Bayesian Statistics I

Lecture 3 - Multi-parameter models

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Lecture overview

- Multiparameter models
- Marginalization
- Normal model with unknown variance
- Bayesian analysis of multinomial data
- Bayesian analysis of multivariate normal data

Marginalization

- Models with multiple parameters $\theta_1, \theta_2,$
- **Examples:** $x_i \stackrel{iid}{\sim} N(\theta, \sigma^2)$; multiple regression ...
- Joint posterior distribution

$$p(\theta_1, \theta_2, ..., \theta_p | y) \propto p(y | \theta_1, \theta_2, ..., \theta_p) p(\theta_1, \theta_2, ..., \theta_p).$$
$$p(\theta | y) \propto p(y | \theta) p(\theta).$$

- Marginalize out parameter of no direct interest (nuisance).
- Example: $\theta = (\theta_1, \theta_2)'$. Marginal posterior of θ_1

$$p(\theta_1|y) = \int p(\theta_1, \theta_2|y) d\theta_2 = \int p(\theta_1|\theta_2, y) p(\theta_2|y) d\theta_2.$$

Normal model with unknown variance

Model

$$x_1, ..., x_n \stackrel{iid}{\sim} N(\theta, \sigma^2)$$

Prior

$$p(\theta,\sigma^2) \propto (\sigma^2)^{-1}$$

Posterior

$$\theta | \sigma^2, \mathbf{x} \sim N\left(\bar{x}, \frac{\sigma^2}{n}\right)$$

 $\sigma^2 | \mathbf{x} \sim \text{Inv} - \chi^2(n-1, s^2),$

where

$$s^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}}{n-1}$$

is the usual sample variance.

Normal model with unknown variance

- Simulating from the posterior :
 - 1. Draw $X \sim \chi^2(n-1)$
 - 2. Compute $\sigma^2=\frac{(n-1)s^2}{X}$ (this a draw from $\text{Inv-}\chi^2(n-1,s^2)$)
 - 3. Draw a θ from $N\left(\bar{x}, \frac{\sigma^2}{n}\right)$ conditional on the previous draw σ^2
 - 4. Repeat step 1-3 many times.
- The sampling is implemented in the R program NormalNonInfoPrior.R
- We may derive the marginal posterior analytically as

$$\theta | \mathbf{x} \sim t_{n-1} \left(\bar{\mathbf{x}}, \frac{s^2}{n} \right).$$

Multinomial model with Dirichlet prior

- **Categorical counts**: $y = (y_1, ... y_K)$, where $\sum_{k=1}^K y_k = n$.
- y_k = number of observations in kth category. Brand choices.
- Multinomial model:

$$p(y|\theta) \propto \prod_{k=1}^K \theta_k^{y_k}$$
, where $\sum_{k=1}^K \theta_k = 1$.

Dirichlet prior: Dirichlet($\alpha_1, ..., \alpha_K$)

$$p(\theta) \propto \prod_{k=1}^{K} \theta_k^{\alpha_k - 1}.$$

■ Mean and variance for $(\theta_1, ..., \theta_K) \sim Dirichlet(\alpha_1, ..., \alpha_K)$

$$\begin{aligned} \mathbf{E}(\theta_k) &= \frac{\alpha_k}{\sum_{j=1}^K \alpha_j} \\ \mathbf{V}(\theta_k) &= \frac{\mathbf{E}(\theta_k) \left[1 - \mathbf{E}(\theta_k) \right]}{1 + \sum_{i=1}^K \alpha_i} \end{aligned}$$

Dirichlet distribution

Multinomial model with Dirichlet prior

- Non-informative': $\alpha_1 = ... = \alpha_K = 1$ (uniform and proper).
- **Simulating** from the Dirichlet distribution:
 - ▶ Generate $x_1 \sim Gamma(\alpha_1, 1), ..., x_K \sim Gamma(\alpha_K, 1)$.

 - ▶ Then $z = (z_1, ..., z_K) \sim Dirichlet(\alpha_1, ..., \alpha_K)$.
- Prior-to-Posterior updating:

Model:
$$y = (y_1, ..., y_K) \sim \text{Multin}(n; \theta_1, ..., \theta_K)$$

Prior :
$$\theta = (\theta_1, ..., \theta_K) \sim Dirichlet(\alpha_1, ..., \alpha_K)$$

Posterior:
$$\theta | y \sim \text{Dirichlet}(\alpha_1 + y_1, ..., \alpha_K + y_K).$$

Example: market shares

- Survey among 513 smartphones owners:
 - ▶ 180 used mainly an iPhone
 - ▶ 230 used mainly an Android phone
 - ▶ 62 used mainly a Windows phone
 - ▶ 41 used mainly some other mobile phone.
- Old survey: iPhone 30%, Android 30%, Windows 20%, Other 20%.
- Pr(Android has largest share | Data)
- Prior: $\alpha_1 = 15$, $\alpha_2 = 15$, $\alpha_3 = 10$ and $\alpha_4 = 10$ (prior info is equivalent to a survey with only 50 respondents)
- Posterior: $(\theta_1, \theta_2, \theta_3, \theta_4)|\mathbf{y} \sim \text{Dirichlet}(195, 245, 72, 51).$
- DirichletSurveyData Rnotebook on web page.

Multivariate normal - known Σ

Model

$$y_1, ..., y_n \stackrel{iid}{\sim} N_p(\mu, \Sigma)$$

where Σ is a known covariance matrix.

Density

$$p(y|\mu, \Sigma) = |2\pi\Sigma|^{-1/2} \exp\left(-\frac{1}{2}(y-\mu)'\Sigma^{-1}(y-\mu)\right)$$

Likelihood

$$p(y_1, ..., y_n | \mu, \Sigma) \propto |\Sigma|^{-n/2} \exp\left(-\frac{1}{2} \sum_{i=1}^n (y_i - \mu)' \Sigma^{-1} (y_i - \mu)\right)$$
$$= |\Sigma|^{-n/2} \exp\left(-\frac{1}{2} tr \Sigma^{-1} S_{\mu}\right)$$

where
$$S_{\mu} = \sum_{i=1}^{n} (y_i - \mu)(y_i - \mu)'$$
.

Multivariate normal - known Σ

Prior

$$\mu \sim N_p(\mu_0, \Lambda_0)$$

Posterior

$$\mu|y \sim N(\mu_n, \Lambda_n)$$

where

$$\mu_n = (\Lambda_0^{-1} + n\Sigma^{-1})^{-1}(\Lambda_0^{-1}\mu_0 + n\Sigma^{-1}\bar{y})$$

$$\Lambda_n^{-1} = \Lambda_0^{-1} + n\Sigma^{-1}$$

- Posterior mean is a weighted average of prior and data information.
- Noninformative prior: let the precision go to zero: $\Lambda_0^{-1} \to 0$.