Fuzzy Logic: Introduction

What is Fuzzy logic?

- Fuzzy logic is a <u>mathematical language</u> to <u>express</u> something.
 This means it has grammar, syntax, semantic like a language for communication.
- There are some other mathematical languages also known
 - Relational algebra (operations on sets)
 - Boolean algebra (operations on Boolean variables)
 - Predicate logic (operations on well formed formulae (wff), also called predicate propositions)
- Fuzzy logic deals with Fuzzy set.

First time introduced by Lotfi Abdelli Zadeh (1965), University of California, Berkley, USA (1965).

What is fuzzy?

Dictionary meaning of fuzzy is not clear, noisy etc.

Example: Is the picture on this slide is fuzzy?

Antonym of fuzzy is crisp

Example: Are the chips crisp?

Example: Fuzzy logic vs. Crisp logic

Example: Fuzzy logic vs. Crisp logic

Example: Fuzzy logic vs. Crisp logic

World is fuzzy!

Concept of fuzzy system

Concept of fuzzy set

To understand the concept of **fuzzy set** it is better, if we first clear our idea of **crisp set**.

X = The entire population of India.

H = All Hindu population = { h_1 , h_2 , h_3 , ..., h_L }

M = All Muslim population = { m_1 , m_2 , m_3 , ..., m_N }

Here. All are the sets of finite numbers of individuals.

Such a set is called crisp set.

Example of fuzzy set

Let us discuss about fuzzy set

X = All students in 116U01E514

S = All Good students.

S = { $(s, g) | s \in X$ } and g(s) is a measurement of goodness of the student s.

Example:

S = { (Rajat, 0.8), (Kavita, 0.7), (Salman, 0.1), (Ankit, 0.9) } etc.

Figure 1: Crisp vs. Fuzzy sets

Fuzzy set vs. Crisp set

Crisp Set	Fuzzy Set		
1. $S = \{ s \mid s \in X \}$	1. $F = (s, \mu) \mid s \in X$ and		
	μ (s) is the degree of s.		
2. It is a collection of el-	2. It is collection of or-		
ements.	dered pairs.		
3. Inclusion of an el-	3. Inclusion of an el-		
ement $s \in X$ into S is	ement $s \in X$ into F is		
crisp, that is, has strict	fuzzy, that is, if present,		
boundary yes or no .	then with a degree of		
	membership.		

Fuzzy set vs. Crisp set

Note: A crisp set is a fuzzy set, but, a fuzzy set is not necessarily a crisp set.

Example:

$$\mathsf{H} = \{\ (h_1,\ 1),\, (h_2,\ 1),\, \dots\,,\, (h_L,\ 1)\,\}$$

Person = {
$$(p_1, 1), (p_2, 0), ..., (p_N, 1)$$
 }

In case of a crisp set, the elements are with extreme values of degree of membership namely either 1 or 0.

How to decide the degree of memberships of elements in a fuzzy set?

City	Bangalur u	Mumbai	Hyderabad	Kharagpur	Chenna i	Delhi
DoM	0.95	0.90	0.80	0.01	0.65	0.75

How the cities of comfort can be judged?

Example: Course evaluation in a crisp way

- \blacksquare EX = Marks ≥ 90
- \triangle A = 80 \leq Marks < 90
- \blacksquare B = 70 \le Marks < 80
- $C = 60 \le Marks < 70$
- **5** D = $50 \le Marks < 60$
- F = Marks < 35</p>

Example: Course evaluation in a crisp way

Example: Course evaluation in a fuzzy way

Few examples of fuzzy set

- High Temperature
- Low Pressure
- Color of Apple
- Sweetness of Orange
- Weight of Mango

Note: Degree of membership values lie in the range [0...1].

Some basic terminologies and notations

Definition 1: Membership function (and Fuzzy set)

If X is a universe of discourse and $x \in X$, then a fuzzy set A in X is defined as a set of ordered pairs, that is

 $A = \{(x, \mu_A(x)) | x \in X\}$ where $\mu_A(x)$ is called the membership function for the fuzzy set A.

Note:

 $\mu_A(x)$ map each element of X onto a membership grade (or membership value) between 0 and 1 (both inclusive).

Question:

How (and who) decides $\mu_A(x)$ for a Fuzzy set A in X?

Some basic terminologies and notations

Example:

X = All cities in India

A = City of comfort

A={(New Delhi, 0.7), (Bangalore, 0.9), (Chennai, 0.8), (Hyderabad, 0.6), (Kolkata, 0.3), (Kharagpur, 0)}

Membership function with discrete membership values

The membership values may be of discrete values.

A fuzzy set with discrete values of $\,\mu$

Membership function with discrete membership values

Either elements or their membership values (or both) also may be of discrete values.

$$A = \{(0,0.1),(1,0.30),(2,0.78).....(10,0.1)\}$$

Note : X = discrete value

How you measure happiness ??

Membership function with continuous membership values

Fuzzy terminologies: Support

Support: The support of a fuzzy set *A* is the set of all points $x \in X$ such that $\mu_A(x) > 0$

Fuzzy terminologies: Core

Core: The core of a fuzzy set *A* is the set of all points *x* in *X* such that $\mu_A(x) = 1$

Fuzzy terminologies: Normality

Normality: A fuzzy set A is a normal if its core is non-empty. In other words, we can always find a point $x \in X$ such that $\mu_A(x) = 1$.

Fuzzy terminologies: Crossover points

Crossover point: A crossover point of a fuzzy set *A* is a point $x \in X$ at which $\mu_A(x) = 0.5$. That is Crossover (*A*) = $\{x | \mu_A(x) = 0.5\}$.

Fuzzy terminologies: Fuzzy Singleton

Fuzzy Singleton: A fuzzy set whose support is a single point in X with $\mu_A(x) = 1$ is called a fuzzy singleton. That is $|A| = |\{ x \mid \mu_A(x) = 1\}| = 1$. Following fuzzy set is not a fuzzy singleton.

Fuzzy terminologies: α -cut and strong α -cut

a-cut and strong a-cut:

The a-cut of a fuzzy set A is a crisp set defined by

$$A_{\alpha} = \{ x \mid \mu_{A}(x) \geq a \}$$

Strong a-cut is defined similarly:

$$A_{\alpha}' = \{ x \mid \mu_{A}(x) > a \}$$

Note: Support(A) = A_0 ' and Core(A) = A_1 .

Fuzzy terminologies: Bandwidth

Bandwidth:

For a normal and convex fuzzy set, the bandwidth (or width) is defined as the distance the two unique crossover points:

Bandwidth(
$$A$$
) = $|x_1 - x_2|$

where
$$\mu_A(x_1) = \mu_A(x_2) = 0.5$$

Fuzzy terminologies: Symmetry

Symmetry:

A fuzzy set A is symmetric if its membership function around a certain point x = c, namely $\mu_A(x + c) = \mu_A(x - c)$ for all $x \in X$.

Fuzzy terminologies: Open and Closed

A fuzzy set A is

Open left

If
$$\lim_{x\to -\infty} \mu_A(x) = 1$$
 and $\lim_{x\to +\infty} \mu_A(x) = 0$

Open right:

If
$$\lim_{x\to-\infty}\mu_A(x)=0$$
 and $\lim_{x\to+\infty}\mu_A(x)=1$

Closed

If:
$$\lim_{x\to -\infty} \mu_A(x) = \lim_{x\to +\infty} \mu_A(x) = 0$$

Fuzzy Membership Functions

Fuzzy membership functions

A fuzzy set is completely characterized by its membership function (sometimes abbreviated as MF and denoted as μ). So, it would be important to learn how a membership function can be expressed (mathematically or otherwise).

Note: A membership function can be on

- (a) a discrete universe of discourse and
- (b) a continuous universe of discourse.

Example:

Fuzzy membership functions

So, membership function on a discrete universe of course is trivial. However, a membership function on a continuous universe of discourse needs a special attention.

Following figures shows a typical examples of membership functions.

Fuzzy MFs: Formulation and parameterization

In the following, we try to parameterize the different MFs on a continuous universe of discourse.

Triangular MFs: A triangular MF is specified by three parameters $\{a, b, c\}$ and can be formulated as follows.

$$triangle(x; a, b, c) = \begin{cases} 0 & \text{if } x \le a \\ \frac{x-a}{b-a} & \text{if } a \le x \le b \\ \frac{c-x}{c-b} & \text{if } b \le x \le c \\ 0 & \text{if } c \le x \end{cases}$$
 (1)

Fuzzy MFs: Trapezoidal

A trapezoidal MF is specified by four parameters $\{a, b, c, d\}$ and can be defined as follows:

$$trapeziod(x; a, b, c, d) = \begin{cases} 0 & \text{if } x \leq a \\ \frac{x-a}{b-a} & \text{if } a \leq x \leq b \\ 1 & \text{if } b \leq x \leq c \\ \frac{d-x}{d-c} & \text{if } c \leq x \leq d \\ 0 & \text{if } d \leq x \end{cases}$$
 (2)

Fuzzy MFs: Gaussian

A Gaussian MF is specified by two parameters $\{c, \sigma\}$ and can be defined as below:

gaussian(x;c,
$$\sigma$$
) = $e^{-\frac{1}{2}(\frac{x-c}{\sigma})^2}$.

Fuzzy MFs: Generalized bell

It is also called Cauchy MF. A generalized bell MF is specified by three parameters $\{a, b, c\}$ and is defined as:

bell(x; a, b, c)=
$$\frac{1}{1+|\frac{x-c}{a}|^{2b}}$$

Example: Generalized bell MFs

Example:
$$\mu(x) = \frac{1}{1+x^2}$$
; $a = b = 1$ and $c = 0$;

Generalized bell MFs: Different shapes

Fuzzy MFs: Sigmoidal MFs

Parameters: $\{a, c\}$; where c = crossover point and a = slope at c;

Sigmoid(x;a,c)=:
$$\frac{1}{1+e^{-\left[\frac{a}{x-c}\right]}}$$

Fuzzy MFs: Example

Example: Consider the following grading system for a course.

Excellent = Marks ≤ 90

 $Very\ good = 75 \leq Marks \leq 90$

 $Good = 60 \leq Marks \leq 75$

Average = $50 \le Marks \le 60$

Poor = $35 \le Marks \le 50$

Bad= Marks ≤ 35

Grading System

A fuzzy implementation will look like the following.

You can decide a standard fuzzy MF for each of the fuzzy garde.

Operations on Fuzzy Sets

Basic fuzzy set operations: Union

Union ($A \cup B$):

$$\mu_{A\cup B}(x)=\max\{\mu_A(x),\,\mu_B(x)\}$$

Example:

 $A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$ and

 $B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\};$

 $C = A \cup B = \{(x_1, 0.5), (x_2, 0.3), (x_3, 0.5)\}$

Basic fuzzy set operations: Intersection

Intersection ($A \cap B$):

$$\mu_{A\cap B}(x) = \min\{\mu_A(x), \mu_B(x)\}\$$

Example:

 $A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$ and

 $B = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5)\};$

 $C = A \cap B = \{ (x_1, 0.2), (x_2, 0.1), (x_3, 0.4) \}$

Basic fuzzy set operations: Complement

Complement (A^C):

$$\mu_{A_{A^C}}(x)=1{\text{-}}\mu_A(x)$$

Example:

$$A = \{(x_1, 0.5), (x_2, 0.1), (x_3, 0.4)\}$$

$$C = A^C = \{(x_1, 0.5), (x_2, 0.9), (x_3, 0.6)\}$$

Basic fuzzy set operations: Products

Algebric product or Vector product (A · B):

$$\mu_A._B(x) = \mu_A(x) \cdot \mu_B(x)$$

Scalar product $(a \times A)$:

$$\mu_{\alpha A}(x) = a \cdot \mu_A(x)$$

Basic fuzzy set operations: Sum and Difference

Sum (A + B):

$$\mu_{A+B}(x) = \mu_{A}(x) + \mu_{B}(x) - \mu_{A}(x) \cdot \mu_{B}(x)$$

Difference ($A - B = A \cap B^C$):

$$\mu_{A-B}(x) = \mu_{A\cap B^C}(x)$$

Disjunctive sum: $A \oplus B = (A^C \cap B) \cup (A \cap B^C)$)

Bounded Sum: $| A(x) \oplus B(x) |$

$$\mu_{|A(x)\oplus B(x)|} = \min\{1, \mu_A(x) + \mu_B(x)\}\$$

Bounded Difference: | A(x) g B(x) |

$$\mu_{|A(x) \neq B(x)|} = \max\{0, \mu_A(x) + \mu_B(x) - 1\}$$

Basic fuzzy set operations: Equality and Power

Equality (A = B):

$$\mu_A(x) = \mu_B(x)$$

Power of a fuzzy set A^{α} :

$$\mu_{A^{\alpha}}(\mathbf{x}) = \{\mu_{A}(\mathbf{x})\}^{\alpha}$$

- If *a* < 1, then it is called *dilation*
- If a > 1, then it is called concentration

Basic fuzzy set operations: Cartesian product

Caretsian Product ($A \times B$):

$$\mu_{A\times B}(x,y) = \min\{\mu_A(x), \mu_B(y)\}$$

Example 3:

$$A(x) = \{(x_1, 0.2), (x_2, 0.3), (x_3, 0.5), (x_4, 0.6)\}$$

$$B(y) = \{(y_1, 0.8), (y_2, 0.6), (y_3, 0.3)\}$$

Properties of fuzzy sets

Commutativity:

$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

Associativity:

$$A \cup (B \cup C) = (A \cup B) \cup C$$
$$A \cap (B \cap C) = (A \cap B) \cap C$$

Distributivity:

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Properties of fuzzy sets

Idempotence:

$$A \cup A = A$$
$$A \cap A = A$$
$$A \cup \emptyset = A$$
$$A \cap \emptyset = A$$

Transitivity:

If
$$A \subseteq B$$
, $B \subseteq C$ then $A \subseteq C$

Involution:

$$(A^c)^c = A$$

De Morgan's law:

$$(A \cap B)^c = A^c \cup B^c$$
$$(A \cup B)^c = A^c \cap B^c$$

Few Illustrations on Fuzzy Sets

Example 1: Fuzzy Set Operations

Let A and B are two fuzzy sets defined over a universe of discourse X with membership functions $\mu_A(x)$ and $\mu_B(x)$, respectively. Two MFs $\mu_A(x)$ and $\mu_B(x)$ are shown graphically.

Example 1: Plotting two sets on the same graph

Let's plot the two membership functions on the same graph

Example 1: Union and Intersection

The plots of union $A \cup B$ and intersection $A \cap B$ are shown in the following.

Example 1: Intersection

The plots of union $\mu_A^-(x)$ of the fuzzy set A is shown in the following.

Fuzzy set operations: Practice

Consider the following two fuzzy sets A and B defined over a universe of discourse [0,5] of real numbers with their membership functions

$$\mu_A(x) = \frac{x}{1+x}$$
 and $\mu_B(x) = 2^{-x}$

Determine the membership functions of the following and draw them graphically.

- i. \overline{A} , \overline{B}
- ii. A∪B
- iii. A∩B
- iv. $(A \cup B)^c$ [Hint: Use De' Morgan law]

Example 2: A real-life example

Two fuzzy sets A and B with membership functions $\mu_A(x)$ and $\mu_B(x)$, respectively defined as below.

A =Cold climate with $\mu_A(x)$ as the MF.

B =Hot climate with $\mu_B(x)$ as the M.F.

Here, *X* being the universe of discourse representing entire range of temperatures.

Example 2: A real-life example

What are the fuzzy sets representing the following?

- Not cold climate
- Not hold climate
- Extreme climate
- Pleasant climate

Note: Note that "Not cold climate" /= "Hot climate" and vice-versa.

Example 2 : A real-life example

Answer would be the following.

- Not cold climate \overline{A} with $1 \mu_A(x)$ as the MF.
- 2 Not hot climate \overline{B} with $1 \mu_B(x)$ as the MF.
- **Extreme climate** $A \cup B$ with $\mu_{A \cup B}(x) = \max(\mu_A(x), \mu_B(x))$ as the MF.
- Pleasant climate $A \cap B$ with $\mu_{A \cap B}(x) = \min(\mu_A(x), \mu_B(x))$ as the MF.

The plot of the MFs of $A \cup B$ and $A \cap B$ are shown in the following.

Few More on Membership Functions

Generation of MFs

Given a membership function of a fuzzy set representing a linguistic hedge, we can derive many more MFs representing several other linguistic hedges using the concept of Concentration and Dilation.

Concentration:

$$A^k = [\mu_A(x)]^k$$
; $k > 1$

Dilation:

$$A^k = [\mu_A(x)]^k$$
; $k < 1$

Example : Age = { Young, Middle-aged, Old }

Thus, corresponding to Young, we have : Not young, Very young, Not very young and so on.

Similarly, with Old we can have : old, very old, very very old, extremely old etc.

Thus, Extremely old = $(((old)^2)^2)^2$ and so on

Or, More or less old =
$$A^{0.5} = (old)^{0.5}$$

Linguistic variables and values

$$\mu_{young}(x) = bell(x, 20, 2, 0) = \frac{1}{1 + (\frac{x}{20})^4}$$

$$\mu_{old}(x) = bell(x, 30, 3, 100) = \frac{1}{1 + (\frac{x-100}{30})^6}$$

$$\mu_{middle-aged} = bell(x, 30, 60, 50)$$

Not young =
$$\overline{\mu_{young}(x)} = 1 - \mu_{young}(x)$$

Young but not too young = $\mu_{young}(x) \cap \mu_{young}(x)$

