

Model Development Phase Template

	*
Date	10 July 2024
Team ID	740092
Project Title	
	Credit card approval prediction by using ML
Maximum Marks	4 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include classification reports, accuracy, and confusion matrices for multiple models, presented through respective screenshots.

Initial Model Training Code:

```
#LOGISTIC REGRESSION

def logistic_reg(xtrain,xtest, ytrain, ytest):
    lr=LogisticRegression(solver="liblinear")
    lr.fit(xtrain, ytrain)
    ypred=lr.predict(xtest)
    print("*****LogisticRegression****")
    print("Confusion matrix")
    print(confusion_matrix(ytest,ypred))
    print("Classification_report(ytest, ypred))
```



```
#RANDOM FOREST
def random_forest (xtrain,xtest, ytrain, ytest):
    rf=RandomForestClassifier()
    rf.fit(xtrain, ytrain)
    ypred=rf.predict(xtest)
    print("******Random ForestClassifler****")
    print("Confusion matrix")
    print(confusion_matrix(ytest,ypred))
    print("Classification_report(ytest,ypred))
```

```
#DECISION TREE

def d_tree (xtrain, xtest, ytrain, ytest):
    dt=DecisionTreeClassifier()
    dt.fit(xtrain, ytrain)
    ypred=dt.predict(xtest)
    print("***DecisionTreeClassifier****")
    print('Confusion matrix')
    print(confusion_matrix(ytest,ypred))
    print("Classification_report")
    print(classification_report (ytest, ypred))
```

```
#GRADIENT BOOSTING
def g_boosting(xtrain, xtest, ytrain, ytest):
   gb=GradientBoostingClassifier()
   gb.fit(xtrain, ytrain)
   ypred=gb.predict(xtest)
   print("*****GradientBoostingClassifier****")
   print("Confusion matrix")
   print(confusion_matrix(ytest, ypred))
   print("Classification_report(ytest,ypred))
```

		F1 Scor e	
Model	Classification Report		Confusion Matrix

Random Forest						81%	Confusion matrix [[2617 75] [199 2136]]
		precision	recall	f1-score	support		<pre>print(confusion_matrix(ytest,ypred))</pre>
	Not Approved	0.80	0.85	0.82	500		
	Approved	0.83	0.78	0.80	500		
	accuracy			0.81	1000		
	macro avg	0.81	0.81	0.81	1000		
	weighted avg	0.81	0.81	0.81	1000		

Model Validation and Evaluation Report:

Decision Tree	print(class	precision 0.99 1.00 1.00		f1-score 1.00 1.00 1.00 1.00		79%	<pre>print("Classification report") Confusion matrix [[2685 7] [15 2320]]</pre>
Logistic Regression	Classificatio 0 1 accuracy macro avg weighted avg print(clas	0.93 0.97 0.95 0.95	recall f 0.97 0.91 0.94 0.95	0.95 0.94 0.95 0.94 0.95	2692 2335 5027 5027 5027 5027 ored))	64%	<pre>confusion_matrix(y_test,ypred) array([[43, 32], [29, 65]])</pre>

Gradient Boosting	<pre>print(cla Classification)</pre>	ssificatio	on_repor	t(ytest,	ypred))	78%	<pre>confusion_matrix(y_test,ypred) array([[63, 12],</pre>
	clussificaci	precision	recall	f1-score	support		[26, 68]])
	0	1.00	1.00	1.00	2692		
	1	1.00	1.00	1.00	2335		
	accuracy			1.00	5027		
	macro avg	1.00	1.00	1.00	5027		
	weighted avg	1.00	1.00	1.00	5027		