(若发现问题,请及时告知)

1. 下面的文法 G[S] 描述由命题变量 p, q ,联结词 \wedge (合取)、 \vee (析取)、 \neg (否定) 构成的命题公式集合:

$$S \rightarrow S \lor T \mid T$$

 $T \rightarrow T \land F \mid F$
 $F \rightarrow \neg F \mid p \mid q$

试分别指出句型 $\neg F \lor \neg q \land p$ 和 $\neg F \lor p \land \neg F \lor T$ 的所有短语,直接短语。如果这些句型同时也是右句型,那么还要给出其句柄 . 请将结果填入下表中:

	短语	直接短语	句柄
$\neg F \lor \neg q \land p$			
$\neg F \lor p \land \neg F \lor T$			

参考解答:

 句型	短语			Ĩ	直接短语		
Ev. gan	$\neg F \lor \neg q \land p$	¬F	$\neg q \land p$	¬F	q	p	¬F
¬F∨¬q∧p	¬q	q	p				
$\neg F \lor p \land \neg F \lor T$	$\neg F \lor p \land \neg F \lor T$	1	$\neg F \lor p \land \neg F$	¬F	p	¬F	无
¬rvp/\¬rv1	¬F p∧-	¬F	р ¬І	F			

为什么是无?

- 3. 试构造下列文法的 LR (0) FSM, 并判别它们是否 LR(0)或 SLR(1)文法:
 - b) 文法 G[S]:

$$S \rightarrow Ab \mid ABc$$

 $A \rightarrow aA \mid a$
 $B \rightarrow b$

其中 S, A, B 为非终结符, 其余符号为终结符

参考解答:

b) 增加产生式 S'→S, 得增广文法 G'[S'] 构造识别活前缀的 LR(0) FSM 如下:

I4 存在归约/归约冲突, I3 存在归约/移进冲突.因此不是 LR(0)文法。

考察能否使用SLR(1)方法解决冲突: I4 中,因为 $Follow(S) = \{\#\}$ 而 $Follow(B) = \{c\}$. 所以可以解决。 I3中,因 $Follow(A) = \{b\}$,不含 a,因此该移进/归约冲突也可解决. 文法是 SLR(1)文法

- 5. 给定 SLR(1) 文法 G[S]:
 - (1) $S \rightarrow a S a$
 - (2) $S \rightarrow b S b$
 - (3) $S \rightarrow c$
 - (a) 构造该文法的 LR(0) 有限状态机
 - (b) 构造该文法的 SLR(1) 分析表。
 - (c) 若根据以上 SLR(1)分析表对于 *L*(*G*) 中的某一输入串执行 SLR(1) 分析过程,初始时符号栈存放符号 #。当扫描过串 *abbcb* 后,分析栈中的符号串是什么(以进栈先后次序给出)? 当前可规约的句柄是什么?

参考解答:

(a)

(*b*)

状态		GOTO			
	a	b	c	#	S
0	S ₃	S ₄	s_2		1
1				acc	
2	r_3	\mathbf{r}_3		r_3	
3	S ₃	s_4	s_2		5
4	s_3	s_4	s_2		6
5	s ₇				
6		s_8			
7	\mathbf{r}_1	\mathbf{r}_1		\mathbf{r}_1	
8	r_2	\mathbf{r}_2		\mathbf{r}_2	

(c) 当输入扫描过串 abbcb 后,分析栈中的符号串是什么 #abbSb (或 abbSb)。当前可规约的句柄是 bSb。

7. 对于下列文法 G(S):

$$S \rightarrow Aa \mid cAb \mid Bb \mid cBa$$

$$A \rightarrow d$$

$$B \rightarrow d$$

试验证: 该文法是一个 LR (1) 文法, 但不是 LALR (1) 文法。

参考解答:

本题考察 LR(1)有限状态机的构造。LR(1)有限状态机比 SLR(1)有限状态机有更多的状态,所以,LR(1)分析法比 SLR(1)分析法有着更强的解决冲突的能力。对某些文法的 LR(1)有限状态机,用合并同心集方法还可以构造出和 SLR(1)状态相同的 LALR(1)有限状态机。LR(1)解决冲突能力强的原因是用向前搜索符代替了 SLR(1)所用的非终结符的后跟符。

根据 LR(1)有限状态机构造步骤,

(1) 对文法 G(S)增加产生式

$$S \hookrightarrow S$$

得到增广文法 G(S'):

$$S \rightarrow S$$

 $S \rightarrow Aa \mid cAb \mid Bb \mid cBa$
 $A \rightarrow d$
 $B \rightarrow d$

(2) 构造 G(S′)的 LR(1)有限状态机初态 I0 为:

$$I0 = \{ \ S \ ' \rightarrow . \ S \ , \ S \rightarrow . \ Aa \ , \ S \rightarrow . \ cAb \ , \ S \rightarrow . \ Bb \ , \ S \rightarrow . \ cBa, \ A \rightarrow . \ d, \ B \rightarrow . \ d \}$$

(3) 从初态开始,根据状态转移函数计算步骤,逐步构造出完整的 LR(1)有限状态机,如下图所示:

LR(1) 自动机没有冲突的状态,该文法是 LR(1) 文法。但不是 LALR(1) 文法, I_5 , I_{10} 合并后会有冲突。

9. 给定文法 G[S]:

- (1) $S \rightarrow A a$
- (2) $S \rightarrow bAc$
- (3) $S \rightarrow dc$
- (4) $S \rightarrow b d a$
- $(5) A \rightarrow d$
- (a) 构造该文法的 LR(1) 有限状态机。
- (b) 验证该文法是 LR(1) 文法。
- (c) 该文法是否 LALR(1) 文法?
- (d) 给出对应的 LR(1) 分析表。

参考解答:

(a)

- (b) 状态 I4 有移进项目,也有归约项目。对于当前输入符号是 a 时,选择归约;当前输入符号是 c,选择移进。所以,没有冲突,是 LR(I)文法。
- (c)根据 LALR(1)文法定义,合并 LR(1)状态,使之与 SLR(1)状态相同。根据(a)中 LR(1) 有限机状态,与 SLR(1)状态相同,无须合并,所以是 LALR(1)文法。

1b +-		ACT	TION			GO	TO
状态 -	a	b	c	d	#	S	A
0		s_3		s_4		1	2
1					acc		
2	S ₅						
3				s_7			6
4	\mathbf{r}_5		s_8				
5					\mathbf{r}_1		
6			S 9				
7	s_{10}		\mathbf{r}_5				
8					\mathbf{r}_3		
9					\mathbf{r}_2		
10					r_4		

11. 给定如下文法 G(P):

- (1) $P \rightarrow D$; E
- (2) $D \rightarrow D$; D
- (3) $D \rightarrow d$
- (4) $E \rightarrow a$

为文法 G(P) 增加产生式 $S \rightarrow P$, 得到增广文法G'[S]。

a) 下图表示该文法的LR(0)自动机,部分状态所对应的项目集未给出,试补齐之(即分别给出状态 I_2 , I_4 , I_5 , I_6 , 和 I_8 对应的项目集。

- b) 指出上图中LR(0)自动机中所有冲突的状态(并指出是哪种类型的冲突),以说明 该文法不是 LR(0) 文法。
- c) 针对所有冲突的状态,说明这些冲突不适合采用 SLR(1) 分析方法解决。
- d) 下图表示该文法的LR(1)自动机,部分状态所对应的项目集未给出,试补齐之(即分别给出状态 I_4 , I_5 , I_6 , I_7 , 和 I_8 对应的项目集。

- e) 指出上图中LR(1)自动机中所有冲突的状态(并指出是哪种类型的冲突),以说明 该文法不是 LR(1) 文法。
- f) 尽管该文法不是LR文法,但仍有可能采用LR分析方法完成语法分析。(1) 试给出一种采用SLR(1)分析方法的解决方案;(2) 根据你所给的方案完成下图的SLR(1) 分析表,状态 4、5、7 和8 对应的行未给出,试补齐之 (若你的方案与下图不匹配,请给出相应的完整SLR(1) 分析表)。

4b 		ACT	GOTO				
状态	а	d	;	#	P	D	Ε
0		s_2			1	3	
1				acc			
2			\mathbf{r}_3				
3			s_4				
4							
5							
6				\mathbf{r}_1			
7							
8							

参考解答:

a) 完整的 LR(0) 自动机如下:

- b) 状态 I₇ 有移进-归约冲突。
- c) 因 $Follow(D) = \{;\}$, 与移进集合 $\{;\}$ 相交, 所以状态 I_7 的移进-归约冲突不适合采用 SLR(1) 分析方法解决。
- d) 完整的 LR(1) 分析表:

- e) 状态 I₇ 有移进-归约冲突。
- f) (1) 规定符号';'的左结合性(或右结合性);
 - (2) 若规定符号';'是左结合的,则SLR(1) 分析表如下:

.15-4-		ACT		GOTO			
状态	а	d	;	#	P	D	Е
0		s_2			1	3	
1				acc			
2			\mathbf{r}_3				
3			S_4				
4	s_5	s_2				7	6
5				r_4			
6				\mathbf{r}_1			
7			\mathbf{r}_2				
8		s_2				7	

若规定符号';'是右结合的,则 SLR(1) 分析表如下:

45 		ACT		GOTO			
状态	а	d	;	#	P	D	Е
0		s_2			1	3	
1				acc			
2			\mathbf{r}_3				
3			S_4				
4	S ₅	s_2				7	6
5				\mathbf{r}_4			
6				\mathbf{r}_1			
7			s_8				
8		s_2				7	

12. 已知某文法 G[S] 的 LALR(1)分析表如下:

状态		GOTO				
	а	t	g	С	#	S
0	s11	s8		s4		1
1				s2	acc	
2			s3			
3	s11	s8		s4		16
4	s5					
5	s6					
6				s7		
7			r1	r1	R1	
8			s9			
9				s10		
10	s11	s8		s4		14

11	s11	s8		s4		12
12			s13	s2		
13	s11	s8		s4		15
14			r4	s2	R4	
15			r2	s2	R2	
16			r3	s2	R3	

并且已知各规则右边语法符号的个数以及左边的非终结符如下:

规则编号	1	2	3	4
右部长度	4	4	4	4
左部符号	S	S	S	S

(a) 写出使用上述 LALR(1)分析器分析下面串的过程(只需写出前 10 步,列出所有可能的 ri ,sj 序列,注意先后次序):

acaaccgtgccaacgatgccaa ...

(b) 试指出该串相对于上述文法的句柄。

参考解答:

- (a) s11, s4, s5, s6, s7, r1, s2, s3, s8, s9, ...
- (b) 该串相对于上述文法的句柄是: caac