Real Analysis, E.M.Stein-R.Shakarchi Chapter 5 Hilbert Spaces Several Examples *

Yung-Hsiang Huang[†]

Exercises

1.	Proof.	
2.	Proof.	
3.	Proof.	
4.	Proof.	
5.	Proof.	
6.	Proof.	
7.	Proof.	
8.	Proof.	
9.	Proof.	
10.	Proof.	
11.	Proof.	
12.	Proof.	

the symbol of L by $P(\xi) = \sum_{|\alpha| \le k} a_{\alpha} \xi^{\alpha}$

13. Proof. Let $L = \sum_{|\alpha| \le k} a_{\alpha} D^{\alpha}$, where $k \in \mathbb{N}, \alpha \in (\mathbb{Z}_{\ge 0})^d, d \ge 2$ and $a_{\alpha} \in C$ for each α . Denote

^{*}Last Modified: 2017/01/15

 $^{^\}dagger \mbox{Department}$ of Math., National Taiwan University. Email: d
04221001@ntu.edu.tw

Let $r = (r^1, \dots, r_d) \in \mathbb{C}^d$ and $u_r(x_1, \dots, x_d) = \exp(r^1x_1 + \dots + r^dx_d)$, then $Lu_r = 0$ if and only if P(r) = 0.

Given finite many zeros $r_k \in \mathbb{C}^d$ of P, if $0 \equiv \sum_{k=1}^N c_k u_{r_k}$, we partition $\{1, \cdots, N\}$ into $\{J_1^1, J_2^1, \cdots J_N^1(1)\}$ where each J_k^1 has the property that for each $r_q, r_s \in J_k^1, r_q^1 = r_s^1$, we further partition each J_k^1 , into $\{J_m^2\}_{m=1}^{N(2)}$ where each J_k^2 has the property that for each $r_q, r_s \in J_k^2, r_q^2 = r_s^2$ and of course $r_q^1 = r_s^1$, furthermore we denote $J_q^2 = \emptyset$ if $\bigcup_{m=1}^{q-1} J_m^2 = J_k^1$ for convenience. Inductively, we have a family of $\{J_m^k\}_{m=1}^{N(k)}, k = 1, \cdots, d-1$, which has the properties that for each $r_q, r_s \in J_m^k, r_q^i = r_s^i$ for every $i = 1, \cdots, k$ and for each $k, m, J_m^k \subseteq J_n^{k-1}$ for some n between 1 and N(k-1). Hence

$$0 \equiv \sum_{k=1}^{N} c_k u_{r_k} = \sum_{k=1}^{N(1)} \sum_{j \in J_{k}^1} c_j u_{r_j} = \sum_{k=1}^{N(1)} \left(\sum_{j \in J_{k}^1} c_j \exp(r_j^2 x_2 + \dots + r_j^d x_d) \right) \exp(r_{k}^1 x_1),$$

where $r_{k^1}^1$ is the common value for vectors in $J_{k^1}^1$. This implies that for each $k^1=1,\cdots,N(1),$

$$\sum_{j \in J_{k_1}^1} c_j \exp(r_j^2 x_2 + \dots + r_j^d x_d) = 0.$$

Inductively, we have for each $m=1,\cdots,d-1,$ each $k^m=1,\cdots,N(m),$

$$\sum_{j \in J_{d-1}^{d-1}} c_j \exp(r_j^d x_d) = 0.$$

Hence $c_j = 0$ for all $j = 1, \dots, N$, which means $\{u_j\}_1^N$ is linearly independent.

The desired result follows from the fact that a polynomial of d variables ($d \ge 2$) has infinitely many zeros.

14. Proof. Define $H(t) = \int_0^t G(s) ds$, then H is absolutely continuous. Given $\phi \in C_c^{\infty}$,

$$\int_0^1 [H - F] \phi' \, dx = \int_0^1 \int_0^x G(t) \, dt \phi'(x) \, dx - \int_0^1 F(x) \phi'(x) \, dx$$
$$= \int_0^1 \int_t^1 \phi'(x) \, dx G(t) \, dt + \int_0^1 G(x) \phi(x) \, dx$$
$$= -\int_0^1 \phi(t) G(t) \, dt + \int_0^1 G(x) \phi(x) \, dx = 0.$$

(This argument avoids the use of the Lebesgue Differentiation theorem if we only want to show the 1-d weakly differentiable function F = H a.e., an absolutely continuous function.) We are done if we apply the following theorem from Distribution theory with a partial proof, the whole proof can be found in Lieb and Loss [1, Section 6.9-6.11].

Theorem 1. Let T be a distribution on an open connected set Ω in \mathbb{R}^n . If all the first distributional derivatives of T are 0, then T is a constant function.

Proof. (Taken from Wheeden and Zygmund [3, Page 464], we assume $T \in L^1_{loc}(\Omega)$.)

Let $k_{\epsilon}(x)$ be the standard mollifier. Given B be a small ball contained in Ω . For small ϵ , by hypothesis, we see that for each $y \in B$,

$$0 = \int_{\Omega} T(x) \frac{\partial}{\partial x_i} [k_{\epsilon}(y - x)] dx$$
$$= -\frac{\partial}{\partial y_i} \int_{\Omega} T(x) [k_{\epsilon}(y - x)] dx, \quad by \ LDCT$$

Hence, for all small ϵ , there is a constant c_{ϵ} such that (we omit some irrelevant details)

$$\int_{\Omega} T(x)k_{\epsilon}(y-x)dx = c_{\epsilon} \quad \text{for all } y \in B.$$

As $\epsilon \to 0$, this integral converges to T in $L^1(B)$, hence it converges to T(y) for a.e. y (up to subsequence), and consequently c_{ϵ} converges to some constant c, and T(y) = c a.e. in B. Since Ω is path connected, T is constant a.e. in Ω .

Remark 2. I think the reader should try to prove the general case that T is a distribution by modifying the above proof.

15. Proof. If for each $\varphi \in C_c^{\infty}(\mathbb{R}^d)$,

$$(-1)^{|\alpha|} \int_{\mathbb{R}^d} f(x) \left[\left(\frac{\partial}{\partial x} \right)^{\alpha} \varphi \right](x) \, dx = \int_{\mathbb{R}^d} g(x) \varphi(x) \, dx,$$

then the left hand side

$$L.H.S = \lim_{R \to \infty} (-1)^{|\alpha|} \int_{\mathbb{R}^d} f(x) \chi_{\{|x| \le R\}} \left[\left(\frac{\partial}{\partial x} \right)^{\alpha} \varphi \right](x) dx$$

$$= \lim_{R \to \infty} (-1)^{|\alpha|} \int_{\mathbb{R}^d} \mathscr{F}(f(x) \chi_{\{|x| \le R\}})(\xi) \cdot \overline{\mathscr{F}\left[\left(\frac{\partial}{\partial x} \right)^{\alpha} \varphi \right](\xi)} d\xi$$

$$= \int_{\mathbb{R}^d} \mathscr{F}(f)(\xi) (2\pi i \xi)^{\alpha} \overline{\mathscr{F}(\varphi)(\xi)} d\xi,$$

and the right hand side

$$R.H.S = \lim_{R \to \infty} \int_{\mathbb{R}^d} g(x) \chi_{\{|x| \le R\}} \varphi(x) \, dx = \lim_{R \to \infty} \int_{\mathbb{R}^d} \mathscr{F}(g(x) \chi_{\{|x| \le R\}})(\xi) \cdot \overline{\mathscr{F}(\varphi)(\xi)} \, d\xi$$
$$= \int_{\mathbb{R}^d} \mathscr{F}(g)(\xi) \overline{\mathscr{F}(\varphi)(\xi)} \, d\xi.$$

Since $C_c^{\infty}(\mathbb{R}^d)$ is dense in L^2 and the surjective map \mathscr{F} preserves the L^2 norm, for each $\Phi \in L^2$,

$$\left| \int_{\mathbb{R}^d} \mathscr{F}(f)(\xi) (2\pi i \xi)^{\alpha} \overline{\Phi(\xi)} \, d\xi \right| < \infty.$$

By an well-known characterization of L^p function, $\mathscr{F}(f)(\xi)(2\pi i\xi)^{\alpha} \in L^2(\mathbb{R}^d)$. (See the following Theorem 3)

Hence for each $\Phi \in L^2$, $\int_{\mathbb{R}^d} \left(\mathscr{F}(f)(\xi)(2\pi i \xi)^{\alpha} - \mathscr{F}(g)(\xi) \right) \overline{\Phi(\xi)} d\xi = 0$.

In particular, we take $\Phi(\xi) = \mathscr{F}(f)(\xi)(2\pi i \xi)^{\alpha} - \mathscr{F}(g)(\xi) \in L^{2}(\mathbb{R}^{d})$ to conclude that

$$\mathscr{F}(f)(\xi)(2\pi i \xi)^{\alpha} \equiv \mathscr{F}(g)(\xi).$$

Theorem 3. (Rudin, [2, Exercise 6.4])

Suppose $1 \leq p \leq \infty$, and q is the exponent conjugate to p. Suppose μ is a positive σ -finite measure (this assumption is for the case p=1 in the Riesz representation theorem for $L^p(\mu)$) and g is a measurable function such that $fg \in L^1(\mu)$ for every $f \in L^p(\mu)$, then $g \in L^q(\mu)$.

Proof. Suppose there is no C > 0, such that $||fg||_1 \le C||f||_p$. Then there exist f_n such that $||f_n||_p = 1$ and $\int |f_n g| > 3^n$. Let $f = \sum 2^{-n} |f_n|$, then $||f||_p \le 1$ and for each n

$$\int |fg| > \int |f_n g| 2^{-n} > (\frac{3}{2})^n$$

This contradicts to $fg \in L^1$ and therefore the map $f \mapsto \int fg$ from $L^p \to \mathbb{R}$ or \mathbb{C} is bounded. if $1 \leq p < \infty$, then by Riesz Representation theorem, $g = \tilde{g} \in L^q$ a.e.. For $p = \infty$, if g is not integrable, then it contradicts to the hypothesis by taking $f \equiv 1$.

16. *Proof.*

17. *Proof.* □

18. Proof.

19. Proof.

20. (Remark on the Dirichlet principle, the Hadamard example)

We state a general result first: Let F be a continuous function on $\overline{B_1(0)} \subset \mathbb{R}^2$, C^1 in $B_1(0)$ and $\int_{B_1} |\nabla F|^2 < \infty$. Let $f(e^{i\theta})$ denote the restriction of F to ∂B_1 and write

$$f(e^{i\theta}) \sim \sum_{n \in \mathbb{Z}} a_n e^{in\theta}.$$

(a) Prove that $\sum_{n\in\mathbb{Z}} |n| |a_n|^2 < \infty$.

[Hint: Write $F(re^{i\theta}) \sim \sum_{n \in \mathbb{Z}} F_n(r) e^{in\theta}$, with $F_n(1) = a_n$. Express $\int_{B_1} |\nabla F|^2$ in the polar coordinates, and use the fact that

$$\frac{1}{2}|F(1)|^2 \le L^{-1} \int_{1/2}^1 |F'(r)|^2 dr + \int_{1/2}^1 |F(r)|^2 dr,$$

for $L \geq 2$; apply to $F = F_n, L = |n|$.]

(b) For each $\alpha > 0$, consider the function

$$f(\theta) = f_{\alpha}(\theta) = \sum_{n=0}^{\infty} 2^{-n\alpha} e^{i2^{n}\theta}$$

Which is easy to see that f has a holomorphic extension to B_1 :

$$u(r,\theta) = \sum_{n=0}^{\infty} 2^{-n\alpha} r^{2^n} e^{i2^n \theta}.$$

Use (a) to show that if $\alpha \leq 1/2$, then the energy functional

$$\int_{B_1} |\nabla u|^2 = \infty$$

Proof.

Problems

$$\Box$$
 3. Proof.

4. Proof.
$$\Box$$

$$\Box$$
 5. Proof.

6.
$$Proof.$$

References

- [1] Elliott H Lieb and Michael Loss. *Analysis*, volume 14. American Mathematical Society, Providence, RI,, 2nd edition, 2001.
- [2] Walter Rudin. Real and Complex Analysis. Tata McGraw-Hill Education, 3rd edition, 1987.
- [3] Richard L Wheeden. Measure and Integral: An Introduction to Real Analysis, volume 308. CRC Press, 2nd edition, 2015.