Steven Rosendahl Homework 4

1. Recall that $f(x) = x^2 + 1$ has two zeros $\alpha, \beta \in \mathbb{Z}_5$ satisfying $|\alpha - 2|_5 \le 1/5$ and $|\beta - 3|_5 \le 1/5$. Find the first three terms b_0, b_1 , and b_2 of the *p-adic* expansion of β .

Since b=3 satisfies f(x)=0, we know $b_0=3$. We can consider β of the form

$$\beta = b_0 + 5b_1 + 5^2b_2 + \dots,$$

where $0 \le b_n \le 5$. To find b_1 , we look at $f(\beta) \equiv 0 \mod 5^2$. Then

$$(3+5b_1)^2 + 1 \equiv 0 \mod 25$$

 $9+5b_1 + 25b_2^2 + 1 \equiv 0 \mod 25$
 $10+5b_1 \equiv 0 \mod 25$
 $5b_1 \equiv 15 \mod 25$
 $\implies b_1 = 3.$

Similarly, for b_2 , we have

$$(18 + 25b_2)^2 + 1 \equiv 0 \mod 125$$

 $74 + 25b_2 + 1 \equiv 0 \mod 125$
 $25b_2 \equiv 50 \mod 125$
 $5b_2 \equiv 10 \mod 25$
 $\implies b_2 = 2.$

Therefore $\beta \approx 3 + 5 \cdot 3 + 5^2 \cdot 2$.

2. User Hensel's Lemma to verify that $f(x) = x^3 + 1$ has a zero $\alpha \in \mathbb{Z}_7$. Find an integer n such that $|\alpha - n|_7 \le 1/7$.

If we let $\alpha = 3$, then $f(\alpha) = 27 + 1 \equiv 0 \mod 7$. We also have that $f'(\alpha) = 3(9) = 27 \not\equiv 0 \mod 7$, so Hensel's Lemma tells us that there is a zero of the function. Let n10. Then $|3 - 10|_7 = |-7|_7 = |7|_7 = 1/7 \le 1/7$.

3. Show that Hensel's Lemma fails to apply to the polynomial $f(x) = x^3 + 1$ in \mathbb{Z}_3 . Is this sufficient to conclude that f has no zeros in \mathbb{Z}_3 ?

Hensel's Lemma requires that $f'(x) \not\equiv 0 \mod p$. In this case, $f'(x) = 3x^2$, and $3x^2 \equiv 0 \mod 3$, so we cannot use it. This is not enough to say that f has no zeros. Hensel's Lemma only tells us about the properties of a zero, but it does not guarantee the existence of a zero.