### УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники Дисциплина «Дискретная математика»

## Курсовая работа

Часть 1 Вариант 41

> Студент Кучерук Родион Олегович Р3132

Преподаватель Поляков Владимир Иванович Функция  $f(x_1,x_2,x_3,x_4,x_5)$  принимает значение 1 при  $-2 \le x_2x_30 - x_4x_5x_1 < 3$  и неопределенное значение при  $x_2x_30 - x_4x_5x_1 = -1$ 

### Таблица истинности

| №  | $x_1$ | $x_2$ | $x_3$ | $x_4$ | $x_5$ | $x_2x_30$ | $x_4x_5x_1$ | $x_2x_30$ | $x_4x_5x_1$ | f |
|----|-------|-------|-------|-------|-------|-----------|-------------|-----------|-------------|---|
| 0  | 0     | 0     | 0     | 0     | 0     | 0         | 0           | 0         | 0           | 1 |
| 1  | 0     | 0     | 0     | 0     | 1     | 0         | 2           | 0         | 2           | 1 |
| 2  | 0     | 0     | 0     | 1     | 0     | 0         | 4           | 0         | 4           | 0 |
| 3  | 0     | 0     | 0     | 1     | 1     | 0         | 6           | 0         | 6           | 0 |
| 4  | 0     | 0     | 1     | 0     | 0     | 2         | 0           | 2         | 0           | 1 |
| 5  | 0     | 0     | 1     | 0     | 1     | 2         | 2           | 2         | 2           | 1 |
| 6  | 0     | 0     | 1     | 1     | 0     | 2         | 4           | 2         | 4           | 1 |
| 7  | 0     | 0     | 1     | 1     | 1     | 2         | 6           | 2         | 6           | 0 |
| 8  | 0     | 1     | 0     | 0     | 0     | 4         | 0           | 4         | 0           | 0 |
| 9  | 0     | 1     | 0     | 0     | 1     | 4         | 2           | 4         | 2           | 1 |
| 10 | 0     | 1     | 0     | 1     | 0     | 4         | 4           | 4         | 4           | 1 |
| 11 | 0     | 1     | 0     | 1     | 1     | 4         | 6           | 4         | 6           | 1 |
| 12 | 0     | 1     | 1     | 0     | 0     | 6         | 0           | 6         | 0           | 0 |
| 13 | 0     | 1     | 1     | 0     | 1     | 6         | 2           | 6         | 2           | 0 |
| 14 | 0     | 1     | 1     | 1     | 0     | 6         | 4           | 6         | 4           | 1 |
| 15 | 0     | 1     | 1     | 1     | 1     | 6         | 6           | 6         | 6           | 1 |
| 16 | 1     | 0     | 0     | 0     | 0     | 0         | 1           | 0         | 1           | d |
| 17 | 1     | 0     | 0     | 0     | 1     | 0         | 3           | 0         | 3           | 0 |
| 18 | 1     | 0     | 0     | 1     | 0     | 0         | 5           | 0         | 5           | 0 |
| 19 | 1     | 0     | 0     | 1     | 1     | 0         | 7           | 0         | 7           | 0 |
| 20 | 1     | 0     | 1     | 0     | 0     | 2         | 1           | 2         | 1           | 1 |
| 21 | 1     | 0     | 1     | 0     | 1     | 2         | 3           | 2         | 3           | d |
| 22 | 1     | 0     | 1     | 1     | 0     | 2         | 5           | 2         | 5           | 0 |
| 23 | 1     | 0     | 1     | 1     | 1     | 2         | 7           | 2         | 7           | 0 |
| 24 | 1     | 1     | 0     | 0     | 0     | 4         | 1           | 4         | 1           | 0 |
| 25 | 1     | 1     | 0     | 0     | 1     | 4         | 3           | 4         | 3           | 1 |
| 26 | 1     | 1     | 0     | 1     | 0     | 4         | 5           | 4         | 5           | d |
| 27 | 1     | 1     | 0     | 1     | 1     | 4         | 7           | 4         | 7           | 0 |
| 28 | 1     | 1     | 1     | 0     | 0     | 6         | 1           | 6         | 1           | 0 |
| 29 | 1     | 1     | 1     | 0     | 1     | 6         | 3           | 6         | 3           | 0 |
| 30 | 1     | 1     | 1     | 1     | 0     | 6         | 5           | 6         | 5           | 1 |
| 31 | 1     | 1     | 1     | 1     | 1     | 6         | 7           | 6         | 7           | d |

# Аналитический вид

### Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \,$ 

#### Каноническая КНФ:

 $f = (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (x_1 \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$   $(x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5})$   $(\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5)$   $(\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5})$ 

# Минимизация булевой функции методом Квайна-Мак-Класки

### Кубы различной размерности и простые импликанты

|          | $K^0(f)$ |               | K                   | $^{-1}(f)$ |          | $K^2(f)$                                  |       | Z(f)  |
|----------|----------|---------------|---------------------|------------|----------|-------------------------------------------|-------|-------|
| $m_0$    | 00000    | $\checkmark$  | $m_0$ - $m_1$       | 0000X      | <b>√</b> | $m_0$ - $m_1$ - $m_4$ - $m_5$             | 00X0X | 001X0 |
| $m_1$    | 00001    |               | $m_0$ - $m_4$       | 00X00      | ✓        | $m_0$ - $m_4$ - $m_{16}$ - $m_{20}$       | X0X00 | 0X001 |
| $m_4$    | 00100    | ✓             | $m_0$ - $m_{16}$    | X0000      | ✓        | $m_4$ - $m_5$ - $m_{20}$ - $m_{21}$       | X010X | 010X1 |
| $m_{16}$ | 10000    | ✓             | $m_4$ - $m_5$       | 0010X      | <b>√</b> | $m_{10}$ - $m_{11}$ - $m_{14}$ - $m_{15}$ | 01X1X | 0X110 |
| $m_5$    | 00101    | $\overline{}$ | $m_4$ - $m_6$       | 001X0      |          | $m_{10}$ - $m_{14}$ - $m_{26}$ - $m_{30}$ | X1X10 | X1001 |
| $m_6$    | 00110    | ✓             | $m_1$ - $m_5$       | 00X01      | ✓        | $m_{14}$ - $m_{15}$ - $m_{30}$ - $m_{31}$ | X111X | 00X0X |
| $m_9$    | 01001    | ✓             | $m_1$ - $m_9$       | 0X001      |          |                                           |       | X0X00 |
| $m_{10}$ | 01010    | ✓             | $m_{16}$ - $m_{20}$ | 10X00      | ✓        |                                           |       | X010X |
| $m_{20}$ | 10100    | ✓             | $m_4$ - $m_{20}$    | X0100      | ✓        |                                           |       | 01X1X |
| $m_{11}$ | 01011    | <b>√</b>      | $m_{10}$ - $m_{11}$ | 0101X      | <b>√</b> |                                           |       | X1X10 |
| $m_{14}$ | 01110    | ✓             | $m_9$ - $m_{11}$    | 010X1      |          |                                           |       | X111X |
| $m_{25}$ | 11001    | ✓             | $m_{10}$ - $m_{14}$ | 01X10      | ✓        |                                           |       |       |
| $m_{21}$ | 10101    | ✓             | $m_6$ - $m_{14}$    | 0X110      |          |                                           |       |       |
| $m_{26}$ | 11010    | ✓             | $m_{20}$ - $m_{21}$ | 1010X      | ✓        |                                           |       |       |
| $m_{15}$ | 01111    | <b>√</b>      | $m_5$ - $m_{21}$    | X0101      | ✓        |                                           |       |       |
| $m_{30}$ | 11110    | ✓             | $m_9$ - $m_{25}$    | X1001      |          |                                           |       |       |
| $m_{31}$ | 11111    | <b>√</b>      | $m_{10}$ - $m_{26}$ | X1010      | ✓        |                                           |       |       |
|          |          |               | $m_{14}$ - $m_{15}$ | 0111X      | <b>√</b> |                                           |       |       |
|          |          |               | $m_{11}$ - $m_{15}$ | 01X11      | ✓        |                                           |       |       |
|          |          |               | $m_{26}$ - $m_{30}$ | 11X10      | ✓        |                                           |       |       |
|          |          |               | $m_{14}$ - $m_{30}$ | X1110      | ✓        |                                           |       |       |
|          |          |               | $m_{30}$ - $m_{31}$ | 1111X      | <b>√</b> |                                           |       |       |
|          |          |               | $m_{15}$ - $m_{31}$ | X1111      | ✓        |                                           |       |       |

### Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

|    |                    | 0-кубы |   |   |   |   |   |    |    |    |    |    |    |    |
|----|--------------------|--------|---|---|---|---|---|----|----|----|----|----|----|----|
|    |                    | 0      | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 1  | 1  | 1  |
|    |                    |        | 0 | 0 | 0 | 0 | 1 | 1  | 1  | 1  | 1  | 0  | 1  | 1  |
| Пр | Простые импликанты |        |   | 1 | 1 | 1 | 0 | 0  | 0  | 1  | 1  | 1  | 0  | 1  |
|    |                    |        | 0 | 0 | 0 | 1 | 0 | 1  | 1  | 1  | 1  | 0  | 0  | 1  |
|    |                    |        | 1 | 0 | 1 | 0 | 1 | 0  | 1  | 0  | 1  | 0  | 1  | 0  |
|    |                    |        | 1 | 4 | 5 | 6 | 9 | 10 | 11 | 14 | 15 | 20 | 25 | 30 |
| A  | 001X0              |        |   | X |   | X |   |    |    |    |    |    |    |    |
| В  | 0X001              |        | X |   |   |   | X |    |    |    |    |    |    |    |
| С  | 010X1              |        |   |   |   |   | X |    | X  |    |    |    |    |    |
| D  | 0X110              |        |   |   |   | X |   |    |    | X  |    |    |    |    |
|    | X1001              |        |   |   |   |   | X |    |    |    |    |    | Х  |    |
| E  | 00X0X              | X      | X | X | X |   |   |    |    |    |    |    |    |    |
| F  | X0X00              | X      |   | X |   |   |   |    |    |    |    | X  |    |    |
| G  | X010X              |        |   | X | X |   |   |    |    |    |    | X  |    |    |
| Н  | 01X1X              |        |   |   |   |   |   | X  | X  | X  | X  |    |    |    |
| I  | X1X10              |        |   |   |   |   |   | X  |    | X  |    |    |    | X  |
| J  | X111X              |        |   |   |   |   |   |    |    | X  | X  |    |    | X  |

Ядро покрытия:

$$T = \{X1001\}$$

Получим следующую упрощенную импликантную таблицу:

|    |       |   | 0-кубы |   |   |   |    |    |    |    |    |    |  |  |
|----|-------|---|--------|---|---|---|----|----|----|----|----|----|--|--|
|    |       |   | 0      | 0 | 0 | 0 | 0  | 0  | 0  | 0  | 1  | 1  |  |  |
|    |       |   | 0      | 0 | 0 | 0 | 1  | 1  | 1  | 1  | 0  | 1  |  |  |
| Пр | 0     | 0 | 1      | 1 | 1 | 0 | 0  | 1  | 1  | 1  | 1  |    |  |  |
|    |       |   | 0      | 0 | 0 | 1 | 1  | 1  | 1  | 1  | 0  | 1  |  |  |
|    |       |   | 1      | 0 | 1 | 0 | 0  | 1  | 0  | 1  | 0  | 0  |  |  |
|    |       |   | 1      | 4 | 5 | 6 | 10 | 11 | 14 | 15 | 20 | 30 |  |  |
| A  | 001X0 |   |        | X |   | X |    |    |    |    |    |    |  |  |
| В  | 0X001 |   | X      |   |   |   |    |    |    |    |    |    |  |  |
| С  | 010X1 |   |        |   |   |   |    | X  |    |    |    |    |  |  |
| D  | 0X110 |   |        |   |   | X |    |    | X  |    |    |    |  |  |
| E  | 00X0X | X | X      | X | X |   |    |    |    |    |    |    |  |  |
| F  | X0X00 | X |        | X |   |   |    |    |    |    | X  |    |  |  |
| G  | X010X |   |        | X | X |   |    |    |    |    | X  |    |  |  |
| Н  | 01X1X |   |        |   |   |   | X  | X  | X  | X  |    |    |  |  |
| I  | X1X10 |   |        |   |   |   | X  |    | X  |    |    | X  |  |  |
| J  | X111X |   |        |   |   |   |    |    | X  | X  |    | X  |  |  |

#### Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (E \vee F) \ (B \vee E) \ (A \vee E \vee F \vee G) \ (E \vee G) \ (A \vee D) \ (H \vee I) \ (C \vee H) \ (D \vee H \vee I \vee J) \ (H \vee J) \ (F \vee G) \ (I \vee J)$$

Приведем выражение в ДНФ:

 $Y = A \, E \, F \, H \, I \vee A \, E \, F \, H \, J \vee A \, E \, G \, H \, I \vee A \, E \, G \, H \, J \vee D \, E \, F \, H \, I \vee D \, E \, F \, H \, J \vee D \, E \, G \, H \, I \vee D \, E \, G \, H \, J \vee C \, D \, E \, G \, H \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \vee C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \, E \, G \, I \, J \wedge C \, D \,$ 

Возможны следующие покрытия:

$$C_{1} = \begin{cases} T \\ A \\ E \\ F \\ H \\ I \end{cases} = \begin{cases} X1001 \\ 001X0 \\ 00X0X \\ X0X00 \\ 01X1X \\ X1X10 \end{cases} \qquad C_{2} = \begin{cases} T \\ A \\ E \\ F \\ H \\ J \end{cases} = \begin{cases} X1001 \\ 001X0 \\ 00X0X \\ X0X00 \\ 01X1X \\ X111X \end{cases} \qquad C_{3} = \begin{cases} T \\ A \\ E \\ G \\ H \\ I \end{cases} = \begin{cases} X1001 \\ 001X0 \\ 00X0X \\ X010X \\ 01X1X \\ X1X10 \end{cases}$$

$$S_{1}^{a} = 20 \\ S_{1}^{b} = 26 \qquad S_{2}^{a} = 20 \\ S_{2}^{b} = 26 \qquad S_{3}^{a} = 20 \\ S_{2}^{b} = 26 \qquad S_{3}^{b} = 26 \end{cases}$$

$$C_{4} = \begin{cases} T \\ A \\ E \\ G \\ H \\ J \end{cases} = \begin{cases} X1001 \\ 001X0 \\ 00X0X \\ X010X \\ 01X1X \\ X111X \end{cases} \qquad C_{5} = \begin{cases} T \\ D \\ E \\ H \\ I \end{cases} = \begin{cases} X1001 \\ 0X110 \\ 00X0X \\ X0X00 \\ 01X1X \\ X1X11X \end{cases}$$

$$C_{6} = \begin{cases} T \\ D \\ E \\ F \\ H \\ J \end{cases} = \begin{cases} X1001 \\ 0X110 \\ 00X0X \\ X0X00 \\ 01X1X \\ X1111X \end{cases}$$

$$S_{4}^{a} = 20 \\ S_{5}^{a} = 20 \\ S_{5}^{b} = 26 \qquad S_{5}^{a} = 20 \\ S_{5}^{b} = 26 \end{cases}$$

$$S_{5}^{a} = 20 \\ S_{5}^{b} = 26 \qquad S_{6}^{a} = 20 \\ S_{6}^{b} = 26 \end{cases}$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} X1001\\ 001X0\\ 00X0X\\ X0X00\\ 01X1X\\ X1X10 \end{cases}$$
$$S^{a} = 20$$
$$S^{b} = 26$$

Этому покрытию соответствует следующая МДНФ:

### Минимизация булевой функции на картах Карно

### Определение МДНФ



 $f = x_2\,\overline{x_3}\,\overline{x_4}\,x_5 \vee \overline{x_1}\,\overline{x_2}\,x_3\,\overline{x_5} \vee \overline{x_1}\,\overline{x_2}\,\overline{x_4} \vee \overline{x_2}\,\overline{x_4}\,\overline{x_5} \vee \overline{x_1}\,x_2\,x_4 \vee x_2\,x_4\,\overline{x_5}$ 

### Определение МКНФ



 $f = (x_2 \vee x_3 \vee \overline{x_4}) \ (x_2 \vee \overline{x_4} \vee \overline{x_5}) \ (\overline{x_2} \vee x_4 \vee x_5) \ (\overline{x_2} \vee \overline{x_3} \vee x_4) \ (\overline{x_1} \vee x_2 \vee \overline{x_4}) \ (\overline{x_1} \vee x_2 \vee x_3) \ (\overline{x_1} \vee x_3 \vee \overline{x_4})$ 

# Преобразование минимальных форм булевой функции

### Факторизация и декомпозиция МДНФ

$$f=x_2\,\overline{x_3}\,\overline{x_4}\,x_5\vee\overline{x_1}\,\overline{x_2}\,x_3\,\overline{x_5}\vee\overline{x_1}\,\overline{x_2}\,\overline{x_4}\vee\overline{x_2}\,\overline{x_4}\,\overline{x_5}\vee\overline{x_1}\,x_2\,x_4\vee x_2\,x_4\,\overline{x_5} \quad S_Q=26 \quad \tau=2$$
 Декомпозиция невозможна 
$$f=(\overline{x_1}\vee\overline{x_5})\,\left(x_2\,x_4\vee\overline{x_2}\,\overline{x_4}\right)\vee x_2\,\overline{x_3}\,\overline{x_4}\,x_5\vee\overline{x_1}\,\overline{x_2}\,x_3\,\overline{x_5} \qquad \qquad S_Q=21 \quad \tau=4$$

#### Факторизация и декомпозиция МКНФ

$$f = \underbrace{(x_2 \vee x_3 \vee \overline{x_4})}_{(\overline{x_1} \vee x_2 \vee \overline{x_4})} \underbrace{(x_2 \vee \overline{x_4} \vee \overline{x_5})}_{(\overline{x_2} \vee x_3 \vee \overline{x_4})} \underbrace{(\overline{x_2} \vee \overline{x_3} \vee x_4)}_{S_Q = 28} \quad \tau = 2$$

$$f = \underbrace{(x_2 \vee \overline{x_4} \vee \overline{x_1} x_3 \overline{x_5})}_{\overline{x_1} \vee x_3 \vee x_2 \overline{x_4}} \underbrace{(\overline{x_2} \vee x_4 \vee \overline{x_3} x_5)}_{S_Q = 19} \quad \tau = 3$$

$$\varphi = \underbrace{x_2 \overline{x_4}}_{\overline{\varphi} = \overline{x_2} \vee x_4}$$

$$\overline{\varphi} = \underbrace{\overline{x_2} \vee x_4}_{\overline{x_1} \times x_3 \overline{x_5}} \underbrace{(\overline{x_1} \vee x_3 \vee \varphi)}_{\overline{\varphi} \vee \overline{x_3} \times 5} \underbrace{(\overline{\varphi} \vee \overline{x_3} x_5)}_{S_Q = 19} \quad \tau = 4$$
Декомпозиция нецелесообразна
$$f = \underbrace{(x_2 \vee \overline{x_4} \vee \overline{x_1} x_3 \overline{x_5})}_{\overline{x_1} \vee x_3 \vee x_3 \vee x_2 \overline{x_4}} \underbrace{(\overline{x_2} \vee x_4 \vee \overline{x_3} x_5)}_{S_Q = 19} \quad \tau = 3$$

### Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 0]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 1, x_5 = 1]) = 0$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 0]) = 1$$

$$f([x_1 = 0, x_2 = 0, x_3 = 0, x_4 = 0, x_5 = 1]) = 1$$

### Булев базис

Схема по упрощенной МДНФ:

$$f = (\overline{x_1} \vee \overline{x_5}) (x_2 x_4 \vee \overline{x_2} \overline{x_4}) \vee x_2 \overline{x_3} \overline{x_4} x_5 \vee \overline{x_1} \overline{x_2} x_3 \overline{x_5} \quad (S_Q = 21, \tau = 4)$$



Схема по упрощенной МКНФ:

$$f = (x_2 \vee \overline{x_4} \vee \overline{x_1} \, x_3 \, \overline{x_5}) \, (\overline{x_1} \vee x_3 \vee x_2 \, \overline{x_4}) \, (\overline{x_2} \vee x_4 \vee \overline{x_3} \, x_5) \quad (S_Q = 19, \tau = 3)$$



### Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДН $\Phi$  в базисе И, НЕ:

$$f = \overline{\overline{x_2 \, x_4 \, \overline{x_1} \, x_5}} \, \overline{\overline{x_2} \, \overline{x_4} \, \overline{x_1} \, x_5} \, \overline{\overline{x_2} \, \overline{x_3} \, \overline{x_4} \, x_5} \, \overline{\overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_5}} \quad (S_Q = 29, \tau = 6)$$



Схема по упрощенной МКН $\Phi$  в базисе И, НЕ:

$$f = \overline{\overline{x_2} \, x_4} \, \overline{\overline{x_1} \, x_3 \, \overline{x_5}} \, \overline{x_1 \, \overline{x_3} \, \overline{\varphi}} \, \overline{\varphi} \, \overline{\overline{x_3} \, x_5} \quad (S_Q = 24, \tau = 5)$$
$$\varphi = x_2 \, \overline{x_4}$$



### Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДН $\Phi$  в базисе И-НЕ с ограничением на число входов:





Схема по упрощенной МКН $\Phi$  в базисе И-НЕ с ограничением на число входов:

$$f = \overline{\overline{x_2}} \overline{x_4} \overline{\overline{x_1}} \overline{\overline{x_3}} \overline{\overline{x_5}} \overline{x_1} \overline{\overline{x_3}} \overline{\overline{x_2}} \overline{\overline{x_4}} \overline{\overline{x_2}} \overline{\overline{x_4}} \overline{\overline{x_3}} \overline{x_5} \qquad (S_Q = 36, \tau = 8)$$

