

Statistik

CH.11 - Hypothesentests

SS 2021 | | Prof. Dr. Buchwitz, Sommer, Henke

Wirgeben Impulse

- 1 Evaluation
- **2** Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Bitte evaluieren Sie den Kurs!

http://evasys.fh-swf.de/evasys/online.php?pswd=64D4W

- 1 Evaluation
- **2** Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Ausgangslage

Vorgehen Hypothesentests

- Formulieren Sie Nullhypothese H_0 und Alternativhypothese H_1 .
- Legen Sie ein Signifikanzniveau α fest.
- Wählen Sie die passende Teststatistik.
- Bestimmen Sie den Wert der Teststatistik, ab dem die Nullhypothese verworfen werden muss.
- Bestimmen Sie den Vergleichswert aus den Stichprobendaten.
- Entscheiden Sie durch Vergleich der Werte aus (4) und (5), ob Sie die Nullhypothese verwerfen können.

- 1 Evaluation
- **2** Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Tests für den Mittelwert bei bekannter Varianz

Test	H ₀	H ₁	Teststatistik	Verwerfe H_0 , wenn gilt:
Beidseitig	μ = μ_0	$\mu \neq \mu_0$		$ z >z_{1-\alpha/2}$
Rechtsseitig	$\mu \leq \mu_0$	$\mu > \mu_0$	$z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}$	$z > z_{1-\alpha}$
Linksseitig	$\mu \ge \mu_0$	$\mu < \mu_0$, .	$z < z_{lpha}$

Tests für den Mittelwert bei unbekannter Varianz

Test	H ₀	H ₁	Teststatistik	Verwerfe H_0 , wenn gilt:
Beidseitig	μ = μ_0	$\mu \neq \mu_0$		$\mid t\mid >t_{n-1,\;1-lpha/2}$
Rechtsseitig	$\mu \leq \mu_0$	$\mu > \mu_0$	$t = \frac{\bar{x} - \mu_0}{s / \sqrt{n}}$	$t > t_{n-1,\; 1-lpha}$
Linksseitig	$\mu \ge \mu_0$	$\mu < \mu_0$, •	$t < t_{n-1, \alpha}$

R-Funktion: t.test()

- 1 Evaluation
- **2** Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Tests für den Anteilswert

Test	H ₀	H ₁	Teststatistik	Verwerfe H ₀ , wenn gilt:
Beidseitig		$\pi \neq \pi_0$	$n{-}\pi_0$	\mid z \mid > z _{1-α/2}
Rechtsseitig	$\pi \leq \pi_0$	$\pi > \pi_0$	$z = \frac{p - \pi_0}{\sqrt{\frac{\pi_0(1 - \pi_0)}{n}}}$	$z>z_{1-\alpha}$
Linksseitig	$\pi \geq \pi_0$	$\pi < \pi_0$	V n	$\mathbf{z} < \mathbf{z}_{lpha}$

R-Funktion: prop.test()

Beispiel

Aufgabe: Ein Schraubenproduzent behauptet, dass seine Lieferung eines speziellen Schraubentyps einen Ausschussanteil von höchstens 1% enthält. Der Empfänger der Lieferung ist jedoch der Meinung,dass der Anteil höher ist. Er nimmt eine Stichprobe von 1000 Schrauben und findet in dieser 15 nicht den Anforderungen entsprechende Schrauben.

- Kann die Behauptung des Lieferanten mit dieser Stichprobe bei einem Signifikanzniveau von α = 0.05 widerlegt werden?
- Hinweis: Verteilungstabelle siehe nächste Seite.

Verteilungsfunktion F(z) für $z \sim N(\mu = 0, \sigma^2 = 1)$

Verteilungsfunktion F(z) der Standardnormalverteilung N(0, 1)Beispiel: $F(z) = P(z \le 1.96) = 0.9750$

z	0	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
8.0	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916

- 1 Evaluation
- **2** Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Verteilungstest

- Ausgangssituation: Es liegen Daten von zwei oder mehr unabhägngig gewonnenen Stichproben vor.
- **Ziel:** Zwei (oder mehrere) Grundgesamtheiten sollen hinsichtlich ihrer *Verteilung* verglichen werden.
- Analytische Fragestellung: Weichen die beiden empirischen Verteilungen so sehr voneinander ab, dass die Nullhypothese verworfen werden muss?

$$H_0: F_1 = F_2 = \ldots = F_k$$

■ Folge: Wenn H₀ verworfen werden muss, dann kann man davon ausgehen, dass die Stichproben nicht die selbe Verteilungsfunktion aufweisen und infolgedessen nicht aus der gleichen Grundgesamtheit stammen.

Beispiel

An einer Hochschule wurde in einer Befragung von 1529 Studierenden ermittelt, ob die Studierenden in den Semesterferien einem Ferienjob nachgehen.

	male	female	Sum
Job	718	593	1311
No Job	79	139	218
Sum	797	732	1529

Unterscheidet sich das Verhalten von männlichen und weiblichen Studierenden signifikant (α = 5)?

Chi-Quadrat Test

- Voraussetzung: Jede Zelle muss mindestens 5 Beobachten enthalten.
- Vorgehensweise: 6-Schritte Schema für das Testen von Hypothesen
- **Teststatistik:** Die \mathcal{X}^2 Teststatistik setzt die Abweichungen von beobachteten (f_o) und erwarteten f_e Häufigkeiten in Relation zu den erwarteten Häufigkeiten:

$$\mathcal{X}^2 = \sum_{\text{alle Zellen}} \frac{(f_o - f_e)^2}{f_e}$$

Die \mathcal{X}^2 Teststatistik folg einer \mathcal{X}^2 Verteilung mit $(r-1) \cdot (s-1)$

Chi-Quadrat Test

■ Die **erwarteten** Häufigkeiten ergeben sich als:

$$\sum$$
 Saplte $\cdot \sum$ Zeile

Gesamtanzahl

■ Die Nullhypothese lautet stets:

$$H_0: F_1 = F_2 = \ldots = F_k$$

Es handelt sich hier immer um einen rechtsseitigen Test.

\mathcal{X}^2 Verteilung

Quantile der $\mathcal{X}_{n:\gamma}^2$ Verteilung

19

20

21

22

23

38.5823

39.9968

41.4011

42,7957

44.1813

36.1909

37.5662

38.9322

40.2894

41.6384

32.8523

34.1696

35.4789

36,7807

38.0756

		Quantile $\mathcal{X}^2_{n_i^*\gamma}$ der \mathcal{X}^2_{n} -Verteilung									
	Beispiel: $P(\mathcal{X}_{10}^2 \le 20.4832) = 0.975$										
	0.25	0.5	0.75	0.9	0.95	0.975	0.99	0.995	$n \setminus \gamma$		
0.0	0.1015	0.4549	1.3233	2.7055	3.8415	5.0239	6.6349	7.8794	1		
0.:	0.5754	1.3863	2.7726	4.6052	5.9915	7.3778	9.2103	10.5966	2		
0.	1.2125	2.3660	4.1083	6.2514	7.8147	9.3484	11.3449	12.8382	3		
1.0	1.9226	3.3567	5.3853	7.7794	9.4877	11.1433	13.2767	14.8603	4		
1.0	2.6746	4.3515	6.6257	9.2364	11.0705	12.8325	15.0863	16.7496	5		
2.3	3.4546	5.3481	7.8408	10.6446	12.5916	14.4494	16.8119	18.5476	6		
2.8	4.2549	6.3458	9.0371	12.0170	14.0671	16.0128	18.4753	20.2777	7		
3.4	5.0706	7.3441	10.2189	13.3616	15.5073	17.5345	20.0902	21.9550	8		
4.	5.8988	8.3428	11.3888	14.6837	16.9190	19.0228	21.6660	23.5894	9		
4.8	6.7372	9.3418	12.5489	15.9872	18.3070	20.4832	23.2093	25.1882	10		
5.	7.5841	10.3410	13.7007	17.2750	19.6751	21.9200	24.7250	26.7568	11		
6.3	8.4384	11.3403	14.8454	18.5493	21.0261	23.3367	26.2170	28.2995	12		
7.0	9.2991	12.3398	15.9839	19.8119	22.3620	24.7356	27.6882	29.8195	13		
7.	10.1653	13.3393	17.1169	21.0641	23.6848	26.1189	29.1412	31.3193	14		
8.	11.0365	14.3389	18.2451	22.3071	24.9958	27.4884	30.5779	32.8013	15		
9.	11.9122	15.3385	19.3689	23.5418	26.2962	28.8454	31.9999	34.2672	16		
10.0	12.7919	16.3382	20.4887	24.7690	27.5871	30.1910	33.4087	35.7185	17		
10.8	13.6753	17.3379	21.6049	25.9894	28.8693	31.5264	34.8053	37.1565	18		

30.1435

31.4104

32.6706

33,9244

35.1725

27.2036

28.4120

29.6151

30.8133

32.0069

22.7178

23.8277

24.9348

26.0393

27.1413

18.3377

19.3374

20.3372

21.3370

22.3369

14.5620

15.4518

16.3444

17.2396

18.1373

11.6

12.4

20_{14.0}

14.8

- 1 Evaluation
- **2** Vorgehen Hypothesentests
- 3 Tests für den Mittelwert
- 4 Tests für den Anteilswert
- 5 Verteilungstest
- 6 Unabhängigkeitstest

Unabhängigkeitstest

- \mathcal{X}^2 Tests können auch verwendet werden um die Fragen zu beantworten, ob **zwei Merkmale unabhängig voneinander sind**.
- Im Beispiel: Ist die Annahme von Ferienjobs abhängig vom Geschlecht der Studierenden?
- Hypothesen:
 - H₀: Annahme von Ferienjobs und Geschlecht sind voneinander unabhängig.
 - H₁: Annahme von Ferienjobs und Geschlecht sind voneinandern abhängig.

Verständnisfragen

- 1 Wozu können \mathcal{X}^2 Tests verwendet werden?
- wie müssen Null- und Alternativhypothese beim \mathcal{X}^2 Test ausgestaltet werden?
- Welches Sklaenniveau müssen die Merkmale aufweisen um im \mathcal{X}^2 Test verwendet werden zu können?