EINFÜHRUNG IN DIE KOMPLEXITÄTSTHEORIE Prof. Johannes Köbler WS 2019/20 4. Dezember 2019

Übungsblatt 8

Abgabe der schriftlichen Lösungen bis 8. Januar 2020

Aufgabe 38 Zeigen Sie:

 $m\"{u}indlich$

- (a) MajSat ist PP-vollständig.
- (b) PSPACE ist unter allen Operatoren in $\{\exists^p, \forall^p, \mathsf{R}, \mathsf{BP}, \exists^{\geq 1/2}, \oplus\}$ abgeschlossen und daher gilt $\mathsf{PH}, \oplus \mathsf{P}, \mathsf{PP} \subseteq \mathsf{PSPACE}$.
- (c) PH ist die kleinste Klasse, die P enthält und unter dem \exists^p und dem \forall^p -Operator abgeschlossen ist.
- (d) $PH \neq PSPACE$, außer wenn PH kollabiert.
- (e) Überlegen Sie, wie sich durch geeignete Einschränkungen von QBF vollständige Probleme für die Stufen der Polynomialzeithierarchie ableiten lassen.

Aufgabe 39

10 Punkte

Betrachten Sie folgenden probabilistischen Algorithmus.

Algorithmus: RandomWalk

```
Input: KNF-Formel F(x_1,\ldots,x_n), n\geq 1, ohne Einerklauseln wähle eine beliebige Belegung a für F

while F(a)=0 do

wähle eine beliebige Klausel C von F mit C(a)=0

wähle zufällig ein Literal l in C

flippe den Wert von a(l)

Output: a
```

Sei F eine 2-KNF-Formel (o.B.d.A. ohne Einerklauseln) und sei h eine Belegung, die F erfüllt. Zeigen Sie, dass die erwartete Laufzeit von RANDOMWALK(F) polynomiell beschränkt ist.

Hinweis: Zeigen Sie folgende Abschätzungen für die maximale erwartete Anzahl t_i von Schleifendurchläufen, falls die Anfangsbelegung a in höchstens i Variablen von h abweicht:

- 1. $t_0 = 0$,
- 2. $t_n \leq t_{n-1} + 1$,
- 3. $t_i \le 1 + (t_{i-1} + t_{i+1})/2$ für $i = 1, \dots, n-1$,
- 4. $t_i \leq i(2n-i)$ für i = 0, ..., n.