

	Ex. Compute SSR (2x-y) dV where R= {(x, y, z): 05252, 05452, 05x5y-z}
	Note: this parameterization has the form
7	(carrel ci=z=cz, g(z) = y = 90(z) h.(V.z) < x < ho(v.z) ?
	some form as what we like
	291. 5x 12-5
	Sol. 2 22 y-2 2(x-y) dx dy dz
	Innermost: $y-z$
	$\int_{(5x-4)}^{x=0} qx = [x,-x,1] = (\lambda-5),-(\lambda-5),-0$
	$= y^2 - 2yz + z^2 - y^2 + yz = z^2 - yz$
	Middle: 22 (22-45) dy = [452- 242] = 52.52- 2 (52)25-0= 54-25
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	O leavelle 2
	(24-1-25) 12 = [= 25 - 1-26] = 32 - 64 - 2 - 32 - 16
-	3=0
	Outernost: 2
	Remark on Reparameterization:
	To change the order of integration, we must reparameterize
	to look something like this:
/ ^	For this region R in the previous example, to change the order to
	dy dx dz, we need a reparameterization of the form
T	R= {(x,y,z): C, 525C2, g,(2) < x < ga(2), h,(x,z) < y < h2(x,z) }
1	Look at Z= Zo cross-section - effectively fixes Z as a constant
2-20	
	22-y X- Y- Z
	1 - x - 5
	X Z2-7-x15
	X=2-2 06262
	1. R = (X,Y,Z): 0 < X < Z^2 Z 2. X < Z^2 Z 2. X < Z < Z < Z < Z < Z < Z < Z < Z < Z <
	7
N 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Note: will be fully worked in a PDF on the webside
	Mote: will be found moreon in a Lt. all the measure

Ex. Compute the volume of the tetra hearon T with vertices (0,0,0) (1,0,0) (0,1,0) (0,0,1) 05 X 51 V=1-X Picture: Xy-Shodow OSYS I-X 0555 1-x-1 = 7= <1-0, 0-0, 0-17= <1,0,-17 ガース×ブー くいハノ :. the plane has formula $\vec{n} \cdot (\vec{x} - \vec{p}) = 0$ i.e. (1,1,1) - (x-0, y-0, 2-1) = x-y-2-1=0 1: T= {(x, v, 2): 0 < x < 1 , 0 < y < 1-x, 0 < Z < 1-x-y} $\int \left[\sqrt{-x} \sqrt{-\frac{1}{2}} \sqrt{2} \right]_{y=0}^{1-x} dx = \int \left((1-x) - x(1-x) - \frac{1}{2} (1-x)^2 \right) dx$ $= \int_{-\infty}^{\infty} ((1-x)^2 - \frac{1}{2}(1-x)^2) dx - \frac{1}{2} \int_{-\infty}^{\infty} (1-x)^2 dx = \frac{1}{2} - \frac{1}{3} \left[(1-x)^3 \right]_{x=0}^{1}$ = - = (0-1) = = =