

Page 1 of 98

APPLICATION CERTIFICATION FCC Part 15C On Behalf of CLEVER BRIGHT INTERNATIONAL (H.K.) LTD.

COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Model No.: CB-335072, MI-SPB94-101

FCC ID: 2AD42-CB-335072

Prepared for : CLEVER BRIGHT INTERNATIONAL (H.K.) LTD.

Address : Rm 1701, Zhuoyue Building, Fuhua Yi Rd., Futian

Central Zone, Shenzhen, China.

Prepared by : ACCURATE TECHNOLOGY CO., LTD

Address : F1, Bldg. A&D, Chan Yuan New Material Port,

Keyuan Rd. Science & Industry Park, Nan Shan,

Shenzhen, Guangdong P.R. China

Tel: (0755) 26503290 Fax: (0755) 26503396

Report No. : ATE20160473

Date of Test : Mar 23-29, 2016

Date of Report : Mar 29, 2016

TABLE OF CONTENTS

Descrip	otion	Page
Test Re	eport Certification	
	•	
	NERAL INFORMATION	
1.1.	Description of Device (EUT)	
1.2.	Accessory and Auxiliary Equipment	
1.3. 1.4.	Description of Test Facility Measurement Uncertainty	
	•	
	EASURING DEVICE AND TEST EQUIPMENT	
3. OP	ERATION OF EUT DURING TESTING	8
3.1.	Operating Mode	
3.2.	Configuration and peripherals	
4. TE	ST PROCEDURES AND RESULTS	9
5. 20I	OB BANDWIDTH TEST	10
5.1.	Block Diagram of Test Setup.	10
5.2.	The Requirement For Section 15.247(a)(1)	
5.3.	EUT Configuration on Measurement	10
5.4.	Operating Condition of EUT	
5.5.	Test Procedure	
5.6.	Test Result	
6. CA	RRIER FREQUENCY SEPARATION TEST	
6.1.	Block Diagram of Test Setup	
6.2.	The Requirement For Section 15.247(a)(1)	
6.3.	EUT Configuration on Measurement	
6.4.	Operating Condition of EUT	
6.5.	Test Procedure	
6.6.	Test Result	
	MBER OF HOPPING FREQUENCY TEST	
7.1.	Block Diagram of Test Setup	
7.2.	The Requirement For Section 15.247(a)(1)(iii)	
7.3. 7.4.	EUT Configuration on Measurement	
7.4. 7.5.	Test Procedure	
7.6.	Test Result	
	VELL TIME TEST	
8.1.	Block Diagram of Test Setup.	
8.2.	The Requirement For Section 15.247(a)(1)(iii)	
8.3.	EUT Configuration on Measurement	
8.4.	Operating Condition of EUT	
8.5.	Test Procedure	
8.6.	Test Result	28
9. MA	AXIMUM PEAK OUTPUT POWER TEST	43
9.1.	Block Diagram of Test Setup	
9.2.	The Requirement For Section 15.247(b)(1)	
9.3.	EUT Configuration on Measurement	
9.4.	Operating Condition of EUT	43

9.5.	Test Procedure	43
9.6.	Test Result	44
10. RA	DIATED EMISSION TEST	50
10.1.	Block Diagram of Test Setup	50
10.2.	The Limit For Section 15.247(d)	
10.3.	Restricted bands of operation	52
10.4.	Configuration of EUT on Measurement	52
10.5.	Test Procedure	
10.6.	The Field Strength of Radiation Emission Measurement Results	53
11. BA	ND EDGE COMPLIANCE TEST	66
11.1.	Block Diagram of Test Setup	66
11.2.	The Requirement For Section 15.247(d)	66
11.3.	EUT Configuration on Measurement	66
11.4.	Operating Condition of EUT	66
11.5.	Test Procedure	67
11.6.	Test Result	67
12. AC	POWER LINE CONDUCTED EMISSION FOR FCC PART 15 SECTION 15	.207(A)90
12.1.	Block Diagram of Test Setup	90
12.2.	Power Line Conducted Emission Measurement Limits	
12.3.	Configuration of EUT on Measurement	90
12.4.	Operating Condition of EUT	90
12.5.	Test Procedure	91
12.6.	Power Line Conducted Emission Measurement Results	91
13. AN	TENNA REQUIREMENT	98
13.1.	The Requirement	
13.2	Antenna Construction	98

Report No.: ATE20160473 Page 4 of 98

Test Report Certification

Applicant : CLEVER BRIGHT INTERNATIONAL (H.K.) LTD. Manufacturer CLEVER BRIGHT INTERNATIONAL (H.K.) LTD.

EUT Description : COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS

Model No. CB-335072, MI-SPB94-101

Trade Mark : N/A

Measurement Procedure Used:

FCC Rules and Regulations Part 15 Subpart C Section 15.247: 2015 ANSI C63.10: 2013

The device described above is tested by ACCURATE TECHNOLOGY CO. LTD to determine the maximum emission levels emanating from the device. The maximum emission levels are compared to the FCC Part 15 Subpart C Section 15.247 limits. The measurement results are contained in this test report and ACCURATE TECHNOLOGY CO. LTD is assumed full responsibility for the accuracy and completeness of these measurements. Also, this report shows that the Equipment Under Test (EUT) is to be technically compliant with the FCC requirements.

This report applies to above tested sample only. This report shall not be reproduced in part without written approval of ACCURATE TECHNOLOGY CO. LTD.

Date of Test:	Mar 23-29, 2016
Date of Report:	Mar 29, 2016
Prepared by :	Mark Chen, Engineer)
Approved & Authorized Signer :	Lemb
	(Sean Liu, Manager)

Report No.: ATE20160473

Page 5 of 98

1. GENERAL INFORMATION

1.1.Description of Device (EUT)

EUT : COLOR CHANGING BLUETOOTH TRANGLE

SPEAKERS

Model Number : CB-335072, MI-SPB94-101

(Note: We hereby state that these models are identical in interior structure, electrical circuits and components, and just model names are different for the marketing requirement. Therefore only

model CB-335072 is tested for EMC tests.)

Bluetooth version : BT 3.0

Frequency Range : 2402MHz-2480MHz

Number of Channels : 79 Antenna Gain : 1dBi

Antenna type : Integral antenna

Power Supply : DC 3.7V & DC 5V(Power by USB port)

Modulation mode : GFSK, $\pi / 4$ DQPSK, 8DPSK

Applicant : CLEVER BRIGHT INTERNATIONAL (H.K.) LTD.
Address : Rm 1701, Zhuoyue Building, Fuhua Yi Rd., Futian

Central Zone, Shenzhen, China.

Manufacuter : CLEVER BRIGHT INTERNATIONAL (H.K.) LTD.
Address : Rm 1701, Zhuoyue Building, Fuhua Yi Rd., Futian

Central Zone, Shenzhen, China.

Date of sample received: Mar 23, 2016
Date of Test: Mar 23-29, 2016

1.2. Accessory and Auxiliary Equipment

PC Manufacturer: LENOVO

M/N: 4290-RT8

S/N: R9-FW93G 11/08

Report No.: ATE20160473

Page 6 of 98

1.3. Description of Test Facility

EMC Lab : Accredited by TUV Rheinland Shenzhen

Listed by FCC

The Registration Number is 752051

Listed by Industry Canada

The Registration Number is 5077A-2

Accredited by China National Accreditation Committee

for Laboratories

The Certificate Registration Number is L3193

Name of Firm : ACCURATE TECHNOLOGY CO. LTD

Site Location : F1, Bldg. A, Changyuan New Material Port, Keyuan Rd.

Science & Industry Park, Nanshan, Shenzhen, Guangdong

P.R. China

1.4. Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2

Radiated emission expanded uncertainty = 3.08dB, k=2

(9kHz-30MHz)

Radiated emission expanded uncertainty = 4.42dB, k=2

(30MHz-1000MHz)

Radiated emission expanded uncertainty = 4.06dB, k=2

(Above 1GHz)

2. MEASURING DEVICE AND TEST EQUIPMENT

Table 1: List of Test and Measurement Equipment

Kind of equipment	Manufacturer	Туре	S/N	Calibrated dates	Calibrated until
EMI Test Receiver	Rohde&Schwarz	ESCS30	100307	Jan. 9, 2016	1 Year
EMI Test Receiver	Rohde&Schwarz	ESPI3	101526/003	Jan. 9, 2016	1 Year
Spectrum Analyzer	Agilent	E7405A	MY45115511	Jan. 9, 2016	1 Year
Pre-Amplifier	Rohde&Schwarz	CBLU118354 0-01	3791	Jan. 9, 2016	1 Year
Loop Antenna	Schwarzbeck	FMZB1516	1516131	Jan. 14, 2016	1 Year
Bilog Antenna	Schwarzbeck	VULB9163	9163-323	Jan. 14, 2016	1 Year
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-655	Jan. 14, 2016	1 Year
Horn Antenna	Schwarzbeck	BBHA9170	9170-359	Jan. 14, 2016	1 Year
LISN	Rohde&Schwarz	ESH3-Z5	100305	Jan. 9, 2016	1 Year
LISN	Schwarzbeck	NSLK8126	8126431	Jan. 9, 2016	1 Year
Highpass Filter	Wainwright Instruments	WHKX3.6/18 G-10SS	N/A	Jan. 9, 2016	1 Year
Band Reject Filter	Wainwright Instruments	WRCG2400/2 485-2375/2510 -60/11SS	N/A	Jan. 9, 2016	1 Year

3. OPERATION OF EUT DURING TESTING

3.1. Operating Mode

The mode is used: Transmitting mode

Low Channel: 2402MHz Middle Channel: 2441MHz High Channel: 2480MHz

Hopping

3.2. Configuration and peripherals

EUT
Figure 1 Setup: Transmitting mode

(EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS)

4. TEST PROCEDURES AND RESULTS

FCC Rules	Description of Test	Result
Section 15.207	Conducted Emission Test	Compliant
Section 15.247(a)(1)	20dB Bandwidth Test	Compliant
Section 15.247(a)(1)	Carrier Frequency Separation Test	Compliant
Section 15.247(a)(1)(iii)	Number Of Hopping Frequency Test	Compliant
Section 15.247(a)(1)(iii)	Dwell Time Test	Compliant
Section 15.247(b)(1)	Maximum Peak Output Power Test	Compliant
Section 15.247(d) Section 15.209	Radiated Emission Test	Compliant
Section 15.247(d)	Band Edge Compliance Test	Compliant
Section 15.203	Antenna Requirement	Compliant

Report No.: ATE20160473 Page 10 of 98

5. 20DB BANDWIDTH TEST

5.1.Block Diagram of Test Setup

(EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS)

5.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

5.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

5.4. Operating Condition of EUT

- 5.4.1. Setup the EUT and simulator as shown as Section 5.1.
- 5.4.2. Turn on the power of all equipment.
- 5.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

5.5.Test Procedure

- 5.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 5.5.2.Set RBW of spectrum analyzer to 30 kHz and VBW to 100 kHz.
- 5.5.3. The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

Report No.: ATE20160473

Page 11 of 98

5.6.Test Result

Channel	Frequency	GFSK	∏/4-DQPSK	8DPSK 20dB Bandwidth	Result
Chamiei	(MHz)	(MHz)	(MHz)	(MHz)	Result
Low	2402	0.708	1.116	1.160	Pass
Middle	2441	0.704	1.116	1.164	Pass
High	2480	0.704	1.112	1.164	Pass

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Middle channel

High channel

Π /4-DQPSK Mode

Middle channel

High channel

8DPSK Mode

Low channel

Middle channel

Page 16 of 98

Report No.: ATE20160473

Page 17 of 98

6. CARRIER FREQUENCY SEPARATION TEST

6.1.Block Diagram of Test Setup

(EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS)

6.2. The Requirement For Section 15.247(a)(1)

Section 15.247(a)(1): Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudorandomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

6.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

6.4. Operating Condition of EUT

- 6.4.1. Setup the EUT and simulator as shown as Section 6.1.
- 6.4.2. Turn on the power of all equipment.
- 6.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

Report No.: ATE20160473 Page 18 of 98

6.5. Test Procedure

- 6.5.1.The transmitter output was connected to the spectrum analyzer through a low loss cable.
- $6.5.2. Set\ RBW$ of spectrum analyzer to 30 kHz and VBW to 100 kHz. Adjust Span to 2 MHz.
- 6.5.3.Set the adjacent channel of the EUT maxhold another trace.
- 6.5.4. Measurement the channel separation

6.6.Test Result

GFSK

OIBIL				
Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.000	0.708	PASS
	2403	1.000	0.708	
Middle	2440	1.000	0.704	PASS
Middle	2441	1.000	0.704	TASS
High	2479	1.000	0.704	PASS
riigii	2480	1.000	0.704	FASS

∏/4-DQPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402	1.002	0.744	PASS
	2403 2440			
Middle	2441	1.002	0.744	PASS
High	2479	1.002	0.741	PASS
8	2480			

8DPSK

Channel	Frequency (MHz)	Channel Separation(MHz)	Limit (MHz)	Result
Low	2402 2403	1.000	0.744	PASS
Middle	2440 2441	1.002	0.776	PASS
High	2479 2480	1.002	0.776	PASS

The spectrum analyzer plots are attached as below.

GFSK Mode

Middle channel

High channel

$\Pi/4$ -DQPSK Mode

Middle channel

High channel

8DPSK Mode

%

-90

Center 2.4025 GHz

Span 3 MHz

Page 23 of 98

High channel

Report No.: ATE20160473

Page 24 of 98

7. NUMBER OF HOPPING FREQUENCY TEST

7.1.Block Diagram of Test Setup

(EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS)

7.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

7.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

7.4. Operating Condition of EUT

- 7.4.1. Setup the EUT and simulator as shown as Section 7.1.
- 7.4.2. Turn on the power of all equipment.
- 7.4.3.Let the EUT work in TX (Hopping on) modes measure it.

7.5. Test Procedure

- 7.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 7.5.2.Set the spectrum analyzer as Span=83.5MHz, RBW=100 kHz, VBW=300 kHz.
- 7.5.3.Max hold, view and count how many channel in the band.

7.6.Test Result

Total number of	Measurement result(CH)	Limit(CH)
hopping channel	79	≥15

The spectrum analyzer plots are attached as below.

Number of hopping channels(GFSK)

Number of hopping channels $(\Pi/4\text{-DQPSK})$

Number of hopping channels(8DPSK)

Report No.: ATE20160473 Page 27 of 98

8. DWELL TIME TEST

8.1.Block Diagram of Test Setup

(EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS)

8.2. The Requirement For Section 15.247(a)(1)(iii)

Section 15.247(a)(1)(iii): Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

8.3.EUT Configuration on Measurement

The equipment are installed on the emission measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

8.4. Operating Condition of EUT

- 8.4.1. Setup the EUT and simulator as shown as Section 8.1.
- 8.4.2. Turn on the power of all equipment.
- 8.4.3.Let the EUT work in TX (Hopping on) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

8.5. Test Procedure

- 8.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 8.5.2.Set center frequency of spectrum analyzer = operating frequency.
- 8.5.3.Set the spectrum analyzer as RBW=1MHz, VBW=3MHz, Span=0Hz, Adjust Sweep=5ms, 10ms, 15ms. Get the pulse time.

8.5.4.Repeat above procedures until all frequency measured were complete.

8.6.Test Result

GFSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)	
	2402	0.415	132.80	400	
DH1	2441	0.410	131.20	400	
	2480	0.415	132.80	400	
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pu	alse time \times (1600/(2*)	79))×31.6	
	2402	1.680	268.80	400	
DH3	2441	1.695	271.20	400	
	2480	1.680	268.80	400	
A period to	ransmit time = 0.4×79 =	31.6 Dwell time = pt	ulse time \times (1600/(4*7)	79))×31.6	
	2402	2.960	315.73	400	
DH5	2441	2.960	315.73	400	
	2480	2.960	315.73	400	
A period transr	A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

$\Pi/4$ -DQPSK

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
	2402	0.415	132.80	400
DH1	2441	0.420	134.40	400
	2480	0.420	134.40	400
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(2*)	79))×31.6
	2402	1.695	271.20	400
DH3	2441	1.695	271.20	400
	2480	1.695	271.20	400
A period to	ransmit time = $0.4 \times 79 =$	31.6 Dwell time = pt	alse time \times (1600/(4*)	79))×31.6
	2402	2.960	315.73	400
DH5	2441	2.960	315.73	400
	2480	2.960	315.73	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

8DPSK Mode

Mode	Channel Frequency (MHz)	Pulse Time (ms)	Dwell Time (ms)	Limit (ms)
DH1	2402	0.420	134.40	400
	2441	0.420	134.40	400
	2480	0.420	134.40	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(2*79)) \times 31.6$				
DH3	2402	1.680	268.80	400
	2441	1.680	268.80	400
	2480	1.695	271.20	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(4*79)) \times 31.6$				
DH5	2402	2.960	315.73	400
	2441	2.960	315.73	400
	2480	2.960	315.73	400
A period transmit time = $0.4 \times 79 = 31.6$ Dwell time = pulse time $\times (1600/(6*79)) \times 31.6$				

The spectrum analyzer plots are attached as below.

DH1 Middle channel

DH1 High channel

DH3 Low channel

DH3 Middle channel

DH3 High channel

DH5 Middle channel

Mode 2: π /4 DQPSK Mode

2DH1 Low channel

2DH1 Middle channel

2DH1 High channel

2DH3 Low channel

2DH3 Middle channel

2DH3 High channel

2DH5 Low channel

2DH5 Middle channel

2DH5 High channel

Mode 3: 8DPSK Mode

3DH1 Low channel

3DH1 Middle channel

3DH1 High channel

3DH3 Low channel

3DH3 Middle channel

3DH3 High channel

3DH5 Middle channel

3DH5 High channel

Report No.: ATE20160473

Page 43 of 98

9. MAXIMUM PEAK OUTPUT POWER TEST

9.1.Block Diagram of Test Setup

(EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS)

9.2. The Requirement For Section 15.247(b)(1)

Section 15.247(b)(1): For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

9.3.EUT Configuration on Measurement

The equipment are installed on the emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

9.4. Operating Condition of EUT

- 9.4.1. Setup the EUT and simulator as shown as Section 9.1.
- 9.4.2. Turn on the power of all equipment.
- 9.4.3.Let the EUT work in TX (Hopping off) modes measure it. The transmit frequency are 2402-2480MHz. We select 2402MHz, 2441MHz, and 2480MHz TX frequency to transmit.

9.5.Test Procedure

- 9.5.1. The transmitter output was connected to the spectrum analyzer through a low loss cable.
- 9.5.2.Set RBW of spectrum analyzer to 1MHz and VBW to 3MHz for GFSK mode
- 9.5.3.Set RBW of spectrum analyzer to 3MHz and VBW to 3MHz for other mode
- 9.5.4. Measurement the maximum peak output power.

Report No.: ATE20160473 Page 44 of 98

9.6.Test Result

GFSK Mode

Channel	Frequency (MHz)	Peak Output Power(dBm)	Peak Output Power(mW)	Limits dBm / W
Low	2402	3.61	2.30	30/1.0
Middle	2441	2.48	1.77	30/1.0
High	2480	2.43	1.75	30/1.0

∏/4-DQPSK Mode

Channel	Frequency (MHz)	Peak Output Power(dBm)	Peak Output Power(mW)	Limits dBm / W
Low	2402	2.33	1.71	21 / 0.125
Middle	2441	1.64	1.46	21 / 0.125
High	2480	2.43	1.75	21 / 0.125

8DPSK Mode

Channel	Frequency (MHz)			Limits dBm / W
Low	2402	2.42	1.75	21 / 0.125
Middle	2441	1.72	1.49	21 / 0.125
High	2480	3.53	2.25	21 / 0.125

The spectrum analyzer plots are attached as below.

GFSK Mode

Low channel

Middle channel

High channel

∏/4-DQPSK Mode

Low channel

Middle channel

High channel

8DPSK Mode

Low channel

Middle channel

Page 49 of 98

High channel

10.RADIATED EMISSION TEST

- 10.1.Block Diagram of Test Setup
- 10.1.1.Block diagram of connection between the EUT and peripherals

10.1.2.Semi-Anechoic Chamber Test Setup Diagram

Below 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

Above 1GHz

ANTENNA ELEVATION VARIES FROM 1 TO 4 METERS

10.2. The Limit For Section 15.247(d)

Section 15.247(d): In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

Report No.: ATE20160473 Page 52 of 98

10.3.Restricted bands of operation

10.3.1.FCC Part 15.205 Restricted bands of operation

(a) Except as shown in paragraph (d) of this section, Only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	$\binom{2}{}$
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510

(b) Except as provided in paragraphs (d) and (e), the field strength of emission appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000MHz, Compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000MHz, compliance with the emission limits in Section15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

10.4. Configuration of EUT on Measurement

The equipment is installed on Radiated Emission Measurement to meet the commission requirements and operating regulations in a manner which tends to maximize its emission characteristics in normal application.

²Above 38.6

Report No.: ATE20160473

Page 53 of 98

10.5.Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground(Below 1GHz). The EUT and its simulators are placed on a turntable, which is 1.5 meter high above ground(Above 1GHz). The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated bi-log antenna) is used as receiving antenna. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the EUT location must be manipulated according to ANSI C63.10:2013 on radiated emission measurement. The EUT was tested in 3 orthogonal planes.

During the radiated emission test, the spectrum analyzer was set with the following configurations:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for peak measurement with peak detector at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 10Hz for Average measurement with peak detection at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

10.6. The Field Strength of Radiation Emission Measurement Results

Note:

- 1.We tested GFSK mode, \(\Pi/4\)-DOPSK Mode & 8QPSK mode and recorded the worst case data (GFSK mode) for all test mode.
- 2. The test frequency is from 30MHz to 25GHz, The 18-25GHz emissions are not reported, because the levels are too low against the limit.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160473

Page 54 of 98

Job No.: STAR2016 #453 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/25/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 17/51/52

EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature: star

Mode: TX 2402MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	235.9622	62.05	-17.94	44.11	46.00	-1.89	QP			
2	478.1394	56.12	-12.66	43.46	46.00	-2.54	QP			
3	716.2038	51.41	-8.70	42.71	46.00	-3.29	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160473

Page 55 of 98

Job No.: STAR2016 #454 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/25/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 17/54/36

EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature: star

Mode: TX 2402MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	235.9622	53.01	-17.94	35.07	46.00	-10.93	QP			
2	478.1394	47.44	-12.66	34.78	46.00	-11.22	QP			
3	955.3509	37.55	-5.15	32.40	46.00	-13.60	QP			

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160473

Page 56 of 98

Job No.: STAR2016 #456 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/25/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 18/02/51

EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature: star

Mode: TX 2441MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160473

Page 57 of 98

Job No.: STAR2016 #455 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/25/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 17/58/19

EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature: star

Mode: TX 2441MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	235.9622	52.70	-17.94	34.76	46.00	-11.24	QP			
2	478.1394	51.33	-12.66	38.67	46.00	-7.33	QP			
3	505.7891	44.41	-11.94	32.47	46.00	-13.53	QP			

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160473

Page 58 of 98

Job No.: STAR2016 #457 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/25/
Temp.(C)/Hum.(%) 25 C / 55 % Time: 18/06/18

EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature: star

Mode: TX 2480MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	235.9622	61.47	-17.94	43.53	46.00	-2.47	QP			
2	354.6912	55.19	-14.93	40.26	46.00	-5.74	QP			
3	478.1394	55.94	-12.66	43.28	46.00	-2.72	QP			

ATC[®]

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160473

Page 59 of 98

Job No.: STAR2016 #458 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

 Test item:
 Radiation Test
 Date: 16/03/25/

 Temp.(C)/Hum.(%)
 25 C / 55 %
 Time: 18/11/08

EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature: star

Mode: TX 2480MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

No.	Freq. (MHz)	Reading (dBuV/m)	Factor (dB)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Degree (deg.)	Remark
1	235.9622	51.32	-17.94	33.38	46.00	-12.62	QP			
2	592.4290	46.27	-10.32	35.95	46.00	-10.05	QP			
3	955.3509	40.16	-5.15	35.01	46.00	-10.99	QP			

Report No.: ATE20160473 Page 60 of 98

Above 1GHz

ACCURATE TECHNOLOGY CO., LTD.

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Job No.: Igwade #1135 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/23/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 8/59/01
EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature:

Mode: TX 2402MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160473

Page 61 of 98

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: Igwade #1136 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/23/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/04/14
EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature:

Mode: TX 2402MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

Site: 1# Chamber Tel:+86-0755-26503290 F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Fax:+86-0755-26503396 Science & Industry Park, Nanshan Shenzhen, P.R. China

Report No.: ATE20160473

Page 62 of 98

Job No.: Igwade #1139 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/23/ Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/07/21

COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature: EUT: Mode: TX 2441MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

Note: Average measurement with peak detection at No.2

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park, Nanshan Shenzhen, P.R. China

Site: 1# Chamber Tel:+86-0755-26503290

Fax:+86-0755-26503396

Report No.: ATE20160473

Page 63 of 98

Polarization: Vertical Power Source: DC 3.7V

Date: 16/03/23/ Time: 9/11/45

Distance: 3m

COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature: EUT: Mode: TX 2441MHz

Model: CB-335072

Job No.: Igwade #1140

Test item: Radiation Test

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

Standard: FCC Class B 3M Radiated

Temp.(C)/Hum.(%) 23 C / 48 %

vuan Rd, Tel:+86-0755-26503290 P.R.China Fax:+86-0755-26503396

Report No.: ATE20160473

Site: 1# Chamber

Page 64 of 98

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Job No.: Igwade #1142 Polarization: Horizontal Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/23/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/18/52
EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature:

Mode: TX 2480MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

F1,Bldg,A,Changyuan New Material Port Keyuan Rd, Science & Industry Park,Nanshan Shenzhen,P.R.China

Site: 1# Chamber Tel:+86-0755-26503290 Fax:+86-0755-26503396

Report No.: ATE20160473

Page 65 of 98

Job No.: Igwade #1141 Polarization: Vertical Standard: FCC Class B 3M Radiated Power Source: DC 3.7V

Test item: Radiation Test Date: 16/03/23/
Temp.(C)/Hum.(%) 23 C / 48 % Time: 9/14/33
EUT: COLOR CHANGING BLUETOOTH TRANGLE SPEAKERS Engineer Signature:

Mode: TX 2480MHz Distance: 3m

Model: CB-335072

Manufacturer: CLEVER BRIGHT

Note: Report No.:ATE20160473

