

ЗВЕЗДНЫЙ НУКЛЕОСИНТЕЗ

Характеристики Вселенной

Возраст t ₀	13,7 млрд	ц. лет
Радиус наблюдаемой части Вселенной (<i>горизонт видимости</i>) $R_0 = ct_0$		
Полное количество вещества и энергии	10 ⁵⁶ г	
Средняя плотность вещества и энергии	10 ⁻²⁹ г/см ³	
Полное барионное число (число нуклонов)	10 ⁷⁸	
Доля антивещества	< 10 ⁻⁴	
Постоянная Хаббла <i>Н</i>	71±4 км/с⋅Мпк	
Температура реликтового (фонового) излучения	2.73 K	
Плотность реликтовых фотонов	411 см ⁻³	
Энергетическая плотность реликтовых фотонов	0.26 эВ/см ³ =	
	4.6·10 ⁻³⁴ г/	CM ³
Отношение числа реликтовых фотонов		
к числу барионов n_{γ}/n_{δ}	(10 ⁹ –10 ¹⁰):1	
Распространённость ядер:	по чиспу	по массе
т иопроотранстнооть лдор.	по числу	IIO Macce
водород	91%	70.7%
гелий		27.4%
остальные ядра	<0.2%	1.9%
	70.2 /0	1.3 /0

Образование легчайших ядер

Распространенность нуклидов во

Распространенность Si принята равной 10⁶.

Звезды

Пределы изменения характеристик различных звезд

$$10^{-1} M_{\odot} < M < 100 M_{\odot}$$
 $10^{-4} L_{\odot} < L < 10^{6} L_{\odot}$
 $10^{-2} R_{\odot} < R < 10^{3} R_{\odot}$
 $2 \cdot 10^{3} \text{ K} < T < 10^{5} \text{ K}$

Звезды первого поколения

Горение дейтерия

Когда масса вещества звезды в результате аккреции достигает 0.1 массы Солнца, температура в центре звезды возрастает до 1 млн. К и в жизни протозвезды начинается новый этап – реакции термоядерного синтеза. Однако эти термоядерные реакции отличаются от реакций, протекающих в звёздах, находящихся в стационарном состоянии, типа Солнца. Протекающая на Солнце реакция синтеза

$$p + p \rightarrow {}^{2}H + e^{+} + V_{e} + 0.42 \text{ M}_{2}B,$$

требует более высокой температуры (≈ 10 млн. К). Температура же в центре протозвезды составляет всего 1 млн. К. При такой температуре эффективно протекает реакция слияния ядра дейтерия

$$^{2}H + ^{2}H \rightarrow ^{3}He + n + 3.27 \text{ M}_{2}B.$$

Дейтерий, как и ⁴*Н*е, образуется на дозвёздной стадии эволюции Вселенной и его содержание в протозвезде 10⁻⁴-10⁻⁵ от содержания протонов. Однако этого количества дейтерия достаточно для появления в центре протозвезды эффективного источника энергии.

Горение водорода

Горение водорода

слабое взаимодействие

$$\begin{array}{c} u \\ \hline \\ v_e \end{array}$$

$$p+p \to d+e^{+}+\nu \ (0,42 \text{ M}_{2}B)$$

Горение гелия и более тяжелых ядер

Горение гелия

По мере того, как в центральной части звезды сгорает водород, его запасы там истощаются, и накапливается гелий. В центре звезды формируется гелиевое ядро. После того, как водород в центре звезды выгорит, выделение энергии за счёт термоядерной реакции горения водорода прекращается.

Тепловое давление, препятствующее гравитационному сжатию, ослабевает, и гелиевое ядро начинает сжиматься. Сжимаясь, ядро звезды нагревается, и температура в центре звезды продолжает расти.

Кинетическая энергия сталкивающихся ядер гелия увеличивается и достигает в массивной звезде величины, достаточной для преодоления сил кулоновского отталкивания ядер гелия.

Особенностью горения гелия является то, что реакция

4
He + 4 He \rightarrow 8 Be + γ

приводит к образованию нестабильного ядра 8Be , время жизни которого около 10^{-16} с. Однако из-за высокой плотности ядер 4He оказывается, что прежде, чем ядро 8Be снова распадается на две α -частицы, оно успевает провзаимодействовать ещё с одним ядром 4He . В результате образуется стабильное ядро ^{12}C .

α-процесс в звездах

Горение углерода, кислорода, кремния

T = 10⁹-10¹⁰ K
$$\rho$$
 = 10⁵-10⁷ г/см³
 4 He + 12 C \rightarrow 16 O + 7.16 МэВ.

Если звезда массивная ($>10 M_{\odot}$), то в результате термоядерного горения в ней последовательно образуются всё более тяжелые ядра в результате последовательного захвата ядер гелия с образованием α -кратных ядер

$$^{12}C \xrightarrow{\alpha} ^{16}O \xrightarrow{\alpha} ^{20}Ne \xrightarrow{\alpha} ^{24}Mg \xrightarrow{\alpha} ^{28}Si$$

и реакции слияния углерода и кислорода

$$^{12}C + ^{12}C,$$
 $^{16}O + ^{16}O,$
 $^{12}C + ^{16}O.$

 $^{28}{
m Si} + ^{28}{
m Si}
ightarrow ^{56}{
m Ni} + 10,9~{
m M}{
m эB}$ - слишком большой кулоновский барьер

Фотоядерные реакции в звездах

 $T \sim 10^9$ К. Существенную роль начинают играть электромагнитные процессы — реакции под действием γ -квантов и электронов. Наряду с ростом энергии фотонов с увеличением температуры $(E_{\gamma} \sim T)$ растёт их число $(N_{\gamma} \sim T^4)$.

Реакции фоторасщепления кремния:

$$^{28}Si+\gamma \rightarrow \begin{cases} ^{24}Mg+\alpha & -9.98 \text{ M}_{3}B), \\ ^{27}Al+p & -11.58 \text{ M}_{3}B), \\ ^{27}Si+n & -17.18 \text{ M}_{3}B). \end{cases}$$

В результате появляется большое количество n, p и α -частиц и их роль в горении кремния увеличивается. ²⁸Si и образующиеся продукты с большим Z, облучаясь в потоках n, p, α и γ , в термодинамическом равновесии формируют большинство элементов в районе железного максимума.

Синтез элементов Не......Ge

Предел термоядерного синтеза

удельная энергия связи атомных ядер

Звезды второго поколения

СNО-цикл и солнечные нейтрино

CNO - цикл

CNO - **ЦИКЛ**

CNO - цикл

Цепочка реакций I

12
C + p \rightarrow 13 N + γ (Q = 1.94 MэВ)
 13 N \rightarrow 13 C + e⁺ + ν_e (Q = 1.20 MэВ, $T_{1/2}$ =10 мин)
 13 C + p \rightarrow 14 N + γ (Q = 7.55 MэВ)
 14 N + p \rightarrow 15 O + γ (Q = 7.30 MэВ)
 15 O \rightarrow 15 N + e⁺ + ν_e (Q = 1.73 MэВ, $T_{1/2}$ =124 c)
 15 N + p \rightarrow 12 C + 4 He (Q = 4.97 MэВ).

Цепочка реакций II

$$^{15}N + p \rightarrow ^{16}O + \gamma$$
 (Q = 12.13 MaB),
 $^{16}O + p \rightarrow ^{17}F + \gamma$ (Q = 0.60 MaB),
 $^{17}F \rightarrow ^{17}O + e^{+} + \nu_{e}$ (Q = 1.74 MaB, $T_{1/2}$ =66 c),
 $^{17}O + p \rightarrow ^{14}N + \alpha$ (Q = 1.19 MaB).

Цепочка реакций III

17
O + p \rightarrow 18 F + γ (Q = 6.38 MэB), 18 F \rightarrow 18 O + e⁺ + ν_e (Q = 0.64 МэВ, $T_{1/2}$ =110 мин), 18 O + p \rightarrow 15 N + α (Q = 3.97 МэВ).

РР и СПО-циклы

Температура в недрах Солнца $\sim\!13\!\cdot\!10^6$ К, поэтому оно светит в основном за счет энергии, выделяющейся в водородном цикле.

Источники солнечных нейтрино

E_{ν} (МэВ) Поток (см⁻²с⁻¹) Водородный цикл 0 - 0.42 6 10¹⁰ $p + p \rightarrow D + e^+ + v$ $1.4\ 10^{8}$ 1.44 $p + p + e^- \rightarrow D + v$ $p + D \Rightarrow ^3He + \gamma$ $^{3}\text{He} + ^{3}\text{He} \Rightarrow ^{4}\text{He} + p + p$ 3 He + 4 He \Rightarrow 7 Be + γ $p + {}^{7}Be \rightarrow {}^{8}B \rightarrow {}^{8}Be + e + v$ 0 - 15 5.8 106 $e^- + {}^7Be \Longrightarrow {}^7Ii + v$ $4.7\ 10^{9}$ 0.83 CNO цикл $p + {}^{12}C \Rightarrow {}^{13}N + \gamma$ $^{13}N \rightarrow ^{13}C + e^{+} + v$ 0 - 1.1996 10⁸ $p + {}^{13}C \Rightarrow {}^{14}N + \gamma$, $p + {}^{14}N \Rightarrow {}^{15}O + \gamma$ $150 \implies 15N + e^{+} + v$ 0 - 1.732 5 108 $p + {}^{15}N \Rightarrow {}^{12}C + {}^{4}He$

Солнечные нейтрино

Спектр нейтрино, образующихся на Солнце в результате горения водорода в реакции 4р→α и в СNО-цикле.

Детектор Дэвиса

Для регистрации солнечных нейтрино Дэвисом был сконструирован детектор, содержащий 615 тонн тетрахлорэтилена.

Диаграмма Герцшпрунга-Рассела

диаграмма эволюции звезд

Диаграмма Герцшпрунга-Рассела

M/M_{\odot}	Время достижения главной	Время жизни на главной
	последовательности, лет	последовательности, лет
15	$6,2\cdot10^{4}$	$1,0\cdot 10^{7}$
9	$1,5 \cdot 10^5$	$2,2\cdot10^{7}$
5	5,8·10 ⁵	$6,8 \cdot 10^{7}$
3	$2,5 \cdot 10^6$	$2,3 \cdot 10^{8}$
1,5	$1,8 \cdot 10^7$	$1,7 \cdot 10^9$
1,0	$5,0\cdot 10^{7}$	8,2.109
0,5	$1,5 \cdot 10^8$	$5,0\cdot 10^{10}$

Ядерные реакции синтеза в звёздах различной массы

Macca, M _☉	Возможные ядерные реакции
0.08	Нет
0.3	Горение водорода
0.7	Горение водорода и гелия
5.0	Горение водорода, гелия,
25.0	углерода Все реакции синтеза с выделением энергии

Предел термоядерного синтеза

удельная энергия связи атомных ядер

Распространенность нуклидов во

Распространенность Si принята равной 10⁶.

Эволюция массивной звезды $M > 25 \ M_{\odot}$

Эволюция массивной звезды $M > 25 \ M_{\odot}$

