Úvod do matematickej logiky

1 Syntax a sémantika výrokovej logiky prvého rádu

Definícia 4.20

Literál je atóm alebo negácia atómu.

Klauzula (tiež "klauza", angl. clause) je disjunkcia postupnosti literálov.

Formula v konjunktívnom normálnom tvare (angl. conjunctive normal form, CNF) je konjunkcia postupnosti klauzúl.

Definícia 10.2

Symbolmi jazyka logiky prvého rádu \mathcal{L} sú:

indivíduové premenné z nejakej nekonečnej spočítateľnej množiny $\mathcal{V}_{\mathcal{L}}$; mimologické symboly:

indivíduové konštanty z nejakej spočítateľnej množiny $\mathcal{C}_{\mathcal{L}}$, funkčné symboly z nejakej spočítateľnej množiny $\mathcal{F}_{\mathcal{L}}$, predikátové symboly z nejakej spočít. množiny $\mathcal{P}_{\mathcal{L}}$;

logické symboly: logické spojky — unárna ¬ a binárne ∧, ∨ a →, symbol rovnosti ≐ a kvantifikátory — existenčný ∃ a všeobecný ∀; pomocné symboly: (,) a , (ľavá zátvorka, pravá zátvorka a čiarka).

Množiny $\mathcal{V}_{\mathcal{L}}$, $\mathcal{C}_{\mathcal{L}}$, $\mathcal{F}_{\mathcal{L}}$, $\mathcal{P}_{\mathcal{L}}$ sú vzájomne disjunktné. Logické ani pomocné symboly sa nevyskytujú v symboloch z $\mathcal{V}_{\mathcal{L}}$, $\mathcal{C}_{\mathcal{L}}$, $\mathcal{F}_{\mathcal{L}}$, $\mathcal{P}_{\mathcal{L}}$.

Každému symbolu $s \in \mathcal{P}_{\mathcal{L}} \cup \mathcal{F}_{\mathcal{L}}$ je priradená arita $ar(s) \in \mathbb{N}^+$.

Definícia 6.4 (Atomické formuly)

Nech \mathcal{L} je jazyk relačnej logiky prvého rádu.

Rovnostný atóm jazyka \mathcal{L} je každá postupnosť symbolov $t_1 \doteq t_2$, kde t_1 a t_2 sú termy jazyka \mathcal{L} .

Predikátový atóm jazyka \mathcal{L} je každá postupnosť symbolov $P(t_1, ..., t_n)$, kde P je predikátový symbol s aritou n a $t_1, ..., t_n$ sú termy jazyka \mathcal{L} .

Atomickými formulami (skrátene atómami) jazyka \mathcal{L} súhrnne nazývame všetky rovnostné a predikátové atómy jazyka \mathcal{L} .

Množinu všetkých atómov jazyka \mathcal{L} označujeme $\mathcal{A}_{\mathcal{L}}$.

Definícia 6.3 (Term)

Nech \mathcal{L} je jazyk relačnej logiky prvého rádu. Indivíduové premenné z $\mathcal{V}_{\mathcal{L}}$ a konštanty z $\mathcal{C}_{\mathcal{L}}$ súhrnne nazývame **termy** jazyka \mathcal{L} .

Definícia 10.4

Množina $\mathcal{F}_{\mathcal{L}}$ termov jazyka logiky prvého rádu \mathcal{L} je najmenšia množina postupností symbolov jazyka \mathcal{L} , pre ktorú platí:

- i. každá indivíduová premenná $x \in \mathcal{V}_{\mathcal{L}}$ patrí do $\mathcal{F}_{\mathcal{L}}$ (teda $\mathcal{V}_{\mathcal{L}} \subseteq \mathcal{F}_{\mathcal{L}}$);
- ii. každá indivíduová konštanta $c \in \mathcal{C}_{\mathcal{L}}$ patrí do $\mathcal{F}_{\mathcal{L}}$ (teda $\mathcal{C}_{\mathcal{L}} \subseteq \mathcal{F}_{\mathcal{L}}$);
- iii. ak f je funkčný symbol s aritou n a $t_1, ..., t_n$ patria do $\mathcal{T}_{\mathcal{L}}$, tak aj postupnosť symbolov $f(t_1, ..., t_n)$ patrí do $\mathcal{T}_{\mathcal{L}}$.

Každý prvok $\mathcal{T}_{\mathcal{L}}$ je term jazyka \mathcal{L} a nič iné nie je termom jazyka \mathcal{L} .

Definícia 10.8

Množina $\mathcal{E}_{\mathcal{L}}$ všetkých *formúl* jazyka logiky prvého rádu \mathcal{L} je najmenšia množina postupností symbolov jazyka \mathcal{L} , ktorá spĺňa všetky nasledujúce podmienky:

- i. Každý atóm z $\mathcal{A}_{\mathcal{L}}$ patrí do $\mathcal{E}_{\mathcal{L}}$. Inak povedané, $\mathcal{A}_{\mathcal{L}} \subseteq \mathcal{E}_{\mathcal{L}}$.
- ii. Ak A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosť symbolov $\neg A$ patrí do $\mathcal{E}_{\mathcal{L}}$ a nazývame ju negácia formuly A.
- iii. Ak A a B sú v $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosti symbolov $(A \wedge B)$, $(A \vee B)$ a $(A \to B)$ patria do $\mathcal{E}_{\mathcal{L}}$ a nazývame ich postupne konjunkcia, disjunkcia a implikácia formúl A a B.
- iv. Ak x je indivíduová premenná a A patrí do $\mathcal{E}_{\mathcal{L}}$, tak aj postupnosti symbolov $\exists x\,A$ a $\forall x\,A$ patria do $\mathcal{E}_{\mathcal{L}}$ a nazývame ich postupne existenčná a všeobecná kvantifikácia formuly A vzhľadom na x.

Každý prvok A množiny $\mathcal{E}_{\mathcal{L}}$ nazývame formulou jazyka \mathcal{L} .

Definícia 6.10 (Oblasť platnosti kvantifikátora)

Nech A je postupnosť symbolov, nech B je formula, nech $Q \in \{\forall, \exists\}$, nech x je premenná.

V postupnosti A = ... QxB... sa výskyt formuly QxB nazýva oblasť platnosti kvantifikátora Qx v A.

Definícia 6.12 (Voľné a viazané výskyty premenných)

Nech A je postupnosť symbolov, nech x je premenná.

Výskyt premennej x v A je <u>viazaný</u> vtt sa nachádza v niektorej oblasti platnosti kvantifikátora $\forall x$ alebo $\exists x$ v A.

Výskyt premennej x A je voľný vtt sa nenachádza v žiadnej oblasti platnosti kvantifikátora $\forall x$ ani $\exists x$ v A.

Definícia 6.14 (Voľné a viazané premenné)

Nech A je formula alebo term, nech x je premenná.

Premenná x je viazaná v A vtt x sa vyskytuje v x a všetky výskyty x v x sú viazané.

Premenná x je voľná v A vtt x má v A aspoň jeden voľný výskyt.

Množinu voľných premenných formuly A označíme free(A).

Definícia 6.17 (Uzavretá formula, teória)

Formula A jazyka \mathcal{L} je uzavretá vtt žiadna premenná nie je voľná v A(teda free $(A) = \emptyset$).

Teóriou v jazyku \mathcal{L} je každá spočítateľná množinu uzavretých formúl jazyka \mathcal{L} .

Definícia 10.12

Nech \mathcal{L} je jazyk logiky prvého rádu.

Štruktúrou pre jazyk \mathcal{L} nazývame dvojicu $\mathcal{M} = (D, i)$, kde

doména D štruktúry \mathcal{M} je ľubovoľná neprázdna množina; interpretačná funkcia i štruktúry \mathcal{M} je zobrazenie, ktoré

- každému symbolu konštanty c jazyka L priraďuje prvok i(c) ∈ D;
- každému funkčnému symbolu f jazyka \mathcal{L} s aritou n priraďuje funkciu $i(f): D^n \to D$;
- každému predikátovému symbolu P jazyka \mathcal{L} s aritou n priraďuje množinu $i(P) \subseteq D^n$.

Definícia 6.21

Nech $\mathcal{M} = (D, i)$ je štruktúra pre jazyk \mathcal{L} .

Ohodnotenie indivíduových premenných je ľubovoľná

funkcia $e: \mathcal{V}_{\mathcal{L}} \to D$ (priraďuje premenným prvky domény).

Nech ďalej x je indivíduová premenná z \mathcal{L} a d je prvok D.

Zápisom e(x/d) označíme ohodnotenie indivíduových premenných, ktoré premennej x priraďuje hodnotu d a všetkým ostatným premenným rovnakú hodnotu ako im

$$e(x/d)(y) = \begin{cases} d, & \text{ak } y = x, \\ e(y), & \text{ak } y \neq x, \end{cases}$$

alebo množinovo zapísané $e(x/d) = e \setminus \{x \mapsto e(x)\} \cup \{x \mapsto d\}.$

Definícia 6.22

priraďuje e, čiže

Nech $\mathcal{M}=(D,i)$ je štruktúra, e je ohodnotenie premenných. Hodnotou termu t v štruktúre \mathcal{M} pri ohodnotení premenných e je prvok $t^{\mathcal{M}}[e]$ z D určený nasledovne:

- $t^{\mathcal{M}}[e] = e(x)$, ak t je premenná $x \in \mathcal{V}_{\mathcal{L}}$,
- $t^{\mathcal{M}}[e] = i(a)$, ak t je konštanta $a \in \mathcal{C}_{\mathcal{L}}$.

Definícia 10.15

Nech $\mathcal{M}=(D,i)$ je štruktúra pre jazyk logiky prvého rádu \mathcal{L} , nech e je ohodnotenie premenných.

Hodnotou termu t v štruktúre \mathcal{M} pri ohodnotení premenných e je prvok z D označovaný $t^{\mathcal{M}}[e]$ a zadefinovaný induktívne pre všetky premenné x, konštanty a, každú aritu n, všetky funkčné symboly f s aritou n, a všetky termy t_1, \ldots, t_n nasledovne:

$$x^{\mathcal{M}}[e] = e(x),$$

$$a^{\mathcal{M}}[e] = i(a),$$

$$(f(t_1, \dots, t_n))^{\mathcal{M}}[e] = i(f)(t_1^{\mathcal{M}}[e], \dots, t_n^{\mathcal{M}}[e]).$$

Definícia 6.25

Nech X je uzavretá formula jazyka \mathcal{L} , nech T je teória v jazyku \mathcal{L} a nech \mathcal{M} je štruktúra pre \mathcal{L} .

Formula X je **pravdivá** v štruktúre \mathcal{M} (skrátene $\mathcal{M} \models X$) vtt \mathcal{M} spĺňa formulu X pri každom ohodnotení e. Vtedy tiež hovoríme, že \mathcal{M} je **modelom** formuly X.

Teória T je pravdivá v štruktúre \mathcal{M} (skrátene $\mathcal{M} \models T$) vtt každá formula X z T je pravdivá v \mathcal{M} .

Vtedy tiež hovoríme, že \mathcal{M} je modelom teórie T.

2 Tablový kalkul pre výrokovú logiku, korektnosť a úplnosť tablového kalkulu

Pre mnohé logické jazyky sú známe kalkuly – množiny usudzovacích pravidiel, ktoré sú

korektné – odvodzujú iba logické dôsledky,
 úplné – umožňujú odvodiť všetky logické dôsledky.

Definícia 5.4

Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu. Nech X je výrokovologická formula jazyka \mathcal{L} .

Postupnosti symbolov TX a FX nazývame označené formuly.

Definícia 5.5

Nech \mathcal{L} je jazyk výrokovologickej časti logiky prvého rádu, v je ohodnotenie pre \mathcal{L} a X je výrokovologická formula v \mathcal{L} . Potom

- vo v je pravdivá TX (skrátene $v \models_p TX$) vtt vo v je pravdivá X;
- vo v je pravdivá $\mathbf{F}X$ (skr. $v \models_{p} \mathbf{F}X$) vtt vo v nie je pravdivá X.

Definícia (Jednotný zápis označených formúl typu α)

Označená formula je $typu \alpha$ vtt má jeden	α	α_1	α_2
z tvarov v ľavom stĺpci tabuľky pre nejaké	$T(A \wedge B)$	TA	TB
formuly A a B .	$\mathbf{F}(A \vee B)$		
Takéto formuly označujeme písmenom α ;	$\mathbf{F}(A \lor B)$		
$lpha_1$ označuje príslušnú formulu zo stredného	$\mathbf{T} \neg A$	FA	
stĺpca a α_2 príslušnú formulu z pravého stĺpca.			
	$\mathbf{F} \neg A$	TA	TA

Definícia (Jednotný zápis označených formúl typu β)

Označená formula je $typu \beta$ vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejaké formuly A a B.

Takéto formuly označujeme písmenom β ; β_1 označuje príslušnú formulu zo stredného stĺpca a β_2 príslušnú formulu z pravého stĺpca.

β	$oldsymbol{eta}_1$	eta_2
$\mathbf{F}(A \wedge B)$	$\mathbf{F}A$	$\mathbf{F}B$
$T(A \vee B)$	TA	TB
$T(A \rightarrow B)$	$\mathbf{F}A$	TB

Definícia (Jednotný zápis označených formúl typu γ)

Označená formula je $typu \gamma$ vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejakú formulu A a indivíduovú premennú x.

Takéto formuly označujeme $\gamma(x)$ a pre ľubovoľný term t substituovateľný za x v A príslušnú formulu z pravého stĺpca označujeme $\gamma_1(t)$.

$\gamma(x)$	$\gamma_1(t)$
$\mathbf{F} \exists x A$	$\mathbf{F}A\{x\mapsto t\}$
$\mathbf{T} \forall \mathbf{r} A$	$TA\{r \mapsto t\}$

Definícia (Jednotný zápis označených formúl typu δ)

Označená formula je $typu \delta$ vtt má jeden z tvarov v ľavom stĺpci tabuľky pre nejakú formulu A a indivíduovú premennú x.

Takéto formuly označujeme $\delta(x)$ a pre ľubovoľnú premennú y substituovateľnú za x v A príslušnú formulu z pravého stĺpca označujeme $\delta_1(y)$.

$\delta(x)$	$\delta_1(y)$
$\mathbf{T} \exists x A$	$TA\{x \mapsto y\}$
$\mathbf{F} \forall x A$	$\mathbf{F}A\{x\mapsto y\}$

Pravidlá rovnosti: Leibnitzovo pravidlo

Definícia 11.2

Analytické tablo pre množinu označených formúl S^+ (skr. tablo pre S^+) je binárny strom, ktorého vrcholy obsahujú označené formuly a je skonštruovaný induktívne podľa nasledovných pravidiel:

- Strom s jediným vrcholom (koreňom) obsahujúcim niektorú označenú formulu A⁺ z S⁺ je tablom pre S⁺.
- Nech \mathcal{T} je tablo pre S^+ a ℓ je nejaký jeho list. Potom tablom pre S^+ je aj každé *priame rozšírenie* \mathcal{T} ktorýmkoľvek z pravidiel:
 - S^+ : Ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci ľubovoľnú označenú formulu $A^+ \in S^+$.
 - α : Ak sa na vetve π_{ℓ} (ceste z koreňa do ℓ) vyskytuje nejaká označená formula α , tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci α_1 alebo α_2 .
 - β : Ak sa na vetve π_{ℓ} vyskytuje nejaká označená formula β , tak ako deti ℓ pripojíme dva nové vrcholy, pričom ľavé dieťa bude obsahovať β_1 a pravé β_2 .

Definícia 11.2 (pokračovanie)

- γ : Ak sa na vetve π_ℓ vyskytuje nejaká označená formula $\gamma(x)$, tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci $\gamma_1(t)$ pre ľubovoľný term t substituovateľný za x v $\gamma_1(x)$.
- δ : Ak sa na vetve π_ℓ vyskytuje nejaká označená formula $\delta(x)$, tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci $\delta_1(y)$ pre ľubovoľnú premennú y, ktorá je substitovateľná za x v $\delta_1(x)$ a nemá voľný výskyt v žiadnej formule na vetve π_ℓ .
- **L:** Ak sa na vetve π_ℓ vyskytuje **T** $t_1 \doteq t_2$ pre nejaké termy t_1 a t_2 a označená formula $A^+\{x \mapsto t_1\}$ pre nejakú A^+ , v ktorej sú t_1 a t_2 substituovateľné za x, tak ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci $A^+\{x \mapsto t_2\}$.
- **R:** Ako jediné dieťa ℓ pripojíme nový vrchol obsahujúci označenú formulu **T** $t \doteq t$ pre ľubovoľný term t.

Definícia 5.14

Vetvou tabla \mathcal{T} je každá cesta od koreňa \mathcal{T} k niektorému listu \mathcal{T} .

Označená formula X^+ sa vyskytuje na vetve π v \mathcal{T} vtt X^+ sa nachádza v niektorom vrchole na π . Skrátene to budeme zapisovať $X^+ \in \text{formulas}(\pi)$.

Definícia 5.15

 ${f Vetva}\ \pi$ tabla ${\mathcal T}$ je **uzavretá** vtt na π sa súčasne vyskytujú označené formuly ${f F}X$ a ${f T}X$ pre nejakú formulu X.

Inak je π otvorená.

Tablo \mathcal{T} **je uzavreté** vtt *každá* jeho vetva je uzavretá. Naopak, \mathcal{T} je **otvorené** vtt *aspoň jedna* jeho vetva je otvorená.

Veta 5.17 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl a \mathcal{T} je uzavreté tablo pre S^+ . Potom je množina S^+ nesplniteľná.

Veta 11.3 (Korektnosť tablového kalkulu)

Nech S^+ je množina označených formúl.

Ak existuje uzavreté tablo \mathcal{T} pre S^+ , tak je množina S^+ nesplniteľná.

Dôkaz vety o korektnosti 5.16.

Nech S^+ je množina označených formúl a \mathcal{T} je uzavreté tablo pre S^+ .

Sporom: Predpokladajme, že existuje ohodnotenie, v ktorom je S^+ pravdivá. Označme ho v.

Potom podľa lemy K2 je vo v pravdivé tablo \mathcal{T} , teda vo v je pravdivá niektorá vetva π v \mathcal{T} .

Pretože \mathcal{T} je uzavreté, aj vetva π je uzavretá. Na π sa teda nachádzajú označené formuly $\mathbf{T}X$ a $\mathbf{F}X$ pre nejakú formulu X. Pretože π je pravdivá vo v, musia byť vo v pravdivé všetky formuly na nej. Ale $v \models_p \mathbf{T}X$ vtt $v \models_p X$ a $v \models_p \mathbf{F}X$ vtt $v \not\models_p X$. Teda $\mathbf{T}X$ a $\mathbf{F}X$ nemôžu byť obe pravdivé, čo je spor.

Definícia 5.19

Nech S^+ je množina označených formúl v jazyku \mathcal{L} , nech \mathcal{T} je tablo pre S^+ , nech π je vetva tabla \mathcal{T} a nech v je výrokovologické ohodnotenie pre \mathcal{L} . Potom:

- vetva π je pravdivá vo v (v ⊧_p π) vtt vo v sú pravdivé
 všetky označené formuly vyskytujúce sa na vetve π.
- tablo T je pravdivé vo v (v \(\mathbb{r}_p \) T) vtt
 niektorá vetva v table T je pravdivá.

Definícia 5.23 (Úplná vetva a úplné tablo)

Nech S^+ je množina označených formúl a \mathcal{T} je tablo pre S^+ .

Vetva π v table \mathcal{T} je úplná vtt má všetky nasledujúce vlastnosti:

- pre každú označenú formulu α, ktorá sa vyskytuje na π, sa obidve označené formuly α₁ a α₂ vyskytujú na π;
- pre každú označenú formulu β, ktorá sa vyskytuje na π,
 sa aspoň jedna z označených formúl β₁, β₂ vyskytuje na π;
- každá $X^+ \in S^+$ sa vyskytuje na π .

Tablo \mathcal{T} je úplné vtt každá jeho vetva je buď úplná alebo uzavretá.

Lema 5.24 (o existencii úplného tabla)

Nech S^+ je konečná množina označených formúl. Potom existuje úplné tablo pre S^+ .

Veta 5.28 (o úplnosti tablového kalkulu [Smullyan, 1979])

Nech S^+ je konečná nesplniteľná množina označených formúl. Potom existuje uzavreté tablo pre S^+ .

Dôkaz vety o úplnosti.

Zoberme ľubovoľnú konečnú nesplniteľnú množinu označených formúl S^+ .

Podľa lemy o existencii úplného tabla vieme pre S^+ nájsť úplné tablo \mathcal{T} , teda také, že každá vetva je buď uzavretá alebo úplná.

Ak by niektorá vetva bola otvorená, potom musí byť úplná, a teda nadol nasýtená. Podľa Hintikkovej lemy by bola splniteľná. Pretože obsahuje všetky formuly z S^+ , bola by aj S^+ splniteľná, čo je spor s nesplniteľnosťou S^+ .

Preto musia byť všetky vetvy tabla $\mathcal T$ uzavreté.

Definícia 5.33 (Vzor tablového pravidla)

Nech $n \ge 0$ a k > 0 sú prirodzené čísla, nech $P_1^+, \ldots, P_n^+, C_1^+, \ldots, C_k^+$ sú označené formuly.

Dvojicu tvorenú n-ticou (P_1^+,\dots,P_n^+) a k-ticou (C_1^+,\dots,C_k^+) a zapisovanú

$$\begin{array}{c|ccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

nazývame vzorom tablového pravidla.

Označené formuly $P_1^+, ..., P_n^+$ nazývame vzory premís, označené formuly $C_1^+, ..., C_k^+$ nazývame vzory záverov.

Definícia 5.35 (Tablové pravidlo a jeho korektnosť)

Tablové pravidlo *R* je *korektné* vtt pre každú inštanciu pravidla *R*

$$\begin{array}{c|ccc} P_1^+ & \cdots & P_n^+ \\ \hline C_1^+ & \cdots & C_k^+ \end{array}$$

a pre každé ohodnotenie v platí, že ak sú vo v pravdivé všetky premisy $P_1^+, \ldots, P_n^+,$ tak je vo v pravdivý niektorý záver $C_1^+, \ldots, C_k^+.$

3 Tablový kalkul pre logiku prvého rádu a jeho korektnosť

Aký je rozdiel od otázky 2?

4 SAT solvery, algoritmus CDDL, rezolvencia vo výrokovej logike

Prednáška 7

Definícia 5.1 (Problém SAT)

Problémom výrokovologickej splniteľnosti (SAT) je problém určenia toho, či je daná množina výrokovologických formúl splniteľná.

- Zvyčajne sa redukuje na problém splniteľnosti klauzálnej teórie (teda formuly v CNF).
- SAT solver je program, ktorý rieši problém SAT.

Praktické využitie:

- verifikácia hardvéru (Intel i7)
- verifikácia softvéru (Windows 7 device drivers)
- manažment softvérových závislostí (Eclipse plugins, Python Conda)
- konfigurácia produktov (Daimler)
- bioinformatika, kryptológia
- expertné systémy, letová kontrola, rozvrhovanie, ...
- zložitosť algoritmu počet krokov výpočtu ako funkcia veľkosti vstupu n (nezávisí od hardvéru)
- zložitosť problému zložitosť optimálneho algoritmu riešiaceho daný problém; je známa len veľmi výnimočne, napr. triedenie porovnávaním je O(n log n)
- ullet zložitosť porovnávame za predpokladu n idúceho do nekonečna

DPLL:

Algoritmus 5.8 (Davis and Putnam [1960], Davis et al. [1962])

```
1: def DPLL(\Phi, v):
          if \Phi obsahuje prázdnu klauzulu:
 2:
               return False
 3:
          if v ohodnocuje všetky atómy:
 4:
               return True
 5:
          while existuje jednotková (unit) klauzula \ell vo \Phi:
 6:
               \Phi, v = \text{unit-propagate}(\ell, \Phi, v)
 7:
          while existuje nezmiešaný (pure) literál \ell vo \Phi:
 8:
               \Phi, v = \text{pure-literal-assign}(\ell, \Phi, v)
 9:
          x = \text{choose-branch-atom}(\Phi, v)
10:
          \mathbf{return} \ \mathsf{DPLL}(\Phi|_{\mathcal{X} \ \mapsto \ t}, v(x \mapsto t)) \ \mathsf{or} \ \mathsf{DPLL}(\Phi|_{\mathcal{X} \ \mapsto \ f}, v(x \mapsto f))
11:
```

5 Normálne formy formúl vo výrokovej logike, transformácia do CNF, veta o dedukcii, veta o kompaktnosti pre výrokovú logiku

Neviem čo je normálna forma formuly, CNF je v prednáške 12 veta o dedukcii a kompaktnosti neviem kde je

6 Normálne formy formúl v logike prvého rádu, skolemizácia, rezolvencia v prvorádovej logike

Rezolvencia:

Definícia 14.1

Rezolvenčný princíp (rezolvencia, angl. resolution principle) je pravidlo

$$(K_1 \vee \cdots \vee A \vee \cdots \vee K_m) \qquad (L_1 \vee \cdots \vee \neg A \vee \cdots \vee L_n)$$
$$(K_1 \vee \cdots \vee K_m \vee L_1 \vee \cdots \vee L_n)$$

pre ľubovoľný atóm A a ľub. literály $K_1, \ldots, K_m, L_1, \ldots, L_n$.

Klauzulu
$$(K_1 \lor \cdots \lor K_m \lor L_1 \lor \cdots \lor L_n)$$
 nazývame *rezolventou* klauzúl $(K_1 \lor \cdots \lor A \lor \cdots \lor K_m)$ a $(L_1 \lor \cdots \lor \neg A \lor \cdots \lor L_n)$.

Tvrdenie 14.2

Rezolvencia je korektné pravidlo. (Rezolventa je pravdivá v každom ohodnotení, v ktorom sú pravdivé pôvodné klauzuly.)

Definícia 14.4

Výrokovologické rezolvenčné odvodenie z množiny klauzúl S je každá (aj nekonečná) postupnosť klauzúl $C_1, C_2, ..., C_n, ...,$ ktorej každý člen C_i je:

- prvkom S alebo
- rezolventou dvoch predchádzajúcich klauzúl C_j a C_k pre j < i a k < i, alebo
- záverom pravidla idempotencie pre nejakú predchádzajúcu klauzulu $C_j,\,j< i.$

Zamietnutím (angl. *refutation*) množiny klauzúl S je konečné rezolvenčné odvodenie, ktorého posledným prvkom je prázdna klauzula \square .

Veta 14.8 (Korektnosť a úplnosť rezolvencie)

Nech S je klauzálna teória.

S je výrokovologicky nesplniteľná vtt existuje zamietnutie S.

Radšej pozrieť celú prednášku 12