CSE 574: Introduction to Machine Learning

Fall 2018

Submitted by: Sai Kalyan Katta (UB Person Number: 50292522)

Logistic Regression

The **One_to_N** function takes the target values ranging from 0 to 9 and converts them into an n x10 matrix and returns the matrix which is known as the one hot encoding.

The **decode** function converts the one hot encoded matrix into the original array.

The function 'Logistic_regression' performs the logistic regression on the data passed to the function in which the accuracies are printed at last. First, we calculate the value of xW^T by taking random value for W (dimension of W is n x10) and then calculate the predicted target values Y by applying the softmax function on xW^T which is defined as

Softmax(a) =
$$e^a / \sum e^a$$

done by the function 'Softmax'.

Then, the gradiant is found calling the 'gradiant' function which is used to calculate W_next. We calculate the accuracy of our findings of target values Y by comparing it with the original Target values.

The 'gradiant' function gives the calculation of gradiant which is used in calculating the theta_next values.

gradiant = $x^{T}(Y-t)$ Where Y is the predicted target values t is the actual target values x is the data

The 'Get Acc' function gives the accuracy of the findings.

Results:

For MNIST dataset:

confusion matrix

956	0	11	5	2	15	16	3	9	13
0	1102	7	1	6	6	3	20	10	8
3	2	888	18	5	6	6	29	10	6
3	4	19	898	0	43	2	4	29	11
0	1	15	1	901	15	13	11	8	43
2	2	0	32	0	726	16	0	26	16
8	4	17	6	10	17	897	0	12	0
1	0	21	15	2	10	1	918	13	24
7	20	45	22	8	43	4	4	840	6
0	0	9	12	48	11	0	39	17	882

Accuracy = 90.08

For USPS dataset:

confusion matrix

601	234	219	108	65	182	380	198	226	52
4	298	25	3	86	20	13	213	30	188
375	126	1176	121	36	214	346	318	146	164
56	350	138	1259	62	184	106	450	208	470
255	286	67	21	1028	45	105	74	127	155
111	52	75	236	120	1031	218	78	573	84
104	41	93	31	41	126	698	35	119	15
42	299	93	58	128	72	25	300	43	365
147	296	90	103	292	89	75	287	444	339
305	18	23	60	142	37	34	47	84	168

Accuracy = 35.01675

Neural Network

The model that was created in this implementation is of a sequential composition which is basically a stack of layers. All the nodes in one layer are connected to all nodes in the next layer. Every layer has an activation function that induces non-linearity. The activation function used for the first hidden layer and the second hidden layer are 'sigmoid' and 'softmax' respectively. The 'sigmoid' activation function maps the input between 0 to 1 so that the neural network so that the values do not increase exponentially whereas the 'softmax' activation function outputs the probabilities. The optimizer used is the 'sgd' and the loss function used is the 'categorical_crossentropy'. Here, the batch size, epochs, validation_split are taken as 124,1000,0.2 respectively.

Results:

For MNIST dataset:

Accura	acy =	95.93							
965	0	6	0	1	6	9	2	6	6
0	1121	4	1	1	2	3	6	3	6
1	2	982	12	3	0	3	16	2	1
1	1	6	968	1	15	0	9	9	10
0	0	9	1	943	1	5	1	5	25
4	1	3	8	0	838	10	0	8	7
7	5	6	2	6	12	925	0	7	0
1	2	9	8	1	2	0	981	4	7
1	3	5	8	2	10	3	1	926	3
0	0	2	2	24	6	0	12	4	944

For USPS dataset:

Accuracy = 39.34196709760982380 1414 124 1183 117 1315

Random Forest

The random forest classifier is implemented by changing the value of number of trees from 6 to 10.

Results:

For trees =6

For MNIST dataset:

Accuracy = 92.83

970	0	12	6	5	17	14	1	9	6
0	1122	6	4	3	2	3	14	3	7
3	2	968	28	7	6	9	27	18	5
0	3	10	918	6	46	2	4	25	15
0	2	4	2	910	8	13	12	6	48
3	3	4	22	1	792	11	2	24	9
1	1	5	1	5	8	903	2	10	3
1	0	11	10	4	1	0	952	6	12
1	2	11	13	5	5	2	3	856	12
1	0	1	6	36	7	1	11	17	892

For trees =6

Accuracy = 28.466423321166058

```
625 90 234 111
               79 250 449 131 185 102
32 574 163 126 211
                   95 77 365 144 273
306 183 837 262 138 210 316 427 259 264
83 103 148 793
               89 251
                      78 210 250 289
327 77 83 94 790 100 135
                          86 215 266
181 101 165 341 172 827 279 168 552 144
120 60 86 29 55
                   76 484
                          37 112 53
116 747 212 143 340
                   97 108 514
                             84 401
                  50 33 30 136 95
23 19 24 36
               35
187 46 47 65 91
                   44
                      41
                          32 63 113
```

For trees = 8

For MNIST dataset:

Accura	acy =	94.17							
968	- 0	17	4	3	7	13	3	9	9
0	1123	2	2	3	1	4	8	6	5
1	2	979	18	5	4	10	27	15	3
2	2	7	940	2	40	1	7	15	13
1	0	3	1	930	5	10	10	12	29
1	2	1	19	1	808	9	2	10	11
4	4	4	0	5	6	909	0	4	2
0	2	7	9	0	3	0	951	9	7
3	0	9	12	5	11	2	0	889	10
0	0	3	5	28	7	0	20	5	920

11/21/18 4

For USPS dataset:

Accuracy = 29.856492824641233

```
568 63 231 141 54 162 357 69 171 78
88 551 148 65 243
                      86 473 181 327
                  74
295 133 919 212 120 205 307 275 210 309
106 141 165 927 75 278 123 225 278 283
345 108 84 97 812 97 159 76 164 247
192 72 151 348 192 883 294 207 607 134
143 48
       76 29 68
                  90 500
                         43 116 33
97 858 192 137 323 163 124 595 102 430
22 16
       18 16
              52
                   22 18
                          18 126
144 10 15 28 61
                   26 32
                         19 45
                                  90
```

For trees =10

For MNIST dataset:

Accuracy = 94.23

967	1	8	3	4	7	13	4	7	8
0	1117	0	1	1	0	3	10	5	4
0	5	979	19	3	5	1	23	15	5
1	4	4	937	1	33	3	5	16	13
0	0	10	2	935	8	4	9	10	32
4	1	1	23	0	807	8	2	17	7
3	3	7	1	7	12	920	0	9	1
2	2	14	10	2	5	0	958	3	7
3	2	9	8	5	9	5	6	881	10
0	0	0	6	24	6	1	11	11	922

For USPS dataset:

Accuracy = 30.72153607680384

613	56	184	115	37	199	390	69	156	47
54	479	120	51	217	89	62	376	115	282
277	210	1006	186	148	184	298	355	290	306
95	138	144	967	101	281	86	228	243	325
330	74	75	63	850	66	125	62	166	217
188	76	189	414	197	916	311	238	646	137
109	32	54	17	48	82	502	49	105	45
149	907	198	131	313	137	163	579	106	448
18	14	16	19	19	23	23	17	114	75
167	14	13	37	70	23	40	27	59	118

11/21/18 5

SVM

The SVM classification is implemented by changing the kernel, C and the gamma value. The changes in the values are: linear kernel default parameters sgd with default parameters

For the case 1:

For MNIST dataset:

Accuracy = 93.64

958	0	6	4	2	15	10	0	11	7
0	1117	11	2	1	7	3	10	6	7
5	4	960	19	9	4	11	20	7	2
1	4	13	944	0	39	1	10	24	13
1	0	3	3	944	5	5	5	10	33
3	1	1	13	0	787	13	2	22	3
8	2	12	1	5	11	912	0	8	0
1	1	10	7	1	1	1	960	9	22
1	6	14	14	2	19	2	4	869	9
2	0	2	3	18	4	0	17	8	913

For USPS dataset:

Accuracy = 28.536426821341067

358	59	132	65	28	46	152	20	121	13
1	282	79	52	27	26	17	71	17	35
493	572	1256	364	214	682	916	190	278	200
172	265	131	884	90	249	64	715	488	579
239	240	35	14	820	45	81	61	123	166
316	162	224	501	213	824	250	296	648	105
69	15	61	8	8	37	450	12	83	8
166	339	48	43	456	38	38	518	68	587
11	44	21	50	80	36	2	84	154	146
175	22	12	19	64	17	30	33	20	161

For case 2:

Accuracy = 94.18

969	1	0	1	0	4	4	1	0	0
0	1110	5	3	5	0	5	0	7	0
7	2	979	11	5	1	3	9	13	2
5	4	16	924	4	25	1	16	12	3
3	1	3	2	933	2	7	2	3	26
10	0	7	28	6	813	8	4	10	6
14	4	3	2	5	4	920	0	6	0
1	7	24	9	3	2	0	962	4	16
7	3	16	18	10	15	10	6	878	11
8	3	7	13	17	12	0	7	12	930

Combined Models

For MNIST dataset:

971	0	9	3	2	11	10	2	9	9
0	1124	5	1	1	2	3	12	5	7
1	2	985	15	5	4	6	25	7	3
1	1	5	966	1	37	1	3	16	14
0	0	5	0	954	4	7	5	8	36
2	1	0	10	0	809	13	0	20	7
3	4	6	1	4	9	918	0	9	0
1	1	8	7	0	1	0	972	5	12
1	2	8	6	2	10	0	2	891	3
0	0	1	1	13	5	0	7	4	918

Accuracy = 95.08

For USPS dataset:

666	128	171	83	50	1999	2000	2000	2000	2000
16	371	47	18	118	0	0	0	0	0
387	366	1405	235	109	0	0	0	0	0
93	265	94	1264	72	1	0	0	0	0
238	205	31	10	1052	0	0	0	0	0
166	104	127	300	139	0	0	0	0	0
56	23	43	5	12	0	0	0	0	0
83	452	61	29	241	0	0	0	0	0
27	76	15	42	140	0	0	0	0	0
268	10	5	14	67	0	0	0	0	0

Accuracy = 23.791189559477974

Comparison:

From the results above it is seen that the neural networks and the SVM classification have performed well in predicting the target values. It is seen that the accuracies from the models for the USPS datasets when they are trained with MNIST dataset are very low. Thereby, supporting the "No Free Lunch Theory" which states that there is no universal training dataset that gives more accuracies for any possible testing datasets. It is also seen that the overall combined performance is better than the individual classifiers.

Advantages of the classifiers:

Neural networks:

The neural networks can handle very large amounts of data.

They can induce the non-linearity in the input data.

Logistic Regression:

It is more robust to the non-linearity.

Widely used and more efficient.

No homogeneity of the variance assumption.

SVM:

Just like the neural networks, SVM classification is very good in avoiding the non-linearity in the data.

Random Forests:

Random Forests are good at handling very large amounts of data.