

Reinforcement Learning (RL)

Gabriel Eyyi, 29.11.17

Content

- Reinforcement Learning Setting
- Reinforcement Learning: Model-Free Solution Method
- OpenAl Gym & Demo

Goal

- Goal of this presentation:
 - to give a short introduction to Reinforcement Learning
 - to show you the basic elements of RL
 - to present a basic solution method and give you an intuition
- Source
 - See last slide

Introduction

 "Good and evil, reward and punishment, are the only motives to a rational creature: these are the spur and reins whereby all mankind are set on work, and guided."

–John Locke

Reinforcement Learning (RL)

 Reinforcement Learning (RL) is learning what to do —how to map situations to actions— so as to maximize a numerical reward signal.

• Examples:

- Learning to drive a car:
 - Environment's response affects our subsequent actions
 - We find out the effects of our actions later

Reinforcement Learning (RL)

- Reinforcement Learning is:
 - a problem,
 - a class of solution methods that work well on the problem,
 - and the field that studies this problem and its solutions methods.

- Reinforcement Learning Problem is:
 - More general and thus more difficult
 - Learning has to be based on considerably less knowledge

Zurich University of Applied Science

Reinforcement Learning Problem

 Goal: Learning a mapping from states to actions in order to maximize a scalar reward (reinforcement signal)

Elements of Reinforcement Learning

- An MDP = (S, A, T, R)
 - State is a unique characterization of all that is important:
 - Chess: Configuration of board pieces of both black and white
 - Actions can be used to control the system state:
 - Chess: All possible moves
 - Transition function:
 - Markov property: $P(s_{t+1}|s_t, a_t, s_{t-1}, a_{t-1}, ...) = P(s_{t+1}|s_t, a_t) = \mathcal{T}(s, a, s_{t+1})$
 - Reward function:
 - The reward function specifies rewards for being in a state, or doing some action in a state
 - Specifies implicitly the goal of learning
 - Gives a direction in which way the system should be controlled

Reinforcement Learning vs. Supervised Learning

- Supervised Learning:
 - Instructive feedback
 - Objective → generalization
- Reinforcement Learning:
 - Evaluative Feedback
 - Learning from interaction
 - Objective → maximize a reward

Elements of Reinforcement Learning

Policy:

- Deterministic policy $\pi: \mathcal{S} \longrightarrow \mathcal{A}$
 - Selecting action $\pi(s)$ in state s
- Stochastic policy $\pi: \mathcal{S} \times \mathcal{A} \longrightarrow [0, 1]$
 - Specifies a probability distribution over \mathcal{A} for each state s, where $\pi(s,a)$ denotes the probability to choose action a in state s
- The agent interacts with the MDP.
- Control the environment
- \rightarrow function or lookup table

Optimality Criteria

- What is the actually being optimized?
- What is the goal of the agent?
- → Gathering reward

Elements of Reinforcement Learning

- State Value Function V:
 - Indicates what is good in the long run
- State-Action Function Q:

• Optimal Policy π^* :

$$V^{\pi}(s) = E\left\{\sum_{k=0}^{\infty} \gamma^k r_{t+k} \left| s_t = s, \pi \right\} \right\}$$

$$Q^{\pi}(s,a) = E\left\{\sum_{k=0}^{\infty} \gamma^k r_{t+k} \middle| s_t = s, a_t = a, \pi\right\}$$

 $\pi^*(s) = arg \max_a Q(s, a)$

- Both function satisfy certain recursive properties:
 - → Bellman Equation
 - > The Bellman equation expresses a relationship between the value of a state s and the values of its successor states s'.

Main characteristics of RL

- Trial-and-error search
 - Opportunity for active exploration: Needs trade-off between exploration and exploitation
 - The agent must try a variety of actions and progressively favor those that appear to be beast.
- Delayed reward
 - Credit assignment problem
- Feedback
 - Evaluative feedback (not instructive as in supervised learning)
- Representations
 - What and how should be represented?

Reinforcement Learning

- Still assume a MDP
 - a set of states $s \in \mathcal{S}$
 - a set of actions (per state) $a \in A$
 - a transition function $\mathcal{T}(s, a, s')$
 - a reward function $\mathcal{R}(s, a, s')$
- Still looking for a optimal policy
- Challenge:
 - \mathcal{T} or \mathcal{R} are unknown
 - I.e. we don't know which states are good or what the actions do
 - Must actually try actions and states out to learn

Generalized Policy Iteration (GPI)

The policy evaluation step:

- Estimate the value of the current policy π
- Main purpose:
 - Gather information about the policy

The policy improvement step:

- Evaluate the values of the actions for every state
- Computes an improved policy π'

Zurich University of Applied Sciences

Model-based vs Model-free

- Model-based (indirect RL):
 - Learn the transition and reward model from interaction with the environment
 - After that, when the model is (approximately or sufficiently) correct
 - → apply DP methods
- Model-free (direct RL):
 - Estimating the values for actions, without even estimating the model of the MDP.

Reinforcement Learning: Model-free

- RL is primarily concerned with how to obtain an optimal policy when such a model is not available.
- \rightarrow This leads to :
 - The need for sampling and exploration
- The policy evaluation step:
 - simulate the policy and estimate its utility from the sampled execution traces
- Implicit representation of the policy
 - Policy is computed on-the-fly for each state based on the value function
 - Only value function function is stored

Temporal Difference (TD) Learning

- Temporal difference learning algorithms learn estimates of values based on other estimates.
 - Each step in the environment generates a learning example which can be used to bring some value in accordance to the immediate reward and the estimated value of the next state or **state-action pair**.
- MDP is often unknown
 - > to get information by interacting with the environment

16.12.17 Gabriel Eyyi 17

Zurich University of Applied Sciences

Temporal Difference Learning: Example

- Organizing a dinner with friends:
 - Predict what time your guest can arrive?
 - Preparation:

Gabriel Eyyi

- 1) 18:00h
- 2) 17:40h
- 3) 18:10h

The bottom line of this example is that you can adjust your estimate about what time your will be back home every time you have obtained **new information about in-between steps**.

16.12.17

Temporal Difference Learning

Main principle of TD Learning:

- Adjust your estimate every time you have obtained new information
 - Each time you can adjust your estimate based on actually experienced times of parts of your path.
- Learn their value estimates based on estimates of other values
 bootstrapping

Advantages

- No model of the MDP is required
- No full sweeps through the full state space are needed

Q-learning

- Basic idea:
 - Incrementally estimate Q-values for actions, based on feedback (i.e. rewards) and the agent's Q-value functions.

$$Q(s_t, a_t) \leftarrow \underbrace{Q(s_t, a_t)}_{\text{old value}} + \underbrace{\alpha}_{\text{learning rate}} \cdot \left(\underbrace{\underbrace{r_t + \underbrace{\gamma}_{\text{reward discount factor}}}_{\text{estimate of optimal future value}}^{\text{learned value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}} - \underbrace{Q(s_t, a_t)}_{\text{old value}} \right)$$

- Converge to the optimal policy regardless of the exploration policy being followed
 - Assumption:
 - Each state-action pair is visited an infinite number of times
 - Learning parameter is decreased appropriately.
- Demo

Conclusion

 Reinforcement learning extends the domain of machine learning to a broad area of control and decision problems that cannot be tackled with supervised or unsupervised learning techniques.

OpenAl

- OpenAI is a non-profit AI research company, discovering and enacting the path to safe artificial general intelligence (AGI).
- OpenAI was founded in late 2015.
- OpenAI gym provides an easy way for people to experiment with their learning agents in an array of provided toy games

Gabriel Eyyi

OpenAI

OpenAl Gym

- Toolkit for developing and comparing reinforcement learning (RL) algorithms.
- It consists of a growing suite of environments (Atari, simulation, etc.)
 - Gym is a collection of environments/problems designed for testing and developing reinforcement learning algorithms
 - Gym is written in Python
- OpenAI Gym is compatible with algorithms written in any framework, such as Tensorflow and Theano.

Source

Books:

- R. S. Sutton and A. G. Barto, "Reinforcement Learning: An Introduction," 2017.
- M. W. and M. van Otterlo eds, ALO 12 Reinforcement Learning. 2013.
- V. Heidrich-Meisner, M. Lauer, C. Igel, and M. Riedmiller, "Reinforcement Learning in a Nutshell," *Proc. 15th Eur. Symp. Artif. Neural Networks ESANN 2007*, no. April, pp. 277–288, 2007.

Blogs:

- https://dev.to/n1try/cartpole-with-q-learning---first-experiences-with-openai-gym
- https://mpatacchiola.github.io/blog/2016/12/09/dissecting-reinforcement-learning.html
- https://www.oreilly.com/ideas/reinforcement-learning-for-complex-goals-using-tensorflow
- https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/

Video Lecture:

- https://www.youtube.com/watch?v=w33Lplx49_A&t=288s
- https://www.youtube.com/watch?v=jUoZg513cdE

