Review for Midterm

EES 3310/5310
Global Climate Change
Jonathan Gilligan

Class #18: 2018-10-01 2018

Outline of Semester

Heat and Temperature

- Temperature is stable when Q_{in} = Q_{out} (balance of heat)
- Radiative equilibrium:
 - Q_{in} is shortwave light from sun
 - Q_{out} is longwave light from earth
 - Where on earth does Q_{out} come from?
 - Why is Q_{in} shortwave and Q_{out} longwave?
 - Equations (in W/m²):

$$Q_{
m in}=rac{(1-lpha)I_{
m solar}}{4}$$
 (Absorption) $Q_{
m out}=arepsilon\sigma T_{
m skin}^4$ (Stefan-Boltzmann Law)

Greenhouse Effect

No greenhouse gases: Bare-rock model

$$\mathcal{T} = \sqrt[4]{rac{(1-lpha)I_{\mathsf{solar}}}{4arepsilon\sigma}}$$

- Add greenhouse gases:
 - Simple model: Layer model ($\varepsilon = 1$ for all wavelengths)

More Realistic Greenhouse Effect

More Realistic Greenhouse Effect

• With real greenhouse gases, ε varies with wavelength:

Question:

What do you suppose causes this?

Vertical Structure of the Atmosphere

Vertical Structure of the Atmosphere

- Lapse Rate:
 - Environmental (ELR): Snapshot of actual atmosphere
 - Adiabatic (ALR): Changes as air moves up or down
 - Condition for stability: ELR < ALR
- Why does stability matter?
 - Greenhouse effect wants to make ELR very large
 - When ELR > ALR, convection happens
 - Convection moves heat around,
 - Convection reduces ELR until atmosphere becomes stable
 - Radiative-Convective Equilibrium:
 - Atmosphere is just at the edge of stability
 - Greenhouse effect wants to raise ELR
 - Convection wants to reduce ELR

Vertical Structure and Greenhouse Effect

Vertical Structure and Greenhouse Effect

Feedbacks

Feedbacks

- Positive: amplify warming or cooling
- Negative: diminish warming or cooling
- Examples:
 - Ice-albedo
 - Water vapor
 - Clouds
 - Silicate Weathering

Cloud Feedback

Silicate Weathering

- Constant CO₂: Silicate weathering = volcanic outgassing
- Raise outgassing:
 - CO₂ rises
 - Temperature rises
 - More weathering
 - New equilibrium when weathering = new outgassing
 - Higher temperature

Silicate Weathering

- Constant CO₂: Silicate weathering = volcanic outgassing
- One-time increase in CO₂
 - Temperature rises
 - More weathering
 - Weathering > outgassing
 - CO₂ drops
 - New equilibrium when CO₂ returns to original value:
 - T returns to original value
 - CO₂ back at original value
 - Weathering = outgassing

Geochemical Carbon Cycle

Carbon

- Oxidized vs. Reduced Carbon
- Isotopes:
 - ¹²C, ¹³C, ¹⁴C
 - What do they tell us?
- Evidence that rising CO₂ comes from fossil fuels

Source of CO₂: O₂ and ¹³C

Source of CO₂: ¹³C and ¹⁴C

Where is Carbon

Carbonate/Bicarbonate Buffering Buffering reaction

$$CO_2 + H_2O + CO_3^{2-} \rightleftharpoons 2HCO_3^-$$

Important points:

- Lots more carbonate than CO₂ in ocean
- Le Chatlier's principle
- Absorb lots more CO₂ because of buffering, carbonate
- Ocean acidification as carbonate depleted

Weathering Reactions

Silicate Weathering Reactions

Silicate Weathering (Urey Reaction)

$$CaSiO_3 + CO_2 \leftrightharpoons CaCO_3 + SiO_2$$

Intermediate (in water):

$$CaSiO_3 + H_2CO_3 \leftrightharpoons Ca^2 + SiO_3^2 - + 2H^+ + CO_3^2$$

- Silicate rocks dissolve into ions in water
- Wash into ocean
- In ocean, living organisms convert ions to caco3 and sio2.
- Net result: Convert CO₂ from atmosphere into rocks at bottom of ocean.

Carbonate Weathering Reactions

Carbonate Weathering

$$CaCO_3 + CO_2 \leftrightharpoons CaCO_3 + CO_2$$

Intermediate (in water):

$$CaCO_3 + H_2CO_3 = Ca^2 + 2H^+ + 2CO_3^{2-}$$

- Carbonate rocks dissolve into ions in water
- Add carbonate ions to oceans
- Net result: No permanent removal of CO₂ from atmosphere, but long-term storage in oceans.

Climates of the Past

Climates of the Past {past-climates}

- Paleocene-Eocene Thermal Maximum (PETM) (~55 million years ago)
- Pleistocene Ice Ages (~2.8 million to 10,000 years ago)
- Holocene (last ~10,000 years)
 - Medieval Warm Period (~1000 years ago)
 - Post-industrial warming

Paleocene-Eocene Thermal Maximum

- What was it?
- What important evidence do we see for what caused it?
- What is its relevance to today?

Pleistocene Ice Ages

- What was it?
- What important evidence do we use to study it?
- What do we know about what caused it?
- What is its relevance to today?

Post-Industrial Warming

- What do we know about what caused it?
- What are some lines of evidence that human activity is responsible?

Medieval Warm Period

- What was it?
- What is its relevance to today?

Younger Dryas

- What was it?
- What is its relevance to today?