Optimización Avanzada

Juan Antonic Díaz García

Modelo de programación matemática

Optimización Avanzada

Modelo para el ejercicio de distribución de barriles de petroleo

Juan Antonio Díaz García

Optimización Avanzada

luan Antonio Díaz García

Modelo de programación matemática

Conjuntos de índices

- *P*: Conjunto índices para los puertos.
- O: Conjunto de índices de los puertos con disponibilidad de barriles de petróleo.
- D: Conjunto de índices de los puertos que demandan barriles de petróleo.
- $T = P \setminus (O \cup D)$: Conjunto de índices de los puertos de transbordo.
- R: Conjunto de pares ordenados de puertos que representan las rutas marítimas para la distribución de petróleo.

Optimizaciór Avanzada

luan Antonic Díaz García

Modelo de programación matemática

Parámetros (datos)

- $m{o}$ $i \in O, o_i$ denota la cantidad disponible de barriles de petróleo en el puerto i
- $j \in D, d_j$ denota la cantidad de barriles de petróleo demandada en el puerto j.
- $(i, j) \in R, c_{ij}$ denota el costo unitario de transporte (\$/barril) del puerto i al puerto j.

Optimización Avanzada

Juan Antonio Díaz García

Modelo de programación matemática

Variables de decisión

• $(i,j) \in R, x_{ij}$ denota la cantidad de barriles de petróleo a enviar del puerto i al puerto j.

Optimizaciór Avanzada

luan Antonio Díaz García

Modelo de programación matemática

Función objetivo

El objetivo del problema es minimizar el costo total para transportar los barriles de petróleo desde los puertos donde hay disponibilidad hasta los puertos donde se demandan.

$$\mathsf{Minimizar} \quad Costo = \sum_{(i,j) \in R} c_{ij} x_{ij}$$

Optimizació

luan Antonio Díaz García

Modelo de programación matemática

Restricciones

- Debe existir un balance de unidades (barriles de petróleo) en cada uno de los puertos. Notar que el problema está balanceado. La disponibilidad total es igual a la demanda total.
 - Para los puertos con disponibilidad el balance de unidades
 es: Disponibilidad + Barriles recibidos = Barriles enviados

$$o_i + \sum_{j \in P: (j,i) \in R} x_{ji} = \sum_{j \in P: (i,j) \in R} x_{ij} \qquad i \in O$$

 Para los puertos que demandan petróleo el balance de unidades es: Barriles recibidos = Demanda + Barriles enviados

$$\sum_{j \in P: (j,i) \in R} x_{ji} = d_i + \sum_{j \in P: (i,j) \in R} x_{ij} \qquad i \in D$$

Optimizaciór Avanzada

luan Antonio Díaz García

Modelo de programaciór matemática

Restricciones

- Debe existir un balance de unidades (barriles de petróleo) en cada uno de los puertos. Notar que el problema está balanceado. La disponibilidad total es igual a la demanda total.
 - Para los puertos de transbordo el balance de unidades es:
 Barriles recibidos = Barriles enviados

$$\sum_{j \in P: (j,i) \in R} x_{ji} = \sum_{j \in P: (i,j) \in R} x_{ij} \qquad i \in T = P \setminus (O \cup D)$$

Restricciones de dominio de las variables de decisión.

$$x_{ij} \ge 0 \quad (i,j) \in R$$