Tema I: Procesamiento de señales

Alexandru Iosif

Contenido

- Nociones introductorias
- Series de Fourier
- Transformada de Fourier
- Fast Fourier Transform (FFT)
- Transformada de Laplace

1. Nociones introductorias

1.1. Señales

- Una señal es un conjunto de datos o información.
- Una señal puede transmitirse de un lugar a otro o puede guardarse en un lugar y luego acceder a ella.
 - Por lo tanto, una señal se puede modelizar por una función del espacio y/o del tiempo.
 - Para simplificar, consideramos señales (funciones) f(t) o f(x).
 - Estas funciones tendrán ciertas propiedades "buenas", dependiendo de las necesidades de cada problema.
 - Ej.: f(t) podría ser continua a trozos.

Desplazamiento temporal

Si f(t) es una señal, entonces

- f(t T) es la misma señal f(t) retardada T segundos,
- f(t + T) es la misma señal f(t) adelantada T segundos.

Ejemplo

Use GeoGebra para representar la señal $f(t) = e^{-t^2}$ retardada y adelantada, respectivamente, 2 segundos.

Cambio de escala temporal

Si a es un número real positivo, a>0, entonces podemos cambiar la escala temporal de una señal f(t) transformándola en f(at).

Ejemplo

Use GeoGebra para representar las siguientes señales

- $f(t) = -(t+1)(t-2), -1 \le t \le 2$
- f(2t)
- $f(\frac{1}{2}t)$

Inversión temporal

Si f(t) es una señal, entonces su inversión temporal es f(-t).

Ejemplo

Use GeoGebra para representar las siguientes señales

- $\bullet \ f(t) = \sin(t)$
- f(−t)

Paridad de una función

- Si f(-t) = f(t), entonces f es una función par.
- Si f(-t) = -f(t), entonces f es una función impar.
- Si $f(t) \neq f(-t)$ y $f(t) \neq -f(-t)$, entonces f no es ni par ni impar.

Ejemplo

Determine si las siguientes funciones son pares, impares, o ninguna de las dos:

- \circ $\sin(t)$
- $\cos(t)$
- e^{-t^2+1}

Use GeoGebra para encontrar un criterio gráfico para determinar la paridad.

1.3. Introducción a las series de Fourier

Objetivo

Dada una señal, queremos expresarla como una suma de senos y de cosenos. ¿Por qué? Porque los senos y los cosenos son más fáciles de tratar.

En el siguiente vídeo se aproxima una señal cuadrada por una suma de senos y cosenos: https://www.youtube.com/watch?v=k8FXF1KjzY0

En el siguiente vídeo se muestra como casi cualquier órbita periódica se puede aproximar con un número suficiente de epiciclos: https://www.youtube.com/watch?v=uCRf2P2zo4c

1.3. Introducción a las series de Fourier

Ejemplo: La serie de Fourier de la onda cuadrada

$$\frac{4}{\pi} \sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n} \sin\left(\frac{n\pi x}{L}\right).$$

1.3. Introducción a las series de Fourier

Figura: Onda cuadrada. Caso L = 1/2.

Señales periódicas

Una señal periódica f(t) tiene la siguiente propiedad:

Existe un número real T_0 tal que:

$$f(t) = f(t + T_0) \quad \forall t \in \mathbb{R}.$$

Esto quiere decir que los valores de x se repiten cada T_0 unidades de t.

Ejemplo

Las funciones seno y coseno son señales periódicas, con $T_0=2\pi$.

Período fundamental

Si f es una señal periódica, el valor de T_0 más pequeño tal que $f(t) = f(t + T_0)$ es el *período fundamental* de f.

Propiedades

- Cualquier otro período es un múltiplo entero del período fundamental.
- ② Si f es una señal periódica con período (fundamental o no) T_0 ,
 - La señal f abarca desde $t = -\infty$ hasta $t = +\infty$.
 - Para todo $a, b \in \mathbb{R}$, tenemos que

$$\int_{a}^{a+T_0} f(t)dt = \int_{b}^{b+T_0} f(t)dt = \int_{T_0} f(t)dt$$

Ejercicio

Dar un ejemplo gráfico de la propiedad 2.

Frecuencia y período

Considérense las señales $\sin(\omega_0 t)$ y $\cos(\omega_0 t)$.

- Frecuencia: $\omega_0 \in \mathbb{R}$ medida en radianes.
- Período: $T_0 = \frac{2\pi}{\omega_0}$.
- Frecuencia fundamental: $f_0 = \frac{1}{T_0} = \frac{\omega_0}{2\pi}$, y representa el número de ciclos en una unidad de t.

Ejemplos

Calcule los períodos, frecuencias y frecuencias fundamentales de las siguientes señales:

$$\cos t$$
, $\cos 2t$.

Represente las dos funciones.

Ejemplo

Escribir una señal de la forma $f(t)=\sin\omega_0 t$ tal que complete 4/3 de ciclos por unidad de tiempo. ¿Cuál es el período de esta señal? Dibuje una gráfica de esta señal.

2. Series de Fourier

2.1. Descomposicion de una señal periódica

Teorema (Condiciones de ortogonalidad)

Dados dos enteros m y n, tenemos

$$\langle \cos(n\omega_0 t), \cos(m\omega_0 t) \rangle = \int_{T_0} \cos(n\omega_0 t) \cos(m\omega_0 t) dt =$$

$$= \begin{cases} T_0, & m = n = 0 \\ \frac{1}{2}T_0, & m = n \neq 0 \\ 0, & m \neq n. \end{cases}$$

$$\langle \sin(n\omega_0 t), \sin(m\omega_0 t) \rangle = \int_{T_0} \sin(n\omega_0 t) \sin(m\omega_0 t) dt =$$

$$= \begin{cases} \frac{1}{2}T_0, & m = n \\ 0, & m \neq n. \end{cases}$$

$$\langle \sin(n\omega_0 t), \cos(m\omega_0 t) \rangle = \int_{T_0} \sin(n\omega_0 t) \cos(m\omega_0 t) dt = 0, \quad \forall m, n.$$

2.1. Descomposicion de una señal periódica

Corolario

El conjunto

$$B = \{\cos(i\omega_0 t)\}_{i=0}^{\infty} \bigcup \{\sin(j\omega_0 t)\}_{j=0}^{\infty}$$

forma una base ortogonal del espacio vectorial de señales periódicas con periodo $T_0=2\pi/\omega_0$.

2.2. Series de Fourier (definición)

Definición

Dada una señal f(t) con propiedades suficientemente buenas y período T_0 , su serie de Fourier es la suma infinita

$$a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)],$$

donde $\omega_0 = 2\pi/T_0$ y los coefficientes a_0 , a_n y b_n vienen dados por

$$a_0=rac{1}{T_0}\int_{T_0}f(t)dt,$$
 $a_n=rac{2}{T_0}\int_{T_0}f(t)\cos(n\omega_0t)dt,\quad n\geq 1$ $b_n=rac{2}{T_0}\int_{T_0}f(t)\sin(n\omega_0t)dt,\quad n\geq 1.$

2.2. Series de Fourier (definición)

Ejercicio

Demostrar que la serie de Fourier que acabamos de definir es periódica con periodo $T_0=2\pi/\omega_0$.

2.3. Series de Fourier (paridad)

Observación

Toda función f(t) se puede descomponer en una parte par $f_p(t)$ y una parte impart $f_i(t)$:

$$f(t) = f_p(t) + f_i(t).$$

Parte par y parte impar de una serie de Fourier

Dada una serie de Fourier,

$$f(t) = a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)],$$

su component par es

$$f_p(t) = a_0 + \sum_{n=1}^{\infty} a_n \cos(n\omega_0 t),$$

y su componente impar es

$$f(t) = \sum_{n=1}^{\infty} b_n \sin(n\omega_0 t),$$

2.3. Series de Fourier (paridad)

Proposición

- **1** Si f(t) es una función periódica par, entonces $b_n = 0$.
- 2 Si f(t) es una función periódica impar, entonces $a_n = 0$.

2.4. Primeros ejemplos

Calcule las series de Fourier de las siguientes funciónes (con período 2L y codominio $\left[-1,1\right]$)

Proposición

Para $n \ge 1$ y $a_n \ne 0$, tenemos la siguiente identidad:

$$a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t) = C_n \cos(n\omega_0 t + \theta_n),$$

donde

$$C_n := \sqrt{a_n^2 + b_n^2}$$
 $\theta_n := \arctan\left(\frac{-b_n}{a_n}\right)$

Observación

De vistas a las series de Fourier, podemos introducir un término $C_0 := a_0$.

Ejemplo

Escribir de forma compacta la serie de Fourier de la señal cuadrada.

Ejemplo

Considérese una señal periódica f(t), con período fundamental π , tal que

Tenemos $\omega_0=2$. Así que, su serie de Fourier en el intervalo $[0,\pi]$ es

$$a_0 + \sum_{n=1}^{\infty} \left[a_n \cos(2nt) + b_n \sin(2nt) \right],$$

donde

$$a_0 = \frac{1}{\pi} \int_0^{\pi} e^{-t/2} dt = \frac{2(1 - e^{-\pi/2})}{\pi}$$

$$\begin{split} a_n &= \frac{2}{\pi} \int_0^\pi e^{-t/2} \cos(2nt) dt = \frac{4e^{-\pi/2} \left(4n \sin(2\pi n) - \cos(2\pi n) + e^{\pi/2} \right)}{\pi (16n^2 + 1)} \\ &= \frac{4e^{-\pi/2} (0 - 1 + e^{\pi/2})}{\pi (16n^2 + 1)} = \frac{4(1 - e^{-\pi/2})}{\pi (16n^2 + 1)} \\ b_n &= \frac{2}{\pi} \int_0^\pi e^{-t/2} \sin(2nt) dt = -\frac{4e^{-\pi/2} \left(\sin(2\pi n) - 4ne^{\pi/2} + 4n \cos(2\pi n) \right)}{\pi (16n^2 + 1)} \\ &= -\frac{4e^{-\pi/2} (0 - 4ne^{\pi/2} + 4n)}{\pi (16n^2 + 1)} = \frac{16n(1 - e^{-\pi/2})}{\pi (16n^2 + 1)} \end{split}$$

Es decir, la serie de Fourier de $e^{-t/2}$ en el intervalo $[0,\pi]$ es

$$\frac{2(1-e^{-\pi/2})}{\pi} + \sum_{n=1}^{\infty} \left(\frac{4(1-e^{-\pi/2})}{\pi(16n^2+1)} \cos(2nt) + \frac{16n(1-e^{-\pi/2})}{\pi(16n^2+1)} \sin(2nt) \right)$$

alex iósif I. Procesamiento de señales 26 / 35

Ejercicio

Calcule la serie de Fourier compacta de $e^{-t/2}$ en el intervalo $[0,\pi]$.

2.6. Proyección ortogonal al espacio de señales periódicas

Hasta ahora hemos representado funciones periódicas con series de Fourier.

Pregunta

¿Qué pasa si queremos representar una función no periódica definida solamente en un intervalo [a, b]?

Respuesta Aproximada

Si la función es suficientemente "bonita", podemos hacerlo, pero obtendremos una representación periódica de nuestra función no periódica.

2.6. Proyección ortogonal al espacio de señales periódicas

2.7. Convergencia de una serie de Fourier

Teorema

Sea f una función periódica y supónga que los siguientes límites son finitos:

$$f(x_0^-) := \lim_{x \to x_0^-} f(x), \qquad f(x_0^+) := \lim_{x \to x_0^+} f(x)$$

Entonces la serie de Fourier de f converge a

$$\frac{f(x_0^-) + f(x_0^+)}{2}$$

en x_0 .

Corolario

Si f es una función periódica continua, su serie de Fourier converge a f.

2.7. Convergencia de una serie de Fourier

https://es.wikipedia.org/wiki/Serie_de_Fourier#/media/Archivo:Periodic_identity_function.gif

2.8. Fenómeno de Gibbs

Observación

A medida que añadimos más términos, parece que hay unos picos que se mantienen constantes. Esto se llama fenómeno de Gibbs.

2.9. Serie de Fourier compleja

Proposición

Tenemos las siquientes relaciones entre las funciones trigonométricas y las exponenciales complejas.

$$e^{it} = \cos(t) + i\sin(t), \quad e^{-it} = \cos(t) - i\sin(t)$$

 $\cos(t) = \frac{e^{it} + e^{-it}}{2}, \quad \sin(t) = \frac{e^{it} - e^{-it}}{2i}$

Corolario

Dada una señal f(t), podemos escribir su serie de Fourier de forma compleja

$$a_0 + \sum_{n=1}^{\infty} [a_n \cos(n\omega_0 t) + b_n \sin(n\omega_0 t)] = \sum_{n=-\infty}^{\infty} D_n e^{in\omega_0 t},$$

donde $\omega_0 = 2\pi/T_0$ y

$$D_n = \frac{1}{T_0} \int_{T_0} f(t) e^{-in\omega_0 t} dt.$$

2.10. Serie de Fourier Compleja

Ejemplo

Considérese una señal periódica f(t), con período fundamental π , tal que

Calcule su serie de Fourier compleja. ¿A qué converge?

2.10. Serie de Fourier Compleja

Ejemplo

Calcule la serie de Fourier compleja de $f(t) = |\sin(t)|$. ¿A qué converge?