

MA 503

Functional Analysis

Notes By: Aryaman Maithani

Last Updated: August 3, 2022

Contents

1	Def	initions	1	
	1.1	Banach spaces	1	
	1.2	Continuous Linear Transformations	2	
	1.3	Hahn-Banach theorems	3	
	1.4	Baire's Theorem and Applications	3	
	1.5	Weak and Weak* Topologies		
2	Examples 5			
	2.1	Banach spaces	5	
	2.2	L^p and ℓ_p spaces	7	
	2.3	Weak and Weak* topologies	8	
3	Res		8	
	3.1	Banach spaces	8	
	3.2	Continuous linear transformations	9	
	3.3	Hahn-Banach theorems		
	3.4	Baire's Theorem and Applications	11	
	3.5	Weak and Weak* Topologies		
	3.6	Reflexivity	15	

 $\S 1$ Definitions

§1. Definitions

§§1.1. Banach spaces

 \mathbb{F} will either be \mathbb{R} or \mathbb{C} throughout, with the usual Euclidean topology. All vector spaces considered will be over \mathbb{F} .

Definition 1.1.1. A topological vector space V is a vector space with a topology such that

- 1. V is Hausdorff;
- 2. the map $(v, w) \mapsto v + w$ is continuous;
- 3. the map $(\alpha, \nu) \mapsto \alpha \nu$ is continuous.

Definition 1.1.2. A norm on a vector space V is a function $\|\cdot\|: V \to [0, \infty)$ such that

- 1. $\|x\| = 0$ iff x = 0;
- 2. $\|\alpha x\| = |\alpha| \|x\|$ for all $(\alpha, x) \in \mathbb{F} \times V$;
- 3. (Triangle Inequality) $||x + y|| \le ||x|| + ||y||$ for every $x, y \in V$.

The pair $(V, \| \cdot \|)$ is called a normed linear space (NLS).

Proposition 1.1.3 (Reverse Triangle Inequality). Let V be an NLS. $||x| - ||y|| \le ||x - y||$ for all $x, y \in V$.

The norm induces a metric on V defined by $(x,y) \mapsto d(x,y)$. This gives V a topology. Check that this also makes V a topological vector space, and that the norm map is continuous. Since this V is a metric space, it makes sense to talk about completeness.

Definition 1.1.4. A normed linear space is said to be a Banach space if it is complete.

Definition 1.1.5. A Banach algebra A is an (associative unital) **F**-algebra that is also a Banach space satisfying

- 1. $||xy|| \le ||x|| ||y||$ for all $x, y \in A$;
- 2. $\|\mathbf{1}\| = 1$.

The first condition ensures that the multiplication map is continuous.

 $\S 1$ Definitions

Definition 1.1.6. For $p \in [1, \infty]$, we define $p^* \in [1, \infty]$ to be the unique number satisfying

$$\frac{1}{p} + \frac{1}{p^*} = 1.$$

p* is called the conjugate exponent to p.

§§1.2. Continuous Linear Transformations

Definition 1.2.1. Let V and W be normed linear spaces.

A linear map $T: V \to W$ is said to be continuous if T is continuous with respect to the norm topologies on V and W. The space of all continuous functions from V to W is denoted by $\mathcal{L}(V,W)$. We also define $\mathcal{L}(V) := \mathcal{L}(V,V)$. This is an \mathbb{F} -algebra.

T is said to be bounded if there exists $C \ge 0$ such that $||Tx||_W \le C||x||_V$ for all $x \in V$.

Definition 1.2.2. $T \in \mathcal{L}(V, W)$ is said to be an isomorphism if there exists $S \in \mathcal{L}(W, V)$ such that $T \circ S$ and $S \circ T$ are the appropriate identity maps.

Equivalently: T is bijective, linear, continuous with T^{-1} also continuous.

Definition 1.2.3. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on a vector space V are said to be equivalent if either of two equivalent conditions holds:

- 1. both induce the same topology (the identity map is a homeomorphism, interpreted correctly);
- 2. there exist constants c, C > 0 such that for all $x \in V$, we have

$$c||x||_1 \leqslant ||x||_2 \leqslant C||x||_1.$$

Definition 1.2.4. Let V and W be NLS, and T : V \rightarrow W be a continuous linear transform. Let B be the closed unit ball in V. The **norm** of T, denoted ||T||, is given by

$$\|\mathsf{T}\| := \sup_{\mathsf{x} \in \mathsf{B}} \|\mathsf{T}\mathsf{x}\|_{W}.$$

This makes $\mathcal{L}(V, W)$ into a normed linear space.

§1 Definitions 3

Definition 1.2.5. Let V be a normed linear space. The dual space of V is defined by

$$V^* := \mathcal{L}(V, \mathbb{F}).$$

Note that V^* is a Banach space since \mathbb{F} is so.

§§1.3. Hahn-Banach theorems

Definition 1.3.1. Let V be a vector space over \mathbb{F} . A sublinear functional is a map $p:V\to\mathbb{R}$ such that

- 1. $p(\alpha x) = \alpha p(x)$ for all $\alpha \in (0, \infty)$ and all $x \in V$ (this condition holds iff $p(\alpha x) \leq \alpha p(x)$ for all $\alpha > 0$ and all $x \in V$);
- 2. $p(x+y) \le p(x) + p(y)$ for all $x, y \in V$.

Definition 1.3.2. Let V be an NLS, and $x \in V$. Define $J_x : V^* \to \mathbb{R}$ by

$$J_x(f) := f(x)$$
.

It follows that $J_x \in (V^*)^* = V^{**}$. (In fact, $\|J_x\|_{V^{**}} = \|x\|_V$.)

Define $J:V\to V^{**}$ by $x\mapsto J_x.$ This is an isometry.

A Banach space V is said to be reflexive if the canonical embedding $J: V \to V^{**}$ is surjective.

Since V is a Banach space, J above being surjective is equivalent to J being an isomorphism.

§§1.4. Baire's Theorem and Applications

Definition 1.4.1. A subset of a metric space is a G_{δ} set if is a countable intersection of open sets.

Definition 1.4.2. Let $f: X \to Y$ be a function. The graph of f, denoted G(f), is defined as

$$G(f) := \{(x, f(x)) : x \in X\} \subseteq X \times Y.$$

§1 Definitions 4

If X and Y are topological spaces, f is continuous, and Y is Hausdorff, then G(f) is closed in the product space $X \times Y$.

§§1.5. Weak and Weak* Topologies

Definition 1.5.1. Let V be an NLS. The weak topology on V is the coarsest (smallest) such that every element of V^* is continuous.

If $(x_n)_n$ converges to x in the weak topology, we write this as $x_n \rightharpoonup x$.

Note that this is coarser than the norm topology since every element of V^* is (by definition) continuous in the norm topology.

Definition 1.5.2. Let X be a topological space and $f: X \to \mathbb{R}$ a function. f is lower semi-continuous if

$$f^{-1}[(-\infty, \alpha]] = \{x \in X : f(x) \leq \alpha\}$$

is closed in X, for every $\alpha \in \mathbb{R}$.

Definition 1.5.3. Let V and W be NLS, and let $T : V \to W$ be a linear mapping. T is said to be weakly continuous if T is continuous as a mapping from V to W, each space being endowed with its weak topology.

Definition 1.5.4. Let V be a Banach space. The weak* topology on V* is the coarsest (smallest) topology such that the functionals $\{J_x : x \in V\}$ are all continuous.

If $(x_n)_n$ converges to x in the weak* topology, we write this as $x_n \stackrel{*}{\rightharpoonup} x$.

Note that V^* is a Banach space in its own right and has a weak topology \mathcal{W} and norm topology \mathcal{S} . Let \mathcal{W}^* denote the weak* topology on V^* . Then, we have

$$\mathcal{W}^*\subseteq\mathcal{W}\subseteq\mathcal{S}.$$

If V is reflexive, then $W^* = W$.

§2 Examples 5

§2. Examples

§§2.1. Banach spaces

Definition 2.1.1. Let $p \in [1, \infty)$. For $x = (x_1, \dots, x_N) \in \mathbb{R}^N$, we define

$$||x||_p := \left(\sum_{i=1}^N |x_i|^p\right)^{1/p}.$$

For $p = \infty$, define

$$\|x\|_{\infty} \coloneqq \max_{1 \leqslant i \leqslant N} |x_i|.$$

 $\|\cdot\|_p$ is a norm on \mathbb{R}^N . The pair $(\mathbb{R}^N, \|\cdot\|_p)$ will be denoted by ℓ_p^N .

Definition 2.1.2. $\mathbb{F}^{\mathbb{N}}$ denotes the vector space of all \mathbb{F} -sequences. An element of $\mathbb{F}^{\mathbb{N}}$ is written as $x = (x_n)_n$ or $(x_n)_{n \ge 1}$.

For $p \in [1, \infty)$, we define the space

$$\ell_{p} := \left\{ x \in \mathbb{F}^{\mathbb{N}} : \sum_{i=1}^{\infty} \left| x_{i} \right|^{p} < \infty \right\}.$$

For $x \in \ell_p$, we define

$$\|x\|_{p} := \left(\sum_{i=1}^{\infty} |x_{i}|^{p}\right)^{1/p}.$$

For $p = \infty$, we define

$$\ell_{\infty} := \left\{ x \in \mathbb{F}^{\mathbb{N}} : \sup_{i} |x_{i}| < \infty \right\}.$$

For $x \in \ell_{\infty}$, we define

$$||x||_{\infty} := \sup_{i} |x_{i}|.$$

 ℓ_p^N and ℓ_p are Banach spaces for all $p \in [1, \infty]$ and all $N \geqslant 1$.

Definition 2.1.3. Given a topological space X, C(X) denotes the vector space of all real-valued functions on X.

§2 Examples 6

If X is compact, C(X) has a norm given by

$$\|f\|_{\infty} := \sup_{x \in X} |f(x)|,$$

for $f \in C(X)$. This is also called the sup-norm.

Example 2.1.4. C(X) is a Banach space, whenever X is compact. Convergence in this metric is uniform convergence.

 $C^{1}[0,1]$ – the space of continuously differentiable functions – is a dense and proper subspace of C[0,1].

Example 2.1.5. $\mathcal{L}(V, W)$ is a Banach space, whenever W is so. V^* is always a Banach space (even if V is not). $\mathcal{L}(W)$ is a Banach algebra whenever W is a Banach space.

Example 2.1.6. Let $C^1[0,1]$ be the subspace of C[0,1] consisting of continuously differentiable function (this is also endowed with the sup-norm). Then, the map

$$T: C^{1}[0,1] \to C[0,1]$$

defined by

$$f \mapsto f'$$

is linear but not continuous.

However, if we endow the domain with the new norm

$$\|f\|_1 := \|f\|_{\infty} + \|f'\|_{\infty}$$

then the map is continuous.

Example 2.1.7. Consider the new norm on C[0, 1] given by

$$||f||_1 := \int_0^1 |f(t)| dt.$$

Then, $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ are not equivalent. (Consider the functions $f_n(x)=x^n$ and their limits.)

§2 Examples 7

§§2.2. L^p and ℓ_p spaces

 c_0 is the subspace of ℓ_∞ consisting of sequences that converge to 0 (equipped with the $\|\cdot\|_\infty$ norm). This is a Banach space.

Theorem 2.2.1. We have the following isometric isomorphisms.

- 1. $(c_0)^* \cong \ell_1$.
- 2. $(\ell_p)^* \cong \ell_{p^*}$ for $p \in [1, \infty)$ and not for $p = \infty$.

In both cases, the identification of the right space with the left is made as follows: Given an element $y \in \ell_{p^*}$, we get an element $f_y \in \ell_p^*$ (or c_0^* if $p^* = 1$) defined as

$$f_{y}(x) := \sum_{i=1}^{\infty} x_{i}y_{i}.$$

Theorem 2.2.2. Let (X, \mathcal{M}, μ) be a measure space. We have the following isometric isomorphisms.

- 1. $(L^{p}(\mu))^* \cong L^{p^*}(\mu)$ for $p \in (1, \infty)$.
- 2. If μ is σ -finite, then $(L^1(\mu))^* \cong L^{\infty}(\mu)$.

In particular, the above is true when X is an open subset of \mathbb{R}^n with the Lebesgue measure.

Theorem 2.2.3 (Riesz). Given $l \in (\mathcal{C}[0,1])^*$, there exists $\alpha \in BV([0,1])$ such that $\alpha(0) = 0$ and

$$l(f) = \int_{[0,1]} f \, d\alpha$$

for all $f \in C[0, 1]$.

The integral above is the Lebesgue-Stieltjes integral, which is just integrating against the *signed* Borel measure induced by α .

In the following, Ω will be an open subset of \mathbb{R}^N with Lebesgue measure.

Theorem 2.2.4 (Dense subsets). Fix $p \in [1, \infty)$. The following subsets of $L^p(\Omega)$ are dense:

- 1. the set of all simple functions which vanish outside a set of finite measure,
- 2. $C_c(\Omega)$ the space of all continuous functions with compact support,

3. $C_c^{\infty}(\Omega)$ – the space of all infinitely differentiable functions with compact support.

Theorem 2.2.5. ℓ_p and $L^p(\Omega)$ are separable for $1 \le p < \infty$ and not separable for $p = \infty$.

Theorem 2.2.6. ℓ_p and $L^p(\Omega)$ are reflexive for $1 and not reflexive for <math>p \in \{1, \infty\}$.

Theorem 2.2.7 (Young's Inequality). Let $1 . Let <math>f \in L^1(\mathbb{R}^N)$ and $g \in L^p(\mathbb{R}^N)$. The map

$$x \mapsto \int_{\mathbb{R}^N} f(y)g(x-y) \, \mathrm{d}y$$

is well-defined almost everywhere in \mathbb{R}^N . The function thus defined is denoted f*g and is called the convolution of f and g. Further, $f*g\in L^p(\mathbb{R}^N)$ and we have

$$\|f * g\|_p \le \|f\|_1 \|g\|_p$$
.

§§2.3. Weak and Weak* topologies

Example 2.3.1 (Weak convergence does not imply convergence). Consider $V = \ell_p$ for $1 . Consider the sequence <math>(e_n)_n$ in ℓ_p . Since $||e_n - e_m||_2 = 2^{1/p}$ for all $n \neq m$, it is clear that not only does $(e_n)_n$ not converge, but neither does any subsequence of $(e_n)_n$.

However, we $e_n \rightharpoonup 0$. Indeed, given any $f \in \ell_p^*$, it is of the form f_y , for some $y \in \ell_{p^*}$ (as discussed earlier). Thus,

$$f_y(e_n) = y_n$$
.

Since $\sum |y_n|^p$ converges, it follows that $y_n \to 0$ (in $\mathbb F$) and thus, $f(e_n) \to f(0)$, as desired.

§3. Results

§§3.1. Banach spaces

Proposition 3.1.1. Let $p \in (1, \infty)$. If $a, b \geqslant 0$, then

$$a^{1/p}b^{1/p^*} \leqslant \frac{a}{p} + \frac{b}{p^*}.$$

Proposition 3.1.2 (Hölder's inequality). Let $p \in [1, \infty)$. If $x \in \ell_p$ and $y \in \ell_{p^*}$, then

$$\sum_{i=1}^{\infty} |x_i y_i| \leqslant ||x||_p ||y||_{p^*}.$$

Proposition 3.1.3 (Minkwoski's Inequality). Let $p \in [1, \infty)$. Let $x, y \in \ell_p$. Then

$$||x+y||_{\mathfrak{p}} \leq ||x||_{\mathfrak{p}} + ||y||_{\mathfrak{p}}.$$

Proposition 3.1.4. Let V be an NLS, and W a *closed* subspace. Then,

$$\|x + W\|_{V/W} := \inf_{w \in W} \|x + w\|_{V}$$

defines a norm on V/W.

If V is Banach space, then so is V/W.

§§3.2. Continuous linear transformations

V and W will be assumed to be normed linear spaces throughout.

Proposition 3.2.1. Let $T: V \to W$ be linear. The following are equivalent:

- 1. T is continuous.
- 2. T is continuous at **0**.
- 3. T is bounded.

Proposition 3.2.2. Let $T: V \to W$ be continuous, and $V \neq 0$. Then,

$$\begin{split} \|T\| &= \sup_{\|x\|_{V}=1} \|Tx\|_{W} \\ &= \sup_{x \in V \setminus \{0\}} \frac{\|Tx\|_{W}}{\|x\|_{V}} \\ &= \inf\{K > 0 : \|Tx\|_{W} \leqslant K\|x\|_{V} \text{ for all } x \in V\}. \end{split}$$

Corollary 3.2.3. $||T(x)|| \le ||T|| ||x||$ for all $x \in V$.

Proposition 3.2.4. If W is complete, then so is $\mathcal{L}(V,W)$. In particular, V^* is always a Banach space, and $\mathcal{L}(W)$ is a Banach algebra whenever W is a Banach space.

Proposition 3.2.5. Any two norms on a finite-dimensional \mathbb{F} -vector space are equivalent. In particular, given any norm on \mathbb{F}^N , the topology induced is the Euclidean topology.

Corollary 3.2.6. Any finite dimensional NLS is complete. Any finite dimensional subspace of any NLS is closed. If $T: V \to W$ is linear and $\dim(V) < \infty$, then T is continuous.

Theorem 3.2.7 (Riesz' Lemma). Let V be an NLS and $W \subseteq V$ a *closed* and proper subspace. Then, for every $\varepsilon > 0$, there exists $u = u(\varepsilon) \in V$ such that

$$\|\mathbf{u}\| = 1$$
 and $d(\mathbf{u}, W) \geqslant 1 - \varepsilon$.

Proposition 3.2.8. Let V be an NLS. V is finite-dimensional iff the closed unit ball is compact.

§§3.3. Hahn-Banach theorems

Theorem 3.3.1 (Hahn-Banach theorem). Let V be a vector space over \mathbb{R} . Let $\mathfrak{p}:V\to\mathbb{R}$ be a sublinear functional. Let $W\subseteq V$ be a subspace and let $\mathfrak{g}:W\to\mathbb{R}$ be a linear map such that

$$g \leq p$$
 on W .

Then, there exists a linear extension $f : V \to \mathbb{R}$ of g such that $f \leq p$.

Note that this was a statement purely about sublinear functionals, without any reference to norms or continuity.

Corollary 3.3.2 (Hahn-Banach Theorem). Let V be an NLS over \mathbb{F} . Let $W \subseteq V$ be a subspace, and let $g \in W^*$. Then, there exists a continuous linear extension $f \in V^*$ of

g such that

$$\|f\|_{V^*} = \|g\|_{W^*}.$$

Corollary 3.3.3. Let V be an NLS and $x_0 \in V$ be nonzero. Then, there exists $f \in V^*$ such that ||f|| = 1 and $f(x_0) = x_0$.

In particular, if $x \neq y$ are elements of V, then there exists $f \in V^*$ such that $f(x) \neq f(y)$.

Corollary 3.3.4. Let V be an NLS, and $x \in V$. Then,

$$||x|| = \sup_{f \in V^*, ||f|| \leqslant 1} |f(x)| = \max_{f \in V^*, ||f|| \leqslant 1} |f(x)|.$$

Note the duality with the *definition* of $\|f\|$. (The above is a result, and not a definition.) In particular, the above says that the supremum is always achieved, which need not be the case for the operator norm.

§§3.4. Baire's Theorem and Applications

Theorem 3.4.1 (Baire Category Theorem). Let (X, d) be a complete metric space. Let $(U_n)_{n\geqslant 1}$ be a sequence of open dense sets. Then, $\bigcap_{n\geqslant 1}U_n$ is also dense (in particular, nonempty, if X is nonempty).

Theorem 3.4.2 (Banach-Steinhaus Theorem). Let V be a Banach space and W an NLS. Let I be an arbitrary indexing set. Let $T_i \in \mathcal{L}(V, W)$ for each $i \in I$ be given. Then, one of the two is true:

- 1. $\sup_{i\in I} ||T_i|| < \infty$,
- 2. $\sup_{i \in I} ||T_i(x)|| = \infty$ for all x belonging to some G_δ set in V.

Corollary 3.4.3 (Uniform boundedness principle). Let V be a Banach space, and W an NLS. Let $T_i \in \mathcal{L}(V, W)$ for all $i \in I$.

$$\sup_{i \in I} \|T_i(x)\| < \infty \text{ for all } x \in V \Rightarrow \sup_{i \in I} \|T_i\| < \infty.$$

Corollary 3.4.4. Let V be a Banach space, and W an NLS. Let $(T_n)_n$ be a sequence in $\mathcal{L}(V,W)$. Assume that $(T_n(x))_n$ converges in W, for all $x \in V$. Define

$$T(x) := \lim_{n \to \infty} T_n(x),$$

for $x \in V$.

Then $T \in \mathcal{L}(V, W)$ and $||T|| \leq \liminf_n ||T_n||$.

Corollary 3.4.5. Let V be a Banach space, and $B \subseteq V$ any subset. Assume that $f[B] \subseteq \mathbb{F}$ is bounded for all $f \in V^*$. Then, B is bounded in V.

Proposition 3.4.6. Let V and W be Banach spaces, and $T \in \mathcal{L}(V, W)$ be surjective. Then, there exists c > 0 such that

$$B_W(\mathbf{0}, c) \subseteq T[B_V(\mathbf{0}, 1)].$$

Theorem 3.4.7 (Open Mapping Theorem). Let W and W be Banach spaces, and $T \in \mathcal{L}(V,W)$ be surjective. Then, T is an open map.

Corollary 3.4.8. Let W and V be Banach spaces, and $T \in \mathcal{L}(V, W)$ be bijective. Then, T is an isomorphism.

Theorem 3.4.9. Let W and V be Banach spaces, and $T: V \to W$ be linear. The graph G(T) is closed in $V \times W$ iff T is continuous.

§§3.5. Weak and Weak* Topologies

Proposition 3.5.1. The weak topology is Hausdorff.

Proposition 3.5.2. Let V be a Banach space and let W be a closed subspace of V. The weak topology on W is the topology induced on W by the weak topology on V.

Proposition 3.5.3. Let V be a Banach space, and $(x_n)_n$ a sequence in V.

- 1. $x_n \rightarrow x$ iff $f(x_n) \rightarrow f(x)$ for all $f \in V^*$.
- 2. $x_n \to x$ implies $x_n \to x$.
- 3. $x_n \rightarrow x$ implies $(\|x_n\|)_n$ is bounded and $\|x\| \leq \liminf_n \|x_n\|$.
- 4. $x_n \rightharpoonup x$ and $f_n \to f$ in V^* implies $f_n(x_n) \to f(x)$.

Remark 3.5.4. Contrary to sequences, note that "weakly open \Rightarrow open".

Proposition 3.5.5. If V is finite dimensional, then norm and weak topologies coincide.

Proposition 3.5.6. Let V be a Banach space, and C be a convex and (norm) closed subset of V. Then C is also weakly closed.

Proposition 3.5.7. Let V be a Banach space. Consider the following subsets

 $D := \{x \in V : ||x|| < 1\}$ (open unit ball),

 $B := \{x \in V : ||x|| \leqslant 1\} \quad \text{(closed unit ball),}$

 $S := \{x \in V : ||x|| = 1\}$ (unit sphere).

Suppose V is infinite-dimensional.

B is closed in norm topology and convex. Hence, B is closed in weak topology. B is the weak closure of S. In particular, S is never weakly closed (but it is norm closed). Similarly, D is never weakly open.

In the proof of the above, one sees that given any $x_0 \in D$ and any weakly open neighbourhood U of x_0 , there exists $y_0 \in V \setminus \{0\}$ such that U contains the (affine) line $\{x_0 + ty_0 : t \in \mathbb{R}\}$.

Corollary 3.5.8. If V is an infinite-dimensional Banach space, the weak topology is strictly coarser than the norm topology.

Theorem 3.5.9 (Schur's Lemma). In the space ℓ_1 , a sequence is convergent in the weak topology iff it converges in the norm topology.

Observation 3.5.10. Note that the weak topology is still strictly coarser on ℓ_1 than the norm topology. The point is that topologies are not determined by sequences for general topological spaces. This also shows that the weak topology on ℓ_1 is not metrisable.

Proposition 3.5.11. If X is a topological space, $x_n \to x$ in X, and $f: X \to \mathbb{R}$ is lower semi-continuous, then $f(x) \leq \liminf_n f(x_n)$.

Corollary 3.5.12. Let V be a Banach space and $\varphi: V \to \mathbb{R}$ be convex and lower semi-continuous (with respect to norm topology). Then φ is also lower semi-continuous with respect to weak topology.

In particular, the map $x \mapsto \|x\|$, being continuous, is also lower semi-continuous with respect to the weak topology, and if $x_n \rightharpoonup x$ in V, we have $\|x\| \le \liminf_n \|x_n\|$.

Theorem 3.5.13. Let V and W be NLS, and T : V \rightarrow W be linear. The following are equivalent:

- 1. T is weakly continuous.
- 2. $f \circ T$ is weakly continuous for every $f \in W^*$.

Theorem 3.5.14. Let V and W be *Banach* spaces, and T : V \rightarrow W be linear. T is continuous iff T is weakly continuous.

Proposition 3.5.15. Let V be a Banach space. The weak* topology on V^* is Hausdorff.

Proposition 3.5.16. Let V be a Banach space and let $(f_n)_n$ be a sequence in V^* .

- 1. $f_n \stackrel{*}{\rightharpoonup} f \text{ iff } f_n(x) \to f(x) \text{ for all } x \in V.$
- $2. \ f_n \to f \Rightarrow f_n \rightharpoonup f \Rightarrow f_n \stackrel{*}{\rightharpoonup} f.$
- 3. $f_n \stackrel{*}{\rightharpoonup} f$ in V^* and $x_n \to x$ in V implies $f_n(x_n) \to f(x)$.

Proposition 3.5.17. Let V be a Banach space, and ϕ be a linear functional on V* which is continuous with respect to the weak* topology. Then $\phi = J_x$ for some $x \in V$.

In other words, $\{J_x:x\in V\}$ is the complete set of functions which are continuous with

respect to the weak* topology.

Theorem 3.5.18 (Banach-Alaoglu Theorem). Let V be a Banach space. Then, B^* , the closed unit ball in V^* , is weak* compact.

Theorem 3.5.19. Let V be a Banach space. Let B be the closed unit ball in V and B** the closed unit ball in V**. Let J : V \rightarrow V** be the canonical embedding.

 B^{**} is the weak* closure of J(B) in V^{**} .

Remark 3.5.20. Let V be a Banach space. Since J is an isometry, it follow that J[B] is closed in V**. Thus, either J[B] = B** (which happens iff V is reflexive) or J[B] is a closed and proper subspace of B** (and hence, not dense).

§§3.6. Reflexivity

Theorem 3.6.1. A Banach space is reflexive iff the closed unit ball is weakly compact.

Corollary 3.6.2. Let V be a reflexive Banach space. A subset of V is weakly compact iff it is bounded and weakly closed.

In particular, if $K \subseteq V$ is a closed, bounded and convex subset, then K is weakly compact.

Corollary 3.6.3. Let V and W be Banach spaces that are isometrically isomorphic. If V is reflexive, then so is W.

Corollary 3.6.4. A closed subspace of a reflexive space is reflexive.

Corollary 3.6.5. Let V be a Banach space. V is reflexive \Leftrightarrow V* is reflexive.