Санкт-Петербургский политехнический университет Петра Великого Институт компьютерный наук и технологий Высшая школа программной инженерии

ОТЧЁТ

Применение нейронных сетей для оценки трафика магазина по научно-исследовательской работе

Выполнила

Студентка гр. 3530904/90102

Au Uyza

Ли Ицзя

Руководитель

A

Малеев О. Г.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Высшая школа программной инженерии

ИНДИВИДУАЛЬНЫЙ ПЛАН (ЗАДАНИЕ И ГРАФИК) ПРОВЕДЕНИЯ ПРАКТИКИ

Ли Ицзя							
Направление подготовки (код/наименование) 09.03.04 «Программная инженерия»							
Профиль (код/наименование) 09.03.04_01 «Технология разработки и сопровождения качественного программного продукта»							
Вид практики: научно-исследовательская работа							
Тип практики: распределенная							
Место прохождения практики ФГАОУ ВО «СПбПУ», ИКНТ, ВШПИ, СПб, ул.Политехническая,							
29							
Руководитель практической подготовки от ФГАОУ ВО «СПбПУ»:							
	Малее	в Олег Геннадьевич, к.т.н, доцент ВШПИ ИКНТ					
		(Ф.И.О., уч.степень, должность)					
_							
Руков	водитель практическог	й подготовки от профильной организации: -					
Рабочий график проведения практики Сроки практики: с 02.02.23 по 14.04.23							
№ п/п	Этапы (периоды) практики	Вид работ	Сроки прохождения этапа (периода) практики				
1	Организационный этап	Установочная лекция для разъяснения целей, задач, содержания и порядка прохождения практики, инструктаж по технике безопасности, выдача сопроводительных документов по практике	02.02				
2	Основной этап	Применение нейронных сетей для оценки трафика магазина	03.02-13.04				
3	Заключительный этап	Защита отчета по практике	14.04				
Обучающийся							
	одитель практической АОУ ВО «СПбПУ»	/ Малеев С	Ο. Γ. /				

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ПЕТРА ВЕЛИКОГО»

Институт компьютерных наук и технологий Высшая школа программной инженерии

Отчет о прохождении научно-исследовательской работы				
Ли Ицзя				
4 курс, 3530904/90102				
09.03.04 «Программная инженерия»				
Место прохождения практики: ФГАОУ ВО «СПбПУ», ИКНТ, ВШПИ,				
СПб, ул.Политехническая, 29				
Сроки практики: 02.02.23-14.04.23				
Руководитель практической подготовки от ФГАОУ ВО «СПбПУ»:				
Малеев Олег Геннадьевич, к.т.н, доцент ВШПИ ИКНТ				
Руководитель практической подготовки от профильной организации: -				
Оценка: зачтено				
Руководитель практической подготовки от ФГАОУ ВО «СПбПУ»: / Малеев О. Г. /				
Руководитель практической подготовки				
от профильной организации:				
Обучающийся: / Ли Ицзя /				

Дата: 14.04.23

Оглавление

Постановка задачи	5
Обоснование актуальности работы	5
Обзор литературы/существующих решений	6
Обоснование выбора технологий и средств разработки	7
Обоснование архитектурных решений	8
Список Литературы	9

Постановка задачи

Задача: Разработка метода использования алгоритма YOLO[1] и библиотеки OpenCV для нейронных сетей для автоматического учета посещаемости магазинов.

Цель: Исследование возможности использования алгоритма YOLO и библиотеки OpenCV для обработки видео и изображений из камер видеонаблюдения магазинов, с целью повышения точности и скорости сбора данных о посещениях магазинов и снижения затрат на их сбор.

Методы: Использование алгоритма YOLO и библиотеки OpenCV для обработки видео и изображений с камер видеонаблюдения магазинов, обучение модели на основе данных о посещении магазинов, оценка точности модели и анализ результатов.

Результаты: Разработанный метод должен показать высокую точность учета посещаем посещаемости магазинов, используя алгоритм YOLO и библиотеку OpenCV для обработки изображений с камер видеонаблюдения, а также снижение затрат на сбор данных по сравнению с традиционными методами.

Обоснование актуальности работы

Обоснование актуальности работы по учёту посещаемости магазинов методом нейронных сетей заключается в том, что этот метод предоставляет возможность автоматического и точного определения количества посетителей в магазине.

Нейронные сети могут быть обучены на основе изображений из видеонаблюдения, что позволяет исключить человеческий фактор и снизить вероятность ошибки.[2] Кроме того, этот метод может быть использован для анализа данных о посещаемости магазина и получения информации о поведении посетителей, что поможет в планировании и улучшении работы магазина.

Использование нейронных сетей для учета посещаемости магазинов является актуальным и научно-исследовательская работа в этой облас е может привести к разработке более точных и эффективных методов учета посещаемости магазинов, а также к созданию инструментов для анализа данных и повышения эффективности работы магазинов.[3] Кроме того, использование нейронных сетей для учета посещаемости магазинов может быть применено в других отраслях, таких как торговля, туризм, реклама и маркетинг, где необходимо иметь информацию о поведении людей в реальном времени. В целом, разработка и исследование методов учета посещаемости магазинов с использованием нейронных сетей является актуальным и важным направлением в науке и технологии.

Обзор литературы/существующих решений

В современном мире отчётность посещаемости магазинов является важным инструментом для оптимизации бизнес-процессов и увеличения прибыли. В последнее время нейронные сети стали популярным методом для решения этой задачи. В этом обзоре мы рассмотрим существующие решения для отчётности посещаемости магазинов с использованием нейронных сетей и YOLO (You Only Look Once) - одной из самых популярных нейронных сетей для обнаружения объектов.

В научно-исследовательской работе "Real-time pedestrian detection method based on improved YOLOv3" (2020)[4] авторы предлагают метод для реалтайм отслеживания и счёта людей в магазине с использованием YOLOv3 и глубокого обучения. Данный метод показал высокую точность и быстрое время работы.

В работе "Multi Object Tracking with UAVs using Deep SORT and YOLOv3 RetinaNet Detection Framework" (2019)[5] авторы предлагают метод для отслеживания и счёта людей в группах и на мероприятиях с использованием YOLO и глубокого обучения. Данный метод также показал высокую точность и способен работать в условиях высокой плотности людей.

В работе "Moving Object Tracking Using Kalman Filter" (2018).[6] В этой статье представлена система обнаружения и отслеживания пешеходов в режиме реального времени, которая использует фильтр Калмана для отслеживания.

Все эти исследования показывают, что использование нейронных сетей и YOLO для отчётности посещаемости магазинов является эффективным и точным методом. Использование OpenCV в качестве интерфейса для ввода и зображения с камеры может улучшить производительность и надежность системы. Тем не менее, следует отметить, что все данные исследования использовали искусственные данные, и для полной оценки эффективности метода необходимо провести тестирование на реальных данных.

Также следует отметить, что использование YOLO и нейронных сетей для отчётности посещаемости магазинов может быть связано с некоторыми техническими трудностями, такими как необходимость обучения модели на большом количестве данных, а также сложности с настройкой и оптимизацией системы.

В литературе также можно найти другие методы для отчётности посещаемости магазинов, например, с использованием систем видеонаблюдения или смартфонов клиентов. Но использование нейронных сетей и YOLO показалось более эффективным и точным методом, способным обеспечить реал-тайм отслеживание и счёт людей в магазине.

Обоснование выбора технологий и средств разработки

Выбор технологии нейронных сетей для решения задачи отчёта учёта посещаемости магазинов обоснован тем, что нейронные сети являются мощным инструментом для обработки изображений и видео, и имеют высокую точность в распознавании объектов.

Использование **алгоритма YOLO** для обнаружения людей в изображениях обосновано тем, что он показал высокую точность в распознавании объектов на изображениях и видео, а также способен ра ботать в реал-тайм режиме. Это обеспечивает быстрое и точное отслеживание людей в магазине, что необходимо для корректной отчётности посещаемости.

Использование **OpenCV** в качестве интерфейса для ввода изображения с камеры обосновано тем, что OpenCV является мощной библиотекой для работы с изображениями и видео, и имеет большое количество функций для работы с камерами, что позволяет легко интегрировать его с нейронной сетью и обеспечивает более высокую производительность системы.

Аппаратные среды, использованные для разработки, показаны в Таблице 1:

Таблица 1

Предмет	Технические характеристики	Комментарий
Чип	AMD Ryzen 5 5600H with Radeon Graphics 3.30 GHz	
Паияти	16.0 GB	ПО использует до 2.1 GB
Камер	1080P	720Р минимум
Операционная системы	Windows 10 Professional	

Программные среды, использованные в разработке, показаны а Таблице 2:

Таблица 2

Предмет	Версия	Комментарий
Python	3.6	Данная или выше
PyCharm	2022.1.2 (Educational Edition)	Данная или выше

OpenCV	4.5.3	Данная или выше
PyTorch	1.3.0	Данная или выше

Обоснование архитектурных решений

Данный дипломный проект посвящен разработке системы статистики и мониторинга посещаемости магазина.

Для контроля входа и выхода из торгового центра был использован алгоритм обнаружения пешеходов YOLO, который использует сверточную нейронную сеть (CNN) для определения местоположения каждого пешехода в торговом центре и выводит его вектор признаков. Для повышения точности и стабильности алгоритма также проводится предварительная обработка изображения, например, масштабирование, обрезка и нормализация.

Для извлечения знаков гостей мы можем использовать сверточную нейронную сеть (CNN) для кодирования изображения лица гостя и извлечения его личности. Кроме того, мы можем использовать рекуррентные модели нейронных сетей, такие как RNN или LSTM[7], для фиксации временной корреляции между последовательностями знаков.

После выхода гостя из магазина система должна идентифицировать гостя и указать время его выхода. Для этого используются алгоритм DeepSORT (Deep Learning for MOT with Improved Detection and Embedding)[8] для отслеживания каждого пешехода и технология ReID (Re-Identification) для повторной идентификации. Алгоритм DeepSORT использует рекуррентные модели нейронных сетей, такие как LSTM или GRU, для сбора соответствующей информации о временных рядах, а также может использовать различные размеры ядра свертки и функции цветового пространства для усиления эффекта трекера. Технология ReID[9] использует сверточную нейронную сеть (CNN) для кодирования характеристик каждого пешехода и использует меры подобия, такие как косинусное сходство, для идентификации нескольких личностей одного и того же пешехода. В этом процессе мы также можем использовать функции потерь, такие как Triplet Loss, для оптимизации модели, чтобы повысить точность и стабильность повторной идентификации.

Для реализации системы была выбрана платформа PyTorch[10] - открытая платформа машинного обучения, основанная на Python. Она обладает простотой использования, высокой скоростью вычислений, динамическим графиком вычислений, хорошей масштабируемостью и гибкостью. Использование передовых инструментов разработки, таких как PyTorch, позволяет реализовать точную, эффективную и масштабируемую систему

подсчета трафика магазина для обеспечения лучшего управления и обслуживания торговых центров.

В целом, методы и алгоритмы, применяемые в данном проекте, были выбраны на основе их применимости и эффективности в соответствующих областях. Интегрирование этих алгоритмов и архитектур с использованием передовых инструментов разработ.

Список Литературы

- [1] Redmon, Joseph, et al. "You only look once: Unified, real-time object detection." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.
- [2] Kai Kang, Wanli Ouyang, Hongsheng Li, Xiaogang Wang; Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 817-825
- [3] D. Huang, T. W. S. Chow and W. N. Chau, "Neural network based system for counting people," IEEE 2002 28th Annual Conference of the Industrial Electronics Society. IECON 02, Seville, Spain, 2002, pp. 2197-2201 vol.3, doi: 10.1109/IECON.2002.1185313.
- [4] Luo J, Wang Y, Wang Y. Real-time pedestrian detection method based on improved YOLOv3[C]//Journal of Physics: Conference Series. IOP Publishing, 2020, 1453(1): 012149.
- [5] Kapania S, Saini D, Goyal S, et al. Multi object tracking with UAVs using deep SORT and YOLOv3 RetinaNet detection framework[C]//Proceedings of the 1st ACM Workshop on Autonomous and Intelligent Mobile Systems. 2020: 1-6.
- [6] Patel H A, Thakore D G. Moving object tracking using kalman filter[J]. International Journal of Computer Science and Mobile Computing, 2013, 2(4): 326-332.
- [7] Alex Sherstinsky, "Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network" (2019)
- [8] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric[C]//2017 IEEE international conference on image processing (ICIP). IEEE, 2017: 3645-3649.
- [9] Zheng L, Yang Y, Hauptmann A G. Person re-identification: Past, present and future[J]. arXiv preprint arXiv:1610.02984, 2016.
- [10] Imambi, S., Prakash, K.B., Kanagachidambaresan, G.R. (2021). PyTorch. In: Prakash, K.B., Kanagachidambaresan, G.R. (eds) Programming with TensorFlow. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-57077-4_10