Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Московский институт электронной техники».

Институт микроприборов и систем управления имени Л.Н. Преснухина

Методические указания к выполнению курсового проекта «Библиотеки на основе баз данных»

По курсу «Проектирование печатных плат»

Москва, Зеленоград

Оглавление

Оглавление	2
Общая информация	2
Создание БД-библиотеки	4
Организация библиотеки на основании базы данных	4
Подготовка файлов источников	5
Заполнение файла БД	7
Настройка файла библиотеки DbLib	9
Использование БД-библиотеки в проектах	12
Подключение БД-библиотеки	12
Установка компонентов из БД-библиотек	13
Обновление компонентов из БД-библиотек	17
Инструменты быстрого заполнения БД	18
Использование Excel для подготовки записей	18
Использование OCR для сканирования PDF	20
Хранение БД-библиотек на github	22
Литература	26

Общая информация

В данном указании описано как создавать и использовать библиотеки на основе баз данных (БД) в Altium Designer. На стайте altium.com в разделе «Документация» приемам и особенностям работы с БД-библиотеками посвящен отдельный раздел [7].

Наиболее удобно использовать БД-библиотеки для компонентов, выпускающихся большим сериями (резисторы, конденсаторы, индуктивности и пр.).

При создании таких библиотек удобство состоит в том, что можно быстро создавать библиотеки с большим числом однородных компонентов только за счет заполнения полей в БД. При использовании удобство состоит в том, что при установке такого компонента все связанные параметры заполняются сразу и не нужно в последующем вручную для компонента с обозначением общего вида заполнять кучу связанных текстовых параметров с большой вероятностью ошибки.

Предполагается, что читатель знаком с Altium Designer в части принципов и приёмов работы с интегрированными библиотеками и файлами библиотек SchLib и PCBLib.

Дополнительно показаны несколько приемов, убыстряющих заполнение полей базы данных.

Отдельно описано как можно хранить БД-библиотеки с помощью инструмента контроля версий git на серверах github.

Можно ориентироваться на github-репозиторий автора с размещенными там примерами БД-библиотеками [6].

Последняя версия данного методического указания вместе с остальными по предмету «Проектирование печатных плат» находится на github в отдельном репозитории автора [5].

Материал подготовлен для версии Altium Designer 21.0.9. В более ранних версиях именование панелей может отличатся, но принципы работы аналогичны.

Создание БД-библиотеки

Организация библиотеки на основании базы данных

Покажем на примере библиотеки полимерных электролитических smdконденсаторов (серия PCV) фирмы Nichicon [10].

Altium Designer поддерживает три инструмента связи БД с библиотекой компонентов:

- 1. Инструмент DbLink. В этом случае информация о моделях и параметрах компонента должна быть предварительно определена в составе библиотечного компонента Altium Designer. Этот метод изначально предназначен для связи существующих компонентов с базой данных предприятия и БД-библиотекой компонентов не является.
- 2. Библиотека DbLib. Компонент как таковой в собранном виде не хранится. В момент добавления компонента в проект он фактически собирается из указанного УГО, посадочного места, модели и параметров компонента на основании полей записи в БД.
- 3. Библиотека SVNDbLib. Работает аналогично DbLib, за исключением того, что символ, посадочные места и модели хранятся под управлением системы контроля версий. При таком подходе есть дополнительное ограничение: в каждом файле УГО и посадочных мест может хранится только одно УГО или посадочное место соответственно (ограничение SVN по нахождению различий между версиями).

БД-библиотеки DbLib и SVNDbLib с точки зрения интерфейса Altium Designer выступают как библиотеки компонентов и со стороны составителя электрической схемы и тополога практически не отличаются от интегрированных библиотек.

Возможно создать БД-библиотеку на различных движках БД. В Altium Designer изначально встроены инструменты связи с MS Access и MS Excel.

Однако, несмотря на то, что работа с MS Excel вначале несколько проще, в дальнейшем, с ростом базы компонентов, это решение может вызывать множество проблем, в том числе от жутких тормозов при поиске нужного компонента в подключенной БД-библиотеке до принципиального ограничения на 64 листа в Excel (ограничение движка ODBC).

Т.к. Altium Designer начиная с версии 18 является 64-битной программой, то для связи с помощью встроенных в Altium Designer инструментов с БД, созданными с помощью MS Excel или MS Access, в системе должен быть установлен движок БД 64-битной версии. Или версии установленных MS Excel или MS Access должны быть 64-битными.

Таким образом, в качестве движка БД будем использовать MS Access (x64).

Выбранная структура библиотеки на основе БД будет следующий:

В корневой папке лежат файл БД Nichicon.accdb и файл библиотеки Nichicon.DbLib. В подпапках PCBLib и SchLib лежат файлы УГО Nichicon_CapPolEl.SchLib и посадочных мест Nichicon_CapPolEl.PcbLib.

В БД находится несколько таблиц (в примере одна CapacitorPolEl_CVseries), каждая относящая к одной описываемой серии. Каждая запись в таблице соответствует одному конкретному компоненту с точностью до полного обозначения по номенклатуре производителя PartNumber (иначе вся работа с БД не имеет смысла).

В файле DbLib привязывается БД и указывается способ соответствия собранного компонента и записи в БД. Также для каждой таблицы указывается соответствие полей записей в БД и параметров компонента.

Подготовка файлов источников

Файлы УГО, посадочных мест и БД-библиотеки проще всего создавать как свободные файлы без привязки к какому-либо проекту.

Создадим в подпапке \SchLib файл Nichicon_CapPolEl.SchLib.

В нем создадим УГО полярного конденсатора.

Из свойств компонента надо только определить имя УГО (**Design Item ID** = «CapacitorPolEl») и позиционное обозначение по умолчанию (**Designator** = «С?»). Для позиционного обозначения по умолчанию на текущий момент нет способа передать его из записи в БД.

Поля **Comment** и **Description**, а также все задаваемые пользовательские параметры компонента, ссылки, привязываемые посадочные места и модели будут браться из полей в записи в БД.

Аналогично подготовим файл с посадочными местами Nichicon_CapPolEl.PcbLib в подпапке \PCBLib. Посадочных мест там будет несколько, исходя из документации производителя. Т.к. эти посадочные места стандартные по IPC7351C, то будем использовать для них сгенерированные обозначения (только под номинальную плотность монтажа).

Заполнение файла БД

В MS Access создаем новую БД под именем Nichicon.accdb. В ее составе создаем по Create – Table новую таблицу CapacitorPolEl_CVSeries. Теперь в ней надо определиться с составом полей для записей.

Поля можно условно разделить на следующие типы:

- Основное поле, по которому идет однозначное определение компонента.
- Поля, по которым идет выбор УГО, посадочного места и моделей. У этих полей фиксированные зарезервированные имена.
 - Поля с пользовательскими параметрами (включая ссылки).

Все поля текстовые.

В качестве основного поля, по которому будет идти сборка компонента будем использовать **PartNumber**.

В поле **Description** хранится описание компонента, передается в свойство **Description** в УГО. Для всей серии будет «High Power Polymer Aluminum Solid Electrolytic Capacitor».

В поле **Comment** хранится содержание свойства УГО **Comment**. Пусть это будет сборная строка «=Value+ ' ' + PartNumber» для всей серии.

CONDUCTIVE POLYMER ALUMINUM SOLID ELECTROLYTIC CAPACITORS

nichicon

■Dimensions

Rated Voltage (V) (code)	Surge Voltage (V)	Rated Capacitance (µF)	Case Size φD × L (mm)	tan 8	Leakage Current (μA) (at 20°C after) 2 minutes	ESR (mΩ) (at 100kHz 20°C)	Rated Ripple (mArms) (105°C/100kHz)	Part Number												
		56	6.3×6	0.12	179	50	1000	PCV1C560MCL1GS												
		82	△ 6.3×6	0.12	262	47	1300	PCV1C820MCL2GS												
		100	8×7	0.12	320	36	1500	PCV1C101MCL1GS												
		150	∆ 8×7	0.12	480	34	1700	PCV1C151MCL2GS												
		220	▲ 8×10	0.12	704	27	2000	PCV1C221MCL6GS												
	18.4	18.4	18.4	18.4										220	10×8	0.12	704	31	2000	PCV1C221MCL1GS
16					270	□ 8×10	0.12	864	21	3800	PCV1C271MCL7GS									
(1C)					10.4	270	8 × 12	0.12	864	26	2300	PCV1C271MCL1GS								
				270	∆ 10×8	0.12	864	24	3200	PCV1C271MCL2GS										
		330	10×10	0.12	1056	26	2400	PCV1C331MCL1GS												
		390	△ 8×12	0.12	1248	20	4100	PCV1C391MCL2GS												
												470	△ 10×10	0.12	1504	21	3900	PCV1C471MCL2GS		
		470	10 x 12.7	0.12	1504	25	2800	PCV1C471MCL1GS												
		680	△ 10×12.7	0.12	2176	19	4400	PCV1C681MCL2GS												
		47	6.3×6	0.12	188	55	1000	PCV1D470MCL1GS												

Список изменяемых полей определим исходя из изменяемых параметров в серии. Это RatedVoltage, SurgeVoltage, RatedCapacitance,

CaseSize, TanD, ESR и RatedRipple. Поле RatedCapacitance будет сопоставлено параметру Value в Altium Designer (т.к. в MS Access слово «Value» является зарезервированным и не рекомендовано для именования поля). Поле RatedVoltage будет сопоставлено параметру VDC (как принято в нашей учебной библиотеке). Поле CaseSize используется для записи краткого обозначения посадочного места в соответствии с документацией производителя.

Для обозначения производителя введем поле **Manufacturer**. Для всей серии это «Nichicon».

Для привязки ссылки на документацию используем пару полей **ComponentLink1Description** и **ComponentLink1URL**, задающих ссылку. Значения этих полей у всей серии «Product Page» и «https://www.nichicon.co.jp/english/products/solid/index.html».

Для привязки УГО используются такие поля как **Library Ref** — имя УГО и **Library Path** - путь до файла с УГО. Поле **Library Path** заполнять не обязательно, тогда поиск УГО будет вестись во всей иерархии подключенных библиотек. Также **Library Path** может быть с относительным путем относительно корневой папки БД-библиотеки.

Если необходимо привязать несколько УГО, то нужно пользоваться зарезервированными именами полей **Library Ref n** и **Library Path n**, где **n** — целое число 2 или больше.

Для привязки посадочных мест нужно пользоваться парой полей **Footprint Ref** и **Footprint Path** — имя посадочного места и пусть до файла с посадочным местом. Аналогично УГО можно не указывать имя файл с посадочным местом, тогда поиск посадочного места будет вестись во всей иерархии подключенных библиотек. Для подключения нескольких посадочных мест нужно использовать зарезервированные имена полей **Footprint Ref n** и **Footprint Path n**, где **n** — целое число 2 или больше.

Однако, с учетом смысла применения БД-библиотек (один компонент с точностью до PartNumber) в большинстве случаев нежелательно иметь несколько УГО или посадочных мест на одну запись. Это может иметь смысл, только если необходимость в нескольких УГО или посадочных местах вызвана какой-то особенностью, впрямую не связанной со свойствами компонента. Например, можно хранить несколько посадочных мест чип-

компонентов под разную плотность монтажа или несколько посадочных мест выводного резистора, связанных с различной формовкой выводов и пр.

В нашем случае у всех записей будет одинаковое содержание Library Ref = «CapacitorPolEl» и Library Path = «\SchLIB\Nichicon_CapPolEl.SchLib». Footprint Path тоже у всех записей будет одинаковым «\PCBLib\Nichicon_CapPolEl.PcbLib». А вот Footprint Ref будет меняться синхронно с полем CaseSize.

Есть еще группа предопределенных полей Sim Description, Sim Excluded Parts, Sim File, Sim Kind, Sim Model Name, Sim Netlist, Sim Parameters, Sim Port Map, Sim Spice Prefix и Sim SubKind, позволяющих привязать модель для SPICE-моделирования. Мы их использовать не будем.

Заполним изменяемые поля, как показано ниже. Поле **ID** добавляется автоматом и является ключом в БД по умолчанию.

Одинаковые для всей серии поля показаны ниже.

Заполнение БД готово.

Настройка файла библиотеки DbLib

В созданном Nichicon.DbLib сначала нужно привязать файл БД. Делается это в поле Source of Connection.

Для БД на основе MS Access выбираем режим «Select Database Type», указываем тип БД «Microsoft Access 2007» и выбираем файл «Nichicon.accdb». Чтобы БД была переносима, нужно, чтобы стояла галка

«Store Path Relative to Database Library». После этого нужно нажать на кнопку Connect.

В следующем окне нужно указать, что со стороны БД и со стороны компонента является однозначно определяющим этот компонент. В группе Field Settings указываем, что определяющим является поле БД **PartNumber** и оно соответствует параметру компонента **PartNumber**.

После этого нужно в нижней части в таблице Field Mappings указать соответствие полей БД параметрам компонента. Чуть изменим соответствие полей, созданное по умолчанию:

- поле БД **ID** переносить не будем, оно в компоненте не нужно (в столбце Design Parameter удаляем запись, оно сбрасывается для None)
- поле БД RatedCapacitance будем переносить в параметр компонента Value
 - поле БД RatedVoltage будем переносить в параметр компонента VDC
- полю БД **Comment** установим галку Visible On Add, чтобы строка УГО **Comment** была видима сразу при установке компонента
 - остальные поля пусть переносятся по умолчанию.

Также можно перейти на вкладку Table Browser, где можно, не выходя из Altium Designer, править поля записей в компонентах или даже УГО и посадочные места.

Подготовка БД-библиотеки закончено.

Использование БД-библиотеки в проектах

Подключение БД-библиотеки

Подключение БД-библиотек делается аналогично подключению интегрированных библиотек:

- глобально для рабочего места через Tools — Preferences — Data Management — File-based Libraries (или через панель Components по кнопке — File-based Libraries Preferences). В данной панели по кнопке Install — Install from File подключается файл DbLib как библиотека (аналогично интегрированным библиотекам и отдельным библиотекам УГО и посадочных мест).

- локально для одного проекта через указание точного имени DbLib. При выбранном текущем проекте в панели Components по кнопке - File-based Libraries Preferences на вкладке Project

Установка компонентов из БД-библиотек

Установка компонентов из БД-библиотек осуществляется при помощи панели Components аналогично установке из обычных библиотек.

БД-библиотеку мы использовали для создания серии. Покажем некоторые дополнительные приемы работы с панелью Components для удобного ориентирования в этой серии (поиск и фильтрация по параметрам).

Если известно из какой БД-библиотеки будет компонент, то в выпадающем списке источников надо сначала выбрать ее.

Для возможности подбора по интересующим параметрам нужно включить отображение колонок с параметрами. По ПК – Select Columns (по заголовкам колонок) в открывшемся окне выбрать какие из параметров компонентов будут отображены. Этот список отображения колонок сохраняется отдельно для каждой библиотеки (т.к. в разных библиотеках набор параметров может быть разным).

Панель примет следующий вид. Можно щелкая по символу фильтра в заголовках отдельных колонок, ограничивать выбор.

В последних версиях поддерживается новый режим группировки по параметру. Включается этот режим по ПКМ — Enable Column Grouping. Над строкой с именами колонок появится дополнительное поле с надписью «Drag a column header here....» Перетащив в это поле заголовок колонки, можно включить группировку по параметру:

Поддерживается также многоуровневая группировка.

Можно поискать аналог компонента по ПКМ – Find Similar Components. При этом можно искать во всем списке подключенных библиотек.

Для поиска компонента по всем подключенным библиотекам есть отдельный режим по кнопке — - File-based Library Search. Он позволяет искать компоненты во всех библиотеках по именам параметров и их значениям. Однако для его правильного применения все аналогичные параметры во всех подключенных библиотеках должны называться одинаково и стиль заполнения этих параметров тоже должен быть единым (обозначение единиц, десятичный разделитель, наличие или отсутствие пробелов и пр.).

Установленный компонент имеет все заданные параметры, ссылки и привязанное посадочное место.

Обновление компонентов из БД-библиотек

Для полного обновления установленного в проекте компонента из БДбиблиотеки используются стандартные команды Tools — Update From Libraries (в схеме) и Tools — Update From PCB Libraries (в топологии).

Для обновления только параметров компонента из БД-библиотеки есть отдельная команда в схеме Tools — Update Parameters From Database. Компоненты, для которых найдены отличия в параметрах от БД-библиотеки, будут предложены к обновлению.

Также как и с обновлением компонентов из интегрированных библиотек, обновленные параметры компонентов переносятся только в схему. В топологию их надо отдельно переносить по прямому ЕСО.

Инструменты быстрого заполнения БД

Ручное заполнение БД MS Access может оказаться довольно муторным делом с большой вероятностью ошибки. Можно пользоваться некоторыми дополнительными для ускорения и автоматизации заполнения БД.

Использование Excel для подготовки записей

Если сайт-производителя готов выдавать информацию о компонентах в некотором машиночитаемом формате (или информация на сайте скомпонована так, что ее можно копировать таблицей), то можно использовать Excel для быстрого заполнения полей.

Например, серия мощных SMD-индуктивностей фирмы Wurth Elektronik имеет отдельную страницу, на которой размещена интересующая нас информация. Эта информация копируется при выделении.

Выбираем нужные элементы таблицы и по Ctrl+C – Ctrl+V вставляем ее в книгу Excel.

4	Α	В	С	D	E	F	G	Н	1	J	K	L	М
1													
2	9 files	0.47	23.5	26.4	2.9	3	120	1280	Standard	744770			
3	7.45E+08	SPEC		9 files	0.54	5.6	9	7.2	8.5	155	7332	Standard	-
4	74477008	SPEC		9 files	0.75	19.8	21	3	4	110	1280	Standard	744770
5	7.45E+08	SPEC		9 files	1	5.37	6.4	9	12	115	7332	Standard	_
6	7.45E+08	SPEC		9 files	1	6.84	10.2	8.4	10	100	7345	Standard	_
7	7.45E+09	SPEC		9 files	1	13	25	4	6	120	1210	Standard	<u>744770</u>
8	74477001	SPEC		9 files	1.2	12	16.6	5	7	45	1280	Standard	744770
9	7.45E+08	SPEC		9 files	1.5	10.5	12.5	4	6	60	1260	Standard	744777
10	7.45E+08	SPEC	_	9 files	1.5	10	12	5	6	42	1280	Standard	744770
11	7.45E+08	SPEC		9 files	2.2	4.02	4.8	14	20	67	7332	Standard	-
12	7.45E+08	SPEC		9 files	2.2	6	6.5	13	20	60	7345	Standard	_

Иногда при переносе может произойти некоторый перекос (в примере первая строка съехала). Также есть ненужные столбцы и неработающие ссылки. Кроме того, все столбцы должны иметь тип «Текст». Исправляем и

удаляем ненужное. Чтобы не запутаться, именуем столбцы. Эта часть книги будет исходником для основной части таблицы.

Α	В	С	D	Е	F	G	Н
PartNumber	ValueIndu	IRMS	ISAT	DCR	DCRmax	SRF	CaseSize_DxH
74477009	0.47	23.5	26.4	2.9	3	120	1280
744778005	0.54	5.6	9	7.2	8.5	155	7332
74477008	0.75	19.8	21	3	4	110	1280
744778001	1	5.37	6.4	9	12	115	7332
744777001	1	6.84	10.2	8.4	10	100	7345
7447709001	1	13	25	4	6	120	1210
74477001	1.2	12	16.6	5	7	45	1280
744771001	1.5	10.5	12.5	4	6	60	1260
744770015	1.5	10	12	5	6	42	1280
744778002	2.2	4.02	4.8	14	20	67	7332
744777002	2.2	6	6.5	13	20	60	7345
744771002	2.2	10	11	5	8	50	1260
7447709002	2.2	11.5	20	5	6	65	1210
74477002	2.4	10.1	14.3	9	12	41	1280
744778003	3.3	3.1	4.1	24	32	61	7332
744777003	3.3	3.5	4.6	25	30	55	7345
744771003	3.5	9.25	9	5	8	40	1260
74477003	3.5	8.9	9.6	11	14	37.5	1280
7447709003	3.5	11	16.5	6	9	45	1210
744778004	4.7	2.32	4.2	42	60	45	7332
744777004	4.7	3.2	4	25	40	37	7345
744771004	4.7	8.25	8	8	11	35	1260
74477004	4.7	8.5	9.3	12	16	31.2	1280
7447709004	4 7	93	13	7	11	38	1210

Нужно дописать в численные параметры суффиксы единиц. Для этого справа от сырых данных создаем основную часть таблицы. Для добавления единиц (или иных текстовых меток) используем функцию & (склеивание строк). Для номинала индуктивности, например, это будет формула для первой строки «=B2&" uHn"».

J	K	L	М	N	0	Р	Q
PartNumber	ValueInductance	IRMS	ISAT	DCR	DCRmax	SRF	CaseSize_DxH
74477009	0.47 uHn	23.5 A	26.4 A	2.9 mOhm	3 mOhm	120 MHz	1280
744778005	0.54 uHn	5.6 A	9 A	7.2 mOhm	8.5 mOhm	155 MHz	7332
74477008	0.75 uHn	19.8 A	21 A	3 mOhm	4 mOhm	110 MHz	1280
744778001	1 uHn	5.37 A	6.4 A	9 mOhm	12 mOhm	115 MHz	7332
744777001	1 uHn	6.84 A	10.2 A	8.4 mOhm	10 mOhm	100 MHz	7345
7447709001	1 uHn	13 A	25 A	4 mOhm	6 mOhm	120 MHz	1210
74477001	1.2 uHn	12 A	16.6 A	5 mOhm	7 mOhm	45 MHz	1280
744771001	1.5 uHn	10.5 A	12.5 A	4 mOhm	6 mOhm	60 MHz	1260
744770015	1.5 uHn	10 A	12 A	5 mOhm	6 mOhm	42 MHz	1280
744778002	2.2 uHn	4.02 A	4.8 A	14 mOhm	20 mOhm	67 MHz	7332
744777002	2.2 uHn	6 A	6.5 A	13 mOhm	20 mOhm	60 MHz	7345
744771002	2.2 uHn	10 A	11 A	5 mOhm	8 mOhm	50 MHz	1260
7447709002	2.2 uHn	11.5 A	20 A	5 mOhm	6 mOhm	65 MHz	1210
74477002	2.4 uHn	10.1 A	14.3 A	9 mOhm	12 mOhm	41 MHz	1280
744778003	3.3 uHn	3.1 A	4.1 A	24 mOhm	32 mOhm	61 MHz	7332
744777003	3.3 uHn	3.5 A	4.6 A	25 mOhm	30 mOhm	55 MHz	7345
744771003	3.5 uHn	9.25 A	9 A	5 mOhm	8 mOhm	40 MHz	1260
74477003	3.5 uHn	8.9 A	9.6 A	11 mOhm	14 mOhm	37.5 MHz	1280
7447709003	3.5 uHn	11 A	16.5 A	6 mOhm	9 mOhm	45 MHz	1210
744778004	4.7 uHn	2.32 A	4.2 A	42 mOhm	60 mOhm	45 MHz	7332
744777004	4.7 uHn	3.2 A	4 A	25 mOhm	40 mOhm	37 MHz	7345
744771004	4.7 uHn	8.25 A	8 A	8 mOhm	11 mOhm	35 MHz	1260
74477004	4.7 uHn	8.5 A	9.3 A	12 mOhm	16 mOhm	31.2 MHz	1280

Также сразу в Excel досоздаем и заполняем все остальные поля.

seSize_DxH Footprint	Ref Footprint Path	Library Ref	Library Path	ComponentLink1Description	ComponentLink1URL	Manufacturer	Description
1280 WE-PD_12	280 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
7332 WE-PD_73	332 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1280 WE-PD_12	280 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
7332 WE-PD_73	332 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
7345 WE-PD_73	345 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1210 WE-PD_12	210 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1280 WE-PD_12	280 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1260 WE-PD_12	260 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1280 WE-PD_12	280 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
7332 WE-PD_73	332 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
7345 WE-PD_73	345 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1260 WE-PD_12	260 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1210 WE-PD_12	210 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1280 WE-PD_12	280 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
7332 WE-PD_73	332 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
7345 WE-PD_73	345 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1260 WE-PD_12	260 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1280 WE-PD_12	280 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1210 WE-PD_12	210 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
7332 WE-PD_73	332 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
7345 WE-PD_73	345 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1260 WE-PD_12	260 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1280 WE-PD_12	280 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE_PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE_IND_WE_PD	Wurth Elektronik	WE-PD SMT Power Inductor
1210 WE-PD 12	210 \PCBLib\WE-PD.PcbLi	b Inductor	\SchLIB\WE PD.SchLib	Product Page	https://www.we-online.de/katalog/en/AUTOMOTIVE IND WE PD	Wurth Elektronik	WE-PD SMT Power Inductor

Здесь проблема только с полем **Comment**, Excel не позволяет иметь текстовую запись вида «=PartNumber», т.к. «=» воспринимается как начало формулы. Его придётся заполнять вручную уже в БД.

Потом выбираются все нужное содержимое и по Crtl+C/Ctrl+V копируется в таблицу Access. Именование полей автоматически берётся из первой строки в Excel.

Использование OCR для сканирования PDF

Если нет возможности получить машиночитаемый формат исходных данных, но есть таблица в формате PDF, то можно воспользоваться одним из сервисов онлайн-OCR (распознавание текста), например [13].

У этого бесплатного сервиса есть возможность распознавания картинок таблиц в формат Excel.

Загружаем скриншот интересующей таблицы и скачиваем результат в xlsx.

		Case size (mm)			Spe	cificatio	n	Part n	umber	Min.packaging q'ty (pcs)	
Rated voltage (V)	Capacitance (±20 %) (μF)	øD	Standard	Vibration -proof	Size code	Ripple current*1 (mA rms)	ESR ^{*2} (mΩ)	tan δ ^{*3}	Standard Product	Vibration-proof product	Taping
	22	5.0	5.8	-	С	900	80	0.14	EEHZA1E220R	-	1000
	33	5.0	5.8	-	C	900	80	0.14	EEHZA1E330R	-	1000
	47	6.3	5.8	6.1	D	1300	50	0.14	EEHZA1E470P	EEHZA1E470V	1000
	56	6.3	5.8	6.1	D	1300	50	0.14	EEHZA1E560P	EEHZA1E560V	1000
25	68	6.3	7.7	8.0	D8	2000	30	0.14	EEHZA1E680XP	EEHZA1E680XV	900
	100	6.3	7.7	8.0	D8	2000	30	0.14	EEHZA1E101XP	EEHZA1E101XV	900
	150	8.0	10.2	10.5	F	2300	27	0.14	EEHZA1E151P	EEHZA1E151V	500
	220	8.0	10.2	10.5	F	2300	27	0.14	EEHZA1E221P	EEHZA1E221V	500
	330	10.0	10.2	10.5	G	2500	20	0.14	EEHZA1E331P	EEHZA1E331V	500
	10	5.0	5.8	-	С	900	100	0.12	EEHZA1V100R	-	1000
	22	5.0	5.8	-	С	900	100	0.12	EEHZA1V220R	-	1000
	27	6.3	5.8	6.1	D	1300	60	0.12	EEHZA1V270P	EEHZA1V270V	1000
	33	6.3	5.8	6.1	D	1300	60	0.12	EEHZA1V330P	EEHZA1V330V	1000
35	47	6.3	5.8	6.1	D	1300	60	0.12	EEHZA1V470P	EEHZA1V470V	1000
35	68	6.3	7.7	8.0	D8	2000	35	0.12	EEHZA1V680XP	EEHZA1V680XV	900
	100	8.0	10.2	10.5	F	2300	27	0.12	EEHZA1V101P	EEHZA1V101V	500
	150	8.0	10.2	10.5	F	2300	27	0.12	EEHZA1V151P	EEHZA1V151V	500
	220	10.0	10.2	10.5	G	2500	20	0.12	EEHZA1V221P	EEHZA1V221V	500
	270	10.0	10.2	10.5	G	2500	20	0.12	EEHZA1V271P	EEHZA1V271V	500
	10	5.0	5.8	-	С	750	120	0.10	EEHZA1H100R	-	1000
	22	6.3	5.8	6.1	D	1100	80	0.10	EEHZA1H220P	EEHZA1H220V	1000
50	33	6.3	7.7	8.0	D8	1600	40	0.10	EEHZA1H330XP	EEHZA1H330XV	900
50	47	8.0	10.2	10.5	F	1800	30	0.10	EEHZA1H470P	EEHZA1H470V	500
	68	8.0	10.2	10.5	F	1800	30	0.10	EEHZA1H680P	EEHZA1H680V	500
	100	10.0	10.2	10.5	G	2000	28	0.10	EEHZA1H101P	EEHZA1H101V	500
	10	6.3	5.8	6.1	D	1000	120	0.08	EEHZA1J100P	EEHZA1J100V	1000
	22	6.3	7.7	8.0	D8	1500	80	0.08	EEHZA1J220XP	EEHZA1J220XV	900
	33	8.0	10.2	10.5	F	1700	40	0.08	EEHZA1J330P	EEHZA1J330V	500
63	47	8.0	10.2	10.5	F	1700	40	0.08	EEHZA1J470P	EEHZA1J470V	500
	56	10.0	10.2	10.5	G	1800	30	0.08	EEHZA1J560P	EEHZA1J560V	500
	68	10.0	10.2	10.5	G	1800	30	0.08	EEHZA1J680P	EEHZA1J680V	500
	82	10.0	10.2	10.5	G	1800	30	0.08	EEHZA1J820P	EEHZA1J820V	500
80	22	8.0	10.2	10.5	F	1550	45	0.08	EEHZA1K220P	EEHZA1K220V	500
-00	33	10.0	10.2	10.5	G	1700	36	0.08	EEHZA1K330P	EEHZA1K330V	500

Скачанный обратно xlsx нужно немного доработать и подчистить, таблица странно разбита на части, некоторые ячейки объединены и пр. Но главное, что текстовые и численные значения распознаны правильно (что обязательно надо проверить в нескольких случайных местах), а это самое сложное при ручном заполнении большого числа полей БД.

	1	C	Case size (mm)	_		cification		
Rated voltage (V)	Capacitance (±20 %) <i>m</i>	0D	L	Size code	Rippie	ESR'2	tan 6*3	
			Standard	code	current*1	(IIIIC)		
25	22		5.8	С	900		0.14	EEHZA1E220R
25	33		5.8	С	900		0.14	EEHZA1E330R
25	47	6.3	5.8	D	1300	50	0.14	EEHZA1E470P
25	56		5.8	D	1300		0.14	EEHZA1E560P
25	68	6.3	7.7	D8	2000	30	0.14	EEHZA1E680XP
25	100	6.3	7.7	D8	2000	30	0.14	EEHZA1E101XP
25	150	8.0	10.2	F	2300	27	0.14	EEHZA1E151P
25	220	8.0	10.2	F	2300	27	0.14	EEHZA1E221P
25	330	10.0	10.2	G	2500	20	0.14	EEHZA1E331P
35	10	5.0	5.8	С	900	100	0.12	EEHZA1V100R
35	22	5.0	5.8	С	900	100	0.12	EEHZA1V220R
35	27	6.3	5.8	D	1300	60	0.12	EEHZA1V270P
35	33	6.3	5.8	D	1300	60	0.12	EEHZA1V330P
35	47	6.3	5.8	D	1300	60	0.12	EEHZA1V470P
35	68	6.3	7.7	D8	2000	35	0.12	EEHZA1V680XP
35	100	8.0	10.2	F	2300	27	0.12	EEHZA1V101P
35	150	8.0	10.2	F	2300	27	0.12	EEHZA1V151P
35	220	10.0	10.2	G	2500	20	0.12	EEHZA1V221P
35	270	10.0	10.2	G	2500	20	0.12	EEHZA1V271P
50	10	5.0	5.8	С	750	120	0.10	EEHZA1H100R
50	22	6.3	5.8	D	1100	80	0.10	EEHZA1H220P
50	33	6.3	7.7	D8	1600	40	0.10	EEHZA1H330XP
50	47	8.0	10.2	F	1800	30	0.10	EEHZA1H470P
50	68	8.0	10.2	F	1800	30	0.10	EEHZA1H680P
50	100	10.0	10.2	G	2000	28	0.10	EEHZA1H101P
63	10	6.3	5.8	D	1000	120	0.08	EEHZAIJIOOP
63	22	6.3	7.7	D8	1500	80	0.08	EEHZA1J220XP
63	33	8.0	10.2	F	1700	40	0.08	EEHZA1J330P
63	47	8.0	10.2	F	1700	40	0.08	EEHZA1J470P
63	56	10.0	10.2	G	1800	30	0.08	EEHZA1J560P
63	68	10.0	10.2	G	1800	30	0.08	EEHZA1J680P
63	82	10.0	10.2	G	1800	30	0.08	EEHZA1J820P
30	22	8.0	10.2	F	1550	45	0.08	EEHZA1K220P
80	33	10.0	10.2	G	1700		0.08	EEHZA1K330P

Хранение БД-библиотек на github

Хранение БД-библиотек на github довольно удобно, особенно если нужно контролировать версии и возможна работа с БД-библиотеками из нескольких мест.

Для начала нужно иметь аккаунт на github.com [11]. Для большинства обычных маршрутов не нужно работать с консолью, хватает отдельного приложения GitHub Desktop [12].

Предположим, создана библиотека БД-компонентов. Фактически это папка со следующей структурой:

В корневой папке лежит сам файл БД Nichicon.accdb и файл БД-библиотеки Nichicon.DbLib.

В подпапке History хранятся архивы предыдущих файлов БДбиблиотеки, автоматически создаваемые Altium Designer. Их в репозиторий добавлять смысла нет.

В подпапке PCBLib хранится файл с посадочными местами Nichicon_CapPolEl.PcbLib, его надо добавлять в репозиторий. Еще может быть подпапка History с архивами прошлых версий файла посадочных мест, которая в репозитории не нужна.

В подпапке SchLib хранится файл с УГО Nichicon_CapPolEl.SchLib, его надо добавлять в репозиторий. Еще может быть подпапка History с архивами прошлых версий файла УГО, которая в репозитории не нужна.

В подпапках SchLib и PCBLib также могут быть служебные и информационные файлы, которые в репозитории не нужны.

Дополнительно есть подпапка SRC, в которой мы держали некоторые временные фалы типа вырезок из документации, csv- и xlsx-файлы и пр. Все это в репозитории также не нужно.

Чтобы в репозиторий при инициализации не попали ненужные файлы, в корневой папке заранее создаем текстовый файл с именем «.gitignore» со следующим содержанием:

Этот файл определяет какие файлы и содержание каких подпапок не надо класть в репозиторий. Двойная звездочка «**» говорит о том, что игнорировать указанное нужно на всех уровнях подпапок.

Затем в GitHub Desktop по команде File – Create New Repository создаем новый репозиторий. Путь должен указывать на один уровень выше корневой папки, а имя репозитория – совпадать с корневой папкой репозитория.

Репозиторий создан с исходным коммитом. На вкладке History можно посмотреть, что в репозиторий добавлены только желаемые нами файлы (плюс служебные файлы .gitattributes и .gitignore).

Теперь, чтобы его отправить на github, нужно выполнить команду Publish repository.

При установленной галке Keep this code private, будет создан приватный репозиторий. Для опубликования его для всех, нужно эту галку снять.

Для того, чтобы сравнить локальную копию репозитория с размещенной на github, нужно выполнить команду Fetch origin.

Импорт изменений с github в локальный репозиторий делается по команде Pull.

В обратную сторону (с локального репозитория на github) по команде Push.

После окончания работы с локальной копией по команде Commit нужно влить изменения в локальный репозиторий. Т.к. при работе с бинарными файлами сложно организовать нормальную работу с ветками, как правило коммиты идут сразу в мастер-ветку, что не очень страшно для небольшой группы разработчиков.

Литература

- 1. Лопаткин, А. Проектирование печатных плат в Altium Designer. [Электронный ресурс] Электрон. дан. М. : ДМК Пресс, 2016. 400 с. Режим доступа: http://e.lanbook.com/book/93565
- 2. Суходольский В.Ю. Altium Designer: сквозное проектирование функциональных узлов РЭС на печатных платах: учеб. Пособие. 2-е изд., перераб. и доп. СПб.: БХВ-Петербург, 2014. 560 с.
- 3. Желобаев А.Л. Методические указания к лабораторным работам по курсу «САПР Altium Designer»: М.:МИЭТ, 2019 104с.

Перечень ресурсов сети «Интернет»

- 4. Репозиторий автора с учебной библиотекой https://github.com/dee3mon/StudentsLibraryGIT
- 5. Репозиторий автора с учебными материалами по Altium Designer https://github.com/dee3mon/altium-methodic
- 6. Репозиторий автора с примером БД-библиотеки для Altium Designer https://github.com/dee3mon/altium-dblibraries
- 7. Онлайн-документация Altium Designer, раздел «Работа с библиотеками на основе баз данных» https://www.altium.com/ru/documentation/altium-designer/working-with-database-libraries-ad
- 8. Тематический форум electronix.ru, раздел «Разрабатываем ПП в САПР PCB development», https://electronix.ru/forum/index.php?showforum=17, доступно после свободной регистрации
- 9. Сайт Eurointech, раздел «Учебные материалы» http://www.eurointech.ru/education/selftraining/
- 10. Страница с документацией на полярные полимерные алюминиевые электролитические конденсаторы от Nichicon https://www.nichicon.co.jp/english/products/solid/index.html
 - 11. Крупнейший хостер репозиториев https://github.com/
 - 12. Приложение GitHub Desktop https://desktop.github.com/

13. Онлайн-сервис распознавания текста https://convertio.co/ru/ocr/

Каналы Youtube с видеоуроками по Altium Designer

- 14. ОфициальныйканалAltiumDesignerhttps://www.youtube.com/channel/UCpCi8Hpe4nIg4qvy2vpCGNQ
- 15. Канал Алексея Сабунина https://www.youtube.com/user/SabuninAlexey
- 16. Плейлист «Altium Designer» на канале Сергея Булавинова https://www.youtube.com/playlist?list=PLgUwXvgNkHQJ3G5UoLGMfHJM2c-m4Afdx
- 17. Канал официального представительства Altium Russia https://www.youtube.com/channel/UCvZ_kyV4ATrQfjmtVpuj0LQ
- 18. Плейлист «Altium Designer» на канале консультационного цента АМКАД

 $\underline{https://www.youtube.com/watch?v=PcStOG7sRqk\&list=PLUk9KaCJSP-UAcH1uLu6mOQmDTmZGCND8}$

- 19. Плейлист «Уроки Altium Designer» на канале разработчика Nordic Energy
- https://www.youtube.com/playlist?list=PLUYH9oDZsrZ25Lv_HNp03AzZTBotulIBa
- 20. Канал Robert Feranec автора образовательного сообщества Fedevel Academy https://www.youtube.com/user/matarofe/featured

Разработчик:

Ст. преподаватель Института МПСУ

Приходько Д.В.