- a) Un type est un ensemble de valeurs et d'opérations sur celles-ci. Un type abstrait est un type accessible uniquement à travers une interface.
- b) (1):-push(x): ajonte un élément sur le dessus de la pile -pop(): retire et retourne l'élément de dessus de pile
 - (2) :- enqueuels: ajonte un élément en arrière de la file - dequeuel): retire et retourne l'élément en tête de file
 - (3): add(x): ajonte l'élément x à la file de priorité
 -deleteMinl): retire et retourne l'élément de priorité
 minimale

[2]	ter	nps	
F2 Tr		pire as	mémoire
rapido tas fusion insert selection	O(nlogn) O(nlogn) O(nlogn) O(nlogn)	0(n2)	0(log n) 0(1) 0(n) 0(1) 0(1)

```
F3) cla
```

classe LSCC:

Size = 0

Lscc ():

last=hull size = 0

addlast(n):

if (size == 0):

last = n last.setNext(last) size = 2

else:

tmp = last.next last. set Next(n) n.set Next (tmp) last = n size ++

```
# Snite classe LSCC

remove First():

if (size == 0):

| Erreur("remove First sur LSCC vide")

if (size == 1):

| node = last
| last = null
| size = 0
| return node. element

else:

| node = last.next
| last. set Next (last. next, next)
| size --
| return node. element
```

```
classe FIFO concat:
     liste = LSCC()
     enqueue (x):
        liste.addlast (Node(x))
     dequeue ():
       return liste remove First ()
     Size ():
       return liste size
    Concat(P);
      contino = last next
         last. set Next (P. last. next)
         P. last, Set Next (tmp)
         last = P.last
         liste size = liste . size + P. liste . size
```

```
classe Tas:
    +=[] # les valeurs non intiglisées sont +inf
    +[0] = -inf
     Size = 0
insert(x):
   Size++
   Swim(size, 4)
deleteMin():
    root = +[1]
    leaf = +[size]
    if (size >1):
       sink(1, leaf)
    t[size] = tinf
size-
return root
  Swin(i, x):
     while (x< +[i]):
     p = \lfloor i/2 \rfloor
+ \lfloor i \rfloor = + \lfloor p \rfloor
i = p
      +[i] = x
  sink (i, x):
     1c = 2 * i
     rc = 2*i+1
     while (x>t[lc] | x>t[rc]):
        if (+[rc] < +[1c]):
           t[i] = t[rc]
             +[i] = +[1c]
            1c = 2+i
```

rc = 2 * i + 1

```
F4 (suite)
          classe File Egalitaire:
               mintas = Tas()
               maxtas = Tas()
              taille = 0
               insert (x):
                 if (x > mintas.get Min()):
                     if (mintas. size < maxtas. size):
                      mintas, insert (x)
                     else:
                        maxtas.insert (-1 * mintas.delete Min())
                        mintas.insert(x)
                   else if (maxtas. size & mintas. size):
                      maxtas, insert(x)
                    else:
                      mintas.insert (-1 * maxtas.deleteMin())
                     maxtas insert(x)
                     taille ++
                de le te Median ():
                  if (taille > 0):
                      taille -
                      if (mintas. size / maxtas. size);
                      return mintas. delete Min()
                      return -1 * maxtas.deleteMin()
                    else:
```

Erreur ("delete Median sur tas vide!")

A.length a) Algo tricho(A, x, g=0, d=n): if (d-g == 0): return false if (d-g == 1):88 AG if (A [g] == 2); return true return take P= L(2g+d)/3/; y= A[P]; 9=L(9+2d)/31; z=A[9]; if (Agp) == x 1/2 == x): return true if (x < /y7): 1. return tricho(A, x, g, p) if (2 > AZ7): 1 return tricho(A, x, q, d) return tricho(A, x, p, q)

b) À chaque appel de tricho, on fait au maximum deux accès au tableau (si d-g>1). Puis, on fait un seul appel récursif avec la longueur divisée en ?. Donc, le nombre d'accès est ~2 logz n au maximum. Pour la recherche dichotonique, on a un seul pivot et on divise par 2 à chaque appel, donc on fait ~ logz n accès en pire cas. Pour n assez grand, la recherche trichotonique fait donc moins d'accès.

FS (suite)

c) Clest vrai. Une fois que le tas est bati
en o(n), on doit appeller not fois sink (le plus
gros du travail). En pire cas, à chaque fois on
doit conter la nouvelle racine jusqu'au dernier
niveau. Dans un tas binaire, on fait deux comparaisons
per niveau et dans un tas ternaire, trois.
Pour n assez grand, 2logan > 3 logan.
(exemple, n=10000: 2loga[0000] 26,6>3 loga[0000] 25,2)