DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

Šetnje u grafu

Povezna graf

Reprezentacija grafa

Tema 1

Šetnje u grafu

Definicija

 \bullet Šetnja: $v_0v_1\ldots v_n$ ($v_0e_1v_1e_2\ldots e_nv_n$)

2 Staza: $e_i \neq e_j$, $i \neq j$

3 Put: $v_i \neq v_j$, $i \neq j$ (osim eventualno $v_0 = v_n$)

4 *Kontura:* $v_0 = v_n$

šetnja: abcfbad staza: abcfbed

zatvorena staza: abcfbeda

put: abed

kontura: abeda

Teorema

Ako u grafu postoji uv-šetnja (staza), onda postoji i uv-put.

Tema 2

Povezan graf

Povezanost

Definicija

Kažemo da su u i v povezani ako postoji uv-put u G.

Kažemo da je graf G povezan akko za svako $u,v\in V(G)$ važi da su u i v povezani.

Lema

Relacija "je povezan sa" je relacija ekvivalencije na skupu čvorova grafa.

Broj komponenti povezanosti grafa G, u oznaci $\omega(G)$, jednak je broju klasa ekvivalencije u odnosu na relaciju povezanosti.

Lemma

G je povezan akko $\omega(G)=1$.

Teorema

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Dokaz: (indukcijom po n)

Teorema

Neka je G povezan i neka je C kontura u G. Ako je e grana konture, onda je G-e povezan.

Dokaz:

Definition

Neka je G povezan graf. Rastojanje d(u,v), između čvorova u i v je dužina najkraćeg puta od u do v.

- $d(u, v) \ge 0$
- d(u,v) = 0 akko u = v
- d(u,v) = d(v,u)
- $d(u,v) + d(v,w) \ge d(u,w)$

Tema 3

Reprezentacija grafa

Reprezentacija grafa

Neka je G = (V, E) prost graf i m = |V|. Matrica susedstva $A(G) = [a_{ij}]_{m \times m}$

$$a_{ij} = \begin{cases} 1 & , ij \in E \\ 0 & , ij \notin E \end{cases}$$

Neka je $G=(V,E,\psi),\, m=|V|$ i |E|=n. Matrica incidencije $M(G)=[a_{ie}]_{m\times n}$

$$a_{ie} = \left\{ \begin{array}{ll} 1 & \text{, \'cvor } i \text{ je incidentan sa granom } e \\ 0 & \text{, \'cvor } i \text{ nije incidentan sa granom } e \end{array} \right.$$

Theorem

Neka je G=(V,E) prost graf, gde je $V=\{1,\ldots,n\},\, n\geq 1,\, i$ neka je A matrica susedstva grafa G. Element a_{ij} u matrici $A^k,\, k\geq 1,\, j$ ednak je broju različitih ij-šetnji dužine k u tom grafu.

Proof.

(matematičkom indukcijom po k)

$$k = 1$$
:

 $T_{k-1}\Rightarrow T_k:$ Označimo sa $a_{ij}^{(k)}$ elemente matrice $A^k.$ Kako je $A^k=A\cdot A^{k-1},$ onda važi

$$a_{ij}^{(k)} = a_{i1}a_{1j}^{(k-1)} + a_{i2}a_{2j}^{(k-1)} + \ldots + a_{in}a_{nj}^{(k-1)}$$
(1)

Prema induktivnoj pretpostavci, $a_{lj}^{(k-1)}$ je jednak broju šetnji dužine k-1 od čvora k do čvora j $(l \in \{1, \ldots, n\})$.

Zadatak

Koliko ima šetnji dužine 3 od a do d u grafu:

Matrice $A, A^2 A^3$ su:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 4 & 5 & 3 \\ 0 & 0 & 0 & 5 & 7 & 5 \\ 0 & 0 & 0 & 3 & 5 & 4 \\ 4 & 5 & 3 & 0 & 0 & 0 \\ 5 & 7 & 5 & 0 & 0 & 0 \\ 3 & 5 & 4 & 0 & 0 & 0 \end{bmatrix}$$

Znači, postoje tačno 4 šetnje dužine 3 od čvora a do čvora d:

adbd, adad, aebd, aead

Posledica

Neka je $G=(V,E),\,|V|=n,$ prost graf sa matricom susedstva A. Tada je G povezan akko $\sum\limits_{k=0}^{n-1}A^k$ ima samo ne nula elemente.

Posledica

$$d(v_i, v_j) = \min\{k \ge 0 : a_{ij}^{(k)} \ne 0\}.$$