模型-机器学习-降维-主成分分析【hxy】

- 1. 模型名称
- 2. 适用范围
- 3. 形式
- 4. 求解方法
 - 4.1 步骤
 - 4.2 实例
 - 4.3 代码实现
- 5. 参考资料

模型-机器学习-降维-主成分分析【hxy】

1. 模型名称

主成分分析(Principal Components Analysis, PCA)

2. 适用范围

将高维且具有很多相关性很高的变量降维成相对低维相互独立的变量

3. 形式

高维且相关性很高的变量

4. 求解方法

4.1 步骤

1. 构造**原始数据矩阵**A

$$A = (a_{ij})_{n \times m}$$
 $n = number\ of\ samples,\ m = numberof\ indexes$

2. 进行标准化处理

$$\mu_j = rac{1}{n} \sum_{i=1}^n a_{ij} \quad j=1,2,\ldots,m$$
 $s_j = \sqrt{rac{1}{n-1} \sum_{i=1}^n (a_{ij} - \mu_j)^2} \quad j=1,2,\ldots,m$

 μ_j is the mean value, s_j is the sample standard deviation

$$egin{align} \widetilde{a}_{ij} &= rac{a_{ij} - \mu_j}{s_j} \quad i = 1, 2, \ldots, n, \; j = 1, 2, \ldots, m \ & \widetilde{x}_j &= rac{x_j - \mu_j}{s_j} \quad j = 1, 2, \ldots, m \ \end{cases}$$

 \tilde{x}_i is standardized indicator variable

3. 计算相关系数矩阵R

$$r_{ij} = rac{\sum_{k=1}^{n} \widetilde{a}_{ki} \cdot \widetilde{a}_{kj}}{n-1} \quad i,j=1,2,\ldots,m \ where \ r_{ii} = 1, \ r_{ij} = r_{ji}$$

4. 计算特征值和特征向量

$$Eigenvalue \quad \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m \geq 0$$
 $Eigenvector \quad u_1, \ u_2, \ \ldots, \ u_m$

5. 由特征向量组成m个新的**指标变**量

$$y_1 = u_{11}\widetilde{x}_1 + u_{21}\widetilde{x}_2 + \ldots + u_{m1}\widetilde{x}_m$$

 $y_2 = u_{12}\widetilde{x}_1 + u_{22}\widetilde{x}_2 + \ldots + u_{m2}\widetilde{x}_m$

 $y_m = u_{1m}\widetilde{x}_1 + u_{2m}\widetilde{x}_2 + \ldots + u_{mm}\widetilde{x}_m$ $y_1 \ is \ the \ first \ principle \ component, \ etc.$

通过这个可以看出每个主成分y与原指标x之间的关系,明白每个主成分主要是跟什么有关,例如下图

	x 1	x 1	$\bar{x}_{_{3}}$	ž.	ž,	ž,	ž,	ž.	ž,	X m
1	0.34	0.35	0.36	0.36	0.36	0.36	0.22	0.12	0.31	0.24
2	-0.19	0.03	0.02	0.01	-0.05	-0.06	0.58	0.70	-0.19	-0.28
3	-0.16	-0.10	-0.09	-0.11	-0.15	-0.16	-0.03	0.35	0.12	0.86
4	-0.10	-0.22	-0.16	-0.16	-0.04	-0.00	0.08	0.07	0.89	0.24

- 从主成分的系数可以看出,
 - 第一主成分主要反映了前六个指标(学校数、学生数和教师数方面)的信息。
 - 第二主成分主要反映了高校规模和教师中高级职称的比例,
 - 第三主成分主要反映了生均教育经费,
 - 第四主成分主要反映了国家财政预算内普通高教经费占国内生产总值的比重。 分别以四个主成分的贡献率为权重,构建主成分综合评价模型
- 6. 计算特征值 $\lambda_j (j=1,2,\ldots,m)$ 的信息贡献率 b_j

$$b_j = rac{\lambda_j}{\sum_{k=1}^m \lambda_k} \quad j = 1, 2, \dots, m$$

 b_i is called information contribution rate

7. 计算 y_1, y_2, \ldots, y_p 的累积贡献率 α_p

$$lpha_p = rac{\sum_{k=1}^p \lambda_k}{\sum_{k=1}^m \lambda_k}$$

8. 选择前p个主成分使 $\alpha_p \geq 0.85$ (接近1)

4.2 实例

年份	投资效果系数(无时 滞)	投资效果系数(时滞一 年)	全社会固定资产交付使用率	建设项目投产率
1984	0.71	0.49	0.41	0.51
1985	0.4	0.49	0.44	0.57
1986	0.55	0.56	0.48	0.53
1987	0.62	0.93	0.38	0.53
1988	0.45	0.42	0.41	0.54
1989	0.36	0.37	0.46	0.54
1990	0.55	0.68	0.42	0.54
1991	0.62	0.9	0.38	0.56
1992	0.61	0.99	0.33	0.57
1993	0.71	0.93	0.35	0.66
1994	0.59	0.69	0.36	0.57
1995	0.41	0.47	0.4	0.54
1996	0.26	0.29	0.43	0.57
1997	0.14	0.16	0.43	0.55
1998	0.12	0.13	0.45	0.59
1999	0.22	0.25	0.44	0.58
2000	0.71	0.49	0.41	0.51

1. 构造**原始数据矩阵**A

$$A = \begin{pmatrix} 0.71 & 0.49 & 0.41 & 0.51 & 0.46 \\ 0.4 & 0.49 & 0.44 & 0.57 & 0.5 \\ 0.55 & 0.56 & 0.48 & 0.53 & 0.49 \\ 0.62 & 0.93 & 0.38 & 0.53 & 0.47 \\ 0.45 & 0.42 & 0.41 & 0.54 & 0.47 \\ 0.36 & 0.37 & 0.46 & 0.54 & 0.48 \\ 0.55 & 0.68 & 0.42 & 0.54 & 0.46 \\ 0.62 & 0.9 & 0.38 & 0.56 & 0.46 \\ 0.61 & 0.99 & 0.33 & 0.57 & 0.43 \\ 0.71 & 0.93 & 0.35 & 0.66 & 0.44 \\ 0.59 & 0.69 & 0.36 & 0.57 & 0.48 \\ 0.41 & 0.47 & 0.4 & 0.54 & 0.48 \\ 0.26 & 0.29 & 0.43 & 0.57 & 0.48 \\ 0.14 & 0.16 & 0.43 & 0.55 & 0.47 \\ 0.12 & 0.13 & 0.45 & 0.59 & 0.54 \\ 0.22 & 0.25 & 0.44 & 0.58 & 0.52 \\ 0.71 & 0.49 & 0.41 & 0.51 & 0.46 \end{pmatrix}$$

2. 进行标准化处理

a) 均值 μ

$$\mu_j = rac{1}{17} \sum_{i=1}^{17} a_{ij} \quad j=1,2,\ldots,5$$
 $\mu = \begin{pmatrix} 0.4724 & 0.5435 & 0.4106 & 0.5565 & 0.4759 \end{pmatrix}$

b) 标准差S

$$s_j = \sqrt{rac{1}{17-1} \sum_{i=1}^{17} (a_{ij} - \mu_j)^2} \quad j = 1, 2, \dots, 5$$
 $S = (0.1974 \quad 0.2731 \quad 0.0404 \quad 0.0353 \quad 0.0267)$

c) 标准化指标 \widetilde{A}

$$\widetilde{a}_{ij} = \frac{a_{ij} - \mu_j}{s_j} \quad i = 1, 2, \dots, n, \ j = 1, 2, \dots, m$$

$$\begin{pmatrix} 1.2038 & -0.1960 & -0.0146 & -1.3148 & -0.5947 \\ -0.3665 & -0.1960 & 0.7283 & 0.3828 & 0.9031 \\ 0.3933 & 0.0603 & 1.7188 & -0.7489 & 0.5286 \\ 0.7479 & 1.4151 & -0.7574 & -0.7489 & -0.2203 \\ -0.1132 & -0.4523 & -0.0146 & -0.4660 & -0.2203 \\ -0.5691 & -0.6354 & 1.2235 & -0.4660 & 0.1542 \\ 0.3933 & 0.4997 & 0.2331 & -0.4660 & -0.5947 \\ 0.7479 & 1.3052 & -0.7574 & 0.0999 & -0.5947 \\ 0.6973 & 1.6348 & -1.9955 & 0.3828 & -1.7180 \\ 1.2038 & 1.4151 & -1.5003 & 2.9291 & -1.3436 \\ 0.5960 & 0.5363 & -1.2527 & 0.3828 & 0.1542 \\ -0.3159 & -0.2692 & -0.2622 & -0.4660 & 0.1542 \\ -1.0757 & -0.9283 & 0.4807 & 0.3828 & 0.1542 \\ -1.6836 & -1.4043 & 0.4807 & -0.1831 & -0.2203 \\ -1.7849 & -1.5142 & 0.9759 & 0.9486 & 2.4008 \\ -1.2783 & -1.0748 & 0.7283 & 0.6657 & 1.6519 \\ 1.2038 & -0.1960 & -0.0146 & -1.3148 & -0.5947 \end{pmatrix}$$

3. 计算相关系数矩阵R

$$r_{ij} = \frac{\sum_{k=1}^{17} \widetilde{a}_{ki} \cdot \widetilde{a}_{kj}}{17 - 1} \quad i, j = 1, 2, \dots, 5$$

$$R = \begin{pmatrix} 1.0000 & 0.8097 & -0.5764 & -0.1519 & -0.7141 \\ 0.8097 & 1.0000 & -0.7573 & 0.1619 & -0.7005 \\ -0.5764 & -0.7573 & 1.0000 & -0.3225 & 0.6862 \\ -0.1519 & 0.1619 & -0.3225 & 1.0000 & 0.0499 \\ -0.7141 & -0.7005 & 0.6862 & 0.0499 & 1.0000 \end{pmatrix}$$

4. 计算特征值和特征向量

$$Eigenvalue \quad \lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_m \geq 0$$

$$Eigenvactor \quad u_1, \ u_2, \ \ldots, \ u_m$$

$$\lambda = \begin{pmatrix} 3.1343 & 1.1683 & 0.3502 & 0.2258 & 0.1213 \end{pmatrix}$$

$$\begin{pmatrix} 0.4905 & -0.2934 & 0.5109 & 0.1896 & -0.6134 \\ 0.5254 & 0.0490 & 0.4337 & -0.1217 & 0.7202 \\ -0.4871 & -0.2812 & 0.3714 & 0.6888 & 0.2672 \\ 0.0671 & 0.8981 & 0.1477 & 0.3863 & -0.1336 \\ -0.4916 & 0.1606 & 0.6255 & -0.5706 & -0.1254 \end{pmatrix}$$

5. 由特征向量组成m个新的**指标变量**

 $y_1 = 0.4905\widetilde{x}_1 + 0.5254\widetilde{x}_2 - 0.4871\widetilde{x}_3 + 0.0671\widetilde{x}_4 - 0.4916\widetilde{x}_5$ $y_2 = -0.2934\widetilde{x}_1 + 0.0490\widetilde{x}_2 - 0.2812\widetilde{x}_3 + 0.8981\widetilde{x}_4 + 0.1606\widetilde{x}_5$ $y_3 = 0.5109\widetilde{x}_1 + 0.4337\widetilde{x}_2 + 0.3714\widetilde{x}_3 + 0.1477\widetilde{x}_4 + 0.6255\widetilde{x}_5$ $y_4 = 0.1896\widetilde{x}_1 - 0.1217\widetilde{x}_2 + 0.6888\widetilde{x}_3 + 0.3863\widetilde{x}_4 - 0.5706\widetilde{x}_5$ $y_5 = -0.6134\widetilde{x}_1 + 0.7202\widetilde{x}_2 + 0.2672\widetilde{x}_3 - 0.1336\widetilde{x}_4 - 0.1254\widetilde{x}_5$ $y_1 \text{ is the first principle component, etc.}$

6. 计算特征值 $\lambda_j (j=1,2,\ldots,m)$ 的信息贡献率 $b_j (\%)$

$$b_j = rac{\lambda_j}{\sum_{k=1}^5 \lambda_k} \quad j=1,2,\ldots,5$$
 $B=(62.6866 \quad 23.3670 \quad 7.0036 \quad 4.5162 \quad 2.4266)$

7. 计算 y_1, y_2, \ldots, y_p 的累积贡献率 α_p

$$\alpha_p = \frac{\sum_{k=1}^p \lambda_k}{\sum_{k=1}^m \lambda_k}$$

$$\alpha = \begin{pmatrix} 62.6866 & 86.0536 & 93.0572 & 97.5734 & 100.0000 \end{pmatrix}$$

8. 此处选择前3个主成分,累积贡献率达93%,主成分分析效果很好,维数由5维降到3维

$$y_1 = 0.4905\widetilde{x}_1 + 0.5254\widetilde{x}_2 - 0.4871\widetilde{x}_3 + 0.0671\widetilde{x}_4 - 0.4916\widetilde{x}_5 \ y_2 = -0.2934\widetilde{x}_1 + 0.0490\widetilde{x}_2 - 0.2812\widetilde{x}_3 + 0.8981\widetilde{x}_4 + 0.1606\widetilde{x}_5 \ y_3 = 0.5109\widetilde{x}_1 + 0.4337\widetilde{x}_2 + 0.3714\widetilde{x}_3 + 0.1477\widetilde{x}_4 + 0.6255\widetilde{x}_5$$

4.3 代码实现

pca_dimension.m

代码:

```
clc, clear
% Input data with rows of samples and columns of indexes
a = [0.71 \ 0.49 \ 0.41 \ 0.51 \ 0.46
0.40 0.49 0.44 0.57 0.50
0.55 0.56 0.48 0.53 0.49
0.62 0.93 0.38 0.53 0.47
0.45 0.42 0.41 0.54 0.47
0.36 0.37 0.46 0.54 0.48
0.55 0.68 0.42 0.54 0.46
0.62 0.90 0.38 0.56 0.46
0.61 0.99 0.33 0.57 0.43
0.71 0.93 0.35 0.66 0.44
0.59 0.69 0.36 0.57 0.48
0.41 0.47 0.40 0.54 0.48
0.26 0.29 0.43 0.57 0.48
0.14 0.16 0.43 0.55 0.47
0.12 0.13 0.45 0.59 0.54
0.22 0.25 0.44 0.58 0.52
```

```
0.71 0.49 0.41 0.51 0.46];
% Standardize data
standardized a = zscore(a);
disp('标准化后数据:');
disp(standardized a);
% Calculate corrcoef matrix
r = corrcoef(standardized a);
disp('相关系数矩阵: ');
disp(r);
% Calculate eigenvalues y, eigenvectors x, contribution p
[x, y, p] = pcacov(r);
% Construct row vector of +1/-1
f = sign(sum(x));
% Modify the sign of eigenvectors x
x = x \cdot f;
disp('特征值: ');
disp(y');
disp('特征向量: ');
disp(x');
disp('贡献率(%): ');
disp(p');
% Calculate cummulative contribution p_cum
p_cum = cumsum(p);
disp('累计贡献率(%): ');
disp(p_cum');
% Choose the number of principle components
disp(['PCA选取了前',num2str(num),'个主成分']);
disp(['累计贡献率达',num2str(p_cum(num)),'%']);
disp(' ');
new_p = p((1:num),1);
disp('主成分分析后成分各自贡献率:');
disp(new_p'/100);
new_x = x(:,(1:num));
disp('主成分分析后特征向量:');
disp(new_x');
```

结果:

标准化后数据:							
1.2038	-0.1960	-0.0146	-1.3148	-0.5947			
-0.3665	-0.1960	0.7283	0.3828	0.9031			
0.3933	0.0603	1.7188	-0.7489	0.5286			
0.7479	1.4151	-0.7574	-0.7489	-0.2203			
-0.1132	-0.4523	-0.0146	-0.4660	-0.2203			
-0.5691	-0.6354	1.2235	-0.4660	0.1542			
0.3933	0.4997	0.2331	-0.4660	-0.5947			
0.7479	1.3052	-0.7574	0.0999	-0.5947			
0.6973	1.6348	-1.9955	0.3828	-1.7180			
1.2038	1.4151	-1.5003	2.9291	-1.3436			
0.5960	0.5363	-1.2527	0.3828	0.1542			
-0.3159	-0.2692	-0.2622	-0.4660	0.1542			
-1.0757	-0.9283	0.4807	0.3828	0.1542			
-1.6836	-1.4043	0.4807	-0.1831	-0.2203			
-1.7849	-1.5142	0.9759	0.1031	2.4008			
-1.783 -1.2783	-1.0748	0.7283	0.6657	1.6519			
1.2038	-0.1960	-0.0146	-1.3148	-0.5947			
1.2030	-0.1900	-0.0140	-1.5140	-0.3347			
相关系数矩阵:							
1.0000	0.8097	-0.5764	-0.1519	-0.7141			
0.8097	1.0000	-0.7573	0.1619	-0.7005			
-0.5764	-0.7573	1.0000	-0.3225	0.7003			
-0.1519	0.1619	-0.3225	1.0000	0.0499			
-0.7141	-0.7005	0.6862	0.0499	1.0000			
017141	017005	0.0002	010433	110000			
特征值:							
3.1343	1.1683	0.3502	0.2258	0.1213			
特征向量:							
0.4905	0.5254	-0.4871	0.0671	-0.4916			
-0.2934	0.0490	-0.2812	0.8981	0.1606			
0.5109	0.4337	0.3714	0.1477	0.6255			
0.1896	-0.1217	0.6888	0.3863	-0.5706			
-0.6134	0.7202	0.2672	-0.1336	-0.1254			
贡献率(%):							
62.6866	23.3670	7.0036	4.5162	2.4266			
累计贡献率(%):							
62.6866	86.0536	93.0572	97.5734	100.0000			
PCA选取了前3个							
累计贡献率达93.0572%							
主成分分析后成:							
0.6269	0.2337	0.0700					
主成分分析后特征				-			
	0.5254		0.0671				
	0.0490		0.8981				
0.5109	0.4337	0.3714	0.1477	0.6255			

5. 参考资料

- 1. <u>数模官网-降维PCA</u>
- 2. 《数学建模算法与应用》: P427-P430
- 3. 第三次培训_高晓沨老师PPT: P34-P39
- 4. Excel相关系数矩阵可视化
- 5. <u>R相关系数矩阵可视化</u>
- 6. 主成分分析 (PCA) 的推导和应用