Energy Depletion Attacks on Wireless Sensor Networks

FARZANA.T

12MCS1004 Computer Science & Engineering Guide: Mrs.Aswathy babu

December 19, 2013

Outline

- Introduction
- Literature survey
- Problem Definition
- Conclusion
- References

Wireless Sensor Network

- Consists of a number of sensors spread across a geographical area.
- Each sensor has wireless communication capability
- Has some level of intelligence for signal processing and networking of the data

Wireless Sensor Network cntd....

- Sensor node has restricted power supplies, low bandwidth, small memory and limited energy.
- Leads to very demanding environment to provide security.

Energy Depletion Attack

 Attacker would send data to drain a node battery and reduce network bandwidth.

Outline

- Introduction
- Literature survey
- Problem Definition
- Conclusion
- References

Literature survey

- Wireless Sensor Network Denial of Sleep attack[1]
- Intrusion Tolerant routing in Wireless Sensor Network[2]
- Cross-Layer Design for Energy Conservation in Wireless Sensor Network[3]
- Energy Efficient Opportunistic Routing in Wireless Sensor Network[4]
- Sleep Deprivation Attack Detection in Wireless Sensor Network[5]
- Vampire Attack: Draining Life from Wireless Sensor Network[6]

Wireless Sensor Network Denial of Sleep attack[1]

- A subset of the denial of service class of network attacks targets on MAC layer.
- Penetrates a device's power management system to reduce the opportunities to transition into lower power states.
- Avoided by the introduction of G-MAC protocol.

Intrusion Tolerant routing in Wireless Sensor Network[2]

- Intrusion tolerant secure WSN.
- Single compromised node can disrupt only a localised portion of the network.
- Introduces a new protocol INSENS to achieve intrusion tolerance.
- INSENS: INtrusion-tolerant routing protocol for wireless SEnsor NetworkS.

Cross-Layer Design for Energy Conservation in Wireless Sensor Network[3]

- Considers Routing layer and MAC layer jointly.
- Network layer:
 Sending the traffic generated by sensor node through multiple paths instead of forwarding always through same path.
- MAC layer:
 Adjust retry limit of retransmission over each wireless link different limits for different links.

Energy Efficient Opportunistic Routing in Wireless Sensor Network[4]

- Opportunistic routing is based on broadcast transmission of data packets.
- Receptors need to be coordinated in order to avoid duplicated transmission.
- Achieved by ordering the forwarding node according to some criteria.
- Here nodes in the forwarder list are prioritized.
- Lower priority forwarder will discard the packet if packet has been forwarded by a higher priority forwarder.

Sleep Deprivation Attack Detection in Wireless Sensor Network[5]

- Attack prevents the nodes from going in to sleep mode.
- Results depleting the battery and reducing the sensor lifetime from years to days.
- Proposes a hierarchical model to detect sensor nodes affected by this attack.
- Uses cluster based mechanism.

- Composition and transmission of a message that causes more energy to be consumed by the network.
- Resource depletion attacks at the routing protocol layer, which permanently disable networks by quickly draining node's battery power.
- All protocols are susceptible to Vampire attacks.
- Do not disrupt immediate availability, but rather work over time to entirely disable a network.
- 2 vampire attacks: Stretch and carousel

Carousel attack

- adversary composes packets with purposely introduced routing loops
- sends packets in circles
- allowing a single packet to repeatedly traverse the same set of nodes

Stretch attack

- An adversary constructs artificially long routes, potentially traversing every node in the network
- Increases packet path lengths, causing packets to be processed by a number of nodes

Figure: Stretch attack

- Employs vampire attack on existing routing protocol PLGP.
- PLGP: a clean-slate secure sensor network routing protocol by B.Prano, M.Luk, E.Gustad, A.Perrig.
- PLGP is vulnerable to Vampire attacks.
- Consists of a topology discovery phase, followed by a packet forwarding phase.

Discovery phase

 Deterministically organizes nodes into a tree that will later be used as an addressing scheme

Packet forwarding

 Node determines the next hop by finding the most significant bit of its address that differs from the message originators address.

- In PLGP, forwarding nodes do not know what path a packet took.
- Allowing adversaries to divert packets to any part of the network.
- Makes PLGP vulnerable to Vampire attacks

Provable Security against Vampire Attacks

- Proposed PLGP with attestations (PLGPa).
- Add a verifiable path history to every PLGP packet.
- PLGPa uses this packet history together with PLGPs tree routing structure.
- Every node can securely verify progress.
- Preventing any significant adversarial influence on the path taken by any packet which traverses at least one honest node.

Function secure_forward_packet (p) $s \leftarrow \text{extract_source_address}(p)$; $a \leftarrow \text{extract_attestation}(p)$; if (not verify_source_sig(p)) or (empty (a) and not is_neighbor (s)) or ($not \ saowf_verify(a)$) then return: /* drop(p) */foreach node in a do $prevnode \leftarrow node$; if (not are_neighbors (node, prevnode)) or (not making_progress (prevnode, node)) then /* drop(p) */return: $c \leftarrow closest_next_node(s)$; $p' \leftarrow \text{saowf_append}(p);$ if is_neighbor(c) then forward(p', c); else forward $(p', next_hop_to_non_neighbor(c))$;

concept

A->B->C->D->E

- $ENC((Msg)_{Prk},4,A)_{PrA}==X \longrightarrow B$
- B \longrightarrow DEC(X)_{PA} ---> ENC(X,3,AB)_{PrB} == Y \longrightarrow C
- C \longrightarrow DEC(Y)_{PB} ---> ENC(Y,2,ABC)_{PrC} == Z \longrightarrow D
- D \longrightarrow DEC(Z)_{PC} --->ENC(Z,1,ABCD)_{PrD} $\longrightarrow>$ E

Outline

- Introduction
- Literature survey
- Problem Definition
- Conclusion
- References

Problem Definition

- PLGPa includes path attestation increasing the size of every packet,incurring penalties in terms of bandwidth use, and thus radio power.
- Adding extra packet verification requirements for intermediate node increases processor utilization.
- Energy expenditure for cryptographic operations at intermediate hop is much greater than transmit or receive overhead.
- Only packet transmission phase is avoided from vampire attack, route discovery phase is not considered.
- Only PLGP is considered, how the proposed solution works in other routing protocol is not considered.

Outline

- Introduction
- Literature survey
- Problem Definition
- Conclusion
- References

Conclusion

- PLGPa is not vulnerable to Vampire attacks during the forwarding phase
- Overhead is the main problem of this method.
- Can reduce overhead, use single cryptographic function instead of onion encryption.

Outline

- Introduction
- Literature survey
- Problem Definition
- Conclusion
- References

References

- [1] Michael Brownfield, Yatharth Gupta, "Wireless Sensor Network Denial of Sleep Attack", *Proceedings of 2005 IEEE workshop on information assurance, June 2005.*
- [2] Jing Deng, Richard Han, Shivakanth mishra, "INSENS: Intrusion-Tolerant routing in Wireless Sensor Networks", *University of Colorado, Department of computer* science Technical report, June 2006.
- [3] Fatma Bouabdullah, Nizar Bouabdullah,Raouf Bouabdullah "Cross-layer Design for Energy Conservation in Wireless Sensor Networks", *IEEE GLOBECOM 2008,New Orleans,USA,December 2008.*
- [4] Xufei Mao, Shaojie Tang, Xiahua Xu, "Energy efficient Oppurtunistic Routing in Wireless Sensor Network s", IEEE transactions on parellel and distributed systems, VOL. 12, NO. 2, February 2011
- [5] Tapaliana Bhattasali, Rituparna Chaki, Sugata Sanyal "Sleep Deprivation Attack Detection in Wireless Sensor Networks", International journal of computer applications (0975-8887) vol 40- No: 15, February 2012
- [6] Eugene Y. Vasserman, Nicholas Hopper, "Vampire Attacks: Draining Life from Wireless Ad Hoc Sensor Networks", IEEE transactions on mobile computing, VOL. 12, NO. 2, February 2013
- [7] Yazeed Al-Obaisat,Robin Braun, "On Wireless Sensor Networks:

 Architectures,Protocols,Applications and Management", Institute of Information and
 Communication Technologies,May 2004

Thank You