Historial de intentos

	Intento	Hora	Puntaje
MÁS RECIENTE	Intento 1	21 minutos	100 de 100

(!) Las respuestas correctas ya no están disponibles.

Puntaje para este intento: **100** de 100 Entregado el 7 de mayo en 20:42

Este intento tuvo una duración de 21 minutos.

Pregunta 1 10 / 10 pts

Ecopetroleos es una empresa petrolera que tiene una refinería en la costa norte del país. La refinería procesa petróleo nacional e importado, produciendo gasolina, diésel, y lubricantes.

Los dos crudos se diferencian en su composición química, por lo que producen diferentes cantidades de cada producto como se muestra a continuación en la tabla:

Tipo de	Producción (barriles)			
petróleo	Gasolina	Diésel	Lubricantes	
Nacional	0.35	0.4	0.15	
Importado	0.4	0.15	0.35	

El restante 10% del crudo, en los dos casos, se pierde en el proceso de refinación.

Los crudos también difieren en precio y disponibilidad. Ecopetroleos puede comprar hasta 15 000 barriles de crudo nacional por día a un precio de \\$50 por barril. Por otra parte, puede comprar un máximo de 8 000 barriles importados por día a un precio de \\$55 por barril.

Los contratos establecidos por Ecopetroleos lo obligan a producir 3 000 barriles diarios de gasolina y 1 500 barriles diarios de lubricantes. Sin embargo, por legislación no puede producir más de 2 000 barriles diarios de diésel.

El gerente de la compañía desea saber cómo se pueden cumplir estos requerimientos al menor costo posible.

Si se plantea un modelo lineal, definiendo las variables de decisión como:

X: Cantidad de barriles de crudo nacional a comprar diariamente

Y: Cantidad de barriles de crudo importado a comprar diariamente

¿Cuál sería la restricción asociada a la cantidad de crudo nacional disponible diariamente?

X ≤ 15000		
○ 50X ≤ 15000		
○ 50X ≥ 15000		
O X ≥ 15000		

Pregunta 2 10 / 10 pts

Ecopetroleos es una empresa petrolera que tiene una refinería en la costa norte del país. La refinería procesa petróleo nacional e importado, produciendo gasolina, diésel, y lubricantes.

Los dos crudos se diferencian en su composición química, por lo que producen diferentes cantidades de cada producto como se muestra a continuación en la tabla:

Tipo de	Producción (barriles)		
petróleo	Gasolina	Diésel	Lubricantes
Nacional	0.35	0.4	0.15
Importado	0.4	0.15	0.35

El restante 10% del crudo, en los dos casos, se pierde en el proceso de refinación.

Los crudos también difieren en precio y disponibilidad. Ecopetroleos puede comprar hasta 15 000 barriles de crudo nacional por día a un precio de \\$50 por barril. Por otra parte, puede comprar un máximo de 8 000 barriles importados por día a un precio de \\$55 por barril.

Los contratos establecidos por Ecopetroleos lo obligan a producir 3 000 barriles diarios de gasolina y 1 500 barriles diarios de lubricantes. Sin embargo, por legislación no puede producir más de 2 000 barriles diarios de diésel.

El gerente de la compañía desea saber cómo se pueden cumplir estos requerimientos al menor costo posible.

Si se plantea un modelo lineal, definiendo las variables de decisión como:

X: Cantidad de barriles de crudo nacional a comprar diariamente

Y: Cantidad de barriles de crudo importado a comprar diariamente

¿Cuál sería una función objetivo adecuada para este problema?

- MaxZ=50X+55YMax Z = 50X + 55Y
 - MinZ=15000X+8000YMin Z = 15000X + 8000Y
 - MaxZ=15000X+8000YMax Z = 15000X + 8000Y
 - MinZ=50X+55YMin Z = 50X + 55Y

Pregunta 3 10 / 10 pts

Un pequeño taller metalmecánico fabrica dos tipos de engranajes para una ensambladora automotriz. Para la fabricación de los engranajes la compañía cuenta con tres estaciones de trabajo y los tiempos de cada tipo de engranaje en cada estación se muestran en la tabla a continuación:

	Tiempo (min)			
Estación	Engranaje A	Engranaje B		
1	18	8		
2	15	11		
3	12	14		

Finalmente, el taller trabaja 12 horas al día, pero se deben hacer mantenimientos diarios a cada estación, lo que consume 30 minutos de la estación uno, 45 minutos de la estación dos y 25 minutos de la estación tres. Si el gerente de producción desea minimizar el tiempo muerto total de las tres estaciones y se plantea un modelo lineal para hallar la cantidad óptima de cada tipo de engranaje a fabricar, definiendo las variables de decisión como:

X: Cantidad de engranajes tipo A a fabricar

Y: Cantidad de engranajes tipo B a fabricar

De los siguientes puntos, ¿cuál no corresponde a un punto extremo de la región factible del problema? (Se redondearon los resultados a una cifra decimal)

0.0, 0.0)		
(28.1, 23.1)		
(26.3, 27.1)		
(38.3, 0.0)		

Pregunta 4 10 / 10 pts

Ecopetroleos es una empresa petrolera que tiene una refinería en la costa norte del país. La refinería procesa petróleo nacional e importado, produciendo gasolina, diésel, y lubricantes.

Los dos crudos se diferencian en su composición química, por lo que producen diferentes cantidades de cada producto como se muestra a continuación en la tabla:

Tipo de	Producción (barriles)			
petróleo	Gasolina	Diésel	Lubricantes	
Nacional	0.35	0.4	0.15	
Importado	0.4	0.15	0.35	

El restante 10% del crudo, en los dos casos, se pierde en el proceso de refinación.

Los crudos también difieren en precio y disponibilidad. Ecopetroleos puede comprar hasta 15 000 barriles de crudo nacional por día a un precio de \\$50 por barril. Por otra parte, puede comprar un máximo de 8 000 barriles importados por día a un precio de \\$55 por barril.

Los contratos establecidos por Ecopetroleos lo obligan a producir 3 000 barriles diarios de gasolina y 1 500 barriles diarios de lubricantes. Sin embargo, por legislación no puede producir más de 2 000 barriles diarios de diésel.

El gerente de la compañía desea saber cómo se pueden cumplir estos requerimientos al menor costo posible.

Si se plantea un modelo lineal, definiendo las variables de decisión como:

X: Cantidad de barriles de crudo nacional a comprar diariamente

Y: Cantidad de barriles de crudo importado a comprar diariamente

¿Cuál sería la restricción asociada la producción de diésel?

 $0.40X + 0.15Y \ge 2000$

X + Y ≥ 2000

 $0.40X + 0.15Y \le 2000$

 $X + Y \le 2000$

Pregunta 5 10 / 10 pts

Ecopetroleos es una empresa petrolera que tiene una refinería en la costa norte del país. La refinería procesa petróleo nacional e importado, produciendo gasolina, diésel, y lubricantes.

Los dos crudos se diferencian en su composición química, por lo que producen diferentes cantidades de cada producto como se muestra a continuación en la tabla:

Tipo de	Producción (barriles)			
petróleo	Gasolina	Diésel	Lubricantes	
Nacional	0.35	0.4	0.15	
Importado	0.4	0.15	0.35	

El restante 10% del crudo, en los dos casos, se pierde en el proceso de refinación.

Los crudos también difieren en precio y disponibilidad. Ecopetroleos puede comprar hasta 15 000 barriles de crudo nacional por día a un precio de \\$50 por barril. Por otra parte, puede comprar un máximo de 8 000 barriles importados por día a un precio de \\$55 por barril.

Los contratos establecidos por Ecopetroleos lo obligan a producir 3 000 barriles diarios de gasolina y 1 500 barriles diarios de lubricantes. Sin embargo, por legislación no puede producir más de 2 000 barriles diarios de diésel.

El gerente de la compañía desea saber cómo se pueden cumplir estos requerimientos al menor costo posible.

Si se plantea un modelo lineal, definiendo las variables de decisión como:

X: Cantidad de barriles de crudo nacional a comprar diariamente

Y: Cantidad de barriles de crudo importado a comprar diariamente

¿Cuál es el valor óptimo de la función objetivo? (Se redondearon los resultados a una cifra decimal)

412500.0			
O 250000.0			
O 1190000.0			
O 418604.7			

Pregunta 6 10 / 10 pts

Un pequeño taller metalmecánico fabrica dos tipos de engranajes para una ensambladora automotriz. Para la fabricación de los engranajes la compañía cuenta con tres estaciones de trabajo y los tiempos de cada tipo de engranaje en cada estación se muestran en la tabla a continuación:

	Tiempo (min)			
Estación	Engranaje A	Engranaje B		
1	18	8		
2	15	11		
3	12	14		

Finalmente, el taller trabaja 12 horas al día, pero se deben hacer mantenimientos diarios a cada estación, lo que consume 30 minutos de la estación uno, 45 minutos de la estación dos y 25 minutos de la estación tres. Si el gerente de producción desea minimizar el tiempo muerto total de las tres estaciones y se plantea un modelo lineal para hallar la cantidad óptima de cada tipo de engranaje a fabricar, definiendo las variables de decisión como:

X: Cantidad de engranajes tipo A a fabricar

Y: Cantidad de engranajes tipo B a fabricar

De los siguientes puntos, ¿cuál corresponde a un punto extremo de la región factible del problema? (Se redondearon los resultados a una cifra decimal)

(0.0, 61.4)		
(0.0, 86.3)		
(23.1, 29.8)		

Pregunta 7 10 / 10 pts

Un pequeño taller metalmecánico fabrica dos tipos de engranajes para una ensambladora automotriz. Para la fabricación de los engranajes la compañía cuenta con tres estaciones de trabajo y los tiempos de cada tipo de engranaje en cada estación se muestran en la tabla a continuación:

	Tiempo (min)			
Estación	Engranaje A	Engranaje B		
1	18	8		
2	15	11		
3	12	14		

Finalmente, el taller trabaja 12 horas al día, pero se deben hacer mantenimientos diarios a cada estación, lo que consume 30 minutos de la estación uno, 45 minutos de la estación dos y 25 minutos de la estación tres. Si el gerente de producción desea minimizar el tiempo muerto total de las tres estaciones y se plantea un modelo lineal para hallar la cantidad óptima de cada tipo de engranaje a fabricar, definiendo las variables de decisión como:

X: Cantidad de engranajes tipo A a fabricar

Y: Cantidad de engranajes tipo B a fabricar

¿Cuál sería una función objetivo adecuada para este problema?

$$MaxZ = 45X + 33Y$$

$$\bigcirc MinZ = 45X + 33Y$$

$$\bigcirc$$
 Min30X + 45Y + 25Z

$$\bigcirc$$
 Max30X + 45Y + 25Z

Pregunta 8	10 / 10 pts

A un alcalde de un pueblo le fue encomendado por el comité de este, la dotación de canecas de basura. El comité ha autorizado la compra de tres tipos de caneca, la caneca tipo A, de material 100% reciclado (costo de 2.3 UM/unidad), la caneca B, de material 50% reciclado (costo de 1.9 UM/unidad) y la caneca tipo C, de material 0% reciclado (costo de 1.2 UM/unidad). Después de la labor del alcalde, el comité la evaluará dando 3 puntos por caneca tipo A comprada, 2 puntos por caneca tipo B y 0 puntos por caneca tipo C. El alcalde cuenta con un presupuesto de 67 UM (Unidades Monetarias) para la compra de las canecas y de acuerdo con la necesidad del pueblo, no puede comprar menos de 40 canecas. Por una negociación anterior que se tiene con el proveedor de las canecas, al menos el 45% de las canecas deben ser de tipo C y al menos el 15% debe ser tipo B.

La calificación máxima que puede recibir el alcalde por parte del Comite es: (Recuerde que se compran canecas completas)

55

53

0 67

0 40

Pregunta 9 10 / 10 pts

Un pequeño taller metalmecánico fabrica dos tipos de engranajes para una ensambladora automotriz. Para la fabricación de los engranajes la compañía cuenta con tres estaciones de trabajo y los tiempos de cada tipo de engranaje en cada estación se muestran en la tabla a continuación:

Estación	Tiempo (min)			
	Engranaje A	Engranaje B		
1	18	8		
2	15	11		
3	12	14		

Finalmente, el taller trabaja 12 horas al día, pero se deben hacer mantenimientos diarios a cada estación, lo que consume 30 minutos de la estación uno, 45 minutos de la estación dos y 25 minutos de la estación tres. Si el gerente de producción desea minimizar el tiempo muerto total de las tres estaciones y se plantea un modelo lineal para hallar la cantidad óptima de cada tipo de engranaje a fabricar, definiendo las variables de decisión como:

X: Cantidad de engranajes tipo A a fabricar

Y: Cantidad de engranajes tipo B a fabricar

Con base en el valor óptimo de la función objetivo, ¿cuál es el tiempo muerto total, en minutos? Tenga en cuenta que los tiempos de mantenimiento NO se consideran tiempos muertos. (Se redondearon los resultados a una cifra decimal).

0.0			
O 82.5			
O 135.0			
⊚ 35.0			

En la planta de producción se tiene una cortadora que se opera en 9 horas diarias de trabajo de la empresa. La empresa fabrica 4 tipos diferentes de silla (A, B, C, D) y ha recibido un pedido de 50, 20, 40 y 54 sillas para A, B, C y D respectivamente, el cual debe entregar en 3 días. Los tiempos de procesamiento de cada uno de los tipos de silla en la cortadora son 17, 12, 15 y 14 minutos respectivamente para cada tipo, y los costos para cada una son \$100, \$120, \$110 y \$130 por silla. Se cuenta con una segunda opción que es subcontratar una empresa que se encargue de realizar el proceso de cortado. El costo de corte por cada silla es \$200, \$190, \$210 y \$220 para cada uno de los tipos de silla y la cantidad máxima que la Empresa puede mandar a hacer en los 3 días es 20, 9, 15,12 para A, B, C y D.

¿Cuál es el mínimo costo con el cual la empresa cumple con el total de la demanda? (Recuerde que se compran sillas completas, no partes de ellas)

\$25532

\$24560

\$23930

\$31230

Puntaje del examen: 100 de 100