(1)

设 $a\in {
m Dom}\ f$ 说明存在 $x,y\in\mathbb{R},\ 0\leq y<2\pi$ 满足 $(a,x+y{
m i})\in f$ 所以 $a=e^x(\cos y+{
m i}\sin y)$ 因为 $e^x>0$ 所以 $a\in\mathbb{C}\setminus\{0\}$ 故 ${
m Dom}\ f\subset\mathbb{C}\setminus\{0\}$

设
$$b\in\mathbb{C}\setminus\{0\}$$
 设 $b=x+y$ i 因为 $x^2+y^2>0$ 令 $s=\frac{1}{2}\mathrm{ln}(x^2+y^2)$

则

$$b'=rac{b}{e^s}=x'+y'$$
i

其中 $x'^2 + y'^2 = 1$

令

$$t = egin{cases} rac{\pi}{2} & x' = 0, y' = 1 \ rac{3\pi}{2} & x' = 0, y' = -1 \ rctanrac{y'}{x'} & x' > 0, y' \geq 0 \ rctanrac{y'}{x'} + \pi & x' < 0 \ rctanrac{y'}{x'} + 2\pi & x' > 0, y' < 0 \end{cases}$$

则 $0 \le t < 2\pi$ 并且 $b = e^s(\cos t + \mathrm{i}\sin t)$ 故 $(b,s+t\mathrm{i}) \in f$ 所以 $b \in \mathrm{Dom}\ f$ 故 $\mathbb{C} \setminus \{0\} \subset \mathrm{Dom}\ f$ 综上 $\mathrm{Dom}\ f = \mathbb{C} \setminus \{0\}$

(2)

由(1)可知

设 z = x + yi

则
$$f(z) = \frac{1}{2}\ln(x^2 + y^2) + t$$
i

其中

$$t = egin{cases} rac{\pi}{2} & x = 0, y > 0 \ rac{3\pi}{2} & x = 0, y < 0 \ rctanrac{y}{x} & x > 0, y \geq 0 \ rctanrac{y}{x} + \pi & x < 0 \ rctanrac{y}{x} + 2\pi & x > 0, y < 0 \end{cases}$$

曲 g(f(x))=x, $\forall x\in A$ 可知 $(y,x)\in g$, $\forall (x,y)\in f$ 同理 $(x,y)\in f$, $\forall (y,x)\in g$ 故 $(x,y)\in f\Leftrightarrow (y,x)\in g$

设 $(x_1,y_1),(x_2,y_2)\in f$ 则 $(y_1,x_1),(y_2,x_2)\in g$ 由 g 为映射可知若 $y_1=y_2$ 则 $x_1=x_2$ 故 f 为单射

设 $a \in \operatorname{Rg} f$ 则存在 a' 使得 $(a',a) \in f$ 可得 $(a,a') \in g$ 这样 $a \in \operatorname{Dom} g = B$ 故 $\operatorname{Rg} f \subset B$

设 $b \in B$ 则 f(g(b)) = b 可得 $b \in \operatorname{Rg} f$ 故 $B \subset \operatorname{Rg} f$

因此 $B = \operatorname{Rg} f$ 所以 f 是满射,又 f 是单射,所以 f 是双射

 $(a,b)\in g\Leftrightarrow (b,a)\in f\Leftrightarrow (a,b)\in f^{-1}$ 故 $f^{-1}=g$