문제		의도한 난이도	출제자
Α	Gahui and Soongsil University station	Easy	chogahui05
В	가희와 열리지 않는 건널목	Easy	chogahui05
С	가희와 노선 건설 놀이	Medium	chogahui05
D	가희와 서울 지하철 3호선	Medium	chogahui05
E	Gahui and ILGAM lake	Medium	chogahui05
F	가희와 지하철역 저장 시스템 1	Hard	chogahui05
G	가희와 지하철역 저장 시스템 2	Challenging	chogahui05
Н	가희와 코드	Challenging	chogahui05
	가희와 서울 지하철 1호선	Challenging	chogahui05

A. Gahui and Soongsil University station

implementation 출제진 의도 **- Easy**

✓ 제출 291, 정답 226명 (정답률 80.069%)

✓ 처음 푼 사람: wjdclgns12, 1분

✓ 출제자: chogahui05

A. Gahui and Soongsil University station

- ✓ 에스컬레이터 1칸의 높이는 21cm, 계단 1칸의 높이는 17cm입니다.
- ✓ 승강장까지 내려가기 위한 계단 수와 에스컬레이터 단 수를 세어서 사칙 연산을 해 주면 됩니다.

✓ 유독 고도가 같다는 제약 조건이 많이 나온 것은 기분 탓입니다.

B. 가희와 열리지 않는 건널목

implementation, string, parsing 출제진 의도 – **Easy**

제출 280번, 정답 128명 (정답률 48.571%)

✓ 처음 푼 사람: wjdclgns12, 5분

✓ 출제자: chogahui05

4

B. 가희와 열리지 않는 건널목

- 상행과 하행 열차별로 접근 시간이 있습니다.
- ✓ 접근 시간을 받아 아래와 같이 처리하면 됩니다.
 - -s초에 접근한 경우, s+39초까지 못 지나간다는 flag를 설정합니다.
 - 모든 처리 후, 못 지나간다는 flag가 있으면 차단기가 닫혀있다고 하면 됩니다.

ad hoc, math 출제진 의도 **- Medium**

✓ 제출 97번, 정답 35명 (정답률 39.175%)

✓ 처음 푼 사람: dabbler1, 12분

✓ 출제자: chogahui05

- \checkmark 아. 딱 봐도 ad_hoc 스럽습니다.
- ✓ 그리고 가능한 경우만 주어진다고 하였습니다.
- \checkmark 이런 문제를 풀 때에는 corner 케이스와 같이 극값을 생각하는 것이 좋습니다.

- 먼저 가능한 경우만 주어집니다. 조건을 해석해 봅시다.
- \checkmark 가장 거리가 먼 두 역은 1번 역과 n 번 역입니다. 그렇다면
 - 두 역 사이의 거리는 n-1이 되겠네요.
 - 1번 역의 고도만 -1로 낮춰 봅시다. 그러면 그림이 어떻게 그려질까요?

- ✓ 1번째 역만 고도가 유독 낮습니다.
- ✓ 만약에 다른 역의 고도를 낮추지 않는다면 고도가 최소인 역은 유일합니다.

- \checkmark 만약에 출력 값이 d인 경우는 어떻게 하면 될까요?
- \checkmark d+1번 역의 고도를 높이면 됩니다.

- ✓ 즉 고도가 최소인 역을 극값으로 고정시켜 놓고
- ✓ 최대 고도를 가지는 역도 하나만 있게 하면 어렵지 않게 해결할 수 있습니다.

가희와 함께 하는 5회 코딩테스트

11

brute force, bit operation, combination 출제진 의도 – **Medium**

- 제출 62, 정답 29명 (정답률 48.387%)
- ✓ 처음 푼 사람: dabbler1, 20분
- ✓ 출제자: chogahui05

- 롤러코스터 구간의 길이를 구하는 것부터 해 봅시다.
 - 직전 역과 현재 역이 각각 지상역, 지하역이거나
 - 직전 역과 현재 역이 각각 지하역, 지상역이라면
- \checkmark 이 두 역은 같은 롤러코스터 구간에 있습니다. 이건 그냥 implementation 입니다.

- 경우의 수는 어떻게 구할까요? 그냥 층수별로 완탐하면 시간초과가 날 거 같습니다.
- 대신에 지상역이면 1, 지하역이면 0이라는 상태로 처리합시다.
 - 역이 B1 층에 있거나 B2층에 있거나 롤러코스터 구간에는 영향을 미치지 않아요.
 - 역이 F1 층에 있거나 F5층에 있거나 롤러코스터 구간에는 영향을 미치지 않아요.

- 역의 상태가 주어졌어요. 이전 역이 지하역이고 현재 역이 지상역이라고 해 봅시다.
 - 이전 역이 B5 층에 있었다면, 현재 역은 F3 층에 있으면 안 되나요?
 - 이전 역이 B4 층에 있었다면, 현재 역은 F1 층에 있으면 안 되나요?
 - 둘 다 아님을 알 수 있어요.
- ✓ 이 말인 즉슨, 이전 역의 가능한 층수가, 현재 역의 가능한 층수 집합에 영향을 미치지 않습니다.

- \checkmark 따라서 $\mathcal{O}(n*2^n)$ 으로 처리 가능합니다.
- ✓ 여담으로 이 문제는 지상으로 올라갔다 지하로 내려갔다 하는 구간이 재밌어서 낸 문제입니다.

E. Gahui and ILGAM lake

implementation, prefix_sum 출제진 의도 – **Medium**

✓ 제출 52번, 정답 16명 (정답률 30.769%)

✓ 처음 푼 사람: wjdclgns12, 37분

✓ 출제자: chogahui05

E. Gahui and ILGAM lake

- 왜 ILGAM 호수를 냈을까요?
- ✓ 건국대에서 제일 유명한 것이기 때문입니다. 랜드마크 정도로 생각하면 될까요?
- \checkmark 일감호가 몇 대학교보다 크기 때문에 n 제한도 커지게 되었습니다.

E. Gahui and ILGAM lake

- \checkmark n이 매우 커서 일일히 인접한 곳을 방문하면서 합산하는 건 비효율적입니다. 그러면 어떻게?
 - 1바퀴 전체 거리를 구합니다.
 - -a에서 b로 이동할 때 아래 둘의 합은 1바퀴 전체 거리입니다.
 - ▶ 반시계 방향으로 이동한 거리
 - ▶ 시계 방향으로 이동한 거리
 - 이를 이용해서 케이스 처리를 하면 됩니다.

data structure, bit operation, implementation 출제진 의도 – Hard

✓ 제출 98번, 정답 12명 (정답률 12.245%)

✓ 처음 푼 사람: wjdclgns12, 54분

✓ 출제자: chogahui05

- \checkmark 전체 U 업데이트에 나오는 특징의 종류는 많아야 9개입니다.
- \checkmark 9개. 뭔가 bit 스러운 것을 사용하고 싶지 않으신가요?

- \checkmark 특징 $k_1, k_2, ...$ 등이 나온다고 해 보겠습니다.
- \checkmark 각 역이 해당 특징을 가지고 있으면 1, 없으면 0으로 toggle 할 수 있겠습니다.
- \checkmark 예를 들어 10001은 특징 k_1, k_5 를 가지고 있는 것입니다.
- ✓ 이제 각각 상태별로 어떤 역이 있는지 저장하면 됩니다.

- ✓ 여기서 문제, k_1 특징을 가지고 있는 역의 개수를 구해야 합니다.
- $> k_1, k_5 = 7$ 가지고 있는 역에 대해서는 어떻게 처리해야 할까요?
- \checkmark 각 상태별로 모두 돌면서, bit_and 연산으로 조건 검사를 해 주면 됩니다.

data structure, graph theory 출제진 의도 – **Challenging**

✓ 제출 9번, 정답 5명 (정답률 55.556%)

✓ 처음 푼 사람: wjdclgns12, 86분

✓ 출제자: chogahui05

- ✓ kakao 기출 문제를 2개에서 3개쯤 섞어서 낸 문제입니다.
- ✓ 15940번 문제를 참고하여 서술한 문제입니다. 한 번 풀어보시는 것도?

- ✓ 최단 거리는 어렵지 않게 구하셨을 거 같습니다.
- \checkmark 그런데 cache 서버에 lru 까지 섞이니 이게 왠 끔찍한 혼종인가? 싶습니다.
- \checkmark 분리해야 할 부분 lru를 생각해 봅시다.
- ✓ LinkedHash 계열이라던지 OrderedDict 정도는 들어보셨을 텐데요.

- \checkmark 원래 hash 계열은 들어온 순서가 보장 안 되긴 합니다. 최근 python 은 보장되긴 하지만요.
- ✓ 그런데 order 가 붙으면 네. 들어온 순서대로 순회 가능합니다. 어떻게?
- $\checkmark java$ 의 LinkedHash에는 Link가 있습니다. 그리고 Hash가 있어요.

- ✓ 실제로 내부를 보면 위 그림과 같은 구조로 이루어져 있습니다.
- ✓ 고로 가장 앞에 있는 것과 뒤에 있는 것도 무리 없이 뺄 거 같습니다.

 \checkmark head와 tail 만 안다면 말입니다.

- ✓ 중요한 것은 새롭게 정보에 접근했을 때, 앞으로던 뒤로 밀어야 합니다. 왜?
- ✓ 가장 최근에 접근한 정보이기 때문입니다.
- \checkmark head와 tail 만 안다면 말입니다.

- \checkmark java의 LinkedHashMap은 removeEldestEntry 메소드가 있습니다.
- \checkmark 무엇을 하는 것일까요? 가장 오래 전에 접근한 item을 제거합니다.
- \checkmark 이는 어떻게 알 수 있을까요? head나 tail을 보면 됩니다.

- 1, 7, 5, 4 순으로 추가되었다고 해 봅시다.
- ✓ 가장 오래 전에 접근한 것은 1혹은 4다라는 것을 알 수 있어요.
- ✓ 문제. 만약에 1에 접근하면 어떻게 되어야 할까요?

- ✓ 당연하게도 위 그림과 같이 되어야 할 겁니다.
- \checkmark AfterNodeAccess 메서드를 보면, 최근에 접근한 것에 어떤 작업을 하고 있음을 알 수 있어요.

- ✓ removeEldestEntry 메서드를 override 하면
 - -sz 이상이면 삭제되게끔 트리거를 걸 수 있습니다.
 - python에서 orderedDict는 그런 게 있나 모르겠습니다.

- ✓ python의 orderedDict에는 move_to_end 함수가 있습니다.
- \checkmark 이것은 item 을 end로 이동시킵니다.
 - 그러면 용량이 꽉 차서 제거해야 할 때, popitem을 호출해야 하는데요.
 - 끝에서 제거하지 않고 처음에서 제거할 수 있게 last 를 false로 설정하면 되겠네요.

- 최단거리는 어떻게 구할까요?
- $\checkmark many_to_many$ 이고 m이 작으므로, $floyd_algorithm$ 을 돌리면 됩니다.
- \checkmark 그런데 여기서 걸리는 것은 거리가 여럿일 경우 id가 작은 cache 를 이용한다 입니다.
- ✓ 이것은 그냥 정렬하고 좌표압축 해 버리면 됩니다.

G. 가희와 지하철역 저장 시스템 2

✓ 정리하면

- Collection 별로 lru 같은 것을 쉽게 구현할 수 있게 하는 경우가 있습니다.
- 이미 구현되어 있다면 **잘 쓰는 것**이 현명한 선택이 아닐까 싶습니다.
- 사실 저도 이 편한 방법을 setting 하면서 배웠습니다.

implementation 출제진 의도 - Challenging

✓ 제출 2번, 정답 2명 (정답률 100%)

✓ 처음 푼 사람: wjdclgns12, 121분

✓ 출제자: chogahui05

- ✓ 엄청나게 긴 지문입니다.
- ✓ 정보량도 어마무시하게 많습니다. 여기에 나온 음악 용어만 몇 개인지.. 국어 영역인가요?
- ✓ 그래서 2시간 걸릴 수 있겠다고 예측하고 9번에 배치하였습니다만.. 30분대에..
- ✓ 핵심 내용만 빠르게 추려 봅시다.

- ✓ 음은 옥타브 정보와 음 이름 정보가 들어 있습니다.
 - 음 이름은 도, 레, 미, 파, 솔, 라, 시와 같은 것들입니다.
 - 옥타브는 음의 높이를 나타냅니다.

- 뜬금없이 피아노 그림이 하나 주어졌어요.
 - -1, 0, 1 옥타브 순으로 음 높이가 높아진다고 했어요.
 - 그리고 이 그림은 다음에 나오는 정보를 파악하기 위한 중요한 정보입니다.

- ✓ 두 음이 같은 옥타브에 있으면
 - 음 이름과 대응되는 순번이 1 차이이면 인접합니다.
 - 예를 들어, C0과 C0#은 인접합니다.
- ✓ 두 음이 다른 옥타브에 있으면
 - octave 옥타브 B와 octave + 1 옥타브 C 가 인접합니다.

- ✓ 표 1과 매치해 보면 반음씩 올라가는 것이 어떤 의미인지 알 수 있지만
- 조금 더 직관적으로 그려보면 위와 같습니다.
- 이러면 인접 관계가 조금 더 명확하게 보입니다.

- ✓ 음 높이가 높아지면서 옥타브도 높아집니다. 음의 이름은 규칙이 없을까요?
- $\cdot C, C#, ..., B$ 의 패턴이 계속 반복됨을 알 수 있습니다.
- ✓ 따라서 나중에 구현할 때 원형으로 처리하는 trick 이 쓰일 수도 있겠네요.

- ✓ 다음에 장 3도와 단 3도가 주어집니다.
 - 이들은 반음 4개, 3개 거리라고 되어 있어요.
 - 결국 음 이름이 u인 것에서 단 3도 높은 음 이름을 구해야 할 수도 있겠네요.
 - 이는 원형 배열에서 거리 처리로 퉁치면 될 거 같네요.

- ✓ 이제 코드를 봅시다.
- \checkmark Major, minor, aug, dim 에 대해 처리해 주면 됩니다.
- ✓ 근음이 반음 높아지면, 3 음과 5 음도 반음 높아진다는 것을 파악하시면 쉽습니다.

- 이거 코드 종류별로 함수 따로 만들어야 할까요?
- \checkmark 코드 종류가 4개밖에 없으니 $hard_coding$ 합시다.
- \checkmark 어떤 코드 c가 음의 이름 u_1, u_2, u_3 을 가지고 있다면, 그것도 같이 저장합시다. 어떻게?

- ✓ 마디별로 음이 나옵니다. 음은 음 이름과 옥타브 정보가 있으니
- ✓ 음을 읽을 때 마다 아래 알고리즘을 생각해 볼 수 있어요.
 - 음 n_1 의 음 이름이 u_1 이라 할 때
 - 음 이름이 u_1 인 것을 가지는 코드들에 대해서
 - 구성하는 음 이름이 나온 총 횟수를 모두 더합니다.
 - 그렇다면 con[음 이름] = 음 이름을 가진 코드들로 정보를 저장하면 되겠네요.

- 각 코드별로 코드를 이루는 음 이름이 몇 번 나왔는지 카운트 하는 것은 해결했습니다.
- \checkmark 이전 p개의 마디 중 k회 이상 쓰인 코드인 것은 어떻게 검사할까요?
 - 코드 c_1 이 어느 마디들에 나왔는지 저장합니다.
 - − dynamic_array 같은 array 에 저장하면
 - ▶ 마지막에 나온 위치도
 - ightharpoonup 최근 k 번째에 몇 번 마디에서 나왔는지를
 - $-\mathcal{O}(1)$ 에 찾을 수 있습니다.

- ✓ 등장하는 코드는 48개입니다.
- ✓ 코드를 구성하는 음 이름의 합산 횟수가 가장 많은 코드도 48개의 코드를 순회해 보면 됩니다.

 \checkmark 이전 p개의 마디 중 k회 이상 나왔는지도 48번 다 돌리면 됩니다.

data_structure, greedy, math, sliding_window 출제진 의도 – **Challenging**

✓ 제출 41번, 정답 6명 (정답률 14.634%)

✓ 처음 푼 사람: ncy09, 88분

✓ 출제자: chogahui05

- ✓ 3 대장 중 제일 짧은 지문입니다.
- ✓ 사실 2호선을 타고 가면서 생각한 문제입니다.
- ✓ 그런데 머릿속에서 상상하는 것이랑 세팅하는 것이랑 차원이 다른 문제더라고요.

- \checkmark 수 n 개의 최소 공배수가 소수라면 어떤 특성이 있을까? 라는 질문에서 출발하였습니다.
- \checkmark 더 생각해 보니 greedy 와도 엮을 수 있을 거 같아, 출제하게 되었습니다.
- ✓ 하나씩 차례대로 설명해 보겠습니다.

- \checkmark 수 n 개의 최소 공배수가 소수 k 라고 해 봅시다. 이 경우 n 개의 수는
 - 1또는 k가 되어야 합니다.
 - 왜? k가 소수이기 때문에, **1과** k **로만** 나누어 떨어지기 때문입니다.

- \checkmark 따라서 s 번 역을 시발역으로 하고, e 번 역을 종착역으로 하는 열차 번호가 소수 k 라면
 - -s 번째 역부터 e 번째 역까지 적혀있는 수는 1 또는 k 입니다.
 - -s 번 역과 e 번 역 사이에 있는 v 번 역에 써져 있는 수를 x 라 하면
 - x=1 이거나 x=k이다.
 - 각 역마다 이러한 절들이 들어갑니다.

- ✓ 여기까지, 각 역에 들어갈 수 있는 수를 제한하였습니다.
- ✓ 이런 조건이 각 역마다 몇 개 들어있는지 봅시다.
 - -x = 1 이거나 x = k이다.
 - 단, k가 같다면 중복 처리를 해 줍니다.

- ✓ 걸리는 조건의 개수
 - 0개인 경우 아무 수나 와도 됩니다.
 - 1개인 경우 k 가 와야 합니다.
 - 2개 이상인 경우 무조건 1이 와야 입니다.

- 1번째 것은 당연한 것이니 생략하고 3번째 것부터 봅시다.
- 조건의 개수가 2개 이상이라는 건 무엇을 의미할까요?
 - -x=1 이거나 $x=k_1$ 입니다.
 - -x=1 이거나 $x=k_2$ 입니다.
- \checkmark 여기서 k_1 과 k_2 는 다릅니다. 1이 아닌 다른 수가 이 두 조건을 모두 만족할 수 있을까요?

- ✓ 1이 아닌 수는 1이 아니므로, 각 조건에 대해서 선행절은 무시됩니다. 따라서
 - $-x = k_1$ 입니다.
 - $-x = k_2$ 입니다.
- \checkmark 조건을 동시에 만족해야 합니다. 그런데 k_1 과 k_2 는 다르다고 했습니다.
- ✓ 따라서, 둘 중 하나 이상의 수와 같다고 해도 다른 수와는 같지 않습니다.

- \checkmark 걸리는 조건의 개수가 x=1 또는 x=k 1개인 경우 k가 와야 합니다. 이건 왜 그럴까요?
- ✓ 기회라는 관점에서 접근해 봅시다.
 - 수 k를 넣을 수 있는 기회

- \checkmark i 번째 위치에 k 를 넣을 수 있다고 해 보겠습니다.
- ✓ 그리고 제가 표시한 직사각형 구간의 최소 공배수가 k 라 하겠습니다.
- \checkmark 그러면 노란색과 회색 영역 중 최소 하나 이상의 영역에 k가 들어가야 해요.
 - 수 1은 아무렇게나 들어가도 적당히 잘 맞추면 되겠지만
 - 수 k는 여러 절이 들어오면 들어가지 못합니다.

- $m{ ilde{\prime}}$ i 번째 위치에 1을 넣었다고 해 보겠습니다.
- ✓ 그러면 노라낵 영역 중 하나에 k 가 들어가야 해요.
- \checkmark 문제는, 회색 영역에는 k 만 있는데 노란색 영역에는 그렇지 않을 수도 있어요.
- ✓ 기회가 있음에도 발로 차 버린 셈입니다. 이런.

- ✓ 다른 관점에서 접근해 봅시다.
- \checkmark 위 그림은 노란색 영역 중 최소 하나 이상에 k가 들어가야 하는 상황입니다. 이 상황 말이죠.

- ✓ 이 상태에서는 못 만들까요?
- \checkmark 회색으로 칠해진 영역에 1이 들어가도 되지만 k 가 들어가도 됩니다. 어?

- ✓ 상황을 다시 요약해 봅시다.
 - 상태 s_1 에서는 k 라는 상황만 쓸 수 있는데
 - 상태 s_2 에서도 k, k' 이라는 상황을 쓸 수 있는 셈입니다.
 - 그런데 s_2 가 s_1 보다 더 이득이에요.
- ✓ 문제를 잘 분석해 보니 구조가 그러하네요.

이제 진짜로 잘 채워졌는지 확인해 보아야 합니다. 왜?

- \checkmark 진짜 구간의 lcm이 k가 맞나 확인해 보아야 합니다.
- $\checkmark segment_tree$ 나 lca를 구축할 때 사용하는 dp를 이용하면 쉽게 할 수 있습니다.
- ✓ 그런데 이 방법 말고 다른 방법이 없나요? 물론 있습니다.

- ✓ sliding_window 를 아래 로직으로 돌리면 어떨까요? 1 또는 소수만 나오니
 - -s로부터 보았을 때 나오는 수의 종류가 하나인 가장 우측 위치 계산
 - -s로부터 보았을 때 나오는 수의 종류가 두 개인 가장 우측 위치 계산
- \checkmark 다만 현실적으로 $segment_tree$ 나 lca가 훨씬 쉽고 구현이 간결할 뿐.

- \checkmark 시간 복잡도는 $\mathcal{O}\left(Qlognlog(2000000)\right)$ 이 됩니다.
- \checkmark 등장하는 수가 소수여야 하는 것을 이용해서 gcd를 구하는 복잡도를 뗄 수도 있습니다.