Math 362: Mathematical Statistics II

Le Chen

le.chen@emory.edu chenle02@gmail.com

> Emory University Atlanta, GA

Last updated on Spring 2021 Last compiled on January 15, 2023

2021 Spring

Creative Commons License (CC By-NC-SA)

Chapter 13. Randomized Block Designs

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

1

Plan

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

Chapter 13. Randomized Block Designs

§ 13.1 Introduction

§ 13.2 The F Test for a Randomized Block Design

§ 13.A Appendix: Some Discussions and Extensions

		Numeriz XI Values	Categorizal Values				
-ples	Sample 1	y, y, m	C11 C1p				
	Sample 2	y y 2m	C21 C2P				
જુ ∠			; ;				
(Sample 11	y y	Cn. · · · Cnp				
		m	P				

Categorical v.s. Continuous

1. Categorical v.s. Continuous

1. Categorical v.s. Continuous

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance. ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

$$\begin{array}{lll} \mbox{1.1} & p = 1, \, m = 1, & & & \\ \mbox{1.2} & p = 2, \, m = 1, & & & \\ \mbox{1.3} & p \geq 3, \, m = 1, & & & \\ \mbox{p-way ANOVA} & & & \\ \mbox{P-w$$

1.4
$$p = 1, m > 2$$

1.5
$$p = 2, m \ge 2,$$

1.6
$$p > 3, m > 2$$

One-way MANOVA

Two-way MANOVA

p-way ANOVA

MANOVA refers to the multivariate analysis of varianc ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p \ge 3, m \ge 2,$
 p -way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

	One-way ANOVA
1.2 $p = 2, m = 1,$	Two-way ANOVA
1.3 $p \ge 3, m = 1,$	p-way ANOVA
1.4 $p = 1, m \ge 2,$	One-way MANOVA ^a
1.5 $p=2, m \ge 2,$	Two-way MANOVA
1.6 $p \ge 3, m \ge 2,$	p-way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

1. Categorical v.s. Continuous

One-way ANOVA
Two-way ANOVA
p-way ANOVA
One-way MANOVA
Two-way MANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

2.1
$$m_{ind}=1, m_{dep}=1,$$
 Simple linear regressio
2.2 $m_{ind}\geq 2$ Multiple linear regressio
2.3 $m_{dep}\geq 2$ Multivariate linear regressio

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

1.4
$$p = 1, m \ge 2$$
,

1.5
$$p = 2, m \ge 2$$
,

1.6
$$p > 3, m > 2,$$

One-way MANOVA^a

Two-way MANOVA

p-way ANOVA

^aMANOVA refers to the multivariate analysis of variance <u>ANOVA refers</u> to the univariate analysis of variance.

2. Continuous v.s. Continuous

$$2.1 \ m_{ind} = 1 \ m_{don} = 1$$

$$2.2 \ m_{ind} > 2$$

2.3
$$m_{dep} \ge 3$$

Simple linear regression

Multiple linear regression

Multivariate linear regression

1. Categorical v.s. Continuous

$$\begin{array}{lll} \mbox{1.1} & p=1, \ m=1, & & & \mbox{One-way ANOVA} \\ \mbox{1.2} & p=2, \ m=1, & & \mbox{Two-way ANOVA} \\ \mbox{1.3} & p\geq 3, \ m=1, & & \mbox{p-way ANOVA} \\ \end{array}$$

1.4
$$p = 1, m > 2,$$

1.5
$$p = 2, m \ge 2$$
,

1.6
$$p > 3, m > 2,$$

One-way MANOVA^a

Two-way MANOVA

p-way ANOVA

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

2. Continuous v.s. Continuous

$$2.1 \ m_{i-1} = 1 \ m_{d-1} = 1$$

2.2
$$m_{ind} > 2$$

2.3
$$m_{dep} \ge 1$$

Simple linear regression

Multiple linear regression

Multivariate linear regression

1. Categorical v.s. Continuous

1.1
$$p = 1, m = 1,$$
 One-way ANOVA

 1.2 $p = 2, m = 1,$
 Two-way ANOVA

 1.3 $p \ge 3, m = 1,$
 p -way ANOVA

 1.4 $p = 1, m \ge 2,$
 One-way MANOVA

 1.5 $p = 2, m \ge 2,$
 Two-way MANOVA

 1.6 $p > 3, m > 2,$
 p -way ANOVA

2.1
$$m_{ind}=1$$
, $m_{dep}=1$, Simple linear regression 2.2 $m_{ind}\geq 2$ Multiple linear regression 2.3 $m_{dep}>2$ Multivariate linear regression

^aMANOVA refers to the multivariate analysis of variance ANOVA refers to the univariate analysis of variance.

E.g. One example for MANOVA¹.

http://www.sthda.com/english/wiki/
manova-test-in-r-multivariate-analysis-of-variance

E.g. One example for MANOVA¹.

¹http://www.sthda.com/english/wiki/
manova-test-in-r-multivariate-analysis-of-variance

Iris Versicolor

Iris Setosa

Iris Virginica

> librar	y (datase	ets)									
> data(> data(iris)										
> sumn	> summary(iris)										
						Petal	. Width				
Species											
Min.	:4.300	Min.	:2.000	Min.	:1.000	Min.	:0.100	setosa			
	:50										
1st Qı	J.:5.100	1st Qu	J.:2.800	1st Qu	u.:1.600	1st Qu	u.:0.300	versicolor			
	:50										
		Media	ledian :3.000 Median :4.350		Media	Median:1.300 virgini					
	:50										
Mean	:5.843	Mean	:3.057	Mean	:3.758	Mean	:1.199				
3rd Qı	J.:6.400	3rd Qı	J.:3.300	3rd Qı	J.:5.100	3rd Qı	u.:1.800				
Max.	:7.900	Max.	:4.400	Max.	:6.900	Max.	:2.500				
> my_d	lata <- iri	S									
> my_d	ata										
Sep	oal.Lengtl	h Sepal	l.Width P	etal.Ler	igth Peta	I.Width	Species	6			
	5.1		3.5		.4	0.2	setosa				
2	4.9		3.0		.4	0.2	setosa				
3	4.7		3.2		.3	0.2	setosa				
4	4.6		3.1		.5	0.2	setosa				
5	5.0		3.6		.4	0.2	setosa				
6	5.4		3.9		.7	0.4	setosa				
7	4.6		3.4		.4	0.3	setosa				
8	5.0		3.4		.5	0.2	setosa				
9	4.4		2.9		.4	0.2	setosa				
10	4.9		3.1		.5	0.1	setosa				

```
2 > res.man <- manova(cbind(Sepal.Length, Petal.Length) ~ Species, data = iris)
3 > summary(res.man)
            Df Pillai approx F num Df den Df Pr(>F)
            2 0.9885 71.829 4 294 < 2.2e-16 ***
5 Species
6 Residuals 147
8 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
9 > # Look to see which differ
10 > summary.aov(res.man)
   Response Sepal.Length:
              Df Sum Sq Mean Sq F value Pr(>F)
13 Species 2 63.212 31.606 119.26 < 2.2e-16 ***
   Residuals 147 38.956 0.265
   Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '. ' 0.1 ' ' 1
   Response Petal.Length:
              Df Sum Sq Mean Sq F value Pr(>F)
20 Species 2 437.10 218.551 1180.2 < 2.2e-16 ***
   Residuals 147 27.22 0.185
23 Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1:w
```

Concl.: Two variables are highly significantly different among species.