Test 3 Review Problem Solutions

32 KB data ⇒ 8 K words = 213 words ١. Block size is a words. 213/2 = 212 blocks

4-way set associative cache means there are 4 blocks Perset.

$$\frac{2^{12} \text{ blocks}}{4 \text{ block/set}} = 2^{60} \text{sets} = 1024 \text{ sets}$$

- Index is 10 bits long.

- Block size is 2 words, which is 8 bytes = 0^3 bytes = 50 offset is 3 bits long. - Tag is 32 - (10 + 3) = 19 bits long.

Each block contains 2 words, or 64 bits, of data. Each block also has a 19 bit tag and one valid bit. Therefore, the total cache size is:

$$2^{12} \times (64 + 19 + 1) = 2^{12} \times 84$$

 $\simeq 344 \text{ Kbits}$

or, a ~43 KB cache for 32 KB of data.

2. First, let's "remove" the offset portion. A block size of 4 words requires a 4 bit offset.

This result, 75, is the decimal representation of the tag and index bits of the address.

To isolate the index, we can mod this number by the number of sets.

15% 256 = [75] In this case, because the tag is 0, we already have the index.

3. Clock period = 1 ns

Miss penalty = 25 clock cycles

Miss rate = .05

Hit time = 1 clock cycle

Average Memory Access Time = Hit time + (Miss Rate x Miss Penalty

= $1 \text{ clock cycle} + (.05 \times 25 \text{ clock cycles})$ = (1 + 1.25) clock cycles= 2.25 clock cycles * 1 ns/cycles= 2.25 ns

- 4. 8 K blocks = 2^{13} blocks 4 words = 16 bytes = 2^4 bytes
 - a. Direct-mapped: every set contains one block so there are 2^{13} sets.) 2^{13} sets \Rightarrow 13 index bits 2^{4} bytes \Rightarrow 4 offset bits 32 (13 + 4) = 15 tag bits

- b. Two-way set associative: every set contains 2 blocks so there are $[2^{12} \text{ sets}]$ $2^{12} \text{ sets} \Rightarrow 12 \text{ index bits}$ $2^{4} \text{ bytes} \Rightarrow 4 \text{ offset bits}$ 32 (12 + 4) = 16 tag bits
- C. Four-way set associative: every set contains 4 blocks so there are [2" sets.]

 2" sets \Rightarrow 11 index bits

 2" bytes \Rightarrow 4 offset bits

 32-(11+4)= 17 tag bits
- d. Fully-associative: there is one set containing all of the blocks. [I set]

 2° sets = 1 set \Rightarrow 0 index bits 2^{4} bytes \Rightarrow 4 offset bits 32-4=28 tag bits

5a. Tag: 31-10 Index: 9-4 Offset: 3-0 Block size: 24 bytes = 16 bytes = 4 words Cache entries: 26 sets = 64 sets

Reference 0 4	Binary 0000 0000 0000,0000, 1000 0000 0000,0000 0000 0000	Tag 0 0 0	Index_	Offset O 4
132	acres 0000 1000 0100	0	8	4
232	0000 0000 1110 1000		14	8
160	0000 0000 1010 0000	\bigcirc	10	\bigcirc
1024	0000 0100 0000 0000	1	0	
30	0000 0000 0001 1110	\bigcirc	(14
140	0000 0000 1000 1100		8	12
3100	0000 1/00 0001 1/00	3	I	12
180	0000 0000 1011 0100	0	11	4
2180	0000 1000 1000 0100	2	8	4
0 4 16 132 232	Sult Block Replace HIT NO HIT NO HISS NO MISS NO MISS NO MISS NO MISS NO HISS NO	3	Blocks Replaced 112 hut ratio	d

Final State of Cache:

\(\langle \text{Index}, \tag, \text{data} \rangle \)

\(\langle \langle \text{1, 0, 0} \)

\(\langle \text{1, 0, 8} \)

\(\langle \text{10, 0, 0} \)

\(\langle \text{11, 0, 4} \rangle \)

b. Tag: 31-12 Index: 11-5 Offset: 4-0

Block size: 25 bytes = 32 bytes = 8 work

Cache entries: 27 sets = 128 sets

Roference	(Management)	00.0	20 000
Reference	Tag	Index	Offset
4	0	0	4
16	0	0	16
132 232 160 1024	0	7-5	8
160	0	5	0
30	0	32	30
3100	0	910	30
9180	0	96 5	28
		68	4

Reb. 04 1622 232 16024 300 1500 1500	Result Miss Hit His His His His His His His His	Block Replace 100 100 100 100 100 100 100 100 100 10	NO Blocks Replaced 5/12 hit ratio
2180	M155	N O 0	

Final State of Cache:

Lindex, tag, clata> Lo, 0, 30> Lu, 0, 12> Lu, 0, 12> Lu, 0, 8> Lu, 0, 20> Lu, 0, 20> Lu, 0, 28> Lu, 0, 28> Lu, 0, 28> Lu, 0, 4>

Write-through, no write allocate 6. Update Tag Index Offset Result Memref RIW Addr Miss yes 0 NO 19 3 1840 W yes yes MISS 4 19 3 R 1844 Miss 0 19 R 304 Hit 19 4 W 308 yes miss yes 19 R 820 4 20 Hit 20 19 824 8 R

Write-back, write allocate

	W1 100		*			2 1	Update
RID	Addr	Tag	Index	Offset	Result	MemRef Yes	Cache
1900	10110	30	19	\bigcirc	MISS	yes	yes
W	1840		* •	11	Hit	NO	∞
R	1844	3	19	4			
10					MISS	yes	yes
R	304	0	19	O			
1 1			_	11	Hit	NO	yes
\mathcal{W}	308	0	19	4			
R	0 0	1	1.0	1.0	22111	yes(2)	(105
, ,	820	1	19	4	10(13)	yar sa,	900
R	874	\	19	8	Hit	NO	∞

+. a.

Page size is 4KB.

4 KB ≈ 4096 Bytes = 212 Bytes

12 page offset bits

Address	Binary
4095	1111 1111 1111
31272	111 1010 0010 1000
15789	11 1101 1010 1101
7193	1 1100 0001 1001
4096	1 2000 0000 0000
8912	10 0010 1101 0000

Take 31272 as an example. The binary representation is:

So, the virtual page number is 7, and the page offset is 2600.

The TLB is a four-entry fully-associative cache. Generally speaking, thus is a H-way set-associative cache with one set.

O inclex bits
Therefore, our 32-bit virtual address is
divided into 20 tag bits and 12 page offset bits.

Virtual address	Virtuai Page #	Page Offset	TLB Tag	TLB Result	Page Table Result	Physica Page #
4095	\bigcirc	4095	0	Miss	Hit	5
31272	7	2600	7	Hit	_	4
15789	3	3501	3	Hit	_	6
7193	1	3097	1	Miss	Miss	13
4096	1	0	1	Hit	_	13
8912	\mathcal{Q}	720	\mathcal{Q}	MISS	Miss	14

Take address 4095 as an example. The TLB tag is 0. Our caches starting state is

Valid	Tag	Physical Page #	
1	"	12	
1	7	4	
ĺ	3	6	
	4	9	

Since tag 0 is not in the cache, we have a miss. Using the virtual page #,0, as an index into the page table, we see that we have a hit and the physical page number is 5. This is brought into the cache and replaces the last entry, which is invalid.

Take address 7193 as an example. The TLB tag is 1. Since tag I is not in the cache, we have a muss. Using the virtual page #, I, as an index into the page table, we see that we have a page fault. We can pull the page from disk and assign it the next higher page number, 13. This translation is also placed into the TLB, replacing the least recently used entry (the one containing tag II).

Final State of TLB and Page Table:

Valid	Tag 1 7 3 2	Physical Page # 13 4 6	

age labb	3 0
Valid	Physical Page # or Disku
1 - 0 - 0 - 0 - 1	53146911K Disk Disk 312

Addres	SS_		Bin	ary		
9453	2	10	0100	1110	1100	
30964	4	111	1000	1111	0/00	
19136		100	1010	0011 C	0000	
46502	_	1011	010	01010	0110	
38110		100	1 010	1011 œ	1110	
16653		100	00	0000	1101	
4848	30	101	1 110	0110	0000	
	irtual age#	Page offset	TLB Tag	TLB RESULT	Page Table Result	Physical Page #
7452	2	1260	3	Miss	Miss	13
	7	2292	7	Hit		4
30964	4	2752	4	Miss	Hit	9
16502	11	1446	Ì	MISS	Hit	12
38110	9	1246	9	HIES	LUSS	14
6653	Н	269	4	Hit	. —	9
48480	11	3424	11	Hut		13

Here, we're assuming the initial tag II entry was less recently used than the initial tag 3 entry.

Final State of TLB and Page Table:

Valid	Tag	Physical Page #	
1	HO	9	
\	7	12	
1	9	14	
١	\		

Valid 0	Physical Page # or Disk Disk 13 6
0	Disk Disk IH 3
	12