MA 527

Lecture Notes (section 8.4)

Dr. Moongyu Park

8.4. Eigenbases and diagonalization

(Ex)
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$$
 $\lambda = -1$, 5

 $\lambda = -1$: $\lambda = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$: linearly independent.

 $\lambda = 5$: $\lambda = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$: a basis of \mathbb{R}^2 .

an eigenbasis of \mathbb{R}^2 .

Set
$$P = \begin{bmatrix} 1 & 1 \\ -1 & 2 \end{bmatrix}$$
. $P' = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$
 $P'AP = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 10 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 1 & 10 \end{bmatrix}$
 $= \begin{bmatrix} 1 & 2 & -1 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 5 \\ 1 & 10 \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ 3 & 0 & 15 \end{bmatrix}$
 $= \begin{bmatrix} -1 & 0 \\ 0 & 5 \end{bmatrix}$
 $\therefore P'AP = diag(-1, 5): diagonalization.$

```
Q. Is every matrix diagonalizable? No.
Det A: an nxn matrix with eigenvalues
        1, 12, -, In and corresponding
         eigenvectors X1, X2, ..., Xn: AXi = AiXi
(1) If [X1, X2, ", Xn] is a basis of R",
then it is called an eigenbasis of 1R".
(3) A has an eigenbasis of 1R"
   => A is called diagonalizable.
```

Q: Which matrix is diagonalizable? (E_X) (1) $A = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix} : \lambda = 1, 1$ $|A-\lambda I| = |I-\lambda| 0 = (I-\lambda)^2 = 0$ Multiplicity. >=1: Solve (A-1-I)X=0 X = [)(3) = X(3 [0] : X(= [0]] A is not diagonalizable.

(H) Anxo has n distinct eigenvalues O A has an eigenbasis (X, ..., Xn) i.e. A is diagonalizable. $(Ex) A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} A - \lambda I = \begin{bmatrix} (1-\lambda) & 0 & 2 \\ 0 & 1-\lambda & 0 \\ 0 & 0 & 3-\lambda \end{bmatrix} A - 3I = \begin{bmatrix} -2 & 0 & 2 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ $|A-\lambda I| = (1-\lambda)^2(3-\lambda) = 0: \lambda = 1, 3.$

Thm

$$X_2 = 0$$
. $X_3 = 0$.
 $X = \begin{bmatrix} X_1 \\ 0 \end{bmatrix} = X_1, \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$
 $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: an eigenbasis of $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
 $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: an eigenbasis of $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
 $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: an eigenbasis of $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
 $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: an eigenbasis of $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
 $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: an eigenbasis of $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
 $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: an eigenbasis of $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.
 $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$: an eigenbasis of $X_3 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$.

```
(Proof) AXi = 1i Xi, i=1,2, ..., n.
   AP = A[X_1 X_2 \cdots X_n] = [\lambda_1 X_1 \cdots \lambda_n X_n]
 AP=P[1,0]=PD
PAP = D.
(Similar matrices)
Def Boxon is called similar to a matrix
      Anxn if B = QAQ for some nonsingular matrix Q.
```

Q:
$$B = Q^T A Q$$
:

A, B have the same eigenvalues?

 $\det(B-\lambda I) = \det(Q^T A Q - \lambda Q^T I Q)$.

 $= \det(Q^T (A-\lambda I)Q) = \det(A-\lambda I) \det(A-\lambda I) \det(A-\lambda I) = 0$

Thin 3

(1) If B is similar to A (: $B = Q^T A Q$),

B has the same eigenvalues as A.

(2) B | B = Q'AQ

$$\lambda$$
, X: an eigenvalue and an eigenvector of A s.t. AX= λ X
O $y = Q'X$ is an eigenvector of B
i.e. $By = \lambda y$
(Proof (2)) $By = (Q'AQ)(Q'X)$
 $= Q'AX = Q'\lambda X$
 $= \lambda y$.

(Ex)
$$A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$$
 $Q = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$
(I) $Q^{\dagger} = \frac{1}{1} \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix}$
 $B = Q^{\dagger} A Q = \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$
 $= \begin{bmatrix} 2 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 0 & -1 \end{bmatrix}$
(2) $A = ?$ $A = 1$; (A-I) = $\begin{bmatrix} 0 & 0 \\ 2 & -2 \end{bmatrix}$

$$2X_{1}-2X_{2}\geq0: X_{1}\geq X_{2}$$

$$X=\begin{bmatrix}X_{1}\\X_{2}\end{bmatrix}=X_{2}\begin{bmatrix}1\\1\end{bmatrix}: X_{1}\geq\begin{bmatrix}1\\1\end{bmatrix}$$

$$X=\begin{bmatrix}1\\1\\2\\0\end{bmatrix}X=\begin{bmatrix}0\\1\\2\\0\end{bmatrix}X=\begin{bmatrix}0\\1\\1\end{bmatrix}: X_{2}\geq\begin{bmatrix}0\\1\\1\end{bmatrix}: X_{2}\geq\begin{bmatrix}0\\1\\1\end{bmatrix}$$

$$X=\begin{bmatrix}0\\1\\1\\1\end{bmatrix}=\begin{bmatrix}0\\1\\1\end{bmatrix}=\begin{bmatrix}0\\1\\1\end{bmatrix}$$

$$X=\begin{bmatrix}0\\1\\1\\1\end{bmatrix}=\begin{bmatrix}0\\1\\1\\1\end{bmatrix}=\begin{bmatrix}0\\1\\1\\1\end{bmatrix}$$
* The spectrum of A: $\begin{bmatrix}X_{1}\\X_{2}\\1\end{bmatrix}=\begin{bmatrix}0\\1\\1\\1\end{bmatrix}=\begin{bmatrix}0\\1\\1\\1\end{bmatrix}$
the set of eigenvalues.

Q: AT = A: symmetric A has real eigenvalues. A, "; In
X1, -, Xn: eigenvectors of A?
Thm2 (Spectral Theorem).
DA: an nxn symmetric real matrix
© A has an orthogonal eigen basis of 1R ⁿ .
Q: If A is symmetric, then is A diagonalizable? Yes"