Acerca de los autores

MATERIA	: Prótesis	EQUIPO:	:	<u>1</u>		
PLAN:	_401	DIA:	_M	HORA:	N6	
RESPONS	ABLE DI	E EOUIPO:	Juan	Manuel Guerre	ero Muñoz	

Montserrat Granados Salinas 1817165

Estudiante de 8° semestre de la carrera de Ingeniero en Mecatrónica en la FIME, de la Universidad Autónoma de Nuevo León con orientación en Biodispositivos. Actualmente estoy haciendo prácticas profesionales en una investigación donde mi proyecto se basa en realizar una impresora de nanomateriales. Tengo dos certificaciones en SolidWorks y estoy terminando la tercera en simulación, estoy aprendiendo a usar Fusión 360 y tengo conocimientos básicos de diseño de personajes 3D. Actualmente me encuentro en un diplomado sobre prótesis biomecánicas, así que tengo conocimiento sobre el análisis de esfuerzos y la programación del sensor EMG básico. El semestre pasado realice un prototipo de prótesis para la clase de biomecánica en el área de impresión y ensamblado de esta. Tengo interés en el área de diseño o en el área de señales biológicas y diseño inteligente. Plan: 401 Brigada: 319

MAIL: montserrat.granadosslns@uanl.edu.mx

Juan Carlos Telles García 1856468

Estudiante de 9vo semestre de la carrera de ingeniería en mecatrónica de la facultad de ingeniería mecánica y eléctrica, de la universidad autónoma de nuevo león, enfocado en la maquinaria y el hardware de computadoras. Plan:401 Brigada:319

MAIL: juan.carlostg@hotmail.com

Juan Manuel Guerrero Muñoz 1820415

Estudiante de 10° semestre de la carrera de Ingeniero en Mecatrónica. Mi área de expertis es la física y la electrónica; Me desenvuelvo muy bien en estas materias y me apasiona verdaderamente puesto que me resulta fácil el comprender los problemas y la resolución de estos. Al igual que utilizar las fórmulas para las 4 físicas que llevamos en la carrera.

Plan: 401 Brigada: 319

MAIL: juanguerrero2700@gmail.com

Irvin Barrón Sandoval 1673675

Estudiante de 10° semestre de la carrera de Ingeniero en Mecatrónica en la FIME, de la Universidad Autónoma de Nuevo León, conocimientos básicos de modelado en programas como: SolidWorks e Inventor, nivel de inglés intermedio Plan: 401

Brigada: 319

MAIL: irving.barron01@gmail.com

METODOLOGÍA

La metodología seguida en el análisis consta de los siguientes pasos:

- Definición de las propiedades de los materiales de la bandeja tibial.
- Generación del modelo geométrico utilizando herramientas de modelado en 3D
- Investigación del estado del arte para obtención de condiciones frontera.
- Modelación por elementos finitos considerando las restricciones y cargas aplicadas al modelo.
- Análisis de los resultados.

PROPIEDADES MECÁNICAS

Las prótesis humanas son diseñadas con materiales resistentes a los ambientes altamente corrosivos. Las aleaciones de titanio son insensibles al ataque de los cloruros producidos por el cuerpo humano, por eso tienen menor corriente de corrosión en altos potenciales a comparación de las de Co-Cr (Colbato-Cromo) y aceros inoxidables. Estas aleaciones presentan una excepcional resistencia específica (resistencia tensión/densidad) de entre todo el conjunto de materiales metálicos utilizados en implantes además presentan el fenómeno de la pasivación por la formación espontánea de una capa de TiO2 (Oxido de Titanio), siendo catalogado como el mejor material bioinerte para aplicaciones en implantes.

MODELO GEOMÉTRICO

Este estudio ayudará a encontrar técnicas para evitar fracturas inesperadas y para garantizar una mejor vida a la bandeja tibial donde se aplicará una carga para ver el comportamiento del material y observar hasta qué punto llega a tener una fatiga mecánica esto dependerá de la carga aplicada.

Información de modelo

Nombre de documento y referencia	Tratado como	Propiedades volumétricas	Ruta al documento/ de modificación
Redondeo2	Sólido	Masa:0.261775 kg Volumen:5.91076e-05 m^3 Densidad:4428.78 kg/m^3 Peso:2.56539 N	

Propiedades de material

Referencia de modelo	Propie	edades	Componentes
	Nombre:	Ti-6Al-4V Solución tratada y enxejecida (SS)	Sólido 1(Redondeo <u>2)(vastago</u> de <u>cadera</u>)
	Tipo de <u>modelo</u> :	Isotrópico elástico lineal	
	Criterio de error predeterminado: Límite elástico: Límite de tracción: Módulo elástico: Coeficiente de Poisson:		
	Densidad: Módulo cortante; Coeficiente de dilatación térmica;		
Datos de curva:N/A	1		1

Información de malla

······································					
Tipo de malla	Malla sólida				
Mallador utilizado:	Malla estándar				
Transición automática:	Desactivar				
Incluir bucles automáticos de malla:	Desactivar				
Puntos jacobianos	4 Puntos				
Tamaño de elementos	5 mm				
Tolerancia	0.25 mm				
Trazado de calidad de malla	Elementos cuadráticos de alto orden				

Información de malla - Detalles

<u>Número</u> total de <u>nodos</u>	9461
<u>Número</u> total de <u>elementos</u>	5387
Cociente máximo de aspecto	11.622
% de <u>elementos cuyo cociente</u> de <u>aspecto</u> es < 3	85.7
% de elementos cuyo cociente de aspecto es > 10	0.0928
% de elementos distorsionados (Jacobiana)	0
Tiempo para completar la malla (hh:mm;ss):	00:00:02
Nombre de computadora:	

Cargas v sujeciones

Nombre de sujeción	lmag	gen de <u>sujeción</u>	Detalles de sujeción		
Fijo-1					ara(s) ometría fija
ierzas resultar	ites				
Componen	tes	Х	Υ	Z	Resultante
Fuerza de reac	ción(N)	-0.0102976	-2080.31	2080.33	2942.02
Momento reacción(N		0	0	0	0

Nombre de carga	Largar imagen Detailes de Carga	
Fuerza-1	*	Entidades: 1 cara(s) Tipo: Aplicar fuerza normal Valor: 300 kgf

Fuerzas resultantes

Fuerzas de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N	-0.0102976	-2080.31	2080.33	2942.02

Momentos de reacción

Conjunto de selecciones	Unidades	Sum X	Sum Y	Sum Z	Resultante
Todo el modelo	N.m	0	0	0	0

Resultados del estudio

Nombre	Tipo	Mín.	Máx.
Deformaciones	ESTRN: <u>Deformación unitaria</u>	1.935e-17	2.115e-04
unitarias1	equivalente	Elemento: 3016	Elemento: 2591
Nombre del modelo:vastago de cader Nombre de estudio:Análisis estático 1 Tipo de resultado: Deformación unita Escala de deformación: 4386.44	(-Predeterminado-)		

Nombre	Tipo	Mín.	Máx.
Factor de seguridad1	<u>Tensión</u> de von Mises <u>máx</u> .	1.585e+01 Nodo: 698	1.000e+16 Nodo: 7513
Nombre del modelo:vastago de cade Nombre de estudio:Análisis estático Tipo de resultado: Factor de segurid. Criterio: Tensiones von Mises máx. Distribución de factor de seguridad:	1(-Predeterminado-) ad Factor de seguridad1 FDS mín = 16		
vastago	de cadera-Análisis estático 1-Facto	or de seguridad-Facto	or de seguridad1