

Esercitazioni di CHIMICA

Dr. Giuseppina Meligrana

Dipartimento di Scienza Applicata e Tecnologia - DISAT Politecnico di Torino

E-mail: giuseppina.meligrana@polito.it

Informazioni

ORARIO

Lunedì: 8.30-11.30 (Aula 5s)

Do Lunedì: 10-11.30 (Aula 7s)

Esercitazioni rinviate verranno recuperate in data da destinarsi

MATERIALE DIDATTICO

- Dispense redatte dal docente
- Calcolatrice scientifica
- Sistema periodico degli elementi
- M. Armandi, B. Bonelli, <u>Esercitarsi per l'esame di chimica</u>, Ed.
 CLUT
- o A. Delmastro, S. Ronchetti, <u>Quesiti di chimica risolti e</u> <u>commentati</u>, Ed. Esculapio
- P. Michelin Lausarot, G.A. Vaglio, <u>Stechiometria per la Chimica</u>
 <u>Generale</u>, Ed. Piccin

Regolamento dell'Esercitazione

- L'esercitazione è articolata in 10 capitoli.
- Gli esercizi proposti sono di difficoltà pari a quelli dell'esame.
- Il file relativo ad ogni capitolo viene caricato sul portale con una settimana d'anticipo: è fortemente consigliato seguire l'esercitazione col file stampato.
- Il file contiene le linee guida di teoria e il testo degli esercizi proposti. Non contiene lo svolgimento, che lo studente deve appuntarsi durante l'esercitazione.
- Il file contiene anche una serie di esercizi con soluzione proposti allo studente per lo studio individuale.
- Lo studente può fare domande in qualsiasi momento e può contattare via e-mail il docente per fissare un colloquio.
- Se lo studente ha difficoltà nella risoluzione di un esercizio, è invitato a inviare i passaggi svolti via e-mail al docente.
- L'esercitazione è efficace se condotta in un'aula silenziosa.
- Non è consentito fare fotografie o riprendere l'esercitazione.

Esercitazioni di CHIMICA

1. NOMENCLATURA

Numero d'ossidazione

Rappresenta la carica che ogni elemento di un composto assumerebbe se gli elettroni di legame fossero assegnati all'elemento più elettronegativo.

In una formula chimica, il numero d'ossidazione (N.O.) si scrive sopra ad ogni elemento e deve sempre riportare il segno +/-.

Esistono 10 regole di attribuzione del N.O.

• Per una sostanza elementare (costituita da atomi uguali) si ha N. O. = 0

• Per l'ossigeno si ha $\overline{N.0.=-2}$ Fanno eccezione: perossidi (-1), superossidi (-1/2) e la molecola OF₂ (+2)

Numero d'ossidazione/2

• Per l'idrogeno si ha N.O. = +1Fanno eccezione gli idruri metallici (-1)

• Per gli ioni monoatomici si ha N.O. = carica dello ione

• Per gli elementi del gruppo 1 si ha N.O. = +1

• Per gli elementi del gruppo 2 si ha N.O. = +2

Numero d'ossidazione/3

• Per gli elementi del gruppo 17 si ha $N_1O_1 = -1$ Fanno eccezione (+1, +3, +5, +7) se legati all'ossigeno o al fluoro

Esistono elementi con n.o. fisso

• Per una molecola neutra si ha $\sum N. O. = 0$

$$\sum N. O. = 0$$

Numero d'ossidazione/4

• Per uno ione poliatomico si ha

$$\sum N.O. = carica dello ione$$

ES 1.1] Assegnare il numero d'ossidazione a tutti gli atomi delle seguenti specie: $TiCl_4$, KNO_2 , $Ba(IO_4)_2$ e GeF_6^{2-}

TiCl₄

KNO₂

 $Ba(IO_4)_2$

GeF₆²⁻

ES 1.2] Assegnare il numero d'ossidazione a tutti gli atomi delle seguenti specie: Cu₂O, BaO₂, Fe(OH)₃, H₂PO₄⁻

```
[Cu<sub>2</sub>O: Cu=+1, O=-2
BaO<sub>2</sub>: Ba=+2, O=-1
Fe(OH)<sub>3</sub>: Fe=+3, O=-2, H=+1
H<sub>2</sub>PO<sub>4</sub><sup>-</sup>: H=+1, P=+5, O=-2]
```


Nomenclatura

Permette di identificare i composti mediante un nome specifico, che si definisce a partire dalla formula della sostanza.

Nomenclatura IUPAC (International Union of Pure and Applied Chemistry): consente di evidenziare, in modo chiaro ed immediato, la relazione tra il nome di un composto e la sua formula chimica.

Nomenclatura TRADIZIONALE: è basata sulla divisione degli elementi in metalli e non metalli, e tiene conto dello stato di ossidazione degli elementi.

La chimica generale definisce 10 classi di composti inorganici.

Classi di composti inorganici semplici

COMPOSTI BINARI		COMPOSTI TERNARI	
Ossidi basici	+H ₂ O→	Idrossidi	
Ossidi acidi	_+H ₂ O _→	Ossiacidi	
Perossidi			
Idracidi			
Idruri metallici			
Idruri covalenti			
Sali binari			
		Sali ternari	

Ossidi basici

Metallo + Ossigeno

• IUPAC: prefisso-ossido + di + prefisso-M

Prefissi: mon-, di-, tri-, tetra-, penta-, esa-, epta-

TRADIZIONALE: Ossido + M-suffisso

Suffissi: *-oso* per ↓N.O. , *-ico* per ↑N.O.

IUPAC

TRADIZIONALE

- IUPAC: il prefisso mon- si mette solo davanti al termine ossido, qualora M abbia più N.O. possibili
- TRADIZIONALE: se M ha un solo N.O. possibile, non si mette il suffisso, ma si antepone *di* al nome del M

ES 1.3] Completare la seguente tabella:

Na₂O

CuO

ES 1.4] Completare la seguente tabella:

DIOSSIDO DI PIOMBO

OSSIDO DI ALLUMINIO

Ossidi acidi

- Non metallo + Ossigeno
- IUPAC: prefisso-ossido + di + prefisso-NM Prefissi: mon-, di-, tri-, tetra-, penta-, esa-, epta-
- TRADIZIONALE: Anidride + (prefisso)-NM-suffisso

```
Pre/Suf-fissi: ipo-...-osa per \downarrow N.O.
-osa per \downarrow N.O.
-ica per \uparrow N.O.
per-...-ica per \uparrow N.O.
```

IUPAC: il prefisso mon- si mette solo davanti al termine ossido

ES 1.5] Completare la seguente tabella:

 Cl_2O

SO₃

ES 1.6] Completare la seguente tabella:

PENTOSSIDO DI DIBROMO

ANIDRIDE SELENIOSA

Ossidi acidi: eccezioni

OSSIDI DI AZOTO

+1	N_2O	Monossido di diazoto	Protossido di azoto
+2	NO	Monossido di azoto	Ossido di azoto
+3	N_2O_3	Triossido di diazoto	Anidride nitrosa
+4	NO_2	Diossido di azoto	Anidride nitroso-nitrica
+5	N_2O_5	Pentossido di diazoto	Anidride nitrica

• OSSIDI DI MANGANESE E CROMO (COMPOSTI <u>ANFOTERI</u>)

24		+2	CrO	Monossido di cromo	Ossido cromoso	O.B.
	Cr	+3	Cr ₂ O ₃	Triossido di dicromo	Ossido cromico	0.6.
	+2,+3,+6	6 +6 CrO ₃ Triossido di cromo Anidride cromica		Anidride cromica	} O.A.	
		+2	MnO	Monossido di manganese	Ossido manganoso	O P
	25	+3	Mn_2O_3	Triossido di dimanganese	Ossido manganico	O.B.
	Mn	+4	MnO ₂	Diossido di manganese	Diossido di manganese	
	+2,+3,+4,+6+7	+6	MnO ₃	Triossido di manganese	Anidride manganica	
		+7	Mn_2O_7	Eptaossido di dimanganese	Anidride permanganica	├ O.A.

POLITECNICO DI TORINO

Idrossidi

Ossido basico + H₂O = M(OH)_x

• IUPAC: prefisso-idrossido di + M Prefissi: di-, tri-, ...

• TRADIZIONALE: Idrossido + M-suffisso

Suffissi: -oso per ↓N.O., -ico per ↑N.O

 TRADIZIONALE: se M ha un solo N.O. possibile, non si mette il suffisso, ma si antepone di al nome del M

Ossiacidi

• Ossido acido + $H_2O = H_hNM_nO_o$

• <u>IUPAC</u>: *Acido* + prefisso-*osso*-NM-*ico* + (N.O.) Prefissi: *mon*-, *di*-, *tri*-, *tetra*-, ...

• TRADIZIONALE: Acido + (prefisso)-NM-suffisso

```
Pre/Suf-fissi: ipo-...-oso per \downarrow N.O. -oso per \downarrow N.O. per \downarrow N.O. per \uparrow N.O. per \uparrow N.O. per \uparrow N.O.
```


Ossiacidi/2

- AZOTO: solo N(III) E N(V) danno ossiacidi
- CARBONIO: solo C(IV) dà ossiacidi
- FOSFORO, BORO, ARSENICO e SILICIO: i loro ossidi acidi possono combinarsi con più di una molecola di H₂O, e ciò fa cambiare (solo) la nomenclatura tradizionale.
 - SE N.O. E' PARI, si possono aggiungere 1 o 2 molecole di H₂O,
 e si utilizzano i prefissi META- e ORTO-, rispettivamente.
 - SE N.O. E' DISPARI, si possono aggiungere 1, 2 o 3 molecole di H₂O, e si utilizzano i prefissi META-, PIRO- e ORTO-, rispettivamente.

ES 1.7] Completare la seguente tabella:

HCIO₂

 HNO_2

H₄SiO₄

 $H_4As_2O_5$

ES 1.8] Completare la seguente tabella:

ACIDO TRIOSSOSELENICO (IV)

ACIDO CARBONICO

ACIDO ORTOARSENICO

ACIDO DIOSSOBORICO (III)

Ossiacidi VS Idrossidi

• OSSIDI DI MANGANESE E CROMO - <u>ANFOTERI</u>

	+2	О.В.	Cr(OH) ₂	Diidrossido di cromo	Idrossido cromoso
5	+3	O.B.	Cr(OH) ₃	Triidrossido di cromo	Idossido cromico
	+6	O.A.	H ₂ CrO ₄	Acido tetraossocromico (VI)	Acido cromico
	+2	O.B.	Mn(OH) ₂	Diidrossido di manganese	Idrossido manganoso
	+3	-	-	-	-
	+4	-	-	-	-
7	+6	O.A.	H ₂ MnO ₄	Acido tetraossodiidrogenomanganico (VI)	Acido manganico
	+7	O.A.	HMnO ₄	Acido tetraossomanganico (VII)	Acido permanganico

Perossidi

Ossigeno con N.O. = -1

• IUPAC: prefisso-ossido + di + prefisso-E Prefissi: di-, tri-, tetra-, penta-, esa-, epta-

TRADIZIONALE: Perossido di + E

POLITECNICO DI TORINO

Idracidi

- Idrogeno + X
 X = Alogeno, S, Se, CN⁻
- IUPAC: X-uro + di idrogeno
 Preferibile per la fase gassosa
- TRADIZIONALE: Acido + X-idrico

 Preferibile per la fase liquida

 IUPAC: se c'è più di un H, la nomenclatura usa i prefissi di-, ... davanti a idrogeno

POLITECNICO DI TORINO

Idruri

- METALLICI (IONICI, SALINI): metallo + idrogeno (N.O. = −1)
- COVALENTI: SM/NM + idrogeno (N.O. +1)
- IUPAC: prefisso-idruro + di + E

Prefissi: mono-, di-, tri-, tetra-, ...

TRADIZIONALE: Idruro + M-suffisso

Suffissi: -oso per ↓N.O., -ico per ↑N.O

Se E non è un M, si utilizzano i nomi comuni

- IUPAC: il prefisso –mono si mette solo davanti a idruro, qualora M abbia più N.O.
- TRADIZIONALE: se M ha un solo N.O., non si mette il suffisso, ma si antepone di al M

ES 1.9] Completare la seguente tabella:

AlH₃

SiH₄

ES 1.10] Completare la seguente tabella:

TRIIDRURO DI FOSFORO

IDRURO FERRICO

POLITECNICO DI TORINO

Sali binari

Metallo + Non Metallo

• IUPAC: prefisso-NM-uro + di + prefisso-M Prefissi: mono-, di-, tri-, tetra-, penta-, esa-, epta-

TRADIZIONALE: NM-uro + M-suffisso

Suffissi: -oso per ↓N.O., -ico per ↑N.O

- IUPAC: il prefisso -mono si mette solo davanti al NM, qualora il M abbia più N.O.
- TRADIZIONALE: se M ha un solo N.O., non si mette il suffisso, ma si antepone di al M

ES 1.11] Completare la seguente tabella:

SnCl₄

ZnS

ES 1.12] Completare la seguente tabella:

FLUORURO DI POTASSIO

BROMURO FERROSO

Sali ternari

- Composti ionici ottenuti per <u>parziale o totale</u> sostituzione degli atomi di idrogeno di un ossiacido
- IUPAC: (Prefisso)-Prefisso-osso-NM-ato + (N.O.) + di + M + (N.O.) Prefissi: mono-, di-, tri-, tetra-, ...
- TRADIZIONALE: (prefisso)-NM-suffisso + M-suffisso

```
Pre/Suf-fissi: ipo-...-ito per \downarrow \downarrow N.O. -ito per \downarrow \downarrow N.O. per \uparrow N.O. per \uparrow N.O. per \uparrow N.O. Suffissi: -oso per \downarrow N.O. , -ico per \uparrow N.O.
```

- IUPAC: se M (o NM) ha un solo N.O., non si esplicita il (n.o.)
- TRADIZIONALE: se M ha un solo N.O., non si mette il suffisso, ma si antepone di al M

ES 1.13] Completare la seguente tabella:

K₂MnO₄

 $Pb(ClO_4)_4$

 $Mg_3(PO_4)_2$

 $(NH_4)_2SO_3$

ES 1.14] Completare la seguente tabella:

TETRA-TRIOSSONITRATO (V) DI STAGNO (IV)

SOLFATO FERROSO

CARBONATO PIOMBICO

Sali ternari/2

- SALI ACIDI: La sostituzione degli atomi di idrogeno nell'ossiacido di partenza è solo parziale
 - IUPAC: il prefisso n-osso viene sostituito da n-idrogeno (n va da mono- in su)
 - TRADIZIONALE: tra NM e M si aggiunge n-acido (n può essere mono- o bi-)

• Per i sali acidi di H_2CO_3 , H_2SO_3 E H_2SO_4 , la nomenclatura tradizionale usa il prefisso bi- davanti al NM (quindi non si usa il termine n-acido)

ES 1.15] Assegnare la nomenclatura IUPAC e tradizionale ai seguenti composti: ZnCO₃, LiClO, Cu(MnO₄)₂, Pb(H₂PO₄)₂ [ZnCO₃: Triossocarbonato di zinco; Carbonato di zinco LiClO: Monossoclorato (I) di litio; Ipoclorito di litio Cu(MnO₄)₂: Di-tetraossomanganato (VII) di rame (II) Permanganato rameico

Pb(H₂PO₄)₂: Diidrogenofosfato (V) di piombo (II) Ortofosfato biacido piomboso]

ES 1.16] Ricavare la formula dei seguenti composti: Pirofosfato rameico, Bicarbonato di alluminio, Nitrito d'ammonio, Solfato mercurioso

[Pirofosfato rameico: Cu₂P₂O₇

Bicarbonato di alluminio: Al(HCO₃)₃

Nitrito d'ammonio: NH₄NO₂ Solfato mercurioso: Hg₂SO₄]

Esercizi di riepilogo

ES 1.17] Rispondere ai seguenti quesiti:

- **A]** Indicare la nomenclatura non corretta per il composto FeCl₂:
- 1) Dicloruro di ferro
- 2) Cloruro ferroso
- 3) Cloruro ferrico
- 4) Cloruro di ferro (II)

- **C]** Ordinare i seguenti composti in modo che lo stato di ossidazione dello zolfo sia progressivamente crescente in senso algebrico:
- 1) Zolfo elementare
- 2) Anidride solforica
- 3) Anidride solforosa
- 4) Acido solfidrico

- **B]** In quale dei seguenti composti il cloro presenta numero di ossidazione +3?
- 1) NaClO
- 2) Cl₂O₅
- 3) Cl₂
- 4) In nessun composto
- 5) HClO₂
- **D]** Scrivere tutti gli ossidi possibili dello stagno e del rame.

Stagno:_____

Rame:

Esercizi di riepilogo/2

ES 1.18] Rispondere ai seguenti quesiti:

- **A]** Il valore massimo del numero d'ossidazione del fosforo è:
- 1) -3
- 2) + 2
- 3) Nessuna risposta è corretta
- 4) + 3
- 5) +4
- **C]** Ordinare i seguenti composti in modo che lo stato di ossidazione dell'azoto sia progressivamente crescente in senso algebrico:
 - [1] N₂O₅; [2] NO; [3] NO₂; [4] H₄N₂; [5] NH₃
- 1) 45321
- 2) 54231
- 3) 45231
- 4) 54321
- 5) 54213

- **B]** Ordinare i seguenti composti in modo che lo stato di ossidazione dell'ossigeno sia progressivamente decrescente in senso algebrico:
- 1) H₂O₂
- 2) O₂
- 3) OF₂
- 4) H₂O
- **B]** Scrivere tutti gli ossidi possibili dello zinco e del ferro.

Zinco:_____

Ferro:_____

Esercizi di riepilogo/3

ES 1.19] Rispondere ai seguenti quesiti:

- **A]** Il nome del composto K₃PO₄ è:
- 1) Ortofosfato di potassio
- 2) Ossido misto di potassio e fosforo
- 3) Nessuna risposta è corretta
- 4) Potassio fosforico
- 5) Metafosfato di potassio

- **C]** Quale di queste combinazioni produce il clorito di litio?
- 1) LiOH + HClO₃
- 2) $HLi + HClO_2$
- 3) LiOH + $HCIO_2$
- 4) Li + $HClO_2$
- 5) HLi + HClO₃

- **B]** Ordinare i seguenti composti in modo da avere un ossido basico, un ossido acido e un acido:
- 1) H₂O₂ / NO₂ / HCl
- 2) BaO / CH_4 / H_2SO_3
- 3) TiO₂ / KCl / NaOH
- 4) Fe_2O_3 / SO_2 / HCN
- 5) MgO / P_2O_5 / PH_3
- **B]** Quale dei seguenti ossidi reagisce con l'acqua per formare un idrossido?
- 1) SO₃
- 2) SO₂
- 3) CO
- 4) KCI
- 5) Nessuna delle risposte è corretta