Übungen zur Vorlesung "Logik" 4. Übungsblatt

H 4-1. Syntax und Semantik

(3 Pkt.)

Sei $I \in \mathcal{B}$ eine Interpretation und $A \in \mathcal{A}$ ein Atom. Zeigen Sie per struktureller Induktion, daß für alle $\varphi \in \mathcal{F}$:

$$I_{[A\mapsto 1]}(\varphi) = I(\varphi[\top/A])$$

H 4-2. Alternative Resolventendefinition

(2 Pkt.)

Seien C_1, C_2 Klauseln. Eine Klausel R^* heißt $Resolvente^*$ von C_1 und C_2 , falls es zwei Literale L_1, L_2 gibt mit:

$$L_1, L_2 \in C_1, \quad \overline{L_1}, \overline{L_2} \in C_2 \quad \text{ und } \quad R^* = (C_1 \setminus \{L_1, L_2\}) \cup \left(C_2 \setminus \{\overline{L_1}, \overline{L_2}\}\right)$$

Zeigen Sie, daß unter Resolvente* das Resolutionslemma nicht gilt, d.h. es existieren Klauseln C_1 und C_2 , sodaß:

$$\{C_1, C_2\} \not\equiv \{C_1, C_2, R^*\}$$

H 4-3. Kompaktheitssatz

(3 Pkt.)

Gegeben folgende drei Formeltypen:

- $\varphi_i = (A_{3i-2} \wedge A_{3i-1}) \vee (A_{3i-2} \wedge A_{3i}) \vee (A_{3i-1} \wedge A_{3i})$
- $\psi_i = \neg (A_{3i-2} \land A_{3i-1} \land A_{3i})$
- $\xi_i = A_i \leftrightarrow A_{i^2+1}$

Des Weiteren sei $\Phi = \bigcup_{n\geq 1} \Phi_n$ wobei $\Phi_n = \{\varphi_i, \psi_i, \xi_i \mid 1 \leq i \leq n\}$. Zeigen Sie mit Hilfe des Kompaktheitssatzes, daß Φ erfüllbar ist.

Hinweise: Überlegen Sie zunächst, was die Wahrheit von $\varphi_i \wedge \psi_i$ für den i-ten Dreierblock an atomaren Aussagen kodiert. Zeigen Sie anschließend per vollständiger Induktion, daß Φ_n für jedes $n \geq 1$ erfüllbar ist.

H 4-4. Interpolation

(3 Pkt.)

- a) Seien $\varphi = (\neg A_1 \lor A_2) \land (A_3 \lor \neg A_2)$ und $\psi = A_1 \rightarrow (A_4 \lor A_3)$. Geben Sie eine Interpolante zu φ und ψ an.
- b) Beweisen Sie mit Hilfe des Interpolationstheorems, daß für alle $\varphi, \psi \in \mathcal{F}$:

Falls $\varphi \models \psi$ und $s(\varphi) \cap s(\psi) = \emptyset$, dann φ unerfüllbar oder ψ tautologisch.

Hinweis: Wir setzen $s(\bot) = \emptyset$.

H 4-5. Syntaktische Eigenschaften

(3 Pkt.)

a) Gegeben sei die prädikatenlogische Formel

$$\varphi = \forall x (P(x, f(y), c) \rightarrow \exists z (Q(f(z), c) \land \neg R(x, z, w, c))) \lor S(y, z, c)$$

- i) Markieren (unterstreichen) Sie den Wirkungsbereich von $\exists z$.
- ii) Markieren (Punkt oberhalb) Sie alle freien Vorkommen von Variablen.
- iii) Gilt für die Menge der Teilformeln $t(\varphi)$, daß $|t(\varphi)| = 10$? Ohne Begründung.
- iv) Was ist ar(Q)?
- b) Seien $\varphi, \psi \in \mathcal{F}_{PL}$. Betrachten Sie die folgenden Aussagen:

Falls
$$\psi \in t(\varphi)$$
, dann gilt $frei(\psi) \subseteq frei(\varphi)$.
Falls $\psi \in t(\varphi)$, dann gilt $geb(\psi) \subseteq geb(\varphi)$.

Geben Sie jeweils an, ob die Aussage wahr oder falsch ist. Begründen Sie im Falschheitsfalle Ihre Antwort mit einem Gegenbeispiel.

H 4-6. Terme, Strukuren und Modelle

(6 Pkt.)

- **a)** Gegeben (\mathfrak{A},β) mit $U^{\mathfrak{A}}=\mathbb{Z},\ g^{\mathfrak{A}}:\mathbb{Z}\times\mathbb{Z}\to\mathbb{Z}$ mit $(n,m)\mapsto g^{\mathfrak{A}}(n,m)=n\cdot m,$ $f^{\mathfrak{A}}:\mathbb{Z}\to\mathbb{Z}$ mit $n\mapsto f^{\mathfrak{A}}(n)=n-1,\ c^{\mathfrak{A}}=3,\ \beta(x)=2.$
 - i) Bestimmen Sie $\beta(g(g(x,x),f(c)))$.
 - ii) Geben Sie einen Term t an, sodaß $\beta(t) = \beta(y) \cdot \beta(y) 4 \cdot (\beta(y) 1)$.
- **b)** Gegeben die Formel

$$\varphi = \forall x \forall y (R(x,y) \to \exists z (R(x,z) \land R(z,y)))$$

- i) Sei (\mathfrak{A},β) mit $U^{\mathfrak{A}}=\mathbb{Z}, <_{\mathbb{Z}}=R^{\mathfrak{A}}\subseteq \mathbb{Z}\times \mathbb{Z}$. Ist (\mathfrak{A},β) Modell von φ ?
- ii) Sei (\mathfrak{B}, γ) mit $U^{\mathfrak{B}} = \mathbb{R}, <_{\mathbb{R}} = R^{\mathfrak{B}} \subseteq \mathbb{R} \times \mathbb{R}$. Ist (\mathfrak{B}, γ) Modell von φ ?

Kurze Begründung im Wahrheitsfalle bzw. Angabe einer falsifizierenden Instanz.

- **c)** Sei $U = \{\Box, \triangle, \circ\}$ und $\varphi = \exists x \exists y \, R(x, y) \land \forall x \forall y \, (R(x, y) \to R(y, x))$
 - i) Gegeben Sie $R^{\mathfrak{A}} \neq U \times U$ an, sodaß (\mathfrak{A}, β) mit $U^{\mathfrak{A}} = U$ ein Modell von φ ist.
 - ii) Gegeben Sie $R^{\mathfrak{B}} \neq \emptyset$ an, sodaß (\mathfrak{B}, γ) mit $U^{\mathfrak{A}} = U$ kein Modell von φ ist.

Termine:

- Abgabe der Aufgaben bis spätestens 01.06.2025 via moodle.
- Besprechung der Aufgaben ab Montag, dem 02.06.2025 (A-Woche).