# Statistics II

Week 8:

Difference in differences

### Content for today

- Lecture review
- 2. Diff-in-diff in R
- 3. Overview of tasks for assignment 4

**Lecture Review** 

### **Motivation**

- Until now we had largely ignored the variable time. We have only compared treated vs. untreated units.
- But time is very important in causality: the cause always precedes the effect.
- By considering both dimensions -units and time-, we can:
  - Compare individuals to themselves, to account for units' characteristics that affect both outcome and treatment (~ permanent differences between groups).
  - Compare how outcomes for different units change across time, to account for characteristics
    of different periods (~ trends in Y that affect all units, regardless of treatment).

Assume we have a data set with **two outcome measurements**: before and after treatment. As usual, we have a problem of not knowing **counterfactuals**.

#### We could:

## Compare the **treatment and control groups after treatment**

| CSU vote shares      |            |            |   |
|----------------------|------------|------------|---|
| Unit                 | $Y_{2014}$ | $Y_{2020}$ | D |
| County A             | 42.1       | 38.5       | 0 |
| County A<br>County B | 41.2       | 40.2       | 1 |
|                      |            |            |   |

This assumes the PO of control group is the same as the counterfactual PO for those being treated.

## Compare before and after treatment for the treatment group

| CSU vote shares |            |            |   |
|-----------------|------------|------------|---|
| Unit            | $Y_{2014}$ | $Y_{2020}$ | D |
| County A        | 42.1       | 38.5       | 0 |
| County B        | 41.2       | 40.2       | 1 |
|                 |            |            |   |

This assumes no change in average PO over time.

### Difference-in-Differences

#### Or consider both!

- 1. Get the difference between the treatment and control group **after** treatment
- 2. Get the difference between the treatment and control group **before** treatment
- 3. Subtract the second difference of from the first of

| CSU vote shares |            |            |   |                        |
|-----------------|------------|------------|---|------------------------|
| Unit            | $Y_{2014}$ | $Y_{2020}$ | D | $\Delta Y_{2020-2014}$ |
| County A        | 42.1       | 38.5       | 0 | -3.6                   |
| County B        | 41.2       | 40.2       | 1 | -1                     |
|                 | (-0.9)     | 1.7        |   | 2.6                    |



This approach uses the overtime difference in the control group as a counterfactual of *what would have happened* in the treatment group, had the treatment no taken place

### Difference-in-Differences

#### Main idea:

- Sometimes treatment and control units move in parallel in the absence of treatment.
- When they do, we can see how much do the treated units diverge from the post-treatment expected path, compared to the control units.
- We can estimate the treatment effect as the divergence from the expected outcome of the treatment group in the absence of treatment.



### Parallel Trends Assumption

In order to validly use the overtime difference in the control group as a counterfactual, DiD estimation rests on the assumption that observed overtime changes in the control group reflect, on average, unobserved changes in the treatment group in the absence of treatment.





### Three ways to estimate DiD

1. **Manually**, using average outcome values for subgroups defined by *D* and t.

$$DiD = \{E[Y_{1c}|D=1,t=1] - E[Y_{0c}|D=0,t=1]\} - \{E[Y_{1c}|D=1,t=0] - E[Y_{0c}|D=0,t=0]\}$$

Calculate first differences and regress on D. — wide format data.

$$\Delta Y_{ct_0-t_1} = \alpha + \delta D_c + \Delta_{v_c}$$

3. Regression formulation of the DiD model —— long format data.

$$Y_{ct} = \alpha + \beta D_c + \gamma Post_t + \delta(D_c * Post_t) + v_{ct}$$

Generalized DiD:  $Y_{ct} = \lambda_c + \gamma_t + \delta D_{ct} + u_{ct}$ 

### Interpreting the results

### Regression output:

|                                       | Share CSU              |
|---------------------------------------|------------------------|
| Treat                                 | -1.03                  |
|                                       | (1.56)                 |
| Post                                  | -6.34***               |
|                                       | (0.72)                 |
| $\mathit{Treat} \times \mathit{Post}$ | 1.61**                 |
|                                       | (0.79)                 |
| Intercept                             | 40.76***               |
|                                       | (1.39)                 |
| N                                     | 192                    |
| $R^2$                                 | 0.16                   |
| Standard errors in                    | parentheses            |
|                                       | < 0.05, *** $p < 0.01$ |
|                                       |                        |

#### In POF notation:

|                     | t = 2014  (pre)                                         | t = 2020  (post)                                      |
|---------------------|---------------------------------------------------------|-------------------------------------------------------|
| $D_c = 0$ $D_c = 1$ | $E[Y_{0c2014} D_c = 0]$ $E[Y_{1c2014} D_c = 1]$         | $E[Y_{0c2020} D_c = 0]$<br>$E[Y_{1c2020} D_c = 1]$    |
| $D_c = 0$ $D_c = 1$ | $\begin{array}{c} \alpha \\ \alpha + \beta \end{array}$ | $\alpha + \gamma \\ \alpha + \beta + \gamma + \delta$ |

### Wide vs long formatted data

#### Wide

| Wide format table |             |             |       |
|-------------------|-------------|-------------|-------|
| Unit c            | $Y_{c2014}$ | $Y_{c2020}$ | $D_c$ |
| County A          | 42.1        | 38.5        | 0     |
| County B          | 41.2        | 40.2        | 1     |
|                   |             |             |       |

- Only one row per individual or unit.
- Outcome values included in different variables, by year.

### Long

| Long format table |        |       |       |
|-------------------|--------|-------|-------|
| Unit c            | Year t | $Y_c$ | $D_c$ |
| County A          | 2014   | 42.1  | 0     |
| County A          | 2020   | 38.5  | 0     |
| County B          | 2014   | 41.2  | 1     |
| County B          | 2020   | 40.2  | 1     |
|                   |        |       |       |

- One column for every variable.
- One row for every unique observation

To see how to change between these formats in R, heck out Grolemund & Wickham's R for Data Science, chapter 12.3.

Questions?