunda derivada: $\frac{d^2f}{dp^2} = -4 < 0$
- Beneficio máximo: $B_t^* = 100 * 25 2 * 25^2 = 1250$

Introducción (cont.)

- Sin restricciones, una variable
- Máximo/mínimo: primera derivada (condición de primer orden)
- Máximo o mínimo?: segunda derivada (condición de segundo orden)
- Múltiples variables?
- Restricciones?

Agenda

- Introducción
- 2 Definiciones
- 3 Condiciones de optimalidad local
 - Condición necesaria de primer orden
- 4 Introducción
 - Condición necesaria de segundo orden
 - Condición suficiente de segundo orden

Optimización restringida por conjuntos y no restringida

min
$$f(x)$$

s.a. $x \in \Omega$

- $x \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}$, $\Omega \subset \mathbb{R}^n$
- min $f(x) = \max f(x)$
- Restricción de conjunto: $x \in \Omega$
- Ejemplos:
 - $\Omega = \{x : Ax = b, x \ge 0\}$
 - $\Omega = \{x : h(x) = 0, g(x) \le 0\} \ (h, g : \mathbb{R}^n \to \mathbb{R})$
 - $\Omega = \mathbb{R}^n$: no restringida

Mínimo local y global

Definición (Mínimo local)

 $x^* \in \Omega$ es un mínimo local de f en Ω si $\exists \epsilon > 0 : f(x) \ge f(x^*)$, $\forall x \in \Omega \setminus \{x^*\} : ||x - x^*|| < \epsilon$

Definición (Mínimo global)

 $x^* \in \Omega$ es un mínimo global de f en Ω si $f(x) \ge f(x^*)$, $\forall x \in \Omega \setminus \{x^*\}$

x^* mínimo global:

- $f(x^*) = \min_{x \in \Omega} \{f(x)\}$
- $x^* = \operatorname{argmin}_{x \in \Omega} \{ f(x) \}$

Derivadas de $f: \mathbb{R}^n \to \mathbb{R}$ (cont.)

•
$$Df(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \dots & \frac{\partial f}{\partial x_n} \end{bmatrix}$$

• Gradiente de $f: \nabla f(x) = (Df(x))'$

Ejemplo:
$$f(x) = 5x_1 + 8x_2 + x_1x_2 - x_1^2 - 2x_2^2$$

•
$$Df(x) = \begin{bmatrix} 5 + x_2 - 2x_1 & 8 + x_1 - 4x_2 \end{bmatrix}$$

•
$$\nabla f(x) = \begin{bmatrix} 5 + x_2 - 2x_1 \\ 8 + x_1 - 4x_2 \end{bmatrix}$$

Direcciones factibles

Definición (Dirección factible)

 $d \in \mathbb{R}^n$, $d \neq 0$, es una dirección factible en $x \in \Omega$ si $\exists \alpha_0 > 0$: $x + \alpha d \in \Omega, \forall \alpha \in [0, \alpha_0]$

Definición (Derivada direccional)

Dada una dirección factible d en $x \in \Omega$, la derivada direccional de f(x) en la dirección d es

$$\frac{\partial f(x)}{\partial d} = \lim_{\alpha \to 0^+} \frac{f(x + \alpha d) - f(x)}{\alpha}$$

Direcciones factibles (cont.)

• Dados x, d: $f(x + \alpha d)$ en función de α

•
$$\frac{\partial f(x)}{\partial d} = \frac{df(x+\alpha d)}{d\alpha}\Big|_{\alpha=0}$$

- $\frac{\partial f(x)}{\partial d} = Df(x)d = d'\nabla f(x)$
- Si ||d|| = 1, Df(x)d es la tasa de cambio de f en el punto x en la dirección d

Direcciones factibles - Ejemplo 1

$$f(x) = 2x + x^2/2$$
 $\Omega = [-3, 0]$

- $\hat{x} = -1$, d = -1
- $f(\hat{x} + \alpha d) = -3/2 \alpha + \alpha^2/2$
- $\bullet \left. \frac{\partial f(\hat{x} + \alpha d)}{\partial \alpha} \right|_{\alpha = 0} = -1$
- $d'\nabla f(\hat{x}) = -1$

Direcciones factibles - Ejemplo 2

$$f(x_1,x_2)=x_1^2+(x_2-1)^2$$
 (círculo centrado en $(0,1)$) $\Omega=\mathbb{R}^2$

- $\hat{x} = (0,0), d' = [0 \ 1]$
- $\nabla f(\hat{x}) = \begin{bmatrix} 0 \\ -2 \end{bmatrix}$, $d' \nabla f(\hat{x}) = \begin{bmatrix} 0 \\ -2 \end{bmatrix} = -2$

Direcciones factibles - Ejemplo 2

Agenda

- Introducción
- 2 Definiciones
- Condiciones de optimalidad local
 - Condición necesaria de primer orden
- 4 Introducción
 - Condición necesaria de segundo orden
 - Condición suficiente de segundo orden

Condición necesaria de primer orden

Teorema

 $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}$, $f \in C^1$ (primera derivada continua). Si x^* es un mínimo local de f en Ω , entonces, para toda dirección factible d en x^* ,

$$d'\nabla f(x^*)\geq 0$$

• Equivalente a $\frac{\partial f(x^*)}{\partial d} \ge 0$ (incremento no negativo en toda dirección)

Condición necesaria de primer orden

Corolario

 $\Omega \subset \mathbb{R}^n$, $f : \Omega \to \mathbb{R}$, $f \in \mathcal{C}^1$. Si x^* es un mínimo local de f en Ω y x^* es un punto interior, entonces,

$$\nabla f(x^*) = 0$$

• Si $\Omega = \mathbb{R}^n$, todo punto es interior

Condición necesaria de primer orden - Ejemplo 1

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 + 2x_2^2$$
 $\Omega = \mathbb{R}^2$

- ¿Es $\hat{x} = [2 \ 3]$ un mínimo local?
- $\nabla f(\hat{x}) = \begin{bmatrix} 18\\16 \end{bmatrix} \neq 0 \Rightarrow x^*$ no cumple CNPO
- $\Rightarrow x^*$ no es un mínimo local

Condición necesaria de primer orden - Ejemplo 1 (cont.)

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 + 2x_2^2$$
 $\Omega = \mathbb{R}^2$

• Condición de primer orden: $\nabla f(x) = 0$

$$\bullet \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

• \Rightarrow $x = [0 \ 0]$ cumple CNPO (único candidato a ser mínimo local de f en Ω)

Condición necesaria de primer orden - Ejemplo 1 (cont.)

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 + 2x_2^2$$
 $\Omega = \mathbb{R}^2$

Condición necesaria de primer orden - Ejemplo 2

$$f(x_1, x_2) = (x_1 + 2)^2 + (x_2 + 1)^2$$
 $\Omega = \{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$

- ¿Es $\hat{x} = [0 \ 0]$ un mínimo local?

- $d' \nabla f(\hat{x}) = 4d_1 + 2d_2 \geq 0$ dado que $d_1 \geq 0$ y $d_2 \geq 0$
- $\Rightarrow \hat{x}$ cumple CNPO (candidato a ser mínimo local de f en Ω)

Condición necesaria de primer orden - Ejemplo 2 (cont.)

$$f(x_1, x_2) = (x_1 + 2)^2 + (x_2 + 1)^2$$
 $\Omega = \{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$

Agenda

- Introducción
- 2 Definiciones
- 3 Condiciones de optimalidad local
 - Condición necesaria de primer orden
- Introducción
 - Condición necesaria de segundo orden
 - Condición suficiente de segundo orden

Derivadas de $f: \mathbb{R}^n \to \mathbb{R}$ (cont.)

Ejemplo:
$$f(x) = 5x_1 + 8x_2 + x_1x_2 - x_1^2 - 2x_2^2$$

•
$$Df(x) = \begin{bmatrix} 5 + x_2 - 2x_1 & 8 + x_1 - 4x_2 \end{bmatrix}$$

•
$$\nabla f(x) = \begin{bmatrix} 5 + x_2 - 2x_1 \\ 8 + x_1 - 4x_2 \end{bmatrix}$$

•
$$H(x) = \begin{bmatrix} -2 & 1 \\ 1 & -4 \end{bmatrix}$$

Condición necesaria de segundo orden

Teorema

 $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}$, $f \in \mathcal{C}^2$. Si x^* es un mínimo local de f en Ω , y d una dirección factible en x^* tal que $d'\nabla f(x^*) = 0$, entonces

$$d'H(x^*)d \geq 0$$

25/43

Condición necesaria de segundo orden

Corolario

 $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}$, $f \in \mathcal{C}^2$. Si x^* es un mínimo local de f en Ω y x^* es un punto interior, entonces

$$\nabla f(x^*) = 0$$
 y $H(x^*)$ es semidefinida positiva

Matrices definidas positivas

Una matriz simétrica $A \in \mathbb{R}^{n \times n}$ es definida positiva $(A \succ 0)$ si

$$\forall x \in \mathbb{R}^n, \ x'Ax > 0.$$

Otros criterios:

- Determinante de todas las menores principales es mayor que cero
- Todos los eigenvalores son positivos

Equivalente matricial de número positivo

Matrices semidefinidas positivas

Una matriz simétrica $A \in \mathbb{R}^{n \times n}$ es semidefinida positiva si

$$\forall x \in \mathbb{R}^n, \ x'Ax \ge 0.$$

Otros criterios:

Todos los eigenvalores son no-negativos

Para una matriz simétrica semidefinida positiva, los determinantes de todas las menores principales deben ser no-negativos. Condición necesaria pero no suficiente.

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 + 2x_2^2$$
 $\Omega = \mathbb{R}^2$

- Condición de primer orden: $\nabla f(x) = \begin{bmatrix} 6x_1 + 2x_2 \\ 2x_1 + 4x_2 \end{bmatrix} = 0$
- $\bullet \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- $\Rightarrow \hat{x} = [0 \ 0]$ único candidato a ser mínimo local
- $H(x) = \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} \succ 0 \Rightarrow H(\hat{x})$ es definida positiva
- $\Rightarrow \hat{x} = [0 \ 0]$ cumple CNSO para ser un mínimo local

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 + 2x_2^2 - \Omega = \mathbb{R}^2$$

$$f(x_1, x_2) = (x_1 + 2)^2 + (x_2 + 1)^2$$
 $\Omega = \{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$

- ¿Es $\hat{x} = [0 \ 0]$ un mínimo local?
- $\nabla f(x) = \begin{bmatrix} 2(x_1+2) \\ 2(x_2+1) \end{bmatrix}$, $H(x) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
- $\nabla f(\hat{x}) = \begin{bmatrix} 4 \\ 2 \end{bmatrix}$, $H(\hat{x}) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
- $d'\nabla f(\hat{x}) = 4d_1 + 2d_2 \geq 0$ dado que $d_1 \geq 0$ y $d_2 \geq 0$
- $d'H(\hat{x})d=2d_1^2+2d_2^2\geq 0$, pero no existe $d\neq 0$ tal que $d'\nabla f(\hat{x})=0$
- ullet \Rightarrow no puede evaluarse la CNSO para \hat{x}

$$f(x_1, x_2) = x_1^2 - x_2^2$$
 $\Omega = \{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$

- ¿Es $\hat{x} = [0 \ 0]$ un mínimo local?
- $\nabla f(x) = \begin{bmatrix} 2x_1 \\ -2x_2 \end{bmatrix}$, $H(x) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$
- $\nabla f(\hat{x}) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $H(\hat{x}) = \begin{bmatrix} 2 & 0 \\ 0 & -2 \end{bmatrix}$
- $d'\nabla f(\hat{x}) = 0 \ge 0$ para toda dirección factible (cumple CNPO)
- $d'H(\hat{x})d = 2d_1^2 2d_2^2$, y $d'\nabla f(\hat{x}) = 0$ para toda dirección factible
- ullet \Rightarrow \hat{x} no cumple CNSO, ya que $d'H(\hat{x})d$ puede ser negativo $(d_1 < d_2)$

4□ > 4□ > 4≡ > 4≡ > 900

$$f(x_1, x_2) = x_1^2 - x_2^2$$
 $\Omega = \{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$

$$f(x_1, x_2) = x_1^2 - x_2^2$$
 $\Omega = \{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$

Condición suficiente de segundo orden

Teorema

 $\Omega \subset \mathbb{R}^n$, $f: \Omega \to \mathbb{R}$, $f \in C^2$ y x^* un punto interior de Ω . Si

- **2** $H(x^*)$ es definida positiva, entonces x^* es un mínimo local estricto de f en Ω .

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 + 2x_2^2$$
 $\Omega = \mathbb{R}^2$

- Condición de primer orden: $\nabla f(x) = 0$
- $\bullet \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- $\Rightarrow x^* = [0 \ 0]$ único candidato a ser mínimo local
- $H(x) = \begin{bmatrix} 6 & 2 \\ 2 & 4 \end{bmatrix} \succ 0 \Rightarrow H(x^*)$ es definida positiva
- $\Rightarrow x^* = [0 \ 0]$ cumple CSSO para un mínimo local (es un mínimo loca estricto)

→ロト→部ト→差ト→差 のQで

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 + 2x_2^2$$
 $\Omega = \mathbb{R}^2$

$$f(x_1, x_2) = (x_1 + 2)^2 + (x_2 + 1)^2$$
 $\Omega = \{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$

- ¿Es $\hat{x} = [0 \ 0]$ un mínimo local?
- \hat{x} no es punto interior \Rightarrow no puede verificarse CSSO

$$f(x_1, x_2) = (x_1 + 2)^2 + (x_2 + 1)^2$$
 $\Omega = \{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$

$$f(x_1, x_2) = x_1^2 - x_2^2$$
 $\Omega = \{(x_1, x_2) : x_1 \ge 0, x_2 \ge 0\}$

- Es $\hat{x} = [0 \ 0]$ un mínimo local?
- \hat{x} no cumple CNSO $\Rightarrow \hat{x}$ no es mínimo local
- No hace falta comprobar CSSO

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 - 2x_2^2$$
 $\Omega = \mathbb{R}^2$

- Condición de primer orden: $\nabla f(x) = 0$
- $\bullet \begin{bmatrix} 6 & 2 \\ 2 & -4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
- $\Rightarrow x^* = [0 \ 0]$ único candidato a ser mínimo local
- $H(x) = \begin{bmatrix} 6 & 2 \\ 2 & -4 \end{bmatrix} \Rightarrow H(x^*)$ no es definida positiva
- $\Rightarrow x^* = [0 \ 0]$ NO cumple CSSO para un mínimo local

4□ > 4□ > 4 = > 4 = > = 90

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 - 2x_2^2$$
 $\Omega = \mathbb{R}^2$

$$f(x_1, x_2) = 3x_1^2 + 2x_1x_2 - 2x_2^2$$
 $\Omega = \mathbb{R}^2$

