V Международная конференция

Математическое моделирование в материаловедении электронных компонентов

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ТЕПЛОПРОВОДНОСТИ НАНОНИТЕЙ – ПЕРСПЕКТИВНЫХ КОМПОНЕНТОВ ПОЛУПРОВОДНИКОВОЙ ПРОМЫШЛЕННОСТИ

Докладчик Лю Шисян

Лю Ш., аспирант
Баринов А.А., к. т. н., доцент
МГТУ им. Н.Э. Баумана, кафедра «Теплофизика»

Москва, 2023

ВВЕДЕНИЕ

Нанонити являются широко распространенным объектом научных исследований и опытных разработок в области полупроводниковой промышленности, оптоэлектроники и пр. в связи с их уникальными свойствами.

Экспериментальные исследования [1][2] показали:

Теплопроводность кремниевых (Si) нанонитей примерно на два порядка ниже, чем у массивных.

Шероховатость поверхности оказывает существенное влияние на теплопроводность Si-нанонитей: чем выше шероховатость, тем ниже теплопроводность.

Факторы, определяющие уникальные свойства нанонитей:

- Влияние квантового размерного эффекта на дисперсию фононов
- Влияние классического размерного эффекта на диффузию фононов в нанонитях
- морфология поверхности нанонитей, т.е. учет шероховатости границ реального образца.

Рис.1. Зависимость теплопроводности от температуры при разных диаметрах. [1]

^{1.} Li D. et al. Thermal conductivity of individual silicon nanowires // Appl. Phys. Lett. 2003. V. 83. N. 14. P. 2934-2936.

^{2.} Lim J. et al. Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires // Nano Lett. 2012. V. 12. N. 5. P. 2475-2482.

Рис.2. Типы упругих волн: (а)крутильные; (b) продольные; (c) изгибные.

Крутильные волны [3]

$$\beta \cdot J_0(\beta) - 2J_1(\beta) = 0$$

Дисперсионные уравнения для упругих волн, распространяющихся в стержнях со свободными границами

Продольные волны [3]

$$(\xi^2 - \beta^2)^2 \frac{\alpha J_0(\alpha)}{J_1(\alpha)} + 4\xi^2 \alpha^2 \frac{\beta J_0(\beta)}{J_1(\beta)} = 2\alpha^2 (\xi^2 + \beta^2)$$

Изгибные волны [3]

$$J_{1}(\alpha)J_{1}^{2}(\beta)\begin{vmatrix} \xi^{2} - \beta^{2} + 4 - 2\Psi_{\alpha} & 2\xi(\beta^{2} - 2 + \Psi_{\beta}) & 2\Psi_{\beta} - 4 \\ 4 - 2\Psi_{\alpha} & 2\xi(\Psi_{\beta} - 2) & \beta^{2} - 4 + 2\Psi_{\beta} \\ 2\xi(\Psi_{\alpha} - 1) & (\beta^{2} - \xi^{2})(\Psi_{\beta} - 1) & \xi \end{vmatrix} = 0$$

где $\beta=k_TR$, $\alpha=k_LR$, $\xi=kR$, J_0 и J_1 - функции Бесселя первого рода.

^{3.} Achenbach J.D. Wave propagation in elastic solids. Amsterdam New York: North-Holland Pub. Co, 1973.

Рис.3. Принципиальная схема метода нахождения корня

Алгоритм нахождения ξ и α :

На первом шаге, шаге инициализации, методом обхода определяются два набора корней уравнений, когда значения волнового вектора минимальны (т.е. ξ_1 , ξ_2).

Затем уравнения решаются численно, слой за слоем, с помощью адаптивного метода, учитывающего предыдущие два набора решений.

Преимущества этого алгороитма заключаются в том, что, во-первых, в возможности определения полного набора мод семейства дисперсионных кривых в требуемой области поиска решения, и, вовторых, оно более экономично с вычислительной точки зрения, чем метод полного обхода области решения.

Дисперсионное соотношение упругих волн

$$\Omega^2 = S^2 \cdot lpha^2 + S^2 \cdot \xi^2$$

где $S = c_L/c_T, \Omega = \omega\,R/c_T$

Для перехода к соответствующим дисперсионным соотношениям фононов в кремниевых нанонитях необходимо учесть дискретную природу решетки материала путем умножения на множитель $\sin(ka/2)/(ka/2)$ [4], здесь a - эффективная постоянная решетки кремния.

^{4.} Bifano M.F.P., Kaul P.B., Prakash V. Application of elastic wave dispersion relations to estimate thermal properties of nanoscale wires and tubes of varying wall thickness and diameter // Nanotechnology. 2010. Vol. 21, № 23. P. 235704.

Рис. 8. Групповая скорость фононов в Si-нанонитях диаметром (а) 2,7 нм, (б) 5,4 нм, (в) 10,8нм.

Рис.9. Фононная плотность состояний в Si-нанонитей и в объемном кремнии

Фононная плотность состояний может быть выражена в виде интеграла по первой зоне Бриллюэна:

$$DOS(\omega) = \frac{1}{8\pi} \int_{BZ} \delta(\omega_i(k) - \omega) d^3k$$

где, δ - дельта-функция Дирака.

Рис.10. Фононная теплоемкость в Si-нанонитях

Для нахождения теплоемкости проводится интегрирование по всем модам и типам волн в соответствии с квантовостатистическим подходом к описанию фононов:

$$C_{v}(T) = \sum_{j} \int_{0}^{\omega_{\max,j}} \frac{\partial \bar{n}(\omega, T)}{\partial T} \cdot \hbar \omega \cdot DOS(\omega) d\omega$$

Определение характеристик и свойств фононного газа

- Влияние квантового размерного эффекта на дисперсию фононов
- Влияние классического размерного эффекта на диффузию фононов в нанонитях
- морфология поверхности нанонитей, т.е. учет шероховатости границ реального образца.

$$= \frac{1}{3} \sum_{S} \int_{0}^{\omega \operatorname{max}, J} \hbar \omega \cdot \frac{dn(\omega, T)}{dT} \cdot \operatorname{DOS}(\omega) v_{g}^{2} \tau d\omega$$

Определение характеристик и свойств фононного газа

Рис.11. Фононное дисперсионное соотношение и плотность состояний для объемного кремния, полученные из первых принципов [5]

- Расчеты проводятся в приближении локальной плотности с использованием мягкого псевдопотенциала и плосковолнового базиса.
- Используется обменная корреляция Цеперли-Альдера параметризованная Пердью-Цунгером.
- 5. Wei S., Chou M.Y. Phonon dispersions of silicon and germanium from first-principles calculations // Phys. Rev. B. 1994. V. 50. N. 4. P. 2221–2226.

Рис.12. Схематическое представление различных типов процессоврассеяния фононов.

Рис.14. Интенсивность взаимодействия фононов поляризаций ТА и LA в зависимости от частоты в различных процессах: N – нормальный, U – с перебросом, imp – рассеяние на примесь, и полная интенсивность (N+U+imp)

Рис.13. Принципиальная схема фонон-фононного рассеяния (a) N-процесс; (в) U-процесс

Нормальные процессы:

$$\vec{k}_1 + \vec{k}_2 = \vec{k}_3$$

$$\tau_{i,N}^{-1} = A_i^N \omega^2 T [1 - \exp 3T/\theta_D]$$

Процессы с перебросом:

$$\vec{k}_1 + \vec{k}_2 = \vec{k}_3 + \vec{G}$$

$$\tau_{j,U}^{-1} = A_j^U \omega^4 T [1 - \exp 3T/\theta_D]$$

Фонон-примесь взаимодействие:

$$\tau_{j,imp}^{-1} = A_j^{imp} \omega^4$$

Правило Матиссена:

$$\tau_j^{-1} = \tau_{j,N}^{-1} + \tau_{j,U}^{-1} + \tau_{j,imp}^{-1}$$

Анализ влияния классического размерного эффекта на диффузию фононов

Свободный пробег фононов в нанонити

$$l_z = \begin{cases} l_b \cos \theta, 0 < \theta < \theta_1 \\ \frac{d \cot \theta}{2}, \theta_1 < \theta < \frac{\pi}{2} \end{cases}$$

Рис.15. Функция F в зависимости от числа Kn для различных параметров зеркального отражения р.

Фукс [6] расширяет вышеупомянутую модель на основе уравнения Больцмана.

$$F(Kn_j, p) = \frac{l_{\text{wire}}}{l_{\text{bulk}}} = 1 - \frac{12(1-p)^2}{\pi} \sum_{1}^{\infty} mp^{m-1} G(Kn_j, m)$$

$$G(\operatorname{Kn}_{j}, m) = \int_{0}^{1} \sqrt{1 - \xi^{2}} \int_{1}^{\infty} \exp\left(-\frac{m\xi t}{\operatorname{Kn}_{j}}\right) \frac{\sqrt{t^{2} - 1}}{t^{4}} dt d\xi$$

где, $\mathrm{Kn}_{j}=l_{j}/d$ – число Кнудсена,

p – параметр зеркального рассеяния.

Рис.16. Влияние шероховатости поверхности образа на рассеяние фононов на границе.

 MacDonald D.K.C. Size effect variation of the electrical conductivity of metals // Proc. R. Soc. Lond. A. 1950. V. 203. N. 1073. P. 223-240.

Учет морфологии поверхности нанонитей

Рис. 17. Схема рассеяния фононов на границе нанонити диаметром d и шероховатостью σ

$$\bar{p}(T,\sigma) = \frac{\int p\left(\vec{k},\sigma,\theta\right)\bar{n}\left(\omega(\vec{k}),T\right)d^3k}{\int \bar{n}\left(\omega(\vec{k}),T\right)d^3k}$$

 Soffer S.B. Statistical Model for the Size Effect in Electrical Conduction // J. Appl. Phys. 1967. V. 38. N. 4. P. 1710-1715. Учёт рассеяния на границах строится на модели Казимира-Займана-Соффера [7], устанавливающая связь между параметром p и средней квадратичной шероховатостью σ :

$$p(\vec{k}, \sigma, \theta) = \exp(-4k^2\sigma^2\cos^2\theta)$$

где, σ – средняя квадратичная шероховатость.

 θ – угол между импульсом фонона и нормалью к идеализированной гладкой поверхности.

Рис. 18. Зависимость среднего параметра зеркального отражения от температуры при разных средних квадратичных шероховатостьях.

Рис. 19. Зависимость среднего параметра зеркального отражения от среднеквадратичной шероховатости при разных температурах.

Результаты расчета теплопроводности

Теплопроводность кремниевых нанонитей (температура, диаметр и среднеквадратичная шероховатость)

Рис. 20. Теплопроводность кремниевых нанонитей в зависимости от диаметра и среднеквадратичной шероховатости при температуре 300К.

Рис. 21. Зависимость между шероховатостью поверхности и диаметром кремниевых нанонитей в эксперименте Лима [2], а также заданная шероховатость, соответствующая различным диаметрам нанонитей в эксперименте Ли [1].

Рис. 22. Сравнение теплопроводности Si-нанонитей при заданной шероховатости, соответствующей различным диаметрам, с экспериментальными данными Ли [1] в зависимости от температуры.

- 1. Li D. et al. Thermal conductivity of individual silicon nanowires // Appl. Phys. Lett. 2003. V. 83. N. 14. P. 2934-2936.
- 2. Lim J. et al. Quantifying Surface Roughness Effects on Phonon Transport in Silicon Nanowires // Nano Lett. 2012. V. 12. N. 5. P. 2475-2482.

- 1. Разработан программный алгоритм в программе MATLAB и построена дисперсионная кривая нанонитей. Кроме того, получены групповая скорость и плотность состояний фононов в нанонитях. Это дает возможность использовать программу для теоретических расчетов в физике твердого тела, механике и теплофизике.
- 2. Разработана модель для исследования влияния квантового размерного эффекта на теплоемкость. Результаты показывали, что квантовый размерный эффект важен при низких температурах для нанонитей диаметром менее 20 нм.
- 3. Разработан комплекс программ, позволяющий проводить оценку и прогнозирование теплопроводности нанонитей в зависимости от температуры, диаметра и морфологии поверхности, оказывающей определяющее влияние на теплоперенос.
- 4. Проведена валидация путем сравнения с экспериментальными данными по теплопроводности кремниевых нанонитей с диаметрами 37 нм, 56 нм и 115 нм в диапазоне температур от 100 до 350К. При этом использованные параметры шероховатости хорошо согласуются с технологическими характеристиками реальных поверхностей нитей.

Спасибо за внимание