First-level fMRI modeling

Jeanette Mumford
University of Wisconsin - Madison

Data: BOLD time series

Model: Expected BOLD response for 2 blocked tasks

When Houses occur

When Faces occur

Y

X

 β

t

How do we find the FFA?

$$\beta_{Face} > \beta_{House} \rightarrow \beta_{Face} - \beta_{House} > 0$$

What do we need to know?

 What is the general structure of a tstatistic?

 What are the assumptions we make with the linear model (Gauss Markov)?

What is the residual?

T-statistic structure

contrast you are estimating

 $\sqrt{\text{estimated variance of contrast you are estimating}}$

contrast you are estimating

 $\sqrt{\text{(variance contribution from model)(residual variance)}}$

$$= \frac{c(X'X)^{-1}X'Y}{\sqrt{c(X'X)^{-1}c'}\hat{\sigma}}$$

Gauss Markov Theorem

- If the errors
 - Have mean 0
 - Are uncorrelated
 - Have the same variance
- The least squares estimates are unbiased and have minimum variance among all unbiased estimators!

Goal

Goal

Goal

Who wants smaller residuals?? You do!!

Voxel with signal

Voxel no signal

BOLD issues

- BOLD response is delayed
 - Convolution
 - FIR modeling
- BOLD time series suffer from low frequency noise
 - Highpass filtering
 - Prewhitening
- Scaling the data
 - Grand mean scaling
 - Intensity normalization

How to make a good model

Big residuals ⇒Big variance⇒Small t stat

Understanding the data

- Time series drifts down in beginning
- BOLD response is delayed

Simplest Model

$$Y = X\beta$$

Simplest Model

Simplest Model

$$t = \frac{c(X'X)^{-1}X'Y}{\hat{\sigma}\sqrt{c(X'X)^{-1}c'}}$$

$$t = \frac{0.3}{1.41 \times 0.06} = 3.55$$

Modeling the delay

- Hemodynamic response function
 - Real data was used to find good models for the hemodynamic response

Stimulus

HRF (double gamma)

Convolution

Combine HRF and expected neural response

Typically model derivative of convolved HRF to adjust for small differences in onset (<1s)

Different HRF's

Too symmetric

Different HRF's

Too symmetric

Basic shape okay, but no post stimulus undershoot

Different HRF's

Too symmetric

Basic shape okay, but no post stimulus undershoot

Includes post stimulus undershoot

Assumptions of canonical HRF

- The width, height and delay are correct
- Lindquist & Wager (2007)
 - Fit H/W/T separately
 - Works okay-ish

Finite impulse response model

- FIR
 - Make no assumption about the shape of the HRF

Constrained basis set

 Lower the number of regressors in the model by using a basis set

 Constrained to shapes that are reasonable for HRF shapes

Constrained basis set

Basis set

HRF possibilities

FLOBS

- fMRIB Linear Optimal Basis Sets
 - Generates a set of basis sets to model signal
 - Specify ranges for different portions of the hrf

Comparison

More thoughts about canonical HRF

- Advantages:
 - Simpler analysis
 - Easily interpretable outcome
 - Simplifies group analysis
- Disadvantages
 - Biased if canonical HRF is incorrect

Unbiased basis sets

- Advantages
 - Not biased towards a particular shape
 - Allows testing of hypotheses about specific HRF parameters
- Disadvantages
 - Less powerful
 - Makes group analysis more difficult
 - Tend to overfit the data (i.e., fit noise)

We can make a design matrix!

- Start with task blocks or delta functions
- Convolve
- Estimate the GLM and carry out hypothesis!

Convolved Boxcar

$$t = \frac{0.66}{1.22 \times 0.06} = 9.02$$

Convolved Boxcar

$$t = \frac{0.66}{1.22 \times 0.06} = 9.02$$

The Noise

- White noise
 - All frequencies have similar power
 - Not a problem for OLS

More Noise

- Colored noise
 - Has structure
 - OLS needs help!

What about the drift?

Sources

- Head motion
- Cardiac noise
- Respiratory noise
- Scanner noise

What the noise looks like

Power spectra of noise data (Zarahn, Aguirre, D' Esposito, NI, 1997)

The 1-2 punch Highpass filter Prewhitening 100

Typically not used

- Remove low frequency noise
 - SPM: Adds a discrete cosine transform basis set to design matrix

- FSL: Gaussian-weighted running line smoother
 - Step 1: Fit a Gaussian weighted running line

- FSL: Gaussian-weighted running line smoother
 - Step 1: Fit a Gaussian weighted running line

 Step 2: Subtract Gaussian weighted running line fit

Filter cutoff

- High, but not higher than paradigm frequency
 - Look at power spectrum of your design and base cutoff on that
 - Block design: Longer than 1 task cycle...
 usually twice the task cycle
 - Event related design: Larger than 66 s (based on the power spectrum of a canonical HRF of a single response)

Highpass vs lowpass filtering

What does it do to the signal??

Woolrich et al, NI 2001

Filtering Conclusions

- Highpass filter
 - -Yes!
 - Just don't remove your signal
- Lowpass filter
 - No (typically)
 - Tends to remove signal

Model with HP filter

$$Y = X\beta$$

Model with HP filter

$$Y = X\beta$$

Convolution & HP filter

Punch 2: Prewhitening

- Remember Gauss Markov?
 - If our errors are distributed with mean 0, constant variance and not temporally autocorrelated then our estimates are unbiased and have the smallest variance of all unbiased estimators.
 - Uh oh,

$$Y = X\beta + \epsilon$$

$$Cov(\epsilon) =$$

$$Y = X\beta + \epsilon$$

$$Cov(\epsilon) =$$

- Matrix magic
 - Find a matrix K such that

$$Cov(K\epsilon) =$$

Estimate this GLM

$$KY = KX\beta + K\epsilon$$

- Step 1: Fit the linear regression ignoring temporal autocorrelation
- Step 2: Use residuals from first regression to estimate temporal autocorrelation to obtain K
- Step 3: Create prewhitened model and estimate in usual way

Estimating V

- There's a bias problem....
 - SPM uses a global covariance estimate to help with this
 - FSL uses a local estimate, but smoothes it

Convolution, HP filter, Whitening

$$t = \frac{0.66}{0.954 \times 0.08} = 8.65$$

Scaling

- Grand Mean Scaling (good)
 - Removes intersession variance
 - Allows us to combine data across subjects
 - Whole 4D data set is scaled by a single number
 - Automatically done in software packages

Scaling

- Proportional scaling aka Intensity normalization (not good)
 - Forces each volume of 4D dataset to have the same mean
 - Also done by modeling the global signal
 - Idea is to remove background activity

Intensity Normalizaton

without

with

Signal is lost and negative activation artifacts

Other modeling considerations

Adding the derivative of the HRF

Adding motion parameters to the model

Model HRF & Derivative

"Shifted" HRF

Temporal derivative

- We model the derivative, but don't study inferences of it
 - Lindquist, et al (NI, 2008) suggest this is a bad idea...may lead to bias

Convolution option . . . which one should you use?

Highpass filter (3 places!!)

 Use FILM prewhitening X General Linear Model Don't Add Motic EVs Contrasts & F-tests Voxelwise Confo Number of original EVs 1 BETA OPTION: . EV name Basic shape: Square -Full mode Off (s) 30 30 \$ On (s) Go Utils Phase (s) Stop after (s) Convolution: Gamma -Phase (s) Stddev (s) Mean lag (s) 6 Apply temporal filtering Efficiency Done View design

X FEAT - FMRI Expert Analysis Tool v6.00

First-level analysis - Full analysis -

Misc Data Pre-stats Registration Stats Post-stats

Turns it on for design

Intensity normalization

• • •	X FEAT - FMRI Expert Analysis Too	ol v6.00	
	First-level analysis Full analysis	/sis —	
Misc Data Pre-	stats Registration Stats P	ost-stats	
Alternative referen	nce image 🔟		
Motion correction:	MCFLIRT -		
B0 unwarping 🗖			
Slice timing correct	tion: None —		
BET brain extraction	on 🗖	D NOT	1 1 1 1 1
Spatial smoothing f	FWHM (mm) 5		check this.
Intensity normaliza	ation 🗖	Again, d	nn't usa
Temporal filtering	Perfusion subtraction Highp	ass - Again, un	<u>Jii t use</u>
MELODIC ICA data	a exploration 🔲	intensity	normalizatior
Go Sav	ve Load Exit	Help Utils	

Questions?