

M INDSPORE CHALLENGE Pathology Diagnosis 2021 COMPUTER VISION IDENTIFYING CANCER CELLS

TIMELINE

Al Image Pathology Diagnosis Trianing 20 SEP 2021

Briefing Session 28 SEP 2021

Final Pitching 22 OCT 2021

16 SEP 2021 MindSpore Fundamental Traning 24 SEP 2021 Registration Deadline

15 OCT 2021 Model Submission Deadline

26 OCT 2021 Award Ceremony

BRIEF INTRODUCTION

MindSpore is an Open AI framework that supports the best Ascend matching and multi-processor architecture for

Your team's goal is to develop and design an AI model with the assistance of MindSpore to locate and classify cancer cells in pathological images.

WHO & WHY TO PARTICIPATE

Postgraduate Students / Researchers / Al Companies

·Win a chance to cooperate with Huawei ·Attend a series of workshops for free. A Great chance to interact with experts.

WINNER PRIZE

Up to HKD 282,000

Register Now

DEADLINE: 2021.09.24

https://mindsporechallenge.com More Information Join Discord

MindSpore Challenge - Pathology Diagnosis

competition, participants invited use **MindSpore** as the AI training and inference framework, for developing trustworthy AI pathology diagnosis models that ensures *privacy*, *explainable* and *high accuracy*.

Ouota 30 Teams

Team size 1 - 3 Members

Events Workshops, Pitching, Award Ceremony

Competition Stage Model Evaluation and Pitching Stage

Co-organizers

HUAWEI CLOUD

Huawei Cloud Hong Kong

 A leading cloud service provider, committed to bringing affordable, effective, and reliable cloud and AI services through technological innovation.

Huawei Hong Kong Research Center

- Conducting researches in AI, fundamental theory, chips microarchitecture, software engineering, trustworthy software and so on.
- 250+ researchers, >48% PhD

Hong Kong Science and Technology Parks Corporation

- A public corporation set up by the Hong Kong Government in 2001 to foster the development of innovation and technology in Hong Kong.
- Cultivated successful Innovation and Technology (I&T) companies, formed strong local and international partnership networks and created a thriving community

Guangzhou LBP Medicine Science & Tech. Co., Ltd

- Founded in 2005. The first listed company on the Science and Technology Board of the Shanghai Stock Exchange in the field of pathology diagnosis in China. (Securities Code: 688393)
- More than 500 registered/recorded products.
- Covering nearly 1,800 medical institutions in China.

Guangzhou Bingli Technology Co., Ltd.

- A subsidiary of LBP Medicine, founded in 2017.
- The real-time visual field sharing system and pathology medical image analysis and processing system are widely used in intelligent diagnosis, data management, and data quality control.

Competition Timeline

Final Pitching & Award Ceremony

Final Pitching

Pate 22 October 2021 (Friday)

Venue Inno2, 17W, Hong Kong Science Park

Time **2:30pm**

Agenda

- Welcoming Speech

Solution Pitching

- On-site Evaluation

Award Ceremony

Event Huawei Cloud Summit 2021

Date 26 October 2021 (Tuesday)

Venue Grand Hyatt Hong Kong

Time Afternoon

Prizes!

Winning Teams Award	Prizes per Team
Model Score Winner	HKD 60,000 Cash + HKD 12,000 Huawei Cloud Credit
Model Score Runner-up	HKD 45,000 Cash + HKD 6,000 Huawei Cloud Credit
Pitching Score Winner	HKD 45,000 Cash + HKD 6,000 Huawei Cloud Credit
Pitching Score Runner-up	HKD 30,000 Cash + HKD 6,000 Huawei Cloud Credit
Special Prize for Explainability	Souvenirs up to HKD 900 + HKD 1,500 Huawei Cloud Credit (max: 30 winners)

Problem Statement

Train a MindSpore AI model to identify locations and classifications of cancer cells in pathological images. The AI Models will assist pathologists in the diagnosis of peripheral pulmonary diseases.

This is a form of **multi-label object detection**.

Classification:

 Class of diagnosed cell

Location:

- Bounding Boxes

Class	English Name	Subclass	Example
scc	Squamous Cell Carcinoma	NSCLC	0000
AC	Adenocarcinoma	NSCLC	
SCLC	Small Cell Lung Cancer	-	A.
NSCLC	Non-Small Cell Lung Cancer	-	

Model Evaluation - Evaluation Criteria

$$ext{Classification Score} = rac{1}{|M|} \sum_{i \in M} ext{FROC}_i$$

$$ext{AUC} = rac{1}{M imes N} \sum_{i \in ext{positive class}} rank_i - rac{M(1+M)}{2}$$

Accuracy - FROC

- The trained MindSpore AI models should *accurately locate* and *classify* cancer cells.

Explainability (Bonus) - AUC

- The trained MindSpore AI models should provides *pixel level feature attribution* as an explanation for the task!

Model Score = Accuracy Score * 0.8 + Explainable Score * 0.2

The top 6 highest model score teams are invited to enter the FINAL PITCHING

Brief Introduction of Lung Cancer

Small cell lung cancer (SCLC)

Their treatment and prognoses (outlook) are often similar.

Brief Introduction of Bronchi Brushing

https://www.youtube.com/watch?v=V4Y5U7UU27Y

Learn more about Pathology Diagnosis and Explainable Al

Join the 2nd training workshop at 2:30pm on 20 SEP

Dr. Lawrence Chan Associate Professor Department of Health Technology and Informatics The Hong Kong Polytechnic University

Dr. Yongxiang Huang AI Researcher Huawei Hong Kong Research Center

Register Now!

OFFICIAL WEBSITE
Sign Up!

RULE BOOK & GUIDELINES

Get Informed

Huawei Cloud

Elastic Cloud Server

ModelArts

ELASTIC CLOUD SERVICE (ECS)

A powerful compute engine for you to deploy any application

HUAWEI CLOUD

Object Storage Service

OBJECT STORAGE SERVICE (OBS)

A **cloud storage service** optimized for storing massive amounts of data

MODELARTS

A one-stop **development platform** for AI developers

AND MANY MORE...

Login IAM

Press IAM User in Login Page

Get your user_id from Discord!

IAM User Login

Login with Credentials!

Username: hwstaff_msc21_tutor

lam: user_XX

Password: msc2021!

Change the Region to CN-North-Beijing4

ModelArts -> Notebook

https://console.huaweicloud.com/modelarts/?region=cn-north-4#/dev-container

Go to Service List, Search ModelArts

Click DevEnviron > Notebooks

Create your own notebook

Create Notebook for Beginner Tutorial

Name:

gpu_user_XX

Work Environment:

GPU algorithm development and training

Flavour:

Ascend: 1*Ascend 910|CPU: 24vCPUs

Wait for the creation to finish and you can click Open

Hands on time!

https://github.com/MindSporeChallenge21/resources

Download required notebooks In "resources" repository.

Related Resources for Participants

Jupyter Notebook for MindSpore Fundamental Training

- Time: 2:30 pm- 4:30 pm
- Location: Al PLUG Training Room, 2/F, Building 19W, Hong Kong Science Park
- Content:
 - o MindSpore basic training, building in-depth learning networks.
 - Learn how to utilize the AI computing resources on Huawei Cloud for model training and inferencing.
- Resources:
 - Beginner Jupyter Notebook Tutorial [60.2 KB]
 - o Intermediate Jupyter Notebook Tutorial [401 KB]

Drag and drop the file into the empty region to upload!

What is MindSpore?

MindSpore

An **Open AI-framework** that supports the multi-processor architectures developed by Huawei.

It provides a unified APIs and end-to-end AI capabilities for AI model development, execution and deployment in all scenarios, including cloud, edge and devices.

Friendly Development

Experience

Fully Unleashing Hardware Performance

Quick Deployment in All Scenarios

DL Python Modules

	Dataset Preparation and Preprocessing	Network Construction and Training	Explainable XAI
MindSpore Modules MindSpore MindSpore	mindspore.dataset: Complete solution equipped with vision and text operators.	mindspore.nn: network constructions mindspore.ops: common operators in neural networks mindspore.model: defining model, optimizers and loss function mindspore.train: provides common training utilities	mindspore .explainer: Provides methods to evaluate generate saliency maps/other explainable figures from inputs.
Tensorflow Pytorch Modules	tf.data torch.utils.data	tf.keras.Model torch.nn	-

MindSpore Model Design and Training

Dataset

```
dataset = ms.dataset.MnistDataset()

dataset.batch # batching data
dataset.map # preprocessing data
```

Network

```
class Net(ms.nn.Cell):
    def __init__(self):
        super(Net, self).__init__()
        self.flatten = ms.nn.Flatten()
        self.dense = ms.nn.Dense(1024, 10)

def construct(self, x):
        x = self.flatten(x)
        x = self.dense(x)
        return x

net = Net()
```

import mindspore as ms

Model

```
loss = ms.nn.SoftmaxCrossEntropyWithLogits()
optimizers = ms.nn.Adam(
  net.trainable_params(),
  learning_rate=0.01
)

model = ms.Model(
  net,
  loss,
  optimizers,
  metrics={"Accuracy": ms.nn.Accuracy()}
)

model.train(epoch=10, dataset)
```

AI APPS

Agenda

Part I - Beginner Tutorial

- MindSpore Dataset
- MindSpore Neural Network Design
- MindSpore Model Training

Part II - Intermediate Tutorial

- Training a YoloV3 model
- Using ModelArts, OBS and Moxing Framework
- Submission to Portal

Using GPU Notebook

Download Jupyter Notebook <a href="https://downgit.github.io/#/home?url=https://github.io/#/home?url=ht

ub.com/MindSporeChallenge21/resources/blob/ main/notebook/MindSpore%20Challenge%20Tu torial%20Beginner.ipynb

Using Ascend Notebook

Download Jupyter Notebook https://downgit.github.io/#/home?url=https://github.com/MindSporeChallenge21/resources/blob/main/notebook/MindSpore%20Challenge%20Tutorial%20Intermediate.ipynb

Another Notebook for Intermediate Tutorial

Name:

ascend_user_XX

Work Environment:

Choose, Ascend + ARM

Flavour:

Ascend: 1*Ascend 910|CPU: 24vCPUs

