Brandeis

COSI 104a Introduction to Machine Learning

Chapter 1 – Math concepts

Instructor: Dr. Hongfu Liu

Email: hongfuliu@brandeis.edu

How to present a sample

- Sample is the basic unit, which contains multiple features or attributes
 - Student ID, name, email, age, ...
- Vector
 - In most cases, a sample is presented as a row vector

d-dimension vector

$$\mathbf{v} = \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix}$$
 $\vec{v}[k]$ – the k -th element in \mathbf{v}

Transpose of a vector

$$\mathbf{v}^T = \vec{v}^T = [v_1 \ v_2 \ \dots v_d]$$

Vector operation

• In machine learning, it has little physical meaning to add two samples (Average of a group of samples is meaningful). Instead, it is widely used to calculate the similarity of two samples.

1D: 101

- How?
 - Minus
 - Other ways?

Curse-dimensionality

The number of features required to keep average distance constant grows exponentially with the number of dimensions.

Vector operation

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_d \end{bmatrix} \quad \vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_d \end{bmatrix} \quad \text{The magnitude/length of a vector}$$

$$\|\vec{v}\| = \sqrt{\sum_{k=1}^d v_k^2}$$

$$\|\vec{v}\| = \sqrt{\sum_{k=1}^d v_k^2}$$

The inner product of
$$\langle \vec{v}, \vec{u} \rangle = \vec{v}^T \vec{u} = \vec{u}^T \vec{v} = \sum_{k=1}^d v_k u_k$$

 \vec{v} and \vec{u} are said to be orthogonal if $\langle \vec{v}, \vec{u} \rangle = 0$

Vector operation

- 1. Document Similarity
- A scenario that involves the requirement of identifying the similarity between pairs of a document is a good use case for the utilization of cosine similarity as a quantification of the measurement of similarity between two objects.
- To find the quantification of the similarity between two documents, you need to convert the words or phrases within the document or sentence into a vectorized form of representation.
- The vector representations of the documents can then be used within the cosine similarity formula to obtain a quantification of similarity.
- In the scenario described above, the cosine similarity of 1 implies that the two documents are exactly alike and a cosine similarity of 0 would point to the conclusion that there are no similarities between the two documents.

Step 1: Obtain a vectorized representation of the texts.

Vectorised Representation

<u>Aa</u> Word	■ Document 1	■ Document 2
Deep	1	1
Learning	1	1
Can	1	1
Be	1	1
Hard	1	0
Simple	0	1

A vectorized representation of texts in table format. | Image: Richmond Alake

- Document 1: [1, 1, 1, 1, 0] let's refer to this as A
- Document 2: [1, 1, 1, 1, 0, 1] let's refer to this as B

Step 2: Find the Cosine Similarity

```
cosine similarity (CS) = (A . B) / (||A|| ||B||)
```

- Calculate the dot product between A and B: 1.1 + 1.1 + 1.1 + 1.1 + 1.0 + 0.1 = 4.
- Calculate the magnitude of the vector A: $\sqrt{1^2 + 1^2 + 1^2 + 1^2 + 0^2} = 2.2360679775$.
- Calculate the magnitude of the vector B: $\sqrt{1^2 + 1^2 + 1^2 + 1^2 + 0^2 + 1^2} = 2.2360679775$.
- Calculate the cosine similarity: (4) / (2.2360679775*2.2360679775) = 0.80 (80 percent similarity between the sentences in both document).

Any problem?

Matrix

A group of samples

$$A_{m \times n} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$
 m rows

 $A_{m \times n}[i,j]$ – the element at the *i*-th row and *j*-th column of A

Transpose of a matrix
$$(A_{m \times n})^T = \begin{bmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nm} \end{bmatrix}$$

8

 $(A_{m\times n})^T[j,i] = A_{m\times n}[i,j]$

Matrix operation

$$A_{m \times n} B_{n \times q} = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{11} & \cdots & b_{1q} \\ \vdots & \ddots & \vdots \\ b_{n1} & \cdots & b_{nq} \end{bmatrix} = \begin{bmatrix} c_{11} & \cdots & c_{1q} \\ \vdots & \ddots & \vdots \\ c_{m1} & \cdots & c_{mq} \end{bmatrix}$$

where
$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

The product of matrix and vector

$$A\vec{v} \stackrel{?}{=} \vec{v}^T A$$

Matrix operation

$$AB = \begin{bmatrix} 2 & 1 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 5 & 2 \\ 1 & 6 & 8 \end{bmatrix}$$

$$2 \times 2 \quad 2 \times 3 \quad 2 \times 3$$

$$2 \times 3 \quad 2 \times 3$$

$$2 \times 3 \quad 2 \times 2$$

$$40 \text{ not match}$$

Matrix operation

$$Matrix A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

$$A^{100}$$

• When we use matrix multiple in machine learning?

Matrix inverse

You need to master

- Load a data matrix into Python
- Get a subset of the data by random sampling, or some characteristics
- Get one sample from the matrix according to its index
- Get one feature from the matrix according to its index
- Feature normalization
- Calculate the similarity between two samples

Other concepts

- Probability
- Distribution
- Expectation/Variance
- And so on
- They are really important for advanced machine learning. But...

Random Variables

- A random variable is the result of a stochastic experiment, which can be measured. It can be discrete or continuous.
- Stochastic experiment: a process in which various elementary states (or events, outcomes) are possible.
 - Flip a coin. The state set $S = \{\text{Head, Tail}\}.$
 - Cast a six-face dice. $S = \{1, 2, 3, 4, 5, 6\}.$
 - Binary decision. $S = \{0, 1\}$.
 - The price of a stock.

- ...

If a variable X is discrete, P(x) represents the probability that X = x happens.

$$\sum_{x} P(x) = 1$$

Flip a Coin

	Head	Tail	
P(X)	0.49	0.51	

Total is N

X	<i>x</i> ₁	•••	x_i	 x _K	
<i>y</i> ₁					
y _j			n _{ij}		r_j
1724					
У М			c_i		

Joint Probability

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$

Marginal Probability

$$P(X = x_i) = \frac{c_i}{N}$$

$$P(Y = y_j) = \frac{r_j}{N}$$

· Conditional Probability

$$P(Y = y_j | X = x_i) = \frac{n_{ij}}{c_i}$$

$$P(X = x_i | Y = y_j) = \frac{n_{ij}}{r_i}$$

Total N

Y	<i>x</i> ₁	•••	x_i	 x _K	
<i>y</i> ₁					
: y _j			n _{ij}		r_j
:			_		
Ум			c_i		

Product Rule

$$P(X,Y) = P(Y|X) P(X)$$

$$P(X = x_i, Y = y_j) = \frac{n_{ij}}{N}$$
$$= \frac{n_{ij}}{c_i} \times \frac{c_i}{N} = P(Y|X) P(X)$$

• Sum Rule
$$P(X) = \sum_{Y} P(X, Y)$$

$$P(X = x_i) = \frac{c_i}{N} = \frac{\sum_{j=1}^{M} n_{ij}}{N} = \sum_{j=1}^{M} P(X = x_i, Y = y_j)$$

• Bayes' Theorem (Rule)

$$P(Y|X) = \frac{P(X|Y)P(Y)}{P(X)}$$

• Chain Rule

$$P(X,Y,Z,...) = P(X)P(Y|X)P(Z|X,Y)P(...|X,Y,Z)$$

• Independent

$$P(X,Y) = P(X)P(Y)$$

Conditional Independent

$$P(X,Y|Z) = P(X|Z)P(Y|Z)$$

Without knowing Z P(X,Y) = P(X)P(Y)?

Distribution

The **p**robability **d**istribution **f**unction (PDF) of a variable X, usually denoted as p(x), describes the likelihood of the possible values that a random variable can take.

Gaussian Distribution

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

Bernoulli Distribution

Example: Flip a coin with probability p coming up head

A single random variable X which takes value 1 with probability p and value 0 with probability 1-p.

$$x \sim Bern(p) = p^x (1-p)^{1-x}$$

Expectation

$$x \sim P(x)$$

$$E[f] = \sum_{x} P(x)f(x) \qquad E[f] = \int p(x)f(x)dx$$

Given identically independently distributed data $\{x_n\}_{n=1,...,N}$

$$E[f] \cong \frac{1}{N} \sum_{n=1}^{N} f(x_n)$$

Condition on y:
$$E_x[f|y] = \sum_{x} P(x|y)f(x)$$

Variance

Variance: the expectation of the squared deviation from mean (i.e., the degree of spread out from the average value.

$$var[f] = E[(f(x) - E[f(x)])^2] = E[f(x)^2] - E[f(x)]^2$$

Covariance: the joint variability of two random variables

$$cov[x,y] = E[(x - E[x])(y - E[y])]$$
$$= E[xy] - E[x]E[y]$$

x	0	1	2	3	4
f(x)	1/5	1/5	1/5	1/5	1/5

Standard deviation

https://online.stat.psu.edu/stat500/lesson/3/3.2/3.2.1

Entropy

Important quantity in

- Coding theory
- Statistical physics
- Machine learning

$$H[X] = -\sum_{x} P(x) \log_2 P(x)$$

Coding theory: X is discrete with 8 possible states. At least how many bits are needed to transmit the state of X if all states equally likely?

$$H[X] = -8 \times \frac{1}{8} \log_2 \frac{1}{8} = 3$$

$$H[x] = -\sum_{x} P(x) \log_2 P(x)$$

$$H[x] = -\frac{1}{2}\log_2\frac{1}{2} - \frac{1}{4}\log_2\frac{1}{4} - \frac{1}{8}\log_2\frac{1}{8} - \frac{1}{16}\log_2\frac{1}{16} - \frac{4}{64}\log_2\frac{1}{64}$$
$$= 2 \text{ bits}$$

average code length =
$$\frac{1}{2} \times 1 + \frac{1}{4} \times 2 + \frac{1}{8} \times 3 + \frac{1}{16} \times 4 + 4 \times \frac{1}{64} \times 6$$

= 2 bits

When is H maximized?

Bernoulli:
$$P(X) = p^X (1-p)^{1-X}$$

Conditional Entropy

$$H[Y|X] = -\int \int p(x,y) \log p(y|x) \, dy \, dx$$

$$H[X,Y] = H[X] + H[Y|X] = H[Y] + H[X|Y]$$

Mutual Information

$$I[X,Y] = -\int \int p(x,y) \log \left(\frac{p(x)p(y)}{p(x,y)}\right) dx dy$$
$$I[X,Y] = H[X] - H[X|Y] = H[Y] - H[Y|X]$$

