

V Semester B.C.A. Degree Examination, November/December 2015 (Y2K8 Scheme) (F + R)

Computer Science

BCA - 502: COMPUTER ARCHITECTURE

(100 – 2013-14 & Onwards) (90 – Prior to 2013-14)

Time: 3 Hours Max. Marks: 90/100

Instructions: 1) Section A, B, C is common to all. Section D is applicable to the students of 2011-12 and Onwards.

2) 100 marks for students of 2011-12 and onwards. 90 marks for Repeaters prior to 2011-12.

SECTION - A SECTIO

I. Answer any ten questions. Each carries two marks.

(10×2=20)

- 1) State and prove Demorgan's law.
- 2) Draw the logic diagram of the Boolean function F = AB + A'B using NAND gates only.
- 3) What is Decoder Expansion?
- 4) What is unidirectional and bidirectional shift register?
- 5) Convert (736.4)₈ to decimal and binary.
- 6) What is self complementing code and weighted code?
- 7) What are the two types of control organization?
- 8) How many bits are needed to specify an address for a memory unit of 4096 words?
- 9) What is PSW? a priegration of the old-Extra of the order
- 10) What is an external interrupt? Give an example.
- 11) What are peripherals?
- 12) What is memory management system?

SECTION - B SECTION - B SECTION - B

II. Answer any five questions. Each carries five marks.

 $(5 \times 5 = 25)$

- 13) Simplify the Boolean function $F(A, B, C,D) = \sum (0, 1, 2, 5, 8, 9, 10)$ in both sum-of-products and product-of-sums.
- 14) Design a 4-to-1 multiplexer.
- 15) Define r and (r-1)'s complement. Represent 14 using Integer representation stored in an 8 bit register.
- 16) List the micro operations of ADD and ISZ instructions.
- 17) Explain with a neat block diagram the input-output configuration.
- 18) Explain register stack with a neat block diagram.
- 19) What is polling? Explain.
- 20) Explain Associative memory with a neat block diagram.

GMAM price a MA + BA = 1 man SECTION - C

III. Answer any three questions. Each carries fifteen marks.

 $(3 \times 15 = 45)$

21. a) Design a sequential circuit with two JK flip flops A and B and two inputs E and x.

If E = 0 the circuit remains in the same state regardless of the value of x.

kamerany ten odestions. Backgardas

When E = 1 and x = 1, the circuit goes through the state transition from 00 to 01 to 10 to 11 back to 00 and repeat.

When E = 1 and x = 0, the circuit goes through the state transition from 00 to 11 to 10 to 01 back to 00 and repeat.

b) Derive the circuit for a 3-bit parity generator using an odd-parity system.

(10+5)

- 22) a) Design a octal to binary encoder.
 - b) Explain with a neat block diagram a 4-bit bidirectional shift register with parallel load. (5+10)

	23)	Exp	plain with a neat flowchart the computer operation.	15
	24)) What is Addressing Mode? Explain the different types of Addressing Mode with example.		
	25)	a)	Explain source-initiated data transfer using hand shaking.	
		b)	What is virtual memory? Explain address space and memory space detail.	ce in (7+8)
			SECTION - D	
IV.	An	swe	er any one questions. Each carries ten marks. (1×10=10)
	26)		nat is binary counter? Explain a 4-bit synchronous counter with a ne ock diagram.	eat 10
	27)	a)	What are the major characteristics of RISC architecture?	
		b)	Explain the block diagram of a computer with I/O processors.	(5+5)