

Lic. Informatique, Univ Lille 1, 2010-11

- Introduction aux bases de données relationnelles
 - 2ème séance: Introduction au modèle relationnel. Algèbre relationnelle.
- **Enseignante**: C. Kuttler
- **Biblio**: chapitre 2 de *Database Systems Concepts* de Silberschatz et al, McGraw-Hill (6ème edition, 2010)
- Ces transparents sont une adaptation de ceux disponibles sur le site du livre: www.db-book.com

Chapter 2: Intro to Relational Model

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Example of a relation: instructors

A row represents a **relationship** among a set of values.

Attribute Types

- The set of allowed values for each attribute is called the domain of the attribute
- Attribute values are (normally) required to be atomic; i.e. indivisible
- The special value *null* is a member of every domain
- The null value causes complications in the definition of many operations

Relation Schema and Instance

- \blacksquare $A_1, A_2, ..., A_n$ are attributes
- \blacksquare $R = (A_1, A_2, ..., A_n)$ is a relation schema

Example:

instructor = (ID, name, dept_name, salary)

- Each A_i can take values from a set D_i, called its domain.
- Formally, given sets D_1 , D_2 , D_n a **relation** r is a subset of

- table, a relation is a set of *H*-tuples $(a_1, a_2, ..., a_n)$ where each $a_i \subset D$
- An element t of the relation r is a tuple, represented by a row in a table

Relations are Unordered

- Order of tuples is irrelevant (tuples may be stored in an arbitrary order)
- Example: *instructor* relation with unordered tuples

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	<i>7</i> 5000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Database design

- A database consists of multiple relations
- Information about an enterprise is broken up into parts

```
instructor
student
advisor
```

- Bad design: storing all information as a single relation univ (instructor_ID, name, dept_name, salary, student_ID, ..) this results in
 - repetition of information (e.g., two students have the same instructor)
 - the need for null values (e.g., represent an student with no advisor)
- Normalization theory (Chapter 7) deals with how to design "good" relational schemas

Schema Diagram for University Database

Keys

- Let K ⊆ R
- \blacksquare K is a **superkey** of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
 - Example: {ID} and {ID,name} are both superkeys of instructor.
- Superkey K is a candidate key if K is minimal Example: {ID} is a candidate key for Instructor
- One of the candidate keys is selected to be the primary key.
 - its value should never, or rarely, change!

Foreign keys

A relation schema may have an attribute that corresponds to the primary key of another relation. The attribute is called a foreign key.

Arrow from the foreign key attribute of the referencing relation, to the primary key of the referenced relation.

- E.g. dept_name attribute of instructor is a foreign key, referencing to department.
- Foreign key constraint: value in one relation must appear in another referenced relation

Question 1

Consider the foreign key constraint from the dept_name attribute of instructor, to the department relation. Give examples of inserts and deletes to these relations, which can cause violation of the foreign key constraint.

Question 2

Consider the time_slot relation. Given that a particular time slot can meet more than once per week, explain why day and start_time are part of the primary key of this relation, while end_time is not.

Select Operation

- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of **terms** connected by : \land (**and**), \lor (**or**), \neg (**not**) Each **term** is one of:

where op is one of: =, \neq , >, \geq . <. \leq

Example of selection:

Relational Query Languages

- Procedural vs.non-procedural, or declarative
- "Pure" languages:
 - 1. Relational algebra (procedural)
 - Tuple relational calculus (declarative, based on predicate logic)
 - Domain relational calculus (declarative)
- Today, we present the most important relational algebra operators
- Later, we will see how different translations of the same SQL query into relation algebra, is used in optimization of query execution.

Selection of tuples

Relation r

A	В	C	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

- Select tuples withA=B and D > 5
- \circ A=B and D > 5 (r)

A	В	C	D
α	α	1	7
β	β	23	10

Select Operation

- Notation: $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(\mathbf{r}) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of terms connected by : \land (and), \lor (or), \neg (not)

Each term is one of:

where *op* is one of: =, \neq , >, \geq . <. \leq

Selection of Columns

Relation r:

A	В	C
α	10	1
α	20	1
β	30	1
β	40	2

- Select columns A and C
 - Projection of r on A and C
 - П _{A, C} (r)
 - duplicates are eliminated, the result is a *set*!

		40	
A	C	A	C
α	1	α	1
α	1	β	1
β	1	β	2
ß	2		

Joining two relations – Cartesian Product

Relations *r, s*:

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b
	S	

- **r** x s:
- each tuple of r is combined with each tuple of s,
- tuples are concatenated.

A	В	C	D	Ε
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Union of two relations

Relations *r*, *s*:

Condition: both input relations must be compatible: same arity, and same domains of attributes

Set difference of two relations

Relations *r*, *s*:

2
3

A	В
α	1
β	1

Set Intersection of two relations

Relation *r*, *s*:

A	В
α	1
α	2
β	1

ע
2
3

A	В
α	2

Joining two relations – Natural Join

- Let r and s be relations on schemas R and S respectively.
 Then, the "natural join" of relations R and S is a relation on schema R ∪ S obtained as follows:
 - Consider each pair of tuples t_r from r and t_s from s.
 - If t_r and t_s have the same value on each of the attributes in $R \cap S$, add a tuple t to the result, where
 - $rac{1}{t}$ has the same value as t_r on r

Natural Join Example

Relations r and s

A	В	C	D
α	1	α	a
β	2	γ	a
γ	4	β	b
α	1	γ	a
δ	2	β	b
4.	3	r	

В	D	Ε
1	a	α
3	a	β
1	a	γ
2	b	δ
3	b	3
	S	

 $r \bowtie s$

A	В	C	D	E
α	1	α	a	α
α	1	α	a	γ
α	1	γ	a	α
α	1	γ	a	γ
δ	2	β	b	δ

Relational Algebra Operators: Summary

Symbol (Name)	Example of Use	
σ (Selection)	σ salary>=85000 (instructor)	
	Return rows of the input relation that satisfy the predicate.	
П (Projection)	П _{ID, salary} (instructor)	
	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.	
⋈ (Natural Join)	instructor ⋈ department	
	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.	
× (Cartesian Product)	$instructor \times department$	
	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)	
U (Union)	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$	
	Output the union of tuples from the two input relations.	

Questions

- Consider the following expressions, which use the result of a relational algebra expression as the input to another operation. For each expression, explain in words what the example does!
 - Expressions given on board during lecture!

Questions:

- Consider the relational database
 - employee(person_name,street,city)
 - works(person_name,company_name,salary)
 - company(company_name,city)
- Give an expression in the relational algebra to find the names of all employees
 - who live in the city Miami
 - whose salary is greater than \$100.000
 - who live in Miami and earn over \$100.000

Review terms

- Table
- Relation
- Tuple
- Attribute
- Domain
- Atomic domain
- Null value
- Database schema
- Database instance

- Relation schema
- Relation instance
- Keys: super, candidate, primary
- Foreign key: referencing rleation, referenced relation
- Referential integrity constraint
- Query languages: procedural vs declarative

End of Chapter 2

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use