

PATIENT Chang, Hsiu Fen

TUMOR TYPE Brain glioblastoma (GBM) COUNTRY CODE TW

REPORT DATE 23 Jan 2023 ORDERED TEST # ORD-1544963-01

ABOUT THE TEST FoundationOne®CDx is a next-generation sequencing (NGS) based assay that identifies genomic findings within hundreds of cancer-related genes.

DISEASE Brain glioblastoma (GBM) NAME Chang, Hsiu Fen

DATE OF BIRTH 18 September 1965

SEX Female

MEDICAL RECORD # 49182856

ORDERING PHYSICIAN Yeh, Yi-Chen MEDICAL FACILITY Taipei Veterans General Hospital **PHYS** ADDITIONAL RECIPIENT None

MEDICAL FACILITY ID 205872 PATHOLOGIST Not Provided

SPECIMEN ID S111-54614 B (PF23008)

SPECIMEN SITE Brain

SPECIMEN TYPE Slide Deck

DATE OF COLLECTION 27 December 2022 SPECIMEN RECEIVED 16 January 2023

Biomarker Findings

Microsatellite status - MS-Stable Tumor Mutational Burden - 4 Muts/Mb

Genomic Findings

For a complete list of the genes assayed, please refer to the Appendix.

EGFR EGFRvIII, amplification PIK3CA C420R - subclonal PTFN loss FASIOSS GRM3 T758M - subclonal PPP2R1A R260C - subclonal **RB1**Q736* TERT promoter -146C>T

TP53 V272M

2 Disease relevant genes with no reportable alterations: IDH1, PDGFRA

† See About the Test in appendix for details.

Report Highlights

- Variants with diagnostic implications that may indicate a specific cancer type: EGFR amplification (p. $\underline{4}$), TERT promoter -146C>T (p. 8)
- Targeted therapies with potential clinical benefit approved in another tumor type: Cetuximab (p. 10), Osimertinib (p. 10), Panitumumab (p. 11)
- Evidence-matched clinical trial options based on this patient's genomic findings: (p. 12)
- Variants with **prognostic implications** for this tumor type that may impact treatment decisions: TERT promoter -146C>T (p. 8)

BIOMARKER FINDINGS			
Microsatellite status - MS-Stable			
Tumor Mutational Burden - 4 Muts/Mb			
GENOMIC FINDINGS			
EGFR - EGFRvIII, amplification			
8 Trials see p. <u>12</u>			
PIK3CA - C420R - subclonal			
10 Trials see p. <u>14</u>			
PTEN - loss			
10 Trials see p. <u>16</u>			

No therapies or clinical trials. See Biomarker Findings section		
THERAPIES WITH CLINICAL RELEVANCE (IN PATIENT'S TUMOR TYPE)	THERAPIES WITH CLINICAL RELEVANCE (IN OTHER TUMOR TYPE)	
none	Cetuximab	
	Osimertinib	
	Panitumumab	
none	none	
none	none	

THERAPY AND CLINICAL TRIAL IMPLICATIONS

No therapies or clinical trials. See Biomarker Findings section

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

Chang, Hsiu Fen

TUMOR TYPE
Brain glioblastoma (GBM)
COUNTRY CODE
TW

REPORT DATE
23 Jan 2023
ORDERED TEST #
ORD-1544963-01

GENOMIC FINDINGS WITH NO REPORTABLE THERAPEUTIC OR CLINICAL TRIAL OPTIONS

For more information regarding biological and clinical significance, including prognostic, diagnostic, germline, and potential chemosensitivity implications, see the Genomic Findings section.

FAS - loss p	. <u>6</u>	RB1 - Q736*	p.	8
GRM3 - T758M - subclonal p). <u>7</u>	TERT - promoter -146C>T	p.	8
PPP2R1A - R260C - subclonal). 7	TP53 - V272M	p.	9

NOTE Genomic alterations detected may be associated with activity of certain approved therapies; however, the agents listed in this report may have varied clinical evidence in the patient's tumor type. Therapies and the clinical trials listed in this report may not be complete and exhaustive. Neither the therapeutic agents nor the trials identified are ranked in order of potential or predicted efficacy for this patient, nor are they ranked in order of level of evidence for this patient's tumor type. This report should be regarded and used as a supplementary source of information and not as the single basis for the making of a therapy decision. All treatment decisions remain the full and final responsibility of the treating physician and physicians should refer to approved prescribing information for all therapies.

Therapies contained in this report may have been approved by the US FDA.

BIOMARKER FINDINGS

BIOMARKER

Microsatellite status

RESULT MS-Stable

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence, MSS tumors are significantly less likely than MSI-H tumors to respond to anti-PD-1 immune checkpoint inhibitors¹⁻³, including approved therapies nivolumab and pembrolizumab⁴. In a retrospective analysis of 361 patients with solid tumors treated with pembrolizumab, 3% were MSI-H and

experienced a significantly higher ORR compared with non-MSI-H cases (70% vs. 12%, p=0.001)⁵.

FREQUENCY & PROGNOSIS

Low-level MSI has been reported in 5-9% of glioblastoma (GBM) samples⁶⁻⁸. A large-scale study did not find high-level microsatellite instability (MSI-H) in any of 129 GBM samples⁶, although a small-scale study reported MSI-H in 4 of 15 pediatric GBMs and 1 of 12 adult GBMs⁹. The frequency of MSI has been reported to be increased in relapsed compared to primary GBM⁶, in GBMs with a previous lower grade astrocytoma⁷, and in giant cell GBM compared to classic GBM⁸.

FINDING SUMMARY

Microsatellite instability (MSI) is a condition of genetic hypermutability that generates excessive amounts of short insertion/deletion mutations in the genome; it generally occurs at microsatellite DNA sequences and is caused by a deficiency in DNA mismatch repair (MMR) in the tumor¹⁰. Defective MMR and consequent MSI occur as a result of genetic or epigenetic inactivation of one of the MMR pathway proteins, primarily MLH1, MSH₂, MSH₆, or PMS₂¹⁰⁻¹². This sample is microsatellite-stable (MSS), equivalent to the clinical definition of an MSS tumor: one with mutations in none of the tested microsatellite markers¹³⁻¹⁵. MSS status indicates MMR proficiency and typically correlates with intact expression of all MMR family proteins^{10,12,14-15}.

BIOMARKER

Tumor Mutational Burden

RESULT 4 Muts/Mb

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of clinical evidence in solid tumors, increased TMB may be associated with greater sensitivity to immunotherapeutic agents, including anti-PD-L1¹⁶⁻¹⁸, anti-PD-1 therapies¹⁶⁻¹⁹, and combination nivolumab and ipilimumab²⁰⁻²⁵. In glioma, a lack of association between TMB and clinical benefit from immune checkpoint inhibitors has been reported^{16,26-27}. However, multiple case studies have reported that patients with ultramutated gliomas driven by POLE mutations

have benefited from treatment with anti-PD-1²⁸⁻²⁹ or anti-PD-L1³⁰ therapies. Therefore, although increased TMB alone may not be a strong biomarker for PD-1 or PD-L1 inhibitors in this cancer type, these agents may have efficacy for patients with glioma harboring both high TMB and POLE mutation.

FREQUENCY & PROGNOSIS

Glioblastoma (GBM) harbors a median TMB of 2.7 mutations per megabase (muts/Mb), and 4.2% of cases have high TMB (>20 muts/Mb)³¹. For pediatric patients, high TMB has been reported in a subset of high-grade gliomas, frequently in association with mutations in mismatch repair or proofreading genes and in TP53, whereas BRAF alterations or other oncogene fusions were observed more frequently in brain tumors harboring low TMB³²⁻³³. Increased TMB has been reported to correlate with higher tumor grade in glioma³⁴ and glioblastoma (GBM) tissue samples with biallelic mismatch repair deficiency

 $(bMMRD)^{28}$, as well as with shorter OS of patients with diffuse glioma³⁵.

FINDING SUMMARY

Tumor mutation burden (TMB, also known as mutation load) is a measure of the number of somatic protein-coding base substitution and insertion/deletion mutations occurring in a tumor specimen. TMB is affected by a variety of causes, including exposure to mutagens such as ultraviolet light in melanoma³⁶⁻³⁷ and cigarette smoke in lung cancer³⁸⁻³⁹, treatment with temozolomide-based chemotherapy in glioma⁴⁰⁻⁴¹, mutations in the proofreading domains of DNA polymerases encoded by the POLE and POLD1 genes⁴²⁻⁴⁶, and microsatellite instability (MSI)^{42,45-46}. This sample harbors a TMB below levels that would be predicted to be associated with sensitivity to PD-1-or PD-L1-targeting immune checkpoint inhibitors, alone or in combination with other agents^{16,26-30}.

GENOMIC FINDINGS

GENE

EGFR

ALTERATION EGFRvIII, amplification

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

In multiple glioblastoma (GBM) studies, the presence of EGFRvIII has not predicted clinical benefit from first-generation EGFR TKIs such as erlotinib⁴⁷⁻⁵² or gefitinib^{50,53}. However, case reports have described patients with EGFRvIII-positive GBM responding to erlotinib⁵⁴⁻⁵⁷. In a retrospective study of patients with GBM treated with erlotinib or gefitinib, co-expression of EGFRvIII with PTEN protein was the strongest predictor of response (P<0.001)⁵⁸, suggesting that activity in this setting is dependent on PTEN status⁵⁹⁻⁶⁰. However, a prospective Phase 2 trial testing erlotinib monotherapy for patients with EGFRvIII and PTEN-positive recurrent glioblastoma reported minimal efficacy and was terminated⁵². The secondgeneration EGFR TKIs afatinib and dacomitinib have shown minimal efficacy for patients with EGFRvIII glioblastoma (GBM)⁶¹⁻⁶⁴. A Phase 1/2 study of afatinib, temozolomide, or the combination for patients with GBM reported clinical benefit, including for patients with EGFRvIII; however, temozolomide alone and in combination exhibited better responses than afatinib monotherapy⁶¹⁻⁶². A Phase 2 trial of dacomitinib for patients with EGFR-amplified GBM reported a DCR of 26% (5/19) among patients with EGFR amplification and EGFRvIII; however, the trial failed to meet its primary endpoint of 6-month PFS63. A retrospective biomarker analysis of another Phase 2 study of dacomitinib for patients with GBM found no association between EGFRvIII and clinical benefit⁶⁴. Patients with glioma and co-occurring EGFR amplification and EGFRvIII have reported responses to osimertinib⁶⁵. However, a patient with multiple glioblastoma (GBM) tumors, one of which harbored EGFRvIII, experienced progression of the EGFRvIII-positive tumor during treatment with osimertinib66. On the basis of preclinical data, osimertinib inhibits EGFRvIIII-driven tumor growth in vitro⁶⁷⁻⁶⁸. Novel approaches that specifically target EGFRvIII in glioblastoma (GBM), such as the vaccine rindopepimut, are under investigation in both clinical and preclinical studies. A Phase 2 trial

reported significant improvement in OS for patients with EGFRvIII-positive GBM with rindopepimut in combination with bevacizumab compared to bevacizumab alone (HR=0.53, p=0.01)69. However, a Phase 3 study of rindopepimut combined with temozolomide compared to temozolomide alone in newly diagnosed EGFRvIII-positive GBM patients was terminated after the interim analysis, due to a lack of clinical benefit as measured by OS (20 vs. 20 months)70. Clinical studies of the secondgeneration EGFR TKIs afatinib and dacomitinib for patients with EGFR-amplified gliomas have shown limited efficacy^{61,63-64,71-72}; however, a small subset of patients has experienced clinical benefit^{63-64,71}. Multiple studies have failed to find a positive association between increased EGFR expression and clinical benefit from erlotinib or gefitinib for patients with glioblastoma^{58,73-75}. There are conflicting data on the efficacy of anti-EGFR antibodies for the treatment of EGFR-amplified tumors. A meta-analysis of colorectal cancer patients treated with second-line or higher cetuximab or panitumumab observed an association between EGFR copy number gain and increased OS and PFS76. However, studies in head and neck squamous cell carcinoma and gastric cancer found either no association or a negative association between EGFR copy number gain and survival after treatment with first-line cetuximab or panitumumab in combination with chemotherapy⁷⁷⁻⁷⁸. The Phase 3 INTELLANCE trial of depatuxizumab mafodotin (ABT-414), an EGFRtargeted antibody-drug conjugate with a toxic payload, in patients with EGFR-amplified glioblastoma (GBM) was stopped for futility. Interim analysis demonstrated improved median PFS (mPFS) of ABT-414 monotherapy compared with placebo (HR=0.84); however, no OS benefit was observed (HR=1.01). Improved mPFS was also observed in patients harboring EGFRvIII (HR=0.73) but without an OS improvement (HR=0.95)⁷⁹. The Phase 2 INTELLANCE trial demonstrated clinical benefit for EGFR-amplified GBM for the combination of ABT-414, temozolomide, and radiotherapy (HR=0.66, p=0.017), but there was no evidence of efficacy for ABT-414 monotherapy (HR=1.04, p=0.83)80.

FREQUENCY & PROGNOSIS

Across several genomic studies of CNS tumors, EGFR amplification has been reported in 16.9% of anaplastic astrocytomas, and 39.7% of glioblastoma multiformes (GBMs)⁸¹⁻⁸⁴. EGFR alterations have

been reported in 13.2% of anaplastic astrocytomas, 5.3-15.9% of glioblastoma multiformes (GBMs), and o% of pilocytic astrocytomas in several genomic studies of CNS tumors81-84. In GBMs, Missense mutations in the EGFR extracellular domain have been found in 10-15% of cases and approximately half have a low-level amplification of the mutated allele85-86. In a study of IDH-wildtype GBM samples, EGFR alterations were detected in 50% (117/232) of IDH-wildtype GBM samples analyzed, including 41% (95/232) with a co-occurring EGFR amplification and mutation, 26% (61/232) with an EGFR domain truncation event, such as EGFRvIII, and 2.2% (5/232) with an EGFR fusion event⁸⁷. The EGFRvIII mutation has been variously reported in 6-46% of GBM samples^{58,88-95}. No definitive correlation has been identified between EGFR amplification and length of survival in patients with GBM96-97; however, EGFR amplification has been associated with prolonged survival in patients over the age of 60 with GBM98. The link between EGFRvIII status and prognosis is unclear, although some studies suggest that it may be linked to improved survival and response to chemotherapy⁹⁹.

FINDING SUMMARY

EGFR encodes the epidermal growth factor receptor, which belongs to a class of proteins called receptor tyrosine kinases. In response to signals from the environment, EGFR passes biochemical messages to the cell that stimulate it to grow and divide100. Amplification of EGFR has been associated with increased expression of EGFR mRNA and protein in several cancer types¹⁰¹⁻¹⁰³. A mutation of the EGFR gene, referred to as EGFRvIII, results from a gene rearrangement that deletes exons 2-7. This alteration causes an in-frame deletion of 801 base pairs encoding part of the extracellular ligand-binding domain⁸⁸. This deletion has shown to result in ligand-independent (constitutive) phosphorylation and activation of EGFR, as well as consequent tumorigenesis 88,104 .

POTENTIAL DIAGNOSTIC IMPLICATIONS

The presence of EGFR gene amplification or TERT promoter mutations are indicative of diffuse astrocytic glioma with molecular features of glioblastoma, WHO grade 4 in IDH1/2-wildtype tumors (NCCN CNS Cancers Guidelines, v1.2022)¹⁰⁵.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

GENOMIC FINDINGS

GENE

PIK3CA

ALTERATION

C420R - subclonal

TRANSCRIPT ID NM_006218.2

CODING SEQUENCE EFFECT

1258T>C

VARIANT CHROMOSOMAL POSITION

chr3:178927980

VARIANT ALLELE FREQUENCY (% VAF)

2.7%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Clinical and preclinical data in various tumor types indicate that PIK₃CA activating alterations may predict sensitivity to the rapies targeting PI₃K¹⁰⁶⁻¹¹³, AKT¹¹⁴⁻¹¹⁵, or mTOR¹¹⁶⁻¹²³. The Phase 2 NCI-MATCH study of copan lisib for patients with refractory solid tumors harboring PIK₃CA mutations with or without PTEN loss met its primary endpoint with an ORR of 16% (4/25 PRs); responses (PR or SD >6 months) were seen in patients with a meloblastoma, liposarcoma, and carcinomas of the endometrium, ovary, esophagus, lung, and prostate ¹¹³. However, the Phase 2 study of copan lisib for patients with endometrial carcinoma harboring PIK₃CA hot spot mutations failed to report any objective responses

 $(n=11)^{112}$. Two other studies of copanlisib for patients with genomically unselected tumors reported 1 CR and 2 PRs (1 unconfirmed) among 16 total patients with PIK3CA-mutated solid tumors with or without PTEN alterations 110-111. In the Phase 2 MATCH trial for patients with PIK₃CAmutated solid tumors, 28% (18/65) of patients experienced PFS lasting at least 6 months after treatment with taselisib; however, no ORs were observed in this study¹²⁴. A separate Phase 1b study of taselisib in combination with the CDK4/6 inhibitor palbociclib for patients with PIK3CAmutated solid tumors reported an ORR of o% (n=12) and a DCR of 17% $(2/12)^{125}$. In a Phase 1 trial of the dual PI₃K/mTOR kinase inhibitor apitolisib, 79% (11/14) of patients with PIK3CA-mutated advanced solid tumors experienced disease control (3 PRs, 8 SDs)¹²⁶. The PI₃K inhibitor alpelisib is approved as a single agent for the treatment of patients with PIK3CA-related overgrowth spectrum (PROS)¹²⁷, but has shown limited activity as monotherapy for PIK₃CA-mutated solid tumors with a Phase 1a study reporting an ORR of 6.0% (8/134) and a DCR of 58% (78/134)¹⁰⁷.

FREQUENCY & PROGNOSIS

PIK3CA mutations have been reported in 9% of glioblastoma (GBM) samples analyzed in the TCGA dataset82, and other studies report the incidence of PIK3CA mutations in primary GBMs as 5-18% $^{128-130}$. One study detected PIK3CA mutation in 16% (36/232) of IDH-wildtype GBM samples

analyzed87. PIK3CA mutations have been reported in 5-23% of high-grade gliomas (including glioblastomas, anaplastic astrocytomas, and anaplastic oligodendrogliomas)¹²⁸⁻¹³². While another study did not observe PIK3CA mutations in lowgrade astrocytomas or in anaplastic astrocytomas, it did report high ERK and AKT activity¹³⁰. One study found that PIK3CA mutation in glioblastoma (GBM) was associated with shorter median PFS in both a discovery cohort (6.9 vs. 12.4 months, HR=2.89, p=0.01) and in the TCGA cohort (6.1 vs. 9 months, p=0.008), but was not consistently associated with median OS133. In a study of IDHwildtype GBM, patients with alterations in PI₃K class I genes (PIK3CA, PIK3R1, PIK3CG, and PIK₃R₂) had significantly longer OS (20.0 months altered vs. 16.9 months wildtype, HR=0.62, p=0.002) and PFS (11.0 months altered vs. 7.4 months wildtype, p=0.0043); patients with PIK3CA alterations experienced an improved OS but this association was not highly significant (20.0 months altered vs. 18.1 months wildtype, p=0.0407)87.

FINDING SUMMARY

PIK₃CA encodes p₁₁₀-alpha, which is the catalytic subunit of phosphatidylinositol ₃-kinase (PI₃K). The PI₃K pathway is involved in cell signaling that regulates a number of critical cellular functions, including cell growth, proliferation, differentiation, motility, and survival¹³⁴⁻¹³⁵. PIK₃CA alterations that have been characterized as activating, such as observed here, are predicted to be oncogenic¹³⁶⁻¹⁵⁷.

GENOMIC FINDINGS

GENE

PTEN

ALTERATION loss

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

PTEN loss or mutation leads to activation of the PI₃K-AKT-mTOR pathway and may predict sensitivity to inhibitors of this pathway^{111,158-160}. Clinical studies in glioblastoma have not observed an association between PTEN deficiency and response to everolimus or temsirolimus¹⁶¹⁻¹⁶³. Preclinical data indicate that PTEN loss or inactivation may predict sensitivity to PARP inhibitors¹⁶⁴⁻¹⁶⁸, and clinical benefit has been observed for patients with PTEN-altered breast cancer including triple negative breast cancer¹⁶⁹, ovarian cancer¹⁷⁰, uterine leiomyosarcoma¹⁷¹, and endometrial cancer¹⁶⁸ treated with PARP inhibitors. However, some studies have reported a lack of association between PTEN mutation and

PARP inhibitor sensitivity $^{172-173}$.

FREQUENCY & PROGNOSIS

Studies in the literature have indicated that PTEN alterations (mutation or homozygous deletion) occur most frequently in glioblastoma (GBM), less frequently in anaplastic astrocytoma, and rarely in lower grade glioma subtypes including low grade astrocytoma, oligodendroglioma, oligoastrocytoma, and ependymoma^{98,174-180}. One study detected PTEN mutation in 42% (97/232) and loss in 10% (24/232) of IDH-wildtype GBM samples analyzed87. In the TCGA dataset, PTEN mutation was observed in 23% of GBM cases and PTEN deletion was reported in 7% of cases82, while in the Lower Grade Glioma TCGA dataset, PTEN mutation was observed in 4% of cases and homozygous deletion observed in 1.2% of cases 181. Decreased PTEN expression is associated with the higher grade GBM tumors¹⁸². Loss of PTEN correlated with significantly worse prognosis in all grades of gliomas177,183.

FINDING SUMMARY

PTEN encodes an inositol phosphatase that functions as a tumor suppressor by negatively regulating the PI₃K-AKT-mTOR pathway; loss of PTEN can lead to uncontrolled cell growth and suppression of apoptosis¹⁵⁹. Alterations such as seen here may disrupt PTEN function or expression^{179,184-224}.

POTENTIAL GERMLINE IMPLICATIONS

PTEN mutations underlie several inherited disorders, collectively termed PTEN hamartoma tumor syndrome (PHTS), which include Cowden syndrome (CS) and its variant Lhermitte-Duclos disease (LD), Bannayan-Riley-Ruvalcaba syndrome (BRRS), PTEN-related Proteus syndrome (PS), and Proteus-like syndrome²²⁵⁻²²⁶. The mutation rate for PTEN in these disorders ranges from 20 to 85% of patients^{225,227}. The estimated incidence of Cowden syndrome is 1/200,000, which may be an underestimate due to the high variability of this disorder²²⁵. Given the association between PTEN and these inherited syndromes, in the appropriate clinical context, germline testing for mutations affecting PTEN is recommended.

GENE

FAS

ALTERATION

loss

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

Although CD95 is of significant interest as a target for anti-cancer therapies²²⁸⁻²³⁰, there are no

targeted therapies available to address mutation of FAS in cancer.

FREQUENCY & PROGNOSIS

In the TCGA datasets, FAS mutation has most frequently been observed in diffuse large B-cell lymphoma (DLBCL)(6%), uterine corpus endometrioid carcinoma (6%), cervical squamous cell carcinoma (2%), and melanoma (2%); FAS putative homozygous deletion was most frequently observed in diffuse large B-cell lymphoma (DLBCL)(6%), prostate adenocarcinoma (6%), and

sarcomas (3%) (cBioPortal, 2023)²³¹⁻²³².

FINDING SUMMARY

FAS encodes the protein CD95, a cell surface receptor for the protein FAS ligand (FASL) and a key regulator of apoptosis during lymphocyte development. Heterozygous mutations in FAS underlie autoimmune lymphoproliferative syndrome (ALPS) and certain germline mutations in FAS are associated with an increased risk of lymphoma development²³³⁻²³⁵.

GENOMIC FINDINGS

GENE

GRM3

ALTERATION

T758M - subclonal

TRANSCRIPT ID

NM_000840.2

CODING SEQUENCE EFFECT

2273C>T

VARIANT CHROMOSOMAL POSITION

chr7:86469103

VARIANT ALLELE FREQUENCY (% VAF)

0.65%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies —

On the basis of limited preclinical evidence, GRM3

mutations may be associated with sensitivity to MEK inhibitors. Activating mutations of GRM3 were reported to promote MAPK signaling and were sensitive to the MEK inhibitor selumetinib in one preclinical study²³⁶. In 1 study, high expression of GRM3 was associated with better survival and better prognosis for patients with microsatellite-stable (MSS) colorectal cancer (CRC) tumors treated with bevacizumab²³⁷.

FREQUENCY & PROGNOSIS

GRM3 mutations have been most frequently reported in melanoma, with an incidence of 30% (6/20) in desmoplastic melanoma²³⁸, and an incidence of 13-18% in cutaneous melanoma^{236,239-240}. GRM3 mutation has also been reported at lower frequencies in other cancer types, including small cell lung cancer (10-13%)²⁴¹⁻²⁴², lung squamous cell carcinoma (8%)²⁴³, and gastric

adenocarcinoma (5%)244.

FINDING SUMMARY

GRM3 (metabotropic glutamate receptor-3, or mGluR3) encodes a G protein-coupled receptor. In preclinical studies of melanoma cells, activating GRM3 mutations (including G561E, S610L, E767K, E870K) result in increased MAPK signaling, proliferation, anchorage-independent growth and migration²³⁶. Certain germline polymorphisms of the GRM3 locus have been reported to affect motor and cognitive function as well as the risk of developing schizophrenia, autism spectrum disorder, bipolar disorder, and alcohol dependence²⁴⁵⁻²⁴⁹.

GENE

PPP2R1A

ALTERATION

R260C - subclonal

TRANSCRIPT ID NM_014225.5

CODING SEQUENCE EFFECT

778C>T

VARIANT CHROMOSOMAL POSITION

chr19:52716334

VARIANT ALLELE FREQUENCY (% VAF)

2.0%

POTENTIAL TREATMENT STRATEGIES

- Targeted Therapies -

There are no targeted therapies available to directly address genomic alterations in PPP2R1A.

Activation of PP2A with forskolin or the sphingosine analogue FTY720 has be shown to be beneficial in the context of CML and ALL²⁵⁰, and is being investigated in solid tumors of the lung, breast, and colon²⁵¹⁻²⁵³. In addition, other agents have been shown to upregulate PP2A activity in the context of various tumors²⁵⁴. However, the efficacy of these compounds in the context of PPP2R1A mutations has not yet been evaluated (PubMed, Dec 2022).

FREQUENCY & PROGNOSIS

PPP2R1A mutations have been reported in several subtypes of ovarian and uterine carcinoma, most frequently in uterine serous carcinoma (up to 26%) (COSMIC, cBioPortal, 2023)^{231-232,255}. In addition, concurrent mutations in PPP2R1A, PIK3CA, and TP53 have been reported in cases of uterine serous carcinoma, and were also found in associated serous endometrial intraepithelial carcinomas,

suggesting the alterations arose early in the preinvasive stage of the disease²⁵⁶. PPP₂R₁A mutations have been reported in 9/42 carcinosarcoma samples analyzed²⁵⁷.

FINDING SUMMARY

PPP2R1A encodes a regulatory subunit of protein phosphatase 2 (PP2A), which is involved in regulation of the cell cycle transition from mitosis to interphase²⁵⁸. A spatially constrained pattern of somatic missense alterations in PPP2R1A, clustered around codons 179, 182, and 256, has been documented^{256-257,259-261}. Although the functional consequences of these PPP2R1A alterations have not been clearly characterized, they are presumed to disrupt binding of the PP2A regulatory and catalytic subunits, dysregulating normal PP2A function and cell cycle progression²⁶⁰.

GENOMIC FINDINGS

GENE

RB1

ALTERATION

Q736*

TRANSCRIPT ID NM_000321.2

CODING SEQUENCE EFFECT 2206C>T

VARIANT CHROMOSOMAL POSITION chr13:49037966

VARIANT ALLELE FREQUENCY (% VAF)
46.4%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

On the basis of limited clinical data 262 and strong preclinical data $^{263-266}$, RB1 inactivation may be associated with sensitivity to inhibitors of Aurora

kinase A, particularly in small cell lung cancer (SCLC). A clinical study evaluating the Aurora kinase A inhibitor alisertib for patients with prostate cancer did not find an association between RB1 deletion and clinical benefit²⁶⁷. Other approaches to target RB1 inactivation under investigation in preclinical studies include inhibitors of BCL-2 family members²⁶⁸ and activation of the NOTCH pathway²⁶⁹.

FREQUENCY & PROGNOSIS

In the TCGA datasets, RB1 mutation or homozygous deletion was observed in 9% of glioblastomas⁸² and 2.5% of lower grade glioma cases¹⁸¹. In one study, loss of RB1 transcript expression was observed in 10.6% of glioblastomas and occurred more frequently in the proneural subtype²⁷⁰. One study reports that mutation of RB1 is correlated with shorter survival in glioblastoma patients²⁷¹. Several studies suggest that RB1, PTEN, and/or TP53 mutations are early events in the

development of glioblastoma²⁷²⁻²⁷⁴.

FINDING SUMMARY

RB1 encodes the retinoblastoma protein (Rb), a tumor suppressor and negative regulator of the cell cycle²⁷⁵⁻²⁷⁶. Alterations such as seen here may disrupt RB1 function or expression²⁷⁷⁻²⁸³.

POTENTIAL GERMLINE IMPLICATIONS

Mutations in RB1 underlie the development of retinoblastoma (RB), a rare tumor that arises at a rate of approximately 1:20,000 live births, with nearly 5,000 new cases worldwide per year²⁸⁴. Germline mutations in RB1 account for approximately 40% of RB tumors²⁸⁵ and are associated with an increased risk of developing secondary malignancies that include soft tissue and bone sarcoma and malignant melanoma²⁸⁶⁻²⁸⁷. In the appropriate clinical context, germline testing of RB1 is recommended.

GENE

TERT

ALTERATION promoter -146C>T

TRANSCRIPT ID

NM_198253.2

CODING SEQUENCE EFFECT

-146C>T

VARIANT CHROMOSOMAL POSITION

chr5:1295250

VARIANT ALLELE FREQUENCY (% VAF)

35.4%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

Therapeutic options for targeting tumors with TERT mutations are limited, although a variety of approaches have been investigated, including immunotherapies using TERT as a tumorassociated antigen and antisense oligonucleotideor peptide-based therapies. TERT peptide vaccines showed limited anticancer efficacy in clinical trials²⁸⁸; however, in one preclinical study, the combination of a TERT peptide vaccine and anti-CTLA-4 therapy suppressed tumor growth²⁸⁹. A Phase 2 study of the TERT inhibitor imetelstat for

patients with advanced non-small cell lung cancer reported no improvement in PFS or OS²⁹⁰.

FREQUENCY & PROGNOSIS

TERT promoter mutations have been reported in 51-59% of gliomas²⁹¹⁻²⁹², most frequently in glioblastoma (GBM, 54-84%), gliosarcoma (81%), oligodendroglioma (78%), and historically in oligoastrocytomas (25-31%) but less frequently in lower grade astrocytomas (10-18%) and in only 1% of ependymomas²⁹¹⁻²⁹⁵. In patients with glioblastoma (GBM), the prevalence of TERT promoter mutation is lower in pediatric primary GBM (11%) and adult secondary GBM (28%) compared with adult primary GBM $(58-83\%)^{291,293}$. One study detected TERT promoter mutations in 78% (181/232) of IDH-wildtype GBM samples analyzed87. TERT promoter mutation has been shown to be significantly associated with increased TERT gene expression in astrocytoma, oligodendroglioma, and GBM²⁹⁶. TERT promoter mutations significantly associate with poor prognosis in patients with GBM, although this correlation may be due to the association with primary GBM as opposed to IDH-positive secondary GBM^{291,293,296-297}. In the context of IDHwildtype glioma, TERT mutations are associated with reduced OS (NCCN CNS Cancers Guidelines, V1.2022).

FINDING SUMMARY

Telomerase reverse transcriptase (TERT, or hTERT) is a catalytic subunit of the telomerase complex, which is required to maintain appropriate chromosomal length²⁹⁸. Activation of TERT is a hallmark of cancer, being detected in up to 80-90% of malignancies and absent in quiescent cells²⁹⁹⁻³⁰¹. Mutations within the promoter region of TERT that confer enhanced TERT promoter activity have been reported in two hotspots, located at -124 bp and -146 bp upstream of the transcriptional start site (also termed C228T and C250T, respectively)³⁰²⁻³⁰⁴, as well as tandem mutations at positions -124/-125 bp and -138/-139 bp³⁰².

POTENTIAL DIAGNOSTIC IMPLICATIONS

TERT mutations are associated with 1p/19q codeletion in oligodendrogliomas, and are highly recurrent in IDH/ATRX-wildtype glioblastoma (GBM) (NCCN CNS Cancers Guidelines, v1.2022)³⁰⁵. The presence of EGFR gene amplification or TERT promoter mutations are indicative of diffuse astrocytic glioma with molecular features of glioblastoma, WHO grade 4 in IDH1/2-wildtype tumors (NCCN CNS Cancers Guidelines, v1.2022)¹⁰⁵.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

GENOMIC FINDINGS

GENE

TP53

ALTERATION V272M

TRANSCRIPT ID NM_000546.4

CODING SEQUENCE EFFECT 814G>A

VARIANT CHROMOSOMAL POSITION chr17:7577124

VARIANT ALLELE FREQUENCY (% VAF) 61.6%

POTENTIAL TREATMENT STRATEGIES

Targeted Therapies

There are no approved therapies to address TP53 mutation or loss. However, tumors with TP53 loss of function alterations may be sensitive to the WEE1 inhibitor adavosertib306-309 or p53 gene therapy such as SGT53³¹⁰⁻³¹⁴. In a Phase 1 study, adavosertib in combination with gemcitabine, cisplatin, or carboplatin elicited PRs in 9.7% and SDs in 53% of patients with solid tumors; the response rate was 21% (4/19) for patients with TP53 mutations versus 12% (4/33) for patients who were TP53 wildtype315. A Phase 2 trial of adavosertib in combination with chemotherapy (gemcitabine, carboplatin, paclitaxel, or doxorubicin) reported a 32% (30/94, 3 CR) ORR and a 73% (69/94) DCR for patients with platinumrefractory TP53-mutated ovarian, Fallopian tube, or peritoneal cancer³¹⁶. A smaller Phase 2 trial of adavosertib in combination with carboplatin achieved a 43% (9/21, 1 CR) ORR and a 76% (16/21) DCR for patients with platinum-refractory TP_{53} -mutated ovarian cancer 317 . The combination of adayosertib with paclitaxel and carboplatin for patients with TP53-mutated ovarian cancer also significantly increased PFS compared with paclitaxel and carboplatin alone³¹⁸. In the Phase 2 VIKTORY trial, patients with TP53-mutated metastatic and/or recurrent gastric cancer experienced a 24% (6/25) ORR with adavosertib combined with paclitaxel319. A Phase 1 trial of neoadjuvant adavosertib in combination with cisplatin and docetaxel for head and neck squamous cell carcinoma (HNSCC) elicited a 71%

(5/7) response rate for patients with TP53 alterations³²⁰. The Phase 2 FOCUS₄-C trial for patients with TP53- and RAS-mutated colorectal cancer reported improvement in PFS (3.61 vs. 1.87 months, HR=0.35, p=0.0022), but not OS (14.0 vs 12.8 months, p=0.93), following adavosertib treatment compared with active monitoring³²¹. In a Phase 1b clinical trial of SGT-53 in combination with docetaxel for patients with solid tumors, 75% (9/12) of evaluable patients experienced clinical benefit, including 2 confirmed and 1 unconfirmed PRs and 2 instances of SD with significant tumor shrinkage³¹⁴. Missense mutations leading to TP₅₃ inactivation may be sensitive to therapies that reactivate mutated p53 such as eprenetapopt. In a Phase 1b trial for patients with p53-positive highgrade serous ovarian cancer, eprenetapopt combined with carboplatin and pegylated liposomal doxorubicin achieved a 52% (11/21) response rate and 100% DCR322. A Phase 1 trial of eprenetapopt with pembrolizumab for patients with solid tumors reported an ORR of 10% (3/ 29)323.

FREQUENCY & PROGNOSIS

In the TCGA dataset, TP53 alterations have been reported in 35% of glioblastomas (GBMs), with a high incidence in pediatric and secondary GBMs and a low incidence in primary GBMs^{132,324}. One study detected TP53 alterations in 31% (73/232) of IDH-wildtype GBM samples analyzed, with most of the events being mutations⁸⁷. TP53 mutations have been reported in 18-40% of astrocytoma samples, and preferentially in anaplastic astrocytoma; one study reported TP53 loss of function and partially/fully functional mutations in 15% and 25% of anaplastic astrocytomas, respectively³²⁵⁻³³⁰. Some studies suggest that the presence of a TP53 mutation is correlated with a favorable prognosis in patients with glioblastoma $(GBM)^{331}$. One study reported that TP53 alterations were associated with poorer OS (12.9 months altered vs. 19.7 months wildtype, HR=1.58, p=0.0054) in IDH-wildtype GBM87. Mutation of TP53 is thought to be an early step in the tumorigenesis of astrocytomas, which can progress into anaplastic astrocytoma and then glioblastoma through gain of other genetic abnormalities such as loss of CDKN2A or RB1, followed by loss of PTEN332.

FINDING SUMMARY

Functional loss of the tumor suppressor p53, which is encoded by the TP53 gene, is common in aggressive advanced cancers³³³. Alterations such as seen here may disrupt TP53 function or expression³³⁴⁻³³⁸.

POTENTIAL GERMLINE IMPLICATIONS

One or more of the TP53 variants observed here has been described in the ClinVar database as a likely pathogenic or pathogenic germline mutation (by an expert panel or multiple submitters) associated with Li-Fraumeni syndrome (ClinVar, Sep 2022)³³⁹. Follow-up germline testing would be needed to distinguish whether the finding in this patient is somatic or germline. Germline mutations in TP53 are associated with the very rare autosomal dominant disorder Li-Fraumeni syndrome and the early onset of many cancers340-342, including sarcomas³⁴³⁻³⁴⁴. Estimates for the prevalence of germline TP53 mutations in the general population range from 1:5,000³⁴⁵ to 1:20,000³⁴⁴. For pathogenic TP53 mutations identified during tumor sequencing, the rate of germline mutations was 1% in the overall population and 6% in tumors arising before age 30³⁴⁶. In the appropriate clinical context, germline testing of TP53 is recommended.

POTENTIAL CLONAL HEMATOPOIESIS IMPLICATIONS

Variants seen in this gene have been reported to occur in clonal hematopoiesis (CH), an age-related process in which hematopoietic stem cells acquire somatic mutations that allow for clonal expansion³⁴⁷⁻³⁵². CH in this gene has been associated with increased mortality, risk of coronary heart disease, risk of ischemic stroke, and risk of secondary hematologic malignancy³⁴⁷⁻³⁴⁸. Clinical management of patients with CH in this gene may include monitoring for hematologic changes and reduction of controllable risk factors for cardiovascular disease³⁵³. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH351,354-355. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Cetuximab

Assay findings association

EGFR

EGFRvIII, amplification

AREAS OF THERAPEUTIC USE

Cetuximab is a monoclonal antibody that targets EGFR. It is FDA approved for the treatment of head and neck squamous cell carcinoma (HNSCC) and KRAS-wild-type, EGFR-expressing metastatic colorectal cancer (CRC). Please see the drug label for full prescribing information.

GENE ASSOCIATION

For patients with metastatic CRC receiving cetuximab or panitumumab as mono- or combination therapy, increased EGFR copy number associated with improved OS (HR=0.62) in a meta-analysis, although increased survival was not seen in populations that received first-line treatment with EGFR antibodies⁷⁶.

SUPPORTING DATA

A Phase 2 trial of cetuximab with the anti-VEGF monoclonal antibody bevacizumab for patients with glioblastoma (GBM) did not show improved efficacy compared with bevacizumab alone³⁵⁶. However, another Phase 2 study demonstrated that for patients with GBM harboring EGFR amplification but lacking expression of the EGFRvIII variant, treatment with cetuximab resulted in significantly longer PFS and numerical (although not statistically significant) improvement in OS⁹⁵. In addition, a case report for an EGFR-amplified patient with GBM treated with cetuximab using intraarterial cerebral infusion (SIACI) in combination with chemotherapy reported a stable response without recurrence at 6 months³⁵⁷.

Osimertinib

Assay findings association

EGFR

EGFRvIII, amplification

AREAS OF THERAPEUTIC USE

Osimertinib is an irreversible EGFR TKI that is selective for EGFR TKI-sensitizing mutations and the EGFR T790M mutation. It is FDA approved in various treatment settings for patients with non-small cell lung cancer (NSCLC) whose tumors have EGFR exon 19 deletions, exon 21 L858R mutations, or T790M mutations. Please see the drug label for full prescribing information.

GENE ASSOCIATION

EGFR TKI-sensitizing mutations or rearrangements and/or the EGFR T790M mutation may predict sensitivity to osimertinib in non-small cell lung cancer³⁵⁸⁻³⁶². On the basis of clinical responses to the third-generation TKI osimertinib for patients with EGFR-rearranged glioma, EGFRvIII and activating rearrangements may confer sensitivity to osimertinib^{65,363}. However, a case study of a patient with multiple glioblastoma tumors reported that the tumor harboring EGFRvIII and EGFR amplification did not respond to osimertinib⁶⁶.

SUPPORTING DATA

Clinical benefit from osimertinib has been observed for cases of pediatric and adult patients with EGFR-altered

glioma^{65-66,363-365}. Osimertinib has been studied primarily for the treatment of EGFR-mutated NSCLC. A Phase 2 trial of osimertinib in combination with bevacizumab versus osimertinib monotherapy for patients with untreated advanced non-small cell lung cancer (NSCLC) harboring EGFR del19 or L858R reported no difference in ORR (82% vs 86%) and median PFS (22.1 vs 20.2 months, HR 0.862 p=0.213)366. The Phase 2 BOOSTER study of osimertinib in combination with bevacizumab versus osimertinib monotherapy for patients with advanced NSCLC with EGFR-sensitizing mutations (exon 19 del or L858R) and L790M at progression on prior EGFR TKI reported no difference in ORR (55% vs 55%), median OS (24.0 vs 24.3 months, HR 1.03 p=0.91), or median PFS (15.4 vs 12.3 months, HR 0.96 p=0.83), although improved PFS was observed for the combination in the subgroup of current or former smokers (16.5 vs 8.4, HR 0.52) while nonsmokers had no benefit (HR 1.47)367. The Phase 1b TATTON study of osimertinib in combination with selumetinib, savolitinib, or durvalumab for patients with previously treated EGFR-mutated NSCLC reported ORRs of 42% (15/36), 44% (8/18), and 44% (10/23), respectively368.

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

REPORT DATE 23 Jan 2023

ORDERED TEST # ORD-1544963-01

THERAPIES WITH CLINICAL BENEFIT

IN OTHER TUMOR TYPE

Panitumumab

Assay findings association

EGFR

EGFRvIII, amplification

AREAS OF THERAPEUTIC USE

Panitumumab is a monoclonal antibody that targets EGFR. It is FDA approved to treat KRAS wild-type and NRAS wild-type metastatic colorectal cancer (CRC) combined with chemotherapy or as monotherapy for patients who have progressed on prior chemotherapy. Please see the drug label for full prescribing information.

GENE ASSOCIATION

For patients with metastatic CRC receiving cetuximab or panitumumab as mono- or combination therapy, increased EGFR copy number associated with improved OS (HR=0.62) in a meta-analysis, although increased survival was not seen in populations that received first-line treatment with EGFR antibodies⁷⁶.

SUPPORTING DATA

A Phase 1 trial of EnGeneIC delivery vehicle (EDV) targeting EGFR with panitumumab in combination with

doxorubicin for 14 patients with glioblastoma (GBM) reported no responses and 28% (4/14) $\rm SDs^{369}.$

Panitumumab has shown efficacy as monotherapy or in combination with chemotherapy for patients with KRASwildtype colorectal cancer³⁷⁰⁻³⁷² and has been investigated in a variety of other tumor types. For patients with head and neck squamous cell carcinoma (HNSCC), data are conflicting; some trials of panitumumab in various lines and with different chemotherapy combinations have shown modest benefit³⁷³⁻³⁷⁵ and others have reported no benefit $^{\rm 376\text{-}378}$. A Phase 3 study of chemotherapy with or without panitumumab for patients with advanced gastroesophageal cancer was terminated for futility³⁷⁹. Trials in a variety of tumor types have failed to show significant benefit for patients, including non-small cell lung cancer (NSCLC)380-381; biliary tract cancers, including cholangiocarcinoma382-383; and renal cell carcinoma (RCC)384.

NOTE Genomic alterations detected may be associated with activity of certain FDA approved drugs, however, the agents listed in this report may have varied evidence in the patient's tumor type.

REPORT DATE 23 Jan 2023

ORDERED TEST # ORD-1544963-01

CLINICAL TRIALS

NOTE Clinical trials are ordered by gene and prioritized by: age range inclusion criteria for pediatric patients, proximity to ordering medical facility, later trial phase, and verification of trial information within the last two months. While every effort is made to ensure the accuracy of the information contained below, the information available in the public domain is continually

updated and should be investigated by the physician or research staff. This is not a comprehensive list of all available clinical trials. Foundation Medicine displays a subset of trial options and ranks them in this order of descending priority: Qualification for pediatric trial \rightarrow Geographical proximity \rightarrow Later trial phase. Clinical trials listed here may have additional enrollment criteria that

may require medical screening to determine final eligibility. For additional information about listed clinical trials or to conduct a search for additional trials, please see clinicaltrials.gov. Or, visit https://www.foundationmedicine.com/genomic-testing#support-services.

GENE EGFR

ALTERATION EGFRVIII, amplification

RATIONALE

EGFR activating mutations, rearrangements, or amplification may predict sensitivity to EGFRtargeted therapies. Strategies to overcome resistance to current agents include nextgeneration EGFR inhibitors and combination therapies.

NCT03783403	PHASE 1
A Study of CC-95251, a Monoclonal Antibody Directed Against SIRP α , in Subjects With Advanced Solid and Hematologic Cancers	TARGETS CD20, EGFR, SIRP-alpha

LOCATIONS: Seoul (Korea, Republic of), Heidelberg (Australia), Melbourne (Australia), Manchester (United Kingdom), Edmonton (Canada), Rouen (France), Oregon, Marseille (France), Creteil (France), Nantes Cedex 01 (France)

NCT04946968	PHASE 2
Phase-2 Dacomitinib Study on Patients With EGFR-Driven Advanced Solid Tumours With Low EGFR-AS1 IncRNA Expr or Other Novel Emerging Biomarkers	TARGETS ERBB4, EGFR, ERBB2
LOCATIONS: Singapore (Singapore)	

 SATIONS: Singapore (Singapore)		

NCT04616196	PHASE 1/2
Study of NKTR 255 in Combination With Cetuximab in Solid Tumors	TARGETS EGFR

LOCATIONS: California, Montana, Arizona, Minnesota, Illinois, Michigan, Texas, New York

NCT04720976	PHASE 1/2
JAB-3312 Activity in Adult Patients With Advanced Solid Tumors	TARGETS MEK, SHP2, PD-1, EGFR, KRAS

LOCATIONS: Utah, California, Arizona, Minnesota, Illinois, Michigan, Oklahoma, Missouri, Indiana, Connecticut

NCT02800486	PHASE 2
Super Selective Intra-arterial Repeated Infusion of Cetuximab (Erbitux) With Reirradiation for Treatment of Relapsed/Refractory GBM, AA, and AOA	TARGETS EGFR
LOCATIONS: New York	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

REPORT DATE 23 Jan 2023

ORDERED TEST # ORD-1544963-01

CLINICAL TRIALS

NCT02861898	PHASE 1/2
Super-selective Intra-arterial Repeated Infusion of Cetuximab for the Treatment of Newly Diagnosed Glioblastoma	TARGETS EGFR
LOCATIONS: New York	
NCT04670679	PHASE 1
A Dose Escalation/Expansion Study of ERAS-601 in Patients With Advanced or Metastatic Solid Tumors	TARGETS SHP2, EGFR
LOCATIONS: Perth (Australia), Melbourne (Australia), Nevada, California, Texas, Massachusetts, Ne	w York, Tennessee, Florida
NCT04547777	PHASE 1
Phase 1 Trial of D2C7-IT in Combination With 2141-V11 for Recurrent Malignant Glioma	TARGETS EGFRVIII, CD40
LOCATIONS: North Carolina	

CLINICAL TRIALS

PIK3CA

ALTERATION C420R - subclonal

RATIONALE

PIK₃CA activating mutations may lead to activation of the PI₃K-AKT-mTOR pathway and may therefore indicate sensitivity to inhibitors of

this pathway. Strong clinical data support sensitivity of PIK3CA-mutated solid tumors to the PI₃K-alpha inhibitor alpelisib.

Platform Study TR	RGETS KB, ALK, TRKC, ROS1, TRKA, RET, D-L1, AKTs, ERBB2, MDM2, PI3K- Dha, RAFs, NRAS

LOCATIONS: Zhongzheng Dist. (Taiwan), Taipei City (Taiwan), Taoyuan County (Taiwan), Tainan (Taiwan), Shanghai City (China), Shanghai (China), Shatin (Hong Kong), Hong Kong (Hong Kong), Seoul (Korea, Republic of), Xi'an (China)

(Hong Kong), Hong Kong (Hong Kong), Seoul (Korea, Republic of), Xi'an (China)		
NCT03239015	PHASE 2	
Efficacy and Safety of Targeted Precision Therapy in Refractory Tumor With Druggable Molecular Event	TARGETS EGFR, ERBB4, ERBB2, PARP, mTOR, MET, ROS1, RET, VEGFRs, BRAF, CDK4, CDK6	
LOCATIONS: Shanghai (China)		
NCT04337463	PHASE NULL	
ATG-008 Combined With Toripalimab in Advanced Solid Tumors	TARGETS mTORC1, mTORC2, PD-1	
LOCATIONS: Chongqing (China), Chengdu (China)		
NCT04803318	PHASE 2	
Trametinib Combined With Everolimus and Lenvatinib for Recurrent/Refractory Advanced Solid Tumors	TARGETS mTOR, FGFRs, RET, PDGFRA, VEGFRs, KIT, MEK	

NCT04526470	PHASE 1/2
Alpelisib and Paclitaxel in PIK3CA-altered Gastric Cancer	TARGETS PI3K-alpha
LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of)	

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

© 2023 Foundation Medicine, Inc. All rights reserved.

LOCATIONS: Guangzhou (China)

REPORT DATE 23 Jan 2023

ORDERED TEST # ORD-1544963-01

CLINICAL TRIALS

NCT05125523	PHASE 1		
A Study of Sirolimus for Injection (Albumin Bound) in Patients With Advanced Solid Tumors	TARGETS mTOR		
LOCATIONS: Tianjin (China)			
NCT03772561	PHASE 1		
Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid Tumor Malignancies	TARGETS PARP, AKTs, PD-L1		
LOCATIONS: Singapore (Singapore)			
NCT04801966	PHASE NULL		
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF		
LOCATIONS: Melbourne (Australia)			
NCT04317105	PHASE 1/2		
Testing the Addition of an Anti-cancer Drug, Copanlisib, to the Usual Immunotherapy (Nivolumab With or Without Ipilimumab) in Patients With Advanced Solid Cancers That Have Changes in the Following Genes: PIK3CA and PTEN	TARGETS PD-1, CTLA-4, PI3K		
LOCATIONS: Toronto (Canada), Texas, Virginia			
NCT04817956	PHASE 2		
Improving Public Cancer Care by Implementing Precision Medicine in Norway	TARGETS PD-L1, VEGFA, ERBB2, ALK, RET, PARP, SMO, TRKB, TRKC, ROS1, TRKA, MEK, BRAF, PI3K-alpha, FGFR1, FGFR2,		
	FGFR3, MET, KIT, ABL		

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

REPORT DATE 23 Jan 2023

ORDERED TEST # ORD-1544963-01

CLINICAL TRIALS

GEN	Ε			
P7	Γ	F	٨	Ī

ALTERATION loss

RATIONALE

PTEN loss or inactivating mutations may lead to increased activation of the PI₃K-AKT-mTOR pathway and may indicate sensitivity to inhibitors

of this pathway. PTEN loss or inactivation may also predict sensitivity to PARP inhibitors.

NCT04337463	PHASE NULL
ATG-008 Combined With Toripalimab in Advanced Solid Tumors	TARGETS mTORC1, mTORC2, PD-1
LOCATIONS: Chongqing (China), Chengdu (China)	

NCT04740190	PHASE 2	
Talazoparib - Carboplatin for Recurrent High-grade Glioma With DDRd	TARGETS PARP	

LOCATIONS: Ho	ng Kong	(Hong Kong)
---------------	---------	-------------

NCT02264678	PHASE 1/2
Ascending Doses of AZD6738 in Combination With Chemotherapy and/or Novel Anti Cancer Agents	TARGETS ATR, PARP, PD-L1

LOCATIONS: Seongnam-si (Korea, Republic of), Seoul (Korea, Republic of), Goyang-si (Korea, Republic of), Cambridge (United Kingdom), Withington (United Kingdom), Manchester (United Kingdom), London (United Kingdom), Coventry (United Kingdom), Sutton (United Kingdom), Oxford (United Kingdom)

NCT05035745	PHASE 1/2
Selinexor & Talazoparib in Advanced Refractory Solid Tumors; Advanced/Metastatic Triple Negative Breast Cancer (START)	TARGETS XPO1, PARP
LOCATIONS: Singapore (Singapore)	

NCT03772561	PHASE 1	
Phase I Study of AZD5363 + Olaparib + Durvalumab in Patients With Advanced or Metastatic Solid Tumor Malignancies	TARGETS PARP, AKTs, PD-L1	
LOCATIONS: Singapore (Singapore)		

NCT04614909	PHASE NULL TARGETS PARP		
Phase 0/2 Study of Pamiparib in Newly Diagnosed and rGBM			
LOCATIONS: Arizona			

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

REPORT DATE 23 Jan 2023

ORDERED TEST # ORD-1544963-01

CLINICAL TRIALS

NCT05076513	PHASE NULL	
Trial of Niraparib in Participants With Newly-diagnosed Glioblastoma and Recurrent Glioma	TARGETS PARP	
LOCATIONS: Arizona		
NCT04801966	PHASE NULL	
Safety and Oversight of the Individually Tailored Treatment Approach: A Novel Pilot Study	TARGETS CDK4, CDK6, PI3K-alpha, PD-L1, MEK, PARP, PD-1, BRAF	
LOCATIONS: Melbourne (Australia)		
NCT03212742	PHASE 1/2	
Phase I/IIa Study of Concomitant Radiotherapy With Olaparib and Temozolomide in Unresectable High Grade Gliomas Patients	TARGETS PARP	
LOCATIONS: Paris (France), Lyon (France), Caen (France), Toulouse (France), Bordeaux (France)		
NCT04317105	PHASE 1/2	
Testing the Addition of an Anti-cancer Drug, Copanlisib, to the Usual Immunotherapy (Nivolumab With or Without Ipilimumab) in Patients With Advanced Solid Cancers That Have Changes in the Following Genes: PIK3CA and PTEN	TARGETS PD-1, CTLA-4, PI3K	
LOCATIONS: Toronto (Canada), Texas, Virginia		

REPORT DATE 23 Jan 2023

FOUNDATIONONE®CDx

ORDERED TEST # ORD-1544963-01

APPENDIX

Variants of Unknown Significance

NOTE One or more variants of unknown significance (VUS) were detected in this patient's tumor. These variants may not have been adequately characterized in the scientific literature at the time this report was issued, and/or the genomic context of these alterations makes their significance unclear. We choose to include them here in the event that they become clinically meaningful in the future.

ABL1 T984M **CUL3** R688S **FGFR3** R238Q

NOTCH3 N1597K

PDCD1 (PD-1)

D212N

APPENDIX

Genes Assayed in FoundationOne®CDx

FoundationOne CDx is designed to include genes known to be somatically altered in human solid tumors that are validated targets for therapy, either approved or in clinical trials, and/or that are unambiguous drivers of oncogenesis based on current knowledge. The current assay interrogates 324 genes as well as introns of 36 genes involved in rearrangements. The assay will be updated periodically to reflect new knowledge about cancer biology.

DNA GENE LIST: ENTIRE CODING SEQUENCE FOR THE DETECTION OF BASE SUBSTITUTIONS, INSERTION/DELETIONS, AND COPY **NUMBER ALTERATIONS**

ABL1	ACVR1B	AKT1	AKT2	AKT3	ALK	ALOX12B	AMER1 (FAM123B	or WTX)
APC	AR	ARAF	ARFRP1	ARID1A	ASXL1	ATM	ATR	ATRX
AURKA	AURKB	AXIN1	AXL	BAP1	BARD1	BCL2	BCL2L1	BCL2L2
BCL6	BCOR	BCORL1	BRAF	BRCA1	BRCA2	BRD4	BRIP1	BTG1
BTG2	BTK	CALR	CARD11	CASP8	CBFB	CBL	CCND1	CCND2
CCND3	CCNE1	CD22	CD274 (PD-L1)	CD70	CD79A	CD79B	CDC73	CDH1
CDK12	CDK4	CDK6	CDK8	CDKN1A	CDKN1B	CDKN2A	CDKN2B	CDKN2C
CEBPA	CHEK1	CHEK2	CIC	CREBBP	CRKL	CSF1R	CSF3R	CTCF
CTNNA1	CTNNB1	CUL3	CUL4A	CXCR4	CYP17A1	DAXX	DDR1	DDR2
DIS3	DNMT3A	DOT1L	EED	EGFR	EMSY (C11orf30)	EP300	EPHA3	EPHB1
EPHB4	ERBB2	ERBB3	ERBB4	ERCC4	ERG	ERRFI1	ESR1	EZH2
FANCA	FANCC	FANCG	FANCL	FAS	FBXW7	FGF10	FGF12	FGF14
FGF19	FGF23	FGF3	FGF4	FGF6	FGFR1	FGFR2	FGFR3	FGFR4
FGF 19 FH	FGF23 FLCN	FGF3 FLT1	FLT3	FOXL2	FUBP1	GABRA6	GATA3	GATA4
					GNAS		GSK3B	
GATA6	GID4 (C17orf39)	GNA11	GNA13	GNAQ		GRM3		H3-3A (H3F3A)
HDAC1	HGF	HNF1A	HRAS	HSD3B1	ID3	IDH1	IDH2	IGF1R
IKBKE	IKZF1	INPP4B	IRF2	IRF4	IRS2	JAK1	JAK2	JAK3
JUN	KDM5A	KDM5C	KDM6A	KDR	KEAP1	KEL	KIT	KLHL6
KMT2A (MLL)	KMT2D (MLL2)	KRAS	LTK	LYN	MAF	MAP2K1 (MEK1)	MAP2K2 (MEK2)	MAP2K4
MAP3K1	MAP3K13	MAPK1	MCL1	MDM2	MDM4	MED12	MEF2B	MEN1
MERTK	MET	MITF	MKNK1	MLH1	MPL	MRE11 (MRE11A)	MSH2	MSH3
MSH6	MST1R	MTAP	MTOR	MUTYH	MYC	MYCL (MYCL1)	MYCN	MYD88
NBN	NF1	NF2	NFE2L2	NFKBIA	NKX2-1	NOTCH1	NOTCH2	<i>NOTCH3</i>
NPM1	NRAS	NSD2 (WHSC1 or I	•	NSD3 (WHSC1L1)	NT5C2	NTRK1	NTRK2	NTRK3
P2RY8	PALB2	PARP1	PARP2	PARP3	PAX5	PBRM1	PDCD1 (PD-1)	PDCD1LG2 (PD-L2)
PDGFRA	PDGFRB	PDK1	PIK3C2B	PIK3C2G	PIK3CA	PIK3CB	PIK3R1	PIM1
PMS2	POLD1	POLE	PPARG	PPP2R1A	PPP2R2A	PRDM1	PRKAR1A	PRKCI
PRKN (PARK2)	PTCH1	PTEN	PTPN11	PTPRO	QKI	RAC1	RAD21	RAD51
RAD51B	RAD51C	RAD51D	RAD52	RAD54L	RAF1	RARA	RB1	RBM10
REL	RET	RICTOR	RNF43	ROS1	RPTOR	SDHA	SDHB	SDHC
SDHD	SETD2	SF3B1	SGK1	SMAD2	SMAD4	SMARCA4	SMARCB1	SMO
SNCAIP	SOCS1	SOX2	SOX9	SPEN	SPOP	SRC	STAG2	STAT3
STK11	SUFU	SYK	TBX3	TEK	TENT5C (FAM46C)	TET2	TGFBR2
TIPARP	TNFAIP3	TNFRSF14	TP53	TSC1	TSC2	TYRO3	U2AF1	VEGFA
VHL	WT1	XPO1	XRCC2	ZNF217	ZNF703			
DNA GENE LIS	ST: FOR THE D	ETECTION OF	SELECT REARF	RANGEMENTS				
ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)

ALK	BCL2	BCR	BRAF	BRCA1	BRCA2	CD74	EGFR	ETV4
ETV5	ETV6	EWSR1	EZR	FGFR1	FGFR2	FGFR3	KIT	KMT2A (MLL)
MSH2	MYB	MYC	NOTCH2	NTRK1	NTRK2	NUTM1	PDGFRA	RAF1
RARA	RET	ROS1	RSPO2	SDC4	SLC34A2	TERC*	TERT**	TMPRSS2

^{*}TERC is an NCRNA

ADDITIONAL ASSAYS: FOR THE DETECTION OF SELECT CANCER BIOMARKERS

Homologous Recombination status Loss of Heterozygosity (LOH) score Microsatellite (MS) status Tumor Mutational Burden (TMB)

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

^{**}Promoter region of TERT is interrogated

APPENDIX

About FoundationOne®CDx

FoundationOne CDx fulfills the requirements of the European Directive 98/79 EC for in vitro diagnostic medical devices and is registered as a CE-IVD product by Foundation Medicine's EU Authorized Representative, Qarad b.v.b.a,

Cipalstraat 3, 2440 Geel, Belgium. C €

ABOUT FOUNDATIONONE CDX

FoundationOne CDx was developed and its performance characteristics determined by Foundation Medicine, Inc. (Foundation Medicine). FoundationOne CDx may be used for clinical purposes and should not be regarded as purely investigational or for research only. Foundation Medicine's clinical reference laboratories are qualified to perform high-complexity clinical testing.

Please refer to technical information for performance specification details: www.rochefoundationmedicine.com/f1cdxtech.

INTENDED USE

FoundationOne®CDx (F1CDx) is a next generation sequencing based in vitro diagnostic device for detection of substitutions, insertion and deletion alterations (indels), and copy number alterations (CNAs) in 324 genes and select gene rearrangements, as well as genomic signatures including microsatellite instability (MSI), tumor mutational burden (TMB), and for selected forms of ovarian cancer, loss of heterozygosity (LOH) score, using DNA isolated from formalin-fixed, paraffinembedded (FFPE) tumor tissue specimens. The test is intended as a companion diagnostic to identify patients who may benefit from treatment with therapies in accordance with approved therapeutic product labeling. Additionally, F1CDx is intended to provide tumor mutation profiling to be used by qualified health care professionals in accordance with professional guidelines in oncology for patients with solid malignant neoplasms.

TEST PRINCIPLE

FoundationOne CDx will be performed exclusively as a laboratory service using DNA extracted from formalin-fixed, paraffin-embedded (FFPE) tumor samples. The proposed assay will employ a single DNA extraction method from routine FFPE biopsy or surgical resection specimens, 50-1000 ng of which will undergo whole-genome shotgun library construction and hybridization-based capture of all coding exons from 309 cancer-related genes, one promoter region, one non-coding (ncRNA), and select intronic regions from 34 commonly rearranged genes, 21 of which also include the coding exons. The assay therefore includes

detection of alterations in a total of 324 genes.

Using an Illumina® HiSeq platform, hybrid capture–selected libraries will be sequenced to high uniform depth (targeting >500X median coverage with >99% of exons at coverage >100X). Sequence data will be processed using a customized analysis pipeline designed to accurately detect all classes of genomic alterations, including base substitutions, indels, focal copy number amplifications, homozygous gene deletions, and selected genomic rearrangements (e.g.,gene fusions). Additionally, genomic signatures including loss of heterozygosity (LOH), microsatellite instability (MSI) and tumor mutational burden (TMB) will be reported.

THE REPORT

Incorporates analyses of peer-reviewed studies and other publicly available information identified by Foundation Medicine; these analyses and information may include associations between a molecular alteration (or lack of alteration) and one or more drugs with potential clinical benefit (or potential lack of clinical benefit), including drug candidates that are being studied in clinical research. The F1CDx report may be used as an aid to inform molecular eligibility for clinical trials. Note: A finding of biomarker alteration does not necessarily indicate pharmacologic effectiveness (or lack thereof) of any drug or treatment regimen; a finding of no biomarker alteration does not necessarily indicate lack of pharmacologic effectiveness (or effectiveness) of any drug or treatment regimen.

Diagnostic Significance

FoundationOne CDx identifies alterations to select cancer-associated genes or portions of genes (biomarkers). In some cases, the Report also highlights selected negative test results regarding biomarkers of clinical significance.

Qualified Alteration Calls (Equivocal and Subclonal)

An alteration denoted as "amplification – equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence that the copy number of a gene exceeds the threshold for identifying copy number amplification. The threshold used in FoundationOne CDx for identifying a copy number amplification is four (4) for *ERBB2* and six (6) for all other genes. Conversely, an alteration denoted as "loss – equivocal" implies that the FoundationOne CDx assay data provide some, but not unambiguous, evidence for homozygous deletion of the gene in question. An alteration denoted as "subclonal" is one that the FoundationOne CDx analytical

methodology has identified as being present in <10% of the assayed tumor DNA.

Ranking of Therapies and Clinical Trials Ranking of Therapies in Summary Table
Therapies are ranked based on the following criteria: Therapies with clinical benefit (ranked alphabetically within each evidence category), followed by therapies associated with resistance (when applicable).

Ranking of Clinical Trials
Pediatric trial qualification → Geographical proximity → Later trial phase.

NATIONAL COMPREHENSIVE CANCER NETWORK® (NCCN®) CATEGORIZATION

Biomarker and genomic findings detected may be associated with certain entries within the NCCN Drugs & Biologics Compendium® (NCCN Compendium®) (www.nccn.org). The NCCN Categories of Evidence and Consensus indicated reflect the highest possible category for a given therapy in association with each biomarker or genomic finding. Please note, however, that the accuracy and applicability of these NCCN categories within a report may be impacted by the patient's clinical history, additional biomarker information, age, and/or co-occurring alterations. For additional information on the NCCN categories, please refer to the NCCN Compendium®. Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®). © National Comprehensive Cancer Network, Inc. 2022. All rights reserved. To view the most recent and complete version of the guidelines, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use or application and disclaims any responsibility for their application or use in any way.

Limitations

1. In the fraction-based MSI algorithm, a tumor specimen will be categorized as MSI-H, MSS, or MS-Equivocal according to the fraction of microsatellite loci determined to be altered or unstable (i.e., the fraction unstable loci score). In the F1CDx assay, MSI is evaluated based on a genome-wide analysis across >2000 microsatellite loci. For a given microsatellite locus, non-somatic alleles are discarded, and the microsatellite is categorized as unstable if remaining alleles differ from the reference genome. The final fraction unstable loci score is calculated as the number of unstable microsatellite loci divided by the number of evaluable microsatellite loci. The MSI-H and MSS cut-off thresholds were determined by

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®CDx

- analytical concordance to a PCR comparator assay using a pan-tumor FFPE tissue sample set. Patients with results categorized as "MS-Stable" with median exon coverage <300X, "MS-Equivocal," or "Cannot Be Determined" should receive confirmatory testing using a validated orthogonal (alternative) method.
- 2. TMB by F1CDx is determined by counting all synonymous and non-synonymous variants present at 5% allele frequency or greater (after filtering) and the total number is reported as mutations per megabase (mut/Mb) unit. Observed TMB is dependent on characteristics of the specific tumor focus tested for a patient (e.g., primary vs. metastatic, tumor content) and the testing platform used for the detection; therefore, observed TMB results may vary between different specimens for the same patient and between detection methodologies employed on the same sample. The TMB calculation may differ from TMB calculations used by other assays depending on variables such as the amount of genome interrogated, percentage of tumor, assay limit of detection (LoD), filtering of alterations included in the score, and the read depth and other bioinformatic test specifications. Refer to the SSED for a detailed description of these variables in FMI's TMB calculation https://www.accessdata.fda.gov/cdrh_docs/ pdf17/P170019B.pdf. The clinical validity of TMB defined by this panel has been established for TMB as a qualitative output for a cut-off of 10 mutations per megabase but has not been established for TMB as a quantitative score.
- 3. Homologous Recombination status may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas (Coleman et al., 2017; 28916367). Samples with deleterious BRCA1/2 alteration and/or Loss of Heterozygosity (LOH) score ≥ 16% will be reported as "HRD Positive" and samples with absence of these findings will be reported as "HRD Not Detected," agnostic of potential secondary BRCA1/2 reversion alterations. Certain potentially deleterious missense or small in-frame deletions in BRCA1/2 may not be classified as deleterious and, in the absence of an elevated LOH profile, samples with such mutations may be classified as "HRD Not Detected." A result of "HRD Not Detected" does not rule out the presence of a BRCA1/2 alteration or an elevated LOH profile outside the assay performance characteristic limitations.
- 4. The LOH score is determined by analyzing SNPs spaced at 1Mb intervals across the genome on the FoundationOne CDx test and

- extrapolating an LOH profile, excluding armand chromosome-wide LOH segments. Detection of LOH has been verified only for ovarian cancer patients, and the LOH score result may be reported for epithelial ovarian, peritoneal, or Fallopian tube carcinomas. The LOH score will be reported as "Cannot Be Determined" if the sample is not of sufficient quality to confidently determine LOH. Performance of the LOH classification has not been established for samples below 35% tumor content. There may be potential interference of ethanol with LOH detection. The interfering effects of xylene, hemoglobin, and triglycerides on the LOH score have not been demonstrated.
- 5. Alterations reported may include somatic (not inherited) or germline (inherited) alterations; however, the test does not distinguish between germline and somatic alterations. The test does not provide information about susceptibility.
- 6. Biopsy may pose a risk to the patient when archival tissue is not available for use with the assay. The patient's physician should determine whether the patient is a candidate for biopsy.
- 7. Reflex testing to an alternative FDA approved companion diagnostic should be performed for patients who have an ERBB2 amplification result detected with copy number equal to 4 (baseline ploidy of tumor +2) for confirmatory testing. While this result is considered negative by FoundationOne®CDx (F1CDx), in a clinical concordance study with an FDA approved FISH test, 70% (7 out of 10 samples) were positive, and 30% (3 out of 10 samples) were negative by the FISH test with an average ratio of 2.3. The frequency of ERBB2 copy number 4 in breast cancer is estimated to be approximately 2%. Multiple references listed in https://www.mycancergenome.org/content/ disease/breast-cancer/ERBB2/238/ report the frequency of HER2 overexpression as 20% in breast cancer. Based on the F1CDx HER2 CDx concordance study, approximately 10% of HER2

amplified samples had copy number 4. Thus,

total frequency is conservatively estimated to

REPORT HIGHLIGHTS

be approximately 2%.

The Report Highlights includes select genomic and therapeutic information with potential impact on patient care and treatment that is specific to the genomics and tumor type of the sample analyzed. This section may highlight information including targeted therapies with potential sensitivity or resistance; evidence-matched clinical trials; and variants with potential diagnostic, prognostic, nontargeted treatment, germline, or clonal

hematopoiesis implications. Information included in the Report Highlights is expected to evolve with advances in scientific and clinical research. Findings included in the Report Highlights should be considered in the context of all other information in this report and other relevant patient information. Decisions on patient care and treatment are the responsibility of the treating physician.

VARIANT ALLELE FREQUENCY

Variant Allele Frequency (VAF) represents the fraction of sequencing reads in which the variant is observed. This attribute is not taken into account for therapy inclusion, clinical trial matching, or interpretive content. Caution is recommended in interpreting VAF to indicate the potential germline or somatic origin of an alteration, recognizing that tumor fraction and tumor ploidy of samples may vary.

Precision of VAF for base substitutions and indels

BASE SUBSTITUTIONS	%CV*		
Repeatability	5.11 - 10.40		
Reproducibility	5.95 - 12.31		
INDELS	%CV*		
INDELS Repeatability	%CV*		

*Interquartile Range = 1st Quartile to 3rd Quartile

VARIANTS TO CONSIDER FOR FOLLOW-UP GERMLINE TESTING

The variants indicated for consideration of followup germline testing are 1) limited to reportable short variants with a protein effect listed in the ClinVar genomic database (Landrum et al., 2018; 29165669) as Pathogenic, Pathogenic/Likely Pathogenic, or Likely Pathogenic (by an expert panel or multiple submitters), 2) associated with hereditary cancer-predisposing disorder(s), 3) detected at an allele frequency of >10%, and 4) in select genes reported by the ESMO Precision Medicine Working Group (Mandelker et al., 2019; 31050713) to have a greater than 10% probability of germline origin if identified during tumor sequencing. The selected genes are ATM, BAP1, BRCA1, BRCA2, BRIP1, CHEK2, FH, FLCN, MLH1, MSH2, MSH6, MUTYH, PALB2, PMS2, POLE, RAD51C, RAD51D, RET, SDHA, SDHB, SDHC, SDHD, TSC2, and VHL, and are not inclusive of all cancer susceptibility genes. The content in this report should not substitute for genetic counseling or follow-up germline testing, which is needed to distinguish whether a finding in this patient's

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy of this conversion. It is suggested the hospital to verify the outputs and validate the suitability of use.

APPENDIX

About FoundationOne®CDx

tumor sequencing is germline or somatic. Interpretation should be based on clinical context.

VARIANTS THAT MAY REPRESENT CLONAL HEMATOPOIESIS

Variants that may represent clonal hematopoiesis (CH) are limited to select reportable short variants in defined genes identified in solid tumors only. Variant selection was determined based on gene tumor-suppressor or oncogene status, known role in solid tumors versus hematological malignancies, and literature prevalence. The defined genes are ASXL1, CBL, DNMT3A, IDH2, JAK2, KMT2D (MLL2), MPL, MYD88, SF3B1, TET2, and U2AF1 and are not inclusive of all CH genes. The content in this report should not substitute for dedicated hematological workup. Comprehensive genomic profiling of solid tumors detects nontumor alterations that are due to CH. Patient-matched peripheral blood mononuclear cell sequencing is required to conclusively determine if this alteration is present in tumor or is secondary to CH. Interpretation should be based on clinical context.

LEVEL OF EVIDENCE NOT PROVIDED

Drugs with potential clinical benefit (or potential lack of clinical benefit) are not evaluated for source or level of published evidence.

NO GUARANTEE OF CLINICAL BENEFIT

This Report makes no promises or guarantees that a particular drug will be effective in the treatment of disease in any patient. This Report also makes no promises or guarantees that a drug with potential lack of clinical benefit will in fact provide no clinical benefit.

NO GUARANTEE OF REIMBURSEMENT

Foundation Medicine makes no promises or guarantees that a healthcare provider, insurer or other third party payor, whether private or governmental, will reimburse a patient for the cost of FoundationOne CDx.

TREATMENT DECISIONS ARE RESPONSIBILITY OF PHYSICIAN

Drugs referenced in this Report may not be suitable for a particular patient. The selection of any, all or none of the drugs associated with potential clinical benefit (or potential lack of clinical benefit) resides entirely within the discretion of the treating physician. Indeed, the information in this Report must be considered in conjunction with all other relevant information regarding a particular patient, before the patient's treating physician recommends a course of treatment. Decisions on patient care and treatment must be based on the independent medical judgment of the treating physician, taking

into consideration all applicable information concerning the patient's condition, such as patient and family history, physical examinations, information from other diagnostic tests, and patient preferences, in accordance with the standard of care in a given community. A treating physician's decisions should not be based on a single test, such as this Test, or the information contained in this Report. Certain sample or variant characteristics may result in reduced sensitivity. FoundationOne CDx is performed using DNA derived from tumor, and as such germline events may not be reported.

SELECT ABBREVIATIONS

ABBREVIATION	DEFINITION
CR	Complete response
DCR	Disease control rate
DNMT	DNA methyltransferase
HR	Hazard ratio
ITD	Internal tandem duplication
MMR	Mismatch repair
muts/Mb	Mutations per megabase
NOS	Not otherwise specified
ORR	Objective response rate
os	Overall survival
PD	Progressive disease
PFS	Progression-free survival
PR	Partial response
SD	Stable disease
TKI	Tyrosine kinase inhibitor

REFERENCE SEQUENCE INFORMATION

Sequence data is mapped to the human genome, Genome Reference Consortium Human Build 37 (GRCh37), also known as hg19.

MR Suite Version (RG) 7.4.0

The median exon coverage for this sample is 842x

APPENDIX

References

ORDERED TEST # ORD-1544963-01

- 1. Gatalica Z, et al. Cancer Epidemiol. Biomarkers Prev. (2014) pmid: 25392179
- 2. Kroemer G, et al. Oncoimmunology (2015) pmid: 26140250
- 3. Lal N, et al. Oncoimmunology (2015) pmid: 25949894
- 4. Le DT, et al. N. Engl. J. Med. (2015) pmid: 26028255
- 5. Ayers et al., 2016; ASCO-SITC Abstract P60
- 6. Martinez R, et al. Oncology (2004) pmid: 15331927
- 7. Martinez R. et al. J. Cancer Res. Clin. Oncol. (2005) pmid: 15672285
- 8. Martinez R, et al. Cancer Genet. Cytogenet. (2007) pmid: 17498554
- 9. Szybka M, et al. Clin. Neuropathol. () pmid: 12908754
- 10. Kocarnik JM, et al. Gastroenterol Rep (Oxf) (2015) pmid: 26337942
- 11. You JF, et al. Br. J. Cancer (2010) pmid: 21081928
- 12. Bairwa NK, et al. Methods Mol. Biol. (2014) pmid: 24623249
- 13. Boland CR, et al. Cancer Res. (1998) pmid: 9823339
- 14. Pawlik TM, et al. Dis. Markers (2004) pmid: 15528785
- 15. Boland CR, et al. Gastroenterology (2010) pmid: 20420947
- 16. Samstein RM, et al. Nat. Genet. (2019) pmid: 30643254
- Goodman AM, et al. Mol. Cancer Ther. (2017) pmid: 28835386
- 18. Goodman AM, et al. Cancer Immunol Res (2019) pmid: 31405947
- 19. Cristescu R, et al. Science (2018) pmid: 30309915
- 20. Ready N, et al. J. Clin. Oncol. (2019) pmid: 30785829
- 21. Hellmann MD, et al. N. Engl. J. Med. (2018) pmid: 29658845
- 22. Hellmann MD, et al. Cancer Cell (2018) pmid: 29657128
- 23. Hellmann MD, et al. Cancer Cell (2018) pmid: 29731394
- 24. Rozeman EA, et al. Nat Med (2021) pmid: 33558721
- 25. Sharma P, et al. Cancer Cell (2020) pmid: 32916128
- 26. Zhao J, et al. Nat. Med. (2019) pmid: 30742119
- 27. Touat M, et al. Nature (2020) pmid: 32322066
- 28. Bouffet E, et al. J. Clin. Oncol. (2016) pmid: 27001570
- 29. Johanns TM, et al. Cancer Discov (2016) pmid: 27683556
- 30. Lukas RV, et al. J. Neurooncol. (2018) pmid: 30073642
- Chalmers ZR, et al. Genome Med (2017) pmid: 28420421
- 32. Patel RR, et al. Pediatr Blood Cancer (2020) pmid: 32386112
- 33. Johnson A, et al. Oncologist (2017) pmid: 28912153
- 34. Draaisma K, et al. Acta Neuropathol Commun (2015) pmid: 26699864
- 35. Wang L, et al. BMC Cancer (2020) pmid: 32164609
- 36. Pfeifer GP, et al. Mutat. Res. (2005) pmid: 15748635
- 37. Hill VK, et al. Annu Rev Genomics Hum Genet (2013) pmid: 23875803
- 38. Pfeifer GP, et al. Oncogene (2002) pmid: 12379884
- 39. Rizvi NA, et al. Science (2015) pmid: 25765070
- 40. Johnson BE, et al. Science (2014) pmid: 24336570
- 41. Choi S, et al. Neuro-oncology (2018) pmid: 29452419
- 42. Cancer Genome Atlas Research Network, et al. Nature (2013) pmid: 23636398
- 43. Briggs S, et al. J. Pathol. (2013) pmid: 23447401
- 44. Heitzer E, et al. Curr. Opin. Genet. Dev. (2014) pmid: 24583393
- 45. Nature (2012) pmid: 22810696
- 46. Roberts SA, et al. Nat. Rev. Cancer (2014) pmid: 25568919 van den Bent MJ, et al. J Clin Oncol (2009) pmid:
- 19204207
- 48. Haas-Kogan DA, et al. J Natl Cancer Inst (2005) pmid:

- 15956649
- 49. Brown PD, et al. J Clin Oncol (2008) pmid: 18955445
- 50. Preusser M, et al. J Neurooncol (2008) pmid: 18458820
- 51. Wen PY, et al. Neuro-oncology (2014) pmid: 24470557 52. Gallego O, et al. J Neurooncol (2014) pmid: 24352766
- 53. Uhm JH, et al. Int J Radiat Oncol Biol Phys (2011) pmid: 20510539
- 54. Doyle SP, et al. Oxf Med Case Reports (2018) pmid: 30410775
- 55. D'Alessandris QG, et al. Acta Neurochir (Wien) (2013) pmid: 23132371
- 56. Custodio A, et al. Clin Transl Oncol (2010) pmid:
- 57. D'Alessandris QG, et al. Acta Neurochir (Wien) (2018) pmid: 30306271
- 58. Mellinghoff IK, et al. N. Engl. J. Med. (2005) pmid: 16282176
- Mellinghoff IK, et al. Clin Cancer Res (2007) pmid: 17255257
- 60. Arif SH, et al. Asian J Neurosurg () pmid: 29492119
- Reardon DA, et al. Neuro-oncology (2015) pmid: 25140039
- 62. Alshami J, et al. Oncotarget (2015) pmid: 26423602
- 63. Sepúlveda-Sánchez JM, et al. Neuro-oncology (2017) pmid: 28575464
- 64. Chi AS, et al. JCO Precis Oncol (2020) pmid: 32923886
- 65. Cardona AF, et al. J Neurooncol (2021) pmid: 34498213
- 66. Makhlin I, et al. CNS Oncol (2019) pmid: 31769726
- 67. Chagoya G, et al. Oncotarget (2020) pmid: 32547705
- 68. Gao M, et al. Cancer Res (2021) pmid: 33910930 69. Reardon DA, et al. Clin Cancer Res (2020) pmid:
- 32034072 70. Weller M, et al. Lancet Oncol (2017) pmid: 28844499
- 71. Tanaka S, et al. Sci Rep (2019) pmid: 30644426
- 72. Blumenthal DT, et al. J. Neurooncol. (2016) pmid:
- 73. Franceschi E, et al. Br. J. Cancer (2007) pmid: 17353924
- Chakravarti A, et al. Int. J. Radiat. Oncol. Biol. Phys. (2013) pmid: 23182702
- 75. Hegi ME, et al. Mol. Cancer Ther. (2011) pmid: 21471286
- 76. Jiang Z, et al. PLoS ONE (2013) pmid: 23441167
- 77. Licitra L, et al. Ann. Oncol. (2011) pmid: 21048039
- 78. Smyth EC, et al. Gut (2021) pmid: 33199443
- 79. Lassman et al., 2019; Neuro-Oncology Abstract ACTR-21
- 80. Van Den Bent M, et al. Neuro Oncol (2020) pmid: 31747009
- 81. Jonsson P, et al. Clin. Cancer Res. (2019) pmid: 31263031
- 82. Brennan CW, et al. Cell (2013) pmid: 24120142
- 83. Ceccarelli M. et al. Cell (2016) pmid: 26824661
- 84. Thomas AA, et al. Neuro-oncology (2017) pmid:
- 85. Lee JC, et al. PLoS Med. (2006) pmid: 17177598
- 86. Vivanco I, et al. Cancer Discov (2012) pmid: 22588883
- 87. Yan et al. 2020; DOI:10.1200/PO.19.00385
- 88. Nishikawa R, et al. Proc. Natl. Acad. Sci. U.S.A. (1994) pmid: 8052651
- 89. Shinojima N, et al. Cancer Res. (2003) pmid: 14583498
- 90. Nishikawa R, et al. Brain Tumor Pathol (2004) pmid:
- 91. Viana-Pereira M, et al. Anticancer Res. () pmid: 18507036
- Yoshimoto K, et al. Clin. Cancer Res. (2008) pmid: 18223223
- 93. Larysz D, et al. Folia Neuropathol (2011) pmid: 21455841 94. Verhaak RG, et al. Cancer Cell (2010) pmid: 20129251
- 95. Ly S, et al. Int. J. Oncol. (2012) pmid: 22752145
- 96. Srividya MR, et al. J. Clin. Pathol. (2010) pmid: Disclaimer: Foundation Medicine Inc. only provides PDF report as a

- 20702468
- 97. Das P, et al. J Clin Neurosci (2011) pmid: 20888234
- Smith JS, et al. J. Natl. Cancer Inst. (2001) pmid: 11504770
- 99. Montano N, et al. Neoplasia (2011) pmid: 22241957
- 100. Ciardiello F, et al. N. Engl. J. Med. (2008) pmid:
- 101. Liang Z, et al. BMC Cancer (2010) pmid: 20637128
- 102. Bhargava R, et al. Mod. Pathol. (2005) pmid: 15920544
- 103. Yang YL, et al. Chin. Med. J. (2012) pmid: 22490401 104. Nedergaard MK, et al. BioDrugs (2012) pmid: 22385404
- 105. Louis DN, et al. Neuro Oncol (2021) pmid: 34185076
- Fritsch C, et al. Mol. Cancer Ther. (2014) pmid: 106. 24608574
- 107. Juric D. et al. J. Clin. Oncol. (2018) pmid: 29401002
- 108. Gallant JN, et al. NPJ Precis Oncol (2019) pmid:
- 109. Delestre F. et al. Sci Transl Med (2021) pmid: 34613809
- Morschhauser F, et al. Mol Cancer Ther (2020) pmid: 31619463
- 111. Patnaik A, et al. Ann. Oncol. (2016) pmid: 27672108
- Santin AD, et al. Gynecol Oncol Rep (2020) pmid:
- 113. Damodaran S, et al. J Clin Oncol (2022) pmid: 35133871
- 114. André F, et al. N. Engl. J. Med. (2019) pmid: 31091374
- 115. Smyth LM, et al. NPJ Breast Cancer (2021) pmid: 33863913
- 116. Varnier R, et al. Eur J Cancer (2019) pmid: 31351267
- 117. Basse C, et al. JCO Precis Oncol (2018) pmid: 32914004
- Sultova E, et al. Arch Gynecol Obstet (2021) pmid: 33277683
- 119. Mackay HJ, et al. Cancer (2014) pmid: 24166148
- 120. Myers AP, et al. Gynecol. Oncol. (2016) pmid: 27016228
- Dhami J, et al. Cold Spring Harb Mol Case Stud (2018)
- pmid: 29588307
- 122. Harris EJ, et al. Front Oncol (2019) pmid: 30863722
- 123. Hanna GJ, et al. Clin Cancer Res (2018) pmid: 29301825
- 124. Krop et al., 2018; ASCO Abstract 101
- 125. Pascual J, et al. Cancer Discov (2021) pmid: 32958578
- 126. Dolly SO, et al. Clin. Cancer Res. (2016) pmid: 26787751 127. Canaud et al., 2021; ESMO Abstract LBA23
- Gallia GL, et al. Mol. Cancer Res. (2006) pmid: 128.
- 129. Broderick DK, et al. Cancer Res. (2004) pmid: 15289301
- 130. El-Habr EA, et al. Clin. Neuropathol. () pmid: 20569675
- Derakhshandeh-Peykar P, et al. J. Neurogenet. (2011) pmid: 22026810
- 132. Nature (2008) pmid: 18772890 133. Tanaka S, et al. Acta Neuropathol Commun (2019)
- pmid: 31036078 134. Samuels Y, et al. Cancer Cell (2005) pmid: 15950905
- 135. Nat. Rev. Cancer (2009) pmid: 19629070
- Kang S, et al. Proc. Natl. Acad. Sci. U.S.A. (2005) pmid: 136.
- 15647370
- 137. Ikenoue T, et al. Cancer Res. (2005) pmid: 15930273 Gymnopoulos M, et al. Proc. Natl. Acad. Sci. U.S.A. (2007) pmid: 17376864
- Horn S, et al. Oncogene (2008) pmid: 18317450 139.
- 140. Rudd ML, et al. Clin. Cancer Res. (2011) pmid: 21266528 141. Hon WC, et al. Oncogene (2012) pmid: 22120714
- Burke JE, et al. Proc. Natl. Acad. Sci. U.S.A. (2012) pmid: 22949682 Wu H, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid:
- 19915146 Laurenti R, et al. Rev Saude Publica (1990) pmid: 2103068

transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

References

- ORDERED TEST # ORD-1544963-01
- 145. Dan S. et al. Cancer Res. (2010) pmid: 20530683 146. Oda K, et al. Cancer Res. (2008) pmid: 18829572
- 147. Zhao L, et al. Oncogene (2008) pmid: 18794883
- 148. Lui VW. et al. Cancer Discov (2013) pmid: 23619167
- 149. Ross RL, et al. Oncogene (2013) pmid: 22430209
- 150. Rivière JB, et al. Nat. Genet. (2012) pmid: 22729224
- 151. Shibata T. et al. Cancer Lett. (2009) pmid: 19394761
- 152. Dogruluk T, et al. Cancer Res. (2015) pmid: 26627007
- Croessmann S, et al. Clin. Cancer Res. (2018) pmid: 29284706
- 154. Ng PK, et al. Cancer Cell (2018) pmid: 29533785
- 155. Spangle JM, et al. (2020) pmid: 32929011
- 156. Chen L, et al. Nat Commun (2018) pmid: 29636477
- 157. Jin N, et al. J Clin Invest (2021) pmid: 34779417
- 158. Courtney KD, et al. J. Clin. Oncol. (2010) pmid: 20085938
- 159. Simpson L, et al. Exp. Cell Res. (2001) pmid: 11237521
- 160. Milella M, et al. Sci Rep (2017) pmid: 28220839
- 161. Galanis E. et al. J. Clin. Oncol. (2005) pmid: 15998902
- 162. Kreisl TN, et al. J. Neurooncol. (2009) pmid: 19018475
- Mason WP, et al. Invest New Drugs (2012) pmid: 22160854
- Mendes-Pereira AM, et al. EMBO Mol Med (2009) pmid: 20049735
- 165. Shen Y, et al. Clin. Cancer Res. (2013) pmid: 23881923
- 166. Chatterjee P, et al. PLoS ONE (2013) pmid: 23565244
- 167. McCormick A, et al. Int. J. Gynecol. Cancer (2016) pmid: 26905328
- 168. Forster MD, et al. Nat Rev Clin Oncol (2011) pmid: 21468130
- 169. Eikesdal HP, et al. Ann Oncol (2021) pmid: 33242536
- 170. Dougherty et al., 2014; ASCO Abstract 5536
- 171. Pan M. et al. Perm J (2021) pmid: 33970096 172. Sandhu SK, et al. Lancet Oncol. (2013) pmid: 23810788
- 173. Romero I, et al. Gynecol Oncol (2020) pmid: 32988624
- 174. Zhou XP, et al. Int. J. Cancer (1999) pmid: 10096247
- 175. Rasheed BK, et al. Cancer Res. (1997) pmid: 9331072
- 176. Davies MP, et al. Br. J. Cancer (1999) pmid: 10188904
- 177. Lin H, et al. Clin. Cancer Res. (1998) pmid: 9796977 178. Schmidt EE, et al. J. Neuropathol. Exp. Neurol. (1999)
- pmid: 10560660
- 179. Kato H, et al. Clin. Cancer Res. (2000) pmid: 11051241
- 180. Furnari FB, et al. Genes Dev. (2007) pmid: 17974913
- Cancer Genome Atlas Research Network, et al. N. Engl. J. Med. (2015) pmid: 26061751
- Sano T, et al. Cancer Res. (1999) pmid: 10213484 Srividya MR, et al. Neuropathology (2011) pmid:
- 21134002 184. Campbell RB, et al. J. Biol. Chem. (2003) pmid: 12857747
- 185. Rodríguez-Escudero I, et al. Hum. Mol. Genet. (2011) pmid: 21828076
- 186. He X, et al. Cancer Res. (2013) pmid: 23475934
- 187. Han SY, et al. Cancer Res. (2000) pmid: 10866302
- Myers MP, et al. Proc. Natl. Acad. Sci. U.S.A. (1998) pmid: 9811831
- 189. Pradella LM, et al. BMC Cancer (2014) pmid: 24498881
- 190. Kim JS, et al. Mol. Cell. Biol. (2011) pmid: 21536651 191. Denning G, et al. Oncogene (2007) pmid: 17213812
- 192. Hlobilkova A, et al. Anticancer Res. () pmid: 16619501
- 193. Redfern RE, et al. Protein Sci. (2010) pmid: 20718038
- 194. Shenoy S, et al. PLoS ONE (2012) pmid: 22505997
- 195. Wang Y, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid: 19329485
- 196. Okumura K, et al. J. Biol. Chem. (2006) pmid: 16829519

- 197. Lee JO, et al. Cell (1999) pmid: 10555148
- 198. Maxwell GL, et al. Cancer Res. (1998) pmid: 9635567
- 199. Risinger JI, et al. Clin. Cancer Res. (1998) pmid: 9865913
- 200. Fenton TR, et al. Proc. Natl. Acad. Sci. U.S.A. (2012) pmid: 22891331
- 201. Ngeow J. et al. J. Clin. Endocrinol, Metab. (2012) pmid: 23066114
- 202. Lobo GP, et al. Hum. Mol. Genet. (2009) pmid: 19457929
- 203. Liu J, et al. Oncogene (2014) pmid: 23995781
- 204. Maehama T, et al. Annu. Rev. Biochem. (2001) pmid: 11395408
- 205. De Vivo I, et al. J. Med. Genet. (2000) pmid: 10807691
- 206. Ramaswamy S, et al. Proc. Natl. Acad. Sci. U.S.A. (1999) pmid: 10051603
- 207. Liu JL, et al. Mol. Cell. Biol. (2005) pmid: 15988030
- 208. Karoui M, et al. Br. J. Cancer (2004) pmid: 15026806
- 209. Gil A, et al. PLoS ONE (2015) pmid: 25875300
- 210. Furnari FB, et al. Cancer Res. (1998) pmid: 9823298
- 211. Spinelli L, et al. J. Med. Genet. (2015) pmid: 25527629
- 212. Mingo J, et al. Eur. J. Hum. Genet. (2018) pmid:
- 213. Wang Q, et al. J. Mol. Graph. Model. (2010) pmid: 20538496
- 214. Andrés-Pons A, et al. Cancer Res. (2007) pmid:
- 215. Butler MG, et al. J. Med. Genet. (2005) pmid: 15805158
- 216. Georgescu MM, et al. Proc. Natl. Acad. Sci. U.S.A. (1999) pmid: 10468583
- 217. Staal FJ, et al. Br. J. Cancer (2002) pmid: 12085208
- 218. Nguyen HN, et al. Oncogene (2014) pmid: 24292679
- 219. Rahdar M, et al. Proc. Natl. Acad. Sci. U.S.A. (2009) pmid: 19114656
- 220. Das S. et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12808147
- 221. Wang X, et al. Biochem. J. (2008) pmid: 18498243
- 222. Valiente M, et al. J. Biol. Chem. (2005) pmid: 15951562
- 223. Nguyen HN, et al. Oncogene (2015) pmid: 25263454
- 224. Shan L, et al. Cell Discov (2020) pmid: 32704382
- 225. Blumenthal GM, et al. Eur. J. Hum. Genet. (2008) pmid:
- 226. Orloff MS, et al. Oncogene (2008) pmid: 18794875
- 227. Zbuk KM, et al. Nat. Rev. Cancer (2007) pmid: 17167516
- 228. Villa-Morales M, et al. Expert Opin. Ther. Targets (2012) pmid: 22239437
- 229. Abramson JS, et al. Blood (2005) pmid: 15855278
- 230. Debatin KM, et al. Oncogene (2004) pmid: 15077156
- 231. Cerami E, et al. Cancer Discov (2012) pmid: 22588877
- 232. Gao J, et al. Sci Signal (2013) pmid: 23550210
- 233. Rao VK, et al. Blood (2011) pmid: 21885601
- 234. Straus SE, et al. Blood (2001) pmid: 11418480
- 235. Dowdell KC. et al. Blood (2010) pmid: 20360470
- 236. Prickett TD, et al. Nat. Genet. (2011) pmid: 21946352
- 237. Jayachandran et al., 2022; ASCO GI Abstract 177
- 238. Shain AH, et al. Nat. Genet. (2015) pmid: 26343386
- 239. Hodis E. et al. Cell (2012) pmid: 22817889
- 240. Krauthammer M, et al. Nat. Genet. (2012) pmid: 22842228
- **241.** George J, et al. Nature (2015) pmid: 26168399
- 242. Rudin CM, et al. Nat. Genet. (2012) pmid: 22941189
- 243. Nature (2012) pmid: 22960745
- 244. Nature (2014) pmid: 25079317
- 245. Cherlyn SY, et al. Neurosci Biobehav Rev (2010) pmid: 20060416
- 246. Lencer R, et al. Eur Arch Psychiatry Clin Neurosci (2014) pmid: 24682224

- 247. Casey JP, et al. Hum. Genet. (2012) pmid: 21996756
- O'Brien NL, et al. Psychiatr. Genet. (2014) pmid: 25046171
- 249. Wolen AR, et al. PLoS ONE (2012) pmid: 22511924
- 250. Perrotti D, et al. Lancet Oncol. (2013) pmid: 23639323
- 251. Cristóbal I, et al. Mol. Cancer Ther. (2014) pmid: 24448818
- Saddoughi SA, et al. EMBO Mol Med (2013) pmid: 23180565
- 253. Baldacchino S, et al. EPMA J (2014) pmid: 24460909
- Chen W, et al. Gastroenterol Res Pract (2013) pmid: 254. 24307892
- Tate JG, et al. Nucleic Acids Res. (2019) pmid: 30371878
- 256. Kuhn E, et al. J. Natl. Cancer Inst. (2012) pmid: 22923510
- 257. McConechy MK, et al. J. Pathol. (2012) pmid: 22653804
- Wurzenberger C, et al. Nat. Rev. Mol. Cell Biol. (2011) pmid: 21750572
- 259. Shih IeM, et al. Am. J. Pathol. (2011) pmid: 21435433
- 260. McConechy MK, et al. J. Pathol. (2011) pmid: 21381030
- Zhao S, et al. Proc. Natl. Acad. Sci. U.S.A. (2013) pmid: 261. 23359684
- 262. Owonikoko et al., 2016; ESMO Abstract 14230
- 263. Hook KE, et al. Mol. Cancer Ther. (2012) pmid: 22222631
- 264. Gong X, et al. Cancer Discov (2019) pmid: 30373917
- 265. Oser MG, et al. Cancer Discov (2019) pmid: 30373918
- Yang W, et al. Kaohsiung J Med Sci (2022) pmid: 266. 34741392
- Beltran H, et al. Clin. Cancer Res. (2019) pmid: 30232224
- 268. Allaman-Pillet N, et al. Ophthalmic Genet. () pmid:
- 21955141
- Viatour P, et al. J. Exp. Med. (2011) pmid: 21875955 Goldhoff P, et al. J. Neuropathol. Exp. Neurol. (2012)
- pmid: 22157621 Bäcklund LM, et al. Clin. Cancer Res. (2003) pmid: 14519639
- 272. Chow LM, et al. Cancer Cell (2011) pmid: 21397855
- 273. Nobusawa S, et al. Brain Pathol. (2010) pmid: 20406234
- 274. Deighton RF, et al. Brain Pathol. (2010) pmid: 20175778 Burkhart DL, et al. Nat. Rev. Cancer (2008) pmid: 18650841
- Knudsen ES, et al. Nat. Rev. Cancer (2008) pmid:
- 19143056 Berge EO, et al. Mol. Cancer (2010) pmid: 20594292
- 278. Giacinti C, et al. Oncogene (2006) pmid: 16936740 Otterson GA, et al. Proc. Natl. Acad. Sci. U.S.A. (1997)
- Otterson GA, et al. Am. J. Hum. Genet. (1999) pmid: 280.
- 10486322
- 281. Qin XQ, et al. Genes Dev. (1992) pmid: 1534305 282. Rubin SM, et al. Cell (2005) pmid: 16360038
- 283. Sun H, et al. Mol. Cell. Biol. (2006) pmid: 16449662
- 284. Chen Z, et al. Hum. Mutat. (2014) pmid: 24282159
- Yun J, et al. Int J Ophthalmol (2011) pmid: 22553621 285.
- 286. Houston SK, et al. Int Ophthalmol Clin (2011) pmid:
- Ng AK, et al. Semin Radiat Oncol (2010) pmid: 287.
- 288. Nat Rev Clin Oncol (2017) pmid: 27245281
- 289. Duperret EK, et al. Mol Ther (2018) pmid: 29249395 290. Chiappori AA, et al. Ann Oncol (2015) pmid: 25467017
- Killela PJ, et al. Proc. Natl. Acad. Sci. U.S.A. (2013) pmid: 23530248
- Killela PJ, et al. Oncotarget (2014) pmid: 24722048
- Nonoguchi N, et al. Acta Neuropathol. (2013) pmid: 23955565
- 294. Liu X, et al. Cell Cycle (2013) pmid: 23603989

Disclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy

APPENDIX

References

ORDERED TEST # ORD-1544963-01

- 295. Koelsche C, et al. Acta Neuropathol. (2013) pmid: 24154961
- 296. Arita H. et al. Acta Neuronathol. (2013) pmid: 23764841 297. Reitman ZJ, et al. Acta Neuropathol. (2013) pmid:
- 24217890 Shay JW, et al. Semin. Cancer Biol. (2011) pmid: 298.
- 22015685
- 299. Shay JW, et al. Eur. J. Cancer (1997) pmid: 9282118
- 300. Kim NW, et al. Science (1994) pmid: 7605428
- 301. Hanahan D, et al. Cell (2000) pmid: 10647931
- 302. Horn S, et al. Science (2013) pmid: 23348503
- **303.** Huang FW, et al. Science (2013) pmid: 23348506 304. Vinagre J, et al. Nat Commun (2013) pmid: 23887589
- Weller M, et al. Nat Rev Clin Oncol (2021) pmid: 33293629
- Hirai H, et al. Cancer Biol. Ther. (2010) pmid: 20107315
- 307. Bridges KA, et al. Clin. Cancer Res. (2011) pmid: 21799033
- Rajeshkumar NV, et al. Clin. Cancer Res. (2011) pmid: 21389100
- Osman AA, et al. Mol. Cancer Ther. (2015) pmid: 309 25504633
- 310. Xu L, et al. Mol. Cancer Ther. (2002) pmid: 12489850
- 311. Xu L, et al. Mol. Med. (2001) pmid: 11713371
- 312. Camp ER, et al. Cancer Gene Ther. (2013) pmid:
- 313. Kim SS, et al. Nanomedicine (2015) pmid: 25240597
- 314. Pirollo KF, et al. Mol. Ther. (2016) pmid: 27357628
- 315. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27601554
- 316. Moore et al., 2019; ASCO Abstract 5513
- 317. Leijen S, et al. J. Clin. Oncol. (2016) pmid: 27998224
- 318. Oza et al., 2015; ASCO Abstract 5506
- 319. Lee J. et al. Cancer Discov (2019) pmid: 31315834
- Méndez E, et al. Clin. Cancer Res. (2018) pmid: 29535125
- Seligmann JF, et al. J Clin Oncol (2021) pmid: 34538072
- 322. Gourley et al., 2016; ASCO Abstract 5571
- 323. Park H, et al. ESMO Open (2022) pmid: 36084396
- 324. Jha P, et al. Diagn. Mol. Pathol. (2011) pmid: 22089350
- 325. Uno M, et al. Cancer Lett. (2005) pmid: 15914282

- 326. Uno M, et al. Int. J. Biol. Markers () pmid: 16711514
- 327. Lass U, et al. PLoS ONE (2012) pmid: 22844452
- 328. Faria MH, et al. APMIS (2012) pmid: 23009112

pmid: 11939587

- 329. Milinkovic V, et al. PLoS ONE (2013) pmid: 24358143
- 330. Galatro TF, et al. PLoS ONE (2013) pmid: 23613880 331. Schmidt MC, et al. J. Neuropathol. Exp. Neurol. (2002)
- **332.** Nozaki M, et al. Neuro-oncology (1999) pmid: 11550308
- 333. Brown CJ, et al. Nat. Rev. Cancer (2009) pmid: 19935675
- 334. Joerger AC, et al. Annu. Rev. Biochem. (2008) pmid:
- 335. Kato S, et al. Proc. Natl. Acad. Sci. U.S.A. (2003) pmid: 12826609
- 336. Kamada R, et al. J. Biol. Chem. (2011) pmid: 20978130
- 337. Zerdoumi Y, et al. Hum. Mol. Genet. (2017) pmid:
- 338. Yamada H, et al. Carcinogenesis (2007) pmid: 17690113
- 339. Landrum MJ, et al. Nucleic Acids Res. (2018) pmid: 29165669
- 340. Bougeard G, et al. J. Clin. Oncol. (2015) pmid: 26014290
- **341.** Sorrell AD, et al. Mol Diagn Ther (2013) pmid: 23355100
- Nichols KE, et al. Cancer Epidemiol. Biomarkers Prev. (2001) pmid: 11219776
- 343. Kleihues P, et al. Am. J. Pathol. (1997) pmid: 9006316
- 344. Gonzalez KD, et al. J. Clin. Oncol. (2009) pmid: 19204208
- 345. Lalloo F, et al. Lancet (2003) pmid: 12672316
- 346. Mandelker D, et al. Ann. Oncol. (2019) pmid: 31050713
- 347. Jaiswal S, et al. N. Engl. J. Med. (2014) pmid: 25426837
- 348. Genovese G, et al. N. Engl. J. Med. (2014) pmid: 25426838
- 349. Xie M. et al. Nat. Med. (2014) pmid: 25326804
- 350. Acuna-Hidalgo R, et al. Am. J. Hum. Genet. (2017) pmid: 28669404
- 351. Severson EA, et al. Blood (2018) pmid: 29678827
- 352. Fuster JJ, et al. Circ. Res. (2018) pmid: 29420212
- 353. Hematology Am Soc Hematol Educ Program (2018) pmid: 30504320
- 354. Chabon JJ, et al. Nature (2020) pmid: 32269342
- 355. Razavi P, et al. Nat. Med. (2019) pmid: 31768066

- 356. Hasselbalch B, et al. Neuro-oncology (2010) pmid: 20406901
- 357. Kulason KO, et al. J Exp Ther Oncol (2018) pmid: 29790314
- 358. Jänne PA, et al. N. Engl. J. Med. (2015) pmid: 25923549
- 359. Soria JC, et al. N. Engl. J. Med. (2018) pmid: 29151359
- Alanazi A, et al. Lung Cancer Manag (2020) pmid: 33318755
- **361.** Kim et al., 2021; DOI: 10.1200/PO.20.00296
- 362. Wang J, et al. Int. J. Cancer (2019) pmid: 30255937
- 363. Abousand et al., 2021; DOI: 10.26502/jcsct.5079114
- **364.** Goyal A, et al. World Neurosurg (2021) pmid: 33940677
- Mondal G, et al. Acta Neuropathol (2020) pmid: 32303840
- Kenmotsu H, et al. J Thorac Oncol (2022) pmid:
- 367. Soo et al., 2021; ESMO Abstract VP3-2021
- 368. Oxnard GR, et al. Ann. Oncol. (2020) pmid: 32139298
- 369. Whittle JR, et al. J Clin Neurosci (2015) pmid: 26279503
- 370. Douillard JY, et al. Ann. Oncol. (2014) pmid: 24718886
- 371. Price TJ, et al. Lancet Oncol. (2014) pmid: 24739896
- Van Cutsem E, et al. J. Clin. Oncol. (2007) pmid: 17470858
- Vermorken JB, et al. Lancet Oncol (2013) pmid: 23746666
- 374. Wirth LJ, et al. Ann. Oncol. (2010) pmid: 19892746
- 375. Siano M, et al. Oncologist (2017) pmid: 28592616
- 376. Mesía R, et al. Lancet Oncol (2015) pmid: 25596660
- 377. Giralt J, et al. Lancet Oncol (2015) pmid: 25596659
- 378. Siu LL, et al. JAMA Oncol (2016) pmid: 27930762
- 379. Waddell T, et al. Lancet Oncol. (2013) pmid: 23594787
- 380. Crawford J, et al. J Thorac Oncol (2013) pmid: 24389433
- Schuette W, et al. Clin Lung Cancer (2015) pmid: 381.
- 26094080
- 382. Leone F, et al. Cancer (2016) pmid: 26540314
- 383. Vogel A, et al. Eur J Cancer (2018) pmid: 29413685
- Rowinsky EK, et al. J. Clin. Oncol. (2004) pmid: 15210739

sclaimer: Foundation Medicine Inc. only provides PDF report as an official issuance of the test result. Any other transformed format is not an "official / formal solution" and not guarantee the accuracy