T4. Tópicos sobre Algoritmos de Ordenação

Algoritmo de ordenação Quicksort

Trata-se de um algoritmo de divisão e conquista, tal como o merge sort.

- 1. Divisão: partição do vector A[p..r] em dois sub-vectores
 - A[p..q-1] e
 - A[q+1..r]

tais que todos os elementos do primeiro (resp. segundo) são \leq A[q] (resp. \geq A[q]). Uma função auxiliar de partição recebe a sequência A[p..r], executa a sua partição "in place" usando o último elemento do vector como *pivot*, e devolve o índice q. Note-se que um dos subvectores pode ser vazio.

- 2. Conquista: ordenação recursiva dos dois vectores
- 3. Combinação: nada a fazer!

Enquanto no merge sort o trabalho era feito na fase de combinação (fusão ordenada), aqui é feito na fase de divisão (partição), que claramente executa em tempo $\Theta(N)$. Vejamos uma implementação possível:

```
int partition (int A[], int p, int r)

{
    x = A[r];
    i = p-1;
    for (j=p; j<r; j++)
        if (A[j] <= x) {
        i++;
            swap(A, i, j);
        }
        swap(A, i+1, r);
    return i+1;
}</pre>
```

EXERCÍCIO: Identifique um invariante apropriado para o ciclo desta função de partição.

Tal como no merge sort, depois de definida a função auxiliar, o algoritmo de ordenação é

facilmente implementado. A seguinte função ordena o array entre os índices p e r.

```
void quicksort(int A[], int p, int r)
{
    if (p < r) {
        q = partition(A, p, r);
        quicksort(A, p, q-1);
        quicksort(A, q+1, r);
    }
}</pre>
```

Vejamos uma simulação de execução do algoritmo. Mostra-se:

- a azul os elementos usados como pivots
- a verde, elementos que já foram pivot e foram colocados na posição final
- a vermelho, elementos que são casos de paragem (função chamada com um só elemento)

7	6	12	3	11	8	2	1	15	13	17	5	16	14	9	4	10
7	6	3	8	2	1	5	9	4	10	17	11	16	14	12	15	13
3	2	1	4	6	7	5	9	8	10	11	12	13	14	17	15	16
1	2	3	4	6	7	5	8	9	10	11	12	13	14	15	16	17
1	2	3	4	5	7	6	8	9	10	11	12	13	14	15	16	17
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Ao contrário do algoritmo merge sort, a árvore de recursividade do quicksort não tem a mesma forma para todos os arrays de entrada, dependendo completamente destes. Para o exemplo anterior teremos a seguinte árvore (os nós estão etiquetados com o **comprimento** do vector em cada invocação):

Análise intuitiva

Intuitivamente, o comportamento de pior caso do algoritmo ocorre quando a operação de partição produz o resultado *mais desequilibrado* possível, i.e. quando um dos vectores resultantes é vazio, e o outro contém N-1 elementos (todos excepto o pivot). Quando isto acontece em todas as invocações da função de partição, a execução é caracterizada pela seguinte recorrência, em que o termo $\Theta(N)$ corresponde ao tempo de execução da função de partição:

$$T_p(N) = \Theta(1), \text{ se } N \le 1$$

 $T_p(N) = T_p(N-1) + \Theta(N), \text{ se } N > 1$

que tem como solução $T_p(N)=\Theta(N^2)$. Isto ocorre por exemplo quando o array se encontra à partida ordenado de forma crescente (ou decrescente)!

[recorde que o algoritmo insertion sort, que executa também em tempo quadrático no pior caso, executa em tempo $\Theta(N)$ quando o array de entrada está já ordenado de forma crescente.]

Árvore de recursividade correspondente ao pior caso de quicksort

Quanto ao melhor caso, ele ocorre quando, em todas as execuções da função de partição, ela produz o resultado *mais equilibrado* possível, i.e. quando ambos os vectores resultantes têm comprimento aproximado $\frac{N-1}{2}$. Em termos mais rigorosos a execução do algoritmo será então caracterizada pela seguinte recorrência:

$$T_m(n) = \Theta(n) + T_m(\lfloor n/2 \rfloor) + T_m(\lceil n/2 \rceil - 1)$$

Trata-se de uma recorrência muito semelhante à do algoritmo merge sort, com a mesma solução $T_m(N) = \Theta(N \log N)$.

Árvore de recursividade correspondente ao melhor caso de quicksort

Análise de pior caso

Como poderemos obter uma prova de que as nossas intuições acima estão de facto correctas? Ou seja, de que de facto o comportamento de quicksort é caracterizado por $T(N) = \Omega(N \log N), \mathcal{O}(N^2)$?

Concentremo-nos na análise de pior caso. Observemos antes de mais que podemos descrever o tempo de execução no pior caso de uma forma rigorosa, utilizando para isso um operador de maximização sobre a soma do tempo das duas invocações recursivas, em ordem ao comprimento k de um dos vectores resultantes da partição (note-se que o outro vector terá comprimento N-k-1).

$$T_p(N) \ = \ \Theta(N) + \max_{k=0}^{N-1} \left(T_p(k) + T_p(N-k-1)
ight)$$

Para mostrarmos que esta recorrência tem a mesma solução que a que escrevemos acima de forma intuitiva, utilizaremos o **método da substituição.**

Admitamos então que $T_p(N) \leq cN^2$ para uma determinada constante c. Então podemos aplicar as seguintes hipóteses de indução:

•
$$T_p(k) \leq ck^2$$

•
$$T_p(N-k-1) \le c(N-k-1)^2$$

e logo,

$$T_p(N) \leq \Theta(N) + \max \left(ck^2 + c(N-k-1)^2
ight) \ T_p(N) \leq \Theta(N) + c \max \left(P(k)
ight)$$

com
$$P(k) = k^2 + (N - k - 1)^2 = 2k^2 + (2 - 2N)k + (N - 1)^2$$

Ora, por análise de P(k) conclui-se que os seus máximos no intervalo $0 \le k \le N-1$ se encontram nas extremidades, para k=0 (primeiro vector é vazio) e k=N-1 (segundo vector é vazio).

Para estes valores de k temos
$$P(0) = P(N-1) = (N-1)^2$$
, logo $T_p(N) \leq \Theta(N) + c(N-1)^2$

E temos então que $T_p(N) = \Theta(N^2)$, o que conclui a prova pelo método de substituição.

Análise de Caso Médio

O caso médio do tempo de execução pode ser estimado através do valor esperado do número de comparações efectuadas entre elementos do vector:

$$T_{avg}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} P_{comp}(i,j)$$

Admitamos para simplificar que lidamos com sequências que não contêm elementos repetidos.

Comecemos por observar que, dados quaisquer dois elementos x e y, eles começam por ser mantidos no mesmo sub-vector, enquanto os pivots forem superiores ou inferiores a ambos.

Até que ocorrerá um de dois cenários:

- 1. Um dos elementos é usado como *pivot* na partição de um sub-array que contém o outro elemento. É o caso de (2,4) ou (4,7) no exemplo de execução. Neste caso os elementos **são comparados**.
- 1. Os elementos são separados por uma qualquer partição em que é usado um terceiro elemento z como pivot. É o caso do par (2,7) no exemplo.

Neste caso **não são comparados**. Note-se que o pivot z terá de ser um elemento do vector tal que x < z < y.

7	6	12	3	11	8	2	1	15	13	17	5	16	14	9	4	10
7	6	3	8	2	1	5	9	4	10	17	11	16	14	12	15	13
3	2	1	4	6	7	5	9	8	10	11	12	13	14	17	15	16
1	2	3	4	6	7	5	8	9	10	11	12	13	14	15	16	17
1	2	3	4	5	7	6	8	9	10	11	12	13	14	15	16	17
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Conhecendo o conjunto de elementos contidos no array, é possível calcular a probabilidade de qualquer par de elementos (x,y) ser ou não comparado durante a execução do algoritmo: sendo n o número de elementos z tais que x < z < y, a probabilidade de x e y serem comparados é $\frac{2}{2+n}$.

No exemplo, a probabilidade de 2 e 7 serem comparados é igual a 2/6=1/3.

Ora, uma forma de conhecermos este número n de elementos contidos entre um par de elementos do array, consiste em observar o array final, ordenado. Se no array ordenado x e y se encontram nas posições i e j, então n=j-i-1, e a probabilidade de terem sido comparados é dada por $\frac{2}{j-i-1+2}=\frac{2}{j-i+1}$.

Basta agora calcular a soma destas probabilidades para todos os pares de elementos:

$$T_{avg}(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} \frac{2}{j-i+1}$$

Fazendo uma mudança de variável:

$$T_{avg}(n) = \sum_{i=0}^{n-2} \sum_{k=2}^{n-i} \frac{2}{k}$$

$$T_{avg}(n) \ \leq \ \sum_{i=0}^{n-2} \ \sum_{k=2}^{n} \ rac{2}{k} \ = \ 2(n-1)(\sum_{k=1}^{n} rac{1}{k} \ - \ 1)$$

Podemos agora utilizar o resultado seguinte:

$$\sum_{k=1}^n \frac{1}{k} \le 1 + \ln n$$

Para obter

$$T_{avg}(n) = \mathcal{O}(n \lg n)$$

Nesta análise assumimos, naturalmente, que todas as permutações dos elementos da sequência podem ocorrer com igual probabilidade (ou, o que é equivalente, que estamos a analisar uma versão *aleatorizada* do algoritmo).

Algoritmos de ordenação baseados em comparações

Todos os algoritmos estudados até aqui são baseados em **comparações**: dados dois elementos A[i] e A[j], é efectuado um teste (e.g. $A[i] \le A[j]$) que determina a ordem relativa desses elementos, não sendo usado qualquer outro método para obter informação sobre o valor dos elementos a ordenar.

Admitamos que a sequência não contém elementos repetidos. O **conjunto de execuções** de um algoritmo baseado em comparações (sobre sequências de uma determinada dimensão) pode ser visto de forma abstracta como constituindo uma *Árvore de Decisão*: uma árvore binária cujos **caminhos descendentes**, desde a raíz até às folhas, correspondem às diferentes execuções do algoritmo, como se segue:

- cada nó contém uma condição, correspondente a uma comparação entre dois elementos, A[i]
 < A[i]
- os **caminhos descendentes que chegam** a este nó correspondem às execuções que efectuam esta comparação A[i] < A[j]
- os caminhos que continuam para a **sub-árvore esquerda** deste nó correspondem às execuções em que o teste $A[i] \le A[j]$ teve resposta **verdadeira**
- os caminhos que continuam para a **sub-árvore direita** deste nó correspondem às execuções em que o teste A[i] ≤ A[j] teve resposta **falsa**
- assim, cada caminho da raíz até uma folha contém a sequência de comparações efectuadas numa execução concreta do algoritmo

Note-se ainda que:

- Cada folha corresponde a uma ordenação possível do input, ou seja uma permutação possível da sequência inicial
- Todas as permutações da sequência devem aparecer como folhas, já que a árvore contempla todas as execuções
- Existem N! permutações

Assim:

O **número de folhas** da árvore de decisão de um algoritmo de ordenação de um array de comprimento N é igual a N!

Vejamos dois exemplos: a execução dos algoritmos **insertion sort** e **merge sort**, sobre inputs de comprimento 3 (o tamanho das árvores cresce exponencialmente com o comprimento dos array).

Árvore de Decisão insertion sort, N=3

Árvore de Decisão merge sort, N=3

Observe-se agora que:

- o número de operações de comparação efectuadas numa execução concreta é dado pelo comprimento do caminho descendente correspondente a essa execução;
- logo, o número de operações de comparação efectuadas no *pior caso* é dado pela **altura** da árvore de decisão

Teorema

A altura h de uma árvore de decisão tem o seguinte limite mínimo, em que N é o tamanho do input:

$$h \ge \lg(N!)$$

Prova

- 1. Em geral uma árvore binária de altura h tem **no máximo** 2^h folhas.
- 2. As árvores que aqui consideramos têm N! folhas, correspondentes a todas as permutações do input
- 3. Assim, $N! \leq 2^h$
- 4. Logo, $\lg(N!) \leq h$

Ora, uma vez que num algoritmo de ordenação deste tipo o tempo de execução assimptótico pode ser calculado tomando apenas em conta a operação de comparação, temos o seguinte

Corolário

Seja T(N) o tempo de execução no pior caso de um qualquer algoritmo de ordenação baseado em comparações. Então $T(N)=\Omega(N\lg N)$

Prova

Basta usar o seguinte facto: $\lg(N!) = \Theta(N \lg N)$

Conclui-se assim que não é possível bater o comportamento de pior caso do algoritmo *merge sort:* pode-se dizer que é um algoritmo **assimptoticamente óptimo** uma vez que o seu tempo de execução no pior caso é $\Theta(N \lg N)$.

Algoritmos Counting Sort e Radix Sort

Na realidade, é possível ordenar vectores em tempo linear, batendo o limite $N\log N$, se se utilizar um método que não dependa de comparações entre elementos.

O algoritmo *counting sort* pode usado para ordenar sequências de números inteiros, se for conhecida à partida a gama de valores armazenados na sequência. Utiliza para isto um vector auxiliar para armazenar um histograma (uma contagem) dos elementos da sequência a ordenar.

A versão apresentada a seguir deste algoritmo:

- assume que os elementos do array A a ordenar estão contidos no conjunto $\{0\dots k\}$, sendo o valor de k conhecido
- coloca a sequência ordenada no array B (não é pois um algoritmo de ordenação *in-place*).

```
C[i] = 0;
     for (j=0; j<N; j++)
                                         /* contagem ocorr. A[j]
                                                                            */
6
       C[A[j]] = C[A[j]]+1;
     for (i=1; i<=k; i++)
                                         /* contagem dos <= i</pre>
                                                                            */
8
       C[i] = C[i] + C[i-1];
     for (j=N-1; j>=0; j--) {
                                        /* construção do vector ordenado */
       B[C[A[j]]-1] = A[j];
       C[A[j]] = C[A[j]]-1;
     }
14
   }
```

EXEMPLO:

```
k = 20
  A = [10, 5, 20, 10, 17]
   // 1
   o. ciclo
   C = [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1]
                                                                    // 2
   o. ciclo
   C = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5]
                                                                    // 3
   o. ciclo
   B = [--, --, --, --]
   B = [--, --, --, 17, --]
                                                                    // 4
   o. ciclo, 1 it.
   C = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 5]
   B = [--, --, 10, 17, --]
                                                                    // 4
   o. ciclo, 2 it.
   C = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 4, 5]
   B = [--, --, 10, 17, 20]
                                                                    // 4
   o. ciclo, 3 it.
   C = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4]
   B = [5, --, 10, 17, 20]
                                                                    // 4
   o. ciclo, 4 it.
   C = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4]
14
   B = [5, 10, 10, 17, 20]
                                                                    // 4
   o. ciclo, 5 it.
   C = [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4]
```

Esta contagem permite colocar (último ciclo for) os elementos de A directamente nas suas

posições finais.

A análise do tempo de execução é imediata: $T(N) = \Theta(N+k)$

Se
$$k = \mathcal{O}(N)$$
, então $T(N) = \Theta(N)$

Propriedade de Estabilidade

Note-se que o array C:

- começa por guardar uma contagem do número de ocorrências de cada elemento no array A a ordenar
- depois do terceiro ciclo for, passa a guardar em cada posição i uma contagem do **número de elementos inferiores ou iguais** a i

Imaginemos que A contém duas ocorrências de um elemento x, nas posições a e b, sendo a < b, e que existem u elementos inferiores a x em A. Teremos então que C[x] = u + 2

O algoritmo preencherá o array B percorrendo A do final para o início, e:

- 1. ao passar pela posição b de A colocará x na posição u+2 e decrementará C[x] para C[x]=u+1
- 2. mais tarde, ao passar pela posição a de A colocará x na posição u+1 e decrementará C[x] para C[x]=u

Sendo assim, o algoritmo counting sort observa a seguinte propriedade de estabilidade:

A ordem das ocorrências em A é preservada em B

Esta propriedade parece inútil quando se considera a ordenação de sequências de números, mas é de facto útil se estes números forem vistos como parte de estruturas contendo outros campos.

Considere-se por exemplo o problema de ordenação de datas. Os 3 campos presentes numa data devem ter prioridades diferentes na ordenação, tendo o *ano* prioridade mais alta, seguindo-se o *mês*, e só depois o dia. Um método possível para ordenar datas consiste em fazer ordenações sucessivas usando cada um dos campos, *do menos significativo para o mais significativo*.

Consideremos por exemplo as datas:

- 21/8
- 26/3
- 14/4
- 21/3

Ordenando por dia:

- 14/4
- **21**/8
- **21**/3

• **26**/3

Ordenando agora por mês:

- 21/3
- 26/3
- 14/**4**
- 21/8

As datas ficam ordenadas, mas é fundamental para isto que ordenação por mês tenha sido estável (foi preservada a ordenação anterior, pelo campo *dia*).

Se acrescentarmos o campo "ano" às datas:

- 21/3/2009
- 26/3/1975
- 14/4/1969
- 21/8/2009

Ordenando por ano é de novo preservada a ordenação anterior:

- 14/4/1969
- 26/3/**1975**
- 21/3/2009
- 21/8/2009

Mais uma vez a ordenação por ano preservou a ordenação anterior, pelo que as datas ficam ordenadas. Este algoritmo de ordenação de sequências de estruturas multi-campo, recorrendo a ordenações sucessivas usando um algoritmo de ordenação auxiliar estável (por exemplo *counting sort*), é conhecido por **radix sort**.