(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開2003-284931 (P2003-284931A)

(43)公開日 平成15年10月7日(2003.10.7)

(51) Int.Cl.7		識別記号	F I	テーマコード(参考)
B01D	69/08		B 0 1 D 69/08	3 L 1 1 3
A 6 1 M	1/18	500	A 6 1 M 1/18	500 4C077
F 2 6 B	3/347		F 2 6 B 3/347	4 D 0 0 6
	25/00		25/00	Δ

審査請求 未請求 請求項の数10 OL (全 12 頁)

(21)出願番号	特願2002-87779(P2002-87779)	(71) 出願人	000116806				
			旭メディカル株式会社				
(22)出願日	平成14年3月27日(2002.3.27)	東京都千代田区神田美土代町 9 番地 1					
		(72)発明者	大石 輝彦				
			宮崎県延岡市旭町4-3400-1 旭メディ				
			カル株式会社内				
		(72)発明者	緒方 益次郎				
			宮崎県延岡市旭町4-3400-1 旭メディ				
			カル株式会社内				
		(74)代理人	100090941				
			弁理士 藤野 清也 (外2名)				

最終頁に続く

(54) 【発明の名称】 中空糸膜の乾燥装置

(57) 【要約】

【課題】 糸束状に製束された湿潤膜をマイクロ波照射 により複数束同時に乾燥するための装置において、全て の糸束を均一に乾燥できる装置を提供する。

【解決手段】 容器内に、マイクロ波照射手段と、糸束 を固定し搬入・搬出する手段と、誘電体損失係数が1~ 50である液体を通過させる手段とを有することを特徴 とする中空糸膜の乾燥装置。

【特許請求の範囲】

【請求項1】 糸束状に製束された漫画膜を乾燥するための装置であって、容器内にマイクロ波照針手段と、糸 東状に製填さた返洞膜を周はに 搬入・搬出する手段 と、容器内に誘電損失係数が1~50である液体を通過 させる手段とを有することを特徴とする中空来膜の乾燥 装置。

【請求項2】 容器内の金属部位あるいは金属部位の周 辺に誘電損失係数が1~50である被体を通過させるた めの配管を有することを特徴とする請求項1記載の装 冊

【請求項3】 マイクロ波照射手段が複数存在すること を特徴とする請求項1または2に記載の装置。

【請求項4】 糸束に通風する手段を有することを特徴 とする請求項1~3のいずれかに記載の装置。

【請求項5】 糸束状に製束された湿潤膜を固定し搬入 ・搬出する手段を回転させる手段をさらに有することを 特徴とする請求項1~4のいずれかに記載の装置。

【請求項6】 容器がマイクロ波遮断機能を有することを特徴とする請求項1~5のいずれかに記載の装置。

【請求項7】 容器内の温度を一定に保つ温度制御手段 をさらに有することを特徴とする請求項1~6のいずれ かに記載の装置。

【請求項8】 容器内の気体を循環する手段をさらに有 することを特徴とする請求項1~7のいずれかに記載の 装置。

【請求項9】 容器内の気体を外部の気体と置換する手 段をさらに有することを特徴とする請求項1~8のいず れかに記載の装置。

【請求項10】 中空糸膜が中空糸状血液浄化膜である 請求項1~9のいずれかに記載の装置。

【発明の詳細な説明】

[0001]

【発明の属十る技術分野】 本発明は、中空未販の乾燥装 産に関するものである。より詳細には、本来明は、糸束 状に製束された湿剤原をマイクロ波照射により複数末同 時に乾燥するための装置であって、照射炉内の局所的な 塩度上昇による一部の糸束の性能不良を防ぎ、且つ全て の糸束を均一に乾燥することを目的とした乾燥装置に関 する。

[0002]

【従来の技術】近年、選択的な透過性を有する襲を利用 する技術がめざましく進歩し、これまでに気体や液体の 分離フィルケー、医療分野における血液透析器、血液臓 温器、血液成分選択分離フィルケー等の広範な分野での 実用化が進んでいる。該際の材料としては、セルロース 系(再生セルロース系、酢酸セルロース系、化学変性セ ルロース系等)、ポリアクリロニトリル系、ポリメチル メタクリレート系、ポリスルホン系、ボリエチレンビニ ルアルコール系、ポリスアよりに第5年のポリマーが用いられ てきた。このうちポリスルホン系ポリマーは、その熱安 定性、耐酸、耐アルカリ性に加え、製販原液に親水化剤 を添加して製験することにより、血液適合性が向上する ことから、半透膜素材として注目され研究が進められて ***

【0003】一方、酸を接着してモジュールを作製する ためには酸を乾燥させる必要があるが、有機高分子より なる多租販、なかでもポリスルホン系等の無状だポリマ ーからなる透析額、限外確過原は、製膜後に乾燥させる と乾燥前に比べ着しく透水量が低下することが知られて いる。そのため機は常に運搬が能か、水に浸漬させた状 値で取り場うな要があった。

【0004】この対策として従来からとられてきた方法 は、製藤後、乾燥前にグリセリン等の低弾発性有機液体 を多孔膜中の空孔部分に詰かておくことであった。しか しながら、低弾発性有機液体は、一般に高粒度なため、 成静発法に断形かかり、限をモジュール成型して洗浄 後も微量ではあるが低弾発性有機液体由来の溶出物等 (低弾発性有機液体と化学反応して生成した線々な誘導 が がモジュール針入物によられることに問題があっ

【0005】低輝発性有機液体を用いずに乾燥させる方 法として、特開率6-277470号公報には、低輝発 住有機成体の代わりに塩化カルシウム等の無機を用い る方法が示されているが、洗浄除去する必要性に変わり はない。また、微量であるとしても残存した無機塩が透 が患者に与える配影響が危惧される。

た。

【0006】また、製の乾燥方法として、特隈平11-332980号公報には、中空糸膜に対し水蒸気による 電熱処理を行いながらマイクは返を照射する空糸膜の 製造方法が示されている。しかし、乾燥でありながら腰 の変形を防ぐために水蒸気処理していることから乾燥時 発性有機液体を付着させてからの乾燥であることから、 概からの溶出物を低減させるという目的は造成されない。

【0007】特開平8-52331号公輔及び特公平8-9663号公報には、能揮発性有機液体を用いずに乾燥処理をしたポリピニルピロリドンを含む緩水化機が開示されている。これらには、血液から血漿成分を分離する性能が記載されているが、血漿ケンパクが活過することから透析酸としては有効でないことが分かる。また、ポリピニルピロリドンを分解・変性させる温度で乾燥していることから、酸からの溶出物を低減させるという目的においては極めて好ましくない製法である。

【0008】また、特開平6-296686号公徽には 血液が直接接触する膜内表面でのポリビニルビロリドン の存在率を20~50%程度にした中空系膜が開示され ている。これは主に血液タンパク、血小板等の付着物を 少なくするための超損膜を示すものである。従って、血 液タンパクが付着しにくいことから濾液速度の経時変化 が起こりにくいことが示されているが、アルブミンの透 過性が低い等の透析性能についての記載は一切無い。

【0009】本発明者は、特定の性能を有する漫調膜を グリセリン等の低排発性有機液体を含浸せずに乾燥して 高性能な血液浄化膜を製造する方法を提集して特許出順 した(特願2001-22246号)。しかし、その後 の検討の結果、糸束状にして乾燥した場合、糸束の中心 節と外周部の膜とでは若干の性能差が生じることが明ら かとなった。

【0010】そこで本発明者は、糸束内の性態差を改善した血液冷化機を製造する方法を提案して特許田顧した (特額2001-309673号、特額2001-309675号)。しかし、本発明者らのその後のさらなる検討の結果、複数の未来を同時に金銭するためにマイクロ波原製装置 (服射炉)をスケールアップした場合には、これらの方法によっても、糸束の同所的な温度上昇が起こり、一部の糸束が性能不良となることが明らかとなった。

[0011]

【発明が解決しようとする課題】 本発明の課題は、糸束 状に製菓された湿潤膜をマイクロ波照射により複数同時 に乾燥するための中空糸腰の乾燥装置であって、照射炉 内の局所的な温度上昇による一部の糸束の性能不良を防 ぎ、且つ金での糸束を均一に乾燥することを目的とした 乾燥装置を挫折することにある。

[0012]

【課題を解除するための手段】以上の如くモジュールからの溶出物の原因となる原具係特別を用いて応輸した透析性能を有する血液浄化用乾燥膜は本発明者等の出願発明 (特額2001年22246号)までなかった。そして、本規門者等は、前規制能により、あらかじめ目標とする性能とであった。そこで、本規門者等は、前規制能により、あらかじめ目標とする性能との表してあった。それる性がある場合では、また。これを乾燥・収縮させて目標の透析性能を有する延満膜を作製しておき、これを乾燥・収縮させて目標の透析性能を有する極端硬をというこれまでに、此、能といいかなかった差別に基づきを必ず死を他のた結果、溶出物が極めて少なく、血液タンパクや血小板の付着が少ない遠沢浸温性に優れた透析性能を有する酸を最少方法を提供した。

[0013] その後、さらに研究を進めたところ、本巻 明者らは、特願2001-22246号の方法によって 血液浄化聚を製造する際、港漁関を糸束状にして乾燥す ると、糸束の中心部と外周部の腰とでは、透水量や透過 性能にばらつきが生じることを発見した。そこで、は つきななくすために鋭竜研光し結果、乾燥工程を工夫 することで、ばらつきが抑えられることを見出し新たに 特許出版した(特願2001-3096738、特願2 001-3096748、 号)。

【0014】ところが、その後の検討の結果、複数の糸 束を同時に乾燥するためにマイクロ波照射装置をスケー ルアップした結果、性能不良となる糸束が発生した。原 因は明確ではないが、スケールアップにより糸束を固定 するために用いられるトレーを構成している金属部材が 加熱・放電することによって昭射行内の糸束の一部が急 速に温度上昇し、性能不良となることが推測される。ト レーは、照射炉内への糸束の出し入れにも用いられるた め、金属を用いずに、例えばプラスチックのみで作製す ることは、機械的強度が低下するために困難である。そ こで、金属部材の加熱・放電を防ぐために鋭意研究した 結果、糸束中の水分子の振動(水分子の加熱)に用いら れる以外の余剰なマイクロ波を効率良く除去する流体 (液体) を照射炉内、特に金属部材あるいはその周辺に 通過させることで糸束の一部の局所的な温度上昇を抑え られることを見出し本発明に至ったものである。

【0015】すなわち本発明は、(1)糸束状に製束された福調吸を乾燥するための製産のあって、常器内にマイクロ玻限時段を炎・糸束状に製束された強調を固定し漿入・撤出する手段と、等認内に誘電損失係数が1~50である液体を通過させる手段とを有することを特徴とする中空を無限の乾燥装費(2)容器内の金属部位あるいは金属部位の周辺に跨電損失係数が1~50である液体を通過させるための配管を有することを特徴とすると、11、11、12歳の装置、(3)マイクロ波を照射する手段が横数存在することを特徴とするとが横数する上記(1)記載の装置、(3)マイクロ波を照射する手段が横数存在する上とで特徴とする上記(1)記載の装置、(3)マイクロ波を照射する手段が横数存在することを特徴とする上記(1)または

(2) に尾巻の製造装置、(4) 条束に通過する手段を 有することを特徴とする(1) ~ (3) のいずれかに記 載の製造装置、(5) 条束を固定し出し入れするために 用いられる手段を固定して、さらに回転させ手段を有 することを特徴とする(1) ~ (4) のいずれかに記載 の製造装置、(6) 容器がマイクロ波を遮断する機能を 有することを特徴とする(1) ~ (5) のいずれかに記 載の製造装置、(7) 容器が容器内の気体の温度を一定 に保つ機能を有することを特徴とする(1) ~ (6) の いずれかに記載の製造装置、(8) 容器が容器内の気体 を細度よる機能を有することを特徴とする(1) ~ (6) の いずれかに記載の製造装置、(8) 容器が容器内の気体

(7) のいずれかに記載の製売装置、(9) 容器が容器の気体を外部の気体を入れ換える機能を有することを特徴とする(1)~(8)のいずれかに記載の製造装置、及び(10)中空糸膜が中空糸状血液骨化膜である上記(1)~(9)のいずれかに記載の装置、に関するものである。

[0016]

 孔保持剤を含まないことが好ましいが、それに限られる わけではない。

【0017】以下には、本条明の依燥装置を用いて飲燥 される中空糸状血液浄化膜の製造方法をまず説明する。 本条明の中空糸状血液浄化医の製造方法は、高遠水量で 大きな孔径の復満膜をあらかじめ製造しておき、脱溶剤 後に膜孔保料剤を含浸させずに乾燥させることに特徴を 有する。

【0018】 通常、中空糸状血液浄化機を製造する際に 用いられる膜孔保持消には、熱性を有する有機物と人体 の毒性が輸金される無線性の分類される。 私性を有す る有機物からなる膜孔保持剤は、粘性が高いために完全 に洗浄除法することが原質であることから、膜中に残存 して膜からの溶出量を増加させ、さらに残存した膜丸保 持剤と化学反応して有害物を生じる原因と成り得る。一 方、無機物からなる膜孔保持剤においても、微量に残存 するため透伸足者によるな

【0019】本発明でいう腕孔保持刺とは、乾燥時の性 能低下を助ぐために乾燥前までの製造過程で腕中の空孔 部分に詰めておく物質である。膜孔保持刺を含んだ溶液 に福潤膜を浸漬することによって膜中の空孔部分に膨保 停剤を詰めることが可能である、乾燥後も腹孔保持剤を 洗浄・除去さえすれば、膜孔保持剤の効果より湿潤接 と同等の透木量、阻止率等の性能を保持することが可能 である。

透過率 (%) = (濾液の吸光度) ×100/ (元液の吸光度)

【0023】ポリビニルビロリドンの透過率は、濾過す を大整核を3重量%のポリビニルビロリドン (BASF 社製 K30、重量平均分子量40,000)のリン酸 ポップァー(0.15mol/リットル、pH7.4) 水溶核にして、モジュールの入り圧と出圧の平均圧力を 200mmHgにした以外は、牛血漿アルブミンの透過 率の測定と同様な操作を行うことにより求められる。 【0024】電洗料電子が表生を行ることにより求められる。

ルホン系ポリマー (以下単に オリマー) ともいう)、 ポリビニルビロリドン、及び溶剤からなる製態所液を、 内部液とともに 2 重環状 / ズルから吐出させ、エアギャ ップを通過させた後、凝固裕で疑問させる製造方法にお いて、内部液にポリマーの溶剤の水溶液を用いることに

[0027] ボリビニルビロリドンは高分子量のものほど 必帳への概水化効果が高いため、高分子量のものほどか 並で十分な効果が高いため、高分子量のものほどか は重量半約分子量900,000以上のボリビニルビロ リドンが使用される。900,000よりからい重量半 均分子量を有するボリビニルビロリドンを用いて映への 親水化効果を付与するためには大量のポリビニルビロリ ドンを便和に残存きせる必要があるが、このために映か の溶出物が消加することになる。また、逆に溶出物を 【0020】 販孔保持剤としては、エチレングリコール、プロピレングリコール、トリメチレングリコール、トリメチレングリコール、 1、2一プチレングリコール、1、3一プチレングリコール、及び恋糖脂肪酸エステル等の有機化合物および塩化カルシウム、炭酸ナトリウム、硫酸でカリム、硫酸でより、塩化亜鉛等の無機塩を挙げることができる。

【0021】また、本発明において、高透水散で大きな 私径の糧満機とは、透水量が100mL/(m²・hr ・mmHg)以上であって、重量平均分子塩・0,00 ののボリビニルゼロリドンの透過率が 75%を超え、且 つ牛血漿素におけるアルブミンの透過率が 0.3%以上 である性能を有する脳濃膜を発味する。

【0022】 牛血漿アルプミンの透過率は、以下のような方法で測定することが可能である。まず、長さ20で mの中空条状膜を100本東泊で小型モジュールを作製する。このモジュールに37でに加温したペパリン浴が中血漿(ペパリン5000IU/I、タンパク濃度6.0g/dL (デシリットル))を膜内表面解に線速1.0cm/秒で透過させ、モジュールの入り用と出圧の平均圧力50mmHgにて30分間限外濾過を行なう。得られた濃波上液の濃度の測定は、紫外分光光度計により280mmの波長にて測定し、下記の式(1)に代入して透過率を貸出する。

(100/(元液の吸光度) (1) より製造可能である。

(10025) 内部液は、膜の中空部と内表面を形成させるものであるが、内表面の孔経は、内部液中の溶剤濃度 に比例して大きくなることが判っている。本発明では、 深潤膜を乾燥を締させることにより目標の性胞の透析膜 が得られることから、内部液中の溶剤濃度を、目標とす る透析性能を有する程温膜を製造する時に比べて、高濃 呼にするが要かある。

【0026】本発明で用いられるポリスルホン系ポリマーとしては、下記の式(2)、または式(3)で示される繰り返し単位を有するものが挙げられる。なお、式中のArはパラ位での2震後のフェニル基を示し、重合度や分子量については特に限定しない。

$$-O-Ar-C(CH_3)_2-Ar-O-Ar-SO_2-Ar-$$
 (2)

(3)

下げるために900,000より小さい重量平均分子量 のポリピニルピロリドンの膜中での残存量を少なくする と親水化効果が不十分となってしまい、その結果血液透 術を行ったとき濾過速度の経時的低下をきたし十分な効 果を棄梱できない。

【0028】また、ポリスルホン系ポリマーとポリビニ ルビロリドンの溶解に用いられる溶剤は、これら両方を 共に溶解するものであり、Nーメチルー2ーピロリド ン、N、Nージメチルホルムアミド、N、Nージメチル アセトアミド等である。

[0029]製模原添中のボリマー濃度は、製板可能 で、かっ得られた模が膜としての性能を有するような濃 度の範囲でも批判を制制を指す。5~3 6重量や、好ましくは10~30重量%である。高い透水性能を連成 するためには、ボリマー濃度は低い方がよく、10~2 5番号必添かを1.b、

【0030】さらに重要なことはポリビニルピロリドンの添加量であり、ポリマーに対するポリビールピロリドンの混和比率が27重量%。そちに好ましくは20~27重量%。さらに好ましくは20~27重量%である。ポリマーに対するポリビニルピロリドンの混和比率が27重量%を超えると溶出量が増える傾向にあり、また10重急%未満では契膜原液の結性が低いためにエポンジ構造の膜を得ることが困難である。また、原液粘度、溶解状態を割御する目的で、水、管溶剤等の第4成分を添加することも可能すたあり、その種類、添加量は組み合わせにより間時行なえばよい。

【003】 [極関浴としては、例えば水;メタノール、 エタノール等のアルコール類;エーテル類; ローヘキサ ン、ローヘブタン等の脂肪放成化水素原などポリマーを 溶解しない液体が用いられるが、木が好ましい。また、 凝固浴にポリマーを溶解する溶剤を若干添加すること。 底り海園速度セントロールーガることも可能の 虚関浴の進度は、一30~90℃、対ましくはつ~90 で、さらに好ましくはつ~80℃である。 施図浴の過度は、一30~90℃、対ましくはつ~90 で、さらに好ましくはつ~80℃である。 施図浴の過度が変化していると、 施図浴のの の中空糸状態の表面状態が変化してくい。

【0032】脱溶剤洗浄後の乾燥は、中空糸状膜を多数 をいう。 含水率(%) = (A-B) ×100/B

さらに、糸束の中心部とか「関節の乾燥速度の差をなくす ために、糸束内には40でを起えない温度の除魔気体を 温風することが対ましい。糸束内に通風するとは中空糸 状膜間に風を流すことを意味する。本発明において、4 0で以上120で以下の重度の除羅気体を糸束内に通風 することは、糸束内に通風すると同時に糸束に対し加熱 乾燥を行なっていることを意味する。

【0036】本発明において、糸東へのマイクロ変原射は、密閉された照射炉内(容器内)で複数実同時に行なわれる。糸東は全属部材と非金属(例えばブラスチック)からなるトレー上に関定させる。マイクロ波は糸東中の水分子の振動(水分子の加熱)に消費させるが、一方で余期のマイクロ波は金属部材の加着・放電の原因となる。この加熱・放電が未収の局所的な超度上昇を引き起こし、糸束の一部の性能不良の原因となる。性能不良を無くすために、本発明ではマイクロ波の吸収力の高い液体を照射炉内設置した配管内に減すことによって余剰のマイク直接を取り除くことを可能とした。

【0037】マイクロ波の吸収力は誘電損失係数の大き さに比例することから、誘電損失係数の大きな液体を流 本東ねた糸束の形態(以後、単に『糸束』と呼ぶ)にて、分分に離測している糸束にマイクロ波照射すること

により行なわれる。しかしながら、マイクロ波照射は低

含水率の条束をより均一に破壊するのに適していること
から、過加熱による膜の変形・溶融を防ぐために、糸束
の平均含水率が20~70%。より好ましくは50~7
0%になる時点でマイクロ波照射の出力を低下させるのが好ましい。

10033] さらに、糸束の平均含水率が20~70 %、好ましくは50~70%になる時点での読糸束の中 心部と外周部における膜の合水率の差が5%以内である ことが、性能のばらつきを抑えるために好ましい。乾燥 の時、糸束外に通風を行なうことによって、糸束の中心 必と外周部における膜の含水率の差を5%以内にすることが可能である。ここで、糸束の中心部とは、糸束の円 形状断面において中心点から直径の1/6の範囲をいう。また、糸束の外周部とは、糸束の円形状断面において外別から直径の1/6の範囲をいう。 で外別から直径の1/6の範囲をいう。

【0034】また、同様な理由から、乾燥開始時における糸束についても、糸束の中心部と外周部における腰の を水率の整が10%以内であることが好ましい、脱溶剤 後糸束を放便しておくと、糸束の中心部と今周部の含水 率には差が生じるために、乾燥工程に入る直前に糸束を 再度水中に浸漬することにより糸束中心部と外周部の含 水率の巻を10%以内にすることが可能である。

【0035】ここで、含水率とは、乾燥前の糸束(又は 腰)の重量(A(g))と乾燥糸束(又は膜)の重量 (B(g))から(4)式により計算で求められるもの をいう。

(4)

すことが好ましく、誘電損失係数の値が1~50である 液体であることが好ましい。誘電損失係数が1未満では マイクロ波の吸収力が低いために好ましくなく、50を 昭える液体は渦冷却状態の水等であり、実用的でない。 【0038】本発明における誘電損失係数とは、2,4 50MHz (メガヘルツ) の周波数で測定された物質の 比誘電率と誘電正接の値の積を意味する。誘電損失係数 が1~50の液体としては、水;メチルアルコール、エ チルアルコール等のアルコール類;エチレングリコー ル、プロピレングリコール、トリメチレングリコール、 1、2-プチレングリコール、1、3-プチレングリコ ール、2-ブチン-1、4-ジオール、2-メチル- 4ーペンタジオール、2-エチル-1、3-ヘキサ ンジオール、グリセリン、テトラエチレングリコール、 ポリエチレングリコール200、ポリエチレングリコー ル300、ポリエチレングリコール400等のグリコー ル系又はグリセロール系化合物を挙げることができるが 水が最も好ましい。

【0039】本発明において導波管とはマイクロ波の照 射額を意味する。導波管は糸束の数に比例して複数用い ることが好ましい。また、マイクロ波の出力は高いこと が好ましいが、乾燥させる膜の量及び含水率により最適 値は異なる。

【0040】乾燥後の際に電子線及びヶ線等の放射線を 脈射することにより、膜中のPVPの一部を水に不溶化 できることから、膜からの溶出量をより低波することが 可能である。放射線の服射は、モジュール化前又はモジ ュール化後のどちらでも良い。また、膜中の全PVPを 不溶化してしまうと、溶出版を低減できる一力で、透析 時にロイコベニア症状が観察されることから好ましくな

【0041】本発明でいう水に不要であるPVPとは、 膜中の全PVP量から水に可溶であるPVP量を差し引 いたものである。膜中の全PVP量は、窒素及びイオウ の元素分析により容易に算出することができる。また、 水に可溶であるPVP量は、以下の方法により求めることができる。 をができる。原をN-メチルー2-ピロリドンで完全に 溶解した後、得られたボリマー溶液に水を添加してポリ スルホン系ボリマーを完全に対象させる。らに該ポリ マー溶液を静蔵した後、上張み液中のPVP量を液体ク ロマトグラフィーで定量することにより水に可溶である PVPを定量することができる

【0042】本発明の乾燥装置は、特に、糸束状に製束 された膜孔保持剤を含まない湿潤膜を複数同時に乾燥す るのに適する装置であって、本装置を用いて得られた膜

B (mL/分) = 0.636A+29.99 ここで、β2-ミクログロブリンのクリアランスは、 吸光B

1.5 m²の有効核雨積のモジュールに、血液流量 2 0 m L / 分(縣内表面側)、透析液液量 5 0 0 m L / 分(線外表面側)の条件下で日本人工線器学会の性能評価 基準に従い透析側定したものである。β 2 ーミクログロブリンのクリアランスは、透析患者の体力や病状及び病の進行度に合わせて様々なものが要求されているが、ポリビニルとロリドンの透過率が 7 5 %を配るとアルブミンの透過率が 0.3 %を超えてしまうことから、ポリビニルとロリドンの透過率は 7.5 %以下であることが必要である。

【0045】また、本発明により作られた膜は、散孔保 特剤を製造工程で使用していないことから、酸孔保特剤 由本の溶別物は存在しない。従って、本発卵の膜の溶出 物試験液の喪光度は0.04未満であり、且つ談試験液 中に膜孔保持剤を含まない。ここで、溶泡が影験液と は、人工腎臓症が表望体にようき調整しためのであ り、2cmに切断した乾燥中空糸状膜1.5gと注射用 薬留水150mLを日本薬局力の注射用ガラス容器試験 のアルカリ溶出試験に適合するガラス容器に入れ、70 ±5℃で1時間加温し、冷却後便を取り除いた後蒸留水 を加えて150mLとしたものを意味する。吸光度は2 20~350mmの最大被収数長を示す波長にて紫外 吸収スペットルで測定する。人工腎臓接膜水部基準では は、駅和保券剤を含まない戦場級であって、純木の透水 最新10~1,000mL/(m²·hr·mmH g)、重量単均分子量40,000のポリビニルゼロリ ドンの透過率ポ75%以下で、且つ牛血漿系におけるア ルブミンの透過率が、0.3%未満であり、さらにそれぞ れの性能のパラツキが小ちいことを特徴とする中空糸状

(5) に示す一次関数的な相関関係が存在する。クリア ランス評価には1.5m²の有効販面積を有する逐析仕 嫁のモジュールに成形・加工することが必要であるが、 本評価方法では簡易的に測定可能であり、クリアランス を容易に推測することが可能である。

9 (5)

吸光度を0.1以下にすることが定められているが、本 晃明の瞬は軽飛保特預を保持しないことから0.0 4末 満念き速付することが可能である。また、既14時利の有 無については、該試験液を濃縮又は水分除去したものを ガスクロマトグラフィー、液体クロマトグラフィー、完 空間折落、紫外分光光度計、赤外線吸光光度法、接線気 共鳴分光法、及び元素分析等の公知の方法により測定す ることにより検知可能である。また、膜中に膜孔保特利 を含むか否かについてもこれらの測定方法により検知可 能である。

【0046】本発明により作られた膜は、ポリスルホン系ポリマーとポリビニルビロリドンからなり、膜内表面におけるポリビニルビロリドンからなり、膜内表面におけるボリビニルビロリドンの濃度が30~45 5 重量%である。 脈の血液適合性に重要な因子は、血液が接する腫内表面の製水性であり、ポリビニルビロリドン(以下単に「FVP」ともいう)を含有するポリスルホン系 販売に、膜内表面のPVP濃度が低すぎると膜内表面が疎水性を示し、血漿タンバン質が吸着しやすく、血液の凝固も起こりやす。すなわち、脈の血液適合性不良となる。逆に膜内表面のPVP濃度が低すぎると、PVPの血液深への溶出量が増加上条発明の目的や用途にとっては対ましくない結果を与える。従って、本発明での膜内表面のPVP濃度が低する。本発明での膜内表面のPVPの離床の表別の目的や用途にとっては対ましくない。

40%である。

【0047】膜内表面のPVP濃度は、エックス線光量 子スペクトル (X-ray Photoelectro n spectroscopy、以下XPS) によって 決定される。すなわち、膜内表面のXPSの測定は、試 料を両面テープ上に並べた後、カッターで繊維軸方向に 切開し、膜の内側が表になるように押し広げた後、通常

ここで、C,: 窒素原子濃度 (%)

C₂: イオウ原子濃度 (%)

M.: PVPの繰り返しユニットの分子量 (111) M。: ポリスルホン系ポリマーの繰り返しユニットの分 子量 (442)

【0048】次に本発明の乾燥装置の一例を、図面を参 照して説明する。図1に示す乾燥装置は、容器(1)、 マイクロ波照射手段(2)、糸束を固定し搬入・搬出す る手段(3)、糸束通風手段(4)、誘電損失係数が1 ~50である液体を通過させる手段(5)、及び、糸束 を固定し搬入・搬出する手段(3)を固定して回転させ る回転手段(6)からなる。

【0049】糸束を固定し搬入・搬出するために用いら れる手段(3)に固定された糸束(7)は、容器(1) 内でマイクロ波照射手段(2)から照射されたマイクロ 波により乾燥される。マイクロ波照射の間、涌風手段

(4) により除湿気体が糸束に流される。さらに容器内 には、誘電損失係数が1~50である液体を通過させる 手段(5)が設けられているので、余剰なマイクロ波が 吸収されて局所的な温度上昇が防止される結果、全ての 糸束を均一に乾燥することができる。

【0050】容器(1)は、さらに、(a)マイクロ波 を遮断する機能、(b)容器内の温度を一定に保つ温度 制御手段、(c)容器内の気体を循環する手段、及び

(d) 容器内の気体を外部の気体と置換する手段を有す る。マイクロ波を遮断する機能は、糸束の乾燥にマイク 口波を有効に使用するだけでなく、作業者の安全上必要 である。また、乾燥バッチ間の性能差を無くすために は、容器内の温度を一定に保つことが必要である。さら に、容器内の気体を循環及び外部と入れ換えることによ り、乾燥効率を向上することが可能である。

【0051】マイクロ波照射手段(2)は、糸束(7) にマイクロ波を照射するために用いられるもので、形 状、大きさは特に限定されないが、複数の糸束を均等に 乾燥するためには、容器内に複数設置することが好まし い。糸束を固定し搬入・搬出するために用いられる手段 (3) は、容器内での糸束の位置を固定して効率良く乾 燥するために用いられるものである。さらに、固定・櫛 入・搬出手段(3)は、糸束の固定及び取り出しを容易 にするために乾燥装置からの取り外しが可能である。糸 東通風手段(4)は、糸東内に気体を通風するために用 いられる。

の方法で測定する。すなわち、C1s、O1s、N1 s. S2pスペクトルの面積強度から、装置付属の相対 感度係数を用いて窒素の表面濃度(窒素原子濃度)とイ オウの表面濃度 (イオウ原子濃度) から求めた濃度をい うものであり、ポリスルホン系ポリマーが(2)式の構 造であるときには (6) 式により計算で求めることがで きる.

PVP濃度(重量%) = $C_1M_1 \times 100$ /($C_1M_1 + C_2M_2$)

【0052】誘電損失係数が1~50である液体を通過 させる手段(5)は、液体を流すことができる手段であ ればどのようなものでも良いが、内部に誘電損失係数が 1~50である液体を通過させる非金属製の配管である ことが好ましい。液体涌渦用の配管は、余剰のマイクロ 波が、金属治具などの金属部材を加熱・放電しやすいの で、照射炉内の金属部材あるいはその周辺に設けること が好ましい。糸束を固定し搬入・搬出する手段(3)を 固定して、さらに回転させる手段(6)は、糸束へのマ イクロ波照射をより均等にするために用いられる。回転 は水平方向である。

[0053]

【実施例】以下にこの発明の実施例を示すが、本発明 は、これに限定されるものではない。

(血小板粘着量の測定) 膝への血小板粘着量の測定は、 以下の操作手順で行った。長さ15cmの中空糸状障を 10本東ねて小型モジュールを作製し、該モジュールに へパリン添加ヒト新鮮血を線速1.0cm/秒にて15 分間通過させ、続いて生理食塩水を1分間通過させた。 次に中空糸状膜を5mm間隔程度に細断し、0.5%ポ リエチレングリコールアルキルフェニルエーテル (和光 純薬社製商品名トリトンX-100)を含む生理食塩水 中で超音波照射して膜表面に粘着した血小板から放出さ れる乳酸脱水素酵素(以下、「LDH」という)を定量 することにより膜面積(内表面換算)当たりのLDH活 性として算出した。酵素活性の測定はLDHモノテスト キット (ペーリンガー・マンハイム・山之内社製) を使 用した。なお、陽性対照としてPVPを含有しない膨 (y線照射前の実施例1の膜を有効塩素濃度1,500 ppmの次亜塩素酸ナトリウムに2日間浸漬した後、エ タノールに1日間浸漬することにより得られたもの)を 用い、試験品と同時に比較した。

【0054】(血漿タンパク質吸着量)膜への血漿タン パク質吸着量は、限外濾過時間を240分にした以外は アルプミンの透過率測定と同様な操作を行った後、生理 食塩水で1分間洗浄した。次に中空糸状膜を5mm間隔 程度に細断し、1.0%ラウリル酸ナトリウムを含む生 理食塩水中で播拌して抽出した血漿タンパク質を定量す ることにより膜重量当たりのタンパク質吸着量として算 出した。タンパク質濃度はBCAプロテインアッセイ (ピアース社製) を使用した。なお、陽性対照としてP VPを含有しない膜(y線照射前の実施例1の膜を有効 塩素濃度1,500ppmの次亜塩素酸ナトリウムに2 日間浸漬した後、エタノールに1日間浸漬することによ り得られたもの)を用い、試験品と同時に比較した。

[0055]

【実施例1】 (製膜及び残溶剤の除去) ポリスルホン (Amoco Engineering Polyme rs社製P-1700) 18.0重量%、ボリビニルビ ロリドン (BASF社製 K90、重量平均分子量1, 200,000) 4.3 重量%を、N, N-ジメチルア セトアミド 77.7重量%に溶解して均一な溶液とし た。ここで、製膜原液中のポリスルホンに対するポリビ ニルピロリドンの混和比率は23.9重量%であった。 この製膜原液を60℃に保ち、N, N-ジメチルアセト アミド30重量%と水70重量%の混合溶液からなる内 部液とともに、紡口 (2重環状ノズル O. 1mm-0. 2mm-0. 3mm) から吐出させ、0. 96mの エアギャップを通過させて75℃の水からなる凝固浴へ 浸漬した。この時、紡口から凝固浴までを円筒状の筒で 囲み、筒の中に水蒸気を含んだ窒素ガスを流しながら、 筒の中の湿度を54.5%、温度を51℃にコントロー ルした。紡速は、80m/分に固定した。ここで、紡速 に対するエアギャップの比率は、0.012m/(m/ 分) であった。巻き取った糸束を切断後、糸束(長さ3 0 cm、 脚本数9400本) の切断面上方から80℃の 勢水シャワーを2時間かけて洗浄することにより膜中の 残溶剤を除去した。

【0056】 (湿潤膜の乾燥及びPVPの不溶化処理) 図1に示す装置を用いて、上記の残溶剤除去後の糸束 (含水率が300%、糸束中心部の膜の含水率が300 %、糸束外周部の膜の含水率が300%、糸束の中心部 と外周部における膜の含水率の差が0%) 90束をマイ クロ波照射炉 (照射炉内の風速3m/秒) 内に、トレー に糸束をセットすることにより、それぞれを等間隔で均 等に配置した。この時糸束の切断面が必ず上又は下にな るように治具で固定した。さらに、照射炉内でそれぞれ の糸束に均一にマイクロ波が照射されるように6本の道 波管をそれぞれ等間隔で均等に固定した。

【0057】該糸束に対してマイクロ波出力30kW (キロワット) で18分間マイクロ波照射した。この時 点で照射炉内の中心部に位置する糸束の含水率は42% (糸束中心部の膜の含水率が44%、糸束外周部の膜の 含水率が40%) であった。引き続いてマイクロ波の出 力のみを21kWに低下させてさらに8分間マイクロ波 照射することにより含水率が1%未満の乾燥膜(糸束)

【0058】また、乾燥開始時から乾燥終了時までの 間、以下の操作を行なった。

- (1) 照射炉内のトレーの周りに設置した非金属製配管 内に水を流した。
- (2) トレーを1分間に4回転の速度で回転させた。

(3) 照射炉内の温度を70±2℃に保持した。

(4) 各糸束の下部から4m/秒の風速にて除湿空気 (湿度10%以下)を糸束の下部から上部へと通風し た。この時、糸束の上部からは乾燥開始時において糸束 平均で0.4m/秒の風速が測定された。さらに、得ら れた乾燥膜 (糸束) に2. 5 M r a d の γ線を照射する ことにより膜中のPVPの一部を不溶化した。

【0059】(性能評価結果)全糸束を評価した時の各 物性の平均値と該平均値に対して最も外れた値を有する 糸束 (最外性能の糸束) の各物性を表1に示す。平均値 に相当する糸束(膝)を有効濾渦而積1.5 m2のモジ ュールにして82-ミクログロブリンのクリアランスを 実測したところ、32mL/分で有ることが分かり、P VPの透過率を式 (5) に代入して算出したクリアラン ス32.5mL/分と同等であることが明らかとなっ た。さらに、該モジュールにて尿素、ビタミンB12の 透過測定を行ったところ、尿素のクリアランスと透過率 はそれぞれ185mL/分、83%であった。また、ビ タミンB12については同様に95mL/分、48%で あった。測定は、

【0044】と同様な方法で行った。また、膜中の全P VP量の62%が、水に不溶であった。膜の溶出物試験 をした結果、溶出物試験液の吸光度は0.04以下であ った。また、膜孔保持剤を用いていないことから溶出物 試験液中に膜孔保持剤は含まれて無かった。さらに、こ の膜は陽性対照膜に比べて、血小板粘着量が低く(陽性 対照膜43Unit/m2)、且つ血漿タンパク質の粘 着量も低いことが明らかとなった (陽性対照膜63mg /g)。以上に挙げた性能から、この膜は、膜からの溶 出量が極めて少なく、血液タンパク質や血小板の付着が 少ないことが明らかとなった。また、アルブミンの透渦 率が少なくβ2-ミクログロプリンのクリアランスにも 優れることから透析性能にも優れた膜であることが分か った。さらに、全糸束の平均値と該平均値に対して最も 外れた値を有する糸束 (最外性能の糸束) との性能差も 比較例1に比べて少ないことが明らかとなった。

[0060]

【宇権例2】製膳原液中のポリビニルピロリドンを4重 量%、N, N-ジメチルアセトアミドを78重量%とし た以外は、実施例1と同様な操作を行った。この時の製 膜原液中のポリスルホンに対するポリビニルピロリドン の混和比率は22.2重量%であった。この時の全糸束 を評価した時の各物性の平均値と該平均値に対して最も 外れた値を有する糸束 (最外性能の糸束) の各物性を表 1に示す。この膜は、膜からの溶出量が極めて少なく、 血液タンパク質や血小板の付着が少ないことが明らかと なった。また、アルプミンの透過率が少なく、且つβ2 ーミクログロプリンのクリアランスにも優れることが示。 唆されたことから透析性能にも優れた膜であることが分 かった。さらに、全糸束の平均値と該平均値に対して最 も外れた値を有する糸束(最外性能の糸束)との性能差 も比較例1に比べて少ないことが明らかとなった。

[0061]

【実施例3】製膜原液中のポリビニルピロリドンを4. 8重量%、N、N-ジメチルアセトアミドを77.2重 量%とした以外は、実施例1と同様な操作を行った。こ の時の製膳原液中のポリスルホンに対するポリビニルビ ロリドンの混和比率は26,7重量%であった。この時 の全糸束を評価した時の各物性の平均値と該平均値に対 して最も外れた値を有する糸束 (最外性能の糸束) の各 物性を表1に示す。この際は、膜からの溶出量が極めて 少なく、血液タンパク質や血小板の付着が少ないことが 明らかとなった。また、アルブミンの诱渦率が少なく、 且つβ2-ミクログロブリンのクリアランスにも優れる ことが示唆されたことから透析性能にも優れた膜である ことが分かった。さらに、全糸束の平均値と該平均値に 対して最も外れた値を有する糸束 (最外性能の糸束) と の性能差も比較例1に比べて少ないことが明らかとなっ た。

[0062]

【実施例 4】 内部被にN、Nージメチルアセトアミド5 2 重量や上水 48 重量かららなる混和溶液を用いた以外 は、実施例 3 と同様な操作を行った。この時の全糸束を 評価した時の各物性の平め値と該平均値と対して最も外 れた値を有する糸束(展外性能の糸束)の各物性を表す に示す。この膜は、膜からの溶出量が極めて少なく、血 液タンパク質や血小板の付着が少ないことが明らかとなった。また、アルブミンの透過率が少なく、且つβ2ー ラクログロングリンのクリアランスにも優れることが分か った。また、アルブミンのでは、またないとからか さらに、全糸束の平均値と数平均値に対して最も 外れた値を有する糸束(機外性能の糸束)との性能差も 比較例 1に比べて少ないことが明らかとなって

[0063]

【比較例1】 y 線照射しない以外は、実施例1と同様な 操作を行った。この結果を表 2に示す。 PVPの溶出の ため溶出試験液の吸光度が 0.04を超えることが明ら かとなった。性能評価は、照射炉内中心部に位置する糸 東のみを行なった。

[0064]

【比較例 2】 製板原域中のボリビニルビロリドンを5. ① 重量%、N,N・アンメチルアセトアミドを77.0 量%とした以外は、実施例1と同様な操作を行った。こ の時の製販原域中のボリスルホンに対するボリビニルビ ロリドンの添和比率は27.8重量%であった。この条 來の性能を表とに示す。製販の液中のボリスルホンに対 するボリビニルビロリドンの混和比率が27重量%を超 えているので、溶出量、膜内衰血ドンP製度が増加して 3、機体等を指し、膜内衰血ドンP製度が増加して、 3、機体等を指し、原材中和心液化を増する条度のみ、

を行なった。

[0065]

【比較例3】製販原液中のボリビニルビロリドンを3. 6重量%、N、Nージメチルアセトアミドを78.4 重%とした以外は、実施到1と同様な操作を行った。こ の時の製販原液中のボリスルホンに対するボリビニルビ ロリドンの混和比率は20.0重量%であった。この糸 束の性能を表とに示す。販内表面のPVP量が30%を 下回っていることが明らかとなった。性能評価は、照射 炉内中心部に位置する条束のみを行なった。

[0066]

【比較例4】内部液にN、N一ジメチルアセトアミド6 の重量%と水40重量%からなる混和溶液を用いた以外 は、実施例3と同様な操作を行った。この表状の性能を 表2に示す。この膜は、アルブミンの透過率が0.3% を超えており、またPVPの透過率も75%を超える性 値であった。性能配する 束のみを行なった。

[0067]

【比較例5】内部液にN、NージメチルアセトアミドI の重量%と水9の重量%からなる混和溶液を用いた以外 は、実施例1と同様な操作を行った。この未業の性能を 表2に示す。純木の透水量が10mL/(m²・hr・ mmHg)を下回る性能であった。性能評価は、照射炉 内中心部に位置する未束のみを行なった。

[0068]

【比較例6】 乾燥退度を170℃にした以外は、実施例 1と同様な操作を行った。この糸束の性能を表2に示す。この膜は、膜中の全でのPVPが水に不溶であった。この膜を有効濾過面積1.5 m^2 のモジュールにし

[0044] に示した方法で臨床血液評価したところ、 透析患者の白血球数が一時的に低下するロイコペニア症 状が観察された。性能評価は、照射炉内中心部に位置す る条束のみを行なった。

[0069]

【比較例7】照射炉内のトレーの周り及びトレー下部に 設置した非金属製の配管内に水を流さない以外は実施例 と同様な操作を行った。この時の全糸東を評価した時 の各物性の平均値と該平均値に対して最も外れた値を有 する糸東、保外性能の糸東)の各物性を表3に示す。マ イクロ該照射の間トレーの金属部材からは故前が観察さ れた。この故電・加熱によりトレーの金属部長周辺にあ る糸束の中には透水量が0 (ゼロ)であるものが見ら れ、明らかに性能不良の糸束が発生することが明らかと なった。

[0070]

[表1]

	実施例Ⅰ		実施例2		実施例3		享飯保4	
		最外性		最外性 能の来 古の値		最外性 能の糸 束の値	全条束 の平均 値	
膜内径(μm)	195	195	200	200	195	195	196	198
膜外径(µ m)	285	286	288	290	285	283	286	289
透水量(mL/(m²· hr·mmHg))	22	19	18	15	23	20	420	400
アルプミンの 透過率 (%)	0.01 以下	0.01 以下	0.01 以下	0.01 以下	0.01 以下	0.01 以下	0.01 以下	0.01 以下
PVPの 透送率 (%)	4	4	4	4	Б	5	72	72
膜内表面 PVP 袭 度(重量%)	35	36	30	30	44	44	36	36
水に不存である PVP の有無	有り	有り	বাচ	有り	有り	有り	有り	有り
溶出物試験液の 吸光度	0.022	0.022	0.020	0.020	0.035	0.035	0.022	0.022
総出物試験液中 の護孔保持剤の 有無	無し	新し	細し	飯し	無し	無し	無し	無し
血小板粘着量 (LDH·Unit/m*)	15.6	15.7	17.7	17.5	4.1	4.1	14.0	14.1
血漿タンパク質 吸着量(mg/g)	2.2	2.2	5.5	5.6	1.9	1.9	2.0	2.0
乾燥約温調膜の 近水量(mL/(m²・ hr·mmHg))	190	190	170	170	260	260	3100	3100
乾燥前型調膜の アルプミンの 透過率 (%)	0.32	0.32	0.34	0.34	0.35	0.35	0.51	0.51
乾燥前温潤膜の PVPの	77	77	84	84	84	84	99	99

[0071]

	比較例1	比較例2	比較例3	比較例4	比較例5	比較例6
膜内径(μ m)	195	201	200	196	202	190
膜外径(µm)	282	291	292	295	291	281
透水量(mL/(m²· hr·mmHg))	22	35	16	960	9	15
アルブミンの 透過率 (%)	0.01 以下	0.01 以下	0.01 以下	0.87	0.01 以下	0.01 以下
PVPの 透過率 (%)	4	5	4	79	ó	4
膜内表面 PVP 液 度(重量%)	35	46	28	33	84	36
水に不溶である PVPの有無	無し	有り	有り	有り	有り	有り
溶出物試験液の 吸光度	0.047	0.038	0.016	0.020	0.020	0.022
容出物試験液中 の膜孔保持剤の 有無	無し	無し	無し	無し	無し	無し
血小板粘着量 (LDH·Unit/m²)	15.5	3.8	19.2	15.4	15.1	16.6
血漿タンパク質 吸着量 (mg/g)	2.1	2.1	6.0	2.8	2.1	3.0
乾燥前複複膜の 透水量(mL/(m ² ・ hr·mmHg))	190	310	130	8500	76	190
乾燥前程預膜の アルプミンの 透過率 (%)	0.32	0.38	0.32	0.60	0.17	0.31
乾燥前湿潤膜の PVPの 透過率 (%)	77	85	76	100	52	76

【0072】 【表3】

	比核	例 7
		最外性
	の平均	能の糸
	値	東の値
膜内径(μm)	195	191
膜外径(µm)	285	280
透水量(mL/(m2·	16	0
hr·mmHg))		
アルブミンの	0.01	测定不
透過率(%)	以下	可能
PVP Ø	3	测定不
透過率(%)		可能
膜内表面 PVP 濃	35	35
度(重量%)		
水に不溶である	有り	有り
PVP の有無		
溶出物試験液の	0.022	0.022
吸光度	$ldsymbol{eta}$	
俗出物試験被中	 .	. س
の譲孔保持剤の	無し	無し
有無		-
且小板桁看型 (LDH-Unit/m²)	15.0	測定不 可能
血漿タンパク質	2.1	PJ ME 2.1
型架タンハク質 吸着量 (mg/g)	2.1	2.1
乾燥前湿鋼膜の	190	190
透水量(mL/(m**		
hr·mmHg))		
乾燥前湿潤膜の	0.32	0.32
アルプミンの		
透過率 (%)		
乾燥前温稠膜の	77	77
PVPの 汚過率 (%)		
2次週华(%)		l

[0073]

【発明の効果】本発明の乾燥装置によれば、糸束状に製 東された量濃酸をマイクロ炭限射により複数実同時に使 検する場合においても、一部の糸束に性能不良を生ずる ことなく中空糸膜を乾燥することができる。製造された 中空糸膜は、膜からの溶出量が極めて少なく、血液タン パク質や血小板の付着が少ない優れた透析性能を有する ことから医薬用途、医療用途、及び一般工業用途に用い ることができる。

【図面の簡単な説明】

【図1】本発明の血液浄化膜の製造装置の一例を示す正 面図である。

【符号の説明】

- 1 容器
- 2 マイクロ波照射手段
- 3 糸束を固定し搬入・搬出する手段
- 4 通風手段
- 5 液体通過手段
- 6 回転手段
- 7 糸束

【図1】

フロントページの続き

F ターム(参考) 3L113 AA03 AC12 BA01 CA08 DA24 4C077 AA05 BB01 GG20 LL05 NN03 PP02 PP03 PP13 PP15

> 4D006 GA13 MA01 MB06 MC40X MC62X NA05 NA12 NA50 NA62 NA64 PB09 PB52

PATENT ABSTRACTS OF JAPAN I.

(11)Publication number: 2003-284931

(43)Date of publication of application: 07.10.2003

(51)Int.Cl. B01D 69/08

A61M 1/18

F26B 3/347

F26B 25/00

(21)Application number: 2002-087779 (71)Applicant : ASAHI MEDICAL CO LTD

(22)Date of filing: 27.03.2002 (72)Inventor: OISHI TERUHIKO OGATA MASUJIRO

(54) APPARATUS FOR DRYING HOLLOW FIBER MEMBRANE

(57) Abstract:

PROBLEM TO BE SOLVED: To provide an apparatus for drying a wet membrane formed of a plurality of fiber bundles at a time by means of micro-wave irradiation,

capable of uniformly drying all the bundles. SOLUTION: This apparatus for drying the hollow fiber

membrane is characterized by comprising, in a vessel a means of micro-wave irradiation, a means to carry the bundles fixed thereon into or out of the vessel, and a means to pass a liquid having a dielectric loss coefficient

of 1 to 50 therethrough.

LEGAL STATUS

[Date of request for examination]

13.01.2005

[Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than

the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The dryer of the hollow fiber characterized by having a means to pass the liquid whose dielectric loss multipliers are 1-50 the means which is equipment for drying the humid film *****(ed) in the shape of a thread, fixes in a container a microwave exposure means and the humid film *****(ed) in the shape of a thread, and is carried in and taken out, and into a container.

[Claim 2] Equipment according to claim 1 characterized by having piping for passing the liquid whose dielectric loss multipliers are 1-50 around the metal part in a container, or a metal part. [Claim 3] Equipment according to claim 1 or 2 characterized by two or more microwave exposure means existing.

Claim 4] Equipment according to claim 1 to 3 characterized by having a means to ventilate to a thread.

[Claim 5] Equipment according to claim 1 to 4 characterized by having further a means to rotate a means to fix, and to carry in and take out the humid film ****(ed) in the shape of a thread. [Claim 6] Equipment according to claim 1 to 5 characterized by a container having a microwave cutoff function

[Claim 7] Equipment according to claim 1 to 6 characterized by having further the temperature control means which keeps the temperature in a container constant.

[Claim 8] Equipment according to claim 1 to 7 characterized by having further a means to circulate through the gas in a container.

[Claim 9] Equipment according to claim 1 to 8 characterized by having further a means to permute the gas in a container by the external gas.

[Claim 10] Equipment according to claim 1 to 9 whose hollow fiber is hollow filament-like blood purification film.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] This invention relates to the dryer of a hollow fiber. More, this invention is equipment for drying the humid film ****(ed) in the shape of a thread by microwave exposure at two or more bundle coincidence, and relates to the dryer aiming at preventing the poor engine performance of some [by the local temperature rise in an irradiation reactor] threads, and drying all threads to homogeneity at a detail.

F00021

[Description of the Prior Art] The technique of using the film which has alternative permeability progresses splendidly in recent years, and utilization in extensive fields, such as a separation filter of a gas or a liquid, hemodialyzer in the medical field, a blood filter, and a constituent-ofblood selection separation filter, is progressing until now. As an ingredient of this film, polymers, such as cellulose types (a regenerated-cellulose system, a cellulose acetate system, chemistry denaturation cellulose type, etc.), a polyacrylonitrile system, a polymethylmethacrylate system, a polysulfone system, a polyethylene vinyl alcohol system, and a polyamide system, have been used. Among these, since haemocompatibility of a polysulfone system polymer improves by in addition to the thermal stability, acid-proof, and alkali resistance adding a hydrophilization agent to a film production undiluted solution, and producing a film to it, it was observed as a semipermeable membrane raw material, and research has been advanced, [0003] On the other hand, in order to paste up the film and to produce a module, it is necessary to dry the film but, and if the porous membrane which consists of an organic macromolecule, the permeable membrane which consists of hydrophobic polymers, such as a polysulfone system. especially, and ultrafiltration membrane are dried after film production, it is known that the amount of water penetration will fall remarkably compared with desiccation before. Therefore, the film always needed to be dealt with in the damp or wet condition and the condition of having made water immersed.

[0004] The approach taken from the former as this cure was putting low volatility organic liquids, such as a glycerol, in the hole part in porous membrane after film production and before desiccation. However, since hyperviscosity [a low volatility organic liquid] generally, although washing clearance took time amount, module molding of the film was carried out and after washing was a minute amount, the problem was to see the effluent of the low volatility organic liquid origin etc. in module mounting fluid (various derivatives which reacted chemically with the low volatility organic liquid, and were generated).

[0005] Although the method of using the mineral salt of a calcium chloride etc. instead of a low volatility organic liquid is shown in JP,6-277470,A as an approach of drying without using a low volatility organic liquid, there is no change in the need of carrying out washing clearance. Moreover, though it is a minute amount, it is apprehensive about the adverse effect which the mineral salt which remained has on a dialysis patient.

[0006] Moreover, the manufacture approach of the hollow fiber which irradiates microwave is shown in JP,11-332980,A as the membranous desiccation approach, performing moist heat treatment by the steam to a hollow fiber. However, since steam treatment is carried out in order to prevent deformation of the film, though it is desiccation, there is a fault which lengthens the drying time, and further, since it is the desiccation after making low volatility organic liquids, such as a glycerol, adhere, the object of reducing the effluent from the film is not attained, [0007] The hydrophilization film containing the polyvinyl pyrrolidone which carried out desiccation processing to JP,8-52331,A and JP,8-9668,B, without using a low volatility organic liquid is indicated. Although the engine performance which separates a plasma component from blood is indicated by these, since plasma protein penetrates, it turns out that it is not effective as permeable membrane. Moreover, since the polyvinyl pyrrolidone is dried at the temperature decomposed and denatured, in the object of reducing the effluent from the film, it is the process which is not very desirable.

[0008] Moreover, the hollow fiber to which blood made abundance of the polyvinyl pyrrolidone in the film internal surface which contacts directly about 20 - 50% is indicated by JP.6-

296686,A. This shows the humid film for mainly lessening affixes, such as blood protein and a platelet. Therefore, although it is shown that aging of a filtrate rate cannot happen easily since blood protein cannot adhere easily, there is no publication about dialysis engine performance, like the permeability of albumin is low.

[0009] this invention person proposed and did patent application of the approach of drying the humid film which has the specific engine performance, without sinking in low volatility organic liquids, such as a glycerol, and manufacturing the highly efficient blood purification film (application for patent No. 22246 [2001 to]). However, when it was made the shape of a thread as a result of a subsequent examination and dried, it became clear by the core of a thread, and the film of the periphery section that some engine-performance difference arises.

[0010] Then, this invention person proposed and did patent application of the approach of manufacturing the blood purification film which has improved the engine-performance difference in a thread (an application for patent No. 309673 [2001 to], an application for patent No. 309674 [2001 to], application for patent No. 309675 [2001 to]). However, in order to dry two or more threads simultaneously, when microwave irradiation equipment (irradiation reactor) was scaled up as a result of the further examination of this invention persons' after that, also by these approaches, the local temperature rise of a thread happened and it became clear that some threads become poor [the engine performance].

[0011]

[Problem(s) to be Solved by the Invention] The technical problem of this invention is the dryer of the hollow fiber for drying the humid film ****(ed) in the shape of a thread to two or more coincidence by microwave exposure, and is to offer the dryer aiming at preventing the poor engine performance of some [by the local temperature rise in an irradiation reactor] threads, and drying all threads to homogeneity.

[0012]

[Means for Solving the Problem] There was no desiccation film for blood purification which has the dialysis engine performance dried without using the pit hold-back agent leading to the effluent from a module like the above to this invention person's etc. application invention (application for patent No. 22246 [2001 to]). When the cause was dried without using a pit hold-back agent, the damp or wet condition was becoming the film of completely different low engine performance. Then, this invention person etc. produces beforehand the humid film which has the specific engine performance which is a diameter of an osculum in the amount of high water penetration rather than the target engine performance by application in the first half. There is nothing to the former of manufacturing the film which is made dried and contracting this and has the dialysis engine performance of a target. As a result of advancing research wholeheartedly based on the way of thinking that nobody thought of, there were very few effluents and the approach of obtaining the film which has the dialysis engine performance adhesion of blood protein and a platelet excelled [engine performance] in little permselectivity was offered. [0013] Then, when research was advanced further, this invention persons discovered that dispersion arose in the amount of water penetration, or penetrable ability by the core of a thread. and the film of the periphery section, when manufacturing the blood purification film by the approach of an application for patent No. 22246 [2001 to], and the humid film was made into the shape of a thread and it dried. Then, in order to abolish dispersion, as a result of inquiring wholeheartedly, with devising a desiccation process, it found out that dispersion was suppressed and it newly carried out patent application (an application for patent No. 309673 [2001 to], an application for patent No. 309674 [2001 to], application for patent No. 309675 [2001 to]).

[0014] However, in order to dry two or more threads simultaneously, as a result of scaling up microwave irradiation equipment as a result of a subsequent examination, the thread which becomes poor [the engine performance] was generated. Although a cause is not clear, when the metal member which constitutes the tray used since a thread is fixed by the scale-up heats and discharges, it is guessed that some threads in an irradiation reactor carry out a temperature rise quickly, and it becomes poor [the engine performance]. It is difficult to produce only with plastics, without using a metal, since a tray is used also for receipts and payments of the thread into an irradiation reactor in order for a mechanical strength to fall. Then, in order to prevent heating and discharge of a metal member, as a result of inquiring wholeheartedly, it results in header this invention that some local temperature rises of a thread can be suppressed by passing the fluid (liquid) from which microwave surplus / except being used for the oscillation (heating of a water molecule) of the water molecule in a thread I is removed efficiently in an irradiation reactor especially on the outskirts of a metal member or the outskirts of it. [0015] This invention is equipment for drying the humid film ****(ed) in the shape of (1) thread. In a container Namely, a microwave exposure means, The dryer of the hollow fiber characterized by having a means to fix, and to carry in and take out the humid film ****(ed) in the shape of a thread, and a means to pass in a container the liquid whose dielectric loss multipliers are 1-50, (2) Equipment of the above-mentioned (1) publication characterized by having piping for passing the liquid whose dielectric loss multipliers are 1-50 around the metal part in a container, or a metal part, (3) The above (1) characterized by two or more means to irradiate microwave existing, or a manufacturing installation given in (2), (4) The means used in order to fix and take the manufacturing installation given in either of - (3) and (1) (5) thread which are characterized by having a means to ventilate to a thread in and out is fixed. A manufacturing installation given in either of (1) - (4) characterized by having the means furthermore rotated, (6) A manufacturing installation given in either of (1) - (5) characterized by having the function in which a container intercepts microwave, (7) A manufacturing installation given in either of (1) - (6) characterized by having the function which a container keeps the temperature of the gas in a container constant, (8) A manufacturing installation given in either of (1) - (7) characterized by having the function in which a container circulates through the gas in a container, (9) It is related with equipment a manufacturing installation given in either of - (8), and given in either of abovementioned (1) - (9) whose (1) (10) hollow fiber to which a container is characterized by having the function to replace the gas in a container with an external gas is hollow filament-like blood

[0016]

purification film.

[Embodiment of the Invention] Although this invention is not necessarily restricted to the dryer of the hollow filament-like blood purification film, below, it explains the dryer of the hollow filament-like blood purification film (only henceforth the "film" or the "hollow filament-like film") of this invention. Although it is desirable that a pit hold-back agent is not included as for the hollow filament-like blood purification film manufactured using the dryer of this invention, it is not necessarily restricted to it.

[0017] Below, the manufacture approach of the hollow filament-like blood purification film dried using the dryer of this invention is explained first. The manufacture approach of the hollow filament-like blood purification film of this invention manufactures the humid film of a big aperture beforehand in the amount of high water penetration, and has the description to make it dry without carrying out impregnation of the pit hold-back agent after desolventization. [00181 Usually, it is classified into the inoreanic substance with which the pit hold-back agent

used in case the hollow filament-like blood purification film is manufactured is anxious about the toxicity to the organic substance and the body which have viscosity. Since the pit hold-back agent which consists of the organic substance which has viscosity has high viscosity and it is difficult to carry out washing clearance thoroughly, it can change with the cause which remains in the film, is made to increase the elution volume from the film, reacts chemically with the pit hold-back agent which remained further, and produces deleterious material. On the other hand, since it remains in a minute amount also in the pit hold-back agent which consists of an inorganic substance, it is apprehensive about the adverse effect which it has on a dialysis patient. [0019] The pit hold-back agent as used in the field of this invention is matter put in the hole part in the film in the manufacture process before drying in order to prevent the degradation at the time of desiccation. It is possible by immersing the humid film in the solution containing a pit hold-back agent to put this hold-back agent in the hole part in the film. If even washing and clearance carry out a pit hold-back agent also even for after desiccation, it is possible to hold engine performance, such as the amount of water penetration equivalent to the humid film and rejection, according to the effectiveness of a pit hold-back agent.

[0020] As a pit hold-back agent, the mineral salt of organic compounds, such as ethylene glycol, propylene glycol, a trimethylene glycol, 1, 2-butylene glycol, 1, 3-butylene glycol, and a sucrose fatty acid ester, and a calcium chloride, a sodium carbonate, sodium acetate, magnesium sulfate, a sodium sulfate, a zinc chloride, etc. can be mentioned.

[0021] Moreover, in this invention, the amounts of water penetration are 100 mL(s) / (m2) and hrmmHg) above in the amount of high water penetration, and the humid film of a big aperture means the humid film which the transmission of the polyvinyl pyrrolidone of weight average molecular weight 40,000 exceeds 75%, and has the engine performance whose transmission of the albumin in a cow plasma system is 0.3% or more.

[0022] The permeability of cow plasma albumin can be measured by the following approaches. First, 100 hollow filament-like film with a die length of 20cm is bundled, and a small module is produced. The heparinize cow plasma (heparin 5000 IU/I, protein concentration 6.0 g/dL (deciliter)) warmed to this module at 37 degrees C is passed with the linear velocity of 1.0cm/second to a film internal-surface side, a module enters, and an ultrafiltration is performed for 30 minutes in mean-pressure 50mmHg of ** and ***** It computes permeability by measuring measurement of the concentration of the obtained filtrate and former liquid on the wavelength of 280mm with an ultraviolet spectroscopy photometer, and substituting it for the following formula (1).

Permeability (%) =(absorbance of filtrate) x100/(absorbance of former liquid) (1) [0023] The transmission of a polyvinyl pyrrolidone is called for by performing the same actuation as measurement of the transmission of cow plasma albumin except having used the water solution to filter as the phosphoric-acid buffer (0.15-mol [// 1.], pH7.4) water solution of 3% of the weight of a polyvinyl pyrrolidone (BASF A.G. make K30, weight average molecular weight 40,000), and the module having entered and having set the mean pressure of ** and **** to 200mmHg(s).

[0024] After the humid film of a big aperture making a polysulfone system polymer (only henceforth a "polymer"), a polyvinyl pyrrolidone, and the film production undiluted solution that consists of a solvent breathe out from a double annular nozzle with internal liquid in the amount of high water penetration and passing an air gap, in the manufacture approach made to solidify by the coagulation bath, it can manufacture by using the water solution of the solvent of a polymer for internal liquid.

[0025] Although internal liquid makes a membranous centrum and a membranous internal surface form, it turns out that the aperture of an internal surface becomes large in proportion to the solvent concentration in internal liquid. In this invention, since the permeable membrane of the engine performance of a target is obtained by carrying out drying shrinkage of the humid film, compared with the time of manufacturing the humid film which has the target solvent concentration in internal liquid dialysis-engine performance, it is necessary to make it high concentration.

[0026] What has the repeat unit shown by the following formula (2) or the formula (3) as a polysulfone system polymer used by this invention is mentioned. In addition, Ar in a formula shows the phenyl group of two permutations in the para position, and limits neither about polymerization degree nor especially molecular weight.

- -O-Ar-C(CH3)2-Ar-O-Ar-SO2-Ar- (2)
- -O-Ar-SO2-Ar- (3)

[0027] Since the hydrophilization effectiveness to the film is as high as the thing of the amount of macromolecules and little and as sufficient effectiveness as the thing of the amount of macromolecules can demonstrate a polyvinyl pyrrolidone, in this invention, a with a weight average molecular weight of 900,000 or more polyvinyl pyrrolidone is used. Although it is necessary to make the polyvinyl pyrrolidone of a large quantity remain in the film in order to give the hydrophilization effectiveness to the film using the polyvinyl pyrrolidone which has weight average molecular weight smaller than 900,000 for this reason, the effluent from the film will increase. Moreover, in order to lower an effluent to reverse, when ullage in the inside of the film of the polyvinyl pyrrolidone of weight average molecular weight smaller than 900,000 was lessened, the hydrophilization effectiveness becomes imperfection and hemodialysis is performed as a result, lowering of filtration velocity with time is caused and sufficient effectiveness cannot be demonstrated.

[0028] Moreover, both the solvents used for the dissolution of a polysulfone system polymer and a polyvinyl pyrrolidone dissolve both these, and are a N-methyl-2-pyrrolidone, N.N-dimethylacetamide, etc.

[0029] Especially if the polymer concentration in a film production undiluted solution is the range of concentration where the film which could produce the film and was obtained has the engine performance as film, it will not be restricted, but it is 10 - 30 % of the weight preferably five to 35% of the weight. In order to attain permeable high ability, the lower one of polymer concentration is good, and its 10 - 25 % of the weight is desirable.

[0030] A still more important thing is the addition of a polyvinyl pyrrolidone, and the mixing ratio of the polyvinyl pyrrolidone to a polymer is 20 - 27% of the weight still more preferably ten to 27% of the weight preferably 27 or less % of the weight. It is difficult to be in the inclination whose elution volume increases, when the mixing ratio of the polyvinyl pyrrolidone to a polymer exceeds 27% of the weight, and to obtain the film of sponge structure, since the viscosity of a film production undiluted solution is low at less than 10% of the weight. Moreover, what is necessary is it to be also possible for to add the 4th component, such as water and a poor solvent, in order to control undiluted solution viscosity and a dissolution condition, and for combination just to perform the class and an addition at any time.

[0031] Water is desirable although the liquid which does not dissolve polymers, such as aliphatic hydrocarbon, such as alcohols; ether;n-hexanes, such as a water; methanol and ethanol, and n-heptane, for example is used as a coagulation bath. Moreover, it is also possible to control a coagulation rate by adding a little the solvent which dissolves a polymer in a coagulation bath.

30-90 degrees C of 0-90 degrees C of temperature of a coagulation bath are 0-80 degrees C still more preferably preferably. The temperature of a coagulation bath exceeds 90 degrees C, or the surface state of the hollow filament-like film in a coagulation bath cannot be easily stabilized as it is less than -30 degrees C.

[0032] Desiccation after desolventization washing is performed to the thread which is fully carrying out humidity with the gestalt (it is only henceforth called a "thread") of the thread which bundled several hollow filament-like many film by carrying out a microwave exposure.

However, since it is suitable for drying the thread of low water content to homogeneity more, in order to prevent deformation and melting of the film by fault heating, when the average water content of a thread becomes 50 - 70% more preferably 20 to 70%, it is desirable [a microwave exposure] to reduce the output of a microwave exposure.

[0033] Furthermore, it is desirable that the difference of the water content of the film in the core and the periphery section of this thread in the event of the average water content of a thread becoming 50 - 70% preferably 20 to 70% is less than 5% in order to suppress dispersion in the engine performance. It is possible at the time of desiccation to make the difference of the water content of the film in the core and the periphery section of a thread less than 5% by ventilating in a thread. Here, the core of a thread means one sixth of the range of a diameter from the central point in the circle configuration cross section of a thread. Moreover, the periphery section of a thread means one sixth of the range of a diameter from the circle configuration cross section of a thread.

[0034] Moreover, since it is the same, it is desirable also about the thread at the time of desiccation initiation that the difference of the water content of the film in the core and the periphery section of a thread is less than 10%. If the thread after desolventization is left, since a difference will arise in the water content of the core of a thread, and the periphery section, it is possible by immersing a thread underwater again, just before going into a desiccation process to make the difference of the water content of a thread core and the periphery section less than 10%.

[0035] Here, water content means what is calculated by count by (4) types from the weight (A (g)) of the thread before desiccation (or film), and the weight (B (g)) of a desiccation thread (or film).

Water content (%) =(A-B)x100/B (4)

Furthermore, in order to abolish the difference of the rate of drying of the core of a thread, and the periphery section, it is desirable to ventilate in a thread the dehumidification gas of the temperature which does not exceed 40 degrees C. It means passing a wind between hollow filament-like film as ventilating in a thread. In this invention, ventilating a with a 40-degree-C or more temperature [temperature 120 degrees C or less] dehumidification gas in a thread means performing stoving to a thread at the same time it ventilates in a thread.

[0036] In this invention, the microwave exposure to a thread is performed to two or more bundle coincidence in the sealed irradiation reactor (inside of a container). A thread is made to fix on the tray which consists of a metal member and a nonmetal (for example, plastics). Although the oscillation (heating of a water molecule) of the water molecule in a thread is made to consume microwave, excessive microwave causes heating and discharge of a metal member by one side. This heating and discharge cause the local temperature rise of a thread, and causes some poor engine performance of a thread. In order to lose the poor engine performance, in this invention, it made it possible to remove excessive microwave by passing in piping which installed the liquid with the high absorptive power of microwave in the irradiation reactor.

[0037] As for the absorptive power of microwave, it is desirable to pour a liquid with a big dielectric loss multiplier, since it is proportional to the magnitude of a dielectric loss multiplier, and it is desirable that it is the liquid whose values of a dielectric loss multiplier are 1-50. The liquid with which a dielectric loss multiplier exceeds 50 preferably [since the absorptive power of microwave is low at less than one] is water of a supercooling condition etc., and is not practical.

[0038] The dielectric loss multiplier in this invention means the product of the specific inductive capacity of the matter, and the value of a dielectric dissipation factor measured on the frequency of 2,450MHz (mega hertz). A dielectric loss multiplier as a liquid of 1-50 Alcohols; ethylene glycol, such as water; methyl alcohol and ethyl alcohol, Propylene glycol, a trimethylene glycol, 1, 2-butylene glycol, 1, 3-butylene glycol, 2-butine -1, 4-diol, the 2-methyl -2, 4-PENTA diol, 2-ethyl -1, 3-hexandiol, a glycorl, tetraethylene glycol, Water is the most desirable although the glycol system or glycerol system compound of a polyethylene glycol 200, a polyethylene glycol 300, and polyethylene-glycol 400 grade can be mentioned.

[0039] In this invention, a waveguide means the source of an exposure of microwave. As for a waveguide, it is desirable to use more than one in proportion to the number of threads. Moreover, although the high thing of the output of microwave is desirable, an optimum value changes with the amounts and water content of the film to dry.

[0040] Since a part of PVP in the film can be insolubilized in water by irradiating radiations, such as an electron ray and a gamma ray, at the film after desiccation, it is possible to reduce the elution volume from the film more. Whichever after a modularization of the exposure of a radiation is sufficient as a modularization front stirrup. Moreover, if all PVP in the film is insolubilized, while an elution volume can be reduced, it is not desirable from a leuco PENIA symptom being observed at the time of dialysis.

[0041] With PVP unnecessary in the water as used in the field of this invention, the meltable amount of PVP is deducted from the total amount of PVP in the film in water. The total amount of PVP in the film is easily computable with the elemental analysis of nitrogen and sulfur. Moreover, the amount of PVP meltable in water can be calculated by the following approaches. After dissolving the film thoroughly by the N-methyl-2-pyrrolidone, water is added in the obtained polymer solution and a polysulfone system polymer is settled thoroughly. After putting this polymer solution furthermore, the quantum of meltable PVP can be carried out to water by carrying out the quantum of the amount of PVP in a supernatant with liquid chromatography. [0042] Especially the dryer of this invention is equipment suitable for drying the humid film which does not contain the pit hold-back agent ****(ed) in the shape of a thread to two or more coincidence, and the film obtained using this equipment It is the desiccation film which does not contain a pit hold-back agent. The permeability of the polyvinyl pyrrolidone of 10-1.000mL/(m2 and hr-mmHg) and weight average molecular weight 40,000 at 75% or less [the amount of water penetration of pure water 1 And the transmission of the albumin in a cow plasma system is less than 0.3%, and it is the hollow filament-like blood purification film characterized by the variation in each engine performance being still smaller.

[0043] Although the beta 2-microglobulin (molecular weight: 11,800) made into the causative agent for the improvement of dialysis amyloid condition of disease is made to fully penetrate in the latest hemodialysis therapy, the film which has the fractionation nature which does not make most albumin (molecular weight: 67,000) penetrate is called for, and the permeability of albumin [in /in the film of this invention / a cow plasma system ji s 0.3% or less. Since it means losing greatly albumin effective in the inside of the body, it is not desirable as hemodialysis film that

the transmission of albumin exceeds 0.3%.

[0044] Moreover, the linear correlation which the amount of water penetration of pure water shows in the following formula (5) at the transmission (A (%)) of a polyvinyl pyrrolidone and the path clearance (B (a part for mL/J) of beta 2-microglobulin in the film of 10mL(s) / (m2 and hr-mmHg) more than exists. Although it is required for path clearance assessment to fabricate and process the module of the dialysis specification which has the effective film surface product of 2 1.5m, with this assessment approach, it is measurable in simple, and it is possible to guess path clearance easily.

B(part for mL/) = 0.636A + 29.99 (5)

Here, in accordance with the performance-evaluation criteria of Japanese Society for Artificial Organs, dialysis measurement of the path clearance of beta 2-microglobulin is carried out at the module of the effective film surface product of 2 under a part (film internal-surface side) for blood flow rate 200mL/, and the conditions for dialysing fluid flow rate 500mL/(film outside-surface side) 1.5m. Although, as for the path clearance of beta 2-microglobulin, various things are demanded according to a dialysis patient's physical strength, or the percentage of completion of condition of disease and condition of disease, if the transmission of a polyvinyl pyrrolidone exceeds 75%, since the transmission of albumin will exceed 0.3%, the transmission of a polyvinyl pyrrolidone needs to be 75% or less.

[0045] Moreover, since the pit hold-back agent is not being used for the film made by this invention by the production process, the effluent of the pit hold-back agent origin does not exist. Therefore, the absorbance of the effluent test fluid of the film of this invention is less than 0.04, and does not contain a pit hold-back agent in this test fluid. With effluent test fluid, it adjusts here based on hemodialysis apparatus acknowledgement criteria, and after putting 1.5g of desiccation hollow filament-like film cut to 2cm, and distilled-water-for-injection 150mL into the glassware which suits the alkali dissolution test of the glassware trial for injection of a Japanese pharmacopoeia, warming at 70**5 degrees C for 1 hour and removing the film after cooling, what added distilled water and was set to 150mL(s) is meant. An absorbance is measured with an ultraviolet absorption spectrum on the wavelength which shows the maximum absorption wavelength in 220-350nm, Although making an absorbance or less into 0.1 is defined on hemodialysis apparatus acknowledgement criteria, since the film of this invention does not hold a pit hold-back agent, it can attain less than 0.04. Moreover, about the existence of a pit hold-back agent, it is detectable by measuring the thing which condensed or removed [moisture this test fluid by well-known approaches, such as a gas chromatography, liquid chromatography, differential refractive media, an ultraviolet spectroscopy photometer, an infrared absorptiometry, nuclear-magnetic-resonance spectroscopy, and elemental analysis. Moreover, it is detectable also about whether a pit hold-back agent is included in the film with these measuring methods. [0046] The film made by this invention consists of a polysulfone system polymer and a

[0046] The film made by this invention consists of a polysulfone system polymer and a polyvinyl pyrrolidone, and the concentration of the polyvinyl pyrrolidone in a film internal surface is 30 - 45 % of the weight. By the polysulfone system film which is the hydrophilic property of the film internal surface which blood touches, and contains a polyvinyl pyrrolidone (only henceforth "PVP"), the PVP concentration of a film internal surface is important for a factor important for membranous haemocompatibility. When the PVP concentration of a film internal surface is too low, a film internal surface shows hydrophobicity, plasma protein tends to adsorb, and the coagulation of blood also tends to take place. That is, it becomes membranous poor haemocompatibility. Conversely, if the PVP concentration of a film internal surface is too

high, the elution volume to the blood system of PVP will increase, and the result which is not desirable will be given for the object and application of this invention. Therefore, the concentration of PVP of the film internal surface in this invention is 30 - 40% of range, and is 33 - 40% preferably.

[0047] The PVP concentration of a film internal surface is determined by the X ray photon spectrum (X-ray Photoelectron spectroscopy, henceforth, XPS). That is, after measurement of XPS of a film internal surface arranges a sample in on a double-sided tape, a cutter cuts it open to fiber shaft orientations, and after extending so that the membranous inside may become a table, it is measured by the usual approach. That is, C1s and O1s, the concentration for which it asked using the relative sensitivity coefficient of equipment attachment from the surface concentration (nitrogen atom concentration) of nitrogen and sulphuric surface concentration (sulfur atom concentration) is said from the integrated intensity of N1s and an S2p spectrum, and when a polysulfone system polymer is the structure of (2) types, it can ask by count by (6) types. PVP concentration (% of the weight) = C1M1x100/(C1M1+C2M2) (6)

It is here and is C1:nitrogen atom concentration (%).

C2: Sulfur atom concentration (%)

M1:P Molecular weight of the repeat unit of VP (111)

M2: Molecular weight of the repeat unit of a polysulfone system polymer (442)

[0048] Next, an example of the dryer of this invention is explained with reference to a drawing. The dryer shown in <u>drawing 1</u> consists of a revolution means (6) which fixes a container (1), a microwave exposure means (2), a means (3) to fix, and to carry in and take out a thread, a thread ventilation means (4), a means (5) to pass the liquid whose dielectric loss multipliers are 1-50, and a means (3) to fix, and to carry in and take out a thread, and is rotated.

[0049] The thread (7) fixed to the means (3) used in order to fix and to carry in and take out a thread is dried by the microwave irradiated from the microwave exposure means (2) within the container (1). A dehumidification gas is passed by the thread with a ventilation means (4) during a microwave exposure. Since a means (5) to pass the liquid whose dielectric loss multipliers are 1-50 is furthermore established in the container, as a result of absorbing surplus microwave and preventing a local temperature rise, all threads can be dried to homogeneity.

[0050] A container (1) has further the function which intercepts (a) microwave, the temperature control means which keeps the temperature in the (b) container constant, a means to circulate through the gas in the (c) container, and a means to permute the gas in the (d) container by the external gas. The function which intercepts microwave not only uses microwave for desiccation of a thread effectively, but is the insurance top need for an operator. Moreover, in order to abolish the engine-performance difference between desiccation batches, it is required to keep the temperature in a container constant. Furthermore, it is possible by replacing the gas in a container with circulation and the exterior to improve drying efficiency.

[0051] Although it is not used since microwave is irradiated at a thread (7), and a configuration and especially magnitude are not limited, in order to dry two or more threads uniformly, as for a microwave exposure means (2), it is desirable to install more than one in a container. The means (3) used in order to fix and to carry in and take out a thread is used in order to fix the location of the thread within a container and to dry efficiently. Furthermore, immobilization and carrying-in / taking-out means (3) can be removed from a dryer, in order to make immobilization and ejection of a thread easy. A thread ventilation means (4) is used in order to ventilate a gas in a thread.

[0052] Although what kind of thing is sufficient as it as long as a means (5) to pass the liquid

whose dielectric loss multipliers are 1-50 is a means by which a liquid can be poured, it is desirable that it is piping made from a nonmetal which makes the interior pass the liquid whose dielectric loss multipliers are 1-50. As for piping for liquid passage, it is desirable that it prepares metal members, such as a metal fixture, on the metal member in an irradiation reactor or the outskirts of it since excessive microwave tends to heat and discharge. The means (6) which fixes a means (3) to fix, and to carry in and take out a thread, and is rotated further is used in order to make the microwave exposure to a thread more equal. The revolution is horizontal. [0053]

[Example] Although the example of this invention is shown below, this invention is not limited to this.

(Measurement of the amount of platelet adhesion) The following operating procedure performed measurement of the amount of platelet adhesion to the film. Bundle ten hollow filament-like film with a die length of 15cm, produce a small module, and this module is made to pass heparinize Homo sapiens fresh blood for 15 minutes with the linear velocity of 1.0cm/second, and the physiological saline was continuously passed for 1 minute. Next, it computed as LDH activity of per a film surface product (internal-surface conversion) by carrying out the quantum of the lactate dehydrogenase (henceforh "LDH") emitted from the platelet which carried out beating of the hollow filament-like film to 5mm spacing extent, carried out ultrasonic irradiation in the physiological saline which contains the polyethylene-glycol alkylphenyl ether (Wako Pure Chem trade name triton X-100) 0.5%, and adhered to the film front face. Measurement of enzyme activity used the LDH mono-test kit (Boehringer Mannheim and made in Yamanouchi). In addition, it compared with a specimen and coincidence using the film (what was obtained by being immersed in ethanol for one day after the film of the example 1 in front of gamma irradiation was immersed in the sodium hypochlorite with an available chlorine concentration of 1,500 ppm for two days) which does not contain PVP as positive control.

[0054] (Plasma protein amount of adsorption) Except having carried out ultrafiltration time amount in 240 minutes, after the plasma protein amount of adsorption to the film performed the same actuation as the transmissometry of albumin, the physiological saline washed it for 1 minute. Next, it computed as the protein amount of adsorption per film weight by carrying out beating of the hollow filament-like film to 5mm spacing extent, and carrying out the quantum of the plasma protein stirred and extracted in the physiological saline which contains lauryl acid sodium 1.0%. Protein concentration used BCA protein assay (made in Pierce). In addition, it compared with a specimen and coincidence using the film (what was obtained by being immersed in ethanol for one day after the film of the example 1 in front of gamma irradiation was immersed in the sodium hypochlorite with an available chlorine concentration of 1,500 ppm for two days) which does not contain PVP as positive control.

[Example 1] (Film production and clearance of a residual solvent) It dissolved in 77.7 % of the weight of N.N-dimethylacetamide, and 18.0 % of the weight (product P-1700 made from Amoco Engineering Polymers) of polysulfones and 4.3 % of the weight (BASF A.G. make K90, weight average molecular weight 1,200,000) of polyvinyl pyrrolidones were used as the uniform solution. Here, the mixing ratio of the polyvinyl pyrrolidone to the polysulfone in a film production undiluted solution was 23.9 % of the weight. This film production undiluted solution was kept at 60 degrees C, and it was immersed to the coagulation bath which is made to breathe out from a spinning port (double annular nozzle 0.1mm - 0.2 mm to 0.3 mm), is made to pass a 0.96m air gap, and consists of 75-degree C water with the internal liquid which consists of a

mixed solution of 30 % of the weight of N,N-dimethylacetamide, and 70 % of the weight of water. At this time, from a spinning port to the coagulation bath was surrounded by the cylinder-like cylinder, the humidity in a cylinder was controlled and temperature was controlled for the nitrogen gas which contained the steam in the cylinder at 51 degrees C 54.5% with the sink. Spinning speed was fixed to a part for 80m/. Here, the ratio of the air gap to spinning speed was 0.012m/(a part for m/). The residual solvent in the film was removed after cutting the rolled-round thread by washing a 80-degree C hot water shower over 2 hours from the cutting plane upper part of a thread (die length of 30cm, 9400 film numbers).

[0056] The equipment shown in drawing 1 is used. (Desiccation of the humid film and insolubilization processing of PVP) The thread after the above-mentioned residual solvent clearance (the water content of the film of a thread core 300% 300%) [water content] The difference of the water content of the film [in / in the water content of the film of the thread periphery section / the core and the periphery section of a thread I has arranged each uniformly by regular intervals 300% by setting a thread to a tray for 90 bundles 0% in a microwave irradiation reactor (3m [/second] wind speed in an irradiation reactor). It fixed with the fixture so that the cutting plane of a thread might surely become a top or the bottom at this time. Furthermore, six waveguides were uniformly fixed by regular intervals, respectively so that microwave might be irradiated by each thread in an irradiation reactor at homogeneity. [0057] The microwave exposure was carried out for 18 minutes with the microwave output of 30kW (kilowatt) to this thread. The water content of the thread located in the core in an irradiation reactor at this event was 42% (for the water content of the film of a thread core, the water content of the film of 44% and the thread periphery section is 40%). Water content obtained less than 1% of desiccation film (thread) by reducing only the output of microwave to 21kW succeedingly, and carrying out a microwave exposure for 8 more minutes. [0058] Moreover, the following actuation was performed between the time of desiccation

initiation, and the time of desiccation termination.
(1) Water was poured in piping made from a nonmetal installed in the surroundings of the tray in

- an irradiation reactor.

 (2) It was made to rotate at the rate of 4 revolutions of a tray in 1 minute.
- (3) The temperature in an irradiation reactor was held at 70**2 degrees C.
- (4) Dehumidification air (10% or less of humidity) was ventilated from the lower part of each thread from the lower part of a thread to the upper part at the 4m [/second] wind speed. At this time, the 0.4m [/second] wind speed was measured by the thread average from the upper part of a thread at the time of desiccation initiation. Furthermore, a part of PVP in the film was insolubilized by irradiating the gamma ray of 2.5Mrad(s) at the obtained desiccation film (thread).

[0059] (Performance-evaluation result) Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all threads are shown in a table 1. When the thread (film) equivalent to an average value was used as the module of 2 the effective filtration area of 1.5m and path clearance of beta 2-microglobulin was surveyed, it turned out that it is by part for 32mL/1, and it became clear that it is equivalent to a part for path clearance 32.5mL/computed by having substituted it for the formula (5). Furthermore, when this module performed transit measurement of a urea and vitamin B12, the path clearance and the permeability of a urea were part 83% for 185mL(s)/, respectively. Moreover, about vitamin B12, it was part 48% for 95mL(s)/similarly. Measurement is [0044]. It carried out by the same

approach. Moreover, 62% of the total amount of PVP in the film was insoluble in water. As a result of carrying out a membranous eluting material test, the absorbance of effluent test fluid was 0.04 or less. Moreover, since the pit hold-back agent was not used, in effluent test fluid, the pit hold-back agent was contained and was not. Furthermore, as for this film, compared with the positive control film, the amount of platelet adhesion became low (positive control film 43 Unit/m2) clear [that the amount of adhesion of plasma protein is also low] (positive control film 63 mg/g). It became clear that this film has very few elution volumes from the film, and there is little adhesion of blood protein and a platelet from the engine performance mentioned above. Moreover, since the transmission of albumin was excellent also in the path clearance of beta 2-microglobulin few, it turned out that it is the film excellent also in the dialysis engine performance. Furthermore, it became clear that there are also few engine-performance differences with the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of all threads compared with the example 1 of a comparison. [00601]

Example 2] The same actuation as an example 1 was performed except having made the polyvinyl pyrrolidone in a film production undiluted solution, and having made N.N-dimethylacetamide into 78 % of the weight 4% of the weight. The mixing ratio of the polyvinyl pyrrolidone to the polysulfone in the film production undiluted solution at this time was 22.2 % of the weight. Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all the threads at this time are shown in a table 1. It became clear that this film has very few elution volumes from the film, and there is little adhesion of blood protein and a platelet. Moreover, there was little transmission of albumin, and since excelling also in the path clearance of beta 2-microglobulin was suggested, it turned out that it is the film excellent also in the dialysis engine performance. Furthermore, it became clear that there are also few engine-performance differences with the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of all threads compared with the example 1 of a comparison.

F00611 [Example 3] The same actuation as an example 1 was performed except having made the polyvinyl pyrrolidone in a film production undiluted solution, and having made N,Ndimethylacetamide into 77,2 % of the weight 4.8% of the weight. The mixing ratio of the polyvinyl pyrrolidone to the polysulfone in the film production undiluted solution at this time was 26.7 % of the weight. Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all the threads at this time are shown in a table 1. It became clear that this film has very few elution volumes from the film, and there is little adhesion of blood protein and a platelet, Moreover, there was little transmission of albumin, and since excelling also in the path clearance of beta 2-microglobulin was suggested, it turned out that it is the film excellent also in the dialysis engine performance. Furthermore, it became clear that there are also few engine-performance differences with the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of all threads compared with the example 1 of a comparison. [0062]

[Example 4] The same actuation as an example 3 was performed except having used the mixing

solution which turns into internal liquid from 52 % of the weight of N,N-dimethylacetamide, and 48 % of the weight of water. Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all the threads at this time are shown in a table 1. It became clear that this film has very few elution volumes from the film, and there is little adhesion of blood protein and a platelet. Moreover, there was little transmission of albumin, and since excelling also in the path clearance of beta 2-microglobulin was suggested, it turned out that it is the film excellent also in the dialysis engine performance. Furthermore, it became clear that there are also few engine-performance differences with the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of all threads compared with the example 1 of a comparison. [0063]

[The example 1 of a comparison] The same actuation as an example 1 was performed except there being nothing gamma ray Teru putting. This result is shown in a table 2. It became clear that the absorbance of elution test liquid exceeds 0.04 for elution of PVP. The performance evaluation performed only the thread located in the core in an irradiation reactor. [0064]

[The example 2 of a comparison] The same actuation as an example 1 was performed except having made the polyvinyl pyrrolidone in a film production undiluted solution, and having made N,N-dimethylacetamide into 77.0 % of the weight 5.0% of the weight. The mixing ratio of the polyvinyl pyrrolidone to the polysulfone in the film production undiluted solution at this time was 27.8 % of the weight. The engine performance of this thread is shown in a table 2. Since the mixing ratio of the polyvinyl pyrrolidone to the polysulfone in a film production undiluted solution is over 27 % of the weight, an elution volume and film internal-surface PVP concentration are increasing. The performance evaluation performed only the thread located in the core in an irradiation reactor.

[0065]

[The example 3 of a comparison] The same actuation as an example 1 was performed except having made the polyvinyl pyrrolidone in a film production undiluted solution, and having made N,N-dimethylacetamide into 78.4 % of the weight 3.6% of the weight. The mixing ratio of the polyvinyl pyrrolidone to the polysulfone in the film production undiluted solution at this time was 20.0 % of the weight. The engine performance of this thread is shown in a table 2. It became clear that the amount of PVP of a film internal surface is less than 30%. The performance evaluation performed only the thread located in the core in an irradiation reactor. [0066]

The example 4 of a comparison] The same actuation as an example 3 was performed except having used the mixing solution which turns into internal liquid from 60 % of the weight of N,N-dimethylacetamide, and 40 % of the weight of water. The engine performance of this thread is shown in a table 2. This film was engine performance for which the permeability of albumin is over 0.3%, and the permeability of PVP also exceeds 75%. The performance evaluation performed only the thread located in the core in an irradiation reactor.

[0067]

[The example 5 of a comparison] The same actuation as an example 1 was performed except having used the mixing solution which turns into internal liquid from 10 % of the weight of N,N-dimethylacetamide, and 90 % of the weight of water. The engine performance of this thread is shown in a table 2. The amount of water penetration of pure water was the engine performance

which is less than 10mL(s)/(m2 and hr-mmHg). The performance evaluation performed only the thread located in the core in an irradiation reactor. [0068]

[The example 6 of a comparison] The same actuation as an example 1 was performed except having made drying temperature into 170 degrees C. The engine performance of this thread is shown in a table 2. All PVP in the film of this film was insoluble in water. This film is used as the module of 2 the effective filtration area of 1.5m, and it is [0044]. When it was alike and clinical blood assessment was carried out by the shown approach, the leuco PENIA symptom that a dialysis patient's white blood cell count fell temporarily was observed. The performance evaluation performed only the thread located in the core in an irradiation reactor, [0069]

[The example 7 of a comparison] The same actuation as an example 1 was performed except not pouring water in piping made from the nonmetal installed in the surroundings of the tray in an irradiation reactor, and the tray lower part. Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all the threads at this time are shown in a table 3. Discharge was observed from the metal member of the tray between microwave exposures. In the thread which exists on the outskirts of a metal fixture of a tray with this discharge and heating, that whose amount of water penetration is 0 (zero) was seen, and it became clear that the thread of the poor engine performance is generated clearly. [00701]

[A table 1]

	実施例1		実施例 2		実施例3		実施例4	
	全条東 の平均 値	最外性 能の糸 束の値	全糸克 の平均 値	最外性 能の糸 束の値	全条束 の平均 値	最外性 他の糸 束の値	全条東 の平均 値	最外性 能の糸 束の値
膜内径(μm)	195	195	200	200	195	195	196	198
膜外径(µ m)	285	286	288	290	285	283	286	289
透水量(mL/(m²· hr·mmHg))	22	19	18	15	23	20	420	400
アルプミンの 透過率 (%)	0.01 以下	0.01 以下	0.01 以下	0.01 以下	0.01 以下	0.01 以下	0.01 以下	0.01 以下
PVP の 透過率 (%)	4	4	4	٠	5	5	72	72
膜内表面 PVP 袭 度(重量%)	35	35	30	80	44	44	36	36
水に不存である PVP の有無	有り	有り	有り	有り	有り	有り	有り	有り
溶出物試験液の 吸光度	0.022	0.022	0.020	0.020	0.035	0.035	0.022	0.022
溶出物試験液中 の膜孔保持剤の 有版	無し	無し	無し	無し	無し	無し	無し	無し
血小板粘着量 (LDH-Unit/m*)	15.6	15.7	17.7	17.5	4.1	4.1	14.0	14.1
血素タンパク質 吸着量 (mg/g)	2.2	2.2	5.5	5.6	1.9	1.9	2.0	2.0
乾燥前温潤膜の 透水量(mL/(m²・ hr·mmHg))	190	190	170	170	260	260	8100	3100
乾燥前型潤膜の アルブミンの 透過率 (%)	0.32	0.32	0.34	0.34	0.35	0.35	0.51	0.51
乾燥前温凋膜の PVPの 透過率(%)	77	77	84	84	84	84	99	99

[0071] [A table 2]

[0072] [A table 3]

[0073]

[Effect of the Invention] According to the dryer of this invention, a hollow fiber can be dried, without producing the poor engine performance in some threads, when drying the humid film *****(ed) in the shape of a thread to two or more bundle coincidence by microwave exposure. The manufactured hollow fiber has very few elution volumes from the film, and since it has the outstanding dialysis engine performance with little adhesion of blood protein and a platelet, it can be used for a remedy application, a medical-application way, and a general industrial application.

TECHNICAL FIELD

[Field of the Invention] This invention relates to the dryer of a hollow fiber. More, this invention is equipment for drying the humid film ****(cd) in the shape of a thread by microwave exposure at two or more bundle coincidence, and relates to the dryer aiming at preventing the poor engine performance of some [by the local temperature rise in an irradiation reactor] threads, and drying all threads to homogeneity at a detail.

PRIOR ART

[Description of the Prior Art] The technique of using the film which has alternative permeability progresses splendidly in recent years, and utilization in extensive fields, such as a separation filter of a gas or a liquid, hemodialyzer in the medical field, a blood filter, and a constituent-ofblood selection separation filter, is progressing until now. As an ingredient of this film, polymers, such as cellulose types (a regenerated-cellulose system, a cellulose acetate system, chemistry denaturation cellulose type, etc.), a polyacrylonitrile system, a polymethylmethacrylate system, a polysulfone system, a polyethylene vinyl alcohol system, and a polyamide system, have been used. Among these, since haemocompatibility of a polysulfone system polymer improves by in addition to the thermal stability, acid-proof, and alkali resistance adding a hydrophilization agent to a film production undiluted solution, and producing a film to it, it was observed as a semipermeable membrane raw material, and research has been advanced. [0003] On the other hand, in order to paste up the film and to produce a module, it is necessary to dry the film but, and if the porous membrane which consists of an organic macromolecule, the permeable membrane which consists of hydrophobic polymers, such as a polysulfone system, especially, and ultrafiltration membrane are dried after film production, it is known that the amount of water penetration will fall remarkably compared with desiccation before. Therefore, the film always needed to be dealt with in the damp or wet condition and the condition of having made water immersed.

[0004] The approach taken from the former as this cure was putting low volatility organic liquids, such as a glycerol, in the hole part in porous membrane after film production and before desiccation. However, since hyperviscosity [a low volatility organic liquid] generally, although washing clearance took time amount, module molding of the film was carried out and after washing was a minute amount, the problem was to see the effluent of the low volatility organic liquid origin etc. in module mounting fluid (various derivatives which reacted chemically with the low volatility organic liquid, and were generated).

[0005] Although the method of using the mineral salt of a calcium chloride etc. instead of a low volatility organic liquid is shown in JP,6-277470,A as an approach of drying without using a low volatility organic liquid, there is no change in the need of carrying out washing clearance. Moreover, though it is a minute amount, it is apprehensive about the adverse effect which the mineral salt which remained has on a dialysis patient.

[0006] Moreover, the manufacture approach of the hollow fiber which irradiates microwave is shown in JP,11-332980, A as the membranous desiccation approach, performing moist heat treatment by the steam to a hollow fiber. However, since steam treatment is carried out in order to prevent deformation of the film, though it is desiccation, there is a fault which lengthens the drying time, and further, since it is the desiccation after making low volatility organic liquids, such as a glycerol, adhere, the object of reducing the effluent from the film is not attained. [0007] The hydrophilization film containing the polyvinyl pyrrolidone which carried out desiccation processing to JP,8-5231,A and JP,8-968,B, without using a low volatility organic liquid is indicated. Although the engine performance which separates a plasma component from blood is indicated by these, since plasma protein penetrates, it turns out that it is not effective as permeable membrane. Moreover, since the polyvinyl pyrrolidone is dried at the temperature decomposed and denatured, in the object of reducing the effluent from the film, it is the process

which is not very desirable.

[0008] Moreover, the hollow fiber to which blood made abundance of the polyvinyl pyrrolidone in the film internal surface which contacts directly about 20 - 50% is indicated by JP,6-296686,A. This shows the humid film for mainly lessening affixes, such as blood protein and a platelet. Therefore, although it is shown that aging of a filtrate rate cannot happen easily since blood protein cannot adhere easily, there is no publication about dialysis engine performance, like the permeability of albumin is low.

[0009] this invention person proposed and did patent application of the approach of drying the humid film which has the specific engine performance, without sinking in low volatility organic liquids, such as a glycerol, and manufacturing the highly efficient blood purification film (application for patent No. 22246 [2001 to]). However, when it was made the shape of a thread as a result of a subsequent examination and dried, it became clear by the core of a thread, and the film of the periphery section that some engine-performance difference arises.

[0010] Then, this invention person proposed and did patent application of the approach of

nanufacturing the blood purification film which has improved the engine-performance difference in a thread (an application for patent No. 309673 [2001 to], an application for patent No. 309674 [2001 to], application for patent No. 309675 [2001 to]. However, in order to dry two or more threads simultaneously, when microwave irradiation equipment (irradiation reactor) was scaled up as a result of the further examination of this invention persons' after that, also by these approaches, the local temperature rise of a thread happened and it became clear that some threads become poor [the engine performance].

EFFECT OF THE INVENTION

[Effect of the Invention] According to the dryer of this invention, a hollow fiber can be dried, without producing the poor engine performance in some threads, when drying the humid film *****(ed) in the shape of a thread to two or more bundle coincidence by microwave exposure. The manufactured hollow fiber has very few elution volumes from the film, and since it has the outstanding dialysis engine performance with little adhesion of blood protein and a platelet, it can be used for a remedy application, a medical-application way, and a general industrial application.

TECHNICAL PROBLEM

[Problem(s) to be Solved by the Invention] The technical problem of this invention is the dryer of the hollow fiber for drying the humid film ****(ed) in the shape of a thread to two or more coincidence by microwave exposure, and is to offer the dryer aiming at preventing the poor engine performance of some [by the local temperature rise in an irradiation reactor] threads, and drying all threads to homogeneity.

MEANS

[Means for Solving the Problem] There was no desiccation film for blood purification which has the dialysis engine performance dried without using the pit hold-back agent leading to the effluent from a module like the above to this invention person's etc. application invention (application for patent No. 22246 [2001 to]). When the cause was dried without using a pit hold-back agent, the damp or wet condition was becoming the film of completely different low engine performance. Then, this invention person etc. produces beforehand the humid film which has the specific engine performance which is a diameter of an osculum in the amount of high water penetration rather than the target engine performance by application in the first half. There is nothing to the former of manufacturing the film which is made dried and contracting this and has the dialysis engine performance of a target. As a result of advancing research wholeheartedly based on the way of thinking that nobody thought of, there were very few effluents and the approach of obtaining the film which has the dialysis engine performance adhesion of blood protein and a platelet excelled [engine performance] in little permselectivity was offered. [0013] Then, when research was advanced further, this invention persons discovered that dispersion arose in the amount of water penetration, or penetrable ability by the core of a thread, and the film of the periphery section, when manufacturing the blood purification film by the approach of an application for patent No. 22246 [2001 to], and the humid film was made into the shape of a thread and it dried. Then, in order to abolish dispersion, as a result of inquiring wholeheartedly, with devising a desiccation process, it found out that dispersion was suppressed and it newly carried out patent application (an application for patent No. 309673 [2001 to], an application for patent No. 309674 [2001 to], application for patent No. 309675 [2001 to]). [0014] However, in order to dry two or more threads simultaneously, as a result of scaling up microwave irradiation equipment as a result of a subsequent examination, the thread which becomes poor [the engine performance] was generated. Although a cause is not clear, when the metal member which constitutes the tray used since a thread is fixed by the scale-up heats and discharges, it is guessed that some threads in an irradiation reactor carry out a temperature rise quickly, and it becomes poor [the engine performance]. It is difficult to produce only with plastics, without using a metal, since a tray is used also for receipts and payments of the thread into an irradiation reactor in order for a mechanical strength to fall. Then, in order to prevent heating and discharge of a metal member, as a result of inquiring wholeheartedly, it results in header this invention that some local temperature rises of a thread can be suppressed by passing the fluid (liquid) from which microwave [surplus / except being used for the oscillation (heating of a water molecule) of the water molecule in a thread Lis removed efficiently in an irradiation reactor especially on the outskirts of a metal member or the outskirts of it. [0015] This invention is equipment for drying the humid film ****(ed) in the shape of (1) thread. In a container Namely, a microwave exposure means, The dryer of the hollow fiber characterized by having a means to fix, and to carry in and take out the humid film ****(ed) in the shape of a thread, and a means to pass in a container the liquid whose dielectric loss multipliers are 1-50, (2) Equipment of the above-mentioned (1) publication characterized by having piping for passing the liquid whose dielectric loss multipliers are 1-50 around the metal part in a container, or a metal part, (3) The above (1) characterized by two or more means to irradiate microwave existing, or a manufacturing installation given in (2), (4) The means used in order to fix and take the manufacturing installation given in either of - (3) and (1) (5) thread which are characterized

by having a means to ventilate to a thread in and out is fixed. A manufacturing installation given in either of (1) - (4) characterized by having the means furthermore rotated, (6) A manufacturing installation given in either of (1) - (5) characterized by having the function in which a container intercepts microwave, (7) A manufacturing installation given in either of (1) - (6) characterized by having the function which a container keeps the temperature of the gas in a container constant, (8) A manufacturing installation given in either of (1) - (7) characterized by having the function in which a container circulates through the gas in a container, (9) It is related with equipment a manufacturing installation given in either of - (8), and given in either of abovementioned (1) - (9) whose (1) (10) hollow fiber to which a container is characterized by having the function to replace the gas in a container with an external gas is hollow filament-like blood purification film.

[0016]

[Embodiment of the Invention] Although this invention is not necessarily restricted to the dryer of the hollow filament-like blood purification film, below, it explains the dryer of the hollow filament-like blood purification film (only henceforth the "film" or the "hollow filament-like film") of this invention. Although it is desirable that a pit hold-back agent is not included as for the hollow filament-like blood purification film manufactured using the dryer of this invention, it is not necessarily restricted to it.

[0017] Below, the manufacture approach of the hollow filament-like blood purification film dried using the dryer of this invention is explained first. The manufacture approach of the hollow filament-like blood purification film of this invention manufactures the humid film of a big aperture beforehand in the amount of high water penetration, and has the description to make it dry without carrying out impregnation of the pit hold-back agent after desolventization. [0018] Usually, it is classified into the inorganic substance with which the pit hold-back agent used in case the hollow filament-like blood purification film is manufactured is anxious about the toxicity to the organic substance and the body which have viscosity. Since the pit hold-back agent which consists of the organic substance which has viscosity has high viscosity and it is difficult to carry out washing clearance thoroughly, it can change with the cause which remains in the film, is made to increase the elution volume from the film, reacts chemically with the pit hold-back agent which remained further, and produces deleterious material. On the other hand, since it remains in a minute amount also in the pit hold-back agent which consists of an inorganic substance, it is apprehensive about the adverse effect which it has on a dialysis patient, [0019] The pit hold-back agent as used in the field of this invention is matter put in the hole part in the film in the manufacture process before drying in order to prevent the degradation at the time of desiccation. It is possible by immersing the humid film in the solution containing a pit hold-back agent to put this hold-back agent in the hole part in the film. If even washing and clearance carry out a pit hold-back agent also even for after desiccation, it is possible to hold engine performance, such as the amount of water penetration equivalent to the humid film and rejection, according to the effectiveness of a pit hold-back agent,

[0020] As a pit hold-back agent, the mineral salt of organic compounds, such as ethylene glycol, propylene glycol, a trimethylene glycol, 1, 2-butylene glycol, 1, 3-butylene glycol, and a sucrose fatty acid ester, and a calcium chloride, a sodium carbonate, sodium acetate, magnesium sulfate, a sodium sulfate, a zinc chloride, etc. can be mentioned.

[0021] Moreover, in this invention, the amounts of water penetration are 100mL(s) / (m2 and hrmmHg) above in the amount of high water penetration, and the humid film of a big aperture means the humid film which the transmission of the polyvinyl pyrrolidone of weight average

molecular weight 40,000 exceeds 75%, and has the engine performance whose transmission of the albumin in a cow plasma system is 0.3% or more.

[0022] The permeability of cow plasma albumin can be measured by the following approaches. First, 100 hollow filament-like film with a die length of 20cm is bundled, and a small module is produced. The heparinize cow plasma (heparin 5000 IU/I, protein concentration 6.0 g/dL (deciliter)) warmed to this module at 37 degrees C is passed with the linear velocity of 1.0cm/second to a film internal-surface side, a module enters, and an ultrafiltration is performed for 30 minutes in mean-pressure 50mmHg of ** and ***** It computes permeability by measuring measurement of the concentration of the obtained filtrate and former liquid on the wavelength of 280mm with an ultraviolet spectroscopy photometer, and substituting it for the following formula (1).

Permeability (%) =(absorbance of filtrate) x100/(absorbance of former liquid) (1)

[0023] The transmission of a polyvinyl pyrrolidone is called for by performing the same actuation as measurement of the transmission of cow plasma albumin except having used the water solution to filter as the phosphoric-acid buffer (0.15-mol [//1.], pH7.4) water solution of 3% of the weight of a polyvinyl pyrrolidone (BASF A.G. make K30, weight average molecular weight 40,000), and the module having entered and having set the mean pressure of ** and **** to 200mmHg(s).

[0024] After the humid film of a big aperture making a polysulfone system polymer (only henceforth a "polymer"), a polyvinyl pyrrolidone, and the film production undiluted solution that consists of a solvent breathe out from a double annular nozzle with internal liquid in the amount of high water penetration and passing an air gap, in the manufacture approach made to solidify by the coagulation bath, it can manufacture by using the water solution of the solvent of a polymer for internal liquid.

[0025] Although internal liquid makes a membranous centrum and a membranous internal surface form, it turns out that the aperture of an internal surface becomes large in proportion to the solvent concentration in internal liquid. In this invention, since the permeable membrane of the engine performance of a target is obtained by carrying out drying shrinkage of the humid film, compared with the time of manufacturing the humid film which has the target solvent concentration in internal liquid dialysis-engine performance, it is necessary to make it high concentration.

[0026] What has the repeat unit shown by the following formula (2) or the formula (3) as a polysulfone system polymer used by this invention is mentioned. In addition, Ar in a formula shows the phenyl group of two permutations in the para position, and limits neither about polymerization degree nor especially molecular weight.

-O-Ar-C(CH3)2-Ar-O-Ar-SO2-Ar- (2)

-O-Ar-SO2-Ar- (3)

[0027] Since the hydrophilization effectiveness to the film is as high as the thing of the amount of macromolecules and little and as sufficient effectiveness as the thing of the amount of macromolecules can demonstrate a polyvinyl pyrrolidone, in this invention, a with a weight average molecular weight of 900,000 or more polyvinyl pyrrolidone is used. Although it is necessary to make the polyvinyl pyrrolidone of a large quantity remain in the film in order to give the hydrophilization effectiveness to the film using the polyvinyl pyrrolidone which has weight average molecular weight smaller than 900,000 for this reason, the effluent from the film will increase. Moreover, in order to lower an effluent to reverse, when ullage in the inside of the film of the polyvinyl pyrrolidone of weight average molecular weight smaller than 900,000 was

lessened, the hydrophilization effectiveness becomes imperfection and hemodialysis is performed as a result, lowering of filtration velocity with time is caused and sufficient effectiveness cannot be demonstrated.

[0028] Moreover, both the solvents used for the dissolution of a polysulfone system polymer and a polyvinyl pyrrolidone dissolve both these, and are a N-methyl-2-pyrrolidone, N.N-dimethylacetamide, etc.

[0029] Especially if the polymer concentration in a film production undiluted solution is the range of concentration where the film which could produce the film and was obtained has the engine performance as film, it will not be restricted, but it is 10 - 30 % of the weight preferably five to 35% of the weight, In order to attain permeable high ability, the lower one of polymer concentration is good, and its 10 - 25 % of the weight is desirable.

[0030] A still more important thing is the addition of a polyvinyl pyrrolidone, and the mixing ratio of the polyvinyl pyrrolidone to a polymer is 20 - 27% of the weight still more preferably ten to 27% of the weight preferably 27 or less % of the weight. It is difficult to be in the inclination whose elution volume increases, when the mixing ratio of the polyvinyl pyrrolidone to a polymer exceeds 27% of the weight, and to obtain the film of sponge structure, since the viscosity of a film production undiluted solution is low at less than 10% of the weight. Moreover, what is necessary is it to be also possible for to add the 4th component, such as water and a poor solvent, in order to control undiluted solution viscosity and a dissolution condition, and for combination just to perform the class and an addition at any time.

[0031] Water is desirable although the liquid which does not dissolve polymers, such as aliphatic hydrocarbon, such as alcohols; ether;n-hexanes, such as a water; methanol and ethanol, and n-heptane, for example is used as a coagulation bath. Moreover, it is also possible to control a coagulation rate by adding a little the solvent which dissolves a polymer in a coagulation bath. -30-90 degrees C of 0-90 degrees C of temperature of a coagulation bath are 0-80 degrees C still more preferably preferably. The temperature of a coagulation bath exceeds 90 degrees C, or the surface state of the hollow filament-like film in a coagulation bath cannot be easily stabilized as it is less than -30 degrees C.

[0032] Desiccation after desolventization washing is performed to the thread which is fully carrying out humidity with the gestalt (it is only henceforth called a "thread") of the thread which bundled several hollow filament-like many film by carrying out a microwave exposure. However, since it is suitable for drying the thread of low water content to homogeneity more, in order to prevent deformation and melting of the film by fault heating, when the average water content of a thread becomes 50 - 70% more preferably 20 to 70%, it is desirable [a microwave exposure] to reduce the output of a microwave exposure.

[0033] Furthermore, it is desirable that the difference of the water content of the film in the core and the periphery section of this thread in the event of the average water content of a thread becoming 50 - 70% preferably 20 to 70% is less than 5% in order to suppress dispersion in the engine performance. It is possible at the time of desiccation to make the difference of the water content of the film in the core and the periphery section of a thread less than 5% by ventilating in a thread. Here, the core of a thread means one sixth of the range of a diameter from the central point in the circle configuration cross section of a thread means one sixth of the range of a diameter from the circle configuration cross section of a thread means one sixth of the range of a diameter from a periphery in the circle configuration cross section of a thread.

[0034] Moreover, since it is the same, it is desirable also about the thread at the time of desiccation initiation that the difference of the water content of the film in the core and the

periphery section of a thread is less than 10%. If the thread after desolventization is left, since a difference will arise in the water content of the core of a thread, and the periphery section, it is possible by immersing a thread underwater again, just before going into a desiccation process to make the difference of the water content of a thread core and the periphery section less than 10%.

[0035] Here, water content means what is calculated by count by (4) types from the weight (A (g)) of the thread before desiccation (or film), and the weight (B (g)) of a desiccation thread (or film)

Water content (%) =(A-B)x100/B (4)

Furthermore, in order to abolish the difference of the rate of drying of the core of a thread, and the periphery section, it is desirable to ventilate in a thread the dehumidification gas of the temperature which does not exceed 40 degrees C. It means passing a wind between hollow filament-like film as ventilating in a thread. In this invention, ventilating a with a 40-degree-C or more temperature [temperature 120 degrees C or less] dehumidification gas in a thread means performing stoving to a thread at the same time it ventilates in a thread.

[0036] In this invention, the microwave exposure to a thread is performed to two or more bundle coincidence in the sealed irradiation reactor (inside of a container). A thread is made to fix on the tray which consists of a metal member and a nonmetal (for example, plastics). Although the oscillation (heating of a water molecule) of the water molecule in a thread is made to consume microwave, excessive microwave causes heating and discharge of a metal member by one side. This heating and discharge cause the local temperature rise of a thread, and causes some poor engine performance of a thread. In order to lose the poor engine performance, in this invention, it made it possible to remove excessive microwave by passing in piping which installed the liquid with the high absorptive power of microwave in the irradiation reactor.

[0037] As for the absorptive power of microwave, it is desirable to pour a liquid with a big dietertic loss multiplier, since it is proportional to the magnitude of a dielectric loss multiplier, and it is desirable that it is the liquid whose values of a dielectric loss multiplier are 1-50. The liquid with which a dielectric loss multiplier exceeds 50 preferably [since the absorptive power of microwave is low at less than one] is water of a supercooling condition etc., and is not practical.

10038] The dielectric loss multiplier in this invention means the product of the specific inductive capacity of the matter, and the value of a dielectric dissipation factor measured on the frequency of 2,450MHz (mega hertz). A dielectric loss multiplier as a liquid of 1-50 Alcohols; ethylene glycol, such as water; methyl alcohol and ethyl alcohol, Propylene glycol, a trimethylene glycol, 1, 2-butylene glycol, 2-butylene glycol, 1, 3-butylene glycol, 2-butine -1, 4-diol, the 2-methyl -2, 4-PENTA diol, 2-ethyl -1, 3-hexandiol, a glycorol, tetraethylene glycol, Water is the most desirable although the glycol system or glycerol system compound of a polyethylene glycol 200, a polyethylene glycol 300, and polyethylene-glycol 400 grade can be mentioned.

[0039] In this invention, a waveguide means the source of an exposure of microwave. As for a waveguide, it is desirable to use more than one in proportion to the number of threads. Moreover, although the high thing of the output of microwave is desirable, an optimum value changes with the amounts and water content of the film to dry.

[0040] Since a part of PVP in the film can be insolubilized in water by irradiating radiations, such as an electron ray and a gamma ray, at the film after desiccation, it is possible to reduce the elution volume from the film more. Whichever after a modularization of the exposure of a radiation is sufficient as a modularization front stirrup. Moreover, if all PVP in the film is

insolubilized, while an elution volume can be reduced, it is not desirable from a leuco PENIA symptom being observed at the time of dialysis.

[0041] With PVP unnecessary in the water as used in the field of this invention, the meltable amount of PVP is deducted from the total amount of PVP in the film in water. The total amount of PVP in the film is easily computable with the elemental analysis of nitrogen and sulfur. Moreover, the amount of PVP meltable in water can be calculated by the following approaches. After dissolving the film thoroughly by the N-methyl-2-pyrrolidone, water is added in the obtained polymer solution and a polysulfone system polymer is settled thoroughly. After putting this polymer solution furthermore, the quantum of meltable PVP can be carried out to water by carrying out the quantum of the amount of PVP in a supernatant with liquid chromatography. [0042] Especially the dryer of this invention is equipment suitable for drying the humid film which does not contain the pit hold-back agent ****(ed) in the shape of a thread to two or more coincidence, and the film obtained using this equipment It is the desiccation film which does not contain a pit hold-back agent. The permeability of the polyvinyl pyrrolidone of 10-1.000mL/(m2 and hr-mmHg) and weight average molecular weight 40,000 at 75% or less [the amount of water penetration of pure water] And the transmission of the albumin in a cow plasma system is less than 0.3%, and it is the hollow filament-like blood purification film characterized by the variation in each engine performance being still smaller.

[0043] Although the beta 2-microglobulin (molecular weight: 11,800) made into the causative agent for the improvement of dialysis amyloid condition of disease is made to fully penetrate in the latest hemodialysis therapy, the film which has the fractionation nature which does not make most albumin (molecular weight: 67,000) penetrate is called for, and the permeability of albumin [in / in the film of this invention / a cow plasma system] is 0.3% or less. Since it means losing greatly albumin effective in the inside of the body, it is not desirable as hemodialysis film that the transmission of albumin exceeds 0.3%.

[0044] Moreover, the linear correlation which the amount of water penetration of pure water shows in the following formula (5) at the transmission (A (%)) of a polyvinyl pyrrolidone and the path clearance (B (a part for mL/)) of beta 2-microglobulin in the film of 10mL(s) (m2 and hr-mmHg) more than exists. Although it is required for path clearance assessment to fabricate and process the module of the dialysis specification which has the effective film surface product of 2 1.5m, with this assessment approach, it is measurable in simple, and it is possible to guess path clearance easily.

B(part for mL/) = 0.636A + 29.99 (5)

Here, in accordance with the performance-evaluation criteria of Japanese Society for Artificial Organs, dialysis measurement of the path clearance of beta 2-microglobulin is carried out at the module of the effective film surface product of 2 under a part (film internal-surface side) for blood flow rate 200mL/, and the conditions for dialysing fluid flow rate 500mL/(film outside-surface side) 1.5m. Although, as for the path clearance of beta 2-microglobulin, various things are demanded according to a dialysis patient's physical strength, or the percentage of completion of condition of disease and condition of disease, if the transmission of a polyvinyl pyrrolidone exceeds 75%, since the transmission of albumin will exceed 0.3%, the transmission of a polyvinyl pyrrolidone needs to be 75% or less.

[0045] Moreover, since the pit hold-back agent is not being used for the film made by this invention by the production process, the effluent of the pit hold-back agent origin does not exist. Therefore, the absorbance of the effluent test fluid of the film of this invention is less than 0.04, and does not contain a pit hold-back agent in this test fluid. With effluent test fluid, it adjusts

here based on hemodialysis apparatus acknowledgement criteria, and after putting 1.5g of desiccation hollow filament-like film cut to Zem, and distilled-water-for-injection 150mL into the glassware which suits the alkali dissolution test of the glassware trial for injection of a Japanese pharmacopoeia, warming at 70**5 degrees C for 1 hour and removing the film after cooling, what added distilled water and was set to 150mL(s) is meant. An absorbance is measured with an ultraviolet absorption spectrum on the wavelength which shows the maximum absorption wavelength in 220-350nm. Although making an absorbance or less into 0.1 is defined on hemodialysis apparatus acknowledgement criteria, since the film of this invention does not hold a pit hold-back agent, it can attain less than 0.04. Moreover, about the existence of a pit hold-back agent, it is detectable by measuring the thing which condensed or removed [moisture] this test fluid by well-known approaches, such as a gas chromatography, liquid chromatography, differential refractive media, an ultraviolet spectroscopy photometer, an infrared absorptiometry, nuclear-magnetic-resonance spectroscopy, and elemental analysis. Moreover, it is detectable also about whether a pit hold-back agent is included in the film with these measuring methods.

[0046] The film made by this invention consists of a polysulfone system polymer and a polyvinyl pyrrolidone, and the concentration of the polyvinyl pyrrolidone in a film internal surface is 30 - 45 % of the weight. By the polysulfone system film which is the hydrophilic property of the film internal surface which blood touches, and contains a polyvinyl pyrrolidone (only henceforth "PVP"), the PVP concentration of a film internal surface is important for a factor important for membranous haemocompatibility. When the PVP concentration of a film internal surface is too low, a film internal surface shows hydrophobicity, plasma protein tends to adsorb, and the coagulation of blood also tends to take place. That is, it becomes membranous poor haemocompatibility. Conversely, if the PVP concentration of a film internal surface is too high, the elution volume to the blood system of PVP will increase, and the result which is not desirable will be given for the object and application of this invention. Therefore, the concentration of PVP of the film internal surface in this invention is 30 - 40% of range, and is 33 - 40% preferably.

[0047] The PVP concentration of a film internal surface is determined by the X ray photon spectrum (X-ray Photoelectron spectroscopy, henceforth, XPS). That is, after measurement of XPS of a film internal surface arranges a sample in on a double-sided tape, a cutter cuts to open to fiber shaft orientations, and after extending so that the membranous inside may become a table, it is measured by the usual approach. That is, C1s and O1s, the concentration for which it asked using the relative sensitivity coefficient of equipment attachment from the surface concentration (nitrogen atom concentration) of nitrogen and sulphuric surface concentration (sulfur atom concentration) is said from the integrated intensity of N1s and an S2p spectrum, and when a polysulfone system polymer is the structure of (2) types, it can ask by count by (6) types. PVP concentration (% of the weight) = C1M1x100/(C1M1+C2M2) (6)

It is here and is C1:nitrogen atom concentration (%).

C2: Sulfur atom concentration (%)

M1 </SUB>: P Molecular weight of the repeat unit of VP (111)

M2: Molecular weight of the repeat unit of a polysulfone system polymer (442)

[0048] Next, an example of the dryer of this invention is explained with reference to a drawing. The dryer shown in <u>drawing 1</u> consists of a revolution means (6) which fixes a container (1), a microwave exposure means (2), a means (3) to fix, and to carry in and take out a thread ventilation means (4). a means (5) to pass the liquid whose dielectric loss multipliers are 1-50.

and a means (3) to fix, and to carry in and take out a thread, and is rotated.

[0049] The thread (7) fixed to the means (3) used in order to fix and to carry in and take out a thread is dried by the microwave irradiated from the microwave exposure means (2) within the container (1). A dehumidification gas is passed by the thread with a ventilation means (4) during a microwave exposure. Since a means (5) to pass the liquid whose dielectric loss multipliers are 1-50 is furthermore established in the container, as a result of absorbing surplus microwave and preventing a local temperature rise, all threads can be dried to homogeneity.

[0050] A container (1) has further the function which intercepts (a) microwave, the temperature control means which keeps the temperature in the (b) container constant, a means to circulate through the gas in the (c) container, and a means to permute the gas in the (d) container by the external gas. The function which intercepts microwave not only uses microwave for desiccation of a thread effectively, but is the insurance top need for an operator. Moreover, in order to abolish the engine-performance difference between desiccation batches, it is required to keep the temperature in a container constant. Furthermore, it is possible by replacing the gas in a container with circulation and the exterior to improve drying efficiency.

[0051] Although it is not used since microwave is irradiated at a thread (7), and a configuration

and especially magnitude are not limited, in order to dry two or more threads uniformly, as for a microwave exposure means (2), it is desirable to install more than one in a container. The means (3) used in order to fix and to carry in and take out a thread is used in order to fix the location of the thread within a container and to dry efficiently. Furthermore, immobilization and carrying-in / taking-out means (3) can be removed from a dryer, in order to make immobilization and ejection of a thread easy. A thread ventilation means (4) is used in order to ventilate a gas in a thread.

[0052] Although what kind of thing is sufficient as it as long as a means (5) to pass the liquid whose dielectric loss multipliers are 1-50 is a means by which a liquid can be poured, it is desirable that it is piping made from a nonmetal which makes the interior pass the liquid whose dielectric loss multipliers are 1-50. As for piping for liquid passage, it is desirable that it prepares metal members, such as a metal fixture, on the metal member in an irradiation reactor or the outskirts of it since excessive microwave tends to heat and discharge. The means (6) which fixes a means (3) to fix, and to carry in and take out a thread, and is rotated further is used in order to make the microwave exposure to a thread more equal. The revolution is horizontal.

-

EXAMPLE

[Example] Although the example of this invention is shown below, this invention is not limited to this.

(Measurement of the amount of platelet adhesion) The following operating procedure performed measurement of the amount of platelet adhesion to the film. Bundle ten hollow filament-like film with a die length of 15cm, produce a small module, and this module is made to pass heparinize Homo sapiens fresh blood for 15 minutes with the linear velocity of 1.0cm/second, and the physiological saline was continuously passed for 1 minute. Next, it computed as LDH activity of per a film surface product (internal-surface conversion) by carrying out the quantum of the lactate dehydrogenase (henceforth "LDH") emitted from the platelet which carried out beating of the hollow filament-like film to 5mm spacing extent, carried out ultrasonic irradiation in the

physiological saline which contains the polyethylene-glycol alkylphenyl ether (Wako Pure Chem trade name triton X-100) 0.5%, and adhered to the film front face. Measurement of enzyme activity used the LDH mono-test kit (Boehringer Mannheim and made in Yamanouchi). In addition, it compared with a specimen and coincidence using the film (what was obtained by being immersed in ethanol for one day after the film of the example 1 in front of gamma irradiation was immersed in the sodium hypochlorite with an available chlorine concentration of 1,500 ppm for two days) which does not contain PVP as positive control.

[10054] (Plasma protein amount of adsorption) Except having carried out ultrafiltration time amount in 240 minutes after the plasma protein amount of adsorption to the film performed the

amount in 240 minutes, after the plasma protein amount of adsorption to the film performed the same actuation as the transmissometry of albumin, the physiological saline washed it for 1 minute. Next, it computed as the protein amount of adsorption per film weight by carrying out beating of the hollow filament-like film to 5mm spacing extent, and carrying out the quantum of the plasma protein stirred and extracted in the physiological saline which contains lauryl acid sodium 1.0%. Protein concentration used BCA protein assay (made in Pierce). In addition, it compared with a specimen and coincidence using the film (what was obtained by being immersed in ethanol for one day after the film of the example 1 in front of gamma irradiation was immersed in the sodium hypochlorite with an available chlorine concentration of 1,500 ppm for two days) which does not contain PVP as positive control. [00551]

[Example 1] (Film production and clearance of a residual solvent) It dissolved in 77.7 % of the weight of N,N-dimethylacetamide, and 18.0 % of the weight (product P-1700 made from Amoco Engineering Polymers) of polysulfones and 4.3 % of the weight (BASF A.G. make K90, weight average molecular weight 1,200,000) of polyvinyl pyrrolidones were used as the uniform solution. Here, the mixing ratio of the polyvinyl pyrrolidone to the polysulfone in a film production undiluted solution was 23.9 % of the weight. This film production undiluted solution was kept at 60 degrees C, and it was immersed to the coagulation bath which is made to breathe out from a spinning port (double annular nozzle 0.1mm - 0.2 mm to 0.3 mm), is made to pass a 0.96m air gap, and consists of 75-degree C water with the internal liquid which consists of a mixed solution of 30 % of the weight of N.N-dimethylacetamide, and 70 % of the weight of water. At this time, from a spinning port to the coagulation bath was surrounded by the cylinderlike cylinder, the humidity in a cylinder was controlled and temperature was controlled for the nitrogen gas which contained the steam in the cylinder at 51 degrees C 54.5% with the sink, Spinning speed was fixed to a part for 80m/. Here, the ratio of the air gap to spinning speed was 0.012m/(a part for m/). The residual solvent in the film was removed after cutting the rolledround thread by washing a 80-degree C hot water shower over 2 hours from the cutting plane upper part of a thread (die length of 30cm, 9400 film numbers). [0056] The equipment shown in drawing 1 is used. (Desiccation of the humid film and

[0056] The equipment shown in drawing_1 is used. (Desiccation of the humid film and insolubilization processing of PVP) The thread after the above-mentioned residual solvent clearance (the water content of the film of a thread core 300% 300%) [water content] The difference of the water content of the film [in / in the water content of the film of the thread periphery section / the core and the periphery section of a thread] has arranged each uniformly by regular intervals 300% by setting a thread to a tray for 90 bundles 0% in a microwave irradiation reactor (3m [/second] wind speed in an irradiation reactor). It fixed with the fixture so that the cutting plane of a thread might surely become a top or the bottom at this time. Furthermore, six waveguides were uniformly fixed by regular intervals, respectively so that microwave might be irradiated by each thread in an irradiation reactor at homogeneity.

[0057] The microwave exposure was carried out for 18 minutes with the microwave output of 30kW (kilowatt) to this thread. The water content of the thread located in the core in an irradiation reactor at this event was 42% (for the water content of the film of a thread core, the water content of the film of 44% and the thread periphery section is 40%). Water content obtained less than 1% of desiccation film (thread) by reducing only the output of microwave to 21kW succeedingly, and carrying out a microwave exposure for 8 more minutes. [0058] Moreover, the following actuation was performed between the time of desiccation

initiation, and the time of desiccation termination.

- $(1) \ Water \ was \ poured \ in \ piping \ made \ from \ a \ nonmetal \ installed \ in \ the \ surroundings \ of \ the \ tray \ in \ an \ irradiation \ reactor,$
- (2) It was made to rotate at the rate of 4 revolutions of a tray in 1 minute.
- (3) The temperature in an irradiation reactor was held at 70**2 degrees C.
- (4) Dehumidification air (10% or less of humidity) was ventilated from the lower part of each thread from the lower part of a thread to the upper part at the 4m [/second] wind speed. At this time, the 0.4m [/second] wind speed was measured by the thread average from the upper part of a thread at the time of desiccation initiation. Furthermore, a part of PVP in the film was insolubilized by irradiating the gamma ray of 2.5Mrad(s) at the obtained desiccation film (thread).

[0059] (Performance-evaluation result) Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all threads are shown in a table 1. When the thread (film) equivalent to an average value was used as the module of 2 the effective filtration area of 1.5m and path clearance of beta 2-microglobulin was surveyed, it turned out that it is by part for 32mL/, and it became clear that it is equivalent to a part for path clearance 32.5mL/computed by having substituted it for the formula (5). Furthermore, when this module performed transit measurement of a urea and vitamin B12, the path clearance and the permeability of a urea were part 83% for 185mL(s)/, respectively. Moreover, about vitamin B12, it was part 48% for 95mL(s)/similarly. Measurement is [0044]. It carried out by the same approach, Moreover, 62% of the total amount of PVP in the film was insoluble in water. As a result of carrying out a membranous eluting material test, the absorbance of effluent test fluid was 0.04 or less. Moreover, since the pit hold-back agent was not used, in effluent test fluid, the pit hold-back agent was contained and was not. Furthermore, as for this film, compared with the positive control film, the amount of platelet adhesion became low (positive control film 43 Unit/m2) clear [that the amount of adhesion of plasma protein is also low I (positive control film 63 mg/g). It became clear that this film has very few elution volumes from the film, and there is little adhesion of blood protein and a platelet from the engine performance mentioned above. Moreover, since the transmission of albumin was excellent also in the path clearance of beta 2microglobulin few, it turned out that it is the film excellent also in the dialysis engine performance. Furthermore, it became clear that there are also few engine-performance differences with the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of all threads compared with the example 1 of a comparison, [0060]

[Example 2] The same actuation as an example 1 was performed except having made the polyvinyl pyrrolidone in a film production undiluted solution, and having made N,N-dimethylacetamide into 78 % of the weight 4% of the weight. The mixing ratio of the polyvinyl

pyrrolidone to the polysulfone in the film production undiluted solution at this time was 22.2 % of the weight. Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all the threads at this time are shown in a table 1. It became clear that this film has very few elution volumes from the film, and there is little adhesion of blood protein and a platelet. Moreover, there was little transmission of albumin, and since excelling also in the path clearance of beta 2-microglobulin was suggested, it turned out that it is the film excellent also in the dialysis engine performance. Furthermore, it became clear that there are also few engine-performance differences with the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of all threads compared with the example 1 of a comparison. [0061]

Example 3] The same actuation as an example 1 was performed except having made the polyvinyl pyrrolidone in a film production undiluted solution, and having made N.N-dimethylacetamide into 77.2 % of the weight 4.8% of the weight, The mixing ratio of the polyvinyl pyrrolidone to the polysulfone in the film production undiluted solution at this time was 26.7 % of the weight. Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all the threads at this time are shown in a table 1. It became clear that this film has very few elution volumes from the film, and there is little adhesion of blood protein and a platelet. Moreover, there was little transmission of albumin, and since excelling also in the path clearance of beta 2-microglobulin was suggested, it turned out that it is the film excellent also in the dialysis engine performance. Furthermore, it became clear that there are also few engine-performance differences with the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of all threads compared with the example 1 of a comparison.

[Example 4] The same actuation as an example 3 was performed except having used the mixing solution which turns into internal liquid from 52 % of the weight of N,N-dimethylacetamide, and 48 % of the weight of water. Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all the threads at this time are shown in a table 1. It became clear that this film has very few elution volumes from the film, and there is little adhesion of blood protein and a platelet. Moreover, there was little transmission of albumin, and since excelling also in the path clearance of beta 2-microglobulin was suggested, it turned out that it is the film excellent also in the dialysis engine performance. Furthermore, it became clear that there are also few engine-performance differences with the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of all threads compared with the example 1 of a comparison. [10063]

[The example 1 of a comparison] The same actuation as an example 1 was performed except there being nothing gamma ray Teru putting. This result is shown in a table 2. It became clear that the absorbance of elution test liquid exceeds 0.04 for elution of PVP. The performance evaluation performed only the thread located in the core in an irradiation reactor. [0064]

[The example 2 of a comparison] The same actuation as an example 1 was performed except

having made the polyvinyl pyrrolidone in a film production undiluted solution, and having made N,N-dimethylacetamide into 77.0 % of the weight 5.0% of the weight. The mixing ratio of the polyvinyl pyrrolidone to the polysulfone in the film production undiluted solution at this time was 27.8 % of the weight. The engine performance of this thread is shown in a table 2. Since the mixing ratio of the polyvinyl pyrrolidone to the polysulfone in a film production undiluted solution is over 27 % of the weight, an elution volume and film internal-surface PVP concentration are increasing. The performance evaluation performed only the thread located in the core in an irradiation reactor.

[0065]

[The example 3 of a comparison] The same actuation as an example 1 was performed except having made the polyvinyl pyrrolidone in a film production undiluted solution, and having made N,N-dimethylacetamide into 78.4 % of the weight 3.6% of the weight. The mixing ratio of the polyvinyl pyrrolidone to the polyvingle in the film production undiluted solution at this time was 20.0 % of the weight. The engine performance of this thread is shown in a table 2. It became clear that the amount of PVP of a film internal surface is less than 30%. The performance evaluation performed only the thread located in the core in an irradiation reactor. [00661]

[The example 4 of a comparison] The same actuation as an example 3 was performed except having used the mixing solution which turns into internal liquid from 60 % of the weight of N,N-dimethylacetamide, and 40 % of the weight of water. The engine performance of this thread is shown in a table 2. This film was engine performance for which the permeability of albumin is over 0.3%, and the permeability of PVP also exceeds 75%. The performance evaluation performed only the thread located in the core in an irradiation reactor.

[0067]

[The example 5 of a comparison] The same actuation as an example 1 was performed except having used the mixing solution which turns into internal liquid from 10 % of the weight of N,N-dimethylacetamide, and 90 % of the weight of water. The engine performance of this thread is shown in a table 2. The amount of water penetration of pure water was the engine performance which is less than 10mL(s)/(m2 and hr-mmHg). The performance evaluation performed only the thread located in the core in an irradiation reactor. 1000s1

The example 6 of a comparison] The same actuation as an example 1 was performed except having made drying temperature into 170 degrees C. The engine performance of this thread is shown in a table 2. All PVP in the film of this film was insoluble in water. This film is used as the module of 2 the effective filtration area of 1.5m, and it is [0044]. When it was alike and clinical blood assessment was carried out by the shown approach, the leuco PENIA symptom that a dialysis patient's white blood cell count fell temporarily was observed. The performance evaluation performed only the thread located in the core in an irradiation reactor. [0069]

[The example 7 of a comparison] The same actuation as an example 1 was performed except not pouring water in piping made from the nonmetal installed in the surroundings of the tray in an irradiation reactor, and the tray lower part. Each physical properties of the thread (thread of the outermost engine performance) which has the value from which it separated most to the average and this average of each physical properties when evaluating all the threads at this time are shown in a table 3. Discharge was observed from the metal member of the tray between microwave exposures. In the thread which exists on the outskirts of a metal fixture of a tray with

this discharge and heating, that whose amount of water penetration is 0 (zero) was seen, and it became clear that the thread of the poor engine performance is generated clearly. [0070]

[A table 1]

	実施例1		実施例 2		実施例3		実施例4	
-	全糸束の平均	最外性節の条	全糸束の平均	最外性能の糸	全糸束の平均	最外性 能の糸	全条束の平均	最外性能の糸
	做	束の値	做	束の値	依	束の値	値	東の彼
膜内径(µm)	195	195	200	200	195	195	196	198
膜外径(μm)	285	286	288	290	286	283	286	289
透水量(mL/(m²· hr·mmHg))	22	19	18	15	23	20	420	400
アルプミンの 透道準 (%)	0.01 以下	0.01						
PVP の 遊過率 (%)	4	4	4	4	5	5	72	72
膜内表面 PVP 機 度(繁量%)	35	35	30	80	44	44	36	36
水に不際である PVP の有無	有り	有り	या छ	有り	有り	有り	有り	有り
溶出物試験液の 吸光度	0.022	0.022	0.020	0.020	0.035	0.035	0.022	0.022
溶出物試験液中 の膜孔保持剤の 有無	無し	無し						
血小板粘着量 (LDH·Unit/m ³)	15.6	15.7	17.7	17.5	4.1	4.1	14.0	14.1
血業タンパク質 吸着量(mg/g)	2.2	2.2	5.5	5.6	1.9	1.9	2.0	2.0
乾燥前温潤膜の 適水量(mL/(m²・: hr·mmHg))	190	190	170	170	260	260	3100	3100
乾燥前屋周戌の アルプミンの 汚過率(%)	0.82	0.82	0.84	0.34	0.35	0.35	0.51	0.51
乾燥前湿潤膜の PVPの	77	77	84	84	84	84	99	99
透過率(%)								

[0071] [A table 2]

	比較例 1	比較例2	比較例3	比較例4	比較例5	比較例6
膜内径(μm)	195	201	200	196	202	190
膜外径(μm)	282	291	292	295		281
	402	-			291	
透水量(mL/(m²· hr·mmHg))	22	35	16	960	9	15
アルブミンの 透過率 (%)	0.01 以下	0.01 以下	0.01 以下	0.37	0.01 以下	0.01 以下
PVPの 透過率 (%)	4	5	4	79	Ó	4
膜内表面 PVP 浪 度(重量%)	35	46	28	33	34	36
水に不溶である PVP の有無	無し	有り	有り	有り	有り	有り
溶出物試験液の 吸光度	0.047	0.038	0.016	0.020	0.020	0.022
溶出物試験液中 の膜孔保持剤の 有無	無し	無し	無し	無し	無し	無し
血小板粘着量 (LDH·Unit/m²)	15.5	3.8	19.2	15.4	15.1	16.6
血漿タンパク質 吸着量(mg/g)	2.1	2.1	6.0	2.8	2.1	3.0
乾燥前湿潤膜の 透水量(mL/(m ² ・ hr·mmHg))	190	810	130	8500	76	190
乾燥前距調膜の アルブミンの 透過率 (%)	0.32	0.38	0.32	0.60	0.17	0.31
乾燥前湿潤膜の PVPの 透過率(%)	. 77	85	76	100	52	76

[0072] [A table 3]

	比較例7			
	全糸束	最外性		
	生示泉	能の糸		
	値	東の値		
膜内径(µm)	195	191		
膜外径(μm)	285	280		
透水量(mL/(m ² · hr·mmHg))	16	0		
アルプミンの	0.01	测定不		
透過率 (%)	以下	可能		
PVP Ø	. 3	測定不		
透過率 (%)		可能		
膜内表面 PVP 濃度(重量%)	35	85		
水に不溶である	・有り	有り		
PVP の有無				
溶出物試験液の 吸光度	0.022	0.022		
溶出物試験被中 の膜孔保持剤の 有無	無し	無し		
血小板粘着量	15.0	潮定不		
LDH-Unit/m²)	19.0	別足不 可能		
血漿タンパク質 吸着量(mg/g)	2.1	2.1		
乾燥前湿潤膜の 透水量(mL/(m ² ・ hr·mmHg))	190	190		
乾燥前復潤膜の アルプミンの 透過率(%)	0.32	0.32		
乾燥前温潤膜の PVPの 透過率 (%)	77	77		

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the front view showing an example of the manufacturing installation of the blood purification film of this invention.

[Description of Notations]

- 1 Container
- 2 Microwave Teru Gunner Stage
- 3 A Means to Fix, and to Carry in and Take Out Thread
- 4 Ventilation Means
- 5 Liquid Passage Means
- 6 Revolution Means
- 7 Thread

DRAWINGS

[Translation done.]