Announcements & Such

- Leonard Cohen
- Administrative Stuff
 - HW #2 1st-submissions are due Today (4pm, drop box).
 - * Note: This involves problems from chapters 2 and 3.
 - * Consult the *HW Tips Handout* for helpful tips on HW #2.
 - Homework formatting. Please put the following information:
 - * Name, GSI, section time, and date. on all assignments and exams (upper-right corner of first page).
- Chapter 3 *Truth-Functional Semantics* for LSL
 - The truth-functions and the LSL connectives
 - Truth-Tables a tool for "seeing" LSL's "logically possible worlds"
 - Formal explications of Logical truth, validity, etc. in LSL

Chapter 3 — Semantics of LSL: Truth Functions I

- The semantics of LSL is *truth-functional* the truth value of a compound statement is a function of the truth values of its parts.
- Truth-conditions for each of the five LSL statement forms are given by *truth tables*, which show how the truth value of each type of complex sentence depends on the truth values of its constituent parts.
- Truth-tables provide a very precise way of thinking about *logical possibility*. Each row of a truth-table can be thought of as a *way the world might be*. The actual world falls into *exactly one* of these rows.
- In this sense, truth-tables provide a way to "see" "logical space."
- Truth-tables will also provide us with a rigorous way to establish whether an argument form in LSL is valid (*i.e.*, sentential validity).
- We just look for rows of a salient truth-table in which all the premises are true and the conclusion is false. That's where we're headed.

Chapter 3 — Semantics of LSL: Truth Functions II

• We begin with negations, which have the simplest truth functions. The truth table for negation is as follows (we use \top and \bot for true and false):

- In words, this table says that if p is true than $\sim p$ is false, and if p is false, then $\sim p$ is true. This is quite intuitive, and corresponds well to the English meaning of 'not'. Thus, LSL negation is like English negation.
- Examples:
 - It is not the case that Wagner wrote operas. ($\sim W$)
 - It is not the case that Picasso wrote operas. ($\sim P$)
- ' $\sim W$ ' is false, since 'W' is true, and ' $\sim P$ ' is true, since 'P' is false (like English).

Chapter 3 — Semantics of LSL: Truth Functions III

p	q	p & q
\top	Т	Т
Т	丄	工
\perp	Т	工
\perp	丄	

- Notice how we have four (4) rows in our truth table this time (not 2), since there are four possible ways of assigning truth values to p and q.
- The truth-functional definition of & is very close to the English 'and'. A LSL conjunction is true if *both* conjuncts are true; it's false otherwise.
 - Monet and van Gogh were painters. (M & V)
 - Monet and Beethoven were painters. (M & B)
 - Beethoven and Einstein were painters. (B & E)
- '*M* & *V*' is true, since both '*M*' and '*V*' are true. '*M* & *B*' is false, since '*B*' is false. And, '*B* & *E*' is false, since '*B*' and '*E*' are both false (like English).

Chapter 3 — Semantics of LSL: Truth Functions IV

p	q	$p \vee q$
Т	Т	Т
Т	丄	Т
\perp	Т	Т
\perp	丄	工

- Our truth-functional ∨ is not as close to the English 'or'. An LSL disjunction is true if *at least one* disjunct is true (false otherwise).
- In English, 'A or B' often implies that 'A' and 'B' are *not both true*. That is called *exclusive* or. In LSL, ' $A \lor B$ ' is *not* exclusive; it is *inclusive* (true if both disjuncts are true). But, we *can* express exclusive or in LSL. How?
 - Either Jane austen or René Descartes was novelist. $(J \vee R)$
 - Either Jane Austen or Charlotte Bronte was a novelist. $(J \vee C)$
 - Either René Descartes or David Hume was a novelist. $(R \lor D)$
- The first two disjunctions are true because at least one their disjuncts is true, but the third is false, since both of its disjuncts are false.

Chapter 3 — Semantics of LSL: Truth Functions V

p	q	$p \rightarrow q$
Т	Т	Т
Т	1	上
\perp	T	Т
\perp		Т

- Our truth-functional → is farther from the English 'only if'. An LSL conditional is false iff its antecedent is true and its consequent is false.
- Consider the following English conditionals. [M = 'the moon is made of green cheese', O = 'life exists on other planets', and E = 'life exists on Earth']
 - If the moon is made of green cheese, then life exists on other planets.
 - If life exists on other planets, then life exists on earth.
- The LSL translations of these sentences are both true. ' $M \to O$ ' is true because its antecedent 'M' is false. ' $O \to E$ ' is true because its consequent 'E' is true. This seems to deviate from the English 'if'. [Soon, we'll *prove* the following *equivalence*: $\lceil p \to q \rceil = \lceil \sim p \lor q \rceil$.]

Chapter 3 — Semantics of LSL: Truth Functions VI

p	q	$p \leftrightarrow q$
Т	Τ	Т
Т	\perp	丄
\perp	Т	丄
\perp	丄	Т

- Our truth-functional

 is also farther from the English 'if and only if'.

 An LSL biconditional is true iff both sides have the same truth value.
- Consider these two biconditionals. [M = 'the moon's made of green cheese', U = 'there are unicorns', E = 'life exists on Earth', and S = 'the sky is blue']
 - The moon is made of green cheese if and only if there are unicorns.
 - Life exists on earth if and only if the sky is blue.
- The LSL translations of these sentences are true. $M \leftrightarrow U$ is true because M and U are false. $E \leftrightarrow S$ is true because E and E are true. This seems to deviate from the English 'iff'. Soon, we'll *prove* the following:

$$\lceil p \leftrightarrow q \rceil \Rightarrow \lceil (p \& q) \lor (\sim p \& \sim q) \rceil$$

Chapter 3 — Semantics of LSL: Truth Functions VII

- If our truth-functional semantics for '→' doesn't perfectly capture the English meaning of 'if ... then ...', then why do we define it this way?
- The answer has two parts. First, our semantics is *truth-functional*. This is an *idealization* it yields the *simplest* ("Newtonian") semantics.
- And, there are only $2^4 = 16$ possible binary truth-functions. Why?
- So, unless one of the *other* 15 binary truth-functions is *closer* to the English conditional than '→' is, it's *the best we can do, truth-functionally*.
- More importantly, there are certain *logical properties* that the conditional *must* have. It can be shown that our definition of '→' is the *only* binary truth-function which satisfies all three of the following:
 - (1) *Modus Ponens* [p and $\lceil p \rightarrow q \rceil$: q] is a valid sentential form.
 - (2) Affirming the consequent $[q \text{ and } \lceil p \rightarrow q \rceil \therefore p]$ is *not* a valid form.
 - (3) All sentences of the form $\lceil p \rightarrow p \rceil$ are logical truths.

Chapter 3 — Semantics of LSL: Truth Functions VIII

• Here are all of the 16 possible binary truth-functions. I've given them all names or descriptions. [Only a few of these names were made up by me.]

p	q	Т	NAND	\rightarrow	~p	FI (←)	~q	\leftrightarrow	NOR	V	NIFF	q	NFI	p	NIF	&	上
Т	Т	Т	上	Т	Т	Т	上	Т	上	Т	上	Т	T	Т	T	Т	上
Т		Т	Т	1	Т	Т	Т	上	上	Т	Т	Т	上	Т	Т	Т	Т
	Т	Т	Т	Τ	Т	上	上	上	上	Т	Т	Т	Т	上	上	上	工
	上	Т	Т	Т	Т	Т	Т	Т	Т	上	上	上	上	上	上	上	上
(1	.)?			Yes													
(2	?)?			Yes													
(3	3)?			Yes													

- Exercise: fill-in the three rows at the bottom (except for →, which I have done for you already) concerning (1), (2), and (3) from the previous slide.
- You should be able to do this pretty soon (within the next week) ...

Chapter 3 — Semantics of LSL: Additional Remarks on →

- Above, I explained *why* our conditional → behaves "like a disjunction":
 - 1. We want a *truth-functional* semantics for \rightarrow . This is a simplifying *idealization*. Truth-functional semantics are the simplest compositional semantics for sentential logic. [A "Newtonian" semantic model.]
 - 2. Given (1), the *only* way to define \rightarrow is *our* way, since it's the *only* binary truth-function that has the following three essential *logical* properties:
 - (i) *Modus Ponens* [p and $\lceil p \rightarrow q \rceil$: q] is a valid sentential form.
 - (ii) Affirming the consequent $[q \text{ and } \lceil p \rightarrow q \rceil \therefore p]$ is *not* a valid form.
 - (iii) All sentences of the form $\lceil p \rightarrow p \rceil$ are logical truths.
- There are *non*-truth-functional semantics for the English conditional.
- These may be "closer" to the English *meaning* of "if". But, they agree with our semantics for \rightarrow , when it comes to the crucial *logical* properties (i)–(iii). Indeed, our \rightarrow captures *most* of the (intuitive) *logical* properties of "if".

Interpretations and the Relation of Logical Consequence

- An *interpretation* of an LSL formula p is an assignment of truth-values to all of the sentence letters in p-i.e., a row in p's truth-table.
- A formula p is a *logical consequence* of a set of formulae S [written $S \models p$] just in case there is no interpretation (*i.e.*, no row in the joint truth-table of S and p) on which all the members of S are \top but p is \bot .
- $S \models p$ is another way of saying that the argument from S to p is *valid*.
- Two LSL sentences p and q are said to be *logically equivalent* [written p = q] iff they have the same truth-value on all (joint) interpretations.
- That is, p and q are logically equivalent iff both $p \models q$ and $q \models p$.
- I will often express $\lceil p \models q \rceil$ by saying that $\lceil p \text{ entails } q \rceil$. This is easier than saying that $\lceil q \text{ is a logical consequence of } p \rceil$.
- The logical consequence relation \models is our central theoretical relation.

Logical Truth, Logical Falsity, and Contingency: Definitions

• A statement is said to be logically true (or tautologous) if it is \top on all interpretations. *E.g.*, any statement of the form $p \leftrightarrow p$ is tautological.

$$\begin{array}{c|ccccc} p & p & \leftrightarrow & p \\ \hline \top & \top & \top & \top & \top \\ \bot & \bot & \top & \bot & \end{array}$$

• A statement is logically false (or self-contradictory) if it is \bot on all interpretations. *E.g.*, any statement of the form $p \& \neg p$ is logically false:

• A statement is **contingent** if it is *neither* tautological *nor* self-contradictory. Example: 'A' (or *any* basic sentence) is contingent.

$$\begin{array}{c|cc}
A & A \\
\hline
\top & \top \\
\bot & \bot
\end{array}$$

Logical Truth, Logical Falsity, and Contingency: Problems

- Classify the following statements as logically true (tautologous), logically false (self-contradictory), or contingent:
 - 1. $N \rightarrow (N \rightarrow N)$
 - $2. (G \to G) \to G$
 - 3. $(S \to R) \& (S \& \sim R)$
 - 4. $((E \rightarrow F) \rightarrow F) \rightarrow E$
 - 6. $(M \rightarrow P) \lor (P \rightarrow M)$
- 11. $[(Q \to P) \& (\sim Q \to R)] \& \sim (P \lor R)$
- 12. $[(H \to N) \& (T \to N)] \to [(H \lor T) \to N]$
- 15. $[(F \lor E) \& (G \lor H)] \leftrightarrow [(G \& E) \lor (F \& H)]$

Equivalence, Contradictoriness, Consistency, and Inconsistency

• Statements p and q are equivalent [p = q] if they have the same truth-value on all interpretations. For instance, ' $A \rightarrow B$ ' and ' $\sim A \vee B$ '.

A	B	A	\rightarrow	\boldsymbol{B}	~	A	V	В
Т	Т	Т	Т	Т	上	Т	Т	Т
Т	上	Т		丄	上	Т		工
	Т	上	Т	Т	Т	丄	Т	Т
	Т	上	Т	工	T		Т	

• Statements p and q are contradictory [p
ightharpoonup
ightharpoonup
ightharpoonup q] if they have opposite truth-values on all interpretations. For instance, 'A
ightharpoonup B' and ' $A \& \sim B$ '.

A	B	A	\rightarrow	B	A	&	~	В
Т	Т	Т	Т	Т	T		Т	Т
					Т			
上	Т	上	Т	Т	上	上	丄	Т
	上		T		上		Т	工

• Statements p and q are inconsistent $[p \models \sim q]$ if there is no interpretation on which they are both true. For instance, ' $A \leftrightarrow B$ ' and ' $A \& \sim B$ ' are inconsistent [Note: they are *not* contradictory!].

A	В	A	\leftrightarrow	B	A	&	~	В
Т	Т	Т	Т	Т	T			Т
Т	工	Т		工	T	Т	Т	工
	Т	上		Т	上			Т
	Т	上	Т	Т	上	工	Т	工

• Statements p and q are consistent $[p \not\models \sim q]$ if there's an interpretation on which they are both true. *E.g.*, 'A & B' and ' $A \lor B$ ' are consistent:

A	В	A	&	В	A	V	В
Т	Т	T	Т	Т	Т	Т	Т
Т	Т	Т		Т	Т	Т	工
		上					
	Т	上		上			

Semantic Equivalence, Contradictoriness, etc.: Relationships

• What are the logical relationships between 'p and q are equivalent', 'p and q are consistent', 'p and q are contradictory', and 'p and q are inconsistent'? That is, which of these entails which (and which don't)?

Equivalent

Contradictory

Consistent

Inconsistent

- Answers:
 - 1. Equivalent *⇒* Consistent (*example*?)
 - 2. Consistent *⇒* Equivalent (*example*?)
 - 3. Contradictory \Rightarrow Inconsistent (*why*?)
 - 4. Inconsistent *⇒* Contradictory (*example*?)

Semantic Equivalence: Example #1

- Recall that $\lceil p \text{ unless } q \rceil$ translates in LSL as $\lceil \sim q \rightarrow p \rceil$.
- We've said that we can also translate $\lceil p \rceil$ unless $q \rceil$ as $\lceil p \lor q \rceil$.
- This is because $\lceil \sim q \rightarrow p \rceil$ is *semantically equivalent to* $\lceil p \lor q \rceil$. We may demonstrate this, using the following joint truth-table.

- The truth-tables of $\lceil p \lor q \rceil$ and $\lceil \sim q \to p \rceil$ are the same.
- Thus, $\sim q \rightarrow p = p \vee q$.

Semantic Equivalence: Example #2

- $\lceil p \leftrightarrow q \rceil$ is an abbreviation for $\lceil (p \rightarrow q) \& (q \rightarrow p) \rceil$.
- The following truth-table shows it is a *legitimate* abbreviation:

- $\lceil p \leftrightarrow q \rceil$ and $\lceil (p \to q) \& (q \to p) \rceil$ have the same truth-table.
- Thus, $p \leftrightarrow q = (p \rightarrow q) \& (q \rightarrow p)$.

Semantic Equivalence: Example #3

- Intuitively, the truth-conditions for *exclusive or* (\oplus) are such that $\lceil p \oplus q \rceil$ is true if and only if *exactly* one of p or q is true.
- I said that we could say something equivalent to this using our \vee , &, and \sim . Specifically, I said $p \oplus q = (p \vee q) \& \sim (p \& q)$.
- The following truth-table shows that this is correct:

p	q	$(p \lor q)$	&	$\sim (p \& q)$	$p \oplus q$
Т	Т	Т	Т	Т	
Т	\perp	Т	Т	Т	Т
\perp	Т	Т	Т	Т	Т
\perp	\perp		Т	Т	上

• $\lceil p \oplus q \rceil$ and $\lceil (p \vee q) \& \sim (p \& q) \rceil$ have the same truth-table.

Equivalence, Contradictoriness, *etc.*: Some Problems

- Use truth-tables to determine whether the following pairs of statements are semantically equivalent, contradictory, consistent, or inconsistent.
 - 1. 'F & M' and ' \sim ($F \vee M$)'
 - 2. ' $R \vee \sim S$ ' and ' $S \& \sim R$ '
 - 3. ' $H \leftrightarrow \sim G$ ' and ' $(G \& H) \lor (\sim G \& \sim H)$ '
 - 4. 'N & $(A \lor \sim E)$ ' and ' $\sim A$ & $(E \lor \sim N)$ '
 - 5. ' $W \leftrightarrow (B \& T)$ ' and ' $W \& (T \rightarrow \sim B)$ '
 - 6. ' $R \& (Q \lor S)$ ' and ' $(S \lor R) \& (Q \lor R)$ '
 - 7. ' $Z \& (C \leftrightarrow P)$ ' and ' $C \leftrightarrow (Z \& \sim P)$ '
 - 8. ' $Q \rightarrow \sim (K \vee F)$ ' and ' $(K \& Q) \vee (F \& Q)$ '

Some More Semantic Equivalences

• Here is a simultaneous truth-table which establishes that

$$A \leftrightarrow B \Rightarrow (A \& B) \lor (\sim A \& \sim B)$$

A	В	$\mid A \mid$	\leftrightarrow	B	(A	&	B)	V	(~	A	&	~	<i>B</i>)
Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	Т	1		Т
Т	Т	Т	Т	工	Т	丄	丄	Т	Т	Т	工	Т	
	Т			Т	上	丄	Т		Т	丄			Т
	丄	上	Т	工	上			Т	Т		Т	Т	

• Can you prove the following equivalences with truth-tables?

$$- \sim (A \& B) \Rightarrow = \sim A \lor \sim B$$

$$- \sim (A \vee B) = -A \& \sim B$$

$$-A = (A \& B) \lor (A \& \sim B)$$

$$-A = A = A & (B \rightarrow B)$$

$$-A = A = A \vee (B \& \sim B)$$

A More Complicated Equivalence (Distributivity)

• The following simultaneous truth-table establishes that

$$p \& (q \lor r) \Rightarrow \models (p \& q) \lor (p \& r)$$

p	q	r	p	&	$(q \vee r)$	(<i>p</i> & <i>q</i>)	V	(p & r)
Т	Т	Т	Т	Т	Т	Т	Т	Т
Т	Т	\perp	Т	Т	Т	Т	Т	\perp
Т	\perp	Т	Т	Т	Т	上	Т	Т
Т	\perp	\perp	Т	\perp	\perp	上	\perp	\perp
\perp	Т	Т		\perp	Т	上	\perp	\perp
\perp	Т	\perp		\perp	Т	上	\perp	\perp
\perp	\perp	Т	上	\perp	Т	上	\perp	\perp
\perp	\perp	\perp		\perp	\perp	上	\perp	\perp

• This is *distributivity* of & over \vee . It also works for \vee over &.

The Exhaustive Truth-Table Method for Testing Validity

• Remember, an argument is valid if it is *impossible* for its premises to be true while its conclusion is false. Let p_1, \ldots, p_n be the premises of a LSL argument, and let q be the conclusion of the argument. Then, we have:

 p_1 p_n is valid if and only if there is no row in the simultaneous q_n q_n

truth-table of p_1, \ldots, p_n , and q which looks like the following:

atoms premises conclusion

• We will use simultaneous truth-tables to prove validities and invalidities. For example, consider the following valid argument:

 $A \rightarrow B$ $\therefore B$

atoms		premises				conclusion
A	В	A	A	→	В	B
Т	Т	Т	Т	Т	Т	Т
Т	上	Т	Т		上	上
T	Т	1	上	Т	Т	Т
	\perp			Т		上

- rightharpoons VALID there is no row in which A and $A \rightarrow B$ are both \top , but B is \bot .
 - In general, we'll use the following procedure for evaluating arguments:
 - 1. Translate and symbolize the the argument (if given in English).
 - 2. Write out the symbolized argument (as above).
 - 3. Draw a simultaneous truth-table for the symbolized argument, outlining the columns representing the premises and conclusion.
 - 4. Is there a row of the table in which all premises are \top but the conclusion is \bot ? If so, the argument is invalid; if not, it's valid.
 - We will practice this on examples. But, first, a "short-cut" method.