

ADVANCED PROCESS MODELLING FORUM

Oil & Gas

Optimising Oil & Gas production and processes

James Marriott - Head of PSE Oil & Gas

Optimising Oil & Gas production and processes

1) Process: Natural Gas Processing facilities

- 2) Production: Oil & gas well and well network systems
 - 1) Case Study 1: Optimisation Onshore
 - 2) Case Study 2: Optimisation Offshore

gPROMS product family

"Vapour-liquid process world"

"Formulated products world"

General mathematical modelling

g MODEL

gPROMS ModelBuilder provides essentially the full platform functionality

The gPROMS platform

Equation-oriented modelling & solution engine

Optimising Oil & Gas production and processes

Modelling natural gas processes

Modelling natural gas processes

Overview

© 2016 Process Systems Enterprise Limited

△P^ > ADVANCED PROCESS MODELLING FORUM 2016

Modelling natural gas processes

Natural gas treatment

Natural gas treatment

Dehydration example (with TEG)

Modelling natural gas processes

Natural gas treatment

g PROCESS

Natural gas treatment

Dehydration example (with TEG)

Natural gas treatment – TEG dehydration

g PROCESS

gSAFT dew point predictions for different concentrations of TEG solutions

gSAFT absorber performance predictions for a 99.99% TEG solution

Modelling natural gas processes Challenges

Three significant modelling challenges

Condensate / Oil to refinery

Optimising Oil & Gas production and processes

gPROMS Oilfield: an introduction

gPROMS product family

A family of advanced process modelling environments built on the gPROMS platform

"Vapour-liquid process world"

"Formulated products world"

General mathematical modelling

g MODEL

gPROMS ModelBuilder provides essentially the full platform functionality

The gPROMS platform

Equation-oriented modelling & solution engine

gPROMS Oilfield: an introduction gPROMS Oilfield Model Library

Scope

- Models for: Wellhead, pipe, gas injection point, router, aggregator, sink, valve, separator, rate multiplier
- Connected to topside models (gPROMS ProcessBuilder)
- Well Performance Curve import
- Key features [v1.0]
 - Balances: steady state & dynamic [v 1.2]
 - Physical properties: black oil & compositional
 - Pressure drop:
 - Pseudo-homogeneous & multi-phase
 - OLGA-S Two Phase
 - Heat transfer: adiabatic & with environment
 - Customisable by user (e.g. objective function, erosional constraints)

gPROMS Oilfield: an introduction

Typical Application Areas

- Production system modelling
 - Well modelling
 - Pipeline & riser modelling
 - Equipment modelling
 - Field modelling
- Optimisation of Production Systems
 - Continuous and discrete variable optimisation
 - Constraint Management
 - Field configuration
- Full Asset modelling and optimisation
 - Linked production and process model
- Pipeline Monitoring
- Enhanced oil recovery

Optimising Oil & Gas production and processes

gPROMS Oilfield Optimisation

gPROMS Oilfield Optimisation Scope

Oilfield Production Optimisation

- Maximize production value from an oilfield by adjusting process and well behaviour
- Decide
 - which wells to use
 - which routing to take to the surface
 - how much gas-lift to apply to each well
 -
- ...within operational envelope

Scope

Well and well-network systems:

– From: Sandface

– To: Topside Separator

gPROMS Oilfield Optimisation

Case Study 1: Optimisation Onshore

- Client: Confidential
- Field type:
 - Gas Condensate
- Well count > 120
- Pipeline count > 200
- Separator count: 3
- Routing combinations:>1 Million

Existing model imported into gPROMS ProcessBuilder

- Challenge
 - Optimize revenue (from both oil & gas)
 - Separator: maximum gas rate constraints
 - Well: Maximum liquid rate & maximum drawdown

Case Study 1: Optimisation Onshore

Current Technology vs gPROMS results

		Gas rate [MMScf/day] / separator			61	Revenue	
		Α	В	С	Oil rate [bbl/day]	[MM\$/day]	
		(max 1030)	(max 571)	(max 161)			
Simulation	Current Technology	973	610	155	221,615	\$ 24.08	
	gPROMS	974	608	161	222,235	\$ 24.15	

- Matched simulation results of leading production modelling tool to within 0.3%.
- Constraints violated

Case Study 1: Optimisation Onshore

Current Technology vs gPROMS results

		Gas rate [MMScf/day] / separator				Revenue	
		A (220)	B (200 574)	C (2000)	Oil rate [bbl/day]	[MM\$/day]	
		(max 1030)	(max 571)	(max 161)			
Simulation	Current Technology	973	610	155	221,615	\$ 24.08	
Simulation	gPROMS	974	608	161	222,235	\$ 24.15	
Optimisation (Continuous + Well Status)	Current Technology	974	555	157	215,380	\$ 23.4	
	gPROMS	991	571	161	224,924	\$ 24.37	
8	PROMS solution into current technology	991	567	154	223,880	\$24.25	

■ Increase in production of 4.4% with gPROMS, ~ \$1M/d!

Case Study 1: Optimisation Onshore

Current Technology vs gPROMS results

		Gas rate [MMScf/day] / separator			01 [bb1/d]	Revenue	
		Α	В	С	Oil rate [bbl/day]	[MM\$/day]	
		(max 1030)	(max 571)	(max 161)			
Simulation	Current Technology	973	610	155	221,615	\$ 24.08	
	gPROMS	974	608	161	222,235	\$ 24.15	
Optimisation (Continuous + Well Status)	Current Technology	974	555	157	215,380	\$ 23.4	
	gPROMS	991	571	1601	224,924	\$ 24.37	
Optimisation (Field Configuration)	Current Technology	974	555	157.2	215,380	\$ 23.4	
	gPROMS	1030	571	161	239,570	\$ 25.83	

- Increase in production of 11.0% with gPROMS, ~ \$2.5M/d!
- Better utilisation of separators

gPROMS Oilfield Optimisation

Case Study 2: Optimisation Offshore

- Client: Confidential
- Field type:
 - Gas Lifted Oil Field
- Well count: 13
- Riser count: 5
- Separator count: 3
- Routing combinations:
 - > 300,000

Challenge

- Optimize Oil Production
- Riser: maximum fluid velocity speed & limited gas lift injection gas
- Well: Maximum liquid rate & maximum drawdown

Case Study 2: Optimisation Offshore

Current Technology vs gPROMS results

		Oil rate [bbl/day]	Revenue [MM\$/day]
Simulation	Current Technology	85,254	\$ 9.26
Siliulation	gPROMS	86,107	\$ 9.36

Matched simulation results of leading production modelling tool to within 1.1%.

Case Study 2: Optimisation Offshore

Current Technology vs gPROMS results

		Oil rate [bbl/day]]	Revenue [MM\$/day]
Simulation	Current Technology	85,254		\$ 9.26
	gPROMS	86,107		\$ 9.36
Optimisation (Continuous + Well Status)	Current Technology	90,404		\$ 9.82
	gPROMS	95,464		\$ 10.34

■ Increase in production of 5.6% with gPROMS, ~ \$ 0.5M/d!

Case Study 2: Optimisation Offshore

Current Technology vs gPROMS results

		Oil rate [bbl/day]	Revenue [MM\$/day]
Simulation	Current Technology	85,254	\$ 9.26
Simulation	gPROMS	86,107	\$ 9.36
Optimisation (Continuous + Well Status)	Current Technology	90,404	\$ 9.82
	gPROMS	95,464	\$ 10.34
Optimisation (Field Configuration)	Current Technology	90,404	\$ 9.82
	gPROMS	105,432	\$ 11.37

■ Increase in production of 16% with gPROMS, ~ \$1.5M / d!

gPROMS Oilfield Optimisation

Conclusions

Modelling

- gPROMS technology can demonstrably model the field as accurately as established production modelling tools
- Existing production system models can easily be imported
- The process and production system can be modelled in the same environment

Best practice multiphase flow approaches + validation

Optimisation

- Standard gas lift / choked well (continuous optimisation)
 - gPROMS Oilfield Optimisation => Reliably better solutions that established production modelling tools
- Discrete Optimisation (well status and routing)
 - gPROMS Oilfield Optimisation => Significant increase in production and/or revenue

Equationbased modelling and Optimisation

Thank you

