Introducción

Paradigmas de Programación

Lógica de primer orden

1er cuatrimestre de 2024

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Lógica proposicional

Permite razonar acerca de proposiciones.

Ejemplo: Llueve ∨ ¬Llueve

Lógica de primer orden

Permite razonar acerca de elementos sobre los que se predica. Ejemplo:

 $\forall X. (\mathsf{EsPar}(X) \Rightarrow \neg \mathsf{EsPar}(\mathsf{succ}(X)))$

Extiende a la lógica proposicional con términos y cuantificadores.

1

4

¿Para qué tanta lógica? Yo me anoté en computación...

Conexión estrecha entre lógica de primer orden y computación.

En sus orígenes históricos

Problema de la decisión de Hilbert.

En la actualidad

- Computabilidad y complejidad descriptiva.
- ▶ Representación del conocimiento, sistemas multi-agente.
- Inteligencia artificial, razonamiento automático.
- Métodos formales, verificación automática.
- Bases de datos relacionales, lenguajes de consulta.
- Verificación de hardware.
- **.**..
- Fundamento de la programación lógica.

Programación lógica

Ideal de la programación declarativa

Los programas deberían asemejarse a especificaciones.

En particular: programación lógica

► El usuario escribe una fórmula:

$$\exists X. P(X)$$

- ► El sistema busca satisfacer o refutar la fórmula.
- ► En caso de lograr satisfacerla, el sistema produce una salida que verifica la propiedad *P* buscada.

Lenguajes de primer orden

Definición

Un lenguaje de primer orden \mathcal{L} está dado por:

- 1. Un conjunto de **símbolos de función** $\mathcal{F} = \{f, g, h, \ldots\}$. Cada símbolo de función tiene asociada una aridad (≥ 0) .
- 2. Un conjunto de **símbolos de predicado** $\mathcal{P} = \{P, Q, R, \ldots\}$. Cada símbolo de predicado tiene asociada una aridad (≥ 0) .

Términos de primer orden

Ejemplo — el lenguaje $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$\underbrace{0^0 \quad \text{succ}^1 \quad +^2 \quad *^2}_{\text{símbolos de función}}$$

$$=^2$$
 $<^2$

Ejemplo — términos sobre el lenguaje $\mathcal{L}_{aritmética}$

$$+(0, succ(X))$$
 * $(+(X, Y), Z)$

Los símbolos de función de aridad 0 se llaman constantes.

Nota. Usamos notación infija como conveniencia.

$$0 + \operatorname{succ}(X)$$
 $(X + Y) * Z$

Términos de primer orden

Suponemos fijado un lenguaje de primer orden \mathcal{L} y un conjunto infinito numerable de **variables** $\mathcal{X} = \{X, Y, Z, \ldots\}$.

Definición

El conjunto ${\mathcal T}$ de **términos** se define por la siguiente gramática:

$$t ::= X \mid f(t_1,\ldots,t_n)$$

donde:

X denota una variable

f denota un símbolo de función de aridad *n*

7

Fórmulas de primer orden

Recordemos la gramática de las fórmulas en lógica proposicional y extendámosla a lógica de primer orden.

$$\sigma ::= \begin{array}{c|ccccc} \mathbf{P}(t_1,\dots,t_n) & \textbf{fórmula atómica} \\ & \bot & & \text{contradicción} \\ & & \sigma \Rightarrow \sigma & & \text{implicación} \\ & & \sigma \land \sigma & & \text{conjunción} \\ & & \sigma \lor \sigma & & \text{disyunción} \\ & & \neg \sigma & & \text{negación} \\ & & \forall X.\,\sigma & & \textbf{cuantificación universal} \\ & & \exists X.\,\sigma & & \textbf{cuantificación existencial} \end{array}$$

 \mathbf{P} denota un símbolo de predicado de aridad n.

Los cuantificadores ligan una variable X.

Fórmulas de primer orden

Recordemos — el lenguaje $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$0^0 \quad \text{succ}^1 \quad +^2 \quad *^2 \qquad =^2 \quad <^2$$

Ejemplo — fórmulas sobre $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$\forall X. \exists Y. = (+(X, Y), 0)$$

$$\forall X. \forall Y. (\operatorname{succ}(X) = \operatorname{succ}(Y) \Rightarrow X = Y)$$

$$\forall X. (X < 0 \lor X = 0 \lor 0 < X)$$

Fórmulas de primer orden

Una ocurrencia de una variable X en una fórmula está:

ligada si está bajo el alcance de un cuantificador $\forall X/\exists X$, libre si no.

Dos fórmulas que sólo difieren en los nombres de las variables ligadas se consideran iguales.

Ejemplo

$$\forall X.\exists Y. P(X,Y) \equiv \forall Y.\exists X. P(Y,X) \equiv \forall A. \exists B. P(A,B)$$

Fórmulas de primer orden

Notamos $\sigma\{X := t\}$ a la sustitución de las ocurrencias libres de X en la fórmula σ por el término t, evitando la captura de variables.

Ejemplo

Sean:

$$\sigma :\equiv \operatorname{succ}(X) = Y \implies \exists Z. X + Z = Y$$

entonces:

$$\sigma\{X := Z * Z\} \equiv \operatorname{succ}(Z * Z) = Y \implies \exists Z'. (Z * Z) + Z' = Y$$

Estructuras de primer orden

Suponemos fijado un lenguaje de primer orden \mathcal{L} .

Definición

Una **estructura de primer orden** es un par $\mathcal{M} = (M, I)$ donde:

- ▶ *M* es un conjunto **no vacío**, llamado *universo*.
- ▶ *I* es una función que le da una interpretación a cada símbolo.
- ► Para cada símbolo de función **f** de aridad *n*:

$$I(\mathbf{f}): M^n \to M$$

▶ Para cada símbolo de predicado P de aridad *n*:

$$I(\mathbf{P}) \subseteq M^n$$

Estructuras de primer orden

Recordemos — el lenguaje $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

$$0^0 \quad \text{succ}^1 \quad +^2 \quad *^2 \qquad =^2 \quad <$$

Ejemplo — una estructura sobre $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

 $M := \mathbb{N}$ (los elementos son números naturales)

$$I(0) = 0$$

 $I(\operatorname{succ})(n) = n + 1$
 $I(+)(n, m) = n + m$
 $I(*)(n, m) = n \cdot m$ $(n, m) \in I(<) \iff n < m$

Bajo esta estructura, la fórmula $\forall X. X = X + X$ es falsa.

See Jee - antinetica

Recordemos — el lenguaje $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

Estructuras de primer orden

$$0^0 \quad \text{succ}^1 \quad +^2 \quad *^2 \qquad =^2 \quad <^2$$

Ejemplo — otra estructura sobre $\mathcal{L}_{\mathsf{aritm\acute{e}tica}}$

 $M:=\mathcal{P}(\mathbb{R})$ (los elementos son conjuntos de números reales)

$$I(0) = \emptyset$$

 $I(\operatorname{succ})(A) = \{1 + x \mid x \in A\}$
 $I(+)(A, B) = A \cup B$
 $I(*)(A, B) = A \cap B$
 $(A, B) \in I(=) \iff A = B$
 $(A, B) \in I(<) \iff A \subseteq B$

Bajo esta estructura, la fórmula $\forall X. X = X + X$ es verdadera.

Interpretación de términos

Suponemos fijada una estructura de primer orden $\mathcal{M} = (M, I)$.

Definición

Una **asignación** es una función que a cada variable le asigna un elemento del universo:

$$\mathbf{a}:\mathcal{X} \to M$$

Definición – interpretación de términos

Cada término $t \in \mathcal{T}$ se interpreta como un elemento $\mathbf{a}(t) \in M$, extendiendo la definición de \mathbf{a} a términos:

$$a(f(t_1,\ldots,t_n)) = I(f)(a(t_1),\ldots,a(t_n))$$

Interpretación de fórmulas

16

Suponemos fijada una estructura de primer orden $\mathcal{M} = (M, I)$.

Definimos una relación de satisfacción a $\vDash_M \sigma$.

"La asignación **a** (bajo la estructura \mathcal{M}) satisface la fórmula σ ".

$$\mathbf{a} \vDash_{\mathcal{M}} \mathbf{P}(t_1, \dots, t_n)$$
 sii $(\mathbf{a}(t_1), \dots, \mathbf{a}(t_n)) \in I(\mathbf{P})$

$$\mathbf{a} \models_{\mathcal{M}} \sigma \wedge \tau$$
 sii $\mathbf{a} \models_{\mathcal{M}} \sigma$ y $\mathbf{a} \models_{\mathcal{M}} \tau$

$$\mathbf{a} \models_{\mathcal{M}} \sigma \lor \tau$$
 sii $\mathbf{a} \models_{\mathcal{M}} \sigma$ o $\mathbf{a} \models_{\mathcal{M}} \tau$

$$\mathbf{a} \models_{\mathcal{M}} \sigma \Rightarrow \tau$$
 sii $\mathbf{a} \not\models_{\mathcal{M}} \sigma$ o $\mathbf{a} \models_{\mathcal{M}} \tau$

$$\mathbf{a} \models_{\mathcal{M}} \neg \sigma$$
 sii $\mathbf{a} \not\models_{\mathcal{M}} \sigma$

$$\mathsf{a}
ot\models_\mathcal{M} \bot$$

$$\mathbf{a} \models_{\mathcal{M}} \forall X. \sigma$$
 sii $\mathbf{a}[X \mapsto m] \models_{\mathcal{M}} \sigma$ para todo $m \in M$

$$\mathbf{a} \models_{\mathcal{M}} \exists X. \sigma$$
 sii $\mathbf{a}[X \mapsto m] \models_{\mathcal{M}} \sigma$ para algún $m \in M$

$$\mathbf{a} \models_{\mathcal{M}} \sigma \clubsuit \tau$$
 sii $\mathbf{a} \models_{\mathcal{M}} \sigma$ brócoli $\mathbf{a} \models_{\mathcal{M}} \tau$ (Chiste robado de J.-Y. Girard)

Validez y satisfactibilidad

Decimos que una fórmula σ es:

$egin{aligned} ext{V\'aLIDA} \ ext{si } \mathbf{a} Dots_{\mathcal{M}} \sigma \ ext{para toda } \mathcal{M}, \mathbf{a} \end{aligned}$	SATISFACTIBLE si $\mathbf{a} \vDash_{\mathcal{M}} \sigma$ para alguna \mathcal{M}, \mathbf{a}
INVÁLIDA si a $ ot\! ot\! \! ot\! \! \! \! \!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	Insatisfactible si $\mathbf{a} \not\models_{\mathcal{M}} \sigma$ para toda \mathcal{M}, \mathbf{a}

Observaciones

σ es ${ m V\'ALIDA}$	sii	σ no es ${ m Inv}cute{ m ALIDA}$		
σ es Satisfactible	sii	σ no es ${ m Insatisfactibl}$		
σ es ${ m V\'ALIDA}$	sii	$\neg \sigma$ es Insatisfactible		
σ es Satisfactible	sii	$\neg \sigma$ es Inválida		

Ejemplos de validez y satisfactibilidad

Ejemplo

Determinar si son (in)válidas/(in)satisfactibles:

- 1. $\forall X. X = X$ satisfactible e inválida 2. $\forall X. P(X) \Rightarrow \forall X. P(f(X))$ válida (: satisfactible)
- 3. $\forall X. \neg P(X) \land \exists X. P(X)$ insatisfactible (: inválida)
- 4. $\forall X. \exists Y. P(X, Y) \Rightarrow \exists Y. \forall X. P(X, Y)$ satisfactible e inválida 5. $\forall X. (P(X) \Rightarrow \sigma) \Rightarrow (\exists X. P(X)) \Rightarrow \sigma \text{ con } X \notin \text{fv}(\sigma)$ válida

El problema de la decisión

Querríamos un algoritmo que resuelva el siguiente problema:

Entrada: una fórmula σ .

Salida: un booleano que indica si σ es válida.

No es posible dar un algoritmo que cumpla dicha especificación.

20

Deducción natural

La deducción natural proposicional se extiende a primer orden.

Igual que antes:

- 1. Un **contexto** Γ es un conjunto finito de fórmulas.
- 2. Un **secuente** es de la forma $\Gamma \vdash \sigma$.

Todas las reglas de deducción natural proposicional siguen vigentes. Se agregan reglas de introducción y eliminación para \forall y \exists .

Axioma	AX		
Conjunción	$\wedge I$	$\wedge \mathrm{E}_1$	$\wedge \mathrm{E}_2$
Disyunción	$\forall I_1$	$\bigvee I_2$	$\bigvee E$
Implicación	\Rightarrow I	\Rightarrow E	
Negación	$\neg I$	$\neg \mathrm{E}$	
Contradicción	$\perp \mathrm{E}$		
Lógica clásica	$\neg\neg E$		
Cuantificación universal	AI	$\forall \mathrm{E}$	
Cuantificación existencial	$\exists I$	$\exists \mathbf{E}$	

Cuantificación universal

Cuantificación universal

Regla de eliminación

$$\frac{\Gamma \vdash \forall X.\,\sigma}{\Gamma \vdash \sigma\{X := t\}} \forall E$$

Regla de introducción

$$\frac{\Gamma \vdash \sigma \quad X \notin \mathsf{fv}(\Gamma)}{\Gamma \vdash \forall X.\,\sigma} \forall \mathsf{I}$$

Ejemplo

$$\frac{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \forall X. (\mathbf{P}(X) \land \mathbf{Q}(X))}{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \mathbf{P}(\mathbf{f}(X)) \land \mathbf{Q}(\mathbf{f}(X))} \qquad \forall \mathbf{E}_{\mathbf{F}(X)} \\
\frac{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \mathbf{P}(\mathbf{f}(X))}{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \forall X. \mathbf{P}(\mathbf{f}(X))} \qquad \forall \mathbf{I}_{\mathbf{F}(X)} \\
\frac{\forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \vdash \forall X. \mathbf{P}(\mathbf{f}(X))}{\vdash \forall X. (\mathbf{P}(X) \land \mathbf{Q}(X)) \Rightarrow \forall X. \mathbf{P}(\mathbf{f}(X))} \Rightarrow \mathbf{I}_{\mathbf{F}(X)}$$

Cuantificación universal

Ejemplo

$$\frac{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Z. \forall Y. \mathbf{Q}(Z, Y)}{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Y. \mathbf{Q}(Z, Y)} \forall \mathbf{E}$$

$$\frac{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Y. \mathbf{Q}(Z, Y)}{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Z. \mathbf{Q}(Z, Y)} \forall \mathbf{E}$$

$$\frac{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Z. \mathbf{Q}(Z, Y)}{\mathbf{P}(X), \forall X. \forall Y. \mathbf{Q}(X, Y) \vdash \forall Y. \forall X. \mathbf{Q}(X, Y)} \forall \mathbf{E}$$

Cuantificación universal

25

¿Por qué se exige que $X \notin fv(\Gamma)$ en la regla $\forall I$?

Ejemplo — aplicación incorrecta de la regla $\forall I$

 $\frac{\mathsf{EsPar}(N) \vdash \mathsf{EsPar}(N)}{\mathsf{EsPar}(N) \vdash \forall N. \, \mathsf{EsPar}(N)} \Leftarrow \mathsf{Paso de razonamiento inválido}$

26

Cuantificación existencial

Regla de introducción

$$\frac{\Gamma \vdash \sigma\{X := t\}}{\Gamma \vdash \exists X.\,\sigma} \exists I$$

Regla de eliminación

$$\frac{\Gamma \vdash \exists X. \sigma \quad \Gamma, \sigma \vdash \tau \quad X \notin \mathsf{fv}(\Gamma, \tau)}{\Gamma \vdash \tau} \exists \mathsf{E}$$

Ejemplo

Cuantificación existencial

$$\frac{\sigma, \mathbf{P}(f(X)) \vdash \mathbf{P}(f(X))}{\sigma, \mathbf{P}(f(X)) \vdash \mathbf{P}(f(X)) \lor \mathbf{Q}(f(X))} \lor I_{1}} \lor I_{1}$$

$$\frac{\sigma \vdash \sigma}{\sigma, \mathbf{P}(f(X)) \vdash \mathbf{P}(f(X)) \lor \mathbf{Q}(f(X))} \exists_{I}$$

$$\frac{\sigma \vdash \exists X. (\mathbf{P}(X) \lor \mathbf{Q}(X))}{\neg \exists X. (\mathbf{P}(X) \lor \mathbf{Q}(X))} \Rightarrow_{I}$$

$$\vdash \exists X. \mathbf{P}(f(X)) \Rightarrow \exists X. (\mathbf{P}(X) \lor \mathbf{Q}(X))$$

$$\sigma :\equiv \exists X. \, \mathbf{P}(\mathtt{f}(X))$$

Cuantificación existencial

Ejemplo

$$\frac{\sigma, \mathbf{P}(W, W), \mathbf{Q}(X) \vdash \mathbf{P}(W, W)}{\sigma, \mathbf{P}(W, W) \vdash \mathbf{Q}(X) \Rightarrow \mathbf{P}(W, W)} \Rightarrow \mathbf{I}$$

$$\frac{\sigma, \mathbf{P}(W, W) \vdash \mathbf{Q}(X) \Rightarrow \mathbf{P}(W, W)}{\sigma, \mathbf{P}(W, W) \vdash \exists Z. (\mathbf{Q}(X) \Rightarrow \mathbf{P}(W, Z))} \exists \mathbf{I}$$

$$\frac{\sigma \vdash \sigma}{\exists W. \mathbf{P}(W, W) \vdash \exists Y. \exists Z. (\mathbf{Q}(X) \Rightarrow \mathbf{P}(Y, Z))} \exists \mathbf{E}$$

$$\sigma :\equiv \exists W. \mathbf{P}(W, W)$$

Cuantificación existencial

Para pensar

¿Por qué se exige que $X \notin fv(\Gamma, \tau)$ en la regla $\exists E$?

30

Teorema (Gödel, 1929)

Corrección y completitud

Dada una teoría \mathcal{T} , son equivalentes:

- 1. \mathcal{T} es consistente.
- 2. \mathcal{T} tiene (al menos) un modelo.

Corolario

Dada una fórmula σ , son equivalentes:

- 1. $\vdash \sigma$ es derivable.
- 2. σ es válida.

Corolario

Dada una fórmula σ , son equivalentes:

- 1. $\vdash \neg \sigma$ es derivable.
- 2. σ es insatisfactible.

Una sentencia es una fórmula σ sin variables libres.

Una teoría de primer orden es un conjunto de sentencias.

Definición — consistencia

Una teoría \mathcal{T} es *consistente* si $\mathcal{T} \not\vdash \bot$.

Definición — modelo

Una estructura $\mathcal{M} = (M, I)$ es un *modelo* de una teoría \mathcal{T} si vale $\vDash_{\mathcal{M}} \sigma$ para toda fórmula $\sigma \in \mathcal{T}$.

(La asignación es irrelevante pues σ es cerrada).

Algoritmo de unificación

El algoritmo de unificación que conocíamos se adapta a términos de primer orden sólo cambiando la notación:

$$\{X \stackrel{?}{=} X\} \cup E \xrightarrow{\text{Delete}} E$$

$$\{\mathtt{f}(t_1,\ldots,t_n)\stackrel{?}{=}\mathtt{f}(s_1,\ldots,s_n)\}\cup E\quad \xrightarrow{\mathtt{Decompose}}\qquad \{t_1\stackrel{?}{=}s_1,\ldots,t_n\stackrel{?}{=}s_n\}\cup E$$

$$\{t \stackrel{?}{=} X\} \cup E \xrightarrow{\text{Swap}} \{X \stackrel{?}{=} t\} \cup E$$

si t no es una variable

$$\{f(t_1,\ldots,t_n)\stackrel{?}{=}g(s_1,\ldots,s_m)\}\cup E \stackrel{ ext{Clash}}{\longrightarrow} ext{falla}$$
 si $f
eq g$

$$\{X \stackrel{?}{=} t\} \cup E \xrightarrow{\texttt{Occurs-Check}}$$
 falla $\texttt{si} \ X \neq t \ \texttt{y} \ X \in \mathsf{fv}(t)$

Terminación del algoritmo de unificación

Dado un conjunto de ecuaciones de unificación E, definimos:

- \triangleright n_1 : cantidad de variables distintas en E
- ▶ n_2 : tamaño de E, calculado como $\sum_{\substack{t=s \ t = s}} |t| + |s|$
- ▶ n_3 : cantidad de ecuaciones de la forma $t \stackrel{?}{=} X$ en E

Podemos observar que las reglas que no producen falla achican la tripla (n_1, n_2, n_3) , de acuerdo con el *orden lexicográfico*:

	n_1	n_2	n_3
Elim	>		
Decompose	=	>	
Delete	\geq	>	
Swap	=	=	>

Corrección del algoritmo de unificación

Recordemos

- 1. Una sustitución es una función S que le asocia un término S(X) a cada variable X.
- 2. **S** es un **unificador** de E si para cada $(t \stackrel{?}{=} s) \in E$ se tiene que $\mathbf{S}(t) = \mathbf{S}(s)$.
- 3. **S** es **más general** que S' si existe **T** tal que $S' = T \circ S$.
- 4. S es un m.g.u. de E si S es un unificador de E y para todo unificador S' de E se tiene que S es más general que S'. Técnicamente, nos interesan los m.g.u. idempotentes, es decir S(S(t)) = S(t) para todo término t.

Corrección del algoritmo de unificación

Probemos la corrección del algoritmo en caso de éxito.

Sea $E_0 \rightarrow_{\mathbf{S}_1} E_1 \rightarrow_{\mathbf{S}_n} E_2 \rightarrow \ldots \rightarrow_{\mathbf{S}_n} E_n = \emptyset$. Veamos que $\mathbf{S}_n \circ \ldots \circ \mathbf{S}_1$ es un m.g.u. de E. Por inducción en n:

- 1. Si n = 0, la sustitución identidad es un m.g.u. de \emptyset .
- 2. Si n > 0, se tiene:

$$E_0 \rightarrow_{\mathbf{S}_1} E_1$$
 $E_1 \rightarrow_{\mathbf{S}_2} \ldots \rightarrow_{\mathbf{S}_n} E_n = \emptyset$

Por HI, $\mathbf{S}_n \circ \ldots \circ \mathbf{S}_2$ es un m.g.u. de E_1 . Aplicando alguno de los lemas anteriores, se concluye que $\mathbf{S}_n \circ \ldots \circ \mathbf{S}_2 \circ \mathbf{S}_1$ es un m.g.u. de E_0 .

Corrección del algoritmo de unificación

Lema — corrección de la regla Delete **S** m.g.u. de $E \implies$ **S** m.g.u. de $\{X \stackrel{?}{=} X\} \cup E$.

Lema — corrección de la regla Swap

S m.g.u. de $\{t \stackrel{?}{=} s\} \cup E \implies$ **S** m.g.u. de $\{s \stackrel{?}{=} t\} \cup E$.

Lema — corrección de la regla Decompose

S m.g.u. de
$$\{t_1 \stackrel{?}{=} s_1, \dots, t_n \stackrel{?}{=} s_n\} \cup E$$

 \implies **S** m.g.u. de $\{f(t_1, \dots, t_n) \stackrel{?}{=} f(s_1, \dots, s_n)\} \cup E$.

Lema — corrección de la regla Elim

S m.g.u. de
$$E\{X := t\}$$
 y $X \notin fv(t)$
 \implies **S** $\circ \{X := t\}$ m.g.u. de E .

Usar el hecho de que si S(X) = t entonces $S(s\{X := t\}) = S(s)$.

38

Corrección del algoritmo de unificación

La corrección en caso de falla se prueba de manera similar, con lemas que van "hacia adelante" en lugar de "hacia atrás".