問題1

 6^{110} を 19 で割った時の剰余を求めよ

解答

19を法とする。

$$6^{110} = (36)^{55} = (38 - 2)^{55} = 2^{55} = 17$$

問題 2.1

集合 G と, G 上の演算・の組 (G, ·) が群であることの定義をかけ

解答

問題 2. 2

実数係数の正則な 2×2 行列全体を $GL(2,\mathbb{R})$ とかく. これは行列の積に関して群になることを確認 せよ

解答

- 1. $\forall A \in GL(2,\mathbb{R})$ に対して、 $A \cdot I = I \cdot A = A$. よって、 $I \in GL(2,\mathbb{R})$ は単位元.
- 2. $\forall A \in \textbf{GL}(2,\mathbb{R})$ に対して、A は正則行列なので逆行列 A^{-1} が存在する。よって、 $A\cdot A^{-1}=A^{-1}\cdot A=I$. よって逆元が存在する.
- 3. 結合法則は行列の積から明らか.

以上から、 $GL(2,\mathbb{R})$ は行列の積に関して群.

問題 2.3

 $(\mathbb{Z},+)$ の部分集合として、偶数全体 $2\mathbb{Z}$ を考えると、これは部分群になることをし示せ、また、奇数全体を考えると、部分群にならないことを示せ

解答

- 1. $2 \mid 0$ より $0 \in 2\mathbb{Z}$.(単位元の存在)
- 2. $2m \in 2\mathbb{Z}$ に対して、 $-2m \in 2\mathbb{Z}$. (逆元について閉じている)
- 3. $\forall 2m, 2n \in 2\mathbb{Z}$ に対して、 $2m+2n=2(m+n) \in 2\mathbb{Z}.$ (積について閉じている)

以上から、2ℤはℤの部分群

奇数全体の集合は1+1=2となり、積について閉じていないので部分群ではない

問題 3.1

 X_n を集合 $\{1,2,3,\ldots,n\}$ 上の全単射全体とし、 \circ を写像の合成とすると、 (X_n,\circ) は群になる。これ を n 次対称群と呼び \mathfrak{S}_n と書く.

G3について、以下の問いに答えよ

- 1. \mathfrak{S}_n が群になることを確認せよ
- 2. 群の元を列挙せよ
- 3. (12) によって生成される部分群を求めよ. また、その部分群の位数を求めよ
- 4. 部分群 < (123) > を求めよ.また (123) の位数を求めよ
- $5. \mathfrak{S}_n$ の生成元を求めよ

解答

- 1. \mathfrak{S}_n が群になることについて
 - (a) $id \in \mathfrak{S}_n$ は、 $\forall \sigma \in \mathfrak{S}_n$ に対して、 $id \circ \sigma = \sigma \circ id = \sigma$.よって、id は単位元.
 - (b) $\forall \sigma \in \mathfrak{S}_n$ に対して、 σ は全単射写像なので逆写像 $\sigma^{-1} \in \mathfrak{S}_n$ が存在し、 $\sigma \circ \sigma^{-1} = \sigma^{-1} \circ \sigma = id$. よって、 \mathfrak{S}_n の任意の元に対して、逆元が存在する
 - (c) $\forall \sigma, \tau, \psi \in \mathfrak{S}_n$ に対して、 $\forall m \in X_n$ に対して、 $((\sigma \circ \tau) \circ \psi)(m) = (\sigma \circ \tau)(\psi(m)) = (\sigma(\tau(\psi(m)))) = \sigma((\tau \circ \psi)(m)) = (\sigma \circ (\tau \circ \psi))(m)$.よって、結合法則が成り立つ以上から、 \mathfrak{S}_n は群
- 2. ⑤3の元は1,(12),(13),(23),(123),(132)
- 3. 互換 (12) によって生成される巡回群は {1,(12)}
- 4. $(1\ 2\ 3)$ から生成される巡回群は $\{1,(1\ 2\ 3),(1\ 3\ 2)\}$.また、 $(1\ 2\ 3)$ の位数は 3.
- 5. 生成元は一例として、 \mathfrak{S}_n に含まれる全ての互換など

問題 4

 $G=(\mathbb{Z},+),G$ の部分群 $H=(3\mathbb{Z},+)$ とし、以下の問いに答えよ。ただし $3\mathbb{Z}=\{3n\mid n\in\mathbb{Z}\}$

- 1. 以下の左剰余類を求めよ
 - $\bar{0} = 0 + H$
 - $\bar{1} = 1 + H$
 - $\bar{2} = 2 + H$
 - $\overline{-1} = (-1) + H$
 - $\overline{-2} = (-2) + H$
- 2. 集合 G/H を求めよ。また、G における H の指数 $[G\ ;\ H]$ を求めよ
- 3. G が可換群であるため、その部分群 H は常に正規部分群であり、剰余類 $\overline{a}\cdot \overline{b}=\overline{ab}$ で籍を定めることができる。

 $\overline{1} + \overline{2}$ を求めよ.

4. 剰余群 G/H の群表をかけ

解答

1. •
$$\overline{0} = \{3n \mid n \in \mathbb{Z}\}$$

•
$$\overline{1} = \{3n+1 \mid n \in \mathbb{Z}\}$$

$$\bullet \quad \overline{2} = \{3n+2 \mid n \in \mathbb{Z}\}$$

•
$$\overline{-1} = \{3n-1 \mid n \in \mathbb{Z}\} = \{3(n-1)+2 \mid n \in \mathbb{Z}\} = \{3n+2 \mid n \in \mathbb{Z}\}$$

•
$$\overline{-2} = \{3n-2 \mid n \in \mathbb{Z}\} = \{3(n-1)+1 \mid n \in \mathbb{Z}\} = \{3n+1 \mid n \in \mathbb{Z}\}$$

$$2. \quad (1) \ \verb"$\ \ensuremath{\mbox{$\downarrow$}}\ 0 \ \ensuremath{\mbox{\backslash}}\ G/H = \{\overline{0}, \ \overline{1}, \ \overline{2}\}$$

$$3. \quad \overline{1} + \overline{2} = \overline{1+2} = \overline{3} = \overline{0}$$