

FÍSICA NIVEL MEDIO PRUEBA 1

Jueves 6 de noviembre de 2014 (mañana)

45 minutos

INSTRUCCIONES PARA LOS ALUMNOS

- No abra esta prueba hasta que se lo autoricen.
- Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Se necesita una copia sin anotaciones del *Cuadernillo de datos de Física* para esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

- 1. ¿Cuál de las siguientes es una unidad fundamental?
 - A. Amperio
 - B. Culombio
 - C. Ohmio
 - D. Voltio
- 2. La aceleración máxima a_{max} de un oscilador sometido a un movimiento armónico simple (MAS) tiene una incertidumbre porcentual del 12%. La amplitud x_0 de la oscilación tiene una incertidumbre porcentual del 20%. Si $k = \sqrt{\frac{a_{\text{max}}}{x_0}}$ ¿cuál será la incertidumbre porcentual en la constante k?
 - A. 4%
 - B. 8%
 - C. 16%
 - D. 32%
- **3.** Se deja caer un objeto desde el reposo a una cierta altura sobre la superficie de la Tierra. Sobre el objeto actúa la resistencia del aire. ¿Cuál es para el objeto la variación de la aceleración *a* con el tiempo *t*?

В.

 \mathbf{C}

D.

- 4. ¿Cuál de las siguientes respuestas es una condición para que un objeto se encuentre en equilibrio de translación?
 - A. El objeto debe desplazarse con rapidez constante.
 - B. La velocidad del objeto debe ser nula en todas las direcciones.
 - C. Las fuerzas que actúan horizontalmente sobre el objeto deben ser iguales a las fuerzas que actúan verticalmente sobre el objeto.
 - D. La fuerza resultante que actúa sobre el objeto debe ser nula.
- 5. Un objeto rota describiendo una circunferencia horizontal al ser sometido a una fuerza centrípeta *F*. ¿Qué fuerza centrípeta actuará sobre el objeto si se duplica el radio de la circunferencia y se reduce a la mitad la energía cinética del objeto?
 - A. $\frac{F}{4}$
 - B. $\frac{F}{2}$
 - C. F
 - D. 4F
- 6. Durante una colisión inelástica no actúa ninguna fuerza externa sobre un cierto sistema. Para este sistema, ¿qué es correcto sobre la conservación de la energía cinética y la conservación del momento lineal?

	Energía cinética	Momento lineal
A.	debe conservarse	puede conservarse
B.	debe conservarse	debe conservarse
C.	no se conserva	puede conservarse
D.	no se conserva	debe conservarse

- 7. Un objeto de masa m_1 tiene energía cinética E_1 . Otro objeto tiene masa m_2 y energía cinética E_2 . Los objetos tienen igual momento. ¿Cuál será el cociente $\frac{E_1}{E_2}$?
 - A. 1

B.
$$\sqrt{\frac{m_2}{m_1}}$$

C.
$$\frac{m_2}{m_1}$$

D.
$$\left(\frac{m_2}{m_1}\right)^2$$

8. Una esfera metálica se encuentra en reposo sobre un banco. De acuerdo con la tercera ley del movimiento de Newton, ¿cuál será un posible par de acción-reacción para esta situación?

	Acción	Reacción
A.	fuerza gravitatoria de la Tierra sobre la esfera hacia abajo	fuerza gravitatoria de la esfera sobre la Tierra hacia arriba
В.	fuerza gravitatoria de la Tierra sobre la esfera hacia arriba	fuerza gravitatoria de la esfera sobre la Tierra hacia abajo
C.	fuerza electrostática hacia arriba que actúa sobre la esfera debida a los átomos de la superficie del banco	fuerza gravitatoria de la esfera sobre la Tierra hacia arriba
D.	fuerza electrostática hacia arriba que actúa sobre la esfera debida a los átomos de la superficie del banco	fuerza gravitatoria de la esfera sobre la Tierra hacia abajo

- 9. Dos objetos están en contacto térmico, inicialmente a temperaturas diferentes. ¿Cuál de las siguientes determina la transferencia de energía térmica entre los objetos?
 - I. La masa de cada objeto
 - II. La capacidad térmica de los objetos
 - III. La temperatura de los objetos
 - A. I solamente
 - B. I y II solamente
 - C. II y III solamente
 - D. III solamente
- 10. Se utiliza una bobina calefactora eléctrica de potencia P para transferir energía térmica a un cuerpo de masa m. En un tiempo t, el cuerpo ve su temperatura modificada en $\Delta\theta$. ¿Cuál será la capacidad térmica del cuerpo?
 - A. $\frac{Pt}{m\Delta\theta}$
 - B. $\frac{P}{tm\Delta\theta}$
 - C. $\frac{Pt}{\Delta \theta}$
 - D. $\frac{P}{t\Lambda\theta}$

11. Lo siguiente puede determinarse para una sustancia se

- I. La energía cinética media $E_{K_{mod}}$ de las moléculas
- II. La energía cinética total $E_{K_{lot}}$ de las moléculas
- III. La energía potencial total $E_{\rm Pot}$ de las moléculas

¿Cuál(es) será(n) igual(es) a la energía interna de esta sustancia sólida?

- A. I solamente
- B. I y III solamente
- C. II solamente
- D. II y III solamente

12. Un muro sólido y alto separa dos jardines X e Y. En Y puede escucharse la música procedente de un altavoz en X, aun cuando X no puede verse desde Y. La música se puede oír en Y debido a la

- A. absorción.
- B. difracción.
- C. reflexión.
- D. refracción.
- 13. X e Y son dos fuentes de ondas con amplitudes y frecuencias idénticas. Las ondas procedentes de X e Y interfieren de manera constructiva en un detector tras recorrer la misma distancia entre la fuente y el detector.

En el detector, el cociente intensidad de la resultante de las dos ondas es intensidad de una sola onda

- A. $\frac{1}{2}$
- B. 1.
- C. 2.
- D. 4.

- 14. La frecuencia natural de vibración de un sistema
 - A. es la frecuencia a la cual oscila cuando es impulsado por otro sistema.
 - B. es la frecuencia a la cual oscila cuando **no** es impulsado por otro sistema.
 - C. depende del amortiguamiento en el sistema.
 - D. depende de la amplitud de la oscilación del sistema.
- 15. Una partícula está sometida a un movimiento armónico simple (MAS) con energía cinética máxima E_{\max} y amplitud x_0 . Se suelta la partícula desde el reposo en su desplazamiento de amplitud máxima.

¿Cuál es la variación en la energía cinética cuando la partícula se ha desplazado una distancia de $\frac{x_0}{3}$?

- A. $\frac{E_{\text{max}}}{9}$
- B. $\frac{4E_{\text{max}}}{9}$
- C. $\frac{5E_{\text{max}}}{9}$
- D. $\frac{8E_{\text{max}}}{9}$
- **16.** Un resistor cilíndrico de volumen *V* y longitud *l* tiene resistencia *R*. El resistor tiene una sección transversal circular uniforme. ¿Cuál es la resistividad del material que forma el resistor?
 - A. $\frac{V}{Rl^2}$
 - B. $\frac{V^2R}{l}$
 - C. $\frac{VR}{l^2}$
 - D. $\frac{V^2}{Rl}$

17. La gráfica muestra la variación de una corriente I con la diferencia de potencial V en un dispositivo.

¿Cuál es la resistencia del dispositivo en el punto P?

- A. $\frac{I_{p}}{V_{p}}$
- B. $\frac{V_{\rm p}}{I_{\rm p}}$
- C. Pendiente de la gráfica en P
- D. $\frac{1}{\text{Pendiente de la gráfica en P}}$

18. Se conecta una lámpara a una célula eléctrica y se enciende a su voltaje operativo. A continuación se conecta la lámpara a la misma célula en un circuito con un amperímetro y un voltímetro ideales. ¿Cuál de los circuitos permite a la lámpara alumbrar con su brillo original?

A.

В.

C.

D.

- 19. ¿Cuál es la definición de la intensidad del campo gravitatorio en un punto?
 - A. La fuerza que actúa por unidad de masa sobre una pequeña masa situada en el punto.
 - B. El trabajo efectuado por unidad de masa sobre cualquier masa desplazada hasta el punto.
 - C. La fuerza que actúa sobre una pequeña masa situada en el punto.
 - D. El trabajo efectuado sobre una masa cualquiera desplazada hasta el punto.

20. Una carga puntual positiva P y una carga puntual negativa Q de igual magnitud se mantienen en posiciones fijas. Y es un punto a medio camino entre P y Q.

¿Cuál de las siguientes respuestas da el sentido del campo eléctrico debida a las cargas en X, Y y Z?

	X	Y	Z
A.	a la derecha	a la izquierda	a la derecha
B.	a la derecha	a la derecha	a la izquierda
C.	a la izquierda	a la derecha	a la derecha
D.	a la izquierda	a la derecha	a la izquierda

21. ¿Qué patrón de campo puede ser producido por dos cargas puntuales?

В

C.

D.

22. ¿Cuál de las respuestas describe la capacidad de ionización y la capacidad de penetración de las partículas alfa?

– 11 –

	Capacidad de ionización	Capacidad de penetración
A.	baja	alta
B.	alta	baja
C.	baja	baja
D.	alta	alta

23. Un alumno sugiere la siguiente reacción nuclear entre deuterio ²₁H y tritio ³₁H

$$_{1}^{2}H + _{1}^{3}H \rightarrow nX + mY$$

en la que n y m son enteros. ¿Qué son X e Y?

	X	Y
A.	electrón	neutrón
B.	electrón	protón
C.	partícula alfa	neutrón
D.	partícula alfa	protón

24. En un átomo neutro hay n_e electrones, n_p protones y n_n neutrones. ¿Cuál es el número másico del nucleido?

A.
$$n_p + n_e + n_n$$

B.
$$n_p + n_n$$

C.
$$n_{\rm n} + n_{\rm p} - n_{\rm e}$$

D.
$$n_{\rm n} - n_{\rm e}$$

-12-

	Proceso simple	Proceso cíclico
A.	puede darse la conversión completa de la energía térmica en trabajo	la energía debe transferirse desde el sistema
B.	no puede darse nunca la conversión completa de la energía térmica en trabajo	la energía debe transferirse desde el sistema
C.	puede darse la conversión completa de la energía térmica en trabajo	la energía no necesita transferirse desde el sistema
D.	no puede darse nunca la conversión completa de la energía térmica en trabajo	la energía no necesita transferirse desde el sistema

- **26.** ¿Qué aumenta en una muestra de mineral de uranio cuando se enriquece combustible nuclear?
 - Número de átomos U-238
 - A. Número de átomos U-235
 - B. Número de átomos U-239
 - Número de átomos U-238
 - C. Número de átomos U-235 Número de átomos U-238

 - D. Número de átomos U-238 Número de átomos U-239
- **27.** ¿Cuál es la combinación de procesos mediante la cual se forma un núcleo de plutonio-239 (²³⁹Pu) a partir de un núcleo de uranio-238 (²³⁸U)?
 - A. fisión nuclear + emisión beta
 - B. fusión nuclear + emisión beta
 - C. captura de electrones + emisión beta
 - D. captura de neutrones + emisión beta

28. La gráfica muestra el espectro de emisión para un cuerpo negro a una temperatura absoluta T_1 .

¿Qué gráfica muestra el espectro de emisión para el mismo cuerpo negro a una temperatura absoluta T_2 siendo $T_2 > T_1$? Se muestra la gráfica original como línea punteada.

B.

C.

D.

8814-6528 Véase al dorso

- **29.** ¿Cuál es la unidad de la capacidad calorífica superficial?
 - A. $N m^{-2} K^{-1}$
 - B. $kg m s^{-2} K^{-1}$
 - $C. \qquad kg \, s^{-2} \, K^{-1}$
 - D. $N m^{-3} K^{-1}$
- **30.** El coeficiente de expansión de volumen del agua marina es γ . ¿Cuál será el cambio fraccional en la profundidad del océano cuando su temperatura aumenta en 1 K y su área permanece constante?
 - A. $\frac{\gamma}{3}$
 - Β. γ
 - C. 3 γ
 - D. $\sqrt[3]{\gamma}$