Hand picking similar behaving group of customers to check clustering results

A clean dataset is obtained by choosing minimum sum of JS distances from each typical customer based on quantiles = seq(0.1, 0.9, 0.1). The objective is to see if the clustering algorithm then picks the least distant ones as the group.

only hod

Do they look similar on the transformed scale?

only hod

Does hod as the only variable correctly identifies the groups?

```
#quantile_prob_val = c(0.5, 0.75)
#data_pick <- data_pick %>% filter(!(customer_id %in% c(8485375, 8952846)))
library(gracsr)
v2 <- suppressWarnings(</pre>
  scaled_dist_gran(data_pick, "hour_day",
                   response = "general_supply_kwh",
                   quantile_prob_val = quantile_prob_clust)) %>% rename("dist_hod" = "dist")
v3 <- suppressWarnings(
  scaled_dist_gran(data_pick, "day_month",
                   response = "general_supply_kwh",
                   quantile_prob_val = quantile_prob_clust)) %% rename("dist_dom" = "dist")
data_dist <- v3 %>%
  left_join(v2) %>%
  mutate(dist = dist_hod + dist_dom) %>%
   pivot_wider(-c(3, 4),
                names_from = customer_to,
              values_from = dist) %>%
  rename("customer_id" = "customer_from")
## # A tibble: 3 x 2
##
     group
               n
     <int> <int>
##
```


hod + dom

Is the clustering sensitive to nuisance parameter?

```
#quantile_prob_val = c(0.5, 0.75)
#data_pick <- data_pick %>% filter(!(customer_id %in% c(8485375, 8952846)))
library(gracsr)
v2 <- suppressWarnings(</pre>
  scaled_dist_gran(data_pick, "hour_day",
                   response = "general_supply_kwh",
                   quantile_prob_val = quantile_prob_clust)) %% rename("dist_hod" = "dist")
v3 <- suppressWarnings(
  scaled_dist_gran(data_pick, "day_month",
                   response = "general_supply_kwh",
                   quantile prob val = quantile prob clust)) %% rename("dist dom" = "dist")
data_dist <- v3 %>%
  left_join(v2) %>%
  mutate(dist = dist_hod + dist_dom) %>%
    pivot_wider(-c(3, 4),
                names_from = customer_to,
              values_from = dist) %>%
  rename("customer_id" = "customer_from")
```


All 100 customers

Running it on all 100 and making 10 clusters. Do they have sufficiently different shapes? Variable importance

A tibble: 10 x 2 group ## n <int> <int> ## ## 1 1 10 ## 2 2 13 ## 3 3 20 ## 4 4 10 ## 5 19 5 6 ## 6 10 2 7 7 ## ## 8 8 5 9 9 5 ## ## 10 10 6 0.5 0.5 1.00 0.6 0.4 0.4 0.75 0.3 0.3 -0.4 0.50 0.2 0.2 -0.2 0.25 0.1 0.1 demand (in Kwh) 0.4 0.6 0.6 0.6 -0.3 -0.4 0.4 0.4 0.2 -0.2 0.2 0.2 0.1 10 15 20 10 15 20 5 Ö 0.6 0.6 0.4 0.4 0.2 0.2 10 15 20 5 20 5 Ö 10 15 ò hour-of-day

rename("customer_id" = "customer_from")

Split these groups to see if the shapes of individual customers in a group is the same

Which variables are important for this clustering

group — 1 — 3 — 5 — 7

I can do a ggpairs or parallel coordinate plot for this.

See if month_year works for your case

Try with two granularities