Copilot

CHEM102 - Introduction to Chemical Engineering Design

University: Eastern Institute of Technology

Course Duration: Full Year (Fall and Winter)

Instructor: Dr. Alice Green

Contact Information: alice.green@eit.edu

Office Hours: Mondays and Wednesdays, 2:00 PM - 4:00 PM

Course Description

This first-year course introduces students to the basics of chemical engineering design. Students work in teams to design a simple chemical process, such as water purification or biofuel production, based on a real-world problem.

Learning Outcomes

By the end of this course, students will be able to:

- 1. Understand the fundamentals of chemical engineering principles.
- 2. Apply process design and simulation techniques.
- 3. Consider safety and environmental impacts in chemical engineering design.
- 4. Work effectively in teams to solve engineering problems.
- 5. Communicate design concepts and results through written reports and oral presentations.

Course Timeline and Deliverables

Fall Semester:

Date	Deliverable	Description	Weight
September 15, 2020	Team Formation and Project Proposal	Teams form and submit a proposal outlining the project scope and objectives.	10%
October 20, 2020	Process Flow Diagram and Initial Design	Submission of a process flow diagram and initial design considerations.	15%
November 25, 2020	Preliminary Design Review	Presentation of initial design, including process flow and safety analysis.	15%
December 10, 2020	Midterm Progress Report	Report on progress, challenges, and next steps.	10%

Winter Semester:

Date	Deliverable	Description	Weight
February 15, 2021	Detailed Design Document	Comprehensive design document with detailed process flow and safety analysis.	15%
March 20, 2021	Prototype Development and Testing Report	Report on prototype development and testing results.	20%
April 10, 2021	Final Presentation and Demonstration	Final presentation and demonstration of the chemical process design.	15%

Grading Breakdown

• Team Formation and Project Proposal: 10%

• Process Flow Diagram and Initial Design: 15%

• Preliminary Design Review: 15%

• Midterm Progress Report: 10%

• Detailed Design Document: 15%

• Prototype Development and Testing Report: 20%

• Final Presentation and Demonstration: 15%

Total: 100%

Course Policies

- **Attendance:** Regular attendance is required. More than three unexcused absences may result in a lower grade.
- Late Submissions: Assignments submitted late will incur a penalty of 5% per day, up to a maximum of 25%.
- **Academic Integrity:** All students are expected to adhere to the university's academic integrity policy. Plagiarism or cheating will result in disciplinary action.

Required Materials

- Textbook: "Introduction to Chemical Engineering: Tools for Today and Tomorrow" by Kenneth A. Solen and John N. Harb
- Access to process simulation software (e.g., Aspen HYSYS)
- Prototyping materials (to be specified based on project requirements)

Additional Resources

- University Library
- Chemical Engineering Lab
- Online tutorials and workshops

This syllabus provides a comprehensive overview of the CHEM102 course, including key elements such as learning outcomes, a detailed timeline with deliverables, and their respective weights. If you need any further details or adjustments, feel free to ask!