Hidden Units

Sargur N. Srihari srihari@cedar.buffalo.edu

Topics in Deep Feedforward Networks

- Overview
- 1. Example: Learning XOR
- 2. Gradient-Based Learning
- 3. Hidden Units
- 4. Architecture Design
- 5. Backpropagation and Other Differentiation
- 6. Historical Notes

Topics in Hidden Units

- 1. ReLU and their generalizations
- 2. Logistic sigmoid and Hyperbolic tangent
- 3. Other hidden units

Choice of hidden unit

- Previously discussed design choices for neural networks that are common to most parametric learning models trained with gradient optimization
- We now look at how to choose the type of hidden unit in the hidden layers of the model
- Design of hidden units is an active research area that does not have many definitive guiding theoretical principles

Choice of hidden unit

- ReLU is an excellent default choice
- But there are many other types of hidden units available
- When to use which kind (though ReLU is usually an acceptable choice)?
- We discuss motivations behind choice of hidden unit
 - Impossible to predict in advance which will work best
 - Design process is trial and error
 - Evaluate performance on a validation set

Is Differentiability necessary?

- Some hidden units are not differentiable at all input points
 - Rectified Linear Function $g(z)=\max\{0,z\}$ is not differentiable at z=0
- May seem like it invalidates for use in gradientbased learning
- In practice gradient descent still performs well enough for these models to be used in ML tasks

Differentiability ignored

- Neural network training
 - not usually arrives at a local minimum of cost function
 - Instead reduces value significantly
- Not expecting training to reach a point where gradient is 0,
 - Accept minima to correspond to points of undefined gradient
- Hidden units not differentiable are usually non-differentiable at only a small no. of points

Left and Right Differentiability

- A function g(z) has a left derivative defined by the slope immediately to the left of z
- A right derivative defined by the slope of the function immediately to the right of \boldsymbol{z}
- A function is differentiable at z=a only if both
 - the left derivative $\left| \begin{array}{c} \partial_+ f(a) := \lim\limits_{\substack{x \to a+ \ x \in I}} rac{f(x) f(a)}{x a} \end{array} \right|$ and
 - The right derivative

$$\partial_- f(a) := \lim_{\substack{x o a - \ x \in I}} rac{f(x) - f(a)}{x - a}.$$

are equal

Function is not continuous: No derivative at marked point However it has a right derivative at all points with $\delta_+ f(a) = 0$ at all points

Software Reporting of Non-differentiability

- In the case of $g(z)=max\{0,z\}$, the left derivative at z=0 is 0 and right derivative is 1
- Software implementations of neural network training usually return:
 - one of the one-sided derivatives rather than reporting that derivative is undefined or an error
 - Justified in that gradient-based optimization is subject to numerical anyway
 - When a function is asked to evaluate g(0), it is very unlikely that the underlying value was truly 0, instead it was a small value ε that was rounded to 0

What a Hidden unit does

- Accepts a vector of inputs \boldsymbol{x} and computes an affine transformation $z = W^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{b}$
- Computes an element-wise non-linear function g(z)
- Most hidden units are distinguished from each other by the choice of activation function g(z)
 - We look at: ReLU, Sigmoid and tanh, and other hidden units

Rectified Linear Unit & Generalizations

- Rectified linear units use the activation function $g(z)=\max\{0,z\}$
 - They are easy to optimize due to similarity with linear units
 - Only difference with linear units that they output 0 across half its domain
 - Derivative is 1 everywhere that the unit is active
 - Thus gradient direction is far more useful than with activation functions with second-order effects

Use of ReLU

- Usually used on top of an affine transformation
 h=g(W^Tx+b)
- Good practice to set all elements of b to a small value such as 0.1
 - This makes it likely that ReLU will be initially active for most training samples and allow derivatives to pass through

Generalizations of ReLU

- Perform comparably to ReLU and occasionally perform better
- ReLU cannot learn on examples for which the activation is zero.
- Generalizations guarantee that they receive gradient everywhere

Three generalizations of ReLU

- ReLU has the activation function $g(z)=\max\{0,z\}$
- Three generalizations of ReLU based on using a non-zero slope α_i when $z_i < 0$:

$$h_i = g(z, \alpha)_i = \max(0, z_i) + \alpha_i \min(0, z_i)$$

- 1. Absolute-value rectification:
 - fixes α_i =-1 to obtain g(z)=|z|
- 2. Leaky ReLU:
 - fixes α_i to a small value like 0.01
- 3. Parametric ReLU or PReLU:
 - treats α_i as a parameter

Maxout Units

- Maxout units further generalize ReLUs
 - Instead of applying element-wise function g(z), maxout units divide z into groups of k values $z = W^{T}x + b$
 - Each maxout unit then outputs the maximum element of one of these groups: $g(\boldsymbol{z})_i = \max_{j \in G(i)} \boldsymbol{z}_j$
 - where G(i) is the set of indices into the inputs for group i, $\{(i-1)k+1,...,ik\}$
- This provides a way of learning a piecewise linear function that responds to multiple directions in the input x space

Maxout as Learning Activation

- A maxout unit can learn piecewise linear, convex function with upto k pieces
 - Thus seen as learning the activation function itself rather than just the relationship between units
 - With large enough k, approximate any convex function

- A maxout layer with two pieces can learn to implement the same function of the input \boldsymbol{x} as a traditional layer using ReLU or its generalizations

Learning Dynamics of Maxout

- Parameterized differently
- Learning dynamics different even in case of implementing same function of \boldsymbol{x} as one of the other layer types
 - Each maxout unit parameterized by k weight vectors instead of one
 - So Requires more regularization than ReLU
 - Can work well without regularization if training set is large and no. of pieces per unit is kept low

Other benefits of maxout

- Can gain statistical and computational advantages by requiring fewer parameters
- If the features captured by n different linear filters can be summarized without losing information by taking max over each group of k features, then next layer can get by with k times fewer weights
- Because of multiple filters, their redundancy helps them avoid catastrophic forgetting
 - Where network forgets how to perform tasks they were trained to perform

Principle of Linearity

- ReLU based on principle that models are easier to optimize if behavior closer to linear
 - Principle applies besides deep linear networks
 - Recurrent networks can learn from sequences and produce a sequence of states and outputs

- When training them need to propagate information through several steps
 - Which is much easier when some linear computations (with some directional derivatives being of magnitude near 1) are involves

Linearity in LSTM

- LSTM: best performing recurrent architecture
 - Propagates information through time via summation
- A straightforward kind of linear activation

LSTM: an ANN that contains LSTM blocks in addition to regular network units

Input gate: when its output is close to zero, it zeros the input

Forget gate: when close to zero block forgets whatever value it was remembering

Output gate: when unit should output its value

Logistic Sigmoid

 Prior to introduction of ReLU, most neural networks used logistic sigmoid activation

$$g(z) = \sigma(z)$$

Or the hyperbolic tangent

$$g(z) = \tanh(z)$$

These activation functions are closely related because

$$\tanh(z) = 2\sigma(2z) - 1$$

 Sigmoid units are used to predict probability that a binary variable is 1

Sigmoid Saturation

- Sigmoidals saturate across most of domain
 - Saturate to 1 when z is very positive and 0 when z is very negative
 - Strongly sensitive to input when z is near 0
 - Saturation makes gradient-learning difficult
- ReLU and Softplus increase for input >0

Sigmoid can still be used When cost function undoes the Sigmoid in the output layer

Sigmoid vs tanh Activation

- Hyperbolic tangent typically performs better than logistic sigmoid
- It resembles the identity function more closely $\tanh(0)=0$ while $\sigma(0)=\%$
- Because \tanh is similar to identity near 0, training a deep neural network $\hat{y} = \mathbf{w}^T \tanh \left(U^T \tanh \left(V^T \mathbf{x} \right) \right)$ resembles training a linear model $\hat{y} = \mathbf{w}^T U^T V^T \mathbf{x}$ so long as the activations can be kept small

Sigmoidal units still useful

- Sigmoidal more common in settings other than feed-forward networks
- Recurrent networks, many probabilistic models and autoencoders have additional requirements that rule out piecewise linear activation functions
- They make sigmoid units appealing despite saturation

Other Hidden Units

- Many other types of hidden units possible, but used less frequently
 - Feed-forward network using $h = \cos(Wx + b)$
 - on MNIST obtained error rate of less than 1%

- Radial Basis
$$h_{i} = \exp\left(-\frac{1}{\sigma^{2}} ||W_{:,i} - \boldsymbol{x}||^{2}\right)$$

- Becomes more active as $m{x}$ approaches a template $W_{:,i}$
- Softplus $g(a) = \zeta(a) = \log(1 + e^a)$

$$g(a) = \zeta(a) = \log(1 + e^a)$$

- Smooth version of the rectifier
- Hard tanh
 - Shaped similar to tanh and the rectifier but it is bounded

$$g(a) = \max(-1, \min(1, a))$$