CS 218 Design and Analysis of Algorithms

Nutan Limaye

Indian Institute of Technology, Bombay nutan@cse.iitb.ac.in

Module 1: Basics of algorithms

A dynamic programming approach to shortest path. (Very similar to DFS.)

Step 1 Figuring out the types of sub-problems.

Let $\mathbf{Opt}(v,t)$ be the minimum weight of v to t path.

We wish to compute $\mathbf{Opt}(s, t)$.

For any $v \in V$, if we are able to compute $\mathbf{Opt}(v, t)$, then we will be done.

A dynamic programming approach to shortest path.

Step 2 Designing the recursion.

For some $v \in V$, let P denote the optimal path from v to t corresponding to $\mathbf{Opt}(v, t)$.

The path P must use some vertex $u \in V$ among the neighbours of v

Opt(v, t) =**Opt**(u, t) + w(v, u), where (v, u) is the first edge going out of v on P.

A dynamic programming approach to shortest path.

Step 2 Designing the recursion.

$$\mathbf{Opt}(v,t) = \min_{u \in V, (v,u) \in E} \{ \mathbf{Opt}(u,t) + w(v,u) \}$$

Step 3 Deciding the memoization strategy. Remember the values of $\mathbf{Opt}(u,t)$ for previously computed $u \in V$.

Step 4 Acyclic sub-problem dependencies.

Follows because the underlying graph is acyclic.

Step 5 Analysing the time complexity.

sub-problems
$$\times$$
 time/sub-problem = $\leq |V|(|V|+1) = O(|V|+|E|)$

What if the graph has cycles, but no negative weight cycles?

A dynamic programming approach to shortest path. (Very similar to Dijkstra's algorithm.)

Step 1 Figuring out the types of sub-problems. Let $\mathbf{Opt}(v,i)$ be the minimum weight of v to t path that uses at most i-many edges.

We wish to compute $\mathbf{Opt}(s, n-1)$. This is because the graph is acyclic.

A dynamic programming approach to shortest path.

Step 2 Designing the recursion.

For some $v \in V$ and $i \in [n-1]$, let P denote the optimal path from v to t corresponding to $\mathbf{Opt}(v,i)$.

If the path uses at most i-1 edges, then $\mathbf{Opt}(v,i) = \mathbf{Opt}(v,i-1)$.

If the path uses i edges, then $\mathbf{Opt}(v,i) = \mathbf{Opt}(u,i-1) + w(v,u)$, where (v,u) is the first edge going out of v on P.

A dynamic programming approach to shortest path.

Step 2 Designing the recursion.

For some $v \in V$ and $i \in [n-1]$, let P denote the optimal path from v to t corresponding to $\mathbf{Opt}(v,i)$.

If the path P uses at most i-1 edges, then $\mathbf{Opt}(v,i) = \mathbf{Opt}(v,i-1)$.

If the path P uses i edges, then $\mathbf{Opt}(v,i) = \mathbf{Opt}(u,i-1) + w(v,u)$, where (v,u) is the first edge going out of v on P.

A dynamic programming approach to shortest path.

Step 2 Designing the recursion.

This leads to the following recursion.

If
$$i > 0$$
,

$$\mathbf{Opt}(v,i) = \min \left\{ \mathbf{Opt}(v,i-1), \min_{u \in V, (v,u) \in E} \{ \mathbf{Opt}(u,i-1) + w(v,u) \} \right\}$$

Step 3 Decide on the memoization strategy.

We will create a table M with n rows and n columns.

The [v, i]th entry of M will contain the weight of the lowest weight path from v to t that uses at most i edges.

Step 4 Check that the sub-problem dependencies are acyclic.

From the recursion (*), we know that the i sub-problem uses values of sub-problems j < i.

This immediately gives acyclicity of the underlying graph.

```
ShortestPath(G, s, t)
  M[t,0] = 0
  for v ∈ V \setminus {t} and i ∈ {0, . . . , n − 1} do
     M[v,i] = \infty
  end for
  for i = 1 to n - 1 do
    for v \in V (in any order) do
       Compute M[v, i] using the recurrence (*)
     end for
  end for
  Return M[s, n-1]
```

Running time analysis of Bellman and Ford

- The algorithm fills the table M.
- The table has $O(n^2)$ entries.
- Each entry can be filled using O(n) time.
- Hence the total time taken is $O(n^3)$.