

HO CHI MINH CITY UNIVERSITY OF TECHNOLOGY INSTITUTE OF INTERNATIONAL EDUCATION

FINAL ASSIGNMENT REPORT

Major: < Information Technology >

Course code: < COS101 >

Course name: < Advanced Database >

Lecturer's name: TS.Nguyễn Thị Hải Bình

Student's name:

1.	Trần Hùng Cường	ID: 1811062399	Class: 18DTHQA1
2.	Lương Phúc Khang	ID: 1811061626	Class: 18DTHQA1
3.	Nguyễn Tiến Lợi	ID: 1811060466	Class: 18DTHQA1
4.	Vương Minh Khang	ID: 1811062453	Class: 18DTHQA1

Ho Chi Minh City

SOCIALIST REPUBLIC OF VIETNAM

Independence-Freedom-Happiness

COMMENTS OF THE LECTURER

Student's full name:
(1)Trần Hùng Cường ID: 1811062399
(2)Lurong Phúc Khang ID: 1811061626
(3)Nguyễn Tiến Lợi ID: 1811060466
(4)Vuong Minh Khang ID: 1811062453
Lecturer's comments:
HCMC, (date)

Please sign here

Lecturer's full name

I. Requirement summary

Fuctional requirement:

- Employee manager:
 - Employee: Employee ID, employee name, age, date of birth, address, phone number, email, position
 - Department: Department ID, department name, department head
 - Each employee will have to belong to a department
 - A department has many employees and has 1 room
- Materials management:
 - Materials: Material ID, material name, price of each piece, quantity in stock
 - Supply company: Company name, address, phone number, email
 - Materials are periodically imported by the supplier along with the supply record. Each supply record has information: Record ID, supply date, supply time, amount.
 - Each supply record comprises only one material and from a company.
- Production process:
 - Machine: Machine ID, machine name, import date, maintenance cycle
 - Workshop: Workshop ID, area
 - Product type: product type ID, product type name, original price, manufacture days and manufacture amount in that day
 - Place of distribution: Distributor ID, name, address, phone number of the place of distribution
 - Each type of finished product will be produced by the workshop in a certain quantity, with the date of production.
 - Each workshop will have one manager and each manager will manage only one workshop.
 - Each workshop manufactures many products type and each product only can be manufacture from one workshop.
 - Each machine will belong to a workshop
 - Each finished product is made from many machines and each machine produces only one type of finished product.
 - All kinds of finished products are delivered to the place of distribution on time with the specified quantity.

Non – Fuctional requirement

- -Notice of materials running out of stock
- -Notification of upcoming machine maintenance period
- -Management of imported materials for 10 years
- -Input data must be a positive integer
- -Code of raw materials, machinery, and labor must be a clear, logical sequence, easy to recognize
- -Bright friendly interface
- -Features work smoothly
- -Important features that are easy to interact with
- -Fast import and export data

II. Conceptual data model1. Identify entity sets

Entity set name	Attribute	Description
Department (strong	Department ID (PK)	Department ID (unique)
entity set)	Department Name	Department name
Employee (strong	Employee ID (PK)	Employee's ID (unique)
entity set)	Employee Name	Employee's name
	Title	Employee's title
	DOB	Employee's day of birth
	Email	Employee's email
	Address	Employee's address
	Phone_Number	Employee's phone number
Workshop (strong	Workshop_ID (PK)	Workshop ID (unique)
entity set)	Area	Workshop Area
Machine (strong	Machine_ID	Machine ID (unique)
entity set)	Machine_Name	Machine name
	Import_Date	Machine import date
Product Type	Product Type_ID (PK)	Product Type ID (unique)
(strong entity set)	Product Type Name	Product Type name
	Original price	Original price of the product
	Manufacture_Date	Manufacture date
	Manufacture_Amount	Manufacture amount
Place Of	Maintenance Period	Machine maintenance period
Distribution (strong	Distributor_Name	Distributor's name
entity set)	Distributor Address	Distributor's address
	Dis_PhoneNum	Distributor's phone number
Materials (strong	Materials_ID	Materials ID (unique)
entity set)	Materials_Name	Materials name
	Price Of Each Piece	Price of each piece materials
	Quantity In Stock	Quantity materials in stock
Supply Company	SCo_Name (PK)	Supply company name (unique)
(strong entity set)	SCo_Email	Supply company email
	SCo_Address	Supply company address
	SCo_PhoneNum	Supply company phone number
Supply Record	Record ID (PK)	Record ID (unique)
(strong entity set)	Supply Date	Supply date
	Supply_Time	Supply time
	Amount	Amount

2. Identify relationship sets and cardinality constraints

Relationship	Attribute	Description	Cardinality constraint
set name	/ tetribate	Description	caramanty constraint
Work on		Each employee will have to belong to a department. A department has many employees and has 1 room.	Department () Work on Employee
Working		Employees will work in one workshop. One workshop can be work by many employees/	Workshop +() Working Employee
Manage		Each workshop will have one manager and each manager will manage only one workshop.	Employee () Workshop
Manufacture		Each workshop manufactures many products type and each product only can be manufacture from one workshop.	Workshop Manufacture () Product Type
Contain		Each machine will belong to a workshop	Workshop (Ontain) Machine
Made		Each finished product is made from many machines and each machine produces only one type of finished product.	Product Type () Made Machine
Distribution	Amount Distributi on_Date	All kinds of finished products are delivered to the place of distribution on time with the specified quantity.	Place Of Distribution Product Type

Use	Machine use one type of materials. Materials be used by many machine	Materials () Machine
Comprise	Each supply record comprises only one material and from a company.	Materials Comprise Supply Record
Export	Each supply company can export one or many supply record and each supply record can be export from one company	Supply Company Export Supply Record

3. Entity relationship diagram

- III. Relational database design
- 1. ERD to relational schemas
- Convert entity sets
- Department (<u>Department ID</u>, Department Name)
 - + Convert from entity set Department with Department ID is Primary Key
- Employee (<u>Employee ID</u>, Phone Number, Employee Name, Address, Email, Title, DOB)
 - + Convert from entity set Employee with Employee ID is primary key
- Workshop (Workshop ID, Area)
 - + Convert from entity set Workshop with Workshop ID is primary key
- Machine (Machine ID, Machine Name, maintenance period, Import Date)
 - + Convert from entity set Machine with Machine ID is primary key
- Materials (<u>Materials ID</u>, Materials Name, Price Of Each Piece, Quantity In Stock)
 - + Convert from entity set Materials with Materials ID is primary key
- Supply Company (SCo Name, Sco Address, SCo Phone Number, SCo Email)
 - + Convert from entity set Supply Company with Sco_Name is primary key
- Product Type (<u>Product Type ID</u>, Product Type Name, Original price, Manufacture_Date, Manufacture_Amount)
 - + Convert from entity set Product Type whit Product Type ID is primary key
- Place Of Distribution (<u>Distributor ID</u>, Distributor Name, Distributor Address, Dis PhoneNum)
 - + Convert from entity set Place Of Distribution with Distributor ID is primary key
- Supply Record (Record ID, Supply_Time, Supply Date, Amount)
 - + Convert from entity set Supply Record with Record ID is primary key
- Convert relationship sets
- Convert Work on relationship set: Employee (Employee ID, Phone Number, Employee Name, Address, Email, Title, DOB, Department_ID(FK))
 + Relation ship set Work on is constraint many to one with one side is entity set Department and many side is entity set Employee. So we take primary key of one side (Department ID) and add it to many side become foreign
 - key of Employee table
- Convert Working relationship set: Employee (<u>Employee ID</u>, Phone Number, Employee Name, Address, Email, Title, DOB, Department_ID(FK), Workshop ID (FK))
 - + Relation ship set Working is constraint many to one with one side is entity set Work shop and many side is entity set Employee. So we take primary key of one side (Workshop ID) and add it to many side become foreign key of Employee table

- Convert Manage relationship set: Workshop (Workshop ID, Area, Manager ID(FK))
 - + Relation ship set Manage is constraint one to one. So we take primary key of a side and at it to another side, at here we choose (Employee ID) and add it to (Work shop) table become foreign key
- Convert Contain relationship set: Machine (<u>Machine ID</u>, Machine Name, maintenance period, Import Date, Workshop ID(FK))
 - + Relation ship set Contain is constraint many to one with one side is entity set Work shop and many side is entity set Machine. So we take primary key of one side (Workshop ID) and add it to many side made it become foreign key of Machine table
- Convert Use relationship set: Machine (Machine ID, Machine Name, maintenance period, Import Date, Workshop ID(FK), Materials ID(FK))
 + Relation ship set Use is constraint many to one with one side is entity set Materials and many side is entity set Machine. So we take primary key of one side (Materials ID) and add it to many side made it become foreign key of Machine table
- Convert Comprise relationship set: Supply Record (Record ID, Supply_Time, Supply Date, Amount, Materials ID(FK))
 + Relation ship set Comprise is constraint many to one with one side is
 - entity set Materials and many side is entity set Supply Record. So we take primary key of one side (Materials ID) and add it to many side made it become foreign key of Supply Record table
- Convert Export relationship set: Supply Record (Record ID, Supply_Time, Supply Date, Amount, Materials ID(FK), SCo_Name(FK))
 + Relation ship set Export is constraint many to one with one side is entity set Supply Company and many side is entity set Supply Record. So we take primary key of one side (SCo_Name) and add it to many side made it become foreign key of Supply Record table
- Convert Made relationship set: Machine (<u>Machine ID</u>, Machine Name, maintenance period, Import Date, Workshop ID(FK), Materials ID(FK), Product Type ID (FK))
 - + Relationship set Made is constraint many to one with one side is entity set Product Type and many side is entity set Machine. So we take primary key of one side (Product Type ID) and add it to many side made it become foreign key of Machine table
- Convert Manufacture relationship set: Product type (<u>Product Type ID</u>, Product_Type_Name, Original Price, Manufacture_Date, Manufacture _amount, Workshop ID(FK))
 - + Relationship set Manufacture is constraint many to one with one side is entity set Workshop and many side is entity set Product Type. So we take

- primary key of one side (Workshop ID) and add it to many side made it become foreign key of Product Type table
- Convert Distribution relationship set: Pro_Distribution (Distributor ID, Product Type ID, Dis_Amount, Dis_Date)
 - + Relationship set Distribution is constraint many to many so we split it to another table name (Pro_Distribution) in this table have primary key of two side table (Product Type ID, Distributor ID) and all attribute from relationship Distribution (Amount, Distribution Date)
- Finally, we obtain the following relational schemas
- Employee (<u>Employee ID</u>, Phone Number, Employee Name, Address, Email, Title, DOB, Department_ID(FK), Workshop ID (FK))
- Department (<u>Department ID</u>, Department Name)
- Workshop (Workshop ID, Area, Manager ID)
- Machine (<u>Machine ID</u>, Machine Name, maintenance period, Import Date, Workshop ID(FK), Materials ID(FK), Product Type ID (FK))
- Materials (<u>Materials ID</u>, Materials Name, Price Of Each Piece, Quantity In Stock)
- Supply Record (<u>Record ID</u>, Supply_Time, Supply Date, Amount, Materials ID(FK), SCo Name(FK))
- Supply Company (SCo Name, Sco Address, SCo Phone Number, SCo Email)
- Product type (<u>Product Type ID</u>, Product_Type_Name, Original Price, Manufacture_Date, Manufacture_amount, Workshop ID(Fk))
- Pro_Distribution (<u>Distributor ID</u>, <u>Product Type ID</u>, <u>Dis_Amount</u>, <u>Dis_Date</u>)
- Place Of Distribution (<u>Distributor ID</u>, Distributor Name, Distributor Address, Dis_PhoneNum)

- 2. Normalization
- Find all functional dependencies
- FD1: Employee ID → Phone Number, Employee Name, Address, Email, Title, DOB, Department ID, Workshop ID
- FD2: Department ID → Department Name
- FD3: Workshop ID → Area, Manager ID
- FD4: Machine ID → Machine Name, maintenance period, Import Date, Workshop ID, Materials ID, Product Type ID
- FD5: Materials ID → Materials Name, Price Of Each Piece, Quantity In Stock
- FD6: Record ID → Supply_Time, Supply Date, Amount, Materials ID, SCo Name
- FD7: SCo Name → Sco Address, SCo Phone Number, SCo Email
- FD8: Product Type ID → Product_Type_Name, Original Price, Manufacture Date, Manufacture amount, Workshop ID
- FD9: Distributor ID, Product Type ID → Dis_Amount, Dis_Date
- FD10: Distributor ID→ Distributor Name, Distributor Address, Dis_PhoneNum
- Check if the database is in 1NF, 2NF, 3NF
- Employee (<u>Employee ID</u>, Phone Number, Employee Name, Address, Email, Title, DOB, Department ID(FK), Workshop ID (FK))
 - + Because all fields from Employee table are single value. Table Employee is in 1NF
 - + Consider with FD1: non-prime attribute is fully functionally dependent on the keys. Table Employee is in 2 NF
 - + Consider with FD1: No non-prime attribute is transitively dependent on the keys. Table Employee is in 3 NF
- Department (<u>Department ID</u>, Department Name)
 - + Because all fields from Department table are single value. Table Department is in 1NF
 - + Consider with FD2: non-prime attribute is fully functionally dependent on the keys. Table Department is in 2 NF
 - + Consider with FD2: No non-prime attribute is transitively dependent on the keys. Table Department is in 3 NF
- Workshop (Workshop ID, Area, Manager ID)
 - + Because all fields from Workshop table are single value. Table Workshop is in 1NF
 - + Consider with FD3: non-prime attribute is fully functionally dependent on the keys. Table Workshop is in 2 NF
 - + Consider with FD3: No non-prime attribute is transitively dependent on the keys. Table Workshop is in 3 NF
- Machine (<u>Machine ID</u>, Machine Name, maintenance period, Import Date, Workshop ID(FK), Materials ID(FK), Product Type ID (FK))

- + Because all fields from Machine table are single value. Table Machine is in 1NF
- + Consider with FD4: non-prime attribute is fully functionally dependent on the keys. Table Machine is in 2 NF
- + Consider with FD4: No non-prime attribute is transitively dependent on the keys. Table Machine is in 3 NF
- Materials (<u>Materials ID</u>, Materials Name, Price Of Each Piece, Quantity In Stock)
 - + Because all fields from Materials table are single value. Table Materials is in 1NF
 - + Consider with FD5: non-prime attribute is fully functionally dependent on the keys. Table Materials is in 2 NF
 - + Consider with FD5: No non-prime attribute is transitively dependent on the keys. Table Materials is in 3 NF
- Supply Record (<u>Record ID</u>, Supply_Time, Supply Date, Amount, Materials ID(FK), SCo_Name(FK))
 - + Because all fields from Supply Record table are single value. Table Supply Record is in 1NF
 - + Consider with FD6: non-prime attribute is fully functionally dependent on the keys. Table Supply Record is in 2 NF
 - + Consider with FD6: No non-prime attribute is transitively dependent on the keys. Table Supply Record is in 3 NF
- Supply Company (<u>SCo Name</u>, Sco Address, SCo Phone Number, SCo Email)
 + Because all fields from Supply Company table are single value. Table
 Supply Company is in 1NF
 - + Consider with FD7: non-prime attribute is fully functionally dependent on the keys. Table Supply Company is in 2 NF
 - + Consider with FD7: No non-prime attribute is transitively dependent on the keys. Table Supply Company is in 3 NF
- Pro_Distribution (<u>Distributor ID</u>, <u>Product Type ID</u>, <u>Dis_Amount</u>, <u>Dis_Date</u>)
 + Because all fields from <u>Pro_Distribution</u> table are single value. Table
 Pro_Distribution is in 1NF
 - + Consider with FD9: non-prime attribute is fully functionally dependent on the keys. Table Pro_Distribution is in 2 NF
 - + Consider with FD9: No non-prime attribute is transitively dependent on the keys. Table Pro Distribution is in 3 NF
- Product type (<u>Product Type ID</u>, Product_Type_Name, Original Price, Workshop ID, Manufacture Date, Manufacture amount)

- + Because Manufacture_ Date field and Manufacture_amount field of Product type tables are multivalued. Table Product type isn't in 1 NF, so we split it become 2 (two) table:
 - oProduct type (<u>Product Type ID</u>, Product_Type_Name, Original Price, Workshop ID)
 - oManufacture_Record(<u>Product Type ID, Manufacture_Date, Manufacture_amount)</u>
- + Consider with FD8: non-prime attribute is fully functionally dependent on the keys. Tables are in 2 NF
- + Consider with FD8: No non-prime attribute is transitively dependent on the keys. Tables are in 3 NF
- Place Of Distribution (<u>Distributor ID</u>, Distributor Name, Distributor Address, Dis_PhoneNum)
 - + Because all fields from Place Of Distribution table are single value. Table Place Of Distribution is in 1NF
 - + Consider with FD10: non-prime attribute is fully functionally dependent on the keys. Table Place Of Distribution is in 2 NF
 - + Consider with FD10: No non-prime attribute is transitively dependent on the keys. Table Place Of Distribution is in 3 NF

3. Database diagram

