ED214:Electronics Design lab 8 Bit Computer

Vanshil Soni 202304002

8 Bit Computer Clock

-> Different modes of an 8 bit clock:

- **1. Astable:** In astable mode, the circuit continuously switches between high and low states. If we observe the output in an oscilloscope then it will give us a square wave output of a series of high and low pulses.
- **2. Monostable:** In monostable mode, the circuit has only one stable state when we push the switch then it will be in its unstable mode until the button is pushed.
- **3. Bistable:** In bistable mode, the circuit has two stable states, high and low, and it stays in one previous state until triggered to switch to the other.

Tool:Easy EDA

Circuit-Diagram(Schematic):-

Bread-Board:-

PCB-Layout (2-Layer):-

3-D:-

• HLT-Switch:-

- \rightarrow The **HLT (Halt) switch** is used to **pause or stop the clock signal** in a controlled manner.
- →When activated, the clock signal is disabled, effectively freezing the operation of the computer. This is especially useful in debugging or testing situations.

Oscilloscope-output:-

ı	C	'e	
ı	·	•	

1) NE555(555-Timer)

Connections for Astable

Pin 1:Ground

Pin 2:Trigger

Pin 3:Output

Pin 4:Reset

Pin 5:Control

Pin 6:Threshold

Pin 7:Discharge

Pin 8:Vcc

In **Astable mode**, the 555 timer creates a continuous oscillation by charging and discharging a capacitor through resistors (R1 and R2). The connections are specifically designed to:

- 1. Enable Feedback Loop
- 2. Control Timing
- 3. Ensure Stability
- 4. Provide Continuous Oscillation:
- 2)74LS08N(AND gate)
- 3) 74LS04N(NOT gate)
- 4) <u>74LS32N(</u>OR gate)

B) 4-bit program counter:

Circuit-Diagram(Schematic):-

Bread Board:-

PCB-Layout (2-Layer):-

3D:-

- <u>ICs</u>:-
- 1) 74LS161(Program-Counter):-

- Purpose to include in 8-Bit Computer:-
- →Timing and control purposes, such as sequencing operations and addressing memory.
- \rightarrow It generates binary counts (0–15).
 - Why Synchronization?:-

Feature	Synchronous Counter (e.g., 74LS161)	Asynchronous Counter	
Clocking	All flip-flops are clocked simultaneously.	Flip-flops are clocked sequentially (output of one triggers the next).	
Propagation Delay	Minimal, as all stages update at the same time.	Accumulates as the signal propagates through stages.	
Speed	Faster and suitable for high-speed applications.	Slower due to ripple delays.	
Glitches/Errors	Less prone to glitches or timing errors.	More prone to glitches due to delayed transitions.	
Design Complexity	Slightly more complex to design.	Simpler design but less efficient.	

- Why Use a Positive Edge-Triggered Counter?
 - →The counter updates only when the clock signal transitions from **low to high** (positive edge).

• Pin Specifications:-

- 1. Pin 1 (GND): Ground connection, the 0V reference for the circuit.
- 2. **Pin 2 (CLR Clear)**: Active LOW input that resets the counter to 0000 when activated.
- 3. **Pin 3 (CLK Clock)**: Positive edge-triggered clock input. The counter increments on each rising edge of the clock signal.
- 4. **Pin 4 (ENT Enable T)**: Count enable input (low-active); must be HIGH along with ENP to allow counting.
- 5. **Pin 5 (ENP Enable P)**: Count enable input (high-active); must be HIGH along with ENT to allow counting.

- 6. **Pin 6 (LOAD)**: Active LOW input. When LOW, the counter loads the value from the parallel inputs (A, B, C, D) instead of counting.
- 7. Pin 7 (Q1): First bit (LSB) of the counter's binary output.
- 8. Pin 8 (Q2): Second bit of the counter's binary output.
- 9. Pin 9 (Q3): Third bit of the counter's binary output.
- 10. Pin 10 (Q4): Fourth bit (MSB) of the counter's binary output.
- 11. **Pin 11 (RCO Ripple Carry Out)**: Carry output for cascading multiple counters. Goes HIGH when the counter reaches its maximum count (1111).
- 12. Pin 12 (A): Parallel data input for the least significant bit (LSB).
- 13. Pin 13 (B): Parallel data input for the second bit.
- 14. Pin 14 (C): Parallel data input for the third bit.
- 15. Pin 15 (D): Parallel data input for the most significant bit (MSB).
- 16. Pin 16 (Vcc): Power supply, typically +5V.

Truth Table:

Q3	Q2	Q1	Q0
0	0	0	0
0	0	0	1
0	0	1	0
		,	
1	1	1	1

2) SN74LS245N(Transreciever):-

Purpose to include in 8-Bit Computer:-

→ Bidirectional Communication:-

The transceiver allows data to flow **in both directions**, enabling the counter to either send data to or receive data from other parts of the 8-bit computer, such as memory or I/O devices.

Mechanism:-

 \rightarrow A clock signal drives the 4-bit counter, which outputs a binary sequence (0-15) visible on LEDs. The transceiver (74LS245) controls data flow by sending the counter's output to an external bus(DIR=1).

C) Integration:-

Bread-Board:-

Theory:

