

Large-Scale Optimization Problem in Energy Systems: Applications of Decomposition Techniques

Lecture 6: Applications of Bilevel Programming to Power Systems and Electricity Markets

Lesia Mitridati

January 9th, 2018

DTU Electrical Engineering

Department of Electrical Engineering

Applications to Power Systems

Yesterday we talked about various applications of bilevel programming to power systems:

- 1. Vulnerability assessment (leader can be the system operator or attacker)
- 2. Transmission planning (leader is the TSO)
- 3. Strategic investment (leader is a strategic producer)
- 4. Strategic offering (leader is a strategic producer)
- 5. Coupling of energy markets (district heating and electricity) Etc...

Applications to Power Systems

Yesterday we talked about various applications of bilevel programming to power systems:

- 1. Vulnerability assessment (leader can be the system operator or attacker)
- 2. Transmission planning (leader is the TSO)
- 3. Strategic investment (leader is a strategic producer)
- 4. Strategic offering (leader is a strategic producer)
- 5. Coupling of energy markets (district heating and electricity) Etc...

Today we will focus on one application: Strategic offering in the dayahead market

- Perfect competition: no producer can exercise market power
- Nash Equilibrium

Strategic Offering

- Perfect competition: no producer can exercise market power
- Nash Equilibrium

 No participant can deviate unilateraly from the equilibrium to increase its own profit

Strategic Offering

- A large producer participating in the day-ahead market
- Can exercise "market-power": modify market equilibrium to increase its profit

- A large producer participating in the day-ahead market
- Can exercise "market-power": modify market equilibrium to increase its profit

- A large producer participating in the day-ahead market
- Can exercise "market-power": modify market equilibrium to increase its profit

- A large producer participating in the day-ahead market
- Can exercise "market-power": modify market equilibrium to increase its profit

Question: How can the producer model the impact of its decision on market outcomes (prices, quantities)?

Strategic Offering

- A large producer participating in the day-ahead market
- Can exercise "market-power": modify market equilibrium to increase its profit

Question: How can the producer model the impact of its decision on market outcomes (prices, quantities)?

Needs to model the competition in electricity market endogenously, as a constraint of its optimization problem

Bilevel Formulation

Upper-level: strategic producer

Maximize profit

Subject to:

Non-negativity of offers

Lower-level: market clearing

Maximize social welfare

Subject to:

- Balance equations at nodes
- Transmission constraints
- Production bounds

Illustrative Example 1

- Three bus system
- Three generators and loads

Illustrative Example 1

- Three bus system
- Three generators and loads

Exercise: Formulate the strategic offering problem of generator G1

Illustrative Example 1

- Three bus system
- Three generators and loads

Exercise: Formulate the strategic offering problem of generator G1

Assumptions:

- Single block offer (single price, maximum production)
- Inelastic demand

$$\min_{\substack{\Theta^{UL}\cup\Theta^{LL}\cup\{\lambda,\mu,
ho\}}} c_1g_1 - \lambda_1g_1$$
 s.t. $\begin{bmatrix} \hat{c}_1 \geq 0 \\ \end{bmatrix}$ Lower-level

Parameters:

 c_1 : marginal cost of the strategic producer

<u>Decision variables (upper-level):</u>

 \hat{c}_1 : price offer of the strategic producer

Parameters:

 c_1 : marginal cost of the strategic producer

<u>Decision variables (upper-level):</u>

 \hat{c}_1 : price offer of the strategic producer

$$\begin{aligned} & \underset{\Theta^{LL}}{\min} & \hat{c}_{1}g_{1} + c_{2}g_{2} + c_{3}g_{3} \\ & \text{s.t.} & g_{1} + B_{l_{1}}(\theta_{2} - \theta_{1}) + B_{l_{2}}(\theta_{3} - \theta_{1}) = d_{1} & : \lambda_{1} \\ & g_{2} + B_{l_{1}}(\theta_{1} - \theta_{2}) + B_{l_{3}}(\theta_{3} - \theta_{2}) = d_{2} & : \lambda_{2} \\ & g_{3} + B_{l_{2}}(\theta_{1} - \theta_{3}) + B_{l_{3}}(\theta_{2} - \theta_{3}) = d_{3} & : \lambda_{3} \\ & \theta_{3} = 0 & : \gamma \\ & 0 \leq g_{1} \leq g_{1}^{max} & : \mu_{1}^{min}, \mu_{1}^{max} \\ & 0 \leq g_{2} \leq g_{2}^{max} & : \mu_{2}^{min}, \mu_{2}^{max} \\ & 0 \leq g_{3} \leq g_{3}^{max} & : \mu_{3}^{min}, \mu_{3}^{max} \\ & - f_{l_{1}}^{max} \leq B_{l_{1}}(\theta_{1} - \theta_{2}) \leq f_{l_{1}}^{max} & : \rho_{l_{1}}^{min}, \rho_{l_{1}}^{max} \end{aligned}$$

Parameters:

 c_i : marginal costs of producers

 \hat{c}_1 : price offer of strategic producer

 B_i : Susceptance of transmisison lines

 g^{max}_{i} (f^{max}_{l}): production (transmission) bounds

 $-f_{l_2}^{max} \le B_{l_2}(\theta_3 - \theta_1) \le f_{l_2}^{max}$

 $-f_{l_3}^{max} \le B_{l_3}(\theta_2 - \theta_3) \le f_{l_3}^{max}$

 d_i : demand at each bus

Decision variables (lower-level):

 g_i : power dispatch

 θ_i : Voltage angle at each bus

Dual variables...

 $: \rho_{l_2}^{min}, \rho_{l_2}^{max}$

Power balance at each node

$$\min_{\Theta^{LL}} \quad \hat{c}_1 g_1 + c_2 g_2 + c_3 g_3$$

s.t.
$$g_1 + B_{l_1}(\theta_2 - \theta_1) + B_{l_2}(\theta_3 - \theta_1) = d_1$$

$$g_2 + B_{l_1}(\theta_1 - \theta_2) + B_{l_3}(\theta_3 - \theta_2) = d_2$$

$$g_3 + B_{l_2}(\theta_1 - \theta_3) + B_{l_3}(\theta_2 - \theta_3) = d_3$$

$$\theta_3 = 0$$

$$0 \leq g_1 \leq g_1^{max}$$

$$0 \leq g_2 \leq g_2^{max}$$

$$0 \leq g_3 \leq g_3^{max}$$

$$-f_{l_1}^{max} \le B_{l_1}(\theta_1 - \theta_2) \le f_{l_1}^{max}$$

$$-f_{l_2}^{max} \le B_{l_2}(\theta_3 - \theta_1) \le f_{l_2}^{max}$$

$$-f_{l_3}^{max} \le B_{l_3}(\theta_2 - \theta_3) \le f_{l_3}^{max}$$

 $:\lambda_3$

 $: \mu_1^{min}, \mu_1^{max}$

: μ_2^{min}, μ_2^{max}

: μ_3^{min}, μ_3^{max}

 $: \rho_{l_1}^{min}, \rho_{l_1}^{max}$

Parameters:

 c_i : marginal costs of producers

 \hat{c}_1 : price offer of strategic producer

 B_i : Susceptance of transmisison lines

 g^{max}_{i} (f^{max}_{i}): production (transmission) bounds

 d_i : demand at each bus

Decision variables (lower-level):

 g_i : power dispatch

 θ_i : Voltage angle at each bus

Dual variables...

Parameters:

 c_i : marginal costs of producers

 \hat{c}_1 : price offer of strategic producer

 B_i : Susceptance of transmisison lines

 g^{max}_{i} (f^{max}_{l}): production (transmission) bounds

 $-f_{l_2}^{max} \le B_{l_2}(\theta_3 - \theta_1) \le f_{l_2}^{max}$

 $-f_{l_3}^{max} \le B_{l_3}(\theta_2 - \theta_3) \le f_{l_3}^{max}$

 d_i : demand at each bus

Decision variables (lower-level):

 g_i : power dispatch

 θ_i : Voltage angle at each bus

Dual variables...

Parameters:

 c_i : marginal costs of producers

 \hat{c}_1 : price offer of strategic producer

 B_i : Susceptance of transmisison lines

 g^{max}_{i} (f^{max}_{l}): production (transmission) bounds

 d_i : demand at each bus

Decision variables (lower-level):

 g_i : power dispatch

 θ_i : Voltage angle at each bus

Dual variables...

MPEC Formulation: KKT Conditions

$$\begin{split} \hat{c}_1 - \lambda_1 + \mu_1^{max} - \mu_1^{min} &= 0 \\ c_2 - \lambda_2 + \mu_2^{max} - \mu_2^{min} &= 0 \\ c_3 - \lambda_3 + \mu_3^{max} - \mu_3^{min} &= 0 \\ B_{l1}(\lambda_1 - \lambda_2 + \rho_{l1}^{max} - \rho_{l1}^{min}) + B_{l2}(\lambda_1 - \lambda_3 - \rho_{l2}^{max} + \rho_{l2}^{min}) &= 0 \\ B_{l1}(\lambda_2 - \lambda_1 - \rho_{l1}^{max} + \rho_{l1}^{min}) + B_{l3}(\lambda_2 - \lambda_3 + \rho_{l3}^{max} - \rho_{l3}^{min}) &= 0 \\ B_{l2}(\lambda_3 - \lambda_1 + \rho_{l2}^{max} - \rho_{l2}^{min}) + B_{l3}(\lambda_3 - \lambda_2 - \rho_{l3}^{max} + \rho_{l3}^{min}) + \gamma &= 0 \end{split}$$

$$g_1 + B_{l_1}(\theta_2 - \theta_1) + B_{l_2}(\theta_3 - \theta_1) = d_1$$

$$g_2 + B_{l_1}(\theta_1 - \theta_2) + B_{l_3}(\theta_3 - \theta_2) = d_2$$

$$g_3 + B_{l_2}(\theta_1 - \theta_3) + B_{l_3}(\theta_2 - \theta_3) = d_3$$

$$\theta_3 = 0$$

Primal feasibility

MPEC Formulation: KKT Conditions

$$0 \leq \mu_{1}^{max} \perp (g_{1} - g_{1}^{max}) \leq 0$$

$$0 \leq \mu_{2}^{max} \perp (g_{2} - g_{2}^{max}) \leq 0$$

$$0 \leq \mu_{3}^{max} \perp (g_{3} - g_{3}^{max}) \leq 0$$

$$0 \leq \mu_{1}^{min} \perp (-g_{1}) \leq 0$$

$$0 \leq \mu_{2}^{min} \perp (-g_{2}) \leq 0$$

$$0 \leq \mu_{3}^{min} \perp (-g_{3}) \leq 0$$

$$0 \leq \rho_{l_{1}}^{max} \perp (B_{l_{1}}(\theta_{1} - \theta_{2}) - f_{l_{1}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{max} \perp (B_{l_{2}}(\theta_{3} - \theta_{1}) - f_{l_{2}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{max} \perp (B_{l_{3}}(\theta_{2} - \theta_{3}) - f_{l_{3}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{1}}^{min} \perp (-B_{l_{1}}(\theta_{1} - \theta_{2}) - f_{l_{1}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{min} \perp (-B_{l_{2}}(\theta_{3} - \theta_{1}) - f_{l_{2}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{min} \perp (-B_{l_{2}}(\theta_{3} - \theta_{1}) - f_{l_{2}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{min} \perp (-B_{l_{3}}(\theta_{2} - \theta_{3}) - f_{l_{3}}^{max}) \leq 0$$

- Complementarity conditions
- Primal feasibility
- Dual feasibility

MPEC Formulation: KKT Conditions

$$0 \leq \mu_{1}^{max} \perp (g_{1} - g_{1}^{max}) \leq 0$$

$$0 \leq \mu_{2}^{max} \perp (g_{2} - g_{2}^{max}) \leq 0$$

$$0 \leq \mu_{3}^{max} \perp (g_{3} - g_{3}^{max}) \leq 0$$

$$0 \leq \mu_{1}^{min} \perp (-g_{1}) \leq 0$$

$$0 \leq \mu_{2}^{min} \perp (-g_{2}) \leq 0$$

$$0 \leq \mu_{3}^{min} \perp (g_{3} - g_{3}^{max}) \leq 0$$

$$0 \leq \mu_{3}^{min} \perp (g_{3} - g_{3}^{max}) \leq 0$$

$$0 \leq \rho_{l_{1}}^{max} \perp (g_{l_{1}}(\theta_{1} - \theta_{2}) - f_{l_{1}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{max} \perp (g_{l_{2}}(\theta_{3} - \theta_{1}) - f_{l_{2}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{max} \perp (g_{l_{3}}(\theta_{2} - \theta_{3}) - f_{l_{3}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{1}}^{min} \perp (-g_{l_{1}}(\theta_{1} - \theta_{2}) - f_{l_{1}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{min} \perp (-g_{l_{2}}(\theta_{3} - \theta_{1}) - f_{l_{2}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{min} \perp (-g_{l_{3}}(\theta_{2} - \theta_{3}) - f_{l_{3}}^{max}) \leq 0$$

$$0 \leq \rho_{l_{2}}^{min} \perp (-g_{l_{3}}(\theta_{2} - \theta_{3}) - f_{l_{3}}^{max}) \leq 0$$

- Complementarity conditions
- Primal feasibility
- Dual feasibility

<u>Tip:</u> We can linearize the complementarity conditions using binary variables (Fortuny-Amat)

The objective function is bilinear and non-convex!!!

<u>Tip:</u> we can linearize this product of a dual and primal variable using strong duality and KKT conditions (from the lower-level problem)

$$\hat{c}_1 = \lambda_1 - \mu_1^{max} + \mu_1^{min}$$

(Stationarity condition)

$$\hat{c}_1 = \lambda_1 - \mu_1^{max} + \mu_1^{min}$$

(Stationarity condition)

Multiply by g1

$$\hat{c}_1 g_1 = \lambda_1 g_1 - \mu_1^{max} g_1 + \mu_1^{min} g_1$$

$$\hat{c}_1 = \lambda_1 - \mu_1^{max} + \mu_1^{min}$$

(Stationarity condition)

$$\hat{c}_1 g_1 = \lambda_1 g_1 - \mu_1^{max} g_1 + \mu_1^{min} g_1$$

Multiply by g1

Use the complementarity conditions:

$$\mu_1^{max} g_1 = \mu_1^{max} g_1^{max}$$
$$\mu_1^{min} g_1 = 0$$

$$\hat{c}_1 g_1 = \lambda_1 g_1 - \mu_1^{max} g_1^{max}$$

$$\hat{c}_{1}g_{1} = -\sum_{i=2}^{3} c_{i}g_{i} - \sum_{i=1}^{3} g_{i}^{max} \mu_{i}^{max} + \sum_{i=1}^{3} d_{i}\lambda_{i}$$

$$-\sum_{i=1}^{3} f_{l_{i}}^{max} \rho_{l_{i}}^{max} - \sum_{i=1}^{3} f_{l_{i}}^{max} \rho_{l_{i}}^{min}$$

(Strong duality)

$$\lambda_1 g_1 = -\sum_{i=2}^{3} c_i g_i - \sum_{i=2}^{3} g_i^{max} \mu_i^{max} + \sum_{i=1}^{3} d_i \lambda_i$$
$$-\sum_{i=1}^{3} f_{l_i}^{max} \rho_{l_i}^{max} - \sum_{i=1}^{3} f_{l_i}^{max} \rho_{l_i}^{min}$$

Replace in previous expression

Numerical example

Question: If producers are not strategic, what is the market outcome?

Bus	Capacity	Production	Demand
#	(MW)	$\cos t (\$/MWh)$	(MW)
1	20	16	5
2	10	19	20
3	25	15	15

Line #	From	То	Susceptance (S)	Capacity (MW)
1	1	2	100	5
2	1	3	125	10
3	2	3	150	10

Numerical example

Question: If producers are not strategic, what is the market outcome?

Bus	Capacity	Production	Demand
#	(MW)	$\cos t (\$/MWh)$	(MW)
1	20	16	5
2	10	19	20
3	25	15	15

Line	Enom	То	Susceptance	Capacity
#	From	10	(S)	(MW)
1	1	2	100	5
2	1	3	125	10
3	2	3	150	10

Numerical Example

Exercise for this afternoon:

- Formulate the strategic offering problem of generator G1
- Modify the GAMS code provided for the market clearing problem, and solve the strategic offering problem
- How does the market clearing outcomes differ in both models?
- How is the merit order affected?
- How si the profit of each player affected?
- How is the social welfare affected?


```
sets
i generators /i1*i3/
d inelastic loads /d1*d3/
n buses /n1*n3/
1 lines /11*13/
parameters
MO / 10000 /
P max(i) installed capacity /
i1 20
i2 10
i3 25/
c(i) marginal cost /
i1 16
i2 19
i3 15/
Load(d) Load level /
d1 5
d2 20
d3 15/
     Transmission lines susceptance /
B(1)
11 100
12 125
13 150/
```

```
parameters
Fmax(1) Transmission lines capacity /
11 5
12 10
13 10/
Free variables
cost Total expected system cost
P(i) DA dispatch of generators
           Voltage angles
theta(n)
lambda(n)
             LMPs
gamma
             node reference N3 dual variable
Positive variables
offer price offer
mu_max(i) max production dual variables
mu_min(i) min production dual variables
rho max(1) max flow dual variables
rho min(1) min flow dual variables
Integer variables
u mu max(i) max production binary variables
u mu min(i) min production binary variables
```

u_rho_max(l) max flow binary variables
u rho min(l) min flow binary variables


```
equations
costfn
offer max
node balance 1, node balance 2, node balance 3
Prod max, Prod min
flow max 1, flow max 2, flow max 3, flow min 1, flow min 2, flow min 3
slack bus
stat g1, stat g2, stat g3, stat theta1, stat theta2, stat theta3
comp gmax 1, comp gmax 2
comp gmin 1, comp gmin 2
comp fmax 1,comp fmax 21,comp fmax 22,comp fmax 23
comp fmin 1,comp fmin 21,comp fmin 22,comp fmin 23
 costfn.. cost =e= c('i1')*P('i1')
                         - (-c('i2')*P('i2')-c('i3')*P('i3')-P max('i2')*mu max(|'i2')-P max('i3')*mu max('i3')
                                 +(Load('d1')*lambda('n1')+Load('d2')*lambda('n2|')+Load('d3')*lambda('n3'))
                                 -sum (1, Fmax (1) *rho max (1)) -sum (1, Fmax (1) *rho min (1)));
* III. constraint
 offer max.. offer =1= 50;
* DA constraints
 node balance 1.. P('i1') + B('11')*(theta('n2')-theta('n1')) + B('12')*(theta(|n3')-theta('n1')) =e= Load('d1');
 node balance 2.. P('i2') + B('l1')*(theta('n1')-theta('n2')) + B('l3')*(theta(|n3')-theta('n2')) =e= Load('d2');
 node balance 3.. P('i3') + B('12')*(theta('n1')-theta('n3')) + B('13')*(theta(|n2')-theta('n3')) =e= Load('d3');
  slack bus.. theta('n3')=e=0;
 Prod max(i).. P(i)-P max(i)=1=0;
  Prod min(i).. -P(i)=l=0;
 flow max 1.. B('11')*(theta('n1')-theta('n2'))-Fmax('11')=1=0;
 flow min 1.. -B('11')*(theta('n1')-theta('n2'))-Fmax('11')=1=0;
 flow max 2.. B('12')*(theta('n3')-theta('n1'))-Fmax('12')=1=0;
 flow min 2.. -B('12')*(theta('n3')-theta('n1'))-Fmax('12')=1=0;
 flow max 3.. B('13')*(theta('n2')-theta('n3'))-Fmax('13')=1=0;
  flow min 3.. -B('13')*(theta('n2')-theta('n3'))-Fmax('13')=1=0;
```



```
equations
costfn
offer max
node balance 1, node balance 2, node balance 3
Prod max, Prod min
flow max 1, flow max 2, flow max 3, flow min 1, flow min 2, flow min 3
slack bus
stat g1, stat g2, stat g3, stat theta1, stat theta2, stat theta3
comp gmax 1, comp gmax 2
comp gmin 1, comp gmin 2
comp fmax 1,comp fmax 21,comp fmax 22,comp fmax 23
comp fmin 1, comp fmin 21, comp fmin 22, comp fmin 23
 costfn.. cost =e= c('i1')*P('i1')
                        - (-c('i2')*P('i2')-c('i3')*P('i3')-P max('i2')*mu max(|'i2')-P max('i3')*mu max('i3')
                                 +(Load('d1')*lambda('n1')+Load('d2')*lambda('n2|')+Load('d3')*lambda('n3'))
                                -sum(1, Fmax(1) *rho max(1))-sum(1, Fmax(1) *rho min(1)));
 UL constraint
                               Need to add a bound on the price offer! Why?
 offer max.. offer =1= 50;
* DA constraints
 node balance 1.. P('i1') + B('l1')*(theta('n2')-theta('n1')) + B('l2')*(theta(|n3')-theta('n1')) =e= Load('d1');
 node balance 2.. P('i2') + B('l1')*(theta('n1')-theta('n2')) + B('l3')*(theta(|n3')-theta('n2')) =e= Load('d2');
 node balance 3.. P('i3') + B('12')*(theta('n1')-theta('n3')) + B('13')*(theta(|n2')-theta('n3')) =e= Load('d3');
 slack bus.. theta('n3')=e=0;
 Prod max(i).. P(i)-P max(i)=l=0;
 Prod min(i).. -P(i)=l=0;
 flow max 1.. B('11')*(theta('n1')-theta('n2'))-Fmax('11')=1=0;
 flow min 1.. -B('11')*(theta('n1')-theta('n2'))-Fmax('11')=1=0;
 flow max 2.. B('12')*(theta('n3')-theta('n1'))-Fmax('12')=1=0;
 flow min 2.. -B('12')*(theta('n3')-theta('n1'))-Fmax('12')=1=0;
 flow max 3.. B('13')*(theta('n2')-theta('n3'))-Fmax('13')=1=0;
 flow min 3.. -B('13')*(theta('n2')-theta('n3'))-Fmax('13')=1=0;
```



```
* KKT conditions
 stat g1.. offer - lambda('n1') + mu max('i1') - mu min('i1') =e=0;
 stat_g2.. c('i2') - lambda('n2') + mu_max('i2') - mu_min('i2') =e=0;
 stat g3.. c('i3') - lambda('n3') + mu max('i3') - mu min('i3') =e=0;
 stat theta1.. B('l1')*(lambda('n1')-lambda('n2')+rho max('l1')-rho min('l1'))
                + B('12')*(lambda('n1')-lambda('n3')-rho max('12')+rho min('12')) =e= 0;
 stat theta2.. B('11')*(lambda('n2')-lambda('n1')-rho max('11')+rho min('11'))
                + B('13')*(lambda('n2')-lambda('n3')+rho max('13')-rho min('13')) =e= 0;
 stat theta3.. B('12')*(lambda('n3')-lambda('n1')+rho max('12')-rho min('12'))
                + B('13')*(lambda('n3')-lambda('n2')-rho max('13')+rho min('13')) + gamma =e= 0;
 comp gmax 1(i).. mu max(i) =1= M0*u mu max(i);
 comp gmax 2(i).. P max(i)-P(i)=l= M0*(1-u mu max(i));
 comp gmin 1(i).. mu min(i) =1= M0*u mu min(i);
 comp gmin 2(i).. P(i)=1= M0*(1-u mu min(i));
 comp fmax 1(1).. rho max(1) =1= M0*u rho max(1);
 comp fmax 21.. Fmax('11') - B('11')*(theta('n1')-theta('n2')) = l= M0*(1-u rho max('11'));
 comp fmax 22.. Fmax('12') - B('12')*(theta('n3')-theta('n1')) =1= M0*(1-u rho max('12'));
 comp fmax 23.. Fmax('13') - B('13')*(theta('n2')-theta('n3')) =1= M0*(1-u rho max('13'));
 comp fmin 1(1).. rho min(1) =1= M0*u rho min(1);
 comp fmin 21.. Fmax('11') + B('11')*(theta('n1')-theta('n2')) = l= M0*(1-u rho min('11'));
 comp fmin 22.. Fmax('12') + B('12')*(theta('n3')-theta('n1')) =1= M0*(1-u rho min('12'));
 comp fmin 23.. Fmax('13') + B('13')*(theta('n2')-theta('n3')) =1= M0*(1-u rho min('13'));
 model market / all /;
 solve market using mip minimizing cost;
 display
 cost.1, P.1, offer.1, lambda.1;
```

Results: Market Clearing (Perfect Competition)

Cost = 633.4 \$
Profit $(g1) = 8.9$ \$

Bus	Capacity	Production	Demand
#	(MW)	$\cos t (\$/MWh)$	(MW)
1	20	16	5
2	10	19	20
3	25	15	15

Line #	From	То	Susceptance (S)	Capacity (MW)
1	1	2	100	5
2	1	3	125	10
3	2	3	150	10

Results: Strategic Offering

Offer max =50
$$\#$$
MWh
Offer =50 $\#$ MWh
Profit (g1) = 170 $\#$

Bus	Capacity	Production	Demand
#	(MW)	$\cos t (\$/MWh)$	(MW)
1	20	16	5
2	10	19	20
3	25	15	15

Line	From	т-	Susceptance	Capacity
#	From	10	(S)	(MW)
1	1	2	100	5
2	1	3	125	10
3	2	3	150	10

Results: Strategic Offering

Offer max =20 \$/MWh
Offer = 19 \$/MWh
Profit $(g1) = 35.6$ \$

Bus	Capacity	Production	Demand
#	(MW)	$\cos t (\$/MWh)$	(MW)
1	20	16	5
2	10	19	20
3	25	15	15

Line #	From	То	Susceptance (S)	Capacity (MW)
1	1	2	100	5
2	1	3	125	10
3	2	3	150	10

Introducing uncertainty...

Question: is it realistic to assume all parameters perfectly know? What are the sources of uncertainty?

Bus	Capacity	Production	Demand
#	(MW)	$\cos t (\$/MWh)$	(MW)
1	20	16	5
2	10	19	20
3	25	15	15

Line	From	То	Susceptance	Capacity
#			(S)	(MW)
1	1	2	100	5
2	1	3	125	10
3	2	3	150	10

Introducing uncertainty...

Question: is it realistic to assume all parameters perfectly know? What are the sources of uncertainty?

Demand?

Bus	Capacity	Production	Demand
#	(MW)	$\cos t (\$/MWh)$	(MW)
1	20	16	5
2	10	19	20
3	25	15	15

Line #	From	То	Susceptance (S)	Capacity (MW)
1	1	2	100	5
2	1	3	125	10
3	2	3	150	10

Stochastic Programming (reminder)

Strategic producer:

- considers each supply curve, demand, wind power available, as a potential "scenario" in the day-ahead market,
- evaluate market ouotcomes under every scenario
- determine strategic offering according to all scenarios (in expectation)

Stochastic MPEC

Upper-level: strategic producer

Maximize profit

Subject to:

Lower-level: market clearing

Maximize social welfare

Subject to:

- Balance equations at nodes
- Transmission constraints
- Production bounds

Stochastic MPEC

Upper-level: strategic producer

Maximize Expected profit

Subject to:

market clearing (scenario 1)

Maximize social welfare **Subject to:**

- Balance equations at nodes
- Transmission constraints
- Production bounds

market clearing (scenario N)

Maximize social welfare

Subject to:

- Balance equations at nodes
- Transmission constraints
- Production bounds

Stochastic MPEC

Upper-level: strategic producer

Maximize Expected profit

Subject to:

market clearing (scenario 1)

KKT conditions

market clearing (scenario N)

KKT conditions

Numerical Example 2

Bus	Capacity	Production	Demand
#	(MW)	$\cos t (\$/MWh)$	(MW)
1	20	16	5
2	10	19	20
3	25	15	15

Line	From	То	Susceptance	Capacity
#		10	(S)	(MW)
1	1	2	100	5
2	1	3	125	10
3	2	3	150	10

Exercise: Consider now d_3 as uncertain. Consider the 4 scenarios for d_3 (5,10,15,30) and modify your GAMS code to solve a stochastic MPEC