

Análise do Planejamento da Expansão da Transmissão *Forward* Multi-Etapa Regional

Trabalho de Conclusão de Curso

Aluno: Lucas Yukio Okamura Ribeiro

Orientador: Prof. Carmen Lúcia Tancredo Borges, DSc.

<u>Co-orientador</u>: Ricardo Cunha Perez, MSc.

UFRJ / Escola Politécnica / Engenharia Elétrica

Janeiro de 2017

- Introdução ao Planejamento da Expansão de Sistemas Elétricos
- Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - Definições
 - Modelos
- Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - Fase Heurística
 - ► Fase Decomposição
- Estudo de Caso
- Conclusões
- Trabalhos Futuros

- Introdução ao Planejamento da Expansão de Sistemas Elétricos
- Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - ▶ Conceitos
 - ▶ Modelos
- ► Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - ► Fase Heurística
 - ► Fase Decomposição
- ► Estudo de Caso
- Conclusões
- ▶ Trabalhos Futuros

Introdução ao Planejamento da Expansão de Sistemas Elétricos

- Objetivo: Buscar o equilíbrio entre oferta e demanda de energia a longo prazo.
- Um planejamento efetivo deve considerar:
 - Custos (Investimento + Operação)
 - Critérios ambientais
 - Critérios de segurança
 - Incertezas

Introdução ao Planejamento da Expansão de Sistemas Elétricos

- Para isso, deve-se encontrar o conjunto de geradores e circuitos que atendam a todos esses critérios. Pode ser feito de duas formas:
 - ▶ Resolver a expansão da Geração e Transmissão de forma integrada:
 Dificuldade de resolução devido à natureza combinatória do problema
 - Alternativa: Resolver de forma hierárquica

Introdução ao Planejamento da Expansão de Sistemas Elétricos

Metodologia Hierárquica

- ► Introdução ao Planejamento da Expansão de Sistemas Elétricos
- Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - Conceitos
 - ▶ Modelos
- ► Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - ► Fase Heurística
 - ► Fase Decomposição
- ► Estudo de Caso
- Conclusões
- ▶ Trabalhos Futuros

- Busca o mínimo custo de investimento que eliminam sobrecargas na rede e cortes de cargas.
- Diferentes formas de resolução existentes na literatura.

Métodos de Resolução

- Tratamento de incertezas
 - Determinístico
 - Estocástico
 - ► Incertezas Internas (Disponibilidade de equipamentos)
 - ► Incertezas Externas (Preço de Combustíveis, Hidrologia, Cenários de Renováveis)
- Critérios de Segurança
 - \triangleright N 1
 - \triangleright N K

- Tratamento do horizonte de estudo
 - Estático
 - Dinâmico
 - "Pseudo-dinâmico"
 - ▶ Forward
 - Backward
 - Forward-Backward
- Sistemas Regionais: Sistemas compostos por múltiplos subsistemas ou países.
 - ► Planejamento Integrado
 - Planejamento Regional

- ► Introdução ao Planejamento da Expansão de Sistemas Elétricos
- ▶ Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - Conceitos
 - ▶ Modelos
- ► Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - ► Fase Heurística
 - ► Fase Decomposição
- ► Estudo de Caso
- Conclusões
- ▶ Trabalhos Futuros

- Fluxo de Potência Linearizado
 - ► Razões:
 - ► Razão R/X pequena.
 - ► Evita problemas de convergência.
 - ► Suporte de Reativo pode ser resolvido localmente.
 - ► Solvers comerciais podem ser utilizados.
- Equação do Fluxo de Potência Ativo no ramo km:

$$P_{km} = g_{km}V_k^2 - g_{km}V_kV_m\cos(\theta_{km}) - b_{km}V_kV_m\sin(\theta_{km})$$

$$P_{km} = \frac{\theta_{km}}{x_{km}}$$

Primeira Lei de Kirchhoff

$$\sum_{i \in \Omega_k} f_i + g_k = d_k - r_k, \forall k = 1, \dots, K$$
$$r_k \le d_k$$

- Segunda Lei de Kirchhoff
 - Com base no fluxo de potência linearizado

$$f_i = \gamma_i (\theta_{k_i} - \theta_{m_i})$$

Limite de fluxo nos circuitos

$$-\overline{f_i} \le f_i \le \overline{f_i}$$

Considerando múltiplos cenários de despacho:

$$\sum_{i \in \Omega_k} f_i^n + g_k^n = d_k^n - r_k^n, \forall k = 1, \dots, K$$
$$f_i^n = \gamma_i (\theta_{k_i}^n - \theta_{m_i}^n)$$
$$-\overline{f_i} \le f_i^n \le \overline{f_i}$$

- ► Introdução ao Planejamento da Expansão de Sistemas Elétricos
- ▶ Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - ▶ Conceitos
 - Modelos
- ► Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - ► Fase Heurística
 - ► Fase Decomposição
- ► Estudo de Caso
- Conclusões
- ▶ Trabalhos Futuros

- Problema de otimização
- ► Todas variáveis de decisão são contínuas, com exceção da decisão de investimento, a qual é binária:

- Problema de programação inteira mista (MIP problem).
- Composto por duas partes:
 - Função objetivo
 - Restrições

Função objetivo

$$\min \sum_{i \in \Omega^1} c_i x_i + \delta \sum_{k=1}^K r_k$$

- Restrições -> Variam de acordo com modelo:
 - ► Modelo de Transportes
 - ▶ Modelo Linear Híbrido
 - Modelo Linear Disjuntivo

- Modelo de Transportes
 - Não representa a Segunda Lei de Kirchhoff para circuitos existentes e candidatos.
 - Modelo mais simplificado.

$$\min \sum\nolimits_{i \in \Omega^1} c_i x_i + \delta \sum_{k=1}^K r_k$$

$$\min \sum_{i \in \Omega^1} c_i x_i + \delta \sum_{n=1}^N \sum_{k=1}^K r_k^n$$

Sujeito a:

Sujeito a:

$$\begin{split} \sum\nolimits_{i \in \Omega_k^0} {f_i^0} + \sum\nolimits_{i \in \Omega_k^1} {f_i^1} + g_k &= d_k - r_k, \forall k = 1, ..., K \\ -\overline{f_i^0} &\leq f_i^0 \leq \overline{f_i^0}, \forall i \in \Omega^0 \\ -\overline{f_i^1} x_i &\leq f_i^1 \leq \overline{f_i^1} x_i, \forall i \in \Omega^1 \\ r_k &\leq d_k \end{split}$$

$$\begin{split} \sum\nolimits_{i \in \Omega_k^0} f_i^{0,n} + \sum\nolimits_{i \in \Omega_k^1} f_i^{1,n} + g_k^n &= d_k^n - r_k^n, \forall k = 1, ..., K \\ -\overline{f_i^0} &\leq f_i^{0,n} \leq \overline{f_i^0}, \forall i \in \Omega^0 \\ -\overline{f_i^1} x_i &\leq f_i^{1,n} \leq \overline{f_i^1} x_i, \forall i \in \Omega^1 \\ r_k^n &\leq d_k^n \end{split}$$

- Modelo Linear Híbrido
 - ► Representa a Segunda Lei de Kirchhoff apenas para circuitos existentes

$$\min \sum_{i \in \Omega^1} c_i x_i + \delta \sum_{k=1}^K r_k$$

 $\min \sum_{i \in \Omega^1} c_i x_i + \delta \sum_{n=1}^N \sum_{k=1}^K r_k^n$

Sujeito a:

$$\begin{split} \sum\nolimits_{i \in \Omega_k^0} {f_i^0} + \sum\nolimits_{i \in \Omega_k^1} {f_i^1} + g_k &= d_k - r_k, \forall k = 1, ..., K \\ f_i^0 &= \gamma_i^0 \Big(\theta_{k_i} - \theta_{m_i} \Big), \forall i \in \Omega^0 \\ -\overline{f_i^0} &\leq f_i^0 \leq \overline{f_i^0}, \forall i \in \Omega^0 \\ -\overline{f_i^1} x_i &\leq f_i^1 \leq \overline{f_i^1} x_i, \forall i \in \Omega^1 \\ r_k &\leq d_k \end{split}$$

Sujeito a:

$$\begin{split} \sum\nolimits_{i \in \Omega_k^0} f_i^{0,n} + \sum\nolimits_{i \in \Omega_k^1} f_i^{1,n} + g_k^n &= d_k^n - r_k^n, \forall k = 1, ..., K \\ f_i^{0,n} &= \gamma_i^{0,n} \left(\theta_{k_i}^n - \theta_{m_i}^n\right), \forall i \in \Omega^0 \\ -\overline{f_i^0} &\leq f_i^{0,n} \leq \overline{f_i^0}, \forall i \in \Omega^0 \\ -\overline{f_i^1} x_i &\leq f_i^{1,n} \leq \overline{f_i^1} x_i, \forall i \in \Omega^1 \\ r_k^n &\leq d_k^n \end{split}$$

- Modelo Linear Disjuntivo
 - Representa a Segunda Lei de Kirchhoff para todos os circuitos
 - ► Modelo mais completo
 - ► Problema -> Não linearidade:

$$f_i^1 = \gamma_i^1 x_i (\theta_{k_i} - \theta_{m_i}), \forall i \in \Omega^1$$

► Solução -> Formulação Disjuntiva:

- Modelo Linear Disjuntivo
 - Um cenário de despacho

$$\min \sum_{i \in \Omega^1} c_i x_i + \delta \sum_{k=1}^K r_k$$

Sujeito a:

$$\begin{split} \sum\nolimits_{i \in \Omega_k^0} {f_i^0} + \sum\nolimits_{i \in \Omega_k^1} {f_i^1} + g_k &= d_k - r_k, \forall k = 1, \dots, K \\ f_i^0 &= \gamma_i^0 \Big(\theta_{k_i} - \theta_{m_i} \Big), \forall i \in \Omega^0 \\ M_r (1 - x_i) &\leq f_i^1 - \gamma_i^1 \Big(\theta_{k_i} - \theta_{m_i} \Big) \leq M_r (1 - x_i), \forall i \in \Omega^1 \cap \Omega_r; \ \forall r = 1, \dots, R \\ -\overline{f_i^0} &\leq f_i^0 \leq \overline{f_i^0}, \forall i \in \Omega^0 \\ -\overline{f_i^1} x_i &\leq f_i^1 \leq \overline{f_i^1} x_i, \forall i \in \Omega^1 \\ r_k &\leq d_k \end{split}$$

- Modelo Linear Disjuntivo
 - Múltiplos cenários de despacho

$$\min \sum_{i \in \Omega^1} c_i x_i + \delta \sum_{n=1}^N \sum_{k=1}^K r_k^n$$

Sujeito a:

$$\begin{split} \sum_{i \in \Omega_k^0} f_i^{0,n} + \sum_{i \in \Omega_k^1} f_i^{1,n} + g_k^n &= d_k^n - r_k^n, \forall k = 1, \dots, K \\ f_i^{0,n} &= \gamma_i^{0,n} \left(\theta_{k_i}^n - \theta_{m_i}^n \right), \forall i \in \Omega^0 \\ \mathcal{I}_r(1-x_i) \leq f_i^{1,n} - \gamma_i^{1,n} \left(\theta_{k_i}^n - \theta_{m_i}^n \right) \leq M_r(1-x_i), \forall i \in \Omega^1 \cap \Omega_r; \ \forall r = 1, \dots, R \\ -\overline{f_i^0} \leq f_i^{0,n} \leq \overline{f_i^0}, \forall i \in \Omega^0 \\ -\overline{f_i^1} x_i \leq f_i^{1,n} \leq \overline{f_i^1} x_i, \forall i \in \Omega^1 \\ r_k^n \leq d_k^n \end{split}$$

- ► Introdução ao Planejamento da Expansão de Sistemas Elétricos
- ▶ Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - Conceitos
 - ▶ Modelos
- Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - ► Fase Heurística
 - ► Fase Decomposição
- ► Estudo de Caso
- Conclusões
- ▶ Trabalhos Futuros

Características:

- ► <u>Tratamento do horizonte de estudo</u>: Pseudo-dinâmica —> *Forward*
- ► Tratamento de Incertezas: Múltiplos cenários de despacho
- Modelo de Formulação: Modelo Linear Disjuntivo
- Solução Regional
- Método de Resolução: Programação inteira mista -> Heurística + Decomposição de Benders.

- ► Introdução ao Planejamento da Expansão de Sistemas Elétricos
- Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - Conceitos
 - ▶ Modelos
- Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - Fase Heurística
 - ► Fase Decomposição
- ► Estudo de Caso
- Conclusões
- ▶ Trabalhos Futuros

- Fase Heurística
 - Rápida
 - ▶ Não garante otimalidade
 - "Hot start" para a fase Decomposição
 - Dados de entrada:
 - Cenários de despacho
 - ► Topologia da Rede
 - Lista de circuitos candidatos, com seus custos de investimento
 - Reatância e Capacidade de cada circuito

- Fase Heurística
 - Análise de Severidade: Fluxo de potência ótimo

$$z^n = \min \sum_{k=1}^K r_k^n$$

Sujeito a:

$$\begin{split} \sum_{i \in \Omega_k^0} f_i^{0,n} + g_k^n &= d_k^n - r_k^n, \forall k = 1, \dots, K \\ f_i^{0,n} &= \gamma_i^{0,n} \left(\theta_{k_i}^n - \theta_{m_i}^n \right), \forall i \in \Omega^0 \\ -\overline{f_i^0} &\leq f_i^{0,n} \leq \overline{f_i^0}, \forall i \in \Omega^0 \\ r_k^n &\leq d_k^n \end{split}$$

- ightharpoonup Cenários Severos (S): $z^n > 0$
- Cenários Críticos (C): Critério "guloso"

- ► Introdução ao Planejamento da Expansão de Sistemas Elétricos
- ▶ Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - Conceitos
 - ▶ Modelos
- Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - ► Fase Heurística
 - ► Fase Decomposição
- ► Estudo de Caso
- Conclusões
- ▶ Trabalhos Futuros

- ▶ Fase Decomposição
 - Baseado na Decomposição de Benders
 - Problema mestre (investimento) e Problemas escravos (de viabilidade)

- ▶ Fase Decomposição
 - Garantia de otimalidade
 - ► Esforço computacional demasiado ao considerar todos os cenários no problema mestre -> Benders se torna uma boa alternativa de resolução.
 - Esforço computacional maior que da fase heurística: Define-se um limite de iterações.

- ▶ Fase Decomposição
 - ▶ Problema Escravo:

$$z_p^n = \min \sum_{k=1}^K r_k^n$$

Sujeito a:

$$\begin{split} \sum_{i \in \Omega_k^0} f_i^{0,n} + \sum_{i \in \Omega_k^1} f_i^{1,n} + g_k^n &= d_k^n - r_k^n, \forall k = 1, \dots, K \\ f_i^{0,n} &= \gamma_i^{0,n} \Big(\theta_{k_i}^n - \theta_{m_i}^n \Big), \forall i \in \Omega^0 \\ -M_r \Big(1 - \hat{x}_{i,p} \Big) &\leq f_i^{1,n} - \gamma_i^{1,n} \Big(\theta_{k_i}^n - \theta_{m_i}^n \Big) \leq M_r \Big(1 - \hat{x}_{i,p} \Big), \forall i \in \Omega^1 \cap \Omega_r; \forall r = 1, \dots, R \quad \leftarrow \overbrace{\pi_{i,p}^{M,n}}^{M,n} \\ &- \overline{f_i^0} \leq f_i^{0,n} \leq \overline{f_i^0}, \forall i \in \Omega^0 \\ &- \overline{f_i^1} \hat{x}_{i,p} \leq f_i^{1,n} \leq \overline{f_i^1} \hat{x}_{i,p}, \forall i \in \Omega^1 \quad \leftarrow \overbrace{\pi_{i,p}^{f,n}}^{f,n} \Big) \\ r_k^n &\leq d_k^n \end{split}$$

- Fase Decomposição
 - Problema Mestre:

$$\min \sum_{i \in \Omega^1} c_i x_i + \delta \sum_{n=1}^N \sum_{k=1}^K r_k^n$$

Sujeito a:

$$\begin{split} \sum_{i \in \Omega_k^0} f_i^{0,n} + \sum_{i \in \Omega_k^1} f_i^{1,n} + g_k^n &= d_k^n - r_k^n, \forall k = 1, \dots, K; \ \forall n \in \mathcal{C} \\ f_i^{0,n} &= \gamma_i^{0,n} \left(\theta_{k_i}^n - \theta_{m_i}^n \right), \forall i \in \Omega^0; \ \forall n \in \mathcal{C} \\ -M_r (1 - x_i) &\leq f_i^{1,n} - \gamma_i^{1,n} \left(\theta_{k_i}^n - \theta_{m_i}^n \right) \leq M_r (1 - x_i), \forall i \in \Omega^1 \cap \Omega_r; \ \forall r = 1, \dots, R; \ \forall n \in \mathcal{C} \\ -\overline{f_i^0} &\leq f_i^{0,n} \leq \overline{f_i^0}, \forall i \in \Omega^0; \ \forall n \in \mathcal{C} \\ -\overline{f_i^1} x_i &\leq f_i^{1,n} \leq \overline{f_i^1} x_i, \forall i \in \Omega^1; \ \forall n \in \mathcal{C} \\ r_k^n &\leq d_k^n, \forall n \in \mathcal{C} \end{split}$$

 $\hat{z}_{p}^{n} + \sum_{i \in \Omega_{b}^{1}} \pi_{i,p}^{n} \left(x_{i} - \hat{x}_{i,p} \right) \leq 0, \forall n \in (S - C)$

Cortes de Viabilidade

Sendo: $\pi_{i,p}^n = -M_r \pi_{i,p}^{M,n} + \overline{f_i} \pi_{i,p}^{f,n}, \forall n \in (S-C)$

Índice

- ► Introdução ao Planejamento da Expansão de Sistemas Elétricos
- ▶ Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - ▶ Conceitos
 - ▶ Modelos
- ► Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - ► Fase Heurística
 - ► Fase Decomposição
- Estudo de Caso
- Conclusões
- ▶ Trabalhos Futuros

- América Central
 - ► Mercado Elétrico Regional (MER):

- América Central
 - Capacidade Instalada e Mix de Geração

- América Central
 - Sistema de Transmissão

- América Central
 - ► Projeção de Demanda:

- América Central
 - Dados de Entrada:
 - Num. Cenários críticos: 5
 - Critério "guloso": Maior valor de corte de carga
 - Num. Máx iterações na Decomposição: 50
 - ► Gap convergência do MIP: 3%
 - ► Penalidade por corte de carga: 110 M\$/MW
 - ► Horizonte 2019-2024
 - ► Monitoração: Maior ou igual a 115 kV
 - ► Cenários de Despacho por ano: 1500*
 - ► Lista de Candidatos:

País	Num. de Linhas Candidatas	Num. de <u>Trafos</u> Candidatos		
Guatemala	5	0		
Panamá	76	9		
Honduras	22	0		
Nicarágua	40	0		
Costa Rica	29	1		
El Salvador	11	1		

*Obs: 12 meses x 25 séries hidros x 5 blocos de carga

- Resultados
 - ► Análise pré-expansão: Ferramenta de despacho hidrotérmico (SDDP)
 - Custos Marginais de Operação

Ano	Panama (\$/MWh)	Costa Rica (\$/MWh)	Nicaragua (\$/MWh)	Honduras (\$/MWh)	El Salvador (\$/MWh)	Guatemala (\$/MWh)
2019	82,34	82,28	83,98	82,34	81,73	81,83
2020	92,8	88,77	90,09	89,04	88,77	88,8
2021	102,5	97,81	97,88	96,19	95,56	95,75
2022	141,28	90,43	92,23	92,14	91,72	91,92
2023	175,43	116,15	109,36	95,69	95,38	95,58
2024	244,23	174,86	137,45	65,95	66,78	66,66

▶ Risco de Déficit

Ano	Panama (%)	Costa Rica (%)	Nicaragua (%)	Honduras (%)	El Salvador (%)	Guatemala (%)
2019	0	0	0	0	0	0
2020	0	0	0	0	0	0
2021	0	0	0	0	0	0
2022	100	0	0	0	0	0
2023	100	0	0	0	0	0
2024	100	100	40	0	0	0

► Custo Operativo Total: 11,768 bilhões de dólares

► Resultados

► Tempos Computacionais:

País	Plano 2019 (s)	Plano 2020 (s)	Plano 2021 (s)	Plano 2022 (s)	Plano 2023 (s)	Plano 2024 (s)
Costa Rica	99,48	1322,97	96,47	96,61	96,19	236,78
El Salvador	74,46	73,2	72,3	72,5	72,39	137,33
Guatemala	91,99	91,39	91,42	91,06	91,21	91,23
Honduras	178,61	84,9	221,16	84,69	84,65	218,94
Nicaragua	162,73	79,67	80,16	80,51	162,55	80,42
Panama	187,21	666,64	155,95	248,38	94,34	95,79

▶ Plano de Expansão:

Barra	Nome	Barra DE	Barra	Barra	Barra PARA			Capacidade	Tipo de	Ano de Entrada
DE	Barra DE	(kV)	PARA	PARA	(kV)	País	Custo (k\$)	(MW)	Circuito	em Operação
6276	CHG230	230	6340	CAN230	230	Panama	3093	304	Line	2019
4315	LBS-138	138	4342	NAG-138	138	Nicaragua	4097	80	Line	2019
3211	NAC 230	230	3301	AGC B624	230	Honduras	5493	317	Line	2019
54000	PAR230	230	56102	PAL230B	230	Costa Rica	15737	374	Line	2020
6014	PRO230	230	6380	BOQIII230	230	Panama	5205	556	Line	2020
6000	FRONTPRO	230	6014	PRO230	230	Panama	2832	193	Line	2020
58300	MOI230A	230	58350	CAH230	230	Costa Rica	7408	259	Line	2020
56050	RCL230A	230	56100	PAL230A	230	Costa Rica	8272	300	Line	2020
6260	CHA230	230	6400	FRONTCHA	230	Panama	3559	304	Line	2020
50950	CAR230A	230	54500	GEN230	230	Costa Rica	12297	659	Line	2020
54000	PAR230	230	56102	PAL230B	230	Costa Rica	19868	374	Line	2020
6000	FRONTPRO	230	6014	PRO230	230	Panama	2832	193	Line	2020
6000	FRONTPRO	230	6014	PRO230	230	Panama	2832	193	Line	2020
56050	RCL230A	230	56100	PAL230A	230	Costa Rica	8272	300	Line	2020
3029	CRL B501	138	3098	RLN B521	138	Honduras	4500	152	Line	2021
3098	RLN B521	138	3180	CAR B540	138	Honduras	4500	152	Line	2021
3123	VNU B520	138	3180	CAR B540	138	Honduras	4500	152	Line	2021
6040	SFR115	115	6230	CBA115	115	Panama	1202	230	Line	2022
4315	LBS-138	138	4342	NAG-138	138	Nicaragua	4097	80	Line	2023
27161	AHUA-115	115	27411	SONS-115	115	EL Salvador	3696	130	Line	2024
3097	RGU B518	138	3105	SIS B548	138	Honduras	7607	152	Line	2024
50504	GUA138	138	50604	FIL138	138	Costa Rica	4070	265	Line	2024
3055	CTE B513	138	3105	SIS B548	138	Honduras	1474	152	Line	2024

- Resultados
 - ► Análise pós-expansão
 - ► Custos Marginais de Operação: Queda média de aprox. 6%

Ano	Panama (\$/MWh)	Costa Rica (\$/MWh)	Nicaragua (\$/MWh)	Honduras (\$/MWh)	El Salvador (\$/MWh)	Guatemala (\$/MWh)
2019	84,15	84,03	84,15	82,65	82,09	82,17
2020	89,71	89,65	90,96	89,47	88,6	88,75
2021	95,46	95,34	95,78	94,82	94,7	94,71
2022	94,03	94,66	95,53	94,89	92,59	92,83
2023	102,79	102,86	103,33	103,21	103,15	103,16
2024	100,58	100,6	99,37	98,1	98,03	98,05

► Risco de Déficit

Ano	Panama (%)	Costa Rica (%)	Nicaragua (%)	Honduras (%)	El Salvador (%)	Guatemala (%)
2019	0	4	0	0	0	0
2020	0	0	0	0	0	0
2021	0	0	0	0	0	0
2022	4	4	4	4	0	0
2023	0	0	0	0	0	0
2024	0	0	0	0	0	0 ,

► Custo Operativo Total: 9,772 bilhões de dólares (aprox. -17%)

Índice

- ► Introdução ao Planejamento da Expansão de Sistemas Elétricos
- ▶ Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - Conceitos
 - ▶ Modelos
- Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - ► Fase Heurística
 - ► Fase Decomposição
- ► Estudo de Caso
- Conclusões
- ▶ Trabalhos Futuros

Conclusões

- Classificações do planejamento da expansão da transmissão e modelos de formulação foram apresentados
- Metodologia proposta apresenta algumas vantagens:
 - Garantia de otimalidade
 - Baixo tempo computacional
 - ▶ Resolução para cada região individualmente: Computação paralela e abordagem plausível para sistemas compostos por diversos países
 - Sempre apresenta uma solução viável
- Metodologia aplicável no sistema brasileiro

Índice

- ► Introdução ao Planejamento da Expansão de Sistemas Elétricos
- ▶ Planejamento da Expansão da Transmissão
- Formulação Matemática do Problema
 - Conceitos
 - ▶ Modelos
- Metodologia de Resolução Proposta para Sistemas Regionais
 - Características
 - ► Fase Heurística
 - ► Fase Decomposição
- ► Estudo de Caso
- Conclusões
- Trabalhos Futuros

Trabalhos Futuros

- ► Aplicar no sistema elétrico brasileiro (SIN) → expansão de cada subsistema (Norte, Nordeste, Sul, Sudeste/Centro-oeste)
- Comparação resultados do planejamento integrado vs regional que serão obtidos com o SIN
- Análise do efeito da variação dos parâmetros de execução
- Aplicar a mesma metodologia considerando critérios de segurança, como por exemplo o N-1

OBRIGADO!