General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA TECHNICAL MEMORANDUM

Report No. 53900

TRAJECTORY APPLICATION METHOD (TAM)

By John P. Sheats Aero-Astrodynamics Laboratory

September 12, 1969

NASA

George C. Marshall Space Flight Center Marshall Space Flight Center, Alabama

N70-375.22

(ACCESSION NUMBER)

(PAGES)

(PAGES)

(NASA CR OR TMX OR AD NUMBER)

(CATEGORY)

MSFC - Form 3190 (September 1968)

NASA-GEORGE C. MARSHALL SPACE FLIGHT CENTER

AERO-ASTRODYNAMICS INTERNAL NOTE # 1-67
changed to TM X-53900 on Sept. 12, 1969

TRAJECTORY APPLICATION METHOD (TAM)

By

John P.Sheats

ABSTRACT

A simulation technique (TAM) for the post-flight evaluation of the propulsion system performance has been developed which incorporates the time history trajectory parameters from the post-flight observed trajectory as input. This technique represer a significant reduction in time required to perform stage propulsion system evaluation. The development and some advantages and disadvantages of this technique are given. The propulsion system evaluation was performed on the S-IB stage of AS-201, AS-203, and AS-202 utilizing both the proposed technique and a conventional simulation technique; the results and comparison of both methods are presented. Additional detailed specifications of the TAM program are given in the Appendices.

GEORGE C. MARSHALL SPACE FLIGHT CENTER AERO-ASTRODYNAMICS LABORATORY FLIGHT TEST ANALYSIS DIVISION

Aero-Astrodynamics Internal Note No. 1-67

March 21, 1967

TRAJECTORY APPLICATION METHOD (TAM)

By

John P. Sheats

This note has been prepared for internal use within the Aero-Astrodynamics Laboratory and is transmitted to other agencies only for expediency in special cases. Transfer to parties other than those approved by Aero-Astrodynamics Laboratory Director is not authorized.

TABLE OF CONTENTS

			Page
1.0	INTR	ODUCTION	1
2.0	SIMU	LATION PROBLEMS	1-2
3.0	TAM	DEVELOPMENT	2
	3.1	Altitude and Attitude Effects	2-3
	3.2	Gravity Considerations	3
	3.3	Estimated Instantaneous Adjustments	3-4
	3.4	Overall Adjustments	5
	3.5	Advantages and Disadvantages	5-6
	3.6	Flight Results	6-7
	3.7	Program Description	7
4.0	CONC	LUSIONS	7
APPE	NDIX	A	8-12
APPE	NDIX	в	13-15
APPE	NDIX	C	16
APPE	NDIX	D	17-22

DEFINITION OF SYMBOLS

Symbol

Definition

*AA

Average $*A_m$ between two time intervals printed out at the latter time point.

A_E

Nozzle exit area (Engines I through n).

ALISPO

Average instantaneous sea level specific impulse.

*ALT

Altitude (from OMPT).

Am

Total calculated platform (inertial) acceleration.

*A_

Total platform (inertial) acceleration from Observed Mass Point Trajectory (OMPT).

*AMACH

Average Mach number between t and t_{-1} as observed.

AREA

Cross sectional area of vehicle.

 A_{T}

Throat area (Engines I through n).

AVDFLOX

Average propellant mass loss rate.

AVDMM

Average total weight loss rate of the vehicle.

AVFJ 10

Average total sea !evel longitudinal thrust.

BDRAG

Base drag (input as table or equation).

CD

Drag coefficient (table look-up vs. Mach).

CCDD

Average CD between two time points.

CF

Sea level thrust coefficient.

CFV

Vacuum thrust coefficient (pulled from data tape).

CXCA

Required CD as based on acceleration difference (DA).

CXCAE

Required CD as based on earth-fixed velocity difference (DDVE).

CXCVI

Réquired CD as based on integrated acceleration differences (DDIAT).

DA

Difference in total acceleration (calculated minus measured).

DCXA

Required drag coefficient change at any time as based on acceleration difference (DA).

DCXVE

Required CD change based on DDVE.

DCXVI

Required CD change based on DDIAT.

Definition

Definition

Average vehicle aerodynamic longitudinal drag between t and t-1

DDVE Difference of DVE between two time points.

DDIAT Difference between DIAT from one time point to another divided

by time difference.

DFA Required thrust change at any time as based on acceleration

difference (DA).

DFLOX Propellant mass loss rate (from data tape).

DFVE Required thrust change based on DDVE.

DFVI Required thrust change based on DDIAT.

DIAT Integrated difference between A_m and $*A_m$.

DMA Required mass change at any time as based on acceleration

difference (DA).

DMASS (w) Total vehicle mass loss rate (from data tape).

DMVE Required mass change based on DDVE.

DMVI Required mass change based on DDIAT.

DRAG Total vehicle aerodynamic longitudinal drag.

FAI Total longitudinal drag force.

FB Vertical buoyancy force.

DVE

FE (1-n) Local individual engine turbine exhaust thrust (from data tape)

Difference between calculated and measured earth-fixed velocity

Sea level turbine exhaust for engines (1-n).

F-ENG(I-n) Local engine thrust.

FF Average local thrust (FJI) between t and t_1.

FJI Total local longitudinal thrust.

FJIO Total sea level longitudinal thrust.

FLITT Flight time as measured from first motion.

FMI(F) Total local longitudinal effective force.

FO(1-n) Individual engine sea level thrust.

Symbol Definition

GCTTT (T) Time from guidance reference release.

GRR Guidance reference release time.

IAT Integral of A_m.

*IAT Integral of $*A_m$.

K Vehicle firing direction East of North.

KVAL Thrust multiplier (local thrust correction constant).

LISPO Instantaneous sea level specific impulse.

*MACH Mach number as pulled from OMPT.

MASS (M) Instantaneous mass.

M; Initial vehicle mass.

MM Average mass between t and t_1.

OMPT Observed Mass Point Trajectory or Measured Trajectory.

PAF Partial derivative of thrust with respect to acceleration

difference.

PAM Partial derivative of mass with respect to acceleration

difference.

PAW Partial derivative of flow rate with respect to acceleration

difference.

P_{C(1-n)} Individual engine chamber pressure (from data tape).

PO (P_O) Sea level pressure.

PO-*P Local pressure difference.

*PRESS (*P) Ambient pressure from OMPT.

PVF Partial derivative of thrust with respect to velocity difference

PVM Partial derivative of mass with respect to velocity different

PVW Partial derivative of flow rate with respect to velocity

difference.

*Q Dynamic pressure from OMPT.

*QQ Average dynamic pressure between time points.

Symbol Definition

RADD Radial distance from pad.

*RADD Radial distance from pad from OMPT.

*RHO Local atmospheric density from OMPT.

Radial distance from geocentric center of the earth to launch

pad.

Initial components of the vehicle position vector referenced

to the geocentric center of the earth.

RTIME (†) Range time.

TT Midpoint time between two data points.

VE (V_e) Calculated earth-fixed velocity.

*VE (*V_e) Measured earth-fixed velocity.

VOLUME Total vehicle volume.

φ_O Geodetic latitude of the launch site.

 $\psi_{_{\mathrm{O}}}$ Geocentric latitude of launch site.

ω Angular rotational velocity of earth.

 \ddot{X}_{m} , \ddot{Y}_{m} , \ddot{Z}_{m} Calculated platform (inertial) acceleration components.

 $*\ddot{X}_{m}$, $*\ddot{Y}_{m}$, $*\ddot{Z}_{m}$ Measured platform (inertial) acceleration components.

MATRIX IDENTIFICATION

$$\begin{bmatrix} \phi_{O} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -\cos\phi_{O} & -\sin\phi_{O} \\ 0 & \sin\phi_{O} & -\cos\phi_{O} \end{bmatrix}$$

$$\begin{bmatrix} \omega \end{bmatrix} = \begin{bmatrix} \cos \omega T & -\sin \omega T & 0 \\ \sin \omega T & \cos \omega T & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \dot{\omega} \end{bmatrix} = \begin{bmatrix} -\omega \sin \omega T & -\omega \cos \omega T & 0 \\ \omega \cos \omega T & -\omega \sin \omega T & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \dot{\omega}_{O} \end{bmatrix} = \begin{bmatrix} 0 & -\omega & 0 \\ \omega & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\frac{1}{r_0} = \begin{bmatrix} -R_0 \cos K \sin B_0 \\ R_0 \cos B_0 \\ R_0 \sin K \sin B_0 \end{bmatrix} = \begin{bmatrix} X_0 \\ Y_0 \\ Z_0 \end{bmatrix}$$
 where:
$$\frac{1}{r_0} = \begin{bmatrix} R_0 \cos K \sin B_0 \\ R_0 \cos B_0 \\ R_0 \sin K \sin B_0 \end{bmatrix} = \begin{bmatrix} X_0 \\ Y_0 \\ R_0 \cos B_0 \end{bmatrix}$$

1.0 INTRODUCTION

The post-flight propulsion system analysis on each Saturn stage is usually performed by two methods. The first method of determining the stage propulsion system flight performance is a reconstruction of the telemetered flight data including calculated propellant residuals. This flight reconstruction method is a mathematical model of the stage propulsion system utilizing a table of influence coefficients to determine engine performance. The second method utilizes a trajectory simulation to generate adjustments that are enforced on the results from the flight reconstruction method so that the resulting calculated trajectory will match the observed trajectory. This second method, trajectory simulation, will be the point of discussion in this report.

The post-flight propulsion system performance simulation on each Saturn stage has been accomplished using either three-degree or six-degree-of-freedom trajectory computer program. These, combined with a weighted least squares program, provide the linear adjustment of the post-flight propulsion system parameters (thrust, mass loss rate and/or initial mass) and the predicted aerodynamic drag coefficient required for the trajectory parameters of the computed trajectory to match those derived from the tracking data observed during flight. (See Reference I).

All of the tracking data observed during flight are converted from the various tracker measurements with the origin at the tracking site to the trajectory parameters in a coordinate system with the origin at the launch site. All of these tracking data are used in conjunction with the guidance system outputs to obtain a best estimate of the trajectory. The meteorological data observed at the launch time are combined with the best estimate of trajectory to yield what is called the Observed Mass Point Trajectory (OMPT) or measured trajectory. In all the propulsion system simulations performed on Saturn stages flown, an attempt has been made to compute a trajectory which matches the measured trajectory. There are several difficult problems (which will be discussed later) associated with this procedure; however, these problems could possibly be circumvented to a large degree if some of the trajectory parameters representing the altitude—time history of the measured trajectory are used as input to the simulation program.

A simulation program called the Trajectory Application Method (TAM), was developed to investigate the advantages and disadvantages of this approach.

2.0 SIMULATION PROBLEMS

Two basic problems are associated with the usual simulation programs that do not use the observed trajectory parameters representing altitude-time history from the measured trajectory or OMPT.

ALTITUDE EFFECTS - The meteorological data (atmospheric density, pressure, temperature, and wind data) are independently observed functions of altitude. These data are combined with trajectory parameters from the best estimate of trajectory to compute several altitude-dependent parameters, such as dynamic pressure, Mach number, and the thrust gain from increased altitude. The relationship between altitude and the meteorological data is observed independently and is assumed correct. However, the altitude from conventional simulation programs will initially be incorrect since the initial values of the propulsion system parameters have not been adjusted. Thus, meteorological data, which are referenced to the correct altitude, are introduced into the trajectory computation at either

an earlier or later time (depending on the propulsion parameter adjustments required) than needed to satisfy the measured trajectory parameters. This scheme will eventually converge to the correct relationship as the adjustments to the propulsion system parameters and the aerodynamic drag coefficient converge to the appropriate solution.

ATTITUDE EFFECTS - The simulation programs often compute the attitude of the vehicle in the same fashion used in the precalculated or operational trajector programs, except that the flight sequence and attitude program are considered fixed. The vehicle attitude as computed in this way is a function of the propulsion and trajectory parameters. Thus, if the propulsion parameters are incorrect, the resultant altitude-time history and attitudes will be incorrect. These, too, will eventually converge to the correct relationships as the propulsion parameters and aerodynamic drag coefficient adjustments converge to the appropriate solution. Also, the telemetered attitudes are sometimes used as inputs to the simulation programs. The problems associated with this approach are the time and bias shifts which may be inherent in telemetered data.

The effect of these two problems cannot be separated. After several iterations these problems can be resolved, but a large number of both manhours and computer hours are required. Since this type of simulation requires a substantial amount of computer time for a single run, the turn-around time on the computer is longer than would be necessary with a more simplified simulation.

3.0 TAM DEVELOPMENT

The Trajectory Application Method was developed to circumvent some of the problems associated with the usual propulsion system simulations. In addition, a capability to estimate the instantaneous adjustments required was built into the program. The advantages and disadvantages of the TAM approach and some flight results are presented in subsequent paragraphs.

3.1 ALTITUDE AND ATTITUDE EFFECTS

The altitude and attitude effect problems are handled in the following way:

ALTITUDE EFFECTS - The following parameters, representing the altitude-time history, are input directly as a function of time: ambient pressure, density, Mach number, dynamic pressure and altitude. These parameters are used wherever they are required in the various computations insuring an altitude-time history compatible with the measured trajectory. Observed ambient temperature and wind effects are included in the calculation of dynamic pressure and Mach number. This eliminates the convergence problems associated with an incorrect altitude-time history, thereby placing the vehicle in its proper environment for drag considerations although adjustments to propulsion parameters may yet be required.

ATTITUDE EFFECTS - The measured platform (inertial) acceleration components from the OMPT or measured trajectory are input as a function of time. The unit vector of the acceleration is established.

$$*A_{m} = \left(*\ddot{x}_{m}^{2} + *\ddot{y}_{m}^{2} + *\ddot{z}_{m}^{2} \right)^{-1/2}$$

$$*A_{m}' = \frac{*\ddot{X}_{m}}{*A_{m}} i + \frac{*\ddot{Y}_{m}}{*A_{m}} j + \frac{*\ddot{Z}_{m}}{*A_{m}} k$$

The calculated platform acceleration components using the components of $*A_m$ are computed from the total acceleration $\left(\frac{FMI}{MASS}\right)$ proportional to those observed in the measured trajectory. This method replaces the transformation from the body-fixed to platform coordinate system.

$$\ddot{X}_{m} = \begin{pmatrix} *\ddot{X}_{m} \\ *A_{m} \end{pmatrix} \begin{pmatrix} \frac{FMI}{MASS} \end{pmatrix}$$

$$\ddot{Y}_{m} = \begin{pmatrix} *\ddot{Y}_{m} \\ *A_{m} \end{pmatrix} \begin{pmatrix} FMI \\ MASS \end{pmatrix}$$

$$\ddot{z}_{m} = \begin{pmatrix} *\ddot{z}_{m} \\ *A_{m} \end{pmatrix} \begin{pmatrix} \frac{\text{FMI}}{\text{MASS}} \end{pmatrix}$$

This scheme eliminates the necessity for either computing the attitude or directly inputting the telemetered attitude information and also insures compatibility with the measured trajectory parameter components.

3.2 GRAVITY CONSIDERATIONS

The trajectory parameters, after a correct solution for propulsion system parameters and aerodynamic drag coefficient adjustments have been obtained, should be identical to those in the measured trajectory or OMPT. Therefore, the gravity contributions to the trajectory parameters needed to convert from inertial space-fixed coordinates are identical. The components of acceleration, velocity, and position due to gravity are input directly from the measured trajectory as a function of time, thus forcing the gravity contributions to the trajectory parameters in TAM to be equivalent to those in the measured trajectory. This approach reduces the system of second order differential equations to be solved in the usual types of simulations to simple linear equations.

3.3 ESTIMATED INSTANTANEOUS ADJUSTMENTS

Redundant instantaneous adjustments to the propulsion system parameters and aerodynamic coefficients are made by comparing the (1) inertial acceleration,

(2) nertial velocity, and (3) 3arth-fixed velocity computed in TAM with those input from the measured trajectory at each time point. There is a requirement for partial derivatives of the trajectory parameters with respect to the parameters for which required adjustments are sought. These partial derivatives can be obtained by conventional perturbation methods. However, a highly simplified approach to determining these partial derivatives can be developed, when the appropriate simplifying assumption is made. The assumption to be made is that the deviations produced in inertial and earth-fixed acceleration resulting from a deviation in either the propulsion parameters or aerodynamic drag coefficient are approximately equivalent. The partial derivatives shown below can be used for both inertial and earth-fixed accelerations.

$$\left(\frac{\partial A_{m}}{F}\right)_{t} = -\left(\frac{1}{MASS}\right)_{t}$$

$$\left(\frac{\partial A_{m}}{M_{i}}\right)_{t} = \left(\frac{A_{m}}{MASS}\right)_{t}$$

$$\left(\frac{\partial A_{m}}{M_{i}}\right)_{t} = \left(\frac{A_{m}}{MASS}\right)_{t}$$

These partial derivatives which are used for both inertial and earth-fixed accelerations have proven quite adequate in several test cases. Also, these partial derivatives may be integrated with respect to time to yield partial derivatives that may be used with velocity and position differences. Since position and velocity data are generally quite smooth, it may be desirable to use these in lieu of (or in addition to) acceleration data.

The instantaneous adjustments to the propulsion system parameters and the aerodynamic drag coefficient are determined by dividing the difference between the trajectory parameters computed in TAM and input from the measured trajectory or OMPT by these partial derivatives at each time point. It must be assumed that the entire difference in the trajectory parameters is a result of any one of the adjustments.

Engineering judgement combined with a priori knowledge of the accuracy of the parameters being adjusted can be used to give an estimate of how much each of the parameters to be adjusted contribute to the difference between the computed and measured trajectory parameters. The estimated instantaneous adjustments can be used to determine if any significant trends or discontinuities could exist in the parameters to be adjusted. (If any discontinuities exist in the trajectory parameter input from OMPT, these would also be reflected in the estimated instantaneous adjustments.)

Usually initial corrections are applied to the propulsion parameters before any attempt is made to establish the adjustment to the aerodynamic drag coefficient. Normally, only a constant shift to the propulsion parameters are considered even though estimated instantaneous adjustments are available. The instantaneous adjustments for the aerodynamic drag coefficient are considered applicable.

3.4 OVERALL ADJUSTMENTS

The difference between the trajectory parameters computed in TAM and input from OMPT can also be used with a conventional weighted least squares program to solve for an overall constant shift or bias in the propulsion system parameters. The partial derivatives required can either be those established using perturbation techniques or those partial derivatives determined in the simplified approach discussed under Paragraph 3.3. Usually, the a priori knowledge of the accuracy of the parameters to be adjusted is included in the least squares solution. Any conventional least squares computer program can be used with TAM to obtain propulsion adjustments such as the one shown below.

$$P = \left[W_{O}^{-1} + \sum_{i} \left(C_{i} W_{IP}^{-1} C_{i} \right) \right] - I \left[\sum_{i} \left(C_{i} W_{IP}^{-1} R_{i} \right) \right]$$

wheret

P = (nxl) matrix of the propulsion adjustments.

W = (nxn) diagonal matrix consisting of the squares of the accuracies associated with measured propulsion parameters.

C = (mxn) matrix of partial derivatives of the trajectory data with respect to the parameters P.

W_{IP} = (mxm) diagonal matrix consisting of the squares of the accuracies associated with trajectory data.

R = (mxl) matrix of the difference between the calculated and observed trajectory usually referred to as the residual matrix.

The diagonal elements of the covariance matrix $\begin{bmatrix} W_O^{-1} + \sum_{i} C^T W_{iP}^{-1} - C \end{bmatrix}^{-1}$ are the statistical variances of the parameter adjustments, and the off-diagonal elements are the covariances of the parameter adjustments. The square roots of the diagonal elements are the standard deviations of the adjustments and the off-diagonal elements are an indication of the correlation between the adjustments.

The matrix $\left[\sum (C^T W_{1P}^{-1} R)\right]$ represents the sum of the weighted squares of the residuals that are to be minimized subject to the constraints imposed by W_{0} .

3.5 ADVANTAGES AND DISADVANTAGES

There are several advantages and at least one disadvantage of the TAM approach over conventional simulation techniques.

ADVANTAGES - The advantages, other than those for which the scheme was originally devised, are discussed as follows:

Altitude Effects

- a). The altitude-dependent functions are given versus time thereby eliminating tape interpolation.
- b). Fewer equations are required, thus eliminating unnecessary computations.

Attitude Effects

- a). Control equations are eliminated.
- b). Moment and angular motion equations are eliminated.
- c). Computation or input of attitude angles is eliminated.

Gravity Considerations

- a). The system of second order differential equations, usually required in most simulations, is reduced to simple linear equations.
- b). Complex integration schemes are not required.

Partial derivatives

The simplified approach for computing the partial derivatives eliminates the necessity of consecutive computer runs usually required for the conventional perturbation schemes.

All of these effects aid in separating the propulsion parameter and aerodynamic drag coefficient adjustments and also reduce the number of iterations required to obtain a valid solution. The TAM simulation technique is far less complex and more economical with respect to machine time than either the six-degree-of-freedom or three-degree-of-freedom simulation programs. Both the man-hours and machine-hours required for an evaluation are significantly reduced through the use of this program.

<u>DISADVANTAGES</u> - The TAM program was devised for use in post-flight evaluation of propulsion system performance with a high degree of dependence on input data obtained from the measured trajectory. This is the principal limitation and disadvantage of this approach. Since the altitude-time history and vehicle attitudes are used as inputs, TAM cannot be used to show the effects of propulsion parameter and aerodynamic drag perturbations on trajectory parameters.

3.6 FLIGHT RESULTS

The flight results using this simplified technique are compared with the flight results using a conventional three-degree-of-freedom (3D) simulation program for three S-IB stage Saturn IB flights in the table below. This table shows the excellent result obtainable with the TAM simulation technique. This approach is as efficient and reliable for use with the latter or upper stages as with those stages for which drag effects are of more concern.

		AVERAGE SEA LEVEL LONG. THRUST (LB)	AVERAGE TOTAL PROPELLANT FLOW- RATE (LB/SEC)	AVERAGE SEA LEVEL LONG. ISP (SEC)
AS-201	3D	1,613,560	6153.98	262.20
	TAM	1,612,754	6151.89	262.16
	% DEV.	05%	034%	015%
AS-203	3D	1,660,471	6285.18	264.19
	TAM	1,659,928	6283.40	264.18
	% DEV.	03%	03%	005%
AS-202	3D	1,631,558	6234.70	261.69
	TAM	1,631,374	6234.86	261.65
	% DEV.	01%	003%	001%

$$\%$$
 DEV. = $\frac{\text{TAM-3D}}{\text{3D}}$ X 100

3.7 PROGRAM DESCRIPTION

The complete set of TAM equations is given in Appendix A. The integrations called for in these equations can be accurately accomplished using either Simpson's Rule or the Trapezoidal Rule since no complex equations of motion are present. The coordinate systems utilized in the equations are defined in Appendix B. The symbols and matrices used in Appendix A are defined on pages iv through viii. The input parameters required to satisfy the equations are given in Appendix C.

Output formats are generally considered arbitrary; however, in order to illustrate the Trajectory Application Method, a sample print format is given in Appendix D. This sample print is extracted from a typical S-IB stage calculated trajectory. This table shows the residuals between the measured and calculated trajectory parameters along with the instantaneous corrections to the propulsion parameters. Any one of these corrections will explain the difference between the two trajectories.

4.0 CONCLUSIONS

The TAM simulation technique, described under Paragraph 3.0, yields results which are well within the accuracy tolerances of the more conventional simulation schemes. The use of this program for the trajectory simulation represents a significant reduction in both man-hours and machine-hours required for an evaluation of the propulsion system performance. The TAM simulation technique is not a tool for studying the effects of propulsion system parameters and aero-dynamic drag coefficient perturbations upon the trajectory parameters representing the altitude-time history or vehicle-attitude, but represents a most efficient means of obtaining the post-flight evaluation of the propulsion system performance.

APPENDIX A

EQUATIONS:

#1
$$CF_{(1-n)} = CFV_{(1-n)} - \left(\frac{A_{E_{1-n}}P_{0}}{A_{T_{1-n}}P_{C_{1-n}}}\right)$$

#2
$$FO_{I-n} = (CF)_{I-n} (A_T)_{I-n} (P_C)_{I-n}$$

#3
$$F-ENG_{I-n} = FO_{I-n} + A_{E_{I-n}} (P_o - *PRESS)$$

#4 **FJI = [cos 6°
$$\Sigma$$
 (F-ENG₁₋₄ + FE₁₋₄) + cos 3° Σ (F-ENG₅₋₈) + Σ FE₅₋₈] KVAL

#6
$$FB = (*RHO) (VOLUME)$$

#7 FAI =
$$-$$
 (BDRAG) $-$ (DRAG)

#9 **FJI0 = cos 6°
$$\Sigma$$
 [FO₁₋₄ + FEI₁₋₄] + cos 3° Σ [FO₅₋₈] + Σ FEI₅₋₈

#10 LISPO =
$$\left(\frac{\text{FJIO}}{\text{DFLOX}}\right)$$

#11 ALISPO =
$$\frac{AVFJIO}{AVDFLOX}$$

#12 AVFJIO =
$$\left(\frac{1}{\text{FLTTI}}\right)\int_{1}^{1} (\text{FJIO}) dt$$

- * Input data from tape
- ** The equations illustrate the S-IB stage, Saturn IB, where the 4 inboard engines are canted 3° and the 4 outboard engines are canted 6°. However, on stages where engines are not canted these considerations can be dropped.

APPENDIX A (CONT'D)

#13 AVDFLOX =
$$\left(\frac{1}{FLTTT}\right)\int_{t_{i}}^{t_{n}} (DFLOX) dt$$

#14 MASS =
$$M_i + \int_{t_i}^{t_n} (DMASS) dt$$

#15
$$A_{m} = \left(\frac{FM1}{MASS}\right)$$

#16
$$\ddot{X}_{m} = \begin{pmatrix} *\ddot{X}_{m} \\ *A_{m} \end{pmatrix} A_{m}$$

$$\ddot{Y}_{m} = \begin{pmatrix} *\ddot{Y}_{m} \\ *A_{m} \end{pmatrix} A_{m}$$

$$\ddot{Z}_{m} = \begin{pmatrix} *\ddot{Z}_{m} \\ *A_{m} \end{pmatrix} A_{m}$$

#17
$$\dot{x}_{m} = \int_{t_{m}}^{t} (\ddot{x}_{m}) dt$$

$$\vec{x}_{m} = \int \int_{t_{i}}^{t_{i}} (\vec{x}_{m}) dt$$

#18 IAT =
$$\int_{t_i}^{t_n} (A_m) dt$$

*IAT =
$$\int_{t_1}^{t_n} (*A_m) dt$$

#20
$$\ddot{x}_s = \ddot{x}_m + *\ddot{x}_G$$

$$\dot{x}_s = \dot{x}_{so} + \dot{x}_m + *\dot{x}_G$$

$$\dot{x}_{sc} = \dot{r}_o + \dot{x}_{so} + \dot{x}_m + *\ddot{x}_G$$

$$\dot{x}_{sc} = \ddot{r}_o + \dot{x}_{so} + \dot{x}_m + *\ddot{x}_G$$

$$\dot{x}_s = \ddot{x}_{sc} - \ddot{r}_o$$

#21
$$\dot{x}_{e} = \{ [K]^{T} [\phi_{o}]^{T} [\omega]^{T} [\phi_{o}] [K] \dot{x}_{s} \} + \{ [K]^{T} [\phi_{o}]^{T} [\omega]^{T} [\phi_{o}] [K] \dot{x}_{sc} \}$$

$$\dot{x}_{e} = \{ [K]^{T} [\phi_{o}]^{T} [\omega]^{T} [\phi_{o}] [K] \dot{x}_{sc} \} - \dot{r}_{o}$$

APPENDIX A (CONT'D)

#22 DA =
$$\left(A_{m} - *A_{m}\right)$$

#23
$$V_e = \left(\dot{x}_e^2 + \dot{y}_e^2 + \dot{z}_e^2 \right)^{1/2}$$

#24 DVE =
$$\left(v_e - *v_e \right)$$

#25 *A_m =
$$\left(*\ddot{x}_{m}^{2} + *\ddot{y}_{m}^{2} + *\ddot{z}_{m}^{2} \right)$$
 1/2

#27 DDIAT =
$$\left[\frac{(DIAT_{+} - DIAT_{+-1})}{(t - t_{-1})} \right]$$

#28 TT =
$$\frac{1}{2}$$
 (+ + + $_{-1}$)

#29 FF =
$$\frac{1}{2}$$
 (FJI₊ + FJI₊₋₁)

#30 DD =
$$\frac{1}{2}$$
 (DRAG₊ + DRAG₊₋₁)

#31 *AA =
$$\frac{1}{2}$$
 (*A_{m+} + *A_{m+-1})

#32 *QQ =
$$\frac{1}{2}$$
 (*Q₊ + *Q₊₋₁)

#33 MM =
$$\frac{1}{2}$$
 (MASS₊ + MASS₊₋₁)

#34 CCDD =
$$\frac{1}{2}$$
 (CD₊ + CD₊₋₁)

APPENDIX A (CONTID)

#35 DFA =
$$-(DA)$$
 (MASS)

#36 DFVE =
$$-(DDVE)$$
 (MM)

#37 DFVI =
$$-(DDIAT)$$
 (MM)

#38 DMA =
$$\left(\frac{\text{FMI}}{*A_{\text{m}}}\right)$$
 - MASS

#39 DMVE =
$$\left(\frac{FF - DD}{*AA - DDVE}\right)$$
 - MM

#40 DMVI =
$$\frac{FF - DD}{*AA - DDIAT}$$
 - MM

#41 *AMACH =
$$\frac{1}{2}$$
 (*MACH₊ + *MACH₊₋₁)

#42 DCXA =
$$\frac{\text{(DA) (MASS)}}{\text{*Q (AREA)}}$$

APPENDIX A (CONTID)

#48 PVM =
$$\frac{\partial M}{\partial DVE}$$
 = $\left(\frac{MM}{*AA}\right)$

#49 PAM =
$$\frac{\partial M}{\partial A_m} = \left(\frac{MASS}{A_m}\right)$$

#50 PVF =
$$\frac{\partial F}{\partial DVE}$$
 = - MM

#51 PAF =
$$\frac{\partial F}{\partial A_m}$$
 = - MASS

#52 PVW =
$$\frac{\partial \dot{w}}{\partial DVE} = \left[\frac{(MM)}{(*AA)(TT)}\right]$$

#53 PAW =
$$\frac{\partial \dot{w}}{\partial A_m} = \left(\frac{MASS}{A_m + 1}\right)$$

#54 RADD =
$$\left(x_e^2 + y_e^2 + z_e^2\right)^{1/2}$$

#55
$$\dot{\vec{x}}_{so} = [K]^T [\phi_o]^T [\dot{\omega}_o] [\phi_o] [K] \dot{\vec{r}}_o$$

APPENDIX B

PLUMBLINE COORDINATE SYSTEM DEFINITIONS

I. <u>Earth-Fixed Coordinate System</u>. The earth-fixed coordinate system is defined as a right-handed Cartesian system with the projection of the center of gravity of the complete vehicle at or prior to First Motion (FLTTT = 0) on the reference ellipsoid as the origin.

The X-Z plane is tangent to the reference ellipsoid at the origin of the coordinate system. The positive X-axis is oriented in the flight azimuth direction; the positive Y-axis is above and normal to the X-Z plane; the positive Z-axis is in a right-handed relation to the X-Y axes. The origin of this earth-fixed system rotates with an angular velocity equal to that of the earth.

Launch pad coordinates are defined with respect to the reference ellipsoid chosen to represent the earth and its gravitational field. The elevation of the launch site above mean sea level and the position of the center of gravity of the complete vehicle are treated as an elevation above the reference ellipsoid.

$$\frac{\dot{x}_{e}}{\dot{x}_{e}} = \begin{vmatrix} \dot{x}_{E} \\ \dot{y}_{E} \\ \dot{z}_{E} \end{vmatrix} = \frac{\text{Earth-Fixed Cartesian displacement}}{\text{components}} = \begin{vmatrix} \dot{x}_{XXE} \\ \dot{y}_{YE} \\ \dot{z}_{E} \end{vmatrix}$$

$$\frac{\dot{x}_{E}}{\dot{x}_{e}} = \begin{vmatrix} \dot{x}_{E} \\ \dot{y}_{E} \\ \dot{z}_{E} \end{vmatrix} = \frac{\text{Earth-Fixed Cartesian velocity}}{\text{components}} = \frac{\text{DXXE}}{\text{DYYE}}$$

$$\frac{\ddot{x}_{E}}{\ddot{x}_{E}} = \frac{\ddot{x}_{E}}{\ddot{y}_{E}} = \frac{\text{Earth-Fixed Cartesian acceleration}}{\text{components}} = \frac{\text{DDXE}}{\text{DDZE}}$$

2. Space-Fixed Coordinate System. The orientation of the space-fixed coordinate system is identical to the earth-fixed system at and prior to guidance reference release (GCTTT = 0). The origin is a point fixed in space, and the coordinate system remains fixed in space as oriented at guidance reference release (GRR).

APPENDIX B (CONT'D)

$$\frac{1}{X_S}$$
 = $\begin{vmatrix} X_S \\ Y_S \\ Z_S \end{vmatrix}$ = Space-Fixed Cartesian displacement = $\begin{vmatrix} XXXS \\ YYYS \\ ZZZS \end{vmatrix}$
 $\frac{\dot{X}_S}{\dot{X}_S}$ = $\begin{vmatrix} \dot{X}_S \\ \dot{Y}_S \\ \dot{Z}_S \end{vmatrix}$ = Space-Fixed Cartesian velocity = $\begin{vmatrix} DXXS \\ DYYS \\ DZZS \end{vmatrix}$
 $\frac{\ddot{X}_S}{\ddot{X}_S}$ = $\begin{vmatrix} \ddot{X}_S \\ \ddot{Y}_S \\ \ddot{Z}_S \end{vmatrix}$ = Space-Fixed Cartesian acceleration = $\begin{vmatrix} DDXS \\ DDYS \\ DDZS \end{vmatrix}$

3. Inertial Platform Coordinate System. The inertial platform is a gyro stabilized reference element oriented at guidance reference release (GRR) time identical to the earth-fixed and space-fixed coordinate systems. The coordinate system remains fixed in inertial space as oriented at GRR. Coordinates in the inertial system do not include the effects of gravity and the initial rotational velocity of the earth.

\overrightarrow{x}_{m}	=	X _M Y _M Z _M	=	Platform displacement components	·	XXXM YYYM ZZZM
$\overrightarrow{\dot{x}}_{m}$	=	Х _М У _М Ż _М	=	Platform velocity components	=	DXXM DYYM DZZM
$\overline{\ddot{x}}_{m}$				Platform acceleration components	=	DDXM DDYM DDZM
	4. 0161	vitation	a i C	omponents		

$$\frac{x_G}{x_G}$$
 = $\frac{x_G}{Y_G}$ = Gravitational displacement components = $\frac{x_{XXG}}{x_{YYG}}$ = $\frac{x_{XXG}}{x_{YYG}}$

APPENDIX B (CONT'D)

Gravitational Components (Cont'd)

$$\dot{\dot{x}}_{g} = \begin{vmatrix} \dot{x}_{G} \\ \dot{Y}_{G} \\ \dot{Z}_{G} \end{vmatrix}$$
 = Gravitational velocity components = DYYG DYYG DZZG $\ddot{\ddot{x}}_{g} = \begin{vmatrix} \ddot{x}_{G} \\ \ddot{Y}_{G} \\ \ddot{Z}_{G} \end{vmatrix}$ = Gravitational acceleration components = DDXG DDYG DDZG

APOLLO COORDINATE SYSTEM (SEE REFERENCE 2).

The previous coordinate systems as described are similar to Project Apollo Coordinate System Standards No. 10, 13, and 12. A simple matrix rotation and, in case of the space-fixed system, a shift of origin will convert the data to Apollo Standard Systems.

$$\vec{X}_{e}(Apollo) = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} \vec{X}_{e}$$

$$\vec{X}_{sc}(Apollo) = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{vmatrix} (\vec{X}_{s} + \vec{r}_{o})$$

$$\vec{X}_{m}$$
 (Apollo) = $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$ \vec{X}_{m}

APPENDIX C

INPUTS:

A. The following parameters are preloaded as constants.

$$A_{E(1-n)}$$
 K ϕ_{O} R_{O}

AREA M_{i} PO VOLUME

 $A_{T(1-n)}$ ω ψ_{O} $FEI(1-n)$

B. Parameters input from the Observed Mass Point Trajectory (OMPT).

C. Parameters input from the data tape.

$$CFV_{(1-n)}$$
 DMASS $P_{C_{(1-n)}}$
 $DFLOX$ $FE_{(1-n)}$

D. Initial trajectory parameters.

$$\vec{x}_{m}$$
 \vec{x}_{m} \vec{r}_{o} \vec{x}_{so}

11. 000 2. 000 125 3. 000 189 4. 000 189 5. 000 189 7. 000 189 10. 000 191 11. 000 191 12. 000 191 13. 000 191		٧٥	DAVE	NA O	OMA	DF VE	DFVI	DFA	RTIME	
2 00 00 00 00 00 00 00 00 00 00 00 00 00										
2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000	.012825	0000	٠,	66.562	17300.80	-1241.32	-1786.41	11.00	
5 00 00 00 00 00 00 00 00 00 00 00 00 00		.027383	142.3		0	689.5	1677.	673.	2.00	
5 00 5 00 7 00 9 00 9 00 0 00 0 00 0 00 0 00 0	0.076	027	135.447	147.745	37.	-1625.63	-1113.24	•	3.00	
7.00 7.00 9.00 9.00		-5657593	132,941	135.824	135.007	-1609.30	1644.2	040.5	00.	
7.00		.027:47	131.634	141.070	132.567	-1603.29	1718.2	618	2.00	
9.00	•	.027097	130.323	131.193	130.130	-1594.37	1605.0	1595.4	00.9	
9.00		.026825	9	128.363	27.6	-1581.06	1577.2	572.	. 00	
0.00 0.00 1.00		90,970	26	126.551	126.905	-1565.92	-1561-86	-1569-12		
1.00	•	.027671	128-132	123.730	129.104	1,189.04	1632.2	670	10.00	
2.00		PC	135.764	136.158	138-119	705.0	-	1739.6	11.00	
		032089	41.2	141.096	144.936	-1784.47	1782.3	-1836.14	12.00	
3.00	-	0	49.0	147.869	154,123	-1894.86	1879.	-1964.88	13.00	
*.00	•	.037414	159.511		166.103	-5040.08	204	-2131.16	14.00	
• 00	•	.04100	71.8	172.992	179.451	-2212.29	2226	-2316.53	15.00	
-00*			186,783	187.330	196.054	75.6147	(46)	2820 03	200	
7.00		. 65050	9,	202-826	338 448	-2045.70	-2012. A4	-3136.54	18.00	ì
80.		041173	47.9	247.076	255-613	-3268.50	3257	-3379.61	19.00	
19.00	701	061399	. 2	254.176	253.637	-3363.47	3371	3374.	20.00	
980		.060.54	249.969	251.152	248.152		-3351.94	-3322.00	21.00	
26.		1058495	42	242.750	238.226	_	3559.95	3<09.1	55.00	
	•	.055111	228.220	228.903	219,989	_	-3093.34	2982.2	53.00	
		.053017	60	214.232	209.216		-2913.28	-2853.92	26.00	
-		.053113	88	204.907	201.222		-2820.10		26.00	
26.00		050028	196.827	198.534	194.169		-2750.18	0	27.00	
		046310	185.893	187,968	182.045	1	-2620.18	-2545.64	58.00	
•	•	.044673	171.710	174.196	166.361	-2408.82	2443.	-2341.26	29.00	
30.00	T	.039675	53	156.587	146.721	-2166.93	\sim	078.4	30.00	
_	-	.032346	128,301	132.344	117,581	-1823.58	1881	676.	31.00	
	-	026232	7.3	106.090	94.175	-1392.99	-1517.93	1351.9	32.00	
	-	.025593	86.344	92.916	90.843	-1243.32	133	-1312.14	33.00	
34:00	•	2054	73 421	94.389	7 0	-1073.41	-1230.41	1,02.5	35.00	
	1.303	0206	45.772	76.432	70.769	98-	-1121.49	1041.7	36.00	1
00.06	•-		51.663	64.620	57.478	2	-954.26	-851.5	37.60	
1.50		-012892	2	•	43.092	-587.45	-744.05	2	38.00	•
-	-	• 010049	23.864	39.743	33,345	35	-594.57		39.00	
00.0	1	064600	195461	32.526	32.067	279.	489.74	484.	40.00	
1.51	-	.007652	10.421	28.300	24.663	157.9		-374.81	00.14	
.1 000	-	. 005047	1.196	0	ċ	-118.88	-301.82	18.647-	00.24	by
	-	• 002135	-6.2	-	8.9	15.96	-176.72	18.501-	90.00	1
000	-	866000	-10.155	2000	-13 631	120.00	132.17	711.02		
•	•	115500-	- 1	200	9	2 7	170.85	-	00.95	
00.0	1771	010530	-67.947		58.5	1070-26	736.18	926.07	41.00	
000	7	010620	-85.829	-72.046	5.71	1360.91	42.	2	•	1
000		039476	œ	0.59	15.1	1864.62	1605.78	1843.56	00.64	

0	0		0	•	•	0		(0		0		C)				(•	0		()	•	0		0		(C			•	•	0		•
RTIME	\$0.00	\$1.00	52.00	23.00	55.00	56.00	\$7.00	58.00	29.00	00.00	61.00	63.00	64.00	65.00	60.00	68.00	69.00	70.00	72.00	73.00	14.00	75.00	77.00	78.00	19.00	80.00	87.00	93.00	84.00	85.00	87.00	88.00	89.00	91.00	95.00	93.00	94.00	96.00	97.00	98.00	44.00			
UF A	2284.54	2741.16	3175.43	3630.22	4394.9.	4948.69	\$607.58	6247.22	•	550.4	74.20.82	2	362.4	4.90.1	5877.4 Augh 1	-3618.58	1720	6305.83	10577.34	1938	1739	0343.2	7799.65	6149.27	4940.23	٠.	3354.14	1617.19	848.9	161.15	-904.86	1568	~ .	-3986.44	-4525.10	-4794.68	-5116.84	-5405.67	5364.	0	2102			
OFVI	0	:1:1		397.	4224.95	692.2	295.9	5925.30	386.7	6535.23	7203.84	4432.45	-943.50		9 0	3 00	0	4018.87	9750.96	2	1847.9	1036.4	8406.26	-	\$552.17	325.9	528.0	2 50	194.5	0 4	72.5	1281.2	-2091.78	-3733.13	272.8	-4658.03	972.4	-5290.28	360.	80.2	-5155.09			
DFVE	2325.14	2879.50	3037.31	3641.92	4607.55	4978.71	534	17.	201	190	6919.24	4722.21	-1192.52	-3614.16	4737.80	-5943.33	-808-49	4207.67	0774-61	11422.97	11938.15	11238.74	8520-14	7114.18	5607.04	4396.47	3594.33	2355.03	1156.52	564.75	-256.40	-1679.24	-2050.23	-2841.67	-4137.27	-4672.65	-4895.84	-5327.77	-5442.92	5226	-5148.39			
DMA	-141.697	-1584.937	-194.368	-220.679	-263.567	-297.204	-331.929	-367.400	-381.330	380.720	-405.154	-86.893	194.677	248.201	339.945	207.916	-97.888	-355.087	-496.715	-649.584	-630.916	-549.369	-475.681	-315.314	-250.515	-185.406	-166.237	-78.271	-40.623	-7.624	41-877	71.831	108.563	176.918	197.841	207.346	218.794	228.551	221.687	212.361	206.422		-	
I AMO	-128.231	-155.253	-181.441	-297.239	256.198	-280.453	-314-492	-349.598	-374.461	-380.918	-392.553	-255.305	, ,,	~	294.843	4405.294	53.976	-227.489	-426.917	-616.426	-640.656	-589.631	-511.313	359.448	-283.144	-218,115	-175.862	-100.415	57.488	-20.600	26.640	58.981	95.232	156.007	187.890	202.539	13.8	224.934	22.8	217.028	09.5			
DMVE		.05	3	15	4	77	28.64	55	0	. 80	048	-271-994		209,170	9.4.6	340-170	9	38.1	-433.319	-625.256	, 0	4 (-515.898	9	-285.911	-221.670	-	-114.655	55.057	-26.871	11.929	77.301	93.340	127,911	. 6	-	210.526	226.528	226-244		209.290			
DA	049219	24650	.0692	079694	55,060		1262	- 141571	14683	150-9	161390	172641	.019:80	.101640	140476	1941.41	041981	154.971	220713	- 299757	29620	~	232557	181091	129559	108160.	089.182	043767	053154	004430	.006195	-	06609	9946	131662		151	161:01	16281	20	15:103			
DIAT	1.338	1.284	1.220	1.146	690.1		700.	604	494	1915	•	•	060	.001	624.	.291	.455	.357	.169	1355	654	934	-1.181	676	-1.724	-1.838	-1.932	-2.068	101.2	-2.113	-2.111	-2.059	-2.000	1001	010-1-	-1.550	1.404	-1.247	80		8			
DVE	1.354	1.292	1.226	1.146	1.050	6 6	. 845	- 4	2 5	213	=	058	100	: 0	050	• 220	.383	. 280	.089	1,194	740	-1.025	-1.275	-1.495	-1.826	-1.942	-2.037	-2.120	25.215	-2.230	-2.227	-2.173	-2.115	15.034	-1.92	-1-670		-1.368	22		22			
RTIME	20.00	51.00	52.00	53.00	24.00	25.00	26.00	00.75	20.00	00.00	61.00	62.00	63.00	65.00	00.99	67.00	00.89	70.00	71.00	72.00	74.00	75.00	76.00	10.00	79.00	80.00	81.00	95.00	96.99	85.00	86.00	87.00	89.00	90.00	91.00		94.00	00.36	96.00	98.00				
0	0	2	-)		c			0		c			0		0					0		0			0		0		(-	0		0		-	0		0		0	-	

C :		0	00	00	8	00	0		00	86		00	C 2	90	00	00	00	000	000	00	00	00	00	00			00	00		00		000	00	00	00	00	100		88	00	C		((
RTIME	1	100-		104	103.	10.	105.		101	9.0	104.00		112	113.	::	113				120.00	121.	122.	153.00	124.	123.	127.00	128	129.00	130.00	131-	133.00	136	135.00	136.00	137.00	138.00	138.41	200	17.						
OF A	-	-5166.37	5066.	4950.	866.	-4674.00	-4481.34	4518	3913.3	3613.6		132.0	. 00	-1656. 35	-1193.23	-807.93	-417.15	-31.16	736.03	1105.21	1511.30	1901.97	514.9	2647.55	2988.12	3523.63	3975.18	4287.34	4594.53	4916.30	\$211.55		6072.18	-	6623.54			7430 31	-13425-01	6996.					
DFVI		-5130.19	-5112.75	-5003.99	٠.	9	2	٠.	4000.1	3757.4	-3448.31	-3101.01	-2303.44	360.4	-	-997.83	-603.55	-215.87	10.611	931.65	1319.66	-1718.99	2098.36	476.	~	3169.86	3828.46	- 20	4454.14	764.	5078.10	640-1	• m	225.7	\sim	6776.88	960.6	•	-3053.72	-130167.03					
DF VE		-5133.88	5153.	-4960.26	881	0	-4495.82	9	~	-3726.31	-3502.43	-3110.01	-2275.72	-1869.61	-1411.60	-1025.16	-609.05	-219.21	104.31	925.98	1319.26	1717.40	2101.11	2474.86	2827.17	3503 35	3828.83	4143.30	4450.88	746.5	5067.48	5663.01		6242.21	6494.21	6760.14	8	2.5	6855.09	43.5					
DMA		á	, ,	93.7	8	9.1	69	158.232	145.181	132.623	119,355	105.405	73.386	, -	_	27.479	14.056	1.037	- "	-35.595	-48.138	-59.912	-71.025	-81.542	-91.034	-100.173	117.048	::	=	139.	-146.454	-158.836	-164.596	-	=	-180.062	= :	184.1	189.272	. ~					
DMVI		304.343	J 14		191.019	83.7	74.27	63.86		38.64		202.211	A1. 30A	65-033	48.980	34.121	20.417	7.22	21.6-	-30-171	-42.266	644.46	5.73	-76.728	-86.557	-96.028	-104.900	-121.304	-128.887	36.25	-143,543	20.00	62.21		-172,927	-178.131	-181.368	89.6	78.324	352					
DMVE		-	204.034	195.140	90.09	187.027	171.397	167.103	9	137.495	127.841	112,534	80.410	65.353	48.801	35.055		7.336	4.0	-29.987	-42.254		-65.818	-76.668	-86.610	-95.982	-104.904	-121.293	. 0	٦.	43.2	169.061-	-161.874	-168.167	72.8	*	67.56	1	-187.125	919.30					
V 0		000.71	166591	15:041	155788	- 016161	.1-6100	.138803	1299	.121174	108111.	100338	.087404	051299	043		-6515100	.301142	01:273	04.57.70	-0.7801	-1073536	039119	1,040.	113431	134418	10 3403	017071	-194559	210685	25 5052	0461970	07 44 10	283528	305834	-, 322419	3 10448	•	.0 4	-1-331055					
DIAT		377	205	121	030	193	.331	+14.	.608	.733	.850	•	1.049	1.194	1.244	1.280	1.302	1.310	1.303	1.282	1.197		1.049	.952	0.84	• 112	015.	2140	.052	151	369	*00	120	-1.402	-1.700	510.5-	-2.149	2347	-2.696	3.828					
DVE	340			247	160	1965	2111	. 356	064.	- 516	.733	6680	. 933	1.012	1.127	1.164	1.196	1.194	1.188	1.167	1.082	410	935	.837	. 125	. 598	455	967		264	483	718	۱.	11511	-1.815	-51129	-2.326	- 50400	-2.808	0.027					
07110	KIIIE		00.001	00.101	103-00	00.00	105.00	100.00	107.00	108.00	109.00	2	111.00	112.00	00.00	115.00	116.00	117.00	118.00	119.00	121.00	00.00	123.00	124.00	125.00	156.00	127.00	00.021	130.00	131.00	32	133.00	00.461	135.00	137.00	3	138.41	139,90	•	00.141	:				
0	-	C			0		,	0		-)		0			o		(0			0		1	,				1)		0		1	0	1	C		-	0		0	

RTIME	• AMACH	CKCVE	CKCVI	0000	• MACH	CXCA	00	17	F#1	RTIME	
:		000	0001	907	000		1.200	09716.	706913-1	=	
100	010	-727-4609	29.1169	1.200	.018	22.1893	1.200	714355.8	712357.3	1.00	
2.00	610	-	19.4063	1.200	.021	,-	1.200		718560.€	5.00	
3.00	• 053	14.0722	15.24.0	1.200	0 0		1.200	722114.2	724140.0	90.5	
00.	P C	7 3007	01.57	1.200	0.00	6-4307	1.200		724069.7	2.00	
2000	030	5.5178	5.54:7	1.200	0	4,9180	1.200		72,5700.2	•	
7.00	• 045	4.3431	4. 3355		0	3.9255	1.200		723433.2	7.00	
8.00	.052	3.5386	3.5325		9	3.2533	1.173		123192.	00.0	
00.6	090	2,9957	2.93.2	1.146	0 0	2.4467	1.065	126378.6	725215.4	10.00	
10.00	8 2	2.3099	2.3134		0	2.1961	1.030	727381.8	722986.6	11.00	
12.00	.083	2.0922	2.0909	0	0	2.0074	\$66.		126735.0	12.00	
13.00	160.	1.9271	1.91 ,2	9	960.	1.8624	096.	-	727872.5	13.00	
14.00	001°	1.7991	•	•	-	1.7492	.925	731233.2	129011.1	00.5	
15.00	•100	1.6970	1.7020	216.	-	1.6583	.848		731074.3	19.00	
16.00	-	06194	1 5533	850	-	1.5256	845	735089.2	732003.9	17.00	
00.0	971	1.4989	1.5015	832	•	1.4793	.819	736359.1	734967.0		
16.00	148	1.4534	1.4512	.809	.153	1.4256	.798	737558.5	733833.4	19.00	
20.00	.158	1.3727	1.3741	.788	-	1.3294	.178	738779.0	734683.8	20.00	
21.00	.168	1.2813	1.2837	.768	-	1.2409	161.	2708467	735999.7	22.00	
55.00	60.	1000	1115	729	٠.	1.0705	721	741838.2	736568.5		
25.00	100	1010	1.0:72	717.	200	1.0074	.706	42870.	737146.9	;	
25.00	.212	.9823	6 86	869	~	.9628	0690	743915.1	131722.2	25.00	
26.00	. 523	. 9383	0. 46.	an a	~	26165	•675		734314.6	26.00	
27.00	• 535	1868	0.68	.668	~ ,	1918	799.	40012	734382 4	: 4	ĺ
58.00	1	6553	46.36	6699	~~	7923	636	748267.3	739913.6	29.00	
29.00	65.	76102	7710	630	• ~	7508	.623	49408	0	30.00	
30.00	282	17261	7795		.291	.7092	.614	5.7	÷	31.00	
32.00	298	.6855	6259	609	•	•6759	• 605		33	~	
33.00	.312	.6633	• 6680	009.	•	9659	• 596	752889.3		33.00	
34.00	• 356	12491	61594	165	•	1999	196		742750.5	35.00	
35.00	C 96 .	66700	4030	575	196	6134	572	756457.3	35	:	
20.00	346	5986	66.59	570	.376	.5982	.567	-	3	÷	
38.00	384	.5850	9605	. 564	•	.5834	.561	758906.8	143904.3		
39.00	.399	.5704	.5784	.558	•	.5719	•556		:	39.00	
00.0	*14.	- 5013	.5693	. 553	224	5649	066	74.2469-0	744992.5	1.00	
*1.00	063	2666	6136	545	. 55	Š	544		745162.5	2	
00.24		6300	57.5	545	•	Š	.541	55	•	43.00	
00.44	184	.5356	. 54 33	. 539	064.	•	.538	~	745665.2	3.	
45.00	667	.5258	.5333	•536	8	S	. 535	2	5960	45.00	
46.00	+15.	6555	65598		3		. 535	9113	93		
47.00	•536	•5124	.5197	. 536	545	5162	536	771794.2	746141.7	00.84	
00.84	576	0604	5050	536	28	.5014	.537	3184.	30.	•	
200		•									

		C			0		(0		0)	(C.		0		((C		C)		0		(_	*	((С			0	C	
\$0.00	21.00	25.00	23.00	28.00	26.00	57.00	. 00 . 85	29.00	00.09	61.00	00.70	00.00	65.00	66.00	67.00	00.00	70.00	11.00	72.00	73.00	14.00	24.00	77.00	78.00	19.00	80.00	00.10	83.00	84.00	85.00	86.00	00.00	89.00	90.00	91.00	95.00	96.30	95.00	96.00	97.00	98.00	00.66			
746059.8	745761.3	745777.8	7.00800.4	745707 6	745308.0		144094.1	•	848	:	140412.9	35913	3,448	29263	725631.1	71 44 10 3	16306.		17899.	20070.	24019.	724689.6	737725.2		30	0554.	753797.3	761823.0	765289.4	768721.8		777113.3	780557.8		787528.9	790630.5	795575-0		800176.7	38		805976.1			
174596.6	175975.0	777362.2	700149	04100	787975.0	784351.2	785722.6	787148.3	788577.9	189994.1	791412.5	793788.9	194975.9	796158.4	797345.0	700771	801031.0	802346.5	03649	804924.1	8	0736	809613.6	810648.7	11615	812543.5	-	815180-8	815934.1	16659.	817348.6	-	81930.0	19965.	~	850906.5	821389.2	22168.	22456		22840	3028.		•	
.537	.540	.545	. 545		858	266	.574	.582	- 065	•00	.618	1400	. 703	0740	181	778*	689	.881	.870	.852	.817	.782	127	169	.660	•630	109.	561	538	.515	.493	14.	123	405	.388	175.	.354	320	307	•534	197	•568			
\$56%*	.4922	*684	.4865	0684	1404	4877	4896	4966		.5180	. 5293	0479	.7502	**08*	.8684	.8605	08390	1902	.7634	.7329	.7010	96199	11990	A248	.6107	• 5926	.5731	5441	Š	.5133	+664.	.4807	6694	4419	.4347	.4261	•4134	1915	3805	.3719	.3589	.3478			
609	.632	653	•674	6660	172		162	.817	**8*	.872	006.	930	989	1.017	1.046	1.071	0110	1.179	1.214	1.251	167.1	1.326	1.361	1.530	1.473	1.517	1.564	1.600	1.689	1.738	1.795	1.861	1.931	2.049	2.081	2.122	2.193	2,305	2365	2.392	2.457	2,512			
.537	.538	. 541	.543	9360	456	• 223	570	.578	1586	.597	119.	.630	• 684	127.	.760	.801	.839	880	979	.861	.834	199	191	706	676	• 645	.618	565	216	.526	. 504	.482	094	414	396	.379	•362	378	25.6	300	. 287	.274			
4.64.	.4338	8064.	.4580	1504.	61.24	6534	4884	.4.31	6105	.5125	.5238	.5775	17.69	11.75	.8356	. 8643	8.94	83.54	1161	7.81	.7169	\$0690	.6710	8759*	16191	•6016	.5828	1,9647	2360	\$219	5	.4382	• 4738	. 601	.4391	. 1305	1614.	. 4080	3840	. 1761	*	.3534		A constitution of the state of	
. 4935	487	*684	0787	- 4835	7874	1084	4833	4889	9864	.5107	• 5206	.5741	.7243	#	.8338	.8651	.8480	8548	1765	.7464	.7160	•6885	.6701	1169.	16191	6009	.5822	. 5641	2046.	\$205	. 5053	.4848	.4781	.4603	4390	.4289	•4166	04040	3970	.3773	.3646	,3533	and the second second second		
865.	.621	.643	.663	• 60	• 106	- 621.		804	930	.858	. 886	• 915	945	600	1.031	1.052	1.094	1.127	1011	1.233	1.271	1.308	1.343	1.378	614.1		1.540	1.585	1.024	1.714	2	•	1.896	1.960	2,065	2.101	2,157		2.278	2,377	*	4.			
20.00	51.00	52.00	53.00	24:00	25.00	0	57.00	20.00	00.00	61.00	65.00	63.00	00.49	00.00	67.00	68.00	69.00	70.00	00.1	73.00	24.00	75.00	76.00	17.00	20.00	80.00	81.00	85.00	83.00	66.00	66.00	87.00	88.00	89.00	90.00	92.00	93.00	00.46	95.00	97.00					
0	٠		0		•			0		(0			2		0			0)		0			,		0			,		0		0)	١,	0		0	0	

100.00 101.00 101.00 103.00 103.00 105.00 107.00 1109.00	~			2000		CKCA	3	7	Ĭ.	X .	
1001 1002 1003 1005 1006 1009	~				;		386	001.6	7 011100	00.001	
103 103 103 105 107 109	•		9, 96.	192.	296.2	. 3341	776	7 7	809303.0	101.00	
103. 103. 105. 107. 109.	•	2966.	2375	•	2.474	1101		823487.3	810546.6	102.00	
103-			. 36.0	230	408	1087	222	823486.8	811090	103.00	
1005	00		1616	4	2 8 6 6	2002	211	873461.4	814337.1	104.00	
100	68.2	1000	200.4	907	2.925	2883	200	823458.1	815361.9	105.00	
109.	50.0		26.30	195	2.981	1717	190	823440.7	814343.5	106.00	
100	,	1616	27.4	185	3.013	2673	180	823+39.7	81>416.0	107.00	
100		•	340	175	3.046	2546	170	823434.0	810204.8	108.00	
111	3.00		24.2	146	31.0	2418	160	823353.3	816955.6	109.00	
111	3.11	•	3140	166	1 185	2282	150	823257.0	- 817661.1	110.00	1
11.		26624	00.0	777	3,264	2134	143	82 307 3.4	817980.5	111.00	
112.	•	•	80.77	•	2000	101		822876.9	814324.2	112.00	
:	•		•5620	•139	3.330		961	33784	818761.0	00	
113.	3		.1390	•132	3.378	01810	971.	65578393	101010		
114.	·		.1716	• 155	3.415	. 1623	171	855700.8	- 5076.19		
115.00	3.		.1531	•118	3.473	.1436	*!!	855450	619357	200	
94	1		5661.	0110	3.541	1631	101	855175.9	819447.3	116.00	
117			.11.9	•103	3.607	•1009	130	821874.3	819483.3	117.00	
9	3.62		.0486	960	3.644	.0763	260.	821563.6	819514.5	118.00	
		240	00.28	080	3.684	• 0495	•082	821268.4	819521.4	119.00	
00.611	3.00		19:00	082	3.722	.0201	.078	820970.3	819495.8	120.00	
2	75		0045	920	3.783	0108	.074	820666.8	819358.1	121.00	
171		200	200	0.00	1.853	96 30	070		9616	- 122.03	-
155.00			0.13	840	1.012	0789	990	819958.3	-	123.00	
123	3.00		10.0	990	4.005	-1176	-062	819542.9	816639.7	124.00	
12.			0060	•		1674	06.7	9058	818265.3	125.00	
125	0.4	_	131	000				1	817876.9	126.00	
126	•		1636	•022	06 100		600	010000	817497.A	127.00	
127.	•	•	2636	160.	117.	0667		4.00010	17105	128.00	
128.00	-		2838	140	4.2.4	1116	666				
129.00	4.30	•	:	.043	4.331	3748	150	817114.9	10040	00.671	
1 30	4.37			•039	4.423	4374	•037	816622.5	107019	00.061	
131	4.45	1074 8	7	•035	4.512	5081	•034	816039.9	815736.4	131-00	
	4.55		546	•032	4.598	5849	.031	815444.8	815188.5	132.00	
135	2 2		979	•050	4.692	6673	.027	814848.0	81-633.5	133.00	
				950	4.782	7602	•050	814249.8	-814073.5	134.00	
00.00	•		8118	.023	4.877	8618	•051	813635.9	813493.5	135.00	
	3			610	5.085	9312	•018	813018.9	812901.6	136.00	
130.	200		0000	910	5.138	-1.0697	• 015	812290.8	81,203.3	137.00	
	000		1100		5.229	-1.2079	110.	811548.1	811485.1	138.00	
138	000	77	-1.2400	110	5.266	-1.2727	010	811216.4	811162.5	138.41	
138					6.130	11.3622	000	810724.9	610683.3	139.00	
139.00	•	1	-1.4404	200	5.413	-1.5348	• 000	609891.0	809868.1	140, 30	
	000		11441		5.527	3.0004	• 000	809019.2	808998.1	141.00	
				5005	5.613	-6.5529	• 000	400749.1	400730.1	145.00	
145	00.	60.20		-							,
										•	

REFERENCES

- Jackson, J.W., "Propulsion System Evaluation through Flight Simulation", MTP-AERO-62-69, dated August 31, 1962, MSFC.
- 2. Office of Manned Spacefiight: Project Apollo Coordinate System Standards, SE-008-001-1, June 1965.