```
In [1]:
         import numpy as np
         import pandas as pd
         import matplotlib.pyplot as plt
         from scipy.stats import kurtosis, skew
In [2]: df=pd.read_csv("C:/Users/USER/Desktop/Datasets/churn_Modelling.csv")
In [3]: df.tail()
Out[3]:
                                                             Geography
                RowNumber
                           CustomerId
                                        Surname
                                                 CreditScore
                                                                        Gender
                                                                                Age
                                                                                     Tenure
                                                                                              Baland
          9995
                      9996
                              15606229
                                                        771
                                                                                                 0.0
                                         Obijiaku
                                                                 France
                                                                          Male
                                                                                 39
                                                                                          5
          9996
                      9997
                                       Johnstone
                              15569892
                                                        516
                                                                 France
                                                                          Male
                                                                                 35
                                                                                         10
                                                                                              57369.6
          9997
                      9998
                                                        709
                                                                                          7
                              15584532
                                             Liu
                                                                 France
                                                                        Female
                                                                                 36
                                                                                                 0.0
          9998
                      9999
                              15682355
                                        Sabbatini
                                                        772
                                                               Germany
                                                                          Male
                                                                                 42
                                                                                             75075.3
          9999
                     10000
                              15628319
                                          Walker
                                                        792
                                                                 France
                                                                                            130142.7
                                                                        Female
                                                                                 28
In [4]: df.dtypes
Out[4]: RowNumber
                                 int64
         CustomerId
                                 int64
         Surname
                               object
         CreditScore
                                int64
         Geography
                               object
         Gender
                               object
                                 int64
         Age
         Tenure
                                 int64
         Balance
                              float64
         NumOfProducts
                                 int64
         HasCrCard
                                 int64
         IsActiveMember
                                int64
         EstimatedSalary
                              float64
                                 int64
         Exited
         dtype: object
In [5]: df.shape
Out[5]: (10000, 14)
```

In [6]: df

_	-		
\sim	. —	-	
L JI		וחו	
~			•

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Baland
0	1	15634602	Hargrave	619	France	Female	42	2	0.0
1	2	15647311	Hill	608	Spain	Female	41	1	83807.{
2	3	15619304	Onio	502	France	Female	42	8	159660.{
3	4	15701354	Boni	699	France	Female	39	1	0.0
4	5	15737888	Mitchell	850	Spain	Female	43	2	125510.{
9995	9996	15606229	Obijiaku	771	France	Male	39	5	0.0
9996	9997	15569892	Johnstone	516	France	Male	35	10	57369.0
9997	9998	15584532	Liu	709	France	Female	36	7	0.0
9998	9999	15682355	Sabbatini	772	Germany	Male	42	3	75075.:
9999	10000	15628319	Walker	792	France	Female	28	4	130142.

10000 rows × 14 columns

4

In [7]: del df["CustomerId"]
 del df["Surname"]

In [8]: df

Out[8]:

	RowNumber	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	Has
0	1	619	France	Female	42	2	0.00	1	
1	2	608	Spain	Female	41	1	83807.86	1	
2	3	502	France	Female	42	8	159660.80	3	
3	4	699	France	Female	39	1	0.00	2	
4	5	850	Spain	Female	43	2	125510.82	1	
9995	9996	771	France	Male	39	5	0.00	2	
9996	9997	516	France	Male	35	10	57369.61	1	
9997	9998	709	France	Female	36	7	0.00	1	
9998	9999	772	Germany	Male	42	3	75075.31	2	
9999	10000	792	France	Female	28	4	130142.79	1	

10000 rows × 12 columns

```
In [9]: Idf=df.iloc[:,0:9]
         Odf=df.iloc[:,-1]
In [10]: Odf
Out[10]: 0
                  1
          1
                  0
                  1
          3
                  0
          4
                  0
          9995
                  0
          9996
                  0
          9997
                  1
          9998
                  1
          9999
                  0
          Name: Exited, Length: 10000, dtype: int64
```

In [11]: Idf

Out[11]:

	RowNumber	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	Has
0	1	619	France	Female	42	2	0.00	1	
1	2	608	Spain	Female	41	1	83807.86	1	
2	3	502	France	Female	42	8	159660.80	3	
3	4	699	France	Female	39	1	0.00	2	
4	5	850	Spain	Female	43	2	125510.82	1	
9995	9996	771	France	Male	39	5	0.00	2	
9996	9997	516	France	Male	35	10	57369.61	1	
9997	9998	709	France	Female	36	7	0.00	1	
9998	9999	772	Germany	Male	42	3	75075.31	2	
9999	10000	792	France	Female	28	4	130142.79	1	

10000 rows × 9 columns

In [12]: Idf.describe()

Out[12]:

	RowNumber	CreditScore	Age	Tenure	Balance	NumOfProducts	H
count	10000.00000	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	100
mean	5000.50000	650.528800	38.921800	5.012800	76485.889288	1.530200	
std	2886.89568	96.653299	10.487806	2.892174	62397.405202	0.581654	
min	1.00000	350.000000	18.000000	0.000000	0.000000	1.000000	
25%	2500.75000	584.000000	32.000000	3.000000	0.000000	1.000000	
50%	5000.50000	652.000000	37.000000	5.000000	97198.540000	1.000000	
75%	7500.25000	718.000000	44.000000	7.000000	127644.240000	2.000000	
max	10000.00000	850.000000	92.000000	10.000000	250898.090000	4.000000	
4							

In [13]: Idf.isnull().sum()

Out[13]: RowNumber

0 CreditScore 0 Geography 0 Gender Age 0 Tenure 0 Balance 0 NumOfProducts 0 HasCrCard 0 dtype: int64

In [14]: boxplot=Idf.boxplot()

In [15]: Newdf=pd.get_dummies(Idf)
Newdf

Out[15]:

	RowNumber	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	Geography_F
0	1	619	42	2	0.00	1	1	
1	2	608	41	1	83807.86	1	0	
2	3	502	42	8	159660.80	3	1	
3	4	699	39	1	0.00	2	0	
4	5	850	43	2	125510.82	1	1	
9995	9996	771	39	5	0.00	2	1	
9996	9997	516	35	10	57369.61	1	1	
9997	9998	709	36	7	0.00	1	0	
9998	9999	772	42	3	75075.31	2	1	
9999	10000	792	28	4	130142.79	1	1	

10000 rows × 12 columns

4

In [16]: Newdf.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10000 entries, 0 to 9999
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	RowNumber	10000 non-null	int64
1	CreditScore	10000 non-null	int64
2	Age	10000 non-null	int64
3	Tenure	10000 non-null	int64
4	Balance	10000 non-null	float64
5	NumOfProducts	10000 non-null	int64
6	HasCrCard	10000 non-null	int64
7	Geography_France	10000 non-null	uint8
8	Geography_Germany	10000 non-null	uint8
9	Geography_Spain	10000 non-null	uint8
10	Gender_Female	10000 non-null	uint8
11	Gender_Male	10000 non-null	uint8
dtyp	es: float64(1), int	64(6), uint8(5)	
memo	ry usage: 595.8 KB		

, ,


```
In [18]: names=Newdf.columns
           names
Out[18]: Index(['RowNumber', 'CreditScore', 'Age', 'Tenure', 'Balance', 'NumOfProducts', 'HasCrCard', 'Geography_France', 'Geography_Germany', 'Geography_Spain',
                    'Gender Female', 'Gender Male'],
                   dtype='object')
In [19]: S newdf=pd.DataFrame(SNewdf, columns=names)
           S newdf
Out[19]:
                   RowNumber CreditScore
                                                  Age
                                                          Tenure
                                                                   Balance
                                                                            NumOfProducts HasCrCard Geog
                0
                     -1.731878
                                  -0.326221
                                             0.293517 -1.041760
                                                                  -1.225848
                                                                                   -0.911583
                                                                                               0.646092
                1
                     -1.731531
                                  -0.440036
                                             0.198164 -1.387538
                                                                   0.117350
                                                                                   -0.911583
                                                                                               -1.547768
                2
                     -1.731185
                                  -1.536794
                                             0.293517
                                                        1.032908
                                                                   1.333053
                                                                                   2.527057
                                                                                               0.646092
                3
                     -1.730838
                                   0.501521
                                             0.007457
                                                      -1.387538
                                                                  -1.225848
                                                                                   0.807737
                                                                                               -1.547768
                                                                  0.785728
                4
                     -1.730492
                                   2.063884
                                             0.388871 -1.041760
                                                                                   -0.911583
                                                                                               0.646092
            9995
                      1.730492
                                   1.246488
                                             0.007457 -0.004426 -1.225848
                                                                                   0.807737
                                                                                               0.646092
            9996
                      1.730838
                                  -1.391939
                                            -0.373958
                                                        1.724464
                                                                  -0.306379
                                                                                   -0.911583
                                                                                               0.646092
            9997
                      1.731185
                                   0.604988
                                            -0.278604
                                                        0.687130
                                                                 -1.225848
                                                                                   -0.911583
                                                                                               -1.547768
            9998
                                   1.256835
                                             0.293517 -0.695982
                                                                                               0.646092
                      1.731531
                                                                 -0.022608
                                                                                   0.807737
            9999
                      1.731878
                                   1.463771 -1.041433 -0.350204
                                                                  0.859965
                                                                                   -0.911583
                                                                                               0.646092
           10000 rows × 12 columns
In [47]: from sklearn.model selection import train test split
           x_train, x_test, y_train, y_test = train_test_split(S_newdf, Odf, test_size=0.2)
```

!pip install xgboost In [48]: from xgboost import XGBClassifier xgb=XGBClassifier()

```
In [49]: xgb.fit(x_train,y_train)
         [11:18:17] WARNING: C:/Users/Administrator/workspace/xgboost-win64 release 1.5.
         1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric
         used with the objective 'binary:logistic' was changed from 'error' to 'loglos
         s'. Explicitly set eval metric if you'd like to restore the old behavior.
Out[49]: XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
                       colsample_bynode=1, colsample_bytree=1, enable_categorical=False,
                       gamma=0, gpu id=-1, importance type=None,
                       interaction_constraints='', learning_rate=0.300000012,
                       max_delta_step=0, max_depth=6, min_child_weight=1, missing=nan,
                       monotone constraints='()', n estimators=100, n jobs=8,
                       num_parallel_tree=1, predictor='auto', random_state=0,
                       reg_alpha=0, reg_lambda=1, scale_pos_weight=1, subsample=1,
                       tree method='exact', validate parameters=1, verbosity=None)
In [50]: y_pred=xgb.predict(x_test)
In [51]: y_pred
Out[51]: array([0, 0, 0, ..., 0, 0, 0], dtype=int64)
In [52]: from sklearn.metrics import accuracy_score
In [54]: Accuracy_Score=accuracy_score(y_test, y_pred)
         Accuracy Score
Out[54]: 0.85
```

In []: