概率论与数理统计(13)

清华大学

2020 年春季学期

小回顾

• 设 x_1, \ldots, x_{10} 是来自 0-1 总体 b(1, p) 的样本,考虑以下检验问题:

$$H_0: p = 0.2$$
 vs $H_1: p = 0.4$,

取拒绝域为 $W = \{\bar{x} \ge 0.5\}$, 求该检验犯两类错误的概率。

小回顾

• 设 x_1, \ldots, x_{10} 是来自 0-1 总体 b(1, p) 的样本,考虑以下检验问题:

$$H_0: p = 0.2$$
 vs $H_1: p = 0.4$,

取拒绝域为 $W = \{\bar{x} \ge 0.5\}$, 求该检验犯两类错误的概率。

• 发生第一类错误的概率:

$$\alpha = P(\bar{x} \ge 0.5 | H_0) = \sum_{k=5}^{10} {10 \choose k} \frac{1}{5^k} (\frac{4}{5})^{10-k} = 0.0328.$$

2 / 22

小回顾

• 设 x_1, \ldots, x_{10} 是来自 0-1 总体 b(1, p) 的样本,考虑以下检验问题:

$$H_0: p = 0.2$$
 vs $H_1: p = 0.4$,

取拒绝域为 $W = \{\bar{x} \ge 0.5\}$, 求该检验犯两类错误的概率。

• 发生第一类错误的概率:

$$\alpha = P(\bar{x} \ge 0.5 | H_0) = \sum_{k=5}^{10} {10 \choose k} \frac{1}{5^k} (\frac{4}{5})^{10-k} = 0.0328.$$

• 发生第二类错误的概率为:

$$\beta = P(\bar{x} < 0.5 | H_1) = \sum_{k=0}^{4} {10 \choose k} (2/5)^k (3/5)^{10-k} = 0.6331.$$

(清华大学) 概率论与教理统计 2020 2 / 22

• 变量和变量之间的关系: 确定性关系: 如函数关系 y = f(x).

3 / 22

• 变量和变量之间的关系: 确定性关系: 如函数关系 y = f(x).相关性关系: 身高和体重的关系; 身高和智商的关系; 体重和受欢迎程度的关系; 臀部大小和智商的关系.....

2020

- 变量和变量之间的关系:确定性关系:如函数关系
 y=f(x).相关性关系:身高和体重的关系;身高和智商的关系;体重和受欢迎程度的关系;臀部大小和智商的关系.....
- 相关性关系不能用完全确定的函数形式来决定。但在平均意义下有一定的定量关系。确定这种定量关系的具体形式就是回归分析的主要任务。

- 变量和变量之间的关系:确定性关系:如函数关系
 y=f(x).相关性关系:身高和体重的关系;身高和智商的关系;体重和受欢迎程度的关系;臀部大小和智商的关系.....
- 相关性关系不能用完全确定的函数形式来决定。但在平均意 义下有一定的定量关系。确定这种定量关系的具体形式就是 回归分析的主要任务。
- 线性回归分析即是寻找线性关系: y = ax + b.

3 / 22

• 假设 y 与 x 之间有相关性关系,x 为自变量,y 为因变量,我们要寻找的关系应该为

$$f(x) = E(y|x) = \int yp(y|x) dx.$$

4 / 22

• 假设 y 与 x 之间有相关性关系,x 为自变量,y 为因变量,我们要寻找的关系应该为

$$f(x) = E(y|x) = \int yp(y|x) dx.$$

• 太过一般了。这里考虑的模型为

$$y = f(x) + \epsilon,$$

其中 ϵ 是随机误差,一般假设为 $\epsilon \sim N(0, \sigma^2)$, 显然有 f(x) = E(y|x).

● 假设 y 与 x 之间有相关性关系, x 为自变量, y 为因变量, 我 们要寻找的关系应该为

$$f(x) = E(y|x) = \int yp(y|x) dx.$$

• 太过一般了。这里考虑的模型为

$$y = f(x) + \epsilon,$$

其中 ϵ 是随机误差,一般假设为 $\epsilon \sim N(0, \sigma^2)$, 显然有 f(x) = E(y|x).

• 进一步假设 $y = \beta_0 + \beta_1 x + \epsilon$,

◆ロト ◆個ト ◆豆ト ◆豆ト ・豆 ・ かへで

2020

4 / 22

• 假设 y = x 之间有相关性关系, x 为自变量, y 为因变量, 我 们要寻找的关系应该为

$$f(x) = E(y|x) = \int yp(y|x) dx.$$

• 太过一般了。这里考虑的模型为

$$y = f(x) + \epsilon,$$

其中 ϵ 是随机误差,一般假设为 $\epsilon \sim N(0, \sigma^2)$, 显然有 f(x) = E(y|x).

• 进一步假设 $y = \beta_0 + \beta_1 x + \epsilon$, 假设 x 不是随机量, y 是随机 量。即有

$$y \sim N(\beta_0 + \beta_1 x, \sigma^2).$$

2020

• $y \sim N(\beta_0 + \beta_1 x, \sigma^2)$, β_0 , β_1 为未知参数。假设收集了数据 $(x_1, y_1), \ldots, (x_n, y_n)$, 同时假设 y_1, \ldots, y_n 相互独立。则具体的一元线性回归模型为

$$\begin{cases} y_i = \beta_0 + \beta_1 x_i + \epsilon_i, & i = 1, 2, ..., n, \\ \epsilon_i 为独立同分布随机变量, \epsilon_i \sim \textit{N}(0, \sigma^2). \end{cases}$$

由数据 (x_i, y_i) , $i = 1, \ldots, n$ 可以获得 β_0 , β_1 的估计量 $\hat{\beta}_0$, $\hat{\beta}_1$, 则称

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x,$$

为 y 关于 x 的经验回归函数,也称回归方程。给定 $x=x_0$, $\hat{y}_0=\hat{\beta}_0+\hat{\beta}_1x_0$ 为回归值,或者预测值、拟合值等。

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

5 / 22

回归系数的最小二乘估计

• 最小二乘方法估计参数 β_0 , β_1 ,

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2,$$

寻找 $\hat{\beta}_0$, $\hat{\beta}_1$ 使得 $Q(\hat{\beta}_0, \hat{\beta}_1) = \min_{\beta_0, \beta_1} Q(\beta_0, \beta_1)$ 。

6 / 22

回归系数的最小二乘估计

• 最小二乘方法估计参数 β_0 , β_1 ,

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2,$$

寻找 $\hat{\beta}_0$, $\hat{\beta}_1$ 使得 $Q(\hat{\beta}_0, \hat{\beta}_1) = \min_{\beta_0, \beta_1} Q(\beta_0, \beta_1)$ 。

$$\begin{cases} \partial_{\beta_0} Q = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0, \\ \partial_{\beta_1} Q = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0. \end{cases}$$

◆ロト ◆団ト ◆豆ト ◆豆ト □ りへで

6 / 22

回归系数的最小二乘估计

• 最小二乘方法估计参数 β₀, β₁,

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2,$$

寻找 $\hat{\beta}_0$, $\hat{\beta}_1$ 使得 $Q(\hat{\beta}_0,\hat{\beta}_1)=\min_{\beta_0,\beta_1}Q(\beta_0,\beta_1)$ 。

$$\begin{cases} \partial_{\beta_0} Q = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0, \\ \partial_{\beta_1} Q = -2 \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0. \end{cases}$$

$$\begin{cases} n\hat{\beta}_0 + n\bar{x}\hat{\beta}_1 = n\bar{y}, \\ n\bar{x}\hat{\beta}_0 + \sum_i x_i^2 \hat{\beta}_1 = \sum_i x_i y_i. \end{cases} \Rightarrow \begin{cases} \hat{\beta}_1 = \frac{l_{xy}}{l_{xx}} \\ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}. \end{cases}$$

$$l_{xy} = \sum (x_i - \bar{x})(y_i - \bar{y}) = \sum x_i y_i - n\bar{x}\bar{y}, \quad l_{xx} = \sum (x_i - \bar{x})^2.$$

(清华大学) 概率论与数理统计 2020 6 / 22

• $y_i = \beta_0 + \beta_1 x_i + \epsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, 则 $y_i - \beta_0 - \beta_1 x_i$ 可以看作是来自正态总体 $N(0, \sigma^2)$ 的样本。

2020

7 / 22

• $y_i = \beta_0 + \beta_1 x_i + \epsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, 则 $y_i - \beta_0 - \beta_1 x_i$ 可以看作是来自正态总体 $N(0, \sigma^2)$ 的样本。似然函数为

$$L = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}}.$$

指数似然函数为 $l = \frac{-n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$.

7 / 22

• $y_i = \beta_0 + \beta_1 x_i + \epsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, 则 $y_i - \beta_0 - \beta_1 x_i$ 可以看作是来自正态总体 $N(0, \sigma^2)$ 的样本。似然函数为

$$L = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}}.$$

指数似然函数为 $l = \frac{-n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$.

$$\begin{cases} \partial_{\beta_0} l = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0, \\ \partial_{\beta_1} l = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0. \end{cases}$$

7 / 22

• $y_i = \beta_0 + \beta_1 x_i + \epsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, 则 $y_i - \beta_0 - \beta_1 x_i$ 可以看作是来自正态总体 $N(0, \sigma^2)$ 的样本。似然函数为

$$L = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}}.$$

指数似然函数为 $l = \frac{-n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2$.

$$\begin{cases} \partial_{\beta_0} l = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0, \\ \partial_{\beta_1} l = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0. \end{cases}$$

得到的方程与最小二乘估计中的一样, 所以此时最小二乘估计与最大似然估计相同。

◆□▶ ◆□▶ ◆壹▶ ◆壹▶ ○壹 ● 今○○

2020

7 / 22

• $y_i = \beta_0 + \beta_1 x_i + \epsilon_i \sim N(\beta_0 + \beta_1 x_i, \sigma^2)$, 则 $y_i - \beta_0 - \beta_1 x_i$ 可以看作是来自正态总体 $N(0, \sigma^2)$ 的样本。似然函数为

$$L = \left(\frac{1}{\sqrt{2\pi}\sigma}\right)^n e^{-\frac{\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2}{2\sigma^2}}.$$

指数似然函数为 $l = \frac{-n}{2} \ln \sigma^2 - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$.

$$\begin{cases} \partial_{\beta_0} l = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) = 0, \\ \partial_{\beta_1} l = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i) x_i = 0. \end{cases}$$

得到的方程与最小二乘估计中的一样,所以此时最小二乘估计与最大似然估计相同。最小二乘估计不要求偏差服从正态分布。

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ り Q ○

7 / 22

最小二乘估计的性质

- 定理: 1) $\hat{\beta}_0 \sim N(\beta_0, (\frac{1}{n} + \frac{\bar{x}^2}{l_{xx}})\sigma^2)$, $\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{l_{xx}})$;
 - 2) $Cov(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\bar{x}}{l_{rx}}\sigma^2;$
 - 3) 对于给定的 x₀,

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 \sim N(\beta_0 + \beta_1 x_0, (\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}})\sigma^2).$$

最小二乘估计的性质

- 定理: 1) $\hat{\beta}_0 \sim N(\beta_0, (\frac{1}{n} + \frac{\bar{x}^2}{l_{xx}})\sigma^2)$, $\hat{\beta}_1 \sim N(\beta_1, \frac{\sigma^2}{l_{xx}})$;
 - 2) $Cov(\hat{\beta}_0, \hat{\beta}_1) = -\frac{\bar{x}}{l_{rx}}\sigma^2;$
 - 3) 对于给定的 x_0 ,

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 \sim N(\beta_0 + \beta_1 x_0, (\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}})\sigma^2).$$

- $\hat{\beta}_0$, $\hat{\beta}_1$ 分别是 β_0 , β_1 的无偏估计。
- $\hat{y}_0 \neq \beta_0 + \beta_1 x_0$ 的无偏估计。
- 除 $\bar{x}=0$ 外, $\hat{\beta}_0$, $\hat{\beta}_1$ 是相关的。
- 若要提高 $\hat{\beta}_0$, $\hat{\beta}_1$ 的估计精度, 要增大 n, 和 l_{xx} (即要求 x_1, \ldots, x_n 尽量分散)。

• 任意给出 n 对数据 (x_i, y_i) 都可以求出回归方程 $\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 x$.

• 任意给出 n 对数据 (x_i, y_i) 都可以求出回归方程 $\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 x$.但这个方程不一定有意义。

2020

9 / 22

- 任意给出 n 对数据 (x_i, y_i) 都可以求出回归方程 $\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 x$.但这个方程不一定有意义。
- 对于真正的回归方程 $E(y) = \beta_0 + \beta_1 x$, 若 $\beta_1 = 0$, 则无论 E(y) 不随 x 的变化而做线性变化,那么一元线性回归方程意义不大,或称回归方程不显著;若 $\beta_1 \neq 0$,则称回归方程显著。

2020

9 / 22

- 任意给出 n 对数据 (x_i, y_i) 都可以求出回归方程 $\bar{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ 但这个方程不一定有意义。
- 对于真正的回归方程 $E(y) = \beta_0 + \beta_1 x$, 若 $\beta_1 = 0$, 则无论 E(y) 不随 x 的变化而做线性变化,那么一元线性回归方程意义不大,或称回归方程不显著;若 $\beta_1 \neq 0$,则称回归方程显著。
- 对于回归方程显著与否,要进性假设检验,其统计假设为:

$$H_0: \beta_1 = 0 \text{ vs } H_1: \beta_1 \neq 0.$$

即拒绝零假设 H_0 表示回归方程为显著的。

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 Q (*)

• F & $: \beta_1 = 0,$ vs $H_1 : \beta \neq 0.$

- $F \& \&: H_0: \beta_1 = 0$, vs $H_1: \beta \neq 0$.
- 记 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ 为 y 在 x_i 处的回归值, $y_i \hat{y}_i$ 为 x_i 处的残差。

- 4 ロ ト 4 昼 ト 4 夏 ト 4 夏 ト 9 Q (C)

10 / 22

- $F \& \&: H_0: \beta_1 = 0$, vs $H_1: \beta \neq 0$.
- 记 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ 为 y 在 x_i 处的回归值, $y_i \hat{y}_i$ 为 x_i 处的残差。
- 总偏差平方和: $S_T = \sum (y_i \bar{y})^2 = l_{yy}$.
- 回归平方和: $S_R = \sum (\hat{y}_i \bar{y})^2 = \frac{l_{xy}^2}{l_{xx}}$;
- 残差平方和: $S_e = \sum (y_i \hat{y}_i)^2$;

10 / 22

- $F \& \&: H_0: \beta_1 = 0$, vs $H_1: \beta \neq 0$.
- 记 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ 为 y 在 x_i 处的回归值, $y_i \hat{y}_i$ 为 x_i 处的残差。
- 总偏差平方和: $S_T = \sum (y_i \bar{y})^2 = l_{yy}$.
- 回归平方和: $S_R = \sum (\hat{y}_i \bar{y})^2 = \frac{l_{xy}^2}{l_{xx}}$;
- 残差平方和: $S_e = \sum (y_i \hat{y}_i)^2$;
- 一元线性回归的平法和分解: $S_T = S_R + S_e$,

10 / 22

- $F \& \&: H_0: \beta_1 = 0$, vs $H_1: \beta \neq 0$.
- 记 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ 为 y 在 x_i 处的回归值, $y_i \hat{y}_i$ 为 x_i 处的残差。
- 总偏差平方和: $S_T = \sum (y_i \bar{y})^2 = l_{yy}$.
- 回归平方和: $S_R = \sum (\hat{y}_i \bar{y})^2 = \frac{l_{xy}^2}{l_{xx}};$
- 残差平方和: $S_e = \sum (y_i \hat{y}_i)^2$;
- 一元线性回归的平法和分解: $S_T = S_R + S_e$, $S_e = l_{yy} \frac{l_{xy}^2}{l_{xx}}$.

10 / 22

- $F \& \&: H_0: \beta_1 = 0$, vs $H_1: \beta \neq 0$.
- 记 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ 为 y 在 x_i 处的回归值, $y_i \hat{y}_i$ 为 x_i 处的残差。
- 总偏差平方和: $S_T = \sum (y_i \bar{y})^2 = l_{yy}$.
- 回归平方和: $S_R = \sum (\hat{y}_i \bar{y})^2 = \frac{l_{xy}^2}{l_{xx}}$;
- 残差平方和: $S_e = \sum (y_i \hat{y}_i)^2$;
- 一元线性回归的平法和分解: $S_T = S_R + S_e$, $S_e = l_{yy} rac{l_{xy}^2}{l_{xx}}$.
- $E(S_R) = \sigma^2 + \beta_1^2 l_{xx}$, $E(S_e) = (n-2)\sigma^2$,

10 / 22

- $F \& \&: H_0: \beta_1 = 0$, vs $H_1: \beta \neq 0$.
- 记 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ 为 y 在 x_i 处的回归值, $y_i \hat{y}_i$ 为 x_i 处的残差。
- 总偏差平方和: $S_T = \sum (y_i \bar{y})^2 = l_{yy}$.
- 回归平方和: $S_R = \sum (\hat{y}_i \bar{y})^2 = \frac{l_{xy}^2}{l_{xx}};$
- 残差平方和: $S_e = \sum (y_i \hat{y}_i)^2$;
- 一元线性回归的平法和分解: $S_T = S_R + S_e$, $S_e = l_{yy} rac{l_{xy}^2}{l_{xx}}$.
- $E(S_R) = \sigma^2 + \beta_1^2 l_{xx}$, $E(S_e) = (n-2)\sigma^2$, $\frac{S_e}{n-2}$ 为 σ^2 的无偏估计。
- $S_e/\sigma^2 \sim \chi^2(n-2)$.
- 若 H_0 成立,则有 $S_R/\sigma^2 \sim \chi^2(1)$.
- S_R 与 S_e , \bar{y} 独立。

10 / 22

- $F \& \& : H_0: \beta_1 = 0$, vs $H_1: \beta \neq 0$.
- 记 $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ 为 y 在 x_i 处的回归值, $y_i \hat{y}_i$ 为 x_i 处的残 差。
- 总偏差平方和: $S_T = \sum (y_i \bar{y})^2 = l_{yy}$.
- 回归平方和: $S_R = \sum (\hat{y}_i \bar{y})^2 = \frac{l_{xy}^2}{r}$;
- 残差平方和: $S_e = \sum (y_i \hat{y}_i)^2$;
- 一元线性回归的平法和分解: $S_T = S_R + S_e$, $S_e = l_{yy} \frac{l_{xy}^2}{7}$.
- $E(S_R) = \sigma^2 + \beta_1^2 l_{xx}$, $E(S_e) = (n-2)\sigma^2$, $\frac{S_e}{\sigma^2}$ 为 σ^2 的无偏估计。
- \bullet $S_e/\sigma^2 \sim \chi^2(n-2)$.
- 若 H_0 成立、则有 $S_R/\sigma^2 \sim \chi^2(1)$.
- S_R 与 S_e, <u>ū</u> 独立。
- <math><math><math> H_0 成立,则 $F = \frac{S_R}{S_2/(n-2)} \sim F(1,n-2)$ 。

- F & 2: $H_0: \beta_1 = 0$ vs $H_1: \beta_1 \neq 0$.
- 统计量:

$$F = \frac{S_R}{S_e/(n-2)};$$

限定显著水平 α∈ (0,1), 并确定拒绝区域:

$$W = \{ F \geqslant F_{1-\alpha}(1, n-2) \}.$$

即若样本的数据计算的统计量的值 $F_0 \geqslant F_{1-\alpha}$, 则线性回归方程显著。

◆ロト ◆個ト ◆ 重ト ◆ 重ト ● ● ◆ ○ ○ ○

线性回归方程的显著性检验

● F 检验:回归方程的方差分析表:

1- 1-					
来源	平方和	自由度	均方	F 比	p 值
回归	$S_R = \frac{l_{xy}^2}{l_{xx}}$	1	$MS_R = S_R$	$F_0 = \frac{MS_R}{MS_e}$	$P(F \geqslant F_0)$
残差	S_e	n-2	$MS_e = \frac{S_e}{n-2}$		
总计	$S_T = l_{yy}$	n-1			

线性回归方程的显著性检验

- 选择统计量:

$$t = \frac{\hat{\beta}_1}{\hat{\sigma}/\sqrt{l_{xx}}} \sim t(n-2) (H_0),$$

这里 $\hat{\sigma} = \sqrt{S_e/(n-2)}$, $\hat{\beta}_1 \sim N(\beta_1, \sigma^2/l_{xx})$.

• 给定显著水平 $\alpha \in (0,1)$, 给出拒绝域,

$$W = \{|t| \geqslant t_{1-\alpha/2}\}.$$

也就是若由样本数据计算出来的统计量 $|t_0| \ge t_{1-\alpha/2}$, 则认为 线性回归方程显著。

(清华大学)

线性回归方程的显著性检验

- 相关系数检验: $H_0: \rho = 0$ vs $H_1: \rho \neq 0$.
- 选择统计量,为样本相关系数:

$$r = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum (x_i - \bar{x})^2 \sum (y_i - \bar{y})^2}} = \frac{l_{xy}}{\sqrt{l_{xx}l_{yy}}}.$$
$$r^2 = \frac{l_{xy}^2}{l_{xx}l_{yy}} = \frac{S_R}{S_T} = \frac{S_R}{S_R + S_e} = \frac{F}{F + (n - 2)}.$$

其中 $F = \frac{S_R}{S_e/(n-2)} \sim F(1,n-2)$ (H_0) ., 且 |r| 关于 F 严格单调增。

• 给定显著水平 $\alpha \in (0,1)$, 给出拒绝域,

$$W = \{ |r| \geqslant r_{1-\alpha} = \sqrt{\frac{F_{1-\alpha}(1, n-2)}{F_{1-\alpha}(1, n-2) + n - 2}} \}.$$

也就是若由样本数据计算出来的统计量 $|r_0| \ge r_{1-\alpha/2}$,则认为线性回归方程显著。

• 当回归方程经验证是显著后,可用来做估计和预测。

15 / 22

- 当回归方程经验证是显著后,可用来做估计和预测。
 - 当 $x = x_0$ 时,寻找均值 $E(y_0) = \beta_0 + \beta_1 x_0$ 的点估计和区间估计。此为估计问题。

(清华大学)

- 当回归方程经验证是显著后,可用来做估计和预测。
 - 当 $x = x_0$ 时,寻找均值 $E(y_0) = \beta_0 + \beta_1 x_0$ 的点估计和区间估计。此为估计问题。
 - 当 x_0 时, y_0 的观测值在什么范围内? 若 $P(|y_0 \hat{y}_0| \le \delta) = 1 \alpha$,则 称 $[\hat{y}_0 \delta, \hat{y}_0 + \delta]$ 为 y 的概率为 1α 的预测区间。这是预测问题。

- 当回归方程经验证是显著后,可用来做估计和预测。
 - 当 $x = x_0$ 时,寻找均值 $E(y_0) = \beta_0 + \beta_1 x_0$ 的点估计和区间估计。此为估计问题。
 - 当 x_0 时, y_0 的观测值在什么范围内? 若 $P(|y_0 \hat{y}_0| \le \delta) = 1 \alpha$,则 称 $[\hat{y}_0 \delta, \hat{y}_0 + \delta]$ 为 y 的概率为 1α 的预测区间。这是预测问题。
- E(y₀) 的估计。
 - $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 \neq E(y_0)$ 的无偏估计。
 - $E(y_0)$ 的 $1-\alpha$ 置信区间:

$$\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0 \sim N(\beta_0 + \beta_1 x_0, (\frac{1}{n} + \frac{(\bar{x} - x_0)^2}{l_{xx}})\sigma^2).$$

$$\frac{(\hat{y}_0 - Ey_0)/\sqrt{(\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}})\sigma^2}}{\sqrt{\frac{S_e}{\sigma^2}/(n-2)}} = \frac{\hat{y}_0 - Ey_0}{\hat{\sigma}\sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}}} \sim t(n-2).$$

所以 Ey_0 的置信水平为 $1-\alpha$ 的置信区间为 $[\hat{y}_0-\delta,\hat{y}_0+\delta]$, $\delta=t_{1-\alpha/2}(n-2)\hat{\sigma}\sqrt{\frac{1}{n}+\frac{(x_0-\bar{x})^2}{l_{xx}}},\quad \hat{\sigma}=\sqrt{\frac{S_e}{n-2}}=\sqrt{\frac{\sum(y_i-\hat{y}_i)^2}{n-2}}.$

• y_0 的预测区间: $y_0 \sim N(\beta_0 + \beta_1 x_0, \sigma^2)$, y_0 与 \hat{y}_0 相互独立, 所以

$$y_0 - \hat{y}_0 \sim N(0, \left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}\right] \sigma^2).$$

$$\frac{y_0 - \hat{y}_0}{\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}}} \sim t(n - 2).$$

所以 y_0 的概率为 $1-\alpha$ 的预测区间为

$$[\hat{y}_0 - \delta', \hat{y}_0 + \delta'], \quad \delta' = \hat{\sigma} t_{1-\alpha/2} (n-2) \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}}.$$

16 / 22

• y_0 的预测区间: $y_0 \sim N(\beta_0 + \beta_1 x_0, \sigma^2)$, y_0 与 \hat{y}_0 相互独立, 所以

$$y_0 - \hat{y}_0 \sim N(0, \left[1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}\right] \sigma^2).$$

$$\frac{y_0 - \hat{y}_0}{\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}}} \sim t(n - 2).$$

所以 y_0 的概率为 $1-\alpha$ 的预测区间为

$$[\hat{y}_0 - \delta', \hat{y}_0 + \delta'], \quad \delta' = \hat{\sigma} t_{1-\alpha/2} (n-2) \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{l_{xx}}}.$$

- 预测区间的长度不会为零; 当 l_{xx} 大时, 预测区间较短, 即应该让 x_1, \ldots, x_n 分散。 $x_0 = \bar{x}$ 是区间最短。
- 当 n 比较大, 且 x_0 离 \bar{x} 比较近时, 预测区间近似为 $[\hat{y}_0 \hat{\sigma}u_{1-\alpha/2}, \hat{y}_0 + \hat{\sigma}u_{1-\alpha/2}].$

(済华大学) 概率於与教理統計 2020 16 / 22

• $X_1, \ldots, X_n, X_{n+1}$ 为来自正态总体的样本。考虑 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. 收集到前面 n 个数据。考虑下一个数据的可能范围。

17 / 22

- $X_1, \ldots, X_n, X_{n+1}$ 为来自正态总体的样本。考虑 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. 收集到前面 n 个数据。考虑下一个数据的可能范围。
- $X_{n+1} \bar{X}_n \sim N(0, \sigma^2 + \frac{1}{n}\sigma^2)$, $\frac{(n-1)s_n^2}{\sigma^2} \sim \chi^2(n-1)$.

17 / 22

- $X_1, \ldots, X_n, X_{n+1}$ 为来自正态总体的样本。考虑 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. 收集到前面 n 个数据。考虑下一个数据的可能范围。
- $X_{n+1} \bar{X}_n \sim N(0, \sigma^2 + \frac{1}{n}\sigma^2)$, $\frac{(n-1)s_n^2}{\sigma^2} \sim \chi^2(n-1)$.

$$\frac{X_{n+1} - \bar{X}_n}{s_n \sqrt{1 + \frac{1}{n}}} = \frac{\frac{X_{n+1} - \bar{X}_n}{\sigma \sqrt{1 + \frac{1}{n}}}}{\sqrt{\frac{(n-1)s_n^2}{(n-1)\sigma^2}}} \sim t(n-1).$$

- $X_1, ..., X_n, X_{n+1}$ 为来自正态总体的样本。考虑 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. 收集到前面 n 个数据。考虑下一个数据的可能范围。
- $X_{n+1} \bar{X}_n \sim N(0, \sigma^2 + \frac{1}{n}\sigma^2)$, $\frac{(n-1)s_n^2}{\sigma^2} \sim \chi^2(n-1)$.

$$\frac{X_{n+1} - \bar{X}_n}{s_n \sqrt{1 + \frac{1}{n}}} = \frac{\frac{X_{n+1} - \bar{X}_n}{\sigma \sqrt{1 + \frac{1}{n}}}}{\sqrt{\frac{(n-1)s_n^2}{(n-1)\sigma^2}}} \sim t(n-1).$$

• $P(\bar{X}_n - t_{1-\frac{\alpha}{2}} s_n \sqrt{1+\frac{1}{n}} \leqslant X_{n+1} \leqslant \bar{X}_n + t_{1-\frac{\alpha}{2}} s_n \sqrt{1+\frac{1}{n}}) = 1 - \alpha.$

◆ロト ◆問 ▶ ◆ 恵 ▶ ◆ 恵 ● 釣 ९ ○

17 / 22

- $X_1, \ldots, X_n, X_{n+1}$ 为来自正态总体的样本。考虑 $\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. 收集到前面 n 个数据。考虑下一个数据的可能范围。
- $X_{n+1} \bar{X}_n \sim N(0, \sigma^2 + \frac{1}{n}\sigma^2)$, $\frac{(n-1)s_n^2}{\sigma^2} \sim \chi^2(n-1)$.

$$\frac{X_{n+1} - \bar{X}_n}{s_n \sqrt{1 + \frac{1}{n}}} = \frac{\frac{X_{n+1} - \bar{X}_n}{\sigma \sqrt{1 + \frac{1}{n}}}}{\sqrt{\frac{(n-1)s_n^2}{(n-1)\sigma^2}}} \sim t(n-1).$$

- $P(\bar{X}_n t_{1-\frac{\alpha}{2}} s_n \sqrt{1+\frac{1}{n}} \leqslant X_{n+1} \leqslant \bar{X}_n + t_{1-\frac{\alpha}{2}} s_n \sqrt{1+\frac{1}{n}}) = 1-\alpha.$
- 何用?

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へで

• 现收集了 16 组合金钢的碳含量 x 与强度 y 的数据,整理得

$$\bar{x} = 0.125, \ \bar{y} = 45.7886, \ l_{xx} = 0.3024, \ l_{xy} = 25.5218, \ l_{yy} = 2432.486$$

18 / 22

• 现收集了 16 组合金钢的碳含量 x 与强度 y 的数据,整理得 $\bar{x} = 0.125, \ \bar{y} = 45.7886, \ l_{xx} = 0.3024, \ l_{xy} = 25.5218, \ l_{yy} = 2432.43$

• 建立 y 关于 x 的一元线性回归方程: $\hat{\beta}_1 = \frac{l_{xy}}{l_{xx}} = \frac{25.5218}{0.3024} = 84.3975, \ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 35.2389. \ \text{所以回归方程为}$

 $\hat{y} = 35.2389 + 84.375x.$

◆ロト ◆個ト ◆ 重ト ◆ 重ト ● ● ◆ ○ ○ ○

• 现收集了 16 组合金钢的碳含量 x 与强度 y 的数据, 整理得 $\bar{x} = 0.125, \ \bar{y} = 45.7886, \ l_{xx} = 0.3024, \ l_{xy} = 25.5218, \ l_{yy} = 2432.48$

• 建立 y 关于 x 的一元线性回归方程: $\hat{\beta}_1 = \frac{l_{xy}}{r^2} = \frac{25.5218}{0.3094} = 84.3975, \ \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x} = 35.2389. \ \text{所以回归}$ 方程为 $\hat{y} = 35.2389 + 84.375x$.

• $\frac{1}{l_{xx}} = \frac{1}{0.3024} = 3.3069, \ \frac{1}{n} + \frac{\bar{x}^2}{l_{--}} = 0.1142.$ 所以 $\hat{\beta}_0 \sim N(\beta_0, 0.1142\sigma^2), \quad \hat{\beta}_1 \sim N(\beta_1, 3.3069\sigma^2).$

• 一元线性回归方程的显著性检验:

$$S_T = l_{yy} = 2432.4566, \ S_R = \frac{l_{xy}^2}{l_{xx}} = 2153.9758, \ S_e = S_T - S_R = 278$$

$$F = \frac{S_R}{S_e/(n-2)} = \frac{2153.9758}{278.4808/14} = 108.2848.$$

若取显著水平为 $\alpha = 0.05$, $F_{0.95}(1,14) = 4.60$. 所以回归方程显著。

• 一元线性回归方程的显著性检验:

$$S_T = l_{yy} = 2432.4566, \ S_R = \frac{l_{xy}^2}{l_{xx}} = 2153.9758, \ S_e = S_T - S_R = 278$$

$$F = \frac{S_R}{S_e/(n-2)} = \frac{2153.9758}{278.4808/14} = 108.2848.$$

若取显著水平为 $\alpha = 0.05$, $F_{0.95}(1,14) = 4.60$. 所以回归方程显著。

- x = 0.15 时 $\hat{y}_0 = 35.2389 + 84.3975 \times 0.15 = 47.8985$.
 - E(y) 的 0.95 置信区间为: $\hat{y}_0 \pm \delta$, $\delta = t_{0.975}(n-2)\hat{\sigma}\sqrt{1/n + (x_0 \bar{x})^2/l_{xx}}$.
 - y 的概率为 0.95 的预测区间为 $\hat{y}_0 \pm \delta'$. $\delta' = t_{0.975}(n-2)\hat{\sigma}\sqrt{1+1/n+(x_0-\bar{x})^2/l_{xx}}.$
 - $\bullet \ \hat{\sigma} = \sqrt{S_e/(n-2)}.$

◆ロト ◆個ト ◆差ト ◆差ト を めなべ

• 数据修正: n 组数据 (x_i, y_i) , 已经计算出 \bar{x} , \bar{y} , l_{xx} , l_{xy} , l_{yy} . 现发现其中一组数据 (x_k, y_k) 记录有错,正确的应该为 (x'_k, y'_k) , 怎么办?

- 数据修正: n 组数据 (x_i, y_i) , 已经计算出 \bar{x} , \bar{y} , l_{xx} , l_{xy} , l_{yy} . 现发现其中一组数据 (x_k, y_k) 记录有错, 正确的应该为 (x'_k, y'_k) , 怎么办?
- 修正各个计算数据:

$$\bar{x}' = \bar{x} + \frac{1}{n}(x_k' - x_k),$$

20 / 22

- 数据修正: n 组数据 (x_i, y_i) , 已经计算出 \bar{x} , \bar{y} , l_{xx} , l_{xy} , l_{yy} . 现发现其中一组数据 (x_k, y_k) 记录有错, 正确的应该为 (x'_k, y'_k) , 怎么办?
- 修正各个计算数据:

$$\bar{x}' = \bar{x} + \frac{1}{n}(x_k' - x_k),$$
$$\bar{y}' = \bar{y} + \frac{1}{n}(y_k' - y_k),$$

20 / 22

- 数据修正: n 组数据 (x_i, y_i) , 已经计算出 \bar{x} , \bar{y} , l_{xx} , l_{xy} , l_{yy} . 现发现其中一组数据 (x_k, y_k) 记录有错, 正确的应该为 (x_k', y_k') , 怎么办?
- 修正各个计算数据:

$$\bar{x}' = \bar{x} + \frac{1}{n}(x_k' - x_k),$$
$$\bar{y}' = \bar{y} + \frac{1}{n}(y_k' - y_k),$$

$$l_{xx} = \sum_{i} x_{i}^{2} - n(\bar{x})^{2} \Rightarrow l'_{xx} = l_{xx} + (x'_{k})^{2} - (x_{k})^{2} - n(\bar{x}')^{2} + n(\bar{x})^{2},$$

4□ > 4□ > 4 = > 4 = > = 90

20 / 22

- 数据修正: n 组数据 (x_i, y_i) , 已经计算出 \bar{x} , \bar{y} , l_{xx} , l_{xy} , l_{yy} . 现发现其中一组数据 (x_k, y_k) 记录有错, 正确的应该为 (x_k', y_k') , 怎么办?
- 修正各个计算数据:

$$\bar{x}' = \bar{x} + \frac{1}{n}(x'_k - x_k),$$
 $\bar{y}' = \bar{y} + \frac{1}{n}(y'_k - y_k),$

$$l_{xx} = \sum_{i} x_{i}^{2} - n(\bar{x})^{2} \Rightarrow l'_{xx} = l_{xx} + (x'_{k})^{2} - (x_{k})^{2} - n(\bar{x}')^{2} + n(\bar{x})^{2},$$
$$l'_{yy} = l_{yy} + (y'_{k})^{2} - (y_{k})^{2} - n(\bar{y}')^{2} + n(\bar{y})^{2},$$

4 D > 4 P > 4 E > 4 E > E 9 Q P

(清华大学) 概率论与数理统计 2020 20 / 22

- 数据修正: n 组数据 (x_i, y_i) , 已经计算出 \bar{x} , \bar{y} , l_{xx} , l_{xy} , l_{yy} . 现发现其中一组数据 (x_k, y_k) 记录有错, 正确的应该为 (x_k', y_k') , 怎么办?
- 修正各个计算数据:

$$\bar{x}' = \bar{x} + \frac{1}{n}(x_k' - x_k),$$
$$\bar{y}' = \bar{y} + \frac{1}{n}(y_k' - y_k),$$

$$l_{xx} = \sum_{i} x_i^2 - n(\bar{x})^2 \Rightarrow l'_{xx} = l_{xx} + (x'_k)^2 - (x_k)^2 - n(\bar{x}')^2 + n(\bar{x})^2,$$

$$l'_{yy} = l_{yy} + (y'_k)^2 - (y_k)^2 - n(\bar{y}')^2 + n(\bar{y})^2,$$

$$l_{xy} = \sum_{i} x_{i} y_{i} - n(\bar{x})(\bar{y}) \Rightarrow l'_{xy} = l_{xy} + x'_{k} y'_{k} - x_{k} y_{k} + n(\bar{x})(\bar{y}) - n(\bar{x}')(\bar{y}').$$

(清华大学) 概率论与数理统计 2020 20 / 22

一元非线性回归

- 非线性函数关系: 如
 - 双曲: $\frac{1}{y} = a + \frac{b}{x}$;
 - 幂函数: y = ax^b;
 - 指数函数: $y = ae^{bx}$ 或者 $y = ae^{b/x}$;
 - 对数函数: $y = a + b \ln x$;
 - S-形曲线: $y = \frac{1}{a+be^{-x}}$.

一元非线性回归

- 非线性函数关系: 如
 - 双曲: $\frac{1}{y} = a + \frac{b}{x}$;
 - 幂函数: $y = ax^b$;
 - 指数函数: $y = ae^{bx}$ 或者 $y = ae^{b/x}$;
 - 对数函数: $y = a + b \ln x$;
 - S-形曲线: $y = \frac{1}{a+be^{-x}}$.
- 通过变量代换,将非线性关系变成线性关系,再进行一元线性回归分析。
 - 双曲: $u = \frac{1}{y}$, $v = \frac{1}{x}$, u = a + bv;
 - 幂函数: $u = \ln y$, $v = \ln x$, $u = \ln a + bv$;
 - 指数函数: $u = \ln y$, $u = \ln a + bx$ 或者 $u = \ln y$, $v = \frac{1}{x}$, $u = \ln a + bv$,
 - 对数函数: $y = a + b \ln x$; $v = \ln x$, y = a + bv.
 - S-形曲线: $u = \frac{1}{y}$, $v = e^{-x}$, u = a + bv.

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○