NLP Tasks (Continued)

CMSC 473/673 - NATURAL LANGUAGE PROCESSING

Slides modified from Dr. Frank Ferraro & Dr. Jason Eisner

Learning Objectives

Distinguish between different text classification tasks

Formalize NLP Tasks at a high-level:

- What are the input/output for a particular task?
- What might the features be?
- What types of applications could the task be used for?

Similar to HW 1

Review

What's the difference between learning/training and inference/decoding/testing a model?

- •Training: adjusting the model's weights to learn how to make good predictions; making the model
- Decoding: using a model's existing weights to make predictions; running the model when it's done

How are the objective function and evaluation function the same?

Calculation to determine how accurate the predictions are

How are they different?

- Objective function is for training → tells the model how close it's getting to optimal weights
- Evaluation function is for testing

ML/NLP Framework for Learning & Prediction

What are the three types of features we discussed?

1. Bag-of-words (or bag-of-characters, bag-of-relations)

easy to define / extract

sometimes still very useful

Linguistically-inspired features

harder to define

helpful for interpretation

 depending on task: conceptually helpful

• currently, not freq. used

Dense features via embeddings harder to define

 harder to extract (unless there's a model to run)

currently: freq. used

Classification Types (Terminology)

Nan	ne	Number of	# Label Types	Example
		Tasks (Domains) Labels are Associated with		
(Binary) Clas	ssification	1	2	Sentiment: Choose one of {positive or negative}
Multi-o Classific		1	> 2	Part-of-speech: Choose one of {Noun, Verb, Det, Prep,}
Multi-l Classific		1	> 2	Sentiment: Choose multiple of {positive, angry, sad, excited,}
Multi- Classific		>1	Per task: 2 or > 2 (can apply to binary or multi-class)	Task 1: part-of-speech Task 2: named entity tagging Task 1: document labeling Task 2: sentiment

6

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6.Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edits

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation

Review: Text Classification

Assigning subject categories, topics, or genres

Spam detection

Authorship identification

Language Identification

Sentiment analysis

• • •

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edi

Word Sense Disambiguation (WSD)

Problem:

The company said the *plant* is still operating ...

- \Rightarrow (A) Manufacturing plant or
- \Rightarrow (B) Living plant

Training Data: Build a special classifier just for "plant" tokens

Sense	Context
(1) Manufacturing	union responses to plant closures
" "	computer disk drive plant located in
" "	company manufacturing plant is in Orlando
(2) Living	animal rather than <i>plant</i> tissues can be
" "	to strain microscopic <i>plant</i> life from the
" "	and Golgi apparatus of plant and animal cells

Test Data:

Sense	Context
???	vinyl chloride monomer <i>plant</i> , which is
???	molecules found in <i>plant</i> tissue from the

slide courtesy of D. Yarowsky (modified)

WSD for Machine Translation

 $(English \rightarrow Spanish)$

Problem:

- ... He wrote the last **sentence** two years later ...
 - ⇒ sentencia (legal sentence) or
 - \Rightarrow frase (grammatical sentence)

Training Data: Build a special classifier just for "sentence" tokens

Translation	Context
(1) sentencia	for a maximum sentence for a young offender
" "	of the minimum sentence of seven years in jail
" "	were under the sentence of death at that time
(2) frase	read the second sentence because it is just as
" "	The next sentence is a very important
" "	It is the second sentence which I think is at

Test Data:

Translation	Context
???	cannot criticize a sentence handed down by
???	listen to this <i>sentence</i> uttered by a former

slide courtesy of D. Yarowsky (modified)

12

Accent Restoration in Spanish & French

Problem:

```
Input: ... deja travaille cote a cote ...

↓
Output: ... déjà travaillé côte à côte ...
```

Examples:

```
    ... appeler l'autre cote de l'atlantique ...
    ⇒ côté (meaning side) or
    ⇒ côte (meaning coast)
    ... une famille des pecheurs ...
    ⇒ pêcheurs (meaning fishermen) or
    ⇒ pécheurs (meaning sinners)
```

Accent Restoration in Spanish & French

Training Data:

Pattern	Context
(1) côté	du laisser de cote faute de temps
" "	appeler l' autre cote de l' atlantique
,, ,,	passe de notre cote de la frontiere
(2) côte	vivre sur notre <i>cote</i> ouest toujours
,, ,,	creer sur la cote du labrador des
,, ,,	travaillaient cote a cote, ils avaient

Test Data:

Pattern	Context
???	passe de notre <i>cote</i> de la frontiere
???	creer sur la <i>cote</i> du labrador des

Spelling Correction

Problem:

... and he fired presidential aid/aide Dick Morris after ...

 \Rightarrow aid or

 \Rightarrow aide

Training Data:

Spelling	Context
(1) aid	and cut the foreign aid/aide budget in fiscal 1996
" "	they offered federal aid/aide for flood-ravaged states
(2) aide	fired presidential aid/aide Dick Morris after
" "	and said the chief aid/aide to Sen. Baker, Mr. John

Test Data:

Spelling	Context
???	said the longtime aid/aide to the Mayor of St
???	will squander the aid/aide it receives from the

slide courtesy of D. Yarowsky (modified,

15

What features? Example: "word to [the] left [of correction]"

Frequency as Frequency as

	Frequency as	Frequency as
Word to left	Aid	Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0
covert	26	0
oppose	13	0
future	9	0
similar	6	0
presidential	0	63
chief	0	40
longtime	0	26
aids-infected	0	2
sleepy	0	1
disaffected	0	1
indispensable	2	1
practical	2	0
squander	1	0

Spelling correction using an n-gram language model ($n \ge 2$) would use words to left and right to help predict the true word.

Similarly, an HMM would predict a word's class using classes to left and right.

But we'd like to throw in all kinds of other features, too ...

Text-to-Speech Synthesis

Problem:

... slightly elevated *lead* levels ...

 $\Rightarrow l\epsilon d$ (as in lead mine) or

 \Rightarrow *li:d* (as in *lead role*)

Training Data:

Pronunciation	Context
(1) l <i>€</i> d	it monitors the <i>lead</i> levels in drinking
" "	conference on lead poisoning in
" "	strontium and lead isotope zonation
(2) li:d	maintained their <i>lead</i> Thursday over
" "	to Boston and lead singer for Purple
" "	Bush a 17-point lead in Texas, only 3

Test Data:

Pronunciation	Context	
???	median blood <i>lead</i> concentration was	
???	his double-digit <i>lead</i> nationwide. The	

slide courtesy of D. Yarowsky (modified

An assortment of possible cues ...

		Position	Collocation	l€d	li:d
N-grams		+1 L lead level/N		219	0
		-1 W	narrow lead	0	70
(word,	/	+I W	lead in	207	898
lemma,		-1w,+1w	of lead in	162	0
part-of-speech)	-1w,+1w	the lead in	0	301
		+1P,+2P	lead, <noun></noun>	234	7
Wide-contex	,	±k w	$zinc$ (in $\pm k$ words)	235	0
collocations		±k w	$copper$ (in $\pm k$ words)	130	0
Verb-object		-V L	follow/V + lead	0	527
relationships	7	-V L	take/V + lead	1	665

generates a whole bunch of potential cues – use data to find out which ones work best

	Frequency as	Frequency as
Word to left	Aid	Aide
foreign	718	1
federal	297	0
western	146	0
provide	88	0

An assortment of possible cues ...

		Position	Collocation	l€d	li:d
N-grams	/	+1 L	lead level/N	219	0
		-1 W	narrow lead	0	70
(word,		+1 W	lead in	207	898
lemma,		-1w,+1w	of lead in	162	0
part-of-speed	h)	-1w,+1w	the lead in	0	301
		+1P,+2P	lead, <noun></noun>	234	7
Wide-conte	t	±k w	$zinc$ (in $\pm k$ words)	235	0
collocations		±k w	$copper$ (in $\pm k$ words)	130	0
Verb-object	(-V L	follow/V + lead	0	527
relationship	ş	-V L	take/V + lead	1	665

This feature is relatively weak, but weak features are still useful, especially since very few features will fire in a given context.

merged ranking of all cues of all these types

_	1	
11.40	follow/V + lead	⇒ li:d
11.20	$zinc$ (in $\pm k$ words)	\Rightarrow l ϵ d
11.10	lead level/N	\Rightarrow l ϵ d
	of lead in	\Rightarrow l ϵ d
	the lead in	\Rightarrow li:d
10.51	lead <i>role</i>	⇒ li:d

slide courtesy of D. Yarowsky (modified

Final decision list for *lead* (abbreviated)

What are the input/output? What are the features? What types of applications?

List of all features, ranked by their weight.

(These weights are for a simple "decision list" model where the single highest-weighted feature that fires gets to make the decision all by itself.

However, a log-linear model, which adds up the weights of all features that fire, would be roughly similar.)

LogL	Evidence	Pronunciation
11.40	follow/V + lead	⇒ li:d
11.20	$zinc$ (in $\pm k$ words)	\Rightarrow l ϵ d
11.10	lead level/N	\Rightarrow l ϵ d
10.66	of lead in	\Rightarrow l ϵ d
10.59	the lead in	⇒ li:d
10.51	lead role	⇒ li:d
10.35	$copper$ (in $\pm k$ words)	\Rightarrow l ϵ d
10.28	lead time	\Rightarrow li:d
10.24	lead levels	\Rightarrow l ϵ d
10.16	lead poisoning	\Rightarrow l ϵ d
8.55	big lead	\Rightarrow li:d
8.49	narrow lead	\Rightarrow li:d
7.76	take/V + lead	⇒ li:d
5.99	lead, NOUN	\Rightarrow l ϵ d
1.15	lead in	⇒ li:d
	000	

slide courtesy of D. Yarowsky (modified)

Token Classification

Word pronunciation

Word sense disambiguation (WSD) within or across languages

Accent restoration

• • •

Other examples?

features F₁ extracted from word w₁ and its surrounding words (context)

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence (i.e., order matters)
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6. Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edi

We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Slide courtesy Ray Mooney, with mild ed

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Slide courtesy Ray Mooney, with mild ed

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Slide courtesy Ray Mooney, with mild ed

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Slide courtesy Ray Mooney, with mild edit

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

Slide courtesy Ray Mooney, with mild edit

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

<BOS> John saw the saw and decided to take it to the table classifier
PRP

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

<BOS> John saw the saw and decided to take it to the table classifier
IN

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

<BOS> John saw the saw and decided to take it to the ta

Slide courtesy Ray Mooney, with mild edit

Classify each token independently but use as input features, information about the surrounding tokens (sliding window).

<BOS> John saw the saw and decided to take it to the ta

What are the input/output?

Slide courtesy Ray Mooney, with mild edi

We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

Or we could use an HMM:

• The point of the HMM is basically that the tag of one word might depend on the tags of adjacent words.

Or we could use an HMM:

Slide courtesy Jason Eisner, with mild edi

We could treat tagging as a token classification problem

- Tag each word independently given features of context
- And features of the word's spelling (suffixes, capitalization)

Or we could use an HMM:

 The point of the HMM is basically that the tag of one word might depend on the tags of adjacent words.

Combine these two ideas??

- We'd like rich features (e.g., in a log-linear model), but we'd also like our feature functions to depend on adjacent tags.
- So, the problem is to predict all tags together.

Slide courtesy Jason Eisner, with mild edi

Can We Use Neural, Recurrent Methods for PoS Tagging?

Token Classification in a Sequence

Part of speech tagging

Word alignment

Machine Translation: Word Alignment

What are the input/output?

What kinds of features might we want to consider here?

Token Classification in a Sequence

Part of speech tagging

Other examples?

Word alignment

• • •

Text Annotation Tasks ("Classification" Tasks)

- 1. Classify the entire document ("text categorization")
- 2. Classify word tokens individually
- 3. Classify word tokens in a sequence
- 4.Identify phrases ("chunking")
- 5. Syntactic annotation (parsing)
- 6.Semantic annotation
- 7. Text generation

Slide courtesy Jason Eisner, with mild edi

Example: Finding Named Entities

Named entity recognition (NER)

Identify proper names in texts, and classification into a set of predefined categories of interest

NE Types

TYPE	DESCRIPTION
PERSON People, including fictional	
NORP	Nationalities or religious or political groups
FACILITY	Buildings, airports, highways, bridges, etc
ORG Companies, agencies, institutions, etc	
GPE	Countries, cities, states
LOC	Non-GPE locations, mountain ranges, bodies of water
PRODUCT	Objects, vehicles, foods, etc (Not services)
EVENT	Named hurricanes, battles, wars, sports events, etc
WORK_OF_ART	Titles of books, songs, etc
LAW	Named documents made into laws
LANGUAGE	Any named language
DATE	Absolute or relative dates or periods.
TIME	Times smaller than a day
PERCENT	Percentage, including "%".
MONEY	Monetary values, including unit
QUANTITY	Measurements, as of weight or distance
ORDINAL	"first", "second", etc
CARDINAL	Numerals that do not fall under another type

https://medium.com/@rajat.jain1/natural-language-extraction-using-spacy-on-a-set-of-novels-88b159d68686

Named Entity Recognition

CHICAGO (AP) — Citing high fuel prices, United Airlines said Friday it has increased fares by \$6 per round trip on flights to some cities also served by lower-cost carriers. American Airlines, a unit AMR, immediately matched the move, spokesman Tim Wagner said. United, a unit of UAL, said the increase took effect Thursday night and applies to most routes where it competes against discount carriers, such as Chicago to Dallas and Atlanta and Denver to San Francisco, Los Angeles and New York.