$B_s o D_s K \pi \pi$: BR measurement and γ determination

Philippe d'Argent ¹, Evelina Gersabeck ¹, Matthieu Kecke ¹, Manuel Schiller ²

¹PI Heidelberg, ²CERN

25.01.2016

Theory

$$\gamma \equiv \arg[-(V_{ud}V_{ub}^*)/(V_{cd}V_{cb}^*)]$$

 γ can be studied using the interference between $b \to u$ and $b \to c$ transitions at tree level

2/22

Why bother?

 γ is the least well measured phase of the CKM triangle. Following results are obtained by averaging over several decay modes:

- LHCb: $\gamma = 73^{+9}_{-10}$
- $\bullet \; \mathsf{BaBar:} \; \gamma = \mathsf{73}^{+17}_{-16}$
- Belle: $\gamma = 68^{+15}_{-14}$

Precision of global fit $\approx 7\%$ v.s. the theory uncertainty of <<1%

ightarrow many unexplored channels left to improve the overall precision!

And why this channel?

interference between a) and b) with same final state via mixing complimentary to γ determination in $B_s \to D_s K$

technically interesting application of time dependent amplitude analysis

What has been done

First observation and BR mesurement done with 1 fb^{-1} and $N_{D_sK\pi\pi}=216\pm22$ in 2012 (LHCb-ANA-2012-076):

$$\frac{\mathcal{B}(B_s \to D_s K \pi \pi)}{\mathcal{B}(B_s \to D_s \pi \pi \pi)} = (5.2 \pm 0.5 \pm 0.3) \cdot 10^{-2}$$

Figure: left: $D_s\pi\pi\pi$, right: $D_sK\pi\pi$

Our plan

We like to:

- redo the BR measurement with $3fb^{-1}$ using $B_s \to D_s \pi \pi \pi$ as normalization channel
- \bullet do a full time dependent daliz plot analysis to get strong phase difference and amplitude ratio across phase space to measure γ

The analysis follows principle of γ measurement in $B_s \to D_s K$, but with additional pion pair the dalitz analysis is necessary

Stripping

We produced Data and MC ntuples for 2011 and 2012:

Year	Channel	Stripping
2011	$D_s K \pi \pi$	B02DKPiPiD2HHHPIDBeauty2Charm, S21
2012	$D_s K \pi \pi$	B02DKPiPiD2HHHPIDBeauty2Charm, S21
2011	$D_s\pi\pi\pi$	B02DPiPiPiD2HHHPIDBeauty2Charm, S21
2012	$D_s\pi\pi\pi$	B02DPiPiPiD2HHHPIDBeauty2Charm, S21

Additionally, we produced $B_s \to D_s^* X$ MC samples to constrain peaking background (see later)

The plan is to use all possible final states, with $D_s \to KK\pi, K\pi\pi, \pi\pi\pi$

We expect O(1k) signal events

Stripping Selection

Stripping and (pre-)selection cuts include:

- all tracks: p>1 GeV , $p_t>100$ MeV, $track\chi^2/ndof<3$ and $IP\chi^2>4$
- D_s daughter: $\Sigma p_t > 1.8~GeV$, max DOCA 0.5mm and $M_{KK\pi}$ within 100 MeV of M_{D_s}
- D_s : $Vertex\chi^2/ndof < 10$ and min $FD\chi^2 > 36$
- $B_{\rm s}$: DIRA>0.99, min $IP\chi^2>20$, $FD\chi^2>100$ and vertex fit $\chi^2/ndof<8$
- loose PID requirements on the final state kaons ($\Delta LL(K-\pi)>-5$) and pions ($\Delta LL(K-\pi)<10$)

Physical Background

In addition to the previous cuts, we veto some specific backgrounds such as:

- $B_s \rightarrow D_s D_s$: $|M(K\pi\pi) - m_{D_s}| > 20 \text{ MeV}$
- $B^0 \to D^+(\to K\pi\pi)K\pi\pi$: possible with single miss-ID. Vetoed by changing $K^+ \to \pi^+$ mass hypothesis and check $|M(K^+\pi^-\pi^+) m_{D^+}| > 20~MeV$ $|| \Delta LL(K-\pi) > 10$ for the K^+
- $\Lambda_b^0 \to \Lambda_c^+(\to Kp\pi)K\pi\pi$: possible with single miss-ID. Vetoed by assigning $K^+ \to p$ and check $|M(pK^-\pi^+) m_{\Lambda_c^+}| > 15~MeV$ $||~\Delta LL(K-p) > 0$ for the K^+

TMVA

We take the upper mass sideband of B_s data candidates as background and MC signal events

Variables used for BDTG training, with $X_s = (K\pi\pi)$:

- $log(min(IP\chi^2))$ and $log(max(IP\chi^2))$ of D_s daughters
- $log(min(IP\chi^2))$ and $log(max(IP\chi^2))$ of X_s daughters
- $log((IP\chi^2))$ of X_s
- $log((IP\chi^2))$ of B_s
- FD significance of B_s and D_s
- $log(min(p_t))$ of D_s and X_s daughters
- B_s vertex fit χ^2
- max(track χ²)
- Cone p_t asymmetry of all tracks
- max(track-ghostProb)

BDTG output

Figure: left: BDTG response, right: BDTG efficiency curves

We optimize our response cut using a massfit in the $B_s \to D_s \pi \pi \pi$ channel after pre-selection and scale the obtained value for S with the PDG BR and relative efficiency to $B_s \to D_s K \pi \pi$

Background Shape for normalization channel

Figure: partially reconstructed $B_s \to D_s^* \pi \pi \pi$

Background Shapes for signal channel

Figure: top left: partially reconstructed $B_s \to D_s^* K \pi \pi$, top right: $B_s \to D_s^* \pi \pi \pi$ miss-id, bottom: $B_s \to D_s \pi \pi \pi$ miss-id

Dangerous: $B_s \to D_s^{(*)} \pi \pi \pi$ miss-id peaks in signal region \to control contributions using PID calib

Mass fits in normalization channel

Figure: Invariant mass distribution for $B_s \to D_s \pi \pi \pi$ candidates for (left) 2011 and (right) 2012

Mass fits in signal channel

Figure: Invariant mass distribution for $B_s \to D_s K \pi \pi$ candidates for (left) 2011 and (right) 2012

Yields (not final, only $D_s o KK\pi$)

for the normalization channel we extract:

• 2011:
$$N_{B_s \to D_s \pi \pi \pi} = 4927 \pm 85$$

• 2012:
$$N_{B_s \to D_s \pi \pi \pi} = 14566 \pm 141$$

and for the signal channel:

• 2011:
$$N_{B_s \to D_s K \pi \pi} = 201 \pm 21$$

• 2012:
$$N_{B_s \to D_s K \pi \pi} = 474 \pm 32$$

using the shown massfit we can get signal sWeights for data

 \rightarrow compare distributions of sWeighted data and signal MC

Outlook

Next steps:

- check efficiencies between normalization and signal channel
- make sure the PIDCalib samples are correct (some problems were reported): results crucial to fix yields of physical background which affects signal yield directly
- finalize the BR measurement: could be finished very quick, but depends strongly on my/our hardware occupancy (atm 99% since November Testbeam)
- write ANA Note
- move on to amplitude analysis

BACKUP

BDT Input correlation Signal

BDT Input correlation Background

Time-dependent γ determination

$$\begin{split} \frac{d\Gamma_{B_s \to f}(t)}{dt} &= \frac{1}{2}(1 + |\lambda_f|^2)e^{-\Gamma_s t} [\cosh(\frac{\Delta \Gamma_s t}{2}) - D_f \sinh(\frac{\Delta \Gamma_s t}{2}) \\ &\quad + \frac{C_f}{C_f} \cos(\Delta m_s t) - S_f \sin(\Delta m_s t),] \end{split}$$

with coefficients:

$$\begin{split} D_f &= \frac{2r_{D_SK\pi\pi}\cos(\Delta - (\gamma - 2\beta_s))}{1 + r_{D_SK\pi\pi}^2}, \frac{C_f}{1 + r_{D_SK\pi\pi}^2} = \frac{1 - r_{D_SK\pi\pi}^2}{1 + r_{D_SK\pi\pi}^2}, \\ S_f &= \frac{2r_{D_SK\pi\pi}\sin(\Delta - (\gamma - 2\beta_s))}{1 + r_{D_SK\pi\pi}^2}, \end{split}$$

with:

$$r_{D_sK\pi\pi} = \frac{A(\overline{B_s} \to D_s^- K^+ \pi^- \pi^+)}{A(B_s \to D_s^- K^+ \pi^- \pi^+)} = \text{ratio of decay amplitudes and}$$

 $\Delta =$ strong phase difference

both vary over phase space

