36-755, Fall 2017 Homework 5

Due Wed Nov 15 by 5:00pm in Jisu's mailbox

- 1. In this exercise you will fill in some of the details from the proof of the upper bound for sparse PCA under a spike covariance model.
 - (a) For $p \ge 1$ the Schatten p-norm of a $n \times m$ matrix A is the ℓ_p norm of its singular values:

$$||A||_p = \left(\sum_{i=1}^r \sigma_i^p\right)^{1/p},$$

where $\sigma \geq \sigma_2 \geq \dots \sigma_r \geq 0$ are the singular values of A and $r = \min\{m, n\}$. Prove the non-commutative Hölder inequality for conformal matrices A and B:

$$|\operatorname{tr}(A^{\top}B)| \le ||A||_p ||B||_q,$$

for all $p, q \ge 1$ such that $\frac{1}{p} + \frac{1}{q} = 1$.

(b) Let u and v be two unit norm vectors in \mathbb{R}^d . Show that

$$\sqrt{2}\|uu^{\top} - vv^{\top}\|_{\text{op}} = \|uu^{\top} - vv^{\top}\|_{F} = \sqrt{2 - 2(u^{\top}v)^{2}} = \sqrt{2\sin^{2}(\angle(u,v))}.$$

where $\angle(u, v) = \cos^{-1}(|u^{\top}v|)$

- 2. This is a result that I cited when discussing spectra clustering for stochastic block models. A random matrix A of dimension $n \times m$ is sub-Gaussian with parameter σ^2 , written as $A \in SG_{m,n}(\sigma^2)$, when $y^{\top}Ax$ is $SG(\sigma^2)$ for any $y \in \mathbb{S}^{n-1}$ and $x \in \mathbb{S}^{m-1}$. You may assume that $\mathbb{E}[A] = 0$ (or otherwise replace A by $A \mathbb{E}[A]$).
 - (a) Suppose that the entries of A are independent variables that are $SG(\sigma^2)$. Show that $A \in SG_{m,n}(\sigma^2)$.
 - (b) Let $A \in SG_{n,m}(\sigma^2)$ and recall that the operator norm of A is

$$||A||_{\text{op}} = \max_{x \in \mathbb{R}^m, x \neq 0} \frac{||Ax||}{||x||} = \max_{y \in \mathbb{S}^{n-1}, x \in \mathbb{S}^{m-1}} y^\top Ax.$$

Show that, for some C > 0,

$$\mathbb{E}\left[\|A\|_{\text{op}}\right] \le C\left(\sqrt{n} + \sqrt{m}\right).$$

(c) Find a concentration inequality for $||A||_{\text{op}}$.

Hint: work with a 1/4 net for \mathbb{S}^{n-1} and a 1/4 net for \mathbb{S}^{m-1} .

- 3. Exercise 8.4
- 4. Suppose we observe an i.i.d. sample X_1, \ldots, X_n from the mixture distribution

$$\frac{1}{2}P_1 + \frac{1}{2}P_2,$$

1

where $P_1 = N_d(\mu, I_d)$ and $P_2 = N_d(-\mu, I_d)$, with $\mu \in \mathbb{R}^d$ a non-zero vector. Ours task is to cluster the sample points into two groups, where points in the same group originated from the same component of the mixture (i.e. Either P_1 or P_2)

We will use spectral clustering: compute the leading eigenvector $\hat{\nu}$ of the empirical covariance matrix and cluster the points depending on the sign of $X_i^{\top}\hat{\nu}$, $i=1,\ldots,n$.

Use the Davis-Kahan theorem to derive an upper bound on the proportion of misclustered nodes.

- 5. Exercise 4.3
- 6. Massart's finite class Lemma Let \mathcal{A} be a finite subset of \mathbb{R}^n and let $\epsilon = (\epsilon_1, \dots, \epsilon_n)$ be a vector of i.i.d. Rademacher variables. Show that

$$\mathbb{E}\left[\frac{1}{n}\sup_{a\in\mathcal{A}}a^{\top}\epsilon\right] \leq D\frac{\sqrt{2\log|\mathcal{A}|}}{n}$$

where $D = \max_{a \in \mathcal{A}} ||a||$. Use this result to prove Lemma 4.1 of Chapter 4. (In proving both claims it is OK if you get get different constants; know however that the constants in Lemma 4.1 are sub-optimal).