

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE 12/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2022

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 24 pages. *Hierdie nasienriglyne bestaan uit 24 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, merk slegs die EERSTE poging.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, merk die doodgetrekte poging.
- Volgehoue akkuraatheid word in ALLE aspekte van die memorandum toegepas. Hou op nasien by die tweede berekeningsfout.
- Aanvaar van antwoorde/waardes om 'n probleem op te los, word NIE toegelaat nie.

GEOMETRY/MEETKUNDE				
	A mark for a correct statement			
S	(A statement mark is independent of a reason)			
3	'n Punt vir 'n korrekte bewering			
	('n Punt vir 'n bewering is onafhanklik van die rede)			
	A mark for the correct reason			
R	(A reason mark may only be awarded if the statement is correct)			
K	'n Punt vir 'n korrekte rede			
	('n Punt word slegs vir die rede toegeken as die bewering korrek is)			
	Award a mark if statement AND reason are both correct			
S/R	Ken 'n punt toe as die bewering EN rede beide korrek is			

Popularity score (x) Gewildheidspunt (x)	32	89	35	82	50	59	81	40	79	65
Number of votes (y) Getal stemme (y)	9	22	10	21	11	15	20	12	19	16

1.1.1	$\overline{y} = \frac{155}{10}$		√ 155	
	10		1 /	
	=15,5	ANSWER ONLY: Full marks	✓answer	(2)
1.1.2	SD 450		✓ answer	(2)
1.1.2	SD = 4,59		v answer	(1)
1.2	\overline{y} –SD			(1)
1.2				
	= 15,5 – 4,59		1 6 -	a.D.
	= 10,91		\checkmark value of \overline{y} -	-SD
	$\therefore 10 - 2 = 8 \text{ learners}$		✓ answer	
				(2)
1.3	a = 1,7709		✓ a	
	b = 0,2243		✓ b	
	$\hat{y} = 1,77 + 0,22x$		✓ equation	
				(3)
1.4	$\hat{y} = 1,77 + 0,22(72)$		✓ substitution	
	= 17,61		✓ answer	
	≈18 votes			(2)
	OR/OF			(2)
	$\hat{y} = 17.92 \approx 18 \text{ votes}$		✓✓ answer	
				(2)
1.5.1	Points are all scattered therefore	e low correlation and unrealistic	✓ R	\ /
	prediction./Punte is versprei da	arom 'n lae korrelasie en		
	onrealistiese voorspelling.			(1)
1.5.2	r = 0.98/correlation very strong.	korrelasie baie sterk	✓ S	
	∴ a reliable prediction/'n betroe	ubare voorspelling		(1)
				[12]

2.1	60 employees	✓ answer (A)
		(1)
2.2	$20 < x \le 25$	✓ answer
		(1)
2.3	60 – 34	√ 34
	= 26 employees ANSWER ONLY: Full marks	✓ answer
	THIS WELL STILL SHITH HALLS	
2.4	$Salary = \frac{100}{7} \times 2400$	✓ method
	Salary = R34 285,71 ANSWER ONLY: Full marks	✓ answer (2)
2.5	 ∴ Ogive/Cumulative frequency graph will shift to the right/will become steeper. ∴ Ogief/Kumulatiewe frekwensie grafiek sal na regs skuif/sal steiler wees. 	√√ answer
	skuy/sai siener wees.	(2)
		[8]

3.1.1	$m_{AB} = \frac{2 - (-4)}{4 - 6}$ OR	$m_{AB} = \frac{-4-2}{5}$	Z and added in
	4-6	6-4	✓ substitution
	$m_{AB} = -3$	ANSWER ONLY: Full marks	✓ answer (2)
3.1.2	$\tan \alpha = m_{AB} = -3$		$\sqrt{\tan \alpha} = m_{AB} = -3$
	α=108,43°	ANSWER ONLY: Full marks	✓ answer (2)
3.1.3	$T\left(\frac{x_1+x_2}{2};\frac{y_1+y_2}{2}\right)$		
	$T\left(\frac{-2+6}{2};\frac{-3-4}{2}\right)$		_7
	$T\left(2;\frac{-7}{2}\right)$		$\checkmark x_{\rm T} = 2 \checkmark y_{\rm T} = \frac{-7}{2} $ (2)
3.1.4	5(0) - 6y = 8		$\checkmark x_S = 0$
	$y = -\frac{4}{3}$		$\checkmark y_{S} = \frac{-4}{3}$
	$S\left(0; \frac{-4}{3}\right)$		(2)
3.2	$m_{\rm CD} = m_{\rm AB} = -3$		✓ gradient
	-3 = -3(-2) + c OR $c = -9$	y-(-3) = -3(x-(-2)) y = -3x-9	✓ substitution of $C(-2; -3)$
	y = -3x - 9		✓ equation (3)

3.3.1	5x - 6y = 8	
	$y = \frac{5}{6}x - \frac{8}{6}$	
	0 0	
	$\tan \theta = m_{AC} = \frac{5}{6}$	$\sqrt{\tan \theta} = m_{xx} = \frac{5}{2}$
	$\theta = 39.81^{\circ}$	$\checkmark \tan \theta = m_{AC} = \frac{5}{6}$ $\checkmark \theta = 39.81^{\circ}$
	$\hat{A} = 108,43^{\circ} - 39,81^{\circ}$	$\checkmark \theta = 39.81^{\circ}$
	A = 100,43 = 39,81 = $68,62^{\circ}$	^
	•	$\checkmark \hat{A} = 68,62^{\circ}$
	$DCA = 68,62^{\circ}$ [alt $\angle s$; $DC AB$]	✓ answer
3.3.2	$\mathbf{p}(-2.0)$ and $\mathbf{p}(1.6.0)$	(4)
3.3.2	P(-3;0) and $F(1,6;0)$	$\checkmark P(-3;0)$ $\checkmark method$
	Area POSC = Area \triangle FPC – Area \triangle OFS	
	$=\frac{1}{2}(4,6)(3)-\frac{1}{2}(1,6)(\frac{4}{3})$	$\sqrt{\frac{1}{2}}(4,6)(3)$
	= 6.9 - 1.07	$\sqrt{\frac{1}{2}(1,6)(\frac{4}{3})}$
	$= 5,83 \text{ units}^2$	- (0)
	2,52 3225	✓ answer (5)
	OR/OF	(3)
	P(-3;0)	$\checkmark P(-3;0)$
	$FC = \sqrt{\left(-2 - \frac{8}{5}\right)^2 + \left(-3 - 0\right)^2} = \frac{3\sqrt{61}}{5}$	
	Area $\triangle PFC = \frac{1}{2} (PF)(FC) \sin OFS$	
	$=\frac{1}{2}\left(\frac{23}{5}\right)\left(\frac{3\sqrt{61}}{5}\right)\sin 39,81^{\circ}$	$\checkmark \frac{1}{2} \left(\frac{23}{5}\right) \left(\frac{3\sqrt{61}}{5}\right) \sin 39.81^{\circ}$
	= 6,90	1(8)(4)
	Area $\triangle OFS = \frac{1}{2} \left(\frac{8}{5} \right) \left(\frac{4}{3} \right)$	$\checkmark \frac{1}{2} \left(\frac{8}{5} \right) \left(\frac{4}{3} \right)$
	= 1,07	
	Area POSC $= 6,90 - 1,07$	✓ method ✓ answer
	$=5,83 \text{ units}^2$	(5)
	OR/OF	` ′
	0101	

P(-3;0)

Area of POSC = Area of OSCR + Area of \triangle PRC

$$= \frac{1}{2} \left(\frac{4}{3} + 3 \right) \times 2 + \frac{1}{2} \left(1 \times 3 \right)$$
$$= \frac{35}{6}$$
$$= 5.83 \text{ units}^2$$

OR/ OF

P

R

O

P(-3;0)

Area POSC = Area ROSW + Area \triangle PRC + Area ΔWSC

$$= \left(\frac{4}{3}\right)(2) + \frac{1}{2}(1)(3) + \frac{1}{2}(2)\left(\frac{5}{3}\right)$$
$$= \frac{35}{6}$$
$$= 5.83 \text{units}^2$$

OR/OF

$$\checkmark P(-3;0)$$

✓ method

$$\checkmark \frac{1}{2} \left(\frac{4}{3} + 3 \right) \times 2 \checkmark \frac{1}{2} (1 \times 3)$$

✓ answer

(5)

$$\sqrt{P(-3;0)}$$

✓ method

$$\checkmark \frac{1}{2}(1)(3)$$

$$\checkmark \left(\frac{4}{3}\right)(2) + \frac{1}{2}(2)\left(\frac{5}{3}\right)$$

✓ answer

(5)

8

P(-3;0) Area of ΔPSC = $\frac{1}{2}$ (PC)(CS) sin DĈA	✓ P(-3;0)
$= \frac{1}{2} \left(\sqrt{10}\right) \left(\frac{\sqrt{61}}{3}\right) \sin 68,62^{\circ}$ $= 3,833$	$\sqrt{\frac{1}{2}}\left(\sqrt{10}\right)\left(\frac{\sqrt{61}}{3}\right)\sin 68,62^{\circ}$
Area of $\triangle POS = \frac{1}{2}(PO)(OS)$ $= \frac{1}{2}(3)(\frac{4}{3})$ $= 2$	$\checkmark \frac{1}{2}(3)\left(\frac{4}{3}\right)$
Area POSC = $3,833 + 2$ = $5,83$ units ²	✓ method ✓ answer (5)
	[20]

4.1	P(x;y); N(7;-2); M(3;-5)	
	$\left \frac{x+7}{2} \right = 3$ $\frac{y-2}{2} = -5$	
	$\begin{array}{ccc} z & z \\ x=-1 & y=-8 \end{array}$	$\checkmark x_P = -1 \checkmark y_P = -8$
	P(-1;-8)	(2)
4.2.1	$r^2 = (7-3)^2 + (-2-(-5))^2$ OR/OF $r^2 = (-1-3)^2 + (-8-(-5))^2$	✓ substitution into distance formula
	$r^2 = 25$	
	$(x-3)^2 + (y+5)^2 = 25$	$\sqrt{(x-3)^2 + (y+5)^2}$ $\sqrt{r^2 = 25}$
		. 25
4.2.2	5 (2) 3	(3) ✓ substitution
4.2.2	$m_{\text{radius}} = \frac{-5 - (-2)}{3 - 7} = \frac{3}{4}$	
	,	$\sqrt{m_{\text{radius}}} = \frac{-3}{-4} = \frac{3}{4}$
	$m_{\rm tangent} = -\frac{4}{3}$ [radius \perp tangent/raaklyn \perp radius]	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sqrt{m_{\text{tangent}}} = -\frac{4}{3}$
	$-2 = -\frac{4}{3}(7) + c \qquad \mathbf{OR} \qquad y - (-2) = -\frac{4}{3}(x - 7)$	\checkmark substitution of m and
	$c = \frac{22}{3}$ $y = -\frac{4}{3}x + \frac{22}{3}$	N(7; -2)
	4 22	
	$y = -\frac{4}{3}x + \frac{22}{3}$	✓ equation
		(5)
4.3	$-8 = -\frac{4}{3}(-1) + c$	\checkmark subst m and P
	3	(l f
	$\therefore c = -\frac{28}{3}$	\checkmark value of c
	5	√√ answer
	$\left -\frac{28}{3} < k < \frac{22}{3} \right $	(4)

4.4.1	$AB^2 = AM^2 - MB^2$	
	$AB^{2} = \left[(t-3)^{2} + (t+5)^{2} \right] - 5^{2}$ $= t^{2} - 6t + 9 + t^{2} + 10t + 25 - 25$ $AB = \sqrt{2t^{2} + 4t + 9}$	✓ substitution intoPythagoras✓ simplification (A)
		(2)
4.4.2	$t = \frac{-4}{2(2)}$ $= -1$	✓ substitution into correct formula $\checkmark t=-1$
	Minimum at $t=-1$	
	$AB = \sqrt{2(-1)^2 + 4(-1) + 9}$ $AB = \sqrt{7}$	✓ substitution ✓ answer (4)
	OR/OF	(4)
	4t + 4 = 0	\checkmark derivative = 0 \checkmark $t=-1$
	t=-1	ι – 1
	Minimum at $t=-1$	
	$AB = \sqrt{2(-1)^2 + 4(-1) + 9}$	✓ substitution
	$AB = \sqrt{7}$	✓ answer (4)
	OR/OF	
	Length of AB = $\sqrt{2t^2 + 4t + 9}$	
	$=\sqrt{2\left(t^2+2t+\frac{9}{2}\right)}$	
	$=\sqrt{2\left[\left(t+1\right)^2+\frac{7}{2}\right]}$	✓ completing of the square
	$=\sqrt{2(t+1)^2+7}$	
	Minimum at t = -1	$\checkmark t = -1$
	$AB = \sqrt{2(-1)^2 + 4(-1) + 9}$	√ substitution
	$AB = \sqrt{7}$	✓ substitution ✓ answer
		(4)
		[20]

5.1.1	$\sin(360^{\circ}+x)$		
	$=\sin x$	$\checkmark + \checkmark \sin x$	(2)
5.1.2		✓✓ substitution	(2)
5.1.2	$x - \text{coordinate} = \sqrt{\left(\sqrt{13}\right)^2 - \left(-3\right)^2}$	v substitution	
	=-2		
	$\tan x = \frac{-3}{2}$	✓ method	
	$\tan x = \frac{-3}{-2}$ $= \frac{3}{2}$		
	$=\frac{3}{2}$		(2)
	_		(3)
	OR/OF		
	$\sqrt{(r_1)^2+r_2^2}$		
	$x - \text{coordinate} = \sqrt{\left(\sqrt{13}\right)^2 - \left(3\right)^2}$	✓✓ substitution	
	= 2		
	$\tan x = \frac{3}{2}$	✓ method	
	2	v inculod	(3)
5.1.3	$\cos(180^{\circ} + x)$		(-)
	$=-\cos x$	$\sqrt{-\sqrt{\cos x}}$	
5.2	(000 - 0)		(2)
5.2	$\frac{\cos(90^{\circ} + \theta)}{\cos(90^{\circ} + 2 \cos(90^{\circ}))}$		
	$\sin(\theta - 180^{\circ}) + 3\sin(-\theta)$		
	$-\sin\theta$	$\sqrt{-\sin\theta}$	
	$= \frac{\sin(-(180^\circ - \theta)) - 3\sin\theta}{\sin(-(180^\circ - \theta)) - 3\sin\theta}$	$\begin{array}{c} \checkmark - \sin\theta \\ \checkmark - 3\sin\theta \end{array}$	
	$-\sin\theta$		
	$= \frac{\sin \theta}{-\sin \theta - 3\sin \theta}$	$\sqrt{-\sin\theta}$	
	$= \frac{-\sin\theta}{-4\sin\theta}$	✓ simplification	
	TOMO	Simplification	
	$=\frac{1}{4}$	✓ answer	
	4		(5)

5.3	$(\cos x + 2\sin x)(3\sin 2x - 1) = 0$	
	$\cos x + 2\sin x = 0 \qquad \text{or} \qquad 3\sin 2x - 1 = 0$	✓ both equations
	$ \tan x = -\frac{1}{2} \qquad \qquad \sin 2x = \frac{1}{3} $	$\checkmark \tan x = -\frac{1}{2}$
	ref $\angle = 26,565^{\circ}$ ref $\angle = 19,471^{\circ}$	$\checkmark \sin 2x = \frac{1}{3}$
	$x = 153,43^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$ $x = 9,74^{\circ} + k.180^{\circ}; k \in \mathbb{Z}$	3
	OR/OF or	$\checkmark x = 153,43^{\circ} \text{ OR}$ $x = 153,43^{\circ} &333,43^{\circ}$
	$x = 153,43^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $x = 80,26^{\circ} + k.180^{\circ};$	$\checkmark x = 9.74^{\circ} \& 80.26^{\circ}$ $\checkmark + k.180^{\circ}; k \in \mathbb{Z}$
	$k \in \mathbb{Z}$	
	Of 222 429 + 1,2609 + 1, = 7	
<i>5 4</i> 1	$x = 333,43^{\circ} + k.360^{\circ} ; k \in \mathbb{Z}$	(6)
5.4.1	LHS = $\cos(x+y).\cos(x-y)$	
	$= [\cos x.\cos y - \sin x.\sin y][\cos x.\cos y + \sin x.\sin y]$	✓ expansion
	$=\cos^2 x.\cos^2 y - \sin^2 x.\sin^2 y$	✓ simplification
	$= (1 - \sin^2 x)(1 - \sin^2 y) - \sin^2 x \cdot \sin^2 y$	✓ square identity
	$=1+\sin^2 x.\sin^2 y-\sin^2 x-\sin^2 y-\sin^2 x.\sin^2 y$	✓ product
	$=1-\sin^2 x-\sin^2 y = RHS$	
		(4)
5.4.2	$ \begin{aligned} 1 - \sin^2 45^\circ - \sin^2 15^\circ \\ &= \cos(45^\circ + 15^\circ) \cdot \cos(45^\circ - 15^\circ) \end{aligned} $	\checkmark identifying x and y
	$= \cos 60^{\circ} \cdot \cos 30^{\circ}$	identifying wand y
	$= \left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)$ $= \frac{\sqrt{3}}{4}$	✓ substitution
	$=\frac{\sqrt{3}}{4}$	✓ answer
		(3)
	OR/OF	
L		

$1-\sin^2 45^\circ - \sin^2 15^\circ$ = $\sin^2 15^\circ + \cos^2 15^\circ - \sin^2 45^\circ - \sin^2 15^\circ$	✓ identity
$=\cos^2 15^\circ - \left(\frac{\sqrt{2}}{2}\right)^2$	
$=\cos^2 15^\circ - \frac{1}{2}$	
$=\frac{2\cos^2 15^\circ - 1}{2}$	
$=\frac{\cos 30^{\circ}}{2}$	
$=\frac{\sqrt{3}}{2}\times\frac{1}{2}$	✓ substitution
$=\frac{\sqrt{3}}{4}$	✓ answer (3)
OR	
$1-\sin^2 45^\circ - \sin^2 15^\circ$	
$=\cos^2 45^\circ - \sin^2 \left(45^\circ - 30^\circ \right)$./ avmansion
$= \left(\frac{1}{\sqrt{2}}\right)^2 - \left(\sin 45^{\circ} \cos 30^{\circ} - \cos 45^{\circ} \sin 30^{\circ}\right)^2$	✓ expansion
	✓ substitution
$= \frac{1}{2} - \left(\frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2} - \frac{1}{\sqrt{2}} \times \frac{1}{2}\right)^2$	
$= \frac{1}{2} - \left(\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)^2$	
$= \frac{1}{2} - \left(\frac{\sqrt{3}}{2\sqrt{2}} - \frac{1}{2\sqrt{2}}\right)^2$	
$= \frac{1}{2} - \left(\frac{3}{8} - \frac{\sqrt{3}}{4} + \frac{1}{8}\right)$	✓ answer
$=\frac{\sqrt{3}}{4}$	(3)

5.5.1	$16\sin x.\cos^3 x - 8\sin x.\cos x$	
	$= 8\sin x \cdot \cos x \left(2\cos^2 x - 1\right)$	✓ factorisation
	$=4\sin 2x(\cos 2x)$	
	$=2\sin 4x$	$\checkmark 4\sin 2x \checkmark \cos 2x$
	OR/OF	✓ double angle (4)
	$16\sin x.\cos^3 x - 8\sin x.\cos x$	
	$=16\cos^2 x \left(\frac{1}{2}\sin 2x\right) - 8\left(\frac{1}{2}\sin 2x\right)$	✓ factorisation
	$=8\left(2\cos^2 x-1\right)\left(\frac{1}{2}\sin 2x\right)$	
	$=4\sin 2x.\cos 2x$	$\checkmark 4\sin 2x \checkmark \cos 2x$
	$=2\sin 4x$	✓ double angle
		(4)
5.5.2	$16\sin x.\cos^3 x - 8\sin x.\cos x = 2\sin 4x$	
	Minimum at $x = 67,5^{\circ}$	✓ answer
		(1)
		[30]

6.1	180°	✓ answer	
			(1)
6.2.1	$k = \sqrt{3} = 1,73$	✓ answer	
	,		(1)
6.2.2	$B(-120^{\circ}; \sqrt{3})$	$\sqrt{x} = -120^{\circ}$	
			(1)
6.3	Range of $g: y \in [-2, 2]$	$\sqrt{y \in [-2; 2]}$	
	Range of $2g(x)$: $y \in [-4, 4]$	✓ answer	
			(2)
	OR/OF ANSWER ONLY: Full marks		
	Range of $g: -2 \le y \le 2$	$\checkmark -2 \le y \le 2$	
	Range of $2g(x)$: $-4 \le y \le 4$	✓ answer	
			(2)
6.4	$x \in \left[-65^{\circ}; -5^{\circ}\right]$	$\checkmark \checkmark x \in [-65^\circ; -5^\circ]$	
			(2)
	OR/OF		
	(50 z z . 50	// (50// 50	
	$-65^{\circ} \le x \le -5^{\circ}$	$\checkmark \checkmark -65^{\circ} \le x \le -5^{\circ}$	(2)
<i></i>			(2)
6.5	$\sin x.\cos x = p$		
	$4\sin x.\cos x = 4p$	$\sqrt{2}\sin 2x = 4p$	
	$2\sin 2x = 4p$		
	$4p = \pm 2$	$\checkmark 4p = \pm 2$	
	-	✓ answers	
	$\therefore p = -\frac{1}{2} \text{ or } \frac{1}{2}$ ANSWER ONLY: Full marks	answers	
	Z Z		(3)
			[10]

7.1	$AD^2 = AB^2 + BD^2$	
	$AD^2 = \left(\sqrt{5}p\right)^2 + \left(2p\right)^2$	✓ substitution in Pythagoras
	$AD^2 = 9p^2$	
	AD = 3p	✓ answer (2)
7.2	$\frac{\text{CD}}{\sin(135^\circ - x)} = \frac{3p}{\sin x}$	✓ correct use of sine rule
	$CD = \frac{3p\sin(135^\circ - x)}{\sin x}$	✓ 135° – x
	$CD = \frac{3p(\sin 135^{\circ}\cos x - \cos 135^{\circ}\sin x)}{\sin x}$	✓ compound angle
	$CD = \frac{3p(\sin 45^{\circ}\cos x + \cos 45^{\circ}\sin x)}{\sin x}$	
	$CD = \frac{3p\left(\frac{\sqrt{2}}{2}\cos x + \frac{\sqrt{2}}{2}\sin x\right)}{\sin x}$	✓ special values
	$CD = \frac{3p\left(\frac{\sqrt{2}}{2}\right)(\cos x + \sin x)}{\sin x}$	✓ factorisation
	$CD = \frac{3p(\sin x + \cos x)}{\sqrt{2}\sin x}$	
	$\sqrt{2} \sin x$	(5)

17 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

7.3	Area $\triangle ADC = \frac{1}{2}(AD)(CD)\sin ADC$	✓ correct use of area rule
	$= \frac{1}{2} (3p) \left(\frac{3p \left(\sin x + \cos x \right)}{\sqrt{2} \sin x} \right) (\sin 45^{\circ})$	
	$= \frac{1}{2} \left(30 \left(\frac{30 \left(\sin 110^{\circ} + \cos 110^{\circ} \right)}{\sqrt{2} \sin 110^{\circ}} \right) \sin 45^{\circ} \right)$	✓ substitution in area rule
	$=143,11m^2$	✓ answer
		(3) [10]

8.1.1	P = 116°	[opp ∠s of cyclic quad/teenoorst. ∠e van kvh]	✓ S ✓ R	(2)
8.1.2	$\hat{M}_1 + 64^\circ = 90^\circ$ $\hat{M}_1 = 26^\circ$	[∠ in semi-circle/∠ in halwe sirkel]	✓ R ✓ S	
				(2)
8.1.3	$\hat{O}_1 = 52^{\circ}$	[\angle at centre = 2 x \angle at circumference/midpts. \angle = 2 x omtreks. \angle]	✓ S ✓R	
		- 2 x onurers. Zj		(2)

8.2.1	Midpt theorem/Midpt. Stelling		✓ R	(1)
	OR/OF			(1)
	Converse prop intercept theorem	m	✓ R	(1)
8.2.2	BG = 2DE or 6x - 2	[Midpt theorem/Midpt. stelling]	✓S ✓R	(-)
	BG = 6x - 2		✓ S ✓R	
	$\frac{GH}{BG} = \frac{FC}{BF}$	[line one side of Δ OR		
		prop theorem; FG \parallel CH $/$ $lyn \parallel een sy v. \Delta$]		
	$\frac{x+1}{6x-2} = \frac{1}{4}$		\checkmark equation into x	
	4x + 4 = 6x - 2			
	2x = 6 $x = 3$		✓ answer	
				(6)
	OR/OF			

20 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

$\frac{BF}{FC} = \frac{BG}{GH}$	[line \parallel one side of Δ OR prop theorem; FG \parallel CH $/$	✓ S ✓ R
	$lyn \parallel een \ sy \ v. \ \Delta]$	
$\frac{AE}{AG} = \frac{DE}{BG}$	$[\Delta ADE \parallel\!\mid\! \Delta ABG]$	✓ S ✓R
BG = 4x + 4		
$\frac{1}{2} = \frac{3x - 1}{4x + 4}$		\checkmark equation into x
$\therefore 4x + 4 = 6x - 2$		
$\therefore x = 3$		✓ answer (6)
		[13]

9.1.1	Construction:		
	Draw OA and OB		✓ construction
	In \triangle ADO and \triangle BDO		
	OA = OB	[radii/radiusse]	
	OD = OD	[common side/gemeenskaplike sy]	✓ first pair of sides
	AD = DB	[given/gegee]	✓ other 2 pairs
	$\therefore \Delta ADO \equiv \Delta BDO$	[S;S;S]	✓ R
	ADB is a straight line		/ D
	$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{D}}_2$	$\Delta ADO \equiv \Delta BDO$	✓ R
	∴ OD⊥AB	$[\angle s \text{ on a str line}/\angle e \text{ op 'n reguitlyn}]$	
			(5)
	OR/OF		
	Construction:		
	Draw OA and OB		✓ construction
	In ΔADO and ΔBDO		
	AD = DB	[given/gegee]	✓ first pair of sides
	$\hat{A} = \hat{B}$	[∠s opp; ∠s sides /∠e teenoor	
		gelyke sye]	(1 2 :
	OA = OB	[radii/radiusse]	✓ other 2 pairs
	∴ ΔADO≡ ΔBDO	[S;∠;S]	✓ R
	ADB is a straight line		
	$\therefore \hat{\mathbf{D}}_1 = \hat{\mathbf{D}}_2$	$\Delta ADO \equiv \Delta BDO$	✓ R
	∴ OD ⊥ AB	$[\angle s \text{ on a str line}/\angle e \text{ op 'n reguitlyn}]$	(5)

9.2.1	OTG = 90°	[line from centre to midpt of chord/ midpt. sirkel; midpt. koord]	✓S ✓ R	
	$O\hat{B}G = 90^{\circ}$ ∴ $O\hat{T}G = O\hat{B}G = 90^{\circ}$	[$tan \perp radius/raaklyn \perp radius$]	✓S ✓R	
		drilateral [line subtends equal ∠s OR converse ∠s in the same segment/	✓ R	
		lyn onderspan gelyke $\angle e$]		(5)
9.2.2	$\hat{S} = B\hat{T}G$	[corresp ∠s; GF PS / ooreenk. ∠s; GF PS]	✓S ✓R	
	But $B\hat{T}G = G\hat{O}B$	[∠s in the same segment/∠e in dies. sirkelsegment]	✓S ✓R	
	$\hat{GOB} = \hat{S}$	smessegment 1		(4)
				[14]

10.1	$\hat{P}_1 = \hat{Q}_1$	[tan-chord theorem/∠ tussen raaklyn en koord]	✓ S
	$\begin{vmatrix} \hat{\mathbf{S}}_1 = \hat{\mathbf{Q}}_1 + \hat{\mathbf{Q}}_2 \\ \therefore \hat{\mathbf{S}}_1 = \hat{\mathbf{P}}_1 + \hat{\mathbf{Q}}_2 \end{vmatrix}$	[ext \angle of cyclic quad/buite \angle v. kvh]	\checkmark S/R
	$\hat{T}_2 = \hat{R}_2 + \hat{Q}_2$ but $\hat{P}_1 = \hat{R}_2$	[ext \angle of \triangle /buite \angle v. \triangle]	✓ S
	$\hat{\mathbf{T}}_2 = \hat{\mathbf{P}}_1 + \hat{\mathbf{Q}}_2$	[given/gegee]	✓ S
	$\therefore \hat{\mathbf{S}}_1 = \hat{\mathbf{T}}_2 = \hat{\mathbf{P}}_1 + \hat{\mathbf{Q}}_2$		(4)
10.2	In \triangle ASD and \triangle ACR		✓ identifying Δ 's
	$\hat{A} = \hat{A}$	[common \angle /gemeenskaplike \angle]	✓ S
	$\hat{\mathbf{S}}_1 = \hat{\mathbf{T}}_2$	[proven/reeds bewys]	
	$\hat{\mathbf{T}}_2 = \hat{\mathbf{C}}_2$	[alt \angle s; QS \parallel CA/verw. \angle e; QS \parallel CA	✓ S/R
			✓ S
	$ \hat{\mathbf{S}}_1 = \hat{\mathbf{C}}_2 $		✓ S
	$\hat{\mathbf{D}}_1 = \hat{\mathbf{R}}_1$	[sum of \angle s in Δ / \angle e v. Δ]	~
	ΔASD ∥ ΔACR		
	$\therefore \frac{AD}{AR} = \frac{AS}{AC}$	[corresponding sides in proportion/	
	AK AC	ooreenstemmende sy in dies. verhouding]	
			(5)
	OR/OF		

	In \triangle ASD and \triangle ACR		✓ identifying ∆'s
	$\hat{A} = \hat{A}$	[common ∠/gemeenskaplike ∠]	✓ S
	$\hat{\mathbf{S}}_1 = \hat{\mathbf{T}}_2$	[proven/gegee]	
	$\hat{\mathbf{T}}_2 = \hat{\mathbf{C}}_2$	[alt \angle s; QS CA/verw. $\angle e$; QS CA]	✓ S/R
	$\therefore \hat{\mathbf{S}}_1 = \hat{\mathbf{C}}_2$		✓ S
	$\Delta ASD \parallel \Delta ACR$	[∠;∠;∠]	✓ R
	$\therefore \frac{AD}{AR} = \frac{AS}{AC}$	[corresponding sides in proportion/	
		ooreenstemmende sy in dies. verhouding]	
			(5)
10.3	$\frac{AS}{AC} = \frac{SD}{CR}$	[ΔASD ΔACR]	✓ S
	$\therefore AS = \frac{AC \times SD}{CR}$		
	$\frac{AS}{AR} = \frac{CT}{CR}$	[line \parallel one side of Δ OR prop theorem; TS \parallel CA/lyn \parallel een sy v. Δ]	✓ S ✓ R
	$\therefore AS = \frac{AR \times CT}{CR}$		
	$\therefore \frac{AC \times SD}{CR} = \frac{AR \times CR}{CR}$	CT E	✓ equating
	$\therefore AC \times SD = AR \times$	СТ	
			(4)
			[13]

TOTAL/TOTAAL: 150