Es05B: Circuiti lineari con Amplificatori Operazionali

Gruppo 1G.BN Massimo Bilancioni, Alessandro Foligno, Giuseppe Zanichelli

8 novembre 2018

Scopo dell' esperienza

Misurare le caratteristiche di circuiti lineari realizzati con un op-amp TL081 alimentati tra +15 V e -15 V.

1 Amplificatore invertente

Si vuole realizzare un amplificatore invertente con un' impedenza di ingresso superiore a 1 k Ω e con un amplificazione a centro banda di 10.

1.a Scelta dei componenti

Si monta il circuito secondo lo schema mostrato in figura, utilizzando la barra di distribuzione verde per la tensione negativa, quella rosso per la tensione positiva, e quella nera per la massa.

Le resistenze selezionate hanno i seguenti valori, misurati con il multimetro digitale, con il corrispondente valore atteso del guadagno in tensione dell' amplificatore.

$$R_1 = (1.466 \pm 0.012) \,\mathrm{k}\Omega, \quad R_2 = (15.24 \pm 0.12) \,\mathrm{k}\Omega, \quad A_{exp} = -(10.39 \pm 0.11)$$

1.b Montaggio circuito

Il circuito è stato montato nella basetta come riportato in figura.

1.c Linearità e misura del guadagno

Si fissa la frequenza del segnale ad $f_{in}=(2.597\pm0.011)$ kHz e si invia all' ingresso dell' amplificatore. L'uscita dell' amplificatore è mostrata qualitativativamente in Fig. 2 per due differenti ampiezze di V_{in} (circa 1.26 Vpp e 7.20 Vpp). Nel primo caso l' OpAmp si comporta in modo lineare mentre nel secondo caso si osserva clipping. Il datasheet riporta uno Slew rate di $13V/\mu s$ che è quindi trascurabile a questa frequenza .

Variando l' ampiezza di V_{in} si misura V_{out} ed il relativo guadagno $A_V = V_{out}/V_{in}$ riportando i dati ottenuti in tabella 1 e mostrandone un grafico in Fig. 3.

Tabella 1: V_{out} in funzione di V_{in} e relativo rapporto.

V_{in} (V)	V_{out} (V)	A_V
土	土	土
土	土	土
土	土	土
土	土	土
土	土	土

[Indicare in che modo si fa il fit, se sulla retta V_{out} vs. V_{in} oppure sui valori di A_V] Si determina il guadagno mediante fit dei dati ottenuti:

$$A_{best} = \pm \chi^2 =$$

[Fino a quale tensione il circuito si comporta linearmente? Provare (facoltativamente) a ridurre la tensione di alimentazione dell' integrato ed a verificarne la correlazione con la tensione di clipping dell' uscita. Commentare quanto osservato]

Figura 1: screenshot dei segnali con e senza clipping

Figura 2: Ingresso (in alto) ed uscita (in basso) di un amplificatore invertente con OpAmp, in zona lineare (a sinistra) e non (a destra)

2 Risposta in frequenza e slew rate

2.a Risposta in frequenza del circuito

Non siamo riusciti a vedere la frequenza di taglio inferiore, che tuttavia deve essere $l10\mathrm{Hz}$ visto che per questa frequenza non si ha una sensibile diminuzione del guadagno.

Per la frequenza di taglio superiore abbiamo campionato il guadagno per frequenze tra 1kHz e 1MHz. Abbiamo abbassato V_{in} per alte frequenze per evitare per evitare possibili Slew Rate.

La frequenza di taglio è stata ricavata come l'intersezione delle due rette fittate rispettivamente a bassa e ad alta frequenza. (Figura 4)

$$f_H = (167.7 \pm) \text{ kHz}$$

2.b Misura dello slew-rate

Si misura direttamente lo slew-rate dell'op-amp inviando in ingresso un' onda quadra di frequenza intorno ai $\sim 0.9~\mathrm{kHz}$ e di ampiezza 2.08 V. Si ottiene:

$$SR_{\text{misurato}} = (12.5 \pm 0.5) \,\text{V}/\mu\text{s}$$
 valore tipico (13) $\,\text{V}/\mu\text{s}$

Inserire grafico con di V_{out} e V_{in}

Figura 3: Linearità dell' amplificatore invertente

Tabella 2: Guadagno dell' amplificatore invertente in funzione della frequenza.

f_{in} (kHz)	V_{in} (V)	V_{out} (V)	$A ext{ (dB)}$
0.753 ± 0.015	1.02 ± 0.03	10.4 ± 0.3	20.2 ± 0.26
1.76 ± 0.04	1.03 ± 0.03	10.5 ± 0.3	20.2 ± 0.26
2.90 ± 0.06	1.03 ± 0.03	10.5 ± 0.3	20.2 ± 0.26
6.22 ± 0.12	1.05 ± 0.03	10.7 ± 0.3	20.2 ± 0.26
12.2 ± 0.2	1.06 ± 0.03	10.7 ± 0.3	20.1 ± 0.26
22.5 ± 0.4	1.05 ± 0.03	10.6 ± 0.3	20.1 ± 0.26
44.9 ± 0.9	1.05 ± 0.03	10.5 ± 0.3	20.0 ± 0.26
86.7 ± 1.7	1.06 ± 0.03	9.92 ± 0.3	19.4 ± 0.26
166 ± 3	1.06 ± 0.03	8.48 ± 0.3	18.1 ± 0.26
212 ± 4	0.688 ± 0.02	4.96 ± 0.15	17.2 ± 0.26
251 ± 5	0.680 ± 0.02	4.44 ± 0.14	16.3 ± 0.26
350 ± 7	0.776 ± 0.02	4.02 ± 0.13	14.3 ± 0.26
435 ± 9	0.688 ± 0.02	3.00 ± 0.09	12.8 ± 0.26
555 ± 10	0.696 ± 0.02	2.44 ± 0.08	10.9 ± 0.26
729 ± 14	0.784 ± 0.02	2.22 ± 0.07	9.04 ± 0.26
1220 ± 24	0.800 ± 0.03	1.38 ± 0.05	4.74 ± 0.26

Abbiamo misurato la pendenza massima del segnale V_{out} , che si trova proprio in corrispondenza dell' inizio dell'onda quadra, subito dopo la pendenza diminuisce di circa $0.5~{\rm V}/\mu{\rm s}$

3 Circuito integratore

Si monta il circuito integratore con i seguenti valori dei componenti indicati:

$$R_1 = (0.997 \pm 0.008) \,\mathrm{k}\Omega, \qquad R_2 = (9.92 \pm 0.08) \,\mathrm{k}\Omega, \qquad C = (50.4 \pm 2.3) \,\mathrm{nF}$$

3.a Risposta in frequenza

Si invia un' onda sinusoidale e si misura la risposta in frequenza dell' amplificazione e della fase

Per la stima del guadagno massimo, si è presa la media dei guadagni delle prime quattro frequenze. Guadagno per quale f il guadagno fosse A_M – 3dB si è ottenuta una stima della frequenza di taglio. Per la pendenza abbiamo preso una media delle pendenze delle rette passanti per coppie di punti ad alte frequenze.

Il valore atteso per A_M è $20 \log_{10}(R_2/R_1)$; la frequenza di taglio attesa è $f_H = 1/(2\pi R_2 C)$.

Figura 4: Plot di Bode in ampiezza per l'amplificatore invertente.

 $A_M = (19.4) \, dB$ atteso : (20) dB $f_H = (330) \, Hz$ atteso : (318) Hz

 $\mathrm{d}A_V/\mathrm{d}f = (-20.1)\,\mathrm{dB/decade}$ atteso : $(-20)\,\mathrm{dB/decade}$

Risposta ad un' onda quadra

Si invia all' ingresso un' onda quadra di frequenza $\sim xxx\,kHz$ e ampiezza $\sim xxx\,V$. Si riporta in Fig. 8 le forme d' onda acquisite all' oscillografo per l' ingresso e l' uscita.

[Commentare se che il circuito si comporta come un integratore.]

Si misura l'ampiezza dell'onda in uscita e si confronta il valore atteso.

[Indicare brevemente come sono stati ottenuti i valori attesi]

$$V_{out} = ($$
) V atteso: () V

[Inserire commento sulla dipendenza dell' uscita dalla frequenza.]

3.b Discussione

[Inserire commenti su quanto osservato ed eventuali deviazioni. In particolare: attenuazione ad alte frequenze, dipendenza della fase dalla frequenza, funzione di R_2 .]

TDS 1012C-EDU - 16:49:23 08/11/2018

Figura 5: Segnale onda quadra (azzurro) e V_{in} (arancio)

Tabella 3: Guadagno dell' integratore invertente in funzione della frequenza.

f_{in} (kHz)	$V_{in}(V)$	V_{out} (V)	A (dB)
0.0156 ± 0.0003	0.580 ± 0.017	5.12 ± 0.15	18.9 ± 0.26
0.0257 ± 0.0005	0.580 ± 0.017	5.44 ± 0.15	19.4 ± 0.26
0.0287 ± 0.0006	0.580 ± 0.017	5.52 ± 0.15	19.6 ± 0.26
0.0479 ± 0.0001	1.53 ± 0.05	14.6 ± 0.5	19.6 ± 0.26
0.092 ± 0.002	1.54 ± 0.05	14.3 ± 0.4	19.4 ± 0.26
0.172 ± 0.003	1.54 ± 0.05	13.2 ± 0.4	18.7 ± 0.26
0.306 ± 0.006	1.53 ± 0.05	10.9 ± 0.3	17.0 ± 0.26
0.460 ± 0.05	0.704 ± 0.021	3.92 ± 0.12	14.9 ± 0.26
1.14 ± 0.02	0.7 ± 0.021	1.94 ± 0.08	8.85 ± 0.26
1.88 ± 0.04	0.696 ± 0.020	1.22 ± 0.04	4.87 ± 0.26
3.46 ± 0.07	0.704 ± 0.020	0.656 ± 0.018	-0.613 ± 0.26
4.57 ± 0.09	1.56 ± 0.05	1.07 ± 0.3	-3.27 ± 0.26
9.14 ± 0.20	0.712 ± 0.021	0.255 ± 0.007	-8.92 ± 0.26
12.9 ± 0.2	1.55 ± 0.05	0.380 ± 0.012	-12.2 ± 0.26
17.7 ± 0.3	3.92 ± 0.12	0.688 ± 0.020	-15.1 ± 0.26
33 ± 0.6	3.92 ± 0.12	0.380 ± 0.012	-20.2 ± 0.26
56 ± 1	0.696 ± 0.020	0.0448 ± 0.0012	-23.8 ± 0.26
66.1 ± 1.2	3.86 ± 0.12	0.212 ± 0.006	-25.2 ± 0.26

Tabella 4: fase dell' integratore invertente in funzione della frequenza.

f_{in} (kHz)	$\Delta t(\mu s)$	φ(°)
0.0156 ± 0.0003	28400 ± 1100	160 ± 6
0.0257 ± 0.0005	18200 ± 700	169 ± 7
0.0287 ± 0.0006	16400 ± 700	170 ± 7
0.0479 ± 0.0001	10400 ± 400	180 ± 7
0.092 ± 0.002	5100 ± 200	169 ± 7
0.172 ± 0.003	2490 ± 100	154 ± 6
0.306 ± 0.006	1250 ± 50	138 ± 6
0.460 ± 0.05	785 ± 30	130 ± 5
1.14 ± 0.02	258 ± 10	106 ± 4
1.88 ± 0.04	149 ± 6	101 ± 4
3.46 ± 0.07	76.3 ± 3	95 ± 4
4.57 ± 0.09	57.1 ± 2.3	94 ± 4
9.14 ± 0.20	28.2 ± 1.1	93 ± 4
12.9 ± 0.2	19.6 ± 0.8	91 ± 4
17.7 ± 0.3	14.4 ± 0.6	92 ± 4
33 ± 0.6	7.58 ± 0.3	90 ± 4
56 ± 1	4.47 ± 0.18	90 ± 4
66.1 ± 1.2	3.76 ± 0.15	90 ± 4

Figura 6: Plot di Bode dell' ampiezza per il circuito integratore.

Figura 7: Plot di Bode della fase per il circuito integratore: In arancione si vede la funzione teorica per la fase, che è descritta da $\phi = 360/(2\pi)[\pi - \arctan(\exp{(\log{f} - \log{f_t})})]$

Figura 8: Ingresso (in alto) ed uscita (in basso) del circuito integratore per un' onda quadra.