- 1. **byte**: 8-bit signed integer
 - Range: -2^7 to $2^7 1$ (-128 to 127)
 - $2^7 = 128$
 - ullet To convert 128 to a power of 10: $\log_{10}(128)pprox 2.107$, so roughly 10^2
- 2. **short**: 16-bit signed integer
 - Range: -2^{15} to $2^{15} 1$ (-32,768 to 32,767)
 - $2^{15} = 32,768$
 - ullet To convert 32,768 to a power of 10: $\log_{10}(32768)pprox 4.515$, so roughly 10^4
- 3. int: 32-bit signed integer
 - ullet Range: -2^{31} to $2^{31}-1$ (-2,147,483,648 to 2,147,483,647)
 - $2^{31} = 2,147,483,648$
 - ullet To convert 2,147,483,648 to a power of 10: $\log_{10}(2147483648)pprox 9.332$, so roughly 10^9
- 4. long: 64-bit signed integer
 - Range: -2^{63} to $2^{63} 1$ (-9,223,372,036,854,775,808 to 9,223,372,036,854,775,807)
 - 2^{63} is beyond 10^{19} , so it's larger than c \downarrow e represented as a simple power of 10.
 - 1. **float**: 32-bit floating point
 - ullet Range: Approximately $\pm 3.40282347 imes 10^{38}$
 - This range is approximately 10^{38}
 - 2. double: 64-bit floating point
 - ullet Range: Approximately $\pm 1.79769313486231570 imes 10^{308}$
 - ullet This range is approximately 10^{308}