

Programa de Asignatura

Historia del programa

Lugar y fecha de elaboración Participantes Observaciones (Cambios y justificaciones)

M.C. David Flores Granados
Cancún, Q. Roo 21 de Octubre de 2011. Ing. Mónica Patricia René

M. C. Francisco López Monzalvo

El programa se revisó en 2011: Se reestructuró el contenido de las unidades para adecuarlo a los aprendizajes requeridos por la asignatura de Electrónica Industrial. Se actualizó la bibliografía.

Relación con otras asignaturas

Anteriores Posteriores

Asignatura(s)

II3428 Laboratorio de Circuitos Eléctricos

II3483

Tema(s)

Leyes de Ohm y de Kirchhoff.

Semiconductores.

Diodos.

4 - 4

Transistores.

Amplificadores Operacionales

Asignatura(s)

Mecanización, automatización y principios de robotica

Tema(s)

Automatización

Licenciatura Básica

HP

TH

ΗΙ

HT

Nombre de la asignatura Departamento o Licenciatura

Electrónica industrial Ingeniería Industrial

Ciclo Clave Créditos Área de formación curricular

6

Tipo de asignatura Horas de estudio

Objetivo(s) general(es) de la asignatura

Objetivo cognitivo

Describir el funcionamiento básico de los dispositivos electrónicos de potencia para el conocimiento de sus aplicaciones en la industria.

Objetivo procedimental

Aplicar los conceptos de la electrónica industrial para la resolución de problemas de ingeniería.

Objetivo actitudinal

Propiciar el trabajo colaborativo en actividades multidisciplinarias para la aplicación de prácticas de electrónica industrial en laboratorio.

Unidades y temas

Unidad I. Fundamentos de Electrónica Industrial

Describir las características de los dispositivos de conmutación y control y su aplicación en la Electrónica Industrial.

- 1) Reseña histórica.
- 2) Características de los dispositivos de conmutación.
- 3) Construcción de los dispositivos de 4 capas.
- 4) Tiristores
 - a) Control por elementos pasivos.
 - b) Control por dispositivos de disparo.
 - c) Aplicaciones con tiristores

Unidad II. Rectificadores

Describir el funcionamiento de los rectificadores para conocer sus posibles aplicaciones en el control de circuitos

electrónicos.
1) Rectificación no controlada de media onda con carga R, RL
a) Monofásicos.
b) Trifásicos.
2) Rectificación no controlada de onda completa con carga R, RL
a) Monofásicos.
b) Trifásicos.
3) Rectificación controlada con carga R, RL
a) Monofásicos.
b) Trifásicos.
4) Aplicaciones con rectificadores
Unidad III. Convertidores
Describir el funcionamiento de los convertidores para conocer sus posibles aplicaciones en circuitos electrónicos.
1) Fundamentos de los convertidores CD-CD
2) Tipos de convertidores CD-CD
3) Fundamentos de los convertidores CD-CA
4) Tipos de convertidores CD-CA
5) Aplicaciones de convertidores

Actividades que promueven el aprendizaje

Docente	Estudiante
Exposición. Analogías. Resolución de ejercicios con el docente. Discusión dirigida. Debate Elaboración de diagramas. Mapas conceptuales	Investigación bibliográfica y en la red. Análisis de temas. Trabajo en equipo. Resolución de problemas y/o ejercicios. Exposiciones. Diseño de diagramas.
Mapas corresponding	

Actividades de aprendizaje en Internet

El estudiante deberá acceder al portal para la lectura de artículos y resolución de ejercicios: http://citeseer.ist.psu.edu/

Criterios y/o evidencias de evaluación y acreditación

Criterios	Porcentajes
Resolución de ejercicios	20
Exposiciones	20
Desarrollo de proyectos	30
Exámenes	30
Total	100

Fuentes de referencia básica

Bibliográficas

Boylestad , Electrónica: Teoría de Circuitos y Dispositivos Electrónicos., Prentice Hall 2003. 8 ed. ISBN 970-26-0436-2.

Floyd .Thomas L. Dispositivos Electrónicos, Octava edición, Pearson-Prentice Hall. México 2008, páginas 1008, ISBN 978-970-26-1193-6.

Floyd .Thomas L. Fundamentos de Electrónica Digital. Novena edición, Pearson-Prentice Hall. Madrid 2009, páginas 1005, ISBN 978-84-8322-085-6.

Hambley A.R., Electrónica, (2ª ed.), Prentice-Hall, 2001, ISBN 84-205-26-2999-0.

Malvino, A. D.J. Bates Principios de Electrónica. 7ª. Ed.. McGraw-Hill, 2007

Software for measurement and automation (LabVIEW 2011). National Instruments.

Entorno Interactivo para la Enseñanza de Circuitos (NI Multisim Ver 11.0) National Instruments.

Web gráficas

http://www.electronics-tutorials.ws/ http://www.allaboutcircuits.com/

Fuentes de referencia complementaria

Bibliográficas

Velasco Ballano, J. Sistemas Electrónicos de Potencia. Editorial Paraninfo, 1998

Albella, J. M., Martínez-Duart J. M. y Aguyó-Rueda. F. "Fundamentos de microelectrónica, nanoelectrónica y fotónica". Editorial Prentice Hall, 2005

Savant, Roden, Carpenter. "Diseño electrónico. Circuitos y sistemas". Editorial Addison Wesley, 1993.

J. Pareja, A. Muñoz, C. Angulo. "Prácticas de Electrónica" (1 y 2). Ed. McGraw-Hill, 1990

Web gráficas

http://openbookproject.net/electricCircuits/

Perfil profesiográfico del docente

Académicos

Contar con licenciatura en ingeniería eléctrica o afines. Preferentemente nivel maestría en Ingeniería eléctrica o electromecánica.

Docentes

Tener experiencia docente de tres años mínimos a nivel superior en asignaturas relacionadas.

Profesionales

Contar con experiencia laboral en el Sector Energético y/o Industrial.