# ITMO.Hack







Deep Learning Part I Semyon Polyakov

# Outline

#### Intro

ML vs DL DL history

#### **Architectures**

Feedforward networks

CNN

RNN

**Transformers** 



Figure: Big picture of Deep learning



Figure: Big picture of ML

## ML feature engineering steps

- 1. Collect raw features
- 2. Design complex features
- 3. Repeat if not enough

#### ML feature engineering steps

- 1. Collect raw features
- 2. Design complex features
- 3. Repeat if not enough

DL feature engineering steps

- 1. Feed raw features
- 2. Stack more layers

# DL history



Figure: Brief Deep learning timeline

# Perceptron

## Perceptron description



Figure: Perceptron scheme

# Perceptron



Figure: Mark I with camera system and C symbol

# Perceptron learning algorithm

$$y(x) = f(w^T \phi(x))$$
 $\phi_0(x) = 1$ 
 $f(a) = \begin{cases} +1, & a \geq 0 \\ -1, & a < 0 \end{cases}$ 
 $E(w) = -\sum_{n \in M} w^T \phi_n t_n$ 
 $M -$ misclassified examples,  $t \in \{-1, +1\}$ 
 $\phi(x) -$ fixed nonlinear function of  $x$ 

# Perceptron learning algorithm



Figure: Perceptron learning example

# Perceptron limitations

#### Limitations

- ▶ Only binary classification for linearly separable classes
- Slow convergence

#### Note

Logistic regression - similar, but better



Figure: Gradient descent

#### Gradient descent optimization

$$w_{(\tau+1)} = w_{(\tau)} - \eta \nabla E(w_{(\tau)})$$

#### Limitations

- Convergence depends on learning rate
- Finds local minimum
- Can find saddle point instead of local minimum
- ► Fast convergence only for univariate normal distributed weights

#### Note

Warmup and LR scheduling for solving problems above

Backpropagation - effective way to calculate the gradient of neural network

$$a_{j} = \sum_{i} w_{ji} z_{j}$$

$$z_{j} = h(a_{j})$$

$$\frac{\partial E_{n}}{\partial w_{ji}} = \frac{\partial E_{n}}{\partial a_{j}} \frac{\partial a_{j}}{\partial w_{ji}}$$

$$\delta_{j} = \frac{\partial E_{n}}{\partial a_{j}}$$

$$\frac{\partial a_{j}}{\partial w_{ji}} = z_{i}$$

$$\delta_{k} = v_{k} - t_{k}$$



Figure: Backpropagation

#### Notes

- ► Much faster than finite differences approximation
- Applied to any neural networks
- One can use the same way to calculate Hessian
- ▶ Need to store activations in memory, but there is a gradient checkpoints method
- ► Can vanish or explode gradients
- Initialiation is non-trivial

What is next?

Neural networks architectures count is innumerable

## Feedforward networks

#### **Applications**

- ► Tabular data classification (works worse than ML algorithms)
- ► Tabular data encoding (better than PCA)
- Part of other neural networks

#### Feedforward networks

#### Layers:

- ► Dense (Matrix multiplication)
- Activations: tanh, ReLU, ReLU-6, Leaky ReLU, ELU, SELU, Swish, ...
- Dropout, BatchNormalization, LayerNormalization, ...

# Activations strategy:

- 1. Use ReLU. Be careful with your learning rates
- 2. Try out Leaky ReLU / ELU / SELU / Swish to squeeze out some marginal gains
- 3. Don't use sigmoid or tanh

# Preprocessing

- ► Gaps filling + categorical encoding (only numbers)
- Outliers cleaning
- ► Normalization (zero mean and unite variance)
- Whitening (zero mean and identity covariance)
- Class balancing

## Structured data



Figure: Structured data vs unstructured

# **CNN**

Convolutional neural networks

# **CV** Tasks

#### Computer vision tasks:

- ► Image Classification
- ▶ Object Detection
- ► Image Classification With Localization
- ► Object Segmentation
- ► Image Style Transfer
- ► Image Colorization
- ► Image Reconstruction
- ► Image Super-Resolution
- ► Image Synthesis
- ► OCR
- Other Problems



Figure: Style transfer

# **CNN**



Figure: One of the first CNN - LeNet

# **CNN**



Figure: Convolutional layer scheme

# **CNN** features



Figure: CNN patterns at different layers

# Preprocessing

## Preprocessing:

- 1. Look at the data
- 2. Outliers cleaning
- 3. Normalization (grayscale or histogram equalization)
- 4. Old-school CV methods (blurring, background removal..)
- 5. Augmentation (rotations, flips, crops, style changes, ..)
- 6. Resize

# Layers and hacks

#### Layers:

- 1. Convolutions (+ upconv, + depthwise separable convolutions)
- 2. Pooling (Avg, Min, Max, + Global)

#### Hacks:

- 1. Inception-like blocks
- 2. Factorization (1 big Conv to 2 small Conv)
- 3. 1x1 convolutions
- 4. Residual connections
- 5. Train top weights with full resolution
- 6. FixRes augmentation with correct train resizing

# Models

#### Classification:

- 1. VGG-16 (2014)
- 2. ResNeXt-50 (2017)
- 3. MobileNetV2 (2018)
- 4. EfficientNet (2019)
- 5. FixEfficientNet-L2 (2020)

#### Object detection:

- 1. Faster R-CNN (2016)
- 2. Mask R-CNN (2018)
- 3. EfficientDet (2019)
- 4. CSP-p7 + Mish (2019)



Figure: Imagenet accuracy timeline

Recurrent neural networks

## **RNN Tasks**

## Sequence processing tasks:

- ► Text sequences: characters, words, n-grams, BPE
- Video (classification, detection, captioning,..)
- Audio (classification, Speech2Text, Text2Speech, ..)
- Time series: financial, social networks (forecasting, classification, ..)
- Other



Figure: Video captioning

Common formula:  $h_t = f(h_{t-1}, x_t)$ Vanilla RNN:

$$h_t = tanh(W_{hh}h_{t-1}) + W_{xh}x_t$$
  $y_t = W_{hy}h_t$ 

GRU:

$$egin{aligned} r_t &= \sigma(W_{\mathsf{xr}} \mathsf{x}_t + W_{\mathsf{hr}} h_{t-1} + b_r) \ &z_t &= \sigma(W_{\mathsf{xz}} \mathsf{x}_t + W_{\mathsf{hz}} h_{t-1} + b_z) \ & ilde{h}_t &= anh(W_{\mathsf{xh}} \mathsf{x}_t + W_{\mathsf{hh}} (r_t \odot h_{t-1} + b_h) \ &h_t &= z_t \odot h_{t-1} + (1 - z_t) \odot \tilde{h}_t \end{aligned}$$

⊙ - Hadamard product



Figure: Gated recurrent unit scheme

## LSTM (1997)



Figure: Long-short term memory scheme



Figure: Recurrent neural network types



Figure: Sequence2Sequence architecture. Example - machine translation

#### RNN notes

#### Notes:

- 1. Additive operations helps to avoid vanishing gradients (see also residual and highway layers)
- 2. Gradient exploding is controlled by gradient clipping
- 3. Train initial state
- 4. Tie inputs and outputs when it is possible
- 5. One can stack RNN layers as any other layer (ELMO RNN)
- 6. Other NN can be input for the NN (W2V, CNN + RNN for video tasks)
- 7. Bidirectional RNN often outperforms
- 8. Stephen Merity's SHA-RNN paper https://arxiv.org/pdf/1911.11423.pdf



Figure: Neural architecture search, applied for language modeling, ICLR 2017

**Attention and Transformers** 

## **Transformers**



Figure 1: The Transformer - model architecture.

Figure: Trasnformer architecture from paper "Attention is All you need"



#### Transformers Tasks

- ► All NLP tasks (classification, autoencoding, synthesis, ..)
- ► Attention mechanism applied everywhere CV, speech, tabular data, ...
- ▶ One of the biggest models (GPT-2, GPT-3, ..)

#### Transformers: notes

#### Notes:

- 1. No vanishing gradients in comparison to RNN
- 2. A lot of models is computationally expensive
- 3. Almost never meet overfitting
- 4. There is optimizations for long sequences (Transformer-XL, Reformer)

#### **Transformers**



Figure: Replaced token detection vs masked language models. ICLR 2020

# Thank you for attention!



