Lab 1. Environment Setup & Java Basics

Họ và tên: Đỗ Thành Trung MSSV: 202416833

Note:

- All of my programs have cases when the input is non-numeric or incompatible with the requirements:

Case 1: When the input is non-numeric or the input is empty

Case 2: When the user exits the program

Bài 2.2.5. Write a program to calculate sum, difference, product, and quotient of 2 double numbers which are entered by users.

Notes

- To convert from String to double, you can use

double num1 = Double.parseDouble(strNum1)

- Check the divisor of the division
- Don't forget to add and commit your work using 'git add .' and 'git commit -m <message>' command

1. Code

```
import javax.swing.JOptionPane;
public class Bai225ArithmeticOperations {
    public static void main(String[] args) {
            String strNum1 = JOptionPane.showInputDialog(null, "Enter number
1:", "First number", JOptionPane.QUESTION MESSAGE);
            if (strNum1 == null) {
                JOptionPane.showMessageDialog(null, "Exited", "Exit",
JOptionPane.INFORMATION MESSAGE);
            String strNum2 = JOptionPane.showInputDialog(null, "Enter number
2:", "Second number", JOptionPane.QUESTION MESSAGE);
            if (strNum2 == null) {
                JOptionPane.showMessageDialog(null, "Exited", "Exit",
JOptionPane.INFORMATION MESSAGE);
            double firstNum = Double.parseDouble(strNum1);
            double secondNum = Double.parseDouble(strNum2);
           double sum = firstNum + secondNum;
            double difference = Math.abs(firstNum - secondNum);
            JOptionPane.showMessageDialog(null, result, "Result",
JOptionPane.INFORMATION MESSAGE);
        } catch (NumberFormatException e) {
            JOptionPane.showMessageDialog(null, "Please enter a double
       "Error !", JOptionPane.ERROR MESSAGE);
```

2. Run

Case 1: Normal case

Case 2: When the second number is zero

Bài 2.2.6. Write a program to solve

For simplicity, we only consider the real roots of the equations in this task.

3. The first-degree equation (linear equation) with one variable

Note: A first-degree equation with one variable can have a form such as ax + b = 0 ($a \ne a$

0). You should handle the case where the user input value 0 for a.

Don't forget to add and commit your work using 'git add .' and 'git commit -m <message>' command

4. The system of first-degree equations (linear system) with two variables

Note: A system of first-degree equations with two variables x_1 and x_2 can be written as follows.

$${a_{11}x_1 + a_{12}x_2 = b_1 a_{21}x_1 + a_{22}x_2 = b_2}$$

You should handle the case where the values of the coefficients produce infinitely many solutions and the case where they produce no solution.

Hint:

Use the following determinants:

$$D = |a_{11} \ a_{12} \ a_{21} \ a_{22}| = a_{11}a_{22} - a_{21}a_{12}D_1 = |b_1 \ a_{12} \ b_2 \ a_{22}| = b_1a_{22} - b_2a_{12}D_2 = |a_{11} \ b_1 \ a_{21} \ b_2 | = a_{11}b_2 - a_{21}b_1$$

5. The second-degree equation with one variable

<u>Note</u>: A second-degree equation with one variable (i.e., quadratic equation) can have a form such as $ax^2 +$

bx + c = 0, where x is the variable, and a, b, and c are coefficients $(a \neq 0)$.

You should handle the case where the values of the coefficients produce a double root & the case where they produce no root. You should also handle the case where the user input value 0 for a.

Hint:

Use the discriminant $\Delta = b^2 - 4ac$

After completing the code in section 2, you should push all of your changes, including assignment 2.2.1 to 2.2.6 to the **master** branch of the valid repository you have created.

<u>Hint:</u> You should use "git push origin <name of the branch that you want to push to the remote repository>", in this case is "master", to push all of your works to the master branch.

1. Code

```
import javax.swing.JOptionPane;
   public static void main(String[] args) {
           String[] options = {"Linear Equation (ax + b = 0)", "Quadratic Equation
            int choice = JOptionPane.showOptionDialog(null,
                   JOptionPane.DEFAULT OPTION,
                   JOptionPane.QUESTION MESSAGE,
                    options,
                    options[0]);
           if (choice == 3 || choice == JOptionPane.CLOSED OPTION) {
               JOptionPane.showMessageDialog(null, "Exited!", "Exit",
JOptionPane.INFORMATION MESSAGE);
                   solveLinearEquation();
                    solveQuadraticEquation();
                   solveSystemOfEquations();
   public static void solveLinearEquation() {
           String Coef a = JOptionPane.showInputDialog(null, "Enter the
coefficient for x:", "Enter a", JOptionPane.QUESTION MESSAGE);
            String Free coef = JOptionPane.showInputDialog(null, "Enter the free
coefficient:", "Enter b", JOptionPane.QUESTION MESSAGE);
           double a value = Double.parseDouble(Coef a);
           double b value = Double.parseDouble(Free coef);
           String result = "";
```

```
JOptionPane.showMessageDialog(null, result, "Result",
JOptionPane.INFORMATION MESSAGE);
        } catch (NumberFormatException e) {
            JOptionPane.showMessageDialog(null, "Please enter a double value",
"Error!", JOptionPane.ERROR MESSAGE);
   public static void solveQuadraticEquation() {
           String Coef a = JOptionPane.showInputDialog(null, "Enter the
            String Coef b = JOptionPane.showInputDialog(null, "Enter the
coefficient for x:", "Enter b", JOptionPane.QUESTION_MESSAGE);
            String Free coef = JOptionPane.showInputDialog(null, "Enter the free
coefficient:", "Enter c", JOptionPane.QUESTION MESSAGE);
            if (Free coef == null) return;
           double a value = Double.parseDouble(Coef a);
            double b value = Double.parseDouble(Coef b);
            double c value = Double.parseDouble(Free coef);
           String result = "Result:\n";
               double delta = b value * b value - 4 * a value * c value;
                if (delta > 0) {
                    double x1 = (-b value + Math.sqrt(delta)) / (2 * a value);
                } else if (delta == 0) {
            JOptionPane.showMessageDialog(null, result, "Result",
```

```
JOptionPane.INFORMATION MESSAGE);
        } catch (NumberFormatException e) {
            JOptionPane.showMessageDialog(null, "Please enter a double value",
"Error!", JOptionPane.ERROR MESSAGE);
    public static void solveSystemOfEquations() {
            String s all = JOptionPane.showInputDialog(null, "Enter all:");
            String s a12 = JOptionPane.showInputDialog(null, "Enter a12:");
            if (s a12 == null) return;
            String s b1 = JOptionPane.showInputDialog(null, "Enter b1:");
            if (s b1 == null) return;
            String s a21 = JOptionPane.showInputDialog(null, "Enter a21:");
            String s a22 = JOptionPane.showInputDialog(null, "Enter a22:");
            String s b2 = JOptionPane.showInputDialog(null, "Enter b2:");
            double all = Double.parseDouble(s all);
            double a12 = Double.parseDouble(s a12);
            double b1 = Double.parseDouble(s b1);
            double a21 = Double.parseDouble(s a21);
            double a22 = Double.parseDouble(s a22);
            double b2 = Double.parseDouble(s b2);
            double D = a11 * a22 - a12 * a21;
            JOptionPane.showMessageDialog(null, result, "Result",
JOptionPane.INFORMATION MESSAGE);
        } catch (NumberFormatException e) {
            JOptionPane.showMessageDialog(null, "Please enter a double value",
"Error!", JOptionPane.ERROR MESSAGE);
```

2. Run

This is the menu when we start the program

Case 1: Linear equation normal case

Case 2: Linear equation when a = 0

When b != 0 the result is

Enter the free coefficient:

OK

Case 3: Quadratic equation normal case

Cancel

Case 4: When a = 0, the equation will turn linear which is case 2 in this exercise

Case 5: A set of two linear equations

In this case we have the example of this set of equations: $\begin{cases} x + 2y = 10 \\ 2x + 8y = 8 \end{cases}$

The program also works well in the cases of infinitely many solutions or no solution found

Bài 6.1. Write, compile and run the ChoosingOption program

1. Code and Run

2. Question

- What happens if users choose "Cancel"?
 - If users choose cancel, the message will be you've chosen No, which is incorrect

- To customize the options to e.g: "I do" or "I don't", instead of using showConfirmDialog, we use showOptionDialog. Afterward, we will be able to set up the program's output to "I do" or "I don't" using several lines of code.

-

```
import javax.swing.JOptionPane;

public class Bai&iChoosingOption { no usages & trungdo2711
    public static void main(String[] args) { & trungdo2711
        String[] options = {"I do", "I don't"};

    int choice = JOptionPane.showOptionDialog(
        null,
        "Do you want to change to the first class ticket?",

        "Choose Option",
        JOptionPane.DEFAULT_OPTION,
        JOptionPane.QUESTION_MESSAGE,
        null,
        options,
        options,
        options[0]
    );

    if (choice == 0) {
        JOptionPane.showMessageDialog(null, "You've chosen: I do");
    } else if (choice == 1) {
        JOptionPane.showMessageDialog(null, "You've chosen: I don't");
    } else {
        JOptionPane.showMessageDialog(null, "No option selected");
    }

    System.exit(0);
}
```

Bài 6.2. Write a program for input/output from

keyboard

Code – Compile – Run

```
What's your name?
Do Thanh Trung
How old are you?
19
How tall are you (m)?
1.75
Mrs/Ms. Do Thanh Trung, 19 years old. Your height is 1.75.
```

Bài 6.3. Write a program to display a triangle with a height of n stars (*), n is entered by users.

```
E.g. n = 5:

*

***

****

******
```

- Code & Run

```
- import java.util.Scanner;

public class Bai63Stars {
    public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
        System.out.println("Enter the number of lines: ");
        int line = scanner.nextInt();

        for (int i = 1; i <= line; i++) {
            for (int j = 1; j <= line - i; j++) {
                System.out.print(" ");
            }
            for (int k = 1; k <= 2 * i - 1; k++) {
                System.out.print("*");
            }
            System.out.println();
        }
        scanner.close();
    }
}</pre>
```

Bài 6.4. Write a program to display the number of days of a month, which is entered by users (both month and year). If it is an invalid month/year, ask the user to enter again.

- The user can either enter a month in its full name, abbreviation, in 3 letters, or in number. To illustrate, the valid inputs of *January* are January, Jan., Jan, and 1.
- The user must enter a year in a non-negative number and enter all the digits. For instance, the valid input of year 1999 is only 1999, but not 99, "one thousand nine hundred ninety-nine", or anything else.
- A year is either a common year of 365 days or a leap year of 366 days. Every year that is divisible by 4 is a leap year, except for years that are divisible by 100, but not by 400. For instance, the year 1800 is not a leap year, yet the year 2000 is a leap year. In a year, there are twelve months, which are listed in order as follows.

Month	January	February	March	April	May	June	July	August	September	October	November	December
Abbreviation	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.
In 3 letters	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
In Number	1	2	3	4	5	6	7	8	9	10	11	12
Days of Month in Common Year	31	28	31	30	31	30	31	31	30	31	30	31
Days of Month in Leap Year	31	29	31	30	31	30	31	31	30	31	30	31

- Code

```
switch (month) {
        System.out.println("31 days");
        if(year % 4 == 0 && year % 100 != 0 || year % 400 == 0){
            System.out.println("28 days");
        System.out.println("Invalid month");
```

- Test 1: Normal case

Enter year: 2025 Enter month: 2 28 days

- Test 2: When the input is a string

Enter year: 2005 Enter month: september 30 days

- Test 3: Leap year

Enter year: 2000 Enter month: 2 29 days

Bài 6.5. Write a Java program to sort a numeric array, and calculate the sum and average value of array elements.

- Code

```
public static void main(String[] args) {
        Scanner scanner = new Scanner(System.in);
            int value = scanner.nextInt();
            array[i] = value;
        sortArray(array, 0, size - 1);
            System.out.print(array[i] + " ");
        System.out.println();
        System.out.println("The average value of the array is " +
calculateAverage(array));
        scanner.close();
    public static int calculateSum(int array[]){
            sum += array[i];
    public static double calculateAverage(int array[]) {
        for (int i = 0; i < array.length; i++) {
            sum += array[i];
    public static void sortArray(int[] array, int left, int right){
        if(left < right){</pre>
            sortArray(array, left, mid);
sortArray(array, mid + 1, right);
            merge(array,left,mid,right);
    public static void merge(int[] array, int left, int mid, int right){
```

```
L[i] = array[left + i];
R[j] = array[mid + 1 + j];
if(L[i] <= R[j]){</pre>
    array[k] = R[j];
array[k] = L[i];
array[k] = R[j];
```

- Run

```
Enter the size of the array

5
Enter the value:

3
Enter the value:

7
Enter the value:

4
Enter the value:

8
Enter the value:

10
3 4 7 8 10
The sum of the array is 32
The average value of the array is 6.4
```

Bài 6.6. Write a Java program to add two matrices of the same size.

- Code

```
public static void main(String[] args) {
    Scanner scanner = new Scanner(System.in);
   System.out.print("Enter rows of first matrix: ");
   int row1 = scanner.nextInt();
   System.out.print("Enter collumns of first matrix: ");
   int col1 = scanner.nextInt();
    int[][] matrix1 = new int[row1][col1];
   System.out.print("Enter collumns of first matrix: ");
    int[][] matrix2 = new int[row2][col2];
    System.out.println("Enter values for first matrix:");
           matrix1[i][j] = scanner.nextInt();
    System.out.println("Enter values for second matrix:");
    int[][] result = addingMatrix(matrix1, matrix2);
   if (result != null) {
        System.out.println("Result matrix:");
            System.out.println();
    scanner.close();
public static int[][] addingMatrix(int[][] matrix1, int[][] matrix2) {
```

```
if (matrix1.length == 0 || matrix2.length == 0) {
        System.out.println("Matrix is empty");
        return null;
}

int row1 = matrix1.length;
int col1 = matrix1[0].length;
int row2 = matrix2.length;
int col2 = matrix2[0].length;

if (row1 != row2 || col1 != col2) {
        System.out.println("Different matrix size");
        return null;
}

int[][] result = new int[row1][col1];

for (int i = 0; i < row1; i++) {
        for (int j = 0; j < col1; j++) {
            result[i][j] = matrix1[i][j] + matrix2[i][j];
        }
}

return result;
}
</pre>
```

- Test 1: Normal case

```
Enter rows of first matrix: 2
Enter collumns of first matrix: 3
Enter rows of second matrix: 2
Enter collumns of first matrix: 3
Enter values for first matrix:
Enter the value for matrix1[0][0]: 1
Enter the value for matrix1[0][1]: 2
Enter the value for matrix1[0][2]: 3
Enter the value for matrix1[1][0]: 4
Enter the value for matrix1[1][1]: 5
Enter the value for matrix1[1][2]: 6
Enter values for second matrix:
Enter the value for matrix1[0][0]: 6
Enter the value for matrix1[0][1]: 5
Enter the value for matrix1[0][2]: 4
Enter the value for matrix1[1][0]: 3
Enter the value for matrix1[1][1]: 2
Enter the value for matrix1[1][2]: 1
Result matrix:
777
777
```

- Test 2: Different matrix size

```
Enter rows of first matrix: 1
Enter collumns of first matrix: 3
Enter rows of second matrix: 2
Enter collumns of first matrix: 2
Enter values for first matrix:
Enter the value for matrix1[0][0]: 1
Enter the value for matrix1[0][1]: 2
Enter the value for matrix1[0][2]: 3
Enter values for second matrix:
Enter the value for matrix1[0][0]: 4
Enter the value for matrix1[0][1]: 5
Enter the value for matrix1[1][0]: 6
Enter the value for matrix1[1][1]: 7
Different matrix size
```