Analiza tunowalności algorytmów uczenia maszynowego

Wybrane algorytmy uczenia maszynowego

- Las losowy biblioteka sklearn
- Regresja logistyczna biblioteka sklearn
- XGBoost biblioteka xgboost

Wybrane zbiory danych

- Wine zawiera cechy charakterystycznych dla danego wina wraz z jego ogólną oceną
- Drug posiada dane medyczne dla pacjentów oraz lek, który został podany
- Iris zawiera dane opisujące wymiary irysów oraz nazwę konkretnego gatunku
- Titanic posiada dane opisujące osoby znajdujące się na statku Tytanic razem z informacją, czy dana osoba przeżyła

Wybrane hiperparametry

Wybrane hiperparametry

Las losowy

Wartości hiper-parametrów dla metod Grid Search, Random Search oraz Bayes Search

- n_estimators określa liczbę drzew decyzyjnych tworzonych w modelu.
- max_depth ustala maksymalną głębokość każdego drzewa w modelu.
- min_samples_split definiuje minimalną liczbę próbek wymaganą do podziału węzła wewnętrznego.
- min_samples_leaf określa minimalną liczbę próbek, które muszą znaleźć się w liściu drzewa.

Wybrane hiperparametry

Regresja logistyczna

Wartości hiper-parametrów dla metod Grid Search, Random Search oraz Bayes Search

- C parametr regularyzacji kontrolujący siłę karania za złożoność modelu;
 niższe wartości oznaczają silniejszą regularyzację.
- penalty określa rodzaj funkcji karnej używanej w modelu
- solver wybiera algorytm optymalizacji używany do dopasowania modelu

Wybrane hiperparametry XGBoost

Wartości hiper-parametrów dla metod Grid Search, Random Search oraz Bayes Search

- n_estimators określa liczbę iteracji boostingowych, czyli liczbę drzew tworzonych w modelu.
- max_depth ustala maksymalną głębokość każdego drzewa.
- learning_rate określa wielkość kroku w każdej iteracji boostingowej. Niższe wartości spowalniają proces uczenia, co może poprawić dokładność.
- subsample określa odsetek próbek losowo wybieranych do treningu każdego drzewa, co pomaga zapobiegać przeuczeniu modelu.

Wymanagna liczba iteracji

Wymanagna liczba iteracji Las losowy

Wymanagna liczba iteracji Las losowy

Wymanagna liczba iteracji Las losowy

Wymanagna liczba iteracji Regresja logistyczna

Wymanagna liczba iteracji Regresja logistyczna

Wymanagna liczba iteracji Regresja logistyczna

Wymanagna liczba iteracji XGBoost

Wymanagna liczba iteracji XGBoost

Wymanagna liczba iteracji XGBoost

Wizualizacja wyników

Wizualizacja wyników Wyniki testów na zbiorze danych Wine

Wizualizacja wyników Wyniki testów na zbiorze danych Iris

Wizualizacja wyników Wyniki testów na zbiorze danych Titanic

Wizualizacja wyników Wyniki testów na zbiorze danych Drug

Wnioski