손실수두-1

공식

달시 - 웨버 공식 (층류)

$$H = \frac{\Delta P}{\gamma} = \frac{fLV^2}{2gD}$$

H: 찰손실(손실수두)[m]

 ΔP : 압력차 [kpa] γ : 비중량 $[N/m^3]$ f: 관마찰계수

L: 길이[m]

V: 속도 [m/s]

g: 중력가속도 [\\gamms]

D: 내경(수직직경)[m]

핵심단어

마찰손실

공식

수직직경

$$D_h = 4R_h$$

 D_h : 수직직경[m] R_h : 수직반경[m]

핵심단어

동심 2중관은 바깥지름-안지름

공식

수직반경

사각형일경우

$$R_h = \frac{A}{L} = \frac{(\text{가로} \times \text{세로})}{(\text{가로} + \text{세로}) \times 2}$$

원형일경우

$$R_h = \frac{A}{L} = \frac{\pi r^2}{2\pi r}$$

환형관일경우

$$R_h = \frac{A}{L} = \frac{\pi (r_1^2 - r_2^2)}{2\pi (r_1 + r_2)}$$

 R_h : 수직반경[m]

A: 단면적 $[m^2]$

L: 단면둘레의길이[m]

핵심단어

공식

패닝의 법칙 (난류)

$$H = \frac{2fLV^2}{gD}$$

H: 마찰손실(손실수두)[m]

f: 관마찰계수 L: 길이[m] V: 속도[m/s]

g: 중력가속도 [%]

D: 내경(수직직경)[m]

핵심단어

마찰손실

공식

베르누이 방정식

$$H = \frac{V^2}{2g} + \frac{P}{\gamma} + Z =$$
 일정

핵심단어

공식

수정 베르누이 방정식

$$\frac{V_1^2}{2g} + \frac{P_1}{\gamma} + Z_1 = \frac{V_2^2}{2g} + \frac{P_2}{\gamma} + Z_2 + \Delta H$$

핵심단어

펌프의 입구와 출구 문제
 관 단면적 축소 문제

공식

모세관 현상

$$h = \frac{4\sigma\cos\theta}{\gamma D}$$

h: 승높이[m]

 σ : 표면장력 [N/m]

 θ : 각도

 γ : 비중량 $[N\!/\mathrm{m}^{\scriptscriptstyle 3}]$

D: 관의 내경 [m]

핵심단어

모세관

손실수두-2

공식

돌연축소관 손실수두

$$h = K \frac{V^2}{2g}$$

공식

돌연확대관 손실수두

$$h = K \frac{(V_1 - V_2)^2}{2g}$$

공식

관의 손실계수(등가길이 공식) K1

$$K = \frac{fL}{D}$$

관의 손실계수(등가길이 공식)

$$K = K_1 + K_2 + K_3$$

K: 실계수 K_1 : 관의손실계수

 K_2 : 밸브의부차적손실계수

 K_3 : 관입구의부차적손실계수

공식 힘 (수평성분)

 $F = \gamma h A [N]$

γ : 비중량 [N/m³]

h : 표면에서 수문중심까지의

수직거리 [m]

A: 단면적 $[m^2]$

핵심단어

투시경, 수조 바닥

공식

 $F = \gamma \overline{ysin\theta A}$

 γ : 비중량 $[N/\mathrm{m}^3]$ y : 표면에서 수문중심까지의

경사거리[*m*]

A: 단면적 $[m^2]$

핵심단어

공식

힘 (추력) (운동량 유출률)

 $F = \rho QV$

V: 속도 (V-u)

핵심단어

공식

추진력

 $F = \rho Q V = \rho A V^2$

핵심단어

액체 추진 로켓 $(\rho A V^2)$ 로 계산

공식

판이 받는 N방향의 힘

 $F = \rho Q V sin \theta$

핵심단어

평판에 수직으로 작용하는 힘 FN

공식

부럭 (수직성분)

 $F_R = \gamma V$

V: 물에 잠긴 체적

 $V = Ab(\Xi) = \frac{\pi D^2}{4} \times b(\Xi)$

핵심단어

공식

부력 (물속에 절반만 잠길 때)

$$F_{B}=\,\gamma\,V-\,\frac{1}{2}\gamma_{w}\,V$$

핵심단어

물체의 무게

 $W = \gamma \ V [N]$

 γ : 중량

V: 물체가 잠긴 체적 $[m^3]$

핵심단어

공식

출구의 직경이 D/2인 경우 힘

 $F = \frac{9}{2} \rho A V^2$

핵심단어

식만 고르면 되는 문제

공식

전단력

 $F = A\mu \frac{du(유속의 변화량)[m/s]}{du(거리변화량)[m]}$

핵심단어

공식

최소한의 힘

 $F_B \times$ 수문높이 $= F \times Y_P$

핵심단어

힌지

공식

마찰력

 $F = \tau A$

 $A: \pi \times D \times L$

핵심단어

토크 문제

공식

단위 면적당 힘

핵심단어

식 고르는 문제

공식

F = mg

m: 질량 [kg]

g: 중력가속도 $9.8[m/s^2]$

핵심단어

공식

힘

F=ma

m : 질량 [kg]

a: 가속도 $[m/s^2]$

핵심단어

공식

유량

 $Q = A V[\overline{m^3/s}]$

A: 면적 $[m^2]$

V: 유속 [m/s]

핵심단어

공식

질량유량

 $\overline{m} = A V \rho \left[kg/s \right]$

A: 단면적 $[m^2]$

V: 유속 [m/s]

ho : 밀도 $[kg/m^3]$

핵심단어

공식

중량유량

 $G = A V \gamma [N/s]$

A: 단면적 $[m^2]$

V: 유속 [m/s]

 γ : 비중량 $[N/m^3]$

핵심단어

공식

속도 (토리첼리의 식)

 $V = \sqrt{2gH}$

핵심단어

공식

속도 (토리첼리의 식) 변형

 $V = C\sqrt{2q\Delta H}$

C: 량계수

핵심단어

유량계수

공식

유속

$$V = \sqrt{2gR(\frac{S_s}{S} - 1)}$$

R: 노미터 읽음 [mHg]

 S_s : 수은의 비중

S: 질소의 비중

핵심단어 수은의 비중, 질소의 비중, 피토관 유속

공식

공기의 속도

$$V = C\sqrt{2g\Delta H(\frac{\rho_s}{\rho} - 1)}$$

V: 공기의속도[m/s]

C: 보정계수

 ΔH : 높이차 [m]

ho s : 어떤 물질의 밀도 $[kg/ ext{m}^3]$

 ρ : 공기의 밀도 $[kq/m^3]$

핵심단어

공식

합한 유속

$$V = \frac{\sqrt{V_1^2 + V_2^2}}{2}$$

핵심단어

공식

음속

$$V = \sqrt{\frac{K}{\rho}} \left[m/s \right]$$

K: 체적탄성계수 $[N/m^2]$

 ρ : 밀도

핵심단어

소방차 동력

돌력 $P = F[N] \times$ 평균속도[m/s]

 $F = m \times (\frac{2 + 2 \cdot (m) - \beta \pi + 2 \cdot (m)}{(3600)s} \times \frac{1}{a})$

m : 질량 [kg]

a: 가속도 [m/s]

평균속도 $\frac{(최고속도+최저속도)km/h}{2}$

계산후m/s으로환산

핵심단어

압력-1

공식

압력

$$P = \frac{F}{A} = \gamma H$$

핵심단어

공식

압력

$$P = \gamma \triangle H = \gamma (H_2 - H_1)$$

핵심단어

2배의 유속, 오리피스에서 물을 유출

공식

액주차, 오리피스

$$\Delta P = P_1 - P_2 = R(\gamma - \gamma_w)$$

 $\Delta P:U$ 관마노미터의압력차 [Pa]

 P_1 : 입구의 압력 [pa] P_2 : 출구의 압력 [pa]

R : 마노미터 읽음 [m]

 γ : 어떤물질의 비중량 $[N/m^3]$ γ_w : 물의 비중량 $(9800N/m^3)$

핵심단어

액주차, 오리피스

공식

경사마노미터 압력

$$P = \gamma L sin\theta$$

L: 사마노미터의 눈금 [m]

핵심단어

경사마노미터

공식

피토계의 계기압력

$$P = P_o + \gamma H$$

P: 피토계계기압력[Kpa]

 P_o : 압력계계기압력 [Kpa]

 γ : 비중량

H: 수두(속도수두)

핵심단어

공식

공기의 기포문제

$$P = P_o + \gamma H$$

P: 압력[Kpa]

 P_o : 대기압 [Kpa]

 γ : 비중량

H: 기포의최초위치

핵심단어

공식

기압계의 압력

 $P = P_o + \gamma h = P_o + \Delta P$

P: 국소대기압 *P_o*: 압력 [*kpa*]

 ΔP : 증기압 [kpa]

핵심단어

증기압 (Po에서 H값 찾기)

공식

노즐 상류쪽의 게이지 압력

$$P_1 = \frac{F_B}{A_1} + \rho V^2 \left(1 - \frac{A_2}{A_1}\right) \frac{A_2}{A_1}$$

핵심단어

식만 고르는 문제

압력-2

공식

하겐 - 포아젤 식-1

 $\Delta P = 6.174 \times 10^4 \times \frac{Q^{1.85}}{C^{1.85} \times D^{4.87}} \times L$

 ΔP : 찰손실압력[Mpa]

C: 조도 *D*: 관내경[*mm*]

Q: 관유량[L/min] L: 관의길이[m]

핵심단어

마찰손실

공식

하겐 - 포아젤 식-2

$$\Delta P = \frac{128\mu QL}{\pi D^4}$$

 ΔP : 력차(압력강하) $[N/m^2]$

 μ : 점성계수 $[N \cdot s/m^2]$

Q: 유량 $[\mathrm{m}^{\scriptscriptstyle 3}/s]$ L: 길이 [m]

D: 내경 [m]

핵심단어

마찰손실

전단응력

공식

전단응력 (층류)

$$\tau = \frac{P_A - P_B}{L} \cdot \frac{r}{2}$$

 $P_A - P_B$: 압력강하 $[N/m^2]$

L: 관의길이 [m]

r: 반경 [m]

핵심단어

공식

전단응력 (난류)

$$\tau = \mu \frac{du}{dy}$$

 $\frac{du}{dy}$: 속도기울기 $[\frac{1}{s}]$

핵심단어

공식

관벽에서의 전단응력

$$\tau = \frac{PD}{4L}$$

핵심단어

관벽에서의 전단응력

공식

전단응력

$$\tau = -\frac{dp}{ds} \frac{r}{2}$$

핵심단어

식만 고르는 문제

공식

속도구배

$$du = \frac{\pi Dn}{60}$$

핵심단어

토크문제

밀도

공식

밀도

$$\rho = \frac{P}{RT}$$

ho: 밀도[kg/m³]

P: 압력[pa]

R: 기체상수 $[N \bullet m/kg \bullet k]$

T: 절대온도[K]

핵심단어

공식

밀도

$$\rho = \frac{PM}{RT}$$

 ρ : 밀도 $[kq/m^3]$

P: 압력[pa]

R: 기체상수 $[J/Kmol \cdot K]$

T: 절대온도[K]

M: 분자량 [kg/kmol]

핵심단어 분자량 구하는 공식, 밀도변화가 없다면

공식

밀도의 변화율

$$\Delta \rho = -\frac{\rho}{t[s]} [kg/(-/s)]$$

$$Q = AU = \frac{V}{t}$$

A: 단면적 V: 체적 U: 속도 t: 시간[s] 핵심단어 밀도의 변화율

부피

공식

물체 잠긴 부피

$$V = \frac{Ss}{s}$$
 []

Ss: 어떤물질의비중(물체의비중) S: 표준물질의비중(물의비중)

핵심단어

구의 체적 , 구의 표면적

구의체적

구의표면적

$$V = \frac{4}{3}\pi r^3 \quad , \qquad A = 4\pi r^2$$

$$A = 4\pi r^2$$

핵심단어

공식

기포의 부피

$$V_1 = \frac{4}{3}\pi d^3$$

핵심단어

공식

체적

$$V = Ab = \frac{\pi d^2}{4}b$$

b(폭)

핵심단어

阜司

공식

토크

$$T = \frac{FD}{2}[N \cdot m]$$

F: 마찰력

핵심단어 마찰력 + 전단응력 + 속도구배

동력

공식

펌프동력

$$P = \frac{0.163 \, QH}{n} \, K \, [KW]$$

핵심단어

물일 때

공식

펌프동력

$$P = \frac{\gamma \, QH}{1000 \, n} \, K \, [KW]$$

핵심단어

물이 아닐 때

공식

펌프의 최소동력

$$P = \gamma QH$$
 , $H = \frac{\Delta P}{\gamma}$

$$P = \gamma Q(\frac{\Delta P}{\gamma}) = Q\Delta P$$

핵심단어

공식

전양정

$$H = 양정 + 총손실수두 + 속도수두$$

핵심단어

총 손실수두

각종 공식-1

공식 압축비

 $K = \varepsilon \sqrt{\frac{P_2}{P_1}}$

K: 축비

ε: 단수

 P_1 : 흡입측 압력 [pa] P_2 : 토출측압력 [pa]

핵심단어

공식

비눗방울의 표면장력

 $\sigma = \frac{\Delta PD}{8}$

 σ : 비눗방울의 표면장력 [N/m]

 ΔP : 압력차 $[N/m^2]$

D: 직경[m]

핵심단어

공식

비교회전도

 $Ns = N \frac{\sqrt{Q}}{\left(\frac{H}{m}\right)^{\frac{3}{4}}}$

Ns: 비교회전도 $[m^3/min \cdot m/rpm]$

N: 회전수 [rpm]

Q : 유량 [m³/min]

H: 양정 [m]

n : 단수

핵심단어

공식

방수량

 $Q = 0.653 \, CD^2 \sqrt{10P}$

Q: 방수량 $[L/\min]$

C: 유량계수

D: 구경 [mm]

P: 방수압 [Mpa]

핵심단어

방수량

공식

비압축성 유체

 $\frac{V_1}{V_2} = \frac{A_2}{A_1} = (\frac{D_2}{D_1})^2$

V: 도

핵심단어

공식

운동량

운동량 = 질량 × 속도

핵심단어

공식

비체적

 $Vs = \frac{V(\text{체적})}{m(\text{질량})}[\text{m}^3/kg]$

핵심단어

공식

방열량

W = Pt [KJ]

P: 전력[kw]

t:시간[s]

핵심단어

전열기

각종 공시-2

공식 동점성 계수 $v = \frac{\mu}{\rho}$ v: 점성계수 $[cm^2/s]$ μ : 점성계수 $[g/cm \cdot s]$ ρ : 밀도 $[g/cm^3]$

핵심단어

공식

체적탄성계수

$$K = -\frac{\Delta P}{\Delta V/V}$$

K: 체적탄성계수[Kpa] ΔP : 가해진 압력 [Kpa] $\Delta V/V$: 체적의감소율

핵심단어

공식

압축률

$$\beta = \frac{1}{K}$$

β: 압축률

K: 체적탄성계수

핵심단어

공식

파스칼의 원리

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$

 $F_1, F_2:$ 가해진힘[N]

 $A_{1,}A_{2}$: 단면적 $[m^{2}]$

핵심단어

공식

레이놀즈 수

$$Re = rac{DV
ho}{\mu} = rac{DV}{v}$$

 $Re: 레이놀즈수$

D : 내경 [m], V : 유속 [m/s]

 ρ : 밀도 $[kg/m^3]$ μ : 점도 $[kg/m \cdot s]$

v: 동점성계수 $(\frac{\mu}{2})[m^2/s]$

❶ 충류 : Re < 2100

② 천이영역(임계영역): 2100 < Re < 4000

3 난류 : Re > 4000

공식

관 마찰계수

$$f = \frac{64}{Re}$$

f: 관마찰계수 Re: 레이놀즈수

핵심단어

공식 반지름 r에 대한 식을 H와 y항으로 표시

$$r = \frac{D}{2} \left(\frac{H}{H+y}\right)^{\frac{1}{4}}$$

핵심단어 식만 고르는 문제

공식

암모니아 가역과정

$$\delta Q = dU$$

핵심단어 식만 고르는 문제

공식

낙수식 점도계

$$\mu \propto \frac{1}{V}$$

핵심단어

식만 고르는 문제

공식

외부에서 한일은 ?

 $Q = (U_2 - U_1) + W$

Q: [KJ]

 $U_2 - U_1$: 내부에너지변화 [KJ]

W: 일 [KJ]

핵심단어

공식

열량

$$_{1}q_{2}=\ U_{2}-\ U_{1}=m\,C_{V}\Delta\ T$$

₁q₂ : 열량 [KJ]

 $U_2 - U_1$: 내부에너지변화 [KJ]

m : 질량 [kg]

 C_v : 정적비열 $[KJ/kg \cdot K]$

 ΔT : 온도차 [K]

$$_{1}q_{2} = C_{P}(T_{2} - T_{1})$$

 $_{1}q_{2}$: 열량 [KJ]

 C_P : 정압비열 $[KJ/kg \cdot K]$

 $T_2 - T_1 : 온도차 (273 + ^{\circ})[K]$

핵심단어

정적과정 (체적이 변화가 없다)

공식

엔탈피

$$\mathbf{0}H = U + PV_{s}$$

$$\mathbf{2} H \! = \! (u_2 \! - \! u_1) + \! (P_2 \, V_2 \! - \! P_1 \, V_1)$$

H: 엔탈피[KJ/kg]

U: 내부에너지 [KJ/kq]

P : 압력[*Kpa*]

 V_s : 비체적 $[\mathrm{m}^{\scriptscriptstyle 3}/kg]$

핵심단어

공식

복사열

$$Q = aAF(T_1^4 - T_2^4)$$

Q: 사열[w]

a: 스테판 - 볼츠만상수 $[W/m^2 \cdot K]$

A : 단면적 [m²] F : 기하학적 계수

 T_1 : 고온[K] T_2 : 저온[K]

핵심단어

공식

복사에너지

$$\frac{Q_2}{Q_1} = \frac{(273 + T_2)^4}{(273 + T_1)^4}$$

핵심단어

공식

열 전달량

$$Q = \frac{\mathit{KA}(\mathit{T}_2 - \mathit{T}_1)}{\mathit{L}}[\mathit{W}]$$

K : 열전도율 [*W*/*m* · ℃]

 T_2 : 내부온도 $[\mathfrak{C}]$ T_1 : 외부온도 $[\mathfrak{C}]$

핵심단어

공식

폴리트로픽 과정

$$\frac{T_2}{T_1} = \left(\frac{P_2}{P_1}\right)^{\frac{n-1}{n}}$$

 P_1, P_2 : 변화 전후의 압력 $[KJ/m^3]$

 T_1, T_2 : 변화전후의온도 $(273 + \mathbb{C})[K]$

n:폴리트로픽지수

핵심단어

열 + 온도-2

공식

섭씨온도

 $^{\circ}$ C = $\frac{5}{9}$ ($^{\circ}$ F - 32)

핵심단어

냉동기의 성능계수

$$\beta = \frac{Q_L}{Q_H - Q_L} = \frac{T_L}{T_H - T_L}$$

β: 냉동기의성능계수

 Q_H : 고열[KJ] T_H : 고온[K]

 Q_L : 저열[KJ] T_L : 저온[K]

핵심단어

공식

카르노 사이클

$$W = Q_H (1 - \frac{T_L}{T_H})$$

W: 력(일) [KJ] Q_H : 고온열량 [KJ]

 T_L : 저온[K] T_H : 고온[K]

핵심단어

한 사이클당 외부에 하는일

카르노 사이클 (열기관의 효율)

$$n = 1 - \frac{Q_L}{Q_H} = 1 - \frac{T_L}{T_H}$$

n: 카르노사이클의 열효율

 Q_L : 저온열량 [KJ]

 Q_H : 고온열량 [KJ]

 T_L : 저온[K] T_H : 고온[K]

핵심단어

공식

이계(System)가 한 일

$$_{1}W_{2}=P_{1}V_{1}\ln \frac{V_{2}}{V_{1}}$$

핵심단어

$$_{1}W_{2} = P(V_{2} - V_{1}) = R(T_{2} - T_{1})[KJ]$$

P: 력 [kpa]

V_s: 팽창된 체적[m³]

V₁: 워래체적[m³] R: 기체창수 $[KJ/kg \cdot k]$

 $T_2 - T_1 : 온도차(273 + \%)[K]$

핵심단어

공식

포화증기 엔탈피

 $Q = mx \left(h_q - h_f \right)$

핵심단어

식만 고르는 문제

공식

흑체 방사도

 $\varepsilon = \sigma C^4 t^2$

핵심단어

식만 고르는 문제

이상기체-1

공식 샤를의 법칙 $V_1 \hspace{1cm} V_2$

 $\frac{V_1}{T_1} = \frac{V_2}{T_2}$

V: 적 $[m^3]$

T: 절대온도[K]

핵심단어 입력 일정 (비체적 나오는 문제도 이식으로 해도 됨)

공식

보일의 법칙

 $P_1 V_1 = P_2 V_2$

P: 압력 V: 체적

핵심단어

온도 일정

공식

보일 샤를의 법칙

 $\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$

P: 압력 [Kpa]

V: 체적 [m³]

T: 절대온도[K]

핵심단어

단단한 가스탱크

공식

밀폐용기 A.B

 $P(V_1 + V_2) = P_1 V_1 + P_2 V_2$

핵심단어

P값 구하기

공식 **이상기체가 한일**

 $_1W_2 = P(v_2 - v_1)$

 $_1W_2$: 이상기체가 한일[J/kg]

P : 압력 [pa]

 v_1 : 변화적비체적 $[\mathrm{m}^3/kg]$ v_2 : 변화후비체적 $[\mathrm{m}^3/kg]$

핵심단어

구분	이상기체 설명
	압력이 일정한 상태
정압과정	$\frac{v}{T} = $ ${\sim}$
	v : 비체적 $[m^4/N \cdot s^2]$ T : 절대온도 $[K]$
	비체적이 일정한 상태
정적과정	$\frac{P}{T}$ = 일정
	P: 압력 [N/m²] T: 절대온도[K]
	온도가 일정한 상태
	Pv = 일정
등온과정	
	P: 압력 [N/m²]
	$v:$ 비체적 $[m^4/N \cdot s^2]$
	손실이 없는 상태
	$Pv^k =$ 일정
단열변화	-
	P: 압력 [N/m²]
	v : 비체적 $[m^4/N \cdot s^2]$

공식 [정적과정] 타이어 온도 문제

정적과정 : $\frac{P_2}{P_1} = \frac{T_2}{T_1}$

 P_1 : 절대압력

 P_2 구한후절대압력 빼줄것!

이상기체-2

공식

이상기체 방정식-1

 $PV = nRT = \frac{m}{M}RT, \ \rho = \frac{PM}{RT}$

P: 력 [atm], V: 부피 $[m^3]$

n: 몰수 $\left(\frac{n}{m}\right), \quad R: 0.082 \left[atm \cdot m^3 / kmol \cdot k\right]$

m : 질량 [kg] ho : 밀도 $[kg/m^3]$ T : 절대온도(273+)K

핵심단어

공식

이상기체 방정식-2

 $PV = mRT, \ \rho = \frac{P}{RT}$

P: 압력 $[N/m^2]$, V: 부피 $[m^3]$

m : 질량 $[kg], \qquad R$: $\frac{8314}{M}[N \cdot m/kg \cdot k]$

 ρ : 밀도 $[kg/m^3]$

T: 절대온도(273+℃)[K]

핵심단어

공식

이상기체 방정식-3

PV = mRT

P: 압력 [pa], V: 부피 $[m^3]$

m: 질량 $[kq], R(N_2): 296[J/kq\cdot k]$

T: 절대온도(273+℃)[K]

핵심단어

공식

이상기체 방정식

PV = ZmRT

Z: 축성인자

 $R: 0.4615[KJ/kg \cdot K]$

(R값문제에서 주어지면 그걸로)

핵심단어

압축성인자

공식

기체상수 변형식

 $PV_{s} = RT$

핵심단어

공식

몰수

 $n = \frac{m(질량)[kg]}{M(분자량)[kg/kmol]} [kmol]$

핵심단어

공식

기체상수

 $R = C_p - C_v = \frac{R}{M}$

 C_p : 압비열 $[J/g \cdot k]$ C_v : 정적비열 $[J/g \cdot k]$

 \overline{R} : 일반기체상수 $[J/mol \cdot K]$

M: 분자량 [g/mol]

핵심단어

기체상수는 얼마인가?

공식	엔트로피 (ΔS)		
가역단	열과정	비가역단열과정	
$\Delta S = 0$		$\Delta S > 0$	
핵심단어			

문답 암기

문	관 마찰 계수는 어떤 변수의 함수인가 ?		문	공동현상이 벌
답	레이놀드수와 상대조도		답	P < Ps
문	뉴턴의 점성법칙을 이용한 회전원통식 점도계는 ?		문	(단,항력은 St
답	스토머 점도계, + (맥 마이클)		답	$\mu_2/\mu_1 < 2$
문	동력의 차원		문	온도기울기 비
 답	$ML^{2}T^{-3}$		답	$K_a:K_b$
문	미소한 압력차로 흐르고 있을 때 이 압력		문	유체에 작용하
<u></u> 답	차를 측정하려면 어떤 압력계? 마이크로마노미터		답	유체에 작용 당한다
	-10177-17-101		문	케비테이션에
문	점성법칙에 대한 옭은 설명		답	원심펌프의 경
답	① 전단응력은 점성계수와 속도기울기의 곱이다 ② 전단응력은 점성계수에 비례한다.		모	오일러의 운동
문	체적탄성계수에 관한 설명으로 옳 않은것		답	비점성유동에 유체입자의 기
답	체적탄성계수가 큰 기체는 압축하기가 쉽다.			의 관계를 표
문	동점성계수의 차원		문	베르누이 방정
답	L^2T^{-1}		답	손실수두의 형
문	열평행 상태 두 물체의 온도가 서로 같으며 더 이상 변		문	열은 고온열위 나, 반대로 :
답	화하지 않는 상태		답	변화이다. 열역학 제 2t
문	이상기체의 운동에 대한 설명	<u> </u>		펌프 및 송풍
답	분자 자신의 체적은 거의 무시할수 있다.		문	설명한것
문	타원형 단면의 금속관이 팽창하는 원리를 이용하는 압력측정장치는 ?		답	송풍기에서 키의 수명이 단
답	부르돈압력계		문	천이구역에서
문	선형운동량 방정식		답	레이놀드수와
ㅜ 답	① 정상상태 ② 균일유동		문	물통에서 유결 동압을 P라 청
문	검사체적에 대한 운동량방정식		답	$V^2 \propto P$
· 답	뉴턴의 운동 제 2법칙	L		1
Н				

문	공동현상이 발생하는 조건
답	P < Ps
문	(단,항력은 Stokes 의 법칙에 따른다)
답	$\mu_2/\mu_1 < 2$
문	온도기울기 비는 ?
답	$K_a:K_b$
문	유체에 작용하는 힘과 운동략 방정식에 관 한 설명으로 옳지 않은 것
답	유체에 작용하는 전단응력은 체적력에 해 당한다
문	케비테이션에 관한 설명으로 옳은 것은?
답	원심펌프의 경우 케비테이션 발생의 가장 큰 원인은 깃 이면의 압력강하이다.
문	오일러의 운동방정식은 유체운동에 대하여 어떠한 관계를 표시하는가?
답	비점성유동에서 유선상의 한점을 통과하는 유체입자의 가속도와 그것에 미치는 힘과 의 관계를 표시한다.
문	베르누이 방정식을 실제유체에 적용시키려면 ?
답	손실수두의 항을 삽입시키면 된다.
문	열은 고온열원에서 저온의 물체로 이동하나, 반대로 스스로 돌아갈수 없는 비가역 변화이다.
답	열역학 제 2법칙
문	펌프 및 송풍기에서 발생하는 현상을 <mark>잘못</mark> 설명한것
답	송풍기에서 케비테이션의 발생으로 회전차 의 수명이 단출될 수 있다.
문	천이구역에서의 관마찰계수 f는?
답	레이놀드수와 상대조도의 함수가 된다.
문	물통에서 유출하는 물의 속도를 V라 하고, 동압을 P라 하면, V와 P의 관계는?
답	$V^2 \propto P$

문답 암기

	어떤 정지 유체의 비중량이 깊이의 2차 함
문	수로 주어진다면 압력분포는 깊이의 몇 차
	함수인가 ?
답	3차함수

문	다음 설명 중 맞는 것은?
답	질량과 속도의 곱을 운동량이라 한다.

문	옳은 것 고르는 문제
	1 일반적으로 축류펌프의 비속도가 반경
	류 펌프의 비속도보다 크다.
답	❷ 회전수와 양정이 같을 때 유량이 큰 펌
H	프의 비속도가 더 크다
	❸ 회전수와 유량이 같을 때 양정이 큰 펌
	프의 비속도가 더 작다.

문	직사각형 덕트에서 가로는 반으로 줄이고 세로는 2배로 늘리면 수력직경은 몇배 ?
	세로는 2배로 늘리면 수력직경은 몇배 ?
답	주어진 정보로는 알수 없다.

п	실내의 난방용 방열기에는 대부분 방열된	디
문	이 달려있다 그 주된 이유는?	
답	연전달면적이 증가한다.	

문	등엔트로피 과정에 해당하는 것은?
답	가역단열 과정

П	다음 중 음속에 대한 일반적인 설명으로
正	틀린것
	동일한 온도 및 비열비를 가질 때, 분자량
답	이 큰 이상기체에서의 음속이 분자량이 작
	은 이상기체에서의 음속보다 빠르다.

	평행한 평판사이로 유체가 압력차에 의해
문	층류로 흐르고 있을 때, 유체가 받는
	전단응력은 어떻게 변화되는가?
	전단응력은 흐름의 중심에서 0이고, 벽면
답	까지 직선적으로 상승하며 , 반지름에 비례
	하여 변한다.

문	유리관을 수직으로 세우면 수은은 오히려
	하강한다 그 원인은?
답	접촉각의 차이

문	변경
답	B에서 압력에너지가 감소한다.
문	유체 계기들의 압력상승이 큰 순서
답	압축기(콤프레샤) -> 블로어 -> 펜
	무이 오드儿 100℃ 이사 오리기지 아느거

П	물의 온도가 100℃ 이상 올라가시 않는것
亡	물의 온도가 100°C 이상 올라가지 않는것 과 가장 관계가 있는 것은 ?
답	물이 100℃에서 비등하기 때문이다.

문	유체의 점성계수는 온도의 상승에 따라 변	
	하는가?	
답	유체에서는 감소하고 기체에서는 증가	

문	이상기체의 운동론	
	분자 자신의 체적은 거의 무시할수 있다.	
답	참고)	
日	● 분자 상호간의 인력을 무시	
	아보가도르 법칙을 만족하는 기체	

문	가역단열 과정
답	가역단열 과정은 엔트로피가 0이다.

문	일반적인 유체에 관한 설명으로 <mark>옳지 않은것</mark>
4	유체가 정지상태에 있을 때는 전단력을 받
	지 않는다.

		이상기체를 온도변화 없이 압축시키는 경우	
문 열의 출입 및 내부 에너지의 변화를 옳게			
		표현한것	
딥	}	열 방출, 내부에너지 불변	

문	이상적인 열기관사이클인 카르노사이클	
	(carnotcycle)의 특징으로 맞는것	
답	이론 열효율은 고열원 및 저열원의 온도만	
	으로 표시된다.	

베르누이 방정식의 적용조건

- ❶ 정상흐름(정상류) = 정상유동
- 2 비압축성 흐름(비압축성 유체)
- 3 비점성 흐름(비점성 유체) = 마찰이 없는 유동
- ₫ 이상유체
- **6** 유선을 따라 운동 = 같은 유선 위의 두 점에 적용

오일러 운동방정식의 가정

- ❶ 정상유동(정상류)일 경우
- 2 유체의 마찰이 없을 경우(점성마찰이 없을 경우)
- ❸ 입자가 유선을 따라 운동할 경우
- ♠ 유체의 점성력이 0 이다.
- **5** 유체에 의해 발생하는 전단응력은 없다.

운동량 방정식의 가정

- ❶ 유동단면에서의 유속은 일정하다
- 2 정상유동이다

전단응력

- 1 층류 유동시 속도분포는 2차 함수 이다.
- ② 층류인 경우 전단응력은 점성계수와 속도구배의 함수이다.
- 3 층류인 경우 중앙에서 전단응력이 가장 작다
- ₫ 벽면에서 난류의 속도기울기는 층류보다 크다
- 6 전단응력은 난류가 층류보다 크다

명칭	물리적 의미
레이놀즈수	관성력 / 점성력
프루드	관성력 / 중력
마하	관성력 / 압축력
코우시스수	관성력 / 탄성력
웨버 수	관성력 / 표면장력
오일러 수	압축력 / 관성력

점도계

- (1) 세관법 : 하겐-포아젤의 법칙 이용
- ❶ 세이볼트 점도계
- 2 레드우드 점도계
- 3 앵글러 점도계
- ₫ 바베이 점도계
- 6 오스왈드 점도계
- (2) 회전원통법: 뉴턴의 점성법칙 이용
- 1 스토머 점도계
- 2 맥 마이클 점도계
- (3) 낙구법 : 스토크스의 법칙 이용
- 낙수식 점도계

카르노 사이클

- 가역사이클이다
- ② 공급열량과 방출영량의 비는 고온부의 절대온도와 저온부의 절대온도 비와 같다
- ❸ 이론 열효율은 고열원 및 저열원의 온도만으로 표 시된다.
- ④ 두 개의 등온변화와 두 개의 단열변화로 둘러 쌓 인 사이클이다

폴리트로픽 변화	
$PV^n = \div (n=0)$	등압변화(정압변화)
$PV^n = 정수(n=1)$	등온변화
$PV^n = $	단열변화
$PV^n = 정수 (n =)$	정적변화

터보기계 해석에 사용되는 속도 삼각형

- ① 날개속도 : U
- 2 날개에 대한 상대속도 : W
- ❸ 유체의 실제속도 : V

펌프 성능 해석에 사용되는 속도 삼각형

- ① 날개속도 : U
- ❷ 상대속도 : ₩
- ❸ 절대속도(펌프로 유입되는 물의속도): V

공동현상 = 케비테이션		
개요	펌프의 흡입측 배관 내의 물의 정압이 기존의 증기압보다 낮아져서 기포가 발 생되어 물이 흡입되지 않는 현상	
발생현상	소음과 진동 발생관 부식임펠러의 손상펌프의 성능저하	
발생원인	 ● 펌프의 흡입수두가 클 때 ● 펌프의 마찰손실이 클 때 ● 펌프의 임펠러속도가 클 때 ● 펌프의 설치위치가 수원보다 높을 때 ● 관 내의 수온이 높을 때 ● 관 내의 물의 정압이 그때의 증기압보다 낮을 때 ● 흡입관의 구경이 작을 때 ● 흡입거리가 길 때 ● 유량이 증가하여 펌프물이 과속으로 흐를 때 	
방지대책	● 펌프의 흡입수두를 작게 한다. (펌프의 흡입양정을 작게한다) ● 펌프의 마찰손실을 작게 한다. ● 펌프의 임펠러속도(회전수)를 작게 한다. ● 펌프의 설치위치를 수원보다 낮게한다(펌프의 흡입측을 가압한다.) ● 관 내의 물의 정압을 그때의 증기압보다 높게 한다. ● 흡입관의 구경을 크게한다. ● 펌프를 2개 이상 설치한다.	

점성계수

- ① 차원은 $ML^{-1}T^{-1}$
- ② 전단응력과 전단변형률이 선형적인 관계를 갖는 유체를 Newton유체라고 한다.
- 3 온도의 변화에 따라 변화한다.
- 4 공기의 점성계수는 물보다 작다

왕복식 펌프		
1 다이어프램 펌프	❸ 플런저 펌프	
② 피스톤 펌프		

수격작용의 방지대책

- 관로의 **관경을 크게한다.**
- 관로 내의 **유속을 낮게한다**.

(관로에서 일부 고압수를 방출)

● 조압수조를 설치하여 적정압력을 유 지한다.

방지대책

- **플라이 휠**을 설치한다.
- 펌프 송출구 가까이에 밸브를 설치
- 펌프 송출구에 수<mark>격을 방지하는 체크</mark> 밸<u>브</u>를 달아 역류를 막는다
- 에어챔버를 설치한다.
- 회전체의 관성 모멘트를 크게한다.

용어 암기

● 정상유동 : 유동장에서 유체흐름의 특서이 시간에 따라 변하지 않는 흐름

② 정상류 : 직관로 속의 어느 지점에서 항상 일정한 유속을 가지는 물의 흐름

연속방정식 : 질량보존의 법칙

◆ 체적유량 일정 : 비압축성 유체를 적용하는 연속 방정식

유체의 점성과 관련 있는것

- ❶ 분자운동
- ❷ 분자의 응집력
- **3** 분자의 운동량 수송

연속방정식 : 질량보존의 법칙의 일종

- $1) d(\rho A V) = 0$
- $2) \rho_1 A_1 V_1 = \rho_2 A_2 V_2$
- 3) $\rho A V = C(Constant)$
- $4)\frac{dA}{A} + \frac{d\rho}{\rho} + \frac{dV}{V} = 0$
- $5)\frac{\vartheta\rho}{\vartheta t} + \qquad (\rho V) = 0$
- $6)A_1V_1 = A_2V_2$
- $7)\,\gamma_1 A_1\, V_1 = \gamma_2 A_2\, V_2$

상사법칙

상사법칙	
Q 유량	$Q_2 = Q_1(\frac{N_2}{N_1}) (\frac{D_2}{D_1})^3 \ \ = Q_2 = Q_1(\frac{N_2}{N_1})$
H 양정	$H_2 = H_1(\frac{N_2}{N_1})^2 (\frac{D_2}{D_1})^2$ 또는 $H_2 = H_1(\frac{N_2}{N_1})^2$
P 동력	$P_2 = P_1 (\frac{N_2}{N_1})^3 (\frac{D_2}{D_1})^5 \Xi \Xi P_2 = P_1 (\frac{N_2}{N_1})^3$

차원

차원	중력단위[차원] FLT	절대단위[차원] MLT
운동량	$N \cdot S[FT]$	$Kg \cdot m/s [MLT^{-1}]$
힍	N[F]	$Kg \cdot m/s^2 [MLT^{-2}]$
압력	$N/m^2 [FL^{-2}]$	$Kg/m \cdot s^2 [ML^{-1}T^{-2}]$
비중량	$N/m^3 [FL^{-3}]$	$Kg/m^2 \cdot s^2 [ML^{-2}T^{-2}]$
밀도	$N \cdot s^2 / m^4 [FL^{-4}T^{-2}]$	$Kg/m^3 [ML^{-3}]$
비체적	$m^4/N \cdot s^2 [F^{-1}L^4T^{-2}]$	$m^3/Kg \ [M^{-1}L^3]$
일률	$N \cdot m/s [FLT^{-1}]$	$Kg \cdot m^2/s^3 [ML^2T^{-3}]$
일	$N \cdot m [FL]$	$Kg \cdot m^2/s^2 [ML^2T^{-2}]$
점성계수	$N \cdot s/m^2 [FL^{-2}T]$	$Kg/m \cdot s[ML^{-1}T^{-1}]$