Bipolar Junction Transistor (BJT)

Lecture notes: Sec. 3

Sedra & Smith (6th Ed): Sec. 6.1-6.4*

Sedra & Smith (5th Ed): Sec. 5.1-5.4*

^{*} Includes details of BJT device operation which is not covered in this course

A BJT consists of three regions

NPN transistor

Simplified physical structure

➤ Device is constructed such that BJT does NOT act as two diodes back to back (when voltages are applied to all three terminals).

An implementation on an IC

- ➤ Device construction is NOT symmetric
 - o "Thin" base region (between E & C)
 - Heavily doped emitter
 - Large area collector

BJT iv characteristics includes four parameters

NPN transistor

Circuit symbol and
Convention for current directions

(Note:
$$v_{CE} = v_C - v_E$$
)

- \blacktriangleright Six circuit variables: (3 i and 3 v)
- Two can be written in terms of the other four:

 $KCL: i_E = i_C + i_B$

 $KVL: v_{BC} = v_{BE} - v_{CE}$

- ightharpoonup BJT iv characteristics is the relationship among (i_B , i_C , v_{BE} , and v_{CE})
- ➤ It is typically derived as

$$i_B = f(v_{BE})$$

$$i_C = g(i_B, v_{CE})$$

BJT operation in the "active" mode

Active mode:

$$i_{B} = \frac{i_{C}}{\beta} = \frac{I_{S}}{\beta} e^{v_{BE}/V_{T}}$$

$$i_{C} = I_{S} e^{v_{BE}/V_{T}}$$

$$v_{CE} \ge V_{D0}$$

As Emitter is heavily doped, a large number of electrons diffuse into the base (only a small fraction combine with holes)

The number of these electrons scales as e^{v_{BE}/V_T}

> If the base is "thin" these electrons get near the depletion region of BC junction and are swept into the collector if $v_{CB} \ge 0$ ($v_{BC} \le 0$: BC junction is reverse biased!)

$$i_C = I_S e^{v_{BE}/V_T}$$

ightharpoonup In this picture, i_c is independent of v_{BC} (and v_{CE}) as long as

$$\begin{aligned} v_{BC} &= v_{BE} - v_{CE} = V_{D0} - v_{CE} \le 0 \\ v_{CE} &\ge V_{D0} \end{aligned}$$

ightharpoonup Base current is also proportional to e^{v_{BE}/V_T} and therefore, $i_C:i_B=i_C/eta$

BJT operation in saturation mode

"Deep" Saturation mode:

$$i_{B} = \frac{I_{S}}{\beta} e^{v_{BE}/V_{T}}$$

$$i_{C} < \beta i_{B}$$

$$v_{CE} \approx V_{sat}$$

Similar to the active mode, a large number of electrons diffuse into the base.

- ightharpoonup For $v_{BC} \ge 0$ BC junction is forward biased and a diffusion current will set up, reducing i_C .
- 1. Soft saturation: $v_{CE} \ge 0.3 \text{ V (Si)*}$ $v_{BC} \le 0.4 \text{ V (Si)}$, diffusion current is small and i_C is very close to its active-mode level.
- 2. Deep saturation region: $0.1 < v_{CE} < 0.3 \text{ V (Si)}$ or $v_{CE} \approx 0.2 \text{ V} = V_{sat}$ (Si), i_C is smaller than its active-mode level $(i_C < \beta \ i_B)$.
 - o Called saturation as i_C is set by outside circuit & does not respond to changes in i_B .
- 3. Near cut-off: $v_{CE} \le 0.1 \text{ V (Si)}$ Both i_C & i_B are close to zero.

^{*} Sedra & Smith includes this in the active region, i.e., BJT is in active mode as long as $v_{CE} \ge 0.3$ V.

BJT iv characteristics includes four parameters

NPN transistor

Simplified physical structure

Circuit symbol and Convention for current directions

(Note: $v_{CE} = v_C - v_E$)

- > BJT iv characteristics is the relationship among (i_B , i_C , v_{BE} , and v_{CE})
- ➤ It is typically derived as

$$i_B = f(v_{BE})$$

$$i_C = g(i_B, v_{CE})$$

BJT iv characteristics:

$$i_B = f(v_{BE}) \& i_C = g(i_B, v_{CE})$$

Saturation:

BE is forward biased, BC is forward biased

- 1. Soft saturation: $0.3 \le v_{CE} \le 0.7 \text{ V}, \quad i_C \approx \beta i_B$
- 2. Deep saturation: $0.1 \le v_{CE} \le 0.3 \text{ V}, \quad i_C < \beta i_B$
- 3. Near cut-off: $v_{CE} \le 0.1 \, \text{V}, \quad i_C \approx 0$

Active:

BE is forward biased BC is reverse biased

$$i_C = \beta i_B$$

F. Najmabadi, ECE65, Winter 2012

Early Effect modifies iv characteristics in the active mode

- $\blacktriangleright i_{C}$ is NOT constant in the active region.
- **Early Effect:** Lines of i_C vs v_{CE} for different i_B (or v_{BE}) coincide at $v_{CE} = -V_A$

$$i_C = I_S e^{v_{BE}/V_T} \left(1 + \frac{v_{CE}}{V_A} \right)$$

NPN BJT iv equations

"Linear" model

Cut-off:

BE is reverse biased

$$i_B = 0, \quad i_C = 0$$

$$i_B = 0, \quad i_C = 0$$
$$v_{BF} < V_{D0}$$

Active:

BE is forward biased BC is reverse biased

$$i_{B} = \frac{i_{C}}{\beta} = \frac{I_{S}}{\beta} e^{v_{BE}/V_{T}}$$

$$i_{B} = \frac{i_{C}}{\beta} = \frac{I_{S}}{\beta} e^{v_{BE}/V_{T}}$$

$$v_{BE} = V_{D0}, \quad i_{B} \ge 0$$

$$i_{C} = I_{S} e^{v_{BE}/V_{T}} \left(1 + \frac{v_{CE}}{V_{A}} \right)$$

$$i_{C} = \beta i_{B}, \quad v_{CE} \ge V_{D0}$$

$$v_{BE} = V_{D0}, \quad i_B \ge 0$$
 $i_C = \beta i_B, \quad v_{CE} \ge V_{D0}$

(Deep) Saturation: BE is forward biased

BC is reverse biased

$$i_{B} = \frac{I_{S}}{\beta} e^{v_{BE}/V_{T}}$$

$$v_{CE} \approx V_{sat}, \quad i_C < \beta i_B$$

$$v_{BE} = V_{D0}, \quad i_B \ge 0$$
 $v_{CE} = V_{sat}, \quad i_C < \beta i_B$

For Si,
$$V_{D0} = 0.7 \text{ V}$$
, $V_{sat} = 0.2 \text{ V}$

PNP transistor is the analog to NPN BJT

PNP transistor

Compared to a NPN:

- 1) Current directions are reversed
- 2) Voltage subscripts "switched"

"Linear" model

Cut-off:

EB is reverse biased

$$i_B = 0, \quad i_C = 0$$
$$v_{EB} < V_{D0}$$

Active:

EB is forward biased CB is reverse biased

$$\begin{aligned} v_{EB} &= V_{D0}, & i_B \ge 0 \\ i_C &= \beta i_B, & v_{EC} \ge V_{D0} \end{aligned}$$

(Deep) Saturation: EB is forward biased CB is reverse biased

$$v_{EB} = V_{D0}, \quad i_B \ge 0$$

 $v_{EC} = V_{sat}, \quad i_C < \beta i_B$

Notations

Transistor operates like a "valve:" i_C & v_{CE} are controlled by i_B

Controlled part:

 $i_{C} \& v_{CE}$ are set by transistor state (& outside circuit)

Controller part:

Circuit connected to BE sets i_{B}

- \blacktriangleright Cut-off ($i_B=0$): Valve Closed $i_C=0$
- **>** Active $(i_B > 0)$: Valve partially open $i_C = \beta i_B$
- > Saturation $(i_B>0)$: Valve open $i_C<\beta\,i_B \\ i_C\, \mbox{limited by circuit connected} \\ \mbox{to CE terminals, increasing } i_B \\ \mbox{does not increase } i_C$

Recipe for solving BJT circuits

(State of BJT is unknown before solving the circuit)

- 1. Write down BE-KVL and CE-KVL:
- 2. Assume BJT is OFF, Use BE-KVL to check:
 - a. BJT OFF: Set i_C = 0, use CE-KVL to find v_{CE} (Done!)
 - b. BJT ON: Compute i_B
- 3. Assume BJT in active. Set i_C = $\beta \, i_B$. Use CE-KVL to find v_{CE} . If $v_{CE} \geq V_{D0}$, Assumption Correct, otherwise in saturation:
- 4. BJT in Saturation. Set v_{CE} = V_{sat} . Use CE-KVL to find i_C . (Double-check $i_C < \beta i_B$)

NOTE:

 \circ For circuits with R_E , both BE-KVL & CE-KVL have to be solved simultaneously.

Example 1: Compute transistor parameters (Si BJT with $\beta = 100$).

BE-KVL: $4 = 40 \times 10^3 i_B + v_{BE}$

CE - KVL: $12 = 10^3 i_C + v_{CE}$

Assume Cut - off: $i_B = 0$ and $v_{BE} < V_{D0} = 0.7 \text{ V}$

BE-KVL: $4 = 40 \times 10^3 \times 0 + v_{BE} \rightarrow v_{BE} = 4 \text{ V}$

 $v_{BE} = 4 \text{ V} > V_{D0} = 0.7 \text{ V} \rightarrow \text{Assumption incorrect}$

BE-KVL:
$$4 = 40 \times 10^3 \times i_B + 0.7 \rightarrow i_B = 8.25 \ \mu \text{ A} > 0$$

Assume Active: $i_C = \beta i_B$ and $v_{CE} \ge V_{D0} = 0.7 \text{ V}$

$$i_C = \beta i_B = 100 \times 8.25 \times 10^{-6} = 8.25 \text{ mA}$$

CE - KVL:
$$12 = 10^3 \times 8.25 \times 10^{-3} + v_{CE} \rightarrow v_{CE} = 3.75 \text{ V}$$

 $v_{CE} = 3.75 \text{ V} > V_{D0} = 0.7 \text{ V} \rightarrow \text{Assumption correct}$

BJT Transfer Function (1)

BE-KVL: $v_i = R_B i_B + v_{BE}$

CE - KVL: $V_{CC} = R_C i_C + v_{CE}$

Cut - off: $i_B = 0$ and $v_{BE} < V_{D0}$

BE-KVL: $v_i = R_B \times 0 + v_{BE} \rightarrow v_{BE} = v_i$

 $i_C = 0$

CE - KVL:
$$V_{CC} = R_C \times 0 + v_{CE} \rightarrow v_{CE} = V_{CC}$$

For $v_i < V_{D0} \rightarrow BJT$ in Cutoff $i_B = 0$, $i_C = 0$, $v_{CE} = V_{CC}$

BEON:
$$v_{BE} = V_{D0}$$
 and $i_B \ge 0$

BE-KVL:
$$v_i = R_B \times i_B + V_{D0} \rightarrow i_B = \frac{v_i - V_{D0}}{R_B}$$

$$i_B \ge 0 \rightarrow v_i \ge V_{D0}$$

BJT Transfer Function (2)

BEON:
$$v_{BE} = V_{D0}$$
 and $i_B = \frac{v_i - V_{D0}}{R_B}$

CE - KVL:
$$V_{CC} = R_C i_C + v_{CE}$$

Active:
$$i_c = \beta i_B$$
 and $v_{CE} \ge V_{D0}$

$$i_C = \beta \times \frac{v_i - V_{D0}}{R_B}$$

CE-KVL:
$$V_{CC} = R_C i_C + v_{CE} \rightarrow v_{CE} = V_{CC} - R_C i_C$$

$$v_{CE} \ge V_{D0} \rightarrow v_i \le V_{D0} + \frac{V_{CC} - V_{D0}}{\beta R_C / R_B}$$

For
$$V_{D0} \le v_i \le V_{D0} + \frac{V_{CC} - V_{D0}}{\beta R_C / R_B} \rightarrow BJT$$
 in active

BJT Transfer Function (3)

BEON:
$$v_{BE} = V_{D0}$$
 and $i_B = \frac{v_i - V_{D0}}{R_B}$

CE - KVL:
$$V_{CC} = R_C i_C + v_{CE}$$

Saturaation:
$$v_{CE} = V_{sat}$$
 and $i_c < \beta i_B$

CE-KVL:
$$V_{CC} = R_C i_C + V_{sat} \rightarrow i_C = \frac{V_{CC} - V_{sat}}{R_C}$$

$$i_c < \beta i_B \rightarrow v_i > V_{IH} = V_{D0} + \frac{V_{CC} - V_{sat}}{\beta R_C / R_B}$$

For
$$V_{D0} + \frac{V_{CC} - V_{D0}}{\beta R_C / R_B} < v_i \rightarrow BJT$$
 in saturation

BJT Transfer Function (4)

$$\begin{aligned} v_i < V_{D0} & \rightarrow \text{BJT in Cutoff} \\ V_{D0} \leq v_i \leq V_{D0} + \frac{V_{CC} - V_{D0}}{\beta R_C / R_B} & \rightarrow \text{BJT in active} \\ V_{D0} + \frac{V_{CC} - V_{sat}}{\beta R_C / R_B} < v_i & \rightarrow \text{BJT in deep saturation} \end{aligned}$$

BJT transfer function on the load line

BJT as a switch

- Use: Logic gate can turn loads ON (BJT in saturation) or OFF (BJT in cut-off)
- $\succ~i_c$ is uniquely set by CE circuit (as v_{ce} = V_{sat})
- $ightharpoonup R_B$ is chosen such that BJT is in deep saturation with a wide margin (e.g., i_B = $0.2~i_c$ / β)

BJT as a Digital Gate

Resistor-Transistor logic (RTL)

- Other variants: Diode-transistor logic (DTL) and transistor-transistor logic (TTL)
- ➤ BJT logic gates are not used anymore except for high-speed emitter-coupled logic circuits
 - Low speed (switching to saturation is quite slow).
 - Large space and power requirements on ICs

BJT β varies substantially

- ightharpoonup Our BJT model includes three parameters: V_{D0} , V_{sat} and eta
 - $\circ V_{D0}$ and V_{sat} depend on base semiconductor:
 - o For Si, V_{D0} = 0.7 V, V_{sat} = 0.2 V
- \triangleright Transistor β depends on many factors:
 - Strongly depends on temperature (9% increase per °C)
 - \circ Depends on i_C (not constant as assumed in the model)
 - o β of similarly manufactured BJT can vary (manufacturer spec sheet typically gives a range as well as an average value for β)
 - \circ We will use the average β in calculations (PSpice also uses average β but includes temperature and i_C dependence).
 - o β_{min} is an important parameter. For example, to ensure operation in deep saturation for all similar model BJTs, we need to set i_C / i_B < β_{min}