概率论与数理统计总复习

安徽财经大学

统计与应用数学学院

目录

- 🕕 随机事件与概率
- ② 随机变量及其分布
- 3 多维随机变量
- 4 随机变量的数字特征
- 5 大数定律与中心极限定理
- 6 数理统计基础

- 1. 利用全概率公式, 求复杂事件的概率 (参考例 1.4.4 和例 1.4.5); 利用贝叶斯公式, 确定引起事件 A 发生的诸多原因事件中, 哪一个出现的可能性最大. (参考例 1.4.6 和例 1.4.7)
- 2. 由随机变量的密度函数, 求密度函数中的未知参数, 随机变量落入某一区间的概率和随机变量的分布函数. 也要会由分布函数求密度函数. (参考例 2.1.6, 例 2.1.7, 例 2.1.8 和习题 2.1(8))
- 3. 会求二维随机变量的联合分布律 (函数) 和边际 (缘) 分布律 (边际 密度函数), 会判断两个随机变量是否相互独立. (参考习题 3.1(9), 习题 3.2(3), 例 3.3.2)
- 4. 会求随机变量的数学期望和方差, 会求两个随机变量的协方差和相 关系数. (参考复习题四解答题 (5))
- 5. 利用独立同分布中心极限定理或棣莫弗·拉普拉斯中心极限定理, 近似计算某一事件发生的概率. (参考例 5.4.1 和例 5.4.2)
- 6. 掌握 χ^2- 分布、t- 分布和 F- 分布的构造, 会验证统计量服从何种分布? (参考例 6.3.3 和例 6.3.4)
- 7. 利用矩估计法或极大似然估计法对总体分布中的未知参数进行估计. (参考习题 7.1 中的 (2) 和 (3))

- 1. 概率的性质, 条件概率, 概率的乘法公式, 事件的独立性
- 1. 伯努利试验中事件 A 出现 k 次的概率
- 常见离散型随机变量及其分布列,连续型随机变量及其密度函数和分布函数.
- 2. 正态随机变量的标准化
- 3. 随机变量函数的分布
- 4. 常见分布的期望和方差
- 4. 期望、方差、协方差和相关系数的性质
- 5. 切比雪夫不等式
- 6. 常用的抽样分布
- 7. 统计量的判断、统计量的无偏性和有效性

第1章 随机事件与概率

- 随机试验, 样本空间, 随机事件, 互不相容事件与对立事件.
- 概率的公理化定义,概率的频率定义,概率的统计定义,概率的古典 定义,概率的几何定义。
- 概率的性质, 有限可加性, 单调性, 减法公式, 加法公式.
- 条件概率,乘法公式,全概率公式,贝叶斯公式。
- 事件的独立性, n 重伯努利试验.

1. 随机试验, 样本空间, 随机事件

随机事件的关系:

句含: $A \subset B$: 相等: A = B: 互不相容: $A \cap B = \emptyset$.

随机事件的运算:

和: $A \cup B$; 交: $A \cap B$ (或者 AB); 差: A - B (或者 $A\overline{B}$); 对立事件: \overline{A}

随机事件的运算律: 与集合的运算律相仿

交換律: $A \cup B = B \cup A$, $A \cap B = B \cap A$.

结合律: $A \cup (B \cup C) = (A \cup B) \cup C$, $A \cap (B \cap C) = (A \cap B) \cap C$.

分配律: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$,

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C).$

对偶律: $\overline{A \cup B} = \overline{A} \cap \overline{B}, \overline{A \cap B} = \overline{A} \cup \overline{B}.$

符号	概率论	集合论	
Ω	样本空间, 必然事件	全集	
Ø	不可能事件	空集	
ω	样本点	元素	
$\{\omega\}$	基本事件	单点集	
A	随机事件	子集	
\overline{A}	事件 A 的对立事件	A 的补集	
$A \subset B$	事件 A 是事件 B 的子事件	A 是 B 的子集	
A = B	事件 A 与事件 B 相等	A 与 B 相等	
$A \cup B$	事件 A 与 B 至少有一个发生	A 与 B 的并集	
$A \cap B$	事件 A 与事件 B 同时发生	A 与 B 的交集	
$A \cap B = \emptyset$	事件 A 与事件 B 互不相容	A 与 B 的交为空集	
A - B	事件 A 发生且事件 B 不发生	A 与 B 的差 🌋	

2. 概率的基本性质

• 概率应满足的三个公理:

非负性公理: $P(A) \geqslant 0$;

规范性公理: $P(\Omega) = 1$;

可列可加性公理: 对于两两互不相容的可列无穷多个事件

 $A_1, A_2, \cdots, A_n, \cdots$, 有

$$P(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} P(A_n).$$

• 常用性质: $P(\emptyset) = 0$;

2. 概率的基本性质

- 有限可加性: 若 A_1, A_2, \cdots, A_n 为两两互不相容事件, 则有 $P(\bigcup_{k=1}^n A_k) = \sum_{k=1}^n P(A_k)$.
- 减法公式: P(B-A) = P(B) P(AB), 特别地: $A \subset B$ 有 P(B-A) = P(B) P(A).
- 加法公式: 对于任意两个事件 A, B 有 $P(A \cup B) = P(A) + P(B) P(AB)$.
- 对立事件的概率关系: $P(\overline{A}) = 1 P(A)$.

3. 概率的计算

• 频率; 古典概率 $P(A) = \frac{m}{n}$; 几何概率 $P(A) = \frac{S_A}{S_\Omega}$.

4. 条件概率及其三大公式

- 条件概率: $P(A \mid B) = \frac{P(AB)}{P(B)} \ (P(B) > 0).$
- 乘法公式: $P(AB) = P(B)P(A \mid B)$,
- 全概率公式: A_1, A_2, \cdots, A_n 是 Ω 的一个分割, 则有

$$P(B) = P(\bigcup_{i=1}^{n} (A_i B)) = \sum_{i=1}^{n} P(A_i B) = \sum_{i=1}^{n} P(A_i) P(B \mid A_i).$$

• 贝叶斯 (Bayes) 公式:

$$P(A_i \mid B) = \frac{P(B \mid A_i)P(A_i)}{\sum_{i=1}^{n} P(B \mid A_j)P(A_j)}, \quad i = 1, 2, \dots, n.$$

5. 独立性

- 两个事件独立: P(AB) = P(A)P(B); 多个事件的独立.
- 伯努利 (Bernoulli) 试验; n 重独立重复试验; n 重伯努利试验.
- n 重伯努利试验中, A 出现次的概率:

$$p_n(k) = \binom{n}{k} p^k (1-p)^{n-k}, k = 0, 1, 2, \dots, n.$$

第2章 随机变量及其分布

- 随机变量的分布函数及其性质.
- 离散型型随机变量的分布列及其性质,连续型随机变量的密度函数 f(x) 及其性质.
- 常见的离散型随机变量及分布列,常见的连续型随机变量的密度函数和分布函数。
- 用分布函数法或公式法求随机变量函数的分布.

随机变量及其分布

- (1) 随机变量的分布函数及其性质: $F(x) = P(X \le x)$. 性质: 单调不减、有界性 $(0 \le F(x) \le 1)$ 和右连续性 $(F(x_0 + 0) = F(x_0))$. $P(a < X \le b) = F(b) F(a)$.
- (2) 两类重要的随机变量: $F(x) = \sum_{x_i \leq x} P(X = x_i)$. 连续型随机变量: $F(x) = \int_{-\infty}^{x} f(x) dx$.

- (3) 离散型型随机变量通常用分布列 $p_i = P(X = x_i)$ 来描述, 具有如下性质:
 - 非负性: p_i ≥ 0.
 - 正则性: $\sum_{i=1}^{\infty} p_i = 1$.
- (4) 连续型随机变量常用密度函数 f(x) 来描述, 具有如下性质:
 - 非负性: f(x) ≥ 0.
 - 正则性: $\int_{-\infty}^{+\infty} f(x) dx = 1$.
 - $P(a < X < b) = \int_a^b f(x) dx$.
 - 若 f(x) 在点 x 连续, 则有 F'(x) = f(x).

(5) 常见的离散型随机变量及分布列:

- 单点分布: P(X = a) = 1.
- 两点分布: P(X = a) = 1 p, P(X = b) = p.
- 0-1 分布 b(1,p): $P(X=k)=p^k(1-p)^{1-k}$, k=0,1.
- 二项分布 b(n,p): $P(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$, $k=0,1,\cdots,n$.
- 泊松分布 $P(\lambda)$: $P(X=k)=\frac{\lambda^k}{k!}\mathrm{e}^{-\lambda}$, $k=0,1,2,\cdots,\ \lambda>0$.
- 几何分布 Ge(p): $P(X=k)=pq^{k-1}$, q=1-p, $k=1,2,\cdots$.

- (6) 常见的连续型分布及其密度函数.
 - 均匀分布 U(a, b):

$$p(x) = \begin{cases} \frac{1}{b-a}, & a < x < b; \\ 0, &$$
其他.
$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & a \leqslant x < b, \\ 1, & x \geqslant b. \end{cases}$$

指数分布 Exp(λ):

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x > 0, \\ 0, & x \leqslant 0. \end{cases} \quad F(x) = \begin{cases} 1 - e^{-\lambda x}, & x > 0, \\ 0, & x \leqslant 0. \end{cases}$$

• 正态分布 $N(\mu, \sigma^2)$:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad F(x) = \frac{1}{\sqrt{2\pi}\sigma} \int_{-\infty}^{x} e^{-\frac{(t-\mu)^2}{2\sigma^2}} dt.$$

• 标准正态分布 N(0,1): $\varphi(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, $\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

- (7) 随机变量的函数分布问题: 已知随机 X 分布, 求它的函数 Y = g(X) 的分布?
 - 分布函数法.
 - 公式法.

定理

设 X 是连续型随机变量, 其密度函数为 $f_X(x)$. Y = g(X) 是另一个随机变量. 若函数 y = g(x) 是严格单调函数, 其反函数 h(y) 有连续的导函数,则 Y = g(X) 的密度可以表示为:

$$f_Y(y) = \begin{cases} f_X[h(y)] \cdot |h'(y)|, & a < y < b, \\ 0, &$$
 其他.

其中 $a = \min\{g(-\infty), g(+\infty)\}, b = \max\{g(-\infty), g(+\infty)\}.$

17 / 77

4 D S 4 D S 4 E S 4 E S E

第3章 多维随机变量

- 联合分布函数的定义和性质, 二维离散型随机变量的联合分布列, 二维连续型随机变量的联合密度 *f*(*x*, *y*) 及其性质,
- 对于二维随机变量,联合分布函数唯一确定两个边际分布函数,联合密度函数唯一确定两个边际密度函数,联合分布列唯一确定两个边际分布列,反之不成立。当 X, Y 相互独立时,边际分布可以唯一确定联合分布。
- 两个随机变量相互独立的充要条件.
- 两个独立的随机变量和的分布, 卷积公式.
- 有限个相互独立的正态随机变量的线性组合(组合系数不全为零) 仍服从正态分布。

第3章 多维随机变量

- (1) 常见的二维随机变量: 二维离散型随机变量和二维连续型随机变量.
- (2) 二维随机变量的分布函数: $F(x,y) = P\{X \le x, Y \le y\}$, 联合分布函数的性质: 单调不减性、有界性、右连续性、非负性.
- (3) 二维离散型随机变量的联合分布列描述, 有性质: 非负性: $p_{ij} \geqslant 0$; 规范性: $\sum_{i,j} p_{ij} = 1$.
- (4) 二维连续型随机变量的联合密度 f(x, y) 描述, 有性质
 - 非负性: $f(x, y) \ge 0$, $(-\infty < x, y < +\infty)$.
 - 正则性: $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(u, v) du dv = 1$.
 - $P((X, Y) \in D) = \iint_D f(x, y) dxdy$.
 - 若 f(x,y) 在点 (x,y) 处连续,则 $f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$.

(5) 边际分布函数、边际分布列和边际密度函数

$$F_X(x) = \lim_{y \to +\infty} F(x, y) = F(x, +\infty),$$

$$F_Y(y) = \lim_{x \to +\infty} F(x, y) = F(+\infty, y).$$

$$p_{i} = P(X = x_{i}) = \sum_{j} P(X = x_{i}, Y = y_{j}) = \sum_{j} p_{ij}, i = 1, 2, \cdots,$$

$$p_{\cdot j} = P(Y = y_j) = \sum_i P(X = x_i, Y = y_j) = \sum_i p_{ij}, \ j = 1, 2, \cdots,$$

$$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x} = \int_{-\infty}^{+\infty} f(x, y) \mathrm{d}y.$$

$$f_Y(y) = \frac{\mathrm{d}F_Y(y)}{\mathrm{d}y} = \int_{-\infty}^{+\infty} f(x, y) \mathrm{d}x.$$

- (6) 随机变量 X, Y 相互独立的三个充要条件:
 - $F(x, y) = F_X(x)F_Y(y)$.
 - 对于二维离散型变量: $P\{X = x_i, Y = y_j\} = P\{X = x_i\}P\{Y = y_j\}.$
 - 对于二维连续型变量: $f(x, y) = f_X(x)f_Y(y)$.
- (7) 两个随机变量函数的分布. 分布函数法, 或者用卷积公式求 Z = X + Y 的分布.

$$f_Z(z) = \int_{-\infty}^{+\infty} f(z - y, y) dy, \quad f_Z(z) = \int_{-\infty}^{+\infty} f(x, z - x) dx.$$

• 卷积 (Convolution) 公式 当 X 和 Y 相互独立时,设 (X,Y) 关于 X,Y 的边际概率密度分别为 $f_X(x),f_Y(y)$,则有

$$f_Z(z) = f_X * f_Y = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dy$$

• 若 X, Y 相互独立且 $X \sim N(\mu_1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2),$ 则

$$X + Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2).$$

• $M = \max(X, Y)$ 及 $N = \min(X, Y)$ 的分布

$$F_M(z) = F_X(z)F_Y(z).$$

$$F_N(z) = 1 - (1 - F_X(z))(1 - F_Y(z)).$$

第 4 章 随机变量的数字特征

- 随机变量的期望和方差的定义、性质和常用的计算公式.
- 常见分布的定义、期望和方差.
- 两个随机变量的协方差和相关系数的定义、性质、独立与不相关之间的关系。
- 了解随机变量的矩及协方差矩阵.

随机变量数字特征的定义

• 期望的定义

$$E(X) = \sum_{k=1}^{+\infty} x_k p_k; \quad E(X) = \int_{-\infty}^{+\infty} x f(x) dx;$$

• 方差的定义

$$D(X) = \sum_{k=1}^{+\infty} [x_k - E(X)]^2 p_k; \quad D(X) = \int_{-\infty}^{+\infty} [x - E(X)]^2 f(x) dx.$$

协方差的定义:

$$cov(X, Y) = E\{[X - E(X)][Y - E(Y)]\};$$

• 相关系数的定义

$$\rho_{XY} = \frac{\text{cov}(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}}.$$

期望和方差的性质

- (1) E(c) = c, D(c) = 0, 其中 c 是常数;
- (2) $E(cX) = cE(X), D(cX) = c^2D(X);$
- (3) E(X + Y) = E(X) + E(Y), E(X Y) = E(X) E(Y);
- (4) X, Y 相互独立 $\Rightarrow X$, Y 不相关 $\Leftrightarrow E(XY) = E(X)E(Y)$ $\Leftrightarrow D(X \pm Y) = D(X) + D(Y) \Leftrightarrow \rho = 0 \Leftrightarrow cov(X, Y) = 0$.
- (5) 数学期望表示的是随机变量取值的"加权平均".
- (6) 方差是描述随机变量的取值偏离其数学期望的程度.

协方差和相关系数的性质

- $(1) \operatorname{cov}(X, X) = D(X);$
- (2) $\operatorname{cov}(X, Y) = \operatorname{cov}(Y, X);$
- (3) 若 X 与 Y 相互独立, 则 cov(X, Y) = 0;
- (4) 若 a, b 为常数, 则 $cov(aX, bY) = ab \cdot cov(X, Y)$;
- (5) $cov(X_1 + X_2, Y) = cov(X_1, Y) + cov(X_2, Y);$
- (6) 若 a 为常数, 则 cov(a, X) = 0.
- (7) $|\rho_{XY}| \leq 1$; $|\rho_{XY}| = 0$ 时称 X, Y 不相关;

$$|\rho_{XY}| = 1 \Leftrightarrow P\{Y = aX + b\} = 1, (a \neq 0).$$

- (8) X, Y 的相关系数描述了 X, Y 之间线性关系的紧密程度.
- (9) 若 (X, Y) 服从二维正态分布, 那么 X 和 Y 相互独立的充要条件是 $\rho=0$, 即 X 与 Y 不相关.

安徽财经大学

相互独立与线性无关、线性相关之间的关系

常用的计算公式

- 方差计算的常用公式: $D(X) = E(X^2) E^2(X)$.
- 方差与协方差的关系式: D(X) = cov(X, X)

$$D(X \pm Y) = D(X) + D(Y) \pm 2\operatorname{cov}(X, Y).$$

- 协方差的计算公式: cov(X, Y) = E(XY) E(X)E(Y);
- 柯西 许瓦兹不等式: $[E(XY)]^2 \leqslant E(X^2)E(Y^2)$.

分布	分布律或密度函数	期望	方差
b(1, p)	$P(X=k) = p^k(1-p)^{1-k}, k=0,1$	p	p(1 - p)
b(n,p)	$P(X=k) = C_n^k p^k (1-p)^{n-k}, \ k=0,1,\cdots,n$	np	np(1-p)
$P(\lambda)$	$P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}, \ k = 0, 1, 2, \dots, \ \lambda > 0$	λ	λ
Ge(p)	$P(X=k) = p(1-p)^{k-1}, k = 1, 2, \cdots$	$\frac{1}{p}$	$\frac{1-p}{p^2}$
U(a,b)	$f(x) = \frac{1}{b-a}$, $a < x < b$; $f(x) = 0$, 其他	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$
$Exp(\lambda)$	$f(x) = \lambda e^{-\lambda x}, \ x > 0; \ f(x) = 0, \ x \le 0$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$N(\mu, \sigma^2)$	$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < x < +\infty$	μ	σ^2

随机变量函数的数学期望

(1) 若 X 的分布列为 $P(X = x_k) = p_k$, $k = 1, 2, \dots$, 则 Y = g(X) 的期望

$$E(Y) = E[g(X)] = \sum_{k=1}^{+\infty} g(x_k) p_k.$$

(2) X 的概率密度为 f(x), 则有 Y = g(X) 的期望为

$$E(Y) = E[g(X)] = \int_{-\infty}^{+\infty} g(x)f(x)dx.$$

(3) 设 (X, Y) 的联合分布列为 $P\{X = x_i, Y = y_j\} = p_{ij}, (i, j = 1, 2, \cdots)$ 时,则有 Z = g(X, Y) 的数学期望为

$$E(Z) = E[g(X, Y)] = \sum_{i} \sum_{j} g(x_i, x_j) p_{ij}.$$

(4) 当 (X, Y) 的概率密度为 f(x, y) 时,则有 Z = g(X, Y) 的数学期望为

$$E(Z) = E[g(X, Y)] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} g(x, y) f(x, y) dx dy.$$

第5章 大数定律与中心极限定理

- 会用契比雪夫不等式估计随机变量取值落在某个区间的概率.
- 了解依概率收敛和依分布收敛的定义.
- 理解契比雪夫大数定律、伯努利大数定律、辛钦大数定律的内涵, 注意三大定律条件的不同.
- 掌握独立同分布的中心极限定理和棣莫弗·拉普拉斯中心极限定理, 会用中心极限定理近似计算事件发生的概率.

定理(契比雪夫不等式)

设随机变量 X 存在有限方差 D(X), 则有对任意 $\varepsilon > 0$, 有

$$P\{|X - E(X)| \ge \varepsilon\} \le \frac{D(X)}{\varepsilon^2}.$$

$$P\{|X - E(X)| < \varepsilon\} \geqslant 1 - \frac{D(X)}{\varepsilon^2}.$$

定理(契比雪夫不等式的另一种形式)

设随机变量 X 的期望为 μ , 存在有限方差 σ^2 , k > 0, 则

$$P\{|X - \mu| \geqslant k\sigma\} \leqslant \frac{1}{k^2}.$$

$$P\{|X-\mu|\geqslant 2\sigma\}\leqslant \frac{1}{4}, P\{|X-\mu|\geqslant 3\sigma\}\leqslant \frac{1}{9}, P\{|X-\mu|\geqslant 4\sigma\}\leqslant \frac{1}{16}.$$

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ト 9 Q (C)

定义(依概率收敛)

设 $\{X_n\}$ 为一随机变量序列, X 为一随机变量, 如果对于任意的 $\varepsilon>0$ 有

$$\lim_{n \to \infty} P\{|X_n - X| < \varepsilon\} = 1,$$

则称 $\{X_n\}$ 依概率收敛于 X, 记作 $X_n \xrightarrow{P} X$.

定义(依分布收敛)

设一个随机变量序列 $\{X_n\}$ 的分布函数列为 $\{F_n(x)\}$, F(x) 为随机变量 X 的分布函数, 若在 F(x) 的任意连续点 x 都有

$$\lim_{n\to\infty} F_n(x) = F(x),$$

则称 $\{F_n(x)\}$ 弱收敛于 F(x), 记作 $F_n(x) \xrightarrow{W} F(x)$. 也称随机变量序列 $\{X_n\}$ 依分布收敛于 X, 记作 $X_n \xrightarrow{L} X$.

4 D > 4 D > 4 E > 4 E > E = 99

定理 (契比雪夫 (Chebyshev) 大数定律)

设 X_1, X_2, \cdots 是两两不相关的随机变量序列, 各有数学期望 $E(X_1)$, $E(X_2), \cdots$ 及方差 $D(X_1), D(X_2), \cdots$, 并且对于所有 $i=1,2,\cdots$ 都有 $D(X_i) < C$, (C 是与 i 无关的常数), 则 X_1, X_2, \cdots 服从大数定律, 简记为 $X_n \sim LLN$. 即对任给 $\varepsilon > 0$, 有

$$\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} E(X_i) \right| < \varepsilon \right\} = 1.$$

定理 (伯努利 (Bernoulli) 大数定律)

设 μ_A 是 n 次独立重复试验中事件 A 发生的次数. p 是事件 A 在每次试验中发生的概率,则对于任意正数 $\varepsilon>0$,有

$$\lim_{n \to \infty} P\left\{ \left| \frac{\mu_A}{n} - p \right| < \varepsilon \right\} = 1.$$

マログス団を大きを大きと、第二人

概率论与数理统计 安

定理(马尔可夫大数定律)

对随机变量序列 X_1, X_2, \dots , 若马尔可夫条件 $\frac{1}{n^2} D(\sum_{i=1}^n X_i) \to 0$ 成立, 则序列 X_1, X_2, \dots 服从大数定律, 即对任意的 $\varepsilon > 0$, 有

$$\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \frac{1}{n} \sum_{i=1}^{n} E(X_i) \right| < \varepsilon \right\} = 1.$$

定理 (辛钦 (Khinchin) 大数定律)

设随机变量 $X_1,X_2,\cdots,X_n,\cdots$ 相互独立, 服从同一分布, 且具有数学期望 $E(X_k)=\mu$ $(k=1,2,\cdots)$, 则序列 $X_n\sim LLN$. 即对任给 $\varepsilon>0$, 有

$$\lim_{n \to \infty} P\left\{ \left| \frac{1}{n} \sum_{i=1}^{n} X_i - \mu \right| < \varepsilon \right\} = 1.$$

图: 三个大数定律的条件关系

定理(独立同分布的中心极限定理)

设随机变量 $X_1, X_2, \dots, X_n, \dots$ 相互独立, 服从同一分布, 且具有数学期 望 $E(X_k) = \mu$ 和方差 $D(X_k) = \sigma^2 > 0$, $(k = 1, 2, \dots)$. 记

$$Y_n = \frac{X_1 + X_2 + \dots + X_n - n\mu}{\sigma\sqrt{n}},$$

则对于任意实数 y 满足

$$\lim_{n \to \infty} P\{Y_n \leqslant y\} = \int_{-\infty}^{y} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(y),$$

即: $\{X_n\}$ 服从中心极限定理, 简记为 $X_n \sim CLT$.

当 n 充分大时, 近似地有 $Y_n \sim N(0,1)$, 或者, 当 n 充分大时, 近似地有

$$\sum_{k=1}^n X_k \sim \mathit{N}(n\mu, n\sigma^2), \ \ \ \, \overrightarrow{\mathbf{x}} \ \frac{1}{n} \sum_{k=1}^n X_k \sim \mathit{N}(\mu, \frac{\sigma^2}{n}).$$

定理 (棣莫佛 - 拉普拉斯 (De Moivre-Laplace) 中心极限定理)

设随机变量 X 服从参数为 n, p (0 的二项分布, 则对于任意的 <math>x, 有

$$\lim_{n \to \infty} P\left\{ \frac{X - np}{\sqrt{np(1 - p)}} \leqslant x \right\} = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt = \Phi(x).$$

第6章 数理统计基础

- 数理统计中的一些基本概念,如总体、样本、样本容量、简单随机。 抽样、经验分布函数、统计量等概念.
- 两个重要统计量: 样本均值 $\frac{1}{\xi} = \frac{1}{n} \sum_{i=1}^{n} \xi_i$ 与样本方差

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (\xi_{i} - \overline{\xi})^{2}.$$

- 数理统计中常用三大抽样分布: χ^2 分布、t 分布、F 分布的定 义、构造、密度函数的图像、性质、查分布表确定上 α 分位点.
- 抽样分布定理,正态总体统计量样本均值与样本方差的分布。

定理 (6.3.1)

若 $\xi_1, \xi_2 \cdots, \xi_n$ 相互独立,且都服从标准正态分布 N(0,1),则

$$\chi^2 = \sum_{i=1}^n \xi_i^2 \sim \chi^2(n).$$

定理 (6.3.2)

若 $\xi \sim N(0,1), \eta \sim \chi^2(n)$, 且 ξ 与 η 相互独立, 则

$$t = \frac{\xi}{\sqrt{\eta/n}} \sim t(n).$$

定理 (6.3.3)

设 $\xi \sim \chi^{2}\left(n_{1}\right), \eta \sim \chi^{2}\left(n_{2}\right)$, 且 ξ 和 η 相互独立, 则

$$F = \frac{\xi/n_1}{\eta/n_2} \sim F(n_1, n_2).$$

分位数

定义 (分位数)

(1) χ^2 - 分布的上 α 分位数 $\chi^2_{\alpha}(n)$:

$$P\{\xi > \chi_{\alpha}^{2}(n)\} = \alpha.$$

(2) t— 分布的上 α 分位数 $t_{\alpha}(n)$:

$$P\{t > t_{\alpha}(n)\} = \alpha.$$

(3) F— 分布的上 α 分位数 $F_{\alpha}(n_1, n_2)$:

$$P\{F > F_{\alpha}(n_1, n_2)\} = \alpha.$$

$$t_{1-\alpha}(n) = -t_{\alpha}(n), \quad F_{1-\alpha}(n_1, n_2) = \frac{1}{F_{\alpha}(n_1, n_2)}.$$

χ^2 一 分布的性质

(1) 若 $\xi \sim \chi^2(n_1)$, $\eta \sim \chi^2(n_2)$, 且 ξ , η 相互独立, 则

$$\xi + \eta \sim \chi^2 \left(n_1 + n_2 \right).$$

(2) 若 $\xi \sim \chi^2(n)$, 则 $E(\xi) = n, D(\xi) = 2n$.

t- 分布的性质

- (1) t— 分布的密度函数的图像关于纵轴对称且 $\lim_{x\to\infty} f(x) = 0$.
- (2) 当 n 充分大时 t- 分布近似于标准正态分布.
- (3) 若 $\xi \sim t(n)$, 则 $E(\xi) = 0$, (n > 1); $D(\xi) = \frac{n}{n-2}(n > 2)$.

F- 分布的性质

- (1) 若 $\xi \sim t(n)$, 则 $\xi^2 \sim F(1, n)$.
- (2) **若** $F \sim F(n_1, n_2)$, **则** $\frac{1}{F} \sim F(n_2, n_1)$.

定理 (Fisher 定理, 抽样分布定理)

设总体 $\xi \sim N(\mu, \sigma^2)$, $\xi_1, \xi_2, \cdots, \xi_n$ 是来自正态总体 ξ 的一个简单样本, $\overline{\xi}$, S^2 分别为该样本的样本均值与样本方差, 则有

(1)
$$\bar{\xi} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$
; (2) $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$; (3) $\bar{\xi}$ 与 S^2 相互独立.

表: 单个正态总体 $\xi \sim N(\mu, \sigma^2)$

样本函数	分布
$U = \frac{\overline{\xi} - \mu}{\sigma / \sqrt{n}}$	N(0,1)
$t = \frac{\overline{\xi} - \mu}{S/\sqrt{n}}$	t(n-1)
$\chi^2 = \frac{\sum_{i=1}^n (\xi_i - \mu)^2}{\sigma^2}$	$\chi^2(n)$
$\chi^2 = \frac{(n-1)S^2}{\sigma^2} = \frac{\sum_{i=1}^n (\xi_i - \overline{\xi})^2}{\sigma^2}$	$\chi^2(n-1)$

表: 双正态总体, $\xi \sim N(\mu_1, \sigma_1^2)$, $\eta \sim N(\mu_2, \sigma_2^2)$, ξ, η 独立

样本函数	分布
$U = \frac{\overline{\xi} - \overline{\eta} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	N(0,1)
$T = \frac{\overline{\xi} - \overline{\eta} - (\mu_1 - \mu_2)}{\sqrt{\frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$t(n_1+n_2-2)$
(当 $\sigma_1^2=\sigma_2^2$ 时)	
$F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}$	$F(n_1-1,n_2)$

第7章 参数估计

- 会用矩估计法和极大似然估计法对未知参数进行估计.
- 会从估计量的<mark>无偏性、和有效性一致性</mark>三个方面来讨论衡量估计量 的优良性.

矩估计的基本思想是用样本的经验分布和样本矩作为总体相应矩的 估计,以样本矩的函数作为总体相应矩的同一函数的估计。

设总体 $X \sim F(x, \theta_1, \dots, \theta_k)$, 其中 $(\theta_1, \dots, \theta_k)$, $k \ge 1$ 为 k 个未知参数, 假定总体 X 的 k 阶矩存在, 则其 $r(r \le k)$ 阶矩也存在. 即

$$m_r(\theta_1, \dots, \theta_k) = EX^r = \int_{-\infty}^{+\infty} x^r dF(x, \theta_1, \dots, \theta_k), \quad r = 1, 2, \dots, k$$

记 r 阶样本矩为 $A_r = \frac{1}{n} \sum_{i=1}^n X_i^r$, $r = 1, 2, \dots, k$. 得到 k 个方程

$$m_r(\theta_1, \cdots, \theta_k) = A_r, r = 1, 2, \cdots, k.$$

求解方程组,得到 $\theta_1, \cdots, \theta_k$ 的一组解 $\hat{\theta}_j = \hat{\theta}_j (X_1, X_2, \cdots, X_n)$, $j = 1, 2, \cdots, k$. 称 $\hat{\theta}_j (X_1, X_2, \cdots, X_n)$ 为参数 θ_j 的矩估计量, $\hat{\theta}_j (x_1, x_2, \cdots, x_n)$ 称为参数 θ_j 的矩估计值, $(j = 1, 2, \cdots, k)$.

以下分别从离散型和连续型总体两种情形来介绍极大似然估计法。 (1) 设总体 X 为离散型随机变量, 其分布列为 $P(X=x)=p(x,\theta)$, 其中

 $\theta \in \Theta$ 为待估的未知参数. (x_1, x_2, \dots, x_n) 为样本 (X_1, X_2, \dots, X_n) 的一 组观测值, 极大似然原理就是选取 θ 的估计值 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 使得

似然函数 $L(\theta) = \prod p(x_i, \theta)$ 达到最大值.

$$\prod_{i=1}^{n} p(x_i, \hat{\theta}) = \max_{\theta \in \Theta} L(\theta) = \max_{\theta \in \Theta} \prod_{i=1}^{n} p(x_i, \theta).$$

(2) 设总体 X 为连续型随机变量, 其概率密度为 $f(x,\theta), \theta \in \Theta$ 为待估的 未知参数. 则样本 (X_1,X_2,\cdots,X_n) 的联合密度为 $\prod f(x_i,\theta)$, (x_1, x_2, \dots, x_n) 为一组样本观测值, 极大似然原理就是选取 θ 的估计值

 $\hat{\theta} = \hat{\theta}(x_1, x_2, \dots, x_n)$ 使得似然函数 $L(\theta) = \prod_{i=1}^{n} f(x_i, \theta)$ 达到最大值.

$$\prod_{i=1}^{n} f(x_i, \hat{\theta}) = \max_{\theta \in \Theta} L(\theta) = \max_{\theta \in \Theta} \prod_{i=1}^{n} f(x_i, \theta).$$

由此可见,不管总体是离散型还是连续型,我们只需知道其分布列或概率密度函数,就可以得到一个似然函数 $L(\theta)$,其中 θ 为任意 θ 维的参数向量 $\theta=(\theta_1\cdots,\theta_k)$;然后根据极大似然原理来寻找 θ 的估计值 $\hat{\theta}=\hat{\theta}\ (x_1,x_2,\cdots,x_n)$ 使得

$$L\left(\hat{\theta}; x_1, \cdots, x_n\right) = \sup_{\theta \in \Theta} L\left(\theta; x_1, \cdots, x_n\right). \tag{7.1.4}$$

如果存在 $\hat{\theta}(X_1,X_2,\cdots,X_n)$ 使得 (7.1.4) 式成立,则称之为 θ 的极大似然估计量,记为 $\hat{\theta}_{MLE}$,相应的估计值 $\hat{\theta}(x_1,x_2,\cdots,x_n)$ 为 θ 的极大似然估计值.上述这种求参数 θ 的估计量的方法称为极大似然估计法.

49 / 77

概率论与数理统计 安徽财经大学

由于 $\ln L(\theta)$ 是 $L(\theta)$ 的单增函数, 故 $L(\theta)$ 与 $\ln L(\theta)$ 在同一点取得极大值, 于是 $(7. \ 1.4)$ 式可转化为

$$\ln L\left(\hat{\theta}; x_1, \cdots, x_n\right) = \sup_{\theta \in \Theta} \ln L\left(\theta; x_1, \cdots, x_n\right). \tag{7.1.5}$$

为求 (7.1.5) 式的解,根据多元微分学知识,若 Θ 为开集,似然函数 $L(\theta)$ 关于 θ 的偏导数存在,则 $\theta=(\theta_1,\cdots,\theta_k)$ 的极大似然估计 $\hat{\theta}=\left(\hat{\theta}_1,\cdots,\hat{\theta}_k\right)$ 一定为方程组

总复习

$$\frac{\partial}{\partial \theta_i} L(\theta_1, \dots, \theta_k) = 0, i = 1, 2, \dots, k$$
 (7.1.6)

或

$$\frac{\partial}{\partial \theta_i} \ln L(\theta_1, \dots, \theta_k) = 0, i = 1, 2, \dots, k$$
 (7.1.7)

的解. (7.1.6) 式或 (7.1.7) 式称为似然方程.

安徽财经大学

1. 无偏性

定义 (7.1.1)

设 $\hat{\theta}=\hat{\theta}\left(X_1,\cdots,X_n\right)$ 为未知参数 $\theta\in\Theta$ 的估计量. 如果对一切 $\theta\in\Theta$, 都有

$$E\hat{\theta} = \theta$$
.

则称 $\hat{\theta}$ 为参数 θ 的无偏估计量 (unbiased estimator).

2. 有效性

定义 (7.1.2)

设 $\hat{\theta}_1$ 和 $\hat{\theta}_2$ 都为参数 θ 的无偏估计量, 若对任意参数 $\theta \in \Theta$ 和固定的样 本容量 n. 有

$$D(\hat{\theta}_1) \leqslant D(\hat{\theta}_2),$$

则称 $\hat{\theta}_1$ 比 $\hat{\theta}_2$ 更有效.

3. 一致性

定义 (7.1.3)

设 $\hat{\theta}_n(X_1, X_2, \dots, X_n)$ 为未知参数 θ 的估计量, 若 $\forall \varepsilon > 0$, 有

$$\lim_{n \to \infty} P\left(\left|\hat{\theta}_n - \theta\right| \geqslant \varepsilon\right) = 0 \text{ if } \lim_{n \to \infty} P\left(\left|\hat{\theta}_n - \theta\right| < \varepsilon\right) = 1$$

成立, 则称 $\hat{\theta}_n$ 为参数 θ 的一致估计量 (uniformly estimator).

根据辛钦大数定律,我们可证明样本均值为总体均值的一致估计量;样本 方差为总体方差的一致估计量: 样本的 k 阶矩为总体 k 阶矩的一致估计 量.

典型例题

例 (1.1)

设某工厂有甲、乙、丙 3 个车间生产同一种产品,产量依次占全厂的 45%, 35%, 20%, 且各车间的次品率分别为 4%, 2%, 5%, 现在从一批产品中检查出 1 个次品,问该次品是由哪个车间生产的可能性最大?

解

设 A_1,A_2,A_3 表示产品来自甲、乙、丙三个车间, B 表示产品为"次品"的事件, 易知 A_1,A_2,A_3 是样本空间 Ω 的一个划分, 且有

$$P(A_1) = 0.45, P(A_2) = 0.35, P(A_3) = 0.2,$$

 $P(B \mid A_1) = 0.04, P(B \mid A_2) = 0.02, P(B \mid A_3) = 0.05.$

→□▶
→□▶
→□▶
→□▶
→□▶

由全概率公式得

$$P(B) = P(A_1)P(B \mid A_1) + P(A_2)P(B \mid A_2) + P(A_3)P(B \mid A_3)$$

= 0.45 \times 0.04 + 0.35 \times 0.02 + 0.2 \times 0.05 = 0.035.

由贝叶斯公式得

$$P(A_1 \mid B) = (0.45 \times 0.04)/0.035 = 0.514,$$

 $P(A_2 \mid B) = (0.35 \times 0.02)/0.035 = 0.200,$
 $P(A_3 \mid B) = (0.20 \times 0.05)/0.035 = 0.286.$

由此可见,该次品由甲车间生产的可能性最大。

例 (1.2)

某电子设备厂所用的晶体管由三家元件制造厂提供,已知第一、二、三 厂的次品率分别为 0.02, 0.01, 0.03, 又知三个厂提供晶体管的份额分别 为 0.15, 0.80, 0.05, 设三个厂的产品是同规格的 (无区别标志), 且均匀的 混合在一起. 求:

- (1) 在混合的晶体管中随机的取一支是次品的概率;
- (2) 在取出一支是次品的条件下, 它是由第二厂生产的概率是多少?

概率论与数理统计 总复习

设 A 表示"取得的一支是次品", B_i 表示"取得的一件产品是由第 i 厂生产的",i=1,2,3. 则 B_1 、 B_2 、 B_3 构成了一个完备事件组. 由题意知, $P(A\mid B_1)=0.02, P(A\mid B_2)=0.01, P(A\mid B_3)=0.03, P(B_1)=0.15, P(B_2)=0.8, P(B_3)=0.05,$

(1) 由全概率公式得:

$$P(A) = \sum_{i=1}^{3} P(B_i) P(A \mid B_i) = 0.15 \times 0.02 + 0.8 \times 0.01 + 0.05 \times 0.03 = 0.0125$$

(2) 由贝叶斯公式得:

$$P(B_2 \mid A) = \frac{P(B_2) P(A \mid B_2)}{\sum_{i=1}^{3} P(B_i) P(A \mid B_i)} = \frac{0.8 \times 0.01}{0.0125} = \frac{16}{25}.$$

例 (2.1)

设连续型随机变量 X 的密度函数为

$$f(x) = \begin{cases} Ae^{-5x}, & x > 0 \\ 0, & x \leqslant 0 \end{cases},$$

求:(1) 常数 A; (2) $P\{X > 0.2\}$; (3) X 的分布函数.

解

- (1) 因为 $\int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{+\infty} A e^{-5x} dx = 1$, 所以 A = 5.
- (2) $P\{X > 0.2\} = \int_{0.2}^{+\infty} 5e^{-5x} dx = e^{-1}$.

(3)
$$F(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 1 - e^{-5x}, & x \ge 0; \\ 0, & x < 0. \end{cases}$$

例 (2.2)

连续型随机变量 X 的分布密度函数为

$$f(x) = \begin{cases} kx^2, & 0 < x < 1; \\ 0, &$$
 其他.

- (1) 确定参数 k; (2) 求 X 的分布函数; (3) 求 $P\{X \leq \frac{1}{2}\}$, $P\{-1 < x < \frac{1}{3}\}$, $P\{\frac{1}{4} < X \leq 1\}$.

解

(1) 由密度函数的正则性知

$$1 = \int_{-\infty}^{+\infty} f(x) dx = \int_{0}^{1} kx^{2} dx = \frac{k}{3},$$

所以 k = 3. 即 X 的密度函数为 $f(x) = \begin{cases} 3x^2, & 0 < x < 1; \\ 0. &$ 其他:

(2)
$$\leq x < 0$$
 \in $f(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{x} 0 dt = 0;$

当
$$0 \le x < 1$$
 时, $F(x) = \int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} 0 dt + \int_{0}^{x} 3t^{2} dt = x^{3}$; 当 $x \ge 1$ 时, $F(x) = 1$;

所以
$$X$$
 的分布函数为 $F(x) = \begin{cases} 0, & x < 0; \\ x^3, & 0 \le x < 1; \\ 1, & x \ge 1; \end{cases}$

(3)
$$P\left(X \leqslant \frac{1}{2}\right) = F\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^3 = \frac{1}{8};$$

$$P\left(-1 < X < \frac{1}{3}\right) = F\left(\frac{1}{3}\right) - F(-1) = \frac{1}{27} - 0 = \frac{1}{27};$$

$$P\left(\frac{1}{4} < X \leqslant 1\right) = F(1) - F\left(\frac{1}{4}\right) = 1 - \frac{1}{64} = \frac{63}{64}.$$

例 (3.1)

随机变量
$$(X, Y)$$
 的概率密度为 $f(x, y) = \begin{cases} k e^{-(3x+4y)}, & x > 0, y > 0; \\ 0, &$ 其他.

- (1) 确定常数 k; (2) 求 (X, Y) 的分布函数;
- (3) \mathbf{x} $P\{0 < X \le 1, 0 < Y \le 2\};$
- (4) 求 $f_X(x), f_Y(y)$; (5) X 与 Y 是否相互独立?

解((1) 由联合概率密度函数的完备性得)

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dy dx = \int_{0}^{+\infty} \int_{0}^{+\infty} k e^{-3x - 4y} dx dy$$
$$= k \int_{0}^{+\infty} e^{-3x} dx \int_{0}^{+\infty} e^{-4y} dy = \frac{k}{12} = 1,$$

所以. k = 12.

4 D > 4 D > 4 D > 4 D > 4 D > 9

(2) 由联合分布函数的定义, 当 $x \le 0$ 或 $y \le 0$ 时, f(x, y) = 0, 所以 F(x, y) = 0; 当 $x \ge 0$ 且 $y \ge 0$ 时,

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(s,t) ds dt = \int_{0}^{x} \int_{0}^{y} 12e^{-3s-4t} ds dt$$
$$= (1 - e^{-3x}) (1 - e^{-4y});$$

综上, 分布函数的表达式为

$$F(x,y) = \begin{cases} (1 - e^{-3x}) (1 - e^{-4y}), & x > 0, y > 0; \\ 0, & \text{#d}; \end{cases}$$

$$P\{0 < X \le 1, 0 < Y \le 2\} = \int_0^1 \int_0^2 f(x, y) dy dx$$
$$= (1 - e^{-3}) (1 - e^{-8}).$$

由边际密度函数的定义知

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) dy = \begin{cases} \int_0^{+\infty} 12e^{-3x-4y} dy, & x > 0; \\ 0, & \text{\rlap{\sharp}}\textbf{\rlap{\sharp}}\textbf{\rlap{\sharp}}\textbf{\rlap{\sharp}}\textbf{\rlap{\sharp}}; \end{cases}$$

$$= \begin{cases} 3e^{-3x}, & x > 0; \\ 0, & \text{\rlap{\sharp}}\textbf{\rlap{\sharp}}\textbf{\rlap{\sharp}}\textbf{\rlap{\sharp}}; \end{cases}$$

$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_0^{+\infty} 12e^{-3x-4y} dx, & y > 0; \\ 0, & \text{\rlap{\sharp}}\textbf{\rlap{\sharp}}\textbf{\rlap{\sharp}}\textbf{\rlap{\sharp}}; \end{cases}$$

$$= \begin{cases} 4e^{-4y}, & y > 0; \\ 0, & \text{\rlap{\sharp}}\textbf{\rlap{\sharp}}\textbf{\rlap{\sharp}}\textbf{\rlap{\sharp}}; \end{cases}$$

(5) 由于 $f(x, y) = f_X(x) \cdot f_Y(y)$, 所以 X 与 Y 相互独立.

例 (3.2)

假设随机变量 U 在区间 [-2,2] 上服从均匀分布, 随机变量

$$X = \left\{ \begin{array}{ll} -1, & \hbox{\it \foathermalfoating} & \hbox{\it \foating} & \hbox{\it \foathermalfoating} & \hbox{\it \foating} & \hbox{\it \foathermalfoating} & \hbox{\it \foathermalfo$$

试求 X 和 Y 的联合概率分布. 判断 X 与 Y 是否独立.

解

由于 U 在 [-2,2] 上服从均匀分布, 所以 U 的密度函数为

$$f(x) = \begin{cases} \frac{1}{4}, & -2 < x < 2; \\ 0, &$$
其他;

(X, Y) 的所有可能取值为 (-1, -1), (-1, 1), (1, -1), (1, 1),

概率论与数理统计 总复习

$$\begin{split} P\{X = -1, \, Y = -1\} &= P\{U \leqslant -1, \, U \leqslant 1\} = P\{U \leqslant -1\} \\ &= \int_{-2}^{-1} \frac{1}{4} \, \mathrm{d}x = \frac{1}{4}, \\ P\{X = -1, \, Y = 1\} &= P\{U \leqslant -1, \, U > 1\} = 0, \\ P\{X = 1, \, Y = -1\} &= P\{U > -1, \, U \leqslant 1\} = P\{-1 < U \leqslant 1\} \\ &= \int_{-1}^{1} \frac{1}{4} \, \mathrm{d}x = \frac{1}{2}, \\ P\{X = 1, \, Y = 1\} &= P\{U > -1, \, U > 1\} = P\{U > 1\} = \int_{1}^{2} \frac{1}{4} \, \mathrm{d}x = \frac{1}{4}. \end{split}$$

所以 (X, Y) 的联合概率分布如下:

Y X	-1	1
-1	1/4	0
1	1/2	1/4

因为 $P(X=-1, Y=1)=0 \neq P(X=-1)P(Y=1)=\frac{1}{4}\cdot\frac{1}{4}$, 所以 X 与 Y 不独立.

例 (4.1)

已知随机变量 X 和 Y 分别服从正态分布 $N(1,3^2)$ 和 $N(0,4^2)$, 且 X 与

Y 的相关系数
$$\rho_{XY} = -1/2$$
, 设 $Z = \frac{X}{3} + \frac{Y}{2}$.

- (1) 求 Z 的数学期望 E(Z) 和方差 D(Z).
- (2) 求 X 与 Z 的相关系数 ρ_{XZ} .
- (3) 问 X 与 Z 是否相互独立,为什么?

解

(1) **由题意**:
$$E(Z) = E\left(\frac{X}{3} + \frac{Y}{2}\right) = \frac{1}{3}E(X) + \frac{1}{2}E(Y) = \frac{1}{3}$$
;

$$\begin{split} D(Z) &= D\left(\frac{X}{3} + \frac{Y}{2}\right) = \frac{1}{9}D(X) + \frac{1}{4}D(Y) + 2\operatorname{cov}\left(\frac{X}{3}, \frac{Y}{2}\right) \\ &= \frac{1}{9} \cdot 3^2 + \frac{1}{4} \cdot 4^2 + 2 \times \frac{1}{3} \times \frac{1}{2}\operatorname{cov}(X, Y) \\ &= 5 + \frac{1}{3}\sqrt{D(X)} \cdot \sqrt{D(Y)} \cdot \rho_{XY} = 3; \end{split}$$

(2) X 与 Z 的协方差:

$$\begin{aligned} \operatorname{cov}(X, Z) &= \operatorname{cov}\left(X, \frac{X}{3} + \frac{Y}{2}\right) = \operatorname{cov}\left(X, \frac{X}{3}\right) + \operatorname{cov}\left(X, \frac{Y}{2}\right) \\ &= \frac{1}{3}\operatorname{cov}(X, X) + \frac{1}{2}\operatorname{cov}(X, Y) \\ &= \frac{1}{3} \times 3^2 + \frac{1}{2}\sqrt{D(X)} \cdot \sqrt{D(Y)} \cdot \rho_{XY} = 0. \end{aligned}$$

故 X 与 Z 的相关系数

$$\rho_{XZ} = \frac{\text{cov}(X, Z)}{\sqrt{D(X)} \cdot \sqrt{D(Z)}} = 0;$$

(3) 由于 (X, Z) 不一定服从二维正态分布, 故由 $\rho_{XZ} = 0$ 不能确定 X 与 Z 是否相互独立.

概率论与数理统计 总复习

例 (4.2)

设
$$(X, Y)$$
 的概率密度函数为 $f(x, y) = \begin{cases} \frac{3xy}{16}, & 0 \leqslant x \leqslant 2, 0 \leqslant y \leqslant x^2; \\ 0, &$ 其他.

求: (1) $f_X(x)$, $f_Y(y)$; (2) E(X), E(Y), D(X), D(Y); (3) cov(X, Y) 与 ρ_{XY} .

解

(1) 由边际密度函数的定义

$$f_X(x) = \int_0^{x^2} \frac{3xy}{16} \, dy = \frac{3x^5}{32}, 0 \leqslant x \leqslant 2;$$

$$f_Y(y) = \int_{\sqrt{y}}^2 \frac{3xy}{16} \, dx = \frac{3y(4-y)}{32}, 0 \leqslant y \leqslant 4;$$

$$\therefore f_X(x) = \begin{cases} \frac{3x^5}{32}, & 0 \leqslant x \leqslant 2; \\ 0, &$$
其他.
$$f_Y(y) = \begin{cases} \frac{3y(4-y)}{32}, & 0 \leqslant y \leqslant 4; \\ 0, &$$
其他.

(2) 由期望与方差的计算公式

$$E(X) = \int_0^2 x \cdot 3x^5 / 32 \cdot dx = 12/7;$$

$$E(Y) = \int_0^4 y \cdot 3y(4-y) / 32 \cdot dy = 2.$$

又因为

$$E(X^{2}) = \int_{0}^{2} x^{2} \cdot 3x^{5}/32 \cdot dx = 3;$$

$$E(Y^{2}) = \int_{0}^{4} y^{2} \cdot 3y(4-y)/32 \cdot dy = 24/5;$$

所以

$$D(X) = 3 - (12/7)^2 = 3/49; D(Y) = 24/5 - 2^2 = 4/5.$$

(3) 由协方差计算公式

$$E(XY) = \int_0^2 \int_0^{x^2} xy \cdot 3xy / 16 \cdot dx \, dy = 32/9;$$

所以

$$cov(X, Y) = E(XY) - E(X)E(Y) = 8/63;$$

$$\rho_{XY} = \frac{\text{cov}(X, Y)}{\sqrt{D(X)}\sqrt{D(Y)}} = \frac{4\sqrt{15}}{27} \approx 0.574.$$

例 (5.1)

茶叶用机器袋装, 每袋的净重与标准重量相比存在一定的偏差, 设每袋净 重为随机变量, 其期望值为 100 克, 标准差为 10 克, 一箱内装 200 袋, 求一箱茶叶净重超过 20.5 千克的概率 (计算结果用标准正态分布函数 值表示)

解

设箱内第 i 袋茶叶重量为 X_i 克, $(i = 1, 2, \dots, 200)$, 显然 X_1, X_2, \dots, X_{200} 独立同分布, 由题意知 $E(X_i) = 100, D(X_i) = 100$. 由 独立同分布中心极限定理得, $\sum_{i=1}^{200} X_i$ 近似服从 N(20000, 20000), 所以

$$P\left(\sum_{i=1}^{200} X_i > 20500\right) = P\left(\frac{\sum_{i=1}^{200} X_i - 20000}{100\sqrt{2}} > \frac{20500 - 20000}{100\sqrt{2}}\right)$$
$$\approx 1 - \Phi(3.54).$$

例 (5.2)

某市年满 22 岁的居民中 20% 受过高等教育. 今从年满 22 岁的居民中随机抽取 10000 人, 求受过高等教育的人数在 1960 和 2040 之间的概率. $(\Phi(1)=0.8413)$

解

设受高等教育的人数为 X, 则 $X \sim B\left(10000, \frac{1}{5}\right)$

$$E(X) = 10000 \times \frac{1}{5} = 2000, D(X) = 10000 \times \frac{1}{5} \times \frac{4}{5} = 1600.$$

由棣莫弗·拉普拉斯中心极限定理知: X 近似服从 $N(2000,40^2)$,

$$\begin{split} P(1960 < X < 2040) \approx \Phi\left(\frac{2040 - 2000}{40}\right) - \Phi\left(\frac{1960 - 2000}{40}\right) \\ = 2\Phi(1) - 1 = 0.6826. \end{split}$$

例 (6.1)

设 ξ_1,ξ_2,ξ_3,ξ_4 为来自总体 $Nig(1,\sigma^2ig)$ $(\sigma>0)$ 的简单随机样本,求统计量 $\frac{\xi_1-\xi_2}{|\xi_3+\xi_4-2|}$ 的分布.

解

由正态分布的性质知 $\xi_1-\xi_2\sim Nig(0,2\sigma^2ig)\,,\;\xi_3+\xi_4\sim Nig(2,2\sigma^2ig)\,.$ 所以,

$$\frac{\xi_1 - \xi_2}{\sqrt{2}\sigma} \sim N(0,1), \ \frac{\xi_3 + \xi_4 - 2}{\sqrt{2}\sigma} \sim N(0,1), \left(\frac{\xi_3 + \xi_4 - 2}{\sqrt{2}\sigma}\right)^2 \sim \chi^2(1),$$

由于 $\frac{\xi_1-\xi_2}{\sqrt{2}\sigma}$ 与 $\left(\frac{\xi_3+\xi_4-2}{\sqrt{2}\sigma}\right)^2$ 相互独立, 从而由 t- 分布构造, 有

$$\frac{\xi_1 - \xi_2}{|\xi_3 + \xi_4 - 2|} = \frac{\xi_1 - \xi_2}{\sqrt{2}\sigma} / \sqrt{\left(\frac{\xi_3 + \xi_4 - 2}{\sqrt{2}\sigma}\right)^2} \sim t(1).$$

例 (6.2)

设总体 ξ 服从标准正态分布 N(0,1), ξ_1,ξ_2,\cdots,ξ_n 是来自总体 ξ 的一个简单随机样本, 试问统计量

$$\eta = \left(\frac{n}{5} - 1\right) \sum_{i=1}^{5} \xi_i^2 / \sum_{i=6}^{n} \xi_i^2, \quad n > 5.$$

服从何种分布?

解

因为
$$\xi_i \sim N(0,1)$$
, $\sum\limits_{i=1}^5 \xi_i^2 \sim \chi^2(5)$, $\sum\limits_{i=6}^n \xi_i^2 \sim \chi^2(n-5)$, 且 $\sum\limits_{i=1}^5 \xi_i^2$ 与 $\sum\limits_{i=6}^n \xi_i^2$

相互独立,所以

$$\eta = \frac{\sum_{i=1}^{5} \xi_i / 5}{\sum_{i=6}^{n} \xi_i^2 / (n-5)} \sim F(5, n-5).$$

例 (7.1)

设总体 X 的密度函数为 $f(x,\theta) = \left\{ \begin{array}{cc} (\theta+1)x^{\theta}, & 0 < x < 1 \\ 0, & \text{其他} \end{array}, \theta > -1, \, \mathbf{x} \right.$ 参数 θ 的矩估计.

解

因为

$$E(X) = \int_{-\infty}^{+\infty} x f(x, \theta) dx = \int_{0}^{1} (\theta + 1) x^{\theta + 1} dx = \frac{\theta + 1}{\theta + 2},$$

令 $E(X) = \overline{X}$, 解得

$$\theta = \frac{2\overline{X} - 1}{1 - \overline{X}},$$

干是参数 θ 的矩估计为

$$\hat{\theta} = \frac{2\overline{X} - 1}{1 - \overline{X}}.$$

例 (7.2)

设总体 X 的密度函数为 $f(x,\theta)=\left\{ egin{array}{ll} \frac{1}{\theta}\mathrm{e}^{-\frac{x}{\theta}}, & x>0, \\ 0, &$ 其他. 极大似然估计.

解

参数 θ 的极大似然函数为 $L(\theta, x_1, \dots, x_n) = \prod_{i=1}^n f(x_i, \theta) = \theta^{-n} e^{-\frac{1}{\theta} \sum_{i=1}^n x_i},$

则对数似然函数为 $\ln L(\theta, x_1, \dots, x_n) = -n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{n} x_i$. 令

$$\frac{\mathrm{d} \ln L\left(\theta, x_1, \cdots, x_n\right)}{\mathrm{d} \theta} = \frac{\mathrm{d} \left(-n \ln \theta - \frac{1}{\theta} \sum_{i=1}^{n} x_i\right)}{\mathrm{d} \theta} = 0,$$

解得 $\theta = \overline{x}$, 于是参数 θ 的极大似然估计量为 $\hat{\theta} = \overline{X}$.