

FIGURE 1 If $f(x) \ge 0$, the Riemann sum $\sum f(x_i^*) \Delta x$ is the sum of areas of rectangles.

2 Definition of a Definite Integral If f is a function defined for $a \le x \le b$, we divide the interval [a, b] into n subintervals of equal width $\Delta x = (b - a)/n$. We let $x_0 (= a), x_1, x_2, \ldots, x_n (= b)$ be the endpoints of these subintervals and we let $x_1^*, x_2^*, \ldots, x_n^*$ be any **sample points** in these subintervals, so x_i^* lies in the ith subinterval $[x_{i-1}, x_i]$. Then the **definite integral of** f **from** a **to** b is

$$\int_a^b f(x) dx = \lim_{n \to \infty} \sum_{i=1}^n f(x_i^*) \Delta x$$

provided that this limit exists and gives the same value for all possible choices of sample points. If it does exist, we say that f is **integrable** on [a, b].

FIGURE 4

 $\int_{a}^{b} f(x) dx$ is the net area.

FIGURE 3

 $\sum f(x_i^*) \Delta x$ is an approximation to the net area.

Screen clipping taken: 08/05/2025 12:52 pm

The Fundamental Theorem of Calculus, Part 1 If f is continuous on [a, b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t) dt$$
 $a \le x \le b$

is continuous on [a, b] and differentiable on (a, b), and g'(x) = f(x).

EXAMPLE 2 Find the derivative of the function $g(x) = \int_0^x \sqrt{1 + t^2} \ dt$.

SOLUTION Since $f(t) = \sqrt{1 + t^2}$ is continuous, Part 1 of the Fundamental Theorem of Calculus gives

$$g'(x) = \sqrt{1 + x^2}$$

$$\int x^2 dx = \frac{x^3}{3} + C \qquad \text{because} \qquad \frac{d}{dx} \left(\frac{x^3}{3} + C \right) = x^2$$

$$\int f(x) dx = F(x) \qquad \text{means} \qquad F'(x) = f(x)$$

1 Table of Indefinite Integrals

$$\int cf(x) dx = c \int f(x) dx$$

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\int k dx = kx + C$$

Math-II Page 4

1 Table of Indefinite Integrals

$$\int cf(x) dx = c \int f(x) dx$$

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

$$\int k dx = kx + C$$

$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \quad (n \neq -1)$$

$$\int \frac{1}{x} dx = \ln|x| + C$$

$$\int e^x dx = e^x + C$$

$$\int \sin x dx = -\cos x + C$$

$$\int \sec^2 x dx = \tan x + C$$

$$\int \sec x \tan x dx = \sec x + C$$

$$\int \frac{1}{x^2 + 1} dx = \tan^{-1}x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$\int \cosh x dx = \sinh x + C$$

$$\int \cosh x dx = \sinh x + C$$

The Fundamental Theorem of Calculus, Part 2 If f is continuous on [a, b], then

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, a function such that F' = f.

EXAMPLE 5 Evaluate the integral $\int_1^3 e^x dx$.

SOLUTION The function $f(x) = e^x$ is continuous everywhere and we know that an antiderivative is $F(x) = e^x$, so Part 2 of the Fundamental Theorem gives

$$\int_{1}^{3} e^{x} dx = F(3) - F(1) = e^{3} - e$$

EXAMPLE 6 Find the area under the parabola $y = x^2$ from 0 to 1.

SOLUTION An antiderivative of $f(x) = x^2$ is $F(x) = \frac{1}{3}x^3$. The required area A is found using Part 2 of the Fundamental Theorem:

$$A = \int_0^1 x^2 dx = \frac{x^3}{3} \bigg]_0^1$$
$$= \frac{1^3}{3} - \frac{0^3}{3} = \frac{1}{3}$$

EXAMPLE 7 Evaluate $\int_3^6 \frac{dx}{x}$.

SOLUTION The given integral is an abbreviation for

$$\int_3^6 \frac{1}{x} dx$$

An antiderivative of f(x) = 1/x is $F(x) = \ln |x|$ and, because $3 \le x \le 6$, we can write $F(x) = \ln x$. So

$$\int_{3}^{6} \frac{1}{x} dx = \ln x \Big|_{3}^{6} = \ln 6 - \ln 3$$
$$= \ln \frac{6}{3} = \ln 2$$

EXAMPLE 8 Find the area under the cosine curve from 0 to b, where $0 \le b \le \pi/2$. **SOLUTION** Since an antiderivative of $f(x) = \cos x$ is $F(x) = \sin x$, we have

$$A = \int_0^b \cos x \, dx = \sin x \Big]_0^b = \sin b - \sin 0 = \sin b$$

In particular, taking $b = \pi/2$, we have proved that the area under the cosine curve from 0 to $\pi/2$ is $\sin(\pi/2) = 1$. (See Figure 9.)

FIGURE 9

EXAMPLE 9 What is wrong with the following calculation?

$$\int_{-1}^{3} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \bigg]_{-1}^{3} = -\frac{1}{3} - 1 = -\frac{4}{3}$$

Indefinite Integrals

EXAMPLE 1 Find the general indefinite integral

$$\int (10x^4 - 2\sec^2 x) \, dx$$

SOLUTION Using our convention and Table 1, we have

$$\int (10x^4 - 2\sec^2 x) \, dx = 10 \int x^4 \, dx - 2 \int \sec^2 x \, dx$$
$$= 10 \frac{x^5}{5} - 2 \tan x + C$$
$$= 2x^5 - 2 \tan x + C$$

You should check this answer by differentiating it.

EXAMPLE 3 Evaluate $\int_0^3 (x^3 - 6x) dx$.

SOLUTION Using FTC2 and Table 1, we have

$$\int_0^3 (x^3 - 6x) dx = \frac{x^4}{4} - 6\frac{x^2}{2} \Big]_0^3$$

$$= \left(\frac{1}{4} \cdot 3^4 - 3 \cdot 3^2\right) - \left(\frac{1}{4} \cdot 0^4 - 3 \cdot 0^2\right)$$

$$= \frac{81}{4} - 27 - 0 + 0 = -6.75$$

EXAMPLE 4 Find $\int_0^2 \left(2x^3 - 6x + \frac{3}{x^2 + 1}\right) dx$ and interpret the result in terms of areas.

SOLUTION The Fundamental Theorem gives

$$\int_0^2 \left(2x^3 - 6x + \frac{3}{x^2 + 1} \right) dx = 2\frac{x^4}{4} - 6\frac{x^2}{2} + 3\tan^{-1}x \Big]_0^2$$

$$= \frac{1}{2}x^4 - 3x^2 + 3\tan^{-1}x \Big]_0^2$$

$$= \frac{1}{2}(2^4) - 3(2^2) + 3\tan^{-1}2 - 0$$

$$= -4 + 3\tan^{-1}2$$

This is the exact value of the integral. If a decimal approximation is desired, we can use a calculator to approximate tan^{-1} 2. Doing so, we get

$$\int_0^2 \left(2x^3 - 6x + \frac{3}{x^2 + 1} \right) dx \approx -0.67855$$

EXAMPLE 5 Evaluate
$$\int_{1}^{9} \frac{2t^2 + t^2\sqrt{t} - 1}{t^2} dt.$$

SOLUTION First we need to write the integrand in a simpler form by carrying out the division:

$$\int_{1}^{9} \frac{2t^{2} + t^{2}\sqrt{t} - 1}{t^{2}} dt = \int_{1}^{9} (2 + t^{1/2} - t^{-2}) dt$$

$$= 2t + \frac{t^{3/2}}{\frac{3}{2}} - \frac{t^{-1}}{-1} \Big]_{1}^{9} = 2t + \frac{2}{3}t^{3/2} + \frac{1}{t} \Big]_{1}^{9}$$

$$= (2 \cdot 9 + \frac{2}{3} \cdot 9^{3/2} + \frac{1}{9}) - (2 \cdot 1 + \frac{2}{3} \cdot 1^{3/2} + \frac{1}{1})$$

$$= 18 + 18 + \frac{1}{9} - 2 - \frac{2}{3} - 1 = 32\frac{4}{9}$$

Net Change Theorem The integral of a rate of change is the net change:

$$\int_{a}^{b} F'(x) \ dx = F(b) - F(a)$$