קורס: 20416 "תורת ההסתברות"

(93 / 4ב מועד ב 2017 - ממסטר 7.9.2017 הבחינה:

חומר העזר המותר: מחשבון מדעי וספר הקורס בלבד.

מדריך הלמידה או כל חומר כתוב אחר – אסורים לשימוש!

עליכם לענות על ארבע מתוך חמש השאלות הבאות.

כל השאלות זהות במשקלן.

בכל תשובותיכם **חשבו את התוצאה הסופית** (כמובן, במידת האפשר).

לבחינה מצורפת: טבלת ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית

שאלה 1 (25 נקודות)

קולעים למטרה פעם אחר פעם.

בכל קליעה פוגעים במטרה בהסתברות 0.1, ואחרת, לא פוגעים בה.

אין תלות בין התוצאות של קליעות שונות.

- (7 נקי) א. כמה פעמים יש לקלוע למטרה, אם רוצים להבטיח שההסתברות, שתהיה לפחות פגיעה אחת, תעלה על 0.9!
 - (6 נקי) ב. אם קולעים למטרה 10 פעמים ופוגעים בה לפחות פעם אחת, מהי ההסתברות שהיו לפחות שתי פגיעות ב-10 הקליעות הללו!
 - (6 נקי) ג. אם קולעים למטרה שוב ושוב, מהי ההסתברות שהפגיעה הראשונה תקרה **לאחר** נסיון הקליעה ה- 15!
- (6 נקי) ד. אם קולעים למטרה שוב ושוב, וידוע שב- 10 הקליעות הראשונות היתה בדיוק פגיעה אחת, מספר הקליעות שיבוצעו עד לפגיעה השישית (ובכלל זה הפגיעה הראשונה הנתונה)!

שאלה 2 (25 נקודות)

(0 משתנים מקריים בלתי-תלויים, שלכל אחד מהם התפלגות ברנולי מקריים בלתי-תלויים. שלכל אחד מהם התפלגות משתנים מקריים בלתי-תלויים

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$
 עבור $S_n = \begin{cases} 0 & , & \overline{X}_n < 1 \\ 1 & , & \overline{X}_n = 1 \end{cases}$ ויהי $S_n = \begin{cases} 0 & , & \overline{X}_n < 1 \\ 1 & , & \overline{X}_n = 1 \end{cases}$ עבור המשתנה המקרי המוגדר על-ידי

- $P\{S_n=0\}$ א. חשב את (6 נקי)
 - . $Var(S_n)$ ב. חשב את ב. (6 נקי)
- . $Cov(X_n, S_n)$ ג. חשב את ג. (6 נקי)
- . יש התפלגות גיאומטרית. או הפרך את הטענה: למשתנה המקרי ו $1+\sum\limits_{n=1}^{\infty}S_n$ יש התפלגות גיאומטרית.

שאלה 3 (25 נקודות)

. $(-3^i,3^i)$ על הקטע (רציף) אחיד מקרי משתנה מקרי , $i=1,2,\ldots$ לכל

נניח כי כל ה- X_i ים בלתי-תלויים זה בזה.

 $S_n = X_1 + X_2 + \ldots + X_n$ על-ידי על-ידי את המשתנה המקרי , $n = 1, 2, \ldots$ כמו כן, לכל

- S_n א. חשב את השונות של (8 נקי)
- $P\{|S_n| \geq 3^{n+1}\} < \frac{1}{24}$ ב. הוכח כי (8 נקי)
- $\lim_{n o\infty}Pigg\{\sum_{i=1}^nrac{X_i}{3^i}\leq \sqrt{n}igg\}$ ג. חשב את ... השב את (9)

שאלה 4 (25 נקודות)

נתונה חפיסת קלפים רגילה הכוללת 52 קלפים מ- 4 צורות : לב, יהלום, עלה ותלתן. מכל בורה יש 13 קלפים שונים הנושאים את הסימנים : A (אס), 2, 3, ..., 1, 10 (נסיך), Q (מלכה), X (מלך). טורפים היטב את חפיסת הקלפים.

- א. מניחים את החפיסה הפוכה, ומגלים את הקלפים בזה אחר זה. מהי ההסתברות שלפני שיתגלה האס הראשון –
 - (6 נקי) 1. יהפכו בדיוק 10 קלפים!
 - (6 נקי) 2. יהפכו לפחות 10 קלפים!
- (7 נקי) ב. מחלקים באקראי את 52 הקלפים שבחפיסה לארבע קבוצות שוות בגודלן. (בכל קבוצה 13 קלפים.) מהי ההסתברות שבכל קבוצה יהיה לפחות קלף אחד מצורת לב!
 - הפיסה. 21 קלפים מהחפיסה. אם בין 13 הקלפים שנבחרו שלפחות קלף אחד מצורת לב, אם בין 13 הקלפים שנבחרו שלפחות קלף אחד מצורת לב, מהי ההסתברות שיש ביניהם בדיוק 3 קלפים מצורת עלה?

הערה: אין קשר בין סעיפים א, ב ו- ג של השאלה.

שאלה 5 (25 נקודות)

 $f_{X,Y}(x,y) = (c+6) \cdot e^{-cx} \qquad , \qquad 0 < y < x \qquad : מתונה פונקציית הצפיפות המשותפת הבאה : <math display="block">c > 0$ עבור c > 0

- .c א. חשב את א. (6 נקי)
- .Var(X) ב. חשב את ב. (7 נקי)
- E[Y|X=x] ג. חשב (6 נקי)
- $E\left[rac{Y}{X}
 ight]$ את ד. חשב את (6 נקי)

בהצלחה!

$\Phi(z)$, ערכים של פונקציית ההתפלגות המצטברת הנורמלית סטנדרטית,

$$\Phi(z) = P\{Z \le z\} = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-t^2/2} dt \qquad ; \qquad \Phi(-z) = 1 - \Phi(z) \qquad ; \qquad Z \sim N(0,1)$$

$$\Phi(z) pprox \Phi(z_1) + rac{z-z_1}{z_2-z_1} [\Phi(z_2) - \Phi(z_1)]$$
 : נוסחת האינטרפולציה

Z	0.0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.0	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0	0.000	0.0091	0.0020	0.000.	0.0700	0.0750	0.0772	0.0000	0.00	0.0075
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
2.5	0.9938	0.9940	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
3.1	0.9990	0.9991	0.9991	0.9991	0.9992	0.9992	0.9992	0.9992	0.9993	0.9993
3.2	0.9993	0.9993	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
3.3	0.9995	0.9995	0.9995	0.9996	0.9996	0.9996	0.9996	0.9996	0.9996	0.9997
3.4	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998
J	3.,,,,,	2.227	2.,,,,	2.,,,,	2.,,,,	3.,,,,	3.,,,,	3.,,,,	2.,,,,	3.,,,,

` ′		0.55							
Z	0.0	0.126	0.253	0.385	0.524	0.674	0.842	1.036	1.282
$\Phi(z)$	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99
z	1.341	1.405	1.476	1.555	1.645	1.751	1.881	2.054	2.326