TRIGONOMETRY Chapter 07

Razones trigonométricas de un ángulo en posición normal II

Divide las dificultades que examinas en tantas partes como sea posible para su mejor solución.

René Descartes 1596 - 1650

ÁNGULOS CUADRANTALES

Son aquellos ángulos trigonométricos cuyo lado final se encuentra sobre algún semieje, por tal razón no pertenecen a cuadrante alguno

Podemos decir: Que es todo ángulo múltiplo del ángulo recto, por consiguiente

RAZONES TRIGONOMÉTRICAS DE ÁNGULOS CUADRANTALES

RT ⋖	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0
cot	ND	0	ND	0	ND
sec	1	ND	-1	ND	1
csc	ND	1	ND	-1	ND

OBSERVACIÓN:

Si α es un ángulo cuadrantal

 $sen\alpha = \{ -1; 0; 1 \}$

 $cos\alpha = \{ -1; 0; 1 \}$

 $tan\alpha = 0$

 $cot\alpha = 0$

N.D: No Determinado

SIGNO DE LAS RAZONES TRIGONOMÉTRICAS EN LOS CUADRANTES

Regla práctica:

OBSERVACIÓN

Si
$$0^{\circ} < \alpha < 90^{\circ}$$
 \Rightarrow $\alpha \in IC$

Si
$$90^{\circ} < \alpha < 180^{\circ} \Rightarrow \alpha \in IIC$$

Si
$$180^{\circ} < \alpha < 270^{\circ} \implies \alpha \in IIIC$$

Si
$$270^{\circ} < \alpha < 360^{\circ} \implies \alpha \in IVC$$

ÁNGULOS COTERMINALES

Son aquellos ángulos trigonométricos que tienen el mismo lado inicial, lado final y vértice.

α y θ son las medidas de los ángulos coterminales en el mismo sentido.

Siendo α y θ las medidas de dos ángulos coterminales, se cumple.

I.
$$\alpha - \theta = 360^{\circ} n$$
; $n \in \mathbb{Z}$

II. Rt
$$(\alpha)$$
 = Rt (θ)

I. Siendo θ y β ángulos cuadrantales diferentes, positivos y menores o iguales a 360°, se cumple que $\sqrt{1-\cos\theta}+\sqrt{\cos\theta-1}=1+\sin\beta\cdots$ (*) calcule θ + β.

RESOLUCIÓN

$$1 - \cos\theta \ge 0$$
 \wedge $\cos\theta - 1 \ge 0$ $\cos\theta \le 1$ \wedge $\cos\theta \ge 1$ $\cos\theta = 1$ $\theta = \{0^\circ; 360^\circ\}, \text{ como } 0^\circ < \theta \le 360^\circ\}$

 $\theta = 360^{\circ}$

REEMPLAZANDO EN (*)

$$\sqrt{1-\cos\theta} + \sqrt{\cos\theta} - 1 = 1 + \sin\beta$$

$$0 \qquad 0$$

$$-1 = \sin\beta \qquad \beta = 270^{\circ}$$

2. Siendo los ángulos α y θ ángulos cuadrantales, positivos y menores a una vuelta, tal que se cumple sen α + tan θ = – 1, efectúe

$$F = \frac{\operatorname{sen}\left(\frac{\alpha}{3}\right) + \cos\left(\frac{\theta}{2}\right)}{\operatorname{csc}(\alpha - \theta)}$$

Recordar:

RT *	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0

RESOLUCIÓN

Como 0° <
$$\alpha$$
 y θ < 360° y $\frac{\sin \alpha}{1} + \frac{\tan \theta}{1} = -1$

Reemplazando en F:

$$F = \frac{\text{sen}90^{\circ} + \text{cos}90^{\circ}}{\text{csc}90^{\circ}}$$

$$F = \frac{1+0}{1}$$

$$\theta = 180^{\circ}$$

$$\alpha = 270^{\circ}$$

3. Si para un ángulo α en posición estándar se cumple $\cot \alpha \sqrt{\cos \alpha} < 0$ indique el signo de: P = $\tan \alpha + \cot \alpha$ y Q = $\sec \alpha \cdot \cos \alpha$

RESOLUCIÓN

$$\frac{\cot \alpha \sqrt{\cos \alpha}}{(-)} < 0$$

Si
$$\cos \alpha > 0$$
 $\Rightarrow \alpha \in IC \lor \alpha \in IVC$

Si cot
$$\alpha < 0$$
 \Rightarrow $\alpha \in IIC \lor \alpha \in IVC$

por lo tanto: α ∈ IVC

Piden signo de:

$$P = \tan\alpha + \cot\alpha$$

$$Q = sena.cosa$$

$$(-) (+)$$

$$Q = (-)$$

4. Siendo θ un ángulo positivo y menor a una vuelta se cumple

 $tan\theta . sen120^{\circ} < 0$ $cos\theta . tan300^{\circ} > 0$

Indique el signo de sen2⊖

RESOLUCIÓN

$$tan\theta$$
. $sen120^{\circ} < 0$

$$\theta \in IIC \lor \theta \in IVC$$

$$\cos\theta$$
 $\tan 300^{\circ} > 0$

Recordar:

5. De la condición $\frac{+}{+}$ = b.csc30° + a.tan360°. Calcule $\frac{a}{b}$

RESOLUCIÓN

$$\frac{a^2 sen 90^{\circ} + b^2 cos 180^{\circ}}{a + bt an 45^{\circ}} = bcsc 30^{\circ} + atan 360^{\circ}$$

RECORDAR:

$$\frac{a^2(1) + b^2(-1)}{a + b(1)} = b(2) + a(0)$$

$$\Rightarrow \frac{a^2 - b^2}{a + b} = 2b$$

RT [≮]	0°	90°	180°	270°	360°
sen	0	1	0	-1	0
cos	1	0	-1	0	1
tan	0	ND	0	ND	0

6.En la figura, se cumple que tanα.tan β + senα.csc β = 5. Calcule tan α

Del gráfico se observa que α y β son las medidas de dos ángulos coterminales, luego se cumple :

Rt (
$$\alpha$$
)= Rt(β)

Del dato:

$$tan\alpha.tan\beta + sen\alpha.csc\beta = 5$$

 $tan\alpha.tan\alpha + sen\alpha.csc\alpha = 5$
 $tan^2\alpha + 1 = 5$

$$\tan^2 \alpha = 4$$
 \Rightarrow $\tan \alpha = \pm \sqrt{4}$

$$\tan \alpha = \pm 2$$

Como
$$\alpha \in IVC$$

$$\tan \alpha = -2$$

7. Si $cos\phi = -8/17$, además $\phi \in (180^\circ;270^\circ)$, halle el valor de $sec\phi + tan\phi$.

RESOLUCIÓN

• Como $\phi \in \langle 180^\circ; 270^\circ \rangle$

$$\phi \in \mathbf{IIIC} \quad \Rightarrow \quad \mathsf{x}(-), \, \mathsf{y}(-), \, \mathsf{r}(+)$$

• Además:

$$\cos\phi = \frac{-8}{17} \qquad = \frac{x}{r}$$

Luego:

$$x = -8 \ y \ r = 17$$

Sabemos: $r = \sqrt{x^2 + y^2}$

$$r=\sqrt{x^2+y^2}$$

$$17 = \sqrt{(-8)^2 + y^2} \quad \Rightarrow \quad y = -15$$

Piden: E = seco + tano

$$E = \frac{17}{-8} + \frac{-15}{-8}$$

$$E = -\frac{1}{4}$$

8. Si sen θ > 0, además 25^{tan θ} = 0,2; efectúe: M =(sen θ + cos θ)

RESOLUCIÓN

Del dato:

$$25^{\tan\theta} = \frac{1}{5}$$

$$5^{2\tan\theta} = 5^{-1}$$

$$2\tan\theta = -1$$

$$\Rightarrow \tan\theta = -\frac{1}{2}$$

Como sen θ es (+) y tan θ es (-)

$$\theta \in IIC \quad \Rightarrow \quad x(-), y(+), r(+)$$

•
$$tan\theta = \frac{1}{-2} = \frac{y}{x}$$
 $\Rightarrow x = -2$, $y = 1$

$$r = \sqrt{(-2)^2 + 1^2}$$
 $r = \sqrt{5}$

Piden: $M = \sqrt{5} (sen\theta + cos\theta)$

$$M = \sqrt{5} \left(\frac{1}{\sqrt{5}} + \frac{-2}{\sqrt{5}} \right) = 1 - 2$$

