Tópicos de Matemática Teste Global/ 2º Teste 12/01/2011

(duração: 2 horas)

NOTA: Os alunos podem optar pela realização de um Teste Global (sobre a totalidade dos conteúdos programáticos leccionados nas aulas) ou pela realização de um 2º Teste (a incidir sobre os conteúdos programáticos: Indução, Funções, Relações Binárias, Relações de Equivalência, Relações de Ordem e Cardinalidade).

Os alunos que optem por resolver o **Teste Global** devem resolver **as questões 1, 2, 3, 4, 5, 7 e 9** e a sua classificação final na avaliação periódica será determinada com base na avaliação obtida neste teste.

Os alunos que optem por resolver o $2^{\underline{o}}$ **Teste** devem resolver **as questões 4, 5, 6, 7, 8 e 9** e a sua classificação final na avaliação periódica será determinada com base na média ponderada das classificações obtidas no $1^{\underline{o}}$ e no $2^{\underline{o}}$ testes.

Todas as respostas devem ser convenientemente justificadas.

- 1. Considere a fórmula proposicional $\varphi:(p_1\Rightarrow (p_0\vee p_2))\wedge (\neg p_1\vee p_2)$. Diga se são verdadeiras as seguintes afirmações:
 - (a) A fórmula φ é uma contradição.
 - (b) Uma condição suficiente para p_0 ter valor lógico falso é φ ter valor lógico falso.
- 2. Sejam

$$A = \{-2, 2, -4, 4\}, \qquad B = \{x \in \mathbb{R} : x^2 \in A \land 2x \in A\}, \qquad C = \{1, \{2, \{3\}\}\} \qquad D = \{\{1\}, \{2, \{3\}\}\}\}.$$

- (a) Determine $(A \times B) \setminus (B \times A)$.
- (b) Determine $\mathcal{P}(C) \cap \mathcal{P}(\mathbb{N})$.
- (c) Indique o menor conjunto X tal que $D \subseteq \mathcal{P}(X)$.
- 3. Sejam A, B conjuntos. Mostre que se $A \cup B \in \mathcal{P}(A \cap B)$, então A = B.
- 4. Para cada $n \in \mathbb{N}$, seja p(n) o predicado " $2+6+10+\ldots+(4n-2)=2n^2$ ". Prove que, para cada $n \in \mathbb{N}$, p(n) é verdadeira.
- 5. Considere a função $f: \mathbb{N} \to \mathbb{N}$ definida por

$$f(n) = \begin{cases} 2n & \text{se } n \text{ \'e impar} \\ n+2 & \text{se } n \text{ \'e par} \end{cases}$$

- (a) Determine
 - (i) $f({3,4,8});$
 - (ii) $f^{\leftarrow}(\{3,5,6\})$.
- (b) Diga se f é injetiva.
- (c) Indique se f é sobrejetiva.
- 6. Sejam A, B conjuntos, X um subconjunto de A e $f: A \to B$ uma função. Mostre que se f é injetiva, então $f^{\leftarrow}(f(X)) = X$.

7. Sejam A um conjunto e R a relação binária definida em $\mathcal{P}(A)$ por

$$X R Y$$
 se e só se $X \setminus \{1, 2\} = Y \setminus \{1, 2\}$.

- (a) Mostre que R é uma relação de equivalência.
- (b) Considere $A = \{1, 2, 3\}$. Determine a classe de equivalência $[\{1\}]_R$ e o conjunto quociente $\mathcal{P}(A)/R$.
- (c) Dê um exemplo de ou justifique por que não existe
 - (i) um conjunto A não vazio tal que R é a relação universal em $\mathcal{P}(A)$.
 - (ii) um conjunto A não vazio tal que R é a relação identidade em $\mathcal{P}(A)$.
- 8. Dê exemplo de ou justifique por que não existe(m)
 - (a) funções $f:A\to B$ e $g:B\to C$, com A,B,C conjuntos não vazios, tais que g seja sobrejetiva e $g\circ f$ seja não sobrejetiva;
 - (b) uma relação binária R definida num conjunto A que não seja simétrica nem antissimétrica;
 - (c) uma relação de equivalência R definida em $A = \{1, 2, 3, 4, 5\}$ tal que

$$A/R = \{\{1\}, \{2,3\}, \{1,4\}, \{5\}\};$$

- (d) uma partição Π do conjunto $\{1,2,3\}$ tal que a relação de equivalência R_{Π} associada a Π seja antissimétrica.
- 9. Seja $A \subseteq \mathcal{P}(\mathbb{N})$ tal que (A, \subseteq) tem o diagrama de Hasse a seguir representado:

Considere o conjunto $B = \{\{1, 2\}, X\}.$

- (a) Determine os elementos maximais e minimais de A.
- (b) Determine os majorantes e os minorantes de B e, caso existam, o supremo e o ínfimo de B.
- (c) Determine os conjuntos $X \in Y$.

Cotação:

- **1.** (2,5 valores) **2.** (3,5 valores) **3.** (2,0 valores) **4.** (2,0 valores)
- **5.** (3,0 valores) **6.** (2,0 valores) **7.** (4,0 valores) **8.** (6,0 valores)
- **9.** (3,0 valores)