Modern Statistical Methods for Astronomy

With **R** Applications

ERIC D. FEIGELSON

Pennsylvania State University

G. JOGESH BABU

Pennsylvania State University

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521767279

© E. D. Feigelson and G. J. Babu 2012

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2012

Printed in the United Kingdom at the University Press, Cambridge

A catalog record for this publication is available from the British Library

Library of Congress Catalog in Publication data Feigelson, Eric D.

Modern statistical methods for astronomy: with R applications / Eric D. Feigelson, G. Jogesh Babu.

p. cm.

ISBN 978-0-521-76727-9 (hardback

1. Statistical astronomy. I. Babu, Gutti Jogesh, 1949– II. Title.

QB149.F45 2012 520.72′7 – dc23 2012009113

2012 7 4025 2012007115

ISBN 978-0-521-76727-9 Hardback

Additional resources for this publication: www.cambridge.org/msma

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

Pre	page xv				
1	Introd	uction		1	
	1.1	The rol	e of statistics in astronomy	1	
		1.1.1	Astronomy and astrophysics	1	
		1.1.2	Probability and statistics	3	
		1.1.3	Statistics and science	4	
	1.2	History	of statistics in astronomy	6	
		1.2.1	Antiquity through the Renaissance	6	
		1.2.2	Foundations of statistics in celestial mechanics	7	
		1.2.3	Statistics in twentieth-century astronomy	8	
	1.3	Recom	mended reading	10	
2	Probal	Probability			
	2.1	Uncerta	ainty in observational science	13	
	2.2	Outcom	ne spaces and events	14	
	2.3	Axioms	s of probability	15	
	2.4	Conditi	onal probabilities	17	
		2.4.1	Bayes' theorem	18	
		2.4.2	Independent events	19	
	2.5	Randon	n variables	20	
		2.5.1	Density and distribution functions	21	
		2.5.2	Independent and identically distributed r.v.s.	24	
	2.6	Quantil	e function	25	
	2.7	Discret	e distributions	26	
	2.8	Continu	uous distributions	27	
	2.9	Distrib	utions that are neither discrete nor continuous	29	
	2.10	Limit tl	heorems	30	
	2.11	Recom	mended reading	30	
	2.12	R appli	cations	31	
3	Statist	ical infere	ence	35	
	3.1	The ast	ronomical context	35	
	3.2	Concep	ots of statistical inference	36	
	3.3	Princip	les of point estimation	38	

viii Contents

3.4	Techniq	ues of point estimation	40
	3.4.1	Method of moments	41
	3.4.2	Method of least squares	42
	3.4.3	Maximum likelihood method	43
	3.4.4	Confidence intervals	45
	3.4.5	Calculating MLEs with the EM algorithm	47
3.5	Hypoth	esis testing techniques	48
3.6	Resamp	oling methods	52
	3.6.1	Jackknife	52
	3.6.2	Bootstrap	54
3.7	Model s	selection and goodness-of-fit	57
	3.7.1	Nonparametric methods for goodness-of-fit	58
	3.7.2	Likelihood-based methods for model selection	60
	3.7.3	Information criteria for model selection	61
	3.7.4	Comparing different model families	62
3.8	Bayesia	n statistical inference	63
	3.8.1	Inference for the binomial proportion	64
	3.8.2	Prior distributions	65
	3.8.3	Inference for Gaussian distributions	67
	3.8.4	Hypotheses testing and the Bayes factor	69
	3.8.5	Model selection and averaging	70
	3.8.6	Bayesian computation	71
3.9	Remark	s	72
3.10	Recomr	mended reading	73
3.11	R applie	cations	74
Proba	ability distr	ibution functions	76
4.1	Binomia	al and multinomial	76
	4.1.1	Ratio of binomial random variables	79
4.2	Poisson		80
	4.2.1	Astronomical context	80
	4.2.2	Mathematical properties	81
	4.2.3	Poisson processes	83
4.3	Normal	and lognormal	85
4.4	Pareto (power-law)	87
	4.4.1	Least-squares estimation	89
	4.4.2	Maximum likelihood estimation	90
	4.4.3	Extensions of the power-law	91
	4.4.4	Multivariate Pareto	92
	4.4.5	Origins of power-laws	93
4.5	Gamma		94
4.6	Recomr	mended reading	96
4.7	R applie	cations	96
	4.7.1	Comparing Pareto distribution estimators	97

ix Contents

		4.7.2	Fitting distributions to data	101
		4.7.3	_	103
5	Nonpa	arametric	statistics	105
	5.1	The ast	tronomical context	105
	5.2	Concep	ots of nonparametric inference	106
	5.3	Univari	iate problems	107
		5.3.1	Kolmogorov-Smirnov and other e.d.f. tests	107
		5.3.2	Robust statistics of location	110
		5.3.3	Robust statistics of spread	111
	5.4	Hypoth	nesis testing	111
		5.4.1	Sign test	112
		5.4.2	Two-sample and k -sample tests	112
	5.5	Conting	gency tables	113
	5.6	Bivaria	te and multivariate tests	115
	5.7	Remarl	ks	116
	5.8	Recom	mended reading	117
	5.9	R appli	ications	117
		5.9.1	Exploratory plots and summary statistics	117
		5.9.2	Empirical distribution and quantile functions	121
		5.9.3	Two-sample tests	124
		5.9.4	Contingency tables	125
		5.9.5	Scope of nonparametrics in R and CRAN	127
6	Datas	moothing	g: density estimation	128
	6.1	The ast	tronomical context	128
	6.2	Concep	ots of density estimation	128
	6.3	Histogi	rams	129
	6.4	Kernel	density estimators	131
		6.4.1	Basic properties	131
		6.4.2	Choosing bandwidths by cross-validation	132
		6.4.3		133
		6.4.4	Smoothing with measurement errors	134
	6.5	-	ve smoothing	134
		6.5.1	Adaptive kernel estimators	134
		6.5.2	Nearest-neighbor estimators	135
	6.6	-	rametric regression	136
		6.6.1	Nadaraya–Watson estimator	136
		6.6.2	Local regression	137 138
	6.7			
	6.8	Recommended reading		
	6.9		ications	139
		6.9.1	Histogram, quantile function and measurement errors	139
		6.9.2	Kernel smoothers	140

x Contents

		6.9.3	Nonparametric regressions	144	
		6.9.4	Scope of smoothing in R and CRAN	148	
7	Regres	ssion		150	
	7.1		omical context	150	
	7.2	Concep	ts of regression	151	
	7.3	_	quares linear regression	154	
		7.3.1	Ordinary least squares	154	
		7.3.2	Symmetric least-squares regression	155	
		7.3.3		156	
		7.3.4	Robust regression	158	
		7.3.5	Quantile regression	160	
		7.3.6	Maximum likelihood estimation	161	
	7.4	Weighte	ed least squares	162	
	7.5	-	ement error models	164	
		7.5.1	Least-squares estimators	166	
		7.5.2	_	168	
		7.5.3	Likelihood-based estimators	169	
	7.6	Nonline	ear models	169	
		7.6.1	Poisson regression	170	
		7.6.2	Logistic regression	171	
	7.7	Model	validation, selection and misspecification	172	
		7.7.1	Residual analysis	173	
		7.7.2	Cross-validation and the bootstrap	175	
	7.8	Remark	rs.	176	
	7.9	Recom	mended reading	177	
	7.10				
		7.10.1	Linear modeling	179	
		7.10.2	Generalized linear modeling	181	
		7.10.3	Robust regression	182	
		7.10.4	Quantile regression	183	
		7.10.5	Nonlinear regression of galaxy surface brightness profiles	184	
		7.10.6	Scope of regression in R and CRAN	189	
8	Multiv	ariate ana	alysis	190	
	8.1	The astr	ronomical context	190	
	8.2	Concep	ts of multivariate analysis	191	
		8.2.1	Multivariate distances	192	
		8.2.2	Multivariate normal distribution	194	
	8.3	Hypoth	esis tests	195	
	8.4	Relation	nships among the variables	197	
		8.4.1	Multiple linear regression	197	
		8.4.2	Principal components analysis	199	
		843	Factor and canonical correlation analysis	200	

xi Contents

		8.4.4	Outliers and robust methods	201
		8.4.5	Nonlinear methods	202
	8.5	Multiva	ariate visualization	203
	8.6	Remark	ks	204
	8.7	Recom	mended reading	205
	8.8	R appli	ications	206
		8.8.1	Univariate tests of normality	206
		8.8.2	Preparing the dataset	208
		8.8.3	Bivariate relationships	209
		8.8.4	Principal components analysis	212
		8.8.5	Multiple regression and MARS	214
		8.8.6	Multivariate visualization	216
		8.8.7	Interactive graphical displays	217
		8.8.8	Scope of multivariate analysis R and CRAN	220
9	Cluste	ering, class	sification and data mining	222
	9.1	The ast	tronomical context	222
	9.2	Concep	ots of clustering and classification	224
		9.2.1	Definitions and scopes	224
		9.2.2	Metrics, group centers and misclassifications	225
	9.3	Cluster	ing	226
		9.3.1	Agglomerative hierarchical clustering	226
		9.3.2	k-means and related nonhierarchical partitioning	228
	9.4	Cluster	rs with substructure or noise	229
	9.5	Mixtur	e models	231
	9.6	Superv	rised classification	232
		9.6.1	Multivariate normal clusters	232
		9.6.2	Linear discriminant analysis and its generalizations	233
		9.6.3	Classification trees	234
		9.6.4	Nearest-neighbor classifiers	236
		9.6.5	Automated neural networks	237
		9.6.6	Classifier validation, improvement and fusion	238
	9.7	Remark	ks	239
	9.8	Recom	mended reading	241
	9.9	R appli	ications	242
		9.9.1	Unsupervised clustering of COMBO-17 galaxies	242
		9.9.2	Mixture models	246
		9.9.3	Supervised classification of SDSS point sources	250
		9.9.4	LDA, k-nn and ANN classification	251
		9.9.5	CART and SVM classification	255
		9.9.6	Scope of R and CRAN	259
10	Nonde	etections:	censored and truncated data	261
	10.1	The ast	tronomical context	261

xii Contents

10.2 Concepts of survival analysis		Concep	ts of survival analysis	263		
	10.3	Univari	ate datasets with censoring	266		
		10.3.1	Parametric estimation	266		
		10.3.2	Kaplan–Meier nonparametric estimator	268		
		10.3.3	Two-sample tests	269		
	10.4	Multiva	riate datasets with censoring	271		
		10.4.1	Correlation coefficients	271		
		10.4.2	Regression models	272		
	10.5	Truncat	ion	274		
		10.5.1	Parametric estimation	275		
		10.5.2	Nonparametric Lynden-Bell-Woodroofe estimator	275		
	10.6	Remark	S	277		
	10.7	Recomm	mended reading	278		
	10.8	R appli	cations	279		
		10.8.1	Kaplan-Meier estimator	279		
		10.8.2	Two-sample tests with censoring	281		
		10.8.3	Bivariate and multivariate problems with censoring	284		
		10.8.4	Lynden-Bell-Woodroofe estimator for truncation	287		
		10.8.5	Scope of censoring and truncation in R and CRAN	290		
11	Time s	eries anal	ysis	292		
	11.1	·				
	11.2	Concep	ts of time series analysis	294		
	11.3	Time-do	omain analysis of evenly spaced data	296		
		11.3.1	Smoothing	296		
		11.3.2	Autocorrelation and cross-correlation	297		
		11.3.3	Stochastic autoregressive models	298		
		11.3.4	Regression for deterministic models	301		
	11.4	Time-do	omain analysis of unevenly spaced data	302		
		11.4.1	Discrete correlation function	302		
		11.4.2	Structure function	304		
	11.5	Spectra	l analysis of evenly spaced data	304		
		11.5.1	Fourier power spectrum	305		
		11.5.2	Improving the periodogram	307		
	11.6	Spectra	l analysis of unevenly spaced data	308		
		11.6.1	Lomb–Scargle periodogram	308		
		11.6.2	Non-Fourier periodograms	310		
		11.6.3	Statistical significance of periodogram peaks	312		
		11.6.4	Spectral analysis of event data	313		
		11.6.5	Computational issues	314		
	11.7		pace modeling and the Kalman filter	315		
	11.8	_	ionary time series	317		
	11.9		ise or long-memory processes	319		
) Multivariate time series				

xiii Contents

	11.11	1 Remarks		
	11.12 Recommended reading			324
	11.13 R applications			325
			Exploratory time series analysis	326
		11.13.2		329
		11.13.3	Modeling as an autoregressive process	330
		11.13.4	Modeling as a long-memory process	333
		11.13.5		334
		11.13.6	Scope of time series analysis in R and CRAN	336
12	Spatia	point pro	cesses	337
	12.1	The astro	onomical context	337
	12.2	Concept	s of spatial point processes	338
	12.3	Tests of	uniformity	340
	12.4	Spatial a	autocorrelation	341
		12.4.1	Global measures of spatial autocorrelation	341
		12.4.2	Local measures of spatial autocorrelation	343
	12.5	Spatial i	nterpolation	344
	12.6	Global f	functions of clustering	346
		12.6.1	Cumulative second-moment measures	346
		12.6.2	P	348
	12.7		pased spatial analysis	351
		12.7.1	<i>E</i> , <i>E</i>	351
		12.7.2	E	353
		-	al networks and tessellations	354 355
	12.9 Points on a circle or sphere			
		Remarks		357
			nended reading	358
	12.12	R applic		359
			Characterization of autocorrelation	361
		12.12.2	Variogram analysis	362
		12.12.3	2	364
			Tessellations	368
		12.12.5	1	370
			Spatial regression and modeling	373
		12.12.7	Circular and spherical statistics	374
		12.12.8	Scope of spatial analysis in R and CRAN	377
Арј	pendix /	A Notatio	n and acronyms	379
Apı	pendix l	3 Getting	started with R	382
		B.1 Hi	story and scope of R/CRAN	382
		B.2 Se	ession environment	382
B.3 R object classes				

xiv Contents

	B.4	Basic operations on classes	386
	B.5	Input/output	388
	B.6	A sample R session	389
	B.7	Interfaces to other programs and languages	394
	B.8	Computational efficiency	394
	B.9	Learning more about R	397
	B.10	Recommended reading	398
Appendix C	Astror	nomical datasets	399
••	C.1	Asteroids	400
	C.2	Protostar populations	402
	C.3	Globular cluster magnitudes	403
	C.4	Stellar abundances	405
	C.5	Galaxy clustering	406
	C.6	Hipparcos stars	408
	C.7	Globular cluster properties	410
	C.8	SDSS quasars	411
	C.9	SDSS point sources	413
	C.10	Galaxy photometry	419
	C.11	Elliptical galaxy profiles	420
	C.12	X-ray source variability	421
	C.13	Sunspot numbers	422
	C.14	Exoplanet orbits	423
	C.15	Kepler stellar light curves	425
	C.16	Sloan Digital Sky Survey	428
	C.17	Fermi gamma-ray light curves	430
	C.18	Swift gamma-ray bursts	432
References			434
Subject index			462
R and CRA	lN con	nmands	470

The color plates are to be found between pages 398 and 399.

Preface

Motivation and goals

For many years, astronomers have struggled with the application of sophisticated statistical methodologies to analyze their rich datasets and address complex astrophysical problems. On one hand, at least in the United States, astronomers receive little or no formal training in statistics. The traditional method of education has been informal exposure to a few familiar methods during early research experiences. On the other hand, astronomers correctly perceive that a vast world of applied mathematical and statistical methodologies has emerged in recent decades. But systematic, broad training in modern statistical methods has not been available to most astronomers.

This volume seeks to address this problem at three levels. First, we present fundamental principles and results of broad fields of statistics applicable to astronomical research. The material is roughly at a level of advanced undergraduate courses in statistics. We also outline some recent advanced techniques that may be useful for astronomical research to give a flavor of the breadth of modern methodology. It is important to recognize that we give only incomplete introductions to the fields, and we guide the astronomer towards more complete and authoritative treatments.

Second, we present tutorials on the application of both simple and more advanced methods applied to contemporary astronomical research datasets using the **R** statistical software package. **R** has emerged in recent years as the most versatile public-domain statistical software environment for researchers in many fields. In addition to a coherent language for data analysis and common statistical tools, over 3000 packages have been added for advanced analyses in the **CRAN** archive. We have culled these packages for functionalities that may be useful to astronomers. **R** can also be linked to other analysis systems and languages such as C, FORTRAN and Python, so that legacy codes can be included in an **R**-based analysis and *vice versa*.

Third, we hope the book communicates to astronomers our enthusiasm for statistics as a substantial and fascinating intellectual enterprise. Just as astronomers use the latest engineering to build their telescopes and apply advanced physics to interpret cosmic phenomena, they can benefit from exploring the many roads of analyzing and interpreting data through modern statistical analysis.

Another important purpose of this volume is to give astronomers and other physical scientists a bridge to the vast library of specialized texts and monographs in statistics and allied fields. We strongly encourage researchers who are engaged in statistical data analysis to read more detailed treatments in the 'Recommended reading' at the end of each chapter; they are carefully chosen from many available volumes. Most of the material in the book which is not

xvi Preface

specifically referenced in the text is presented in more detail in these recommended readings. To further this goal, the present book does not shy away from technical language that, though unfamiliar in the astronomical community, is critical for further learning from the statistical literature. For example, the astronomers' "upper limits" are "left-censored data points", a "power-law distribution" is a "Pareto distribution", and "1/f noise" is a "long-memory process". The text make these connections between the languages of astronomy and statistics, and the comprehensive index can assist the reader in finding material in both languages.

The reader may find the appendices useful. An introduction to **R** is given in Appendix B. It includes an overview of the programming language and an outline of its statistical functionalities, including the many **CRAN** packages. **R** applications to astronomical datasets are given at the end of each chapter which implement methods discussed in the text. Appendix C presents 18 astronomical datasets illustrating the range of statistical challenges that arise in contemporary research. The full datasets and **R** scripts are available online at http://astrostatistics.psu.edu/MSMA. Readers can thus easily reproduce the **R** results in the book.

In this volume, we do not present mathematical proofs underlying statistical results, and we give only brief outlines of a few computational algorithms. We do not review research at the frontiers of astrostatistics, except for a few topics where astronomers have contributed critically important methodology (such as the treatment of truncated data and irregularly spaced time series). Only a small fraction of the many methodological studies in the recent astronomical literature are mentioned. Some fields of applied statistics useful for astronomy (such as wavelet analysis and image processing) are covered only briefly. Finally, only $\sim \! 2500$ CRAN packages were examined for possible inclusion in the book; roughly one new package is added every day and many others are extended.

Audience

The main audience envisioned for this volume is graduate students and researchers in observational astronomy. We hope it serves both as a textbook in a course on data analysis or astrostatistics, and as a reference book to be consulted as specific research problems are encountered. Researchers in allied fields of physical science, such as high-energy physics and Earth sciences, may also find portions of the volume helpful. Statisticians can see how existing methods relate to questions in astronomy, providing background for astrostatistical research initiatives.

Our presentation assumes that the reader has a background in basic linear algebra and calculus. Familiarity of elementary statistical methods commonly used in the physical sciences is also useful; this preparatory material is covered in volumes such as Bevington & Robinson (2002) and Cowan (1998).

Outline and classroom use

The introduction (Chapter 1) reviews the long historical relationship between astronomy and statistics and philosophical discussions of the relationship between statistical and scientific inference. We then start with probability theory and proceed to lay foundations of statistical inference: hypothesis testing, estimation, modeling, resampling and Bayesian inference

xvii Preface

(Chapters 2 and 3). Probability distributions are discussed in Chapter 4 and nonparametric statistics are covered in Chapter 5.

The volume proceeds to various fields of applied statistics that rest on these foundations. Data smoothing is covered in Chapters 5 and 6. Regression is discussed in Chapter 7, followed by analysis and classification of multivariate data (Chapters 8 and 9). Treatments of nondetections are covered in Chapter 10, followed by the analysis of time-variable astronomical phenomena in Chapter 11. Chapter 12 considers spatial point processes. The book ends with appendices introducing the **R** software environment and providing astronomical datasets illustrative of a variety of statistical problems.

We can make some recommendation regarding classroom use. The first part of a semester course in astrostatistics for astronomy students would be devoted to the principles of statistical inference in Chapters 1–4 and learning the basics of **R** in Appendix B. The second part of the semester would be topics of applied statistical methodology selected from Chapters 5–12. We do not provide predefined student exercises with definitive answers, but rather encourage both instructors and students to develop open-ended explorations of the contemporary astronomical datasets based on the **R** tutorials distributed throughout the volume. Suggestions for both simple and advanced problems are given in the dataset presentations (Appendix C).

Astronomical datasets and R scripts

The datasets and **R** scripts in the book can be downloaded from Penn State's Center for Astrostatistics at http://astrostatistics.psu.edu/MSMA. The **R** scripts are self-contained; simple cut-and-paste will ingest the datasets, perform the statistical operations, and produce tabular and graphical results.

Extensive resources to pursue issues discussed in the book are available on-line. The **R** system can be downloaded from http://www.r-project.org and **CRAN** packages are installed on-the-fly within an **R** session. The primary astronomy research literature, including full-text articles, is available through the NASA–Smithsonian *Astrophysics Data System* (http://adswww.harvard.edu). Thousands of astronomical datasets are available from the Vizier service at the Centre des Données Stellaires (http://vizier.u-strasbg.fr) and the emerging *International Virtual Observatory Alliance* (http://ivo.net). The primary statistical literature can be accessed through MathSciNet (http://www.ams.org/mathscinet/) provided by the American Mathematical Society. Considerable statistical information is available on Wikipedia (http://en.wikipedia.org/wiki/Index_of_statistics_articles). Astronomers should note, however, that the best way to learn statistics is often through textbooks and monographs written by statisticians, such as those in the recommended reading.

Acknowledgements

This book emerged from 25 years of discussion and collaboration between astronomers and statisticians at Penn State under the auspices of the Center for Astrostatistics. The volume particularly benefited from the lectures and tutorials developed for the *Summer Schools*

xviii Preface

in Statistics for Astronomers since 2005 and taught at Penn State and Bangalore's Indian Institute of Astrophysics. We are grateful to our dozens of statistician colleagues who have taught at the Summer Schools in Statistics for Astronomers for generously sharing their knowledge and perspectives. David Hunter and Arnab Chakraborty developed R tutorials for astronomers. Donald Percival generously gave detailed comments on the time series analysis chapter. We are grateful to Nancy Butkovich and her colleagues for providing excellent library services. Finally, we acknowledge the National Science Foundation, National Aeronautics and Space Administration, and the Eberly College of Science for supporting astrostatistics at Penn State over many years.

Eric D. Feigelson G. Jogesh Babu Center for Astrostatistics Pennsylvania State University University Park, PA, U.S.A.