Physics 137B Lecture 4

Keshav Balwant Deoskar

January 26, 2024

These are notes taken from lectures on Quantum Mechanics delivered by Professor Raúl A. Briceño for UC Berekley's Physics 137B class in the Sprng 2024 semester.

Contents

1	January 24 - Introduction to Perturbation Theory	2
	1.1 Time Independent Perturbation Theory	2

1 January 24 - Introduction to Perturbation Theory

In 137A, we could solve $\hat{H}|n\rangle = E_n|n\rangle$ exactly and obtain the stationary states, then build the general solution as

$$|\psi(t=0)\rangle = \sum_{n} c_n |n\rangle$$

and

$$|\psi(t)\rangle = \sum_{n} c_n e^{-iE_n t/\hbar} |n\rangle$$

This was possible because we were studying systems with relatively simple/convenient Hamiltonians, but *most* situations that we want to study aren't so simple.

Where can we apply P.T.?

• Perturbation Theory allows us to study Hamiltonians of the form

$$\hat{H} = \hat{H}_0 + \lambda \hat{H}'$$

where \hat{H}_0 is a Hamiltonian we can solve

$$\hat{H}_0|n^{(0)}\rangle = E_n^{(0)}|n^{(0)}\rangle$$

and $\lambda \in (0,1]$.

• The idea is to parametrize our solutions in terms of λ and find the $\lambda \to 1$ solution.

Why avoid $\lambda = 0$?

We can think of PT as doing

$$\hat{H} = \hat{H}_0 + \hat{H}_1$$

$$= \hat{H}_0 + \lambda \left(\frac{\hat{H}_1}{\lambda}\right)$$

$$= \hat{H}_0 + \lambda \hat{H}'$$

So, $\lambda = 0$ would be a problem.

1.1 Time Independent Perturbation Theory

We want to solve the Hamiltonian

$$\hat{H}|n\rangle = (\hat{H}_0 + \lambda \hat{H}')|n\rangle = E_n|n\rangle$$
 (1)

We assume that our solutions can be parametrized as functions of λ . Then, we taylor expand them as

$$|n\rangle = \sum_{j=0}^{\infty} \lambda^j |n^{(j)}\rangle$$

$$E_n = \sum_{j=0}^{\infty} E_n^{(j)} \lambda^j$$

Now, if we bring the RHS of equation (1) to the left, we have

$$0 = (\hat{H}_0 + \lambda \hat{H}' - E_n) |n\rangle$$

$$= (\hat{H}_0 + \lambda \hat{H}' - \sum_{j=0}^{\infty} E_n^{(j)} \lambda^j) \left(\sum_{k=0}^{\infty} \lambda^k |n^{(k)}\rangle\right)$$

$$= (\hat{H}_0 + \lambda \hat{H}' - (E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots)) (|n\rangle^{(0)} + \lambda |n\rangle^{(1)} + \lambda^2 |n\rangle^{(2)} + \cdots)$$

Now, let's see what happens when we trunate the resulting sum at different powers of λ :

$$\mathcal{O}(\lambda^{0}) : \left(\hat{H}_{0} - E_{n}^{0}\right) | n^{0} \rangle = 0 \left[\langle k^{(0)} | n^{(0)} \rangle = \delta_{kn} \right]$$

$$\mathcal{O}(\lambda^{1}) : \lambda \left(\left(\hat{H}' - E_{n}^{(1)}\right) | n^{(0)} \rangle + \left(\hat{H}_{0} - E_{n}^{(0)}\right) | n^{1} \rangle \right)$$

In the $\mathcal{O}(1)$ seres, we don't know what $E_n^{(1)}$ is. To obtain this correction, we simply **act** $\langle n^{(0)}|$ **on** the equation:

$$\begin{split} 0 &= \langle n^{(0)} | \left(\hat{H}' - E_n^{(1)} \right) | n^0 \rangle + \underbrace{\langle n^{(0)} | \left(\hat{H}_n^{(0)} - E_n^{(0)} \right) | n^1 \rangle}_{=0, \text{ since } E_n^{(0)} \langle n^{(0)} | - E_n^{(0)} \langle n^{(0)} | = 0 \\ &= \langle n^{(0)} | \hat{H}' | n^{(0)} \rangle - E_n^{(1)} \underbrace{\langle n^{(0)} | n^{(0)} \rangle}_{1} \\ &\Longrightarrow \boxed{E_n^1 = \langle n^{(0)} | \hat{H}' | n^{(0)} \rangle} \end{split}$$

This gives us the leading order Eigenenergy correction! But we still need to find actual states. So, next, we need to solve for $|n^{(1)}\rangle$.

So far we've been studynig Non-degenerate Perturbation Theory. This only applies for Hamiltonians with no degeneracies i.e. Hamiltonians for which

$$E_n^{(0)} = E_k^{(0)} \iff n = k$$

We can solve for $|n\rangle^{(0)}$ in terms of the non-perturbative stationary states $|k^{(0)}\rangle$ as

$$\begin{split} |n^{(1)}\rangle &= \sum_k c_{nk}^{(1)} |k^{(0)}\rangle \\ &= c_{nn}^{(1)} |n^{(0)}\rangle + \sum_{k \neq n} c_{nk}^{(1)} |k^{(0)}\rangle \end{split}$$

Note that $|n\rangle$ is not yet normalized, so for now we can assume $|n^{(\lambda)}\rangle$ is some arbitrary linear combination of the $\{|n^{(0)}\rangle, |n^{(1)}\rangle, \dots\}$ and worry about the norm *later*.

So,

$$|n^{(\lambda)}\rangle = |n^{(0)}\rangle + \lambda |n^{(1)}\rangle + \cdots$$

$$= \underbrace{\left(1 + \lambda c_{nn}^{(0)}\right)}_{A} \left(|n^{(0)}\rangle + \underbrace{\left(\frac{\lambda}{A}\right)}_{\lambda^{1}} \sum_{k \neq n} c_{nk}^{(1)} |k^{(0)}\rangle + \cdots\right)$$

Let

$$|n^{(1)}\rangle = \sum_{k \neq n} c_{nk}^{(1)} |k^{(0)}\rangle$$

Our current goal, then, is to find $c_{nk}^{(1)}$ Then,

$$0 = (\hat{H}_0 - E_n^{(0)}) |n^{(1)}\rangle + (\hat{H}' + E_n^{(1)}) |n^{(0)}\rangle$$

$$= (\hat{H}_0 - E_n^{(0)}) \sum_{k \neq n} c_{nk}^{(1)} |k\rangle^{(0)} + (\hat{H}' - E_n^{(1)}) |n^{(0)}\rangle$$

$$= \sum_{k \neq n} c_{nk}^{(1)} (E_k^{(0)} - E_n^{(0)}) |k^{(0)}\rangle + (\hat{H}' - E_n^{(1)}) |n^{(0)}\rangle$$

Now, to extract $|n^{(0)}\rangle$, we act using another stationary state $|l^{(0)}\rangle$ where $l \neq n$.

$$\implies \sum_{k \neq n} c_{nk}^{(1)} \left(E_k^{(0)} - E_n^{(0)} \right) \underbrace{\langle l^{(0)} | k^{(0)} \rangle}_{\delta_{lk}} + \langle l^{(0)} | \hat{H}' | n^{(0)} \rangle - E_n^{(1)} \underbrace{\langle l^{(0)} | n^{(0)} \rangle}_{0} = 0$$

[Lecture ended, so stopped abruptly. Pick up from here in lec 5 notes.]