COSC 290 Discrete Structures

Lecture 9: Proof by contrapositive

Prof. Michael Hay Monday, Feb. 12, 2018 Colgate University

Direct proofs: recap from last time

Plan for today

- 1. Direct proofs: recap from last time
- 2. Example of direct proof
- 3. Proof by contrapositive
- 4. Example of proof by contrapositive
- 5. Proving "if and only if" statements

Review: proving an "if ... then ..." proposition

If we have a proposition of the form $A\Longrightarrow B$, we can employ a direct proof strategy where we assume the antecedent: assume that A is true, and show that B must be true also.

Review: Direct proof template

- · Claim: Write the claim to be proved, "If p, then q"
- · Proof: We will prove this directly.
 - · Given: Assume that p is true.
 - Want to show: restate q
 - · Write main body of proof... show how a logically follows from p
 - The body should lead reader to conclusion... "and therefore [restate q] is true."
 - End by restating claim or simply □

Example of direct proof

Poll: setting up a proof

Claim: The sum of any two odd numbers is even.

In the proof, what is "Given" and what do you "Want to Show" (WTS)?

- A) Given: Assume the sum of two odd numbers is even.
- WTS: This follows from axioms of algebra.
- B) Given: Assume x and y are odd numbers.
- C) Given: Assume 3 and 51 are odd.
 WTS: sum of 3 and 5 is even.

WTS: x + y is even.

- D) You cannot use direct proof template, because claim is not of the form "if ... then .."

Formalizing claim

Background:

- \mathbb{Z} is the set of all integers
- Even(x) := ∃k ∈ Z : x = 2k
 Odd(x) := ∃ℓ ∈ Z : x = 2ℓ + 1
- Odd(x) .- 3c C 23 . x .

Let's formalize the claim:

 $\mathsf{Claim} \colon \mathit{Odd}(x) \land \mathit{Odd}(y) \implies \mathit{Even}(x+y)$

Let's be even more formal:

 $Claim : \forall x \in \mathbb{Z} : \forall y \in \mathbb{Z} : (Odd(x) \wedge Odd(y) \implies \textit{Even}(x+y))$

¹You can pick something else, but we chose 3 and 5

Proof of claim

- · Claim: The sum of any two odd numbers is even.
- · Proof: We will prove this directly.
 - Given: Let x and y be any integers. Assume x and y are both odd.
 Want to show: x + y is even.

Since x is odd, then $\exists k \in \mathbb{Z} : x = 2k + 1$. Since y is odd, then $\exists \ell \in \mathbb{Z} : y = 2\ell + 1$.

> $x + y = 2k + 1 + 2\ell + 1$ = $2k + 2\ell + 2$ = $2(k + \ell + 1)$

Let $m := k + \ell + 1$. We can see that m is an integer because it is a sum of three integers.

This shows x + y = 2m where m is an integer.

Therefore, we can conclude that x + y is even. \square

Proof by contrapositive

To prove a proposition of the form

$$A \implies B$$

you can equivalently prove its contrapositive form

Proof by contrapositive

Procedure for proof by contrapositive

- 1. Derive contrapositive form $\neg q \implies \neg p$.
- 2. Assume q is false (take it as "given").
- 3. Show that $\neg p$ logically follows.

Truth table for implication

Here is the truth table for the implication: $\neg q \implies \neg p$.

р	q	$\neg q$	$\neg p$	$\neg q \implies \neg p$
Т	Т	F	F	T
Т	F	T	F	F
F	Т	F	T	T
F	F	Т	T	T

Rule this row out!

The implication has one F row: when q is F and p is T.

To prove that a *specific* proposition $A \implies B$, we can prove its contrapositive, $\neg B \implies \neg A$.

To do this, we must show that, given the particular meanings of A and B, when $\neg B$ is true, $\neg A$ must be true too.

In other words, the F row cannot happen.

Example of proof by contrapositive

Proof by Contrapositive Template

- · Claim: Write the theorem/claim to be proved, "If p, then q"
- Proof: We will prove the contrapositive: [state claim in contrapositive form] It's important to say this! Why?
 - Given: Assume that [state ¬q]
 - Want to show: [state ¬p]
 - · Write main body of proof...
 - The body should lead reader to conclusion... "and therefore [restate ¬p] is true."
 - Conclusion: Therefore by proving its contrapositive, we have shown [restate original claim "if p, then q"].

Example

Claim: "Let x,y be numbers such that $x \neq o$. Then either $x+y \neq o$ or $x-y \neq o$.

Let's prove this claim using proof by contrapositive.

11

Poll: What is given?

- Claim: "Let x, y be numbers such that $x \neq 0$. Then either $x + y \neq 0$ or $x y \neq 0$.
- · Proof: We will prove the contrapositive...
- · Given: Assume that ... what goes here?
- A) $x + y \neq 0$ or $x y \neq 0$
- B) x + y = 0 or x y = 0
- C) x + y = 0 and x y = 0
- D) x = 0
- E) None of above / More than one

Example proof

- Claim: Let x, y be numbers such that $x \neq 0$. Then either $x + y \neq 0$ or $x y \neq 0$.
- **Proof**: We will prove the contrapositive: For numbers x, y, if x + y = 0 and x y = 0, then x = 0.
 - Given: Assume that x + y = 0 and x y = 0.
 - Want to show: x = 0
 Consider the sum of (x + y) and (x y): we get
 (x + y) + (x y) = 2x.
 - (x+y)+(x-y)=2x. Since both terms equal zero, their sum is zero. Thus, 2x=0 and therefore we can conclude that x=0.
 - Conclusion: Therefore by proving its contrapositive, we have shown that given any numbers x, y such that x ≠ 0, then either x + y ≠ 0 or x - y ≠ 0.

Poll: What do we want to show?

- Claim: "Let x, y be numbers such that $x \neq 0$. Then either $x + y \neq 0$ or $x y \neq 0$.
- · Proof: "We will prove the contrapositive"
 - Given: Assume that x + y = 0 and x y = 0.
 - · Want to show: ... what goes here?
- A) $x \neq 0$
- B) x = 0
- C) x = 0 and y = 0
- D) $x + y \neq 0$ or $x y \neq 0$
- F) None of above / More than one

When to use proof by contrapositive?

Since $p \Rightarrow q$ is logically equivalent to $\neg q \Rightarrow \neg p$, it shouldn't matter whether you use direct proof or proof by contrapositive. In practice, can try both and see which one gives you a better startine place (e.g., more information).

13

Common use case: proving $p \iff q$... see next section of slides..

Proving "if and only if" statements

Proof by mutual implication

Observe that $p \iff q \equiv (p \implies q) \land (q \implies p)$.

A proof by mutual implication proves $p \iff q$ by proving

$$p \implies q$$

and

 $q \implies p$

What does this have to do with proof by contrapositive?

- · It may help to "flip" a subclaim (i.e., prove its contrapositive).
- $q \implies p \equiv \neg p \implies \neg q$
- This way you are proving $p \implies q$, and $\neg p \implies \neg q$.
- · In both cases you start with p and work towards q.

Proving "iff" statements

Suppose we have a claim of the form: $p \iff q$.

How do we prove it? (Hint: to what is $p \iff q$ logically equivalent?)

Example: proving an "iff" claim

Claim: A number n is divisible by 3 if and only if n^2 is divisible by 3.

Let's discuss this problem: How do we prove this? Where can we start?

17

Poll: What should we assume?

- Claim: If n^2 is divisible by 3, then n is divisible by 3.
- · Proof: We will prove the contrapositive...
 - · Given: Assume that ... what goes here?
- A) n is divisible by 3
- B) n is not divisible by 3
- C) n2 is divisible by 3
- D) n² is not divisible by 3
- E) None of the above

Claim: A number n is divisible by 3 if and only if n^2 is divisible by 3. **Proof:** We will prove by mutual implication.

First we prove that if n is divisible by 3, then n^2 is divisible by 3.

Proof of first claim: if n is divisible by 3, then $\exists k \in \mathbb{Z} : n = 3k$. Thus, $n^2 = (3k)^2 = 9k^2 = 3 \cdot (3k^2)$. Since $3k^2$ is an integer, we can conclude that n^2 is divisible by 3.

Second we prove that if n^2 is divisible by 3, then n is divisible by 3.

Proof of second claim: we prove by this proving the contrapositive: if n is not divisible by 3, then n^2 is not divisible by 3. Assume that n is not divisible by 3. This means $\exists R \in \mathbb{Z} : n = 3R + r$ where $r \in \{1, 2\}$.

Now, $n^2=(3k+r)^2=9k^2+3kr+r^2=3\cdot(3k^2+kr)+r^2$. Since $r\in\{1,2\}$, then r^2 is either 1 or 4. If $r^2=1$, then $n^2=3\cdot(3k^2+kr)+1$ and so it's not divisible by 3. If $r^2=4$, then $n^2=3\cdot(3k^2+kr+1)+1$ and so it's not divisible by 3. Therefore, we can conclude that n^2 is not divisible by 3.

Poll: What do we want to show?

- · Claim: If n2 is divisible by 3, then n is divisible by 3.
- · Proof: We will prove the contrapositive...
 - Given: Assume that n is not divisible by 3.
 - · Want to show: ... what goes here?
- A) n is divisible by 3
- B) n is not divisible by 3
- C) n2 is divisible by 3
- D) n^2 is not divisible by 3
- E) None of the above

Logistics

- · First midterm exam: 1 week from this Friday!
- Lab 1: continue to work on it this week