

Sistemas Operacionais

Aula 10 - Escalonamento de CPU - Parte 01

Professor: Wellington Franco

Escalonamento de processos

- Na multiprogramação, vários processos querem executar:
 - Mas cada CPU só pode receber um processo por vez
 - **Problema:** Quem deve executar agora? P¹ ou P²?
- O SO é o responsável por resolver este problema:
 - Escalonador e o(s) algoritmo(s) de escalonamento
- O objetivo principal é sempre usar de forma eficiente a CPU!

Objetivos do Escalonamento

- Justiça: Particionamento justo dos recursos de *hardware*
- Aplicação da política: Garantir que a política é atendida
- Equilíbrio: Todo o sistema deve manter-se ocupado
- Vazão: Maximizar o número de tarefas por hora
- Tempo de Resposta: Minimizar o tempo de término
- Proporcionalidade: Satisfazer as expectativas do usuário

Escalonador de processos

- Escolhe o melhor processo a ser executado:
 - Para isso, segue-se algum tipo de algorítimo pré-definido
 - Uma vez escolhido, troca-se um processo por outro
- Chaveamento entre processos é muito custoso:
 - Bloqueia e salva o estado do processo atual na CPU
 - Carrega e inicia o estado do processo escalonado

Escalonamento de processos

Sistemas computacionais da atualidade permitem que múltiplos programas sejam carregados em memória e executados de forma concorrente. Potencialmente, todos os processos são executados com as CPUs multiplexadas para eles. Ao trocar a CPU entre os processos, o SO faz o computador mais produtivo.

SILBERSCHARTZ, P. B. GALVIN, G. GAGNE (2009)

Conceitos básicos

- Em um sistema com um único processador, apenas um processo pode ser executado por vez, qualquer outro deve esperar.
- Multiprogramação é a ideia de haver sempre algum processo em execução para que a CPU seja otimizada
- Sempre que um processo tiver de esperar por algum recurso (ou I/O), outro processo pode assumir o uso da CPU
 - Escalonamento (ou Scheduling) é uma função básica do SO; é essencial

Conceitos básicos:

- A execução de processos é composta por um ciclo de execução da CPU e espera por operações de I/O.
- Os processos se alternam entre esses dois estados
- O último pico de CPU termina quando o sistema solicita o encerramento da execução

Histograma com conceitos básicos

Scheduler da CPU

- Sempre é selecionado um processo da fila de pronto
- O processo de seleção é executado pelo scheduler de curto prazo
- O scheduler seleciona um processo entre os processos na memória para execução e aloca a CPU
- A fila de prontos ocorre como FIFO (primeiro a entrar, primeiro a sair) ?

Algoritmos de escalonamento

O escalonamento de CPU lida com o problema de decidir quais os processos na fila de prontos deverá ser alocado a CPU em um determinado momento. Diversos critérios foram sugeridos para comparar os algoritmos de escalonamento: nível de utilização de CPU, vazão, tempo de espera, tempo de resposta...

SILBERSCHARTZ, P. B. GALVIN, G. GAGNE (2009)

Tipo de algoritmos de escalonamento

- Um processo não pode monopolizar a CPU:
 - Prejudica a segurança e impossibilita a multiprogramação
- O SO é o responsável por resolver este problema:
 - Periodicamente, é gerada uma interrupção de software
 - O controle é devolvido para o Sistema Operacional
 - Sistema Operacional decide se o processo continua ou não
- Escalonamento pode ser: **preemptivo** ou **não-preemptivo**

Tipo de algoritmos de escalonamento

Escalonamento Não-Preemptivo

Mantém o processo em execução até o mesmo entrar em estado bloqueado ou liberar a CPU por conta própria

Escalonamento Preemptivo

Processo é executado por um tempo máximo fixado

Scheduling com preempção

- As decisões do escalonador de CPU podem ocorrer quando um processo:
 - Muda do estado de execução para o estado de espera
 - Muda do estado de executando para pronto
 - Muda do estado de espera para pronto
 - Quando um processo é finalizado

Scheduling com preempção

- As decisões do escalonador de CPU podem ocorrer quando um processo:
 - Muda do estado de execução para o estado de espera
 - Muda do estado de executando para pronto
 - Muda do estado de espera para pronto
 - Quando um processo é finalizado
 - As condições 1 e 4 é dito não-preemptivo. As condições 2 e 3 é dito preemptivo

Critérios de scheduling

- É utilizado para a comparação de algoritmos de scheduling da CPU
 - Utilização da CPU: manter a CPU o mais ocupada possível. Pode variar de 0 a 100 por cento.
 - Vazão: quando a CPU está ocupada executando processos, trabalho está sendo realizado (quantidades de processo/unidade de tempo)
 - Tempo de turnaround: quantidade necessária de tempo para executar um processo

Critérios de scheduling

- É utilizado para a comparação de algoritmos de scheduling da CPU
 - Tempo de espera: quantidade de tempo que um processo aguardou na fila de prontos
 - Tempo de resposta: quantidade de tempo entre a requisição de execução de um programa e a produção da primeira resposta. (sistemas interativos)

Critérios de otimização dos scheduling

- É desejável a maximização dos critérios:
 - Utilização máxima de CPU
 - Vazão máxima
 - Tempo de turnaround mínimo
 - Tempo de espera mínimo
 - Tempo de resposta mínimo

Algoritmos de escalonamento

Escalonamento First-In-First-Out (FIFO)/Primeiro a Entrar,

Primeiro a Ser Atendido (FCFS):

- Processos prontos alocados em uma fila
- Processos são alocados à CPU na ordem de chegada
- Jobs grandes podem atrasar (e muito) jobs pequenos

- Primeiro a Entrar, Primeiro a Ser Atendido (FCFS)
 - o O processo que solicita a CPU primeiro é o primeiro a usá-la.
 - A implementação da política FCFS é facilmente gerenciada com uma fila FIFO.
 - Quando um processo entra na fila de prontos, seu PCB é inserido no final da fila. Quando a CPU estiver livre, ela é alocada para o processo na cabeça da fila.
 - O processo em execução é então removido da fila

- Primeiro a Entrar, Primeiro a Ser Atendido (FCFS)
 - Desvantagem: tempo médio de espera é geralmente bem longo

Primeiro a Entrar, Primeiro a Ser Atendido (FCFS)

Processo	Duração do Pico
P_1	24
P_2	3
P_3	3

Supondo que chegaram na ordem P1, P2, P3

Primeiro a Entrar, Primeiro a Ser Atendido (FCFS)

Tempo de espera médio = (0 + 24 + 27)/3 = 17

- Primeiro a Entrar, Primeiro a Ser Atendido (FCFS)
 - Supondo que a ordem foi: P2, P3, P1

 \circ Tempo de espera médio = (0 + 3 + 6)/3 = 3

- Primeiro a Entrar, Primeiro a Ser Atendido (FCFS)
 - "Efeito comboio": todos os outros processos esperam que o grande processo saia da CPU
 - Não usa preempção

Algoritmos de escalonamento

- Escalonamento Shortest job first:
 - Cada processo possui associado uma estimativa do seu tempo total de processamento
 - Processo com tempo mais curto é alocado à CPU
 - Situação adequada apenas em situações onde todos os processos estão disponíveis e a estimativa também

Scheduling Menor-Job-Primeiro (SJF)

- Associa a cada processo a duração do seu próximo pico de CPU
- Usa essas durações para escalonar o processo com a menor duração de pico de CPU
- Se tiver dois processos com a mesma duração, o primeiro a entrar na fila será o executado

Scheduling Menor-Job-Primeiro (SJF)

Processo	Duração do Pico
P_1	6
P_2	8
P_3	7
P_4	3

Scheduling Menor-Job-Primeiro (SJF)

Tempo de espera médio = (3 + 16 + 9 + 0) / 4 = 7

- Scheduling Menor-Job-Primeiro (SJF)
 - o SJF não-preemptivo

Process	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

- Scheduling Menor-Job-Primeiro (SJF)
 - o SJF não-preemptivo

■ Tempo de espera médio = (0 + 6 + 3 + 7)/4 = 4

- Scheduling Menor-Job-Primeiro (SJF)
 - o SJF preemptivo

Process	Arrival Time	Burst Time
P_1	0.0	7
P_2	2.0	4
P_3	4.0	1
P_4	5.0	4

- Scheduling Menor-Job-Primeiro (SJF)
 - SJF preemptivo

■ Tempo de espera médio = (9 + 1 + 0 + 2)/4 = 3

Scheduling por prioridade

- Cada processo recebe um nível de prioridade
- A CPU é alocada para o processo com a maior prioridade (menor valor númerico)

• Scheduling por prioridade

Processo	Duração do Pico	Prioridade
P1	10	3
P2	1	1
P3	2	4
P4	1	5
P5	5	2

• Scheduling por prioridade

Tempo de espera médio = 8,2

Starvation

- Também conhecido como adiamento indefinido:
 - Um processo nunca recebe a UCP para processamento
- Ocorre devido a falhas nas políticas de escalonamento:
 - Em políticas baseadas em prioridades, processos de baixa prioridade podem nunca receber a CPU;
 - Nesse caso, o **envelhecimento** evita o starvation.
- Sistema Operacional deve mirar a justiça entre os processos.

- Scheduling por prioridade
 - Com prempção e não-preempção
 - Problema Starvation (bloqueio indefinido): processos de baixa prioridade podem nunca serem executados
 - Solução: Envelhecimento a medida que o tempo passa a prioridade dos processos aumenta

Scheduling Round-Robin

- Cada processo recebe uma pequena quantidade de tempo de CPU (quantum), usualmente entre 10 e 100 milissegundos.
- Depois que esse tempo esgota, o processo é interrompido e inserido no fim da fila de prontos.

• Scheduling Round-Robin

Processo	Duração do Pico
P1	24
P2	3
P3	3

Quantum = 3

Scheduling Round-Robin

Tempo de espera médio = (10-4+4+7) = 5,66

- Scheduling Round-Robin
 - Desempenho
 - Se q grande -> FCFS
 - Se q pequeno -> Compartilhamento do processador -> overhead
 - q precisa ser grande em relação ao tempo de troca de contexto,
 caso contrário o overhead será muito grande.

Scheduling Round-Robin

Scheduling Round-Robin

processo	tempo
P ₁	6
P ₂	3
P_3	1
P ₄	7

Dúvidas??

E-mail: wellington@crateus.ufc.br