UNIVERSITY OF TORONTO

FACULTY OF APPLIED SCIENCE AND ENGINEERING

FINAL EXAMINATION, DECEMBER 2001

MIE360H1F - SYSTEMS MODELING AND SIMULATION

Exam Type: B

Examiner: D.M. Frances

Note: A separate Statistical Table sheet is provided for your use.

- 1. Use the random value of 0.32158 to generate
 - a) a random age, equally likely over the range 22 to 65.
 - b) a random sum from rolling a pair of dice.
 - c) a random number that is exponentially distributed with $\lambda = 3$
 - d) a random number that is geometrically distributed with p = 0.4
- 20 2. Verification and validation are two major activities in developing simulation models.
 - a) Describe model verification, including three methods used to verify a model.
 - b) Describe model validation, including three methods used to validate a model.
 - c) What is meant by trace driven simulation, and what is its main use?
- 3. You have developed a simulation model to study the traffic on a certain stretch of Highway 401. You have collected the following data on the number of accidents over this stretch over the last 8 months: 2, 4, 6, 7, 5, 8, 3, 1. You are about to fit an input distribution, but you suspect the monthly data may be auto-correlated in some way, and perhaps not collected consistently over time.
 - a) Explain why it is important there be no auto-correlation in the data.
 - b) Explain why it is important that the data be collected in a consistent manner.
 - c) Use scatter diagrams to attempt detecting any possible auto-correlation.
 - d) Use a Kruskal-Wallis test to detect if the first half of the values came from the same population than the last four values.
- 4. Assume you have developed a simulation for an application to determine the long term average. After running 5 replications (results shown below) of the simulation, and removing any start-up effects, you obtain 5 observations for each replication. Determine the expected number of additional replications you require to have 90% confidence that you have determined the long term average within ±2%.

R1: 5, 4, 8, 5, 8

R2: 3, 8, 6, 14, 4

R3: 8, 6, 2, 5, 4

R4: 12, 10, 6, 2, 5

R5: 6, 13, 12, 13, 11

- 5. Assume you have developed a simulation for an application to determine the long term average. You run three replications for the base case scenario A, and three replications for an improved scenario B, which you hope will reduce the long term average. The results are shown below.
 - a. Are you ready to conclude that B is an improvement over A with 90% confidence?
 - b. Propose a number of additional replications for A and B that will allow you to make conclusions about their relative merit with 99% confidence.

A1: 12, 10, 6, 2, 5, 9 A2: 6, 13, 22, 13, 9, 1 A3: 5, 4, 8, 5, 8, 16 B1: 3, 8, 6, 14, 3, 5 B2: 8, 6, 2, 5, 2, 4 B3: 5, 10, 3, 5, 6

Formulas

Exponential Pdf(x) = $\lambda e^{-\lambda x}$, x>0

Exponential Distribution $F(x) = 1 - e^{-\lambda x}$, x>0

Geometric Pdf(x) = $p(1-p)^x$, x=0,1,2,...

Geometric Distribution $F(x) = 1 - (1-p)^{x+1}$, x=0,1,2,...

Kruskal-Wallis Test Statistic: $T = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{1}{n_i} \left[\sum_{j=1}^{n_i} R(X_{ij}) \right]^2 - 3(n+1)$

TABLE T.2 Critical points $\chi^2_{\nu,\gamma}$ for the chi-square distribution with ν df $\gamma = P(Y_{\nu} \le \chi^2_{\nu,\gamma})$ where Y_{ν} has a chi-square distribution with ν df; for large ν , use the approximation for $\chi^2_{\nu,\gamma}$ in Sec. 7.4.1

-	***			γ		——————————————————————————————————————	
ν	0.250	0.500	0.750	0.900	0.950	0.975	0.990
1	0.102	0.455	1.323	2.706	3.841	5.024	6.635
2	0.575	1.386	2.773	4.605	5. 9 91	7.378	9.210
3	1.213	2.366	4.108	6.251	7.815	9.348	11.345
4	1.923	3.357	5.385	7.779	9.488	11.143	13.277
5	2.675	4.351	6.626	9.236	11.070	12.833	15.086
6	3.455	5.348	7.841	10.645	12.592	14.449	16.812
7	4.255	6.346	9.037	12.017	14.067	16.013	18.475
8	5.071	7.344	10.219	13.362	15.507	17.535	20.090
9	5.899	8.343	11.389	14.684	16.919	19.023	21.666
10	6.737	9.342	12.549	15.987	18.307	20.483	23.209
11	7.584	10.341	13.701	17.275	19.675	21.920	24.725
12	8.438	11.340	14.845	18.549	21.026	23.337	26.217
13	9.299	12.340	15.984	19.812	22.362	24.736	27.688
14	10.165	13.339	17.117	21.064	23.685	26.119	29.141
15	11.037	14.339	18.245	22.307	24.996	27.488	30.578
16	11.912	15.338	19.369	23.542	26.296	28.845	32.000
17	12.792	16.338	20.489	24.769	27.587	30.191	33.409
18	13.675	17.338	21.605	25.989	28.869	31.526	34.805
19	14.562	18.338	22.718	27.204	30.144	32.852	36.191
20	15.452	19.337	23.828	28.412	31.410	34.170	37.566
21	16.344	20.337	24.935	29.615	32.671	35.479	38.932
22	17.240	21.337	26.039	30.813	33.924	36.781	40.289
23	18.137	22.337	27.141	32.007	35.172	38.076	41.638
24	19.037	23.337	28.241	33.196	36.415	39.364	42.980
25	19.939	24.337	29.339	34.382	37.652	40.646	44.314
26	20.843	25.336	30.435	35.563	38.885	41.923	45.642
27	21.749	26.336	31.528	36.741	40.113	43.195	46.963
28	22.657	27.336	32.620	37.916	41.337	44.461	48.278
29	23.567	28.336	33.711	39.087	42.557	45.722	49.588
30	24.478	29.336	34.800	40.256	43.773	46.979	50.892
40	33.660	39.335	45.616	51.805	55.758	59.342	63.691
50	42.942	49.335	56.334	63.167	67.505	71.420	76.154
75	66.417	74.334	82.858	91.061	96.217	100.839	106.393
100	90.133	99.334	109.141	118.498	124.342	129.561	135.807

Critical points $t_{\nu,\gamma}$ for the t distribution with ν df, and z_{γ} for the standard normal distribution $\gamma = P(T_{\nu} \leq t_{\nu,\gamma})$, where T_{ν} is a random variable having the t distribution with ν df; the last row, where $\nu = \infty$, gives the normal critical points satisfying $\gamma = P(Z \leq z_{\gamma})$, where Z is a standard normal random variable TABLE T.1

•								~								
٦	0.6000	0.7000	0.8000	0.906.0	0.9333	0.9500	0.9600	0.9667	0.9750	0.9800	0.9833	0.9875	0.9900	0.9917	0.9938	0.9950
	0.325	0.727	1.376	3.078	4.702	6.314	7.916	9.524	12.706	15.895	19:043	25.452	31.821	38.342	51.334	63.657
7	0.289	0.617	1.061	1.886	2.456	2.920	3.320	3.679	4.303	4.849	5.334	6.205	6.965	7.665	8.897	9.925
'n	0.277	0.584	0.978	1.638	2.045	2.353	2.605	2.823	3.182	3,482	3.738	4.177	4.541	798.7	5.408	5.841
-1	0.271	0.569	0.941	1.533	1.879	2.132	2.333	2.502	2.776	2.999	3.184	3,495	3.747	3.966	4.325	4.604
2	0.267	0.559	0.920	1.476	1.790	2.015	2.191	2.337	2.571	2.757	2.910	3.163	3.365	3.538	3.818	4.032
9	0.265	0.553	906:0	1440	1,735	1.943	2 <u>.5</u>	2.237	2.447	2.612	2.748	5.969	3.143	3.291	3.528	3.707
۲	0.263	0.549	968.0	1.415	8691	1.895	2.046	2.170	2.365	2.517	2.640	2.841	2.998	3.130	3.341	3.499
œ	0.262	0.546	688.0	1.397	1.670	1.860	2.004	2.122	2.306	2.449	2.565	2.752	2.896	3.018	3.211	3,355
o,	0.261	0.543	0.883	1.383	1.650	1.833	1.973	2.086	2.262	2.398	2.508	2.685	2.821	2.936	3.116	3.250
10	0.260	0.542	0.879	1.372	1.634	1.812	876.1	2.058	2.228	2.359	2.465	2.634	2.764	2.872	3.043	3.169
=	0.260	0.540	0.876	1.363	1.621	1.796	1.928	2.036	2.201	2.328	2.430	2.593	2.718	2.822	2.985	3.106
15	0.259	0.539	0.873	1.356	1.610	1.782	1.912	2.017	2.179	2.303	2.402	2.560	2.681	2.782	2.939	3.055
13	0.259	0.538	0.870	1.350	109.1	1.77.1	668.1	2.002	2.160	2.282	2.379	2.533	2.650	2.748	2.900	3.012
4	0.258	0.537	0.868	1.345	1.593	1.761	1.887	1.989	2.145	2.264	2.359	2.510	2.624	2.720	2.868	2.977
15	0.258	0.536	998.0	1.341	1.587	1.753	1.878	1.978	2.131	2.249	2.342	2.490	2.602	2.696	2.841	2.947
91	0.258	0.535	0.865	1.337	1.581	1.746	1.869	1.963	2.120	2.235	2.327	2.473	2.583	2.675	2.817	2.921
11	0.257	0.534	0.863	1.333	1.576	1.740	1.862	0961	2.110	2.224	2.315	2.458	2.567	2.657	2.796	2.898
œ 	0.257	0.534	0.862	1.330	1.572	1,734	1.855	1.953	2.101	2.214	2.303	2.445	2.552	2.641	2.778	2.878
61	0.257	0.533	0.861	1.328	1.568	1.729	058.1	1.946	2.093	2.205	2.293	2,433	2.539	2.627	2.762	2.861
ಣ	0.257	0.533	0.860	1.325	1.564	1.725	1.844	1.940	2.086	2.197	2.285	2.423	2.528	2.614	2.748	2.84.5
71	0.257	0.532	0.859	1.323	1.561	1.721	1.840	1.935	2.080	2.189	2.277	2.4 4	2.518	2.603	2.735	2.831
22	0.256	0.532	0.858	1.321	1.558	1.717	1.835	1.930	2.074	2.183	2.269	2.405	2.508	2.593	2.724	2.819
23	0.256	0.532	0.858	616.1	1.556	1.714	1.832	1.926	2.069	2.177	2.263	2.398	2.500	2.584	2.713	2.807
77	0.256	0.531	0.857	1.318	1.553	117.1	1.828	1.922	2.064	2.172	2.257	2.391	2.492	2.575	2.704	2.797
22	0.256	0.531	0.856	1.316	1.551	1.708	1.825	1.918	2.060	2.167	2.251	2.385	2.485	2.568	2.695	2.787
56	0.256	0.531	0.856	1.315	1.549	1.706	1.822	1915	2.056	2.162	2.246	2.379	2.479	2.561	2.687	2.779
13	0.256	0.531	0.855	1.314	1.547	1.703	1.819	1.912	2.052	2,158	2.242	2.373	2,473	2.554	2.680	177.2
78	0.256	0.530	0.855	1.313	1.546	1.701	1.817	1.909	2.048	2.154	2.237	2.368	2.467	2.548	2.673	2.763
53	0.256	0.530	0.854	1.311	1.544	1.699	1.814	1.906	2.045	2.150	2.233	2.364	2.462	2.543	2.667	2.756
9	0.256	0.530	0.854	1.310	1.543	1.697	1.812	1.90	2.042	2.147	2.230	2.360	2,457	2.537	2.661	2.750
04	0.255	0.529	0.851	1.303	1.532	1.684	1.796	1.886	2.021	2.123	2.203	2,329	2.423	2.501	2.619	2.704
20	0.255	0.528	0.849	1.299	1.526	1.676	1.787	1.875	2.009	5.109	2.188	2.311	2.403	2.479	2.594	2.678
75	0.254	0.527	0.846	1.293	1.517	1.665	1.775	1.861	1.992	2.050	2.167	2.287	2.377	2,450	2.562	2.643
8	0.254	0.526	0.845	1.290	1.513	1.660	692.1	1.855	1.984	2.081	2.157	2.276	2.364	2.436	2.547	2.626
8	0.253	0.524	0.842	1.282	1.501	1.645	1,751	1834	1.960	2.054	2.127	2.241	2.326	2.395	2.501	2.576