EDA软件设计I

Lecturer: Dr. Cuiying Feng 封璀颖

课前交流

- About you, about me
- 教学理念
 - "学习是和知识、技能的一次**互动**"
 - "老师只是这个互动的**媒介**"
 - "让知识更好地**触达**到你"
- 课程难度、目的
 - Don't worry about grades, don't work for grades
 - 难度有,目的是让大家都有乐趣地学到东西

课前交流

- •课堂风格
 - 慢节奏、轻松、互动性
 - 视频、动画辅助
 - 插播学习理念、趣闻轶事等
- 课堂纪律
 - 手机静音
 - 不碰手机
- 关于今天的两节课
 - 故事性、"科普性"的两节课
 - 大致了解EDA

EDA?

EDA: Electronic Design Automation

电子设计自动化

EDA 软件设计 I

软件 — 工业软件 — EDA 软件

Course Outliner

第一学时大纲

1. 软件的历史发展及分类

2. 工业软件

- ① 什么是工业软件
- 2 工业软件的目标是什么
- **有哪些类型**的工业软件

EDA软件

- ① 什么是EDA软件
- ② EDA软件的核心功能是什么

Course Outliner

第一学时大纲

1 软件的历史发展及分类

世界上第一个软件

曼彻斯特小型实验机(SSEM)—— 别名:Manchester baby

- **软件的起源**: 1940年代,英国数学家阿兰·图灵 (Alan Turing) 提出了软件的概念,冯·诺依曼 等人在《第一草案》中提出了存储程序的计算机 结构
 - 现代计算机架构的基础
- 第一个实际的软件: 1948年, 汤姆·基尔伯恩在曼彻斯特大学的SSEM上编写了一个程序, 用于<u>计</u>算数的最大因数、
 - 被认为是世界上第一个实际运行的软件

Alan Turing

SSEM 架构

从此,人类的很多任务、流程开始交给软件来运行、处理

1950-1960年代:早期软件开发与操作系统的出现

随着计算机使用的推广, 出现了编程语言与操作系统

早期编程语言

- 编程语言:
 - FORTRAN
 - COBOL
- 简化了软件编写,适应商业和科学计算需求。

操作系统的诞生

- 计算机硬件复杂性增加
- 催生管理硬件资源的需求
- IBM在1964年推出 OS/360,标志着操作系 统从专用走向通用

1970-1980年代:软件工程的兴起和个人计算机的普及

软件危机与个人计算机

软件危机

- 软件项目复杂性增加
- 项目失败率提高
- 推动<u>系统化</u>地软件<u>开发方法和工具</u>的发 展:软件工程

个人计算机的崛起

- 1970 年代末, Apple II
- 1981年, IBM PC
- 计算机从大型企业设备走入家庭,个人软件市场开始兴起

1990年代: 互联网的兴起和软件的多样化

软件发展多样化的关键时期

互联网的崛起

- 网页浏览器的出现使万维网 (WWW) 迅速流行, 软件分发和使用方式发生了变革:
 - 传统方式:通过物理介质(如磁盘、光盘)分发, 成本高、不便捷
 - 现代方式: 下载和在线安装的方式分发

图形用户界面 (GUI)

- Graphic User Interface
- Windows和Mac OS使用户能够通过图形界面与计算机交互,简化了操作

2000年代: 开源软件、移动互联网与云计算

技术的多样化和普及

- 开源软件的普及: Linux操作系统和其他开源项目推动了技术创新和社区合作
- 移动互联网: iOS和Android的出现改变了人们使用软件的方式,移动应用程序成为新的软件形态。
- •云计算: AWS (Amazon Web Service) 等云服务的推出,使得软件可以在全球范围内快速部署和扩展。
 - 云计算供应商:通过互联网来提供计算资源和服务
 - •云计算用户:无需维护物理设备,按使用的时间和资源付费

2010年代至今:人工智能、大数据和区块链

现代技术的进步

人工智能和机器学习

- CV (computer vision) 计算机 视觉: 让计算机能 "看"
- 推荐算法
- 相关应用软件:
 - Siri (语音助手)
 - Netflix (核心: 推荐算法)

大数据

- 互联网和物联网的普及产生了海量数据
- 大数据分析帮助从数据中提取有价值的信息。
- 大数据分析工具:
 - Hadoop
 - Spark

区块链技术

- 区块链提供了一种去中心化、安全的交易记录方式
- 应用于加密货币、供应链管理和 智能合约
- 应用举例:
 - · 比特币依赖区块链软件来管理交易、维护账本和确保网络安全
 - · 以太坊的智能合约通过软件定义, 自动执行和验证合同条款

什么是软件? 软件的定义是什么?

什么是软件

软件的定义和作用

软件的定义 (概念)

软件是用于指挥(计算机等相关)硬件执行特定任务的程序和相关文档。

• 软件使计算机等多种硬件系统 能够执行多种任务

- 1. 为什么要了解软件的定义?
 - 因为普遍而导致得对本质的忽略
 - "似是而非" ≠ "差不多知道"
- 2. 一般情况下, 定义不用死记硬背
 - "学习是和知识的一种互动"
 - 互动得越多,知识越形象

通过比较, 区隔不同概念

软件与相关概念的区别

概念区分的边界

- •软件 vs. 硬件: 软件是无形的程序和指令, 硬件是有形的设备。
- •软件 vs. 固件: 固件是嵌入在硬件中的特殊软件,通常不可修改。

软件 vs. 应用程序

软件 = 应用程序?

应用程序是一种专门设计来执行特定用户任务的软件,是 **软件的一个子集**

软件的分类

多种软件类型

软件类型	作用	实例
系统软件	管理计算机硬件资源	如Windows、Linux
应用软件	用于执行特定任务的程序	如Microsoft Office、 Photoshop
工业软件	支持工业设计、制造和管理的 软件	如CAD、ERP
嵌入式软件	集成在硬件中的软件,用于控 制设备功能	如家电固件、电子穿戴 设备
开发工具软件	用于创建其他软件的工具和环境	如编译器、IDE

软件的分类

多种软件类型

软件类型	作用	实例
系统软件	管理计算机硬件资源	如Windows、Linux
应用软件	用于执行特定任务的程序	如Microsoft Office、 Photoshop
工业软件	支持工业设计、制造和管理的 软件	如CAD、ERP
嵌入式软件	集成在硬件中的软件,用于控 制设备功能	如家电固件、电子穿戴 设备
开发工具软件	用于创建其他软件的工具和环 境	如编译器、IDE

Course Outliner

第一学时大纲

- 1. 软件的历史发展及分类
- 2. 工业软件
 - ① 什么是工业软件
 - 2 工业软件的目标是什么
 - **有哪些类型**的工业软件

什么是工业软件

工业软件的定义和目标

• 工业软件是指支持工业设计、工业制造和工业管理的专用应用程序

工业软件的目标

- 提高生产效率、优化流程、确保产品质量 , 并通过自动化减少人为错误
- 帮助企业达成可持续性目标并保持竞争优势。

工业软件: 工业领域的工具

工业

工业的基本概念及工业软件的应用场景

工业的基本概念

- · 工业是指利用机械、电力等手段进行大规模生产的 经济活动,主要涉及制造、资源提取和加工等。
- 经济活动的基石

• 工业软件广泛应用在多个领域和多个行业:制造业、建筑业、矿业、半导体产业

工业软件: 支持从工业产品设计到生产制造再到最终管理的整个流程

工业软件参与工业的三大核心流程

工业软件: 支持从工业产品设计到生产制造再到最终管理的整个流程

什么是工业设计?设计了什么?什么是工业生产?生产了什么?什么是工业管理?管理了什么?

工业设计

工业设计的定义与案例

• **工业设计的定义**: 工业设计是通过应用美学和工程原理来创造产品的外观和功能,旨在提升产品的用户体验和市场竞争力。

・工业设计案例

- · Dyson 无袋真空吸尘器:
 - 英国发明家James Dyson
 - 从工业旋风分离系统中获得灵感,开发出无袋设计
 - 后来扩展到风扇、吹风机和空气净化器

Apple iPhone:

- 结合了极简主义设计和高级材料
- 重新定义了智能手机行业
- 全球最畅销的科技产品之一

工业制造

工业设计的定义与案例

- **工业制造的定义**: 工业制造是指通过**系统化的生产流程和技术**来大规模生产物品,旨在提高生产效率、降低成本并确保产品质量
- ・工业制造案例
 - 特斯拉汽车生产: 特斯拉利用**高度自动化的生产线** 和机器人技术,大规模生产高质量电动汽车,推动了电动汽车行业的发展
 - 许多复杂的焊接、喷漆和组装都由机器人完成
 - 空中客车 A380 制造: A380 的制造涉及多个国家的合作和精密的工程技术,是全球供应链和先进制造的典范
 - 机身、机翼和其他主要部件分别在法国、德国、西班牙和英国制造
 - 然后在法国进行总装

工业设计、制造离我们普通人的生活远吗

工业设计、工业制造在生活中无处不在

工业管理

工业管理的定义与案例

- 工业管理的定义: 工业管理是指对企业的资源、流程和系统进行有效管理,以优化生产和运营效率,实现企业目标。
- ・工业管理的案例
 - ・丰田生产系统 (TPS): 精益生产代表
 - •看板系统:视觉管理工具,控制生产中的物料,确保生产顺畅和及时
 - •及时生产(just-in-time): "正好在需要的时候生产和交付"
 - •亚马逊物流管理:
 - 全球建立配送中心网络和仓储管理系统

工业软件参与工业的三大核心流程

工业软件: 支持从工业产品设计到生产制造再到最终管理的整个流程

工业软件在这些流程中是主角、配角?

工业软件的地位

工欲善其事,____

没有_____,别揽那瓷器活

工业软件的分类概览

不同类型的工业软件

软件类型	功用	例子
设计与工程软件	创建和模拟工业设计	CAD(计算机辅助设 计)
制造和生产软件	控制和管理制造流程	MES (制造执行系统)
企业资源规划软件	整合和管理企业的各个业务流程	ERP
产品生命周期软件	管理产品从概念到报废的整个 生命周期	PLM
工厂自动化和控制 软件	实现生产线的自动化控制	SCADA

研发设计类工业软件

CAD 和 CAE 的功能及应用

- ·CAD (Computer Aided Design 计算机辅助设
- **计)**: 创建精确的二维和三维图形,广泛用于工业设计,如建筑、汽车和电子产品
- CAE (计算机辅助工程) : 使用计算机软件进行工程分析、仿真和优化的过程。主要用于预测和分析产品在实际使用中的性能,以确保设计的有效性和可靠性。
- •主流软件和背后公司:
 - AutoCAD (Autodesk, 美国)
 - SolidWorks (Dassault Systemes 达索系统, 法国)
 - •NX (Siemens 西门子, 德国)

生产制造类工业软件

CAM 和 MES 的角色与应用

- CAM (**计算机辅助制造**):控制制造设备,将设计 转化为生产指令,实现自动化生产。
- MES (制造执行系统): 管理生产计划、流程和产品质量,优化制造过程中的资源分配
- ·主流软件及背后公司
 - SAP Manufacturing Execution (SAP, 德国)
 - Oracle Manufacturing Execution (Oracle, 美国)

经营管理类工业软件

ERP 和 SCADA的功能及应用

- ERP (企业资源规划 Enterprise Resource Planning):整合企业的各个业务流程,提高数据透明度和操作效率
- ·SCADA (监督控制和数据采集 Supervisory control and Data Acquisition) : 用于实时监控和控制工业过程,确保系统的安全性和效率
- •主流软件及背后公司:
 - winCC (Siemens, 德国)
 - Oracle ERP Cloud (Oracle, 美国)

EDA 软件属于工业软件中的哪一类?

EDA electronic 针对电子领域的工业软件

Course Outliner

第一学时大纲

- 1. 软件的历史发展及分类
- 2. 工业软件
 - ① 什么是工业软件
 - 2 工业软件的目标是什么
 - **有哪些类型**的工业软件
- **EDA软件**
 - ① 什么是EDA软件
 - ② EDA软件的核心功能是什么

什么是 EDA 软件

电子设计自动化的概念

- EDA的定义(概念):
 - 是用于**设计、验证和仿真**电子系统的专用软件。
- 现阶段,理解 EDA 的广泛功能和应用: EDA 是"电子领域的 CAD + CAE,也 提供一些 CAM 的功能"

电子系统

初识电子系统

电子系统:通过电子元器件和电路设计来实现特定功能的集成系统,典型的有:

- 1. 集成电路 (IC: integrated circuit): 最基本的电子系统形式,通常集成了数百万个电子元件在一个小型硅片上。IC用于执行计算、存储和控制任务,是计算机和智能设备的核心部分。
- 2. 传感器系统: 电子系统也包括各种传感器, 例如温度传感器、压力传感器和光传感器。这些传感器可以检测环境变化并将其转换为电信号用于处理。
- 3. 通信模块: 这类电子系统包括用于无线通信的射频模块、天线和调制解调器。它们使得设备能够发送和接收数据,例如在手机、Wi-Fi设备和卫星通信系统中。

电子系统

初识电子系统

电子系统:通过电子元器件和电路设计来实现特定功能的集成系统,典型的有:

- 1. 集成电路 (IC: integrated circuit): 最基本的电子系统形式,通常集成了数百万个电子元件在一个小型硅片上。IC用于执行计算、存储和控制任务,是计算机和智能设备的核心部分。
- 2. 传感器系统: 电子系统也包括各种传感器, 例如温度传感器、压力传感器和光传感器。这些传感器可以检测环境变化并将其转换为电信号用于处理。
- 3. 通信模块: 这类电子系统包括用于无线通信的射频模块、天线和调制解调器。它们使得设备能够发送和接收数据,例如在手机、Wi-Fi设备和卫星通信系统中。

电子系统 ≈ 芯片

EDA: 支持的芯片设计、生产全流程的工具

EDA 软件核心功能(干什么)

电子设计自动化的核心功能

EDA核心功能:

- 1. 电路设计
- 2. 功能验证
- 3. 性能仿真

If you can only tell 3 things about EDA, the above is definitely one of them

EDA核心功能 1

电路设计

- ·EDA软件用于设计IC、PCB和电子系统,涵盖从逻辑设计到物理设计的所有阶段
 - "EDA软件就像一个万能的工具箱,帮你从头 到尾设计电子产品,实现从概念到实物的转变"
- · 这一阶段对应EDA工具:
 - •原理图设计工具
 - PCB布局工具
 - 芯片布局布线工具

EDA核心功能 2

功能验证

- ·验证设计的正确性和一致性,确保逻辑设计符合预期功能,在所有可能输入下正常工作,例如:
 - 数字时钟电路:目的是显示准确的时间,功能 验证将确保时钟在不同时间设置和各种操作条 件下都能准确显示时间
- ·这一阶段对应EDA工具:
 - •形式验证工具
 - •功能测试工具
 - •设计规则检查工具

EDA核心功能 3

性能仿真

- •**仿真的定义**: 通过计算机程序模拟真实电路或系统的行为,以预测其在实际运行中的表现。
 - 1. 汽车的碰撞测试
 - 2. 飞机的风洞测试
- EDA仿真电路的电气特性、逻辑行为和时序响应,以提前发现和解决潜在问题。
- ·这一阶段对应EDA工具:
 - SPICE仿真工具进行电路级仿真
 - HDL仿真工具 (如Verilog、VHDL) 进行逻辑仿真

工业设计、工业制造在生活中无处不在

EDA 更是如此

EDA的实际应用

从IC设计到系统设计

集成电路 (IC) 设计:

- Intel使用EDA工具设计和优化其Xeon处理器,使 其能够处理高负载的服务器任务。
- Qualcomm利用EDA设计Snapdragon处理器, 以实现智能手机中的高性能计算和低功耗。

印刷电路板 (PCB) 设计:

- Apple在设计iPhone和iPad的主板时,使用EDA工具来精确布线和管理电磁干扰。
- Samsung在其智能电视和家电产品的电路板设计中也广泛使用EDA软件,确保信号完整性和设备可靠性。

电子系统设计

- 特斯拉在开发其自动驾驶系统中,利用EDA工具 设计车载计算平台和传感器接口,确保数据处理的 实时性和可靠性。
- 华为在其5G基站设计中使用EDA工具进行高频电路设计和信号处理,以优化通信性能。

