Mathematical Logic

homework 5

Problem 1 Let

$$\Phi := \{ v_0 \equiv t | t \in T^S \} \cup \{ \exists v_0 \exists v_1 \neg v_0 \equiv v_1 \}$$

Prove that Φ is consistent, but there is no consistent $\Phi \subseteq \Psi \subseteq L^S$ with which contains witnesses.

Solution: We just construct \Im ,

$$\mathfrak{I} = \{\{0^{\mathfrak{I}}, 1^{\mathfrak{I}}\}, S^{\mathfrak{I}}, \beta\}$$

For any function f, relation R:

Let
$$f^{\mathfrak{I}}(v_0, v_1, \dots v_{n-1}) = 0^{\mathfrak{I}}, R^{\mathfrak{I}}v_0v_1 \dots v_{n-1} = 0^{\mathfrak{I}}$$
.

Then $\Phi \frac{0,1}{v_0,v_1} \models \Phi_{\circ}$ So Φ is satisfiable, it is consistent.

If Ψ is contains witnesses, then for any variable x, and S-formula $\varphi \in \Psi \circ \Psi \vdash \left(\exists x \varphi \to \varphi \frac{t}{x}\right)$

So
$$\Psi \vdash \left(\exists v_0 \exists v_1 \neg v_0 \equiv v_1 \rightarrow \exists v_1 \neg t \equiv v_1\right)$$
, then $\Psi \vdash \exists v_1 \neg t \equiv v_1$.

But
$$\Psi \vdash \{v_0 \equiv t | t \in T^S\}$$
.

So we can know Ψ is inconsistent.

Problem 2 Let $\mathfrak A$ and $\mathfrak B$ be two S-structures. $\mathfrak A$ mapping $h: \mathfrak A \to \mathfrak B$ is a homomorphism from $\mathfrak A$ to $\mathfrak B$ if the following properties hold.

(1) For every n-ary relation symbol $R \in S$ and $a_1, \dots, a_n \in A$ we have

$$(a_1, \dots, a_n) \in R^{\mathfrak{A}}$$
 implies $(h(a_1), \dots, h(a_n)) \in R^{\mathfrak{B}}$.

Author(s): 于峥

(2) For every n-ary function symbol $R \in S$ and $a_1, \dots, a_n \in A$ we have

$$h(f^{\mathfrak{A}}(a_1,\cdots,a_n))=f^{\mathfrak{B}}(h(a_1),\cdots,h(a_n)).$$

(3) For every constant $c \in S$

$$h(c^{\mathfrak{A}}) = c^{\mathfrak{B}}.$$

Now let $\Phi \subseteq L^S$ and $\mathfrak A$ be an S-structure with $\mathfrak A \models \Phi$. Prove that there is a homomorphism from the term model $\mathfrak T^\Phi$ to $\mathfrak A$.

Solution: We define h

$$h: T^{\Phi} \mapsto A$$
$$\bar{t} \mapsto \mathfrak{A}(t)$$

(1) For every n-ary relation symbol $R \in S$ and $\overline{t_1}, \dots, \overline{t_n} \in T^{\Phi}$:

$$(\overline{t_1}, \dots, \overline{t_n}) \in R^{\mathfrak{T}^{\Phi}} \Rightarrow \Phi \vdash Rt_1, \dots, t_n$$

$$\Rightarrow \Phi \models Rt_1, \dots, t_n$$

$$\Rightarrow \mathfrak{A} \models Rt_1, \dots, t_n$$

$$\Rightarrow (\mathfrak{A}(t_1), \dots, \mathfrak{A}(t_n)) \in R^{\mathfrak{I}}$$

(2) For every n-ary function symbol $f \in S$ and $\overline{t_1}, \dots, \overline{t_n} \in T^{\Phi}$:

$$h(f^{\mathfrak{T}^{\Phi}}(\overline{t_1}, \cdots, \overline{t_n})) = h(\overline{ft_1 \cdots t_n})$$

$$= \mathfrak{A}(ft_1 \cdots t_n)$$

$$= f^{\mathfrak{A}}(\mathfrak{A}(t_1), \cdots, \mathfrak{A}(t_n))$$

$$= f^{\mathfrak{A}}(h(\overline{t_1}), \cdots, h(\overline{t_n})))$$

(3) For every constant $c \in S$

$$h(c^{\mathfrak{T}^{\Phi}}) = h(\overline{c}) = \mathfrak{A}(c) = c^{\mathfrak{A}}$$

So h is a homomorphism from the term model \mathfrak{T}^Φ to $\mathfrak{A}.$