

Aufgaben zur Linearen Algebra - Blatt 6

elektronische Abgabe im OLAT Kurs des Proseminars (z.B. bis So. 15. November 2020, 23:59 Uhr)

Aufgabe 21

Sei M eine nichtleere Menge. Für $X,Y\subseteq M$ definieren wir $X\Delta Y$ wie in Aufgabe 4, sowie $X\circ Y:=M\setminus (X\Delta Y)$.

- (a) Sind $(\mathcal{P}(M), \Delta)$ und/oder $(\mathcal{P}(M), \circ)$ Gruppen?
- (b) Sind $(\mathcal{P}(M), \Delta, \cap)$ und/oder $(\mathcal{P}(M), \Delta, \cup)$ Ringe?

Lösung: a) Für $(\mathcal{P}(M), \Delta)$ haben wir in Aufgabe 4a) bereits die Assoziativität und in 4b) die Kommutativität bewiesen.

Wir zeigen als nächstes die Existenz eines neutralen Elements, nämlich $e=\emptyset$. Für $X\subseteq M$ beliebig gilt

$$X\Delta\emptyset = (X\cup\emptyset)\setminus (X\cap\emptyset) = X\setminus\emptyset = X.$$
 \checkmark

(Wegen der Kommutativität, müssen wir $\emptyset \Delta X$ nicht extra überprüfen.) Zum Schluss zeigen wir, dass für jede Menge $X \subseteq M$ eine inverses Element existiert, nämlich $X^{-1} = X$:

$$X\Delta X = (X \cup X) \setminus (X \cap X) = X \setminus X = \emptyset = e.$$
 \checkmark .

Damit ist gezeigt, dass $(\mathcal{P}(M), \Delta)$ eine Abelsche Gruppe ist. Wir überprüfen als nächstes die Assoziativität von \circ :

$m \in$	X	Y	Z	$X\Delta Y$	$X \circ Y$	$(X \circ Y)\Delta Z$	$(X \circ Y) \circ Z$
	w	w	w	f	w	f	w
	w	w	\mathbf{f}	f	w	W	f
	w	\mathbf{f}	w	w	\mathbf{f}	W	f
	w	f	f	\mathbf{w}	\mathbf{f}	f	W
	f	w	w	w	f	W	f
	\mathbf{f}	w	\mathbf{f}	\mathbf{w}	\mathbf{f}	f	W
	f	\mathbf{f}	w	f	W	f	W
	f	\mathbf{f}	f	f	w	W	f
$m \in$	X	Y	Z	$Y\Delta Z$	$Y\circ Z$	$X\Delta(Y\circ Z)$	$X \circ (Y \circ Z)$
$m \in$	$\frac{X}{\mathbf{w}}$	Y w	$\frac{Z}{\mathbf{w}}$	$\frac{Y\Delta Z}{\mathrm{f}}$	$Y \circ Z$	$\frac{X\Delta(Y\circ Z)}{\mathrm{f}}$	$\frac{X \circ (Y \circ Z)}{\mathbf{w}}$
$m \in$							
$m \in$	w	w	w	f	W	f	w
$m \in$	w w	w w	w f	f w	w f	f w	w f
$m \in$	W W W	w w f	w f w	f w w	w f f	f w w	w f f
$m \in$	w w w	w w f f	w f w f	f w w f	w f f w	f w w f	w f f w
$m \in$	w w w w	w w f f	w f w f	f w w f	w f f w w	f w w f	w f f w f
$m \in$	w w w f f	w w f f w w	w f w f	f w w f f	w f f w w f	f w w f	w f f w f w

Aus der Gleichheit der jeweils letzten Spalte folgt die Assoziativität von \circ . Die Kommutativität von \circ folgt aus der Kommutativität von Δ :

$$X \circ Y = M \setminus (X\Delta Y) = M \setminus (Y\Delta X) = Y \circ X.$$
 \checkmark

Die ganze Menge M ist das neutrale Element bezüglich \circ

$$M \circ X = M \setminus (M \Delta X) = M \setminus [(X \cup M) \setminus (X \cap M)] = M \setminus [M \setminus X] = X.$$

Jedes $X \subseteq M$ ist wieder zu sich selbst invers bezüglich \circ ,

$$X \circ X = M \setminus [X \Delta X] = M \setminus [(X \cup X) \setminus (X \cap X)] = M \setminus [X \setminus X] = M \setminus \emptyset = M. \quad \checkmark$$

Damit ist gezeigt, dass auch $(\mathcal{P}(M), \circ)$ eine Abelsche Gruppe ist.

b)									
$m \in$	X	Y	Z	$X \cap Y$	$(X \cap Y) \cap Z$	$Y \cap Z$	$X \cap (Y \cap Z)$		
	W	w	W	W	W	W	W		
	w	w	f	W	f	f	f		
	w	f	W	\mathbf{f}	\mathbf{f}	f	f		
	w	\mathbf{f}	f	\mathbf{f}	f	\mathbf{f}	f		
	f	w	W	f	f	W	f		
	f	w	f	\mathbf{f}	f	f	f		
	f	\mathbf{f}	w	\mathbf{f}	\mathbf{f}	f	f		
	\mathbf{f}	\mathbf{f}	f	f	f	f	f		

Aus der Gleichheit der 5. und 7. Spalte folgt die Assoziativität von \cap .

Es gilt, dass $e=M\neq\emptyset$ neutrales Element bezüglich \cap ist, da $X\cap M=X=M\cap X$ für alle $X\subseteq M$.

Zu guter Letzt überprüfen wir die Distributivgesetze. Da $X \cap Y = Y \cap X$ gilt, reicht es eines zu überprüfen.

$m \in$	X	Y	Z	$Y\Delta Z$	$X \cap (Y\Delta Z)$	$X \cap Y$	$X \cap Z$	$(X \cap Y)\Delta(X \cap Z)$
	W	W	w	f	f	W	w	f
	w	W	\mathbf{f}	\mathbf{w}	w	\mathbf{w}	\mathbf{f}	W
	w	f	w	\mathbf{w}	w	\mathbf{f}	w	W
	w	\mathbf{f}	\mathbf{f}	\mathbf{f}	f	\mathbf{f}	\mathbf{f}	f
	f	W	w	f	f	f	f	f
	\mathbf{f}	w	\mathbf{f}	w	f	f	\mathbf{f}	f
	f	f	w	W	f	f	f	f
	f	f	f	f	\mathbf{f}	f	f	f

Aus der Gleichheit der 5. und der 8. Spalte folgt damit, dass $(\mathcal{P}(M), \Delta, \cap)$ ein (kommutativer) Ring ist.

Wir zeigen, dass $(\mathcal{P}(M), \Delta, \cup)$ kein Ring ist, weil kein Element $E \neq \emptyset$ existiert, sodass $E \cup X = X$ für alle X. Angenommen, es existiert $E \subseteq M$, sodass $E \cup X = X$ für alle $X \subseteq M$. Insbesondere muss dann gelten für $X = \emptyset$, dass

$$E=E\cup\emptyset=E\cup X=X=\emptyset.$$

Da die neutralen Elemente der beiden Operationen verschieden sein müssen, ist $(\mathcal{P}(M), \Delta, \cup)$ kein Ring.

Häufige Probleme bei Aufgabe 21:

- Das neutrale Element muss für alle Elemente der Gruppe stets das gleiche sein, es darf nicht vom jeweiligen Element abhängen.
- Inverse Elemente müssen beidseitig invers sein, das muss man auch zeigen.

Aufgabe 22

Sei R ein Ring. Zeigen Sie, dass für alle $a,b,c\in R$ gilt:

- (a) $0 \cdot a = a \cdot 0 = 0$.
- (b) $-(a \cdot b) = (-a) \cdot b = a \cdot (-b)$.
- (c) $(-a) \cdot (-b) = a \cdot b$.

Gilt für $a \neq 0$ auch immer $a \cdot b = a \cdot c \Rightarrow b = c$?

Lösung:

(a)

$$0 = 0 \cdot a - 0 \cdot a = (0+0) \cdot a - 0 \cdot a = 0 \cdot a + 0 \cdot a - 0 \cdot a = 0 \cdot a$$

$$0 = a \cdot 0 - a \cdot 0 = a \cdot (0+0) - a \cdot 0 = a \cdot 0 + a \cdot 0 - a \cdot 0 = a \cdot 0$$

(b)

$$-(a \cdot b) = 0 - (a \cdot b) \stackrel{(a)}{=} a \cdot 0 - (a \cdot b) = a \cdot (-b + b) - (a \cdot b)$$

$$= a \cdot (-b) + a \cdot b - (a \cdot b) = a \cdot (-b) \quad \checkmark$$

$$-(a \cdot b) = 0 - (a \cdot b) \stackrel{(a)}{=} 0 \cdot b - (a \cdot b) = (-a + a) \cdot b - (a \cdot b)$$

$$= (-a) \cdot b + a \cdot b - (a \cdot b) = (-a) \cdot b \quad \checkmark$$

Alternativ kann man auch wieder zeigen, dass $(-a) \cdot b$ und $a \cdot (-b)$ beide additiv invers zu $a \cdot b$ sind, indem man sie einfach addiert und zeigt dass 0 herauskommt.

(c)

$$a \cdot b \stackrel{17b)}{=} -[-(a \cdot b)] \stackrel{(b)}{=} -[a \cdot (-b)] \stackrel{(b)}{=} (-a) \cdot (-b)$$

Die zweite Aussage stimmt nicht. Dazu wählen wir $R = \mathbb{Z}/6\mathbb{Z} = \mathbb{Z}_6$. Dann gilt für $2 \neq 0$, dass $2 \cdot 3 = 0 = 2 \cdot 0$ aber $3 \neq 0$.

Häufige Probleme bei Aufgabe 22:

- Alle Aussagen müssen ausschließlich aus den Ringaxiomen hergeleitet werden!
- Inverse Elemente bezüglich der Mulitplikation existieren in einem Ring im Allgemeinen nicht. Man darf also nicht einfach mit a^{-1} multiplizieren.
- Die Ringmultiplikation muss nicht kommutativ sein.

Aufgabe 23

Zeigen Sie Assoziativ- und Distributivgesetze für die Matrixrechnung (d.h. die Aussagen von Satz 2.3.5. (ii) und (iii)).

Lösung: Zu zeigen ist, dass $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ für $A \in \text{Mat}_{m,n}(R)$, $B \in \text{Mat}_{n,p}(R)$ und $C \in \text{Mat}_{p,q}(R)$. Es gilt

$$(A \cdot B) \cdot C = A \cdot (B \cdot C) \quad \Leftrightarrow \quad [(A \cdot B) \cdot C]_{ij} = [A \cdot (B \cdot C)]_{ij} \quad \begin{cases} \forall i = 1 \dots m, \\ \forall j = 1 \dots q. \end{cases}$$

Für $i \in \{1 \dots m\}$ und $j \in \{1 \dots q\}$ beliebig gilt

$$[(A \cdot B) \cdot C]_{ij} \stackrel{\text{Def.}}{=} \sum_{k=1}^{p} (A \cdot B)_{ik} C_{kj} \stackrel{\text{Def.}}{=} \sum_{k=1}^{p} \left(\sum_{\ell=1}^{n} A_{in} B_{nk} \right) C_{kj}$$

$$\stackrel{\text{R Ring}}{=} \sum_{k=1}^{p} \sum_{\ell=1}^{n} A_{in} B_{nk} C_{kj} \stackrel{\text{R Ring}}{=} \sum_{\ell=1}^{n} \sum_{k=1}^{p} A_{in} B_{nk} C_{kj}$$

$$\stackrel{\text{R Ring}}{=} \sum_{\ell=1}^{n} A_{in} \left(\sum_{k=1}^{p} B_{nk} C_{kj} \right) \stackrel{\text{Def.}}{=} \sum_{\ell=1}^{n} A_{in} (B \cdot C)_{nj} \stackrel{\text{Def.}}{=} [A \cdot (B \cdot C)]_{ij}. \quad \checkmark$$

Zu zeigen ist, dass $A \cdot (B+C) = A \cdot B + A \cdot C$ für $A \in \operatorname{Mat}_{m,n}(R)$ und $B, C \in \operatorname{Mat}_{n,p}(R)$. Wir verwenden wieder, dass zwei Matrizen gleich sind, wenn alle ihre Einträge gleich sind. Für $i \in \{1 \dots m\}$ und $j \in \{1 \dots p\}$ beliebig gilt

$$[A \cdot (B+C)]_{ij} \stackrel{\text{Def.}}{=} \sum_{k=1}^{n} A_{ik}(B+C)_{kj} \stackrel{\text{Def.}}{=} \sum_{k=1}^{n} A_{ik}(B_{kj}+C_{kj})$$

$$\stackrel{\text{R Ring}}{=} \sum_{k=1}^{n} (A_{ik}B_{kj}+A_{ik}C_{kj}) \stackrel{\text{R Ring}}{=} \sum_{k=1}^{n} A_{ik}B_{kj} + \sum_{k=1}^{n} A_{ik}C_{kj}$$

$$\stackrel{\text{Def.}}{=} (A \cdot B)_{ij} + (A \cdot C)_{ij} \stackrel{\text{Def.}}{=} (A \cdot B + A \cdot C)_{ij}. \quad \checkmark$$

Schlussendlich ist zu zeigen, dass $(B+C)\cdot A=B\cdot A+C\cdot A$ für $B,C\in \mathrm{Mat}_{m,n}(R)$ und $A\in \mathrm{Mat}_{n,p}(R)$. Für $i\in\{1\dots m\}$ und $j\in\{1\dots p\}$ beliebig gilt

$$[(B+C)\cdot A]_{ij} \stackrel{\text{Def.}}{=} \sum_{k=1}^{n} (B+C)_{ik} A_{kj} \stackrel{\text{Def.}}{=} \sum_{k=1}^{n} (B_{ik} + C_{ik}) A_{kj}$$

$$\stackrel{\text{R Ring}}{=} \sum_{k=1}^{n} (B_{ik} A_{kj} + C_{ik} A_{kj}) \stackrel{\text{R Ring}}{=} \sum_{k=1}^{n} B_{ik} A_{kj} + \sum_{k=1}^{n} C_{ik} A_{kj}$$

$$\stackrel{\text{Def.}}{=} (B \cdot A)_{ij} + (C \cdot A)_{ij} \stackrel{\text{Def.}}{=} (B \cdot A + C \cdot A)_{ij}. \quad \checkmark$$

Häufige Probleme bei Aufgabe 23:

- \bullet Es reicht nicht, den Beweis nur für 2 × 2-Matrizen zu führen.
- Machen Sie sich stets klar welche Eigenschaften Sie verwenden und warum Sie das dürfen.

Aufgabe 24

Lösen Sie das folgende lineare Gleichungssystem über dem Körper $\mathbb{Z}/5\mathbb{Z}$:

Lösung:

$$\begin{pmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 1 & 2 & 4 & 0 & 1 & 1 \\ 0 & 1 & 2 & 2 & 1 & 2 \end{pmatrix} \xrightarrow{2 \cdot 1Z + 2Z} \begin{pmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 2 & 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 2 & 1 & 2 \end{pmatrix}$$

$$\xrightarrow{2 \cdot 2Z + 3Z} \begin{pmatrix} 2 & 0 & 3 & 1 & 0 & 0 \\ 0 & 2 & 0 & 2 & 1 & 1 \\ 0 & 0 & 2 & 1 & 3 & 4 \end{pmatrix} \xrightarrow{3} \begin{pmatrix} 1 & 0 & 4 & 3 & 0 & 0 \\ 0 & 1 & 0 & 1 & 3 & 3 \\ 0 & 0 & 1 & 3 & 4 & 2 \end{pmatrix}$$

$$\xrightarrow{1Z + 3Z} \begin{pmatrix} 1 & 0 & 0 & 1 & 4 & 2 \\ 0 & 1 & 0 & 1 & 3 & 3 \\ 0 & 0 & 1 & 3 & 4 & 2 \end{pmatrix}$$

Aus der dritten Zeile bekommen wir $x_3+3x_4+4x_5=2$, was durch Addition von $2x_4+x_5$ auf beiden Seiten zu $x_3=2+2x_4+x_5$ führt.

Analog liefert die zweite Zeile $x_2 + x_4 + 3x_5 = 3$, was durch Addition von $4x_4 + 2x_5$ zu $x_2 = 3 + 4x_4 + 2x_5$ führt, und die erste Zeile $x_1 + x_4 + 4x_5 = 2$, was durch Addition von $4x_4 + x_5$ zu $x_1 = 2 + 4x_4 + x_5$. Wir bekommen also

$$L = \{ (2 + 4x_4 + x_5, 3 + 4x_4 + 2x_5, 2 + 2x_4 + x_5, x_4, x_5) \mid x_4, x_5 \in \mathbb{Z}/5\mathbb{Z} \}$$

= \{ (2 + 4a + b, 3 + 4a + 2b, 2 + 2a + b, a, b) \| a, b \in \mathbb{Z}/5\mathbb{Z} \}.

Häufige Probleme bei Aufgabe 24:

• Notationen wie $\frac{1}{2}$ im Körper $\mathbb{Z}/5\mathbb{Z}$ sollten Sie besser vermeiden, benutzen Sie notfalls lieber 2^{-1} . Schöner (und meistens sogar eher einfacher) wäre es, Sie würden nur die Bezeichnungen 0, 1, 2, 3, 4 in den Rechnungen verwenden.