MA 530 AUGUST 2018

1. If $\Omega \subset \mathbb{C}$ is open, $f \in \mathcal{O}(\Omega)$, and u = Re f, v = Im f, prove that

$$\det\begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = |f'|^2.$$

Proof. Set

$$A = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix}.$$

Since $f' = u_x + iu_y$, we see

$$|f'|^2 = u_x^2 + u_y^2. (1)$$

Now utilizing the Cauchy-Riemann equations, (1) becomes

$$|f'|^2 = u_x v_y - u_y v_x \tag{2}$$

and we recognize the expression on the right hand side of (2) is precisely det(A).

2. Compute the following integral (the path of integration is orientated counterclockwise):

$$\int_{|z|=1/2} \frac{e^z}{z^5 - z^3 + z^2} \, dz.$$

Proof. Notice

$$z^5 - z^3 + z^2 = z^2(z^3 - z + 1).$$

Now we claim that all roots of $z^3 - z + 1$ lie outside D(0, 1/2). So for |z| = 1/2 we have

$$|(z^{3} - z + 1) - (1 - z)| = |z^{3}|$$

$$= 8^{-1}$$

$$< |1 - 2^{-1}|$$

$$= |1 - |z||$$

$$< |1 - z|$$

Since 1-z has no roots inside of D(0,1/2), by Rouché's theorem we conclude that z^3-z+1 also has no roots inside of D(0,1/2). Therefore if we set

$$f(z) = \frac{e^z}{z^3 - z + 1}$$

then f is holomorphic in D(0,1/2). Hence by Cauchy's integral formula we have

$$\int_{|z|=1/2} \frac{e^z}{z^5 - z^3 + z^2} dz = \int_{|z|=1/2} \frac{f(z)}{z^2} dz$$

$$= 2\pi i f'(0)$$

$$= 2\pi i \left(\frac{(z^3 - z + 1)e^z - e^z(3z^2 - 1)}{(z^3 - z + 1)^2} \right) \Big|_{z=0}$$

$$= 4\pi i$$

3. Given that $\phi:[0,\infty)\to\mathbb{C}$ is a bounded continuous function, prove that

$$H(z) = \int_0^\infty \frac{\phi(t)}{t^2 + z} \, dt$$

defines a function holomorphic on $\mathbb{C} \setminus \{z \in \mathbb{R} : z \leq 0\}$.

Proof. Set

$$\Omega = \mathbb{C} \setminus \{ z \in \mathbb{R} : z \le 0 \}$$

and let $\gamma \subset \Omega$ denote a closed contour. Now note that Ω is simply connected domain and $(t^2+z)^{-1}$ is holomorphic in Ω . So by Cauchy's theorem

$$\int_{\gamma} \frac{1}{t^2 + z} \, dz = 0 \quad \text{for all } z \in \Omega.$$

Hence

$$\int_{\gamma} H(z) dz = \int_{\gamma} \left(\int_{0}^{\infty} \frac{\phi(t)}{t^{2} + z} dt \right) dz$$

$$= \int_{0}^{\infty} \phi(t) \left(\int_{\gamma} \frac{1}{t^{2} + z} dz \right) dt$$

$$= \int_{0}^{\infty} 0 dt$$

$$= 0$$

Let us justify the interchange of integrals in the second line above. Clearly $\phi(t)(t^2+z)^{-1}$ is continuous on Ω , so it is measurable. Since ϕ is bounded, there is M>0 such that $|\phi(t)|< M$ for all $0\leq t<\infty$. Let L denote the length of γ . Since γ is compact, there is $z^*\in\gamma$ such that

$$\sup_{z \in \gamma} \frac{1}{|t^2 + z|} = \frac{1}{|t^2 + z^*|}.$$

Hence

$$\left| \int_0^\infty \left(\int_\gamma \left| \frac{\phi(t)}{t^2 + z} \right| dz \right) dt \right| \le \int_0^\infty \left| \int_\gamma \left| \frac{\phi(t)}{t^2 + z} \right| dz \right| dt$$

$$\le \int_0^\infty \frac{LM}{|t^2 + z^*|} dt$$

$$\le \infty$$

Notice the fact that $z^* \in \Omega$ was used to conclude that the last integral is finite. Hence by the Fubini-Tonelli theorem, the interchange is legitimate and so by Morera's theorem $H \in \mathcal{O}(\Omega)$.

4. Show that a function $g \in \mathcal{O}(\mathbb{C})$ is $2\pi i$ -periodic (i.e., $g(z+2\pi i)=g(z)$) if and only if there is an $h \in \mathcal{O}(\mathbb{C} \setminus \{0\})$ such that $g(z)=h(e^z)$.

Proof. (\iff): This is obvious since e^z is $2\pi i$ periodic. (\implies): Set $\Omega = \mathbb{C} \setminus \{0\}$ and $f(z) = e^z$. Fix $w \in \Omega$ and find $z \in \mathbb{C}$ such that f(z) = w. Then

$$f^{-1}(\{w\}) = \{z + 2\pi i n : n \in \mathbb{Z}\}.$$

Hence g has the same value at all elements of $f^{-1}(\{w\})$ since g is $2\pi i$ -periodic. Thus if we define h(w)=g(z), where z is any element of $f^{-1}(\{w\})$, then h is well-defined. For $w\in\Omega$, choose any $z\in f^{-1}(\{w\})$. Since $f'(z)\neq 0$, then there is an open set $V\subset\mathbb{C}$ such that

- (a) $z \in V$,
- (b) f is one-to-one in V,
- (c) W = f(V) is open,
- (d) if $F: W \to V$ is defined by F(f(z)) = F(w) = z, then $F \in \mathcal{O}(W)$.

Therefore F is a local holomorphic inverse of f. So fix $w' \in W$. Then $h(w') = (g \circ F)(w')$. Since $g \circ F \in \mathcal{O}(W)$ and $w' \in W$ was arbitrary, this shows $h \in \mathcal{O}(W)$. Then since $w \in \Omega$ was arbitrary, we conclude that $h \in \mathcal{O}(\Omega)$ which completes the proof.

5. Consider a function ϕ holomorphic on $\{z \in \mathbb{C} : |z| > r\}$, where $r \in (0,1)$. Suppose that there is a real number K and a natural number N such that $|\phi(z)| \leq K|z|^N$ for all z, and $|\phi(z)| \leq 1$ when |z| = 1. Prove that $|\phi(z)| \leq |z|^N$ when $|z| \geq 1$.

Proof. Notice

$$|\phi(z^{-1})| \le K|z|^{-N}$$
 for all $|z| < r^{-1}$. (3)

Also since $|\phi(z)| \le 1$ for |z| = 1, it follows that

$$|\phi(z^{-1})| \le 1 \quad \text{for all } |z| = 1.$$
 (4)

Since $\phi(z) \in \mathcal{O}(\mathbb{C} \setminus \overline{D_r(0)})$, we see that $\phi(z^{-1}) \in \mathcal{O}(D_{r^{-1}}(0) \setminus \{0\})$. We claim it can be extended to a function which is holomorphic on $D_{r^{-1}}(0)$. From (3) we get

$$|z^{N+1}\phi(z^{-1})| \le K|z|$$
 for all $|z| < r^{-1}$.

Hence sending $z \to 0$, we see that $z^{N+1}\phi(z^{-1}) \to 0$, which proves the singularity at 0 is removable. Thus we may regard $z^N\phi(z^{-1})$ as holomorphic on $D_{r^{-1}}(0)$. Since $r \in (0,1)$, we see that $\overline{D_1(0)} \subset D_{r^{-1}}(0)$. Hence by the maximum modulus principle, $|z^N\phi(z^{-1})|$ obtains its max on $\overline{D_1(0)}$ on the boundary. So by (4)

$$|z^N \phi(z^{-1})| \le 1$$
 for all $|z| \le 1$. (5)

Now by sending $z \mapsto z^{-1}$ in (5) we get

$$|\phi(z)| \le |z|^N$$
 for all $|z| \ge 1$

which is exactly what we wished to show.

6. Construct a biholomorphic map between $\{z \in \mathbb{C} : |z-1| < 1, |z-1/2| > 1/2\}$ and the unit disc. If the map is obtained as a composition of simpler maps, you need not write out explicitly the composition.

Proof. Let $\Omega \subset \mathbb{C}$ denote the region in the question and let $f_1(z) = z^{-1}$. Then f_1 transforms Ω onto the vertical strip

$$f_1(\Omega) = \left\{ z \in \mathbb{C} : \frac{1}{2} < \operatorname{Re} z < 1 \right\}.$$

Now let $f_2(z) = 2\pi i(z - 1/2)$. Then f_2 maps $f_1(\Omega)$ onto

$$f_2(f_1(\Omega)) = \{ z \in \mathbb{C} : 0 < \text{Im } z < \pi \}.$$

Let $f_3(z) = e^z$. Then

$$f_3(f_2(f_1(\Omega))) = \{ z \in \mathbb{C} : \text{Im } z > 0 \}.$$

Finally recall that

$$L(Z) = \frac{z - i}{z + i}$$

maps the upper half plane onto the unit disc. So our desired biholomorphic map between Ω and the unit disc is $(L \circ f_3 \circ f_2 \circ f_1)(z)$.

7. In this problem $D_r = \{z : |z| < r\}$. Suppose $F, G \in \mathcal{O}(D_1)$, G is injective, F(0) = G(0), and $F(D_1) \subset G(D_1)$. Prove that $F(D_r) \subset G(D_r)$ for all r < 1.

Proof. Take F and G as above and fix 0 < r < 1. Since G is holomorphic and a bijection, it is invertible and G^{-1} is holomorphic. Define $g: D_1(0) \to D_1(0)$ by

$$g(z) = G^{-1}(F(z)).$$

Then it is clear that g is holomorphice, |g(z)| < 1 for all $z \in D_1(0)$, and $g(0) = G^{-1}(F(0)) = 0$. Thus by the Schwarz lemma it follows that

$$|g(z)| \le |z|$$
 for all $z \in D_1(0)$.

So if we select |z| < r then |g(z)| < r. Thus it follows that

$$g(D_r(0)) \subset D_r(0)$$
.

So

$$G^{-1}(F(D_r(0))) \subset D_r(0).$$

So then using the fact G is a bijection we have

$$F(D_r(0)) \subset G(D_r(0))$$

which complete the proof.