Metody optymalizacji

Stepan Yurtsiv, 246437

5 czerwca 2022r.

Zadanie

Celem niniejszego zadania jest zaimplementowanie algorytmu aproksymacyjnego opartego na programowaniu liniowym dla uogólnionego zagadnienia przydziału (ang. the generalized assignment problem)

Algorytm

Oznaczenia:

- M = [m] zbiór maszyn
- J = [n] zbiór zadań
- $T = \{T_i : i \in M\}$ zbiór ograniczeń dla maszyn, T_i maksymalny czas pracy i-tej maszyny
- $c = \{c_{ij} : i \in M, j \in J\}$ macierz kosztów, c_{ij} koszt wykonania j-tego zadania na i-tej maszynie
- $p = \{p_{ij} : i \in M, j \in J\}$ macierz czasów wykonania zadań, p_{ij} czas wykonania j-tego zadania na i-tej maszynie

Uogólnione zagadnienie przedziału polega na przypisaniu zbiorowi maszyn M zadań ze zbioru J tak, żeby zminimalizować koszt z wykonania wszystkich zadań. Dodatkowo są ograniczenia w postaci maksymalengo czasu przez który może działać dana maszyna.

Rozwiązanie problemu sprowadza się do stworzenia grafu dwudzielnego G, gdzie jedna grupa wierszchołków reprezentuje zbiór maszyn M, a inna zbiór zadań J. Na początku mamy doczynienia z grafem pełnym, gdzie krawędź (i,j) reprezentuje przydział i-tej maszyny do j-tego zadania. Zbiór krawędzi

grafu G oznaczamy przez E. W poszczególnych iteracjach algorytmu 1 jest tworzony podgraf grafu G oznaczany jako F, w którym każdemu zadaniu jest przypisana dokładnie jedna maszyna.

Do rozwiązania podproblemu w każdej iteracji zastosujemy model (oznaczany jako LP_{ga}) z następującą funkcją celu:

$$\min \sum_{e=(i,j)\in E} c_{ij} \cdot x_{ij}$$

gdzie x_{ij} oznacza, czy j-te zadanie zostało przypisane do wykonania na i-tej maszynie. Ograniczenia do zmiennych decyzyjnych są następujące:

- $\forall j \in J \sum_{e \in \delta(j)} x_e = 1$ każde zadanie musi być przypisane dokładnie jednej maszynie
- $\forall i \in M \sum_{e \in \delta(i)} p_e \cdot x_e \leq T_i$ czas wykona
ia wszystkich zadań, przypisanych maszynie i nie może przekroczyć jej maksymalnego czasu dostępności
- $x_{ij} \geq 0$ każda zmienna jest nieujmena

Algorytm 1 zapewnia, że każda maszyna jest używana nie więcej niż dwukrotność jej dozwolonej dostępności.

Algorithm 1

- 1. Inicjalizacja $E(F) \leftarrow \emptyset, M' \leftarrow M$
- 2. While $J \neq \emptyset$ do
 - (a) Znajdź optymalne rozwiązanie dopuszczalne bazowe x do LP_{ga} i usuń wszystkie zmienne $x_{ij}=0$
 - (b) Jeśli zmienna $x_{ij}=1$, to zaktualizuj $F\leftarrow F\cup\{(i,j)\}$, $J\leftarrow J\setminus\{j\}$, $T_i\leftarrow T_i-p_{ij}$
 - (c) (**Relaksacja**) Jeśli maszyna i ma d(i)=1 lub maszyna i ma d(i)=2 oraz $\sum_{i\in J}x_{ij}\geq 1$, to zaktualizuj $M'\leftarrow M\setminus\{i\}$
- 3. return F

Wyniki

Oznaczenia:

- $\bullet~T_{max}$ maksymalny dozwolny czas pracy wszystkich maszyn
- $\bullet~T$ czas pracy wszystkich maszyn w wyniku algorytmu

Plik	Problem	Czas wykonania [ms]	Liczba iteracji	T_{max}	T	T/T_{max}
gap1	1	1.68	5	168	188	1.12
gap1	2	1.52	6	203	208	1.02
gap1	3	0.99	4	188	190	1.01
gap1	4	1.17	5	187	201	1.07
gap1	5	1.18	5	185	213	1.15
gap2	1	1.88	7	250	268	1.07
gap2	2	1.43	5	238	247	1.04
gap2	3	1.73	6	235	245	1.04
gap2	4	1.46	5	255	293	1.15
gap2	5	1.44	5	231	245	1.06
gap3	1	1.71	5	302	310	1.03
gap3	2	2.27	7	268	295	1.1
gap3	3	1.74	5	297	313	1.05
gap3	4	1.74	5	305	312	1.02
gap3	5	2.01	6	285	316	1.11
gap4	1	2.32	6	355	360	1.01
gap4	2	1.93	5	365	380	1.04
gap4	3	1.94	5	367	389	1.06
gap4	4	2.3	6	356	372	1.04
gap4	5	2.74	7	349	388	1.11
gap5	1	2.9	6	274	307	1.12
gap5	2	2.51	5	280	285	1.02
gap5	3	2.9	6	296	278	0.94
gap5	4	2.65	5	273	280	1.03
gap5	5	14.66	5	295	303	1.03
gap6	1	2.95	5	379	393	1.04
gap6	2	3.08	5	383	406	1.06
gap6	3	2.97	5	368	392	1.07
gap6	4	3.35	6	371	402	1.08
gap6	5	3.35	6	390	425	1.09

7	1	9.0	F	1.07	400	1.04
gap7	1	3.6	5	467	488	1.04
gap7	2	5.18	6	466	495	1.06
gap7	3	4.46	6	479	493	1.03
gap7	4	4.21	6	495	508	1.03
gap7	5	4.38	6	470	485	1.03
gap8	1	4.87	5	403	411	1.02
gap8	2	16.96	6	397	404	1.02
gap8	3	5.09	6	403	414	1.03
gap8	4	5.55	7	387	391	1.01
gap8	5	5.03	6	405	424	1.05
gap9	1	3.92	6	358	357	1.0
gap9	2	4.23	7	359	378	1.05
gap9	3	4.29	5	362	395	1.09
gap9	4	4.19	7	361	374	1.04
gap9	5	3.92	6	366	404	1.1
gap10	1	5.0	6	471	476	1.01
gap10	2	14.32	5	468	494	1.06
gap10	3	5.77	6	487	509	1.05
gap10	4	4.94	6	466	477	1.02
gap10	5	5.4	7	466	468	1.0
gap11	1	6.39	6	639	665	1.04
gap11	2	7.35	7	646	645	1.0
gap11	3	6.94	6	657	665	1.01
gap11	4	7.42	7	641	698	1.09
gap11	5	13.65	6	642	623	0.97
gap12	1	8.47	6	721	752	1.04
gap12	2	5.9	4	720	733	1.02
gap12	3	6.91	5	719	761	1.06
gap12	4	6.77	5	720	744	1.03
gap12	5	7.04	5	708	769	1.09