Thin film solar cells

Erik Stensrud Marstein
Department for Solar Energy
Institute for Energy Technology (IFE)

UNIK 4450/9450 - Schedule

30/8 Solar cell fundamentals

6/9 Solar cell efficiency

2 13/9 Semiconductor theory

20/9 Generation

27/9 Recombination and lifetime

4/10 Silicon

20 11/10 Junctions

•• 18/10 Solar cells

25/10 Silicon solar cells I (@IFE)

° 1/11 Silicon solar cells II

• 8/11 Light management

15/11 Alternative solar cells

29/11 Solar modules & systems

• 6/12 Q&A

Oral exam December 12th

Overview

- Thin film deposition
- The effect of microstructure
- Silicon-based thin film solar cells
- Alternative thin film solar cells
 - CIGS and it's relatives
 - CdTe
 - Recent developments

Solar cells anno 2014

Silicon-based solar cells

Silanes

Silicon-based solar cells

Solid, liquid, vapour, gas

Vacuum, fluid, plasma

Substrate condition, reactivity, energy input

Structure, composition, properties

Deposition methods

- Evaporation
 - Thermal evaporation
 - E-beam evaporation
- Sputtering
 - Reactive sputtering
- Pulsed laser deposition
- Chemical vapour deposition (CVD)
 - Plasma-enhanced CVD (PECVD)
 - Metal-organic CVD (MOCVD)
- Molecular beam epitaxy
- Atomic layer deposition/epitaxy
- Printing
 - Screen printing
 - Ink-based printing
- •

- The microstructure of a thin film material is strongly dependent of the deposition conditions!
- Phenomena:
 - Transport
 - Adhesion, bonding, binding
 - Desorption
 - Nucleation
 - •
- Parameters:
 - Concentrations of precursors/source gases
 - Temperature
 - Total gas flow rates
 - Reactant gas flow rates
 - RF power
 - •

...first you take a substrate

Substrate

Epitaxial/crystalline thin films

Crystalline film

Polycrystalline thin films

Columnar growth/polycrystalline films

Polycrystalline film

Amorphous thin films

Amorphous thin film

- Textbook semiconductor physics in its simplest form assumes perfect (i.e. crystalline) semiconductors
- Microstructure effects can include
 - Complete change of overall material properties (a-Si ≠ c-Si)
 - Changed charge carrier mobilities
 - Changed recombination rates
 - Grain boundary effects on transport and recombination
 - Staebler-Wronskij degradation
 - •

Urbach tails

Defect bands

Surfaces and interfaces

- Surfaces and interfaces are likely to contain defects
 - Intrinsic defects: defects due to an interrupted crystal structure
 - Extrinsic defects: e.g. Impurities adsorbed at the interface
- These defects often introduce states in the band gap
- These defects are localized at the interface and can trap charge
 - Will influence potential distribution across interface
 - Will affect band bending across interface

Solar cell technologies

- Homojunction solar cells
 - Crystalline silicon
- Thin film cells
 - Amorphous Si (a-Si:H)
 - Composite semiconductors
 - Cu(In,Ga)Se₂ (CIGS)
 - CdTe
- Heterojunction solar cells
- 3rd generation solar cells
 - Tandem solar cells

Homojunctions

- **Materials**
 - Silicon
 - Compound semiconductors
- Advantages
 - Efficient
 - Relatively cost-efficient
 - Mature technology
- Disadvantage
 - Material consumption

n-type semiconductor

p-type semiconductor

Heterojunctions

- Materials
 - a-Si on Si
 - Most thin film solar cells
 - CdS on CdTe or CIGS
- Advantages
 - Potentially very efficient
- Disadvantages
 - Metallurgical interface

n-type semiconductor

p-type semiconductor

Thin film solar cells

- Materials
 - Si (a-Si, sc-Si)
 - CdTe
 - CIS/CIGS (Cu(In,Ga)Se₂)
- Advantages
 - Low material consumption
 - Potentially cost-effective

Thin film solar cell
Substrate

- Disadvantages
 - Material quality
 - Material issues (In, Cd)
 - Somewhat immature technology

Clever student question:

If deposited materials often are of low quality, why bother with thin film solar cells?

Motivation

- The big challenge for the photovoltaic industry is to make solar electricity cost-competitive
- Currently, substrate-based solar cells made from crystalline silicon dominate the solar cell
 - "First generation solar cells"
 - Strengths: infrastructure, performance, material availability
 - Weaknesses: high material consumption ("thick" substrates, kerf losses), relatively expensive materials, high energy consumption
- Thin film solar cells might reduce costs and energy expenditure due to a significantly lower consumption of expensive materials

... so what is all the fuzz about?

- Dagens næringsliv 27/12 2006:
 - Lars Stolt, Solibro: "Skal sette REC i skyggen" DN 27/12 2006
 - "Current REC solar cells will be out of the competition in 15 years"
 - Technology now in production under Q-modules
- Flexible CIGS submodule reaches 15.9% efficiency
 - April 2010
- Is the silicon era coming to an end?

Worried about the competition?

Q.CELLS

Core Business

- World's second largest cell producer
- Forecast 2006: Production 255 MW_n Sales FUR 525 million
- Strategy: Growth and cost reduction
- Strong focus on R&D/new technologies
- New cell concepts and thin film modules

New Technologies

EverQ GmbH

- String Ribbon technology
 Q-Cells share: 33%

CSG Solar AG

- Thin-film technology: Crystalline Silicon on Glass
 Q-Cells share: 23%

Brilliant 234, GmbH

- Micromorph silicon thin-film technology
 Q-Cells share: 100%

VHF-Technologies SA

- a-Si roll-to-roll on film ("flexcell")
- Q-Cells share: 15 to 51%

Calyxo GmbH

- Thin-film technology
 Q-Cells share: 100%

NewCo GmbH

- Thin-film technology under consideration

Q-Cells

The benefits of thin film solar cells

- Potential for drastic cost reductions for solar electricity
 - Less consumption of expensive materials (~1 µm cell vs ~250 µm cell)
 - Solar cell efficiencies are still increasing both in laboratories and production
 - Integrated production of solar cell modules

- Scribing and creative use of interconnections allow for flexibility in module voltages
- Many available substrates

The benefits of thin film solar cells

- Lower energy payback times
- Good field performance when compared with nominal output

NREL

The challenges of thin film solar cells

- All of the technologies to be presented is faced with one or more of the following challenges:
 - Immature technologies
 - Throughput / deposition rates
 - Short module lifetimes
 - Low availability of esoteric materials
 - In, Ga ...
 - Cadmium usage
 - Typically low module efficiencies compared with Si
 - mc-Si: 15 18%
 - sc-Si: 17 20%
 - "high-end" sc-Si: 20 23%

Material requirements for thin film solar cells

- Strong absorption vital
- Diffusion lengths can be shorter
- Surface passivation can be important
- Interface recombination must be low

Material requirements for thin film solar cells

Substrates/superstrates

Growth direction

Glass

Transparent conductive oxide

Solar cell

Back contact

Laminate

Glass

Silicon-based thin film solar cells

Amorphous silicon thin film

- The most developed of the thin film technologies
- Thin films of a-Si are produced using CVD of silane
 - Usually PECVD or "hot wire" CVD
- Wide selection of substrates
 - Glass, metal sheets, plastics...
- High H content required in order to passivate defects
- Solar cell efficiency is severely degraded during illumination
 - Staebler-Wronski effect

www.uni-solar.com

Amorphous silicon thin film

- Cell design challenges
 - Doping a-Si gives large recombination losses
 - Cells must have a certain thickness in order for sufficient absorption to occur
 - Conventional p-n homojunction structures not suitable
- Good solar cell performance is made by using p-i-n structures or tandem solar cells
 - a-Si and μc-Si or a-SiGe
 - More complex cell fabrication!

Amorphous silicon thin film

- Typical module efficiency
 - ~ 6 8 %
- Record efficiency: 10.2 % (AIST)

www.uni-solar.com

Microcrystalline silicon thin film

- Builds on experience with a-Si solar cells
- Main idea: to combine a-Si advantages with the stability and performance of crystalline Si
 - Best efficiencies

μc-Si: 10%a-Si/uc-Si: 14%

- µc-Si can also replace a-SiGe in a-Si tandem solar cells
 - Use of expensive germane is avoided
 - Must have thick uc-Si and thinner a-Si due to absorption and stability, hence deposition rates are an issue
- Efficiency record: 11.9% (AIST)

Brilliant234/Q-cells

Polycrystalline silicon thin film

- A further improvement in Si material quality
 - Larger Si grains than in µc-Si
- Module efficiencies:
 - Approaching 10 %
- Research groups
 - IMEC, UNSW

CSG Solar

Polycrystalline silicon thin film

- Example process: CSG Solar
 - Use a textured borosilicate glass substrate
 - 2. Deposit SiN with PECVD
 - 3. Deposit n+/p/p+ Si structure with PECVD
 - 4. Crystallise Si
 - Anneal defects
 - 6. Hydrogen passivation
 - 7. Laser scribing (cell separation)
 - 8. Resin coating
 - 9. Opening of resin and selective etching of Si (two steps: front and rear contact)
 - 10. Deposit Al contacts
 - 11. Laser pattering of contacts

CSG Solar

Monocrystalline silicon thin film

- A thin film solar cell that maintains all benefits of sc-Si
- Based on lift-off techniques
 - 1. A porous silicon double layer is formed on a silicon substrate
 - 2. Silicon is epitaxially grown atop the porous film
 - 3. The silicon film thus grown is lifted off the silicon (carrier) substrate
- Related companies
 - Crystal solar, solexel
- Also relevant
 - ELTRAN process (Canon)

Example module

Disruptive Technology and Production Process Proven in Semi, Mapped and Scaled to Solar

High-Performance

Module

Thin Silicon

Processing; Reusable >100x

Reusable

- Back Contact/Back-Junction Cell Design -3%+ Points Higher Efficiency vs. Traditional
- Planar Flex Backplane Strength & Support for Cell; Smart Cells for High Energy Yield
- Module Full-Square 156 x 156 mm2 Cell Boosts Module Power, All-Black Aesthetics

Template Re-use

Backplane

Example module

World Record 156 mm x 156 mm Full-Square Cell Efficiency S**E**LEXEL Using Ultrathin (35 µm) Epitaxial Silicon Absorber Cell Efficiency = 19.02% 9.0 6.0 Current (A) 5.0 Area (cm²) 343.0 Rehunt LIV 5.4E+0 Saburd Dark 2.1E+1 Voc el LIV 5.66-0 Rosmos Dark: 4.7E-2 156 x 156 mm2 full-square cell (243 cm2) 35 µm epitaxial silicon Voc = 670 mV Jsc = 37.15 mA/cm² FF = 76.38% Cell Power = 4.6 Wp; I_{sc} = 9.03 A Intersolar North America, 11 July 2012 151

Example module

Alternative thin film solar cells

CdTe solar cells

- Heterojunction solar cell
 - n-type CdTe is hard to make
 - Best p-n CdTe homojunction cell:
 ~ 13% efficiency
 - CdTe/CdS heterojunction: 21.0%
- Solar cell structure
 - CdS buffer / window layer
 - CdTe absorber layer
- Band gap energies
 - CdTe: 1.45 eV
 - CdS: 2.4 eV

CdTe solar cells

- Fabrication techniques
 - Close spaced sublimation (CSS) used in the industry for CdTe formation
 - Chemical bath deposition typically used for depositing CdS
 - CVD, screen-printing, electrodeposition, spray pyrolysis and sputtering other candidates
- Company
 - First Solar

First Solar

CdTe solar cells

- Cadmium is **not** the greenest of elements
 - Toxic
 - Environmentally risky
 - Politically unpopular
- However, very little Cd is actually used for each module, and only in a bound state
- One serious challenge: response to fires

www.wikipedia.org

CIS/CIGS

- What is CIS and CIGS?
 - CIGS = Culn,_xGa_{1-x}Se₂
 - CIS = $CulnS_2$
- Exhibit a chalcopyrite material structure
- Band gap energies
 - CIS: 1.5 eV
 - CIGS: ~1.0 1.25 eV
- Tunable band gap energy

$$E_g [eV] = 1.02 + 0.67x +bx(x-1)$$

 $x = Ga/(In+Ga), b \sim 0.1 - 0.2$

 1.25 eV seems to be the maximum usable value before resistive losses caused by Ga become dominant

M. Edoff – ÅSC

CIS/CIGS

- Heterojunction solar cells perform better than homojunctions
- Record efficiency: 21.7%
 (Solar Frontier)

L. Kazmersky – NREL

Challenges

- Moisture is harmful for CIGS cells
- CdS should be replaced by other compounds
 - E.g. ZnO, [Zn,Mg]O, In₂S, ZnS
 - Work at ÅSC has shown that ZnO deposited by ALD gives improved blue response when compared with CdS
- Little In available
- Poor red response
- Recombination at heterojunction

«Kesterites»

- CZTS, a substitutional alloy
- Record efficiency 10.0% (UNSW)

- The float glass substrate is washed
- 2. Deposition of Mo back contact by sputtering
- 3. Patterning of the back contact by laser scribing

L. Stolt – ASC/Solibro AB

- 4. The CIGS-layer (Cu(InGa)Se2) is deposited by co-evaporation
- 5. Coating of ultra-thin buffer layers (50 nm) of CdS and ZnO
- 6. These semiconductor layers are patterned using a mechanical stylus

L. Stolt – ASC/Solibro AB

- 7. A front contact of Al-doped ZnO is sputter-deposited
- 8. The front contact is patterned using a mechanical stylus

L. Stolt – ASC/Solibro AB

L. Stolt – ÅSC/Solibro AB

- 9. Edge deletion
- 10. Edge tabbing
- 11. Lamination
- 12. Framing
- 13. Junction box

Perovskites?

photonics

ARTICLES

PUBLISHED ONLINE: 5 MAY 2013 | DOI: 10.1038/NPHOTON.2013.80

Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors

Jin Hyuck Heo^{1†}, Sang Hyuk Im^{1,2†}, Jun Hong Noh^{1†}, Tarak N. Mandal¹, Choong-Sun Lim¹, Jeong Ah Chang¹, Yong Hui Lee¹, Hi-jung Kim¹, Arpita Sarkar¹, Md. K. Nazeeruddin³, Michael Grätzel^{3*} and Sang II Seok^{1,4*}

Efficiency

Received: 12 May 2017

Accepted: 30 May 2017

DOI: 10.1002/pip.2909

WILEY

ACCELERATED PUBLICATION

Solar cell efficiency tables (version 50)

Martin A. Green¹ | Yoshihiro Hishikawa² | Wilhelm Warta³ | Ewan D. Dunlop⁴ | Dean H. Levi⁵ | Jochen Hohl-Ebinger³ | Anita W.Y. Ho-Baillie¹

Correspondence

Martin A. Green, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney 2052, Australia. Email: m.green@unsw.edu.au

¹Australian Centre for Advanced Photovoltaics, University of New South Wales, Sydney 2052, Australia

² National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics (RCPV), Central 2, Umezono 1-1-1, Ibaraki, Tsukuba 305-8548, Janan

²Department: Characterisation and Simulation/Callab Cells, Fraunhofer-Institute for Solar Energy Systems, Heidenhofstr. 2, Freiburg D-79110, Germany

European Commission—Joint Research Centre, Directorate C—Energy, Transport and Climate, Via E. Fermi 2749, Ispra IT-21027VA, Italy

⁵National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA

TABLE 1 Confirmed single-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Efficiency	ficiency Area V _{oc} J _{ic} Fill Factor To		Test Centre	ė		
Classification	(%)	(cm²)	(V)	(mA/cm²)	(%)	(date)	Description
Slicon							
Si (crystalline cell)	26.7 ± 0.5	79.0 (da)	0.738	42.65°	84.9	AIST (3/17)	Kaneka, n-type rear IBC ⁵
Si (multicrystalline cell)	21.9 ± 0.4 b	4.0003 (t)	0.6726	40.76°	79.7	PhG-ISE (2/17)	FhG-ISE, n-type ⁶
Si (thin transfer submodule)	21.2 ± 0.4	239.7 (ap)	0.687°	38.50°4	80.3	NREL (4/14)	Salexel (35 µm thick) ⁷
Si (thin film minimodule)	10.5 ± 0.3	94.0 (ap)	0.492°	29.7	72.1	FhG-ISE (8/07)*	CSG Solar (<2 µm on glass) [®]
III-V cells							
GaAs (thin film cell)	28.8 ± 0.9	0.9927 (ap)	1.122	29.68°	86.5	NREL (5/12)	Alta Devices ⁹
GaAs (multicrystalline)	18.4 ± 0.5	4.011 (t)	0.994	23.2	79.7	NREL (11/95)	RTI, Ge substrate 10
InP (crystalline cell)	24.2 ± 0.5 ^b	1.008 (ap)	0.939	31.15°	82.6	NREL (9/12)	NREL ¹¹
Thin film chalcogenide							
CIGS (œll)	21.7 ± 0.5	1.044 (da)	0.718	40.70°	74.3	AIST (1/17)	Solar Frontier ¹²
CdTe (cell)	21.0 ± 0.4	1.0623 (ap)	0.8759	30.25 ^d	79.4	Newport (8/14)	First Solar, on glass 13
CZTS (cell)	10.0 ± 0.2	1.113 (da)	0.7083	21.77°	65.1	NREL (3/17)	UNSW ¹⁴
Amorphous/microcrystalline							
Si (amorphous œl)	10.2 ± 0.3 ^{g,b}	1.001 (da)	0.896	16.36 ^d	69.8	AIST (7/14)	AIST15
Si (microcrystalline cell)	11.9 ± 0.3 ^b	1.044 (da)	0.550	28.72°	75.0	AIST (2/17)	AIST ¹⁶
Perovskite .							
Perovskite (ce II)	19.7 ± 0.6 ^{g,h}	0.9917 (da)	1.104	24.671	72.3	Newport (3/16)	KRICT/UNIST ¹⁷
Perovskite (minimodule)	16.0 ± 0.4 ^{g,h}	16.29 (ap)	1.029	19.51°-	76.1	Newport (4/17)	Microquanta, 6 serial cells ¹⁸
Dye sensitised							
Dye (cell)	11.9 ± 0.4^{J}	1.005 (da)	0.744	22.47k	71.2	AIST (9/12)	Sharp ¹⁹
Dye (minimodule)	10.7 ± 0.4 ^j	26.55 (da)	0.754°	20.19 ^{c)}	69.9	AIST (2/15)	Sharp, 7 serial cells 19
Dye (submodule)	8.8 ± 0.3^{1}	398.8 (da)	0.697	18.42°,m	68.7	AIST (9/12)	Sharp, 26 serial cells ²⁰
Organic							
Organic (cell)	11.2 ± 0.3 ⁿ	0.992 (da)	0.780	19.30 ^d	74.2	AIST (10/15)	Toshiba ²¹
Organic (minimodule)	9.7 ± 0.3°	26.14 (da)	0.806	16.47 ^{c,j}	73.2	AIST (2/15)	Toshiba (8 series cells) ²²

TABLE 2 Confirmed multiple-junction terrestrial cell and submodule efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Efficiency	Area	Voc	Jsc	Fill Factor	Test Centre	
Classification	(%)	(cm²)	(V)	(mA/cm²)	(%)	(date)	Description
III-V Multijunctions							
5 junction cell (bonded)	38.8 ± 1.2	1.021 (ap)	4.767	9.564	85.2	NREL (7/13)	Spectrolab, 2-terminal ²³
(2.17/1.68/1.40/1.06/0.73 eV)							
InGaP/GaAs/InGaAs	37.9 ± 1.2	1.047 (ap)	3.065	14.27°	86.7	AIST (2/13)	Sharp, 2 term. ²⁴
GalnP/GaAs(monolithic)	31.6 ± 1.5	0.999 (ap)	2.538	14.18 ^b	87.7	NREL (1/16)	Alta Devices, 2 term. ²⁵
Multijunctions with c-Si							
GalnP/GaAs/Si (mech. stack)	35.9 ± 0.5°	1.002 (da)	2.52/0.681	13.6/11.0	87.5/78.5	NREL (2/17)	NREL/CSEM/EPFL, 4-term. ²⁶
GalnP/GaAs/Si (wafer bonded)	31.3 ± 1.1°	3.981 (ap)	3.046	11.7 ^d	87.5	PhG-ISE (3/17)	Fraunhofer ISE, 2-term. ²⁷
GalnP/GaAs/Si (monolithic)	19.7 ± 0.7°	3943 (ap)	2.323	10.0*	84.3	PhG-ISE (8/16)	Fraunhofer ISE ²⁰
GaAs/Si (mech. stack)	328 ± 0.5°	1.003 (da)	1.09/0.683	28.9/11.1	85.0/79.2	NREL (12/16)	NREL/CSEM/EPFL, 4-term. ²⁶
Perovskite/Si (monolithic)	23.6 ± 0.6	0.990 (ap)	1.651	18.09*	79.0	NREL (8/16)	Stanford/ASU ²⁹
GalnP/GalnAs/Ge; Si(spectral split minimodule)	34.5 ± 2.0	27.83 (ap)	2.66/0.65	13.1/93	85.6/79.0	NREL (4/16)	UNSW/Azur/Trina, 4-term.30
a-Si/nc-Si Multijunctions							
a-Si/nc-Si/nc-Si (thin-film)	14.0 ± 0.4 RC	1.045 (da)	1.922	9.94*	73.4	AIST (5/16)	AIST ³¹
a-Si/nc-Si (thin-film cell)	12.7 ± 0.4% c	1.000(da)	1.342	13.45h	70.2	AIST (10/14)	AIST15,32

TABLE 3 Confirmed terrestrial module efficiencies measured under the global AM1.5 spectrum (1000 W/m²) at a cell temperature of 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Effic.	Area	V _{oc}	l _{ec}	FF	Test Centre	
Classification	(%)	(cm²)	(V)	(A)	(%)	(date)	Description
Si (crystalline)	24.4 ± 0.5	13177 (da)	79.5	5.04ª	80.1	AIST (9/16)	Kaneka (108 cells) ⁵
Si (multicrystaline)	19.9 ± 0.4	15143 (ap)	78.87	4.795	79.5	PhG-ISE (10/16)	Trina Solar (120 cells) ³³
GaAs (thin film)	24.8 ± 0.5	865.3 (ap)	11.07	2.288 ^b	84.7	NREL (11/16)	Alta Devices ³⁴
CIGS (Cd free)	19.2 ± 0.5	841 (da)	48.0	0.456 ^b	73.7	AIST (1/17)	Solar Frontier (70 cells)35
CIGS (brge)	15.7 ± 0.5	9703 (ap)	28.24	7.254	72.5	NREL (11/10)	Missole ³⁶
CdTe (thin-film)	18.6 ± 0.6	7038.8 (ap)	110.6	1.533 ^d	74.2	NREL (4/15)	First Solar, monolithic ³⁷
a-Si/nc-Si (tandem)	12.3 ± 0.3°	14322 (t)	280.1	0.902	69.9	ESTI (9/14)	TEL Solar, Trubbach Labs ³⁸
Organic	8.7 ± 0.3 ⁸	802 (da)	17.47	0.569h	70.4	AIST (5/14)	Toshiba ²²
Multijunction							
InGaP/GaAs/InGaAs	31.2 ± 1.2	968 (da)	23.95	1.506	83.6	AIST (2/16)	Sharp (32 cells) ³⁰

TABLE 4 "Notable exceptions": "Top dozen" confirmed cell and module results, not class records measured under the global AM1.5 spectrum (1000 Wm⁻²) at 25°C (IEC 60904-3: 2008, ASTM G-173-03 global). New entries in bold type

	Efficiency	Area	V _{oc}	$J_{\rm sc}$	Fill Factor	Test Centre	
Classification	(%)	(cm²)	(V)	(mA/cm ²)	(%)	(date)	Description
Cells (silicon)							
Si (crystalline)	25.0 ± 0.5	4.00 (da)	0.706	42.7°	828	Sandia (3/99) ^b	UNSW p-type PERC top/rear contacts ⁴⁰
Si (crystalline)	$25.7\pm0.5^{\circ}$	4.017 (da)	0.7249	42.54 ^d	83.3	PhG-ISE (3/17)	PhG-ISE, n-type top/rear contacts ⁴¹
Si (large)	26.6 ± 0.5	179.74 (da)	0.7403	42.5d	84.7	PhG-ISE (11/16)	Kaneka, n-type rear IBC ⁵
Si (multicrystalline)	21.3 ± 0.4	242.74 (t)	0.6678	39.80*	0.08	FhG-ISE (11/15)	Trina Solar, large p-type ⁴²
Cells (III-V)							
GalnP	21.4 ± 0.3	0.2504 (ap)	1.4932	1631	87.7	NREL (9/16)	LG Electronics, high bandgap ⁴³
Cells (chalcogenide)							
CIGS (thin-film)	22.6 ± 0.5	0.4092 (da)	0.7411	37.76 ^f	208	FhG-ISE (2/16)	ZSW on glass ⁴⁴
CIGSS (Cd free)	22.0 ± 0.5	0.512 (da)	0.7170	39.45 ^f	77.9	PhG-ISE (2/16)	Solar Frontier on glass ¹²
CdTe (thin-film)	22.1 ± 0.5	0.4798 (da)	0.8872	31.69 ⁸	78.5	Newport (11/15)	First Solar on glass ⁴⁵
CZTSS (thin-film)	12.6 ± 0.3	0.4209 (ap)	0.5134	35.21 ^h	698	Newport (7/13)	IBM solution grown ⁴⁶
CZTS (thin-film)	11.0 ± 0.2	0.2339(da)	0.7306	21.74 ^d	693	NREL (3/17)	UNSW on glass ¹⁴
Cells (other)							
Perovskite (thin-film)	$22.1 \pm 0.7^{\circ}$	0.0946 (ap)	1.105	24.97 ^j	803	Newport (3/16)	KRICT/UNIST17
Organic (thin-film)	12.1 ± 0.3^{k}	0.0407 (ap)	0.8150	20.27 ^d	735	Newport (2/17)	Phillips 66

Abbreviations: CIGSS, CulnGaSSe; CZTSS, Cu₂ZnSnS_{4-y}Se_y; CZTS, Cu₂ZnSnS_{4-y}Se_y; (ap), aperture area; (t), total area; (da), designated illumination area; AIST, Japanese National Institute of Advanced Industrial Science and Technology; NREL, National Renewable Energy Laboratory; FhG-ISE, Fraunhofer-Institut für Solare Energiesysteme.

TABLE 5 "Direct beam" terrestrial concentrator cell and module efficiencies measured under the ASTM G-173-03 direct AM1.5 spectrum at a cell temperature of 25°C. New entries in bold type

Effic.	Area	Intensity	Test Centre	
(%)	(cm²)	(suns)	(date)	Description
29.3 ± 0.7 ^b	0.09359 (da)	49.9	NREL (10/16)	LG Electronics
27.6 ± 1.2°	1.00 (da)	92	FhG-ISE (11/04)	Amonix back-contact ⁴⁰
23.3 ± 1.2 ^{d,e}	0.09902 (ap)	15	NREL (3/14)	NREL ⁴⁹
46.0 ± 2.2	0.0520 (da)	508	AIST (10/14)	Soitec/CEA/FhG-ISE 4j bonded ⁵⁰
45.7 ± 2.3 ^{d,g}	0.09709 (da)	234	NREL (9/14)	NREL, 4j monolithic ⁵¹
44.4 ± 2.6 ^h	0.1652 (da)	302	FhG-ISE (4/13)	Sharp, 3j inverted metamorphic ⁵²
35.1 ± 1.1 ⁴¹	0.05376 (da)	407	FhG-ISE (3/17)	Fraunhofer ISE 2j ⁵³
43.4 ± 2.4 ^{d.}	182 (ap)	340 ^k	PhG-ISE (7/15)	Fraunhofer ISE 4j (lens/cell) ⁵⁴
40.6 ± 2.0°	287 (ap)	365	NREL (4/16)	UNSW 4j split spectrum ⁵⁵
20.5 ± 0.8 ^d	1875 (ap)	79	Sandia (4/89) ^k	Sandia/UNSW/ENTECH (12 cells) ⁵⁴
35.9 ± 1.8 ^m	1092 (ap)	N/A	NREL (8/13)	Amonix ⁵⁷
38.9 ± 2.5°	812.3 (ap)	333	FhG-ISE (4/15)	Soitec ⁵⁸
21.7 ± 0.7	20.0 (da)	11	Sandia (9/90) ^k	UNSW laser grooved ⁵⁹
7.1 ± 0.2	25(ap)	2.5 ^k	ESTI (9/08)	ECN Petten, GaAs cells ⁶⁰
	(%) 29.3 ± 0.7 ^b 27.6 ± 1.2 ^f 23.3 ± 1.2 ^{d,a} 46.0 ± 2.2 ^f 45.7 ± 2.3 ^{d,a} 44.4 ± 2.6 ^b 35.1 ± 1.1 ^{d,j} 43.4 ± 2.4 ^{d,j} 40.6 ± 2.0 ^m 20.5 ± 0.8 ^d 35.9 ± 1.8 ^m 38.9 ± 2.5 ⁿ 21.7 ± 0.7	(%) (cm²) 29.3 ± 0.7b 0.09359 (da) 27.6 ± 1.2c 1.00 (da) 23.3 ± 1.2da 0.09902 (ap) 46.0 ± 2.2c 0.0520 (da) 45.7 ± 2.3da 0.09709 (da) 44.4 ± 2.6b 0.1652 (da) 35.1 ± 1.1 du 0.05376 (da) 43.4 ± 2.4dd 18.2 (ap) 40.6 ± 2.0m 287 (ap) 20.5 ± 0.8d 18.75 (ap) 35.9 ± 1.8m 1092 (ap) 38.9 ± 2.5m 812.3 (ap) 21.7 ± 0.7 20.0 (da)	(%) (cm²) (suns) 29.3 ± 0.7° 0.09359 (da) 49.9 27.6 ± 1.2° 1.00 (da) 92 23.3 ± 1.2 ^{d.n} 0.09902 (ap) 15 46.0 ± 2.2° 0.0520 (da) 508 45.7 ± 2.3 ^{d.g} 0.09709 (da) 234 44.4 ± 2.6° 0.1652 (da) 302 35.1 ± 1.1 ^{du} 0.05376 (da) 407 43.4 ± 2.4 ^{d.l.} 182 (ap) 340° 40.6 ± 2.0° 287 (ap) 365 20.5 ± 0.8 ^{d.} 1875 (ap) 79 35.9 ± 1.8° 1092 (ap) N/A 38.9 ± 2.5° 812.3 (ap) 333	(%) (cm²) (suns) (date) 29.3 ± 0.7 ^b 0.09359 (da) 49.9 NREL (10/16) 27.6 ± 1.2 ^c 1.00 (da) 92 PhG-ISE (11/04) 23.3 ± 1.2 ^{d.p.} 0.09902 (ap) 15 NREL (3/14) 46.0 ± 2.2 ^{d.} 0.0520 (da) 508 AIST (10/14) 45.7 ± 2.3 ^{d.g.} 0.09709 (da) 234 NREL (9/14) 44.4 ± 2.6 ^{b.} 0.1652 (da) 302 PhG-ISE (4/13) 35.1 ± 1.1 ^{d.j.} 0.05376 (da) 407 PhG-ISE (3/17) 43.4 ± 2.4 ^{d.j.} 182 (ap) 340 ^{k.} PhG-ISE (7/15) 40.6 ± 2.0 ^{m.} 287 (ap) 365 NREL (4/16) 20.5 ± 0.8 ^{d.} 1875 (ap) 79 Sandia (4/89) ^{k.} 35.9 ± 1.8 ^{m.} 1092 (ap) N/A NREL (8/13) 38.9 ± 2.5 ^{n.} 812.3 (ap) 333 PhG-ISE (4/15)

Concluding remarks

- Many alternatives to crystalline silicon solar cells have been proposed
- Several thin film technologies, as well as some electrochemical solar cells have been industrialized
- What impact these technologies will have on the overall solar cell market both in the short and long run is uncertain
- Main challenges:
 - Scale-up in size and production volume
 - Increases in module efficiency
 - Stability
 - Material properties and, for very large production volumes, avaliability

