



# Internet of Things Smart Home

## Bachelorarbeit

HSR - Hochschule für Technik Rapperswil Institute for networked Solutions

### Dokumentation

Autoren: Marco Leutenegger, Dominik Freier

Betreuer: Prof. Hansjörg Huser

Gegenleser: <tbd>Prof. TODO

### **Abstract**

#### <tbd>

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

### **Management Summary**

#### <tbd>

### Ausgangslage

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea.

### Vorgehen / Technologien

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea.

### Ergebnisse

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea.

#### Ausblick

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea.

### Eigenständigkeitserklärung

### Erklärung

Wir erklären hiermit,

- dass wir die vorliegende Arbeit selber und ohne fremde Hilfe durchgeführt haben, ausser derjenigen, welche explizit in der Aufgabenstellung erwähnt sind oder mit dem Betreuer schriftlich vereinbart wurde,
- dass wir sämtliche verwendeten Quellen erwähnt und gemäss gängigen wissenschaftlichen Zitierregeln korrekt angegeben haben.
- das wir keine durch Copyright geschützten Materialien (z.B. Bilder) in dieser Arbeit in unerlaubter Weise genutzt haben.

Ort, Datum:

Rapperswil, <TBD>

Marco Leutenegger

Dominik Freier

# **Danksagung**

#### <tbd>

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

# Inhaltsverzeichnis

| Abstract                  | 2  |
|---------------------------|----|
| Management Summary        | 3  |
| Danksagung                | 5  |
| Inhaltsverzeichnis        | 6  |
| Glossar                   | 8  |
| A. Projektplan            | g  |
| B. Sitzungsprotokolle     | 23 |
| C. Persönliche Reflektion | 26 |

### Literaturverzeichnis

- [1] E. Clayberg, *Eclipse plug-ins*, 3rd ed., ser. The eclipse series. Upper Saddle River, NJ: Addison-Wesley, 2009.
- [2] ISOCPP, "Standard for programming language c++," Tech. Rep., Oct. 2013.
- [3] H. IFS, "CDTTesting git repository," Oct. 2014. [Online]. Available: http://cevelop.com/cdt-test-plugins/development/

# Glossar

 $\mathbf{API}$  Application Programming Interface

**IoT** Internet of Things

MS Microsoft

# A. Projektplan



**Thema** Aufbau einer Smart-Home Beispielapplikation

**Studenten** Dominik Freier, Marco Leutenegger

Betreuer Prof. Hansjörg Huser

# Änderungsgeschichte

| Datum      | Version | $\ddot{\mathbf{A}}\mathbf{n}\mathbf{derung}$ | Autor                     |
|------------|---------|----------------------------------------------|---------------------------|
| 25.02.2015 | 0.0.1   | Dokument erstellen                           | M. Leutenegger            |
| 27.02.2015 | 0.0.2   | Meilensteine erfasst                         | D. Freier, M. Leutenegger |
| 04.03.2015 | 0.1.0   | Risikomanagement angepasst                   | D. Freier, M.Leutenegger  |

### Einführung

### **Zweck**

Dieses Dokument dient als Projektplan für die Bachelorarbeit von Dominik Freier und Marco Leutenegger und definiert alle organisatorischen Rahmenbedingungen.

### Gültigkeitsbereich

Die Gültigkeit des Projektplans beschränkt sich auf die Bachelorarbeit von Dominik Freier und Marco Leutenegger im Frühjahrssemester 2015.

### Referenzen

| Bezeichnung      | Referenz                                         |
|------------------|--------------------------------------------------|
| Risikomanagement | Siehe separates Dokument                         |
| Security Infos   | https://github.com/openhab/openhab/wiki/Security |

### Projekt und Übersicht

#### Zweck und Ziel

Diese Bachelorarbeit hat as Ziel, eine Smart-Home Beispielapplikation aufzubauen, welche wesentliche Aspekte einer Internet-of-Things-Anwendung demonstriert, wie Steuern von Devices, Lesen von Sensoren, Event-Verarbeitung, Überwachung und intelligente Abläufe steuern, Streaming von Sensordaten und Online-Analyse der Daten usw.

Das System soll auf einer tragfähigen und erweiterbaren Architektur aufgebaut werden und Microsoft Azure als Cloud Plattform benutzen.

### Lieferumfang

Die abzuliefernden Dokumente und Software-Artefakte des Projekts richten sich im Wesentlichen nach den Vorgaben aus den Dokumentationsanleitungen der HSR. Eine davon abweichender Lieferumfang wurde mit dem Betreuer besprochen und genehmigt.

### Referenzen

| Nr. | Art         | Bezeichnung                        | Form         | Empfänger |
|-----|-------------|------------------------------------|--------------|-----------|
| 1   | Publikation | Poster                             | PDF          | H.Huser   |
| 2   | Publikation | Kurzfassung                        | PDF          | H.Huser   |
| 3   | Dokument    | Bericht                            | PDF/Ausdruck | H.Huser   |
| 4   | Dokument    | Projektplan                        | PDF/Ausdruck | H.Huser   |
| 5   | Dokument    | Sitzungsprotokolle                 | PDF/Ausdruck | H.Huser   |
| 6   | Dokument    | Eigenständigkeitserklärung         | PDF/Ausdruck | H.Huser   |
| 7   | Dokument    | Erfahrungsbericht D.Freier         | PDF/Ausdruck | H.Huser   |
| 8   | Dokument    | Erfahrungsbericht<br>M.Leutenegger | PDF/Ausdruck | H.Huser   |
| 9   | Source      | Code-Abgabe                        | ZIP          | H.Huser   |
| 10  | Archiv      | 2x Deliverables 1-9                | DVD          | H.Huser   |

### Projektorganisation

Die Dokumentation des Projekts gliedert sich in diesen Projektplan und einen Bericht. Im Projektplan werden alle organisatorischen Aspekte festgehalten, wie etwa die Planung der Meilensteine, Aufgaben der Teammitglieder oder Abmachungen zum Dokumentemanagement. Im Bericht werden technische Beschreibungen der Ausgangslage, Diskussionen für Lösungsansätze, Requirements und Details zur Umsetzung dokumentiert.

Damit die Teammitglieder möglichst parallel und effizient arbeiten können, werden alle Dokumente mit LaTeX geschrieben und auf einem Git-Repository verwaltet. Daruch wird das Risiko von Versionskonflikten reduziert und der Zugriff insbesondere für den Betreuer vereinfacht.

Die Verwaltung der Aufgaben und agilen Vorgänge erfolgt durch Jira. Wir erhielten zu diesem Zweck eine Classroom Lizenz vom Hersteller Atlassian. Jira wurde auf einem virtuellen Server der HSR installiert.

### Organisationsstruktur

| Verantwortung                                | Teammitglied              |
|----------------------------------------------|---------------------------|
| Verwaltung und Bereinigung de Dokumente      | D. Freier, M. Leutenegger |
| Pflege virtueller Server, Jira inkl. Backups | D. Freier, M. Leutenegger |
| Sitzungsprotokolle verfassen                 | D. Freier, M. Leutenegger |
| Iterationsplanung                            | D. Freier, M. Leutenegger |
| Risikomanagement                             | D. Freier, M. Leutenegger |
| Architekturdesign                            | D. Freier, M. Leutenegger |

### **Externe Schnittstellen**

Betreuer der Bachelorarbeit ist Prof. Hansjörg Huser. Experte ist Herr Stefan Zettel. Gegenleser ist <tbd>.

### Management Abläufe

### Zeitliche Planung

Das Projekt wird während des Frühjahrssemester 2015 durchgeführt. Der Start der Arbeit war am Montag, den 16. Februar 2015. Die Abgabe der Vollständigen Dokumentation an den Betreuer erfolgt am Freitag, den 12. Juni 2015. Als Zeitbudget sollen in den 17 Wochen insgesamt 720 Stunden, bzw. rund 21 Stunden pro Woche und Student eingeplant werden.

### Vorgehensmodell

Als Vorgehensmodell wurde der Rational Unified Process ausgewählt, da das Projektteam mit diesem Modell aus früheren Arbeiten (inkl. Semesterarbeit) vertraut ist und damit gute Erfahrungen gemacht hat. Die Phasen wurden nach dem Schema «eins, drei, drei, eins» in insgesamt acht Iterationen à zwei Wochen aufgeteilt.

#### Meilensteine

| MS  | Iter. | Beschreibung                                                                                                                                                                                                                                                                                                                    | Datum      |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| MS1 | I1    | Der Projektauftrag wurde zusammen mit dem Betreuer besprochen und ist akzeptiert. Den Teammitgliedern ist klar, welches die Ziele des Projekts sind und haben eine gemeinsame Vision. Die organisatorischen Aspekte wurden so weit wie möglich abgeklärt und die benötigte Infrastruktur steht allen Beteiligten zur Verfügung. | 04.03.2015 |
| MS2 | E1    | Die Analyse der funktionalen und nicht-funktionalen Anforderungen ist abgeschlossen und die Use Cases definiert. Die technische Umsetzung der Use Cases wurde analysiert und mit Umsetzung kann begonnen werden. Die Hardware wurde bestellt und für das Mobile-App wurden erste Mockups gezeichnet.                            | 18.03.2015 |
| MS3 | E2    | Ein Architekturprototyp (Installation und Konfiguration openHAB) existiert. Ein Prototyp für die Use Cases mit existierenden Bindings wurde entwickelt.                                                                                                                                                                         | 01.04.2015 |

| MS4 | ЕЗ | Prototyp mit eigenen Bindings wurde entwickelt, parallel dazu wird die Cloud mit den benötigten Komponenten aufgesetzt.                                                                                    | 15.04.2015  |
|-----|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| MS5 | C1 | Die Use Cases mit den eigenen Bindings sind fertig implementiert.                                                                                                                                          | 29.04.2015  |
| MS6 | C2 | Das Android-App ist gemäss den, in der Analyse (E1) gezeichneten, Mockups entwicklt und die geplanten Funktionen sind implementiert.                                                                       | 13.05.2015  |
| MS7 | СЗ | Der geschriebene Code wurde überarbeitet und optimiert.<br>Die nötigen Komponenten sind gemäss FR und NFR getestet.                                                                                        | 27.05.2015  |
| MS8 | T1 | Die Dokumentation wurde nachgeführt, und finalisiert. Die Deliverables werden am darauf folgenden Freitag den entsprechenden Personen übergeben. Dieser Meilenstein definiert den Abschluss des Projektes. | 10.06.20115 |

### Iterationsplanung

| It. | Arbeitspakete                                                                 | Ziele                                                                                     | $\mathbf{SW}$ |
|-----|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|
| I1  | <ol> <li>Besprechung Projektauftrag</li> <li>Einarbeitung Thematik</li> </ol> | <ul><li>□ MS1: Projektauftrag erhalten</li><li>□ Gemeinsame Vision des Projekts</li></ul> | 1-2           |
|     | 3. Aufsetzen LaTeX-Dokument                                                   |                                                                                           |               |
| E1  | 4. Definition der Use Cases                                                   | □ MS2: Review Projektplan                                                                 | 3-4           |
|     | 5. Aufbau/Setup/Anordnung                                                     | ☐ Hardware bestellt                                                                       |               |
|     | 6. Hardware Evaluation                                                        | $\hfill\Box$ Mockups für App gezeichnet                                                   |               |
|     | 7. Abklären technische Machbarkeit                                            |                                                                                           |               |
|     | 8. Android Mock-Up                                                            |                                                                                           |               |
|     | 9. Meilensteine und Iterationsplan                                            |                                                                                           |               |

| E2 | <ul> <li>10. Installation openHAB auf</li> <li>Raspberry Pi</li> <li>11. Einrichten WLAN und Router</li> <li>12. Use Cases mit DSL umsetzen</li> <li>13. Integration HomeMatic</li> <li>14. Integration Philips Hue</li> <li>15. Integration Webcam</li> </ul> | □ MS3: Erster Prototyp existiert                                                                                            | 5-6   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------|
| ЕЗ | <ul><li>16. Aufsetzen und Anpassen der Azure Cloud</li><li>17. Programmierung Azure Binding</li><li>18. Integration Azure Cloud</li><li>19. Integration Tinkerforge</li></ul>                                                                                  | <ul> <li>□ MS4: Prototyp mit Bindings fertig</li> <li>□ Cloud aufgesetzt</li> </ul>                                         | 7-8   |
| C1 | <ul><li>20. Alle Komponenten vollständig integrieren</li><li>21. Vernetzung der Hardware</li><li>22. Dokumentation Bindings und Aufbau</li></ul>                                                                                                               | □ MS5: Binding für Cloud erstellt                                                                                           | 9-10  |
| C2 | <ul><li>23. Android App Model portieren (HABDroid)</li><li>24. Anbindung Android an Cloud</li><li>25. User Interface</li></ul>                                                                                                                                 | ☐ MS6: Android-App entwickelt                                                                                               | 11-12 |
| C3 | 26. Refactoring und Unit-Testing<br>27. Systemtests<br>28. Überprüfung NFR und FR                                                                                                                                                                              | ☐ MS7: Refactoring und Testing durchgeführt                                                                                 | 13-14 |
| T1 | <tbd></tbd>                                                                                                                                                                                                                                                    | <ul> <li>□ MS8: Abschluss des Projektes</li> <li>□ Dokumentation abgeschlossen</li> <li>□ Deliverables übergeben</li> </ul> | 15-16 |

### Besprechungen

Wöchentliche Besprechungen:

| Bezeichnung                  | Ziel                                          | Wochentag  | ${\bf Uhrzeit}$ | Ort         |
|------------------------------|-----------------------------------------------|------------|-----------------|-------------|
| Teambespre-<br>chung         | Projektarbeiten im<br>Plenum erledigen        | Donnerstag | 08:10-08:40     | HSR (Labor) |
| Fortschrittsbe-<br>sprechung | Fortschritte bzw.<br>Probleme bespre-<br>chen | Mittwoch   | 10:10-10:50     | HSR (6.010) |

### Risikomanagement

### Risiken

Nachstehend wird auf die projektbezogenen Risiken eingegangen. Eine Übersicht in Form einer Tabelle ist auf der nächsten Seite zu finden. Die Tabelle wird während des ganzen Projektes angepasst und aktualisiert, falls notwendig.

### Umgang mit Risiken

### Reserven/Rückstellungen

Das grösste Risiko stellt R1 (ungeplante Machbarkeiten) dar. Aus diesem Grund werden in diesem Projekt Rückstellungen von 20 Stunden eingeplant.

### Überprüfung von Risiken

Weitere Risiken werden im Laufe des Entwicklungsprozesses erkennbar. Hierfür aktualisieren wir dieses Dokument, welches als zentrale Stelle dient, um Entscheidungen und Risiken zu Dokumentieren und auch eine zentrale Anlaufstelle bei Fragen darstellt. Des weiteren wird in der Beschreibung des betroffenen Vorgangs auf mögliche Risiken hingewiesen und dokumentiert.

|   | Nr | Titel                                           | Beschreibung                                                                              | Scha-<br>den[h] | Eintritts-wahrsch. |     | Vorbeugung.                              | Verhalten beim<br>Eintreten.                                                             |
|---|----|-------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------|--------------------|-----|------------------------------------------|------------------------------------------------------------------------------------------|
| _ | R1 | Ungeplante<br>Machbar-<br>keit                  | Nicht alle Arbeitspakete in Iteration oder Meilensteine abgedeckt.                        | 20              | 40%                | 8   | Laufende Kontrolle<br>des Zeitplans      | Überstunden in Kauf<br>nehmen, um folgende<br>Iteration nicht in Ge-<br>fahr zu bringen. |
|   | R2 | Absturz<br>Jira-Server<br>und Daten-<br>verlust | Der virtuelle Server<br>der HSR stürzt ab,<br>und die Daten des Ji-<br>ra gehen verloren. | 2               | 10%                | 0.2 | Backup pro Woche erstellen.              | Letztes Backup einspielen und die Differenz von Hand erneut eintragen.                   |
|   | R3 | Verlust von<br>Code                             | Das persönliche Notebook stürzt ab und die Daten sind verloren.                           | 2               | 10%                | 0.2 | Code wird ständig auf<br>GitHub gepusht. | Lab-PC oder sonstige<br>Computer verwenden<br>und GIT Repository<br>Klonen.              |
| _ | R4 | Fabrikations-<br>fehler<br>Sensoren             | Die Sensoren kommen<br>mit einem Fabrikati-<br>onsfehler an.                              | 20              | 10%                | 2   |                                          | Sensor zurücksenden<br>und mit anderem wei-<br>terarbeiten.                              |
| _ | R5 | Schnittstellen<br>Sensoren                      | Schnittstellen zu anderen Systemen bereitet Probleme                                      | 16              | 5%                 | 0.8 | Dokumentation gut prüfen.                | Community durchforsten, Workaround suchen.                                               |

### **Arbeitspakete**

Die Arbeitspakete wurden im Projektmanagementtool Jira als Vorgänge definiert. Einige Vorgänge beinhalten weitere Untertätigkeiten, die wir ebenfalls als einzelne Arbeitspakete betrachten.

Eine Übersicht mit allen Arbeitspaketen und dem zeitlichen Ablauf nach Iterationen befindet sich unter: http://sinv-56046.edu.hsr.ch:8080 > Agile > Zeige alle Boards > baIOTBoard > Plan

### Infrastruktur

### **Software**

Wie in jedem Projekt kommt verschiedene Software zum Einsatz.

| Software        | Version (Major) | Beschreibung/Einsatzbereich                                                      |
|-----------------|-----------------|----------------------------------------------------------------------------------|
| GitHub          | v3              | Source Code Verwaltung inkl. Branchmanagement, Web Interface für Git-Verwaltung. |
| Atlassian: Jira | 6.4             | Projektmanagement                                                                |
| Windows Server  | 2012 R2 (64Bit) | Virtueller Server für Jira                                                       |
| <tbd></tbd>     | <tbd></tbd>     | <tbd></tbd>                                                                      |

### Qualitätsmassnahmen

| Massnahme                                    | Zeitraum                                  | Ziel                                                                                                                                              |
|----------------------------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Einsetzen eines Projekt-<br>Management-Tools | ganzes Projekt                            | Alle auf dem aktuellsten<br>Stand halten                                                                                                          |
| Versionierungssystem (git)<br>ganzes Projekt | Sicherung des Codes/Doku, keine Blockaden |                                                                                                                                                   |
| Koordinationsmeetings                        | ganzes Projekt                            | Ressourcen optimal zuteilen: Wer benötigt wo Hilfe, wer ist schon fertig?                                                                         |
| Vier-Augen-Prinzip                           | ganzes Projekt                            | Dokumentation/Programm- code wird jeweils von bei- den Partnern kontrolliert. Bei einem Ausfall einer Person, ist das andere Mitglied informiert. |

### **Dokumentation**

### **Ablage**

Alle Dokumente können auf dem GitHub Repository gefunden werden. Die Vorgänge werden mit Jira auf einem virtuellen Server der HSR verwaltet.

 $\bullet \ \, {\rm Dokumentation:} \ \, {\tt https://github.com/greekins/baIOT\_TeX}$ 

• Vorgänge: http://sinv-56046.edu.hsr.ch:8080

Der Source-Code wird mit Git verwaltet: <tbd>

### Qualität

- Commits verlangen eine Beschreibung
- Benutzerfreundliche Commit-Übersicht dank Github

• Für die Qualität des Codes wird in jeder Iteration (ab Elaboration E2) Codereviews

durchgeführt (siehe Managementabläufe)

Projektmanagement

Es wird die von Atlassian zur Verfügung gestellte Umgebung eingesetzt:

http://sinv-56046.edu.hsr.ch:8080

Gast Login: hhuser

Entwicklung

**Code Reviews** 

Die Commits sind für alle Projektmitglieder ersichtlich und werden in einem Activity

Stream auf dem Repository unter «Graph» angezeigt. Diese werden sporadisch von den

anderen Mitgliedern geöffnet und kurz überprüft.

Bei einem wöchentlichen Meeting werden getätigte Implementierungen im Plenum ange-

schaut und besprochen. Auch lautet usere Regel, dass bei Unsicherheiten bei laufender

Entwicklung Rat vom anderen Teammitglied eingeholt wird.

**Code Style Guidelines** 

Es wird sich an die gängigen Style Guidelines gehalten, die im Laufe des Studiums

eingeführt wurden.

22

### B. Sitzungsprotokolle

### Sitzung 1 - Kick-Off

Datum: 17. Februar 2015

Teilnehmer: Prof. Hansjörg Huser, Dominik Freier, Marco Leutenegger

### Projektdefinition

Aufbauen einer Demoanwendung für «Smart Home». Wie genau die aussehen wird, steht noch nicht fest. Ist Bestandteil der Analyse und Evaluation. Als Resultat der Arbeit soll ein Showcase entstehen mit ein paar Anwendungsfällen.

Mögliche Bestandteile:

• Sensoren, Raspberry-Pi

- Cloud (simple gehalten, Service Bus)
- UI (Mobile/Tablet)

#### Anstehende Arbeiten

- Evaluation HW-Platform
- Evaluation Framework
- erste Version des Projektplans

### Organisatorisches

- Virtueller Server beantragt
- Wöchentliche Besprechungen: Mittwoch, 10.10 Uhr

### Sitzung 2

Datum: 25. Februar 2015

Teilnehmer: Prof. Hansjörg Huser, Dominik Freier, Marco Leutenegger

### Organisatorisches:

• System-Architektur von Herrn Huser zur Kenntnis genommen und akzeptiert.

• Anwendungsszenarien sollen richtung Einbrecherschutz gehen (Türkontakte, Bewegungssensoren etc.

#### Anstehende Arbeiten:

• Bestellliste mit Sensoren und Aktoren erstellen.

• Anwendungsszenarien Anpassen.

• Erste Version des Projektplans erstellen.

### Sitzung 3

Datum: 04. März 2015

Teilnehmer: Prof. Hansjörg Huser, Dominik Freier, Marco Leutenegger

### Organisatorisches:

• Wunderbar wird vernachlässigt, die Antwort abgewartet. Als Ersatz wird Tinkerforge gewählt.

#### Anstehende Arbeiten:

- Bestellliste anpassen.
- Einige Anpassungen am Projektplan.
- Risikoliste anpassen
- Detailplanung

### Sitzung 4

Datum: 11. März 2015

Teilnehmer: Prof. Hansjörg Huser, Dominik Freier, Marco Leutenegger

Organisatorisches:

Anstehende Arbeiten:

### C. Persönliche Reflektion

#### Marco Leutenegger

<tbd>Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

#### **Dominik Freier**

<tbd>Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.