$$\frac{2}{3t^2 + 4t}$$

$$\frac{2t}{t} \frac{dt}{dt}$$

$$\frac{2t}{t} \frac{dt}{(3t + 4)}$$

$$\frac{2}{3}\left(\frac{3}{3t+4}\right)$$

Exercise No. 4:3

Evaluate

- Secx dx

Elegration by parts

$$= \chi \int Sec^2x \, dx - \int \frac{d}{dx}(x) \int Sec^2x \, dx$$

$$= x tanx + \int -Sinx dx$$

 $2 \int x \cos^2 x \, dx$

=
$$x \int \cos e^{2}x = \int \frac{d(x)}{dx} \int \cos e^{2}x dx$$

= - Cosecx Cotx - | Cosecx dx T + T = = cosecx cotx + In | cosecx - cotx = - Cosecx Cotx + In Itan (2/2) + C $\frac{-1 \left(\operatorname{cosecx} \cot x + 1 \ln |\tan (x/2)| + c}{2} \right)$ $\int x - \frac{\sin x}{\cos x} dx$ $= \left(\frac{x - 2\sin x/2 \cos x/2}{2\sin^2 x/2}\right)$ $\frac{\int x \, dx - \int \sin \frac{x}{2} \cos \frac{x}{2} \, dx}{2 \sin^2 \frac{x}{2}}$ $\frac{1}{2} \left(x \left(\cos \frac{x}{2} \right) \right) = \frac{\left(\cos \frac{x}{2} \right) 2}{\sin \frac{x}{2}}$ $=\frac{1}{2}\left[x\cdot\left(-\frac{\cot x/2}{1/2}\right)-\left(1\right)\left(-\frac{\cot x/2}{1/2}\right)\right]=\int \cot \left(\frac{x}{2}\right)$ Ans. $\frac{2}{2}\left[-x.\cot(\frac{x}{2}) + \left(\cot(\frac{x}{2})\right) - \left(\cot(\frac{x}{2})\right)\right]$ $x \cot(\frac{x}{2}) + \int \cot(\frac{x}{2}) = \int \cot(\frac{x}{2})$ $-x \cot(\frac{x}{2}) + c Ans$ x Sin'x dx seckdi L= Sin'x Jadx - (d (Sin'x) fx dx otx)de $\frac{2}{2} \frac{\sin^2 x}{2} = \frac{x^2}{2} \frac{1}{\sqrt{1-x^2}} dx$ $\frac{x^2 \sin^2 x}{2} = \frac{1}{2} \left(\frac{x^2}{\sqrt{1 - x^2}} dx \right)$

	(u3) 4·3	
	put in v)	
	$\frac{7}{2} = \frac{x^{2} \sin^{2} x + 1}{2 \left[\frac{1}{2} \sin^{2} x + x \sqrt{1 - x^{2}} \right]} \frac{1}{2} \sin^{2} x$	
	$= \frac{\chi^2 \sin^2 \chi'' + 1 \sin \chi}{2} + \frac{\chi \sqrt{1 - \chi^2}}{4} - \frac{1}{2} \sin^2 \chi}$	
	$= \frac{\chi^2 \sin^2 \chi}{2} - \frac{1 \sin \chi}{4} + \frac{\chi \sqrt{1-\chi^2}}{4}$	
	$= \sin^{-1}x\left\{\frac{x^2}{2} - \frac{1}{4}\right\} + \frac{x\sqrt{1-x^2}}{4}$	a company on a company on a
57	$= \frac{\sin^{-1}x\left(\frac{2x^{2}-1}{4}\right) + 2\sqrt{1-x^{2}} + c \cdot AnS}{4}$	
9	$\int x^2 + 1 x^3 dx$	
	$I = \int \sqrt{x^2 + 1} x^2 \cdot x dx$	
	$= \int \sqrt{\chi^2 + 1} (\chi^2 + 1 - 1) \chi d\chi$	
	$= (x^2+1)^{3/2} x dx = \int \sqrt{x^2+1} x dx$	
	$= \frac{1}{2} \int (x^2 + 1)^{3/2} 2x - \frac{1}{2} \int (x^2 + 1)^{3/2} 2x dx$	
	$= \frac{1}{2} (x^{2} + 1)^{\frac{5}{2}} - \frac{1}{2} (x^{2} + 1)^{\frac{3}{2}} + C$ $= \frac{1}{2} (x^{2} + 1)^{\frac{5}{2}} - \frac{1}{2} (x^{2} + 1)^{\frac{3}{2}} + C$	
	$= \frac{2 \times 1}{5} (x^{2} + 1)^{\frac{5}{2}} - \frac{1}{5} \times 2 (x^{2} + 1)^{\frac{5}{2}} + C$ $= \frac{1}{5} (x^{2} + 1)^{\frac{5}{2}} - \frac{1}{5} (x^{2} + 1)^{\frac{5}{2}} + C \text{Ans.}$	
.10	$ \frac{1}{5} \frac{(x+1) + C}{3} $ $ \left(e^{x} + x \ln x \right) dx $	
) iz	

formula: ex (fix) + f'(x)] dx = exf(x) + C fell + lnx dx · fix) = lnx = exlnx+c Ans. $\int e^{x} \left(\frac{1}{x} + \ln x \right) dx$ ferida + ferinada $= \int \frac{e^{x}}{x} dx + \int \ln x e^{x} \int \frac{1}{x} e^{x} dx$ = ex 1 dx + lnxex (ex dx exlnx + c Ans. $\frac{\int e^{x} 1 - \sin x \, dx}{1 - \cos x}$ $\begin{cases} e^{x} \left(1 - 2 \sin^{2} 2 \cos^{2} 2\right) dx \\ 2 \sin^{2} x/2 \end{cases}$ $e^{x} \left(\frac{1}{2} \cos e^{x} \frac{x}{2} - \cot \frac{x}{2} \right) dx$ 1 / ex (05ec2x/2dx - fex totx dx) $\frac{1}{2} e^{x} \left[-\cot x/2 \right] - \left(e^{x} \left(-\cot x/2 \right) \right] - \left(e^{x} \cot x/2 \right) = \left(e^{x}$

	45) 4.3	-
	$= -e^{x} \cot x + \int e^{x} \cot x dx - \int e^{x} \cot x dx$	
	2 J 2 J 2	
	$= -e^{x} \cot(x) + c Ans.$	The second secon
	Available at	
	www.mathcity.org	
12	$\frac{\int \tan^{-1} \int_{1+x}^{1-x} dx}{\sqrt{1+x}}$	
	J V · · · ·	
	$\frac{\overline{I} = \frac{1 - x}{tan^{-1}/1 - x} dx}{\sqrt{1 + x}}$	- Trans.
	J V 1 1 2	
	$x = \cos \theta$	
	$\Rightarrow \theta = \cos^2 x$	manus et al. a
	Z = (050	Comments of the Comments of th
	$dx = -sin\theta d\theta$	Approximation and the second s
		and the same
	$Sin\theta = \sqrt{1 - \cos^2\theta}$	
	$=\sqrt{1-x^2}$	To a second seco
	= (tan'/1 - Coso (-sinodo)	
		The second second
	$= \int \frac{\tan^{-1}/2\sin^2\theta/2}{\sqrt{2\cos^2\theta/2}} (-\sin\theta d\theta)$	
	$= \int tan^{-1}(tan\theta)(-sin\theta d\theta)$	
	2 - <u>0</u> sino do	
	$= -\frac{1}{2} \int \Theta \sin \theta d\theta$	
	= -1/A sino do	5 00 6

$$= 2a \left[\underbrace{\theta tan^{2}\theta}_{2} - \frac{1}{2} \right] \left(\underbrace{sec^{2}\theta}_{-1} \right) d\theta$$

$$= 2a \left[\underbrace{\theta tan^{2}\theta}_{2} - \frac{1}{2} \cdot (tan\theta - \theta) \right]$$

$$= a(atan^{2}\theta - a \cdot (tan\theta - \theta) + c$$

$$= tan^{2}\theta = \frac{x}{a} = \frac{1}{2} \cdot tan\theta = \frac{1}{2}x$$

$$\theta = tan^{2}\sqrt{a}$$

$$= \frac{x}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a}$$

$$= \frac{x}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a} \cdot \frac{1}{a}$$

$$= \frac{x}{a} \cdot \frac{1}{a} \cdot$$

$$1 = x \ln(x + \sqrt{1 + x^{2}}) - (1 + x^{2})^{2} + c \text{ Ans:}$$

$$\frac{x^{2} + 1}{(x + 1)^{2}} e^{x} dx$$

$$= \int e^{x} (x^{2} + 1 + 2x - 2x) dx$$

$$= \int e^{x} ((x + 1)^{2} - 2x) dx$$

$$= \int e^{x} (1 - 2x - 2) e^{x} ((x + 1)^{2})$$

$$= \int e^{x} (1 - 2x - 2) e^{x} ((x + 1)^{2})$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2 \int e^{x} ((x + 1)^{2}) dx$$

$$= \int e^{x} - 2$$

		6/1/3
		= $2\left(t^{2}(-e^{-t}) - \int 2t - (e^{-t}) dt\right)$ Available at
		$= 2\left[-t^{2}e^{-t} + \left((2te^{-t})dt\right)\right]$ www.mathcity.org
		2(-e-t) + 2 (t) e dt - (d (t) (e-t))
		$= -2te^{2-t} + 4[t \cdot e^{-t}] - [-e^{-t}dt]$
		= -216 +9[11-6]=004
	4	= -2t^e-t + 4/(-te-t)
		= -2t'e-t-4te-t+4(-e-t)
100 mg		
		$= -2t e - 4(e - 4c)$ $= -2e^{-t}(4t^2 + 2t + 2) + C$
		= -xe (+t+40+4)
		$= -2e^{-\sqrt{2}}(x+2\sqrt{2}+2)+C$ Ans:
	19	(2 8 dbx
		$\chi^3 \frac{e^{2\chi}}{2} = \left(\frac{e^{2\chi}}{2} \times \chi^2\right) d\chi$
		$\frac{\chi^3 e^{2X} - 3 \left(\frac{\chi^2 e^{2X}}{i} dx\right)}{2 \left(\frac{\chi^2}{i}\right)^{1}}$
		$\frac{x^3 e^{2x} - 3 \left[x^2 \left(e^{2x} dx^2 - \left(\frac{d}{dx}(x^2)\right) e^{2x} dx\right) dx}{2 \left[x^2 \left(e^{2x} dx^2 - \left(\frac{d}{dx}(x^2)\right) e^{2x} dx\right)\right]}$
		$\frac{(x^3 e^{2x} - 3x^2 e^{2x} + 3(x e^{2x} - (\frac{d}{dx}))(e^{2x})}{2}$
		2 2 2 2 () J(dx)
		$\frac{x^{3}e^{2x}-3x^{2}e^{2x}+3[xe^{2x}-1]e^{2x}}{2}$
		2 4 2 2 2 2 3
		$\frac{\chi^{3}e^{2x}-3\chi^{2}e^{2x}+3\chi e^{2x}-31}{4\chi^{2}e^{2x}+3\chi e^{2x}-31}e^{2\chi}dx$
		2 4
Name of the last of the last last of the last of the last last of the last last of the last last of the last last last last last last last last		$\frac{\chi^{3}e^{2x}}{3} = \frac{3}{4} \frac{\chi^{2}e^{2x}}{4} + \frac{3}{4} \frac{\chi^{2}e^{2x}}{4} - \frac{3}{4} \left(e^{2x} dx\right)$
	*	

		39 4.3
	I	$= \frac{x^{n+1} \tan^{2} x - \frac{1}{n+1} \int \frac{x^{n+1}}{n+1} dx}{n+1}$
	Н	ence proved.
	(b) r	Vow evaluate
		$\int x^3 \tan^2 x dx \qquad put n = 3$
		$= \frac{x^{3+1} \tan^{-1} x - 1}{3+1} \int \frac{x^{3+1}}{1+x^2} dx$
		$\frac{x^4 \tan^2 x - 1 \int x^4 dx}{4 \int 1 + x^2}$
		$= \frac{x^{4} \tan^{2}x - 1}{4} \left[\frac{(x^{2}-1) + 1}{x^{2} + 1} dx - \frac{x^{4} + x^{2}}{x^{4} + x^{2}} \right]$ $= \frac{x^{4} \tan^{2}x - 1}{4} \left[\frac{(x^{2}-1) + 1}{x^{2} + 1} dx - \frac{x^{4} + x^{2}}{x^{4} + x^{2}} \right]$ $= \frac{x^{4} \tan^{2}x - 1}{4} \left[\frac{x^{3} - x + \tan^{2}x}{x^{4} + \tan^{2}x} \right] + C - \frac{x^{2}}{x^{4} + x^{2}}$
		$= \frac{x^4 \tan^3 x - 1 \left(\frac{x^3}{3} - x + \tan^3 x \right) + c}{4 \left(\frac{x^3}{3} - x + \tan^3 x \right) + c}$
		$= \left(\frac{\chi^4}{4} - \frac{1}{4}\right) \tan^2 x - \frac{\chi^3}{12} + \frac{\chi}{4} + C$
		$= \left(\frac{x^{4}-1}{4}\right) \tan^{4}x - \frac{x^{3}}{12} + \frac{x}{4} + C$
		(4) 12 4 /
	22	$\int x^n e^{ax} dx$
		$= x^n \left[e^{ax} dx - \left[\left(\frac{d}{dx} \left(x^n \right) \right) \right] e^{ax} dx \right]$
		$= x^n \frac{e^{ax}}{a} - \left((nx^{n-1} \frac{e^{ax}}{a}) dx \right)$
· · · · · · · · · · · · · · · · · · ·		- 10. 1
		$\int x^n e^{ax} dx = \frac{x^n e^x}{a} - \frac{n}{a} \int x^{n-1} e^{ax} dx (Reduction)$ formula)
		putting n = 3

	Sy 4.3	
¥	3ax $3ax$ $3ax$ $3ax$ $3ax$ $3ax$ $3ax$	
	$\int \frac{x e dx}{x e dx} = \frac{x e a}{a}$ Putting $n = 2$	
	$\int \frac{x^{2}e^{x}dx}{x^{2}e^{x}dx} = \frac{x^{2}e^{x}-3}{a} \int \frac{x^{2}e^{x}dx}{x^{2}e^{x}dx}$ $= \frac{x^{2}e^{x}-3}{a} \int \frac{x^{2}e^{x}-2}{a} \int \frac{x^{2}e^{x}dx}{x^{2}e^{x}}$ $= \frac{x^{2}e^{x}-3}{a} \int \frac{x^{2}e^{x}-2}{a} \int \frac{x^{2}e^{x}dx}{x^{2}e^{x}}$	
	$\frac{3 ax}{3 ax} = \frac{2 ax}{3 ax} \cdot 6 = \left(\frac{x e^{ax}}{3 ax} - \frac{1}{3 ax}\right)$	1
	$= \frac{x^3 e^{x} - 3 x^2 e^{9x} + 6 \left[x e^{9x} - 1 \left[x e^{9x} dx \right] \right]}{a^2 a^2 a^2 a^2 a^2 a^2 a^2 a^2 a^2 a^2 $	
	$= \frac{x^{3}e^{ax} - 3 x^{2}e^{ax} + 6 xe^{ax}}{a^{3}} = \frac{6}{a^{3}} e^{ax} = \frac{6}{a^{3}} e^{ax}$	
	$\frac{11\times^{3}e^{ax} - 3 \times^{2}e^{ax} + 6 \times e^{ax} - 6 e^{ax} + C}{a^{3} a^{2} a^{3} a}$	
	$= \frac{x^{3}e^{ax} - B x^{2}e^{ax} + 6 xe^{ax} - 6e^{ax}}{a^{3} + c} + C$	24
	$\int_{x^{3}} e^{ax} dx = \frac{e^{ax}}{a^{4}} \left(a^{3}x^{3} - 3a^{2}x^{2} + 6ax - 6 \right) + c + ans$	
	Find reduction formulas for	
2.3	Sin'xdx	
	$\int dx n^{-j+1} dx$	
	$\overline{I} = \int \sin^{n-1+1} x dx$	
	$= \int \sin^{n-1} x \cdot \sin x dx$	
	= Sin'x sinx dx - sid (sin'x) sinx dx dx	
	$= -\sin^{n}\pi \cos x - \int (n-1)\sin^{n-2}x \cdot \cos x (-\cos x) dx$	
	$= -\sin^{n+1}x \cos x + (n-1) \int \sin^{n-2}x \cos^2x dx$	
	$= -\sin^{n-1}(\cos x + (n-1)) \int \sin^{n-2} x (1 - \sin^2 x) dx$	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$= -\sin^{n} \frac{1}{x} \left(\cos x + (n-1)\right) \int \sin^{n-2} x dx = (n-1) \int \sin^{n} x dx$	
The is the court of the court o		

. e. A	(55) 4.3
The second section of the second	$= -\sin^{n-1}x \cos x + (n-1) \int \sin^{n-2}x dx - (n-1) I$
7	$+ (n-1)I = -\sin^{n-1}x\cos x + (n-1)\int \sin^{n-2}x dx$
J.	$(1+n-1) = -\sin^{n-1}x \cdot \cos x + (n-1) \int \sin^{n-2}x dx$
	$\frac{T}{n} = -\sin^{n-1}x \cos x + (n-1) \int \sin^{n-2}x dx$
	this is Reduction formula. Available at www.mathcity.org
24 I	Find a reduction formula $\int x^n \sin \alpha x dx$ where $n > 1$ is integar. Evaluate $\int x^n \sin \alpha x dx$ $I = \int \cos^{n-1+1} x dx$
er menorati de describir e procesa describir en la film describencia en la film describir en la film describir en	$= \int (\cos^n \pi \cos x) dx$
a bet en a pri e de en a primer de en april de en a	$= \cos^{n-1}x \left(\cos x dx - \int \left(\frac{d}{dx} \left(\cos^{n-1}x\right)\right) \left(\cos x dx\right) dx$
ggigg (T) is particular to the control of the contr	= $\cos^{n-1}x \cdot \sin x + \int (n-1) \cos^{n-2}x \cdot (-\sin x) \cdot (\sin x) dx$
The state of the s	$= \frac{\cos^{n-1}x \sin x + (n-1) \int (\cos^{n-2}x \sin^2 x \cdot dx}{\cos^{n-1}x \sin x \cdot dx}$
	$= \frac{\cos^{n-1}\sin x + (n-1)\int \cos^{n-2}x (1-\cos^2x) dx}{(1-\cos^{n-2}x)(n-1)\int \cos^{n-2}x dx}$
	$= \frac{(os^{n-1}sinx + (n-1)scos^{n-2}}{(os^{n-2}a)x - (n-1)scos^{n-2}a} dx - (n-1)scos^{n-2}a dx$ $I + (n-1)I = cos^{n-1}a sinx + (n-1)scos^{n-2}a dx$
	$I(1+n-1) = \cos^{n-1}x \sin x + (n-1) \int \cos^{n-2}x dx + \frac{1}{2} \sin x + \frac{1}{2} $
*	$\frac{1}{\Gamma} = \frac{\cos^{n} x \sin x + (n-1) \left \cos^{n-2} x dx}{n}$
1	m in the second of the second

25	Find a reduction jornula jor $\int x^{m}(\ln x) dx$ Hence evaluate $\int x^{3} (\ln x)^{2} dx$ $I = (\ln x)^{n} \int x^{m} dx - \int (\frac{d}{dx}(\ln x)^{n}) \int x^{m} dx$	
	Hence Evaluation $ \vec{I} = (\ln x)^n \int x^m dx = \int \left(\frac{d}{dx}(\ln x)\right) \int x^m dx dx $	
	$= (\ln x)^{\frac{n}{2}} \frac{x^{m+1}}{m+1} = \left[\left(n \left(\ln x \right)^{\frac{n-1}{2}} \frac{1}{x} \frac{x^{m+1}}{m+1} \right) dx \right]$	1.5%
	$= \frac{(\ln x)^n x^{m+1}}{m+1} = \frac{n}{m+1} \frac{(\ln x)^{m-1} x^m dx}{n+1}$	San Ara San
	$\int_{x}^{m} (\ln x)^{n} dx = (\ln x)^{n} x^{m+1} - n + (\ln x)^{n} x^{m} dx + (R.F)$	
	$m+1 \qquad m+1$ $putting \qquad m=3 \qquad ; \qquad n=2$	
100	$\int \frac{x^{3}(\ln x)^{2} dx}{3+1} = \frac{(\ln x)^{2} x^{3+1}}{3+1} = \frac{2}{3+1} \int \frac{(\ln x)^{2} x^{3} dx}{3+1}$	
	$= \frac{(\ln x)^2 x^4 - 2 (\ln x)^2 x^3 dx}{4 + 4}$ Now n=1, m=3	
	$= \frac{x'(\ln x)^2 - 1}{2} \left[\frac{(\ln x)x'' - 1}{3+1} \right] \frac{(\ln x)^2 x^3 dx}{2}$	
Δ	$\frac{2x^{4}(\ln x)^{2}-(\ln x)x^{4}+1}{2x4}\int \frac{x^{3}(\ln x)c(x)}{2x4}$	
	$= \frac{x^{4} (\ln x)^{2} - x^{4} \ln x + 1}{8} \int_{0}^{x^{3}} dx$	The state of the s
	$-\frac{\chi'}{2}(\ln \chi)^{2} - \frac{\chi'}{8}\ln \chi + \frac{1}{8} \times \frac{\chi'}{4} + C$	And the second s
	$= \frac{x^4 \left(\ln x\right)^2 - \frac{x^4 \ln x + x^4 + c}{32}}{32}$	430
	$(x^{3}(\ln x)^{2}dx = \frac{x^{4}(\ln x)^{2} - \frac{x^{4}\ln x + \frac{x^{4}}{32} + c Ans}{x^{2}}$	
10	Mathcity.org Merging Man and maths	