

□ (+1) 778-869-9829 | ■ zmansoor@sfu.ca | # zubiamansoor.github.io | • zubiamansoor | • zubiamansoor

Skills Summary_

Programming Tools R, Python (pandas, scikit-learn, keras, seaborn), SQL, Matlab, LaTeX, Git, Bash, Minitab

Statistical Methods Bayesian & frequentist inference, stochastic processes, survey methodology, monte carlo, ANOVA, sampling theory

Machine Learning Neural networks, ensembles, deep learning, random forest, bayesian nonparametrics

Education

Simon Fraser University

Burnaby, Canada

MASTER OF SCIENCE IN STATISTICS, CGPA: 4.27/4.33

Sep 2019 - Jul 2021

- Dean's Graduate Fellowship
- · Statistical Society of Canada student travel award
- Community-Engaged Research Initiative Graduate Fellowship
- · Mitacs Research Training Award

St. Xavier's College Kolkata, India

BACHELOR OF SCIENCE (HONS.) IN STATISTICS, MINOR IN MATHEMATICS AND ECONOMICS, FIRST CLASS WITH DISTINCTION Jul 2015 - Jun 2018

Work Experience _

Quantitative Analyst Intern

Toronto, Ontario

CAPITAL MARKETS | ONTARIO TEACHERS' PENSION PLAN

Jan 2021 - Apr 2021

- · Work in a quantitative trading team to help make investment decisions using statistical models and data analytics
- · Flagged 98% of the outliers in financial earnings data by developing an unsupervised anomaly detection system using Python and SQL queries

Bioinformatics Research Intern

Burnaby, Canada

COVID-19 RAPID RESPONSE GRANT | CANADIAN STATISTICAL SCIENCES INSTITUTE (CANSSI)

May 2020 - Sep 2020

- Studied the effects of gene mutation on COVID-19 susceptibility after controlling for socioeconomic factors in UKBiobank human genome data
- Discovered significant association between dementia and COVID-19 susceptibility by constructing contingency tables
- · Built pipeline to preprocess high dimensional data and compute the genetic correlation between two phenotypes
- ullet Cut ~ 10 minutes per run by deploying a series of Python and Bash scripts on a parallel computing network

Data Science Intern Kolkata, India

STATISTICAL QUALITY CONTROL DIVISION | INDIAN STATISTICAL INSTITUTE

May 2018 - Oct 2018

- Collaborated on-site with statisticians and chemical engineers to improve the quality control process at a paper manufacturing company
- Reduced annual costs by 30K CAD by building a hybrid SVR-RT ensemble model to optimize chemical consumption
- · Presented technical findings conducted using Python and R to various stakeholders and research staff
- Co-author in publication: "A hybrid regression model for water quality prediction" Chakraborty, T., Chakraborty, A.K. & Mansoor, Z. Springer (2019)

Relevant Academic Projects _____

Image Classification using WasteNet - 1st Place View Project

Vancouver, Canada

VANCOUVER DATAJAM HACKATHON 2020

Sep 2020 - Sep 2020

- Led a 9-member team at a one-day virtual hackathon to correctly classify images of waste items for proper garbage disposal in Greater Vancouver
- Compared tuned SVM and CNN's ability to predict waste classification and achieved a test accuracy of 93% using tuned ResNet-15 in PyTorch
- Supplemented testing data with pictures of trash from diverse environments (e.g. street, beach) to assess the chosen model's generalization

Predicting Mortgage Default Risk - Finalist View Project

Burnaby, Canada

SFU BUSINESS ANALYTICS HACKATHON

Nov 2020 - Nov 2020

- Solved a real-world business problem in under 3 hours by building an ensemble classifier to predict mortgage default for a fintech startup
- Achieved an AUC of 73% on a hold-out test set that averaged the predicted class probabilities by a neural net and random forest
- Used k-means clustering to identify key customer demographics to target in the upcoming advertising campaigns
- · Presented findings to batches of judges sequentially, incorporating the judges' feedback before pitching to the next round

Examining Out-of-Distribution Data using Deep Neural Networks

Burnaby, Canada

MASTER'S THESIS, SIMON FRASER UNIVERSITY

Feb 2020 - Present

- · Compare the robustness of humans and current deep neural networks on out-of-distribution (OOD) data for image recognition tasks
- · Employ transfer learning methods in deep neural networks to make OOD performance more human-like
- Parallelized jobs to create 8 different image distortions using 1.5 TB of ImageNet data to evaluate the robustness of different CNN architectures