TP555 - AI/ML

Lista de Exercícios #11

Redes Neurais Artificiais (Parte 1)

 Usando-se o modelo do neurônio de McCulloch e Pitts, qual seria o valor do limiar de ativação, θ, para classificar a função booleana abaixo (dada pela tabela abaixo)?
 Desenhe a função de ativação e o neurônio, indicando quais entradas são inibitórias, caso haja alguma.

(**Dica**: Entradas inibitórias são entradas que têm seus valores 'negados'. Vocês podem precisar ter uma ou mais entradas inibitórias para encontrar o valor de θ .)

x_1	x_2	x_3	y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	0

- 2. Baseado no que você aprendeu até aqui sobre o modelo do neurônio de McCulloch e Pitts e do modelo perceptron, seria possível classificar a função booleana XOR com algum desses dois modelos? Explique os motivos pelos quais pode-se ou não realizar tal classificação.
- 3. Por que geralmente é preferível usar um classificador de regressão logística em vez de um perceptron? Quais modificações você deve aplicar a um perceptron para torná-lo equivalente a um classificador de regressão logística?
- 4. Implemente um perceptron que classifique com 100% de precisão os dados das funções lógicas dadas a seguir utilizando a regra de aprendizado do perceptron. Em seguida, para cada uma das funções lógicas, plote uma figura mostrando:
 - a. A fronteira de decisão que separa as 2 classes.
 - b. O número de épocas versus o erro quadrático médio (MSE) por época.

(**Dica**: Não se esqueça que um perceptron tem uma entrada x_0 , que é sempre feita igual a 1 para que o peso referente ao *bias* seja ajustado juntamente com os outros pesos sinápticos.)

(**Dica**: Encontre o valor ótimo do passo de aprendizagem, α .)

(Dica: Use np.random.permutation para embaralhar os dados a cada nova época.)

(**Dica**: Execute a regra de aprendizagem por um número predefinido de épocas, e.g., 2000, e sempre armazene o vetor de pesos sinápticos, w, que resulte no menor erro quadrático médio (MSE)).

	AND			
(a)	\mathbf{x}_1	\mathbf{x}_2	y	
	0	0	0	
	0	1	0	
	1	0	0	
	1	1	1	

OR			
\mathbf{x}_1	\mathbf{x}_2	\mathbf{y}	
0	0	0	
0	1	1	
1	0	1	
1	1	1	
	0	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	

5. Neste exercício você irá comparar a performance de classificação de um perceptron com a de um regressor logístico. Use o código abaixo para gerar os dados pertencentes a duas classes:

```
# Number of examples.
N = 1000
centers = [[-0.5, 0], [0, 1.5]]
X, y = make_blobs(n_samples=N, centers=centers, random_state=42)
```

Em seguida, faça o seguinte:

- a. Plote os dados do conjunto de treinamento em relação às classes a que pertencem. Ou seja, defina marcadores diferentes para identificar cada uma das classes na figura. Por exemplo, use círculos para denotar exemplos que pertencem à classe 0 e quadrados para denotar exemplos que pertencem à classe 1.
- b. Instancie um objeto da classe Perceptron, use a linha abaixo para realizar a instanciação.

```
per = Perceptron(random_state=42)
```

Em seguida, treine o modelo, faça a predição com X e calcule a precisão deste modelo como mostrado abaixo:

```
# Calculate and return the accuracy on the test data
accuracy = accuracy_score(y, y_pred)
print('accuracy: ', accuracy)
```

- c. Plote a matriz de confusão e a figura com a fronteira de decisão para a classificação com o perceptron.
- d. Instancie um objeto da classe LogisticRegression, use a linha abaixo para realizar a instanciação.

```
per = LogisticRegression(solver='lbfgs', random_state=42)
```

Em seguida, treine o modelo, faça a predição com X e calcule a precisão deste modelo como mostrado abaixo:

```
# Calculate and return the accuracy on the test data
accuracy = accuracy_score(y, y_pred)
print('accuracy: ', accuracy)
```

- e. Plote a matriz de confusão e a figura com a fronteira de decisão para a classificação com o regressor logístico.
- f. Baseado nos resultados obtidos, qual dos 2 classificadores apresenta melhor performance? Você conseguiria explicar porque ele apresenta melhor performance?