New polyacetal from di:aldehyde and poly-hydroxy-carboxylic acid - useful as heavy metal complexing and soil suspending agents in washing compsns.

Patent Number: EP-280223

International patents classification: C08G-016/02 C07C-041/48 C07C-043/30 C08G-004/00 C11D-003/37

EP-280223 A New polyacetals (A) are prepd. by reacting (a) a dialdehyde OHC-(-A-)n-CHO (I) with (b) a polyol carboxylic acid (II) contg. 5-7C and at least 3 OH gps., with mole ratio 1:0.25-4, in aq. medium and in presence of acid catalyst. A = (CH2)m, -CH2-C(Me)H-CH2- or 1,4-phenylene; m = 1-4; n = 0 or 1. Pref. reaction is at up to 140 deg.C and water is removed from the mixt. during reaction. USE/ADVANTAGE - (A) are heavy metal complexing agents used in washing compsns., and also act as dispersants for solid soil. They are esp. useful

in low- or zero-phosphate formulations and are biodegradable. (A) are included at 1-15 wt.% of the compsns. (0/0)

EP-280223 B A polyacetal obtainable by reaction of a) a dialdehyde of the formula OHC - An - CHO where A is -CH2-, -CH2-CH2-, -CH2-CH2-, -CH2-CH2-CH2, -CH2-C(CH3)H-CH2-, or p-C6H4-and n is 0 or 1, with b) a polycarboxylic acid of 5 to 7 carbon atoms which contains not less than 3 OH groups, in a molar ratio (a):(b) of 1:0.25 to 4 in an aqueous medium in the presence of an acid catalyst.

(6pp)

US4816553 A Novel polyacetal is obtd. by reacting (a) the dialdehyde OHC-An-CHO with (b) a poly(5-7C)carboxylic acid contg. 3 or more OH gps. in mol. ratio 1:0.25-4. in an aq. medium contg. an acid catalyst. A is CH2, CH2CH2, CH2CH2CH2, CH2CH2CH2CH2CH2, CH2CH(CH3)CH2, or Ph; and n is 0 or 1. Reaction temp. is 60-110 deg.C. Pref. (a) is glyoxal, glutardialdehyde, and/or terephthalidialdehyde; and (b) is gluconic acid and/or glucoheptonic acid. Reaction is carried out in an inert organic solvent in which prod. is insoluble, opt. contg. a water-in-oil emulsifier. USE - As additive in washing agents and as complexing agent for heavy metal ions.

· Publication data:

Patent Family: EP-280223 A 19880831 DW1988-35 Ger 12p * AP: 1988EP-0102526 19880220 DSR: AT BE CH DE ES FR GB

IT LI NL SE DE3706036 A 19880908 DW1988-37 AP: 1987DE-3706036

19870225

JP63233941 A 19880929 DW1988-45 AP: 1988JP-0039750

19880224

US4816553 A 19890328 DW1989-15 6p AP: 1988US-

0156686 19880217

CA1278139 C 19901218 DW1991-05

EP-280223 B 19911023 DW1991-43 DSR: AT BE CH DE ES

FR GB IT LI NL SE

DE3865698 G 19911128 DW1991-49

ES2027713 T3 19920616 DW1992-29 C08G-016/02 FD: Based

on EP-280223 AP: 1988EP-0102526 19880220

Priority nº: 1987DE-3706036 19870225

Covered countries: 14

Publications count: 8

Cited patents: EP---1004; FR-881474; GB-859483; US3061566;

US3723322 A3...8905; No-SR.Pub

· Accession codes :

Accession Nº: 1988-243718 [35]

Sec. Acc. n° CPI: C1988-108924

• Derwent codes :

Manual code: CPI: A05-H02A A12-W12B

D11-B

Derwent Classes: A97 D25

Patentee & Inventor(s):

Patent assignee: (BADI) BASF AG

Inventor(s): BAUR R; DIESSEL P; FIKENTSCHE R; OFTRING A; PERNER J; RICHTER F; TRIESELT W; WINKLER E

Update codes :

Basic update code:1988-35

Equiv. update code: 1988-37; 1988-45; 1989-15; 1991-05; 1991-43; 1991-49; 1992-

1	•
<u> </u>	

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 88102526.6

2 Anmeldetag: 20.02.88

(5) Jnt. Cl.4: C 08 G 16/02 C 11 D 3/37

(30) Priorität: 25.02.87 DE 3706036

Veröffentlichungstag der Anmeldung: 31.08.88 Patentblatt 88/35

Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LI NL SE

88 Tag des später veröffentlichten Recherchenberichts: 01.02.89 Patentblatt 89/05

Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38 D-6700 Ludwigshafen (DE)

Erfinder: Baur, Richard, Dr. Neikenstrasse 1 D-6704 Mutterstadt (DE)

> Fikentscher, Rolf, Dr. Von-Stephan-Strasse 27 D 6700 Ludwigshafen (DE)

Oftring, Alfred, Dr. Berner Weg 26 D-6700 Ludwigshafen (DE)

Richter, Felix, Dr. Kalserstrasse 15 D-6835 Bruehl (DE)

Trieselt, Wolfgang, Dr. Alwin-Mittasch-Platz 1 D-6700 Ludwigshafen (DE)

Diessel, Paul Asternstrasse 16 D-6704 Mutterstadt (DE)

Winkler, Ekhard, Dr. Pfalzring 74 D-6704 Mutterstadt (DE)

Perner, Johannes, Dr. Ginsterweg 4 D-6730 Neustadt (DE)

Polyacetale, Verfahren zu deren Herstellung aus Dialdehyden und Polyaolcarbonsäuren und Verwendung der Polyacetale.

Polyacetale, erhältlich durch Umsetzung von a) Dialdehyden der Formel OHC - An - CHO,

A = C1-C4-Alkylen und

bedeutet und

n = 0 oder 1 ist, mit

b) mindestens 3 OH-Gruppen enthaltenden Polyolcarbonsäuren, die 5 bis 7 C-Atome aufweisen, im Molverhältnis (a):(b) von 1:0,25 bis 4 in wäßrigen Medium in Gegenwart von sauren Katalysatoren.

Die Polyacetale werden als Zusatz zu Waschmitteln und als Komplexbildner für Schwermetallionen verwendet.

EP 88 10 2526

		E DOKUMENTE		
Categorie	Kennzeichnung des Dokume der maßgeblic	nts mit Angabe, soweit erforderlich, hen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. Cl.4)
A	EP-A-0 001 004 (MO * Seite 5, Zeile 5 Ansprüche 1, 7, 8,	- Seite 6. Zeile 2:	1,8,9	C 08 G 16/02 C 11 D 3/37
A	GB-A- 859 483 (UN * Ansprüche 1, 5; S *	ION CARBIDE CORP.) eite 2, Zeilen 51-55	1-4	
A	US-A-3 061 566 (KA * Anspruch 1; Spalt	SS et al.) e 4, Zeilen 53-58 *	1-4	
A	US-A-3 723 322 (DI * Spalte 1, Zeile 4 11 *	EHL) 3 - Spalte 3, Zeile	1,8,9	
A	FR-A- 881 474 (PO * Seite 1, Spalte 1 2, Zeile 46 *	ULVEREL) , Zeile 13 - Spalte	1,2	
				RECHERCHIERTE SACHGEBIETE (Int. Cl.4)
	-			C 08 G 2/00 C 08 G 16/02 C 08 G 67/00 C 11 D 3/00
Der ve		de für alle Patentansprüche erstellt		
-	Recherchemort	Abschlußdatum der Recherche		Priser
B	ERLIN	17-10-1988	IDE	Z C.G.

EPO FORM 1503 03.82 (P0403)

- X: von besonderer Bedeutung allein betrachtet
 Y: von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie
 A: technologischer Hintergrund
 O: nichtschriftliche Offenbarung
 P: Zwischenliteratur

- E: Siteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument

- & : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument

(1) Veröffentlichungsnummer:

0 280 223

A2

(12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 88102526.6

(1) Int. Cl.4: C08G 16/02, C11D 3/37

② Anmeldetag: 20.02.88

© Priorität: 25.02.87 DE 3706036

(43) Veröffentlichungstag der Anmeldung: 31.08.88 Patentblatt 88/35

Benannte Vertragsstaaten: AT BE CH DE ES FR GB IT LI NL SE Anmelder: BASF Aktlengesellschaft
 Carl-Bosch-Strasse 38
 D-6700 Ludwigshafen(DE)

© Erfinder: Baur, Richard, Dr.
Nelkenstrasse 1
D-6704 Mutterstadt(DE)
Erfinder: Fikentscher, Rolf, Dr.
Von-Stephan-Strasse 27
D 6700 Ludwigshafen(DE)
Erfinder: Oftring, Alfred, Dr.
Berner Weg 26
D-6700 Ludwigshafen(DE)
Erfinder: Richter, Fellx, Dr.

Erfinder: Richter, Fellx, Dr.
Kalserstrasse 15
D-6835 Bruehl(DE)
Erfinder: Trieselt, Wolfgang, Dr.
Alwin-Mittasch-Platz 1
D-6700 Ludwigshafen(DE)
Erfinder: Diessel, Paul
Asternstrasse 16

D-6704 Mutterstadt(DE) Erfinder: Winkler, Ekhard, Dr.

Pfaizring 74

D-6704 Mutterstadt(DE)

Erfinder: Perner, Johannes, Dr.

Ginsterweg 4

D-6730 Neustadt(DE)

Polyacetale, Verfahren zu deren Herstellung aus Dialdehyden und Polyaolcarbonsäuren und Verwendung der Polyacetale.

P 0 280 223 A2

 Polyacetale, erhältlich durch Umsetzung von a) Dialdehyden der Formel OHC - A_n -CHO ,

in der

 $A = C_1 - C_4 - Alkylen und$

bedeutet und n = 0 oder 1 ist, mit b) mindestens 3 OH-Gruppen enthaltenden Polyolcarbonsäuren, die 5 bis 7 C-Atome aufweisen, im Molverhältnis (a):(b) von 1:0,25 bis 4 in wäßrigen Medium in Gegenwart von sauren Katalysatoren. Die Polyacetale werden als Zusatz zu Waschmitteln und als Komplexbildner für Schwermetallionen verwen-

det.

Polyacetale, Verfahren zu deren Herstellung aus Dialdehyden und Polyolcarbonsäuren und Verwendung der Polyacetale

Aufgrund gesetzgeberischer Maßnahmen ist es in vielen Ländern erforderlich, den Gehalt an Phosphaten in Waschmitteln stark herabzusetzen bzw. phosphatfreie Waschmittel anzubieten. Reduziert man den Gehalt an Phosphaten in Waschmitteln, so wird dadurch die Waschwirkung der Produkte verschlechtert. Daher werden Ersatzstoffe gesucht, die Phosphate in Waschmitteln ganz oder teilweise substituieren können.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, neue Stoffe zur Verfügung zu stellen, die beispielsweise als Zusatz zu phosphatreduzierten bzw. phosphatfreien Waschmitteln verwendet werden können und die die Waschwirkung der Waschmittel verbessern.

Die Aufgabe wird erfindungsgemäß gelöst mit Polyacetalen, die erhältlich sind durch Umsetzung von a) Dialdehyden der Formel

OHC - An -CHO ,

in der

 $A = -CH_{2}-, -CH_{2}-CH_{2}-, -CH_{3}-CH_$

15

20

25

10

bedeutet und

n = 0 oder 1 ist, mit

b) mindestens 3 OH-Gruppen enthaltenden Polyolcarbonsäuren, die 5 bis 7 C-Atome aufweisen, im Molverhältnis (a):(b) von 1:0,25 bis 4 im wäßrigen Medium in Gegenwart von sauren Katalysatoren.

Die Polyacetale werden hergestellt, indem man

a) Dialdehyde der Formel

OHC - An -CHO,

in der

 $A = -CH_{2}, -CH_{2}-CH_{2}-, -CH_{2}-CH_{2}-CH_{2}-, -CH_{2}-CH_{2}-CH_{2}-CH_{2}-$

30

35

bedeutet und

n = 0 oder 1 ist, mit

b) mindestens 3 OH-Gruppen enthaltenden Polyolcarbonsäuren, die 5 bis 7 C-Atome aufweisen, im Molverhältnis (a):(b) von 1:0.25 bis 4 in einem wäßrigen Medium bei Temperaturern bis 140°C in Gegenwart von sauren Katalysatoren miteinander umsetzt und während der Umsetzung oder danach Wasser aus dem Reaktionsgemisch entfernt. Die Komponenten (a) und (b) werden vorzugsweise im Molverhältnis 1:0.5 bis 2 bei Temperaturen von 60 bis 100°C zur Reaktion gebracht.

Geeignete Dialdehyde der Komponente (a) sind beispielsweise Glyoxal, Malondialdehyd, Succindialdehyd, Glutardialdehyd, Adipindialdehyd oder Terephthaldialdehyd. Auch Mischungen der genannten Dialdehyde können bei der Synthese der Polyacetale eingesetzt werden. Außerdem ist es möglich. Derivate von Dialdehyden einzusetzen, die unter den Synthesebedingungen in die zugrundeliegenden Dialdehyde zerfallen, z.B. offenkettige Acetale, wie Glyoxaltetramethylacetal, Glyoxaltetraethylacetal oder Glutardialdehydtetramethylacetal, Halbacetale, wie 2,3-Dihydroxy-1.4-dioxan und Disulfate von Dialdehyden, z.B. Glyoxaldisulfat. Vorzugsweise verwendet man als Dialdehyde bei der Synthese der Polyacetale wäßrige Lösungen von Glyoxal. Glutardialdehyd oder Terephthaldialdehyd sowie Mischungen aus Glyoxal und Glutardialdehyd, Mischungen aus Glyoxal und Terephthaldialdehyd oder Mischungen aus Glutardialdehyd oder Terephthaldialdehyd.

Die als Komponente (b) in Betracht kommenden Polyolcarbonsäuren leiten sich von Mono-oder Dicarbonsäuren ab, die 5 bis 7 Kohlenstoffatome und mindestens 3 OH-Gruppen in Molekül enthalten. Hierbei handelt es sich beispielsweise um folgende Zuckercarbonsäuren: Ribonsäure, Lyxonsäure, Man-

nonsäure, Altronsäure, Allonsäure, Gluconsäure, 2-Ketogluconsäure, 2,5-Diketogluconsäure, Gulonsäure, Idonsäure, Xylonsäure, Talonsäure, Galactonsäure, Mannozuckersäure, Glucarsäure, Galactarsäure, Alioschleimsäure, Gluconeptonsäure, Taloschleimsäure, Idozuckersäure, bzw. deren Lactone oder Dilactone. Vorzugswese verwendet man als Komponente (b) Gluconsäure und/oder Glucoheptonsäure.

Die Komponenten (a) und (b) werden im Molverhältnis von 1:0,25 bis 4, vorzugsweise im Molverhältnis 1:0,5 bis 2 miteinander zur Reaktion gebracht. Um einen möglichst weitgehenden Reaktionsablauf zu gewähr leisten, wird die Reaktion in Gegenwart von sauren Katalysatoren durchgeführt. Hierbei handelt es sich um starke, nichtflüchtige Säuren die einen pKa-Wert von unterhalb 1 besitzen. Geeignete Katalysatoren sind beispielsweise p-Toluolsulfonsäure, Schwefelsäure, Amidosulfonsäure, Methansulfonsäure und Benzolsulfonsäure.

Als saure Katalysatoren eignen sich auch Ionenaustauscher, die saure Gruppen enthalten, z.B. SO₁Hoder COOH-Gruppen. Die Katalysatoren werden, bezogen auf die bei der Reaktion eingesetzten Komponenten (a) und (b), in einer Menge von 0,5 bis 10, vorzugsweise 1 bis 5 Gew.% angewendet. Die Umsetzung kann innerhalb eines breiten Temperaturintervalls durchgeführt werden, z.B. von 25 bis 140, vorzugsweise bei 60 bis 110°C. Sofern die Temperatur oberhalb der Siedetemperatur des jeweils verwendeten Reaktionsgemisches liegen sollte, wird die Reaktion unter erhöhtem Druck, z.B. in einem Autoklaven. durchgeführt. Üblicherweise wird die Umsetzung bei Normaldruck durchgeführt, sie kann jedoch auch unter vermindertem Druck vorgenommen werden. Die Umsetzung der Komponenten (a) und (b) von zusammen 20 bis 80, vorzugsweise 30 bis 70 Gew.%. Die Umsetzung kann auch in Gegenwart eines inerten organischen Lösemittels durchgeführt werden, in dem die Polyacetale unlöslich sind. Sie fallen dann in feinteiliger Form an. Als inerte organische Lösemittel kommen sowohl aliphatische als auch aromatische Kohlenwasserstoffe in Betracht, z.B. Pentan, Hexan, Cyclohexan, Heptan, n-Octan, iso-Octan, Nonan, Decan, Methylcyclohexan, Benzol, Toluol, o-Xylol, p-Xylol, m-Xylol, Ethylbenzol und Isopropylbenzol. Außerdem können chlorierte Kohlenwasserstoffe, wie Chloroform, Tetrachlorkohlenstoff, Methylenchlorid und Tetrachlorethan als inerte organische Lösemittel verwendet werden. Das Gewichtsverhältnis der Menge an inertem organischem Lösemittel zur verwendeten Wassermenge beträgt etwa 10:1 bis etwa 1:10 und liegt vorzugsweise im Bereich von 5:1 bis 1:2. Das als Lösemittel verwendete Wasser und das bei der Reaktion von (a) mit (b) entstehende Wasser wird zur Herstellung der Polyacetale aus dem Reaktionsgemisch entfernt. Pro Mol Polycarbonsäure, d.h. Komponente (b), werden bei der Herstellung der Polyacetale aus (a) und (b) 0,5 bis 3,5, vorzugsweise 1.0 bis 3,0 Mol Wasser gebildet und aus dem Reaktionsgemisch entfernt.

ie Umsetzung der Komponenten (a) und (b) kann zusätzlich in Gegenwart eines Wasser-in-Öl-Emulgators durchgeführt werden. Der HLB-Wert der Wasser-in-Öl-Emulgatoren liegt im Bereich von 2 bis etwa 8. Zur Definition des HLB-Werts wird auf die Veröffentlichung von W.C. Griffin, J.Soc. Cosmetic Chem., Band 5, 249 (1954) hingewiesen. Geeignete Wasser-in-Öi-Emulgatoren des angegebenen HLB-Bereichs sind beispielsweise Ölsäuretriethanolaminester, Ölsäurediethanolamid, Sorbitanmonooleat, Sorbitantristearat, Mannitmonooleat, Glycerinmonooleat und Glycerindioleat.

Bezogen auf die bei der Polyacetalbildung vorhanded Menge an Wasser setzt man 0 bis 30, vorzugsweise 1 bis 10 Gew.% eines Wasser-in-Öl-Emulgators ein. Außer den genannten Wasser-in-Öl-Emulgatoren können auch Emulgatoren mit einem HLB-Wert von mehr als 8 eingesetzt werden, z.B. polyethoxylierte Alkylphenole, deren Schwefelsäureester, C.,-bis C,-Alkylsulfonate, Alkalimetall-, Ammonium-und Aminseifen, sulfatierte oder sulfonierte Öle, Alkalimetallsalze von Alkylarylsulfonsäuren, Salze von langkettigen Aminen, z.B. Oleylaminacetat, Ethylenoxid-Addukte an C,-Fettalkohole oder Ethylenoxid-Addukte an Fettsäureamide, die sich von Fettsäureamide enthalten 5 bis 40 Ethylenoxid-deinheiten im Molekül.

Die Reaktion der Dialdehyde mit den Polyolcarbonsäuren kann kontinuierlich oder diskontinuierlich durchgeführt werden. Mann kann beispielsweise einen Teil einer wäßrigen Lösung eines Dialdehyds und einer Polycarbonsäure in einem Reaktor vorlegen und in dem Temperaturbereich von 25 bis 140°C zunächst vollständig umsetzen und anschließend den verbleibenden Teil absatzweise oder kontinuierlich zugeben und daraus das Polyacetal bilden. Der Katalysator kann beispielsweise vorgelegt werden oder auch mit einer oder beiden Reaktionskomponenten in den Reaktor dosiert werden. Das Wasser wird während oder im Anschluß an die Polyacetalbildung aus dem Reaktor abdestilliert. Man kann jedoch auch so verfahren, daß man eine Wasser-in-Öl-Emulsion im Reaktor vorlegt und die Komponenten (a) und (b) getrennt or in Mischung zu der Wasser-in-Öl-Emulsion zulaufen läßt. Der Katalysator kann bereits zusammen mit der Wasser-in-Öl-Emulsion vorgelegt oder zusammen mit den Komponenten (a) und (b) oder auch getrennt davon in den Reaktor dosiert werden. Sofern man ein inertes organisches Lösemittel oder Lösemittelgemische bei der Polyacetalbildung mitverwendet, erfolgen Polyacetalbildung und Entfernung des Wassers aus dem System vorzugsweise gleichzeitig. Das Wasser wird dabei azeotrop aus dem

Reaktionsgemisch entfernt. Die Polyacetale fallen dann in feinteiliger Form an. Es ist selbstverständlich, daß während der Reaktion für eine gute Durchmischung der Komponenten gesorgt werden muß, z.B. wird das Reaktionsgemisch gerührt. Damit sich die Polyacetale bei Anwendung eines inerten organischen Lösemittels, in dem sie unlöslich sind, in feinteiliger Form abscheiden, verwendet man vorzugsweise die obengenannten Emulgatoren und gegebenenfalls Netzmittel. Man erhät Polyacetale, die in Wasser löslich sind. Die Viskosität 40 %iger wäßriger Lösungen bei einer Temperatur von 25°C beträgt z.B. 5 bis 1000 mPas und in einigen Fällen auch mehr als 1000, z.B. 1800 mPas. Bei den reinen Polyacetalen ist unterhalb von 300°C kein definierter Schmelzpunkt feststellbar. Die IR-Spektren der Polyacetalcarbonsäuren zeigen in der Regel Schwingungsbanden bei 3430 cm⁻¹ (breit), 2930 cm⁻¹, 1780 cm⁻¹ und 1740⁻¹ und mehrere Banden zwischen 1200 und 1000 cm⁻¹ sowie bei 930 cm⁻¹.

Die Polyacetale aus den oben angegebenen Dialdehyden und Polyolcarbonsäuren können für verschiedene Anwendungszwecke eingesetzt werden. Die Polyacetale vermögen sowohl Feststoffe zu dispergieren als auch Schwermetallionen zu komplexieren. Sie eignen sich daher beispielsweise als Zusatz zu peroxidhaltigen Wasch-und Bleichlaugen. Die Polyacetale haben ein ausgeprägtes Komplexierungsvermögen gegenüber Eisen-, Nickel-, Mangan-, Kupfer-, Calcium-, Magnesium-und Chromionen.

Die oben beschriebenen Polyacetale eignen sich außerdem als Zusatz zu Waschmitteln. Bei Verwendung der Polyacetale wird eine Erhöhung der Waschwirkung von phosphatarmen und phosphatfreien Waschmittelformulierungen festgestellt. Die Vergrauung von weißem Textilmaterial wird zurückgedrängt und die Inkrustierung von Textilen, die mit phosphatfreien oder phosphatarmen Waschmitteln unter Zusatz der Polyacetale gewaschen werden, verringert sich. Die Polyacetale werden beispielsweise in Waschmittelformulierungen als Gerüststoffe (Builder) in einer Menge von 1 bis 15 Gew.%, bezogen auf die Waschmittelformulierung, eingesetzt. Die Polyacetale sind dabei als Austauschstoffe für die bisher verwendeten Phosphate anzusehen.

Der besondere Vorteil der Polyacetale liegt gegenüber den Phosphaten darin, daß die Polyacetale biologisch abbaubar sind. Die oben beschriebenen Polyacetale können außerdem mit handelsüblichen Inkrustationsinhibitoren in Waschmittelformulierungen eingesetzt werden. Geeignete Inkrustationsinhibitoren sind beispielsweise aus der US-PS 3 308 067 und der EP-PS 75 820 bekannt. Bei den Inkrustationsinhibitoren handelt es sich beispielsweise um Polymerisate der Maleinsäure oder um Copolymerisate aus Acrylsäure und/oder Methacrylsäure mit Maleinsäure oder um Homopolymerisate der Acrylsäure. Die genannten Copolymerisate werden entweder in Form der Säuren, der Salze oder in partiell neutralisierter Form eingesetzt, sie sind in einer Menge von 1 bis etwa 10 Gew.% am Aufbau der Waschmittelformulierung beteiligt. Für die Herstellung von Waschmittelformulierungen kann man auch von Mischungen aus den oben beschriebenen Polyacetalen und einem oder mehreren der genannten Inkrustationsinhibitoren ausgehen.

35

Beispiel 1

in einem mit Rührer. Wasserabscheider und Rückflußkühler versehenen Kolben mischte man 298 g (0,66 mol) 50 %ige wäßrige Glucoheptonsäure, 47,9 g (0,33 mol) 40 %iges wäßriges Glyoxal und setzte dann 6.6 g p-Toluolsulfonsäure-monohydrat und 350 g Chloroform zu. Das Gemisch wurde unter Rühren zum Rückflußsieden erhitzt. Mit Hilfe des Wasserabscheiders wurde das mit den Ausgangsstoffen eingebrachte und während der Reaktion entstandene Wasser azeotrop abdestilliert. Innerhalb von 6 Stunden wurden 189 g Wasser azeotrop aus dem Reaktionsgemisch abdestilliert. Im Verlauf der Umsetzung bildete sich ein Niederschlag, der nach Beendigung der Umsetzung und nach dem Abkühlen des Reaktionsgemisches auf Raumtemperatur abfiltriert wurde. Der Niederschlag wurde anschließend bei 25°C im Vakuum getrocknet. Man erhielt 151 g eines festen Produktes, das 1,5 Gew.% Glucoheptonsäurelacton enthielt (HPLC-Bestimmung).

50

Beispiel 2

In einem mit einem Rührer und einem Wasserabscheider versehenen Kolben wird ein Gemisch aus 204 g (0,45 mol) 50 %ige wäßrige Glucoheptonsäure, 6,1 g p-Toluolsulfonsäure-monohydrat sowie 11,7 g 35 %iges wäßriges Palmitin-natriumsulfonat (35 %ig in Wasser) in 390 g Toluol vorgelegt. Das Reaktionsgemisch wird zum Sieden erhitzt, so daß azeotrop Wasser abgeschieden wird. Sobald die Mischung zu sieden beginnt, gibt man innerhalb von 1 Stunde 65,3 g (0,45 mol) 40 %iges Glyoxal zu, und destilliert weiterhin

Wasser azeotrop ab. Nach weiteren 3 Stunder ist die Reaktion beendet. Die insgesamt abgeschiedene Wassermenge beträgt 165 g. Das Reaktionsgemisch wird dann gekühlt, das Polyacetal abfiltriert und im Vakuum getrocknet. Man erhält 125 g eines festen Produktes, in dem kein Giucoheptonsäurelacton mehr nachweisbar ist.

Beispiel 3

In der in Beispiel 1 angegebenen Apparatur legt man 196,1 g (0,5 mol) 50 %iger wäßriger Gluconsäure, 72,5 g (0,5 mol) 40 %iges wäßriges Glyoxal, 15 g des Natriumsalzes des Schwefelsäureesters des Additionsproduktes von 25 mol. Ethylenglykol an 1 mol Isooctylphenol (40 %ig in Wasser) und 6,4 g p-Toluolsulfonsäure-monohydrat in 350 g Toluol vor. Innerhalb eines Zeitraums von 7 Stunden kreist man 167 g Wasser aus. Nach Abtrennen des Toluols verbleibt ein ölig-viskoser, gelber Rückstand, der beim Trocknen im Vakuum erstarrt (110 g). Er enthält 4,9 Gew.% Gluconsäurelacton.

Beispiel 4

15

25

35

Beispiel 3 wird mit der Ausnahme wiederholt, daß man die Glyoxallösung innerhalb von 4 Stunden in die Mischung zutropft und gleichzeitig das als Lösemittel verwendete Wasser und das bei der Reaktion entstehende Wasser azeotrop abdestilliert. 2,5 Stunden nach Zugabe der Glyoxallösung beträgt die gesamte abdestillierte Menge an Wasser 167 g. Man erhält 101 g eines Festprodukts, in dem sich kein Gluconsäurelacton nachweisen läßt.

Beispiel 5

Beispiel 4 wurde mit der Ausnahme wiederholt, daß man noch zusätzlich 39 g des Natriumsalzes des Schwefelsäureesters des Additionsproduktes von 25 mol Ethylenoxid an 1 mol Isooctylphenol (40 %ig in Wasser) (Emulgator) einsetzte. Die abdestillierte Wassermenge betrug 172 g. Es verblieb ein fester Rückstand von 115 g, der 3,9 Gew.% Gluconsäurelacton enthielt.

Beispiel 6

In einem Kolben, der mit Rührer und Wasserabscheider ausgestattet ist, legt man 390 g Toluol, 11.6 g Palmitinsulfonat-natrium (40 %ig in Wasser), 6,4 g p-Toluolsulfonsäure-monohydrat und 192,7 g (0,5 mol) 50,9 %ige wäßrige Gluconsäure vor. Die Mischung wird intensiv gerührt und zum Sieden erhitzt. Unmittelbar nach Sidebeginn tropft man innerhalb 1 Stunde 200 g (0,5 mol) 25 %igen wäßrigen Glutardialdehyd zu. 4 Stunden nach Beginn des Rückflußsiedens sind 278 g Wasser azeotrop abdestilliert. Das Reaktionsgemisch wird dann auf Raumtemperatur abgekühlt, der Niederschlag abgesaugt und im Vakuum bei 25°C getrocknet. Man erhält 126 g eines Polyacetals, in dem kein Gluconsäurelacton mehr nachweisbar ist.

45 Beispiel 7

Man wiederholt das Beispiel 6 mit der Ausnahme, daß man anstelle von Gluconsäure 226 g (0,5 mol) 50 %ige wäßrige Glucoheptonsäure einsetzt. Innerhalb von 6 Stunden werden dabei 296 g Wasser azeotrop abdestilliert. Nach dem Abkühlen, Filtrieren und Trocknen erhält man 161 g eines Festprodukts, das 1 Gew.% Gluconsäurelacton enthält.

Beispiel 8

In der in Beispiel 1 beschriebenen Apparatur legt man 390 g Toluol, 38,7 g 40 %iges wäßries Natriumpalmitinsulfonat, 6,4 g p-Toluolsulfonsäure-monohydrat, 192,7 g (0,5 mol) 50,9 %ige wäßrige Gluconsäure und 71,3 g (0,5 mol) 94 %igen Terephthaldialdehyd vor. Das Reaktionsgemisch wird intesiv

gerührt und zum Sieden erhitzt. Innerhalb von 5 Stunden nach Siedebeginn werden 145 g Wasser azeotrop abdestilliert. Nach dem Abkühlen des Reaktionsgemisches, Absaugen und Trocknen des entstandenen Niederschlags verbleiben 152 g Polyacetal, in dem kein Dialdehyd und keine Gluconsäure mehr nachweisbar sind.

Beispiel 9

5

15

25

35

In der in Beispiel 1 beschriebenen Apparatur mischt man 196 g (0,5 mol) 50 %ige wäßrige Gluconsäure, 72,6 g (0,5 mol) 40 %iges wäßriges Glyoxal und 9,8 g p-Toluolsulfonsäure-monohydrat und 370 g Chloroform. Die Mischung wird intensiv gerührt und 8 Stunden zum Siden erhitzt. Hierbei scheiden sich insgesamt 155 g Wasser azeotrop ab. Das Reaktionsgemisch wird dann abgekühlt und das Chloroform nach dem Absetzen vom festen Rückstand abdekantiert. Der Rückstand wird im Vakuum bei 25°C getrocknet. Man erhält 115 g Polyacetal, in dem keine Gluconsäure mehr nachweisbar ist.

Beispiel 10

In der in Beispiel 1 beschriebenen Apparatur wird eine Mischung aus 235,2 g (0,6 mol) 50 %iger wäßriger Gluconsäure, 43,5 g (0,3 mol) 40 %igem Glyoxal, 5,0 g p-Toiuolsulfonsäure-monohydrat und 390 g Toluol unter Rühren zum Sieden erhitzt. Innerhalb von 4 Stunden werden 151 g Wasser azeotrop abdestilliert. Das Reaktionsgemisch wird dann gekühlt, der feinteilige Rückstand abfiltriert und im Vakuum getrocknet. Man erhält 121 g eines Polyacetals, das 4,2 Gew.% Gluconsäurelacton enthält.

Beispiel 11

In einem Kolben, der mit zwei Tropftrichtern, einem Rührer und einem Wasserabscheider ausgestattet ist, erhitzt man eine Lösung von 5,0 g p-Toluolsulfonsäure-monohydrat in 370 g Toluol zum Sieden und tropft dann innerhalb von 1,5 Stunden 235,2 g (0,6 mol) 50 %ige wäßrige Gluconsäure und gleichzeitig damit 43,5 g (0,3 mol) 40 %iges wäßriges Glyoxal zu. 3,5 Stunden nach Zugabe der Gluconsäure und des Glyoxals beträgt die Menge des azeotrop abdestillierten Wassers 154 g. Das Reaktionsgemisch wird dann auf Raumtemperatur abgekühlt, der Niederschlag abfiltriert und getrocknet. Man erhält 115 g eines Festprodukts, das noch 3,5 % Gluconsäurelacton enthält.

Beispiel 12

Beispiel 9 wurde mit der Ausnahme wiederholt, daß man auf den Einsatz des Chloroforms verzichtete. Das zunächst als Lösemittel verwendete Wasser und das bei der Reaktion entstehende Wasser wird bei 400 mbar und einer Temperatur von 100°C entfernt. Man erhält auf diese Weise 125 g Polyacetal, das 8,3 % Gluconsäure enthält. Um den Katalysator aus dem Polyacetal zu entfernen, wird der Rückstand in Methanol dispergiert, dann abfiltriert und bei 25°C im Vakuum getrocknet. Man erhält 112 g Polyacetal.

Anwendungstechnische Beispiele

Meßmethoden

o A. Bestimmung der Eisenkomplexierkapazität/Eisenhydroxid-Dispergierkapazität

Die inhibierende Wirkung von Komplexbildnern oder Dispergiermitteln auf die Ausfällung von Eisen(III)-hydroxid wird durch Trübungstitration bestimmt. Es wird die zu untersuchende Substanz vorgelegt und in alkalischer Lösung mit Eisen(III)-chlorid-Lösung bis zur Trübung titriert.

Die Titration erfolgt automatisch mit Hilfe eines Titroprozessors; es wird dabei die Lichtdurchlässigkeit der Lösung mit einem Lichtleiterphotometer verfolgt. Eine Titration von Hand ist nicht empfehlenswert, da sich die Lösungen im Verlauf der Titration meist stark verfärben und dadurch das Einsetzen der Trübung nur schwer zu erkennen ist.

Das Ausmaß der Verfärbung (hervorgerufen durch kolloidal dispergiertes Eisenhydroxid) gibt einen Hinweis auf die Dissoziationsneigung des gebildeten Komplexes. Ein grobes Maß dafür ist die Steigung der Titrationskurve vor Erreichen des Äquivalenzpunktes. Sie wird gemessen in % Transmission/ml FeCl₁-Lösung. Die reziproken Werte geben somit die Stärke der Komplexe an.

Der Äquivalenzpunkt erscheint als Knickpunkt der Titrationskurve. Komplexbildner mit Dispergierwirkung zeigen zwei Knickpunkte, von denen der zweite meist weniger ausgeprägt ist. Reine Dispergiermittel zeigen einen schwach ausgeprägten Knickpunkt; bei derartigen Produkten erhält man bei Zusatz der üblichen, maximalen Volumina an FeCl₂-Lösung (50 ml 0.05 molare FeCXl₂-Lösung) noch keinen Äquivalenzpunkt, damit noch keine auswertbaren Titrationskurven. Produkte mit diesem Verhalten sind in der Tabelle als "Dispergiermittel" gekennzeichnet.

1 mmol der zu untersuchenden Subvstanz wird in 100 ml destilliertem Wasser gelöst. Der pH-Wert wird mit 1 n NaOH auf 10 eingestellt und während der Titration konstant gehalten. Man titriert bei Raumtemperatur oder 60°C mit einer Geschwindigkeit von 0,4 ml/min mit 0,05 m FeCl₃-Lösung.

Die Komplexier-bzw. Dispergierkapazität wird ausgedrückt als:

15

5

mol Fe/Mol WS^{1} = ml verbrauchter FeCl₃-Lösung

20

oder

mg Fe/g WS = <u>ml verbrauchter FeCla-Lōsung</u> x 2790

MGWS

25

20

1) WS = Wirksubstanz

Die Ergebnisse sind in der Tabelle angegeben.

30

35

B. Prüfung der Natriumperboratstabilisierung in Waschflotten

Prinzip

Das für die Bleichwirkung in natriumperborathaltigen Waschmittelformulierungen verantwortliche Wasserstoffperoxid wird durch Schwermetallionen (Fe, Cu, Mn) katalytisch zersetzt. Durch Komplexierung der Schwermetallionen läßt sich dies verhindern. Die Peroxidstabilisierende Wirkung der Komplexbildner wird über den Restperoxidgehalt nach Warmlagerung einer schwermetallhaltigen Waschflotte geprüft.

Der Gehalt an Wasserstoffperoxid wird vor und nach der Lagerung über eine Titration mit Kaliumpermanganat in saurer Lösung bestimmt.

Zur Prüfung werden zwei Waschmittelformulierungen benutzt:

(A) Phosphathaltige Formulierung

45

Zusammensetzung (in Gew.%).

19,3 % Natrium-C12-Alkylbenzolsulfonat

15,4 % Natriumperborat

30,8 % Natriumtriphosphat

2,6 % Acrylsäure-/Maleinsäure-Copolymerisat vom Molekulargewicht 70.000

31,0 % Natriumsulfat

0.9 % Polyacetal

55

(B) Phosphatreduzierte Formulierung

Zusammensetzung (in Gew.%):

15 % Natrium-C,2-Alkylbenzolsulfonat

5 % des Additionsproduktes von 1 Mol Talgefettalkohol an 11 Mol Ethylenoxid

20 % Natriumperborat

6 % Natrium-metasilikat

1,25 % Magnesiumsilikat

20 % Natriumtriphosphat

10 31,75 % Natriumsulfat

5

1 % Polyacetal

Aus den Formulierungen (A) und (B) werden jeweils Waschflotten hergestellt, indem man die Formulierungen (A) und (B) in Wasser mit einer Härte von 25° dH löst. Die Konzentration von (A) in der Waschflotte (A) beträgt 6.5 g/l und der pH-Wert 8.15: die Konzentration von (B) in der Waschflotte (B) 8 g/l, der pH-Wert 10.1. Zur Prüfung der Perboratstabilisierung setzt man den Waschflotten (A) und (B) jeweils eine Mischung aus 2 ppm FE³⁺, 0.25 ppm Cu²⁺ und 0.25 ppm Mn²⁺-lonen in Form einer wäßrigen Lösung zu und lagert die Waschflotte (A) 2 Stunden bei 80°C und die Waschflotte (B) 2 Stunden bei 60°C.

20 C. Prüfung der Inkrustierungs-Inhibierung durch Trübungsmessung

Prinzip

Waschflotten trüben bei der Warmlagerung durch Ausfällen von schwerlöslichen Waschmittelbestandteilen ein. Die Endtrübung nach 2 Stunden ist ein Maß für die fällungsverhindernde Wirksamkeit der Inkrustierungsinhibitoren.

Zur Prüfung wird eine phosphatfreie Modellwaschflotte verwendet, die mit 6,5 g/l Waschmittel angesetzt wird und folgendermaßen zusammengesetzt ist:

2,7 % Natrium-C.2-Alkylbenzolsulfonat

30 3,3 % des Anlagerungsproduktes von 25 Mol Ethylenoxid an 1 Mol Talgfettalkohol

10,8 % Na-metasilikat

27 % Soda

2.1 % CMC

1.8 % Acrylsäure-Maleinsäure-Copolymerisat vom Molekulargewicht 70.000

35 9.2 % Polyacetai

43.1 % Na,SO.

Die Warmlagerung der Modellwaschflotte erfolgt in Wasser mit 22,4° dH über einen Zeitraum von 2 Stunden, danach wird die Trübung nephelometrisch [niedrige Werte der Trübung (NTU-Einheiten) bedeuten gute wirksame Produkte, hohe Werte schlecht wirksame Produkte] bestimmt.

D. Bestimmung des Calcium-Bindevermögens:

1 g Wirksubstanz werden in 10 ml 10 %iger Soda gelöst, mit 1 n NaOH wird ein pH-Wert von 11 eingestellt. Mit 0,35 m Calciumacetatlösung wird anschließend unter pH-Wert-Konstanthaltung bis zu beginnenden Trübung titriert.

50

40

55

50	45	35	30	25	20	15	10	5
Tabelle	· .							
Polyacetal,	Calcium-		EISEN	1	Perborat-	rat-	Wirkung als	a 1. s
hergestellt	Bindevermögen	Komplexierung		bzw. Oispergierung	stabi	stabilisie-	Inkrustie-	1 e -
nach	mg Ca/g WS bei		7.	% Transmission	rung in	in	rungs-	
Beispiel Nr.	20°C pH 11	mol Fe	mg Fe	(am Knickpunkt)	Wasch	Waschmittel.	inhibitor	or
		mol WS	gWS m	ml FeCl ₃ -Lösung	formu	formulierung		
					(¥)	(8)	[NTU-Ei	[NTU-Einheiten]
					1	[in %]		
-	10	"Disperg	Dispergrermittel"	1	ı	32,7	140	
2	30	"Dispergi	"Dispergiermittel"	. '	33,1	58,6	180	
3	65	"Oispergi	"Oispergiermittel"	;	29,6	59,6	260	
7		0,42	108	4.4	24,4	8'97		
LC:		96'0	6.7	5,8	23,7	8,44	255	
9	25	"Dispergi	"Dispergiermittel"	1	34,1	9'85		
7	20	"Dispergi	"Dispergiermittel"	1	30'6	59,1	115	
. 6	10	1,5	269	25,5	33,3	33,7	170	
10	15	1,27	140	14,3	35,5	30,7	295	
11	15	1.14	126	7.6	36,8	31,7	140	
ohne Builder	0	0	0		21,0	28,5	260	

Ansprüche

5

1. Polyacetale, erhältlich durch Umsetzung von

a) Dialdehyden der Formel

OHC - An -CHO .

in der

 $A = -CH_{2}, -CH_{2}-CH_{2}, -CH_{2}-CH_{2$

15

20

bedeutet und

n = 0 oder 1 ist, mit

b) mindestens 3 OH-Gruppen enthaltenden Polyolcarbonsäuren, die 5 bis 7 C-Atome aufweisen, im Molverhältnis (a):(b) von 1:0,25 bis 4 in wäßrigem Medium in Gegenwart von sauren Katalysatoren.

2. Verfahren zur Herstellung von Polyacetalen nach Anspruch 1, dadurch gekennzeichnet, daß man

a) Dialdehyde der Formel

OHC - An -CHO .

in der

 $A = -CH_{2}-, -CH_{2}-CH_{2}-, -CH_{2}-CH_{2}-CH_{2}-CH_{2}-, -CH_{2}-CH_{2}-CH_{2}-CH_{2}-,$

30

35

40

bedeutet und

n = 0 oder 1 ist. mit

b) mindestens 3 OH-Gruppen enthaltenden Polyolcarbonsäuren, die 5 bis 7 C-Atome aufweisen, im Molverhältnis (a):(b) von 1:0,25 bis 4 in wäßrigem Medium bei Temperaturen bis 140°C in Gegenwart von sauren Katalysatoren umsetzt und Wasser aus dem Reaktionsgemisch entfernt.

3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß man die Komponenten (a) und (b) im Molverhältnis 1:0,5 bis 2 bei Temperaturen von 60 bis 110°C umsetzt.

4. Verfahren nach den Ansprüchen 2 und 3, dadurch gekennzeichnet, daß man als Komponente (a) Glyoxal, Glutardialdehyd, Terephthaldialdehyd oder deren Gemische einsetzt.

5. Verfahren nach den Ansprüchen 2 und 3, dadurch gekennzeichnet, daß man als Komponente (b) Gluconsäure und/oder Glucoheptonsäure einsetzt.

6. Verfahren nach den Ansprüchen 2 bis 5, dadurch gekennzeichnet, daß man die Umsetzung in Gegenwart eines inerten organischen Lösemittels durchführt, in dem die Polyacetale unlöslich sind.

7. Verfahren nach Anspruch 6, daaurch gekennzeichnet, daß man die Umsetzung zusätzlich in Gegenwart eines Wasser-in-Öl-Emulgators durchführt.

8. Verwendung von Polyacetalen, die erhältlich sind durch Umsetzung von

a) Dialdehyden der Formel

OHC - An -CHO ,

in der

50 A = -CH₂-, -CH₂-CH₂-, -CH₂-CH₃-CH₃-CH₃-CH₂-CH₂-CH₂-C

55

bedeutet und n = 0 oder 1 ist, mit b) mindestens 3 OH-Gruppen enthaltenden Polyoicarbonsäuren, die 5 bis 7 C-Atome aufweisen, im Molvernältnis (a):(b) von 1:0,25 bis 4 in wäßrigem Medium in Gegenwart von sauren Katalysatoren, als Zusatz zu Waschmitteln.

9. Verwendung von Polyacetalen nach Anspruch 1 als Komplexbildner.