Outflows from Young Stellar Objects MHD, Radiation & Chemistry

Bhargav Vaidya¹

¹School of Physics and Astronomy, University of Leeds, Leeds.

Astro Seminar, TIFR January 13, 2014

Collaborators:

Paola Caselli (Uni. Leeds), Thomas Douglas (Uni. Leeds), Oliver Porth (Uni. Leeds), Christian Fendt (MPIA), Henrik Beuther (MPIA), Somayeah Sheiknezami (MPIA), Ciraco Goddi (JIVE), Andrea Mignone (Uni. Torino).

Outline

- 1 Introduction
- 2 Motivation
- 3 Methods: Numerical Simulations
- 4 Outflow Dynamics: Launching
- 5 Outflow dynamics: Propagation
- 6 Summary

Star formation: What do we know

Talk about winds and outflows

Present challenges

Motivation

Chemistry in outflows

Motivation

Molecular bullets and EHV emission

Launching and Propagation

Radiation force

Chemistry and Cooling

MHD Acceleration

Resistive effects

Cooling in Jets

SiO Abundance and Jet Velocity

Multi-Line survey: Emission I

Movies Here.

Spectral Features

Kinematic Study (LVG)

Multi-line survey: Line Ratios

- EHV emission of 0.5 K.
- Line ratios close to Unity.
- Multi-line emission show a distinct fall at high J_{up} .

Focussing on a single knot

200 200 150 150 2 2 100 50 100 Pixels 150 -15.013.011.0-9.0 -7.0 -5.0 -3.0 -1.0 Velocity [km s⁻¹] spec cut = 110 mpec cut = 110 1.0 0.4 0.2 0.2 -12 -10-12 -10Velocity [km s⁻¹] Velocity [km s⁻¹]

HH 212 (Codella 2007)

Conclusions