Dynamic Pricing in der Luftfahrt

Analyse von Machine-Learning-Algorithmen zur Vorhersage von Flugpreisen

Kolloquium zur Bachelorarbeit

Dominik Lewin

Fernuniversität in Hagen

29.08.2023

Inhalt

- 1 Motivation
- 2 Grundlagen
- 3 Machine-Learning-Algorithmen
- 4 Praktischer Teil
- 5 Fazit und Ausblick

Motivation

Motivation •0

Grundlagen

Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur

London

Mi., Aug. 16

Abbildung 1: Google Flüge: Preisentwicklung für einen Ryanair-Flug. Quelle: https://www.google.com/travel/flights/

Fragestellung

Motivation

Grundlagen

Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur 00

Wie lässt sich Maschine Learning einsetzen,

► ... um Flugpreise vorherzusagen?

Fragestellung

 Motivation
 Grundlagen
 Machine-Learning-Algorithmen
 Praktischer Teil

 ○●
 ○○○○
 ○○○○○○○○○○
 ○○○○○

Fazit und Ausblick

Literatur

Wie lässt sich Maschine Learning einsetzen,

- ► ... um Flugpreise vorherzusagen?
- ▶ ... um eine Buchungsempfehlung (buchen / nicht buchen) abzugeben?

Revenue Management

Motivation

Grundlagen

Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur 00

Abbildung 2: Grundgedanke des Revenue Managements. Eigene Darstellung.

Revenue Management

Motivation

Grundlagen ○●○○ Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur 00

Wichtigste Anwendungsmerkmale:

- ► Weitgehend fixe Kapazitäten
- ► Verderblichkeit
- ► Nachfrageschwankungen

Revenue Management

Motivation

Grundlagen ○●○○ Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur

Wichtigste Anwendungsmerkmale:

- ► Weitgehend fixe Kapazitäten
- Verderblichkeit
- Nachfrageschwankungen

Instrumente:

- Preisdifferenzierung
- ► Kapazitätssteuerung
- ► Überbuchungssteuerung

Preisdifferenzierung

Motivation Grundlagen Machine-Learning-Algorithmen Praktischer Teil Fazit und Ausblick Literatur

OO OO⊕O OOOOOOOO

- ► Unterschiedliche Preise für gleiche Leistung
- ► Statische Preise bei herkömmlicher Preisdifferenzierung
- ► Festgelegter Preis im gesamten Verkaufszeitraum
- ► Eine dynamische Anpassung wäre sinnvoll

Dynamic Pricing

Motivation

Grundlagen ○○○● Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur 00

Anwendungsmerkmale:

- ► Keine festgelegten Preise
- ► Geringer Aufwand bei Preisänderungen

Dynamic Pricing

Motivation

Grundlagen ○○○● Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur

Anwendungsmerkmale:

- ► Keine festgelegten Preise
- Geringer Aufwand bei Preisänderungen

Vorteile:

- ► Anpassung in Echtzeit
- Reaktion auf verändernde Zahlungsbereitschaft
- ► Reaktion auf Konkurrenzpreise
- Erlösmaximierung

Machine-Learning-Algorithmen

Motivation

Grundlagen

Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur

- ► Lineare Regression (R)
- ► Naiver Bayes-Klassifikator (K)
- ► Entscheidungsbäume (R,K)
- ► Random Forest (R,K)
- ► k-Nächste Nachbarn (R,K)
- ► Support Vector Machine (R,K)
- ► Multilayer Perceptron (R,K)

R: Geeignet für

Regressionsprobleme

K: Geeignet für

Klassifikationsprobleme

Lineare Regression

Abbildung 3: Fiktive Flugpreise in Abhängigkeit der Tage vor Abflug. Eigene Darstellung.

Naiver Bayes-Klassifikator

Motivation

Grundlager 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

- ► Basiert auf dem Satz von Bayes aus der Wahrscheinlichkeitsrechnung
- ► Naive Annahme: Attribute sind unabhängig voneinander
- ► Beispiel-Flug: Ryanair, 150 Euro, 90 Tage vor Abflug
- Eingabevektor x = (Ryanair, 150, 90)

$$P(\text{buchen}|x) = 0,81 \text{ und } P(\text{nicht buchen}|x) = 0,19 \rightarrow \text{buchen}!$$
 (1)

Entscheidungsbäume

Motivation

Grundlager

Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur

- ► Entscheidungsbaum ist ein azyklischer Graph
- Der Graph lässt sich aus Trainingsdaten erzeugen
- ► Spaltkriterium zur Aufteilung benötigt

Abbildung 4: Entscheidungsbaum für ein fiktives Beispiel. Eigene Darstellung.

Motivation

Grundlagen 0000 Machine-Learning-Algorithmen 0000●00000

Praktischer Teil

Fazit und Ausblick

- ► Wald aus vielen Entscheidungsbäumen
- ► Training auf unterschiedlichen Daten
- ► Beispiel-Flug: Ryanair, 150 Euro, 90 Tage vor Abflug

Motivation

Grundlagen 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

- ► Wald aus vielen Entscheidungsbäumen
- ► Training auf unterschiedlichen Daten
- ▶ Beispiel-Flug: Ryanair, 150 Euro, 90 Tage vor Abflug

Motivation Grundlagen

Machine-Learning-Algorithmen

Praktischer Teil

British Airways

Buchen

Fazit und Ausblick

- ► Wald aus vielen Entscheidungsbäumen
- ► Training auf unterschiedlichen Daten
- ▶ Beispiel-Flug: Ryanair, 150 Euro, 90 Tage vor Abflug

Motivation

Grundlagen 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

- ► Wald aus vielen Entscheidungsbäumen
- ► Training auf unterschiedlichen Daten
- ▶ Beispiel-Flug: Ryanair, 150 Euro, 90 Tage vor Abflug

Abbildung 5: Fiktiver Random Forest aus drei Entscheidungsbäumen. Eigene Darstellung.

k-Nächste Nachbarn

Motivation Grundlagen Machine-Learning-Algorithmen Praktischer Teil Fazit und Ausblick Literatur

OO OOO OOO OOO OOO OOO

- ► Annahme: Ähnliche Punkte liegen nah bejeinander
- ► k bezeichnet die Anzahl der Nachbarn
- Bestimmung der Distanz durch geeignete Abstandsmaße (z.B. Manhattan-Distanz)

Abbildung 6: Klassifikation mit k = 1 und k = 3 Nachbarn. In Anlehnung an [Sri21].

k-Nächste Nachbarn

Motivation Grundlagen Machine-Learning-Algorithmen Praktischer Teil Fazit und Ausblick Literatur

- ► Annahme: Ähnliche Punkte liegen nah bejeinander
- ► k bezeichnet die Anzahl der Nachbarn
- Bestimmung der Distanz durch geeignete Abstandsmaße (z.B. Manhattan-Distanz)

Abbildung 6: Klassifikation mit k = 1 und k = 3 Nachbarn. In Anlehnung an [Sri21].

k-Nächste Nachbarn

Motivation

Grundlagen 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

- ► Annahme: Ähnliche Punkte liegen nah beieinander
- ▶ k bezeichnet die Anzahl der Nachbarn
- Bestimmung der Distanz durch geeignete Abstandsmaße (z.B. Manhattan-Distanz)

Abbildung 6: Klassifikation mit k = 1 und k = 3 Nachbarn. In Anlehnung an [Sri21].

Support Vector Machine (SVM)

Motivation

Grundlagen 2000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

- ► Hyperebene trennt die Klassen
- Maximaler Abstand zwischen Hyperebene und Datenpunkten
- ➤ Stützvektoren (Support Vectors) liegen auf dem Rand

Abbildung 7: Zweidimensionales SVM-Modell. Entnommern aus [Bur19].

Multilayer Perceptron (MLP)

Motivation

Grundlagen

Machine-Learning-Algorithmen 000000●00

Praktischer Teil

Fazit und Ausblick

Abbildung 8: Biologisches Neuron. Entnommen aus [Hen21]

Multilayer Perceptron (MLP)

Motivation Grundlagen Machine-Learning-Algorithmen Praktischer Teil Fazit und Ausblick Literatur 000000000 X_1 W_1 $X = \sum_{i=1}^{3} w_i x_i + b$ W_2 X_2 W_3 b X_3 Eingabe Ausgabe

Abbildung 9: Perzeptron mit drei Eingaben. Eigene Darstellung.

Multilayer Perceptron (MLP)

Motivation Grundlagen Machine-Learning-Algorithmen 000000000

Praktischer Teil

Fazit und Ausblick

Literatur

Abbildung 10: Mehrlagige Perzeptronen mit zwei verdeckten Schichten. Eigene Darstellung.

Ziele des praktischen Teils

Motivation

Grundlagen 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur 00

EW 7462 (Hamburg - London), Abflug: 29.10.2023, heutiger Preis: 160 Euro

Ziele des praktischen Teils

Motivation

Grundlagen 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur 00

EW 7462 (Hamburg - London), Abflug: 29.10.2023, heutiger Preis: 160 Euro

- ► Buchen?
- ► Warten?
- ► Ist das ein günstiger Preis?
- ► Wird der Preis noch günstiger?
- ► Wird der Preis morgen teurer?

Datensatz

Motivation

Grundlagen

Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Airline	Flugnummer	Preis	Ankunftszeit	Abflugzeit	Zielflughafen	Abflughafen	Abflugdatum	Buchungsdatum
Eurowings	EW 7460	98.0	18:40:00	17:55:00	LHR	НАМ	2023-02-26	2022-11-09
Eurowings	EW 7462	120.0	14:05:00	13:20:00	LHR	HAM	2023-02-26	2023-01-29
easyJet	U2 8342	35.0	13:45:00	13:05:00	LGW	НАМ	2023-02-27	2022-07-22
Eurowings	EW 7462	139.0	13:05:00	12:20:00	LHR	HAM	2023-02-27	2023-02-23
Ryanair	FR 1519	32.0	21:55:00	21:20:00	STN	НАМ	2023-03-01	2022-09-08
Eurowings	EW 7462	80.0	13:05:00	12:20:00	LHR	HAM	2023-03-02	2023-01-20
Ryanair	FR 1519	23.0	21:30:00	20:55:00	STN	HAM	2023-03-03	2022-08-13
British Airways	BA 975	190.0	16:10:00	15:25:00	LHR	HAM	2023-03-04	2022-12-27

Abbildung 11: Auszug der Daten. Eigene Darstellung.

Datenanalyse

Motivation Grundlagen Machine-Learning-Algorithmen Praktischer Teil Fazit und Ausblick Literatur

Lagemaß	Preis in Euro
Arithm. Mittel	77, 53
Modalwert	58,00
Minimum	17,00
75 % - Quantil	85, 00
Maximum	927, 00

Tabelle 1: Darstellung ausgewählter Lagemaße. Eigene Darstellung

Abbildung 12: Durchschnittliche Flugpreise. Eigene Darstellung.

Training

- ► Trainingsdaten 80%, Testdaten 20%
- ► Verwendet wurde scikit-learn (Python-Bibliothek)
- ► Training mit Standard-Parametereinstellungen
- ► Optimierung durch Anpassung der Parameter

Evaluation

Motivation

	undlagen 000	Machine-Learning-Algorithmen 0000000000 Praktischer Teil 0000●			Faz OO	Liter 00			
			Lineare Regression	naiver Bayes	Entscheidungsbaum	Random Forest	k-Nearest Neighbors	SVM	MLP
Regres	sionsproblem	ı							
Trainin	gsdaten-Score	in %	(32,29)		64,32	66,53	66,78	(17,27)	64,92
Testdate	en-Score in %				57,74	59,58	55,55		61,75
Klassif	ikationsprob	lem							
Trainin	gsdaten-Score	in %		(66,49)	90,83	91,71	86,90	(68,70)	(84,15)
Testdate	en-Score in %				90,67	91,66	87,87		

Tabelle 2: Ergebnisse aller Algorithmen. Eigene Darstellung.

Fazit und Ausblick

Motivation

Grundlagen 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur 00

Wie lässt sich Maschine Learning einsetzen,

- ► ... um Flugpreise vorherzusagen?
- ▶ ... um eine Buchungsempfehlung (buchen / nicht buchen) abzugeben?

Fazit und Ausblick

Motivation

Grundlagen 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur 00

Wie lässt sich Maschine Learning einsetzen,

- ► ... um Flugpreise vorherzusagen?
- ▶ ... um eine Buchungsempfehlung (buchen / nicht buchen) abzugeben?

Ausblick für zukünftige Arbeiten:

- ► Deutlich größerer Datensatz
- ► Airlinespezifische Trainings
- ► Parameter optimieren
- ► Zusätzliche Attribute

Zusammenfassung

Motivation

Grundlager 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

- ► Revenue Management dient der Gewinnmaximierung
- ► Preisdifferenzierung als Instrument des Revenue Managements
- ► Art der Preisdifferenzierung → Dynamic Pricing
- ► Praktischer Teil: Anwendung von 7 Machine-Learning-Algorithmen
- ► Schlechte Ergebnisse bei Flugpreisvorhersage (Multilayer Perceptron mit 61,75%)
- ► Gute Ergebnisse bei Buchungsempfehlung (buchen / nicht buchen) (Random Forest mit 91,66%)

Zusammenfassung

Motivation

Grundlagen 0000 Machine-Learning-Algorithmen

Praktischer Teil

Fazit und Ausblick

Literatur 00

- ► Revenue Management dient der Gewinnmaximierung
- ► Preisdifferenzierung als Instrument des Revenue Managements
- ► Art der Preisdifferenzierung → Dynamic Pricing
- ► Praktischer Teil: Anwendung von 7 Machine-Learning-Algorithmen
- ► Schlechte Ergebnisse bei Flugpreisvorhersage (Multilayer Perceptron mit 61,75%)
- ► Gute Ergebnisse bei Buchungsempfehlung (buchen / nicht buchen) (Random Forest mit 91,66%)

Danke für die Aufmerksamkeit! Noch Fragen?

Literaturverzeichnis

Motivation	Grundlagen 0000	Machine-Learning-Algorithmen	Praktischer Teil	Fazit und Ausblick	Literatur 00				
[Bur19]	Andriy Burkov. Mach	nine Learning kompakt: Alles, was	Sie wissen müssen. M	TP-Verlags GmbH & Co	. KG, 2019.				
[Hen21]	Casey Henley. Foundations of Neuroscience. Michigan State University Libraries, 2021.								
[Pra22]	Naveen Prasath, Sherin Eliyas und Sathish Kumar. "A Prediction of Flight Fare Using K-Nearest Neighbors". In: 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). IEEE. 2022, S. 1347–1351.								
[Ren15]	Ruixuan Ren, Yunzhe Yang und Shenli Yuan. Prediction of airline ticket price. Techn. Ber. University of Stanford, 2015.								
[Sri21]	Abhishek Srivastava. "Impact of k-nearest neighbour on classification accuracy in knn algorithm using machine learning". In: Advances in Smart Communication and Imaging Systems: Select Proceedings of MedCom 2020. Springer. 2021, S. 363–373.								
[Tzi17]	Konstantinos Tziridis u. a. "Airfare prices prediction using machine learning techniques". In: 25th European Signal Processing Conference (EUSIPCO). IEEE. 2017, S. 1036–1039.								

LH 500 F8 A5 OL J9 C9 D9 Z9 /FRA 1 GIG 2 2215 0455+1E0/74H 11:40
P9 IL G9 E9 NL RL Y9 B9 M9 U9 H9 XL Q9 V9 W9 S9 TC LC KC

Abbildung 13: Buchungsklassen eines Lufthansa-Fluges. Quelle: https://meilenoptimieren.com/alles-ueber-buchungsklassen/

Buchungsklassen der First Class: F, A, O

Buchungsklassen der Business Class: J, C, D, Z, P, I

Buchungsklassen der Premium Economy Class: G, E, N, R

Buchungsklassen der Economy Class: Y, B, M, U, H, X, Q, V, W, S, T, L, K

