VICTOR N. KRIVTSOV

An Intuitionistic Completeness Theorem for Classical Predicate Logic

Abstract. This paper presents an intuitionistic proof of a statement which under a classical reading is *logically* equivalent to Gödel's completeness theorem for classical predicate logic.

Keywords: classical predicate logic, Gödel's completeness theorem, intuitionistic completeness proof.

An intuitionistic structure \mathfrak{M} is defined exactly as a standard Tarski structure, except that the condition $\mathfrak{M} \not\models \bot$ is weakened to $\mathfrak{M} \models \bot \Rightarrow \mathfrak{M} \models P$ (for P atomic), and all the clauses in the definition of \models are read intuitionistically.

For intuitionistic predicate logic completeness with respect to validity in structures can be shown via a purely intuitionistic argument establishing a connection between Beth forcing and intuitionistic validity. The proof is carried out within a suitable fragment of the theory of lawless sequences, see [4, Ch. 13, Sections 1.7 and 1.10]. (For the completeness sake a variant of such a kind of proof is presented in the Appendix below.)

Our aim in this paper is to show that in the case of classical predicate logic a similar argument leads to an intuitionistic version of Gödel's completeness theorem. In contrast to the intuitionistic case, the proof uses essentially only a form of the fan theorem which is classically a variant of König's lemma.

Note on notation

We assume a standard primitive recursive coding <> of all finite sequences of natural numbers onto \mathbb{N} (the set of natural numbers); thus $< n_0, \ldots, n_m >$ is the code number of the sequence n_0, \ldots, n_m . The standard ordering of finite sequences is denoted by \leq ; thus $k \leq k'$ (or equivalently $k' \geq k$) means

Presented by Robert Goldblatt; Received November 25, 2009

110 V. N. Krivtsov

that k is an initial segment of k'. The length of a finite sequence k is written lth(k). We use $k' \succeq_n k$ as an abbreviation for $k' \succeq_k h$ hthick length here.

If α is a choice sequence, then $\bar{\alpha}n$ is the initial segment of α of length n, so that $\bar{\alpha}0 = <>$ (the code of the empty sequence) and $\bar{\alpha}n = <\alpha(0), \ldots, \alpha(n-1)>$ for n>0.

For the sake of simplicity we restrict ourselves to the first-order language \mathcal{L} of pure predicate logic, without equality, function, or constant symbols. There are countable lists x_0, x_1, \ldots of (individual) variables and P_0, P_1, \ldots of predicate symbols. The arity of P_i is denoted by $\tau(i)$; every atomic formula of \mathcal{L} is therefore an expression of the form $P_i(x_{n_1}, \ldots, x_{n_{\tau(i)}})$. The basic logical constants are $\wedge, \vee, \rightarrow, \forall, \exists$, and \bot (absurdity), with $\neg A$ defined as $A \to \bot$. For technical reasons we identify \bot with P_0 , so that $\tau(0) = 0$.

We use \vdash_c and \vdash_i to denote classical and intuitionistic derivability, respectively.

Given a set D, we write $\mathcal{L}(D)$ for the language obtained from \mathcal{L} by adding constant symbols \bar{d} for the elements d of D.

1. Generalized Beth models

We shall use some standard facts concerning generalized Beth models¹.

DEFINITION 1.1. A generalized Beth model for the language \mathcal{L} is a quadruple $\mathfrak{B} = \langle T_{01}, \preceq, D, \Vdash \rangle$, where:

- (i) T_{01} is the full binary tree consisting of all finite 0-1-sequences, \leq the standard ordering of the nodes;
 - (ii) D is an inhabited set², the domain of \mathfrak{B} ;
- (iii) \Vdash , the forcing relation, is a binary relation between elements of T_{01} and atomic sentences $P_i(\bar{d}_1, \dots, \bar{d}_{\tau(i)})$ of $\mathcal{L}(D)$ such that
 - (B1.1) $\exists n \, \forall k' \succeq_n k \, (k' \Vdash P_i(\ldots)) \Rightarrow k \Vdash P_i(\ldots);$
 - (B1.2) $(k \Vdash P_i(\ldots) \text{ and } k' \succeq k) \Rightarrow k' \Vdash P_i(\ldots);$
 - (B1.3) $k \Vdash \bot \Rightarrow k \Vdash P_i(...)$.

The following clauses extend \Vdash to compound sentences of $\mathcal{L}(D)$:

- (B2) $k \Vdash A \land B := k \Vdash A \text{ and } k \Vdash B;$
- (B3) $k \Vdash A \lor B := \exists n \, \forall k' \succeq_n k \, (k' \Vdash A \text{ or } k' \Vdash B);$
- $(B4) \quad k \Vdash A \to B := \forall k' \succeq k (k' \Vdash A \Rightarrow k' \Vdash B);$
- (B5) $k \Vdash \exists x \, A(x) := \exists n \, \forall k' \succeq_n k \, \exists d \in D \, (k' \Vdash A(\bar{d}));$

¹These are also known as *exploding* or *fallible* Beth models.

²That is, $\exists d (d \in D)$.

(B6)
$$k \Vdash \forall x A(x) := \forall d \in D (k \Vdash A(\bar{d})).$$

We write $\mathfrak{B} \Vdash A$ for $<> \Vdash A$. If Δ is a set of sentences of \mathcal{L} , then \mathfrak{B} is a model of Δ (written $\mathfrak{B} \Vdash \Delta$) if $\mathfrak{B} \Vdash B$ for every $B \in \Delta$.

Given a binary choice sequence γ , we write $\gamma \Vdash A$ for $\exists n \ (\bar{\gamma}n \Vdash A)$. If Δ is a set of sentences of $\mathcal{L}(D)$, then $\gamma \Vdash \Delta$ means ' $\gamma \Vdash B$ for every $B \in \Delta$ '.

NOTE. In what follows α, β and γ are supposed to range over binary choice sequences, and k, k' over elements of T_{01} .

Each of the following properties is an easy consequence of Definition 1.1:

- (a) $\gamma \Vdash A \land B \Leftrightarrow \gamma \Vdash A \text{ and } \gamma \Vdash B$;
- (b) $\gamma \Vdash A \lor B \Leftrightarrow \gamma \Vdash A \text{ or } \gamma \Vdash B$;
- (c) $(\gamma \Vdash A \text{ and } \gamma \Vdash A \to B) \Rightarrow \gamma \Vdash B$;
- (d) $\gamma \Vdash \exists x \, A(x) \Leftrightarrow \exists d \in D \, (\gamma \Vdash A(\bar{d}));$
- (e) $\gamma \Vdash \forall x A(x) \Rightarrow \forall d \in D (\gamma \Vdash A(\bar{d}));$
- (f) $\gamma \Vdash \bot \Rightarrow \gamma \Vdash A$ for all sentences A of $\mathcal{L}(D)$;
- (g) $(k' \succeq k \text{ and } k \Vdash A) \Rightarrow k' \Vdash A \text{ (monotonicity)};$
- (h) for any $n \in \mathbb{N}$, $\forall k' \succeq_n k (k' \Vdash A) \Leftrightarrow k \Vdash A$.

DEFINITION 1.2. Let Δ be a set of sentences of \mathcal{L} . A generalized Beth model \mathfrak{B} for the language \mathcal{L} is said to be *universal* for Δ if for all sentences A of \mathcal{L} , $\mathfrak{B} \Vdash A \Leftrightarrow \Delta \vdash_i A$.

The following basic result holds both intuitionistically and classically, cf. [4, Ch. 13, Theorem 2.2.8 and Exercise 13.2.5]:

LEMMA 1.3. Every enumerable ³ set Δ of sentences of \mathcal{L} has a generalized Beth model $\langle T_{01}, \preceq, D, \Vdash \rangle$, with $D = \mathbb{N}$, which is universal for Δ .

2. Intuitionistic structures

DEFINITION 2.1. An intuitionistic structure for the language \mathcal{L} is an ordered couple $\mathfrak{M} = \langle D, I \rangle$, where D (the domain of \mathfrak{M}) is an inhabited set, and I (the valuation mapping) is a function that associates with every predicate symbol P_i a subset of the Cartesian power $D^{\tau(i)}$ (in particular $I(P_0)$ is a subset of $\{\emptyset\}$) such that

$$\emptyset \in I(P_0) \Rightarrow (d_1, \dots, d_{\tau(i)}) \in I(P_i),$$

for all $d_1, \ldots, d_{\tau(i)} \in D$ and i > 0.

³Here 'X is enumerable' means 'there exists a lawlike surjective mapping from $\mathbb N$ to X'.

112 V. N. Krivtsov

Now, given an intuitionistic structure $\mathfrak{M} = \langle D, I \rangle$, the inductive definition of the relation $\mathfrak{M} \models A$ (A is valid in \mathfrak{M} , where A is a sentence of $\mathcal{L}(D)$) is completely similar to that in the case of the usual Tarski semantics:

(M1)
$$\mathfrak{M} \models P_i(\bar{d}_1, \dots, \bar{d}_{\tau(i)}) := (d_1, \dots, d_{\tau(i)}) \in I(P_i);$$

(M2)
$$\mathfrak{M} \models A \land B := (\mathfrak{M} \models A \text{ and } \mathfrak{M} \models B);$$

(M3)
$$\mathfrak{M} \models A \lor B := (\mathfrak{M} \models A \text{ or } \mathfrak{M} \models B);$$

(M4)
$$\mathfrak{M} \models A \to B := (\mathfrak{M} \models A \Rightarrow \mathfrak{M} \models B);$$

(M5)
$$\mathfrak{M} \models \exists x \, A(x) := \exists d \in D \, (\mathfrak{M} \models A(\bar{d}));$$

(M6)
$$\mathfrak{M} \models \forall x A(x) := \forall d \in D (\mathfrak{M} \models A(\bar{d})).$$

Given a set Δ of sentences of \mathcal{L} , \mathfrak{M} is a model of Δ (or $\mathfrak{M} \models \Delta$) if $\mathfrak{M} \models B$ for every $B \in \Delta$.

3. The completeness theorem

We use **PEM** to denote the set of sentences of \mathcal{L} of the form $\forall x_1 \dots x_n \ (B \lor \neg B)$, that is, the set of all closed instances (in \mathcal{L}) of the tertium non datur.

Given a set Δ of sentences and a sentence A of \mathcal{L} , we write $\Delta \models_c A$ to mean 'for every intuitionistic structure \mathfrak{M} with $\mathfrak{M} \models \mathbf{PEM}$: if $\mathfrak{M} \models \Delta$, then $\mathfrak{M} \models A$ '.

THEOREM 3.1. Let A be a sentence and Δ an enumerable set of sentences of \mathcal{L} . Then

$$\Delta \vdash_c A \Leftrightarrow \Delta \models_c A.$$

PROOF. That $\Delta \vdash_c A$ implies $\Delta \models_c A$ is evident. We shall prove the converse.

Let $\mathbf{Un}\ (\Delta_1) = \langle T_{01}, \leq, \mathbb{N}, \Vdash \rangle$ be a generalized Beth model which is universal for the set $\Delta_1 = \Delta \cup \mathbf{PEM}$. Then we have, for all sentences A of \mathcal{L} , $\mathbf{Un}(\Delta_1) \Vdash A \Leftrightarrow \Delta \vdash_c A$. Furthermore, since $\mathbf{Un}(\Delta_1) \Vdash \mathbf{PEM}$, it follows, for any γ and any sentence B of $\mathcal{L}(\mathbb{N})$,

$$\gamma \Vdash B \text{ or } \gamma \Vdash \neg B.$$
 (*)

Now to each γ we associate an intuitionistic structure $\mathfrak{M}_{\gamma} = \langle \mathbb{N}, I \rangle$ by letting

$$(d_1, d_2, \dots, d_{\tau(i)}) \in I(P_i) := \gamma \Vdash P_i(\bar{d}_1, \bar{d}_2, \dots, \bar{d}_{\tau(i)}),$$

for $i \geq 0$ and $d_1, d_2, \dots, d_{\tau(i)} \in \mathbb{N}$.

We need the following

LEMMA 3.2. For all γ and all sentences A of $\mathcal{L}(\mathbb{N})$:

$$\mathfrak{M}_{\gamma} \models A \Leftrightarrow \gamma \Vdash A.$$

PROOF. The proof is by induction on the logical complexity of A. For A atomic the assertion holds by the definition of \mathfrak{M}_{γ} . The cases $A \equiv B \wedge C$, $A \equiv B \vee C$, and $A \equiv \exists x B(x)$ are trivial.

Case $A \equiv B \to C$. Assume $\mathfrak{M}_{\gamma} \models B \to C$, that is, $\mathfrak{M}_{\gamma} \models B \Rightarrow \mathfrak{M}_{\gamma} \models C$. In view of (*), there are two possibilities, $\gamma \Vdash B \to C$ or $\gamma \Vdash \neg (B \to C)$. In case $\gamma \Vdash B \to C$ there is nothing to prove, so assume $\gamma \Vdash \neg (B \to C)$. Then $\gamma \Vdash B \land \neg C$ (for any $k \in T_{01}$ forces any classical tautology), which implies $\gamma \Vdash B$ and hence (by the induction hypothesis, IH) $\mathfrak{M}_{\gamma} \models B$. So $\mathfrak{M}_{\gamma} \models C$, and thus (again by IH) $\gamma \Vdash C$. On the other hand, $\gamma \Vdash B \land \neg C$ implies $\gamma \Vdash \neg C$. This shows that $\gamma \Vdash \bot$, hence $\gamma \Vdash B \to C$.

Conversely, assume $\gamma \Vdash B \to C$, and suppose that $\mathfrak{M}_{\gamma} \models B$. Then, by IH, $\gamma \Vdash B$ and hence $\gamma \Vdash C$, which implies (again by IH) $\mathfrak{M}_{\gamma} \models C$. Therefore, $\mathfrak{M}_{\gamma} \models B \to C$.

Case $A \equiv \forall x \, B(x)$. Assume $\mathfrak{M}_{\gamma} \models \forall x \, B(x)$, that is, $\forall d \in \mathbb{N} \, (\mathfrak{M}_{\gamma} \models B(\bar{d}))$. Then by IH $\forall d \in \mathbb{N} \, (\gamma \Vdash B(\bar{d}))$. In view of (*), there are two possibilities, $\gamma \Vdash \forall x \, B(x)$ or $\gamma \Vdash \neg \forall x \, B(x)$. In case $\gamma \Vdash \forall x \, B(x)$ there is nothing to prove, so assume $\gamma \Vdash \neg \forall x \, B(x)$. Then $\gamma \Vdash \exists x \, \neg B(x)$, which implies, for some $d \in \mathbb{N}$, $\gamma \Vdash \neg B(\bar{d})$. On the other hand, $\gamma \Vdash B(\bar{d})$. This shows that $\gamma \Vdash \bot$, hence $\gamma \Vdash \forall x \, B(x)$.

Conversely, if $\gamma \Vdash \forall x \, B(x)$, then $\exists n \, \forall d \in \mathbb{N} \, (\bar{\gamma}n \Vdash B(\bar{d}))$ and hence, by IH, $\forall d \in \mathbb{N} \, (\mathfrak{M}_{\gamma} \models B(\bar{d}))$, that is, $\mathfrak{M}_{\gamma} \models \forall x \, B(x)$.

Now let \mathbf{FAN} stand for the following version of the fan theorem (without choice parameters):

$$\forall \alpha \, \exists n \, \varphi(\bar{\alpha}n) \to \exists m \, \forall \alpha \, \exists n \leq m \, \varphi(\bar{\alpha}n),$$

and suppose that $\Delta \models_c A$ holds. Then we have $\forall \gamma \ (\mathfrak{M}_{\gamma} \models \Delta_1 \Rightarrow \mathfrak{M}_{\gamma} \models A)$ and so, in view of (*) and Lemma 3.2, $\forall \gamma \ (\gamma \Vdash \Delta \Rightarrow \gamma \Vdash A)$. Since $\mathbf{Un}(\Delta_1)$ is a model of Δ , it follows $\forall \gamma \ (\gamma \Vdash \Delta)$ and thus $\forall \gamma \ (\gamma \Vdash A)$. The latter means $\forall \gamma \ \exists n \ (\bar{\gamma}n \Vdash A)$, which implies (by **FAN** and monotonicity) $\exists m \ \forall k \ (\mathrm{lth}(k) = m \Rightarrow k \Vdash A)$, that is, $\mathbf{Un}(\Delta_1) \Vdash A$. Therefore $\Delta \vdash_c A$.

This completes the proof of the theorem.

REMARKS. (i). Since under a classical reading **FAN** is an equivalent form of a variant of König's lemma, viz. $\forall m \exists \alpha \forall n \leq m \varphi(\bar{\alpha}n) \rightarrow \exists \alpha \forall n \varphi(\bar{\alpha}n)$, all

114 V. N. Krivtsov

the arguments involved in the proof of the above theorem are also acceptable from a classical point of view. Furthermore, by classical logic this theorem is equivalent to Gödel's completeness theorem, see [2, Theorem 1].

(ii). For another, entirely different intuitionistic version of completeness for classical logic we refer the reader to [3].

4. Appendix

Given a set Δ of sentences and a sentence A of \mathcal{L} , we write $\Delta \models_i A$ to mean 'for every intuitionistic structure \mathfrak{M} : if $\mathfrak{M} \models \Delta$, then $\mathfrak{M} \models A$ '.

The following statement is an obvious extension of a completeness result presented in [1].

THEOREM 4.1. Let A be a sentence and Δ an enumerable set of sentences of \mathcal{L} . Then

$$\Delta \vdash_i A \Leftrightarrow \Delta \models_i A.$$

PROOF. That $\Delta \vdash_i A$ implies $\Delta \models_i A$ is evident. We shall prove the converse.

Assume the variables α, β, γ to range over binary choice sequences satisfying: (i) the density axiom $\forall k \,\exists \alpha \, (\alpha \in k)$, (ii) (the above version of) the fan theorem (**FAN**), and (iii) the principle of open data (**OD**) $\varphi(\alpha) \to \exists n \,\forall \beta \in \bar{\alpha}n \,\varphi(\beta)$, for φ not containing choice parameters besides α . [NOTE. It is easily shown that **FAN** implies its relativized versions $\forall \alpha \in k \,\exists n \,\varphi(\bar{\alpha}n) \to \exists m \,\forall \alpha \in k \,\exists n \leq m \,\varphi(\bar{\alpha}n)$, for any $k \in T_{01}$.]

Let $\mathbf{Un}(\Delta) = \langle T_{01}, \leq, \mathbb{N}, \Vdash \rangle$ be a generalized Beth model which is universal for Δ , and let $\mathfrak{M}_{\alpha} = \langle \mathbb{N}, I \rangle$ be the intuitionistic structure associated with α , so that

$$(d_1, d_2, \dots, d_{\tau(i)}) \in I(P_i) \Leftrightarrow \alpha \Vdash P_i(\bar{d}_1, \bar{d}_2, \dots, \bar{d}_{\tau(i)}),$$

for $i \geq 0$ and $d_1, d_2, \ldots, d_{\tau(i)} \in \mathbb{N}$.

We need the following

LEMMA 4.2. For all sentences A of $\mathcal{L}(\mathbb{N})$:

$$\mathfrak{M}_{\alpha} \models A \Leftrightarrow \alpha \Vdash A.$$

PROOF. The proof is by induction on the logical complexity of A. For A atomic the assertion holds by the definition of \mathfrak{M}_{α} . The cases $A \equiv B \wedge C$, $A \equiv B \vee C$, and $A \equiv \exists x \, B(x)$ are trivial.

Case $A \equiv B \to C$. Assume $\mathfrak{M}_{\alpha} \models B \to C$. Then, by **OD**, there is $n \in \mathbb{N}$ such that $\forall \beta \in \bar{\alpha}n \ (\mathfrak{M}_{\beta} \models B \to C)$, that is, $\forall \beta \in \bar{\alpha}n \ (\mathfrak{M}_{\beta} \models B \Rightarrow \mathfrak{M}_{\beta} \models C)$, which implies (by IH) $\forall \beta \in \bar{\alpha}n \ (\beta \Vdash B \Rightarrow \beta \Vdash C)$. Assume now that $k \succeq \bar{\alpha}n$ and $k \Vdash B$; then $\forall \gamma \in k \ (\gamma \Vdash B)$, from which it follows $\forall \gamma \in k \ (\gamma \Vdash C)$ and thus (by **FAN**, monotonicity, and density) $k \Vdash C$. This holds for all $k \succeq \bar{\alpha}n$, therefore $\bar{\alpha}n \Vdash B \to C$ and hence $\alpha \Vdash B \to C$.

Conversely, assume $\alpha \Vdash B \to C$, and suppose that $\mathfrak{M}_{\alpha} \models B$. Then, by IH, $\alpha \Vdash B$ and hence $\alpha \Vdash C$, which implies (again by IH) $\mathfrak{M}_{\alpha} \models C$. Therefore, $\mathfrak{M}_{\alpha} \models B \to C$.

Case $A \equiv \forall x B(x)$. We have: $\mathfrak{M}_{\alpha} \models \forall x B(x) \Leftrightarrow \text{(by OD)} \exists n \, \forall \beta \in \bar{\alpha} n \, (\mathfrak{M}_{\beta} \models \forall x B(x)) \Leftrightarrow \exists n \, \forall \beta \in \bar{\alpha} n \, \forall d \in \mathbb{N} \, (\mathfrak{M}_{\beta} \models B(\bar{d})) \Leftrightarrow \exists n \, \forall d \in \mathbb{N} \, \forall \beta \in \bar{\alpha} n \, (\mathfrak{M}_{\beta} \models B(\bar{d})) \Leftrightarrow \text{(by IH)} \, \exists n \, \forall d \in \mathbb{N} \, \forall \beta \in \bar{\alpha} n \, (\beta \Vdash B(\bar{d})) \Leftrightarrow \text{(by FAN, monotonicity, and density)} \, \exists n \, \forall d \in \mathbb{N} \, (\bar{\alpha} n \Vdash B(\bar{d})) \Leftrightarrow \exists n \, (\bar{\alpha} n \Vdash \forall x B(x)) \Leftrightarrow \alpha \Vdash \forall x B(x).$

Now suppose $\Delta \models_i A$. Then we have $\forall \alpha \, (\mathfrak{M}_{\alpha} \models \Delta \Rightarrow \mathfrak{M}_{\alpha} \models A)$ and so, in view of Lemma 4.2, $\forall \alpha \, (\alpha \Vdash \Delta \Rightarrow \alpha \Vdash A)$. Since $\mathbf{Un}(\Delta)$ is a model of Δ , it follows $\forall \alpha \, (\alpha \Vdash \Delta)$ and thus $\forall \alpha \, (\alpha \Vdash A)$. The latter means $\forall \alpha \, \exists n \, (\bar{\alpha}n \Vdash A)$, which implies (by **FAN**, monotonicity, and density) $<> \Vdash A$, that is, $\mathbf{Un}(\Delta) \Vdash A$. Therefore $\Delta \vdash_i A$.

This completes the proof of the theorem.

References

- [1] Friedman, H. M., 'Intuitionistic completeness of Heiting's predicate calculus', *Notices* of the American Mathematical Society 22, A-648, 1975.
- [2] Gödel, K., 'Die Vollständigkeit der Axiome des logischen Funktionenkalküls', Monatshefte für Mathematik und Physik 37:349–360, 1930.
- [3] Krivine, J.-L., 'Une preuve formelle et intuitionniste du théorème de complétude de la logique classique', Bulletin of Symbolic Logic 2(4):405–421, 1996.
- [4] Troelstra, A.S., and D. van Dalen, Constructivism in Mathematics, vol. II, North-Holland, 1988.

VICTOR N. KRIVTSOV
Department of Mathematical Logic and
Theory of Algorithms
Faculty of Mechanics and Mathematics
Moscow State University
Vorob'evy Gory
119991 Moscow, Russia
victor@lpcs.math.msu.su