Sistemas Operacionais Embarcados

SPI

Possíveis cenários:

- Aparelhos ligados à internet (IoT)
- Envio de dados de um microcontrolador para um computador pessoal
- Troca de dados entre microcontroladores
- Leitura de sensores (GPS, acelerômetro etc.)
- Leitura e escrita em memória externa

→ USB	→ UART
→ WiFi	→ SPI
→ Ethernet	→ I2C
→ Bluetooth	→ I2S
→ HDMI	\rightarrow CAN
→ VGA	→ Etc.

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

→ USB

→ WiFi

→ Ethernet

- → Bluetooth
- → HDMI

→ UART

→ SPI

→ I2C

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

→ UART <

→ SPI

→ I2C

Protocolo assíncrono: o clock não é enviado junto com os dados

Os dispositivos devem "concordar" com uma taxa de transmissão

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

→ UART <

→ SPI

→ I2C

Necessita de 2 fios: transmissão e recepção

Permite comunicação full-duplex

O fio de transmissão pode ser usado para indicar o endereço do dispositivo (quando há mais de um deles)

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

- \rightarrow SPI
- **→ I2C**

Necessita de 3 fios: clock, transmissão e recepção

Permite comunicação full-duplex

Permite um quarto fio, para indicar o endereço do escravo (quando há mais de um deles)

Protocolos disponíveis no Raspberry Pi (dependente do modelo):

→ UART

→ I2C

 \rightarrow SPI

Possui dois fios: clock e dados

Permite comunicação half-duplex

O fio de dados pode ser usado para indicar o endereço do escravo (quando há mais de um deles)

SPI

Comunicação SPI

SPI

SPI no RPi

3v3 Power	1 0 2 5v Power
GPIO 2 (I2C1 SDA)	3 🔾 🧿 4 5v Power
GPIO 3 ((2C1 SCL)	5 O Ground
GPIO 4 (GPCLK0)	7 💽 💽 8 GPIO 14 (UART TX)
Ground	9 • 0 10 GPIO 15 (UART RX)
GPIO 17 (SPI1 CE1)	11 OO 12 GPIO 18 (SPI1 CE0)
GPIO 27	13 🚺 • 14 Ground
GPIO 22	15 0 0 16 GPIO 23
3v3 Power	17 O 18 GPIO 24
GPIO 10 (SPIO MOSI)	19 🔾 • 20 Ground
GPIO 9 (SPIO MISO)	21 O 22 GPIO 25
GPIO 11 (SPIO SCLK)	23 O 24 GPIO 8 (SPI0 CE0)
Ground	25 0 26 GPIO 7 (SPI0 CE1)
GPIO 0 (EEPROM SDA)	27 • 28 GPIO 1 (EEPROM SCL)
GPIO 5	29 🔘 • 30 Ground
GPIO 6	31 O O 32 GPIO 12 (PWM0)
GPIO 13 (PWM1)	33 🔾 • 34 Ground
GPIO 19 (SPI1 MISO)	35 O 36 GPIO 16 (SPI1 CE2)
GPIO 26	37 O 38 GPIO 20 (SPI1 MOSI)
Ground	39 • 0 40 GPIO 21 (SPI1 SCLK)

SPI no RPi

O Raspbian não tem a comunicação SPI habilitada inicialmente. Para utiliza-la, você deve habilita-la da seguinte maneira:

1 - Execute

\$ sudo raspi-config

vá em Advanced options -> SPI, e habilite o acesso:

Would you like the SPI interface to be enabled? Yes.

SPI no RPi

- 2 Reinicie (reboot) o sistema para tornar esta mudança efetiva.
- 3 Execute

\$ cat /boot/config.txt | grep spi

Deverá aparecer o texto

dtparam=spi=on

indicando que a SPI está habilitada.

Hardware para exemplos SPI

