Fisher Information

- Fisher information is the variance of the score function
- It tells us how much information Y carries about the parameters of the distribution that models Y
- The asymptotic variance of the MLE is the inverse of the Fisher information
- The Cramér-Rao lower bound, an important result about related to minimum variance unbiased estimators, is given in terms of the Fisher information

Cramér-Rao inequality

Suppose that $Y_1, Y_2, ..., Y_n$ are i.i.d. with pdf $f(y; \theta)$. Subject to regularity conditions on $f(y; \theta)$, we have that for any unbiased estimator $\tilde{\theta}$ for θ ,

$$var(\tilde{\theta}) \ge I_{\theta}^{-1}$$

where

$$I_{\theta} = E\left[\left(\frac{\partial \ell}{\partial \theta}\right)^{2}\right].$$

Fisher information about 0

This inequality gives the lower bound for the variance of unbiased estimators, under regularity conditions (see next slide).

Essentially, this says that, under these conditions, all unbiased estimator for θ have variance at least as big as the inverse of the Fisher information about θ .

Precise statement of the regularity conditions is somewhat technical. But, in broad terms, we require that:

- The probability density f is sufficiently many times continuously differentiable
- The support of Y does not depend on θ

These are needed so that we can exchange the order of integration (with respect to y) and differentiation (with respect to θ). That is, we can perform operations like the following:

$$\frac{\partial^2}{\partial \theta^2} \int f(\theta; \mathbf{y}) d\mathbf{y} = \int \frac{\partial^2}{\partial \theta^2} f(\theta; \mathbf{y}) d\mathbf{y}$$

Fisher information

 I_{θ} is known as the Fisher information about θ in the observations.

$$I_0 = var [S(0;y)]$$
 i.e. variance of the score
$$= E \left[\left(\frac{\partial L}{\partial \theta} \right)^2 \right] \quad \text{under regularity conditions}$$

If $\theta = (\theta_1, \theta_2, ..., \theta_{1k})^T$, then Io is the Fisher information matrix, with dimensions kxk. The ijth element of Io is given by

$$[l_0]_{ij} = E \left[\frac{\partial l}{\partial 0_i} \frac{\partial l}{\partial 0_j} \right].$$

Alternative form

Under the same regularity conditions as for the Cramér-Rao inequality:

$$I_{\theta} = -E \left[\frac{\partial^2 \ell}{\partial \theta^2} \right].$$

In the case of
$$\theta = (\theta_1, \theta_2, ..., \theta_K)^T$$
,
$$\left[[\theta]_{ij} = - E \left[\frac{\partial^2 L}{\partial \theta_i \partial \theta_j} \right].$$

Proof of alternative form

$$\frac{\partial^{2}L}{\partial \theta^{2}} = \frac{\partial}{\partial \theta} \left(\frac{\partial L}{\partial \theta} \right)$$

$$= \frac{\partial}{\partial \theta} \left(\frac{1}{2} \frac{\partial L}{\partial \theta} \right)$$

$$= \frac{\partial^{2}L}{\partial \theta^{2}} \frac{1}{2} \frac{1}$$

quotient rule:

$$\left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}$$
In our case, let $f = \frac{\partial l}{\partial \theta}$ and $g = L$.

Then $f' = \frac{\partial^2 l}{\partial \theta^2}$ and $g' = \frac{\partial L}{\partial \theta}$.

$$\frac{\partial \log L}{\partial \theta} = \boxed{\frac{L}{L} \left(\frac{\partial \theta}{\partial L} \right)}$$

Proof of alternative form

$$E\left[-\frac{\partial^{2}l}{\partial\theta^{3}}\right] = E\left[-\frac{1}{L}\frac{\partial^{2}l}{\partial\theta^{2}} + \left(\frac{\partial \log L}{\partial\theta}\right)^{2}\right]$$

$$= -E\left[\frac{1}{L}\frac{\partial^{2}l}{\partial\theta^{3}}\right] + E\left[\left(\frac{\partial \log L}{\partial\theta}\right)^{2}\right]$$

$$= \int_{-\infty}^{\infty} \frac{1}{L}\frac{\partial^{2}l}{\partial\theta^{2}} + \int_{-\infty}^{\infty} L dy$$

$$= \int_{-\infty}^{\infty} \frac{\partial^{2}l}{\partial\theta^{2}} dy$$

$$= \frac{\partial^{2}}{\partial\theta^{2}}\int_{-\infty}^{\infty} L dy \quad \text{under regularity conditions}$$

$$= \frac{\partial^{2}}{\partial\theta^{2}} = \frac{\partial^{2}l}{\partial\theta^{2}} = \frac{\partial^{2}l}{\partial\theta^{2$$

$$: \quad E\left[-\frac{\partial^2 L}{\partial \theta^2}\right] = E\left[\left(\frac{\partial L}{\partial \theta}\right)^2\right] = E\left[S(\theta;y)^2\right]$$

Example 5.7

Suppose $y_1, y_2, ..., y_n$ are $i.i.d.Po(\lambda)$ observations. Find the Fisher information about λ .

Recall
$$l(\lambda;y) = -n\lambda + (\frac{2}{\xi},y;) \log \lambda + \log \frac{1}{|x|}(\frac{1}{y;x})$$

$$\frac{\partial l}{\partial \lambda} = -n + \frac{1}{\lambda}(\frac{2}{\xi},y;)$$

$$\frac{\partial^2 l}{\partial \lambda^2} = -\frac{1}{\lambda^2}(\frac{2}{\xi},y;)$$

$$I_{\lambda} = E\left[-\frac{\delta^{2} \mathcal{L}}{\delta \lambda^{2}}\right]$$

$$= E\left[\frac{1}{\lambda^{2}}\left(\frac{z}{z}, Y_{i}\right)\right]$$

$$= \frac{1}{\lambda^{2}} \underbrace{\hat{z}}_{i} E(Y_{i})$$

$$= \frac{1}{\lambda^{2}} (n\lambda)$$

$$= \frac{1}{\lambda^{2}} (n\lambda)$$

Example 5.8

Suppose $y_1, y_2, ..., y_n$ are $i.i.d.N(\mu, \sigma^2)$ observations with σ^2 known. Find the Fisher information about μ .

Recall
$$l(\mu; y) = -\frac{1}{2} \log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \frac{2}{2} (y; -\mu)^2$$

$$\frac{\partial l}{\partial \mu} = \frac{1}{\sigma^2} \frac{2}{i} (y; -\mu)$$

$$\frac{\partial^2 l}{\partial \mu^2} = \frac{1}{\sigma^2} \frac{2}{i} (-1) = -\frac{\Omega}{\sigma^2}$$

$$T = \left[-\frac{\delta^2 l}{\delta^2}\right]$$

$$I_{\mu} = \bar{E} \left[-\frac{\delta^{2} \ell}{\delta \mu^{2}} \right]$$

$$= \bar{E} \left[\frac{n}{\sigma^{2}} \right]$$

$$= \frac{n}{\ell^{2}}$$

Example 5.9

Suppose $y_1, y_2, ..., y_n$ are $i.i.d.N(\mu, \sigma^2)$ observations where both μ and σ^2 are unknown. Find the Fisher information matrix.

Recall
$$l(\mu, \sigma^2; y) = -\frac{2}{2} \log(2\pi) - \frac{2}{2} \log(\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \mu)^2$$

 $S(\mu, \sigma^2; y) = \begin{bmatrix} \frac{\partial l}{\partial \mu} \\ \frac{\partial l}{\partial \sigma^2} \end{bmatrix} = \begin{bmatrix} \frac{1}{\sigma^2} \sum_{i=1}^{n} (y_i - \mu) \\ -\frac{n}{2\sigma^2} + \frac{1}{2\sigma^4} \sum_{i=1}^{n} (y_i - \mu)^2 \end{bmatrix}$
Observe that:

$$\frac{\partial^2 l}{\partial \mu^2} = -\frac{n}{\sigma^2}$$

$$\frac{\partial^2 \mathcal{L}}{\partial \mu \partial \sigma^2} = \frac{\partial^2 \mathcal{L}}{\partial \sigma^2 \partial \mu} = \frac{\partial}{\partial \sigma} \left[\frac{\partial \mathcal{L}}{\partial \mu} \right] = -\frac{1}{\sigma^4} \stackrel{\mathcal{L}}{\stackrel{:}{=}} (y; -\mu)$$

$$\frac{\delta^{2} l}{3 \sigma^{4}} = \frac{\Omega}{2 \sigma^{4}} - \frac{1}{\sigma^{6}} \sum_{i=1}^{2} (y_{i} - \mu)^{2}$$

Example 5.9 Solution

$$\begin{bmatrix}
\begin{bmatrix} \frac{3^{2}1}{3\mu^{2}} \end{bmatrix} = \frac{\Lambda}{\sigma^{2}}
\end{bmatrix} = \begin{bmatrix}
\begin{bmatrix} \frac{1}{64} \sum_{i=1}^{2} (Y_{i} - \mu) \end{bmatrix} = \frac{1}{64} \sum_{i=1}^{2} \left[E(Y_{i}) - \mu \right] = \frac{1}{64} \sum_{i=1}^{2} (\mu - \mu) = 0
\end{bmatrix}$$

$$\begin{bmatrix} \frac{3^{2}1}{3\mu^{3}} \end{bmatrix} = \begin{bmatrix} \frac{1}{64} \sum_{i=1}^{2} (Y_{i} - \mu)^{2} - \frac{N}{2\sigma^{4}} \\ \frac{1}{66} E \begin{bmatrix} \sigma^{2} \sum_{i=1}^{2} (Y_{i} - \mu)^{2} \end{bmatrix} - \frac{N}{2\sigma^{4}}
\end{bmatrix}$$

$$= \frac{1}{66} E \begin{bmatrix} \sigma^{2} \sum_{i=1}^{2} (Y_{i} - \mu)^{2} \end{bmatrix} - \frac{N}{2\sigma^{4}}$$

$$= \frac{1}{64} E \begin{bmatrix} \sum_{i=1}^{2} Z_{i}^{2} \end{bmatrix} - \frac{N}{2\sigma^{4}}$$

$$= \frac{1}{64} E \begin{bmatrix} \sum_{i=1}^{2} Z_{i}^{2} \end{bmatrix} - \frac{N}{2\sigma^{4}}$$

$$= \frac{1}{64} E \begin{bmatrix} \sum_{i=1}^{2} Z_{i}^{2} \end{bmatrix} - \frac{N}{2\sigma^{4}}$$

$$= \frac{N}{2\sigma^{4}}$$

$$= \frac{N}{2\sigma^{4}}$$

$$= \begin{bmatrix} \frac{1}{6} \frac{3^{2}1}{3\mu^{3}} \end{bmatrix} E \begin{bmatrix} -\frac{3^{2}1}{3\mu^{3}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{6} \frac{3^{2}1}{3\mu^{3}} \end{bmatrix} E \begin{bmatrix} -\frac{3^{2}1}{3\mu^{3}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{6} \frac{3^{2}1}{3\mu^{3}} \end{bmatrix} E \begin{bmatrix} -\frac{3^{2}1}{3\mu^{3}} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{N}{6} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{N}{6} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{N}{6} \end{bmatrix}$$