

Algèbre : devoir surveillé n°4.

Nom et prénom : Groupe de TD :

Total: Note sur 20:

Joindre obligatoirement la feuille d'énoncé à la copie.

Utiliser une copie par exercice.

N.Auxire

13 mai 2015

- 1. Cours. Soient (E, +) et (F, \oplus) deux groupes commutatifs. Soit $\phi : E \to F$ un morphisme de groupes. On note 0_E et 0_F les éléments neutres respectivement pour + et \oplus . Montrer que 0_E est un antécédent de 0_F par ϕ .
- 2. Exercice: sous-groupe multiplicatif de matrices d'ordre 3.

On note :
$$J = \begin{pmatrix} -1 & 1 & 1 \\ -2 & 2 & 2 \\ 1 & -1 & -1 \end{pmatrix}$$
, $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ deux éléments de $\mathcal{M}_3(\mathbb{R})$.

On considère l'ensemble $E : E = \{I_3 + m J / m \in \mathbb{R}\}.$

- (a) Montrer que E est une partie de $\mathscr{GL}_3(\mathbb{R})$.
- (b) Calculer J^2 .
- (c) Soit m, un réel. Justifier qu'une identité remarquable très familière permet de déduire l'inverse de $I_3 + m.J$ dans $\mathscr{GL}_3(\mathbb{R})$.
- (d) Montrer que (E, \times) est un sous-groupe de $(\mathscr{GL}_3(\mathbb{R}), \times)$.
- (e) Le sous-groupe (E, \times) est-il commutatif ? Justifier la réponse.
- (f) Montrer que l'application $f \mid (\mathbb{R}, +) \rightarrow (E, \times)$ est un morphisme de groupes. $m \mapsto I_3 + m.J$
- (g) Vérifier que le morphisme f est bijectif.
- 3. Exercice : endomorphisme de \mathbb{R}^3 .

Soit g l'application linéaire définie de \mathbb{R}^3 dans \mathbb{R}^3 par :

$$\forall u = (x, y, z) \in \mathbb{R}^3, \ g(u) = (-2x + 5y + 2z, -x + 4y + 2z, 2x - 10y - 5z).$$

- (a) Soit $\mathcal{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 avec $e_1 = (1, 0, 0), \ e_2 = (0, 1, 0), \ e_3 = (0, 0, 1).$ On pose : $\text{Mat}_{\mathcal{B},\mathcal{B}}(g) = A$. Déterminer A.
- (b) Enoncer le théorème caractérisant l'injectivité d'une application linéaire puis déterminer si g est injective ou non.
- (c) Calculer les images par g des vecteurs suivants : $a = 5 \cdot e_1 + e_2$ et $b = 2 \cdot e_1 + e_3$. La famille $\{a, g(a)\}$ est-elle liée? La famille $\{b, g(b)\}$ est-elle liée? Justifier brièvement.
- (d) Déterminer si la famille $\{e_1, a, b\}$ est libre ou liée.
- (e) On admet que : $\mathbb{R}^3 = \text{Vect}(e_1) + \text{Vect}(a, b)$. Déduire que $\text{Vect}(e_1)$ et Vect(a, b) sont supplémentaires dans \mathbb{R}^3 .
- (f) On nomme \mathcal{B}' la base (e_1, a, b) . On considère l'application linéaire, notée h, définie par :

$$\forall u = (x, y, z) \in \mathbb{R}^3, \ h(u) = (x, y, z).$$

On pose :
$$\operatorname{Mat}_{\mathcal{B}',\mathcal{B}}(h) = P$$
. Vérifier que : $P = \begin{pmatrix} 1 & 5 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

- (g) Calculer P^{-1} .
- (h) Calculer le produit matriciel : $A' = P^{-1}AP$. Interpréter, en justifiant, chaque colonne de A'. Quel est l'intérêt d'utiliser A' plutôt que A?

repère	éléments attendus	barème	évaluation
COURS	si f morphisme alors $f(0_E) = 0_F$		
	0_E neutre dans E	0.5	
	f morphisme	1	
	th. simplification dans F	0.5	
EXERCICE 2	morphisme de groupes		
(a)	E partie de $\mathscr{GL}_3(\mathbb{R})$		
	critère (rang, déterminant)	1	
	calcul (max, non nul)	1	
	inclusion	1	
(b)	Calcul de J^2	1	
(c)	Inverse de $I_3 + m \cdot J$		
	Identité et (a-b)(a+b) dans l'anneau des matrices	1	
	Développement littéral	1	
(d)	E sous-groupe de $(\mathscr{GL}_3(\mathbb{R}), \times)$	_	
	$E \subset \mathscr{GL}_3(\mathbb{R}) \text{ par (a)}$	1	
	$E \neq \emptyset \text{ car } I_3 = I_3 + 0 \cdot J$	1	
	E stable par multiplication $: m + n \in \mathbb{R}$	1	
	E stable par passage à l'inverse $par(c): -m \in \mathbb{R}$	1	
(d)	E sous-groupe commutatif de $(\mathscr{GL}_3(\mathbb{R}), imes)$		
	$(\mathbb{R},+)$ commutatif donc oui	1	
(e)	Morphisme de groupes	1	
(f)	Endomorphisme de \mathbb{R}^3	1	
	injectivité	1	
	surjectivité	1	
EVEDOICE 9		1	
EXERCICE 2	morphisme de e.v.		
(a)	Matrice de f dans \mathcal{B}	1 5	
	$f(e_1) f(e_2) f(e_3)$	1.5	
	matrice	0.5	
(b)	f injective ssi $\ker(f) = \{0\}$	1	
	système de Cramer vérifié	1	
(c)	calcul d'images		
	Calcul numérique	1	
	f(a) = -a f(b) = -b	1	
(d)	Famille libre	1	
	$\{a,b,e_1\}$ libre	1	
(e)	Espaces supplémentaires	4	
	Lien intersection/ liberté	1	
(()	Caractérisation somme directe	1	
(f)	Matrice de $id_{\mathbb{R}^3}$ dans \mathcal{B}'	1	
	Référence au (a) pour $g(e_1)$	0.5	
	Référence au (c) pour $g(a), g(b)$	0.5	
(g)	$P^{-1} = \begin{pmatrix} 1 & -5 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	1	
	$\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$		
(h)	Changement de base		
	/ −1 0 0 \		
	Calcul de $A' = \begin{pmatrix} -1 & 0 & 0 \\ -1 & -1 & 0 \\ 2 & 0 & -1 \end{pmatrix}$	1	
	$\begin{pmatrix} 2 & 0 & -1 \end{pmatrix}$		
	Interprétation des colonnes de A'	1	
	Intérêt de A'	1	