

Sémantique des Langages de Programmation (SemLP) TD n° 3 : Unification

Exercice 1: (Ex. 52 in the course notes)

Apply the unification algorithm viewed in the course to the following systems of equations:

- **1.** $\{ f(x, f(x, y)) = f(g(y), f(g(a), z)) \}$
- **2.** $\{ f(x,g(y)) = f(y,g(g(x))) \}$

Exercice 2: *** (Ex. 55 in the course notes)

1. Propose a method to transform a unification problem of the shape:

$$E = \{ t_1 = s_1, \dots, t_n = s_n \}$$

over the signature $\Sigma = \{g_1, g_n\}$ with $n, m \ge 1$ into a unification problem E' with the following properties :

- 1. E' contains exactly one equation,
- 2. the terms in E' range over the signature $\Sigma' = \{f\}$, where f is binary,
- 3. E has a solution if and only if E' has a solution, and
- **2.** Apply the method to the system below, where x, y and z are variables.

$$E = \{ x = h(y), g(c, x, y) = g(y, z, z) \}$$

Exercice 3: (Ex. 56 in the course notes)

Let t, s, ... be terms over the signature Σ . We say that t is a *filter* for s if there exists a substitution S with S t = s. We denote this fact as $t \leq s$. Prove or disprove the following assertions:

- **1.** If $t \leq s$, then t and s are unifiable.
- **2.** If t and s are unifiable, then $t \leq s$ and $s \leq t$.
- **3.** it $t \leq s$ and $s \leq t$, then s and t are unifiable.
- **4.** For all t, s there exists an r with $r \leq t$, and $r \leq s$.
- **5.** For all t, s, there exists an r with $t \leqslant r$ and $s \leqslant r$.

^{1.} Not to be confused with the notation $S \leq S'$ over substitutions.

Termination

Exercice 4: (Ex. 63 in the course notes)

Find a polynomial interpretation to show termination of the following TRS:

$$f(f(x,y),z) \to f(x,f(y,z)), \qquad f(x,f(y,z)) \to f(y,y)$$

Exercice 5: (Ex. 64 in the course notes)

1. Find a polynomial interpretation for the following TRS:

$$x + 0 \to x,$$
 $x + \mathsf{s}(y) \to \mathsf{s}(x + y),$ (addition)
 $d(0) \to 0,$ $d(\mathsf{s}(x)) \to \mathsf{s}(\mathsf{s}(d(x))),$ (double)
 $q(0) \to 0,$ $q(\mathsf{s}(x)) \to q(x) + \mathsf{s}(d(x)),$ (square)

2. Consider the term $t = q^{n+1}(s^20)$ whose size is linear in n. Show that there is a reduction as shown below with length doubly exponential in n.

$$t \to^* q^{n+1}(s^{2^{2^n}})$$