1.a)i)

 α is kind of a categorical probability distribution because:

n number of categories, $\alpha 1, \ldots, \alpha n$ event probabilities

and $\alpha i > 0$, $\sum \alpha i = 1$ which are the prerequisites for a categorical probability distribution.

ii)

copying in attention

$$k_i^T q \gg k_i^T q, i \neq j$$

iii)

we know that $\alpha i > 0$, $\sum \alpha i = 1$ ans also from $\alpha j = \sum_{i!=j} \alpha i$ we understand that $\alpha j = 1$ so $\sum_{i=1}^{n} vi \ \alpha i = vj \ aj = vj$.

iv)

When one of the key vectors is almost identical to the given query, the attention weight assigned to it will be significantly higher. As a result, the output will be strongly influenced by that specific key's value. In this way, we can say that the model has copied the value.

b)i)

$$M(V_{a} + V_{b}) = V_{a}$$

$$M V_a = M(c_1a_1 + c_2a_2 + + c_ma_m) = MA_c = V_a \text{ and } a_j^T a_i = 0 \text{ if } i == j \ a_j^T a_i = 1$$

$$\Rightarrow$$
 M = A^T

$$\Rightarrow$$
 A^TAc = c₁a₁ ^Ta₁ + · · · + c_ma_m^Ta_m = c

$$M V_b = M(d_1b_1 + d_2b_2 + + d_pb_p) = MB_d = V_b$$
 and $a_i^Tb_k = 0$

$$\Rightarrow$$
 M = A^T

$$\Rightarrow$$
 A^TB_d = d₁a₁^Tb₁ + · · · + d_pa_p^Tb_m = 0

$$M_{Va} + M_{Vb} = Va => A^{T}A_{C} + A^{T}B_{d} = c + 0 = c$$

So $M = A^T$ and vector of weights is c.

$$c = (1/2)(V_a + V_b) => x_a = x_b = 0.5$$
 and part a

$$\Rightarrow$$
 $q^Tk_a = q^Tk_b \gg q^Tk_i \quad \forall i != a, b$

$$\Rightarrow \mathsf{q}^{\scriptscriptstyle \top} \mathsf{k}_{\mathsf{a}} = \mathsf{q}^{\scriptscriptstyle \top} \mathsf{k}_{\mathsf{b}} = \beta \ \Rightarrow \ \frac{\exp(\beta)}{\sum_{i=1}^n \exp(\beta)} = \frac{\exp(\beta)}{n-2+2\exp(\beta)} \quad \text{for } \beta \gg 0$$

$$\Rightarrow \exp(\beta) = \infty \Rightarrow \frac{\exp(\beta)}{2\exp(\beta)} = 0.5$$

$$\Rightarrow$$
 q = $\beta(k_a + k_b)$ $\beta \gg 0$

c)i)

Considering that α tends to approach zero, the covariance matrices' diagonal elements also become extremely small. so, when sampling k_i with mean μ_i and covariance Σi , the sampled value k_i will have a value close to μ_i .

Furthermore, since the means μi are all perpendicular it leads to the same expression for q, which is $\beta(\mu_a + \mu_b)$.

ii)

we know μ_i T μ_i = 1 and α is small and $\sum \alpha = \alpha I + (1/2) (\mu_a T \mu_a)$

$$\Rightarrow$$
 ka \in [0.5 μ a, 1.5 μ a] i != a

$$\Rightarrow$$
 ka = Xµa and X = N (1, 0.5)

$$\Rightarrow$$
 ki = μ i \forall I!= a

$$\Rightarrow$$
 $k_a^T q = X \mu_a^T \beta(\mu_a + \mu_b) = X\beta \quad \beta \gg 0$

$$\Rightarrow$$
 $K_b^T q \approx \mu_b^T \beta(\mu_a + \mu_b) = \beta \qquad \beta \gg 0$

$$\Rightarrow K_i^T q \approx \mu_i^T \beta(\mu_a + \mu_b) = \beta(\mu_i^T \mu_a + \mu_i^T \mu_b) = \beta(0 + 0) = 0 \qquad \beta \gg 0$$

$$\Rightarrow \frac{\exp(\operatorname{Ka} \operatorname{T} \operatorname{q})}{\sum_{i=1}^{n} \exp(\operatorname{Ki} \operatorname{T} \operatorname{q})} = \frac{\exp(\operatorname{X} \operatorname{q})}{\exp(\operatorname{X} \operatorname{q}) + \exp(\beta)} = \frac{1}{1 + \exp(\beta(1 - \operatorname{X}))}$$

$$\Rightarrow \frac{\exp(\operatorname{Kb} \operatorname{T} \operatorname{q})}{\sum_{i=1}^{n} \exp(\operatorname{Ki} \operatorname{T} \operatorname{q})} = \frac{\exp(\beta)}{\exp(\operatorname{X} \beta) + \exp(\beta)} = \frac{1}{1 + \exp(\beta(1 - \operatorname{X}))}$$

⇒ X is a shifted softmax to right by 1. So for the start and end of X period which is [0.5, 1.5]

$$\Rightarrow \text{ For X} = 0.5 \text{ and } \beta \gg 0 \frac{1}{1 + \exp(\beta(1 - 0.5))} = \frac{1}{1 + \infty} = 0 \text{ and } \frac{1}{1 + \exp(\beta(0.5 - 1))} = \frac{1}{1 + 0} = 1$$

$$\Rightarrow \frac{1}{1 + \exp(\beta(1 - 1.5))} = \frac{1}{1 + 0} = 1 \text{ and } \frac{1}{1 + \exp(\beta(1.5 - 1))} = \frac{1}{1 + \infty} = 0$$

So $c = v_a$ if X is 1.5 and $c = v_b$ if X is 0.5

It differs from part i because in part i c is balanced combination of both v_a and v_b but here c swings between these.

d)i)

$$c1 = 1/2 (v_a + v_b)$$
 and $q_1 = \beta(\mu_a + \mu_b)$

$$c2 = 1/2 (v_a + v_b)$$
 and $q_2 = \beta(\mu_a + \mu_b)$

$$c = 1/2 (c1 + c2) = 1/2 (1/2 (v_a + v_b) + 1/2 (v_a + v_b)) = 1/4 (v_a + v_b) + 1/4 (v_a + v_b) = 1/2 (v_a + v_b)$$

ii)

c is like part (c)ii). If we add more attention the swings of c between va and vb will be less. If X is 1 then we have :

$$c = \frac{1}{1 + \exp(\beta(1-1))} v_a + \frac{1}{1 + \exp(\beta(1-1))} v_b = \frac{1}{2} (v_a + v_b)$$

2.

d) accuracy on the dev set: 10.0 out of 500.0: 2.0%

accuracy "London": 25.0 out of 500.0: 5.0%

- g)i) accuracy: 43.0 out of 500.0: 8.6%
- ii) the complexity of attention operation is reduced to $O(d \times m)$.

complexity of self attentions in the latent transformer blocks will reduce to O(m2).

multi-headed attention has a time complexity of O(ℓ 2d + ℓ d2) the time complexity of the perceiver model is O(dm + Lm2),

3.

- a) it had basic knowledge. Because it was trained on a large dataset.
- b) the information made, will be wrong and this can lead to insecure events.
- c) same as part b