预习报告		实验记录		分析讨论		总成绩	
25		25		30		80	

年级、专业:	2022 级物理学	组号:	实验组 E2	
姓名:	戴鹏辉、杨舒云	学号:	22344016、223444020	
实验时间:	2024/03/18	教师签名:		

ET1-4 戴维南定理和诺顿定理

【实验报告注意事项】

- 1. 实验报告由三部分组成:
 - (a) 预习报告:课前认真研读实验讲义,弄清实验原理;实验所需的仪器设备、用具及其使用、完成课前预习思考题;了解实验需要测量的物理量,并根据要求提前准备实验记录表格(可以参考实验报告模板,可以打印)。(20分)
 - (b) 实验记录:认真、客观记录实验条件、实验过程中的现象以及数据。实验记录请用珠笔或者钢笔书写并签名(用铅笔记录的被认为无效)。保持原始记录,包括写错删除部分,如因误记需要修改记录,必须按规范修改。(不得输入电脑打印,但可扫描手记后打印扫描件);离开前请实验教师检查记录并签名。(30 分)
 - (c) 数据处理及分析讨论:处理实验原始数据(学习仪器使用类型的实验除外),对数据的可靠性和合理性进行分析;按规范呈现数据和结果(图、表),包括数据、图表按顺序编号及其引用;分析物理现象(含回答实验思考题,写出问题思考过程,必要时按规范引用数据);最后得出结论。(30分)

实验报告就是将预习报告、实验记录、和数据处理与分析合起来,加上本页封面。(80分)

- 2. 每次完成实验后的一周内交实验报告(特殊情况不能超过两周)。
- 3. 其它注意事项:
 - (a) 请认真查看并理解实验讲义第一章内容;
 - (b) 注意实验器材的合理使用;
 - (c) 使用结束使用各种仪器之后需要将其放回原位。

【特别鸣谢及模板说明】

感谢 2019 级学长石寰宇为本实验报告提供 IATEX 模板。由于原实验报告模板缺少实验编号,为方便在 电脑上整理,故添加自命名编号

目录

1	ET1-4 戴维南定理和诺顿定理 预习报告	3
	1.1 实验目的	 3
	1.2 仪器用具	 3
	1.3 原理概述	 3
	1.4 实验预习题	 4
2	ET1-4 戴维南定理和诺顿定理 实验记录	5
	2.1 实验内容、步骤与结果	 5
	2.1.1 操作步骤记录	 5
	2.1.2	 5
	2.2 原始数据记录	 6
	2.3 实验过程遇到问题及解决办法	 6
3	ET1-4 戴维南定理和诺顿定理 分析与讨论	7
	3.1 实验数据分析	 7
	3.1.1	 7
	3.1.2	 7
	3.1.3	 7
	3.2 实验后思考题	 7
4	ET1-4 戴维南定理和诺顿定理	8
	4.1 实验心得和体会、意见建议等	 8
	4.2 参考文献	 8
	4.3 附件及实验相关的软硬件资料等	 8

ET1-4 戴维南定理和诺顿定理 预习报告

1.1 实验目的

- 1. 加深对戴维南定理和诺顿定理的理解。
- 2. 学习戴维南等效参数的各种测量方法。
- 3. 理解等效置换的概念。
- 4. 学习直流稳压电源、万用表、直流电流表和电压表的正确使用方法。

1.2 仪器用具

编号	仪器用具名称	数量	主要参数(型号,测量范围,测量精度等)
1	电路原理箱或板	1	
2	稳压源	1	
3	直流电流源	1	
4	直流电流表	3	
5	直流电压表	2	
6	电流表专用线	3	
7	2 号实验导线	n	
8	其它	_	

1.3 原理概述

- 1. **戴维南定理**:一个含独立电源、线性电阻和受控源的一端口网络,可以用一个电压源和一个电阻的串联组合来等效置换。其中电压源的电压等于该端口的开路电压,电阻等于该端口的全部独立电源置零后的输入电阻。
- 2. **诺顿定理**: 是戴维南定理的对偶形式,指出一个含独立电源、线性电阻和受控源的一端口网络,可以用一个电流源和电导的并联组合来等效置换。电流源的电流等于该一端口的短路电流,电导等于把该一端口的全部独立电源置零后的输入电导。
- 3. 戴维南一诺顿定理的等效电路是对外部特性而言的,无论网络内部是时变的还是定常的,只要含源网络内部除独立的电源外都是线性元件,上述等值电路都是正确的。

4. 戴维南等效电路参数的测量方法: 开路电压 U_{oc} 的测量比较简单,可以采用电压表直接测量,也可用补偿法测量; 而对于戴维南等效电阻 R_{eq} 的取得,可采用如下方法: 网络含源时用开路电压、短路电流法,但对于不允许将外部电路直接短路的网络(例如有可能因短路电流过大而损坏网络内部器件时)不能采用此法: 网络不含源时,采用伏安法、半流法、半压法、直接测量法等。

Figure 1: 一端口网络的等效置换

1.4 实验预习题

思考题 1.1: 用开路电压、短路电流法测量等效电阻时,开路电压、短路电流是否可以同时进行测量,为什么?

在使用开路电压和短路电流法测量电路的等效电阻时,实际操作中开路电压和短路电流是不能同时进行 测量的。原因在于这两种测量方式的条件和对电路的影响完全不同。

开路电压测量:在进行开路电压的测量时,测量对象(如一个电路或电池)的两端不接任何外部负载,即电路是开路状态。这种测量方式的目的是测定在无负载条件下电源的电压,即电源的最大电动势。在这种状态下,电路中的电流为零,因此不会有电流通过被测电源或电路,可以获得一个准确的开路电压值。

短路电流测量:而在进行短路电流的测量时,测量对象的两端被直接短路,通过一个极低的电阻(接近于零),目的是测量在这种极端条件下通过电路的电流大小。这种状态下电路的电阻最小,电流达到最大值。这样做可以确定电源或电路在最大负载条件下的输出电流能力。

由于开路状态下电路的电流为零,而短路状态下电流达到最大,这两种状态下的电路条件截然不同,因此不能同时进行测量。同时,若尝试同时进行这两种测量,可能会导致测量结果不准确,甚至损坏测量设备或被测电路。通常,在实际应用中,先后分别进行这两种测量,然后通过欧姆定律(V=IR)计算出等效电阻值,即使用开路电压除以短路电流的方法得到等效电阻值: $R_{\rm SFM}=\frac{V_{\rm TB}}{I_{\rm SEM}}$ 。这种方法适用于简单电路的等效电阻测量,尤其是在需要估计电源内阻或某些电气元件的等效电阻时非常有效。

专业:	物理学	年级:	2022 级
姓名:	戴鹏辉	学号:	22344016
室温:		实验地点:	A522
学生签名:	见 附件 部分	评分:	
实验时间:	2024//	教师签名:	

ET1-4 戴维南定理和诺顿定理 实验记录

2.1 实验内容、步骤与结果

2.1.1 操作步骤记录

- 1. 测量有源一端口网络的开路电压 U_{OC} ,采用了以下方法:
 - (a) 直接测量法
 - (b) 间接测量法
- 2. 测量有源一端口网络的等效电阻 R_{eq} ,采用了以下方法:
 - (a) 开路电压、短路电流法
 - (b) 伏安法
 - (c) 半流法
 - (d) 半压法
 - (e) 直接测量法
- 3. 验证戴维南定理,理解等效概念
- 4. 验证诺顿定理,理解等效概念
- 5. 验证戴维南定理,理解等效概念

2.1.2

1.

Table 1: 表格示例

组 1/序号 i	1	2	3	4	5
$v_{1i}(m/s)$	1.26	1.08	1.00	0.75	0.38
$f_{1i}(Hz)$	40073	40127	40105	40088	40066
组 2/序号 i	1	2	3	4	5
$v_{2i}(m/s)$	1.21	1.06	0.99	0.52	0.57
$f_{2i}(Hz)$	40143	40125	40084	40080	40067
组 3/序号 i	1	2	3	4	5
$v_{3i}(m/s)$	1.15	0.98	0.78	0.59	0.36
$f_{3i}(Hz)$	40135	40115	40092	40070	40044

2.2 原始数据记录

实验记录本上的原始数据见 实验台桌面整理见 其它原始数据见

2.3 实验过程遇到问题及解决办法

1.

专业:	物理学	年级:	2022 级
姓名:	戴鹏辉	学号:	22344016
日期:	2023/11/23	评分:	

ET1-4 戴维南定理和诺顿定理 分析与讨论

3.1	实验数据分析			

3.1.1

1.

3.1.2

1.

3.1.3

3.2 实验后思考题

思考题 3.3:

ET1-4 戴维南定理和诺顿定理 结语

4.1 实验心得和体会、意见建议等

1.

4.2 参考文献

- [1] 维基百科 https://zh.wikipedia.org
- [2] 沈韩. 基础物理实验.——北京: 科学出版社, 2015.2 ISBN: 978-7-03-043311-4

4.3 附件及实验相关的软硬件资料等

试验台桌面整理如 实验报告个人签名如Figure 2。

Figure 2: 个人签名

相关代码已上传至 Github。