Continuous State-Space Systems

Mark Gales

Lent 2019

Stochastic Processes: Handout 2

IIA Module 3M1: Mathematical Methods

Stochastic Processes: Continuous State-Space Systems

Continuous State Space Systems

- Previous lectures have discussed finite-state models
 - finite number of (discrete) states
 - discrete time intervals, transition matrix governs changes over time
- This lecture will extend this form to
 - continuous-time, discrete processes
 - continuous-time, continuous-space processes
- Interested in answering similar questions as the discrete state case
 - how do distributions change over time?
 - does the system reach equilibrium?
 - how sensitive is the final state to the initial state?

Birth Process (Yule-Furry Process)

- Consider the following set-up:
 - "birth"-rate for a cell is λ per unit time
 - -n(t) is the number of cells at time instance t
 - initially have $n(0) = n_0$ "cells"
- The process is now continuous in time
 - still Markovian n(t) describes state of the system
 - interested what happens to n(t)

$$n(t + \Delta t) = n(t) + n(t)\lambda \Delta t;$$
 as $\Delta t \to 0$ $\frac{dn(t)}{dt} = \lambda n(t)$

standard solution

$$n(t) = n_0 \exp(\lambda t)$$

but the numbers of cells needs to be integer ... this is expected value

Birth Process - Probabilistic Approach

- Let's link back to the Markov Process
 - require probability of n cells at time t $P(N(t) = n) = P_n(t)$
 - how does the distribution evolve over time?
- Again consider time slot $t \to t + \Delta t$ (assumed very small)

$$P_n(t + \Delta t) = P_n(t)(1 - n\lambda \Delta t) + P_{n-1}(t)((n-1)\lambda \Delta t)$$

- stay in the same state: no birth
- birth occurs: move from previous state
- ignored multiple events often written $o(\Delta t)$, as $\Delta t \to 0, o(\Delta t) \to 0$
- Take the limiting condition $\Delta t \to 0$

$$\frac{dP_n(t)}{dt} = -n\lambda P_n(t) + (n-1)\lambda P_{n-1}(t)$$

Birth Process Chain

- For discrete time we had the transition matrix
 - for continuous time there's the transition rate matrix, Q

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{x}(t)\mathbf{Q}$$

where (note rows sum to zero - probability mass conserved)

$$\mathbf{Q} = \begin{bmatrix} -\lambda & \lambda & 0 & 0 & \cdots \\ 0 & -2\lambda & 2\lambda & 0 & \cdots \\ 0 & 0 & -3\lambda & 3\lambda & \cdots \\ \vdots & \vdots & \ddots & \ddots & \ddots \end{bmatrix}$$

Birth Process Solution (reference)

- Now need to solve the problem (no need to derive/remember this!)
 - assuming that at t=0 there are n_0 cells

$$P_n(t) = \binom{n-1}{n-n_0} \exp(-\lambda n_0 t) (1 - \exp(-\lambda t))^{n-n_0}$$

where

$$\left(\begin{array}{c} n\\ k \end{array}\right) = \frac{n!}{k!(n-k)!}$$

• No steady-state distribution - keeps growing ...

Birth-Death Processes

- Introduce death-rate for a cell μ per unit time
 - repeating the probabilistic birth rate analysis (for n > 1)

$$P_n(t + \Delta t) = P_n(t)(1 - n\lambda \Delta t - n\mu \Delta t) + P_{n-1}(t)((n-1)\lambda \Delta t) + P_{n+1}(t)((n+1)\mu \Delta t)$$

- stay in the same state: no birth/death
- birth occurs: move from previous state
- death occurs: move from next state
- See examples paper for attributes

Applications

- Range of extensions
 - fixed (time/state independent) birth rate Poisson Process
 - use more general rate transition matrix (currently $n\lambda$)
- This form of continuous-time process has a range of applications
 - Yule studied this for evolution (mutations)
 - Furry used the model for radioactive transmutations
 - populations of bacteria
 - queueing systems
 - etc etc
- So far only considered discrete state-space models ...

Random Walk

- ullet Consider a random walk at each time take step ± 1
 - probability of direction at time k, $\zeta_k \in \{-1,1\}$, is uniform $P(\zeta_k=1)=\frac{1}{2}$
 - after n steps the position, X_n is given by

$$X_n = \sum_{k=1}^n \zeta_k$$

- What is the distribution of X_N as $N \to \infty$?
 - at each instance the average step is zero, the step variance is 1
 - from the central limit theorem the distribution is Gaussian, $\mathcal{N}(0,N)$
- Now taking small step δ in direction ζ_k every δ seconds
 - at time instance $t=N\delta$ where N is very large
 - from above location, W_t , is Gaussian distributed, $\mathcal{N}(0, N\delta) = \mathcal{N}(0, t)$
 - in the limit this is Brownian motion

Brownian Motion

- Consider Brownian Motion
 - random motion of particles in a fluid resulting from collisions
- If we know the physics behind the interaction of particles, can model collisions
 - but there can be, for example, 10^{21} collisions per second!
- If we don't care about an individual particle, what can we do

consider the number of particles per unit volume

- Start by simplifying the system
 - consider each dimension independently just consider x dimension
 - overall form obtained by simply multiplying dimension together
- Brownian motion is also called a Wiener process in stochastic processes

Albert Einstein

"Albert Einstein Head" Photograph by Oren Jack Turner, Princeton

Particle Density

Let the particle density at time t and position x be

- clearly this function will vary with position x
- and time t
- It is possible to define the state of the system
 - probability of next state only depends on current state
 - only need current state at time t, no need to consider previous states
 - it's a Markov Process

Particle Density - Taylor Series Expansion

- ullet First consider a Taylor series at time instance t with position x
 - consider a small shift in the position x to $x + \Delta$

$$f(x + \Delta, t) \approx f(x, t) + \Delta \frac{\partial f(x, t)}{\partial x} + \frac{\Delta^2}{2!} \frac{\partial^2 f(x, t)}{\partial x^2} + \mathcal{O}(\Delta^3)$$

- smoothness assumption in the particle density equation
- What we care about is the evolution over time of the particle density function
 - consider a (very) small change in time from t to t+ au

$$f(x, t + \tau) \approx f(x, t) + \tau \frac{\partial f(x, t)}{\partial t} + \mathcal{O}(\tau^2)$$

but system too complicated to get this derivative

Movement of One Particles

- ullet If we know the status of the system at time t and position x
 - change in the density at time $t+\tau$ results from particles moving to position x from time t to $t+\tau$
- How to characterise this movement:

- if a particle is at position $x+\Delta$ at time t
- needs to be at position x at time $t+\tau$
- ullet Need to the probability of a particle moving distance $-\Delta$ in time au

Expected Movement of Particles

ullet Given the system at time instance t (f(x,t)) we can write

$$f(x, t + \tau) = \int_{-\infty}^{\infty} f(x + \Delta, t) p(-\Delta) d\Delta$$

- where $p(\Delta)$ is the probability of a particle moving Δ in time τ
- continuous form of Chapman-Kolmogorov
- ullet Assume that $p(\Delta)$ is symmetric and combining with the Taylor Series expansion

$$f(x,t+\tau) = \int_{-\infty}^{\infty} f(x+\Delta,t)p(\Delta)d\Delta$$

$$\approx \int_{-\infty}^{\infty} \left(f(x,t) + \Delta \frac{\partial f(x,t)}{\partial x} + \frac{\Delta^2}{2!} \frac{\partial^2 f(x,t)}{\partial x^2} \right) p(\Delta)d\Delta$$

Expected Movement of Particles (cont)

• Expanding out (and exploiting symmetry of $p(\Delta)$)

$$f(x,t+\tau) \approx f(x,t) \int_{-\infty}^{\infty} p(\Delta)d\Delta + \frac{\partial f(x,t)}{\partial x} \int_{-\infty}^{\infty} \Delta p(\Delta)d\Delta$$
$$+ \frac{\partial^2 f(x,t)}{\partial x^2} \int_{-\infty}^{\infty} \frac{\Delta^2}{2!} p(\Delta)d\Delta$$
$$= f(x,t) + \frac{\partial^2 f(x,t)}{\partial x^2} \int_{-\infty}^{\infty} \frac{\Delta^2}{2!} p(\Delta)d\Delta$$

- exploited definition of a PDF (equates to one)
- exploited symmetry of the PDF (equates to zero)
- Note: symmetry will mean that all odd higher terms integrate to zero

Brownian Motion - Differential Equation

Equating the two expressions

$$f(x,t+\tau) \approx f(x,t) + \tau \frac{\partial f(x,t)}{\partial t}$$

$$\approx f(x,t) + \frac{\partial^2 f(x,t)}{\partial x^2} \int_{-\infty}^{\infty} \frac{\Delta^2}{2!} p(\Delta) d\Delta$$

- exploiting the fact that both au and Δ are small values yields

$$\tau \frac{\partial f(x,t)}{\partial t} = \frac{\partial^2 f(x,t)}{\partial x^2} \int_{-\infty}^{\infty} \frac{\Delta^2}{2!} p(\Delta) d\Delta$$

Rearranging yields an example of Fokker-Planck equation

$$\frac{\partial f(x,t)}{\partial t} = D \frac{\partial^2 f(x,t)}{\partial x^2}, \quad D = \frac{1}{2\tau} \int_{-\infty}^{\infty} \Delta^2 p(\Delta) d\Delta$$

Brownian Motion

Brownian motion governed by simple diffusion equation

$$\frac{\partial f(x,t)}{\partial t} = D \frac{\partial^2 f(x,t)}{\partial x^2}, \quad D = \frac{1}{2\tau} \int_{-\infty}^{\infty} \Delta^2 p(\Delta) d\Delta$$

- for example the same equation governs heat diffusion
- at the heart of the analysis Brownian Motion is a Markov Process
- Need to obtain value of D
 - $-\ D$ can be obtained by measurement of physical properties
 - no need to consider τ or $p(\Delta)!$
- Final solution will depend on initial conditions
 - let's look at a particular solution for Brownian motion

Brownian Motion - Example Solution

Would like to get solutions for the Brownian motion differential equation

$$\frac{\partial p(x,t)}{\partial t} = \alpha \frac{\partial^2 p(x,t)}{\partial x^2}$$

- $-\alpha$ constant with time and position
- take initial condition as $p(x,0) = \delta(x)$ (everything at the origin)
- Standard differential equations solutions solving (2nd year maths)

$$p(x,t) = X(x)T(t), \quad p(x,t) = A(k)\exp(-\alpha k^2 t)\exp(ikx)$$

- this is satisfied by any k, so general solution

$$p(x,t) = \int_{-\infty}^{\infty} A(k) \exp(-\alpha k^2 t) \exp(ikx) dk$$

Brownian Motion - Example Solution

• Need to satisfy the initial condition at t=0, hence

$$\delta(x) = p(x,0) = \int_{-\infty}^{\infty} A(k) \exp(ikx) dk = \int_{-\infty}^{\infty} A(-\tilde{k}) \exp(-i\tilde{k}x) d\tilde{k}$$

- by noting that this is the Fourier Transform, $\mathcal{F}(.)$, of $A(-\tilde{k})$

$$A(-\tilde{k}) = \mathcal{F}^{-1}\left\{\delta(x)\right\} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(x) \exp(i\tilde{k}x) dx = \frac{1}{2\pi}$$

Thus the final solution is

$$p(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(-\alpha k^2 t) \exp(ikx) dk$$

– this can be simplified to a Gaussian (zero mean, $\sigma^2=2\alpha t$)

$$p(x,t) = \frac{1}{\sqrt{4\alpha\pi t}} \exp\left(-\frac{x^2}{4\alpha t}\right)$$

Example Trajectories - Brownian Motion

ullet For these plots the diffusion constant lpha=10

Properties of a One-Dimensional Wiener Process

- ullet At time t, examine the Wiener Process W_t
 - can consider an instance of a "path" at time t, $\boldsymbol{w}_t^{(i)}$
 - what are the properties when the path is generated from a Wiener Process
- Properties:
 - Independence: $W_t W_s$ is independent of $\{W_\tau\}_{\tau \le s}$ for any $0 \le s \le t$
 - Stationarity: the distribution of $W_{t+s} W_s$ is independent of s
 - Gaussianity: W_t is a Gaussian with

$$\mathcal{E}\left\{W_t\right\} = 0; \quad \mathcal{E}\left\{W_t W_s\right\} = 2\alpha \min(t, s)$$

- Continuity: W_t is a continuous function with t
- Consider Gaussianity $t \geq s$

$$\mathcal{E}\left\{W_t W_s\right\} = \mathcal{E}\left\{(W_{t-s} + W_s)W_s\right\} = \mathcal{E}\left\{W_s W_s\right\} = 2\alpha s$$

Properties (details)

Consider the solution derived for Brownian motion

$$p(x,t) = \frac{1}{\sqrt{4\alpha\pi t}} \exp\left(-\frac{x^2}{4\alpha t}\right) = \mathcal{N}(x;0,2\alpha t)$$

- Examine the Gaussianity property
 - mean at time t of Wiener process

$$\mathcal{E}\left\{W_t\right\} = \int xp(x,t)dx = 0$$

- second element position y at time t, x at time s, $t \ge s$

$$\mathcal{E}\left\{W_{t}W_{s}\right\} = \int yxp(y-x,t-s)p(x,s)dydx$$

$$= \int x\left(\int yp(y-x,t-s)dy\right)p(x,s)dx = \int x^{2}p(x,s)dx = 2\alpha s$$

General Continuous State-Space Systems

- A range of assumptions have been made in the previous derivation
 - treated the system as discrete (finite small changes in τ) in time
 - distribution $p(\Delta)$ will depend on τ is there sensitivity to the choice of τ
 - finite Taylor Series expansions were used but integrated over ∞ range!
 - smoothness assumption of the particle density function is this really valid
 - assumption that $p(\Delta)$ does not change with position, x
- Generalising all of these is beyond the scope of this course (1 lecture!)
 - consider multiple dimensions
 - continuity of motion (jumps in the process)
- Simple extension add a drift term Wiener Process with Drift

$$\frac{\partial p(x,t)}{\partial t} = m \frac{\partial p(x,t)}{\partial x} + D \frac{\partial^2 p(x,t)}{\partial x^2}$$

Example Trajectories with (constant) Drift/Diffusion

Ornstein-Uhlenbeck Process

• This has the form (for a single dimension)

$$\frac{\partial}{\partial t}p(x,t) = \frac{\partial}{\partial x}(\beta x p(x,t)) + \frac{\partial^2}{\partial x^2}(Bp(x,t))$$

– often written without variables in the function - looks simpler!!

$$\frac{\partial}{\partial t}p = \frac{\partial}{\partial x}(\beta x p) + \frac{\partial^2}{\partial x^2}(Bp)$$

- βx controls the drift (βx)
- B controls the diffusion (B)
- Property of this process examined in the examples paper

Summary

- Extended finite discrete Markov Chains to:
 - continuous in time
 - continuous in space
- Yields differential equation general form has
 - drift for the particle paths
 - diffusion for the particle path
 - jumps (discontinuities)
- Some standard processes are:
 - Birth-Death process discrete states, continuous time
 - Poisson process discrete states, continuous time
 - Wiener process continuous state/time
 - Ornstein-Uhlenbeck process continuous state/time

Example Solution (further details)

• Need to simplify the equation (slide 18)

$$p(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp(-\alpha k^2 t) \exp(ikx) dk = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-\alpha k^2 t + ikx\right) dk$$

Consider the term in the exponential and re-express

$$-\alpha k^{2}t + ikx = -\left(\sqrt{\alpha t}k - \frac{ix}{2\sqrt{\alpha t}}\right)^{2} - \frac{x^{2}}{4\alpha t}$$

ullet This now looks like a Gaussian (integrated over k) - thus

$$\frac{1}{2\pi} \exp\left(-\frac{x^2}{4\alpha t}\right) \int_{-\infty}^{\infty} \exp\left(-\left(\sqrt{\alpha t}k - \frac{ix}{2\sqrt{\alpha t}}\right)^2\right) dk = \frac{1}{2\pi} \exp\left(-\frac{x^2}{4\alpha t}\right) \sqrt{\frac{\pi}{\alpha t}}$$

This is a Gaussian distribution

$$p(x,t) = \frac{1}{\sqrt{4\pi\alpha t}} \exp\left(-\frac{x^2}{4\alpha t}\right) = \mathcal{N}(x;0,2\alpha t)$$