SCHEMAT OCENIANIA ARKUSZA EGZAMINACYJNEGO II

Nr z	adania	Etapy rozwiązania zadania:	Modelowy wynik etapu	Liczba punktów
12	12.1	Przekształcenie wzoru funkcji do postaci ogólnej funkcji kwadratowej.	$f(x) = 3x^2 - 2(a+b+c)x + (ab+bc+ac)$	1
	12.2	Wyznaczenie wyróżnika funkcji kwadratowej (w tym 1 p. za metodę oraz 1 p. za przekształcenia).	$\Delta = 2[(a-b)^2 + (b-c)^2 + (c-a)^2]$	2
	12.3	Uzasadnienie, że wyróżnik jest nie- ujemny.	$\Delta \ge 0$ dla dowolnych rzeczywistych a,b,c stąd funkcja f ma co najmniej jedno miejsce zerowe	1
	13.1	Zapisanie warunków jakie muszą być spełnione, aby wyrażenie $\log_m(x-1)$ miało sens.	$x \in (1;+\infty)$ i $m \in (0;1) \cup (1;+\infty)$	1
13	13.2	Zapisanie alternatywy równań logarytmicznych równoważnej danemu równaniu.	$\log_m(x-1) = 1 \text{ lub } \log_m(x-2) = -2$	1
	13.3	Rozwiązanie alternatywy równań logarytmicznych w zależności od parametru <i>m</i> .	$x = m + 1$ lub $x = 1 + \frac{1}{m^2}$	1
	13.4	Zapisanie warunków, dla których każda liczba spełniająca równanie jest mniejsza od 3.	$1\langle m+1\langle 3 \text{ i } 1\langle 1+\frac{1}{m^2}\langle 3$	1
	13.5	Wyznaczenie wszystkich wartości parametru <i>m</i> spełniających warunki zadania (w tym 1 p. za metodę oraz 1 p. za obliczenia).	$m \in (\frac{\sqrt{2}}{2};1) \cup (1;2)$	2
	14.1	Przekształcenie podanego równania.	$(x + \frac{a}{2})^2 + (y + \frac{b}{2})^2 = (\frac{a - b}{2})^2$	1
14	14.2	Uzasadnienie, że otrzymane równanie jest równaniem okręgu.	Ponieważ $a \neq b$, to $(\frac{a-b}{2})^2 > 0$. Otrzymane równanie przedstawia okrąg.	1
	14.3	Wyznaczenie współrzędnych środka i długości promienia okręgu.	$S = (-\frac{a}{2}; -\frac{b}{2}), \ r = \frac{ a-b }{2}$	1
	15.1	Przekształcenie wzoru funkcji po zastosowaniu wzorów redukcyjnych.	$f(x) = \sin 2x + \sin \left[\frac{\pi}{2} - \left(\frac{\pi}{6} - 2x\right)\right] \text{ lub}$ $f(x) = \cos\left(\frac{\pi}{2} - 2x\right) + \cos\left(\frac{\pi}{6} - 2x\right)$	1
15	15.2	Przekształcenie wzoru funkcji po zastosowaniu wzoru na sumę sinusów lub kosinusów.	$f(x) = \sqrt{3}\sin(\frac{\pi}{6} + 2x) \text{ lub}$ $f(x) = \sqrt{3}\cos(\frac{\pi}{3} - 2x)$	1
	15.3	Wyznaczenie największej i najmniejszej wartości funkcji (w tym 1 p. za podanie wartości oraz 1 p. za uzasadnienie).	Najmniejsza wartość: $m = -\sqrt{3}$ Największa wartość: $M = \sqrt{3}$	2

16	16.1	Ułożenie alternatywy układów nierówności opisującej figurę <i>F</i> (w tym 1 p. za metodę oraz 1 p. za obliczenia).	$\begin{cases} x \ge 0 \\ y \ge 0 \\ 3x + y \le 2 \end{cases} \begin{cases} x \ge 0 \\ y < 0 \\ 3x - y \le 2 \end{cases}$ $\begin{cases} x < 0 \\ y \ge 0 \\ -3x + y \le 2 \end{cases} \begin{cases} x < 0 \\ y < 0 \\ -3x - y \le 2 \end{cases}$	2
	16.2	Wyznaczenie współrzędnych wierz- chołków figury <i>F</i> .	$(-\frac{2}{3};0);(\frac{2}{3};0);(0;2);(0;-2)$	1
	16.3	Sporządzenie rysunku i zaznaczenie figury F .	$ \begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\$	1
	16.4	Obliczenie pola figury F.	$P_F = 2P_{\Delta ABC} = AB \cdot OC , \ P_F = \frac{8}{3}$	1
17	17.1	Sporządzenie rysunku z oznaczeniami lub opis oznaczeń.	$ AB = 3\sqrt{2}$ $ AC = 3 - \sqrt{3}$ $ BC = 2\sqrt{3}$	1
	17.2	Wyznaczenie miary największego kąta.	$\cos \angle C = \frac{ AC ^2 + BC ^2 - AB ^2}{2 AC \cdot BC } = -\frac{1}{2}$ $ \angle C = 120^0$	1
	17.3	Obliczenie pola trójkąta.	$P_{ABC} = \frac{1}{2} AC \cdot BC \sin \angle C = \frac{3}{2} (3 - \sqrt{3})$	1
	17.4	Obliczanie długości wysokości poprowadzonej z wierzchołka kąta rozwartego.	$ CD = \frac{2P_{\Delta ABC}}{ AB } = \frac{3\sqrt{2} - \sqrt{6}}{2}$	1
	17.5	Obliczanie długości promienia okręgu opisanego na trójkącie.	$R = \frac{ AB }{2\sin \angle C} = \sqrt{6}$	1
18	18.1	Sporządzenie rysunku wraz z zaznaczeniem danych kątów.	$\frac{\pi}{3}$	1
	18.2	Wyznaczenie długości boków prostokąta w zależności od <i>h</i> .	$a = hctg\frac{\pi}{3}, b = hctg\frac{\pi}{6}$	1

_				
	18.3	Wykazanie, że $a \cdot b = h^2$ (w tym 1 p. za metodę oraz 1 p. za obliczenia).	$a \cdot b = h^2 ctg \frac{\pi}{3} ctg \frac{\pi}{6} = h^2 tg \frac{\pi}{6} ctg \frac{\pi}{6} = h^2$	2
	18.4	Obliczenie wysokości ostrosłupa.		1
	18.5	Obliczenie objętości ostrosłupa.	$h = 3 \text{ dm}$ $V = 9 \text{ dm}^3$	1
19	19.1	Opis zdarzeń losowych.	Np.: A – zdarzenie polegające na otrzyma- niu wygranej na pierwszej loterii, B - zdarzenie polegające na otrzymaniu wygranej na drugiej loterii.	1
	19.2	Obliczenie prawdopodobieństwa wygranej w pierwszej loterii.	$P(A) = \frac{2}{A}$	1
	19.3	Obliczenie prawdopodobieństwa przegranej w drugiej loterii.	$P(B') = \frac{(2n-3)(n-1)}{(2n-1)n}$ $P(B) = \frac{4n-3}{(2n-1)n}$	1
	19.4	Obliczenie prawdopodobieństwa wygranej w drugiej loterii.	$P(B) = \frac{4n-3}{(2n-1)n}$	1
	19.5	Porównanie otrzymanych prawdopodobieństw.	Rozwiązanie jednej z nierówności: $P(A) \rangle P(B)$ albo $P(A) \langle P(B) \rangle$ i wywnioskowanie, że $P(A) \rangle P(B)$	1
	20.1	Analiza zadania i wprowadzenie oznaczeń.	Np. x – różnica ciągu arytmetycznego $a_1 = 1 - 50x$	1
	20.2	Wyznaczenie a_{49} , a_{50} w zależności od x .	$a_{49} = 1 - 2x, a_{50} = 1 - x$	1
20	20.3	Zapisanie wyrażenia $\frac{a_1 \cdot a_{49}}{a_{50}}$ jako funkcji jednej zmiennej i podanie jej dziedziny.	$f(x) = \frac{(1 - 50x)(1 - 2x)}{1 - x}, x \in (-\infty; 1)$	1
	20.4	Obliczenie pochodnej funkcji f.	$f'(x) = \frac{-100x^2 + 200x - 51}{(1 - x)^2}, x \in (-\infty; 1)$	1
	20.5	Rozwiązanie równania $f'(x) = 0$.	$x = \frac{3}{10}$	1
	20.6	Uzasadnienie istnienia najmniejszej wartości funkcji f (zbadanie monotoniczności funkcji f w przedziale $(-\infty;1)$).	Funkcja f : maleje dla $x \in \left(-\infty; \frac{3}{10}\right)$, rośnie dla $x \in \left(\frac{3}{10}; 1\right)$, dla $x = \frac{3}{10}$ przyjmuje najmniejszą wartość	1
	20.7	Wyznaczenie najmniejszej wartości funkcji <i>f</i> .	$f\left(\frac{3}{10}\right) = -8$	1
21	21.1	Wykorzystanie definicji potęgi o wykładniku równym zero.	$x^3 - 4x^2 + x + 6 = 0$ dla $x \neq 5$ (*)	1
	21.2	Rozwiązanie równania (*) (w tym 1 p. za metodę oraz 1 p. za obliczenia).	$x_1 = -1, x_2 = 2, x_3 = 3$	2
	21.3	Analiza równania dla $x = 4$.	Liczba spełniająca równanie: $x_4 = 4$	1
	21.4	Analiza równania dla $x = 6$.	Liczba spełniająca równanie: $x_5 = 6$	1
			ř	

Za prawidłowe rozwiązanie każdego z zadań inną metodą od przedstawionej w schemacie przyznajemy maksymalną liczbę punktów.