```
N. Proneeth Boly
                                                   CSE-H,
) #include < stdio. h>
 int main )
  inti, bw, high, mid, n, key, over [100] top, j, one, two, s, p;
   pointf (" Eriter the Number of
   scant ("1.d", &n);
   psintf("Enter /d integers", n);
  for (i=o; i<n; i++)
   82
       kanf ("/d", down(iJ),
          (if (avrli) < arrli)
              tmp=avr[i]
              our [i] = our[i]
   point (" Elements in descending order ");
      ([i)vco, 'b./ ") thrist
```

```
point 4 Enter Value to find");
 Sand ("Yd", & key);
low=01
 mid= (low + high) /2;
while (bu <= high)
   id(aux[mid] > Key)
   las=mid+1
   de if (arr[mid]== key)
      print/ ("ar /d found at location / d", key, mid+1);
     · break;
   else
     high= mid-1
     mid = (low+ high)/2;
   if (low > high)
      point (" Not found")
   printf("\n")
  printfl" Enter two locations to find Sum and product of
  Scanf (" /d", & one);
  Scanf ("1.d", & two);
  Sum = (our love) + our (two));
  P = (oulone) * our (two));
   pointf(" The Sun of clements = 1.d", s);
   pointfla The pooduct of elements eight", p);
```

) #include & blioh> Hinclude & Gonio ho Holdine max - SIZE 5 Void merge-Lost (int, int) Noid merge-array (int, int, int, int) But about Sost [MAX_SIZE] int main() int i, K, Poor pointel l' Simple Merge Sost Enample functions and Adogs"). point !" In Enter! d' Elements for Sorting", MAX-SIZE); for (i=o; i < MAX - SIZE; itr) Scant ["1.2", Gara-sort(i)); \$} printfor in too Data: "); for (i= 0; i < MAX-SIZE; i++) frint | "It /. d", worn- Soor (i)) merge_Sost (o, MAX_SIZE-1); pointf ("In m Sosted Data:"); for (i=o; iz MAX-SIZE; i++) point ('H. /. d', our-sort(i)) private I' find the product of 1th elements from first and 'last where k (n/2), Scanf (" 1.d", & K); Pro = 0001 _ SOST [K] * 0001-SOST [MAX-SIZE - K-1])

```
point+fo Product = /d", Pro);
 getchesi
void merge - sost (inti, intj)
  Post w;
  if (ic)
     m = (i + j)/2j
merge-sost (1, m);
     merge-sost (m+1,j)
     merge- every (1, m, m+1, 1)
void merge_corray (inta, int b, indc, intd)
   int 1(50);
   "not i=a",j=c; K=0;
   while (ic= b & je= d)
       Iflan 2004[i] < an - 50x1[i])
         1(K++) = arx ~50x+ (i++);
       else
        t(K++) = 2007_Soot (i++);
   while (ic= b)
      1 [K+H= 027-Sox[i++]]
    while (i<=d)
      t(K++)= arr -50x()++);
    (4)(+1) (b=>)(0=) (0=) 800
    2 an sostli]: tli];
```

The Selection Lost algorithm Losts an covray by repeatedly finding the minimum element (Considering ascending orders) from unsorted part and putting it at the beginning.) the Subarray which is abready bootled. (a) Remaining Subservey which is unborted. In every Meration of Selection Lost, the minimum element from the worked buborowy is priked and moved to the sosted away. PHIZE am, 04/05/2020] on []= 64 25 12 22 11 matrix 21 to sing of the I find the minimum element in arrio --- will allowed 11 and place it at beginning. 1 5 to 14 64 engine also after after pool in more I find the minimum element in ora [1.... 4]. 11 and place it at beginning of our[1--- y) 11 12 25 22 64 I And the minimum element in assile -- 4] I and place it at beginning of acrite-y. 11 12 22 25 64 [11:26 am, 04/05/2020]-Intention Lost is a simple Sosting algorithm that works the way we sost playing coords in over hands. Algorithm, last an arall of size n.

Intertion Sut Con W Miles of the Modern

Loop from i=1 to n=1 and insent it into Lone Lequence au [0--- 9-1].

[11: 26 am, 04/05/2020] who who is a side your adult is

12, 11, 13, 5,6

let us loop too i=) (Second element of the array) to 4 1=1. Since 11 is Smaller than 12, move 12 and insert 11 before 12 porco takal alt at barana

11, 12, 13,5,6.

00 00 00 00 00 mo 200 i=2, 13 will remain at its position as all elements in Afo-1are Smaller than 13:00

primaripan to to separate

11, 12,13, 5, 6-

1=3.5 will move to the beginning and all other elements from 11 to 13 will move on position whead of their arrent position.

5, 11, 12, 13, 6:

i= 4.6 will move to position after 5, and elements from 11 to 13 will move one position ahead of their werent position. -10828 (00) NO. ME 38:11

5 (766) 1), 12, 13 (16) -

```
include < Station>
{ nd a (100), n, i, j, temp, bumo =0, proud = 1, mi
 point ( Enter number of elements 14")
 Scand (" 1.d", 2n);
 private (" Ender % d integers \n", n);
 for (i=0) i=n; i++)
   lat Kant ("1.d", &ali J);
 for(i=0; i=n-1; i++)
   for(j=0; j<n-i-1; j++)
   (li+ilactial)
       temp=a(i);
        a[i] = a[i+i];
         a(i+i) = temp;
 Point I'm Sorted list in ascending order: mm)
 for (1=0;i< n;i++)
   Hint by a lill
 Parts (" The alternate order is")
```

```
for(i=0; | | | i++)
 { ;f(; /. 2==0)
       the land ("V. d", alist)
foli=0;ien;i++)
   if (i/21=0)
      ([i]a + amul = amul
printf("InSum of odd inder is %d" Sumo);
fox (i=0; i<n = i++)
  if (i% 2 == 0)
     prod = prod * a (i);
point I (" you fooduct of add index is % d", pood);
point f (" In Enter the value of m 1m");
Scanf ("1.d", 4m);
too(i=o; i<n; i++)
   if (a(i) % m==0)
     pointf ("" hod", a(i))
```

```
include < Stdio. h>
int reaucive Binary Search (int array c], int blood-index, int end-index,
                              int dement)
  of (end - index >= 8 tart - index)
    int middle = Stort - index + (end - Index - Stort - index) 12;
   if (array [middle] = = element)
      netwar middle;
   if larray [middle] > element)
      redurn recursive Binary Search (array, Start-Index, middle-1,
  seturn secursine Binory Search barray, middle +1, end_ inda, element);
 return -1;
int main (void)
 int array () = {1,4,7,9,16,56,70};
  ind N=7;
 int element = 9;
 ind tound_index = necursive Binary Search (array, 0, n-1, element);
 if (town d - index == -1)
    pointf ("Element not found in the array");
 else
   Arintf (" Element found at index: %d", found_item);
o member
```