Counting Inversions

Music site tries to match your song preferences with others.

- You rank n songs.
- Music site consults database to find people with similar tastes.

Similarity metric: number of inversions between two rankings.

- My rank: 1, 2, ..., n.
- Your rank: $a_1, a_2, ..., a_n$.
- Songs i and j inverted if i < j, but $a_i > a_j$.

	Songs								
	Α	В	C	D	Ε				
Me	1	2	3	4	5				
You	1	3	4	2	5				

Inversions 3-2, 4-2

Brute force: check all $\Theta(n^2)$ pairs i and j.

Applications

Applications.

- Voting theory.
- Collaborative filtering.
- Measuring the "sortedness" of an array.
- Sensitivity analysis of Google's ranking function.
- Rank aggregation for meta-searching on the Web.
- Nonparametric statistics (e.g., Kendall's Tau distance).

Divide-and-conquer.

1	5	4	8	10	2	6	9	12	11	3	7
_	_		_			_				_	

Divide-and-conquer.

Divide: separate list into two pieces.

Divide-and-conquer.

5-4, 5-2, 4-2, 8-2, 10-2

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.

6-3, 9-3, 9-7, 12-3, 12-7, 12-11, 11-3, 11-7

9

Divide-and-conquer.

- Divide: separate list into two pieces.
- Conquer: recursively count inversions in each half.
- Combine: count inversions where a_i and a_j are in different halves, and return sum of three quantities.

9 blue-green inversions 5-3, 4-3, 8-6, 8-3, 8-7, 10-6, 10-9, 10-3, 10-7

Total = 5 + 8 + 9 = 22.

10

Combine: ???

Counting Inversions: Combine

Combine: count blue-green inversions

- Assume each half is sorted.
- $\ \ \,$ Count inversions where a_i and a_j are in different halves.
- Merge two sorted halves into sorted whole.

to maintain sorted invariant

13 blue-green inversions: 6 + 3 + 2 + 2 + 0 + 0

Count: O(n)

Merge: O(n)

$$T(n) \le T(\lfloor n/2 \rfloor) + T(\lfloor n/2 \rfloor) + O(n) \Rightarrow T(n) = O(n \log n)$$

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\ \ \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- Given two sorted halves, count number of inversions where \mathbf{a}_i and \mathbf{a}_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Merge and count step.

- $\mbox{\bf .}$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0

Merge and count step.

- $\ \, \textbf{.} \,$ Given two sorted halves, count number of inversions where a_i and a_j are in different halves.
- Combine two sorted halves into sorted whole.

Total: 6 + 3 + 2 + 2 + 0 + 0 = 13

Counting Inversions: Implementation

Pre-condition. [Merge-and-Count] A and B are sorted. Post-condition. [Sort-and-Count] L is sorted.

```
Sort-and-Count(L) {
   if list L has one element
      return 0 and the list L

Divide the list into two halves A and B
   (r<sub>A</sub>, A) ← Sort-and-Count(A)
   (r<sub>B</sub>, B) ← Sort-and-Count(B)
   (r , L) ← Merge-and-Count(A, B)

return r = r<sub>A</sub> + r<sub>B</sub> + r and the sorted list L
}
```

Closest pair. Given n points in the plane, find a pair with smallest Euclidean distance between them.

Fundamental geometric primitive.

- Graphics, computer vision, geographic information systems, molecular modeling, air traffic control.
- Special case of nearest neighbor, Euclidean MST, Voronoi.

fast closest pair inspired fast algorithms for these problems

Brute force. Check all pairs of points p and q with $\Theta(n^2)$ comparisons.

1-D version. O(n log n) easy if points are on a line.

Assumption. No two points have same x coordinate.

to make presentation cleaner

Closest Pair of Points: First Attempt

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Closest Pair of Points: First Attempt

Divide. Sub-divide region into 4 quadrants.

Obstacle. Impossible to ensure n/4 points in each piece.

Algorithm.

• Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.

Algorithm.

- Divide: draw vertical line L so that roughly $\frac{1}{2}$ n points on each side.
- Conquer: find closest pair in each side recursively.
- Combine: find closest pair with one point in each side. \leftarrow seems like $\Theta(n^2)$
- Return best of 3 solutions.

Find closest pair with one point in each side, assuming that distance $< \delta$.

Find closest pair with one point in each side, assuming that distance $< \delta$.

 \blacksquare Observation: only need to consider points within δ of line L.

Find closest pair with one point in each side, assuming that distance $< \delta$.

- ${\color{blue} \bullet}$ Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.

Find closest pair with one point in each side, assuming that distance $< \delta$.

- Observation: only need to consider points within δ of line L.
- Sort points in 2δ -strip by their y coordinate.
- Only check distances of those within 11 positions in sorted list!

Def. Let s_i be the point in the 2δ -strip, with the ith smallest y-coordinate.

Claim. If $|i-j| \ge 12$, then the distance between s_i and s_j is at least δ . Pf.

- No two points lie in same $\frac{1}{2}\delta$ -by- $\frac{1}{2}\delta$ box.
- Two points at least 2 rows apart have distance $\geq 2(\frac{1}{2}\delta)$.

Fact. Still true if we replace 12 with 7.

Closest Pair Algorithm

```
Closest-Pair (p_1, ..., p_n) {
   Compute separation line L such that half the points
                                                                        O(n \log n)
   are on one side and half on the other side.
   \delta_1 = Closest-Pair(left half)
                                                                        2T(n / 2)
   \delta_2 = Closest-Pair(right half)
   \delta = \min(\delta_1, \delta_2)
   Delete all points further than \delta from separation line L
                                                                        O(n)
                                                                        O(n \log n)
   Sort remaining points by y-coordinate.
   Scan points in y-order and compare distance between
                                                                        O(n)
   each point and next 11 neighbors. If any of these
   distances is less than \delta, update \delta.
   return \delta.
```

Closest Pair of Points: Analysis

Running time.

$$T(n) \le 2T(n/2) + O(n \log n) \Rightarrow T(n) = O(n \log^2 n)$$

- \mathbb{Q} . Can we achieve $O(n \log n)$?
- A. Yes. Don't sort points in strip from scratch each time.
 - Each recursive returns two lists: all points sorted by y coordinate,
 and all points sorted by x coordinate.
- Sort by merging two pre-sorted lists.

$$T(n) \le 2T(n/2) + O(n) \implies T(n) = O(n \log n)$$