▼ Assignment 15 sep

Name: M Vivek (21BCE9526)

Perform Data preprocessing on Titanic dataset

1.Data Collection.

2.Data Preprocessing

- o Import the Libraries.
- o Importing the dataset.
- o Checking for Null Values.
- o Data Visualization.
- o Outlier Detection
- o Splitting Dependent and Independent variables
- o Perform Encoding
- o Feature Scaling.
- o Splitting Data into Train and Test

from google.colab import drive
drive.mount('/content/drive')

Mounted at /content/drive

▼ Importing the Libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

▼ Importing the dataset

df = pd.read_csv("/content/drive/MyDrive/SmartInternz-Notebooks/Titanic-Dataset.csv")

df

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Emba
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	
				Allon Mr								

df.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark:
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	
				Cumings,								

df.tail()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.00	NaN	S
887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.00	B42	S
				Johnston								

df.shape

(891, 12)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Data	COTAIII13 (COC	ai iz coidiiiis).	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtype	es: float64(2), int64(5), obj	ect(5)

df.describe()

memory usage: 83.7+ KB

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

df columns

df['Survived'].value_counts()

0 5491 342

Name: Survived, dtype: int64

```
df['Sex'].value_counts()
     male
               577
     female
               314
     Name: Sex, dtype: int64
df['Embarked'].value_counts()
     S
          644
          168
     \mathcal{C}
     Q
           77
     Name: Embarked, dtype: int64
#Dropping the unwanted columns from the dataset
df.drop(['Name','SibSp','Parch','Ticket'],axis=1,inplace=True)
df.head()
```

	PassengerId	Survived	Pclass	Sex	Age	Fare	Cabin	Embarked	
0	1	0	3	male	22.0	7.2500	NaN	S	ılı
1	2	1	1	female	38.0	71.2833	C85	С	
2	3	1	3	female	26.0	7.9250	NaN	S	
3	4	1	1	female	35.0	53.1000	C123	S	
4	5	0	3	male	35.0	8.0500	NaN	S	

```
df.drop('Cabin',axis=1,inplace=True)
```

```
df.info()
```

```
RangeIndex: 891 entries, 0 to 890
Data columns (total 7 columns):
# Column
                Non-Null Count Dtype
                                int64
0 PassengerId 891 non-null
    Survived
                891 non-null
                                int64
                891 non-null
                               int64
    Pclass
                891 non-null
                               object
3
    Sex
4
    Age
                714 non-null
                                float64
   Fare
                891 non-null
                               float64
```

<class 'pandas.core.frame.DataFrame'>

6 Embarked 889 non-null object dtypes: float64(2), int64(3), object(2)

memory usage: 48.9+ KB

df.columns

```
Index(['PassengerId', 'Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked'], dtype='object')
```

▼ Checking for null values

```
df.isnull().any()
                    False
    PassengerId
    Survived
                    False
    Pclass
                    False
                    False
    Sex
    Age
                    True
    Fare
                    False
    Embarked
                    True
    dtype: bool
df.isnull().sum()
     PassengerId
    Survived
                      0
    Pclass
                      0
    Sex
                      0
```

Age Fare

Embarked

dtype: int64

177

0

2

```
df['Age'].fillna(df['Age'].mean(),inplace=True)
df.isnull().sum()
     PassengerId
                    0
     Survived
     Pclass
                    0
     Sex
                    0
                    0
     Age
     Fare
                    0
     Embarked
     dtype: int64
df['Embarked'].fillna(df['Embarked'].mode,inplace=True)
df.isnull().sum()
     PassengerId
     Survived
                    0
     Pclass
                    0
     Sex
     Age
                    0
     Fare
                    0
     Embarked
                    0
     dtype: int64
```

▼ Data Visualization

df.head()

	PassengerId	Survived	Pclass	Sex	Age	Fare	Embarked	
0	1	0	3	male	22.0	7.2500	S	ılı
1	2	1	1	female	38.0	71.2833	С	
2	3	1	3	female	26.0	7.9250	S	
3	4	1	1	female	35.0	53.1000	S	
4	5	0	3	male	35.0	8.0500	S	

sns.scatterplot(df['Fare'])

sns.histplot(df['Age'])

<Axes: xlabel='Age', ylabel='Count'>

sns.distplot(df['Fare'])

<ipython-input-84-70b4b4beb1b5>:1: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see $\underline{\text{https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751}}$

sns.distplot(df['Fare'])
<Axes: xlabel='Fare', ylabel='Density'>

df.corr()

<ipython-input-78-2f6f6606aa2c>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
 df.corr()

	PassengerId	Survived	Pclass	Age	Fare	
Passengerld	1.000000	-0.031013	-0.051723	0.037345	-0.002137	ılı
Survived	-0.031013	1.000000	-0.269336	-0.107115	0.242890	
Pclass	-0.051723	-0.269336	1.000000	-0.280856	-0.583530	
Age	0.037345	-0.107115	-0.280856	1.000000	0.038018	
Fare	-0.002137	0.242890	-0.583530	0.038018	1.000000	

sns.heatmap(df.corr(),annot=True,)

<ipython-input-79-8df7bcac526d>:1: FutureWarning: The default value of numeric_only in DataFrame.corr i
sns.heatmap(df.corr(),annot=True)

<Axes: >

▼ Outlier detection

sns.boxplot(df['PassengerId'])

sns.boxplot(df['Age'])

#Removing outliers using IQR method
q1=df.Age.quantile(0.25)
q3=df.Age.quantile(0.75)

q1,q3

(22.0, 35.0)

IQR=q3-q1

upper_limit=q3+1.5*IQR

upper_limit

54.5

df = df[df['Age']<upper_limit]</pre>

sns.boxplot(df['Age'])


```
from scipy import stats
```

```
Age_zscore = stats.zscore(df.Age)
Age_zscore
    0
          -0.553565
           0.898124
    1
          -0.190642
    2
    3
           0.625932
           0.625932
    886
          -0.099912
    887
          -0.825756
           0.144980
    888
          -0.190642
    889
           0.353741
    Name: Age, Length: 849, dtype: float64
```

df_z=df[np.abs(Age_zscore)<=3]</pre>

sns.boxplot(df_z['Age'])

sns.boxplot(df['Fare'])


```
Q1=df.Fare.quantile(0.25)
Q3=df.Fare.quantile(0.75)
```

```
Q1,Q3

(7.8958, 30.5)

IQR=Q3-Q1

upper_limit_=Q3+1.5*IQR

df = df[df['Fare']<upper_limit_]

sns.boxplot(df['Fare'])
```


▼ Splitting dependant and independant variables

df.head()

	PassengerId	Survived	Pclass	Sex	Age	Fare	Embarked	
0	1	0	3	male	22.000000	7.2500	S	ılı
2	3	1	3	female	26.000000	7.9250	S	
3	4	1	1	female	35.000000	53.1000	S	
4	5	0	3	male	35.000000	8.0500	S	
5	6	0	3	male	29.699118	8.4583	Q	

```
df.shape
```

(741, 7)

x=df.iloc[:,2:7]
y=df.iloc[:,1:2]

x.head()

	Pclass	Sex	Age	Fare	Embarked	\blacksquare
0	3	male	22.000000	7.2500	S	ılı
2	3	female	26.000000	7.9250	S	
3	1	female	35.000000	53.1000	S	
4	3	male	35.000000	8.0500	S	
5	3	male	29.699118	8.4583	Q	

y.head()

	S	urvived	
	0	0	ıl.
	2	1	
	3	1	
	4	0	
	5	0	
x.sha	pe		
	(741,	5)	
y.sha	ipe		

▼ Encoding

```
from sklearn.preprocessing import LabelEncoder
```

```
le=LabelEncoder()
```

(741, 1)

```
x['Sex']=le.fit_transform(x['Sex'])
```

x.head()

	Pclass	Sex	Age	Fare	Embarked	
0	3	1	22.000000	7.2500	S	ılı
2	3	0	26.000000	7.9250	S	
3	1	0	35.000000	53.1000	S	
4	3	1	35.000000	8.0500	S	
5	3	1	29.699118	8.4583	Q	

 $x['Embarked']=le.fit_transform(x['Embarked'])$

x.head()

	Pclass	Sex	Age	Fare	Embarked	==
0	3	1	22.000000	7.2500	2	ıl.
2	3	0	26.000000	7.9250	2	
3	1	0	35.000000	53.1000	2	
4	3	1	35.000000	8.0500	2	
5	3	1	29.699118	8.4583	1	

```
print(le.classes_)
```

```
['C' 'Q' 'S']
```

```
print(dict(zip(le.classes_,range(len(le.classes_)))))
```

```
{'C': 0, 'Q': 1, 'S': 2}
```

▼ Feature Scaling

Feature scaling using MinMaxScaler

from sklearn.preprocessing import MinMaxScaler

ms=MinMaxScaler()

x_scaled=pd.DataFrame(ms.fit_transform(x),columns=x.columns)

x_scaled.head()

	Pclass	Sex	Age	Fare	Embarked	\blacksquare
0	1.0	1.0	0.402762	0.114429	1.0	ılı
1	1.0	0.0	0.477417	0.125082	1.0	
2	0.0	0.0	0.645390	0.838091	1.0	
3	1.0	1.0	0.645390	0.127055	1.0	
4	1.0	1.0	0.546456	0.133499	0.5	

Splitting the data into train and test

from sklearn.model_selection import train_test_split

 $x_train, y_train, x_test, y_test = train_test_split(x_scaled, y, test_size=0.2, random_state=0)$

 $x_{\text{train.shape}}, y_{\text{train.shape}}, x_{\text{test.shape}}, y_{\text{test.shape}}$

((592, 5), (149, 5), (592, 1), (149, 1))

x_train.head()

	Pclass	Sex	Age	Fare	Embarked	\blacksquare
392	1.0	1.0	0.701381	0.136722	1.0	ıl.
506	1.0	1.0	0.546456	0.111272	1.0	
247	1.0	0.0	0.440090	0.139682	1.0	
577	1.0	0.0	0.328108	0.228134	0.0	
251	0.0	1.0	0.546456	0.481389	1.0	

y_train.head()

✓ Connected to Python 3 Google Compute Engine backend