SECTION 4.6: LIMITS AT INFINITY AND ASYMPTOTES (DAY 1)

1. Limits at Infinity: In plain English, what should the symbols below mean?

$$\lim_{x \to \infty} f(x) = L$$
 as X-values get bigger + bigger, y-values get closer to y-value L $\lim_{x \to \infty} f(x) = L$ as X-values get 5 maller + 5 maller, y-values get closer to y-value L

2. Using the calculating tool of your choice, determine the limits below or determine that the limit does not exist.

X	100	1000	1,000,000
3x+sin(x)	2.9949	3.000827	2.9999997

(b)
$$\lim_{x \to -\infty} \frac{2x+1}{\sqrt{x^2+1}} = -2$$

X	- 100	-1000	-1,000,000
$\frac{2x+1}{\sqrt{x^2+1}}$	-1.989900	-1,998999	

(c)
$$\lim_{x \to \infty} \frac{1}{x} = \mathcal{O}$$

X	10	100	1000	1,000,000
X	10=0.1	100 =0.01	1000 = 0,001	1000000 = 0.00000)

Goals:

1) What is the relation ship between limits at infinity and graphs?

lim f(x)=L (=>) the graph of f(x)
has y=L as a
horizontal asymptote

(Same for line f (1)!)

- (2) What methods do we have to evaluate lim f(x)?
 - Calculator/numerical (like page 1)
 - Graphical (exploit 1) above)
 - Algebra + simple principles