FACULDADE: UNIP

CURSO: CIÊNCIA DA COMPUTAÇÃO – 2º SEMESTRE

TURMA: CC1P36

CAMPUS: CIDADE UNIVERSITÁRIA

RA: G1705J1

PROFESSOR: PAULO ROGÉRIO

CLD – CIRCUITOS LÓGICOS DIGITAIS

ENUNCIADO

Um misturador de produtos químicos está representado na figura a seguir. Neste sistema, temos um motor que gira a hélice que mistura os produtos, representado pela letra M; temos também o sensor de nível S1 e S2, que indica que o tanque já encheu até os níveis correspondentes, e as válvulas de passagem dos produtos, representadas por V1 e V2. Tanto o motor, quanto o sensor e válvulas são considerados ligados ou ativados quando estiverem com nível lógico 1, e desligados ou desativados, em nível lógico 0. Projete o circuito de controle do motor M para que somente quando o nível do tanque atingir o sensor S1 este seja ligado e desligado quando o S2 for ativado. A válvula V1 ficará aberta até o S1 ser ativado. A válvula V2 ficará aberta quanto o sensor S1 for ativado e até o S2 estiver desativado. O tanque deve manter a temperatura interna sempre na faixa de 15 graus e 20 graus Celsius, controlada automaticamente por um sistema de controle digital. Para isto, foram instalados internamente dois sensores de temperatura que fornecem níveis 0 e 1 nas seguintes condições: T1 = 1, para temperaturas maiores ou iguais a 15 graus; T2 = 1, para temperaturas maiores ou iguais a 20 graus Celsius. Projetar um circuito de controle para fazer o controle de temperatura deste tanque através do acionamento de um aquecedor A, ou de um resfriador R, sempre que a temperatura interna sair da faixa desejada Após o término do processo e nas condições ideais o sinalizador deverá ser ativado sinalizando que o processo foi encerrado.

<u>"Tabela Verdade"</u>						******				
	Enti	ra da				Sa	ída			***PAINEL***
S-1	S-2	T-1	T-2	V-1	V-2	M	А	R	S	
0	0	0	0	1	0	0	1	0	1	Ligar "V-1" para encher o tanque / ligar "Aq. Para aquecer o produto
0	0	0	1	0	0	0	0	0	0	("Pani") Desliga tudo / temperatura com defeito
0	0	1	0	1	0	0	0	0	1	Aguarde / "V1" enchendo o tanque / temperatura normal
0	0	1	1	1	0	0	0	1	0	"V-1" ligado /T-1 acima da media / ligar resfriador "R"
0	1	0	0	1	0	0	0	0	0	("Pani") "S-2" ou "S1" / defeito em um dos sensores / desliga tudo
0	1	0	1	0	0	0	0	1	0	("Pani") "S-2" ou "S1" e T-1 / defeito nos sensores / desliga tudo
0	1	1	0	1	0	0	0	0	0	("Pani") "S-2" ou "S1" / defeito em um dos sensores / desliga tudo
0	1	1	1	1	0	0	0	1	0	("Pani") "S-2" ou "S1" / defeito em um dos sensores / desliga tudo
1	0	0	0	0	1	1	1	0	1	Tanque cheio até Nivel 1/ "S1" e "V-2" e " M" e "A" ligados
1	0	0	1	0	0	0	0	0	0	("Pani") Desliga tudo / sensor da temperatura com defeito
1	0	1	0	0	1	1	0	0	1	"V-2" e "M" ligado/temperatura normal
1	0	1	1	0	1	1	0	1	0	"V-2" e "M" e "R" ligado/temperatura superaquecida
1	1	0	0	0	0	0	1	0	1	Produto no nivél / temperatuara fria / "A" Ligado
1	1	0	1	0	0	0	0	0	0	("Pani") Desliga tudo / temperatura com defeito
1	1	1	0	0	0	0	0	0	1	Tudo OK
1	1	1	1	0	0	0	0	1	1	"R" Resfriador ligado

VALVULA - 2

1	0	0	0	1
1	0	1	0	1
1	0	1	1	1

$$V_{-2} = S1. S2'.T2' + S1.S2'.T1$$

S1 S2 T1 T2		MAPA DE KARNAUNG				
		00	01	11	10	
	00					
-2	01					
V-2	11					
	10	1		1	1	

https://www.multisim.com/content/zTD6DDfWNpA4SpvqvWFKd7/valvula-2/

MOTOR

1	0	0	0	1
1	0	1	0	1
1	0	1	1	1

M = S1.S2'.T2' + S1.S2'.T1

VALVULA - 1

0	0	0	0	1
0	0	1	0	1
0	0	1	1	1
0	1	0	0	1
0	1	1	0	1
0	1	1	1	1

$$V_{-1} = S1'.T2 + S1'.T1$$

https://www.multisim.com/contributors/381914-rogeralmeida/my-circuits/

AQUECEDOR

0	0	0	0	1
1	0	0	0	1
1	1	0	0	1

Aq:=S2'.T1'.T2'+ S1.T1'.T2'

https://www.multisim.com/contributors/381914-rogeralmeida/my-circuits/

RESFRIADOR

0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	1	1	1
1	1	1	1	1

R:=T1.T2 + S1'.S2.T2

S1 S2 T1 T2		MAPA DE KARNAUNG					
		00	01	11	10		
	00			1			
~	01		1	1			
R	11			1			
	10			1			

SINALIZADOR

0	0	0	0	1
0	0	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	0	1
1	1	1	1	1

S=S1'.S2'.T2 + S1.T2' + S1.S2.T1


```
B' B' B' A(S2'.T2' + S2'.T1 + S1'.T2 + S1'.T1 + T1.T2 + S1'.S2.T2 + S2'.T1'.T2' + T1'.T2' + S2'.T2' + S2'.T1 + S1'.S2'.T2 + T2' + S2.T1)
C' C' C' C' A(S2'( T2' + T1 + S1'.T2 + S1'.T1 + T1.T2 + S1'.S2.T2 + T1'.T2' + T1'.T2' + T2' + T1 + S1'.T2 + T2' + S2.T1)
D D D D D A (B'(C'( T2' + T1 + T2 + T1 + T1.T2 + S2.T2 + T1'.T2' + T1'.T2' + T1'.T2' + T1 + T2 + T2' + S2.T1)
A (B'(C'(D(T2' + T2 + T2 + S2.T2 + T1'.T2' + T1'.T2' + T2' + T2 + T2' + S2.T1)
            F F F
A (B'(C'(D(E'(T2 + T2 + S2.T2 + T1' + T1' + T2 + S2.T1)
A (B'(C'(D(E'(F(S2 + T1 + T1 + S2.T1)
A (B'(C'(D(E'(F(G(T1+T1)
```

A .B'.C'.D. E'. F .G .H

https://www.multisim.com/contributors/381914-rogeralmeida/my-circuits/