Practice Exercise 9 Binomial Theorem MA1200

- Evaluate each of the following.
 - (a) $_{n}C_{n-3}$

- (b) $_{n}C_{n-2} + _{n}C_{n-1}$
- Write out each of the sums below.

 - (a) $\sum_{i=1}^{6} (i^2 + 1)$ (b) $\sum_{r=1}^{7} [(-2)^r 5]$ (c) $\sum_{r=7}^{n} \frac{r-1}{r}$ (d) $2\sum_{r=1}^{n} \frac{n-r}{n+r}$ (e) $\sum_{r=1}^{8} 3$

- Express each of the following sums using summation notation.
 - (a) $\frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots + \frac{1}{3^{n-1}}$
 - (b) $(a+d)+(a+d^2)+...+(a+d^n)$
 - (c) 1+3+5+...+(2n-1)
- Expand the following with the *binomial theorem*.
 - (a) $(2x-3)^4$

(b) $\left(z-\frac{1}{z}\right)^5$

- (c) $\left(\frac{a}{2} + \frac{2}{a}\right)^6$
- (d) $\left[\sqrt{5}(\cos\theta + i\sin\theta)\right]^4$ (e) $\left(\frac{2x}{y} \frac{y}{4x^2}\right)^5$
- Determine the coefficients of the terms specified in the expansions of the following.

 - (a) $\left(\frac{1}{5} 5x\right)^9$, the term in x^6 (b) $(2y-3)^7$, the fourth term in ascending powers of y
 - (c) $\left(5z \frac{3}{z}\right)^8$, the constant term