${\bf MiniMUGA~Background~Analysis~v0002}$

C57BL/cous at 89 s at 2580 ty: 99.95 cood are depen	6J and ALS/LtJ tier 1 autosoma tier 1 autosoma %) adent on genotyp = More Inbred	al markers. By coll markers. (range)	Neogen ID AA Close to Inbre Control Inbre H Calls	AAA-0378 ed d Samples			
C57BL/cous at 89 s at 2580 ty: 99.95 cood are depen	6J and ALS/LtJ tier 1 autosoma tier 1 autosoma %) adent on genotyp = More Inbred	al markers. By coll markers. (range)	omparison, an aver- ge: 202 - 3571) Neogen ID AA Close to Inbre Control Inbre H Calls	AAA-0378 ed d Samples			
C57BL/cous at 89 s at 2580 ty: 99.95 cood are depen	6J and ALS/LtJ tier 1 autosoma tier 1 autosoma %) adent on genotyp = More Inbred	al markers. By coll markers. (range)	omparison, an aver- ge: 202 - 3571) Neogen ID AA Close to Inbre Control Inbre H Calls	AAA-0378 ed d Samples			
ood are depen	ndent on genotyp	(Н	Close to Inbree Control Inbree H Calls	ed d Samples			
ere depen	= More Inbred	(Н	Close to Inbree Control Inbree H Calls	ed d Samples			
		nserved (H	Close to Inbree Control Inbree H Calls	ed d Samples			
		(H		erozygous) /			
Diagn	ostics Alleles Ob	oserved (H	omozygous + Hete	erozygous) /			
	$\begin{array}{ccc} {\rm Strain} & {\rm Diagnostics~Alleles~Observed} & & & & & & & & & \\ & & & & & & & & & $						
98.44% $(124+2) / 128$				128			
Total	Consistent	Inconsisten	t Heterozygous	Excluded			
9121	9004 (99.1%)	3 (0.0%)	77 (0.8%)	37			
Total	Explained	Explained Clustered	Unexplained	Unexplained Clustered			
80	69 (86.2%)	True	10 (13.8%)	False			
		ALS/LtJ =					
	Total 80 C	Total Explained	Total Explained Clustered 80 69 (86.2%) True C57BL/6J ALS/LtJ 1 2 3 4 5 6 7 8 9 10 11 12	Total Explained Explained Clustered Unexplained 80 69 (86.2%) True 10 (13.8%) — C57BL/6J — ALS/LtJ — Heterozygous			

${\bf MiniMUGA~Background~Analysis~v0002}$

INS2 Apple 28	2002						
AAAA-0379							
The genotype of this sample is of excellent to good quality. It is male, inbred, and likely a mix of C57BL/6J and ALS/LtJ.							
					age F1 mouse		
XY (probability: 99.98%)							
Excellent to Good All estimates are dependent on genotyping quality.							
Better Quality N Calls				Close to Inbre	ed		
ļ "	←	= More Inbred		H Calls			
$\begin{array}{ccc} {\rm Strain} & {\rm Diagnostics~Alleles~Observed} & & & & & & & & & \\ & & & & & & & & & $							
m C57BL/6J		98.44%		$\left(125+1\right) /$	128		
Strain	Total	Consistent	Inconsistent	Heterozygous	Excluded		
C57BL/6J	9121	9036 (99.5%)	3 (0.0%)	46~(0.5%)	36		
Strain	Total	Explained	Explained Clustered		Unexplained Clustered		
m ALS/LtJ	49	43 (87.8%)	True	5 (12.2%)	False		
	C	57BL/6J	■ ALS/LtJ ■	Heterozygous	3		
200 Mb -	II.						
100 Mb -	1 2 3	3 4 5 6 7			18 19 X		
	The genotype mix of C57BL It is heterozygous is heterozygous XY (probabilis Excellent to GAll estimates a Strain C57BL/6J Strain C57BL/6J Strain ALS/LtJ 200 Mb -	The genotype of this samix of C57BL/6J and A It is heterozygous at 59 is heterozygous at 2580 XY (probability: 99.98) Excellent to Good All estimates are dependent Strain Diagn C57BL/6J Strain Total C57BL/6J 9121 Strain Total ALS/LtJ 49 200 Mb - C	The genotype of this sample is of excellemix of C57BL/6J and ALS/LtJ. It is heterozygous at 59 tier 1 autosoma is heterozygous at 2580 tier 1 autosoma at 2580 tier 2 autosom	The genotype of this sample is of excellent to good qualimix of C57BL/6J and ALS/LtJ. It is heterozygous at 59 tier 1 autosomal markers. By co is heterozygous at 2580 tier 1 autosomal markers. (range XY (probability: 99.98%) Excellent to Good All estimates are dependent on genotyping quality. Strain Diagnostics Alleles Observed C57BL/6J 98.44% Strain Total Consistent Inconsistent C57BL/6J 9121 9036 (99.5%) 3 (0.0%) Strain Total Explained Clustered ALS/LtJ 49 43 (87.8%) True C57BL/6J ALS/LtJ — C57BL/6J ALS/LtJ — C57BL/6J ALS/LtJ — C57BL/6J ALS/LtJ —	The genotype of this sample is of excellent to good quality. It is male, informix of C57BL/6J and ALS/LtJ. It is heterozygous at 59 tier 1 autosomal markers. By comparison, an average is heterozygous at 2580 tier 1 autosomal markers. (range: 202 - 3571) XY (probability: 99.98%) Excellent to Good All estimates are dependent on genotyping quality. Neogen ID Ad Close to Inbred Control Inbred Total Diagnostics Alleles Observed C57BL/6J 98.44% (125 + 1) / Strain Total Consistent Inconsistent Heterozygous C57BL/6J 9121 9036 (99.5%) 3 (0.0%) 46 (0.5%) Strain Total Explained Clustered Unexplained Clustered ALS/LtJ 49 43 (87.8%) True 5 (12.2%)		