Demo Manubot Manuscript

This manuscript (permalink) was automatically generated from jperkel/mymanuscript@48c3e4b on March 4, 2020.

Authors

• Jeffrey M. Perkel

Technology Editor, Nature

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. Nunc viverra imperdiet enim. Fusce est. Vivamus a tellus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Proin pharetra nonummy pede. Mauris et orci. Aenean nec lorem.

In porttitor. Donec laoreet nonummy augue. Suspendisse dui purus, scelerisque at, vulputate vitae, pretium mattis, nunc. Mauris eget neque at sem venenatis eleifend. Ut nonummy. Fusce aliquet pede non pede. Suspendisse dapibus lorem pellentesque magna. Integer nulla. Donec blandit feugiat ligula. Donec hendrerit, felis et imperdiet euismod, purus ipsum pretium metus, in lacinia nulla nisl eget sapien.

Introduction

Manubot is a tool for collaboratively authoring and editing scientific manuscripts on GitHub. It uses the simple formatting language called Markdown, in which, for example, **bold text** is indicated by double asterisks and *italic text* is indicated by single asterisks. You can add superscripts (x^2) and subscripts (H_2O), as well as strikethrough text and hyperlinks.

Authors and collaborators can contribute to a Manubot document either by editing the document on the GitHub web site or by cloning the repository to their own computer, editing the text, and submitting a GitHub 'pull request'. For instance, Casey Greene – whose lab first developed Manubot to manage a <u>review of deep learning</u> – added the following text via <u>pull request</u>:

"Let's add a citation by persistent identifier. This is my favorite feature of Manubot [1]. It will also give you a chance to review a pull request."

Citations are added by identifier. Greene's pull request added a reference to the original Manubot paper by inserting "[???]" followed by the DOI: 10.1371/journal.pcbi.1007128. Citations can also be added using arXiv or PubMed IDs, URLs, and <u>other identifiers</u>. Here we'll add a second reference by DOI. [2]. Note the tooltip that appears if you mouse over the inline references, which reveals the PubMed ID, among other information. As this particular reference is actually cited twice in the article, you should also see navigation arrows that allow you to jump to each location.

Maecenas porttitor congue massa. Fusce posuere, magna sed pulvinar ultricies, purus lectus malesuada libero, sit amet commodo magna eros quis urna. Nunc viverra imperdiet enim. Fusce est. Vivamus a tellus. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Proin pharetra nonummy pede. Mauris et orci.

In porttitor. Donec laoreet nonummy augue. Suspendisse dui purus, scelerisque at, vulputate vitae, pretium mattis, nunc. Mauris eget neque at sem venenatis eleifend. Ut nonummy. Fusce aliquet pede non pede. Suspendisse dapibus lorem pellentesque magna. Integer nulla. Donec blandit feugiat ligula. Donec hendrerit, felis et imperdiet euismod, purus ipsum pretium metus, in lacinia nulla nisl eget sapien.

Donec ut est in lectus consequat consequat. Etiam eget dui. Aliquam erat volutpat. Sed at lorem in nunc porta tristique. Proin nec augue. Quisque aliquam tempor magna. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Nunc ac magna. Maecenas odio dolor, vulputate vel, auctor ac, accumsan id, felis. Pellentesque cursus sagittis felis.

Results

The Fibonacci sequence is a numeric sequence in which each number is the sum of the previous two numbers (0, 1, 1, 2, 3, 5, ...). Expressed mathematically (using LaTeX):

$$F_n = F_{n-1} + F_{n-2}$$

Manubot automatically numbers figures and tables, and allows authors to reference those objects using identifiers. For instance, the first 26 Fibonacci numbers are shown in Table 1 and Figure 1.

Table 1: The first 26 Fibonacci numbers

No.	Fib. No.	No.	Fib. No.
1	0	14	233
2	1	15	377
3	1	16	610
4	2	17	987
5	3	18	1597
6	5	19	2584
7	8	20	4181
8	13	21	6765
9	21	22	10946
10	34	23	17711
11	55	24	28657
12	89	25	46368
13	144	26	75025

Figure 1: The first 26 Fibonacci numbers

In in nunc. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Donec ullamcorper fringilla eros. Fusce in sapien eu purus dapibus commodo. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Cras faucibus condimentum odio. Sed ac ligula. Aliquam at eros. Etiam at ligula et tellus ullamcorper ultrices. In fermentum, lorem non cursus porttitor, diam urna accumsan lacus, sed interdum wisi nibh nec nisl [2].

Ut tincidunt volutpat urna. Mauris eleifend nulla eget mauris. Sed cursus quam id felis. Curabitur posuere quam vel nibh. Cras dapibus dapibus nisl. Vestibulum quis dolor a felis congue vehicula. Maecenas pede purus, tristique ac, tempus eget, egestas quis, mauris. Curabitur non eros. Nullam hendrerit bibendum justo. Fusce iaculis, est quis lacinia pretium, pede metus molestie lacus, at gravida wisi ante at libero.

Quisque ornare placerat risus. Ut molestie magna at mi. Integer aliquet mauris et nibh. Ut mattis ligula posuere velit. Nunc sagittis. Curabitur varius fringilla nisl. Duis pretium mi euismod erat. Maecenas id augue. Nam vulputate. Duis a quam non neque lobortis malesuada.

Praesent euismod. Donec nulla augue, venenatis scelerisque, dapibus a, consequat at, leo. Pellentesque libero lectus, tristique ac, consectetuer sit amet, imperdiet ut, justo. Sed aliquam odio vitae tortor. Proin hendrerit tempus arcu. In hac habitasse platea dictumst. Suspendisse potenti. Vivamus vitae massa adipiscing est lacinia sodales. Donec metus massa, mollis vel, tempus placerat, vestibulum condimentum, ligula. Nunc lacus metus, posuere eget, lacinia eu, varius quis, libero.

References

1. Open collaborative writing with Manubot

Daniel S. Himmelstein, Vincent Rubinetti, David R. Slochower, Dongbo Hu, Venkat S. Malladi, Casey S. Greene, Anthony Gitter

PLOS Computational Biology (2019-06-24) https://doi.org/c7np

DOI: <u>10.1371/journal.pcbi.1007128</u> · PMID: <u>31233491</u> · PMCID: <u>PMC6611653</u>

2. The microscope makers putting ever-larger biological samples under the spotlight

Jeffrey M. Perkel

Nature (2019-11-26) https://doi.org/ggm9g5

DOI: <u>10.1038/d41586-019-03632-y</u> · PMID: <u>31772373</u>