

Bài thực hành số 01: Tính toán Bits

Môn học: Lập trình hệ thống

Lόp: NT209.Q13.ANTT.2

THÀNH VIÊN THỰC HIỆN (Nhóm 6):

STT	Họ và tên	MSSV
1	Huỳnh Đăng Khoa	24520815
2	Phan Hoàng Dũng	24520348
3	Phạm Ngọc Dũng	24520346

A. KẾT QUẢ CHẠY

1.1 bitAnd	Pass.		
1.2 negative	Pass.		
1.3 getByte	Pass.		
1.4 setByte	Pass.		
1.5 getnbit	Advanced Pass.		
2.1 isOpposite	Pass.		
2.2 is16x	Pass.		
2.3 isPositive	Pass.		
2.4 isGE2n	Pass.		
Your score: 10.0			
tobalocalDC/o ¢			

B. GIẢI THÍCH CÁCH LÀM

1. Tính toán bit đơn giản

- 1.1. Sử dụng công thức De-Morgan: $(x \& y) = \sim x \mid \sim y$
- 1.2. Sử dụng công thức số bù 2: -x = -x + 1
- 1.3. Dịch trái n 3 bit (tương đương n * 8) để lấy vị trí bắt đầu của byte cần lấy. Khi đó byte muốn lấy nằm ngay ở 8 bit đầu tiên, lấy mask 8 bit toàn 1 (0xFF) & kết quả để lấy giá trị byte cần tìm.
- 1.4. Dịch trái n 3 bit (tương đương n * 8) để lấy vị trí bắt đầu của byte cần đổi giá trị. Tạo mask chứa 8 bit toàn 1 (0xFF) đẩy tới vị trí cần thay, dùng phép or (|) sẽ chuyển giá trị toàn bộ các bit trong byte đó thành 1.
- 1.5. Tạo mask với toàn bộ n bit muốn lấy bằng 1 bằng cách lấy (2ⁿ 1). Do giá trị tối đa của 2ⁿ (2³², dài 33 bit) nằm ngoài phạm vi của kiểu unsigned int (32 bit) nên dùng kiểu 64 bit (unsigned long long) thay thế. Sau đó cho x & mask được kết quả là toàn bộ số bit cần tìm.

2. Các phép kiểm tra dựa trên tính toán bit

- 2.1. Hai số đối nhau khi tổng cộng lại bằng 0. Cho cộng 2 số, phép logic! trả về giá trị 0 nếu kết quả khác 0, bằng 1 nếu ngược lại.
- 2.2. Các số chia hết cho 16 (16, 32, 48, ...) dưới dạng nhị phân đều có 4 bit cuối là 0000, do đó có thể tạo mask có 4 bit này bằng 1 (0xFF) rồi cho x & mask, giá trị trả về bằng 0 nếu chia hết cho 16, khác 0 nếu ngược lại. Dùng ! đảo ngược và ép về hai giá trị 1/0.
- 2.3. Các số nguyên dương có bit dấu là 0. Do đó, đầu tiên ta kiểm tra x là số âm hay dương bằng cách kiểm tra trọng số cao nhất mang dấu của số: !(x >> 31). Tiếp theo ta kiếm tra x có bằng 0 hay không: dùng !x. Khi số nguyên dương, 2 phép kiểm tra có kết quả 1 và 0, ta dùng phép $^$ được giá trị 1. Khi số âm hoặc bằng 0, 2 phép kiểm tra có kết quả giống nhau (toàn 0 và toàn 1), phép $^$ cho giá trị 0.
- 2.4. Các số 2ⁿ (2, 4, 8,...) đều có n + 1 bit, bit có trọng số cao nhất luôn có giá trị 1. Do đó, dịch n bit về để lấy các bit từ bit đó trở lên kiểm tra. Số x lớn hơn 2ⁿ khi kết quả của phép dịch bit khác 0. Dùng 2 phép! để đưa kết quả trên về 1/0 (lần đầu ép và đảo ngược về 0/1, lần hai đảo ngược về 1/0).