Przybliżenie położenia planet w Układzie Słonecznym

Jakub Koral

26–27 listopada 2022 IX Ogólnopolska Matematyczna Konferencja Studentów "OMatKo!!!"

Motywacja

Wyjaśnienie położenia planet w Układzie Słonecznym przez wiele lat nurtowało ludzkość. Pod koniec XVIII wieku Johann Daniel Titius i Johann Elert Bode zaproponowali empiryczne prawo nazwane od ich nazwisk prawem Titiusa–Bodego. Hipoteza ta poprawnie przewidziała położenie Urana i planety karłowatej Ceres, ale nie sprawdziła się dla Neptuna.

Celem pracy jest znalezienie analitycznych wzorów, które pozwolą nam przybliżyć położenie planet w Układzie Słonecznym.

Równowaga hydrostatyczna

Rozpoczniemy od rozważenia infinitezymalnie małego walca o polu podstawy A, wysokości dR i masie dm położonego w odległości R od środka obracającego się dysku gazu. Na walec działają trzy siły. Do wewnątrz dysku dociskany on jest przez siły grawitacji F_g i dośrodkową F_d . Na zewnątrz wypycha go siła ciśnienia dF_P związana z różnicą ciśnień dP wywieranych na jego podstawy. Z I zasady dynamiki Newtona mamy

$$dF_P + F_g + F_d = 0. (1)$$

Po podstawieniach otrzymamy

$$\frac{1}{\rho}\frac{dP}{dR} + \frac{d\Phi}{dR} = \Omega^2 R,\tag{2}$$

gdzie Φ to potencjał grawitacyjny, a Ω to prędkość kątowa walca.

Równanie Poissona

Klasyczne równanie Poissona dla grawitacji wyraża się wzorem

$$\nabla^2 \Phi = 4\pi G \rho, \tag{3}$$

gdzie G to stała grawitacji, a ρ to gęstość. Rozwijając laplasjan we współrzędnych walcowych (R,α,z) dostajemy

$$\frac{1}{R}\frac{\partial}{\partial R}\left(R\frac{\partial\Phi}{\partial R}\right) + \frac{1}{R^2}\frac{\partial^2\Phi}{\partial\alpha^2} + \frac{\partial^2\Phi}{\partial z^2} = 4\pi G\rho. \tag{4}$$

Ponieważ jesteśmy zainteresowani fizycznym opisem płaszczyzny przechodzącej przez środek dysku, zakładamy, że $\frac{\partial}{\partial \alpha}=\frac{\partial}{\partial z}=0$, co upraszcza nam problem do równania postaci

$$\frac{1}{R}\frac{d}{dR}\left(R\frac{d\Phi}{dR}\right) = 4\pi G\rho. \tag{5}$$

《四》《圖》《意》《意》 [] []

Łącząc (2) i (5) otrzymujemy równanie Lane'a–Emdena dla izotermicznego dysku wyrażające się wzorem

$$\frac{1}{\xi} \frac{d}{d\xi} \left(\xi \frac{d}{d\xi} \ln \theta \right) + \theta = \frac{\beta_0^2}{2\xi} \frac{d}{d\xi} \left(\xi^2 f^2 \right). \tag{6}$$

gdzie ξ to przeskalowanie promienia, θ przeskalowanie gęstości, β_0 to parametr związany z rotacją, a f jest pewną funkcją ξ . Warunki początkowe tego równania to

$$\theta(0) = 1, \quad \theta'(0) = \frac{d\theta}{d\xi} \Big|_{\xi=0} = 0. \tag{7}$$

Równanie Lane'a–Emdena możemy zapisać biorąc $\psi=\ln\theta$, wtedy otrzymujemy

$$\frac{1}{\xi} \frac{d}{d\xi} \left(\xi \frac{d}{d\xi} \psi \right) + e^{\psi} = \frac{\beta_0^2}{2\xi} \frac{d}{d\xi} \left(\xi^2 f^2 \right), \tag{8}$$

Warunki początkowe tego równania to

$$\psi(0) = 0, \quad \psi'(0) = \frac{d\psi}{d\xi}\Big|_{\xi=0} = 0.$$
 (9)

Rozwiązanie bez i z rotacją

Rozwiązanie równania (6) przy braku rotacji (równoważnie $\beta_0=0$) nazywa się rozwiązaniem Stodółkiewicza–Ostrikera i wyraża się wzorem

$$\theta(\xi) = \frac{1}{\left(1 + \frac{1}{8}\xi^2\right)^2}.$$
 (10)

Dla przypadku z rotacją można pokazać, że rozwiązanie będzie miało postać

$$\theta(\xi) = \frac{\beta_0^2}{2} \cdot A \xi^{k-1},\tag{11}$$

gdzie A i k są pewnymi stałymi całkowania.

Autorzy [1] proponują model złożony postaci

$$\theta_{bazowe}(\xi) = \begin{cases} \beta_0^2, & \text{dla } \xi \leqslant \xi_1^*, \\ \beta_0^2 \cdot \left(\frac{\xi_1^*}{\xi}\right)^{\delta}, & \text{dla } \xi_1^* < \xi < \xi_2^*, \\ \beta_0^2 \cdot \left(\frac{\xi_1^*}{\xi_2^*}\right)^{\delta}, & \text{dla } \xi \geqslant \xi_2^*. \end{cases}$$
(12)

Teraz problem sprowadza się do rozwiązania równania

$$\frac{1}{\xi} \frac{d}{d\xi} \left(\xi \frac{d}{d\xi} \psi \right) + e^{\psi} = \theta_{bazowe}(\xi). \tag{13}$$

Rozwiązanie dla Układu Słonecznego

Rysunek: Rozwiązanie dla Układu Słonecznego

Przybliżenie poprzez rozwinięcie Taylora funkcji e^{ψ} wokół $\mathcal{E} = \ln \beta_0^2$

Zauważamy, że dla dużych ξ mamy $\psi(\xi) \to \ln \beta_0^2$. Spróbujmy zatem rozwinąć e^{ψ} wokół tej wartości. Otrzymujemy

$$\frac{d^2\psi}{d\xi^2} + \frac{1}{\xi}\frac{d\psi}{d\xi} + \beta_0^2\psi \approx \beta_0^2 \ln \beta_0^2.$$
 (14)

Wprowadzając $\eta=\beta_0\xi$ i dzieląc przez β_0^2 dostajemy

$$\frac{d^2\psi}{d\eta^2} + \frac{1}{\eta}\frac{d\psi}{d\eta} + \psi \approx \ln\beta_0^2. \tag{15}$$

Rozważmy najpierw takie samo równanie, ale z prawą stroną równą 0 i mnożąc przez η^2 mamy

$$\eta^2 \frac{d^2 \psi}{dn^2} + \eta \frac{d\psi}{dn} + \eta^2 \psi \approx 0. \tag{16}$$

Równanie różniczkowe Bessela

Definicja (Równanie różniczkowe Bessela)

Równanie różniczkowe Bessela ma postać

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + \left(x^{2} - n^{2}\right)y = 0,$$
(1)

gdzie $n \in \mathbb{Z}$. Jego rozwiązaniem wyraża się wzorem

$$y(x) = c_1 J_n(x) + c_2 Y_n(x),$$
 (2)

gdzie c_1 i c_2 to stałe, a $J_n(x)$ i $Y_n(x)$ to odpowiednio funkcje Bessela pierwszego i drugiego rodzaju, które definiują równania

$$J_n(x) = \sum_{k=0}^{\infty} \frac{(-1)^k \left(\frac{x}{2}\right)^{2k+n}}{k! \Gamma(k+n+1)} \quad Y_n(x) = \lim_{\nu \to n} \frac{J_{\nu}(x) \cos(\nu \pi) - J_{-\nu}(x)}{\sin(\nu \pi)}, \tag{3}$$

 $z \Gamma(\cdot)$ oznaczającym funkcję gamma.

- 4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ - り Q C

Przybliżenie poprzez rozwinięcie Taylora funkcji e^{ψ} wokół $\xi = \ln \beta_0^2$ (ciąg dalszy)

Zatem zgodnie z definicją 1, (16) to równanie różniczkowe Bessela z n = 0. Zauważamy dalej, że rozwiązanie równania (15) ma postać

$$\psi(\xi) \approx \ln \beta_0^2 (1 - J_0(\beta_0 \xi)).$$
 (17)

Stosując podobne rozumowanie uzyskujemy wzór dla $\xi\geqslant \xi_2^*$

$$\psi(\xi) \approx \ln \left[\beta_0^2 \left(\frac{\xi_1^*}{\xi_2^*} \right)^{\delta} \right] \cdot \left[1 - J_0 \left(\beta_0 \left(\frac{\xi_1^*}{\xi_2^*} \right)^{\frac{\delta}{2}} \xi \right) \right]. \tag{18}$$

Wiemy już jak przybliżać rozwiązanie, gdy nasze równanie jest równe stałej. Zatem korzystamy z twierdzenia o wartości średniej mamy

$$\bar{\psi} = \frac{1}{\xi_2^* - \xi_1^*} \int_{\xi_1^*}^{\xi_2^*} \beta_0^2 \left(\frac{\xi_1^*}{\xi}\right)^{\delta} d\xi = \frac{\beta_0^2 (\xi_1^*)^{\delta} \left((\xi_2^*)^{\delta} - (\xi_1^*)^{\delta}\right)}{(\xi_2^* - \xi_1^*)(1 - \delta)}$$
(19)

i stosując podobne rozumowanie co wcześniej

$$\psi(\xi) \approx \ln \bar{\psi} \left(1 - J_0 \left(\sqrt{\bar{\psi}} \xi \right) \right).$$
 (20)

Przybliżenia $\psi(\xi)$

Rysunek: Przybliżenia $\psi(\xi)$

Przybliżenie maksimów lokalnych

Zatem maksima lokalne d_i można przybliżyć wzorem

$$\hat{d}_{i} = \begin{cases} \frac{1}{\beta_{0}} \cdot j_{1,2i} & \text{dla } i \in \{1,2,3\}, \\ \frac{1}{\sqrt{\psi}} \cdot j_{1,2i-6} & \text{dla } i \in \{4,5,6\}, \\ \frac{1}{\beta_{0}} \left(\frac{\xi_{1}^{*}}{\xi_{2}^{*}}\right)^{-\frac{\delta}{2}} \cdot j_{1,2i-12} & \text{dla } i \in \{7,8,\ldots\}, \end{cases}$$
(21)

gdzie $j_{n,k}$ jest k-tym zerem funkcji Bessela n-tego rzędu.

Błąd przybliżenia

Tabela: Porównanie półosi wielkich planet i oszacowań położenia maksimów lokalnych $\psi(\xi)$

Indeks i	Ciało niebieskie	Półoś wielka a _i [j.a.]	Oszacowanie maksimum lokalnego \hat{d}_i [j.a.]	Błąd względny [%]
1	Merkury	0.387	0.380	-1.809
2	Wenus	0.723	0.721	-0.277
3	Ziemia	1	1.062	6.200
4	Mars	1.524	1.702	11.68
5	Ceres	2.765	3.231	16.85
6	Jowisz	5.203	4.758	-8.553
7	Saturn	9.537	10.63	11.48
8	Uran	19.19	20.19	5.227
9	Neptun	30.07	29.73	-1.134
10	Pluton	39.48	39.26	-0.562
11	Makemake	45.66	48.79	6.844
12	2013 FY ₂₇	58.66	58.31	-0.597
13	Eris	67.89	67.83	-0.082

Bibliografia

[1] Christodoulou, D. M. and Kazanas, D. Exact Solutions of the Isothermal Lane–Emden Equation with Rotation and Implications for the Formation of Planets and Satellites. arXiv:0706.3205. 2007.