Linearni strukturni model

Multivariatna analiza

Linearni strukturni modeli (SEM)

- Ang. (Linear) structural equation models (SEM)
- Multivariatna metoda, katere cilj je dobiti vpogled v odnose med več spremenljivkami
- Lahko jo smatramo kot kombinacijo in razširitev linearne/ih regresij(e) in faktorske analize.

SEM se uporablja za:

- Validacijo (preverjanje) merskih inštrumentov, merjenje merske napake.
- Ocenjevanje linearnih odnosov med večjim številom spremenljivk, kjer je lahko odvisnih spremenljivk več.
- Zavračanje vzročnih teorij.
- **.** . . .

SEM – Linearni strukturni MODEL

y₂

y₃

y₂

y₃

×

Kaj je SEM?

- Multivariatna metoda, katere cilj je dobiti vpogled v odnose med več spremenljivkami
- Ne modeliramo le ene enačbe, ampak sistem enačb:
 - □ Regresija: $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \epsilon$ $Y_1 = \lambda_{11} F_1 + \epsilon_1$ $Y_2 = \lambda_{21} F_1 + \epsilon_2$ □ SEM: $Y_3 = \lambda_{31} F_1 + \epsilon_3$ $F_1 = \beta_1 X_1 + \beta_2 X_2 + \epsilon_4$ $X_2 = \beta_3 X_1 + \epsilon_5$

Prednosti SEM

- Ocenjevanje skritih (latentnih) spremenljivk
 - □ Pogosto raziskovalce zanimajo koncepti, ki jih ni mogoče direktno meriti Npr.: vrednote, stališča, socialno-ekonomski status, inteligenca
 - "Obvoz": Merimo jih posredno preko večjega števila indikatorjev, ki vključujejo tudi merske napake (slučajne in ne-slučajne)
 - SEM omogoča oceniti odnose med skritimi spremenljivkami (namesto ocenjevanja odnosov med nezanesljivimi indikatorji)

Prednosti SEM

Ocenjevanje skritih (latentnih) spremenljivk

$$Y_{1} = \lambda_{11}F_{1} + \epsilon_{1}$$

$$Y_{2} = \lambda_{21}F_{1} + \epsilon_{2}$$

$$Y_{3} = \lambda_{31}F_{1} + \epsilon_{3}$$

$$F_{1} = \beta_{1}X_{1} + \beta_{2}X_{2} + \epsilon_{4}$$

$$X_{2} = \beta_{3}X_{1} + \epsilon_{5}$$

Prednosti SEM

 Ocenjevanje neposrednih in posrednih učinkov: ocenimo lahko, ali odnosi potekajo preko tretje spremenljivke

$$Y_{1} = \lambda_{11}F_{1} + \epsilon_{1}$$

$$Y_{2} = \lambda_{21}F_{1} + \epsilon_{2}$$

$$Y_{3} = \lambda_{31}F_{1} + \epsilon_{3}$$

$$F_{1} = \beta_{1}X_{1} + \beta_{2}X_{2} + \epsilon_{4}$$

$$X_{2} = \beta_{3}X_{1} + \epsilon_{5}$$

Diagrami poti (ang. path diagrams)

- Grafična notacija za SEM
 - □ Tipi spremenljivk:
 - F

 Skrita oz. latentna spremenljivka
 - 🔀 Merljiva oz. manifestna spremenljivka
 - (E₁) Stohastični člen / Sprecifični faktor

Diagrami poti

- Grafična notacija za SEM
 - □ Tipi odnosov/učinkov
 - ----- Enosmerni učinek
 - ← Korelacija
 - Obojestranski (dvosmerni) učinek/odnos

Ni povezave/učinka

Diagrami poti

Spremenljivke:

- □ eksogene (niso pojasnjene z modelom)
- □ **enodogene** (so pojasnjene z modelom)

Diagrami poti

- Deli modela:
 - Merski model

 (odnosi med
 indikatorji/merjenimi
 spremenljivkami in
 konstrukti/skritimi
 spremenljivkami)
 - Strukturni model

 (učinki med sprem. –
 vse razen merskega
 modela)

Odnos med grafičnim modelom in matematično notacijo

Vrste SEM modelov

Vrste SEM modelov

Multilevel SEM

in še več ...

Konfirmatorna faktorska analiza (ang. CFA)

 CFA: način predstavitve skritih konstruktov, ki so merjeni z več indikatorji, ki vključujejo merske napake

$$X_1 = T + E_1$$
 $X_2 = T + E_2$

Meritev = Prava vrednost + Napaka

 Cilj: s skritimi konstrukti pojasniti odnose med indikatorji

Konfirmatorna faktorska analiza (ang. CFA)

- CFA vs. likertove lestvice (vsote ali povprečja)
 - CFA testira predpostavke, ki se jih predpostavi pri uporabi likertovih lestvic
- CFA vs. Eksploratorna fakatorska analiza (EFA)
 - □ CFA testira model, ki ga postavi uporabnik → testiranje domnev
 - □ EFA "išče" pravi model

Notacija CFA modela

Diagram

Enačbe

$$X_1 = \lambda_{11}F_1 + \epsilon_1$$

$$X_2 = \lambda_{21}F_1 + \epsilon_2$$

$$X_3 = \lambda_{31}F_1 + \epsilon_3$$

$$X_4 = \lambda_{41}F_1 + \epsilon_4$$

Matrike

$$X_{1} = \lambda_{11}F_{1} + \epsilon_{1}$$

$$X_{2} = \lambda_{21}F_{1} + \epsilon_{2}$$

$$X_{3} = \lambda_{31}F_{1} + \epsilon_{3}$$

$$X_{4} = \lambda_{41}F_{1} + \epsilon_{4}$$

$$X = \lambda_{11}F_{1} + \epsilon_{2}$$

$$X_{3} = \lambda_{11}F_{1} + \epsilon_{2}$$

$$X_{4} = \lambda_{11}F_{1} + \epsilon_{2}$$

$$X_{5} = \lambda_{11}F_{1} + \epsilon_{2}$$

$$X_{6} = \lambda_{11}F_{1} + \epsilon_{2}$$

$$X_{7} = \lambda_{11}F_{1} + \epsilon_{2}$$

$$X_{8} = \lambda_{11}F_{1} + \epsilon_{3}$$

$$X_{8} = \lambda_{11}F_{1} + \epsilon_{4}$$

Parametri CFA modela:

- Faktorske uteži: odnosi med skritimi konstrukti in merjenimi indikatorji — λ
- Variance (in včasih izbrane kovariance) specifičnih faktorjev (nepojasnjena varianca): $Var(\epsilon_i)$, $Cov(\epsilon_i, \epsilon_j)$
- Kovariance in variance skritih konstruktov
 - $-Var(F_i), Cov(F_i, F_j)$

Parametri CFA modela – matrična notacija

- Matrika faktorskih uteži: matrika Λ
- Matrika (ko)varianc specifičnih faktorjev matrika Θ
- Kovariančna matrika skritih faktorjev matrika Ψ

Ocenjevanje modela

 Ne modeliramo originalnih podatkov, ampak modeliramo kovariance (in povprečja)

	V1	V2	V2	V	i	1			
	X1	X2	Х3	X		X1	X2	Х3	X4
1	0.48	-0.53	0.07	0.16	X1	1.16	0.65	-0.13	-0.11
2	2.05	0.70	-0.58	-0.30	X2	0.65	0.65	0.04	-0.11
3	-0.83	-0.52	-1.31	1.76	Х3	-0.13	0.04	0.66	-0.62
4	-1.93	-1.85	0.01	-0.05	X4	-0.11	-0.11	-0.62	1.02
5	0.44	0.41	1.25	-0.91	·	•			
6	-0.73	0.71	0.96	-0.11					
7	-0.16	-0.29	0.12	1.25					
8	-0.76	-1.16	1.06	1.59					
9	0.49	-0.24	-0.03	-0.25					
10	-0.48	0.67	0.95	-1.05					

Ocenjevanje modela

- Vsaka kombinacija parametrov implicira določeno kovariančno matriko (in povprečja) = reproducirana kovariančna matrika (in povprečja) oz. kovariančna matrika (in povprečja) na podlagi modela
- Paramtere ocenimo tako, da se lete čim bolj prilegajo dejanskim kovariancam (in povprečjem)
- Običajno: Metoda največjega verjetja

Ocenjevanje modela

$$\begin{cases} x_1 = \lambda_1 F + \varepsilon_1 \\ x_2 = \lambda_2 F + \varepsilon_2 \\ x_3 = \lambda_3 F + \varepsilon_3 \\ x_4 = \lambda_4 F + \varepsilon_4 \end{cases}$$

implicira...

```
x1
                                           x2
                                                                   х3
                                                                                               x4
        \lambda 1^{2*}Var(F)+Var(E1)
x1
                                \lambda 2^{2*} Var(F) + Var(E2)
x2
       \lambda 1*\lambda 2*Var(F)
х3
       λ1*λ3*Var(F)
                                λ2*λ3*Var(F)
                                                        \lambda 3^2 * Var(F) + Var(E3)
                                                                                 \lambda 4^{2*} Var(F) + Var(E4)
        λ1*λ4*Var(F)
                                λ2*λ4*Var(F)
                                                         λ3*λ4*Var(F)
х4
```

$$\Sigma = \Lambda \Psi \Lambda' + \Theta$$

Dejanske kovariance (na vzorcu):

	x1	x2	хЗ	х4
x1	0.653			
x2	0.47	0.695		
x3	0.408	0.406	0.771	
x4	0.446	0.509	0.41	0.688

Rešitev 1						Implicirana kov. matrika 1			
λ1	0.5	Var(F)	1			x1	x2	хЗ	x4
λ2	0.5	Var(E1)	0.3		x1	0.550			
λ3	0.5	Var(E2)	0.3	=>	x2	0.250	0.550		
λ4	0.5	Var(E3)	0.3		x3	0.250	0.250	0.550	
		Var(E4)	0.3		x4	0.250	0.250	0.250	0.550
Rešitev 2					Implicirana kov. matrika 2				
λ1	0.653	Var(F)	1			x1	x2	x3	х4
λ2	0.719	Var(E1)	0.226		x1	0.652			
λ3	0.588	Var(E2)	0.177	=>	x2	0.470	0.694		
λ4	0.697	Var(E3)	0.425		x3	0.384	0.423	0.771	
		Var(E4)	0.201		x4	0.455	0.501	0.410	0.687

- Gledamo odstopanja med dejanskimi in impliciranimi kovariančnimi matrikami
- $\blacksquare \chi^2$ test:
 - □ Testira, ali predpostavljena linearna struktura drži na populaciji
 - □Če je χ² vrednost statistično značilna pri izbrani stopnji tveganja → model zavrnemo

- \mathbf{Z}^2 test (nadaljevanje):
 - □ Stopinje prostosti: Če imamo *k* merjenih spremenljivk in linearni model s *t* neodvisnih parametrov, ki jih je potrebno oceniti, potem:

$$df = \frac{k(k+1)}{2} - t$$

- Vendar: test je občutljiv za velike vzorce (in odstopanja od normalnosti)
- $\Box \chi^2$ test razlike za gnezdene modele (ko je en model podmodel drugega)

Alternativni indeksi prileganja:

Root Mean Squared Error of Approximation (RMSEA): $\sqrt{2-df}$

$$RMSEA = \sqrt{\frac{\chi^2 - df}{(N-1) \times df}}$$

- □ Razpon: 0 1; sprejemljivo, če RMSEA <0.05 (kateri pravijo < 0.06 Hu & Bentler, 1999)
- Napaka "približka" na populaciji oceni, v kakšni meri se model razmeroma dobro prilega dejanskim vrednostmi na populaciji
- Občutljiv na število ocenjenih parametrov
- □ Lahko izračunamo intervale zaupanja

Alternativni indeksi prileganja:

Comparative Fit Index (CFI):

$$CFI = 1 - \frac{\chi_{est}^2 - df_{est}}{\chi_{null}^2 - df_{null}}$$

- Primerja ocenjeni model glede na nulti model, kjer so spremenljivke neodvisne (vse korelacije 0)
- □ Razpon: 0 1
- □ Sprejemljivo če > .95

Alternativni indeksi prileganja:

■ Tucker-Lewis Index (TLI):

$$TLI = \frac{\chi_{null}^2/df_{null} - \chi_{est}^2/df_{est}}{\chi_{null}^2/df_{null} - 1}$$

- □ Podoben kot CFI, vendar kontrolira za kompleksnost modela (število parametrov)
- □ Razpon: 0 ? (ni normiran, vrednosti nad 1 so redke)
- □ Sprejemljivo če > .95

Alternativni indeksi prileganja:

- Koren standardiziranega kvadriranega odklona - Standardized root mean squared residual (SRMR):
 - □ Poenostavljeno je to koren povprečne kvadrirane razlike med ocenjenimi in modelskimi korelacijami. Upošteva tudi variance.
 - □ Novejša različica upošteva tudi povprečja.
 - \square Sprejemljivo če ≤ 0.08 .

- Prej omenjene mere so mere globalnega prileganja (prileganja modela kot celote)
- Relevantne so tudi mere lokalnega (ne)prileganja– Modification indices (MI):
 - □ Na voljo za vse omejene in fiksne parametre (tudi tiste, ki so 0 – jih ni v modelu)
 - □ Vrednost je pričakovano zmanjšanje χ^2 statistike, če se obravnavani parameter sprosti
 - $\square \chi^2$ testi z eno stopinjo prostosti
 - □ Preveriti je potrebno tudi pričakovano spremembo parametra - expected parameter change (EPC)!

- Tri vrste parametrov:
 - □ Prosti parametri
 - Fiksirani parametri (nastavljeni na določeno konstanto)
 - Parametri z omejitvami (parametri, ki so nastavljeni, da se enaki nekemu drugemu parametru)

Omejitve: odražanje pozvanjanje problema (pred analizo podatkov)

- Vloge omejitev:
 - □ Identifikacija modela
 - Statistične predpostavke modela
 - □ Predstavitev teoretičnih predpostavk

Primeri omejitev

- Identifikacija modela: prava utež pri faktorju = 1
- Statistične predpostavke: Cov(E1,E2)=0
- Teoretične predpostavke: utež 2 = utež 3

- Ali je dovolj informacij, da lahko ocenimo vse proste parametre?
 - Je model indetifikabilen: Ali vzorčne variance in kovariance vključujejo dovolj informacij, da se oceni vse proste parametre
- Pogoj 1: Skritim (latentnim) spremenljivka je potrebno nastaviti lestvico...:
 - ...z nastavitvijo faktorske uteži pri enem indikatorju na 1 (i.e. "marker" indikator) ALI
 - ...z nastavitvijo variance skrite (latentne) spremenljivke

- Pogoj 2: Statistična identifikacija:
 - □Število parametrov, ki jih ocenjujemo (t), ne sme preseči števila informacij, ki so na voljo [k(k+1)/2]
 - = število prostostnih stopenj ne sme biti negativno
 - V smislu enačb: število neznank ne sme biti večje kot število enačb.

Omejitve in identifikacija

- Nezadostno identificirani modeli:
 - Manj informacij kot ocenjenih parametrov; df < 0</p>
 - Neskončno število rešitev
 - Model je bolj kompleksen kot struktura podatkov
- Ravno identificirani modeli:
 - □ Toliko informacij kot ocenjenih parametrov; df = 0
 - □ Unikatna rešitev, ki se popolnoma prilega
 - Model je tako kompleksen kot podatki
- Nad identificirani modeli:
 - □ Več informacij kot ocenjenih parametrov; df > 0
 - □ Popolno prileganje ni možno
 - Model je manj kompleksen kot struktura podatkov

Example 1 - CFA

- Podatki so bili zbrani v okviru raziskave Kakovost merjenja egocentričnih socialnih omrežij (Ferligoj in drugi, 2000) leta 2000. Vzorec vsebuje 1033 prebivalcev Ljubljane. Analiza je bila narejena na 631 prebivalcih, ki so bili osebno intervjuvani.
- Za konformatorno faktorsko analizo smo izbrali spremenljivke, ki merijo Ekstravertiranost in Emocionalno stabilnost (osebnostne lastnosti iz inventarja "Big Five", International Personality Item Pool).

 Spremenljivke merijo dve dimenziji (zaradi omejitev prostora sem izbral podvzorec vseh spremenljivk).

Ekstrovertivnost

EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst.

EXTLR Sem redkobeseden. *

EXTNR V navzocnosti neznanih oseb sem molčeč. *

EXTOR Imam malo povedati. *

EXTRR Zadržujem se v ozadju.

Emocionalna stabilnost

EMOCDR Zlahka me kaj vrže iz tira. *

EMOCKR Sem zaskrbljene narave. *

EMOCQR Moje razpoloženje se pogosto menja. *

EMOCSR Pogosto sem potrt. *
EMOCTR Zlahka se me poloti
napetost. *

м

Primer 1 - model

Korelacije

	EXTE	EXTLR	EXTNR	EXTOR	EXTRR	EMOCDR	EMOCKR	EMOCQR	EMOCSR	EMOCTR
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst.		,313	,334	,235	,285	,102	,106	,055	,143	,084
EXTLR Sem redkobeseden.*	,313		,365	,469	,408	-,013	,134	,041	,147	,063
EXTNR V navzocnosti neznanih oseb sem molč	,334	,365		,425	,459	,131	,250	,108	,160	,195
EXTOR Imam malo povedati. *	,235	,469	,425		,444	,084	,174	,121	,143	,139
EXTRR Zadržujem se v ozadju.	,285	,408	,459	,444		,142	,276	,164	,272	,215
EMOCDR Zlahka me kaj vrže iz tira. *	,102	-,013	,131	,084	,142		,294	,369	,337	,431
EMOCKR Sem zaskrbljene narave.*	,106	,134	,250	,174	,276	,294		,250	,350	,391
EMOCQR Moje razpoloženje se pogosto menja.	,055	,041	,108	,121	,164	,369	,250		,439	,442
EMOCSR Pogosto sem potrt. *	,143	,147	,160	,143	,272	,337	,350	,439		,379
EMOCTR Zlahka se me poloti napetost. *	,084	,063	,195	,139	,215	,431	,391	,442	,379	

Primer 1 – faktorske uteži

Latent Variables:

	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
ext =~						
EXTE	1.000				0.599	0.437
EXTLR	1.494	0.168	8.878	0.000	0.894	0.618
EXTNR	1.739	0.190	9.148	0.000	1.041	0.657
EXTOR	1.542	0.173	8.894	0.000	0.923	0.670
EXTRR	1.734	0.190	9.117	0.000	1.038	0.697
emoc =~						
EMOCDR	1.000				0.909	0.571
EMOCKR	0.955	0.097	9.796	0.000	0.868	0.545
EMOCQR	1.009	0.095	10.664	0.000	0.917	0.605
EMOCSR	0.879	0.083	10.593	0.000	0.799	0.626
EMOCTR	1.103	0.095	11.599	0.000	1.003	0.694

Primer 1 – kovariance in variance

Covari	ances:						
		Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
ext	~~						
em	oc	0.206	0.037	5.506	0.000	0.379	0.379
Varian	ces:						
		Estimate	Std.Err	Z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
EX	TE	1.516	0.092	16.417	0.000	1.516	0.809
EX	TLR	1.297	0.090	14.373	0.000	1.297	0.619
EX	TNR	1.426	0.104	13.678	0.000	1.426	0.568
EX	TOR	1.043	0.078	13.322	0.000	1.043	0.550
EX	TRR	1.140	0.090	12.656	0.000	1.140	0.514
EM	OCDR	1.711	0.114	14.980	0.000	1.711	0.674
EM	OCKR	1.783	0.117	15.229	0.000	1.783	0.703
EM	OCQR	1.453	0.101	14.354	0.000	1.453	0.633
EM	OCSR	0.992	0.072	13.796	0.000	0.992	0.608
EM	OCTR	1.081	0.089	12.217	0.000	1.081	0.518
ex	t	0.358	0.071	5.022	0.000	1.000	1.000
em	oc	0.826	0.122	6.773	0.000	1.000	1 ^{4.3} 000

Primer 1 – standardizirani rezultati

Primer 1 – Ocenjevanje prileganja modela: dejanske korelacij in korelacije na podlagi modela

Dejanske	ЕХТЕ	EXTLR	EXTNR	EXTOR	EXTRR	EMOCDR	EMOCKR	EMOCQR	EMOCSR	EMOCTR
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst.		,313	,334	,235	,285	,102	,106	,055	,143	,084
EXTLR Sem redkobeseden.*	,313		,365	,469	,408	-,013	,134	,041	,147	,063
EXTNR V navzocnosti neznanih oseb sem molčeč.	,334	,365		,425	,459	,131	,250	,108	,160	,195
EXTOR Imam malo povedati. *	,235	,469	,425		,444	,084	,174	,121	,143	,139
EXTRR Zadržujem se v ozadju.	,285	,408	,459	,444		,142	,276	,164	,272	,215
EMOCDR Zlahka me kaj vrže iz tira. *	,102	-,013	,131	,084	,142		,294	,369	,337	,431
EMOCKR Sem zaskrbljene narave.*	,106	,134	,250	,174	,276	,294		,250	,350	,391
EMOCQR Moje razpoloženje se pogosto menja.*	,055	,041	,108	,121	,164	,369	,250		,439	,442
EMOCSR Pogosto sem potrt. *	,143	,147	,160	,143	,272	,337	,350	,439		,379
EMOCTR Zlahka se me poloti napetost.*	,084	,063	,195	,139	,215	,431	,391	,442	,379	
Na podalgi modela	EXTE	EXTLR	EXTNR	EXTOR	EXTRR	EMOCDR	EMOCKR	EMOCQR	EMOCSR	EMOCTR
Na podalgi modela EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst.	EXTE	EXTLR ,270		EXTOR ,293		EMOCDR ,095	EMOCKR ,090	EMOCQR ,100	EMOCSR ,104	EMOCTR ,115
EXTE Na zabavah se pomenkujem z mnogo	,270		,287		,305	R	,	,100	R	
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst.	,270		,287	,293 ,414	,305	,095	,090	,100	,104	,115
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst. EXTLR Sem redkobeseden. *	,270	,270	,287	,293 ,414	,305 ,430	,095 ,133	,090 ,127	,100 ,142	,104 ,146	,115 ,162
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst. EXTLR Sem redkobeseden. * EXTNR V navzocnosti neznanih oseb sem molčeč.	,270 ,287	,270	,287 ,406	,293 ,414 ,441	,305 ,430 ,458	,095 ,133 ,142	,090 ,127 ,136	,100 ,142 ,151	,104 ,146 ,156	,115 ,162 ,173
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst. EXTLR Sem redkobeseden. * EXTNR V navzocnosti neznanih oseb sem molčeč. EXTOR Imam malo povedati. *	,270 ,287 ,293	,270 ,406 ,414	,287 ,406 ,441	,293 ,414 ,441 ,467	,305 ,430 ,458 ,467	,095 ,133 ,142 ,145	,090 ,127 ,136 ,138	,100 ,142 ,151 ,154	,104 ,146 ,156 ,159	,115 ,162 ,173 ,176
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst. EXTLR Sem redkobeseden. * EXTNR V navzocnosti neznanih oseb sem molčeč. EXTOR Imam malo povedati. * EXTRR Zadržujem se v ozadju.	,270 ,287 ,293 ,305	,270 ,406 ,414 ,430	,287 ,406 ,441 ,458	,293 ,414 ,441 ,467 ,145	,305 ,430 ,458 ,467	,095 ,133 ,142 ,145	,090 ,127 ,136 ,138 ,144	,100 ,142 ,151 ,154 ,160	,104 ,146 ,156 ,159 ,165	,115 ,162 ,173 ,176 ,183
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst. EXTLR Sem redkobeseden. * EXTNR V navzocnosti neznanih oseb sem molčeč. EXTOR Imam malo povedati. * EXTRR Zadržujem se v ozadju. EMOCDR Zlahka me kaj vrže iz tira. *	,270 ,287 ,293 ,305 ,095	,270 ,406 ,414 ,430 ,133 ,127	,287 ,406 ,441 ,458 ,142	,293 ,414 ,441 ,467 ,145 ,138	,305 ,430 ,458 ,467 ,151 ,144	,095 ,133 ,142 ,145 ,151	,090 ,127 ,136 ,138 ,144	,100 ,142 ,151 ,154 ,160 ,346	,104 ,146 ,156 ,159 ,165 ,357	,115 ,162 ,173 ,176 ,183 ,396
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst. EXTLR Sem redkobeseden. * EXTNR V navzocnosti neznanih oseb sem molčeč. EXTOR Imam malo povedati. * EXTRR Zadržujem se v ozadju. EMOCDR Zlahka me kaj vrže iz tira. * EMOCKR Sem zaskrbljene narave. *	,270 ,287 ,293 ,305 ,095 ,090	,270 ,406 ,414 ,430 ,133 ,127	,287 ,406 ,441 ,458 ,142 ,136 ,151	,293 ,414 ,441 ,467 ,145 ,138 ,154	,305 ,430 ,458 ,467 ,151 ,144 ,160	,095 ,133 ,142 ,145 ,151	,090 ,127 ,136 ,138 ,144 ,311	,100 ,142 ,151 ,154 ,160 ,346 ,330	,104 ,146 ,156 ,159 ,165 ,357 ,341	,115 ,162 ,173 ,176 ,183 ,396 ,378
EXTE Na zabavah se pomenkujem z mnogo ljudmi vseh vrst. EXTLR Sem redkobeseden. * EXTNR V navzocnosti neznanih oseb sem molčeč. EXTOR Imam malo povedati. * EXTRR Zadržujem se v ozadju. EMOCDR Zlahka me kaj vrže iz tira. * EMOCKR Sem zaskrbljene narave. * EMOCQR Moje razpoloženje se pogosto menja. *	,270 ,287 ,293 ,305 ,095 ,090 ,100 ,104	,270 ,406 ,414 ,430 ,133 ,127 ,142	,287 ,406 ,441 ,458 ,142 ,136 ,151 ,156	,293 ,414 ,441 ,467 ,145 ,138 ,154 ,159	,305 ,430 ,458 ,467 ,151 ,144 ,160 ,165	,095 ,133 ,142 ,145 ,151 ,311 ,346 ,357	,090 ,127 ,136 ,138 ,144 ,311	,100 ,142 ,151 ,154 ,160 ,346 ,330	,104 ,146 ,156 ,159 ,165 ,357 ,341 ,379	,115 ,162 ,173 ,176 ,183 ,396 ,378 ,420

Primer 1 – Indeksi prileganja

Number of observations		631
Number of missing patterns		8
Estimator		ML
Minimum Function Test Statistic	1	01.830
Degrees of freedom		34
P-value (Chi-square)		0.000
User model versus baseline model:		
Comparative Fit Index (CFI)		0.950
Tucker-Lewis Index (TLI)		0.934
Root Mean Square Error of Approximation:		
RMSEA		0.056
90 Percent Confidence Interval	0.044	0.069
P-value RMSEA <= 0.05		0.194

Standardized Root Mean Square Residual:

SRMR 0.045 46

Primer 1 – modification indices

	lhs	оp	rhs	mi	epc	sepc.lv	sepc.all	sepc.nox	_
56	EXTLR	~~	EXTOR	14.775	0.257	0.257	0.129	0.129	
85	EMOCKR	~~	EM OCQR	14.389	-0.310	-0.310	-0.128	-0.128	
37	ext	=~	EMOCKR	13.147	0.448	0.268	0.168	0.168	Vsebinsko
42	emoc	=~	EXTLR	12.936	-0.259	-0.236	-0.163	-0.163	smiselno,
45	emoc	=~	EXTRR	12.915	0.261	0.237	0.159	0.159	zato
90	EMOCSR	~~	EMOCTR	11.906	-0.232	-0.232	-0.126	-0.126	dodamo v model
88	EMOCQR	~~	EMOCSR	7.400	0.181	0.181	0.094	0.094	modei
58	EXTLR	~~	EMOCDR	7.121	-0.182	-0.182	-0.079	-0.079	
48	EXTE	~~	EXTOR	7.120	-0.166	-0.166	-0.088	-0.088	
79	EXTRR	~~	EMOCSR	6.421	0.132	0.132	0.069	0.069	
38	ext	=~	EMOCQR	5.436	-0.269	-0.161	-0.106	-0.106	
66	EXTNR	~~	EMOCKR	4.868	0.163	0.163	0.065	0.065	
77	EXTRR	~~	EMOCKR	4.839	0.149	0.149	0.063	0.063	
55	EXTLR	~~	EXTNR	4.641	-0.165	-0.165	-0.072	-0.072	
39	ext	=~	EMOCSR	4.413	0.203	0.122	0.095	0.095	
47	EXTE	~~	EXTNR	4.306	0.149	0.149	0.069	0.069	
36	ext	=~	EMOCDR	4.289	-0.254	-0.152	-0.095	-0.095	
84	EMOCDR	~~	EMOCTR	3.708	0.155	0.155	0.068	0.068	47

Primer 1 – standardizirani rezultati po popravku

Primer 1 – Indeksi prileganja popopravku

Estimator		ML
Minimum Function Test Statistic		87.966
Degrees of freedom		33
P-value (Chi-square)		0.000
User model versus baseline model:		
Comparative Fit Index (CFI)		0.960
Tucker-Lewis Index (TLI)		0.945
Root Mean Square Error of Approximation:		
RMSEA		0.051
90 Percent Confidence Interval	0.039	0.065
P-value RMSEA <= 0.05		0.409
Standardized Root Mean Square Residual:		
SRMR		0.042

Primer 1 – modification indices po popravku

11	ns op	rl	hs r	ni e	pc sepc	.lv sepc	.all sepc	nox	
85	EMOCKR	~~	EMOCQR	14.453	-0.310	-0.310	-0.128	-0.128	7
38	ext	=~	EMOCKR	13.875	0.469	0.284	0.178	0.178	—
90	EMOCSR	~~	EMOCTR	11.785	-0.229	-0.229	-0.124	-0.124	
46	emoc	=~	EXTRR	8.869	0.229	0.208	0.140	0.140	
43	emoc	=~	EXTLR	8.801	-0.214	-0.195	-0.134	-0.134	Sicer
47	EXTE	~~	EXTLR	7.717	0.180	0.180	0.091	0.091	precej
88	EMOCQR	~~	EMOCSR	7.496	0.182	0.182	0.094	0.094	veliki, a
58	EXTLR	~~	EMOCDR	6.369	-0.170	-0.170	-0.074	-0.074	težko
79	EXTRR	~~	EMOCSR	6.226	0.130	0.130	0.068	0.068	najdemo
39	ext	=~	EMOCQR	5.870	-0.285	-0.172	-0.114	-0.114	utemeljite
49	EXTE	~~	EXTOR	4.851	-0.134	-0.134	-0.071	-0.071	
66	EXTNR	~~	EMOCKR	4.263	0.152	0.152	0.060	0.060	
40	ext	=~	EMOCSR	4.192	0.202	0.122	0.096	0.096	
77	EXTRR	~~	EMOCKR	4.168	0.138	0.138	0.058	0.058	
37	ext	=~	EMOCDR	3.983	-0.249	-0.151	-0.095	-0.095	50

Poln SEM model

Kakršna koli kombinacija skritih faktorjev in indikatorjev (merjenih

spremenljivk)

Strukturne "poti"

Ŋ.

Poln SEM model

učinka učinek spremenljivke X na Y poteka (tudi) preko spremenljivke Z:

- Neposredni učinek: A
- Posredni učinek: B*C
- Skupni učinek: A + B*C
- Polna vs. delna mediacija (samo posredni učinek ali posredni in neposredni)

Ocenjevanje

- Klasično se za ocenjevanje parametrov uporablja Metoda največjega verjetja (ML – maximum likelihood)
- GLS (Generalized least squares) Asimptotično enakovredna ML. Temelji na istih predpostavkah (več o tem kasneje). Običajno se raje uporablja ML. Ne bomo gledali podrobneje.
- WLS (Weighted least squares) Metoda uteženih (ali navadnih) najmanjših kvadartov.

Ocenjevanje – ML (maximum likelihood)

- Najbolj klasična metoda
- Predpostavlja mutivariatno normalno porazdelitev.
- Ta omogoča tudi uporabo FIML (Full information maximum likelihood) pristopa za obravnavnavo manjkajočih vrednosti
- Obstaja več "robustnih" možnosti za oceno standardnih napak in testnih statistik.

м

Ocenjevanje - ML

Vse ML različice (tudi robustne) optimizirajo:

$$F_{ML} = \ln |\mathbf{\Sigma}(\widehat{\Theta})| + tr(\mathbf{S}\mathbf{\Sigma}^{-1}(\widehat{\Theta})) - \ln(\mathbf{S}) - m$$

kjer je

- m število spremenljivk
- S empirična kovariančna matrika. Običajno se
 SS/SCP deli z n in ne z n 1 (v Lavaanu delimo z n 1, če zahtevamo likelihood = "wishart").
- ullet $\Sigma(\widehat{\Theta})$ kovariančna matrika na podlagi modela
- 0 vektor parametrov.

Ocenjevanje – ML - robustne

Robustne različice drugače ocenjujejo standardne napake in nekatere tudi testne statistike. Lavaan podpira (originalni opisi):

- "MLM": (RSE) robust standard errors and a Satorra-Bentler scaled test statistic. For complete data only (FCDO).
- "MLMVS": RSE and a mean- and variance adjusted test statistic (aka the Satterthwaite approach). FCDO.
- "MLMV": RSE and a mean- and variance adjusted test statistic (using a scale-shifted approach). FCDO.
- "MLF": RSE based on the first-order derivatives, and a conventional test statistic. For both complete and incomplete data.
- "MLR": RSE (Huber-White) and a scaled test statistic that is (asymptotically) equal to the Yuan-Bentler test statistic. For both complete and incomplete data.

Različne različice standardnih napak in testnih statistik se da dobiti tudi z izbirami parametrov se in test. 56

Ocenjevanje - WLS

Drugi pristop temelji na metodi uteženih najmanjših kvadratov. Optimiziramo:

$$F_{WLS} = \left[s - \sigma(\widehat{\Theta}) \right]' \mathbf{W}^{-1} \left[s - \sigma(\widehat{\Theta}) \right]$$

Metode se razlikujejo glede na to, kako določimo matriko uteži **W**.

s je vektor unikatnih elementov iz S

 $\sigma(\widehat{\Theta})$ je vektor unikatnih elementov iz $\Sigma(\widehat{\Theta})$

M

Ocenjevanje - WLS

Metode:

- WLS/ADF (klasično): W je običajno asimptotična kovariačna matrika med elementi kovariančne matrike. Načeloma lahko izberemo tudi kakšno drugo matriko.
- DWLS: Podobno kot zgoraj, le da so vsi izven-diagonalni elementi 0
- ULS: W je enotska matrika I. V bistvu je $F_{ULS} = \sum_{i \leq j} [\mathbf{S} \mathbf{\Sigma}(\widehat{\Theta})]_{i,i}^2$

Ocenjevanje – WLS

- Te metode se še posebej priporočajo oz. uporabljajo pri ordinarnih in binarnih sprem.
- V teh primerih se namesto navadnih korelacij/kovarianc priporoča uporabo "polychoric" korelacij (več o tem pri ordinalnih indikatorjih)
- Posledično mnogi viri pri opisu teh metod predpostavljajo te korelacije, čeprav to ni nujno (lavaan lahko uporablja ene ali druge)

Ocenjevanje – WLS - robustno

Za cenilki DWLS in ULS, lavaan ponuja tudi 'robustne' različice: WLSM, WLSMVS, WLSMV, ULSM, ULSMVS, ULSMV. Pri robustnih različicah WLS, se uporabi diagonalna matrika uteži pri ocenjevanju, polna matrika uteži pa pri popravkih standardnih napak in pri računanju testne statistike.

Različne različice standardnih napak in testnih statistik se da dobiti tudi z izbirami parametrov se in test.

Polni SEM primer – primer 2

Latent Variables:

	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
ext =~						
EXTE	1.000				0.586	0.428
EXTLR	1.386	0.166	8.364	0.000	0.813	0.561
EXTNR	1.763	0.197	8.940	0.000	1.034	0.652
EXTOR	1.474	0.172	8.552	0.000	0.864	0.628
EXTRR	1.881	0.213	8.849	0.000	1.103	0.741
emoc =~						
EMOCDR	1.000				0.914	0.574
EMOCKR	0.954	0.096	9.918	0.000	0.872	0.548
EMOCQR	1.005	0.093	10.780	0.000	0.919	0.607
EMOCSR	0.884	0.082	10.787	0.000	0.808	0.633
EMOCTR	1.077	0.092	11.684	0.000	0.985	0.682

GENDER:

1- moški

2 - ženske

Regressions:

negressions.						
	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
ext ~						
GENDER	0.084	0.052	1.595	0.111	0.143	0.070
eduNum	0.071	0.020	3.570	0.000	0.121	0.162
AGE	-0.011	0.002	-6.675	0.000	-0.019	-0.366
emoc ~						
GENDER	-0.247	0.084	-2.953	0.003	-0.270	-0.133
eduNum	0.201	0.033	6.172	0.000	0.220	0.294
AGE	-0.005	0.002	-2.158	0.031	-0.005	-0.097
NET_SIZE ~						
GENDER	0.541	0.249	2.176	0.030	0.541	0.089
eduNum	0.169	0.095	1.783	0.075	0.169	0.075
AGE	0.003	0.007	0.494	0.621	0.003	0.022
ext	0.545	0.300	1.814	0.070	0.319	0.106
emoc	-0.182	0.185	-0.983	0.326	-0.166	-0.055

Če bi uporabili vse ext/emoc spremenljivke, se ta p-vrednost zmanjša na 0.013. 63

Covariances:

	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
EXTLR ~~ EXTOR	0.246	0.068	3.627	0.000	0.246	0.192
ext ~~ emoc	0.182	0.034	5.417	0.000	0.392	0.392
Variances:						
variances.	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
EXTE	1.531	0.093	16.422	0.000	1.531	0.817
EXTLR	1.437	0.098	14.730	0.000	1.437	0.685
EXTNR	1.442	0.106	13.547	0.000	1.442	0.574
EXTOR	1.148	0.083	13.824	0.000	1.148	0.606
EXTRR	1.000	0.092	10.822	0.000	1.000	0.451
EMOCDR	1.701	0.113	15.024	0.000	1.701	0.671
EMOCKR	1.776	0.116	15.263	0.000	1.776	0.700
EMOCQR	1.450	0.101	14.380	0.000	1.450	0.632
EMOCSR	0.978	0.070	13.867	0.000	0.978	0.600
EMOCTR	1.116	0.087	12.773	0.000	1.116	0.535
NET_SIZE	8.861	0.501	17.677	0.000	8.861	0.976
ext	0.291	0.061	4.800	0.000	0.846	0.846
emoc	0.740	0.109	6.791	0.000	0.886	0.886

GENDER:

1- moški

2 - ženske

Primer 2 – prileganje modela

lavaan (0.5-20) converged normally after	95 iterations
Number of observations	631
Number of missing patterns	9
Estimator	ML
Minimum Function Test Statistic	198.274
Degrees of freedom	65
P-value (Chi-square)	0.000
User model versus baseline model:	
Comparative Fit Index (CFI)	0.915
Tucker-Lewis Index (TLI)	0.885
Root Mean Square Error of Approximation:	
RMSEA	0.057
90 Percent Confidence Interval	0.048 0.066
P-value RMSEA <= 0.05	0.097

SEM za več skupin

Multiple Group SEM:

 Ocenimo podobne modele za različne skupine – različne modele za skupine ocenimo sočasno

SEM za več skupin

Prednost: Možnost testiranja, do kakšne mere so si modeli med različnimi skupinami podobni:

■ →Ali sta ekstrovertiranost in emocionalna stabilnost enako močno korelirane pri moških in ženskah?

- Predno lahko primerjamo vrednosti med skupinami, se moramo prepričati, da so meritve primerljive
- Meritve so lahko neprimerljive ker...
 - ...primerjamo različne koncepte (npr. višina proti teža)
 - ...uporabimo različno mersko lestvico (npr. težav kg proti teži v funtih)

- Koncept merske enakovrednost obravnava sledeč problem:
 - ali pri različnih pogojih opazovanja in raziskovanja meritve še vedno merijo isto lastnost (Horn & McArdle 1992)
- Ne-enakovrednost nastopi, kadar razlike v meritvah ne odražajo dejanskih razlik

Možni "viri" merske ne-enakovrednosti (van de Vijver 1998):

- Pristranskost konstrukta nekateri konstrukti so specifični za določene skupine
- Pristranskost metod lastnosti skupin lahko vplivajo na tip odgovarjanja: Npr. nagnjenost k strinjanju, nagnjenost k ekstremom
- Pristranskost indikatorjev
 - □ Prevodi vprašalnikov
 - □ Specifičen pomen indikatorjev v določenih kontekstih

Specifičen pomen indikatorjev v določenih kontekstih

- Npr.: merjenje vernosti v evropski družboslovni raziskavi (European Social Survey – ESS):
 - □ SUBJEKTIVNA VERNOST: C13: Ne glede na to, ali pripadate kateri od religij ali ne, prosimo ocenite, koliko ste verni? (0 = sploh nisem veren -- 10 = zelo sem veren)
 - □ OBISK: C14: Če odštejete posebne priložnosti kot so poroke ali pogrebi, kako pogosto obiskujete verske obrede? (1 = vsak dan -- 7 = nikoli)
 - MOLITEV: C15: Če odštejete udeležbo pri verskih obredih, kako pogosto sicer molite, če sploh molite? (1 = vsak dan -- 7 = nikoli)
- Kateri indikator drugače funkcionira v Turčiji?

- Merska enakovrednost se lahko testira preko MGCFA
- Obstaja več hierarhičnih nivojev merske enakovrednosti (Steenkamp & Baumgartner 1998)
- 1. Konfiguralna enakovrednost:
 - □ Identične faktorske strukture med skupinami, a nobenih omejitev, da morajo biti parametri enaki
 - □ Enaki koncepti so merjeni v vseh skupina
 - □ Vendar: vrednosti niso primerljive!

Skupina 2 Skupina K

Metrična enakovrednost:

□ Enaki "nakloni" (reg. koeficienti) za vse skupine:

$$\lambda_j^1 = \dots = \lambda_j^G \text{ with } j = 1 \dots J$$

- □ Povečanje latentne spremenljivke za eno enoto ima enak povem v vseh skupinah
- Statistike, ki temeljijo na razlikah (in ne abs. vrednostih), se lahko primerjajo med skupinami (npr. regresijski koeficienti, kovariacne, korelacije)

Skupina 1

Skupina 2

Skupina K

3. Skalarna enakovrednost:

□ Enaki nakloni (reg. koeficienti in konstante:

$$\begin{bmatrix} \tau_j^1 \\ \lambda_j^1 \end{bmatrix} = \dots = \begin{bmatrix} \tau_j^G \\ \lambda_j^G \end{bmatrix}$$

- □ Enote iz različnih skupin bodo pri enakih vrednostih latentnih spremenljivk dale enake odgovore (+ napaka)
- Polna primerljivost vseh vrednosti: primerjave povprečij so možne

- Za primerjave povprečij, rabimo skalarno enakovrednost
- Uvod v uporabo povprečij v SEM

$$X_{1} = \tau_{1} + \lambda_{11}F_{1} + \epsilon_{1}$$

$$X_{2} = \tau_{2} + \lambda_{21}F_{1} + \epsilon_{2}$$

$$X_{3} = \tau_{3} + \lambda_{31}F_{1} + \epsilon_{3}$$

$$X_{4} = \tau_{4} + \lambda_{41}F_{1} + \epsilon_{4}$$

$$X = \tau + \lambda F + \epsilon$$

- Novi parametri v modelu:
 - Konstante pri indikatorjih (τ): Napovedna vrednost za x, če je vrednost latente spremenljivke 0
 - \square Povprečja latentnih spremenljiv (κ)
- Novi parametri se lahko uporabijo za izračun povprečne vrednosti indikatorjev:

$$\overline{X_1} = \tau_1 + \lambda \kappa$$

=> Pri ocenjevanju uporabimo nove informacije: dejanska povprečja indikatorjev!

- Pri CFA za eno skupino, povprečja niso informativna. Zakaj?
 - Problem z identifikacijo: V model z n indicatorji in m faktorji moramo vključiti n + m novih parametrov, pridobimo pa n novih informacij
 - \square Potrebujemo dodatne omejitve: $\kappa_i = 0$
 - □ Posledica: Povprečja so ravno identificirana → konstante pri indikatorjih = dejanska povprečja
- MGCFA omogoča dodajanje omejitev, ki se nanašajo na več skupin in s tem omogoča rešitev problema z identifikacijo (skalarna enakovrednost je potrebna za primerjavo povprečij)

- Več možnosti za rešitev problema z identifikacijo pri MGCFA. Najbolj enostavna:
 - Ne računamo dejanskih povprečij latentnih spremenljivk, ampak le relativno glede na referenčno skupino
 - Pri vsaki latentni spremenljivki nastavimo njeno povprečje v prvi skupini na 0; povprečja latenten spremenljivke v drugih skupinah so prosta
 - Za vsaj en indikator pri vsaki latentni spremenljivki omejimo konstante tako, da so pri vseh skupinah enake kot pri prvi skupini (še raje pa več, da zagotovimo skalarno enakovrednost)
- Druge metode za doseganje identifikabilnosti: Little, Slegers & Card (2006) v Structural equation modeling, str. 59-72.

3. Skalarna enakovrednost:

□ Enaki nakloni (reg. koeficienti in konstante:

$$\begin{bmatrix} \tau_j^1 \\ \lambda_j^1 \end{bmatrix} = \dots = \begin{bmatrix} \tau_j^G \\ \lambda_j^G \end{bmatrix}$$

- □ Enote iz različnih skupin bodo pri enakih vrednostih latentnih spremenljivk dale enake odgovore (+ napaka)
- Polna primerljivost vseh vrednosti: primerjave povprečij so možne

Delna enakovrednost: primerjave so smiselne, če so parametri za vsaj dva indikatorja (pri obravnavani latentni spremenljivki) omejeni tako, da so enaki med skupinami (referenca Byrne, Shavelson in Muthen, 1989; Vendar se vsi ne strinjajo: De Beuckelaer in Swinnen, 2011)

- Nerešen problem: Kako testirati omejitve med skupinami v praksi? Kako se odločiti, kdaj je omejitev kršena?
- Možni pristopi:
 - Strogo konformatorni: Uporabimo omejitve (enakovrednosti); ocenimo splošno prileganje modela:
 - χ^2 -test, RMSEA, CFI, TLI
 - Vendar: Splošni indeksi pogosto niso občutljivi na lokalne "napake" v specifikaciji

- Alternativni pristop: Ocenimo več modelov (z (vsemi) omejitvami, brez omejitev, z le nekaterimi omejitvami); primerjaj splošno prileganje modelov
 - χ^2 test za primerjavo modelov(vendar: občutljiv pri velikih vzorcih in pri nenormalnih spremenljivkah)
 - Razlike v alternativnih indeksih prileganja: ΔCFI;
 ΔRMSEA (Cheung in Rensvold 2002; Chen 2007);
 vendar: mejne vrednosti so arbitrarne ali temeljijo na omejenih simulacijskih študijah
- Pristop gradnje modelov: Oceni model z vsemi omejitvami, identificiraj "lokalna" neujemanja in popravi model v skladu z njimi
 - Modification indices
 - Vendar: občutljivost testa glede na velikost vzorca

Ali lahko primerjamo moške in ženske?


```
Chi Square Difference Test
             \mathbf{Df}
                        BIC Chisq Chisq diff Df diff Pr(>Chisq)
                  AIC
fit.configural 68 21390 21666 150.30
fit.loadings 76 21394 21634 169.61
                                     19.312 8 0.0132785 *
fit.intercepts 84 21410 21614 201.78
                                      32.167
                                                  8 8.693e-05 ***
                                                  2 0.0001445 ***
fit.means 86 21424 21619 219.46
                                      17.685
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Fit measures:
```

	cfi	rmsea	cfi.delta	rmsea.delta
fit.configural	0.941	0.062	NA	NA
fit.loadings	0.933	0.062	0.008	0.001
fit.intercepts	0.916	0.067	0.017	0.004
fit.means	0.905	0.070	0.011	0.003

SEM za več skupin

- MG model lahko razširimo tako, da vključuje tudi strukturni del
- Npr.: Je učinek starosti in izobrazbe na ekstrovertiranost enak pri obeh spolih

Predpostavke

Predpostavke CFA modela:

- Linearni odnosi med indikatorji in konstruktu (skritimi spremenljivkami)
- Merske napake(ϵ -ji)
 - \square Imajo pričakovano vrednost 0 $E(\epsilon)$ =0
 - □ Imajo konstantno varianco (homoskedastičnost)
 - \square So nekorelirani $Cor(\epsilon_i, \epsilon_i) = 0$
 - □ Niso povezani (korelirani) s skritimi spremenljivkami $Cor(F, \epsilon) = 0$
- Multivariatna normalnost

Predpostavke - Multivariatna normalnost

Preverjanje ni enostavno!

Obstajajo testi (Alva in Estrada 2009; Cox in Small 1978; Cox in Wermuth 1994; Székely in Rizzo 2005), nekateri sicer niso dostopni v standardnih statističnih paketih (e.g. Cox in Small, 1978).

Predpostavke - Multivariatna normalnost

- Primeri dostopnih multivariatnih testov:
 - Mardia-in test multivariatne asimetrije in sploščensoti (Mardia, 1970)
 - □ Razšitive Shapiro-Wilk-sovega na multivariatno normalnost (Domanski, 1998; Royston, 1983)
 - □ Test multivariatne normalnosti na podlagi Estatistike (Székely in Rizzo 2005)
- Enostavni pristop: Testiramo univariatno normalnost

Predpostavke - Multivariatna normalnost

V praksi: predpostavka je pogosto (skoraj vedno) kršena

- Ordinalne (diskretne) spremenljivke merske lestvice – indikatorji likertovega tipa (kako se strinjate na lestvici od 1 – k)
- Asimetrične porazdelitve

Kako obravnavati taka odstopanja od normalnosti?

- Jih zanemarimo (ignoriramo)
 - Simulacijske študije so pokazale je, da če je vzorec dovolj velik, imamo vsaj 5 kategorij in podatki niso preveč asimetrični, metoda CFA precej robustna (DiStefano, 2002; Muthén in Kaplan, 1985; West, Finch in Curran, 1995).
- Jih modeliramo!

Trik: predpostavimo normalno porazdeljeno latentno spremenljivko x*. Merjeno ordinalna (diskretna) spremenljivka x pa dobimo, ko damo to spremenljivko v razrede.

Merjeno spremenljivko X_{ij} s c kategorijam dobimo tako, da spremenljivko X_{ij}^* rekodiramo v razrede s določenimi mejami:

$$X_{ij}^g = m \ if \ v_{jm}^g < x_{ij}^{g*} \le v_{j(m+1)}^g$$

kjer velja m = 1, ..., c in $\left\{v_{j1}^g, v_{j2}^g, ..., v_{j(c+1)}^g\right\}$ so meje (parametri)za *j*-ti indikator in *g*-to skupino (Millsap and Yun--Tein, 2004, 481).

Novi parametri: (c-1) mej za vsak indikator (na skupino)

Problemi z identifikacijo

- Ena rešitev: Nastavi vse konstante na 0
- Meje ocenimo
- Posledica za testiranje merske enakovrednosti: ne moremo več razlikovati med metrično in skalarno enakovrednostjo

Ordinalni indikatorji – ocenjevanje

Priporoča se uporabo WLSMV oz. DWLS z robustnimi standardnimi napakami.

Pri tem se za ordinalne spremenljivke uporablja "polychoric" korelacija.

Primer 4 – Primer 1 (CFA) z ordinalnimi indikatorji

Primer 4 – faktorske uteži

Latent Variables:

	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
ext =~						
EXTE	1.000				0.523	0.523
EXTLR	1.160	0.109	10.672	0.000	0.606	0.606
EXTNR	1.452	0.125	11.589	0.000	0.759	0.759
EXTOR	1.286	0.120	10.760	0.000	0.672	0.672
EXTRR	1.499	0.125	11.956	0.000	0.783	0.783
emoc =~						
EMOCDR	1.000				0.640	0.640
EMOCKR	0.998	0.073	13.726	0.000	0.638	0.638
EMOCQR	1.023	0.070	14.661	0.000	0.654	0.654
EMOCSR	1.156	0.074	15.604	0.000	0.740	0.740
EMOCTR	1.150	0.076	15.200	0.000	0.736	0.736

Primer 4 – meje

Thresholds:

	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
EXTE t1	-1.237	0.067	-18.402	0.000	-1.237	-1.237
EXTE t2	-0.944	0.059	-15.880	0.000	-0.944	-0.944
EXTE t3	-0.669	0.055	-12.238	0.000	-0.669	-0.669
EXTE t4	-0.183	0.051	-3.610	0.000	-0.183	-0.183
EXTLR t1	-1.162	0.065	-17.903	0.000	-1.162	-1.162
EXTLR t2	-0.710	0.055	-12.852	0.000	-0.710	-0.710
EXTLR t3	-0.253	0.051	-4.971	0.000	-0.253	-0.253
EXTLR t4	0.118	0.051	2.327	0.020	0.118	0.118
EXTNR t1	-0.586	0.054	-10.919	0.000	-0.586	-0.586
EXTNR t2	-0.028	0.050	-0.562	0.574	-0.028	-0.028
EXTNR t3	0.308	0.051	6.010	0.000	0.308	0.308
EXTNR t4	0.600	0.054	11.153	0.000	0.600	0.600
EXTOR t1	-1.329	0.070	-18.878	0.000	-1.329	-1.329
EXTOR t2	-0.700	0.055	-12.699	0.000	-0.700	-0.700
EXTOR t3	-0.171	0.051	-3.369	0.001	-0.171	-0.171
EXTOR t4	0.253	0.051	4.971	0.000	0.253	0.253
EXTRR t1	-0.944	0.059	-15.880	0.000	-0.944	-0.944
EXTRR t2	-0.407	0.052	-7.842	0.000	-0.407	-0.407
EXTRR t3	0.044	0.050	0.883	0.377	0.044	0.044
EXTRR t4	0.488	0.053	9.268	0.000	0.488	0.488

Primer 4 – meje

Thresholds:

	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
EMOCDR t1	-0.842	0.057	-14.656	0.000	-0.842	-0.842
EMOCDR t2	-0.291	0.051	-5.690	0.000	-0.291	-0.291
EMOCDR t3	-0.073	0.050	-1.445	0.149	-0.073	-0.073
EMOCDR t4	0.312	0.051	6.090	0.000	0.312	0.312
EMOCKR t1	-0.586	0.054	-10.919	0.000	-0.586	-0.586
EMOCKR t2	-0.081	0.050	-1.605	0.108	-0.081	-0.081
EMOCKR t3	0.233	0.051	4.571	0.000	0.233	0.233
EMOCKR t4	0.595	0.054	11.075	0.000	0.595	0.595
EMOCQR t1	-1.057	0.062	-17.035	0.000	-1.057	-1.057
EMOCQR t2	-0.483	0.053	-9.189	0.000	-0.483	-0.483
EMOCQR t3	-0.175	0.051	-3.449	0.001	-0.175	-0.175
EMOCQR t4	0.220	0.051	4.331	0.000	0.220	0.220
EMOCSR t1	-1.531	0.079	-19.390	0.000	-1.531	-1.531
EMOCSR t2	-0.931	0.059	-15.739	0.000	-0.931	-0.931
EMOCSR t3	-0.615	0.054	-11.386	0.000	-0.615	-0.615
EMOCSR t4	-0.061	0.050	-1.204	0.229	-0.061	-0.061
EMOCTR t1	-1.203	0.066	-18.187	0.000	-1.203	-1.203
EMOCTR t2	-0.506	0.053	-9.584	0.000	-0.506	-0.506
EMOCTR t3	-0.158	0.051	-3.129	0.002	-0.158	-0.158
EMOCTR t4	0.308	0.051	6.010	0.000	0.308	0.308

Primer 4 – kovariance in variance

Covariances:

Covariances:						
	Estimate	Std.Err	Z-value	P(> z)	$\mathtt{Std.lv}$	Std.all
EXTLR ~~ EXTOR	0.155	0.034	4.530	0.000	0.155	0.263
ext ~~ emoc	0.138	0.021	6.720	0.000	0.414	0.414
Variances:						
	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
EXTE	0.727				0.727	0.727
EXTLR	0.633				0.633	0.633

	Estimate	Std.Err	Z-value	P(> z)	Std.lv	Std.all
EXTE	0.727				0.727	0.727
EXTLR	0.633				0.633	0.633
EXTNR	0.424				0.424	0.424
EXTOR	0.548				0.548	0.548
EXTRR	0.387				0.387	0.387
EMOCDR	0.591				0.591	0.591
EMOCKR	0.593				0.593	0.593
EM OCQR	0.572				0.572	0.572
EMOCSR	0.453				0.453	0.453
EMOCTR	0.459				0.459	0.459
ext	0.273	0.044	6.219	0.000	1.000	1.000
emoc	0.409	0.042	9.690	0.000	1.000	1.000

Primer 4 – standardizirani rezultati

Primer 4 – mere prileganja

lavaan (0.5-20) converged normally after	21 ite	rations		
		Used	Total	
Number of observations		620	631	
Estimator		DWLS	Robust	
Minimum Function Test Statistic		90.170	120.547	
Degrees of freedom		33	33	
P-value (Chi-square)		0.000	0.000	
User model versus baseline model:				
Comparative Fit Index (CFI)		0.986	0.966	
Tucker-Lewis Index (TLI)		0.981	0.954	
Root Mean Square Error of Approximation:				
RMSEA		0.053	0.065	
90 Percent Confidence Interval	0.040	0.066	0.053	0.078
P-value RMSEA <= 0.05		0.338	0.020	