

From Timeout-based to Item-by-Item Analysis: Investigating Methodologies for Splitting User Sessions Originated from Shared Accounts in Online Platforms

Work presented in partial fulfillment of the requirements for the degree of Bachelor in Computer Engineering

Author: Matheus Toazza Tura

Advisor: Prof. Dr. Weverton Luis da Costa Cordeiro

Co-advisor: Prof. Dr. Renata de Matos Galante

Summary

- 1. Overview
- 2. Privacy vs Accuracy Dilemma
- 3. Related Work
- 4. Objectives
- 5. Used Algorithms
- 6. Experiments

Overview

- User
- Account
- Item
- Clickstream
- Session

- User
- Account
- Item
- Clickstream
- Session

- User
- Account
- Item
- Clickstream
- Session

- User
- Account
- Item
- Clickstream
- Session

- User
- Account
- Item
- Clickstream
- Session

User/Account to Item association

- User
- Account
- Item
- Clickstream
- Session

User/Account to Item association

- User
- Account
- Item
- Clickstream
- Session

Recommender system

Recommender system

- Implicit (Click frequency, Ex.: Spotify)
- Explicit (Score based Ex.: Netflix)
- Collaborative-Filtering (user-Item similarity based)
- Content-Based (Item-item similarity based)

Privacy vs Accuracy

Privacy Concerns

Looming Privacy Concerns

Hybrid Warfare

- Elections
- Protests
- Fake News
- Geopolitical interests

Looming Privacy Concerns

Marketing Abuse

- User profiling and behaviour abuse
- User data black market
- Abusive prices (Online travel booking)

Accuracy Concerns

Account sharing

Generality problem

Dominance problem

Generality problem

Dominance problem

Generality problem

Dominance problem

Generality problem

Dominance problem

Generality problem

Dominance problem

Generality problem

Dominance problem

Presentation problem

VERSTREPEN, K.; GOETHALS, B. Top-n recommendation for shared accounts. 2015

Generality problem

Dominance problem

Dilemma

Related Work

Timeout models

Clickstream Browsing activity

Session 1

30 min

...

Session 2

HALFAKER, **A. et al.** User session identification based on strong regularities in inter-activity time.

Time-decay models

- Sliding Window
- Neural Network

SOTTOCORNOLA, G.; SYMEONIDIS, P.; ZANKER, M. Session-based news recommendations.

ZHANG, L.; LIU, P.; GULLA, J. Dynamic attention-integrated neural network for session-based news recommendation.

Profile-based models

Explicit and Implicit recommendation systems

VERSTREPEN, K.; GOETHALS, B. Top-n recommendation for shared accounts.

Objectives

Content-only session splitting

• Full data anonymization

Used algorithms

Content-based

Profile-based

Dimensionality Reduction

PCA - Principal Component Analysis

HOTELLING, H. Analysis of a complex of statistical variables into principal components. 1933

tSNE - t-Distributed Stochastic Neighbor Embedding

Gaussian
$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

t-student

tSNE - t-Distributed Stochastic Neighbor Embedding

tSNE - t-Distributed Stochastic Neighbor Embedding

Table 4.1: tSNE coordinate results

article_id	X	у
***		***
69	10.950659	-26.211418
81	34.414822	-0.690890
84	35.335995	-1.578238

Data Sparsity and Scarcity

- Cold Start problem
- Curse of Dimensionality

Cluster Analysis

Affinity Propagation

- Message passing algorithm
- Does not require number of clusters

FREY, B. J.; DUECK, D. Clustering by passing messages between data points. Science, v. 315, p. 2007, 2007.

Affinity Propagation

- Message passing algorithm
- Does not require number of clusters

FREY, B. J.; DUECK, D. Clustering by passing messages between data points. Science, v. 315, p. 2007, 2007.

Affinity Propagation

Table 4.2: Labeled cluster centers

X	у	topic
19.699291	-28.117729	tangerine-events
-8.711248	21.906485	purple-occurrences
11.325381	3.893677	yellow-episodes
•••	•••	

User topics frequency distribution

Experiments

Globo.com dataset

- Approximately 2.8 millions news clicks
- More than 300 thousand users
- 45 thousand news articles
- 250 dimensional feature matrix

MOREIRA, G. de S. P.; FERREIRA, F.; CUNHA, A. M. da. News session-based recommendations using deep neural networks.

Globo.com dataset

Table 5.1: Globo dataset sample as Dataframe

click_timestamp	user_id	article_id	click_country	click_region	
chek_timestamp	usci_id	articic_id	chek_country	chek_legion	•••
	•••	•••	•••	•••	
1506826800026	59	234853	1	21	
1506826801702	79	159359	1	13	•••
1506826804207	154	96663	1	25	
	•••				

Session Simulation

- Known user sessions concatenation
- It was considered that most users do not share account
- Sessions with more than 10 clicks

Session Simulation

Table 5.3: Simulated session sample with desired cut in gray

8-	click_timestamp	user_id	x_centroid	y_centroid	distance
11	1507987156229	6207	-8.487595	3.206146	43.517998
12	1507988999717	6207	3.864952	-3.751176	27.925744
13	1507989029717	6207	5.004131	3.442250	7.283071
14	1507061447189	143259	25.503668	-1.358489	21.054171
15	1507061615464	143259	18.530073	-15.994876	16.212799
16	1507061615464	143259	18.530073	-15.994876	0.000000
•••				•••	

Session Simulation

Table 5.3: Simulated session sample with desired cut in gray

	click_timestamp	user_id	x_centroid	y_centroid	distance
		•••			•••
11	1507987156229	6207	-8.487595	3.206146	43.517998
12	1507988999717	6207	3.864952	-3.751176	27.925744
13	1507989029717	6207	5.004131	3.442250	7.283071
14	1507061447189	143259	25.503668	-1.358489	21.054171
15	1507061615464	143259	18.530073	-15.994876	16.212799
16	1507061615464	143259	18.530073	-15.994876	0.000000
•••					

$$d(x, y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Table 5.3: Simulated session sample with desired cut in gray

	click_timestamp	user_id	x_centroid	y_centroid	distance
		•••			
11	1507987156229	6207	-8.487595	3.206146	43.517998
12	1507988999717	6207	3.864952	-3.751176	27.925744
13	1507989029717	6207	5.004131	3.442250	7.283071
14	1507061447189	143259	25.503668	-1.358489	21.054171
15	1507061615464	143259	18.530073	-15.994876	16.212799
16	1507061615464	143259	18.530073	-15.994876	0.000000
		•••	•••	•••	•••

Table 5.3: Simulated session sample with desired cut in gray

	click_timestamp	user_id	x_centroid	y_centroid	distance
		•••			
11	1507987156229	6207	-8.487595	3.206146	43.517998
12	1507988999717	6207	3.864952	-3.751176	27.925744
13	1507989029717	6207	5.004131	3.442250	7.283071
14	1507061447189	143259	25.503668	-1.358489	21.054171
15	1507061615464	143259	18.530073	-15.994876	16.212799
16	1507061615464	143259	18.530073	-15.994876	0.000000
•••				•••	

Table 5.3: Simulated session sample with desired cut in gray

	click_timestamp	user_id	x_centroid	y_centroid	distance
		••••			
11	1507987156229	6207	-8.487595	3.206146	43.517998
12	1507988999717	6207	3.864952	-3.751176	27.925744
13	1507989029717	6207	5.004131	3.442250	7.283071
14	1507061447189	143259	25.503668	-1.358489	21.054171
15	1507061615464	143259	18.530073	-15.994876	16.212799
16	1507061615464	143259	18.530073	-15.994876	0.000000
•••					

Cutoff heuristic

Cutoff

Current distance

Cutoff heuristic

Cutoff

Current distance

Cutoff heuristic

Cutoff

Current distance

Error metrics

Table 5.2: Error normalization map from desired cutoff index

of manifest of map from					
index	user_id	error			
0	111	1			
1	111	0.66			
2	111	0.33			
3	888	0			
4	888	0.16			
5	888	0.33			
6	888	0.5			
7	888	0.66			
8	888	0.83			
9	888	1			

Error metrics

Table 5.2: Error normalization map from desired cutoff index

Session	Α

Session B

ror n	or normalization map from desire				
	index	user_id	error		
	0	111	1		
	1	111	0.66		
	2	111	0.33		
	3	888	0		
	4	888	0.16		
	5	888	0.33		
	6	888	0.5		
	7	888	0.66		
	8	888	0.83		
	9	888	1		

Does temporal ordering matters?

Temporal Disambiguation

Time ordered

timestamp	user_id	topic	
Α	111	teal_subjects	
В	111	teal_subjects	
С	111	fuscia_disasters	
D	999	red_events	
E	999	yellow_plots	
F	999	orange_gossips	

Temporal Disambiguation

Time shuffled

timestamp	user_id	topic			
С	111	fuscia_disasters			
Α	111	teal_subjects			
В	111	teal_subjects			
F	999	orange_gossips			
Е	999	yellow_plots			
D	999	red_events			

Accuracy performance

Accuracy performance

- Filter: Sessions with more than 10 clicks
- 32 thousand sessions
- For each cutoff, an array with errors from each session split

Tuning

Error standard deviation

55.78

60.00

0.707

0.814

0.320

0.287

Table 5.4: Error metrics, session ordered by timestamp 5.4a vs shuffled 5.4b

	(a)			(b)	
cutoff dist.	error mean	error std	cutoff dist.	error mean	error std
1.00	0.933	0.053	1.00	0.939	0.045
5.21	0.932	0.054	5.21	0.938	0.048
9.42	0.922	0.071	9.42	0.933	0.057
13.64	0.917	0.078	13.64	0.927	0.663
17.85	0.901	0.098	17.85	0.912	0.088
22.07	0.877	0.126	22.07	0.893	0.114
26.28	0.857	0.151	26.28	0.867	0.144
30.5	0.812	0.191	30.5	0.827	0.184
34.71	0.765	0.230	34.71	0.778	0.223
38.92	0.681	0.266	38.92	0.710	0.264
43.14	0.629	0.286	43.14	0.646	0.289
43.35	0.611	0.301	43.35	0.615	0.310
51.57	0.630	0.311	51.57	0.631	0.322

55.78

60.00

0.721

0.813

0.325

0.298

1.00

5.21

9.42

13.64

17.85

22.07

26.28

30.5

34.71

38.92

43.14

43.35

51.57

55.78

60.00

(a) cutoff dist. error mean

0.933

0.932

0.922

0.917

0.901

0.877

0.857

0.812

0.765

0.681

0.629

0.611

0.630

0.707

0.814

error std

0.053

0.054

0.071

0.078

0.098

0.126

0.151

0.191

0.230

0.266

0.286

0.301

0.311

0.320

0.287

Table 5.4: Error metrics, session ordered by timestamp 5.4a vs shuffled 5.4b

0.045 5.21 0.938 0.048 9.42 0.933 0.057 13.64 0.927 0.663 17.85 0.912 0.0880.893 22.07 0.114 26.28 0.867 0.144 30.5 0.827 0.184 34.71 0.778 0.223 38.92 0.710 0.264 43.14 0.646 0.289

0.615

0.631

0.721

0.813

(b)

error mean

error std

0.310

0.322

0.325

0.298

0.939 1.00

cutoff dist.

43.35

51.57

55.78

60.00

How specific a topic can be

without damaging accuracy?

Specificist

Generalist

Damping Factor

Table 5.5: damping factor effect on no of clusters

damping	n° of clusters
0.5	4771
0.553	4716
0.606	2984
0.66	1146
0.766	91
0.82	152

Damping Factor

Table 5.5: damping factor effect on no of clusters

<u> </u>		1		
damping	n° of clusters			
0.5	4771	Specificm		
0.553	4716	Specifism		
0.606	2984			
0.66	1146			
0.766	91			
0.82	152	Generalism		

Mean error

	1.0	5.214	9.429	3.643	7.857	2.071	6.286	30.5	4.714	8.929	3.143	7.357	1.571	5.786	0.09		
0.90	J. J. J. J	1	1	1	1	3.000	1	0.010	1	3.055	3.055	0.015	3.033	1	0.019	,	
0.98 -	0 935	0.932	0.923	0918	0.902	0.880		0.818	0.770	0 699	0.635	0.613	0.639	0 704	0.819		
0.927 -	- 0.933	0.933	0.922	0.916	0.902	0.880		0.819	0.758	0.687	0.633	0.614	0.630	0.707	0.812		- 0.66
0.873 -	0.934	0.932	0.922	0.916	0.901	0.882		0.814	0.770	0.693	0.632	0.613	0.632	0.710	0.810		
0.82 -	0.936	0.935	0.922	0.916	0.901	0.880		0.825	0.772	0.699	0.634	0.613	0.633	0.710	0.821		- 0.72
0.767 -	0.936	0.929	0.923	0.916	0.900	0.881		0.822	0.769	0.698	0.633	0.614	0.631	0.697	0.807		
0.713 -	0.934	0.929	0.923	0.915	0.902	0.881		0.817	0.774	0.694	0.628	0.613	0.629	0.699	0.844		- 0.78
0.66 -	0.937	0.929	0.923	0.916	0.899	0.879		0.823	0.770	0.701	0.634	0.617	0.634	0.699	0.839		- 0.04
0.607 -	0.941	0.930	0.922	0.917	0.902	0.883		0.822	0.771	0.705	0.637	0.615	0.633	0.711	0.816		- 0.84
0.553 -	0.943	0.930	0.922	0.915	0.902	0.879		0.822	0.768	0.699	0.629	0.613	0.655	0.737	0.853		- 0.90
0.5 -	- 0.943	0.930	0.923	0.916	0.902	0.880		0.824	0.770	0.705	0.637	0.613	0.633	0.695	0.783		

Mean std

	87 0.225 0.258 0. I	0.285 0.301 0.	.313 0.317	0.285	- 0.05
0.90 - 0.000 0.000 0.071 0.078 0.097 0.126 0.149 0.18	97 0225 0250 0	205 0 201 0	212 0217	0.205	- 0.05
0.98 - 0.050 0.056 0.071 0.078 0.097 0.126 0.149 0.18					
0.927 - 0.053 0.054 0.073 0.080 0.097 0.126 0.150 0.18	87 0.229 0.260 0.	0.284 0.301 0.	.310 0.318	0.288	
0.873 -0.053 0.055 0.072 0.081 0.100 0.123 0.151 0.15	90 0.226 0.262 0.	0.285 0.301 0.	.311 0.318	0.290	- 0.10
0.82 - 0.048 0.051 0.072 0.081 0.100 0.126 0.150 0.18	84 0.224 0.262 0.	0.287 0.301 0.	.312 0.320	0.284	
0.767 - 0.049 0.059 0.071 0.080 0.101 0.125 0.149 0.18	86 0.227 0.263 0.	0.302 0.302	.311 0.318	0.290	- 0.15
0.713 - 0.051 0.061 0.071 0.081 0.098 0.122 0.150 0.18	88 0.224 0.261 0.	0.285 0.302 0.	.310 0.318	0.269	- 0.20
0.66 - 0.047 0.060 0.071 0.081 0.102 0.127 0.152 0.18	86 0.226 0.262 0.	0.285 0.300 0.	.310 0.318	0.274	0.20
0.607 - 0.039 0.058 0.071 0.078 0.098 0.121 0.151 0.18	87 0.224 0.258 0.	0.284 0.299 0.	.311 0.317	0.287	- 0.25
0.553 - 0.032 0.059 0.071 0.081 0.098 0.125 0.154 0.18	87 0.227 0.260 0.	0.302 0.	.315 0.310	0.264	
0.5 - 0.031 0.058 0.070 0.080 0.100 0.125 0.151 0.18	86 0.227 0.264 0.	0.286 0.299 0.	.314 0.321	0.305	- 0.30

Matrix Factorization

Alternate Least Squares (Pyspark)

Table 5.6: ALS: Read frequency per topic

		<u> </u>
user_id	topic_alias	read_frequency
26340	purple-articles	7
26340	rose-stories	5
58277	cyan-contents	1
	•••	

Alternate Least Squares (Pyspark)

Table 5.7: Alternating Least Squares measurements							
user_id	user_id_to_predict	prediction_mean	prediction_std				
413	413	0.83287	0.2799				
45502	413	0.86549	0.25900				
12897	12897	0.84201	0.3291				
16695	12897	0.91515	0.27717				
2930	2930	0.79370	0.34552				
9261	2930	0.87126	0.2551				
20001	20001	0.8777	0.24580				
6344	20001	0.91090	0.2383				
62025	62025	0.75506	0.35445				
19864	62025	0.47764	0.27196				
43017	43017	0.83342	0.27467				
21356	43017	0.81031	0.28030				
3391	3391	0.85998	0.2949				
681	3391	0.87366	0.30739				
11521	11521	0.61621	0.3742				
59193	11521	1.01384	0.5024				
11359	11359	0.88445	0.2596				
23036	11359	0.91379	0.24409				

Conclusion

- Event-driven nature of news
- Looming need for privacy
- Need for Anonymized Recommender systems
- Need for Anonymized Data reliability

Thank you

Questions?