Tourists

Problem Name	Tourists
Input file	standard input
Output file	standard output
Time limit	4 seconds
Memory limit	256 megabytes

Det finns n städer i Utopia, numrerade från 1 till n. Det finns också n-1 dubbelriktade vägar som ansluter städerna. Det är möjligt att resa mellan varje par av städer enbart med dessa vägar. Eftersom Utopia är väldigt vackert finns det m turister, numrerade från 1 till m, som just nu besöker landet. Till en början besöker turist nummer i stad a_i . Det är möjligt att flera turister är i samma stad samtidigt. Alltså, det kan finnas ett par i,j så att $a_i=a_j$ och $i\neq j$.

Varje turist har en åsikt om hur intressant deras nuvarande besök i Utopia är, representerat av ett tal. Till en början är varje turists åsikt 0. För att uppmuntra återbesök, vill den Utopianska regeringen öka turisternas åsikt om landet genom att anordna event i utvalda städer. När ett event hålls i stad c, så kommer alla turister som är där just nu få deras åsikt ökad med d, där d är ett värde som beror på typen av event.

Några av turisterna har planerat att resa mellan städer under deras vistelse i Utopia. Trots att det tar i princip ingen tid alls (tack vare effektiva Utopianska vägar), så är det fortfarande ett störmoment och resulterar därmed i lägre turiståsikter. För att vara exakt, en turist som reste en rutt genom att använd k vägar kommer minska sin åsikt med k. (Turister kommer alltid välja den kortaste rutten mellan två städer.)

Du är tillfrågad av den Utopianska regeringen att följa tursiternas åsikter, medan de reser genom landet. Som en del av denna tillfrågan, så kommer du få q händelser som del av inputen. Du ska hantera och svara på alla händelser i ordningen de kommer i inputen.

Indata

Den första raden innehåller tre heltal n,m,q ($2 \le n \le 200\,$ 000, $1 \le m,q \le 200\,$ 000) - antalet städer, turister och händelser, respektive.

Den andra raden innehåller m heltal $a_1, a_2, ..., a_m$ ($1 \le a_i \le n$), där a_i representerar den ursprungliga staden för den i:te turisten.

De följande n-1 raderna innehåller två heltal var: v_i och w_i ($1 \le v_i$, $w_i \le n$, $v_i \ne w_i$) som betyder att det finns en väg mellan stad v_i och w_i .

De följande q raderna beskriver händelser i ordningen de inträffar. Varje rad är på en av följande tre former:

- Bokstaven 't' följt av tre heltal f_i , g_i , c_i ($1 \le f_i \le g_i \le m$, $1 \le c_i \le n$), som betyder att alla turister numrerade från f_i till g_i (inklusive) reser till stad c_i . De som redan är i c_i flyttar sig inte, och deras åsikt förändras inte.
- Bokstaven 'e' följt av två heltal c_i , d_i ($1 \le c_i \le n$, $0 \le d_i \le 10^9$), som betyder att i stad c_i , hålls ett event som ökar turisters åsikt med d_i .
- Bokstaven 'q' följt av ett heltal v_i ($1 \le v_i \le m$), som betyder att den Utopianska regeringen vill veta den nuvarande åsikten av turist v_i .

Det är garanterat att det finns minst ett 'q' i inputen.

Utdata

Skriv ut svaret för alla 'q'-händelser, varje på en separat rad, i ordningen de inträffade.

Poängsättning

Subtask 1 (10 points): $n, m, q \leq 200$

Subtask 2 (15 points): $n, m, q \leq 2000$

Subtask 3 (25 points): $m,q \leq$ 2 000

Subtask 4 (25 points): Inga 'e'-frågor

Subtask 5 (25 points): Inga ytterligare begränsningar.

Exempel Indata

8 4 11

1481

64

63

37

6 5

5 1

12

18

- q 4
- t 3 4 5
- t 2 2 7
- q 4
- e 5 10
- e 1 5
- q 4
- t 1 1 5
- t 2 2 1
- q 1
- q 2

Exempel Utdata

- 0
- -1
- 9
- 4
- -7