電子制御工学実験報告書

実験題目 : オームの法則の実験

報告者 : 1年39番 鷲尾 優作

提出日 : 令和元年7月16日

実験日: 令和元年7月9日

実験班 :

共同実験者 : 23番 高橋 匠

24番 高橋 尚也 31番 羽田 伊吹

※指導教員記入欄

評価項目	配点	一次チェック・・・・	二次チェック・・・・
記載量	20		
図・表・グラフ	20		
見出し、ページ番号、その他体裁	10		
その他の減点	_		
合計	50		

コメント:

1 本実験の目的

オームの法則を実験することにより、確認し、その応用ができるようにする。

2 理論

電気抵抗に流れる電流は、これに加えた電圧に比例し、抵抗に逆比例する。 この法則はあるゆる電気理論の基礎となるもので、 $A \cdot V \cdot \Omega$ の単位を用いることで、 比例定数は 1 となり、以下の簡単な式で表すことができる。

$$I[A] = V[V]/R[\Omega] \tag{1}$$

$$V[V] = R[\Omega] * I[A] \tag{2}$$

$$R[\Omega] = V[V]/I[A] \tag{3}$$

3 実験内容

3.1 [実験 1] 抵抗電流特性

3.1.1 手順1 回路の作成

図 1: 抵抗電流特性測定回路

第1図のような回路を作成する。

3.1.2 手順 2 電圧の固定

電圧を 5,7,10V のいずれかに固定する。なお、それぞれの場合について実験する。

3.1.3 手順3 可変標準抵抗の操作及び記録

可変標準抵抗(負荷抵抗) $R[\Omega]$ を 0.1-1K Ω まで 0.1K Ω 毎に増加させる。 その都度、電流計の電流値を読み記録する。

3.1.4 手順 4 理論値の計算

2章で示された (1) 式に電圧値及び負荷抵抗値を代入しオームの法則による実験の理論値を求める。 この実験での電流値の理論値を求める。

3.2 [実験 2] 電圧電流特性

3.2.1 手順1 抵抗値の固定

第1図の回路において、抵抗値を 125,250,500 Ω のいずれかに固定する。 なお、それぞれの場合について実験する。

3.2.2 手順2 電圧の操作及び記録

電圧 [V] を 0-14V まで 1V 毎に増加させる。 その都度、電流計の電流値を読み記録する。

3.2.3 手順3 理論値の計算

2章で示された (1) 式に負荷抵抗値及び電圧値を代入し この実験での電流値の理論値を求める。

4 使用器具

1. 直流電源

商品名 KIKUTU PMC18-3 定格 INPUT AC100V 50/60Hz Max 230VA 物品番号 Ec-09

2. 抵抗器

商品名 YAMABAYASHI ELECTRIC CO.,LTD. DECADE RESISTER TYPE YRH-4BA 定格 100 Ω 70mAMax, 10 Ω 250mAMax, 1 Ω 350mAMax, 0.1 Ω 550mAMax 物品番号不明

3. 電圧計

商品名 YOKOGAWA MODEL2011 CLASS0.5 B9000EU 定格 0-100V 1000 Ω/V 物品番号 1-63

4. 電流計

商品名 YOKOGAWA SYC2021 MODEL205103 定格 0-1000mA 物品番号不明

5 実験結果

5.1 [実験 1] 抵抗電流特性

表 1: 計測結果

			HI DW1H	•		
負荷抵抗	5V 電流値 I[mA]		7V 電流値 I[mA]		10V 電流値 I[mA]	
$R[k\ \Omega]$	理論値	実測値	理論値	実測値	理論値	実測値
0.1	50	50.0	70	70.0	100	100.0
0.2	20	25.00	35	35.0	50	50.0
0.3	17	17.00	23	22.00	33	33.0
0.4	13	12.50	18	17.50	25	25.00
0.5	10	10.00	14	14.00	20	20.25
0.6	8.3	8.50	12	11.75	17	16.75
0.7	7.1	7.00	10	10.00	14	14.50
0.8	6.3	6.25	8.8	8.75	13	12.50
0.9	5.6	5.60	7.8	7.75	11	11.00
1.0	5.0	5.00	7.0	7.00	10	10.00

図 2: 抵抗電流特性グラフ

5.2 [実験 2] 電圧電流特性

表 2: 計測結果

仅 2. □ 例和禾							
設定電圧	125 Ω 電流値 I[mA]		250 Ω 電流値 I[mA]		500 Ω 電流値 I[mA]		
V[V]	理論値	実測値	理論値	実測値	理論値	実測値	
0	0	0.00	0	0.00	0	0.00	
1	8	8.30	4	4.10	2	2.00	
2	16	16.40	8	8.20	4	4.00	
3	24	24.30	12	12.20	6	6.10	
4	32	32.2	16	16.40	8	8.10	
5	40	40.3	20	20.0	10	10.0	
6	48	48.2	24	24.1	12	12.0	
7	56	56.1	28	28.0	14	14.0	
8	64	64.5	32	32.1	16	16.0	
9	72	72.2	36	36.1	18	18.0	
10	80	80.6	40	40.1	20	20.0	
11	88	88.2	44	44.2	22	22.0	
12	96	96.2	48	48.6	24	24.0	
13	104	105.0	52	52.0	26	25.0	
14	112	113.0	56	55.1	28	28.0	

図 3: 電圧電流特性グラフ

図 4: 図 3 点群プロット及び平均グラフ

6 考察

[実験 1] 抵抗電流特性について、表1より実測値と理論値の誤差は

 $\pm 1 \mathrm{mA}$ の範囲に収まっておりほぼ一致しているといえる。実測値が理論値に一致しているとした場合、 $5\mathrm{V}$ の場合では

$$I[mA] = 5[V]/R[k \Omega] \tag{4}$$

7V の場合では

$$I[mA] = 7[V]/R[k \Omega] \tag{5}$$

10V の場合では

$$I[mA] = 10[V]/R[k \Omega] \tag{6}$$

であるといえる。よって2章で示された(1)式に一致する。

よって電流の大きさと抵抗値の関係にオームの法則が成立することが確認できた。

また [実験 2] 電圧電流特性についても、表2より実測値と理論値の誤差は

± 1mA の範囲に収まっておりほぼ一致しているといえる。実測値が理論値に一致しているとした場合、 125 Ω の場合では

$$I[mA] = V[V]/125[k \Omega] \tag{7}$$

250 Ωの場合では

$$I[mA] = V[V]/250[k \Omega] \tag{8}$$

500 Ωの場合では

$$I[mA] = V[V]/500[k \Omega] \tag{9}$$

であるといえる。よって2章で示された(1)式に一致する。

よって電圧の大きさと電流の大きさの関係にオームの法則が成立することが確認できた。

2つの実験から、電流の大きさと抵抗値の関係にオームの法則が

電圧の大きさと電流の大きさの関係にオームの法則が成り立つことが分かった。

よって、電流の大きさと抵抗値の関係、電圧の大きさの関係にオームの法則が成り立つと言える。

また (1) 式が確認できたことから、式変形により同様に (2) 式、(3) 式も同様に成り立つことがわかる。以上のことから 2 章で示された 3 つの式は確認され、オームの法則は確認できた。

7 課題

今回の[実験 1]、[実験 2] では、直流電源を使用したため 交流の電源を用いた場合、オームの法則が成り立つかどうか確認することができなかった。 極性が常に入れ替わる交流電流においてオームの法則が成り立つのか また、どのような挙動をするのか実験をすることは今度の課題である。

8 感想

今回は共同実験者に恵まれ、スムーズに実験を行うことができた。

計測器の有効桁数の部分で苦戦をしたが、理論値の計算や器具の仕様の記録などを

分担で行うことができ、効率の良い実験になった。

レポート作成には VSCode に整えた LaTeX 環境、回路図作成には KiCad、グラフ作成には Gnuplot を使用した。 Tex に関しては 3 年生からこの記法ということで練習を兼ねたが、非常に使いやすく気に入った。

課題で述べた交流電流でのオームの法則は、非常に興味があるので調べたい。