Week 3 Tasks

Task 1

Examine the relationship between teaching score and age in the evals data set. What is the value of the correlation coefficient? How would you interpret this verbally? Finally, produce a scatterplot of teaching score and age.

Click here to see the solution

```
evals.age <- evals %>%
   dplyr::select(score, age)

cor(evals.age$score, evals.age$age)
```

[1] -0.107032

```
ggplot(evals.age, aes(x = age, y = score)) +
  geom_point() +
  labs(x = "Age", y = "Teaching Score",
      title = "Relationship between Teaching Score and Age")
```

Relationship between Teaching Score and Ac

Task 2

Perform a formal analysis of the relationship between teaching score and age by fitting a simple linear regression model. Superimpose your best-fitting line onto your scatterplot from the previous Task.

Click here to see the solution

$geom_smooth() using formula = 'y ~ x'$

Relationship between Teaching Score and Aç

Task 3

Assess the model assumptions from Task 2 by plotting the residuals diagnostic plots. Click here to see the solution

```
check_model(model,check=c("linearity","homogeneity","qq","normality"))
```


Task 4

Perform the same analysis we did on life expectancy from the gapminder data set in 2007. However, subset the data for the year 1997. Are there any differences in the results across this 10 year period?

Click here to see the solution

```
gapminder1997 <- gapminder %>%
    filter(year == 1997) %>%
    dplyr::select(country, continent, lifeExp)

lifeExp.continent <- gapminder1997 %>%
    summarize(median = median(lifeExp), mean = mean(lifeExp),.by=continent)
lifeExp.continent

# A tibble: 5 x 3
```

```
# A tibble: 5 x 3
continent median mean
<fct> <dbl> <dbl> <dbl>
1 Asia 70.3 68.0
2 Europe 76.1 75.5
3 Africa 52.8 53.6
4 Americas 72.1 71.2
5 Oceania 78.2 78.2
```

```
lifeExp.model <- lm(lifeExp ~ continent, data = gapminder1997)
lifeExp.model</pre>
```

```
Call:
```

```
lm(formula = lifeExp ~ continent, data = gapminder1997)
```

Coefficients:

(Intercept)	continentAmericas	continentAsia	continentEurope
53.60	17.55	14.42	21.91

continentOceania 24.59

Task 5

Return to the Credit data set and fit a multiple regression model with Balance as the outcome variable, and Income and Age as the explanatory variables, respectively. Assess the assumptions of the multiple regression model.

Click here to see the solution

```
# Select variables of interest
Cred <- Credit %>%
   select(Balance, Income, Age)
# Explore the data
Cred %>%
   skim()
```

Table 1: Data summary

Name	Piped data
Number of rows	400
Number of columns	3
Column type frequency:	
numeric	3
	-
Group variables	None

Variable type: numeric

skim_variab	h <u>e</u> missin g o	mplete_	r ate an	sd	р0	p25	p50	p75	p100	hist
Balance	0	1	520.02	459.76	50.00	68.75	459.50	863.00	1999.0	000000
Income	0	1	45.22	35.24	10.35	21.01	33.12	57.47	186.63	3 00000
Age	0	1	55.67	17.25	23.00	41.75	56.00	70.00	98.00	


```
# Correlation between covariates
Cred %>%
  cor()
```

```
BalanceIncomeAgeBalance1.0000000000.46365650.001835119Income0.4636564571.00000000.175338403Age0.0018351190.17533841.00000000
```

```
# Scatterplot
ggplot(Cred, aes(x = Age, y = Balance)) +
   geom_point() +
   labs(x = "Age (in years)", y = "Credit card balance (in $)",
        title = "Relationship between balance and age")
```

Relationship between balance and age


```
# Fit the model
Balance.model <- lm(Balance ~ Age + Income, data = Cred)
# Model output
tab_model(Balance.model,show.ci = F)</pre>
```

	Balance		
Predictors	Estimates	Р	
(Intercept)	359.67	<0.001	
Age	-2.19	0.069	
Income	6.24	<0.001	
Observations	400		
R^2/R^2 adjusted	0.221 / 0.218		

Check assumptions
check_model(Balance.model,check=c("linearity","homogeneity","qq","normality"))

