Definitions, Theorems, etc.

2 Pythagorean Triples

Definition (Primitive Pythagorean Triple). A primitive Pythagorean triple (PPT) is a triple of numbers (a, b, c) such that a, b, c have no common factors and satisfy

 $a^2 + b^2 = c^2$.

Theorem 2.1 (Pythagorean Triple Theorem). We will get every primitive Pythagorean triple of (a, b, c) with a odd and b even using the formulas

$$a = st, \quad b = \frac{s^2 - t^2}{2}, \quad c = \frac{s^2 + t^2}{2},$$

where $s>t\geqslant 1$ are chosen to be any odd integers with no common factors.

3 Pythagorean Triples and the Unit Circle

Theorem 3.1. Every point on the circle

$$x^2 + y^2 = 1$$

whose coordinates are rational numbers can be obtained from the formula

$$(x,y) = \left(\frac{1-m^2}{1+m^2}, \frac{2m}{1+m^2}\right)$$

by substituting in rational numbers for \mathfrak{m} (except for the point (-1,0) which is the limiting value as $\mathfrak{m} \to \infty$).

4 Sums of Higher Powers and Fermat's Last Theorem

Theorem (Fermat's Last Theorem). *No three positive integers* a, b, and c satisfy the equation

$$a^n + b^n = c^n$$

for all $n \ge 3$.

5 Divisibility and the Greatest Common Divisor

Definition (Greatest Common Divisor). The *greatest common divisor* of two numbers a and b (not both zero) is the largest number that divides them both. It is denoted by gcd(a, b).

Definition (Relatively Prime). If gcd(a, b) = 1, then we say that a and b are *relatively prime*.

Definition (Least Common Multiple). A number L is called a *common multiple* of m and n if both m and n divide L. The smallest such L is called the *least common multiple of* m *and* n and is denoted by lcm(m, n).

Theorem. *Let* $m, n \in \mathbb{Z}$. *Then*

$$\operatorname{lcm}(\mathfrak{m},\mathfrak{n}) = \frac{\mathfrak{m}\mathfrak{n}}{\gcd(\mathfrak{m},\mathfrak{n})}.$$

Theorem 5.1 (Euclidean Algorithm). To compute the greatest common divisor of two numbers α and b, let $r_{-1} = \alpha$, let $r_0 = b$, and compute successive quotients and remainders

$$r_{i-1} = q_{i+1} \cdot r_i + r_{i+1}$$

for $i=0,1,2,\ldots$ until some remainder r_{n+1} is 0. The last nonzero remainder r_n is the greast common divisor of α and b.

6 Linear Equations and the Greatest Common Divisor

Theorem 6.1 (Linear Equation Theorem). Let a and b be nonzero integers, and let $g = \gcd(a, b)$. Then the equation

$$ax + by = g$$

always has a solution (x_1,y_1) in integers, and this solution can be found by the Euclidean algorithm. Then every solution to the equation can be obtained by substituting integers k into the formula

$$\left(x_1+k\cdot\frac{b}{g},y_1-k\cdot\frac{a}{g}\right).$$

7 Factorization and the Fundamental Theorem of Arithmetic

Definition (Prime). A *prime* integer is an integer $p \ge 2$ whose only (positive) divisors are 1 and p.

Definition (Composite). Integers $m \ge 2$ that are not primes are called *composite* numbers.

Theorem 7.2 (Prime Divisibility Property). Let p be a prime number, and suppose that p divides the product $a_1 a_2 \cdots a_r$. Then p divides at least one of the factors a_1, a_2, \dots, a_r .

Theorem 7.3 (The Fundamental Theorem of Arithmetic). Every integer $n \ge 2$ can be factored in a product of primes

$$n = p_1 p_2 \cdots p_r$$

in exactly one way (up to rearrangement).

8 Congruences

Definition (Congruence). An integer a is *congruent* to b modulo m, and we write

$$a \equiv b \pmod{m}$$
,

if m divides a - b.

Proposition. \equiv is an equivalence relation.

Proposition. Let $\mathfrak{a},\mathfrak{b},c,d\in\mathbb{Z}.$ Assume $\mathfrak{a}\equiv\mathfrak{b}\pmod{\mathfrak{m}}$ and $\mathfrak{c}\equiv d\pmod{\mathfrak{m}}.$ Then

- (i) $a + c \equiv b + d \pmod{m}$
- (ii) $ac \equiv bd \pmod{m}$.

Theorem 8.1 (Linear Congruence Theorem). *Let* a, c *and* m *be integers with* $m \ge 1$, *and let* $g = \gcd(a, m)$.

- (a) If $g \nmid c$, then the congruence $ax \equiv c \pmod{m}$ has no solutions.
- (b) If $g \mid c$, then the congruence $ax \equiv c \pmod{m}$ has exactly g incongruent solutions. To find the solutions, first find a solution (u_0, v_0) to the linear equation

$$au + mv = g$$

Then $x_0 = cu_0/g$ is a solution to $ax \equiv c \pmod{m}$, and a complete set of incongruent solutions is given by

$$x \equiv x_0 + k \cdot \frac{m}{q} \; (\mathrm{mod} \; m) \quad \text{for } k = 0, 1, \ldots, g-1.$$

Theorem 8.2 (Polynomial Roots modulo p Theorem). Let p be a prime number and let

$$f(x) = a_0 d^d + a_1 d^{d-1} + \dots + a_d$$

be a polynomial of degree $d\geqslant 1$ with integer coefficients and with $p\nmid \alpha_0.$ Then the congruence

$$f(x) \equiv 0 \pmod{p}$$

has at most d incongruent solutions.

9 Congruences, Powers, and Fermat's Little Theorem

Theorem 9.1 (Fermat's Little Theorem). *Let* \mathfrak{p} *be a prime number, and let* \mathfrak{a} *be any number with* $\mathfrak{a} \not\equiv \mathfrak{0} \pmod{\mathfrak{p}}$. *Then*

$$a^{p-1} \equiv 1 \pmod{p}$$
.

10 Congruences, Powers, and Euler's Formula

Definition (Euler Phi Function). *Euler's phi function* is the is the function $\phi(m)$: $\mathbb{N} \to \mathbb{N}$ defined by

$$\varphi(m) = \#\{\alpha : 1 \leqslant \alpha \leqslant m \text{ and } \gcd(\alpha, m) = 1\}.$$

Theorem 10.1 (Euler's Formula). *If* $gcd(\mathfrak{a}, \mathfrak{m}) = 1$, *then*

$$a^{\varphi(\mathfrak{m})} = 1 \pmod{\mathfrak{m}}$$
.

11 Euler's Phi Function and the Chinese Remainder Theorem

Theorem 11.1 (Phi Function Formulas). (a) If p is prime and $k \ge 1$, then

$$\varphi\left(\mathfrak{p}^{k}\right)=\mathfrak{p}^{k}-\mathfrak{p}^{k-1}.$$

(b) If gcd(m, n) = 1, then $\varphi(mn) = \varphi(m)\varphi(n)$.

Corollary. Let m be a positive integer and suppose p_1, \ldots, p_r are the distinct primes that divide m. Then

$$\varphi(\mathfrak{m}) = \mathfrak{m} \prod_{i=1}^{r} \left(1 - \frac{1}{p_i} \right).$$

Theorem (Generalized Chinese Remainder Theorem). Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_n \in \mathbb{Z}$ such that $\gcd(\mathfrak{m}_i, \mathfrak{m}_j) = 1$ for all $1 \leq i, j \leq n$ with $i \neq j$. Let $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \in \mathbb{Z}$. Then the

system of congruences

$$\begin{split} x &\equiv \alpha_1 \; (\mathrm{mod} \; \mathfrak{m}_1) \\ x &\equiv \alpha_2 \; (\mathrm{mod} \; \mathfrak{m}_2) \\ &\vdots \\ x &\equiv \alpha_n \; (\mathrm{mod} \; \mathfrak{m}_n) \end{split}$$

has a unique solution modulo $M=\prod_{i=1}^n m_i,$ given by

$$x \equiv \sum_{i=1}^{n} a_{i} \left(\frac{M}{m_{i}} \right) y_{i},$$

where $y_{\mathfrak{i}} \equiv \left(\frac{M}{\mathfrak{m}_{\mathfrak{i}}}\right)^{-1} \pmod{\mathfrak{m}_{\mathfrak{i}}}$ for all $1 \leqslant \mathfrak{i} \leqslant \mathfrak{n}.$

12 Prime Numbers

Theorem 12.1 (Infinitude of Primes). *There are infinitely many prime numbers.*

Theorem 12.2 (Dirichlet's Theorem on Primes in Arithmetic Progression). Let a and m be integers with gcd(a, m) = 1. Then there are infinitely primes that are congruent to a modulo m. That is, there are infinitely many prime numbers p satisfying

$$p \equiv a \pmod{m}$$
.

16 Powers Modulo m and Successive Squaring

Algorithm 16.1 (Successive Squaring to Compute a^k modulo m). The following steps compute the value of $a^k \pmod{m}$:

1. Write k as a sum of powers of 2.

$$k = u_0 + u_1 \cdot 2 + u_2 \cdot 4 + u_3 \cdot 8 + \dots + u_r \cdot 2^r$$

where each u_i is either 0 or 1. (This is called the binary expansion of k.)

2. Make a table of powers of a modulo m using successive squaring.

$$\begin{array}{lll} \alpha^1 & & & \equiv A_0 \ (\operatorname{mod}\ m) \\ \alpha^2 & \equiv (\alpha^1)^2 & \equiv A_0^2 & \equiv A_1 \ (\operatorname{mod}\ m) \\ \alpha^4 & \equiv (\alpha^2)^2 & \equiv A_1^2 & \equiv A_2 \ (\operatorname{mod}\ m) \\ \alpha^8 & \equiv (\alpha^4)^2 & \equiv A_2^2 & \equiv A_3 \ (\operatorname{mod}\ m) \\ & \vdots & & \vdots \\ \alpha^{2r} & \equiv \left(\alpha^{2^{r-1}}\right)^2 & \equiv A_{r-1}^2 & \equiv A_r \ (\operatorname{mod}\ m) \end{array}$$

3. The product

$$A_0^{\mathfrak{u}_0}\cdot A_1^{\mathfrak{u}_1}\cdot A_2^{\mathfrak{u}_2}\cdots A_r^{\mathfrak{u}_R}\ (\mathrm{mod}\ \mathfrak{m})$$

will be congruent to $a^k \pmod{m}$. Note that all the u_i 's are either 0 or 1, so this number is really the product of those A_i 's for which u_i equals 1.

17 Computing kth Roots Modulo m

Algorithm 17.1 (How to Compute kth Roots modulo m). *Let* b, k, and m be given integers that satisfy

$$gcd(b, m) = 1$$
 and $gcd(k, \phi(m)) = 1$.

The following steps give a solution to the congruence

$$x^k \equiv b \pmod{m}$$
.

- 1. Compute $\varphi(m)$.
- 2. Find positive integers u and v that satisfy $ku \phi(m)v = 1$.
- 3. Compute $\mathfrak{b}^{\mathfrak{u}} \pmod{\mathfrak{m}}$ by successive squaring. The value obtained gives the solution \mathfrak{x}

18 Powers, Roots, and "Unbreakable" Codes

20 Squares Modulo p

Definition (Quadratic Residue modulo p). A nonzero number that is congruent to a square modulo a prime p is called a *quadratic residue modulo* p; otherwise, it is called a *nonresidue modulo* p.

Theorem 20.1. Let p be an odd prime. Then there are exactly (p-1)/2 quadratic residues modulo p and exactly (p-1)/2 nonresidues modulo p.

Definition (Legendre Symbol of a modulo p). The Legendre symbol of a modulo p is

$$\begin{pmatrix} a \\ p \end{pmatrix} = \begin{cases} 1 & \text{if a is a quadratic residue modulo p} \\ -1 & \text{if a is a nonresidue modulo p}. \end{cases}$$

Theorem 20.2 (Quadratic Residue Multiplication Rule). *Let* p *be an odd prime. Then*

$$\begin{pmatrix} a \\ p \end{pmatrix} \begin{pmatrix} b \\ p \end{pmatrix} = \begin{pmatrix} ab \\ p \end{pmatrix}$$
.

21 Is −1 a Square Modulo p

Theorem 21.1 (Euler's Criterion). Let p be an odd prime. Then

$$a^{(p-1)/2} \equiv \begin{pmatrix} a \\ \cdots \\ p \end{pmatrix} \pmod{p}$$
.

22 Quadratic Reciprocity

Theorem 22.1 (Law of Quadratic Reciprocity). Let p and q be distinct odd primes.

$$\begin{pmatrix}
-1 \\
p
\end{pmatrix} = \begin{cases}
1 & \text{if } p \equiv 1 \pmod{4}, \\
-1 & \text{if } p \equiv 3 \pmod{4}.
\end{cases}$$

$$\begin{pmatrix}
2 \\
p
\end{pmatrix} = \begin{cases}
1 & \text{if } p \equiv 1 \text{ or } 7 \pmod{8}, \\
-1 & \text{if } p \equiv 3 \text{ or } 5 \pmod{8}.
\end{cases}$$

$$\begin{pmatrix}
q \\
p
\end{pmatrix} = \begin{cases}
\begin{pmatrix}
p \\
q
\end{pmatrix} & \text{if } p \equiv 1 \pmod{4} \text{ or } q \equiv 1 \pmod{4}, \\
-\binom{p}{q} & \text{if } p \equiv 3 \pmod{4} \text{ and } q \equiv 3 \pmod{4}.
\end{cases}$$

Definition (Jacobi Symbol of a modulo b). Let a and b be odd positive integers. Suppose b has factorization $b = \prod_{i=1}^{r} p_r$, where each p_i is a distinct prime. Then the *Jacobi symbol of a modulo* bis

$$\left(\frac{a}{b}\right) = \prod_{i=1}^{r} \left(\frac{a}{p_i}\right).$$

Theorem 22.2 (Generalized Law of Quadratic Reciprocity). Let a and b be odd positive integers.

$$\begin{pmatrix}
-1 \\
b
\end{pmatrix} = \begin{cases}
1 & \text{if } b \equiv 1 \pmod{4}, \\
-1 & \text{if } b \equiv 3 \pmod{4}.
\end{cases}$$

$$\begin{pmatrix}
\frac{2}{b}
\end{pmatrix} = \begin{cases}
1 & \text{if } b \equiv 1 \text{ or } 7 \pmod{8}, \\
-1 & \text{if } b \equiv 3 \text{ or } 5 \pmod{8}.
\end{cases}$$

$$\begin{pmatrix}
\frac{a}{b}
\end{pmatrix} = \begin{cases}
\begin{pmatrix}
\frac{a}{b}
\end{pmatrix} & \text{if } a \equiv 1 \pmod{4} \text{ or } b \equiv 1 \pmod{4}, \\
-\begin{pmatrix}\frac{a}{b}
\end{pmatrix} & \text{if } a \equiv b \equiv 3 \pmod{4} \text{ and } q \equiv 3 \pmod{4}.
\end{cases}$$

24 What Primes are Sums of Two Squares?

Theorem 24.1 (Sum of Two Squares Theorem for Primes). *Let* p *be a prime. Then* p *is a sum of two squares exactly when*

$$p \equiv 1 \pmod{4}$$
 (or $p = 2$).

Algorithm (Method of Descent). *Let* p *be prime* $\equiv 1 \pmod{4}$.

- (i) Given $A^2 + B^2 = Mp$ with 1 < M < p.
- (ii) Choose numbers u and v with

$$\mathfrak{u} \equiv A \; (\operatorname{mod} M) \quad \text{and} \quad \mathfrak{v} \equiv B \; (\operatorname{mod} M),$$

where
$$-\frac{M}{2} \leqslant u, v \leqslant \frac{M}{2}$$
.

- (iii) Find $1 \leqslant r < M$ such that $r = \frac{u^2 + v^2}{M}$.
- (iv) If r = 1, conclude that

$$\left(\frac{uA + vB}{M}\right)^2 + \left(\frac{vA - uB}{M}\right)^2 = p;$$

otherwise, write

$$\left(\frac{uA + vB}{M}\right)^2 + \left(\frac{vA - uB}{M}\right)^2 = rp$$

and repeat.

27 Euler's Phi Function and Sums of Divisors

Definition. The function $F : \mathbb{Z} \to \mathbb{Z}$ is defined by

$$F(n) = \sum_{d|n} \varphi(d).$$

Lemma 27.1. If $gcd(\mathfrak{m},\mathfrak{n})=1$, then $F(\mathfrak{m}\mathfrak{n})=F(\mathfrak{m})F(\mathfrak{n})$.

Theorem 27.1 (Euler's Phi Function Summation Formula). *Let* $n \in \mathbb{Z}$. *Then*

$$F(n) = n$$
.

28 Powers Modulo P and Primitive Roots

Definition (Order of a modulo p). Let a be an integer not divisible by the prime p. Then *order* of a modulo p, denoted $e_p(a)$, is the least positive exponent e such that $a^e \equiv 1 \pmod{p}$.

Theorem 28.1 (Order Divisibility Property). Let α be an integer not divisible by the prime p, and suppose that $\alpha^n \equiv 1 \pmod{p}$. Then the order $e_p(\alpha)$ divides n. In particular, the order $e_p(\alpha)$ always divides p-1.

Definition (Primitve Root modulo p). A number g with maximum order $e_p(g) = p - 1$ is called a *primitive root modulo* p.

Theorem 28.2 (Primitve Root Theorem). *Every prime* p *has a primitive root. More precisely, there are exactly* $\phi(p-1)$ *primitive roots modulo* p.

Definition. Define $\psi : \mathbb{N} \to \mathbb{N}$ by

$$\psi(d) = \#\{\alpha : 1 \leqslant \alpha \leqslant p \text{ and } e_p(\alpha) = d\}.$$

Proposition. If n divides p - 1, then the congruence

$$X^n - 1 \equiv 0 \pmod{p}$$

has exactly n solutions with $0 \le X < p$.