EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

2000339852

PUBLICATION DATE

08-12-00

APPLICATION DATE

02-06-99

APPLICATION NUMBER

11154701

APPLICANT: K

KOWA CO:

INVENTOR :

ONO TSUKANE;

INT.CL.

G11B 20/10 G06T 1/00 G10L 19/00

H04N 1/387 H04N 7/08 H04N 7/081

H04N 7/24 // G09C 5/00

TITLE

INFORMATION REPRODUCING

SYSTEM, INFORMATION

CONVERTING DEVICE, INFORMATION

REPRODUCING DEVICE,

INFORMATION REPRODUCING

METHOD, AND RECORDING MEDIUM

ABSTRACT :

PROBLEM TO BE SOLVED: To provide a reproducing technique capable of taking out a sample and original information only from a data once delivered or distributed.

SOLUTION: Original information, of which the coefficients obtained by processing the information by a MDCT(Modified Discrete Cosine Transformation) are partly replaced by a prescribed algorithm, are distributed as a sample. Since this data is partly replaced in the coefficients, the sound quality is a little unnatural and has a low S/N. When a viewer listens to this sample and decides to purchase it, he/she makes an application for the purchase to a contents wiring device 10, and receives a contents key after being authenticated. If the coefficients of the distributed data are replaced by the original ones by using this contents key before reproduction, it is possible to reproduce the music in high quality.

COPYRIGHT: (C)2000,JPO

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-339852 (P2000-339852A)

(43)公開日 平成12年12月8日(2000.12.8)

(51) Int.Cl.7		截別記号	FΙ		Ť	-7]-}*(参考)
G11B	20/10		C11B 2	20/10	Н	5 B O 5 7
G06T	1/00		H04N	1/387		5 C 0 5 9
G10L	19/00		C 0 9 C	5/00		5 C O 6 3
H04N	1/387		G06F 1	15/66	. В	5 C 0 7 6
	7/08		C10L	9/00	N	5 D 0 4 4
	·	審査請求	未請求 請求項	頁の数19 OL	(全 12 頁)	最終頁に続く
(21) 出願番号		特顧平11-154701	(71)出顧人 000163006 興和株式会社			
(22) 出顧日		平成11年6月2日(1999.6.%)	愛知県名古逯市中区錦3 『目6番29号 (72)発明者 小野 東			
				茨城県つくば	市観音台1丁	目25番5号 與

最終頁に続く

(54) [発明の名称] 情報再生システム、请報変換装置、情報再生装置、情報再生方法並びに記録媒体

(57)【要約】

【課題】 楽曲などのコンテンツをネットワークなどを 介して販売する場合には、購入前に配信されるサンプル と、購入後に配信するサンプルとを別々に作成し、配信 しなければならない。

【解決手段】 原情報に対して、MDCTを施して得られた係数の一部を所定のアルゴリズムで入れ替えたものを、サンプルとして配布する。このデータは、係数の一部が入れ替えられているので、音質はやや不自然でS/N比は低い。視聴者はこのサンプルを聴いて、購入を決定した場合には、コンテンツ配信装置10に購入を申し込み、認証を受けた後、コンテンツ鍵を受け取る。このコンテンツ鍵を用いて既に配布を受けたデータの係数の入れ替えを元に戻してから再生すれば、高品質で楽曲を再生することができる。

和株式会社内

弁理士 五十嵐 孝雄 (外2名)

(74)代理人 100096817

【特許請求の範囲】

【請求項1】 画像や楽曲などの原情報をデジタル信号 に変換すると共に、該変換したデータを受け取り、該データから画像や楽曲などの情報を再生する情報再生システムであって、

前記原情報に対して所定のサンプリングを行ない、サンプリングしたデータを量子化する量子化手段と、

該量子化したデータに対して所定の変換を施す変換手段 と、

該変換が施された後のデータを受け取り、該データに基づいて元の情報を再構成する第1の再生手段と、

前記所定の変換による影響を除き、前記量子化されたデータに基づいて元の情報を再構成する第2の再生手段と を備えた情報再生システム。

【請求項2】 前記第1の再生手段により再生された情報が、前記第2の再生手段より再生された元の情報より 劣化した情報である請求項1記載の情報再生システム。

【請求項3】 請求項1記載の情報再生システムであって、

前記変換手段は、量子化されたデータの係数を所定のアルゴリズムに従って入れ替える変換を行なう手段であり、

前記第2の再生手段は、該変換手段による係数の入れ替えを元に戻す手段を有する情報再生システム。

【請求項4】 請求項1記載の情報再生システムであって

前記第2の再生手段による元の情報の再構成を指示するキーを入力するキー入力手段と、

該入力されたキーが、該再構成を許可するキーであることを認証する認証手段と、

該キーが認証されたとき、前記第2の再生手段を動作させる許可手段とを備えた情報再生システム。

【請求項5】 請求項4記載の情報再生システムであって、

前記キー入力手段は、使用者を特定するコードを入力する手段であり、

前記認証手段は、該入力したコードが正当なコードであると判断した場合には、動作用のキーを出力する手段であり、

前記許可手段は、該動作用のキーを受け取って、前記第2の再生手段を動作させる手段である情報再生システム。

【請求項6】 請求項5記載の情報再生システムであって、

前記量子化手段は、前記量子化後のデータに、前記認証 を補助する認証補助キーを電子透かしとして埋め込む透 かし埋め込み手段を備え、

前記認証手段は、前記量子化されたデータに埋め込まれた電子透かしを再生して、前記認証補助用のキーを取り出す手段を備え、前記使用者を特定するコードと該取り

出された認証補助用のキーとから、前記動作用のキーを出力する情報再生システム。

【請求項7】 請求項1記載の情報再生システムであって、

前記原情報は、楽曲であり、

前記量子化手段は、MPEG1のレイヤ3に従う量子化を行なう手段である情報再生システム。

【請求項8】 画像や楽曲などの原情報をデジタル信号 に変換する情報変換装置であって、

前記原情報に対して所定のサンプリングを行ない、サンプリングしたデータを量子化する量子化手段と、

該量子化したデータに対して所定の変換を施して、該量子化されたデータから再生される情報の質を劣化させる変換手段とを備えた情報変換装置。

【請求項9】 請求項8記載の情報変換装置であって、前記変換の態様を指示する変換指示キーを入力する手段を備え、

前記変換手段は、該入力した変換指示キーを用いて、前 記量子化されたデータの係数の入れ替えを行なう手段で ある情報変換装置。

【請求項10】 請求項8記載の情報変換装置であって、

前記原情報は、楽曲であり、

前記量子化手段は、MPEG1のレイヤ3に従う量子化を行なう手段である情報変換装置。

【請求項11】 画像や楽曲などの原情報を量子化した データから画像や楽曲などの情報を再生する情報再生装 置であって、

前記量子化されたデータに該データを再生した後の情報 を劣化する所定の変換が施された後のデータを受け取る データ入力手段と、

該入力されたデータに基づいて元の情報を再構成する第 1の再生手段と、

前記所定の変換による影響を除き、前記量子化されたデータに基づいて元の情報を再構成する第2の再生手段と を備えた情報再生装置。

【請求項12】 請求項11記載の情報再生装置であって、

前記第2の再生手段による元の情報の再構成を指示する キーを入力するキー入力手段と、

該入力されたキーが、該再構成を許可するキーであることを認証する認証手段と、

該キーが認証されたとき、前記第2の再生手段を動作させる許可手段とを備えた情報再生装置。

【請求項13】 請求項12記載の情報再生装置であって、

前記キー入力手段は、使用者を特定するコードを入力する手段であり、

前記認証手段は、該入力したコードが正当なコードであると判断した場合には、動作用のキーを出力する手段で

あり、

前記許可手段は、該動作用のキーを受け取って、前記第 2の再生手段を動作させる手段である情報再生装置。

【請求項14】 請求項13記載の情報再生装置であっ て、

前記量子化された後のデータには、前記認証を補助する 認証補助キーが電子透かしとして埋め込まれており、 前記認証手段は、前記量子化されたデータに埋め込まれ た電子透かしを再生して、前記認証補助用のキーを取り 出す手段を備え、前記使用者を特定するコードと該取り 出された認証補助用のキーとから、前記動作用のキーを 出力する情報再生装置。

【請求項15】 画像や楽曲などの原情報をデジタル信号に変換すると共に、該変換したデータを受け取り、該データから画像や楽曲などの情報を再生する情報再生方法であって、

前記原情報に対して所定のサンプリングを行ない、サンプリングしたデータを量子化し、

該量子化したデータに対して所定の変換を施し、

該変換が施された後のデータを受け取り、該データに基づいて元の情報を再構成する第1の再生を実施するか、 前記所定の変換による影響を除き、前記量子化されたデータに基づいて元の情報を再構成する第2の再生を実施するかを選択する情報再生方法。

【請求項16】 請求項15記載の情報再生方法であって、

前記第2の再生による元の情報の再構成を指示するキーを入力し、

該入力されたキーが、該再構成を許可するキーであることを認証し、

該キーが認証されたとき、前記第2の再生を実施する情報再生方法。

【請求項17】 画像や楽曲などの原情報を量子化したデータを受け取り、該データから画像や楽曲などの情報を再生する機能をコンピュータにより実現するプログラムを記録した記録媒体であって、

前記量子化されたデータに該データを再生した後の情報 を劣化する所定の変換が施された後のデータを受け取る 機能と.

該入力されたデータに基づいて元の情報を再構成する第 1の再生機能と、

前記所定の変換による影響を除き、前記量子化されたデータに基づいて元の情報を再構成する第2の再生機能とをコンピュータにより読み取り可能に記録した記録媒体

【請求項18】 請求項17記載の記録媒体であって、前記再生した後の情報を劣化する所定の変換が施された後のデータを併せて記録した記録媒体。

【請求項19】 請求項18記載の記録媒体であって、 前記原情報は、楽曲であり、 前記楽曲に施される量子化は、MPEG1のレイヤ3に 従う量子化である記録媒体。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、情報再生の技術に 関し、詳しくは画像や楽曲などの原情報をデジタル信号 に変換したデータを受け取って、このデータから画像や 楽曲などの情報を再生する技術に関する。

[0002]

【従来の技術】近年インターネットなどのネットワーク技術の発展に伴い、様々な情報をネットワークを介して送信する技術が提案されている。例えば、楽曲や映像を所定のサンプリング周期でサンプリングしてデジタル信号に変換し、これをネットワークを介して配信することが可能となっている。視聴者は、家庭に居ながらにし、最新の楽曲や映像を手に入れることができる。この場合、有料で配信される情報については、子めその一部がサンプルデータとして用意されており、視聴者は、このサンプルをダウンロードして鑑賞してから、購入を決定することが行なわれている。

【〇〇〇3】また、CD-ROMの製造コストの低さに着目し、様々な画像や楽曲などの一部をサンプルとしてCD-ROMに記録し、このCD-ROMを配布することも行なわれている。配布を受けた視聴者は、サンプルを見たり聞いたりして、気に入った場合には、料金を支払い、ネットワークから元の画像や楽曲などの情報を取得することになる。

[0004]

【発明が解決しようとする課題】しかしながら、かかる情報配信のシステムでは、最終的に配信されるデータに対してサンプル用のデータを別に作成しなければならないという問題があった。この場合のサンプルは、楽曲であれば、イントロ以下の数十秒間の楽曲を含んだデータであったり、サンプリング周波数を低減して音質を低くしたデータであったりするが、いずれにせよ、元のデータとは別に作成しなければならない。また、視聴者の側からすると、サンプルデータをネットワークからダウンロードして鑑賞し、購入を決定した後、再度ネットワークを介して原情報を入手することになり、同じ楽曲に対して2度、ダウンロードの手間をとらなくてはならないという問題があった。

【0005】かかる問題は、楽曲の場合だけでなく、静止画や動画をネットワークを介して購入するといった場合でも同様であった。

【0006】本発明の装置は、こうした問題を解決し、一度配信もしくは配布を受けたデータのみからサンプルと原情報とを取り出すことができる再生技術を提供することを目的とする。

[0007]

【課題を解決するための手段およびその作用・効果】上

記課題の少なくとも一部を解決する本発明の情報再生システムは、画像や楽曲などの原情報をデジタル信号に変換すると共に、該変換したデータを受け取り、該データから画像や楽曲などの情報を再生する情報再生システムであって、前記原情報に対して所定のサンプリングを行ない、サンプリングしたデータを量子化する量子化手段と、該量子化したデータに対して所定の変換を施す変換手段と、該変換が施された後のデータを受け取り、該データに基づいて元の情報を再構成する第1の再生手段と、前記所定の変換による影響を除き、前記量子化されたデータに基づいて元の情報を再構成する第2の再生手段とを備えたことを要旨としている。

【0008】かかる情報再生システムでは、量子化手段 により量子化されたデータに対して所定の変換を施して おり、第1の再生手段によって、変換が施されたままの データが再構成される。したがって、この第1の再生手 段によって再構成された情報は、変換手段による変換の 影響を受けたものとなっている。他方、第2の再生手段 では、変換手段によって施された所定の変換の影響を除 いて、元の情報を再構成する。この結果、第2の再生手 段により、原情報と実質的に同一の情報が再生される。 このシステムによれば、提供されるデータは、所定の変 換が施された一種類のデータで足り、これをサンプルと して扱う場合には、所定の変換が施されたままの状態で 再構成し、原情報として扱う場合には、所定の変換の影 響を除いて情報を再構成すれば良い。この結果、原情報 を量子化したデータは、一度配信または配布すれば足 り、視聴者の側からは情報取得の手間が省け、提供する 側からは、サンプルデータを別途製作する手間を省くこ とができるという利点が得られる。

【0009】かかるシステムでは、第1の再生手段により再構成された情報は、所定の変換を施したものなので、この変化によって、第2の再生手段より再構成されたデータとの関係を自由に定義することができる。例えば、所定の変換を施したままのデータを再構成した情報は、元の情報より劣化した情報とすることができる。所定の変換がスムージング処理や色補正処理などである場合には、所定の変換を施したままのデータから再構成された情報の方が、所定の変換の影響を除いて再構成した除法より、音質や画質的に優れた情報となることもあり得る。

【0010】上記の情報再生システムにおいて、所定の変換として、量子化されたデータの係数を所定のアルゴリズムに従って入れ替える変換を考えることができる。例えば、もとの情報をサンプリングして得られたデータを周波数毎の係数に展開した場合、この係数を適宜増減したり、入れ替えたりすることが考えられる。この処理が一定のアルゴリズムに基づいてなされていれば、このアルゴリズムを知っていれば、係数の入れ替えや増減を元に戻し、変換の影響を除いて、元の画像を再構成する

ことは容易である。

【0011】上記の情報再生システムでは一種類のデータから目的別に2種類のデータが再構成できるが、再構成することができる条件を制限することも可能である。即ち、第1の再生手段による情報の再構成は広ぐ許可し、第2の再生手段による再構成は認証を受けた人だけに限定するといった使い方である。このために、例えば、第2の再生手段による元の情報の再構成を指示するキーを入力し、このキーが、再構成を許可するキーを入力し、このキーが認証されたとき、第2の再生手段を動作させるものとすることが考えられる。こうを認証し、キーが認証されたとき、第2の高半年段を動作させるものとすることができることになり、単一のデータから、2種類の情報を取り出し得るシステムにおいて、情報の取得を制限し、サンプルの配布の容易さと原情報の有料化を容易に実現することができる。

【0012】かかる情報再生システムにおいて、入力されるキーは、使用者を特定するコードであり、入力したコードが正当なコードであると判断した場合には、動作用のキーを出力するものとし、この動作用のキーを受け取って、第2の再生手段を動作させる構成としても良い。かかる構成によれば、使用者毎にコードを設けることができ、情報の再構成を、使用者毎に制限することが容易となる。

【0013】更に、情報再生システムにおいて、認証を補助するキーを、量子化後のデータ自体に埋め込んでおくことも差し支えない。即ち、量子化後のデータに、認証を補助する認証補助キーを電子透かしとして埋め込んでおく。再生する側では、量子化されたデータに埋め込まれた電子透かしを再生して、認証補助用のキーを取り出し、使用者を特定するコードとこの認証補助用のキーを助ら、動作用のキーを出力するものとすればよい。こうすれば、次の二つの利点が得られる。一つは、配布されるデータに電子透かしを入れておくことができ、これを著作権情報などに利用でき、かつ不正な複製において攻撃を受けた場合には、認証が行なえなくなるから、不正に複製されたデータから、所定の変換の影響を除いて元の情報を再構成することを制限することができる。

【0014】こうした情報再生システムは、様々な情報の再生に応用可能であるが、特に原情報が、楽曲の場合には、MPEG1のレイヤ3に従う量子化を採用することが、データの圧縮、品質などの点から好適である。もとより、他の量子化、および圧縮の手法を採用することも何ら差し支えない。また、原情報としては、楽曲に限らす、音声、画像、動画など種々のものが対象となることは勿論である。

【 O O 1 5】上述した情報再生システムは、情報を量子 化して所定の変換を施す側(情報変換部)の構成と、こ うして得られたデータから情報を再生する側(情報再生 部)の構成とを含んでいるが、これらは、全体としてシ ステムを構成すればよく、装置として一体に形成されるものではない。情報変換部のみ、情報再生部のみでも、発明を把握することができ、それぞれ情報変換装置、情報再生装置として特定することができる。また、これらに対応した情報変換方法、情報再生方法などとしても本願発明は構成することが可能である。こうした場合において、情報の変換は、情報を用意する側で行ない、情報の再生は、視聴者の側で行なわれることになる。視聴者は、専用の機器により再生を行なっても良いし、パーソナルコンピュータ上で再生を行なうことも可能である。視聴者を特定するコードにより、変換の影響を除いた情報の再構成を許可する場合には、視聴者のコードを、機器に固有のコードすれば、不正な複製などを防止することが容易となる。

[0016]

【発明の実施の形態】以下、本発明の実施の形態を実施 例に基づいて説明する。

A. 装置の全体構成:以下、本発明の実施の形態を実施 例に基づいて説明する。図1は、本発明の一実施例とし てのコンテンツ配信装置10の構成を示すブロック図で ある。このコンテンツ配信装置10は、ネットワークN Wに対して専用回線により常時接続されたサーバとして 機能している。コンテンツ配信装置10は、CPU22 と、ROMおよびRAMを含むメインメモリ24と、フ レームメモリ26と、キーボード30と、マウス32 と、表示装置34と、ハードディスク36と、回線制御 回路38と、これらの各要素を接続するバス40と、を 備えるコンピュータである。なお、図1では各種のイン ターフェイス回路は省略されている。回線制御回路38 は、専用回線を介したコンピュータネットワークNWと のデータのやりとりを制御する回路である。この実施例 では、ネットワークNWは、インターネットであり、回 線制御回路38は、通信の物理層およびプロトコル(T CP/IP) 層を制御している。なお、ネットワークN Wには、このコンテンツ配信装置10から、コンテンツ として主として楽曲のデータを受け取ろうとする多数の プレーヤ90が接続されることになる。

【0017】メインメモリ24には、電子透かし埋め込み部42と、変換処理部44との機能をそれぞれ実現するためのコンピュータプログラムが格納されている。これらの各部42、44の機能については後述する。尚、本発明の情報の再生システムとしては、電子透かしの埋め込みは、必須ではないが、この実施例では、不正な複製に対するプロテクトのために、電子透かしの埋め込みも行なっている。

【0018】これらの各部42、44の機能を実現するコンピュータプログラムは、フレキシブルディスクやCD-ROM等の、コンピュータ読み取り可能な記録媒体に記録された形態で提供される。コンピュータは、その記録媒体からコンピュータプログラムを読み取って内部

記憶装置または外部記憶装置に転送する。あるいは、通信経路を介してコンピュータにコンピュータアログラムを供給するようにしてもよい。コンピュータアログラムの機能を実現する時には、内部記憶装置に格納されたコンピュータアログラムがコンピュータのマイクロプロセッサによって実行される。また、記録媒体に記録されたコンピュータプログラムをコンピュータが読み取って直接実行するようにしてもよい。

【0019】この明細書において、コンピュータとは、ハードウェア装置とオペレーションシステムとを含む概念であり、オペレーションシステムの制御の下で動作するハードウェア装置を意味している。また、オペレーションシステムが不要でアプリケーションプログラム単独でハードウェア装置を動作させるような場合には、そのハードウェア装置自体がコンピュータに相当する。ハードウェア装置は、CPU等のマイクロプロセッサと、記録媒体に記録されたコンピュータプログラムを読み取るための手段とを少なくとも備えている。コンピュータプログラムは、このようなコンピュータに、上述の各手段の機能を実現させるプログラムコードを含んでいる。なお、上述の機能の一部は、アプリケーションプログラムでなく、オペレーションシステムによって実現されていても良い。

【0020】なお、この発明における「記録媒体」としては、フレキシブルディスクやCD-ROM、光磁気ディスク、ICカード、ROMカートリッジ、パンチカード、バーコードなどの符号が印刷された印刷物、コンピュータの内部記憶装置(RAMやROMなどのメモリ)および外部記憶装置等の、コンピュータが読取り可能な種々の媒体を利用できる。

【0021】B. プレーヤ90の構成:次のプレーヤ9 0の内部構成ついて説明する。プレーヤ90は、図2に 示すように、内部にCPU91とこのプレーヤ90をネ ットワーク NWに接続するためのネットワークインタフ ェース85とを備えている。更にプレーヤ90には、C PU91が実行するプログラムおよび固有コードDDを 記憶したROM92、配信されるデータや再生した楽曲 データを記憶するRAM94、RAMをRAMカード9 6の形態で増設するための拡張用コネクタ95、音声を 出力するためのD/Aコンバータ97、D/Aコンバー タ97により変換されたアナログ信号を増幅するアンプ 98、アンプ98の出力を再生するスピーカ89および ヘッドフォンに出力するためのフォンジャック88等が 内蔵されている。なお、この実施例では、プレーヤ90 は、専用の装置としたが、楽曲を再生するハードウェア 以外は、コンピュータ上にソフトウェアによって実現す ることも可能である。

【0022】C. 変換処理: 図3は、本実施例における 音声信号の量子化および変換を行なうコンテンツ配信装 置10側の処理の概要と、プレーヤ90側の処理の概要

とを、併せて示すブロック図である。コンテンツ配信装 置10側には、フレーム抽出部56と、MDCT部(変 形離散コサイン変換部) 58と、埋込み変換部60とが 備えられており、プレーヤ90側には、基本的な機能と して、IMDCT部(変形離散コサイン逆変換部)62 と、フレーム再生部64を含む再構成部66とが備えら れている。これらの各部は、本実施例ではハードウェア としてではなく、ソフトウェアにより実現されている が、専用の回路として実現することも可能である。図3 に示したコンテンツ配信装置10側の構成は、いわゆる MPEG1のレイヤ3 (MP3と略称する)と呼ばれる 音声情報の圧縮手法を採用したものとなっている。MP EG1のレイヤ3と呼ばれるデータの量子化・圧縮方法 は、人間の耳の特性、例えば大きな音に近似の周波数の 音は聞こえないといった特性 (マスキング効果) などを 利用して、高い圧縮率で、音声情報を圧縮する手法であ る。MP3には、細かく見れば、ハフマン符号化など、 更に多くの機能が存在するが、ここでは図示および説明 は省略する。なお、説明の便を図って、図3では、変換 を行なうコンテンツ配信装置10側とデータの再構成を 行なうプレーヤ90側とを、一緒に記載したが、図1に 見られるように、両者は別体に設置されるのが通常であ る。また、本実施例では、MP3を用いたが、他の量子 化・圧縮方法、例えばTwinVQなども勿論利用可能 である

【0023】埋込み変換部60は、用意された透かし情報と変換アルゴリズムを用いて、量子化されたデータに対して、電子透かしの埋込と、低S/Nコンテンツへの変換を行なうものである。また、再構成部66は、プレーヤ90を用いる視聴者が、特定のコンテンツの購入を行なうまでは、原音声情報を、低S/Nコンテンツとして再生し、コンテンツの購入の手続を踏んだ後は、高品質コンテンツとして再生するものである。これらの各部の詳細については、変換処理や再生処理の説明に併せて後述する。

【0024】図4は、コンテンツ配信装置10により行なわれる変換処理の一例を示すフローチャートである。

コンテンツ配信装置10は、配信しようとする楽曲のデ ータ(音声データx(t))からフレームを抽出する処 理を行なう(ステップS100)。これは、図3におけ るフレーム抽出部56に相当する処理である。配信しよ うとする楽曲のデータは、通常は、いわゆるCDに収録 されている楽曲と同程度の情報である。即ち、楽曲を、 サンプリング周波数44.1KHzで、16ビットのデ ジタルデータに変換したデータと同程度の品質を想定し ている。フレーム抽出処理(ステップS100)では、 音源から入力されるアナログ信号を、まず32個の周波 数帯域に分け、各信号を上記サンプリング周波数の1/ 32のサンプリングして符号化を行なう。こうして時間 軸に沿って得られるデータについて、各M個のデータを 一つのフレームとして抽出する。本実施例では、32の 帯域毎に64個のデータ、即ち総数2048個(32× 64個) のデータを1フレームとして抽出している。な お、各フレームに含まれる2048個のデータのうち1 024個は、隣接するフレームに含まれるデータと重複 しているので、実効データ数は、フレーム当たり102 4個になっている。このフレームが、後述する変形離散 コサイン変換の対象となる信号区間に相当する。本実施 例では1フレームに2M個(Mは2以上の整数)の信号 値が含まれる。なお、これらの処理において、折り返し 雑音の除去を目的としてポリフェーズフィルタバンクが 用いられているが、こうした処理自体は周知のものなの で、説明は省略する。

【0025】フレームを抽出した後、第1番目のフレームから順に、変換処理を開始する。まず、第i番目(iの初期値は1)のフレームのデータに関し、MDCTを施す処理を行なう(ステップS110)。これは、MDCT部58に相当する処理である。MDCTとは、変形離散コサイン変換であり、この変換により得られるi番目のフレームにおけるMDCT係数Xi(k) は次の式(1)で与えられる。

[0026]

【数1】

【数3】

$$X i (k) = \frac{2}{M} \sum_{n=0}^{2M-1} w(n) \cdot c(k,n) \cdot x(n+iM) \cdots (1)$$

 $0 \le k \le M-1$, $0 \le n \le 2M-1$

【0027】ここで、kは周波数を示す整数値である。 れる。
また、式(1)の右辺の窓関数w(n)とMDCT基底 【0028】
c(k, n)は、それぞれ式(2)と式(3)で与えら 【数2】
w(n) = sin {π(2n+1)/4M} …(2)

○ ≤ n ≤ 2M-1

[0029]

c (k, n) = c o s { π (2k+1) (2n+M+1)/4M} ... (3)

$0 \le k \le M-1$, $0 \le n \le 2M-1$

【0030】数式 1から解るように、各フレームの 2 M 個の信号値 x (n+i M) は、M個の変換係数 Xi (k) (k=0~(M-1)) に変換される。なお、 k=0の変換係数 Xi (0) は直流成分、それ以外の変換係数 Xi (0) は交流成分と呼ばれている。

【0031】図5は、変形離散コサイン変換に使用されるフレームと窓関数w(n)との関係を示す説明図である 図5には、隣接する2つのフレームの位置関係と、各フレームに適用される窓関数w(n)の形状とが示されている。このように、各フレームは、M個分の信号値x(t)に相当する区間ずつ順次ずれた位置に設定されるので、隣接する2つのフレームには、共通するM個の信号値x(t)が含まれている。従って、1フレームに含まれる実効的(実質的)な信号値の個数はMである。【0032】窓関数w(n)は、各フレームの中央でピークを有する正弦関数である。なお、窓関数w(n)としては、正弦関数以外の関数を用いることも可能であり、一般には、変形離散コサイン変換とその逆変換とを可逆的に行えるような任意の関数を使用することができる

【0033】なお、変形離散コサイン変換の代わりに、他の種々の直交変換(離散コサイン変換(DCT)、離散フーリエ変換(DFT)、アダマール変換等)を利用することができる。他の直交変換では、フレーム(「ブロック」とも呼ばれる)が互いに重複しないように設定される。一方、変形離散コサイン変換では、隣接するフレームが部分的に重複するようにフレームが設定されるので、周波数分離度を高くすることができ、かつ、フレーム歪み(ブロック歪み)を抑制することができるという利点がある。従って、変形離散コサイン変換を利用すると、他の直交変換を利用した場合に比べて、透かし情報の埋め込みに起因する音質の劣化を低減することができる。

【0034】図4に戻って、MDCTを施した後(ステップS110)、変換係数の量子化を行なう(ステップS120)。ここで言う量子化とは、変形離散コサイン変換により得られた係数のうち、上記の交流成分を所定の値で除算し、結果が所定値以下の係数は値0に切り捨てる処理である。この処理を行なうことにより、MP3では、高い圧縮率で情報を圧縮することができる。

【0035】こうして量子化を行なった後、アルゴリズムApにより、上記交流成分の係数の入れ替えを行なう(ステップS130)。これが、図3における埋込み変換処理部60の一部に相当する。この係数の入れ替え

は、子め定めた次数の係数を入れ替えるものとしても良 いが、解析されないように、量子化・圧縮を行なう音声 情報毎に、入れ替えを行なう係数や入れ替えの順序な ど、そのアルゴリズムApを変更しているのである。な お、同一の楽曲では、係数の入れ替えを行なうアルゴリ ズムを同一としても良いが、その楽曲がダウンロードさ れる度に、係数の入れ替えを行なうアルゴリズムを変更 するようにすることもできる。こうした場合には、入れ 替えのアルゴリズムを特定し得る情報を、ヘッダやフッ タなどに含ませておくこともできるし、データのダウン ロードか行なわれる度に、配信したユーザーのコード番 号などを記憶しておき、後述するコンテンツの購入がな されたとき、過去のダウンロードの情報を参照し、配信 したデータにおいて係数の入れ替えを行なったアルゴリ ズムを特定する情報を、ユーザー側に送信するものとし ても良い。

【0036】こうして係数の入れ替えを行なった後、電子透かし情報B(iブロックではbi)を埋込む処理を行なう(ステップS140)こうしたMDCTにより得られた係数に、電子透かしを埋め込む方法は、各種知られているので、ここでは詳細な説明は省略するが、係数の偶奇性を利用して埋め込む方法などが知られている。フレーム毎に1ビットのデータを埋め込んでも、楽曲全体では電子透かしとして現実的に利用可能なバイト数のデータを埋め込むことができる。

【0037】透かし情報biの埋込が終了した後、フレーム数を示す変数iを値1だけインクリメントし(ステップS150)、全フレームについて上記の処理が完了したかを判断し(ステップS160)、完了していなければ、ステップS110に戻って、上記の処理を繰り返す。

【0038】以上の処理により、一つの楽曲について、これをMP3により量子化かつ圧縮したデータであって、かつアルゴリズムApにより係数の入れ替えが行なわれ、しかも透かしBが埋め込まれたデータが生成される。こうして得られたデータは、コンテンツ配信装置10のハードディスク36に楽曲の名前、アルゴリズムApの種別、透かし情報Bと共に記憶される。

【0039】次に、視聴者がプレーヤ90を用いて、これらの楽曲のデータをダウンロードし、再生する場合の処理について説明する。図6は、視聴者がネットワークNW上のサーバであるコンテンツ配信装置10から所定の楽曲のデータをダウンロードしてS/N比の低いデータとして再生する場合の処理の概要を示すフローチャートである。視聴者は、プレーヤ90をインターネットな

どのネットワークNWに接続した後、図6に示した処理ルーチンを起動する。なお、インターネットにダイアルアップ接続する場合には、インターネットに接続するための所定の手続が必要になるが、周知の事項なので、図示および説明は省略する。

【0040】ネットワークNWを介してコンテンツ配信 装置10との接続が確立すると、プレーヤ90は、RO M92内に記録された固有コードDDをコンテンツ配信 装置10側に送出する処理を行なう(ステップS20 O)。この固有コードDDは、本実施例では、予めRO M92内に、各プレーヤ90毎に固有の値として書き込 まれているものとしたが、視聴者がコンテンツ配信装置 10側に個人情報を送って認証を受けて、割り当てられ たユーザーIDを使うものとしても良い。こうした場合 には、ユーザーIDを不揮発性のメモリに記憶してお き、これを自動的に送出するものとしたり、視聴者がユ ーザーIDを記録しておき、毎回キーボードなどから入 力するものとしてもよい。なお、固有コードDDは、ハ ッシュ関数を用いたハッシュ値として、コンテンツ配信 装置10側に送出する。このハッシュ値を受け取ったコ ンテンツ配信装置10は、予め登録してある視聴者のデ ータを参照し、視聴者を認証する。視聴者の認証が行な われれば、コンテンツ配信装置10は、ステップS21 0以下の要求に対応する。なお、図6に示した処理で は、コンテンツである楽曲の購入は行なわれないケース なので、視聴者の認証を省いても差し支えない。

【0041】次に、プレーヤ90は、試聴しようとする楽曲の番号を送出する(ステップS220)。楽曲は、各曲毎に番号を付しておけば、プレーヤ90側とコンテンツ配信装置10側とで、楽曲の特定が容易となるが、曲名などで特定するものとしても差し支えない。プレーヤ90から楽曲番号が送出されると、コンテンツ配信装置10は対応する楽曲のデータを、ネットワークNWを介して送信可能に用意する。プレーヤ90側は、コンテンツ配信装置10側の準備を待って、楽曲データのダウンロードを行なう(ステップS220)。楽曲データは、本実施例では、上述したように、MP3で量子化・圧縮された楽曲データである。

【0042】データのダウンロードが終了すると、プレーヤ90は、視聴者の指示に従って、この楽曲をダウンロードしたデータをそのまま用いて再生する。再生の処理は、図3のプレーヤ側に示したように、受け取ったデータをMDCTの逆変換(IMDCT)を施し、これからフレーム毎に音声情報を連続的に再生する。このデータの再構成が、第1の再生手段に相当する。

【0043】このとき、プレーヤ90は、ダウンロード したデータをそのまま再構成しているだけなので、コン テンツ配信装置10により行なわれた係数の入れ替えに よる音の歪みなどは、そのまま再生される。図4ステッ プS130で行なった係数の入れ替えは、そのまま再生

される音の品質に影響を与えるから、図6に示した処理 により再生された音楽は、S/N比の低いもの、例えば AMラジオ程度の音質となっている。なお、この場合の 音質の程度は、係数の入れ替えをどの次数の係数に対し て行なうか、またどの程度の範囲の係数について行なう かなど、入れ替えのアルゴリズムApによっている。本 実施例では、サンプルとして聴く上では差し支えない が、音質的には不満が残る程度の品質としている。な お、こうした係数の入れ替えは、楽曲の全体に対して行 なっても良いが、楽曲の前半や後半など特定の範囲に集 中的に実施したり、特定の数フレームに明瞭な雑音とし て聴取されるように入れておくことも可能である。ま た、係数を入れ替えるような変換のみならず、特定の係 数の値を所定のアルゴリズムで増減するような変換、な ど種々の変換が採用可能である。なお、これらの変換が 可逆的な変換であれば、後述する高品質再生時に、原情 報と同品質まで品質を戻せることを保証することになり 好適ではあるが、若干の非可逆性を持った変換であって も、目的に応じて採用可能であることは容易に理解され よう。

【0044】サンプルとして楽曲を試聴した視聴者は、気に入ればより良い音質でこれを聴きたいと望む。この場合には、視聴者は、この楽曲を購入することになる。本実施例では、楽曲はネットワークNWを介してダウンロードされるものであり、物理的なレコードやCDの形で入手するものではない。したがって、ここで言う「購入」とは、高品質でその楽曲を聴くいわば権利を、鍵の形態で購入するという形態をとっている。

【0045】具体的には、図7に示した処理により、視 聴者は、高品質のその楽曲を再生することが可能とな る。この処理ルーチンが起動されると、プレーヤ90 は、低S/N再生処理ルーチンのステップS200、S 210と同様、固有コードDDの送出と楽曲番号の送出 とを行なう(ステップS300, S310)。これら固 有コードDDおよび楽曲番号が受け付けられると、続い てプレーヤ90は、視聴者の指示に基づいて、この楽曲 の購入を申し込む(ステップS320)。購入の申し込 みを受け取ると、コンテンツ配信装置10は、固有コー ドDDを、そのハッシュ値により検証する。検証とは、 固有コードDDに対応する視聴者の銀行口座やクレジッ ト番号などから代金の引き落としが可能であるか否かを 確認する処理などを指す。代金の引き落としが可能な ど、コンテンツ配信装置10は、固有コードが認証され れば、アルゴリズムApを特定し得るデータ(コンテン ツ鍵と呼ぶ)を送出する。これを受けて、プレーヤ90 は、コンテンツ鍵を受け取る処理を行なう(ステップS 330).

【0046】次に、プレーヤ90は既にダウンロードしていた楽曲のデータから、透かし情報を抽出する処理を行なう(ステップS340)。透かし情報の抽出は、埋

込の逆のプロセスを実行することにより簡単に実行することができる。本実施例では、配信されるデータはMD CTが施され透かしが埋め込まれたデジタル情報なので、これから透かしを抽出することは容易であるが、例え透かしが埋め込まれた後にアナログ信号に変換された音声信号しか存在しない場合でも、図8に示したように、受け取った音声信号に対してフレーム抽出76を行ない、MDCT78を施し、デコード80を行なえば、容易に透かし情報を抽出することができる。透かし情報を抽出するのは、不正に複製されたデータに基づいて、高品質の再生を行なわせないためである。本実施例の手法によれば、正規の購入手続を取ったものは、高品質のデータの再生が可能となるが、著作権情報を兼ねる透かし情報を、種々の攻撃により削除したものは再生不可能とすることができる。

【0047】こうしてコンテンツ鍵の受け取り、透かし 情報の抽出を行なった後、プレーヤ90は、これらおよ び固有コードDDを用いて、既にダウンロードしたデー タにおける上述した係数の入れ替えを元に戻す処理(逆 変換と呼ぶ)を行なう(ステップS350)。この係数 の入れ替えは、次のようにして行なわれる。コンテンツ 鍵:コンテンツ鍵に相当するデータは、視聴者から送ら れてきた固有コードDDのハッシュ値により暗号化され て、視聴者に返送される。そこで、プレーヤ90は、自 己の固有コードDDのハッシュ値を用いて、この暗号を 解読し、コンテンツ鍵を取り出す。透かし情報を用いた アルゴリズムApの特定:ステップS340の処理によ り透かし情報が抽出されている。そこで、この透かし情 報と、上記の解読されたコンテンツ鍵とから、この楽曲 のデータに施された係数入れ替えのアルゴリズムを解読 し、逆変換を行なう。入れ替えられた係数を元に戻すの に、単にコンテンツ鍵のみならず、透かし情報をも用い るのは、記述したように、楽曲のデータに対する不正な 攻撃などからデータを保護するためである。

【0048】ステップS350の処理により、もとの楽曲の情報に対してMDCTを施した後のデータにおいて入れ替えられた係数は元に戻るから、これを用いて楽曲を再生すると、高品質(もとのサンプリング周波数かつビット数程度)の再生が可能となる(ステップS360)。

【0049】以上説明した本実施例によれば、プレーヤ90がネットワークNダブルを介してダウンロードするデータは一種類で足り、購入を申し込むまでは、サンプルとして低S/N比の音楽を再生し、代金の引き落としが可能と判断されれば、あるいは実際に引き落としがなされれば、コンテンツ鍵を受け取って、既にダウンロード済みのデータから高品質の音楽を再生することができる。この結果、視聴者としては、楽曲のデータのように時には数Mバイトも珍しくない大きなデータのダウンロードが一度で済み、ダウンロードに要する時間を、トー

タルで短縮することができる。もとより、ネットワークの負荷も低減することができる。また、楽曲のデータを提供する側からは、サンプルデータを別途製作する手間を省くことができる。ハードディスク36の容量も低減することができる。

【0050】また、本実施例では、高品質の再生を行なう場合には、透かし情報も用いているので、著作権情報などが埋め込まれた原データに対する攻撃を受けたデータを使っては高品質な再生ができないという利点も得られる。更に、この実施例では、プレーヤ90に固有のコードDDを用いてコンテンツ鍵を受け取っているので、一人の視聴者が代金を支払った際に受け取ったコンテンツ鍵を例えコンピュータなどで取得したとしても、同じ楽曲であれ、他人のプレーヤ90では、高品質の再生を行なうことはできない。同様に、異なる楽曲については、異なるコンテンツ鍵が必要になるので、同じプレーヤ90であっても異なる楽曲は、楽曲毎に代金を支払わなければ高品質の再生を行なうことはできない。

【0051】以上説明した通り、このコンテンツ配信装 置10とプレーヤ90とを組み合わせたシステムは、サ ンプルの手軽な配信と、高品質再生時の対価の確実な徴 収とを、容易に両立されることができる。なお、本実施 例では、コンテンツを配信するためのサーバの機能と、 視聴者の認証を行なう管理機能とを、一つのコンテンツ 配信装置10で兼用したが、銀行口座やクレジット情報 などに直結した視聴者の認証を行なう管理装置を別に設 置し、管理装置と配信用のサーバとが通信によりデータ を交換しつつ動作する構成とすることも現実的である。 【0052】以上、本発明の実施の形態について説明し たが、本発明はこうした実施の形態に何等限定されるも のではなく、本発明の要旨を逸脱しない範囲内におい て、更に種々なる形態で実施し得ることは勿論である。 例えば、本実施例では、固有コードDDのハッシュ値に より暗号化することでコンテンツ鍵の秘匿性を高めてい るが、コンテンツ鍵を複数個に分割し、分けて送信する ことにより、ネットワーク上の信頼性を高めることも構 成を取ることもできる。また、配信する情報としては、 音声や楽曲などに限られるものではなく、画像や動画な どであっても同様に扱うことができる。これらの場合で も、量子化された係数に対して入れ替えなどの所定の変 換を行なったデータを配信しておき、そのまま再生すれ ば画質があれたサンプルとして使用でき、代金を支払っ た後は、原データに施された変換を元に戻して、高品質 の画像を使えるようにすることは容易である。

【図面の簡単な説明】

【図1】本発明の第1実施例としてのコンテンツ配信装置10の構成を示すブロック図である。

【図2】実施例におけるプレーヤ90の構成を示すブロック図である。

【図3】情報の量子化・圧縮・変換と再生の概要を示す

説明図である。

【図4】コンテンツ配信装置10において実施される変換処理ルーチンを示すフローチャートである。

【図5】変形離散コサイン変換に使用されるフレームと 窓関数 \mathbf{w} (\mathbf{n})との関係を示す説明図である。

【図6】プレーヤ90が実施する低S/N再生処理ルーチンを示すフローチャートである。

【図7】プレーヤ90が実施する高品質再生処理ルーチンを示すフローチャートである。

【図8】音声情報から透かし情報を抽出する場合の手順を示す説明図である。

【符号の説明】

22...CPU

24…メインメモリ

26…フレームメモリ

30…キーボード

32…マウス

34…表示装置

36…ハードディスク

38…モデム

40…バス

42…電子透かし埋め込み部部

44…変換処理部

56…フレーム抽出部

58…MDCT部

60…埋込み部

62…IMDCT部

64…フレーム再生部

66…再構成部

85…ネットワークインタフェース

88…ヘッドフォンジャック

89…スピーカ

90…プレーヤ

91...CPU

92...ROM

94 ··· RAM

95…拡張用コネクタ

96…RAMカード

97…D/Aコンバータ

98…アンプ

【図1】

【図2】

【図5】

[38]

フロントページの続き

(51) Int. Cl. 7

識別記号

FΙ

(参考)

H O 4 N 7/081

H04N

7/08

7/13

Z 5J104Z 9A001

7/24 5/00

// G09C 5/00

F ターム(参考) 5B057 BA04 CG07

5C059 KK43 MA00 MA23 MB29 RC35

SS06

5C063 CA11 DA07 DA13 DA20

5C076 AA11

5D044 AB05 AB07 EF01 GK08 GK17

HL11

5J104 AA14 AA16 EA17 NA02 NA15

PA07 PA10

9A001 BB02 BB03 BB04 CC02 DD09

DD10 EE02 EE04 EE05 FF01

GG21 HH15 HH23 HH27 JJ19

JJ25 JJ67 KK43 KK60 LL03