Automates finis - déterminisation et minimisation

Corrigé partiel de la feuille de travaux dirigés nº4

1. On calcule l'équivalence de Nérode :

$$\approx_0 \{1, 2, 3\}\{4, 5, 6, 7\}$$

 $\approx_1 \{1, 3\}\{2\}\{4, 5, 6, 7\}$
 $\approx_2 \{1, 3\}\{2\}\{4, 5, 6, 7\}$

Et nous obtenons, après renumérotation des états

Après minimisation et renommage nous obtenons :

L'automate déterministe qu'on obtient est :

δ		a	b		δ		a	b
\rightarrow	0	1	3		\rightarrow	0	1	2
	1	4	$\{0, 2\}$			1	3	4
	3	0	4			2	0	3
	4	4	4			3	3	3
\leftarrow	$\{0, 2\}$	$\{0, 1\}$	$\{3, 4\}$		\leftarrow	4	5	6
	$\{0, 1\}$	$\{1, 4\}$	$\{0, 2, 3\}$	et en rénumérotant		5	7	8
	$\{3, 4\}$	$\{0, 4\}$	4	et en renumerotant		6	9	3
	$\{1, 4\}$	4	$\{0, 2, 4\}$			7	3	10
\leftarrow	$\{0, 2, 3\}$	$\{0, 1\}$	$\{3,4\}$		\leftarrow	8	5	6
	$\{0, 4\}$	$\{1, 4\}$	$\{3, 4\}$			9	7	6
\leftarrow	$\{0, 2, 4\}$	$\{0, 1, 4\}$	$\{3, 4\}$		\leftarrow	10	11	6
	$\{0, 1, 4\}$	$\{1, 4\}$	$\{0, 2, 3, 4\}$			11	7	12
\leftarrow	$\{0, 2, 3, 4\}$	$\{0, 1, 4\}$	$\{3, 4\}$		\leftarrow	12	11	6

Le procédé de calcul de l'équivalence de Nérode se déroule ainsi :

$$\begin{array}{ll} \approx_0 & \{0,1,2,3,5,6,7,9,11\}\{4,8,10,12\} \\ \approx_1 & \{0,2,3,6,9\}\{1,5,7,11\}\{4,8,10,12\} \\ \approx_2 & \{0,9\}\{1,7\}\{2,3,6\}\{4,8,10,12\}\{5,11\} \\ \approx_3 & \{0,9\}\{1,7\}\{2,6\}\{3\}\{4,8,10,12\}\{5,11\} \\ \approx_4 & \{0,9\}\{1,7\}\{2,6\}\{3\}\{4,8,10,12\}\{5,11\} \end{array}$$

Ainsi, nous obtenons après renumérotation des états, l'automate minimal suivant :

δ	a	b
$\rightarrow 0$	1	2
1	3	4
2	0	3
3	3	3
$\leftarrow 4$	5	2
5	1	4

b) On obtient l'automate déterministe suivant :

δ	İ	a	h		δ		a	b
	0	1	9		\rightarrow	0	1	2
\rightarrow	U	1	0			1	3	4
	1	$1 \mid \{0,2\}$			2	0	2	
\leftarrow	$\{0, 2\}$	{0.1}	3	et en complétant et rénumérotant		2	U	3
,	(○, -)	(0, 1)	9	or on compressing or remainer orang		3	3	3
	3	Ü	()		\leftarrow	4	5	2
	$\{0, 1\}$	1	$\{0, 2, 3\}$			_ K	1	6
\leftarrow	$\{0, 2, 3\}$	$\{0,1\}$	3			Э	1	U
,	(~, -, ~)	(~, +)	9		\leftarrow	6	5	2

Le procédé de calcul de l'équivalence de Nérode se déroule ainsi :

$$\begin{array}{ll} \approx_0 & \{0,1,2,5,3\}\{4,6\} \\ \approx_1 & \{0,2,3\}\{1,5\}\{4,6\} \\ \approx_2 & \{0\}\{1\}\{2,3\}\{4,6\}\{5\} \\ \approx_3 & \{0\}\{1\}\{2\}\{3\}\{4,6\}\{5\} \\ \approx_4 & \{0\}\{1\}\{2\}\{3\}\{4,6\}\{5\} \end{array}$$

Et nous obtenons, après renumérotation des états, le même automate minimal qu'en a).