

1 Word Embedding

2 NNLM

Word2Vec

4 Negative Sampling

5 Glove , FastText

Part 1 Word Embedding

Word Embedding

Ex) Corpus 의 단어의 개수 : 10000 '강아지'라는 단어 표현

기존의 희소 표현(Sparse representation)

강아지 = [0,0,0,0,1,0,0,0, ...,0]

-공간적 낭비(10000차원의 벡터) -단어의 의미를 담지 못함

밀집 표현(Dense representation)

강아지 = [0.2, 1.8, 1.1, -2.1, 1.1, 2.8 ...]

-사용자가 지정한 차원으로 표현 -학습을 통해 단어의 의미 표현 가능

Word Embedding : 단어를 dense vector 로 표현하는 방법 dense vector 를 embedding vector 라고도 한다

Word Embedding

단어의 '의미'?

Man: Woman = King:?

기존 언어 모델의 한계

- 1. 학습 데이터에 존재하지 않는 n-gram 이 포함된 문장이 나타날 확률 값을 0으로 부여한다.
- Ex) An adorable little boy is spreading ____ . → 4-gram 언어 모델로 예측

훈련 corpus 에 'boy is spreading smiles' 라는 단어 시퀀스가 존재하지 않으면 P(smiles | boy is spreading) = 0 이 되어버린다.

현실에서는 자주 사용되는 표현이기 때문에 제대로 된 모델링이라 할 수 없다.

2. n이 커질수록 등장 확률이 0인 단어 시퀀스가 기하급수적으로 늘어나 n 을 5 이상으로 설정할 수 없다. 따라서 문장의 장기 의존성을 포착하기 힘들다.

3. 단어/ 문장 간 유사도를 계산할 수 없다.

Ex) "what will the fat cat sit on"

One-hot encoding (7개의 단어만 있다고 가정)

```
what = [1, 0, 0, 0, 0, 0, 0]
will = [0, 1, 0, 0, 0, 0, 0]
the = [0, 0, 1, 0, 0, 0, 0]
fat = [0, 0, 0, 1, 0, 0, 0]
cat = [0, 0, 0, 0, 1, 0, 0]
sit = [0, 0, 0, 0, 0, 0, 1, 0]
on = [0, 0, 0, 0, 0, 0, 1]
```


Ex) "what will the fat cat sit on"

V : 단어 집합의 크기 M : 투사층의 크기

Ex) "what will the fat cat sit on"

what	0.5	2.1	1.9	1.5	0.8
will	0.8	1.2	2.8	1.8	2.1
the	0.1	0.8	1.2	0.9	0.7
fat	2.1	1.8	1.5	1.7	2.7
cat					
sit					
on					

W 의 각 행이 곧 단어의 M 차원 임베딩 벡터가 된다

Part 3 Word2Vec

Word2Vec

Word2Vec

Ex) "The fat cat sat on the mat" 주변 중심 주변

Skip-gram "The fat ? sat ? the mat" 중심에 있는 단어로 주변에 있는 단어를 예측

Word2Vec - CBOW

Ex) "The fat cat sat on the mat"

중심 단어	주변 단어
[1, 0, 0, 0, 0, 0, 0]	[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0]
[0, 1, 0, 0, 0, 0, 0]	[1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]
[0, 0, 1, 0, 0, 0, 0]	[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0]
[0, 0, 0, 1, 0, 0, 0]	[0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 1, 0]
[0, 0, 0, 0, 1, 0, 0]	[0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 1, 0]	[0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1]
[0, 0, 0, 0, 0, 0, 1]	[0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0]

Word2Vec - CBOW

Ex) "The fat cat sat on the mat"

Output layer

sat(one-hot vector)

Word2Vec - Skip-gram

Ex) "The fat cat sat on the mat"

4번의 backpropagation → 가중치 업데이트 횟수가 많아 성능이 더 좋다

NNLM VS Word2Vec

- 다음 단어를 예측하는 것이 목적인 '언어 모델'
- 예측 단어의 이전 단어만을 참고
- 연산량 : (n x m) + (n x m x h) + (h x V)

- 워드 임베딩 자체가 목적
- 예측 단어의 주변 단어를 모두 참고
- 연산량 : (n X m) + (m x log(♡))

Part 4 **Negative Sampling**

기본적인 Word2Vec : 출력층에서 모든 단어 집합에 대한 임베딩 벡터 값 업데이트

- → 학습하고 있는 중심, 주변 단어: '강아지', '고양이', '귀여운' 일 때, '돈가스', '컴퓨터' 와 같은 연관관계가 적은 수많은 단어의 벡터값도 업데이트
- → 비효율적, softmax 적용하기 때문에 연산량 ↑

입력과 레이블의 변화

입력1	입력2	레이블
cat	The	1
cat	fat	1
cat	sat	1
cat	on	1
sat	fat	1
sat	cat	1
sat	on	1
sat	the	1

Negative Sampling

입력1	입력2	레이블
cat	The	1
cat	fat	1
cat	pizza	0
cat	computer	0
cat	sat	1
cat	on	1
sat	fat	1
sat	cat	1

► 단어 집합에서 랜덤으로 선택된 단어들을 레이블 0의 샘플로 추가.

추가하는 단어 수 : 2 ~ 5 in large dataset

5 ~ 20 in small dataset

임베딩 벡터로 변환

임베딩 벡터들의 내적값에 sigmoid 적용

전체 단어 집합 크기만큼의 Softmax classification

입력1과 입력2가 서로 중심단어와 주변단어의 관계면 1, 아니면 0 인 binary classification

단어 w_i 를 negative sample 로 선택할 확률

$$P_{negative}(w_i) = \frac{U(w_i)^{3/4}}{\sum_{j=0}^{n} U(w_j)^{3/4}}$$

 $U(w_j)$: 전체 corpus 에서 w_i 의 비율

n:전체 corpus 의 단어 개수

Ex) 전체 단어가 '강아지', '고양이' 2개이고 그 비율이 99 : 1인 경우

P(강아지) =
$$\frac{0.99^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.97$$

$$P(고양이) = \frac{0.01^{0.75}}{0.99^{0.75} + 0.01^{0.75}} = 0.03$$

Subsampling

Negative Sampling 과는 별개의 방법

입력1	입력2	레이블
cat	The	1
cat	fat	1
cat	pizza	0
cat	computer	0
cat	sat	1
cat	on	1

학습되는 데이터 쌍이 매우 많다

→ 자주 등장하는 단어는 학습에서 제외시키자

$$P_{
m subsampling}(w_i) = 1 - \sqrt{rac{t}{f(w_i)}}$$
 , $\mathbf{t} = \mathbf{10}^{-5}$

 $f(w_i)$ =0.01 인 경우 $P_{\text{subsampling}}(w_i)$ = 0.9684

→ 해당 단어가 가질 수 있는 100번의 학습 기회 중 96번 정도를 제외

 $f(w_i) = \mathbf{10}^{-5}$ 인 경우 $P_{\text{subsampling}}(w_i) = \mathbf{0}$ > 등장하면 무조건 학습

실 습!

Part 5 Glove, FastText

Glove, FastText

Word2Vec	Glove	FastText
2013년, 구글	2014년, 스탠포드	2016년, 페이스북
예측 기반(실제값과 예측값의 오차 최소화)	Word2Vec(예측 기반) + LSA(카운트 기반)	하나의 단어 안에 여러 단어(Subword)가 존재한다고 간주
		Ex) 'birthplace' , 'appple' 학습 가능
https://drive.google.com/file/d/0B7 XkCwpI5KDYNINUTTISS21pQmM	https://nlp.stanford.edu/projects/glove/	https://fasttext.cc/

감사합니다!!