(i) Ginear function f(x) is a linear transformation \implies it is invariant under (1) scoling, i.e. $ya \in \mathbb{R}$, a. f(x) = f(ax), and (2) addition, i.e. f(x) + f(y) = f(axy).

e.g.: g(x) = mx is linear, since (1) $a \cdot g(x) = a(mx) \neq m(ax) = g(ax)$, and (2) g(x) + g(y) = mt + my = m(x + y) = g(x + y).

• $f(x) = m \cdot x + b$ is not linear since (1) $a \cdot f(x) = a(mx + b) \neq aunce + b = f(ax)$.

(ii) Emotions: $f: \mathbb{R}^m \to \mathbb{R}^m$ clauses a function that takes length m vectors as impure and outputs vectors of length m.

Examples: • A function $f: \mathbb{R}^n \to \mathbb{R}^n$ clause $f(x) = f(x) = [ix_i, i=1...n] = [ix_i, i=1...n] = [ix_i, i=1...n]$ • A function $f: \mathbb{R}^n \to \mathbb{R}$ clause $f(x) = \frac{\pi}{2}x_i$, e.g. $f(\frac{2\pi}{4}) = 2 + 4 + 6 = 12...$

Q: Are these examples linear functions?