

Technische Grundlagen der Informatik 2 Rechnerorganisation

Kapitel 8:

Sekundärspeicher, Netzwerke und andere Peripheriegeräte

Prof. Dr. Ben Juurlink

Fachgebiet: Architektur eingebetteter Systeme
Institut für Technische Informatik und Mikroelektronik
Fak. IV – Elektrotechnik und Informatik

SS 2012

01.07.2014 Ben Juurlink 1

Ziele

- Nach dieser Vorlesung sind Sie in der Lage,
 - den allgemeinen Aufbau von Festplattenspeicher zu beschreiben
 - Zugriffszeiten auf Festplattenspeicher zu berechnen
 - RAID-Phasen mitsamt ihre Vor- und Nachteile zu beschreiben
 - verschiedene Bussysteme zu beschreiben
 - das Handshake-Protokolls eines Bus-Systems zu beschreiben
 - Interrupt-gesteuerte Eingabe zu beschreiben
 - Ein-/Ausgabe-Leistung eines Systems zu berechnen

Hauptkomponenten eines Computers

Cache

Hauptspeicher

Sekundärer Speicher (Festplatte)

- Ein-/Ausgabe-Geräte können unterteilt werden nach:
 - Verhalten: Eingabe, Ausgabe, Speicher
 - Partner: Mensch oder Maschine
 - Datenrate: Bytes/s, Übertragungen/s
- Tastatur: Verhalten = Eingabe, Partner = Mensch, Datenrate = \pm 10B/s

Bewertung von Ein-/Ausgabe-Geräten

- Zuverlässigkeit ist wichtig
 - Besonders für Speichergeräte
- Leistungsmerkmale
 - Latenz (Antwortzeit)
 - Durchsatz (Bandbreite)
- Desktops & Eingebette Systeme
 - Stark interessiert an Antwortzeit & Vielfältigkeit von Geräten
- Server
 - Stark interessiert an Durchsatz & Erweiterbarkeit von Geräten

Zuverlässigkeit

<u>Dienst-Bereitstellung</u> Dienst wird entsprechend der Spezifikation bereitgestellt

Wiederherstellung Ausfall

Dienst-Unterbrechung

Abweichung vom

spezifizierten Dienst

- Fehler: Ausfall einer Komponente
 - Kann zum Systemausfall führen, muss aber nicht

Maße für Zuverlässigkeit

- Zuverlässigkeit: mittlere Zeit bis Ausfall (MTTF, mean time to failure)
- Dienst-Unterbrechung: mittlere Zeit bis Reparatur (MTTR, mean time to repair)
- Zeit zwischen Ausfällen (MTBF, mean time between failures)
 - MTBF = MTTF + MTTR
- Verfügbarkeit = MTTF / (MTTF + MTTR)
- Verfügbarkeit verbessern:
 - Erhöhe MTTF: Fehlervermeidung, Fehlertoleranz, Fehlervorhersage
 - Reduziere MTTR: bessere Werkzeuge für Fehlererkennung, Diagnose und Reparatur

MTBF Beispiel

- MTBF wird oft genutzt, wenn MTTF angebrachter wäre
- MTBF(Festplatte A) = 1,000,000h
- MTBF(Festplatte B) = 500,000h
- Was ist die MTBF eines System mit den Festplatten A und B?
- Festplatte A: 1 Ausfälle in 1,000,000h
- Festplatte B: 2 Ausfälle in 1,000,000h
- Festplatten A + B: 3 Ausfälle in 1,000,000h
 - MTBF(Festplatten A + B) = 333,333h =

$$\frac{1}{1,000,000} + \frac{1}{500,000}$$

nichtflüchtiger, rotierender Magnetspeicher

Festplattenspeicher

- 1 bis 4 Platten, 1 bis 3,5 Zoll Durchmesser
- jeweils 2 beschreibbare, magnetische Oberfläche
- unterteilt in konzentrische Kreise genannt Spuren (10K-50K)
- jede Spur 100-500 Sektoren
 - in der Regel 512 Byte groß
 - besteht aus
 - Sektornummer
 - Fehlerkorrekturcode
 (ECC, Error correcting code)
 - eigentliche Daten
 - Lücken zur Synchronisation

Festplattenzugriffszeit

- Komponente der Festplattenzugriffszeit:
 - Wartezeit, bis andere Zugriffe erledigt sind
 - Suchzeit (seek time) für Kopf-Positionierung (Seek): Lese-/ Schreibkopf über richtige Spur positionieren
 - Umdrehungslatenz (rotational latency): warten bis gesuchter Sektor unter Lese-/Schreibkopf rotiert
 - Transferzeit: Sektorgröße / Transferrate
 - (Festplatten)Controllerzeit

Beispiel Festplattenzugriff

- Angaben Festplattenherstellers:
 - 15000 Umdrehungen/Min
 - 4ms durchschnittl. Suchzeit
 - 100MB/s Transferrate
 - 0.2ms Controllerzeit
- Wie lange dauert das Lesen eines 512 Byte Sektors, wenn Festplatte nicht beschäftigt ist?

```
    4ms (Suchzeit)
    + 0.5 / (15000/60) (= 2ms Umdrehungslatenz)
    + 512 / 100MB/s (= 0.005ms Transferzeit)
    + 0.2ms (Controllerzeit)
    = 6.2ms
```

- Wenn gemessene durchschnittl. Suchzeit nur 1ms
 - Durchschnittl. Zugriffszeit = 3.2ms

Beispiele für Magnetfestplatten

Eigenschaft	Seagate ST37	Seagate ST32	Seagate ST94
Plattendurchm. (Zoll)	3.5	3.5	2.5
Kapazität (GB)	73.4	200	40
# Oberflächen (Köpfe)	8	4	2
Umdrehungsgeschw. (U/m)	15,000	7,200	5,400
Transferrate (MB/s)	57-86	32-58	34
Minimale Suchzeit (ms)	0.2r-0.4w	1.0r-1.2w	1.5r-2.0w
Durchschnittl. Suchzeit (ms)	3.6r-3.9w	8.5r-9.5w	12r-14w
MTTF (h@25°C)	1,200,000	600,000	330,000
Maße (cm)	2,5 x 10,2 x 14,7	2,5 x 10,2 x 14,7	1,0 x 6,9 x 9,9
GB/cm³	0,19	0,53	0,57
Leistung: op/idle/sb (W)	20?/12/-	12/8/1	2.4/1/0.4
GB/W	4	16	17
Gewicht (g)	862	635	90,7
Preis 2004 / \$/GB	\$400, \$5/GB	\$100, \$0,5/GB	\$100, \$2,5/GB

Festplattenlatenz- und Bandbreitenmeilensteine

	CDC Wren	SG ST41	SG ST15	SG ST39	SG ST37
Rotgeschw. (rpm)	3600	5400	7200	10000	15000
Jahr	1983	1990	1994	1998	2003
Kapazität (Gbytes)	0.03	1.4	4.3	9.1	73.4
Durchm. (inches)	5.25	5.25	3.5	3.0	2.5
Anschluss	ST-412	SCSI	SCSI	SCSI	SCSI
Bandbreite (MB/s)	0.6	4	9	24	86
Latenz (msec)	48.3	17.1	12.7	8.8	5.7

Patterson, CACM Vol 47, #10, 2004

- Festplattenlatenz = durchschnittl. Suchzeit + Umdrehungslatenz
- Festplattenbandbreite = höchste Transferrate von formatierten Daten vom Medium (nicht aus dem Cache).
- SCSI = small computer system interface = Standard für Ein-/ Ausgabegeräte

Verbesserungen von Latenz und Bandbreite

 In der Zeit in der sich die Bandbreite verdoppelt hat, verbesserte sich die Latenz nur um 1.2x bis 1.4x

Verbesserungen von Latenz und Bandbreite

 In der Zeit in der sich die Bandbreite verdoppelt hat, verbesserte sich die Latenz nur um 1.2x bis 1.4x

Bandbreite/Latenzanforderungen von Medienanwendungen

Bandbreitenansprüche

- Video in hoher Qualität
 - (30 frames/s) × (640 x 480 pixels) × (24-b color/pixel) = 221 Mb/s (27.625 MB/s)
 - Full High Definition: 1920×1080 = 7.75x größer
- Audio in hoher Qualität
 - (44,100 Audio Spuren/s) × (16-b Audio Spuren) × (2 Audio Kanäle für Stereo) =
 1.4 Mb/s (0.175 MB/s)
- Kompression reduziert die Bandbreitenansprüche erheblich
- Latenzanforderungen
 - Wie empfindlich sind Augen/Ohren bei Variationen in Audio und Video Raten?
 - Wie stellt man konstante Bereitstellungsraten sicher?
 - Wie wichtig ist es, Audio und Video Übertragungen zu synchronisieren?
 - 15 20 ms früher bis 30 40 ms später tolerierbar

- RAID = Redundant Array of Inexpensive (Independent) Disks
 - Anordnung von Festplatten um Leistung und Zuverlässigkeit zu erhöhen
 - Verwendet mehrere kleine Festplatten anstatt einer großen
 - Durch mehrere Lese-/Schreibköpfe gleichzeitig lesen/schreiben
 - Zusätzliche Festplatte(n) für Redundanz
- Es gibt mehrere RAID-Phasen (RAID levels)

- Keine Redundanz ("AID"?)
 - Mit steigender Festplattenanzahl höhere Ausfallwahrscheinlichkeit
- Leistungssteigerung durch Verteilen von Daten auf mehrere Festplatten (Striping)
 - Paralleler Zugriff auf alle Festplatten
- Beispiel:
 - Datei 1: 6 Blöcke; Datei 2: 4 Blöcke; Datei 3: 1 Block; Datei 4: 3 Blöcke

Datei 1 (Blk 1,5) Datei 2 (Blk 3) Datei 4 (Blk 2)

Datei 1 (Blk 2,6) Datei 2 (Blk 4) Datei 4 (Blk 3)

Datei 1 (Blk 3) Datei 2 (Blk 1) Datei 3

Datei 1 (Blk 4) Datei 2 (Blk 2) Datei 4 (Blk 1)

- Spiegeln (Mirroring)
 - N + N Festplatten, Daten werden repliziert
 - Daten werden sowohl auf Festplatte als "Spiegelfestplatte" geschrieben
 - Fällt eine aus wird von der anderen gelesen

- Fehler erkennender und korrigierender Code (Error correcting Code, ECC)
 - N + E Festplatten (z.B., 10 + 4)
 - Für jede N-Bit Bitfolge wird E-Bit ECC erzeugt
 - Einzelne Bits einer (N+E)-Bit Bitfolge werden über einzelne Platten aufgeteilt
 - Zu komplex, wird nicht länger verwendet

Summe + Parität immer gerade

- Bitweise verschränkte Parität
- Für jede Schutzgruppe von N Platten eine redundante Platte
 - Redundante Festplatte speichert Paritäten
 - 0 wenn Bitsumme gerade (0101 0)
 - 1 wenn Bitsumme ungerade (1011 1)
 - Parität ist XOR der Bits
 - Block lesen: Lese von allen Festplatten
 - Block schreiben: Lese von allen Festplatten um neue Parität zu erstellen und aktualisiere alle Festplatten
 - Bei Ausfall: rekonstruiere fehlende Daten anhand der Parität

- Blockweise verschränkte Parität anstatt Bitweise verschränkt
 - Redundante Festplatte speichert Parität für eine Gruppe von Blöcken
 - Block lesen: Lese von der Festplatte des benötigten Blocks
 - Block schreiben:
 - Lese von Festplatte mit modifiziertem Block und Paritäten-Festplatte
 - Berechne neue Parität, aktualisiere Daten- und Paritäten-Festplatte
 - Bei Ausfall: benutze Parität zur Rekonstruktion der Daten
 - Schneller als RAID 3 bei kleinen Schreibzugriffen (schreibe einzelnen Block)

Kleine Schreibzugriffe bei RAID 3 vs. RAID 4

Neue Daten für D1 RAID 4 kleiner Schreibzugriff:

Verteilte blockweise verschränkte Parität

- Wie RAID 4, aber Paritätenblöcke sind über Festplatten verteilt
 - Verhindert, dass Paritätenfestplatte Engpass wird
 - Einige kleine Schreibzugriffe können parallel ausgeführt werden

RAID 4 RAID 5

Fazit Festplatten

- Vier Komponente der Festplattenzugriffszeit:
 - Suchzeit: angegeben mit 3 14 ms aber in Wirklichkeit schneller
 - Umdrehungslatenz: 5.6 ms bei 5400 U/min und 2.0 ms bei 15000 U/min
 - Datenrate: 30 80 MB/s
 - Controllerzeit: typischerweise weniger als 0.2 ms
- RAIDS zur Leistungs- und Verfügbarkeitssteigerung
 - RAID 0: keine Redundanz, nur Verteilung
 - RAID 1: Spiegeln
 - RAID 2: Fehler erkennender und korrigierender Code
 - RAID 3: Bitweise verschränkte Parität
 - RAID 4: Blockweise verschränkte Parität
 - RAID 5: Verteilte Blockweise verschränkte Parität ← oft genutzt

Komponenten verbinden

- Verbindungen nötig zwischen CPU, Speicher, Ein-/Ausgabegeräte
- Bus: gemeinsam genutzter Kommunikationskanal
 - Datenübertragung zwischen mehreren Teilnehmern
 - über gemeinsamen Kanal
- Vielseitig: Systeme, die denselben Bus verwenden k\u00f6nnen Peripherieger\u00e4te austauschen
- Kosteneffektiv: einziger Leitungssatz gemeinsam genutzt
- Kann Engpass werden, Leistung durch physikalische Faktoren begrenzt
 - Leitungslänge, Anzahl der Verbindungen
- Alternative: Punkt-zu-Punkt Verbindungen mit Switches
 - Netzwerke

Bus Typen

- Prozessor-Speicher Busse
 - kurz, hohe Geschwindigkeit
 - an das Speichersystem angepasst
- Ein-/Ausgabebussen
 - Länger, erlauben mehrere angeschlossene Geräte
 - Nach Standards zur Kompatibilitätssicherung entworfen
 - Mit Prozessor-Speicher-Bus über eine Brücke (Bridge) verbunden

Synchrone und asynchrone Busse

Synchroner Bus

- getaktet
- Kommunikationsprotokoll einfach und schnell. Z. B. Lesebefehl und Adresse im 1. Taktzyklus, Speicher antwortet im 5.
- jedes Gerät muss mit derselben Taktrate arbeiten
- müssen kurz sein, Probleme mit Taktabweichung (clock skew)

Asynchroner Bus

- nicht getaktet
- unterstutz große Vielfalt an Geräten, kann länger sein
- braucht Handshake-Protokoll: Folge von Schritten um Übertragungen zu koordinieren

Bus Leitungen

- Datenleitung
 - Befördert Adressen und Daten
- Steuerleitungen:
 - ReadReq (Leseanforderung): signalisiert Anforderung zum Lesen vom Speicher
 - DataRdy (Daten bereit): zeigt an, dass Daten/Adresse auf Datenleitung verfügbar sind
 - Daten werden gleichzeitig auf die Datenleitung gelegt
 - Ack (Bestätigung): bestätigt Leseanforderung oder Daten-bereit-Meldung der anderen Seite

Asynchrones Bus Handshake-Protokoll

Ein-/Ausgabegerät signalisiert Anforderung durch erhöhen von ReadReq und Adresse auf Datenleitung zu legen

- 1. Speicher sieht ReadReq=high, liest Addr von Datenleitung und setzt Ack=high
- 2. EA-Gerät sieht Ack=high und gibt ReadReq und Datenleitung frei
- 3. Speicher sieht ReadReq=low und setzt Ack=low
- 4. Speicher platziert Daten auf Datenleitung und setzt DataRdy=high
- 5. EA-Gerät sieht DataRdy=high, liest Daten und setzt Ack=high
- 6. Speicher sieht Ack=high, gibt Datenleitungen frei und setzt DataRdy=low
- 7. EA-Gerät sieht DataRdy=low und setzt Ack=low

Beispiele für Ein-/Ausgabebusse

	Firewire	USB 2.0	PCI Express	Serial ATA	Serial Attached SCSI
Anwendung	Extern	Extern	Intern	Intern	Extern
Max. Geräteanzahl	63	127	1	1	4
Datenbusbreite	4	2	2/lane	4	4
Max. Bandbreite	50MB/s oder 100MB/s	0.2MB/s, 1.5MB/s, oder 60MB/s	250MB/s/lane 1×, 2×, 4×, 8×, 16×, 32×	300MB/s	300MB/s
Während Betrieb Anschließbar?	Ja	Ja	Abh. vom Gerät	Ja	Ja
Max. Buslänge	4.5m	5m	0.5m	1m	8m
Standardname	IEEE 1394	USB Implementer s Forum	PCI-SIG	SATA-IO	INCITS TC T10

Typisches Ein-/Ausgabesystem eines x86 PCs

Schnittstellen

- Ein-/Ausgabe vom Betriebssystem koordiniert
 - Versch. Programmen teilen sich Ein-/Ausgaberessourcen
 - Benötigt Absicherung und Planung
 - Ein-/Ausgabe verursacht asynchrone Interrupts
 - Interrupthandler (Unterbrechungsbehandlung)
 - Ein-/Ausgabeprogrammierung ist kniffelig
 - Betriebssystem bietet Programmen Abstraktionen an

Kommunikation zw. Ein-/Ausgabegeräten und Prozessor

Befehle an Ein-/Ausgabegeräte übermitteln:

- Speicherabgebildete Ein-/Ausgabe (memory-mapped I/O)
 - Teile des Adressraums werden bestimmten Ein-/Ausgabegeräten zugeordnet
 - Lese- und Schreibbefehle werden dort als Befehle für das Ein-/Ausgabegerät interpretiert
 - Nur Betriebssystem kann im Adressraum des Ein-/Ausgabegeräts lesen und schreiben
- Spezielle Ein-/Ausgabe-Befehle
 - Separate Befehle zum Zugriff auf Register des Gerätes
 - Können nur im Kernel Mode ausgeführt werden
 - Beispiel: x86

Kommunikation zw. Ein-/Ausgabegeräten und Prozessor

Kommunikation mit dem Prozessor:

- Polling: regelmäßiges prüfen der Ein-/Ausgabe Status-Register
 - Wenn Gerät bereit, Operation ausführen. Bei einem Fehler Fehlerbehandlung starten
 - Häufig in kleinen Eingebetteten Systemen mit geringer Leistung(vorhersehbares Timing, geringe Hardwarekosten)
 - Aber: Verschwendet CPU-Zyklen
- Interrupt-gesteuerte Ein-/Ausgabe (Interrupt-driven I/O): Ein-/Ausgabe-Controller unterbricht Prozessor, wenn es Aufmerksamkeit benötigt
 - Prozessor stoppt aktuelle Prozesse und startet Interrupt Handler
 - Muss das unterbrechende Gerät identifizieren können
 - Es kann verschiedene Interrupt-Prioritäten geben
 - Prozessor benötigt kein Polling für Ein-/Ausgabeereignisse

Interrupt-gesteuerte Ein-/Ausgabe

Datenaustausch zwischen Gerät und Speicher

- Polling und Interrupt-gesteuerte Ein-/Ausgabe
 - CPU überträgt Daten zwischen Speicher und Datenregistern des Ein-/Ausgabegerätes
 - Für Geräte mit geringer Leistung akzeptabel (z.B. Tastatur) aber zu zeitaufwändig für Geräte mit hoher Bandbreite (z.B. Festplatten)
- Direkter Speicherzugriff (Direct memory access, DMA)
 - Prozessor stellt Startadresse der Daten im Speicher bereit
 - Ein-/Ausgabe-DMA-Controller überträgt Daten selbstständig von und zum Speicher
 - Controller sendet Interrupt bei Fertigstellung oder einem Fehler
 - Aber: CPU und DMA konkurrieren um Bus-/Speicher-Bandbreite

Zusammenspiel von Cache und DMA

- DMA schreibt Datenblock in den Speicher, der auch im Cache ist
 - Kopie im Cache ist veraltet (stale)
- DMA liest Block aus Speicher, während neuerer Wert im Rückschreiben-Cache:
 - DMA liest veraltete Daten
- Kohärenz der Daten muss gesichert werden
 - Blöcke aus Cache werfen, wenn sie vom DMA benutzt werden
 - Cache snooping: auf dem Speicherbus lauschen, ob gecachte Daten gelesen oder geschrieben werden
 - Lesen: liefere Block aus dem Cache
 - Schreiben: Cache Block ungültig machen
 - Auch in Mehrkernprozessoren benutzt
 - Benutze Speicherbereiche für Ein-/Ausgabe, die nicht gecached werden

Entwurf eines Ein-/Ausgabe-Systems

- Finde die Schwachstelle im Ein-/Ausgabe-System –
 Komponente, die den Entwurf beschränkt
 - Prozessor- und Speicher-System?
 - Verbindungeinheit (z.B. Bus)?
 - Ein-/Ausgabe-Controller?
 - Ein-/Ausgabegeräte selbst?
- Gestalte die Schwachstelle um, sodass Bandbreite- und Latenzanforderungen erfüllt werden
- Bestimme Anforderungen für die anderen Komponenten und gestalte sie um, um Bandbreite- und Latenzanforderungen zu unterstützen

Beispiel Entwurf eines Ein-/Ausgabe-Systems

- Belastung: 64KB Festplattenleseoperationen
 - Jede EA-Operation benötigt 200 000 Anwendungs- und 100 000 Betriebssystembefehle
- Prozessor: 3 x 109 Befehle/s
- Speicher-Ein-/Ausgabe-Bus: 1000 MB/s
- SCSI-Controller mit:
 - DMA-Übertragungsrate von 320 MB/s
 - Bis zu 7 Festplatten pro Controller
- Festplatten:
 - Lese-/Schreib-Bandbreite: 75 MB/s
 - Durchschnittl. Suchzeit + Umdrehungslatenz: 6 ms
- Was ist maximal erreichbare Ein-/Ausgabe-Rate (EA-Ops/s) und welche Anzahl von Festplatten und SCSI-Controllern ist nötig um diese zu erreichen?

Beispiel Entwurf eines Ein-/Ausgabe-Systems (II)

- Belastung: 64KB Festplattenleseoperationen
 - Jede EA-Op benötigt 200 000 Anwendungs- und 100 000 Betriebssystembefehle
- Prozessor: 3 x 10⁹ Befehle/s

EA-Ops/s:
$$\frac{3\times10^9}{(200+100)\times10^3} = 10,000$$

• Speicher-Ein-/Ausgabe-Bus: 1000 MB/s

■ EA-Ops/s:
$$\frac{1000 \times 10^6}{64 \times 10^3} = 15,625$$

Also Prozessor und nicht Bus ist Engpass.

Beispiel Entwurf eines Ein-/Ausgabe-Systems (III)

Beispiel Entwurf eines Ein-/Ausgabe-Systems (IV)

- Festplatten:
 - Lese-/ Schreib-Bandbreite: 75 MB/s
 - Durchschnittl. Suchzeit + Umdrehungslatenz: 6 ms
- Zeit pro EA-Op auf Festplatte = Suchzeit + Umdrehungszeit + Transferzeit = 6ms + 64KB/(75MB/s) = 6.9ms
- ➤ Jede Festplatte kann 1 EA-Op/6.9ms durchführen = 146 EA-Ops/s
- ► Um CPU auszulasten sind 10 000 EA-Ops/s nötig → 10,000/146 = 69 Platten
- SCSI-Controller:
 - Bis zu 7 Festplatten pro Controller
 - DMA-Übertragungsrate von 320 MB/s
- Lasten wir den SCSI-Bus mit 7 Festplatten pro Controller aus?
- Nein, da Festplattenübertragungsrate = Datengröße/Übertragungszeit = 64KB/6.9ms = 9.56 MB/s
- ➤ Lasten wir den Speicher-Ein-/Ausg.-Bus mit 69/7 = 10 SCSI-Busse und -Controllern aus?
- Nein, da 69 x 9.56 MB/s = 660 MB/s < 1000 MB/s</p>

Fazit

- Maße für Ein-/Ausgabe-Leistung
 - Durchsatz (Bandbreite), Reaktionszeit (Latenz)
 - Verlässlichkeit und Kosten
- RAID: verbessert Leistung und Verlässlichkeit
- Busse werden benutzt um CPU, Speicher und Ein-/Ausgabe-Geräte zu verbinden
 - Polling, Interrupts, DMA
- Vergiss Amdahl nicht:
 - Vernachlässige nicht die Ein-/Ausgabeleistung da Parallelisierung die Rechenleistung erhöht.
 - Beispiel:
 - Benchmark benötigt 90s CPUZeit, 10s Ein-/Ausgabe-Zeit
 - Doppelte CPU-Anzahl/2 Jahre, Ein-/Ausgabe unverändert
 - ➤ Nach 6 Jahren: 11s CPU-Zeit, 10s Ein-/Ausgabe-Zeit (47%)

01.07.2014 Ben Juurlink 45