PR: ABOULFADIL YASSINE

Le dénombrement et calcul de probabilités

2 BAC PC/SVT

I- Le dénombrement :

1-Définition:

Le dénombrement est la détermination du nombre d'éléments d'un ensemble.

2- Un ensemble:

2-1-Définition:

un **ensemble** désigne *intuitivement* une collection d'objets (les <u>éléments</u> de l'ensemble) .

2-2- Les types d'ensembles :

	Ensemble fini	Ensemble infini	Ensemble vide
Définition	un ensemble fini est un ensemble qui possède un nombre fini d'éléments, c'est-à-dire qu'il est possible de compter ses éléments.	un ensemble infini est un ensemble qui n'est pas fini, c'est-à-dire qu'il n'y a aucun moyen de « compter » les éléments de cet ensemble.	l' ensemble vide est l' <u>ensemble</u> ne <u>contenant</u> aucun élément.
Exemple	L'ensemble des jours de la semaine. {Lu, Ma, Me, Je, Ve, Sa, Di}	L' ensemble des nombres entiers naturels N.	L'ensemble de solutions de l'équation x²+1=0 dans R. S =Ø

3- Cardinal d'un ensemble :

Définition:

*Le cardinal d'un ensemble fini E est le nombre des éléments de cet ensemble et on le note : Card(E).

*Cas particulier : $Card(\emptyset) = 0$

Propriété :

A et B sont deux ensembles finis.

 $Card(A \cup B) = Card(A) + Card(B) - Card(A \cap B)$

4- Accompli d'un ensemble:

Définition:

Soit A une partie d'un ensemble fini E.

L'accompli de A par rapport à l'ensemble E est l'ensemble noté \bar{A} avec : $\bar{A} = \{x \in E | x \notin A\}$

Remarques:

- * $A \cap \bar{A} = \emptyset$
- * $A \cup \bar{A} = E$
- * Card (\bar{A})=Card (E)-Card (A)

5- Le principe fondamental du dénombrement:

Si une opération globale peut se décomposer en p opérations élémentaires successives $(p \in N^*)$, ces dernières pouvant s'effectuer respectivement de n_1 ; n_2 ;...; n_p manières différentes, alors l'opération globale peut se faire de : $n_1 \times n_2 \times n_3 \times ... \times n_p$ manières différentes.

6- Arrangement avec répétition - sans répétition :

Arrangement avec répétition:

Soit n et p deux éléments de N*.

Le nombre d'arrangement avec répétition, de p éléments parmi n , est : n^p .

Arrangement sans répétition :

Soit n et p deux éléments de N* $(p \le n)$.

Le nombre d'arrangement sans répétition, de p éléments parmi n, est :

$$A_n^p = n \times (n-1) \times (n-2) \times \dots \times (n-p+1)$$

Cas particulier:

Tout arrangement sans répétition de n éléments parmi n éléments s'appelle une permutation de n éléments et il est égal à : $A_n^n=n!=n\times(n-1)\times(n-2)\times...\times2\times1$

7- Les combinaisons

Soit E un ensemble fini contenant n éléments.

Toute partie A de E contenant p éléments ($p \le n$), s'appelle une combinaison de p éléments parmi n éléments, et le nombre de ses combinaisons est :

$$C_n^p = \frac{A_n^p}{p!}$$

8- Les nombres n! et A_n^p et C_n^p :

($n \in \mathbb{N}^*$	$ \begin{array}{c c} n! = n \times (n-1) \times (n-1) \\ 0! = 1 \end{array} $	·2)××2×1	
$C_n^p = \frac{n!}{p!(n-p)!}$		$A_n^p = \frac{n!}{(n-p)!}$	
$C_n^n = 1$	$C_n^1 = n$	$C_n^0 = 1$	$C_n^{n-1} = n$ $C_n^p = C_n^{n-p}$
$C_n^p = C_n^{n-p}$		$C_n^{p-1} + C_n^p = C_{n+1}^p$	

9- Nombre de possibilité d'arrangement de n éléments :

Si on a, n_1 éléments de type A , et n_2 éléments de type B , et n_3 éléments de type C , parmi n éléments, avec $n_1+n_2+n_3=n$, alors le nombre de possibilité d'arranger ses éléments est :

$$\frac{n!}{n_1! \, n_2! \, n_3}$$

10- Quelques types de tirage :

On tire p éléments parmi n éléments et on résume les résultats dans le tableau suivant :

Type de tirage	Nombre de tirages possibles	Importance de l'ordre de tirage	
Simultané	C_n^p	N'est pas important	
Successif et avec remise	n ^p	Important	
Successif et sans remise	A_n^p	Important	

II- Calcul de probabilités

1- Vocabulaires:

- **aléatoire** = Lié au hasard ; imprévisible ; arbitraire.
- On dit qu'une expérience est aléatoire si on peut déterminer parfaitement, par avance toutes les issues possibles mais on ne peut pas prévoir par avance, laquelle de ces issues sera réalisée.
- L'univers Ω est l'ensemble de tous les résultats possibles.

Posons $\Omega = \{\omega 1, \omega 2, ..., \omega n\}$.

(C'est-à- dire $card\Omega = n$)

- On appelle **événement** toute partie A de Ω .
- Un événement réduit à une seule issue {ωi} est un événement élémentaire.
- Ω est appelé l'événement **certain**.
- Ø est appelée l'événement impossible.
- Si A et B désignent deux événements de Ω , l'événement $A \cup B$ est réalisé si l'un au moins des événements A et B est réalisé.

- L'événement $A \cap B$ est réalisé si les événements A et B sont tous les deux réalisés.
- L'événement contraire d'un événement A, est \overline{A} constitué des éléments de Ω n'appartenant pas à A.

Exemple:

Lancer un dé à 6 faces et noter le chiffre apparent sur la face supérieure, est une expérience aléatoire :

- Il y a 6 issues possibles.
- L'univers de cette expérience est $\Omega = \{1;2;3;4;5;6\}$.

■ B: « Le résultat est un multiple de 5 », est on peut écrire $B = \{5\}$. Donc B est un événement élémentaire, mais « 5 » est une issue possible et B est un ensemble qui contint cette seule issue.

2- Probabilité d'un événement :

<u>Définition</u>: Pour certaines expériences aléatoires, sous certaines conditions, on peut déterminer en pourcentage ou par un quotient « **la chance** » qu'un événement a pour ce réaliser. Ce **nombre** s'appelle la **probabilité** de l'événement.

• La probabilité d'un événement A d'un univers fini Ω est la somme des probabilités des événements élémentaires qui le constituent.

• Par exemple :Si $\Omega = \{\omega_1; \omega_2; \omega_3; ...; \omega_n\}$ et $A = \{\omega_2; \omega_5; \omega_8\}$ alors : $p(A) = p(\{\omega_2\}) + p(\{\omega_5\})$ + $p(\{\omega_8\})$

• $p(\Omega) = 1$; $p(\emptyset) = 0$ et Pour tout événement A on $a: 0 \le p(A) \le 1$

Propriétés

- Pour tous événements A et B on a : $p(A \cup B) = p(A) + p(B) - p(A \cap B)$.

- Pour tous événements disjoints ou incompatibles A, B on a: $p(A \cup B) = p(A) + p(B)$

- Pour tous événements deux a deux disjoints ou incompatibles $A_1, A_2...A_n$ on a :

 $p(A_1 \cup A_2 \cup ... \cup A_n) = p(A_1) + p(A_2) + ... + p(A_n).$

- Pour tout événement A, $p(\overline{A}) = 1 - p(A)$.

3-Equip obabilité:

<u>Définition</u>: Dans une expérience aléatoire, si tous les événements élémentaires ont la même probabilité d'être réalisée, on dit qu'on est dans une situation d'équiprobabilité.

Donc: si
$$\Omega = \{ \omega_1; \omega_2; \omega_3; ...; \omega_n \}$$

Alors $p(\omega_i) = \frac{1}{Card(\Omega)}$; c'est-à-dire pour tous événement **A** on a : $p(A) = \frac{Card(A)}{Card(\Omega)}$.

Remarque : Dans le cas de l'équiprobabilité la détermination d'une probabilité se ramène en générale à des problèmes de **dénombrement**.

Exemple : On lance un dé **équilibré** (non truqué) dont les faces sont numérotées de 1 à 6. On s'intéresse à la probabilité de l'évènement : A « le numéro de la face supérieure est multiple de 2 »

on a :
$$A = \{2; 4; 6\}$$
 donc $p(A) = \frac{Card(A)}{Card(\Omega)} = \frac{3}{6} = \frac{1}{2}$

4- Probabilité conditionnelle :

<u>**Définition**</u>: Soit B un événement de l'ensemble Ω, tel que $P(B) \neq 0$.

On définit sur Ω une nouvelle probabilité, notée $P_{B,t}$ en posant, pour tout événement A, $P_B(A) = \frac{P(A \cap B)}{P(B)}$

On note $P_B(A) = P(A/B)$ qui se lit « probabilité de A que B est réalisé ».

<u>Propriété</u>: Soient A et B deux événements de l'ensemble Ω, tel que $P(B) \neq 0$.

Alors:
$$P(A \cap B) = P(B) \times P_B(A)$$
.

Définition: On dit que deux événements A et B sont indépendants lorsque. $P(A \cap B) = P(B) \times P(A)$.

Remarque: Ne pas confondre indépendant et incompatible

5- Probabilités totales :

Arbre de probabilité: C'est un arbre sur lequel on place des probabilités conditionnelles d'événements, cette présentation permet de rendre plus simple le calcul de probabilité.

Remarque: Arbre probabiliste≠Arbre à dénombrer

Exemple:

Soit p une probabilité sur un univers Ω et A, B et C trois évènements incompatibles et leur réunion est Ω .

Soit un événement M, donc nous obtenons l'arbre probabiliste suivant :

Remarque : Un arbre de probabilités comporte des nœuds et

des branches. On applique les règles suivantes

- la somme des probabilités marquées sur des branches issues d'un est égale à 1.
- la probabilité d'un événement qui correspond à un chemin est le produit des probabilités inscrites sur les branches de ce chemin.
- la probabilité d'un événement est la somme des probabilités des branches aboutissant à cet événement.
- Done :

$$p(M) = p(M \cap A) + p(M \cap B) + p(M \cap C)$$

= $p_A(M) \times p(A) + p_B(M) \times p(B) + p_C(M) \times p(C)$

6- Formule des probabilités totales :

Théorème: Soit $A_1, A_2, ..., A_k$, des événements de probabilité non nulle, réalisant une partition de l'univers Ω . Alors, pour tout événement B de ce même univers, on a :

$$p(B) = p(B \cap A_1) + p(B \cap A_2) + \dots + p(B \cap A_k)$$

$$= p_{A_1}(B) \times p(A_1) + p_{A_2}(B) \times p(A_2) + \dots + p_{A_k}(B) \times p(A_k)$$

5

<u>Exercice</u>: On considère trois urnes respectivement notées **U**₁, **U**₂ et **U**₃. L'urne **U**₁ contient **une** boule rouge et **cinq** boules jaunes, l'urne **U**₂ contient **trois** boules rouges et **une** boule jaune, l'urne **U**₃ contient **une** boule rouge et **deux** boules jaunes.

On choisit une urne au hasard et on tire une boule de cette urne.

Quelle est la probabilité que la boule tirée soit rouge ?

7- Loi de probabilité d'une variable aléatoire:

Soit X une variable aléatoire sur Ω univers d'événements d'une expérience aléatoire Pour déterminer la loi de probabilité de la variable aléatoire X, on suit les deux étapes suivantes :

- Détermination de $X(\Omega) = \{x_1; x_2; x_3; ...; x_n\}$ l'ensemble des valeurs que peut prendre X.
- Calcul des probabilités $p(X = x_i)$ pour tout i de l'ensemble $\{1;2;3;...;n\}$.

Exemple:

On lance trois fois de suite une pièce de monnaie équilibrée. On gagne 2 points pour chaque résultat « Pile » et on perd 1 point pour chaque résultat « Face ».

L'univers des cas possibles est Ω = {PPP, PPF, PFF, FPP, FFF, FFP, FFF}.

Soit X la variable aléatoire qui à chaque issue associe le **gain** du joueur.

L'ensemble des valeurs prises par X est {-3,0,3,6}

$$(X = -3) = \{FFF\}$$
 et lui associer sa probabilité $p(X = -3) = \frac{Card(X = -3)}{Card(\Omega)} = \frac{1}{8}$

$$(X=0)=\{\text{FPF, FFP, PFF}\}\ \text{et lui associer sa probabilité}\ p(X=0)=\frac{Card(X=0)}{Card(\Omega)}=\frac{3}{8}$$

(X = 3) = {PPF, PFP, FPP} et lui associer sa probabilité
$$p(X = 3) = \frac{Card(X = 3)}{Card(\Omega)} = \frac{3}{8}$$

$$(X = 6) = \{PPP\}$$
 et lui associer sa probabilité $p(X = 6) = \frac{Card(X = 6)}{Card(\Omega)} = \frac{1}{8}$

Le tableau ci-contre concerne la loi de probabilité de la variable aléatoire X :

$X = x_i$	-3	0	3	6
$p(X = x_i)$	1	3	3	1
	8	8	8	8

• Remarque: Soit X une variable aléatoire sur Ω univers d'événements d'une expérience aléatoire avec $X(\Omega) = \{x_1; x_2; x_3; ...; x_n\}$ et des probabilités $p(X = x_i)$ pour tout i de l'ensemble $\{1;2;3;...;n\}$.

$$\sum_{i=1}^n p(X=x_i)=1$$

8- L'espérance mathématique – la variance – l'écart type d'une variable aléatoire:

Soit X une variable aléatoire dont la loi de probabilité est représentée dans le tableau à côté :

\boldsymbol{x}_{i}	x_1	x_2	x_3	 x_n
$p(X = x_i)$	p_1	p_2	p_3	 p_n

Définition:

L'espérance mathématique de ${\cal X}$	$E(X) = x_1 \times p_1 + x_2 \times p_2 + x_3 \times p_3 + + x_n \times p_n = \sum_{i=1}^{n} x_i \times p_i$		
La variance de \boldsymbol{X}	$v(X) = E(X^{2}) - [E(X)]^{2} = \sum_{i=1}^{n} (x_{i})^{2} \times p_{i} - \left[\sum_{i=1}^{n} x_{i} \times p_{i}\right]^{2}$		
L'écart type de X	$\sigma(X) = \sqrt{\nu(X)} = \sqrt{\sum_{i=1}^{n} (x_i)^2 \times p_i - \left[\sum_{i=1}^{n} x_i \times p_i\right]^2}$		

9-La loi binomiale:

Soit p la probabilité d'un événement A dans une expérience aléatoire.

On répète cette épreuve n fois de suite.

La variable aléatoire X qui lie chaque résultat au nombre de fois que cet événement se réalise s'appelle une variable aléatoire binomiale de paramètres n et p.

Et on a:
$$\forall k \in \{0; 1; 2; 3; ...; n\}$$
; $p(X = k) = C_n^k \times p^k \times (1 - p)^{n-k}$
 $Et E(X) = n \times p$

$$Et \ V(X) = n \times p \times (1-p)$$