29.03.2021

Experiment 1

Q1) Kandilli Observatory and Earthquake Research Institute has asked you to write a C program implementing the following decision table to characterize an earthquake based on its Richter scale number.

Richter scale number (R)	Characterization
R < 5.0	Little or no damage
$5.0 \le R < 5.5$	Some damage
$5.5 \le R < 6.5$	Serious damage
$6.5 \le R < 7.5$	Disaster
Higher	Catastrophe

Q2) A platform shown in the figure below will be lifted up from the ground, increasing by 2 degrees (Θ) per second. Write a program that finds the maximum value of Θ before the load on the platform starts to slip. You should simulate your program every second and check if the necessary condition is satisfied.

The <u>necessary condition and equations</u> for the load on the platform to not slip:

$$F_s > F_x$$

$$F_x = W*sin(\Theta_{radian})$$

$$F_v = W*\cos(\Theta_{radian})$$

$$F_s = F_v * \mu$$

$$\mu = 0.6$$
 and $W = 100 \text{ N}$

$$\Theta_{\text{radian}} = \Theta_{\text{degree}} * \pi / 180^{\circ} (\pi = 3.14)$$

Please don't forget to include the math header (#include <math.h>)

