

UNIVERSIDADE FEDERAL DO CEARÁ Campus de Quixadá Prof. André Braga QXD0145- Sistemas de Tempo-Real

AP1 2019.1

Nome:	Matrícula:

Sua equipe é responsável pelo *software* de missão e integração de sistemas embarcado em uma aeronave de combate em desenvolvimento. A operação da aeronave pode ser dividida em dois grandes modos: navegação (NAV) e combate (COMBAT). Durante o modo NAV, ocorre pouso, decolagem e navegação propriamente dita de um ponto a outro. Já no modo COMBAT, os módulos que gerenciam os sensores de percepção e pontaria devem atuar de modo que a aeronave possa detectar potenciais ameaças e executar ataques a estas, assim como a alvos pré-determinados durante o planejamento da missão.

Durante todo o vôo, a função de monitoramento de dados do motor e alertas à tripulação deve ser executada com máxima prioridade de modo a permitir a aeronavegabilidade com segurança. Ela é comumente chamada *Engine Indication and Crew Alert System*, ou simplesmente EICAS. Outra funcionalidade básica é a que determina a posição da aeronave e é executada através de sistemas de rádionavegação em conjunto com o GPS. Esta função é chamada de *Radio Navigation*, ou RNAV.

Durante a operação em modo NAV, apenas estas duas primeiras funcionalidades devem ser executadas no computador embarcado. Já quando em modo COMBAT, o sistema deve adicionalmente executar duas outras funções: *Early Warning* (EW), que, através de sensores passivos (térmicos ou eletromagnéticos) consegue detectar ameaças como mísseis, aeronaves inimigas, radares de solo, dentre outros de modo a dar a oportunidade à tripulação de tomar as medidas necessárias; e o sistema de radar e pontaria, responsável pelo rastreio de alvos e pontaria de armas.

Durante a fase de pré-projeto do sistema, essas funcionalidades foram modeladas como tasks periódicas com as características apresentadas na tabela abaixo. Reparem que o Worst Case Execution Time (WCET)

Task	tskEICAS	tskRNAV	tskEW	tskRADAR
Prioridade	15	1	2	5
Frequência (Hz)	20	1	5	10
WCET	800U	8000U	1000U	800U

está especificado como um valor inteiro. Isto porque cada uma das funcionalidades deverá ser modelada utilizando uma espera ocupada como no código abaixo:

```
/*
    * ======= AppLoopDelay =======
    */
void AppLoopDelay(uint32_t delayVal)
{
    volatile uint32_t i;
    for (i = 0; i < (delayVal * 1000); i++)
        ;
}</pre>
```

Implemente o sistema descrito baseado no conjunto de requisitos apresentado na tabela a seguir. Além da implementação dos requisitos, deve ser realizada uma análise de carga de cada uma das *tasks* individualmente assim como do sistema como um todo em cada um dos modos de operação.

Vota:		
Nota:		

ID	Texto	
QXD0145-0001	O algoritmo de escalonamento RM deve ser utilizado para o gerenciamento	
	das tasks.	
QXD0145-0002	A funcionalidade EICAS deve ser executada com frequência igual a 20 <i>Hz</i> .	
QXD0145-0003	A funcionalidade RNAV deve ser executada com frequência igual a 1 <i>Hz</i> .	
QXD0145-0004	A funcionalidade EW deve ser executada com frequência igual a 5 <i>Hz</i> .	
QXD0145-0005	A funcionalidade RADAR deve ser executada com frequência igual a 10Hz.	
QXD0145-0006	Durante o modo NAV, apenas as funcionalidades EICAS e RNAV devem ser	
	executadas.	
QXD0145-0007	Durante o modo COMBAT, todas as funcionalidades devem ser executadas.	
QXD0145-0008	A transição de modo deve ser comandada pelo operador atraves de um botão	
QAD0145-0006	situado no <i>cockpit</i> .	
QXD0145-0009	O mecanismo de mudança de modo deve ter prioridade máxima.	
QXD0145-0010	Após uma transição de modo ocorrer, uma nova transição somente pode	
QXD0145-0010	ocorrer após 4 segundos.	
QXD0145-0011	A indicação de execução da funcionalidade EICAS deve ser através do	
QXD0145-0011	USER_LED_0.	
QXD0145-0012	A indicação de execução da funcionalidade RNAV deve ser através do	
	USER_LED_1.	
QXD0145-0013	A indicação de execução da funcionalidade EW deve ser através do	
	USER_LED_2.	
QXD0145-0014	A indicação de execução da funcionalidade RADAR deve ser através do	
	USER_LED_3.	