

SPECIFICATION

Product Name: Ultrasonic Oxygen Sensor

Item No.: Gasboard7500E

Version: V0.1

Date: November 01, 2018

Writer	Audit	Approved
Mei Yang		

Revision

No.	Version	Content	Reviser	Date

Ultrasonic Oxygen Sensor Module Gasboard7500E

Applications

- Home and Medica oxygen concentrator/ generator
- ♦ Measurement the flow of clean gas
- ♦ Gas detection in binary gas(include O2)

Description

The gasboard-7500E ultrasonic oxygen sensor is an economical and practical sensor for measuring oxygen flow and concentration in binary gases. Based on the mature gasboard-7500 ultrasonic oxygen sensor module, the product is optimized and upgraded to further strengthen EMC protection, which is used to replace and expand applications of original series in more occasions.

Features

- ♦ Measure both concentration and flow rate of O2
- Whole course temperature compensation
- Small size, quick response, stable, high accuracy
- ♦ CMC, CE, EMC certificated
- Meet the medical and other special requirements
- ♦ Long life span, self-calibration, maintenance-free

Working Principle

Principle of ultrasonic flow detection: when ultrasonic wave is propagating in the fluid, it is affected by the fluid velocity and carries the flow velocity information. The flow velocity can be measured by detecting the received ultrasonic signal, so as to obtain the flow rate. Ultrasonic flow measurement has the characteristics of not impeding fluid flow.

Ultrasonic concentration detection theory: when the binary gas mixture composition has molecular weight difference, sound travel speed varies from different gas composition.

Specifications

Ultrasonic oxygen sensor specifications

Detect principle	Ultrasonic technology
Detection range	O2 concentration: 0~100% [©]
	O2 flow rate: 0~10L/min
Detection accuracy	O2 concentration: ±1.8%FS @(10~45)℃
	O2 flow rate: ±0.2L/min@(10~45)°C
Resolution	O2 concentration: 0.1%
	O2 flow rate: 0.1L/min
Response time	1.5s
Work condition	-10~50℃; 0~95%RH (non-condensing)
Storage condition	-20~60°C; 0~95%RH (non-condensing)
Work voltage	DC 12V±0.5V, ripple wave <50mV
Average work current	<50mA
Communication interface	UART_TTL(5V)
Product size	W120*H22*D13.6 mm
Life span	≥5 years

Pin definition

Pin definition list

J1			J2		
NO	Pin	Description	NO	Pin	Description
1	Vout1	Customize options	1	Vout	+5V/10mA,power supply output
2	Vout2	Customized options	2	Rx	UART-Rx receiving (5V)
3	GND	Customize options	3	Tx	UART-Rx sending (5V)
			4	GND	Power supply output

J5				Ala	rm output
NO	Pin	Description	NO	Pin	Description
1	Vcc	12VDC, external power supply input pin	1	Alarm	Customize options
	V 00	12 v B O , external power supply input pin		output	GustoffilZe options
2	NC	No definition			
3	GND	Power supply input			

Application scenarios: UART TTL 5V output

Drawing 2 UART communication connection circuit

Communication Protocol

♦ UART communication protocol

1 Protocol overview

- 1) Baud rate: 9600, DataBits: 8, StopBits: 1, Parity: No, Flow Control: No
- 2) The protocol data are hexadecimal data. For example "46" is [70] in decimal;
- 3) [xx] is single byte data(unsigned, 0-255); In double byte, the high byte is in front of low byte;

2 Serial communication protocol format

PC send format

Start symbol	Length	Order no	Data 1	 Data n	Cheksum
HEAD	LEN	CMD	DATA1	 DATAn	CS
11H	XXH	XXH	XXH	 XXH	XXH

Protocol format description

Protocol format	Description
Start symbol	PC sending is fixed to [11H], module response is fixed to [16H]
Length	Length of frame byte, =data length+1 (include CMD+DATA)
Order no	Directive number
Data	Read or written data, the length is variable
Checksum	The sum of data accumulation,=256-(HEAD+LEN+CMD+DATA)

3 Serial protocol order number list

No	Function name	Order no
1	Read the measurement result of O2	0x01
2	Read the software version number	0x1E
3	Inquiry instrument serial number	0x1F

4 Detailed description

4.1 Read the measurement result of O2

Send: 11 01 01 ED

Response: 16 09 01 DF1-DF8 [CS]

Function: Read the measurement result of O2

Description: O2 concentration = (DF1*256 + DF2) /10 (Vol %)

O2 flow value= (DF3*256 + DF4) /10 (L/min)

O2 temperature value = (DF5*256 + DF6) /10 (°C)

Notice: DF7-DF8 reserved

Response example:

Response: 16 09 01 00 CD 00 00 00 C2 00 1E 33

Instruction:

Hexadecimal convert into decimal: CD is 205; C2 is 194

O2 concentration =0*256 + 205=205 (20.5%)

O2 flow value=0*256+0=0 (L/min)

O2 temperature value=0*256+194=194 (19.4°C)

4.2 Read the software version number

Send: 11 01 1E D0

Response: 16 09 1E DF1-DF8 [CS]

Function: Read the software version number

Instruction: DF1-DF8 Read the software version number

For example: Read the software version number

4.3 Inquiry instrument serial number

Send: 11 01 1F CF

Response: 16 0B 1F (SN1) (SN2) (SN3) (SN4) (SN5) [CS]

Hexadecimal convert into ASCII code:

Function: read version number for module firmware

Explanation: instrument serial number of output software. SNn range is 0~9999, 5 integer type constitute 20 serial number.

Reliability testing

Item	Requirement	Criterion	Sample (n) Failed (c)
Flow performance	Indoor temperature requirement: 25±2°C, humidity (50±10) %RH, after the sensor connect with serial port and power on, switchover the flow in 3L/min、5L/min、8L/min respectively to make measurement of oxygen concentration and accuracy.	Make new tests in different oxygen flow all can meet error criterion.	n=70 c=0
Low temperature storage	Storing the sensor for 96H with no power under $-20\%\pm2\%$ environment condition, then to test the measuring error of it under normal temperature condition. Indoor temperature requirement: $-10\pm2\%$, to test the measuring error of sensor under	After staying under normal temperature condition for 2 hours, the test all can meet error criterion. After staying under normal temperature condition for 2 hours, the	
High temperature	normal temperature condition after operating for 96H with electricity. Storing the sensor for 96H with no power under 60°C ±2°C environment condition, then to test the measuring error of it under normal temperature condition.	test all can meet error criterion. After staying under normal temperature condition for 2 hours, the test all can meet error criterion.	
Hot operation	Indoor temperature requirement: $50\pm2^{\circ}\text{C}$, to test the measuring error of sensor under normal temperature condition after operating for 96H with electricity.	After staying under normal temperature condition for 2 hours, the test all can meet error criterion.	n=0 c=0
High-low temperature shock	Keep the sensor under -20℃ for 60 mins, then switch it to 60℃ in 10s and stay for another 60 mins, this is one cycle, there are 10 cycles in total, the sensor is power off when testing.	After staying under normal temperature condition for 2 hours, the sensor accuracy should meet the specification standard.	
High temp &humidity	Place the sensor under high temp & humidity ($40\pm2^{\circ}C$, 95%RH), after working under rated voltage for 500H, to test the measuring error of it under normal temperature condition.	After staying under normal temperature condition for 2 hours, the sensor accuracy should meet the specification standard.	
Salt spray test	Standard:GB/T2423.17, place the sensor in the salt fog box under 35°C and spray it with Nacl solution (concentration is 5%) for 24 hours, then flushing it with distilled water and drying it with airflow.	Keep the sensor under standard environment more than 1 h and less than 2 h, it should no appearance defect, no corrosion.	n=2 c=0
Vibration test	Bare sensor should bear the specified vibration test in X/Y/Z direction, frequency range 10~55~10Hz/min, amplitude 1.5mm, scan circulation 2 hours.	No appearance defect after vibration test, the sensor can meet basic performance test standard.	n=4 c=0
Package drop test	Drop height: setting the height as specified weight according to standard GB/T 4857.18. Making the drop test according to the GB/T4857.5 standard. Test sequence is one corner, three edges, six sides.	No appearance defect after drop test, no components fall off, the sensor should work normally.	n=1 ctn c=0

Packing Information

Package instruction

Qty/layer	Small tray Qty	Big tray Qty	Sensor per Carton	Carton Dimension	Packing Material
20 pcs	5 lavers	3 layers	300pcs	W395 * L320 * H470	anti-static plastic tray
	• ·-· , · · ·	• · , -··-	200	mm	ann ciane piaene may

Consultancy & After-sales service

Contact number: 86-27-8162 8813

Address: Fenghuang No.3 Road, Fenghuang Industrial Park,

Eastlake Hi-tech Development Zone, Wuhan, China

Postal code: 430205 Fax: 86-27-8740 1159

Website: http://www.gassensor.com.cn

E-mail: info@gassensor.com.cn