Title

D. Zack Garza

Contents

Contents

Prologu	Prologue 3			
0.1	References	3		
0.2	Notation	3		
0.3	Summary of Important Concepts	3		
0.4	Useful Algebra Facts	5		
0.5	The Algebra-Geometry Dictionary	6		

Contents 2

Prologue

0.1 References

0.2 Notation

 $k[\mathbf{x}] \coloneqq k[x_1, \cdots, x_n] \qquad \qquad \text{The polynomial ring in n indeterminates} \\ k(\mathbf{x}) \coloneqq k(x_1, \cdots, x_n) \qquad \text{The rational function field } \left\{ f(\mathbf{x}) = p(\mathbf{x})/q(\mathbf{x}), \, p, q, \in k[x_1, \cdots, x_n] \right\} \\ V(J), V_a(J) \qquad \qquad \text{The variety associated to an ideal } J \trianglelefteq k[x_1, \cdots, x_n] \\ V(J) \coloneqq \left\{ \mathbf{x} \in \mathbb{A}^n \ \middle| \ f(\mathbf{x}) = 0, \, \forall f \in J \right\} \\ I(S), I_a(S) \qquad \qquad \text{The ideal associated to a subset } S \subseteq \mathbb{A}^n_k \\ I(S) \coloneqq \left\{ f \in k[x_1, \cdots, x_n] \ \middle| \ f(\mathbf{x}) = 0 \, \forall \mathbf{x} \in X \right\} \\ A(X) \coloneqq k[x_1, \cdots, x_n]/I(X) \qquad \qquad \text{The coordinate ring of a variety} \\ \mathcal{O}_X \qquad \qquad \text{The structure sheaf } \left\{ f : U \to k \ \middle| \ f \in k(\mathbf{x}) \text{ locally} \right\}.$

Lots of notation to fill in.

Algebra	Geometry
Radical ideals $J = \sqrt{J} \le k[x_1, \dots, x_n]$	V(J) the zero locus
I(S) the ideal of a set	$S \subseteq \mathbb{A}^n$ a subset
I + J	$V(I) \cap V(J)$
$\sqrt{I(V) + I(W)}$	$V \cap W$
$\dot{I}\cap J, IJ$	$V(I) \cup V(J)$
$I(V) \cap I(W), \sqrt{I(V)I(W)}$	$V \cup W$
I(V):I(W)	$\overline{V\setminus W}$

0.3 Summary of Important Concepts

- What is an affine variety?
- What is the coordinate ring of an affine variety?
- What are the constructions $V(\cdot)$ and $I(\cdot)$?

- What is the Nullstellensatz?
- What are the definitions and some examples of:
 - The Zariski topology?
 - Irreducibility?
 - Connectedness?
 - Dimension?
- What is the definition of a presheaf?
 - What are some examples and counterexamples?
- What is the definition of sheaf?
 - What are some examples?
 - What are some presheaves that are not sheaves?
- What is the definition of \mathcal{O}_X , the sheaf of regular functions?
 - How does one compute \mathcal{O}_X for X = D(f) a distinguished open?
- What is a morphism between two affine varieties?
- What is the definition of separatedness?
 - What are some examples of spaces that are and are not separated?
- What is a projective space?
- What is a projective variety?
- What is the projective coordinate ring?
- How does one take the closure of an affine variety X in projective space?
- What is completeness?
 - What are some examples and counterexamples of complete spaces?

0.4 Useful Algebra Facts

Fact 0.4.1:

- $\mathfrak{p} \subseteq R$ is prime $\iff R/\mathfrak{p}$ is a domain.
- $\mathfrak{p} \leq R$ is maximal $\iff R/\mathfrak{p}$ is a field.
- Maximal ideals are prime.
- Prime ideals are radical.
- If R is a PID and $\langle f \rangle \leq R$ is generated by an irreducible element f, then $\langle f \rangle$ is maximal

Proposition 0.4.2 (Finitely generated polynomial rings are Noetherian).

A polynomial ring $k[x_1, \dots, x_n]$ on finitely many generators is Noetherian. In particular, every ideal $I \subseteq k[x_1, \dots, x_n]$ has a finite set of generators and can be written as $I = \langle f_1, \dots, f_m \rangle$.

Proof (?).

A field k is both Artinian and Noetherian, since it has only two ideals and thus any chain of ideals necessarily terminates. By Hilbert's basis theorem (Theorem 0.4.5), $k[x_1, \dots, x_n]$ is thus Noetherian.

Proposition 0.4.3 (Properties and Definitions of Ideal Operations).

$$I + J := \left\{ f + g \mid f \in I, g \in J \right\}$$

$$IJ := \left\{ \sum_{i=1}^{N} f_i g_i \mid f_i \in I, g_i \in J, N \in \mathbb{N} \right\}$$

 $I+J=\langle 1\rangle \implies I\cap J=IJ \qquad \qquad \text{(coprime or comaximal)} \ \langle a\rangle + \langle b\rangle = \langle a,b\rangle \ .$

Theorem 0.4.4 (Noether Normalization).

Any finitely-generated field extension $k_1 \hookrightarrow k_2$ is a finite extension of a purely transcendental extension, i.e. there exist t_1, \dots, t_ℓ such that k_2 is finite over $k_1(t_1, \dots, t_\ell)$.

Theorem 0.4.5 (Hilbert's Basis Theorem).

If R is a Noetherian ring, then R[x] is again Noetherian.

0.5 The Algebra-Geometry Dictionary

Let $k = \bar{k}$, we're setting up correspondences

Ring Theory

Geometry/Topology of Affine Varieties

Polynomial functions

Affine space

 $k[x_1,\cdots,x_n]$

 $\mathbb{A}^n/k := \{[a_1, \cdots, a_n] \in k^n\}$

Maximal ideals $\langle x_1 - a_1, \cdots, x_n - a_n \rangle$

Points $[a_1, \cdots, a_n] \in \mathbb{A}^n/k$

Radical ideals $I \leq k[x_1, \cdots, x_n]$

Affine varieties $X \subset \mathbb{A}^n/k$, vanishing locii of polynomi

$$I \mapsto V(I) \coloneqq \left\{ a \ \middle| \ f(a) = 0 \forall f \in I \right\}$$

$$I(X) \coloneqq \left\{ f \ \middle| \ f|_X = 0 \right\} \hookleftarrow X$$

Radical ideals containing I(X), i.e. ideals in A(X)

closed subsets of X, i.e. affine subvarieties

A(X) is a domain

X irreducible

A(X) is not a direct sum

X connected

Prime ideals in A(X)

Irreducible closed subsets of X

Krull dimension n (longest chain of prime ideals)

 $\dim X = n$, (longest chain of irreducible closed subsets