Lösungen – Lösungen – Lösungen – Lösungen – Lösungen

Vorkurs Mathematik 2019 | Lösungen zum Thema

Beweistechniken II

Aufgabe 1: Kontraposition I

Verwende einen Beweis durch Kontraposition, um folgenden Satz zu zeigen.

Satz I

Ist für $x, y \in \mathbb{R}$ das Produkt xy irrational, so muss eine der Zahlen x oder y irrational sein.

Lösung: Voraussetzung: Seien $x, y \in \mathbb{R}$.

Behauptung: Ist xy irrational \Rightarrow x irrational oder y irrational.

Beweis: $(xy \ irrational \ \Rightarrow x \ irrational \ oder \ y \ irrational)$ ist äquivalent zu $(x \ rational \ und$ $y \ rational \Rightarrow xy \ rational$). Seien also $x, y \ rational$. Dann gibt es $a, b, c, d \in \mathbb{Z}$,

 $b \neq 0, d \neq 0$ mit $x = \frac{a}{b}, y = \frac{c}{d}$. Dann ist $xy = \frac{a}{b}\frac{c}{d} = \frac{ac}{bd}$ rational.

Aufgabe 2: Kontraposition II

Verwende einen Beweis durch Kontraposition, um folgenden Satz zu zeigen.

Satz II

Ist n eine ganze Zahl und n^2 gerade, so ist n gerade.

Lösung: Voraussetzung: Sei $n \in \mathbb{Z}$.

Behauptung: n^2 gerade \Rightarrow n gerade.

Beweis: Die zu zeigende Aussage ist äquivalent zu: n ungerade $\Rightarrow n^2$ ungerade. Sei also n ungerade. Dann gibt es ein $k \in \mathbb{Z}$, sodass n = 2k + 1. Dann ist $n^2 = (2k + 1)^2 =$ $4k^2 + 4k + 1 = 2(2k + 2k) + 1$, was, da $2k^2 + 2k$ eine ganze Zahl ist, nach Definition ungerade ist. Damit folgt die Behauptung. (Alternativ ist die zu zeigende Aussage die aus Aufgabe 1 bei Beweistechniken I, und ist daher wahr).

Aufgabe 3: Widerspruchsbeweis

Beweise folgenden Satz.

Satz III

Seien $x, y \in \mathbb{R}$ mit x irrational und y rational. Dann ist x + y irrational.

Lösung: Voraussetzung: Seien $x, y \in \mathbb{R}$ mit x irrational und y rational. Behauptung: x+yist irrational. Bewies: Angenommen, x+y wäre rational. Dann gäbe es $a \in \mathbb{Z}$, $b \in \mathbb{N}$ mit $x+y=\frac{a}{b}$. We gen y rational gibt es gibt es weiterhin $c\in\mathbb{Z}, d\in\mathbb{N}$ mit $y=\frac{c}{d}$. Damit gilt nun $x = (x + y) - y = \frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd} \in \mathbb{Q}$, also x rational, ein Widerspruch zu x irrational. Damit folgt die Behauptung.

Lösungen – Lösungen – Lösungen – Lösungen

Aufgabe 4: Quadratwurzel

- (a) Sei $a \in \mathbb{R}, a \ge 0$. Definiere formal das Symbol \sqrt{a} für die Quadratwurzel von a.
- !(b) Beweise Satz IV!

Satz IV

Die Quadratwurzel aus 2 ist irrational.

Hinweis: Verwende einen Widerspruchsbeweis und stelle $\sqrt{2}$ als gekürzten Bruch dar. Benutze Satz II, um mehr über diesen Bruch herauszufinden. Lösung:

- (a) HINWEIS für Tutoren: Beachte, dass erst durch die Forderung $b \ge 0$ die Quadratwurzel eindeutig wird, da die Gleichung $b^2 = a$ zwei Lösungen hat! Wir definieren \sqrt{a} einer nicht-negativen reellen Zahl a als die eindeutige Zahl $b \in \mathbb{R}$, sodass $b \ge 0$ und $b^2 = a$ gilt.
- (b) HINWEIS für Tutoren: Wenn der Hinweis nicht ausreicht, kannst du noch als Tipp geben, dass man darauf hinaus möchte, dass sowohl Zähler als auch Nenner dieses Bruchs gerade sind.

Voraussetzung: Leer Behauptung: $\sqrt{2}$ ist irrational.

Beweis: Angenommen, $\sqrt{2}$ ist eine rationale Zahl. Dann existieren natürliche Zahlen a und b, sodass $\sqrt{2} = \frac{a}{b}$ ist. Wir können davon ausgehen, dass der Bruch vollständig gekürzt ist, dass also a und b teilerfremd sind.

 $Es\ gilt$

$$2 = \sqrt{2}^2 = \frac{a^2}{h^2}.$$

Daher ist $a^2 = 2b^2$ eine gerade Zahl, also ist auch a gerade nach Satz II. Daher gibt es eine natürliche Zahl r, sodass a = 2r ist. Setze dies ein und erhalte

$$2b^2 = a^2 = (2r)^2 = 2(2r^2).$$

Dies impliziert $b^2 = 2r^2$. Also ist auch b^2 gerade und damit auch b.

Dass aber a und b beide gerade sind, widerspricht der Annahme, dass wir $\sqrt{2}$ als vollständig gekürzten Bruch dargestellt haben – Widerspruch. Folglich war die Annahme falsch und $\sqrt{2}$ ist irrational.

Aufgabe 5: Größte natürliche Zahl

Finde den Fehler in folgendem falschen Beweis: Behauptung: 1 ist die größte natürliche Zahl.

Lösungen – Lösungen – Lösungen – Lösungen

Beweis: Sei N die größte natürliche Zahl. Angenommen, $N \neq 1$. Dann ist N > 1. Dann ist aber $N^2 > N$, also N nicht die größte natürliche Zahl, ein Widerspruch. Also muss 1 die größte natürliche Zahl sein.

Lösung: Der Beweis verwendet, dass die größte natürliche Zahl existiert, was aber nicht der Fall ist.

! Aufgabe 6: Primzahlen

Beweise folgenden Satz über Primzahlen.

Satz V

Jede natürliche Zahl größer als 1 hat einen Primteiler.

Hierbei helfen folgende Definitionen:

Definition VI

Seien $a, n \in \mathbb{Z}$. a heißt ein **Teiler** von n, falls es eine ganze Zahl q gibt mit n = qa.

Die dafür übliche Schreibweise lautet a|n. In Worten: a teilt n.

Definition VII

Sei $p \in \mathbb{N}$ und p > 1. p heißt eine **Primzahl**, falls 1 und p die einzigen natürlichen Zahlen sind, die p teilen. Ansonsten heißt p zusammengesetzt.

Definition VIII

Seien $p, n \in \mathbb{N}$ und n > 1. p heißt ein **Primteiler** von n, falls p eine Primzahl ist und n teilt.

Lösung: Beweis: Angenommen, es gibt natürliche Zahlen größer als 1, für die die Behauptung nicht gilt. Sei n die kleinste solche Zahl. n kann keine Primzahl sein, da dann n selbst ein Primteiler von n und damit die Behauptung für n doch erfüllt wäre. Nach Definition VII ist n also zusammengesetzt und besitzt einen Teiler $a \in \mathbb{N}$ mit 1 < a < n, und wir können schreiben $n = aq_1$ für ein $q_1 \in \mathbb{N}$.

Nach unserer Festlegung ist n die kleinste Zahl, für die die Behauptung nicht gilt. Weil a eine natürliche Zahl größer als 1 und kleiner als n ist, muss die Behauptung also für a gelten. Also hat a einen Primteiler, diesen bezeichnen wir mit p. Wir können a wieder als $a = pq_2$ für ein $q_2 \in \mathbb{N}$ schreiben. Mit $n = aq_1$ haben wir somit den Ausdruck $n = pq_1q_2$, womit p ein Teiler von n ist. Also hat n einen Primteiler, im Widerspruch zur Wahl von n. Daher war unsere Annahme falsch und jede natürliche Zahl größer als 1 besitzt einen Primteiler.

