TD 7. Ensembles \mathbb{Z} et \mathbb{R} .

Exercice 1. Déterminer, pour tout $n \in \mathbb{N}$, le reste de la division euclidienne de 10^n par 3. En déduire un critère de divisibilité par 3.

Exercice 2. Montrer que pour tout $n \in \mathbb{N}$, $7|3^{2n+1} + 2^{n+2}$.

Exercice 3. Soient n et a des entiers supérieurs ou égaux à 2.

- 1) Montrer que si $a^n 1$ est premier alors a = 2.
- 2) Montrer que si $2^n 1$ est un nombre premier alors n est premier.

Les nombres de la forme 2^p-1 avec p premier s'appellent les nombres de Mersenne.

Exercice 4. Un entier naturel est dit parfait s'il est égal à la somme de ses diviseurs positifs sauf lui-même.

- 1) Vérifier que 6 et 28 sont parfaits.
- 2) Un nombre premier peut-il être parfait?
- 3) Soit $n \in \mathbb{N}^*$. Montrer que si $2^n 1$ est premier alors $2^{n-1}(2^n 1)$ est parfait.

Exercice 5. Montrer que pour tout $x \in \mathbb{R}$, $\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = \lfloor 2x \rfloor$.

Exercice 6. Montrer que pour tout $n \in \mathbb{N}^*$ et tout $x \in \mathbb{R}$, $\left| \frac{\lfloor nx \rfloor}{n} \right| = \lfloor x \rfloor$.

Exercice 7. Calculer, pour tout entier n supérieur ou égal à 2, $S_n = \sum_{k=1}^{n^2-1} \lfloor \sqrt{k} \rfloor$.

Exercice 8. Soit A une partie non vide de \mathbb{R} , bornée. On pose $B = \{-x \mid x \in A\}$. Montrer que B est bornée, et déteminer ses bornes supérieure et inférieure.