## EA772 Circuitos Lógicos Prof. José Mario De Martino – Prova 03 – 2°. Semestre 2009

1.

a) 
$$a = 10$$
;  $b = 20$ 

b) resultado impossível

c) 
$$a = F2$$
;  $b = 10$ 

d) 
$$a = 81$$
;  $b = 80$ 

e) 
$$a = F0$$
;  $b = 01$ 

f) 
$$a = 71$$
;  $b = 10$ 

g) 
$$a = 90$$
;  $b = FF$ 

h) resultado impossível

i) 
$$a = 00$$
;  $b = 00$ 

j) 
$$a = FF; b = 01$$

2.



Figura 1: Diagrama esquemático do circuito do exercício 2.

3.

f

|                                 | $\mathbf{X'}_1 \mathbf{X'}_0$ | $\mathbf{x'}_1 \mathbf{x}_0$ | $x_1 x_0$ | $\mathbf{x}_1 \mathbf{x}'_0$ |
|---------------------------------|-------------------------------|------------------------------|-----------|------------------------------|
| x' <sub>3</sub> x' <sub>2</sub> | 0                             | 0                            | 0         | 1                            |
| x'3 x2                          | 1                             | 1                            | 0         | 0                            |
| $x_3 x_2$                       | 0                             | 1                            | 0         | 1                            |
| x <sub>3</sub> x′ <sub>2</sub>  | 0                             | 1                            | 0         | 1                            |

f

|                                 | $x'_1 x'_0 \qquad x'_1 x_0$ | $\mathbf{x}_1  \mathbf{x}_0 \qquad \mathbf{x}_1  \mathbf{x}'_0$ |
|---------------------------------|-----------------------------|-----------------------------------------------------------------|
| x' <sub>3</sub> x' <sub>2</sub> | 0                           | x′0                                                             |
| $X'_3 X_2$                      | 1                           | 0                                                               |
| x <sub>3</sub> x <sub>2</sub>   | $\mathbf{x}_0$              | x′0                                                             |
| x <sub>3</sub> x′ <sub>2</sub>  | $\mathbf{x}_0$              | x′ <sub>0</sub>                                                 |



Figura 1: Diagrama esquemático do circuito do exercício 3.

4.



Figura 3: Diagrama de estados do contador do exercício 4.

Considerando diagrama de estados da Figura 3, observamos que o contador opera na maioria das transições como um contador crescente com uma entrada de contagem, menos nas transição dos estados 4 e 10.

No estado 4 (0100) devemos carregar o valor 8 (1000).

No estado 10 (1010) devemos carregar o valor 14 (1110).

Considerando x a entrada de contagem,  $Q_3$   $Q_2$   $Q_1$   $Q_0$  as saídas do contador módulo-16 com entrada paralela e  $I_3$   $I_2$   $I_1$   $I_0$  as entradas de carga do contador módulo-16 com entrada paralela.

.

Sinal de carga LD

LD

|                                 | Q' <sub>1</sub> Q' <sub>0</sub> | $Q'_1 Q_0$ | $Q_1 Q_0$ | $Q_1  Q'_0$ |
|---------------------------------|---------------------------------|------------|-----------|-------------|
| Q' <sub>3</sub> Q' <sub>2</sub> | 0                               | 0          | 0         | 0           |
| $Q'_3 Q_2$                      | Y                               | X          | X         | X           |
| $Q_3 Q_2$                       | X                               | X          | 0         | 0           |
| $Q_3 Q'_2$                      | 0                               | 0          | ×         |             |

$$LD = (Q'_3 Q_2 + Q_3 Q'_2 Q_1) x$$

I3

|                                 | $\mathbf{Q'_1} \mathbf{Q'_0}$ | $Q'_1 Q_0$ | $Q_1 Q_0$ | $Q_1 Q_0$ |
|---------------------------------|-------------------------------|------------|-----------|-----------|
| Q' <sub>3</sub> Q' <sub>2</sub> | Х                             | X          | X         | X         |
| $Q'_3 Q_2$                      | 1                             | X          | X         | X         |
| $Q_3 Q_2$                       | X                             | X          | X         | x /       |
| $Q_3 Q'_2$                      | X                             | X          | X         | 1         |

 $I_3 = 1$ 

 $I_2$ 

|                                 | $\mathbf{Q'_1} \mathbf{Q'_0}$ | $Q'_1 Q_0$ | $Q_1 Q_0$ | $Q_1 Q_0$ |
|---------------------------------|-------------------------------|------------|-----------|-----------|
| Q' <sub>3</sub> Q' <sub>2</sub> | X                             | X          | X         | X         |
| $Q'_3 Q_2$                      | 0                             | X          | X         | X         |
| $Q_3 Q_2$                       | X                             | X          | X         | X         |
| $Q_3 Q'_2$                      | X                             | X          | X         |           |

 $I_1$ 

|                                 | Q' <sub>1</sub> Q' <sub>0</sub> | $Q'_1 Q_0$ | $Q_1 Q_0$ | $Q_1 Q_0$  | _           |
|---------------------------------|---------------------------------|------------|-----------|------------|-------------|
| Q' <sub>3</sub> Q' <sub>2</sub> | X                               | X          | X         | X          |             |
| $Q'_3 Q_2$                      | 0                               | X          | X         | X          | I. = O.     |
| $Q_3 Q_2$                       | X                               | X          | X         | $\sqrt{X}$ | $I_1 = Q_3$ |
| $Q_3 Q'_2$                      | *                               | X          | X         | 1          |             |

 $I_0$ 

|                                 | $Q_1 Q_0$ | $Q'_1 Q_0$ | $Q_1 \; Q_0$ | $Q_1  Q'_0$ |
|---------------------------------|-----------|------------|--------------|-------------|
| Q' <sub>3</sub> Q' <sub>2</sub> | X         | X          | X            | X           |
| $Q'_3 Q_2$                      | 0         | X          | X            | X           |
| $Q_3 Q_2$                       | X         | X          | X            | X           |
| $Q_3 Q'_2$                      | X         | X          | X            | 0           |



Figura 4: Diagrama esquemático do circuito do exercício 4.

5.



Figura 5: Diagrama de estados do contador do exercício 5.

Até o estado 9 devo incrementar a saída o registrador de 1. Na transição do estado 9 para 0 devo somar de 7 (6+1).

Considerando um somador que efetua  $s = a + b + C_{in}$ . Vou injetar na entrada a do módulo somador o valor de saída do registrador. Vou sempre fazer o incremento de 1, utilizando a entrada  $C_{in} = 1$  do módulo somador. Para a transição de 9 para 10 devo adicionalmente somar 6 (0110).

Considerando  $b_3$   $b_2$   $b_1$   $b_0$  a entrada b do módulo somador de 4 bits e  $Q_3$   $Q_2$   $Q_1$   $Q_0$  os 4 bits de saída registrador, tenho

 $b_3$ 

|                                 | $Q_1 Q_0$ | $Q_1 Q_0$ | $Q_1 Q_0$ | $Q_1 Q_0$ |
|---------------------------------|-----------|-----------|-----------|-----------|
| Q' <sub>3</sub> Q' <sub>2</sub> | 0         | 0         | 0         | 0         |
| $Q'_3 Q_2$                      | 0         | 0         | 0         | 0         |
| $Q_3 Q_2$                       | X         | X         | X         | X         |
| $Q_3 Q'_2$                      | 0         | 0         | X         | X         |

 $b_3 = 0$ 

 $b_2$ 

|                                 | $\mathbf{Q'}_1 \mathbf{Q'}_0$ | $Q'_1 Q_0$ | $Q_1 Q_0$ | $Q_1 Q'_0$ |
|---------------------------------|-------------------------------|------------|-----------|------------|
| Q' <sub>3</sub> Q' <sub>2</sub> | 0                             | 0          | 0         | 0          |
| $Q'_3 Q_2$                      | 0                             | 0          | 0         | 0          |
| $Q_3 Q_2$                       | X                             | X          | X         | X          |
| $Q_3 Q'_2$                      | 0                             | 1          | X         | X          |

 $b_2 = Q_3 Q_0$ 

 $b_1 \\$ 

|                                 | $Q'_1 Q'_0$ | $Q_1 Q_0$ | $Q_1 \; Q_0$ | $Q_1 Q_0$ |
|---------------------------------|-------------|-----------|--------------|-----------|
| Q' <sub>3</sub> Q' <sub>2</sub> | 0           | 0         | 0            | 0         |
| $Q'_3 Q_2$                      | 0           | 0         | 0            | 0         |
| $Q_3 Q_2$                       | X           | X         | X            | X         |
| $Q_3 Q'_2$                      | 0           | 1         | X            | X         |

 $b_1 = Q_3 Q_0$ 

 $b_0$ 

|                                 | $Q'_1 Q'_0$ | $Q_1 Q_0$ | $Q_1 \; Q_0$ | $Q_1  Q'_0$ |
|---------------------------------|-------------|-----------|--------------|-------------|
| Q' <sub>3</sub> Q' <sub>2</sub> | 0           | 0         | 0            | 0           |
| $Q'_3 Q_2$                      | 0           | 0         | 0            | 0           |
| $Q_3 Q_2$                       | X           | X         | X            | X           |
| $Q_3 Q'_2$                      | 0           | 0         | X            | X           |

 $b_0 = 0$ 



Figura 5: Diagrama esquemático do circuito do exercício 5.