University of Toronto Faculty of Applied Science and Engineering Quiz 3 – November 10th, 2016 9:15 am – 10:15 am

SECOND YEAR - ENGINEERING SCIENCE

AER210F VECTOR CALCULUS and FLUID MECHANICS

Examiner: Sina Kheirkhah

Instructions:	(1)	Closed book examination; except for a non-programmable calculator, no aids are
		permitted.

- (2) Write your name and student number in the space provided below.
- (3) Answer as many questions as you can. Parts of questions may be answered.
- (4) Use the overleaf side of pages for additional or preliminary work.
- (5) Do not separate or remove any pages from this exam booklet.

Family Name:		 	
Given Name:	 	 	
Student Number:	 	 	
Tutorial Session:			

FOR MARKER USE ONLY					
Question	Mark	Earned			
1	24				
2	16				
3	15				
4	20				
5	25				
TOTAL	100				

- 1. Answer the following questions.
- a. Define a streamline, a pathline, and a streakline.
- b. What is a Newtonian fluid?
- c. What is a viscous flow?
- d. For flows with large Knudson numbers, how does the mean-free-path compare to the length scale of a problem?
- e. Define the Reynolds number.
- f. Consider a developing flow inside a pipe. Is the normal stress along the pipe centerline and inside the potential core negligible? Elaborate your answer briefly.

2. A non-dimensional group is given by: $\pi = U^a D^b \vartheta^c$, where U, D, and ϑ are flow velocity, diameter of a sphere, and fluid kinematic viscosity, respectively. Perform a dimensional analysis and obtain an expression for π .

3. Obtain the equation of the streamline for the following velocity field.

$$u = x + y + 2$$

$$v = -(x + y)$$

4. For an incompressible fluid which undergoes rigid body motion, the acceleration is given by $\vec{a}=(g_xx^2,g_yy^2,g_zz^2)$, where the gravitational acceleration is $\vec{g}=(g_x,g_y,g_z)$. If the pressure at (x,y,z)=(0,0,0) is equal to the atmospheric pressure (P_0) , obtain an expression for the pressure field in terms of x,y,z,g_x,g_y , and g_z . Hint: the governing equation for fluid in rigid body motion is given by: $-\vec{\nabla}P+\rho\vec{g}=\rho\vec{a}$.

5. A hemispherical container is partly filled with water, see the figure below. Estimate the force due to hydrostatic pressure exerted to the container. The radius of the container is R and the height of water inside the container is h.

