

AWS/TR-80/003 REVISED

CALCULATING TOXIC CORRIDORS

by

Capt Jon P. Kahler
AWS/DNXP
Lt Col Robert G. Curry
AFGWC/DOP
Maj Raymond A. Kandler
DET 24, 26WS

NOVEMBER 1980

(Revised April 1989)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AIR WEATHER SERVICE (MAC)
Scott Air Force Base, Illinois, 62225-5008

90 05 24 036

REVIEW AND APPROVAL STATEMENT

AWS/TR-80/003, Calculating Toxic Corridors, November 1980, is approved for public release. There is no objection to unlimited distribution of this document to the public at large, or by the Defense Technical Information Center (DTIC) to the National Technical Information Service (NTIS).

This technical publication has been reviewed and is approved for publication.

KPNNETH E. GERMAN, Col, USAF

Assistant DCS/Aerospace Sciences

Munith Edenica

Reviewing Officer

FOR THE COMMANDER

THOMAS A. STUDER, Col, USAF

DCS/Aerospace Sciences

2 1 JAN 1991

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
AWS/TR-80/003		
4. TITLE (and Subtitle)		5. TYPE OF REPORT & PERIOD COVERED
Calculating Toxic Corridors		Technical Report
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(#)
Jon P. Kahler, Capt, USAF; Robert USAF; Raymond A. Kandler, Maj, USA		
9. PERFORMING ORGANIZATION NAME AND ADDRESS Headquarters Air Weather Service (Scott AFB, IL 62225	MAC)	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS		12. REPORT DATE
Headquarters Air Weather Service (MACI	November 1980
Scott AFB, IL 62225		13. NUMBER OF PAGES 97
14. MONITORING AGENCY NAME & ADDRESS(If differen	t trom Controlling Office)	15. SECURITY CLASS, (of this report)
		Unclassified 15. DECLASSIFICATION/DOWNGRADING SCHEOULE
16. DISTRIBUTION STATEMENT (of this Report)		
Approved for public release; distr	ipucion uniimiced	1.
17. DISTRIBUTION STATEMENT (of the abatract entered	in Block 20, if different from	m Report)
· ·		
Revised in April 1989 to pro 16 (Hydrazine), 22 (Monomet Dioxide), 24 (Nitrogen Tetr Dimethyl Hydrazine)	hyl Hydrazine) oxide), and 1), 23(Nitrogen
Toxic Chemicals Hazard Corrido		Spills of Movie Chemicals
Diffusion Evacuation Are	_	Spills of Toxic Chemicals Safety
Dispersion, Disaster Prepa	aredness;	Meteorology
Air Pollution Emergency Act:		Toxic Hazards
Toxic Corridors Missile Propel		
20. ABSTRACT (Continue on reverse side if necessary and Method for defining evacuation area are presented. These spills can pre- exposed to excessive vapor concentrated diffusion equation is used to	as for accidental resent serious he rations downwind	ealth hazards to people of the accident. An empir-
width of the toxic corridor, specifi	led in angular de	ownwind hazard distance. The
mean wind direction, is based upon	the variability	of the wind direction
Flexibility in estimating toxic con	cridor evacuation	areas is allowed through
a choice of four different methods	involving the us	e of tables, nomograms, and

Block 20				
. 1				
<pre>pa programmable of procedures for of mining evaporate</pre>	calculator. Appe determining meteo ive source streng	endices present prological inpugath, and other	t worksheets, eats, a procedur items.	wample proble e for deter-
•				
	,			
•				
	•			

The Air Weather Service (AWS) is tasked by AFR 355-1, 14 May 1979, (para 2-12g) to provide diffusion predictions for toxic chemicals released to the atmosphere. This technical report presents several forms of a simple technique for use by AWS detachment forecasters for determining toxic corridors in the event of an accidental spill or release to the atmosphere of a toxic chemical. These techniques are largely based upon AWS Pamphlet 105-57, "Calculation of Toxic Corridors," (which has been rescinded), AWSTR 176, "Diffusion Forecasting for TITAN II Operations," and AFGL Report, "The Ocean Breeze and Dry Gulch Diffusion Program, Volume II." Additional information can be found in AWSTR 214, "Guide to Local Diffusion of Air Pollutants". These references and others pertaining to the Ocean Breeze and Dry Gulch programs and toxic corridor forecasting are listed in the references.

The basic technique of using toxic corridor tables calculated from the Ocean Breeze and Dry Gulch equation has been in use for nearly two decades by weather units supporting TITAN missile operations. During that period slight modifications and refinements to the procedures have been made but the basis for the technique has remained the same. This technical report continues the use of the above equation to determine toxic corridor lengths and contains additional, alternative approaches for arriving at the same answer. This additional flexibility should allow AWS forecasters the opportunity to select the means of making these calculations that is best suited to their particular situation.

The authors of this report wish to acknowledge the contributions made by several individuals in their review of this technical report. Maj William Normington from the USAF Occupational and Environmental Health Laboratory provided a general technical review. Col Victor C. Furtado, Chief of Bioenvironmental Engineering, Aerospace Consultants Division, Office of the Surgeon General, reviewed several sections of the report and confirmed many of the exposure limits listed in the table of chemical factors. Air Weather Service Mobilization Augmentee Lt Col James Dicke provided an extremely detailed and comprehensive editorial and technical review of the entire report. The authors sincerely appreciate the contributions provided by all of the above individuals.

NOTE: THE APRIL 1989 REVISION PROVIDED REPLACEMENTS FOR THE FOLLOWING PAGES: 10, 24, 30, 31, 32, 40.

TABLE OF CONTENTS

	Page	е
Chapter l	INTRODUCTION	1
Chapter 2	Lack of Tables for a Particular Toxic Chemical	2 2 2 2 3 3
Chapter 3		5 5
Chapter 4	METHOD 1: TOXIC CORRIDOR LENGTH TABLES	7
Chapter 5	METHOD 2: CHEMICAL AND DIFFUSION FACTORS	1
Chapter 6	METHOD 3: UNIVERSAL NOMOGRAM	9
Chapter 7	METHOD 4: PROGRAMMABLE CALCULATOR	
Chapter 8	SUMMARY	1
REFERENCES	6	3
Appendix A Appendix B Appendix C Appendix D	TOXIC CORRIDOR WORKSHEET	7
Appendix E Appendix F Appendix G	ERROR	7 9
GLOSSARY OF T	ERMS, ABBREVIATIONS, AND SYMBOLS	1
	LIST OF ILLUSTRATIONS	
Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure A-1 Figure A-2 Figure B-1 Figure B-2 Figure C-1	Flow Chart for Method 2	7 8 1 3 0 5 6 8 9
Figure D-1	Estimation	3
- Lyune D I		6

LIST OF TABLES

Table	_	Length Conversion Factors	-
Table	2	Aerozine 50 TCL	_
Table	_	Anhydrous Ammonia TCL	
Table	4	Aniline TCL	
Table	5	Bromine Pentafluoride TCL	
Table	6	Carbon Disulfide TCL	
Table	7	Carbon Monoxide TCL	
Table	8	Chlorine TCL	
Table	9	Chlorine Pentafluoride TCL	
Table	10	Chlorine Trifluoride TCL	
Table	11	Diborane TCL	
Table		Ethylene Oxide TCL	
Table	13	Flourine TCL	
Table	14	FLOX TCL	
rable	15	Fuming Nitrie Acid TCL	
Table	16	Hydrazine TCL	
Table	17	Hydrogen Chloride TCL	
Table	18	Hydrogen Fluoride TCL	
Table	19	Hydrogen Sulfide Tal	7
Table	20	MAP 1, 3, and 4 TCL	3
Table	21	Methylene Chloride TCL	•
Table	22	Monomethylhydrazine TCL	
Table	23	Nitrogen Dioxide TCL	L
Table	24	Nigrogen Tetroxide TCL	
Table	25	Oxygen Difluoride TCL	3
Table	26	Perchloroathylene TCL	į.
Table	27	Perchloryl Fluoride TCL	j
Table	28	Pentaborane TCL	õ
Table	29	Sulfur Dioxide TCL	7
Table	30	Trichloroethylene TCL	3
Table	31	Trichlorotrifluoroethane TCL	}
Table	32	Unsymmetrical Dimethylhydrazine	
Table	33	Chemical Factors	_
Table	34	Diffusion Factors	ŝ
Table	35 .	Probability Factors	1
Table		Summary of Four Toxic Corridor Methods	2
Table	B-1	Estimation of Temperature Difference, Of	L
Table	C-1	Source Strength, GMW, and Vapor Pressures for Selected Toxic	
		Chemicals	l.
Table	F-1	Hydrazine (TITAN - Emergencies))
Table	F-2	Nitrogen Tetroxide (TITAN - Operational)	
Table	F-3	Nitrogen Tetroxide (TITAN - Emergencies)83	3
Table	F-4	Unsymmetrical Dimethylhydrazine TCL (TITAN - Operational) 85	5
Table	F-5	Unsymmetrical Dimethylhydrazine TCL (TITAN - Emergencies) 86	5

INTRODUCTION

The duty forecaster answers the telephone and receives the following message: "A tank truck carrying liquid chlorine jack-knifed near the main gate. The tank ruptured and is spewing chlorine all over. A large chlorine gas cloud is moving across the base toward the housing area. We need to know what areas should be evacuated."

At this point, the duty forecaster must realize that a toxic corridor is required and must know how to prepare one. A large number of lives may depend upon this forecaster's response.

The potential for this type of accident exists virtually everywhere. It is not necessary that toxic chemicals routinely be moved, used, or stored on your installation. Any installation located near highways or railroads is a potential candidate for a toxic spill from trucks or trains that transport chemicals along these routes. The call for a toxic corridor forecast will likely come when least expected. Will you be ready to respond rapidly and accurately to such a request?

This report outlines specific procedures to swiftly provide toxic corridor information based upon atmospheric diffusion considerations at the time of an emergency. Several different approaches to calculating toxic corridors are presented. These techniques are based upon the observed and forecast wind, temperature difference between 54 feet and 6 feet (delta-T), and information pertaining to the toxic chemical that has been spilled or released to the atmosphere.

Toxic corridors represent emergency evacuation areas downwind of accidental spills of toxic chemicals. These spills can occur anywhere toxic chemicals are handled or transported such as missile sites, chemical storage areas, or along rail, water, and highway shipping routes. Specifically, a toxic corridor is the area within which the risk to people from excessive vapor concentrations exceeds an acceptable level.

Assuming correct input parameters are used, the toxic corridor calculated using the techniques presented in this report will result in an area within which the probability is 90 percent that concentrations above a specified limit will be contained. In many cases, this specified concentration will be an estimated or established Short-Term Public Emergency Limit (SPEL). The National Academy of Sciences Committee of Toxicology (1979) has established exposure limits for a large number of toxic chemcials.

The boundary of a toxic corridor does not represent a clearly defined line where one side represents a hazard and the other side complete safety. Remember, a 10-percent probability exists that an exposure limit can be exceeded outside of the specified corridor.

A toxic corridor calculated using this report represents a quick response approach to an emergency situation that should minimize the risks while not requiring excessive areas to be evacuated. The calculation procedures are simple, rapid, and suited to emergency situations.

SUGGESTIONS AND CAUTIONS IN CALCULATING TOXIC CORRIDORS

Lack of Tables for a Particular Toxic Chemical

Occasionally, a corridor table not included in this report may be required for use with Method 1. If assistance in obtaining this information is required, submit a request through channels to Headquarters Air Weather Service, DCS Aerospace Sciences.

If you wish to pursue the problem yourself, ask your local Bioenvironmental Engineer (BEE) for help. First determine the appropriate exposure limit. Normally, this will be the 30-minute Short-Term Public Emergency Limit (SPEL). Unfortunately, SPEL's have not been established for many toxic chemicals. A gram molecular weight for the toxic chemical is also needed. If a SPEL has not been established, work out an acceptable exposure limit for the toxic chemical with the BEE. It is not the intent of this report to provide a procedure for determining an exposure limit. Once an exposure limit and a gram molecular weight has been established, Method 2, 3, or 4 can be used to determine a toxic corridor. If you prefer, produce a toxic corridor table and use Method 1. Plan ahead for any credible emergency. Obviously, it would be impractical to begin developing new tables during an emergency.

Wind Direction Variability (R)

Instructions for determining wind direction variability, which is directly related to the lateral diffusion of the toxic chemical, are provided in the steps for calculating toxic corridors by each method. At locations where direct readouts of wind direction standard deviations (σ_{θ}) are available, wind direction variability (R) is approximately equal to (16/3) σ_{θ} . This makes the corridor width (W), which is 1.5R, equal to 8 σ_{θ} , i.e., (3/2)·(16/3) σ_{θ} = 8 σ_{θ} (Taylor, 1963).

Types of Corridors

Organizations that operate TITAN II sites are prime users of toxic corridor forecasts by Air Weather Service units. Strategic Air Command (SAC) Bioenvironmental personnel have worked closely with the 3rd Weather Wing Staff in carefully planning the use of these toxic corridor diffusion forecasts. SACR 355-5 defines different types of corridors based upon operational requirements. The definitions below are examples of the ways these diffusion forecasts are used.

- a. A Propellant Emission Corridor is established when planned emission of propellants are to occur, e.g., tank venting or purging operations. The exposure limit used for calculating this type of toxic corridor is the 10-minute Short-Term Public Limit (STPL). Since this is a scheduled occurrence, a decision must be made as to whether the planned task can be performed without unacceptable exposures to the general public.
- b. A Potential Hazard Corridor is established when no release of propellants to the environment is planned, but propellants will be in a nonstatic, e.g., propellant transfer, mode. The 10-, 30-, and 60-minute Short-Term Public Emergency Limits (SPEL) are used as exposure limits for calculating these toxic corridors.
- c. An Operational Hazard Corridor is established and periodically updated if an actual propellant spill or mishap occurs. Immediate steps must be taken to evacuate unprotected personnel from the established potential hazard corridor until the exact size of the operational hazard corridor is established. The 10-, 30-, and 60-minute Short-Term Public Emergency Limits (SPEL) are used as the exposure limits for calculating these toxic corridors. Note: The primary difference between potential and operational hazard corridors is that the former is calculated in anticipation of a potential spill and the latter after a spill has occurred.

The Time Factor

A major consideration during emergencies created by accidental spills of toxic chemcials is the reaction time required to evacuate people from the hazardous area. Plans for emergency evacuation should be established so that evacuation is started without delay. Therefore, evacuation might have started before a toxic corridor calculation can be made. The following steps outline one possible sequence of events.

- a. As soon as a toxic spill occurs, the Disaster Response Force (DRF) clears an area of a predetermined radius around the spill site. Base Weather is notified and provides wind information (direction and speed) representative of the spill location at that time. In some instances, e.g., at TITAN missile sites, wind and temperature difference information normally will be provided to Base Weather from the site of the spill.
- b. The DRF begins evacuating areas downwind of the site staying as far ahead of the leading edge of the toxic cloud as possible. The leading edge, even if visible, may not be the toxic edge of the cloud.
- c. Base Weather completes toxic corridor forecast calculations and relays the information to the DRF which completes the evacuation of the toxic corridor.
- d. Base Weather continues close monitoring of weather conditions, updates the toxic corridor forecast as necessary, and relays any significant changes to the DRF.

Potential Sources of Error

Several potential sources of error might contribute to an erroneous estimate of toxic corridors. Errors can occur when measuring or estimating the temperature difference (delta-I) and when estimating source strength and trends in meteorological parameters. Other errors may stem from peculiarities of the toxic chemical, terrain effects that alter the wind and diffusion characteristics of the atmosphere, and the horizontal homogeneity assumption. Each of these potential error sources are briefly discussed in this section.

Toxic corridor lengths are extremely sensitive to the delta-T values used in making the calculations. For example, a lof error in delta-T can result in an error as large as 40 percent in the corridor length. Appendix D provides additional information on this error.

Source strength errors are not as critical as delta-T errors; however, source strength is much more difficult to estimate than delta-T. Corridor lengths are approximately proportional to the square root of the source strength. Appendix C contains information on this error.

Past experience and research have shown that gases such as chlorine which are considerably denser than air do not initially disperse in the same way as gases with densities nearly the same as air. When a large amount of dense gas is released at one time, the spill will form a density front and initially spicad in all directions at once. This can result in a situation where the upwind edge of a highly concentrated gas cloud travels against the wind and spreads upwind of the spill site. Whether or not the upwind edge of a dense gas cloud travels against the wind depends upon whether or not the velocity of the density front is greater than the wind velocity. The density front also causes the initial lateral spread of the cloud to be larger than normal. Vertical spread of the gas will be initially much less than normal and the gas cloud will tend to hug the ground, especially if there is no added huoyancy due to heating/combustion. The cloud will flow downhill and tend to follow errain features such as rivers and valleys and, again, may somewhat "ignore" the direction of the wind. After the gas cloud has traveled a sufficient distance and entrained enough air, its density will be similar to that of air allowing it to diffuse in a more classical Gaussian manner (van Ulden, 1974 and Eidsvik, 1978).

The dense gas effect may cause toxic corridors to be longer than calculated, particularly when the delta-T is negative. Preliminary results of comparisons between a dense gas model and the Ocean Breeze and Dry Gulch model indicate that the differences between calculated corridor lengths tend to disappear under extremely stable (large, positive delta-T) atmospheric conditions. Research into the dense gas problem is on-going and should result in more definitive guidance in the future.

Terrain and surface roughness elements can affect not only the atmospheric dispersion but also the wind direction and speed. The procedure for estimating delta-T (Table B-1) calls for adding -1°F to the estimated value if the toxic spill occurs in rough terrain. Atmospheric diffusion can be enhanced by the increase in turbulence caused by flow over rough terrain. Large buildings and terrain features such as hills and bodies of water can alter wind direction downwind of a spill. Since wind speed is used in terms of several categories in Table B-1 and does not appear in the Ocean Breeze and Dry Gulch equation, a precise value is not critical; however, the correct category is as important as the temperature difference (delta-T) value. These effects must be considered when defining a toxic corridor.

Toxic corridor forecasts should be updated when wind direction changes occur or are forecast to occur. These changes may be due to several causes including 1) passage of a front or trough, 2) the onset of drainage winds in mountainous regions and, 3) shore line wind direction reversals over coastal regions.

There are several reasons why the temperature difference values in Table B-1 should be modified when there is a toxic chemical release in or very near forested areas. Empirical data show that chemical plumes/clouds under forest canopies tend to expand to much larger volumes, at shorter travel distances, than those on generally open, relatively level terrain. Field data also show that wind speeds under canopies are much lower than wind speeds measured on open, level terrain at any given Thus, chemical plumes/clouds travel much farther in a given time over open, level terrains than they do in forests under any given weather situation. Although Johnson (1980) contains an extensive table of corrections applicable to a computerbased model developed for the Department of Defense (DOD), directly applying the corrections to the methods in this report is neither possible nor warranted. Rather, if a toxic chemical release occurs in a forest or is forecast to flow into a forest immediately after release, the forecaster should use the next lower wind speed category to that normally applicable if the out-of-canopy wind speed exceeds 3 knots. Then, add (-1) to the number in Table B-1 before entering the appropriate toxic This approximation does not justify using a number more corridor length table. negative than (-4) in calculating toxic corridor length, even if the spill is in rough terrain.

Any diffusion estimation technique that uses one set of meteorological parameters as inputs assumes the conditions described by these parameters are horizontally homogeneous; i.e., they do not change in the horizontal. Over relatively flat and uniform terrain this assumption is valid; however, the forecaster must insure that factors affecting the representativeness of the input data for a toxic corridor forecast have been considered.

The important aspect of considering potential sources of error is to know what they are and to watch for them in your particular situation. Remember that the procedures in his report are intended for emergency situations and must, therefore, be kept as simple as possible. Time does not permit, and sufficient meteorological data will not usually be available to run a fine-grid numerical model. Thus, a quick and simple technique, tempered by forecaster judgement, must be used to produce a best estimate of the hazard area.

CALCULATING TOXIC CORRIDORS

The following chapters contain step-by-step instructions for calculating toxic corridors using any of four methods. Since the results of toxic corridor calculations are virtually the same, regardless of the method used, the method of choice will likely depend on frequency of forecast request, experience of the forecaster in making this forecast, availability of a toxic corridor length table for the released chemical, and availability of a TI-59 programmable calculator. Method 1 will most likely be used if there is a toxic corridor length table for the chemical; Method 2 if there is no table. Method 3 requires more independent data and would be applicable for unusual combinations of toxic chemicals and exposure limits. Method 4 may be preferred by those skilled in using programmable calculators where specific situations can be handled by executing the general equations in this report. The separate sections for each method are self-contained except that the suggested worksheet is in Appendix A and procedures for determining meteorological elements are in Appendix B. In all four methods, the technique to determine the corridor is a quick, objective, persistence forecast. The forecaster should be alert to factors that could change the wind direction/variability and speed. Atmospheric stability, as reflected by delta-T, changes from hour to hour during the day. Calculations should be repeated if major variables such as source strength, delta-T, wind speed, wind direction, or wind variability change.

Further Consideration

The toxic area should be evacuated until the DRP determines that the hazard no longer exists. Disaster teams should approach from the upwind side and wear appropriate protective equipment. It is important to realize that the toxic material may diffuse in all directions in light and variable winds. Except for denser than air concentrated gas clouds discussed in the previous section of this report, the material will move downwind at approximately the speed of the wind. For instantaneous releases, a toxic cloud will form, while short-term releases will create a short plume. Once the source is terminated, the end of the plume will diffuse as it moves downwind. Therefore, the toxic corridor is active until the material has time to diffuse to an acceptable concentration.

Be prepared to transfer the worksheet sketch of the corridor to an appropriate map. Insure that the corridor is drawn to map scale. General requirements regarding maps and plotting requirements are contained in AFR 355-1. The local disaster preparedness plan should specify the scale and map to use. Table 1 provides conversion factors that can be used to convert feet to other length units. These factors may help you in making scale drawings.

Table 1. Length Conversion Factors.

Convert F rom	то	Conversion Factor
Feet	Meters	3.048×10^{-1}
Feet	Kilometers	3.048×10^{-4}
Feet	Statute Miles	1.894×10^{-4}
Feet	Nautical Miles	1.646×10^{-4}

METHOD 1: TOXIC CORRIDOR LENGTH TABLES

The steps to determine the dimensions of a toxic corridor using this method are presented below. Where applicable, preferred and alternate approache, are given. Toxic corridor length Tables 2 through 32 are required. Two copies of a suggested worksheet are provided in Appendix A, one with sample corridor calculations (Figure A-1) and one blank copy (Figure A-2). A flow chart for using Method 1 is depicted in Figure 1.

a. STEP 1: Determine source strength (lb/min).

- (1) Preferred. Obtain a source strength from the disaster response force (DRF). NOTE: Although weather personnel are not responsible for determining source strength, a toxic corridor length calculation cannot be made without it. Appendix C provides an equation for calculating evaporative source stengths based on the surface area covered by the toxic chemical spill. Use this appendix to assist the agency responsible for estimating source strengths.
- (2) Alternate. For small amounts of liquid or gas (less than 2000 lk), assume the worst case which is total release of the material in one minute. For large amounts of gas, assume total release over five minutes. For large amounts of liquid, assume a source strength of 2000 lb per minute.
- (3) Alternate. For releases of a large amount of material where a source strength cannot be determined from the above procedures, go to alternate procedure in Step 3.
 - b. STEP 2: Determine temperature difference (delta-T (OF)).
- (1) Preferred. Use the mean delta-T based on at least a 10-minute record from a 54-6 foot delta-T instrument. (Available at TITAN II missile sites. Refer to Appendix B, Figure B-1.) NOTE: 54-6 foot delta-T measurements can be made by using a sling psychrometer at the 54- and 6-foot levels of a radar tower.
- (2) Alternate. Use mean surface wind speed category, solar elevation angle, and sky condition to obtain an estimated temperature difference from Table B-1, Appendix B. Refer to the notes in this table concerning rough terrain and forested regions prior to estimating the temperature difference.
 - c. STEP 3: Determine toxic corridor length (TCL) in feet.
- (1) Preferred. Turn to the appropriate toxic chemical corridor length table. Read across from the source strength determined in Step 1 and down from the temperature difference determined in Step 2. The intersected value is the toxic corridor length.
- (2) Alternate. For releases of a large amount of material where no source strength is available, use the distance the wind would carry the material in one hour. This is an interim forecast which must be updated when particulars are known.
- d. STEP 4: Determine mean wind direction and wind direction variability, R (degrees of azimuth). If the surface wind is equal to or less than 3 knots, go to Step 6.
- (1) Preferred. Use the 10-minute recorded wind direction trace and eliminate the two furthest direction fluctuations on each side of the mean. Variability, R, is the difference in degrees between the third largest fluctuation on each side of the mean direction.
- (2) Alternate. Note the wind fluctuations indicated by an anemometer dial over a 2-minute period. Variability, R, is the difference in degrees between the largest fluctuation on each side of the mean direction.

- (3) Approximate. If wind direction fluctuation information is unavailable, assume R is 60° when the wind speed is between 4 and 10 knots; assume R is 30° when the wind speed is greater than 10 knots.
- e. STEP 5: Determine corridor width (W) in degrees by multiplying the value obtained for R in Step 4 by 1.5.
 - f. STEP 6: Plot the toxic corridor.
- (1) Wind speed greater than 3 knots. Draw the corridor center line from the source to the point on the wind direction circle corresponding to the direction the mean wind is blowing towards (i.e., 180 degrees from the recorded mean wind direction), as determined in Step 4. Place W/2, calculated in Step 5, on each side of the center line. Draw the lines which define each side of the corridor. See example worksheet, Figure A-1 in Appendix A.
- (2) Wind speed equal to or less than 3 knots. The corridor is a circle of radius equal to the corridor length determined in Step 3.
- g. STEP 7: Trend forecast. If significant changes in wind direction are expected within the next hour or two, include this information in the briefing. A change in direction that would affect evacuation is significant. Based on continued, close monitoring of weather conditions, relay any significant changes in the toxic corridor forecast to the DRF. Consider changes in winds that have occurred between the time of the spill and the time of the forecast. These changes could alter the shape and size of the toxic corridor.

Figure 1. Flow Chart for Method 1. (NOTE: Lt Alan Shaffer of Det 7, 24WS, Mather AFB, CA developed the original version of this flow chart. Except for a few minor changes by SWW/DN and the authors of this TN, the flow chart remains as originally developed.)

TAME 2. HAZARD CORRIDOR LENGTHS IN FEET FOR THE 30-MIM SHORT TERM PUBLIC EMERGERICY LIMIT, .48 PPM

AEROZINE-50 (A-50) GHW: 4)

	6	7354 8574	91361 19576	23963 27936	29564 34395	34196 39865	#2103 49082	¥8798 56888	54717 63787	67368 78536	78082 91025	56135 112072	111424 129894	137187 159928	159003 185361	178287 207842	219511 255898	254419 296593	353059 423243	447005 521104	518091 603974	580926 677225
	S	6246 7	14263 16	20353 23	25059 29	29045 34	35760 #2	81447 4B	46474 54	57219 67	66319 78	81653 96	94638 111	116520 137	135050 159	151429 178	186442 219	216091 254	308365 353	379664 447	440041 518	493410 580
	-	5246	11978	17093	21046	24393	30033	34809	39030	#8 055	55697	68575	79480	97857	113419	127175	156580	181480	258975	318855	369561	414332
	m	4349	9931	14171	17448	20222	24898	28858	32357	39839	46174	56851	65892	81127	94028	105432	129310	150453	214699	264341	306379	343537
F)	2	0 3552	8 8110	11573	1 1 4 2 4 9	15515	6 20334	1 23567	a 26₹26	7 32536	9 37710	5 46429	9 53812	3 66295	8 76791	1 86104	6 106013	4 122872	175341	5 215882	3 250213	3 280560
DELTA-T (DEG F)	0	2239 2550	5113 6508	7297 9286	8984 1143k	12 13252	20 16316	59 18911	63 21204	13 26107	15 30259	73 37255	28 43179	72 53163		15069 18		46586 69	140695	10 173226	55 200773	88 225123
3 0	7	1715 22	3917 51	5569 72	6882 89	7976 10412	9820 12820	11362 14859	12762 16661	15713 20513	18212 23775	22423 29273	25989 33928	31998 41772	37086 48815	#1584 S4287	51199 66839	59342 77469	84681 110549	04261 136110	120841 157755	135497 176888
	27	1273	2907	4149	\$108	5921	7290	8449 1	9474	11664 1	13519 11	16645 22	19252 29	23752 31	27530 37	30568 41	38006 51	44050 55	62860 81	77394 104	89702 120	166581 135
	٣	806	2074	2960	3644	4223	5200	6027	5758	8320	9643	11873	13761	16943	19637	22019	27110	31421	44839	55206	63985	71746
	7	615	1011	2004	2467	2859	3521	14 0 8G	4575	5533	6259	8039	9317	11471	13296	14908	18355	21274	30358	37378	\$3322	48576
SOURCE	LBS/WIR	1,00	5.30	10.00	15.00	20.00	36.00	\$0°00	50.00	75.00	100.00	150.00	200.00	300.00	400.00	500.00	750.00	1000.00	2000.00	3000,00	4000.00	5000.00

AEROZINE-50 (A-50)

ANHYDROUS AMMONIA TOL TABLE. TOXIC CORRIGOR LENGTHS (FZET) FOR JARIGUS SCURCE STRONGTHS (L&/MIN), DELTA-T (DEG F), AND 75 PPM (3C-MINUTE SPEL). TABLE 3.

					06.13	DELIA-T (vev f	F.)					
4.	•	- 3,	-2•	• • •	•	• -4	2.		• 7	ui,	ç.	%
	72.	107.	150.	202.	263.	. ९८९	418.	511.	617.	734.	95 9P	1338.
- 1	en Cr	244.	342.	461.	601.	705.	454	1108.	1408.	1677.	1574.	23.02.
~	236.	34 E	4 8B.	.159	858	1092.	1361.	1066.	20.10	2393.	-6182	3284.
~	290.	428,	6 01.	-50P	1056.	1344.	1075.	2351.	2414.	2546.	3465.	4044.
(4)	336.	457.	•969	938.	1224.	1558.	1942.	2378.	2868.	3415.	432C.	4687.
4	414.	611.	857.	1155.	1597.	1918.	2391.	2927.	3531.	4504.	455C•	5771.
4	480.	*532	993.	1338.	1747.	2263.	277.	3493.	4092.	4873.	5737.	66.8B•
#1	538 8	754.	1114.	1500.	1959.	2453.	3137.	3434.	4589.	5464.	£443	7499
v	662.	57E.	13 71.	1847.	2412.	3069.	3325•	4684.	5650.	6727.	1551.	4233.
Ų,	545	1356.	1957.	2636.	3442	+3co£+	5459 •	6684.	8362.	.0095	11303.	13176.
2	1095.	1618.	2268.	3056.	3989.	5377.	6327.	1141.	5345.	11127.	131 50.	15272.
- 6	1348.	1552.	2793.	3762.	4911.	0250	7790.	9538.	11505.	13655.	1c125.	16303
-	1563.	2308.	3237.	4360.	5685	1244.	9028.	11055.	13335.	15878.	18054.	21793.
	1753.	2589.	3á25.	4884	6383.	3123.	10123.	12396.	14952.	17504.	20861.	24436
- 2	2158.	3187.	4468.	5020	7854.	13001.	12464.	15262.	18409.	21520.	25866.	30086
2	2501.	3694.	51 79.	6977.	9108.	11592.	14446.	17049.	21337.	25466.	25815.	34871
71)	3565.	5272.	7390.	.9588	12997.	10542.	20615.	25242.	30448.	36255	42685.	45761.
4,	4395.	6451.	-6606	12258.	16002.	20326.	25381.	31079.	37488.	44637.	52555	61266.
Ñ	.E603	7523.	10546.	14207.	18547.	23605.	29418.	36021.	43450.	51736.	66912.	71010
ist	5711.	6435.	11825.	15931.	20797.	26468.	32986.	40330-	48719.	5 6 6 1 1 -	£83CC°	75622.

ANILINE TCL TABLE. TCKIL CORRIDGR LENGTHS (FEET) FOR VARIAUS SOURCE STRENGTHS (LB/MIN), DELTA-T (CEG F), AND 20 PPM (1/5 DF 30-MINUTE EEL). TABLE 4.

į,					DE11	DELT A-T (DEG						
55 LE/4 IN	4	- 3°	-5-	-1.	ò	1.	2.	3.	;	en •	•9	7.
0	•09	88	123.	166.	217.	276.	344.	421.	508.	605.	713.	831.
0	136.	201.	2 82.	379.	495.	• (دو	186.	462.	1161.	1382.	1627.	1897.
o.	194.	267.	402.	542.	107.	- C06	1121.	1373.	1556.	1572.	2342.	2707.
	239.	353.	495	667.	870.	1166.	1381.	1690.	2039.	2428.	2855.	3332•
ŝ	277.	*53\$	574.	773.	1009.	1204.	1600.	1959.	2363.	2614.	3313.	3862.
0	341.	504.	7.06.	951.	1242.	1561.	1970.	2412.	2910.	3465.	4016	4755.
ဂ္	395	£ 84.	819.	1103.	1440.	1652.	2283.	2796.	3372.	4616.	4726.	5512.
Ö	443.	£55.	918.	1236.	1014.	2024.	2560.	3135.	3181.	4503	5361.	6180.
75.0	545.	£C6.	1130.	1522.	1987.	*6797	3152.	3800.	4656.	5544	6527.	7609.
0	-611	1150.	1613.	2172.	2836.	.8696	· 8655	5508.	6644.	1111.	9514.	1 (858.
200.0	£03.	1333.	1865.	2518.	3287.	4100.	5214.	6344	7701.	\$165.	10755.	12585.
o.	11110	1642.	2301.	3100.	4047.	.141¢	6419.	7800.	9481.	11285.	13252	15495.
٥	1288.	1673.	2667.	3593.	4691-	547.3.	7440.	9110.	10989.	13084.	15405.	1 7959.
ာ	1444.	2133.	2591,	4029.	5260.	.4400	8342.	10215.	12322.	14671.	17274.	2Cl 37.
750.0	1778.	2627.	3682.	.1967	6476.	4242.	10271.	12577.	15170.	18664.	21266.	24793.
0*0001	2061.	3044.	4268.	5749.	7506,	9552	11935.	14577.	17583。	. 26535.	24656.	2 8 7 3 6 •
2000.0	2541.	4364.	* 060 9	8204.	10711.	13651.	16988.	20801.	25051.	25676.	351 16.	41006.
3000-0	3621.	£348°	7498.	10101	13187.	10703.	209160	25611.	30893.	36784.	43366.	5 (488.
0*0004	4197.	£155.	8651.	11708.	15284.	19452.	24242.	29634.	358052	42634.	56156.	5 651 7.
5000.0	4 706.	6551.	9745.	13128.	17138.	.21811.	27182.	33284.	40148-	47865.	56284.	65614.

BROMINE PENTAFLUCRIDE TOU TABLE. TUXIC CORRIDOR LENGTHS (FEET) FOR VARICUS SCURCE STRENGTHS (LB/HIN), DELTA-T (DEG F), AND 0.3 PPM (1/5 OF 30-MINUTE EEC). TABLE 5.

	7.	51 84.	11837.	16892.	20798	241 05.	29679.	34399	3 £570.	4 7489.	67767.	78544.	\$6704.	112083.	125677.	154735.	175343.	255924•	315398.	365208.	465501
	• 9	4447.	10154.	1445C.	17846.	20678.	25455.	25567	33086.	40336.	5 & 1 3 1 •	6751	32954.	96145.	107856.	132733.	153841.	219533.	270253.	313277.	351272.
	u1	3777.	E624.	12307.	15153.	17563.	21623.	25062.	26102.	34595	.45273.	51225.	16457	81661.	\$1565.	112737.	130665.	166461.	229573.	266082.	258353.
	*	3172.	7243.	10336.	12726.	14750.	18160.	21048.	23601.	29057.	41465.	48060-	59172.	68582.	76899.	94680.	109737.	156596.	192833.	223464.	250567.
	m m	2630.	6035.	8569.	10550-	12228.	15055.	17449.	19566.	24090	34376.	39843.	49055	56857.	63752.	78493.	90876.	129923.	159841.	185260.	201729.
ī.	5	2148.	4904	. 8669	3616.	. 9866	12295.	14251.	15979.	19674.	24374.	32539.	40063.	46434	52065.	64104.	74298.	106324.	133539.	151298-	.69648.
DELTA-T (LEG	1.	1743.	3925.	5615.	.4160	4013 .	7800	11435.	12822.	15706.	22527.	. 011cz	32141.	37259.	41778.	51437.	59617.	82275.	1047+5.	121403.	136127.
DELT	•	1354.	3092.	4412.	5432.	6296-	7752.	*488°	10074.	12404.	17700.	20515.	25259.	29275.	32826.	40416.	46843.	66846.	82302.	95390.	106959.
	-1.	1037.	2368.	3380.	4161.	4823.	5938.	6882.	7117.	9501.	13559.	15715.	19348.	22425.	25145.	3 3959.	35882•	51265.	63044.	73070.	81932.
	-2-	770.	1758.	2508	.6802	3580.	440B	5109.	5728.	7053,	10065.	11665.	14362.	16646.	18665.	22981.	26636.	38016	46758.	54240	60819.
	-3.	545.	1254.	1756.	2203	2554.	3144.	3644.	4CE6.	5631.	71.75.	8321.	13245.	11674.	13314.	16353.	15000	27113.	33362.	36696	43383.
	, 4,	372.	845.	1212.	1492.	1729.	2129.	2467.	2767.	3406.	4861.	5634.	6536	8039	9015.	11.655.	12864.	18357.	22601.	26195	29373.
i,	25 LB/4IN) • t	5.0	10.0	15.0	20.0	30.0	40.0	50.00	75.0	150.6	500.0	300.0	403.0	გიი• ი	750.0	1000.0	2039.0	30000	4500.0	5333.0

CARBON DISULFIDE TOL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARIOUS SOURCE STRENGTHS (LB/MIN). DELTA-T (DEG F). AND 20 PPH (1/5 OF 30-MINUTE EEL). TABLE 6.

(DELT	DELTA-T (DEG (FJ					
SS B/M IN	- 4.	-3•	-2.	-1.	• 0	;	2.	м	;	เก๋	•9	2
1.0	.99	ဏီ •ဟ	137.	184.	241.	306.	382.	467.	564.	£71.	150	921.
5.0	151.	223.	312.	421.	549.	•659	871.	1067.	1287.	1532.	1864.	21 03.
10.0	215.	31 &	446.	609	784.	968	1243.	1522.	1836.	2187.	2574.	3001.
15.0	265.	351.	548	739.	-595	1228.	1531.	1874.	2261.	2652.	3176.	3595.
20.0	307.	454	630.	857.	1119.	1424.	1774.	2173.	2621.	3120-	3674.	42 83.
30.0	378.	555.	783.	1055.	1377.	1753.	2185.	2675.	3226.	3642.	4523.	5273.
40.0	438	647.	908	1223.	1596.	2032.	2532.	3100.	3740.	4453	5243.	6112.
50.0	465.	726.	1018.	1371.	1790.	2278.	2839.	3476.	4193.	4553	5878.	6853.
75.0	€05.	. 468	1253.	1688.	2204.	2805.	3495.	4240.	5163.	6141.	723€.	8437.
0.64	864.	1276.	1788.	2409.	3145.	4005	4988	6108.	7367.	8772.	1 032 8.	12040.
233.	1001	1478.	2073.	2792.	3645.	4634	5781.	1019.	8538•	16167.	11511.	13955.
330.0	1232.	1626,	2552	3438.	4484.	5712.	7118.	8716.	10513.	12516.	1473 &	1 71 82.
433.0	1.428	2116.	2558	3984.	5201.	6623.	8250.	10132.	12185.	14505.	17082.	1 5914
533.0	1,632.	2366.	3316,	4408.	5832.	7423.	9250.	11327.	13663.	16268.	19154.	22329.
750.0	1572.	2513.	4063.	5501	7181.	9129.	11389.	13746.	16822.	20030.	23563.	27492.
10001	:284.	3376.	4732.	6375.	8323.	105223	13201.	16164.	19497.	23215.	27333.	31864.
2000-0	3261.	4817.	6753.	908s.	11877.	15115.	18837.	23066.	27823.	32125.	35008	45470.
3000.6	4016.	5531.	8315.	11201.	14623.	18610.	23193.	-86597	34256.	40785.	48023*	55534.
4000.u	4654.	.4834.	5637 •	12982.	16948.	21570.	26881.	32915.	39703.	47275.	556c C.	64887.
5000.0	5215	7768.	10806.	14557.	19094.	24180.	33141.	36937.	44518.	130081	62411.	12756.

CARBON MONUXIDE ICL FABLE. TOXIC CORRIDDA L'ENGTHS (FEET) FUR VARIGUS SOURCE STRENGTHS (LE/ALM), DELTA-T (DEG F), AND 100 PPM (3C-MINUTE SPEL). TABLE 7.

-21. 100. 135. 228. 308.
326. 439. 401. 541.
465. 627.
573. 772.664. 894.
745. 1003.
917. 1235.
1308. 1762.
1516, 2042. 1867, 2515.
2163. 2915.
2426. 3268.
2987. 4024.
3462. 4663.
4540. 6655.
5082. 8154.
7649. 5497.
7504. 10648.

CHLORINE ICL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARIOUS SOURCE STRENGTHS (LB/MIN); LLIA-T (CEG F), AND 2 PPM (3C-MINUTE SPEL). TABLE 8.

	7.	3113.	71.08.	10145.	12468.	1 44 74.	17821.	2 (655.	23160.	28515.	4 (6 91.	47162.	58067.	£73 01.	75463.	52912•	1 (7687.	153671.	1 8 52 03.	2152513	245887.
	• 9	2076.	6057.	6761.	10712.	12416.	15267.	17716.	15067.	24466.	34565.	46456.	4561C•	57131.	64133.	19766	52375.	13182C.	162255.	138165*	21,523.
	u [*]	5.68.	\$175.	1350.	*5505	10546.	12584.	15645.	16814.	20175.	25647.	34361.	42306.	45334.	54581.	67653.	16458	111361.	1279+5.	155776-	175148.
	4.	1905.	4344.	6206.	7641.	8856.	10504.	12638.	14171.	17448.	24898.	28354.	35530-	41180.	46175.	56851.	65852.	94625.	115770.	134180.	150454.
	.d •	1579.	3696.	5145.	6335.	13+2.	.0404	13478.	11148.	14465.	20641.	23924.	29456.	34140-	38280.	47152.	54627.	77953.	95977。	111240.	124732.
-	2.	1290.	2945.	4205.	5174.	9665	7383.	8557.	9395.	11813.	16857.	19538.	24056.	27881.	31263.	38491.	44613.	63663.	78383.	92848.	10 18 66.
DELTA-T (DES }	•	Lass.	2303.	3312.	+151.	4611.	.4764	38c6.	.6897	.6246	13567.	15678.	19505	223/2.	25066.	\$ U808.	35751.	5 1083.	62695.	12697.	81738.
DELTA	•	813.	1857.	2047.	3262.	3761.	4655.	5385.	. 5 409	1448.	10624.	12318.	15167.	17579.	19711.	24268.	28127.	40134.	49419.	57276.	64224.
	-1.	623.	1422.	2329.	.6647	2896.	3565.	4123.	4634.	5705.	8141.	9436.	11618.	13465.	15098.	18590-	21540.	30746.	37855.	43875.	49197.
	-2.	462.	1.056.	1506.	1855.	215C.	2647.	3008.	344C.	4235.	6043.	7004.	8624	·\$865	112 08.	13755	15994.	22823	28100.	32565	36519.
		330	753.	1675.	1323.	1533.	1888.	2166.	2454.	3621.	4311.	4556	6152.	7136	-5552	S #43	11466	16260	20044	23232	2 € (4 5.
	• •	223.		328	9	1038.	1278.	1482.	1661.	2045	2515.	61 61 61	4165	7237	5613-	4,446	7776.	66011	13671	15725	17637.
	SS # B/MIN			9 5) () 1	0.05	0 40	7 7	0.02	7.5.0	0.041	0.066	977.0					0.000	0.000		5000.0

CHLORINE PENTAFLULRIUE TUL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARICUS SCURCE STRENGTHS (LB/MIN), DELTA-T (DEG F), AND G.3 PPM (1/5 OF 30-MINUTE EEL). TABLE 9.

					1130	DELT 4-1 (CEU	ř.)					
SS LB/MIN	- 4•	- 3•	-2.	-1.	°.	1.	2.	•	*	u [*]	•	7.
1.0	432.	63.8•	. 855	1206.	1574.	2003.	2496.	3057.	3687.	4380.	5165.	¢056•
5°.0	587.	1458.	2043.	2753.	3594.	+574.	5700.	.0869	8419.	10024.	11803.	13759.
10.0	1408.	2080.	2916	3928.	5120.	0547.	3134.	.6966	12314.	14305.	16842.	15634。
15.0	1734.	2561.	3556	4837.	6314.	• 950 0	10315.	12263.	14752.	17613.	20337	241.74.
20.0	2010.	256E.	4161.	5006.	7316.	9314.	11607.	14213.	17144.	26414.	24034.	2 6018
30.0	2474.	3655.	5123,	.5050	9010	11407.	14291.	17495.	21108.	25134.	25552	34497.
40.0	2863.	4236.	5 93 8.	.000°	10443.	15291.	16564.	20282-	24465.	2915.0	34257.	35583
50.0	3216.	4756	5658.	. C788	11711).	14903.	18573.	22142.	27432.	32663.	38457.	44832
75.0	3955.	5848.	8158.	11.044.	14417.	18349.	22367.	28333.	33175.	40216-	43345.	55158
150.0	5650.	8345	11659.	15760.	20574.	26104.	32632.	34457.	48197.	53625	.3565.	76765.
230.0	6548.	5672.	13559.	18266.	23846.	30240.	37321.	46311.	55861.	((515)	18312.	41294
997°	8062.	11508.	15654.	22449.	29359.	37 505	40506.	57019.	68178.	81854.	5642C.	112403
400.0	9345.	13£C2.	19349.	26066.	34028.	43303.	53972.	66387.	79715.	54518.	111153.	130278
ر. ن.ن.ك	10473.	15476.	21695.	29227	38155.	44500.	63517.	74102.	85383.	106436.	1253Ci. 146079.	146079,
750.0	12501.	15054.	25712.	35985	.17694	54767.	74510.	91235.	110050.	131036.	17428C+	175855
1000.0	14552.	22084.	\$5960.	41707.	54448	.64760	85359.	105744.	127551.	151677.	178815.	2 C E4 56
ט•נרטַּ	21337.	31514.	441 80.	59517.	77698.	93885	123236.	156899.	182017.	216736.	2551 72.	257470
3,000,0	26270.	3 & & C.1.	543 95.	73279.	95653.	141149	151730.	145709.	224103.	266842.	3141 11.	366250
40000	30448.	445 71.	63645.	84952.	110870.	141111-	175859.	215334.	259741.	365277.	3641.43.	45 44 34
5000.0	34141.	50425.	70952	95233.	124323.	158225-	197138.	241451.	291243.	346787.	408256.	475978

CHLGRINE TRIFLUURIDE TUL TABLE. TOKIC CORRIGOR LENGTHS (FEET) FUR VARICUS SCURCE STRENGTHS (LB/MIN), DELTA-T (DEG F); AND C.6 F.M (1/5 UF 30-MINUTE EEL). TA & LE 10.

	1.	5038.	11504.	16417.	27213.	23427•	28844.	33431.	37486.	46153.	65861.	76335.	53985	108931.	122143•	15384.	174299.	246729.	366238.	354938.	3 5 7 9 8 6 •
	• 9	4322.	58652	14083.	17355.	5002€	24143.	28677.	32156.	35556	.35495	65481.	80021.	93442.	104775.	1250CC•	145515.	213306.	262652	304467.	341354.
	u,	3671.	8382.	11561-	14727.	17665.	21015	24351.	27311.	33626.	47585.	• 3 () 5 5	68415.	15365.	*)5538	105566	156321	161211.	223118.	258593	265563.
	4.	3083.	7039.	10045-	12368.	14335.	17049.	20456.	22937.	28240•	40259	46708.	57508.	66653.	74737.	92018	106651.	152152.	187382.	217181.	243521.
	3.	2556.	5836.	8358	10253.	11684.	14632.	16959.	19016.	23412•	33410.	38723.	47676.	55228.	61903.	16286.	88417.	1261/3.	155346.	180050.	20 1867.
F)	5 •	2087.	4766.	0801.	8374.	9705	119 50 •	13850.	15530.	19120.	27285.	31624.	38936.	45128.	50631.	62301.	72209.	103043.	.26868.	147043.	.164877.
DELTA-T (LEU I	;	1675.	3624.	5457.	6719.	7789.	3508.	11113.	12401.	15342.	-+5817	25375.	31243.	50211.	¢טפר+	43951.	> 1 44 1 •	020020	101803.	11/964.	132277.
DELT	•	1316.	3005.	4200.	52äu.	6119.	7534.	8732.	9791.	12055.	17205.	19938.	24548.	28454.	31903.	39280.	45520.	64966	79988.	92738.	103952.
	-1.	1008.	2302.	3285.	+04.	4667.	5771.	.6550	75 00.	9234.	13177.	15273	18804.	21795.	24434.	30088.	34873.	49705.	61271.	71015.	79628.
	-7-	748.	1739.	2438	3002.	3479.	42 34.	÷965•	5507.	0.00°	5162.	11357.	13959.	151 78.	18140.	22335.	25887.	30941.	45482.	52715.	59108.
	(h)	534.	1215.	1735.	2141.	2462.	3 (56.	3542.	3571.	4665.	6817.	£C87.	.1365	11546.	12546.	15532.	1 8465.	26356.	32443*	37652.	42163.
	. 4	361.	825.	1178.	1450.	I683.	2065	2358•	2689.	3310.	4724.	5475.	c 741.	7813.	8761.	13787.	12532.	17841.	2195E.	25459.	28547
	55 11/61) • C		10.01	ر. د ا	23.0	3,00	4 0 • 0	0.00 €.00	75.0	150.0	290.0	0.000	430.0	500.0	753.0	1030.0	2000-0	3000.0	4333.	5000.0

DIBLRANE TOL TABLE. TUKIC CURKIOCK LENGTHS (FEET) FUR VAKIULS SOURCE STRENGTHS (LB/MIN), URLIA-T (CEG F), AND 0.7 PPA (1/7 OF 3G-MINUTE EEL. TABLE 11.

	1.	11145.	25449.	36316.	44712.	51823.	63835•	13952.	82921.	1020%.	145689.	168888.	2 (7901.	24(962.	27C187•	332659.	385561.	556201.	671416.	785144.	EEC368.
	•	92cl.	21 & 3 Cc	31152.	38354.	44454.	54732.	63436.	11136.	£1576.	124573.	144047.	176336.	200055	23176E.	285356.	326736.	471565.	581051.	6132CC.	1551 64.
	u\	£12C.	18541.	26455.	:2576.	37157.	.6487.	£388£4	£C414•	74383.	106140.	123626.	151472,	175566.	156852.	242368.	ž£C\$11•	400863.	453550.	512036.	641416.
	* *	6820.	15572.	22221.	27359.	31713.	39341.	45250.	50738.	62469.	89145.	103321.	127211.	147441.	165323.	203548.	235916.	336659。	414500.	480416.	538683.
	3.	5654.	12903.	18422.	22681.	26248.	32307.	37514.	42363.	51789.	73934.	65557.	105402.	122234.	137058.	168749.	195584.	279132.	343635.	398242.	446581.
FJ	2.	4617.	13543.	15045.	18523.	21469.	20433.	33637.	34352.	42295.	63350.	• 45669	86129.	99326.	111933.	137814.	159733.	.227937.	.80643.	325269.	564713.
DELTA-T (DEG)	٠,	3705.	8403.	12072.	14863.	1/27/	21210.	24503.	21505.	• 868£ E	48433.	salsž.	.61190	80101.	84816.	110503.	120100.	182858.	225167.	200998.	29 2653.
DELT	•	2911.	6647.	9435.	11679.	15530.	16666.	19310.	21658-	20000	38053.	44105.	54303.	62938.	70571.	868398	100706.	143709.	176937.	205075.	229947.
	-1.	2230.	5092.	7266.	8946.	10369.	12765.	14796.	16591	20427.	29145.	33785.	41596.	48211.	54058.	66558.	77142.	110083.	135536.	157090.	176142.
	-2•	1655.	3780.	53 94.	6641.	7057	9470.	10983.	12315.	15103.	21638.	25079.	3 C877.	35787.	40128.	45406.	\$ 12 63.	£1715.	100609.	110665.	130751.
	е М 	1181.	2656.	3 84 7.	4737.	545C.	£76C.	7635.	£785.	1 C 81 6.	15434.	17885.	22 (2 5.	25528*	28624.	35242.	4C E 4 7.	5 62 65.	71766.	E3175-	ç3267.
	- 4•	199.	1825.	2605.	3237.	37117.	4577.	5304.	5548	7323.	13450.	12112.	14912.	17284.	19380.	23861.	:7655.	35465.	48590.	56317.	£3147.
	SS LB/# IN	J. O	5. 5.	10.0	15.0	20.0	30.0	40.0	50.0	75.0	153.3	230.0	300.00	430.0	500.0	753.0	1000-0	2000-0	3330.0	4000.0	5030.0

ETHYLENE CXIDE TOL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FUR VARIOUS SOURCE STRENGTHS (LE/HIN), DELFA-T (DEC F), AND EC PPM (30-MINUTE SFEL). TABLE 12.

	•	5 99.	1367.	1951.	2403.	2785.	3429.	3974.	4456.	5486.	1828.	\$073.	11171.	12548.	14518.	i 7875.	2 C718.	25565.	36493.	4.189.	4 73 06.
	•	514c	1173.	\$ 0.14.	25c1.	23 8 5.	2541.	3405	3622.	4766.	6/15.	7163.	5563 •	11163.	12454.	153325	11112.	25361.	31224.	35186.	46575.
	u i	436.	* 955	1422.	1750.	. 5232	2456.	.5635	3246.	-1652	- 4015	6611 •	£13\$.	5434.	10578.	13623.	15055.	21540.	ž£521•	36738.	34466.
	. 4	366.	837.	1194.	1470.	1704-	5098.	243I.	2726.	3357.	4790.	5552.	6836.	1923.	8883.	10538.	12677.	18090.	22273.	25815.	28945.
	9.	334.	.469	.645	1219.	1413.	1739.	2016.	2260.	2763.	39/1.	4603.	5667.	65cd.	7305.	9968.	10510	14597.	18465.	21401.	23997.
-	2.	248.	567.	* 8C p	995.	1154.	1420.	1040.	1846.	2273.	3245.	3759.	4628.	5364.	e315.	7435.	8583.	12248.	15383.	17478.	19598.
DELTA-T (ueG P	1.	199.	455.	. 640	753.	940.	1140.	.321.	. 461.	1044.	.7 297	3010.	3714.	4304°	+070+	5545	. 1 000	7070	.Cutzi	14025-	15725.
DELTA	• 0	156.	357.	510.	628.	727.	970	1034.	1154.	1433.	2345-	2370.	2916.	3342.	3792.	4604.	5411.	7722.	9508.	11620.	12356.
	4	123.	274.	390.	481.	557.	• 980	195.	.168	1.198.	1506.	1815.	2235.	.1852	2905.	3570.	4145.	5915.	72 83 •	8441.	.6946
	-2-	89.	2 C3.	296.	357.	414.	508	5 50.	062.	815.	1163.	1348.	1655.	1923.	2156.	2055.	3 07 7.	4351.	5406	6266.	7026.
	13.	63.	145.	207.	255.	255.	363.	421.	472.	5.61.	825.	\$62.	1184.	1372.	1536.	1854.	2155.	3132.	3 8 5 6 .	447C.	5012.
	- 4•	4.	-85	140.	172.	200-	246.	285.	320-	383.	562.	£51.	801.	926	1041.	1282.	1486.	2121.	2611.	3026.	3353.
,	SS L B/ B IN	1.0	ل•رَ	10.0	15.0	20.0	33.0	5.04	50.0	75.3	150.0	203.0	333.0	400.0	0.004	750.0	0.0001	2000.0	3000.0	4033.0	50005

FLUCKINE TOL TABLE. TUZIO CURRIGUR L'ENGTES (FEET) FÜR VARIAUS SOURCE STRENGTHS (LEZEIN), DELLA-T (CEG F), AND 2 PP4 (1/5 DF 30-MINUTE EEL) TABLE 13.

					Dell	0c11A-1 (CEV #	3					
SS LB/8 IN	9 9	.33	-2-	-1.	°.	7.	2.	<u>س</u>	•	4 1	ę• •	7.
0.1	307.	454.	637.	858	1120.	1425.	1776.	2175.	2623.	3123.	3077.	42 47.
9 5	702.	1637.	1454.	1958.	2557.	3254.	4055.	49064	.0565	7132.	8357.	•6815
10.0	1002	14EC.	2075.	2795.	3649.	4643.	5187.	7.86.	8547.	10177.	11562.	13969.
15.0	1.234	1822.	.554.	3441.	4492.	5/17.	7125.	8724.	10523.	12530.	14753.	1 71 98.
23.0	1430.	2112.	2566	3988.	5206.	• 9709	8258.	10112.	12197.	14523.	17055.	15933.
30.0	1760.	2666.	3645.	4910.	6410.	8 15d.	10101	12453.	15317.	17681.	21053.	24542.
40.0	2340.	3614.	4425.	5691.	7430.	¥456.	11784.	14429.	17465.	20125.	24466	2 6445.
50.0	2286.	3379.	4737.	6381.	8531.	13603.	13213.	16179.	15516.	23236-	27366.	31895.
75.0	2817.	416C.	5832,	1851.	10257.	15054.	16269.	19920.	24029.	28611.	33666	3 52 70.
150.0	4323.	5537.	8323.	11212.	14637.	14028.	23216.	20427.	34289.	4C828-	44016.	56039.
203.0	4659.	EEE1.	5646.	12995.	16905.	-16612	26938.	52947.	39742.	47321.	55715.	£4850•
300.0	5736.	£472.	11877.	16060.	20807.	20503.	33129.	40566-	48931	56263.	6 6 5 5 7 .	15969•
0.004	6648.	9£1 S.	13765.	18544.	24204.	30810.	33397.	4/017.	56712.	61528.	15566.	52685.
5000	7454.	11010.	15435.	20793.	27145.	34547.	43354.	52719.	63591.	75716.	85148.	1 (3926.
750.0	9178.	13556.	19004.	25601.	33421.	42555	53349	·80*+0	78254.	93225	169161.	127356.
1000.0	10638.	15711.	22026.	29672.	38735.	49284	61439.	75231.	90745-	106051.	127216.	14834.
2000-0	15180.	2242C•	31431.	42343.	55277.	13551.	37675.	137355.	129454.	15415C.	181239.	211632.
30000	1E690.	27664.	38659°	52133.	5805 8•	80611.	107947	132177.	159435.	165641.	223514.	260565•
4000	21.662.	31554.	44853.	60424.	78861.	100392	125113.	153197.	184750-	220031.	.35025	3 (2002.
5000.0	24285.	35675.	502 53•	67752.	88446	112507.	140287-	171771.	201232.	216717.	250476	33 £62 9.

FLOX TCL TABLE. FCX1C LORRIGUR LENGTHS (FEET) FOR VARIOUS SOURCE STRENGTHS (LEVPIN), DELTA-T (CEG F), AND 2 PPM (1/5 OF 30-MINUTE FLUCRINE EEL). TABLE 14.

					DELT	DELT A-T (DEG, F)						
SS Le/# In	- 4.	-3.	-2.	-1.	•	;	2.	M	;	ui,	ģ	, .
1.0	307.	454.	637.	858	1125.	.425.	1776.	2175.	2623.	3123.	3611.	42 87.
	702.	1037.	1454.	1958.	2557.	3254.	4055.	.9965	5990.	1132.	8357.	\$789.
0.00	1 002	1480.	2075.	2795.	3649.	4643.	5787.	7086.	8547.	10177.	11982.	13969
 	1234	1822.	2554.	3441.	4492.	571.1.	7125.	8724.	10523.	12530.	14753.	1 71 98.
0 0 0	089	2112-	2 56 C.	3968	5236.	0620.	8258.	10112.	12197.	14523.	17655.	1 9933.
30.0	1760.	2666.	3645.	4910-	6410.	d 158.	10167.	12450.	15017.	17661.	21053	24545.
40.0	2040.	3014.	4225.	5691.	7430.	9450.	11784.	14429.	17405.	20725.	24466.	28445.
50.0	2288.	3375.	4737.	6381.	8331.	10603.	13213.	16179.	19516.	23238.	273¢C.	31895.
75.0	2817.	41 e C.	5832.	7857.	10257.	13054.	16269.	19920-	24029.	ž£¢11.	33666.	35270.
153.0	4323.	5 53 7.	8323.	11212.	14637.	18628.	23216.	28427.	34288.	46828.	48676	56039.
20.002	4655.	6801.	9546•	12995.	16965.	2153	26903.	32947.	39742.	41321.	55715.	64950.
3000	5736.	£472.	11877.	16000.	20887.	26563.	33129.	40506.	48531.	56263.	£8551.	75968.
433.5	6648.	\$135	13765.	18544.	24208.	33810.	38397.	47017.	56712.	67528.	19566.	\$2685.
0.00S	7454。	11 C1 C.	15435.	20793.	27145.	34547.	43054.	52719.	63551.	75718.	€ 51 4 €.	1 (3926•
750.0	9178.	13556.	19004.	25601.	33421.	42555.	53339.	64538.	78254.	\$3525.	169761.	127956.
0.001	10638.	15711.	22 326.	29672.	38736.	49264	61439.	75231.	93745.	108051.	127216.	14834.
2005.0	15180.	22426.	31431.	42343.	55277.	7351.	87675.	107325.	129494	154190.	161535.	211632.
30005	18690.	27604.	38655	52133.	68058-	èubl7.	107947-	132177.	155435.	165841.	223514.	26(565.
4.000	21662.	31554.	44853.	60424	78881.	133382.	125113.	153197.	184750.	220031.	25505 E-	362302•
5000.0	24265.	35875.	502 53.	67752.	88448	112567.	140287.	171177.	207202-	246717.	296476.	336629.

FUMING AITRIC ACID ICL TABLE. FOXIC CORRIDDR LENGTHS (FEET) FOR VARIGUS SCURCE STRENGTHS (LEZMIN), DELTA-T (DEG F), AND 3 PPM (30-MINUTE SPEL FCR NITRGGEN DIOXIDE). TABLE 15.

					1130	0F114-7 (4.6% +)	-					
5S LB/HIN	.4.	-3.	-2.	-1:	•		2.	m •	4	u i	•9	7.
4.	226.	334.	, c	632.	824.	1049.	1308.	1691.	1931.	.30E3	2766.	3156.
5.0	517.	164.	1070	1442.	1833	2350.	2946.	3656.	4410.	5251.	61 63.	72 07
10.0	738.	1686.	1528.	2058.	-9897	3419.	4261.	5217.	6253.	1453.	8823.	1 (2 85,
15.0	*50 5	1342.	1881.	2534.	33)8.	4209.	5246.	0424.	7748.	5226.	16862.	12663.
20.0	1053.	1555.	2180	2957.	3834.	4679.	6080	7445.	8981.	10693.	12550.	14677
30.0	1296.	1914.	7684.	3615.	4723-	6001.	748¢ -	9167.	11057.	13166.	15501	1 5070.
40.0	1502.	2215.	3111.	4190.	5470.	. 7769	8677.	10624.	12815.	15255.	17566.	2 (944.
50.0	1664.	2486.	3488.	*6694	6134.	7807.	9729.	11913.	14370.	17116.	20145	23484.
75.0	2074.	3663.	42 54.	5785.	7552.	9012.	11979.	14667.	17692.	21066.	24803.	28914.
150.0	2960.	4371.	6126-	8255.	10777.	13716.	17094.	23931.	25247.	30062.	35354.	41261.
200.0	3430	:000	71 03.	9568.	12481.	15857.	19812.	24259.	29262.	34642.	41023.	4 7823.
30,0.0	4223.	6238.	8745.	11781.	15379.	19573.	24393.	29868-	36028.	*55325	56568.	58830
400.0	4895.	7236.	10135.	13654.	17825.	. 2600	23272.	34618.	41757.	45721.	5E54C.	68244.
500.0	5489.	£1C7.	11365.	15310.	19587.	25457.	31701.	38817.	46822.	55751.	65646.	76520
753.3	6758.	.1355	13952.	18850.	24608.	31318.	39031.	47792.	57647.	68642.	86617.	54213。
1000.0	7832.	11566	16218.	21848.	28521.	36259.	45238.	55392.	64815.	:5557	53065.	169.96.
2000.0	11177.	16508.	23143.	31177.	40700.	5 1759.	64555.	79045.	95346.	113536.	133666.	155824.
3000.0	13761.	20325.	28454.	38385.	50111.	63776.	79481.	97322.	117392.	13578C.	164572.	151853.
4000.0	15556.	23557.	33025.	44490.	58080.	73518.	92120.	112799.	136060.	162008.	150744.	222363.
5000.0	17884.	26414.	3 703 C.	49886	65124.	82883.	103293.	126479.	152562.	161657.	213878.	245332

TABLE 16, HAZARD CORRIDOR LENGTHS IN FEET FOR THE 30-MIN SHORT TERM PUBLIC EMERGENCY LIMIT, .24 PPM

HYDRAZINE Gnw: 32

	7	13893	31723	45270	55737	64600	79537	52185	103366	127266	147505	181510	210491	259161	300374	336804	414679	480624	685358	984440	978729	1097432
	9	11918	27212	38832	47811	55444	68227	19017	88668	109169	126530	155786	180560	222309	257662	288912	355713	412281	585331	724364	839557	941381
	v	10122	23113	32982	*0608	- 47066	57949	67164	75310	92723	107468	132317	153359	188818	218846	245388	302125	350172	499700	615239	713079	799563
	*	8501	19411	27700	34104	39528	1998	56407	63248	17872	90256	111124	128796	158576	183794	206085	253735	294086	419665	516695	598868	611438
	ľΉ	7048	16092	\$2964	28274	32770	10347	46763	52435	64558	74825	92126	106776	131465	152371	170851	210355	243507	347917	428361	496482	556696
	αı	5756	13142	18754	23090	26763	29500	38190	42822	52724	61108	75237	87202	107355	124439	139531	171793	199113	284136	349834	\$05467	454643
DELTA-T (DEG F)	p	# 618	10545	15049	8528	21474	26440	30644	34361	42306	# 803#	60371	69972	86150	15866	111961	137848	159769	227993	280708	325350	364809
DELTA-	0	3629	8286	11824	14558	16873	20775	24078	26999	33241	38527	47436	54979	67691	78456	87971	108312	125537	179142	220563	255639	286643
	ī	2783	5 k 5 9	9057	11152	12925	15914	# # # # # 	20681	25463	29512	36336	42115	51852	60098	67387	89528	96162	137225	168953	195822	219571
	2	2063	4712	6723	8278	4656	11813	13691	15352	18901	21997	26973	31262	38490	44611	5005	61588	71382	101863	125415	145360	162989
	£.	1472	3361	96.24	5065	t # 8 9	8426	94.66	10951	13483	.5627	19240	22300	27#56	31822	35681	43931	50918	72660	89460	103687	116263
	ăŢ Î	156	2275	3247	3998	#63#	5705	6612	7 4 1 4	9128	10580	13026	15098	18589	21545	24158	29744	34474	49195	60570	70202	78716
日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日		1.00	5,00	10.00	15.00	25.00	30.00	00.04	50.00	75.00	100,00	150.00	200,00	300.00	460.00	500°00	750.00	1000,00	2000.00	3000.00	4000.00	5000.00

HIDRAZINE

HYDKUGEN CHLLFADE TCL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARICUS SCURCE STRENGTHA (LB/MIN), CELTA-T (DEG F), AND 5 PPM (3C-MINUTE SFEL). 3A & LE 17.

	7.	3556.	£121.	11538.	14267.	16536.	2 (3 6 0.	23558•	26460.	32517.	4 64 89.	53881.	66340•	16896.	66215•	1 CE1 49.	123030.	175566.	21 €1 59.	250535.	2 5 (92 0.
	٠	3051.	6566.	394Ca 1	12235. 1	14125. 1	17465. 2	20242. 2	22657. 2	27945. 3	35076. 4	46225.	56967.	65556.	13556.	91055. 10	105536. 12	150601- 13	185422- 2]	21451C. 2	24007E. 2
	u [*]	2551.	:516.	8443.	10355. 13	12648. 14	1:834" 1	17153. 2	15278. 2	23735. 2	33870. 3	95257. 4	€234. £	3 ·12333	62814. 7	77336. 9	ESE31. IC	127913. 15	157486. 18	162534. 21	76 567736
	•	2176.	4968.	7391.	8730. 1	10118.	12458.	14429.	16190.	19934.	28446.	32969.	40552.	47047.	52753.	64951.	75280.	107426. 1	132264. 1	153298. 1	נ הסטובו
	м	1804.	4119.	5878.	1237.	8388	10328.	11970.	13422.	16526.	23582.	27333.	33652.	35004-	43734.	53847.	62413.	89766. 1	109852.	127085.	
-	2.	1473.	3364.	4431.	5911.	0651.	8435.	9776.	13962.	13496.	19259.	22322.	27483.	31854.	35717.	43975.	53969.	72733.	89550.	103791.	ı
DELTA-T fues r	.4	1162-	• 6597	.2486	4745.	.1440	club.	1844.	4750.	13829.	15454.	17911.	22005.	25560.	28660.	32266.	4 Jē\$a•	58362.	71056.	83263.	
DELTA	• 0	959.	2121.	3027.	3127.	4317.	5318.	6164.	6911.	8539.	12143.	14074-	17328.	20083.	22519.	27720.	32135.	45657.	56460.	65436.	
	-1.	712.	1625.	2319.	2855.	3309.	4374.	4721.	5294.	.518.	9361.	10780.	13273.	15384.	17250.	21238.	24016.	35127.	43249.	50126.	
	-2.	528,	1206.	1721.	2119.	2450.	3 624.	3505.	3 93 0.	4838.	6504.	8002	5853•	11426.	12865.	15765.	18272.	26375	32164.	372 69.	
	- 3.	377.	€6 C•	122 E.	1511.	1752.	-1512	255C.	2 8 (5.	3451.	4525	£706.	3C26.	€14€.	5134.	11246.	13634.	1 86 00.	22500.	2£542•	
	- 4•	255	582.	831.	1623.	1186,	1460.	1653.	1898.	2337.	3335	3865.	4156.	5.51 15.15 15.	0184.	7614.	8825.	12593.	15505.	17973.	
	83 F/8 T	0.**	ئ. ئ	10.0	15.U	ú•¢2	C.08	40.0	5.0	75.0	150.0	201.3	0. 00F	400.0	5,000	750.0	1030.0	2000-0	3000.0	¢000*	

HYDROGEN FLUCKIDE TCL TABLE. TOXÍC GÜRRÍDGR LENGTHS (FEET) FOR Varigus squrcë strengths (Le/Min), delta-t (deg f), and 5 PPM (3C-Minute spel). TABLE 18.

	7.	3723.	8502.	12132.	14957.	17312.	21315.	24705.	27701.	34106.	4 86 70.	56410.	6 54 53.	8 (498.	\$ 62 60.	111130	128803.	183804.	226362.	262290•	254102.
	•9	3154.	7253.	10461.	12813.	14851.	18264.	21152.	23162.	25226.	41 14 5.	48385	58517.	68051.	17426.	5532E.	110488.	157668.	154123.	224554.	252262.
	ui	2713.	£154.	8830.	16.883.	12613.	15536.	17555.	20182.	24645.	25466.	41095	50602.	£ 6645.	65365.	£6567•	53843.	123615	164879.	151095.	214276.
	4	2278.	5202.	7423.	9140.	10593.	13042.	15116.	16950.	20865.	25780.	34516.	42457.	49255.	55229	966619	78812.	112466.	138471.	160481.	175956.
	m •	1889.	4313.	01540	1517.	d782.	16813.	12532.	14052.	17301.	24689.	28615.	35231	40834.	45767.	56373.	65338.	93239.	114797.	133053.	149150.
F.	2.	1542.	3522.	5026.	513B.	7172.	6830.	10235.	11476.	14129.	20163.	23369.	28773.	33348.	37393.	46039.	53363.	76146.	93752.	108662.	121840.
DELTA-T (DEG	1.	125¢.	2826.	4055.	4965.	• 6676	7006.	8212.	920a •	11550.	10179.	18752.	25008-	20759.	30004-	30942.	42817.	olleo.	15228.	37151.	917cb.
0E LT	0.	913.	2221.	3169.	3901.	4522.	5561.	6455.	7235.	.8908	12712.	14734.	18141.	21026.	23576.	29027.	33643.	-48008	- 60165	•80599	76818.
	-7	145.	1701.	2427.	.989.	3464.	4265.	4843.	5542.	6824.	9738.	11286.	13896.	10100.	18059.	22235.	25771.	36775.	45278.	52478.	58843.
	-2-	553.	1263.	1802.	2218.	2571.	3166.	3609.	4114.	5065.	7228.	8378.	10315.	11955.	13405.	16505.	19130.	27298.	33610.	38955	43680.
	n) t	354.	501.	1285.	1582.	1 834.	2258.	2617.	2535.	3613.	515¢.	5576.	7358.	6528.	5562	11773.	12645.	15472.	23875.	21187.	31157.
	- 4.	267.	£10.	870.	1071.	1242.	1525.	1772.	1587.	2446.	3491.	4646.	4982.	. 4115	6474.	7571.	9239.	13184.	16232.	18614.	21095.
	VI F/8 7	0.1	S. c.	10.0	15.0	23.3	30.0	4 G • C	53.3	75.0	150.0	200.0	300.0	490.0	540.0	150.0	1000.0	2000-0	3000°0	4333.0	5000.0

HYDRGGEN SULFIDE ICL TABLE. ICXIC CORRIDDR LENGTHS (FEET) FCR VARIGUS SCURCE STRENGTHS (LB/MIN), CELTA-I (DEG F), AND 2C PPM (1/5 LF 30-MINUTE EEL). TABLE 19.

ų, t					DELT	DELT A-T (CES	1					
15 VI W 17 VI	- 7 -	13.	-2.	7		7:	2.	m	4	41	;	7,
1.0	100	147.	202	278.	303.	+62.	576.	736.	851.	1014.	1153.	13 91.
5.0	22€.	337.	÷12.	636.	830.	, ocu,	1316.	1611.	1944.	2314.	2725.	31 77.
10.0	5.25	460.	673.	901.	1164.	1568.	1878.	22,4.	2774.	3363.	3066	4533.
15.0	40C.	591.	829.	1117.	1458.	1855.	2312.	2831.	-415.	4666.	4766.	5581.
20.0	494	685.	961.	1294.	1690.	2150.	2683.	3281.	3958.	4713.	5545.	6489.
30.08	571.	644.	1183.	1594.	2580.	2648.	3300.	4040	4873.	\$ EC3+	6832.	1964.
40.0	662.	97e.	1371.	1847.	2411.	3669.	3824.	4683.	5648.	6725.	751E.	5231.
50.0	142.	1657.	1537.	2071.	2734.	3441.	4288.	5251.	6333.	7541.	8875.	1351.
75.0	914.	1350.	1893.	2550.	3329.	4236.	5279.	6465.	7798.	5285.	10532.	12744.
150.0	1304.	1527.	2701.	3639.	4750.	.6045.	7534.	9225.	11127.	13256.	156CC.	1 €1 86.
200.0	1512.	2233.	3130.	4217.	5505	1001	3732.	10692.	12857.	1:353.	lecec.	21078.
360.0	1861.	2745.	3854.	5192.	6778.	8627.	13751.	13164.	15879.	18907.	22261.	25951.
6.004	2157.	3186.	4467.	6018.	7856.	• 6556	12461.	15258.	18404.	21514.	25801.	30078.
500.0	2415.	3573.	·5005	6748.	8808	11211.	13972.	17138.	20636.	24512.	2853C.	33726.
150.0	2978-	4355	6167.	8308	10846.	13403.	17203.	21004.	25468.	3C253*	37958	41524.
1000.0	3452.	*5535	1148.	9629.	12571.	15999.	19938.	244140	25448	35064-	41284.	46127.
2000-0	4926.	1276.	1 32 66.	13741.	17936.	22830.	28452.	34839.	42023.	5C036.	58513.	68678.
3000.6	6065.	£556.	12558.	16918.	22086.	20109.	35031.	45894.	51740.	£1667.	12534.	84558
0.0004	1030.	16363.	14556.	19609.	25598.	32579.	43631.	49715.	59968.	71464.	84065	\$ 50035
5000.0	7882.	11642.	16321.	21987.	28703.	36530.	45526.	55745.	67241.	£CC64.	54265	168531

MAF-1, 3, AND 4 TOL TABLE. TOXIC CURRIDOR LENGTHS (FEET) FUR VARIBUS SCURCE STRENGTHS (LU/AL.), DELTA-T (DEC F), AND 50 PPH (30-MINUTE SPEL FOR UDMH). TABLE 20.

		650 .	15.84	2118.	26 07.	3022.	3721.	4315.	4835.	5953•	£456•	5847	12123.	14051.	15756.	15399.	22483.	32084.	35503	45785.	51337.
	•	558.	1213.	1817.	.1233.	2552.	3152.	3655.	4146.	51C3.	72ë £•	844 %	16466	12053.	13515.	16646.	15266.	27522.	33825.	35274.	44037
	u\	474.	1681.	1543.	1900.	2202	2711.	3142.	3523.	4336.	£15C.	1114.	£ £ 3 3 °	16238.	11475.	14133.	16381.	23376.	28781.	33356	37463.
	• 7	398.	.808	1296.	1555.	1849.	2277.	2639.	-6562	3643.	£198•	6025.	7410.	6558	9641.	11870.	13757.	15632.	24171.	28015.	31412.
	· Θ	330.	753.	1074.	1323.	1553.	1887.	2188.	2453.	3620.	4310.	•5665	c1 50.	7128-	7992.	9843.	11405.	16275.	20038.	23225.	20042.
·	2.	569.	515.	871.	1333.	1252.	1541.	1787.	2333.	2466.	3520.	4018.	5322.	5821.	6527.	8036.	9314.	13292.	16365.	13904.	21265.
DELTA-T (DEG r)	1-	.10.	453.	7,5%	86.7.	1005	.1631	.4041	1507.	1979.	2024,	3273.	+050+	+071.	52.7.	6440.	1414.	13665.	13101.	15220.	17000.
DELTA	° c	170.	340.	553.	.189	189.	.716	1120.	1263.	1555.	2219.	2572.	3167.	3670.	4115.	5067.	5373,	438J.	10318.	11959.	13409.
	-1-	130.	297.	424.	522.	605.	144.	963.	• 296	11911	1700.	1970.	2426.	2811.	3152.	3881.	449B	6419.	7934.	9163.	16271.
	-2.	97.	22 C.	315.	3 à 7.	.545	553.	046.	718.	884.	1262.	1462.	1801.	2047.	2340.	2081.	3539•	4765.	5867.	68 CO.	7025.
	-3•	65.	157.	224.	276.	32C.	354.	457	512.	631.	•005	1643.	1284.	1485.	1665.	2055	2.3 £2.	3355	41.85	4 E5 C.	5435
	. 4.	47.	106.	152.	187.	217.	267.	305	347.	427.	£03	106.	8 7C•	1008.	1130.	1391.	1613.	2301.	2833.	3284.	5682.
	55 E8/815	1.0		10.0	15.0	2.05	35.0	49.0	50.0	75.0	150.0	200.0	303.0	430.0	500.0	753.3	1000.0	20002	3000-0	4000	5034.0

METHYLENE CHLCRIDE ICL I ABLE. TOXIC CURRIDOR LENGTHS (FEET) FOR VARIGUS SCURCE STRENGTHS (LB/MIN), DB.TA-T (DEG F), AND 40C PPM (1/5 OF 30-MINUTE EEL). TAB LE 21.

	7.	187.	427.	610.	751.	971.	1072.	1242.	13 63.	1715.	2447.	2837.	3492	4048	4539.	5588.	6417.	5243.	11380.	13189.	14789.
	3	161.	367.	523.	044.	147.	51 5	1066.	1155.	1411.	5527	2433.	2556.	34 12.	3852.	+154.	5556.	1926.	57¢1.	11314.	12656.
	นา	136.	311.	444.	545	. 634.	761.	•555	1015.	1250.	1783.	2067.	. 5 6 4 4 •	.545	3307.	4C31.	4715.	6734.	6291.	.5035	10135.
	.	115.	262.	373.	460.	ता १२ ४१	656.	760.	852.	1046.	1497.	1736.	2137.	2477.	27773.	3419.	3963.	5655.	6363.	8070.	5348
	۳ ۳	95.	217.	309.	301.	+45+	544.	630.	137.	873.	1241.	1439.	1772.	2053.	2302.	2825.	3286.	4668.	5113.	6691.	7532.
-	2.	73.	177 -	253.	311.	361.	• 544	515.	577.	713.	1014.	1175.	1441.	1677.	1633.	2315.	2683.	3829.	4714.	5464.	6127.
DELFA-FICEG F	۲٠	02.	142.	203.	250.	265.	356.	413.	463.	573.	014·	943.	11611	1340.	1509.	1050.	2153.	3072.	3703.	4 J 5 4 .	4916.
DELLA	• •3	***	112.	15%	196.	227.	283.	324.	364.	448.	034.	741.	912.	1057.	1185.	1400.	1692.	2414.	2972.	3445.	3863.
	-1-	37.	86.	122.	150.	175.	214.	248.	279.	343.	490	568.	.660	810.	. 806	1118.	1296.	1849.	2271.	2639.	.959.
	-2.	28•	63.	91.	112.	125.	159.	185.	207.	255.	363.	421.	515.	ó 01 °	674.	830.	962.	1373.	1656.	1959.	2196.
	-3.	2 C•	45.	65.	€0.	55.	114.	132.	148.	182.	255.	301.	376.	425.	481.	552.	666.	*515	1206.	1357.	1567.
	- 4.	13.	31.	4 4	54.	62.	17.	89•	100.	123.	176.	203.	251.	250.	326.	401.	465.	663.	816.	546.	1061.
	SS LB/4 IN	1.0		10.01	15.0	20.0	30.05	40.0	50.0	15.0	153.0	230.0	300.0	430.0	530.0	750.0	1000.0	0.000	3003.0	0.0004	5000.0

TABLE 22. HAZARD CORRIDOR LENGTHS IN FEET FOR THE 30-MIN SHORT TERM PUBLIC EMERGERICY LIMIT, .48 PPM

MONOMETHYL HYDRAZIME (MMK) GMM: 16

SOURCE					DELTA-T	DELTA-T (DEG F)						
LBS/MIN	7	۳ •	7	ĭ	0	•-	N	m	-	•	9	۲.
1.00	580	856	1200	1617	2111	2687	3348	4100	5468	5886	6953	8082
5.00	1324	1955	2741	3692	4820	6135	7645	9361	11292	13445	15830	18454
10.00	1889	2790	3911	5269	6878	8754	10910	13359	16114	19187	22590	26334
15.00	2326	3435	4815	6437	8469	10773	13432	16448	19839	23623	27813	32423
20.00	2656	3981	5581	7519	9816	12492	15558	19063	22994	27380	32238	37580
30.00	3319	4902	6872	\$257	12085	15381	19168	23471	28311	33710	39689	46269
40.00	3847	5631	7965	10729	14007	12821	22216	27203	32813	39071	10091	53627
50.00	4313	6370	8931	12031	15706	19989	24911	30503	36793	43810	51580	60131
75.00	5310	7843	10995	14813	19337	24610	30671	37555	45300	53939	63507	74034
100.00	6155	0606	12744	17168	22412	28524	35548	43528	52504	62517	73606	85807
150.00	7578	11192	15691	21138	27595	95119	43768	53592	**9*9	76972	90625	105648
200.00	8783	12972	18186	24499	31983	40704	50728	62115	1485#	89213	105037	122448
300.00	10814	15972	22391	30164	39378	50116	62457	76477	92248	109841	129323	150761
400,00	12533	18512	25952	34961	45640	58085	72389	88638	106915	127308	149889	174736
500.00	14053	20757	29095	39201	51175	65130	81169	99389	119885	142748	168068	195928
750.00	17303	25556	35827	48255	63008	80190	98666	122369	147604	175754	206928	241230
1000.00	20054	29620	41525	55940	73028	92942	115829	141829	171077	203704	239835	219592
2000.00	28618	42268	59256	79827	104212	132630	165290	202392	244130	290689	342248	398982
3003.00	35235	520#2	72957	98285	128307	163296	203508	249189	300577	357901	421382	191233
4000.00	40838	60318	84560	113915	148712	189264	235871	288817	348377	414817	488393	569353
5000.00	45791	67633	94815	127730	166748	212219	264478	323845	390629	465127	547626	638405

HONOMETHYL HYDRAZINE (MMH)

METHYLENE CHICKIDE TOL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARIGUS SCURCE STRENGTHS (LB/MIR), CB.TA-T (DGG F), AND 40C PFR (1/5 CF 30-MINUTE EEL). TAB'LE 21.

į

				DELTA	DELFA-T (CEG F)						
	# # 1	-2.	-1-	•	7.	2.	ب	. 4	u [*]	•	1.
13.	2 C.	28.	37.	***	.2.	73.	.56	115.	136.	161.	187.
31.	4 55	63.	86.	112.	142.	177.	217.	262.	311.	367.	427.
į		91.	122.	159.	253.	253.	309.	373.	444.	523•	610.
54.	, G	112.	150.	196.	250.	311.	381.	460.	541.	044.	751.
62.		125.	174.	227.	263.	361.	442.	5.8.8.e.	. 834.	1470	871.
17.	114.	159.	214.	283.	350.	• + + +	544.	656.	781.	•515	1072.
6.3		185.	249.	324.	410.	515.	630•	160.	* 505	1066.	1242.
00		207	279.	364.	463.	577.	107.	852.	1015.	1155.	1393.
23	182.	255.	343.	448.	573.	713.	873.	1346.	1250.	1411.	1715,
76.		363.	460.	634.	514.	1514.	1241.	1497.	1783.	*5532	2447.
03.		421.	568.	741.	945.	1175.	1439.	1736.	2067.	2433.	2837
251.	376.	515.	.469	917.	lloi.	1441.	1772.	2137.	2544.	2556.	3492
•05		6 01.	810.	1057.	1345.	1677.	2053.	2477.	.545.	34 12.	4048
26.		674.	908	1185.	1509.	1883.	2302.	27773	3307.	3853*	4539.
01.		830.	1118.	1460.	1050	2315.	2835.	3419.	4631.	4154.	5588.
465.		962.	1296.	1092.	2153.	2683.	3286.	3963.	4115.	5556.	£477.
63.		1373.	1849.	2414-	3072.	3829.	4688.	5655	6734.	1928.	5243
516.	 1	1656	2277.	2972.	3743.	.4114	5113.	6963.	6291.	•12 p.o	11380.
546.		1959.	2639.	3445.	4384.	5464.	6691.	80708	•5035	11314.	13189.
1061.		2196.	-8567	3863.	4916.	6127.	7532.	5048.	10115.	12664.	14789.

TABLE 22. HAZARD CORRIDOR LENGTHS IN FEET FOR THE 30-NIN SHORT TERM PUBLIC ENERGENCY LIMIT, .48 PPM

MONOHETHYL HYDRAZINE (MMH) GMW: 46

SOURCE					DELTA-1	DELIA-T (DEG F)						
LBS/HIN	#	٣	-5	7	0	-	cv.	33	*	ۍ	•	6-
1.00	560	856	1200	1617	2111	2687	33 \$ 8	4100	4945	5888	6933	8082
5.00	1324	1955	2741	3692	4820	6135	7645	9361	11292	13445	15830	16454
10.00	1889	2790	3911	5269	6878	8754	10910	13359	16114	19187	22590	26334
15.00	2326	3435	4815	6487	8469	10778	13432	16448	19839	23623	27813	32423
20.00	2696	3981	5581	4151	9816	12492	15568	19063	22994	27380	32236	37580
30.00	3319	4902	6872	9257	12085	15381	19168	23471	28311	33710	39689	46269
40.00	3847	5581	7965	10729	14007	17827	22216	27203	32813	39071	46001	53627
20.00	43.13	63.70	8931	12031	15706	19989	249:1	30503	36793	43.810	51580	60131
75.00	5310	7843	10995	14813	19337	24610	30571	37555	45300	53939	63507	74034
100.00	6155	0605	12744	17168	22412	28524	35548	43528	5250#	62517	73606	85807
150.00	7578	11192	15691	21138	27595	35119	43768	53592	11919	76972	90625	105648
200.00	8783	12972	18185	24499	31983	#070#	50728	62115	74924	89213	105037	122448
300.00	10814	15972	22391	30164	39378	50116	62457	76477	92248	109841	129323	150761
400.00	12533	18512	25952	34961	45640	58086	72389	88638	106918	127308	149889	174736
500.00	14053	20757	29099	39201	51175	65130	81169	99389	119885	142748	168068	195928
750,00	17303	25556	35827	48265	63008	80190	98656	122369	147504	175754	206928	241230
1000.00	20054	2962	41525	55940	73029	92942	115829	141829	171077	203704	239835	219592
2000,00	28618	¥2268	59256	79827	104212	132630	165290	202392	244130	290689	342248	358982
3000.00	35235	52042	72957	98285	128307	163296	203508	249189	300577	357901	421382	491233
4000.00	40838	60318	84560	113915	148712	189264	235871	288817	348377	414817	488393	569353
5000.00	45791	67633	94815	127730	1667#8	212219	264478	323845	390629	465127	547626	638405

HONOMETHYL HYDRAZINE (MMH)

TABLE 23. HAZARD CORRIDOR LENGTHS IN FEET FOR THE 30-MIN SHORT TERM PUBLIC EMERGENCY LIMIT, 2 PPM

MITROGEN DIOXIDE GMW: 46

	6 7	3334 3887	7613 8875	10863 12664	13375 15592	15502 18072	19086 22250	22122 25789	24805 28916	30540 35602	35397 41262	43581 50805	50511 58885	62190 72500		72080 84029		-				
	\$	2832	6466	9227	11360	13167 1	16211 1	18789 2	21068 2	25939 3	30064 3	37015 4	42902	52822 6		61222 7						
	-	2378	5430	7749	95 4 1	11058	13515	15780	17693	21783	25249	31087	36030	44361		51416	51416	51416 57652 70982	51416 57652 70982 82270	51416 57652 70982 82270 117400	57652 770982 82270 117400	51416 57652 70982 82270 117400 144545
	m	1972	4562	6424	1939	2916	11287	13082	14668	18069	20932	25772	29870	36777		42626	42626	42626 47795 58846	#2626 #7795 588#6 68205	#2626 #7795 588#6 68205 97329	•	- ·
•	N	1610	3677	5246	6460	7487	9218	10684	11979	14749	17095	21047	24395	30035		34811						•
A-T (DEG F)	-	1292	2950	4210	5183	60CT	7396	8573	9612	11835	13717	16883	19574	24100		27933						
DELTA-T	0	1015	2318	3308	4073	4720	5812	6736	7553	9299	10778	13270	15380	18937		0 4 7						
	7	778	1776	2534	3120	3616	4452	5160	5786	7123	8256	15165	11781	14506	16812		•					
	-2	577	1318	1881	2316	2684	3305	3830	4295	5288	5129	7546	8745	10768	12480		_			"		
	€.	112	0 4 0	1342	1652	1915	2357	2732	3063	3772	4372	5382	6238	7681	8905		9985	-	4- -	~ ~ N	~ ~ ~ ~	
	AT I	279	637	808	1118	1296	1596	1850	2074	2554	2960	3644	#22#	5200	6027		6758	6758	6758 8321 3644	6758 8321 3644 13762	6758 8321 3644 13762	6758 8321 3644 13762 16944
SOURCE	MINENCIE LBS/MIN	1.00	5.00	10.00	15.00	20.00	30.00	40.00	50.00	75.00	100.00	150.00	200.00	360.00	\$00.00		500.00	500.03	500.00 750.00 1000.00	500.03 750.00 1000.00	500.03 750.00 1000.00 2000.00	500.03 750.00 1000.00 2000.00 3000.00

MITROGEN DIGNIDE

TABLE 24. HAZARD CORRIDOR LENGTHS IN FEET FOR THE 30-MIN SHORT TERM PUBLIC EMERGENCY LIMIT, 2 FPM

NITROGEN TETROXIDE GHW: 46

	9	3334 3887	7613 8875	10863 12664	13375 15592	15502 18072	19086 22250	22122 25789	24805 28916	30540 35502	35397 41264	43581 50805	50511 58885	62190 72500	72080 84029	81822 94220	99510 116006	115335 134454	164585 191867	202639 256231	234865 273798	263349 307004
	5	2832	6466	9227	11360	13167	16211	187.89	21068	25939	30064	37015	42902	52822	61222	68547	84519	09616	139790	172112	199482	223676
	म	2378	5430	6 2 1 2	9541	11058	13615	15780	17693	21784	25249	31087	36030	44361	51416	57652	70982	82270	117400	144545	167532	187851
	m	1972	¥505	6424	5052	9167	11287	13082	14668	18060	25932	25772	29870	36777	42626	47795	58846	68205	97329	119833	135890	155735
	7	1510	3577	5246	6460	7847	9518	1068	11979	SHLHI	17095	21047	24395	30035	34811	39033	48059	55701	79487	97865	113429	127185
(DEG F)	-	1292	2950	4210	5183	4000	7396	8573	9612	11835	13717	16889	19574	24100	27933	3:321	38553	44695	63781	78528	91016	102055
DELTA-T	O	1015	2318	3308	a 073	4720	5812	6736	7553	9299	10778	13270	15380	18937	21948	24610	30300	35119	50115	61732	71514	80188
	-	17.8	1776	2534	3120	3616	4452	5160	5786	7123	8256	10165	11781	14506	16812	18851	23210	26901	38388	47254	54781	61425
	Ÿ	577	1318	1881	2316	2584	3305	3830	4295	5288	6129	7546	8745	10768	12480	13994	17229	19965	28496	35085	#990#	\$55a
	m I	412	0 # 6	1342	1652	1915	2357	2732	3063	3772	4372	5382	6238	7681	8902	5866	12290	14244	20327	25026	290062	32524
	at I	279	637	806	1118	1296	1596	1850	2074	2554	2960	3644	4224	5200	6027	6758	6321	₩ t 96	13762	169##	19639	22021
SOUNCE	LBS/KIN	1.00	5.00	10,00	15.00	20,00	30.00	00°0#	20.00	75.00	100.00	150.00	200.00	300,00	400.00	500.00	750,00	1000.00	2000.00	3000,90	4000.00	5000.00

MITROGEM TETROXIDE

LXYGEN DIFLUCRIDE TOL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARIOUS SCURLE STRENGTHS (LE/AIN), DELTA-T (DEG F), AND .1 PPM (1/2 OF 30-MINUTE EEL). TABLE 25.

_
-
S.
3
-
1
3
ũ

					DELT	DELTA-T (DEC	Ĵ					
SS LB/nav	• •	-3.	-2•	· · ·	ċ	.4	2.	3.	•	u\	S	÷
1.0	11.94.	1763.	2472.	3330.	4349.	553.	6896.	8444.	10185.	12127.	14278.	16645.
5.0	2 126.	4626.	5645.	7614.	. 1266	12654.	15745.	15280.	23256.	27651.	32663.	3 8007.
. u.i	3890.	5746.	6055	10351.	14160.	18029.	22489.	27513.	33186.	35515+	46524.	54236.
15.0	4190.	7.67.	9918	13361.	17442.	22158.	27554.	33874.	40860.	46652.	57241.	66777.
6.42	5.551	£155.	11495.	15485.	20215.	25723.	32364.	39261.	47357.	\$6285.	66351.	17396.
30.0	6835.	1(095.	14153.	1 9006.	24890 •	31077.	39477.	40359.	58307.	15 42 1.	£1742.	9 52 51 .
40.0	7922.	11761.	10463.	22058.	28848.	30714,	45755	56026.	67580.	b. 46E.	54741.	11 (445.
53.0	8883.	1312C	18393.	24778.	32346.	41101.	51304.	62021.	75776.	56227.	106231.	123840.
75.0	10937.	16153.	22645.	30507.	39826.	50000	63167.	77346.	93297.	1111685.	136752.	152474.
159.0	15667.	23051.	32315.	43534.	56832.	725-9.	90140.	110374.	133136.	158526.	184044.	217583.
200.0	18085.	2 € 71 1.	37454.	50457.	65869	63851.	134475.	127926.	15430e.	162736.	216325.	252185
330.0	\$2271.	32854.	46114.	62123.	81100.	103245	128631.	157505.	185986.	226215.	260344.	31 (495.
ù•00÷	25813.	36125.	53448.	72062.	93997.	113629.	149087.	182553.	220159.	262194.	368766.	35 5872.
500.0	-E+582	42745.	55536	80735.	105397.	154158.	167159.	204693.	246936.	. 555555	346135.	403518.
750.0	35636.	52633.	13787.	89402	129766.	165153.	.05821.	252022.	303995	361516.	426173.	456818.
1000-0	41303.	61003.	65521.	115210.	156403.	15 1416.	238553.	292101.	352336.	415533.	483846.	575826.
20003.0	£8840•	67053.	122040.	104406.	214627.	273154.	540418.	.16832.	502791.	54E6EC.	764666.	£21711.
3000.0	12567.	107161.	150251.	202420.	264252.	320312.	419123.	513210.	619045.	737165.	867845.1 C11705	C11705.
4.000.2	£410E.	£410E. 124225.	1 141 52.	234610.	306275.	36 7 155.	485781.	594855	117451.	854324.1	854324.1665856.1172593	172593.
5000.0	643C8.	943C8. 135252.	1 552 74.	263364.	343421.	457070.	544693.	666966.	804510.	551535	527535.1127645.1314808.	314808.

PERCHLCRCETHYLENE TCL FABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARICUS SCURCE STRENGTHS (LB/MIN), CELTA-T (DEG F), AND 8G PPM (1/5 OF 30-MINUTE EEL). TABLE 26.

	1.	3 Ç	. 695.	991.	1221.	1415.	1742.	2019.	2264.	2787.	3977.	4610.	5676.	. 6239.	1376.	£085.	1 (526.	15051	16494.	21435.	24035.
	.	261.	556.	65 C•	1047.	1214.	1454.	1732.	1545.	2351.	3412.	3554.	4 66 9.	5643.	6323	11511	5056	12885.	15864.	18367.	20617.
•	ري •	222.	506.	122.	885.	1031.	1265.	1471.	1645.	2031.	589B•	2355.	4125.	4493	5374.	6617.	1665.	10544.	13474.	15617.	17511.
	,	186.	425.	- 607.	147.	866.	1066.	1235.	1385.	1705.	2434.	2821.	3473.	4025.	4513.	5557.	6441.	91910	11316.	13116.	14707.
	3.	154.	352.	503.	.619	718.	884.	1924.	1148.	1414.	2018.	2339.	2879.	3337.	3742.	4637.	5343.	7620.	9382.	10873.	12192.
F)	2.	126.	283.	411.	506.	586.	722.	836.	438.	1155.	1648.	1910.	2351.	2725.	3056.	3762.	4361.	6223.	7662.	8880.	9957.
DELTA-T (DEG +	1.	101.	251.	350.	406	470.	.616	671.	755.	. 128	1322.	1532.	1007.	2157.	2452.	3019.	3455.	4993.	0148.	7125.	1950.
DE LT /	0	-62	181.	259.	319.	370.	455.	527.	591.	720.	1039.	1204.	1483.	1718.	1927.	2372.	2744.	3923.	4831.	5599•	6270.
	-1.	61.	139.	198.	244.	283.	349.	404	453.	558.	196.	922.	1136.	1316.	1476.	1817.	2106.	3005.	3700.	4289.	4809
	-2.	45.	103.	147.	181.	210.	259.	3 Cú.	336.	414.	551.	685.	843.	9773	1056.	1345	1563.	2231.	2747.	3184.	3570
	5.	32.	74.	105.	129.	150.	185.	214.	24C-	255.	421.	488.	661.	.533	781.	562.	1115	1581	1959.	2271.	2546.
	- 4-	22.	50.	711.	8 8	101.	125.	145.	162.	230.	285.	331.	.104	472.	525.	£51.	155.	1077.	1327.	1537.	1724.
	SS L B/4 In	J. U		10.0	15.0	20.02	30.0	45.0	50.0	75.0	153.3	200.0	300.0	400.0	500.0	750.0	0.0001	2000.0	3,3,3,0	0.0004	5933.0

PERCHLGRYL FLULRIDE TUL TABLE. TOXIC CURRIDOR LENGTHS (FEET) FOR VARIGUS SCURCE STRENGTHS (LB/*IN), GELTA-T (DEG F), AND 4 PPM (1/5 OF 30-MINUTE EEL). TABLE 27.

	7.	1806.	4124.	5885	7246.	£3 9 8•	1340.	11984.	13437.	16544.	23609	27363.	33690	35048	43784.	53908	62480.	£ 51 60.	103776.	127235.	142664.
	• •	1545.	3556.	5646.	6215	7264.	8865,	102EC.	11527.	14152.	20252•	234 13.	26566.	33456	37558.	46242.	53556.	16462.	54166 •	105141.	122378.
	u1	1316.	3005	4786.	\$275.	£115.		6131.	° 25! 5	12054.	17201.	15536.	24546.	2645C.	3150C.	35276.	45522	£456C.	7598C•	536925	163542.
	4.	1105.	2523*	3601.	4433.	5139.	6327.	-1 (1) (2)	8222.	10123.	14446.	16743.	20615.	23893	26791.	32985.	38221.	54556.	£7170.	17852.	87254.
	ارد: •	916.	20,92.	2985.	3676.	4260.	5245.	•6209	6816.	8392.	11976.	13681.	17090.	19008.	22210.	27346.	31695.	45229.	55686.	64542.	72370.
£	2.	748.	1708.	2438.	3002.	3479.	4284.	4965.	5567.	6354.	9781.	11336.	13357。	16177.	18139.	22333.	25884.	36937.	45478.	52710.	59103.
DELTA-T (LEG	1.	•0.09	1371.	1950.	2409.	2752.	3437.	3704.	4467.	. 65¢¢	1340.	•9506	11189.	12900.	14555.	17923.	20773.	29659.	30492.	42255.	47425.
DELT	•	472.	1077.	1537.	1893.	2193.	2701.	3130.	3510.	4321.	6167.	7147.	8800.	10188.	11456.	14080.	16320.	23288.	28673.	35233.	37263.
	-1-	361.	825.	1177.	1450.	1680.	2059.	2398.	2649.	3310.	4724.	5475.	6741.	7813.	8760.	10786.	12501.	17839.	21964.	25456.	28544.
	-2-	268.	612.	874.	1076.	1247.	1536.	1780.	1996.	2457.	3506.	4064.	5004.	.3515	65 03.	8306.	92 80•	13242.	163 04.	18857.	21188.
	13.	191.	437.	623.	765.	856.	1655	1276.	1424.	1753.	2501.	2695.	3565.	4137.	4638.	5711.	661 5.	.9445	11636.	13475.	15114.
	- 4-	1.30	296.	422.	520.	602.	142.	860.	964.	1187.	1693.	1963.	2417.	2 £C1 .	3.141.	3867.	4482.	6395.	7874.	9126.	10233.
Ü	LB/HIN	3.	5.0	10.0	15.0	29.0	33.0	0.04	50.0	75.0	150.0	2007	330.0	400.0	500.0	750.0	1000	2000.0	3000.0	4000.0	5000.0

PENTABORANE TOL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARIOUS SCURCE STRENGTHS (LE/MIN). DELTA-T (DEG F), AND C.6 PPH (1/7 OF 3C-MIN)TE EEL). TABLE 28.

	7.	6128.	13991.	•99551	24582.	2 84 52.	35080.	4 (058.	45589.	56130.	ec099.	\$2837.	114302.	132479.	146546.	182893.	211978.	3(2496.	372438.	431666.	4 6 4 0 1 9 •
	•	5256.	12002.	17161.	21067.	5444C•	36051.	34677.	39161	46146.	. 53633	15636.	58045	113641.	127424.	156867.	181836.	255462.	318416.	3 762 85.	415154"
	uì	4464.	16154.	14541.	17510.	20756.	3:37	25623.	33215.	46655.		67635.	83278.	56521.	168227.	1332554	154442.	220391.	27135C.	314501.	352645.
	4	3749.	8561.	12217.	15042.	17434.	21465.	24878.	27895.	34345.	45011.	56805.	*65669	d1362.	ec853.	111508.	129706.	185092.	227888.	264125.	296163.
	3.	3108.	1097.	13128.	12470.	14453.	17795.	23625.	23126.	28473.	40632。	47093.	51982.	67203.	75354.	92777.	107531.	153446.	188527.	218972.	245530•
£)	2.	2539.	5796.	8271-	10184.	11804.	14533.	16844.	18881.	23254.	33183.	38460.	47353.	54883.	61540.	75769.	87818.	125318.	154293.	178833.	200519•
DELT A-T (BEG	.1	.7662	4651.	.1:00	8172.	9471.	110011	13516.	15155.	18059.	20626.	30801.	37950.	44059	49380.	03757.	73466.	133550.	123800.	143495.	ladasa.
DELT	ċ	1600.	3654.	5215.	6421.	7442.	9163.	10620.	11904.	14661.	20921.	24248.	25655.	34603.	38800.	47771.	5536B.	79010•	97279.	112749.	126423.
	-1.	1226.	2799.	3995.	4918.	5701.	7019.	8135.	9121.	11230.	16026.	18575.	22469.	25506.	29721.	36593.	42412.	60523.	74516.	86367.	96841.
	-5.	910.	2078.	2565.	3651.	4232.	5210.	6 (3 8*	6771.	8336.	11896.	13788.	16976.	15076.	22 062.	27163.	31483.	44926.	55314.	64111.	71886.
	-3.	64 5.	1482.	2115.	2664.	3018.	3716.	4367.	483C.	.546.	£4£6.	9835.	12105.	14035.	15737.	15376.	22457.	32647.	35456	45731.	512773
	- 4.	440.	1604.	1.432.	.763.	2044.	2516.	2916.	3270.	4026.	5745.	66599	8195.	9502.	10 655.	13115.	15205.	21697.	26714.	30562.	34718.
ú	LB/MIN	1.0	5.0	10.0	15.0	2.3.0	30.0	40.0	55.0	75,0	150.0	200.0	3.00	403.0	6,004	150.0	1000.0	20000	3000.0	4,000.0	5000.0

SULFUR DICXIDE TOL TABLE. TOXIC CORRIGOR LENGTHS (FEET) FOR VARIGUS SOURCE STRENGTHS (LE/HIM), DELTA-T (DEC F), AND 4 PPM (1/5 UF 3C-MINUTE EEU). TABLE 29.

	٠,	22 98.	5247.	7488.	9219.	1 (685.	13156.	15248.	17097.	21050.	3 (03 %	34816.	42666.	4 56 82.	55708	66589,	75496	113442.	135672.	161864.	181517.
	• 9	1631.	4561.	6423.	7566.	91¢6.	11265.	13615.	14066.	16057.	25767.	25865.	36776.	42618.	47167.	5EE36.	£ £1 \$2.	57311.	115811.	138864.	155706.
	ui	1674.	36234	10.20 10.00	6717.	7785.	70 70 71	11165.	12456.	15337.	21886.	25366.	31231.	36191.	46588.	45572.	-51515	£2 € 51 •	101762.	117545.	132245.
	,	1466.	3211.	4562.	5641.	6538.	80508	\$330°	10461.	12880.	18380.	21333.	26229.	30430-	34087.	41968.	48642.	69413.	85463.	99054.	111067.
	а	1156.	2562.	3748.	+617.	5420.	6072.	1735.	* E 2 9 R	10678.	15238.	17661.	21745.	25203.	24225.	34793.	40326-	57546.	73852	82119.	9 20 19.
£.	2.	955.	2174.	3102.	3419.	4427.	5452.	6317.	7383.	8721.	12444.	14423.	17758.	20532.	23074.	28415.	32934.	46991.	57863.	57365.	15198.
DELTA-T (LEG	.:	704.	1744.	.464	3005.	3552.	+3/3.	• 6700	5653.	6951.	9965	11573.	14245.	10315.	10514.	22803.	26466.	377il.	+0404	53813.	63543.
DELT	•	630.	1571.	1956.	2408.	2791.	3436.	3983.	4406.	-864S	7346.	• 5606	11196.	12977.	14551.	17915.	20764.	29530.	36482.	42283.	47411.
	-1.	400.	1050.	1498.	1845.	2138.	2632.	3051.	3421.	4212.	6010.	6 366.	8576.	.0466	11146.	13723.	15905.	22697.	27845.	32389.	36318.
	-2.	341.	175.	1112.	1369.	1587.	1954.	2265.	2539	3126.	440I.	51 71.	6366.	7379.	8274.	10187.	11837.	16848.	20744.	24043.	26955.
	-3•	243.	ים נח	753.	.115	1132.	1354.	1615.	1811.	2230.	31 62•	3668	4541.	5263.	5502.	7266.	£422°	12018.	14757.	17150.	1523C.
	.4.	165.	376.	R. 52	. 661.	766.	. 544.	1094.	1226.	1510.	2155.	2497.	3075.	3564.	3956	4520.	5702.	6137.	10018.	11612.	13620.
i,	NI #/87	7.0	м •	10.0	15.0	20.0	33.0	43.0	50.0	15.0	150.0	200.0	300.0	400.0	500.0	0.021	1000.0	2000.0	3400.0	4000.0	5c00.0

TRICHLORCETHYLENE TCL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARIOUS SOURCE STRENGTHS (LB/MIN), DELTA-T (DEG F), AND 8C PPH (1/5 CF 30-MINJE EEL). 14BLE 30.

	7.	342.	781.	1114.	1372.	15 90.	1957.	22 69.	2544。	3132.	4469	51 80•	63 77.	1392.	82 88	1 C2 05.	11827.	16878.	2 (7 80.	24085•	2 7006.
	••	253.	67C.	556.	2111	1364.	1675.	1946.	21 £2•	26€€.	3634.	4443.	5471.	0341.	7116.	£754.	13146.	14476.	17£25.	26666.	23166.
	u 1	248.	565.	£12°	•565	1156.	1426.	1653.	1853.	2282.	3256.	3774.	4646.	1 3 8 F	6635.	7435.	8617.	12257.	15146.	17546.	15676.
	4	209.	478.	682.	e39.	973.	1198.	1388.	1556.	1916.	2735.	3169.	3902.	4523.	5031.	62440	7237.	10327.	12715.	14737.	16524.
	В	173.	396.	565.	.969	\$00.8	• 266	1151.	1290.	1589.	2267.	2628.	3235.	3753.	4504.	5176.	-0009	8552.	10541,	12218.	13699.
F.)	2.	142.	323.	462.	568.	659	811.	-0+6	1054.	1297.	1851.	2146.	2642.	3362.	3434.	4228.	*606*	6992.	66098	.8764	11184.
DELTA-T (026 F		114.	20).	370.	456.	528.	.149	754.	646.	1041.	1466.	1742.	2150.	2457.	2755.	3352.	3932.	5011.	. 80%0	dubb.	.1158
DELTA	•		204.	291.	358.	415.	511.	593.	564.	818.	1167.	1353.	1600.	1931.	2165.	2665.	368%.	4408.	5426.	6291.	7054.
	•	•89	156.	223.	274.	318.	392.	454	5.08	027.	894.	1036.	1276.	1479.	1658.	2042	2366.	3377.	4158.	4819.	5403.
	-2.	51.	116.	165.	2 04.	236-	291.	337.	3 78.	465.	.499	769.	.245	1058.	1231.	1516.	1757.	2567.	3086.	3577.	4011.
	m -	36.	83	118.	145.	168.	207.	24Co	265.	332.	413.	545.	676.	763.	e 7 8.	1681.	1253.	1786.	2201.	2552	2861.
	•	25.	56.	80.	8) C)	114.	146.	163.	182.	225.	321.	372.	457.	530.	.464	132.	848.	1211.	1491.	1728.	1937.
	SS LB/HIN	C•1	5.0	0.01	15.0	23.0	30.0	40.0	50.0	75.0	150.0	200.0	30.0.0	400.0	9.005	753.0	1000-0	2000	3000.0	4000.0	5000.0

TPICHLGRETRIFLULKCETHANG TOL TABLE. TOXIC CORRIDOR LENGTHS (FEET) FOR VARIOUS SLUKCE STREMOTHS (LB/MIN), DELTA-T (DEG F), AND 2COC PPM (1/5 CF 30-MINJE EEL). TABLE 31.

TABLE 32. MAZARD CORRIDOR LENGTHS IN FEET FOR THE 30-MIN SHORT TERM PUBLIC EMERGENCY LIMIT, .48 FPM

UNSTRMETRICAL DIMETHIL HYDRAZINE (UDMB) GMM: 60

30 mm 6 mm					DELTA-T (DEG	(DEG F)						
CES/NIN	7	'n	7	ï	o		N	m	4	æ	9	(-
1,00	506	LRL	1047	1411	1842	2344	2922	3577	4315	5138	6 * 09	7052
5.00	1155	1706	2392	3222	4206	5353	1299	8168	9853	11732	13813	16103
10.00	1648	2434	3413	4598	6002	7639	9520	11657	14060	16742	19711	22979
15.00	2029	2997	4202	5661	7390	50 t 6	11721	14352	17311	206:3	24269	28292
20,00	2352	3474	4870	6561	8565	00601	13585	16634	20064	23891	28128	32791
30,00	5882	4277	5996	8078	10545	13421	16726	20480	24704	25415	34632	40373
40.00	3356	1881	6950	9362	12222	15555	19385	23737	£ 8632	34093	40540	16793
50.00	3763	5255	7793	10498	13705	17442	21737	26616	32105	38227	45008	52469
75.00	#63#	6844	2656	12925	16873	21474	26763	32770	39528	47066	55414	00919
100.00	5370	7932	11120	14950	19557	24889	31018	37381	45814	54551	64227	74873
150.30	5193	9755	13691	18444	24078	30644	38190	16763	56407	67:54	75047	92185
209,00	199.	11319	15369	21377	27907	35518	19261	54200	65377	77845	91652	54895.
30000	9436	13936	19538	26320	34360	43730	86 x 4 5	66732	80493	8 ± 8 ± 6	112844	131550
400.00	10936	16153	22645	30506	39824	50684	63165	77344	93294	111056	130789	152470
500.00	12253	18112	25391	34206	11654	56831	70826	86724	104609	124559	146652	170962
150.00	15098	22300	31262	42115	54979	69972	87202	106776	128796	153359	180560	210491
1000.00	17499	25846	36233	4.8812	63722	81099	101070	123757	149278	177771	209274	243965
2000.00	24971	36882	51706	69655	90933	115729	144228	176603	213022	253648	298637	348142
3000.00	30745	45410	63461	85761	111958	142488	177576	217435	262276	312296	367687	428638
4000.00	35635	52632	73785	66866	129762	165148	205815	252014	303985	361959	426160	496803
5000,00	39956	59015	82733	111454	145500	185:77	230777	282579	340853	405858	477645	557057

URSIMMETRICAL DIMETHYL HYDRAZIME (UDHH)

METHOD 2: CHEMICAL AND DIFFUSION FACTORS

The steps to determine the dimensions of a toxic corridor using this method are presented below. Where applicable, preferred and alternate approaches are given. The Table of Chemical Factors (Table 33) and the Table of Diffusion Factors (Table 34) are required. Two copies of a suggested worksheet are provided in Appendix A; one with a sample corridor calculation (Figure A-1) and one blank copy (Figure A-2). A flow chart for Method 2 is depicted in Figure 2.

- a. STEP 1: Determine source strength (lh/min).
- (1) Preferred. Obtain a source strength from the disaster response force (DRF). NOTE: Although weather personnel are not responsible for determining source strength, a toxic corridor length calculation cannot be made without it. Appendix C provides an equation for calculating evaporative source strengths based on the surface area covered by the toxic chemical spill. Use this Appendix to assist the agency responsible for estimating source strengths.
- (2) Alternate. For small amounts of liquid or gaseous material (less than 2000 lb), assume the worst case which is total release of the material in 1 minute. For large amounts of a gas (2000 lb or more), assume total release over 5 minutes. For large amounts of liquid, assume a source strength of 2000 lb per minute.
- (3) Alternate. For releases of a large amount of material where a source strength cannot be determined from the above procedures, go to alternate procedure in Step 5.
 - b. STEP 2: Determine temperature difference (delta-T (OF)).
- (1) Preferred. Use the mean delta-T based on at least a 10-minute record from a 54-6 foot delta-T instrument. (Available at TITAN II missile sites. Refer to Appendix B, Figure B-1.) NOTE: 54-6 foot delta-T measurements can be made by using a sling psychrometer at the 54- and 6-foot levels of a radar tower.
- (2) Alternate. Use mean surface wind speed, solar elevation angle, and sky condition to obtain an estimated temperature difference from Table B-1, Appendix B. Refer to the notes in this table concerning rough terrain and forested regions prior to estimating the temperature difference.
 - c. STEP 3: Determine the Chemical Factor (CF).
- (1) Preferred. Turn to Table of Chemical Factors (Table 33). Find the CF for the particular toxic chemical of concern and the appropriate exposure limit. This will normally be the Short-Term Public Emergency Limit (SPEL). The limit must be expressed in parts per million by volume.
- (2) First alternate. If Table 33 does not contain a CF for the particular toxic chemical of concern, the CF may be obtained from Figure 3. Enter the ordinate of Figure 3 with the gram molecular weight (GMW) and project a line across the graph until the line extending from the exposure limit in parts per million is intersected. The value on the diagonal line at the point of intersection is the CF. The Bioenvironmental Engineer (BEE) may be able to provide the GMW and exposure limit for the chemical of concern.
- (3) Second alternate. If Table 33 does not contain a CF for the particular toxic chemical of concern, the CF may be calcualted directly using the equation below. The BEE may be able to provide the GMW and exposure limit for the chemical of concern.

 $CF = 30.476 (Cp \cdot GMW)^{-0.513}$

where Cp = exposure limit in parts per million by volume, and

GMW = gram molecular weight.

d. STEP 4: Determine the Diffusion Factor (DF).

- (1) Preferred. Turn to the Table of Diffusion Pactors (DF) (Table 34). Read across from the source strength (Q) determined in Step 1 and down from the temperature difference determined in Step 2. The intersected value is the Diffusion Factor (DF).
- (2) First alternate. If Table 34 does not list a DF for the particular chemical of concern, the DF may be obtained from Figure 4. Enter the ordinate of Figure 4 with the source strength from Step 1 and project a line across the graph until the appropriate line representing the temperature difference from Step 2 is intersected. The value of the curved-diagonal line at the point of intersection is the DF.
- (3) Second alternate. If Table 34 does not list a DF for the particular chemical of concern, the DF may be calculated directly from the source strength determined in Step 1 and the temperature difference determined in Step 2. Calculate DF using the following equation:

$$DF = 0^{0.513} (\Lambda T + 10)^{2.53}$$

where Q * the source strength in pounds per minute, and

 ΔT = the 54-6 foot temperature difference in degrees F.

- e. STEP 5: Determine Toxic Corridor Length (TCL).
- (1) Preferred. Toxic corridor length is the product of the chemical factor from Step 3 and the Diffusion Factor from Step 4, i.e., TCL = CF · DF.
- (2) Alternate. For releases of a large amount of material where no source strength is available, use the distance the wind would carry the material in one hour. This is an interim forecast which must be updated when particulars are known.
- f. STEP 6: Determine wind direction and wind direction variability, R (degrees of azimuth). If the surface wind is equal to or less than 3 knots, go to Step 8.
- (1) Preferred. Use the 10-minute recorded wind direction trace and eliminate the two furthest direction fluctuations on each side of the mean. Variability, R, is the difference in degrees between the third largest fluctuation on each side of the mean direction.
- (2) Alternate. Note the wind fluctuations indicated by an anemometer dial over a 2-minute period. Variability, R, is the difference in degrees between the largest fluctuation on each side of the mean direction.
- (3) Approximate. If wind direction fluctuation information is unavailable, assume R is 60° when the wind speed is between 4 and 10 knots; assume R is 30° when the wind speed is greater than 10 knots.
- g. STEP 7: Determine corridor width (W) in degrees by multiplying the value obtained for R in Step 6 by 1.5.
 - h. STEP 8: Plot the toxic corridor.
- (1) Wind speed greater than 3 knots. Draw the cocridor center line from the source to the point on the wind direction circle corresponding to the direction the mean wind is blowing towards (i.e., 180 degrees from the recorded mean wind direction), as determined in Step 6. Place W/2, calculated in Step 7, on each side of the center line. Draw the lines which define each side of the corridor. See example worksheet, Figure A-1 in Appendix A.
- (2) Wind speed equal to or less than 3 knots. The corridor is a circle of radius equal to the corridor length determined in Step 5.

i. STEP 9: Trend forecast. If significant changes in wind direction are expected within the next hour or two, include this information in your briefing. A change in direction that would affect evacua ion is significant. Based on continued close monitoring of weather conditions, relay any significant changes in the toxic corridor forecast to the DRF. Consider changes in winds that have occurred between the time of the spill and the time of the forecast. These changes could alter the shape and size of the toxic corridor.

TOXIC CORRIDOR CALCULATIONS USING METHOD 2

Figure 2. Flow Chart for Method 2.

			CHEMICAL	FACTORS	(CF)			
		30-min		30-min		10-min		
TOXIC CHEMICAL	GMW	SPEL (PPM)	CF	EEL (PPM)	Cł,	STFL (PPM)	CF'	REMARKS
Aerozine 50 (50% Hydrazine/50% UDMH)	N/A	*	*	* .	*	* .	*	*Use CF for hydrazine
Anhydrous Ammonia	17.031	75.0	0.78	300.0	0.38	20.0 ¹	1.53	
Aniline	93.129	20.03	0.64	100.02	0.28	None	-	
Bromine Pentafluoride	174.896	0.3	4.0	1.5 ^L (T)	1.75	None	-	(T) - Tentative
Carbon Disulfide	76.139	20.03	0.71	100.0	0.31	None	-	
Carbon Monoxide	28.011	100.0 ¹	0.52	500.0 ¹	U.23	90.0 ¹	0.55	
Chlorine	70.906	2.01	2.40	see remarks	1.94*	1.0	3.42	*60-min EEL: 3.0 ppm
Chlorine Pentafluoride	130.445	0.3	4.64	1.5 ¹ (T)	2.03	None	-	(T) - Tentative
Chlorine Trifluoride	92.448	0.63	3.88		1.70	None	-	
Diborane	16.859	0.74	8.59	5.0 ¹	3.76	None	-	
Ethylene Oxide	44.054		0.46	400.0	0.20	None	-	
Fluorine	37.997	2.03	3.30	1.0.0	1.45	None	-	
FLOX (Fluorine/Oxygen Mixture)	N/A		*	*	*	None	-	*Use CF for fluorine
Fuming Nitric Acid	N/A	*	*	*	*	*	*	*Use CF for Nitrogen
H-70 (70% Hydrazine/ 30% Water)	N/A	*	*	*	*	*	*	Dioxide *Use CF for Hydrazine
Hydrazine	32,045	20.0	1.11	20.0 ¹	1.11	15.0 ¹	1.28	Tentative limits 1/10 of
Hydrogen Chloride	35.461	3.0 ¹	2.74	50.0 ¹	0.65	4.0 ¹	2.43	existing
Hydrogen Fluoride	20.006	5.0 ¹	2.87	10 0 ¹	2.01	4.01	3,22	
Hydrogen Sulfide	34.080	20.03	1.07	100.01	0.47	None	-	
MAF 1, 3, and 4 (Mixed Amine Fuels)	N/A			*	*	*	*	*Use Cr for UDMH
Methylene chlorida	84.933	400.03	0.14	2000.02	0.06	None		
Monomethylhydrazine (MMD)	46.072	30.0 ¹	υ . 75	30.0	0.75	17	1.38	
Nicrogen Dioxide	46,006	3.0 ¹	2.43	20.0	0.92	1.0 ^L	4.27	
Nitrogen Tetroxide	N/A	*	*	*	*	*	*	*Use CF for Nitrogen
Nitrogen Trifluoride	71.002	150.0 ³	0.26	750.01	0.11	None	-	Dioxide
Oxygen Difluoride	53.996	0.1 ⁵	12.83	0.2	8.99	None	-	
Perchloroethylene	164.902	80.0 ³	0.23	400.0 ²	0.10	None		
Perchlory! Fluoride	102.450	4.03	1.39	20.0 ¹	0.61	None	-	
Pentaborane	63.127	0.64	4.72	4.02	1.78	None	-	
Sulfur Dioxide	64.063	4.03	1.77	20.0	0.78	None	-	
Trichlorethylene	131.389	80.0 ³	0.26	400.0 ²	0.12	None	-	
Trichlorotrif7uoro-		}		H]]		
ethane	187.377	2 000.0	0.042	10,000.0 ²	0.018	None	-	
Unsymmetrical Di- methylhydrazine	60.099	50.0 ¹	0.50	50.υ ¹	0.50	50.0 ¹	0.50	
Makau. 1 Dram /Jumil	As As a second Disco			T	io 1	7		mar to a red Oo 12-4 less V

Notes: 1. From Committee on Toxicology (FELs from Nov 79 listing; SPELs/STPLs from Jul 80 listing.)
2. From AFM 161-30, Vol II, "Liquid Propellants," 10 Apr 73.

 ^{1/5} of 30-minute EEL.
 1/7 of 30-minute EEL.
 1/2 of 30-minute EEL.

Table 34. Table of Diffusion Factors (DF). The DF is a function of Temperature Difference (ΔT) and Source Strength (Q). Table 34. Table of Diffusion Factors (DF) and Source Strength (Q).

	2 9	105 123	240 280	342 399	780 910	1113 1298	2541 2963	3626 4228	4465 5205	5175 6033	5371 7427	7384 8608	8280 9652	10194 11884	11815 13774	15037 17529	20759 24200	24060 28048	26978 31450	33215 38721	38497 44879	59436 64042	67 638 78850	87 902 102 473	126166	136 146230	900 208672	388 256920	115 333894	411096
	'n	06	240 2	291	663	946	2159 25	3080 36	3792 44	4395 53	2411 63	6272 73	7033 82	8658 101	10035 118	12771 156	17631 207	20435 24(22914 269	28211 333	32698 384	46660 594	57448 67(74660 879	91922 108226	106540 125436	152034 178900	187187 220388	243267 286415	299515 352639
	4	7.5	171	244	557	794	1813	2587	3185	3691	4545	5267	9069	7272	8428 1	10726 1	14808 1	17162 2	19244 2	23693 2	27461 3	39187 4	48247 5	62702 7	77199 9	89475 10	127683 15	157206 18	204304 24	251.42 29
	m	62	142	202-	462	629	1503	2145	2641	3060	3768	4367	4897	6029	6987	8892	12276	14228	15954	19642	22766	32487	39999	51982	64000	74179	105854	130329	169375	208537
T (DEG F)	2	51	116	165	377	538	1228	1752	2157	5466	3077	3567	3999	4924	5706	7252	10026	11620	13029	16042	18593	26532	32666	42453	52268	60580	86449	106437	138325	170308
DELTA T	-	17	93	133	303	432	985	1406	1731	2006	2469	2862	3209	3951	4579	5827	8045	9324	10455	12872	14919	21289	26212	34064	41941	48610	69367	85406	110993	136657
	0	32	73	108	238	339	114	1105	1350	1576	1940	2249	2521	3104	3598	4579	6321	7326	8215	10114	11722	16728	20596	26766	32953	38195	54505	67107	87212	107376
	-1	255	56	80	182	260	593	846	1042	1207	1486	1723	1932	2378	2756	3508	4842	5612	6293	7748	8930	12814	15776	20502	25242	29258	41751	51404	66805	82251
	-3 -2	13 19	0 42	3 60	7 136	8 193	7 440	8 628	2 773	968 0	7 1104	2 1279	3 1434	9 1765	0 2046	7 2604	4 3595	2 41.66	2 4671	3 5751	5 6666	5 9512	4 , 11711	6 15219	7 18739	2 21718	7 30992	9 38158	3 49590	2 61056
	- 4-	1 6	21 30	29 43	66 97	94 138	213 314	304 448	374 552	433 640	533 787	618 912	693 1023	853 1259	988 1460	58 1857	36 2564	12 2972	56 3332	78 4103	3220 4755	94 6785	3656 8354	51 10856	50 13367	89 15492	68 22107	29 27219	50 32373	87 43552
ţ		0.01	0.05	0.10	0.50											0 .258	0 .736	0 2012	0 2256	0 2778		0 4594		0 7351	0 9050	0 10489	0 14968	0 13429	0 23950	0 25487
SOURCE	STRENCTH LB/MIN	o	9	ö	ċ	1.0	5.0	10.0	15.0	20.0	30.0	40.0	50.0	75.0	100.0	160.0	300.0	400.0	500.0	750.0	1000.0	2000.0	3000.0	5000.0	7500.0	10,000.0	20,000.0	30,000.0	50,000.0	75,000.0

EXPOSURE LIMIT (Cp)

Figure 3. Nomogram for Determining Chemical Factors (CF). $CF = 30.476 \left(\text{Cp \cdot GMW} \right)^{-0.513}$. The CF values are indicated by the diagonal lines as labeled.

Figure 4. Nomogram for Determining Diffusion Factors (DF). $DF = \varrho^{0.513} \, \left(\hbar T + 10 \right)^{2.53}. \quad \text{The DF values are indicated by the curved diagonal lines as labeled.}$

Chapter 6

METHOD 3: UNIVERSAL NOMOGRAM

The steps to determine the dimensions of a toxic corridor using this method are presented below. A flow chart for using Method 3 is depicted in Figure 5. Where applicable, preferred and alternate approaches are given. The toxic corridor length nomogram, Figure 6, is required. Two copies of a suggested worksheet are provided in Appendix A; one with sample corridor calculations (Figure A-1) and one blank copy (Figure A-2).

a. STEP 1: Determine source strength (lb/min).

- (1) Preferred. Obtain a source strength from the disaster response force (DRF). NOTE: Although weather personnel are not responsible for determining source strength, a toxic corridor length calculation cannot be made without it. Appendix C provides an equation for calculating evaporative source strengths based on the surface area covered by the toxic chemical spill. Use this Appendix to assist the agency responsible for estimating source strengths.
- (2) Alternate. For small amounts of liquid or gas (less than 2000 lb), assume the worst case which is total release of the material in 1 minute. For large amounts of a gas (2000 lb or more), assume total release over 5 minutes. For large amounts of liquid, assume a source strength of 2000 lb per minute.
- (3) Alternate. For releases of large amounts of material where a source strength cannot be determined from the above procedures, go to alternate procedure in Scep 3.

b. STEP 2: Determine temperature difference (delta-T (OF)).

- (1) Preferred. Use the mean delta-T based on at least a 10-minute record from a 54-6 foot delta-T instrument. (Available at TITAN II missile sites. Refer to Appendix B, Figure B-1.) NOTE: 54-6 foot delta-T measurements can be made by using a sling psychrometer at the 54- and 6-foot levels of a radar tower.
- (2) Alternate. Use mean surface wind speed category, solar elevation angle, and sky condition to obtain an estimated temperature difference from Table B-1, Appendix B. Refer to the notes in this table concerning rough terrain and forested regions prior to estimating the temperature difference.
 - c. STEP_3: Determine Toxic Corridor Length (TCL) in feet.

(1) Preferred

- (a) Enter Part A of Figure 6 with source strength determined in Step 1 and project along the constant source strength line until the diagonal line representing the temperature difference value determined in Step 2 is intersected. From this point of intersection extend a line horizontally into Part B.
- (b) Enter Part C with the appropriate exposure limit (Cp) provided by the Bioenvironmental Engineer (BEE), or taken from Table 33. Extend a horizontal line from this exposure limit until the diagonal line labeled with the approprate gram molecular weight (CMW) is intersected. The GMW for the toxic chemical of concern can be found in Table 33 or obtained from the BEE. From this intersection, project a line vertically into Part B.
- (c) Read the toxic corridor length from the diagonal line at the point where the projections from Part A and Part C intersect in Part B.
- (2) Alternate. For releases of a large amount of material where no source strength is available, use the distance the wind would carry the material in one hour. This is an interim forecast which must be updated when particulars are known.

- d. STEP 4: Determine mean wind direction and wind direction variability, R (degrees of azimuth). If the surface wind is equal to or less than 3 knots, go to Step 6.
- (1) Preferred. Use the 10-minute recorded wind direction trace and eliminate the two furthest direction fluctuations on each side of the mean. Variability, R, is the difference in degrees between the third largest fluctuation on each side of the mean direction.
- (2) Alternate. Note the wind fluctuations indicated by an anemometer dial over a 2-minute period. Variability, R, is the difference in degrees between the largest fluctuation on each side of the mean direction.
- (3) Approximate. If wind direction fluctuation information is unavailable, assume R is 60° when the wind speed is between 4 and 10 knots; assume R is 30° when the wind speed is greater than 10 knots.
- e. STEP 5: Determine corridor width (W) in degrees by multiplying the value obtained for R in Step 4 by 1.5.
 - f. STEP 6: Plot the toxic corridor.
- (1) Wind speed greater than 3 knots. Draw the corridor center line from the source to the point on the wind direction circle corresponding to the direction the mean wind is blowing towards (i.e., 180 degrees from the recorded mean wind direction), as determined in Step 4. Place W/2, calculated in Step 5, on each side of the center line. Draw the lines which define each side of the corridor. See example worksheet, Figure A-1 in Appendix A.
- (2) Wind speed equal to or less than 3 knots. The corridor is a circle of radius equal to the corridor length determined in Step 3.
- g. STEP 7: Trend forecast. If significant changes in wind direction are expected within the next hour or two, include this information in your briefing. A change in direction that would affect evacuation is considered significant. Based on continued close monitoring of weather conditions, relay any significant changes in the toxic corridor forecast to the DRF. Consider changes in winds that have occurred between the time of the spill and the time of the forecast. These changes could alter the shape and size of the toxic corridor.

TOXIC CORRIDOR CALCULATIONS USING METHOD 3

Figure 5. Flow Chart for Method 3.

Chapter 7

METHOD 4: PROGRAMMABLE CALCULATOR

The steps to determine the dimensions of a toxic corridor using this method are presented below. Where applicable, preferred and alternate approaches are given. Input values pertaining to the toxic chemical of concern may be either found in Table 33 or requested from your local Bioenvironmental Engineer (BEE). Following the list of steps is a listing of a TI-59 Calculator Program*, sample input/output, and procedures for making the toxic corridor length calculation. Two copies of a suggested worksheet are provided in Appendix A; one with sample corridor calculations (Figure A-1) and one blank copy (Figure A-2). A flow chart for using Method 4 is depicted in Figure 7.

a. STEP 1: Determine source strength (lb/min).

- (1) Preferred. Obtain a source strength from the disaster response force (DRF). NOTE: Although weather personnel are not responsible for determining source strength, a toxic corridor length calculation cannot be made without it. Appendix C provides an equation for calculating evaporative source strengths based on the surface area covered by the toxic chemical spill. Use this Appendix to assist the agency responsible for estimating source strengths.
- (2) Alternate. For small amounts of liquid or gaseous material (less than 2000 lb), assume the worst case which is total release of the material in 1 minute. For large amounts of a gas (2000 lb or more), assume total release over 5 minutes. For large amounts of liquid, assume a source strength of 2000 lb per minute.
- (3) Alternate. For releases of a large amount of material where a source strength cannot be determined from the above procedures, go to the alternate procedure in Step 4.
 - b. STEP 2: Determine temperature ditterence (delta-T (OF)).
- (1) Preferred. Use the mean delta-T based on at least a 10-minute record from a 54-6 foot delta-T instrument. (Available at TITAN II missile sites. Refer to Appendix B, Figure B-1.) NOTE: 54-6 foot delta-T measurements can be made by using a sling psychrometer at the 54- and 6-foot levels of a radar tower.
- (2) Alternate. Use mean surface wind speed category, solar elevation angle, and sky condition to obtain an estimated temperature difference from Table B-1, Appendix B. Refer to the notes in this table concerning rough terrain and forested regions prior to estimating the temperature difference.
- c. $\underline{\text{STEP 3:}}$ Determine the gram molecular weight (GMW) and the appropriate exposure limit (normally a 30-minute SPEL) for the particular toxic chemical of concern.
 - (1) Preferred. Use Table 33 for these data.
- (2) Alternate. If the exposure limit or GMW for the toxic chemical is not listed in Table 33, request this information from your local BEE.
 - d. STEP 4: Determine toxic corridor length (TCL) in feet.
- (1) Preferred. Follow the "T1-59 User Instructions" for calculating the toxic corridor length.
- (2) Alternate. For releases of a large amount of material where no source strength is available, use the distance the wind would carry the material in one hour. This is an interim forecast which must be updated when particulars are known.

*NOTE: The TI-59 program presented in this report was provided by Maj Lomax, a Staffmet at Det 10, 2WS, Eglin AFB FL. A more specialized TI-59 program was provided to Air Weather Service/Aerospace Sciences by another Staffmet, Capt Dargitz from Det 30, 2WS, Vandenberg AFB CA. Although Capt Dargitz's program is tailored for liquid missile fuels and may be somewhat site-specific, his approach is unique and may be of interest to others with similar interests or concerns.

- e. STEP 5: Determine mean wind direction and wind direction variability, R (degrees of azimuth). If the surface wind is equal to or less than 3 knots, go to Step 7.
- (1) Preferred. Use the 10-minute recorded wind direction trace and eliminate the two furthest direction fluctuations on each side of the mean. Variability, R, is the difference in degrees between the third largest fluctuation on each side of the mean direction.
- (2) Alternate. Note the wind fluctuations indicated by an anemometer dial over a 2-minute period. Variability, R, is the difference in degrees between the largest fluctuation on each side of the mean direction.
- (3) Approximate. If wind direction fluctuation information is unavailabe assume R is 60° when the wind speed is between 4 and 10 knots; assume R is 30° when the wind speed is greater than 10 knots.
- f. STEP 6: Determine corridor width (W) in degrees by multiplying the value obtained for R in Step 5 by 1.5.
 - g. STEP 7: Plot the toxic corridor.
- (1) Wind speed greater than 3 knots. Draw the corridor center line from the source to the point on the wind direction circle corresponding to the direction the mean wind is blowing towards (i.e., 180 degrees from the recorded mean wind direction), as determined in Step 5. Place W/2, calculated in Step 6, on each side of the center line. Draw the lines which define each side of the corridor. See example worksheet, Figure Λ -l in Appendix Λ .
- (2) Wind speed equal to or less than 3 knots. The corridor is a circle of radius equal to the corridor length determined in Step 4.
- h. STEP 8: Trend forecast. If significant changes in wind direction are expected within the next hour or two, include this information in your briefing. A change in direction that would affect evacuation is considered sigificant. Based on continued close monitoring of weather conditions, relay any significant changes in the toxic corridor forecast to the DRF. Consider changes in winds that have occurred between the time of the spill and the time of the forecast. These changes could alter the shape and size of the toxic corridor.

TI-59 User Instructions

This program may be used with or without the printer. (TI-59 Master Library Module must be installed.) It defaults to the 90-percent corridor length nonexceedence probability (Pr). This is the probability that the specified exposure limit will not be exceeded beyond the calculated corridor distance. This probability may be changed by changing the Percent Parameter (PPAR) which is the same as the probability factor (P) in the Ocean Breeze and Dry Gulch equation (see Glossary). The probability factors for specified nonexceedence probabilities are listed in Table 35. Once the PPAR is changed, it will remain at the new value until it is changed again or the program is reentered.

Table 35. Probability Factors (Miller and Miller, 1964).

Probability of Not Being Exceeded	Distance Frobability Factor (P)
J .97	2.04
0.95	1.87
0.90	1.63
0.85	1.48
0.80	1.38
0.75	1.30
0.50	1.00
0.25	0.770
0.20	0.726
0.15	0.674
0.10	0.614
0.05	0.535

The procedures for entering the calculator program and calculating corridor lengths are listed below:

STEP	PROCEDURE	ENTER	PRESS	DISPLAY
1.	Turn on calculator (and printer)		CLR	
2.	Slide side one (1) into the lower slot			1.
3.			CLR	
4.	Turn card around and enter side three (3)			3.
5.	(Optional) Enter new PPAR	PPAR	A '	PPAR
6.	Enter gram molecular weight of chemical	GMW	V	GMW
7.	Enter exposure limit in PPM	РРМ	В	PPM
8.	Enter source strength in 1bs/min (Q)	Q	C.	Ω
9.	Enter delta-T value	DL-T	D	DL-T
10.	Compute corridor length (L)	No Entry	E	L in feet

Any of the entered parameters may be changed by reentering the new value, pressing the appropriate key (A-D), and then pressing E for the new corridor length.

The following sample input/output is useful for checking the program after it has been entered into the calculator memory.

32.05 GMW 20. PPM 40. Q -2. Db-T

CORRIDOR LENGTH 1414.869997 FEET .2679678025 S. MI .2328576534 N. MI 431.2523751 M .4312523751 KM.

Sample Input/out.put

Default value of P=1.63 for probability of 90 percent that the calculated toxic corridor length will not be exceeded.

2.04 PPAR CORRIDOR LENGTH 1770.757542 FEET .3353707466 S. MI .2914292104 N. MI 539.7268989 M. .5397268989 KM.

Sample Input/output

Value of P altered from default value to 2.04 giving a probability of 97 percent that corridor length will not be exceeded.

TI-59 PROGRAM LISTING BANK 1

STEP NO.	KEY PRESSED	KEY Symbol	STEP NO.	KEY PRESSED	KEY SYMBOL	STEP NO.	KEY PRESSED	KBY SYMBOL
000	76	LBL	052	42	STO	104	43	RCL
001	10	E'	053	39	39	105	23	23
002	69	OP	054	05	5	106	55	ŧ
003	00	00	055	09	9	107	43	RCL
004	92	RTN	056	71	SBR	108	21	21
005	76	LBL	057	23	LNX	109	55	ŧ
006	19	ים י	058	91	R/S	110	43	RCL
007	42	STO	059	76	LBL	111	22	22
800	09	09	060	11	A	112	54)
009	73	RC*	061	42	STO	113	45	ХX
010	09	09	062	21	21	114	43	RCL
011	76	LBL	063	04	4	115	35	35
012	18	C'	064	01	1	116	65	X
013	69	OP	065	71	SBR	117	53	(
014	04	04	066	23	LNX	1.18	43	RCL
015	92	RTN	067	91	R/S	119	24	24
016	76	LBL	068	76	LBL	120	85	+
017	17	B'	069	12	В	121	01	1
018	42	STO	070	42	STO	122	00	C
019	08	08	071	22	22	123	54)
020	04	4	072	04	4	124	45	ÝΧ
021	42	STO	073	02	2	125	43	RCL
022	09	09	074	61	GTO	126	37	37
023	76	LBL	075	23	LNX	127	95	*
024	22	INV	076	76	LBL	128	42	STO
025	73	RC*	077	13	С	129	25	25
026	80	08	0 78	42	STO	130	36	PGM
027	84	OP*	079	23	23	131	24	24
028	09	09	080	04	4	132	12	Ð
029	69	OP	081	03	3	133	42	STO
030	38	38	082	61	GTO	134	28	28
031	97	DS Z	083	23	LNX	135	55	\$
032	09	09	084	76	LBL	136	43	RCL
033	22	INV	085	14	D	137	50	50
034	69	OP	086	42	STO	138	95	-
035	05	05	087	24	24	139	42	STO
036	92	R TN	088	04	4	140	29	29
037	76	LBL	089	04	4	141	36	PGM
038	23	LNX	090	61	GTO	142	24	24
039	19	D.	091	23	LNX	143	19	D,
040	02	2	092	76	LBL	144	42	STO
041	00	0	093	15	E	145	26	26
042	22	INV	094	43	RCL	146	36	PGM
043	44	SUM	095	39	39	147	24	24
044	09	09	096	65	Х	148	15	E
045	73	RC*	097	43	RCL	149	42	STO
046	09	09	098	34	34	150	27	27
047	69	OP	099	65	X	151	05	5
048	06	06	100	53	(152	04	4
049	92	RTN	101	43	RCL	153	17	B *
050	76	LBL	102	36	36	154	05	5
051	16	A'	103	65	x	155	42	STO

_				_
13	я	n	ĸ	

STEP NO.	KEY PRESSED	KEY SYMBOL	STEP NO.	KEY PRESSED	KEY SYMBOL
156	07	07	166	02	2
157	04	4	167	01	1
158	0.5	5	168	95	=
159	76	LBL	169	97	DSZ
160	24	CE	170	07	0 7
161	71	SBR	171	24	CE
162	23	LNX	172	98	ADV
163	43	RCL	173	43	RCL
164	09	09	174	25	25
165	85	+	175	91	R/S

BANK 3

STORED	
VALUE	LOCATION
0.	30
0.	31
0.	32
0.	33
3.28	34
0.513	35
29.75	36
2.53	37
0.	38
1.63	39
0.	40
22304300.	41
33333000.	42
34000000.	43
16272037	44
21171737.	45
36403024.	46
31403024.	47
30400000.	4.8
26304000.	49
1000.	50
153235.	51
3524163235.	52
27173122.	53
3723000000.	54
1532312124.	55
1617311517.	56
24313717.	57 50
3542132740	58
33331335.	59

LABELS

STEP	KEY PRESSED	KEY SYMBOI
001	10	E •
006	19	'n a
012	18	C'
017	17	в •
024	22	INV
038	23	∪N X
051	16	A •
060	11	Α
069	12	В
077	13	С
085	14	D
093	15	E
160	24	CE

Figure 7. Flow Chart for Method 4.

-				^
В	а	n	ĸ	

STEP	KEY PRESSED	KEY SYMBOL	STEP	KEY PRESSED	KEY SYMBOL
156	0 7	07	166	02	2
157	04	4	167	01	1
158	05	5	168	95	==
159	76	LBL	169	97	DSZ
160	24	CE	170	07	07
161	71	SBR	171	24	CE
162	23	LNX	172	98	ADV
163	43	RCL	173	43	RCL
164	09	09	174	25	25
165	85	+	175	91	R/S

BANK 3

•	
STORED VALUE	LOCATION
0.	30 31
0. 0.	32
0.	33
3.28	34
0.513	35
29.75	36
2.53	37
0.	38
1.63	39
0.	40
22304300.	41
33333000.	42
34000000.	43
16272037	44
21171737.	45
36403024.	46
31403024.	47
30400000.	48
26304000.	49
1000.	50
153235.	51
35 24163235 .	52 53
27173122. 3723000000.	54
1532312124.	55
1617311517.	56
24313717.	57
3542132740	5 <i>7</i> 58
33331335.	5 9
	3,

LABELS

STEP	KEY PRESSED	KEY SYMBOL	
001	10	E '	
006	19	D •	
012	18	C '	
017	17	в •	
024	22	INV	
038	23	LNX	
051	16	Α'	
060	11	A	
069	12	В	
077	13	С	
0.85	14	D	
093	15	E	
160	24	CE	

TOXIC CORRIDOR CALCULATIONS USING METHOD 4

Figure 7. Flow Chart for Method 4.

Chapter 8

SUMMARY

Toxic chemicals are routinely shipped by rail, barge, and truck within and near populated areas. They are stored at Department of Defense (DOD) installations and in the surrounding civilian communities and are used in many tasks. Movement, use, and storage of these chemicals creates the risk of accidental spills or releases of these chemicals to the atmosphere. When this happens, they could rapidly become a health hazard.

This report has presented four methods based upon the Ocean Breeze and Dry Gulch equation that can be used by weather forecasters in producing rapid estimates of the diffusion of these toxic chemicals. The end product is a toxic corridor forecast for which there is a 90-percent probability that toxic chemical concentrations exceeding a specified value will be contained within the corridor. This concentration level will normally be a Short-Term Public Emergency Limit established by the Committee on Toxicology of the National Academy of Sciences (1979).

The four approaches for producing toxic corridor length forecasts are:

- a. Use toxic corridor tables to estimate the corridor length based on a delta-T value and a source strength. Each chemical requires a separate table.
- b. Use a table and graph to separate the diffusion equation into a diffusion factor and a chemical factor. The corridor length is the product of this pair of factors.
- c. Use a nomogram to calculate corridor length based on the gram molecular weight of the chemical, source strength, exposure limit, and delta-T.
 - d. Use a programmable calculator to calculate corridor length.

The procedure for estimating the corridor width is the same in each approach. Step-by-step instructions direct the forecaster in producing the forecasts. A complete, separate set of instructions for each of the four approaches (called methods 1, 2, 3, and 4) is included. Table 36 summarizes the four methods. Additional information is provided in the appendixes to this report.

The toxic corridor forecast produced by each of these techniques is an approximate solution subject to several errors. These errors include:

- a. Errors caused by an error in the measurement of delta-T.
- b. Errors caused by an error in estimating source strength.
- $\ensuremath{\text{c.}}$ Terrain-induced errors that alter the diffusion characteristics of the atmosphere.

In general, this report is intended to aid the forecaster by allowing flexibility in producing toxic corridor diffusion forecasts.

Table 36. Summary of Four Toxic Corridor Methods.

LIMITATIONS	1. A low error in delta-T can cause an error in toxic corridor length (TCL) as large as 40 percent (see Appendix D). 2. Errors in Q of #20 percent can cause errors of #10 percent in TCL (see Appendix C). 3. Terrain and surface rough- ness can affect atmospher- ic dispersion and wind direction and speed (see Table B-1). 4. Heteorological elements are assumed to be homo- geneous in horizontal.				
DATA REQUIRED	1. Source strength (Q. lb/min) from Disaster Response Force (DRT) and Appendix C 2. 54-6 foot temperature difference (delta-T, OF) 3. Mean wind direction (O) 4. Wind direction variability (R, degrees) 5. Wind speed (knots)	1. Source strength (Q, 1b/min) 2. 54-6 foot temperature difference (delta-T, OF) 3. Exposure limit (Cp) 4. Gram molecular weight (GMW) of chemical 5. Mean wind direction (O) 6. Wind direction variability (R, degrees) 7. Wind speed (knots)	1. Source strength (Q, lb/win) 2. 54-6 foot temperature difference (delta-T, OF) 3. Exposure limit (Cp) 4. Gram molecular weight (GMW) of chemical 5. Mean wind direction (O) 6. Wind direction variability (K, degrees) 7. Wind speed (Knots)	1. Source strength (Q, 1b/min) 2. 54-6 foot temperature difference (delta-T, OF) 3. Exposure limit (C _p) 4. Gram molecular weight (GMW) of chemical 5. Mean wind direction (9) 6. Wind direction variability (R, degrees) 7. Wind speed (knots)	
Table 36. Summary of four form to MATERIALS REQUIRED	1. Toxic corridor length tables (Tables 2-32). 2. Toxic corridor worksheet (optional).	1. Table of Chemical Factors (Table 33), or Nomogram for Determining Chemical Factors (Figure 3). 2. Table of Diffusion Fac- tors (Table 34) or Nomc- gram for Determining Dif- fusion Factors (Figure 4). 3. Toxic corridor worksheet (optional).	1. Universal nomogram (Figure 6). 2. Toxic corridor worksheet (optional).	1. TI-59 programmable cal- culator. 2. Toxic corridor length program card. 3. Toxic corridor worksheet (optional).	
aditasyon	1. Estimate toxic corridor length (TCL) from toxic corridor length tables. 2. Calculate toxic corridor width (W) from wind direction variability (R). 3. Plot toxic corridor.	1. Separate diffusion equation into diffusion factor (DF) and chemical factor (CF) using tables and graphs. 2. Calculate toxic corridor length (TCL) from product of DF and CF. 3. Calculate toxic corridor width (W) from wind direction variability (R).		1. Calculate toxic corridor length (TCL) using TL-59 programmable calculator with TCL program. 2. Calculate toxic corridor width (W) from wind direction variability (R). 3. Flot toxic corridor.	
4 0 1	1	4	м	4	

REFERENCES

- Beals, Gordon A., 1971: Guide to Local Diffusion of Air Pollutants. AWS TR 214, May 1971, 85 p.
- Committee on Toxicology, 1979: Criteria for Short-Term Exposure to Air Pollutants. NAS/ACT/P-885 under Contract No. 0014-79-C-0049, Board on Toxicology and Environmental Health Hazards, Assembly of Life Science, National Research Council, National Academy of Sciences, Washington DC, November 1979, 22 p. (AD-A087853).
- Eidsvik, K. J., 1978: Dispersion of Heavy Gas Clouds in the Atmosphere. OR NR. 32/78, Norwegian Institute for Air Research, PO Box 130, 2001 Lillestrom, Norway (September 1978).
- Haugen, D. A. and J. J. Fuquay, eds., 1963: The Ocean Breeze and Dry Gulch Diffusion Programs, Vol. I. AFCRL Research Report, AFCRL, Bedford, Massachusetts, 1963.
- Haugen, D. A. and J. H. Taylor, eds., 1963: The Ocean Breeze and Dry Gulch Diffusion Programs, Vol. I. AFCRL Research Report, AFCRL, Bedford, Massachusetts, 1963.
- Johnson, Morris C. (Editor), 1980: Methodology for Chemical Mazard Prediction.

 Technical Paper No. 10, Change 3, Department of Defense Explosives Safety Board,
 Alexandria, Virginia, June 1980, 78 p. (AD-A086820).
- Miller, R. L. and F. H. Miller, 1964: Diffusion Forecasting for TITAN II Operations.

 AWS TR 176, Air Weather Service, Scott AFB, Illinois, 10 February 1964, 31 p.
- Nou, J. V., 1963: Development of the Diffusion Prediction Equation. In: The Ocean Breeze and Dry Gulch Diffusion Program, Vol. II, AFCRL Research Report, AFCRL, Bedford, Massachusetts, 1963, pp. 1-20.
- Strategic Air Command Regulation 355-5: "TITAN II-Hazard Corridor Planning and Evacuation Notification Procedures." 30 September 1980.
- Taylor, J. H., 1963: Operational Use of Wind Systems. In: The Ocean Breeze and Dry Gulch Diffusion Programs, Vol. II, AFCRL Research Report, AFCRL, Bedford, Massachusetts, 1963, pp. 49-73.
- van Ulden, A. P., 1974: On the Spreading of a Heavy Gas Released Near the Ground. 1st International Loss Prevention Symposium, The Hague/Delft, Netherlands, 28-30 May 1974, Amsterdam, Elsevier (1974).

Appendix A

TOXIC CORRIDOR WORKSHEET

WORKSHEET WITH EXAMPLE

1. Source strength 40 lbs/min (from environmental health service, disaster response force, or estimated)

2. 54-6 foot delta-T ____OF (from instrument or table)

3. Toxic Corridor length 1415 feet (from toxic corridor table)

4. Mean surface wind $\frac{290^{\circ}/4 \text{ kt}}{\text{degrees}}$; wind variability (R) $\frac{40}{\text{degrees}}$

5. Corridor width (W) 60 degrees (W = 1.5R)

6. Toxic corridor plot

Name of Chemical Aerozine 50

7. Surface wind trend forecast (no change) change to 0/ kt)

Figure A-1. Toxic Corridor Forecast Worksheet with Example Calculations.

TOXIC CORRIDOR WORKSHEET

Wame of Chemical

- 1. Source strength lbs/min (from environmental health service, disaster response force, or estimated)
- 2. 54-6 foot delta-T OF (from instrument or table)
- 3. Toxic Corridor length _____feet (from toxic corridor table)
- 4. Hean surface wind ; wind variability (R) degrees (from wind trace, instrument dial, or estimated)
- 5. Corridor width (W) _____ degrees (W = 1.5R)
- 6. Toxic corridor plot
- 7. Surface wind trend forecast no change/change to °/ kt)

Figure A-2. Toxic Corridor Forecast Worksheet.

Appendix B

PROCEDURES FOR DETERMINING METEOROLOGICAL ELEMENTS

The mean 10-minute wind speed or direction is determined directly from the chart trace by adjusting the position of a straightedge held parallel to the chart edge, until there is an equal amount of the trace on both sides of the straightedge. The mean wind speed or direction is the value intersected by the straightedge. Direction should be rounded to the nearest 50 and speed to the nearest 1 knot.

Where delta-T instrumentation is available, the mean 10-minute delta-T (54-6 ft) for a particular time period is determined in exactly the same manner given above, using the strip chart recording of delta-T instead of the wind record.

The range of the wind direction fluctuation (R) is obtained by subtracting the two largest fluctuation "peaks" from each side of the wind direction trace and measuring the width in degrees of the remaining trace. This can be done by moving a straightedge, held parallel to the chart edge, toward the center of the trace. After three peaks show, read the direction and round to the nearest 5°. Repeat the operation for the other side of the trace and record the difference in degrees between the two readings.

When the wind direction is oscillating about North, first one pen will trace and then the other, resulting in a trace on both sides of the chart. The method for computing R with such a trace is essentially the same as given above except that the straightedge is moved from the center of the chart outward toward each edge and the difference in readings should be subtracted from 360° to get the width of the trace. Several sample traces illustrating the procedures for obtaining the meteorological elements are given in Figures B-l and B-2 extracted from AWSTR 176 "Diffusion Forecasting for TITAN II Operations" (Miller and Miller, 1964). Note that these examples are for a 30-minute time interval.

Table B-l should be used to estimate temperature difference, 54-6 foot delta-T, if instrumental data are not available. An example is included in the table. Pay special attention to the notes concerning rough and forested terrain.

Figure B-1. Sample Traces of Temperature/Difference (AT).

WIND SPEED AND DIRECTION (12')

Figure B-2. Sample Traces of Wind Direction and Speed.

WIND SPEED AND DIRECTION (12')

Figure B-2 (cont'd). Sample Traces of Wind Direction and Speed.

Before using this Table B-1. Estimation of Temperature Difference, GF (54-6 ft AT). table refer to notes and example,

CLEAR COVER COVER 1/8-3/8 4/8-8/6	SHOW SHOWS NOW SHOW SHOWS	· · · · · · · · · · · · · · · · · · ·	7 7 7	4 3 2 1		Use sunrise/sunset category during the period from one hour before to one hour after sunrise/sunset.	In rough terrain add (~1) to the number determined.	If the toxic corridor is in a forest, use the next lower wind speed category than normal (unless the	wind measurement is from within the forest canopy) and add (-1) to the resulting delta-T value. Do	not use a delta-T more negative than (-4).	Major Robert G. Curry developed this table while assigned to 3WW/DN. It originally appeared in
CLAUD CDVER 1/8-3/8	NO NO NO SNOW SNOW	3	***************************************	4 3		unrise/sunset category during our before to one hour after	igh terrain add (~1) to the	e toxic corridor is in a forwing speed category than no	neasurement is from within the delay of (-1) to the resulting delay.	se a delta-T more negative t	Robert G. Curry developed to ned to 3WW/DN. It originall
	NO SHOW	\$ 5	7 4	4		nrise/sunset categour before to one hour	igh terrain add (-1	e toxic corridor is wind speed categor	neasurement is from 1d (-1) to the resu	se a delta-T more n	Robert G. Curry de ned to 3WW/DN. It
	ONS HONS	N.	n 4	4	-	nrise/suns our before	ıgh terrain	e toxic col wind speed	neasurement	se a delta	Robert G.
CLEAR		~ ,	v 4	_			Ď.	1 3	E E	e)	2 0
В	SHO	1		•		Use st	In rot	If th	wind i	not u	Major assig
		VO V	e v	W		Note 1.	Note 2.	Note 3.			Note 4.
	SUNRISE/SUNSET (< 15*) UDS	0	00	. 0	(c) Y - Fr	A B	000				000
RADIATION ON AMOLE)			~ ~	7	ABV 7000 FT	8 Y			Sanor		000
INCOMING SOLAR RADIATION (SOLAR RIEVATION ANGLE)	HODERATE (36—60°) (SKY OR SCAT	7'	77	7	ع إ−	i 1	777	17	OVERCAST (°	000
INCOH (SOL)	CLE		7 9	H	BROKE	sa sa					000
	<u> </u>	e 4	2 م	11		*					7-10 -1 -11 -11
THE TOTAL OF THE STATE OF THE S		(SOLAR FILEVATION AND STRONG HODERATE WEAK (> 60) (36-60*) (16-35*) (16-35*) (16-35*)	EED STRONG HODEW.TE WEAK (2 60) (36-60*) (16-35* CLEAR SKY OR SCATTERED	CLEAR SKY OR SCATTERED CLEAR SKY OR SCATTERED CLEAR SKY OR SCATTERED -2	(SOLAR FLEVATION AND SEED STRONG HODEWATE WEAK (2 60) (36-60*) (16-35* (2 60) (36-60*) (16-35* (2 60) (36-60*) (16-35* (2 60) (36-60*) (16-35* (3 -2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1	COLAR PLEVATION COLOR PLEVATION COLAR	ND STRONG HODER/IE N ED STRONG HODER/IE N (>60) (36-60*) (16 -2 -1 -3 -2 -3 -4 -3 -4 -4 -4 -4 -4 -5 -4 -5 -4 -7 -4 -7 -4 -7 -4 -8 -6 -8 -6 -9 -6 -9 -6 -9 -6 -9 -6 -9 -6 -9 -6 -1 -4 -1 -4 -1 -4 -1 -4 -2 -4 -1 -4 -2 -4 -3 -4 -4 -4 -4 -4 -4 -4 -5 -4 -6 -6 -7 -4 -7 -4 -7 -4 -8 -6 -8 -6 -9 -6 -9 -6 -9 -6 -9 -6 -9 -6 -9 -6 -1 -6 -1 -7 -1 -7 -1 -7 -2 -4 -1 -4 -1 -4 -1 -4 -2 -4 -4 -4 -	COLAR FLEVATION CD STRONG HODERATE W (> 60) (36-60°) (16 -2 -1 -3 -2 -2 -2 -3 -2 -1	### (SOLAR FLEVATION NO SCHAR FLEVATION NO STRONG HODERATE WE CLEAR SKY OR SCATTE 1	## (SOLAR FLEVATION NO STRONG HODER/TE W (16	### (SOLAR FLEVATION NO STRONG HODER/TE WE COLAR FLEVATION (16

the approximate solar elevation is 40 degrees. Calculate the temperature difference. Enter the day side of the table at proper windspeed and solar elevation angle. The answer It is a sunny day with scattered middle clouds. The surface wind speed is five knots, and is a temperature difference of (-2). Example:

Appendix C

TOXIC CHEMICAL SOURCE STRENGTH DETERMINATION

The determination of toxic chemical source strengths is not the responsibility of weather personnel. Unfortunately, a toxic corridor cannot be determined without this input. Accurate toxic corridor forecasts require that reasonably accurate parameters, such as source strength, be used as inputs upon which the calculation can be based. A source strength estimate that is an order of magnitude too small (i.e., 10 percent of the true value) will result in a Toxic Corridor Length (TCL) estimate that is approximately 30 percent of that resulting from the proper source strength input. A source strength estimate that is 75 percent of its true value will result in a TCL that is 86 percent of that resulting from the true input. Figure C-1 displays the relationship between erroneous source strength inputs and TCL errors.

Figure C-l illustrates that corridor lengths will be within +10 percent of "true" as leng as source strengths are within +20 percent of "true." Estimating source strengths resulting from spills of toxic chemicals is always an extremely difficult task. Virtually every spill incident presents a completely new set of conditions under which the source strengths must be determined. Because of the difficulty encountered in making these estimates, the Air Force Engineering and Services Center has studied the problem, and the equation shown below was one result of their studies (Clewell, 1980 and Ille, 1978).

$$Q = 0.08V^{3/4} A (1 + 4.3 \times 10^{-3} T_p^2) z$$
 (C-1)

where Q = source strength in kg/hr

V = wind speed in m/s

A = spill area in m²

T_p = toxic chemical pool temperature in degrees Celsius

Z = dimensionless factor that depends upon the toxic chemical under consideration.

The factor $\mathbf Z$ is calculated from molecular weights and vapor pressures of the toxic chemicals of concern. The equation for $\mathbf Z$ is

$$z = \frac{{}^{P}v_{b} {}^{GMW}_{b}}{{}^{P}v_{h} {}^{GMW}_{h}}$$

where P_{v} is vapor pressure (subscripts b and h represent the toxic chemical of concern and hydrazine, respectively), and GMW is the gram molecular weight for the chemical of concern (subscript b) and for hydrazine (subscript h).

The source strength equation was developed in terms of hydrazine where Z represents a factor to be used in converting the equation for use with other toxic chemicals. It should be apparent that Z equals 1 when a source strength for hydrazine is required.

Except for temperature, which remains in degrees Celsisus, the above equation has been converted to its equivalent in terms of English units. This was done to maintain a consistency of units throughout this report. The equation in terms of source strength in lb/min, with wind speed in knots, spil¹ area in square feet, and pool temperature in degrees Celsius is

$$Q = 1.66 \times 10^{-4} \text{ V}^{3/4} \text{ A} (1 + 1.3 \times 10^{-3} \text{ T}_p^2) \text{ z}$$

Table C-1 contains vapor pressures, gram molecular weights, and ${\bf Z}$ factors for a number of toxic chemicals.

- Clewell, Harvey J. III (Capt, USAF): "Estimation of Hazard Corridors for Toxic Liquid Spills." Paper presented at 1980 JANNAF Propulsion Meeting Safety and Environmental Protection Specialist Session, Monterey, CA on 12 March 1980. (Based upon work performed at the Engineering and Services Laboratory, AF Engineering and Services Center, Tyndall AFB FL 32403.)
- Ille, Gerhard and Charles Springer: "The Evaporation and Dispersion of Hydrazine Propellants from Ground Spills." CREDO-TR-78-30, Civil and Environmental Engineering Development Office (presently the AF Engineering and Services Center), Tyndall AFB FL 32403 (August 1978).

Figure C-1. Toxic Corridor Length Errors Resulting from Source Strength Estimation Errors.

Table C-1. Source Strength Factors (Z), GMW, and Vapor Pressures for Selected Toxic Chemicals.

	,	APOR PRESS	URE					
TOXIC CHEMICAL	psi	mb	in Hg	at temp	GMW	FORMULA	Z FACTOR	REMARKS
Aerozine 50 (50% Hydra- zine/50% UDMH)	3.1	213.7	6.3	80	53.0 N	2 ^H 4 ^{/(CH} 3)2 ^N 2 ^H	2 16.5	Mixed 50/50%
Annydrous Ammonia	158.17	10,902	321.9	80	17.031	NH 3	270.7	
Aniline	0.027	1.861	0.555	80	93.129	3	0.253	
Bromine Pentafluoride	8.487	584.97	17.27	80	174.896	BrF ₅	149.2	
Carbon Disulfide	6. 987	481.60	14.22	80	76.139	cs,	53.5	
Carbon Monoxide					28.011	ထ်		
Chlorine	115.383	7,952.8	234.85	80	70.906	cı,	822.3	
Chlorine Pentafluoride	58.76	4,050.043	119.599	77	130.445	ClF ₅	770.4	
Chlorine Trifluoride	26.6	1,833.410	54.141	80	92.448	ClF ₃	247.2	
Diborane				1	16.859	в ₂ н ₆		
Ethylene Oxide	27.0	1,860.98	54.96	80	44.054		119.6	
Fluorine		İ		1	37.997			
FLOX				1	33.798			Mixed 30/70%
Fuming Nitric Acid- Types I & IA	1.21	83.4	2.46	71	63.013	iino 3	7.7	wfna/1wfna
Fuming Nitric Acid - Types III,IITA, IITB	2.7	186.1	5.5	77	63.013	HNG ₂	17.1	RENA/IRENA
Hydrazine	0.31	21.4	0.63	80	32.045	, ,	ı	
H-70 (70% Hydrazine/ 30% Water)						N ₂ H ₄ /H ₂ O	0.333	Mixed 70/30%
Hydrogen Cloride	806.79	55,746.0	1,646.2	80	36.461	HC1	2963.9	Pressurized
Hydrogen Fluoride	18.70	1,288.94	36.06	80	20.006	HF	37.6	Gas Only
Hydrogen Sulfide	326.6	22,509.0	664.7	80	34-080	н ₂ ѕ	1118.6	İ
MAF 1, 3, & 4	(z = 0.4)	, 0.2, and	0.6 for	MAF 1	, 3, and	4 respective	ly)	
Methylene Chloride	8.99	619.6	18.3	81	84.933	сн _э с1 _э	76.7	1
Monomethylhydrazine				Ì			l	
(MMH)	1.0	68.9	2.04	ı		CH ₃ NHNH ₂	4.6	•
Nitrogen Dioxide	15.70	1,082.35	1	1	46.006	۷.	100.0	
Nitrogen Tetroxide	14.6	1,006.3	29.72	1	92.011	1 4	135.0	
Oxygen Difuloride	4306.0	296,795.0	i	1	53.996	1 2	23,369.2 	Pressurized Gas Only
Perchloryl Fluoride	176.1	12,137.7	358.4	ı	102.450	3	1813.3	1
Pentaborane	4.0	275.7	8.14	•	63.127	1 2 9	25.4	Į
Sulfur Dioxide	55.93	3,793.6	112.03	l l	64.063	4 ~	354.4	1
Trichloroethylene	1.16	80.0	2.36	69.8	131.389	CHC1CC1 ₂	15.3	
Trichlorotrifluoro- ethane	6.50	448.0	13.2	77	187.377	CC1 ₂ FCC1F ₂	122.4	
Unsymmetrical Di-			1				1	
methylhydrazine(UDMH)	3.1	213.7	6.3	80	60.099	3 2 2 2	18.7	
Nitrogen Trifluoride					71.002	NFa		1
	i							

Appendix D

TOXIC CORRIDOR LENGTH AS A FUNCTION OF TEMPERATURE DIFFERENCE ERRORS

Toxic corridor length calculations are quite sensitive to temperature difference (delta-T) values that are used. The sensitivity is greatest when the atmosphere is unstable, i.e., delta-T <0. The sensicivity decreases as delta-T increases. If the procedures for estimating delta-T are properly followed, any error should normally not be more than $1^{\circ}F$. If an error results when delta-T is estimated through use of Table B-l in Appendix B, the error will most likely be in a positive sense, e.g., a "true" delta-T of $0^{\circ}F$ might be estimated as $+1^{\circ}F$. For this reason, toxic corridor lengths will usually be on the conservative or safe side, i.e., the corridor lengths will be longer than necessary rather than shorter.

A positive $1^{\rm OF}$ error when the "true" delta-T is $-3^{\rm OF}$ (i.e., delta-T estimated as $-2^{\rm OF}$) will result in a 40 percent overestimation of the corridor length. An error in the opposite sense, i.e., delta-T estimated as $-4^{\rm OF}$, will cause the same corridor length to be underestimated by 32 percent.

When the "true" delta-T is positive, corridor length errors are smaller for similar errors in estimating delta-T. Suppose the "true" delta-T is 6°F and the estimate is 5°F. The toxic corridor will be underestimated by 15 percent. Conversely, a 7°F estimate of delta-T would result in a corridor length that is too large by 17 percent.

Figure D-1 graphically displays the resulting toxic corridor error percentages as a function of "true" delta-T and the error (E) that might occur in estimates. The error (E) ranges from -3°F to +3°F. An examination of the potential errors in toxic corridor lengths that might result from errors in estimating delta-T clearly signals the importance of using the best estimates of delta-T. Note that positive errors in delta-T may result in excessive evacuations of populated areas while negative delta-T errors could result in insufficient evacuations and a possibility of casualties in some nonevacuated areas.

Figure Del. Toxac Corrido: Length Errors, Expressed in Percent, as a Palaction of Temperature Difference and rs.

Appendix E

EXAMPLE TOXIC CORRIDOR PROBLEMS

1. Situation: Spill of Anhydrous Ammonia

Spill Area: Unknown

Time of Day: Sunset

Sky: Clear

Ambient Air Temp: 30°C

Wind Speed/Direction: 6 kt/235 degrees; from Figure B-2(c)

Wind Variability (R): 65 degrees; from Figure B-2(c)

Delta-T: 0°F; from Table B-1

GMW: 17.03; from Table 33

Exposure Limit: 75 PPM; SPEL from Table 33

Source Strength: 1000 lb/min; estimated by DRF

TOXIC CORRIDOR LENGTH (FT) AND WIDTH (DEGREES)

	Method 1	Method 2	Method 3	Method 4
Length	9108	9143 (Table) 9360 (Figure)	9500	9108
Width (1.5R)	980	980	980	980

For Method 2: CF = 0.78 (Table 33 or Figure 3)

DF - 11,722 (Table 34)

DP = 12,000 (Figure 4)

X - CF . DF

2. Situation: Spill of Aluminum Pluoride (AIP3)

Spill Area: Unknown

Time of Day: Midnight

Sky: Clear (no snow on ground)

Ambient Air Temp: 20°C

Wind Speed/Direction: 6 kt/235 degr.es; from Figure B-2(c)

Wind Variability (R): 65 degrees; from Figure B-2(c)

Delement: 50F; from Table B-1

GMW: 83.98; From BEE

Exposure Limit: 10 mg/m³* 30-min Emergency Exposure Limit (No SPEL exists); from

BEE

Source Strength: 100 lb/min; from DRF

^{* 10} mg/m³ converts to 2.9 PPM by volume. See "Exposure Limit" in Glossary for conversion procedures.

TOXIC CORRIDOR LENGTH (PT) AND WIDTH (DEGREES)

	Method 1	Method 2	Method 3	Method 4
Le ngth	No Table	18,264 (Table) 18,300 (Pigure)	18,000 (Pigure 6)	18,246
width (1.5R)	980	ეგი	980	980

For Method 2: CF = 1.83 (Figure 3)

CF = 1.82 (Equation)

DP = 10,035 (Table 34)

DP = 10,000 (Figure 4)

X = CF · DF

3. Situation: Spill of Hydrazine

Spill Area: 4000 feet2

Time of Day: Sunrise

Sky: Clear

Ambient Air Temp: 24°C

Wind Speed/Direction: 11 kt/335 degrees

Wind Variability (R): 120 degrees; from Figure B-2(d)

Delta-T: OOF

GMW: 32.045

Exposure Limit: 20 PPM; SPEL from Table 33

Source Strength: 14 lb/min; from Appendix C

TOXIC CORRIDOR LENGTH (PT) AND WIDTH (DEGREES)

	Method 1	Method 2	Method 3	Method 4
Length	1504	1510 (Table) 1430 (Pigure)	1400	1452
Width (1.5R)	1800	1800	1800	1800
For Method 2:	CP = 1.1; Figure 3			
	CF = 1.11; Table 33			
	DF = 1360; Table 34			
	DP = 1300; Figure 4			
	X = CF · DF			

Appendix F

SPECIAL TOXIC CORRIDOR TABLES FOR TITAN II SITES

This appendix contains additional Toxic Corridor Tables for use with Method 1. They have been included because of special requirements for multi-types of hazard corridors at TITAN II missile sites. Note that tables based upon 10-, 30-, and 60-minute Short-Term Public Emergency Limit (SPEL) have been provided for Nitrogen Tetroxide, Hydrazine, and UDMH. Also the 10-minute Short-Term Public Limit (STPL) was used to produce tables for Nitrogen Tetroxide and UDMH. These tables are also contained in SACR 355-5.

Table F-1. Hydrazine TCL Table (TITAN - Emergencies).

HAZAKO CORRIDOR LENGTHS IN FEET FOR THE LU-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 30PPM (1ST NUMBER) 30-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 20PPM (2ND NUMBER) 60-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 10PPM (3RD NUMBER)

	10	1800 2200 3100	3100 3900 5500	4100 5000 7100	5800 7100 10100	7100 8700 12 4 00	8200 10100 1 44 00	10100 12400 17700	11700 14400 20600	13100 16200 23000	16200 19900 28400	18700 23000 32900
	6	1600 2000 2800	2800 3400 4800	3600 4400 6200	5100 6200 8900	6200 7700 10300	7200 8900 12700	8900 10900 15500	10300 12700 18100	11500 14200 20200	14200 17500 24900	16500 20200 28900
	ထ	1400 1700 2400	2 4 00 3000 4200	3100 3800 5500	4400 5500 7800	5500 6700 9500	6300 7830 11100	7300 9500 13600	9000 11100 15800	10100 12405 17700	12400 15200 21700	14400 17700 25200
	7	1200 1500 2100	2100 2600 3600	2700 3300 4700	3800 4700 6700	4700 5800 8300	5500 6700 9600	6700 8300 11800	7800 9600 13600	8700 10700 15300	10700 13200 18800	12400 15300 21800
	v	1100 1300 1800	1800 2200 3100	2900 4100	3300 4100 5800	4100 5000 7100	4700 5800 8200	5800 7100 10100	6700 8200 11700	7500 9200 13100	9200 11300 16100	16700 13100 18700
	ស	900 1100 1500	1500 1900 2700	2000 2400 3500	2800 3500 4900	3500 4200 6000	4000 4900 7000	4900 6000 8600	5700 7000 10000	6400 7800 11200	7600 9600 13700	9100 [°] 11200 15900
	4	900 900 1300	1300 1600 2300	1700 2100 2900	2400 2900 4100	2900 3600 5100	3400 4100 5900	4100 5100 7200	4800 5900 8400	5400 6600 9400	6600 8100 1150ê	7600 9400 13400
EG F)	е	600 800 1100	1100 1300 1900	1400 1700 2400	2000 2400 3400	2400 3000 4200	2800 3400 4900	3400 4200 6000	4000 4900 6900	4500 5500 7800	5500 6700 9600	6300 7800 11100
DELTA T (DEG	74	500 600 900	900 1100 1500	1200 1400 2000	1600 2000 2800	2000 2400 3500	2300 2800 4000	2800 3500 4900	3300 4000 5700	3600 4500 6400	4500 5500 7800	5200 6400 9100
DE	7	4 00 500 700	700 900 1200	900 1100 1600	1300 1600 2300	1500 2000 2800	1900 2300 3200	2300 2600 3900	2600 3200 4600	2900 3600 5100	3600 4400 6300	4200 5100 7300
	٥	4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	600 700 1000	700 900 1300	1000 1300 1800	1300 1600 2200	1800 1800 2500	1800 2200 3100	2100 2500 3600	2300 2800 4000	2800 3500 5000	3300 4000 5700
	7	300 300 500	500 600 800	600 700 1000	800 1000 1400	1000 1200 1700	1100 1400 2000	1400 1700 2400	1600 2000 2800	1800 2200 3100	2200 2700 3800	2500 3100 4400
	7	200 300 4 00	4 4 0 0 0 0 0 0 0	400 500 700	600 700 1000	700 900 1300	900 1000 1500	1000 1300 1800	12C0 1500 2100	1300 1600 2300	1600 2000 2800	1900 2300 3300
	.3	200 200 300	300 300 400	300 400 500	500 500 800	500 700 900	600 800 1100	800 900 1300	900 1100 1500	1000 1200 1700	1200 1400 2000	1400 1700 2400
	4	10G 200 200	200 200 300	200 300 400	300 400 500	500	400 500 700	600 900 600	600 700 1000	300 800 1100	800 1000 1400	900 1100 1600
SOURCE	STRENGTH LE/MIN	н	m	ហ	10	15	20	30	04	O In	2.C	100

Table F-1 (cont'd). Hydrazine TCL Table (TITAN - Emergencies).

HAZARD CORNIDOR LENGTHS IN FEET FOR THE 10-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 30PPM (1ST NUMBER) 30-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 20PPM (2ND NUMBER) 60-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 10PPM (3RD NUMBER)

	o r	20600 25300 36100	26700 32900 46900	38109 46900 66900	46900 57700 82300	60900 75000 107000	75000 92300 131700	86900 107000 152600	107000 131700 187900	124000 152600 217800	139000 171100 244200
	თ	18100 22200 31700	23500 28900 41200	33400 41200 58700	41200 50700 72300	53500 65800 93900	65800 81100 115700	76300 93900 134000	93900 115700 165000	108900 134000 191300	122100 150300 214400
	ω	15800 19400 27600	20500 25200 35900	29200 35900 51200	35900 44200 63100	467 00 57 4 00 81900	57400 70700 100500	66600 81.900 116900	21960 100900 143900	95000 116900 166800	106500 131100 187000
	7	13600 16800 23900	17700 21800 31100	25300 31100 44300	31100 38300` 54600	40400 49700 70900	49700 61200 87300	57600 70900 101200	70900 87300 12 4 600	82200 101200 144400	92100 113400 161900
	φ	11700 14400 20500	15200 18700 26700	21700 26700 38000	26700 32800 46800	34600 42600 60800	42600 52500 74900	49400 60800 86800	60800 74900 106900	70500 86800 123800	79100 97300 138900
	ιn	10000 12200 17400	12900 15900 22700	18400 22700 32300	22700 27900 39600	29400 36200 51700	36200 44 600 63600	42000 51700 73700	51700 63600 90800	59900 73700 105200	67100 82700 117900
	4	8400 10300 14700	10900 13400 19000	15500 19000 27100	19000 23400 33460	24700 30400 43400	30400 37500 53400	35300 43400 61900	43407 53400 76200	50300 61900 88400	56400 69400 99100
(DEG F)	m	6900 8500 12200	9000 11160 15800	12800 15800 22500	15800 19400 27700	20500 25200 36000	25200 31100 44300	29200 36000 51300	36000 44 300 63200	41700 51300 73300	46800 57600 82100
DELTA T (T	7	5700 7000 9900	7400 9100 12900	10500 12900 18400	12900 15900 22600	16800 20600 29400	20600 25400 36200	23900 29400 41900	29400 36200 51600	34100 41900 59800	38200 47000 67100
ä	н	4600 5600 8000	5900 7300 10400	8400 10400 14800	10400 12800 18200	13500 16600 23600	16600 20400 29100	19200 23600 33700	23600 29100 41400	27400 33700 48000	30700 37700 53800
	0	3600 4400 5300	4700 £700 8200	6600 8200 11600	8200 10000 14300	10600 13000 18600	13000 16000 22800	15100 18600 26500	18600 22800 32600	21500 26500 37700	2 41 00 29700 42300
	-1	2800 3400 4800	3600 4400 6300	5100 6300 8900	6300 7700 11000	8100 10000 1420C	10000 12300 17500	11600 14200 20300	14200 17500 25000	16500 20300 28900	18500 22700 32400
	12	2100 2500 3600	2700 3300 4700	3800 4700 6600	4700 5700 8100	6000 7430 10600	7400 9100 13000	8600 10600 15100	10600 13000 18500	12200 15100 21500	13700 16900 24100
	٠ ب	1500 1800 2600	1900 2400 3300	2700 3200 4700	3300 4100 5800	4300 5300 7600	5300 6500 9300	6100 7600 10800	7500 9300 13200	8800 10800 15300	9800 12100 17200
	7	1000 1300 1800	1300 1600 2300	1900 2300 3200	2300 2800 4000	2900 3600 5100	3600 4400 6300	4200 5100 7300	5100 6300 9000	5900 7300 10400	6700 8200 11700
SOURCE	STRENGTH LB/MIN	120	200	400	009	1000	1500	2000	3000	4000	2000

Table 7-2. Nitrogen Tetroxide TCL Table (TITAN - Operational).

HEZARD CORRIDOR LENGTHS IN FEET FOR THE 10-MINUTE SHORT-TERM PUBLIC LIMIT, IPPM

	10	8400	14700	19200	27300	33600	39000	47900	55600	62300	76700	88900	126800	156100	180900	202900	289500	413100	508500	589400	006099
	6	7400	13000	16800	24000	29500	34200	42100	48800	54700	67400	78100	111400	137100	158900	178200	254200	362800	446700	517700	580500
	∞	6500	11300	14700	20900	25800	29800	36700	42600	47700	58800	68100	001/6	119600	138600	155400	221700	316400	389600	451500	506300
	7	2600	0086	12700	18100	22300	25830	31800	36800	41300	50800	58900	84100	103500	119900	134500	191900	273800	337100	390700	438100
	w	4800	8400	10900	15600	19100	22200	27300	37600	35400	43600	20600	72100	88800	102900	115400	164600	234900	289200	335200	375800
	ιn	4100	7100	9300	13200	16300	18800	23200	26900	30100	37100	42900	61300	75400	87400	98000	139800	199500	245500	284700	319200
	4	3400	0009	7800	11100	13700	15800	19500	22600	25300	31100	36100	21500	63300	73400	82300	117400	167600	206300	239100	268100
(DEG F)	m	2900	2000	6500	9200	11300	13100	16200	18700	21000	25800	29900	42700	52500	60900	68200	97400	138900	171000	198200	222300
DELTA T (2	2300	4100	5300	7590	9300	10700	13200	15300	17100	21100	24400	34900	42900	49700	55700	79500	113500	139700	161900	181500
Ā	H	1900	3300	4300	6100	7400	8600	10600	12300	13800	00691	19600	28000	34400	38900	44700	63800	91100	112100	129900	145700
	O	1500	2600	3400	4800	5900	6800	8300	9700	10800	13300	15400	22000	27100	31400	35200	50200	71600	88100	102100	114500
	7	1230	2000	2600	3700	4500	5200	6400	7400	8300	10200	11800	16900	20700	24000	26900	38400	54800	67500	78200	87700
	7	006	1500	1900	2700	3400	3900	4800	5500	6200	209L	8800	1250C	15400	17900	20000	28500	40700	50100	58100	65100
	٣	900	1100	1400	2000	2400	2800	3400	3900	4400	5400	6300	0006	11000	12800	14300	20400	29100	35800	41400	46500
	7	400	700	1000	1300	1600	1500	2300	2700	3000	3700	4300	6100	7500	8600	9700	13800	19700	24200	28100	31500
SOURCE	LB/MIN	ч	m	Ŋ	10	15	50	က်	0.7	50	75	100	200	300	400	200	1000	2000	3000	4000	5600

Table F-3. Nitrogen Tetroxide TCL Table (TITAN - Emergencies).

HAZARD CORRIDOR LENGTHS IN FEET FOR THE 10-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 5PPM (1ST NUMBER) 30-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 3PPM (2ND NUMBER) 60-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 2PPM (3RD NUMBER)

	01	3700 4800 5900	6500 8400 10400	8400 10900 13400	12000 15600 19200	14700 19200 23600	17100 22200 27300	21000 27300 33600	24400 31600 39000	27300 35500 43700	33600 43700 53800	39000 50600 62300
	თ	3300 4200 5200	5700 7400 9100	7400 9600 11800	10500 13700 1 6 800	13000 16800 20700	15000 19500 24000	18500 24000 29500	21400 27800 34200	24000 31200 38400	29500 38400 47200	34200 44500 54700
	80	2900 3700 4500	5000 6500 7900	6500 8460 10300	9200 11900 14700	11300 14700 18100	13100 17000 20900	16100 20900 25800	18700 2 4 300 29800	20900 27200 33500	25800 33500 412 00	29800 38800 47700
	7	2500 3200 3900	4300 5600 6900	5600 7300 8900	8000 10300 12700	9800 12700 15600	11300 14700 18100	14000 18100 22300	16200 21000 25800	18100 23500 29000	23300 29000 35600	25800 33600 41300
	ý	2100 2800 3400	3700 4 800 5900	4800 6200 7700	6800 8900 10900	8400 10900 13400	9700 12600 15600	12000 15600 19100	13900 18000 22200	15600 20200 24900	19100 24900 30600	22200 28800 35400
	ιŋ	1800 2300 2900	3200 41 00 5000	4100 5300 6500	5800 75 00 9300	71°0 9300 11400	8300 10700 13200	10200 13200 16300	11800 15300 18800	13200 17200 21100	16300 21100 26000	18800 24500 36100
	4	1500 2000 2400	2700 3400 4200	3400 4500 5500	4900 6300 7800	6000 7800 9600	7000 9000 11100	8600 11100 13700	9900 12900 15800	11100 14400 17700	13700 17700 21800	15800 20600 25300
EG F,	m	1300 1700 2000	2200 2900 3500	2500 3700 4600	4100 5300 6500	5000 6500 8000	5800 7500 9200	7100 9200 11300	8200 10700 13100	9200 72000 14700	11300 14700 18100	13100 17000 21000
DELTA T (DEG	7	1100 1400 1700	1800 2300 2900	2300 3000 3700	3300 4300 5300	4100 5300 6500	4700 6100 7500	5800 7500 9300	6773 8700 10700	7500 9800 12600	9300 12000 1 48 00	10700 13900 17100
a O	H	900 1100 1360	1500 1900 2300	1900 2400 3000	2700 3500 4 300	3360 43 00 5200	3800 4900 6100	4700 6100 7400	5400 7000 8600	6100 7900 9700	7400 9700 11900	8600 11200 13800
	0	700 900 1100	1200 1500 1800	1500 1900 2400	2100 2700 3400	2600 3400 4100	3000 3900 4800	3700 4800 5900	4300 5500 6800	4800 6200 7600	5900 7600 9300	6800 8800 10900
	-1	500 700 800	900 1200 1400	1200 1500 1800	1600 2100 2600	2000 2600 3200	2300 3000 3700	2800 3700 4500	3300 4200 5200	3700 4700 5800	4500 5800 7200	5200 6800 8300
	-2	400 500 600	700 900 1100	900 1100 1400	1200 1600 1900	1500 1900 2400	1700 2200 2700	2100 2700 3400	2400 3200 3900	2700 3500 4 300	3400 4300 5300	3900 5000 6200
	۳,	300 4 00 500	500 600 800	500 800 1000	900 1100 1 4 00	1160 1400 1700	1200 1600 2000	1500 2000 2400	1860 2300 2800	2000 2500 3100	2400 3100 3800	2800 3600 4400
	₹'	200 300 300	400 400 500	400 620 700	605 800 1000	700 1000 1200	900 1100 1300	1000 3300 1600	1200 1600 1900	1300 1700 2100	1600 2100 2600	1900 2500 3000
SOURCE	LB/MIN	н	ιn	м	10	135	20	30	4 0	50	7.5	100

Table F-3 (cont'd). Nitxogen Tetroxide TCL Table (TITAN - Emergencies).

HAZARD CORRIDOR LENGTHS IN FEET FOR THE LO-MINUTE SHORT-TERN PUBLIC ENGRGENCY LIMIT, SPPM (1ST NUMBER) 30-MINUTE SHORT-TERN PUBLIC EMERGENCY LIMIT, 3PPM (2ND NUMBER) 60-MINUTE SHORT-TERN PUBLIC EMERGENCY LIMIT, 2PPM (3RE NUMBER)

SOURCE	LB/MIN -4	120 2100 2700 3300	200 2700 3500 4300	400 3800 4900 6100	600 4700 6100 7500	1000 6100 7900 9700	1500 7500 9700 11900	2000 8600 11200 13800	3000 10600 13800 17000	4000 12300 16000 19700	5000 13800 17900 22100
	m I	3000 3900 4800	3900 5100 6330	5600 7300 9000	6900 9000 11000	9000 11600 14300	11000 14300 17600	12800 16500 20400	15700 20400 25100	18200 23600 29100	20400 26500 32600
	7,	4300 5500 6800	5500 7200 8800	7800 10200 12500	9-00 12500 15400	12500 16300 20000	15400 20000 24600	17500 23200 28500	22000 28500 35100	25500 33100 40700	28500 37100 45600
	ri -	5700 7400 9100	7400 9600 11800	10600 13700 16900	13000 16900 20700	16900 21900 26900	20700 26900 33200	24000 31200 38400	29500 38400 47300	34300 44500 54800	38400 49900 61500
	0	7400 9700 11900	9700 12500 1 540 0	13800 17900 22000	16900 22000 27100	22000 28500 35200	27100 35260 43300	31400 40700 50200	38600 50200 61700	44700 58100 71600	50200 65200 80200
ä	٦	9500 12300 15100	12300 157) 1960	17500 22700 28000	21500 28000 34400	28600 36300 44700	34400 44700 55100	39900 51800 63800	49100 63800 78600	56900 74000 91100	63800 82900 102100
DELTA T (2	11800 15300 18800	15300 19900 24400	21800 28300 34300	26800 34900 42900	34900 45300 55700	42900 55700 68600	49700 64600 79500	61200 79500 97900	70900 92200 113500	79500 103300 127200
(DEG F)	m	14400 18700 23030	18700 24300 28900	26700 34700 42700	32800 42700 52500	42700 55400 68200	52500 68200 84000	60900 79100 97400	74900 97400 119900	86800 112800 138900	97400 126500 155800
	4	17400 22600 27800	22600 29300 36100	32200 41800 51500	39600 51500 63300	51500 66900 82300	63300 82300 101300	73400 95400 117400	90400 117400 144600	104700 136100 167600	117400 152600 187900
	ĸ	20700 26900 33100	26900 34900 42900	38300 49800 €1300	47200 61300 75400	61300 79600 98000	75400 93000 120600	87400 113600 139800	107600 139800 172100	124700 162100 199500	1398vo 181700 223700
	9	24300 31600 38900	31600 41100 50600	45100 58600 72100	55500 72100 86800	72100 93700 115400	88800 115400 142000	102900 133700 164600	126700 164600 202700	146800 190800 234900	164600 213900 263400
	7	28400 36800 45400	36800 47900 58900	52600 68300 84100	64700 84100 103500	84100 109200 134500	103500 134500 165600	119900 155900 191900	147700 191900 236300	171100 222400 273800	191900 249400 307000
	ω	32800 42600 52400	42600 55300 68100	60700 78900 97100	74800 97100 119600	97100 136200 155430	119600 155400 191300	138600 180100 221700	170600 221700 273000	197800 257000 316400	221700 288200 354800
	6	37600 48800 60100	48800 63400 78100	69600 90500 111400	85700 111400 137100	111400 144700 178200	137100 178200 219400	158900 206500 254200	195600 254200 313000	226700 294700 362800	254200 330400 406800
	10	42800 55600 68400	55600 72200 88900	79300 103000 126800	97600 126800 156100	126800 164800 202900	156100 202900 249800	180900 235100 289500	222700 289500 356400	258200 335500 413100	289500 376200 463100

Table F-4. Unsymmetrical Dimethylhydrazine (UDMH) TCL Table (TITAN - Operational).

HAZARD CORRIDOR LENGTHS IN FEET FOR THE 10-MINUTE SHORT-TERM PUBLIC LIMIT, 50 PPM

	10	1000	1800	2300	3200	4000	4600	5700	0059	7300	0006	10500	14900	18300	21200	23800	34000	48500	59660	69100	77500
	σ	006	1600	2000	2900	3500	4100	2000	5800	6500	7900	9200	13100	16100	18700	20900	29800	42690	52400	69700	68100
	ω,	800	1400	1830	2500	3100	3500	4300	2000	5600	0069	8000	11400	14100	16300	18300	26000	37100	45700	53000	59400
	1	700	1200	1500	2200	2700	3100	3800	4400	4900	0009	7000	0066	12200	14100	15800	22500	32100	39600	45800	51400
	9	900	1000	1300	1900	2300	2600	3200	3700	4200	5200	9009	8500	10400	12100	13600	19300	27600	33900	39300	44100
	ın	500	906	1100	1600	1930	2300	2800	3200	3600	4400	5100	7200	8900	10300	11500	16400	23400	28800	33400	37500
	4	400	700	1000	1300	1600	1900	2300	2700	3000	3700	4300	9019	7500	8600	9700	13800	19700	24200	28100	31500
DEG F')	m	400	600	800	0011	1400	1600	0061	2200	2500	3100	3600	5000	6200	7200	8000	11500	16300	20100	23300	26100
DELTA T (DEG	73	300	200	700	006	1100	1300	1600	1800	2100	2500	2500	4100	5100	5300	9890	9400	13300	16400	19000	21300
ä	7	300	400	500	800	900	1100	1300	1500	1700	2000	2300	3300	4100	4700	5300	7500	10700	13200	15300	17100
	0	200	300	400	900	700	800	1000	1200	1300	1600	1900	2600	3200	3700	4200	5900	6400	10400	12000	13500
	-1	200	300	300	200	600	700	800	006	1000	1200	1400	2000	2500	2900	3200	4500	6500	8000	9200	10300
	-2	100	200	300	400	400	500	900	700	800	906	1100	1500	1900	2100	2400	3400	4800	5900	6800	7700
	-3	100	200	200	300	300	400	400	500	909	700	800	1100	1300	1500	1700	2400	3400	4200	4900	5500
	4-	100	3.30	200	200	200	300	300	400	4 00	200	200	830	006	1100	1200	1700	2400	2900	3300	3700
SOURCE	SIKENGIH LB/MIN	.1	m	ιn	10	15	20	30	40	50	75	100	200	300	400	200	1000	. 2000	3000	4000	2000

Unsymmetrical Dimethylhydrazine (UDMH) TCL Table (TITAN - Emergencies). Table P-5.

INZARD CORRIDOR LENGTHS IN FEET FOR THE LOOPPM (1ST NUMBER) SO-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 50PPM (2ND NUMBER) 60-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 30PPM (3RD NUMBER)

	10	700 1000 1300	1300 1800 2300	1600 2300 3000	2300 3200 4 200	2800 4000 5200	3200 4600 6000	4000 5700 7300	\$500 8500 5200	7300 9500 6300 9000	7300 10500 13600
	σ	700 900 1200	1100 1600 2000	1400 2000 2600	2000 2900 3700	2500 3500 4500	2900 41 00 53 00	3500 5000 6500	\$190 5800 7500 4500	6500 8400 5600 7900	6500 9200 11900
	œ	600 800 1000	1000 1400 1800	1300 1800 2300	1800 2500 3200	2200 3100 4000	2500 3500 4600	3100 4300 5600	5000 5000 6500 4000	5600 7300 4900 6900	5600 8000 10400
	7	500 700 900	900 1200 1500	1100 1500 2000	1500 2200 2800	1906 2700 3400	2200 3100 4000	2700 3800 4900	3100 4400 5700 3400	4900 5300 4200 6000 7800	4900 7000 9000
	9	400 600 800	700 1000 1300	900 1300 1700	1300 1900 2400	1600 2300 3000	1900 2600 3400	2300 3200 4200	3700 4900 3000	4200 5400 3600 5200 6700	4 200 6000 7700
	Ŋ	400 500 700	630 900 1100	800 1100 1500	1100 1600 2100	1400 1900 2500	1600 2300 2900	1900 2800 3600	3200 3200 4100 2500	3600 4600 3100 4400 5700	3600 5100 6600
	4	300 400 600	500 700 1000	700 1000 1200	1000 1300 1700	1200 1500 2100	1300 1900 2500	1600 2300 3000	2700 3500 2100	3900 3900 2600 3700 4800	3000 4300 5500
EG F)	m	300 400 500	500 600 800	600 800 1000	800 1100 1400	1000 1400 1800	1100 1600 2000	1400 1900 2500	2200 2200 2900 1800	2500 3200 2200 3100 4000	2500 3600 4600
DELTA T (DEG F)	7	200 300 400	400 500 700	500 700 800	700 900 1200	800 1100 1500	900 1300	1100	1300 1800 2400 1500	2100 2700 1800 2500 3300	2100 2900 3800
ad	1	200 300 300	300 400 500	\$00 500 700	500 800 1600	700 900 1200	800 1100 1400	900 1300 1700	1100 1500 1900	1700 2100 1400 2000 2600	1700 2300 3000
	0	200 200 300	300 300 4 00	300 4 00 600	003 003	500 700 900	600 800 1100	700 1000 1300	1200 1500 1500	1300 1700 1100 1600 2100	1300 1900 2400
	۲-	100 200 200	200 300	300 360 400	300 500 650	400 600 700	500 700 800	600 800 1000	760 900 1200 700	1000 1300 900 1200 1600	1000 1400 1800
	7	100	200 200 300	200 300	300 400 500	300 4 00 600	\$00 \$00 000	4 00 600 800	900 900 900	800 1000 700 900	800 1100 1400
	.3	100 100 100	100 200 200	200 200 300	200 300 300	200 300 40 0	300 400 500	300 400 600	500 500 600	500 700 700 700 900	600 800 1000
	4	100 100 100	100 100 200	100 200 200	200 200 200	200 200 300	300 300 300	300	00 4 60 0 00 0 0	300 300 500 600	400 500 700
SOURCE	STRENGTH LB/MIN	н	м	เก	or .	15	20	30	4 6	5 E	100

Table F-5 (cont'd). Casymmetrical Dimethylhydrazine (UDMH) TCL Table (TITAN - Emergencies).

HAZARD CORRIDOR LENGTHS IN FEET FOR THE 10-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 100PPM (1ST NUMBER) 30-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 50PPM (2ND NUMBER) 60-MINUTE SHORT-TERM PUBLIC EMERGENCY LIMIT, 30PPM (3RD NUMBER)

	10	8100 11500 14900	10500 14900 19400	14900 21200 27600	18300 26100 34000	23800 34000 44 100	29300 41800 54300	34000 48500 63000	41 800 59600 77500	48500 69100 89800	54300 77500 100709
	o,	7100 10100 13100	9200 13100 17000	13100 18700 24200	16100 23000 29800	20900 29800 38800	25800 36700 47700	29800 4 2600 55300	36700 52 4 00 68100	42600 65700 78900	4 7700 68100 88500
	00	6200 8800 11400	8000 11400 14800	11400 16300 21200	14100 20000 26000	18300 26000 33800	22500 32000 41600	26000 37100 48200	32000 45700 59400	37100 53000 68800	41600 59400 77100
	7	5400 7600 9900	7000 9900 12800	9900 1 4 100 18303	12260 17400 22500	15800 22500 29300	19400 27700 36000	22500 32100 41700	27700 39600 51460	32100 45800 59600	36000 51400 66800
	9	4600 6500 8500	6000 8500 11000	8500 12100 15700	10400 14900 19300	13600 19300 25100	16700 23800 30900	19360 27600 35800	23800 33900 44160	27600 39300 51100	30900 44100 57300
	ĸ	3900 5600 7200	5100 7200 9400	7200 10300 13400	8900 12700 16 4 00	11500 16400 21300	14200 20200 26300	16400 23400 30400	20200 28300 37500	23400 33400 43400	26300 37500 48700
	4	3300 4700 6100	4300 6100 7900	6100 8600 11200	7500 10600 13800	9700 13800 17900	11900 17000 22100	13800 19700 25600	17000 24200 31500	19700 28100 36500	22100 31500 40900
EG F)	m	2700 3900 5000	3600 5000 6500	5000 7200 9300	6200 8800 11500	8000 11500 14900	9900 14100 18300	11500 16360 21200	14100 20100 26100	16300 23300 30200	18300 26100 33900
DELTA T (DEG	N	2200 3200 4 100	2900 4100 5400	4100 5900 7600	5100 7200 9 4 00	6600 9400 12200	8100 11500 15000	9400 13300 17300	11500 16400 21309	13300 19000 24700	15000 21300 27700
	H	1800 2600 3300	2300 3300 4 300	3300 4700 6100	4100 5800 7500	5300 7500 9800	6500 9300 12000	7500 10700 13900	9300 13200 17100	10700 15360 19800	12000 17100 22200
	0	1400 2000 2600	1900 2600 3 4 00	2600 3700 4 800	3200 4600 5900	4200 5900 7700	5100 7300 9400	5900 84c0 10900	7390 10 4 00 13500	8400 12000 15600	9400 13500 17500
	7	1100 1600 2000	1400 2000 2600	2000 2900 3700	2500 3500 4500	3200 4500 5900	3900 5600 7200	4500 6500 8400	\$600 8000 10300	6500 9200 12000	7200 10300 13400
	-2	600 1200 1500	1100 1500 2000	1500 2100 2800	1900 2600 3400	2400 3400 4400	2900 4200 5400	3400 4800 6200	42 00 596 0 7700	4800 6800 8900	5400 7700 10000
	e E	600 900 1100	800 1100 1400	1100 1500 2000	1300 1900 240G	1700 2400 3100	2100 3000 3900	2400 3400 4500	3000 4 200 5 500	3400 4900 6400	3900 5500 7100
	i,	400 600 000	500 800 1000	800 1100 1400	900 1300 1700	1200 1700 2100	1400 2000 2600	1700 2400 3000	2000 2900 3700	2400 3300 4300	2600 3700 4800
SOURCE	LB/MIN	120	200	4 00	009	1000	1500	2000	3000	4000	2000

Appendix G
TABLE OF THE ELEMENTS

ELEMENT	SYMBOL	ATOMIC NUMBER	ATOMIC WEIGHT (C = 1.2)
actinium	Ac	89	
aluminum	A1	13	26.9815
americium	Am	95	
antimony	Sb	51	121.75
argon	Ar	18	39.948
arsenic	As	33	74.9216
astatine	At	85	
barium	Ва	56	137.34
berkelium	Bk	97	
beryllium	Ве	4	9.01218
bismuth	Bi	83	208.9306
boron	В	5	10.81
bromine	Br	35	79.904
cadmium	Cđ	48	112.40
calcium	Ca	20	40.08
californium	Cf	98	
carbon	c	6	12.011
cerium	Ce	58	140.12
cesium	Cs	55	135.9055
chlorine	Cl	17	35.453
chromium	Cr	24	51.996
cobalt	Co	27	58,9332
columbium	Cb	(see niobium)	
copper	Cu	29	63.546
curium	Cm	96	
dysprosium	Dγ	66	162.50
einsteinium	Es	99	
erbium	Er	68	167.26
europium	Eu	63	151.96
fermium	Fm	100	
fluorine	F	9	18.9984
francium	Fr	87	
gadolinium	Gđ	64	157.25
gallium	Ga	31	69.72
germanium	Ge	32	72.59
gold	Au	79 .	196.9665
hafnium	Н£	72	178.49
helium	Не	2	4.00260
holmium	Но	67	164.9303
hydrogen	Н	1	1.0080

ELEMENT	SYMBOL	ATOMIC NUMBER	ATOMIC WEIGHT (C = 12)
indium	In	49	114.82
iodine	I	53	126.9045
iridium	Ir	77	192.22
iron	Fe	26	55.847
krypton	Kr	36	83.80
lanthanum	La	57	138,9055
lawrencium	Lr	103	
lead	Рb	82	207.2
lithium '	Li	3	6.941
lutetium	Lu	71	174.97
magnesium	Mg	12	24.305
manganese	Mn	25	54.9380
mendelevium	Mđ	101	
mercury	Нд	80	200.59
molybdenum	Мо	42	95.94
neodymium	Nd	60	144.24
neon	Ne	10	20.179
neptunium	Ир	93	237.0482
nickel	Ni	28	58.71
niobium	Иb	41	92.9064
nitrogen	N	7	14.0067
nobelium	No	102	
osmium	Os	76	190.2
oxygen	О	8	15.9994
palladium	Pd	46	106.4
phosphorus	P	15	30.9738
platinum	Pt	78	195.09
plutonium	Pu	94	-
polonium	Po	84	
potassium	К	19	39.102
praseodymium	Pr	59	140.9077
promethium	Pm	61	
protactinium	Pa	91	231.0359
radium	Ra	88	226.0254
radon	Rn	86	
rhenium	Re	75	186.2
rhodium	Rh	45	102.9055
rubidium	ър	37	85.4678
ruthenium	Ru	44	101.07
samarium	Sm	62	150.4
scandium	Sc	21	44.9559
selenium	Se	34	78.96
silicon	Si	14	28.086

ELEMENT	SYMBOL	ATOMIC NUMBER	ATOMIC WEIGHT (C = 12)
silver	Ag	47	107.868
sodium	Na	11	22.9898
strontium	Sr	38	87.62
sulfur	s	16	32.06
tantalum	Та	73	180.9479
technetium	Tc	43	98.9062
tellurium	Тe	52	127.60
terbium	Tb	65	158.9254
thallium	т1	81	204.37
thorium	Тh	90	232.0381
thulium	Tm	69	168.9342
tin	Sn	50	118.69
titanium	Ti	22	47.90
tungsten	W	74	183.85
uranium	บ	92	238.029
vanadium	ν	23	50.9414
wolfram	W	(see tungsten)	
xenon	Хe	54	131.30
ytterbium	УÞ	70	173.04
yttrium	Y	39	88.9059
zinc	2n	30	65.37
zirconium	Zr	40	91.22

TERMS

Delta-T. Temperature difference between heights of 54 and 6 feet.

Emergency Exposure Limit (EEL). A short-term exposure limit which is used in an accidental release of a toxic chemical. These releases should be rare. The workers are knowledgeable of possible exposure and are subjected to periodical medical examination. These limits were established by a panel of experts appointed by the National Academy of Sciences - National Research Council, Committee on Toxicology. Concentrations are such that reversible toxic effects and discomfort, short of actual incapacitation, may well occur.

Exposure Limit. An atmospheric concentration of a toxic chemical that must not be exceeded. Exposure limits are established for the industrial community and the general public. Some of these include the Short-Term Public Emergency Limit (SPEL). Emergency Exposure Limit (EEL), and Short-Term Public Limit (STPL). Exposure limits may be expressed in Parts Per Million (PPM) by volume or in mass per unit volume (e.g., milligrams per cubic meter). Since the techniques contained in this report call for exposure limits in PPM, the conversion factors listed below may be used to convert to PPM from mass per unit volume units:

To convert to PPM (Vol) from

mg/m³, multiply by 24.3/GMW or from

 $\mu g/m^3$, multiply by 2.43 x $10^{-2}/GMW$

where GMW is the gram molecular weight of the toxic chemical for which the exposure limit applies.

Hazard Corridors. The term "hazard" is frequently used interchangeably with the term "toxic" when reference is made to a corridor to be evacuated as the result of a release into the atmosphere of a toxic and, occasionally, explosive chemical. A hazard corridor considers both toxic and explosive risks to the public and will be the larger corridor determined from the appropriate considerations. If the corridor determined from explosive considerations is contained within that determined from toxic considerations, the hazard corridor will be identical to the toxic corridor. Weather personnel will be involved only with calculating "toxic" corridors which may or may not be determined to be "hazard" corridors by appropriate disaster response personnel.

Ocean Breeze and Dry Gulch Equation. This is an equation developed at the Air Force Cambridge Research Laboratories (now the Air Force Geophysics Laboratory) to determine downwind peak concentration of airborne contaminants from a continuous point source. This empirically derived equation was developed from data collected during extensive diffusion experiments with tracer releases simulating ground-level continuous point sources. Using independent data, the normalized peak concentrations obtained from this equation have been found to be accurate within a factor of two, 65 percent of the time and within a factor of four, 94 percent of the time. The equation is

$$C_p/Q = 1.75 \times 10^{-4} x^{-1.95} (\Delta T + 10)^{4.92}$$

This report is concerned with downwind distance, X, at which a predetermined concentration, C_p , will occur for a known source strength, Q, and temperature difference, delta-T (AT). The equation above was inverted and solved for the downwind distance X. In the process, appropriate changes were mide to the coefficient to convert from metric units to English units and a factor was added to convert C_p/Q from units of seconds per cubic meter to units of PPM per lb/min. The converted equation, which was used to generate the Toxic Corridor Length Tables in this report is

$$X = P[3.28 \left(\frac{29.75}{GMW}\right)^{0.513} \left(\frac{Cp}{Q}\right)^{-0.513} (AT + 10)^{2.53}]$$

- where X = downwind distance in feet. As used here, this distance defines a toxic corridor length.
 - P = a probability factor used to determine the probability that a specified concentration is not exceeded outside the corridor. Calculations in this report assume a 90-percent probability; therefore, P is equal to 1.63. Probability factors corresponding to other probabilities can be found in Table 35.
 - GMW = gram molecular weight of the toxic chemical.
 - C_p = peak concentration in parts per million by volume (PPM) at a height of approximately 5 fect above the ground at a given downwind travel distance, χ , in feet. By definition, this peak concentration occurs on the axis of the diffusing cloud. Toxic corridor lengths are calculated by using a specified exposure limit for C_p in the above equation.
 - Q = source strength in 1b/min.
 - ΔT = the temperature in ^OF at 54 feet minus the temperature at 6 feet (NOTE: A negative ΔT means a decrease of temperature with height and a positive ΔT means an increase with height.)

Operational Toxic Corridor. (This term was established by the Strategic Air Command in connection with TITAN missile operations.) If an actual propellant spill or mishap occurs, an operational toxic (or "hazard" as it's sometimes called) corridor will be required. The calculated corridor will be periodically updated as meteorological and/or source strength information becomes more clearly defined.

Propellant Emission Corridor. (This term was established by the Strategic Air Command in connection with TITAN missile operations.) This corridor, which was formerly termed the "Intentional Released Corridor," will be established when planned emissions of propellants are to occur (e.g., tank venting or purging operations). As this is a scheduled occurrence, a determination must be made as to whether the planned task can be performed without unacceptable exposure to the general public.

Potential Toxic Corridor. (This term was established by the Strategic Air Command in connection with TITAN missile operations.) This corridor, which is sometimes referred to as a "Potential Toxic Corridor," will be calculated when propellants are in a nonstatic mode where no release of propellant to the environment is planned. This corridor should be updated as meteorological and/or potential source strengths change during an operation.

Public Emergency Limit (PEL). See Short-Term Public Emergency Limit (SPEL). The Committee on Toxicology (1979) renamed PELs as SPELs to avoid possible confusion with the OSHA term "permissible exposure limit."

Short-Term Public Emergency Limit (SPEL). This exposure limit will normally be used in calculating Potential and Operational Toxic Corridors at TITAN missile sites. It is a short-term exposure limit which is used in an accidental release of a toxic chemical involving the general public. These releases are expected to be rare events. A SPEL assumes that some temporary discomfort may accrue to the public, but that any effect resulting from the exposure is reversible and without residual damage. These limits were established by a panel of experts appointed by the National Academy of Sciences - National Research Council, Committee on Toxicology. Consultation with members of this panel led to the selection of the exposure limits

used in this report. The Committee on Toxicology recently renamed the "PEL" to "SPEL" for "Short-Term Public Emergency Limit." This was done to prevent confusion with the OSHA "Permissible Exposure Limit" which has a different meaning and intended use. In some cases where the Committee on Toxicology has not established a SPEL but has established an Emergency Exposure Limit (EEL), this report has conservatively estimated the SPEL as a fraction of the EEL. For example, a 30-minute SPEL may have been estimated as 10 ppm or 1/5 of 50 ppm, the 30-minute EEL for that chemical.

Short-Term Public Limit (STPL). This is an exposure limit that will normally be used to compute Propellant Emission Corridors at TITAN missile sites. Several tables for 10-minute STPLs are published in Appendix F primarily for use by weather personnel supporting SAC TITAN missile sites.

Solar Elevation. The angle between the sun and the horizon.

Source Strength (SS or Q). The rate in mass per unit time, expressed in this report in pounds per minute, at which a toxic chemical is released into the atmosphere. The source strength of a liquid spill of toxic chemical is determined by its rate of evaporation.

Temperature Difference (delta-T). The temperature change in the vertical. Delta-T is used to estimate the stability of the lower atmosphere and, thus, the amount of vertical mixing. Table B-1 is based on delta-T values calculated by subtracting the temperature (OF) at 6 feet above ground from the temperature at 54 feet above ground.

Toxic Chemical. The chemical which could constitute a health hazard, if it is released into the atmosphere.

Toxic Corridor. The area within which the forecast concentration of a toxic chemical equals or exceeds a specified exposure limit. Toxic corridors are expressed in terms of length (X) in feet and width (W) in degrees of azimuth.

Wetted Area. Surface area covered by a spilled liquid chemical.

Wind Variability (R). As used in this report, R is the difference in degrees between the third largest fluctuation on each side of the mean wind direction when a 10-minute wind direction trace is used. As an approximation to this when only a 2-minute observation of a wind direction indicator is available, R is the difference in degrees between the largest fluctuation on each side of the mean wind direction. R is an index of the lateral diffusion of a toxic chemical in the atmosphere.

ABBREVIATIONS AND SYMBOLS

A Area
AFGL Air Force Geophysics Laboratory
AWS Air Weather Service
BEE Bioenvironmental Engineer

Cp Peak concentration of an airborne toxic chemical - See Ocean Breeze and Dry Gulch equation in the Glossary of Terms for more information on this

term.

CF . Chemical Factor

D Mean wind direction in degrees of azimuth

Delta T Temperature differential between 54- and 6-foot heights

DF Diffusion Factor ΔT Same as Delta-T

DRF Disaster Response Force
E Error (see Figure D-1)
EEL Emergency Exposure Limit
GMW Gram Molecular Weight
in Hg Inches of Mercury
mg Milligram (10⁻³ gram)
ug Microgram (10⁻⁶ gram)

mb Millibar

P Probability factor (see Table 35)

PEL Public Emergency Limit; replaced by SPEL

PPAR Percent Parameter. This is the same as the probability factor (P). (See

Table 35)

PPM Parts per million by volume psi Pounds per square inch

Pv Vapor Pressure

Q Source strength in mass per unit time R Wind direction variability in degrees

SPEL Short-Term Public Emergency Limit; replaced PEL

SS Source strength in mass per unit time
STPL Short-Term Public Limit

Tp Toxic Chemical pool temperatur€ in ^OC

TC Toxic Corridor

TCL Toxic Corridor Length

V Wind Velocity

W Toxic Corridor Width in degrees of azimuth

X Downwind distance in feet

Source strength correction factor for evaporative sources (See Appendix

C)

AND THE PROPERTY OF THE PARTY O

TOXIC CORRIDOR WORKSHEET

Name of Chemical

- 1. Source strength lbs/min (from environmental health service, disaster response force, or estimated)
- 2. 54-6 foot delta-T OF (from instrument or table)
- 3. Toxic Corridor length _____feet (from toxic corridor table)
- 4. Mean surface wind ; wind variability (R) degrees (from wind trace, instrument dial, or estimated)
- 5. Corridor width (W) _____ degrees (W = 1.5R)
- 6. Toxic corridor plot
- 7. Surface wind trend forecast no change/change to 0/ kt)

DISTRIBUTION

AWS/CS, Scott AFB, IL 62225-50081	
AWS/DN, Scott AFB, IL 62225-5008!	
AWS/DO, Scott AFB, IL 62225-5008	
OL A, HQ AWS, Puckley ANG Base, Aurora, CO 80011-95991	
OL-B, HQ AWS, Langley AFB, VA 23665-55331	
AFOTEC/WE, Kirtland AFB, NM 87117-7001	
CACDA, OL-E, HQ AWS, ATZL-CAW, Ft Leavenworth, KS 66027-53001	
SD/CWDA, PO Box 92960, Los Angeles AFS, Los Angeles, CA 90009-29601	
OL-H, HQ AWS (ATSI-CD-CS-SWO), Ft Huachuca, AZ 85613-7000	
OL-I, HQ AWS (ATWE), Ft Monroe, VA 23651-5051	
OL-K, HQ AWS, 1313 Halley Circle, Norman, OK 73069-8493	1
OL-L, HQ AWS, Keesler AFB, MS 39534-5000	l
SMALC ALC/MM-AWS McClellan AFB, CA 95652-5609	
Det 1, HQ AWS, Pentagon, Washington, DC 20330-6560	ļ
Det 2, HQ AWS, Pentagon, Washington, DC 20330-5054	
CSTC/WE, PO Box 3430, Onizuka AFB, CA 94088-3430	
Det 8, HQ AWS, PO Box 4239, N Las Vegas, NV 89030	
Det 9, HQ AWS, PO Box 12297, Las Vegas, NV 89112-0297	
1WW/DN, Hickam AFB, HI 96853-5000	
20WS/DON, APO San Francisco 96328-5000	
30WS/DON, APO San Francisco 96301-0420	
2WW/DN, APO New York 09094-5000.	
7WS/DON, APO New York 09403-5000	
28WS/DON, APO New York 09127-5000	
31WS/DON, APO New York (99136-5000)	
3WW/DN, Offult AFB, NE 68113-5000	
9WS/DON, March AFB, CA 92518-50001	
11WS/DON, Elmendorf AFB, AK 99506-5(XX)	
24WS/DON, Randolph AFB, TX 78150-5000	
26WS/DON, Barksdale AFB, LA 71110-5002	
4WW/DN, Peterson AFB, CO 80914-5000)	
2WS/DON, Andrews AFB, MD 20334-5000	
5WW/DN, Langley AFB, VA 23665-5000	
1WS/DON MacDill AFB, FL 33608-5000	
3WS/DON, Shaw AFB, SC 29152-5000	
5WS/DON, Ft McPherson, GA 30330-5000	
25WS/DON, Bergstrom AFB, TX 78743-5000	
AFGWC/SDSL, Offuit AFB, NE 68113-5000	
USAFETAC, Scott AFB, IL 62225-5 18	
7WW/DN, Scott AFB, IL 62225-5008	
6WS/DON Hurlburt Field, FL 32544-5000	
15WS/DON, McGuire AFB, NJ 08641-5002	
17WS/DON, Travis AFB, CA 94535-5000	
3350 TECH TG/TTGU-W, Stop 62, Chanute AFB, IL 61868-5000	
AFIT/CIR, Wright-Patterson AFB, OH 45433-6583	
AFCSA/SAGW, Washington, DC 20330-5000	
NAVOCEANCOMFAC, NSTL, Bay St Louis, Stennis Space Ctr, MS 39529-5002	
COMNAVOCEAN, NSTL, Bay St Louis, MS 39529-5000	
NAVOCEANO, Code 9220 (Tony Ortolano), NSTL, Bay St Louis, MS 39529-5001	
THA VULCAING, COIC 4001 UNIS LOOMIS). NO LL DBV SULOUIS, MO 3Y3ZY-3WI	ŧ

NEPRF, Monterey, CA 93943-5006	1
Naval Research Laboratory, Cot 4323, Washington, DC 20375	
Naval Postgraduate School, Chmn, Dept of Meteorology, Code 63, Monterey, CA 93943-5000	1
Federal Coordinator for Meteorology, Suite 300, 11426 Rockville Pike, Rockville, MD 20852	1
AFGL Library, Attn: SULLR, Stop 29, Hanscom AFB, MA 01731-5000	1
Atmospheric Sciences Laboratory, Attn: SLCAS-AT-AB, Aberdeen Proving Grounds, MD 21005-5001	1
Atmospheric Sciences Laboratory, White Sands Missile Range, NM 88002-5501	1
U.S. Army Missile Command, ATTN: AMSMI-RD-TE-T, Redstone Arsenal, AL 35898-5250	1
Technical Library, Dugway Proving Ground, Dugway, UT 84022-5000	1
NCDC Library (D542X2), Federal Building, Asheville, NC 28801-2723	1
DTIC-FDAC, Cameron Station, Alexandria, VA 22304-6145	2
ANG Weather Flights (through AWS/CSE)	()
JSOC/Weather, P.O. Box 70239, Fort Bragg, NC 28307-5000	1
75th Ranger Btn (Attn: Lt David Musick), Ft Benning GA 31905-5000	
HQ 5th U.S. Army, AFKB-OP (SWO), Ft Sam Houston, TX 78234-7000	
AUL/LSE, Maxwell AFB, AL 36112-5564	
AWSTL, Scott AFB, IL 62225-5438	0