

PageRank: Ranking of nodes in graphs

October 10, 2018

PageRank: Random walk

Ranking of nodes in graphs: Random walk

Ranking of nodes in graphs: Probability propagation

Graphs

- ► Graph \Rightarrow A set of V of vertices or nodes j = 1, ..., J \Rightarrow Connected by a set of edges E defined as ordered pairs (i,j)
- ▶ In figure ⇒ Nodes are $V = \{1, 2, 3, 4, 5, 6\}$ ⇒ Edges $E = \{(1, 2), (1, 5), (2, 3), (2, 5), (3, 4), ...$ $(3, 6), (4, 5), (4, 6), (5, 4)\}$
- ► Ex. 1: Websites and hyperlinks ⇒ World Wide Web (WWW)
- ► Ex. 2: People and friendship ⇒ Social network

How well connected nodes are?

- ▶ Q: Which node is the most connected? A: Define most connected ⇒ Can define "most connected" in different ways
- ► Two important connectivity indicators
 - 1) How many links point to a node (outgoing links irrelevant)
 - 2) How important are the links that point to a node
- ▶ Node rankings to measure website relevance, social influence

Connectivity ranking

- ▶ Key insight: There is information in the structure of the network
- ► Knowledge is distributed through the network
 - ⇒ The network (not the nodes) knows the rankings
- ▶ Idea exploited by Google's PageRank[©] to rank webpages
 - ... by social scientists to study trust & reputation in social networks
 - ... by ISI to rank scientific papers, transactions & magazines ...

- ▶ No one points to 1
- Only 1 points to 2
- Only 2 points to 3, but 2 more important than 1
- 4 as high as 5 with less links
- Links to 5 have lower rank
- ► Same for 6

Preliminary definitions

▶ Graph G = (V, E) ⇒ vertices $V = \{1, 2, ..., J\}$ and edges E

ightharpoonup Outgoing neighborhood of i is the set of nodes j to which i points

$$n(i) := \{j : (i,j) \in E\}$$

▶ Incoming neighborhood, $n^{-1}(i)$ is the set of nodes that point to i:

$$n^{-1}(i) := \{j : (j, i) \in E\}$$

▶ Strongly connected $G \Rightarrow$ directed path joining any pair of nodes

Definition of rank

- ▶ Agent A chooses node i, e.g., web page, at random for initial visit
- ▶ Next visit randomly chosen between links in the neighborhood n(i)
 - ⇒ All neighbors chosen with equal probability
- ▶ If reach a dead end because node *i* has no neighbors
 - ⇒ Chose next visit at random equiprobably among all nodes
- ▶ Redefine graph $\mathcal{G} = (V, E)$ adding edges from dead ends to all nodes
 - ⇒ Restrict attention to connected (modified) graphs

▶ Rank of node *i* is the average number of visits of agent *A* to *i*

Equiprobable random walk

- ▶ Formally, let A_n be the node visited at time n
- ▶ Define transition probability P_{ij} from node i into node j

$$P_{ij} := \mathsf{P}\left(A_{n+1} = j \mid A_n = i\right)$$

▶ Next visit equiprobable among *i*'s $N_i := |n(i)|$ neighbors

$$P_{ij} = \frac{1}{|n(i)|} = \frac{1}{N_i}, \quad \text{for all } j \in n(i)$$

- ► Still have a graph
- ▶ But also a MC
- ► Red (not blue) circles

Formal definition of rank

▶ **Def:** Rank r_i of i-th node is the time average of number of visits

$$r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \left\{ A_m = i \right\}$$

- \Rightarrow Define vector of ranks $\mathbf{r} := [r_1, r_2, \dots, r_J]^T$
- ▶ Rank r_i can be approximated by average r_{ni} at time n

$$r_{ni} := \frac{1}{n} \sum_{m=1}^{n} \mathbb{I} \left\{ A_m = i \right\}$$

- \Rightarrow Since $\lim_{n \to \infty} r_{ni} = r_i$, it holds $r_{ni} \approx r_i$ for n sufficiently large
- \Rightarrow Define vector of approximate ranks $\mathbf{r}_n := [r_{n1}, r_{n2}, \dots, r_{nJ}]^T$
- ▶ If modified graph is connected, rank independent of initial visit

Ranking algorithm


```
Output: Vector \mathbf{r}(i) with ranking of node i
Input: Scalar n indicating maximum number of iterations
Input: Vector N(i) containing number of neighbors of i
Input: Matrix N(i, j) containing indices j of neighbors of i
m = 1; r = zeros(J,1); % Initialize time and ranks
A_0 = \text{random('unid', J)}; % Draw first visit uniformly at random
while m < n do
     jump = random('unid', N_{A_{m-1}}); % Neighbor uniformly at random
     A_m = \mathbf{N}(A_{m-1}, \text{ jump}); % Jump to selected neighbor
    \mathbf{r}(A_m) = \mathbf{r}(A_m) + 1; % Update ranking for A_m m = m + 1;
end
\mathbf{r} = \mathbf{r}/n; % Normalize by number of iterations n
```

Social graph example

- ▶ Asked probability students about homework collaboration
- Created (crude) graph of the social network of students in the class
 - ⇒ Used ranking algorithm to understand connectedness
- ▶ Ex: I want to know how well students are coping with the class
 - \Rightarrow Best to ask people with higher connectivity ranking
- 2009 data from "UPenn's ECE440"

Ranked class graph

Convergence metrics

- \triangleright Recall **r** is vector of ranks and **r**_n of rank iterates
- ▶ By definition $\lim_{n\to\infty} \mathbf{r}_n = \mathbf{r}$. How fast \mathbf{r}_n converges to \mathbf{r} (\mathbf{r} given)?
- ▶ Can measure by ℓ_2 distance between **r** and **r**_n

$$\zeta_n := \|\mathbf{r} - \mathbf{r}_n\|_2 = \left(\sum_{i=1}^J (r_{ni} - r_i)^2\right)^{1/2}$$

- ▶ If interest is only on highest ranked nodes, e.g., a web search
 - \Rightarrow Denote $r^{(i)}$ as the index of the *i*-th highest ranked node
 - \Rightarrow Let $r_n^{(i)}$ be the index of the *i*-th highest ranked node at time n
- ► First element wrongly ranked at time *n*

$$\xi_n := \arg\min_i \{ r^{(i)} \neq r_n^{(i)} \}$$

Evaluation of convergence metrics

- ► Distance close to 10^{-2} in $\approx 5 \times 10^3$ iterations
- ▶ Bad: Two highest ranks in $\approx 4 \times 10^3$ iterations
- ► Awful: Six best ranks in $\approx 8 \times 10^3$ iterations
- ► (Very) slow convergence

When does this algorithm converge?

- ► Cannot confidently claim convergence until 10⁵ iterations
 - ⇒ Beyond particular case, slow convergence inherent to algorithm

- ► Example has 40 nodes, want to use in network with 10⁹ nodes!
 - ⇒ Leverage properties of MCs to obtain a faster algorithm

PageRank: Probability propagation

Ranking of nodes in graphs: Random walk

Ranking of nodes in graphs: Probability propagation

Limit probabilities

- ▶ Recall definition of rank $\Rightarrow r_i := \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n \mathbb{I} \{A_m = i\}$
- ▶ Rank is time average of number of state visits in a MC
 ⇒ Can be as well obtained from limiting probabilities
- ▶ Recall transition probabilities $\Rightarrow P_{ij} = \frac{1}{N_i}$, for all $j \in n(i)$
- ▶ Stationary distribution $\boldsymbol{\pi} = [\pi_1, \pi_1, \dots, \pi_J]^T$ solution of

$$\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j \in n^{-1}(i)} \frac{\pi_j}{N_j} \quad \text{for all } i$$

- \Rightarrow Plus normalization equation $\sum_{i=1}^{J} \pi_i = 1$
- ► As per ergodicity of MC (strongly connected G) \Rightarrow $\mathbf{r} = \pi$

Matrix notation, eigenvalue problem

► As always, can define matrix **P** with elements P_{ij}

$$\pi_i = \sum_{j \in n^{-1}(i)} P_{ji} \pi_j = \sum_{j=1}^J P_{ji} \pi_j \qquad \text{for all } i$$

▶ Right hand side is just definition of a matrix product leading to

$$\pi = \mathbf{P}^T \pi, \qquad \pi^T \mathbf{1} = 1$$

- ⇒ Also added normalization equation
- ▶ Idea: solve system of linear equations or eigenvalue problem on **P**^T
 - ⇒ Requires matrix **P** available at a central location
 - \Rightarrow Computationally costly (sparse matrix **P** with 10¹⁸ entries)

What are limit probabilities?

Let $p_i(n)$ denote probability of agent A visiting node i at time n

$$p_i(n) := P(A_n = i)$$

 \blacktriangleright Probabilities at time n+1 and n can be related

$$P(A_{n+1} = i) = \sum_{j \in n^{-1}(i)} P(A_{n+1} = i | A_n = j) P(A_n = j)$$

▶ Which is, of course, probability propagation in a MC

$$p_i(n+1) = \sum_{j \in n^{-1}(i)} P_{ji} p_j(n)$$

▶ By definition limit probabilities are (let $\mathbf{p}(n) = [p_1(n), \dots, p_J(n)]^T$)

$$\lim_{n\to\infty} \mathbf{p}(n) = \boldsymbol{\pi} = \mathbf{r}$$

⇒ Compute ranks from limit of propagated probabilities

Probability propagation

▶ Can also write probability propagation in matrix form

$$p_i(n+1) = \sum_{j \in n^{-1}(i)} P_{ji}p_j(n) = \sum_{j=1}^J P_{ji}p_j(n)$$
 for all i

Right hand side is just definition of a matrix product leading to

$$\mathbf{p}(n+1) = \mathbf{P}^T \mathbf{p}(n)$$

▶ Idea: can approximate rank by large *n* probability distribution

$$\Rightarrow$$
 r = $\lim_{n\to\infty}$ **p**(n) \approx **p**(n) for n sufficiently large

Ranking algorithm

▶ Algorithm is just a recursive matrix product, a power iteration

```
Output: Vector \mathbf{r}(i) with ranking of node i
Input: Scalar n indicating maximum number of iterations
Input: Matrix \mathbf{P} containing transition probabilities

m=1; % Initialize time

\mathbf{r}=(1/\mathsf{J})\mathsf{ones}(\mathsf{J},1); % Initial distribution uniform across all nodes

while m < n do

\mathbf{r} = \mathbf{P}^T \mathbf{r}; % Probability propagation

m=m+1;
end
```

Interpretation of probability propagation

- ▶ Q: Why does the random walk converge so slow?
- ► A: Need to register a large number of agent visits to every state Ex: 40 nodes, say 100 visits to each \Rightarrow 4 × 10³ iters.
- ▶ Smart idea: Unleash a large number of agents K

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I} \{ A_{km} = i \}$$

- Visits are now spread over time and space
 - ⇒ Converges "K times faster"
 - ⇒ But haven't changed computational cost

Interpretation of prob. propagation (continued)

 \triangleright Q: What happens if we unleash infinite number of agents K?

$$r_{i} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \lim_{K \to \infty} \frac{1}{K} \sum_{k=1}^{K} \mathbb{I} \left\{ A_{km} = i \right\}$$

Using law of large numbers and expected value of indicator function

$$r_{i} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} \mathbb{E}\left[\mathbb{I}\left\{A_{m} = i\right\}\right] = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} P\left(A_{m} = i\right)$$

▶ Graph walk is an ergodic MC, then $\lim_{m\to\infty} P(A_m = i)$ exists, and

$$r_i = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^n p_i(m) = \lim_{n \to \infty} p_i(n)$$

⇒ Probability propagation ≈ Unleashing infinitely many agents

Distance to rank

- ▶ Initialize with uniform probability distribution \Rightarrow **p**(0) = (1/J)**1**
 - \Rightarrow Plot distance between $\mathbf{p}(n)$ and \mathbf{r}

- ▶ Distance is 10^{-2} in ≈ 30 iters., 10^{-4} in ≈ 140 iters.
 - \Rightarrow Convergence two orders of magnitude faster than random walk

Number of nodes correctly ranked

▶ Rank of highest ranked node that is wrongly ranked by time *n*

- ▶ Not bad: All nodes correctly ranked in 120 iterations
- ▶ Good: Ten best ranks in 70 iterations
- ▶ Great: Four best ranks in 20 iterations

Distributed algorithm to compute ranks

- ▶ Nodes want to compute their rank r_i
 - ⇒ Can communicate with neighbors only (incoming + outgoing)
 - ⇒ Access to neighborhood information only
- Recall probability update

$$p_i(n+1) = \sum_{j \in n^{-1}(i)} P_{ji} p_j(n) = \sum_{j \in n^{-1}(i)} \frac{1}{N_j} p_j(n)$$

- ⇒ Uses local information only
- ▶ Distributed algorithm. Nodes keep local rank estimates $r_i(n)$
 - ▶ Receive rank (probability) estimates $r_j(n)$ from neighbors $j \in n^{-1}(i)$
 - ▶ Update local rank estimate $r_i(n+1) = \sum_{j \in n^{-1}(i)} r_j(n)/N_j$
 - ▶ Communicate rank estimate $r_i(n+1)$ to outgoing neighbors $j \in n(i)$
- ▶ Only need to know the number of neighbors of my neighbors

Distributed implementation of random walk

- ► Can communicate with neighbors only (incoming + outgoing)
 - ⇒ But cannot access neighborhood information
 - ⇒ Pass agent ('hot potato') around
- ▶ Local rank estimates $r_i(n)$ and counter with number of visits V_i
- ▶ Algorithm run by node *i* at time *n*

```
if Agent received from neighbor then V_i = V_i + 1
Choose random neighbor Send agent to chosen neighbor end n = n + 1; r_i(n) = V_i/n;
```

Speed up convergence by generating many agents to pass around

Comparison of different algorithms

- ► Random walk (RW) implementation
 - ⇒ Most secure. No information shared with other nodes
 - ⇒ Implementation can be distributed
 - ⇒ Convergence exceedingly slow
- ► System of linear equations
 - ⇒ Least security. Graph in central server
 - ⇒ Distributed implementation not clear
 - ⇒ Convergence not an issue
 - \Rightarrow But computationally costly to obtain approximate solutions
- Probability propagation
 - ⇒ Somewhat secure. Information shared with neighbors only
 - ⇒ Implementation can be distributed
 - ⇒ Convergence rate acceptable (orders of magnitude faster than RW)

Glossary

- Graph, nodes and edges
- Connectivity indicators
- Node ranking
- ▶ Google's PageRank
- Node's neighborhood
- Strong connectivity
- Random walk on a graph
- Long-run fraction of state visits

- ► Ranking algorithm
- Convergence metrics
- Computational cost
- Probability propagation
- Power method
- Distributed algorithm
- Security