load_boston

November 24, 2018

```
In [1]: import pandas as pd
       import numpy as np
In [3]: import matplotlib.pyplot as plt
        import seaborn as sns
In [4]: %matplotlib inline
In [47]: from sklearn.datasets import load_boston
In [48]: boston = load_boston()
In [57]: boston.keys()
Out[57]: ['data', 'feature_names', 'DESCR', 'target']
In [50]: boston.data , boston.feature_names,
Out[50]: (array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,
                 4.9800e+00],
                 [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,
                 9.1400e+00],
                 [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,
                 4.0300e+00],
                 [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 5.6400e+00],
                 [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,
                 6.4800e+00],
                 [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,
                 7.8800e+00]]),
         array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',
                 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='|S7'))
In [103]: print (boston['DESCR'])
Boston House Prices dataset
_____
```

Notes

Data Set Characteristics:

:Number of Instances: 506

:Number of Attributes: 13 numeric/categorical predictive

:Median Value (attribute 14) is usually the target

:Attribute Information (in order):

- CRIM per capita crime rate by town
- ZN proportion of residential land zoned for lots over 25,000 sq.ft.
- INDUS proportion of non-retail business acres per town
- CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
- NOX nitric oxides concentration (parts per 10 million)
- RM average number of rooms per dwelling
- AGE proportion of owner-occupied units built prior to 1940
- DIS weighted distances to five Boston employment centres
- ${\tt RAD}$ index of accessibility to radial highways
- TAX full-value property-tax rate per \$10,000
- PTRATIO pupil-teacher ratio by town
- B 1000(Bk 0.63)^2 where Bk is the proportion of blacks by town
- LSTAT % lower status of the population
- MEDV Median value of owner-occupied homes in \$1000's

:Missing Attribute Values: None

:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset. http://archive.ics.uci.edu/ml/datasets/Housing

This dataset was taken from the StatLib library which is maintained at Carnegie Mellon Univers

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostics ...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers that address regress problems.

References

- Belsley, Kuh & Welsch, 'Regression diagnostics: Identifying Influential Data and Sources

- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the
- many more! (see http://archive.ics.uci.edu/ml/datasets/Housing)

In [52]: boston.target

```
Out [52]: array([24., 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15.,
               18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,
               15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,
               13.1, 13.5, 18.9, 20., 21., 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,
               21.2, 19.3, 20., 16.6, 14.4, 19.4, 19.7, 20.5, 25., 23.4, 18.9,
               35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,
               19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,
               20.8, 21.2, 20.3, 28., 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,
               23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,
               33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,
               21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22.
               20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18., 14.3, 19.2, 19.6,
               23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,
               15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,
               17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,
               25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,
               23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50.
               32., 29.8, 34.9, 37., 30.5, 36.4, 31.1, 29.1, 50., 33.3, 30.3,
               34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50., 22.6, 24.4, 22.5, 24.4,
               20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,
               26.7, 21.7, 27.5, 30.1, 44.8, 50., 37.6, 31.6, 46.7, 31.5, 24.3,
               31.7, 41.7, 48.3, 29., 24., 25.1, 31.5, 23.7, 23.3, 22., 20.1,
               22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,
               42.8, 21.9, 20.9, 44., 50., 36., 30.1, 33.8, 43.1, 48.8, 31.,
               36.5, 22.8, 30.7, 50., 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,
               32., 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46., 50., 32.2, 22.,
               20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,
               20.3, 22.5, 29., 24.8, 22., 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,
               22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,
               21., 23.8, 23.1, 20.4, 18.5, 25., 24.6, 23., 22.2, 19.3, 22.6,
               19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19., 18.7,
               32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,
               18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25., 19.9, 20.8,
               16.8, 21.9, 27.5, 21.9, 23.1, 50., 50., 50., 50., 50., 13.8,
               13.8, 15., 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,
                7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,
               12.5, 8.5, 5., 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5., 11.9,
               27.9, 17.2, 27.5, 15., 17.2, 17.9, 16.3, 7., 7.2, 7.5, 10.4,
                     8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11.
                9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,
               10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,
```

```
15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20., 16.4, 17.7,
                19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,
                29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,
                20.6, 21.2, 19.1, 20.6, 15.2, 7., 8.1, 13.6, 20.1, 21.8, 24.5,
                23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22., 11.9])
In [53]: bos = pd.DataFrame(boston['data'])
         bos.columns = boston[('feature_names')]
         bos['Price'] = boston['target']
         bos.head()
Out [53]:
                            INDUS
                                                    RM
                                                         AGE
                                                                      RAD
                                                                              TAX \
               CRIM
                       ZN
                                   CHAS
                                           NOX
                                                                 DIS
         0 0.00632
                                                        65.2
                                                                       1.0
                                                                            296.0
                     18.0
                             2.31
                                    0.0
                                         0.538
                                                 6.575
                                                              4.0900
            0.02731
                       0.0
                             7.07
                                    0.0
                                         0.469
                                                 6.421
                                                        78.9
                                                              4.9671
                                                                      2.0
                                                                            242.0
         2 0.02729
                      0.0
                             7.07
                                    0.0 0.469
                                                7.185
                                                        61.1
                                                              4.9671
                                                                      2.0
                                                                            242.0
         3 0.03237
                                                6.998
                                                        45.8
                                                              6.0622
                      0.0
                             2.18
                                    0.0
                                         0.458
                                                                      3.0
                                                                            222.0
         4 0.06905
                      0.0
                             2.18
                                    0.0 0.458
                                                7.147
                                                        54.2
                                                              6.0622
                                                                      3.0
                                                                            222.0
            PTRATIO
                           В
                             LSTAT
                                     Price
         0
               15.3
                     396.90
                               4.98
                                      24.0
         1
               17.8
                     396.90
                               9.14
                                      21.6
         2
               17.8
                     392.83
                               4.03
                                      34.7
         3
               18.7
                     394.63
                               2.94
                                      33.4
         4
               18.7
                     396.90
                               5.33
                                      36.2
In [54]: bos.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
CRIM
           506 non-null float64
ZN
           506 non-null float64
INDUS
           506 non-null float64
CHAS
           506 non-null float64
NOX
           506 non-null float64
RM
           506 non-null float64
AGE
           506 non-null float64
DIS
           506 non-null float64
           506 non-null float64
RAD
           506 non-null float64
TAX
PTRATIO
           506 non-null float64
           506 non-null float64
В
LSTAT
           506 non-null float64
Price
           506 non-null float64
dtypes: float64(14)
memory usage: 55.4 KB
```

In [55]: bos.describe()

Out[55]:		CRIM	ZN	INDUS	CHAS	NOX	RM	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	3.593761	11.363636	11.136779	0.069170	0.554695	6.284634	
	std	8.596783	23.322453	6.860353	0.253994	0.115878	0.702617	
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	
	75%	3.647423	12.500000	18.100000	0.000000	0.624000	6.623500	
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	
		AGE	DIS	RAD	TAX	PTRATIO	В	\
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
	mean	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	
	std	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	
	min	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	
	25%	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	
	50%	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	
	75%	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	
	max	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	
		LSTAT	Price					
	count	506.000000	506.000000					
	mean	12.653063	22.532806					
	std	7.141062	9.197104					
	min	1.730000	5.000000					
	25%	6.950000	17.025000					
	50%	11.360000	21.200000					
	75%	16.955000	25.000000					
	max	37.970000	50.000000					

In [56]: sns.distplot(bos['Price'])

/anaconda2/lib/python2.7/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed warnings.warn("The 'normed' kwarg is deprecated, and has been "

Out[56]: <matplotlib.axes._subplots.AxesSubplot at 0x1192efa50>

In [59]: sns.heatmap(bos.corr(), annot=True)

Out[59]: <matplotlib.axes._subplots.AxesSubplot at 0x11904bdd0>


```
In [60]: bos.columns
Out[60]: Index([u'CRIM', u'ZN', u'INDUS', u'CHAS', u'NOX', u'RM', u'AGE', u'DIS',
                u'RAD', u'TAX', u'PTRATIO', u'B', u'LSTAT', u'Price'],
               dtype='object')
In [61]: X = bos[[u'CRIM', u'ZN', u'INDUS', u'CHAS', u'NOX', u'RM', u'AGE', u'DIS',
                u'RAD', u'TAX', u'PTRATIO', u'B', u'LSTAT']]
In [68]: y = bos['Price']
In [70]: from sklearn.model_selection import train_test_split
In [85]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=
In [86]: from sklearn.linear_model import LinearRegression
In [87]: linear_model = LinearRegression()
In [88]: linear_model.fit(X_train,y_train)
Out[88]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
In [89]: linear_model.coef_
Out[89]: array([-6.71330988e-02, 4.00218287e-02, -1.46541639e-02, 2.59467565e+00,
                -1.57288770e+01, 3.73001907e+00, -8.98578854e-03, -1.33542114e+00,
                 2.80805340e-01, -1.18721183e-02, -8.89263070e-01, 1.05946405e-02,
                -4.88277689e-01])
In [90]: X_train.columns
Out[90]: Index([u'CRIM', u'ZN', u'INDUS', u'CHAS', u'NOX', u'RM', u'AGE', u'DIS',
                u'RAD', u'TAX', u'PTRATIO', u'B', u'LSTAT'],
               dtype='object')
In [92]: bosDF = pd.DataFrame(linear_model.coef_, X.columns, columns = ['Coef'])
In [93]: bosDF
Out [93]:
                       Coef
                  -0.067133
         CRIM
         ZN
                   0.040022
         INDUS
                  -0.014654
         CHAS
                   2.594676
         NOX
                 -15.728877
         RM
                   3.730019
         AGE
                  -0.008986
```

```
DIS
                  -1.335421
        RAD
                  0.280805
        TAX
                  -0.011872
        PTRATIO
                 -0.889263
        В
                  0.010595
        LSTAT
                  -0.488278
In [94]: predictions = linear_model.predict(X_test)
In [95]: predictions
Out [95]: array([17.88754504, 19.74749906, 16.02652993, 31.34192695, 11.52082795,
                30.14024503, 25.05274508, 11.62938272, 23.48782641, 3.91610379,
                11.1599503 , 32.16197185 , 11.30618688 , 18.82882352 , 27.39797443 ,
                21.32651585, 26.34104432, 41.11454443, 27.84786841, 30.6709252,
                17.0687279 , 24.64494776, 35.74160515, 13.45339548, 25.40952107,
                27.16281402, 13.67212233, 5.12969405, 21.5473272, 8.7434751,
                24.58544379, 31.12209676, 13.8074543, 13.00306968, 20.08552557,
                19.74539172, 25.59948378, 17.38709659, 17.6371365 , 24.6360056 ,
                17.97781597, 34.07685818, 22.2054959, 21.15893523, 19.2366249,
                 1.81025188, 22.53066692, 17.75606052, 14.10879532, 40.28690088,
                 9.23927801, 33.27858104, 15.8117349 , 20.47515208, 22.39869851,
                24.437373 , 19.89550216, 19.46311289, 19.55294393, 31.06124288,
                20.95164093, 17.29154137, 17.19926229, 20.52414559, 13.10690674,
                12.96140931, 18.97420324, 11.77735963, 17.65357798, 27.75515952,
                36.4263965 , 4.18868838 , 30.33853851 , 17.80396827 , 10.07910482 ,
                20.47595652, 25.05576825, 17.54690656, 19.53079951, 21.78850844,
                24.75308208, 21.83817931, 17.32611859, 16.41852786, 21.62602186,
                18.51766648, 17.32988097, 15.94386786, 31.8342253, 21.37664674,
                23.61547904, 21.4565251, 10.44524028, 21.18180577, 28.23195596,
                33.20595452, 23.9200377, 22.19725698, 22.95372273, 24.0586839,
                19.50742307, 42.23283927, 35.51894278, 33.127117 , 22.27585894,
                38.84205581, 23.63327501, 25.57125286, 20.00131471, 18.14985347,
                21.23335072, 12.73476562, 21.58630484, 30.41400281, 30.02957636,
                22.9224303, 28.55169364, 19.52916582, 25.48149903, 20.62294162,
                16.22960064, 8.5711739, 30.44103734, 32.55773978, 6.86015134,
                36.69003204, 23.75377518, 14.34551562, 10.19557327, 28.261591
                39.96937382, 13.87476435, 9.66392158, 21.16714611, 19.37532242,
                32.53087808, 25.03358586, 22.4091751, 24.36419616, 17.88900902,
                8.66924919, 18.94136264, 42.19020136, 11.83621448, 14.24873601,
                38.56596368, 31.85558573, 21.12732785, 24.24038442, 12.36034763,
                31.67242202, 29.63452687, 28.06283346, 19.84477484, 6.52742424,
                18.24289471, 27.45279292, 17.9076568, 30.26732609, 18.34453205,
                13.70734132, 23.93798477, 32.06959172, 27.00965611, 27.603045
                21.99659412, 21.62571188, 9.64518085, 31.54169596, 12.29997212,
                12.71731265, 13.99176898, 34.91787959, 16.77095401, 21.61132654,
                25.03879469, 7.7654817, 14.72206753, 30.56579364, 14.57890072,
                27.53300353, 15.11303702, 34.42714537, 19.69525524, 19.91236677,
```

```
33.99861761, 36.24514595, 19.68510586, 23.61243425, 20.36185263, 24.30000642, 22.23340604, 28.35576193, 21.01600673, 22.9822916, 33.9182534, 17.73316135, 19.73534561, 24.08273044, 16.86023203, 18.38817912, 22.11103012, 18.8931337])
```

In [96]: plt.scatter(y_test, predictions)

Out[96]: <matplotlib.collections.PathCollection at 0x1a2415b350>

/anaconda2/lib/python2.7/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed warnings.warn("The 'normed' kwarg is deprecated, and has been "

Out[102]: <matplotlib.axes._subplots.AxesSubplot at 0x1a27bdadd0>

