2. Explain any three data models. Illustrate the various component 1 0.2 in an I. R model

(4th Semester)

COMPUTER SCIENCE

cardinality. What are the different types of key Paper No.: COMPT-401

(Database Management System)

ai tadwissiamu (Theory)

functional dependency? SIDE/19 at beau 7+2=9 Full Marks: 70 Pass Marks: 45%

Time: 3 hours

(PART : B—DESCRIPTIVE) and had

(Marks: 45)

Explain DDI mands in detail The figures in the margin indicate full marks emioj euomay for the questions and bebbe

4+2+3=9 Explain database? the is а 1. What characteristics of DBMS. What are the three levels of DBMS architecture? 1+4+4=9

Employee (Enro Name, Dept Name

Discuss the functions of a database administrator. What are the different database states? What is data independence?

4+3+2=9

8L/455a

(Turn Over)

2. Explain any three data models. Illustrate the various components used in an E-R model with diagrams.

Or

What are the Codd's rules? Explain cardinality. What are the different types of key 3+3+3=9 in a database? TYMOO ... oN TOOK!

Explain the various relational algebra operators with suitable examples. What is 7+2=9 functional dependency?

Explain 1NF, 2NF, 3NF and BCNF with examples. What are the consequences of a bad database design? 7+2=9

4. Explain DDL and DML commands in detail with examples. How are SQL constraints added in a query? Describe the various joins. 4+2+3=9

database? Explain the Me. What are the three

Consider the following table:

Employee (Emp_Name, Dept_Name, Salary) the functions of a database

(a) List the employee names that get the lowest salary.

List the employee names Sales employees who work than more Department and earn **25,000**.

List the department names where more 3+3+3=9 than 60 employees work.

5. Describe the different sections of a PL/SQL block with a diagram. Explain triggers with suitable examples. What are the data types 4+3+2=9 used in PL/SQL?

Or

Illustrate with examples how functions differ from stored procedures. Explain the various 6+3=9 types of cursor.

2018

(4th Semester)

COMPUTER SCIENCE

Paper No.: COMPT-401

(Database Management System)

(Theory)

(PART : A-OBJECTIVE)

(Marks: 25)

The figures in the margin indicate full marks for the questions

Put a Tick (✓) mark against the correct answer in the brackets provided: 1×10=10

1.	The	separation	of	the	data	definition	from	the
	program is known as			. 9				

(a)	data dictionary (C3.)			
(b)	data independence	()		
	M:N 17	(III bas II	
(c)	data integrity (()	VI	bas III al.	(0)
(d)	referential integrity) (above		

/455

2. The property (or set of properties) that uniquely defines each row in a table is called the	5. Typically, a database management system is managed by a person called a
(a) identifier ' ()	(a) system manager and a (200)
(b) index (Wa) 32 32 TO 9 MO	(b) technology manager ()
(c) primary key () (d) symmetric key ()	(c) database manager ()
3. Which of the following languages is used to define the schema of the database?	(d) database administrator ()6. The rule that a primary key cannot have a null value,
(a) DCL (avr) Daleo (avr)	and if the primary key is a composite key, none of the component fields can contain a null value is referred
(b) DDL ()	to as
(c) DML ()	(a) referential integrity ()
(d) None of the above ()	(b) domain integrity ()
4. Which of the following are valid table constraints?	(c) entity integrity constraint ()
I. Primary key II. Unique	(d) a data validation constraint ()
III. Check IV. Foreign key	7. A/An relationship has an associative entity with its own characteristics.
(a) I and IV ()	(a) 1:1 ()
(b) II and III ()	(b) M:N ()
(c) I, III and IV ()	(c) 1: M
(d) All of the above ()	(d) All of the above ()

8.	Functions are very powerful features of SQL and can be used to do	State whether the following statements are True (T) or False (F) by putting a Tick (\checkmark) mark: $1\times5=5$
	(a) perform calculations on data () (b) manipulate output for groups of rows ()	11. A primary goal of a database system is to share data with multiple users.
	(c) format dates and numbers for display ()	(T / F)
9.	(d) All of the above () When you need to display all the possible combinations of rows from multiple tables, we use	12. The rule that requires that a foreign key value cannot be entered in one table unless it matches an existing primary key in another table is called entity constraint.
	(a) outer join () (b) self-join ()	(T/F)
	(c) Cartesian product ()	13. Projection operation is used if we are interested in only certain columns of a table.
٥,	(d) non-equijoin ()	(T / F)
LO.	You can change a column's data type, size and default value by using	14. In a hierarchical model, records are organized as links.
	(a) alter statement ()	(T / F)
	(b) modify statement ()	
	(c) resize statement ()	15. View is a database object that physically exists.
	(d) None of the above ()	(T / F)

Answer any five of the following questions in short:

 $2 \times 5 = 10$

17. What do you mean by degree of a relation?

16. Who are the database users?

18. What is a subquery?

19. What is normalization?

Pa/Compt-401/45

20. What are aggregate functions?

21. Mention the different types of attribute.

22. What is the difference between a base-table and a view?

23. How is SQL different from PL/SQL?