INTRODUCTION TO MPI AND HIGH PERFORMANCE COMPUTING

Prashant Piprotar
IIT Kanpur
15th May, 2020

Story Time ...

- Dr. Ritesh Patel got us a simulation task from one of his student at IIT.
- **Problem**: Task was taking weeks to complete.
- Simple Solution: Multithreading. Right?

Calculations:

- Original task Duration: 8 Days (assumed)
- Fastest PC (at that time): Quad Core 4th gen i7.
- New Duration: About 2 Days

Multithreading to Clustering

- Final Solution: Multi threading + Multiple hosts
- No of Hosts: 4

Some Calculations:

• Completion Time: Just few hours.

High Performance Computing

What is High Performance Computing?

- For 1st year Undergrad:
- 1. Computing on High Performance Computers.
- 2. Solving problems at very large scales.
- 3. Simulations / Analysis that takes days to complete.
- Who uses HPC?
- 1. Weather and climate research
- 2. Bioscience and energy sector
- 3. Automotive, aerospace, oil and gas exploration
- 4. Financial simulation, etc.
- Similar Concepts :
- 1. Supercomputing
- 2. Parallel Computing

Why do we need them?

- Its Simple
- To do things Faster.

What does HPC include?

- Two main Hardware elements:
- 1. Compute Elements (for Computation) : CPU, GPU, etc
- 2. Network Elements (for Communication): Infiniband, Ethernet, etc
- Two main Software elements:
- Programming Models : MPI, Shared memory
- (IMP) Your Application

What makes it HPC?

All the above things but at Larger Scale.

HPC Computer Architectures

Vector Computers (VC) - proprietary system

• – Provided the breakthrough needed for the emergence of computational science, but they were only a partial answer

Massively Parallel Processors (MPP) - proprietary systems

High cost and a low performance/price ratio.

Symmetric Multiprocessors (SMP)

• – Suffers from scalability

Distributed Systems

• – Difficult to use and hard to extract parallel performance

[Widely Used] Clusters – commodity and highly popular

- - High Performance Computing Commodity Supercomputing
- – High Availability Computing Mission Critical Applications

Horizontal vs Vertical Scaling

www.abhijitkakade.com

Vertical Scaling

(Increase size of instance (RAM, CPU etc.))

Horizontal Scaling

(Add more instances)

HPC Clusters – Affordable, Efficient and Scalable HPC Solution

COMPUTER FOOD CHAIN

Parallel Computing on a Large Number of Servers is More Efficient than using Specialized Systems

HPC Queue System

INTRODUCTION TO MPI

MPI- Message Passing Interface

- A standard for Message passing library.
- Efficient, Portable, Scalable, Vendor Independent.
- Supports: Distributed, Shared, Hybrid Memory architectures.
- Some Implementations:
- 1. MPICH
- 2. OpenMP
- 3. Intel MPI
- 4. Microsoft MPI, etc.

Demo 0: Hello World

Demo 1: Send Receive

Demo 2: Broadcast

Demo 3: A brief about my CloudMPI

Approach

As Inspired by: Network Performance Aware MPI Collective Communication Operations in the Cloud (Yifan Gong)

- Using existing MPI collectives
- Over hierarchical tree (sub communicators)

Conclusion

- Cluster is right now "the best" architecture for building HPC.
- Queue systems helps to increase the utilization.
- MPI reduces the efforts to operate HPC.
- You can make group projects and running on cluster made by lab PCs.

Q & A

Thank You

If you have any queries, mail it to prashplus@gmail.com

Part of the content has been referred from: https://www.hpcadvisorycouncil.com/

