Recommender Systems

Boston University CS506 - Lance Galletti

Given

- Users: **U**₁, ... , **U**_n
- Movies: M₁, ..., M_m
- Ratings: R_{ij}

Goal: Recommend movies to users

Challenges:

- Scale (millions of users, millions of movies)
- Cold Start (change in user base, change in content)
- Sparse Data (Not many users rank movies)

	M ₁	M ₂	M ₃	M ₄
U ₁	R ₁₁	R ₁₂	R ₁₃	R ₁₄
U ₂	R ₂₁	R ₂₂	R ₂₃	R ₂₄
U ₃	R ₃₁	R ₃₂	R ₃₃	R ₃₄

Use Rating prediction as proxy for recommendation!

	M ₁	M ₂	M ₃	M ₄
U ₁	5	?	0	0
U ₂	?	4	0	0
U ₃	0	?	4	?

	M ₁	M ₂	M_3	M ₄
U ₁	5	5	0	0
U ₂	5	4	0	0
U ₃	0	0	4	5

Neighborhood Methods

- (user, user) similarity measure
 - i.e. recommend same movies to similar users (requires info about users)
- (item, item) similarity measure
 - i.e. recommend movies that are similar (requires info about movies)

Pros:

- Intuitive / easy to explain
- No training
- Handles new users/items

Challenges:

- Users rate differently (bias)
- Ratings change over time (bias)

Realistically:

- It's difficult to characterize movies and users with the right features
- Characterization of users and movies may not be accurate
 - o If you are using genres for example, movies with varying degree of "comedy" will get the tag "comedy".

Goal:

Discover the best features in an automated way

Content-Based: assume you have features for movies - want to learn features for users

Collaborative filtering: want to learn features for both users and movies

Suppose we have a set of features that characterizes each movie (ex: category, genre...), we could obtain the following **feature-to-movie** similarity matrix:

	M ₁	M_2	M ₃	M ₄
F ₁ (Romance)	.9	1	.1	0
F ₂ (Action)	0	.01	1	.9

Given this **feature-to-movie** similarity matrix, how can we predict rating for User 2 or Movie 1 (i.e. R_{12})?

If we had a **user-to-feature** similarity matrix, we could multiply:

user-to-feature x feature-to-movie = user-to-movie = R_{ij}

	F ₁ (Romance)	F ₂ (Action)
U ₁	5	0
U ₂	5	0
U ₃	0	5

	M ₁	$\mathbf{M_2}$	M ₃	M_4
F ₁ (Romance)	.9	1	.1	0
F ₂ (Action)	0	.01	1	.9

$$P^{(2)} = \begin{bmatrix} 5 \\ 0 \end{bmatrix} \qquad R_{21} = P^{(2)T} \cdot Q^{(1)}$$

$$Q^{(1)} = \begin{bmatrix} .9 \\ 0 \end{bmatrix} \qquad = \begin{bmatrix} 5 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} .9 \\ 0 \end{bmatrix}$$

$$= 4.5$$

But, how to we find $p^{(1)}$, ..., $p^{(n)}$?

$$P^{(j)} = \underset{P}{\operatorname{arg\,min}} \frac{1}{\|M^{(j)}\|} \sum_{i \in M^{(j)}} (P^T Q^{(i)} - r_{ij})^2 + \lambda \|p\|^2$$

Regularization Term: a penalty on the size of the parameter p

Feature Extraction - Collaborative Filtering

Challenge with content-based:

How to get the right features $f_1, ..., f_k$ and $p^{(1)}, ..., p^{(n)}$?

Can we learn these features?

$$R = PQ$$

Feature Extraction - Collaborative Filtering

Can't use SVD because R is sparse... BUT, we can formulate an optimization problem to solve:

$$\min_{p,q} \sum_{i,j \in R} (r_{ij} - p_i^T q_j)^2 + \lambda(\|p\|_F^2 \|p\|_F^2)$$

To solve, take derivatives wrt P & Q. Then, just like Expectation-Maximization Algorithm from GMM:

- 1. Start with random Q
- 2. Get P
- 3. Improve Q
- 4. Repeat 2 & 3