# Notes on Ash's Probability and Measure Theory

# July 30, 2021

## **Contents**

| 1 | Sect | ion 1.2: Fields, $\sigma$ -fields, measures                            | 2 |
|---|------|------------------------------------------------------------------------|---|
|   | 1.1  | Sec 1.2.1-1.2.2: Fields and $\sigma$ -fields                           | 2 |
|   | 1.2  | Sec 1.2.3-1.2.8: Measures, related set functions, and their properties | 2 |

#### 1 Section 1.2: Fields, $\sigma$ -fields, measures

#### 1.1 Sec 1.2.1-1.2.2: Fields and $\sigma$ -fields

Fields and  $\sigma$ -fields are important because they are the domain of measures. Here are some definitions.

**Definition 1.1.1.** Let  $\mathcal{F}$  be a collection of subsets of a set  $\Omega$ . Then  $\mathcal{F}$  is called a **field** if

- a)  $\Omega \in \mathcal{F}$
- b) If  $A \in \mathcal{F}$ , then  $A^c \in \mathcal{F}$ .
- c) If  $A_1, ... A_n \in \mathcal{F}$  then  $\bigcup_{i=1}^n A_i \in \mathcal{F}$ .

that is, if  $\Omega \in \mathcal{F}$  and  $\mathcal{F}$  is closed under complementation and finite unions.

**Definition 1.1.2.** Let  $\mathcal{F}$  be a collection of subsets of a set  $\Omega$ . Then  $\mathcal{F}$  is called a **sigma-field** if it satisfies Definition 1.1.1 after replacing condition c) with

c') If  $A_1, A_2, ... \in \mathcal{F}$  then  $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$ .

that is, if  $\Omega \in \mathcal{F}$  and  $\mathcal{F}$  is closed under complementation and *countable* unions.

 $\triangle$ 

Δ

Δ

**Example 1.1.1.**  $\mathcal{F} = \{\emptyset, \Omega\}$  is the smallest  $\sigma$ -field on  $\Omega$ .

**Example 1.1.2.**  $\mathcal{F} = 2^{\Omega}$ , i.e. the set of all subsets of  $\Omega$ , is the largest  $\sigma$ -field on  $\Omega$ .

**Example 1.1.3.** If  $A \in \Omega$  is non-empty, then  $\mathcal{F} = \{\emptyset, A, A^c, \Omega\}$  is the smallest  $\sigma$ -field containing A.

**Question 1.1.1.** Let  $A_1, ..., A_n$  be subsets of  $\Omega$ . Describe  $\sigma(\{A_1, ..., A_n\})$ , the smallest  $\sigma$ -field containing  $A_1, ..., A_n$ . Also describe the number of sets in  $\mathcal{F}$ . This is Ash's Problem 1.2.8. For answer, see GoodNotes.

**Example 1.1.4.** What is an example of a collection that is a *field*, but not a  $\sigma$ -*field*?

Let  $\Omega = \mathbb{R}$  and  $\mathcal{F}_0 = \{$  finite disjoint unions of  $[a,b), a \neq b \}$ . Then  $\mathcal{F}_0$  is a field, as can be easily verified. But  $\mathcal{F}_0$  is <u>not</u> a  $\sigma$ -field. Note that if  $A_n = [0, \frac{1}{n})$ , then  $\bigcap_{n=1}^{\infty} A_n = \{0\} \notin \mathcal{F}_0$ 

Δ

**Remark 1.1.1.** Ash says that there is a type of reasoning that occurs so often in problems involving  $\sigma$ -fields that it deserves explicit mention. It is called the *good sets* principle. See GoodNotes.  $\triangle$ 

#### 1.2 Sec 1.2.3-1.2.8: Measures, related set functions, and their properties

**Definition 1.2.1.** A **measure** on a  $\sigma$ -field  $\mathcal{F}$  is a non-negative, extended real-valued function  $\mu$  on  $\mathcal{F}$  such that whenever  $A_1, A_2, ...$  form a finite or countably infinite collection of disjoint sets in  $\mathcal{F}$ , we have countable additivity; that is,

$$\mu\bigg(\bigcup_n A_n\bigg) = \sum_n \mu(A_n)$$

 $\triangle$ 

**Definition 1.2.2.** A **probability measure** is a measure (Definition 1.2.1) where  $\mu(\Omega) = 1$ .

**Remark 1.2.1.** (*Measure-like functions on fields*) A measure-like set function can be defined on *fields* as well as *sigma-fields* if the countable additivity condition is taken to hold whenever a countable unions *does* happen to still be in the field.  $\triangle$ 

**Remark 1.2.2.** Ash additionally assumes that a measure does not take  $\mu(A) = \infty$  or  $\mu(A) = -\infty$  for all  $A \in \mathcal{F}$ . From this, we automatically obtain  $\mu(\emptyset) = 0$ . For  $\mu(A) < \infty$  for some A, and by considering the sequence  $A, \emptyset, \emptyset, ...$ , we have that  $\mu(\emptyset) = 0$  by countable additivity.  $\triangle$ 

## References