# ALPhA Week 13 Presentation

PHY 496
BRADEN KRONHEIM
APRIL 19, 2019

## Summary

- Finished Poster
- Ran code to generate 50,000 networks, saving every 100
- Ran code to generate 1000 networks starting with the last network from the 50,000, step size of 1000
- Looked at possible extensions to HMC

## General % Error



# Summary

| Network                      | Inside 1<br>SD | Inside 2<br>SDs | Inside 3<br>SD3 | Percent<br>Error |
|------------------------------|----------------|-----------------|-----------------|------------------|
| HMC 5,000                    | 55.95          | 81.65           | 91.29           | 9.01             |
| HMC 1,000<br>(leapfrog = 50) | 55.90          | 81.95           | 91.09           | 8.99             |
| HMC 10,000                   | 62.01          | 85.00           | 93.19           | 8.05             |
| HMC 50,000                   | 64.21          | 86.33           | 93.78           | 7.85             |
| HMC 900 (leapfrog<br>= 1000) | 67.27          | 87.95           | 94.76           | 7.74             |
| Combined 50,000<br>and 900   | 67.83          | 88.21           | 94.90           | 7.68             |

### Possible HMC extensions

- Parallel Tempering:
  - Built into TensorFlow probability
  - Parallel iterations running at different temperatures
    - Higher temperature makes it easier for states to be accepted
  - States are exchanged between iterations
    - ► Allows low temperature states to jumpy between modes
- Riemann Manifold
  - Assigns masses other than 1 to the particles in the Hamiltonian
- Adaptive sampler
  - Uses Bayesian inference to adjust leapfrog steps and step size
  - Beats No-U-Turn Sampler
  - Can be applied to Riemann Manifold method

### Goals for next week

- Try and implement the parallel tempering algorithm
- Further investigate impact of number of leapfrog steps
- Read up more on the other two possible extensions