5.3.6 Monte-Carlo-Lokalisierung

Monte-Carlo-Algorithmen approximieren aufwändige exakte Lösungen durch effizientes Berechnen von (relativ wenigen) Stichproben

MCL-Algorithmus zur Roboterlokalisierung: Partikelfilter

Algorithmus MCL (Buch Algo. 5.2)

Eingabe: Partikelmenge $\mathcal{X}_t = \{\langle \boldsymbol{x}_t^i | w_t^i \rangle\}_{i=1,...,N}$, Aktion \boldsymbol{u}_{t+1} , Messung z_{t+1} .

Ausgabe: Neue Menge von Partikeln \mathcal{X}_{t+1}

Gewicht des Partikels

1:
$$\mathcal{X}_{t+1} = \emptyset$$

2:
$$\eta = 0$$

3: **for**
$$i = 1 . . N$$
 do

- Ziehe ein j entsprechend der Verteilung über w_t 4:
- Ziehe ein \boldsymbol{x}_{t+1}^i entsprechend $P(\boldsymbol{x}_{t+1} | \boldsymbol{u}_{t+1}, \boldsymbol{x}_t^j)$ 5:

6:
$$w_{t+1}^i = P(\boldsymbol{z}_{t+1} \,|\, \boldsymbol{x}_{t+1}^i)$$

7:
$$\eta = \eta + w_{t+1}^i$$

7:
$$\eta = \eta + w_{t+1}$$

8: $\mathcal{X}_{t+1} = \mathcal{X}_{t+1} \cup \left\{ \left\langle \boldsymbol{x}_{t+1}^i, w_{t+1}^i \right\rangle \right\}$

9: end for

10: **for**
$$i = 1 ... N$$
 do

11:
$$\boldsymbol{w}_{t+1}^i = \eta^{-1} w_{t+1}^i$$

12: end for

13: return \mathcal{X}_{t+1}

Wie zieht man gemäß Verteilung?

// Update des Normierungsfaktors

Wie definiere W'keit konkreter Messung?

// Normierung der Gewichte in \mathcal{X}_{t+1}

 $// Bel(\boldsymbol{x}_t)$

// Transition

// Sensormodell

Ziehen gemäß Verteilung

... hatten wir abstrakt in Folie 157f. Hier konkret für Partikel-Verteilung, durch Gewichte w_i gegeben,

z.B. Rouletterad-Auswahl

- Voraussetzung: Ziehen nach Gleichverteilung (approx.: random($0, \Sigma w_i$))
- Für gezogene Zahl r ist dasjenige Partikel n gezogen, für das gilt:

$$\sum_{i=1}^{n-1} w_i < r \le \sum_{i=1}^{n} w_i$$

Vergleich realer vs. erwarteter Scan

... realisiert/approximiert Zeile 6 MCL: $w_{t+1}^i = P(\boldsymbol{z}_{t+1} \,|\, \boldsymbol{x}_{t+1}^i)$

Definiere $\xi(X,Z)$:

Maß für Übereinstimmung von realem Scan Z und Scan, der in Zustand (Partikel) X gemäß Rasterkarte erwartet wäre:

- "Simuliere" in Rasterkarte Scan von Pose von X (Berechne einzelne Messwerte in den diskreten Scanwinkeln des realen Scanners)
- Ermittle Kreuzkorrelation (Folie 187, Winkelhistogramme) zwischen realem und simuliertem Scan; oder ...
- ... alternativ: Summiere Messwertdifferenzen, dabei wichte klein reale Messwerte, die deutlich "zu kurz" sind (nicht kartierte Möbel, Personen, ...), wichte groß "zu lange" reale Messwerte

Beispiel MCL

Aktuelle Position markiert mit Kreis; Wegpunkte markiert mit x

Start: Gleichverteilung im Freiraum

Sechste Messung: Ein Maximum

Dritte Messung: wenige Maxima

"Absterbende" Partikel (Untergewicht, unmögliche Pose in der Wand, …) ersetze:

- zufällig in Freiraum und/oder
- gewichtet nach aktueller Verteilung

Meint der Roboter, dass er weiß, wo er ist?

Erinnerung: **Entropie** einer Verteilung P(X) über Var.n X:

$$H(X) := -\sum_{i=1}^{|X|} P(x_i) \log_2 P(x_i)$$

... ist maximal bei Gleichverteilung, nämlich

$$H_{\max}(X) = -\sum_{i=1}^{|X|} \frac{1}{|X|} \log_2 \frac{1}{|X|} = -|X| \cdot \frac{1}{|X|} \left(\log_2 1 - \log_2 |X| \right) = \log_2 |X|$$

(Lokalisation: Posen gleichverteilt, Roboter hat keine Idee, wo er ist)

... ist minimal bei sicherer Information, nämlich 0 (wegen log(1)=0

$$H(\mathcal{X}) := -\sum_{\mathbf{x} \in \mathcal{X}} Bel(\mathbf{x}) \frac{\log_2 Bel(\mathbf{x})}{\log_2 |\mathcal{X}|} = -\sum_{\mathbf{x} \in \mathcal{X}} Bel(\mathbf{x}) \log_{|\mathcal{X}|} Bel(\mathbf{x})$$

...normiert auf [0,1] für Ü-Zustand bezüglich Partikelmenge ${\mathcal X}$

Unsicherheitsmaß d. aktuellen Überzeugungszust. Bel(X)

 $(H(\mathcal{X})=0) \rightarrow \text{genaue Kenntnis der Pose}; H(\mathcal{X})=1 \rightarrow \text{völlige Unkenntnis})$

Wieviele Stichproben braucht man?

Kommt drauf an! ...

... wie groß relevante Posemenge: klein → N klein; groß → N groß

Mehr Info zu Partikelfiltern:
Dieter Fox, U. Washington
www.cs.washington.edu/
ai/Mobile_Robotics/mcl/

- ... wie häufig Landmarken in der Umgebung: ai/M viele → N klein; wenige → N groß (s. nächste Folie!)
- ... wie gut Pose aktuell bekannt (<u>variabel!</u>): H(X) nahe $0 \rightarrow N$ klein; H(X) nahe $1 \rightarrow N$ groß
- Für Gebäudenavigation reicht N«10.000
- Für kleine Areale (RoboCup!) reicht N«1.000
- KLD-Sampling adaptiert N

Fazit Lokalisierung in Karten

- Entsprechend Varianten von Karten und Varianten von Sensoren gibt es viele Varianten von Lokalisierung in Karten
- Markow-Lokalisierung (MCL) dominiert derzeit Literatur
 - Mathematisch gut verstanden; effizient implementierbar
 - Integration mit anderer probabilistischer Information
 - Integration mit Kartenbau (SLAM, s.u.)
- Fast alle Karten/Lokalisierung sind für 2D-Roboterbewegung (x,z,θ)
- Verwenden fast nur Geometrie, keine "Semantik"
- Klappen nur bei relativ langsamer Fahrt (Ausnahme HAYAI)
- → Es gibt noch viel zu entdecken!

