FCC

RF Test Report

Applicant : SHENZHEN JEHE TECHNOLOGY DEVELOPMENT CO.,LTD.

Product Type : MiniPC

Trade Name : GIADA

Model Number : F21XX (The mark"X"represents any letter A-Z ,any alphanumeric

character or blank)

Test Specification : FCC 47 CFR PART 15 SUBPART C

ANSI C63.10:2013

KDB 558074 D01 v03r04

Receive Date : Dec. 01, 2015

Test Period : Dec. 11 ~ Dec. 14, 2015

Issue Date : Jan. 14, 2016

Issue by

A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade District,

Taoyuan City 33465, Taiwan (R.O.C)

Tel: +886-3-2710188 / Fax: +886-3-2710190

ILAC-MRA

<u>Taiwan Accreditation Foundation accreditation number: 1330</u>

Note: This report shall not be reproduced except in full, without the written approval of A Test Lab Techno Corp. This document may be altered or revised by A Test Lab Techno Corp. personnel only, and shall be noted in the revision section of the document. The client should not use it to claim product endorsement by TAF, or any government agencies. The test results in the report only apply to the tested sample.

Revision History

Rev.	Issue Date	Revisions	Revised By
00	Dec. 24, 2015	Initial Issue	
01	Jan. 14, 2016	Revised report information.	Peggy Chang

Verification of Compliance

Issued Date: 01/14/2016

Applicant : SHENZHEN JEHE TECHNOLOGY DEVELOPMENT CO.,LTD.

Product Type : MiniPC

Trade Name : GIADA

Model Number : F21XX (The mark"X"represents any letter A-Z ,any

alphanumeric character or blank)

FCC ID : YIKF210

EUT Rated Voltage : DC 12V, 2.0A

Test Voltage : 120 Vac / 60 Hz

Applicable Standard : FCC 47 CFR PART 15 SUBPART C

ANSI C63.10:2013

KDB 558074 D01 v03r04

Test Result : Complied

Performing Lab. : A Test Lab Techno Corp.

No. 140-1, Changan Street, Bade District,

Taoyuan City 33465, Taiwan (R.O.C)

Tel: +886-3-2710188 / Fax: +886-3-2710190

Taiwan Accreditation Foundation accreditation number: 1330

http://www.atl-lab.com.tw/e-index.htm

A Test Lab Techno Corp. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by A Test Lab Techno Corp. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Approved By

Keviewed Bi

(Eric Ou

(Manager)

(Fly Lu)

∖lesting Engineer

TABLE OF CONTENTS

1	Gene	eral Information	6
	1.1.	Summary of Test Result	6
	1.2.	Measurement Uncertainty	6
2	EUT	Description	7
3	Test	Methodology	8
	3.1.	Mode of Operation	8
	3.2.	EUT Exercise Software	8
	3.3.	Configuration of Test System Details	ç
		Test Site Environment	
4	Maxi	mum Conducted Output Power Measurement	.11
		Limit	
	4.2.	Test Setup	. 11
		Test Instruments	
	4.4.	Test Procedure	. 11
	4.5.	Test Result	. 12
5	Cond	ducted Emission Measurement	. 13
	5.1.	Limit	. 13
	5.2.	Test Instruments	. 13
	5.3.	Test Setup	. 13
	5.4.	Test Procedure	. 14
	5.5.	Test Result	. 15
6	Radi	ated Interference Measurement	. 17
	6.1.	Limit	. 17
	6.2.	Test Instruments	. 17
	6.3.	Setup	. 18
	6.4.	Test Procedure	.20
	6.5.	Test Result	.21
7	20dE	RF Bandwidth Measurement	.28
	7.1.	Limit	.28
	7.2.	Test Setup	.28
	7.3.	Test Instruments	.28
	7.4.	Test Procedure	.29
	7.5.	Test Result	.30
	7.6.	Test Graphs	.31

0	Carrier Frequency Separation Measurement	
	8.1. Limit	33
	8.2. Test Setup	33
	8.3. Test Instruments	33
	8.4. Test Procedure	34
	8.5. Test Result	35
	8.6. Test Graphs	36
9	Number of Hopping Measurement	38
	9.1. Limit	38
	9.2. Test Setup	38
	9.3. Test Instruments	38
	9.4. Test Procedure	38
	9.5. Test Result	39
	9.6. Test Graphs	40
10	Time of Occupancy (Dwell Time) Measurement	42
	10.1. Limit	42
	10.2. Test Setup	42
	10.3. Test Instruments	42
	10.4. Test Procedure	42
	10.5. Test Result	43
	10.6. Test Graphs	45
11	Out of Band Conducted Emissions Measurement	47
	11.1. Limit	47
	11.2. Test Setup	47
	11.3. Test Instruments	47
	11.4. Test Procedure	47
	11.5. Test Graphs	48
12	Antenna Measurement	52
	12.1. Limit	52
	12.2 Antenna Connector Construction	52

1 General Information

1.1. Summary of Test Result

FCC Standard	Item	Result	Remark
15.207	AC Power Conducted Emission	PASS	
15.203	Antenna Requirement	PASS	
15.247(b)(1)	Max. Output Power	PASS	
15.247(d)	Transmitter Radiated Emissions	PASS	
15.247(a)(1)	20dB RF Bandwidth	PASS	
15.247(a)(1)	Carrier Frequency Separation	PASS	
15.247(a)(1)(iii)	Number of Hopping	PASS	
15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	PASS	
15.247(d)	Out of Band Conducted Spurious Emission	PASS	

The test results of this report relate only to the tested sample(s) identified in this report. Manufacturer or whom it may concern should recognize the pass or fail of the test result.

1.2. Measurement Uncertainty

Test Item	Frequency Range	Uncertainty (dB)
Conducted Emission	9kHz ~ 150KHz	2.7
Conducted Emission	150kHz ~ 30MHz	2.8
	30MHz ~ 1000MHz 6.300	6.300
Radiated Emission	1000MHz ~ 18000MHz	5.474
	18000MHz ~ 26500MHz	5.630
	26500MHz ~ 40000MHz	5.054

2 **EUT Description**

Applicant	SHENZHEN JEHE TECHNOLOGY DEVELOPMENT CO.,LTD. 2/F, block A, Tsinghua Information Harbor, North Section, Shenzhen Hi-tech Park, Nanshan District, Shenzhen, China		
Manufacturer	CHEER ASCENT ELECTRONICS (SHENZHEN) CO., LTD. A1 Building,FuHai Industrial Estate,FuHai Road,FuYong,BaoAn,ShenZhen,China		
Product	MiniPC		
Trade Name	GIADA		
Model Number	F21XX (The mark"X"represents any letter A-Z ,any alphanumeric character or blank)		
FCC ID	YIKF210		
Frequency Range	2402 ~ 2480 MHz		
Modulation Type	GFSK for 1Mbps		
	π/4-DQPSK for 2Mbps		
	8DPSK for 3Mbps		
Antenna Type	Omni Directional Antenna (Reversed-SMA Connector)		
Antenna Gain	2 dBi		
RF Output Power	GFSK for 1Mbps 2.78 dBm / 0.002 W		
(Conducted)	π /4-DQPSK for 2Mbps 4.18 dBm / 0.003 W		
	8DPSK for 3Mbps 4.37 dBm / 0.003 W		

3 Test Methodology

3.1. Mode of Operation

Decision of Test ATL has verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Pre-Test Mode
Mode 1: Normal Operation Mode
Mode 2: GFSK Link Mode
Mode 3: π/4-DQPSK Link Mode
Mode 4: 8DPSK Link Mode

By preliminary testing and verifying three axis (X, Y and Z) position of EUT transmitted status, it was found that "X axis" position was the worst, then the final test was executed the worst condition and test data were recorded in this report.

Final-Test Mode
Mode 1: Normal Operation Mode
Mode 2: GFSK Link Mode
Mode 4: 8DPSK Link Mode

Description of Test Modes

Preliminary tests were performed in different modulation to find the worst case. The modulation has shown the worst-case in section 4.5. Investigation has been done on all the possible configurations for searching the worst cases.

Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

	Product	Manufacturer	Model Number	Serial Number	Power Cord
1.	Bluetooth Tester	R&S	CBT	100350	NA

3.2. EUT Exercise Software

1	Setup the EUT and Bluetooth Tester (CBT) as shown on 3.3.
2	Turn on the power of all equipment.
3	Open Bluetooth function link to CBT.
4	EUT run test program.

Mea	Measurement Software		
1	EZ-EMC Ver. ATL-03A1-1		
2	EZ-EMC Ver ATL-ITC-3A1-1		

3.3. Configuration of Test System Details

Conducted Emissions

Radiated Emissions

3.4. Test Site Environment

Items	Required (IEC 60068-1)	Actual
Temperature (°C)	15-35	26
Humidity (%RH)	25-75	60
Barometric pressure (mbar)	860-1060	950

4 Maximum Conducted Output Power Measurement

4.1. **Limit**

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels < 0.125 watt.

Report Number: 1512FR18-01

4.2. Test Setup

4.3. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Single Channel PK Power Sensor	Agilent	N1911A	MY45101619	12/15/2014	(1)
Wideband Power Meter	Agilent	N1921A	MY45241957	12/15/2014	(1)
Microwave Cable	EMCI	EMC104-SM-SM-1 500	140303	02/24/2015	(1)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. NOTE: N.C.R. = No Calibration Request.

4.4. Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The tests below are run with the EUT's transmitter set at high power in TX mode. The EUT is needed to force selection of output power level and channel number. While testing, EUT was set to transmit continuously. Remove the Subjective device's antenna and connect the RF output port to power sensor. The maximum peak output power shall not exceed 1 watt.

Use a direct connection between the antenna port of transmitter and the power sensor, for prevent the power sensor input attenuation 40-50 dB. Set the RBW Bandwidth of the emission or use a channel power meter mode. For antennas with gains of 6 dBi or less, maximum allowed transmitter output is 1 watt (+30 dBm). For antennas with gains greater than 6 dBi, transmitter output level must be decreased by an amount equal to (GAIN - 6)/3 dBm. The antenna port of the EUT was connected to the input of a power sensor. Power was read directly and cable loss correction was added to the reading to obtain power at the EUT antenna terminals.

4.5. Test Result

Matalal and a											
Model Number	F210										
Test Item	Maximum Conducte	ed Output Power									
Test Mode	Mode 2 / Mode 3 / N	Mode 4									
Date of Test	12/11/2015		7	Test Site	TE02	TE02					
Test Mode	Frequency	Packet Type	Averag	e Power	Peak	Power	Limit				
rest Mode	(MHz)	Раскеттуре	(dBm)	(W)	(dBm)	(W)	(W)				
		DH1	2.20	0.00166	2.72	0.00187	< 0.125				
	2402	DH3	2.24	0.00167	2.75	0.00188	< 0.125				
		DH5	2.27	0.00169	2.78	0.00190	< 0.125				
		DH1	1.88	0.00154	2.43	0.00175	< 0.125				
Mode 2	2441	DH3	1.90	0.00155	2.45	0.00176	< 0.125				
		DH5	1.93	0.00156	2.47	0.00177	< 0.125				
		DH1	0.89	0.00123	1.49	0.00141	< 0.125				
	2480	DH3	0.91	0.00123	1.53	0.00142	< 0.125				
		DH5	0.92	0.00124	1.54	0.00143	< 0.125				
		2DH1	1.42	0.00139	4.14	0.00259	< 0.125				
	2402	2DH3	1.47	0.00140	4.15	0.00260	< 0.125				
		2DH5	1.48	0.00141	4.18	0.00262	< 0.125				
	2441	2DH1	1.06	0.00128	3.76	0.00238	< 0.125				
Mode 3		2DH3	1.08	0.00128	3.78	0.00239	< 0.125				
		2DH5	1.09	0.00129	3.79	0.00239	< 0.125				
		2DH1	0.09	0.00102	2.89	0.00195	< 0.125				
	2480	2DH3	0.10	0.00102	2.90	0.00195	< 0.125				
		2DH5	0.11	0.00103	2.92	0.00196	< 0.125				
		3DH1	1.46	0.00140	4.32	0.00270	< 0.125				
	2402	3DH3	1.49	0.00141	4.35	0.00272	< 0.125				
		3DH5	1.51	0.00142	4.37	0.00274	< 0.125				
		3DH1	1.09	0.00129	4.04	0.00254	< 0.125				
Mode 4	2441	3DH3	1.11	0.00129	4.06	0.00255	< 0.125				
		3DH5	1.13	0.00130	4.07	0.00255	< 0.125				
		3DH1	0.14	0.00103	3.19	0.00208	< 0.125				
	2480	3DH3	0.16	0.00104	3.22	0.00210	< 0.125				
		3DH5	0.18	0.00104	3.25	0.00211	< 0.125				
(1									

Note: The relevant measured result has the offset with cable loss already.

5 Conducted Emission Measurement

5.1. Limit

Frequency (MHz)	Quasi-peak	Average		
0.15 - 0.5	66 to 56	56 to 46		
0.50 - 5.0	56	46		
5.0 - 30.0	60	50		

5.2. Test Instruments

Describe	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Test Receiver	R&S	ESCI	100367	06/12/2014	(1)
LISN	R&S	ENV216	101040	03/10/2015	(1)
LISN	R&S	ENV216	101041	03/06/2015	(1)
RF Cable	Woken	00100D1380194M	TE-02-02	06/26/2015	(1)
Test Site	ATL	TE05	TE05	N.C.R.	

Remark: (1) Calibration period 1 year. NOTE: N.C.R. = No Calibration Request.

5.3. Test Setup

5.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50 ohm /50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination.

For A.C. mains conducted interference, measured both sides of A.C. lines and carried out using quasi-peak and average detector receivers of maximum conducted interference.

Conducted emissions were invested over the frequency range from 0.15 MHz to 30 MHz using a receiver bandwidth of 9 kHz. The equipment under test (EUT) shall be meet the limits in section 5.1, as applicable, including the average limit and the quasi-peak limit when using respectively, an average detector and quasi-peak detector measured in accordance with the methods described of related standard. The voltage limits shall be met. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both limits and measurement with the average detector receiver is unnecessary.

If the reading of the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the higher reading shall be recorded with the exception of any brief isolated high reading which shall be ignored.

5.5. Test Result

Standard: FCC Part 15C Line: L1 Test item: Conducted Emission Power: AC 120V/60Hz Model Number: F210 Temp.(°C)/Hum.(%RH): 26(°C)/60%RH Mode: 1 Date: 12/14/2015 Test By: Eric Ou Yang Description:

No.	Frequency	QP reading	AVG reading	Correction factor	QP result	AVG result	QP limit	AVG limit	QP margin	AVG margin	Remark
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1540	41.06	19.41	9.69	50.75	29.10	65.78	55.78	-15.03	-26.68	Pass
2	0.4740	39.49	31.48	9.70	49.19	41.18	56.44	46.44	-7.25	-5.26	Pass
3	0.6460	33.99	26.95	9.70	43.69	36.65	56.00	46.00	-12.31	-9.35	Pass
4	1.1420	34.25	28.05	9.73	43.98	37.78	56.00	46.00	-12.02	-8.22	Pass
5	1.5580	33.64	27.47	9.75	43.39	37.22	56.00	46.00	-12.61	-8.78	Pass
6	2.5140	33.88	27.90	9.79	43.67	37.69	56.00	46.00	-12.33	-8.31	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

Standard: FCC Part 15C Line: N

Test item: Conducted Emission Power: AC 120V/60Hz

Model Number: F210 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: 1 Date: 12/14/2015

Test By: Eric Ou Yang

Description:

No.	Frequency	QP	AVG	Correction	QP	AVG	QP	AVG	QP	AVG	Remark
		reading	reading	factor	result	result	limit	limit	margin	margin	
	(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dBuV)	(dBuV)	(dB)	(dB)	
1	0.1620	40.16	25.99	9.66	49.82	35.65	65.36	55.36	-15.54	-19.71	Pass
2	0.1900	36.68	23.16	9.65	46.33	32.81	64.04	54.04	-17.71	-21.23	Pass
3	0.4700	39.20	32.40	9.67	48.87	42.07	56.51	46.51	-7.64	-4.44	Pass
4	0.7220	34.29	27.80	9.68	43.97	37.48	56.00	46.00	-12.03	-8.52	Pass
5	1.0500	32.00	25.37	9.69	41.69	35.06	56.00	46.00	-14.31	-10.94	Pass
6	1.5300	33.44	27.03	9.72	43.16	36.75	56.00	46.00	-12.84	-9.25	Pass

Note: 1. Result (dBuV) = Correction factor (dB) + Reading(dBuV).

2. Correction factor (dB) = Cable loss (dB) + L.I.S.N. factor (dB).

6 Radiated Interference Measurement

6.1. Limit

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Report Number: 1512FR18-01

Frequency (MHz)	Field Strength (μV/m at meter)	Measurement Distance (meters)
0.009 - 0.490	2400 / F (kHz)	300
0.490 – 1.705	24000 / F (kHz)	30
1.705 – 30.0	30	30
30 - 88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

6.2. Test Instruments

		3 Meter Chambe	er		
Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
RF Pre-selector	Agilent	N9039A	MY46520256	01/06/2015	(1)
Spectrum Analyzer	Agilent	E4446A	MY46180578	01/06/2015	(1)
Pre Amplifier	Agilent	8449B 3008A02237		02/24/2015	(1)
Pre Amplifier	Agilent	8447D 2944A10961		02/24/2015	(1)
Broadband Antenna (30MHz~1GHz)	SCHWARZBECK MESS-ELEKTRONIK	VULB9163 9163-270		08/11/2015	(1)
Horn Antenna (1~18GHz)	SCHWARZBECK MESS-ELEKTRONIK	BBHA9120D	9120D-550	06/12/2015	(1)
Horn Antenna (18~40GHz)	SCHWARZBECK MESS-ELEKTRONIK	BBHA9170	9170-320	07/06/2015	(1)
Loop Antenna	COM-POWER CORPORATION	AL-130	121014	02/02/2015	(1)
Microwave Cable	EMCI	EMC-104-SM-S M-14000	140202	02/24/2015	(1)
Microwave Cable	EMCI	EMC104-SM-S M-600	140301	02/24/2015	(1)
Test Site	ATL	TE01	888001	08/27/2015	(1)

6.3. Setup

9kHz ~ 30MHz

Below 1GHz

Above 1GHz

6.4. Test Procedure

Final radiation measurements were made on a three-meter, Semi Anechoic Chamber. The EUT system was placed on a nonconductive turntable which is 0.8 or 1.5 meters height(below 1GHz use 0.8m turntable / above 1GHz use 1.5m turntable), top surface 1.0 x 1.5 meter. The spectrum was examined from 250 MHz to 2.5 GHz in order to cover the whole spectrum below 10th harmonic which could generate from the EUT. During the test, EUT was set to transmit continuously & Measurements spectrum range from 9 kHz to 26.5 GHz is investigated.

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, and then the video bandwidth is set to 1 MHz for peak measurements and 10 Hz for average measurements.

A nonconductive material surrounded the EUT to supporting the EUT for standing on tree orthogonal planes. At each condition, the EUT was rotated 360 degrees, and the antenna was raised and lowered from one to four meters to find the maximum emission levels. Measurements were taken using both horizontal and vertical antenna polarization.

SCHWARZBECK MESS-ELEKTRONIK Biconilog Antenna (mode VULB9163) at 3 Meter and the SCHWARZBECK Double Ridged Guide Antenna (model BBHA9120D&9170) was used in frequencies 1 – 26.5 GHz at a distance of 1 meter. All test results were extrapolated to equivalent signal at 3 meters utilizing an inverse linear distance extrapolation Factor (20dB/decade).

For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.

Appropriate preamplifiers were used for improving sensitivity and precautions were taken to avoid overloading or desensitizing the spectrum analyzer. No post – detector video filters were used in the test.

The spectrum analyzer's 6 dB bandwidth was set to 1 MHz, and the analyzer was operated in the peak detection mode, for frequencies both below and up 1 GHz. The average levels were obtained by subtracting the duty cycle correction factor from the peak readings.

The following procedures were used to convert the emission levels measured in decibels referenced to 1 microvolt (dBuV) into field intensity in micro volts pre meter (uV/m).

The actual field intensity in decibels referenced to 1 microvolt in to field intensity in micro colts per meter (dBuV/m).

The actual field is intensity in referenced to 1 microvolt per meter (dBuV/m) is determined by algebraically adding the measured reading in dBuV, the antenna factor (dB), and cable loss (dB) and Subtracting the gain of preamplifier (dB) is auto calculate in spectrum analyzer.

- (1) Amplitude (dBuV/m) = FI (dBuV) +AF (dBuV) +CL (dBuV)-Gain (dB)
 - FI= Reading of the field intensity.
 - AF= Antenna factor.
 - CL= Cable loss.
 - P.S Amplitude is auto calculate in spectrum analyzer.
- (2) Actual Amplitude (dBuV/m) = Amplitude (dBuV)-Dis(dB)
 - The FCC specified emission limits were calculated according the EUT operating frequency and by following linear interpolation equations:
 - (a) For fundamental frequency : Transmitter Output < +30dBm
 - (b) For spurious frequency: Spurious emission limits = fundamental emission limit /10

Data of measurement within this frequency range without mark in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

6.5. Test Result

Below 1GHz

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model_Number:} \mbox{ Model Number:} \qquad \mbox{ F210} \qquad \mbox{ Temp.($^{\circ}_{\mathbb{C}}$)/Hum.($^{\circ}_{\mathbb{C}}$)} \qquad \mbox{ 26($^{\circ}_{\mathbb{C}}$)/60$\%RH}$

Mode: 1 Date: 12/11/2015

Test By: Eric Ou Yang

Frequency (MHz)	Reading (dBuV)	Correct Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Polar. H / V
148.5000	47.02	-11.29	35.73	43.50	-7.77	QP	Н
296.5000	41.01	-9.27	31.74	46.00	-14.26	QP	Н
445.0000	41.68	-6.30	35.38	46.00	-10.62	QP	Н
672.0000	37.25	-1.86	35.39	46.00	-10.61	QP	Н
742.0000	39.65	-0.34	39.31	46.00	-6.69	QP	Н
890.0000	34.78	2.55	37.33	46.00	-8.67	QP	Н
148.5000	47.27	-11.29	35.98	43.50	-7.52	QP	V
296.5000	39.62	-9.27	30.35	46.00	-15.65	QP	V
445.0000	42.62	-6.30	36.32	46.00	-9.68	QP	V
593.5000	35.47	-3.29	32.18	46.00	-13.82	QP	V
768.0000	34.34	0.09	34.43	46.00	-11.57	QP	V
862.0000	34.89	1.89	36.78	46.00	-9.22	QP	V

Note: No emission found between lowest internal used/generated frequencies to 30MHz (9 kHz~30MHz).

Above 1GHz

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model_Number:} \mbox{ Model Number:} \qquad \mbox{ Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad \mbox{ 26($^{\circ}$C)/60$\%RH}$

Mode: 2 Date: 12/11/2015

Frequency: 2402 MHz Test By: Eric Ou Yang

Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
3030.000	34.79	1.46	36.25	74.00	-37.75	peak	Н
4619.000	29.58	6.74	36.32	74.00	-37.68	peak	Н
6691.000	30.82	12.00	42.82	74.00	-31.18	peak	Н
3030.000	36.47	1.46	37.93	74.00	-36.07	peak	V
4619.000	32.17	6.74	38.91	74.00	-35.09	peak	V
6705.000	32.86	12.04	44.90	74.00	-29.10	peak	V

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model_Number:} \mbox{ Model Number:} \qquad \mbox{ F210} \qquad \mbox{ Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad \mbox{ 26($^{\circ}$C)/60$\%RH}$

Mode: 2 Date: 12/11/2015

Frequency: 2441 MHz Test By: Eric Ou Yang

r requeriey.	ZTT I WI IZ		icst by.			Life Ou rang		
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.	
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V	
3037.000	35.49	1.48	36.97	74.00	-37.03	peak	Н	
4591.000	31.89	6.64	38.53	74.00	-35.47	peak	Н	
6691.000	32.93	12.00	44.93	74.00	-29.07	peak	Н	
3023.000	34.18	1.42	35.60	74.00	-38.40	peak	V	
4591.000	30.41	6.64	37.05	74.00	-36.95	peak	V	
6670.000	31.89	11.96	43.85	74.00	-30.15	peak	V	

2

Mode:

Report Number: 1512FR18-01

12/11/2015

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

Model Number: F210 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Date:

Frequency: 2480 MHz Test By: Eric Ou Yang

Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
3037.000	34.47	1.48	35.95	74.00	-38.05	peak	Н
4591.000	31.39	6.64	38.03	74.00	-35.97	peak	Н
6663.000	31.32	11.93	43.25	74.00	-30.75	peak	Н
3037.000	35.13	1.48	36.61	74.00	-37.39	peak	V
3037.000	33.13	1.40	30.01	74.00	-57.59	peak	V
4563.000	29.73	6.55	36.28	74.00	-37.72	peak	V
6691.000	32.27	12.00	44.27	74.00	-29.73	peak	V

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model_Number:} \mbox{ Model Number:} \qquad \mbox{ F210} \qquad \mbox{ Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad \mbox{ 26($^{\circ}$C)/60$\%RH}$

Mode: 4 Date: 12/11/2015

Frequency: 2402 MHz Test By: Eric Ou Yang

Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
3051.000	35.64	1.55	37.19	74.00	-36.81	peak	Н
4633.000	31.24	6.79	38.03	74.00	-35.97	peak	Н
6558.000	30.60	11.68	42.28	74.00	-31.72	peak	Н
2222 222	04.04	1.10	00.40	7400	07.00		.,
3030.000	34.64	1.46	36.10	74.00	-37.90	peak	V
4577.000	31.18	6.59	37.77	74.00	-36.23	peak	V
6691.000	30.59	12.00	42.59	74.00	-31.41	peak	V

Mode:

Report Number: 1512FR18-01

12/11/2015

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model_Number:} \mbox{ Model Number:} \qquad \mbox{ F210} \qquad \mbox{ Temp.($^{\circ}_{\mathbb{C}}$)/Hum.($^{\circ}_{\mathbb{C}}$)} \mbox{ 26($^{\circ}_{\mathbb{C}}$)/60$$$$ RH}$

Date:

Frequency: 2441 MHz Test By: Eric Ou Yang

Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
3030.000	35.31	1.46	36.77	74.00	-37.23	peak	Н
4591.000	30.18	6.64	36.82	74.00	-37.18	peak	Н
6726.000	31.30	12.09	43.39	74.00	-30.61	peak	Н
3058.000	37.09	1.58	38.67	74.00	-35.33	peak	V
3333.000	37.00	1.50	33.07	7 1.00	00.00	pour	•
4605.000	33.73	6.69	40.42	74.00	-33.58	peak	V
6565.000	32.10	11.71	43.81	74.00	-30.19	peak	V

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

Model Number: F210 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: 4 Date: 12/11/2015

Frequency: 2480 MHz Test By: Eric Ou Yang

-							
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
3030.000	33.94	1.46	35.40	74.00	-38.60	peak	Н
4570.000	32.06	6.57	38.63	74.00	-35.37	peak	Н
6670.000	32.27	11.96	44.23	74.00	-29.77	peak	Н
	1						
3030.000	36.37	1.46	37.83	74.00	-36.17	peak	V
4493.000	31.98	6.30	38.28	74.00	-35.72	peak	٧
6670.000	31.40	11.96	43.36	74.00	-30.64	peak	V

Band Edge

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz Model Number: F210 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: 2 Date: 12/11/2015

Frequency: 2402 MHz Test By: Eric Ou Yang

			-				
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
2389.200	46.72	-0.33	46.39	74.00	-27.61	peak	Н
2390.000	37.67	-0.33	37.34	74.00	-36.66	peak	Н
2373.910	48.15	-0.39	47.76	74.00	-26.24	peak	V
2390.000	43.57	-0.33	43.24	74.00	-30.76		V
2390.000	43.57	-0.33	43.24	74.00	-30.76	peak	V

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model_Number:} \mbox{ Model Number:} \qquad \mbox{ F210} \qquad \mbox{ Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad 26({^{\circ}$C})/60\%\mbox{RH}$

Mode: 2 Date: 12/11/2015

Frequency: 2480 MHz Test By: Eric Ou Yang

•				-			
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
2483.500	46.80	0.03	46.83	74.00	-27.17	peak	Н
2483.960	47.65	0.03	47.68	74.00	-26.32	peak	Н
2483.500	38.49	0.03	38.52	74.00	-35.48	peak	V
2483.740	53.13	0.03	53.16	74.00	-20.84	peak	V
2483.740	33.43	0.03	33.46	54.00	-20.54	AVG	V

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz Model Number: F210 Temp.($^{\circ}$ C)/Hum.($^{\circ}$ RH): 26($^{\circ}$ C)/60%RH

Mode: 2 Date: 12/11/2015

Hopping Test By: Eric Ou Yang

•							
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
2373.650	43.13	-0.39	42.74	74.00	-31.26	peak	Н
2390.000	37.30	-0.33	36.97	74.00	-37.03	peak	Н
2483.500	38.38	0.03	38.41	74.00	-35.59	peak	Н
2484.420	41.73	0.03	41.76	74.00	-32.24	peak	Н
2373.840	50.71	-0.39	50.32	74.00	-23.68	peak	V
2390.000	39.11	-0.33	38.78	74.00	-35.22	peak	V
2483.500	42.28	0.03	42.31	74.00	-31.69	peak	V
2484.230	48.64	0.03	48.67	74.00	-25.33	peak	V

Standard: FCC Part 15C Test Distance: 3m

Test item: Radiated Emission Power: AC 120V/60Hz

 $\label{eq:model_number:} \mbox{ Model Number:} \qquad \mbox{ F210} \qquad \mbox{ Temp.($^{\circ}$C)/Hum.($^{\circ}$RH):} \qquad \mbox{ 26($^{\circ}$C)/60$\%RH}$

Mode: 4 Date: 12/11/2015

Frequency: 2402 MHz Test By: Eric Ou Yang

Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
2388.870	44.75	-0.33	44.42	74.00	-29.58	peak	Н
2390.000	37.53	-0.33	37.20	74.00	-36.80	peak	Н
	1						
2373.470	48.36	-0.39	47.97	74.00	-26.03	peak	V
2390.000	38.51	-0.33	38.18	74.00	-35.82	peak	V

2486.320

47.45

0.03

Report Number: 1512FR18-01

Standard:		FCC Part 15C		Test Distanc	e:	3m	
Test item:		Radiated Emission	adiated Emission Power:		AC 120	V/60Hz	
Model Number	r:	F210		Temp.(°ℂ)/Hum.(%RH):		26(° ℃)/6	60%RH
Mode:		4		Date:	Date:		015
Frequency:		2480 MHz		Test By:	Test By:		Yang
Frequency	Reading	Correct Factor	Result	Limit	Margin	Remark	Ant.Polar.
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)		H/V
2483.500	39.37	0.03	39.40	74.00	-34.60	peak	Н
2483.560	45.82	0.03	45.85	74.00	-28.15	peak	Н
2483.500	43.14	0.03	43.17	74.00	-30.83	peak	V
2483.740	55.83	0.03	55.86	74.00	-18.14	peak	V
2483.740	32.53	0.03	32.56	54.00	-21.44	AVG	V

Standard: FCC Part 15C Test Distance: Test item: Radiated Emission Power: AC 120V/60Hz Model Number: F210 Temp.(°C)/Hum.(%RH): 26(°C)/60%RH Mode: 4 Date: 12/11/2015 Hopping Test By: Eric Ou Yang Correct Factor Ant.Polar. Frequency Reading Result Limit Margin Remark H/V (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2388.280 45.77 -0.33 45.44 74.00 -28.56 Н peak 2390.000 36.34 -0.33 36.01 74.00 -37.99 Н peak 2483.500 40.39 40.42 74.00 0.03 -33.58 Н peak 2491.830 41.25 0.06 41.31 74.00 -32.69 Н peak 2373.650 48.73 -0.39 48.34 74.00 -25.66 peak 2390.000 38.40 -0.33 38.07 74.00 -35.93 peak 2483.500 41.07 0.03 41.10 74.00 -32.90 ٧ peak

47.48

74.00

-26.52

peak

7 20dB RF Bandwidth Measurement

7.1. Limit

N/A

7.2. Test Setup

7.3. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Spectrum Analyzer	Agilent	E4445A	MY45300744	12/16/2014	(1)
Microwave Cable	EMCI	EMC104-SM-SM-1 500	140303	02/24/2015	(1)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. NOTE: N.C.R. = No Calibration Request.

7.4. Test Procedure

20dB RF Bandwidth

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = approx. 2 to 3 times the 20dB bandwidth, centered on a hopping frequency
- 2. RBW \geq 1% of the 20dB span
- 3. $VBW \ge RBW$
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The EUT was transmitting at its maximum data rate. The marker-to-peak function was used to set the marker to the peak of the emission. The marker-delta function was used to measure 20dB down one side of the emission. The marker-delta function and marker was moved to the other side of the emission until it was even with the reference marker. The marker-delta reading at this point was the 20dB bandwidth of the emission.

7.5. Test Result

- Tool Hoodil								
Model Number	F210							
Test Item	20dB RF Bandwidth	and 99 % Occupied Bandwidth						
Test Mode	Mode 2 / Mode 4	Mode 2 / Mode 4						
Date of Test	12/11/2015		Test Site	TE02				
Test Mode	Frequency (MHz)	20dB RF Bandwidth (MHz)		Limit (MHz)				
	2402	1.044						
Mode 2	2441	1.043						
	2480	1.041						
	2402	1.314						
Mode 4	2441	1.301						
	2480	1.306						

7.6. Test Graphs

8 Carrier Frequency Separation Measurement

8.1. Limit

Title 47 of the CFR, Part 15 Subpart (c) 15.247(a)(1) requires the measurement of the bandwidth of the transmission between the -20 dB points on the transmitted spectrum. The results of this test determine the limits for channel spacing. The channel spacing shall be a minimum of 25 kHz or the 20 dB bandwidth, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.

8.2. Test Setup

8.3. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Spectrum Analyzer	Agilent	E4445A	MY45300744	12/16/2014	(1)
Microwave Cable	EMCI	EMC104-SM-SM-1 500	140303	02/24/2015	(1)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. NOTE: N.C.R. = No Calibration Request.

8.4. Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth of the hopping function enabled. The following spectrum analyzer settings were used:

- 1. Span = wide enough to capture the peaks of two adjacent channels
- 2. Resolution (or IF) Bandwidth (RBW) ≥ 1% of the span
- 3. Video (or Average) Bandwidth (VBW) ≥ RBW
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize. The marker-delta function was used to determine the separation between the peaks of the adjacent channels.

8.5. Test Result

Model Number	F210					
Test Item	Carrier Frequency S	Separation				
Test Mode	Mode 2 / Mode 4					
Date of Test	12/11/2015	Test Site TE02				
Test Mode	Frequency (MHz)	Measurement (MHz)			Limit (MHz)	
	2402	1.000			> 0.696	
Mode 2	2441	1.000			> 0.695	
	2480		1.000		> 0.694	
	2402		1.000		> 0.876	
Mode 4	2441	1.000 > 0.867				
	2480		1.000		> 0.871	

8.6. Test Graphs

9 Number of Hopping Measurement

9.1. **Limit**

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

9.2. Test Setup

9.3. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Spectrum Analyzer	Agilent	E4445A	MY45300744	12/16/2014	(1)
Microwave Cable	EMCI	EMC104-SM-SM-1500	140303	02/24/2015	(1)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. NOTE: N.C.R. = No Calibration Request.

9.4. Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the EMC analyzer through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth frequency hopping function of the EUT was enabled. The spectrum analyzer used the following settings:

- 1. Span = the frequency band of operation
- 2. RBW \geq 1% of the span
- 3. $VBW \ge RBW$
- 4. Sweep = auto
- 5. Detector function = peak
- 6. Trace = max hold

The trace was allowed to stabilize.

9.5. Test Result

Model Number	F210					
Test Item	Number of Hopping					
Test Mode	Mode 2 / Mode 4					
Date of Test	12/11/2015	Test Site	TE02			
Test Mode	Frequency Range (MHz)	Measurement (ch)	Limit (ch)			
Mode 2	2402 - 2480	79	> 15			
Mode 4	2402 - 2480	79	> 15			

9.6. Test Graphs

10 Time of Occupancy (Dwell Time) Measurement

10.1. Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

10.2. Test Setup

10.3. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Spectrum Analyzer	Agilent	E4445A	MY45300744	12/16/2014	(1)
Microwave Cable	EMCI	EMC104-SM-SM-1500	140303	02/24/2015	(1)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. NOTE: N.C.R. = No Calibration Request.

10.4. Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. The RF output port of the Equipment-Under-Test is directly coupled to the input of the spectrum through a specialized RF connector and a 10dB passive attenuator. A fully charged battery was used for the supply voltage. The Bluetooth hopping function of the EUT was enabled. The following spectrum analyzer settings were used:

- 1. Span = zero span, centered on a hopping channel
- 2. RBW = 1 MHz
- 3. VBW \geq RBW
- 4. Sweep = as necessary to capture the entire dwell time per hopping channel
- 5. Detector function = peak
- 6. Trace = max hold

The marker-delta function was used to determine the dwell time.

10.5. Test Result

Test Nesult					
Model Number	F210				
Test Item	Time of Occupancy (Dwell Time)				
Test Mode	Mode 2: GFSK Link Mode				
Date of Test	12/11/2015	12/11/2015 Test Site TE02			
	Γ	DH1			
Cycle Calculate		79CH * 0.4 = 31.6 (sec)			
The EUT Hoppin	g Number per Sec	1600 times/s	ес		
Each Channel D	well Times per Sec	800/79CH =	10.13(ti	mes/sec)	
Each Channel D	well Times on Cycle(1)	31.6 * 10.13	= 320.1	08(times)	
Each Channel D	well Times (2)	0.450	ms (se	c)	
Dwell Times on 0	Cycle (1) * (2)	144.0486 ms (sec)			
LIMIT(msec)		< = 400			
	[DH3			
Cycle Calculate 790			79CH * 0.4 = 31.6 (sec)		
The EUT Hopping Number per Sec		1600 times/sec			
Each Channel Dwell Times per Sec		400/79CH = 5.1(times/sec)			
Each Channel Dwell Times on Cycle(1)		31.6 * 5.1 = 161.16(times)			
Each Channel Dwell Times (2)		1.675 ms (sec)			
Dwell Times on Cycle (1) * (2)		267.8258 ms (sec)			
LIMIT(msec)	LIMIT(msec)				
DH5					
Cycle Calculate		79CH * 0.4 = 31.6 (sec)			
The EUT Hopping Number per Sec		1600 times/sec			
Each Channel Dwell Times per Sec		266.7/79CH = 3.37(times/sec)			
Each Channel Dwell Times on Cycle(1)		31.6 * 3.37 = 106.492(times)			
Each Channel Dwell Times (2)		2.925	ms (se	c)	
Dwell Times on Cycle (1) * (2)		312.4134 ms (sec)			
LIMIT(msec)		<= 400			

	5040				
Model Number	F210				
Test Item	Time of Occupancy (Dwell Time)				
Test Mode	Mode 4: 8DPSK Link Mode				
Date of Test	12/11/2015	Test Site	TE02		
	31	DH1			
Cycle Calculate		79CH * 0.4 = 31.6 (sec)			
The EUT Hoppin	g Number per Sec	1600 times/sec			
Each Channel Dy	well Times per Sec	800/79CH = 10.13(times/sec)		
Each Channel Dy	well Times on Cycle(1)	31.6 * 10.13 = 320.	108(times)		
Each Channel Dy	well Times (2)	0.450 ms (s	ec)		
Dwell Times on C	Cycle (1) * (2)	144.0486 ms (sec)			
LIMIT(msec)		< = 400			
	31	DH3			
Cycle Calculate		79CH * 0.4 = 31.6 (sec)			
The EUT Hopping	g Number per Sec	1600 times/sec			
Each Channel Dy	well Times per Sec	400/79CH = 5.1(times/sec)			
Each Channel D	well Times on Cycle(1)	31.6 * 5.1 = 161.16(times)			
Each Channel Dwell Times (2)		1.675 ms (sec)			
Dwell Times on Cycle (1) * (2)		267.8258 ms (sec)			
LIMIT(msec)		< = 400			
3DH5					
Cycle Calculate		79CH * 0.4 = 31.6 (sec)			
The EUT Hopping Number per Sec		1600 times/sec			
Each Channel Dwell Times per Sec		266.7/79CH = 3.37(times/sec)			
Each Channel Dwell Times on Cycle(1)		31.6 * 3.37 = 106.492(times)			
Each Channel Dwell Times (2)		2.925 ms (sec)			
Dwell Times on Cycle (1) * (2)		312.4134 ms (sec)			
LIMIT(msec)		< = 400			

10.6. Test Graphs

11 Out of Band Conducted Emissions Measurement

11.1. Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power

11.2. Test Setup

11.3. Test Instruments

Equipment	Manufacturer	Model Number	Serial Number	Cal. Date	Remark
Spectrum Analyzer	Agilent	E4445A	MY45300744	12/16/2014	(1)
Spectrum Analyzer	Agilent	E4408B	MY45107753	07/27/2015	(1)
Microwave Cable	EMCI	EMC104-SM-SM-1 500	140303	02/24/2015	(1)
Test Site	ATL	TE02	TE02	N.C.R.	

Remark: (1) Calibration period 1 year. NOTE: N.C.R. = No Calibration Request.

11.4. Test Procedure

Testing must be done according to this procedure, FCC Public Notice DA 00-705 - Filing and Measurement Guidelines for Frequency Hopping Spread Spectrum Systems. This is the only method recognized by the FCC. In any 100 kHz bandwidth outside the EUT pass band, the RF power produced by the modulation products of the spreading sequence, the information sequence, and the carrier frequency shall be at least 20 dB below that of the maximum in-band 100 kHz emission, antenna output of the EUT was coupled directly to spectrum analyzer; if an external attenuator and/or cable was used, these losses are compensated for with the analyzer OFFSET function. All other types of emissions from the EUT shall meet the general limits for radiated frequencies outside the pass band. The test was performed at 3 channels (Channel 0, 39, 78)

11.5. Test Graphs

12 Antenna Measurement

12.1. Limit

For intentional device, according to 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And According to 15.247 (b)(4), if transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

12.2. Antenna Connector Construction

The antenna used in this product is Omni Directional Antenna (Reversed-SMA Connector). And the maximum Gain of this antenna is only 2 dBi.