1 Differentiation

Definition 1 Sei $f: D(f) \subseteq \mathbb{R} \to \mathbb{R}$ und $x_0 \in D(f)$ ein Punkt, um den ein offenes Intervall $B_{\epsilon}(x)$ (für geeignetes $\epsilon > 0$) komplett in D(f) enthalten ist $(B_{\epsilon}(x) \subseteq D(f))$. Dann heißt f an der Stelle x_0 **differenzierbar**, wenn der Grenzwert

$$Df(x_0) := \frac{df}{dx}(x_0) := f'(x_0)$$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

existiert.

Wir meinen mit $f'(x_0)$ die **Ableitung** (seltener *Differentialquotient*) von f an der Stelle x_0 .

Ist $f:D(f)\to\mathbb{R}$ in jedem $x\in D(f)$ differenzierbar, dann heißt f schlechthin **differenzierbar**. Etwas irreführend wird auch die Abbildung

$$f': D(f) \subseteq \mathbb{R} \to \mathbb{R}$$

 $x \mapsto f'(x)$

als Ableitung von f bezeichnet.

Satz 1 Sei $I \subseteq \mathbb{R}$ ein offenes Intervall und $f: I \to \mathbb{R}$ und $x_0 \in I$. Dann sind äquivalent:

1. Es gibt ein $c \in \mathbb{R}$ und $\phi: I \to \mathbb{R}$, so dass

$$f(x) = f(x_0) + c(x - x_0) + \phi(x)$$

und

$$\lim_{x \to x_0} \frac{\phi\left(x\right)}{x - x_0} = 0$$

2. Es gibt ein $\tilde{c} \in \mathbb{R}$ und $u: I \to \mathbb{R}$, so dass

$$f(x) = f(x_0) + \tilde{c}(x - x_0) + u(x)(x - x_0)$$

und

$$\lim_{x \to x_0} u\left(x\right) = 0$$

3. f ist in x_0 differenzierbar

Gelten die obigen Aussagen, so gilt

$$f''(x_0) = c = \tilde{c}$$

D.h. insbesondere c und \tilde{c} sind eindeutig bestimmt

Bemerkung 1

• Der springende Punkt in 1 ist Gleichung 1. Ohne Gleichung 1 kann man sich ein beliebiges $c \in \mathbb{R}$ wählen und setzt

$$\phi\left(x\right):=f\left(x\right)-f\left(x_{0}\right)-c\left(x-x_{0}\right)$$

 \bullet Vergisst man die Funktion ϕ , versteht man mit der Geradengleichung

$$x \mapsto f(x_0) + c(x - x_0)$$

Das ist per Definition die Gleichung der Tangente an f in x_0 Beweis:

 $1\leftrightarrow 2$ Man setzte einfach $u\left(x\right)=\frac{\phi\left(x\right)}{x-x_{0}}$ und $\tilde{c}=c$ (in $x=x_{0}$ setze man $u\left(x_{0}\right)=0)$

 $1 \to 2 \text{ ZZ } \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \text{ existient}$

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f(x_0) + c(x - x_0) + \phi(x) - f(x_0)}{x - x_0}$$
$$= \lim_{x \to x_0} c + \frac{\phi(x)}{x - x_0} = c$$

 $3 \to 1$ Wir setzten $c = f'(x_0)$ und

$$\phi(x) = f(x) - f(x_0) - f'(x_0)(x - x_0)$$

offensichtlich gilt dann:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \phi(x)$$

$$\lim_{x \to x_0} \left| \frac{\phi(x)}{x - x_0} \right| = \lim_{x \to x_0} \left| \frac{f(x) - f(x_0) - f'(x_0)(x - x_0)}{x - x_0} \right|$$

$$= \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} - f'(x_0)$$

$$= f'(x_0) - f(x_0) = 0$$

Satz 2 Es sind äquivalent: $f: I \to \mathbb{R}$

1.
$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \phi(x)$$

 $mit: \lim_{n \to \infty} \frac{\phi(x)}{|x - x_0|} = 0$

2.
$$f(x) = f(x_0) + f'(x_0) \cdot (x - x_0) + \phi(x) + u(x) \cdot (x - x_0)$$

 $mit: \lim_{n \to \infty} u(x) = 0$

3. Der Grenzwert
$$f'(x_0) = \lim_{n \to \infty} \frac{f(x) - f(x_0)}{x - x_0}$$
 existiert

Satz 3 Sei $I \subseteq \mathbb{R}$ ein Intervall, $f: I \to \mathbb{R}$ differenzierbar in $x_0 \in I$. Dann ist f in x_0 stetig.

Beweis:

ZZ ist:
$$\lim_{x \to x_0} f(x) = f(x_0)$$

Äquivalent dazu: $\lim_{x \to x_0} f(x) - f(x_0) = 0$.
Nun gilt: $\lim_{x \to x_0} f(x) - f(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{\frac{x - x_0}{x - x_0}} = f'(x_0) \cdot 0 = 0$

Bemerkung 2

• Die Umkehrung dieser Aussage ist im Allgemeinen falsch! Es gibt sogar Funktionen, die überall stetig aber nirgends differenzierbar sind.

(Beispiel: Weierhaus-Fkt: $\sum_{n\in\mathbb{N}} cos(b_n\pi x)$ mit $a_n\in(0,1)$ und $a_nb_n>1$)

• Jede nicht stetige Funktion ist nicht differenzierbar

Satz 4 Seien $f, g: I \to \mathbb{R}$ in $x \in I$ differenzierbar, $I \subseteq \mathbb{R}$ ein Intervall. Dann sind f + g, $f \cdot g$ und $\frac{f}{g}$ (sofern $g(x) \neq 0$) in x differenzierbar. Es gilt:

1.
$$(f+g)' = f'(x) + g'(x)$$
 (Summerregel)

2.
$$(f \cdot g)' = f'(x)g(x) + f(x) \cdot g'(x)$$
 (Produktregel)

3.
$$(\frac{f}{g})' = \frac{f'(x)g(x) - f(x)g'(x)}{g^2(x)}$$
 (Quotientenregel)

Beweis:

1.
$$(f+g)'(x) = \lim_{y \to x} \frac{f(y) + g(y) - (f(x) + g(x))}{y - x} = \lim_{y \to x} \frac{f(y) - f(x)}{y - x} + \frac{g(y) - g(x)}{y - x}$$

$$= \lim_{y \to x} \frac{f(y) - f(x)}{y - x} + \lim_{y \to x} \frac{g(y) - g(x)}{y - x} = f'(x) + g'(x)$$

2.
$$\lim_{y \to x} \frac{f(y)g(y) - f(x)g(x)}{y - x} = \lim_{y \to x} \frac{f(y)g(y) - f(y)g(x) + f(y)g(x) - f(x)g(x)}{y - x}$$
$$= \lim_{y \to x} f(y) \frac{g(y) - g(x)}{y - x} + g(x) \frac{f(x) - f(x)}{y - x}$$
$$= \lim_{y \to x} f(y) \lim_{y \to x} \frac{g(y) - g(x)}{y - x} + g(x) \lim_{y \to x} \frac{f(y) - f(x)}{y - x}$$
$$\stackrel{Satz}{=} f(x)g'(x) + g(x)f'(x)$$

3.
$$\lim_{y \to x} \frac{\frac{f(y)}{g(y)} - \frac{f(x)}{g(x)}}{y - x} = \lim_{y \to x} \frac{\frac{f(y)}{g(y)} \frac{g(x)}{g(x)} - \frac{f(x)}{g(y)} \frac{g(y)}{g(y)}}{y - x} = \lim_{y \to x} \frac{1}{g(y)g(x)} \frac{f(y)g(x) - f(x)g(y)}{y - x}$$

$$= \frac{1}{g^2(x)} \lim_{y \to x} \frac{f(y)g(x) - f(y)g(y) + f(y)g(y) - f(x)g(y)}{y - x}$$

$$= \frac{1}{g^2(x)} \lim_{y \to x} f(y) \cdot \frac{g(x) - g(y)}{y - x} + g(y) \frac{f(y) - f(x)}{y - x}$$

$$= \frac{1}{g^2(x)} \cdot \left(\lim_{y \to x} f(y) \frac{g(x) - g(y)}{y - x} + \lim_{y \to x} g(y) \frac{f(y) - f(x)}{y - x} \right)$$

$$= \frac{1}{g^2(x)} (f(x) \cdot (-g(x)) + g(x)f'(x)) = \frac{g(x)f'(x) - f(x)g'(x)}{g^2(x)}$$

Beispiel 1

•
$$f(x) = c \in \mathbb{R}(x \in \mathbb{R})$$

 $\to f'(x) = \lim_{x \to y} \frac{f(y) - f(x)}{y - x} = \lim_{x \to y} \frac{c - c}{y - x} = 0$

•
$$f(x) = x(x \in \mathbb{R})$$

 $f'(x) = \lim_{x \to y} \frac{y-x}{y-x} = 1$

• $f(x) = x^n, (x \in \mathbb{R})$ wobei $n \in \mathbb{N}$ $f'(x) = nx^{n-1}$ per Induktion: n = 1 Stichpunkt $2 \checkmark$ $n \to n+1$: Sei also $f(x) = x^{n+1}$. Das gibt mit der Produktregel: $f'(x) = (x \cdot x^n)' = (x)' \cdot (x^n)' = 1 \cdot xn + x \cdot n \cdot x^{n-1} = x^n + nx^n = (n+1)x^n$

Damit sind alle Polynome differenzierbar und für $p(x) = \sum_{l=0}^{n} a_l x^l$ gilt (Summenregel):

$$p'(x) = \sum_{l=0}^{n} l \cdot a_l \cdot x^{l-1} = \sum_{l=1}^{n} l \cdot a_l x^{l-1}$$

• Seien P_1 und P_2 Polynome.

Denn:

Dann nennt man die Abbildung

$$\begin{array}{l} Q: \mathbb{R} \setminus \{x|P_2(x)=0\} \to \mathbb{R} \\ x \mapsto \frac{P_1(x)}{P_2(x)} \text{ eine rationale Funktion.} \end{array}$$

Mit obiger sehen wir: rationale Funktionen sind auf dem kompletten Definitionsbereich differenzierbar.

• Die Funktion $|\circ| \cdot x \mapsto |x| = \begin{cases} x & \textit{für } x \ge 0 \\ -x & \textit{sonst} \end{cases}$ ist nicht in 0 differenzierbar.

$$\lim_{y \searrow 0} \frac{|y| - |0|}{y - 0} = \lim_{y \searrow 0} \frac{y - 0}{y - 0} = 1$$

$$\lim_{y \nearrow 0} \frac{|y| - |0|}{y - 0} = \lim_{y \nearrow 0} \frac{-y - 0}{y - 0} = -1$$

Satz 5 (Kettenregel) Seien I_f und I_g Intervalle, $x_0 \in I_f$ und $f: I_f \to \mathbb{R}$ in x_0 differenzierbar und $g: I_g \to \mathbb{R}$ sei in $f(x_0)$ differenzierbar und $f(I_f) \subseteq I_g$. Dann gilt:

$$\frac{dg \circ f}{dx}(x_0) = \frac{dg}{dx}(f(x_0)) \cdot \frac{df}{dx}(x_0)$$

Beweis: Da f in x_0 differenzierbar ist, gilt für alle $x \in I_f$:

$$f(x) - f(x_0) = (x - x_0) \cdot (f'(x_0) + u(x))$$

 $\begin{array}{l} (\textit{Wobei } \lim\limits_{x \to x_0} u(x) = 0) \\ \textit{Analog gilt für alle } y \in I_g : \end{array}$

$$g(y) - g(f(x_0)) = (y - f(x_0)) \cdot (g'(f(x_0)) + v(y)),$$

 $\begin{aligned} & wobei \lim_{y \to f(x_0)} v(y) = 0 \\ & Damit \ haben \ wir \ f\"{u}r \ alle \ x \in I_f: \end{aligned}$

$$g(f(x)) - g(f(x_0)) = (f(x) - f(x_0)) \cdot (g'(f(x_0)) + v(f(x)))$$
$$= (x - x_0)(f'(x_0) + u(x))(g'(f(x_0)) + v(f(x)))$$

Damit gilt:

$$\lim_{x \to x_0} \frac{g(f(x)) - g(f(x_0))}{x - x_0} = \lim_{x \to x_0} (f'(x_0) + u(x))(g'(f(x)) + v(f(x)))$$

$$= \lim_{x \to x_0} (f'(x_0) + u(x)) \lim_{x \to x_0} (g'(f(x_0)) + v(f(x)))$$

$$= (f'(x_0) + 0)(g'(f(x_0)) + 0) = f'(x_0)g'(f(x_0))$$

Definition 6 Ist $I \subseteq \mathbb{R}$ ein Intervall und $f: I \to \mathbb{R}$ differenzierbar und $f': I \to \mathbb{R}$ $I \to \mathbb{R}$ stetig. Dann heißt f stetig differenzierbar. Wir definieren weiterhin induktiv die k-te Ableitung (für $k \in \mathbb{N}$) durch:

$$f^{(0)} := f$$

 $f^{(k+1)} := f^{(k+1)'}$

sofern die Ableitungen definiert sind.

Ist $f^{(k)}: I \to \mathbb{R}$ für alle $k \in \mathbb{N}$ definiert, so heißt f **beliebig oft** bzw. **unendlich** oft differenzierbar.

Bemerkung 3 Wir haben bereits gesehen: Polynome sind beliebig oft differenzierbar.

Satz 7 Sei $p(x) = \sum_{k=0}^{\infty} a_k (x - x_0)^k, a_k \in \mathbb{R}, x_0 \in \mathbb{R}$ eine Potenzreihe vom Konvergenzradius R > 0. Dann ist $p: x \mapsto p(x)$ auf ganz $(x_0 - R, x_0 + R)$ differenzierbar mit $p'(x) = \sum_{k=0}^{\infty} (k+1) a_{k+1} (x-x_0)^k$. Insbesondere ist p' auch wieder eine Potenzreihe (die man durch gliedweises

differenzieren erhält) mit Konvergenzradius R.

Bemerkung 4

1. Damit erhalten wir:

$$exp'(x) = \left(\sum_{l=0}^{\infty} \frac{x^l}{l!}\right)' = \sum_{l=0}^{\infty} (l+1) \frac{x^l}{(l+1)!} = \sum_{l=0}^{\infty} \frac{x^l}{l!} = exp(x)$$

2. Damit sind Potenzreihen ∞ oft differenzierbar

Beweis Wir zeigen zunächst die Aussage über den Konvergenzradius. Beachte, dass:

$$\left(\sum_{k=0}^{\infty} (k+1) a_{k+1} (x-x_0)^k\right) (x-x_0) = \sum_{k=0}^{\infty} (k+1) a_{k+1} (x-x_0)^{k+1}$$

Ergo, für den Konvergenzradius der obigen Potenzreihe ergibt sich nach Cauchy-Hadamard:

$$R_{\phi'} = \left(\limsup_{k \to 1} \sqrt{(k+1) a_{k+1}}\right)^{-1} = R\left(da\sqrt[k]{k} \to 1\right)$$

Damit ist p' wohldefiniert.

Wir zeigen nun, dass p' tatsächlich die Ableitung von p darstellt. OBdA sei $x_0 = 0.$

Dann gilt für $y \in (-R, R)$:

$$p(x) - p(y) - p'(y)(x - y) = \sum_{k=\sigma}^{\infty} a_k (x^k - y^k) - (k+1) a_{k+1} y^k (x - y)$$

Wir setzen $\Delta(x,y) = \sum_{n=\sigma}^{\infty} a_n \frac{x^n - y^n}{x - y} - \sum_{n=1}^{\infty} n a_n y^{n-1}$. Man sieht leicht (Teleskopsumme), dass

$$\frac{x^n - y^n}{x - y} = \begin{cases} \sum_{k=0}^{n-1} x^{n-1-k} y^k & n \ge 1\\ 0 & sonst \end{cases}$$

Also folgt:

$$\Delta(x,y) = \sum_{n=1}^{\infty} a_n \left[\sum_{k=0}^{n-1} x^{n-1-k} y^k - n y^{n-1} \right]$$

Für n = 1 ist [...] = 0 und für $n \ge 2$

$$[...] = \sum_{k=0}^{n-2} x^{n-1-k} y^k - (n-1)y^{n-1}$$

$$= \sum_{k=0}^{n-2} (k+1)x^{n-1-k} y^k - \sum_{k=0}^{n-2} kx^{n-1-k} y^k . (n-1)y^{k-1}$$

$$= \sum_{k=0}^{n-2} (k+1)x^{n-1-k} y^k - \sum_{k=0}^{n-1} kx^{n-1-k} y^k$$

$$= \sum_{k=0}^{n-1} kx^{n-k} y^{k-1} - \sum_{k=1}^{n-1} kx^{n-1-k} y^k$$

$$= (x-y) \sum_{k=1}^{n-1} kx^{n-1-k} y^{k-1}$$

Sein nun |y| < r < R und $|x| \le r$. Dann gilt:

$$|\Delta(x,y)| \le \sum_{n=2}^{\infty} |a_n| |x-y| \sum_{k=1}^{n-1} k|x|^{n-1-k} |y|^{k-1}$$

$$\le \sum_{n=2}^{\infty} |a_n| |x-y| r^{n-2} \sum_{k=1}^{n-1} k \le |a_n| r^{n-2} n^2 |x-y|$$

Nach Cauchy-Hadamard hat diese Reihe $q(z)=\sum_{n=2}^{\infty}|a_n|n^2z^n$ den Konvergenzradius R, weshalb $\sum_{n=2}^{\infty}|a_n|r^{n-2}n^2=\frac{1}{r^2}\sum_{n=2}^{\infty}|a_n|n^2r^n$ konvergiert. Damit folgt aber $\lim_{x\to y}\Delta(x,y)=0$

Proposition 1 Sei $f:(a,b) \to \mathbb{R}$ streng monoton und differenzierbar in $p \in (a,b)$ mit $f'(p) \neq 0$ Dann ist die Umkehrfunktion $f^{-1}: f(a,b) \to \mathbb{R}$ differenzierbar in q = f(p) und es gilt:

$$(f^{-1})'(q) = \frac{1}{f'(p)} = \frac{1}{f'(f^{-1}(q))}$$

Beweis Da f streng monoton ist, ist f^{-1} stetig. Insbesondere gilt $f^{-1}(y) \to f^{-1}(q)$ für $y \to q$. Damit gilt:

$$\begin{split} \lim_{y \to q} \frac{1}{y - q} \left(f^{-1}(y) - f^{-1}(q) \right) &= \lim_{y \to q} \frac{f^{-1}(y) - f^{-1}(q)}{f(f^{-1}(y)) - f(f^{-1}(q))} \\ &= \left(\lim_{y \to q} \frac{f(f^{-1}(y)) - f(f^{-1}(q))}{f^{-1}(y) - f^{-1}(q)} \right)^{-1} \\ &= \left(f'(f^{-1}(q)) \right)^{-1} = \frac{1}{f'(f^{-1}(q))} \end{split}$$

Beispiel 2

• k-te Wurtel $g:(0,\infty)\to\mathbb{R}:y\mapsto y^{\frac{1}{k}}$ ist differenzierbar mit $g'(y)=\frac{1}{k}y^{\frac{1}{k}-1}$ **Denn** g ist Umkerhfunktion zu $f(x)=x^k$ Damit gilt:

$$g'(y) = \frac{1}{f'(g(y))} = \frac{1}{k(\sqrt[k]{y})^{k-1}} = \frac{1}{k}y^{\frac{1}{k}-1}$$

• Logarithmus $\ln:(0,\infty)\to\mathbb{R}:y\mapsto \ln y$. Es ist $\ln'(y)=\frac{1}{y}$, denn:

$$\ln'(y) = \frac{1}{exp'(\ln y)} = \frac{1}{exp(\ln y)} = \frac{1}{y}$$

Bemerkung 5 Für $\alpha \in \mathbb{R}$ und x > 0 ist $x^{\alpha} := exp(\alpha \ln(x))$ **Anwendung:** Die Funktion $(\circ)^{\alpha} : (0, \infty) \to (0, \infty) : x \mapsto \alpha x^{\alpha}$ hat die Ableitung $((\circ)^{\alpha})' : (0, \infty) \to (0, \infty) : x \mapsto \alpha x^{\alpha-1}$ denn

$$(x^{\alpha})' = exp'(\alpha \ln x) = exp(\alpha \ln x) \frac{\alpha}{x}$$
$$= \alpha exp(\alpha \ln x) exp(-\ln x) = \alpha exp((\alpha - 1) \ln x))$$
$$= \alpha x^{\alpha - 1}$$

Es folgen die bekannten Rechenregeln $x^{\alpha}x^{\beta} = x^{\alpha+\beta}$ und $x^{\alpha} \cdot y^{\alpha} = (xy)^{\alpha}$

2 Differenzierbare Funktionen auf Intervallen

Sei $I \subseteq \mathbb{R}$ ein Intervall

Definition 7 Sei $f: I \to \mathbb{R}$ Wir sagen, f hat in $x_0 \in I$ ein **lokales Maximum** (lokales Minimum), falls ein $\delta > 0$ gibt, so dass

$$\forall x \in B_{\delta}(x_0) : f(x) \le f(x_0)(f(x) \ge f(x_0))$$

Gilt

$$f(x) \le f(x_0)(f(x) \ge f(x_0))$$

für alle $x \in I$, so sagen wir, dass x_0 ein **globales Maximum (globales Minimum)** ist. Sind die entsprechenden Ungleichungen strikt, so reden wir von **strikten Maxima (strikte Minima)**. Maximum und Minimum werden unter dem Begriff **Extremum** zusammengefasst.

Satz 8 Seif $f:[a,b] \to \mathbb{R}$ Hat f ein lokales Maximum (lokales Minimum) in $x_0 \in (a,b)$ und existiert $f'(x_0)$, so gilt $f'(x_0) = 0$. **Beweis** Wir betrachten den Fall des Maximums. Es gilt:

$$\lim_{x \nearrow x_0} \frac{f(x) - f(x_0)}{x - x_0} \ge 0$$

und

$$\lim_{x \searrow x_0} \frac{f(x) - f(x_0)}{x - x_0} \le 0$$

Wegen differenzierbarkeit in x_0 folgt Gleichung $1 = Gleichung \ 2 \Rightarrow f'(x_0) = 0$

Satz 9 (verallgemeinerter Mittelwertsatz) Seien $f, g : [a, b] \to \mathbb{R}$ stetig und auf ganz (a, b) differenzierbar. Dann existiert ein $\xi \in (a, b)$ mit:

$$(g(b) - g(a)) f'(\xi) = (f(b) - f(a)) g'(\xi)$$

Beweis: Wir betrachten $h:[a,b] \to \mathbb{R}$

$$t \mapsto (g(b) - g(a)) f(t) - (f(b) - f(a)) g(t)$$

Offensichtlich (nach Summenregel) ist h differenzierbar auf (a,b). Es gilt:

$$h'(t) = (g(b) - g(a)) f'(t) - (f(b) - f(a)) g'(t)$$

Wir zeigen: es existiert ein $\xi \in (a,b)$ mit $h'(\xi) = 0$. Damit folgt dann die Aussage.

Beachte:

$$h(a) = (g(b) - g(a)) f(a) - (f(b) - f(a)) g(a)$$

$$= g(b) \cdot f(a) - f(b) \cdot g(a)$$

$$= (g(b) - g(a)) f(b) - (f(b) - f(a)) g(b)$$

$$= h(b)$$

Fall 1:h = const Dann gilt trivialerweise h' = 0 und wir sind fertig.

Fall 2: $h \neq const$ Offensichtlich ist h stetig auf dem abgeschlossenen Intervall [a,b]. Damit besitzt h ein globales Maximum und ein globales Minimum. Ohne Einschränkung existiert ein $\tilde{\xi} \in (a,b)$ mit $h(\tilde{\xi}) > h(a)$, sonst betrachte -h statt h.

Also existiert ein $\xi \in (a,b)$ mit $h(\xi) \ge h(x)$ $(x \in [a,b])$. Mit anderen Worten: ξ ist auch ein globales Maximum und und daher auch ein lokales Maximum. Mit Satz 8 folgt: $h'(\xi) = 0$

Satz 10 (Mittelwertsatz(MWS)) Sei $f : [a,b] \to \mathbb{R}$ stetig und differenzierbar auf (a,b). Dann gibt ex ein $\xi \in (a,b)$ mit

$$f(b) - f(a) = (b - a) \cdot f'(\xi)$$

Bemerkung: Es ist oft wichtig, dass f nur auf (a,b) differenzierbar sein muss. **Beweis:** Das folgt aus Satz g mit $g = id_{[a,b]}$, d.h. g(x) = x $(x \in [a,b])$.

Satz 11 Sei $f:[a,b] \to \mathbb{R}$ stetig und differenzierbar auf (a,b). Dann gilt:

- a) $f = const \Leftrightarrow f'(x) = 0 (x \in (a, b))$
- b) f ist monoton wachsend $\Leftrightarrow f'(x) \ge 0 (x \in (a,b))$
- c) f ist streng monoton wachsend $\Leftrightarrow f'(x) > 0(x \in (a,b))$
- d) f ist monoton fallend $\Leftrightarrow f'(x) \leq 0 (x \in (a,b))$
- e) f ist streng monoton fallend $\Leftrightarrow f'(x) < 0(x \in (a,b))$

Beweis: a) folgt aus b) und c).

Weiterhin folgt d) beziehungsweise e) aus b) beziehungsweise c). Sei $y > x \in [a, b]$. Sei $f|_{[x,y]}$ die Einschränkung von f auf [x, y], das heißt:

$$f|_{[x,y]}:[x,y]\to\mathbb{R},z\mapsto f(z)$$

Offensichtlich erfüllt $f|_{[x,y]}$ die Bedingungen des MWS.

Es existiert ein $\xi \in (x, y)$ mit $f(y) - f(x) = (y - x) \cdot f'(\xi)$

Fall b)
$$f(y) - f(x) = (y - x) \cdot f'(\xi) \ge 0$$

$$f(y) \ge f(x)$$

Fall c) $f(y) \ge f(x)$

Beweis der Richtung \Leftarrow in Teil b): Ist $f'(x) \ge 0$ so gilt

$$\lim_{y \searrow x} \frac{f(y) - f(x)}{y - x} = \lim_{y \nearrow x} \frac{f(x) - f(y)}{x - y} \ge 0$$

Da f monoton wachsend ist, gilt für y > x:

$$\frac{f(y) - f(x)}{y - x} \ge 0$$

Folglich gilt:

$$\lim_{y \searrow x} \frac{f(y) - f(x)}{y - x} \ge 0$$

 $\ddot{A}quivalent \ f\ddot{u}r \ \lim_{y \nearrow x}$

Korollar 1 Seien $f,g:[a,b] \to \mathbb{R}$ stetig und differenzierbar auf (a,b) mit $f'(x) = g'(x) \text{ für } x \in (a,b). \text{ Dann gilt } f - g = const$ Beweis: Es gilt:

$$(f-q)'(x) = f'(x) - q'(x) = 0$$

Damit folgt die Aussage mit Satz 11.

Satz 12 Sei $f: I \to \mathbb{R}$ zweimal differenzierbar $(I \subseteq \mathbb{R} \ Intervall)$. Gibt es $\xi \in I$ mit $f'(\xi) = 0$ und $f''(\xi) < 0$ $(f''(\xi) > 0)$, so nimmt f an der Stelle ξ ein striktes lokales Maximum (Minimum) an.

Beweis: Wir betrachten nur den Fall $f''(\xi) < 0$. Für den Fall $f''(\xi) > 0$ be $trachte\ man-f$.

Per Definition haben wir also:

$$f''(\xi) = \lim_{x \to \xi} \frac{f'(x) - f'(\xi)}{x - \xi} < 0$$

$$\begin{split} r := \lim_{x \to \xi} \frac{f'(x) - f'(\xi)}{x - \xi} \\ D.h. \ es \ existiert \ f\"{u}r \ jedes \ \epsilon > 0 \ ein \ \delta > 0 \ mit \end{split}$$

$$\left| \frac{f'(x) - f'(\xi)}{x - \xi} - r \right| < \epsilon$$

 $F\ddot{u}r \ \epsilon := \frac{r}{2} \ gilt \ daher:$

$$\left| \frac{f'(\xi) - f'(x)}{\xi - x} - r \right| < \left| \frac{r}{2} \right|$$

für ein entsprechend gewähltes $\delta > 0$. Insbesondere gilt also:

$$\frac{f'(\xi) - f'(x)}{\xi - x} < 0$$

 $\textit{für alle } x \in (\xi - \delta, \xi + \delta).$ D.h. für $x < \xi$ gilt:

$$f'(\xi) - f'(x) < 0$$

und für $x > \xi$ gilt:

$$f'(\xi) - f'(x) > 0$$

Ergo: f' ist streng monoton fallend auf $(\xi - \delta, \xi]$ und streng monoton wachsend auf $[\xi, \xi + \delta)$

Da $f'(\xi) = 0$ folgt, dass f'(x) > 0 für $x \in (\xi - \delta, \xi]$ und f'(x) < 0 für $x \in \xi$ $[\xi, \xi + \delta).$

Mit Satz 11 folgt:

 $f|_{(\xi-\delta,\xi]}$ ist streng monoton wachsend und $f|_{[\xi,\xi+\delta)}$ ist streng monoton fallend.

Satz 13 (Regel von l'Hospital) Seien $f, g: (a, b) \to \mathbb{R}$ mit

$$-\infty \le a < b \le \infty$$

differenzierbar und $g'(x) \neq 0$ für alle $x \in (a,b)$. Weiter gelte:

$$\lim_{x \to a} \frac{f'(x)}{g'(x)} = A$$

Wobei $-\infty \le A \le \infty$ sei und $\lim_{x \to a} f(x) = 0$,

sowie $\lim_{x \to a} g(x) = 0$ bzw. $\lim_{x \to a} g(x) = \pm \infty$.

Dann gilt: $\lim_{x\to a}\frac{f(x)}{g(x)}=A$. Die analoge Aussage gilt auch für $x\to b$. Bemerkung:

- Wir verwenden hier den erweiterten Grenzwertbegriff, d.h. $\pm \infty$ sind als Grenzwerte zulässig.
- Zwei wesentliche Voraussetzungen:
 - 1. $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ existiert!
 - 2. ebenso ist essentiell, dass $f, g \to \frac{\circ}{+\infty}$
- Gegebenenfalls lässt sich l'Hospital iterieren:

$$\lim_{x \to \infty} \frac{x^2}{exp(x)} = \lim_{x \to \infty} \frac{2x}{exp(x)} = \lim_{x \to \infty} \frac{2}{exp(x)} = 0$$

Man kann l'Hospital auch verwenden um Ausdrücke der Form $0\cdot \infty$ zu behandeln, indem wir diese in die Form

$$\frac{\infty}{\infty} = \frac{\infty}{\frac{1}{\infty}}$$

bzw

$$\frac{0}{0} = \frac{0}{\frac{1}{\infty}}$$

umrechnen.

Beweis: Wir beschränken uns auf den Fall $x \to a$ $(x \to b \ läuft \ analog)$ und zeigen zunächst folgende Aussage:

Behauptung: Sei $A \in [-\infty, \infty)$.

Dann existiert für jedes q > A ein c > a mit $\frac{f(x)}{g(x)} < q$ $(x \in (a, c))$.

Beweis der Behauptung: $Da \xrightarrow{f'(x)} \xrightarrow{x \to a} A \text{ existiert ein } c' > a \text{ mit: } \frac{f'(x)}{g'(x)} < r \text{ für ein beliebiges } r \in (A,q)$ $und x \in (a, c')$.

Nach dem verallgemeinerten Mittelwertsatz gilt:

$$\frac{f(x) - f(y)}{g(x) - g(y)} = \frac{f'(t)}{g'(t)} \tag{1}$$

für ein geeignetes t zwischen x und y.

Für a < x < y < c' gilt daher:

$$\frac{f(x) - f(y)}{g(x) - g(y)} < r \tag{2}$$

Fall 1: $f, g \stackrel{x \to a}{\to} 0$. Nach Gleichung (2) gilt für $x \to a$

$$\frac{-f(y)}{-g(y)} = \frac{f(y)}{g(y)} < r < q(y \in (a,c'))$$

Fall 2: $g(x) \stackrel{x \to a}{\to} \pm \infty$ Multipliziere (1) mit $\frac{g(x) - g(y)}{g(x)}$.

Dann erhalten wir:

$$\frac{f(x)}{g(x)} - \frac{f(y)}{g(x)} = \frac{f'(t)}{g'(t)} \left(1 - \frac{g(y)}{g(x)} \right)$$

$$\rightarrow \frac{f(x)}{g(x)} = \frac{f'(t)}{g'(t)} \left(1 - \frac{g(y)}{g(x)} \right) + \frac{f(y)}{g(x)}$$

Für $x \rightarrow a$:

$$\lim_{x \to a} \frac{f(x)}{g(x)} \le r < q$$

Es muss also ein c > a existieren mit: $\frac{f(x)}{g(x)} < r$ $(x \in (a,c))$

Analog kann man zeigen:

Behauptung': Sei $A \in (-\infty, \infty]$. Dann existiert für jedes p < A ein d > a, so dass $p < \frac{f(x)}{g(x)}$ $(x \in (a, d))$ Für $A = +\infty$ folgt die Aussage aus der letzten Behauptung, für $A = -\infty$

aus der ersten Behauptung.

Für $A \in \mathbb{R}$ argumentieren wir wie folgt:

 $Sei~\epsilon>0~gegeben.~Nach~der~ersten~Behauptung~existiert~c>a,~so~dass$ $\frac{f(x)}{g(x)} < A + \epsilon \ (x \in (a,c)).$ Nach der zweiten Behauptung existiert d > a mit:

$$\frac{f(x)}{g(x)} > A - \epsilon \ (x \in (a, d))$$

 $F\ddot{u}r \ x \in (a, \min\{c, d\}) \ gilt \ daher$

$$\frac{f(x)}{g(x)} \in B_{\epsilon}(A)$$

Beispiel 3 f(x)=1, g(x)=x+7Dann gilt $\lim_{x\to 0}\frac{f(x)}{g(x)}=\frac{1}{7}$ aber: $\lim_{x\to 0}\frac{f'(x)}{g'(x)}=\frac{0}{1}=0$

Dann gilt
$$\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{1}{7}$$

aber:
$$\lim_{x \to 0} \frac{f'(x)}{g'(x)} = \frac{0}{1} = 0$$

Beispiel 4

$$\lim_{x \to 0+} x^{\alpha} \ln(x) = \lim_{x \to 0+} \frac{\ln(x)}{x^{-\alpha}} = \lim_{x \to 0+} \frac{\frac{1}{x}}{-\alpha x^{-\alpha - 1}}$$
$$= \lim_{x \to 0+} \frac{x^{\alpha}}{-\alpha} = 0 \text{ für } \alpha > 0$$

Definition 8 Sei $f:[a,b] \to \mathbb{R}$. Wir sagen, dass f in a (rechtsseitig) differenzierbar ist, falls der Grenzwert

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

existiert. Analog sagen wir, dass f in b (linksseitig) differenzierbar ist, falls der Grenzwert

$$\lim_{x \to b} \frac{f(x) - f(b)}{x - b}$$

existiert. Wir sagen, f ist auf [a,b] differenzierbar, wenn f in (a,b) differenzierbar und in a rechtsseitig sowie in b linksseitig differenzierbar ist. Entsprechend verallgemeinern sich die Begriffe n-Mal (stetig) differenzierbar etc...

Definition 9 Sei $I\subseteq\mathbb{R}$ ein Intervall und $f:I\to\mathbb{R}$ n-Mal differenzierbar. Dann heißt

$$P_{n,\alpha} : \mathbb{R} \to \mathbb{R}$$

 $x \mapsto \sum_{l=0}^{n} \frac{f^{(l)}(\alpha)}{l!} (x - \alpha)^{l}$

das n-te Taylorpolynom, wobei $\alpha \in I$ sei, von f an der Stelle α . **Bemerkung:** Offensichtlich gilt: $f(\alpha) = P_{n,\alpha}(\alpha)$. Weiter gilt:

$$f'(\alpha) = P_{n,\alpha}(\alpha) = \left(\sum_{l=0}^{n} l \cdot \frac{f^{l}(\alpha)}{l!} (x - \alpha)^{l-1}\right)$$

und analog:

$$f^{(l)}(\alpha) = P_{n,\alpha}^{(l)} = P_{n,\alpha}^{(l)}(\alpha)$$
$$(l = 1, ..., n)$$

Satz 14 (Satz von Taylor (mit Lagrange-Restglied)) Sei $f:[a,b] \to \mathbb{R}$, $n \in \mathbb{N}$ und f(n-1)-mal stetig differenzierbar (auf [a,b]) und n-mal differenzierbar auf (a,b). Seien $\alpha \neq \beta$ in [a,b] gegeben. Dann existiert ein x zwischen α und β , so dass gilt:

$$f(\beta) = P_{n-1,\alpha}(\beta) + \frac{f^{(n)}(x)}{n!}(\beta - \alpha)^n$$

Beweis: Wähle $M \in \mathbb{R}$ mit

$$f(\beta) = P_{n-1,\alpha}(\beta) + M(\beta - \alpha)^n$$

Man beachte, dass die n-te Ableitung der rechten Seite gegeben ist durch

$$P_{n-1,\alpha}^{(n)}(t) + n! \cdot M(\text{ für } t \in [a,b])$$

Daher ist zu zeigen: Es existiert ein x zwischen α und β mit:

$$f^{(n)}(x) = n! \cdot M$$

Wir definieren die Hilfsfunktion

$$h(t) = f(t) - P_{n-1,\alpha}(t) - M(t-\alpha)^n \text{ für } t \in [a,b]$$

$$h(\beta) = f(\beta) - P_{n-1,\alpha}(\beta) - M(\beta-\alpha)^n = 0$$

$$h(\alpha) = f(\alpha) - P_{n-1,\alpha}(\alpha) \cdot M(\alpha-\alpha)^n = 0 \text{ siehe obige Bemerekung}$$

$$h'(\alpha) = f'(\alpha) - P_{n-1,\alpha}(\alpha) - n \cdot M(\alpha-\alpha)^{n-1} = 0$$

Man sieht analog:

$$h^{(l)}(\alpha) = 0 \text{ für } l = 1, ..., n-1$$

Damit existiert aufgrund des Mittelwertsatzes ein x_1 zwischen α und β mit $h'(x_1)=0$. Analog gibt es zwischen α und x_1 ein x_2 mit $h''(x_2)=0$. Man findet also $x_1,...,x_{n-1}$ mit $h^{(l)}(x_l)=0$ (l=1,...,n-1). Insbesondere existiert ein x zwischen α und x_{n-1} (also zwischen α und β) mit $h^{(n)}(x)=0$. Damit gilt

$$0 = h^{(n)}(x) = f^{(n)}(x) - P_{n-1,\alpha}(x) - M \cdot n! \cdot (x - \alpha)^{0}$$

und daher $f^{(n)}(x) = M \cdot n!$

Bemerkung: Die obige Darstellung des Restgliedes ist die sogenannte Lagrange'sche Darstellung

Beispiel 5 Sei $f(x) = \sqrt{1+x}$. Offensichtlich:

$$f'(x) = \frac{1}{2} \frac{1}{\sqrt{1+x}}$$
$$f''(x) = -\frac{1}{4} \frac{1}{\sqrt[3]{1+x}}$$

Damit erhalten wir:

$$P_{1,0}(t) = 1 + \frac{1}{2}t$$

Nach dem Satz von Taylor gilt:

$$\sqrt{1+t} - P_{1,0}(t) = -\frac{1}{4} \frac{1}{\sqrt[3]{1+x}} \cdot \frac{1}{2} t^2 = -\frac{1}{8} \frac{1}{\sqrt[3]{1+x}} t^2$$

für ein x zwischen 0 und t.

Für t > 0 ergibt sich damit:

$$\left| \sqrt{1+t} - P_{1,0}(t) \right| < \frac{t^2}{8}$$

Korollar 2 Ist $g: I \to \mathbb{R}$ n-Mal differenzierbar und $g^{(n)} = 0$, so ist g ein Polynom höchstens (n-1) – ten Gerades

Korollar 3 Sei $f:[a,b] \to \mathbb{R}$ (n+1)-mal stetig differenzierbar und $\alpha \in I$ mit $f^{(l)}(\alpha) = 0$ für alle l = 1, ..., n-1 und $f^{(n+1)}(\alpha) \neq 0$. Dann gilt:

- ist n ungerade, so ist α keine Extremstelle
- ist n gerade, so ist α eine Extremstelle. Genauso gilt: Ist $f^{(n)}(\alpha) < 0$, so ist α eine Maximalstelle. Ist $f^{(n)}(\alpha) > 0$, so ist α Minimalstelle. **Beweis:** Wir betrachten nur den Fall n gerade und $f^{(n)}(\alpha) > 0$. Nach dem Satz von Taylor gilt für alle $x \in I$:

$$f(x) = P_{n,\alpha}(x) + \frac{f^{(n+1)}(t)}{(n+1)!}(x-\alpha)^{n+1}$$

$$= f(\alpha) + \frac{f^{(n)}(\alpha)}{n!}(x-\alpha)^n + \frac{f^{n+1}(t)}{(n+1)!}(x-\alpha)^{n+1}$$

$$= f(\alpha) + \frac{(x-\alpha)^n}{n!} \left(f^{(n)}(\alpha) + (\frac{f^{(n+1)}(t)}{(n+1)}(x-\alpha) \right)$$

 $f\ddot{u}r$ ein t zwischen x und α . $F\ddot{u}r$ x hinreichend nah an α erhalten wir

$$f^{(n)}(\alpha) + \frac{f^{(n+1)}(t)}{n+1}(x-\alpha)$$

Ergo:

$$f(x) = f(\alpha) + \frac{(x - \alpha)^n}{n!} \cdot r(x)$$

Da ist also $f(x) > f(\alpha)$ für x hinreichend nah an α . Sprich: α ist strikte lokale Minimalstelle **Definition 10** Ist $f: I \to \mathbb{R}$ beliebig oft differenzierbar, so definieren wir die Taylorreihe am Entwicklungspunkt $\alpha \in I$.

$$T_{f,\alpha}(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\alpha)}{n!} (x - \alpha)^n$$

Bemerkung:

- im Allgemeinen konvergiert $T_{f,\alpha}(x)$ für $x \neq \alpha$ nicht
- Der Satz von Taylor behandelt <u>nicht</u> die Taylorreihe
- Selbst wenn $T_{f,\alpha}(x)$ konvergiert, muss $T_{f,\alpha}(x)=f(x)$ nicht gelten
- Sei $R_n(x) = P_{n,\alpha}(x) f(x)$ Dann gilt :

$$P_{n,\alpha}(x) \xrightarrow{n \to \infty} f(x) \Leftrightarrow R_n(x) \to 0$$

Satz 15 Sei $f(x) = \sum_{n_0}^{\infty} a_n (x - \alpha)^n$ und R > 0 der zugehörige Konvergenzradius von f.

Dann ist f auf $(\alpha - R, \alpha + R)$ beliebig oft differenzierbar und es gilt:

$$f^{(l)}(\alpha) = l! \cdot a_l$$

das heißt, die Taylorreihe $T_{f,\alpha}$ stimmt mit der definierten Potenzreihe überein. **Beweis:** Wir wissen bereits, dass Potenzreihen gliedweise differenziert werden. Daher gilt:

$$f'(x) = \left(\sum_{n=0}^{\infty} a_n (x - \alpha)^n\right)' = \sum_{n=1}^{\infty} n \cdot a_n (x - \alpha)^{n-1}$$

$$f^{(l)} = l! \cdot a_l + \sum_{n=l-1}^{\infty} n \cdot (n-1) \cdot \dots \cdot (n-l) a_n (x-\alpha)^{n-l}$$

 $f\ddot{u}r \ l \in \mathbb{N}$ $(x - \alpha) = 0 \ f\ddot{u}r \ x = \alpha$ $Also: f^{(l)}(\alpha) = l! \cdot a_l$

3 Riemann-Integral

<u>Ziel</u>: Wir wollen auf "natürliche" Weise einen Flächeninhaltsbegriff definieren, der uns erlaubt, die Fläche zwischen den Graphen einer Funktion und der x-Achse zu bestimmen. Dabei heißt auf "natürliche Weise" insbesondere:

• gilt f(x) = c = const für alle $x \in D(f) = [a, b]$, so soll gelten:

$$\int_{a}^{b} f \, \mathrm{d}x = c \cdot (b - a)$$

• gilt $f(x) \leq g(x)$ $(x \in [a, b])$ so formulieren wir

$$\int_{a}^{b} f \, \mathrm{d}x \le \int_{a}^{b} g(x) \, \mathrm{d}x$$

• für $c \in [a, b]$ soll gelten

$$\int_a^b f \, \mathrm{d}x = \int_a^c f \, \mathrm{d}x + \int_c^b f \, \mathrm{d}x$$

Vorgehen: Man unterteile [a,b] in "viele" Teilintervalle, auf denen f nahezu konstant ist.

Definition 11 Sei $I \subseteq \mathbb{R}$ ein Intervall. Eine <u>Partition</u> P von [a,b] ist eine endliche Menge von Punkten $a=x_0 \leq x_1 \leq \ldots \leq x_n=b$. Wir schreiben $\Delta x_i=x_i-x_{i-1}$

Definition 12 Sei $f:[a,b]\to\mathbb{R}$ beschränkt und $P=\{x_0,\ldots,x_n\}$ eine Partition von [a,b].

Wir schreiben:

$$M_i(P) := \sup_{x \in [x_{i-1}, x_i]} f(x)$$

 $m_i(p) := \inf_{x \in [x_{i-1}, x_i]} f(x)$

Weiter definieren wir:

$$S(P, f) := \sum_{i=1}^{n} M_i \cdot \Delta x_i$$
$$s(P, f) := \sum_{i=1}^{n} m_i \cdot \Delta x_i$$

Wir setzen:

$$\int_{a}^{\overline{b}} f \, dx = \inf S(P, f)$$
$$\int_{\underline{a}}^{b} f \, dx = \sup s(P, f)$$

wobei Infimum und Supremum über alle Partitionen von [a,b] genommen werden. Wir nennen

$$\int_{a}^{\overline{b}} f \, \mathrm{d}x \, \mathrm{das} \, \underline{\text{obere}} \, \mathrm{und}$$

$$\int_{a}^{b} f \, \mathrm{d}x \, \mathrm{das} \, \underline{\text{untere}}$$

 $\frac{\text{Riemannintegral}}{\text{Gilt}} \text{ von } f \text{ ""uber } [a,b]$

$$\int_{a}^{\overline{b}} f \, \mathrm{d}x = \int_{a}^{b} f \, \mathrm{d}x$$

sagen wir f ist Riemann-integrierbar (integrierbar) und nennen

$$\int_{a}^{b} f(x) \, \mathrm{d}x := \int_{a}^{b} f \, \mathrm{d}x = \int_{a}^{\overline{b}} f \, \mathrm{d}x$$

das Riemannintegral von f über [a, b].

Die Menge der Riemanintegrierbaren Funktionen auf [a,b] bezeichnen wir mit \mathcal{R} beziehungsweise $\mathcal{R}_{[a,b]}$.

Bemerkungen

• Da f beschränkt ist, gibt es $m \leq M$ in \mathbb{R} mit:

$$m \le f(x) \le M \ (x \in [a, b])$$

Damit gilt für jede jede Partition P:

$$m \cdot (b-a) \le s(P,f) \le S(P,f) \le M \cdot (b-a)$$

Ergo: $\int_a^{\overline{b}} f \, \mathrm{d}x \,, \int_{\underline{a}}^b f \, \mathrm{d}x$ sind wohlde finiert.

• im gesamten Kapitel 3 werden wir Funktionen stets als beschränkt annehmen

Definition 13 Seien P_1, P_2 zwei Partitionen eines Intervalls. Dann heißt P_1 Verfeinerung von P_2 , wenn gilt: $P_2 \subseteq P_1$

Weiterhin nennen wir $P_1 \cup P_2$ die gemeinsame Verfeinerung von P_1 und P_2

Satz 16 Ist P' eine Verfeinerung der Partition P von [a, b], dann gilt:

$$S(P, f) \ge S(P', f)$$
$$s(P, f) \le s(P', f)$$

(wobei f wie in Definition 12 sei)

Beweis: Wir zeigen nur die obere Ungleichung, die andere folgt analog. Wir nehmen zunächst an, dass P' sich von P in nur einem Element x' unterscheidet. Das heißt: $P' = P \cup \{x'\}$

Dann gibt es ein $i \in \mathbb{N}$ mit $x' \in [x_{i-1}, x_i]$

(wobei $P = \{x_0, x_1, \dots, x_{i-1}, x_i, \dots, x_n\}$ sei). Wir definieren:

$$W_1 := \sup_{[x_{i-1}, x']} f(x)$$

 $W_2 := \sup_{[x', x_i]} f(x)$

Dann gilt:

$$S(P, f) - S(P', f) = M_i \Delta x_i - W_1 \cdot (x' - x_{i-1}) - W_2 \cdot (x_i - x')$$

= $(M_i - W_1) \cdot (x' - x_{i-1}) + (M_i - W_2) \cdot (x_i - x') \ge 0$

Enthält von P' k Punkte, die nicht in P enthalten sind, so führen wir obiges Verfahren insgesamt k-mal durch.

Satz 17 Sei $f:[a,b] \to \mathbb{R}$ beschränkt. Dann gilt:

$$\int_{a}^{\overline{b}} f \, \mathrm{d}x \ge \int_{a}^{b} f \, \mathrm{d}x$$

Beweis: Seien P_1, P_2 zwei Partitionierungen von [a, b] und P' die gemeinsame Verfeinerung. Dann gilt:

$$s(P_1, f) \le s(P', f) \le S(P', f) \le S(P_2, f)$$

Mit anderen Worten:

$$s(P_1, f) \leq S(P_2, f)$$

für alle Partitionierungen P_1, P_2 .

Sprich: $S(P_2, f)$ ist stets obere Schranke von s(P, f) für alle Partitionen P von [a, b]. Ergo:

$$\sup s(P, f) \le S(P_2, f)$$

Damit ist also $\sup s(P, f)$ untere Schranke von S(P, f) (P beliebige Partition). Ergo: $\sup s(P, f) \leq \inf S(P, f)$ Wir haben also gezeigt:

$$\int_{a}^{b} f \, \mathrm{d}x = \sup s(P, f) \le \inf S(P, f) = \inf \int_{a}^{\overline{b}} f \, \mathrm{d}x$$