Αναφορά 2η Εργαστηριακή Άσκηση

Ιάσων-Γεώργιος Παυλάκης 1059688

Μέρος Α

- 1. Το δίκτυο ανήκει στην κλάση Β.
- 2. Το Subnet Mask της κλάσης B είναι by default 255.255.0.0. Όμως στην περίπτωσή μας θέλουμε να χωρίσουμε αυτό το δίκτυο σε 5 υποδίκτυα. Παίρνοντας υπόψην τη προσαύξηση, θα χρειστούμε $5\times 1.7=9$ υποδίκτυα. Το 9 χρειάζεται 4-bits για να αναπαρασταθεί στο δυαδικό. Άρα θα είναι:

11111111.11111111.<mark>1111</mark>0000.000000

255.255.240.0

- 3. Ο ελάχιστος αριθμός υποδικτύων είναι 5.
- 4. Ο αριθμός υποδικτύων προσαυξημένος κατά 70% είναι 9.
- 5. Για το πρώτο υποδίκτυο: Πριν την προσαύξηση 325, Μετά την προσαύξηση 553

Για το δεύτερο υποδίκτυο: Πριν την προσαύξηση 220, Μετά την προσαύξηση 374

Για το τρίτο υποδίκτυο: Πριν την προσαύξηση 150, Μετά την προσαύξηση 255

Για το υποδίκτυο Router A \to Router B: Πριν την προσαύξηση 2, Μετά την προσαύξηση 4

Για το υποδίκτυο Router A \rightarrow Router C: Πριν την προσαύξηση 2, Μετά την προσαύξηση 4

6. Το εύρος των IP διευθύνσεων με την σειρά που αναφέρθηκαν στο παραπάνω ερώτημα είναι ως εξής:

$$135.126.0.0 - 135.126.15.255$$

$$135.126.16.0 - 135.126.31.255$$

$$135.126.32.0 - 135.126.47.255$$

$$135.126.48.0 - 135.126.63.255$$

$$135.126.64.0 - 135.126.79.255$$

7. Οι μάσκες υπολογίστηκαν παίρνοντας υπ' όψην την προσαύξηση.

Για το πρώτο υποδίκτυο: 255.255.252.0 Για το δεύτερο υποδίκτυο: 255.255.254.0 Για το τρίτο υποδίκτυο: 255.255.254.0

Για το υποδίκτυο Router A \rightarrow Router B: 255.255.255.248 Για το υποδίκτυο Router A \rightarrow Router C: 255.255.255.248

Μέρος Β

1. Αλγόριθμος Dijkstra

Βήμα	N'	D(U),p(U)	D(V),p(V)	D(X),p(X)	D(Y),p(Y)	D(Z),p(Z)
0	W	5,W	4,W	9, W	9, W	1,W
1	WZ	5, W	4, W	9, W	9, W	
2	WZV	5, W		9, W	9, W	
3	WZVU			7,U	9, W	
4	WZVUX				9, W	
5	WZVUXY					

Σημείωση: Ο πίνκας έγινε μέσω ΙΑΤΕΧ.

2. Αλγόριθμος Bellman-Ford

Τα αρχικά διανύσματα απόστασης φαίνονται από τον παρακάτω πίνακα:

U:	u	V	w	Х	У
u	0	3	∞	∞	00
V	∞	∞	00	∞	∞
w	∞	∞	00	∞	∞
x	∞	∞	∞	∞	∞
у	∞	∞	∞	∞	∞
V:	u	V	W	x	У
u	∞	∞	00	∞	∞
V	3	0	9	4	∞
W	∞	00	00	∞	∞
X	∞	00	00	∞	∞
у	∞	∞	00	∞	∞
W:	u	V	W	Х	У
u	∞	∞	00	∞	∞
V	00	∞	∞	∞	∞
W	∞	9	0	6	∞
×	∞	∞	00	∞	00
У	∞	∞	∞	∞	∞
X:	u	V	W	X	у
u	∞	∞	∞	∞	∞
V	∞	∞	∞	∞	∞
W		∞			∞
X	00	4	6	0	7
у	00	00	00	00	00
V.				v.	
Y:	u	V	W	X	У
u	00	00	00	00	00
V	00	00	œ	œ	00
W	00	00	00	00	00
X	00	00	00		0
У	∞	∞	∞	7	0

Το επόμενο βήμα του αλγορίθμου παράγει τους παρακάτω πίνακες:

U:	u	V	W	X	у		
u	0	3	12	7	14		
V	3	0	9	4	∞		
W	∞	9	0	6	∞		
X	∞	4	6	0	7		
У	∞	∞	∞	7	0		
V:	u	V	w	X	У		
u	0	3	∞	∞	∞		
V	3	0	9	4	11		
W	∞	9	0	6	8		
X	∞	4	6	0	7		
у	∞	∞	∞	7	0		
W:	u	V	W	x	у		
u	0	3	∞	∞	∞		
V	3	0	9	4	∞		
w	12	9	0	6	13		
Х	∞	4	6	0	7		
у	∞	∞	∞	7	0		
X:	u	V	W		у		
u	0	3	∞	∞	8		
V	3	0	9	4	∞		
w	∞	9	0	6	∞		
Х	7	4	6	0	7		
у	∞	∞	∞	7	0		
Y:	u	V	W	Х	у		
u	0	3	00	00	∞		
V	3	0	9	4	∞		
w	∞	9	0	6	∞		
х	∞	4	6	0	7		
у	14	11	13	7	0		

Το επόμενο και τελευταίο βήμα του αλγορίθμου παράγει τους παρακάτω πίνακες:

U:	u	V	w	Х	У	
u	0	3	12	7	14	
V	3	0	9	4	11	
w	12	9	0	6	13	
х	7	4	6	0	7	
V	14	11	13	7	0	
,						
V:	u	V	W	Х	у	
u	0	3	12	7	14	
V	3	0	9	4	11	
w	12	9	0	6	13	
x	7	4	6	0	7	
у	14	11	13	7	0	
W:	u	٧	W	Х	у	
u	0	3	12	7	14	
V	3	0	9	4	11	
w	12	9	0	6	13	
x	7	4	6	0	7	
у	14	11	13	7	0	
X:	u	V	W	X	у	
u	0	3	12	7	14	
V	3	0	9	4	11	
W	12	9	0	6	13	
x	7	4	6	0	7	
У	14	11	13	7	0	
Y:	u	V	W	X	у	
u	0	3	12	7	14	
V	3	0	9	4	11	
w	12	9	0	6	13	
x y	7	4	6	0	7	
У	14	11	13	7	0	

Σημείωση: Για τους πίνακες χρησιμοποιήθηκε το WPS Spreadsheets.

Μέρος Γ

```
1. Μήκος = 1500 , MF = 1 , Offset = 0
Μήκος = 1500 , MF = 1 , Offset = 185
Μήκος = 1040 , MF = 0 , Offset = 370
```

```
2. Μήκος = 500, MF = 1, Offset = 0
Μήκος = 500, MF = 1, Offset = 60
Μήκος = 500, MF = 1, Offset = 120
Μήκος = 500, MF = 1, Offset = 180
Μήκος = 80, MF = 0, Offset = 240
```

3. Μήκος =
$$1000$$
, MF = 1, Offset = 0
Μήκος = 1000 , MF = 1, Offset = 123
Μήκος = 40 , MF = 0, Offset = 246

4. Μήκος =
$$4000$$
, MF = 0, Offset = 0

Μέρος Δ

- 1. Η έκδοση του TCP πρωτοκόλλου είναι το Reno, διότι υποστηρίζεται το Fast recovery σε αντίθεση με το Tahoe.
- 2. Slow start : 1-3, 11-13, 28-31, 36-38, 39-40Fast recovery: 7,9Congestion avoidance: 4-6, 8, 10, 14-27, 32-35
- 3. Το πρωτόκολλο όταν αντιλαμβάνεται απώλειες πακέτων πηγαίνει είτε σε κατάσταση Fast recovery είτε σε κατάσταση Slow start. Οδηγείται σε Fast recovery όταν αντιλαμβάνεται τριπλό αντίγραφο ACK και σε Slow start όταν αντιλαμβάνεται timeout. Δηλαδή: Αντιλαμβάνεται τριπλό αντίγραφο ACK τις χρονικές στιγμές: 6,8. Αντιλαμβάνεται timeout τις χρονικές στιγμές: 10,27,35,38.
- 4. Για τον υπολογισμό των πακέτων θα υποθέσω ότι σε κάθε Fast recovery στέλνονται τόσα πακέτα όσο είναι το μέγεθος του CWND (δηλ. γίνεται άμεση επαναποστολή του πακέτου) και σε κάθε Slow start λόγω timeout στέλνονται τόσα πακέτα όσο είναι το μέγεθος του CWND πλήν 1 (δηλ. υποθέτω ότι γίνεται timeout μόνο σε ένα πακέτο κάθε φορά και ότι δεν γίνεται άμεση επαναποστολή του). Άρα:

RTT	Τύπος Μετάδοσης	CWND	Συνολικά Πακέτα
1	Slow start	1	1
2	Slow start	2	3
3	Slow start	4	7
4	Congestion avoidance	8	15
5	Congestion avoidance	9	24
6	Congestion avoidance	10	34
7	Fast recovery	8	42
8	Congestion avoidance	9	51
9	Fast recovery	7	58
10	Congestion avoidance	8	65(=66-1)
11	Slow start	1	66
12	Slow start	2	68
13	Slow start	4	72
14	Congestion avoidance	8	80
15	Congestion avoidance	9	89
16	Congestion avoidance	10	99
17	Congestion avoidance	11	110
18	Congestion avoidance	12	122
19	Congestion avoidance	13	135
20	Congestion avoidance	14	149
21	Congestion avoidance	15	164
22	Congestion avoidance	16	180
23	Congestion avoidance	17	197
24	Congestion avoidance	18	215
25	Congestion avoidance	19	234
26	Congestion avoidance	20	254
27	Congestion avoidance	21	274 (= 275 - 1)
28	Slow start	1	275
29	Slow start	2	277
30	Slow start	4	281
31	Slow start	8	289
32	Congestion avoidance	16	305
33	Congestion avoidance	17	322
34	Congestion avoidance	18	340
35	Congestion avoidance	19	358 (= 359 - 1)
36	Slow start	1	359
37	Slow start	2	361
38	Slow start	4	364 (= 365 - 1)
39	Slow start	1	365
40	Slow start	2	367

Συνεπώς, 37 πακέτα θα έχουν μεταδωθεί κατά τη διάρκεια του RTT 7 και συνολικά θα έχουν μεταδωθεί 367 πακέτα μέχρι την λήξη (RTT 40). **Σημείωση:** Ο πίνκας έγινε μέσω LATEX.

5. Το ssthresh αλλάζει τις χρονικές στιγμές: 7,9,11,28,36,39. Τα νέα ssthresh υπολογίζονται ως εξής. Διαιρούμε την τιμή του CWND με το 2 (άν δεν βγεί ακέραιο αποτέλεσμα κάνουμε στρογγυλοποίηση προς τα κάτω). Η αρχική του τιμή είναι 8 και για κάθε μεταβολή έχει την αντίστοιχη τιμή:

6. Το CWND θα έχει μέγεθος:

$$41 \rightarrow 3$$

$$42 \rightarrow 4$$

$$43 \rightarrow 5$$

$$44 \rightarrow 6$$

7. Η νέα τιμή του CWND θα είναι 1 (αφού θα γίνει slow start) και το νέο ssthresh θα πάρει την τιμή $1 (= \frac{2}{2})$.