Malik Türkoğlu

1-) Quantitave data is numerical, Qualitative is descriptive data, therefore all of them quantiative except gender is qualitative. Qualitative data is multivariate and discrete

2-)we can apply bar chart, histogram, stem-leaf, dot plot for this date set

"x <- read.table(file="C:/Users/malik türkoglu/Documents/HW1 _Data_v1.csv",header=TRUE,sep=";") View(x) x[1,] # check the results

Assing to information to variables

men= x[x[,"GENDER"] == 0,] women = x[x[,"GENDER"] == 1,] sysbp_men = x[x \$GENDER == 0, "SYSBP"] diasbp_men = x[x\$GENDER == 0, "DIASBP"] sysbp_women= x[x\$GENDER == 1, "SYSBP"] diasbp_women = x[x\$GENDER == 1, "DIASBP"]

-3-A-

calc_meansys_men <- mean(sysbp_men) calc_meansys_women <mean(sysbp_women) calc_meandia_men <- mean(diasbp_men)
calc_meandia_women <- mean(diasbp_women)</pre>

-3-B- **********************

var(sysbp_men) var(sysbp_women) var(diasbp_men) var(diasbp_women)

3-C- ******************

sd_sys_men <- sd(sysbp_men) sd_sys_women <- sd(sysbp_women) sd_dia_men <sd(diasbp_men) sd_dia_women <- sd(diasbp_women)</pre>

3-D- *******************

sysbp-men

lower_sys_men <- quantile(sysbp_men, 0.25) upper_Sys_men <quantile(sysbp_men, 0.75)</pre>

sysbp - women

lower_sys_women <- quantile(sysbp_women , 0.25) upper_Sys_women <quantile(sysbp_women , 0.75)</pre>

diasbp -men

lower_dia_men <- quantile(diasbp_men, 0.25) upper_dia_men <quantile(diasbp_women, 0.75)</pre>

diasbp- women

lower_dia_women <- quantile(diasbp_women, 0.25) upper_dia_women <quantile(diasbp_women, 0.75)</pre>

-3-E ****************

sysbp-men

min(sysbp_men) max(sysbp_men)

sysbp-women

min(sysbp_women) max(sysbp_women)

diasbp-men

min(diasbp_men) max(diasbp_men)

diasbp-women

min(diasbp_women) max(diasbp_women)

-3-F- *****************

range sysbp men

ran_sys_men <- max(sysbp_mem) - min(sysbp_men)</pre>

range sysbp women

ran_sys_women <- max(sysbp_women) - min(sysbp_women)</pre>

range diasbp men

ran_dia_men <- max(diasbp_men) - min(diasbp_men)</pre>

range diasbp women

ran_dia_women<- max(diasbp_women) - min(diasbp_women)</pre>

-3-G- ***************

range/std

men Sysbp

ran_sys_men/sd_sys_men #women sysbp ran_sys_women/sd_sys_women #men diasbp ran_dia_men/sd_dia_men #women diasbp ran_dia_women/sd_dia_women

-3-H ***********************

calc_median_sys_men <- median(sysbp_men) calc_median_sys_women <median(sysbp_women) calc_median_dia_men <- median(diasbp_men)
calc_median_dia_women <- median(diasbp_women)</pre>

-3-i- ******************** men sysbp upper_sys_men - lower_sys_men women sysbp upper_Sys_women - lower_sys_women men diasbp upper_dia_men - lower_dia_men women diasbp upper_dia_women - lower_dia_women five number men-sysbp fivenum(sysbp_men) five number women-sysbp fivenum(sysbp_women)

five number men-diasbp

fivenum(diasbp_men)

five number of women-diasbp

fivenum(diasbp_women) stem-leaf plot for men sysbp stem(sysbp_men) stem-leaf plot for women sysbp stem(sysbp_women) stem-leaf plot for men diasbp stem(diasbp_men) stem-leaf plot for women diasbp stem(diasbp_women) -3-M- *************** histogGRams of men sysbp hist(sysbp_men, col = 9) #histograms of women sysbp hist(sysbp_women, col = 3) #histograms of men diasbp hist(diasbp_men, col = 14) #histograms of women

_3_N_ ********************

dotplot sysbp men

diasbp hist(diasbp_women, col = 4)

plot(sysbp_men,pch=19, col=7) #dotplot sysbp women plot(sysbp_women,pch=19, col=1) #dotplot diasbp men plot(diasbp_men,pch=19, col=8) #dotplot diasbp women plot(diasbp_women,pch=19, col=19)

-3-Q- ***************

plot(sysbp_men, diasbp_men, pch = 19, col = c("blue")) plot(sysbp_women, diasbp_women, pch = 19, col = c("black"))

R Markdown