GEOMETRIE DER FASERBÜNDEL

Mihai-Sorin Stupariu

WS 2001-2002

Kapitel 1

Lie-Gruppen und Lie-Algebren

1.1 Lie-Gruppen

Definition 1.1.1 Lie-Gruppe.

Bemerkung Es sei G Gruppe, die zugleich differenzierbare Mannigfaltigkeit ist. Dann ist G eine Lie-Gruppe, genau dann, wenn die Abbildung $\nu: G \times G \to G$, $\nu(f,g) := f \cdot g^{-1}$ differenzierbar ist.

Beispiele 1) Die endliche Gruppen.

- 2) $(\mathbb{R}^n, +)$.
- 3) (\mathbb{R}_+,\cdot) .
- 4) $(GL(n,\mathbb{R}),\cdot)$.
- 5) $GL(n, \mathbb{C}), \cdot)$.
- 6) Das Produkt $G \times H$ der Lie-Gruppen G und H wird auf natürlicher Weise eine Lie-Gruppe.

1.2 Lie-Algebren

Es sei $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$

Definition 1.2.1 Lie-Algebra über \mathbb{K} .

Beispiele 1) Die triviale (Abelsche) Lie-Algebra.

- 2) Die Lie-Algebra der Endomorphismen eines Vektorraums.
- 3) Der \mathbb{R} -Vektorraum \mathbb{R}^3 versehen mit dem Kreuzprodukt als Lie-Klammer.
- 4) Die Lie-Algebra der Vektorfelder auf einer Mannigfaltigkeit.

Definition 1.2.2 Strukturkonstanten einer endlich-dimensionalen Lie-Algebra bezüglich einer Basis.

Bemerkung Aus der Definition einer Lie-Algebra (Antisymmetrie und Jacobi-Identität) erhält man die folgenden Gleichungen für die Strukturkonstanten $(c_{ij}^k)_{i,j,k=1,...,n}$ einer Lie-Algebra bezüglich einer Basis

$$c_{ij}^k = -c_{ji}^k, \quad \forall i, j, k,$$

$$\sum_{m=1}^{n} (c_{im}^{h} c_{jk}^{m} + c_{km}^{h} c_{ij}^{m} + c_{jm}^{h} c_{ki}^{m}) = 0, \quad \forall h, i, j, k.$$

1.3 Die Lie-Algebra einer Lie-Gruppe. Exponentialabbildung

Bezeichnungen Linkstranslation, Rechtstranslation

Definition 1.3.1 Linksinvariantes Vektorfeld

Bezeichnung Es sei G eine Lie-Gruppe und

$$\mathfrak{g} := \{ X \in \mathcal{X}(G) \mid X \text{ linksinvariant} \}.$$

Beispiel Die Linksinvariantevektorfelder auf $(\mathbb{R}^n, +)$.

Proposition 1.3.2 *Ist* G *eine* Lie-Gruppe, *so ist* G *paralelisierbar*.

Definition 1.3.3 1-Parameteruntergruppe einer Lie-Gruppe G.

Proposition 1.3.4 Es sei G eine Lie-Gruppe. Für jedes linksinvariantes Vektorfeld X auf G gibt es eine eindeutig bestimmte 1-Parameteruntergruppe, bezeichnet mit γ^X , sodass die folgende Gleichhheit gilt

$$X_{\gamma(t)} = \gamma_{*,t}^{X} \left(\frac{d}{ds} \Big|_{s=t} \right) \stackrel{Not}{=} \frac{d\gamma^{X}}{ds} \Big|_{s=t}.$$
 (1.1)

Bemerkung In lokalen Koordinaten wird die Gleichung (1.1) ein System von gewöhnliche Differentialgleichungen. Genauer, sei $\varphi: U \to \mathbb{R}^n$ eine Karte. Man schreibt $X = \sum_{i=1}^n \xi^i(x^1, \dots, x^n) \frac{\partial}{\partial x^i}$ und $f := \varphi \circ \gamma$ als $f(t) = (f^1(t), \dots, f^n(t))$. Die Gleichung (1.1) wird

$$\xi^{i}(f(t)) = \frac{df^{i}}{dt}, \qquad i = 1, \dots, n.$$

Definition 1.3.5 Die Exponentialabbildung,

$$\exp: \mathfrak{g} \to G, \qquad \exp(X) := \gamma^X(1).$$

Proposition 1.3.6 Es sei G eine Lie-Gruppe und \mathfrak{g} ihre Lie-Algebra.

i) Es seien $X \in \mathfrak{g}$, $t, t' \in \mathbb{R}$. Dann gilt:

$$\exp(tX) = \gamma^{X}(t),$$

$$\exp(t+t')X = (\exp tX)(\exp t'X),$$

$$\exp(-tX) = (\exp tX)^{-1}.$$

- ii) Die Exponentialabbildung ist differenzierbar.
- iii) Die Ableitung $(\exp)_{*,0}: T_0\mathfrak{g} \to T_eG$ ist, via die Identifizierung zwischen T_eG und \mathfrak{g} , $(\exp)_{*,0} = \mathrm{id}_{\mathfrak{g}}$.

Bemerkungen i) Die Exponentialabbildung ist ein lokaler Diffeomorphismus um den Ursprung $0 \in \mathfrak{g}$.

- ii) Man hat die Abbildung $\mu: G \times G \to G$, $\mu(x,y) = x \cdot y$. Dann ist ihre Ableitung $\mu_{*,(e,e)}: T_eG \oplus T_eG \to T_eG$, $\mu(X,Y) = X + Y$.
- iii) Wenn G eine Abelsche Lie-Gruppe ist, so ist die Exponentialabbildung exp : $\mathfrak{g} \to G$ ein Gruppenhomomorphismus.
- iv) Ist G eine <u>zusammenhängende</u> Lie-Gruppe, für die die Exponentialabbildung ein Gruppenhomomorphismus ist, so ist G Abelsch.

Beispiele i) Wir betrachten die Lie-Gruppe (\mathbb{R}^n , +). In diesem Fall ist die Lie-Algebra die triviale Lie-Algebra \mathbb{R}^n und ist die Exponentialabbildung von der Identität gegeben.

ii) Wir betrachten die Gruppe($\mathrm{GL}(n,\mathbb{C}),\cdot$). Sei $\mathrm{gl}(n,\mathbb{C})$ der Vektorraum $\mathcal{M}(n\times n,\mathbb{C})$. Die Lie-Klammer sei von $[A,B]=A\cdot B-B\cdot A$ gegeben. Dann ist $\mathrm{gl}(n,\mathbb{C})$ die Lie-Algebra von $\mathrm{GL}(n,\mathbb{C})$.

Für $A \in \mathrm{gl}(n,\mathbb{C})$ konvergiert die Summe $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ und gilt

$$\exp(A) = \sum_{k=0}^{\infty} \frac{A^k}{k!}.$$

1.4 Homomorphismen von Lie-Gruppen und Lie-Algebren

Definition 1.4.1 Homomorphismus von Lie-Gruppen, Isomorphismus von Lie-Gruppen, Automorphismus einer Lie-Gruppe

Definition 1.4.2 Homomorphimus von Lie-Algebren, Isomorphimus von Lie-Algebren, Automorphismus einer Lie-Algebra

Es seien G und H Lie-Gruppen und $\varphi: G \to H$ ein Homomorphismus von Lie-Gruppen. Das neutrale Element e_G von G wird auf das neutrale Element e_H von H abgebildet. Somit erhält man eine lineare Abbildung $\varphi_{*,e_G}: T_{e_G}G \to T_{e_H}H$, gegeben von der Ableitung von φ in e_G . Anderseits, hat man die Isomorphismen $T_{e_G}G \simeq \mathfrak{g}$, $T_{e_H}H \simeq \mathfrak{h}$ und somit erhält man eine Abbildung $\varphi_*: \mathfrak{g} \to \mathfrak{h}$, die **die Ableitung von** φ gennent wird.

Proposition 1.4.3 Es sei $\varphi: G \to H$ eine Homomorphismus von Lie-Gruppen. Dann ist seine Ableitung $\varphi_*: \mathfrak{g} \to \mathfrak{h}$ ein Homomorphismus von Lie-Algebren und gilt

$$\varphi \circ \exp_G = \exp_H \circ \varphi_*$$
.

Proposition 1.4.4 Es seien $\varphi, \psi: G \to H$ Homomorphismen von Lie-Gruppen und nehme an, dass $\varphi_* = \psi_*$. Falls G <u>zusammenhängend</u> ist, gilt $\varphi = \psi$.

1.5 Lie-Untergruppen und Lie-Unteralgebren

Definition 1.5.1 Lie-Untergruppe, abstrakte Lie-Untergruppe

Bemerkung Eine abstrakte Lie-Untergruppe, die Untermannigfaltigkeit ist, wird eine Lie-Gruppe.

Proposition 1.5.2 Es sei G eine Lie-Gruppe. Eine abstrakte Lie-Untergruppe H von G ist genau dann eine Untermannigfaltigkeit von G wenn H abgeschlossen in G ist.

Proposition 1.5.3 Es seien G, H Lie-Gruppen und $f: G \to H$ ein Gruppenhomomorphismus, der <u>stetig</u> ist. Dann ist f sogar <u>differenzierbar</u>, d.h. ein Homomorphismus von Lie-Gruppen.

Definition 1.5.4 Lie-Unteralgebra

Proposition 1.5.5 Es sei G eine <u>zusammenhängende</u> Lie-Gruppe und U eine offene Umgebung von e. Dann gilt $G = \bigcup_{n=1}^{\infty} U^n$, wobei U^n aus n-mal Produkten der Elementen von U besteht.

Proposition 1.5.6 Es seien G eine Lie-Gruppe und $L \subset \mathfrak{g}$ eine Lie-Unteralgebra der Lie-Algebra \mathfrak{g} von G. Dann gibt es eine eindeutig bestimmte <u>zusammenhängende</u> Lie-Untergruppe $\iota: H \to G$, sodass $\iota_*(\mathfrak{h}) = L$.

Corollar 1.5.7 Es gibt eine 1 : 1 Korrespondenz zwischen zusammenhängenden Lie-Untergruppen einer Lie-Gruppe und Lie-Unteralgebren ihrer Lie-Algebra.

Weitere Bespiele von Lie-Gruppen und Lie-Algebren

- i) Eine **Matrixgruppe** ist eine abgeschlossene (algebraische) Untergruppe von $GL(n, \mathbb{C})$ ($n \geq 1$ ganz). Als Beispiele hat man $SL(n, \mathbb{C})$, $GL(n, \mathbb{R})$, $SL(n, \mathbb{R})$, O(n), SO(n), U(n), SU(n). Die Lie-Gruppe U(1) wird auch mit S^1 bezeichnet.
- ii) **Der** *n*-dimensionale Torus $(n \ge 1)$ wird definiert als $T_n := (S^1)^n$. Die Tori sind zusammenhängende, Abelsche, kompakte Lie-Gruppe.

Bemerkungen i) Jede <u>zusammenhängende</u> <u>Abelsche</u> Lie-Gruppe ist isomorph zu einem Produkt von Tori und einem Vektorraum \mathbb{R}^s .

ii) Jede <u>kompakte Abelsche</u> Lie-Gruppe G ist isomorph zu einem Produkt von Tori und einer endlichen Abelschen Gruppe.

Corollar 1.5.8 Es sei G eine Lie-Untergruppe von $GL(n, \mathbb{C})$ und \mathfrak{g} ihre Lie-Algebra. Für alle $X, Y \in \mathfrak{g}$ gilt $[X, Y] = X \cdot Y - Y \cdot X$.

Proposition 1.5.9 Es sei $\varphi: G \to K$ ein Homomorphismus von Lie-Gruppen und seien $H := \ker \varphi, \ \mathfrak{h} := \ker(\varphi)_*$. Dann ist H eine abgeschlossene Lie-Untergruppe von G, deren Lie-Algebra \mathfrak{h} ist.

Beispiel Man betrachtet den Homomorphismus von Lie-Gruppen det : $GL(n, \mathbb{C}) \to \mathbb{C}^*$. Seine Ableitung ist $det_*(\xi) = Tr(\xi)$.

Beispiele Beschreibung der Lie-Algebren $sl(n, \mathbb{C})$, $gl(n, \mathbb{R})$, $sl(n, \mathbb{R})$, o(n), so(n), u(n), su(n).

1.6 Darstellungen

Definition 1.6.1 Darstellung einer Lie-Gruppe in einem endlich dimensionalem Vektorraum

Definition 1.6.2 Darstellung einer Lie-Algebra in einem endlich dimensionalem Vektorraum

Es sei G eine Lie-Gruppe, $\mathfrak g$ ihre Lie-Algebra. Für $g\in G$ definiert man den inneren Automorphismus

$$Ad_q: G \to G, \qquad Ad_q(x) := g \cdot x \cdot g^{-1}.$$

Der induziert Ad : $G \to \operatorname{Aut}(G)$. Man erhält eine Abbildung

$$\operatorname{ad}_g:\mathfrak{g}\to\mathfrak{g},\qquad \operatorname{ad}_g:=(\operatorname{Ad}_g)_{*,e}.$$

Die adjungierte Darstellung von G ist:

$$ad: G \to GL(\mathfrak{g}); \qquad ad(g) := ad_g,$$

und die induziert die adjungierte Darstellung von g:

$$\mathfrak{ad}:\mathfrak{g}\to\mathrm{gl}(\mathfrak{g}),\qquad\mathfrak{ad}:=(\mathrm{ad})_*.$$

Proposition 1.6.3 Es sei G eine Lie-Gruppe und es sei $\mathfrak g$ ihre Lie-Algebra. Dann gilt für alle $A, B \in \mathfrak g$:

$$\mathfrak{ad}(A)(B) = \frac{\partial^2}{\partial s \partial t} \left(\exp(tA) \exp(sB) \exp(-tA) \right) |_{s,t=0} = [A, B].$$

Proposition 1.6.4 Es sei G eine <u>Matrixgruppe</u> und es sei \mathfrak{g} ihre Lie-Algebra. Dann ist $\operatorname{ad}_q:\mathfrak{g}\to\mathfrak{g}$ durch $\operatorname{ad}_q(A)=gAg^{-1}$ gegeben.

Proposition 1.6.5 Es sei H eine zusammenhängende Lie-Untergruppe einer zusammenhängenden Lie-Gruppe G, es seien \mathfrak{h} bzw. \mathfrak{g} die entsprechenden Lie-Algebren. Dann ist H eine <u>normale</u> Untergruppe von G genau dann wenn \mathfrak{h} ein Ideal von \mathfrak{g} ist.

Definition 1.6.6 i) Zentrum $\mathfrak{z}(\mathfrak{g})$ einer Lie-Algebra \mathfrak{g} ii) Zentrum Z(G) einer Lie-Gruppe G.

Proposition 1.6.7 Sei G eine zusammenhängende Lie-Gruppe. Dann gilt Z(G) = kerad.

Corollar 1.6.8 Das Zentrum Z(G) einer zusammenhängende Lie-Gruppe G ist eine abgeschlossene Lie-Untergruppe von G, deren Lie-Algebra das Zentrum von $\mathfrak g$ ist.

Corollar 1.6.9 Eine <u>zusammenhängende</u> Lie-Gruppe ist Abelsch genau dann wenn ihre Lie-Algebra Abelsch ist.

Proposition 1.6.10 Es seien X, Y Elemente der Lie-Algebra \mathfrak{g} einer Lie-Gruppe G. Giltt [X, Y] = 0, so hat man $\exp(X + Y) = \exp X + \exp Y$.

1.7 Operationen von Lie-Gruppen

Definition 1.7.1 i) Rechtsoperation (Linksoperation) einer Lie-Gruppe auf einer Mannigfaltigkeit

ii) effektive, freie, transitive Operationen.

Bemerkung Jede freie Operation ist effektiv.

Bemerkungen i) Eine Darstellung einer Lie-Gruppe G auf einem Vektorraum V liefert eine Linksoperation von G auf der Mannigfaltigkeit V.

ii) Sei $\mu:G\times Q\to Q$ eine Linksoperation von G auf Q und nehme an, $q\in Q$ sei ein fester Punkt für diese Operation. Dann ist

$$\rho: G \to \operatorname{Aut}(T_q X), \qquad \rho(g) := (\mu_g)_{*|_{T_q X}}$$

eine Darstellung von G.

Es sei Geine Lie-Gruppe, die auf der Mannigfaltigkeit Qoperiert. Für $A\in \mathfrak{g}$ sei

$$\gamma^A(t) : \mathbb{R} \to G, \quad \gamma^A(t) := \exp(tA).$$

Es sei nun $q \in Q$ fest und betrachte die Kurve α_q auf Q, definiert durch

$$\alpha_q : \mathbb{R} \to Q, \quad \alpha_q(t) := q \cdot \gamma^A(t).$$

Definiere

$$A_q^* := (\alpha_q)_{*,0} \left(\frac{d}{ds}_{|_{s=0}} \right) = (q \cdot \gamma^A)_{*,0} \left(\frac{d}{ds}_{|_{s=0}} \right).$$

Es kann gezeigt werden, dass für $A \in \mathfrak{g}$ die Zuordnung $q \mapsto A_q^*$ differenzierbar ist. Somit hat man eine Abbildung $\sigma : \mathfrak{g} \to \mathcal{X}(Q), A \mapsto A^*$ definiert. Die Eigenschaften dieser Abbildung sind in der folgenden Proposition beschrieben.

Proposition 1.7.2 Es sei G eine Lie-Gruppe, die auf der Mannigfaltigkeit Q von rechts operiert.

- i) Die Abbildung σ ist ein Lie-Algebra Homomorphismus.
- ii) Wenn G frei auf Q operiert, so ist, für alle A in \mathfrak{g} die nicht null sind, $\sigma(A)$ nirgends verschwindend auf Q.
- iii) Wenn G effektiv auf Q operiert, so ist σ ein injektiver Lie-Algebra Homomorphismus.

Definition 1.7.3 i) Die Bahn eines Punktes

ii) Die Standgruppe eines Punktes.

Bemerkungen i) Wenn die Operation von G auf Q transitiv ist, so ist für alle q in Q die Bahn von q gleich Q.

- ii) Die Einschränkung der Operation von G auf jeder Bahn liefert eine transitive Operation.
- iii) Wenn die Operation von G auf Q frei ist, so ist für alle q in Q die Standgruppe Iso(q) gleich $\{e\}$.
 - iv) Für q in Q ist die Standgruppe Iso(q) eine Lie-Untergruppe von G.

1.8 Homogene Räume

Theorem 1.8.1 Es seien H eine abgeschlossene Untergruppe einer Lie-Gruppe G, G/H die Menge aller Linksäquivalenzklassen modulo H und $\pi: G \to G/H$ die natürliche Projektion. Dann besitzt G/H eine eindeutig bestimmte Struktur einer differenzierbaren Mannigfaltigkeit, so dass gilt

- (a) π ist differenzierbar;
- (b) für $gH \in G/H$ existert eine Umgebung W von gH und eine differenzierbare Abbildung $\tau : W \to G$, sodass $\pi \circ \tau = \mathrm{id}_W$ gilt (man sagt, dass τ ein lokaler Schnitt von G/H in G ist).

Theorem 1.8.2 Es sei H eine abgeschlossene normale Untergruppe einer Lie-Gruppe G. Dann wird die Mannigfaltigkeit G/H, versehen mit der natürlichen Gruppenstruktur, zu einer Lie-Gruppe.

Definition 1.8.3 Homogene Mannigfaltigkeiten

Theorem 1.8.4 Es sei G eine Lie-Gruppe, die auf einer Mannigfaltigkeit Q transitiv operiert. Für $q \in Q$ gilt $G/Iso(q) \simeq M$.

Beispiele

- i) $\mathbb{S}^{n-1} \simeq \mathrm{O}(n)/\mathrm{O}(n-1)$; $\mathbb{S}^{n-1} \simeq \mathrm{SO}(n)/\mathrm{SO}(n-1)$ $(n \ge 1)$.
- ii) $\mathbb{S}^{2n-1} \simeq \mathrm{U}(n)/\mathrm{U}(n-1)$; $\mathbb{S}^{2n-1} \simeq \mathrm{SU}(n)/\mathrm{SU}(n-1)$ $(n \ge 1)$. Speziell: $\mathbb{S}^3 \simeq \mathrm{SU}(2)$.
 - iii) $\mathbb{P}^{n-1}\mathbb{R} \simeq SO(n)/O(n-1) \ (n \geq 1).$
 - iv) $PGL(n, \mathbb{C})$, $PGL(n, \mathbb{R})$, PU(n).

Proposition 1.8.5 Es sei H eine abgeschlossene Untergruppe einer Lie-Gruppe G. Sind H und G/H zusammenhängend, so ist G zusammenhängend.

Beispiele

- i) Für $n \geq 1$ sind die Lie-Gruppen $\mathrm{SO}(n), \; \mathrm{SU}(n)$ und $\mathrm{U}(n)$ zusammenhängend.
 - ii) Für $n \ge 1$ hat O(n) zwei Zusammenhangskomponente.
 - iii) Für $n \geq 1$ hat $\mathrm{GL}(n,\mathbb{R})$ zwei Zusammenhangskomponente.

Kapitel 2

Prinzipalbündel und assoziierte Faserbündel

2.1 Prinzipalbündel, Übergangsfunktionen

Definition 2.1.1 i) G-Prinzipalbündel $\pi: P \to X$; ii) Bündelatlas, Übergangsfunktionen $(\psi_{\alpha\beta})_{\alpha,\beta}$.

Bemerkung Jede Faser eines Prinzipalbündels ist diffeomorph zu der Strukturgruppe G. Es gibt aber keine <u>kanonische</u> Identifizierung zwischen G und einer gegebenen Faser $\pi^{-1}(x)$, also keine <u>natürliche</u> Gruppenstruktur auf $\pi^{-1}(x)$.

Lemma 2.1.2 Die Übergangsfunktionen eines Prinziplbündels erfüllen die Cozykelbedingungen

$$\psi_{\alpha\gamma}(x) = \psi_{\alpha\beta}(x)\psi_{\beta\gamma}(x), \quad x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}. \tag{2.1}$$

Proposition 2.1.3 Es seien G eine Lie-Gruppe, X eine Mannigfaltigkeit und $(U_{\alpha})_{\alpha}$ eine offene Überdeckung von X. Man setzt voraus, dass für alle α, β mit $U_{\alpha} \cap U_{\beta} \neq \emptyset$ eine Abbildung $\psi_{\beta\alpha} : U_{\alpha} \cap U_{\beta} \to G$ gegeben ist, so dass die Cozykelbedingungen (2.1) erfüllt sind. Dann gibt es ein Prinzipalbündel $\pi: P \to X$ mit Strukturgruppe G, dessen Übergangsfunktionen bezüglich $(U_{\alpha})_{\alpha}$ die $(\psi_{\beta\alpha})_{\beta,\alpha}$'s sind.

Beispiel 2.1.4 i) Das triviale G-Prinzipalbündel $pr_X : X \times G \to X$.

- ii) Seien G eine Lie-Gruppe und $H \subset G$ abgeschlossene Lie-Untergruppe von G. Dann kann G als H-Prinzipalbündel über G/H aufgefasst werden.
- iii) Das Prinzipalbündel L(X) der linearen Rahmen einer differenzierbaren Mannigfaltigkeit X, dessen Strukturgruppe $GL(n, \mathbb{R})$ ist.

2.2 Homomorphismen, Unterbündel, Pullback

Definition 2.2.1 *i)* Morphismus vom Typ φ ;

- ii) Isomorphismus, Isomorphismus über X;
- iii) Unterbündel.

Beispiel 2.2.2 Einschränkung.

Bemerkung Ein Homomorphismus $f: P'(X', G') \to P(X, G)$ bildet die Elementen einer Faser auf derselben Faser ab und somit induziert eine Abbildung $\tilde{f}: X' \to X$. Es folgt, dass (f, \tilde{f}) ein Morphismus von Faserräumen ist.

Proposition 2.2.3 Es seien $\pi: P \to X$ ein G-Prinzipalbündel und $f: Y \to X$ differenzierbar. Dann existieren ein G-Prinzipalbündel $f^*: f^* \to Y$ und ein Morphismus $\Phi: f^*P \to P$ vom Typ id_G , der f induziert. Sind $\tilde{\pi}: \tilde{P} \to X'$ ein weiters G-Prinzipalbündel und $\Psi: \tilde{P} \to P$ ein Morphismus vom Typ id_G , der f induziert, dann sind \tilde{P} und f^*P isomorph über Y.

Beispiel 2.2.4 i) Pullback mittels Inklusion.

ii) Faserprodukt $P \times_X Q$.

2.3 Assoziierte Bündel

2.3.1 Definition und Beispiele

Proposition 2.3.1 Seien $\pi: P \to X$ ein G-Prinzipalbündel und $\rho: G \times F \to F$ eine Linksoperation auf der differenzierbaren Mannigfaltigkeit F. Sei

$$E = (P \times F) / \sim (\stackrel{Not}{=} P \times_{\rho} F)$$

die Menge der Äquivalenzklassen bezüglich

$$(p,f) \sim (p',f') : \Leftrightarrow \exists g \in G \text{ s.d. } \begin{cases} p' = p \cdot g \\ f' = g^{-1} \cdot f(=\rho(g)^{-1}(f)) \end{cases}$$

und $\pi_E : E \to X, \pi_E([p, f]) := \pi(p)$. Dann wird $\pi_E : E \to X$ ein C^{∞} -Faserbündel mit standard Faser F.

Notation Man sagt, E sei ein zu P assoziiertes Faserbündel.

Bemerkung 2.3.2 Seien $\pi: P \to X$ ein G-Prinzipalbündel; $E = P \times_{\rho} F$ ein assoziiertes Bündel. Ein Element $p \in P$ induziert eine Abbildung

$$\tilde{p}: F \to E_{\pi(p)}, \ \tilde{p}(f) := [p, f];$$

 $f\ddot{u}r \ alle \ p \in P, g \in G, f \in F \ gilt \ \widetilde{p \cdot g}(f) = \widetilde{p}(g \cdot f).$

Proposition 2.3.3 Sei $\pi_E : E \to X$ ein C^{∞} -Faserbündel mit standard Faser F. Man nimmt an, es existiert eine Lie-Gruppe G mit $G \stackrel{\iota}{\hookrightarrow} \operatorname{Aut}(F)$ (als abstrakte Untergruppe) und ein Bündelatlas von E, sodass die entsprechende Übergangsfunktionen G-wertig sind. Dann existiert ein G-Prinzipalbündel $\pi : P \to X$, sodass $E \simeq P \times_{\iota} F$ (als C^{∞} -Faserbündel).

Beispiel 2.3.4 i) $Ad(P) := P \times_{Ad} G$; (Bündel von Gruppen, aber i.a. <u>kein</u> Prinzipalbündel),

$$ii)$$
 ad $(P) := P \times_{ad} \mathfrak{g}$.

2.3.2 Beziehung zwischen invarianten Abbildungen und Schnitten in dem assoziierten Bündel

Definition 2.3.5 Schnitt, Schnitt über A.

Notation $\Gamma(X, E)$, $\Gamma(U, E)$.

Proposition 2.3.6 Seien $\pi: P \to X$ ein G-Prinzipalbündel und $\rho: G \times F \to F$ und betrachte das assoziierte Faserbündel $E:= P \times_{\rho} F$. Dann gibt es eine 1:1 Korrespondenz zwischen \mathcal{C}^{∞} -Schnitte in E und äquivariante \mathcal{C}^{∞} -Abbildungen $\eta: P \to F$, $\eta(p \cdot g) = g^{-1} \cdot \eta(p)$.

Proposition 2.3.7 Sei $\pi: P \to X$ ein \mathbb{C}^{∞} -Faserraum, π Submersion und P sei versehen mit einer glatten, freien G-Operation, sodass die G-Bahnen mit den fasern von π übereinstimmen. Man nimmt an, dass die (wohldefinierte!) Abbildung

$$\tau: P \times_{(\pi,\pi)} P \to G, \qquad q = p \cdot \tau(p,q)$$

differenzierbar ist. Sei $U \subset X$ offen. Die folgende Daten sind äquivalent:

- i) ein Diffeomorphismus $h_U: P_U \to U \times G$, mit $h_U = (\pi, \phi_U)$ und sodass $\phi_U(p \cdot g) = \phi_U(p) \cdot g$;
 - ii) lokalen Schnitt in P über U.

Theorem 2.3.8 Sei G eine Lie-Gruppe, $H \subset G$ eine abgeschlossene Lie-Untergruppe. Dann erhält man ein H-Prinzipalbündel $\pi: G \to G/H$.

2.4 Reduktion der Strukturgruppe

Definition 2.4.1 Reduktion der Strukturgruppe eines Prinzipalbündels.

Bemerkung Im allgemeinen verlängt man nicht, dass die Untergruppe G' abgeschlossen in G ist.

Proposition 2.4.2 Die Strukturgruppe eines G-Prinzipalbündels $\pi: P \to X$ kann auf eine Untergruppe H reduziert werden, genau dann wenn es ein Bündelatlas von P gibt, sodass die entsprechende Übergangsfunktionen Hwertig sind.

Proposition 2.4.3 Seien $\pi: P \to X$ ein G-Prinzipalbündel und $H \subset G$ eine abgeschlossene Lie-Untergruppe. Die folgende Aussagen sind äquivalent:

- i) Die Strukturgruppe von P ist zu H reduzierbar.
- ii) Das Faserbündel $P \times G/H$ besitzt einen globalen Schnitt.

Proposition 2.4.4 Sei $E = P \times_{\rho} F$ ein $(zu \ \pi : P \to X \ via \ \rho \ assoziiertes)$ Faserbündel, sodass $F \simeq \mathbb{R}^m$ (diffeomorph). Sei $A \subset X$ <u>abgeschlossen</u>. Dann kann jeder Schnitt über A zu einem Schnitt über X fortgesetzt werden. Insbesondere besitzt E einen globalen Schnitt.

Beispiel 2.4.5 i) Die Strukturgruppe jedem $GL(n, \mathbb{R})$ -Prinzipalbündel ist zu O(n) reduzierbar.

ii) Sei G eine zusammenhängende Lie-Gruppe, $K \subset G$ eine maximale kompakte Untergruppe. Dann ist die Strukturgruppe jedem G-Prinzipalbündel zu K reduzierbar.

Proposition 2.4.6 Für ein G-Prinzipalbündel $\pi: P \to X$ sind die folgende Aussagen äquivalent:

- i) Es besitzt einen globalen C^{∞} -Schnitt.
- ii) Es ist trivialisierbar.
- iii) Die Stukturgruppe G ist zu $\{e\}$ reduzierbar.

2.5 $GL(r, \mathbb{K})$ -Prinzipalbündel und Vektorbündeln

Seien $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}, r \in \mathbb{N}$.

2.5.1 Die Beziehung

Proposition 2.5.1 Seien $\pi: P \to X$ ein G-Prinzipalbündel, $\rho: G \to \operatorname{GL}(V)$ eine lineare Darstellung von G auf dem \mathbb{K} -Vektorraum V. Dann ist $E: P \times_{\rho} V$ ein \mathbb{K} -Vektorbündel.

Proposition 2.5.2 Sei $\pi_E : E \to X$ ein \mathbb{K} -Vektorbündel vom Rang r. Für $x \in X$ definiert man

$$P_{E,x} := \{b_x = (b_{1,x}, \dots, b_{r,x}) | (b_{1,x}, \dots, b_{r,x}) \text{ Rahmen für } E_x\}$$

und seien $P_E := \coprod_{x \in X} P_{E,x}, \ \pi : P_E \to X \ kanonisch.$ Dann wird $\pi : P_E \to X$ auf natürliche Weise ein $\mathrm{GL}(r,\mathbb{K})$ -Prinzipalbündel (das Prinzipalbündel der Rahmen von E.

Bemerkung 2.5.3 Sei E ein \mathbb{K} -Vektorbündel, P_E das $GL(r, \mathbb{K})$ -Prinzipalbündel der Rahmen. Jedes Element $b \in P_{E,x}$ induziert einen linearen Isomorphismus $\tilde{b} : \mathbb{K}^r \to E_x$ und umgekehrt.

Beispiel 2.5.4 Das $GL(n, \mathbb{R})$ -Prinzipalbündel L(X) der linearen Rahmen einer n-dimensionalen differenzierbaren Mannigfaltigkeit X.

Bemerkung 2.5.5 Es seien $\pi: P \to X$ ein G-Prinzipalbündel, $\rho_i: G \to \operatorname{GL}(V_i)$ (i=1,2) lineare Darstellungen von G und $\varphi: V_1 \to V_2$ linear. Ist φ G-äquivariant, d.h.

$$\varphi(\rho_1(g) \cdot v) = \rho_2(g) \cdot \varphi(v), \quad \forall g \in G, \ v \in V_1,$$

so induziert φ einen Vektorbündelhomomorphismus $P \times_{\rho_1} V_1 \to P \times_{\rho_2} V_2$.

2.5.2 Reduktion der Strukturgruppe in Vektorbündeln

Lemma 2.5.6 Sei $\pi_E : E \to X$ ein \mathbb{K} -Vektorbündel vom Rang r und sei $\pi : P_E \to X$ das Prinzipalbündel der Rahmen. Sei $H \subset \operatorname{GL}(r, \mathbb{K})$ eine abgeschlossene Untergruppe. Die folgende Aussagen sind äquivalent:

- i) Die Strukturgruppe von P_E kann zu H reduziert werden.
- ii) Es existiert ein Bündelatlas von E, sodass die entprechende Übergangsfunktionen H-wertig sind.

Sprechweise: Die Strukturgruppe von E kann zu H reduziert werden.

Proposition 2.5.7 Sei E ein \mathbb{R} - $(\mathbb{C}$ -) Vektorbündel vom Rang r.

- i) Geben eine Euklidische (bzw. Hermitesche) Bündelmetrik auf E ist äquivalent zu geben eine Reduktion der Strukturgruppe zu O(r) (bzw. U(r)).
- ii) Geben eine globale Trivialisierung von det E ist äquivalent zu geben eine Reduktion der Strukturgruppe zu $\mathrm{SL}(r,\mathbb{R})$ (bzw. $\mathrm{SL}(r,\mathbb{C})$).
- iii) Geben eine Euklidische (bzw. Hermitesche) Bündelmetrik auf E und einen globalen Schnitt in det E, dessen Norm in jedem Punkt 1 ist, ist äquivalent zu geben eine Reduktion der Strukturgruppe zu SO(r) (bzw. SU(r)).

Beispiel 2.5.8 Reduktion der Strukturgruppe des Bündels L(X) von $GL(n, \mathbb{R})$ nach O(n).

2.6 Die Eichgruppe

Definition 2.6.1 Automorphismus von P, Eichgruppe.

Proposition 2.6.2 Es sei $\pi: P \to X$ ein G-Prinzipalbündel. Es ist äquivalent anzugeben:

- i) Ein Element der Eichgruppe.
- ii) Eine Ad-äquivariante differenzierbare Abbildung $\eta: P \to G$.
- iii) Ein Element von $\Gamma(X, Ad(P))$.

Bemerkung Die Eichgruppe trägt i.a. (falls dim X > 0 und dim G > 0) keine natürliche Struktur einer differenzierbaren Mannigfaltigkeit, sie ist also keine Lie-Gruppe. Der Raum $A^0(X, \operatorname{ad}(P))$ heisst **die formelle Lie-Algebra** der Eichgruppe.

2.7 Fundamentalvektorfeld

Definition 2.7.1 Fundamentalvektorfeld W^{\sharp} .

Proposition 2.7.2 Sei $\mu: P \times G \to P$ eine G-Operation auf der differenzierbaren Mannigfaltigkeit P.

- i) Die Abbildung $\sigma: \mathfrak{g} \to \mathcal{C}^{\infty}(T_P/P), \ \sigma(W) := W^{\sharp}$ ist ein Homomorphismus von Lie-Algebren.
 - ii) Für alle $g \in G$ gilt

$$(R_g)_*(W^{\sharp}) = ((R_g)_*W)^{\sharp} = (\operatorname{ad}_{g^{-1}}(W))^{\sharp}.$$

- iii) Ist die G-Operation frei, so ist für $W \neq 0$ das Vektorfeld W^{\sharp} nirgends verschwindend auf P.
 - iv) Ist die G-Operation effektiv, so ist σ injektiv.

Es sei P(X, G) ein Prinzipalbündel. Die Operation von G auf P induziert, gemäss Prop. 1.7.2 i), einen Lie-Algebra Homomorphismus $\sigma: \mathfrak{g} \to \mathcal{X}(P)$. Für ξ in \mathfrak{g} heisst das Vektorfeld ξ^* das Fundamentalvektorfeld induziert von ξ . Die Operation von G bildet jede Faser auf sich selbst ab; es folgt, dass für p in P, ξ_p^* tangent zu der Faser P_p ist.

Die Operation von G ist frei, deshalb ist, für $\xi \neq 0$, das Vektorfeld ξ^* niergends verschwienend auf P (Prop. 1.7.2 ii)). Anderseits, ist die Dimension der Faser gleich der Dimension von \mathfrak{g} und somit, für $p \in P$ ist die Abbildung $\mathfrak{g} \to T_p P$, $\xi \mapsto \xi_p^*$ ein linearer Isomorphismus.

2.8 Beispiele und Übungen

Beispiel 2.8.1 i) Existenz von Spin(4)-Strukturen auf 4-dimensionalen orientierten Riemannschen Mannigfaltigkeiten: topologisches Hinderniss.

ii) Existenz von $\operatorname{Spin}^c(4)$ -Strukturen auf 4-dimensionalen orientierten Riemannschen Mannigfaltigkeiten.

Übung 2.8.2 Es seien $P_1(X_1, G_1)$ und $P_2(X_2, G_2)$ Prinzipalbündel; $\varphi : G_1 \to G_2$ ein surjektiver Lie-Gruppen Homomorphismus und $\tilde{\varphi} : P_1 \to P_2$ ein Morphismus vom Typ φ . Ist $\tilde{\varphi}$ surjektiv?

Übung 2.8.3 Es seien G_1, G_2 Lie-Gruppen, $\varphi: G_1 \to G_2$ ein Lie-Gruppen Homomorphismus und P_1 ein G_1 -Prinzipalbündel. Dann trägt $P_2 := P_1 \times_{\varphi} G_2$ natürlicherweise die Struktur eines G_2 -Prinzipalbündel und

$$\tilde{\varphi}: P_1 \to P_2, \quad \tilde{\varphi}(p_1) := [p_1, e_2]$$

ist ein Morphismus vom Typ φ .

Übung 2.8.4 Es seien $P_1(X_1, G_1)$, $P_2(X_2, G_2)$ Prinzipalbündel und $\tilde{\varphi}: P_1 \to P_2$ ein Morphismus vom Typ φ . Man nimmt an, $\varphi, \tilde{\varphi}$ seien surjektiv. Dann gilt $P_1 \times_{\varphi} G_2 \simeq P_2$.

Übung 2.8.5 Es sei $G=G_1\times G_2$ und P ein G-Prinzipalbündel. Trägt $P\times_{\operatorname{pr}_1}G_1$ die Struktur eines Prinzipalbündels?

Kapitel 3

Zusammenhänge

3.1 Vorbereitungen

Definition 3.1.1 i) W-wertige (differenzierbare) r-Form auf einer Mannigfaltigkeit M, $A^r(M; W)$.

ii) Äussere Ableitung.

Definition 3.1.2 (Pseudo)tensoriale r-Form vom Typ (ρ, W) in einem Prinzipalbündel $P, A_{\rho}^{r}(P; W)$

Lemma 3.1.3 Seien $\pi: P \to X$ ein G-Prinzipalbündel; $\rho: G \to \operatorname{GL}(W)$ und $r \in \mathbb{N}$.

- i) Ist η eine pseudotensoriale r-Form vom Typ (ρ, W) , so ist die äussere Ableitung d η pseudotensorial.
 - ii) Es existiert ein Isomorphismus von Vektorräumen

$$A_{\rho}^{r}(P;W) \simeq A^{r}(X, P \times_{\rho} W).$$

Definition 3.1.4 Lie-Klammer"

 \mathfrak{g} -wertiger Formen auf M

$$[\eta \wedge \theta](Y_1, \dots, Y_{r+s}) := \frac{1}{r!s!} \sum_{\sigma \in S_{r+s}} sgn(\sigma) [\eta(Y_{\sigma(1)}, \dots, Y_{\sigma(r)}, \theta(Y_{\sigma(r+1)}, \dots, Y_{\sigma(r+s)})],$$

$$\eta \in A^r(M, \mathfrak{g}), \theta \in A^s(M, \mathfrak{g}), Y_1, \dots Y_{r+s} \in \mathcal{C}^{\infty}(T_M/M).$$

3.2 Zusammenhänge in Prinzipalbündeln

3.2.1 Horizontale Distribution

Definition 3.2.1 Vertikale Distribution V.

Definition 3.2.2 Zusammenhang A, horizontaler Unterraum A_p , Raum der Zusammenhänge $\mathcal{A}(P)$.

Lemma 3.2.3 Sei $\pi: P \to X$ ein G-Prinzipalbündel. Es ist äquivalent anzugeben:

- i) Ein Zusammenhang A in P.
- ii) Ein Homomorphismus von Vektorbündeln $v_A: T_P \to T_P$ sodass

$$v_A \circ v_A = v_A$$
; $\operatorname{im} v_A = V$; $(R_g)_* \circ v_A = v_A \circ (R_g)_* \, \forall g \in G$.

iii) Ein Homomorphismus von Vektorbündeln $a: T_P \to T_P$ sodass

$$a_A \circ a_A = a_A$$
; $\ker a_A = V$; $(R_a)_* \circ a_A = a_A \circ (R_a)_* \forall a \in G$.

Notation Horizontale (bzw. vertikale) Komponente $a_A(Z)$ (bzw. $v_A(Z)$) eines Vektorfeldes $Z \in \mathcal{C}^{\infty}(T_P/P)$.

3.2.2 Zusammenhangsform

Proposition 3.2.4 Sei $\pi: P \to X$ ein G-Prinzipalbündel.

- i) Jeder Zusammenhang A auf P definiert eine **Zusammenhangsform** $\omega_A \in A^1(P; \mathfrak{g})$, für die gilt:
 - (a) $\omega_{A,p}(W_n^{\sharp}) = W$, für alle $W \in \mathfrak{g}, p \in P$.
 - (b) $R_g^*\omega_A = \operatorname{ad}_{g^{-1}} \cdot \omega_A$, für alle $g \in G$.
- ii) Jede \mathfrak{g} -wertige 1-Form $\omega \in A^1(P; \mathfrak{g})$, die (a) und (b) erfüllt, definiert einen eindeutig bestimten Zusammenhang A auf P mit $\omega_A = \omega$.

Proposition 3.2.5 Der Raum $\mathcal{A}(P)$ der Zusammenhänge in einem Prinzipalbündel $\pi: P \to X$ ist ein (nicht leerer) affiner Raum von Richtung $A^1(X, \operatorname{ad}(P))$.

3.2.3 Eichpotentialen

Proposition 3.2.6 Seien $\pi: P \to X$ ein G-Prinzipalbündel, $h_{\alpha} = (\pi, \phi_{\alpha})_{\alpha}$ ein Bündelatlas von P, das einer Überdeckung $(U_{\alpha})_{\alpha}$ entspricht, $s_{\alpha}: U_{\alpha} \to P_{U_{\alpha}}, s_{\alpha}(x) := h_{\alpha}^{-1}(x, e)$ und seien $(\psi_{\alpha\beta})_{\alpha,\beta}$ die entsprechende Übergangsfunktionen. Für α, β definiert man die \mathfrak{g} -wertige 1-Form auf $U_{\alpha} \cap U_{\beta}$ durch $\theta_{\alpha\beta} := \psi_{\alpha\beta}^* \theta$ (θ ist die kanonische \mathfrak{g} -wertige 1-Form auf G).

i) Ist ω eine Zusammenhangsform und $(\omega_{\alpha})_{\alpha}$ die Familie von Eichpotentialen gegeben durch $\omega_{\alpha} := s_{\alpha}^* \omega$, so gilt für alle $x \in U_{\alpha} \cap U_{\beta}$

$$\omega_{\beta,x} = \operatorname{ad}_{\psi_{\alpha\beta}(x)^{-1}} \cdot \omega_{\alpha,x} + \theta_{\alpha\beta,x}. \tag{3.1}$$

ii) Ist $(\omega_{\alpha})_{\alpha}$ eine Familie von \mathfrak{g} -wertige 1-Formen, die (3.1) erfüllen, so existiert eine eindeutig bestimmte Zusammenhangsform ω auf P, die diese Familie induziert.

3.2.4 Paralleltransporte

Definition 3.2.7 A-horizontales Vektorfeld, Liftung bezüglich A.

Proposition 3.2.8 Seien $\pi: P \to X$ ein G-Prinzipalbündel, $A \in \mathcal{A}(P)$. Es sei

$$HL_A: \{Z \in \mathcal{C}^{\infty}(T_P/P) | Z \text{ A-horizontal}, (R_g)_*(Z) = Z \forall g \in G\}.$$

Dann ist HL_A ein Untervektorraum von $C^{\infty}(T_P/P)$ und es gibt einen Isomorhismus von \mathbb{R} -Vektorräumen

$$C^{\infty}(T_X/X) \to HL_A, \quad Y \mapsto Y^*.$$

Sind $f \in \mathcal{C}^{\infty}(X)$, $Y, Z \in \mathcal{C}^{\infty}(T_X/X)$, so gilt:

$$(fY)^* = f^*Y^* \text{ (wobei } f^* := f \circ \pi), \quad ([Y, Z])^* = a_A([Y^*, Z^*]).$$

Definition 3.2.9 Horizontale Kurve, horizontale Liftung einer Kurve.

Lemma 3.2.10 Sei G eine Lie-Gruppe, sei $Y:[0,1] \to T_{G,e}(\simeq \mathfrak{g})$ eine differezierbare Kurve. Dann existiert eine eindeutig bestimmte Kurve $\gamma:[0,1] \to G$, sodass

$$\begin{cases} \dot{\gamma}(t) = (R_{\gamma(t)})_{*,e}(Y(t)) \\ \gamma(0) = e. \end{cases}$$

Proposition 3.2.11 Seien $\pi: P \to X$ ein G-Prinzipalbündel auf $X, A \in \mathcal{A}(P)$ und $\alpha: [0,1] \to X$ eine Kurve auf X. Für $p_0 \in P$ existiert eine eindeutig bestimmte horizontale Liftung $\alpha^*: [0,1] \to P$ von α mit $\alpha^*(0) = p_0$.

Definition 3.2.12 Paraleltransport $\mathcal{P}_{x_0,x_1}^{\alpha}$ von x_0 nach x_1 längs α .

3.2.5 Kovariante Ableitung

Definition 3.2.13 Kovariante Ableitung $D: A^0(P) \rightarrow A^1(P)$.

Lemma 3.2.14 Seien $\pi: P \to X$ ein G-Prinzipalbündel, $\rho: G \to \operatorname{GL}(W)$ eine Darstellung und $A \in \mathcal{A}(P)$. Sei a_A die horizontale Projektion und

$$a_A^*: A^r(P, W) \to A^r(P, W), \quad a_A^*(\eta)(Z_1, \dots, Z_r) := \eta(a_A(Z_1, \dots, a_A(Z_r)).$$

Ist η pseudotensorial, so ist $a_A^*(\eta)$ tensorial.

Proposition 3.2.15 Sei $\pi: P \to G$ ein G-Prinzipalbündel.

- i) Jeder Zusammenhang A induziert eine kovariante Ableitung $d_A := a_A^* \circ d$.
- ii) Für jede kovariante Ableitung $D: A^0(P) \to A^1(P)$ existiert ein eindeutig bestimmter Zusammenhang A in P, sodass $D = d_A$.

3.3 Zusammenhänge in assoziierten Bündeln

3.4 Krümmung der Zusammenhänge

Definition 3.4.1 Krümmung F_A eines Zusammenhangs A.

Theorem 3.4.2 (Die Strukturgleichung) Seien P ein G-Prinzipalbündel A, $\in \mathcal{A}(P)$. Es gilt:

$$F_A = d\omega_A + \frac{1}{2} [\omega_A \wedge \omega_A].$$

Theorem 3.4.3 (Die Bianchi Gleichung) Seien P ein G-Prinzipalbündel $A \in \mathcal{A}(P)$. Dann gilt $d_A F_A = 0$.

3.5 Zussamenhänge und Homomorphismen von Prinzipalbündeln

Proposition 3.5.1 Seien $\pi: P \to X$, $\pi': P' \to X'$ G- (bzw. G'-) Prinzipalbündel; $f: P' \to P$ ein Morphismus vom Typ φ , der $\tilde{f}: X' \to X$ induziert. Man nimmt an, \tilde{f} sei ein <u>Diffeomorhismus</u>. Jeder Zusammenhang A' in P' induziert einen eindeutig bestimmten Zusammenhang, bezeichnet f(A') in P, sodass die horizontalen Unterräume von A' auf den horizontalen Unterräumen von f(A') abgebildet werden.

Sind weiter $\omega_{A'}$ bzw. $\omega_{f(A')}$ die entsprechende Zusammenhangsformen und $F_{A'}$ bzw. $F_{f(A')}$ die Krümmungsformen, so gilt

$$f^*\omega_{f(A')} = \varphi_* \cdot \omega_{A'}, \qquad f^*F_{f(A')} = \varphi_* \cdot F_{A'}.$$

Sprechweise f bildet den Zusammenhang A' auf den Zusammenhang A ab.

Proposition 3.5.2 Seien $\pi: P \to X$, $\pi': P' \to X'$ G- (bzw. G'-) Prinzipalbündel; $f: P' \to P$ ein Morphismus vom Typ φ , der $\tilde{f}: X' \to X$ induziert. Man nimmt an, dass φ ein <u>Isomorhismus</u> von Lie-Gruppen ist. Für jeder $A \in \mathcal{A}(P)$ existiert einen eindeutig bestimmten Zusammenhang $A' \in \mathcal{A}(P')$, dessen horizontalen Unterräumen auf den horizontalen Unterräumen von A durch f abgebildet werden.

Sind weiter $\omega_{A'}$ bzw. ω_A die entsprechende Zusammenhangsformen und $F_{A'}$ bzw. F_A die Krümmungsformen, so gilt

$$f^*\omega_A = \varphi_* \cdot \omega_{A'}, \qquad f^*F_A = \varphi_* \cdot F_{A'}.$$

Sprechweise A' ist induziert von A.

Corollar 3.5.3 Sei $\pi: P \to X$ ein G-Prinzipalbündel; $f: Y \to X$ differenzierbar. Dann induziert jeder Zusammenhang $A \in \mathcal{A}(P)$ einen Zusammenhang $f^*A \in \mathcal{A}(f^*P)$.

3.6 Reduzierbarkeit der Zusammenhänge

Literaturverzeichnis

- [1] T. Bröcker, T. Tom Dieck, Representations of compacts Lie Groups, Springer, New York, 1985.
- [2] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry I, Interscience, John Wiley, New York, 1963.
- [3] M. Schottenloher, Geometrie und Symmetrie in der Physik, Vieweg, 1995.
- [4] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Scott, Foresman & Co., 1971.