Indian Institute of Information Technology Guwahati Mid-Semester Exam EC103: Basic Electronics Circuits

Total Marks: 35

Duration: 2 Hours

Q.1: In the given circuit, determine the currents I_1 and I_2 ? (Given that the cut-in voltage of each diode is 0.5 V.)

[Marks = 1]

Q.2: In the given circuit, determine the currents I_1 and I_2 ? (Given that the cut-in voltage of each diode is 0.5 V.)

[Marks = 3]

Q.3: In the given circuit, (i) cut-in voltage of Zener diode is 0.7 V, (ii) $V_Z = 7$ V, and (iii) $I_{ZM} = 50$ mA. Determine (a) the minimum value of output voltage $(V_o(t))$? and (b) the maximum value of output voltage $(V_o(t))$? [Marks = 3]

Q.4: In the given circuit, cut-in voltage of diode is 0.5 V. Determine (a) the minimum value of output voltage (V_o(t))? and (b) the maximum value of output voltage (V_o(t))? [Marks = 3]

Q.5: In the given circuit, determine l_R , l_Z , l_1 , V_0 , and P_Z . Given that $V_i = 20$ V, R = 500 ohm, $R_L = 1500$ ohm, $V_z = 10$ V, and $P_{ZM} = 50$ mW. (Here, P_Z denotes the power dissipated in [Marks = 5]

Q.6: A halfwave rectifier with capacitive filter is shown in the figure where ripple voltage $(V_r) = \{V_o(t)\}_{max} - \{V_o(t)\}_{min}$. Prove that $V_r = \frac{v_m T}{R_L C}$. (Given that $R_L C \gg T$.) [Marks = 3]

Q.7: In the given circuit, op-amps are ideal and cut-in voltage of diode is 0.5 V. Find Vo?

[Marks = 3]

Q.8: Find Vo? (Assume that the op-amp is ideal.)

[Marks = 3]

Q. 9: In the given circuit, op-amps are ideal and $V_s(t) = 2\sin 2t$ volts. Find $V_o(t)$?

[Marks = 3]

Q.10: Prove that the cut-off (3-dB) frequency of the following filter is 1/RC radian/second.

[Marks = 3]

• Q.11: Determine the type of the following filter?

[Marks = 2]

Q.12: A Wein-bridge oscillator is shown in the figure where $R=10^5\,\Omega$, $C=10^{-9}\,F$, and $R_1=10^3\,\Omega$. Determine the frequency of oscillation ω (in radian/second) and R_F ? (Given that the feedback factor (β) = 1/3.) [Marks = 3]

