线性代数(2023-2024)第十一次作业

1 复习知识点

- 坐标向量映射以及它的逆映射的表示: 如果 $B = \{v_1, ..., v_n\}$ 是V的一组基底,那么对于任何 $v \in V$,存在唯一确定的一组系数 $k_1, ..., k_n$ 使得 $v = k_1v_1 + ... + k_nv_n$ 。我们定义坐标向量映射 $f_B : V \to \mathbb{R}^n$ 为 $f_B(v) = (k_1, ..., k_n) \in \mathbb{R}^n$,它的逆映射为 $f_B^{-1} : \mathbb{R}^n \to V$, $f_B^{-1}(x_1, ..., x_n) = x_1v_1 + ... + x_nv_n$ 。
- 熟练掌握如何计算线性变换 $T:V\to W$ 关于V的基底B与W的基底B'的矩阵表示 $[T]_{B',B}$ 。建议仔细阅读英文教材8.4节的所有例子。
- 相似矩阵的定义, 牢记常见的相似不变量, 尤其是讲义Theorem 5.21。
- 相似矩阵的一些基本性质,尤其是讲义Definition 5.19下方的内容。这里总结如下:
 - 1. 若A与B相似,则A^{\top}与B^{\top}相似。
 - 2. 若A与B相似,且A可逆,那么B必然可逆,且 A^{-1} 与 B^{-1} 也相似。
 - 3. 若A与B相似,那么对任何多项式 $f(x) = a_0 + a_1 x + ... + a_n x^n$,多项式矩阵f(A)与f(B)相似。
- 讲义Theorem 5.20: 线性变换对于不同基底的矩阵表示与相似矩阵的关系。
- 特征值, 特征向量, 特征多项式, 特征方程的定义与计算方法。

2 习题部分

Problem A(6 Points)

- 1. (2 points) Let V be a vector space spanned by its basis $B = \{1, \sin x, \cos x\}$. Let $D: V \to V$ be the differential operator on V such that for any $f(x) \in V$, D(f(x)) = f'(x). Find the matrix $[D]_{B,B}$ of D relative to the basis B.
- 2. (2 points) Let $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a given matrix in $M_{2\times 2}$. Prove that ad : $M_{2\times 2} \to M_{2\times 2}$, defined by

$$ad(A) = BA - AB$$

for $A \in M_{2\times 2}$ is a linear operator on $M_{2\times 2}$. Then find the matrix $[ad]_{B,B}$ of ad relative to the standard basis B of $M_{2\times 2}$.

3. (2 points) Let V, W be two-dimensional vector spaces. Let $B = \{v_1, v_2\}$ be a basis of V, let $B' = \{w_1, w_2\}$ be a basis of W. Let $T: V \to W$ be a linear operator

such that

$$T(3v_1 + 2v_2) = w_2, \quad T(v_1 - 4v_2) = w_1 - w_2.$$

Find the matrix $[T]_{B',B}$ relative to B and B'.

Problem B(6 Points) 仔细阅读英文教材8.4节的Example 2与Example 6,然后回答以下问题。

• Let $T: P_2 \to M_{2\times 2}$ be the linear transformation defined by

$$T(p(x)) = \begin{bmatrix} p(0) & p(1) \\ p(-1) & p(0) \end{bmatrix}.$$

Let B be the standard basis for $M_{2\times 2}$, let $B'=\{1,x,x^2\}$ be the standard basis for $P_2=\{a_0+a_1x+a_2x^2:a_0,a_1,a_2\in\mathbb{R}\}, B''=\{1,1+x,1+x^2\}$ be another basis for P_2 .

- 1. (2 points) Find $[T]_{B,B'}$ and $[T]_{B,B''}$.
- 2. (2 points) Let $q(x) = 2 + 2x + x^2$, compute $[T]_{B,B'}[q(x)]_{B'}$ and $[T]_{B,B''}[q(x)]_{B''}$, then use $[T]_{B,B'}[q(x)]_{B'}$ and $[T]_{B,B''}[q(x)]_{B''}$ to compute T(q(x)), i.e., compute $f_B^{-1}([T]_{B,B'}[q(x)]_{B'})$ and $f_B^{-1}([T]_{B,B''}[q(x)]_{B''})$, where $f_B: M_{2\times 2} \to \mathbb{R}^4$, $f_B(A) = [A]_B$, is the coordinate vector transformation (坐标向量映射) on $M_{2\times 2}$.
- (2 points) Let $T_1: P_1 \to P_2$ be the linear transformation defined by

$$T_1(a_0 + a_1 x) = 2a_0 - 3a_1 x,$$

and let $T_2: P_2 \to P_3$ be the linear transformation defined by

$$T_2(a_0 + a_1x + a_2x^2) = 3a_0x + 3a_1x + 3a_2x^3.$$

Let $B = \{1, x\}$, $B'' = \{1, x, x^2\}$, $B' = \{1, x, x^2, x^3\}$. Compute $[T_2 \circ T_1]_{B',B}$, $[T_2]_{B',B''}$, and $[T_1]_{B'',B}$. What is the relation between $[T_2 \circ T_1]_{B',B}$, $[T_2]_{B',B''}$, and $[T_1]_{B'',B}$?

Problem C(6 Points)

1. (2 points) Let $T: P_2 \to P_2$ be defined by

$$T(p(x)) = p(2x + 1).$$

Determine whether T is invertible and if it is invertible, find T^{-1} , and compute $[T^{-1}]_{B,B}$ for the standard basis $B = \{1, x, x^2\}$ of P_2 .

- 2. (2 points) Let $J: P_3 \to \mathbb{R}$ be the integral transformation, $I(p(x)) = \int_{-1}^1 p(x) dx$. Let $B' = \{1\}$ be the standard basis of \mathbb{R} , $B = \{1, x, x^2, x^3\}$ be the standard basis of P_3 , what is the matrix $[J]_{B',B}$? What is the kernel of J?
- 3. (2 points) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$T(x_1, x_2, x_3) = (x_1 + 2x_2 - x_3, -x_2, x_1 + 7x_3).$$

Let B be the standard basis of \mathbb{R}^3 , $B' = \{(1,0,0), (1,1,0), (1,1,1)\}$ be another basis of \mathbb{R}^3 . Find $[T]_{B,B}$, $[T]_{B',B'}$ and a invertible matrix P such that $[T]_{B',B'} = P^{-1}[T]_{B,B}P$.

Problem D(6 Points) 令V为一个向量空间, $T:V\to V$ 为一个线性变换。我们说 $\lambda\in\mathbb{R}$ 是T的一个特征值(eigenvalue),如果存在一个非零 $v\in V$, $v\neq 0$,使得 $T(v)=\lambda v$ 。此时我们称v为T关于 λ 的特征向量(eigenvector)。所有T关于 λ 的特征向量的集合被称为T关于 λ 的特征空间(eigenspace)。

- 1. (2 points) 假设 $B = \{v_1, \dots, v_n\}$ 是V的一组基底,证明 λ 是T的一个特征值当且仅当 λ 是矩阵 $[T]_{B,B} \in M_{n \times n}$ 的一个特征值。证明 $v \in V$ 是T关于 λ 的一个特征向量当且仅当 $[v]_B$ 是矩阵 $[T]_{B,B} \in M_{n \times n}$ 关于 λ 的一个特征向量。
- 2. (4 points) Let $T: P_2 \to P_2$ be defined by

$$T(a_0 + a_1x + a_2x^2) = (5a_0 + 6a_1 + 2a_2) - (a_1 + 8a_2)x + (a_0 - 2a_2)x^2.$$

Find the eigenvalues of T and find a basis for the eigenspaces of T.

Problem E(6 Points) Let
$$A = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 0 \\ -5 & 5 & 10 \end{bmatrix}$$
.

- 1. (3 points) Compute the eigenvalues of A, and find a basis of the eigensapces of A.
- 2. (3 points) Let adj(A) be the adjoint matrix of A. Find the eigenvalues of $3I_3 + adj(A)$.

Bonus: 不计入分数

假设V为一个n维向量空间,W为一个m维向量空间。

1. 对于 $T:V \to W$ 和 $S:V \to W$ 两个线性变换,定义它们的加法为 $S+T:V \to W$ 为 $(S+T)(\boldsymbol{v}) = S(\boldsymbol{v}) + T(\boldsymbol{v})$ 。对于实数 $k \in \mathbb{R}$,定义k与T的标量积 $kT:V \to W$ 为 $(kT)(\boldsymbol{v}) = kT(\boldsymbol{v})$ 。令L(V,W)为所有从V到W的线性变换

的集合。证明L(V,W)装配上以上加法和标量积之后是一个向量空间,尤其是S+T和kT依然是从V到W的线性变换。

2. 证明L(V, W)的维数 $\dim(L(V, W)) = nm (n$ 乘以m),并找出它的一组基底。

Deadline: 22:00, December 31.

作业提交截止时间: 12月31日晚上22: 00。