SCLD LAB ASSIGNMENT 2

GROUP NO: 31

GROUP MEMBERS:

1.) SHREYAS JENA : 20CS30049 2.) PRANAV NYATI : 20CS30037 3.) UMANG SINGLA : 20CS10068 4.) UTSAV VINAY MEHTA : 20CS10069

1 Question 1 (BCD)

1. Develop circuits to convert from 4-bit binary to 2-digit BCD

Solution:

Table 1: Binary to BCD Converter

Biı	Binary Code (Input)					BCD Code (Output)									
	A	В	С	D			V	W	X	Y	Z				
	0	0	0	0			0	0	0	0	0				
	0	0	0	1			0	0	0	0	1				
	0	0	1	0			0	0	0	1	0				
	0	0	1	1			0	0	0	1	1				
	0	1	0	0			0	0	1	0	0				
	0	1	0	1			0	0	1	0	1				
	0	1	1	0			0	0	1	1	0				
	0	1	1	1			0	0	1	1	1				
	1	0	0	0			0	1	0	0	0				
	1	0	0	1			0	1	0	0	1				
	1	0	1	0			1	0	0	0	0				
	1	0	1	1			1	0	0	0	1				
	1	1	0	0			1	0	0	1	0				
	1	1	0	1			1	0	0	1	1				
	1	1	1	0			1	0	1	0	0				
	1	1	1	1			1	0	1	0	1				

From above table we can construct logical expressions for $V,\,W,\,X,\,Y,\,Z$ as follow: For V:

$$\begin{split} \mathbf{V} &= A\overline{B}C\overline{D} + A\overline{B}CD + AB\overline{C}.\overline{D} + AB\overline{C}D + ABC\overline{D} + ABCD \\ \mathbf{V} &= A\overline{B}C(\overline{D} + D) + AB\overline{C}(\overline{D} + D) + ABC(\overline{D} + D) \\ \mathbf{V} &= A\overline{B}C + AB\overline{C} + ABC \\ \mathbf{V} &= A\overline{B}C + AB(\overline{C} + C) \\ \mathbf{V} &= A\overline{B}C + AB \\ \mathbf{V} &= A(\overline{B}C + B) \\ \mathbf{V} &= A((B + C)(B + \overline{B})) \\ \mathbf{V} &= \mathbf{AB} + \mathbf{AC} \end{split}$$

For W:

$$\begin{split} \mathbf{W} &= A \overline{B}. \overline{C}. \overline{D} + A \overline{B}. \overline{C}D \\ \mathbf{W} &= A \overline{B}. \overline{C}(\overline{D} + D) \\ \mathbf{W} &= \mathbf{A} \overline{\mathbf{B}}. \overline{\mathbf{C}} \end{split}$$

For X:

$$\begin{split} \mathbf{X} &= \overline{A}B\overline{C}.\overline{D} + \overline{A}B\overline{C}D + \overline{A}BC\overline{D} + ABC\overline{D} + ABC\overline{D} + ABCD\\ \mathbf{X} &= \overline{A}B\overline{C}(\overline{D} + D) + \overline{A}BC(\overline{D} + D) + ABC(\overline{D} + D)\\ \mathbf{X} &= \overline{A}B\overline{C} + \overline{A}BC + ABC\\ \mathbf{X} &= \overline{A}B(\overline{C} + C) + ABC\\ \mathbf{X} &= \overline{A}B + ABC\\ \mathbf{X} &= B(\overline{A} + AC)\\ \mathbf{X} &= B((\overline{A} + A)(\overline{A} + C))\\ \mathbf{X} &= \overline{\mathbf{A}}\mathbf{B} + \mathbf{B}\mathbf{C} \end{split}$$

For Y:

$$\begin{split} \mathbf{Y} &= \overline{A}.\overline{B}C\overline{D} + \overline{A}.\overline{B}CD + \overline{A}BC\overline{D} + \overline{A}BCD + AB\overline{B}.\overline{D} + AB\overline{C}D \\ \mathbf{Y} &= \overline{A}.\overline{B}C(\overline{D} + D) + \overline{A}BC(\overline{D} + D) + AB\overline{C}(\overline{D} + D) \\ \mathbf{Y} &= \overline{A}.\overline{B}C + \overline{A}BC + AB\overline{C} \\ \mathbf{Y} &= \overline{A}C(\overline{B} + B) + AB\overline{C} \\ \mathbf{Y} &= \mathbf{A}\mathbf{B}\overline{\mathbf{C}} + \overline{\mathbf{A}}\mathbf{C} \end{split}$$

For Z:

For Z, it can be easily seen from the table that Z is 1 whenever D is one. So, we can conclude that: $\mathbf{Z} = \mathbf{D}$

Fig 1: Circuit diagram to convert from 4-bit binary to 2-digit BCD

2 Question 2 (Gray)

1. Develop circuits to convert from 4-bit Gray to 4-bit binary and vice-versa

Solution:

Table 2: Binary to Gray Converter

F	Binary Code (Input)						Gray Code (Output)						
	B1	B2	В3	B4			G1	G2	G3	G4	İ		
	0	0	0	0			0	0	0	0			
	0	0	0	1			0	0	0	1			
	0	0	1	0			0	0	1	1			
	0	0	1	1			0	0	1	0			
	0	1	0	0			0	1	1	0			
	0	1	0	1			0	1	1	1			
	0	1	1	0			0	1	0	1			
	0	1	1	1			0	1	0	0			
	1	0	0	0			1	1	0	0			
	1	0	0	1			1	1	0	1			
	1	0	1	0			1	1	1	1			
	1	0	1	1			1	1	1	0			
	1	1	0	0			1	0	1	0			
	1	1	0	1			1	0	1	1			
	1	1	1	0			1	0	0	1			
	1	1	1	1			1	0	0	0			

Conversion from binary code to gray code:

- 1. Most Significant Bit (MSB) of Gray code is same as that of Binary code.
- 2. For subsequent bits, the below mentioned rule is followed:

$$G_i = B_i \oplus B_{i+1}$$

3. Thus, for 4-bit binary to 4-bit gray conversion, we have the following:

$$G1 = B1$$

$$G2 = B1 \oplus B2$$

$$G3 = B2 \oplus B3$$

$$G4 = B3 \oplus B4$$

Fig 2: Circuit diagram to convert from 4-bit binary to 4-bit Gray Code.

Conversion from gray code to binary code:

- 1. Most Significant Bit (MSB) of Binary code is same as that of Gray code.
- 2. For subsequent bits, the below mentioned rule is followed:

$$B_i = G_i \oplus B_{i-1}$$

3. Thus, for 4-bit gray to 4-bit binary conversion, we have the following:

$$B1 = G1$$

$$B2 = G2 \oplus B1$$

$$B3 = G3 \oplus B2$$

$$B4 = G4 \oplus B3$$

Fig 3: Circuit diagram to convert from 4-bit Gray Code to 4-bit binary.

3 Question 3 (Excess-3)

- 1. Develop a half adder for handling two bits
 - Develop a full adder using half adders and any additional logic
 - Develop a ripple carry adder needed for this assignment using full adders
 - Develop circuits to convert from excess-3 to 4-bit binary and vice-versa

Solution:

a) The circuit that adds two bits is called half adder

ΑВ	Sum	Carry
0.0	0	0
0.1	1	0
10	1	1
11	0	1

Table 3: Truth Table for Half Adder

From the above truth table it can be seen that:

$$Sum = A\overline{B} + \overline{A}B = A XOR B$$

Fig 2: Circuit diagram for Half Adder

b) Full Adder is the adder which adds three inputs and produces two outputs. The first two inputs are A and B and the third input is an input carry as C-IN. The output carry is designated as C-OUT and the normal output is designated as S which is SUM.

	Inp	ut	Output				
Р	Q	C-IN	Sum	C-Out			
0	0	0	0	0			
0	0	1	1	0			
0	1	0	1	0			
0	1	1	0	1			
1	0	0	1	0			
1	0	1	0	1			
1	1	0	0	1			
1	1	1	1	1			
	•			!			

Table 4: Truth Table of Full Adder

From the above truth table it can be seen that:

For Sum:

$$Sum = \overline{P}.\overline{Q}C + \overline{P}Q\overline{C} + P\overline{Q}.\overline{C} + PQC$$

$$Sum = C(\overline{P}.\overline{Q} + PQ) + \overline{C}(\overline{P}Q + P\overline{Q})$$

$$Sum = C XOR (P XOR Q)$$

For Carry:

$$Carry = \overline{P}BC + P\overline{Q}C + PQ\overline{C} + PQC$$

$$Carry = (\overline{P}Q + P\overline{Q})C + PQ(\overline{C} + C)$$

$$Carry = (\mathbf{P} \ \mathbf{XOR} \ \mathbf{Q})\mathbf{C} + \mathbf{PQ}$$

From the above question we can construct the circuit for Full adder as follows:

Fig 4: Circuit diagram for full adder

c) A ripple carry adder is a logic circuit in which the carry-out of each full adder is the carry in of the succeeding next most significant full adder. It is called a ripple carry adder because each carry bit gets rippled into the next stage.

A1	A2	A3	A4	B4	В3	B2	B1	S4	S3	S2	S1	Carry
0	0	0	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	1	0	0	1	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0	1
1	0	1	0	1	0	1	0	0	1	0	0	1
1	1	0	0	1	1	0	0	1	0	0	0	1
1	1	1	0	1	1	1	0	1	1	0	0	1
1	1	1	1	1	1	1	1	1	1	1	0	1

The general equation for n-bit ripple carry adders is:

$$SUM_{i} = FULL - ADDER(A_{i}, B_{i}, CARRY_{i-1})$$

$$CARRY_{i} = FULL - ADDER(A_{i}, B_{i}, CARRY_{i-1})$$

$$CARRY_{0} = 0$$

From the above question we can construct the circuit for Ripple Adder as follows:

4-bit Ripple Carry Adder

Fig 5: Circuit diagram for Ripple Adder

d) Excess-3: