

Occ. TP

Étude des systèmes de laboratoire

Sciences
Industrielles de
l'Ingénieur

Doc TP

Étude du Robot Delta 2D

1	Paramétrage du robot delta	2
2	Modélisation géométrique du Robot Delta 2D	2
2.1	Cinématique directe	2
2.2	Cinómatique inverse	2

Paramétrage du robot delta

- $\overrightarrow{OA} = a \overrightarrow{x_0}$ et $\overrightarrow{OB} = -a \overrightarrow{x_0}$ avec a = 60 mm;
- $\overrightarrow{AD} = \ell \overrightarrow{x_1}$ et $\overrightarrow{BE} = \ell \overrightarrow{x_1}$ avec $\ell = 170 \,\mathrm{mm}$;
- $\overrightarrow{DF} = L\overrightarrow{x_2}$ et $\overrightarrow{EF} = L\overrightarrow{x_2}$ avec L = 350 mm; $\overrightarrow{FP} = -b\overrightarrow{x_3} c\overrightarrow{y_3}$ avec b = -35 mm et c = -75 mm (on pourra montrer que $\overrightarrow{x_0} = \overrightarrow{x_3}$ et $\overrightarrow{y_0} = \overrightarrow{y_3}$);

Modélisation géométrique du Robot Delta 2D

Le robot delta est un robot à 2 mobilités. Il sera donc nécessaire d'écrire deux fermetures géométriques. Commencons pas réaliser la fermeture de la chaîne O - A - D - F - O.

On a donc:
$$\overrightarrow{OA} + \overrightarrow{AD} + \overrightarrow{DF} + \overrightarrow{FO} = \overrightarrow{0}$$
, soit $a\overrightarrow{x_0} + \ell \overrightarrow{x_1} + L\overrightarrow{x_2} - x\overrightarrow{x_0} - y\overrightarrow{y_0} = \overrightarrow{0}$.

On projette ensuite dans
$$\mathscr{B}_0: a\overrightarrow{x_0} + \ell\left(\cos\theta\overrightarrow{x_0} + \sin\theta\overrightarrow{y_0}\right) + L\left(\cos\psi\overrightarrow{x_0} + \sin\psi\overrightarrow{y_0}\right) - x\overrightarrow{x_0} - y\overrightarrow{y_0} = \overrightarrow{0}$$

On alors les expressions suivantes :
$$\begin{cases} a + \ell \cos \theta + L \cos \psi - x = 0 \\ \ell \sin \theta + L \sin \psi - y = 0 \end{cases}$$
On alors les expressions suivantes :
$$\begin{cases} a + \ell \cos \theta + L \cos \psi - x = 0 \\ \ell \sin \theta + L \sin \psi - y = 0 \end{cases}$$

Ainsi pour la partie droite, et la chaîne
$$O - A - D - F - O$$
:
$$\begin{cases} a + \ell \cos \theta_d + L \cos \psi_d - x = 0 \\ \ell \sin \theta_d + L \sin \psi_d - y = 0 \end{cases}$$

Ainsi pour la partie droite, et la chaîne
$$O-A-D-F-O$$
:
$$\left\{ \begin{array}{l} a+\ell\cos\theta_d+L\cos\psi_d-x=0\\ \ell\sin\theta_d+L\sin\psi_d-y=0 \end{array} \right.$$
 Pour la partie gauche $O-B-E-F-O$, on aura (avec $\overrightarrow{OB}=-a\overrightarrow{x_0}$):
$$\left\{ \begin{array}{l} -a+\ell\cos\theta_g+L\cos\psi_g-x=0\\ \ell\sin\theta_g+L\sin\psi_g-y=0 \end{array} \right.$$

Cinématique directe

La cinématique directe permet d'établir le positionnement du point F de coordonnées (x,y) en fonction des commandes moteurs θ_d et θ_g .

Il est donc nécessaire de supprimer ψ_d et ψ_g . On a donc $\begin{cases} L\cos\psi = x - a - \ell\cos\theta \\ L\sin\psi = y - \ell\sin\theta \end{cases}$ en passant les expression au

On a donc pour chacune des boucles
$$\begin{cases} L^2 = (x - a - \ell \cos \theta_d)^2 + (y - \ell \sin \theta_d)^2 \\ L^2 = (x + a - \ell \cos \theta_g)^2 + (y - \ell \sin \theta_g)^2 \end{cases}$$

carré et en sommant,
$$L^2 = (x - a - \ell \cos \theta)^2 + (y - \ell \sin \theta)^2$$
.

On a donc pour chacune des boucles
$$\begin{cases} L^2 = (x - a - \ell \cos \theta_d)^2 + (y - \ell \sin \theta_d)^2 \\ L^2 = (x + a - \ell \cos \theta_d)^2 + (y - \ell \sin \theta_d)^2 \end{cases}$$
soit
$$\begin{cases} L^2 = (x^2 + a^2 + \ell^2 \cos^2 \theta_d - 2xa - 2x\ell \cos \theta_d + 2al \cos \theta_d) + y^2 + \ell^2 \sin^2 \theta_d - 2y\ell \sin \theta_d \\ L^2 = (x^2 + a^2 + \ell^2 \cos^2 \theta_g + 2xa - 2x\ell \cos \theta_g - 2al \cos \theta_g) + y^2 + \ell^2 \sin^2 \theta_g - 2y\ell \sin \theta_g \end{cases}$$

$$\Rightarrow \begin{cases} L^2 = x^2 + a^2 + \ell^2 - 2xa - 2x\ell \cos \theta_d + 2al \cos \theta_d + y^2 - 2y\ell \sin \theta_d \\ L^2 = x^2 + a^2 + \ell^2 + 2xa - 2x\ell \cos \theta_g - 2al \cos \theta_g + y^2 - 2y\ell \sin \theta_g \end{cases}$$

2.1.1 Vérification

On peut réaliser une vérification de la cinématique directe en imposant la course angulaire suivante sur θ_g et θ_d ... Ce choix doit conduire à une ligne droite en montant dans le plan $(\overrightarrow{x_0}, \overrightarrow{y_0})$

2.2 Cinématique inverse