

MASS MEASUREMENT OF THE MILKY WAY

Yifan Zhou

WHY SHOULD WE CARE

MASS

Photometric Measurement/ Luminosity Function

M/L Ratio

Mass M

Galaxy Structures

HOWTO MEASURE

Rotation Curve

— Observational

$$-\nabla\Phi(R) = \frac{V^2(R)}{R}$$

Mass Model

—Theoretical

OBSERVATIONAL CONSTRAINS — INNER GALAXY

$$R = R_0 \sin(l)$$

$$V(R) = V_{\text{max}} - V_0 \sin l$$

H I 21 cm line often

OBSERVATION CONSTRAINS — OUTER GALAXY

- Distance and relative velocity needed
- H II region
- Cepheids
- H I 21 cm lines
- Galactic Maser (Parrallexes)

OTHER CONSTRAINS

- Mass at large radii (R > 100 kpc)
 Satellite Galaxies
- Local Surface Density

MODEL

Disk

Double Exponential Profile, thin and thick

Bulge

prolate, triaxial rotating bar or axisymmetric approximation

· Halo

With a Given Profile

HOW COULD WE BE BETTER?

- Better Measurement with outer galaxy rotation curve
- Better constrains on the larger radii structure
- Improvement of the mass models