17 19112024-141700

Ко входу двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью 3.6 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 23 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание мощностью 3.6 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 1.)

Рисунок 1 – Схема измерения потерь в трансформаторе

- 1) 1.1 дБ
- 2) 0.3 дБ
- 3) 2.5 дБ
- 4) 0.6 дБ

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой $1445~\mathrm{MF}$ ц с внутренним сопротивлением $50~\mathrm{Om}$ и доступной мощностью $9~\mathrm{дБм}$.

Ко входу ПЧ подключён генератор меандра частотой 295 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники -3 дБм. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 1662 МГц до 1824 МГц.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты OTBETA:

- 1) -81 дБм
- 2) -77 дБм
- 3) -72 дБм
- 4) -79 дБм

Чему равна частота гетеродина при преобразовании частоты вверх с использованием двойного балансного смесителя, если спектр на выходе РЧ таков, как изображён на рисунке 2?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 2 – Экран анализатора спектра

- 1) 180 MΓ_{II}
- 2) 150 МГц
- 3) 110 МГц
- 4) 140 MΓ_I

Для

- выделения верхней боковой составляющей при преобразовании вверх
- и полного подавления другой боковой

используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный П-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная 10 градусов.

Чему равна ёмкость компонента фазовращателя, если частота ПЧ равна 83 МГц?

- 39 πΦ
- 2) 26 πΦ
- 3) 120 πΦ
- 4) 81 πΦ

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что:

$$s_{21} = 0.206 - 0.32i$$
, $s_{31} = 0.322 + 0.207i$.

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь верхняя боковая составляющая при преобразовании частоты вверх?

- 1) -47 дБн
- 2) -63 дБн
- 3) -45 дБн
- 4) -51 дБн

На рисунке 3 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 3 – Двойной балансный смеситель

Частота гетеродина 284 МГц, частота ПЧ 49 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 382 MΓι
- 2) 852 MΓ_{II}
- 3) 235 MΓ_{II}
- 4) 803 МГц.