

Iterated Revelation

How to Incentivize Experts to Reveal Movel Actions

Evan Piermont Royal Holloway, University of London

Purdue University --- September 2025

- Many economic models (cheap talk, persuasion, delegation, etc) find a decision maker seeking the council of an expert.
- Almost always: expert provides statistical info about the resolution of uncertainty

- Many economic models (cheap talk, persuasion, delegation, etc) find a decision maker seeking the council of an expert.
- Almost always: expert provides statistical info about the resolution of uncertainty

Decision Maker	Expert	Information
investor	analyst	economic forecast
regulator	firm	cost structure
Ph.D student	supervisor	prob. of success

◇ There is another reason to seek advice: to learn novel actions

♦ There is another reason to seek advice: to learn novel actions

Expert	Information	Novel Actions
analyst	economic forecast	assets, firms, strat.
firm	cost structure	feasible mergers
supervisor	prob. of success	research ideas
	analyst firm	analyst economic forecast firm cost structure

♦ There is another reason to seek advice: to learn novel actions

Decision Maker	Expert	Information	Novel Actions
investor	analyst	economic forecast	assets, firms, strat.
regulator	firm	cost structure	feasible mergers
Ph.D student	supervisor	prob. of success	research ideas
homeowner	architect	???	house design

PROJECT CHOICE

Armstrong and Vickers (2010), Guo and Shmaya (2023) study project choice:

- A manager (decision maker) is uncertain about which projects are feasible
- A subordinate (expert) makes recommendations
- The manager commits to a selection rule
 - how to choose a project from the subordinate's recommendations

Put what if av ar	nte commitment to	o a coloction r	ula ic infaacible?
but what if ex-al	ite commitment t	o a selection n	ute is illieasible:

- Unawareness: a student unaware of state-of-the-art research ideas.
- Vollawareness, a stadent anaware of state-of-the-art research ideas
- ⋄ Inexpressibility: impractical to express every possible house design
- ♦ Enforceability: A regulator may be unable to make reasonable

commitments

LITERATURE

- Delegation / Project Choice
 - ♦ Holmstrom (1980); Armstrong and Vickers (2010); Guo and Shmaya (2023)
- Incomplete Contracting / Unawareness in Contracting
 - Grossman and Hart (1986); Maskin and Tirole (1999); Tirole (2009); Hart (2017); Piermont (2017); Lei and Zhao (2021); Francetich and Schipper (2021)
- ♦ Strategic Information Transmission
 - Milgrom (1981), Crawford and Sobel (1982); Seidmann and Winter (1997); Aumann and Hart (2003); Chakraborty and Harbaugh (2010)
- Evidentiary disclosure
 - Dye, 1985; Green and Laffont, 1986; Grossman and Hart, 1986; Bull and Watson, 2007; Ben-Porath et al., 2019
- Robust Mechanism Design
 - Bergemann and Morris (2005); Jehiel et al., (2006); Carroll (2015, 2019).

Model

ENVIRONMENT

The environment is described by

$$A$$
 — a (compact) set of actions

$$(u_d, u_e)$$
 — (continuous) utility functions $\mathcal{A} \to \mathbb{R}$

$$\mathcal{R}$$
 — a collection of (compact) subsets of \mathcal{A} such that

 \diamond for $r \in \mathcal{R}$, there are a finite $r' \in \mathcal{R}$ with $r' \subseteq r$.

REVELATION TYPES

- \diamond A **revelation type** $r \in \mathcal{R}$ is a set of actions / projects that an agent can express
- \diamond Say that r is **more expressive** than r', if $r' \subseteq r$
- \diamond Fix types r_d and r_e
 - \diamond common knowledge that $r_d \subseteq r_e$

KEY ASSUMPTIONS

Information Spillover: Only $r \in \mathcal{R}$, such that $r \subseteq r_e$ can be revealed

Voluntary Disclosure: The expert can always masquerade as a type $r_d \subseteq r \subseteq r_e$

Hard Evidence: If the expert reveals r, then any $a \in r$ is 'real'

DIRECT MECHANISMS

An **selection function** is a function from types to actions:

$$f: \quad r \mapsto a$$

$$\quad \cap \quad \cap$$

$$\quad \mathcal{R} \rightarrow \quad r$$

- Outcome profiles are direct mechanisms
- These are the object of study in the project choice literature
- Inexpressibility precludes direct mechanisms / revelation principle

Call f monotone if ex's payoff is monotone in her type

$$u_{\mathbf{e}}(f(r')) \le u_{\mathbf{e}}(f(r)) \tag{1}$$

whenever $r' \subseteq r$, and **strongly monotone** if in addition (1) holds strictly whenever $f(r) \neq f(r')$.

- If direct mechanisms existed, monotonicity is necessary:
- Direct mechanisms don't exist: even with monotonicity, there need not be any 'strategic' way of enacting an selection function.

Call f efficient if outcome is Pareto undominated:

 $u_d(a) \ge u_d(f(r))$ and $u_e(a) \ge u_e(f(r))$,

(2)

for all $r \supseteq r_d$, is no $a \in r$ such that

or att
$$r \geq r_a$$
, is not $a \in r$ such that

with at least one inequality holding strictly.

EXAMPLE

- ♦ A regulator (the decision maker) is evaluating mergers (i.e., projects) :
 - can only choose a merger structure it is aware of
- A firm (the expert) may be aware of novel ways of structuring a merger
- choice of merger structure determines payoffs for both players
 - the firm cares about producer welfare
 - the regulator cares about consumer welfare foremost, but
 - also cares about efficiency

- \diamond Each merger yields (x_{reg}, x_{frm}) :
 - \diamond x_{reg} is regulator's payoff (consumer welfare)
 - $\diamond x_{frm}$ is firms's (producer welfare)
- ♦ The regulator is initially aware of two ways to structure the merger:

$$\mathbf{x} = (2, 2)$$
 $\mathbf{y} = (0, 0)$

♦ The firm is also aware of:

$$\mathbf{a} = (3,3)$$
 $\mathbf{b} = (4,1)$

- \diamond If the firm had full control over what to reveal: simply reveal $\mathbf{a} = (3,3)$
- ♦ However, not all mergers can be independently revealed:
 - Revealing one merger in a 'class' reveals the existence of the whole class, etc
- ♦ What if a and b must be revealed together?

$$\mathcal{R} = \big\{\{\textbf{y}\}, \{\textbf{y}, \textbf{x}\}, \{\textbf{y}, \textbf{a}, \textbf{b}\}, \{\textbf{y}, \textbf{x}, \textbf{a}, \textbf{b}\}\big\}$$

A monotone and efficient selection function:

But, the regulator cannot express a and b:

- ♦ Cannot commit to these mergers until they are revealed
- Cannot express the selection function above

- ♦ Since the firm prefers x to b, she would choose not to reveal.
- ♦ This is Pareto Inefficient: a dominates x
- What if regulator and firm can create the following contract (before revelation):
 - shortlist an 'outside option' (that the regulator is aware of)
 - this can be re-negotiated after revelation
 - the regulator can propose a new merger, but the firm can veto (therefore implement outside option)

- ♦ full revelation

♦ an efficient contract

So a two stage game with commitment to not revoke the prior proposal resulted in

- ♦ full revelation
- ⋄ an efficient contract

Does this always work?

So a two stage game with commitment to not revoke the prior proposal resulted in

- ♦ full revelation
- ♦ an efficient contract

Does this always work? No

EXAMPLE B

- ⋄ What if the regulator was also initially unaware of x
- ⋄ x and {a, b} can be revealed independently

EXAMPLE B

But the firm does not have to reveal everything! Instead, reveal only x

The firm prefers x to b:

- ♦ it will only partially reveal
- ⋄ again, this is inefficient: a dominates x

The firm prefers x to b:

- ♦ it will only partially reveal
- ⋄ again, this is inefficient: a dominates x

But, we can repeat!

Tterated Revelation Protocol

ITERATED REVELATION PROTOCOL

INITIAL STEP — The decision maker announces $r_0 \in \mathcal{R}$, and shortlists $a_0 \in r_0$.

ITERATIVE STEP — Given (r_0, \dots, r_{n-1}) distinct prior revelations, the expert reveals $r_n \in \mathcal{R}$.

- \diamond If $r_{n-1} \subsetneq r_n$, the dm shortlists $a_n \in r_n$, and the ITERATIVE STEP is repeated
- ♦ Otherwise, the protocol moves to the FINAL STEP
- FINAL STEP Given (r_0, \ldots, r_n) distinct revelations, the expert chooses an action $a \in \{a_0, \ldots, a_n\}$.

Importantly:

any specific actions/outcomes

have already been revealed.

- ♦ This protocol can be explained / contracted to without having to express
- Specifically, the only contractual obligations in an IRP are actions that

STRATEGIES

Given the IRP, a strategy

• for the dm is a function from sequences of revelations to actions:

$$s:(r_0\ldots r_n)\mapsto a_n\in r_n$$

 for the ex is a function from sequences of shortlisted actions to revelations:

$$\sigma:(a_0\ldots a_{n-1})\mapsto r_n\in\mathcal{R}$$

(and a choice out of the final shortlist)

IMPLEMENTATION

Let $a(s, \sigma)$ denote the action enacted by playing strategies s and σ .

Say that s implements the selection function f if for all $r \in \mathcal{R}$

$$f(r) = a(s, \sigma)$$
 for some best response for type r

and fully implements f if

$$f(r) = a(s, \sigma)$$
 for every best response for type r

Theorem

The following are equivalent for a selection function f

- (1) *f* is monotone (resp. strongly monotone)
- (2) there exists some s that implements f, (resp. fully implements)

Greedy Strategies & Efficiency

Each shortlist proposal in an IRP specifies:

- (1) The outcome should the game end
 - ⋄ dm wants to maximize his own payoff
- (2) The implicit incentive constraint should the game continue
 - dm wants to minimize ex's payoff

In the examples, IRPs solved (1) ignoring (2)

Definition

Call a strategy s (for the decision maker) mostly greedy if for all $(r_0 \dots r_n)$, there is no $a \in r_n$ such that $V_e(s(r_0 \dots r_{n-1})) \leq V_e(a)$ and

or such that

 $u_d(a) > u_d(s(r_0 \dots r_n))$

 $u_d(a) = u_d(s(r_0 \dots r_n))$ and $u_e(a) > u_e(s(r_0 \dots r_n))$

A mostly greedy strategy:

- maximizes the dm's payoff myopically (subject to IC constraint)
- - breaks ties in favor of the expert (hence only mostly greedy)

does not account for effect on future incentive constraints

Theorem

Let s be mostly greedy. Then s implements the decision maker's preferred efficient selection function, f^* .

 \diamond If f is any other monotone and efficient selection function, then for all $r\supseteq r_d$ $u_d(f^\star(r))\ge u_d(f(r))$

COMPARATIVE STATICS: EXPRESSIBILITY

Let f^r denote the efficient, monotone selection function induced by the mostly greedy strategy for type r. Then:

- If the decision maker can express more actions ex-ante, he does better
 - $\diamond \ r_d^\dagger \subseteq r_d^\star \subseteq r_e \text{ implies } u_d(f^{r_d^\dagger}(r_e)) \le u_d(f^{r_d^\star}(r_e))$
- If the expert can express more actions ex-ante, the decision maker's payoff is unsigned
 - $r_d^{\dagger} \subseteq r_e \subseteq r_e' \text{ implies } u_d(f^{r_d^{\dagger}}(r_e)) ?? u_d(f^{r_d^{\dagger}}(r_e'))$

COMPARATIVE STATICS: INFORMATION SPILLOVER

 \diamond Let \mathcal{R} and \mathcal{Q} be two different type spaces over the same set of actions:

$$\mathcal{R} \subseteq \mathcal{Q} \subseteq 2^{\mathcal{A}}$$

 \diamond Let $r_d, r_e \in \mathcal{R}$ and $q_d, q_e \in \mathcal{Q}$ be such that

$$r_d = q_d \subseteq r_e = q_e$$

 \diamond Then $u_d(f^{q_d}(q_e)) \leq u_d(f^{r_d}(r_e))$

COMPARATIVE STATICS: INFORMATION SPILLOVER

- \diamond In the limit $\mathcal{R} = \{\mathcal{A}\}$ (all actions reveal all other actions)
 - As if dm maximizes subject to individual rationality constraint
- \diamond In the limit $\mathcal{R} = 2^{\mathcal{A}}$ (all actions can be revealed independently)
 - As if expert maximizes subject to individual rationality constraint
 - This coincides with the expert preferred efficient selection function
 - Corollary: efficient selection function is unique

General Strategic Analysis

Definition

Call a strategy s greedy if for all $(r_0 \dots r_n)$, there is no $a \in r_n$ such that

$$V_{\boldsymbol{e}}(s(r_0 \dots r_{n-1})) \leq V_{\boldsymbol{e}}(a)$$
 and $V_{d}(s(r_0 \dots r_n)) < V_{d}(a)$

- There is no way to for the dm to increase his own payoff
- Generalization of mostly greedy strategy

Theorem

An selection function f is implemented by a greedy s

for all $r \in \mathcal{R}$, there is no other monotone selection function f' such that

 $\inf_{r' \supset r} V_d(f(r')) < \inf_{r' \supset r} V_d(f'(r'))$

if and only if

if and only i

Definition

Call a strategy s locally rational if for all $(r_0 \dots r_n)$, there is no $a \in r_n$ such that

$$V_{\boldsymbol{e}}(s(r_0 \ldots r_{n-1})) \leq V_{\boldsymbol{e}}(a) < V_{\boldsymbol{e}}(s(r_0 \ldots r_n)) \quad \text{ and } \quad V_{\boldsymbol{d}}(s(r_0 \ldots r_n)) < V_{\boldsymbol{d}}(a)$$

- ⋄ There is no way to simultaneously for the dm to
 - increase his own payoff
 - decrease the expert's payoff

Theorem

An selection function f is implemented by a locally rational s

if and only if

for all $r \in \mathcal{R}$, there is no other monotone selection function f' such that

$$V_d(f(r')) \le V_d(f'(r'))$$
 for all $r' \supseteq r$,
 $V_d(f(r')) < V_d(f'(r'))$ for some $r' \supseteq r$

 \diamond 'if' direction requires a richness condition on \mathcal{R}

Payoff Uncertainty

- ♦ The implementation above presupposes dm can anticipate ex's acceptance / rejection
- What happens with private information:
 - \diamond Actions are state-dependent $u: \mathcal{A} \times \Omega \to \mathbb{R}$
 - \diamond assume **ex** knows the state, $\omega \in \Omega$
 - dm does not

- $\Delta = \{\omega_L, \omega_R\}$, ex knows the state, dm believes equally likely
 - \diamond Each action is therefore given by $(\langle x_{d,L}, x_{d,R} \rangle, \langle x_{e,L}, x_{e,R} \rangle)$.
- ♦ The dm is initially aware of one action:

$$x = (\langle 0, 0 \rangle, \langle 0, 0 \rangle)$$

♦ The ex is also aware of:

$$a_L = (\langle 3, -1 \rangle, \langle 3, -1 \rangle)$$
 $a_R = (\langle -1, 3 \rangle, \langle -1, 3 \rangle)$ $b = (\langle 2, 2 \rangle, \langle 2, 2 \rangle)$

 \diamond The only revelation type is $\{a_L, a_R, b\}$.

$$*x = \langle 0, 0 \rangle, \langle 0, 0 \rangle *$$

$$*x = \langle \mathbf{0}, 0 \rangle, \langle \mathbf{0}, 0 \rangle *$$

$$*x = \langle 0, \mathbf{0} \rangle, \langle 0, \mathbf{0} \rangle *$$

- ♦ Preferences are completely aligned, but IRP does not allow delegation
- ⋄ the protocol cannot use ex's private info.
 - this creates inefficiency
- ⋄ Instead, dm chooses a **set of actions** $p_1 \subseteq r$. After revelation, propose

$$p_1 = \{a_L, a_R\}$$

and let the ex choose.

- ♦ A **generalized IRP** allows the dm to choose a set of actions at each step:
 - \diamond At each $(r_0 \dots r_n)$, $s(r_0 \dots r_n) \subseteq r_n$

- \diamond A generalized selection function is a function $f: \Omega \times \mathcal{R} \to \mathcal{A}$
 - For each $r \in \mathcal{R}$, $w \in \Omega$, we have $f(\omega, t) \in t$

FULL REVELATION

Theorem

The following are equivalent for a gen. selection function f

- (1) f can be implemented by a gen. IRP
- (2) f is monotone: for all $\omega, r \in \Omega \times \mathcal{R}$

$$u_{\mathbf{e}}(f(\omega', r'), \omega) \le u_{\mathbf{e}}(f(\omega, r), \omega)$$

for any other $\omega' \in \Omega$ and $r' \subseteq r$.

Thank You

