Predicting human equivalent dose

Compared species: rats and monkeys

- Find the posterior distribution of parameters and validate models via model prediction
- Use the validated models to predict response (plasma & liver) under no-observedadverse-effect-level (NOAEL) doses of PFOS
 - rats: 0.34 mg/kg/day
 - monkeys: 0.15 mg/kg/day
- Calculate (plasma & liver) AUC at NOEAL exposure levels
 - rats [14 weeks] & humans [25 years]
 - monkeys [26 weeks] & humans [25 years]

$$\label{eq:hedge} \begin{aligned} \text{HED} &= \frac{\text{AUC}_{species}/\text{duration}_{species}}{\text{AUC}_{human}/\text{duration}_{human}} \cdot \text{NOAEL}_{species} \end{aligned}$$

HED of the study

Table 4
Human equivalent doses (HED) derived from the rat and monkey models based on the model-predicted average serum concentrations in each species.

Study; species; critical effects	Dosing duration (days)	NOAEL (mg/kg/day)	ASC ^a or ALC ^b at NOAEL (µg/mL or mg/L)		HED (mg/kg/day)	
			EPA	This study	EPA ^d	This study ^e
Seacat et al., 2002: Monkey; (Increased liver weight; histopathology change; Decreased body weight) Seacat et al., 2003: Rat; (Increased liver weight; centrilobular hepatocytic vacuolation)	182 98	0.15 0.34	38 16.5	ASC: 0.56 (95% CI: 0.015–1.30) ^c ALC: 182 (95% CI: 80–288) ASC: 0.46 (95% CI: 0.034–2.77) ^c ALC: 56 (95% CI: 33–125)	0.0031	Plasma: 0.0055 (95% CI: 0.0001-0.14) Liver: 0.012 (95% CI: 0.004-0.22) Plasma: 0.0057 (95% CI: 0.0002-0.17) Liver: 0.004 (0.0013-0.072)

^a ASC represents the average serum concentration at the NOAEL exposure level for each species. ASC $(mg/L) = Serum-AUC (mg/L*h) \div (24h/day \times Exposure duration [Days])$.

b ALC represents the average liver concentration at the NOAEL exposure level for each species. ALC (mg/L) = Liver-AUC (mg/L*h) ÷ (24 h/day x Exposure duration [Days]).

c Mean (95% confidence interval).

d HED = average serum concentration (mg/L) × CL, where CL = 0.000081 (L/kg bw/day) (EPA, 2016b).

e HED = NOAEL × (ASC_aniaml/ASC_human) or (ALC_aniaml/ALC_human).