Capitolul 3

Serii numerice

3.1 Breviar teoretic şi exemple

Definiția 3.1.1. Se numește serie numerică expresia

$$\sum_{n=0}^{\infty} a_n = a_0 + a_1 + a_2 + \dots + a_n + \dots$$
 (3.1.1)

 a_1, a_2, \cdots sunt termenii seriei, a_n este termenul general al seriei, $S_n = \sum_{k=0}^n a_k$ șirul sumelor parțiale.

Definiția 3.1.2. Seria $\sum_{n=0}^{\infty} a_n$ este convergentă(divergentă) dacă S_n șirul sumelor parțiale este convergent(divergent). În cazul în care seria este convergentă atunci limita șirului sumelor parțiale se numește suma seriei pe care o vom nota cu S de unde avem relația

$$S = \sum_{n=0}^{\infty} a_n \tag{3.1.2}$$

Exemplul3.1.1 (Seria geometrică). Seria $\sum\limits_{n=0}^{\infty}q^n,q\in\mathbb{R}$ este convergentă dacă și numai dacă |q|<1.

Soluție: Avem că șirul sumelor parțiale asociată seriei geometrice este

$$S_n = \sum_{k=0}^n q^k = 1 + q + \dots + q^n = \begin{cases} \frac{1 - q^{n+1}}{1 - q}, & q \neq 1\\ n + 1, & q = 1 \end{cases}$$

de unde rezultă că

$$\lim_{n \to \infty} S_n = \begin{cases} \frac{1}{1-q}, & q \in (-1,1) \\ \infty, & q \ge 1 \\ \nexists, & q \le -1 \end{cases}$$

Deci seria geometrică este convergentă dacă și numai dacă $q \in (-1,1)$ în plus avem că suma seriei este $\frac{1}{1-q}$ adică avem relația:

$$\frac{1}{1-q} = \sum_{n=0}^{\infty} q^n, \ q \in (-1,1)$$

Exemplul 3.1.2. Determinați natura seriei $\sum_{n=1}^{\infty} \frac{2}{(2n-1)(2n+1)}.$

Soluţie: Ţinem seama că $\frac{2}{(2n-1)(2n+1)} = \frac{1}{2n-1} - \frac{1}{2n+1}$ de unde obţinem expresia analitică a şirului de sume parţiale

$$S_n = \sum_{k=1}^{n} \left(\frac{1}{2k-1} - \frac{1}{2k+1} \right) = 1 - \frac{1}{2n+1}$$

de unde rezultă că $\lim_{n\to\infty} S_n = 1$. Deci seria este convergentă.

Exemplul 3.1.3. Determinați natura seriei $\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n} \right)$.

Soluție: Ținem seama că șirul de sume parțiale

$$S_n = \sum_{k=1}^n (\ln(n+1) - \ln(n)) = \ln(n+1)$$

de unde rezultă că $\lim_{n\to\infty} S_n = \infty$. Deci seria este divergentă.

Exemplul 3.1.4 (Seria oscilantă). Seria $\sum_{n=0}^{\infty} (-1)^n$ este divergentă.

Soluție: Avem că șirul sumelor parțiale asociată seriei oscilante este

$$S_n = \sum_{k=0}^n (-1)^k = 1 - 1 + \dots + (-1)^n = \begin{cases} 1, & n = 2k \\ 0, & n = 2k + 1 \end{cases}$$

de unde deducem că șirul sumelor parțiale asociat seriei oscilante este divergent (acest șir conține două subșiruri convergente la valori diferite) deci seria oscilantă este divergentă.

Exemplul~3.1.5 (Seria armonică). Seria $\sum_{n=1}^{\infty} \frac{1}{n}$ este divergentă.

Soluţie:

$$1 + \frac{1}{2} > \frac{1}{2}, \frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4}, \frac{1}{5} + \dots + \frac{1}{8} > \frac{1}{8} + \dots + \frac{1}{8} = \frac{1}{2}$$

şi aşa mai departe de unde rezultă că $S_n > \frac{n}{2}$ deci $S_n \to \infty$ deci seria armonică este divergentă iar $a_n = \frac{1}{n} \to 0$.

Propoziția 3.1.1. Dacă seria $\sum_{n=0}^{\infty} a_n$ este convergentă atunci $a_n \to 0$. Reciproca nu este adevărată (vezi seria armonică).

Exemplul 3.1.6. Determinați natura seriei $\sum_{n=0}^{\infty} \frac{2^n + 3^n}{1 + 3^n}.$

Soluție: Termenul general al seriei este $a_n = \frac{2^n + 3^n}{1 + 3^n}$ care are limita egală cu 1 diferită de zero conform propoziiției 3.1.1 seria $\sum_{n=0}^{\infty} a_n$ este divergentă.

Propoziția 3.1.2 (Combinația liniară a două serii). Dacă seriile $\sum_{n=0}^{\infty} a_n$ și $\sum_{n=0}^{\infty} b_n$ sunt convergente atunci:

•
$$\sum_{n=0}^{\infty} (a_n + b_n)$$
 este convergentă și are suma egală cu $\sum_{n=0}^{\infty} a_n + \sum_{n=0}^{\infty} b_n$;

• $\sum_{n=0}^{\infty} \alpha a_n$ este convergentă și are suma egală cu $\alpha \sum_{n=0}^{\infty} a_n$

Propoziția 3.1.3 (Criteriul general al lui Cauchy). Seria $\sum_{n=0}^{\infty} a_n$ este convergentă dacă și numai dacă $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}$ astfel încât $|a_{n+1} + \cdots + a_{n+p}| < \varepsilon, \forall n > n_{\varepsilon}, \forall p \in \mathbb{N}$.

Exemplul 3.1.7. Studiați natura seriei $\sum_{n=0}^{\infty} \frac{\sin(nx)}{3^n}$.

Soluţie: Fie $\varepsilon > 0$ şirul $a_n = \frac{\sin(nx)}{3^n}$ astfel încât să avem

$$|a_{n+1} \cdots + a_{n+p}| = \left| \frac{\sin(n+1)x}{3^{n+1}} + \cdots + \frac{\sin(n+p)x}{3^{n+p}} \right|$$

$$\leq \frac{|\sin(n+1)x|}{3^{n+1}} + \cdots + \frac{|\sin(n+p)x|}{3^{n+p}}$$

$$\leq \frac{1}{3^{n+1}} + \cdots + \frac{1}{3^{n+p}}$$

$$\leq \frac{1}{3^{n+1}} \left(1 + \cdots + \frac{1}{3^{p-1}} \right)$$

$$= \frac{1}{3^{n+1}} \left(\frac{1 - \frac{1}{3^{p}}}{1 - \frac{1}{3}} \right)$$

$$\leq \frac{1}{2 \cdot 3^{n}} < \varepsilon$$

deducem că $n_{\varepsilon} = \left[log_3\left(\frac{1}{2\varepsilon}\right) \right]$ atunci am obținut că pentru orice $\varepsilon > 0$ există rangul n_{ε} astfel încât $|a_{n+p} + \cdots + a_{n+1}| < \varepsilon, \ \forall n > n_{\varepsilon}, p \in \mathbb{N}.$

Propoziția 3.1.4 (Criteriul lui Dirichelet). Seria $\sum_{k=0}^{\infty} \alpha_n \cdot a_n$ este convergentă dacă:

- şirul sumelor parţiale ale seriei $\sum_{k=0}^{\infty} a_n$ este mărginit;
- $sirul \alpha_n tinde descrescător la zero.$

Definiția 3.1.3. O serie de tipul $a_1 - a_2 + a_3 - a_4 + \cdots + (-1)^{n-1}a_n + \cdots$ unde $a_n > 0, \forall n \in \mathbb{N}$ se numește serie alternată.

Propoziția 3.1.5 (Criteriul lui Leibniz). Seria alternată $\sum_{k=0}^{\infty} (-1)^{n-1} a_n$ cu $a_n > 0, \forall n \in \mathbb{N}$ este convergentă dacă și numai dacă $a_n \to 0$.

Exemplul 3.1.8 (Seria armonică alternată). $\sum_{k=0}^{\infty} (-1)^{n-1} \frac{1}{n}$ este convergentă.

Soluţie: Avem că $\frac{1}{n} \to 0$ deci conform criteriului lui Leibniz seria armonică alternată este convergentă.

Definiția 3.1.4. O serie $\sum_{n=0}^{\infty} a_n$ se numește absolut convergentă dacă seria modulelor $\sum_{n=0}^{\infty} |a_n|$ este tot convergentă.

Teorema 3.1.6. Orice serie absolut convergentă este convergentă.

Observația 3.1.1. Reciproca teoremei de mai sus nu este adevărată(vezi seria armonică alternată)

Definiția 3.1.5. O serie convergentă care nu este absolut convergentă se numește serie semiconvergentă.

Exemplul 3.1.9. Studiați dacă seria $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n(n+1)}}$ este absolut convergentă.

Soluţie: Avem seria $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ unde şirul $a_n = \frac{1}{\sqrt{n(n+1)}}$ este descrescător şi tinde la 0 deci această serie conform criteriului lui Leibniz este convergentă. Seria modulelor este seria $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n(n+1)}}$ care este divergentă pentru că avem îndeplinite condiţiile din criteriul al treilea al comparaţiei:

•
$$\lim_{n \to infty} \frac{\frac{1}{\sqrt{n(n+1)}}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{\sqrt{n(n+1)}} = 1 \in (0, +\infty);$$

• seria $\sum_{n=1}^{\infty} \frac{1}{n}$ este divergentă.

deci seria $\sum_{n=1}^{\infty} (-1)^{n-1} a_n$ este semiconvergentă.

Teorema 3.1.7. Dacă se schimbă ordinea termenilor într-o serie absolut convergentă se obține tot o serie absolut convergentă cu aceeași sumă.

Fie seria cu termenui pozitivi $\sum_{n=0}^{\infty} a_n, a_n > 0, \forall n \in \mathbb{N}$. În acest caz șirul sumelor parțiale ale seriei este strict crescător deci limita acestui șir este sau finită și atunci seria este convergentă sau infinită caz în care seria este divergentă.

Propoziția 3.1.8 (Primul criteriu al comparației). Dacă șirurile a_n, b_n de numere strict pozitive îndeplinesc relațiile $a_n \leq b_n$ pentru orice număr natural n începând de la un anumit rang atunci

$$\sum_{k=0}^{\infty} a_n \le \sum_{k=0}^{\infty} b_n$$

ceea ce semnifică următoarele:

- $dac\check{a}\sum_{k=0}^{\infty}b_n$ este serie convergent \check{a} atunci și seria $\sum_{k=0}^{\infty}a_n$ este convergent \check{a} ;
- $dac\check{a}\sum_{k=0}^{\infty}a_n$ este serie divergent \check{a} atunci și seria $\sum_{k=0}^{\infty}b_n$ este divergent \check{a} ;

Propoziția 3.1.9 (Criteriu al treilea al comparației). Dacă pentru șirurile de numere strict pozitive a_n, b_n avem

- $\lim_{n\to\infty} \frac{a_n}{b_n} \in (0, +\infty)$ atunci seriile $\sum_{n\to\infty} a_n$, $\sum_{n\to\infty} b_n$ au aceeași natură(convergente sau divergente);
- $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$ iar seria $\sum_{n=0}^{\infty} b_n$ este convergentă atunci și seria $\sum_{n\to\infty} a_n$ este convergentă;
- $\lim_{n\to\infty} \frac{a_n}{b_n} = +\infty$ iar seria $\sum_{n=0}^{\infty} b_n$ este divergentă atunci și seria $\sum_{n\to\infty} a_n$ este divergentă;

Exemplul 3.1.10. Determinați natura seriei $\sum_{n=1}^{\infty} \frac{\sqrt{7n}}{n^2 + 7n + 5}.$

Soluţie:Fie seriile $\sum\limits_{n=1}^{\infty}a_n$ unde $a_n=\frac{\sqrt{7n}}{n^2+7n+5}$ şi seria convergentă $\sum\limits_{n=1}^{\infty}b_n$ unde $b_n=\frac{1}{n^{3/2}}$ (seria armonică $\alpha=\frac{3}{2}>1$). Deoarece $\lim\limits_{n\to\infty}\frac{a_n}{b_n}=\lim\limits_{n\to\infty}\frac{\sqrt{7}n^{1/2}\cdot n^{3/2}}{n^2+7n+5}=\sqrt{7}\in(0,+\infty)$ rezultă că seriile au aceeași natură deci seria $\sum\limits_{n=0}^{\infty}a_n$ este convergentă.

Exemplul 3.1.11. Determinați natura seriei $\sum_{n=2}^{\infty} \frac{1}{\ln(n)}$.

Soluție: Fie seriile $\sum\limits_{n=2}^{\infty}a_n$ unde $a_n=\frac{1}{\ln(n)}$ și seria divergentă $\sum\limits_{n=2}^{\infty}b_n$ unde $b_n=\frac{1}{n}$ (seria armonică). De oarece $\lim\limits_{n\to\infty}\frac{a_n}{b_n}=\lim\limits_{n\to\infty}\frac{n}{\ln(n)}=+\infty$ rezultă că seria $\sum\limits_{n=2}^{\infty}a_n$ este divergentă.

Propoziția 3.1.10 (Criteriul de condensare al lui Cauchy). Seria $\sum_{n=1}^{\infty} a_n$ cu $a_n \to 0$ are aceeași natură cu seria $\sum_{n=1}^{\infty} 2^n \cdot a_{2^n}$.

Observația 3.1.2. Condensarea seriei $a_1+a_2+\cdots$ înseamnă obținerea seriei $2a_2+2^2a_{2^2}+2^3a_{2^3}+\cdots$.

Exemplul 3.1.12 (Seria armonică generalizată). Seria armonică generalizată $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \text{ are aceeași natură ca și seria } \sum_{n=1}^{\infty} 2^n \cdot \frac{1}{(2^n)^{\alpha}} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{\alpha-1}}\right)^n \text{ care este o serie geometrică care este convergentă pentru } \frac{1}{2^{\alpha-1}} < 1 \text{ adică } 2^{\alpha-1} > 1 = 2^0 \text{ sau } \alpha > 1 \text{ și divergentă pentru } \alpha \leq 1.$

Teorema 3.1.11 (Criteriul rădăcinii al lui Cauchy). Seria $\sum_{n=0}^{\infty} a_n$ unde $a_n > 0$ este convergentă dacă $\lim_{n \to \infty} \sqrt[n]{a_n} < 1$ și este divergentă dacă $\lim_{n \to \infty} \sqrt[n]{a_n} > 1$.

Exemplul 3.1.13. Determinați natura seriei $\sum_{n=1}^{\infty} n \cdot a^n$ unde a > 0.

Soluţie: Fie $a_n = n \cdot a^n$. Determinăm limita $\lim_{n \to \infty} \sqrt[n]{a_n} = \lim_{n \to \infty} \sqrt[n]{n} \cdot a = a$ (se ştie că $\lim_{n \to \infty} \sqrt[n]{n} = 1$). Deci pentru a > 1 seria este divergentă iar pentru a < 1 seria este convergentă.

Teorema 3.1.12 (Criteriul raportului al lui d'Alembert). Seria $\sum_{n=0}^{\infty} a_n$ unde $a_n > 0$ este convergentă dacă limita $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} < 1$ și este divergentă dacă $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} > 1.$

Exemplul 3.1.14. Determinați natura seriei $\sum_{n=1}^{\infty} \frac{a^n}{n^p}$ unde $p \in \mathbb{R}$.

Soluţie: Fie $a_n = \frac{a^n}{n^p}$. Determinăm limita $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{a^{n+1}}{n+1^p} \cdot \frac{n^p}{a^n} =$ $a(\text{se știe că }\lim_{n\to\infty}\frac{n^p}{(n+1)^p}=1)$. Deci pentru a>1 seria este divergentă iar pentru a < 1 seria este convergentă.

3.2 Probleme propuse

Studiați natura următoarelor serii:

a)
$$\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$$
; b) $\sum_{n=1}^{\infty} \frac{2}{\sqrt{n+1} + \sqrt{n-1}}$;

c)
$$\sum_{n=1}^{\infty} \frac{3n+1}{n^3 + \sqrt{n^6 + 1}};$$
 $d) \sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n + \sqrt{n}};$

c)
$$\sum_{n=1}^{\infty} \frac{3n+1}{n^3 + \sqrt{n^6 + 1}};$$
 d) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}}{n + \sqrt{n}};$
e) $\sum_{n=1}^{\infty} \left(\frac{n+1}{4n+5}\right);$ f) $\sum_{n=1}^{\infty} a^n \cdot \left(1 + \frac{1}{n}\right)^n;$

g)
$$\sum_{n=1}^{\infty} \frac{2 \cdot 5 \cdots (3n-1)}{3 \cdot 7 \cdots (4n-1)}; h) \sum_{n=1}^{\infty} \frac{3^n \cdot n!}{n^n};$$

i)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{5n+4}{6^n};$$
 j) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{\sqrt{n^2+1}}.$

Bibliografie

- [1] Stan Chiriță, *Probleme de matematici superioare*, Editura Didactică și Pedagogică, București, 1989.
- [2] Gheorghe Procopiuc, Probleme de analiză matematică, Iași, 2007.
- [3] Ioan Goleţ, Analiză Matematică, Editura Politehnica, Timişoara, 2011.
- [4] Nicolae Cofan, Dan Popescu, Analiză Matematică Noțiuni teoretice și probleme, Editura Eurobit, Timișoara, 2013.
- [5] P. Flondor, O. Stănaşilă, Lecţii de analiză matematică, Editura ALL, Bucureşti, 1996.
- [6] Tania Costache, Analiză Matematică, culegere de probleme, Editura Printech, București, 2001.