ELEKTRİK MAKİNALARI – 2 FİNAL SINAVI SORULARI 19.6.2019 Süre: 80 dakika

1) Üç fazlı, statoru Y bağlı, 50Hz'lik, 8 kutuplu bir asenkron jeneratörünün tek faza indirgenmiş ve <u>statora</u> yansıtılmış eşdeğer devre parametreleri

$$r_1 = 0.25 \,\Omega$$
 , $r_2' = 0.80 \,\Omega$, $x_1 = x_2' = 4.80 \,\Omega$, $g_c = 0.005 \,S$, $b_m = 0.008 \,S$

olup statoruna <u>fazlar arası</u> 381V uygulanırken 800 devir/dakika hızla dönmekte ve sürtünme kaybı 1000W olmaktadır. Yaklaşık eşdeğer devre kullanarak bu çalışma için jeneratörün verimini ve brüt giriş torkunu hesaplayınız. **(25 puan)**

2) Y/Y bağlı bilezikli bir asenkron motorun tek faza indirgenmiş ve statora yansıtılmış eşdeğer devre parametreleri

$$r_1 = 0.50 \,\Omega$$
 , $r_2' = 1.50 \,\Omega$, $x_1 = x_2' = 9.00 \,\Omega$, $g_c = 0.003 \,S$, $b_m = 0.006 \,S$ ve stator/rotor tek faz sarım oranı 2/1'dir.

a) Kalkış torkunu maksimum yapmak için rotor sargı uçlarına Y bağlı olarak faz başına ilave edilmesi gereken direnci hesaplayınız. (12 puan)

Yardımcı formül:
$$S_{T \text{ max}} = \frac{r'_{2Top}}{\sqrt{R_1^2 + (X_1 + x'_2)^2}}$$

- b) Rotor sargı uçlarına Y bağlı olarak faz başına ilave edilen direnç rotor sargı direncine eşit olsaydı kalkış torku ilavesiz durumun kaç katı olurdu? (3 puan)
- 3) Üç fazlı, 50 Hz'lik, 1500 devir/dakikalık, **yıldız** bağlı, 380V'luk, 37 kVA'lık silindirik rotorlu bir senkron alternatöre açık devre ve kısa devre testleri yapılıyor. Aşağıdaki sonuçlar (hat değerleri) elde ediliyor.

Açık Devre Testi	
Uyartım akımı	Armatür hat
(A)	gerilimi (V)
0,3	120
0,6	240
0,9	320
1,2	380
1,5	420

Kısa Devre Testi	
Uyartım akımı	Armatür hat
(A)	akımı (A)
0,3	17,1
0,6	34,2
0,9	51,3
1,2	68,4
1,5	85,5

- a) Makinanın doymuş ve doymamış senkron reaktansları ile kısa devre oranını bulunuz (20 puan). (Armatür direnci ihmal ediliyor.)
- **b)** Senkron reaktans birim değer (*per unit* = p.u.) cinsinden ne kadardır? (**5 puan**)
- 4) Silindirik rotorlu bir senkron motorun senkron reaktansı 0,75 p.u. olup ideal bir kaynaktan anma geriliminde, **yarı yükte** birim güç faktörü ile çalışacak şekilde uyartım akımı ayarlanıp bu değerinde sabit tutuluyor. Bu gerilim ve uyartım akımı uygulanırken motorun verebileceği maksimum güç, p.u. olarak ne olur? (15 puan)
- 5) Çıkık kutuplu bir senkron alternatörün senkron reaktansı d ve q bileşenleri için sırasıyla 0,85 p.u. ve 0,70 p.u. olup armatür direnci ihmal ediliyor. Alternatör, anma voltajında, 0,65 geri güç faktörü ile <u>varı yükte</u> çalışıyorsa uyartım gerilimi \vec{E}_f ne olur? (p.u. cinsinden <u>vektörel</u> olarak bulunuz) (20 puan)

$$\vec{E}_f' = \vec{V}_t + r_1 \vec{I}_a + j x_{sq} \vec{I}_a$$
 $E_f = E_f' + (x_{sd} - x_{sq}) I_d$

BAŞARILAR ...

ELEKTRİK MAKİNALARI – 2 FİNAL SINAVI CEVAP ANAHTARI 19 Haziran 2019

1)
$$n_s = 750 \, \text{rpm}$$
 $s = -0.0667$ $r_y = -12.8 \, \text{T}$ $\vec{V}_1 = 220 \, \text{V} \, \text{Lo}^2$
 $T_2' = 14.50 \, \text{A}$ $P_{cu} = 662 \, \text{W}$ $P_{fe} = 726 \, \text{W}$
 $P_m = 8071 \, \text{W}$ $P_g = 9071 \, \text{W}$ $P_q = 6683 \, \text{W}$
 $\eta = \% 73.7$ $\omega_c = 83.78 \, \text{rad/s}$ $T_g = 108.3 \, \text{Nm}$

Z) a) Kalkış sırasında $n_r = 0$ olduğu için s = 1 olur. $\frac{r'_{2Top}}{\sqrt{1.50^2 + (9.0 + 9.0)^2}} = 1$ $s_{T_{max}} = 1$ yapılmalıdır. Bu yüzden

$$\frac{r'_{2Top}}{\sqrt{1,50^2 + (9,0+9,0)^2}} \Omega = 1$$

Burada aslında maksimum tork sorulmasına niyetlenilmiş fakat sehven kalkış torku sorulmuştur. Maksimum tork r'_2 'den de r_2 'den de r_{2ilave} 'den de bağımsızdır. Değişmediği için tam 1 katı olurdu.

Kalkış torkuna göre ise bu sorunun hesabı biraz daha karışıktır. Şöyle ki:

Aşağıdaki tork formülünde s = 1 , aynı voltaj ve aynı frekans için sağdaki kesir kısmı oranı belirler. Önce verilen parametreler için, sonra da rotor direncini (dolayısıyla yansıtılmışını) iki katına çıkararak bu kesir değerini buluruz:

$$T_{m} = \frac{3V_{Th}^{2}}{s\omega_{S}} \frac{\Gamma_{2\tau_{0}p}^{2}}{(R_{1} + \frac{c_{2}\tau_{0}p}{s})^{2} + (X_{1} + x_{2}^{2})^{2}} \frac{(2c_{2}^{2})}{(r_{1} + r_{2}^{2})^{2} \frac{(2c_{2}^{2})}{(r_{1$$

$$\begin{array}{c} \begin{array}{c} X_{5}=0.75\,\text{pm} \\ \hline \\ E_{f} \end{array} \end{array} \stackrel{\text{deff.}}{=} \begin{array}{c} X_{1}=1.00\,\text{pm} \text{ Leg f.} \\ \hline \\ X_{2}=0.50\,\text{pm} \text{ Leg f.} \\ \hline \\ X_{3}=0.50\,\text{pm} \text{ Leg f.} \\ \hline \\ X_{4}=0.50\,\text{pm} \text{ Leg f.} \\ \hline \\ X_{5}=0.50\,\text{pm} \text{ Leg f.} \\ \hline \\ E_{f}=1.068\,\text{pm} \text{ Leg f.} \\ \hline \\ X_{5}=1.068\,\text{pm} \text{ Leg f.} \\ \hline \\ X_{5}=1.00\,\text{pm} Leg$$