

Ecole Nationale Supérieure d'Informatique et d'Analyse des Systèmes - RABAT

Rapport de projet d'analyse de données : Régression multiple, Classification, ACP et ACM

 $R\'{e}alis\'{e}\ par$: Encadr\'e par :

Otmane Labioui Pr.IBRAHIM JOUTEI IDRISSI AymaneAbabou AMRANI

Table des matières

ın	troduction	U
1	Régression multiple	2
2	Classification	17
3	ACP	33
4	\mathbf{ACM}	65

Introduction

Les données concernant les maisons trouvées dans un district donné de California , et certains statistiques récapulatifs à leur sujet basée sur les données du recensement de 1990.

Les colonnes sont les suivantes :

- 1) Médian House Value : valeur médiane de la maison pour les ménages dans un block (measured in US Dollars)
- 2) Median Income : revenue médiane des ménages dans un bloc de maison (measured in tens of thousands of US Dollars) [10k]
- 3) Median Age : Age médiane d'une maison dans un bloc ; un nombre inférieur est un bâtiment plus récente [ans]
- 4) Total Rooms : nombre total de chambre dans un bloc.
- 5) Total Bedrooms :nombre total de chambre à coucher dans un bloc.
- 6) Population : nombre total de personnes résidant dans un bloc.
- 7) Households : nombre total de ménages, un groupe de personne résidant dans une unité d'habitation pour un bloc.
- 10) Distance to coast : Distance jusqu'au point côtier le plus proche [m]
- 11) Distance to Los Angeles: Distance au centre de los angeles[m]
- 12) Distance to San Diego : Distance au centre de San Diego [m]
- 13) Distance to San Jose : Distance au centre de San Jose [m]
- 14) Distance to San Francisco : Distance au centre de San Francisco [m]

-Choix de la variable dépendante :

On a choisi la variable "Médian House Value" comme une variable dépendante expliquée par les autres variables, car le prix d'une maison dépent de la distance du centre de la ville ,nombre de chambre

Chapitre 1

Régression multiple

Régression multiple

```
library("readxl")
data_calf<-read_excel("California_Houses.xlsx")</pre>
data_calf=transform(data_calf, Median_Income=as.numeric( Median_Income),
                   Distance_to_coast=as.numeric(Distance_to_coast),
                   Distance_to_LA=as.numeric(Distance_to_LA),
                   Distance_to_SanJose=as.numeric(Distance_to_SanJose),
                   Distance_to_SanFrancisco=as.numeric(Distance_to_SanFrancisco),
                   Distance_to_SanDiego=as.numeric(Distance_to_SanDiego))
summary(data_calf)
   Median_House_Value Median_Income
                                          Median_Age
                                                         Tot_Rooms
##
                                        Min. : 3.0
##
  Min.
         : 14999
                      Min. : 0.4999
                                                      Min.
                                                            :
##
  1st Qu.: 70000
                      1st Qu.: 2.0227
                                        1st Qu.:18.0
                                                      1st Qu.: 1125
## Median :103100
                      Median : 2.8466
                                        Median:25.0
                                                      Median: 1872
## Mean
          :152960
                      Mean
                            : 3.2853
                                        Mean
                                              :27.2
                                                      Mean
                                                            : 2385
## 3rd Qu.:200000
                      3rd Qu.: 3.8438
                                        3rd Qu.:35.0
                                                       3rd Qu.: 2602
## Max.
          :500001
                      Max.
                           :11.1978
                                        Max. :52.0
                                                      Max.
                                                             :14316
##
    Tot_Bedrooms
                      Population
                                     Households
                                                   Distance_to_coast
## Min. : 11.0
                    Min. : 26
                                   Min. : 5.0
                                                   Min. : 2348
##
   1st Qu.: 238.0
                    1st Qu.: 521
                                   1st Qu.: 196.0
                                                   1st Qu.: 13126
##
   Median : 395.0
                    Median: 949
                                   Median : 326.0
                                                   Median : 56047
                                   Mean : 431.3
##
   Mean : 485.4
                    Mean :1239
                                                   Mean : 84719
##
   3rd Qu.: 564.0
                    3rd Qu.:1387
                                   3rd Qu.: 461.0
                                                    3rd Qu.:143795
                                         :2753.0
          :2861.0
                          :7205
##
   Max.
                    Max.
                                   Max.
                                                   Max.
                                                          :311912
## Distance_to_LA
                    Distance_to_SanDiego Distance_to_SanJose
## Min. : 8778
                    Min. : 120489
                                        Min.
                                                : 17489
##
  1st Qu.:166999
                    1st Qu.: 246754
                                         1st Qu.:212558
## Median :517687
                    Median : 696446
                                         Median :306467
## Mean
          :439504
                          : 605150
                                                :317672
                    Mean
                                         Mean
## 3rd Qu.:709136
                    3rd Qu.: 887424
                                         3rd Qu.:467729
         :960640
## Max.
                    Max.
                           :1139711
                                         Max.
                                                :733835
## Distance_to_SanFrancisco
## Min. : 16032
##
   1st Qu.:205473
## Median :303884
##
   Mean
          :327671
##
   3rd Qu.:496637
          :801545
   Max.
```

###1) Calcule du modèle de régression linéaire multiple incluant toute les variables explicatives

```
regression_multiple<-lm(Median_House_Value ~ Median_Income + Median_Age + Tot_Rooms + Tot_Bedrooms + Population+ Households + Distance_to_coast + Distance_to_LA +
```

```
Distance_to_SanFrancisco,data=data_calf)
summary(regression_multiple)
```

```
##
## Call:
## lm(formula = Median_House_Value ~ Median_Income + Median_Age +
       Tot Rooms + Tot Bedrooms + Population + Households + Distance to coast +
##
       Distance_to_LA + Distance_to_SanDiego + Distance_to_SanJose +
      Distance_to_SanFrancisco, data = data_calf)
##
##
## Residuals:
##
      Min
                1Q Median
                                ЗQ
                                       Max
##
  -104649 -35557
                    -4905
                             18872
                                   184550
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            48786.4038 54687.6014
                                                    0.892 0.37455
## Median_Income
                            45943.9619 4730.5802
                                                    9.712 5.61e-16 ***
## Median_Age
                               52.3884
                                       566.7750
                                                    0.092 0.92655
## Tot_Rooms
                              -28.6621
                                         11.4707 -2.499
                                                          0.01415 *
## Tot Bedrooms
                              252.0989
                                          88.0077
                                                    2.865 0.00512 **
                                                          0.00343 **
## Population
                              -67.8824
                                          22.6231
                                                  -3.001
## Households
                               98.0291
                                         112.4860
                                                    0.871
                                                          0.38565
                                                   -3.259
## Distance_to_coast
                               -0.2845
                                           0.0873
                                                           0.00154 **
## Distance_to_LA
                               -0.4119
                                           0.1523
                                                   -2.705
                                                           0.00807 **
## Distance_to_SanDiego
                                0.2475
                                           0.1433
                                                    1.728
                                                           0.08719
## Distance to SanJose
                                0.5486
                                           0.3144
                                                    1.745
                                                           0.08418
## Distance_to_SanFrancisco
                               -0.5472
                                           0.3156
                                                  -1.734 0.08612
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 57060 on 97 degrees of freedom
## Multiple R-squared: 0.8073, Adjusted R-squared: 0.7854
## F-statistic: 36.93 on 11 and 97 DF, p-value: < 2.2e-16
```

###1-1) Existe-t-il des variables explicatives non significatives? D'apres le resultat de la commande summary (regresssion_multiple), les varibles explicatives non significatives (elles ont p-value>0.05=alpha) sont de 5 variables, elles sont Median_Age , Households , Distance_to_San Diego , Distance_to_San Jose , Distance_to_San Francisco .

###1-2) Donner la valeur de R et R_ajuste: D'apres le resultat de la regression on a : $R^2=0.8073$ R^2 ajuste =0.7854

###1-3) le test de fisher ?\$ le test de fisher est significatif car car (la statistique F=36.93 est grande et la probabilité critique associé au test p-value< 0.05), ce test signifie qu'il existe au moins une variable significativement non nulle.

###2) Amélioration du modèle initiale par la procédure step

reg_ameliore=step(regression_multiple)

```
## Start: AIC=2398.77
## Median_House_Value ~ Median_Income + Median_Age + Tot_Rooms +
## Tot_Bedrooms + Population + Households + Distance_to_coast +
```

```
##
       Distance_to_SanFrancisco
##
                                                   RSS
##
                              Df Sum of Sq
                                                           AIC
## - Median_Age
                               1 2.7813e+07 3.1580e+11 2396.8
## - Households
                               1 2.4723e+09 3.1824e+11 2397.6
## <none>
                                            3.1577e+11 2398.8
## - Distance_to_SanDiego
                               1 9.7190e+09 3.2549e+11 2400.1
## - Distance_to_SanFrancisco 1 9.7865e+09 3.2555e+11 2400.1
## - Distance_to_SanJose
                               1 9.9105e+09 3.2568e+11 2400.1
## - Tot_Rooms
                               1 2.0325e+10 3.3609e+11 2403.6
## - Distance_to_LA
                               1 2.3816e+10 3.3958e+11 2404.7
## - Tot_Bedrooms
                               1 2.6711e+10 3.4248e+11 2405.6
## - Population
                               1 2.9309e+10 3.4508e+11 2406.4
## - Distance_to_coast
                               1 3.4569e+10 3.5034e+11 2408.1
## - Median_Income
                               1 3.0706e+11 6.2283e+11 2470.8
##
## Step: AIC=2396.78
## Median_House_Value ~ Median_Income + Tot_Rooms + Tot_Bedrooms +
##
       Population + Households + Distance_to_coast + Distance_to_LA +
##
       Distance_to_SanDiego + Distance_to_SanJose + Distance_to_SanFrancisco
##
##
                              Df Sum of Sq
                                                   RSS
                                                           AIC
                               1 2.5696e+09 3.1837e+11 2395.7
## - Households
## <none>
                                            3.1580e+11 2396.8
## - Distance_to_SanFrancisco 1 1.0456e+10 3.2625e+11 2398.3
## - Distance_to_SanJose
                               1 1.0644e+10 3.2644e+11 2398.4
## - Distance_to_SanDiego
                               1 1.0654e+10 3.2645e+11 2398.4
## - Tot_Rooms
                               1 2.0307e+10 3.3610e+11 2401.6
## - Tot_Bedrooms
                               1 2.7775e+10 3.4357e+11 2404.0
## - Distance_to_LA
                               1 2.7857e+10 3.4365e+11 2404.0
## - Population
                               1 2.9523e+10 3.4532e+11 2404.5
## - Distance_to_coast
                               1 3.4705e+10 3.5050e+11 2406.2
## - Median_Income
                               1 3.0746e+11 6.2325e+11 2468.9
## Step: AIC=2395.67
## Median_House_Value ~ Median_Income + Tot_Rooms + Tot_Bedrooms +
##
       Population + Distance_to_coast + Distance_to_LA + Distance_to_SanDiego +
##
       Distance_to_SanJose + Distance_to_SanFrancisco
##
##
                              Df Sum of Sq
## <none>
                                             3.1837e+11 2395.7
## - Distance_to_SanDiego
                               1 1.0585e+10 3.2895e+11 2397.2
## - Distance_to_SanFrancisco 1 1.1083e+10 3.2945e+11 2397.4
## - Distance_to_SanJose
                               1 1.1192e+10 3.2956e+11 2397.4
## - Tot_Rooms
                               1 1.8738e+10 3.3710e+11 2399.9
## - Distance_to_LA
                               1 2.8087e+10 3.4645e+11 2402.9
## - Population
                               1 3.2215e+10 3.5058e+11 2404.2
## - Distance_to_coast
                               1 3.8430e+10 3.5680e+11 2406.1
## - Tot_Bedrooms
                               1 7.9254e+10 3.9762e+11 2417.9
## - Median_Income
                               1 3.1971e+11 6.3808e+11 2469.4
modele<-lm(Median_House_Value ~ Median_Income + Tot_Rooms +</pre>
              Tot_Bedrooms + Population + Distance_to_coast + Distance_to_LA +
```

Distance_to_LA + Distance_to_SanDiego + Distance_to_SanJose +

##

```
Distance_to_SanDiego + Distance_to_SanJose + Distance_to_SanFrancisco,
           data = data_calf)
summary(modele)
##
## lm(formula = Median_House_Value ~ Median_Income + Tot_Rooms +
##
      Tot_Bedrooms + Population + Distance_to_coast + Distance_to_LA +
      Distance_to_SanDiego + Distance_to_SanJose + Distance_to_SanFrancisco,
##
      data = data_calf)
##
##
## Residuals:
##
     Min
             1Q Median
                           3Q
## -93289 -36920 -3831 22080 184250
##
## Coefficients:
##
                             Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                            5.024e+04 5.017e+04 1.001 0.319074
## Median_Income
                            4.649e+04 4.662e+03 9.971 < 2e-16 ***
## Tot_Rooms
                           -2.722e+01 1.128e+01 -2.414 0.017622 *
## Tot Bedrooms
                           3.033e+02 6.109e+01 4.964 2.87e-06 ***
                           -5.547e+01 1.753e+01 -3.165 0.002060 **
## Population
                           -2.964e-01 8.573e-02 -3.457 0.000807 ***
## Distance_to_coast
                           -4.185e-01 1.416e-01 -2.955 0.003903 **
## Distance_to_LA
                            2.500e-01 1.378e-01
## Distance_to_SanDiego
                                                  1.814 0.072666
## Distance_to_SanJose
                            5.683e-01 3.046e-01
                                                  1.866 0.065062
## Distance to SanFrancisco -5.687e-01 3.064e-01 -1.856 0.066361 .
## -
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56710 on 99 degrees of freedom
## Multiple R-squared: 0.8057, Adjusted R-squared: 0.788
## F-statistic: 45.6 on 9 and 99 DF, p-value: < 2.2e-16
```

Ce modèle amélioré laisse 9 variables explicatives parmi 12, il a pris les variables qu'ont p-value moins du seuil de significativité alpha(5%), ou une p-value petite meme si elle est supérieure à 5%. Après cette amélioration, nous avons remarqué que la valeur de R^2 _ajuste à passer de 0.7854 à 0.788, c'est à dire que le modèle explique environ 79% des données, ce qui signifie qu'il y a une amélioration au niveau du modèle

###2-1) les tests de validation pour le modèle amélioré de la procédure de step : - test d'homoscédasticité

```
par(mfrow = c(1, 2))
plot(reg_ameliore,1)
plot(reg_ameliore,3)
```


On peut déduire a partir les deux graphes au dessus que l'hypothése d'homoscédasticité n'est pas vérifiée car la ligne en rouge pas horizontal , il n'y a pas une forme distingue.

• test de normalité (shapiro et ks)

```
#test shapiro
shapiro.test(reg_ameliore$residuals)
##
##
    Shapiro-Wilk normality test
##
## data: reg_ameliore$residuals
## W = 0.94677, p-value = 0.0002697
#test ks
ks.test(reg_ameliore$residuals,"pnorm")
##
    One-sample Kolmogorov-Smirnov test
##
##
## data: reg_ameliore$residuals
## D = 0.53211, p-value < 2.2e-16
  alternative hypothesis: two-sided
```

les deux tests montrent que l'hypothése de normalité des résidus n'est pas vérifié car l'hypothése null (on a une distrubition normal) est significativement rejeté (p-value<alpha=5%)

• recherche de valeurs aberrantes

```
rse=sqrt(deviance(reg_ameliore)/df.residual(reg_ameliore))
abr=abs(data_calf$Median_House_Value-predict(reg_ameliore))/rse
plot(abr)
abline(h=2,col='red')
```


Les valeurs qui sont au dessus de la ligne en rouge sont des valeurs aberrantes.
il existe 7 valeurs aberantes. ###3) la méthode pas à pas de sélection des variables explicatives, basée sur le test de Fisher : #####Etape1 On commence la méthode pas à pas par l'intégration de la variable la plus significative (F le plus grand)

```
nva=ncol(data_calf)
Fish = rep(0, nva)
for (i in 2:ncol(data_calf)){
mod1<-lm(data_calf[,1]~data_calf[,i])</pre>
Fish[i]=var(predict(mod1))*(nrow(data_calf)-1)/(deviance(mod1)/df.residual(mod1))
}
Fish
    [1]
          0.000000 185.733089
                                 2.817161
                                            21.371567
                                                       16.104678
                                                                   12.029662
         18.448943 38.805635
                                25.730663
                                            20.843943
                                                        1.003932
                                                                    2.924802
df2=nrow(data_calf)-2
df2
```

```
## [1] 107
1-pf(max(Fish),1,df2)
## [1] 0
c'est la variable Mediane_Age qui a le plus grand F #etape2: Introduction
nva=ncol(data_calf)-1
Fish = rep(0,nva)
SCR1<-deviance(lm(data_calf[,1]~data_calf[,2]))</pre>
for (i in 3:ncol(data_calf)) {
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,i])</pre>
SCR2=deviance(mod)
Fish[i]=(SCR1-SCR2)/(SCR2/(nrow(data_calf)-3))
}
Fish
## [1] 0.0000000 0.0000000 0.7224821 0.4271976 4.2217869 1.1999758
## [7] 3.2264290 23.0383218 11.4026051 9.0285551 1.9909412 2.9855053
df2=nrow(data_calf)-3
df2
## [1] 106
1-pf(max(Fish),1,df2)
## [1] 5.231617e-06
summary(mod)
##
## lm(formula = data_calf[, 1] ~ data_calf[, 2] + data_calf[, i])
##
## Residuals:
##
      Min
                1Q Median
                                ЗQ
                                       Max
## -188702 -36707 -10280
                             27464
                                    282272
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 -3.437e+04 1.818e+04 -1.890 0.0615 .
## data_calf[, 2] 5.047e+04 3.718e+03 13.573
                                                 <2e-16 ***
## data_calf[, i] 6.567e-02 3.801e-02 1.728 0.0869 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 74130 on 106 degrees of freedom
## Multiple R-squared: 0.6445, Adjusted R-squared: 0.6378
```

F-statistic: 96.08 on 2 and 106 DF, p-value: < 2.2e-16

c'est la variable Distance_to_coast qui a le plus grand F #Etape2: Retrait

```
Fish = rep(0,2)
SCR2=deviance(lm(data_calf[,1]~data_calf[,2]+data_calf[,8]))
mod<-lm(data_calf[,1]~data_calf[,2])</pre>
SCR1<-deviance(mod)
Fish[1]=(SCR1-SCR2)/(SCR2/(nrow(data_calf)-3))
mod<-lm(data_calf[,1]~data_calf[,8])</pre>
SCR1=deviance(mod)
Fish[2]=(SCR1-SCR2)/(SCR2/(nrow(data_calf)-3))
Fish
## [1] 23.03832 153.06946
df2=nrow(data_calf)-3
df2
## [1] 106
1-pf(min(Fish),1,df2)
## [1] 5.231617e-06
aucun varibale n'est retire , les F sont significatifs
#Etape3:Introduction
Fish = rep(0, nva)
SCR2<-deviance(lm(data_calf[,1]~data_calf[,2]+data_calf[,8]))</pre>
for (i in 3:7) {
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,i])</pre>
SCR3=deviance(mod)
Fish[i]=(SCR2-SCR3)/(SCR3/(nrow(data_calf)-4))
}
for (i in 9:ncol(data_calf)) {
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,i])</pre>
SCR3=deviance(mod)
Fish[i]=(SCR2-SCR3)/(SCR3/(nrow(data_calf)-4))
}
Fish
## [1] 0.0000000 0.0000000 0.2475582 0.3182474 3.1179696 0.3437354 1.8004046
## [8] 0.0000000 8.2010610 5.9533593 1.7993070 2.8854312
df2=nrow(data_calf)-4
df2
## [1] 105
```

```
1-pf(max(Fish),1,df2)
## [1] 0.005056086
c'est la variable Distance_to_LA qui a le plus grand F #Etape3: Retrait
SCR3<-deviance(lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,9]))
Fish \leftarrow rep(0,3)
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,8])</pre>
SCR2<-deviance(mod)
Fish[1]=(SCR2-SCR3)/(SCR3/(nrow(data_calf)-4))
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,9])</pre>
SCR2<-deviance(mod)
Fish[2]=(SCR2-SCR3)/(SCR3/(nrow(data_calf)-4))
mod<-lm(data_calf[,1]~data_calf[,8]+data_calf[,9])</pre>
SCR2<-deviance(mod)
Fish[3]=(SCR2-SCR3)/(SCR3/(nrow(data_calf)-4))
Fish
## [1]
         8.201061 19.420365 134.135425
df2=nrow(data_calf)-4
df2
## [1] 105
1-pf(min(Fish),1,df2)
## [1] 0.005056086
aucun varibale n'est retire , les F sont significatifs #Etape 4: Introduction
Fish = rep(0,nva)
SCR3<-deviance(lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,9]))
for (i in 3:7) {
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,9]+data_calf[,i])</pre>
SCR4=deviance(mod)
Fish[i]=(SCR3-SCR4)/(SCR4/(nrow(data_calf)-4))
}
for (i in 10:ncol(data_calf)) {
\verb|mod<-lm(data_calf[,1]-data_calf[,2]+data_calf[,8]+data_calf[,9]+data_calf[,i]|)|
SCR4=deviance(mod)
Fish[i]=(SCR3-SCR4)/(SCR4/(nrow(data_calf)-4))
}
Fish
  [1] 0.000000000 0.000000000 0.003104573 0.554262148 3.002698750 0.151122444
```

[7] 1.646671456 0.000000000 0.000000000 5.969659075 0.076532304 0.001453928

```
df2=nrow(data_calf)-4
df2
## [1] 105
1-pf(max(Fish),1,df2)
## [1] 0.01622177
la variable Distance_to_San
Diego a le plus grand F #Etape<br/>4: Retrait
SCR4<-deviance(lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,9]+data_calf[,10]))
Fish<-rep(0,4)
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,9])</pre>
SCR3<-deviance(mod)
Fish[1]=(SCR3-SCR4)/(SCR4/(nrow(data_calf)-4))
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,10])</pre>
SCR3<-deviance(mod)
Fish[2]=(SCR3-SCR4)/(SCR4/(nrow(data_calf)-4))
\verb|mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,9]+data_calf[,10]||
SCR3<-deviance(mod)</pre>
Fish[3]=(SCR3-SCR4)/(SCR4/(nrow(data_calf)-4))
mod<-lm(data_calf[,1]~data_calf[,8]+data_calf[,9]+data_calf[,10])</pre>
SCR3<-deviance(mod)
Fish[4]=(SCR3-SCR4)/(SCR4/(nrow(data_calf)-4))
Fish
## [1]
         5.969659
                     8.217691 21.558516 128.790121
df2=nrow(data_calf)-4
df2
## [1] 105
1-pf(min(Fish),1,df2)
## [1] 0.01622177
aucun variable n'est retire
#Etape 5: Introduction
```

```
Fish = rep(0,nva)
SCR4<-deviance(lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,9]+data_calf[,10]))
for (i in 3:7) {
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,9]+data_calf[,10]+data_calf[,i])</pre>
SCR5=deviance(mod)
Fish[i]=(SCR4-SCR5)/(SCR5/(nrow(data_calf)-4))
}
Fish[8]=Fish[9]=Fish[10]=0
for (i in 11:ncol(data_calf)) {
mod<-lm(data_calf[,1]~data_calf[,2]+data_calf[,8]+data_calf[,9]+data_calf[,10]+data_calf[,1])</pre>
SCR5=deviance(mod)
Fish[i]=(SCR4-SCR5)/(SCR5/(nrow(data_calf)-4))
}
Fish
    [1] 0.000000000 0.000000000 0.154583929 0.273997739 2.171374529 0.005241776
##
## [7] 1.001456412 0.000000000 0.000000000 0.000000000 2.607248618 1.721263302
df2=nrow(data_calf)-4
df2
## [1] 105
1-pf(max(Fish),1,df2)
## [1] 0.1093773
LA variable Distance_to_SanJose a le plus grand F mais avec un p-valu>10% c'est la condition d'arret
\#\#\#3-1)
Les tests de validation pour le modèle obtenu: - test d'homoscédasticité
model2<-lm(Median_House_Value ~ Median_Income + Distance_to_coast + Distance_to_LA +</pre>
              Distance_to_SanDiego + Distance_to_SanJose ,
            data = data_calf)
par(mfrow = c(1, 2))
plot(model2,1)
plot(model2,3)
```


on observe que l'hypothése d'homoscédasticité n'est pas vérifié car la courbe en rouge n'est pas horizontal. - test de normalité

```
#test shapiro
shapiro.test(model2$residuals)
##
##
   Shapiro-Wilk normality test
##
## data: model2$residuals
   W = 0.92188, p-value = 7.964e-06
#test ks
ks.test(model2$residuals,"pnorm")
##
##
    One-sample Kolmogorov-Smirnov test
##
  data: model2$residuals
## D = 0.58716, p-value < 2.2e-16
## alternative hypothesis: two-sided
```

on déduit que l'hypothése null de normalité est rejeté, donc la distrubition des residus n'est pas une distrubition normal(Gaussien) test de valeurs aberantes

```
rse=sqrt(deviance(model2)/df.residual(model2))
abr=abs(data_calf$Median_House_Value-predict(model2))/rse
plot(as.numeric(abr))
abline(h=2,col='red')
```


###3-2) le critère AIC du modèle obtenu par cette méthode

AIC(model2)

[1] 2729.524

###3-3) Conclusion On constate que le premier amélioration de notre modèle de regression qu'est fait par la procédure step est mieux que la deuxiéme amélioration, car la valeur AIC du premier inférieure à la deuxiéme et pour le Adjusted R-squared de premier amélioration est un peu grand parappor la deuxiéme, et ca implique que le premier modèle amélioré explique bien la valeur dépendante que le deuxiéme modèle amélioré.

Après la sélection des variables qui contribuent plus dans l'explication du variable dépendante , on peut conclure que le modèle obtenu est relativement valide car il est homogène, la normalité de ses résidus est acceptée par le test de Shapiro et son AIC est minimale. Le modèle obtenue après la sélection des variables est meilleur que le premier modèle obtenue avec toutes les variables d'où la sélection des variables explicatives est très utile pour l'amélioration du modèle du départ. Après la comparaison des deux modèles obtenus par la procédure step et par la sélection des variables, nous avons remarqué que le modèle obtenu par la procédure step est meilleur que le modèle obtenu par la sélection des variables car il est homogène ,il a moins de valeurs aberrante et il a aussi la minimale valeur de AIC(aic=423.24). D'après cette comparaison, on peut conclure que l'efficacité de la procédure step

Chapitre 2

Classification

Classification

ababou et labioui

16/01/2022

```
###lecture de donnée
```

```
library("readxl")
data_calf<-read_excel("California_Houses.xlsx")</pre>
{\tt data\_calf=transform(data\_calf[,-1],\ Median\_Income=as.numeric(\ Median\_Income),} \\ {\tt Distance\_to\_coast=as.numeric(\ Median\_Income),}
                                                  Distance_to_LA=as.numeric(Distance_to_LA), Distance_to_SanJose=as.numeric(Distance_t
                                                  Distance_to_SanFrancisco=as.numeric(Distance_to_SanFrancisco),Distance_to_SanDiego=
summary(data_calf)
          Median_Income
                                                                                                  Tot_Rooms
                                                                                                                                         Tot_Bedrooms
##
                                                             Median_Age
                          : 0.4999
##
         Min.
                                                                      : 3.0
                                                                                                                         55
                                                       Min.
                                                                                                              :
                                                                                                                                      Min.
                                                                                                                                                        : 11.0
         1st Qu.: 2.0227
                                                                                                                                      1st Qu.: 238.0
                                                       1st Qu.:18.0
                                                                                              1st Qu.: 1125
       Median: 2.8466
                                                       Median:25.0
                                                                                              Median: 1872
                                                                                                                                      Median: 395.0
                         : 3.2853
                                                                       :27.2
                                                                                                            : 2385
                                                       Mean
                                                                                              Mean
                                                                                                                                      Mean
                                                                                                                                                      : 485.4
         3rd Qu.: 3.8438
                                                       3rd Qu.:35.0
                                                                                              3rd Qu.: 2602
                                                                                                                                      3rd Qu.: 564.0
                           :11.1978
##
         Max.
                                                       Max.
                                                                         :52.0
                                                                                              Max.
                                                                                                               :14316
                                                                                                                                      Max.
                                                                                                                                                        :2861.0
##
              Population
                                                     Households
                                                                                           Distance_to_coast Distance_to_LA
##
                                                                                           Min. : 2348
                                                                                                                                         Min. : 8778
         Min.
                       : 26
                                               Min. :
                                                                            5.0
         1st Qu.: 521
                                                                                           1st Qu.: 13126
##
                                                1st Qu.: 196.0
                                                                                                                                         1st Qu.:166999
##
         Median: 949
                                               Median: 326.0
                                                                                           Median : 56047
                                                                                                                                         Median :517687
                                               Mean : 431.3
##
         Mean
                        :1239
                                                                                           Mean : 84719
                                                                                                                                         Mean
                                                                                                                                                           :439504
##
          3rd Qu.:1387
                                                3rd Qu.: 461.0
                                                                                           3rd Qu.:143795
                                                                                                                                         3rd Qu.:709136
                                                                                                                                                           :960640
##
                           :7205
                                                Max.
                                                                :2753.0
                                                                                           Max.
                                                                                                             :311912
                                                                                                                                         Max.
##
         Distance_to_SanDiego Distance_to_SanJose Distance_to_SanFrancisco
##
                           : 120489
                                                               Min.
                                                                                 : 17489
                                                                                                                  Min.
                                                                                                                                    : 16032
##
        1st Qu.: 246754
                                                               1st Qu.:212558
                                                                                                                  1st Qu.:205473
      Median : 696446
                                                               Median :306467
                                                                                                                  Median :303884
       Mean
                            : 605150
                                                               Mean
                                                                                 :317672
                                                                                                                  Mean
                                                                                                                                    :327671
                                                                                                                  3rd Qu.:496637
         3rd Qu.: 887424
                                                               3rd Qu.:467729
         Max.
##
                           :1139711
                                                                                 :733835
                                                                                                                                    :801545
                                                               Max.
                                                                                                                  Max.
```

###1) Appliquer kmeans au tableau des variables quantitatives, le nombre de classes va varier de 1 à N et les variables doivent être centrées et réduites. N étant le plus petit entier tel que le taux d'inertie expliquée de la classification à N classes est supérieur à 0.95 centrage et reduction des variables

```
data_calf.cr<-scale(data_calf,center=T,scale=T)
summary(data_calf.cr)</pre>
```

```
## Median_Income Median_Age Tot_Rooms Tot_Bedrooms
## Min. :-1.4474 Min. :-1.9716 Min. :-0.97464 Min. :-1.0841
```

```
##
   1st Qu.:-0.6561
                     1st Qu.:-0.7496
                                      1st Qu.:-0.52714
                                                        1st Qu.:-0.5653
##
   Median :-0.2280
                     Median :-0.1794
                                      Median :-0.21473
                                                        Median :-0.2065
         : 0.0000
                     Mean : 0.0000
                                      Mean : 0.00000
##
                                                        Mean : 0.0000
   Mean
   3rd Qu.: 0.2902
                     3rd Qu.: 0.6353
                                      3rd Qu.: 0.09057
                                                        3rd Qu.: 0.1797
##
##
   Max.
         : 4.1118
                     Max. : 2.0202 Max.
                                           : 4.98962
                                                        Max.
                                                               : 5.4290
##
     Population
                     Households
                                      Distance_to_coast Distance_to_LA
##
          :-1.0064 Min. :-1.00838 Min.
                                            :-1.0403 Min.
                                                               :-1.3939
   1st Qu.:-0.5956
                   1st Qu.:-0.55655 1st Qu.:-0.9042
                                                       1st Qu.:-0.8819
##
##
  Median :-0.2405
                     Median :-0.24902
                                     Median :-0.3621
                                                        Median: 0.2530
## Mean
         : 0.0000
                     Mean : 0.00000
                                       Mean : 0.0000
                                                        Mean : 0.0000
   {\tt 3rd} \ {\tt Qu.:} \ {\tt 0.1230}
                     3rd Qu.: 0.07034
##
                                       3rd Qu.: 0.7461
                                                        3rd Qu.: 0.8726
                                       Max. : 2.8694
##
   Max.
         : 4.9510
                     Max. : 5.49230
                                                        Max. : 1.6865
##
   Distance_to_SanDiego Distance_to_SanJose Distance_to_SanFrancisco
##
   Min. :-1.5007
                       Min. :-1.86693
                                           Min. :-1.6554
##
   1st Qu.:-1.1097
                        1st Qu.:-0.65374
                                           1st Qu.:-0.6491
##
   Median : 0.2827
                        Median :-0.06969
                                           Median :-0.1264
   Mean : 0.0000
                                           Mean : 0.0000
##
                        Mean : 0.00000
##
   3rd Qu.: 0.8740
                        3rd Qu.: 0.93325
                                           3rd Qu.: 0.8975
##
   Max.
         : 1.6552
                        Max. : 2.58824
                                           Max.
                                                : 2.5171
```

application de k_means au notre jeu de données:

-détermination du nombre des classes qui donne le taux d'inertie de 95%

```
inertie.expl <- rep(0,times=35)
k=2
clus <- kmeans(data_calf.cr,centers=k,nstart=5)
inertie.expl[k] <- clus$betweenss/clus$totss
while(inertie.expl[k]<0.95){
    k=k+1
    clus <- kmeans(data_calf.cr,centers=k,nstart=5)
    inertie.expl[k] <- clus$betweenss/clus$totss
}
max(inertie.expl)</pre>
```

[1] 0.9516308

k-1

[1] 36

N=35 est le plus petit entier tel que max(inertie.expl)>0.95 , donc le Taux d'inertie expliquée nous a aidé à valider le choix du nombre de class adequat pour que la variace intra class soit minimal et dans l'autre cote la variance inter class soit maximal

###2) Détermination de Nc le nombre de classes à retenir en utilisant la méthode : var (I_2)/var(I) <0,05, I étant le vecteur de taille N des taux d'inertie expliquée et I_2 étant le vecteur des (N-Nc) dernières valeurs des taux d'inertie expliquée - graphe presente inertie explique en fonction de nombre de groupe

```
plot(1:k,inertie.expl,type="b",xlab="Nb. de groupes",ylab="% inertie expliquée")
```


- determination du Nc

[1] 10

regle

[1] 4.159994

A partir de la valeur 3.897867 de li'inertie explique, l'adjonction d'un groupe supplémentaire n'augmente pas significativement la part d'inertie expliquée par la partition , cela traduit par un nombre de class à retenir egal à 10.

###3) Faire une CAH sur le tableau des variables quantitatives. Les variables doivent au préalable être centrées et réduites.

```
library(FactoMineR)

#Les données ont été préalablement centrées et réduites sur Excel

R.scale <- function(Y){
```

```
#centrage réduction d'une variable - sans utilisation de boucle for
  X<-Y
  for (k in 1:ncol(X)){
    i<-1
    n <- length(X[,k])</pre>
    moy <- mean(X[,k])</pre>
    et \leftarrow sqrt((n-1)/n*var(X[,k]))
    while(i<nrow(X)){</pre>
    X[i,k] \leftarrow (X[i,k]-moy)/et
    i<-i+1
    }
  }
  return(Y)
Y=R.scale(data_calf)
#CAH
Res<-HCPC(as.data.frame(data_calf),nb.clust=-1)</pre>
```


Hierarchical clustering on the factor map

Dim 1 (82.95%)

Factor map

Res\$data.clust

##		Median_Income	Median Age	Tot Rooms	Tot Bedrooms	Population	Households
##	1	8.3252	41	880	129	322	126
##	2	1.9028	51	1590	414	949	392
##	3	2.1250	47	1372	395	1237	303
##	4	2.1000	51	175	43	228	55
##	5	2.0227	44	1097	239	609	215
##	6	7.2634	12	14316	2045	5781	2007
##	7	3.4861	18	4335	808	2041	734
##	8	5.2312	31	1487	280	854	301
##	9	6.1047	7	10648	1818	6075	1797
##	10	3.5714	5	1150	311	648	245
##	11	6.0824	3	14014	2861	7205	2753
##	12	4.3594	23	4332	857	2461	829
##	13	3.1142	12	9831	1921	4644	1775
##	14	3.0068	23	6010	1116	2710	1149
##	15	1.7875	18	1676	332	733	318
##	16	2.2000	20	908	206	481	211
##	17	2.8871	22	2828	610	986	391
##	18	2.3684	35	632	148	221	102
##	19	1.4896	17	1483	284	481	211
##	20	2.1010	51	956	196	662	180
##	21	1.3720	47	1314	416	1155	326
	22	3.2639	10	2522	533	1335	493
##	23	4.3810	34	2084	339	868	347

##	24	1.7184	11	1947	488	2104	486
##	25	1.9056	25	1689	495	1745	457
##	26	1.3386	20	1287	310	954	269
##	27	2.8182	29	1563	293	883	288
##	28	2.2083	18	902	195	771	174
##	29	4.1250	46	55	11	26	5
##	30	2.0192	18	2603	576	1616	588
##	31	1.6607	16	255	73	85	38
##	32	2.3851	21	1155	210	510	175
##	33	2.5625	23	2502	481	1443	455
##	34	2.8466	34	2051	342	958	322
##	35	2.4917	43	1320	215	512	197
##	36	1.8320	39	844	161	535	165
##	37	2.1746	20	2332	518	1856	495
##	38	0.9570	52	661	316	392	244
##	39	3.0469	25	2395	431	983	375
##	40	1.0486	31	938	238	425	157
##	41	2.0156	29	1029	239	509	196
##	42	1.8993	17	1485	345	823	316
##	43	2.9911	23	2103	411	1019	387
##	44	3.8095	28	3513	634	1658	598
##	45	1.7153	25	2015	524	746	251
##	46	2.6250	17	1319	267	393	163
##	47	1.3190	16	2088	535	816	326
##	48	2.1864	17	2019	496	899	347
##	49	1.7292	17	290	94	135	57
##	50	1.2639	16	245	57	81	33
##	51	4.0208	15	208	49	51	20
##	52	3.8611	18	1894	319	846	317
##	53	5.5750	10	6435	1040	3242	1030
##	54	2.6726	29	1476	220	902	205
##	55	2.5208	21	1885	398	1539	388
##	56	1.8419	18	2327	642	799	335
##	57	1.8369	17	2354	514	775	380
##	58	1.5667	15	2966	669	1007	465
##	59	3.6250	35	2916	594	1870	432
##	60	2.0441	33	2579	564	1155	431
##	61	2.4286	23	207	45	171	50
##	62	2.4688	21	1548	308	1137	306
##	63	1.8750	43	187	38	106	40
##	64	2.9708	27	2533	518	1371	461
##	65	0.4999	16	411	114	26	19
##	66	2.2188	20	1125	231	521	196
##	67	3.8333	24	1098	193	353	145
##	68	3.3750	15	764	145	366	143
##	69	2.7188	26	1707	308	761	250
##	70	2.5000	29	779	136	364	123
##	71	3.6641	17	976	202	511	175
##	72	1.6833	27	777	185	318	115
##	73	3.6250	33	240	49	63	22
##	74	1.7214	11	2635	667	280	132
##	75	2.2264	11	2479	900	2466	855
##	76	1.4329	21	847	278	1283	277
##	77	11.1978	32	8041	1141	2768	1106

	78	7.9096	39	2603	456		
	79	10.1882	38	4715	691		
	80	10.3467	34	3203	483		
	81	1.3125	13	4284	1452		
	82	4.4674	18	4780	1192		
	83	6.1527	40	2933	565		
	84	2.0469	39	2602	802		
	85	6.2976	52	3034	406		
	86	4.3250	52	1732	305		
	87	3.6974	10	4292	1075		
	88	3.0179	49	192	41		
	89	3.3056	46	1840	379		
	90	3.1641	21	4031	923		
##		3.8438	28	5173	1069		
	92	3.2122	29	1699	399		
	93	3.8203	43	1810	343		
	94	5.9845	40	1983	298		
	95	4.4306	52	2203	430		
	96	3.1204	52	1722	448		
	97	3.1211	36	3514	818		
	98	4.5590	23	2216	378		
	99	4.7422	32	1437	257		
##	100	4.5132	27	2565	479	1227	467
	101	5.0323	30	2260	374	958	359
##	102	4.5147	34	1138	205		
##	103	2.1759	35	1387	272	610	
##	104	4.0074	25	1596	321	1378	308
##	105	3.6597	21	2361	464	1146	396
##	106	3.2314	31	1872	434	1511	405
##	107	2.5495	27	2080	412	1082	382
##	108	3.7125	28	2332	395	1041	344
##	109	2.3886	16	2785	616		
##		${\tt Distance_to_coast}$				_	
##		9263.041	556529			5501.8	67432.52
##		5897.799	549879	.078	72	8729.1	59581.96
	3	4920.814	549640			8459.1	59073.11
	4	4042.115	550230			9033.1	59534.20
##	5	5542.835	540804			9659.4	50767.65
##		14874.129	537496			6534.3	50508.74
##		4975.515	530425			9202.7	39869.08
##		4491.623	529602			8361.3	38897.98
##		7070.266	520289			9016.9	29530.15
	10	12465.794	506589			5369.4	17489.37
##	11	2347.977	517397			5988.0	25791.05
	12	8192.659	517686			6446.4	27366.30
	13	167886.982	710107			7844.7	269650.01
	14	168738.860	709710			7423.6	269669.08
	15	185813.489	700431			7530.7	270964.63
	16	184557.579	699809			6955.1	269772.21
	17	170914.167	678351			5182.5	256676.77
	18	177311.361	677020			3284.5	263561.04
	19	167332.446	665120			1424.9	253738.55
	20	172581.896	329859			7729.3	196772.33
##	21	172581.896	329859	.165	50	7729.3	196772.33

	00	00000 040	204240 704	400007 0	100750 07
##		90380.048	301319.704	480307.9	190753.07
##		91819.832	303012.766	482045.4	189184.42
##		124834.643	360290.996	539602.9	146979.35
##		125652.684	357015.361	536341.8	149233.72
##		119014.147	372076.121	551383.1	137220.61
##		120647.991	368311.120	547623.1	140165.72
##		98412.746	381013.998	560419.7	120092.64
##	29	171183.310	297897.186	475133.7	227601.50
##	30	136286.216	724477.856	902962.0	269805.92
##	31	89894.935	745210.343	924386.6	274118.58
##	32	120353.497	725731.338	904562.6	264118.43
##	33	149649.951	714784.390	893025.1	265454.45
##	34	148421.370	703609.852	882035.9	252173.58
##	35	143795.456	693311.766	871987.2	238031.81
##	36	147709.165	684447.619	862882.5	235159.52
##	37	152369.202	715474.279	893627.9	267563.84
##	38	3514.868	914261.432	1093636.2	432449.25
##	39	39927.733	880382.664	1059646.5	402627.86
##	40	19585.130	946300.516	1125213.3	473918.28
##	41	2854.892	960640.319	1139711.4	485366.45
##	42	3544.297	924228.966	1103532.4	444662.03
##	43	10979.972	910152.077	1089495.2	429591.51
##	44	15451.260	899592.600	1078947.8	418758.55
##	45	47871.003	863603.321	1042938.7	384061.60
##	46	4541.260	844834.098	1024179.9	357462.64
##	47	16723.032	854379.601	1033782.3	369070.91
##	48	22845.507	827955.697	1007362.7	343383.45
##	49	79296.190	218261.454	124078.9	692060.48
##	50	63505.531	228799.709	120488.5	705940.98
##	51	35909.850	252213.012	122055.2	733834.91
##	52	120389.021	166999.426	345476.2	333310.79
##	53	118246.747	167239.366	345924.9	332000.21
##	54	141059.659	196537.041	374896.5	306466.49
##	55	142781.896	202538.354	381023.5	300160.34
##	56	185414.205	187768.322	352472.6	365945.94
##	57	164169.900	158765.144	322738.8	387283.99
##	58	175174.375	176727.017	342473.0	370099.94
##	59	203171.001	192350.970	339225.6	412521.64
##	60	195241.767	183346.801	327284.1	423248.26
##	61	141968.497	268091.192	446763.4	239054.37
##	62	132049.987	270064.678	449137.3	232755.24
##		124693.997	282344.892	461641.6	217839.29
##		96829.102	280440.180	459692.4	212558.29
##	65	76935.132	726162.667	905551.2	247539.51
##		69917.087	700740.086	880145.6	218381.44
##		56046.539	709136.221	888489.2	223475.49
##		59008.671	653733.539	833128.1	171822.62
##		249861.369	820082.918	992808.2	420699.48
##		261505.593	821413.348	993379.3	428416.58
##		257737.341	795857.949	968877.2	397193.17
##		311911.760	792964.089	962344.6	425711.72
##		303538.639	754674.536	924651.4	389838.27
##		277649.860	766770.114	938870.8	381112.62
##		19879.791	24400.101	202904.3	467728.81
"	. •	100/01/01	_1100.101	202001.0	10.720.01

##	76	13125.675	13998.238	170403.7	499922.51
##	77	9773.561	21510.285	196091.5	474192.25
##	78	5056.527	29066.533	191616.0	479085.16
##	79	2539.482	24574.715	193311.6	477026.54
##	80	9139.553	17276.523	191187.4	479111.94
##	81	7813.507	19107.968	192336.9	477936.29
##	82	7097.339	18088.245	190028.0	480237.86
##	83	9249.330	16265.927	189743.9	480555.87
##	84	2365.257	35987.360	153465.4	517220.29
##		28284.180	14411.913	192597.4	479487.34
##		26160.128	13771.653	192663.9	479089.57
##		26893.916	14832.881	193594.8	478259.78
##		24918.504	15849.076	195114.5	476425.30
##		23105.018	17251.859	196661.9	474599.16
##		43670.560	39034.365	160481.2	518311.93
##		51280.178	47417.424	160629.0	521736.37
##		41417.425	29882.507	166253.0	510333.75
##		37792.630	18146.679	189275.7	484672.48
##		37541.238	19553.723	192118.4	481791.59
##		33794.587	9596.457	178261.7	494314.27 493698.04
## ##		32900.746 34075.525	8777.506 10132.047	178741.5 179213.1	493489.02
##		157240.859	800161.472	977620.9	354263.45
##		19197.784	633195.082	812135.1	142725.92
	100	18490.586	632366.282	811292.9	141817.01
	101	21360.894	626394.291	805352.5	136092.45
	102	16152.094	636107.486	814986.5	145273.03
	103	141338.152	740998.179	919204.4	289571.79
	104	6092.747	86279.639	246754.0	429222.04
	105	6092.747	86279.639	246754.0	429222.04
	106	4267.922	88100.013	248158.5	428192.17
	107	123269.616	642052.644	820038.7	208634.19
##	108	132007.832	651116.940	829038.8	217062.32
##	109	146866.197	648723.337	825569.2	233282.77
##		Distance_to_SanFrance	isco clust		
##	1	2125	0.21 3		
##	2	1792	4.51 3		
##	3	1690	5.89 3		
##	4	1603	2.23 3		
##		2414	7.65 3		
##	6		7.95 3		
##			5.70 3		
##			0.47 3		
##		4050			
##			5.10 3		
##			6.66 3		
##		4332			
##		22690			
##		22710			
##		23283			
##		23151			
## ##		22326			
##		23280			
##	ΙÐ	22497	4.23 4		

##	20	259414.77	2
##	21	259414.77	2
##	22	258764.58	2
##	23	257181.51	2
##	24	211738.88	2
##	25	214278.34	2
##	26	201213.10	2
##	27	204451.29	2
##	28	185746.54	2
##	29	291490.60	2
##	30	220637.33	4
##	31	216934.52	4
##	32	211987.34	4
##	33	219032.36	4
##	34	205723.83	4
##	35	190772.80	4
##	36	191191.06	4
##	37	221642.68	4
##	38	368229.99	4
##	39	340128.10	4
##	40	412619.89	4
##	41	423027.14	4
##	42	381162.62	4
##	43	365841.80	4
##	44	354984.64	4
##	45	321062.69	4
##	46	291465.87	4
##	47	303883.86	4
##	48	278679.94	4
##	49	759547.48	1
##	50	773522.26	1
##	51	801545.27	1
##	52	400973.44	2
##	53	399712.57	2
##	54	373846.67	2
##	55	367524.70	2
##	56	431156.35	2
##	57	453380.60	1
##	58	435792.42	2
##	59	476454.24	1
##	60	487521.07	1
##	61	305486.18	2
##	62	299618.89	2
##	63	284898.93	2
##	64	280479.62	2
##	65	187319.89	4
##	66	156839.05	4
##	67	159671.38	4
##	68	112719.68	3
##	69	383658.23	4
##	70	392907.07	4
##	71	361519.52	4
##	72	397679.21	4
	73	364686.03	4
##	10	304000.03	4

##	74	350348.98	4
##	75	535745.51	1
##	76	567912.71	1
##	77	542175.87	1
##	78	546975.25	1
##	79	544966.64	1
##	80	547099.09	1
##	81	545916.10	1
##	82	548213.79	1
##	83	548542.99	1
##	84	585123.47	1
##	85	547522.45	1
##	86	547124.06	1
##	87	546294.62	1
##	88	544458.82	1
##	89	542630.21	1
##	90	586296.74	1
##	91	589674.43	1
##	92	578340.13	1
##	93	552697.42	1
##	94	549816.14	1
##	95	562349.12	1
##	96	561733.08	1
##	97	561523.54	1
##	98	304679.16	4
##	99	76482.30	3
##	100	75489.09	3
##	101	70218.98	3
##	102	78526.77	3
##	103	240724.63	4
##	104	496636.58	1
##	105	496636.58	1
##	106	495576.22	1
##	107	175914.55	3
##	108	182803.30	4
##	109	205473.38	4

Le dendrogramme « suggère » un découpage en 4 groupes.

###3-1) Quelles sont les variables quantitatives les plus corrélées avec la variable classification

Res\$desc.var\$quanti.var

```
## Distance_to_SanDiego 0.95124592 1.060594e-68 ## Distance_to_LA 0.93911998 1.222271e-63 ## Distance_to_SanFrancisco 0.84881432 6.383422e-43 ## Distance_to_SanJose 0.77728414 4.159111e-34 ## Distance_to_coast 0.37990056 6.548680e-11 ## Median_Income 0.20709518 1.984248e-05 ## Population 0.09044195 1.856219e-02 ## Households 0.08513113 2.457213e-02 ## Tot_Rooms 0.07529695 4.096247e-02
```

On déduit d'apres l'analyse de la variance que la variable qui concerne Distance_to_SanDiego caractérise bien toutes les classes car elle a une p-value trés petites par rapport les autres c'est à dire il y'a une grande intensité de liaison significative avec la variable de classe, et aprés on a la variable de Distance_to_LA et ainsi de suite . De plus on observe que les varibles Distance_to_SanDiego , Distance_to_LA , Median_Income , Population sont les plus correles avec la variable classification

###3-2)3.2) Faire la description des classes retenues par variables

Res\$desc.var\$quanti

```
## $'1'
##
                                v.test Mean in category Overall mean sd in category
## Distance_to_SanFrancisco 8.422143
                                           563248.51489 3.276710e+05
                                                                        76025.840916
## Distance_to_SanJose
                             7.449826
                                           495648.51928 3.176723e+05
                                                                        75742.866264
## Median_Income
                             3.159899
                                                4.18875 3.285273e+00
                                                                            2.537943
                                               31.40625 2.720183e+01
## Median_Age
                             2.305255
                                                                           12.992448
## Distance_to_coast
                                            40175.69719 8.471865e+04
                                                                        50996.510834
                             -3.786386
## Distance to LA
                             -8.229724
                                            61666.57396 4.395036e+05
                                                                        73410.120350
## Distance_to_SanDiego
                             -8.479765
                                           198257.27198 6.051504e+05
                                                                        51507.106774
                              Overall sd
                                               p.value
## Distance_to_SanFrancisco 1.873927e+05 3.696604e-17
## Distance_to_SanJose
                            1.600506e+05 9.346325e-14
## Median_Income
                            1.915513e+00 1.578238e-03
## Median_Age
                            1.221879e+01 2.115227e-02
## Distance_to_coast
                            7.881259e+04 1.528539e-04
## Distance_to_LA
                            3.075819e+05 1.876458e-16
## Distance_to_SanDiego
                            3.214683e+05 2.256498e-17
##
## $'2'
##
                           v.test Mean in category Overall mean sd in category
                                                                        28538.65
## Distance_to_coast
                         3.035842
                                           133285.8
                                                        84718.65
                                                                        73859.46
## Distance_to_SanDiego -2.264380
                                           457390.9
                                                       605150.45
## Distance_to_LA
                         -2.555185
                                           279970.3
                                                       439503.57
                                                                        71764.78
## Distance to SanJose
                        -2.690949
                                           230248.3
                                                       317672.35
                                                                        76840.77
                                        p.value
                        Overall sd
## Distance_to_coast
                          78812.59 0.002398650
## Distance_to_SanDiego
                         321468.27 0.023550742
## Distance_to_LA
                         307581.87 0.010613129
## Distance_to_SanJose
                         160050.57 0.007124914
##
## $'3'
##
                                v.test Mean in category Overall mean sd in category
                             2.449226
                                           3.646667e+03 2.385440e+03
                                                                         4364.126017
## Tot_Rooms
## Median_Income
                             2.435206
                                           4.294511e+00 3.285273e+00
                                                                            1.806282
                                           1.852000e+03 1.238789e+03
## Population
                             2.362813
                                                                         2100.452835
## Households
                             2.300718
                                           6.407222e+02 4.312661e+02
                                                                          735.595285
## Distance_to_SanDiego
                             2.042054
                                           7.471797e+05 6.051504e+05
                                                                        50631.525700
## Tot_Bedrooms
                             1.966268
                                           6.706667e+02 4.853670e+02
                                                                          753.134487
## Distance to coast
                             -3.855498
                                           1.897579e+04 8.471865e+04
                                                                        28244.623072
## Distance_to_SanFrancisco -6.763309
                                           5.346016e+04 3.276710e+05
                                                                        39510.418756
## Distance_to_SanJose
                                           8.178930e+04 3.176723e+05
                                                                       57107.495695
                            -6.811880
##
                              Overall sd
                                               p.value
## Tot Rooms
                            2.380081e+03 1.431638e-02
## Median_Income
                            1.915513e+00 1.488331e-02
```

```
## Population
                           1.199521e+03 1.813681e-02
## Households
                           4.207820e+02 2.140757e-02
## Distance_to_SanDiego
                           3.214683e+05 4.114618e-02
## Tot_Bedrooms
                           4.355714e+02 4.926762e-02
## Distance_to_coast
                           7.881259e+04 1.154944e-04
## Distance_to_SanFrancisco 1.873927e+05 1.348751e-11
## Distance to SanJose
                         1.600506e+05 9.633177e-12
## $'4'
##
                              v.test Mean in category Overall mean sd in category
                            8.381948 7.718649e+05 4.395036e+05
                                                                     88617.097633
## Distance_to_LA
                                         9.492337e+05 6.051504e+05
## Distance_to_SanDiego
                            8.302723
                                                                     89016.706142
## Distance_to_coast
                            4.132286
                                         1.267033e+05 8.471865e+04
                                                                     88573.600411
                                         3.225128e+02 4.312661e+02
## Households
                           -2.004842
                                                                       308.961857
## Distance_to_SanFrancisco -2.093553
                                         2.770953e+05 3.276710e+05
                                                                     79341.939068
## Population
                                         8.634615e+02 1.238789e+03
                           -2.427155
                                                                       814.619523
## Median_Income
                           -3.570417
                                         2.403597e+00 3.285273e+00
                                                                         0.858904
##
                            Overall sd
                                             p.value
## Distance_to_LA
                           3.075819e+05 5.205884e-17
## Distance_to_SanDiego
                           3.214683e+05 1.017519e-16
## Distance_to_coast
                           7.881259e+04 3.591726e-05
## Households
                           4.207820e+02 4.497993e-02
## Distance_to_SanFrancisco 1.873927e+05 3.629981e-02
                           1.199521e+03 1.521776e-02
## Population
## Median_Income
                           1.915513e+00 3.564132e-04
```

les variables qui ont p-value trés petit inférieure à 5% ou elles ont les moyenne par catégorie plus grand que ses moyennes total elles caractérisent bien les classes. ###3.3) Calculer les taux d'inertie : Inertie Inter/Inertie total, avant et après la consolidation de la CAH. ###taux d'inertie avant la consolidation

Res\$call\$bw.before.consol

[1] 239103455927

Res\$call\$bw.after.consol

taux d'inertie aprés la consolidation:

[1] 239228821640

###4) Comparer les classifications faites par kmeans et CAH

La classification faites par K-Means a un taux d'inertie égale 78.3% avec un nombre de classes égale à 10, et celle faites par CAH a un taux d'inertie égale 57,77% avec un nombre de classes égale à 4. D'après cette comparaison, on peut conclure que La classification faites par K-Means est plus homogène et précise que celle faites par CAH.

Chapitre 3

ACP

ACP

Contents

Importation de data

```
library(readxl)
data_house <- read_excel("California_Houses.xlsx")
data_house$Median_Income <- as.numeric(data_house$Median_Income)
data_house$Distance_to_coast <- as.numeric(data_house$Distance_to_coast)
data_house$Distance_to_LA <- as.numeric(data_house$Distance_to_LA)
data_house$Distance_to_SanDiego <- as.numeric(data_house$Distance_to_SanDiego)
data_house$Distance_to_SanJose <- as.numeric(data_house$Distance_to_SanJose)
data_house$Distance_to_SanFrancisco <- as.numeric(data_house$Distance_to_SanFrancisco)</pre>
```

Les informations sur data

summary(data house)

```
Median_House_Value Median_Income
                                        Median_Age
                                                      Tot_Rooms
## Min. : 14999
                     Min. : 0.4999
                                      Min. : 3.0
                                                    Min. : 55
  1st Qu.: 70000
                     1st Qu.: 2.0227
                                      1st Qu.:18.0
                                                    1st Qu.: 1125
##
##
   Median :103100
                     Median : 2.8466
                                      Median :25.0
                                                    Median: 1872
##
   Mean :152960
                     Mean : 3.2853
                                      Mean :27.2
                                                    Mean : 2385
   3rd Qu.:200000
                     3rd Qu.: 3.8438
                                      3rd Qu.:35.0
                                                    3rd Qu.: 2602
##
##
   Max. :500001
                     Max. :11.1978
                                      Max. :52.0
                                                    Max. :14316
##
                     Population
                                   Households
                                                 Distance_to_coast
    Tot_Bedrooms
##
  Min. : 11.0
                   Min. : 26
                                 Min. : 5.0
                                                 Min. : 2348
##
  1st Qu.: 238.0
                   1st Qu.: 521
                                 1st Qu.: 196.0
                                                 1st Qu.: 13126
## Median : 395.0
                   Median: 949
                                 Median : 326.0
                                                 Median: 56047
## Mean : 485.4
                   Mean :1239
                                       : 431.3
                                 Mean
                                                 Mean : 84719
## 3rd Qu.: 564.0
                   3rd Qu.:1387
                                 3rd Qu.: 461.0
                                                 3rd Qu.:143795
## Max. :2861.0
                                 Max. :2753.0
                   Max. :7205
                                                 Max. :311912
## Distance_to_LA
                   Distance_to_SanDiego Distance_to_SanJose
## Min. : 8778
                   Min. : 120489
                                       Min. : 17489
##
   1st Qu.:166999
                   1st Qu.: 246754
                                       1st Qu.:212558
##
   Median :517687
                   Median : 696446
                                       Median :306467
         :439504
                   Mean : 605150
##
   Mean
                                       Mean :317672
##
   3rd Qu.:709136
                   3rd Qu.: 887424
                                       3rd Qu.:467729
##
   Max.
         :960640
                   Max.
                         :1139711
                                       Max.
                                             :733835
## Distance_to_SanFrancisco
## Min. : 16032
## 1st Qu.:205473
## Median :303884
## Mean
          :327671
## 3rd Qu.:496637
## Max. :801545
```

str(data_house)

```
## tibble [109 x 12] (S3: tbl_df/tbl/data.frame)
## $ Median_House_Value : num [1:109] 452600 127900 95500 75000 103100 ...
  $ Median Income
                               : num [1:109] 8.33 1.9 2.12 2.1 2.02 ...
                              : num [1:109] 41 51 47 51 44 12 18 31 7 5 ...
  $ Median_Age
   $ Tot_Rooms
##
                              : num [1:109] 880 1590 1372 175 1097 ...
##
    $ Tot_Bedrooms
                               : num [1:109] 129 414 395 43 239 ...
                               : num [1:109] 322 949 1237 228 609 ...
##
    $ Population
                               : num [1:109] 126 392 303 55 215 ...
##
    $ Households
##
    $ Distance_to_coast
                               : num [1:109] 9263 5898 4921 4042 5543 ...
    $ Distance_to_LA
                               : num [1:109] 556529 549879 549641 550230 540804 ...
##
## $ Distance_to_SanDiego : num [1:109] 735502 728729 728459 729033 719659 ... ## $ Distance_to_SanJose : num [1:109] 67433 59582 59073 59534 50768 ...
## $ Distance_to_SanFrancisco: num [1:109] 21250 17925 16906 16032 24148 ...
```

Nuages de points

pairs(data_house)

1-Application de l'ACP normé

```
library(FactoMineR)
res<-PCA(data_house,axes=c(1,2))</pre>
```

PCA graph of individuals

attributes(res)

```
## $names
## [1] "eig" "var" "ind" "svd" "call"
##
## $class
## [1] "PCA" "list"
```

2-Les raisons pour centrer et réduire les variables dans l'analyse en composantes principales, ceci est particulièrement recommandé lorsque les variables sont mesurées dans différentes unités (par exemple: kilogrammes, kilomètres, centimètres, ...); sinon, le résultat de l'ACP obtenue sera fortement affecté.

3-Calcul l'indice KMO et les indices MSAI

```
library(psych)
KMO(cor(data_house))
```

```
## Kaiser-Meyer-Olkin factor adequacy
## Call: KMO(r = cor(data_house))
## Overall MSA = 0.7
## MSA for each item =
##
         Median_House_Value
                                         Median_Income
                                                                       Median_Age
##
                        0.65
                                                   0.58
                                                                             0.67
                   Tot_Rooms
##
                                          {\tt Tot\_Bedrooms}
                                                                       Population
##
                        0.82
                                                   0.76
                                                                             0.86
```

On a l'indice MSA globale = 0.7 alors les corrélations entre les variables de moyenne qualité et on a tous les MSA pour chaque variable est supérieur à 0.5 donc l'adéquation de l'échantillonnage est acceptable.

4-Calcul de valeurs propres

res\$eig[,1]

```
##
                                                                      comp 6
        comp 1
                    comp 2
                                 comp 3
                                             comp 4
                                                          comp 5
## 4.693305624 3.296597455 1.630283298 0.814223619 0.705736132 0.588374520
##
        comp 7
                    comp 8
                                 comp 9
                                            comp 10
                                                         comp 11
                                                                     comp 12
## 0.187424951 0.042553715 0.020956875 0.009089954 0.006910457 0.004543399
```

Le pourcentage d'inertie de chaque valeur propre

res\$eig[,2]

```
##
                    comp 2
                                                                      comp 6
        comp 1
                                 comp 3
                                             comp 4
                                                         comp 5
## 39.11088020 27.47164546 13.58569415
                                                                  4.90312100
                                         6.78519682
                                                     5.88113443
##
                                                                     comp 12
        comp 7
                    comp 8
                                 comp 9
                                            comp 10
                                                        comp 11
   1.56187460
               0.35461429
                            0.17464062 0.07574962
##
                                                     0.05758714
                                                                 0.03786166
```

Le cumul des pourcentages d'inertie

res\$eig[,3]

```
##
                comp 2
                           comp 3
                                      comp 4
                                                comp 5
                                                           comp 6
                                                                     comp 7
                                                                                comp 8
      comp 1
##
    39.11088
              66.58253
                         80.16822
                                   86.95342
                                              92.83455
                                                        97.73767
                                                                   99.29955
                                                                              99.65416
                          comp 11
                                    comp 12
##
      comp 9
                comp 10
##
    99.82880
              99.90455
                         99.96214 100.00000
```

5-Le graphique des valeurs propres.

```
plot(1:12,res$eig[,1],type="b",ylab="Valeurs propres",xlab="Composantes",main="graphique des valeurs pr
```

graphique des valeurs propres

barplot(res\$eig[,1],main="Eigenvalues", names.arg=paste("dim",1:nrow(res\$eig)))

Eigenvalues

6-Détermination du dimension du sous espace en utilisant la règle rapport des variances

```
nrow(res$eig)
## [1] 12
var(res$eig[1:12,1])*11/(var(res$eig[,1])*11)
## [1] 1
#supérieur à 0,05
var(res$eig[2:12,1])*10/(var(res$eig[,1])*11)
## [1] 0.407084
#supérieur à 0,05
var(res$eig[3:12,1])*9/(var(res$eig[,1])*11)
## [1] 0.1033769
#supérieur à 0,05
var(res$eig[4:12,1])*8/(var(res$eig[,1])*11)
```

#inférieur à 0,05

alors la dimension de sous espace E est 3 d'apres le règle rapport de variances

Nuage des variables

7-Calcule le cos2 des variables sur le sous espace

print(res\$var\$cos2,digit=2)

8-Distinguer les variables bien représentées, moyennement représentées et faiblement représentées sur le sous espace ${\cal E}$

print(t(apply(res\$var\$cos2,1,cumsum)),digit=2)

```
Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## Median_House_Value
                         4.1e-01 0.53 0.80 0.86 0.87
## Median_Income
                         3.6e-01 0.42 0.70 0.75 0.90
                       5.8e-02 0.25 0.55 0.59 0.61
## Median_Age
                       8.3e-01 0.94 0.95 0.95 0.96
## Tot_Rooms
## Tot_Bedrooms
## Population
## Households
                        8.2e-01 0.92 0.96 0.96
                                                 0.96
                        8.2e-01 0.91 0.94 0.95
                                                 0.96
                         8.6e-01
                                 0.95 0.97 0.97
                                                 0.97
## Distance_to_coast 1.7e-01 0.23 0.44 0.50 0.99 ## Distance_to_LA 1.8e-01 0.78 0.78 0.97 0.98
## Distance_to_SanFrancisco 1.3e-02 0.72 0.94 0.99 0.99
```

Cos2 total des variables sur Dim.1, Dim.2 et Dim.3 (dim E=3).

- Un cos2 élevé indique une bonne représentation de la variable sur les axes principaux.
- Un faible cos2 indique que la variable n'est pas parfaitement représentée par les axes principaux

```
cos_totale<-sort(t(apply(res$var$cos2,1,cumsum))[,3],decreasing=TRUE)
print(t(apply(res$var$cos2,1,cumsum))[,1:3],digit=2)</pre>
```

```
Dim.1 Dim.2 Dim.3
## Median_House_Value
                          4.1e-01 0.53 0.80
## Median_Income
                          3.6e-01 0.42 0.70
## Median_Age
                         5.8e-02 0.25 0.55
## Tot_Rooms
                        8.3e-01 0.94 0.95
                      8.2e-01
8.2e-01
## Tot_Bedrooms
                                  0.92 0.96
## Population
                                  0.91
                                        0.94
## Households
                         8.6e-01
                                  0.95 0.97
## Distance_to_coast 1.7e-01 0.23 0.44 ## Distance_to_LA 1.8e-01 0.78 0.78
0.80 0.81
                          6.9e-05 0.55 0.77
## Distance_to_SanFrancisco 1.3e-02 0.72 0.94
```

barplot(cos_totale,ylab="Qualite de representation",main="Cos2 total des variables sur Dim.1, Dim.2 et

Cos2 total des variables sur Dim.1, Dim.2 et Dim.3

Les variables bien représentées sont :

```
for (i in 1:12){
if (0.7 < cos_totale[i] ) print(cos_totale[i])
}</pre>
```

```
## Households
## 0.9711211
## Tot_Bedrooms
      0.9642024
##
## Tot_Rooms
## 0.9475229
## Population
## 0.9411868
## Distance_to_SanFrancisco
##
                  0.9359422
## Distance_to_SanDiego
##
             0.8112706
## Median_House_Value
##
            0.804717
## Distance_to_LA
##
        0.7839934
## Distance_to_SanJose
##
              0.772837
```

Les variables moyennement représentées

Les variables faiblement représentées

```
for (i in 1:12){
   if ( cos_totale[i] < 0.5) print(cos_totale[i])
}

## Distance_to_coast
## 0.442852</pre>
```

9-Calcule du contribution des variables dans chaque axe du sous espace

```
contrib<-data.frame(res$var$contrib)
print(res$var$contrib,digit=2)</pre>
```

```
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5 ## Median_House_Value 8.7596 3.7 16.56 6.355 2.557 ## Median_Income 7.7733 1.8 16.98 6.503 21.295 ## Median_Age 1.2302 5.8 18.21 5.515 2.907 ## Tot_Rooms 17.7889 3.1 0.55 0.117 1.866
```

```
## Tot_Bedrooms
                           17.5381
                                    2.9
                                         2.85 0.013 0.010
## Population
                           17.4198
                                    2.7
                                         2.02
                                               1.510
                                        1.55
## Households
                           18.2700
                                              0.156
## Distance_to_coast
                                    1.8 13.17 6.779 69.872
                            3.5778
## Distance_to_LA
                            3.9076 18.2 0.13 23.443 0.215
                                   19.4 0.60 19.302
## Distance_to_SanDiego
                            3.4615
## Distance_to_SanJose
                            0.0015
                                   16.5 13.94 23.933
## Distance_to_SanFrancisco 0.2717
                                   21.4 13.44 6.373
```

 $10\mbox{-}\mathrm{Application}$ du CAH au tableau des contributions des variables aux axes du sous espace

cah<-HCPC(contrib,nb.clust=-1)</pre>

Hierarchical clustering on the factor map

Factor map

cah\$desc.var

```
## Link between the cluster variable and the quantitative variables
##
                      P-value
             Eta2
## Dim.2 0.9700891 1.946072e-06
## Dim.5 0.9486462 1.676018e-05
## Dim.1 0.9231259 8.325840e-05
## Dim.4 0.7643383 6.835550e-03
## Dim.3 0.7084517 1.556213e-02
##
## Description of each cluster by quantitative variables
## -----
## $'1'
##
           v.test Mean in category Overall mean sd in category Overall sd
## Dim.2 3.258943
                        18.861285
                                      8.333333
                                                    1.759295
                                                              7.576147
## Dim.4 2.745032
                        18.262960
                                      8.333333
                                                    7.096447
                                                               8.483339
## Dim.1 -2.118335
                         1.910561
                                      8.333333
                                                    1.783547
                                                               7.110648
##
            p.value
## Dim.2 0.001118280
## Dim.4 0.006050497
## Dim.1 0.034146695
##
## $'2'
##
           v.test Mean in category Overall mean sd in category Overall sd
```

```
## Dim.1 3.107164
                          17.7542258
                                          8.333333
                                                         0.3262525
                                                                     7.110648
## Dim.3 -2.142320
                           1.7435451
                                          8.333333
                                                         0.8325211
                                                                      7.213872
                           0.4491928
## Dim.4 -2.179560
                                          8.333333
                                                         0.6147377
                                                                    8.483339
##
             p.value
## Dim.1 0.001888915
## Dim.3 0.032167736
## Dim.4 0.029290069
## $'3'
##
           v.test Mean in category Overall mean sd in category Overall sd
## Dim.3 2.366826
                           17.24993
                                         8.333333
                                                        0.6984303
                                                                    7.213872
##
            p.value
## Dim.3 0.01794135
##
## $'4'
##
           v.test Mean in category Overall mean sd in category Overall sd
                            69.8719
                                         8.333333
                                                                     19.41045
## Dim.5 3.170383
                                                                 0
##
             p.value
## Dim.5 0.001522383
#les variables de $'1' contribuent à les axes 2 et 4, ne contribuent pas à l'axe 1.
\#les variables de $'2'contribuent à l'axe 1, ne contribuent pas à les axes 3 et 4.
#les variables de $'3' contribuent à l'axe 3.
#les variables de $'3' contribuent à l'axe 5.
11-Tracer le nuage des variables projeté sur les 2 premiers axes.
```

```
plot(res$var$cor[,1],res$var$cor[,2],xlab="Dim 1",ylab="Dim 2")
```


12-les variables qui sont relativement bien corrélées (positivement et négativement) avec les axes du 1^{er} plan factoriel sont :

```
dim1=res$var$cor[,1]
for (i in 1:12){
   if (abs(dim1[i])>0.9) print(dim1[i])
}

## Tot_Rooms
## 0.9137222
## Tot_Bedrooms
## 0.907259
## Population
## 0.9041932
## Households
## 0.9259956
```

Nuage des individus

 $13\text{-}\mathrm{Calcule}$ du $\cos\!2$ des individus sur le sous espace

```
print(res$ind$cos2,digit=2)
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
```

```
## 1
      4.6e-05 7.9e-06 9.0e-01 1.4e-02 3.4e-02
## 2
      6.8e-02 1.1e-01 4.2e-01 1.4e-01 9.0e-02
## 3
      8.5e-02 1.5e-01 3.8e-01 1.5e-01 1.1e-01
## 4
      3.2e-01 3.6e-02 4.0e-01 1.1e-01 7.8e-02
## 5
      1.9e-01 1.1e-01 4.1e-01 1.3e-01 1.2e-01
## 6
      7.8e-01 2.0e-01 3.5e-03 3.1e-05 3.0e-03
## 7
      2.7e-01 3.3e-01 2.1e-01 4.2e-03 4.9e-02
## 8
      9.2e-03 1.3e-01 7.4e-01 1.7e-02 2.0e-02
      7.4e-01 2.5e-01 5.8e-04 1.2e-03 9.4e-04
## 10 2.7e-03 1.6e-01 2.1e-01 4.9e-10 7.7e-02
## 11 7.7e-01 2.2e-01 6.2e-03 1.3e-03 6.9e-04
      3.3e-01 3.9e-01 2.0e-01 2.8e-02 3.5e-02
## 12
## 13
      5.1e-01 3.2e-01 1.2e-01 2.9e-05 1.5e-02
      2.7e-01 4.9e-01 9.6e-02 2.8e-05 6.0e-02
## 14
      3.8e-01 3.7e-01 9.5e-02 2.4e-03 6.3e-02
## 16
      6.0e-01 2.4e-01 3.9e-02 1.9e-03 6.8e-02
      1.1e-01 6.3e-01 5.6e-02 1.2e-03 1.6e-01
## 17
## 18
      8.0e-01 7.9e-02 3.5e-03 7.7e-03 9.1e-02
## 19
      5.1e-01 3.0e-01 7.8e-02 1.0e-04 1.1e-02
## 20
      3.5e-01 1.0e-02 3.4e-02 3.9e-01 6.4e-02
## 21
      2.1e-01 1.1e-03 2.4e-05 5.3e-01 3.3e-02
     2.3e-02 1.2e-01 7.9e-02 1.5e-01 4.1e-02
## 23 5.3e-02 5.4e-03 2.4e-01 4.0e-01 2.8e-02
      1.1e-03 3.0e-01 1.5e-01 2.7e-01 4.1e-02
## 24
## 25
      3.9e-02 2.4e-01 3.4e-02 6.2e-01 1.5e-02
## 26
      2.7e-01 1.5e-01 1.9e-02 3.7e-01 4.8e-02
## 27
       2.8e-01 8.7e-02 5.9e-02 5.1e-01 2.8e-03
## 28
      3.3e-01 1.1e-01 9.7e-04 2.4e-01 5.4e-02
      4.5e-01 8.7e-02 9.1e-02 1.8e-01 1.4e-01
## 30
      3.8e-02 7.8e-01 1.6e-01 6.4e-03 5.5e-04
## 31
      7.0e-01 1.6e-01 1.1e-02 2.5e-02 4.6e-02
## 32 6.4e-01 3.0e-01 1.8e-03 2.3e-02 2.3e-05
## 33
      1.4e-01 7.3e-01 6.5e-02 2.8e-03 4.7e-02
## 34
      4.0e-01 3.7e-01 2.2e-02 7.1e-04 1.2e-01
      5.7e-01 1.2e-01 7.9e-02 1.8e-02 5.6e-02
## 35
      7.0e-01 1.3e-01 2.8e-02 2.7e-02 2.2e-02
## 37
      7.2e-02 7.2e-01 1.4e-01 2.8e-04 1.5e-02
## 38 3.2e-01 3.9e-03 2.0e-02 1.0e-01 7.5e-02
## 39
      9.8e-02 1.8e-01 1.6e-04 6.4e-01 2.9e-02
     4.1e-01 2.6e-02 1.9e-02 2.9e-01 1.1e-01
## 40
## 41
      3.1e-01 2.0e-02 4.9e-03 4.5e-01 1.0e-01
      1.7e-01 1.0e-01 4.0e-02 5.0e-01 1.7e-01
## 42
## 43
      8.2e-02 1.2e-01 7.3e-04 6.6e-01 8.7e-02
## 44
      1.0e-02 1.9e-01 2.1e-04 5.6e-01 2.5e-02
## 45
      2.6e-01 2.1e-01 2.5e-02 3.1e-01 9.0e-02
      2.6e-01 1.1e-01 8.3e-03 4.4e-01 1.5e-01
## 46
## 47
      1.4e-01 2.6e-01 5.6e-02 2.9e-01 2.4e-01
## 48
      1.2e-01 3.2e-01 9.8e-03 3.5e-01 1.9e-01
      8.5e-02 5.5e-01 2.9e-01 2.7e-02 2.2e-02
## 50
      1.0e-01 5.0e-01 3.0e-01 2.6e-02 4.4e-02
## 51 5.0e-02 5.6e-01 1.8e-01 8.2e-02 1.6e-02
      6.4e-03 2.9e-01 1.1e-01 9.0e-02 2.7e-02
## 52
      7.3e-01 8.5e-03 1.3e-01 9.8e-03 3.0e-02
## 53
## 54 2.5e-01 2.3e-01 7.2e-02 3.7e-01 2.7e-02
```

```
## 55 2.1e-02 3.4e-02 3.9e-01 4.1e-01 3.8e-03
      1.6e-02 6.4e-02 5.6e-01 1.5e-01 4.6e-02
## 57
      2.3e-02 1.1e-01 6.1e-01 1.4e-01 7.5e-03
## 58
     2.1e-04 2.6e-02 6.9e-01 1.4e-01 1.1e-02
## 59 9.0e-03 1.5e-01 2.6e-01 1.7e-01 2.7e-01
## 60
     1.6e-02 1.7e-01 4.3e-01 2.0e-01 1.0e-01
## 61 5.6e-01 4.8e-02 2.9e-03 1.7e-01 3.7e-03
## 62 1.8e-01 8.5e-04 1.3e-01 4.6e-01 2.2e-04
## 63 5.2e-01 9.6e-02 8.4e-02 2.5e-01 3.1e-03
## 64 5.3e-05 2.7e-02 2.3e-02 7.8e-01 1.7e-02
## 65 6.3e-01 1.7e-01 4.4e-03 1.0e-02 1.0e-01
      4.7e-01 3.5e-01 3.1e-02 1.7e-02 6.7e-02
## 66
## 67
      4.3e-01 2.2e-01 1.7e-01 5.2e-02 1.5e-02
      3.4e-01 2.6e-01 8.9e-02 9.2e-03 4.3e-02
## 68
      3.5e-01 9.0e-02 1.8e-01 6.3e-02 2.9e-01
## 70
      5.3e-01 3.0e-02 1.0e-01 4.8e-02 2.6e-01
      3.5e-01 7.4e-02 1.2e-01 8.9e-02 3.2e-01
## 71
## 72
      4.7e-01 3.5e-02 1.8e-01 9.9e-03 2.7e-01
## 73
      4.1e-01 8.8e-04 3.0e-03 3.0e-02 5.0e-01
## 74
      1.7e-01 1.5e-01 2.8e-01 4.2e-02 2.1e-01
## 75
      3.7e-01 1.5e-01 2.7e-01 3.4e-03 1.4e-01
      4.1e-03 5.3e-01 1.9e-01 1.7e-02 2.3e-01
## 77
      7.0e-01 1.1e-01 6.0e-02 3.9e-02 7.2e-02
## 78
     1.9e-01 5.2e-01 1.9e-01 4.4e-02 3.4e-02
      4.0e-01 3.1e-01 1.6e-01 5.0e-02 6.9e-02
## 79
## 80
      2.4e-01 3.9e-01 1.8e-01 6.5e-02 7.3e-02
## 81
      6.4e-01 3.3e-02 1.3e-01 4.8e-04 7.2e-02
## 82
      6.6e-01 1.7e-01 6.8e-04 2.6e-02 2.0e-03
## 83
      2.4e-01 5.4e-01 1.3e-01 2.5e-02 1.4e-02
## 84
      2.4e-01 4.7e-01 3.7e-02 1.2e-02 8.4e-02
## 85
      1.4e-01 5.6e-01 1.9e-01 7.6e-03 4.0e-02
## 86
      1.6e-02 8.1e-01 8.5e-02 5.3e-03 7.0e-04
## 87
      6.8e-01 1.1e-01 1.2e-01 3.0e-03 2.6e-02
## 88
     1.1e-01 7.6e-01 1.3e-02 3.1e-02 2.1e-02
     1.2e-02 8.6e-01 1.6e-02 1.8e-02 1.3e-02
## 90 4.4e-01 2.2e-01 2.9e-01 6.5e-03 3.5e-02
## 91 6.0e-01 1.3e-01 1.7e-01 9.2e-03 4.2e-03
## 92 3.1e-02 8.8e-01 5.2e-02 1.9e-03 2.9e-02
## 93 6.1e-03 9.1e-01 1.7e-03 2.0e-02 3.8e-03
## 94 3.8e-02 8.6e-01 5.4e-02 6.3e-04 1.5e-02
## 95
      4.4e-02 7.8e-01 3.1e-02 1.4e-02 1.2e-03
      1.7e-02 7.7e-01 9.7e-03 3.0e-02 4.7e-03
## 97
      4.2e-01 4.1e-01 4.3e-02 1.6e-02 1.7e-02
## 98
      1.4e-01 2.4e-01 4.0e-03 2.9e-01 2.8e-01
## 99 4.2e-02 1.2e-01 7.9e-01 1.1e-02 7.2e-03
## 100 2.0e-02 2.9e-01 6.2e-01 1.7e-02 1.6e-02
## 101 6.9e-04 2.1e-01 7.4e-01 9.2e-03 3.9e-03
## 102 7.3e-02 6.3e-02 8.1e-01 1.4e-02 7.4e-03
## 103 6.5e-01 2.0e-01 6.2e-04 2.0e-03 3.1e-02
## 104 4.7e-02 7.5e-01 5.2e-04 5.1e-05 1.0e-01
## 105 1.2e-01 6.3e-01 2.0e-02 5.0e-04 1.3e-01
## 106 8.0e-02 7.5e-01 1.9e-03 1.2e-02 1.5e-01
## 107 2.8e-01 6.8e-01 1.1e-02 2.2e-02 9.6e-03
## 108 2.0e-01 5.7e-01 8.4e-02 2.0e-04 1.4e-01
```

```
## 109 2.1e-02 8.0e-01 1.2e-01 7.8e-04 1.5e-02
```

14-Distinguer les individus bien représentées, moyennement représentées et faiblement représentées sur le sous espace

```
head(t(apply(res$ind$cos2,1,cumsum)),digit=2)
```

```
## Dim.1 Dim.2 Dim.3 Dim.4 Dim.5
## 1 4.630675e-05 5.424525e-05 0.9004595 0.9145879 0.9484667
## 2 6.832609e-02 1.829146e-01 0.6015932 0.7464905 0.8368280
## 3 8.450087e-02 2.326882e-01 0.6162729 0.7712367 0.8859783
## 4 3.207658e-01 3.564085e-01 0.7537842 0.8611578 0.9388086
## 5 1.884896e-01 2.978226e-01 0.7038911 0.8364049 0.9567663
## 6 7.760080e-01 9.777528e-01 0.9812295 0.9812600 0.9842919
```

Cos2 total des individus sur Dim.1, Dim.2 et Dim.3 (dim E=3).

- Un cos2 élevé indique une bonne représentation de l'individu sur les axes principaux.
- Un faible cos2 indique que l'individu n'est pas parfaitement représentée par les axes principaux

```
cos_totale_ind<-sort(t(apply(res$ind$cos2,1,cumsum))[,3],decreasing=TRUE)
head(t(apply(res$ind$cos2,1,cumsum))[,1:3],digit=2)</pre>
```

```
## Dim.1 Dim.2 Dim.3

## 1 4.630675e-05 5.424525e-05 0.9004595

## 2 6.832609e-02 1.829146e-01 0.6015932

## 3 8.450087e-02 2.326882e-01 0.6162729

## 4 3.207658e-01 3.564085e-01 0.7537842

## 5 1.884896e-01 2.978226e-01 0.7038911

## 6 7.760080e-01 9.777528e-01 0.9812295
```

barplot(cos_totale_ind,ylab="Qualite de representation",main="Cos2 total d'individus sur Dim.1, Dim.2 e

Cos2 total d'individus sur Dim.1, Dim.2 et Dim.3

L'individus bien représentées sont :

```
for (i in 1:109){
if (0.7 < cos_totale_ind[i] ) print(cos_totale_ind[i])
}</pre>
```

```
##
        11
## 0.9898243
##
## 0.9874544
##
      6
## 0.9812295
##
       30
## 0.9786278
##
     92
## 0.9647248
##
     107
## 0.9641271
##
     94
## 0.9525266
##
      99
## 0.9520127
##
## 0.9497744
## 102
## 0.9491345
```

```
## 13
## 0.9475825
## 32
## 0.9468562
## 109
## 0.9413639
## 37
## 0.938597
## 90
## 0.9379807
## 33
## 0.9323897
## 100
## 0.9247924
## 12
## 0.9225986
## 49
## 0.919686
## 87
## 0.9149978
## 93
## 0.9143706
## 86
## 0.9125517
## 83
## 0.9124321
## 78
## 0.9035758
## 91
## 0.9033524
## 1
## 0.9004595
## 50
## 0.8993582
## 85
## 0.8954692
## 19
## 0.8901612
## 88
## 0.8860173
## 89
## 0.8835401
## 97
## 0.8791687
## 18
## 0.8787676
## 8
## 0.877851
## 16
## 0.8776312
## 77
## 0.8724763
## 79
```

0.8695496

```
## 31
## 0.8670702
## 53
## 0.866032
## 14
## 0.857411
## 36
## 0.8559845
## 103
## 0.8520419
## 95
## 0.8506257
## 15
## 0.8504203
## 66
## 0.8485618
## 108
## 0.8456871
## 106
## 0.8309307
## 82
## 0.8271827
## 67
## 0.8226732
## 80
## 0.8145195
## 7
## 0.8116749
## 81
## 0.8075735
## 65
## 0.8028336
## 104
## 0.8009644
## 17
## 0.8008827
## 96
## 0.792575
## 34
## 0.789288
## 75
## 0.7875437
## 51
## 0.7856887
## 105
## 0.7667868
## 35
## 0.7645206
## 4
## 0.7537842
## 84
## 0.751143
## 57
```

0.7391625

```
##
## 0.7254404
##
         58
## 0.7175237
##
         63
## 0.7041217
##
## 0.7038911
L'individus moyennement représentées
for (i in 1:109){
if (0.5<cos_totale_ind[i]&& cos_totale_ind[i]<0.7) print(cos_totale_ind[i])</pre>
}
##
         72
## 0.693288
##
         68
## 0.6840067
##
       70
## 0.661166
## 56
## 0.6436413
##
         29
## 0.628386
##
         60
## 0.6240582
##
     69
## 0.6205844
## 0.6162729
##
         61
## 0.6117401
##
## 0.6015932
##
## 0.6006211
##
      71
## 0.5474108
##
       54
## 0.546866
L'individus faiblement représentées
for (i in 1:109){
if ( cos_totale_ind[i]< 0.5) print(cos_totale_ind[i])</pre>
}
          45
## 0.4990167
```

##

47

```
## 0.460052
## 40
## 0.4572024
## 48
## 0.451795
## 24
## 0.4504915
## 26
## 0.4463198
## 55
## 0.4448893
## 28
## 0.4420027
## 59
## 0.4278237
## 27
## 0.4211836
## 73
## 0.4170074
## 52
## 0.4042233
## 20
## 0.3958552
## 98
## 0.3861728
## 46
## 0.3832654
## 10
## 0.3695482
## 38
## 0.3487752
## 41
## 0.3387638
## 42
## 0.3183005
## 25
## 0.3148111
## 62
## 0.3124077
## 23
## 0.2971944
## 39
## 0.2734616
## 22
## 0.2250692
## 21
## 0.215315
## 44
## 0.2029188
## 43
```

0.2021246 ## 64 ## 0.05069212

contrib_ind<-data.frame(res\$ind\$contrib) print(res\$ind\$contrib,digit=2)</pre>

```
Dim.3
                                 Dim.4
##
         Dim.1
                 Dim. 2
                                          Dim.5
## 1
       2.1e-04 0.00005 1.1e+01 3.6e-01 0.99955
##
  2
       1.5e-01 0.35624 2.6e+00 1.8e+00 1.31187
## 3
       1.7e-01 0.42026 2.2e+00 1.8e+00 1.52001
       9.2e-01 0.14559 3.3e+00 1.8e+00 1.48157
##
  5
       3.8e-01 0.31315 2.4e+00 1.5e+00 1.61030
##
       1.2e+01 4.53712 1.6e-01 2.8e-03 0.31850
  6
       6.1e-01 1.06120 1.4e+00 5.4e-02 0.74644
##
##
       1.5e-02 0.29863 3.6e+00 1.6e-01 0.21789
  8
       8.8e+00 4.20345 2.0e-02 8.5e-02 0.07402
##
  9
## 10
       6.5e-03 0.53524 1.4e+00 6.8e-09 1.22403
##
       1.8e+01 7.37243 4.3e-01 1.8e-01 0.10942
   12
       7.0e-01 1.17137 1.2e+00 3.4e-01 0.49326
##
       4.3e+00 3.92741 2.9e+00 1.4e-03 0.84105
  13
       6.4e-01 1.66654 6.6e-01 3.8e-04 0.95409
##
  14
## 15
       3.9e-01 0.54257 2.8e-01 1.4e-02 0.42688
## 16
       6.9e-01 0.39048 1.3e-01 1.3e-02 0.51973
## 17
       7.5e-02 0.61486 1.1e-01 4.9e-03 0.73760
       1.0e+00 0.14482 1.3e-02 5.7e-02 0.78031
       5.6e-01 0.46491 2.4e-01 6.6e-04 0.08253
## 20
       5.7e-01 0.02338 1.6e-01 3.7e+00 0.69053
## 21
       2.8e-01 0.00214 9.3e-05 4.1e+00 0.29061
## 22
       1.6e-02 0.11789 1.5e-01 5.7e-01 0.18173
       2.4e-02 0.00354 3.1e-01 1.1e+00 0.08381
## 23
## 24
       1.2e-03 0.45583 4.7e-01 1.7e+00 0.29724
       2.5e-02 0.21888 6.2e-02 2.3e+00 0.06243
##
       2.4e-01 0.19084 4.9e-02 1.9e+00 0.28087
   26
       1.5e-01 0.06786 9.3e-02 1.6e+00 0.01037
  27
       3.3e-01 0.15879 2.8e-03 1.4e+00 0.35628
##
  28
       8.1e-01 0.22161 4.7e-01 1.9e+00 1.69645
##
  29
## 30
       3.3e-02 0.95340 3.9e-01 3.1e-02 0.00313
##
       1.2e+00 0.38249 5.5e-02 2.5e-01 0.52486
       6.0e-01 0.40685 4.9e-03 1.3e-01 0.00014
       9.2e-02 0.70867 1.3e-01 1.1e-02 0.21395
   33
       2.8e-01 0.36627 4.4e-02 2.9e-03 0.53835
##
  34
       6.9e-01 0.19924 2.7e-01 1.3e-01 0.44919
##
  35
##
  36
       8.8e-01 0.22711 1.0e-01 1.9e-01 0.18416
##
   37
       6.1e-02 0.87039 3.5e-01 1.4e-03 0.08364
##
       8.8e-01 0.01489 1.6e-01 1.6e+00 1.35965
   38
       9.2e-02 0.23485 4.4e-04 3.4e+00 0.18414
   40
       9.0e-01 0.08003 1.2e-01 3.7e+00 1.56917
##
  41
       6.4e-01 0.05831 2.9e-02 5.2e+00 1.37013
## 42
       3.0e-01 0.25139 1.9e-01 4.9e+00 1.95688
       1.0e-01 0.20978 2.6e-03 4.7e+00 0.71114
## 43
## 44
       1.3e-02 0.34170 7.6e-04 4.0e+00 0.20787
       2.9e-01 0.33202 7.9e-02 2.0e+00 0.65968
       3.5e-01 0.21263 3.2e-02 3.3e+00 1.35954
## 47
       2.0e-01 0.51258 2.2e-01 2.3e+00 2.15371
     1.2e-01 0.46507 2.9e-02 2.1e+00 1.27387
```

```
## 49 3.1e-01 2.80782 3.0e+00 5.7e-01 0.51966
       4.0e-01 2.84769 3.5e+00 6.1e-01 1.18473
      2.2e-01 3.42468 2.2e+00 2.0e+00 0.47230
## 52
     3.6e-03 0.23015 1.8e-01 2.9e-01 0.10144
## 53
     2.1e+00 0.03437 1.0e+00 1.6e-01 0.56467
## 54
      1.5e-01 0.19137 1.2e-01 1.3e+00 0.10722
## 55
      1.1e-02 0.02708 6.3e-01 1.3e+00 0.01397
      1.6e-02 0.08885 1.6e+00 8.7e-01 0.29730
      2.3e-02 0.15780 1.8e+00 8.1e-01 0.05147
## 58 2.3e-04 0.04164 2.2e+00 9.2e-01 0.08372
## 59
       1.1e-02 0.25878 9.0e-01 1.2e+00 2.14970
## 60
       1.9e-02 0.29423 1.5e+00 1.4e+00 0.81873
## 61
       5.8e-01 0.07115 8.6e-03 1.0e+00 0.02554
       9.3e-02 0.00061 1.9e-01 1.4e+00 0.00075
## 62
       7.2e-01 0.18803 3.3e-01 2.0e+00 0.02863
## 64
       1.7e-05 0.01220 2.1e-02 1.4e+00 0.03641
## 65
       1.1e+00 0.42682 2.3e-02 1.1e-01 1.26454
## 66
       4.4e-01 0.46477 8.5e-02 9.3e-02 0.41843
## 67
       4.2e-01 0.30278 4.9e-01 2.9e-01 0.09650
## 68
       4.3e-01 0.46476 3.2e-01 6.7e-02 0.36319
## 69
       6.4e-01 0.23240 9.3e-01 6.6e-01 3.50911
      1.2e+00 0.09762 6.8e-01 6.3e-01 3.98518
## 71
      7.1e-01 0.21354 7.0e-01 1.0e+00 4.33672
## 72
       1.4e+00 0.14729 1.6e+00 1.7e-01 5.33883
       1.1e+00 0.00347 2.4e-02 4.8e-01 9.16172
## 74
       4.1e-01 0.50422 1.9e+00 5.8e-01 3.38759
## 75
       8.2e-01 0.45717 1.7e+00 4.4e-02 2.10085
## 76
       7.9e-03 1.43339 1.0e+00 1.8e-01 2.90087
## 77
       6.0e+00 1.38890 1.5e+00 2.0e+00 4.11805
## 78
       8.2e-01 3.15890 2.3e+00 1.1e+00 0.97092
## 79
       2.4e+00 2.61740 2.7e+00 1.7e+00 2.69817
## 80
      1.3e+00 3.17969 3.0e+00 2.1e+00 2.74987
## 81
      3.2e+00 0.24013 1.9e+00 1.4e-02 2.41131
## 82
     2.8e+00 1.01875 8.4e-03 6.5e-01 0.05555
## 83 8.8e-01 2.76380 1.3e+00 5.1e-01 0.32615
## 84 5.5e-01 1.53445 2.5e-01 1.6e-01 1.28415
## 85
      5.9e-01 3.31657 2.2e+00 1.8e-01 1.08895
## 86 3.8e-02 2.85483 6.0e-01 7.5e-02 0.01155
## 87
       2.0e+00 0.47563 1.1e+00 5.1e-02 0.52511
## 88
       2.9e-01 2.84025 9.8e-02 4.6e-01 0.37048
## 89
       2.2e-02 2.23496 8.6e-02 1.9e-01 0.15662
       9.7e-01 0.68018 1.8e+00 8.3e-02 0.51898
## 90
## 91
       1.8e+00 0.57909 1.5e+00 1.6e-01 0.08642
## 92
       4.5e-02 1.83331 2.2e-01 1.6e-02 0.27956
## 93
       1.0e-02 2.14870 8.1e-03 1.9e-01 0.04227
## 94
      7.8e-02 2.48882 3.2e-01 7.4e-03 0.20876
## 95
       1.0e-01 2.54428 2.0e-01 1.9e-01 0.01876
## 96
       3.8e-02 2.44725 6.3e-02 3.9e-01 0.06953
       8.4e-01 1.18046 2.5e-01 1.9e-01 0.22458
      1.3e-01 0.29336 1.0e-02 1.4e+00 1.62633
## 99 5.4e-02 0.21076 2.9e+00 8.4e-02 0.06112
## 100 2.2e-02 0.45463 2.0e+00 1.1e-01 0.11653
## 101 7.9e-04 0.34643 2.5e+00 6.1e-02 0.03041
## 102 1.1e-01 0.13353 3.5e+00 1.2e-01 0.07279
```

```
## 103 6.3e-01 0.26824 1.7e-03 1.1e-02 0.19915

## 104 5.0e-02 1.14535 1.6e-03 3.1e-04 0.72015

## 105 1.2e-01 0.92425 5.8e-02 3.0e-03 0.88979

## 106 8.1e-02 1.07345 5.4e-03 7.2e-02 0.97575

## 107 1.4e-01 0.50080 1.7e-02 6.5e-02 0.03332

## 108 9.8e-02 0.40430 1.2e-01 5.7e-04 0.46359

## 109 1.5e-02 0.83911 2.6e-01 3.3e-03 0.07295
```

16-Application du CAH au tableau des contributions des individus aux axes du sous espace

cah_ind<-HCPC(contrib_ind,nb.clust=-1)</pre>

Hierarchical clustering on the factor map

Factor map

cah_ind\$desc.var

```
##
## Link between the cluster variable and the quantitative variables
Eta2
                     P-value
## Dim.3 0.8785889 1.645839e-45
## Dim.1 0.8024837 1.103943e-34
## Dim.5 0.6584047 1.478106e-22
## Dim.4 0.6564232 1.982281e-22
## Dim.2 0.4826755 1.807980e-13
##
## Description of each cluster by quantitative variables
## $'1'
##
         v.test Mean in category Overall mean sd in category Overall sd
                       11.49985
                                  0.9174312
                                                     0 1.43108
## Dim.3 7.394707
##
            p.value
## Dim.3 1.417208e-13
##
## $'2'
          v.test Mean in category Overall mean sd in category Overall sd
## Dim.4 8.291622
                     3.38838777
                                  0.9174312
                                               1.0924303 1.188885
## Dim.2 -2.241626
                      0.22602637
                                   0.9174312
                                                0.1477774
                                                           1.230505
## Dim.3 -2.279335
                                   0.9174312
                      0.09979912
                                                0.1254402
                                                          1.431080
```

```
p.value
##
## Dim.4 1.117149e-16
## Dim.2 2.498554e-02
## Dim.3 2.264716e-02
##
## $'3'
##
            v.test Mean in category Overall mean sd in category Overall sd
## Dim.1 -2.525375
                           0.4243182
                                         0.9174312
                                                         0.5731845
## Dim.3 -4.361269
                           0.3945320
                                         0.9174312
                                                         0.5122941
                                                                    1.431080
                                         0.9174312
## Dim.4 -4.505618
                           0.4686493
                                                         0.5913426
                                                                    1.188885
## Dim.5 -4.623904
                           0.4080912
                                         0.9174312
                                                         0.4513851
                                                                      1.314794
               p.value
##
## Dim.1 1.155748e-02
## Dim.3 1.293101e-05
## Dim.4 6.618009e-06
## Dim.5 3.765850e-06
##
## $'4'
##
           v.test Mean in category Overall mean sd in category Overall sd
## Dim.3 5.752321
                           2.588426
                                        0.9174312
                                                        0.6040732
                                                                     1.431080
## Dim.2 2.622128
                           1.572377
                                        0.9174312
                                                        1.4255622
                                                                     1.230505
              p.value
## Dim.3 8.802662e-09
## Dim.2 8.738257e-03
##
## $'5'
##
           v.test Mean in category Overall mean sd in category Overall sd
## Dim.5 8.139282
                           4.349933
                                        0.9174312
                                                         1.879991
              p.value
## Dim.5 3.976298e-16
##
## $'6'
##
           v.test Mean in category Overall mean sd in category Overall sd
## Dim.1 9.178673
                           13.15344
                                        0.9174312
                                                         3.980450
                                                                     2.330662
                            5.37100
                                        0.9174312
## Dim.2 6.327679
                                                         1.421766
                                                                     1.230505
              p.value
## Dim.1 4.364347e-20
## Dim.2 2.488756e-10
#les ind de $'1' contribuent à l'axe 3
#les ind de $'2' contribuent à l'axe 4 et ne contribuent ni à l'axe 2, ni à l'axe 3.
#les ind de $'3' ne contribuent ni à l'axe 1, ni à l'axe 3, ni à l'axe 4, ni à l'axe 5.
#les ind de $'4' contribuent à l'axe 2 et à l'axe 3
#les ind de $'5' contribuent à l'axe 5.
#les ind de $'6' contribuent à les axes 1 et 2.
17-Tracer le nuage des individus projeté sur les 2 premiers axes
```

plot(res,invisible="var")

#plot(res\$ind\$coord[,1],res\$ind\$coord[,2],xlab="Dim~1",ylab="Dim~2")

plot(res\$ind\$coord[,1],res\$ind\$coord[,2],xlab="Dim 1",ylab="Dim 2")

18-Conclusion

Après l'application de l'ACP, nous avons réduit les 12 variables en 5 composantes principales. Cette réduction de dimensionnalité nous a permis est utilisée pour extraire et de visualiser les informations importantes contenues dans une table de données sur un plan factoriel et nous a permis de connaître les individus et les variables qui contribuent le plus dans le sous espace obtenu. On peut conclure que L'ACP peut être une première analyse pour l'étude d'une population dont les résultats seront enrichis par une autre analyse factorielle ou encore une classification automatique des données avec des variables quantitatives.

Chapitre 4

ACM

ACM

Importation de data

```
library(readxl)

data_house <- read_excel("California_Houses.xlsx")
data_house$Median_Income <- as.numeric(data_house$Median_Income)
data_house$Distance_to_coast <- as.numeric(data_house$Distance_to_coast)
data_house$Distance_to_LA <- as.numeric(data_house$Distance_to_LA)
data_house$Distance_to_SanDiego <- as.numeric(data_house$Distance_to_SanDiego)
data_house$Distance_to_SanJose <- as.numeric(data_house$Distance_to_SanJose)
data_house$Distance_to_SanFrancisco <- as.numeric(data_house$Distance_to_SanFrancisco)</pre>
```

1-Regroupez dans un fichier Excel, les variables quantitatives et les variables qualitatives ainsi que le taux de discrétisation de chaque transformation

```
#centrage réduction des données
data_house<-as.data.frame(scale(data_house,center=T,scale=T))</pre>
data_kmeans=matrix(nrow = 109, ncol = 12)
taux_inertie=matrix(nrow = 1, ncol = 12)
for(i in 1:ncol(data_house)){
km <- kmeans(data_house[,i],centers=3,nstart=5)</pre>
data_kmeans[,i] <- km$cluster</pre>
taux_inertie[,i]=km$betweenss/km$totss
#transformer matrice to date frame
taux_inertie=as.data.frame(taux_inertie)
data_kmeans=as.data.frame(data_kmeans)
#copier les nomes des colonnes
names(data_kmeans)=names(data_house)
names(taux_inertie)=names(data_house)
data_kmeans[,1]=factor(data_kmeans[,1],labels = c('MH-','MH+','MH++'))
data_kmeans[,2]=factor(data_kmeans[,2],labels = c('MI-','MI+','MI++'))
data_kmeans[,3]=factor(data_kmeans[,3],labels = c('MA-','MA+','MA++'))
data_kmeans[,4]=factor(data_kmeans[,4],labels = c('TR-','TR+','TR++'))
data_kmeans[,5]=factor(data_kmeans[,5],labels = c('TB-','TB+','TB++'))
data_kmeans[,6] = factor(data_kmeans[,6], labels = c('P-','P+','P++'))
data_kmeans[,7] = factor(data_kmeans[,7], labels = c('H-','H+','H++'))
{\tt data\_kmeans[,8]=factor(data\_kmeans[,8],labels=c('DC-','DC+','DC++'))}
data_kmeans[,9]=factor(data_kmeans[,9],labels = c('DL-','DL+','DL+','DL+'))
data_kmeans[,10]=factor(data_kmeans[,10],labels = c('DSD-','DSD+','DSD++'))
data_kmeans[,11]=factor(data_kmeans[,11],labels = c('DSJ-','DSJ+','DSJ++'))
data_kmeans[,12]=factor(data_kmeans[,12],labels = c('DSF-','DSF+','DSF++'))
#ecrire dans un fichier excel
```

```
library(xlsx)

# Ecrire la prémiere table
write.xlsx(data_house, file = "data_kmeans.xlsx",sheetName="les variables quantitatives", append=FALSE)
# Ajouter une deuxième table
write.xlsx(data_kmeans, file = "data_kmeans.xlsx", sheetName="les variables qualitatives ",append=TRUE)
# Ajouter une troisième table
write.xlsx(taux_inertie, file = "data_kmeans.xlsx", sheetName="le taux de discrétisation de chaque tra
#on a le taux de discrétisation est supérieur à 0.5.
```

2-Construction de tableau disjonctif complet

```
library(FactoMineR)
#Construction du tableau disjonctif complet
tabl_dis <- tab.disjonctif(data_kmeans)</pre>
```

3-Calcule de fréquence de chaque modalité et rechercher la présence d'une modalité rare (fréquence < 0.01). Si elle existe, il faut soit l'éliminer soit la combiner avec une autre modalité

```
table_freq=matrix(nrow = 12, ncol = 3)
table_freq[1,]=table(data_kmeans$Median_House_Value)
table_freq[2,]=table(data_kmeans$Median_Income)
table_freq[3,]=table(data_kmeans$Median_Age)
table_freq[4,]=table(data_kmeans$Tot_Rooms)
table_freq[5,]=table(data_kmeans$Tot_Bedrooms)
table_freq[6,]=table(data_kmeans$Population)
table_freq[7,]=table(data_kmeans$Households)
table_freq[8,]=table(data_kmeans$Distance_to_coast)
table_freq[9,]=table(data_kmeans$Distance_to_LA)
table_freq[10,]=table(data_kmeans$Distance_to_SanDiego)
table_freq[11,]=table(data_kmeans$Distance_to_SanJose)
table_freq[12,]=table(data_kmeans$Distance_to_SanFrancisco)
table_freq=as.data.frame(table_freq)
colnames(table_freq) <- c("-","+","++")</pre>
table_freq=table_freq/109
print(colSums(table_freq < 0.01))</pre>
##
   0 0 0
```

```
#n'existe aucune modalité rare
```

4-) Application de l'ACM au tableau disjonctif complet et précision de nombre d'individus, et de nombre de variables et celui des modalités

```
res<-MCA(data_kmeans,ncp=6,graph=FALSE)
#le nombre d'individus
nrow(res$ind$coord)</pre>
```

```
## [1] 109
```

#le nombre de variables

nrow(res\$var\$eta2)

[1] 12

#le nombre de modalités

nrow(res\$var\$coord)

[1] 36

5-les valeurs propres, le pourcentage d'inertie de chaque valeur propre ainsi que le cumul des pourcentages d'inertie.

#les valeurs propres res\$eig[,1]

```
dim 4
                                                                           dim 6
##
          dim 1
                       dim 2
                                    dim 3
                                                              dim 5
## 4.282950e-01 4.156682e-01 2.336491e-01 2.025077e-01 1.615616e-01 1.199037e-01
##
         dim 7
                       dim 8
                                    dim 9
                                                dim 10
                                                             dim 11
## 8.960815e-02 8.322177e-02 5.909268e-02 5.097009e-02 3.866742e-02 2.887454e-02
         dim 13
                     dim 14
                                   dim 15
                                                dim 16
                                                             dim 17
                                                                          dim 18
## 2.393939e-02 2.011728e-02 1.350036e-02 1.057047e-02 8.712510e-03 5.027720e-03
##
         dim 19
                      dim 20
                                   dim 21
                                                dim 22
                                                             dim 23
                                                                          dim 24
## 4.056329e-03 2.055968e-03 2.830646e-31 1.294672e-31 6.466607e-32 3.640204e-32
```

le pourcentage d'inertie de chaque valeur propre res\$eig[,2]

```
##
          dim 1
                       dim 2
                                    dim 3
                                                  dim 4
                                                               dim 5
                                                                            dim 6
## 2.141475e+01 2.078341e+01 1.168245e+01 1.012538e+01 8.078082e+00 5.995185e+00
          dim 7
                       dim 8
                                    dim 9
                                                dim 10
                                                              dim 11
## 4.480407e+00 4.161088e+00 2.954634e+00 2.548505e+00 1.933371e+00 1.443727e+00
##
         dim 13
                      dim 14
                                   dim 15
                                                dim 16
                                                              dim 17
                                                                           dim 18
## 1.196969e+00 1.005864e+00 6.750179e-01 5.285235e-01 4.356255e-01 2.513860e-01
                      dim 20
                                   dim 21
         dim 19
                                                dim 22
                                                              dim 23
                                                                           dim 24
## 2.028165e-01 1.027984e-01 1.415323e-29 6.473360e-30 3.233303e-30 1.820102e-30
```

#le cumul des pourcentages d'inertie res\$eig[,3]

```
##
                 dim 2
                           dim 3
                                     dim 4
                                               dim 5
                                                         dim 6
                                                                   dim 7
       dim 1
    21.41475 42.19816
                        53.88062 64.00600
                                            72.08408 78.07927
##
                                                                82.55967
                                                                          86.72076
##
       dim 9
                dim 10
                          dim 11
                                    dim 12
                                              dim 13
                                                        dim 14
                                                                  dim 15
                                                                             dim 16
##
   89.67540 92.22390
                        94.15727
                                 95.60100 96.79797 97.80383
                                                                98.47885
                                                                          99.00737
                                    dim 20
                                                        dim 22
##
      dim 17
                dim 18
                          dim 19
                                              dim 21
                                                                  dim 23
                                                                             dim 24
   99.44300 99.69439 99.89720 100.00000 100.00000 100.00000 100.00000 100.00000
```

6-le graphique des valeurs propres

graphique des valeurs propres

barplot(res\$eig[,1],main="Eigenvalues", names.arg=paste("dim",1:nrow(res\$eig)))

Eigenvalues

7-Détermination du dimension du sous espace en utilisant la règle rapport des variances

```
nrow(res$eig)
## [1] 24
var(res$eig[1:24,1])*23/(var(res$eig[,1])*23)
## [1] 1
#supérieur à 0,05
var(res$eig[2:24,1])*22/(var(res$eig[,1])*23)
## [1] 0.645625
#supérieur à 0,05
var(res$eig[3:24,1])*21/(var(res$eig[,1])*23)
## [1] 0.2856802
#supérieur à 0,05
var(res$eig[4:24,1])*20/(var(res$eig[,1])*23)
```

```
## [1] 0.1876212
```

```
#supérieur à 0,05
var(res$eig[5:24,1])*19/(var(res$eig[,1])*23)

## [1] 0.1122598

#supérieur à 0,05
var(res$eig[6:24,1])*18/(var(res$eig[,1])*23)

## [1] 0.06489347

#supérieur à 0,05
var(res$eig[7:24,1])*17/(var(res$eig[,1])*23)

## [1] 0.04021069

#inférieur à 0,05
#Le sous espace de projection est constitué des 6 premiers axes
```

alors la dimension de sous espace E est 6 d'apres le règle rapport de variances

Nuage de Modalités

8-Calcule le cos2 des modalités sur le sous espace

```
print(res$var$cos2,digit=2)
```

```
##
                   Dim 2 Dim 3
                                  Dim 4
                                          Dim 5
         1.9e-01 0.01013 0.0646 0.00559 8.0e-02 0.50650
## MH-
## MH+
         5.0e-01 0.02327 0.0898 0.00165 9.0e-02 0.00561
         2.5e-01 0.05098 0.0291 0.00795 2.4e-01 0.12177
## MH++
         8.0e-02 0.00860 0.0041 0.02155 2.6e-01 0.12114
## MT-
## MI+
         2.1e-01 0.14715 0.0809 0.04377 5.9e-02 0.34156
        3.1e-01 0.01985 0.0120 0.00028 1.2e-01 0.00018
## MI++
         1.4e-02 0.02262 0.0101 0.00336 2.6e-01 0.02255
## MA+
         8.9e-05 0.03092 0.1319 0.03140 7.5e-02 0.09445
## MA++ 2.3e-02 0.00116 0.3010 0.02050 7.3e-02 0.03629
         4.4e-01 0.07785 0.3636 0.00315 1.0e-07 0.01184
## TR-
## TR+
         3.7e-02 0.80426 0.0227 0.12185 1.4e-03 0.00312
## TR++
        4.0e-01 0.04322 0.3453 0.07038 4.8e-04 0.02378
## TB-
         3.3e-01 0.06667 0.3548 0.02258 3.5e-03 0.00373
         3.9e-01 0.02747 0.3903 0.00032 5.3e-03 0.00101
## TB+
## TB++
        3.7e-02 0.80426 0.0227 0.12185 1.4e-03 0.00312
## P-
         3.2e-01 0.04702 0.3644 0.08530 5.6e-03 0.00447
## P+
         3.8e-01 0.04177 0.3997 0.01310 7.5e-03 0.00138
## P++
         3.7e-02 0.80426 0.0227 0.12185 1.4e-03 0.00312
## H-
         4.7e-01 0.04886 0.4024 0.00297 7.8e-04 0.00500
## H+
         4.2e-01 0.05508 0.3767 0.06003 1.1e-04 0.01145
         3.7e-02 0.80426 0.0227 0.12185 1.4e-03 0.00312
## H++
## DC-
         2.8e-01 0.00075 0.1001 0.00348 3.2e-01 0.03589
## DC+
        3.7e-01 0.00468 0.1171 0.00250 1.5e-01 0.00585
```

```
3.5e-02 0.00816 0.0047 0.05549 1.4e-01 0.05721
## DL-
         5.0e-01 0.16037 0.0580 0.07395 5.3e-02 0.07183
## DI.+
         3.6e-01 0.00809 0.1294 0.11619 2.0e-01 0.09118
        8.7e-03 0.29363 0.0214 0.47206 6.8e-02 0.00254
## DL++
        5.0e-01 0.16154 0.0645 0.07373 5.3e-02 0.08377
## DSD-
## DSD+ 1.0e-02 0.30616 0.0173 0.48636 6.8e-02 0.00064
## DSD++ 3.6e-01 0.00809 0.1294 0.11619 2.0e-01 0.09118
## DSJ- 2.8e-01 0.20326 0.0517 0.18801 2.6e-02 0.00034
        2.9e-03 0.34509 0.0247 0.37976 4.6e-02 0.00366
## DSJ++ 3.6e-01 0.00024 0.1334 0.00326 1.2e-01 0.00093
## DSF- 8.1e-03 0.31627 0.0265 0.20811 1.7e-01 0.01271
## DSF+ 5.6e-01 0.00469 0.1743 0.00768 3.6e-02 0.01416
## DSF++ 5.2e-01 0.14718 0.0991 0.07665 1.8e-02 0.04798
```

9-Distinguer les modalités bien représentées, moyennement représentées et faiblement représentées sur le sous espace E

print(t(apply(res\$var\$cos2,1,cumsum)),digit=2)

```
Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
##
         1.9e-01 0.200 0.265 0.270
## MH-
                                    0.35
                                           0.86
## MH+
         5.0e-01 0.528 0.618 0.619
                                     0.71
                                            0.71
## MH++
         2.5e-01 0.306 0.335 0.343
                                     0.59
## MT-
         8.0e-02 0.089 0.093 0.115
                                     0.37
## MI+
         2.1e-01 0.358 0.439 0.482
                                     0.54
                                            0.88
## MI++
         3.1e-01 0.325 0.337 0.337
                                     0.46
                                            0.46
## MA-
         1.4e-02 0.037 0.047 0.051
                                     0.31
                                            0.34
                                     0.27
## MA+
         8.9e-05 0.031 0.163 0.194
                                            0.36
## MA++
         2.3e-02 0.024 0.325 0.345
                                     0.42
                                           0.45
## TR-
         4.4e-01 0.520 0.883 0.886
                                     0.89
## TR+
         3.7e-02 0.841 0.864 0.986
                                     0.99
## TR++
         4.0e-01 0.444 0.789 0.859
                                     0.86
## TB-
         3.3e-01 0.393 0.748 0.771
                                     0.77
                                            0.78
         3.9e-01 0.413 0.803 0.804
## TB+
                                     0.81
                                           0.81
## TB++
         3.7e-02 0.841 0.864 0.986
                                     0.99
                                            0.99
         3.2e-01 0.366 0.731 0.816
## P-
                                     0.82
                                            0.83
## P+
         3.8e-01 0.420 0.819 0.833
                                     0.84
                                            0.84
## P++
         3.7e-02 0.841 0.864 0.986
                                     0.99
                                            0.99
## H-
         4.7e-01 0.522 0.925 0.928
                                     0.93
                                            0.93
## H+
         4.2e-01 0.478 0.855 0.915
                                     0.92
                                            0.93
## H++
         3.7e-02 0.841 0.864 0.986
                                     0.99
                                            0.99
## DC-
         2.8e-01 0.280 0.380 0.384
                                     0.70
                                            0.74
## DC+
         3.7e-01 0.371 0.488 0.490
                                     0.64
                                            0.65
## DC++
         3.5e-02 0.043 0.048 0.103
                                     0.24
                                            0.30
         5.0e-01 0.663 0.721 0.795
## DL-
                                     0.85
## DI.+
         3.6e-01 0.368 0.497 0.614
                                     0.82
                                            0.91
## DL++
         8.7e-03 0.302 0.324 0.796
                                     0.86
                                            0.87
         5.0e-01 0.666 0.731 0.804
## DSD-
                                     0.86
                                            0.94
## DSD+
         1.0e-02 0.316 0.334 0.820
                                     0.89
                                            0.89
## DSD++ 3.6e-01 0.368 0.497 0.614
                                     0.82
                                            0.91
         2.8e-01 0.486 0.538 0.726
                                     0.75
         2.9e-03 0.348 0.373 0.752
                                     0.80
## DSJ++ 3.6e-01 0.356 0.489 0.492
                                     0.61
```

```
## DSF- 8.1e-03 0.324 0.351 0.559 0.73 0.74
## DSF+ 5.6e-01 0.560 0.734 0.742 0.78 0.79
## DSF++ 5.2e-01 0.672 0.771 0.848 0.87 0.91
```

Cos2 total des modalités sur Dim.1, Dim.2, Dim.3, Dim.4, Dim.5, Dim.6. (dim E=6).

- Un cos2 élevé indique une bonne représentation de la modalité sur les axes principaux.
- Un faible cos2 indique que la modalité n'est pas parfaitement représentée par les axes principaux.

```
cos_totale<-sort(t(apply(res$var$cos2,1,cumsum))[,6],decreasing=TRUE)
barplot(cos_totale,ylab="Qualite de representation",main="Cos2 total des variables jusqu'a Dim.6")</pre>
```

Cos2 total des variables jusqu'a Dim.6

Les modalités bien représentées sont :

```
for (i in 1:36){
if (0.7 < cos_totale[i] ) print(cos_totale[i])
}

## TR+
## 0.9900793
## TB++
## 0.9900793
## P++
## 0.9900793</pre>
```

```
##
      H++
## 0.9900793
## DSD-
## 0.9415
##
       H-
## 0.9334067
## H+
## 0.926747
##
    DL-
## 0.9196826
## DSF++
## 0.9137051
## DL+
## 0.9064108
## DSD++
## 0.9064108
## TR-
## 0.8981924
##
      DSD+
## 0.8887223
##
      TR++
## 0.8836263
##
      MI+
## 0.882608
##
      DL++
## 0.8658508
##
    MH-
## 0.8565668
##
    P+
## 0.8414154
##
     P-
## 0.8259881
##
    TB+
## 0.8100195
##
     DSJ+
## 0.8021221
##
    DSF+
## 0.7918618
##
      TB-
## 0.778122
## DSJ-
## 0.7523257
## DSF-
## 0.7433153
## DC-
## 0.7403408
## MH+
## 0.71467
##
      MH++
## 0.7093598
```

Les modalités moyennement représentées

```
for (i in 1:36){
if (0.5<cos_totale[i]&& cos_totale[i]<0.7) print(cos_totale[i])</pre>
}
         DC+
##
## 0.6462008
##
       DSJ++
## 0.6125426
Les modalités faiblement représentées
for (i in 1:36){
if ( cos_totale[i] < 0.5) print(cos_totale[i])</pre>
}
##
         MI-
## 0.4933009
##
        MI++
## 0.4587594
##
        MA++
## 0.4542392
##
         MA+
## 0.3642866
##
         MA-
## 0.3354072
##
        DC++
## 0.2960437
10-Calcule ducontribution des modalités dans chaque axe du sous espace
contrib<-data.frame(res$var$contrib)</pre>
print(res$var$contrib,digit=2)
##
                 Dim 2
                        Dim 3
                                 Dim 4
                                         Dim 5
                                               Dim 6
         Dim 1
                               0.2133 3.8e+00 32.618
## MH-
         3.427 0.1883
                        2.136
## MH+
         3.152 0.1498
                         1.029
                                0.0219 1.5e+00
                                                 0.125
## MH++
         3.731
                0.7689
                         0.781
                                0.2462 9.5e+00
## MI-
         0.962 0.1060
                         0.089
                                0.5451 8.2e+00
                                                 5.175
## MI+
         3.681
                2.6523
                        2.595
                                1.6196 2.7e+00 21.343
## MI++
         2.889 0.1935
                        0.207
                                0.0057 3.0e+00
                                                 0.006
## MA-
         0.178 0.2871
                        0.229
                                0.0874 8.6e+00
                                                 0.992
## MA+
         0.001 0.3639
                        2.763
                                0.7588 2.3e+00
                                                 3.854
## MA++
         0.346 0.0181
                        8.372
                                0.6579 2.9e+00
                                                 1.967
## TR-
         1.341 0.2434
                         2.022
                                0.0202 8.3e-07
                                                 0.128
## TR+
         0.689 15.5321
                        0.779
                                4.8300 6.9e-02
                                                 0.209
## TR++
         6.862 0.7632 10.848
                                2.5507 2.2e-02
                                                 1.456
## TB-
         5.191 1.0913 10.333
                                0.7586 1.5e-01
                                                 0.212
         1.652 0.1212
                        3.065
                                0.0029 6.0e-02
## TB+
                                                 0.015
```

0.209

4.8300 6.9e-02

2.8662 2.3e-01

TB++

P-

P+

0.689 15.5321

5.072 0.7696 10.611

0.779

1.619 0.1844 3.139 0.1187 8.5e-02

```
0.689 15.5321 0.779 4.8300 6.9e-02
## P++
## H-
        1.690 0.1797
                       2.633
                              0.0224 7.4e-03
                                              0.064
## H+
        7.028 0.9422 11.464
                             2.1078 5.0e-03
                                              0.679
## H++
        0.689 15.5321
                      0.779 4.8300 6.9e-02 0.209
## DC-
        3.292 0.0092 2.162 0.0868 1.0e+01
                                             1.510
## DC+
        3.201 0.0422
                       1.877
                             0.0463 3.5e+00
                                              0.183
## DC++
        0.641 0.1546
                       0.157
                             2.1579 6.6e+00
## DL-
        6.459 2.1237
                       1.367 2.0101 1.8e+00
        4.110 0.0953
## DL+
                       2.711 2.8075 6.1e+00
                                              3.721
## DI.++
        0.128 4.4285
                       0.573 14.6138 2.6e+00
                                              0.133
        6.396 2.1095
                                              3.792
## DSD-
                       1.498 1.9763 1.8e+00
        0.152 4.6739
                       0.471 15.2401 2.7e+00
## DSD+
                                              0.034
## DSD++ 4.110 0.0953
                       2.711
                             2.8075 6.1e+00
                                              3.721
        3.027
               2.2431
                       1.014 4.2587 7.5e-01
        0.046 5.5854
                       0.711 12.6166 1.9e+00
## DSJ+
                                              0.205
## DSJ++ 4.443 0.0031
                       3.055
                             0.0860 3.9e+00
                                              0.042
## DSF-
        0.131 5.2353
                       0.780
                             7.0712 7.3e+00
                                              0.730
## DSF+
        5.351
              0.0466
                       3.080 0.1565 9.2e-01
                                              0.488
## DSF++ 6.934 2.0032
                       2.401 2.1415 6.2e-01
                                              2.264
```

11-Application du CAH au tableau des contributions des modalités aux axes du sous espace

cah<-HCPC(contrib,nb.clust=-1)</pre>

Hierarchical clustering on the factor map

Factor map

cah\$desc.var

```
## Link between the cluster variable and the quantitative variables
##
            Eta2
                     P-value
## Dim.6 0.8908590 1.339062e-16
## Dim.2 0.7060350 1.686080e-09
## Dim.4 0.6410534 4.549806e-08
## Dim.1 0.3132153 2.030205e-03
## Description of each cluster by quantitative variables
## ================
## $'1'
##
          v.test Mean in category Overall mean sd in category Overall sd
## Dim.2 4.965397
                     10.2564318
                                   2.777778
                                               5.2854871
                                                           4.762878
## Dim.4 4.736199
                       8.6077339
                                    2.777778
                                                4.4099081
                                                           3.892560
## Dim.3 -2.047267
                       0.7065238
                                    2.777778
                                                0.1117705
                                                           3.199329
                                                0.2889936
## Dim.1 -3.310388
                       0.4019059
                                    2.777778
                                                           2.269573
##
            p.value
## Dim.2 6.856069e-07
## Dim.4 2.177641e-06
## Dim.3 4.063191e-02
## Dim.1 9.316685e-04
##
## $'2'
```

```
v.test Mean in category Overall mean sd in category Overall sd
##
## Dim.1 2.821649 3.4490928 2.777778 2.2070962 2.269573
## Dim.3 1.994793

      3.4467930
      2.777778
      3.5190811
      3.199329

      1.1271254
      2.777778
      1.2283280
      3.892560

      0.5810745
      2.777778
      0.7217168
      4.762878

## Dim.4 -4.045209
## Dim.2 -4.399695
##
                 p.value
## Dim.1 4.777750e-03
## Dim.3 4.606550e-02
## Dim.4 5.227652e-05
## Dim.2 1.084029e-05
##
## $'3'
##
              v.test Mean in category Overall mean sd in category Overall sd
## Dim.6 5.555016
                                26.98048
                                                 2.777778
                                                                    5.637915
                                                                                  6.251556
                 p.value
##
## Dim.6 2.775856e-08
#les modalités de $'1' contribuent à les axes 2, 3 et 4 mais ne contribuent pas à l'axe 5.
#les modalités de $'2' ne contribuent ni à l'axe 2, ni à l'axe 4.
#les modalités de $'3' contribuent à l'axe 6.
\# {\rm Aucun} modalité ne contribuent significativement aux axes 1 et 5.
12-Tracer le nuage des modalités projeté sur les 2 premiers axes
plot(res,invisible="ind")
```

```
## Warning: ggrepel: 21 unlabeled data points (too many overlaps). Consider ## increasing max.overlaps
```


Nuage des individus

 $13\text{-}\mathrm{Calcule}$ du $\cos\!2$ des individus sur le sous espace

print(res\$ind\$cos2,digit=2)

```
Dim 3
                                 Dim 4
                                         Dim 5
                 Dim 2
## 1
       2.8e-02 0.10643 2.6e-01 1.6e-01 2.3e-02 3.8e-01
## 2
       2.0e-02 0.12486 1.9e-01 4.4e-01 7.8e-04 7.4e-03
## 3
       2.0e-02 0.12486 1.9e-01 4.4e-01 7.8e-04 7.4e-03
## 4
       2.0e-02 0.12486 1.9e-01 4.4e-01 7.8e-04 7.4e-03
       2.0e-02 0.12486 1.9e-01 4.4e-01 7.8e-04 7.4e-03
## 5
## 6
       6.5e-02 0.89931 2.1e-03 2.9e-02 1.3e-04 2.5e-05
       2.4e-01 0.03497 1.5e-01 4.7e-01 3.4e-02 4.1e-04
##
## 8
       8.6e-04 0.14311 1.2e-01 4.5e-01 2.1e-01 1.3e-02
## 9
       6.5e-02 0.89931 2.1e-03 2.9e-02 1.3e-04 2.5e-05
## 10
       1.9e-03 0.17539 9.6e-02 4.1e-01 9.4e-02 4.5e-02
## 11
       6.5e-02 0.89931 2.1e-03 2.9e-02 1.3e-04 2.5e-05
## 12
       2.3e-01 0.02529 1.3e-01 5.1e-01 8.5e-02 2.5e-03
       4.7e-05 0.56352 1.1e-01 2.3e-01 3.9e-03 1.2e-02
## 14
       1.9e-02 0.05065 7.2e-01 3.1e-02 5.2e-03 3.1e-02
       6.2e-01 0.01143 9.1e-02 6.0e-02 5.2e-02 1.4e-05
## 15
       6.2e-01 0.01143 9.1e-02 6.0e-02 5.2e-02 1.4e-05
## 16
       2.5e-01 0.02060 2.5e-01 2.5e-02 5.1e-02 1.2e-03
## 17
## 18
       6.4e-01 0.02552 5.9e-02 3.5e-02 1.4e-04 2.1e-02
## 19
      6.2e-01 0.01143 9.1e-02 6.0e-02 5.2e-02 1.4e-05
```

```
## 20 2.4e-01 0.01427 2.8e-02 1.5e-01 3.3e-01 5.4e-04
      2.4e-01 0.01427 2.8e-02 1.5e-01 3.3e-01 5.4e-04
      2.0e-01 0.02532 2.1e-03 1.3e-01 1.5e-01 7.4e-02
## 23
      2.1e-01 0.01231 3.6e-07 1.7e-01 3.8e-02 2.2e-02
## 24
      5.4e-02 0.04771 2.1e-02 3.2e-01 1.4e-01 8.7e-03
## 25
      6.0e-02 0.03143 1.1e-02 3.6e-01 4.4e-02 8.4e-05
## 26
      1.8e-01 0.07966 5.1e-03 2.7e-01 1.4e-01 1.9e-02
      1.9e-01 0.05549 1.3e-02 3.2e-01 4.0e-02 4.9e-04
      1.8e-01 0.07966 5.1e-03 2.7e-01 1.4e-01 1.9e-02
      1.5e-01 0.01424 2.8e-02 1.7e-01 1.5e-01 1.2e-02
## 30
      5.9e-02 0.02478 4.4e-01 2.2e-05 4.2e-02 7.3e-03
      6.2e-01 0.01143 9.1e-02 6.0e-02 5.2e-02 1.4e-05
## 31
## 32
      6.2e-01 0.01143 9.1e-02 6.0e-02 5.2e-02 1.4e-05
      6.4e-01 0.02552 5.9e-02 3.5e-02 1.4e-04 2.1e-02
## 33
      6.4e-01 0.02552 5.9e-02 3.5e-02 1.4e-04 2.1e-02
## 35
      4.7e-01 0.01735 1.1e-03 1.9e-02 6.0e-02 2.9e-02
## 36
      4.7e-01 0.01735 1.1e-03 1.9e-02 6.0e-02 2.9e-02
## 37
      2.5e-01 0.01720 2.5e-01 9.2e-03 5.4e-02 1.4e-03
## 38
      1.5e-01 0.03556 4.6e-02 5.1e-02 9.2e-03 6.7e-02
## 39
      1.2e-01 0.04590 3.2e-04 5.6e-02 3.3e-01 1.5e-02
## 40
      2.4e-01 0.05014 1.9e-04 8.1e-02 1.4e-01 5.7e-02
      5.0e-02 0.07729 2.9e-02 1.1e-01 1.2e-01 1.4e-02
      2.2e-01 0.02849 1.9e-03 1.2e-01 2.2e-02 8.2e-03
## 43 1.2e-01 0.04590 3.2e-04 5.6e-02 3.3e-01 1.5e-02
      1.2e-01 0.06758 5.1e-01 1.7e-02 8.4e-02 5.2e-02
## 44
## 45
      2.4e-01 0.05014 1.9e-04 8.1e-02 1.4e-01 5.7e-02
## 46
      4.2e-01 0.00944 3.3e-02 6.7e-02 7.1e-07 6.9e-03
## 47
      2.2e-01 0.02849 1.9e-03 1.2e-01 2.2e-02 8.2e-03
      4.2e-01 0.00944 3.3e-02 6.7e-02 7.1e-07 6.9e-03
## 49
      5.6e-02 0.11118 1.4e-01 1.3e-01 5.1e-02 1.5e-01
## 50
      5.6e-02 0.11118 1.4e-01 1.3e-01 5.1e-02 1.5e-01
## 51
      3.6e-02 0.01584 1.2e-01 8.4e-04 2.0e-03 1.5e-01
## 52
      4.2e-02 0.04410 3.1e-04 3.2e-02 1.3e-01 2.0e-01
## 53
      1.6e-01 0.06777 5.1e-01 2.2e-02 6.9e-02 1.4e-02
      1.1e-01 0.07162 8.5e-04 2.8e-02 1.3e-01 4.7e-02
      1.0e-01 0.04762 5.0e-04 4.9e-02 3.3e-01 1.3e-01
## 56 5.5e-02 0.11624 2.4e-04 6.4e-02 1.6e-01 1.3e-01
      6.4e-03 0.11280 6.3e-02 1.2e-01 1.9e-01 2.0e-01
## 57
## 58
      5.5e-02 0.11624 2.4e-04 6.4e-02 1.6e-01 1.3e-01
      9.3e-02 0.13062 8.1e-04 1.3e-02 3.6e-03 1.0e-01
## 59
## 60
      3.7e-03 0.14654 8.9e-02 8.5e-02 5.1e-02 9.6e-02
      3.3e-01 0.01233 1.2e-05 1.5e-01 1.5e-01 3.6e-03
## 62
      3.2e-01 0.02570 2.6e-03 1.1e-01 3.3e-01 3.4e-02
## 63
      2.4e-01 0.01427 2.8e-02 1.5e-01 3.3e-01 5.4e-04
      2.1e-01 0.01231 3.6e-07 1.7e-01 3.8e-02 2.2e-02
## 64
      4.2e-01 0.00944 3.3e-02 6.7e-02 7.1e-07 6.9e-03
## 65
## 66
      2.0e-01 0.00510 1.0e-03 1.3e-03 4.3e-02 9.9e-03
## 67
      1.2e-01 0.00059 3.7e-04 2.2e-03 3.2e-01 1.6e-02
      1.1e-01 0.00520 7.5e-04 1.2e-06 1.5e-01 1.8e-05
      1.7e-01 0.03095 3.7e-03 9.2e-02 1.6e-01 8.8e-02
     1.7e-01 0.03095 3.7e-03 9.2e-02 1.6e-01 8.8e-02
## 70
      1.0e-01 0.01898 8.4e-03 9.7e-02 1.5e-01 1.8e-02
## 71
## 72 1.7e-01 0.03095 3.7e-03 9.2e-02 1.6e-01 8.8e-02
## 73 4.3e-02 0.01523 1.1e-06 5.8e-02 4.1e-01 1.7e-02
```

```
6.3e-02 0.02833 6.9e-02 7.9e-02 4.7e-02 4.6e-02
       4.6e-01 0.07838 6.6e-02 3.7e-04 3.1e-03 5.9e-02
       5.6e-02 0.11118 1.4e-01 1.3e-01 5.1e-02 1.5e-01
       5.8e-01 0.04998 3.5e-02 1.9e-04 2.5e-02 2.5e-01
## 77
       2.1e-01 0.01911 3.4e-01 6.5e-02 9.0e-02 2.5e-01
## 79
       6.0e-01 0.04486 8.1e-03 9.8e-06 7.2e-02 2.6e-01
       1.9e-01 0.02330 2.3e-01 8.0e-02 2.5e-02 2.4e-01
       5.7e-01 0.08031 1.7e-01 4.0e-03 1.8e-03 2.3e-02
       5.9e-01 0.08885 9.6e-02 1.2e-03 1.7e-02 4.0e-02
## 83
       2.1e-01 0.01911 3.4e-01 6.5e-02 9.0e-02 2.5e-01
## 84
       4.6e-01 0.08541 8.0e-03 1.4e-03 6.0e-03 1.5e-02
       2.1e-01 0.01911 3.4e-01 6.5e-02 9.0e-02 2.5e-01
## 85
## 86
       2.2e-01 0.06260 3.6e-01 2.8e-02 1.9e-02 1.4e-01
       6.6e-01 0.07804 1.7e-01 7.0e-03 5.6e-03 4.4e-02
## 87
       1.2e-01 0.10879 3.3e-01 4.5e-02 2.7e-03 7.9e-02
## 89
       2.2e-01 0.06260 3.6e-01 2.8e-02 1.9e-02 1.4e-01
       5.4e-01 0.10782 2.3e-01 4.5e-03 3.0e-03 1.9e-02
## 90
## 91
       5.2e-01 0.12832 2.0e-01 9.6e-03 4.7e-03 3.1e-03
## 92
       2.0e-01 0.07835 2.1e-01 4.4e-02 1.3e-01 1.8e-01
## 93
       2.2e-01 0.06260 3.6e-01 2.8e-02 1.9e-02 1.4e-01
## 94
       2.3e-01 0.00904 3.8e-01 6.0e-02 6.9e-03 3.3e-03
       2.2e-01 0.06260 3.6e-01 2.8e-02 1.9e-02 1.4e-01
       2.2e-01 0.06260 3.6e-01 2.8e-02 1.9e-02 1.4e-01
       6.4e-01 0.09511 1.4e-01 1.3e-02 3.7e-02 1.7e-02
       4.4e-01 0.02334 5.4e-02 2.1e-02 3.7e-02 1.3e-03
       5.7e-03 0.03754 3.7e-02 6.7e-02 6.6e-01 1.3e-03
## 100 5.7e-03 0.03754 3.7e-02 6.7e-02 6.6e-01 1.3e-03
## 101 5.7e-03 0.03754 3.7e-02 6.7e-02 6.6e-01 1.3e-03
## 102 5.7e-03 0.03754 3.7e-02 6.7e-02 6.6e-01 1.3e-03
## 103 6.4e-01 0.02552 5.9e-02 3.5e-02 1.4e-04 2.1e-02
## 104 2.0e-01 0.07835 2.1e-01 4.4e-02 1.3e-01 1.8e-01
## 105 2.2e-01 0.05553 1.8e-01 6.7e-02 3.3e-02 3.1e-01
## 106 2.0e-01 0.07835 2.1e-01 4.4e-02 1.3e-01 1.8e-01
## 107 6.4e-01 0.02552 5.9e-02 3.5e-02 1.4e-04 2.1e-02
## 108 4.4e-01 0.02334 5.4e-02 2.1e-02 3.7e-02 1.3e-03
## 109 2.5e-01 0.02060 2.5e-01 2.5e-02 5.1e-02 1.2e-03
```

14-Distinguer les individus bien représentés, moyennement représentés et faiblement représentés sur le sous espace

```
head(t(apply(res$ind$cos2,1,cumsum)),digit=2)
```

```
## Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6
## 1 0.02765330 0.1340798 0.3896791 0.5480094 0.5708189 0.9550835
## 2 0.01999611 0.1448603 0.3355883 0.7804967 0.7812754 0.7886643
## 3 0.01999611 0.1448603 0.3355883 0.7804967 0.7812754 0.7886643
## 4 0.01999611 0.1448603 0.3355883 0.7804967 0.7812754 0.7886643
## 5 0.01999611 0.1448603 0.3355883 0.7804967 0.7812754 0.7886643
## 6 0.06459885 0.9639085 0.9660501 0.9953184 0.9954446 0.9954693

cos_totale_ind<-sort(t(apply(res$ind$cos2,1,cumsum))[,6],decreasing=TRUE)
barplot(cos_totale_ind,ylab="Qualite de representation",main="Cos2 total d'individus jusqu'a Dim.6")
```

Cos2 total d'individus jusqu'a Dim.6

L'individus bien représentées sont :

```
for (i in 1:109){
if (0.7 < cos_totale_ind[i] ) print(cos_totale_ind[i])
}</pre>
```

```
##
## 0.9954693
##
## 0.9954693
##
        11
## 0.9954693
##
        79
## 0.9847892
##
     12
## 0.9835674
##
## 0.9742806
##
       83
## 0.9742806
       85
##
## 0.9742806
##
      87
##
          1
## 0.9550835
```

```
##
     97
## 0.9418381
## 77
## 0.9385409
## 7
## 0.9372704
## 8
## 0.9330932
## 13
## 0.9235466
## 90
## 0.9060437
## 91
## 0.8663628
## 14
## 0.8583019
## 105
## 0.8547326
## 81
## 0.848698
## 92
## 0.8471288
## 104
## 0.8471288
## 106
## 0.8471288
## 44
## 0.8466062
## 53
## 0.8460731
## 32
## 0.8374188
## 16
## 0.8374188
## 15
## 0.8374188
## 19
## 0.8374188
## 31
## 0.8374188
## 86
## 0.8318469
## 89
## 0.8318469
## 93
## 0.8318469
## 95
## 0.8318469
## 96
## 0.8318469
## 82
## 0.8299379
## 62
```

0.8274775

```
##
        10
## 0.8195559
##
       99
## 0.8052119
##
      100
## 0.8052119
##
## 0.8052119
##
        102
## 0.8052119
##
## 0.7886643
##
## 0.7886643
##
     5
## 0.7886643
##
      4
## 0.7886643
##
         80
## 0.7871632
##
## 0.777078
##
        33
## 0.777078
##
      103
## 0.777078
##
      107
## 0.777078
##
      34
## 0.777078
##
       21
## 0.7659442
##
     63
## 0.7659442
       20
## 0.7659442
```

L'individus moyennement représentées

```
for (i in 1:109){
if (0.5<cos_totale_ind[i]&& cos_totale_ind[i]<0.7) print(cos_totale_ind[i])</pre>
}
##
          26
## 0.6977483
##
          28
## 0.6977483
## 0.6935423
##
         88
## 0.6898734
##
        57
## 0.6881997
```

```
##
   75
## 0.6650894
## 55
## 0.6589083
## 49
## 0.6427504
## 50
## 0.6427504
## 76
## 0.6427504
## 61
## 0.6397451
## 27
## 0.6148098
## 36
## 0.598335
## 35
## 0.598335
## 109
## 0.5954136
## 17
## 0.5954136
## 37
## 0.5852683
## 24
## 0.5843992
## 22
## 0.5826585
## 30
## 0.5741058
## 98
## 0.573948
## 108
## 0.573948
## 84
## 0.5738721
## 39
## 0.5723264
## 43
## 0.5723264
## 40
## 0.563828
## 45
## 0.563828
## 73
## 0.5451773
## 69
## 0.5402383
## 70
## 0.5402383
## 72
## 0.5402383
## 46
```

0.5395974

```
##
          48
## 0.5395974
##
          65
## 0.5395974
##
          29
## 0.5302028
##
## 0.5251165
##
          58
## 0.5251165
##
          25
## 0.5052812
```

L'individus faiblement représentées

for (i in 1:109){

0.2604359

```
if ( cos_totale_ind[i] < 0.5) print(cos_totale_ind[i])</pre>
##
          60
## 0.4708872
##
          67
## 0.4634076
##
          64
## 0.4518594
##
          23
## 0.4518594
##
          52
## 0.4484461
##
          42
## 0.4060905
##
          47
## 0.4060905
##
## 0.4028038
##
          71
## 0.3970424
##
          54
## 0.3928598
##
          38
## 0.3615519
##
          59
## 0.3416933
##
          74
## 0.3306338
##
          51
## 0.3277076
         68
## 0.267464
##
          66
```

 $15\mbox{-}\mathrm{Calcule}$ du contribution des individus dans chaque axe du sous espace

```
Dim 1
             Dim 2
                    Dim 3
                           Dim 4
                                 Dim 5
## 1
     0.20744   0.8226   3.5e+00   2.5e+00   4.5e-01   1.0e+01
## 2
     ## 3
     ## 4
     0.07820  0.5032  1.4e+00  3.7e+00  8.1e-03  1.0e-01
## 5
     0.07820  0.5032  1.4e+00  3.7e+00  8.1e-03  1.0e-01
## 6
     1.54912 22.2211 9.4e-02 1.5e+00 8.0e-03 2.1e-03
     1.91361 0.2838 2.2e+00 7.9e+00 7.0e-01 1.2e-02
## 7
## 8
     0.00359  0.6134  9.1e-01  4.0e+00  2.3e+00  1.9e-01
## 9
     1.54912 22.2211 9.4e-02 1.5e+00 8.0e-03 2.1e-03
## 10 0.00761 0.7420 7.2e-01 3.5e+00 1.0e+00 6.7e-01
## 11
     1.54912 22.2211 9.4e-02 1.5e+00 8.0e-03 2.1e-03
## 12
     1.83884 0.2066 1.9e+00 8.5e+00 1.8e+00 7.2e-02
## 13
     0.00096 11.9864 4.1e+00 1.0e+01 2.1e-01 9.2e-01
     1.22075
            0.0231 3.3e-01 2.5e-01 2.7e-01 9.5e-05
     1.22075  0.0231  3.3e-01  2.5e-01  2.7e-01  9.5e-05
## 16
## 17
     0.67018  0.0574  1.2e+00  1.4e-01  3.6e-01  1.1e-02
     1.28181 0.0529 2.2e-01 1.5e-01 7.4e-04 1.5e-01
## 18
## 19
     1.22075 0.0231 3.3e-01 2.5e-01 2.7e-01 9.5e-05
## 20
     0.71799   0.0433   1.5e-01   9.5e-01   2.5e+00   5.7e-03
## 21
     0.71799  0.0433  1.5e-01  9.5e-01  2.5e+00  5.7e-03
## 22
     ## 23
     ## 24
     0.20229  0.1836  1.5e-01  2.5e+00  1.3e+00  1.2e-01
## 25
     0.22759 0.1227 7.9e-02 2.9e+00 4.4e-01 1.1e-03
## 26
    0.53698  0.2454  2.8e-02  1.7e+00  1.1e+00  2.0e-01
     0.57772  0.1741  7.3e-02  2.0e+00  3.2e-01  5.4e-03
     0.53698  0.2454  2.8e-02  1.7e+00  1.1e+00  2.0e-01
## 29
     0.21971 0.0945 3.0e+00 1.7e-04 4.1e-01 9.7e-02
## 30
## 31
     1.22075 0.0231 3.3e-01 2.5e-01 2.7e-01 9.5e-05
     1.22075  0.0231  3.3e-01  2.5e-01  2.7e-01  9.5e-05
## 32
## 33
     1.28181
            0.0529 2.2e-01 1.5e-01 7.4e-04 1.5e-01
     1.28181
## 34
            0.0529 2.2e-01 1.5e-01 7.4e-04 1.5e-01
## 35
     1.10217
            0.0418 4.9e-03 9.4e-02 3.7e-01 2.4e-01
## 36
     1.10217
            0.0418 4.9e-03 9.4e-02 3.7e-01 2.4e-01
            0.0479 1.3e+00 5.3e-02 3.9e-01 1.4e-02
## 37
     0.67545
     0.32194  0.0772  1.8e-01  2.3e-01  5.2e-02  5.0e-01
## 38
## 39
     ## 40
     0.42214   0.0921   6.1e-04   3.1e-01   6.6e-01   3.6e-01
     ## 41
     0.38742 0.0507 6.1e-03 4.4e-01 1.0e-01 5.1e-02
## 43
     0.66144   0.3948   5.3e+00   2.0e-01   1.3e+00   1.1e+00
## 44
     0.42214   0.0921   6.1e-04   3.1e-01   6.6e-01   3.6e-01
## 45
## 46
     ## 47
     0.11791 0.2410 5.6e-01 5.9e-01 2.8e-01 1.1e+00
```

```
## 50 0.11791 0.2410 5.6e-01 5.9e-01 2.8e-01 1.1e+00
     0.08740 0.0394 5.3e-01 4.3e-03 1.3e-02 1.3e+00
      ## 53
      0.98017  0.4202  5.6e+00  2.8e-01  1.1e+00  3.1e-01
## 54
     ## 55
     0.22371   0.1046   2.0e-03   2.2e-01   1.9e+00   9.6e-01
## 56
      ## 58
     0.16457  0.3564  1.3e-03  4.0e-01  1.3e+00  1.3e+00
## 59
      0.29386   0.4234   4.7e-03   8.8e-02   3.0e-02   1.1e+00
## 60
      ## 61
## 62
      0.81428   0.0679   1.2e-02   6.2e-01   2.3e+00   3.1e-01
      0.71799  0.0433  1.5e-01  9.5e-01  2.5e+00  5.7e-03
## 63
            0.0347 1.8e-06 9.6e-01 2.8e-01 2.2e-01
      0.58178
## 65
      0.77605
             0.0178 1.1e-01 2.6e-01 3.4e-06 4.5e-02
      ## 66
## 67
      0.32164  0.0016  1.8e-03  1.2e-02  2.3e+00  1.5e-01
## 68
      ## 69
      0.80236  0.1499  3.2e-02  9.1e-01  1.9e+00  1.5e+00
## 70
      0.80236
            0.1499 3.2e-02 9.1e-01 1.9e+00 1.5e+00
      ## 72
      0.80236  0.1499  3.2e-02  9.1e-01  1.9e+00  1.5e+00
## 73
      ## 74
      ## 75
      2.31268  0.4076  6.1e-01  4.0e-03  4.2e-02  1.1e+00
## 76
      0.11791 0.2410 5.6e-01 5.9e-01 2.8e-01 1.1e+00
      5.50969 0.4902 6.1e-01 3.8e-03 6.3e-01 8.5e+00
      1.28485 0.1196 3.8e+00 8.3e-01 1.4e+00 5.4e+00
## 79
      5.90295  0.4549  1.5e-01  2.0e-04  1.9e+00  9.1e+00
## 80
      1.10499   0.1380   2.4e+00   9.7e-01   3.9e-01   4.9e+00
## 81
     3.58901 0.5240 2.0e+00 5.3e-02 3.1e-02 5.2e-01
## 82
     4.77915 0.7470 1.4e+00 2.1e-02 3.7e-01 1.2e+00
## 83
     1.28485 0.1196 3.8e+00 8.3e-01 1.4e+00 5.4e+00
     2.48309  0.4774  8.0e-02  1.6e-02  8.6e-02  3.0e-01
     1.28485 0.1196 3.8e+00 8.3e-01 1.4e+00 5.4e+00
     0.67295  0.1971  2.0e+00  1.8e-01  1.5e-01  1.5e+00
      4.24933 0.5185 2.0e+00 9.6e-02 9.6e-02 1.0e+00
## 87
## 88
     0.31961 0.2912 1.6e+00 2.5e-01 1.8e-02 7.4e-01
      0.67295  0.1971  2.0e+00  1.8e-01  1.5e-01  1.5e+00
## 89
## 90
      3.26306  0.6654  2.5e+00  5.7e-02  4.8e-02  4.0e-01
      3.16520 0.7991 2.2e+00 1.2e-01 7.6e-02 6.6e-02
## 91
## 92
      0.54466  0.2205  1.1e+00  2.5e-01  9.5e-01  1.8e+00
## 93
      0.67295  0.1971  2.0e+00  1.8e-01  1.5e-01  1.5e+00
## 94
      1.01763  0.0406  3.0e+00  5.5e-01  8.0e-02  5.1e-02
## 95
     0.67295  0.1971  2.0e+00  1.8e-01  1.5e-01  1.5e+00
## 96
      0.67295  0.1971  2.0e+00  1.8e-01  1.5e-01  1.5e+00
## 97
      4.13755 0.6372 1.7e+00 1.8e-01 6.5e-01 3.9e-01
      0.93170  0.0512  2.1e-01  9.2e-02  2.1e-01  1.0e-02
## 99 0.02032 0.1375 2.4e-01 5.0e-01 6.2e+00 1.6e-02
## 100 0.02032 0.1375 2.4e-01 5.0e-01 6.2e+00 1.6e-02
## 101 0.02032 0.1375 2.4e-01 5.0e-01 6.2e+00 1.6e-02
## 102 0.02032 0.1375 2.4e-01 5.0e-01 6.2e+00 1.6e-02
## 103 1.28181 0.0529 2.2e-01 1.5e-01 7.4e-04 1.5e-01
```

```
## 104 0.54466 0.2205 1.1e+00 2.5e-01 9.5e-01 1.8e+00

## 105 0.58569 0.1532 8.6e-01 3.8e-01 2.3e-01 2.9e+00

## 106 0.54466 0.2205 1.1e+00 2.5e-01 9.5e-01 1.8e+00

## 107 1.28181 0.0529 2.2e-01 1.5e-01 7.4e-04 1.5e-01

## 108 0.93170 0.0512 2.1e-01 9.2e-02 2.1e-01 1.0e-02

## 109 0.67018 0.0574 1.2e+00 1.4e-01 3.6e-01 1.1e-02
```

16-Application du CAH au tableau des contributions des individus aux axes du sous espace

cah_ind<-HCPC(contrib_ind,nb.clust=-1)</pre>

Hierarchical clustering on the factor map

Factor map

cah_ind\$desc.var

```
##
## Link between the cluster variable and the quantitative variables
Eta2
                     P-value
## Dim.2 0.9464357 4.269904e-68
## Dim.6 0.8020207 5.258388e-38
## Dim.1 0.1201343 1.132582e-03
## Dim.4 0.1091069 2.191573e-03
## Dim.3 0.1046698 2.851752e-03
##
## Description of each cluster by quantitative variables
## $'1'
##
         \hbox{v.test Mean in category Overall mean sd in category Overall } \\
                                                 2.081329
## Dim.6 9.301739
                 6.977878
                                  0.9174312
                                                          1.773787
## Dim.1 3.546896
                       2.368517
                                  0.9174312
                                                 2.143061
                                                           1.113796
## Dim.3 3.331647
                       2.588367
                                  0.9174312
                                                 1.476074
                                                           1.365405
            p.value
## Dim.6 1.381675e-20
## Dim.1 3.897980e-04
## Dim.3 8.633364e-04
##
## $'2'
```

```
v.test Mean in category Overall mean sd in category Overall sd
## Dim.4 -2.055279
                         0.8097077
                                         0.9174312
                                                       1.4114304
                                                                    1.625805
                           0.7903515
                                                                   1.365405
## Dim.3 -2.886975
                                        0.9174312
                                                        1.2551362
                           0.8037965
## Dim.1 -3.164710
                                        0.9174312
                                                        0.9314676 1.113796
                                        0.9174312
                                                        0.1907586 3.760892
## Dim.2 -5.960497
                           0.1947533
## Dim.6 -7.080237
                           0.5125566
                                         0.9174312
                                                        0.6139877
                                                                     1.773787
##
              p.value
## Dim.4 3.985210e-02
## Dim.3 3.889646e-03
## Dim.1 1.552377e-03
## Dim.2 2.514726e-09
## Dim.6 1.439080e-12
##
## $'3'
##
            v.test Mean in category Overall mean sd in category Overall sd
## Dim.2 10.109771
                           19.662411
                                         0.9174312
                                                          4.431771
                                                                     3.760892
                                         0.9174312
                            3.668315
                                                          3.782603
## Dim.4 3.432029
                                                                     1.625805
##
              p.value
## Dim.2 5.000116e-24
## Dim.4 5.990833e-04
#les ind de $'1' contribuent à l'axe 5
#les ind de $'2' ne contribuent ni à l'axe 1, ni à l'axe 2, ni à l'axe 4, ni à l'axe 5 et ni à l'axe 6.
#les ind de $'3' contribuent à l'axe 4
#les ind de $'4' contribuent à l'axe 6 et à l'axe 1
#les ind de $'5' contribuent à les axes 2,3 et 4.
#les ind de $'6' contribuent à les axes 1 et 2.
```

Nuage des variables

17-Calculer les coefficients de corrélation des variables avec les projections sur les axes du sous espace

res\$var\$eta2

```
##
                                             Dim 2
                                                        Dim 3
## Median House Value
                            0.52985487 0.05521745 0.11060677 0.01169693
## Median_Income
                            0.38708843 0.14723639 0.08108647 0.05274093
                            0.02694424 0.03337307 0.31859442 0.03654916
## Median_Age
## Tot_Rooms
                            0.45700738 0.82495458 0.38270089 0.17984830
## Tot_Bedrooms
                            0.38716016 0.83522636 0.39751138 0.13588159
## Population
                            0.37934388 0.82233092 0.40736854 0.18990875
## Households
                            0.48349605 \ 0.83070679 \ 0.41711378 \ 0.16914025
## Distance_to_coast
                            0.36664987 0.01027285 0.11763909 0.05567292
## Distance_to_LA
                            0.54982351 0.33157357 0.13038516 0.47220013
## Distance_to_SanDiego
                            0.54780846 0.34310443 0.13121021 0.48659807
## Distance_to_SanJose
                            0.38628549 0.39064390 0.13404031 0.41217716
## Distance_to_SanFrancisco 0.63807739 0.36337852 0.17553213 0.22767817
##
                                  Dim 5
                                               Dim 6
## Median_House_Value
                            0.286714834 0.562736617
## Median Income
                            0.270039990 0.381633453
## Median_Age
                            0.266943246 0.098034158
## Tot_Rooms
                            0.001766034 0.025793644
```

```
## Tot_Bedrooms 0.005395423 0.006271400
## Population 0.007534597 0.006955846
## Households 0.001579612 0.013687637
## Distance_to_coast 0.389864894 0.078421785
## Distance_to_LA 0.204196793 0.102896031
## Distance_to_SanDiego 0.204898535 0.108588918
## Distance_to_SanJose 0.128197600 0.003740545
## Distance_to_SanFrancisco 0.171608054 0.050084343
```

18-Tracer le graphique des coefficients de corrélation des variables avec les projections sur le 1^{er} plan factoriel

```
plot(res,choix="var")
```


19-Conclusion

Après l'application de l'ACM, nous avons réduit les 36 modalités en 6 composantes. Cette réduction de dimensionnalité nous a permis de visualiser les modalités et les individus sur un plan factoriel et nous a permis de connaître les individus et les modalités qui contribuent le plus dans le sous espace obtenu.

On peut conclure que l'ACM a un rôle très important résumer l'information contenu dans un grand nombre de variables afin de faciliter l'interprétention des corrélations existantes entre ces différentes variables qui sont qualitatives.

Bibliographie

- $[1] \verb| <https://stackoverflow.com/questions/11308367/error-in-my-code-object-of-type-closure-is-not-subset for the context of the context o$
- $[2] \verb| <http://factominer.free.fr/factomethods/index_fr.html>|.$