대한민국특청 KOREAN INTELLECTUAL PROPERTY OFFICE

별첨 사본은 아래 출원의 원본과 동일함을 증명함.

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

출 원 번 호 :

10-2002-0085507

Application Number

출 원 년 월 일

2002년 12월 27일 DEC 27, 2002

Date of Application

ate of Application

주식회사 하이닉스반도체

출 원 인: 무역회자 아이릭스만도제 Hynix Semiconductor Inc.

2003 년 04 월 16

특 허 청

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

[수신처] 특허청장

【참조번호】 0059

【제출일자】 2002.12.27

【발명의 명칭】 워드라인 리페어가 가능한 플래시 메모리 소자

【발명의 영문명칭】 Flash memory device capable of repairing a word line

【출원인】

【명칭】 (주)하이닉스 반도체

【출원인코드】 1-1998-004569-8

【대리인】

【성명】 신영무

【대리인코드】 9-1998-000265-6

【포괄위임등록번호】 1999-003525-1

【발명자】

【성명의 국문표기】 이주엽

【성명의 영문표기】 LEE, Ju Yeab

【주민등록번호】 690404-1036616

【우편번호】 467-860

[주소] 경기도 이천시 부발읍 신하리 신한아파트 101-909

【국적】 KR

【심사청구】 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정

에 의한 출원심사 를 청구합니다. 대리인

신영무 (인)

【수수료】

【기본출원료】 20 면 29,000 원

【가산출원료】1면1,000 원【우선권주장료】0건0

 【우선권주장료】
 0
 건
 0
 원

 【심사청구료】
 7
 항
 333,000
 원

【합계】 363,000 원

【첨부서류】 1. 요약서·명세서(도면)_1통

[요약서]

[요약]

본 발명은 워드라인 리페어가 가능한 플래시 메모리 소자에 관한 것으로, X/Y 어드 레스를 조합하여 비트라인 리페어용 리던던시 셀들로 불량이 발생된 워드라인을 리페어 함으로써, 비트라인 방향의 리페어뿐만 아니라 워드라인 방향의 리페어를 가능케 하여 수율 저하를 방지하고 소자의 신뢰성을 향상시킬 수 있는 워드라인 리페어가 가능한 플래시 메모리 소자가 개시된다.

【대표도】

도 1

【색인어】

워드라인 불량, 리던던시 셀 어레이, 워드라인 리페어

【명세서】

【발명의 명칭】

워드라인 리페어가 가능한 플래시 메모리 소자{Flash memory device capable of repairing a word line}

【도면의 간단한 설명】

도 1은 본 발명의 실시예에 따른 플래시 메모리 소자의 워드 라인 리페어 회로의 구성 및 동작을 설명하기 위한 블록도이다.

도 2는 도 1에 도시된 메인 셀 어레이의 구성을 설명하기 위한 회로도이다.

도 3은 도 1에 도시된 리던던시 셀 어레이의 구성을 설명하기 위한 회로도이다.

도 4는 도 1에 도시된 워드라인 전압 선택부를 설명하기 위한 회로도이다.

도 5는 도 1에 도시된 워드라인 선택 수단을 설명하기 위한 회로도이다.

<도면의 주요 부분에 대한 부호의 설명>

110 : 메인 셀 어레이 120 : 리던던시 셀 어레이

130 : 캠 셀 어레이 140 : 워드라인 전압 스위칭부

150a 내지 150n : 워드라인 선택수단

160 : X 디코더 170 : Y 디코더

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<11> 본 발명은 워드라인 리페어가 가능한 플래시 메모리 소자에 관한 것으로, 특히 비트라인 리던던시 셀 어레이를 이용하여 메인 셀 어레이의 불량 워드 라인을 리페어 할수 있는 워드라인 리페어가 가능한 플래시 메모리 소자에 관한 것이다.

- 의반적으로, 플래시 메모리 셀 어레이에서 결함 등의 이유로 인하여 불량이 발생되는 경우 불량 셀의 여분의 셀로 교체하여 수율이 감소하는 것을 방지한다. 이를 위하여, 플래시 메모리 소자에는 메인 셀 어레이 이외에도 비트라인 리던던시 셀 어레이를 구비하며, 리던던시 셀들은 대부분의 경우 비트라인 방향으로의 불량이나 단일 셀 불량을 리페어하는 경우에만 사용된다. 따라서, 종래에는 워드라인 방향으로 불량이 발생한 경우, 특별한 리페어 방법 없이 하나의 칩이 그대로 불량 처리 된다.
- 한편, 워드라인 방향으로 불량이 발생한 경우, 이를 리페어하기 위해서는 메인 셀어레이에서 하나의 워드라인에 연결된 셀의 개수와 동일한 개수가 연결된 워드라인 리던던시 셀어레이를 구비하여야 한다. 이 경우에는 워드라인 리던던시 셀어레이의 폭이메인 셀어레이의 폭과 동일해야 하므로 면적을 많이 차지하고 소자를 집적화시키기 어렵다는 문제가 발생된다. 또한, 섹터 내에서 워드라인 방향으로 불량이 발생된 셀들을리페어한 경우, 섹터 소거 시 불량이 발생한 워드라인의 셀들이 계속 소거되면서 과도

소거되어 비트라인에 누설 전류를 발생시키고, 결국 동일한 웰 영역에 형성된 모든 셀들을 사용할 수 없게 된다.

특히, 플래시 EEPROM 섹터 어레이 내에서 워드라인을 리페어하는 종래의 특허에서는 워드라인을 리페어하기 위하여 워드라인과 P웰에 동일한 바이어스를 인가한다. 하지만, 이 경우에도 워드라인 대 워드라인(word line to word line) 방식으로 리페어가 진행되므로, 불량 셀에 의해 발생되는 누설 전류를 차단하기 위해서는 워드라인 리던던시셀 어레이의 웰 영역과 메인 셀 어레이의 웰 영역을 분리해야 하며, 칩 사이즈도 증가하는 단점이 있다.

【발명이 이루고자 하는 기술적 과제】

따라서, 본 발명은 상기의 문제점을 해결하기 위하여 X/Y 어드레스를 조합하여 비트라인 리페어용 리던던시 셀들로 불량이 발생된 워드라인을 리페어함으로써, 비트라인 방향의 리페어뿐만 아니라 워드라인 방향의 리페어를 가능케 하여 수율 저하를 방지하고 소자의 신뢰성을 향상시킬 수 있는 워드라인 리페어가 가능한 플래시 메모리 소자를 제공하는데 그 목적이 있다.

【발명의 구성 및 작용】

본 발명의 실시예에 따른 워드라인 리페어가 가능한 플래시 메모리 소자는 다수의 셀이 I/O 블록 단위로 구분된 메인 셀 어레이와, 워드라인의 수가 I/O 블록을 구성하는 열의 수와 일치하고 워드라인에 연결된 셀의 수가 I/O 블록의 수와 일

치하는 리페어 블록들로 이루어진 리던던시 셀 어레이와, 메인 셀 어레이의 불량 워드라인 정보 및 불량 워드라인을 대신하는 리페어 블록에 대한 연결 정보를 포함한 정보를 저장하는 캠 셀 어레이와, 불량 워드라인 정보에 따라 불량 워드라인으로 인가되는 워드라인 전압을 리던던시 셀 어레이로 전달하는 워드라인 전압 스위칭부 및 연결 정보에 따라 인에이블되고 메인 셀 어레이의 열 선택 신호에 따라 I/O 블록의 열과 대응하는 리페어 블록의 워드라인을 선택하여 선택된 워드라인으로 워드라인 전압을 인가하는 워드라인 선택수단을 포함하며, 불량 워드라인에 저장될 데이터를 I/O 블록 단위로 리페어 블록의 해당 열에 차례로 저장하여 불량 워드라인을 리페어할 수 있다.

- <17> 상기에서, I/O 블록은 16개이 구비될 수 있다. 이때, I/O 블록은 1024개의 워드라 인과 64개의 열로 이루어지며, 리페어 블록은 64개의 워드라인과 16개의 열로 이루어지 는 것이 가능하다.
- <19> 워드라인 선택수단은 리페어 블록마다 구비되는데, 상기 워드라인 선택수단은 캠셀 어레이에 저장된 연결 정보에 따라 발생된 인에이블 신호에 의해 구동되

며 워드라인 전압을 스위칭하는 제1 스위칭 수단과, 제1 스위칭 수단 및 리페어 블록의 워드라인들 간에 각각 접속되고 메인 셀 어레이의 열 선택 신호에 따라 해당 열에 대응하는 리페어 블록의 워드라인으로 워드라인 전압을 스위칭하는 다수의 스위칭 수단을 포함한다.

- 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 설명하기로 한다. 그러나, 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록 하며 통상의지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 한편, 도면상에서 동일 부호는 동일한 요소를 지칭한다.
- 도 1은 본 발명의 실시예에 따른 플래시 메모리 소자의 워드 라인 리페어 회로의 구성 및 동작을 설명하기 위한 블록도이다. 도 2는 도 1에 도시된 메인 셀 어레이의 구 성을 설명하기 위한 회로도이다. 도 3은 도 1에 도시된 리던던시 셀 어레이의 구성을 설 명하기 위한 회로도이다.
- 도 1은 참조하면, 워드라인 리페어 회로는 메인 셀 어레이(110), 리던던시 셀 어레이(120), 캠 셀 어레이(130), 워드라인 전압 스위칭부(140), 워드라인 선택 수단(150a 내지 150p), X 디코더(160) 및 Y 디코더(170)를 포함한다.
- <23> 상기에서, 메인 셀 어레이(110)는 다수의 셀로 이루어지며, 도 2에 도시된 바와 같이, 다수의 셀은 I/0 블록(D0 내지 D15) 단위로 구분된다. 즉, 동일한 I/0

블록에 포함된 셀들은 동일한 I/O 단자에 연결된다. 여기서, 본 발명의 이해를 돕기 위하여, 하나의 워드라인에는 1024의 셀이 연결되며, I/O 블록마다 워드라인에 64개의 셀이 연결된 경우를 예로써 설명하기로 한다. 이로써, I/O 블록에는 64개의 열이 존재한다.

리던던시 셀 어레이(120)는 다수의 셀로 이루어지며 다수의 셀은 다수의 리페어 블 <24> 록으로 구분된다. 리던던시 셀 어레이(120)는 메인 셀 어레이(110)의 불량 워드라인을 리페어하기 위한 것으로, 메인 셀 어레이(110)의 불량 비트 라인을 대체하기 위한 비트 라인 리던던시 셀 어레이(도시되지 않음)는 별도로 구비된다. 여기서, 본 발명의 이해를 돕기 위하여 리던던시 셀 어레이(120)에는 16개의 리페어 블록(RB00 내지 RB15)이 구비 되는 경우를 예로써 설명하기로 한다. 한편, 도 3에 도시된 바와 같이, 리페어 블록들 (RB00 내지 RB15)은 워드라인 수가 메인 셀 어레이(110)의 I/O 블록을 구성하는 열의 수 (64개)와 일치하고, 각각의 워드라인(RWL00 내지 RWL63)에 연결된 셀의 수가 I/O 블록의 수(16개)와 일치하도록 구분된다. 이로써, 각각의 리페어 블록들(RB00 내지 RB15)은 1024개의 셀로 이루어지며, 이는 메인 셀 어레이(110)의 워드라인에 연결된 셀의 개수와 일치한다. 이러한 리페어 블록에서, 제1 I/O 단자(I/O 0)와 연결된 셀들(도면에서는 3 개만 표시됨; A', B' 및 C')에는 불량 워드라인의 제1 I/O 블록(DO)에 저장될 데이터가 저장된다. 즉, 리페어 블록은 제1 I/O 블록(DO)에 저장될 데이터를 제1 열(I/O O)에 저 장한다. 이때, 메인 셀 어레이(110)의 제1 I/O 블록(DO)에는 64개의 셀(도면에서는 3개 만 표시됨; A, B 및 C)이 연결되어 있으며, 리던던시 셀 어레이(120)의 제1 열(I/O 0)에

도 64개의 셀(도면에서는 3개만 표시됨; A', B' 및 C')이 연결되어 있으므로, 행방향의 데이터를 열방향으로 저장하는데 아무런 문제가 발생되지 않는다. 이러한 방식으로, 메인 셀 어레이(110)의 제1 내지 제63 셀(A, B 및 C)에 저장될 데이터는 리던던시 셀 어레이(120)의 제1 내지 제64 셀(A', B' 및 C')에 저장되고, 마지막에는 제960 내지 제1024 셀(G, H 및 I)에 저장될 데이터는 리던던시 셀 어레이(120)의 제960 내지 제1023 셀(G', H' 및 I')에 저장된다. 이를 통해, 메인 셀 어레이(110)에 발생된 하나의 불량 워드라인은 하나의 리페어 블록으로 대체된다.

*** 캠 셀 어레이(130)에는 메인 셀 어레이(110)에 발생한 불량 워드라인에 대한 어드 레스와 같은 정보 및 불량 워드라인을 대신하는 리던던시 셀 어레이(120)의 리페어 블록에 대한 연결 정보를 포함한 각종 정보가 저장된다. 이 중에서, 캠 셀 어레이(130)는 불량 워드라인에 대한 정보를 워드라인 전압 스위칭부(140)로 제공한다. 또한, 캠 셀 어레이(130)는 불량 워드라인이 리던던시 셀 어레이(120)의 어느 리페어 블록(도 3의 RB00내지 RB15 중 어느 하나)으로 대체되었는지에 대한 정보에 따라 다수의 워드라인 선택수단(150a 내지 150p) 중 해당 리페어 블록에 연결된 워드라인 선택 수단(150)을 인에이 블시키기 위한 인에이블 신호(RBEn00 내지 RBEn15)를 워드라인 선택 수단(150a 내지 150p)으로 인가한다.

의 워드라인 전압 스위칭부(140)는 X 디코더(160)로부터 메인 셀 어레이(110)의 워드라인 선택 신호가 발생되면 캠 셀 어레이(130)에 저장된 불량 워드라인에 대한 정보와 비교하여 메인 셀 어레이(110)의 불량 워드라인으로 워드라인 전압이 인가되는 것을 차단하고 워드라인 전압을 리던던시 셀 어레이(120)로 전달한다.

도 4를 참조하여 워드라인 전압 스위칭부(140)의 구성을 좀 더 상세하게 설명하면 다음과 같다. 도 4는 도 1에 도시된 워드라인 전압 선택부를 설명하기 위한 회로도이다.

도 4를 참조하면, 워드라인 전압 스위칭부(140)는 제1 및 제2 스위칭 수단(S301 및 302)과 인버터(I301)로 구현하는 것이 가능하다. 여기서, 제1 스위칭 수단들(도면에서는 편의상 하나만 도시됨; S301)은 워드라인 전압공급 단자와 메인 셀 어레이(도 1의 110)의 워드라인들 간에 각각 접속되며, 캠 셀 어레이(도 1의 130)의 불량 워드라인 신호에 따라 워드라인 전압(VWL)을 메인 셀 어레이(110)의 워드라인으로 스위칭한다. 인버터(I301)는 캠 셀 어레이(130)에서 발생된 불량 워드라인 신호를 반전시켜 불량 워드라인 반전 신호를 생성한다. 제2 스위칭 수단들(도면에서는 편의상 하나만 도시됨; S302)은 인버터(I301)에서 생성된 불량 워드라인 반전 신호에 따라 워드라인 전압(VWL)을 워드라인 선택 수단(150a 내지 150p)으로 전달한다.

ペッシ 워드라인 선택 수단들(150a 내지 150p)은 캠 셀 어레이(130)에서 발생된 인데이블 신호(RBEn00 내지 RBEn15)에 따라 인데이블되고, Y 디코더(170)로부터 발생된 열 선택 신호(Y00 내지 Y63)에 따라 I/0 블록의 열과 대응하는 리페어 블록의 워드라인(RWL00 내 지 RWL63 중 어느 하나)을 선택하여 선택된 워드라인으로 워드라인 전압을 인가한다. 좀 더 구체적으로 예를 들어 설명하면 다음과 같다. 열 선택 신호(Y00)에 의해 첫 번째 열 이 선택되면, 인데이블 신호(RBEn00)에 따라 인데이블된 워드라인 선택 수단(150a)은 첫 번째 워드라인(RWL00)을 선택하여 리페어 블록(RB00)의 첫 번째 워드라인(RWL00)으로 워드라인 전압을 인가한다. 이렇게, 워드라인 선택 수단(150a 내지 150p)은 열 선택 신 호를 어드라인 선택 신호로 변환하는 동작을 수행한다. 도 5를 참조하여 워드라인 선택 수단의 구성을 좀 더 상세하게 설명하면 다음과 같다. 도 5는 도 1에 도시된 워드라인 선택 수단을 설명하기 위한 회로도이다.

- 도 5를 참조하면, 워드라인 선택 수단들(도 1의 150a 내지 150p)은 제1 스위칭 수단(S500)과 다수의 스위칭 수단(S501 내지 S564)으로 구현하는 것이 가능하다.
- 상기에서, 제1 스위칭 수단(S500)은 캠 셀 어레이(도 1의 130)에 저장된 연결 정보에 따라 발생된 인에이블 신호(예를 들면, RBEn00)에 의해 구동되며 워드라인 선택수단(도 1의 150)으로부터 전달된 워드라인 전압(VWL)을 스위칭 한다.
- 다수의 스위칭 수단(S501 내지 S564)은 제1 스위칭 수단(S500) 및 리페어 블록의 워드라인들(RWL00 내지 RWL63) 간에 각각 접속되고, 메인 셀 어레이(도 1의 110)의 열 선택 신호(Y00 내지 Y63)에 따라 해당 열에 대응하는 리페어 블록의 워드라인으로 워드 라인 전압(VWL)을 스위칭한다.
- 상기의 구성을 통해, 본 발명의 플래시 메모리 소자의 워드 라인 리페어 회로는 불량 워드라인에 저장될 데이터를 I/O 블록 단위로 리페어 블록의 해당 열에 차례로 저장하여 불량 워드라인을 리페어한다.
- 이하, 도 1 내지 도 5를 참조하여 메인 셀 어레이(110)의 두 번째 워드라인에 오류가 발생된 상태에서, 이를 리던던시 셀 어레이(120)의 첫 번째 리페어 블록(RB00)으로 대체하는 경우를 예로써, 본 발명의 플래시 메모리 소자의 워드 라인 리페어 회로의 동작을 보다 상세하게 설명하면 다음과 같다.
- 먼저, 메인 셀 어레이(110)의 두 번째 워드라인에 오류가 발생되면, 두 번째 워드라인의 어드레스에 대한 정보와, 불량 워드라인을 리던던시 셀 어레이(120)의 어느 리페

어 블록으로 대체할 것인지에 대한 정보를 캠 셀 어레이(130)에 저장한다. 여기서, 예로 써 두 번째 워드라인을 리던던시 셀 어레이(120)의 첫 번째 리페어 블록(RB00)으로 대체하기로 한다.

- 한편, 캠 셀 어레이(130)에 저장된 불량 워드라인에 대한 정보에 따라, 도 4에서와 같이, 워드라인 전압 스위칭부(140)에서는 메인 셀 어레이(110)의 두 번째 워드라인에 접속된 제1 스위칭 수단(도 4의 S301)이 오프 상태가 되고, 제2 스위칭 수단(S302)이 온 상태가 된다. 따라서, 프로그램(Program) 동작이나 독출(Read) 동작 시 워드라인 전압 (VWL)은 워드라인 전압 스위칭부(140)에 의해 메인 셀 어레이(110)의 두 번째 워드라인 으로 전달되지 않고, 리던던시 셀 어레이(120)에 연결된 워드라인 선택 수단(150a 내지 150p)으로 전달된다.
- 이 상태에서, 프로그램 또는 독출 동작 시 불량 워드라인인 두 번째 워드라인이 선택되면, 캠 셀 어레이(130)에 저장된 불량 워드라인의 대체 정보에 따라 제1 인에이블 신호(RBEn00)가 제1 워드라인 선택 수단(150a)으로 인가된다.
- 도 1 및 도 5에서와 같이, 제1 인에이블 신호(RBEn00)에 의해 제1 워드라인 선택수단(150a)의 제1 스위칭 수단(S500)이 온상태가 되면서 제1 워드라인 선택수단(150a)은 인에이블되고, 워드라인 전압(VWL)은 제2 내지 제65 스위칭 수단(S501 내지 S564)으로 스위칭된다. 이때, 메인 셀 어레이(110)로 인가되는 Y 디코더(170)의 열 선택 신호 (Y00 내지 Y63)도 제1 워드라인 선택 수단(150a)에도 인가된다. 한편, 제2 내지 제 16 워드라인 선택 수단(150b 내지 150p)으로도 열 선택 신호(Y00 내지 Y63)가 인가되지만, 제1 인에이블 신호(RBEn00)에 의해 제1 워드라인 선택 수단(150a)만이 인에이블되기 때문에 제2 내지 제 16 워드라인 선택 수단(150b 내지 150p)은 동작하지 않는다.

제1 워드라인 선택 수단(150a)이 인에이블된 상태에서, 열 선택 신호(Y00)에 의해 메인 셀 어레이(110)의 제1 I/O 블록(도 2의 DO)의 첫 번째 셀(도 2의 A)이 선택되면, 열 선택 신호(Y00)에 의해 제1 워드라인 선택 수단(150a)의 제2 스위칭 수단(도 5의 S501)이 온상태가 되어 제1 워드라인(RWL00)이 선택되고, 제1 스위칭 수단(S500)으로부터 전달된 워드라인 전압(VWL)이 제1 리페어 블록(RB00)의 제1 워드라인(RWL00)으로 스위칭된다.

- 제1 워드라인(RWL00)에는 16개의 셀(도면에서는 3개만 도시됨; A', D' 및 G')가 연결되어 있으나, 제1 셀(A')만이 메인 셀 어레이(110)의 제1 I/0 블록(도 2의 D0)의 첫 번째 셀(도 2의 A)과 동일한 제1 I/0 단자(I/O 0)와 연결되어 있다. 따라서, 제1 워드라인(RWL00)의 제1 셀(A')만이 메인 셀 어레이(110)의 제1 I/O 블록(도 2의 D0)의 첫 번째 셀(도 2의 A)과 동일한 프로그램 또는 독출 동작을 할뿐, 다른 셀들은 동작하지 않는다
- 이러한 동작으로, 메인 셀 어레이(110)의 제1 I/O 블록(도 2의 DO)의 첫 번째 셀(도 2의 A)에 저장될 데이터가 리던던시 셀 어레이(120)의 제1 리페어 블록(RB00)의 제1 셀(A')로 저장되고, 독출 시에도 메인 셀 어레이(110)의 제1 I/O 블록(도 2의 DO)의 첫 번째 셀(도 2의 A) 대신에 리던던시 셀 어레이(120)의 제1 리페어 블록(RB00)의 제1 셀(A')에 저장된 데이터가 독출된다.
- 또한, 상기의 동작을 반복하여, 메인 셀 어레이(110)의 제2 워드라인의 제1 I/0 블록에 포함된 16개의 셀(도 2에서는 3개만 도시됨; A, B 및 C)에 저장될 데이터는 리던던시 셀 어레이(120)의 제1 리페어 블록(RB00)의 제1 I/0 단자(I/00)에 연결된 16개의 셀(도 3에서는 3개만 도시됨; A', B' 및 C')에 저장되고 독출된다.

"데인 셀 어레이(110)의 제2 워드라인의 제8 I/O 블록에 포함된 16개의 셀(도 2에서는 3개만 도시됨; D, E 및 F)에 저장될 데이터는 리던던시 셀 어레이(120)의 제1 리페어블록(RBOO)의 제8 I/O 단자(I/O7)에 연결된 16개의 셀(도 3에서는 3개만 도시됨; D', E' 및 F')에 저장되고 독출된다.

- 에인 셀 어레이(110)의 제2 워드라인의 제16 I/O 블록에 포함된 16개의 셀(도 2에서는 3개만 도시됨; G, H 및 I)에 저장될 데이터는 리던던시 셀 어레이(120)의 제1 리페어 블록(RB00)의 제16 I/O 단자(I/O15)에 연결된 16개의 셀(도 3에서는 3개만 도시됨; G', H' 및 I')에 저장되고 독출된다.
- 상기의 동작을 통해, 오류가 발생된 워드라인을 리던던시 셀 어레이(120)의 제1 리페어 블록(RB00)으로 대체하여 워드라인의 리페어가 가능해진다.

【발명의 효과】

상술한 바와 같이, 본 발명은 불량 비트라인 뿐만 아니라 불량 워드라인까지 리페어할 수 있으므로, 수율 저하를 방지하고 소자의 신뢰성을 향상시킬 수 있다.

【특허청구범위】

【청구항 1】

다수의 셀이 I/O 블록 단위로 구분된 메인 셀 어레이;

워드라인의 수가 상기 I/O 블록을 구성하는 열의 수와 일치하고, 상기 워드라인에 연결된 셀의 수가 상기 I/O 블록의 수와 일치하는 리페어 블록들로 이루어진 리던던시 셀 어레이;

상기 메인 셀 어레이의 불량 워드라인 정보 및 상기 불량 워드라인을 대신하는 리 페어 블록에 대한 연결 정보를 포함한 정보를 저장하는 캠 셀 어레이;

상기 불량 워드라인 정보에 따라 상기 불량 워드라인으로 인가되는 워드라인 전압을 상기 리던던시 셀 어레이로 전달하는 워드라인 전압 스위칭부; 및

상기 연결 정보에 따라 인에이블되고, 상기 메인 셀 어레이의 열 선택 신호에 따라 상기 I/O 블록의 열과 대응하는 상기 리페어 블록의 워드라인을 선택하여 선택된 워드 라인으로 상기 워드라인 전압을 인가하는 워드라인 선택수단을 포함하며,

상기 불량 워드라인에 저장될 데이터를 I/O 블록 단위로 상기 리페어 블록의 해당열에 차례로 저장하여 상기 불량 워드라인을 리페어하는 것을 특징으로 하는 플래시 메모리 소자의 워드 라인 리페어 회로.

【청구항 2】

제 1 항에 있어서,

**** •

상기 I/O 블록은 16개인 것을 특징으로 하는 플래시 메모리 소자의 워드 라인 리페어 회로.

【청구항 3】

제 1 항 또는 제 2 항에 있어서,

상기 I/O 블록은 1024개의 워드라인과 64개의 열로 이루어지며, 상기 리페어 블록은 64개의 워드라인과 16개의 열로 이루어진 것을 특징으로 하는 플래시 메모리 소자의 워드 라인 리페어 회로.

【청구항 4】

제 1 항에 있어서, 상기 워드라인 전압 스위칭부는,

워드라인 전압공급 단자와 상기 메인 셀 어레이의 워드라인들 간에 각각 접속되며 상기 캠 셀 어레이의 불량 워드라인 신호에 따라 동작하는 제1 스위칭 수단;

상기 불량 워드라인 신호를 반전시키는 인버터;

상기 인버터에서 생성된 불량 워드라인 반전 신호에 따라 상기 워드라인 전압을 상기 워드라인 선택 수단으로 전달하는 제2 스위칭 수단을 포함하는 것을 특징으로 하는 플래시 메모리 소자의 워드 라인 리페어 회로.

【청구항 5】

제 4 항에 있어서,

상기 제1 스위칭 수단 및 제2 스위칭 수단은 전계효과 트랜지스터인 것을 특징으로 하는 플래시 메모리 소자의 워드 라인 리페어 회로.

【청구항 6】

제 1 항에 있어서,

상기 워드라인 선택수단은 상기 리페어 블록마다 구비되는 것을 특징으로 하는 플 래시 메모리 소자의 워드 라인 리페어 회로.

【청구항 7】

제 1 항 또는 제 6 항에 있어서, 상기 워드라인 선택수단은,

상기 캠 셀 어레이에 저장된 상기 연결 정보에 따라 발생된 인에이블 신호에 의해 구동되며 상기 워드라인 전압을 스위칭하는 제1 스위칭 수단;

상기 제1 스위칭 수단 및 상기 리페어 블록의 워드라인들 간에 각각 접속되고, 상기 메인 셀 어레이의 상기 열 선택 신호에 따라 해당 열에 대응하는 상기 리페어 블록의 워드라인으로 상기 워드라인 전압을 스위칭하는 다수의 스위칭 수단을 포함하는 것을 특징으로 하는 플래시 메모리 소자의 워드 라인 리페어 회로.

[도 2]

출력 일자: 2003/4/17

[도 3]

[도 4]

