CHAPTER 1

PATA REPRESENTATION

KHOA CÔNG NGHỆ THÔNG TIN TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN

OUTLINE

- Common systems of number:
 convert from a system of
 number to the other (2,10,16)
- Integer representation & comparison
- Operation with integer

- Dealing with overflow
- Character (ASCII, Unicode)
- Data format in C program
- Heterogeneous data structures
- Data alignment

Number systems

An unsigned integer with n digits in q-base system is represented in general formular:

$$x_{n-1}...x_1x_0 = x_{n-1}.q^{n-1} + ... + x_1.q^1 + x_0.q^0$$

• The base system commonly represented in the computer is base 2

Number systems

Watch these videos:

- Introduction to number system and library
- Hexadecimal number system
- Convert from decimal to binary
- Converting larger number from decimal to binary
- Converting from decimal to hexadecimal representation
- Converting directly from binary to hexadecimal

Unsigned Integers representation

- Represent positive values such as length, weight, ASCII code, color code, ...
- The values of an unsigned integer is the magnitude of its underlying binary pattern

$$X_{n-1} \times 2^{n-1} + ... + X_1 \times 2^1 + X_0 \times 2^0$$

 \square Ex: Suppose that n =8, the binary representation 10000001

Absolute value is 10000001-> 129 (decimal)

Hence, the integer is 129 (decimal)

Unsigned Integers representation

□ The n-bits binary pattern can represent the values from 0 to 2ⁿ-1

n	Minimum value	Maximum Value
8	0	$2^8 - 1 = 255$
16	0	$2^{16} - 1 = 65535$
32	0	2^{32} -1 = 4294967295
64	0	$2^{64} - 1 = 18446744073709551615$

Unsigned Integers representation

Read the explanation in this link and watch these videos:

- The binary number system
- Converting the decimal numbers to binary (remind)
- Pattern in binary numbers

Take a practice

Signed Integers representation

Signed integers can represent zero, positive integers, as well as negative integers

Four representation schemes are available for signed integers:

- □ Sign-Magnitude representation
- □ 1's Complement representation
- 2's Complement representation
- ☐ Bias (k-excess)

Signed numbers in the computer system are represented in the 2's Complement scheme

Sign-Magnitude representation

- ☐ The most-significant bit (MSB) is the sign bit:
 - 0 -> positive integer
 - 1 -> negative integer
- The remaining n-1 bits represents the magnitude (absolute value) of the integer (n is the length of bit pattern)

Sign-Magnitude representation

□ Ex: Suppose that n =8, the binary representation 10000001

Sign bit is 1 -> negative number

Absolute value is 0000001-> 1 (decimal)

Hence, the integer is -1 (decimal)

Sign-Magnitude representation

- □ The n-bits binary pattern can represent the values from (-2ⁿ⁻¹)+1 to 2ⁿ⁻¹ 1
- Ex: Suppose that n = 8, the range of values is -127 to 127
- Positive number and negative number differ MSB value(sign bit), the absolute value are the same
- □ There are two representations for the number zero, which could lead to inefficiency and confusion.

- ☐ The most-significant bit (MSB) is the sign bit:
 - 0 -> positive integer
 - 1 -> negative integer
- ☐ The remaining n-1 bits represents the magnitude of the integer (n is the length of bit pattern) as follow:
 - positive integers: the absolute value of the integer is equal to the magnitude of the (n-1)-bit binary pattern
 - negative integers: the absolute value of the integer is equal to the magnitude of the *complement (inverse)* of the (n-1)-bit binary pattern

Ex: Suppose that n = 8, the binary representation 10000001

Sign bit is 1 -> negative number

Absolute value is the complement of 0000001-> 1111110 -> 126 (decimal)

Hence, the integer is -126 (decimal)

□ Values:

$$X_{n-1} \times (-2^{n-1}+1) + X_{n-2} \times (2^{n-2}) + ... + X_1 \times 2^1 + X_0 \times 2^0$$

□ The n-bits binary pattern can represent the values from - (2ⁿ⁻¹-1) to 2ⁿ⁻¹-1

Ex: Suppose that n = 8, the range of values is -127 to 127

- There are two representations for the number zero, which could lead to inefficiency and confusion.
- The positive integers and negative integers need to be processed separately

- ☐ The most-significant bit (MSB) is the sign bit:
 - 0 -> positive integer
 - 1 -> negative integer
- The remaining n-1 bits represents the magnitude of the integer (n is the length of bit pattern) as follow:

positive integers: the absolute value of the integer is equal to the magnitude of the (n-1)-bit binary pattern

negative integers: the absolute value of the integer is equal to the magnitude of the *complement (inverse)* of the (n-1)-bit binary pattern plus one

Ex: Suppose that n =8, the binary representation 10000001 Sign bit is 1 -> negative number

Absolute value is the complement of 0000001 + 1

```
-> 11111110 + 1
```

-> 127 (decimal)

Hence, the integer is **-127** (decimal)

Values:

$$X_{n-1} \times (-2^{n-1}) + X_{n-2} \times (2^{n-2}) + ... + X_1 \times 2^1 + X_0 \times 2^0$$

□ The n-bits binary pattern can represent the values from -2ⁿ⁻¹ to (2ⁿ⁻¹)-1

Ex: Suppose that n = 8, the range of values is -128 to 127

- There is one representations for the number zero
- □ The two's complement number of N is the negative form of N

Ex: How to represent the -5 (decimal) in binary:

The bit binary pattern of 5 is 00000101

The two's complement number of 5 is 11111010 plus 1

Ex: Suppose that n =8, the binary representation 10000001 Sign bit is 1 -> negative number

Absolute value is *the complement* of 0000001 + 1

```
-> 11111110 + 1
```

- -> 1111111
- -> 127 (decimal)

Hence, the integer is **-127** (decimal)

- □ Choose K (a positive integer) to allows operations on the biased numbers to be the same as for unsigned integers but represents both positive and negative values. K is usually 2ⁿ⁻¹-1 or 2ⁿ⁻¹
- ☐ The most-significant bit (MSB) is recognized as the sign bit:
 - 1 -> positive integer
 - 0 -> negative integer
- All n bits represents the magnitude of the integer (n is the length of bit pattern) by subtraction between the bias value K and unsigned value N of that n-bits binary pattern

positive integers: N > K, the absolute value of the integer is equal to N - K

negative integers: N < K, the absolute value of the integer is equal to K - N

Ex: Suppose that n =8, K =127, the binary representation of N is 10000001 with unsigned value is 129 decimal (greater than K)

- -> N is positive integer
- -> Absolute value is N K = 129 127 = 2 (decimal)

Hence, the integer is 2 (decimal)

The n-bits binary pattern can represent the values

-K
$$\rightarrow$$
 2ⁿ⁻¹ - K
-(2ⁿ⁻¹ - 1) \rightarrow 2ⁿ⁻¹, with K = 2ⁿ⁻¹ - 1

Ex: Suppose that n = 8, K = 127, the range of values is -127 to 128

- □ There is one representations for the number zero:
 01111111
- □ Biased representations are now primarily used for the exponent of *floating-point numbers*

Ex: Suppose that n =8, K=127, how to represent a number in binary

Positive number: 25 (decimal)

$$N = 25 + K$$

$$=$$
 25 + 127 $=$ 152

Negative number: -25 (decimal)

$$N = -25 + K$$

$$=$$
 -25 + 127 = 102

Integer Operations

- Logical operationsAND, OR, XOR, NOTSHL, SHR, SAR
- Arithmetic operationAdd/SubtractMultiplyDivision

Logical Operations

AND	0	1
0	0	0
1	0	1

OR	0	1
0	0	1
1	1	1

XOR	0	1
0	0	1
1	1	0

NOT	0	1
	1	0

Shift Operations

A logical shift moves bits to the left/right and places a 0's form in the vacated bit on either end. The bits "fall off" will be discarded.

Shift Operations

An arithmetic shift right preserves the sign bit

Shift Right Arithmetic (SAR)

Shift Operations

A circular shift (rotate) places the bit shifted out of one end into the vacated position on the other end.

Advanced

 \square x SHL y = x. 2^y

 $\Box x SAR y = x / 2^y$

□ AND uses to switch off a bit (AND with 0 = 0)
 Convert lower case to upper case

○R uses to switch on a bit (OR with 1 = 1)Convert upper case to lower case

'a' (61h) Mask (DFh)

'A' (41h)

'B' (42h) Mask (20h)

'b' (62h)

0110 0001 1101 1111

0100 000

0100 0010 0010 0000

0011 0010

☐ XOR, NOT uses to reverse a bit (bit i XOR with 1 = NOT(i))

 $\square \times XOR \times = 0$

Advanced

Suppose that x is an integer:

- Get the value of bit i: (x SHR i) AND 1
- Set the value 1's of bit i: (1 SHL i) OR x
- Set the value 0's of bit i: NOT(1 SHL i) AND x
- Reverse bit i: (1 SHL i) XOR x

Integer Operations

- Logical operations
 AND, OR, XOR, NOT
 SHL, SHR, SAR
- Arithmetic operationAdd/SubtractMultiply

Division

Add Operation

Rule:

Ex:

0 0 1 0 0 1 1 1 10

fit@hcmus

$ \begin{array}{rcl} 1001 & = & -7 \\ +0101 & = & 5 \\ \hline 1110 & = & -2 \\ & (a)(-7) + (+5) \end{array} $	$ \begin{array}{rcl} 1100 & = & -4 \\ + 0100 & = & 4 \\ \hline 10000 & = & 0 \\ (b) (-4) + (+4) \end{array} $
0011 = 3 + 0100 = 4 0111 = 7 (c) (+3) + (+4)	1100 = -4 + 1111 = -1 11011 = -5 (d) (-4) + (-1)
0101 = 5 +0100 = 4 1001 = Overflow (c) (+5) + (+4)	1001 = -7 +1010 = -6 10011 = Overflow (f) (-7) + (-6)

Subtract Operation

Rule:

$$A - B = A + (-B) = A + (the 2's complement of B)$$

Ex:
$$11101 - 10011 = 11101 + 01101$$

1

fit@hcmus

$0010 = 2$ $+\frac{1001}{1011} = -7$ $1011 = -5$ (a) M = 2 = 0010 $S = 7 = 0111$ $-S = 1001$	0101 = 5 $+1110 = -2$ $10011 = 3$ (b) M = 5 = 0101 $S = 2 = 0010$ $-S = 1110$
1011 = -5 $+1110 = -2$ $1001 = -7$ (c) M = -5 = 1011 $5 = 2 = 0010$ $-5 = 1110$	0101 = 5 +0010 = 2 0111 = 7 (d) M = 5 = 0101 s = 2 = 1110 -s = 0010
0111 = 7 $+0111 = 7$ $1110 = Overflow$ (e) M = 7 = 0111 $S = -7 = 1001$ $-S = 0111$	1010 = -6 $+1100 = -4$ $10110 = Overflow$ (f) M = -6 = 1010 $S = 4 = 0100$ $-S = 1100$

Relational of integer and two's complement addition.

When $x + y < -2^{w-1}$, there is a *negative* overflow
When $x + y > 2^{w-1} - 1$, there is a *positive* overflow

Multiply Operation

Rule:

Multiply Operation

Multiply Algorithm

Suppose that Q's binary pattern has n-bits length, M x Q

Multiply Operation – Two's Complement Numbers

- □ Why's wrong?
 - Second factor: $1100 \neq -(2^3 + 2^2) (1100 = -2^2)$
- □ Solution 1
 - Convert 2 factors to positive
 - Multiply as unsigned numbers previously
 - Adjust sign of result
- ☐ Solution 2
 - Booth Algorithm

Booth Algorithm – Ideas

Positive

$$2^{n} + 2^{n-1} + ... + 2^{n-K} = 2^{n+1} - 2^{n-K}$$

 $M \times (01111010) = M \times (2^{6} + 2^{5} + 2^{4} + 2^{3} + 2^{1})$
 $= M \times (2^{7} - 2^{3} + 2^{2} - 2^{1})$

Negative

$$\begin{array}{l} X = \{111..10x_{k-1}x_{k-2}...x_1x_0\} \\ -2^{n-1} + 2^{n-2} + ... + 2^{k+1} + (x_{k-1} \times 2^{k-1}) + ... + (x_0 \times 2^0) = \\ -2^{k+1} + (x_{k-1} \times 2^{k-1}) + ... + (x_0 \times 2^0) \\ M \times (11111010) = M \times (-2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^1) \\ = M \times (-2^3 + 2^1) \\ = M \times (-2^3 + 2^2 - 2^1) \end{array}$$

Booth's Multiplication Algorithm

- A multiplication algorithm that multiplies two signed binary numbers in 2's complement notation
- Suppose that Q's binary pattern has n-bits length, M x Q

M: multiplicand

Q: multiplier

Variable definition:
 A (n bit): a part of the result
 ([A, Q]: product)
 Q0 (1 bit): the LSB bit of Q
 [Q,Q-1] (n + 1 bit)

Booth's Multiplication Algorithm

```
Initialize: A = 0; k = n; Q_{-1} = 0
\#Add\ 1-bit Q_{-1} in the end of Q
While (k > 0)
 If Q_0Q_{-1}
       = 10 then A - M -> A
       = 01 then A + M \rightarrow A
       = 00, 11 \text{ then A } -> A
 # Ignore any overflow
 SAR[A, Q, Q_{-1}] 1 bit
 k = k - 1
 Return
```

Ex: Suppose that n = 4, M = 7, Q = -3

		Α	Q	Q_{-1}	M
	Initialize	0000	1101	0	0111
k = 4	A = A-M	1001	1101	0	0111
	SAR	1100	1110	1	0111
k = 3	A = A+M	0011	1110	1	0111
	SAR	0001	1111	0	0111
k = 2	A = A-M	1010	1111	0	0111
	SAR	1101	0111	1	0111
k = 1	SAR	<mark>1110</mark>	<mark>1011</mark>	1	0111

Booth – Algorithmic Basis

- Bước 0: $A = (0 + (Q_{-1} Q_0).M)$
- Bước 1: $A = (0 + (Q_{-1}-Q_0).M + (Q_0-Q_1).M.2^1)$ = $M.(Q_{-1}-Q_0 + Q_0.2-Q_1.2)$
- □ Bước 2: $A = (M.(Q_{-1}-Q_0 + Q_0.2-Q_1.2) + (Q_1-Q_2).M.2^2)$ = $M.(Q_{-1}-Q_0 + Q_0.2-Q_1.2 + Q_1.2^2-Q_2.2^2)$
- Bước 3:

$$A = M.(Q_{-1}-Q_0 + Q_0.2-Q_1.2 + Q_1.2^2-Q_2.2^2 + Q_2.2^3-Q_3.2^3)$$

= $M.(Q_{-1}+Q_0+Q_1.2 + Q_2.2^2-Q_3.2^3)$

Bước n-1:

$$A = M.(Q_{-1}+Q_0+Q_1.2 + Q_2.2^2+Q_3.2^3+...+Q_{n-2}.2^{n-2}-Q_{n-1}.2^{n-1})$$

$$\rightarrow$$
 A = M.Q

Divide Operation

START

Divide Algorithm

A	Q	M = 0011
0000	0111	Initial value
0000	1110	Shift
1101 0000	1110	Subtract Restore
0001	1100	Shift
1110 0001	1100	Subtract Restore
0011 0000	1000	Shift
0000	1001	Subtract Set $Q_0 = 1$
0001	0010	Shift
1110 0001	0010	Subtract Restore
	(7)/(3)	52

(7)/(3)

Divide Operation – Two's Complement Numbers

Fixed point numbers

Represent 5.375₁₀ in 2-base system ?

Idea: Represent the integer part and fraction part separately

Integer part: use 8-bits for representation. Range of values is [0, 255] (decimal)

$$5_{10} = 4 + 1 = 0000 \ 0101_2$$

Fraction part: use 8-bits for representation.

$$0.375 = 0.25 + 0.125 = 2^{-2} + 2^{-3} = 0110 \ 0000_{2}$$

Signed fixed point	Signed bit	Integer (8-bits)	Fraction (8-bits)
	0	0000 0101	0110 0000

Formular:

$$x_{n-1}x_{n-2}...x_0.x_{-1}x_{-2}...x_{-m} = x_{n-1}.2^{n-1} + x_{n-2}.2^{n-2}... + x_0.2^0 + x_{-1}.2^{-1} + x_{-2}.2^{-2} + ... + x_{-m}.2^{-m}$$

<u>i_</u>	2 -i
0	1.0 1
1	0.5 1/2
2	0.25 1/4
3	0.125 1/8
4	0.0625 1/16
5	0.03125 1/32
6	0.015625
7	0.0078125
8	0.00390625
9	0.001953125
10	0.0009765625
11	0.00048828125
12	0.000244140625
13	0.0001220703125
14	0.00006103515625
15	0.000030517578125

Fixed point numbers

- \square Suppose that n = 8-bits
 - Largest integer value can be represented: 255
 - Smallest fraction value can be represented: $2^{-8} \sim 10^{-3} = 0.001$
- Problem: limited range of values can be represented, it does not allow enough numbers and accuracy
- □ Solution: Floating point Number

Floating point number - Ideas

- Normalized form:
 - $1230000000000 \sim 1.23 \times 10^{11}$ and $0.0000000000123 \sim 1.23 \times 10^{-11}$
- So apply to the fixed point number:

$$x = 00000101.01100000 = 2^2 + 2^0 + 2^{-2} + 2^{-3}$$

 $x = 1.01011 \times 2^2$

☐ Then instead of storing 16 bit, it can only be stored by 7 bit (5 bit fraction + 2 bit exponent)

fraction: 01011

exponent: 10

☐ It's the idea basis of floating point number

Need to store: the fraction, the exponent and ... the sign

Floating point number

- Express in the follow notation: $\pm F \times 2^E$ (with: F: fraction, E: Exponent, radix of 2)
 - Sign Exponent (biased form) Significand
- □ IEEE-754 standard: represent floating point number in form: V = (-1)5 x 1.F x 2^E

11 bits

Double precision (64-bits) Sign

Significand

γ 52 bits

- Sign: 1: Negative, 0: Positive
- Exponent: saved in n-bits pattern. Represented in K-excess form with Single precision: $K = 127 (2^{n-1} 1 = 2^{8-1} 1)$ Double precision: $K = 1023 (2^{n-1} - 1 = 2^{11-1} - 1)$
- Significand (Fraction): the remaining bits after dot sign

1 bit

Single-precision Floating Point

☐ Value: 5.375

Normalized form: 1.01011×2^2

☐ Vice versa, values:

$$V = (-1)^{\varsigma} \times 1.F \times 2^{E}$$

$$+1.0101100...00 \times 2^{10000001} \sim +(1+2^{-2}+2^{-4}+2^{-5}) \times 2^{2} = 5.375$$

Ex: Represent X = -5.25 in single precision scheme

```
Step 1: Convert X to binary system
   X = -5.25_{10} = -101.01_{2}
Step 2: Normalize X in this form ±1.F * 2<sup>E</sup>
   X = -5.25 = -101.01 = -1.0101 * 2^{2}
Step 3: Represent X in floating point
   Signed bit = 1 (Negative number)
   Exponent= represent E in K-excess form (with K = 127)
   ->Exponent = E + 127 = 2 + 127 = 129_{10} = 1000 \ 0001_{2}
   Significant (Fraction)= 0101 0000 0000 0000 0000 000 (plus 19
   times of 0's)
```

Ex: Represent -23.40625 in single precision scheme

1. Integer part:

$$23 = 16 + 4 + 2 + 1 = 10111$$

2. Fraction part:

$$.40625 = .25 + .125 + .03125 = .01101$$

3. Combine and normalize:

$$10111.01101 = 1.011101101 \times 2^4$$

4. Exponent: 127 + 4 = 10000011

1 1000 0011 011 1011 0100 0000 0000 0000

Ex: Represent X = 0.1 in single precision scheme

- 0.1
 - = 0.0625 + 0.03125 + 0.00390625 + 0.001953125 + ...
 - $= 1/16 + 1/32 + 1/256 + 1/512 + \dots$
 - $= 2^{-4} + 2^{-5} + 2^{-8} + 2^{-9} + \dots$
 - $= 0.0001100110... * 2^{0}$
 - = 1.1001100110... * 2⁻⁴
 - □ Sign: 0
 - \square Exponent = -4 + 127 = 123 = 01111011
 - ☐ Significand = 100110011001...
 - 0 0111 1011 1001 1001 1001 1001 1001 100

Ex: Single Precision Floating Point to Decimal Value

0 0110 1000 101 0101 0100 0011 0100 0010

- Sign: 0 → Positive
- Exponent/
 - 0110 1000 có giá trị (dạng biased) là
 104 127 ≠ -23
- Significand

```
1 + 1x2^{-1} + 0x2^{-2} + 1x2^{-3} + 0x2^{-4} + 1x2^{-5} + ...
= 1 + 2^{-1} + 2^{-3} + 2^{-5} + 2^{-7} + 2^{-9} + 2^{-14} + 2^{-15} + 2^{-17} + 2^{-22}
= 1.0 + 0.666115
```

• Result: 1.666115 × 2⁻²³ ~ 1.986 × 10⁻⁷ (~ 2/10,000,000)

Discussion

- 1. Why is the exponent stored in K-excess form?
- 2. Why do we choose K=127(in single precision scheme) instead K=128 (original biased value in 8-bits pattern)
- 3. How can we represent the zero value in floating point number?

Distribution of Single-precision floating-point numbers

Chap9, Computer Organization and Architecture: Design for performance, 8th edition Figure 9.19

Categories of floating-point values

Normalized number 1-255 (single precision) Significand Signed bit 1-2046 (double precision) Denormalized number Signed bit **Significand** all bits set as 0's **Infinity** Signed bit | all bits set as 1's all bits set as 0's Not a number (NaN) Signed bit | all bits set as 1's Nonzero

Not a number (NaN)

1.
$$XX - (+\infty)$$

$$11.(+\infty) + (-\infty)$$
 21.....

$$2. + (+\infty)$$

2.
$$+ (+\infty)$$
 12. $(-\infty) + (+\infty)$

3.
$$X + (-\infty)$$

3.
$$X + (-\infty)$$
 13. $(+\infty) - (+\infty)$

4.
$$X - (-\infty)$$

4.
$$X - (-\infty)$$
 14. $(-\infty) - (-\infty)$

5.
$$X \times (+\infty)$$
 15. $\infty \times 0$

6.
$$X / (-\infty)$$
 16. $\infty / 0$

7.
$$(+\infty) + (+\infty) 17.X / 0$$

8.
$$(-\infty) + (-\infty)$$
 18.0 / 0

9.
$$(-\infty) - (+\infty) \quad 19.\infty / \infty$$

$$19.\infty/\infty$$

$$10.(+\infty) - (-\infty)$$

$$10.(+\infty) - (-\infty)$$
 20.sqrt(X), X<0

Denormalized number

Positive Min of normalized number:

$$a = 1.0..._2 \times 2^{-126} = 2^{-126}$$

Reason: implicitly 1 + fraction part

- ☐ Solution:
 - Consider all bits of exponent part are 0 (Significand ≠ 0) as denormalized form. So the significand will not implicitly plus 1 anymore
 - Positive Min of denormalized number:

$$a = 0.00...1_2 \times 2^{-126} = 2^{-23} \times 2^{-126} = 2^{-149}$$

$$- \infty \leftarrow 0$$

Nonnegative floating-point numbers

			Single pre	ecision	Double pr	recision
Description	exp	frac	Value	Decimal	Value	Decimal
Zero	00 · · · 00	0 · · · 00	0	0.0	0	0.0
Smallest denorm.	$00 \cdots 00$	$0 \cdots 01$	$2^{-23} \times 2^{-126}$	1.4×10^{-45}	$2^{-52} \times 2^{-1022}$	4.9×10^{-324}
Largest denorm.	$00 \cdots 00$	$1 \cdots 11$	$(1-\epsilon) \times 2^{-126}$	1.2×10^{-38}	$(1 - \epsilon) \times 2^{-1022}$	2.2×10^{-308}
Smallest norm.	$00 \cdots 01$	$0 \cdots 00$	1×2^{-126}	1.2×10^{-38}	1×2^{-1022}	2.2×10^{-308}
One	$01 \cdots 11$	$0\cdots00$	1×2^0	1.0	1×2^{0}	1.0
Largest norm.	$11 \cdots 10$	$1 \cdots 11$	$(2-\epsilon)\times 2^{127}$	3.4×10^{38}	$(2-\epsilon)\times 2^{1023}$	1.8×10^{308}

Chap2, Prentice.Hall.Computer.Systems.A.Programmers.Perspective.2nd.2011, Figure 2.35

Number limits, Overflow and Roundoff

Number limits, Overflow and roundoff Take a practice bellow the video

Store text in binary

Read this document and take a practice

ASCII representation of character

ASCII value	Char- acter										
32	space	48	0	64	@	80	Р	96	*	112	р
33	1	49	1	65	Α	81	Q	97	a	113	q
34	"	50	2	66	В	82	R	98	b	114	r
35	#	51	3	67	С	83	S	99	С	115	s
36	\$	52	4	68	D	84	Т	100	d	116	t
37	%	53	5	69	E	85	U	101	е	117	u
38	&	54	6	70	F	86	٧	102	f	118	٧
39	'	55	7	71	G	87	W	103	g	119	w
40	(56	8	72	Н	88	Х	104	h	120	х
41)	57	9	73	I	89	Y	105	i	121	у
42	*	58	:	74	J	90	Z	106	j	122	Z
43	+	59	;	75	K	91	[107	k	123	{
44	,	60	<	76	L	92	\	108	I	124	
45	-	61	=	77	М	93]	109	m	125	}
46		62	>	78	N	94	۸	110	n	126	~
47	/	63	?	79	0	95	_	111	0	127	DEL

Unicode Standard

- Unicode has 17 planes of 65,536 characters each
 - BMP or Plane 0: ranging from U+0000 to U+FFFF
 - SMP or Plane 1: from U+10000 to U+1FFFF
- Planes are subdivided in many character blocks, usually comprising a script
 - Unicode version 14.0 has 320 "blocks", which is their name for a collection of symbols. Each block is a multiple of 16 code points (~ characters)
- UTF (Unicode transformation formats)
 - A 16-bit encoding, called UTF-16, is the default.
 - A variable-length encoding, called UTF-8, keeps the ASCII subset as eight bi and uses 16 or 32 bits for the other characters.
 - UTF-32 uses 32 bits per character
- The Vietnamese alphabets are listed in several noncontiguous Unicode ranges:
 - Block "Basic Latin" {U+0000..U+007F}
 - Block "Latin-1 Supplement" {U+0080..U+00FF}
 - Block "Extended-A", "Extended-B" {U+0100..U+024F}
 - Block "Extended Additional" {U+1E00..U+1EFF}
 - Block "Combining Diacritical Marks" {U+0300..U+036F}

Unicode Standard

- Glyphs is pictures representing characters
 - Characters are what you type, glyphs are what you see
- One glyph usually corresponds to one Unicode character. A glyph can also represent more than one character at once

Unicode Character Code to Rendered Glyphs

Data Format in C Programs

C declaration	Intel data type	Assembly code suffix	Size (bytes)
char	Byte	ъ	1
short	Word	W	2
int	Double word	1	4
long int	Double word	1	4
long long int	_	_	4
char *	Double word	1	4
float	Single precision	s	4
double	Double precision	1	8
long double	Extended precision	t	10/12

Figure 3.1 Prentice. Hall. Computer. Systems. A. Programmers. Perspective. 2nd. 2011

Size of C data type in IA32

Heterogeneous Data

- C provides two mechanisms for creating data types by Combining objects of different types: structures, declared using the keyword struct
 - Aggregate multiple objects into a single unit: *unions*, declared using the keyword *union*
- □ Read more information in Prentice Hall, 2011, Computer Systems A Programmers Perspective 2nd, Section 3.9, page 241

Data Alignment

- Alignment restrictions simplify the design of the hardware forming the interface between the processor and the memory system
- □ The compiler may need to add padding to the end of the structure so that each element in an array of structures will satisfy its alignment requirement

Data Alignment

Ex: consider the following structure declaration

Size of struct S1 without alignment

```
struct S1 {
    int i;
    char c;
    int j;
};
```

```
Offset 0 4 5 9

Contents i c j
```

Size of struct S1 with 4-bytes alignment

Offset	0	4	5	8	12
Contents	i	С		j	

- 04_Floating-point.pdf
- Willian Stalling, Computer Organization and Architecture: Design for performance, 8th edition, Chapter 9
- Patterson and Hennessy, Computer Organization and Design: The Hardware / Software Interface, 5th edition, Chapter 3
- Prentice Hall, Computer Systems A Programmers Perspective 2nd,
 2011, Chapter 2