

Team Name **VERTEX**

Track:

CYBER
SECURITY

Ankit Satpute
Arshdeep Kaur
Reniyas Nadar
Rohan Benegal
Vashni Nadar

Cybersecurity Challenges

Increasing sophistication and frequency of cyberattacks

Manual detection and response methods are slow, inefficient, and reactive.

High false positives from traditional systems reduce productivity and accuracy

Objective

To build an interactive platform integrating real-time pollution maps, educational resources, and eco-friendly initiatives to address water pollution and promote sustainable practices.

Solution/Approach Details

Key Features of the Solution

Honeypot Integration:
Deploy fake systems to detect
attacker behavior and prevent real
asset compromise.

Threat Intelligence Integration*:
Use real-time threat intelligence
feeds (e.g., VirusTotal) to stay
updated with emerging attack vectors

Behavioral Anomaly Detection:
Detect insider threats and
compromised accounts using MLbased user behavior analysis.

System Workflow

Data Collection:
Collect logs from network traffic,
user behavior, and endpoints.

Preprocessing:
Filter, normalize, and extract
key data (e.g., IPs, login patterns)

Detection:
Combine rule-based detection
(Snort) with anomaly detection
(ML models)

Automated Response:
Notify admins, block malicious
IPs, and isolate affected systems

Reporting:
Generate real-time dashboards
and forensic reports for incident
analysis and compliance

Attack Type

A phishing email tricking a user into revealing credentials.

Detection

- Honeypot detects the attacker attempting to access decoy systems.
 - Behavioral anomaly detection flags unusual login locations and times.

Response

- System blocks attacker IP and alerts the admin in real time.
- Automatically isolates the affected system to prevent lateral movement.

Industries Applicable

Banking, Healthcare, E-commerce, and IoT ecosystems.

Feasibility and Viability

Feasibility

Technology Used:

- -Tools: Snort, Suricata, and ELK Stack.
 -Programming: Python for automation, TensorFlow for ML models.
- -Threat Intelligence: VirusTotal APIs for signature updates.

Deployment Options:

- Scalable for on-premise or cloud environments.
- Testable with simulated attacks (e.g., using Metasploit).

Viability

Cost Efficiency:

- Reduced need for manual intervention lowers operational costs.

Business Impact:

- Minimizes downtime and data loss during attacks.
- Ensures compliance with regulations like GDPR and ISO 27001.

Tech Stack

Programming Languages

Python (for automation), Java (backend development).

Detection Tools

Snort, Suricata.

Machine Learning Frameworks

TensorFlow, Scikit-learn.

Threat Intelligence

VirusTotal, AlienVault APIs.

Reporting

Kibana, Grafana dashboards.

Database

MongoDB or PostgreSQL for incident logging.

Public Datasets:

- NSL-KDD, CICIDS for ML model training.

Open-Source Tools:

- Snort, Wireshark, and the ELK Stack.

Documentation:

-Official resources for VirusTotal, TensorFlow, and Kibana.

Attack Simulation Tools:

- Metasploit Framework for controlled testing of the solution.