Aufgabe 1. Mengengrundlagen

a. Gib die mit gelb gekennzeichnete Menge mit nur zwei Mengenoperationen an:

$$M = (A \setminus B) \triangle C$$

b. Berechne: $((\{1,3\} \times \{1\})) \cup \{1,3,1\} \setminus \{(1,3),1,2\}$

$$\begin{split} M &= ((\{1,3\} \times \{1\})) \cup \{1,3,1\} \setminus \{(1,3),1,2\} \\ &\stackrel{\mathrm{Def.} \times}{=} (\{(1,1),(3,1)\} \cup \{1,3,1\} \setminus \{(1,3),1,2\}) \\ &\stackrel{\mathrm{Def.} \cup}{=} (\{(1,1),(3,1),1,3\} \setminus \{(1,3),1,2\}) \\ &\stackrel{\mathrm{Def.} \setminus}{=} \{(1,1),(3,1),3\} \end{split}$$

c. Berechne: $(\{\emptyset,2\} \cup \{\{\emptyset\}\}) \cap \mathcal{P}(\{\{\emptyset\},2\})$

$$\begin{split} M &= (\{\emptyset,2\} \cup \{\{\emptyset\}\}) \cap \mathcal{P}(\{\{\emptyset\},2\}) \\ &\stackrel{\mathrm{Def.}\cup}{=} \{\emptyset,\{\emptyset\},2\} \cap \mathcal{P}(\{\{\emptyset\},2\}) \\ &\stackrel{\mathrm{Def.}\mathcal{P}}{=} \{\emptyset,\{\emptyset\},2\} \cap \{\emptyset,\{\{\emptyset\}\},\{2\},\{\{\emptyset\},2\}\} \\ &\stackrel{\mathrm{Def.}\cap}{=} \{\emptyset\} \end{split}$$

Aufgabe 2. Mengenbeweise

a. Beweise oder widerlege: Für alle Mengen A und B gilt: $(A \cap B) \cap A = B \cap A$

Wir beweisen die Aussage. Seien A, B beliebige Mengen.

$$(A \cap B) \cap A = B \cap A$$

$$\stackrel{\text{Def.} \cap}{=} \qquad \{x \mid x \in \{y \mid y \in A \land y \in B\} \land x \in A\}$$

$$\stackrel{\text{Komm.}}{=} \qquad \{x \mid x \in \{y \mid y \in B \land y \in A\} \land x \in A\}$$

$$\stackrel{\text{Def.} \in}{=} \qquad \{x \mid (x \in B \land x \in A) \land x \in A\}$$

$$\stackrel{\text{Assoz.}}{=} \qquad \{x \mid x \in B \land (x \in A \land x \in A)\}$$

$$\stackrel{\text{Idem.}}{=} \qquad \{x \mid x \in B \land x \in A\}$$

$$\stackrel{\text{Def.} \cap}{=} \qquad B \cap A$$

Somit gilt die Aussage.

b. Beweise oder widerlege: Für alle Mengen A und B gilt: $A \cup (A \setminus B) = A$ Wir beweisen die Aussage. Seien A, B beliebige Mengen.

$$A \cup (A \setminus B) = A$$

$$\stackrel{\text{Def.} \cup}{=} \qquad \{x \mid x \in A \lor x \in (A \setminus B)\}$$

$$\stackrel{\text{Def.} \wedge}{=} \qquad \{x \mid x \in A \lor x \in \{y \mid y \in A \land y \notin B\}\}$$

$$\stackrel{\text{Def.} \in}{=} \qquad \{x \mid x \in A \lor (x \in A \land x \notin B)\}$$

$$\stackrel{\text{Distri.}}{=} \qquad \{x \mid (x \in A \lor x \in B) \land (x \in A \land x \in A)\}$$

$$\stackrel{\text{Idem.oder}}{=} \qquad \{x \mid (x \in A \lor x \in B) \land x \in A\}$$

$$\stackrel{\text{Absorp.}}{=} \qquad \{x \mid x \in A\}$$

$$\stackrel{\text{Def.} \in}{=} \qquad A$$

Somit gilt die Aussage.

 ${\bf c.} \quad \text{Beweise oder widerlege: Für alle Mengen A und B gilt: } (B \cup A) \cap B = A \cap B$ Wir widerlegen die Aussage durch Angabe eines geeigneten Gegenbeispiels. Wir wählen $A \triangleq \{1,2\}, B \triangleq \{2,3\}.$

$$(B \cup A) \cap B$$

$$= (\{2,3\} \cup \{1,2\}) \cap \{2,3\}$$

$$\stackrel{\text{Def.} \cup}{=} \{1,2,3\} \cap \{2,3\}$$

$$\neq \{2\}$$

$$\stackrel{\text{Def.} \cap}{=} \{1,2\} \cap \{2,3\}$$

$$= A \cap B$$

Somit gilt die Aussage nicht.

Aufgabe 3. Wahrheitstabellen

a. Beweise oder widerlege nur mit Hilfe einer Wahrheitstabelle oder eines (Gegen-) Beispiels, $\operatorname{dass} \neg q \wedge ((r \leftrightarrow (r \to \bot)) \vee q) \text{ kontradiktorisch ist.}$

q	r	¬	q	\bigwedge^{\vee}	((r	\leftrightarrow	(r	\rightarrow	⊥))	\ \	q)
F	F	W	F	F	F	F	F	W	F	F	F
				F							
W	F	F	W	F	F	F	F	w	F	W	w
W	$ \mathbf{w} $	F	W	F	w	F	W	F	F	W	w

Der Hauptjunktor wird immer zu F ausgewertet. Also ist die Formel kontradiktorisch.

b. Beweise oder widerlege nur mit Hilfe einer Wahrheitstabelle oder eines (Gegen-) Beispiels, $((s \land \neg q) \to r) \lor r \equiv r \lor (s \to q).$

~			((a			۵)			<u></u>			$\bigg \stackrel{\downarrow}{\diamondsuit} \bigg $	(0		(2)
q	r	S	((s	\wedge		q)	\rightarrow	r)	,	r	r	V	(s	\rightarrow	q)
F	F	F	F	F	w	F	W	F	W	F	F	W	F	w	F
F	F	w	W	W	W	F	F	F	F	F	F	F	W	F	F
F	W	F	F	F	W	F	W	W	W	$ \mathbf{w} $	W	W	F	w	F
F	W	w	W	W	W	F	W	W	W	$ \mathbf{w} $	w	W	W	F	F
W	F	F	F	F	F	W	W	F	W	F	F	W	F	W	W
W	F	W	W	F	F	W	W	F	W	F	F	W	W	W	W
W	W	F	F	F	F	W	W	W	W	w	W	W	F	W	W
W	W	w	W	F	F	w	W	w	W	$ \mathbf{w} $	W	W	w	w	w

Die beiden Hauptjunktoren werden in jeder Zeile zum selben Wert ausgewertet. Also sind die beiden Formeln äquivalent.

Aufgabe 4. Logische Äquivalenz

a. Gib an: eine Formel, die logisch äquivalent zu \bot ist und nur \neg und \lor als Operatoren enthält. $\neg(q\lor\neg q)\equiv\bot$

b. Beweise nur mit Hilfe von Äquivalenzumformungen, dass $q \wedge (r \to s)$ und $\neg (r \vee \neg q) \vee (s \wedge q)$ logisch äquivalent sind.

$$\begin{array}{ccc} & q \wedge (r \rightarrow s) \\ & & q \wedge (\neg r \vee s) \\ & & & \\ \text{Distr.von} \wedge \ddot{\textbf{u}} \text{ber} \vee & (\neg r \wedge q) \vee (s \wedge q) \\ & & & \\ \text{DeMorganII} & & \\ & & & \\ \end{array}$$

Aufgabe 5. Variablenbelegungen

a. Beweise ausschließlich mit Hilfe von Argumenten über eine oder mehrere Variablenbelegungen, dass $q \to \neg (r \land s) \equiv \neg q \lor (r \to \neg s)$.

Damit wird $q \to \neg(r \land s)$ genau dann zu W ausgewertet, wenn $\neg q \lor (r \to \neg s)$ zu W ausgewertet wird. Also sind die beiden Formeln äquivalent.

b. Beweise oder widerlege ausschließlich mit Hilfe von Argumenten über eine oder mehrere Variablenbelegungen, dass $\neg(\neg q \lor (s \land r)) \lor (q \leftrightarrow (s \land r))$ allgemeingültig ist.

Betrachte die Belegung β mit $\beta(q)=F$ und $\beta(r)=\beta(s)=W.$ Dann ist

$$\llbracket \neg (\neg q \lor (s \land r)) \lor (q \leftrightarrow (s \land r)) \rrbracket = F$$

Damit ist die Formel nicht allgemeingültig (da es eine Belegung gibt, unter der die Formel zu Fausgewertet wird).

Aufgabe 6. Prädikatenlogik

L. Beweise:
$$((\exists y.P_1(y) \rightarrow P_2(y)) \land (\forall x.P_1(x))) \rightarrow \exists z.P_2(z) \land P_1(z)$$
 Annahme (A1): $((\exists y.P_1(y) \rightarrow P_2(y)) \land (\forall x.P_1(x)))$ Zu Zeigen (Z1): $\exists z.P_2(z) \land P_1(z)$ Annahme (A2): $\exists y.P_1(y) \rightarrow P_2(y)$ Annahme (A3): $\forall x.P_1(x)$ Wähle $x \triangleq y$ in A3 Annahme (A4): $P_1(y)$ Sei x (beliebig aber fest) in A2 Annahme (A5): $P_1(y) \rightarrow P_2(y)$ Aus A4 und A5 folgt A6 Annahme (A6): $P_2(y)$ Wähle $z \triangleq y$ in Z1 Zu Zeigen (Z2): $P_2(y) \land P_1(y)$ Teil 1: Zu Zeigen (Z1.1): $P_2(y)$ Aus A6 folgt Z1.1 Teil 2: Zu Zeigen (Z2.1): $P_1(y)$ Aus A4 folgt Z2.1

Aufgabe 7. Widerspruch und Kontraposition

a. Ziehe, durch die schrittweise Anwendung logischer Äquivalenzen, alle Negationen inder folgenden Formel soweit wie möglich nach Innen. Begründe jeden Schritt.

b. Gib an: Den ersten Schritt, d.h. die erste Zeile, eines Beweises per Widerspruch für die Aussage $\neg(\exists x.P_1(x)) \rightarrow (\forall y.P_2(y) \land P_3(y))$.

Widerspruchs Annahme:

$$\neg(\exists x. P_1(x)) \to (\forall y. P_2(y) \land P_3(y)) \equiv \neg(\neg(\exists x. P_1(x)) \to (\forall y. P_2(y) \land P_3(y))) \to \bot$$

c. Gib an: Den ersten Schritt, d.h. die erste Zeile, eines Beweises per Kontraposition für die Aussage $\neg(\exists x.P_1(c)) \rightarrow (\forall y.P_2(y) \land P_3(y))$.

Zu Zeigen:
$$\neg(\forall y.P_2(y) \land P_3(y)) \rightarrow \neg\neg(\exists x.P_1(x))$$

Aufgabe 8. Induktion

L. Beweise per Induktion $\forall n \in \mathbb{N}_7.n \mod 2 = 1$.

Hinweis H1: $(n+m) \bmod r = ((n \bmod r)(m \bmod r)) \bmod r$ Sei

$$P(n) \triangleq (n \mod 2 = 1)$$

Wir verwenden das Induktionsschema:

$$(P(7) \land (\forall n \land \mathbb{N}_7.P(n) \rightarrow P(n+10))) \rightarrow (\forall x \in \mathbb{N}_7.P(x))$$

$$7\bmod 2=1$$

Sei $n \in \mathbb{N}_7$.

IV (*P*(*n*)):

$$n \bmod 2 = 1$$

IS (
$$P(n+10)$$
): Zu Zeigen: $(n+10) \bmod 2 = 1$

$$(n+10) \mod 2 \stackrel{\text{H1}}{=} ((n \mod 2) + (10 \mod 2)) \mod 2$$

$$= ((n \mod 2) + 0) \mod 2$$

$$\stackrel{\text{IV}}{=} (1+0) \mod 2$$

$$= 1 \mod 2$$

$$= 1$$

Nach unserem Induktionsschema gilt nun $\forall x \in \mathbb{N}_7.P(x)$ was äquivalent zur ursprünglichen Aussage ist. Damit ist die Aussage bewiesen.

Aufgabe 9. Eigenschaften von Relationen

Gib die Relation R_4 , R_5 und R_6 jeweils in Megenschreibweise an.

$$R_4 \triangleq \{(b,2), (b,3), (c,2), (c,3), (c,1)\}$$

$$R_5 \triangleq \{(1,a),(2,a)\}$$

$$R_6 \triangleq \{(a,b), (b,a), (c,b), (b,c)\}$$

b. Gib die Relation R_4 , R_5 und R_6 jeweils graphisch an.

R,

а

b

Gib für jede der Relationen R_4 , R_5 und R_6 an, welche der Eigenschaften links-/rechtstotal und links-/rechtseindeutig erfüllt bzw. nicht erfüllt sind

	linkstotal	rechtstotal	linkseindeutig	rechtseindeutig		
R_4	X	\checkmark	X	X		
R_5	X	X	X	\checkmark		
R_6	\checkmark	\checkmark	X	X		

d. Gib zwei Mengen X, Y so an, dass jede rechtstotale, rechtseindeutige Relation R: (X, Y) linkseindeutig ist.

Wenn $X = \{\emptyset\}$ und $Y = \{\emptyset\}$ ist jede Relation R:(X,Y), die rechtstotal und rechtseindeutig ist, linkseindeutig, da die leere Relation $\emptyset_{X,Y}$ immer linkseindeutig ist.

Aufgabe 10. Homogene Relation

$$C \triangleq \{a,b,c,d\}$$

 $R_7(C,C)$ mit $R_7 = \{(a,a), (a,c), (c,b), (d,c), (d,d)\}$

a. Berechne $t(R_7)$ schrittweise.

$$\begin{split} R_7^1 &\overset{\text{FS2.1.16}}{=} R_7 \\ R_7^2 &\overset{\text{FS2.1.16}}{=} R_7 R_7 \overset{\text{Def.};}{=} \{(a,b),(d,b)\} \\ R_7^3 &\overset{\text{FS2.1.16}}{=} R_7 R_7^2 \overset{\text{Def.};}{=} \emptyset \\ R_7^4 &\overset{\text{FS2.1.16}}{=} R_7 R_7^3 \overset{\text{Def.};}{=} R_7^3 \\ t(R_7) &\overset{\text{Def.}t(\cdot)}{=} \bigcup_{n \in N^+} R_7^n = R_7 \cup R_7^2 \cup R_7^3 \\ &\overset{\text{Def.} \cup}{=} \{(a,a),(a,b),(a,c),(c,b),(d,b),(d,c),(d,d)\} \end{split}$$

b. Gib für $R_8 \triangleq t(R_7) \cup \Delta_C$ an, welche der Ordnungsbegriffe Quasiordnung, partielle Ordnung und totale Ordnung erfüllt bzw. nicht erfüllt sind.

$$\begin{split} & \Delta_C = \{(a,a),(b,b),(c,c),(d,d)\} \\ & R_8 = \Delta_C \cup t(R_7) \stackrel{\mathrm{Def.}\cup}{=} \{(a,a),(a,b),(a,c),(b,b),(c,b),(c,c),(d,b),(d,c),(d,d)\} \end{split}$$

reflexiv:

$$\Delta_C \stackrel{\text{Def.}\Delta}{=} \{(a,a),(b,b),(c,c),(d,d)\} \subseteq R_8$$

transitiv:

$$R_8R_8 \stackrel{\text{Def.};}{=} R_8 \subseteq R_8$$

antisymmetrisch:

$$R_8^{-1} \cap R_8 \stackrel{\text{Def.}^{-1}}{=} \{(a, a), (b, a), (b, b), (c, a), (b, c), (c, c), (b, d), (c, d), (d, d)\} \cap R_8$$

$$\stackrel{\text{Def.}^{\cap}}{=} \{(a, a), (b, b), (c, c), (d, d)\} \stackrel{\text{Def.}^{\triangle}}{=} \Delta_C \subseteq R_8$$

linear:

$$\nabla_{C,C} \setminus \Delta_{C}
\stackrel{\text{Def.}\Delta}{=} \nabla_{C,C} \setminus \{(a,a), (b,b), (c,c), (d,d)\}
\stackrel{\text{Def.}\nabla}{=} \{(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,a), (c,b), (c,c), (c,d), (d,a), (d,b), (d,c), (d,d)\} \setminus \{(a,a), (b,b), (c,c), (d,d)\}
\stackrel{\text{Def.}\wedge}{=} \{(a,b), (a,c), (a,d), (b,a), (b,c), (b,d), (c,a), (c,b), (c,d), (d,a), (d,b), (d,c)\}
\stackrel{\text{Def.}\triangle}{=} \nabla_{C,C} \setminus \Delta_{C} \not\subseteq R_{8}$$

 R_8 ist reflexiv, transitiv, antisymmetrisch und nicht linear, da (a,d) nicht enthalten in R_8 , und somit ist R_8 eine quasi Ordnung, eine partielle Ordnung, aber keine totale Ordnung.

c. Sei
$$R_9:(C,C)$$
 mit $R_9 \triangleq \{(a,a),(a,b),(b,b),(c,c),(c,d),(d,d)\}$

reflexiv:

$$\Delta_C \stackrel{\text{Def.}\Delta}{=} \{(a,a),(b,b),(c,c),(d,d)\} \subseteq R_8$$

transitiv:

$$R_8R_8 \stackrel{\mathrm{Def.};}{=} R_8 \subseteq R_8$$

antisymmetrisch:

$$R_8^{-1} \cap R_8 \stackrel{\text{Def.}^{-1}}{=} \{(a, a), (b, a), (b, b), (c, c), (d, c), (d, d)\} \cap R_8$$

$$\stackrel{\text{Def.}^{\cap}}{=} \{(a, a), (b, b), (c, c), (d, d)\} \stackrel{\text{Def.}^{\triangle}}{=} \Delta_C \subseteq R_8$$

 ${\it R}_{\rm 9}$ ist reflexiv, transitiv und antisymmetrisch und somit eine partielle Ordnung.

d. Beweise: R_9 ist keine totale Ordnung.

linear:

$$\nabla_{C,C} \setminus \Delta_C$$

$$\stackrel{\mathrm{Def.}\Delta}{=} \nabla_{C,C} \setminus \{(a,a),(b,b),(c,c),(d,d)\}$$

$$\stackrel{\mathrm{Def.}\nabla}{=} \{(a,a), (a,b), (a,c), (a,d), (b,a), (b,b), (b,c), (b,d), (c,a), (c,b), (c,c), (c,c)$$

$$(c,d), (d,a), (d,b), (d,c), (d,d) \setminus \{(a,a), (b,b), (c,c), (d,d)\}$$

$$\stackrel{\mathrm{Def.}\backslash}{=} \{(a,b), (a,c), (a,d), (b,a), (b,c), (b,d), (c,a), (c,b), (c,d), (d,a), (d,b), (d,c)\}$$

$$\stackrel{\mathrm{Def.}\subseteq}{=} \nabla_{C,C} \setminus \Delta_C \not\subseteq R_8$$

Das Paar (a, c) ist nicht enthalten und damit ist R_9 nicht linear und somit keine totale Ordnung.

Aufgabe 11. Abbildungen, Funktionen

a.

Gib an: Welche der Relationen R_1 , R_2 , R_3 und R_4 sind (keine) partiellen bzw. totalen Abbildungen?

Die Relationen R_1 und R_2 sind keine partiellen bzw. totalen Abbildungen. Die Relation R_3 ist eine partielle Abbildung und die Relation R_4 ist eine totale Abbildung.

Gib an: Für jede der Relationen, die keine partielle Abbildung ist, ein Gegenbeispiel, dass das begründet.

Die Relation R_1 ist keine partielle Abbildung, weil die Paare (d,b) und (d,5) in der Relation auftreten. Die Relation R_2 ist keine partielle Abbildung, weil die Paare (5,5) und (5,d) in der Relation auftreten.

b.

Gib an: Welche der Eigenschaften injektiv, surjektiv und bijektiv werden durch die Relationen R_1 , R_2 , R_3 und R_4 (die partielle oder totale Abbildungen sind) erfüllt / nicht erfüllt?

 R_3 ist injektiv, surjektiv und bijektiv.

 R_4 ist weder injektiv, surjektiv noch bijektiv.

Gib für jede nichterfüllte Eigenschaft ein Gegenbeispiel oder eine Begründung an.

Die Abbildung R_4 ist nicht injektiv, weil die Paare (5,5) und (d,5) in der Relation auftreten. Die Abbildung R_4 ist nicht surjektiv, weil das Element 3 aus dem Zielbereich A nicht mit einem anderen Element aus dem Argumentbereich B in Relation steht. Die Abbildung R_4 ist nicht bijektiv, weil sie nicht injektiv und nicht surjektiv ist.

c.

Beweise oder widerlege: Für alle Funktionen $f: B \to C, g: A \to B$ mit beliebigen Mengen A, B und C gilt, wenn $f \circ g$ surjektiv ist, dann ist g surjektiv.

Wir widerlegen die Aussage durch Angabe eines Gegenbeispiels.

Wir wählen die Mengen A, B und C mit: $A \triangleq \{1, 2\}, B \triangleq \{3, 4\}, C \triangleq \{5\}.$

Wähle g: $A \to B$ mit $g \triangleq \{(1,3)\} \triangleq R_1$ und f: $B \to C$ mit $f \triangleq \{3,5\} \triangleq R_2$.

 $(f \circ g) \stackrel{\mathrm{Def.} \circ}{=} \{(1,5)\}$, wobei gilt, dass $\forall c \in C. \exists a \in A. aR_2c$. Daraus folgt, dass $(f \circ g)$ surjektiv ist.

Für die gewählte Funktion g gilt aber nicht $\forall b \in B. \exists a \in A.aR_1b$. Daraus folgt, dass g nicht surjektiv ist.

Somit ist die Aussage widerlegt. ■

Aufgabe 12. Kardinalität

Sei $M \triangleq \{n \in \mathbb{N} | n \mod 10 = 7\}$

Beweise oder widerlege: $card(M) = card(\mathbb{N})$

L. Wir beweisen die Aussage und geben eine Bijektion f: $M \to \mathbb{N}$ an.

$$f:M\to\mathbb{N}$$

$$x \mapsto (x-7):10$$

Die Funktion ist für jedes $x \in M$ eindeutig definiert und bildet ausschließlich auf ganze Zahlen ab.

Wir geben eine weitere Funktion g: $\mathbb{N} \to M$ an.

$$f: \mathbb{N} \to M$$

$$x \mapsto 10x + 7$$

Zu Zeigen (Z1): Bijektion(f)

Wenn $(f \circ g) = \Delta_{\mathbb{N}}$ und $(g \circ f) = \Delta_{M}$, dann ist laut Formelsammlung 2.2.8 f eine Bijektion.

Teil 1: Zu Zeigen (Z1.1): $\forall x \in \mathbb{N}. (f \circ g)(x) = \Delta_{\mathbb{N}}(x)$ Sei $x \in \mathbb{N}$ beliebig aber fest.

$$(f \circ g)(x)$$

$$\stackrel{\mathrm{Def.}\circ}{=} f(g(x))$$

$$\stackrel{\text{Def.g}}{=} f(10x+7)$$

$$\stackrel{\text{Def.f}}{=}$$
 $((10x+7)-7):10$

$$=$$
 x

$$\stackrel{\mathrm{Def.}\Delta}{=} \Delta_{\mathbb{N}}(x)$$

Teil 2: Zu Zeigen (Z2.1): $\forall x \in M. (g \circ f)(x) = \Delta_M(x)$ Sei $x \in M$ beliebig aber fest.

$$(g \circ f)(x)$$

$$\stackrel{\text{Def.}\circ}{=} g(f(x))$$

$$\stackrel{\text{Def.}f}{=} g((x-7):10)$$

$$\stackrel{\text{Def.}g}{=} 10 * ((x-7):10) + 7$$

$$= x$$

$$\stackrel{\text{Def.}\Delta}{=} \Delta_M(x)$$

Da wir Z1.1 und Z2.1 gezeigt haben, gilt: f ist eine Bijektion. Somit gilt die Aussage. ■

Aufgabe 13. Äquivalenzen

a.

b.

$$\label{eq:AR1} \begin{split} & \text{A}/R_1 \text{ hat 3 Äquivalenzklassen A}/R_1 = \{~[1]_{R_1},~[0]_{R_1},~[4]_{R_1}~\} \\ & \text{mit } [1]_{R_1} = \{1,2,5\},~[0]_{R_1} = \{3,0\} \text{ und } [4]_{R_1} = \{4\} \end{split}$$

c. Beweise:
$$\forall x, y \in X.(x, y) \in R \rightarrow x = y$$

Zu Zeigen (Z0):
$$\forall x, y \in X.(x, y) \in R \rightarrow x = y$$

Sei x,y beliebig in X

Zu Zeigen (Z1):
$$(x,y) \in R \rightarrow x = y$$

Annahme (A0):
$$(x, y) \in R$$

Zu Zeigen (Z2):
$$x = y$$

Aus der Eigenschaft der Antisymmetrie und (A0) folgt

(A1)
$$\forall x, y \in X.xRy \land yRx \rightarrow x = y$$

Aus (A0) und (A1) folgt

(A2)
$$x = y$$

Aufgabe 14. Repräsentantensysteme

a.

$$R \triangleq \{(a,b)|(a-b) \bmod 9 = 0\}$$

b.

A/R hat 3 Äquivalenzklassen A/R = { $[2]_R,\,[5]_R,\,[8]_R$ } mit

$$[2]_R = \{ n \in \mathbb{N} | n \bmod 9 = 2 \}$$

$$[5]_R = \{ n \in \mathbb{N} | n \bmod 9 = 5 \}$$

$$[8]_R = \{ n \in \mathbb{N} | n \bmod 9 = 8 \}$$

c.

$$P\triangleq\{2,5,8\}$$

d.

$$f: \{a, b, c\} \to P \text{ mit } f \triangleq \{(a, 2), (b, 5), (c, 8)\}$$

Aufgabe 15. Kern einer Abbildung

a.

$$Ker(f) = \{(a,c), (c,a), (a,e), (e,a), (c,e), (e,c), (d,f), (f,d), (a,a), (b,b), (c,c), (d,d), (e,e)\}$$

b.

$$f:D\to \mathbb{N} \text{ mit } ((n \bmod 3)+1)*4+1$$

c.

Antwort: card(X) > card(Y)