18.369 Problem Set 2

Due Wednesday, 28 February 2024.

Problem 1: Cylindrical symmetry

Suppose that we have a *cylindrical* metallic waveguide—that is, a perfect metallic tube with radius R, which is uniform in the z direction. The interior of the tube is simply air $(\varepsilon = 1)$.

- (a) This structure has continuous rotational symmetry around the z axis, correspond to commuting with rotations $\hat{\phi}$ by any angle ϕ (which is sometimes called the C_{∞} symmetry group¹). If $f(\phi)$ is an eigenfunction of $\hat{\phi}$ for all $\phi \in \mathbb{R}$, we know from class that $f(\phi)$ must² be an exponential function $e^{\kappa\phi}$ (or a multiple thereof) for some κ since $\hat{\phi}_1\hat{\phi}_2 = \widehat{\phi}_1 + \widehat{\phi}_2$. What are the possible values of κ , and why?
- (b) For simplicity, consider the (Hermitian) scalar wave equation $-\nabla^2 \psi = \frac{\omega^2}{c^2} \psi$ with $\psi|_{r=R} = 0$. Show that, when we look for solutions ψ that are eigenfunctions of all $\hat{\phi}$ from above, and have z dependence e^{ikz} (from the translational symmetry), then we obtain a Bessel equation (Google it if you've forgotten Mr. Bessel, or never learned). Write the solutions in terms of Bessel functions, assuming that you are given their zeros $x_{m,n}$ (i.e. $J_m(x_{m,n}) = 0$ for $n = 1, 2, \ldots$, where J_m is the Bessel function of the first kind...if you Google for "Bessel function zeros" you can find them tabulated). Sketch the dispersion relation $\omega(k)$ for a few bands.
- (c) From the general orthogonality property of Hermitian-operator eigenfunctions, derive/prove an orthogonality integral for the Bessel functions. (No, just looking one up on Wikipedia doesn't count.)

Problem 2: 2d Waveguide Modes

Consider the two-dimensional dielectric waveguide of thickness h that we first introduced in class:

$$\varepsilon(y) = \begin{cases} \varepsilon_{hi} & |y| < h/2 \\ \varepsilon_{lo} & |y| \ge h/2 \end{cases},$$

where $\varepsilon_{hi} > \varepsilon_{lo}$. Look for solutions with the "TM" or " E_z " polarization $\mathbf{E} = E_z(x,y)\hat{\mathbf{z}}e^{-i\omega t}$. The boundary conditions are that E_z is continuous and $\partial E_z/\partial y$ ($\sim H_x$) is continuous, and that we require the fields to be finite at $x, y \to \pm \infty$,

- (a) Prove that we can set $\varepsilon_{lo}=1$ without loss of generality, by a change of variables in Maxwell's equations. In the subsequent sections, therefore, set $\varepsilon_{lo}=1$ for simplicity.
- (b) Find the guided-mode solutions $E_z(x,y) = e^{ikx}E_k(y)$, where the corresponding eigenvalue $\omega(k) < ck$ is below the light line.
 - (i) Show for the |y| < h/2 region the solutions are of sine or cosine form, and that for |y| > h/2 they are decaying exponentials. (At this point, you can't easily prove that the arguments of the sines/cosines are real, but that's okay—you will be able to rule out the possibility of imaginary arguments below.)
 - (ii) Match boundary conditions (E_z and H_x are continuous) at $y=\pm h/2$ to obtain an equation relating ω and k. You should get a transcendental equation that you cannot solve explicitly. However, you can "solve" it graphically and learn a lot about the solutions—in particular, you might try plotting the left and right hand sides of your equation (suitably arranged) as a function of $k_{\perp} = \sqrt{\frac{\omega^2}{c^2}} \varepsilon_{hi} k^2$, so that you have two curves and the solutions are the intersections (your curves will be parameterized by k, but try plotting them for one or two typical k).
 - (iii) From the graphical picture, derive an exact expression for the number of guided modes

 $^{^1{\}rm It}$ also has an infinite set of mirror planes containing the z axis, but let's ignore these for now. If they are included, the group is called $C_{\infty {\rm \tiny V}}.$

²Assuming it is anywhere continuous, to exclude crazy non-measurable non-constructive counterexamples.

as a function of k. Show that there is exactly one guided mode, with even symmetry, as $k \to 0$, as we argued in class.

Problem 3: Evanescent modes in waveguides

In class, we looked at H_z -polarized solutions in a 2d metallic waveguide, formed by an $\varepsilon = \mu = 1$ region between two PEC walls at x = 0 and x = L, and found that (in the absence of sources) it satisfied the eigen-equation $-\nabla^2 H_z = \omega^2 H_z$ (for $\varepsilon_0 = \mu_0 = 1$ units) with "Neumann" boundary conditions $H'_z(0) = H'_z(L) = 0$. Exploiting translational symmetry in y, we looked for solutions $H_z(x,y) = u_k(x)e^{iky}$ with a given propagation constant ("wavevector") $k \in \mathbb{R}$, and found

$$u_{k,n} = \sin\left(\frac{n\pi x}{L}\right)$$
 for $n = 0, 1, \dots$

$$\omega_n(k) = \pm \sqrt{\left(\frac{n\pi}{L}\right)^2 + k^2},$$

so that the dispersion relation is a set of hyperbolas (except for the n = 0 solution $\omega_0 = \pm |k|$).

- (a) We can alternatively fix ω and solve for the propagation constant $k_n(\omega)$ and the corresponding H_z solutions. Let $\omega = 1.5\pi/L$. What do the possible solutions H_z look like for $n = 0, 1, 2, 3, \ldots$? The solutions that are exponentially growing/decaying are called "evanescent" modes.
- (b) Suppose we introduce an electric current source $\mathbf{J} = f(x)\delta(y)e^{-i\omega t}\hat{x}$ into Maxwell's equations: here, a delta function in y and some function f(x) as the x dependence, with a frequency ω , oriented in the x direction (a "current sheet"). Show that Maxwell's equations in this case take the form $(-\nabla^2 \omega^2)H_z = Cf(x)\delta'(y)$ for some constant C, where $\delta'(y)$ is the derivative of a delta function (recall that $\int \delta'(y)g(y) = -g'(0)$, or equivalently $\delta'(y)$ is the second derivative of a unit step function). Any solution H_z must have some kind of discontinuity or "kink" at y = 0 what is it?

(c) In the presence of this current source f(x), write the resulting magnetic field $H_z(x, y)$ everywhere in $x \in [0, L]$ as an infinite series \sum_n of solutions from your $k_n(\omega)$ modes above, with a different series for y > 0 and y < 0. (Hint: you should find that by imposing the correct "kink" condition on H_z across y = 0 from above, you get an equation in terms of a Fourier series for f(x)that allows you determine the coefficients of the series.) You should assume boundary conditions of outgoing and/or decaying waves as $y \to \pm \infty$: that is, for y > 0, the solutions should be a superposition of terms that look like e^{iky} for either real k > 0 (propagating upwards) or imaginary $k = i\kappa$ with $\kappa > 0$ (decaying upwards), and similarly (with opposite signs: propagating/decaying downwards) for y < 0. You must include the evanescent modes, as otherwise you will be unable to find a solution for an arbitrary f(x).

Problem 4: Poynting's theorem

In Jackson's Classical Electrodynamics textbook (or in many similar books), the electric field of a radiating dipole $\mathbf{J}(\mathbf{x},t) = -i\omega\mathbf{p}\delta(x)\delta(y)\delta(z)e^{-i\omega t}$ at the origin in vacuum is given in spherical coordinates (radius r, radial direction \mathbf{n}), with $k = \omega/c$, as

$$\begin{split} \mathbf{E} &= \frac{1}{4\pi\epsilon_0} \left\{ k^2 (\mathbf{n} \times \mathbf{p}) \times \mathbf{n} \frac{1}{r} \right. \\ &\left. + \left[3\mathbf{n} (\mathbf{n} \cdot \mathbf{p}) - \mathbf{p} \right] \left(\frac{1}{r^3} - \frac{ik}{r^2} \right) \right\} e^{i(kr - \omega t)} \,. \end{split}$$

Note the divergence as $r \to 0$. The total power radiated by this dipole is computed by Jackson from the Poynting flux through an enclosing sphere to be $P = \frac{c^2 Z_0 k^4}{12\pi} |\mathbf{p}|^2$, where $Z_0 = \sqrt{\mu_0/\varepsilon_0}$. Show that you obtain the same P by taking the $r \to 0$ limit of of the work $-\frac{1}{2} \operatorname{Re}[\mathbf{E}^* \mathbf{J}]$ expended by \mathbf{J} (regardless of the direction \mathbf{n} from which you approach the origin). (Taylor expanding e^{ikr} may be helpful.)

³Technically, we must restrict ourselves to functions f(x) that have a Fourier series; this includes all remotely realistic possibilities.

Problem 5: Scattering and energy

As in the course notes, we can write Maxwell's equations for the 6-component fields ψ as $\frac{\partial \psi}{\partial t} = \hat{C}\psi - \frac{\partial \phi}{\partial t} - \xi$, where the 6-component polarizations $\phi = \chi * \psi$ are a convolution in time with a (passive and causal) linear susceptibility $\chi(\mathbf{x},t)$ at each point \mathbf{x} in space. Now, suppose we have the situation depicted in Fig. 1: sources $(\xi \neq 0)$ lying outside some bounded volume Ω produce an incident wave ψ_{inc} that scatters off materials $(\chi \neq 0)$ inside of Ω to produce a scattered wave ψ_{scat} . Outside of Ω there are no materials $(\chi = 0)$, while inside of Ω there are no sources $(\xi = 0)$.

- (a) Write the total fields as $\psi = \psi_{\rm inc} + \psi_{\rm scat}$, where $\psi_{\rm inc} = \begin{pmatrix} \mathbf{E}_{\rm inc} \\ \mathbf{H}_{\rm inc} \end{pmatrix}$ satisfies $\frac{\partial \psi_{\rm inc}}{\partial t} = \hat{C}\psi_{\rm inc} \xi$ (Maxwell's equations with the same currents but no materials), and the initial conditions at $t = -\infty$ are $\psi = \psi_{\rm inc} = \psi_{\rm scat} = 0$.
 - (i) What differential⁴ equation must ψ_{scat} sat-

⁴Technically, if you include a convolution $\chi*$ then you have

Figure 1: Schematic of an incident wave $\psi_{\rm inc}$ created by sources ξ that are only $\neq 0$ outside some volume Ω , interacting with materials $\chi \neq 0$ that lie inside Ω to produce an outgoing scattered wave $\psi_{\rm scat}$.

isfy?

- (ii) Fourier transform in time to find equations for $\hat{\psi}_{\text{inc}}(x,\omega)$ and $\hat{\psi}_{\text{scat}}$ (in terms of $\hat{\xi}$ and $\hat{\chi}$); equivalently, look for time-harmonic solutions $\hat{\psi}_{\text{inc}}e^{-i\omega t}$ and $\hat{\psi}_{\text{scat}}e^{-i\omega t}$ from a time-harmonic source $\hat{\xi}(\mathbf{x})e^{-i\omega t}$.
- (b) Applying Poynting's theorem and passivity to your time-harmonic fields, show that $\iint_{\partial\Omega} \operatorname{Re}[\hat{\mathbf{E}}_{\mathrm{inc}}^* \times \hat{\mathbf{H}}_{\mathrm{inc}}] \cdot d\mathbf{A} = 0 \text{ and } P_{\mathrm{abs}} = \oiint_{\partial\Omega} \operatorname{Re}[\hat{\mathbf{E}}^* \times \hat{\mathbf{H}}] \cdot d\mathbf{A} \geq 0 \text{ (the absorbed power} = \text{inward total flux). (Note that here, } \Omega \text{ is a subset of the whole domain!)}$
- (c) In order to ensure $P_{\text{scat}} = \oiint_{\partial\Omega} \operatorname{Re}[\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{scat}}] \cdot d\mathbf{A} \geq 0$ (the scattered power = outward scattered flux), we need something more: an outgoing boundary condition (or "radiation" boundary condition): if we consider any point on sphere of radius R (around any point in Ω), then in the limit as $R \to \infty$ we require that $R^2 \operatorname{Re}[\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{scat}}]$ must point radially outward. Use Poynting's theorem to show that such a radiation boundary condition implies $\oiint_{\partial\Omega} \operatorname{Re}[\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{scat}}] \cdot d\mathbf{A} \geq 0.5$
- (d) Show that the "extinguished power" $P_{\text{ext}} = P_{\text{abs}} + P_{\text{scat}}$ can be written in terms of an integral over $\partial \Omega$ involving $\hat{\mathbf{E}}_{\text{inc}}^* \times \hat{\mathbf{H}}_{\text{scat}}$ and $\hat{\mathbf{E}}_{\text{scat}}^* \times \hat{\mathbf{H}}_{\text{inc}}$ only. This is a version of a famous result known as the **optical theorem**.
- (e) Derive an alternative form of the optical theorem: show that $P_{\rm ext}$ can be written as an integral over Ω involving only $\hat{\psi}_{\rm inc}^*\hat{\phi}$. (Hint: use Poynting's theorem to relate $P_{\rm abs}$ and $P_{\rm scat}$ to work on polarization currents, and write $\psi_{\rm scat} = \psi \psi_{\rm inc}$.)

a "pseudodifferential" operator.

⁵One will also choose some such boundary condition when constructing $\psi_{\rm inc}$. Not necessarily an outgoing boundary condition, however—often it is convenient to have an incident wave coming in "from infinity", such as an incident planewave, perhaps with no explicit sources ($\xi=0$) and just appropriate boundary conditions.