

CONFIGURING THE SI5356A

1. Introduction

The Si5356A is a highly flexible and configurable clock generator. A block diagram of the Si5356A is shown in Figure 1.

To support this flexibility, Silicon Labs has provided the ClockBuilder Desktop™ application. This tool allows seamless creation of register maps for a given configuration and is the recommended method of register map generation for the majority of the users. However, some users may have a need to modify their configuration multiple times and would prefer to write code optimized to write only the minimum number of registers each time.

This application note provides details for both options. Section "2. Generating a Register Map with ClockBuilder Desktop" illustrates the steps required to generate a frequency plan in ClockBuilder Desktop, and the latter sections are geared towards the latter group of users.

Figure 1. Si5356A Block Diagram

TABLE OF CONTENTS

<u>Section</u>	<u>Page</u>
Introduction	1
Generating a Register Map with ClockBuilder Desktop	4
Setting up the Frequency Plan	4
Setting up the Output Driver	
Setting up Spread Spectrum	
Overview of Configuring the Si5356A without ClockBuilder Desktop	
Configuring the Frequency Plan	
Configuring Reference Input	
Configuring PLL Parameters	
Configuring the Output Frequency Plan	
Configuring the Output Drivers	
Output Driver Powerup/Powerdown	
Output Driver Enable/Disable	
Output Signal Format and Inversion	
Output Voltage and Trim	
Output Driver State when Disabled	
Configuring Initial Phase Offset	
Output Clock Select	
Configuring Spread Spectrum	
Down Spread	
Center Spread	
Si5356A Registers	
Assembling the Si5338 Register Map	
Miscellaneous Register Writes	
Register Write-Allowed Mask	
Register Categories	
Register Summary	
Register Descriptions	
Document Change List	
Contact Information	116

2. Generating a Register Map with ClockBuilder Desktop

The ClockBuilder Desktop can be downloaded from http://www.silabs.com/ClockBuilder and runs on Windows XP, Windows Vista, and Windows 7. The optimal configuration can be saved from the software in text files that can be used in any system that configures the device over I^2C . To generate a register map file, follow the steps in this section and save the file using the menu Options \rightarrow Save Register Map File... or Options \rightarrow Save C Code Header File..., the latter of which can be used in conjunction with the sample device programming code provided in "AN428: Jump Start: In-System, Flash-based Programming for Silicon Labs' Timing Products."

2.1. Setting up the Frequency Plan

The Frequency Plan tab is used to configure the reference source and output frequencies. Valid inputs are 25 MHz crystal, 27 MHz crystal, or a 5–200 MHz CMOS Clock on pin 4.

Figure 2. ClockBuilder Desktop Frequency Plan Tab

If CMOS Clock is selected, click Enter Frequency to specify the input frequency. The input frequency can be specified in decimal form, as a fraction, or as a frequency times a ratio.

Figure 3. Enter Input Frequency in ClockBuilder Desktop

Valid output frequencies are 1–200 MHz and can be specified in decimal or fraction form, as a frequency times a ratio, or in relation to CLKIN or any other output frequency. Click Add to enter output frequency.

Once the input and all output frequencies have been entered, click Create Plan. This will display a summary of the frequency plan including all frequencies and feedback and output Multisynth divide ratios. Click the Apply Values to Register Map button.

2.2. Setting up the Output Driver

The Output Driver tab allows the user to modify all the settings associated with the output drivers. For each bank of clocks, the following settings can be controlled:

- Output Voltage and Format—used to specify the outputs on each clock bank that are enabled and the output voltage for each bank.
- Output State when Disabled—used to specify state of the outputs when either the OEB pin or the appropriate bit in register 230 is asserted.
- Driver Inversion—used to specify the outputs, if any, on each clock bank that is inverted (180° out of phase).
- Initial Phase Offset—used to specify a static time delay with respect to other outputs.

Figure 4. Output Driver Settings in ClockBuilder Desktop

After any changes have been made to this tab, click Apply Values to Register Map.

2.3. Setting up Spread Spectrum

The Spread Spectrum tab allows the user to enable spread spectrum on each Multisynth block if desired. Enter the desired spread profile, amplitude, and modulation rate for each of the Multisynth blocks, and click Apply Values to Register Map.

Figure 5. Spread Spectrum Settings in ClockBuilder Desktop

The Si5356 supports spread spectrum under the following conditions:

- 1. MultiSynth output frequencies between 5 MHz and 200 MHz
- 2. Spreading rates from 31.5 to 63 kHz
- 3. Down spread from 0.1 to 5% in 0.01% steps
- 4. Center spread from ±0.1 to ±5.0 % in .01% steps

If your spread spectrum requirements are outside of these parameters, contact Silicon Labs.

3. Overview of Configuring the Si5356A without ClockBuilder Desktop

In order to replicate the functionality of the ClockBuilder Desktop, a full register map must be created for all desired features. To create the register map, the programmer must perform the following steps:

- 1. Configure the Input Clock & PLL.
 - See Section "4.1. Configuring Reference Input" on page 8.
 - See Section "4.2. Configuring PLL Parameters" on page 10.
- 2. Determine the divider values for the desired output frequencies.
 - See Section "4.3. Configuring the Output Frequency Plan" on page 12.
- 3. Configure the output drivers
 - See Section "5. Configuring the Output Drivers" on page 13.
- 4. Configure spread spectrum (if needed).
 - See Section "6. Configuring Spread Spectrum" on page 19.
- 5. Assemble the register map.
 - See Section "7. Si5356A Registers" on page 21.

When fully assembled, continue with the writing procedure outlined in the Si5356 device data sheet.

4. Configuring the Frequency Plan

4.1. Configuring Reference Input

The Si5356A is capable of locking to a single-ended clock or an external crystal resonator. A crystal allows the device to generate a free-running clock, whereas the part can synchronize to an external CMOS clock using the CLKIN pin. A block diagram of the input configuration is shown in Figure 6.

Figure 6. Si5356A Input Selection Block Diagram

The reference frequency to the PFD, fpfd, must be kept between 5 and 40MHz. When using a CMOS clock on CLKIN greater than 40 MHz, the P divider must be used.

The register settings for setting up the reference source are given in Figure 7.

28[7:0]	0	0	PDIV _IN[0]	1	0	1	XTAL_FI	REQ[1:0]
	7	6	5	4	3	2	1	0
29[7:0]	PFI	i D_IN_REF[I	1 2:0] I	0	0	0	0	0
	7	6	5	4	3	2	1	0
30[7:0]		0		PDIV_	IN[2:1]		PDIV[2:0]	
	7	6	5	4	3	2	1	0

Reference Clock (fpfd)	PFD_IN_REF[2:0]	PDIV_IN[2:0]
xoclk*	100	000 or 001
5MHz > CLKIN ≥ 40MHz (refclk)	001	011
CLKIN > 40MHz (divrefclk)**	111	011

Crystal Frequency	XTAL_FREQ[1:0]
27MHz	11
25MHz	10

P divider setting	PDIV[2:0]
÷1	000
÷2	001
÷4	010
÷8	011
÷16	100
÷32	101

Figure 7. Reference Clock Configuration Registers

^{*} If xoclk is selected XTAL_FREQ must be set; otherwise it is a don't care.

** If divrefclk is selected PDIV must be set such that divrefclk is in the range of 5 to 40MHz; otherwise PDIV[2:0] = 000.

4.2. Configuring PLL Parameters

When the input source has been selected and the input frequency known, PLL parameters and feedback divider ratio must be calculated and set.

4.2.1. PLL Parameters

The PLL parameters PLL_Kphi, VCO_GAIN, RSEL, BWSEL and MS_PEC must be set according to Figure 8.

f _{pfd}	K	RSEL[1:0]	BWSEL[1:0]
f _{pfd} >= 15 MHz	925	00	00
8 MHz <= f _{pfd} < 15 MHz	325	01	01
5 MHz <= f _{pfd} < 8 MHz	185	11	10

PLL_KPHI[6:0] = Round
$$\left(\begin{array}{c} \frac{1.51 \text{ x K}}{f_{pfd \text{ (MHz)}}} \end{array}\right)$$
MS_PEC[2:0] = 111
VCO_GAIN[2:0] = 001

Figure 8. Setting the PLL Parameters

4.2.2. Feedback Multisynth

Once f_{pfd} is known (see "4.1. Configuring Reference Input" on page 8), the feedback Multisynth divider must be configured.

MSN_P1 = Floor
$$\left(\frac{281,600}{f_{pfd}^*}\right) - 512$$

MSN_P2 = Floor $\left(10^9 * \left(\frac{281,600}{f_{pfd}^*}\right) - \frac{MSN_P1}{512}\right)$

 $MSN_P3 = 10^9$ (decimal)

*where f_{pfd} is in MHz; f_{pfd} must be between 5 and 40 MHz

Figure 9. Feedback Multisynth Calculations

Figure 10. Feedback Multisynth Registers

4.3. Configuring the Output Frequency Plan

MS_{x_P1} = Floor
$$\left(\frac{281,600}{f_{MSx}^*}\right) - 512$$

MS_{x_P2} = Floor $\left(10^9 * \left(\frac{281,600}{f_{MSx}^*} - MS_{x_P1} - 512\right)\right)$

$$MS_x_P3 = 10^9$$
 (decimal)

Figure 11. Output Multisynth Registers

^{*} f_{MSX} is the Multisynth output frequency in MHz, and must be between 5 and 200 MHz. To generate $f_{out} < 5$ MHz, R dividers must be used, see Sec 5.7. Output Clock Select.

5. Configuring the Output Drivers

5.1. Output Driver Powerup/Powerdown

The device allows powering down unused output clocks (CLK_n) to save on overall power consumption. Register 31[0] controls this function for CLK0, 32[0] controls CLK1, 33[0] controls CLK1, and 34[0] controls CLK1. Setting the register bit to 0 enables power to the CLK output; setting it to 1 powers it down. The default value is set to 0.

5.2. Output Driver Enable/Disable

Each of the output drivers can be enabled or disabled once they have been powered up as described in Section 5.1. Register 230 controls this function as shown in Figure 12. Drivers are enabled by default. Register 230[4] disables/enables all outputs simultaneously, and, when disabled, overrides the effect of OEB_0,1,2,3. Set each OEB x to 0 to enable.

Figure 12. Setting Output Driver Enable/Disable

5.3. Output Signal Format and Inversion

Each of the 8 output clocks can be individually enabled and inverted. Registers 36-39 control this feature as shown in Figure 13. Register 36 controls the clocks on Driver A, register 37 the clocks on Driver B, and so on.

Output Signal Format	DRVx_FMT x=A,B,C,D
Reserved	000
Even clock = on; Odd clock = off	001
Even clock = off; Odd clock = on	010
Even clock = on; Odd clock = on	011

Inversion	DRVx_INV[1:0] x=A,B,C,D
No inversion	00
Invert even clock	01
Invert odd Clock	10
Invert both clocks	11

Figure 13. Setting Output Signal Format and Inversion

5.4. Output Voltage and Trim

Each of the output drivers can operate from independent VDDO supplies at 3.3, 2.5, or 1.8 V. Registers 35 and 40-42 must be written according to Figure 14.

Note: The actual VDDOx supply voltage at the pin needs to agree to within 10% of the associate register settings.

VDDO Supply	DRVx_VDDO[1:0]	DRVx_Trim[4:0]
Voltage	x=A,B,C,D	x=A,B,C,D
3.3V	00	10111
2.5V	01	10011
1.8V	10	10101

Figure 14. Setting Output Driver Supply Voltage

5.5. Output Driver State when Disabled

When an output is disabled, its state is configurable as Hi-Z, Low, High, or Always On. Registers 110[7:6], 114[7:6], 118[7:6], and 122[7:6] control this feature as shown in Figure 15.

Driver State When Disabled	$CLKx_DISST[1:0]$ x=A,B,C,D
Hi-Z	00
Disables Low	01
Disables High	10

Figure 15. Setting Output Drive State

5.6. Configuring Initial Phase Offset

Each clock bank of the Si5356A can be programmed with an independent initial phase offset. The phase offset is represented as a 2s complement integer and is calculated as follows:

If a negative value is required, PHOFF must be converted to a 2s complement number. The initial phase offset adjustment has a range of ±45 ns. A soft reset must be applied for the phase offset values to take effect.

5.7. Output Clock Select

The source of each output driver can be selected as shown in Figure 16. The Si5356 allows each driver to output any of the synthesized clocks (MSx) or to bypass the PLL completely and output any of the input clocks directly. The output clock select register settings are shown in Figure 17.

Figure 16. Output Clock Diagram

31[7:0]	RAD	IV_IN	[2:0]	R/	DIV[2	2:0]		
·	7	6	5	4	3	2	1	0
32[7:0]	RBD	IV_IN	[2:0]	RE	BDIV[2	2:0]		
	7	6	5	4	3	2	1	0
33[7:0]	RCE	N_IN	[2:0]	RC	DIV[2	2:0]		
	7	6	5	4	3	2	1	0
34[7:0]	RDE	DIV_IN	[2:0]	RE	DIV[2	2:0]		
	7	6	5	4	3	2	1	0

Selected Source	RxDIV_IN[2:0] x=A,B,C,D
refclk	000
divrefclk	010
xoclk	100
M _A *	101
M_x	110
No clock	111

^{*} To select this output, Multisynth A fanout must be enabled in reg 144[7].

Output Divider Value	RxDIV[2:0] x=A,B,C,D
1	000
2	001
4	010
8	011
16	100
32	101
Reserved	110
Reserved	111

Figure 17. Selecting Output Clocks

The output Multisynth dividers (Mx) can generate any frequency from 5 to 200 MHz. The output clock dividers (RX) allow a final stage of division to generate output clocks < 5 MHz. This division ratio is configurable using registers 31–34 as shown in Figure 17 above. When using a division value other than 1, the outputs may not be in phase.

SHICHNIAR

^{** 001/011} are invalid values.

6. Configuring Spread Spectrum

Spread spectrum is available on each of the clock outputs. The device can be set up in down or center spread mode. The Si5356A supports spread spectrum under the following conditions:

- 1. MultiSynth output frequencies ≥ 5 MHz and 200 MHz.
- 2. Spreading rates from 31.5 to 63 kHz.
- 3. Down spread from 0.1 to 5% in 0.01% steps..
- 4. Center spread from ±0.1 to ±2.5% in .01% steps".

If your spread spectrum requirements are outside of these parameters, contact Silicon Labs.

6.1. Down Spread

To configure down spread, use the Equation 1.

Up/Down Parameter:

$$MSx_SSUDP1 = Floor \left(\frac{F_{out}}{4 * sscFreq} \right)$$

where

Fout = MultiSynthx output frequency in Hz sscFreq = spreading frequency in Hz

Down Parameters:

Let x and y be defined as:

where

sscAmp = spread amplitude (e.g, for 1.3 % down spread, sscAmp = .013) a +b/c is the MultiSynth divider ratio from section 5

$$MSx_SSDNP1 = Floor\left(\frac{x}{y}\right)$$

$$MSx_SSDNP2 = \frac{Mod(x,y)}{GCD(x, y)}$$

GCD (x,y) returns the greatest common denominator of x and y Mod(x,y) returns the remainder of x/y

$$MSx_SSDNP3 = \frac{y}{GCD(x, y)}$$

Up Parameters:

 $MSx_SSUPP1 = 0$

MSx SSUPP2 = 0

MSx SSUPP3 = 1

Equation 1. SSC Down-Spread Equations

6.2. Center Spread

Rev B devices do not provide native support for center-spread clocking. Center-spread clocks must be implemented as modified down-spread clocks. For example, to implement 100 MHz ±1% on CLKx, you must modify the associated Multisynth and R dividers to output 101 MHz (see "4.3. Configuring the Output Frequency Plan" on page 12) and configure the device for 2% down-spread according to the equations in "6.1. Down Spread". Note that ClockBuilder Desktop 6.0 (or later) takes care of configuring the registers properly for center spread operation on rev B devices.

6.2.1. Center Spread Equations for Rev A Devices

The part can be configured for this mode using Equation 2.

Up/Down Parameter:

$$MSx_SSUDP1 = Floor \left(\frac{F_{out}}{4 * sscFreq} \right)$$

where

Fout = MultiSynthx output frequency in Hz sscFreq = spreading frequency in Hz

Down Parameters:

Let x and y_{down} be defined as:

$$x = Floor(1e12*(128 * sscAmp * (a + b/c)))$$

 $y_{down} = Floor(1e12*(1 - sscAmp) * MSx_SSUDP1)$

where

sscAmp = spread amplitude (e.g, for +/-1.3 % center spread, sscAmp = .013) a +b/c is the MultiSynth divider ratio from section 5

$$MSx_SSDNP1 = Floor \left(\frac{x}{y_{down}}\right)$$

$$MSx_SSDNP2 = \frac{Mod(x,y_{down})}{GCD(x,y_{down})}$$

$$MSx_SSDNP3 = \frac{y_{down}}{GCD(x, y_{down})}$$

Up Parameters:

Let y_{up} be defined as:

$$y_{up} = Floor(1e12*(1 + sscAmp) * MSx_SSUDP1)$$

$$MSx_SSUPP1 = Floor \left(\frac{x}{y_{up}} \right)$$

$$MSx_SSUPP2 = \frac{Mod(x,y_{up})}{GCD(x,y_{up})}$$

$$MSx_SSUPP3 = \frac{y_{up}}{GCD(x, y_{up})}$$

Equation 2. SSC Center-Spread Equations

7. Si5356A Registers

This section describes the registers and their usage in detail. These values are easily configured using ClockBuilder Desktop. See "AN428: Jump Start: In-System, Flash-Based Programming for Silicon Labs' Timing Products" for a working example using Silicon Labs' F301 MCU.

7.1. Assembling the Si5338 Register Map

When all of the desired features have been configured, the values should be collected into a single list in order to write to the device. Collect register values for the required registers:

- 1. All MultiSynth, N, and R divider ratios.
- 2. PLL parameters.
- 3. Output driver parameters and output mux.
- 4. Input mux.
- 5. Miscellaneous register values.
- 6. Any additional/optional features:
 - Initial phase offset
 - Spread spectrum

When the full register map is established, continue with the write procedure as outlined in the device data sheet.

7.2. Miscellaneous Register Writes

The following register bits must also be written to ensure proper device functionality.

- Register 47[5:2] = 0101b
- Register 241 = 0x65
- Register 106[7] = 1b
- Register 116[7] = 1b
- Register 42[5] = 1b
- Register 6[7:5] = 000b
- Register 6[1] = 0b
- Register 28[7:6] = 00b

7.3. Register Write-Allowed Mask

The masks listed in Table 1 indicate which bits in each register of the Si5356 can be modified and which bits cannot. Therefore, these masks are write-allowed or write-enabled bits. These masks must be used to perform a read-modify-write on each register.

If a mask is 0x00, all bits in the associated register are reserved and must remain unchanged. If the mask is 0xFF, all the bits in the register can be changed. All other registers require a read-modify-write procedure to write to the registers. ClockBuilder Desktop can be used to create ANSI C code (Options → Save C code header file) with the register contents and mask values. "AN428: Jump Start: In-System, Flash-based Programming for Silicon Labs' Timing Products" demonstrates the usage of this header file and the read-modify-write procedure.

The following code demonstrates the application of the above write allowed mask.

- Let addr be the address of the register to access.
- Let data be the data or value to write to the register located at addr.
- Let mask be the write-allowed bits defined for the corresponding register.


```
// ignore registers with masks of 0x00
if (mask != 0x00) {
       if(mask == 0xFF){
               // do a regular I2C write to the register
               // at addr with the desired data value
               write Si5356(addr, data);
       } else {
               // do a read-modify-write using I2C and
               // bit-wise operations
               // get the current value from the device at the
               // register located at addr
               curr_val = read_Si5356(addr);
               // clear the bits that are allowed to be
               // accessed in the current value of the register
               clear curr val = curr val AND (NOT mask);
               // clear the bits in the desired data that
               // are not allowed to be accessed
               clear new val = data AND mask;
               // combine the cleared values to get the new
               // value to write to the desired register
               combined = clear curr val OR clear new val;
               write Si5356(addr, combined);
}
```


Table 1. Register Write-Allowed Masks

Mask (Hex)
0x00
0x1D
0x00
0x80
0xFF
0xFF
0xFF
0xFF

Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
32	0xFF
33	0xFF
34	0xFF
35	0xFF
36	0x1F
37	0x1F
38	0x1F
39	0x1F
40	0xFF
41	0x7F
42	0x3F
43	0x00
44	0x00
45	0x00
46	0x00
47	0x3C
48	0x7F
49	0x7F
50	0xC0
51	0x00
52	0x0C
53	0xFF
54	0xFF
55	0xFF
56	0xFF
57	0xFF
58	0xFF
59	0xFF
60	0xFF
61	0xFF
62	0x3F
63	0x0C
64	0xFF
*Note: These registers are not sa	aved in the register man or C code

Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
65	0xFF
66	0xFF
67	0xFF
68	0xFF
69	0xFF
70	0xFF
71	0xFF
72	0xFF
73	0x3F
74	0x0C
75	0xFF
76	0xFF
77	0xFF
78	0xFF
79	0xFF
80	0xFF
81	0xFF
82	0xFF
83	0xFF
84	0x3F
85	0x0C
86	0xFF
87	0xFF
88	0xFF
89	0xFF
90	0xFF
91	0xFF
92	0xFF
93	0xFF
94	0xFF
95	0x3F
96	0x00
97	0xFF
97	

Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
98	0xFF
99	0xFF
100	0xFF
101	0xFF
102	0xFF
103	0xFF
104	0xFF
105	0xFF
106	0x3F
107	0xFF
108	0x7F
109	0x00
110	0xC0
111	0xFF
112	0x7F
113	0x00
114	0xC0
115	0xFF
116	0x7F
117	0x00
118	0xC0
119	0xFF
120	0xFF
121	0x00
122	0xC0
123	0x00
124	0x00
125	0x00
126	0x00
127	0x00
128	0x00
129	0x0F
130	0x0F

Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
131	0x00
132	0x00
133	0x00
134	0x00
135	0x00
136	0x00
137	0x00
138	0x00
139	0x00
140	0x00
141	0x00
142	0x00
143	0x00
144	0x80
145	0x00
146	0x00
147	0x00
148	0x00
149	0x00
150	0x00
151	0x00
152	0x00
153	0x00
154	0x00
155	0x00
156	0x00
157	0x00
158	0x0F
159	0x0F
160	0x00
161	0x00
162	0x00
163	0x00
*Note: These registers are not say	yed in the register map or C code

Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
164	0x00
165	0x00
166	0x00
167	0x00
168	0x00
169	0x00
170	0x00
171	0x00
172	0x00
173	0x00
174	0x00
175	0x00
176	0x00
177	0x00
178	0x00
179	0x00
180	0x00
181	0x0F
182	0x00
183	0x00
184	0x00
185	0x00
186	0x00
187	0x00
188	0x00
189	0x00
190	0x00
191	0x00
192	0x00
193	0x00
194	0x00
195	0x00
196	0x00

Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
197	0x00
198	0x00
199	0x00
200	0x00
201	0x00
202	0x00
203	0x0F
204	0x00
205	0x00
206	0x00
207	0x00
208	0x00
209	0x00
210	0x00
211	0x00
212	0x00
213	0x00
214	0x00
215	0x00
216	0x00
217	0x00
218	0x00
219	0x00
220	0x00
221	0x00
222	0x00
223	0x00
224	0x00
225	0x00
226	0x00
227	0x00
228	0x00
229	0x00

Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
230*	0xFF
231	0x00
232	0x00
233	0x00
234	0x00
235	0x00
236	0x00
237	0x00
238	0x00
239	0x00
240	0x00
241*	0xFF
242	0x00
243	0x00
244	0x00
245	0x00
246*	0xFF
247	0x00
248	0x00
249	0x00
250	0x00
251	0x00
252	0x00
253	0x00
254	0x00
255	0xFF
256	0x00
257	0x00
258	0x00
259	0x00
260	0x00
261	0x00
262	0x00

Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
263	0x00
264	0x00
265	0x00
266	0x00
267	0x00
268	0x00
269	0x00
270	0x00
271	0x00
272	0x00
273	0x00
274	0x00
275	0x00
276	0x00
277	0x00
278	0x00
279	0x00
280	0x00
281	0x00
282	0x00
283	0x00
284	0x00
285	0x00
286	0x00
287	0xFF
288	0xFF
289	0xFF
290	0xFF
291	0xFF
292	0xFF
293	0xFF
294	0xFF
295	0xFF

Table 1. Register Write-Allowed Masks

Address (Decimal)	Mask (Hex)
296	0xFF
297	0xFF
298	0xFF
299	0x0F
300	0x00
301	0x00
302	0x00
303	0xFF
304	0xFF
305	0xFF
306	0xFF
307	0xFF
308	0xFF
309	0xFF
310	0xFF
311	0xFF
312	0xFF
313	0xFF
314	0xFF
315	0x0F
316	0x00
317	0x00
318	0x00
319	0xFF
320	0xFF
321	0xFF
322	0xFF
323	0xFF
324	0xFF
325	0xFF
326	0xFF
327	0xFF
328	0xFF
*Note: These registers are not sa	aved in the register man or C code

Table 1. Register Write-Allowed Masks

329 0xFF 330 0xFF 331 0x0F 332 0x00 333 0x00 334 0x00 335 0xFF 336 0xFF 337 0xFF 338 0xFF 339 0xFF 340 0xFF 341 0xFF	
331 0x0F 332 0x00 333 0x00 334 0x00 335 0xFF 336 0xFF 337 0xFF 338 0xFF 339 0xFF 340 0xFF	
332 0x00 333 0x00 334 0x00 335 0xFF 336 0xFF 337 0xFF 338 0xFF 339 0xFF 340 0xFF	
333 0x00 334 0x00 335 0xFF 336 0xFF 337 0xFF 338 0xFF 339 0xFF 340 0xFF	
334 0x00 335 0xFF 336 0xFF 337 0xFF 338 0xFF 339 0xFF 340 0xFF	
335 0xFF 336 0xFF 337 0xFF 338 0xFF 339 0xFF 340 0xFF	
336	
337	
338 0xFF 339 0xFF 340 0xFF	
339 0xFF 340 0xFF	
340 0xFF	
241 Over	
J41 UXFF	
342 0xFF	
343 0xFF	
344 0xFF	
345 0xFF	
346 0xFF	
347 0x0F	
348 0x00	
349 0x00	
350 0x00	

7.4. Register Categories

This is a list of registers needed to define the Configuration of a device. Set the PAGEBIT to access registers with addresses greater than 255.

Address (Decimal)	Bits	Function
6	4:0	Mask bits for LOS_CLKIN,LOS_FB, LOL, SYS_CAL
27	7:6	I ² C Configuration
27	7	
28–30	7:0	Input Mux Configuration
31–39	7:0	Output Configuration
40	7:0	Output Driver Trim Bits
41	6:0	
42	4:0	
47	5:2	Input Configuration
48	7:0	PLL Configuration
49	6:0	
50	7:0	
51	2:0	
52	6:0	MultiSynth A Frequency Configuration
53–61	7:0	
62	5:0	
63	6:0	
64–72	7:0	MultiSynth B Frequency Configuration
73	5:0	
74	6:0	MultiSynth C Frequency Configuration
75–83	7:0	
84	5:0	
85	6:0	
86–94	7:0	MultiSynth D Frequency Configuration
95	5:0	
97–105	7:0	M ISO All M Facility of Picture October 15
106	5:0	MultiSynth N Feedback divider Configuration
107	7:0	M ISO att A Phase Officer
108	6:0	MultiSynth A Phase Offset
110	7:6	MultiSynth A Disable State
111	7:0	MultiSynth B Phase Offset
112	6:0	

Address (Decimal)	Bits	Function
114	7:6	MultiSynth B Disable State
115	7:0	MultiSynth C Phase Offset
116	6:0	
118	7:6	MultiSynth C Disable State
119	7:0	MultiSynth D Phase Offset
120	6:0	
122	7:6	MultiSynth D Disable State
144	7	MultiSynth A Fanout Enable
241	7:0	Reserved—set to 0x65 if not factory-programmed.
287	7:0	
288	6:0	
289	7:0	
290	6:0	
291	7:0	1
292	7:0	MultiSynth A spread spectrum Configuration
293	7:0	
294	7:0	
295	6:0	
296	7:0	
297	6:0	
298	7:0	
299	7:0	
303	7:0	
304	6:0	
305	7:0	
306	6:0	
307	7:0	
308	7:0	
309	7:0	MultiSynth B spread spectrum Configuration
310	7:0	
311	6:0	
312	7:0	
313	6:0	
314	7:0	
315	7:0	

AN565

Address (Decimal)	Bits	Function
319	7:0	
320	6:0	
321	7:0	
322	6:0	
323	7:0	
324	7:0	
325	7:0	MultiSynth C spread spectrum Configuration
326	7:0	
327	6:0	
328	7:0	
329	6:0	
330	7:0	
331	7:0	
335	7:0	
336	6:0	
337	7:0	
338	6:0	
339	7:0	
340	7:0	
341	7:0	MultiSynth D spread spectrum Configuration
342	7:0	
343	6:0	
344	7:0	
345	6:0	
346	7:0	
347	7:0	

7.5. Register Summary

Table 2. Register Summary

Register	7	6	5	4	3	2	1	0	
0							REVID[2:0]		
6				PLL_LOL_ MASK	LOS CLKIN_MA SK	LOS_X- TAL_MASK		SYS_CAL_ MASK	
27	I2C_1P8 SEL			l:	2C_ADDR[6:0				
28	FDBK_PDN		PDIV_IN[0]				XTAL_F	REQ[1:0]	
29	PFD_	_IN_REF[2	2:0]						
30				PDIV_IN	l[2:1]		PDIV[2:0]		
31	RA	DIV_IN[2:0)]	F	RADIV[2:0]		MSA_PDN	DRVA_PDN	
32	RBDIV_IN[2:0]			F	RBDIV[2:0]		MSB_PDN	DRVB_PDN	
33	RCDIV_IN[2:0] RCDIV[2:0] MSC_PDN E				DRVC_PDN				
34	RD	DIV_IN[2:0	D]	F	RDDIV[2:0]	V[2:0] MSD_PDN DRV			
35	DRVD_VD[RVD_VDDO[1:0] DRVC_VDDO[1:0] DRVB_VDDO[1:0] DRVA_V				DDO[1:0]			
36				DRVA_IN	V[1:0]	DRVA_FMT[2:0]			
37				DRVB_IN	IV[1:0]	DRVB_FMT[2:0]			
38				DRVC_IN	NV[1:0] DRVC_FMT[2:0]			0]	
39				DRVD_INV[1:0]			RVD_FMT[2:	0]	
40	DRV	B_TRIM[2	:0]		DR'	VA_TRIM[4:0]			
41				DRVC_TRIM[4:0]			DRVB_TRIM[4:3]		
42					DR	VD_TRIM[4:0]]		
48				F	PLL_KPHI[6:0)]			
49			VCO_GAIN	N[2:0]	RSEI	L[1:0]	BWS	EL[1:0]	
50	PLL_ENAB	LE[1:0]							
51							MS_PEC[2:0]	
53				MSA_F	71[7:0]				
54				MSA_P	1[15:8]				
55	MSA_P2[5:0] MSA_P1[17						1[17:16]		
56		MSA_P2[13:6]							
57				MSA_P2	2[21:14]				
58				MSA_P2	2[29:22]				
59				MSA_F	23[7:0]				
60				MSA_P	3[15:8]				

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0			
61				MSA_P	3[23:16]						
62					MSA_P3	[29:24]					
64				MSB_	P1[7:0]						
65				MSB_F	1[15:8]						
66			MS	B_P2[5:0]			MSB_P	1[17:16]			
67				MSB_F	2[13:6]		1				
68				MSB_P	2[21:14]						
69		MSB_P2[29:22]									
70				MSB_	P3[7:0]						
71				MSB_F	3[15:8]						
72				MSB_P	3[23:16]						
73		MSB_P3[29:24]									
75				MSC_	P1[7:0]						
76				MSC_F	1[15:8]						
77			MS	C_P2[5:0]			MSC_P	1[17:16]			
78				MSC_F	2[13:6]						
79				MSC_P	2[21:14]						
80				MSC_P	2[29:22]						
81				MSC_	P3[7:0]						
82				MSC_F	3[15:8]						
83				MSC_P	3[23:16]						
84					MSC_P3	[29:24]					
86				MSD_	P1[7:0]						
87				MSD_F	1[15:8]						
88			MS	D_P2[5:0]			MSD_P	1[17:16]			
89				MSD_F	2[13:6]						
90				MSD_P	2[21:14]						
91				MSD_P	2[29:22]						
92				MSD_	P3[7:0]						
93				MSD_F	23[15:8]						
94				MSD_P	3[23:16]						
95					MSD_P3	[29:24]					
97				MSN_	P1[7:0]						
98				MSN_F	1[15:8]						

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0				
99			MSI	N_P2[5:0]			MSN_P	1[17:16]				
100				MSN_P	2[13:6]							
101				MSN_P2	2[21:14]							
102				MSN_P2	2[29:22]							
103				MSN_F	P3[7:0]							
104				MSN_P	3[15:8]							
105		MSN_P3[23:16]										
106					MSN_P3[[29:24]						
107		MSA_PHOFF[7:0]										
108				MS	SA_PHOFF[14	1:8]						
110	DRVA_DIS	ST[1:0]										
111		MSB_PHOFF[7:0]										
112		MSB_PHOFF[14:8]										
114	DRVB_DIS	ST[1:0]										
115		MSC_PHOFF[7:0]										
116		MSC_PHOFF[14:8]										
118	DRVC_DIS	DRVC_DISST[1:0]										
119		MSD_PHOFF[7:0]										
120				MS	SD_PHOFF[14	1:8]						
122	DRVD_DIS	ST[1:0]										
144	MSA_ALL											
218				PLL_LOL	LOS_CLKIN			SYS_CAL				
226						MS_RESET						
230				OEB_ALL	OEB_D	OEB_C	OEB_B	OEB_A				
235				FCAL								
236		Ţ		FCAL[[15:8]							
237							FCAL[17:16]					
241	DIS_LOL											
246							SOFT_RE- SET					
247				PLL_LOL_STK	LOS CLKIN_ STK	LOS_X- TAL_STK		SYS CAL_STK				
255								PAGE_SEL				
287				MSA_SSU	JPP2[7:0]			·				

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0				
288				N	ISA_SSUPP2	[14:8]	1					
289					MSA_SSUPP3	[7:0]						
290				N	1SA_SSUPP3	[14:8]						
291		1		MSA_S	SUPP1[7:0]							
292		MSA_S	SUDP1[3:0]			MSA_SS	UPP1[11:8]					
293				MSA_SS	SUDP1[11:4]							
294				MSA_S	SDNP2[7:0]							
295				N	1SA_SSDNP2	[14:8]						
296		_	MSA_SSDNP3[7:0]									
297			MSA_SSDNP3[14:8]									
298				MSA_S	SDNP1[7:0]							
299			MSA_SSDNP1[11:8]									
303			MSB_SSUPP2[7:0]									
304			MSB_SSUPP2[14:8]									
305			MSB_SSUPP3[7:0]									
306			MSB_SSUPP3[14:8]									
307			MSB_SSUPP1[7:0]									
308		MSB_S	SUDP1[3:0]			MSB_SS	UPP1[11:8]					
309				MSB_SS	SUDP1[11:4]							
310				MSB_S	SDNP2[7:0]							
311				N	ISB_SSDNP2	[14:8]						
312		1		MSB_S	SDNP3[7:0]							
313				٨	ISB_SSDNP3	[14:8]						
314				MSB_S	SDNP1[7:0]							
315						MSB_SS	DNP1[11:8]					
319		1		MSC_S	SUPP2[7:0]							
320				٨	ISC_SSUPP2	[14:8]						
321			MSC_SSUPP3[7:0]									
322					ISC_SSUPP3	[14:8]						
323			MSC_SSUPP1[7:0]									
324		MSC_S	SUDP1[3:0]			MSC_SS	UPP1[11:8]					
325				MSC_SS	SUDP1[11:4]							
326		1		MSC_S	SDNP2[7:0]							
327				N	ISC_SSDNP2	[14:8]						

Table 2. Register Summary (Continued)

Register	7	6	5	4	3	2	1	0			
328	•		1 3	MSC_SSE			<u>'</u>				
329					C_SSDNP3[1	4.81					
330				MSC_SSE		1.01					
331						MSC SSI	DNP1[11:8]				
335				MSD_SSL	 JPP2[7:0]	05_00.					
336		MSD_SSUPP2[14:8]									
337		MSD_SSUPP3[7:0]									
338		MSD_SSUPP3[14:8]									
339		MSD_SSUPP1[7:0]									
340		MSD_S	SSUDP1[3:0]			MSD_SSI	JPP1[11:8]				
341				MSD_SSU	DP1[11:4]						
342				MSD_SSE	NP2[7:0]						
343				MS	D_SSDNP2[1	4:8]					
344		MSD_SSDNP3[7:0]									
345				MS	D_SSDNP3[1	4:8]					
346		•		MSD_SSD	NP1[7:0]						
347						MSD_SSI	DNP1[11:8]				

7.6. Register Descriptions

In many registers, the byte reset value contains one or more "x"s because a factory-programmed device can have multiple values for these bits.

Register 0.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name							REVID[2:0]		
Туре						R			

Reset value = xxxx xxxx

Bit	Name	Function					
7:3	Reserved	Reserved.					
2:0	REVID[2:0]	Device Revision ID. Rev A = 000b Rev B = 001b					

Register 2.

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name			Dev_Config2[5:0]							
Туре		R/W								

Bit	Name	Function
7:6	Reserved	Reserved.
5:0	Dev_Config2[5:0]	Bits 5:0 represent the last two digits of the base part number: "56" for Si5338. See "7.6.1. Example Part Number for Device ID Registers" on page 44 for complete part number example.

Register 3.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		De	v_Config3[7			Dev_Config3[0]			
Туре		R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:3	Dev_Config3[7:3]	Bits 7:3 represent the device grade: 1 for Si5356A. See "7.6.1. Example Part Number for Device ID Registers" on page 44 for complete part number example.
2:1	Reserved	Reserved.
0	Dev_Config3[0]	Bit 0 represents bit 16 of the NVM code assigned by Silicon Labs: 00000 through 99999. See "7.6.1. Example Part Number for Device ID Registers" on page 44 for complete part number example.

Register 4.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	Dev_Config4[7:0]								
Туре		R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:0	Dev_Config4[7:0]	Bits 7:0 represent bits 15:8 of the NVM code assigned by Silicon Labs: 00000 through 99999. See "7.6.1. Example Part Number for Device ID Registers" on page 44 for complete part number example.

Register 5.

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		Dev_Config5[7:0]										
Туре				R	/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Bits 7:0 represent bits 7:0 of the NVM code assigned by Silicon Labs: 00000 through 99999. See "7.6.1. Example Part Number for Device ID Registers" on page 44 for complete part number example.

AN565

7.6.1. Example Part Number for Device ID Registers

Device ID register contents for an example part number Si5356A-B12345-GM:

Register 0[2:0] = 1h = 001

Register 2 = 78h = 0111 1000

Register 3 = 08h = 0000 1000

Register 4 = 30h = 0011 0000

Register 5 = 39h = 0011 1001

REVID = B

Dev_Config2[5:0] = 10 0110 = 56 (base part number).

 $Dev_Config3[7:3] = 0\ 0001 = 1 = A\ (device\ grade).$

Dev_Config3[0], Dev_Config4[7:0], Dev_Config5[7:0] = 0 0011 0000 0011 1001 = 12345 (NVM code number).

Refer to the Si5356A data sheet's Ordering Guide section for detailed information about ordering part numbers.

Register 6.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				PLL_LOL_MA SK	LOS CLKIN_MASK	LOS CLKIN_MASK	Reserved	SYS CAL_MASK
Туре	e R/W		R/W	R/W		R/W		

Bit	Name	Function
7:5	Reserved	Reserved. Must only write 000b to these bits.
4	PLL_LOL_MASK	Mask Bit for PLL_LOL. When true, the PLL_LOL bit (Register 218) will not cause an interrupt. See also Register 247. 0: PLL Loss of Lock (LOL) triggers active interrupt on INTR output pin. 1: PLL Loss of Lock (LOL) ignored in generating interrupt output.
3	LOS_CLKIN_MASK	Mask Bit for CLKIN Loss of Signal. When true, the LOS_CLKIN bit (Register 218) will not cause an interrupt. See also Register 247. 0: CLKIN LOS triggers active interrupt on INTR output pin. 1: CLKIN LOS ignored in generating interrupt output.
2	LOS_XTAL_MASK	Mask Bit for XTAL Loss of Signal. When true, the LOS_XTAL bit (Register 218) will not cause an interrupt. See also Register 247. 0: XTAL LOS triggers active interrupt on INTR output pin. 1: XTAL LOS ignored in generating interrupt output.
1	Reserved	Reserved. Must only write 0 to this bit.
0	SYS_CAL_MASK	Chip Calibration Mask Bit. When true, the SYS_CAL bit (Register 218) will not cause an interrupt. See also Register 247. 0:PLL self-calibration triggers active interrupt on INTR output pin. 1:PLL self-calibration ignored in generating interrupt output.

Register 27.

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name	I2C_1P8_SEL			12	2C_ADDR[6:0	D]		•		
Туре	R/W		R/W*							

Reset value = xxxx xxxx

Bit	Name	Function
7	I2C_1P8_SEL	I ² C Reference V _{DD} .
		External I2C VDD 0 = 3.3 V/2.5 V, 1 = 1.8 V. 0: 3.3 V/2.5 V (default) 1: 1.8 V
6:0*	I2C_ADDR[6:0]	7-Bit I ² C Address. If and only if there is an I2C_LSB pin, the actual I ² C LSB address is the logical "or" of the bit in position 0 with the state of the I2C_LSB pin. Otherwise, the actual I2C_LSB is the LSB of this 7-bit address. Custom 7-bit I ² C addresses may be requested but must be even numbers if pin control of the I ² C address is to be implemented. For example, if the I ² C address = 70h, the I2C_LSB pin can change the LSB from 0 to 1. However, if the I ² C address = 71h, the I2C_LSB pin will have no effect upon the I ² C address.

*Note: Although these bits are R/W, writing them is not supported. Custom I²C addresses can be set at the factory. Contact your local sales office for details.

Register 28.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			PDIV_IN[0]				XTAL_FREQ[1:0]	
Туре	W	W	R/W	R/W	R/W	R/W	R/W	

Bit	Name	Function
7:6	Reserved	Reserved. Must only write 00b to these bits.
5	PDIV_IN[0]	This bit and Register 30[4:3] create a 3-bit field that selects the input to the P divider [reg30[4:3] reg28[5]] = PDIV_IN[2:0]. 011b: Clock from CLKIN pin is input to P divider All other bit values are reserved.
4:2	Reserved	Reserved. Must only write 000b to these bits.
1:0	XTAL_FREQ[1:0]	Crystal Frequency Range. Select Xtal Frequency that you are using. For more information on using crystals, see "AN360: Crystal Selection Guide for Si533x/5x Devices". 0: 8–11 MHz 1: 11–19 MHz 2: 19–26 MHz 3: 26–30 MHz

Register 29.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	PF	PFD_IN_REF[2:0]						
Туре	R/W			W	W	W	W	W

Bit	Name	Function
7:5	PFD_IN_REF[2:0]	PFD Reference Input (fpfd).
		Selects the input clock to be provided to the reference input of PLL Phase Frequency Detector (PFD).
		0: Reserved
		1: PDIV_IN selected
		2: Reserved
		3: PDIV_OUT (P2 divider output) selected
		4: XOCLK selected
		5: No Clock selected
		6: Reserved
		7: Reserved
4:0	Reserved	Reserved.
		Must only write 00000b to these bits.

Register 30.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				PDVIN_IN[2:1]		PDIV[2:0]		
Туре					W		R/W	

Bit	Name	Function
7:5	Reserved	Reserved.
		Must only write 000b or 101b to these bits.
4:3	PDVIN_IN[2:1]	This bit and Register 28[5] create a 3-bit field that selects the input to the P divider [reg30[4:3] reg28[5]] = PDIV_IN[2:0]. 011b: Clock from CLKIN pin is input to P divider
		All other bit values are reserved.
2:0	PDIV[2:0]	P Divide Value.
		Sets the value of the P divider.
		0: Divide by 1
		1: Divide by 2
		2: Divide by 4
		3: Divide by 8
		4: Divide by 16
		5: Divide by 32

Register 31.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	F	RADIV_IN[2:0)]	RADIV[2:0]			MSA_PDN	DRVA_PDN
Туре		R/W			R/W		R/W	R/W

Bit	Name	Function
7:5	RADIV_IN[2:0]	RA Divider Input Selection. Selects the input to the RA divider. RA divider output goes to CLK0/1. 0: REFCLK 1: Reserved 2: DIVREFCLK 3: Reserved 4: XOCLK 5: Reserved 6: Multisynth A output 7: No Clock
4:2	RADIV[2:0]	RA Output Divider. 0: Divide by 1 1: Divide by 2 2: Divide by 4 3: Divide by 8 4: Divide by 16 5: Divide by 32
1	MSA_PDN	Multisynth A Power Down. 0: MSA MultiSynth powered up 1: MSA MultiSynth powered down
0	DRVA_PDN	RA and CLK0/1 Power Down. 0: RA output divider and CLK0/1 driver powered up 1: RA output divider and CLK0/1 driver powered down

Register 32.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	RBDIV_IN[2:0]				RBDIV[2:0]			DRVB_PDN
Туре	R/W				R/W		R/W	R/W

Bit	Name	Function
7:5	RBDIV_IN[2:0]	RB Divider Input Selection. Selects the input to the RB divider. RB divider output goes to CLK2/3. 0: REFCLK 1: Reserved 2: DIVREFCLK 3: Reserved 4: XOCLK 5: Multisynth A output* 6: Multisynth B output 7: No Clock
4:2	RBDIV[2:0]	*Note: To select this output, MSA fanout must be enabled in register 144 [bit 7]. RB Output Divider. 0: Divide by 1 1: Divide by 2 2: Divide by 4 3: Divide by 8 4: Divide by 16 5: Divide by 32
1	MSB_PDN	Multisynth B Power Down. 0: Multisynth B is powered up. 1: Multisynth B is powered down.
0	DRVB_PDN	RB and CLK2/3 Power Down. 0: RB output divider and CLK2/3 driver powered up. 1: RB output divider and CLK2/3 driver powered down.

Register 33.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	RCDIV_IN[2:0]				RCDIV[2:0]			DRVC_PDN
Туре	R/W				R/W		R/W	R/W

Bit	Name	Function
7:5	RCDIV_IN[2:0]	Selects the input to the RC divider. RC divider output goes to CLK4/5. 0: REFCLK 1: Reserved 2: DIVREFCLK 3: Reserved 4: XOCLK 5: Multisynth A output* 6: Multisynth C output 7: No Clock
4:2	RCDIV[2:0]	*Note: To select this output, MSA fanout must be enabled in register 144 [bit 7]. RC Output Divider. 0: Divide by 1. 1: Divide by 2. 2: Divide by 4. 3: Divide by 8. 4: Divide by 16. 5: Divide by 32.
1	MSC_PDN	Multisynth C Power Down. 0: Multisynth C powered up. 1: Multisynth C powered down.
0	DRVC_PDN	RC and CLK4/5 Power Down. 0: RC output divider and CLK4/5 driver powered up. 1: RC output divider and CLK4/5 driver powered down.

Register 34.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	RDDIV_IN[2:0]				RDDIV[2:0]			DRVD_PDN
Туре	R/W				R/W		R/W	R/W

Bit	Name	Function
7:5	RDDIV_IN[2:0]	RD Divider Input Selection.
		Selects the input to the RD divider. RD divider output goes to CLK6/7.
		0: REFCLK
		1: Reserved
		2: DIVREFCLK
		3: Reserved
		4: XOCLK
		5: Multisynth A output*
		6: Multisynth D output
		7: No Clock *Note: To select this output, MSA fanout must be enabled in register 144 [bit 7].
4:2	RDDIV[2:0]	RD Output Divider.
		0: Divide by 1.
		1: Divide by 2.
		2: Divide by 4.
		3: Divide by 8.
		4: Divide by 16. 5: Divide by 32.
		· · · · · · · · · · · · · · · · · · ·
1	MSD_PDN	Multisynth D Power Down.
		0: Multisynth D is power up.
		1: Multisynth D powered down.
0	DRVD_PDN	RD and CLK6/7 Powerdown.
		0: RD output divider and CLK6/7 driver powered up.
		1: RD output divider and CLK6/7 driver powered down.

Register 35.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DRVD_V	/DDO[1:0] DRVC_VDDO[1:0]		DRVB_VDDO[1:0]		DRVA_VDDO[1:0]		
Туре	R/W		R/	W	R/	W	R/	W

Reset value = xxxx xxxx

Bit	Name	Function
7:6	DRVD_VDDO[1:0]	VDDO Setting for Driver D. 0: VDDO3 = 3.3 V 1: VDDO3 = 2.5 V 2: VDDO3 = 1.8 V 3: Reserved
5:4	DRVC_VDDO[1:0]	VDDO Setting for Driver C. 0: VDDO2 = 3.3 V 1: VDDO2 = 2.5 V 2: VDDO2 = 1.8 V 3: Reserved
3:2	DRVB_VDDO[1:0]	VDDO Setting for Driver B. 0: VDDO1 = 3.3 V 1: VDDO1 = 2.5 V 2: VDDO1 = 1.8 V 3: Reserved
1:0	DRVA_VDDO[1:0]	VDDO Setting for Driver A. 0: VDDO0 = 3.3 V 1: VDDO0 = 2.5 V 2: VDDO0 = 1.8 V 3: Reserved

Note: If the VDDOx voltage is below the minimum allowed voltage of the programmed voltage setting in Register 35, the output driver may not turn on.

Register 36.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name				DRVA_INV[1:0]			DRVA_FMT[1:0]		
Туре				R/W R/W					

Bit	Name	Function
7:5	Reserved	Reserved.
4:3	DRVA_INV[1:0]	Driver A Invert (CLK0/1). 0: Both outputs are in phase 1: CLK0 inverted 2: CLK1 inverted 3: CLK0/1 inverted and in phase
2	Reserved	Reserved.
1:0	DRVA_FMT[1:0]	Driver A Signal Format (CLK0/1). 0: Reserved 1: CLK0 = on, CLK1 = off 2: CLK0 = off, CLK1 = on 3: CLK0/1 = on

Register 37.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name				DRVB_INV[1:0]			DRVB_FMT[1:0]		
Туре				R/W R/W					

Bit	Name	Function
7:5	Reserved	Reserved.
4:3	DRVB_INV[1:0]	Driver B Invert (CLK2/3). 0: Both outputs are in phase 1: CLK2 inverted 2: CLK3 inverted 3: CLK2/3 inverted and in phase
2	Reserved	Reserved.
1:0	DRVB_FMT[1:0]	Driver B Signal Format (CLK2/3). 0: Reserved 1: CLK2 = on, CLK3 = off 2: CLK2 = off, CLK3 = on 3: CLK2/3 = on

Register 38.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				DRVC_INV[1:0]			DRVC_F	MT[1:0]
Туре				R/	W		R/	W

Bit	Name	Function
7:5	Reserved	Reserved.
4:3	DRVC_INV[1:0]	Driver C Invert (CLK4/5). 0: Both outputs are in phase 1: CLK4 inverted 2: CLK5 inverted 3: CLK4/5 inverted and in phase
2	Reserved	Reserved.
1:0	DRVC_FMT[1:0]	Driver C Signal Format (CLK4/5). 0: Reserved 1: CLK4 = on, CLK5 = off 2: CLK4 = off, CLK5 = on 3: CLK4/5 = on

Register 39.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				DRVD_INV[1:0]			DRVD_F	- - - - - - - - - - - - - - - - - - -
Туре				R/	W		R/	W

Reset value = xxxx xxxx

Bit	Name	Function
7:5	Reserved	Reserved.
4:3	DRVD_INV[1:0]	Driver D Invert (CLK6/7). 0: Both outputs are in phase 1: CLK6 inverted 2: CLK7 inverted 3: CLK6/7 inverted and in phase
2	Reserved	Reserved.
1:0	DRVD_FMT[1:0]	Driver D Signal Format (CLK6/7). 0: Reserved 1: CLK6 = on, CLK/7 = off 2: CLK6 = off, CLK7 = on 3: CLK6/7 = on

Register 40.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DF	RVB_TRIM [2	::0]	DRVA_TRIM [4:0]				
Туре		R/W				R/W		

Reset value = xxxx xxxx

Bit	Name	Function
7:5	DRVB_TRIM [2:0]	Trim Bits for Driver B (CLK2/3).
		ClockBuilder Desktop sets these values automatically. See AN565 for required manual settings information
4:3	DRVA_TRIM [4:0]	Trim Bits for Driver A (CLK0/1).
		ClockBuilder Desktop sets these values automatically. See AN565 for required manual settings information

Register 41.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			DI	DRVB_TRIM [4:3]				
Туре			R/W					W

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	Reserved.
6:2	DRVC_TRIM [4:0]	Trim Bits for Driver C (CLK4/5). ClockBuilder Desktop sets these values automatically. See AN565 for required manual settings information.
1:0	DRVB_TRIM [4:3]	Trim Bits for Driver B (CLK2/3). ClockBuilder Desktop sets these values automatically. See AN565 for required settings information.

Register 42.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name				DRVD_TRIM [4:0]					
Туре						R/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	Reserved.
5	Reserved	Must write 1b to this bit.
4:0	DRVD_TRIM [4:0]	Trim Bits for Driver D (CLK6/7). ClockBuilder Desktop sets these values automatically. See AN565 for required manual settings information.

Register 47.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		Reserved									
Туре			Ī	R							

Reset value = xxxx xxxx

Bit	Name	Function
7:2	Reserved	Reserved. Must write 000101b to these bits if the device is not factory programmed.
1:0	Reserved	Reserved.

Register 48.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name			PLL_KPHI[6:0]								
Туре	R/W				R/W						

Reset value = xxxx xxxx

Ī	Bit	Name	Function					
	7	Reserved	Reserved.					
	6:0		Sets the charge pump current for the PFD. ClockBuilder Desktop sets these values automatically. See AN565 for manual setting.					

Register 49.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		V	VCO_GAIN[2:0]			_[1:0]	BWSEL[1:0]	
Туре	R/W	R/W		R/W		R/W		

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	Reserved.
6:4	VCO_GAIN[2:0]	Sets the VCO Gain. ClockBuilder Desktop sets these values automatically. See AN565 for manual setting.
3:2	RSEL[1:0]	Loop Filter Resistor Select. ClockBuilder Desktop sets these values automatically. See AN565 for manual setting.
1:0	BWSEL[1:0]	Select the PLL Loopfilter. ClockBuilder Desktop sets these values automatically. See AN565 for manual setting.

Register 50.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	PLL_ENA	ABLE[1:0]							
Туре			R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:6	PLL_ENABLE[1:0]	NAME
		00: Disable PLL
		11: Enable PLL
		It is expected that all Si5356 applications will need to have the PLL enabled; however, the PLL may be disabled when all clock output muxes are set to output XOCLK, REFCLK, and/or DIVREFCLK (RxDIV_IN, see registers 31, 32, 33, 34).
5:0	Reserved	Reserved.

Register 51.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS_PEC[2:0]		
Туре	R/W	R/W	R/W	R/W				

Reset value = xxxx x111

Bit	Name	Function
7:4	Reserved	Reserved.
3	Unused	Unused.
2:0	MS_PEC[2:0]	MultiSynth Phase Error Correction. All non-factory programmed devices must have 111b written to these bits.

Register 52.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					MSA_SSMODE[1:0]			
Туре	R/W	R/W	R/W	R/W	R	W	R/	W

Bit	Name	Function
7:4	Reserved	Reserved.
3:2	MSA_SSMODE[1:0]	Multisynth A Spread Spectrum Mode Select. 0: No SSC on MSA 01b or 10b or 11b: Down spread on MSA
1:0	Reserved	Reserved.

Register 53.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•		MSA_	P1[7:0]	•	•	
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSA_P1[7:0]	Multisynth A Parameter 1.
		This 18-bit number is an encoded representation of the integer part of the Multisynth A divider.

Register 54.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSA_P1[15:8]									
Туре				R	/W						

Bit	Name	Function
15:8		Multisynth A Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth A divider.

Register 55.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		•	MSA_	P2[5:0]	•	•	MSA_P1[17:16]		
Туре			R	/W			R/	W	

Reset value = xxxx xxxx

Bit	Name	Function
7:2	MSA_P2[5:0]	Multisynth A Parameter 2.
		This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth A Divider.
1:0	MSA_P1[17:16]	Multisynth A Parameter 1.
		This 18-bit number is an encoded representation of the integer part of the Multisynth A divider.

Register 56.

64

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSA_P2[13:6]									
Туре				R	/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSA_P2[13:6]	Multisynth A Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth A Divider.

Register 57.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSA_P2[21:14]									
Туре				R	/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSA_P2[21:14]	Multisynth A Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth A Divider.

Register 58.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSA_P	2[29:22]			
Туре				R	/W			

Bit	Name	Function
7:0		Multisynth A Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth A Divider.

Register 59.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSA_P3[7:0]									
Туре				R	/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSA_P3[7:0]	Multisynth A Parameter 3.
		This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth A divider.

Register 60.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSA_P3[15:8]									
Туре				R	/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Multisynth A Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth A divider.

Register 61.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSA_P3[23:16]									
Туре				R	/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSA_P3[23:16]	Multisynth A Parameter 3.
		This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth A divider.

Register 62.

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name				MSA_P3[29:24]								
Туре					R	/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	Reserved.
5:0	MSA_P3[29:24]	Multisynth A Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth A divider.

Register 63.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					MSB_SSMODE[1:0]			
Туре	R/W	R/W	R/W	R/W	R/	W	R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:4	Reserved	Reserved.
3:2	MSB_SSMODE[1:0]	Multisynth B Spread Spectrum Mode Select. 0: No SSC on MSB 01b or 10b or 11b: Down spread on MSB
1:0	Reserved	Reserved.

Register 64.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSB_P1[7:0]									
Туре				R	/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSB_P1[7:0]	Multisynth B Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth B divider.

Register 65.

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		MSB_P1[15:8]										
Туре		R/W										

Bit	Name	Function
7:0		Multisynth B Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth B divider.

Register 66.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•	MSB_	P2[5:0]	•	•	MSB_P	1[17:16]
Туре		R/W						W

Reset value = xxxx xxxx

Bit	Name	Function
7:2	MSB_P2[5:0]	Multisynth B Parameter 2.
		This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth B Divider.
1:0	MSB_P1[17:16]	Multisynth B Parameter 1.
		This 18-bit number is an encoded representation of the integer part of the Multisynth B divider.

Register 67.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSB_P2[13:6]									
Туре				R	/W						

Bit	Name	Function
7:0	MSB_P2[13:6]	Multisynth B Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional
		part of the Multisynth B Divider.

Register 68.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSB_P2[21:14]									
Туре				R	/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Multisynth B Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth B Divider.

Register 69.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSB_P2[29:22]									
Туре		R/W									

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSB_P2[29:22]	Multisynth B Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth B Divider.

Register 70.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSB_P3[7:0]									
Туре				R	/W						

Reset value = xxxx xxxx

Bi	it	Name	Function
7:0	0	MSB_P3[7:0]	Multisynth B Parameter 3.
			This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth B Divider.

Register 71.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSB_P3[15:8]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSB_P3[15:8]	Multisynth B Parameter 3. This 30-bit number is an encoded representation of the denominator for the frac-
		tional part of the Multisynth B Divider.

Register 72.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSB_P3[23:16]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSB_P3[23:16]	Multisynth B Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth B Divider.

Register 73.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSB_P3[29:24]					
Туре			R/W					

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	Reserved.
5:0	MSB_P3[29:24]	Multisynth B Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth B Divider.

Register 74.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					MSC_SSN	MODE[1:0]		
Туре	R/W	R/W	R/W	R/W	R	W	R/W	R/W

Reset value = xxxx xxxx

Bit	t	Name	Function
7:4	4	Reserved	Reserved.
3:2	2	MSC_SSMODE[1:0]	Multisynth C Spread Spectrum Mode Select. 0: No SSC on MSC 01b or 10b or 11b: Down spread on MSC
1:0	0	Reserved	Reserved.

Register 75.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_P1[7:0]						
Туре		R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSC_P1[7:0]	Multisynth C Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth C divider.

Register 76.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_P1[15:8]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSC_P1[15:8]	Multisynth C Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth C divider.

Register 77.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_P2[5:0]						1[17:16]
Туре		R/W						W

Reset value = xxxx xxxx

Bit	Name	Function
7:2	MSC_P2[5:0]	Multisynth C Parameter 2.
		This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth C Divider.
1:0	MSC_P1[17:16]	Multisynth C Parameter 1.
		This 18-bit number is an encoded representation of the integer part of the Multisynth C divider.

Register 78.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_P2[13:6]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Multisynth C Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth C Divider.

Register 79.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_P2[21:14]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Multisynth C Parameter 2. This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth C Divider.

Register 80.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_P2[29:22]						
Туре				R	/W			

Reset value = xxxx xxxx

Ī	Bit	Name	Function
Ī	7:0	MSC_P2[29:22]	Multisynth C Parameter 2.
			This 30-bit number is an encoded representation of the numerator for the fractional part of the Multisynth C Divider.

Register 81.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_P3[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
	MSC_P3[7:0]	Multisynth C Parameter 3.
		This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth C Divider.

Register 82.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_P3[15:8]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSC_P3[15:8]	Multisynth C Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth C Divider.

Register 83.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_P3[23:16]						
Туре				R	/W			

Reset value = xxxx xxxx

	Bit	Name	Function
Ī	7:0	MSC_P3[23:16]	Multisynth C Parameter 3.
			This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth C Divider.

Register 84.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					MSC_F	23[29:24]		
Туре			R/W					

Reset value = xxxx xxxx

Bit	Name	Function
7:6	Reserved	Reserved.
	MSC_P3[29:24]	Multisynth C Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth C Divider.

Register 85.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name					MSD_SSN	MODE[1:0]		
Туре	R/W	R/W	R/W	R/W	R	W	R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:4	Reserved	Reserved.
3:2	MSD_SSMODE[1:0]	Multisynth D Spread Spectrum Mode Select. 0: No SSC on MSD 01b or 10b or 11b: Down spread on MSD
1:0	Reserved	Reserved.

Register 86.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSD_	P1[7:0]			
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Multisynth D Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth D divider.

Register 87.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSD_P1[15:8]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSD_P1[15:8]	Multisynth D Parameter 1. This 18-bit number is an encoded representation of the integer part of the Multisynth D divider

Register 88.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSD_P2[5:0] MSD_P1[17:16]						1[17:16]
Туре		R/W R/W						/W

Reset value = xxxx xxxx

Bit	Name	Function
7:2	MSD_P2[5:0]	Multisynth D Parameter 2.
		This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth D Divider.
1:0	MSD_P1[17:16]	Multisynth D Parameter 1.
		This 18-bit number is an encoded representation of the integer part of the Multisynth D divider.

SHIPPN LARS

Register 89.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•	•	MSD_I	P2[13:6]	•	•	
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Multisynth D Parameter 2. This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth D Divider.

Register 90.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSD_F	2[21:14]			
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSD_P2[21:14]	Multisynth D Parameter 2. This 30-bit number is an encoded representation of the denominator for the frac-
		tional part of the Multisynth D Divider.

Register 91.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSD_F	2[29:22]			
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSD_P2[29:22]	Multisynth D Parameter 2.
		This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth D Divider.

Register 92.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•		MSD_	P3[7:0]	•	•	
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSD_P3[7:0]	Multisynth D Parameter 3.
		This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth D Divider.

Register 93.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSD_I	P3[15:8]			
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0		Multisynth D Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth D Divider

Register 94.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MSD_P3[23:16]							
Туре				R	/W				

Reset value = xxxx xxxx

Ī	Bit	Name	Function
	7:0	MSD_P3[23:16]	Multisynth D Parameter 3.
			This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth D Divider

Register 95.

Bit	D7	D6	D5	D4	D3	D2	D1	D0				
Name		•		•	MSD_F	23[29:24]	•					
Туре					R	/W	R/W					

Reset value = xxxx xxxx

Bit	Name	Function			
7:6	Reserved	Reserved.			
5:0	MSD_P3[29:24]	Multisynth D Parameter 3. This 30-bit number is an encoded representation of the denominator for the fractional part of the Multisynth D Divider.			

Register 97.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MSN_P1[7:0]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSN_P1[7:0]	Feedback MultiSynthN Parameter 1.
		This 18-bit number is an encoded representation of the integer part of the MultiSynth Feedback divider.

Register 98.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MSN_P1[15:8]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSN_P1[15:8]	Feedback MultiSynthN Parameter 1.
		This 18-bit number is an encoded representation of the integer part of the MultiSynth Feedback divider.

Register 99.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P2[5:0]						1[17:16]
Туре		R/W R/W						/W

Reset value = xxxx xxxx

Bit	Name	Function
7:2	MSN_P2[5:0]	Feedback MultiSynthN Parameter 2.
		This 18-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth Feedback divider.
1:0	MSN_P1[17:16]	Feedback MultiSynthN Parameter 1.
		This 18-bit number is an encoded representation of the integer part of the Multi-Synth Feedback divider.

Register 100.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MSN_P2[13:6]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSN_P2[13:6]	Feedback MultiSynthN Parameter 2.
		This 18-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth Feedback divider.

Register 101.

Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0						
Name		MSN_P2[21:14]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSN_P2[21:14]	Feedback MultiSynthN Parameter 2.
		This 18-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth Feedback divider.

Register 102.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P2[29:22]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSN_P2[29:22]	Feedback MultiSynthN Parameter 2.
		This 18-bit number is an encoded representation of the numerator for the fractional part of the MultiSynth Feedback divider.

Register 103.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSN_P3[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSN_P3[7:0]	Feedback MultiSynthN Parameter 3.
		This 18-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth Feedback divider.

Register 104.

Bit	D7	D7 D6 D5 D4 D3 D2 D1 D0						
Name		•		MSN_I	P3[15:8]	•	•	
Туре				R	/W			

Reset value = xxxx xxxx

	Bit	Name	Function
Ī	7:0	MSN_P3[15:8]	Feedback MultiSynthN Parameter 3.
			This 18-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth Feedback divider

Register 105.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSN_P	3[23:16]			
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSN_P3[23:16]	Feedback MultiSynthN Parameter 3.
		This 18-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth Feedback divider.

Register 106.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	NOTERM_FB			•	MSN_F	23[29:24]	•	
Туре	R/W				R	/W		

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	Reserved.
		Must write 1b to this bit.
6	Reserved	Reserved.
5:0	MSN_P3[29:24]	Feedback MultiSynthN Parameter 3.
		This 18-bit number is an encoded representation of the denominator for the fractional part of the MultiSynth Feedback divider.

Register 107.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MSA_PHOFF[7:0]							
Туре		R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSA_PHOFF[7:0]	Multisynth A Initial Phase Offset. Multisynth A_PHOFF[14:0] is a 2s complement number. The initial phase offset is Multisynth A_PHOFF[14:0]*Tvco/128 where Tvco is the period of the VCO.

Register 108.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSA_PHOFF[14:8]					
Туре					R/W			

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	Reserved.
6:0	MSA_PHOFF[14:8]	Multisynth A Initial Phase Offset. Multisynth A_PHOFF[14:0] is a 2s complement number. The initial phase offset is Multisynth A_PHOFF[14:0]*Tvco/128 where Tvco is the period of the VCO.

Register 110.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DRVA_D	ISST[1:0]						
Туре	R/W		R/W	R/W	R/W	R/W	R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:6	DRVA_DISST[1:0]	Driver A (CLK0/1) Output State When Disabled. 00: High impedance 01: Logic low 10: Logic high 11: Always on even if disabled
5:0	Reserved	Reserved.

Register 111.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSB_PHOFF[7:0]						
Туре				R	/W			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSB_PHOFF[7:0]	Multisynth B Initial Phase Offset. Multisynth B_PHOFF[14:0] is a 2s complement number. The initial phase offset is Multisynth B_PHOFF[14:0]*Tvco/128 where Tvco is the period of the VCO.

Register 112.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSB_PHOFF[14:8]					
Туре			R/W					

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	Reserved.
6:0	MSB_PHOFF[14:8]	Multisynth B Initial Phase Offset. Multisynth B_PHOFF[14:0] is a 2s complement number. The initial phase offset is Multisynth B_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO.

Register 114.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DRVB_D	ISST[1:0]						
Туре	R/W		R/W	R/W	R/W	R/W	R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:6	DRVB_DISST[1:0]	Driver B (CLK2/3) Output State When Disabled. 00: High impedance 01: Logic low 10: Logic high 11: Always on even if disabled
5:0	Reserved	Reserved.

Register 115.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MSC_PHOFF[7:0]							
Туре				R	/W				

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSC_PHOFF[7:0]	Multisynth C Initial Phase Offset. Multisynth C_PHOFF[14:0] is a 2s complement number. The initial phase offset is Multisynth C_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO.

Register 116.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSC_PHOFF[14:8]					
Туре	R/W				R/W			

Reset value = xxxx xxxx

Bit	Name	Function
7	Reserved	Reserved.
		Must write 1b to this bit.
6:0	MSC_PHOFF[14:8]	Multisynth C Initial Phase Offset.
		Multisynth C_PHOFF[14:0] is a 2s complement number. The initial phase offset is Multisynth C_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO.

Register 118.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DRVC_D	ISST[1:0]						
Туре	R/W		R/W	R/W	R/W	R/W	R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:6	DRVC_DISST[1:0]	Driver C (CLK4/5) Output State When Disabled.
		00: High impedance
		01: Logic low
		10: Logic high
		11: Always on even if disabled
5:0	Reserved	Reserved.

Register 119.

Bit	D7	D6	D5	D4	D3	D2	D1	D0			
Name		MSD_PHOFF[7:0]									
Туре				R	/W	R/W					

Reset value = xxxx xxxx

Bit	Name	Function
7:0	MSD_PHOFF[7:0]	Multisynth D Initial Phase Offset. Multisynth D_PHOFF[14:0] is a 2s complement number. The initial phase offset is Multisynth D_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO.

Register 120.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSD_PHOFF[14:8]					
Туре					R/W			

Reset value = xxxx xxxx

Bit	Name	Function
7	Unused	Unused.
6:0	MSD_PHOFF[14:8]	Multisynth D Initial Phase Offset. Multisynth D_PHOFF[14:0] is a 2s complement number. The initial phase offset is Multisynth D_PHOFF[14:0] x Tvco/128 where Tvco is the period of the VCO.

Register 122.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DRVD_D	ISST[1:0]						
Туре	R/W		R/W	R/W	R/W	R/W	R/W	R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:6	DRVD_DISST[1:0]	Driver D (CLK6/7) Output State When Disabled. 00: High impedance 01: Logic low 10: Logic high 11: Always on even if disabled
5:0	Reserved	Reserved.

Register 144.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MSA_ALL							
Туре	R/W							

Reset value = xxxx xxxx

Bit	Name	Function
7	MSA_ALL	Enable Multisynth A Fanout for All Outputs.
		If set, the Multisynth A output is routed to the mux at the input of each R divider. Unused MultiSynths should be powered down to save power. RxDIV_IN must be set to Multisynth A for any outputs requiring Multisynth A fanout.
6:0	Reserved	Reserved.

Register 218.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				PLL_LOL	LOS_CLKIN	LOS_XTAL		SYS_CAL
Туре				R	R	R		R

Reset value = 0000 0000

Bit	Name	Function
7:5	Reserved	Reserved.
4	PLL_LOL	PLL Loss of Lock (LOL). Asserts when the two PFD inputs have a frequency difference > 5000 ppm. This bit is held high during a POR_reset until the PLL has locked. This bit will not chatter while the PLL is locking. PLL_LOL does not assert when the input from IN1,IN2 or IN3 is lost. When PLL_LOL asserts, the part will automatically try to re-acquire to the input clock. See Register 241[7].
3	LOS_CLKIN	Loss of Signal on CLKLIN.
2	LOS_XTAL	Loss of Signal on XTAL input.
1	Reserved	Reserved.
0	SYS_CAL	Device Calibration in Process.

Register 226.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MS_RESET		
Туре						R		

Reset value = 0000 0000

Bit	Name	Function
7:3	Reserved	
		Multisynth Master Reset.
2	MS_RESET	This reset will disable all clock outputs, reset all Multisynth blocks, and then enable all the clock outputs. Retains device configuration stored in RAM. Do not use read-modify-write procedure to perform soft reset. Instead, write reg242 = 0x04 or 0x00. All Multisynth blocks will remain in reset until a 0 is written to this bit.
1:0	Reserved	

Register 230.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				OEB_ALL	OEB_D	OEB_C	OEB_B	OEB_A
Туре				R/W	R/W	R/W	R/W	R/W

Reset value = 0000 0000

Bit	Name	Function
7:5	Unused	Unused.
4	OEB_ALL	Disable All Clock Outputs. 0: All outputs enabled. 1: All outputs disabled.
3	OEB_D	Driver D (CLK6/7) Output Disable. 0: CLK6/7 outputs enabled. 1: CLK6/7 outputs disabled.
2	OEB_C	Driver C (CLK4/5) Output Disable. 0: CLK4/5 outputs enabled. 1: CLK4/5 outputs disabled.
1	OEB_B	Driver B (CLK2/3) Output Disable. 0: CLK2/3 outputs enabled. 1: CLK2/3 outputs disabled.
0	OEB_A	Driver A (CLK0/1) Output Disable. 0: CLK0/1 outputs enabled. 1: CLK0/1 outputs disabled.

Register 235.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		FCAL[7:0]						
Туре				F	₹			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	FCAL[7:0]	Bits 7:0 of the Frequency Calibration for the VCO.

Register 236.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•	FCAL[15:8]					
Туре				F	₹			

Reset value = xxxx xxxx

Bit	Name	Function
7:0	FCAL[15:8]	Bits 15:8 of the Frequency Calibration for the VCO.

Register 237.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•	Reserved				FCAL[17:16]	
Туре			F	 R			F	₹

Reset value = xxxx xxxx

	Bit	Name	Function
Ī	7:2	Reserved	Reserved.
	1:0	FCAL[17:16]	Bits 17:16 of the Frequency Calibration for the VCO.

Register 241.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	DIS_LOL			Rese	rved. Write to	0x65.		
Туре				R/V	V			

Reset value = xxxx xxxx

Bit	Name	Function
7	DIS_LOL	When asserted, the PLL_LOL status in register 218 is prevented from asserting.
6:0	Reserved	Reserved. On a non-factory-programmed device this register must be set to 0x65. On a factory programmed device, this register must stay 0x65.

Register 246.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name							SOFT_RESET	
Туре	R/W	R/W						

Reset value = xxxx xxxx

Bit	Name	Function
7:2	Reserved	Reserved.
1	SOFT_RESET	Soft Reset. This reset will disable all clock outputs, then re-acquire the PLL to the input clock and then enable all the clock outputs. Retains device configuration stored in RAM. Do not use read-modify-write procedure to perform soft reset. Instead, write reg246=0x02, regardless of the current value of this bit. Reading this bit after a soft reset will return a 1.
0	Reserved	Reserved.

Register 247.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				PLL_LOL_STK	LOS_FDBK_STK	LOS_CLKIN_STK		SYS_CAL_STK
Туре				R/W	R/W	R/W		R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:5	Reserved	Reserved.
4	PLL_LOL_STK	PLL Loss of Lock Sticky Bit. Sticky version of PLL_LOL. See also Registers 6 and 218. Only a soft or POR reset or writing a "0" to this bit will clear it.
3	LOS_CLKIN_STK	CLKIN Loss of Signal Sticky Bit. Sticky version of LOS_CLKIN. See also Registers 6 and 218. Only a soft or POR reset or writing a "0" to this bit will clear it.
2	LOS_XTAL_STK	XTAL Loss of Signal Sticky Bit. Sticky version of LOS_XTAL_STK. See also Registers 6 and 218. Only a soft or POR reset or writing a "0" to this bit will clear it.
1	Reserved	Reserved.
0	SYS_CAL_STK	System Calibration in Process Sticky Bit. Sticky version of SYS_CAL. See also Registers 6 and 218. Only a soft or POR reset or writing a "0" to this bit will clear it.

Register 255.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name								PAGE_SEL
Туре								R/W

Reset value = xxxx xxxx

Bit	Name	Function
7:1	Unused	Unused.
0	PAGE_SEL	Set to 0 to access registers 0–254, set to 1 to access register 256 to 347.

Register 287.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•		MSA_SS	UPP2[7:0]		•	
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSA_SSUPP2[7:0]	Multisynth A Spread Spectrum Up Parameter 2.

Register 288.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	A_SSUPP2[14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSA_SSUPP2[14:8]	Multisynth A Spread Spectrum Up Parameter 2.

Register 289.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSA_SSUPP3[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSA_SSUPP3[7:0]	Multisynth A Spread Spectrum Up Parameter 3.

Register 290.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	A_SSUPP3[14:8]	•	
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused
6:0	MSA_SSUPP3[14:8]	Multisynth A Spread Spectrum Up Parameter 3.

Register 291.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSA_SSUPP1[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSA_SSUPP1[7:0]	Multisynth A Spread Spectrum Up Parameter 1.

Register 292.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name	MSA_SSUDP1[3:0]				MSA_SSUPP1[11:8]				
Туре		R/	W .			R	/W		

Reset value = 0011 0001

Bit	Name	Function
7:4	MSA_SSUDP1[3:0]	Multisynth A Spread Spectrum Up/Down Parameter 1.
3:0	MSA_SSUPP1[11:8]	Multisynth A Spread Spectrum Up Parameter 1.

Register 293.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSA_SSUDP1[11:4]						
Туре				R	/W			

Reset value = 0011 0001

Bit	Name	Function
7:0	MSA_SSUDP1[11:4]	Multisynth A Spread Spectrum Up Parameter 1.

Register 294.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSA_SSDNP2[7:0]						
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7:0	MSA_SSDNP2[7:0]	Multisynth A Spread Spectrum Down Parameter 2.

Register 295.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSA_SSDNP2[14:8]					
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSA_SSDNP2[14:8]	Multisynth A Spread Spectrum Down Parameter 2.

Register 296.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSA_SSDNP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MSA_SSDNP3[7:0]	Multisynth A Spread Spectrum Down Parameter 3.

Register 297.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSA_SSDNP3[14:8]					
Туре			R/W					

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSA_SSDNP3[14:8]	Multisynth A Spread Spectrum Down Parameter 3.

Register 298.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSA_SSDNP1[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSA_SSDNP1[7:0]	Multisynth A Spread Spectrum Down Parameter 1.

Register 299.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		•			MSA_SSDNP1[11:8]				
Туре		R/W				R	/W		

Reset value = 0011 0001

Bit	Name	Function
7:4	Reserved	Reserved.
3:0	MSA_SSDNP1[11:8]	Multisynth A Spread Spectrum Down Parameter 1.

Register 303.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•	•	MSB_SS	UPP2[7:0]	•	•	•
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSB_SSUPP2[7:0]	Multisynth B Spread Spectrum Up Parameter 2.

Register 304.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	B_SSUPP2[14:8]		
Туре					R/W			

Reset value = 0000 0000

	Bit	Name	Function
	7	Unused	Unused.
ĺ	6:0	MSB_SSUPP2[14:8]	Multisynth B Spread Spectrum Up Parameter 2.

Register 305.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSB_SSUPP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MSB_SSUPP3[7:0]	Multisynth B Spread Spectrum Up Parameter 3.

Register 306.

Bit	D7	D6	D6 D5 D4 D3 D2 D1 D0					
Name				MS	B_SSUPP3[14:8]	·	
Туре			R/W					

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSB_SSUPP3[14:8]	Multisynth B Spread Spectrum Up Parameter 3.

Register 307.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSB_SS	UPP1[7:0]			
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSB_SSUPP1[7:0]	Multisynth B Spread Spectrum Up Parameter 1.

Register 308.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MSB_SSUDP1[3:0]					MSB_SSU	JPP1[11:8]	
Туре		R/	W			R	/W	

Reset value = 1001 0000

	Bit	Name	Function
ĺ	7:4	MSB_SSUDP1[3:0]	Multisynth B Spread Spectrum Up/Down Parameter 1.
	3:0	MSB_SSUPP1[11:8]	Multisynth B Spread Spectrum Up Parameter 1.

Register 309.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSB_SSI	JDP1[11:4]	•	•	
Туре				R	/W			

Reset value = 0011 0001

Bit	Name	Function
7:0	MSB_SSUDP1[11:4]	Multisynth B Spread Spectrum Up Parameter 1.

Register 310.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSB_SS	DNP2[7:0]			
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSB_SSDNP2[7:0]	Multisynth B Spread Spectrum Down Parameter 2.

Register 311.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	B_SSDNP2[14:8]	•	
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSB_SSDNP2[14:8]	Multisynth B Spread Spectrum Down Parameter 2.

Register 312.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MSB_SSDNP3[7:0]							
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MSB_SSDNP3[7:0]	Multisynth B Spread Spectrum Down Parameter 3.

Register 313.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	B_SSDNP3[14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSB_SSDNP3[14:8]	Multisynth B Spread Spectrum Down Parameter 3.

Register 314.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•		MSB_SS	DNP1[7:0]		•	•
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSB_SSDNP1[7:0]	Multisynth B Spread Spectrum Down Parameter 1.

Register 315.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				•		MSB_SSE	DNP1[11:8]	
Туре		R/	W			R	/W	

Reset value = 0000 0000

Bit	Name	Function
7:4	Reserved	Reserved.
3:0	MSB_SSDNP1[11:8]	Multisynth B Spread Spectrum Down Parameter 1.

Register 319.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MSC_SS	UPP2[7:0]			
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSC_SSUPP2[7:0]	Multisynth C Spread Spectrum Up Parameter 2.

Register 320.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	C_SSUPP2[14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSC_SSUPP2[14:8]	Multisynth C Spread Spectrum Up Parameter 2.

Register 321.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_SSUPP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MSC_SSUPP3[7:0]	Multisynth C Spread Spectrum Up Parameter 3.

Register 322.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	C_SSUPP3[14:8]		
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSC_SSUPP3[14:8]	Multisynth C Spread Spectrum Up Parameter 3.

Register 323.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•		MSC_SS	UPP1[7:0]		•	
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSC_SSUPP1[7:0]	Multisynth C Spread Spectrum Up Parameter 1.

Register 324.

Bit	D7	D6	D5	D4	D3	D2	D1	D0		
Name		MSC_SSUDP1[3:0]				MSC_SSUPP1[11:8]				
Туре	R/W					R	/W			

Reset value = 1001 0000

Bit	Name	Function
7:4	MSC_SSUDP1[3:0]	Multisynth C Spread Spectrum Up/Down Parameter 1.
3:0	MSC_SSUPP1[11:8]	Multisynth C Spread Spectrum Up Parameter 1.

Register 325.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_SSUDP1[11:4]						
Туре				R	/W			

Reset value = 0011 0001

Bit	Name	Function
7:0	MSC_SSUDP1[11:4]	Multisynth C Spread Spectrum Up/Down Parameter 1.

Register 326.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_SSDNP2[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSC_SSDNP2[7:0]	Multisynth C Spread Spectrum Down Parameter 2.

Register 327.

Bit	D7	D6	D6 D5 D4 D3 D2 D1 D0					
Name				MS	C_SSDNP2[14:8]	·	
Туре					R/W			

Reset value = 0000 0000

	Bit	Name	Function
	7	Unused	Unused.
-	6:0	MSC_SSDNP2[14:8]	Multisynth C Spread Spectrum Down Parameter 2.

Register 328.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_SSDNP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MSC_SSDNP3[7:0]	Multisynth C Spread Spectrum Down Parameter 3.

Register 329.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name				MS	C_SSDNP3[14:8]		
Туре			R/W					

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSC_SSDNP3[14:8]	Multisynth C Spread Spectrum Down Parameter 3.

Register 330.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSC_SSDNP1[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSC_SSDNP1[7:0]	Multisynth C Spread Spectrum Down Parameter 1.

Register 331.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name					MSC_SSDNP1[11:8]				
Туре		R/	W .			R	/W		

Reset value = 0000 0000

Bit	Name	Function
7:4	Reserved	Reserved.
3:0	MSC_SSDNP1[11:8]	Multisynth C Spread Spectrum Down Parameter 1.

Register 335.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSD_SSUPP2[7:0]						
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSD_SSUPP2[7:0]	Multisynth D Spread Spectrum Up Parameter 2.

Register 336.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSD_SSUPP2[14:8]					
Туре			R/W					

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSD_SSUPP2[14:8]	Multisynth D Spread Spectrum Up Parameter 2.

Register 337.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSD_SSUPP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MSD_SSUPP3[7:0]	Multisynth D Spread Spectrum Up Parameter 3.

Register 338.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSD_SSUPP3[14:8]					
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSD_SSUPP3[14:8]	Multisynth D Spread Spectrum Up Parameter 3.

Register 339.

Bit	D7 D6 D5 D4 D3 D2 D1							D0	
Name		MSD_SSUPP1[7:0]							
Туре				R	/W				

Reset value = 0000 0000

Bit	Name	Function
7:0	MSD_SSUPP1[7:0]	Multisynth D Spread Spectrum Up Parameter 1.

Register 340.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name		MSD_SSI	JDP1[3:0]		MSD_SSUPP1[11:8]				
Туре		R/	W .			R	/W		

Reset value = 1001 0000

	Bit	Name	Function
	7:4	MSD_SSUDP1[3:0]	Multisynth D Spread Spectrum Up/Down Parameter 1.
ĺ	3:0	MSD_SSUPP1[11:8]	Multisynth D Spread Spectrum Up Parameter 1.

Register 341.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		•		MSD_SSI	JDP1[11:4]		•	
Туре				R	/W			

Reset value = 0011 0001

Bit	Name	Function
7:0	MSD_SSUDP1[11:4]	Multisynth D Spread Spectrum Up Parameter 2.

Register 342.

Bit	D7 D6 D5 D4 D3 D2 D1 D0							
Name				MSD_SS	DNP2[7:0]			
Туре				R	/W			

Reset value = 0000 0000

Bit	Name	Function
7:0	MSD_SSDNP2[7:0]	Multisynth D Spread Spectrum Down Parameter 2.

Register 343.

Bit	D7	D6	D5	D4	D3	D2	D1	D0	
Name			MSD_SSDNP2[14:8]						
Туре					R/W				

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSD_SSDNP2[14:8]	Multisynth D Spread Spectrum Down Parameter 2.

Red	ister	344
IVE A	IISICI	J44.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name		MSD_SSDNP3[7:0]						
Туре				R	/W			

Reset value = 0000 0001

Bit	Name	Function
7:0	MSD_SSDNP3[7:0]	Multisynth D Spread Spectrum Down Parameter 3.

Register 345.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name			MSD_SSDNP3[14:8]					
Туре		R/W						

Reset value = 0000 0000

Bit	Name	Function
7	Unused	Unused.
6:0	MSD_SSDNP3[14:8]	Multisynth D Spread Spectrum Down Parameter 3.

Register 346.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name	MSD_SSDNP1[7:0]							
Туре	R/W							

Reset value = 0000 0000

Bit	Name	Function
7:0	MSD_SSDNP1[7:0]	Multisynth D Spread Spectrum Down Parameter 1.

Register 347.

Bit	D7	D6	D5	D4	D3	D2	D1	D0
Name						MSD_SSE	DNP1[11:8]	
Туре					R/W			

Reset value = 0000 0000

Bit	Name	Function
7:4	Reserved	Reserved.
3:0	MSD_SSDNP1[11:8]	Multisynth D Spread Spectrum Down Parameter 1.

DOCUMENT CHANGE LIST

Revision 0.1 to Revision 0.2

- Updated "7. Si5356A Registers" on page 21.
 - Added information on Multisynth Reset (MS_RESET) register bit.

Revision 0.2 to Revision 0.3

- Updated "6.2. Center Spread" on page 20 and added "6.2.1. Center Spread Equations for Rev A Devices"
- Updated description in Registers 0, 52, 63, 74, and 85.
- Added description to Registers 2, 3, 4, and 5.
- Added new section 7.6.1. Example Part Number for Device ID Registers

Revision 0.3 to Revision 0.4

■ Fixed typos in Up Parameters in "6.1. Down Spread" on page 19.

Disclaimer

Silicon Laboratories intends to provide customers with the latest, accurate, and in-depth documentation of all peripherals and modules available for system and software implementers using or intending to use the Silicon Laboratories products. Characterization data, available modules and peripherals, memory sizes and memory addresses refer to each specific device, and "Typical" parameters provided can and do vary in different applications. Application examples described herein are for illustrative purposes only. Silicon Laboratories reserves the right to make changes without further notice and limitation to product information, specifications, and descriptions herein, and does not give warranties as to the accuracy or completeness of the included information. Silicon Laboratories shall have no liability for the consequences of use of the information supplied herein. This document does not imply or express copyright licenses granted hereunder to design or fabricate any integrated circuits. The products must not be used within any Life Support System without the specific written consent of Silicon Laboratories. A "Life Support System" is any product or system intended to support or sustain life and/or health, which, if it fails, can be reasonably expected to result in significant personal injury or death. Silicon Laboratories products are generally not intended for military applications. Silicon Laboratories products shall under no circumstances be used in weapons of mass destruction including (but not limited to) nuclear, biological or chemical weapons, or missiles capable of delivering such weapons.

Trademark Information

Silicon Laboratories Inc., Silicon Laboratories, Silicon Labs, SiLabs and the Silicon Labs logo, CMEMS®, EFM, EFM32, EFR, Energy Micro, Energy Micro logo and combinations thereof, "the world's most energy friendly microcontrollers", Ember®, EZLink®, EZMac®, EZRadio®, EZRadioPRO®, DSPLL®, ISOmodem ®, Precision32®, ProSLIC®, SiPHY®, USBXpress® and others are trademarks or registered trademarks of Silicon Laboratories Inc. ARM, CORTEX, Cortex-M3 and THUMB are trademarks or registered trademarks of ARM Holdings. Keil is a registered trademark of ARM Limited. All other products or brand names mentioned herein are trademarks of their respective holders.

Silicon Laboratories Inc. 400 West Cesar Chavez Austin, TX 78701 USA