Comment étudier les variations d'une fonction en utilisant la dérivée ?

- 1. On calcule la dérivée f'(x) de f.
- 2. On étudie sur l'intervalle I le signe de f'(x) et on en déduit les variations de f.
- 3. On construit le tableau de variation.

Exemple. Étudier les variations de f définie sur]0; $+ \infty$ [par $f(x) = \frac{\ln x}{x^2}$.

- **1.** f est dérivable sur]0; $+\infty[$; d'après un résultat précédent : $f'(x) = \frac{1-2 \ln x}{x^3}$.
- **2.** Sur]0; $+ \infty[$, f'(x) a le signe de $1 2 \ln x$. On a :

• 1 - 2 ln x < 0 si ln x >
$$\frac{1}{2}$$
, c'est-à-dire si x > $e^{\frac{1}{2}}$ soit si x > \sqrt{e} ;

• 1 - 2 ln x > 0 si ln x <
$$\frac{1}{2}$$
, c'est-à-dire si x < \sqrt{e} .

Donc sur]0 ; \sqrt{e} [, f est croissante ; sur [\sqrt{e} ; + ∞ [, f est décroissante.

On vérifiera que :

$$\lim_{x \to 0} f(x) = -\infty \text{ et } \lim_{x \to +\infty} f(x) = 0.$$