

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

C05.570\R22\R01\R11\RE\E3 ∈ 05.570\R22\R01\R11\RE\E3

Enganxeu en aquest espai una etiqueta identificativa amb el vostre codi personal Examen

Fitxa tècnica de l'examen

- Comprova que el codi i el nom de l'assignatura corresponen a l'assignatura en la qual estàs matriculat.
- Només has d'enganxar una etiqueta d'estudiant a l'espai corresponent d'aquest full.
- No es poden adjuntar fulls addicionals.
- No es pot realitzar la prova en llapis ni en retolador gruixut.
- Temps total: 2 h.
- En cas que els estudiants puguin consultar algun material durant l'examen, quin o quins materials poden consultar?

No es pot consultar cap material

- Valor de cada pregunta: Problema 1: 30%; problema 2: 25%; problema 3: 25%; problema 4: 10%; problema 5: 10%
- En cas que hi hagi preguntes tipus test: Descompten les respostes errònies? NO Quant?
- Indicacions específiques per a la realització d'aquest examen:

Enunciats

Assignatura	Codi	Data Hora inici	
Lògica	05.570	22/01/2011	09:00

Problema 1

- a) Formalitzeu utilitzant la lògica d'enunciats les frases següents. Utilitzeu els àtoms proposats.
 - C: Fer molta calor
 - V: Comprar un ventilador
 - A: Comprar un aparell d'aire condicionat
 - B: Comprar un ventall
 - E: Usar electricitat para refrescar-me
 - 1) Només si no fa molta calor em compro un ventall i no em compro ni un ventilador ni un aparell d'aire condicionat.

$$B \land \neg V \land \neg A \rightarrow \neg C$$

2) Només utilitzo electricitat per refrescar-me si fa molta calor i em compro un ventilador o em compro un aparell d'aire condicionat.

$$E \rightarrow C \land (V \lor A)$$

3) Si no em compro un ventilador ni em compro un aparell d'aire condicionat, no utilitzaré electricitat per refrescar-me si i només i no fa molta calor o compro un ventall.

$$\neg V \land \neg A \rightarrow (\neg E \rightarrow \neg C \lor B) \land (\neg C \lor B \rightarrow \neg E)$$

b) Formalitzeu utilitzant la lògica de predicats les frases següents. Utilitzeu els predicats proposats.

Domini: un conjunt no buit

J(x): x és un jove promesa

C(x): x és un club

D(x): x és de la pedrera

A(x, y) : x alinea y

1) No hi ha cap jove promesa que no sigui alineada per cap club

$$\neg \exists x (J(x) \land \forall y (C(y) \rightarrow \neg A(y,x))$$

2) Hi ha joves promeses que són alineades per tots els clubs

$$\exists x (J(x) \land \forall y (C(y) \rightarrow A(y,x))$$

3) No hi ha cap club que no alineï cap jove promesa de la pedrera.

$$\neg\exists x(\ C(x) \land \neg\exists y(J(y) \land D(y) \land A(x,y))\)$$
 o també
$$\neg\exists x(\ C(x) \land \forall y(J(y) \land D(y) \rightarrow \neg A(x,y))\)$$

4) Hi ha clubs que alineen totes les joves promeses de la pedrera.

$$\exists x (C(x) \land \forall y (J(y) \land D(y) \rightarrow A(x,y))$$

5) No hi ha cap jove promesa de la pedrera que sigui alineada per tots els clubs.

$$\neg \exists x (J(x) \land D(x) \land \forall y (C(y) \rightarrow A(y,x)))$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

Problema 2

Demostreu, utilitzant la deducció natural, que el següent raonament és correcte. Utilitzeu només les 9 regles bàsiques (és a dir, no utilitzeu ni regles derivades ni equivalents deductius).

$$\begin{array}{l} B \rightarrow A \\ C \vee \neg F \rightarrow B \\ F \rightarrow R \\ F \rightarrow G \\ \therefore \neg A \rightarrow R \wedge G \end{array}$$

Solució:

Problema 3

Indiqueu aplicant resolució si el següent raonament és vàlid, indiqueu també si les premisses són consistents.

$$\begin{array}{l} (P \rightarrow Q) \rightarrow \neg R \\ (P \rightarrow R) \rightarrow Q \\ Q \rightarrow R \wedge S \\ R \rightarrow \neg S \\ \therefore P \wedge \neg Q \end{array}$$

Solució:

Formes normals

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

Premissa 1: $(P \rightarrow Q) \rightarrow \neg R = (P \lor \neg R) \land (\neg Q \lor \neg R)$

Premissa 2: $(P \rightarrow R) \rightarrow Q = (P \lor Q) \land (\neg R \lor Q)$

Premissa 3: $Q \rightarrow R \land S = (\neg Q \lor R) \land (\neg Q \lor S)$

Premissa 4: $R \rightarrow \neg S = \neg R \lor \neg S$

Negació de la conclusió : $\neg(P \land \neg Q) = \neg P \lor Q$

El conjunt de clàusules es:

 $\{P \lor \neg R, \neg Q \lor \neg R, P \lor Q, \neg R \lor Q, \neg Q \lor R, \neg Q \lor S, \neg R \lor \neg S, \neg P \lor Q\}$

en negreta el conjunt de suport.

Si fem resolució:

Si icili i esolucio,	
$\neg P \lor Q$	$\neg Q \lor R$
$\neg P \lor R$	$\neg R \lor \neg S$
$\neg P \lor \neg S$	$\neg Q \lor S$
$\neg P \lor \neg Q$	$\neg P \lor Q$
$\neg P$	P∨Q
Q	$\neg Q \lor R$
R	$\neg Q \lor \neg R$
$\neg Q$	Q

Si provem si les premisses són inconsistents, tenim el conjunt de clàusules:

 $\{P \lor \neg R, \neg Q \lor \neg R, P \lor Q, \neg R \lor Q, \neg Q \lor R, \neg Q \lor S, \neg R \lor \neg S\}$

No hi cap P negada, per tant podem eliminar P $\vee \neg$ R i P \vee Q i queda el conjunt de clàusules:

 $\{\neg Q \lor \neg R, \neg R \lor Q, \neg Q \lor R, \neg Q \lor S, \neg R \lor \neg S\}$

Si intentem fer resolució:

$\neg R \lor \neg S$	¬Q∨S
$\neg R \lor \neg Q$	$\neg R \lor Q$
¬R	$\neg Q \lor R$
¬Q	¬R ∨Q
¬R	Bucle

Podem eliminar la clàusula $\neg R \lor \neg S$

 $\{\neg Q \lor \neg R, \neg R \lor Q, \neg Q \lor R, \neg Q \lor S\}$

Ara no queda cap S negada:

 $\{\neg Q \lor \neg R, \neg R \lor Q, \neg Q \lor R\}$

$\neg Q \lor R$	$\neg Q \lor \neg R$
	(l'altra alternativa dona un teorema)

Assignatura	Codi	Data	Hora inici	
Lògica	05.570	22/01/2011	09:00	

$\neg Q$	$\neg R \lor Q$
$\neg R$	$\neg Q \lor R$
$\neg Q$	Bucle

I si eliminen la clàusula $\neg Q \lor R$ tenim:

 $\{\neg Q \lor \neg R, \neg R \lor Q\}$

Amb cap R afirmada, i per tant ens queda el conjunt buit, això vol dir que es premisses són consistents.

Problema 4

Quantes de les següents interpretacions:

$$11: <\{1,2\}, \{R(1)=F, R(2)=F, Q(1)=V, Q(2)=F\}, \{a=1\}>$$

13:
$$<\{1,2,3\}, \{R(1)=V, R(2)=V, R(3)=V, Q(1)=F, Q(2)=F, Q(3)=V\}, \{a=2\}>$$

són contraexemples del raonament

$$\forall x R(x), Q(a), \exists y \neg Q(y) :: \forall x [R(x) \rightarrow Q(x)]$$
? Justifica la teva resposta.

Solució:

Un contraexemple ha de fer certes totes les premisses i falsa la conclusió.

- La primera interpretació no fa certa la primera premissa perquè en el domini {1,2} ∀xR(x) és equivalent a R(1)∧R(2) i aquest enunciat és fals sota aquesta interpretació.
- La segona interpretació no fa certa la tercera premissa perquè en el domini {1,2,3} ∃y¬Q(y) és equivalent ¬Q(1)∨¬Q(2)∨¬Q(3) i aquest enunciat és fals sota aquesta interpretació.
- La tercera interpretació no fa certa la segona premissa perquè Q(a) és equivalent a Q(2) quan a=2 i en aquesta interpretació Q(2)=F
- La quarta interpretació tampoc fa certa la primera premissa que en el domini {1,2,3} és equivalent a R(1)∧R(2)∧R(3) enunciat que és fals sota aquesta interpretació.

Cap de les interpretacions donades és un contraexemple.

Problema 5 (versió inicial)

Es vol dissenyar un circuit lògic usant únicament portes NAND per a l'expressió:. (A• B) \supset C

a) Reescriu la fórmula usant únicament l'operador ↑.

$$(A \bullet B) \supset C = \sim (A \bullet B) + C = \sim \sim (\sim (A \bullet B) + (C \bullet C)) = \sim (\sim \sim (A \bullet B) \bullet \sim (C \bullet C)) = (\sim (A \uparrow B)) \uparrow (C \uparrow C) = [(A \uparrow B) \uparrow (A \uparrow B)] \uparrow (C \uparrow C)$$

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

b) Comprova l'equivalència de les dues fórmules construint la seva taula de veritat.

Α	В	С	A-B	(A⋅B)⊃C	(A↑B)	$(A\uparrow B)\uparrow (A\uparrow B)$	(C↑C)	$[(A\uparrow B)\uparrow (A\uparrow B)]\uparrow (C\uparrow C)$
1	1	1	1	1	0	1	0	1
1	1	0	1	0	0	1	1	0
1	0	1	0	1	1	0	0	1
1	0	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0	1
0	1	0	0	1	1	0	1	1
0	0	1	0	1	1	0	0	1
0	0	0	0	1	1	0	1	1

Problema 5 (versió corregida)

Es vol dissenyar un circuit lògic usant únicament portes NAND per a l'expressió:. (A• B) + C

Reescriu la fórmula usant únicament l'operador
$$\uparrow$$
.
 (A• B) + C = (A• B) + (C•C) = ~~((A• B) + (C•C)) = ~(~(A• B) • ~(C•C)) = (A↑B)↑ (C↑C)

Comprova l'equivalència de les dues fórmules construint la seva taula de veritat.

Α	В	С	A·B	(A·B)+ C	(A↑B)	(C↑C)	(A↑B) ↑ (C↑C)
1	1	1	1	1	0	0	1
1	1	0	1	1	0	1	1
1	0	1	0	1	1	0	1
1	0	0	0	0	1	1	0
0	1	1	0	1	1	0	1
0	1	0	0	0	1	1	0
0	0	1	0	1	1	0	1
0	0	0	0	0	1	1	0

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00

Assignatura	Codi	Data	Hora inici
Lògica	05.570	22/01/2011	09:00