Universidad Nacional Autónoma de México Facultad de Ciencias Estructuras Discretas Tarea 4

Rubí Rojas Tania Michelle taniarubi@ciencias.unam.mx # cuenta: 315121719

4 de diciembre de 2017

1. Mostrar que la composición de relaciones es asociativa, es decir, si R, S y T son relaciones binarias, entonces

$$R \circ (S \circ T) = (R \circ S) \circ T$$

Demostración. .

- \subseteq Supongamos que $(a,b) \in R \circ (S \circ T)$. Entonces existe $c \in A$ tal que $(a,c) \in R$ y $(c,b) \in (S \circ T)$. Por definición, existe $d \in A$ tal que $(c,d) \in S$ y $(d,b) \in T$. Como $(a,c) \in R$ y $(c,d) \in S$, entonces $(a,d) \in R \circ S$. Además, $(d,b) \in T$ por lo que $(a,b) \in (R \circ S) \circ T$.
- \supseteq Supongamos que $(a,b) \in (R \circ S) \circ T$. Entonces, existe $c \in A$ tal que $(a,c) \in (R \circ S)$ y $(c,b) \in T$. Por definición, existe $d \in A$ tal que $(a,d) \in R$ y $(d,c) \in S$. Como $(d,c) \in S$ y $(c,b) \in T$, entonces tenemos que $(d,b) \in S \circ T$. Además, $(a,d) \in R$, por lo que $(a,b) \in R \circ (S \circ T)$.

2. Sean $A = \{0, 1, 2, 3\}, R = \{(a, b) \mid a + 1\}$ y $S = \{(a, b) \mid a = b + 2\}$. Realice lo siguiente:

 \blacksquare Calcule R y S

Solución: $R = \{(0,1), (1,2), (2,3)\}$ y $S = \{(2,0), (3,1)\}$

■ Calcule $R \circ S$

Solución: $R \circ S = \{(1,0), (2,1)\}$

■ Calcule R^3

Solución: Ø.

- 3. Demuestra que $(R^{-1})^{-1} = R$.
- 4. Para las siguientes relaciones, argumente si cumplen o no con las propiedades de reflexividad, simetría, antisimetría y transitividad.
 - Sean R la relación definida en los números reales por xRy si y sólo si $x \leq y$.
 - \blacksquare Sean $A = \{a,b,c,d\}$ y $R = \{(a,a),(a,b),(a,c),(b,a),(b,b),(b,c),(b,d),(d,d)\}$

- Sea $A = \mathbb{Z}^+ \times \mathbb{Z}^+$ y R la relación $R = \{(a, b), (c, d)\} \mid a + d = b + c\}$
- 5. Conteste los siguientes incisos.
 - ¿Puede una relación en un conjunto no ser reflexiva ni antirreflexiva? Justifique su respuesta.
 - ¿Puede una relación en un conjunto ser simétrica y antisimetrica? ¿O ser asimétrica y antisimétrica también? Justifique su respuesta.
- 6. Muestre que una relación R sobre A:
 - Es reflexiva si y sólo si $I_A \subseteq R$
 - Es simétrica si y sólo si $R = R^{-1}$
 - Es transitiva si y sólo si $R \circ R \subseteq R$
- 7. Sea $A = \mathbb{R}$. Definimos $R \subseteq A \times A$ donde $R = \{(x,y) \mid \lfloor 2x \rfloor = \lfloor 2y \rfloor \}$ donde $\lfloor 2x \rfloor$ se define como el mayor entero $i \in \mathbb{Z}$ tal que $i \leq x$.
 - Verifique que R sea una relación de equivalencia.
 - Determine las clases de equivalencia de $\frac{1}{4}$ y $\frac{1}{2}$.
 - Describa la partición de ℝ en clases de equivalencia.
- 8. Determine si las siguientes relaciones son de equivalencia. Si lo son, demuestre cada una de las propiedades, si no lo son, exhiba un ejemplo de por qué no se cumple alguna propiedad.
 - $\blacksquare R = \{(a,b) : a,b \in \mathbb{Z}, a+b \text{ es impar}\}\$
 - $R = \{(a, b) : a, b \in \mathbb{Z}, a + b \text{ es par}\}$
 - $R = \{(a,b) : a,b \in \mathbb{Z}, |a-b| \le 5\}$
 - $R = \{(a, b) : a, b \in \mathbb{Z}, |a b| < 1\}$
- 9. Una partición P_1 es un refinamiento de la partición P_2 si cada conjunto P_1 es subconjunto de algún conjunto en P_2 . Muestre que la partición formada por las clases de congruencia módulo 6 es un refinamiento de la partición formada por las clases de congruencia módulo 3.
- 10. Sea A un subconjunto de \mathbb{N} , y sea \leq la relación sobre A definida por $a \leq b$ si y sólo si $b = a^k$ para alguna $k \in \mathbb{N}$, para cada $a, b \in A$. Demuestre que (A, \leq) es un conjunto parcialmente ordenado. ¿Es (A, \leq) un conjunto totalmente ordenado?
- 11. Sea A un conjunto no vacío, y sea R una relación sobre A. La relación R es un cuasi-orden si es reflexiva y transitiva. Suponga que R es un cuasi-orden. Sea \sim la relación sobre A definida por $x \sim y$ si y sólo si xRy y yRx para cualesquiera $x, y \in A$.
 - Demuestre que ~ es una relación de equivalencia.
 - Sean $x, y, a, b \in A$. Demuestre que si xRy y $y \sim b$, entonces aRb.
 - Considere el conjunto A/\sim definida por [x]S[y] si y sólo si xRy. Demuestre que $(A/\sim, S)$ es un conjunto parcialmente ordenado.
- 12. Sea (A, \preceq) un conjunto parcialmente ordenado, sea X un conjunto, y sea $h: X \to A$ una función inyectiva. Sea \preceq' la relación sobre X definida por $x \preceq' y$ si y sólo si $h(x) \preceq h(y)$, para cada $x, y \in X$. Demuestre que (X, \preceq') es un conjunto parcialmente ordenado.