

				Sub	ject	Cod	le: K	OE	2086
Roll No:									

Printed Page: 1 of 4

BTECH (SEM VIII) THEORY EXAMINATION 2023-24 INDUSTRIAL OPTIMIZATION TECHNIQUES

TIME: 3 HRS M.MARKS: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	$2 \times 10 = 20$	
Q no.	Question	Marks	С
			O
a.	Differentiate between CPM and PERT.	02	2
b.	Differentiate between individual and group replacement policy.	02	5
c.	Define saddle point and optimal strategy.	02	3
d.	Define slack and surplus variables.	02	1
e.	What are various customer behaviors in a queue?	02	3
f.	Discuss the application of Monte Carlo Simulation in engineering.	02	4
g.	Discuss the principle of dominance.	02	3
h.	Define optimistic time, pessimistic time, and most likely time.	02	2
i.	Write the dual of the following primal:	02	1
	Minimize $Z=3x+2y$.0
	Subjected to: $8x+y \ge 8$, $2x+y \ge 6$, $x+3y \ge 6$, $x+6y \ge 8$, $x, y \ge 0$		DV
j.	How degeneracy can be determined in a transportation problem?	02	1

SECTION B

a. Solve the following LPP using simplex method. Maximize: $z = 50x + 60y$ Subjected to: $2x + y \le 300$ $3x + 4y \le 509$ $4x + 7y \le 812$ $x, y \ge 0$	10 = 30
Maximize: $z = 50x + 60y$ Subjected to: $2x + y \le 300$ $3x + 4y \le 509$ $4x + 7y \le 812$ $x, y \ge 0$	10
Subjected to: $2x + y \le 300$ $3x + 4y \le 509$ $4x + 7y \le 812$ $x, y \ge 0$	
$ 2x + y \le 300 3x + 4y \le 509 4x + 7y \le 812 x, y \ge 0 $	
$3x + 4y \le 509 4x + 7y \le 812 x, y \ge 0$	
$4x + 7y \le 812$ $x, y \ge 0$	
$x, y \ge 0$	
b. Consider a construction project to build a residential complex. The project	
	10
consists of the following activities:	
Activity Description Predecessors Duration	
A Site Preparation - 5	
B Foundation Work A 10	
C Framing A 15	
D Plumbing and Electrical B, C 12	
E Roofing B 8	
F Exterior Finishing (Siding, C 10	
G Interior Finishing D, E, F 15	
H Final Inspection and G 5	
H Final hispection and G 5	
Using the information provided, construct the project network diagram, determine	
Using the information provided, construct the project network diagram, determine	
Using the information provided, construct the project network diagram, determine the earliest start time (ES), earliest finish time (EF), latest start time (LS), latest	

				Sub	ject	Cod	le: k	OE	2086
Roll No:									

Printed Page: 2 of 4

BTECH (SEM VIII) THEORY EXAMINATION 2023-24 INDUSTRIAL OPTIMIZATION TECHNIQUES

TIME: 3 HRS M.MARKS: 100

c.	Consider a two-pe	rson zero-sum gam	e given in the foll	lowing payoff matrix:		10	3
		Strategy 1	Strategy 2	Strategy 3			
	Player 1	3	5	2			
	Player 2	1	4	6			
	Player 3	2	3	5			
	optimal strategy for	or both players. If th	ne game does not	by the saddle point and have a saddle point, apporting strategies for be	ply		
	players.	Willimax principle	es to find the of	Juliar strategies for o	oun		
d.	Illustrate the appli	cation of Dynamic	Programming thro	ough examples such as	the	10	4
	Capital Budgeting	Problem and the	Cargo-loading P	roblem. Explain how	DP		
	techniques are use scenarios.	d to optimize resou	rce allocation and	l decision-making in the	ese		
e.				n total cost in the given		10	5
				hich costs Rs.10 per un			
	Ordering cost is es	•					
	annum of average						
	price of the origina		/-				
	than 20000 lot size available on the or	e is	100	•			

SECTION C

			SECTION			
3.	Attempt any one par	t of the follo	wing:	1	x 10 = 10	0
a.	a) Describe the vario	ous costs asso	ciated with inventory, incl	uding holding costs,	10	5
	ordering costs, and s	hortage costs	•	01/2		
	b) Differentiate bet	ween detern	ninistic and probabilistic	(non-deterministic)		
	inventory models.		•	20		ŀ
b.	The purchase price of	of a machine	is Rs. 52,000. The installa	tion charges amount	10	5
	to Rs. 14400 and its	scrap value	is Rs. 6400. The mainten	ance cost in various		1
	years is given below	•	V2			
		Year	Maintenance Cost (₹)			
		1	1000			
		2	3000			
		3	4000			
		4	6000			
		5	8400			
		6	11600			
		7	16000			
		8	19200			
	After how many year	rs should the	machine be replaced? Assu	ime that the machine		
	replacement can be d	lone only at t	he year ends.			

					Pri	ntec	l Pa	ge: 3	3 of 4
				Sub	ject	Cod	le: k	OF	2086
Roll No:									

BTECH (SEM VIII) THEORY EXAMINATION 2023-24 INDUSTRIAL OPTIMIZATION TECHNIQUES

TIME: 3 HRS M.MARKS: 100

4.	Attempt any one part of the following:	x 10 = 10)
a.	a) Explain the concept of a single-server queuing model and its components.	10	3
	Discuss the parameters involved in analyzing a single-server queuing system,		
	including arrival rate, service rate, queue length, and waiting time.		
	b) Define two-person zero-sum games and explain how they are represented using		
	payoff matrices. Explain the principle of dominance.		
b.	A self-service store employs one cashier at its counter. Nine customers arrive on an average every 5 minutes while the cashier can serve 10 customers in 5 minutes. Assuming Poisson distribution for arrival rate and exponential distribution for the service time, find: i) Average number of customers in the system. ii) Average number of customers in the queue or average queue length. iii) Average time a customer spends in the system. iv) Average time a customer waits before being served.	10	3

5.	Attempt	t any <i>one</i> p	oart of the following:		$1 \times 10 = 1$	0				
a.	Explain	n the steps	involved in Monte Carlo sim	nulation. Discuss the application	of 10	4				
	Monte	Carlo Simu	ılation in engineering.	0,3						
b.	Consid	er a capital	budgeting problem where	a company needs to decide on	the 10	4				
	allocati	ion of funds	s to different investment proj	ects. The company has a budget	t of	りじ				
	\$100,0	00 and five	investment options with the	e following initial investments a	and	•				
	expecte	expected returns:								
	Ir	ivestmen	Initial Investment (\$)	Expected Return (\$)	11.					
	1		20,000	30,000						
	2		30,000	25,000						
	3		15,000	20,000						
	4		25,000	35,000						
	5		10,000	15,000						
	Using	Using Dynamic Programming, determine the optimal investment strategy th								
	_	-	mpany's expected return with							

					. • 🤳			
6.	Attempt any one	part of the f	ollowing:			1	x 10 = 1	0
a.	Explain the fund network diagram	damentals of ns and the ru ario where no	network lles for d	analysis, rawing the	m. Illustr	the construction of rate with a practical to plan and manage		2
b.	Consider a manu are four jobs, lab	facturing facturing facturing facturing factoring factor	, Job 2, J	ob 3, and Jo	ob 4, that	M2, and M3. There need to be processed job on each machine	10	2
		Job	M1	M2	M3]		
		Job 1	2	3	1			
		Job 2	4	2	3			
		Job 3	3	1	2			
		Job 4	2	3	4			

					Pri	ntec	l Pa	ge: 4	4 of 4	ŀ
				Sub	ject	Cod	le: K	OF	2086)
Roll No:										

BTECH (SEM VIII) THEORY EXAMINATION 2023-24 INDUSTRIAL OPTIMIZATION TECHNIQUES

		£ 5 - 15
TI	IME: 3 HRS	M.MARKS: 100
	Assuming that each job must be processed sequentially on the	machines in the
	given order (M1, M2, M3), find the optimal sequence of jobs a	and calculate the
	total processing time required.	

A distribution company has three warehouses (W1, W2, W3) and four retail stores (S1, S2, S3, S4). The transportation costs in rupees per unit are given in the table below: S1		Attemnt any one	•	llowing:			1 x 10 =	= 10
(S1, S2, S3, S4). The transportation costs in rupees per unit are given in the table below: S1								1
below: S1	•			,				1
S1 S2 S3 S4 W1 6 8 10 9 W2 9 11 7 6 W3 4 5 12 10								
W1 6 8 10 9 W2 9 11 7 6 W3 4 5 12 10 Each warehouse has a limited supply of goods: W1 can supply 100 units, W2 can supply 150 units, and W3 can supply 200 units. Each store has a demand requirement: S1 requires 100 units, S2 requires 130 units, S3 requires 120 units, and S4 requires 100 units. Use transportation model to determine the optimal allocation of goods from the warehouses to the stores which minimizes the total transportation cost. A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.			S1	S2	S3	S4		
W2 9 11 7 6 W3 4 5 12 10 Each warehouse has a limited supply of goods: W1 can supply 100 units, W2 can supply 150 units, and W3 can supply 200 units. Each store has a demand requirement: S1 requires 100 units, S2 requires 130 units, S3 requires 120 units, and S4 requires 100 units. Use transportation model to determine the optimal allocation of goods from the warehouses to the stores which minimizes the total transportation cost. A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.		W1						
Each warehouse has a limited supply of goods: W1 can supply 100 units, W2 can supply 150 units, and W3 can supply 200 units. Each store has a demand requirement: S1 requires 100 units, S2 requires 130 units, S3 requires 120 units, and S4 requires 100 units. Use transportation model to determine the optimal allocation of goods from the warehouses to the stores which minimizes the total transportation cost. A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.						6		
supply 150 units, and W3 can supply 200 units. Each store has a demand requirement: S1 requires 100 units, S2 requires 130 units, S3 requires 120 units, and S4 requires 100 units. Use transportation model to determine the optimal allocation of goods from the warehouses to the stores which minimizes the total transportation cost. A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.		W3	4	5	12	10		
supply 150 units, and W3 can supply 200 units. Each store has a demand requirement: S1 requires 100 units, S2 requires 130 units, S3 requires 120 units, and S4 requires 100 units. Use transportation model to determine the optimal allocation of goods from the warehouses to the stores which minimizes the total transportation cost. A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.		Each warehouse	e has a limited s	upply of goods:	W1 can supply	100 units, W2 c	ean	
requirement: S1 requires 100 units, S2 requires 130 units, S3 requires 120 units, and S4 requires 100 units. Use transportation model to determine the optimal allocation of goods from the warehouses to the stores which minimizes the total transportation cost. A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.								
and S4 requires 100 units. Use transportation model to determine the optimal allocation of goods from the warehouses to the stores which minimizes the total transportation cost. A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.								
allocation of goods from the warehouses to the stores which minimizes the total transportation cost. A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.								
transportation cost. A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.								
A manufacturing company produces two types of products: Product A and Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.		_		aremouses to the	c stores willon	initianizes the to		- Dx
Product B. Each unit of Product A requires 2 hours of labour and 1 hour of machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.				roduces two tw	nes of product	es Product A	and 10	
machine time, while each unit of Product B requires 1 hour of labour and 3 hours of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.								
of machine time. The company has 100 hours of labour and 120 hours of machine time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.								
time available per-week. Product A sells for \$50 per unit and Product B sells for \$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.								
\$40 per unit. The company wants to maximize its weekly profit. Formulate this problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.								
problem as a linear programming model and find the optimal production quantities for Products A and B to maximize the weekly profit using the graphical method.		time available per-week. Product A sells for \$50 per unit and Product B sells for						
quantities for Products A and B to maximize the weekly profit using the graphical method.		\$40 per unit. The company wants to maximize its weekly profit. Formulate this						
method.		problem as a linear programming model and find the optimal production						
4.5		quantities for Products A and B to maximize the weekly profit using the graphical						
14 A. Jun. 2024 1:31.3		_						
AA-JUN-202A					1.31.	,5°		
				.JUN.25	2ª			