Ejercicio 1. Probar que \mathbb{R}^n (con la distancia euclídea) es separable.

Proof. Ya probamos antes que \mathbb{Q}^n es denso en \mathbb{R}^n y sabemos que es numerable. Entonces \mathbb{R}^n es separable

Ejercicio 2. Sea $\mathbb{R}^{(\mathbb{N})} = \{(a_n)_n \subseteq \mathbb{R} : \exists n_0 \text{ tal que } a_n = 0 \quad \forall n \geq n_0\}$. Se considera la aplicación $d_{\infty} : \mathbb{R}^{(\mathbb{N})} \times \mathbb{R}^{(\mathbb{N})} \to \mathbb{R}$ definida por $d_{\infty}((a_n)_n, (b_n)_n) = \sup_{n \in \mathbb{N}} |a_n - b_n|$. Probar que $(\mathbb{R}^{(\mathbb{N})}, d_{\infty})$ es un espacio métrico separable

Proof. Propongamos $\mathbb{Q}^{(\mathbb{N})}$ como subconjunto, este es numerable (práctica i), veamos que es denso en $\mathbb{R}^{(\mathbb{N})}$

Tomemos $a_n \in \mathbb{R}^{(\mathbb{N})}$ ahora dado $\epsilon > 0$ sabemos, por densidad de \mathbb{Q} en \mathbb{R} que para cada $n < n_0 \in \mathbb{N}$ existe un $b_n \in \mathbb{Q}$ tal que $d_{\mathbb{R}}(a_n, b_n) < \epsilon$.

Luego para cada $n \geq n_0$ decimos $b_n = 0$. Luego esta sucesión esta en $\mathbb{Q}^{(\mathbb{N})}$ y además $\sup_{n \in \mathbb{N}} |a_n - b_n| < \epsilon$ por que lo es para cada $n \in \mathbb{N}$ (No es un \leq por que solo hay finitas restas diferentes de cero dado que ambas sucesiones son 0 despues de n_0 y esas finitas restas son todas menores que epsilon entonces en realidad aquí el supremos es un máximo y es estrictamente menor que ϵ)

Ejercicio 3. Sea (X, d) un espacio métrico. Se dice que una familia $\mathcal{A} = (U_j)_{j \in J}$ de abiertos de X es base de abiertos de X si todo abierto de X se puede escribir como unión de miembros de \mathcal{A} . Probar que \mathcal{A} es una base de abiertos de X si y sólo si verifica la siguiente condición : 'Para todo abierto G de X y para todo $x \in G$ existe $y \in J$ tal que $x \in U_j \subseteq G$ '

Proof. ⇒) sea G abierto entonces $G = \bigcup_{j \in J} U_j$ luego sea $x \in G$ tenemos que $x \in \bigcup U_j$ Pero entonces existe un $j_0 \in J$ tal que $x \in U_{j_0} \subseteq \bigcup U_j \subseteq G$ a

 \Leftarrow) Sea G un abierto para cada $x \in G$ existe un $j \in J$ tal que $x \in U_j \subseteq G$

Pero entonces puedo escribir a G como la unión de $U_j \subseteq \mathcal{A}$ y esto vale para cualquier abierto, por lo tanto \mathcal{A} es base de X

Ejercicio 4. Sea (X, d) un espacio métrico que verifica que cada cubrimiento abierto de X tiene un subcubrimiento numerable. Probar que X es separable

Proof. Sea $\bigcup_{x \in X} B(x, \frac{1}{n}) = X$ son cubrimiento por abiertos de X para cada $n \in \mathbb{N}$ Ahora para cada uno de ellos tenemos un subcubrimiento numerable $\bigcup_{(x_n)_n \subseteq X} B(x_n \frac{1}{n})$

Ahora si unimos los x_n de cada cubrimiento tenemos un conjunto numerable (por ser union numerable de numerables). Llamemosló A

Veamos que es denso. Sea $x \in X$ sabemos que para cada $n \in \mathbb{N}$ tenemos un cubrimiento de X por lo tanto tenemos una $B(x_n, \frac{1}{n})$ tal que x esta en ella por lo tanto $x_n \in B(x, \frac{1}{n})$ y esto vale para cada $n \in \mathbb{N}$

Por lo tanto para cada $x \in X$ sucede que para cada radio existe un $x_n \in A$ tal que $x_n \in B(x,r)$ por lo tanto A es denso en X

Ejercicio 5. Probar que todo subespacio de un espacio métrico separable es separable

Proof. Sea A un espacio separable entonces existe $D \subseteq A$ denso y numerable \square

Ejercicio 6. Parte a) Sea (X, d) un espacio métrico separable. Probar que toda familia de subconjuntos de X no vacíos, abiertos y disjuntos dos a dos es a lo sumo numerable. Deducir que el conjunto de puntos aislados de X es a lo sumo numerable

Proof. Sea D denso numerable de X y sea \mathcal{U} el conjunto de abiertos disjuntos no vacíos.

Sabemos que $\forall U \in \mathcal{U} \ U \cap D \neq \emptyset$ por densidad de D (Si no tendría un abierto U tal que $D \cap U = \emptyset$ y como U abierto si tomo $x \in U$ existe un radio r > 0 tal que $B(x, r) \subseteq U$ y por lo tanto $B(x, r) \cap D = \emptyset$ lo que es absurdo)

Ahora puedo hacer una función $\phi: \mathcal{U} \to D$ tal que $\phi(U) \in U \cap D \quad \forall U \in \mathcal{U}$

Veamos que ϕ es inyectiva. Supongamos $U, V \in \mathcal{U}$ tal que $\phi(U) = \phi(V)$

Tenemos $\phi(U) \in U \cap V$ y $\phi(V) \in V \cap D$ entonces $\phi(U) = \phi(V) \in (V \cap U) \cap D$

Y sabemos que $V \cap U \neq \emptyset$ por que si no $(V \cap U) \cap D = \emptyset$ pero entonces ϕ no estaría bien definida. Ahora como $V \cap U \neq \emptyset$ y ambos están en \mathcal{U} entonces V = U. Si no tendríamos dos abiertos de \mathcal{U} que no son disjuntos

Entonces ϕ es inyectiva por lo tanto $\#\mathcal{U} \leq \#D = \aleph_0$ entonces \mathcal{U} es a lo sumo numerable Parte b) Sea x un punto aislado podemos encontrar un r > 0 tal que $B(x,r) \cap X = \{x\}$ y esto lo podemos hacer para cualquier $x \in X$ entonces podemos definir a \mathcal{U} como el conjunto de todas estas bolas y estas son disjuntas de dos a dos son abiertas y no vacías , por ende a lo sumo puede haber numerables de ellas, y como para cada una hay un x aislado , entonces tenemos a lo sumo numerables x puntos aislados

Otra forma. Sea A el conjunto de los puntos aislados de X, si $x \in A$ entonces existe $\epsilon > 0$ tal que $B(x, \epsilon) \cap X = \{x\}$ entonces $\{x\}$ es un conjunto abierto en X

Por lo tanto $\mathcal{U}=\{\{x\}:x\in A\}$ es un conjunto de abiertos disjuntos , y ahora usamos la parte a

Ejercicio 7. Sean (X, d) e (Y, d') espacios métricos. Probar que $(X \times Y, d_{\infty})$ es separable si y sólo si (X, d) e (Y, d') son separables

Proof. \Leftarrow) Sean D_1 denso numerable de X y D_2 denso numerable de Y

Son ambos numerables entonces existen $f: D_1 \to \mathbb{N}$ y $g: D_2 \to \mathbb{N}$ sobreyectivas

Y entonces tenemos $h: D_1 \times D_2 \to \mathbb{N} \times \mathbb{N}$ dada por h(x,y) = (f(x),g(y))

Entonces $D_1 \times D_2 \sim \mathbb{N} \times \mathbb{N} \sim \mathbb{N}$ por lo tanto $D_1 \times D_2$ es numerable

Sea $(x,y) \in X \times Y$, D_1 es denso en X entonces dado r > 0 $B(x,r) \cap D_1 \neq \emptyset$

Por lo tanto existe algun $d_1 \in D_1$ tal que $d(d_1, x) < r$

También para el mismo r > 0 $B(y,r) \cap D_2 \neq \emptyset$ entonces existe $d_2 \in D_2$ tal que $d'(d_2,y) < r$

Entonces $d_{\infty}((x,y),(d_1,d_2)) < \sup\{d(x,d_1),d'(y,d_2)\} = r$

Y esto vale para cualquier r > 0 entonces $D_1 \times D_2$ es denso en $X \times Y$

Luego $X \times Y$ es separable

Ejercicio 8. ¿Es el espacio $(\ell_{\infty}, d_{\infty})$ separable?

Proof. Tomemos en cuenta el subespacio métrico de ℓ_{∞} dado por $(\ell_{(\mathbb{N})}, d_{\infty})$

Con $\ell_{(\mathbb{N})} = \{(a_n)_n \subseteq \mathbb{N} : a_n \text{ es acotada } \}$

Consideremos el conjunto $A = \{f : \mathbb{N} \to \{1,2\} \text{ tal que } f \text{ es inyectiva}\}$

Sabemos que $\#A = 2^{\aleph_0} = \mathfrak{c}$

Cada una de esas funciones nos da una sucesión de naturales claramente acotadas por 2

Entonces tenemos \mathfrak{c} sucesiones acotadas, ahora si tomamos $r=\frac{1}{2}$ para cada una de esas sucesiones tenemos \mathfrak{c} abiertos y todos estos son disjuntos en $\ell_{(\mathbb{N})}$ dado que si no lo fueran existirian dos sucesiones $(x_n)_n \neq (y_n)_n$ en $\ell_{(\mathbb{N})}$ tales que $\sup_{n \in \mathbb{N}} |x_n - y_n| = d_{\infty}(x_n, y_n) < \frac{1}{2}$ y esto es imposible salvo que $x_n = y_n$ entonces tenemos no numerables abiertos disjuntos en $\ell_{(\mathbb{N})}$. Por lo tanto $\ell_{(\mathbb{N})}$ no puede ser separable pero entonces ℓ_{∞} tiene un subespacio métrico que no es separable, por lo tanto no es separable

Ejercicio 9. Sean X, Y espacios métricos. Sea $f: X \to Y$ una función continua y suryectiva. Probar que si X es separable, entonces Y es separable

Proof. D denso y numerable en X entonces f(D) es numerable, veamos que es denso en Y Sea $y \in Y$ entonces existe un $x \in X$ tal que f(x) = y

Ahora como D es denso en X existe $(x_n)_n \subseteq D$ tal que $x_n \to x$

Como f es continua tenemos que $f(x_n) \to f(x) = y$ y además $(f(x_n))_n \subseteq f(D)$

Por lo tanto f(D) es denso en Y, por lo tanto Y es separable

Ejercicio 10. Sea (X,d) un espacio métrico y sea $(x_n)_n \subseteq X$. Probar que:

- 1. $\lim_{n\to\infty} x_n = x$ si y sólo si para toda sucesión $(x_{n_k})_k$, $\lim_{k\to\infty} x_{n_k} = x$
- 2. Si existe $x \in X$ para el cual toda sucesión $(x_{n_k})_k$ de $(x_n)_n$ tiene una subsucesión $(x_{n_{k_j}})_j$ tal que $\lim_{j\to\infty} x_{n_{k_j}} = x$, entonces $(x_n)_n$ converge y $\lim x_n = x$. ¿ Vale la recíproca?

- 3. Si $(x_n)_n$ es convergente, entonces $(x_n)_n$ es de Cauchy, ¿Vale la recíproca?
- 4. Si $(x_n)_n$ es convergente, entonces es acotada
- 5. Si $(x_n)_n$ es de Cauchy y tiene una subsucesión $(x_{n_k})_k$ tal que $\lim_{k\to\infty} x_{n_k} = x \in X$, entonces $(x_n)_n$ converge y $\lim x_n = x$
- $Proof. \ 1) \Rightarrow)$ Sabemos que para todo $\epsilon > 0$ existe n_0 tal que $d(x_n, x) < \epsilon \quad \forall n \geq n_0$ Entonces tomemos cualquier subsucesión x_{n_k} afirmamos que vale $d(x_{n_k}, x) < \epsilon \quad \forall n_k \geq n_0$ Sabemos que dado que x_{n_k} existe algún x_n tal que $x_n = x_{n_k}$ y tiene que cumplir $n \geq n_k$ Entonces como $n \geq n_k \geq n_0$ sucede que $x_{n_k} = x_n \in B(x, \epsilon)$ y esto vale para cualquier x_{n_k} con $n_k \geq n_0$
- \Leftarrow) Supongo que $\lim x_n \neq x$ sabemos que x_n es subsucesión de si mismo , entonces tenemos una subsucesión de que x_n tal que $\lim x_{n_k} \neq x$ lo que es absurdo

2)

3) Sea x_n convergente entonces dado $\epsilon > 0$ $x_n \in B(x, \epsilon) \quad \forall n \geq n_0$,

Luego $x_n, x_m \in B(x, \epsilon) \quad \forall n, m \ge n_0$

Entonces $d(x_n, x_m) < diam(B(x, \epsilon)) = 2\epsilon \quad \forall n, m \ge n_0 \text{ por lo tanto } x_n \text{ es de Cauchy.}$

La recíproca no vale si estamos en un espacio métrico NO completo. Por ejemplo en \mathbb{Q} tenemos la sucesión $a_n = \sqrt{2} + \frac{1}{n}$ esta sucesión NO converge en \mathbb{Q} pero es de Cauchy, dado que para $\epsilon > 0$ existe un n_0 tal que $a_n \in B(\sqrt{2}, \epsilon) \quad \forall n \geq n_0$. Entonces usando un razonamiento igual al de la ida, tenemos que a_n es de Cauchy

4) Como x_n convergente x_n es de Cauchy

Entonces dado $\epsilon > 0$ tenemos que $d(x_n, x_m) < \epsilon \quad \forall n, m \geq n_0$

Por lo tanto si fijamos x_m con algún $m \ge n_0$ tenemos $d(x_n, x_m) < \epsilon \quad \forall n \ge n_0$

Luego $x_n < x_m + \epsilon = S_1 \quad \forall n \ge n_0$

Sabemos que hay finitos x_n tal que $n < n_0$ luego sea $S_2 = \max\{x_n : n < n_0\}$

Finalmente tomamos $S_0 = \max\{S_1, S_2\}$ sucede que $x_n < S_0 \quad \forall n \in \mathbb{N}$

5) Una forma interesante de hacerlo. Sea (X, d) un espacio métrico $(a_n)_n \subseteq X$ de Cauchy, y sea a_{n_k} un sub convergente a $L \in X$. Ahora si completamos a X tenemos que a_n converge digamos a P, pero como no puede converge a algo diferente a una subsucesion entonces P = L por lo tanto $P \in X$ entonces a_n convergía en X desde un principio

Sea $\epsilon > 0$ como x_n es de Cauchy tenemos que existe n_0 tal que $d(x_n, x_m) < \frac{\epsilon}{2} \quad \forall n \geq n_1$ Mismo epsilon existe n_2 tal que $d(x_{n_k}, x) < \frac{\epsilon}{2} \quad \forall n_k \geq n_2$

Por lo tanto tomemos $n_0 = \max\{n_1, n_1\}$ y fijemos un $n_k \ge n_0$

luego tenemos que

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall n \ge n_0$$

Por lo tanto $x_n \to x$

Ejercicio 11. Probar que si toda bola cerrada de un espacio métrico X es un subespacio completo de X, entonces X es completo

Proof. Tomemos $(x_n)_n \subseteq X$ de Cauchy. Sabemos entonces que está contenida en una bola $B_1(x,r)$ y está contenida en la misma bola cerrada, siempre pensándola como bola de X. Ahora como esta bola cerrada tiene que ser completa, entonces $x_n \to x \in \overline{B_1}(x,r)$ por lo tanto $x \in X$ por lo tanto toda sucesión de Cauchy converge en X entonces X es completo \square

Ejercicio 12. Sea (X, d) un espacio métrico

- 1. Probar que todo subespacio completo de (X,d) es un subconjunto cerrado de X
- 2. Probar que si X es completo, entonces todo subconjunto $F\subseteq X$ cerrado, es un subespacio completo de X

Proof. 1) Sea (Y,d) un subespacio métrico de (X,d) entonces toda sucesión de Cauchy de Y converge en Y, pero además toda sucesión convergente de Y es de Cauchy, por lo tanto toda sucesión convergente de Y converge en Y.

Ahora si miro a Y como subconjunto de X sigue pasando lo mismo por lo tanto Y es cerrado

2) Sea $F \subseteq X$ cerrado, ahora sea $(x_n)_n \subseteq F \subseteq X$ de Cauchy entonces converge a un $x \in X$ por que X es completo

Ahora ese x tiene que estár en F si no tendríamos una sucesion $(x_n)_n \subseteq F$ cerrado tal que x_n no converge en F lo cual es absurdo.

Por lo tanto toda sucesión $(x_n)_n \in F$ de Cauchy converge enotonces F es completo \square

Ejercicio 13. (Teorema de Cantor). Probar que un espacio métrico (X, d) es completo si y sólo si toda familia $(F_n)_n$ de un subconjunto de X cerrados, no vacíos tales que $F_{n+1} \subseteq F_n$ para todo $n \in \mathbb{N}$ y $diam(F_n) \to 0$ tiene un único punto en la intersección

 $Proof. \Rightarrow$) Sea F_n una familia que cumple las hipótesis , para cada $n \in \mathbb{N}$ me quedo con un $(x_n)_n \subseteq X$ ahora tengo una sucesión que es de Cauchy, por que para cada $\epsilon > 0$ existe un $diam(F_n) \le \epsilon$ entonces todo $x_n, x_m \in F_n$ cumplen que $d(x_n, x_m) < diam(F_n) \le \epsilon$.

Dado que X es completo x_n converge, pero además $(x_n)_n \subseteq \bigcap_{n\in I} F_n$ y esta por ser intersección de cerrados, es cerrado, por lo tanto $x_n \to x \in \bigcap F_n$

Supongo que hay otro $y \in \bigcap F_n$ ahora como $y \neq x$ existe un r > 0 tal que $y \notin B(x,r)$

Ahora si tomo un F_n tal que $diam(F_n) < \frac{r}{2}$ se que $x \in F_n$ entonces para cualquier $z \in F_n$ tengo que $d(x,z) < 2\frac{r}{2} = r$ por lo tanto $F_n \subseteq B(x,r)$ pero entonces $y \notin F_n$ por que si no $y \in B(x,r)$. Entonces existe un F_n tal que $y \notin F_n$ lo que es absurdo por que dijimos que $y \in \bigcap F_n$ el absurdo vino de suponer que existia otro $y \in \bigcap F_n$ por lo tanto no existe otro

 \Leftarrow) Sea $(x_n)_n \subseteq X$ una sucesión de Cauchy $G_n = \{x_n : n \ge n_0\}$ y sea $F_n = \overline{G_n}$

Como $G_n \supseteq G_{n+1}$ entonces $F_n \supseteq F_{n+1}$

Además como x_n es de Cauchy , dado un $\frac{\epsilon}{2}$ sabemos que existe $N \in \mathbb{N}$ tal que

$$d(x_m, x_n) < \frac{1}{\epsilon} \quad \forall n, m \ge N$$

Entonces $G_n \in B(x_N, \frac{\epsilon}{2})$ si $n \geq N$ pero entonces $F_n \subseteq \overline{B}(x_N, \frac{\epsilon}{2})$

Entonces $diam(F_n) \leq \epsilon$ y esto lo puedo hacer para cualquier ϵ en particular para ϵ cada vez mas chicos. De esta forma estamos en la hipótesis, por lo tanto existe $x \in \bigcap F_n$.

Luego sabemos que dado $\epsilon > 0$ existe $N \in \mathbb{N}$ tal que $diam(F_N) < \epsilon$

Ahora sabemos también que $\{x\} \cup G_N \subseteq F_N$ entonces para todo $n \geq N$ $d(x, x_n) < \epsilon$

Por lo tanto $x_n \to x$ entonces cualquier sucesíon de Cauchy converge, por lo tanto X es completo

Ejercicio 14. Sean (X, d) e (Y, d') espacios métricos. Probar que $(X \times Y, d_{\infty})$ es completo si y solo si (X, d) e (Y, d') son completos.

Proof. \Rightarrow) Sean $(x_n) \subseteq X$ e $(y_n)_n \subseteq Y$ successores de Cauchy entonces

Veamos que $(x_n, y_n)_n \subseteq X \times Y$ es de Cauchy

Sabemos que dado ϵ existen $n_1, n_2 \in \mathbb{N}$ tal que $d(x_n, x_m) \leq \frac{\epsilon}{2} \quad \forall n, m \geq n_1$

También $d(y_n, y_m) \leq \frac{\epsilon}{2} \quad \forall n, m \geq n_2$. Tomemos $n_0 = \max\{n_1, n_2\}$

Ahora $d_{\infty}((x_n, y_n), (x_m, y_m)) = \sup\{d(x_n, x_m), d(y_n, y_m)\} \le \frac{\epsilon}{2} < \epsilon \quad \forall n, m \ge n_0$

Entonces $(x_n, y_n)_n \subseteq X \times Y$ es de Cauchy, como $X \times Y$ es completo converge a un (x, y)

Dado $\epsilon > 0$ $d(x_n, x) < \sup\{d(x_n, x), d(y_n, y)\} = d_{\infty}((x_n, x), (y_n, y)) < \epsilon \quad \forall n \ge n_0$

Por lo tanto $x_n \to x \in X$, lo mismo pasa con $y_n \to y \in Y$

Finalmente cualquier sucesión de Cauchy de X converge y cualquier sucesión de Cauchy de Y también , por lo tanto ambos son completos

 \Leftarrow) Sea $(x_n, y_n)_n \subseteq X \times Y$ de Cauchy.

Sea $\epsilon > 0 \ \exists n_0 / \ d_{\infty}((x_n, y_n), (x_m, y_n)) = \sup\{d(x_n, x_m), d(y_n, y_m)\} \le \epsilon \ \forall n, m \ge n_0$ Entonces $d(x_n, x_m) \le \epsilon \ \forall n, m \ge n_0$ si nó el supremo de antes sería mas grande que ϵ

Y también $d(y_n, y_m) \le \epsilon \quad \forall n, m \ge n_0$

Por lo tanto x_n e y_n son de Cauchy, por hipótesis convergen a x e y respectivamente Pero entonces dado ϵ existe n_1 tal que $d(x_n, x) < \epsilon$ y un n_2 tal que $d(y_n, y) < \epsilon$

Si tomamos $n_0 = \max\{n_1, n_2\}$ tenemos que

$$d_{\infty}((x_n, y_n), (x, y)) = \sup\{d(x_n, x), d(y_n, y)\} < \epsilon \quad \forall n \ge n_0$$

Finalmente para cualquier $(x_n, y_n)_n \subseteq X \times Y$ de Cauchy entonces $(x_n, y_n)_n$ converge, entonces $X \times Y$ es Completo

Ejercicio 15. Resolver

- i. Sea X un espacio métrico y sea $B(X) = \{f : X \to \mathbb{R} : f \text{ es acotada }\}$. Probar que $(B(X), d_{\infty})$ es un espacio métrico completo, donde $d_{\infty} = \sup_{x \in X} |f(x) g(x)|$
- ii. Sean $a, b \in \mathbb{R}$ tal que a < b. Probar que $(C[a, b], d_{\infty})$ es un espacio métrico completo, donde $d_{\infty}(f, g) = \sup_{x \in [a, b]} |f(x) g(x)|$
- iii. Probar que $c_0 = \{(a_n)_n \subseteq \mathbb{R} \mid a_n \to 0\}$ es un espacio métrico completo con la distancia $d_{\infty}((a_n)_n, (b_n)_n) = \sup_{x \in \mathbb{N}} |a_n b_n|$

Proof. i) Sea $(f_n)_n \subseteq B(X)$ una sucesión de Cauchy.

Dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $d(f_n, f_m) = \sup_{x \in X} |f_n(x) - f_m(x)| \le \epsilon \quad \forall n, m \ge n_0$ Pero entonces si fijo x tengo $|f_n(x) - f_m(x)| < \epsilon \quad \forall n, m \ge n_0$

Por lo tanto $(f_n(x))_n \subseteq \mathbb{R}$ es de Cauchy, como \mathbb{R} es completo $f_n(x)$ converge digamos a un f(x)

Veamos primero que f(x) es acotada.

Sabemos por un lado que f_n es acotada $\forall x \in X$ por que $f_n \in B(X)$

Por ser de Cauchy tenemos que $d_{\infty}(f_N, f_n) = \sup_{x \in X} |f_N(x) - f_n(x)| < 1 \quad \forall n \geq N$

Entonces $|f_n(x) - f_N(x)| < 1$ $\forall x \in X$ $\forall n \ge N$ luego $-1 + f_N(x) < f_n(x) < 1 + f_N(x)$

Ahora si hacemops $n \to \infty$ tenemos $-1 + f_N(x) \le f(x) \le 1 + f_N(x)$

Este N está fijo , lo mismo el x por lo tanto $f_N(x)=M$ que es una constante

Luego f(x) está acotado y esto además sabemos que vale para cualquier x

Finalmente f esta acotada

Veamos que $f_n \to f$ Como f_n de Cauchy $d_{\infty}(f_n, f_m) \leq \frac{\epsilon}{2} \quad \forall n, m \geq n_0$

Entonces $|f_n(x) - f_m(x)| < \frac{\epsilon}{2} \quad \forall n, m \ge n_0 \text{ para cualquier } x \in X.$

Si hacemos tender $m \to \infty$ tenemos que $|f_n(x) - f(x)| \le \frac{\epsilon}{2} \quad \forall n \ge n_0 \quad \forall x \in X$

Luego $\sup_{x \in X} |f_n(x) - f(x)| < \epsilon \quad \forall n \ge n_0$

Entonces dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $d_{\infty}(f_n, f) \leq \epsilon \quad \forall n \geq n_0$

Luego $f_n \to f$ entonces B(X) es completo

ii) Este espacio es un subespacio de B(X) por que toda función en este espacio es acotada entonces basta con ver que es cerrado

Sea $(f_n)_n \subseteq C[a,b]$ convergente a f veamos que f es una función continua en [a,b]

Por un lado dado $\epsilon > 0$ tenemos $d_{\infty}(f_n, f) = \sup_{x \in X} |f_n(x), f(x)| < \frac{\epsilon}{3} \quad \forall n \geq n_0$

Por otro lado f_n es continua por ejemplo en x para cualquier $n \in \mathbb{N}$

Entonces $\exists \delta > 0$ tal que $d(x,y) < \delta$ implies $d(f(x),f(y)) < \frac{\epsilon}{3}$

Luego $d(f(x), f(y)) \le d(f(x), f_n(x)) + d(f_n(x), f_n(y)) + d(f_n(y), f(y))$

 $\leq d_{\infty}(f_n, f) + d(f_n(x), f_n(y)) + d_{\infty}(f_n, f) < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$

Entonces dado ϵ exsite δ que cumple $\forall y$ tal que $d(x,y) < \delta$ implica $d(f(x),f(y)) < \epsilon$

iii) Sabemos ℓ_{∞} es completo, y $c_0 \subseteq \ell_{\infty}$ por lo tanto basta ver que es cerrado para saber que es completo.

Sea $(a_k^n)_n \subseteq c_0$ convergente a a_k veamos que $(a_k)_k \subseteq c_0$

Dado ϵ existe n_0 tal que $d(a_k, a_k^n) < \frac{\epsilon}{2} \quad \forall n \geq n_0$

Ahora fijamos un $n \geq n_0$. Existe k_0 tal que $d(a_k^n, 0) < \frac{\epsilon}{2} \quad \forall k \geq k_0$ Esto quiere decir que el ϵ nos da algúnos a_k^n para elegir e intercalar $d(a_k, 0) \leq d(a_k, a_k^n) + d(a_k^n, 0) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon \quad \forall k \geq k_0$

Por lo tanto a_k converge a 0 y entonces $(a_k)_k \subseteq c_0$. Por lo tanto c_0 es cerrado y entonces completo

Ejercicio 16. Sea (X,d) un espacio métrico y sea $D \subseteq X$ un subconjunto denso con la propiedad que toda sucesión de Cauchy $(a_n)_n \subseteq D$ converge a X. Probar que X es completo

Proof. Sea $(x_n)_n \subseteq X$ de Cauchy.

D denso luego $\forall n \in \mathbb{N}$ existe un $d_n \in D$ tal que $d(x_n, d_n) < \frac{1}{n}$, ahora tenemos $(d_n)_n \subseteq D$ que cumple $d(d_n, x_n) \to 0$

Dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $\frac{1}{n_0} < \frac{\epsilon}{3}$ también tal que $d(x_m, x_m) < \frac{\epsilon}{3}$ $\forall n, m \geq n_0$ $d(d_m, d_n) \leq d(d_m, x_m) + d(x_m, x_n) + d(x_n, d_n) \leq \frac{1}{m} + \frac{\epsilon}{3} + \frac{1}{n} \leq \frac{1}{n_0} + \frac{\epsilon}{3} + \frac{1}{n_0} \leq \epsilon$ $\forall n, m \geq n_0$ Entonces d_n es de Cauchy y está contenida en D por lo tanto converge a un $x \in X$ Ahora dado $\epsilon > 0$ como $d(d_n, x_n) \to 0$ tenemos un n_1 tal que $d(d_n, x_n) < \frac{\epsilon}{2}$ $\forall n \geq n_1$ Además por convergencia de d_2 tenemos $n_2 \in \mathbb{N}$ tal que $d(d_n, x) < \frac{\epsilon}{2}$ $\forall n \geq n_2$ Si tomamos $n_0 = \max\{n_1, n_2\}$ tenemos $d(x_n, x) \leq d(x_n, d_n) + d(d_n, x) \leq \epsilon$ $\forall n \geq n_0$ Entonces $x_n \to x \in X$ por lo tanto X es completo

Ejercicio 17. Consideremos \mathbb{R} en la métrica

$$d'(x,y) = \left| \frac{x}{1+|x|} - \frac{y}{1+|y|} \right|$$

(práctica 3, ej 5) d' es topológicamente equivalente a la métrica usual d(x,y) = |x-y|. Probar que (\mathbb{R}, d') no es completo

Proof. usando la sucesión n y despues despejas y se cancelan cosas

Ejercicio 18. Sea $f:(X,d) \to (Y,d')$ un homemorfismo uniforme. Probar que (X,d) es completo si y solo si (Y,d') es completo. En particular si un espacio métrico X es completo para una métrica lo es para cualquier otra métrica uniformemente equivalente

 $Proof. \Rightarrow$) Sea $(a_n)_n \subseteq Y$ de Cauchy, por ser f^{-1} uniformemente continua entonces preserva Cauchy, luego $f^{-1}(a_n)$ es de Cauchy

Como X es completo entonces $b_n = f^{-1}(a_n)$ converge digamos a un $b = f^{-1}(a)$

Ahora como f continua y $b_n \to b$ entonces $f(b_n) \to f(b)$ o lo que es lo mismo $a_n \to a$ Entonces a_n converge, por lo que Y es completo

 \Leftarrow) Sea $(x_n)_n \subseteq X$ de Cauchy, entonces $f(x_n)$ es de Cauchy, por lo tanto $f(x_n) \to f(x)$ Y por continuidad de la inverda $x_n \to x$. Entonces x_n converge, X es completo **Ejercicio 19.** Sean X e Y espacios métricos, Y completo. Sea $D \subseteq X$ denso y sea $f: D \to Y$ una función uniformemente continua. Probar que f tiene una única extensión continua a todo X, es decir, existe una única función $F: X \to Y$ continua tal que $F|_D = f$ (Más aún, F es uniformemente continua)

Proof. Sea $x \in X$ por ser D denso tenemos que $(d_n)_n \in D$ tal que $d_n \to x$ y esta converge, por lo tanto es de Cauchy.

Como f es uniforme continua $f(d_n)$ también es de Cauchy en Y, entonces converge a d Ahora podemos definir $F(x) = \lim_{n \to \infty} f(d_n)$ para cualquier $d_n \to x$

Veamos que está bien definida. Supongamos que tenemos dos sucesiones que convergen a dicho $x \in X$ x_n e y_n

Entonces $d(x_n, y_n) \to 0$ como f uniforme entonces $d(f(x_n), f(y_n)) \to 0$

Por lo tanto da igual que sucesión convergente a x usemos la función F queda unívocamente definida $\hfill\Box$