# Comparison of Six POS Tagging Methods on 10K Sentences Myanmar Language (Burmese) POS Tagged Corpus

Khin War War Htike<sup>†</sup>, <u>Ye Kyaw Thu</u><sup>λ,φ</sup>, Zuping Zhang<sup>†</sup>, Win Pa Pa<sup>‡</sup>, Yoshinori Sagisaka<sup>φ</sup>, Naoto Iwahashi<sup>λ</sup>

<sup>†</sup>Central South University, Changsha, China

<sup>λ</sup>Al Lab., Okayama Prefectural University (OpU), Okayama, Japan

<sup>‡</sup>NLP Lab.,University of Computer Studies Yangon (UCSY), Yangon, Myanmar

<sup>φ</sup>Language and Speech Science Research Lab., Waseda University, Tokyo, Japan

#### 1. Introduction

- Part-of-Speech (POS) tagging is an important issue in natural language processing (NLP)
- A robust Myanmar POS tagger is necessary for Myanmar NLP research and not available publicly yet
- We developed a manually annotated ten thousand (10K) sentences POS tagged corpus for the general domain
- Evaluated with six POS tagging approaches, CRFs, HMM, MaxEnt, SVM, Ripple Down Rules-based (RDR) and Two hours of annotation approach (i.e. combination of HMM and MaxEnt)

## 3. Statistic of POS Tag-set

| No.      | POS-tag               | Frequency | Proportion |
|----------|-----------------------|-----------|------------|
| 1        | n                     | 59957     | 28.04%     |
| <b>2</b> | $\operatorname{part}$ | 44074     | 20.61%     |
| 3        | ppm                   | 34958     | 16.35%     |
| 4        | $\mathbf{V}$          | 28702     | 13.42%     |
| 5        | punc                  | 14374     | 6.72%      |
| 6        | $\operatorname{conj}$ | 10578     | 4.95%      |
| 7        | $\operatorname{adj}$  | 6302      | 2.95%      |
| 8        | num                   | 3527      | 1.65%      |
| 9        | $\operatorname{adv}$  | 2671      | 1.25%      |
| 10       | pron                  | 2579      | 1.21%      |
| 11       | $\operatorname{tn}$   | 2121      | 0.99%      |
| 12       | fw                    | 2080      | 0.97%      |
| 13       | $part\_neg$           | 1409      | 0.66%      |
| 14       | abb                   | 264       | 0.12%      |
| 15       | $\operatorname{sb}$   | 159       | 0.07%      |
| 16       | int                   | 95        | 0.04%      |

# 5. Accuracy on Training Data Size



Fig. Accuracies of six POS tagging methodologies on varying training data sizes

## 2. Proposed POS Tag-set

- Based on 10 POS tag-set defined by Myanmar Language Commission
- 16 POS are used to meet futher NLP processing such as semantic processing
- abb (Abbreviation), adj (Adjective), adv (Adverb), conj (Conjunction), fw (Foreign Word), num (Number), int (Interjection), n (Noun), part (Particle), part\_neg (Negative Particle), ppm (Post Positional Marker), pron (Pronoun), punc (Punctuation), sb (Symbol), tn (Text Number), v (Verb)

#### 4. Result of Six Methodologies

| $\mathbf{Methods}$               | Closed Test-set | Open Test-set         |
|----------------------------------|-----------------|-----------------------|
| $\overline{\mathbf{CRFs}}$       | 97.77%          | 95.05%                |
| $\mathbf{H}\mathbf{M}\mathbf{M}$ | 97.31%          | 96.43%                |
| MaxEnt                           | 96.55%          | 96.31%                |
| $\mathbf{RDR}$                   | 98.42%          | $\underline{97.05\%}$ |
| $\mathbf{SVM}$                   | 99.83%          | 93.55%                |
| Two-Hours                        | 95.83%          | 92.87%                |

#### 6. Error Analysis



Fig. Confusion pairs with 10K model. Left: 3gHMM, Right: RDR