Classifier Evaluation

Classifier Evaluation

- Metrics for Performance Evaluation How to evaluate the performance of a model?
- Methods for Performance Evaluation
 How to obtain reliable estimates?
- Methods for Model Comparison
 How to compare the relative performance among competing models?

Model Evaluation

- Metrics for Performance Evaluation How to evaluate the performance of a model?
- Methods for Performance Evaluation
 How to obtain reliable estimates?
- Methods for Model Comparison
 How to compare the relative performance among competing models?

Metrics for Performance Evaluation

- Focus on the predictive capability of a model
 Rather than how fast it takes to classify or build models, scalability, etc.
- Confusion Matrix:

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	a	b	
CLASS	Class=No	С	d	

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Metrics for Performance Evaluation

	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)	
	Class=No	c (FP)	d (TN)	

Most widely-used metric:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Limitation of Accuracy

- Consider a 2-class problem:
 - Number of Class 0 examples = 9990
 - Number of Class 1 examples = 10
- If the model predicts everything to be class 0, accuracy is 9990/10000 = 99.9 %

Accuracy is misleading because the model does not detect any class 1 examples

Cost Matrix

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL CLASS	Class=Yes	C(Yes Yes)	C(No Yes)	
32 , 133	Class=No	C(Yes No)	C(No No)	

C(i|j): Cost of misclassifying class j example as class i

Computing Cost of Classification

Cost Matrix	PREDICTED CLASS			
	C(i j)	+	-	
ACTUAL CLASS	+	-1	100	
	-	1	0	

Model M ₁	PREDICTED CLASS			
ACTUAL CLASS		+	-	
	+	150	40	
	-	60	250	

Model M ₂	PREDICTED CLASS		
		+	-
ACTUAL CLASS	+	250	45
	-	5	200

Accuracy = 90%

Cost = 4255

Cost vs accuracy

Count	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	b	
CLASS	Class=No	С	d	

Cost	PREDICTED CLASS		
		Class=Yes	Class=No
ACTUAL CLASS	Class=Yes	р	q
CLASS	Class=No	q	р

Accuracy is proportional to cost if:

1.
$$C(Yes|No)=C(No|Yes)=q$$

2.
$$C(Yes | Yes) = C(No | No) = p$$

$$N = a + b + c + d$$

Accuracy =
$$(a + d)/N$$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q-p)
$$\times$$
 Accuracy]

Cost-Sensitive Measures

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p}$$
 = $\frac{2a}{2a+b+c}$

- Precision is biased towards C(Yes|Yes) & C(Yes|No)
- Recall is biased towards C(Yes|Yes) & C(No|Yes)
- F-measure is biased towards all except C(No|No)

Weighted Accuracy =
$$\frac{w_1a + w_4d}{w_1a + w_2b + w_3c + w_4d}$$

Model Evaluation

- Metrics for Performance Evaluation How to evaluate the performance of a model?
- Methods for Performance Evaluation
 How to obtain reliable estimates?
- Methods for Model Comparison
 How to compare the relative performance among competing models?

Methods for Performance Evaluation

- How to obtain a reliable estimate of performance?
- Performance of a model may depend on other factors besides the learning algorithm:
 - Class distribution
 - Cost of misclassification
 - Size of training and test sets

Learning Curve

- Learning curve shows how accuracy changes with varying sample size
- Requires a sampling schedule for creating a learning curve:
 - Arithmetic sampling (Langley, et al)
 - Geometric sampling (Provost et al)
- Effect of small sample size:
 - Bias in the estimate
 - Variance of estimate

Methods of Estimation

Holdout

• Reserve 2/3 for training and 1/3 for testing

Cross validation

- Partition data into k disjoint subsets
- k-fold: train on k-1 partitions, test on the remaining one
- Leave-one-out: k = n

- Random subsampling
 - Repeated holdout
- Stratified sampling
 - Oversampling vs undersampling
- Bootstrap
 - Sampling with replacement

Model Evaluation

- Metrics for Performance Evaluation How to evaluate the performance of a model?
- Methods for Performance Evaluation
 How to obtain reliable estimates?
- Methods for Model Comparison
 How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TP (on the y-axis) against FP (on the x-axis)
- Performance of each classifier represented as a point on the ROC curve
 - Changing the threshold of the algorithm, sample distribution, or cost matrix changes the location of the point

ROC Curve

- 1-dimensional data set containing 2 classes (positive and negative)
- Any points located at x > t are classified as positive

unleash the data scientist in you

ROC Curve

(TP,FP):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - Prediction is opposite of the tr

Using ROC for Model Comparison

- No model consistently outperforms the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area under the ROC curve
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Threshold >=		0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	8.0	0.8	0.6	0.4	0.2	0.2	О	0	0

Test of Significance

- Given two models:
 - Model M1: accuracy = 85%, tested on 30 instances
 - Model M2: accuracy = 75%, tested on 5000 instances
- Can we say M1 is better than M2?
 - How much confidence can we place on accuracy of M1 and M2?
 - Can the difference in performance measure be explained as a result of random fluctuations in the test set?

Confidence Interval for Accuracy

- Prediction can be regarded as a Bernoulli trial
 - A Bernoulli trial has 2 possible outcomes
 - Possible outcomes for prediction: correct or incorrect
 - Collection of Bernoulli trials has a Binomial distribution:
 - $x \sim Bin(N, p)$ x: number of correct predictions
 - e.g.: Toss a fair coin 50 times, how many heads would turn up? Expected number of heads = $N \times p = 50 \times 0.5 = 25$
- Given x (# of correct predictions) or equivalently, acc=x/N, and N (# of test instances), can we predict p (true accuracy of model)?

Confidence Interval for Accuracy

- For large test sets (N > 30),
 - acc has a normal distribution with mean and variance p(1-p)/N

$$P(Z_{_{\alpha/2}} < \frac{acc - p}{\sqrt{p(1-p)/N}} < Z_{_{_{1-\alpha/2}}})$$

• Confidence Interval for p:

$$p = \frac{2 \times N \times acc + Z_{\alpha/2}^{2} \pm \sqrt{Z_{\alpha/2}^{2} + 4 \times N \times acc - 4 \times N \times acc^{2}}}{2(N + Z_{\alpha/2}^{2})}$$

Confidence Interval for Accuracy

- Consider a model that produces an accuracy of 80% when evaluated on 100 test instances:
 - N=100, acc = 0.8
 - Let $1-\alpha = 0.95$ (95% confidence)
 - From probability table, $Z_{\alpha/2}=1.96$

N	50	100	500	1000	5000
p(lower)	0.670	0.711	0.763	0.774	0.789
p(upper)	0.888	0.866	0.833	0.824	0.811

1-α	Z
0.99	2.58
0.98	2.33
0.95	1.96
0.90	1.65

