Горки, греки, гэги

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 256 мегабайт

Как известно, в Древней Греции были положены начала философии, благодаря которой, в частности, удалось формализовать понятие науки. Одной из главных наук того времени считалась математика: Пифагор, Евклид, Архимед — вы точно слышали эти имена! А уж о том, что, в некотором смысле вследствие развития математики этими знаменитыми философами, вы читаете условие этой задачи, говорить не приходится...

Тем не менее, даже таким выдающимся учёным иногда приходится спускаться с небес на землю и просить архитекторов строить здания для своих школ.

Архитекторы — люди инженерного склада, и потому здесь и там у них возникают задачи, связанные с математикой. Вот и на этот раз перед ними встала следующая проблема.

У них есть n строительных блоков, стоящих на одной прямой. Блок с номером i имеет высоту h_i ; длину и ширину всех блоков будем считать единичными. Назовем $\mathit{copkoŭ}$ непрерывную подпоследовательность с l-го по r-й блок такую, что найдется m: l < m < r и $h_l < h_{l+1} < \ldots < h_m > h_{m+1} > \ldots > h_r$.

Архитекторам потребовалось узнать, сколько существует горок в этой последовательности блоков. Они очень рассчитывают на вашу помощь!

Формат входных данных

Первая строка содержит целое число t $(1 \le t \le 100)$ — количество наборов входных данных. Следующие $(2 \cdot t)$ строк описывают наборы входных данных.

Первая строка каждого набора содержит целое число n ($1 \le n \le 2 \cdot 10^5$) — количество блоков.

Вторая строка каждого набора содержит n целых чисел $h_1, h_2, \ldots, h_n \ (1 \leqslant h_i \leqslant 10^9)$ — высоты блоков.

Гарантируется, что $\sum n \leq 2 \cdot 10^5$.

Формат выходных данных

Для каждого набора входных данных выведите одно целое число — количество $\it copo\kappa$ в последовательности блоков.

Пример

стандартный ввод	стандартный вывод
5	4
5	0
1 2 3 2 1	0
1	0
100000000	6
1	
1	
6	
1 2 3 3 2 1	
10	
1 5 8 4 6 3 8 10 14 7	