Bias and Variance

Part I

Review

A more complex model does not always lead to better performance on testing data.

Estimator

$$\hat{y} = \hat{f}($$

Only Niantic knows \hat{f}

From training data, we find f^* f^* is an estimator of \hat{f}

Bias and Variance of Estimator: Part I

- Estimate the mean of a variable x
 - \circ assume the mean of x is μ
 - \circ assume the variance of x is σ^2
- Estimator of mean μ
 - o Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

$$E[m] = E\left[\frac{1}{N}\sum_{n} x^{n}\right] = \frac{1}{N}\sum_{n} E[x^{n}] = \mu$$

Bias and Variance of Estimator: Part II

unbiased

- Estimate the mean of a variable x
 - \circ assume the mean of x is μ
 - \circ assume the variance of x is σ^2
- Estimator of mean μ
 - o Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n} \neq \mu$$

$$Var[m] = \frac{\sigma^2}{N}$$

Variance depends on the number of samples

Bias and Variance of Estimator: Part III

- Estimate the mean of a variable x
 - \circ assume the mean of x is μ
 - \circ assume the variance of x is σ^2
- Estimator of variance σ^2
 - o Sample N points: $\{x^1, x^2, ..., x^N\}$

$$m = \frac{1}{N} \sum_{n} x^{n}$$
 $s^{2} = \frac{1}{N} \sum_{n} (x^{n} - m)^{2}$

Biased estimator

$$E[s^2] = \frac{N-1}{N}\sigma^2 \neq \sigma^2$$

Bias and Variance: Part IV

Parallel Universes

In all the universes, we are collecting (catching) 10 Pokémon as training data to find f^{\ast}

Parallel Universes, Cont'd

In different universes, we use the same model, but obtain different f^st

Variance

Variance, Cont'd

Simpler model is less influenced by the sampled data

Consider the extreme case f(x) = 5

 $y = b + w_1 \cdot x_{cp} + w_2 \cdot (x_{cp})^2$

Bias: Part I

$$E[f^*] = \bar{f}$$

• Bias: If we average all the f^* , is it close to \hat{f} ?

Bias: Part II

Black curve: the true function \hat{f}

Red curves: 5000 f^*

Blue curve: the average of 5000 f^*

Bias Versus Variance

