Learning 421 game

Model-Based Learning

Guillaume Lozenguez

@imt-nord-europe.fr

IMT Nord Europe

École Mines-Télécom IMT-Université de Lille

- 1. Back to Q-Learning on 421
- 2. Model-Based Learning
- 3. Let's play a more Complicated game

- ► Iterative update on (**state**, **action**) evaluation
- ► Q-Value equation:

$$Q(s^t,a) = (1-lpha)Q(s^t,a) + lpha\left(r + \gamma \max_{a' \in A}Q(s^{t+1},a')
ight)$$

- Few parameters:
 - α learning rate; ϵ Exploration-Exploitation ratio and γ discount factor.

With 500 steps of 500 games:

 $ightharpoonup \alpha$: 0.1; ϵ : 0.1; γ : 0.99;

► With 500 steps of 500 games:

With optimal threshold

► With 500 steps of 500 games:

 $ightharpoonup \alpha$: 0.01; ϵ : 0.1; γ : 0.99;

► With 500 steps of 500 games:

 $ightharpoonup \alpha$: 0.01; ϵ : 0.6; γ : 0.99;

Playing with the parameters:

- ► Generate rapidly "good" policies
- Converge on a maximal and stable Q-Values (an indicator for optimal policy)
- ▶ Potentially: be reactive to system modification (recovery)

Ideally: implement dynamic parameters

- 1. Back to Q-Learning
- 2. Model-Based Learning
- 3. Let's play a more Complicated game

Model-based learning

Main Idea:

- Random trajectories (a lot)
- ▶ Until each transition is visited several times.
- Compute an optimal policy.

Potentially:

- Require drived exploration to go in every 'niche'
- ▶ But generally: only incomplete exploration can be performed

But first the Model

Markov Decision Process

A framework for modeling stochastic evolution of the system to control.

Bellman equation

Recursive evaluation of states to compute expected gains.

Solving algorithms

- Value iteration
- Policy iteration

Markov Decision Process

MDP: $\langle S, A, T, R \rangle$:

S: set of system's states

A : set of possible actions

 $T: S \times A \times S \rightarrow [0, 1]$: transitions

 $R: S \times A \rightarrow R: cost/rewards$

Optimal policy:

 π : a function returning the action to perform in each crossed states.

 π^* : the optimal policy maximizing the gains (expected cumulated rewards).

Choosing: building a policy of action

Example of policy in 421:

 π^{421} : Always target a 4-2-1 (keep only one **4**, one **2** and one **1**).

$$s$$
 $\pi^{421}(s)$ s $\pi^{421}(s)$ h-1-1-1 keep-roll-roll ... h-2-1-1 keep-keep-roll h-4-2-1 keep-keep-keep h-3-1-1 roll-keep-roll ... h-6-6-5 roll-roll-roll ...

(Invariant over the horizon h)

Bellman Equation

State evaluation for a given policy π :

$$V^\pi(s) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') imes V^\pi(s')$$

with : $a = \pi(s)$ and $\gamma \in [0, 1]$ the discount factor (typically 0.99)

As a sum of gains:

- ightharpoonup The immediate reward: R(s,a).
- lacksquare The future gains $V^\pi(s')$, for all possible next states $s'\in S$,
- ightharpoonup proportionally to the probability to reach them $T(s,a,s^\prime)$

Solving MDP: Value Iteration

Input: an **MDP:** $\langle S, A, T, R \rangle$; precision error: ϵ ; discount factor: γ ; initial **V(s)**

- 1. Repeat until the *maximal delta < ϵ
 - For each state $s \in S$
 - Search the action a^st maximizing the Bellman Equation on s
 - Update $\pi(s)$ and **V()** by considering action a^*
 - Compute the delta value between the previous and the new **V(S)**

Output: an optimal π^* and associated V-values

Value-Iteration: 7^{th} iteration

Solving MDP: Policy Iteration

Input: an **MDP:** $\langle S, A, T, R \rangle$; precision error: ϵ ; discount factor: γ ; initial **V(s)**

- 1. Compute $\pi(s)$ according to V(s) , for each state $s \in S$
- 2. Repeat until $\pi(s)$ is stable:
 - Update V(s) with $\pi(s)$ at ϵ error, for each state $s \in S$
 - Update $\pi(s)$ according to V(s), for each state $s \in S$

Output: an optimal π^* and associated V-values

Ok now learn the model...

- Define the state-space (small but covering).
- ▶ Define the action-space.
- Explore the system:
 - Compute the average rewards R(s,a).
 - Compute all transition probability $T(s,a,s^\prime)$

Learn the transition

The transition function is the core object to learn.

It is a 3-dimension structure of floating point values (probabilities).

$$|S|^2 \times |A|$$
 values.

A simple game as **421** with **168** states and **8** actions would requires **225 792** values.

Luky for us, in application, most of the transitions are null (ie. imposible), and it is possible to take advandages from structures in the systems mechanism.

- 1. Back to Q-Learning on 421
- 2. Model-Based Learning
- 3. Let's play a more complexe game