UPPSALA UNIVERSITET

FÖRELÄSNINGSANTECKNINGAR

${\bf Variations kalkyl}$

Rami Abou Zahra

Contents

	CONTENTS	
1.	Introduction	2
1.1.	The catenoid	3
1.2.	Hamiltons principle	3

1. Introduction

One frequently encounters problems involving opitmisation (max, min). This is familiar from single/multivariable calculus:

Let $f \in C'(I)$ (where C'(I) means continous first derivative function space), find $\max(f)$ and $\min(f)$

For a stationary point we know that the derivative f'(x) = 0, and a stationary point is where the function is either at its peak (max) or lowest point

In several variables, we would have a gradient vector $\nabla f \equiv \bar{0}$

In Calculus of Variations (CoV) we have problems of the following from:

Find local minima for $J: C^2(\Omega) \to \mathbb{R}: C^2(\Omega) = \{y: \Omega \to \mathbb{R}: y \text{ is twice continously differentiable}\}$

J is often called a **functional** and can be of the form:

$$J(y) = \int_{\Omega} f(x, y, \nabla y) dx$$

Where f is smooth in all three arguments

Example:

Let $p, q \in \mathbb{R}^2$ be 2 distinct points. Find the shortest curve connecting p, q. Because they are distinct, we know that either the x component or y component is different. Suppose that there is a function y(x) connecting the 2 points, then the following:

$$p = (x_p, y(x_p)) \qquad q = (x_q, y(x_q))$$

Arc length is given by:

$$L(y) = \int_{x_p}^{x_q} \sqrt{1 + (y'(x))^2} dx$$

This would give us the length between p, q, however, since we want to find the shortest curve, we want to minimize (read: opitmize) this function L among the C' functions with end points fixed at p, q

Example: Minimal surfaces

Let C be a closed curve in \mathbb{R}^3 such that for $\Omega \subset \mathbb{R}^2$ bounded and $g: \partial \Omega \to \mathbb{R}$ so that $C: \{(x,y,g(x,y)): (x,y) \in \Omega\}$

Suppose we want to minimize over surfaces S with $\partial S = C$ (boundary of S is C), sounds like an opitmisation problem!

We write S = graph(u), where $u : \Omega \to \mathbb{R}$ and u = g on $\partial \Omega$

The area of such a surface is:

$$A(u) = \int_{\Omega} \sqrt{1 + \left| \nabla u \right|^2} dx dy$$

Our opitmisation problem is now to find a minimizer u of A such that u = q on $\partial\Omega$

Minimizers of A are called **minimal surfaces**. This problem is called Plateaus problem

Examples of minimal surfaces:

- 2D-plane in \mathbb{R}^3
- Helicoids
- Catenoid

Example: (Catenoid - Catenery)

Consider a thin cable hanging between 2 poles. What shape will such a cable attain?

Assuming the cable has uniform density ρ and fixed length L. The cable will arange itself in such a way such that it minimizes its potential energy.

In order to do so, suppose the line is given by the function y(x) and that there is a force g acting on it:

$$W(y) = \int_{x_1}^{x_2} \rho \sqrt{1 + (y')^2} gy(x) dx$$

Over functions:

$$y \in C'([x_1, x_2])$$

Such that $y(x_1) = y_1$ and $y(x_2) = y_2$ Operating with fixed length:

$$L = \int_{x_1}^{x_2} \sqrt{1 + (y')^2} dx$$

Solutions to this problem are called *catenaries*. If you take a catenary and rotate it you get a catenoid, which is a minimal surface.

1.1. The catenoid.

Suppose I have a surface of revolution within an interval (x_1, x_2) . In order to find the area, we can use our knowledge of infitesimals:

$$A(y) = \int_{x_1}^{x_2} 2\pi y(x) \sqrt{1 + (y')^2} dx$$

Notice that this looks a lot like our function W, if we let $\rho \cdot g = 2\pi$ (they are constants, and we do not care of their values other than that they are independent)

1.2. Hamiltons principle.

Particles in gravitational fields will follow the trajectory that minimizes its energy. So, consider a moving particle with some mass m in some force field $f(x,y) = -\nabla V(x,y)$ (conservative field, gradient of some function). Denote its trajectory by $r: (-\varepsilon, \varepsilon)\mathbb{R}^2$ (with velocity r).

function). Denote its trajectory by $r:(-\varepsilon,\varepsilon)\mathbb{R}^2$ (with velocity r). Its kinetic energy is given by $T=\frac{1}{2}m\left|r'\right|^2$ and its potential energy is V(x,y)

We introduce the so called **lagrangian** which is L = T - V. Hamiltons principle states that the particle follows a path r(t) between t_1 and t_2 that minimizes the **action functional**:

$$S(r) = \int_{t_1}^{t_2} L(t_1, r, r) dt = \int_{t_1}^{t_2} (T - V) dt$$