《大学物理 BI》作业 No. 11 变化中的磁场和电场

班级	学号	· 5	姓名	成绩

- 1、掌握与理解法拉第电磁感应定律,特别是公式中负号的意义,会用它正确判定感应电动势 的方向:
- 2、理解动生电动势和感生电动势的概念,掌握动生电动势和感生电动势的计算方法。
- 3、理解位移电流的物理意义。并能计算简单情况下的位移电流:
- 4、掌握麦克斯韦方程组的积分形式,并理解方程组中各方程式的物理意义。
- 一、选择题(6 小题, 每题 4 分, 共 24 分)
- 1. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等, 则不计自感时[]
 - A. 铜环中有感应电动势, 木环中无感应电动势;
 - B. 铜环中感应电动势大, 木环中感应电动势小;
 - C. 铜环中感应电动势小, 木环中感应电动势大;
 - D. 两环中感应电动势相等。

答案: D

答案解析:由电磁感应,两环面的磁通量随电流的变化率相等,则感应电动势相等。

- 2. 一块铜板放在磁感应强度正在减小的磁场中时,铜板中出现涡流(感应电流)将[]
 - A. 加速铜板中磁场的增加
- B. 减缓铜板中磁场的增加
- C. 对磁场不起作用
- D. 使铜板中磁场反向

答案: A

答案解析: 根据楞次定律, 感应电流的磁场总是力图阻碍原磁场的变化。

- 3. 如图所示,导体棒AB在均匀磁场B中绕通过C点的垂直于棒长且沿磁场方向的轴OO'转动 (角速度 $\vec{\omega}$ 与 \vec{B} 同方向),BC的长度为棒长的 $\frac{1}{3}$,则 []
 - A. A点比B点电势高; B. A点与B点电势相等;
 - C. A点比B点电势低; D. 有稳恒电流从A点流向B点。

答案: A

答案解析: 设棒长为L, 因为 $U_B - U_C = \int (\vec{v} \times \vec{B}) \cdot d\vec{l} = \frac{\omega B}{2} \left(\frac{L}{3}\right)^2$, $U_A - U_C = \int (\vec{v} \times \vec{B}) \cdot d\vec{l} = \frac{\omega B}{2} \left(\frac{2L}{3}\right)^2$

> 所以 $U_A - U_B = (U_A - U_C) - (U_B - U_C) > 0$, 故A点电势高。 没有形成闭合回路,不会有稳恒电流从A点流向B点。故 D 错。

4. 一无限长直导体薄板宽度为l,板面与Z轴垂直,板的 长度方向沿Y轴,板的两侧与一个伏特计相接,如图。 整个系统放在磁感应强度为 \vec{B} 的均匀磁场中, \vec{B} 的方向 沿Z轴正方向,如果伏特计与导体平板均以速度vi向Y 轴正方向移动,则伏特计指示的电压值为[

A. 2*vBl*

C. vBl

D. $\bar{0}$

答案: D

答案解析: 在伏特计与导体平板运动过程中, $\varepsilon_{ab} = \varepsilon_{dc}$,整个回路 $\Sigma \varepsilon = 0$, i = 0, 所以伏 特计指示 V=0。

5. 如图, 矩形区域为均匀稳恒磁场, 半圆形闭合导线回路在纸面内绕轴0作逆时针方向匀角 速度转动,0点是圆心且恰好落在磁场的边缘上,半圆形闭合导线完全在磁场外时开始计 时。图 A---D 的 ε – t函数图像中哪一条属于半圆形导线回路中产生的感应电动势?[

答案: A

答案解析: $\varepsilon = \frac{\mathrm{d}\Phi}{\mathrm{d}t}$, $\Phi = \frac{B}{2}R^2\theta$ 。所以, $\varepsilon = \frac{B}{2}R^2\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{B}{2}R^2\omega$ 。由该式可知, ε 大小恒定,只 是在中增加或减少时指向不同。

6. 反映电磁场基本规律的麦克斯韦方程组的积分形式为:

(1)
$$\oint_{\mathcal{S}} \vec{D} \cdot d\vec{S} = \int_{V} \rho dV$$

$$(2) \oint_{S} \vec{B} \cdot d\vec{S} = 0$$

(3)
$$\oint_{S} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$

(3)
$$\oint_{S} \vec{E} \cdot d\vec{l} = -\int_{S} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{S}$$
 (4) $\oint_{L} \vec{H} \cdot d\vec{l} = \int_{S} \left(\vec{J}_{0} + \frac{\partial \vec{D}}{\partial t} \right) \cdot d\vec{S}$

请判断下面哪一个说法是正确的[]

- A. 方程(1)表明变化的磁场一定伴有电场;
- B. 方程(2)表明磁感应线是无头无尾的;
- C. 方程(3) 表明变化的电场一定伴有磁场;
- D. 方程(4)表明电荷总伴有电场。

答案: B

答案解析: 参考本章教材关于麦克斯韦方程组内容的说明。

- 二、判断题(6小题,每题3分,共18分)
- 1. 固定线圈的磁场,强度突然变小,则线圈中感应电流产生的磁场方向和原外磁场方向一 致。[]

答案: T

答案解析: 根据楞次定律, 感应电流的磁场总是力图阻碍原磁场的变化。

2. 磁场为零的地方,感生电场也为零。[]

答案: F

答案解析: 如通以线性增加电流的长直螺旋管,在螺旋管外磁场为零,但感生电场不零。

3. 位移电流可以产生热效应。[]

答案: F

答案解析: 位移电流只表示电场的变化率,与传导电流不同,它不产生热效应、 化学效应等。

4. 一个没有连接电源的闭合导线在恒定且均匀的磁场中做匀速运动,导线上不会产生焦耳 热效应。[]

答案: T

答案解析: 焦耳热是电流的一种热效应,闭合导线在均匀磁场中匀速运动不会产生感应电动势,因而也不会产生感应电流。

5. 法拉第电磁感应定律 $\varepsilon=-\frac{d\phi}{dt}$,负号表示 ε 与 ϕ 方向相反。[]

答案: F

答案解析: 负号表示感应电动势的指向与磁通量变化之间的关系,即选定回路的绕行方向,并规定感应电动势指向与回路绕行方向一致时为正,反之为负。磁通量与回路绕行方向呈右手螺旋关系时为正,反之为负。

6. 在有磁场变化着的空间内,如果没有导体存在,则该空间有感应电场但无感应电动势。

答案: F

答案解析: 法拉第电磁感应定律告诉我们, 变化的磁场会产生电场, 且无论有无导体, 感应电动势都存在。

- 三、填空题(6小题,共18分)
- 1. 在磁感强度为 \vec{B} 的磁场中,以速率v垂直切割磁力线运动的一长度为L的金属杆,相当于_____,它的电动势 ε =____,产生此电动势的非静电力是____。

答案:一个电源: vBL: 洛伦兹力

2. 将条形磁铁插入与冲击电流计串联的金属环中,有 $q=2.5\times 10^{-5}$ C的电荷通过电流计,若连接电流计的电路总电阻 $R=30\Omega$,则穿过环的磁通的变化 $\Delta \Phi=$ 。

答案: 7.5×10⁻⁴(Wb)

答案解析: $|q| = \frac{\Delta \Phi}{R}$,所以 $\Delta \Phi = qR = 2.5 \times 10^{-5} C \times 30\Omega = 7.5 \times 10^{-4}$ (Wb)

- 3. 如图所示,在一长直导线L中通有电流I,ABCD为一矩形 线圈,它与L皆在纸面内,且AB边与L平行。
 - (1)矩形线圈在纸面内向右移动时,线圈中感应电动势方向为____。
 - (2)矩形线圈绕AD边旋转,当BC边已离开纸面正向外运动时,线圈中感应动势的方向为____。

答案: ADCBA绕向: ADCBA绕向

答案解析:(1)因为回路ADCBA中,垂直纸面向里的磁通减少,感应电动势为顺时针方向。

- (2) 因为回路ADCBA中,垂直纸面向里的磁通减少,感应电动势为顺时针方向。
- 4. 如图所示,电量Q均匀分布在一半径为R、长为L (L>>R) 的绝缘长圆筒上。一单匝矩形线圈的一个边与圆筒的轴线重合。若筒以角速度 $\omega=\omega_0\left(1-\frac{t}{t_0}\right)$ 线性减速旋转,则线圈中的

感应电流为。

答案: 0

答案解析: 圆筒内磁感应强度平行于单匝线圈平面,则

$$\Phi = \int \vec{B} \cdot d\vec{S} = 0$$
, $\varepsilon_i = \frac{d\Phi}{dt} = 0$, $I = \frac{\varepsilon_i}{R} = 0$

5. 磁换能器常用来检测微小的振动。如图,在振动杆的一端固接一个N匝的矩形线圈,线圈的一部分在匀强磁场 \vec{B} 中,设杆的微小振动规律为: $x = A\cos\omega t$ 。则线圈随杆振动时,线圈中的感应电动势为_____。

答案: NBbAω sin ωt

答案解析:由法拉第电磁感应定律,可得线圈中感应电动势

为:
$$\varepsilon = -N \frac{d\Phi}{dt} = -NBb \frac{dx}{dt} = NBbA\omega \sin \omega t$$

6. 桌子上水平放置一个半径 $r=10{
m cm}$ 的金属圆环,其电阻 $R=1\Omega$ 。若地球磁场磁感强度的竖直分量为 $5\times 10^{-5}{
m T}$ 。那么将环面翻转一次,沿环流过任一横截面的电荷 q=______。

答案: 3.14×10^{-6} (C)

答案解析:将环面翻转一次,穿过金属圆环的磁通量改变为 $\Delta \Phi_m = 2B\pi r^2$,故将环面翻转一次,沿环流过任一横截面的感应电荷为

$$q = \frac{\Delta \Phi_m}{R} = \frac{2B\pi r^2}{R} = \frac{2\times 5\times 10^{-5}\times 3.14\times 0.1^2}{1} = 3.14\times 10^{-6} (\text{C})$$

四、计算题(3小题)

1. (10 分) 如图所示,一电荷线密度为 λ 的长直带电线(与一正方形线圈共面并与其一对边平行),以变速率v = v(t)沿着其长度方向运动,正方形线圈中的总电阻为R,求t时刻正方形线圈中感应电流i(t)的大小(不计线圈自身的自感)。

解: 长直带电线运动相当于 $I = \lambda v(t)$ 的长直电流,在正方形线圈内的磁通量为:

$$\Phi = \int \vec{B} \cdot d\vec{S} = \int_0^a \frac{\mu_0 I}{2\pi (a+x)} a dx = \frac{\mu_0 I a}{2\pi} \ln 2 \qquad (3 \%)$$

由法拉第电磁感应定律有: t时刻正方形线圈中感应动势大小为

$$|\varepsilon_i| = \left| \frac{\mathrm{d}\Phi}{\mathrm{d}t} \right| = \left| \frac{\mu_0 a}{2\pi} \ln 2 \cdot \frac{\mathrm{d}I}{\mathrm{d}t} \right| = \ln 2 \frac{\mu_0 \lambda a}{2\pi} \left| \frac{\mathrm{d}v(t)}{\mathrm{d}t} \right| \tag{3 }$$

感应电流的大小为
$$|i(t)| = \frac{|\varepsilon_i|}{R} = \frac{\mu_0 \lambda a}{2\pi R} \ln 2 \left| \frac{\mathrm{d}v(t)}{\mathrm{d}t} \right|$$
 (4分)

- 2. (15 分) 在图示的电路中,导线AC在固定导线上向右匀速平移,速度v = 2 m/s。设 $\overline{AC} = 2 \text{ m/s}$ 5cm,均匀磁场随时间的变化率 $\frac{dB}{dt}$ = -0.1 T/s,某一时刻B = 0.5 T, x = 10 cm,以该点 为计时起点t=0。求
 - (1) 此时动生电动势的大小:
 - (2) 总感应电动势的大小:
 - (3) 随着AC的运动,动生电动势大小如何变化?

解: (1) 设以B = 0.5 T的时刻为计时起点t = 0,则 均匀磁场随时间的变化规律为B = 0.5 - 0.1t (T) 导线AC运动时包围的面积S随时间的变化规律为

$$S = 0.05(0.1 + 2t) \text{ (m}^2\text{)}$$

则任意时刻导线AC运动的动生电动势大小为

$$\varepsilon_{\bar{z}\! j \pm} = \int_{c}^{A} (\vec{v} \times \vec{B}) \cdot d\vec{l} = vB\overline{AC}$$

$$= 2 \times (0.5 - 0.1t) \times 0.05 = 0.05 - 0.01t \text{ (V)} = 50-10t \text{ (mV)} \text{ (3 } \%)$$

t = 0时刻,AC运动的动生电动势的大小为

$$\varepsilon_{\text{H}/\text{H}} = 50 - 10 \times 0 = 50 \text{(mV)}$$
 (2 $\%$)

(2) 总感应电动势大小为

$$\varepsilon = \frac{d\Phi}{dt} = \frac{d(BS)}{dt} = \frac{d}{dt} [(0.5 - 0.1t) \times 0.05 \times (0.1 + 2t)]$$
$$= 0.0495 - 0.02t(V) = 49.5 - 20t \text{ (mV)}$$
 (3 \(\frac{\psi}{2}\))

t = 0时刻,总感应电动势的大小为 $\varepsilon = 49.5 - 20 \times 0 = 49.5 (mV)$ (3分)

- (3) 由 $\varepsilon_{\text{动}\pm} = 50-10t \text{ (mV)}$ 知,动生电动势随着AC运动而减小。(2分)
- 3.(15 分)一内外半径分别为 R_1 、 R_2 的均匀带电平面圆环,电荷面密度为 σ ,其中心有一半 径为r的导体小环 $(R_1 \gg r)$,二者同心共面如图。设带电圆环以变角速度 $\omega = \omega(t)$ 绕垂直 于环面的中心轴旋转,导体小环中的感应电流i等于多少?方向如何(已知小环的电阻为 R') ?
- \mathbf{M} : 带电平面圆环的旋转相当于圆环中通有电流I。在 R_1 与 R。之间取半径为R、宽度为dR的环带,环带内有电流

dI在圆心O点处产生的磁场

$$dB = \frac{\mu_0 dI}{2R} = \frac{1}{2} \mu_0 \sigma \omega(t) dR \qquad (2 \text{ }\%)$$

 $\mathrm{d}B = \frac{\mu_0 \mathrm{d}I}{2R} = \frac{1}{2} \mu_0 \sigma \omega(t) \mathrm{d}R$ (2分) 由于整个带电环面旋转,在中心产生的磁感应强度的大小 为

$$B = \frac{1}{2}\mu_0\sigma\omega(t)(R_2 - R_1) \qquad (2 \frac{4}{7})$$

选逆时针方向为小环回路的正方向,则小环中

$$\begin{split} \phi \approx \frac{1}{2} \mu_0 \sigma \omega(t) (R_2 - R_1) \pi r^2 & \textbf{(2 分)} \\ \varepsilon_i = -\frac{\mathrm{d} \sigma}{\mathrm{d} t} = -\frac{\mu_0}{2} \pi r^2 (R_2 - R_1) \sigma \frac{\mathrm{d} \omega(t)}{\mathrm{d} t} & \textbf{(2 分)} \\ i = \frac{\varepsilon_i}{R'} = -\frac{\mu_0 \pi r^2 (R_2 - R_1) \sigma}{2R'} \cdot \frac{\mathrm{d} \omega(t)}{\mathrm{d} t} & \textbf{(2 分)} \\ \bar{\rho} \text{ (2 分)} \\ \dot{\rho} \text{ (2)} \\$$