Homework 3 - Quantum Mechanics I

N T A N /ETC	COODE	
NAME:	SCUBE	
1 17 71 11 11 11 11 11 11 11 11 11 11 11	 DOCIUL.	

Deadline: Monday 18 November 2024 by 16h00 (via email to: wbanda@yachaytech.edu.ec)
Credits: 20 points Number of problems: 4 Type of evaluation: Formative Evaluation

- This homework includes problems on units 2 and 3 of the QM course programme.
- This assignment should be submitted individually by the deadline.
- If you work with classmates, please state their names and write your own reports.
- Please submit a professional homework report and clearly highlight all answers.
- All calculation steps should be justified to get full credits.
- Any code used should be attached to get full credits.

1. (5 points) Quantum Harmonic Oscillator

Use the normalised stationary states, $\psi_n(x)$, for the quantum harmonic oscillator, which we computed in class, to:

- (a) write down the first 6 stationary states with their respective energies (there is no need to solve the Schrödinger equation again, just use the results we already found), and
- (b) sketch the probability density functions of the first 6 stationary states, $|\psi_n(x)|^2$, versus x, with your favourite programming tool.
- (c) write down and sketch $|\psi_{50}(x)|^2$. Compare it to the classical distribution. What is the difference between classical and quantum harmonic oscillators?
- (d) Compute the momentum-space wave function, $\Phi(p,t)$, of a quantum particle in the ground state of the harmonic oscillator.
- (e) For the same particle considered in (a), calculate the probability that a measurement of momentum, p, returns a value outside the classical range for the same energy, E.

2. (5 points) Vectors and operators in QM formalism

- (a) Is the projection operator, \hat{P} , idempotent (i.e., is $\hat{P}^2 = \hat{P}$)?
- (b) Assuming that $\gamma \in \mathbb{R}$ (but not necessarily positive), for what range of γ is the function $f(x) = x^{\gamma 1}$ in Hilbert space, on the interval (0, 1)? What about x f(x) and $\frac{d}{dx} f(x)$?
- (c) Find the normalised eigenvectors and the corresponding eigenvalues of a quantum mechanical observable described by the matrix below:

$$\hat{Q} = \frac{1}{\sqrt{2}} \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

(d) For the same observable considered in (c), is there any degeneracy? Could you provide a physical example where these results would be relevant?

3. (5 points) Dirac notation: brakets and dual basis

Consider that $|e_1\rangle$, $|e_2\rangle$, $|e_3\rangle$ is an orthonormal basis. In this basis, let the $|\Psi_{\alpha}\rangle$ and $|\Psi_{\beta}\rangle$ kets be:

$$|\Psi_{\alpha}\rangle = 2i |e_1\rangle - 3 |e_2\rangle + i |e_3\rangle$$

$$|\Psi_{\beta}\rangle = 3 |e_1\rangle - 2 |e_2\rangle + 4 |e_3\rangle$$

- (a) Are these kets normalised? If not, normalise them.
- (b) Write $\langle \Psi_{\alpha} |$ and $\langle \Psi_{\beta} |$ in terms of the dual basis $\langle e_1 |, \langle e_2 |, \langle e_3 |$.
- (c) Compute the inner products $\langle \Psi_{\alpha} | \Psi_{\beta} \rangle$ and $\langle \Psi_{\beta} | \Psi_{\alpha} \rangle$, and confirm that $\langle \Psi_{\beta} | \Psi_{\alpha} \rangle = \langle \Psi_{\alpha} | \Psi_{\beta} \rangle^*$.
- (d) Let c = 4 + 7i, and compute $|c \Psi_{\alpha}\rangle$ and $|\Psi_{\alpha} c \Psi_{\beta}\rangle$.
- (e) Find all the matrix elements of the operators $\hat{M}_{\alpha\beta} = |\Psi_{\alpha}\rangle \langle \Psi_{\beta}|$, $\hat{M}_{\alpha\alpha} = |\Psi_{\alpha}\rangle \langle \Psi_{\alpha}|$, and $\hat{M}_{\beta\beta} = |\Psi_{\beta}\rangle \langle \Psi_{\beta}|$ in this basis, and construct their respective matrices, are they hermitian?

4. (5 points) Hamiltonian, eigenvalues and eigenvectors

Consider a two-state quantum mechanical system in the basis:

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

$$|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

whose Hamiltonian is represented by the matrix shown below:

$$\hat{H} = \begin{bmatrix} a_1 & a_2 \\ a_2 & a_1 \end{bmatrix}$$

- (a) Find the eigenvalues of \hat{H} . What do the eigenvalues represent?
- (b) Find the eigenvectors of \hat{H} , and express them in terms of $|0\rangle$ and $|1\rangle$.
- (c) Find $\langle H \rangle$, $\langle H^2 \rangle$, and σ_H for $|\Psi(t=0)\rangle = |0\rangle$.
- (d) If $|\Psi(t=0)\rangle = |0\rangle$, find the state of the system at any time t, $|\Psi(t)\rangle$, described by the Schrödinger equation: $i\hbar \frac{\partial |\Psi\rangle}{\partial t} = \hat{H} |\Psi\rangle$
- (e) Based on the results obtained in (d), what physical quantities do a_1 and a_2 represent in the quantum system and why?