1. You have four medicines, each having two attributes X (weight index) and Y (pH). The data is given below:

Object	Attribute 1 (X): weight index	Attribute 2 (Y): pH
Medicine A	1	1
Medicine B	2	1
Medicine C	4	3
Medicine D	5	4

You know that there are two clusters in the dataset. You can assume the initial value of the cluster centers to be c1=(1, 1) and c2=(2, 1).

Run the k-means clustering algorithm using

- a. Manhattan distance
- b. Euclidean distance

In how many steps does the algorithm converge and find the final cluster assignments.

2. You are given 8 data points and their 2 attributes as: A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9). To help you, the Euclidean distance between each data point is given below:

	A 1	A2	A3	A4	A5	A6	A7	A8
A 1	0	$\sqrt{25}$	√36	√13	√50	√52	$\sqrt{65}$	$\sqrt{5}$
A2		0	√37	$\sqrt{18}$	√25	√17	√ 10	√20
A3			0	$\sqrt{25}$	$\sqrt{2}$	$\sqrt{2}$	√53	√41
A4				0	√13	√17	√52	$\sqrt{2}$
A5					0	$\sqrt{2}$	√45	√25
A6						0	√29	√29
A7							0	√58
A8								0

a. Assuming that k=3 and the following points as initial centers: A1, A4, and A7. Run the k-means algorithm and output the final centers and the final cluster assignments.

b. Does it make a difference in the result if you assume the following initial centers: A2. A5, and A8.

3. Perform agglomerative clustering on the following dataset using single and complete link approaches. Output the resulting dendograms.

	Α	В	C	D
Α	0	1	4	5
B C		0	2	6
C			0	3
D				0

4. Perform agglomerative clustering on the following data points using single link, complete link, and average link approaches.

A1=(2,10), A2=(2,5), A3=(8,4), A4=(5,8), A5=(7,5), A6=(6,4), A7=(1,2), A8=(4,9).