MATH 147 Calculus (Advanced)

Lecture Notes

Zhongwei Zhao

List of Lectures

Lecture 1, Sept.																				
Lecture 2, Sept	14																			4
Lecture 3, Sept	16																			6
Lecture 4, Sept	19																			7
Lecture 5, Sept																				
Lecture 6, Sept	23																			11
Lecture 7, Sept	26																			13
Lecture 8, Sept	28																			15
Lecture 9, Sept																				
Lecture 10, Sep																				
Lecture 11, Oct	. 3																			22
Lecture 12, Oct	. 5																			25
Lecture 13, Oct	. 6																			27
Lecture 14. Oct	. 7																			29

Lecture 1, Sept. 12

MikTex, Winshell

Basics on Sets and Functions

1.1 Definition. Basic Sets

- $\mathbb{N} = \text{Natural numbers} = \{1, 2, 3, \dots\}$
- $\mathbb{Z} = \text{Integers} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$
- $\mathbb{Q} = \{ \frac{m}{n} \mid n \in \mathbb{N}, m \in \mathbb{Z}, gcd(n, |m|) = 1 \}$
- \mathbb{R} = Real Numbers
- $\mathbb{R}\setminus\mathbb{Q} = \{x \in \mathbb{R} \mid x \text{ is not in } \mathbb{Q}\}$

Notation.

 $S \subset X \to S$ is a subset of X

If $S, T \subset X$ then $S \cup T = \{x \in X \mid x \in S \text{ or } x \in T\}$

If $S, T \subset X$ then $S \cap T = \{x \in X \mid x \in S \text{ and } x \in T\}$

Given a collection $\{A_{\alpha}\}_{{\alpha}\in I}$ of subsets of X

$$\bigcup_{\alpha \in I} A_{\alpha} = \{ x \in X \mid x \in A_{\alpha} \text{ for some } \alpha \in I \}$$

$$\bigcap_{\alpha \in I} A_{\alpha} = \{ x \in X \mid x \in A_{\alpha} \text{ for all } \alpha \in I \}$$

 $\emptyset = \text{empty set}, \ \emptyset \subset X$

What if
$$I = \emptyset$$
, what is $\bigcup_{\alpha \in \emptyset} A_{\alpha}$

Define

$$\bigcup_{\alpha \in \emptyset} A_{\alpha} = \emptyset$$

Then

$$\bigcap_{\alpha\in\emptyset}A_{\alpha}=??$$

Given $S, T \subset X$ we define

$$S \setminus T = \{ x \in X \mid x \in S, x \text{ does not belong to } T \}$$

We denote $X \setminus T$ by $T^c = \text{compliment of } T \text{ in } X = \{x \in X \mid x \text{ does not belong to } T\}$

Note.

$$(S \cup T)^c = S^c \cap T^c$$

De Morgans Law

1.2 Theorem.

$$(\bigcup_{\alpha\in I}A_{\alpha})^{c}=\bigcap_{\alpha\in I}A_{\alpha}^{c}$$

Proof.

$$x \in (\bigcup_{\alpha \in I} A_{\alpha})^{c} \iff x \text{ is not a member of } \bigcup_{\alpha \in I} A_{\alpha}$$

$$\iff x \text{ is not in } A_{\alpha} \quad \forall \alpha \in I$$

$$\iff x \in A_{\alpha}^{c} \quad \forall \alpha \in I$$

$$\iff x \in \bigcap_{\alpha \in I} A_{\alpha}^{c}$$

Note. From this we really should have

$$\bigcap_{\alpha \in \emptyset} A_{\alpha} = (\bigcup_{\alpha \in \emptyset} A_{\alpha}^{c})^{c}$$

$$= \emptyset^{c}$$

$$= X$$

Power Set

1.3 Definition. Given X, the Power Set of X is the set of all subset of X *Notation.*

$$P(X) = \text{power set of } X$$

= $\{S \mid S \subset X\}$

Note. We can observe that

$$\emptyset, X \in P(X)$$

Lecture 2, Sept. 14

New Section 12:30-1:20 CPH 3604 Tutorial Moved to DC 1350 Th 4:30-5:20

Greek Letters

- α alpha
- β beta
- ullet δ delta
- ullet ϵ epsilon
- γ gamma

Properties of \mathbb{N}

$$\mathbb{N} = \{1, 2, 3, 4, \dots\}$$

Mathematical Induction

2.1 Axiom. Assume $S \in \mathbb{N}$ such that

- 1. 1 ∈ *S*
- 2. If $k \in S$, then $k + 1 \in S$

Then $S = \mathbb{N}$

Proof by Induction

1. Establish for each $n \in \mathbb{N}$ a statement P(n) to be proved.

Example. Let P(n) be the statement that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$, show this is true for all $n \in \mathbb{N}$.

Let $S = \{n \in \mathbb{N} \mid P(n) \text{ is true}\}$, show $S = \mathbb{N}$

- 2. Base Case: show that P(1) is true. ie): $1 \in S$
- 3. Inductive Step: Assume that P(k) is true for some k (Inductive Hypothesis). Use this to show that P(k+1) is also true. ie): $k \in S \Rightarrow k+1 \in S$

4

By the Principle of Mathematical Induction, $S = \mathbb{N}$

2.2 Example. Prove that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Proof. Step.1 Let P(n) be the statement that $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$

Step.2 Let n = 1 then $P(1) = 1 = \frac{1(1+1)}{2}$. Hence P(1) is true.

Step.3 Assume that P(k) is rue for some k

$$P(k)\frac{k(k+1)}{2}$$

Step.4

$$\sum_{i=1}^{k+1} i = \sum_{i=1}^{k} i + (k+1)$$

$$= \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{(k+1)(k+2)}{2}$$

Hence P(k+1) is true

Step.5 By Principle of Mathematical Induction, P(n) is true for all $n \in \mathbb{N}$

2.3 Example. Prove that $3^n + 4^n$ is divisible by 7 for every odd n

Proof. Let P(k) be the statement that $3^{2k-1} + 4^{2k-1}$ is divisible by 7.

Base case: k = 1, P(1) is true.

Inductive Step: Assume P(j) is true.

$$3^{2(j+1)-1} + 4^{2(j+1)-1}$$

$$= 9(3^{2j-1}) + 16(4^{2j-1})$$

$$= 9(3^{2j-1} + 4^{2j-1}) + 7(4^{2j-1})$$

Hence P(j+1) is true.

By Principle of Mathematical Induction, P(k) is true for all n

Lecture 3, Sept. 16

Well Ordering Property

3.1 Theorem. If $S \in \mathbb{N}$ and $S \neq \emptyset$, then S contains a least element.

The following are equivalent

- 1. Principle of Mathematical Induction
- 2. Strong Induction
- 3. Well Ordering Principle

Note. A function f such that $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ can be defined by $f((m, n)) = 7^n 13^m$

Properties of $\ensuremath{\mathbb{R}}$

Interval

3.2 Theorem. A set $I \in \mathbb{R}$ is an interval if for each $x, y \in I$ with $x \leq y$ and $z \in I$ with $x \leq y \leq z$, we have $z \in I$

3.3 Question. 1. Is \emptyset an interval? Yes

2. Is {3} an interval? Yes

Other Intervals

1. $[a, b] = x \in \mathbb{R} \mid a \le x \le b \to \text{Closed Interval}$

2. $(a, b) = x \in \mathbb{R} \mid a < x < b \rightarrow \text{Open Interval}$

3. $[a, b) = x \in \mathbb{R} \mid a \le x < b \rightarrow \mathsf{Half}$ Open Half Closed Interval

4. $[a, \infty) = x \in \mathbb{R} \mid a \le x \to \text{Closed Ray}$

5. $(\infty, b] = x \in \mathbb{R} \mid x \le b \to \text{Closed Ray}$

6. $(0, \infty)$

7. $(-\infty, b)$

8. $(-\infty, \infty) = \mathbb{R}$

Lecture 4, Sept. 19

Least Upper Bound Property

Upper Bound

4.1 Theorem. Let $S \subset \mathbb{R}$ then $\alpha \in \mathbb{R}$ is an upper bound for S if $x \leq \alpha$ for all $x \in S$. We say that S is bounded above if S has an upper bound.

We say that β is a lower bound for S if $\beta \le x$ for all $x \in S$. We say that S is bounded below if S has a lower bound.

We say that S is bounded if it is bounded above and below.

4.2 Example. Let $S = \{x_1, x_2, ..., x_n\}$ be finite.

By relabeling, if necessary we can assume that

$$x_1 < x_2 < \cdots < x_n$$

Then $\beta = x_1$, β is a lower bound and $\alpha = x_n$ is an upper bound.

- **4.3 Theorem.** Every finite set is bounded.
- **4.4 Example.** Let $S = [0, 1) = \{x \in \mathbb{R} \mid 0 \le x < 1\}$ (finite interval)

5 is an upper bound. -1 is a lower bound.

1 is also an upper bound. Moreover if γ is any upper bound of S, then $1 \leq \gamma$

Least Upper Bound

- **4.5 Theorem.** We say that α is the least upper bound of a set $S \subset \mathbb{R}$ if
 - 1) α is an uppper bound of S
 - 2) if γ is an upper bound of S, then $\alpha \leq \gamma$

We write

$$\alpha = Iub(S)$$

(Sometimes α os called the supremum of S and is denoted by $\alpha = \sup(S)$)

Back to the example S = [0, 1). 0 is a lower bound and if γ is any lower bound, then $\gamma \leq 0$

Greatest Upper Bound

- **4.6 Theorem.** We say that β is the greatest lower bound of a set $S \subset \mathbb{R}$ if
 - 1) β is an lower bound of S
 - 2) if γ is an lower bound of S, then $\gamma \leq \beta$

We write

$$\beta = glb(S)$$

(Sometimes β os called the infimum of S and is denoted by $\beta = \inf(S)$)

4.7 Example. if S = [0, 1), lub(S) = 1, glb(S) = 0.

Note. Is ∅ bounded (above or below)?

Note: 6 is an upper bound for \emptyset . If not, there exists an element in \emptyset that is greater than 6. Similarly, 6 is a lower bound.

In fact, if $\gamma \in \mathbb{R}$ then γ is both an upper and a lower bound of \emptyset . \emptyset is a bounded set.

4.8 Example. Let $S = \{x \in \mathbb{Q} \mid x^2 < 2\} \subset \mathbb{R}$

 $\sqrt{2}$ is an upper bound and $-\sqrt{2}$ is a lower bound. And $lub(S) = \sqrt{2}$, $glb(S) = -\sqrt{2}$

4.9 Example. Let $S = \{x \in \mathbb{Q} \mid x^2 < 2\} \subset \mathbb{Q}$

S does not have a least upper bound or a greatest lower bound.

4.10 Question. If $S \subset R$ is bounded above, does it always have a least upper bound?

Least Upper Bound Property

4.11 Theorem. If $S \subset R$ is non-empty and bounded above, then S has a least upper bound.

Observation

- 1) Ø does not have a *lub*
- 2) If we only have rational numbers in the world, then $S = \{x \mid x^2 < 2\}$ does not have a lub. In other words, Least Upper Bound Property fails for \mathbb{Q}
- **4.12 Question.** is \mathbb{N} bounded?
 - 1) \mathbb{N} is bounded below, glb(S) = 1

Lecture 5, Sept. 21

- 1) No office hours this afternoon
- 2) WA1→ Due 2:30 PM Monday, Sept. 26. Submit in dropbox outside Math Tutorial Center.

Least Upper Bound Property If $S \subset \mathbb{R}$ is non-empty and bounded above, then S has a least upper bound.

Archimedean Property I

5.1 Theorem. \mathbb{N} is not bounded above.

Proof. Suppose that $\mathbb N$ was bounded above. Then $\mathbb N$ has a least upper bound α .

Note that $\alpha - \frac{1}{2} < \alpha$. Hence $\alpha - \frac{1}{2}$ is not an upper bound for \mathbb{N} . Then there exists $n \in \mathbb{N}$ with $\alpha - \frac{1}{2} < n \le \alpha$. But then $n+1 \in \mathbb{N}$ and $n+1 > \alpha$ which is impossible.

Therefore \mathbb{N} must not be bounded above.

Note. Let $S \neq \emptyset \subset \mathbb{R}$ be bounded above. Let $\alpha = lub(S)$. if $\epsilon > 0$ then there exist $x_0 \in S$ with $\alpha - \epsilon < x_0 \leq \alpha$.

Archimedean Property II

5.2 Corollary. Let $\epsilon > 0$, Then there exists $n \in \mathbb{N}$ such that

$$0 < \frac{1}{n} < \epsilon$$

Proof. Take $\alpha = \frac{1}{\epsilon}$ in Archimedean Property I.

Density of $\ensuremath{\mathbb{R}}$

5.3 Definition. A subset $S \subset \mathbb{R}$ is said to be dense if for every $\epsilon > 0$ and $x \in \mathbb{R}$,

$$S \cap (x - \epsilon, x + \epsilon) \neq \emptyset$$

or equivalently if $S \cap (a, b) \neq \emptyset$ for all a < b in \mathbb{R}

5.4 Proposition. \mathbb{Q} and $\mathbb{R}\backslash\mathbb{Q}=\mathbb{Q}^c$ are dense in \mathbb{R}

Absolute Values

5.5 Definition.

$$f(x) = \begin{cases} x & x \ge 0 \\ -x & x < 0 \end{cases}$$

5.6 Example.

$$g(x) = \frac{|x|}{x}$$

 $Domain = \{x \in \mathbb{R} \mid x \neq 0\}$

$$g(x) = \begin{cases} 1 & x > 0 \\ -1 & x < 0 \end{cases}$$

Geometric Interpretation of |x|

- |x| represents the distance from x to 0.
- |x a| represents the distance from x to a.

Note. Distance between (0,0) and (x,y)

$$\sqrt{x^2+y^2}$$

Properties of |x|

- 1) $|x| \ge 0$ and $|x| = 0 \iff x = 0$
- 2) |ax| = |a||x| for all $a \in \mathbb{R}, x \in \mathbb{R}$
- 3) Triangle Inequality

$$|x - z| + |z - y| \ge |x - y|$$

5.7 Theorem. Triangle Inequality *If* x, y, $z \in \mathbb{R}$, *then*

$$|x - z| + |z - y| \ge |x - y|$$

Proof. Use Geometric Interpretation.

5.8 Theorem. Variants I For all $x, y \in \mathbb{R}$,

$$|x + y| \le |x| + |y|$$

5.9 Theorem. Variants II For all $x, y \in \mathbb{R}$,

$$||x| - |y|| \le |x - y|$$

Lecture 6, Sept. 23

Inequalities

6.1 Example. Find all $x \in \mathbb{R}$ such that

$$0 < |x - 2| \le 4$$

Solution. [-2, 6] with $x \neq 2$

Three Basic Inequalities

- 1. $|x a| < \delta$
- 2. $0 < |x a| < \delta$
- 3. $|x a| \le \delta$

Solution. 1. $(a - \delta, a + \delta) = \{x \in R \mid a - \delta < x < a + \delta\}$

- 2. $(a \delta, a + \delta)$ with $x \neq a = \{x \in \mathbb{R} \mid a \delta < x < a + \delta, x \neq a\}$
- 3. $[a \delta, a + \delta] = \{x \in R \mid a \delta \le x \le a + \delta\}$

Sequence

6.2 Definition. A **sequence** is an infinite ordered list of real numbers.

Notation. $\{1, 2, 3, 4, \dots\}$ or $\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$

6.3 Definition. A **sequence** of real numbers is a function $a : \mathbb{N} \to \mathbb{R}$

The element f(n) is called the n-th term of the sequence. We often denote this by $f(n) = a_n$

Notation. We can denote sequences in many ways

- 1. $f(n) = \frac{1}{n}$ for all $n \in \mathbb{N}$
- 2. Let $a_n = \frac{1}{n}$
- 3. $\{1, \frac{1}{2}, \ldots, \frac{1}{n}, \ldots\}$
- 4. $\{\frac{1}{n}\}$
- 5. Sometimes we define sequences recursively.

$$a_1 = 1 \text{ and } a_{n+1} = \sqrt{3 + 2a_n} \text{ for all } n \ge 1.$$

Graphing Sequence

Subsequence

6.4 Definition. Let $\{a_n\}$ be a sequence, and let $\{n_k\}$ be a sequence of natural numbers with $n_1 < n_2 < n_3 < \cdots < n_k < n_{k+1} < \cdots$

The sequence $b_k = a_{n_k} \to \{b_k\}_{k=1}^{\infty}$ is called **subsequence** of $\{a_n\}$. We often write this as

$$\{a_{n_1}, a_{n_2}, \ldots, a_{n_k}, \ldots\}$$

Important Subsequences Given $\{a_n\}$, let $n_0 \in \mathbb{N} \cup \{0\}$. Define

$$b_k = a_{n_0+k}$$

This sequence is called a tail of $\{a_n\}$

Limits of Sequences Consider
$$\{\frac{1}{n}\} = \{1, \frac{1}{2}, \dots, \frac{1}{n}, \dots\}$$

Note. As n gets larger and larger, the terms of the sequence $\{\frac{1}{n}\}$ get closer and closer to 0. We would like to say that the sequence $\{\frac{1}{n}\}$ converges to 0 and call 0 the limit of $\{\frac{1}{n}\}$.

6.5 Definition. (Heuristic Definition of Convergence). We say that a sequence $\{a_n\}$ has a limit L if for every positive tolerance $\epsilon > 0$, the term a_n will approximate L with an error less than ϵ so long as the index n is large enough.

Lecture 7, Sept. 26

Writing Assignment 2 is due Friday Oct 14th.

Convergence of Sequences

- **7.1 Definition.** Heuristic definition I We say that a sequence $\{a_n\}$ converges to a limit L if as n gets larger and larger the a_n s get closer and closer to L.
- **7.2 Definition.** Heuristic definition II We say that a sequence $\{a_n\}$ converges to a limit L if for every positive tolerance $\epsilon > 0$, we have that the terms in $\{a_n\}$ approximate L with an error at most ϵ , provided that n is large enough.
- **7.3 Definition. Convergence of a Sequence** We say that $\{a_n\}$ converges to a limit L if for every $\epsilon > 0$, there exists a cutoff $N_0 \in \mathbb{N}$ such that if $n \geq N_0$, then $|a_n L| < \epsilon$

If no such L exists, we say that $\{a_n\}$ diverges.

7.4 Example. Consider $\{(-1)^{n+1}\} = \{1, -1, 1, -1, \dots\}$. Does this have a limit?

Proof. Let $\epsilon = 1$. Suppose $L = \lim_{n \to \infty} a_n$. Let N_0 be such that if $n \ge N_0$, then |a - L| < 1

Let $n_1 \geq N_0$ with n_0 even. Then

$$|-1-L| = |a_n - L| < 1$$

 $\to L \in (-2, 0)$

Let $n_1 \geq N_0$ with n_0 odd. Then

$$|1 - L| = |a_n - L| < 1$$
$$\rightarrow L \in (0, 2)$$

So

$$L \in (-2,0) \cap (0,2)$$

which is impossible.

Hence $\{a_n\}$ diverges.

Note. Suppose that $\lim_{n\to\infty} a_n = L$. Let $\epsilon > 0$. What can we say about the terms in $\{a_n\}$ that are in $(L - \epsilon, L + \epsilon)$?

For some N_0 , if $n \ge N_0$, then $a_n \in (L - \epsilon, L + \epsilon)$. ie) $(L - \epsilon, L + \epsilon)$ contains a tail of the sequence.

- **7.5 Proposition.** Let $\{a_n\}$ be a sequence. Then the following are equivalent.
 - 1. $L = \lim_{n \to \infty} a_n$
 - 2. for every $\epsilon > 0$, $(L \epsilon, L + \epsilon)$ contains a tail of $\{a_n\}$
 - 3. for every $\epsilon > 0$, $(L \epsilon, L + \epsilon)$ contains all but finitely many a_n

- 4. for open interval (a, b) with $L \in (a, b)$, we have (a, b) contains a tail of $\{a_n\}$
- 5. for open interval (a, b) with $L \in (a, b)$, the interval (a, b) contains all but finitely many a_n
- **7.6 Question.** Can $\{a_n\}$ have more than 1 limit?
- **7.7 Theorem. Uniqueness of Limit** Suppose that $\lim_{n\to\infty} a_n = L$ and $\lim_{n\to\infty} a_n = M$, then L = M

Proof. Assume that L < M. Let $\epsilon = \frac{M-L}{2}$.

We can choose N_1 large enough so that if $n \geq N_1$, $a_n \in (L - \epsilon, L + \epsilon)$

We can also choose N_2 large enough so that if $n \ge N_2$, $a_n \in (M - \epsilon, M + \epsilon)$

Let $N_0 = max\{N_1, N_2\}$. Choose $n \ge N_0$. Then $a_n \in (L - \epsilon, L + \epsilon) \cap (M - \epsilon, M + \epsilon)$

But $(L - \epsilon, L + \epsilon) \cap (M - \epsilon, M + \epsilon) = \emptyset$

Lecture 8, Sept. 28

8.1 Theorem. Assume that $\{a_n\}$ converges. then $\{a_n\}$ is bounded.

Proof. Assume that

$$L=\lim_{n\to\infty}a_n$$

Let $\epsilon=1$. Then there exists $N_0\in\mathbb{N}$ so that if $n\geq N_0$ then $|a_n-L|<1$

If $n \geq N_0$, then

$$|a_n| = |a_n - L + L| \le |a_n - I| + |L|$$

< 1 + |L|

Let

$$M = max|a_1|, |a_2|, \dots, |a_{N_0-1}|, |L| + 1$$

.

Then $|a_n| \leq M$ for all $n \in \mathbb{N}$.

Question: Do all bounded sequences converge?

No.

- **8.2 Definition.** 1. We say that a sequence $\{a_n\}$ is increasing if $a_n < a_n + 1$ for all $n \in \mathbb{N}$
 - 2. We say that $\{a_n\}$ is non-decreasing if $a_n \leq a_{n+1}$ for all $n \in \mathbb{N}$
 - 3. We say that $\{a_n\}$ is decreasing if $a_{n+1} < a_n$ for all $n \in \mathbb{N}$
 - 4. We say that $\{a_n\}$ is non-increasing if $a_{n+1} \leq a_n$ for all $n \in \mathbb{N}$

We say that $\{a_n\}$ is monotonic if $\{a_n\}$ satisfies one of the conditions.

Example:

1.

$$\{a_n\} = \{\frac{1}{n}\}$$

is decreasing, since

$$\frac{1}{n+1} \le \frac{1}{n}$$

for all $n \in \mathbb{N}$

2.

$$\{cos(n)\}$$

3. Let $a_1 = 1$,

$$a_{n+1} = \sqrt{3 + 2a_n}$$

Figure 1: $y = \sqrt{3 + 2x}$ and y = x

8.3 Theorem. Monotone Convergence Theorem

If $\{a_n\}$ is monotonic and bounded, then $\{a_n\}$ converges.

Proof. Assume that $\{a_n\}$ is non-decreasing and bounded above. Let $L = lub(\{a_n\})$

Let $\epsilon>0$, then $L-\epsilon$ is not an upper bound. Then there exists $N_0\in\mathbb{N}$ so that $L-\epsilon< a_{N_0}\leq L$. If $n\geq N_0$, then $L-\epsilon< a_{N_0}\leq a_n\leq L$, so $|a_n-L|<\epsilon$. Hence $L=\lim_{n\to\infty}a_n$

Similarly, if $\{a_n\}$ is non-increasing then $L=\lim_{n\to\infty}a_n$ where $L=glb(\{a_n\})$

8.4 Example. Let $a_1 = 1$,

$$a_{n+1} = \sqrt{3 + 2a_n}$$

We know that $0 \le a_n < a_{n+1} \le 3$ for all $n \in \mathbb{N}$. $\{a_n\}$ is increasing and bounded above. Hence $\{a_n\}$ converges.

- **8.5 Corollary.** A monotonic sequence $\{a_n\}$ converges iff it is bounded.
- **8.6 Definition.** We say a sequence **diverges to** ∞ if for every M>0 we can find a cutoff $N_0\in\mathbb{N}$ such that if $n\geq N_0$, then $M\leq a_n$, we write $\lim_{n\to\infty}a_n=\infty$.

Lecture 9, Sept. 29

9.1 Definition. We sat that $\{a_n\}$ diverges to ∞ if for every $M \ge 0$ there exists $N_0 \in \mathbb{N}$ such that if $n \ge N_0$, then $a_n > M$

We write

$$\lim_{n\to\infty}a_n=\infty$$

Figure 2: $\{a_n\}$ and M=2

9.2 Question. Does every sequence $\{a_n\}$ that is <u>not</u> bounded above diverges to ∞ ?

No. $\{0, 1, 0, 2, 0, 3, 0, 4, 0, 5, \dots\}$

Note. If $\{a_n\}$ is non-decreasing then either

- 1) $\{a_n\}$ is bounded and convergent
- 2) $\{a_n\}$ is unbounded and diverges to ∞
- **9.3 Question.** If a sequence is not bounded above, does it have a sub-sequence that diverges to ∞ ?

Series

Given a Sequence $\{a_n\}$, what does it mean to sum all of the terms of the sequence? That is what does the formal sum mean

$$a_1 + a_2 + a_3 + \dots = \sum_{n=1}^{\infty} a_n$$

9.4 Example.

$$\sum_{n=1}^{\infty} (-1)^{n+1}$$

9.5 Example.

$$\sum_{n=1}^{\infty} \frac{1}{2^n}$$

9.6 Definition. For each $k \in \mathbb{N}$, the kth partial sum is

$$S_k = \sum_{n=1}^k a_n = a_1 + a_2 + a_3 + \dots + a_k$$

We say that $\sum_{n=1}^{\infty} a_n$ converges if the sequence $\{S_k\}$ of partial sums converges. Otherwise we say the series diverges.

If the series converges we let

$$\sum_{n=1}^{\infty} a_n = \lim_{k \to \infty} S_k = \lim_{k \to \infty} \sum_{n=1}^{k} a_n$$

9.7 Example.

$$\sum_{n=1}^{\infty} (-1)^{n+1}$$

$$S_k = \begin{cases} 1 & \text{if } k \text{ is odd} \\ 0 & \text{if } k \text{ is even} \end{cases}$$

Thus S_k diverges

Geometric Series Let $r \in R$, consider

$$\sum_{n=0}^{\infty} r^n = 1 + r + r^2 + r^3 + \dots$$

$$S_k = \sum_{n=0}^k r^n = 1 + r + r^2 + r^3 + \dots + r^k$$

$$S_k = \frac{1 - r^{k+1}}{1 - r}$$
 if $r \neq 1$

Note. If |r| < 1 then $\lim_{k \to \infty} r^{k+1} = 0$

If |r| > 1 then $\lim_{k \to \infty} r^{k+1}$ does not exists

If r = -1 then $\lim_{k \to \infty} r^{k+1}$ does not exists.

If r = 1 then $S_k = k$ which diverges to infinity.

9.8 Example. $r = \frac{1}{2}$,

$$\sum_{n=0}^{\infty} r^n = \frac{1}{1 - \frac{1}{2}} = 2$$

Lecture 10, Sept. 30

Series

10.1 Definition. A series $\sum_{n=1}^{\infty} a_n$ is **positive** is for all $n \in \mathbb{N}$, if $S_k = \sum_{n=1}^k a_n$, then $S_{k+1} - S_k = a_{k+1} \ge 0$

10.2 Example. Harmonic Series Does $\sum_{n=1}^{\infty} \frac{1}{n}$ converge?

Let $S_k = \sum_{n=1}^k \frac{1}{n}$,

$$S_{1} = 1 = \frac{2}{2}$$

$$S_{2} = 1 + \frac{1}{2} = \frac{3}{2}$$

$$S_{4} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} > 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} = \frac{4}{2}$$

$$S_{8} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}$$

$$> 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{5}{2}$$

$$\vdots$$

$$S_{2^{k}} > \frac{2 + k}{2}$$

Since $\{\frac{2+k}{2}\}$ is not bounded, $\{S_k\}$ is not bounded.

10.3 Example. $\sum_{n=2}^{\infty} \frac{1}{n^2 - n}$

Note.

$$\frac{1}{n^2 - n} = \frac{1}{n(n-1)}$$
$$= \frac{1}{n-1} - \frac{1}{n}$$

Solution.

$$S_{1} = 1 - \frac{1}{2} = 1 - \frac{1}{2}$$

$$S_{2} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = 1 - \frac{1}{3}$$

$$S_{3} = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} = 1 - \frac{1}{4}$$

$$\vdots$$

$$S_{k} = 1 - \frac{1}{k}$$

As
$$k \to \infty$$
, $\sum_{n=2}^{\infty} \frac{1}{n^2 - n} = 1$

10.4 Example. $\sum_{n=1}^{\infty} \frac{1}{n^2}$

Note. For $n \ge 2$,

$$\frac{1}{n^2} < \frac{1}{n^2 - n}$$

$$T_k = \sum_{n=1}^k \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{k^2}$$

$$< 1 + \frac{1}{2^2 - 2} + \frac{1}{3^2 - 2} + \dots + \frac{1}{k^2 - k}$$

$$< 1 + 1$$

$$= 2$$

Since $T_k \leq 2$ for all k, $\{T_k\}$ is bounded and by the Monotone Convergence Theorem is convergent with $1 \leq \sum_{n=1}^{\infty} \frac{1}{n^2} \leq 2$.

In fact,
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$$

10.5 Example. Consider $\sum_{n=1}^{\infty} \frac{1}{n!}$, does this converge?

Note that $\frac{1}{n!} < \frac{1}{2^n}$ for $n \ge k$.

In fact,
$$\sum_{n=1}^{\infty} \frac{1}{n!} = e$$

Note.

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

Arithmetic Rules for Sequences

10.6 Question. Assume $a_n \to 3$, $b_n \to 7$.

What can you say about

- 1) $\{4a_n\}$
- 2) $\{a_n b_n\}$
- 3) $\{a_n + b_n\}$

4)
$$\{\frac{a_n}{b_n}\}$$

10.7 Theorem. Arithmetic Rules for Sequences Let $\{a_n\}$, $\{b_n\}$ be such that $\lim_{n\to\infty}a_n=L$, $\lim_{n\to\infty}b_n=M$. Then

1)
$$\lim_{n\to\infty} ca_n = cL$$
 for all $c \in \mathbb{R}$

2)
$$\lim_{n\to\infty} a_n + b_n = L + M$$

3)
$$\lim_{n\to\infty} a_n b_n = LM$$

4)
$$\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{L} \text{ if } L\neq 0$$

5)
$$\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M} \text{ if } M \neq 0$$

Proof. 1) If c=0 then $ca_n=0$ for all n. Hence $\lim_{n\to\infty}ca_n=\lim_{n\to\infty}0=0$ L=cL Suppose $c\neq 0$, Let $\epsilon>0$. We want N so that if $n\geq N$, $|ca_n-cL|<\epsilon\Leftrightarrow |a_n-L|<\frac{\epsilon}{|c|}$

Choose N_0 such that if $n \ge N_0$ we have $|a_n - L| < \frac{\epsilon}{|c|}$

If $n \geq N_0$,

$$|ca_n - cL| \le |a_n - L||c| < \frac{\epsilon}{|c|}|c| = \epsilon$$

Lecture 11, Oct. 3

WA2 now due Monday Oct. 17

EA2 due today

11.1 Theorem. Arithmetic Rules for Sequences Let $\{a_n\}$, $\{b_n\}$ be such that $\lim_{n\to\infty} a_n = L$, $\lim_{n\to\infty} b_n = M$. Then

- 1) $\lim_{n\to\infty} ca_n = cL$ for all $c \in \mathbb{R}$
- 2) $\lim_{n\to\infty} a_n + b_n = L + M$
- 3) $\lim_{n\to\infty} a_n b_n = LM$
- 4) $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{L}$ if $L\neq 0$
- 5) $\lim_{n\to\infty} \frac{a_n}{b_n} = \frac{L}{M} \text{ if } M \neq 0$
- 6) $\lim_{n\to\infty} \sqrt[k]{a_n} = \sqrt[k]{L}$ if $L \ge 0$

Proof.

1) If c=0 then $ca_n=0$ for all n. Hence $\lim_{n\to\infty}ca_n=\lim_{n\to\infty}0=0L=cL$ Suppose $c\neq 0$, Let $\epsilon>0$. We want N so that if $n\geq N$, $|ca_n-cL|<\epsilon\Leftrightarrow |a_n-L|<\frac{\epsilon}{|c|}$

Choose N_0 such that if $n \geq N_0$ we have $|a_n - L| < \frac{\epsilon}{|c|}$

If $n \geq N_0$,

$$|ca_n - cL| \le |a_n - L||c| < \frac{\epsilon}{|c|}|c| = \epsilon$$

2) Consider

$$|(a_n + b_n) - (L + M)| = |a_n - L + b_n - M|$$

 $\leq |a_n - L| + |b_n - M|$

Let $\epsilon > 0$. Choose $N_1 \in \mathbb{N}$ so that

$$n \ge N_1 \to |a_n - L| < \frac{\epsilon}{2}$$

Choose $N_2 \in \mathbb{N}$ so that

$$n \ge N_2 \to |b_n - M| < \frac{\epsilon}{2}$$

Let $N_0 = max\{N_1, N_2\}$. If $n \ge N_0$

$$|(a_n + b_n) - (L + M)| \le |a_n - L| + |b_n - M|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

3) Consider $|a_nb_n - LM|$

$$|a_{n}b_{n} - LM|$$

$$= |a_{n}b_{n} - b_{n}L + b_{n}L - LM|$$

$$= |(a_{n} - L)b_{n} + L(b_{n} - M)|$$

$$\leq |(a_{n} - L)b_{n}| + |L(b_{n} - M)|$$

By 1), we can find N_1 so that if $n \geq N_1$,

$$|L||b_n-M|\leq \frac{\epsilon}{2}$$

Since $\{b_n\}$ is convergent it is bounded. So there exists c>0 so that $|b_n|< c$ Then $|b_n|\,|a_n-L|< c\,|a_n-L|$

Choose N_2 so that if $n \geq N_2$

$$|a_n - L| < \frac{\epsilon}{2c}$$

If $N_0 = max\{N_1, N_2\}$ and $n \ge N_0$ then

$$|a_n b_n - LM| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

4)

$$\left|\frac{1}{a_n} - \frac{1}{L}\right| = \frac{|a_n - L|}{|a_n| |L|}$$

Since $a_n \to L$, $L \neq 0$ we can find $N_1 \in \mathbb{N}$ so that if $n \geq N_1$, then

$$|a_n-L|<\frac{|L|}{2}\to |a_n|\geq \frac{|L|}{2}$$

If $n \geq N_1$ then

$$\left| \frac{1}{a_n} - \frac{1}{L} \right| = \frac{|a_n - L|}{|a_n| |L|} \le \frac{|a_n - L|}{\frac{|L|}{2} |L|} = \frac{|a_n - L|}{\frac{|L|^2}{2}}$$

Let $\epsilon > 0$. Choose N_2 so that if $n \geq N_2$

$$\frac{|a_n - L|}{\frac{|L|^2}{2}} < \epsilon$$

Let $N_0 = max\{N_1, N_2\}$ if $n \ge N_0$

$$\left|\frac{1}{a_n} - \frac{1}{L}\right| < \epsilon$$

- 5) Follows from 3 and 4.
- 6) Homework

Note. If $\lim_{n\to\infty} a_n = L$, $\lim_{n\to\infty} n_n = M$

$$\lim_{n\to\infty}\frac{a_n}{b_n}=\frac{L}{M} \text{ if } M\neq 0$$

What happens if M = 0?

It depends on a_n .

11.2 Example.
$$a_n = b_n = \frac{1}{n}$$

11.3 Example.
$$a_n = \frac{1}{n}, b_n = \frac{1}{n^2}$$

11.4 Proposition. Assume that $\lim_{n\to\infty}\frac{a_n}{b_n}$ exists and that $\lim_{n\to\infty}b_n=0$ then $\lim_{n\to\infty}a_n=0$.

Proof.

$$a_n = (b_n)(\frac{a_n}{b_n})$$

$$= \lim_{n \to \infty} a_n$$

$$= \lim_{n \to \infty} b_n \lim_{n \to \infty} \frac{a_n}{b_n}$$

$$= 0L$$

$$= 0$$

Lecture 12, Oct. 5

12.1 Example. Find $\frac{3n^2 + 2n}{5n^2 + 2}$

Solution.

$$\lim_{n \to \infty} \frac{3n^2 + 2n}{5n^2 + 2} = \lim_{n \to \infty} \frac{n^2}{n^2} \frac{3 + \frac{2}{n}}{5 + \frac{2}{n^2}}$$

$$= \frac{\lim_{n \to \infty} 3 + \lim_{n \to \infty} \frac{2}{n}}{\lim_{n \to \infty} 5 + \lim_{n \to \infty} \frac{2}{n^2}}$$

$$= \frac{3 + 0}{5 + 0}$$

$$= \frac{3}{5}$$

Note. If $a_k b_j \neq 0$

$$\lim_{n \to \infty} \frac{a_0 + a_1 n + \dots + a_k n^k}{b_0 + b_1 n + \dots + b_j n^j} = \begin{cases} \frac{a_k}{b_j} & \text{if } k = j \\ 0 & \text{if } j > k \\ \infty & \text{if } j < k, a_k b_j > 0 \\ -\infty & \text{if } j < k, a_k b_j < 0 \end{cases}$$

12.2 Example. Find

$$\lim_{n\to\infty}\sqrt{n^2+n}-n$$

Solution.

$$\lim_{n \to \infty} \sqrt{n^2 + n} - n = \lim_{n \to \infty} (\sqrt{n^2 + n} - n) \cdot \frac{\sqrt{n^2 + n} + n}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n \to \infty} \frac{n^2 + n - n^2}{\sqrt{n^2 + n} + n}$$

$$= \lim_{n \to \infty} \frac{n}{\sqrt{1 + \frac{1}{n} + 1}}$$

$$= \frac{n}{\sqrt{1 + \lim_{n \to \infty} \frac{1}{n} + 1}}$$

$$= \frac{1}{2}$$

- **12.3 Example.** $a_1 = 1$ and $a_{n+1} = \frac{1}{1+a_n}$. Suppose that $\{a_n\}$ converges, find $\lim_{n\to\infty} a_n$
- **12.4 Proposition.** A sequence $\{a_n\}$ converges to L if and only if every sub-sequence $\{a_{n_k}\}$ converges to L

Proof. Assume that $\lim_{n\to\infty}a_n=L$. Let $\{a_{n_k}\}$ be a sub-sequence. Let $\epsilon>0$, we can find a N_0 so that if $n\geq N_0$, then $|a_n-L|<\epsilon$.

Let $k_0 \ge N_0$, then $k \ge k_0 \Rightarrow n_k \ge n_{k_0} \ge N_0$

Hence
$$|a_{n_k} - L| < \epsilon$$

Solution. If

$$\lim_{n\to\infty}a_n=\lim_{n\to\infty}a_{n+1}$$

Then,

$$L = \frac{1}{1+L}$$

$$L^2 + L - 1 = 0$$

$$L = \frac{-1 \pm \sqrt{5}}{2}$$

12.5 Question. Does $\{a_n\}$ converge?

Solution. Claim that for any k,

$$a_{2k} < a_{2k+2} < a_{2k+1} < a_{2k-1}$$

Proof by induction.

 $\{a_{2k-1}\}\$ is decreasing and bounded below by 0

 $\{a_{2k}\}$ is increasing and bounded above by 1.

Let $\lim_{n\to\infty} a_{2k} = M$ and $\lim_{n\to\infty} a_{2k-1} = L$.

Since
$$M = \frac{-1 + \sqrt{5}}{2}$$
 and $L = \frac{-1 + \sqrt{5}}{2}$, $M = I$

Thus, $\{a_n\}$ converges.

12.6 Example. Find

$$\lim_{n\to\infty}\frac{\cos(n)}{n}$$

Lecture 13, Oct. 6

Squeeze Theorem

13.1 Example. Find

$$\lim_{n\to\infty}\frac{\cos(n)}{n}$$

Observation:

$$|\cos(n)| \le 1$$

$$\frac{-1}{n} \le \frac{\cos(n)}{n} \le \frac{1}{n}$$

13.2 Theorem. Squeeze Theorem If $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ are such that $a_n \leq b_n \leq c_n$ with $\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n$, then $\lim_{n \to \infty} b_n = L$

Proof. Let $\epsilon > 0$, then exists $N_0 \in \mathbb{N}$ so that if $n \ge N_0$ then $a_n \in (L - \epsilon, L + \epsilon)$ and $c_n \in (L - \epsilon, L + \epsilon)$ If $n \ge N_0$,

$$L - \epsilon < a_n \le b_n \ge c_n < L + \epsilon$$

 $|b_n - L| < \epsilon$

Solution. We know that

$$\frac{-1}{n} \le \frac{\cos(n)}{n} \le \frac{1}{n}$$

since $|cos(n)| \le 1$

Since $\lim_{n\to\infty} -\frac{1}{n} = 0 = \lim_{n\to\infty} \frac{1}{n}$

Then

$$\lim_{n\to\infty}\frac{\cos(n)}{n}=0$$

13.3 Example.

$$\lim_{n\to\infty} (1+\frac{1}{n})^n = e$$

Note. If $\{a_n\}$ is bounded, then

$$\lim_{n\to\infty}\frac{a_n}{n}=0$$

Bolzano-Weierstrass Theorem

Note. We know that convergent sequences are bounded. But bounded sequences do not have to converge.

Does every bounded sequences have a convergent sub-sequence?

Strategy Bounded + monotonic ⇒ convergent

Does every sequence have a monotonic sub-sequence

13.4 Definition. Given $\{a_n\}$ we call an index n_0 a **peak point** for $\{a_n\}$ if $a_n < a_{n_0}$ for all $n \ge n_0$

13.5 Lemma. Peak Point Lemma Every sequence $\{a_n\}$ has a monotonic sub-sequence.

Proof. Let $P = \{n \in \mathbb{N} \mid n \text{ is a peak point of } \{a_n\}\}$

Case 1. P is infinite.

Let n_1 = least element of P

Let n_2 = least element of P $\{n_1\}$

. . .

This gives us a sequence recursively

$$n_1 < n_2 < \cdots < n_k < \cdots \in P$$

Since these are peak points,

$$a_{n_k} > a_{n_{k+1}}$$

Thus $\{a_{n_k}\}$ is decreasing.

Case 2. Let n_1 be the least index that is not a peak point. Since n_1 is not a peak point, we can choose $n_2 > n_1$ so that

$$a_{n_1} \leq a_{n_2}$$

Since n_0 is not a peak point, then we can choose $n_3 > n_2$ so that

$$a_{n_2} \leq a_{n_3}$$

We can proceed recursively, to find that

$$n_1 < n_2 < \cdots < n_k < \dots$$

Where $a_{n_k} \leq a_{n_{k+1}}$

Thus $\{a_{n_k}\}$ is non-decreasing.

In either case we have a monotonic sub-sequence.

13.6 Theorem. Bolzano-Weierstrass Theorem Every bounded sequences has a convergent sub-sequence.

Proof. Give $\{a_n\}$, by the Peak Point Lemma $\{a_n\}$ has a monotinic subsequence $\{a_{n_k}\}$, which is also bounded. Bu the MCT, $\{a_{n_k}\}$ is convergent.

Note. BWT is equivalent to MCT which is equivalent to the LUBP.

Lecture 14, Oct. 7

14.1 Theorem. Bolzano-Weierstrass Theorem Every bounded sequences has a convergent sub-sequence.

14.2 Definition. We say that $\alpha \in \mathbb{R}$ is a **limit point** of $\{a_n\}$ if there exists a sub-sequence $\{a_{n_k}\}$ with $\lim_{n\to\infty}a_{n_k}=\alpha$

LET $LIM(\{a_n\}) = \{\alpha \in \mathbb{R} \mid \alpha \text{ is a limit point of } \{a_n\}$

14.3 Example.
$$a_n = (-1)^{n+1} \to \{1, -1, 1, -1, \dots\}$$

$$LIM({a_n}) = {1, -1}$$

14.4 Example. $a_n = n \to \{1, 2, 3, \dots\}$

$$LIM(\{a_n\}) = \emptyset$$

Fact If $\{a_n\}$ converges with $\lim_{n\to\infty} a_n = L$, then $LIM(\{a_n\}) = \{L\}$

14.5 Question. If $\{a_n\}$ is such that $LIM(\{a_n\})$ contains only one value α , does $\{a_n\}$ converges to α ?

No. Counterexample:

$${a_n} = {1, \frac{1}{2}, 3, \frac{1}{4}, 5, \dots}$$

14.6 Proposition. α is a limit point of $\{a_n\}$ if for every $(\alpha - \epsilon, \alpha + \epsilon)$ contains infinite many terms of the sequence.

Assume α is a limit point of $\{a_n\}$, then there exists a sub-squence $\{a_{n_k}\}$ with $a_{n_k} \to \alpha$. There exists $K_0 \in \mathbb{N}$ so that $k \ge K_0 \to |a_{n_k} - \alpha| < \epsilon \to a_{n_k} \in (\alpha - \epsilon, \alpha + \epsilon)$

Proof. Assume that $\forall \epsilon > 0$, $(\alpha - \epsilon, \alpha + \epsilon)$ contains infinitely many terms of $\{a_b\}$

For $\epsilon=1$ we can find n_1 so that $a_{n_1}\in(\alpha-1,\alpha+1)$

$$a_{n_2} \in (\alpha - \frac{1}{2}, \alpha + \frac{1}{2})$$

Suppose we have $n_1 < n_2 < n_3 < \cdots < n_k$ with

$$a_{n_j} \in (\alpha - \frac{1}{j}, \alpha + \frac{1}{j})$$

Since $(\alpha - \frac{1}{k+1}, \alpha + \frac{1}{k+1})$ contains infinitely many $a_n s$. there is $n_{k+1} > n_k$ with $a_{n_{k+1}} \in (\alpha - \frac{1}{k+1}, \alpha + \frac{1}{k+1})$

We proceed recursively to get a sub-sequence $\{a_{n_k}\}$ with

$$a_{n_k} = (\alpha - \frac{1}{k}, \alpha + \frac{1}{k})$$

$$\alpha - \frac{1}{k} < a_{n_k} < \alpha + \frac{1}{k}$$

By the squeeze theorem, $a_{n_k} o lpha$

14.7 Question.

1. Suppose $\{a_n\}$ is bounded and $LIM(\{a_n\}) = \{L\}$, does $\lim_{n\to\infty} L$?

2. Does there exists $\{a_n\}$ with $LIM(\{a_n\}) = \{R\}$

3. For which subsets S of R does there exists $\{a_n\}$ with $LIM(\{a_n\}) = S$?

Cauchy Sequence

14.8 Question. Is there an intrinsic way to characterize a convergent sequence?

Note. If $\lim_{n\to\infty} a_n = L$ and if $\epsilon > 0$ then we can find N_0 so that if $n \ge N_0$ m

$$|a_n-L|<rac{\epsilon}{2}$$

If $n, m \geq N_0$, then

$$|a_n - a_m| = |(a_n - L) + (L - a_m)|$$

$$\leq |a_n - L| + |L - a_m|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

14.9 Definition. A sequence $\{a_n\}$ is **Cauchy** is for every $\epsilon > 0$, then there exists $N_0 \in \mathbb{N}$ so that if $n, m \geq N_0$, then

$$|a_n - a_m| < \epsilon$$

14.10 Proposition. Every convergent sequence is Cauchy

14.11 Question. Does every Cauchy sequence Converges?

14.12 Lemma. Every Cauchy Sequence is bounded.

Proof. Let $\epsilon=1$ and choose N_0 so that if $n,m\geq N_0$, then $|a_n-a_m|<\epsilon$

Hence, if $n \geq N_0$ then

$$|a_n - a_{N_0}| < 1 \rightarrow |a_n| \le |a_{N_0}| + 1$$

Let $M = max\{|a_1|, |a_q|, ..., |a_{N_0-1}|, |a_{N_0}| + 1\}$

14.13 Lemma. Let $\{a_n\}$ be Cauchy. Assume that $\{a_{n_k}\}$ is such that $\lim_{k\to\infty}a_{n_k}=L$, then

$$\lim_{n\to\infty}a_n=L$$

Proof. Let $\epsilon > 0$. We can find a N_0 so that if $n, m \ge N_0$, then

$$|a_n-a_m|<\frac{\epsilon}{2}$$

Let $n \geq N_0$

$$|a_n - L| = |(a_n - a_{n_k}) + (a_{n_k} - L)|$$

$$\leq |a_n - a_{n_k}| + |a_{n_k} - L|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

14.14 Theorem. Completeness Property for \mathbb{R} *Every Cauchy Sequence Converges.*

Proof. If a_n is Cauchy, then a_n is bounded. By BWT, a_n has a convergent sub-sequence $\{a_{n_k}\}$. Hence a_n converges. (by Lemma 2.)