ARL 72-0046 APRIL 1972

Aerospaco Reséarch Laboratories

SPECTRAL MATCHING FACTORS FOR PHOTOCATHODES, PHOSPHOR SCREENS, AND PHOTOGRAPHIC EMULSIONS IN IMAGE INTENSIFIER-RECORDERS USING NIGHT-SKY ILLUMINATION, AND RELATED PROBLEMS

RADAMES K. H. GEBEL HERMANN J. SPIEGEL HERMANN R. MESTWERDT KOY R. HAYSLETT SOLID STATE PHYSICS RESEARCH LABORATORY

PROJECT NO. 7885

Approved for public release; distribution unlimited.

DDC JUN 19 1972 USUSSIU LSU

AIR FORCE SYSTEMS COMMAND

NATIONAL TECHNICAL INFORMATION SERVICE

321

NOTICES

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

Agencies of the Department of Defense, qualified contractors and other government agencies may obtain copies from the

Defense Documentation Center Cameron Station Alexandria, Virginia 22314

This document has been released to the

CLEARINGHOUSE U.S. Department of Commerce Springfield, Virginia 22151

for sale to the public.

Copies of ARL Technical Documentary Reports should not be returned to Aerospace Research Laboratories unless return is required by security considerations, contractual obligations or notices on a specified document.

AIR FORCE: 30-5-72/300

Security Classification			
DOCUMENT CONTROL DATA - R & D			
(Security classification of title, body of abstract and indexing annotation must be entered when the overell report is classified)			
1. ORIGINATING ACTIVITY (Corporate author)	20. REPO	20. REPORT SECURITY CLASSIFICATION	
Solid State Physics Research Laboratory	UNCLASSIFIED		
Aerospace Research Laboratories	2b. GRO	UP	
Wright-Patterson AFB, Ohio 45433			
Spectral Matching Factors for Photocathodes, Phosphor Screens, and Photographic Emulsions in Image Intensifier-Recorders Using Night-sky Illumination, and Related Problems			
4. DESCRIPTIVE NOTES (Type of report and inclusive dates) Scientific. Final			
S. AL THOR(S) (First name, middle initial, fast name)			
Radames K. H. Gebel, Hermann J. Spiegel, Hermann R. Mestwerdt, and Roy R. Hayslett			
6. REPORT DATE	74, TOTAL NO. OF PAGES	75. NO. OF REFS	
APRIL 1972	319	12	
88. CONTRACT OR GRANT NO.	Se, ORIGINATOR'S REPOR	T NUMBER(S)	
In-House Research			
6. PROJECT NO. 7885-00-03 LS-1	į		
- DOD Element 61102F	95. OTHER REPORT NO(5) (Any other numbers that may be easigned this report)		
d DoD Subelement 681301	ARL 72-0046		
10 DISTRIBUTION STATEMENT			
Approved for public release; distribution unlimited.			
II SUPPLEMENTARY NOTES	12. SPONSORING MILITARY		
TECH OTHER	Aerospace Research Laboratories (ARL/LS)		
	Wright-Patterso	on AFB, Ohio 45433	
II. ADSTRACY	<u> </u>		

The purpose of this paper is to assess the performance of basic components of opto-electronic image recording systems using night-sky illumination. The analysis is concerned with the matching efficiency between night-sky illumination and photocathodes, between photocathodes and phosphor screens and between phosphor screens and photographic films. To preserve resolution, a cascaded opto-electronic system must employ stages with maximum gain so that a minimum number of stages is contained in the system since especially each phosphor screen contributes to the deterioration of resolution.

I

Security Classification LINK A LINK B LINK C KEY WORDS ROLE ROLE ROLE **Photocathodes** Phosphor screens Night-sky radiation Matching of phosphor screens with film Matching of phosphor screens with photocathod Matching of night-sky with photocathodes Image Intensifier Tubes

SPECTRAL MATCHING FACTORS FOR PHOTOCATHODES, PHOSPHOR SCREENS, AND PHOTOGRAPHIC EMULSIONS IN IMAGE INTENSIFIER-RECORDERS USING NIGHT-SKY ILLUMINATION, AND RELATED PROBLEMS

RADAMES K. H. GEBEL
HERMANN J. SPIEGEL*
HERMANN R. MESTWERDT
AND
ROY R. HAYSLETT
SOLID STATE PHYSICS RESEARCH LABORATORY

APRIL 1972

PROJECT NO. 7885

Approved for public release; distribution unlimited.

AEROSPACE RESEARCH LABORATORIES
AIR FORCE SYSTEMS COMMAND
UNITED STATES AIR FORCE
WRIGHT-PATTERSON AIR FORCE BASE, OHIO

^{* 1} emporarily assigned to ARL, employed by the German Federal Ministry of Defense.

Acknowledgement

This paper was accomplished under Project 7885 of the Aerospace Research Laboratories/LS (AFSC). The authors wish to express their gratitude to Mr. Donald C. Reynolds, Director of the Solid State Physics Pesearch Laboratory (LS), for technical review. Acknowledgement is given to Mr. Bernhard H. Pieruschka for helpful suggestions and assistance in preparing the manuscript. The assistance of Mr. James C. Caslin for programming the IBM 1620 and 7094 computers, and of Major Daymond Helton, in programming the computer produced diagrams, is sincerely acknowledged. Appreciation is expressed to Mr. William R. Woody for useful discussions, to Mr. Henry A. Bost, Mr. George A. Schantz and Miss Paula Saidleman for graphical work.

Abstract

The purpose of this paper is to assess the performance of basic components of opto-electronic image recording systems using night-sky filumination. The analysis is concerned with the matching efficiency between night-sky illumination and photocathodes, between photocathodes and phosphor screens and between phosphor screens and photographic films. To preserve resolution, a cascaded opto-electronic system must employ stages with maximum gain so that a minimum number of stages is contained in the system since especially each phosphor screen contributes to the deterioration of resolution.

Spectral Matching Factors for Photocathodes, Phosphor Screens, and Photographic Emulsions in Image Intensifier-Recorders Using Night-sky Illumination, and Related Problems

Radanes K. H. Gebel,
Hermann J. Spiegel*,
Hermann R Mestwerdt,
and
Roy R. Hayslest

Aerospace Research Laboratories, Solid State Physics Laboratory, Wright-Patterson Air Force Base, Ohio 45433

1. Introduction

The spectral matching problem between photocathodes and night-sky illumination is dealt with, and a comparison is made of the intrinsic performance of photocathodes and special infrared sensitive photographic emulsion, when subjected to the night-sky radiation. Further, the photographic recording of the electron image emanating from a photocathode is treated. In single stage intensifier-recorder arrangements the spectral matching problems to be considered are those between night-sky illumination and photocathode and between phosphor screen and photographic emulsion whereby in multistage arrangements, the additional problem of phosphor screen—photocathode matching arises. Phosphor screen and photocathode responses are spectrally tabulated and graphically represented and extensive assessments of different combinations and situations are performed by deriving the different pertinent weighting factors. Basic performance problems to be considered when comparing conventional intensifier tubes and the ones of the channeled amplifier type are discussed.

^{*}Temporarily assigned to ARL, employed by the German Federal Ministry of Defense.

2. Night-sky Irradiance

The recent improvements in red extended photocathodes and near IR emulsions lead to the logical demand for an assessment of the possible improvement in passive night observation especially since the spectral range extended into the near IR includes many bands which have very high peaks furnished by the night-sky on which emphasis is often placed. However, one should not overlook the fact that these bands are mostly of molecular origin and that they have a rather small width. 1 Hence, the total power represented by these spectra may not be too significant in respect to the remainder of the night-sky irradiation, which is caused by diffuse moonlight, scattered sunlight, background light from the universe, etc. Evidently the relative weight of these bands depends upon the time of the night and year, moonphase, etc. At full moon one should not expect any significant contribution to the detection limit from the molecular bands, since a moonless night-sky furnishes about 20 ufootcandles of illumination whereby full moon furnishes 2500 ufcotcandles and the most significant band of the molecular spectra at 3% moonlight (measured with a 10 nm resolution spectrometer) is about 5 times higher than the nonmolecular spectra but has a bandwidth of less than 10 nm. These molecular spectral bands have been extensively aralyzed², but comprehensive data about the composite night-sky irradiance formed by moonlight, molecular spectra and other sources seem to be scarce in the literature. This is understandable because the multitude of parameters involved when evaluating night sky irradiance lata is formidable and poses a frustrating task timewise.

Since the main purpose of this paper is a general assessment of the response of various photocathodes and the most suitable com-

mercially available near IR emulsion to night-simplication, it is not too important here to consider all the different parameters but rather, for the sake of simplicity, to justify a single typical illumination case. The idea of L. M. Bibermann and T. J. Celi³, which consists in calculating spectral theoretical night-sky values by adding to the airglow a certain percentage of sunlight, modified by the albedo of the moon, is accepted here as suitable for such an assessment. Some of their basic data obtained in this manner, assumed to be sufficiently close to reality for practical purposes, has been used for the computation of Table 1. No effects of atmospheric conditions were considered. This table shows the composition of the selected night-sky irradiance data in quanta $\sec^{-1} \text{cm}^{-2}$ for $\lambda = 400$ to 1090 nm and after having passed through Keiak Wratten filter 89b which effectively suppresses all radiation below 670 nm.

The flux density $\mathbf{Q}_{\mathbf{N}}$ in quanta \sec^{-1} cm⁻² corresponding to the power density $\mathbf{P}_{\mathbf{N}}$ in W cm⁻² of monochromatic light is given by the well known relation

 $Q_N = \frac{P_N}{E_O} = 5.034 \times 10^{24} \lambda P_N$, (1)

where λ is the wavelength in meters and E_Q is the energy in joules of one quantum with the wavelength λ . The number of digits in the tables do not necessarily reflect the acturacy of the process, but are used for mathematical reasons to prevent undesired cumulative rounding off errors.

J. Photocathode-Night-sky Assessment

Figure 1 shows the spectral convention factors η_{PC} in photoelectrons per quantum of some representative photocathodes used for the following might-sky assessment. The conversion factor η_{PC} is given by 4

$$n_{\rm PC} = 1.24 \times 10^{-10} \lambda^{-1} S_{\rm PC}$$
 (2)

٠,

where S_{PC} is the sensitivity of the photocrthode in Amps per Watt incident radiation, as furnished by the respective manufacturers. The pertinent photocathode output currents $I_{PC,N}$ (no filter) and $I_{PC,N,T}$ (for filter 89b) in mA cm⁻² applying to the number $Q_{N,(T)}$ of quanta sec⁻¹ cm⁻² falling within the selected spectral interval are given by

$$I_{PC,N,(T)} = \frac{Q_{N,(T)}^{\dagger} \eta_{PC}^{\dagger}}{6.24 \times 10^{15}} = 1.6022 \times 10^{-16} Q_{N,(T)}^{\dagger} \eta_{PC}^{\dagger}$$

$$= 1.6022 \times 10^{-16} E_{PC,N,(T)}^{\dagger}, \qquad (3)$$

where n_{PC}^{\dagger} is the average photocathode conversion yield for the interval under consideration and $\xi_{PC,N,\{T\}}$ is the electron flux density in electrons \sec^{-1} cm⁻², i.e.,

$$E_{PC,N,(T)} = 6.24.10^{15} I_{PC,N,(T)}$$
 (4)

 n_{PC}^{\dagger} may be obtained from the spectral conversion factor n_{PC} shown by Fig. 1 by forming the average value from the boundary values of the interval used.

Throughout this paper, the optional T is used to indicate if a kodak filter 89b is used and the superscript indicates the average value for the spectral interval under consideration. Tables 2a and 2b show the typical spectral sensitivity values $I_{PC,N,(T)}$ for the representative photocatnodes shown by Fig. 1 in response to the night-sky irradiance.

The dark current of the different photocathodes is neglected for the assessments performed, because it is relatively easy to lower this dark current to practically zero by appropriate cooling. However, if the dark current cannot be neglected and if one deals with a constant scene background, the average number of electrons corresponding to the dark current may be added to the average number of photoelectrons caused by the background, as applicable to a pertinent resolution element.

for comparing the overall responses of the different photocathodes, the weighting factors given at the bottom of Tables 2a and 2b are referenced to the most efficient photocathode (Varo) by the state of the art. Thus, it can be seen that this photocathode, when subjected to the night-sky irradiation of Table 1, represents an improvement of about 20:1 in comparison to the S-1 which was already in use in WW II.

4 Infrared Sensitive Photographic Emulsion-Night-sky Assessment

If the spectral sensitivity S_L of a photographic emulsion is expressed in erg cm⁻², then the conversion efficiency n_L in grainsquantum⁻¹ of the emulsion is given by^{4,7}

$$\eta_{\rm L} = 1.986305 \times 10^{-22} (10^{-D_{\rm F}} - 10^{-D}) (\lambda S_{\rm L} A_{\rm g}^{\dagger})^{-1} = \frac{G_{\rm N_f}(T)}{Q_{\rm N_f}(T)}$$
, (5)

where $A_{\alpha}^{\dagger} = \pi d_{L}^{\dagger 2}/4$ and is the average grain size in m^{2} , d_{L}^{\dagger} is the average grain diameter in m, D is the total density and equals $D_{\Delta} \simeq D_{p}$, D_{Δ} is the density as caused by the utile radiation, $\mathbf{D}_{\mathbf{p}}$ is the fog density of the emulsion and $G_{N,\{T\}}$ is the useful grain rate density in grains \sec^{-1} cm⁻². (Useful grains; not considering the grains constituted by the fog.) Using this equation for Kodak 5424 near IR emulsion (12 min development in D-19, 65° F) yielded Table 3, which shows the spectral sensitivity S, and the spectral conversion factor $\eta_{\chi_{j}}$ with D as parameter; Fig. 2 shows the latter. The Kodak emulsion 5424 was selected because it has the highest sensitivity of commercially available photographic emulsions in the near IR. The average projected grain area A_{α}^{\dagger} of the 5424 emulsion is assumed to be 3.8×10⁻¹² m^2 . Evidently, the values of Table 3 and Fig 2 can only be considered as guiding values, since a different production run, tolerances in developing temperature and time, type and tolerance of developer and other obvious factors may produce considerable deviations in the quoted values. However, it is ver, useful to have such guiding values which may be considered as a sufficiently close average for practical ourposes,

Assuming that the 5424 emulsion is directly exposed to the night-sky irradiation, and using Table ? and Eq. (5), the grain rate-density $G_{N,\Delta(T)}$ in grains \sec^{-1} cm⁻² obtained in reference to a certain D_{Δ} can be found and are tabulated in Table 4. Thus, for example, for λ_1 to λ_2 = 400 to 900 nm, $G_{N,\Delta(T)} \approx 2.8 \times 10^6$ grains \sec^{-1} cm⁻². One should note here, that the meaning of $G_{N,\Delta(T)}$ is not that the D_{Δ} , used for reference, is obtained in one second exposure but rather that the conversion efficiency η_{L} valid for the given D_{Δ} has been used. This formulation of $G_{N,\Delta(T)}$ is necessary since η_{L} is a nonlinear function.

5. Photocathode-Photographic Emulsion Performance Comparison

The state of the s

Since the theoretical limit in detection is governed by probability, the final basic detection capability of a device depends on the efficiency of converting one kind of species into another, for example, quanta into electrons or grains, which in turn determines the minimum detectable spatial and temporal deviations between detection elements.⁵ Under ideal conditions the percentage deviation in the number of converted species is governed by a Poisson distribution for small conversion yields. Therefore evidently, comparing the number of converted species for different devices (aven if one device converts into electrons and the other directly into grains) is a measure of the ratio of the intrinsic detection capability of the assessed devices.4 Thus, photocathode performances may be assessed in comparison to that of photographic emulsions by forming the ratio between the number of primary photoelectrons $\mathcal{L}_{PC,N,(T)}$ and the number of effective blackened grains $G_{N,\Delta_{+}(\mathbf{T})}$ obtained. This ratio, which will be called the comparison factor M_{PC,L}, is given by 4

$$M_{PC,L} = \frac{6.24 \times 10^{15} I_{PC,N,(T)}}{Q_{N,(T)}^{\eta_L}} = \frac{E_{PC,N,(T)}}{G_{N,\Delta_L(T)}}$$
(6)

By the state of the art in light amplification a single primary photo-electron may easily yield up to several hundred grains, as will be shown later. But, since it is the smallest number of species in a chain which determines the noise in the reproduced picture, i.e., here the number of primary converted species per resolution element and exposure time, clearly $M_{\rm PC,L}$ is needed for reflecting the intrinsic capability ratio of different devices under comparison, not the number of species as obtained after the amplification process. 5

Then, by using Eq. (6) and Tables 2 and 4 a numerical value of 250 is found for the comparison factor between the Varo photocathode and Kodak IR emulsion 5424 for the spectral interval of 400 to 1090 nm; when using Kodak Wratten filter 89b (670 to 1090 nm) the comparison factor is 214. Evidently, because of the upper cut-off of the spectral sensitivity of the 5424 emulsion and the Varo photocathode, radiation beyond 900 and 930 nm, respectively, is not effective. In Eq. (6) the same spectral distribution of the influx of light is assumed for both kinds of detectors and obviously the same theoretical signal-to-noise ratio is obtained if the exposure time for the photocathode is reduced by the numerical value of $M_{ extbf{PC}, L^\infty}$ When making photographic recordings from the screen of an intensifier tube, expesure time and intensifier gain have to be properly chosen, so that " saitable density is achieved on the film, whereby, an average density up and is desirable. On the other hard, the signal-to-noise ratio depends solely in the exposure time and the illumination of the primary photocathode, i.e. the number of photoelectrons released per resolution element during the selected exposure time. The pertinent parameters must be selected according to the lowest acceptable signal-to-noise ratio as determined by quantum mechanical consideration.

The inferior intrinsic resolution capability of image intensifiers in comparison to photographic emulsions is not very important in low light level work; due to quantum mechanical limitations, fairly large resolution element areas have to be accepted at low light levels. Conversely, in the case of direct photographic recording, the focal plane illumination determines the shortest permissible exposure time for obtaining the lowest acceptable density, yielding a proper contrast-resolution relationship.

6. Theoretical Consideration for Detection Parameters using Night-sky Irradiance

The practical application of the cables and previously derived equations can best be shown by presenting to the reader the following typical example. A scene is to be photographed using the night-sky irradiance, as listed in Table 1, as illuminating source. The optical system employed has an effective aperture diameter d_a of 0.2 m, a focal length f=0.15 m (6 inches) and a transmission efficiency $\eta_0=0.75$. Of interest is the exposure time necessary to obtain an effective density $D_\Delta=0.3$ and 1.0 above the fog density $D_{\overline{p}}$ for the spectral region of λ_1 to $\lambda_2=400$ nm to 1090 nm and 670 to 1090 nm (using Wratten filter 89b), when employing direct photographic recording with Kodak near IR emulsion 5424 (Table 3) and for a single stage intensifier and multi-stage intensifier, fiber optically coupled (coupling efficiency $\eta_{0\overline{p}}=0.5$).

 $G_{L,\Delta}$ in grains cm⁻², which represents the number of useful grains needed to accomplish $D_{\Delta}=0.3$ and 1.0, has to be determined first. In another paper an equation for $G_{L,\Delta}$ was derived.^{6,7} Thus,

$$G_{L,\Delta} = (10^{-D_y} - 10^{-D}) \times A_g^{-1}$$
, (7)

where A_{α} is the average grain area in cm⁻².

Whence, for D_{Δ} = 0.3 for the above 5424 Kodak IR emulsion, values for

$$G_{L,0.3} = (10^{-0.07} - 10^{-(0.3+0.07)}) \times (3.8 \times 10^{-8})^{-1}$$

= 1.12×10⁷ grains cm⁻² (8a)

and for $D_{\Delta} = 1.0$

$$G_{L,1.0} = (10^{-0.07} - 10^{-(1.0+0.07)}) \times (3.8 \times 10^{-8})^{-1}$$

= 2.01×10⁷ grains cm⁻² (8b)

are found.

In order to obtain a density of \mathfrak{I}_Δ an exposure time $t_{L,\Delta}$ in seconds must be used which is given by

$$t_{L,\Delta} = \frac{G_{L,\Delta}}{G_{H,\Delta,(T)}}, \qquad (9)$$

where $G_{N,\Delta,(\mathbf{T})}$ is spectrally listed in Table 4.

Thus, here for λ_1 to λ_2 = 400 to 900 nm

$$t_{L,0.3} = \frac{G_{L,0.3}}{G_{N,0.3}} = \frac{1.12 \times 10^7}{3.73 \times 10^6} \approx 3 \text{ sec}$$
 (10a)

and

$$t_{L,1.0} = \frac{G_{L,1.0}}{G_{N,1.0}} = \frac{2.01 \times 10^7}{2.77 \times 10^6} \approx 7.3 \text{ sec.}$$
 (10b)

Further, for λ_1 to λ_2 = 670 to 900 nm, (Wratten filter 89b)

$$t_{L,0.3,T} = \frac{1.12 \times 10^7}{1.65 \times 10^6} \approx 6.8 \text{ sec}$$
 (10c)

and

$$t_{L,1.0,T} = \frac{2.03 \times 10^7}{1.22 \times 10^6} \approx 16.6 \text{ sec.}$$
 (10d)

The foregoing values for exposure times are for direct exposure as assumed for Table 1 and, evidently, when using an optical system, the exposure time will have to be extended, since only a fraction of the number of quanta incident to an area $A_{\underline{s}}$ at the scene will reach the focal plane, as shown by Fig. 3.

Thus, as determined by optical geometry, which does not require considering focal length, the attenuation factor $K_{\rm O}$ is given by

$$K_{\Omega} = \frac{Q_{SI}}{Q_{FC}} \approx 4 \left(\frac{H}{d_{A}}\right)^{2} \eta_{tot}^{-1}$$
 (11)

where $Q_{\rm SI}$ is the quanta flux incident per unit area at the scene, $Q_{\rm FC}$ is the quanta flux effectively collected by the optical system from that unit area, ${\bf d_a}$ is the effective diameter of the optical system in meters, H is the distance in meters between the scene and the optical receiver,

$$\eta_{\text{tot}} = \eta_0 \eta_{\text{G}} \eta_{\text{A}}$$
 (12)

 $\eta_{\rm O}$ is the efficiency of the optical system, $\eta_{\rm G}$ is the reflectivity of the ground, and $\eta_{\rm A}$ is the transmittance of the medium through which recording is achieved; the factor 4 is used by assuming that Lambert's cosine law applies, which may be too optimistic in some cases. Because of the geometry of the optical system, the scene area $A_{\rm S}$ becomes a minified image in the focal plane, and the number of quanta effectively collected by the optical system from a relatively large area

are imaged on a relatively small area. However, no higher area brightness than the ground scene brightness will occur because of the attenuation factor $K_{\rm O}$. Thus, one finds for the effective exposure time

$$t_{L,\Delta,Im} = \frac{K_Q}{m_D^2} t_{L,\Delta} , \qquad (13)$$

where, from well known optical equations, the minification factor $\mathbf{m}_{\!_{D}}$ is

$$m_{D} = \frac{r_{s}}{r_{I}} = \frac{H}{f} \qquad (14)$$

 $r_{\rm s}$ is the side length of a resolution element at the scene and $r_{\rm I}$ is the side length of a corresponding resolution element at the focal plane.

The effective aperture number F of an optical system is defined as

$$F = \frac{f}{d_{a}} \quad . \tag{15}$$

Using Eqs. (11), (13), (14), and (15) yields

$$t_{L,\Delta,Im} = 4F^2 \eta_{tot}^{-1} t_{L,\Delta} , \qquad (16)$$

where the $4F^2$ term is well known in optics, and in practice

$$4F^2 \eta_{\text{tot}}^{-1} = \frac{K_Q}{m_D^2} >> 1 . \qquad (17)$$

Using Eqs. (12) and (16) one finds for the optical system as in this example, by using Wratten filter 89b and Kodak emulsion 5424 and assuming $n_0 = 0.75$, $n_G = 0.2$ and $n_A = 0.98$, i.e., $n_{\rm tot} = 0.147$, that for obtaining a $D_{\Delta} = 0.3$ the necessary exposure time is

$$t_{L,0.3,Im} = 4 \times 0.75^2 \times \frac{1}{0.147} \times 6.8 \approx 104 \text{ sec},$$

and for $D_{\Delta} = 1.0$,

$$t_{L,1.0,Im} = 4 \times 0.75^2 \times \frac{1}{0.147} \times 16.6 \approx 254 \text{ sec.}$$

If, for this example, a square object with a side-length $r_{\rm obj}$ of 4 meters has to be detected at a distance of 1,000 meters, the minification factor becomes, by using Eq (14) for a focal length f=0. J meters,

$$m_D = \frac{1000}{0.15} \approx 6667$$

and the image in the focal plane has a side-length \textbf{r}_{Im} of

$$r_{Im} = \frac{r_{Obj}}{m_D}$$

$$= \frac{4}{6667} \approx 6 \times 10^{-4} \text{ meters}.$$

Thus the image of the object covers an area $A_{\rm Im}$ of 36×10^{-8} m², which is considerably larger than the average grain size of 38×10^{-13} m².

Since previously it was found that 2.02×10^5 grains mm⁻² are needed for $G_{L,1.0}$, assuming a rectangular resolution element with a sidelength r_R of 20 μ m corresponding to a given 25 lp mm⁻¹, the number of grains $G_{L,R}$ for such a resolution element is

$$G_{L,R} = G_{L,\Delta}A_{Im} . (18)$$

Thus, in this example,

$$G_{L,R} = 2.02 \times 10^5 \times (20 \times 10^{-3})^2 \approx 81 \text{ grains}.$$

When the resolution capability of a photographic emulsion is quoted in line pairs $\,\mathrm{mm}^{-1}$, this is determined by using a test pattern consisting of diminishing three-bar sets with a 100% contrast (ratio, 5:1 for single bars as

well as spacing, U.S. Air Force Standard, 1951). These bars cover many of the elemental areas referred to in this paper as resolution elements. The limit in resolution of photographic emulsions, etc., is usually judged by visual observation of the least discernable bar pattern, which means a contrast of about 2% since this is the limit in contrast detectivity of the human eye. The resolution element size in this article is not identical with the reciprocal of the resolution in line pairs mm⁻¹ but is a selected elemental square area where the contrast limitations for this area are determined by statistics not involving the human eye. This concept of the discrete resolution element permits the use of strict mathematical procedures in contrast to the determination of resolution by subjective judgement using the three-bar pattern.

Because of unavoidable statistical fluctuations in light emission and reflection processes, conversion processes, etc., 5 clearly the certainty by which an object against a background can be detected (detection probability) increases the more the scene target to background brightness ratio $K_{\text{obj},b}^{\#}$ deviates from unity, where

$$K_{\text{obj,b}}^{\sharp} = \frac{G_{\text{L,obj}}^{\sharp}}{G_{\text{L,b}}^{\sharp}} \approx \frac{B_{\text{obj}}}{B_{\text{b}}}$$
 (19)

and $G_{L,\,\mathrm{ob}}^{\sharp}$ is the average number of grains for a resolution element in the focal plane exposed to the scene target and $G_{L,\,\mathrm{b}}^{\sharp}$ is the average number of grains of adjacent resolution elements exposed to the background (fog grains should be added to $G_{L,\,\mathrm{b}}^{\sharp}$), B_{ob} is the brightness of the target at the scene, and B_{b} is the

brightness of the scene background. The right side of the equation is approximated because of the nonlinear character of photographic emulsions. The minimum numerical value of $K_{\text{Obj,b}}^{\#}$ required for detection is a function of the scene brightness $B_{\mathbf{g}}$ (ie, B_{Obj} and $B_{\mathbf{b}}$), the parameters of the optical system, etc., and is governed by statistical considerations.

The probability of detecting an object in the presence of a background has been extensively treated by one of the authors in another paper. 5 Generally, the detection probability depends on many parameters, such as the number of resolution elements covered by the object, the number of species within a resolution element covered by the object as well as within a resolution element exposed to background only, etc.; the interested reader must refer to the above reference. However, the above subject will be treated in a simplified manner by using the conversion noise multiple R_L^{\sharp} which, in analogy to an electronic signal may be considered as the signal-to-noise ratio of the image information, and will be defined as

$$R_{L}^{\#} = \frac{G_{L,obj}^{\#} - G_{L,b}^{\#}}{\sigma_{r}},$$
 (20)

where

$$\sigma_{L} = (G_{L,obj}^{\#} + G_{L,b}^{\#})^{t_{2}}$$
 (21)

and is the combined standard deviation of object and background (Poisson distribution) which may be considered as the noise. Further from

Eqs. (19) and (20)
$$K_{\text{obj,b}}^{\#} = \frac{G_{\text{L,obj}}^{\#}}{G_{\text{L,obj}}^{\#} - R_{\text{L}}^{\#} \sigma_{\text{L}}}; \qquad (22)$$

Then, obviously, in the above equations

$$g_{L,OL1}^{\sharp} \neq g_{L,DL}^{\sharp} \tag{23}$$

and

$$K_{\text{obj,b}}^{\#} \neq 1.$$
 (24)

In this example, let $G_{L,obj}^{\#}$ = 81 grains as previously calculated from Eq. (18) and select $G_{L,b}^{\#}$ = 40 grains, then from Eqs. (21), (22), and (23)

$$\sigma_{\rm L} = (81 + 40)^{\frac{1}{2}} = 11,$$

$$R_{\rm L}^{\#} = \frac{81-40}{11} \approx 3.6$$

and

$$K_{coj,b}^{\#} = \frac{81}{40} \approx 2.$$

Of course, the previously quoted exposure times are prohibitive as far as motion is concerned. A passive imaging device which cuts these exposure times by at least a factor of 1,000 would be of interest. The resolution and other possible parameters for such a system will be investigated in the following paragraphs.

It will be assumed that, in the intensifier used, the amplification is sufficiently high to produce, from each photo-electron, many grains so that the statistics in the number of photo-electrons become the limiting factor. Using Table 2b, one finds for the Varo photocathode, for λ_1 to λ_2 = 670 to 930 nm by employing a Wratten filter 89b, that $I_{PC,N,(T)}$ is 4.163×10^{-6} mA cm⁻²; thus here, using Eq (4),

 $E_{PC,N,T} = 4.16 \text{s} \times 10^{-8} \times 6.24 \times 10^{15} \approx 2.6 \times 10^{8} \text{ electrons sec}^{-1} \text{ cm}^{-2}.$ Hence, for the electron flux $E_{PC,Tm}$ in electrons $\sec^{-1} \text{ cm}^{-2}$ for a Varo type photocathode and the lens and situation under consideration,

$$E_{PC,Im} = \frac{E_{PC,N,(T)}}{4F^2\eta_{tor}^{-1}},$$
 (25)

which is here

$$E_{PC,Im} = \frac{2.6 \times 10^8 \times 0.147}{4 \times 0.75^2} \approx 1.7 \times 10^7 \text{ electrons sec}^{-1} \text{ cm}^{-2}$$

and reduces to 8.5×10^6 electrons sec^{-1} cm⁻², when considering a fiber optical plate with 50% transmission efficiency.

Analogous to Eqs. (19) to (24) for the required minimum ratio $K_{\text{obj,b}}^{\#}$ of the number of electrons $E_{\text{PC,obj}}^{\#}$ of a resolution element exposed to the scene traget and the number of electrons $E_{\text{PC,b}}^{\#}$ of a resolution element exposed to the background needed for detection by a photocathode

$$K_{\text{obj,b}}^{\#} = \frac{E_{\text{PC,obj}}^{\#}}{E_{\text{PC,b}}^{\#}} = \frac{E_{\text{PC,obj}}^{\#}}{E_{\text{PC,obj}}^{\#} - R_{\text{PC}}^{\#}} = \frac{B_{\text{obj}}}{B_{\text{b}}}, \quad (26)$$

where

$$\sigma_{PC} = (E_{PC,obj}^{\#} + E_{PC,D}^{\#})^{\frac{1}{4}}$$
 (27)

and

$$R_{PC}^{\#} = \frac{E_{PC,obj}^{\#} - E_{PC,b}^{\#}}{\sigma_{PC}}, \qquad (28)$$

$$E_{PC,obj}^{\#} \neq E_{PC,b}^{\#}$$
, (29)

$$K_{obj,b}^{\#} \neq 1. \tag{30}$$

Assuming here also as before for $R_L^\#$, now for $R_{PC}^\# = 3.6$ and for L_{PC} , n = 68 electrons \sec^{-1} yielded by a resolution element with a side length of 20 μm for the numerical value of E_{PC} , I_m as shown to have the same

contrast situation here as in the previous film example, i.e., to obtain equal numerical values for σ and R, 81 photoelectrons have to be obtained from the target. Since

$$t_{PC} = \frac{E_{PC}^{\#}}{E_{PC,Im}^{\uparrow}}$$
 (31)

an exposure time of

$$t_{PC} = \frac{81}{68} \approx 1.2 \text{ sec}$$

must be utilized, which is 254/1.2 =212 times shorter an exposure time than needed for the film. If dynamic events are to be followed within a tenth of a second (i.e., 10 fields per second), and the same values should be maintained for σ and R, consequently resolution must be sacrificed. Here in this example the 20 μ m resolution element side length would have to be increased by a factor of $(t_{PC1}/t_{PC2})^{\frac{1}{2}} = (1.2/0.1)^{\frac{1}{2}} \approx 3.5$, i.e., the side length of the resolution element has to be $20\times3.5 = 70~\mu$ m, so that the same parameters may be obtained with a field rate of 10 per second (assuming sufficient intensification, permitting kinescope recording of the image on a suitable film with a density of $D_{\Delta} = 1$).

Solving Eq. (6) for the effective conversion efficiency $\eta_{PC,N,\,(T)}$ of a photocathode to the night-sky yields

$$\eta_{PC,N,(T)} = \frac{E_{PC,N,(T)}}{Q_{N,(T)}}, \qquad (32)$$

where $E_{PC,E_1,(T)}$ is from Table 2b and Eq. (4), and $Q_{E_1,(T)}$ is listed in Table 1. Here, for the Varo photocatnode for λ_1 to λ_2 = 670 to 930 nm, by using Eq. (32) it is found that

$$\eta_{\text{Varo,N,T}} = \frac{2.6 \times 10^8}{5.2 \times 10^9} \approx 5 \times 10^{-2} \text{ electrons quantum}^{-1}.$$

Conversely, for the Kodak 5424 IR emulsion, for the same near IR interval, by using Eq. (5) it is found that

$$n_{5424,N,T} = \frac{1.22 \times 10^6}{5.2 \times 10^9} \approx 2.4 \times 10^{-4} \text{ grains quantum}^{-1}$$

which, by using Eq. (6), yields for the Varo photocathode in reference to the Kodak 5424 emulsion a superiority factor $M_{\rm Varo}$, 5424 of $5\times10^{-2}/2.4\times10^{-4}\approx~2\times10^{2}$.

The foregoing equations and example have shown the relationship of the pertinent detection parameters such as resolution, speed of detection, choice of detector, contrast detectivity, etc. Modification of the numerical values of the above parameters in the foregoing example for assessing the limit in passive night time detection for any specific situation and instrumentation is left to the reader.

7. Theoretical Considerations of Important Parameters for Image Intensifier-Photographic Emulsion Recorders

In order to reach the limitations in image recording as imposed by the spacial and temporal statistical variations occurring in the number of photo-electrons (conversion noise as explained in the previous section), sufficient amplification must be achieved by the imaging system. Usually, this cannot be achieved using a single stage but, clearly, cascading a suitable number of intensifiers should accomplish this. Conventional tubes, without fiber optics, may be cascaded with suitable lens coupling systems; but these are bulky and only a small fraction of the light can be focused from one stage to the next photocathode because of limiting apertures. Thus, fiber optics become mandatory for a practical device. However, one should realize that, if intensifier tubes which have fiber optical inputs and outputs are cascaded, resolution is impaired much beyond the intrinsic fiber resolution capability as determined by fiber diameter by the fact that no provision exists for exact geometrical alignment of the cores of one tube to those of the next. Further, this random positioning of the cladding of the fibers of one stage in respect to the cores of the next not only results in deterioration of the resolution but. by blocking off light, introduces a factor which depends on the number of stages and thus lowers the effective intensification factor of cascaded devices. If a single fiber optical plate has a contrast transfer function of 0.76 for 25 lp/mm. then a three stage cascaded device, which obviously requires 6 fiber optical plates, has a combined contrast transfer function of only 0.193. Thus, if one tries to detect 25 lp/mm having a brightness difference of 10%, this difference will show up as less than 2% on the final screen, which is below the contrast detectivity of the human eye. Accomplishing the same job with two stages would render, for the same situation, 3.4%, which is a serious deterioration but at least can be detected by the human eye. There is little sense in considering the performance of an intensifier with 100% contrast input, as is often done with a test pattern, because in nature there are hardly ever scenes in the visible and IR which have a 100% contrast, rather these contrasts are usually in the 5 to 25% range. In reconnaisance, camouflage must

be considered, which usually results in values considerably less than 5%. Thus, controllable contrast enhancement should be employed in a more sophisticated system to achieve optimum performance. Also, the highest possible gain must be achieved with the smallest number of cascaded stages to assure the best possible transfer function of the total cascade.

Since resolution in low light level work is limited by quantum mechanical limitations, there must be a sufficient number of quanta for the selected resolution element area and exposure time. Therefore, making the diameter of the fibers smaller than needed may yield, for the resolution possible at low light levels, a worse transfer function for a low number of lp/mm than using a relatively large diameter fiber. Further, using fibers of smaller diameter may require a sacrifice of optical insulation between individual fibers, while the larger diameter fibers can be very well separated optically from the adjacent ones, preventing cross talk.

The following sections are concerned with optimization of the different parameters of intensifier tubes, so that a minimum of cascaded tubes can be used, maintaining resolution at its maximum. The essential parameters to be considered for optimizing an image intensifier tube, as treated in this paper, are: a) Proper spectral matching of the photocathode to the input light flux, which may be the night-sky and has been treated in the first section. b) Proper choice of phosphor screens in reference to the photocathode of the next cascaded image tube, assuring optimum in the number of photoelectrons leaving the cascaded photocathode per photoelectron impinging on the phosphor screen. c) Proper choice of phosphor screen in reference to available photographic emulsions, assuring optimum number of grains on the emulsion per photoelectron impinging on the phosphor screen. The problem under a) is treated in the first section of this paper by tabulating spectrally the night-sky and assuming the different photocathodes. To obtain information for b) and c), spectral tabulation of the different phosphor screens showing the number of quanta emitted when nit by a single electron has to be achieved first.

Manufacturers of phosphor screens usually furnish the characteristics of phosphor screens by expressing

"the spectral efficiencies η_p in watts of radiated light per one nanometer bandwidth per watt electrical input using electrons accelerated by 10 kV (33) (10 kV electrons) which impinge on the phosphor screen".

Normally, the data quoted is for aluminized phosphor screens, with which type this paper is solely concerned. The characteristics of the phosphor screens used in this paper are shown in Fig. 4. One must realize that the quoted spectral efficiencies are valid only for that thickness used by the manufacturer when the measurements were made. Unfortunately the phosphor screen thickness at which the data are taken, are usually not given by the manufacturer; each manufacturer uses a thickness which allows him to stay within the specifications as established by the industry.

Converting this efficiency coefficient into an electron-to-quanta conversion factor η_p^* yields more useful data for practical applications and the following derivations will be concerned with this matter. Since the quoted η_p uses as power input 1 watt and an electron acceleration of 10 kV, the current I_{inp} associated with it is

$$I_{inp} = \frac{iW}{10^4 V} = 10^{-4} A . {(34)}$$

This current constitutes a number of electrons $\mathbf{e}_{\mathbf{p}}$ hitting the phosphor screen, which is

$$e_p = 10^{-4} \times 6.24 \times 10^{18} = 6.24 \times 10^{14} \text{ electrons sec}^{-1}$$
. (35)

Since the dimension watt may be replaced by joules \sec^{-1} , η_P may be converted into η_D^* in joules per 10 kV electron by equating

$$\eta_{p}^{*} = \frac{\eta_{p}}{e_{p}} = 1.6 \times 10^{-14} \, \eta_{p}^{2}.$$
 (36)

Further, since the energy ${\rm E}_{\rm O}$ of 1 quantum is given by the well known equation

$$E_{O} = (hc)/\lambda, \qquad (37)$$

where hc = 1.99×10^{-25} J m, and η_P^* may be converted into $\eta_{P,Q}^*$ expressing the number of quanta emitted per 10 kV electrons occurring for a bandwidth of λ_Δ .

Thus,

$$n_{F,Q}^{*} = n_{P}^{\dagger} \frac{\lambda_{\Delta}}{6.24 \times 10^{14} (hc)}$$
 (38)

If the acceleration voltage is not 10 kV, the tables may be modified for any voltage by multiplying η_p^* or $\eta_{p,q}^*$ with the correction factor k_c , where

$$k_c \approx \left(\frac{V_{acc}^* - V_d}{10 - V_d}\right)^{\epsilon}$$
 (39)

 V_{acc}^* is the acceleration voltage used in kV and V_d is the so-called "dead voltage" in kV (usually \approx 2kV) which must be expended to penetrate the aluminum layer on top of the phosphor screen. The aluminum layer is needed for prevention of light feedback and also increases the efficiency by reflection in the desired direction. The exponent ε has a value which depends upon the thickness d_p of the phosphor layer and its grain size, the band structure of the phosphor, the acceleration voltage, etc. This factor must be determined experimentally and varies from phosphor screen to phosphor screen and also from manufacturer to manufacturer. At lower voltages for many phosphor screens, k_c usually changes quadratically when varying the effective voltage, at higher voltages the change of k_c may become linear and gradually reduces to a plateau beyond which k_c may even decrease again. Since the penetration depth of electrons depends upon the voltage by which they are accelerated, the phosphor

screen must be given an appropriate thickness for the utilized V_{acc}^{\star} in order to achieve optimum efficiency. The penetration depth of accelerated electrons for different phosphors has been treated by several authors. 9,10,11 If maximum resolution is required, thin phosphor screens may be needed ($\sim 2 \mu m$). But for higher acceleration voltages, sufficient absorption of the high energy electrons may not occur, resulting in an impaired phosphor screen efficiency. If the screen is too thick reabsorption may occur and only a fraction of the light produced may be emitted by the surface of the screen. For many medium-thick and thicker phosphor screens, values for ϵ of 1.4 to 2 are usually observed; onversely for many thin phosphor screens ϵ may approach unity.

The phosphor screen correction factor k_c of Eq. (39), i.e. the variation in light output from a phosphor screen as a function of the applied acceleration voltage $V_{\rm acc}^*$, does not represent the intrinsic variation in energy conversion of the phosphor material used for the screen. In a homogeneous phosphor the electron beam intensity as a function of the depth of penetration ρ should be exponential. The depth of nenetration where the intensity is reduced to 1/e is called ρ_p by definition. Within the voltage range as used for cathode ray and intensifier tubes, ρ_p varies nearly quadratically with the effective acceleration voltage $V_{\rm eff}$, where

$$V_{\text{eff}} \approx V_{\text{acc}}^{\star} - V_{\text{d}}^{\star}$$
 (40)

Letting

$$\delta = \frac{\rho_{\text{D}2}}{\rho_{\text{D}1}} \quad , \tag{41}$$

i.e., be the ratio in the penetration depth involving the voltages $V_{\rm eff2}$ and $V_{\rm eff1}$ respectively of a phosphor screen with a normalized thickness θ , where

$$\theta = \frac{\rho_{\text{pa}}}{\rho_{\text{pl}}} \tag{42}$$

and $\rho_{\bf pa}$ is the 2ctual thickness, then the normalized energy absorptions $\eta_{\bf E1}$ and $\eta_{\bf E2}$ are given by

$$\eta_{E1} = \int_{0}^{n=\theta} e^{-n} dn = (1-e^{-\theta})$$
 (43)

and

$$\eta_{E2} = \int_{0}^{n=\theta/\delta} e^{-n} dn = (1-e^{-\theta/\delta})$$
 (44)

Letting L_2/L_1 be the ratio in light output from the phosphor screen which is measured when changing from $V_{\rm eff2}$ to $V_{\rm eff1}$, then the following conditions are valid

$$\frac{L_2}{L_1} = \frac{k_p \eta_{E2}}{\eta_{E1}} \tag{45}$$

where k_p is the ratio of the energy conversion between V_{eff2} and V_{eff1} . Equation (45) may be solved for k_p and the intrinsic voltage gain exponent ϵ_p may be found by using Eq. (39) by substituting ϵ with ϵ_p and k_c with k_p , thus

$$\left[\frac{V_{\text{acc2}}^{\star} - V_{\text{d}}}{V_{\text{acc1}}^{\star} - V_{\text{d}}}\right]^{\epsilon_{\text{p}}} * k_{\text{p}} ,$$
(46)

which solves for

$$\varepsilon_{p} = \frac{\ell g \, k_{p}}{\ell g \left[\frac{V_{\text{acc2}}^{+} V_{d}}{V_{\text{acc1}}^{+} - V_{d}} \right]}$$
(47)

Assume a phosphor screen with $V_{ci} = 2kV$, $\theta = 1$ for $V_{accl}^{*} = 12 kV$, changing V_{acc}^{*} to 17 kV yields a ratio L_2/L_1 of 1.5 (measured). Then, from Eq. (45) and using for δ a value of 1.7 (experimentally determined by M. v. Ardenne)¹²

$$k_p = \frac{1.5(1-e^{-1})}{1-e^{-1/1}} \approx \frac{1.5 \times 0.632}{0.445} \approx 2.13$$

and from Eq (47)

$$\varepsilon_{\rm p} = \frac{\ell g \ 2.13}{\ell a \ 1.5} \approx 1.86 \ ,$$

which means that, if the phosphor could be made sufficiently thick so that nearly all the energy is absorbed, not just 44.5%, at $V_{\rm acc}^* = 17 \text{ kV}$ and assuming that all the light produced is emitted, then the ratio of L_2/L_1 would be, for the voltages involved in this example,

$$\frac{L_2}{L_1} = \left(\frac{V_{\text{eff2}}}{V_{\text{eff1}}}\right)^{E_p} = 1.5^{1.86} \approx 2.1.$$

Tables 10A to 10H show $\eta_{\rm p}^{\dagger}$, $\eta_{\rm p}^{*\dagger}$, and $\eta_{\rm p,q}^{*\dagger}$ for spectral intervals of 10 nm and their summations for the most significant phosphors used in intensifier tubes. Tables 11A to 11L show the conversion efficiencies of the representative photocathodes considered for this paper, where $\eta_{\rm PC}$ is in electrons per quantum and is given by Eq. (2). Summing up the efficiency for the different spectral intervals and dividing by the number of intervals used yields the efficiency $\eta_{\rm PC,White}$, i.e., the efficiency response such a photocathode would have to a so-called white quantum radiator, that is, a radiator for which

$$\frac{dE_{q,\lambda}}{d\lambda} = 0 , \qquad (48)$$

where $E_{\mathbf{q},\lambda}$ is the spectral quantum emittance of the radiator. Tables 11A to 11L also show the reciprocal spectral values of n, i.e., κ_{PC} in quanta per electron,

which is useful for some calculations. Since the representative phosphor screens under consideration for intensifier tubes do not have any significant spectral emission characteristic beyond 700 µm, 15 clearly, one could not expect optimum performance for kinescope recording by using the Kodak 5424 emulsion, especially since this emulsion has a considerable reduction in sensitivity around 520 µm where phosphor screens have their peak emission. Only two representative photographic emulsions were analyzed since they are of suitable sensitivity and since only for these was the spectral information available within the boundaries of 200 to 700 μm ; ¹⁵ for most other emulsions no data were available below 400 µm, even for those which actually are sensitive below this wavelength. Using such limited data would have resulted in an incorrect comparison. If filtering of light of a wavelength shorter than pprox300 to 400 μm occurs because of the type of glass used for the lens, etc., an error is introduced if this is not considered. However, for such situations the interested reader may derive the correct comparison factors by taking advantage of the fine-step tabulation of the intrinsic data of the paper and calculate, by combining the filter effects, the combined effective characteristics. The lower wavelength cut-off may have to be considered. Photocathode responses are usually the combined effect of the photocathode and glass substrate. If deposition is made on a fiber optic plate, the response also may differ from the standardized one, however, such effects are not considered in this paper. The graphical representations of the functions used for deriving the respective tables of the paper allow the reader to easily judge visually how much of the area under the respective efficiency curves, etc., is lost, i.e., by what amount a factor might be reduced by any optical filtering applied to any of the elements.

For color printing, color television and similar work, it is often very useful

to equalize the peak of different detectors by gray filters, i.e., it is useful to have tables where all peak values of the different phosphor screens are normalized to 1; then, the spectral interval expresses the fraction in reference to the peak value, and a separate table lists all the normalizing factors, so that one can determine immediately what gray filter has to be used for equalizing. Tables 12 to 15C show the normalized average efficiency values ξ^{\dagger} and Table 16 shows the normalization factors $N_{\rm F}$. Tables 17A to 17.4 show the spectral efficiency of phosphor screen-photographic emulsion combinations $\eta_{\rm P,L}^{\dagger}$ in grains per 10 kV electron, where

$$\eta_{\mathbf{P},\mathbf{L}}^{\dagger} = \eta_{\mathbf{P},\mathbf{q}}^{\star} \eta_{\mathbf{L}}^{\dagger} . \tag{49}$$

The summation $\eta_{P,L\Sigma}^{\dagger}$ of the above spectral values are shown again by Table 26. Tables 18A to 25C show the spectral efficiency of phosphor screen-photocathode combinations $\eta_{P,PC}^{\dagger}$ in photoelectrons emitted per electron hitting the phosphor, where

$$\eta_{P,PC}^{\dagger} = \eta_{P,q}^{\star \dagger} \eta_{PC}^{\dagger}$$
 (50)

The summations $\eta_{P,PC,\Sigma}$ of the above spectral values are shown by Tables 27A to 27C. The functions used for deriving the previously tabulated spectral values are shown graphically (computer plotted) by Fig. 5 to 21C.

The responses for combinations using gallium arsenide (GaAs) and the P-22R phospor screen are only of theoretical value. When assessing the materials for this paper no GaAs photocathodes for imaging were commercially available. The spectral response characteristic of the P-22R phospor screen represents only the spectral line envelope of average values; the intensity and distribution of the lines forming the envelope may differ considerably from manufacturer to manufacturer. Thus, the tabulated numerical values for the GaAs and the P-22R phosphor screens represent a goal rather than the state of the art. The phosphor screen-photocathode combinations using the S-17 and the S-20 interference photocathodes are also only of theoretical value since in these photocathodes the optical and electronic images occur on the same side. However, since future transparent photocathodes, that could be usable, may have such a response, these combinations were also plotted.

The previous example will now be continued by using the derived tables. As can be seen from Table 17B the most efficient phosphor screen-photographic emulsion combination is, by the state-of-the-art, P-11 and Royal-X Pan, which yields an $\eta_{P,LE}^{\dagger}$ of 1.3 grains per photoelectron for a photographic emulsion sensitivity as at a point on the H and D curve where $D_{\Delta}=1$. If a single stage device is considered with an acceleration of 10kV, then using Eq (39) would effectively yield an $\eta_{P,LE,eff}$ of 0.65 grains per photoelectron, assuming 50% fiter optical coupling. In the previous example it was found that $E_{PC,Im}$ was about 1.7×10^7 electrons \sec^{-1} cm⁻² emitted by the photocathode for the assumed situation which reduces to $E_{PC,Im,eff}$ of about 0.85×10^7 electrons \sec^{-1} cm⁻²,

assuming here also a 50% fiber optical input coupling. This would yield for the (P-11)-(Royal-X Pan) fiber optical coupled combination a total of $G_{\rm N,L}=5.53\times10^6$ grains ${\rm sec}^{-1}~{\rm cm}^{-2}$. For a density of $D_{\Delta}=1$, the number of grains ${\rm cm}^{-2}~G_{\rm L,\Delta}$ needed for Royal-X pan (D-19, 12 minutes development, $A_{\rm g}=3.8\times10^{-12}~{\rm m}^2$, $D_{\rm F}=0.15$) is, using Eq (7),

$$G_{RX, \Delta} = (10^{-0.15} - 10^{-1.15}) \times (3.8 \times 10^{-8})^{-1} \approx 1.68 \times 10^{7} \text{ grains cm}^{-2}.$$

Hence, the necessary exposure time is

$$t_{PC} = \frac{G_{L,\Delta}}{E_{PC,Im}\eta} = \frac{G_{L,\Delta}}{G_{N,L}} , \qquad (51)$$

which here is

ted in a management and a management of any order of the contract of the management of the territories and the production of the contract of t

$$t_{PC} = \frac{G_{RA}\Delta}{G_{N,L}} = \frac{1.58 \times 10^7}{5.53 \times 10^6} \approx 3.04 \text{ sec}.$$

However, this is 2.5 times longer than the 1.2 seconds exposure time needed to satisfy statistical considerations for the selected resolution. If the itensifier tube accelerating voltage can be increased sufficiently, then the exposure time may be reduced to 1.2 seconds, but building stable tubes in the 15 to 25kV range is a very delicate job. Therefore, it may be advantageous to use a two stage intensifier.

In this paper, the intensifier gain $K_{\rm IG}$ is defined as the number of quanta emitted by the phosphor screen per quantum incident to the fiber optic plate used as substrate for the photocathode. Thus, for a single stage intensifier,

$$K_{IGI} = \eta_{FO} \eta_{PC, IR} \eta_{P, PC\Sigma}^{\dagger} \eta_{FO} = \eta_{FO}^{2} \eta_{PC, IR} \eta_{F, PC, \Sigma},$$
 (52)

which is, when using a Varo-type photocathode, P-11 phosphor, fiber op ical

input and output windows with 50% transmission efficiency, night-sky radiation and 10 kV acceleration

$$K_{IG1,Varo} = (0.5 \times 5 \times 10^{-2}) \times (808 \times 0.5) \approx 10.1$$

Intermediate stages will yield higher gains, because the radiation produced by the phosphor screen of the previous stage can be better matched spectrally than the night-sky can be matched with any photocathode.

It was found from the available data that a very efficient phosphor screen-photocathode sandwich which can be fabricated by most companies is a (P-11)-(S-20), yielding an $\eta_{P,PC,E}$ of 123 photoelectrons per electron impinging on the phosphor screen. However, this value is achieved only when employing a very thin substrate between the phosphor and photocathode; when cascading two separate tubes with fiber optical input and output windows the attenuation of the two fiber optical plates between phosphor and photocathode must be considered which yields

 $\eta_{\rm P,PC,\Sigma eff} = \eta_{\rm P,PC,\Sigma} \eta_{\rm FO} = 123 \times 0.5^2 \approx 31$ photoelectrons per 10 kV electron impinging on the phosphor screen, when assuming 50% transmission efficiency of the fiber optics. This effective gain $\eta_{\rm P,PC,\Sigma eff} = 31$ is much more than needed in the above example and the exposure time would have to be reduced to $t_{\rm PC}/\eta_{\rm IG} = 3.04/31 \approx 0.1$ sec. If a three-stage intensifier arrangement as shown by Fig. 22 is used, then the exposure time reduces to $0.1/31 = 3.2 \times 10^{-3}$ sec.

In the following, it will be shown that the amplification provided by three stages may be too high to be effectively used for making high resolution. low noise recordings at medium light levels when normal frame rates are permissible. For a resolution element size with a side length of 20µm (Area $A_R = 4 \times 10^{-6} \text{ cm}^2$), the necessary number of grains $G_{L,R} = G_{L,\Delta}A_R$ is $1.68 \times 10^7 \times 4 \times 10^{-6} = 67$ for $D_{\Delta} = 1$; hence, for 50% fiber optical coupling efficiency, $67/(1.3\times0.5)\approx 103$ 10kV electrons must impinge on the last intensifier screen. However, the effective gain in two stage and three stage tubes is 31 and $31^2 = 961$, respectively. Thus, $103/31 \approx 3.3$ and 103/961≈ 0.1 electrons respectively are needed to be emitted by the primary photocathode to achieve the required density of one. Obviously, since fractional electrons are not possible and by the ratio of statistics the previously assumed small resolution element size will no longer be possible, and using resolution elements having a larger area becomes mandatory. This means, for the three stage system in our example, that the 81 photoelectrons (lowest permissible number for statistical reason) must be spread over an area where the number of produced grains (i.e., for the three stage tube $G_L = E_{PC}^{\#} K_{IG}^2 \eta_{P,L,\Sigma,eff} = 81 \times 31^2 \times 0.65 \approx 5.06 \times 10^4$ grains) will produce a density of $D_{\Delta}=1$. The required area is then $A_{R}=G_{L}/G_{L,\Delta}=5.06\times10^{4}/1.68\times10^{7}$ = $3.01 \times 10^{-3} \text{ cm}^2$ which is a square element with a side length of \approx 550µm. Obviously, this is rather large for normal terrestrial purposes; however, .a side length of that order may be of interest in astronomical observation systems using a telescope with a focal length of 10 meters or more, where the air scintillation limits the performance. These scintillations may cause angular displacements of the image of a point source of 0.5 sec of

star images because of the long focal length. The noise which shows up in the pictures taken with an excessively high gain intensifier arrangement is not caused by tube noise but is due to the exposure time for $D_{\Delta} = 1$ becoming relatively short and thus the effective number of photoelectrons at the primary photocathode becomes too few to give a noiseless picture and allow a useful resolution also. The visual appearance of the statistical fluctuations in the recorded picture occurring when the number of photoelectrons per resolution element is reduced, but where the effective intensification is increased to yield in all cases a density of about 1 (intrinsic resolution maintained), is demonstrated by Fig. 23.

Clearly, if for the above given situation, a density D_{Δ} = 1 is required for photographing the target, then the permissible exposure time becomes a function of the intensification factor $K_{\rm IG}$, and thus, because of the statistical implications, resolution decreases with increasing the amplification, since with increasing the latter, with a lower and lower number of primary photo-

trons the same density is achieved. But the lower and lower number requires a larger and larger brightness difference between the target and background. Therefore, in a system suited for a wide range of light levels the adaptation to the different brightness levels should not be done by reducing the light flux with an aperture in front of the first photocathode, but rather by changing the amplification factor. This may be done, for example, by controlling the acceleration voltage. Then, the nighest available number of primary photoelectrons is utilized for the maximum available exposure time which then yields the smallest possible resolution element within the intrinsic capability of the system.

The above clairly demonstrates the need for amplification control in high jain intensifier arrangements to match the given situation. However, since interifier stages with fiber optical injust and output plates can be purchased individually and any cascade arrangement can be made __ the user, obvir__', an arrangement may be used which permits changing the number of intensifiers. However, this is not a very convenient solution and may be of interest in laboratory applications but not for practical purposes as in reconnaisance where changes in the light level may occur every few minutes.

Controlling the amplification in an image intensifier without affecting the size, geometry or quality of focus in the reproduced image is not an easy task. Changing the acceleration voltage in an intensifier will affect the amplification, but in some designs may affect the above mentioned parameters also.

The electron multiplication factor of the channeled amplifier depends also on the voltage gradient along the channels and a resolution spot is well defined by the channeled structure and not affected by the voltage gradient, as may be the case with the conventional amplifier. Thus, changing the voltage over the micro-channel amplifier allows changing of the intensification factor without affecting the image position, etc. Hence, optimization between gain factor needed for the pertinent different light levels and possible resolution for the longest permissible exposure time may be achieved by using in an appropriate arrangement and manner a micro-channel amplifier.

References.

- Herzberg, Gerhard, Molecular Spectra and Molecular Structure. Vol. 1 and III.
 Van Nostrand Comp. Inc. 1967.
- 2. Roach, F. E., The Light of the Night Sky: Astronautical, Interplanetary, and Geophysical, Space Science Reviews, Vol. 3, p. 5-12 through 5-40, 1964
- Biberman, L. M., and Celi, T. J., Target, Background, and Derived Data for Night-Vision Analyses, Study S-264, Inst. for Defense Analyses, Oct 1966.
- 4. Gebel, R. K. H., Hayslett, R. R. and Mestwerdt, H. R., A Comparison between Near-Infrared Sensitized Photocathodes and Film of their Basic Sensitivity to Xenon Lamp Radiation and Related Problems. Proceedings of the Fourth Inteko Symposium on Photon Detectors, Prague, June 1969. p. 245-274.
- 5. Gebel, R. K. h., A Study of Basic Factors Governing the Detection Limit in Astronomical Imaging, Vortraege de III. Internationalen Symposiums "Photon-Detectors"; Imeko, Warschau, Juli 1967. Deutsche Gesellschaft fuer Messtechnik und Automatisierung, Kammer der Technik, Berlin, 1969.
- 6. Electron Tube Division ITT, Fort Wayne, Ind. Typical Absolute Spectral Response Characteristics of Aluminized Phosphor Screens.
- 7. Gebel, R. K. H., and Duke, G. L. Conversion Yields of Some Photographic Emulsions and Related Factors, Ohio Journal of Science 67(3): 173-183. 1967.
- 8. Gebel, R. K. H., Optical Radar and Passive Opto-electronic Panging, Ohio Journal of Science 66(5): 496-507, 1966.
- 9. Leverenz, H., W., An Introduction to the Luminescence of Solids. Wiley 1950.
- Garlick, G. F. J., Cathodoluminescence. Advances in Electronics. Vol II, np. 151-184.
 Academic Press Inc., 1950.
- 11. Soller, T., Starr, M. A., and Valley, Jr., G. E., Cathode Ray Tube Displays, np. 623-659. McGraw-Hill Book Comp., Inc. 1948.
- 12. Manfred von Ardenne, Tabellen zur angewandten Physik, Band 1, VEB Deutscher Verlag der Wissenschaften, Berlin 1962.

TABLES

and

GRAPHS

TABLE 1. NIGHT-SKY ILLUMINATION, QN, thr. (T). (TYPICAL AIRGLOW + 3% MOONLIGHT) ASSUMING CLOUDLESS SKY AND AIRMASS \sim 2.

they or the west of the medical productions and the constraint of the constraint of

SPECTRAL INTERVAL \(\lambda_1 \) \(\lambda_1 \) \(\lambda_2 \) \(\lambda_1 \) \(\lambda_1 \)	NO FILT Quanting 10 ⁹ Qua s cm ²	Q _{N,ths,T}	SPECTRAL INTERVAL Λ_1 λ_1 to λ_2 $\lambda \left[\times 10^{-9} \text{m} \right]$		NO FILTER $Q_{N,thr}$ 10^9 Quanta cm^2	FILTER 89b $Q_{N,thr,T}$ $\left[\frac{10^9 \text{ Quanta}}{\text{s cm}^2}\right]$
400 41 410 42 420 43 430 44 440 45 450 46	0 0.04 0 0.05 0 0.06 0 0.06 0 0.07 0 0.08	3	800 810 820 830 840 850 860	810 820 830 840 850	0.203 0.225 0.241 0.244 0.242 0.242	0.1788 0.1990 0.2137 0.2168 0.2153 0.2153 0.6236
470 48 480 49 490 50 500 51 510 52 520 53 530 54 540 55	0 0.10 0 0.11 0 0.12 0 0.13 0 0.13		870 880 890 900 910 920 930 940	910 920 930 940 950	0.670 0.169 0.144 0.118 0.092 0.484 0.518 0.162	0.6006 0.1521 0.1297 0.1067 0.0831 0.4371 0.4678 0.1463
550 56 560 57 570 58 580 59 590 60	0 0.15 0 0.17 0 0.17 0 0.17	3	950 960 970 980 990	960 970 980 990 1000	0.208 0.229 0.628 0.635 0.236	0.1881 0.2079 0.5702 0.5767 0.2150
610 62 620 63 630 64 640 65 650 66 660 67 670 68	0 0.189 0 0.21 0 0.21 0 0.22 0 0.23		1010 1020 1030 1040 1050 1060	1020 1030 1040 1050 1060 1070	0.231 1.641 1.653 0.221 0.217 0.214	0.2105 1.4974 1.5099 0.2021 0.1984 0.1966
680 69 690 70 700 71 710 72 720 73 730 74	0 0.25 0 0.25 0 0.25 0 0.25 0 0.24	0.0022 0.0139 0.0604 0.1166 0.1526 0.1954	1070 1080 400 670	1080 1090 1090 1090	0.844 0.830 19.464 15.719	0.7746 0.7626
740 75 750 76 760 77 770 78 780 79 790 80	0 0.179 0 0.270 0 0.313 0 0.269	0.1479 0.2306 0.2702 0.2347				_

TABLE 2a. TYPICAL SENSITIVITY VALUES, $I_{PC,N}$, OF PHOTOCATHODES IN RESPONSE TO NIGHT-SKY ILLUMINATION.

					PHOTOC	ATHOCE	TYPES				<u> </u>	
SPECT	RAL VAL	STAN	DARD	TELE- FUNKEN	INTER- FERENCE	VARIAN 80/40	EMR	EMP	ITT	HEBLANC:	TELE - FUNKEN	VARO 23mm
Ai		te	e)	(b)	(e)	INTENS (d)	(a)	(0)	(1)	(b)	(6)	INTENS (g)
A ₄ 16	^2	5-1	\$-20	S-20A	\$-20		E-01	R-01	\$-25	8-25 HZ	8-25T2	
y [XIO	18 t			I,c,	[10 ⁻¹¹ m/	\/cm ²						
410 410 420 430 440	410 429 430 440 450	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	115 144 163 179 195	115 144 163 179 195	74 110 150 204 277	48 64 77 89	139 171 191 200 226	146 179 201 222 245	75 95 100 120 113	25 3 5	116 136 164	9 15 22 31 44
450 460 470 480 490	440 470 480 490 500	1 2 2	211 227 236 250 256	211 227 238 250 254	34) 307 427 396 205	107 117 125 122 134	246 274 294 300 317	271 302 326 341 348	164 158 171 181 186	47 64 79 91 109	196 215 271 307 336	61 83 104 123 143
\$00 \$10 \$20 \$30 \$40	510 520 530 540 550	2 2 3 3	253 248 244 239 236	261 265 261 256 252	141 95 27 19 20	135 134 132 130 131	317 316 314 310 310	352 358 357 350 352	187 186 190 191 193	121 130 137 146 155	355 371 378 381 384	161 175 189 201 214
550 560 570 580 590	560 570 580 590 600	4 4 5 6	229 220 226 215 192	242 239 246 234 207	30 49 76 95 108	128 123 129 125 115	296 282 299 286 255	345 326 336 325 290	190 187 199 196 182	160 164 183 190 186	375 359 377 365 326	272 224 247 253 243
600 610 620 630 640	610 620 630 640 650	4 7 8 9 10	186 183 180 176 163	202 201 208 198 185	179 154 189 212 234	114 113 119 116 111	250 246 253 234 213	279 280 296 282 265	180 181 191 187 181	193 204 228 234 239	315 313 325 307 209	251 264 294 300 304
650 660 673 680 690	640 670 680 690 700	11 13 14 12	15/3 130 130 122 66	175 156 177 159 117	260 262 327 336 208	110 99 1:3 106 82	195 160 169 146 107	254 217 237 214 156	142 166 191 176 136	249 236 283 276 228	202 251 259 259	316 301 360 355 294
700 710 720 730 740	710 720 730 740 750	15 14 14 16 12	96 78 61 55 34	136 115 94 91	370 342 206 316 216	97 88 77 80 54	124 103 80 76 52	177 149 123 119 79	163 144 125 131 94	289 267 245 266 197	244 218 193 202 145	378 354 330 360 270
750 760 770 780 790	740 770 780 790 800	10 16 19 16	23 28 24 15	4 65 67 77	163 213 196 125 81	## ## ## ##	39 52 52 52 39 28	39 82 83 60	75 108 116 91 69	162 240 262 211 171	13.8 174 190 153 125	230 346 386 326 276
809 810 820 830 840	810 820 830 840 850	12 13 13 13		27 24 20 16 12		31 31 35 36	21 20 18 15	24 18 14 10 6	33 33 34 49	141 146 145 133 114	102 105 102 11 70	237 256 262 247 221
830 860 870 880 890	860 870 880 890 900	13 35 30 8 4		16 9		15 32 21	13 24 7	•	34 60 72 15	94 217 161 28	46 79 11 4	182 364 235 42 20
900 910 920 930 940	910 920 930 940 950	4 3 2 2 2 4							7 4 21 18			2
990 966 970 980 990	961 976 980 990 1000	\$ 14 12 4							\$			
1000 1010 1020 1030 1040	1010 1020 1030 1346 1050	3 19 13										
1060 1060 1070 1080	1060 1070 1080 1090				l L							
+88	1090	594	6360	7100	8004	4754	-146	1494	6492	7007	10654	1114:
439	1990	0 053	IGHTING 0 570	FACTORS 0 638	MEFEMEN 0 716	0 10 1 0 M2	HE VARO	PHOTOCA e BSZ	THODE (- 0 40)	1) 0,700	1 764	ı

- (a) Standard curves published by ITT.
- (b) AEG-Telefunken, Ulm

ŝ

The second secon

- (c) Westinghouse, Elmira
- (d) Varian Associates, Palo Alto
- (e) EMR Div. of Weston Instr. Princeton, New Jersey
 - (f) ITT-IL, Fort Wayne
 - (g) Varo Inc., Garland, Tex.
 - (h) Heimann GmbH, Wiesbaden

TABLE 2b.

TYPICAL SENSITIVITY VALUES, IPC,N,T, OF PHOTOCATHODES IN RESPONSE TO NIGHT-SKY ILLUMINATION THROUGH KODAK WRATTEN FILTER 89b.

					РНОТОС	ATHOCE	TYPES					
	TRAL	STAN	DARC	TELE-	INTER- FERENCE	VARIAN 80/40	EMR	EMR	ITT	HEIMANN	TELE - FUNKEN	VARO 25mm
	ι _ί ο λ ₂	(a)	(b)	(c)	INTENS.	(e)	(0)	(1)	(h)	())	INTENS.
		S-I	S-20	5-20R	\$-20		E-01	R-01	S-25	3-28H2	5-2572	
λ [x]	0 m]				I _{PC.M,T}	[10 ⁻¹² m/	\/cm ² }				r	
670 680 690	680 690 700	1 7	10 56	13 75	1 28 184	8 52	12 68	1 17 99	14 87) 23 146	1 22 129	1 29 188
700 710 720 730 740	710 720 730 740 750	34 67 89 118 100	209 351 386 406 278	297 518 595 673 498	807 1539 1944 2323 1735	216 396 491 588 457	270 466 513 563 423	386 672 781 876 638	357 648 794 963 759	631 1203 1549 1954 1575	532 983 1221 1484 1165	824 1603 2090 2640 2169
750 760 770 780 790	760 770 780 790 800	91 143 167 144 124	198 241 214 135 82	404 595 574 533 321	1372 1826 1696 1098 713	388 568 619 498 335	335 452 464 347 253	505 701 713 507 342	637 928 1003 801 611	1363 2048 2268 1838 1502	994 1488 1645 1336 1097	1933 2964 3358 2851 2434
800 810 820 830 840	810 820 830 840 850	107 117 123 123 119		238 218 185 146 108		311 307 282 232 137	186 181 177 163 141	214 162 126 90 56	474 484 463 412 356	1244 1288 1281 1179 1015	898 927 901 805 626	2095 2267 2327 2204 1973
850 860 870 880 890	860 870 880 890 900	116 J25 299 72 58		77 150 85		293 190 29	120 289 221 30 15	39	310 787 654 139 100	843 1942 1439 255	413 710 335 39 17	1625 3257 2113 384 179
900 910 920 930 940	910 920 930 940 950	45 33 160 159 45							69 44 192 168 39			58 20 44
95J 960 970 980 990	960 970 980 990 1000	52 53 130 116 38							37 28 47			
1000 1010 1020 1030 1040	1010 1020 1030 1040 1050	33 27 166 141 16										
1050 1060 1070 1080	1060 1070 1080 1090	13 11 37 න										
670	1090	1849	2566	6303	15266	6457	5689	6925	12405	26589	17768	41636
670	1090	0.093		1	TORS REF	1		1	1		i	
	.550	0.093	0.062	0 151	0.367	0.155	0.13)	0.166	0.298	0 638	0 427	1

- (a) Standard curves published by ITT.
- (b) AFG-Telefunken, Ulm
- (c) Westinghouse, Elmira
- (d) Varian Associates, Palo Alto
- (e) EMR Div. of Weston Instr. Princeton, New Jersey
- (f) ITT-IL, Port Wayne
- (g) Varo Inc., Garland, Tex.
- (h) Heimann GmbH, Wiesbaden

R. GEBEL, H. SPIEGEL, H. MESTWERDT AND R. MAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE 3.SPECTRAL ENERGY DENSITY REQUIREMENT, SUB CONVERSION EFFICIENCY, $\eta_{\rm L}$

WAVE	KODAK IN FILM 5424							
LENGTH								
	S _{L,5424,0.3}	7L,5424, 0.3	S _{L,5424} , 10	7L,5424,1.0				
λ _i [10 ⁻⁹ m]	[erg cm ⁻²]	[grains quantum ⁻¹]	[erg cm ⁻²]	[grains quantum ⁻¹]				
400	1.7370E-02	3.1940E-C3	4.3650E-02	2.2933E-03				
410	1.8190E-02	2.9757E-03	4.5700E-02	2.1370E-03				
420	1.9950E-02	2.6485E-03	5.1290E-02	1.8588E-03				
430	2.2900E-02	2.2537E-03	5.6230E-02	1.6560E-03				
449 450	2.7540E-02	1.8314E-03	6.6060E-02	1.3776E-03				
450 460	3.2350E-02 3.7150E-02	1.5244E-03 1.2986E-03	7.0790E-02 8.9120E-02	1.2570E-03 9.7672E-04				
470	4.7860E-02	9.8657E-04	1.1481F-01	7.4204E-04				
480	6.9180E-02	6.6831E-04	1.6218E-01	5.1436E-04				
490	1.2022E-01	3.7673E-C4	3.3113E-01	2.4678E-04				
500	2.6302E-01	1.6875E-04	5.2480E-01	1.5260E-04				
510	5.0118E-01	8.6823E-05	1.2589E 00	6.2364E-05				
520	6.3096E-01	6.76391-05	1.6596E 00	4.6399E-05				
530	5.4954E-01	7.6195E-05	1.3490E 00	5.6005E-05				
540	4.2658E-01	9.6343E-05	1.0965E 00	6.7626E-05				
550	3.5481F-01	1.1372E-04	8.9125E-01	8.1685E-05				
560	3.0199E-C1	1.3123E-04	7.4131E-01	9.6453E-05				
570 500	2.6302E-01	1.4803E-04	6.6C69E-01 5.8884E-01	1.0632E-04				
580 590	2.3989E-01 2.1878E-01	1.5951E-04 1.7193E-04	5.3703E-01	1.1724E-04 1.2637E-04				
600	2.0417E-01	1.8116E-04	5.0119E-01	1.3315E-04				
610	1.9620E-01	1.9538E-04	4.6773E-01	1.4034E-04				
620	1.7782E-01	2.0129E-C4	4.3651E-01	1.4795E-04				
630	1.6596E-01	2.1225E-04	4.2658E-01	1.4899E-04				
640	1.5849E-01	2.1879E-C4	3.89C4E-01	1.6082E-04				
650	1.5135E-01	2.2558E-C4	3.6308E-01	1.6966E-04				
560	1.4454E-01	2.3263E-C4	3.4673E-01	1.7497E-04				
670	1.3490E-01	2.4553E-C4	3.3113E-01	1.8048E-04				
680	1.2303E-01	2.6527E-04	2.95128-01	1.9952E-04				
690	1.1220E-01	2.8665E-04	2.6302E-01	2.2063E-04				
700 710	1.0000E-01 9.1200E-02	3.1703E-04 3.4273E-04	2.2908E-01 2.1379E-01	2.4970E-04 2.6379E-04				
720	8.5110E+02	3.6215E-C4	1.9953E-01	2.7872E-04				
730	8.5110E-02	3.5719E-04	1.9953E-01	2.7490E-04				
740	8.7090E-02	3.4435E-04	2.1379E-01	2.5310E-04				
750	8,5110E-02	3.4766E-04	2.0892E-01	2.5554E-04				
760	8.1280E-02	3.5925E-04	1.9952E-01	2.6406E-04				
770	7.4130E-02	3.8879E-04	1.8620E-01	2.7928E-04				
780	6.9180E-02	4.11278-04	1.6982E-01	3.0229E-04				
790	6.3090E-02	4.4526E-04	1.5135E-01	3.3488E-04				
800	5.7540E-02	4.8210E-04	1.4454E-01	3.4528E-04				
810	5.6230F-02	4.8724E-04	1.3804E-01	3.5811E-04				
820 830	5.6230E-02 5.8880E-02	4.8130E-04 4.5410E-04	1.4454E-01 1.4791E-01	3.3783E-04 3.2616E-04				
840	6.1650E-02	4.2854E-04	1.5488E-01	3.0777E-04				
850	6.4560E-02	4.0441E-04	1.58491-01	2.9722E-04				
860	6.6060E-02	3.9063E-C4	1.6982E-01	2.7417E-04				
879	7.9430E-02	3.2114E-C4	1.9055E-01	2.4153E-04				
680	1.2589E-".	2.0032E-04	2.6915E-01	1.6905E-04				
890	2.6302E-C1	9.4803E-C5	7.58586-01	5.9308E-05				
900	8.91256-01	2.7667E-05	1.6596F 00	2.6808E-05				

TABLE 4. GRAIN RATE-DENSITY, $G_{N,\,(\mathbf{T})}$, FOR KODAK NEAR-IR FILM 5424 IN RESPONSE TO NIGHT-SKY ILLUMINATION WITH AND WITHOUT KODAK WRATTEN FILTER 89b.

SPECTRAL			M 5424 IN ILLUMINAT	
INTERVAL	NC F	ILTER	WRATTEN	FILTER 896
Λi	Values of	η used for in	ntervals corresp	and to.
λ; 10 λ ₂	D _A =0.3	D _A =1.0	D ₆ =0.3	D ₄ =1.0
λ[x10 m]	G _N (10 ⁸ Gra	ns s ⁼¹ cm ⁼²]	G _{N,T} [10 ⁵ Gre	ons s ⁻¹ cm ⁻²
400 410 410 420 429 430 430 440 440 450	1.141 1.293 1.799 1.225 1.157	.819 .919 .931 .910 .908		
450 460 460 470 470 480 48J 490 490 500	1.100 1.016 .819 .569 .321	.871 .764 .621 .414 .235		
500 510 510 520 520 530 530 540 540 550	.158 .100 .097 .121 .156	.133 .070 .069 .087		
550 560 560 570 570 580 580 590 590 600	.188 .219 .267 .296 .305	.137 .159 .194 .218 .224		
600 610 610 620 620 630 630 640 640 650	.337 .374 .436 .467 .491	.244 .272 .313 .336 .365		
650 660 660 670 670 680 680 690 690 700	.529 .528 .675 .723 .654	.398 .392 .503 .550 .510	2.000 .006 .041	9.000 .004 .032
700 710 710 720 720 730 730 740 740 750	.913 .912 .866 .933 .702	.711 .702 .667 .702 .516	.199 .410 .548 .645 .562	.155 .316 .422 .515 .413
750 760 760 770 770 780 780 790 790 800	.618 1.009 1.248 1.152 1.075	.454 .733 .907 .856 .790	.519 .852 1 080 1.005 .946	.381 .626 .785 .747 .695
800 810 810 820 820 830 830 840 840 850	.983 1.089 1.127 1.076 1.007	.714 .782 .800 .773 .732	.866 .933 .999 .956 .896	.629 .692 .709 .68/ .651
850 860 860 870 870 880 880 890 890 900	.958 2,480 1,746 ,249 ,088	.688 1.797 1.375 .192 .062	.855 2.219 1.565 .224 .079	.615 1.607 1.232 .173 .055
4cc 900	37.317	27.650		
670 900			16.498	12.153

TABLE. 5. SPECTRAL ENERGY DENSITY REQUIREMENT, SL.

WA/E	KODAK R	IOYAL-X PAN	KODAK TE	8-X PAN		
LENGTH	D _A =0.3	04.10	D _A = 0.3	DV=110		
4	S _{L,R, 0.3}	S _{L, R, I.O}	\$,,,03	S _{L,7,Le}		
[10°9m]		[10-4	d erg cm ⁻⁴			
250	0.1660	3.1623	0.3890	6.0256		
260	0.1738	3.8019	0.3548	5.3703		
270	0.1995	5.2481	0.3802	6.6069		
280	0.2399	8.3176	0.4365	8.7096		
290	0.1738	5.6234	0.4266	7.0795		
300	0.1122	1.6989	0.36CB	4.6774		
310	0.0955	1,2589	0.3162	3.5481		
320	0.0832	1.0233	0.2884	3.1623		
330	0.0724	0.8128	0.2754	2.6303		
340	0.0646	0.6310	0.2630	1.9953 1.5849		
350 360	0.0562 0.0490	0.4898 0.40 74	0.2344 0.2089	1.2589		
3 7 0	0.0468	0.3890	0.1905	1.0965		
380	0.0490	0.3981	0.1820	1.0000		
390	0.0490	0.3890	0.1862	0.9333		
400	0.0479	0.3802	0.1905	0.8913		
410	0.0468	0.3802	0.1995	0.8913		
420	0.0479	0.3802	0.2089	0.9120		
430	0.0479	0.3802	0.2138	0.9120		
440	0.0501	0.3890	0.2239	0.9550		
450	0.0537	0.4074	0.2291	1.0000		
460	0.0562	0.4266	0.2630	1.0715		
470	0.0631	0.4467	0.2884	1.2023		
480	0.0741	0.5012	0.3467	1.3490		
490	0.0891	0.5623	0.3981	1.5136		
500 510	0.1023	0.5754 0.5623	0.5012 0.5248	1.7378 1.8621		
510 520	0.1072 0.1047	0.5012	0.5012	1.8197		
530	0.0955	0.5012	0.4677	1.8197		
540	0.0851	0.3802	0.4169	1.5849		
550	0.0776	0.3467	0.3631	1.3804		
560	0.0708	0.3162	0.3162	1.2589		
570	0.0661	0.3020	0,2818	1.1749		
580	0.0676	0.2951	0.3020	1.2023		
590	0.0692	0.3020	0.3311	1.2023		
600	0.0708	0.3162	0.3384	1.1750		
610	0.0759	0.3467	0.3467	1.3490		
620	0.0794	0.3981	0.3981	1.4125		
630	0.1000	0.4677	0.4074	1.4791		
640	0.2399	1.2589	0.3981	1.4125		
650	1.2589	5.7544	0.3981	1.3490		
660	0.	0.	0.3631	1.2589		
670	0.	0.	0.3388	1.1220		
680 680	0.	0.	0.3467 0.5012	1.1220 1.5849		
690 700	0. 0.	0. 0.	1.2589	3.9811		
700 7 1 0	0.	0.	3.9800	0.		
72 U	0.	0.	0.	0.		
730	0.	0.	0.	0.		
740	9.	Ŏ.	0.	0.		

41

R. GEBEL, H. SPIEGEL, M. MESTWERGT AND R. MAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE. 6. PHOSPHOR SCREEN EFFICIENCY, $\eta_{\rm Pn}$, $(\lambda_{\rm A}=10^{-9}\,{\rm m},{\rm V}_{\rm acc}=10{\rm kV})$

WAVE	PHOSPHOR SCREEN TYPES.										
LENGTH	P-4	P-II	P-16	P-20	P-228	P-22G	P-22R	P-31			
(m e-01] i				η_{Pn} [10 ⁻³]						
250	0.	0.	0.	0.	0.	0.	0.	0.			
260	0.	0.	0.	0.	0.	0.	0.	0.			
270	0.	0.	0.	0.	C.	0.	0.	0.			
280	0.	0.	0.	0.	0.	0.	0.	0.			
290	0.	0.	0.	0.	0.	0.	0.	0.			
300	0.	0.	0.	0.	0.	0.	0.	0.			
310	0.	0.	0.	0.	0.	0.	0.	0.			
320	0.	0.	0.	0.	0.	0.	0.	0.			
330	0.	0.	0.	0.	0.	0.	0.	0.			
340	0.	0.	0.	0.	0.	0.	0.	0.			
350	0.	0.	0.140	0.	0.	0.	0.	0.			
360	0.	0.024	0.500	0.	0.029	0.	0.	0.			
370	0.032	0.043	0.720	0.	0.057	0.	0.	0.			
380	0.057	0.077	0.790	0.	0.090	0.	0.	0.02			
390	0.100	0.140	0.790	0.	0.165	٥.	0.	0.04			
400	0.175	0.240	0.730	0.	0.280	0.	0.	0.07			
410	0.350	0.470	0.550	0.	0.550	0.	0.	0.16			
420	0.650	0.800	0.390	0.	0.950	0.020	0.	0.31			
430	0.875	1.350	0.230	0.	1.500	0.031	0.	0.58			
440	0.965	1.950	0.120	0.	2.200	0.051	0.	0.87			
450	0.940	2.300	0.064	0.	2.550	0.080	0.	1.08			
460	0.780	2.400	0.030	0.	2.300	0.135	0.	1.13			
470	0.600	2.300	0.	0.051	1.600	0.230	0.	1.0			
480	0.490	2.050	0.	0.080	0.975	0.380	0.	1.0			
490	0.430	1.770	0.	0.155	0.620	0.660	0,	1.3			
500	0.405	1.500	0.	0.280	0.400	1.100	0.	1.70			
510	0.440	1.150	0•	0.530	0.240	1.570	0.	2.19			
520	0.500	0.880	0.	0.800	0.145	1.800	0.	2.30			
530	C。570	0.640	0.	1.050	0.090	1.880	0.	2.20			
540	0.650	0.430	0.	1.200	0.051	1.750	0.	2.00			
550	0.720	0.280	0.	1.300	0.028	1.500	0.025	1.49			
560	0.780	0.180	0.	1.350	0•	1.300	0.043	1.00			
570	0.800	0.125	0.	1.300	0.	1.000	0.100	0.70			
580	0.790	0.071	0.	1.180	0.	0.750	0.195	0.50			
590	0.730	0.043	0.	0.980	0.	0.610	0.310	0.34			
600	0.610	0.027	0.	0.850	0.	0.470	0.450	0.2			
610	0.460	0.018	0.	0.670	0.	0.340	0.630	0.1			
620	0.350	0.	٥.	0.530	0.	0.250	0.750	0.1			
630	0.260	0.	0.	0.410	0.	0.185	0.870	0.0			
640	0.190	0.	0.	0.310	0.	0.140	0.950	0.0			
650	0.145	0.	0 -	0.240	0.	0.105	1.050	0.0			
660	0.110	0.	0.	0.175	0.	0.078	1.080	0.0			
670	0.075	0.	0.	0.135	0.	0.060	1.100	0.0			
680	0.057	0.	0.	0.105	0.	0.047	1.080	0.			
690	0.042	0.	0.	0.076	0.	0.036	1.050	۰0			
700	0.031	0.	0.	0.056	Ů.	0.027	0.980	o.			
710	0.021	0.	0.	0.040	0.	0.	0.900	0.			
720	0.	0.	0.	0.028	0.	0.	0.780	0.			
730	0.	0.	0.	0.018	0.	0.	0.100	٥.			
74 0	0.	0.	٥.	0.	0.	0.	0.	0.			

R. GEBEL, M. SPIEGEL, H. MESTMERDT AND R. MAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE, 7A. TYPICAL SPECTRAL SENSITIVITY VALUES, I_{RC} OF PHOTOCATHODES.

WAVE	STAI	NDARD	TELEFUNKEN	ITT	HEIMANN	VARO
LENGTH	((a)	(b)	(+)	(h)	(0)
	S-I	S-20	S-ZOR	S-25	S-25 H	
$\lambda_i [10^{-9}m]$			Ipc [10-1 AW-1]			I
250	0.	0.	0.	0.	0.	0.
260	0.	0.	o.	0.	0.	0.
270	0.	0.	0,	0.	0.	0.
280	0.	0.	0.	0.	0.	0.
290	0.	0.	0.	0.	0.	0.
300	0.	0.070	0.070	0.070	0.	0.
310	0.008	0.200	0.200	0.150	0.	0.
320	0.016	0.280	0.280	0.210	0.	0.
330	0.022	0.350	0.350	0.250	0.	0.
340	0.029	0.420	0.420	0.290	٥٠	0.
350	0.033	0.450	0.450	0.310	ō.	0.
360	0.036	0.500	0.500	0.350	0.	0.
370	0.032	0.550	0,550	0.370	0.	0.
380	0.027	0.600	0.600	0.380	0.	0.
390	0.020	0.610	0.610	0.390	0.	0.
400	0.014	0.635	0.635	0.410	0.	0.042
410	0.009	0.650	0.650	0.430	0•	0,058
420	0.006	0.660	0.660	0.435	0.	0.080
430	0.005	0.660	0.660	0.440	0.520	0.100
440	0.004	0.640	0.640	0.435	0.490	9.130
450 40	0.004	0.630	0.630	0,430	0.455	0.160
460	0.004	0.615	0.615	0.420	0.430	0.200
470 480	0.004	0.580	0.580	0.415	0.415	0.240
490	0.004 0.005	0.565	0.565	0.410	0.405	0.260
500	0.005	0.555	0.555	0.400	0.402	0.290
510	0.005	0.530 0.510	0.530	0.390	0.400	0.320
520	0.005	0.510	0.540 0.520	0.380	0.420	0.340
530	0.006	0.470	0.500	0.375	0.455	0.360
540	0.007	0.445	0.480	0.370	0.475	0.380
550	0.007	0.425	0.450	0.360 0.350	0.480 0.480	0.390
560	0.008	0.405	0.430	0.342	0.480	0.400
570	0.009	0.395	0.420	0.336	0.475	0.405
580	0.010	0.365	0.400	0.328	0.450	0.410 0.415
590	0.010	0.345	0.370	0.320	0.430	0.420
600	0.011	0.325	0.350	0.312	0.420	0.425
610	0.012	0.310	0.340	0.302	0.402	0.430
620	0.013	0.290	0.320	0.290	0.363	0.435
630	0.013	0.270	0.300	0.280	0.365	0.440
640	0.014	0.250	0.285	0.270	0.356	0.445
650	0.015	0.230	0.260	0.265	0.350	0.450
660	0.016	0.210	0.240	0.255	0.344	0.455
670	0.017	0.187	0.235	0.250	0.334	0.460
680	0.018	0.170	0.220	0-240	0.323	0.465
690	0.019	0.153	0.200	0.225	0.312	0.470
700	0.020	0.132	0.180	0.215	0.300	0.480
710	0.020	0.115	0.170	0.205	0.280	0.490
720	0.021	0.102	0.150	0.195	0.262	0.500
730	0.022	0.083	0.135	0.185	0.236	0.500
749	0.023	0.071	C.120	0.180	0.225	0.500

A. GEBEL, H. SPIEGEL, H. MESTHERDT AND R. HRYSLETT INTERSIFIER MATCHING PROBLEMS
TABLE: 7-A CONTINUED

WAVE		IDARD	TELEFUNKEN	ITT	HEIMANN	VARO
LENGTH	(a }	(b)	(f)	(h)	(9)
	S-I	S-20	8-20R	S-25	3-25H	
$\lambda_i \left[10^{-9} m \right]$			Ipc [10	-1 AW-1]		
740	0.023	0.071	0.120	0.180	0.225	0.500
750	0.023	0.057	0.110	0.170	0.215	0.500
760	0.024	0.045	0.099	0.160	0.204	0.500
770	0.024	0.036	0.088	0.150	0.197	0.490
780	0.024	0.026	0.078	0.140	0.190	0.480
790	0.024	0.019	0.068	0.130	0.184	0.480
800	0.024	0.014	0.058	0.110	0.176	0.475
810	0.024	0.	0.050	0.105	0.160	0.475
820	0.024	0.	0.040	0.095	0.150	0.460
830	0.024	0.	0.032	0.085	0.135	0.445
840	0.024	0.	0.025	0.075	0.120	0.410
850	0.023	0.	0.018	0.066	0.105	0.370
860	0.023	0.	0.013	0.058	0.092	0.280
870	0.022	0.	0.008	0.052	0.077	0.175
880	0.021	0.	0.005	0.044	0.061	0.135
890	0.021	0.	0.	0.038	0.043	0.090
900	0.020	0.	0.	0.032	0.020	0.035
910	0.019	0.	0.	0.027	0.	0.015
920	0.018	0.	0.	0.022	0.	0.007
930	0-016	0.	0.	0.019	0.	0.002
940	0.015	0.	0.	0.015	0.	0.
950	0.014	0.	0.	0.011	0.	0.
960	0.013	0.	0.	0.008	0.	0.
970	0.012	0.	0.	0.005	0.	o.
980	0.011	0.	0.	0.003	0.	0.
990	0.009	0.	0.	0.	0.	0.
1000	0.008	0.	0.	0.	0.	0.
1010	0.007	0.	0.	0.	0.	0.
1020	0.006	0.	0.	0.	0.	0.
1030	0.005	0.	0.	C.	0.	0.
1040	0.004	0.	0.	0.	0.	0.
1050	0.004	0.	0.	0.	0.	0.
1060	0.003	0.	0.	0.	0.	0.
1070	0.003	0.	0.	0.	0.	0.
1080	0.002	0.	0.	0.	0.	0.
1090	0.002	0.	0.	0.	0.	0.

R. GEBFF. N. SPIEGEL. N. MESTMERDT AND R. HATSLETT INTENSIFIER MATCHING PROBLEMS

TABLE, 7 B. TYPICAL SPECTRAL SENSITIVITY VALUES, I PC + OF PHOTOCATHODES.

WAVE LENGTH		ITT (f)		VARIAN (d)	INTER- FERENCE	1TT (1)				
1	S-4	5-11	5-17		(c)	Ga As				
λ _i [10 ⁻⁹ m]	_		I _{PC} [II	0" AW"]		 				
250	0.	0.	0.	0.	0.	0.				
260	0.	0.	0.	0.	0.	0.				
270	0.	0 "	0.	0.	0.	0.				
280	0.	0.	0.082	0.	0.	0.				
290	0.	0.	0.176	0.	0.	0.				
300	0.	0.	0.330	0.	0.	0.				
310	0.100	0.	0.440	0.	0.	0.				
320	0.210	0.033	0.540	0.	0.	0.330				
330	0.300	0.038	0.620	0.	0.	0.490				
3+0	0.335	0.220	0.650	0.	0.	0.670				
350	0.355	0.310	0.680	0.	0.	0.770				
360	0.375	0.370	0.700	0.	0.500	0.840				
370	0.390	0.410	0.710	0.	0.340	0.900				
380	0.405	0.430	0.710	0.	0.300	0.920				
390	0.412	0.440	0.720	0.	0.340	0.940				
400	0.415	0.460	0.730	0.250	0.380	0.950				
410	0.415	0.470	0.740	0.285	0.450	0.960				
420	0.412	0.480	0.750	0.305	0.550	0.970				
430	0.410	0.490	0.770	0.320	0.660	0.970				
440	0.405	0.490	0.780	0.325	0.820	0.970				
450	0.395	0.490	0.800	0.320	0.980	0.979				
460	0.385	0.480	0.810	0.310	1.040	0.970				
470	0.370	U.470	0.820	0.305	1.050	0.970				
480	0.355	0.460	0.830	0.300	0.990	0.970				
490	0.335	0.440	0.830	0.300	0.780	0.970				
500	0.335					0.970				
		0.420	0.830	0.280	0.430					
510 520	0.285	0.390	0.830	0.270	0.150	0.970				
520 520	0.270	0.360	0.820	0.265	0.070	0.970				
530 540	0.240	0.340	0.780	0.255	0.038	0.960				
540 550	0.215	0.310	0.740	0.245	0.035	0.960				
550 540	0.185	0.270	0.650	0.235	0.040	0.950				
560 570	0.160	0.230	0.550	0.230	0.070	0.950				
570 500	0.135	0.195	0.390	0.220	0.110	0.940				
580 500	0.110	0.165	0.290	0.210	0.145	0.930				
590	0.088	0.130	0.190	0.205	0.170	0.920				
600	0.066	0.100	0.130	0.195	0.205	0.910				
610	0.047	0.068	0.096	0.190	0,235	0,900				
620	0.031	0.044	0.070	0.180	0.270	0.880				
630	0.021	0.028	0.057	0.175	0.295	0.870				
640	0.014	0.016	0.046	0.170	0.330	0.860				
650	0.	0.009	0.036	0.160	0.360	0.850				
660	0.	0.006	0.022	0.155	0.385	0.830				
670	0.	0.004	0.015	0.150	0.410	0.800				
680	0.	0.009	0.012	0.145	0.430	0.770				
690	0.	0.006	0.	0.145	0.460	0.750				
700	0.	0.003	0.	0.130	0.470	0.730				
710	0.	0.002	0.	0.125	0.480	0.720				
720	0.	0.002	0.	0.120	0.470	0.680				
730	0.		0.	0.115	0.460	0.660				
130	0.	0.	0.	0.113	V• 400	0.000				

R. GEREL, H. SPIZGEL, N. HESTHEROT AND R. HATSLETT INTERSIFIER HATCHING PROBLEMS
TABLE. 7 B. CONTINUE 0.

WAVE LENGTH		ITT (f)		VARIAN (d)	INTER- FERENCE	(f)		
	s-4	S-13	S-17		(c)	Ga As		
λ _i [10 ⁻⁹ m]	Ipc [IOT AWT]							
740	0.	0.	0.	0.110	0.420	0.620		
750	0.	0.	G•	0.105	0.380	0.570		
760	0.	0.	0.	0.098	0.330	0.540		
770	0.	0.	0.	0.092	0.280	0.500		
780	0.	0.	0.	0.086	0.210	0.470		
790	0.	0.	0.	0.080	0.160	0.430		
800	0.	0.	0.	0.075	0.120	0.390		
810	0.	0.	0.	0.068	0.	0.370		
820	0.	0.	0.	0.058	0.	0.340		
830	0.	0.	0.	0.050	0.	0.310		
840	0.	0,	0.	0.040	0.	0.280		
850	C.	0.	0.	0.032	0,	0.250		
860	0.	0.	0.	0.024	0.	0.229		
870	0.	0.	0.	0.017	0.	0.190		
880	0.	0.	0.	0.011	0.	0.196		
890	0.	0.	0.	0.006	0.	0.159		
900	0.	0.	0.	0.003	0.	0.130		
910	0.	0.	0.	0.	0.	0.110		
920	0.	0.	0.	0.	J.	9.090		
930	0.	0.	0.	0.	0.	0.080		
940	C.	0.	0.	0.	0.	0.060		
950	0.	0.	0.	0.	0.	0.040		
960	0.	0.	0.	0.	0.	0.030		
970	0.	0.	0.	0.	0.	0.010		
980	0.	0.	0.	0.	0.	0.		
990	0.	0.	0.	0.	tr.	0.		
1000	0.	0.	0.	0.	0.	0.		
1010	0.	0.	0.	0.	0.	0.		
1020	0.	0.	0.	0.	0.	0.		
1030	0.	0.	0.	0.	0.	0.		
1040	0.	0.	0.	0.	0.	0.		
1050	0.	0.	0.	0.	0.	0.		
1060	0.	0.	0.	0.	0.	0.		
1070	0.	0.	0.	0.	0.	0.		
1080	0.	0.	0.	0.	0.	0.		
1090	0.	0.	0.	0.	0.	0.		

F. GEREL, H. SPIESEL, H. INSTITUTION AND R. MITSLETT INTERSTFIES NATIONING PROBLETS. TABLE, 7C., TYPICAL SPECTRAL SENSITIVITY VALUES, I_{PC} , OF PHOTOCATHODES

WAVE	HEIMANN	TELL	TELEFUNKEN				
LENGTH	(ħ)	(6)	(b)				
	S-25H2	S-25T1	S-25T2				
λ _ι [iʊ [•] m]		Tpc [IO-IAW-I]					
250).	υ.	0.				
260	0.	0 •	0.				
270	0.	0.	0.				
280	0.	0.	0.				
290	0.	٥.	G.				
300	0.	0.	0.				
310	0.	0.	0.				
320	0.	0.	0.				
330	0.	0.	0.				
340	0.	0.	0.				
350 360	0.	0.	0.				
360 370	0. 0.	0.	0.				
		0.	0.				
380 390	0. 0.	0.	0.				
400	0.	0.	3.				
410	0.	С. О.	0.				
420	0.	0.360	0. 0.455				
430	0.093	0.370	0.480				
440	0.102	0.365	0.515				
450	0.123	0.395	0.550				
460	0.155	0.405	0.600				
470	0.181	0.405	0.635				
480	0.201	0.402	0.675				
490	0.221	0.395	0.700				
500	0.241	0.387	0.720				
510	0.255	0.380	0.735				
520	0.264	0.375	0.745				
530	0.273	0.365	0.735				
540	0.283	0.360	ა.720				
550	0.289	0.350	0.695				
560	0.293	0.342	0.665				
570	0.301	0.335	0.635				
530	0.308	0.330	9.620				
590 480	0.318	0.315	0.580				
600	0.326	6,307	0.550				
610	0.332 0.337	0.300	0.520				
620 630	0,342	0.290	0.505				
640	0.348	0.272 0.262	7.465 0.660				
650	353	7.25 2	0.440 0.410				
660	0.359	0.237	0.410				
670	0.362	0.230	0.370				
680	0.364	0.217	0.347				
690	0.367	0.205	0.335				
700	0.369	0.197	v *15				
710	0.172	0.132	0.310				
7 0	3.371	C 185	0.297				
730	0.370	G-177	0.237				
7.40	0.370	0.172	6.214				

R. GEBEL, H. SPIEGEL, H. MESTHERDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS TABLE. 7C. CONTINUED

WAVE	HEIMANN TELEFUNKEN		INKEN
LENGTH	(h)	(b) 1	(6)
	S-25H2	S-25T1	S-25T2
λ _i [ιο •m]		Ipc [IOTAWT]	
740	0.370	0.172	0.275
750	0.356	0.162	0.262
760	0.349	0.155	0.252
770	0.335	0.150	0.245
780	0.320	0.140	0.230
790	0.299	0.135	0.220
800	0.290	0.127	0.210
810	0.274	0.117	0.197
520	0.257	0.110	0.185
830	0-241	0.100	0.165
84C	0.216	0.090	0.147
850	0.185	0.080	0.100
860	0.152	0.062	0.065
870	0.119	0.041	0.034
880	0.092	0.021	0.015
890	0.057	0.015	0.008
900	0.	0.008	0.004
910	0.	0.	0.
920	0.	0.	0.
930	0.	0.	0.
940	0.	0.	0.
950	0.	0.	0.
960	0.	0.	0.
970	0.	0.	0.
980	0.	0.	0.
990	U.	0.	0.
1000	0.	0.	C.
1010	0.	0.	0.
1020	0.	0.	0.
1030	0.	0.	0.
1040	0.	0.	0.
1050	0.	0.	0.
1060	0.	0.	0.
1070	0.	0.	0.
1080	0.	0.	0.
1090	0.	0.	0.

R. GEBEL, H. SPIEGEL, H. MESTWERDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE. 8. SPECTRAL ENERGY VALUES , $E_{Q,\lambda}^{\dagger}$, $E_{Q,\lambda}^{\dagger}$, in reference to interval center.

The second secon

SPECTRAL	ENERGY PER QUANTUM		SPECTRAL INTERVAL		QUANTUM
Ai Aito Az	E'q, \	Eat	λ ₁ 10 λ ₂	$E_{0,\lambda}^{\dagger}$	$E_{\mathbf{d},\lambda}^{\diamond\dagger}$
[10 ⁻⁹ m]	[10 ⁴⁰ joule]	[•V]	[10° m]	[10 ⁻¹⁹ joule]	[•V]
250 260	7.7894313	4.8620132	67: 680	2,9426740	1.8367605
260 270	7.4954905	4.6785409	660 690	2.8997153	1.8099465
270 280	7.2229272	4.5084122	690 700	2.8579928	1.7839041
280 290 290 300	6.9694912 6.7332372	4.3502223 4.2027571	700 710 710 720	2.8174539 2.7780489	1.7586005 1.7340047
300 310	6.5124~53	4.0649618	720 730	2.7397310	1.7100874
310 320	6.3057301	3.9359154	730 740	2.7024558	1.6868209
320 330	6.1117076	3.8148103	740 750	2.6661812	1.6641790
330 340	5.9.292686	3.7009354	750 760	2.6308675	1.6421369
340 350	5.7574057	3.5936619	760 770	2.5964771	1.6206710
350 360	5.5952253	3.4924320	770 780	2.5629742	1.5997592
360 370	5,4419314	3.3967489	780 790	2.5303248	1.5793801
370 380	5.2968132	3.3061689	790 800	2.4984968	1.5595137
380 390	5.1592337	3.2202944	800 810	2.4674596	1.5401408
390 400	5.0286202	3.1387680	810 820	2.4371840	1.5212434
400 410	4.9044567	3.0612675	820 830	2.4076424	1.5028041
410 420	4.7862770	2.9875020	830 840	2.3788083	1.4848064
420 430	4.6736588	2.9172079	840 850	2.3506568	1.4672347
430 440	4.5662183	2.8501456	850 860	2.3231637	1.4500741
440 450	4.4636067	2.7860974	860 870	2.2963063	1.4333102
450 460	4.3655054	2.7248645	870 880	2.2700628	1.4169295
460 470	4.2716236	2.6662653	880 890	2.2444124	1.4009190
470 480	4.1816947	2.6101334	890 900	2.2193352	1.3852663
480 490	4.0954742	2.5563162	900 910	2.1.948121	1.3699595
490 500	4.0127373	2.5046735	910 920	2.1708251	1.3549873
500 510	3.9332772	2.4550759	920 930	2.1473567	1.3403388
510 520	3.8569029	2.4074046	930 940	2.1243904	1.3260036
520 530	3.7834381	2.3615493	940 950	2.1019100	1.3119718
530 540	3.7127196	2.3174081	950 960	2.0799005	1.2982339
540 550 550 560	3.6445963 3.5789279	2.2748869	960 970 970 980	2.0583471	1.2847807
560 570	3.5155841	2.2338979 2.1943599	980 990	2.0372359 2.0165533	1.2716035 1.2586938
570 580	3.4544435	2.1561971	990 1000	1.9962864	1.2460436
580 590	3.3953931	2.1193390	1000 1010	1.9764229	1.2336451
590 600	3.3383277	2.0837199	1010 1020	1.9569507	1.2214910
600 610	3.2831487	2.0492783	1020 1030	1.9378585	1.2095740
610 620	3.2297642	2.0159567	1030 1040	1.9191352	1.1978873
620 630	3.1780879	1.9837014	1040 1050	1.9007703	1.1864243
630 640	3.1280393	1.9524620	1050 1060	1.8827535	1.1751785
640 650	3.0795426	1.9221913	1060 1070	1.8650 51	1.1641440
650 660	3.0325267	1.8928448	1070 1080	1.8477256	1.1533147
660 670	2.9869248	1.8643810	1080 1090	1.8306958	1.1426851
	- -	- · · · · · · ·	.		

R. GEBEL, N. SPIEGEL, N. NESTWENDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE. 9A. DENSITY ENERGY REQUIREMENT, ST, AND CONVERSION EFFICIENCY, TE.

SPECTRAL				
INTERVAL		KODAI	ROYAL-X PAN	,
λ_i to λ_2	St. R. 0.3	7t, R, 0.3	St., 9, 10	N. R. 1.0
λ [100 m]	ere cm-2	[grains quentum"]	[org cm-2]	[grains quantum"]
250 260	1.6990E-02	4-2591E-03	3.4821E-01	3.7495E-04
260 270	1.8665E-02	3.7306E-03	4.5250E-01	2.7764E-04
270 280	2.1970E-02	3.0541E-03	6.7828E-01	1.7849E-04
280 290 290 300	2.0685E-02 1.4300E-02	3.1300E-03	6.9705E-01	1.6759E-04
300 310	1.4300E-02	4.3741E-03 5.8256E-03	3.6611E-01	3.0826E-04
310 320	8.9350E-03	6.5561E-03	1.4789E-01	7.3810E-04
320 330	7.7800E-03	7.2977E-03	1.1411E-01 9.1805E-02	9.2623E-04 1.1158E-03
330 340	6.8500E-03	8.0411E-03	7.2190E-02	1.1156E-03
340 350	6.0400E-C3	8.8551E-03	5.6040E-02	1.7220E-03
350 360	5.2600E-03	9.8818E-03	4.4860E-02	2.0906E-03
360 370	4.7900E-03	1.0554E-02	3.9820E-02	2.2907E-03
370 380	4.7900E-03	1.0273E-02	3.9355E-02	2.2559E-03
380 390	4.9000E-03	9.7812E-03	3.9355E-02	2.1973E-03
390 400	4.8450E-03	9.6418E-03	3.8460E-02	2.1915E-03
400 410	4.7350E-03	9.6222E-03	3.8020E-02	2.1622E-03
410 420	4.7350E-03	9.3903E-03	3.8020E-02	2.1101E-03
420 430	4.7000E-03	9.0641E-03	3.8020E-02	2.0604E-03
430 440 440 450	4.9000E+03	8.6569E-03	3.8460E-02	1.9900E-03
450 460	5.1900E-03 5.4950E-03	7.9895E-03 7.3802E-03	3.9820E-02	1.8788E-03
460 470	5.9650E-03	6.6525E~03	4.1700E-02 4.3665E-02	1.7547E-03
470 480	6.8600E-03	5.6628E-03	4.7395E-02	1.6397E-03 1.4789E-03
480 490	8.1600E-03	4.6625E-()	5.3175E-02	1.4709E-03
490 500	9.5700E-03	3.8952E-03	5.6885E-02	1.1824E-03
500 510	1.0475E-02	3.4882E-03	5.6885E-02	1.1589E-03
510 520	1.0595E-02	3.3817E-03	5.3175E-02	1.2157E-03
520 530	1.0010E-02	3.5112E-03	4.6885E-02	1.3526E-03
530 540	9.0300E-03	3.8195E-03	4.0835E-02	1.5239E-03
540 550	8.1350E-03	4.1619E-03	3.6345E-02	1.6808E-03
550 560	7.4200E-03	4.4808E-03	3.3145E-02	1.8098E-03
560 570 570 580	6.8450E-03	4.7712E-03	3.0910E-02	1.90646-03
580 590	6.6850E-03	4.8004E-03	2.9855E-02	1.9394E-03
590 600	6.8500E-03 7.0000E-03	4.6114E-03 4.4303E-03	2.9855E-02	1.9063E-03
600 610	7.3350E-03	4.1581E-03	3.0910E-02 3.3145E-02	1.8102E-03
610 620	7.7650E-03	3.8640E-03	3.7240E-02	1.6603E-03 1.4537E-03
620 630	8.9700E-03	3.2914E-03	4.3290E-02	1.2305E-03
630 640	1.6995E-02	1.7098E-03	8.6330E-02	6.0732E-04
640 650	7.4940E-02	3.8175E-04	3.5066E-01	1.4720E-04
650 660	0 。	0.	0.	0.
660 670	Õ.	0.	0.	0.
670 680	0.	0.	0.	0.
680 690	0.	0.	0.	0.
690 700	0.	0.	0.	0.
700 710	0.	0.	0.	0.
710 720 730 730	0.	0.	0.	0.
720 730 730 740	0.	Ú.	0.	0.
130 140	0.	C.	0.	0.

R. GEBEL, H. SPIEGEL, N. MESTWERDT AND R. MAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE. 98. DENSITY ENERGY REQUIREMENT, $s_{\rm L}^{\rm I}$, AND CONVERSION EFFICIENCY, $\eta_{\rm L}^{\rm I}$.

A	SPECTRAL	NODAK TRI-XAN				
250 260 3.7190E-02 2.1831E-03 5.6979E-01 2.5710E-04 2.60 270 3.6750E-02 2.1259E-03 5.9886E-01 2.3539E-04 2.70 280 4.0835E-02 1.8437E-03 7.6582E-01 1.7737E-04 2.80 290 4.3155E-02 1.6833E-03 7.8945E-01 1.6603E-04 2.99 300 3.9370E-02 1.7826E-03 5.8784E-01 2.5741E-04 300 310 3.3850E-02 2.0053E-03 4.1127E-01 2.9780E-04 310 320 3.0230E-02 2.1742E-03 3.3552E-01 3.5345E-04 320 330 2.8190E-02 2.2598E-03 2.8963E-01 3.5345E-04 330 340 2.6920E-02 2.2958E-03 2.3128E-01 4.8214E-04 340 350 2.4870E-02 2.4330E-03 1.7901E-01 6.0486E-04 350 360 2.2165E-02 2.6404E-03 1.7791E-01 8.6901E-04 370 380 1.8625E-02 2.6404E-03 1.1777E-01 8.6901E-04 370 380 1.8625E-02 2.6404E-03 1.1777E-01 8.6901E-04 370 380 1.8625E-02 2.6404E-03 1.1777E-01 8.6901E-04 370 380 1.8625E-02 2.6404E-03 1.1775E-01 8.6901E-04 400 413 1.9500E-02 2.7828E-03 9.1230E-02 1.3366E-03 400 413 1.9500E-02 2.6431E-03 9.1230E-02 1.3366E-03 400 413 1.9500E-02 2.6431E-03 9.1230E-02 9.931E-04 420 2.0420E-02 2.4431E-03 9.1200E-02 9.931E-04 420 2.1135E-02 2.3049E-03 9.1230E-02 9.931E-04 430 440 2.185E-02 2.0541E-03 9.130E-02 9.931E-04 450 460 2.6650E-02 1.8438E-03 9.130E-02 9.931E-04 450 460 2.650E-02 2.0541E-03 9.7750E-02 8.5877E-04 450 460 2.4605E-02 3.048E-03 9.1230E-02 9.5376E-04 450 460 2.4605E-02 3.048E-03 9.130E-02 9.5376E-04 450 460 2.4605E-02 3.048E-03 9.130E-02 9.5376E-04 450 460 2.650E-02 3.048E-03 9.130E-02 9.5376E-04 450 460 2.650E-02 3.049E-03 1.1369E-01 7.0661E-04 450 2.650E-02 3.049E-03 1.1369E-01 7.0661E-04 5.000E-04 5.000E-04 5.000E-04 5.000E-04 5.000E-04 5.000E-04 5.000E-04 5.000E-		St. 1.03	η [†] , τ , ο.3	St., T. 1.0	η [†] ι, τ , ι.ο	
250 270 3.6750E-02 2.1259E-03 5.9886E-01 2.3539E-04 270 280 4.0835E-02 1.6837E-03 7.6582E-01 1.7737E-04 280 290 4.3155E-02 1.6833E-03 7.6582E-01 1.6603E-04 290 300 3.9370E-02 1.7826E-03 5.8784E-01 2.1541E-04 290 300 310 3.3850E-02 2.0053E-03 4.1127E-01 2.9780E-04 310 320 3.0230E-02 2.1742E-03 3.3552E-01 3.5345E-04 320 330 2.8190E-02 2.2598E-03 2.8963E-01 3.9685E-04 340 350 2.4870E-02 2.4530E-03 1.7701E-01 6.0486E-04 350 360 2.2165E-02 2.65312E-03 1.7701E-01 6.0486E-04 350 360 2.2165E-02 2.64312E-03 1.7701E-01 7.4004E-04 370 380 1.8625E-02 2.9643E-03 1.04219E-01 7.4004E-04 370 380 1.8625E-02 2.9643E-03 1.0482E-01 9.5029E-04 390 400 1.8835E-02 2.9210E-03 9.6655E-02 1.037E-03 390 400 1.8835E-02 2.7828E-03 9.1230E-02 1.0366E-03 400 410 1.9500E-02 2.6216E-03 8.91300E-02 1.0366E-03 400 410 1.9500E-02 2.4431E-03 9.1355E-02 1.0349E-03 400 420 2.0420E-02 2.4431E-03 9.1355E-02 9.6376E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 420 430 2.1135E-02 2.3049E-03 9.1350E-02 9.1992E-04 440 450 2.2650E-02 1.3726E-03 1.3350E-02 9.1992E-04 450 460 2.7570E-02 1.8493E-03 1.3350E-01 9.1992E-04 450 470 2.7570E-02 1.8493E-03 1.3350E-01 9.1992E-04 450 460 2.4605E-02 1.8493E-03 1.3350E-01 9.1992E-04 450 450 500 510 5.1300E-02 7.917E-04 1.7999E-01 7.966E-04 470 480 3.7240E-02 1.6149E-03 1.2756E-01 5.3812E-04 490 500 4.965E-02 9.3018E-04 1.6257E-01 5.3812E-04 490 500 4.965E-02 9.3018E-04 1.6257E-01 5.3812E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 5.3912E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 5.3912E-04 500 500 3.3475E-02 8.1493E-03 1.3136E-01 5.3812E-04 4.026E-04 500 600 3.3455E-02 8.1493E-03 1.3196E-01 5.3812E-04 4.026E-04 500 600 3.3455E-02 8.1493E-03 1.3806E-01 5.3912E-04 500 500 3.3475E-02 8.9906E-02 1.225E-03 1.2869E-01 5.3912E-04 500 500 3.3475E-02 8.0990E-02 1.225E-03 1.2869E-01 5.4331E-04 500 500 500 3.3475E-02 8.0990E-02 1.225E-03 1.2869E-01 5.4331E-04 500 500 500 3.3475E-02 8.0990E-02 1.225E-03 1.2869E-01 5.		[erg cm-2]	[grains quentum-1]	[erg cm-2]	[grains gantum-1]	
260 270	250 260	3.7190E-02				
280 290 4.3155E-02 1.6833E-03 7.8945E-01 1.6603E-04 290 300 3.9370E-02 1.7826E-03 5.8784E-01 2.1541E-04 310 310 3.3850E-02 2.0053E-03 4.1127E-01 2.9780E-04 310 320 3.0230E-02 2.1742E-03 3.3552E-01 3.5345E-04 320 330 2.8190E-02 2.2598E-03 2.8963E-01 3.9685E-04 330 340 2.6920E-02 2.2598E-03 2.3128E-01 4.8214E-04 340 350 2.4870E-02 2.4130E-03 1.7901E-01 6.0486E-04 350 360 2.2165E-02 2.6312E-03 1.7901E-01 6.0486E-04 370 380 1.8970E-02 2.6312E-03 1.7771E-01 8.6901E-04 370 380 1.8625E-02 2.9643E-03 1.1777E-01 8.6901E-04 370 380 1.8625E-02 2.9643E-03 1.0482E-01 9.5029E-04 380 390 1.8410E-02 2.9210E-03 9.6665E-02 1.0037E-03 390 400 1.8835E-02 2.7828E-03 9.1230E-02 1.0366E-03 400 410 1.9500E-02 2.6216E-03 8.9130E-02 1.0346E-03 410 420 2.0420E-02 2.4431E-03 9.1655E-02 9.9831E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 430 440 2.1885E-02 2.1748E-03 9.350E-02 9.1992E-04 440 450 2.2650E-02 2.0541E-03 9.350E-02 9.1992E-04 440 450 2.2650E-02 1.6149E-03 1.3369E-01 7.9266E-04 470 480 3.1755E-02 1.6149E-03 1.3369E-01 7.9266E-04 470 480 3.7750E-02 1.649E-03 1.313E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 6.1649E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 5.3812E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 6.1649E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 5.3812E-04 500 500 3.9900E-02 9.3406E-04 1.8197E-01 3.9402E-04 500 500 3.9900E-02 9.7406E-04 1.8197E-01 3.9402E-04 500 500 3.9900E-02 1.2259E-03 1.2186E-01 5.2818E-04 500 500 3.9900E-02 9.7406E-04 1.8197E-01 5.3812E-04 600 610 3.4255E-02 9.9901E-04 1.4826E-01 5.4331E-04 600 600 3.7240E-02 8.0639E-04 1.3807E-01 4.0928E-04 600 600 3.4275E-02 8.0958E-04 1.3807E-01 4.9392E-04 600 600 3.4275E-02 8.0958E-04 1.3807E-01 4.9392E-04 600 600 3.7240E-02 8.0639E-04 1.3807E-01 4.9392E-04 600 600 3.4275E-02 8.0958E-04 1.3939E-01 4.9334E-04 600 600 4.2395E-02 7.1292E-04 1.3	260 270	3.6750E-02				
290 300 3.9370E-02 1.7826E-03 5.8784E-01 2.1541E-04 300 310 3.3850E-02 2.0053E-03 4.1127E-01 2.9780E-04 310 320 3.0230E-02 2.1742E-03 3.5552E-01 3.5345E-04 320 330 2.8190E-02 2.2598E-03 2.8963E-01 3.9685E-04 340 350 2.4870E-02 2.4130E-03 1.7901E-01 6.0486E-04 350 360 2.2165E-02 2.6312E-03 1.7901E-01 6.0486E-04 350 360 370 1.9970E-02 2.4130E-03 1.7777E-01 8.6901E-04 370 380 1.8625E-02 2.643E-03 1.0482E-01 7.4004E-04 370 380 1.8625E-02 2.9210E-03 9.6665E-02 1.037E-03 390 400 1.8835E-02 2.7828E-03 9.1230E-02 1.0366E-03 390 400 1.8835E-02 2.7828E-03 9.1230E-02 1.0366E-03 400 410 1.9500E-02 2.6216E-03 8.9130E-02 1.0368E-03 400 410 1.9500E-02 2.6216E-03 8.9130E-02 1.0368E-03 410 420 2.0420E-02 2.4431E-03 9.0165E-02 9.9831E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 440 450 2.2650E-02 2.0541E-03 9.7750E-02 8.5877E-04 450 460 2.4605E-02 1.03726E-03 1.0357E-01 7.9266E-04 440 450 2.2650E-02 2.0541E-03 9.7750E-02 8.5877E-04 450 460 2.4605E-02 1.3726E-03 1.2756E-01 6.1649E-04 470 480 3.7750E-02 1.3726E-03 1.2756E-01 6.1649E-04 470 480 3.7750E-02 1.3726E-03 1.2756E-01 6.1649E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6400E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 3.9402E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 3.9402E-04 500 500 4.4965E-02 9.3018E-04 1.8499E-01 3.9402E-04 500 500 4.4965E-02 9.7406E-04 1.8499E-01 5.3812E-04 4.6257E-01 6.1649E-03 1.2756E-01 6.1649E-04 6.00 60 3.3965E-02 1.0989E-03 1.2756E-01 6.1649E-04 6.00 60 3.3965E-02 1.0989E-03 1.2756E-01 6.1649E-04 6.00 60 3.3965E-02 1.0989E-03 1.2756E-01 6.1649E-04 6.00 6.00 3.3965E-02 1.0989E-03 1.2756E-01 6.1649E-04 6.00 6.00 3.3965E-02 1.0989E-03 1.3196E-01 5.3812E-04 6.00 6.00 3.3965E-02 1.0989E-03 1.2023E-01 5.3111E-04 6.00 6.00 3.3965E-02 1.0989E-03 1.3196E-01 5.3991E-04 6.00 6.00 3.3965E-02 1.0989E-03 1.2023E-01 5.3111E-04 6.00 6.00 3.3965E-02 8.87129-04 6.00 3.3991E-04 6.00 6.00 3.3965E-02 8.87129-04 6.00 6.00 3.3991E-04 6.00 6.00 3.3991	270 280		_			
300 310 3.3850E-02 2.0053E-03 4.1127E-01 2.9780E-04 310 320 3.0230E-02 2.1742E-03 3.3552E-01 3.5345E-04 320 330 2.8890E-02 2.2598E-03 2.8963E-01 3.9685E-04 320 330 2.8890E-02 2.2598E-03 2.3128E-01 4.8214E-04 340 350 2.4870E-02 2.4130E-03 1.7901E-01 6.0486E-04 7.4004E-04 7.40						
310 310 3.0230E-02 2.1742E-03 3.3552E-01 3.5845E-04 320 330 2.8190E-02 2.2598E-03 2.8963E-01 3.9685E-04 320 330 2.8190E-02 2.2598E-03 2.81963E-01 3.9685E-04 320 330 340 2.6920E-02 2.2598E-03 1.7791E-01 6.0486E-04 340 350 2.4870E-02 2.4130E-03 1.7791E-01 7.4004E-04 350 360 2.2165E-02 2.6312E-03 1.4219E-01 7.4004E-04 360 370 1.9770E-02 2.8404E-03 1.777E-01 8.6901E-04 370 380 1.8625E-02 2.9643E-03 1.0482E-01 9.5029E-04 380 390 1.8410E-02 2.9210E-03 9.6665E-02 1.0346E-03 390 400 1.8835E-02 2.7828E-03 9.1230E-02 1.0346E-03 400 410 1.9500E-02 2.4431E-03 9.1230E-02 1.0346E-03 400 410 1.9500E-02 2.4431E-03 9.1230E-02 1.0346E-03 410 420 2.0420E-02 2.4431E-03 9.1250E-02 9.6375E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6375E-04 430 440 2.1885E-02 2.1748E-03 9.3350E-02 9.1992E-04 440 450 2.2650E-02 2.0541E-03 9.7750E-02 9.6375E-04 450 460 2.4605E-02 1.649E-03 1.0357E-01 7.9265E-04 450 460 2.4605E-02 1.6499E-03 1.0357E-01 7.9265E-04 450 460 2.4605E-02 1.6499E-03 1.0357E-01 7.9265E-04 450 460 2.4605E-02 1.5493E-03 1.3359E-01 7.0661E-04 470 480 3.1755E-02 1.3726E-03 1.2756E-01 6.1649E-04 470 480 3.1755E-02 1.3726E-03 1.2756E-01 6.1649E-04 490 500 4.4965E-02 1.3716E-03 1.2756E-01 6.1649E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 5.3910E-04 500 500 3.9900E-02 7.7406E-04 1.8197E-01 3.9102E-04 500 500 3.9900E-02 7.7915E-04 1.8409E-01 5.1006E-04 500 500 3.9900E-02 7.7915E-04 1.8409E-01 5.4657E-04 600 610 3.7425E-02 8.1403E-03 1.1886E-01 5.4657E-04 600 610 3.7425E-02 8.9901E-04 1.2620E-01 4.8926E-04 600 610 3.7425E-02 8.0954E-04 1.7033E-01 5.1311E-04 600 610 3.7425E-02 8.0954E-04 1.4826E-01 5.4657E-04 600 610 3.7425E-02 8.0954E-04 1.3807E-01 5.1311E-04 600 610 3.7425E-02 8.0954E-04 1.3807E-01 5.1339E-04 600 610 3.7425E-02 8.0954E-04 1.3807E-01 4.1935E-04 600 610 3.5095E-02 8.0954E-04 1.3807E-01 4.1935E-04 600 600 3.8050E-02 8.0955E-02 8.0955E-04 1.39039E-01 4.1935E-04 600	-					
310 320						
330 340 2.6920E-02 2.2958E-03 2.3128E-01 4.8214E-04 340 350 2.4870E-02 2.4130E-03 1.7901E-01 7.4004E-04 350 360 2.2165E-02 2.6312E-03 1.4219E-01 7.4004E-04 350 360 1.9970E-02 2.8404E-03 1.1777E-01 8.6901E-04 370 380 1.8625E-02 2.9643E-03 1.0482E-01 9.5029E-04 380 390 1.8410E-02 2.9210E-03 9.6665E-02 1.0037E-03 390 400 1.8835E-02 2.7828E-03 9.1230E-02 1.0366E-03 400 413 1.9500E-02 2.6216E-03 8.9130E-02 9.9831E-04 410 420 2.0420E-02 2.4431E-03 9.0165E-02 9.9831E-04 420 430 2.1135E-02 2.3049E-03 9.165E-02 9.6376E-04 430 440 2.1885E-02 2.1748E-03 9.3350E-02 9.1992E-04 440 450 2.2650E-02 1.8493E-03 1.0357E-01 7.9266E-04 450 460 2.4605E-02 1.8493E-03 1.0357E-01 7.9266E-04 470 480 3.1755E-02 1.5149E-03 1.2756E-01 7.9661E-04 480 490 3.7240E-02 1.1463E-03 1.2756E-01 5.3812E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 500 510 5.1300E-02 7.9717E-04 1.7999E-01 4.1096E-04 510 520 5.1300E-02 7.9716E-04 1.8409E-01 3.9402E-04 530 540 4.4230E-02 8.1403E-04 1.8197E-01 3.9102E-04 540 550 3.9000E-02 7.7055E-04 1.8409E-01 3.9402E-04 550 550 3.9000E-02 7.7055E-04 1.8426E-01 5.1004E-04 550 560 3.3965E-02 1.0993E-03 1.1886E-01 5.4657E-04 650 600 3.4755E-02 1.0395E-03 1.1886E-01 5.4637E-04 650 660 3.4255E-02 9.9901E-04 1.4826E-01 5.4331E-04 660 670 3.5095E-02 8.0954E-04 1.3807E-01 4.9391E-04 650 660 3.8060E-02 8.3050E-04 1.3807E-01 4.1339E-04 660 670 3.5095E-02 8.0954E-04 1.4458E-01 4.1339E-04 660 670 3.5095E-02 8.0954E-04 1.1307E-01 4.1945E-04 670 680 3.4275E-02 8.9468E-04 1.1307E-01 4.1945E-04 680 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04						
340 350 2.4870E-02 2.4130E-03 1.7901E-01 6.0486E-04 350 360 2.2165E-02 2.6312E-03 1.4219E-01 7.4004E-04 360 370 1.9970E-02 2.8404E-03 1.1777E-01 8.6901E-04 370 380 1.8625E-02 2.9643E-03 1.0482E-01 9.5029E-04 380 390 1.8410E-02 2.9210E-03 9.6665E-02 1.033E-03 390 400 1.8835E-02 2.7828E-03 9.1230E-02 1.0346E-03 400 410 1.9500E-02 2.6216E-03 8.9130E-02 1.0348E-03 410 420 2.0420E-02 2.4431E-03 9.0165E-02 9.9831E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 430 440 2.1855E-02 2.1748E-03 9.3350E-02 9.1992E-04 440 450 2.2650E-02 1.649E-03 9.7750E-02 9.5877E-04 450 460 2.4605E-02 1.8493E-03 1.0357E-01 7.9266E-04 460 470 2.7570E-02 1.6149E-03 1.1369E-01 7.0661E-04 470 480 3.1755E-02 1.3726E-03 1.2756E-01 6.1649E-04 490 3.7240E-02 1.1463E-03 1.2756E-01 4.6420E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 500 510 5.1300E-02 7.0765E-04 1.8409E-01 3.9402E-04 500 510 5.1300E-02 7.0765E-04 1.8409E-01 3.9402E-04 500 550 5.000E-02 7.0765E-04 1.8409E-01 3.9402E-04 500 500 4.4935E-02 9.3018E-04 1.6197E-01 3.9102E-04 500 500 3.3965E-02 9.7494E-04 1.7023E-01 4.1017E-04 500 550 3.9000E-02 9.7494E-04 1.7023E-01 4.1017E-04 500 550 3.9000E-02 9.7494E-04 1.7023E-01 4.1017E-04 500 550 3.9000E-02 9.7494E-04 1.7023E-01 5.1004E-04 500 550 3.9000E-02 9.7494E-04 1.7023E-01 5.1004E-04 500 550 3.9000E-02 9.7494E-04 1.7023E-01 5.1004E-04 500 550 3.9000E-02 9.7496E-04 1.8806E-01 5.4657E-04 500 500 3.3475E-02 1.0395E-03 1.1886E-01 5.4657E-04 600 610 3.4255E-02 9.9901E-04 1.4826E-01 5.4331E-04 600 610 3.4255E-02 9.9901E-04 1.3807E-01 4.1939E-04 600 610 3.4255E-02 8.0954E-04 1.3807E-01 4.1935E-04 600 660 3.8060E-02 8.3050E-04 1.3807E-01 4.1935E-04 600 660 670 3.5095E-02 8.0954E-04 1.4458E-01 4.1339E-04 600 660 670 3.5095E-02 8.0630E-04 1.3807E-01 4.1935E-04 600 660 670 3.5095E-02 8.0630E-04 1.3807E-01 4.1935E-04 600 670 3.5095E-02 8.8712E-04 1.1904E-01 4.1187E-04 600 600 600 600 600 600 600 600 600 6					-	
340 350 2.2165E-02 2.6312E-03 1.4219E-01 7.4004E-04 360 370 1.9970E-02 2.8404E-03 1.1777E-01 8.6901E-04 370 380 1.8625E-02 2.9643E-03 1.0482E-01 9.5029E-04 380 390 1.8410E-02 2.9210E-03 9.6665E-02 1.0037E-03 390 400 1.8835E-02 2.7828E-03 9.1230E-02 1.0366E-03 400 410 1.9500E-02 2.6216E-03 8.9130E-02 1.0348E-03 410 420 2.0420E-02 2.4431E-03 9.165E-02 9.9831E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 430 440 2.1885E-02 2.1748E-03 9.3350E-02 9.1992E-04 440 450 2.2650E-02 2.0541E-03 9.7750E-02 8.5877E-04 450 460 2.4605E-02 1.8493E-03 1.0357E-01 7.9266E-04 470 480 3.1755E-02 1.3726E-03 1.2756E-01 6.1649E-04 490 30.37240E-02 1.1463E-03 1.2756E-01 6.1649E-04 490 30.7240E-02 1.1463E-03 1.4313E-01 5.3812E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 500 550 3.9965E-02 8.1403E-04 1.8197E-01 3.9102E-04 500 550 3.9965E-02 1.0838E-03 1.316E-01 5.431E-04 500 550 3.9965E-02 1.0983E-03 1.316E-01 5.431E-04 500 550 3.9965E-02 1.0983E-03 1.3196E-01 5.431E-04 500 550 3.9965E-02 1.0983E-03 1.3196E-01 5.431E-04 500 550 3.9965E-02 1.0983E-03 1.3196E-01 5.431E-04 500 550 3.9965E-02 1.0983E-03 1.2169E-01 5.431E-04 500 550 3.9965E-02 1.0983E-03 1.3196E-01 5.431E-04 500 550 3.9965E-02 1.0983E-03 1.3186E-01 5.431E-04 500 550 3.9965E-02 1.0983E-03 1.3866E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.458E-01 4.3807E-01 4.9926E-04 600 610 3.4255E-02 9.9991E-04 1.4458E-01 4.3807E-01 4.3991E-04 600 610 3.4255E-02 9.9991E-04 1.4458E-01 4.1945E-04 600 610 620 3.7240E-02 9.0996E-04 1.3807E-01 4.3807E-01 4.3991E-04 600 610 620 3.7240E-02 9.0996E-04 1.4458E-01 4.1945E-04 600 610 600 6						
350 360 2.215350						
370 380						
380 390					9.5029E-04	
390 400 1.8835E-02 2.7828E-03 9.1230E-02 1.0366E-03 400 410 1.9500E-02 2.6216E-03 8.9130C-02 1.0348E-03 410 420 2.0420E-02 2.4431E-03 9.0165E-02 9.9831E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 430 440 2.1885E-02 2.1748E-03 9.3350E-02 9.1992E-04 440 450 2.2650E-02 2.0541E-03 9.7750E-02 8.5877E-04 450 460 2.4605E-02 1.8493E-03 1.0357E-01 7.9266E-04 450 470 2.7570E-02 1.6149E-03 1.1369E-01 7.0661E-04 470 480 3.1755E-02 1.3726E-03 1.2756E-01 6.1649E-04 480 490 3.7240E-02 1.1463E-03 1.4313E-01 5.3812E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 510 520 5.1300E-02 7.9917E-04 1.7999E-01 3.9402E-04 500 510 5.1300E-02 7.9917E-04 1.8409E-01 3.9402E-04 550 560 3.9900E-02 9.7406E-04 1.826E-01 4.6229E-04 550 560 3.9900E-02 9.7406E-04 1.4826E-01 4.6229E-04 550 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 550 590 3.1655E-02 1.1180E-03 1.2023E-01 5.11004E-04 600 610 3.4255E-02 9.9901E-04 1.2023E-01 5.3111E-04 600 610 3.4255E-02 9.9901E-04 1.3807E-01 4.9926E-04 610 620 3.7240E-02 9.99901E-04 1.3807E-01 4.3991E-04 620 630 4.0275E-02 8.0954E-04 1.455E-01 4.3991E-04 620 630 4.0275E-02 8.0954E-04 1.3807E-01 4.3991E-04 640 650 3.9810E-02 8.0954E-04 1.3807E-01 4.1945E-04 660 670 3.5095E-02 8.8712E-04 1.3807E-01 4.9145E-04 660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 660 690 4.2395E-02 7.1292E-04 1.1200E-01 4.9926E-04 690 690 4.2395E-02 8.9468E-04 1.1200E-01 4.9926E-04 690 690 4.2395E-02 8.9468E-04 1.1200E-01 4.9926E-04 690 690 4.2395E-02 7.1292E-04 1.1904E-01 4.9926E-04 690 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-0					1.0037E-03	
400 410 1.9500E-02 2.6216E-03 8.9130E-02 1.0348E-03 410 420 2.0420E-02 2.4431E-03 9.0165E-02 9.9831E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 430 440 2.1885E-02 2.3049E-03 9.3350E-02 9.1992E-04 440 450 2.2650E-02 2.0541E-03 9.7750E-02 8.5877E-04 450 460 2.4605E-02 1.8493E-03 1.0357E-01 7.9266E-04 460 470 2.7570E-02 1.6149E-03 1.1369E-01 7.0661E-04 470 480 3.1755E-02 1.3726E-03 1.2756E-01 6.1649E-04 480 490 3.7240E-02 1.1463E-03 1.4313E-01 5.3812E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 510 520 5.3300E-02 7.0765E-04 1.8409E-01 3.9402E-04 530 540 4.4230E-02 8.1403E-04 1.8197E-01 3.9402E-04 530 550 3.9000E-02 8.7494E-04 1.7023E-01 4.1017E-04 550 550 3.9900E-02 1.0983E-03 1.3196E-01 5.1004E-04 550 550 3.9900E-02 1.0983E-03 1.3196E-01 5.1004E-04 550 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 550 560 3.3955E-02 1.0983E-03 1.1886E-01 5.4657E-04 550 560 3.3475E-02 1.0983E-03 1.1886E-01 5.4657E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.8926E-04 610 620 3.7240E-02 9.0399E-04 1.3807E-01 5.2818E-04 620 630 4.0275E-02 8.0954E-04 1.458E-01 4.3991E-04 620 630 4.0275E-02 8.0954E-04 1.3807E-01 4.1935E-04 650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.1945E-04 650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.1945E-04 660 670 3.5095E-02 8.8712E-04 1.904E-01 4.9324E-04 660 670 3.5095E-02 8.8712E-04 1.3039E-01 4.3137E-04 660 670 3.5095E-02 8.8712E-04 1.3534E-01 4.0888E-04 660 670 3.5095E-02 8.8712E-04 1.3534E-01 4.9324E-04 670 680 690 4.2395E-02 8.8712E-04 1.3534E-01 4.9324E-04 670 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04 690 700 8.80					1.0366E-03	
410 420 2.0420E-02 2.4431E-03 9.0165E-02 9.9831E-04 420 430 2.1135E-02 2.3049E-03 9.1200E-02 9.6376E-04 430 440 2.1885E-02 2.1748E-03 9.3350E-02 9.1992E-04 440 450 2.2650E-02 2.0541E-03 9.7750E-02 8.5877E-04 450 460 2.4605E-02 1.8493E-03 1.0357E-01 7.9266E-04 460 470 2.7570E-02 1.6149E-03 1.1369E-01 7.0661E-04 470 480 3.1755E-02 1.3726E-03 1.2756E-01 6.1649E-04 480 490 3.7240E-02 1.1463E-03 1.4313E-01 4.6420E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 510 520 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 510 520 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 520 530 4.8445E-02 8.1403E-04 1.8197E-01 3.9402E-04 530 540 4.4230E-02 8.7494E-04 1.7023E-01 4.1017E-04 540 550 3.9000E-02 9.7406E-04 1.4826E-01 4.6229E-04 550 560 3.3965E-02 1.0983E-03 1.3196E-01 5.1300E-04 550 560 3.3965E-02 1.0983E-03 1.2169E-01 5.4331E-04 550 590 3.1655E-02 1.225DE-03 1.2169E-01 5.4331E-04 600 610 3.4255E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.9926E-04 610 620 3.7240E-02 9.9901E-04 1.2620E-01 4.9926E-04 620 630 4.0275E-02 8.0999E-04 1.3807E-01 4.3991E-04 620 630 640 4.0275E-02 8.0996E-04 1.4458E-01 4.0688E-04 650 660 3.8060E-02 8.3050E-04 1.3807E-01 4.1945E-04 660 670 3.5095E-02 8.0996E-04 1.3807E-01 4.1945E-04 660 670 3.5095E-02 8.0996E-04 1.3807E-01 4.1945E-04 660 670 3.5095E-02 8.0956E-04 1.3807E-01 4.1945E-04 660 670 3.5095E-02 8.0956E-04 1.3807E-01 4.1945E-04 660 670 3.5095E-02 8.0630E-04 1.3807E-01 4.9924E-04 670 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.99133E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.99133E					1.0348E-03	
420 430				9.0165E-02	9.9831E-04	
430 440				9.1200E-02	9.6376E-04	
440 450						
450 460				9.7750E-02		
460 470					7.9266E-04	
470 480 3.1755E-02 1.3726E-03 1.2756E-01 5.3812E-04 480 490 3.7240E-02 1.1463E-03 1.4313E-01 5.3812E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 510 520 5.1300E-02 7.9917E-04 1.8409E-01 3.9402E-04 520 530 4.8445E-02 8.1403E-04 1.8197E-01 3.9102E-04 530 540 4.4230E-02 8.1403E-04 1.7023E-01 4.1017E-04 540 550 3.9000E-02 9.7406E-04 1.4826E-01 4.6229E-04 550 560 3.3965E-02 1.0983E-03 1.3196E-01 5.1004E-04 550 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 570 580 2.9190E-02 1.235E-03 1.1886E-01 5.4657E-04 580 590 3.1655E-02 1.1180E-03 1.2023E-01 5.3111E-04 590 600 3.3475E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.8926E-04 610 620 3.7240E-02 9.9901E-04 1.3807E-01 4.3991E-04 620 630 4.0275E-02 8.0954E-04 1.4458E-01 4.0688E-04 640 650 3.9810E-02 8.0630E-04 1.3807E-01 4.1945E-04 650 660 3.8060E-02 8.3050E-04 1.3807E-01 4.3737E-04 650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.7187E-04 660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04				1.1369E-01		
480 490 3.7240E-02 1.1463E-03 1.4313E-01 4.6420E-04 490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 510 520 5.1300E-02 7.0365E-04 1.8409E-01 3.9402E-04 520 530 4.8445E-02 8.1403E-04 1.8197E-01 3.9102E-04 530 540 4.4230E-02 8.7494E-04 1.7023E-01 4.1017E-04 540 550 3.9000E-02 9.7406E-04 1.4826E-01 4.6229E-04 550 560 3.3965E-02 1.0983E-03 1.3196E-01 5.1004E-04 550 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 560 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 570 580 2.9190E-02 1.2335E-03 1.1886E-01 5.4657E-04 580 590 3.1655E-02 1.1180E-03 1.2023E-01 5.3111E-04 590 600 3.3475E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.3991E-04 610 620 3.7240E-02 9.9901E-04 1.3807E-01 4.3991E-04 620 630 4.0275E-02 8.0249E-04 1.4458E-01 4.0688E-04 640 650 3.9810E-02 8.0630E-04 1.3807E-01 4.1339E-04 650 660 3.8060E-02 8.3050E-04 1.3807E-01 4.1945E-04 660 670 3.5095E-02 8.86712E-04 1.1904E-01 4.7187E-04 670 680 3.4275E-02 8.9468E-04 1.1200E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04				1.2756E-01		
490 500 4.4965E-02 9.3018E-04 1.6257E-01 4.6420E-04 500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 510 520 5.1300E-02 7.0765E-04 1.8409E-01 3.9402E-04 520 530 4.8445E-02 8.1403E-04 1.8197E-01 3.9102E-04 530 540 4.4230E-02 8.1494E-04 1.7023E-01 4.1017E-04 540 550 3.9000E-02 9.7406E-04 1.4826E-01 4.6229E-04 550 560 3.3965E-02 1.0983E-03 1.3196E-01 5.1004E-04 560 570 2.9900E-02 1.2235E-03 1.1886E-01 5.4657E-04 570 580 2.9190E-02 1.2335E-03 1.1886E-01 5.4657E-04 580 590 3.1655E-02 1.1180E-03 1.2023E-01 5.3111E-04 590 600 3.3475E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.3991E-04 620 630 4.0275E-02 8.2249E-04			1.1463E-03			
500 510 5.1300E-02 7.9917E-04 1.7999E-01 4.1096E-04 510 520 5.1300E-02 7.0365E-04 1.8409E-01 3.9402E-04 520 530 4.8445E-02 8.1403E-04 1.8197E-01 3.9102E-04 530 540 4.4230E-02 8.7494E-04 1.7023E-01 4.1017E-04 540 550 3.9000E-02 9.7406E-04 1.4826E-01 4.6229E-04 550 560 3.3965E-02 1.0983E-03 1.3196E-01 5.1004E-04 560 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 560 570 2.9190E-02 1.235E-03 1.1886E-01 5.4657E-04 570 580 2.9190E-02 1.235E-03 1.1886E-01 5.3111E-04 580 590 3.1655E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.8926E-04 610 620 3.7240E-02 8.2249E-04 1.4458E-01						
510 520 5.1300E-02 7.8365E-04 1.8409E-01 3.9402E-04 520 530 4.8445E-02 8.1403E-04 1.8197E-01 3.9102E-04 530 540 4.4230E-02 8.1494E-04 1.7023E-01 4.1017E-04 540 550 3.9000E-02 9.7406E-04 1.4826E-01 4.5229E-04 550 560 3.3965E-02 1.0983E-03 1.3196E-01 5.1004E-04 560 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 570 580 2.9190E-02 1.235E-03 1.186E-01 5.4657E-04 580 590 3.1655E-02 1.1160E-03 1.2023E-01 5.3111E-04 590 600 3.3475E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.3807E-01 4.3991E-04 620 630 4.0275E-02 8.2249E-04 1.4458E-01 4.0688E-04 640 650 660 3.9810E-02 8.0632E-04 1.3807E-01 4.3737E-04 650 660 3.5095E-02 8.			7.9917E-04			
520 530 4.8445E-02 8.1403E-04 1.8197E-01 3.9102E-04 530 540 4.4230E-02 8.7494E-04 1.7023E-01 4.1017E-04 540 550 3.9000E-02 9.7406E-04 1.4826E-01 4.6229E-04 550 560 3.3965E-02 1.0983E-03 1.3196E-01 5.1004E-04 560 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 570 580 2.9190E-02 1.2335E-03 1.1886E-01 5.4657E-04 580 590 3.1655E-02 1.1180E-03 1.2023E-01 5.3111E-04 590 600 3.3475E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.8926E-04 610 620 3.7240E-02 9.0399E-04 1.3807E-01 4.339E-04 620 630 4.0275E-02 8.0630E-04 1.458E-01 4.0688E-04 640 650 3.9810E-02 8.3050E-04 1.3807E-01 4.7187E-04 650 660 3.8060E-02 8.3050E-04		5.1300E-02	7.0365E-04			
530 540 4.4230E-02 8.7494E-04 1.7023E-01 4.1017E-04 540 550 3.9000E-02 9.7406E-04 1.4826E-01 4.6229E-04 550 560 3.3965E-02 1.0983E-03 1.3196E-01 5.1004E-04 560 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 570 580 2.9190E-02 1.235E-03 1.1886E-01 5.4657E-04 580 590 3.1655E-02 1.1180E-03 1.2023E-01 5.3111E-04 590 600 3.3475E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.8926E-04 610 620 3.7240E-02 9.9901E-04 1.3807E-01 4.3391E-04 620 630 4.0275E-02 8.2249E-04 1.4458E-01 4.0688E-04 630 640 4.0275E-02 8.0630E-04 1.3807E-01 4.1945E-04 650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.3737E-04 650 660 3.4275E-02 8.8712E-04 1.1904E-01 4.7187E-04 670 680 3.4275E-02 8.9468E-04 1.120E-01 4.9324E-04	_	4.8445E-02				
550 560 3.3965E-02 1.0983E-03 1.3196E-01 5.1004E-04 560 570 2.9900E-02 1.2250E-03 1.2169E-01 5.4331E-04 570 580 2.9190E-02 1.2335E-03 1.1886E-01 5.4657E-04 580 590 3.1655E-02 1.1180E-03 1.2023E-01 5.3111E-04 590 600 3.3475E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.8926E-04 610 620 3.7240E-02 9.9901E-04 1.3807E-01 4.3991E-04 620 630 4.0275E-02 8.2249E-04 1.4458E-01 4.0688E-04 630 640 4.0275E-02 8.0630E-04 1.3807E-01 4.1945E-04 640 650 3.9810E-02 8.3050E-04 1.3039E-01 4.3737E-04 650 660 3.5095E-02 8.8712E-04 1.120E-01 4.7187E-04 670 680 3.4275E-02 8.9488E-04 1.1220E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04	-					
550 570	540 550	3.9000E-02				
570 580	550 560			- ·		
580 590 3.1655E-02 1.1180E-03 1.2023E-01 5.3111E-04 590 600 3.3475E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.8926E-04 610 620 3.7240E-02 9.0399E-04 1.3807E-01 4.3991E-04 620 630 4.0275E-02 8.2249E-04 1.4458E-01 4.1339E-04 630 640 4.0275E-02 8.0954E-04 1.4458E-01 4.0688E-04 650 660 3.9810E-02 8.0630E-04 1.3807E-01 4.1945E-04 650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.3737E-04 660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 670 680 3.4275E-02 8.9468E-04 1.1220E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04						
590 600 3.3475E-02 1.0395E-03 1.1886E-01 5.2818E-04 600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.8926E-04 610 620 3.7240E-02 9.0399E-04 1.3807E-01 4.3991E-04 620 630 4.0275E-02 8.2249E-04 1.4458E-01 4.1339E-04 630 640 4.0275E-02 8.0954E-04 1.4458E-01 4.0688E-04 640 650 3.9810E-02 8.0630E-04 1.3807E-01 4.1945E-04 650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.3737E-04 660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 670 680 3.4275E-02 8.9488E-04 1.1220E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04						
600 610 3.4255E-02 9.9901E-04 1.2620E-01 4.8926E-04 610 620 3.7240E-02 9.0399E-04 1.3807E-01 4.3991E-04 620 630 4.0275E-02 8.2249E-04 1.4458E-01 4.1339E-04 630 640 4.0275E-02 8.0954E-04 1.4458E-01 4.0688E-04 650 660 3.9810E-02 8.0630E-04 1.3807E-01 4.1945E-04 650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.3737E-04 660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 670 680 3.4275E-02 8.968E-04 1.1220E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04		3.1655E-02				
610 620 3.7240E-02 9.0399E-04 1.3807E-01 4.3991E-04 620 630 4.0275E-02 8.2249E-04 1.4458E-01 4.1339E-04 630 640 4.0275E-02 8.0954E-04 1.4458E-01 4.0688E-04 650 650 3.9810E-02 8.0630E-04 1.3807E-01 4.1945E-04 650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.3737E-04 660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 670 680 3.4275E-02 8.9468E-04 1.1220E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04			_			
620 630						
630 640						
640 650 3.9810E-02 8.0630E-04 1.3807E-01 4.1945E-04 650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.3737E-04 660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 670 680 3.4275E-02 8.9488E-04 1.1220E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04						
650 660 3.8060E-02 8.3050E-04 1.3039E-01 4.3737E-04 660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 670 680 3.4275E-02 8.9468E-04 1.1220E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04						
660 670 3.5095E-02 8.8712E-04 1.1904E-01 4.7187E-04 670 680 3.4275E-02 8.9468E-04 1.1220E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04						
670 680 3.4275E-02 8.9488E-04 1.1220E-01 4.9324E-04 680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04					4.7187E-04	
680 690 4.2395E-02 7.1292E-04 1.3534E-01 4.0292E-04 690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04						
690 700 8.8005E-02 3.3850E-04 2.7830E-01 1.9313E-04					4.02926-04	
10116 01						
	700 710					
710 720 0. 0.			-			
720 730 0. 0. 0.			0.			
730 740 0. 0. 0.			0.	0.	0.	

TABLE. 10A. SPECTRAL EFFICIENCIES, $\eta_{\rm P}^{\rm t}$, $\eta_{\rm P}^{\rm *t}$, $\eta_{\rm P,q}^{\rm *t}$, OF PHOSPHOR SCREEN $V_{\rm acc}$ = 10 kV

SPECTRAL INTERVAL	P- 4			
A ₁	7,	7,4	700	
[10 ⁻⁹ m]	[West Wel-1]	[joules electron-1]	[quanta electron]	
250 260	0.	0.	0.	
260 270	0.	Ú•	0.	
270 280	0.	0.	0.	
280 290 290 300	0.	0. 0.	0• 0•	
290 300 300 310	0. 0.	0.	0.	
310 320	0.	0.	0.	
320 330	č.	0.	0.	
330 340	Ö.	0.	0.	
340 350	0.	0.	0.	
350 360	0.	0.	0.	
360 370	0.	0.	0•	
370 380	4.4500E-04	7.1293E-19	1.3460E 00	
380 390	7.8500E-04	1.2576E-18	2.4377E 00	
390 400	1.3750E-03	2.2029E-18	4.3807E 00	
400 410	2.6250E-03	4.2055E-18	8.5749E 00	
410 420	5.0000E-0.1	8.0105E-18	1.6736E 01	
420 430	7.6250E-03	1.2216E-17	2.61388 01	
430 440	9.2000E-03	1.4739E-17	3.2279E 01	
440 450	9.5250E-03	1.52608-17	3.4188E 01 3.1561E 01	
450 460 460 470	8.6000E-03 6.9000E-03	1.3778E-17 1.1054E-17	2.5879E 01	
470 480	5.4500E-03	8.7314E-18	2.0880E 01	
480 490	4.6000E-03	7.3697E-18	1.7995E 01	
490 500	4.1750E-03	6.6888E-18	1.66695 01	
500 510	4.2250E-03	6.7689E-18	1.7209E 01	
510 520	4.7000E-03	7.5299E-18	1.9523E G1	
520 530	5.3500E-03	8.5712E-18	2.2655E 01	
530 540	6.1000E-03	9.7728E-18	2.6323E 01	
540 550	6.8500E-03	1.0974E-17	3.0111E 01	
550 560	7.5000E-03	1.2016E-17	3.3574E 01	
560 570	7.9000E-03	1.26576-17	3.6001E 01	
570 580 500 500	7.9500E-03	1.2737E-17	3.6870E 01	
580 590 590 600	7.6000E-03 6.7000E-03	1.2176E-17 1.0734E-17	3.5860E 01 3.2154E 01	
600 610	5.3500E-03	8.5712E-18	2.6107E 01	
610 620	4.0500E-03	6.4885E-18	2.0090E 01	
620 630	3.0500E-03	4.8864E-18	1.5375E 01	
630 640	2.2500E-03	3.6047E-18	1.1524E 01	
640 650	1.6750E-03	2.6835E-18	8.7140E 00	
650 660	1.2750E-03	2.0427E-18	6.7359E 00	
660 670	9.3000E-04	1.4900E-18	4.98835 00	
670 580	6.6500E-04	1.0654E-18	3.6205E 00	
680 690	4.9500E-04	7.9304E-19	2.7349E 00	
690 700	3.6500E-04	5.8477E-19	2.0481E 00	
700 710	2.6000E-04	4.1655E-19	1.4784E 00	
710 720	0.	0.	0.	
720 730	0.	0.	0.	
730 740	0.	0.	0.	
SUM	1.51546-01	2.4279E-15	6.3276E 02	

TABLE. 10 B. SPECTRAL EFFICIENCIES, $\eta_{\rm P}^{\rm t}$, $\eta_{\rm P}^{\rm st}$, $\eta_{\rm P,q}^{\rm st}$, of phosphor screen $V_{\rm acc} = 10\,{\rm kV}$

	OF PHOSPHOR SCREEN VOCC- TOWN				
SPECTRAL.		P-11			
A	4	7,7	7,4		
10° m	[Wast Was-1]	[joules electron-1]	[quarto dectron ⁴]		
250 260	0.	0.	0.		
260 270	0.	0.	0.		
270 280	0.	0.	0.		
280 290	0.	0.	0.		
290 300	0.	0.	0.		
300 310	0.	0.	0. 0.		
310 320	0.	0• 0•	0.		
320 330 330 340	0. 0.	0.	0.		
340 350	0.	0.	0.		
350 360	0.	0.	0.		
360 370	3.3500E-04	5.3670E-19	9.8624E-01		
370 380	6.0000E-04	9.6126E-19	1.8148E 00		
380 390	1.0850E-03	1.7383E-18	3.3693E 00		
390 400	1.9000E-03	3.0440E-18	6.0533E 00 1.1597E 01		
400 410	3.5500E-03	5.6875E-18 1.0173E-17	2.1255E 01		
410 420	6.3500E-03 1.0750E-92	1.7223E-17	3.6850E 01		
420 430 430 440	1.6500E-02	2.6435E-17	5.7892E 01		
440 450	2.1250E-02	3.4045E-17	7.6272E 01		
450 460	2.3500E-02	3.7649E-17	8.6243E 01		
460 470	2.3500E-02	3.7649E-17	8.8138E 01		
470 480	2.1750E-02	3.4846E-17	8.3329E 01		
480 490	1.9100E-02	3.0600E-17	7.4717E 01 6.5278E 01		
490 500	1.6350E-02	2.6194E-17	6.5278E 01 5.3970E 01		
500 510	1.3250E-02	2.1228E-17 1.6261E-17	4.2162E 01		
510 520 520 530	1.0150E-02 7.6000E-03	1.0201E-17 1.2176E-17	3.21825 01		
520 530 530 540	5.3500E-03	8.5712E-18	2.3086E 01		
540 530	3.5500E-03	5.6875E-18	1.5605E 01		
550 560	2.3000E-03	3.6848E-18	1.0296E 01		
560 570	1.5250E-03	2.4432E-18	6.9496E 00		
570 580	9.8000E-04	1.5701E-18	4.5450E 00		
580 590	5.7000E-04	9.1320E-19	2.6895E 00 1.6797E 00		
590 600	3.5000E-04	5.6073E-19 3.6047E-19	1.0979E 00		
600 610	2.2500E-04 0.	0.	0.		
610 520 620 630	0.	0.	0.		
630 640	0.	0.	0.		
640 550	0.	0.	0.		
650 660	0.	0.	0.		
6.0 670	0.	0.	0.		
670 680	•	0.	0.		
680 690	0.	0.	0. (.		
690 7C.	0.	0. 0.	0.		
700 710 710 720	0• 0•	0.	0.		
720 730	0.	0.	n.		
730 740	0.	0.	0.		
SUM	2.1237F-01	3.4024E-16	8.0806E UZ		

R. GEBEL, M. SPIEGEL, M. MESTWERDT AND R. HAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE. IO C. SPECTRAL EFFICIENCIES, η_{P}^{t} , η_{P}^{*t} , $\eta_{P,q}^{*t}$, OF PHOSPHOR SCREEN V_{acc} = 10 kV

SPECTRAL.	P-16				
λ_1 to λ_2	4	۹,4	761		
[10 ⁻⁰ m]	[Wout Wat-1]	[joutes electron**]	[quartie electron*]		
250 260	0.	0.	0.		
260 270	0.	0.	0.		
270 280	0.	0.	0.		
280 290 290 300	0.	0. 0.	0. 0.		
300 310	0.	0.	0.		
310 320	0.	c.	0.		
320 330	0.	0.	0.		
330 340	0.	0.	0.		
340 350	0.	0.	0.		
350 360	3.2000E-03	5.1267E-18	9.1627E 00		
360 370	6.1000E-03	9.7728E-18	1.7958E 01		
370 380	7.5500E-03	1.2096E-17	2.2836E 01		
380 390	7.9000E-03	1.2657E-17	2.4532E 01		
390 400	7.6000E-03	1.2176E-17	2.4213E 01		
400 410	6.4000E-03	1.0253E-17	2.0906E 01		
410 420	4.7000E-03	7.5299E-18	1.5732E 01		
420 430	3.1000E-03	4.9665E-18	1.0627E 01		
430 440	1.7500E-03	2.8037E-18	6.1400E 00		
440 450 450 460	9.2000E-04	1.4739E-18	3.3021E 00		
460 470	4.7000E-04 0.	7.5299E-19 0.	1.7249E 00		
470 480	0.	0.	0.		
480 490	0.	0.	0.		
490 500	0.	0.	9.		
500 510	0.	0.	0.		
510 520	0.	0.	0.		
520 530	0.	0.	0.		
530 540	0.	0.	0.		
540 550	0.	0.	0.		
550 560	0.	0.	0.		
560 570	0.	0.	0.		
570 580 580 590	0.	0.	0.		
590 600	0. 0.	0. 0.	0. 0.		
600 610	0.	0.	0.		
610 620	0.	0.	0.		
620 630	0.	0.	0.		
630 640	0.	0.	0.		
640 650	0.	0.	0.		
650 660	0.	0.	0.		
660 670	0.	0.	0.		
670 680	0.	0.	0.		
680 690	0.	0.	0.		
690 700 700 710	0.	0.	0.		
700 710 710 720	0. 0.	0. 0.	0.		
720 730	0.	0.	0. 0.		
730 740	0.	6.	0.		
SUM	4.9690E-02	7.96085-17			
Jun	70706-02	1 5 7000 (- 1 1	1.5713E 02		

R. GEBEL, N. SPIEGEL, H. MESTWERDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE. 10 D. SPECTRAL EFFICIENCIES, $\eta_{\rm P}^{\dagger}$, $\eta_{\rm P}^{*\dagger}$, $\eta_{\rm P,q}^{*\dagger}$, OF PHUSPHOR SCREEN $V_{\rm GCC}$ = 10 kV

SPECTRAL.		P-20	
A text	4	7,"	769
[10 ⁻⁹ st]	[West Wes-1]	[jeules dectron-1]	[quanta electron]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	0.
280 290	0.	0.	0.
290 300 300 310	0. 0.	0. 0.	0. 0.
310 320	0.	0.	0.
320 330	0.	0.	0.
330 340	0.	0.	0.
340 350	0.	0.	0.
350 360	0.	0.	0.
360 370	0.	0.	0.
370 380	0.	0.	0.
380 390	3.	0.	0.
390 400	0.	0.	0.
400 410	0.	0.	0.
410 420	0.	0.	0.
420 430	0.	0.	0.
430 440	0.	0.	0.
440 450	0.	0.	0.
450 460	0.	0.	0.
460 470	0.	0.	0.
470 480	6.55005-04	1.0494E-18	2.5095E 00
480 490	1.1750E-03	1.8825E-18	4.5965E 00
490 500 500 510	2.1750E-03	3.4846E-18	8.6838E 00
500 510	4.050UE-03	6.4885E-18	1.6496E 01
510 52° 520 530	6.6500E-03 9.2500E-03	1.0654E-17 1.4819E-17	2.7623E 01 3.9169E 01
530 5+0	1.1250E-02	1.8024E-17	4.8546E 01
540 550	1.2500E-02	2.0026E-17	5.4948E 01
550 560	1.3250E-02	2.1228E-17	5.9313E 01
560 570	1.3250E-02	2.1228E-17	6.0382E 01
570 580	1.2400E-02	1.9866E-17	5.7509E 01
580 590	1.0600E-02	1.7303E-17	5.0959E 01
590 600	9.1500E-03	1.4659E-17	4.3912E 01
600 610	7.6000E-03	1.2176E-17	3.7086E 01
610 620	6.0000E-03	9.6126E-18	2.9763E 01
620 630	4.7000E-03	7.5299E-18	2.3693E 01
630 640	3.6000E-03	5.7676E-18	1.8438E 01
640 650	2.7500E-03	4.4058E-18	1.43078 01
650 660	2.0750E-03	3.3244E-18	1.0962E 01
660 670	1.5500E-03	2.4833E-18	8.3138E 00
670 680	1.2000E-03	1.9225E-18	6.5332E 00
680 690	9.0500E-04	1.4499E-18	5.0001E 00 3.6998E 00
690 700 700 710	6.6000E-04 4.8000E-04	1.0574E-18 7.6901E-19	2.7294E 00
710 720	3.4000E-04	5.4471E-19	1.9608E 00
720 730	2.3000E-04	3.68488-19	1.3450E 00
730 740	0.	0.	0.
SUM	1.3864E-01	2.22126-16	6.38486 02

TABLE. 10 E. SPECTRAL EFFICIENCIES, η_P^t , η_P^{*t} , $\eta_{P,q}^{*t}$, OF PHOSPHOR SCPEEN V_{dcc} = 10 kV

SPECTRAL INTERVAL	P-228				
A, to A,	7	70	749		
[10°9 m]	[West War-1]	[joules electron-1]	[quanta electron*]		
250 260	0.	0.	0,		
260 270	0.	0.	0.		
270 280	0.	0.	0.		
280 290	0.	0.	0.		
290 300	0.	0.	0.		
300 310	0.	0.	0.		
310 320	0.	0.	0. 0.		
320 330	0.	0•	0.		
330 340 340 350	0.	0. 0.	0.		
340 350 350 360	0. 0.	0.	0.		
360 370	4.3000E-04	6.8890E-19	1.2659E 00		
370 380	7.3500E-04	1.1775E-18	2.2231E 00		
380 390	1.2750E-03	2.0427E-18	3.9593E 00		
390 400	2.2250E-03	3.5647E-18	7.0888E 00		
400 410	4.1500E-03	6.6487E-18	1.3556E 01		
410 420	7.5000E-03	1.2016E-17	2.5105E 01		
420 430	1.2250E-02	1.9626E-17	4.1992E 01		
430 440	1.8500E-02	2.9639E-17	6.4909E 01		
440 450	2.3750E-02	3.8050E-17	8.5245E 01		
450 460	2.4250E-02	3.8851E~17	8.8995E 01		
460 470	1.9500E-02	3.1241E-17	7.3136E 01		
470 480	1.2875E-02	2.0627E-17	4.9327E 01		
480 490	7.9750E-03	1.2777E-17	3.1197E 01		
490 500	5.1000E-03	8.1707E-18	2.03628 01		
500 510	3.2000E-03	5.1267E-18	1.3034E 01 7.9962E 00		
510 520 520 530	1.9250E-03 1.1750E-03	3.0840E-18 1.8825E-18	4.9755E 00		
520 530 530 540	7.0500E-04	1.1295E~18	3.0422E 00		
540 550	3.9500E-04	6.3283E-19	1.7363E 00		
550 560	0.	0.	0.		
560 570	Ŏ.	0.	5.		
570 580	0.	0.	0.		
580 590	0.	0.	0.		
590 600	0.	0.	0.		
600 610	0.	0.	0.		
610 620	0.	0.	0.		
620 630	0.	0.	0.		
630 640	0.	0.	0.		
640 650	0.	0.	0.		
650 660	0.	0.	0.		
660 670	0.	0.	0. 0.		
670 680 690 690	0.	0. 0.	C.		
680 690 690 700	0. 0.	0.	G.		
700 710	0.	0.	0.		
710 720	0.	0.	0.		
720 730	0.	0.	o.		
730 740	0.	0.	0.		
SUM	1.47916-01	2.3697E-16	5.3915t 02		

R. GEBEL, H. SPIEGEL, H. MESTWERDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE 10F SPECTRAL EFFICIENCIES, $\eta_{\rm P}^{\rm t}$, $\eta_{\rm P}^{\rm kf}$, $\eta_{\rm P,q}^{\rm kf}$, of phosphor screen $v_{\rm acc}$ = 10 kV

SPECTRAL SHTERVAL	P- 226			
A	W _p	7,1	9p.4	
[10-0m]	[west weit]	[joules electron-1]	[quanta electron-]	
250 260	0.	0.	0.	
260 270	0.	0.	0.	
270 280	0.	0.	0.	
280 290	0.	0.	0.	
290 300	0.	0.	9.	
300 310 310 320	0.	0.	0.	
320 330	0.	0. 0.	0. 0.	
330 340	0.	0.	0.	
340 350	0.	0.	0.	
350 360	0.	0.	0.	
360 370	0.	0.	0.	
370 380	0.	0.	0.	
380 390	0.	0.	0.	
390 400	0.	0.	0.	
400 410	0.	0.	0.	
410 420	0.	0.	0.	
420 430	2.5500E-04	4.0854E-19	8.7412E-01	
430 440	4.1000E-04	6.5686E-19	1.4385E 00	
440 450	6.5500E-04	1.0494E-18	2.3510E 00	
450 460	1.07508-03	1.7223E-18	3.9452E 00	
460 470	1.8250E-03	2.9238E-18	6.8448E 00	
470 480	3.0500E-03	4.8864E-18	1.16852 01	
480 490 490 500	5.2000E-03	8.3309E-18	2.0342E 01	
490 500 500 510	8.8000E-03 1.3350E-02	1.4098E-17 2.1388E-17	3.5134E 01	
510 520	1.6850E-02	2.6995E-17	5.4377E 01 6.9992E 01	
520 530	1.8400E-02	2.9479E-17	7.7915E 01	
530 540	1.8150E-02	2.90785-17	7.8320E 01	
540 550	1.6250E-02	2.6034E-17	7.1432E 01	
550 560	1.4000E-02	2.2429E-17	6.2671E 01	
560 570	1.1500E-02	1.8424E-17	5.2407E 01	
570 580	8.7500E-03	1.4018E-17	4.0581E 01	
580 590	6.8000E-03	1.0894E-17	3.2085E 01	
		8.6513E-18	2.59158 01	
	4.0500E-03	6.4885E-18	1.9763E 01	
610 620	2.9500E-03	4.7262E-18	1.4633E 01	
620 630	2.17508-03	3.4846E-18	1.0964E 01	
630 640	1.6250E-03	2.6034E-18	8.3228E 00	
640 650	1.2250E-03	1.9626E-18	6.3729E 00	
	9-1500E-04	1.4659E-18	4.8340E 00	
660 670 670 680	6.9000E-04	1.1054E-18	3.7010E 00	
680 690		8.5712E-19 6.6487E-19	2.9127E 00 2.2929E 00	
690 700	3.1500E-04	5.0466F-19	1.7658E 00	
700 710	0.	0.	0.	
710 720	0.	n.	0.	
720 730	0.	0.	0.	
730 740	0.	0.	0.	
SUM	1.6561E-01	2.6533E-16	7.2387E 02	

TABLE. IO. SPECTRAL EFFICIENCIES, $\eta_{\rm P}^{\rm t}$, $\eta_{\rm P}^{\rm st}$, $\eta_{\rm P,q}^{\rm st}$, of phosphor screen $v_{\rm occ}$ = 10 kV

TABLE, IOH, SPECTRAL EFFICIENCIES, η_{P}^{t} , η_{P}^{kt} , $\eta_{P,q}^{kt}$, OF PHOSPHOR SCREEN V_{occ} = $10\,kV$

SPECTRAL		P - 31	
MITERVAL Aj Aj 10 A.	٧,	7,1	7,1
[10" =]	[West Wei-1]	[joules electron-1]	quenta electron
1 (0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	G. O.
670 680 680 690 690 700 700 710 710 720 720 730	0. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0. 0.
730 740 SUM	0. 2.2728F-01	0. 3.6413F-16	0. 9.3%41t 02

TABLE. II A. PHOTOCATHODE SENSITIVITY, S_{PC}^{t} , AND CONVERSION EFFICIENCY, η_{PC}^{t} , κ_{PC}^{t} ,

NTERNAL Spc Ppc Ppc			S-I			
256		K'pc	Tre	8 pc	A	
260 270 0. 0. 0. 270 280 0. 0. 0. 280 290 0. 0. 0. 290 300 0. 0. 0. 300 310 0. 0. 0. 310 320 1.2000E-03 4.7231E-03 2.1173E 02 320 330 1.9000E-03 7.2481E-03 1.3797E 02 330 340 2.5500E-03 9.4374E-03 1.0596E 02 340 350 3.1000L-03 1.1140E-02 8.9764E 01 350 360 3.4500E-03 1.2049E-02 8.2995E 01 360 370 3.4000E-03 1.1549E-02 8.6588E 01 370 380 2.9500E-03 9.7532E-03 1.0253E 02	-1]	(quante atectror	[clectrone quantum-1]	[AW-1]	[10-0]	
270 280 0. 0. 0. 0. 280 290 0. 0. 0. 0. 290 300 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		0.	0.	0.	250 160	
280 290 0. 0. 0. 0. 0. 290 300 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0		0.	0.	0.		
290 300 0. 0. 0. 0. 0. 0. 310 320 1.2000E-03 4.7231E-03 2.1173E 02 320 330 1.9000E-03 7.2481E-03 1.3797E 02 330 340 2.5500E-03 9.4374E-03 1.0596E 02 340 350 3.1000L-03 1.1140E-02 8.9764E 01 350 360 3.4500E-03 1.2049E-02 8.2995E 01 360 370 3.4000E-03 1.1549E-02 8.6588E 01 370 380 2.9500E-03 9.7532E-03 1.0253E 02		0.		0.		
300 310 0. 0. 0. 0. 0. 310 320 1.2000E-03 4.7231E-03 2.1173E 02 320 330 1.9000E-03 7.2481E-03 1.3797E 02 330 340 2.5500E-03 9.4374E-03 1.0596E 02 340 350 3.1000L-03 1.1140E-02 8.9764E 01 350 360 3.4500E-03 1.2049E-02 8.2995E 01 360 370 3.4000E-03 1.1549E-02 8.6588E 01 370 380 2.9500E-03 9.7532E-03 1.0253E 02		0.				
310 320 1.2000E-03 4.7231E-03 2.1173E 02 320 330 1.9000E-03 7.2481E-03 1.3797E 02 330 340 2.5500 43 9.4374E-03 1.0596E 02 340 350 3.1000L-03 1.1140E-02 8.9764E 01 350 360 3.4500E-03 1.2049E-02 8.2995E 01 360 370 3.4000E-03 1.1549E-02 8.6588E 01 370 380 2.9500E-03 9.7532E-03 1.0253E 02				0.		
320 330 1.9000E-03 7.2481E-03 1.3797E 02 330 340 2.5500E-43 9.4374E-03 1.0596E 02 340 350 3.100ul-03 1.1140E-02 8.9764E 01 350 360 3.4500E-03 1.204E-02 8.2995E 01 360 370 3.4000E-03 1.1549E-02 8.6588E 01 370 380 2.9500E-03 9.7532E-03 1.0253E 02			· -	- ·		
330 340 2.55000043 9.43742-03 1.0596E 02 340 350 3.10002-03 1.1140E-02 8.9764E 01 350 360 3.4500E-03 1.2040E-02 8.2995E 01 360 370 3.4000E-03 1.1549E-02 8.6588E 01 370 380 2.9500E-03 9.7532E-03 1.0253E 02						
340 350 3.10002-03 1.1140E-02 8.9764E 01 350 360 3.4500E-03 1.2049E-02 8.2995E 01 360 370 3.4000E-03 1.1549E-02 8.6588E 01 370 380 2.9500E-03 9.7532E-03 1.0253E 02						
350 360 3.4500E-03 1.2049E-02 8.2995E 01 360 370 3.4000E-03 1.1549E-02 8.6588E 01 370 380 2.9500E-03 9.7532E-03 1.0253E 02						
360 370 3.4000E-03 1.1549E-02 8.6588E 01 370 380 2.9500E-03 9.7532E-03 1.0253E 02						
370 380 2.9500E-03 9.7532E-03 1.0253E 02						
· · · · · · · · · · · · · · · · · · ·						
380 390 2.3500E-03 7.5677E-03 1.3214E 02						
390 400 1.7000E-03 5.3359E-03 1.8741E 02						
400 410 1.1500E-03						
		· · · · · · · · · · · · · · · · · · ·				
440 450			- - - •			
460 470 4.1500E-04 1.1500E-03 9.0375E 02						
470 480 4.2500E-04 1.1093E-03 9.0146E 02						
480 490 4.5250E-04 1.1567E-03 8.6450E 02						
490 500 4.9250E-04 1.2336E-03 8.1067E 02						
500 510 5.3000E-04 1.3012E-03 7.6853E 02						
510 520 5.7000E-04 1.3722E-03 7.2875E 02						
520 530 6.1500E-04 1.4524E-03 6.8854E 02			· · · · · · · · · · · · · · · · · · ·			
530 540 6.6500E-04 1.5411E-03 6.4890E 02					530 540	
540 550 7.2000E-04 1.6379E-03 6.1053E 02		6.1053E 02	1.6379E-03	7.2000E-04	540 550	
550 560 7.8500E-04 1.7536E-03 5.7025E 02		5.7025E 02		7.8500E-04	550 560	
560 570 8.5500E-04 1.8762E-03 5.3300E 02		5.3300E 02	1.8762E-03	8.5500E-04	560 5 7 0	
570 580 9.2500E-04 1.9945E-03 5.0138E 02		5.0138E 02				
580 590 1.0050E-03 2.1299E-03 4.6950E 02		4.6950E 02				
590 600 1.1000E-03 2.2921E-03 4.3628E 12						
600 610 1.1750E-03 2.4079E-03 4.1530E)2						
610 620 1.2500E-03 2.5199E-03 3.9683E 02						
620 630 1.3250E-03 2.6284E-03 3.8046E 02				- · · · -		
630 640 1.4000E-03 2.7334E-03 3.6584E 02						
640 650 3.5000E-03 2.8833E-03 3.4683E 02						
650 660 1.6000E-03 3.0286E-03 3.3019E 02						
660 670 1.6750E-03 3.1228E-03 3.2022E 02						
670 680 1.7750E-03 3.2602E-03 3.0672E 02						
680 690 1.8750E-03 3.3936E-03 2.9467E 02 690 700 1.9400E-03 3.4608E+03 2.8895E 02						
690 700						
710 720 2.0150E=03 3.5981E=03 2.7793E 02						
720 730 2.1500f-03 3.6767E-03 2.7198E 02						
730 740 2.2500f-03 3.7953E-03 2.6348E 02						

TABLE I'A CONTINUED

SPECTRAL INTERNAL		\$-1		
À, to Às	9 ² pc	7ºc	M [†] PC	
[10-6 th]	[AW"	[electrone quantum-1]	(quanto electron-1)	
730 740	2-2500E-03	3.7953F-03	2.6348E 02	
740 750	2.3250E-03	3.86925-03	2.5845E 02	
750 760	2.3650E-03	3.8837E-03	2.5749E 02	
760 770	2.3900E-03	3.6734E-03	2.5817E 02	
770 780	2.4150E-03	3.8534E-03	2.5884E 02	
780 790	2.44005-03	3.8537E-03	2.59495 02	
7 90 8 00	2.4500E-03	3.8208E-03	2.6172E 02	
800 810	2.4350E-03	3.7502E-03	2.6665E 02	
810 820	2.4150E-03	3.6738E-03	2.7220E 02	
829 830	2.4050E-03	3.6142E-03	2.7668E 02	
830 840	2.3900E-03	3.5487E-C3	2-8179E 02	
8%0 850	2.3650E-03	3.4700E-03	2.8818E 02	
850 860	2.3250E-03	3.3714E-03	2.9561E 02	
860 870	2.2750E-03	3.2608E-03	3.0668E 02	
870 880	2.2000E-03	3.1172E-03	3.2080E 02	
£80 890	2.1150E-03	2.9629E-03	3.3750E 02	
890 900	2.0400E-03	2.8259E-03	3.5386E 02	
900 910	1.9500E-03	2.67146-03	3.7433E 02	
910 920	1.8400E-03	2.4932E-03	4.0109E 02	
920 930	1.7150E-03	2.2987E-03	4.3503E 02	
930 940	3.6000E-03	2.1216E-03	4.7134E 02	
940 950	1.4750E-03	1.9352E-03	5.1675E 02	
950 960	1.3500E-03	1.75268-03	5.7058E 02	
960 970	1.2400E-03	1.5931E-03	6.2770E 02	
970 980	1.1200E-03	1.4242E-03	7.02152 02	
960 990	1.0000E-03	1.2597E-03	7.9447E 02	
990 1000 1000 1010	8.9000E-04	1.1090E-03	9.0173E 02	
1000 1010 1010 2020	7.8750E-04	9.71.505-04	1.0293E 03	
		8.2756E-04	1.2084E 03	
1020 1030		6	1.4441E 03	
1040 1050			1.7124E 03	
1050 1050		4.9533E-04 4.2013E-04	2.0188£ 03	
1060 1070		4.2013E-04 3.5506E-04	2.3802E 03 2.816\E 03	
1070 1080		2.9986E-04	2.816\E 03 3.3349E 03	
1080 1090		2.5139E-04	3.9779E 03	
2000 2070	2.20005-0	C+JAJ7E-V4	3. 41 17E U3	

EFFECTIVE INTERVAL

310 1090

3.02518-03

R. GEBEL, H. SPIEGEL, H. MESTWERDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE. II B. PHOTOCATHODE SENSITIVITY, S_{PC}^t , AND CONVERSION EFFICIENCY, η_{PC}^t , κ_{PC}^t .

SPECTRAL		S-2 0	
INTERVAL.		7	
λ_i to λ_z	S _{PC}	7Pc	K'PC
[10 ⁻⁹ m]	[AW-1]	[electrons quantum ⁻¹]	[quarita electron"]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	0.
280 290	0.	0.	0.
290 300	0.	0.	0. 1.8223E 01
300 310	1.3500E-02	5.4877E-02	1.8223E 01 1.0586E 01
310 320	2.4000E-02	9.4462E-02	8.3218E 00
320 330	3.1500E-02	1.2017E-01 1.4249E-01	7.0182E 00
330 340 340 350	3.8500E-02 4.3500E-02	1.5632E-01	6.3970E 00
340 350 350 360	4.7500E-02	1.6589E-01	6.0281E 00
360 370	5.2500E-02	1.7833E-01	5.6076E 00
370 380	5.7500E-02	1.9010E-01	5.2603E 00
380 390	6.0500E-02	1.9483E-01	5.1327E 00
390 400	6.2250E-02	1.9539E~01	5.1180E 00
400 410	6.4250E-02	1.9669E-01	5.0842E 00
41C 420	6.5500E-02	1.9568E-01	5.1103E CO
420 430	6.6000E-02	1.9254E-01	5.1938E 00
430 440	6.5000E-02	1.8526E-01	5.3978E 00
440 450	6.3500E-02	1.7692E-01	5.6524E 00
450 460	6.2250E-02	1.6962E-01	5.8954E 00
460 470	5.9750E-02	1.5931E-01	6.2771E 00
470 480	5.7250E-02	1.4943E-01	6.6921E 00
480 490	5.6000E-02	1.4315E-01	6.9855E 00
490 500	5.4250E-02	1.3538E-01	7.3595E 00
500 510	5.2000E-02	1.2766E-01	7.8331E 00 8.3494E 00
510 520	4.9750E-02	1.1977E-01	8.3494E 00 8.8 31E 00
520 530	4.77505-02	1.1276E-01 1.0602E-01	9.4321E 00
530 540	4.5750E-02	9.8958E-02	1.0105E 01
540 55U 550 560	4.3500E-02 4.1500E-02	9.2707E=02	1.0787E 01
560 570	4.0000E-02	8.7774E-02	1.1393E 01
570 580	3.8000F-02	8.1935E-02	1.2205E 01
580 590	3.5500E-02	7.5237E-02	1.3291E 01
590 600	3 3500E-02	6.9805E-02	1.4326E 01
600 610	3.1750E-02	6.5065E-02	1.5369E 01
610 620	3.0000E-02	6.0479E-02	1.6535E 01
620 630	2.8000E-02	5.5544E-02	1.80045 01
630 640	2.6000E-02	5.0764E-02	1.9699E 01
640 550	2.4000E~02	4.6133E-02	2.1677E 01
650 660	2.2000E-02	4.1643E-02	2.4014E 01
660 670	1.9850E-02	3.7008E-02	2.7021E 01
670 680	1.7850E-02	3.2786E-02	3.0501E 01
680 690	1.6150E~02	2.9231E=02	3.4211E 01 3.9338E 01
590 700	1.42508-02	2.542, E=02 2.17195=02	4.6043E 01
700 710	1.2350E-02	2.17190-02 1.8814:-02	5.3152E 01
110 720	1.0850E-02 9.2500E-03	1.00141-02	6.3218E 01
₹20 730 1⊎3 74 0	7.70006-03	1.27896-02	7.59918 01
1 30 170	1.10900-05	***/U/C UE	

TABLE. IIB. CONTINUED

	CTRAL.			
	ERVAL A; to A ₂	S [†] PC	7 Pc	K'pc
[10	·*•]	[AW-1]	[electrans quantum ⁻¹]	[quanta electron-1]
730	740	7.7000E-03	1.2989E-02	7.6991E 01
740	750	6.4000E-03	1.0651E-02	9.3890E 01
750	760	5.1000E-03	8.3749E-03	1.1940E 02
760	770	4.0500E-03	6.5637E-03	1.5235E 02
770 780	780 790	3.1000E-03 2.2500E-03	4.9593E-03	2.0164E 02
790	800		3.5536E-03	2.8140E 02
800	810	1.6500E-03	2.5732E-03	3.8862E 02
810	820	0. 0.	0. 0.	0. 0.
820	830	0.	0.	0.
830	840	0.	0.	0.
840	850	Ů.	0.	0.
850	860	0.	0.	0.
860	870	0.	0.	0.
870	280	0.	0.	0.
880	890	0.	0.	0.
890	900	0.	0.	0.
900	910	0.	0.	0.
910	920	0.	0.	0.
920	930	0.	0.	0.
930	940	0.	0.	0.
940	950	0.	0.	0.
Y50	960	0.	0.	0.
960	970	0.	0.	0.
970	980	0.	0.	0.
980	990	0.	0.	0.
990	1000	0.	0.	0.
1000	1010	0.	0.	0.
1010	1020	0.	0.	0.
1020	1030	0.	0.	0.
	1040	0.	0.	0.
	1050	0.	0.	0.
	1060	0.	0.	0.
	1070	0.	0.	0.
	1080	0.	0.	0.
1080	1090	0.	C.	0.

EFFECTIVE INTERVAL

300 800

9.4401E~02

R. GEBEL, H. SPIEGEL, H. MESTWERDT AND R. MAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE. II C. PHOTOCATHODE SENSITIVITY, $\mathbf{s_{PC}^t}$, AND CONVERSION EFFICIENCY, η_{PC}^t , κ_{PC}^t .

SPECTRAL INTERNAL				
λ _i to λ _g	S _{PC}	7ºc	K [†] PC	
[10 ⁻⁰ m]	[AW-1]	[electrone quantum ⁻¹]	[quanta electron-1]	
250 260	0.	0.	0.	
260 270	0.	0.	0.	
270 280	0.	0.	0.	
280 290	0.	0.	0.	
290 300	0.	0.	0.	
300 310	1.3500E-02	5.4877E-02	1.8223E 01	
310 320	2.4000E-02	9.4462E-02	1.0586E 01	
320 330	3.1500E-02	1.2017E-01	8.32185 00	
330 340	3-8500E-02	1.4249E-01	7.0182E 00	
340 350	4.3500E-02	1.5632E-01	6.3970E 00	
350 360	4.7500E-02	1.6589E-01	6.0281E 00	
360 370	5.2500E-02	1.7833E-01	5.6076E 00	
370 380	5.7500E-02	1.9010E-01	5.2603E 00	
380 390	6.0500E-02	1.9483E-01	5.1327E 00	
390 400	6.2250E-02	1.9539E-01	5.1180E 00	
400 410	6.4250E-02	1.9669E-01	5.0842E 00	
410 420	6.5500E-02	1.9568E-01	5.1103E 00	
420 430	6.6000E-02	1.9254E-01	5.1938E 00	
430 440	6.5000E-02	1.8526E-01	5.3978E 00	
440 450	6.3500E-02	1.7692E-01	5.6524E 00	
450 460	6.2250E-02	1.6962E-01	5.8954E 00	
460 470	5.9750E-02	1.5931E-01	6.2771E 00	
470 480	5.7250E-02	1.4943E-01	6.6921E 00	
480 490	5.6000E-02	1.4315E-01	6.9855E 00	
490 500	5.4250E-02	1.3588E-01	7.3595E 00	
500 510 510 520	5.3500E-02	1.3135E-01	7.6134E 00	
510 520 520 530	5.3000E-02	1.2759E-01	7.8375E 00	
530 540	5.1000E-02 4.9000E-02	1.2044E-01	8.3030E 00	
540 550	4.6500E-02	1.1355E-01	8.8065E 00	
550 560	4.4000E-02	1.0578E-01	9.4534E 00	
560 570	4.2500E-02	9.8292E-02 9.3260E-02	1.0174E 01	
570 580	4.1000E-02	8.8404E-02	1.0723E 01	
580 590	3.8500E-02	8.1595E-02	1.1312E 01 1.2256E 01	
590 600	3.6000E-02	7.5014E-02		
600 610	3.4500E-02	7.0700E-02	1.3?31E 01 1.4.44E 01	
610 620	3.3000E-02	6.6527E-02	1.5032E 01	
620 630	3.1000E-02	6.1495E-02	1.6262E 01	
630 640	2.9250E-02	5.7110E-02	1.751GE 01	
640 650	2.7250E-02	5.2380E-02	1.9091E 01	
650 660	2.5000E-02	4.7321E-02	2.1132E 01	
660 670	2.3750E-02	4.4279E-02	2.2584E 01	
670 680	2.2750E-02	4.1786E-02	2.3931E 01	
680 690	2.1000E-02	3.8009E-02	2.6310E 01	
690 700	1.9000E-02	3.38946-02	2.9504E 01	
700 710	1.75008-02	3.0776E-02	3.2493E 01	
710 720	1,6000E-02	2.7744E-02	3.6044E 01	
720 730	1-4250E-02	2.4369E-02	4.1036E 01	
730 740	1.27506-02	2.1507E-02	4.5497E 01	

R. GEBEL, H. SPIEGEL, M. MESTHERDT AND R. MAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE IIC. CONTINUED

SPEC		\$-20R		
INTE	_	S [†] PC	7èc	K [†] PC
[16-		[AW"]	[electrons @wintum-1]	[quanta electron-1]
730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 910 920 930 940 950 950 970 980 970 980 990	740 750 760 770 780 790 880 8810 8820 8840 850 860 870 880 900 910 920 940 970 980 990 910	1.2750E-02 1.1500F-02 1.0450 -02 9.3500E-03 8.3000E-03 6.3000E-03 4.5000E-03 2.8500E-03 2.1500E-03 1.5500E-03 1.0500E-04 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2.1507E-02 1.9138E-02 1.7160E-02 1.5153E-02 1.3278E-02 1.1529E-02 9.8249E-03 8.3168E-03 6.6456E-03 5.4101E-03 4.2317E-03 3.1546E-03 2.2476E-03 1.5050E-04 0. 0. 0.	4.6497E 01 5.2252E 01 5.8274E 01 6.5992E 01 7.5313E 01 8.6734E 01 1.0178E 02 1.2024E 02 1.4608E 02 2.3631E 02 3.1700E 02 4.4492E 02 6.6446E 02 1.0858E 03 0. 0. 0. 0. 0.
1020 10 1030 10 1040 10 1050 10	40 50	0. 0. 0.	0. 0. 0.	0. 0. 0.
1060 10 1070 10	70	0. 0. 0.	0. 0. 0.	0. 0. 0.

EFFECTIVE INTERVAL

300 880

8.5676E-02

TABLE.11 D. PHOTOCATHODE SENSITIVITY, s_{PC}^t , AND CONVERSION EFFICIENCY, η_{PC}^t , κ_{PC}^t

SPECTRAL INTERVAL			
A ₁ A ₁ to A ₂	9 t	7 [†] c	K [†] PC
[10 ⁻⁹ m]	[AW-1]	[electrons quantum ⁻¹]	[quanta electron-1]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	0.
280 290	0.	0.	0.
290 300	0.	0.	0.
300 310	1.1000E-02	4.4715E-02	2.2364E 01
310 320	1.8000E-02	7.0846E-02	1.4115E 01
320 330	2.3000E-02	8.7741E-02	1.1397E 01
330 340	2.7000E-02	9.9925E-02	1.0007E 01
340 350	3.0000E-02	1.0781E-01	9.27562 00
350 360	3.3000E-02	1.1525E-01	8.6768E 00
360 370	3.6000E-02	1.2228E-01	8.1778E 00
370 380	3.7500E-02	1.2398E-01	8.0657E 00
380 390 390 400	3.8500E-02	1.2398E-01 1.2555E-01	8.0657E 00
400 410	4.0000E-02 4.2000E-02	1.2857E-01	7.9649E JO 7.7777E OO
410 420	4.2000E-02 4.3250E-02	1.2921E-01	7.7394E 00
420 430	4.3750E-02	1.2763E-01	7.8353E 00
430 440	4.3750E-02	1.2469E-01	8.0196E 00
440 450	4.3250E-02	1.2050E-01	8.2988E 00
450 460	4.2500E-02	1.1581E-01	8.6351E 00
460 470	4-1750E-02	1.11326-01	8.9834E 00
470 480	4.1250E-02	1.0767E-01	9.2878E 00
480 490	4.0500E-02	1.0353E-01	9.6590E 00
490 500	3.9500E-02	9.8935E-02	1.0108E 01
500 510	3.8500E-02	9.4520E-02	1.05806 01
510 520	3.7750E-02	9.0880E-02	1.1004E 01
520 530	3.7250E-02	8.7968E-02	1.1368E 01
530 540	3.6500E-02	8.4585E-02	1.1822E 01
540 550	3.5500E-02	8.0758E-02	1.2383E 01
550 560	3.4600E-02	7.7293E-02	1.2938E 01
560 570	3.3970E-02	7.4389E-02	1.3443E 01
570 580	3.3200E-02	7.1586E-02	1.3969E 01
580 590	3.2400E-02	6.8667E-02	1.4563E 01
590 600	3.1600E-02	6.5846E-02	1.5187E 01
600 610	3.0700E-02	6.2913E-02	1.5895E 01
610 620	2.9600E-02	5.9672E-02	1.6758E 01
620 630	2.8500E-02	5. 0535E-02	1.7689E 01
630 640 540 650	2.7500E-02 2.6750E-02	5.3693E-02 5.1419E-02	1.8625E 01 1.9448E 01
650 660	2.6000E-02	4.9214E-02	2.0319E 01
660 670	2.5050E-02	4.1076E-02	2.12428 01
670 680	2.4500E-02	4.50016-02	2.22226 01
680 690	2.4300E-02	4.20816-02	2.3764E 01
690 700	2.2000E-02	3.9246E-02	2.5480E 01
700 710	2.1000E-02	3.6931E-02	2.7078F 01
710 720	2.0000E-02	3.4680E-02	2.88358 01
720 730	1.9000E-02	3.24928-02	3.07776 01
730 740	1.8250E-02	3.0784E-02	3.2484E 01

R. GEBEL, H. SPIEGEL, H. MESTWERDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE, IID. CONTINUED

SPECTRAL INTERVAL			
A _i \(\lambda_i \) \(\lambda_i \) \(\lambda_i \) \(\lambda_i \)	s _{PC}	7pc	K [†] PC
[10 ⁻⁹ m]	[AW-1]	[electrons quantum-1]	[quanta electron-1]
730 740 740 750 750 760 760 770 770 780 740 790 790 800 800 810 810 820 820 830 830 840 840 850 850 860 860 870 870 880 890 900 900 910 910 920 920 930 930 940 940 950 950 960 960 970 970 980 980 990 990 1000 1010 1020 1020 1030 1030 1040	1.8250E-02 1.7500E-02 1.6500E-02 1.5500E-02 1.4500E-02 1.3500E-02 1.2000E-02 1.0000E-02 9.0000E-03 8.0000E-03 6.2000E-03 4.8000E-03 4.1000E-03 2.9500E-03 2.9500E-03 2.9500E-03 1.7000E-03 1.7000E-03 1.5000E-04 6.5000E-04 6.5000E-04	3.0784E-02 2.9123E-02 2.7095E-02 2.5120E-02 2.3197E-02 2.1322E-02 1.8714E-02 1.6557E-02 1.5212E-02 1.3525E-02 1.1878E-02 1.0344E-02 8.9905E-03 7.8832E-03 6.8013E-03 5.7438E-03 4.8484E-03 4.0414E-03 3.3197E-03 2.7477E-03 2.2542E-03 1.7056E-03 1.2333E-03 8.3511E-04 5.0864E-04 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	3.2484E 01 3.4337E 01 3.6907E 01 3.9808E 01 4.3110E 01 4.6901E 01 5.3435E 01 6.0399E 01 6.5736E 01 7.3936E 01 8.4186E 01 9.6674E 01 1.1123E 02 1.2685E 02 1.4703E 02 2.0625E 02 2.4744E 02 3.0123E 02 3.6394E 02 4.4362E 02 5.8632E 02 8.1082E 02 1.1975E 03 1.7660E 03 0. 0. 0. 0.
1040 1050 1050 1060 1060 1070 1070 1080 1080 1090	0. 0. 0. 0.	0. 0. 0. 0.	0. 0. 0. 0.
EFFECT TVE	INTERVAL		

300 980

5.7223E-02

TABLE. II E . PHOTOCATHODE SENSITIVITY, $\mathbf{S_{PC}^t}$, AND CONVERSION EFFICIENCY, η_{PC}^t , κ_{PC}^t

SPECTRAL		S-25HI	
Δ _i λ _i to λ _e	3 [†] _{PC}	71	K PC
[10° m]	[AW-1]	[electrons quantum ⁻¹]	[quanta electron ⁻¹]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	0.
280 290	0.	0.	0.
290 300	0 •	0.	0.
300 310	0.	0.	0.
310 320	0.	0.	0. 0.
320 330	0.	0.	0.
330 340 340 350	0. 0.	0. 0.	0.
350 360	0.	0.	0.
360 370	0.	0.	ŏ.
370 380	0.	0.	0.
380 390	0.	0.	0.
390 400	0.	0.	0.
400 410	0.	0.	0.
410 420	0.	0.	0.
420 430	0.	0.	0.
430 440	5.0500E-02	1.4393E-01	6.9477E 00
440 450	4.7250E-02	1.3164E-01	7.5963E 00
450 460	4.4250E-02	1.2058E-01	8.2936E 00
460 470	4.2250E-02	1.1265E-01	8.8771E 00
470 480	4.1000E-02	1.0702E-01	9.3444E 00
480 490	4.0350E-02	1.0315E-01	9.6949E 00
490 500	4.0100E-02	1.0044E-01	9.9565E 00
500 510	4.1000E-02	1.0066E-01	9.9346E 00
510 520 530 530	4.3750E-02	1.0532E-01	9.4945E 00 9.1065E 00
520 530 530 540	4.6500E-02	1.0981E-01 1.1066E-01	9.1065E 00 9.0370E 00
530 540	4.7750E~02	1.1086-01 1.0919E-01	9.1580E 00
540 550 550 560	4.8000E-02 4.8000E-02	1.07236-01	9.3260E 00
560 570	4.7750E-02	1.0478E-01	9.5437E 00
570 580	4.6250E-02	9.9724E-02	1.0028E 01
580 590	4.4000E-02	9.3251E-02	1.0724E 01
590 600	4.2500E-02	8.8558E~02	1.1292E 01
600 610	4.1100E-02	8 4225E-02	1.1873E 01
610 620	3.9250E-02	7.9126E-02	1.2638E 01
620 630	3.7400E-02	7.41905-02	1.3479E 01
630 640	3.6050E-02	7.0386E-02	1.4207E 01
640 650	3.5300E-02	6.7853E-02	1.4738E 01
650 660	3.4700E-02	6.5682E-02	1.5225E 01
660 670	3.3900E-02	6,3203E-02	1.58221 01
670 680	3.2850E-02	6.0338E-02	1.6573E 01
680 690	3.1750E-02	5.7466E-02	1.7402E 01
690 700	3.0600E-02	5.4587E-02	1.8319E 01 1.9608E 01
700 710	2.9000E-02	5.0999E+02	1.9608E 01 2.1280E 01
710 720 720 730	2.71006-02	4.6992E-02 4.2581E-02	2.1780E 01 2.3485E 01
	2.49008-02	4.2381E-02 3.8881E-02	2.57198 01
730 740	2.3050E-02	3 * 00 0 Y E A Y	KODSEVE WE

P. GEBEL, H. SPIEGEL, N. MESTWERDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE. HE. CONTINUED

390	CTRAL		S- 25HI	
	TERVAL Al to \(\lambda_2\)	Stpc	710	KPC
1 _ `	0°m]	[AW-1]	[electrons quantum-1]	[quanta electron*]
730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 900 910 920 930 940 950 960 970 980 970	740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 890 910 920 930 940 950 960 970 980 970 980 990 1000 1010	2.3050E-02 2.2000E-02 2.0950E-02 2.0950E-02 1.9350E-02 1.8700E-02 1.8000E-02 1.6800E-02 1.5500E-02 1.4250E-02 1.2750E-02 1.1250E-02 9.8500E-03 8.4500E-03 6.9000E-03 5.2000E-03 3.1500E-03 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	3.8881E-02 3.6612E-02 3.4403E-02 3.2494E-02 3.0955E-02 2.9534E-02 2.8071E-02 2.5874E-02 2.3579E-02 2.1415E-02 1.8931E-02 1.4283E-02 1.2111E-02 9.7768E-03 7.2848E-03 4.3636E-03 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	2.5719E 01 2.7313E 01 2.9067E 01 3.0774E 01 3.2305E 01 3.3859E 01 3.5624E 01 3.8648E 01 4.2410E 01 4.6696E 01 5.2823E 01 6.0583E 01 7.0012E 01 8.2566E 01 1.0228E 02 1.3727E 02 2.2917E 02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
1030 1040 1050	1030 1040 1050 1060 1070	0. 0. 0.	0. 0. 0. 0.	0. 0. 0.
1070	1080 1090	0.	0. 0.	0. 0. 0.

EFFECTIVE INT'RVAL

430 900

6.4921E-02

R. GEBEL, H. SPIEGEL, H. MESTWERDT AND R. MAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE. II F. PHOTOCATHODE SENSITIVITY, \mathbf{S}^t_{PC} , AND CONVERSION EFFICIENCY, η^t_{PC} , κ^t_{PC} .

SPECTRAL INTERNAL	VARO		
A _i A _i to A ₂	9 [†] _{PC}	77°C	M [†] PC
[10-9 m]	[AW-1]	[electrone quantum ⁻⁶]	[quanta electron-1]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	0.
280 290	0.	0.	0.
290 300	0.	0.	0.
300 310	0.	0.	0.
310 320	0.	0.	0.
320 330	0.	9.	0.
330 340	0.	0.	0.
340 350	0.	0.	0.
350 360	0.	0.	0.
360 370	0.	0.	0.
370 380	0.	0.	0.
380 390	0.	0.	0.
390 400	0.	0.	0.
400 410	5.00008-03	1.5306E-02	6.5332E 01
410 420	6.9000E-03	2.0614E-02	4.8511E 01
420 430	9.0000E-03	2.6255E-02	3.8088E 01
430 440	1.1500E-02	3.2717E-02	3.0510E 01
440 450	1.4500E-02	4.0398E-02	2.4753E 01
450 460	1.8000E-02	4.9048E-02	2.0388E 01
460 470	2.2300E-02	5.8658E-02	1.7048E 01
470 480	2.5000E-02	6.5253E-02	1.5325E 01
480 490	2.7500E-02	7.0299E-02	1.4225E 01
490 500	3.0500E-02	7.6393E-02	1.3090E 01
500 510	3.3000E-02	8.1018E-02	1.2343E 01
510 520	3.5000E-02	8.4259E-02	1.1868E 01
520 530 530 540	3.7000E-02	8.7377E-02	1-1445E 01
530 540 540 550	3.8500E-02	8.9220F~02	1.1208E 01
540 550 550 560	3.9500E~02 4.0250E~02	8.9858E-02	1.1129E 01
560 570	4.0750E-02	8.9914E-02	1.1122E 01
570 580	4.0750E-02	8.9420E-02 8.8943E-02	1.1183E 01
580 590	4.1750E-02	8.8482E-02	1-1243E 01
590 600	4.2250E-02	8.8037E-02	1.1302E 01 1.1359E 01
600 610	4.2750E-02	8.7607E-02	1.1415E 01
610 620	4.3250E-02	8.71906-02	1.1469E 01
620 630	4.3750E-02	8,67878-02	1.15228 01
630 640	4.4250E-02	8.6396E-02	1.1575E 01
640 650	4.4750E-02	8.6018E-02	1.1625E 01
650 660	4.5250E-02	8.5651E-02	1.16758 01
660 670	4.5750E-02	8.5295E-02	1.1724E 01
670 680	4.6250E-02	8.4950E-02	1.1772E 01
680 690	4.6750E-02	8.4615E-02	1.1818E 01
690 700	4.7500E-02	8.4735E-02	1.18018 01
700 710	4.8500E-02	8.5292E-02	1.1724E 01
710 720	4.9500E-02	8.58336-02	1.1650E 01
720 730	5.0000E-02	8.5504E-02	1.16958 01
730 740	5.0000E-02	8.4341E~02	1.18578 01

R. GEBEL, M. SPIEGEL, M. MESTMEROT AND R. MAYSLETF INTERSIFIER MATCHING PROBLEMS

TABLE. II F. CONTINUED.

SPECTRAL INTERVAL		VARO	
λ_1 to λ_2	Stpc	7 to	K [†] PC
[10 ⁻⁹ m]	[AW-1]	[electrons quantum ⁻¹]	[quanta electron-1]
730 740 740 750	5.0000E-02 5.0000E-02	8.4341E-02 8.3209E-02	1.1857E 01 1.2018E 01
750 760	5.0000E-02	8.2107E-02	1.2018E 01 1.2179E 01
750 770	4.9500E-02	8.022°E-02	1.2465E 01
770 780	4.8500E-02	7.7568E-02	1.2889E 01
780 790	4.8000E-02	7.5810E-02	1.3191E 01
790 800	4.7750E-02	7.4467E-02	1.3429E 01
800 810	4.7500E-02	7.31576-02	1.3669E 01
810 820	4.6750E-02	7-1118E-02	1.4061E 01
820 830	4.5250E-02	6.8002E-02	1.4705E 01
830 840	4.2750E-02	6.3475E-02	1.57548 01
840 850	3.9000E-02	5.7222E-02	1.7476E 01
850 860	3.2500E-02	4.7127E-02	2.1219E 01
860 870	2.2750E-02	3.2608E-02	3.0668E 01
870 880	1.5500E-02	2.1962E-02	4.5532E 01
880 890	1.1250E-02	1.5760E-02	6.3450E 01
890 900	6.2500E-03	8.6579E-03	1.1550E 02
900 910	2.5000E-93	3.4249E-03	2.9198E 02
910 920	1.10005-03	1.4905E-03	6.7092E 02
920 930	4.5000E-04	6.0315E-04	1.6580E 03
930 940	0.	0.	0.
940 950	0.	0.	٥.
950 960	0•	0.	0.
960 970	0.	0.	0•
970 980	0.	0.	0.
980 990	0.	0.	0.
990 1000	0.	0.	0.
1000 1010	0.	0.	0.
1010 1020	0.	0.	0.
1020 1030	0.	0.	0.
1030 1040	0.	0.	0.
1040 1050	0.	0.	0.
1050 1060	0.	0.	0.
1060 1070	0.	0.	0.
1070 1080	0.	0.	0.
1080 1090	0.	0.	0.

EFFECTIVE INTERVAL

400 930

6.5467E-02

TABLE. II G. PHOTOCATHODE SENSITIVITY, Str. AND CONVERSION EFFICIENCY, η_{PC}^{\dagger} , κ_{PC}^{\dagger} .

SPECTRAL 8-4			
A ₁ A ₁ to A ₂	9°C	%c	M ¹ PC
[10 ⁻⁰ m]	[AW-1]	[electrone questioni ⁻¹]	[quanta electron-1]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	0.
280 290	0.	0.	0.
290 300	0.	0.	0. 0.
300 310	0. 1.5500E-02	0. 6.10075-02	1.6392E 01
310 320 320 330	2.5500E-02	9.7273E-02	1.0280E 01
330 340	3.1750E-02	1.1750E-01	8.5103E 00
340 350	3.4500E-02	1.2398E-01	8.0657E 00
350 360	3.6500E-02	1.2747E-01	7.8448E 00
360 370	3.8250E-02	1.2993E-01	7.6967E 00
370 380	3.9750E-02	1.3142E-01	7.6092E 00
380 390	4.0850E-02	1.3155E-01	7.6017E 00
390 40U	4.1350E-02	1.2979E-01	7.7049E 00
400 410	4.1500E-02	1.2704E-01	7.8714E 00
410 420	4.1350E-02	1.2353E-01	8.0950E 00
420 430	4.1100E-02	1.1990E-01	8.3405E 00
430 440	4.0750E-02	1.1614E-01 1.1144E-01	8.6100E 00 8.9731E 00
440 450 450 460	4.0000E-02 3.9000E-02	1.1144E-01 1.0627E-01	9.4100E 00
460 470	3.7750E-02	1.0065E-01	9.9353E 00
470 480	3.6250E-02	9.4617E-02	1.0569E 01
480 490	3.4500E-02	8.8193E-02	1.1339E 01
490 500	3.225UE-02	8.0776E-U2	1.2380E 01
500 510	2.9750E-02	7.3039E-02	1.3691E 01
510 520	2.7750E-02	6.6805E-02	1.4969E 01
520 530	2.5500E-02	6.0220E-02	1.6606E 01
530 540	2.2750E-02	5.2721E-02	1.8968E 01
540 550	2.0000E-02	4.5498E-02	2.1979E 01
550 560	1.7250E-02	3.8535E-02 3.2367E-02	2.5951E 01 3.0896E 01
560 5 7 0	1.4750E-02 1.2250E-02	2.6413E-02	3.7860E 01
570 580 580 590	9.9000E-03	2.0981E-02	4.7661E 01
590 600	7.7000E-03	1.6045E-02	6.2326E 01
600 610	5.6500E-03	1.1578E-02	8.6368E 01
610 620	3.9000E-03	7.8622E-03	1.2719E 02
620 630	2.6000E-03	5.1576E-03	1.9389E 02
630 640	1.7500E-03	3.4168E-03	2.9267E 02
640 650	0.	0 •	0.
650 660	0.	0.	0.
660 670	0.	0.	0.
670 680	0.	0. 0.	0. 0.
680 690 690 700	0. 0.	0.	0.
690 700 700 710	0.	0.	0.
710 720	0.	0.	ő.
720 730	0.	o.	0.
730 740	0.	0.	0.
. 20 1 10		-	

EFFECTIVE INTERVAL

TABLE. II H. PHOTOCATHODE SENSITIVITY, S^t_{PC} , AND CONVERSION EFFICIENCY, η^t_{PC} , κ^t_{PC}

350 360 3.4000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 38C 39O 4.3500E-02 1.4008E-01 7.1386E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	
[10- m] [AW-1] [clackrene question-1] [quarte decired colored	
260 270 0. 0. 0. 0. 0. 270 280 0. 0. 0. 0. 0. 0. 280 290 0. 0. 0. 0. 0. 0. 290 300 0. 0. 0. 0. 0. 310 320 0. 0. 0. 320 330 6.0500E-03 2.3080E-02 4.3328E 0 330 340 1.5400E-02 5.6994E-02 1.7546E 0 340 350 2.6500E-02 9.5232E-02 1.0501E 0 350 360 3.4000E-02 1.1874E-01 8.4216E 0 360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4124E-01 7.0799E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	n-']
260 270 0. 0. 0. 0. 270 280 0. 0. 0. 0. 270 280 0. 0. 0. 0. 0. 280 290 0. 0. 0. 0. 0. 290 300 0. 0. 0. 0. 0. 0. 310 320 0. 0. 0. 320 330 6.0500E-03 2.3080E-02 4.3328E 0 330 340 1.5400E-02 5.6994E-02 1.7546E 0 340 350 2.6500E-02 9.5232E-02 1.0501E 0 350 360 3.4000E-02 1.1874E-01 8.4216E 0 360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4008E-01 7.1386E	
280 290 0. 0. 0. 0. 0. 0. 0. 0. 300 310 0. 0. 0. 0. 0. 0. 310 320 0. 0. 0. 0. 320 330 6.0500E-03 2.3080E-02 4.3328E 0 330 340 1.5400E-02 5.6994E-02 1.7546E 0 340 350 2.6500E-02 9.5232E-02 1.0501E 0 350 360 3.4000E-02 1.1874E-01 8.4216E 0 360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4124E-01 7.0799E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	
290 300 0. 0. 0. 0. 0. 0. 310 320 0. 0. 0. 0. 320 330 6.0500E-03 2.3080E-02 4.3328E 0 330 340 1.5400E-02 5.6994E-02 1.7546E 0 340 350 2.6500E-02 9.5232E-02 1.0501E 0 350 360 3.4000E-02 1.1874E-01 8.4216E 0 360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4008E-01 7.1386E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	
300 310 0. 0. 0. 0. 0. 0. 310 320 0. 0. 0. 320 330 6.0500E-03 2.3080E-02 4.3328E 0 330 340 1.5400E-02 5.6994E-02 1.7546E 0 350 360 3.4000E-02 9.5232E-02 1.0501E 0 350 360 3.4000E-02 1.1874E-01 8.4216E 0 360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4008E-01 7.0799E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	
310 320 0. 0. 0. 320 330 6.0500E-03 2.3080E-02 4.3328E 0 330 340 1.5400E-02 5.6994E-02 1.7546E 0 340 350 2.6500E-02 9.5232E-02 1.0501E 0 350 360 3.4000E-02 1.1874E-01 8.4216E 0 360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4124E-01 7.0799E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	
320 330 6.0500E-03 2.3080E-02 4.3328E 0 330 340 1.5400E-02 5.6994E-02 1.7546E 0 340 350 2.6500E-02 9.5232E-02 1.0501E 0 350 360 3.4000E-02 1.1874E-01 8.4216E 0 360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4008E-01 7.0799E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	
330 340 1.5400E-02 5.6994E-02 1.7546E 0 340 350 2.6500E-02 9.5232E-02 1.0501E 0 350 360 3.4000E-02 1.1874E-01 8.4216E 0 360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4008E-01 7.0799E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	11
340 350	
350 360 3.4000E-02 1.1874E-01 8.4216E 0 360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4008E-01 7.1386E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	_
360 370 3.9000E-02 1.3247E-01 7.5487E 0 370 380 4.2000E-02 1.3886E-01 7.2015E 0 38C 39O 4.3500E-02 1.4008E-01 7.1386E 0 39O 400 4.5000E-02 1.4124E-01 7.0799E 0	00
370 380 4.2000E-02 1.3886E-01 7.2015E 0 380 390 4.3500E-02 1.4008E-01 7.1386E 0 390 400 4.5000E-02 1.4124E-01 7.0799E 0	00
38C 39O 4.3500E-02 1.4008E-01 7.1386E 0 39O 40O 4.5000E-02 1.4124E-01 7.0799E 0	00
390 400 4.5000E-02 1.4124E-01 7.0799E 0	00
1 (D257 A) 7 0250E A	00
	00
400 410 4100000 00 00 00 00 00	00
	00
430 440 4.9000E-02 1.3966E-01 7.1604E 0	00
440 450 4-9000E-02 1.3652E-01 7.3250E C	00
450 460 4.8500E-02 1.3216E-01 7.5648E 0	00
460 470 4.7500E-02 1.2665E-01 7.8959E 0	00
470 480 4.6500E-02 1.2137E-01 8.2392E (90
480 490 4.5000E-02 1.1503E-01 8.6931E (00
490 500 4.3000E-02 1.0770E-01 9.2850E (00
500 510 4.0500E-02 9.9431E-02 1.0057E	01
310 320 3.13005-05 1004.05 04	01
520 530 5.50000202	01
530 540 3.25000002	01 01
540 550 2.40002 2.4002	
2.3000 2.3000 2.3000 2.34455	
200 370 222302 02	
5/0 580 1:80002-02	01
380 390 1.47302-02	
340 000 1.23000 02	
000 010 011000 00	
019 020 3.00000 3.40036	
2007/15 02 2 22915	
630 640 2.2000E-03 4.2954E-03 2.5201E 640 650 1.2500E-03 2.4027E-03 4.1619E	
	02
660 670 5.0000E-04 9.3219E-04 1.0727E	03
670 580 6.700GE-04 1.2306E-03 8.1259F	02
680 690 7.7000F~04 4.3937E-03 7.1754E	02
690 700 4.4000E-04 7.8492E-04 1.2740E	
700 710 2.5500E-04 4.4849E-04 2.2299E	
710 720 2.10006-04 3.64146-04 2.74626	03
720 /30 0. 0.	
730 740 0.	

EFFECTIVE INTERVAL

TABLE. II I. PHOTOCATHODE SENSITIVITY, S_{PC}^{\dagger} , AND CONVERSION EFFICIENCY, η_{PC}^{\dagger} , κ_{PC}^{\dagger}

SPECTRAL INTERVAL	8-17		
λ _i to λ _g	S [†] _{PC}	7 pc	K'pc
[10 ⁻⁹ m]	[AW-1]	[electrons quantum-1]	[quanta electron-1]
250 260	0.	0.	0.
260 270	0•	0.	0.
270 280	0.	0.	0.
280 290	1.2600E-02	5.4813E-02	1.8244E 01
290 300	2.5000E-02	1.0507E-01	9.5176E 00
300 310	3.8500E-02	1.5650E-01	6.3897E OC
310 320	4.9000E-02	1.9266E-01	5.1851E 00
320 330	5.8000E-02	2.2126E-01	4.5196E 00 4.25516 00
330 340	6.35005-02	2.3501E-01 2.3898E-01	4.2551 £ 00 4.1845 £ 00
340 350	6.6500E-02	2.4098E-01	4.1498E C h
350 360	6.9000E-02 7.0500E-02	2.3947E-01	4.1759E 00
360 370	7.10008-02	2.3474E-01	4.2601E 00
370 380 380 390	7.1000E-02 7.1500E-02	2.3025E-01	4.3431E 00
380 390 390 400	7.1500E-02 7.2500E-02	2.3025E-01	4.3944E 00
400 410	7.3500E-02	2.25003-01	4.444E 00
410 420	7.4500E-02	2.22576-01	4.4930E 00
420 430	7.4900E-02	2.2171E-01	4.5104E 00
430 / +0	7.7500E-02	2.20896-01	4.5272E 00
440 450	7.9000E-02	2.2010E-01	4.54342 00
450 400	8.0500E-02	2.1935E-01	4.5389E 00
460 470	8.1500E-02	2.17305-01	4.6019E 00
470 480	8.2500E-02	2.15345-01	4.6439E 00
480 490	8.3000E-02	2.1217E-01	4.71318 00
490 500	8 3000E-02	2.0789E-01	4.8103E CO
500 510	8.3000E-02	2.0377F-01	4.9075E 00
510 520	8.2500E-02	1.9861E-01	5.0350E 00
520 530	8.0000E-02	1.8892E-01	5.2931E 00
530 540	7.6000E-02	1.7612E-01	5.6778E 00
540 550	6.9500E-02	1.5810E-01	6.3249E 00
550 560	6.0000E-02	1.3403E-01	7.46)8E 00
560 570	4.7000F-02	1.0313E-01	9.6960E 00
570 580	3.4000E-02	7.3311E-02	1.3641E 01
580 590	2.4000E-02	5.0864E-02	1.9660E G1
590 600	1 - 6000E-02	3.3340E-02	2.9994E 01
600 610), • 130 CE-02	2.3157E-02	4.3184E 01
610 620	8.3000E-03	1.6732E-02	5.9764E 01
620 630	6.3500E-03	1.25976-02	7.9387E 01
630 640	5.1500E-03	1.0055E-02	9.9451E 01
640 650	4.1000E-03	7.8810E-03	1.2689F 02
650 660	2.9000E-03	5.4892E-03	1.8217E 02
660 670	1.8500E-03	3.44915-03	2.8993E 02
670 680	1.3500E-03	2.4796E-03	4.0329E 02 0.
680 690	0.	0.	0.
590 700	0.	0. 0.	0.
700 710	0.	0. 0.	0.
710 720	0.	0.	0.
720 730 730 740	0 (*	9.	J.
(30 EM)	1 *	5.	•

R. GEBEL, M. SPIEGEL, M. MESTWERDT AND R. MAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE. II J. PHOTOCATHODE SENSITIVITY, \mathbf{S}_{PC}^{t} AND CONVERSION EFFICIENCY, $\boldsymbol{\eta}_{PC}^{t}$, κ_{PC}^{t} .

SPECTRAL	VARIAN		
INTERVAL A ₁ λ_1 to λ_2	Sto	700	K ¹ PC
[10 ⁻⁹ m]	[AW-1]	[electrone quantum-1]	[quanta electron-1]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	0.
280 290	0.	0.	0.
290 300	0.	0.	0.
300 310	0.	0.	0.
310 320 320 330	0. 0.	0. 0.	0. 0.
330 340	0.	0.	0.
340 350	0.	ŏ.	0.
350 360	0.	0.	0.
360 370	0.	0.	0.
370 380	0.	0.	0.
380 390	0.	0.	0.
390 400	0.	0.	0•
400 410	2.6750E-02	8.1889E-02	1.2212E 01
410 420	2.9500E-02	8-8131E-02	1.1347E 01
420 430	3.1250E-02	9-1163E-02	1.0969E 01
430 440	3.2250E-02	9.1917E-02	1.0879E 01
440 450 450 460	3.2250E-02	8.9852E-02	1.1129E 01
450 460 460 470	3.1500E-02 3.0750E-02	8.5833E-02	1.1650E 01
470 480	3.0250E-02	8.1988E-02 7.8957E-02	1.2197E 01 1.2665E 01
480 490	2.9500E-02	7.5411E-02	1.3261E 01
490 500	2.8500E-02	7.1383E-Q2	1.4009E 01
500 510	2.7500E-02	6.7515E-02	1.4812E 01
510 520	2.6750E-02	6.4398E-02	1.5528E 01
520 530	2.6000E-02	6.1400E-02	1.6287E 01
530 540	2.5000E-02	5.7935E-02	1.7261E 01
540 550	2.4000E-02	5.4597E-02	1.8316E 01"
550 560	2.3250E-02	5-1938E-02	1.9254E 01
560 570	2.2500E-02	4.9373E-02	2.0254E 01
570 580	2.1500E-02	4.6358E-02	2.1571E 01
580 590	2.0750E-02	4-3976E-02	2.2740E 01
590 600	2.0000E-02	4-1674E-02	2.3996E 01
600 610 610 620	1.9250E-02 1.8500E-02	3.9449E-02 3.7295E-02	2.5349E 01
620 630	1.7750E-02	3.52114-02	2.6813E 01 2.8400E 01
630 640	1.7250E-02	3.3680E-02	2.9691E 01
640 650	1.6500E-02	3.1716E-02	3.1530E 01
650 660	1.5750E-02	2.9812E-02	3.3543E 01
660 670	1.5250E-02	2.8432E-02	3.5172E 01
670 680	1.4750E-02	2.7092E-02	3.6911E 01
680 690	1.4500E-02	2.6244E-02	3.8104E 01
690 700	1.3750E-02	2.4529E-02	4.0769E 01
700 710	1.2750E-02	2.2422E-02	4.4599E 01
710 720	1.2250E-02	2.1242E-02	4.7078E 01
720 730	1.1750E-02	2.0094E-02	4.9767E 01
730 740	1.1250E-02	1.89776-02	5.2696E 01

R. GEBEL, H. SPIEGEL, H. MESTMERDT AND R. MAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE. IIJ. CONTINUED

	CTRAL.		VARIAN	
1 4	Δ ₁ 10 λ ₂	S [†] _{PC}	7èc	«'rc
[10	-•m]	[AW-1]	[alectrons quantum-1]	[quarta electron-1]
730 740	740 750	1.1250E-02 1.0750E-02	1.8977E-02 1.7890E-02	5.2696E 01 5.5897E 01
750	760	1.0150E-02	1.6668E-02	5.9996E 01
760	770	9.5000E-03	1.5396E-02	6.4950E 01
770	780	8.9000E-03	1.4238E-02	7.0235E 01
780	790	8.3000E-03	1.3109E-02	7.6284E 01
770	800	7.7500E-03	1.2086E-02	8.2739E 01
800	310	7.1500E-03	1.1012E-02	9.0810E 01
810	820	6.3000E-03	9.5838E-03	1.0434E 02
820	830	5.4000E-03	8.1151E-03	1-2323E 02
830	840	4.5000E-03	6.6816E-03	1.4966E 02
840	850	3.6000E-03	5.2820E-03	1.8932E 02
850	860	2.8000E-03	4.0602E-03	2.4629E 02
860	870	2.0750E-03	2.9741E-03	3.3623E 92
870	880	1.4250E-03	2.0191E-03	4.9526E 02
880	890	8.5000E-04	1.1908E-03	8.3978E 02
890	900	4.5000E-04	6.2337E-04	1.6042E 03
900	910	0.	0.	0.
910	920	0.	0.	0.
920	930	0.	0.	0.
930	940	0.	0.	0.
940	95	0.	0.	0.
950 960	960	0.	0.	0.
970	970 980	0.	0. 0.	0.
980	9/30	0. 0.	0.	0. 0.
	1000	0.	0.	0.
	1010	0.	0.	0.
	1020	ŏ .	0.	0.
	1030	0.	0.	0.
	1040	0.	0.	0.
	¥.50	0.	0.	0.
	1060	0.	0.	6.
1060	1070	0.	0.	0.
1070	1080	0.	0.	0.
1080	1090	C.	0.	0.

EFFECTIVE INTERVAL

400 900

3.8256E-02

TABLE.11 K. PHOTOCATHODE SENSITIVITY, s_{PC}^{t} , AND CONVERSION EFFICIENCY, η_{PC}^{t} , κ_{PC}^{t}

SPECTRAL	INTERFERENCE		
interval. Ài Ài Ài to Àz	S [†] _{PC}	7èc	K [†] PC
[10-9 m]	[A X-1]	[electrica quentum-1]	[quanta electron-1]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	Q.
280 290	0.	0.	o.
290 300	0.	0.	0.
300 310	0.	0.	0
310 320	0.	0.	0.
320 330	0.	C.	0.
330 340	0.	0.	0.
340 350	0.	0.	0.
350 360	0.	0.	0.
360 370	4.2000E-02	1.4266E-01	7.0095E 00
370 380	3.2000E-02	1.0580E-01	9.4520E 70
380 390	3.2000E-02	1.0305E-01	9.7041E 00
390 400	3.6000E-02	1.1300F-01	8.8499E 00
400 410	4.1500E-02	1.2704E-01	7.8714E 00
410 420	5.0000E-02	1.4938E-01	6.6946E 00
420 430	6.0500E-02	1.764°E-01	5.6660F 00
430 440	7.4000E-02	2.1091E-01	4.7413E 00
440 450	9.0000E-02	2.5075E-01	3.9881E 00
450 460	1.0100E-01	2.7521E-01	3.6336E 00
460 470 470 480	1.0450E-01	2.7862E-01	3.5891E 00
480 490	1.0200E-01 8.8500E-02	2.6623E-01	3.7561E 00
490 500	6.0500E-U2	2.2623E-01	4.4202E 00
500 510	2.9000t=02	1.5153E-01	6.5992E 00
510 520	1.10005-02	7.1197E-02 2.6481E-02	1.4045E 01
520 530	5.4250E-03	1.2811E-02	3.7762E 01
530 >40	3.7000E-03	8.5744E-02	7.8055E 01 1.1663E 02
540 550	د 3.7750E-0	8.5877E-03	1.1645E 02
550 560	5.5000E-03	1.2286E-02	8.1391E 01
560 570	9.0000E-03	1.97492-02	5.0635E 01
570 580	1.2750E-02	2.74926-02	3.6' 75E 01
580 590	1.5750E-02	3.33805-02	2.9958E 01
590 600	1.8750E-02	3.9070E-02	2.5595E 01
600 610	2.2000E-02	4.5084E-02	2.2181E 01
610 620	2.5250E-02	5.0903E-02	1.9645E 01
620 630	2.8250E-02	5.6040E-J2	1.7845E 01
630 640	3.1250E-02	6.1014E-02	1.6390E 01
640 650	3.4500E-02	5.6316E-02	1.5079E 01
650 660	3.7250E-(-2	7.0508E-02	1.4183E 01
660 670	3.9750E-02	7.4109E-02	1.3494E Cl
670 680	4.2000E-02	7.7144E-02	1.2963E 01
680 690	4.45008-02	8.0543E-02	1.2416E 01
690 700	4.6500E-02	8.2952E-02	1.2055 01
700 710	4.75008-02	8.3534E-02	1 1971E 01
710 720	4.7500E-02	8.2365E-02	1.2141E C1
720 730	4.6500E-02	7.9519E-02	1.25766 01
730 740	4 * 4000E · 02	7.4220E-02	1.3473E 01

R. GEBEL, H. SPIEGEL, H. MESTMERDT AND R. HAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE LIK CONTINUED

SPECTRAL INTERVAL		INTERFERENCE			
1 4	to he	S [†] PC	sto yto		
[10 ⁻⁹ m]		[AM-1]	[electrans quantum-1]	[quanta electron; 1]	
730 740 750 760 770 780 800 810 820 830 840 850 860 870 880 900 910 920 930 940 950	740 750 760 770 780 790 810 820 830 840 850 860 870 980 910 920 930 940 950 970	4.4000E-02 4.0000E-02 3.5500E-02 3.0500E-02 2.4500E-02 1.8500E-02 0.00.00.00.00.00.00.00.00.00.00.00.00.0	7.4220E-02 6.6567E-02 5.8296E-02 4.9430E-02 2.9219E-02 2.1833E-02 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1.3473E 01 1.5022E 01 1.7154E 01 2.0230E 01 2.5514E 01 3.4225E 01 4.5802E 01 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	
1000 1010 1020 1030 1040 1050 1060	980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080 1090	0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0. 0.	

EFFECTIVE INTERVAL

360 800

9.2848E-G2

R. GEBEL, H. SPIEGEL, H. MESTNERDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE. II L. PHOTOCATHODE SENSITIVITY, S_{PC}^{t} , AND CONVERSION EFFICIENCY, η_{PC}^{t} , κ_{PC}^{t} .

SPECTRAL		Ge As	
INTERVAL		OU AS	
A ₁ λ ₁ to λ ₂	. S ¹ _{PC}	η [†] _{PC}	K [†] PC
[IO ⁻⁹ m]	[AW-1]	[electrons quantum-1]	[quanta electron ⁻¹]
250 260	0.	0•	0.
260 270	0.	0 •	0.
270 280	0.	0.	0.
280 290	0.	C+	0•
290 300 300 31 0	0. 0.	0. 0.	0• 0•
310 320	0.	0.	0.
320 330	4.1000E-02	1.5641E-01	6.3936E 00
330 340	5.8000E-02	2.1465E-01	4.6587E 00
340 350	7.2000E-02	2.5874E-01	3.8648E 00
350 360	8.0500E-02	2.8114E-01	3.5569E 00
360 370	8.7000E-02	2.9552E-01	3.3839E 00
370 380	9.1000E-02	3.0086E-01	3.3238E 00
380 390	9.3000E-02	2.9949E-01	3.3390E 00
390 400	9.4500E-02	2.9661E-01	3.3714E 00
400 410	9.5500E-02	2.9235E-01	3.4205E 00
410 420	9.6500E-02	2.8829E-01	3.4687E 00
420 430 430 440	9.7000E-02 9.7000E-02	2.8297E-01 2.7646E-01	3.5340E 00 3.6171E 00
440 450	9.7000E-02 9.7000E-02	2.7025E-01	3.6171E 00 3.7003E 00
450 460	9.7000E-02	2.6431E-01	3.7834E 00
460 470	9.7000E-02	2.5863E-01	3.8666E 00
470 480	9.7000E-02	2.5318E-01	3.9497E 00
480 490	9.7000E-02	2.4796E-01	4.0329E 00
490 500	9.7000E-02	2.4295E-01	4.1160E 00
500 510	9.7000E-02	2.3814E-01	4.1992E 00
510 520	9.7000E-02	2.3352E-01	4.2823E 00
520 530	9.6500E-02	2.2789E-01	4.3881E 00
530 540	9.6000E-02	2.2247E-01	4.4950E 00
540 550	9.5500E-02	2.1725E-01	4.6030E 00
550 560 560 570	9.5000E-02 9.4500E-02	2.1222E-01 2.0737E-01	4.7121E 00
570 580	9.4500E-02	2.0757E-01 2.0160E-01	4.8224E 00 4.9602E 00
580 590	9.2500E-02	1.9604E-01	5.1010E 00
590 600	9.1500E-02	1.9066E-01	5.2449E 00
600 610	9.0500E-02	1.8546E-01	5.3920E 00
610 620	8.9000E-02	1.7942E-01	5.5735E 00
620 630	8.7500E-02	1.7357E-01	5.7612E 00
630 640	8.6500E-02	1.6889E-01	5.9211E 00
640 650	8.5500E-02	1.6435E-01	6.0847E 00
650 660	8.4000E-02	1.5900E-01	6.2893E 00
660 670	8.1500E-02	1.5195E-01	6.5812E 00
670 680 680 690	7.8500E-02 7.6500E-02	1.4419E-01 1.3846E-01	6.9355E 00 7.2223E 00
690 700	7.4500E-02	1.3846E-01 1.3290E-01	7.2223E 00 7.5244E 00
700 710	7.4500E-02	1.2750E-01	7.8432E 00
710 720	7.0000E-02	1.21386-01	8.2386E 00
720 730	6.7000E-02	1.1458E-01	8.7278E 00
730 740	6.4000E-02	1.0796E-01	9.2630E 00

R. GEBEL, H. SPIEGEL, H. MESTNCROT AND R. HAYSLETT INTERSIFIER NATCHING PROBLEMS

TABLE. IIL. CONTINUED

SPECTRAL		G.As				
IN	ERNAL Aj	•				
λ,	to λ_z	SPC	7pc	K PC		
[1	·*•]	[AW-1]	[electrons quantum ⁻¹]	[quanta electron-1]		
730	740	6.4000E-02	1.0796E-01	9.2630E 00		
740	750	5.9500E-02	9.9019E-02	1.0099E 01		
750	760	5.5500E-02	9.1139E-02	1.0972E 01		
760	770	5.2000E-02	8.4275E-02	1.1866E 01		
770	780	4.8500E-02	7.7588E-02	1.2889E 01		
780	790	4.5000E-02	7.1072E-02	1.4070E 01		
790	800	4.1000E-02	6.3940E-02	1.5640E 01		
800	810	3.8000E-02	5.8525E-02	1.7087E 01		
810	820	3.5500E-02	5.4004E-02	1.8517E 01		
320	830	3.2500E-02	4.8841E-02	2.0475E 01		
830	840	2.9500E-02	4.3802E-02	2.2830E 01		
847	850	2.6500E-02	3.8882E-02	2.5719E 01		
850	860	2.3500E-02	3.4077E-02	2.9346E 01		
860 87 0	870	2.0500E-02	2.9383E-02	3.4033E 01		
	880	1.8500E-02	2.6213E-02	3.8149E 01		
880 890	890 900	1.6500E-02 1.4000E-02	2.3115E-02 1.9394E-02	4.3262E 01		
900	910	1.4000E-02	1.6440E-02	5.1563E 01 6.0829E 01		
910	920	1.0000E-02	1.3550E-02	7.3801E 01		
920	930	8.5000E-02	1.1393E-02	8.7774E 01		
930	940	7.00G0E-03	9.2820E-03	1.0774E 02		
940	950	5.0000E-03	6.5599E-03	1.5744E 02		
950	960	3.5000E-03	4.5438E-03	7.2008E 02		
960	970	2.0000E-03	2.5696E-03	3.8917E 02		
970	980	0.	0.	0.		
980	990	0.	0.	0.		
990	1000	0.	0.	0.		
1000	1010	0.	0.	0.		
1010	1020	0.	0.	0.		
1020	1030	0.	0.	0.		
1030	1040	0.	0.	0.		
1040	1050	ŏ•	0.	0.		
1050	1060	0.	o.	0.		
1060	1070	0.	0.	0.		
1070	1080	0.	0.	0.		
1080	1090	0.	0.	0.		
				. -		

EFFECTIVE INTERVAL

320 970

1.5269E-01

R. GEBEL, N. SPIEGEL, N. MESTWERDT AND R. MAYSLETY INTENSIFIER MATCHING PROBLEMS

TABLE. II M. PHOTOCATHODE SENSITIVITY, s_{PC}^{t} , AND CONVERSION EFFICIENCY, η_{PC}^{t} , κ_{PC}^{t} .

SPECTRAL		S-25H2	
INTERVAL A	StPC	7 PC	κ [†] PC
λ_1 to λ_2 $\left[10^{-9} \text{m}\right]$	[AW"]	[electrons quantum ⁻¹]	[quantum electron ⁻¹]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	0.
280 290	0.	0.	0.
290 300	0•	0.	0.
300 310	0.	0.	0.
310 320	0.	0.	0.
320 330	0.	0.	0. 0.
330 340 340 350	0.	0. 0.	0.
340 350 350 360	0. 0.	0.	0.
360 370	0.	0.	0.
370 380	0.	0.	0.
380 390	0.	0.	0.
390 400	0.	0.	0.
400 410	0.	0.	0.
410 420	0.	Q.	0.
420 430	0.	0.	0.
430 440	9.2500E-03	2.6364E-02	3.7931E 01
440 450	1.1250E-02	3.1344E-02	3.1904E 01
450 460	1.3900E-02	3.7876E-02 4.4793E-02	2.6402E 01 2.2325E 01
460 470 470 480	1.6800E-02 1.9100E-02	4.9854E-02	2.0059E 01
480 490	2.1100E-02	5.3938E-02	1.8540E 01
490 500	2.3100E-02	5.7858E-02	1.7284E 01
500 510	2.4800E-02	6.0886E-02	1.6424E 01
510 520	2.5950E-02	6.2472E-02	1.6007E 01
520 530	2.6350E-02	6.3408E-02	1.5771E 01
530 540	2.7800E-02	6.4424E-02	1.5522E 01
540 550	2.8550E-02	6.4948E-02	1.5397E 01
550 560 560 570	2.9050E-02 2.9700E-02	6.4895E-02 6.5172E-02	1.5410E 01 1.5344E 01
560 570 570 580	3.0450E-02	6.5656E-02	1.5231E 01
580 590	3.1300E-02	6.6335E-02	1.5075E 01
590 600	3.2200E-02	6.7096E-02	1.4904E 01
600 610	3.2900E-02	6.7421E-02	1.4832E 01
610 620	3.3450E-02	6.7434E-02	1.4829E 01
620 630	3.3950E-02	6.7347E-02	1.4849E 01
630 640	3.4500E-02	6.7360E-02	1.4846E 01
640 650	3.5050E-02	6.7373E-02	1.4843E 01
650 660 660 670	3.5600E-02 3.6050E-02	6.7385E-02 6.7211E-02	1.4840E 01 1.487°E 01
660 670 670 680	3.6300E-02	6.6674E-02	1.487°E 01 1.4998E 01
580 690	3.6550E-02	6.6154E-02	1.5116E 01
690 700	3.6800E-02	6.5648E-02	1.5233E 01
700 710	3.7050E-02	6.5156E-02	1.53472 01
710 720	3.7150E-02	6.4418E-02	1.5524E 01
720 730	3.7050E-02	6.3359E-02	1.5783E 01
730 740	3.7000E-02	6.2412E-02	1.6022E 01

R. GEBEL, H. SPIEGEL, M. MESTWERDT AND R. HAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE, II M. CONTINUED

	CTRAL	S-25H2			
	'ERVAL Λ; to λ ₂	Stpc	η [†] PC	K [†] PC	
[io	-9m] ²	[AW-1]	[electrons quantum ⁻¹]	[quantum electron-1]	
730	740	3.7000E-02	6.2412E-02	1.6022E 01	
740	750	3.6300E-02	6.0410E-02	1.6554E 01	
750	760	3.5250E-02	5.7885E-02	1.7276E 01	
760	770	3.4200E-02	5.5427E-02	1.8042E 01	
770	780	3.2750E-02	5.2392E-02	1.9087E 01	
780	790	3.0950E-02	4.8882E-02	2.0458E 01	
790	800	2.9450E-02	4.5928E-02	2.1773E 01	
800	810	2.8200E-02	4.3432E-02	2.3025E 01	
810	820	2.6550E-02	4.0389E-02	2.4759E 01	
820	830	2.4900E-02	3.7420E-02	2.6724E 01	
830	840	2.2850E-02	3.3928E-02	2.9474E 01	
840	850	2.0050E-02	2.9418E-02	3.3993E 01	
850	860	1.6850E-02	2.4434E-02	4.09278 01	
860	870	1.3550E-02	1.9421E-02	5.1490E 01	
870	880	1.0550E-02	1.49495-02	6.6896E 01	
860	890	7.4500E-03	1.0437E-02	9-5814E 01	
890	900	v.	0.	0.	
900	910	0.	0.	0.	
910	920	0.	0.	0.	
920	930	0.	0.	0.	
930	940	0.	0.	0.	
940	950	0.	0.	0.	
950	960	0.	0.	0.	
960	970	0.	0.	0.	
370	980	0.	0.	0.	
980	990	0.	0.	0.	
990	1000	0.	0.	0.	
	1010	0.	0.	0.	
	1020	0.	0.	0.	
	1030	0.	0.	0.	
	1040	0.	0.	0.	
	1050	0.	0.	().	
	1060	0.	0.	0.	
	1070	0.	0.	0.	
	1080	0.	0.	0.	
7090	1090	0.	0.	0.	

EFFECTIVE INTERVAL

430 890

5.3205E-02

TABLE. II N. PHOTOCATHODE SENSITIVITY, S_{PC}^{\dagger} , AND CONVERSION EFFICIENCY, η_{PC}^{\dagger} , κ_{PC}^{\dagger} .

SPECTRAL		S-25TI			
Λ _i λ _i το λ ₂	Stpc	ηţρc	K† PC		
[10_a w]	[AW ⁻¹]	[elactrons quantum-1]	[quantum electron ⁻¹]		
250 260	0.	0.	0.		
260 270	0.	0.	0.		
270 280 280 290	0.	0.	o.		
290 300	0,	0.	0.		
300 310	0. 0.	0.	0.		
310 320	0.	0.	0.		
320 330	Ö.	0.	0.		
330 340	0.	0.	0.		
340 350	0.	0. 0.	0.		
350 360	0.	0.	0.		
360 370	0.	0.	0.		
370 380	0.	0.	0. 0.		
380 390	0.	0.	0.		
390 400	0.	0.	0.		
400 410	0.	0.	0.		
410 420 420 430	0.	0.	0.		
420 430 430 440	3.6500E-02	1.0648E-01	9.3916E 00		
440 450	3.77508-02	1-0759E-01	9.2943E 00		
450 460	3.9000E-02 4.0000E-02	1.0866E-01	9.2032E 00		
460 470	4.0500E-02	1.0899E-01	9.1748£ 00		
470 489	4-0350E-02	1.0798E-01	9.2607E 00		
480 490	3.9850E-02	1.0532E-01 8.0187E-01	9.4950E 00		
490 500	3.9100E-02	9.7933E-02	9 8165E 00		
500 510	3.8350E-02	9.4152E-02	1.0211E 01		
510 520	3.7750E-02	9.0880E-02	1.0621E 01 1.1004E 01		
520 530 530 540	3.7000E-02	8.7377E-02	1.1445E 01		
540 550	3.6250E-02	8.4006E-02	1.1904E 01		
550 560	3.55006-02	8.0758E-02	1.23836 01		
560 570	3.4600E-02 3.3850E-02	7.7293E-02	1.2938E 01		
570 580	3.32.JE-02	7.4279E-02	1.3463E 01		
580 590	3.2250E-02	7-16942-02	1.3948E 01		
590 600	3.1100E-02	6.8347E-02	1.4631E 01		
600 610	3.0350E-02	6.4804E-02 6.2196E-02	1.5431E 01		
610 620	2.4500E-02	5.9471E-02	1.6078E 01		
6 2 0 530	2-8100E-02	5.5742E-02	1.6815E 01		
630 640	2.6700E-02	5.2131E-02	1.7940E 01 1.9183E 01		
640 650	2.5700E-02	4.9400E-02	2.0243E 01		
650 660 660 679	2-4450E-02	4-6280E-U2	2.1608E 01		
670 680	2-3350E-02	4.3533E-02	2.2971E 01		
680 690	2.23508-02	4.1052E-02	2.4360E U1		
690 700	2.1100E-02 2.0100E-02	3.8190E-02	2.6185E 01		
700 710	1-94508-02	3.5856E-02	2.7889E 01		
710 720	1.89502-02	3.4205E-02	2.9236E 01		
720 730	1.81008-02	3.2686F~02 3.0953E~02	3-0594E 01		
730 750	1-745UE -02	2.9435F-U2	2.2307E 01		
		C4 1 4371 - AS	3.3973E 01		

R. GEBEL, H. SPIEGEL, H. NESTWERDT AND R. HAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE, II N. CONTINUED.

SPECTRAL INTERVAL A; A; to λ_2 [10-0 m]		S-25TI				
		S [†] PC	η̂ρς	K [†] PC [quantum electron ⁻¹]		
		[AW ⁻¹]	[electrons quantum-1]			
730	740	1.7450E-02	2.9435E-02	3.3973E 01		
740	750	1.6700E-02	2.77925-02	3.5982E 01		
750	760	1.5850E-02	2.6028E-02	3.8420E 01		
760	770	1.5250E-02	2.4715E-02	4.0461E 01		
770	780	1.4500E-02	2.3197E-02	4.3110E 01		
780	790	1.3750E-02	2.1716E-02	4.6048E 01		
790	800	1.3L00E-02	2.0430E-C2	4.8949E 01		
800	810	1.2200E-02	1.8790E-02	5.3221E 01		
810	820	1.1350E-02	1.7266E-02	5.7917E 01		
820	830	1.0500E-02	1.5779E-02	6.3374E 01		
830	840	9.5000E-03	1.4106E-02	7.0894E 01		
840	850	8.5000E-03	1.2471E-02	8.0183E 01		
850	860	7.1000E-03	1.0296E-02	9.7130E 01		
860	870	5.1500E-03	7.3815E-03	1.3547E 02		
870	880	3.1000E-03	4.3925E-03	2.2766E 02		
880	890	1.8500E-03	2.5917E-03	3.8585E 02		
890	900	1.2000E-03	1.66235-03	6.0157E 02		
900	910	0.	0.	v.		
910	920	9.	0.	0.		
920	930	0.	0.	0.		
930	940	0.	Q.	o.		
940	950	0.	0.	0.		
950	960	0.	0.	0.		
960	970	0.	0.	0.		
970	980	0.	0.	0.		
980 990	990 1000	0.	0-	0.		
	1010	0.	0.	0.		
	1020	0.	0.	0.		
1020		0. 0.	0.	0.		
1030		0.	0.	0.		
1040		0.	0. 0.	0.		
1050		0.	0.	0. 0.		
1060		0.	0.	0.		
1070		0.	0.	0.		
1080		0.	0.	0.		
EFFEC	TIVE	INTERVAL				

420 900

5.2045E-02

TABLE.II Q. PHOTOCATHODE SENSITIVITY, S_{PC}^{t} , AND CONVERSION EFFICIENCY, η_{PC}^{t} , κ_{PC}^{t} .

SPECTRAL	S-25T2		
INTERVAL Δ; λι to λ ₂	St PC	η [†] PC	K [†] PC
[10, w]	[AW-1]	[electrons quantum ⁻¹]	[quantum electron-1]
250 260	0.	0.	0.
260 270	0.	0.	0.
270 280	0.	0.	0.
260 290	0.	0.	0.
290 300	G.	0.	0.
300 310	0.	0.	0.
310 320	0.	0.	0.
320 330	0.	0.	0.
330 340	0,	0.	0.
340 350	0.	0•	0.
350 360	0.	0.	0.
360 370	0,	0.	0.
370 380	0.	0.	0.
380 390	0.	0.	0.
390 400	0.	0.	0.
400 410	0.	0.	0.
410 420	0.	0.	0.
420 430	4.6750E-02	1.3638E-01	7.3325E 00
430 440	4.9750E-02	1.4179E-01	7.0524E 00
440 450	5.3250E~02	1.4836E-01	6.7404E 00
457 460	5.7500E-02	1.566 8 E-01	6.3824E 00
460 470	6.1750E-02	1.6464E-01	6.0739E 00
470 480	6.5500E-02	1.7096E-01	5.8492E 00
480 490	6-8750E-02	1.75758-01	5.6900E 00
490 500	7.1000E-02	1.7783E-01	5.6233E 00
500 510	7.2750E-02	1.7861E-01	5.5989E 00
510 520	7.4000E-02	1.7815E-01	5.6133E 00
520 530	7.4000E-02	1.7475E-01	5.7223E 00
530 540	.2750E-02	1.6859E-01	5.9315E 00
540 550	7.0750E-02	1.6095F-01	6.2132E 00
550 560	6.8000E-02	1.51916-01	6.5831E 00
560 570	6.5000E-02	1.4263E-01	7.0110E 00
570 580 500 500	6.2750E-02 6.0000E-02	1.3530E-01	7.3909E 00
580 590 500 400	OTTOTOL OF	1.2716F-01	7.8641E 00
590 600 400 610	5.6500E~02	1.1773E-01	8.4940E 00
600 610	5.3500E-02	1.09645-01	9.1211E 00
610 620	5.1250E-02	1.0332E-01	9.6789E 00
620 630	4.8500E-02	9.6210E-02	1.0394E 01
630 640 640 650	4.5250E-02 4.250CE-02	8.8349E-02	1.13198 01
650 660	4.0000E-02	8.1693E-02 7.5714E-02	1,2241E 01 1.320eE 01
660 670	3.8000E-02	7.0846E-02	1.4115E 01
670 680	3.5850E-02	5.5848E-02	1.51878 01
680 690	3.4100E-02	6.1719E-02	1.6202E 01
690 760	3.2500E-02	5.79775-02	1.7248E 01
700 710	3.1250E-02	5.4956E-02	1.81965 01
710 720	3.0350E-02	5.26276-02	1.9002F 01
720 730	2.9200E-02	4.9935E-02	2.00268 01
730 740	2.8100E-02	4.7400E-02	2.10978 01
	* * O *	10 1 10 VE	**************************************

R. GEBEL, H. SPIEGEL, H. MESTHEROT AND R. HAYSLETT INTERSIFIER MATCHING PROBLEMS TABLE, 11 O. CONTINUED.

	CTRAL	S-25T2			
	ERVAL A; 10 A2	STPC	St 7t PC		
	*m] *	[AW-I]	[electrons quantum ⁻¹]	[quantum el-ctmn-1]	
730	740	2.8100E-02	4.7400E-02	2.1097E C1	
740	750	2.6850E-02	4.4683E-02	2.2380E 01	
750	760	2.5700E-02	4.2203E-02	2.3695E 01	
760	770	2.4850E-02	4.0274E-02	2.4830E 01	
7 70	780	2.3750E-02	3.7994E-02	2.6320E 01	
780	790	2.2500E-02	3.5536E-02	2.8140E 01	
790	800	2.1500E-02	3.3530E-02	2.9824E 01	
800	810	2.0350E-02	3.1342E-02	3.1906E 01	
810	820	1.9100E-02	2.9055E-02	3.4417E 01	
820	830	1.7500E-02	2.6299E-02	3.8024E 01	
830	840	1.5600E-02	2.3163E-02	4.3172E 01	
840	850	1.2350F-02	1.8120E-02	5.5187E 01	
850	860	8.2500E-03	1.1963E-02	8.3590E 01	
860	870	4.9500E-03	7.0949E-03	1.4095E 02	
870	880	2.4500E-03	3.4715E-03	2.8806E 02	
880	890	1.1500E-03	1.6111E-03	6.2071E 02	
890	900	6.0000E-04	8.3116E-04	1.2031E 03	
900	910	0.	0.	0.	
910	920	0.	0.	0.	
920	930	0.	0.	0.	
930	940	0.	0 %	0.	
940	950	0.	0.	0.	
950	960	0.	0.	0.	
960	970	0.	0.	0.	
970	980	0.	0.	0.	
980	990	0.	0.	0.	
990	1000	0.	0.	0.	
1000	1010	0.	0.	0.	
	1020	0.	0.	0.	
1020	1030	0.	0.	0.	
1030		0.	0.	0.	
1040	1050	0.	0.	0.	
1050		0.	0.	0.	
1060		0.	0.	0.	
1070		0.	0.	0.	
1080	1090	0.	0.	0.	

EFFECTIVE INTERVAL

420 900

8.7741E-02

R GEBEL, H SPIEGEL, H RESTWERDT AND R. HATSLETT INTERSTIFIER MATCHING PROBLEMS TABLE. 12. NORMALIZED EFFICIENCY VALUES, ξ_L^{\dagger} , FOR FILMS

SPECTRAL INTERVAL Ai	KODAK	ROYAL-X	KODA	K TRI-X
λ ₁ to λ ₂ [10 ⁻⁹ m]	ξ [†] , R, Q3	ξ', κ, ιο	ξ [†] _{C,T,03}	ξ [†] ,τ,ιο
250 260	0.4035	0.1637	0.7365	0.2480
260 270	0.3535	0.1212	0.7172	0.2271
270 280	0.2894	0.0779	0.6220	0.1711
280 290	0.2966	0.0732	0.5679	0.1602
290 300	0.4144	0.1346	0.6014	0.2078
30C 310	0.5520	0.3222	0.6765	0.2873
310 320	0.6212	0.4044	0.7335	0.3410
320 330	0.6915	0.4871	0.7623	0.3826
330 340	0.7619	0.6010	0.7745	0.4651
340 350	0.8390	0.7518	0.8140	0.5835
350 360	0.9363	0.9127	0.1.876	0.7139
360 370	1.0000	1.0000	0.9582	0.8383
370 380	0.9733	0.9848	1.0000	0.9167
380 390	0.9268	0.9593	0.9854	0.9683
390 400	0.9136	0.9567	0.9388	1.0000
400 410	0.9117	0.9439	0.8844	0.9983
410 420	0.8897	0.9212	0.8242	0.9630
420 430	0.8588	0,8995	0.7776	0.9297
430 440	0.8202	0.8688	0.7337	0.8874
440 450	0.7570	0.6202	0.6929	0.8284
450 460	0.6993	0.7560	0.6239	0.7647
460 470 470 480	0.6303	0.7158	0.5448	0.6816
480 490	0.5366	0.6456	0.4630	0.5947
490 500	0.4418 0.3691	0.5636 0.5162	0.3867	0.5191
500 510	0.3305	0.5059	0.3138 0.2696	0.4478
510 520	0.3204	0.5307	0.2644	0.3964 0.3801
520 530	0.3327	0.5905	0.2746	0.3772
530 540	0.3619	0.6653	0.2952	0.3957
540 550	0.3943	0.7338	0.3286	0.4460
550 560	0.4246	0.7901	0.3705	0.4920
560 570	0.4521	0.8322	0.4134	0.5241
570 580	0.4548	0.8467	0.4161	0.5273
580 590	0.4369	0.8322	0. 2772	0.5123
590 600	0.4198	0.7903	0.3507	0.5095
600 610	0.3940	0.7248	0.3370	0.4720
610 620	0.3661	0.6346	0.3050	0.4244
620 630	0.3119	0.5372	0.2775	0.3988
630 640	0.1620	0.2651	0.2731	0.3925
640 650	0.0362	0.0643	0,2720	0.4046
650 660	0.	0.	0.2802	0.4219
660 670	0.	0.	0.2953	0.4552
670 680	0.	0.	0.3019	0.4/58
680 690	0.	0.	0.2405	0.3887
690 700	0.	0.	0.1142	0.1863
700 710	0.	0.	0.0378	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	C.
730 740	0,	0.	0.	0.

TABLE 13A. NORMALIZED EFFICIENCY VALUES, $\xi_{\rm p}^{\rm t}$, FOR PHOSPHOR SCREENS.

SPECTRAL INTERVAL A	P-4	P-II	P-16	P-20
λ_i to λ_2 [10 ⁻⁹ m]	ξ,,,	€°	E'ne,J	€ PEO, J
250 260	0.	0.	0.	0.
260 270	0.	0.	J.	0.
270 280	0.	0.	0.	٥.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330 330 340	0. 3.	0,	0.	0.
330 340 340 350	0.	0.	0.	0.
350 360	0.	0. G.	0.	0.
360 370	0.	0.0143	0.4051	0.
370 380	0.0467	0.0255	0.7722 3.9557	0. 0.
330 390	0.0824	0.0462	1.0000	0.
390 400	0.1444	0.0809	0.9620	0.
400 410	0.2756	0.1511	0.8101	0.
410 420	0.5249	0.2702	0.5949	0.
420 430	0.8005	0.4574	0.3924	0.
430 440	0.9659	0.7021	0.2215	0.
440 450	1.0000	0.9043	0.1165	0.
450 460	0.9029	1.0000	0.0595	0.
460 470	0.7264	1.0000	0.	0.
470 480	0.5722	0.9255	0.	0.0494
480 490	0.4829	0.8128	0.	C.0887
490 500	0.4383	0.6557	0.	0.1642
500 510	0.4436	0.5638	0.	J.3057
510 520	0.4934	0.4319	U.	0.5019
520 530	0.5617	0.3234	0.	0.5981
530 54'	0.6404	0.2277	0.	0.8491
540 550	J.7192	0.1511	0.	0.9434
550 560	0.7874	0.0979	0.	1.0000
560 570	0.8294	0.0649	0.	1.0000
570 560	0.8346	0.0417	0.	0.9358
580 590	0.7979	0.0243	0.	0.8151
590 600	0.7034	0.0149	0.	0.6906
600 610	0.5617	0.0096	0.	0.5736
610 620	0.4252	0.	0.	0.4528
620 630	0.3202	0.	0.	0.3547
630 640	0.2362	0.	0.	0.2717
640 650	0.1759	0.	0.	0.2075
650 660	0.1339	0.	0.	0.1456
660 670	0.0976	0	0.	0-11/0
570 680 680 690	0.0698	o.	0.	0.0906
680 690 690 700	0.0520 0.0383	0. 0.	0,	0.0683
700 710	0.0273	0.	0. 0.	0.0498
710 720	0.0273	0.	0.	0.0362
720 730	0.	0.	0.	0.0257 0.0174
730 740	0.	0.	0.	0.0174

R. GEBEL, M. SPIEGEL, M. MESTWERDT AND R. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE ISB. NORMALIZED EFFICIENCY VALUES, & FOR PHUPHOR SCREENS

SPECTRAL INTERVAL	P-22B	P-226	P-22R	P-3i
λ_i to λ_z $\left[10^{-9} \text{ m}\right]$	ξ [†] _{P 228,J}	E'peze,	۠ PREM,#	E'sı,.
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310 310 320	0.	0.	0.	0.
310 320 320 330	0. 0.	0. 0.	0. 0.	0. 0.
330 340	0.	0.	0.	0.
340 350	0.	ŏ.	0.	ŏ.
350 360	0.	0.	0.	0.
360 370	0.0177	0.	0.	0.
370 380	0.0303	0.	0.	0.
380 390	0.0526	0.	0.	0.0138
390 400	0.0918	0.	0.	0.0251
400 410	0.1711	0.	0.	0.0518
410 420	0.3093	0.	0.	0.1056
420 430	0.5052	0.0139	0.	0.1984
430 440	0.7629	0.0223	0.	0.3233
440 450 450 460	0.9794 1.0000	0.0356 0.0584	0. 0.	0.4344 0.4911
460 470	0.8041	0.0992	c.	0.4844
470 480	0.5309	0.1658	0.	0.4733
480 490	0.3289	0.2826	0.	0.5400
490 500	0.2103	0.4783	0.	0.6778
500 510	0.1320	0.7255	0.	0.8556
510 520	0.0794	0.9158	0.	0.9889
520 530	0.0485	1.0000	0.	1.0000
530 540	0.0291	0.9864	0.	0.9333
540 550	0.0163	0.8832	0.	0.7556
550 560	0.	0.7609	0.0312	0.5333
560 570	0.	0.6250	0.0656	0.3778
570 580 580 590	0.	0.4755	0.1353 0.2317	0.2667 C.1867
590 600	0.	0.3696 0.2935	0.3486	0.1267
600 610	0.	0.2201	0.4954	0.0844
610 620	0.	0.1603	0.6330	0.0578
620 630	0.	0.1182	0.7431	0.0409
630 640	0.	0.0883	0.8349	0.0284
640 650	0.	0.0666	0.9174	0.0204
650 660	0.	0.0497	0.9771	0.0147
660 670	0.	0.0375	1.0000	0.0107
670 680	0.	0.0291	1.0000	0.
680 690	0.	0.0226	0.9771	0.
690 700	0.	0.0171	0.9312	0.
700 710	0.	0.	0.8624	0.
710 /20 720 73 0	0.	0.	0.7706 C.6789	0. C.
730 740	0. J.	0. 0.	0.0109 0.	0.
130 140	0.	U •	174	U •

R. GEBEL, H. SPIEGEL, H. MESTWERD) AND R. MAYSLETT INTERSEFIER MATCHING PROBLEMS

TABLE. 14A. NORMALIZEU EFFICIENCY VALUES, ξ_p^t , FOR PHOSPHOR SCREENS.

SPECTRAL INTERVAL A;	P-4	P-11	P-16	P-20
λ_i to λ_g [10^{-9} m]	£,4,0	E'ni,a	E'ma,a	€ p20, 0
250 260	0.	0.	C.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
780 290	0.	0.	0.	0.
290 3 00	0.	9.	0.	0.
30G 310	0.	0.	0.	0.
310 320	0.	0 -	G.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.3735	0.
360 370	0.	0.0112	0.7320	0.
370 380	0.0365	0.0206	0.9309	0.
380 390	0.0661	0.0382	1.0000	0.
390 400	0.1188	0.0687	0.9870	0.
400 410	0.2326	0.1316	0.8522	0.
410 420	0.4539	0.2412	0.6413	0.
420 430	0.7089	0.4181	0.4332	0.
430 440	0.8755	0.6568	0.2503	0.
440 450	0.9272	0.8554	0.1346	0.
450 460	0.8560	0.9785	0.0703	0.
460 470	0.7019	1.6000	0.	0.
470 480	0.5663	0.9454	0.	0.0416
480 490	0.4881	0.8477	0.	0.0761
490 500	0.4521	0.7406	0.	0.1438
500 510	0.4667	0.6123	0.	0.2732
510 520 520 530	0.5295	0.4784	0. 0.	0.4575 0.5487
520 530 530 540	0.6144 0.7139	0.3551	0.	0.8040
540 550	0.8167	0.2619 0.1771	0.	0.9100
550 560		0.1168	0.	0.9823
560 570	0.9106 0.9764	0.0788	· ·	1.0000
570 530	1.0000	0.0516	0.	0.9524
580 590	0.9726	0.0305	0.	0.8439
590 600	0.6721	0.0191	0.	0.7272
600 610	0.7081	0.0125	0.	0.6142
610 620	0.5449	٥.٠٠	Ŏ.	0.4929
620 630	0.4170	0.	0.	0.3924
630 640	0.3126	ŏ.	0.	0.3054
640 650	0.2363	0.	Ů.	0.2369
650 660	0.1827	Ŏ.	0.	0.1815
660 670	0.1353	0.	0.	0.1377
670 680	0.0982	0.	0.	0.1082
680 690	0.0742	0.	0.	0.0928
690 700	0.0555	0.	0.	0.0613
700 710	0.0401	0.	0.	0.0452
710 720	0.	0.	0.	0.0125
720 730	0.	0.	0.	0.0423
730 740	0.	0.	0.	0.

TABLE. 14B. NORMALIZED EFFICIENCY VALUES, ξ_p^t , FOR PHOSPHOR SCREENS.

SPECTRAL. INTERVAL	P-228	P-22G	P-22R	P-3I
λ_1 to λ_2 $\left[10^{-9} \text{ m}\right]$	€, P228,0	€ [†] _{P220,Q}	Epzza,q	E' PSI, Q
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	C.	0.	0.
28 0 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0 .	0 •	0.	0.
320 330	0.	0.	0.	0.
330 340	ŋ .	0.	0.	0.
340 350	0.	0.	0	0.
350 360	J.	0,	0.	0.
360 370	0.0142	0.	0.	0.
370 380	0.0250	0.	0.	0.
380 390	0.0445	0,	0.	0.0101
390 400	0.0797	3.	U •	0.0189
400 410	0.1523	9.	0.	0.0399
410 420	0.2821	0.	0.	0.0834
420 430	0.4718	0.0112	0.	0.1610
430 440	0.7294	0.0184	0.	0.2679
440 450	0.9579	0.0300	0.	0.3692
450 460	1.0000	0.0504	0.	0.4250
460 470	0.8218	0.0874	0.	0.4291
470 480	0.5543	0.1492	0.	0.4283
480 490	0.3505	0.2597	0.	0.4989
490 500	0.2288	0.4486	0.	0.6390
500 510	0.1465	0.6943	0.	0.8230
510 520	0.0898	0.8937	0.	0.9701
520 530	0.0559	0.9948	0.	1.0000
530 540	0.0342	1.0000	0.	0.9511
540 550	0.0195	0.9121	0.	0.7843
550 560 540 570	0.	0.8002	0.0256	0.5638
560 570	0.	0.6691	0.0549	0.4066
570 580	U.	0.5181	0.1153	0.2921
580 590	0.	0.4097	0.2008	0.2080
590 600	0.	0.3309	0.3073	0.1436
600 610	0.	0.2523	0.4440	0.0973
610 620	0.	0.1868	0.5768	0.0677
620 630	0.	0.1400	0.6881	0.0487
630 640	0,	0.1063	0.7854	0.0344
640 650	0.	0.0814	7678.0	0.0251
650 5e0	0.	0.0617	0.9481	0.0183
660 670 670 680	0.	0.0473	0.9852	0.0135
680 690	0.	0.0372	1.0000	0.
	0.	0.0293	0.9915	0.
570 760 00 710	०	0.0225	0.9588	0.
710 720	0.	0. 0.	0.9007	0.
720 730	0.	o.	0.8163 0.7292	0.
730 740	0.	0.		
170 F#0	U •	∵ •	0.	0.

TABLE 15A. NORMALIZED EFFICIENCY VALUES, ξ_8^{\dagger} , FOR PHOTOCATHODES.

SPECTRAL. INTERVAL.	\$-1	\$-20	\$-20R	\$ - 25
λ, to λg		•		
[10 ⁻⁹ m]	€,	(vec	E'snok	ξ' ₉₂₅
250 260	0.	0.	U c	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	U •
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.2790	0.2790	0.3461
310 320	0.3920	0.4803	0.4803	0.5483
320 330	0.6016	0.6110	0.6110	0.6791
330 340	0.7833	0.7244	0.7244	0.7734
340 350	0.9246	0.7948	0.7948	0.8344
330 360	1.0000	0.8434	0.8434	0.8920
360 370	0.9585	0 9067	0.9067	0.9464
370 380	0.8095	0.9665	0.9665	0.9595
380 390	0.6281	C.9906	0.9906	0.9595
390 400	0.4429	0.9934	0.9934	0.9717
400 410	0.2922	1.0000	1.0000	0.9951
410 420	0.1822	0.9949	0.9949	1.0000
420 430	0.1259	0.9789	0.9789	0.9878
430 440	0.1064	0.9419	0.9419	0.9651
440 450	0.0983	0.8995	0.8995	0.9326
450 460	0.0939	0.8624	0,8624	0.8963
460 470	0.0918	0.8100	0.8100	0.8615
470 480	0.0921	0.7597	0.7597	0.8333
480 490 490 500	0.0960	0.7278	0.7278	0.8013
490 500 500 510	0.1024	0.6908	0.6908	0.7657
510 520	0.1080	0.6491	0.6678	0.7315
520 530	0.1139	0.6089	0.6487	0.7034
530 540	0.1205	0.5733	0.6123	0.6808
540 550	0.1279 0.1359	0.5390	0.5773	0.5546
550 560	0.1455	0.5031 0.4713	0.5378	0.6250
560 570	0.1557	0.4463	0.4997 0.4752	0.5982 0.5757
570 580	0.1655	0.4166	0.4495	0.5757
580 590	0.1768	0.3825	0.4148	0.5314
590 600	0.1902	0.3549	0.3814	0.5096
600 610	0.1998	0.3308	0.3595	0.4869
610 620	0.2091	0.3075	0.3382	0.4618
620 630	0.2181	0.2824	0.3127	0.4375
630 640	0.2269	0.2581	0.2904	C.4155
640 650	0.2393	0.2345	0.2663	0.3979
650 660	0.2514	0.2117	0.2406	0.3809
660 670	0.2592	0.1882	0.2251	0.3643
670 680	0.2706	0.1667	0.2125	0.3483
680 690	0.2817	0.1486	0.1932	0.3257
690 700	0.2872	0.1292	0.1723	0.3037
700 710	0.2941	0.1104	0.1565	0.2858
710 720	0.2986	0.0957	0-1411	0.2684
720 730	0.3051	0.0804	0.1239	0.2515
730 740	0.3150	0.0650	0.1093	0.2380
				-

TABLE 15A. CONTINUED

SPECTRAL INTERVAL	8-1	S-20	S-20R	\$ 40 " 5
Ai	J - 1	3	9-6.00	3.00
λ_1 to λ_2 $\left[10^{-9} \text{ m}\right]$	€,	ξ ¹ , 20	E sron	€
730 740	0.3150	0.0660	0.1093	2383
740 750	0.3211	0.0542	0.0973	0.2254
750 760	0.3223	0.0426	0.0872	. 2097
760 770	0.3215	0.0334	0.0770	.1944
770 780	0.3206	0.0252	0.0675	Jul 1795
780 790	0.3198	0.0181	0.0586	0.1650
790 800	0.3171	0.0131	0.0500	0.1448
800 810	0.3113	0.	0.0423	0.1281
810 820	0.3049	0.	0.0348	0.1177
920 830	0.3000	0.	0.0275	0.1047
830 840	0.2945	0.	0.0215	0.0919
840 850	0.2880	0	0.0160	0.0801
850 860	0.2798	0.	0.0114	0.0696
860 870	0.2706	0.	0.0077	0.0610
870 880	0.2587	0.	0.0047	0.0526
880 890	0.2459	0.	0.	0.0445
890 900	0.2345	0.	0.	0.0375
900 910	0.2217	0.	3.	0.0313
910 920	0.2069	0 8	0.	U.0257
920 930	0.1908	Ç	0.	0.0213
930 940	0.1761	ن.	0.	0.0174
940 950	0.1606	0.	0	0.0132
950 960 960 970	0.1455	0.	0.	0.0095
970 980	0.1322	0.	0.	0.0065
980 990	0.1182 0.1045	0.	0.	0.0039
990 1000		0.	0,	0.
1000 1010	0.0920	9.	0.	0.
1010 1020	0.0806 0.0687	0. C.	0.	0.
1020 1030	0.0575	0.	0. 0.	0.
1030 1040	0.0485	0.	0.	0. 0.
1040 1050	0.0411	0.	0.	0.
1050 1060	0.0349	0.	0.	0.
1060 1070	0.0295	0.	0.	0.
1070 1080	0.0249	0.	0.	0.
1080 1090	0.0209	0.	0.	0.
200 2070	0.0207	V.	0.	V •

R. GEBEL, H. SPIEGEL, H. MESTWERDT AND R. HAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE. 15B. NORMALIZED EFFICIENCY VALUES, ξ^{\dagger} , FOR PHOTOCATHODES.

SPECTPAL INTERVAL A _i	S-25HI	VARO	S-4	S-II
λ_1 to λ_2 $\left[10^{-9} \text{ in }\right]$	ξ ¹ 8 2 5 MI	ξ ¹ VARO	ξ,	ξ _{\$}
250 260	0.	0.	v •	0.
260 270	0.	0.	0.	0•
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0•
290 300	0.	v.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.4638	0.
320 330	0.	0.	0.7395	0.1621
330 340	0.	0.	0.8932	0.4004
340 350	0.	0.	0.9425	0.6690
350 360	0.	0.	0.9690	0.8342
360 370	0.	0.	0.9877	0.9306
370 380	0.	0.	0.9990	0.9755
380 390 390 400	0.	0. 0.	1.0000 0.9866	0.9841 0.9922
390 400 400 4 1 0	0.	0.1702	0.9657	1.0000
410 420	0.	0.2293	0.9391	0.9969
420 430	0.	0.2920	0.9114	0.9939
430 440	1.0000	0.3645	0.8829	0.9811
440 450	0.9146	0.4493	0.8472	0.9530
450 460	0.8377	0.5455	0.8078	0.9214
460 470	0.7827	0.6524	0.7651	0.8897
470 480	0.7435	0.7257	0.7193	0.8526
480 490	0.7166	0.7818	0.6704	0.8081
490 500	0.6978	0.8496	0.6140	0.7566
500 510	0.6993	0.9011	0.5552	0.6985
510 520	0.7318	0.9371	0.5078	0.6342
520 530	0.7629	0.9718	0.4578	0.5806
530 540	3.7688	0.9923	0.4008	0.5291
540 550	0.7587	0.9994	0.3459	0.4635
550 560	0.7450	1.0000	0.2929	0.3923
560 570	0.7280	0.9945	0.2460	0.3276
570 580	0.6929	0.9892	0.2008	0.2727
580 590	0.6479	0.9841	0.1595	0.2196
590 600	0.6153	0.9791	0.1220	0.1683
600 610	0.5852	0.9743	0.0880	0.1209
610 620	0.5497	0.9697	0.0598	0.0793
620 630	0.5155	0.9652	0.0392 0.0260	0.0502 0.0302
630 640	0.4890	0.9609 0.9567		0.0169
640 650 650 660	0.4714 0.4563	0.9526	0. 0.	0.0100
660 670	0.4391	0.9486	0.	0.0100
670 680	0.4192	0.9448	0.	0.0086
680 690	0.3993	0.9411	0.	0.0098
690 700	0.3793	0.9424	0.	0.0055
700 710	0.3543	0,9486	0.	0.0032
710 720	0.3265	U.9545	0.	0.0026
720 730	0,2958	0.9510	0.	0.
730 740	0.2701	0.9390	0.	0.

R. GABEL, H. SPIEGEL, H. MESTWERDT AND R. HAYSLETT ENTERSIFIER MATCHING PROBLEMS

TABLE, 15B. CONTINUED

	ECTRAL TERVAL	S-25HI	VARO	5-4	S-11
"	A				"
,	10 λ ₂	ξ [†] 8.25HI	E [†]	ξ [†]	€ t
730	740	0.2701	0.9380	0.	0.
740	750	0.2544	0.9254	0.	0.
750	760	0.2390	0.9132	0.	0.
760	770	0.2258	0.8922	0.	0.
770	780	0.2151	0.8629	0.	0.
780	790	0.2052	0.8431	0.	0.
790	800	0.1950	0.8282	0.	0.
800	810	0.1798	0.8136	0.	0.
810	820	0.1638	0.7910	0.	0.
820	830	0.1488	0.7563	0.	0
830	8 · J	0.1315	0.7060	0.	0-
840	850	0.1147	0.6364	0.	0.
850	860	0.0992	0.5241	0.	0.
860	870	0.0841	0.3627	0.	0.
870	880	0.0679	0.2443	0.	0.
880	890	0.0506	0.1753	0.	0.
890	900	0.0303	0.0963	0.	0.
900	910	0.	0.0381	0.	0.
910	920	0.	0.0166	0•	0.
920	930	0.	0.0067	0.	0.
930	940	0.	0.	0.	0.
940	950	0.	0.	0.	0.
950	960	0.	0•	0.	0.
960	970	0.	0.	0.	0.
970	980	0.	0.	0.	0.
980	990	0.	0.	0.	0.
	1000	0.	0.	0.	0.
	1010	0.	0.	0.	0.
	1020	0.	0.	0.	0.
	1030	0.	0.	0.	0.
	1040	0.	0.	0.	0.
	1050	0.	0.	0.	0.
	1060	0.	0.	0.	0.
	1070	0.	0.	0.	0.
	1080	0.	0.	0.	0.
1080	1090	0.	0.	0.	0.

TABLE ISC. NORMALIZED EFFICIENCY VALUES, & FOR PHOTOCATHODES.

SPECTRAL INTERVAL A	S-17	VARIAN	5-20IF	GaAs
λ_1 to λ_2 [10 ⁻⁹ m]	€,	E MRIAN	ξ ¹ _{szαr}	ξ [†] ••Α•
250 260	0.	0.	0.	0.
260 270	0.	J.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.2275	0	0.	0.
290 300	0.4360	0.	0.	0.
300 310	0.6494	0.	0.	0.
310 320	0.8003	0.	0.	0.
320 330	0.9182	0.	0.	0.5199
330 340 340 350	0.9752	0.	0.	0.7135
340 350 350 360	0.9917	0.	0.	0.9600
350 360 360 370	1.0000 0.9937	0. C.	0. 0.5120	0.9345 0.9822
370 380	0.9741	0.	0.3797	1.0000
380 390	0.9555	0.	0.3699	0.9954
390 400	0,9443	0.	0.4055	0.9859
400 410	0.9337	0.8909	0.4560	0.9717
410 420	0.9236	0.9588	0.5361	0.9582
420 430	0.9200	0.9918	0.6334	0.9405
430 440	0.5166	1.0000	0.7570	0.9189
440 450	0.9134	0.9775	0.9000	0.8983
450 460	0.9103	0.9338	0.9877	0.8785
450 470	0.9017	0.8920	1.0000	0.8596
470 480	9.8936	0.8590	0.9555	0.8415
480 490	0.8805	0.8204	0.8120	0.8242
490 500	0.3627	0.7760	0.5439	0.8075
500 51.0	0.8456	0.7345	0.2555	0.7915
510 520	0.8242	0.7006	0.0950	0.7762
520 530	0.7840	0.6680	0.0460	0.7575
530 540	0.7309	0.6303	0.0308	0.7394
540 550	0.6561	0.5940	0.0308	0.7221
550 560 540 570	0.5562	0.5651	0.0441	0.7054
560 570 570 580	0~4280	0.5371	0.0709	0.6892
580 590	0.3042 9.2111	0.5043 0.4784	0.0987 0.1198	0.6(01
390 590 390 600	0.1394	0.4534	0.1402	0.6516 0.6337
600 610	0.0961	0.4292	0.1618	0.6164
610 620	0.0694	0.4057	0.1827	0.5964
630 630	0.0523	0.3831	0.2011	0.5769
630 640	0.0417	0.3664	0.2190	0.5613
640 650	0.0327	0.3451	0.2380	0.5463
650 660	0.0228	0.3243	0.2531	0.5285
660 670	0.0143	0.3093	0.2660	0.5050
670 680	0.0103	0.2947	0.2769	0.4792
680 590	0.	0.2355	0.2891	0.4602
690 700	0.	0.2669	0.2977	0.4417
700 710	0.	0.2439	0.2998	0.4238
710 720	0.	0.2311	0.2956	0.4034
720 730	0.	0.2186	0.2354	0.3808
730 740	0.	0.2065	0.2664	0.3588

R. GEDEL, H. SPIEGEL, M. MESTWERDT AND N. HAYSLETT INTENSIFIER MATCHING PROBLEMS

TABLE ISC. CONTINUED

INT	CTRAL ERVAL Ai	\$-17	VARIAN	\$-20IF	GoAs
λ ₁		ξ [†] 817	E [†] VARIAN	€° ezoiF	ξ [†] _{BaAs}
730	740	0.	0.2065	0.2664	0.3588
740	750	0.	0.1946	0.2389	0.3.91
750	760	0.	0.1813	0.2092	0.3024
760	770	0.	0.1675	0.1774	0.280;
770	780	0.	0.1549	0.1407	0.2579
780	790	0.	0.1426	0.1049	0.2362
790	800	0.	0.1315	0.0784	0.2125
800	810	ð.	0.1198	0.	0.1945
810	820	0.	0.1043	0.	0.1795
820	830	0.	0.0883	0.	0.1623
830	840	0.	0.0727	0.	0.1456
840	850	0.	0.0575	0.	0.1292
850	860	0.	0.0442	0.	0.1133
860	870	0.	0.0324	0.	0.0977
870	880	0.	0.0220	0.	0.0871
880	890	0.	0.0130	0.	0.0768
890	900	0.	0.0068	0.	0.0645
900	910	0.	0.	0.	0.0546
910	920	0.	0.	0.	0.0450
920	93C	0.	0.	0.	0.0379
930	940	0.	0.	0.	0.0309
940	950	0.	0.	0.	0.0218
950	960	0.	0.	0.	0.0151
960	970	0.	0.	0.	0.0085
970	980	0.	0.	0.	0.
980	990	0 。	C .	0.	0.
	1000	0.	0.	0.	0.
	1010	0.	0.	0.	0.
	1020	0.	0.	0.	0.
	1030	0.	0.	0.	0.
1030		0.	0.	0.	0.
1040		0.	0.	0.	0.
1050		0.	0.	0.	0.
	1070	0.	0.	0.	0.
	1080	0.	0.	0.	0.
1010	1090	0.	0.	0.	0.

R. GEBEL, H. SPIEGEL, M. MESTW RDT AND R. WAYSLETT INTERSIFIER MATCHING PROBLEMS

TABLE. 15D. NORMALIZED EFFICIENCY VALUES, & FOR PHOTOCATHODES.

SPECTRAL INTERVAL Ai	S-25H2	VARO	S-25TI	S-25T2
$\begin{bmatrix} \lambda_1 & t_0 & \lambda_2 \\ 10^{-9} & m \end{bmatrix}$	ξ [†] 5 35 H2	Et VARG	ξ [†] sasti	ξ _{828 72}
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350 350 360	0.	0.	0.	0.
350 360 340 370	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380 380 300	0•	0.	0.	0.
380 390 390 400	0.	0.).	0.
400 410	0. 0.	0.	0.	0.
410 420	0.	0.1702 0.2293	0.	0.
420 430	0.	0.2920	0.	0.
430 440	0.3910	0.3645	0.9769 0.9871	0.7636
440 450	0.4648	0.4493		0.7439
450 460	0.5617	0.5455	0.9969 1.0000	0.8306
460 470	0.6643	0.6524	0.9907	0.8772 0.9218
470 480	ŭ₁ 7393	0.7257	0.9663	0.9572
480 490	0.7999	0.7818	0.9346	0.9840
490 500	0.8580	0.8496	0.8985	0.9957
500 510	0.9029	0.9011	0.8638	1.0000
510 520	0.9264	0.9371	0.8338	0.9974
520 530	0.9403	0.9718	0.8017	0.9784
530 540	0.9554	0.9923	0.7707	0.9439
540 550	0.9631	0.9994	0.7409	0.9011
550 560	0.9623	1.0000	0.7091	0.8505
560 570	0.9665	0.9945	0.6815	0.7986
570 580	0.9736	0.9892	0.6578	0.7575
580 590	0.9837	0.9841	0.6271	0.7127
590 600	0.9950	0.9791	0.5946	0.459
600 610	0.9998	0.9743	0.5706	0.6138
610 620	1.0000	0.9697	0.5456	0.5785
620 630	0.9987	0.9652	0.5114	0.5387
630 640	0.9989	0.9609	0.4783	0.4947
640 650	0.9991	0.9567	0.4532	0.45/4
650 660	0.9993	0,9526	0.4246	0.4239
660 670	0.9967	0.9486	0.3994	0.3967
670 680	0.9887	0.9448	0.3766	0.3687
687 690	0.9810	0.9411	0.3504	0.3456
69(700 700 71	0.9735	0.9424	0.3290	0.3246
700 710	0.9662	0.9486	0.3138	0.3077
710 720	0.9553	0.9546	0.2999	0.2947
720 730	0.9396	J.9510	0.2840	0.2796
730 740	0.9255	0.9380	9.2701	0.2654

TABLE, ISD. CONTINUED

SPECT	TAL.	\$-25H2	VARO	\$-25TI	S-25T2
λ, 10	λ	€¹ ezenz	E [†]	€ [†] agati	€ 1 82572
730 740 750 760 770 780 790 800 810 820 830 840 850 860 870 880 900 910 920 930 940 950 960 970 980	740 750 760 770 780 790 800 810 820 830 840 850 860 910 920 930 940 950 950 970 980 990	0.9255 0.8958 0.8584 0.8219 0.7769 0.7249 0.6841 0.5989 0.5531 0.4363 0.3623 0.2880 0.2217 0.1548 0.	0.9380 0.9254 0.9132 0.8922 0.8629 0.8431 0.8282 0.8136 0.7910 0.7553 0.7060 0.6364 0.5241 0.3627 0.2443 0.1753 0.0963 0.07560 0.0166 0.0067	0.2701 0.2550 0.2388 0.2268 0.2128 0.1992 0.1874 0.1724 0.1584 0.1294 0.1144 0.0945 0.0677 0.0403 0.0238 0.0153 0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.2654 0.2502 0.23; 0.27
1000 1 1010 1 1020 1 1030 1 1040 1 1050 1 1060 1	000 010 020 030 040 050 060 070 080	0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0.	0. 0. 0. 0. 0. 0.

R. GUBEL, M. SPIEGEL, H. MESTWERDT AND R. MAYSLETT INTERSIFIER MATCHING PROPLERS

Abbreviations used in Tables 16 to 27C

Abbreviation	Definition
NF	Normalization Factor
ROYAL X	Kodak Royal-X Pan
D=0.3	Density above fog v_{Δ} = 0.3
D=1.0	Density above fog D_{Δ} = 1.0
TRI X	Koqak Tri-X Pan
LAMBDA	Spectral Interval Λ_i in 10^{-9} m
RX-0.3	Kodak Royal-X Pan with density above fog $D_{\Lambda} = 0.3$
RX-1.0	Kodak Royal-X Pan with density above fog D_{Δ} = 1.0
TX-0.3	Kodak Tri-X Pan with density above fog D_{Δ} = 0.3
TX-1.0	Kodak Tri-X Pan with density above fog D_{Λ} = 1.0
P-4 RY-0.3	Combination phospher P-4 with film kodak Royal-X
	Pan density above fog $D_{\Delta} = 0.3$
P-4 S-1	Combination phosphor P-4 with photocathode S-1
Phosphor	Phosphor Screen

TABLE 16.

NORMALISATION FACTORS (NF)

FOR

		FILM [GRAINS/QUANTUM]	.	v
	ROYAL	F	TRI D≖0 ³	X D=1.0
NF	D*0.3 1.0554E-02	2.2907E-03	2.9643E-03	1.0366E-03
		PHOSPHOR JOULES/ELECTRON		
	P-4	P-11	P-16	P-20
NF	1.5260E-17	3.7649E-17	1.26578-17	2.1226E-17
Nr	P-22B	r-22G	P-22R	P-31
NF	3.8851E-17	2.9479E-17	1.7463E-17	3.6047E-17
		PHOSPHOR QUANTA/ELECTRON		
	P-4	P-11	P-16	P-20
	3.6870E 01	a.8138E 01	2.4532E 01	6.0382E 01
NF	P -228	P-22G	P-22R	P-31
NF	8.8995E 01	7.8320E 01	5.9344E 01	9.52768 01
		PHOTOCATHODE ELECTRONS/QUANTE	ML	
	5-1	S-20	S-20R	S-25
NF	1.2049E-02	1.9669E-01	1.9669E-01	1.2921E-01
ME	S-25H1	VARO	5-4	S-11
NF	1.4393E-01	B. 9914E-02	1.3155E-01	1.4235E-01
•••	5-17	VARIAN	S-201F	GA AS
NF.	2.4098E-01	9.1917E-02	2.7862E-01	3.0086E-01
,	S-25H2	VARO	S-25T1	5-2512
Ис	5.7434F-02	4914E-02	1.08996-01	1.78616-01

TABLE 17A.

SPECTRAL EFFICIENCY OF PHOSPHOR-FILM COMBINATIONS [GRAINS/ELECTRON]

			٠,	
LAMBDA	P-4 RX-0.3	P-4 RX-1.0	P-4 1X-0.3	P-4 TX-1.0
250 260	0.	0.	^	•
260 270	0.	0.	0. 0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.		0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0. 0.	0.
350 360	0.	0.		0.
360 370	0.	0.	0.	0.
370 380	1.38276-02	3.0364E~03	0.	0.
380 390	2.3843E-02	5.3563E~03	3.9898E-03	1.2791E-03
390 400	4.2238E-02	9.6004F-03	7.1205E-03	2.4468F-03
400 410	8.2509E-02	1.8540E~02	1.2191E-02	4.5411E~03
410 420	1.5716E-01	3.5315E-02	2.2479E-02	8.8736E-03
420 430	2.3692E-01	5.3855E-02	4.0889E-02	1.6708E-02
430 440	2.7944E-01	6.4236E+02	6.02466-02	2.5191E-02
440 450	2.7314E-01	6.4233E-02	7.0197E-02	2.9694E-02
450 460	2.3293E-01	5.5381E-02	7.0225E-02	2.9359E-02
460 470	1.7216E-01	4.2434E-02	5.8367E-02	2.5017E-02
470 480	1.1824E-01	3.0879E-02	4.1793E-02	1.8286E-02
480 490	8.3900E-02	2.32308-02	2.8660E-02	1.2872E-02
490 500	6.49298-02	1.97098-02	2.0627E-02	9.6833E-03
500 510	6.0029E-02	1.9945E-02	1.5505E-02	7.7377E-03
510 520	6.6C22E-02	2.3735E-02	1.3753E-02	7.0723E-03
520 530	7.9545E-02	3.0642E-02	1.5299E-02	7.6924E-03
530 540	1.0054E-01	4.0114E-02	1.8442E-02	8.8583E-03
540 550	1.2532E-01	5.0/11E-02	2.3031E-02	1.0797E-02
550 560	1.5044E-01	6. 1763E-02	2.9330E-02	1.3920E-02
560 570	1.7177E-01	6.8632E-02	3.6874E-02	1.7124E-02
570 580	1.7699E-01	7.1507E-02	4-4121E-02	1.9560E-02
580 590	1.6537E-01	6.8359E-02	4.5480E-02	2.0152E-02
590 600	1.42456-01	5.8207E-02	4.0093E-02	1.9046E-02
o00 610	1.0855E-01	4.3344E-02	3.3423E-02	1.6983E-02
610 620	7.7626E-02	2.9204E-02	2.60 81 E-02 1.8161E-02	1.2773E-02
620 630	5.0605E-02	1.8919E-02	1.2646E-02	8.8377E-03
630 640	1.9704E-02	6.9987E-03		6.3561E-03
640 650	3.3265E-03	1.2827E-03	9.3291E-03 7.0261E-03	4.6889E-03
650 660	G.	0.	5.59416-03	3.65518-03
660 670	0.	0.	4.4252E-03	2.9461E~03
670 680	0.	0.	3.2399E~03	2.3538E~03
680 690	0.	0.		1.7858E-03
690 700	Ú.	0.	1 • 9498E = 03 6 • 9259E = 04	1.1019E-03
700 710	0.	0.	1.65758-04	3.9516E-04
710 720	0.	ő.	1.07/7E-U4	0.
720 730	0.	0.	0.	0.
730 740	0.	ŏ.	0.	0.
		- •	V •	0.
SUM	3.27958 00	1.01816 00	8.41456-01	3.77798-01

TABLE 17B,

SPECTRAL EFFICIENCY OF PHOSPHOR-FILM COMBINATIONS

[GRAINS/ELECTRON]

LAMBDA		P-11 RX-0.3	P-11 RX-1.0	P-11 TX-0.3	P-11 TX-1.0
250 2	60	0.	0.	0.	0.
260 2		0.	0.	0.	1,
270 2		0.	0.	0.	0.
280 2		0.	0.	0.	0.
290 3		0.	0.	0.	0.
	10	0.	0.	0.	0.
310 3		0.	J.	0.	0.
320 3		0.	0.	0.	0.
330 3		0.	0.	0.	0.
340 3	50	0.	0.	0.	0.
350 3	60	0.	0.	0.	0.
360 3	7 0	1.0409E-02	2.2591E-03	2.8013E-03	8.5705E-04
370 3	80	1.8643E-0°	4.0940E-03	5.3796E-03	1.7246E-03
380 3	90	3.2955E-02	7.4033E-03	9.8416E-03	3.3819E-03
390 4	00	5.8365E-02	1.3266E-02	1.6845E-02	6.2750E~03
400 4	10	1.1158E-01	2.5073E-02	3.0401E-02	1.2001E-02
410 4	20	1.9959E-01	4.4850E-02	5.1929E-02	2.1219E-02
420 4	30	3.3401E-01	7.5916E-02	8.4937E-02	3.55158-02
430 4	40	5.0116E-01	1.1521E-01	1.2590E-01	5.3256E-02
440 4	50	6.0937E-01	1.4330E-01	1.5667E-01	6.5500E-02
450 4	60	6.3649E-01	1.5133E-01	1.5949E-01	6.8361E-02
460 4	70	5.8634E-01	1.4452E-01	1.4234E-01	6.2279E-02
470 4	80	4.7188E-01	1.2323E-01	1.1438E-01	5.13728-02
440 4	90	3.4837E-01	9.6455E-02	8.5648E-02	4.0207E-02
490 5	00	2.5427E-01	7.7182E-02	6.0720E-02	3.0302E-02
500 5	10	1.8826E-01	6.2548E-02	4.3131E-02	2.2180E-02
510 5	20	1.4258E-01	5.1257E-02	3.3040E-02	1.6612E-02
520 5		1.1300E-01	4.3529E-02	2.6197E-02	1.2584E-02
530 5		8.81785-02	3.5182E-02	2.0199E-02	9.4692E-03
540 5		6.4948E-02	2.6229E-02	1.5200E-02	7.2142E-03
550 5		4.6133E-02	1.8634E-02	1.1308E-02	5.2513E-03
550 5		3.3158E-02	1.3249E-02	8.5171E-03	3.7758E-03
570 5		2.1818E-02	8.8147E-03	5.6064E-03	2.48428-03
580 5		1.2403E-02	5.1269E-03	3.0069E-03	1.4284E-03
590 6		7.4415E-03	3.0406E-03	1.74602-03	8.8718E-04
600 6		4.5654E-113	1.8229E-03	1.09698-73	5.3718E-04
610 6		0.	0.	0.	0.
	30	0.	0.	0.	0.
630 6		0.	0,	0.	0.
640 6		0.	0.	0.	0.
650 6		0.	0.	0.	9
660 6		0.	0.	0.	6.
670 6		0.	G •	0.	0.
680 6		0.	0.	0.	0.
	00	0.	0.	0.	0.
	10	0.	0.	0.	0.
	20	0.	0.	0.	0.
720 7		0.	0.	0.	0.
730 7	40	0.	0.	0.	0.
SUM		4.89598 00	1.2935E 00	1.2163E 00	5.3467E-01

TABLE 17C.

SPECTRAL EFFICIENCY OF PHOSPHOR-FILM COMBINATIONS
[GRAINS/ELECTRON]

LAMB	DA	P-16 RX-0.3	P-16 RX-1.0	P-16 TX-0.3	P-16 TX-1.0
250	260	0.	0.	0.	0.
	270	0.	0.	0.	0.
	280	0.	0.	0.	0.
	290	0.	0.	0.	0.
	300	0.	0.	o,	0.
	310	0.	0.	0.	0.
	320	0.	0.	0.	0.
	330	0.	0.	0.	0.
330	340	0.	0.	0.	0.
340	350	0.	0.	0.	0.
350	360	9.0543E-02	1.9155E-02	2.4109E-02	6.7808E-03
360	370	1.8953E-01	4.1136E-02	5.1009E-02	1.5606E-02
370	380	2.3459E-01	5.1516E-02	6.7693E-02	2.17015-02
380	390	2.39956-01	5.3904E-02	7.1658E-02	2.4624E-02
390	400	2.3346E-01	5.3064E-02	6.7381E-02	2.5100E-02
400	410	2.0116E-01	4.5203E-02	5.4807E-02	2.1635F-02
410	420	1.4773E-01	3.3196E-02	3.8436E-02	157065-02
	430	9.6320E-02	2.1895E-02	2.4494E-02	1.0242E-02
430	440	5.3154E-02	1.2219E-02	1.3353E-02	5.6483E-03
440	450	2.6382E-02	6.2042E-03	6.7828E-03	2.8358E-03
	460	1.2730E-02	3.0266E-03	3.1898E-03	1.3672E-03
	470	0.	0.	0.	0.
470		0.	0.	0.	0.
	490	0.	0.	0.	٥,
490		0.	0.	0.	0.
	510	0.	0.	0.	0.
	520	0.	0.	0.	0.
	530	0.	0.	0.	0.
	540	0.	0.	0.	0.
540		0.	0.	0.	0.
	560	0.	0.	0.	0.
	570	0.	0.	0.	0.
	580	0.	0.	0.	0.
580	600	0.	0.	0.	0.
590 600		0.	0.	0.	0.
	620	0.	0.	0.	0.
620		_	0.	0.	0.
630		0.	0.	0.	0.
640		0.	0.	0.	0.
650		0.	0.	0.	0.
660		0.	0.	0.	0.
670		0.	0.	0.	(1.
680		0.	0.	0,	0.
690		0.	0.	0.	0.
700		0,	0.	0.	0.
710		0.	0.	0.	0.
720		0.	0.	0.	0.
730		0.	0.	0.	0.
			-		~ ·
SUM		1.5256E 00	3.4052E-01	4.22/1E-01	1.5124E-01

TABLE 17D.

SPECTRAL EFFICIENCY OF PHOSPHOR-FILM COMBINATIONS
[GRAINS/ELECTRON]

		•			
LAMB	DA	P-20 RX-0.3	P-20 RX-1.0	P-20 TX-0.3	P-20 TX-1.0
250	260	0.	0.	0.	0.
260	270	0.	0.	0.	0.
270	280	υ.	0.	0.	0.
280	290	0.	0.	0.	0.
290	300	0.	0.	0.	0.
300	310	0.	0.	0.	0.
310		0.	0.	0.	0.
320	330	0.	0.	0.	0.
330	340	0.	0.	0.	0.
340	350	0.	0.	0.	0.
350	360	0.	0.	0.	0.
	370	0.	0.	0.	0.
	380	0.	0.	0.	0.
	390	0.	0.	0.	0.
		0.	0.	0.	0.
	410	0.	0.	0.	0.
410	420	0.	0.	0.	0.
	430	0.	Õ.	0.	0.
	440	0.	0.	0.	0.
	450	0.	0.	0.	0.
	460	0.	0.,	0,	0.
	470	0.	0.	0.	0.
470		1.4210E-02	3.7111E-03	3.4445E-03	1.5471E-03
	490	2.1431E-02	5.9337E-03	5.2689E-03	2.4735E-03
		3.3825E-02	1.0267E-02	8.0775E-03	4.0310E-03
		5.7543E-02	1.9119E-02	1.3183E-C2	5.7794E-03
510	520	9.3414E-02	3.3582E-02	2.1647E-02	1.0884E-02
	530	1.3753E-01	5.2979E-02	3.1885E-02	1.5316E-02
	540	1.8542E-01	7.3980F-02	4:2474E-02	1.9912E-02
540	550	2.2869E-01	9.2355E -02	5.3523E-02	2.5402E-02
550	560	2.6577E-01	1.0735E-01	6.5144E-02	3.0252E-02
560	570	2.8809E-01	1.1511E-01	7.4001E-02	3.2806E-02
570	580	2.7607E-01	1.1153E-01	7.0938E-02	3.1433E-02
580	590	2.3500E-01	9.7141E-02	5.6974E-02	2.7065E-02
590	600	1.9454E-01	7.9491E-02	4.5645E-02	2.3193E-02
600	610	1.5421E-01	6.1573E-02	3.7049E-02	1.8145E-02
610	620	1.1500E-01	4.3265E-02	2.6905E-02	1.3093E-02
620	630	7.7983E-02	2.9155E-02	1.9487E-02	9.7946E-03
630	640	3.1526E-02	1.1198E-02	1.4927E-02	7.5022E-03
640	650	5.4615E-03	2-1059E-03	1.1535E-02	6.0009E-03
ა50	999	0.	0.	9-1042E-03	4.7946E-03
660	670	0.	0.	7.37536-03	3.9230E-03
670	680	0.	0.	5.8465E-03	3.2224E-03
€80	690	0.	0.	3.56475-03	2.0147E-03
690	700	0.	0.	1.2524E-03	7.1454E-04
700	710	0.	0.	3.0600E-04	0.
710	720	0.	0.	0.	0.
720		0.	0.	C.	0.
730	740	0.	0.	0.	0.
SUM		2.4157E 00	9.49858-01	6-2956E-01	3.00305-01

TABLE 17E.

SPECTRAL EFFICIENCY OF PHOSPHOR-FILM COMBINATIONS
[GRAINS/ELECTRON]

LAMBDA	P-228 RX-0.3	P-228 RX-1.0	P-228 TX-0.3	P-228 TX-1.0
250 260	0.	0.	0.	•
260 270	0.	0.		0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.		0.	0.
320 330	0.	0. 0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.		U.	U.
350 360	0.	0.	0.	0.
360 370	1.3361E-02	3 90000 03	0.	0.
370 380	2.2837E-02	2.8998E~03	3.5957E-03	1.1001E-03
380 390	3.8726E-02	5.0152E-03	6.5900E-03	2.1126E-03
390 400	6.8348E-02	8.6998E-03	1.1565E-02	3.9741E-03
400 410	1.3044E-01	1.5535E-02	1.9727E-02	7.3483E-03
410 420	2.3574E-01	2.9311E-02	3.5539E~02	1.4029E-02
420 430		5.2972E-02	6.1333E-02	2.5062E-02
430 440	3.8062E-01	8.6521E-02	9.6789E-02	4.0470E-02
440 450	5.6191E-01	1.2917E-01	1.4116E-01	5.9711E-02
450 460	6.8106E-01	1.6016E-01	1.7510E-01	7.3206E-02
460 470	6.5680E-01	1.5616E-01	1.6458E-01	7.0543E-02
470 480	4.8654E-01	1.1992E-01	1.1811E-01	5.1678E-02
480 490	2.7933E-01	7.2948E-02	6.7706E-02	3.0410E-02
	1.4546E-01	4.0274E-02	3.5761E-02	1.6788E-02
	7.9314E-UZ	2.4075E-02	1.8940E-02	9.45218-03
500 510 510 520	4.5466E-02	1.5106E-02	1.0417E-02	5.35668-03
	2.7041E-02	9.7212E-03	6.2662E~03	3.1506E-03
520 530 530 540	1.7470E-02	5.7298E-03	4.0502E-03	1.9455E-03
540 550	1.1620E-02	4.5361E-03	2.6617E-03	1.2478E-03
	7.2266E-03	2.9184E-03	1.6913E-03	8.0270E-04
550 560 560 570	0.	0.	0.	0.
570 580	0.	0.	0.	0.
580 590	0.	0.	0.	0.
	0.	0.	0.	0.
590 600 600 610	0.	0.	0.	0.
610 620	0.	0.	0.	C.
620 630	0.	0.	0.	0.
	0.	0.	0.	0.
630 640	0.	0.	0.	0.
640 650	0.	0.	0.	0.
650 660	0.	0.	0.	0.
660 670	0.	0.	0.	0.
670 630	0.	0.	0.	0.
680 690 690 7 00	0.	0.	0.	0.
690 700	0.	0.	0,	0.
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
SUM	3.8893E 00	9.42785-01	9.8159E-01	4,1839E-01

TABLE 17F.

SPECTRAL EF, ICIENCY OF PHOSPHOR-FILM COMBINATIONS [GRAINS/ELECTRON]

LAMBDA	P-22G RX-0.3	P-22G RX-1.0	P-22G TX-0.3	P-22G TX-1.0
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	3.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	ő.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0.	0.	0.	0.
420 430	7.9231E-03	1.8010E-03	2.0148E-03	8.4245E-04
430 440	1.2453E-02	2.8627E-03	3.1285E-03	1.3233E-03
440 450	1.8783E-02	4.4171E-03	4.8291E-03	2.0189E-03
450 460	2.9116E-02	6.9226E-03	7.2959E-03	3.1272E-03
460 470	4.5535E-02	1.12236-02	1.1054E-02	4.8366E-03
470 480	0.6171E-02	1.7281E-02	1.6039E-02	7.2039E-03
480 490	9.4843E-02	2.6260E-02	2.3318E-02	1.0946E-02
490 500	1.3686E-01	4.1541E-02	3.2681E-02	1.6309E-02
500 510	1.8968E-01	6.3020E-02	4.3457E-02	2.2347E-02
510 520	2.3670E-01	8.5092E-02	5.4850E-02	2.7578E-02
£20 530	2.7357E-01	1.0539E-01	6.34256-02	3.0466E-02
530 540	2.9914E-01	1.1936E-01	6.8525E-02	3.2125E-02
540 550	2.9730E-01	1.2006E-01	6.9579E-02	3.3023E-02
550 560	2.8081E-01	1.1342E-01	6.8832E-02	3.1964E-02
560 570	2.5004E-01	9.9907E-02	6.4227E-02	2.8473E-02
57C 580	1.9480E-01	7.8702E-02	5.0057E-02	2.2180E-02
580 590	1.4796E-01	6.1163E-02	3.5872E-02	1.7041E-02
590 600	1.1481E-01	4.6913E-02	2.6938E-02	1.3688E-02
600 610	8.2176E-02	3.2812E-02	1.9743E-02	9.6692E-03
610 620	5.6542E-02	2-1272E-02	1.32285-02	6.4373E-03
620 630	3.6088E-02	1.3492E-02	9.0181E-03	4.5326E-03
630 640	1.4231E-02	5.0546E-03	6.73778-03	3.3864E-03
640 650	2.4328E-03	9.3808E-04	5.1385E-03	2.6731E-03
650 660	0.	0.	4.0146E-03	
660 670	0.	0.	3.2832E-03	
670 680	0.	0.	2.6066E-03	
680 690	0.	0.	1.6347E-03	9.2385E-04
690 700	J.	0.	5.9772E-04	3.4103E-04
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
SUM	2.3880E OF	1.0789E 00	7-12136-01	3.3875E-01

TABLE 17G.

SPECTRAL EFFICIENCY OF PHOSPHOR-FILM COMBINATIONS [GRAINS/ELECTRON]

	_		- ,	
LAMBDA	P-22R RX-0.3	P-22R RX-1.0	P-22R TX-0.3	P-22R TX-1.0
250 260	0.	0.		
260 270	0,	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	ő.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	Ç.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0.	0.	0.	0.
420 430	0.	0.	0.	0.
430 440	0.	0.	0.	0.
440 450	0.	0.	0.	0.
450 460	0.	0.	0.	0.
460 470	0.	0.	0.	0 ^
470 480	0.	0.	0.	0.
480 490	0.	0.	0.	0.
490 500	0.	ŭ.	0.	0.
500 510	0.	0.	0.	0.
510 520	0.	0.	0.	0.
520 530	0.	0.	0.	0.
530 540	0.	0.	0.	0.
540 550	0.	0.	0.	0.
550 560	6.8197E-03	2.7546E-03	0.	0.
560 570	1.5546E-02		1-6716E-03	7.7628E-04
570 580	3-2838E-02	1.3267E-02	3.9933E-03	1.7703E-03
580 590	5.4941E-02	2.2711E-02	8-4382E-03	3.7390E-03
590 600	8-0794E-02	3.3013E-02	1.3320E-02 1.8956E-02	
600 610	1-0957E-01	4.3749E-02	2.6325E-02	9.6322E-03
610 620	1.3225E-01	4.9755E-02	3.0941E-02	1.2892E-02
620 630	1-34406-01	5.0245E-02	3.3341E-02	1.5057E-02
630 640	7.9692E-02	2.8306E-02	3.7731E-02	1.6880E-02
640 650	1.9860E-02	7.6578E-03	4.1947E-02	
650 66 0	0.	0.	4.6728E-02	2.1821E-02
660 670	0.	0.	5.1865E-02	2.4609E-02 2.7587E-02
670 680	0.	0.	5.3106E-02	2.9271E=02
680 690	0.	0.	4.1950E-02	2.3.09E-02
690 700	0.	0.	1.9260E-02	1.0989E-02
700 710	0.	0.	5.9925E-03	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
M			-	• •
SUM	6.6671E-01	2.5767E-01	4.3581E-01	2+2402E-01
			=	

TABLE 17H.

SPECTRAL EFFICIENCY OF PHOSPHOR-FILM COMBINATIONS

[GRAINS/ELECTRON]

			" ,	
LAMBDA	P-31 RX-0.3	P-31 RX-1.0	P-31 TX-0.3	P-31 TX-1.0
250 260	C.	0.		
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	ŏ.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	o.	c.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	9-4158E-03	2.1152E-03	0.	0.
390 400	1.7356E-02	3.9449E-03	2.8119E-03	9.6625E-04
400 410	3.6618E-02	8.2283E-03	5.0093E-03	1.8660E-03
410 420	7.4651E-02	1.6774E-02	9.9766E-03	3.9382E-03
420 430	1.3904E-01	3.1607E-02	1.9422E-02	7.9364E-03
430 440	2.2097E-01	5.0795E-02	3.5358E-02	1.4784E-02
440 450	2.8031E-01	6.5919E-02	5.5511E-02	2.3481E-02
450 460	2.9929E-01	7.1158E-02	7-2068E-02	3.01305-02
460 470	2.7196E-01	6.7033E-02	7.4995E-02	3.2144E-02
470 480	2.3106E-01	6.0341E-02	6.6021E-02	2.8887E-02
480 490	2.2160E-01	6.1357E-02	5.6005E-02	2.51542-02
490 500	2.3716E-01	7.1989E-02	5.4483E-02	2.5577E-02
500 510	2.7351E-01	9.0872E-02	5.6635E-02	2.8264E-02
510 520	3.1255E-01	1.1236E-01	6.2662E-02	3.2223E-02
520 530	3.3453E-01	1.2987E-01	7.2428E-02	3.6416E-02
530 540	3.46125-01	1.3810E-01	7.7558E-02	3.7255E-02
540 550	3.1102E-01	1.2560E-01	7-9286E-02	3.7169E-02
550 560	2.4070E-01	9.7221E-02	7-2791E-02	3.4 47E-02
560 570	1.8482E-01	7.3844E-02	5.8999E-02	2.7398E-02
570 580	1.3358E-01	5.3967E-02	4-7472E-02	2.1046E-02
580 590	9.1387E-02	3.7777E-02	3.4325E-02	1.5209E-02
590 600	6.0595E-02	2.4760E-02	2.2156E-02	1.0525E-02
600 610	3.8552E-02	1.5393E-02	1.4217E-02	7.2242E-03
610 620	2.4917E-02	9.3741E-03	9.2624E-03	4.5362E-03
620 630	1.5265E-02	5.7069E-03	5.8294E-03	2.8368E-03
630 640	5.6047E-03	1.9907E-03	3.8146E-03	1.9172E-03
640 650	9.1356E-04	3.5226E-04	2.6536E-03	1.3337E-03
650 660	0.	0.	1.9296E-03	1.0038E-03
660 670	0.	0.	1.4479E-03	7.6252E-04
670 680	0.	0.	1.1420E-03	6.0743E-04
680 690	J.	0.	0.	0.
690 700	0.	0.	0.	0.
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
	· ·	· ·	0.	0.
SUM	4.4135E 00	1.4275E 00	1.0763E 00	4.9514E-01

TABLE 18A.

SPECTPAL EFFICIENCY OF PHOSPHOP-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-4 S-1	P-4 S-20	P-4 S-20R	P-4 S-25
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	ŏ.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	o.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	č.
310 320	0.	0.	0.	o.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	1.3127E-02	2.5587E-01	2.55878-01	1.6687E-01
380 390	1.8447E-02	4.7492E-01	4.7492E-01	3.0222E-01
390 400	2.3375E-02	8.5594E-01	8.5594E-01	5.5000E-01
400 410	3.0187E-02	1.6866E 00	1.6866E 00	1.1025E 00
410 420	3.6750E-02	3.2750E 00	3.2750E 00	2.1525E 00
420 430	3.9650E-02	5.0325E 00	5.0325E 00	3.3359E 00
430 440	4.1400E-02	5.9800E 00	5.9800E 00	4.0250E 00
440 450	4.0481E-02	6.04842 00	6.0484E 00	4.1196E 00
450 460	3.5690E-02	5.3535E 00	5.3535E 00	3.6550E UO
460 470	2.8635E-02	4.1227E 00	4.1227E 00	2.8807E 00
470 480	2.3162E-02	3.1201E 00	3.1201E 00	2.2481E 00
480 490 490 500	2.0815E-02	2.5760E 00	2.5760E 00	1.8630E 00
500 510	2.0562E-02	2.2649E 00	2.2649E 00	1.6491E 00
510 520	2.2392E~02	2.1970E 00	2.2604E 00	1.6266E 00
520 530	2.6790E-02 3.2902E-02	2.3382E 00 2.5546E 00	2.4910E 00	1.7742E 00
530 540	4.0565E-02	2.5546E 00 2.7907E 00	2.7285E 00	1.9929E 00
540 550	4.9320E-02	2.9797E 00	2.9890E 00 3.1852E 00	2.2265E 00
550 560	5.8875E-02	3.1125E 00	3.3000E 00	2.4317E 00 2.5950E 00
560 570	6.7545E-02	3.1600E 00	3.3575E 00	2.6781E 00
570 580	7.3537E-02	3.0210E 00	3.2595E 00	2.6394E 00
580 590	7.6380E-02	2.6980E 00	2.9260E 00	2.4624E 00
590 600	7.3700E-02	2.2445E 00	2.41203 00	2.1172E 00
600 610	6.2862E-02	1.6986E 00	1.8457E 00	1.6424E 00
610 620	5.0625E-02	1.2150E 00	1.3365E 00	1.19888 00
620 630	4.0412E-02	8.5400E-01	9.4550E-01	8.6925E-01
630 64J	3.1500E-02	5.8500E-01	6.58! 25-01	6.1875E-01
640 650	2.5125E-02	4.0200E-01	4.5644E-01	4.4806E-01
650 660	2.0400E-02	2.8050E-01	3.1875E-01	3.3150E-01
560 670	1.5577E-02	1.8460E-01	2.2087E-01	2.3462E-01
670 680	1.1804E-02	1.1870E-01	1.5129E-01	1.6292E-01
680 690	9.2812E-03	7.9942E-02	1.0395E-01	1.1509E-01
690 700	7.0810E~03	5.2012E-02	6.93506-02	8.0300E-02
700 710	5.2390E-03	3.2110E-02	4.5500E-02	5.4600E-02
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
SUM	1.1742E 00	7.36458 01	7.61088 01	5.63618 01

TABLE 18B.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOYOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-4 S-25H1	P-C VARO	P=4 5-4	P-4 S-11
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
210 280	J •	0.	0.	0.
280 290	0.	0.	0.	0.
250 30U	0.	0.	0.	0.
300 310	0.	0.	0.	0.
31C 32O	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0 •
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0 •	1.7689E-01	1.8690E-01
380 390	0.	0.	3.20678-01	3.4147E-01
390 400	0.	0.	5.6855E-01	6.18758-01
400 410	0.	1.3125E-01	1.0894E 00	1.2206E 00
410 420	0 •	3.4500E-01	2.0675E 00	2.3750E 00
420 430	0.	6.8625E-01	3.1339E 00	3.6981E 00
430 440	4.6460E 00	1.0580E 00	3.7490E 00	4.5080E 00
440 450	4.5006E 00	1.3811E 00	3.8100E 00	4.5672E 00
450 460 460 470	3.8055E 00	1.5480E 00	3.35408 00	4.1710E 00
460 470 470 480	2.9152E 00	1.5180E 00	2.60476 00	3.2775E 00
480 490	2.2345E 00 1.8561E 00	1.3625E 00 1.2650E 00	1.9756E 00	2.5342E 00
490 500	1.6742E 00	1.2650E 00 1.2734E 00	1.5870E 00 1.3464E 00	2.0700E 00 1.7952E 00
500 510	1.7322E 00	1.39428 00	1.2559E 00	1.71118 00
510 520	2.0562E 00	1.6450E 00	1.3042E 00	1.7625E 00
520 530	2.4877E 00	1.9795E CO	1.3642E 00	1.8725E 00
530 540	2.9127E 00	2.3485E 00	1.3877E 00	1.9825E 00
540 550	3.2880E 00	2.7057E 00	1.3700E 00	1.9865F 00
550 560	3.6000E 00	3.0187E 00	1.2937E 00	1.8750E 00
560 570	3.7722E 00	3.2192E 00	1.1652E 00	1.6787E 00
570 580	3.6769E 00	3.2794E 00	9.7387E-01	1.4310E 00
580 590	3.3440E 00	3.1730E 00	7.52405-01	1.1210E 00
590 600	2.8475E 00	2.8307E 00	5.1590E-01	7.7050E-01
600 610	2.1988E 00	2.2871E 00	3.0227E-01	4.4940E-01
610 620	1.5896E 00	1.7516E 00	1.5795E -01	2.2680E-01
620 630	1.1407E 00	1.3344E 00	7.9300E-02	1.098GE-01
630 640	8.1112E-01	9.9562E-01	3.9315E-32	4.9500E-02
640 650	5.9127E-01	7.4956E-01	0.	2-0937E-02
650 660	4.4242E-01	5.7694E-01	0.	1.56258-03
660 670	3.1527E-01	4.2547E-01	0.	4.4500E-03
670 680	2.1845E-01	3.0756E-01	0.	4.4555E-03
680 690	1.5716E-01	2.3141E-01	0.	3.81151-03
690 700	1.1169E-01	1.7337E-01	0.	1.00676-03
700 710	7.5400E-02	1.2610E-01	· ·	6.6300E 14
710 720 720 730	0.	0.	0.	0.
730 740	0.	0.	0. 0	(,
170 140	0.	·) •	0.	0 -
SUM	5.90028 01	4.5122 91	17.7 3	1 71 61

TABLE 18C.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

	-		-	
LAMBDA	P-4 S-17	P-4 VARIAN	P-4 S-201F	P-4 GA AS
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	9.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	3.1595E-01	0.	1.4240E-01	4.0495E-01
380 390	5.6127E-01	0.	2.5120E-01	7.3005E-01
390 400	9.9687E-01	0.	4.9500E-01	1.2994E 00
400 410	1.9294E 00	7.0219E-01	1.0894E 00	2.5069E 00
410 420	3.7250E CO	1.4750E 00	2.5000E 00	4.8250E 00
420 430	5.7950E 00	2.3828E 00	4.6131E 00	7.3962E 00
430 440	7.1300E 00	2.9670E 00	6.8080E 00	8.9240E 00
440 450	7.5247E 00	3.0718E 00	8.5725E 00	9.2392E 00
450 460	6.9230E 00	2:1090E 00	8.6860E 00	8.3420E 00
460 470	5.6235E 00	2.1217E 00	7.2105E 00	6.6930E 00
470 480	4.4962F 00	1.6486E 00	5.5590E 00	5.2865E 00
480 490	3.8180E 00	1.3570E 00	4.0710E 00	4.46205 00
490 500	3.4652E 00	1.1899E 00	2.5259E 0C	4.0497E 00
500 510	3.5067E 00	1.1619E 00	1.2252E 00	4.0982E 00
510 520 530 530	3.8775E 00	1.2572E 00	5.1700E-01	4.5590E 00
520 530 530 540	4.2800E 00	1.3910E U0	2.9024E-01	5.1627E 00
530 540 540 550	4.6360E 00 4.7607E 00	1.5250E 00 1.6440E 00	2.2570E-01 2.5857E-01	5.8560E 00 6.5417E 00
550 560	4.5000E 00	1.7437E CO	4.1250E-01	7.1250E 00
560 570	3.7130E 00	1.7775E 00	7.1100F-01	7.4655E 00
570 580	2.7030E 00	1.7092E 00	1.0136E 00	7.4332E 00
580 590	1.82405 00	1.5770E 00	1.1970E 00	7.03006 00
590 600	1.0720E 00	1.3400E 00	1.2562E 00	6.1305E 00
600 610	6.0455E-01	1.0299E 00	1.1770E 00	4.8417E 00
610 620	3.3615E-01	7.4925E-01	1.0226E 00	3.6045E 00
620 630	1.9367E-01	5.4137E-01	8.6162E-01	2.6687E 00
630 640	1.1587E-01	3.8812E-01	7.0312E-01	1.9462E 00
640 650	6.8675E-02	2.7637E-01	5.7787E-01	1.4321E 00
650 660	3.6975E-02	2.0081E-01	4.7494E-01	1.0710E 00
660 670	1.7205E-02	1.4182E-01	3.6967E-01	7.57956-01
670 680	8.9775E-03	9.8087E-02	2.7930E-01	5.2202E-01
680 690	0.	7.1775E-02	2.2027E-01	3.7867E-01
690 700	0.	5.0187E-02	1.6972E-01	2.7192E-01
700 710	0.	3.315CE-02	1.2350E-01	1.8850E-01
710 720	0.	0.	J	0.
720 730	0.	0.	J.	0.
730 740	0.	0.	7.	0.
SUM	8.8559E 01	3.8333E 01	5.5611E 01	1.4324F 02

TABLE 18D.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-4 S-25H2	P-4 VARO	P-4 S-2571	P-4 S 25T2
250 260	0.	^	0	
260 270		0.	0.	0.
270 280		0. 0.	0.	0.
280 290			0.	0.
290 300		0.	0.	J.
300 310		0.	0.	0.
310 320		0.	0.	0.
320 330		0.	ن.	0.
330 340		0. 0.	0.	0.
340 350			0.	0.
350 360		0.	0.	0.
360 370	0.	0. 0.	0.	0.
370 380		0.	0. 0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0. 0.
400 410	ũ .	1.3125E-01	0.	0.
410 420	0.	3.4500E-01	0.	0.
420 430	0.	6.8625E-01	2.7831E 00	3.5647E 00
430 440	8.5100E-01	1.0580E 00	3.4730E 00	4.5770E 00
440 450	1.0716E 00	1.3811E 00	3.7147E 00	5.0721E 00
450 460	1.1954E 00	1.5480E 00	3.4400E 00	4.9450E 00
460 470	1.1592E 00	1.5180E 00	2.7945E 00	4.2607E 00
470 480	1.0409E 00	1.3625E 00	2.1991E 00	3.5697E UO
480 490	9.7060E-01	1.2650E 00	1.8331E 00	3.1625E 00
490 500	9.6442E-01	1.2734E 00	1.6324E 00	2.9642E 00
500 510	1.0478E 00	143942E 00	1.6203E SO	3.0737E 00
510 520	1.2196E 00	1,6450E 00	1.7742E 00	3.4780E 00
520 530	1.4365E 00	1.97055,00	1.9795E 00	3.9590E 00
530 540	1.6958E 00	2.3485E 00	2.2112E 00	4.4377E 00
540 550	1.9557E 00	2.70>7E 00	2.4317E 00	4.8464E CO
550 560	2.1787E 00	3.0187E 00	2.5950E 00	5.1000c 00
560 570	2.3463E 00	3.2192E 00	2.6741E 00	5.1.50E 00
570 580	2.4208E 00	3.2794E 00	2.6434E 00	4.9686E 00
580 590	2.3788E 00	3.1730E 00	2.4510E 00	4.5600E 00
590 600	2.1574E 00	2.8307E 00	2.0837E 00	3.7855E UO
600 610	1.7601E 00	2.2871E 00	1.6237E 00	2.8622£ 00
610 620	1.3547E 00 1.0355E 00	1.7516E 00	1.1947E 00	2.0756E 00
620 630 630 640	7.7625E-01	1.3344E 00 9.9562E-01	8.5705E-01	1.4792E 00
640 650	5.8709E-01	7.4956E-01	6.00755-01	1.0181E CO
650 660	4.5390E-01	5.7694E-01	4.3047E-01 3.1174E-01	7.1187E-01 5.1000E-01
650 670	3.3526E-01	4.2547E-01	2.17158-01	3.5340E-01
670 680	2.4139E-01	3.0756E-01	1.4863E-01	2.3840E-01
680 690	1.80926-01	2.3141E-01	1.0444E-01	1.6879E-01
690 700	1.3432E-01	1.7337E-01	7.33658-02	1.1862E-01
700 710	9.6330E-02	1.2610E-01	5.0570E-02	8.1250E-02
710 720	0.	0.	J. J. O.	0.12500 02
720 730	0.	0.	0.	0.
730 740	0.	0.	') .	0.
\$U%	3.30468 01	4.51228 01	4.9947E 01	8.5098E 01

TABLE 19A.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

L AMS DA	P-11 S-1	P-11 S-20	P-11 S-20R	P-11 S-25
250 260	0.	0.	0.	0.
250 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	U
320 330	0.	0.	0.	J.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	1.1390E-02	1.7587E-01	1.7587E-01	1.2060E-01
370 38C	1.7700E-02	3.4500E-01	3.4500E-01	2.2500E-01
380 390	2.5497E-02	/.5642E-01	6.5642E-01	4.1772E-01
390 400	3.2300E-02	.1827E 00	1.1827E 0J	7.600 E-01
400 410	4.0825E-02	2.2809E 00	2.2809E 00	1.4910E 00
410 420	4.6672E-02	4.1592E 00	4.1592E 00	2.7464E 00
420 430	5.5900E-02	7.0950E 00	7.0950E 00	4.7031E 00
430 440	7.4250E-02	1.0725E 01	1.0725E 01	7.2187E 00
440 450	9.0312E~02	1.3494E 01	1.3494E 01	9.1906E 00
450 460	9.75258-02	1.4629E 01	1.4629E 01	9.9875E 00
460 470	9.7525E-02	1.4041E 01	1.4041E 01	9.8112E 00
470 480	9.2437E-02	1.2452E 01	1.2452E 01	8.9719E 00
480 490	8.6427E-02	1.0696E 01	1.0696E 01	7.7355E 00
490 500	8.0524E-02	8.869E 00	8.8699E 00	6.4582E 00
500 510	7.0225E-02	6.8900E 00	7.0887E 00	5.1012E 00
510 520	5.7855E-02	5.0496E 00	5.3795E 00	3.8316E 00
520 530	4.67408-02	3.6290E 00	3.8760E 00	2.8310E 00
530 540	3.5577E-02	2.4476E 00	2.6215E 00	1.9527E 00
540 550	2.55606-02	1.5442E 00	1.6507E 00	1.2602E 00
550 560	1.8055E-02	9.5450E-01	1.0120E 00	7.9580E-01
560 570	1.3039E-02	6.1000E-01	6.4812E-01	5.1697E~01
570 80	9.0650E-03 5.7235E-03	3.724 JE-01 2.02 5E-01	4.0180E-01	3.2536E-01
58(39) 590600	3.8500E-03		2.10455-01 1.2600E-01	1.8468E-01 1.1060E-01
600 610	2.6/ 7E-03	1.1 25E-01 7.1437E-02	7.7625E-02	6.9075E-02
610 620	0.	0.	0.	0.
620 630	0.	0.	0.	Ŏ.
630 640	0.	0.	0.	0.
640 650	0.	0.	0.	0.
650 660	0.	0.	0.	0.
660 670	0.	0.	0.	0.
670 680	0.	0.	0.	0.
580 690	U •	0.	0.	0.
690 700	0.	0.	0.	0.
700 710	0.	0.	0.	0.
710 720	0.	0.	0	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
SUM	1.1376E 00	1.2269E 02	1.2390€ 02	8.68 7F 01

TABLE 198.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-11 S-25m1	P-11 VARO	P-11 S-4	P-11 S-11
250 260	0.	0.	0.	υ.
260 270	0.	0.	0.	0.
270 280	0.	0.	J.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	9.
300 310	0.	0.	0.	(•
310 320	0.	0.	C•	0.
320 330	0.	0.	0.	0.
330 340	C.	0.	0.	0.
340 350	. •	0.	0.	G.
350 360	0.	0.	0.	G.
360 370	C.	0.	1.2814E-01	1.3065E-01
370 380	0.	0.	2.3850E-01	2.5200E-01
380 390	0.	0.	4.4322E-01	4.7197E-01
390 400	0.	0.	7.8565E-01	8.5500E-01
400 410	0.	1.7750E-01	1.4732E 00	1.6507E 00
410 420	0.	4.3815E-01	2.6257E 00	3.0162E 00
420 430	0.	9.6750E-01	4.4182E 00	5.2137E CO
430 440	8.3325E 00	1.8975E 00	6.7237E 00	8.0850E 00
440 450 450 460	1.0041E 01 1.0399E 01	3.0812E 00	8.50005 00	1.0412E 01
460 470	9.9287E 00	4.23G0F 00	9.1650E 00 8.8712E 00	1.1397E 01
470 480	8.9175E 00	5.1700E 00 5.4375E 00	7.8844E 00	1.1162E 01 1.0114E 01
480 490	7.7068E 30	5.2525E 00	6.58958 00	8.5950E 00
490 500	6.5.63E 00	4.9867E UO	5.27296 00	7.0305E 00
500 510	5.4325E 00	4.3725E 00	3.94198 00	5.3662E 00
510 520	4.4406E 00	3.5525E 00	2.810c5 UD	3.8062E 00
520 530	3.5340E 00	2.8120E 00	1.93808 00	2.6600E 00
530 540	2.5546E 00	2.0597E 00	1.2171E 00	1.7387E 00
540 550	1.7040E 00	1.4022E 00	7.1000E-01	1.0295E 00
550 560	1.1040E 00	9.2575E-01	3.9675E-01	5.750CE-01
560 570	7.2819E-01	6.2144E-01	2.2494E-01	3.2406E-01
570 580	4.5325E-01	4.0425E-01	1.2005E-01	1.7640E-01
580 590	2.5080E-01	2.3797E-01	5.6430E-02	8.4075E-02
590 600	1.4075E-C1	1.4787E-01	2.59 5 0E~02	4.0250E-02
600 610	9.2475c-02	9.6187E-02	1.27128-02	1.8900E-02
610 620	0.	0.	0.	0.
620 530	0.	0.	0.	0.
630 640	0.	0.	0.	0.
640 650	0.	0.	0.	0.
650 660	0.	0.	0.	0.
660 670	0.	0.	0.	0.
670 630	0.	0.	0.	0.
680 690	<u>ر</u> ،	0.	0.	0.
590 700 70: 710	0.	0.	0.	0.
710 720). 0.	0.	o. .a.	0. 0.
120 130	0.	0.	Q ,,	0.
730 740	0.	0.	0.	0.
SUM	8.23258 01	4 82716 01	7.4581E 01	9.4201E 01

TABLE 19C.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-11 S-17	P-11 VARIAN	P-11 S-201F	P-11 GA AS
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0,	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	Ŏ.	0.	
300 310	o.	0.	0.	0.
310 320	Ŏ.	0.	0.	0.
320 330	0.	0.		0.
330 340	o.	0.	0. 0.	0.
340 350	0.	0.		G.
350 360	0.	0.	0.	0.
360 370	2.3617E-01	0.	0.	0.
370 380	4.2600E-01	0.	1.4070E-01	2.9145E-01
380 390	7.7577E-01	0.	1.9200E-01	5.4600E-01
390 400	1.3775E 00	0.	3.4720E-01	1.0090E 00
400 410	2.6092E 00		6.8400E-01	1.7955E 00
410 420	4.7307E 00	9.4962E-01	1.4732E 00	3.3902E 00
420 430		1.8732E 00	3.1750E 00	6.1277E 00
430 440	8.1700E 00	3.3594E 00	6.5037E 00	1.0427E 01
4.0 450	1.2787E 01	5.3212E 00	1.2210E 01	1.6005E 01
450 460	1.6787E 01	5.8531E 00	1.9125E 01	2.0612E 01
460 470	1.89176 01	7.40255 00	2.3735E 01	2.2795E 01
	1.9152E 01	1.2262E 00	2.4557E 01	2.2795E 01
470 480 480 490	1.7944E 01	6.5794E 00	2.21858 01	2.1097E 01
	1.5853E 01	5.6345E 00	1.6903E 01	1.8527E 01
	1.3570E 01	4.6597E 00	9.8917E 00	1.5859E 01
	1.0997E 01	3.6437E 00	3.8425E 00	1.2852E 01
	8.3737E 00	2.7151E 00	1.1165E 00	9.8455E 00
520 530 530 540	6.0800E 00	1.9760E 00	4.1230E-01	7.334GE 00
540 550	4.0660E 00	1.3375E 00	1.9795E-01	5.1360E 00
550 560	2.4672E 00	8.5200E-01	1.3401E-01	3.3902E 00
560 570	1.3800E 00	5.3475E-01	1.2650E-01	2.1850E 00
570 580	7.1675E-01	3.4312E-01	1.3725E-01	1.4411E 00
580 590	3.3320E-01	2.1070E-01	1.2495E-01	9-1630E-01
590 600	1.3680E-01	1.1927E-01	8.9775E-02	5.2725E-0%
600 610	5.6000E-02	7.0000E-02	6.56258-02	3.2025E-01
610 620	2.5425E-02	4.3312E-02	4.9500E-02	2.0362E-01
620 630	0.	0.	0.	0.
630 640	0.	0.	0.	<u>.</u>
640 650	0.	0.	G.	0.
650 660	0	0.	0.	0.
660 670). 0	0.	0.	0.
670 680	0.	0.	0.	0.
680 690).	0.	0.	0.
690 700	υ .	0.	0.	0.
700 710	0.	0.	ა .	0.
710 720	0.	0.	0.	0.
720 73 0	Č.	0.	0.	0.
730 740	0.	0.	0.	0.
130 140	0.	0.	0.	0.
SUM	1.6797E 02	6.1704E 01	1-4742E 02	2.0543E (2

TABLE 19D.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCAFHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-11 S-25H2	P-11 VARC	P-11 S-25T1	P-11 S-25T2
250 260	0.	0.	0.	0.
260 270	0.	0.	G.	0.
270 280	0.	0.	0.	ŏ.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0,
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	1.7750E-01	0.	0.
410 420	0.	4.3815E-01	0.	0.
420 430	0.	9.6750E-01	3.9237E 00	5.0256E 00
430 440	1.5262E 00	1.8975E 00	6.2287E 00	8.2087E CU
440 450	2.3906E 00	3.0812E 00	8.2875E 00	1.13168 01
450 460	3.2665E 00	4.2300E 00	9.40008 00	1.3512E 01
460 470	3.9480E 00	5.1700E 00	9.5175E 00	1.4511E 01
470 480	4.1542E 00	5.4375E 00	8.7761E 00	1.4246E 01
480 490	4.0301E 00	5.2525E 00	7.6113E 00	i.3131E 01
490 500	3.7768E 00	4.9867E 00	6.3928E 00	1.1608E 01
500 510	3.2860E 00	4.3725E 00	5.0814E 00	9.6394E 00
510 520	2.6339E 00	3.5525E 00	3.8316E 00	7.5110E UO
520 530	2.0406E 00	2.8120E GO	2.8120E 00	5.6240E 00
530 540	1.4873E 00	2.0°97E 00	1.9394E 00	3.8921E 00
540 550 550 540	1.0135E 00	1.4022E 00	1.2602[00	2.5116E 00
550 560 540 570	6.6815E-01	9.2575E-01	7.9580E-01	1.5640E 00
560 570 570 580	4.5292E-01	6.2144E-01	5.1621E-01	9.9125E-01
580 590	2.9841E-01 1.7841E-01	4.0425E-01	3.2585E-01	6-1495E-01
590 600	1.1270E-01	2.3797E-01 1.4787E-01	1.8382E-01	3.4200E-61
600 610	7.4025E-02	9.6187E-02	1.0885E-01 6.8287E-02	1.9775E-01
610 620	0.	0.	0.02012-02	1.2037E-01
620 630	0.	0.	0.	0.
630 640	0.	0.	0.	0.
640 650	0.	0.	0.	0.
650 660	0.	0.	0.	0.
660 670	0.	0.	0.	0.
670 680	0.	0.	0.	0.
680 690	0.	0.	0.	0.
690 700	0.	0.	0.	0.
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	J.
730 740	c.	0.	0.	0.
SUM	3.5339E 01	4.8271E 01	7.7061F 01	1.24578 02

TABLE 20A,

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-16 S-1	P-16 S-20	P-16 S-20R	P-16 S-25
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
350 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	1.10465-01	1.5200E 00	1.5200E 00	1.0560E 00
360 370	2.0740E-01	3.2025E 00	3.2025E 00	2.1960E 00
370 380	2.22726-01	4.3412E 00	4.3412E OC	2.8312E 00
380 390	1.8565E-01	4.7795E 00	4.7795E 00	3.0415E 00
390 400	1.2920E-01	4.7310E 00	4.7310E 00	3.0400E 00
400 410	7.3600E-02	4.1120E 00	4.1120E 00	2.6880E 00
410 420	3.4545E-02	3.0785E 00	3.0785E 00	2.0327F 00
420 430	1.6120E-02	2.0460E 00	2.0460E 00	1.35622 00
430 440	7.8750E-03	1.1375E 00	1.1375E 00	7.6562E-01
440 450	3.9100E-03	5.8420F-01	5.8420E-01	3.9790E-01
450 460	1.9505E-03	2.925 E-01	2.9257E-01	1.9975F-01
460 470	0.	0.	0.	0.
470 480	0.	0.	0.	0. 0.
480 490	0.	0.	0.	0.
490 500 500 510	0.	0. 0.	0. 0.	0.
510 520	0.	0.	0.	0.
520 530	0.	0.	0.	0.
530 540	0.	0.	0.	0.
540 550	0.	0.	0.	0.
550 560	0.	0.	0.	0.
560 570	0.	0.	0.	0.
570 580	0.	0.	0.	0.
580 590	0.	0.	0.	0.
590 600	0.	0.	0.	0.
600 610	0.	0.	0.	0.
610 620	0.	0.	0.	С.
620 630	Ű•	0.	0.	0.
630 640	0.	0.	0.	0.
640 650	0.	0.	0.	0.
650 660	0.	0.	0.	0.
660 670	0.	0.	0.	0.
670 680	<u>)</u> ,	0.	0.	0.
680 690	0.	0.	3.	0. 0.
690 700 7/10 7 1 0	0. 0.	0.	0. 0.	0.
	0.	0.	0.	0.
710 720 720 730	0.	0.	0.	0,
730 740	3.	0.	0.	0.
130 / 70	•	• •	••	~ ▼
SUM	9.9338E01	2.98251 01	2.98256 01	1.96058 01

TABLE 20B.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBO)A	P-16 S-25H1	P-16 VARO	P-16 S-4	P-16 S-11
250	260	0.	0.	0.	0.
	270	0.	0.	0.	0.
270	280	0.	0.	0.	0.
	290	0.	0.	0.	0.
290	300	0.	0.	0.	0.
300	310	0.	0.	0.	0.
310	320	0.	0.	0.	0.
320	330	0.	0.	0.	0.
330	340	0.	0.	0.	0.
340	350	0.	0.	0.	0.
350	360	0.	0.	1.1690E 00	1.0880E 00
360	370	0.	0.	2.3332E 00	2.3790E 00
370	380	0.	0.	3.0011E 00	3.1710E 00
380	390	0.	0.	3.2271E 00	3.4365E 00
390	400	0.	0.	3.1426E 00	3.4200E 00
400	410	0.	3.2000E-01	2.6560E 00	2.9760E 00
410	420	0.	3.2430E-01	1.9434E 00	2.2325E 00
420	430	0.	2.7900E-01	1.2741E 00	1.5035E 00
430	440	8.8375E-01	2.0125E-01	7.1312E-01	8.5750E-01
440		4.3470E-01	1.3340E-01	3.6800E-01	4.5080E-01
450	460	2.0797E-01	8.4600E-02	1.8330E-01	2.2795E-01
460	470	0.	0.	0.	0.
470	480	0.	0.	0.	0.
	490	0.	0.	0.	0.
490	500	0.	0.	0.	0.
500	510	0.	0.	0.	0.
510	520	0.	0.	0.	0.
520	530	0.	0.	0.	0.
530	540	0.	0.	0.	0.
	550	0.	0.	0.	0.
550	560	0.	0.	0.	0.
	570	0.	0.	0.	0.
	580	0.	0.	0.	0.
	590	0.	0.	0.	0.
	600	0.	0.	0.	0.
600		0.	0.	ů.	0.
	620	0.	0.	0.	0.
	630 640	0.	0. 0.	0.	0.
	650	0.	0.	0.	0.
	660	0.	0.	0.	0.
	670	0.	0.	0.	0.
	680	2.	0.	0.	0.
	690	0.	0.	0.	0.
	700	0.	0.	0.	0.
	710	0.	0.	0.	0.
	720	0.	0.	C.	0.
	730	0.	ů.	0.	0.
	740	0.	0.	0.	0.
	- -	- ·	·		
SUM		1.52648 00	1.3425E 00	2.0010E 01	2.1743F 01

TABLE 20C.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS [PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-16 S-17	P-16 VARIAN	P-16 S-201F	P-16 GA AS
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	G.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	2.2080E 00	0.	0.	2.5760E 00
360 370	4.3005E 00	0.	2.5620E 00	5.3070F 00
370 380	5.3605E CO	0.	2.4160E 00	6.8705E 00
380 390	5.6485E 00	0.	2.5280E 00	7.3470E 00
390 400	5.5100E 00	0.	2.7360E 00	7.1820E 00
40C 410	4.7040E 00	1.7120E 00	2.6560E 00	6.1120E 00
410 420	3.5015E 00	1.3865E 00	2.3500E 00	4.5355E 00
420 430	2.3560E 00	9.6875E-01	1.8755E 00	3.0070E 00
430 440	1.3562E 00	5.6437E-01	1.2950E 00	1.6975E 00
440 450	7.2680E~01	2.9670E-01	8.2800E-01	8.9240E-01
450 460	3.7835E-01	1.4805E-01	4.7470E-01	4.5590E-01
460 470	0.	0.	0.	0.
470 480	0.	0.	0.	0.
480 490	0.	0.	0.	0.
490 500	0.	0.	0.	0.
500 510	0.	0.	0.	0.
510 520	0.	0.	0.	0.
520 530	0.	0.	0.	0.
530 540	0.	0.	0.	0.
540 550	0.	0.	0.	0.
550 560	C.	0.	0 5	0.
560 570	0.	0.	0.	0.
570 580	0.	0.	0.	0.
380 590	0.	0.	0.	0.
590 600	0.	0.	0.	0.
600 610	0.	0.	0.	0.
610 620	0.4	0.	0.	0.
620 630	0.	0.	0.	0.
630 640	0.	0.	0•	0.
640 650	0.	0.	0.	0.
650 660	0.	0.	0.	0.
660 670	0.	0.	Ű.	0.
670 680	0.	0.	0.	0.
680 690	0.	0.	0.	0.
690 700	0.	0.	0.	0.
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
SUM	3.6050E 01	5.0764E 00	1.9721E 01	4.5983E 01

TABLE 20D.

SPECIFAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

L AMB DA	P-1	16 S-25H2	P-16 VARO	P-16 S-25T1	P-16 S-25T2
250 26	0 0.		0.	0.	0.
260 27			0.	0.	Ů.
270 28			0.	0.	0.
280 29			0.	0.	0.
290 30			0.	0.	0.
300 31			0.	0.	0.
310 32			0.	0.	0.
320 33			0.	0.	0.
330 34			0.	0.	0.
340 35			0.	0.	0.
350 36			0.	0.	0.
360 37			0.	0.	0.
370 38			0.	0.	0.
380 39	0 0.		0.	0.	0.
390 40	0 0.		0.	0.	0.
400 41	0 0.		3.2000E-01	0.	0.
410 42	0 0.		3.2430E-01	0.	0.
420 43	0 0.		2.7900E-01	1.1315E 00	1.4492E 00
430 44	0 1.6	187E-01	2.0125E-01	6.6062E-01	8.7062E-01
440 45		350E-01	1.3340E-01	3.5880E-01	4.8990E-01
450 46	0 6.5	330E-02	8.4600E-02	1.8800E-01	2.7025E-01
460 47	0 0.		0.	0,	0.
470 48	0 0.		0.	0.	0.
480 49			0.	0.	0.
490 50	0 0.		0.	ð.	0.
500 51			0.	0.	0.
510 52			0.	0.	0.
520 53			0.	0.	0.
530 54			0.	0.	0.
540 55			0.	0.	0.
550 56			0.	0.	0.
560 57			0.	0.	0.
570 58			0.	0.	0.
580 59			0,	0.	0.
590 60			0.	0.	0.
600 61			0.	0.	0.
610 62			0.	0.	0.
620 63			0.	0.	0.
630 64			0.	0.	0.
640 65			0.	0.	0.
650 66			0.	0.	0.
660 67			0.	0.	0.
670 68	_		0.	0.	0.
680 69			2.	0.	0.
690 70			0.	0.	0.
700 71			0.	0.	0.
710 72			0.	0.	0.
720 73			0.	0.	0.
730 74	0 0.		0.	0.	0.
SUM	3.3	070E-01	1.3425E 00	2.3389E 00	3.0800E 00

TABLE 21A.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

L AMB DA	P-20 S-1	P-20 S-20	P-20 S-20R	P-20 S-25
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0.	0.	0.	0.
420 430	0.	0.	0.	0.
430 440	0.	0.	0.	0.
440 450	0.	0.	0.	0.
450 460	0.	0.	0.	0.
460 470	0.	0.	0.	0.
470 480	2.7837E-03	3.7499E-01	3.74995-01	2.7019E-01
480 490	5.3169E-03	6.5800E-01	6.5800E-01	4.7587E-01
490 500	1.0712E-02	1.1799E 00	1.1799E 00	8.5912E-01
500 510	2.1465E-02	2.1060E 00	2.1667E 00	1.5592E 00
510 520 520 530	3.7905E-02	3.3084E 00 4.4169E 00	3.5245E 00 4.7175E 00	2.5104E 00 3.4456E 00
530 540	5.6887E-02 7.4812E-02	5.1469E 00	5.5125E 00	4.1062E 00
540 550	9.0000E-02	5.4375E 00	5.8125E 00	4.4375E 00
550 560	1.0401E-01	5.4987E 00	5.8300E 00	4.5845E QQ
560 570	1.1329E-01	5.3000E 00	5.6312E 00	4.4917E 00
570 580	1.1470E-01	4.7120E UO	5.08400 00	4.1168E 00
580 590	1.0854E-01	3.8340E 00	4.1580E 00	3.4992E 00
590 600	1.0065E-01	3.0652E 00	3.2940E 00	2.8914E 00
600 610	8.9300E-02	2.4130E 00	2.6220E 00	2.3332E 00
610 620	7.5000E-02	1.8000E 00	1.9800E 00	1.7760E 00
620 630	6.2275E-02	1.3160E 00	1.4570E 00	1.3395E 00
630 640	5.0400E-02	9.3600E-01	1.0530E 00	9.9000E-01
640 650	4.1250E-02	6.6000E-01	7.4937E-01	7.3562E-01
650 660	3.3200E-02	4.5650E-01	5.1875E-01	5.39505-01
660 670	2.5962E-02	3.0767E-01	3.6812E-01	3.9137E-01
670 680	2.1300E-02	2.1420E-01	2.7300E-01	2.9400E-01
680 690	1.6969E-02	1.4610E-01	1.9005E-01	2.1041E-01
690 700	1.2804E-02	9.4050E-02	1.2540E-01	1.4520E-01
700 710	9.67206-03	5.9280E-02	8.4000E-02	1.0080E-01
710 720	7.05505-03	3.6890E-02	5.4400E-02	6.8000E-02
720 730	4.9450E-03	2.1275E-02	3.2775E-02	4.3700E-02
73(* 745)	0.	0.	0.	0.
SUM	1.2912E 00	5.3500E 01	5.7452E 01	4.6215E 01

TABLE 21B.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

L AMB DA	P-20 S-25H1	P-20 VARO	P-20 S-4	P-20 S-11
250 260	0.	0.	0	
260 270	0.	0.	0.	0.
270 280	ŏ.	0.	0.	0.
280 290	ŏ.	0.	0.	0.
290 300	ŏ.		0.	0.
300 310	0.	0. 0.	0.	0.
310 320	0.		0.	0.
320 330	0.	0.	0.	0•
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420		0.	0.	0.
420 430	0. 0.	0.	0.	0.
430 440		0.	0.	0.
440 450	0.	0.	0.	0.
450 460	ð. 0	0.	0.	0.
460 470	0.	0.	0.	0.
470 480	0.	0.	0.	0.
480 490	2.68556-01	1.6375E-01	2.3744E-01	3.0457E-01
490 500	4.7411F-01	3.2312E-01	4.0537E-01	5.2875E-01
500 510	8.72175-01	6.6337E-01	7.0144E-01	9.3525E-01
510 520	1.6605E 00	1.3365E 00	1.2049E 00	1.64028 00
520 530	2.9094F 00	2.3275E 00	1.8454E 00	2.4937E 00
530 540	4.3012E 00	3.4225E 00	2.3587E 00	3.2375E 00
540 550	5.3719E 00	4.3312E 00	2.5594E 00	3.6562E 00
550 560	6.0000E 00	4.9375E 00	2.5000E 00	3.6250E 00
560 570	6.3600E 00	5.3331E 00	2.2856E 00	3.3125E 00
570 580	6.3269" 00	5.3994F UO	1.9544E 00	2.8156E 00
580 590	5.7350E 00	5.1150E 00	1.5190E 00	2.2320E 00
590 600	4.7520E 00	4.5090E 00	1.0692E 00	1.5930E 00
600 610	3.8887E 00	3.8659E 00	7.0455E Gi	1.0522E 00
610 620	3.1236E 00	3.24905 00	4.2940E-01	6.3840E-01
620 630	2.3550E 00	2.5950E 00	2.3400E-01	3.3600E-01
630 640	1.7578E 00	2.0562E 00	1.2220E-01	1.6920E-01
640 650	1.2978E 00	1.5930E 00	6.3000E-02	7.9200E-02
650 660	9.7075E-01	1.2306E 00	0.	3.4375E-02
660 670	7.2002E-01	9.3894E-01	0.	1,55628-02
670 680	5.25456-01	7.0912E-01	0.	7.7500E-03
680 690	3.9420E-01	5.500E-01	0.	8.0400E-03
690 700	2.8734E-01	4.2309E-01	0.	6.9685E-03
700 710	2.0196E-01	3-1350E-01	0.	2.9040E-03
	1.3920E-01	2.3280E-01	0.	1.2240E-03
	9.2140E-02	1.6830E-01	0.	1.1400E-04
	5.7270E-02	1.1500E-01	0.	0.
730 740	0.	0.	0.	0.
SUM	6.0843E 01	5.5507F 01	2.0194F 01	2.87278 01

TABLE 21C.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCAYHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-20 S-17	P-20 VARIAN	P-20 S-201F	P-20 GA AS
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	5.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	າ.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0 ₃	0.	0.	0.
420 430	0.	0.	0.	0.
430 440	0.	0.	0.	0.
440 450	0.	0.	0.	0.
450 460	0.	0.	0.	0.
460 470	0.	0.	0.	0.
470 480	5.4037E-01	1.9814E-01	6.6810E-01	6.3535E-01
480 490	9.7525E-01	3.4662E-01	1.0399E 00	1.1397E 00
490 500	1.8052E 00	6.1987E-01	1.3159E 00	2.1097E 00
500 510	3.3615E 00	1.1137E 00	1.1745E 00	3.9285E 00
510 520	5.4862E 00	1.7789E 00	7.3150E-01 5.0181E-01	6.4505E 00
520 530 530 540	7.4000E 00 8.5500E 00	2.4050E 00 2.8125E 00	4.1625E-01	8.9262E 00
540 550	8.6875E 00	3.0000E 00	4.7187E-01	1.0800E 01 1.1937E 01
550 560	7.9500E 00	3.0806E 00	7.2875E-01	1.2587E 01
560 570	6.2275E 00	2.9812E 00	1.1925F 00	1.25218 01
570 580	4.2160E 00	2.6660E 00	1.5810E 00	1.1594E 01
580 590	2.5920E 00	2.2410E 00	1.7010E 00	9.99008 00
590 600	1.4640E 00	1.8300E 00	1.7156E 00	8.3722E 00
600 610	8.5880E-01	1.4630E 00	1.6720E 00	6.8780E 00
610 620	4.9800E-01	1.1100E 00	1.5150E 00	5.3400E 00
620 630	2.9845E-01	8.3425E-01	1.3277E 00	4.1125E 00
630 640	1.8540E-01	6.2100E-01	1.1250E 00	3.11408 00
640 650	1.1275E-01	4.5375E-01	9.4875E-01	2.3512E 00
650 660		3.2681E-01	7.7294E-01	1.7430E 00
660 670	2.8675E-02	2.3637E-01	6.1612E-01	1.2632E 00
670 680	1.6200E-02	1.7700E-01	5.0400E-01	9.4200E-01
680 690	0.	1.31225-01	4.0272E-01	6.9232E-01
690 700	0.	9.0750E-02	3.0690E-01	4.9170E-01
700 710	0.	6.1200E-02	2.2800E-01	3.4800E-01
710 720	0.	4.1650E-02	1.6150E-01	2.3800E-01
720 730	0.	2.7025E-02	1.0695E-01	1.54106-01
730 740	0.	0.	0.	0.
SUM	6.1314E 01	3.0648E 01	2.2926E 01	1.2866E 02

TABLE 21D.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-20 \$-25H?	P-20 VARO	P-20 S-25T1	P-20 S-25T2
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	ე.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	G.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0•	0.	0.	0.
410 420	0.	0.	0.	0.
420 430	0.	0.	0.	0.
430 440	0.	0.	0.	0.
440 450	0.	0.	0.	0.
450 460	0.	0.	0.	Ç.
460 470	0.	0.	0.	0.
470 480	1.2510E-01	1.6375E-01	2.6429E-U1	4.2902E-01
480 490	2.4792E-01	3.2312E-01	4.6824E-01	8.0761E-01
490 500	5.0242E-01	6.6337E-01	8.50425-01	1.5442E 00
500 510	1.0044E 00	1.3365E 00	1.5532E 00	2.9464E 00
510 520	1.7257E 00	2.3275E 00	2.5104E 00	4.921CE 00
520 530 530 540	2.4836E 00	3.4225E 00	3.4225E 00	6.8450E 00
530 540 540 550	3.1275E 00 3.5687E 00	4.3312E 00	4.0781E 00	8.1844E 00
550 560	3.8491E 00	4.9375E 00 5.3331E 00	4.4375E 00 4.5845E 00	8.8437E 00 9.0100E 00
560 570	3.9352E 00	5.3994E 00	4.4851E 00	8.6125E 00
570 580	3.7758E 00	5.1150E 00	4.1230E 00	7.7810F 00
580 590	3.3804E 00	4.5090E 00	3.4830E 00	0.4800E 00
590 600	2.9463E 00	3.8659E 00	2.8456: 00	5.1697E 00
600 610	2.5004E 00	3.2490E 00	2.3066E 00	4.0660E 00
610 620	2.0070E 00	2.5950E 00	1.7700E 00	3.0750E 00
620 630	1.5956E 00	2.0562E 00	1.3207E 00	2.2795E 00
630 640	1.2420E 00	1.5930E 00	9.6120E-01	1.6290E 00
640 650	9.6387E-01	1.2306E 00	7.0675E-01	1.1687E 00
650 660	7.3870E-01		5.0734E-01	8.3000E-01
660 670	5.5877E-01	7.0912E-01	3.6192E-01	5.8900E-01
670 680	4.3560E-01	5.5500E-01	2.6820E-01	4.3020E-01
680 690	3.3078E-01	4.2309E-01	1.9095E-01	3.0860E-01
690 700	2.4288E-01	3.1350E-01	1.3266E-01	2.1450E-01
700 710	1.7784E-01	2.3280E-01	9.3360E-02	1.5000E-01
710 720	1.2631E-01	1.6830E-01	6.4090E-02	1.0319E-01
720 730	8.5215E-02	1.1500E-01	4.1630E-02	6.7160E-02
730 749	0.	0.	0.	0.
SUM	4.16778 01	5.5907E 01	4.5831E 01	3.6486E 01

TABLE 22A.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-FLECTRON]

				_
L AMB DA	P-228 S-1	P-228 S-20	P-22B S-20R	P-22B S-25
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
	0.	0.	0.	0.
280 290 290 300	0.	0.	0.	0.
-	0.	0.	0.	0.
300 310 310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
	0.	0.	0.	0.
	1.4620F-02	2.2575E-01	2.2575E-01	1.5480E-01
	2.1682E-02	4.2262E-01	4.2262E-01	2.7562E-01
370 380 380 350	2.9962E-02	7.7137E-01	7.7137E-01	4.9087E-01
390 400	3.7825E-02	1.3851E 00	1.3851E 00	8.9000E-01
400 410	4.7725E-02	2.6664E 00	2.6664E 00	1.7430E 00
410 420	5.5125E-02	4.9125E 00	4.9125E 00	3.2437E 00
	6.3700E-02	8.0850E 00	8.0850E 00	5.35948 00
420 430 430 440	8.3250E-02	1.2025E 01	1.2025E 01	8.0937E ^0
440 450	1.0094E-01	1.5081E 01	1.5081E 01	1.0272E 01
450 460	1.0064E-01	1.5096E 01	1.5096E 01	1.0306E 01
	8.0925E-02	1.1651E 01	1.1651E 01	8.1412E 00
460 470 470 480	5.4719E-02	7.3709E 00	7.3709E 00	5.310 JE 00
480 490	3.6087E-02	4.4660E 00	4.4660E 00	3.2299E 00
490 500	2.5117E-02	2.7667E 00	2.7667E 00	2.0145E 00
500 510	1 % J 960E-02	1.6640E 00	1.7120E 00	1.232 00
510 520	1.0972E-02	9.5769E-01	1.0202E UO	7.260 01
520 530	7.2262E-03	5.6106E-01	5.9925E-0l	4.376 01
530 540	4.6882E-03	3.2254E-01	3-4545E-01	2.5732. 1
540 550	2.8440E-03	1.7182E-01	1.8367E-01	1.40225
550 560	0.	0.	0.	0.
560 570	0.	0.	0.	0.
570 580	0.	0.	0.	0.
580 590	0.	0.	0.	0.
590 600	0.	0.	0.	0.
600 610	0.	0.	0.	0.
610 620	0.	0.	0.	0.
620 630	0.	0.	U •	0.
630 640	0.	0.	0.	0.
640 650	0.	0.	0.	0.
650 660	0.	0.	0.	0.
660 670	0.	0.	0.	0.
670 680	0.	0	0.	9.
680 690	0.	0.	0.	0.
690 700	0.	0.	0.	0.
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0,	0.
SIM	7.9500E-01	9.0038 11	9.07858 01	8.23201 01

TABLE 22B.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-228 S-25H1	P-22B VARO	P-228 S-4	P-228 S-11
250 260	0.	0.	0.	C.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
290 290	0.	0.	0.	0.
290 300	0.	C.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	G.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	2.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	1.6447E-01	1.6770E-01
370 380	0.	0.	2.9216E-01	3.0870E-01
380 390	G.	0.	5.2084E-01	5.5462E-01
390 400	0.	0.	9.2004E-01	1.0012E 00
400 410	0.	2.0750E-01	1.72223 00	1.9297E 00 3.5625E 00
410 420 420 430	0. 0.	5.1750F-01 1.1025E 00	3.1012E 00 5.0347E 00	3.5625E 00 5.9412E 00
430 440	9.3425E 00	2.1275E 00	7.5387E 00	9.06505 00
440 450	1.1222E 01	3.4437E 00	9.5000E 00	1.1637E 01
450 460	1.0731E 01	3650E 00	9.4575E 00	1.1761E 01
460 470	8.2387E 00	4.2700E 00	7.3612E 00	9.2625E OC
470 480	5.2787E 00	3.2187E 00	4.6672E 00	5.9869E 00
480 490	3.2179E 00	2.1931E 00	2.7514E 00	3.5887E 00
490 500	2.0451F 00	1.5555E 00	1.6447E 00	2.1930E 00
500 510	1.3120E 00	1.0560E 00	9.5200E-01	1.2960E 00
510 520	8.4219E-01	6.7375E-01	5.3419E-01	7.2187E-01
520 530	5.4637E-01	4.3475E-01	2.9962E-01	4.1125E-01
530 540	3.3664E-01	2.7142E-01	1.6039E-01	2.2912E-01
540 550	1.8960E-01	1.5602E-01	7.9000E-02	1.1455E-01
550 560	0.	0.	0.	0.
560 570	0.	0.	0.	0.
570 580	0.	0.	0,	0.
580 590	0.	0.	0.	0.
590 600	0.	٥.	0. 0.	0. 0.
600 610 610 620	0.	0. 0.	0.	0.
610 620 620 630	0.	υ.	0.	0.
630 640	0.	0.	0.	0.
640 650	0.	0.	ŏ.	0.
650 660	0.	ő.	0.	0.
660 670	0.	0.	0.	0.
670 680	0.	0.	0.	0.
680 690	0.	0.	U.	o.
690 700	0.	O.	n.	0.
700 710	0.	0.	U.	0.
710 720	0.	0.	0.	0.
720 730	?•	0.	y.	0.
730 740	n.	J •	9	J.
5,	5 3300F 03	2.561 18 03	97076 01	6.9733E 01

TABLE 22C.

SPECTRAL EFFICIENCY OF PHUSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-228 S-17	P-22B VARIAN	P-228 S-201F	P-228 GA AS
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	ņ	0.	0.	ŏ.
310 320	0.	o.	0.	ŏ.
320 330	0.	ŏ.	0.	0.
330 340	0.	0.	0.	ŏ•
340 350	0.	0.	ŏ.	0.
350 360	0.	0.	0.	0.
360 370	3.0315E-01	ŏ.	1-8060E-01	3.7410E-01
370 380	5.2185E-01	ŏ .	2.3520E-01	6.6885E-01
380 390	9.1162E-01	ŏ.	4.0800E-01	1.1857E 00
390 400	1.6131E 00	0.	8.0100E-01	2.1026E 00
400 410	3 Q502E Q0	1-1101E 00	1.7222E 00	3.9632E 00
410 420	5.5875E 00	2.2125E 00	3.7500E 00	
420 430	9.3100E 00	3.8281E 00	7.4112E 00	7.2375E 00
450 440	1.4337E 01	5.9662E 00	1.3690E 01	1.1882E 01
440 450	1.8762E 01	7.6594E 00	2.1375E 01	1.7945E 01
450 460	1.95218 01	7.6394E 00		2.3037E 01
460 470	1.5892E 01	5.9962E 00	2.4492E 01	2.3522E 01
470 480	1.0622E 01		2.0377E 01	1.8915E 01
480 490	6.6192E 00	3.8947E 00	1.3132E 01	1.2489E 01
490 500		2.3526E 00	7.0579E 00	7.7357E 00
500 510	4.2330E 00	1.4535E 00	3.08555 00	4.9470E 00
510 520	2.6560E 00	8.8000E-01	9.2800E-01	3.1040E 00
520 530	1.5881E 00 9.4000E-01	5.1494E-01	2.1175E-01	1.8672E 00
530 540	5.4000E-01	3.0550E-01	6.3744E-02	1.1339E 00
540 550	2.7452E-01	1.7625E-01	2.6085E-02	6.7680E-01
550 560		9.4800E-02	1.4911E-02	3.7722E-01
560 570	0. 0.		0.	0.
570 580	0.		0.	0.
580 590		^	0.	0.
590 600	0. 0.	0.	0.	0.
600 610	0.	0.	0.	0.
610 620	0.	0.	0.	0.
620 630		0.	0.	0.
630 640	0. 0.	0.	0.	0.
640 650		0.	0.	0.
650 660	0. 0.	0.	0.	0.
660 670	0,	0	0.	0.
670 680	0.	0. 0.	0. 0.	0.
680 690	0.			0.
690 700	0.	0. 0.	0. 0.	0. 0.
700 710	· ·	0.	0.	
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0. 0.
130 140	U •	U •	U •	U •
SUM	1.1728E 02	4.4084E 01	1.1896E 02	1.4317E 02

TABLE 22D,

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-228 S-25H2	P-228 VARO	P-228 5-25T1	P-228 S-25T2
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	r.	0.	0.
310 320	0.	7).	0.	0.
320 330	0.	0.	0.	0.
330 340	9.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 37C	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
399 400	0.	0.	0,	0.
400 410	0.	2.0750E 01	0.	0.
410 420	0.	5.1750E-01	0.	0.
420 430	0.	1.1025E 00	4.4712E 00	5.7269E 00
430 440	1.7112E 00	2.1275E 00	6.9837E 00	9.2037E 00
440 450	2.6719E 00	3.4437E 00	9.2625E 00	1.2647E 01
450 460	3.3707E 00	4.3650E 00	9.7000E 00	1.3944E 01
460 470	3.2760E 00	4.2900E 00	7-8975E 00	1.2041E 01
470 480	2.4591E 00	3.2187E 00	5.1951E 00	8.4331E 00
480 490	1.6827E 00	2.1931E 00	3.1780E 00	5.4828E 00
490 500	1.1781E 00	1.5555E 00	1.99418 00	3.6210E 00
500 510	7.9360E-01	1.0560E 0G	1.2272E 00	2.3280E 00
510 520	4.9954E-01	6.73TJE-01	7.2669E-01	1.4245E 00
520 530 530 540	3.1549E-01	4.3475E-01	4.3475E-01	9.6950E-01
530 540 540 550	1.9599E-01	2.7142E-01	2.5556E-01	5.1289E-01
550 560	1.1277E-01	1.5602E-01	1.4022E-01	2.7946E-01
560 570	0. 0.	0.	0.	0.
570 580	0.	0. 0.	0.	0.
580 590	0.	9.	0. 0.	e. 0.
590 600	0.	ů.	0.	0.
600 610	0.	o.	0.	0.
610 620	0 4	1.	0.	0.
620 630	0.	ø.	0.	0.
630 640	0.	Ğ.	o.	0.
640 650	0.	0.	0.	0.
650 660	0.	Ů.	0.	0.
660 670	0.	0.	0.	0.
670 680	0.	0.	0.	0.
680 690	0.	0.	0,	0.
690 700	0.	0.	0.	0.
700 710	0.	0.	0.	0.
710 72%	J	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
SUM	1.82676 01	2. 613E 01	5.1467E 01	7.6514E 01

TABLE 25A.

SPECTRAL FFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-22G S-1	P-22G S-20	P-22G S-20R	P-22G \$-25
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	C •	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	G •
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0.	0.	0.	0.
420 430	1.3260E-03	1.6830E-01	1.6830E-01	1.1156E-01
430 440	1.8450E-03	2.6650E-01	2.6650E-01	1.7937E-01
440 450	2.7837E-03	4.1592E-01	4.1592E-01	2.8329E-01
450 460	4.4612E-03	6.6719E-01	6.6919E-01	4.5687E-01
460 470	7.5737E-03	1.0904E 00	1.0904E 00	7.6194E-01
470 480	1.2962E-02	1.7461E 00	1.7461E CO	1.2581E 00
480 490	2.3530E-02	2.9120E 00	2.9120E 00	2.1060E 00
490 500	4.3340E-02	4.7740E 00	4.7740E 00	3.4760E 00
500 510	7.0755E-02	6.9420E 00	7.1422E 00	5.1397E 00
510 520 520 520	9.6045E-02	8.3929E 00	8.9305E 00	6.3609E 00
520 530 530 540	1.1316E-01	8.7860E 00	9.3840E 00	6.8540E 00
540 550	1.2070E-01 1.1700E-01	8.3036E 00	8.8935E 00	6.6247E 00 5.7687E 00
550 560	1.1700E-01 1.0990E-01	7.06878 00 5.8100E 00	7.5562E 00 6.1600E 00	4.8440E 00
560 570	9.8325E-02	4.6000E 00	4.8875E 00	3.8985E 00
570 580	8.0937E-02	3.3250E 00	3.5875E 00	2.9050E 00
580 590	6.8340E-02	2.4140E 00	2.6180E 00	2.2032E 00
590 600	5.9400E-02	1.8090E 00	1.9440E 00	1.7064E 00
600 610	4.7587E-02	1.2859E 00	1.3972E 00	1.2433E 00
610 620	3.6875E-02	8.8500E-01	9.7350E-01	8.7320E-01
620 630	2.8819E-02	6.0900E-01	6.7425E-01	6.1987E-01
630 640	2.2750E-02	4.2250F-01	4.7531E-01	4.4687E-01
640 650	1.8375E-02	2.9400E-01	3.3381E-01	3.2769E-01
650 660	1.4640E-02	2.01306-01	2.2875E-01	2.3790E-01
660 670	1.1557E-02	1.3696E-01	1.6387E-01	1.7422E-01
670 680	9.49625-03	9.5497E-02	1.2171E-01	1.3107E-01
680 690	7.7812E-03	6.7022E-02	8.71505-02	9.6487E-02
690 700	6.11105-03	4.4887E-02	5.9850E-02	6.9300E-02
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
SUM	1.2364E 00	7.35268 01	7.7661E 01	5.9158E 01

TABLE 23R.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATIONE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-22G S-25H1	P-22G VARO	P-22G S-4	P-22G S-11
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	9.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	Ç.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0.	0.	0.	0.
420 430 430 440	0.	2.2950E-02	1.0480E-01 1.6707E-01	1.2367E-01
440 450	2.0705E-01 3.0949E-01	4.7150E-02 9.4975E-02	2.6200E-01	2.0090E-01 3.2095E-01
450 460	4.7569E-01	1.9350E-01	4.1925E-01	5.2137E-01
460 470	7.7106E-01	4.0150E-01	6.8894E-01	8.6687E-01
470 480	1.2505E 00	7.6250E-01	1.1056E 00	1.4182E 00
480 490	2.0982E 00	1.4300E 00	1.7940E 00	2.3400E 00
490 500	3.5288E 00	2.6840E 00	2.8380E 00	3.7840E 00
500 510	5.4735E 00	4.4055E 00	3.9716E 00	5.4067E 00
510 520	7.3719E 00	5.8975E 00	4.6759E 00	6.3187E 00
520 530	8.5560E 00	6,8080E 00	4.6920E 00	6.4400E 00
530 540	8.6666E 00	6.9877E 00	4.1291E 00	5.8987E 00
540 550	7.8000E 00	6.4187E 00	3.2500E 00	4.7125E 0G
550 560	6.7200E 00	5.6350E 00	2.4150E 00	3.5000E 00
560 570	5.4912E 00	4.6862E 00	1.6962E 00	2.4437E 00
570 580	4.0469E 00	3.6094E 00	1.0719E 00	1.5750E 00
580 590	2.9920E 00	2.8390E 00	6.7320E-01	1.0030E 00
590 600	2.2950E 00	2.2815E 00	4.1580E-01	6.2100E-01
600 610	1.6645E 00	1.7314E 00	2.2082E-01	3.4020E-01
610 620	1.1579E 00	1.2759E 00	1.1505E-01	1.65208-01
('0 630	8.1345E-01	9.5156E-01	5.6550E-02	7.8300E-02
630 640	5.8581E-01	7.19062-01	2.8437E-02	3.5750E-02
640 650	4.32426-01	5.4819E-01	0.	1.5312E-02
650 660	3.1750E-01	4.1404E-01	0.	5-8625E-03
660 670 670 680	2.3391E-01 1.7575E-01	3.1567E-01 2.4744E-01	0. 0.	3.4500E-03 3.5845E-03
680 690	1.3176E-01	1.9401E-01	0.	3.1955E-03
690 700	9.6390E-02	1.4962E-01	0.	1.3860E-03
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
730 740	0.	0.	0.	0.
, _ , , , ,	• •	• •	* •	• •
SUM	7.36635 01	6.1752E 01	3.4799E 01	4.8149E 01

TABLE 23C.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBI	DA	P-22G S-17	P-22G VARIAN	P-22G S-201F	P-22G GA AS
250	260	0.	0.	0.	0.
260	270	0.	0.	0.	0.
270	280	0.	0.	0.	0.
280	290	0.	0.	0.	0.
290	300	0.	0.	0.	0.
300	310	0.	0.	0.	0.
	320	0.	0.	0.	0.
	330	0.	0.	0.	0.
	340	0.	0•	0.	0.
	350	0.	0•	0.	0.
	360	0.	0.	0.	0.
	370	0.	0.	0.	0.
	380	0.	0.	0.	0.
-	390	0.	0.	0.	0.
-	400	0.	0.	0.	0.
	410	0.	0.	0.	0.
	420	0.	0.	0.	0.
	430	1.9380E-01	7.9687E-02	1.5427E-01	2.4735E-01
	440	3.1775E-01	1.32225-01	3.03408-01	3.9770E-01
	450	5.1745E-01	2.11245-01	5.8950E-01	6.3535E-01
	460 470	8.6537E ·01	3.3862E-01	1.0857E 00	1.0427E 00
		1.4874E 00	5.6119E-01	1.9071E 00	1.7702E 00
	480	2.5162E 00	9.2262E-01	3.1110E 00	2.9585E 00
	490 500	4.3160E 00 7.3040E 00	1.5340E 00 2.5080E 00	4.6020E 00 5.3240E 00	5.0440E 00
	510	1.1080E 01	3.6712E 00	3.8715E 00	8.5360E 00 1.2949E 01
	520	1.3901E 01	4.5074E 00	1.8535E 00	1.6344E 01
	530	1.4720E 01	4.7840E 00	9.9820E-01	1.7756E 01
530	540	1.3794E 01	4.5375E 00	6.7155E-01	1.7424E 01
	550	1.1294E 01	3.9000E 00	6.1344E-01	1.5519E 01
550	560	8.4000E 00	3.2550E 00	7.70005-01	1.3300E 01
560	570	5.4050E 00	2.5875E 00	1.0350(00	1.0867E 01
570	580	2.9750E 00	1.8812E 00	1.1156E 00	8.1812E 00
	590	1.6320E 00	1.4110E 00	1.0710E 00	6.2900E 00
	600	8.6400E-01	1.0800E 00	1.0125E 00	4.9410E 00
600	610	4.5765E-01	7.7962E-01	8.9100E-01	3.6652E 00
610	620	2.4485E-01	5.4575E-01	7.4487E-01	2.6255E 00
620	630	1.3811E-01	3.8606E-01	6.1444E-01	1.9031E 00
630	640	8.3687E-02	2.8031E-01	5.0781E-01	1.4056E 00
640	650	5.0225E-02	2.0212E-01	4.2262E-01	1.0474E 00
	660	2.6535E-02	1.4411E-01	3.4084E-01	7.6860E-01
660	670	1.2765E-02	1.05228-01	2.7427E-01	5.6235E-01
	680	7.2225E-03	7.8912E-02	2.2470E-01	4.1997E-01
	690	0.	6.0175E-02	1.8467E-01	3.1747E-01
	700	0.	4.3312E-02	1,4647E-01	2.3467E-01
	710	0,	0.	0.	0.
	720	0.	0.	0.	0.
	730	0.	0.	0.	0.
130	740	0.	0.	0.	0.
SUM		1.0260E 02	4.0528E 01	3.4441E 01	1.5715E 02

TABLE 23D.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS [PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-22G S-25H2	P-22G VARO	P-22G S-25T1	P-22G S-25T2
250 260	0•	0.	0.	0•
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0.	0.	0.	0.
420 430	0.	2.2950E-02	9.3075E-02	1.1921E-01
430 440	3.7925E-02	4.7150E-02	1.5477E-01	2.0397E-01
440 450	7.3687E-02	9.4975E-02	2.5545E-01	3.4879E-01
450 460	1.4942E-01	1.9350E-01	4-3000E-01	6.1812E-01
460 470	3.0660E-01	4.0150E-01	7.3912E-01	1.1269E 00
470 480	5.8255E-01	7.6250E-01	1.2307E 00	1.9977E 00
480 490	1.0972E 00	1.4300E 00	2.0722E 00	3.5750E 00
490 500	2.0328E 00	2.6840E 00	3.4408E 00	6.2480E 00
500 510	3.3108E 00	4.4055E 00	5.1197E 00	9.7121E 00
510 520 530 530	4-3726E 00	5.8975E 00	6.3609E 00	1.2469E 01
520 530 530 540	4.9404E 00	6-8080E 00	6.8080E 00	1.3616E 01
530 540 540 550	5.0457E 00	6.9877E 00	6.5794E 00	1.3204E 01
550 560	4.6394E 00	6.4187E 00	5.7687E 00	1.1497E 01
560 570	4.0670E 00 3.4155E 00	5.6350E 00	4.8440E 00	9.5200E 00
570 580	2.6644E 00	4.6862E 00 3.6094E 00	3.8927E 00 2.9094E 00	7.4750E 00
580 590	2.1284E 00	2.8390E 00	2.1930E 00	5.4906E 00 4.0800E 00
590 600	1.7388E 00	2.2815E 00	1.6794E 00	3.0510E 00
600 610	1.3324E 00	1.7314E 00	1.2292E 00	2.1667E 00
610 620	9.8677E-01	1.2759E 00	8.7025E-01	1.5119E 00
620 630	7.3841E-01	9.5156E-01	6.1117E-01	1.0549E 00
630 640	5.6062E-01	7.1906E-01	4.3387E-01	7.35316-01
640 650	4.2936E-01	5.4819E-01	3.1482E-01	5.2062E-01
650 660	3.2574E-01	4.1404E-01	2.2372E-01	3.6600E-01
660 670	2-4874E-01	3.1567E-01	1.61115-01	2.6220E-01
670 680	1.9420E-U1	2.4744E-01	1.1957E-01	1.9180E-01
680 690	1.51685-01	1.9401E-01	8.7565E-02	1.4151E-01
690 700	1.1592E-01	1.4962E-01	6.3315E-02	1.0237E-01
700 710	0.	0.	0.	Q.
710 720	0.	0.	0.	0,
720 730	0.	0.	0.	0.
730 740	0.	C •	0.	0.
SUM	4.5637E 01	8.1752E 01	5.8686E 01	1.1141E 02

TABLE 24A.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMB (NATIONS [PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-22R S-1	P-22K S-20	P-22R 5-20R	P-22R 5-25
250 260	0.	0.	0.	6.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	υ.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	G.	0+
310 320	0.	0.	0.	0.
320 330	G.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0.	G •	0.	0.
420 430	0.	0.	0.	0.
430 440	0.	0.	0.	0.
440 450	0.	0,	0.	0.
450 460	0.	0.	0.	0.
460 470	0.	0.	0.	0.
470 480	0.	0.	0.	0.
480 490	0.	0.	0.	0.
490 500	0.	0.,	0.	0.
500 510	0.	0.	0.	0.
510 520	0.	0.	0.	0.
520 530	0.	0.	0.	0.
530 540	0.	0.	0.	0.
540 550 550 540	0.	0.	0.	0.
550 560 540 570	2.6690E-03	1.4110E-01	1.4960E-01	1.1764E-01
560 570 570 580	6.1132E-03	2.8600E-01	3.0387E-01	2.4238E-01
570 586 580 590	1.3644E-02 2.5376E-02	5.6050E-01	6.0475E-01 9.7212E-01	4.8970E-01 8.1810E-01
590 600	4.1800E-02	8.9637E-01 1.2730E 00	1.3680E 00	1.2008E 00
600 610	6.3450E-02	1.7145E 00	1.8630E 00	1.6578E 00
610 620	8.6250E-02	2.07008 00	2.2770E 00	2.0424E 00
620 630	1.07328-01	2.2680E 00	2.5110E 00	2.3085E 00
630 640	1.2740E-01	2.3660E 00	2.6618E 00	2.50255 00
640 650	1.5000E-01	2.4000E 00	2.7250E 00	2.6750E 00
550 660	1.70405-01	2.3430E 00	2.5625E 00	2.7690E 00
660 670	1.8257E-01	2.1636E 00	2.5887E 00	2.7522E 00
670 680	1.43476-01	1.9456E 00	2.4797E 00	2.6705E 00
680 690	1.9969E-01	1.7200E 00	2.2365E 00	2.4761E 00
690 700	1-96918-01	1.4464E 00	1.9285E 00	2.2330E 00
700 710	1.0941E-01	1.1609E 00	1.6450E 00	1.9740E 00
710 720	1.7430E-01	9.1140E-01	1.3440E 00	1.6800E 00
720 730	1.5910E-01	6.8450E-01	1.0545E 00	1.4060E 00
730 740	0.	0.	0.	0.
SUM	2.0899E 00	2.6351E 01	3.1376E 01	3.2016E 01

TABLE 24B.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS [PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-22R S-25H1	P-22R VARO	P-22R S-4	P-22R S-11
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	c.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0,	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	v.
410 420	0.	0.	0.	0.
420 430	0.	0.	0.	0.
430 440	0.	0.	0.	0.
440 450	0.	0.	0.	0.
450 460	0.	0.	0.	0.
460 470	0.	0.	0.	0.
470 480	0.	0.	0.	0.
480 490	0.	0.	0.	0.
490 500	0.	0.	0.	0.
500 510	0.	0.	0.	0.
510 520	0.	0.	0.	0.
520 530	0.	0.	0.	0.
530 540	0.	0.	0.	0.
540 550	0.	0.	0.	0.
550 560	1.6320E-01	1.3685E-01	5.8650E-02	8.5000E-02
560 570	3.4141E-01	2.9136E-01	1.05465-01	1.5194E-01
570 580	6.8219E-01	6.0844E-01	1.8069E-01	2.6550E-01
580 590	1.1110E OC	1.0542E 00	2.4997E-01	3.7244E-01
590 600	1.6150E 00	1.6055E 00	2.9260E-01	4.3700E-01
600 610	2.2194E 00	2.3085E 00	3.0510E-01	4.5360E-01
610 620	2.7082E 00	2.9842E 00	2.6910E-01	3.8640E-01
620 630	3.0294E 00	3.5437E 00	2.1060E-01	2.9160E~01
630 640	3.2806E 00	4.0268E 00	1.5925E-01	2.0020E-01
640 650	3.5300E 00	4.4750E 00	0.	1.2500E-01
650 660	3.6955E 00	4.8191E 00	0.	7.9875E-02
660 670	3.6951E 00	4.9867E 00	0.	5.4500E-02
670 680	3.5806E 00	5.0412E 00	0.	7.3030E-02
680 690	3.3814E 00	4.9789E 00	0.	8.2005E-02 4.4660E-02
690 700	3.1059E 00	4.82126 00	0.	2.3970E-02
700 710	2.7260E 00	4.5590E 00	0. 0.	1.7640E-02
710 720	2.2764E 00	4.1580E 00 3.7000E 00	0.	0.
720 730	1.84268 00	0.	0.	0.
730 740	0.	U •	V•	0.
SUM	4.2984E 01	5.8099E 01	1.8314E 00	3.1444E 00

TABLE 24C.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-22R S-17	P-22R VARIAN	P-22R S-201F	P-22R GA AS
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0•	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0•	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0.	0.	0.	0.
420 430	0•	0.	0.	0.
430 440	0.	0.	0.	0.
440 450	U.	0.	0.	0.
450 460	0.	0.	0.	0.
460 470	0•	0.	0.	0.
470 480	0.	0.	0.	0.
480 490	0•	0.	0.	0.
490 500	0.	0.	0.	0.
500 510	0.	0.	0.	0.
510 520	0•	0.	0.	0.
520 530	0•	0.	0.	0.
530 540	0.	0.	0.	0.
540 550	0•	0.	0.	0.
550 560	2.0400E-01	7.9050E-02	1.8700E-02	3.2300E-01
560 570	3.3605E-01	1.6087E-01	6.4350E-02	6.7567E-01
570 580	5.0150E-01	3.1712E-01	1.8806E-01	1.3791E GO
580 590	6.0600E-01	5.2394E-01	3.9769E-01	2.3356E 00
590 600	6.0800E-01	7.6000E-01	7.1250E-01	3.4770E 00
600 610	6.1020E-01	1.0395E 00	1.1880E 00	4.8870E 00
610 620	5.7270E-01	1.2765E 00	1.7422E 00	6.1410E 00
620 630	5.1435E-01	1.4377E 00	2.2882E 00	7.0875E 00
630 640	4.6865E-01	1.5697E 70	2.8438E 00	7.8715E 00
640 650	4.1000E-01		3.4500E 00	8.5500E 00
650 660	3.0885E-01		3.9671E 00	8.9460E 00
660 670	2.0165E-01	1.6622E 00	4.3327E 00	8.8835E 00
670 680	1.4715E-01	1.6077E 00	4.5780E 00	8.5565E 00
680 690	0.	1.5442E 00	4.7392E 00	8.1472E 00
690 700	0•	1.3956E 00	4.7197E 00	7.5617E 00
700 710	0.	1.1985E 00	4.4650E 00	6.8150E 00
710 720	0.	1.0290E 00	3.9900E 00	5.8800E 00
720 730	0.	8.6950E-01	3.441CE 00	4.958CE 00
730 740	0.	0.	0.	0.
SUM	5.4891E 00	1.9799E 01	4.7126E 01	1.0248E 02

TABLE 24D.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-22R S-25H2	P-22R VARO	P-22R S-25T1	P-22R S-25T:
250 260	0.	•		- LEN 3 231.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0,
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	ŏ.	0. 0.	0.	0.
360 370	0.		0.	0.
370 380	0.	0. C.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	0.	0.	0.
410 420	0.	0.	0.	0.
420 430	0.	0.	0.	0.
430 440	0.	0.	0.	0.
440 450	0.	0.	0.	0.
450 460	0.	0.	0.	0.
460 470	0.	0.	0.	0.
470 480	0.	0.	0.	0.
480 490	0.	0.	0.	0.
490 500	0.	0.	0.	0.
500 510	0.	0.	0.	0.
510 520	0.	0.	0. 0.	0.
520 530	0.	0.	0.	0.
530 540	0.	0.	0.	0.
540 550	٥.	0.	0.	0.
550 560	9.8770E-02	1.3685E-01	1-17646-01	0. 2.31305.01
560 570	2.1235E-01	2.9136E-01	2.42/3E-01	2.3120E-01 4.6475E-01
570 580	4.4914E-01	6.0844E-01	4.9044E-01	9.2556E-01
580 590	7.9032E-01	1.0542E 00	8.1431E-01	1.5150E 00
590 600	1.2236E 00	1.6055E 00	1.1818E 00	2.1470E 00
600 610	1.7766E 00	2.3085E 00	1.6389E 00	2.8890E 00
610 620	2.3080E 00	2.9842E 00	2.03558 00	3.5362E 00
620 630	2.7499E 00	3.5437E 00	2.2761E 00	3.9285E 00
630 640	3.1395E 00	4.0268E 00	2.4297E 00	4.1178E 00
640 650	3.5050E 00	4.4750E 00	2.5700E 00	4.2500E 00
650 660 660 670	3.7914E 00	4.8191E 00	2.6039E 00	4.2600E 00
670 680	3.9274E 00	4.9867E 00	2.5451E 00	4.1420E 00
680 690	3.9567E 00	5.0412E 00	2.4361E 00	3.9076E 00
690 700	3.8926E 00	4.9789E 00	2.2471E 00	3.6316E 00
700 710	3.7352E 00	4.8212E 00	2.0401E 00	3.2987E 00
710 720	3.4827E 00	4.5590E 00	1.8283E 00	2.9375E 00
720 730	3.1206E 00	4.1580E 00	1.5834E 00	2.5494E 00
730 740	2.7417± 00	3.7000E 00	1.3394E 00	2.1608E 00
	V•	0.	0.	0.
SUM	4.4904E 01	6 enone o.	.	
	13 170 1C (12	5.8099E 01	3-0420E 01	5.0893E 01

TABLE 25A.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

	-		-	
LAMBDA	P-31 S-1	P-31 S-20	P-31 S-20R	P-31 S-25
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 350	0.	0.	0.	0.
360 370	0.	Ů.	Ú.	0.
370 380	0.	0.	0.	0.
380 390	7.2850E-03	1.8755E-01	1.8755E-01	1.1935E~01
390 400	9.6050E-03	3.5171E-01	3.5171E-01	2.26006-01
400 410	1.3397E-02	7.4851E-01	7.4851E-01	4.8930E-01
410 420	1.7456E-02	1.5556E 00	1.55565 00	1.0272E 00
420 430	2.3270E=02	2.9535E 00	2.95358 00	1.95788 00
430 440	3.27378-02	4.7287E 00	4.7287E 00	3.1828E 00
440 450	4.1544E-02	6.2071E 00	6.2071E 00	4.2277E 00
450 460	4.5857E-02	6.8786E 00	6.8786E 00	4.6962E 00
460 470	4.5235E-02	6.5127E 00	6.5127E 00	4.5507E 00
470 480	4.5262E-02	6.0971E 00	6.0971E 00	4.3931E 00
480 490	5.4979E-02	6.8040E 00	6.8040E 00	4.9207E 00
490 500	7.5106E-02	8.2731E 00	8.2731E 00	6.0237E 00
500 510	1.0202E-01	1.0010E 01	1.0299E 01	7.4112E 00
510 52U	1.2682E-01	1.1069E 01	1.1792E 01	8.3994E 00
520 530	1.3837E-01	1.0744E 01	1.1475E 01	8.3812E 00
530 540	1.3965E-01	9.6075E 00	1.0290E 01	7.6650E 00
540 550	1.2240E-01	7.3950E 00	7.9050E 00	6.0350E 00
550 560	9.4200E-02	4.9800E 00	5.2800E 00	4.1520E 00
560 570	7.2675E-02	3.4000E 00	3.6125E 00	2.8815E 00
570 580	5.5500E-02	2.2800E 00	2.4600E 00	1.9920E 00
580 590	4.2210E-02	1.4910E 00	1.6170E 00	1.3608E 00
590 600	3.1350E-02	9.5475E-01	1.0260E 00	9.0060E-01
600 610	2.23258-02	6.0325E-01	6.5550E-01	5.8330E-01
610 620	1.6250E-02	3.9000E-01	4.2900E-01	3.8480E-01
620 630	1.2190E-02	2.57605-01	2.8520E-01	2.6220E-01 1.7600E-01
630 640	8.9600E-03	1.6640E-01 1.1040E-01	1.3720E-01 1.2535E-01	1.2305E-01
640 650	6.9000E-03 5.2800E-03		8.2500E~02	8.5800E-02
650 660 660 670	4.0200E-03	7.2600E-02 4.7640E-02	5.7000E-02	6.0600E-02
670 680		0.	0.	0.
680 690	0.		0.	0.
690 700	0. 0.	0. 0.	0.	0.
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 730	0.	0.	0.	0.
130 740	0.	0.	0.	0.
SUM	1.41298 00	1.1488E U2	1.1888E 02	8.6664E 01

TABLE 25B.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMB)A	P-31 S-25H1	P-31 VARO	P-31 S-4	P-31 S-11
250	260	0.	0.	0.	G.
260	270	C.	0.	0	0.
270	280	0.	0.	0.	0.
280	290	0.	0.	0.	0.
290	300	0.	0.	0.	0.
300	310	0.	0.	0.	0.
310	320	0.	0.	0.	0.
320	330	0.	0.	0.	0.
330	340	0.	0.	0.	0.
340	350	0.	0.	0.	0.
350	360	0.	0.	0.	0.
360	370	0.	0.	0.	0.
370	3ა0	0.	0.	0.	0.
380	390	0.	0.	1.2663E-01	1.3485E-01
390	400	0.	0.	2.3363E-01	2.5425E-01
400	410	0.	5.8250E-02	4.8347E-01	5.4172E-01
410	420	0.	1.6387E-01	9.8206E-01	1.1281E 00
420	430	0.	4.0275E-01	1.8392E 00	2.1704E 00
430	440	3.6739E 00	8.3662E-01	2.9646E 00	3.56478 00
440	450	4.6187E 00	1.4174E 00	3.9100E 00	4.7897E 00
450	460	4.8896E 00	1.9890E 00	4.3095E 00	5.3592E 00
460	470	4.6052E 00	2.3980E 00	4.1147E 00	5.1775E 00
470	48Ú	4.3665E 00	2.8625E 00	3.8606E 00	4.9522E 00
480	490	4.9025E 00	3.3412E 00	4.1917E 00	5.4675E 00
490	500	6.1152E 00	4.6512E 00	4.91815 00	6.5575E 00
500	510	7.8°25E 00	6.3525E 00	5.7269E 00	7.7962E 00
510	520	9.7344E 00	7.7875E 00	6.1744E 00	8.3437E 00
520	530	1.0462E 01	8.3.50E 00	5,7375E 00	7.8750E 00
530	540	1.0027E 01	8.0850E 00	4.7775E 00	6.8250E 00
540	550	8.1600E 00	6.7150E 00	3.4000E 00	4.9300E 00
550	560	5.7600E 00	4.8300E 00	2.0700E 00	3.0000E 00
560	570	4.0587E 00	3.4637E 00	1.2537E 00	1.8062E 00
570	580	2.7750E 00	2.4750E 00	7.3500E-01	1.080CE 00
580	590	1.8480E 00	1.7535E 00	4.1580E-01	6.1950E-01
590	600	1.2112E 00	1.2041E 00	2.1945E-01	3.2775E-01
	610	7.8090E-01	8.1225E-01	1.0735E-01	1.5960E-01
610	620	5.1025E-01	5.6225E-01	5.0700E-02	7.2800E-02
620	630	3.4408E-01	4.0250E-01	2.3920E-02	3.3120E-02
	640	2.3072E-01	2.8320E-01	1.1200E-02	1.4080E-02
		1.6238E-01 1.1451E-01	2.0585E-01	0.	5.7500E-03
	660			0.	2.4750E-03
	670	8.1360E-02	1.0980E-01	0.	1.2000E-03
	680	0.	0.	0.	0.
	690	0.	0.	0.	0.
	700 710	0.	0.	0.	0.
	720	0.	0.	0.	0.
	730	0.	0.	0. 0.	0.
	740	0.	0.	0.	0.
, ,,,	, 40	•	V •	•	•
SUM		9.7326E 01	7.1437E 01	6.2638E 01	8.29908 01

TABLE 25C.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-31 S-17	P-31 VARIAN	P-31 S-201F	P-31 GA AS
250 260	0.	0.	0.	0.
260 270	0.	0.	0.	0.
270 280	0.	0.	0.	0.
280 290	0.	0.	0.	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0•
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	2.2165E-01	0.	9.9200E-02	2.8830E-01
390 400	4.0962E-01	0.	2.0340E-01	5.3392E-01
400 410	8.5627E-01	3.1164E-01	4.8347E-01	I.1126E 00
410 420	1.7694E 00	7.0062E-01	1.1875E 00	2.2919E 00
420 430	3.4010E 00	1.3984E 00	2.7074E 00	4.3407E 00
430 440	5.6381E 00	2.3462E 00	3.3835E 00	7.0567E 00
440 450	7.7222E 00	3.1524E 00	8.7975E 00	9.4817E 00
450 460	8.8952E 00	3.4807E 00	1.1160E 01	1.0718E 01
460 470	8.8835E 00	3.3517E 00	1.13905 01	1.0573E 01
470 480	8.7862E 00	3.2216E 00	1.0863E 01	1.0330E 01
480 490	1.0084E 01	3.5842E 00	1.0753E 01	1.1785E 01
490 500	1.2657E 01	4.3462E 00	9.2262E 00	1.4792E 01
500 510	1.5977E 01	5.2937E 00	5.5825E 00	1.8672E 01
510 520	1.8356E 01	5.9519E 00	2.4475E 00	2.1582E 01
520 530	1.8000E 01	5.8500E 00	1.2206E 00	2.1712E 01
530 F40	1.5960E 01	5.2500E 00	7.7700E-01	2.0160E 01
540 550	1.1815E 01	4.0800E 00	6.4175E-01	1.6235E 01 1.1400E 01
590 560 560 570	7.20005 00 3.9950E 00	2.7900E 00 1.9125E 00	6.6000E-01 7.6500E-01	8.0325E 00
570 580	2.0400E 00	1.2900E 00	7.6500E-01	5.6100E 00
580 590	1.0080E 00	8.7150E-01	6.6150E-01	3.8850E 00
590 600	4.5600E-01	5.7000E-01	5.3437E-01	2.6077E 00
600 610	2.1470E-01	3.6575E-01	4.1800E-01	1.7195E 00
610 620	1.0790E-01	2.4050E-01	3.2825E-01	1.15700 00
620 630	5.8420E-02	1.6330E-01	2.5990E-01	8.0500E-01
630 640	3.2960E-02	1.1040E-01	2.0000E-01	5.5360E-01
640 650	1.8860E-02	7.5900E-02	1.5670E-01	3.9330E-01
650 660	9.5700E-03	5.1975E-12	1.2292E-01	2.7720E-01
660 670	4.4400E-03	3.6600E-02	9.54005-02	1.9560E-01
670 680	0.	0.	0.	0.
680 690	0.	0,	0.	0.
690 700	0.	0.	0.	0.
700 710	0.	0.	0.	0.
710 720	0.	0.	0.	0.
720 T30	0.	0.	0.	0.
730 740	0.	0.	0.	7.
SUM	1.6458E 02	6.0798E 01	8.7893E 01	2.1830E 02

TABLE 25D.

SPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHUDE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

LAMBDA	P-31 S-25H2	P-31 VARO	P-31 S-25T1	P-31 S-25T2
250 260	0.	0.	0.	0.
260 270	0.	0.	C.	U.
270 280	0.	0.	0.	0.
280 290	0.	0.	0 .	0.
290 300	0.	0.	0.	0.
300 310	0.	0.	0.	0.
310 320	0.	0.	0.	0.
320 330	0.	0.	0.	0.
330 340	0.	0.	0.	0.
340 350	0.	0.	0.	0.
350 360	0.	0.	0.	0.
360 370	0.	0.	0.	0.
370 380	0.	0.	0.	0.
380 390	0.	0.	0.	0.
390 400	0.	0.	0.	0.
400 410	0.	5.8250E-02	0.	0.
410 420	0.	1.6387E-01	0.	0.
420 430	0.	4.0275E-01	1.6334E 00	2.0921E 00
430 440	6.7294E-01	8.3662E-01	2.7453E 00	3,6193E 00
440 450	1.0997E 00	1.4174E 00	3.8122E 00	5.2052E 00
450 460	1.5359E 00	1.9890E 00	4.4270E 00	6.3537E 00
460 470	1.8312E 00	2.3980E 00	4.4145E 00	6.7307E 00
470 480	2.0341E 00	2.6625E 00	4.2973E 00	6.9757E 00
480 490	2.5636E 00	3.3412E 00	4.8418E 00	9.3531E 00
490 500	3.52275 00	4.6512E 00	5.9627E 00	1.0827E 01
500 510	4.7740E 00	6.3525E 00	7.3824E 00	1.4004E 01
510 520	5.7739E 00	7.7875E 00	8.3994E 00	1.6465E 01
520 530	6.0412E 00	8.3250E 00	8.3250E 00	1.6650E 01
530 540	5.8380E 00	8.0850E 00	7.6125E 00	1.5277E 01
540 550	4.8535E 00	6.7150E 00	6.0350E 00	1.2027E 01
550 560	3.4860E 00	4.8300E 00	4.1520E 00	8.1600E 00
560 570	2.5245E 00	3.4637E 00	2.8772E OC	5.5250E 00
570 580	1.8270E 00	2.4750E 00	1.9950E 00	3.7650E 00
580 590	3.3146E 00	1.7535E 00	1.35455 00	2.52002 00
590 600	9.1770E-01	1.2041E 00	8.8635E-01	1.6102E 00
600 610	6.2510E-01	8-1225E-01	5.7665E-01	1.0165E 00
610 620	4.3485E-01	5.6225E-01	3.8350E-01	6.6625E-C:
620 630	3.1234E-01	4.0250E-01	2.5852E-01	4.4620E-01
630 640	2.20805-01	2.8320E-01	1.7088E-01	2.8960E-01
640 650	1.6123E-01 1.1748E-01	2.0585E-01	1.1822E-01	1.9550E-01
			8.0685E-02	
660 670	8.6520E-02	1.0980E-01	5.6040E-02	
670 680	0.	0.	0.	0.
680 690	0.	0.	0.	0.
690 700	0.	0.	0.	0.
700 710	0.	0.	0.	0.
710 720 720 730	0.	0.	0. 0.	0.
720 730 730 740	0. 0.	0. 0.	0.	0. 0.
130 170	Vi	•	V•	V •
SUM	5.25695 01	7.1437E 01	6.2792E 01	1.4900F 02

TABLE 26.

EFFICIENCY OF PHOSPHOR-FILM COMBINATIONS

[GRAINS/ELECTRON]

	POYAL X		TRI X	
	D=0.3	D=1.0	()=0.3	0=1.0
b - 4	3.27955 (S	1.0181E 00	8.4145E-01	3.7779E-01
P-11	4.8959E 00	1.2935E 00	1.2163E 00	5.3467E-01
P-16	1.52569 00	3.4052E-01	4.2291E-01	1.5124E-01
P-20	2.4157E 00	9.4985E-01	6.2956E-01	3.0030E-01
P-22B	3.8893E 00	9.4278E 0.	9.8159E-01	4.1839E-01
P-22G	2.8880E 00	1.0789F 00	7.1213E-01	3.3875E-01
P-22R	6.6671E-01	2.5767E-01	4.3581E-01	2.24028-01
P-31	4.4135E 00	1.4275E 00	1.0763E 00	4.9514E-01

TABLE 27A.

EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHCTOELECTRONS/10 KV-ELECTRON]

	S-1	S-20	S-2 JR	S -2 5
P-4	1.1742E 00	7.3645E 01	7.6108E 01	5.6361E 01
P-11	1.1376E 00	1.22690 02	1.2390E 02	8.6817E 01
P-16	9.93386-01	2.9825E 01	2.98255 01	1.9605E 01
P-20	1.2912E 00	5.3500E C1	5.7452E 01	4.6215E 01
P-228	7.9500E-01	9.0603E 01	°.0786E 01	6.2320F 01
P-22G	1.2364E 00	7.3526E 01	7.7661E 01	5.9158E 01
P-22R	2.0899E 00	2.63518 01	3.1376E 01	3.2016E 01
F-3 1	1.4129E 00	1.1488E 02	1.1888E 02	8.6669E 01

TABLE 27B.

EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS
[PHOTOELECTRONS/10 KV-ELECTRON]

	S- 25H1	VARO	S-4	S -11
P-4	5.9002E 01	4.5122E 01	3.7747E 01	4.8537E 01
P-11	8.2325E 01	4.82716 01	7.4581E 01	9.4207E 01
P-16	1.5264E 00	1.3425E 00	2.0010E 01	2.1743E 01
P-20	6.0843E 01	5.5907E 01	2.0194E 01	2.8727E 01
P-228	5.3302E 01	2.5613E 01	5.6702E 01	6.9793E 01
P-22G	7.3663E 01	6.1752E 01	3.4799E 01	4.8149E 01
P-22R	4.2984E 01	5.8099E 01	1.8314E 00	3.1444E 00
P-31	9.7326E 01	7.1437E 01	6.2638E 01	8.2990E 01

TABLE 27C.

EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

	S-17	VARIAN	S-201F	GA AS
P4	8.8559E 01	3.8333E 01	6.5611E 01	1.4324E 02
P-11	1.6797E 02	6.1704E 01	1.4742E 02	2.0543E 02
P-16	3.6050E 01	5.0764E 00	1.9721E 01	4.5983E 01
P=20	6.1314E 01	3.0648E 01	2.2926E 01	1.2866E 02
P-228	1.1728E 02	4.40845 01	1.1896E 02	1.4317E 02
P-22G	1.0260F 02	4.0528E 01	3.4441E 01	1.5715E 02
P-22R	5.4891E 00	1.9799E 01	4.7126E 01	1.0248E 02
P-31	1.6458E 02	6.0798E 01	8.7893E 01	2.1830E 02

TABLE 27D.

EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS

[PHOTOELECTRONS/10 KV-ELECTRON]

	S-25H2	VARO	S-25T1	S-25T2
P-4	3.3046E 01	4.5122E 01	4.9947E 01	8.5098E 01
P-11	3.5339E 01	4.8271E 01	7.7061E 01	1.2457E 02
P-16	3.3070E-01	1.3425E 00	2.3389E 00	3.0800F 00
P-20	4.1677E 01	5.5907E 01	4.5831E 01	8.6486E 01
P-22B	1.8267E 01	2.5613E 01	5.1467E 01	7.6514E 01
P-22G	4.5687E 01	6.1752E 01	5.8686E 01	1.1141E 02
P-22R	4.4904E 01	5.8099E 01	3.0420E 01	5.0893E 01
P-31	5.2559E 01	7.1437E G1	8.2792E 01	1.4900E 02

FIG I SPECTRAL CONVERSION FACTORS, $\eta_{\rm PC}$, OF REPRESENTATIVE PHOTOCATHODES SUITABLE FOR DETECTION OF NIGHT-SKY RADIATION.

FIG 2. SPECTRAL CONVERSION FACTORS, η_{\perp} , OF KODAK NEAR IR FILM 5424: DENSITY, D, AS PARAMETER

FIG. 4. SPECTRAL EFFICIENCIES OF PHOSPHOR SCREENS.

FIG. 5. SPECTRAL EFFICIENCIES, $\eta_{\rm L}$, OF PHOTOGRAPHIC FILMS

FIG 6A. SPECTRAL EFFICIENCIES, $\eta_P^{\rm A}$, OF PHOSPHOR SCREENS

FIG 68 SPECTRAL FFFICIENCIES, $\eta_{\rm P}^{\rm A}$, OF PHOSPHOR SCREENS

FIG. 7A SPECTRA . FFICH NCIES, $\eta_{P,V}^{\mathbf{x}}$ OF PHOSPHOR SCREENS

FIG 78 SPECTRAL EFFICIEN 23 7 to PHOSPHOR SCREENS

FIG. 84 SPECTRAL EFFICIENCIES, $\eta_{\rm PC}$, OF PHOTOCATHODES

FIG. BH SPICIPAL FORICIFNOIS . 7, OF PLOTOCATHODES

FIG. B., SPECTRAL EFFICIENCIES, $\eta_{\rm PQ}$, OF PHOTOCATHODES

FIG. 8 D. SFECTRAL EFFICIENCIES, $\eta_{\rm PC}$, OF PHOTOCATHODES

FIG. 9 NORMALIZED SPECTRAL EFFICIENCIES, $\xi_{\rm L}$, of Photographic emulsion

m. GEBEL. M. SPIEGEL. M. MESTMENDT AND M. MAYSLETT INTENSIFIEM MATCHING PROBLEMS.

FIG.10A. NORMALIZED SPECTRAL EFFICIENCIES, $\xi_{p,z}$, of PHOSPHOR SCREENS

M. GESEL. H. SPIEGEL, H. HESTMENOT AND M. HAYSLETT INTENSIFIEM HATCHING PROBLEMS.

FIG IOB NORMALIZED SPECTRAL EFFICIENCIES, $\xi_{P,J}$, OF PHOSPHOR SCREENS

THE PHOSPHOR SCREENS

FIG.11B NORMALIZED SPECTRAL EFFICIENCIES, $\xi_{P,Q}$.

OF PHOSPHOR SCREENS

. :

FIG. 12 A. NORMALIZED SPECTRAL EFFICIENCIES, $\xi_{\rm Pc}$, OF PHOTOCATHODES.

A. GEBEL. H. SPIEGEL. H. MESTMENOT AND A. HAYSLETT INTENSIFIER MATCHING PROBLEMS.

FIG. 12B. NORMALIZED SPECTRAL EFFICIENCIES, ξ_{PC} , OF PHOTOCATHODES.

FIG. 12C. NORMALIZED SPECTRAL EFFICIENCIES, ξ_{PC} , CF PHOTOCATHODES.

FIG. 12D. NORMALIZED SPECTRAL EFFICIENCIES, $\xi_{\rm PC}$, OF PHOTOCATHODES.

FIG. 13A. SPECTRAL RESPONSE OF CONVERSION YIELD, $\eta_{\rm R,C}$ FOR PHOSPHOR SCREEN-FILM COMBINATIONS

FIG 13B SPECTRAL RESPONSE OF CONVERSION YIELD, $\eta_{\rm P,L}$ FOR PHOSPHOR SCREEN-FILM COMBINATIONS

[nm]

FIG 130 SPECTRAL RESPONSE OF CONVERSION YIELD, $\eta_{\rm P,t'}$ FOR PHOSPHOR SCREEN-FILM COMBINATIONS

FIG. 13 D. SPECTRAL RESPONSE OF CONVERSION YIELD, $\eta_{\rm P,L}$ FOR PHOSPHOR SCREEN-FILM COMBINATIONS

FIG. 13E. SPECTRAL RESPONSE OF CONVERSION YIELD, $\eta_{\rm B,L}$ FOR PHOSPHOR SCREEN-FILM COMBINATIONS

FIG. 13 F. SPECTRAL RESPONSE OF CONVERSION YIELD, $\eta_{\rm P,C}$ FOR PHOSPHOR SCREEN-FILM COMBINATIONS

FIG. 13 G. SPECTRAL RESPONSE OF CONVERSION YIELD, $\eta_{\rm RC}$ FOR PHOSPHOR SCREEN-FILM COMBINATIONS

FIG. 13 H. SPECTRAL RESPONSE OF CONVERSION YIELD, $\eta_{\rm P,C}$ FOR PHOSPHOR SCREEN-FILM COMBINATIONS

FIG 19A SPECTRAL RESID (St., 1/P, R.) TOSE . 'R SUREEN - PHOTOCATHODE C "BINATIO" 5

FIG.148.SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS

FIG.14C. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN- PHOTOCATHODE COMBINATIONS.

FIG.14D SPECTRAL RESPONSE, $\eta_{\rm o,pc}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.15A. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG 158. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS

- [nm]

FIG.15C SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN-PHOTOCATHODE COMBINATIONS

FIG.15D. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN-PHOTOCATHODE COMBINATIONS.

FIG.16A. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.16B. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.16C. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.16D. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.17A. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.17B. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN-PHOTOCATHODE COMBINATIONS.

FIG.17C. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG. 17D. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

THIS PAGE IS MISSING IN ORIGINAL DOCUMENT

FIG.18A. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.18B. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.18C. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.18D. SPECTRAL RESPONSE, $\eta_{\rm S,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.19A. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.19B.SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN-PHOTOCATHODE COMBINATIONS.

Fig.19C.SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN-PHOTOCATHODE COMBINATIONS.

FIG.19D. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN-PHOTOCATHODE COMBINATIONS.

FIG.20A.SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.20B. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.20C.SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.20D.SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

FIG.21A. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHUSPHOR SCREEN-PHOTOCATHODE COMBINATIONS.

FIG.21B. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN-PHOTOCATHODE COMBINATIONS.

FIG.21C. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN-PHOTOCATHODE COMBINATIONS.

FIG.21D. SPECTRAL RESPONSE, $\eta_{\rm P,PC}$, OF PHOSPHOR SCREEN - PHOTOCATHODE COMBINATIONS.

BASIC CONFIGURATION OF AN IMAGE CONVERTER CASCADE FIG. 22

FIG.23. STATISTICAL FLUCTUATIONS SHOWING UP IN PICTURES (b to d) TAKEN OF (a) WITH A SEQUENTIAL LIGHT-AMPLIFIER, OCCURRING WHEN THE NUMBER OF PRIMARY PHOTOELECTRONS IS REDUCED.

APPENDIX

A. Appendix

1. Programs used in this paper

Since one may expect that better photocathodes, phosphors and films or at least those with different spectral characteristics may be marketed in the future, the program by which the tables etc. of this paper word calculated is given so that readers with computer facilities can add other tables to this paper for assessing pertinent materials.

This program was written for an IBM 7044-7094 Direct Couple System Computer and used about 31000 memory places including the executor. Results were printed directly on paper (SYSOU1) and stored or magnetic tape. The program has four main parts. The first, (ending with statement 115, in program DRIVER) reprints data to be used in a tabulated format. Statement 319 concludes the second part in which intrinsic efficiency values are calculated and tabulated. In part three, ending with statement 2010, the previously calculated intrinsic values are normalized. The last part calculates combinations between the intrinsic results of phosphor-film and phosphor-photocathodes.

Data to be read into the computer may have a format as determined in subprogram LOAD statement 101. The value has to be within the first fourteen columns with a maximum of seven digits behind the decimal point. As can be seen from the tables the starting point of the wavelength is 250×10^{-9} m. This number is increased by 10×10^{-9} m

with each step. As the data of films, photocathodes, and phosphors used in this paper do not always start in correlation with number 250, it has to be indicated to the computer to what wavelength value the first data-value belongs. In this program, a card with a two digit number in column 1 and 2 has to be placed in front of each single data deck. This number has to indicate to the computer to what wavelength the first nonzero data-value correlates. The correct number is found by calculating the difference between the wavelength the first data-value starts with, and the wavelength 250. The result has to be divided by 10. To this number, one has to be added. If for example the first nonzero-value appears at a wavelength of 330 nm, the difference to be found is 80. After division by 10 and adding 1, the right number to be placed in front of this data deck would be 09. If there is no nonzero data-value, the first card on such a data deck must obviously have the number 01. The limits for the used data must not exceed the following DIMENSIONS. For film data, the maximum number of values in a column is 50. Data of four films are allowed. For the phosphor data, the numbers are 50 and 8, and for photocathode data 85 and 12. Indications in this program are for film (F), for phosphor (P), and for photocathode (Z). The end of one data deck of one column has to be indicated by a blank card. New names or indications of data have to be inserted for the old ones at the same place. The number of letters or digits of these names must not exceed six.

The program which generated the instructions for the plotter was developed from the program used for the tables. The main difference between these two programs is that in the first, mean values were calculated, whereas in the latter pivot points were calculated and plotted.

A change of data-values in this program has to be done in the same way as in the previous program. More difficulties would arise if the DATA-statement of this program has to be changed, because the DIMENSION-statement and some arguments in subprograms have to be changed. For these reasons, new names and indications should be placed in the same location without changing the number of letters or symbols.

For this plotting program several subprograms were used which were in the system-library of the computer. In addition to these, subprograms from the CALCOMP Comp., Anaheim, Cal. were used. For more information about these programs this company should be contacted. In the following sections the programs and their flow charts are listed.

2. PROGRAM FOR TABLES

```
SIBFTC DRIVER
      DIMENSION XL(85) .P(85,12).F(85,12).Z(85,12).T(12).RS(85,1),EQ(85,
     il),EE(85+1),EQ1(85),FA(85+12),B(4),ETA(85+4),AP(8),BP(4),CP(12),
     *ETAE(85.8),ETAO(85.8),SUMP(8),SUMET(8),SUMQ(8),PA(85.12),ZA(85.12)
     *,ETAZ.(85,12),SUMEZ(12),SUMSTE(12),KCHECK(12),SUMSAZ(12)
     *.ETARZ(85.12).PP(12).IEN(12).IST(12).SUMAZ(12).SPF(32).PPP(49.96)
     *, XMAX (4) , XMAXE (8) , XMAXO(5) , XMAXZ(12) , XN (85,12) , XNE (85,12) , XNQ (85,
     *12) • XNZ(85 • 12) • SPP (96) • DP (8)
      DATA AP.BP.CP.DP /3HP-4.4HP-11.4HP-16.4HP-20.5HP-22B.5HP-22G.5HP-2
     *2R.4HP-31.6HRX-0.3.6HRX-1.0.6HTX-0.3.6HTX-1.0.3HS-1.4HS-20.5HS-20R
     *,4HS-25,6HS-25H1,4HVARO,3HS-4,4HS-11,4HS-17,6HVARIAN,6HS-20IF,5HGA
     * AS.5H P-4.5H P-11.5H P-16.5H P-20.5HP-228.5HP-22G.5HP-22R.5H P-3
      #RITE (6+115)
      WRITE (7+115)
      K=0
      DSQ=GRAINSIZEDIAMETER
C
      DSQ=2.2
      DO 1 J=250+1090+10
      K=K+1
      XL=WAVELENGTH
C
      XL(K)=J
      READ CARDS
C
      F=FILMVALUES
C
      CALL LOAD (50+4+F)
      P=PHOSPHORVALUES
C
      CALL LOAD (50.8.P)
      Z=PHOTOCATODEVALUES
C
       CALL LOAD(85.12.Z)
       PRINTING OF DATA RESD IN
C.
       WRITE (7+104 )
       WRITE (6+104 )
10
      PRINT HEADING
С
       FORMAT (38X7HTABLE 1)
104
       WRITE (6:105 )
       WRITE (7-105 )
       FORMAT (1H )
 105
       WRITE (6+106 ) (BP(J)+J=1+4)
       WRITE (7+106 ) (aP(J)+J=1+4)
       FORMAT(10X6HLAMBDA4X1A6+3(9X1A6))
 100
       WRITE (6.105 )
       WRITE (7+105 )
       PRINT FILMDATA
 Ç
       DO 11 J=1.50
       M=XL(J)
       DO 2000 I=1+4
       T(1)=F(J+1)*10.
 2000
       WRITE (7+107 )M+(T(I)+ I=1+4)
       WRITE (6+107 )M+(T(1)+ I=1+4)
 11
       FORMAT (10X15+4XF7+4+3(8XF7+4))
 107
       WRITE (6+115 )
       WRITE (7.115 )
        #RITE (6:108 )
       PRINT HEADING
 С
       WRITE (7+108 )
       FORMAT (38X7HTABLE 2)
 108
       FORMAT (38X7HTABLE 3)
 1081
       WRITE (6+105 )
        WRITE (7+105 )
        WRITE (6+109 ) (AP(J)+J=1+8)
                                                                   B-1
        WRITE (7.109 ) (AP(J).J=1.8)
```

FORMAT (10X6HLAMBDA+8(2X1A6))

```
1091
      FORMAT (10X6HLAMBDA + 3X1A6 + 5(4X1A6))
       WRITE (6:105 )
       WRITE (7+105 )
       PRINT PHOSPHORDATA
       DO 121 J=1,50
       M=XL(J)
       DO 2001 1=1.8
2001
      T(1)=P(J+1)*1000.
       WRITE (7+110 )M+(T(I)+I=1+8)
       WRITE (6.110 )M. (T(1).1=1.8)
121
       WRITE (6+115 )
      WRITE (7.115 )
113
      FORMAT (10X15,3XF6,3,7(2XF6,3))
      FRINT HEADING
C
      WRITE (6+1081)
      WRITE (7:1081)
      WRITE (6+105 )
      WRITE (7+105 )
      WRITE (6+1091) (CP(J)+J=1+6)
      WRITE (7.1091) (CP(J),J=1.6)
      WRITE (6+105 )
      WRITE (7.105 )
      PRINT PHOTOCATHODEVALUES
C
      DO 200 I=1.50
      M=XL(1)
      00 2002 J=1.6
2002
      T(J)=Z(I+J)*10.
      WRITE (7.9900)M. (T(K).K=1.6)
200
      WRITE (6.9900)M. (T(K),K=1.6)
      WRITE (6+115 )
      WRITE (7+115 )
      WRITE (6+1082)
      WRITE (7+1082)
      WRITE (6+105 )
      WRITE (7+105 )
      WRITE (6+1091) (CP(J)+J=1+6)
      WRITE (7+1091) (CP(J)+J=1+6)
      WRITE (6+105 )
      WRITE (7+105 )
      DO 1500 1=50.85
      M=XL(1)
      DO 2003 J=1.6
2003
      T(J)=Z(I+J)*10.
      WRITE (7.9900)M. (T(K).K=1.6)
1500
      WRITE (6.9900)M. (T(K).K=1.6)
      WRITE (6+115 )
      WRITE (7:115 )
      WRITE (6+1083)
      WRITE (7+1083)
      WR'TE (6+105 )
      WRITE (7+105 )
      WRITE (6.1091) (CP(J).J=7.12)
      WRITE (7:1091) (CP(J).J=7:12)
      WRITE (6+105 )
      WRITE (7+105 )
      DO 1501 1=1.50
      M=XL(1)
      D02004 J=7.12
2004
      T(J)=Z(I+J)*10.
      WRITE (7.9900)M. (T(K).K=7.12)
      WRITE (6+9900)M+(T(K)+K=7+12)
1501
```

WRITE (6+115)

```
WRITE (7-115 )
      WRITE (6.1084)
      WRITE (7,1084)
      WRITE (6+105 )
      WRITE (7+105 )
      WRITE (6+1091) (CP(J)+J=7-12)
      WRITE (7+1091) (CP(J)+J=7+12)
      WRITE (6:105 )
      WRITE (7+105 )
      DO 1502 I=50.85
      M=XL(I)
      DO 2005 J=7.12
2005
      T(J)=Z(I*J)*10*
      WRITE (7+9900)M+(T(K)+K=7+12)
1502
      WRITE (6,9900)M.(T(K),K=7,12)
      WRITE (6+115 )
      WRITE (7.115 )
      FORMAT (38X8HTABLE 3A)
1082
      FORMAT (38X7HTABLE 4)
1083
      FORMAT (38X8HTABLE 4A)
1084
     FORMAT (9XI5+4XF6+3+5F10+3)
9900
115
      FORMAT (1H1)
      NEW PART
C
      DO 300 1=1.85
300
      PS([+1)=XL(I)
      CALL ADVAGE (85.1.RS.EQ)
      DO 301 I=1.84
C
      EQ-CALCULATING FROM H*C/LAMBDA
      EQ(1+1)=1.986305E-16/EQ(1+1)
C
      EE=EQ IN ELECTRON VOLTS
      EE(I+1)=EQ(I+1)/1.6021E-19
301
      EQ1(1)=EQ(1+1)*1.0E+19
      PRINTING OF EQ AND EE
      WRITE (6.800)
      WRITE (7.800)
800
      FORMAT (38X7HTABLE 5)
      WRITE (6.105)
      #RITE (7.105)
      WRITE (6.801)
      WRITE (7:801)
801
      FORMAT (10X6HLAMBDA7X2HEQ10X2HEE10X6HLAMBDA6X2HEQ10X2HEE)
      WRITE (6+105)
      WRITE (74105)
      DO 302 I=1.42
      K1=XL(1)
      K2=XL(1+1)
      K3=XL(1+42)
      K4=K3+10
      WRITE(7.802)K1.K2.EQ1(1).EE(1.1).K3.K4.EQ1(1+42).EE(1+42.1)
      WRITE(6+802)K1+K2+EQ1(1)+EE(1+1)+K3+K4+EQ1(1+42)+EE(1+42+1)
302
802
      FORMAT(10X13+14+2(2XF10+7)+3X14+15+F12+7+F13+7)
      CALCULATING OF FILMEFFICIENCYVALUES
C
      CALL ADVAGE (50+4+F+FA)
      F AV= FILMAVERAGEVALUE
C
      B(1)=1.0/(10.0**.15)-1.0/(10.0**.45)
      B(2)=1.0/(10.0**.15)~1.0/(10.0**1.15)
      B(3)=1.0/(10.0**.1)-1.0/(10.0**0.4)
      B(4)=1.0/(10.0**.1)-1.0/(10.0**1.1)
      A=4./(3.1415926*DSQ*DSQ)
      DO 8061 I=1+4
                                                                 B-3
      DO 8061 J=1.50
C
      ETA=FILMEFFICIENCYVALUE
```

```
WRITE (7+115 )
      WRITE (6.1084)
      WRITE (7.1084)
      WRITE (6.105 )
      WRITE (7+105 )
      WRITE (6+1091) (CP(J)+J=7+12)
      WRITE (7+1091) (CP(J)+J=7+12)
      WRITE (6+105 )
      WRITE (7+105 )
      DO 1502 I=50.85
      M=XL(1)
      DO 2005 J=7.12
2005
      T(J)=Z(I \cdot J)*10.
      WRITE (7.9900)M.(T(K).K=7.12)
1502
      WRITE (6.9900)M.(T(K).K=7.12)
      WRITE (6+115 )
      WRITE (7+115 )
1082
      FORMAT (38X8HTABLE 3A)
      FORMAT (38X7HTABLE 4)
1083
     FORMAT (38X8HTABLE 4A)
1084
9900 FORMAT (9XI5.4XF6.3.5F10.3)
      FORMAT(1H1)
115
      NEW PART
С
      DO 300 I=1.85
      PS([+1)=XL(])
300
      CALL ADVAGE (85.1.RS.EQ)
      DO 301 I=1+84
      EQ-CALCULATING FROM H*C/LAMBDA
C
      EQ([+1)=1.986305E-16/EQ([+1)
C
      EE = EQ IN ELECTRON VOLTS
      EE([+1)=EQ([+1)/1.6021E-19
301
      EQ1(1)=EQ(1+1)*1.0E+19
      PRINTING OF EQ AND EE
      WRITE (6.800)
      WRITE (7.800)
800
      FORMAT (38X7HTABLE 5)
      WRITE (6+105)
      #RITE (7.105)
      WRITE (6+801)
      WRITE (7.801)
801
      FORMAT (10X6HLAMBDA7X2HEQ10X2HEE10X6HLAMBDA6X2HEQ10X2HEE)
      WRITE (6+105)
      WRITE (7:105)
      DO 302 I=1.42
      '(1=XL(1)
      KS=XF(1+1)
      K3=XL(1+42)
      K4=K3+10
      WRITE (7,802)K1,K2,EQ1([]),EE([,1]),K3,K4,EQ1([+42),EE([+42,1])
302
      WRITE(6,802)K1,K2,EQ1(I),EE(I,1),K3,K4,EQ1(I+42),EE(I+42,1)
      FORMAT(10X[3,14,2(2XF10,7),3X14,15,F12,7,F13,7)
208
С
      CALCULATING OF FILMEFFICIENCYVALUES
      CALL ADVAGE (50+4+F+FA)
      F AV= FILMAVERAGEVALUE
      B(1)=1.0/(10.0**.15)-1.0/(10.0**.45)
      B(2)=1.0/(10.0**.15)-1.0/(10.0**1.15)
      B(3)=1.0/(10.0**.1)-1.0/(10.0**0.4)
      B(4)=1.0/(10.0**.1)-1.0/(10.0**1.1)
      A=4./(3.1415926*DSQ*DSQ)
      DO 8061 1=1+4
                                                                 B-3
      DO 8061 J=1.50
С
      ETA=FILMEFFICIENCYVALUE
```

```
8061
      ETA(J.1)=0.
      DO 303 I=1.4
      T=B(1)*1.0E+15
      DO 303 J=1.50
      IF(FA(J+1))304+303+304
304
      FTA(J+1)=EQ(J+1)*A*(T/FA(J+1))
303
      CONTINUE
      WRITE(6.115)
      WRITE (7-115)
      WRITE (6:804)
      WRITE (7.804)
804
      FORMAT (38X7HTABLE 6)
      WRITE (6.105)
      WRITE (7+105)
      WRITE (6.805)
      WRITE (7,805)
805
      FORMAT(10X6HLAMBDA7X6HF AV 1.8X7HETA 0.3.7X6HF AV 2.8%7HETA 1.0)
      WRITE (6+105)
      WRITE (7.105)
      00 305 J=1+49
      K1 = XL(J)
      K2=XL(J+1)
      WRITE(7.806)K1.K2.FA(J.1).ETA(J.1).FA(J.2).ETA(J.2)
305
      WRITE(6,806)K1,K2,FA(J,1),ETA(J,1),FA(J,2),ETA(J,2)
806
      FORMAT(10X13+14+4(3X1PE11+4))
      WRITE (6+115)
      WRITE (7.115)
      WRITE (6.809)
      WRITE (7+809)
809
      FORMAT (38X7HTABLE 7)
      WRITE (6,105)
      WRITE (7+105)
      WRITE (6.810)
      WRITE (7.810)
810
      FORMAT(10X6HLAMBDA7X6HF AV 3.8X7HETA 0.3.7X6HF AV 4.8X7HETA 1.0)
      WRITE(6-105)
      WRITE (7.105)
      LO 306 J=1.49
      K1 = XL(J)
      K2=XL(J+1)
      WRITE(7+811)K1+K2+FA(J+3)+ETA(J+3)+FA(J+4)+ETA(J+4)
306
      WRITE(6.811)K1,K2.FA(J.3).ETA(J.3).FA(J.4).ETA(J.4)
811
      FORMAT (10X13+14+4(3X1PE11+4))
      CALCULATING OF PHOSPHOREFFICIENCYVALUES
      CALL ADVAGE (50.8.P.PA)
      00 310 1=1.8
      SUMP=SUM OF PHOSPHORAVERAGEVALUES
C
      SUMP(1)=0.
      SUMET#SUM OF PHOSPHOREFFICIENCIES
      SUMET (1)=0.
      SUNG=SUM OF ETAG
C
      SUMO(1)=0.
      DO 310 J=1.50
      ETAE=PHOSPHOREFFICIENCY
С
      PA=PHOSPHORAVERAGEVALUE
С
      ETAE(J+1)=PA(J+1)*1+6021E-14
      SUMP(1)=SUMP(1)+PA(J+1)*10.
      SUMET([)=SUMET([)+ETAE(J+1)
      CALCULATING OF PHOSPHOREFFICIENCYVALUES IN QUANTA/ELECTRON
Ç
      ETAG=PHOSPHOREFFICIENCY IN GAUNTA/ELECTRON
      ETAQ(J \cdot I) = ETAE(J \cdot I) / EQ(J \cdot I)
310
      SUMQ(1)=SUMQ(1)+ETAQ(J+1)
```

```
11=7
       D0312 I=1.8
       IT = I1 + I
       WRITE(6+115)
       WRITE(7+115)
       WRITE(6.813)IT
       WRITE(7+813)IT
       FOPMAT (38X6HTABLE 12)
813
       WRITE (6:105)
       WRITE (7.105)
       WRITE(6+814)[+[+]
       WRITE(7.814)[.[.]
814
      FORMAT(10X6HLAMBDA5X5HP AV(11.1H)9X6HETA E(11.1H)7X6HETA Q(11.1H))
       WRITE(6:105)
       WRITE (7+105)
       D0311 J=1.49
       MM=XL(J)
       MK = MM + 10
      PT=10.*PA(J.1)
      WRITE (7.815) MM. MK. PT. ETAE (J. I) . ETAO (J. I)
       WRITE(6.815)MM.MK.PT.ETAE(J.I).FTAQ(J.I)
311
      WRITE (6+105)
       WRITE (7.105)
       WRITE(6.816)SUMP(I).SUMET(I).SUMO(I)
       WRITE (7,816) SUMP (1), SUMET (1), SUMQ (1)
815
      FORMAT(10X13+14+3X1PE11+4+2(5X1PE11+4))
816
      FORMAT(1CX3HSUM7X1PE11.4.2(5X1PE11.4))
      CONTINUE
312
      CALCULATING OF PHOTOCATHODEEFFICIENCYVALUES
С
      CALL ADVAGE (85+12+Z+ZA)
      SUMEZ = SUM OF PHOTOCATHODEEFFICIENCIES
C
      SUMEZ(1)=0.
      DO 313 I=1+12
      DO 313 J=1+85
      ETAZ=PHOTOCATHODEEFFICIENCY
С
      ETAZ(J \cdot I) = EE(J \cdot I) * ZA(J \cdot I)
      ETARZ=1/ETAZ
      ETARZ(J+1)=1./ETAZ(J+1)
      SUMEZ(1)=SUMEZ(1)+ETAZ(J+1)
      IF (J-49)313+318+313
318
      SUMSTE(I)=SUMEZ(I)
313
      CONTINUE
      CALL CHECK (ETAZ+PP+1ST+XL+1EN)
      DO 600 MM=1+12
      SUMAZ (MM) = SUMEZ (MM)/PP (MM)
600
      SUMSAZ (MM) = SUMSTE (MM)/PP (MM)
      11=15
      DO 702 K=1.12
      MCHECK IS USED TO SKIP BLANK PAGES OF NONZEROVALUES
      KCHECK(K)=0
      DO 701 L=50.85
      IF (Z4(L+K))700+701+700
700
      KCHECK(K)=1
      GOTO 702
701
      CONTINUE
702
      CONTINUE
      00319 1=1+12
      IT=I1+I
      WRITE(6:115)
      WRITE(7-115)
                                                                    B-5
      WRITE (6.817) IT
      #RITE(7+817) IT
```

```
817
      FORMAT (38X6HTABLE 12)
      WRITE (6+105)
      WRITE (7.105)
      WRITE (6+818) I+I+I
      WRITE (7.818) 1.1.1
818
      FORMAT(10X6H, AMBDA6X5HZ AV(12.1H))11X7HETA Z (12.1H)9X7HETARZ (12.
      *1H)}
      WRITE (6+105)
      WRITE (7-105)
      DO 314 J=1.49
      MM=XL(J)
      MK = MM + 10
      WRITE (7+819) MM + MK + ZA (J+1) + ETAZ (J+1) + ETARZ (J+1)
      WRITE (6 + 819) MM + MK + ZA (J + I) + ETAZ (J + I) + ETARZ (J + I)
314
      FORMAT (10X14+14+3X1PE11+4+2(8X1PE11+4))
819
       IF (KCHECK(I))998,901,998
901
      WRITE (6+105)
      WRITE (7.105)
      WRITE (6+830)
      WRITE (7,830)
830
      FORMAT(11X18HEFFECTIVE INTERVAL)
      PRITE (6+105)
      WRITE (7-105)
      WRITE(6.820)IST(1).IEN(1).SUMSAZ(1)
      WRITE (7+829) IST(1) + IEN(1) + SUMSAZ(1)
820
      FORMAT(11X13+14+22X1PE11+4)
998
       IF (KCHECK(I))997+319+997
997
      WRITE (6+115)
      VRITE (7,115)
       iT = i1 + 1
      URITE (6.821) IT
      WRITE (7,821) IT
821
      FORMAT (38X6HTABLE 12)
       #RITE (6+105)
      WRITE (7.105)
      WRITE(6+822)1+1+1
      WRITE(7,822)1,1,1
822
      FORMAT (10X6HLAMBDA7X5HZ AV(12.1H)11X7HETA Z (12.1H)9X7HETARZ (12.
     *1H))
      WRITE (6.105)
      WRITE (7.105)
      90 315 J=49.84
      (U) JX=MM
      MK = MM + 10
      WRITE (7.823)MM.MK.ZA(J.I).ETAZ(J.I).ETARZ(J.I)
315
      WRITE(6.823)MM.MK.ZA(J.I).ETAZ(J.I).ETARZ(J.I)
823
      FORMAT(10X14+15+3X1PE11-4+2(8X1PE11-4))
      WRITE (6+105)
      WRITE (7:105)
      WRITE (6+825)
      WRITE (7+825)
825
      FORMAT (10X: SHEFFECTIVE INTERVAL)
      WRITE (6.105)
      WRITE (7-105)
      WRITE(6.826) | ST(1). | IEN(1). SUMAZ(1)
      WRITE(7.826) IST(1).IEN(1).SUMAZ(1)
826
      FORMAT (10X13+15+23X1PE11+4)
319
      CONTINUE
      NEW PART 2
                                                                      B-6
      0=914
      NQ=27
```

```
CALCULATING OF NORMALIZED VALUES
 С
        CALL NORM(ETA+49+4+XMAX+XN)
        CALL NORM (ETAE + 49 + 8 + XMAXE + XNE )
        CALL NORM (ETAQ +49 +8 + XMAXQ + XNQ)
       CALL NORM(ETAZ.84.12.XMAXZ.XNZ)
       PRINTING OF NORMALIZED VALUES
 С
 203
       NP=NP+1
       NQ= NQ+1
       CALL HEAD (NP+NQ)
       DO 20 J=1.49
       MM=XL(J)
       MK=MM+10
       WRITE (7+201)MM+MK+(XN(J+1)+1=1+4)
 20
       WRITE (6+201) MM+MK+ (XN(J+1)+1=1+4)
       FORMAT(19X14,14,6XF6,4,3(8XF6,4))
 201
       GOTO (204 + 205 + 207 + 205 + 2081 ) . NP
204
       DO 202 I=1.4
       DO 202 J=1.49
202
       XN(J+I)=XNE(J+I)
       GOTO 203
205
       DO 206 I=5.8
       DO 206 J=1.49
206
       XN(J+I-4)=XNE(J+I)
       GOTO 203
       00 2071 1=1.8
207
       DO 2071 J=1.49
2071
       XNE(J.1) = XNQ(J.1)
       GOTO 204
2081
       KK #:0
       NK=5
       NL=32
208
       NK=NK+1
       NL = NL + 1
       1 = 1
       N=49
510
       CALL HEAD (NK . NL)
       N. J=L 602 0U
       MM=XL(J)
       MK = MM + 10
       IF (N-49)2090,2090,2091
2090
       WRITE(6.201) MM.MK.(XNZ(J.1).1=1.4)
       VRITE(7.201) MM.MK.(XNZ(J.1).1=1.4)
       WRITE (6.2010) MM . MK . (XNZ(J+1) . I=1.4)
2091
       WRITE (7.2010) MM.MK. (XNZ(J.1), I=1.4)
209
       CONTINUE
       <K = <K+1
       GOTO(211+212+211+215+211+214)+KK
211
      L=49
      N=84
      GOTO 210
212
      DO 213 1=5.8
      DO 213 J=1.84
213
      XNZ(J,I-4)=XNZ(J,I)
      GOTO 208
215
      00 216 1=9.12
      DO 216 J=1+84
216:
      XNZ(J+I-8)=XNZ(J+I)
      60TO 208
      PRINTING OF TARLE WITH NORMALISATIONFACTORS
                                                                      B-7
214
      WRITF(6.114)
```

WRITE (7+115)

```
WRITE (6+222)
WRITE (7:222)
CALL BLANK(1)
WRITF(6.229)
WRITE (7:229)
CALL BLANK(1)
MRITE (6+262)
WRITE(7:262)
CALL BLANK(1)
WRITE(6:230)
WRITE (7.230)
WRITE(6:231)
WRITE (7,231)
WRITE(6:217)
WRITE (7+217)
WRITE (6+218)
WRITE (7,218)
CALL BLANK(1)
₩RITE(6+219) (XMAX(I)*I=1+4)
#RITE(7+219) (XMAX(I)+I=1+4)
CALL BLANK(2)
WRITF (6:232)
WRITE (7:232)
WRITE(6+233)
WRITE (7:233)
CALL BLANK(1)
WRITE (6,220)
WRITE (7,220)
CALL BLANK(1)
WRITE(6+219) (XMAXE(I)+I=1+4)
WRITE(7+219) (XMAXE(1)+1=1+4)
CALL BLANK(1)
WRITE (6,223)
WRITE (7+223)
CALL BLANK ()
               MAXE(1)+1=5+8)
WRITE(6:219
WRITE(7+219) (XMAXE(1)+1=5+8)
CALL BLANK(1)
WRITE(6.232)
WRITE (7.232)
WRITE (6.221)
WRITE(7.221)
CALL BLANK(1)
WRITE (6.220)
WRITE (7.220)
CALL BLANK(1)
WRITE(6.219) (XMAXQ(1).1=1.4)
WRITE(7,219) (XMAXQ(1), I=1,4)
CALL BLANK(1)
WRITE(6+223)
WRITE (7.223)
CALL BLANK(1)
WRITE(6+219) (XMAXQ(1)+1=5+8)
WRITE(7.219) (XMAXQ(1).1=5.8)
CALL BLANK(2)
WRITF (6+224)
WRITE (7+224)
WRITE (6+226)
WRITE (7:226)
CALL BLANK(1)
WRITE(6.225)
```

WRITE (7+225)

```
CALL BLANK(1)
      #RITE(6+219) (XMAXZ(1)+1=1+4)
      WRITE(7:219) (XMAXZ(I):1=1:4)
      CALL SLANK(1)
      WRITE (6:227)
      WRITE (7.227)
      CALL BLANK(1)
      WRITE(6+219) (XMAXZ(1)+1=5+8)
      WRITE(7.219) (XMAXZ(1).1=5.8)
      CALL BLANK(1)
      WRITE (6.228)
      WRITE (7,228)
      CALL SLANK(1)
      WRITE(6.219) (XMAXZ(1):1=9:12)
      WRITE(7:219) (XMAXZ(I):1=9:12)
      FORMAT (31X7HROYAL X+24X5HTR1 X)
217
      FOPMAT (24X5HD=0.3.10X5HD=1.0.10X5HD=0.3.10X5HD=1.0)
218
217
      FORMAT (10X2HNF5X+4 (5X1PF17+4))
      FORMAT (24X7HP-4+12X4HP-11+11X4HP-16+11X4HP-20)
220
      FORMAT (35X15HQUANTA/ELECTRON)
221
      FORMAT (38X8HTAPLE 36)
222
      FORMAT (24X5HP-228+10X5HP-22G+10X5HP-22R+10X4HP-31)
223
      FORMAT (36X12HPHOTOCATHODE)
224
      FORMAT (24X3HS-1 + 12X4HS-20+11X5HS-20R+10X4HS-25)
225
226
      FORMAT (34X17HELECTRONS/QUANTUM)
      FORMAT (24X6HS-25H! . 9X4HVARO . 11X3HS-4 . 12X4HS-11)
227
      FORMAT (24X4HS-17.11X6HVARIAN, 9X6HS-201F, 9X5HGA AS)
228
      FORMAT (30X26HNORMALISATION FACTORS (NF))
229
230
      FORMAT (40X4HFILM)
231
      FORMAT (36X14HGRAINS/QUANTUM)
232
      FORMAT (38X9HPHOSPHOR)
      FORMAT (35X15HJOULES/ELECTRON)
233
      FORMAT (20X49hSPECTRAL EAFICIENCY OF PHOSPHOR-FILM COMBINATIONS)
234
      FORMAT (14X57HSPECTRAL EFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINAT
260
     * LONS )
      FORMAT (10X14 + 14 + 2X + 4 (3X1PE11 + 4))
261
      FORMAT (41X3HFOR)
262
2010
      FORMAT(10X14+15+6XF6+4+3(8XF6+4))
      PART 3. COMBINATION PHOSPHOR-FILM, PHOSPHOR-PHOTOCATHODE
      CALL COMBI(ETAQ+49:8:FTA+49:4:PPP:SPF)
      NR=0
      K1=9
      NN=36
      DO 2351 IP=4+32+4
      IS=1P-3
      NR=1P/4
      CALL HEAD (KI+NN+NR)
      WRITE (6.234)
      WRITE (7,234)
      WRITE (6.242)
      WRITE (7+242)
      CALL BLANK(1)
      WRITE (6+238) (DP(NR)+8P(J)+J=1+4)
      WRITE (7.238) (DP(NR). AP(J). J=1.4)
      CALL BLANK(1)
      FORMAT (10X6HLAMBDA +5X+4(2X2A6))
885
      DO 235 J=1.49
      MM=XL(J)
      NK=MM+10
      WRITE (7.261)MM.MK. (PPP (J.M), M=15.1P)
                                                                   B-9
      WRITE(6,261)MM,MK, (PPP(J,M),M=15,1P)
235
      CALL BLANK(1)
```

```
WRITE(6+236) (SPF(N)+N=15+1P)
      WRITE (7+236) (SPF (N) +N=1S+1P)
2351
      CONTINUE
      CALL COMBI (ETAQ.49.8.ETAZ.49.12.PPP.SPP)
      NRF=0
      IK=9
      IKK=1
      KS=0
      NM=44
      L=0
      DO 2371 IP=4+96+4
      '-=L+4
      45=L-3
      1S=1P-3
      NRR=1P/4
      CALL HEAD (IK+NM+NRR)
      WRITF(6+260)
      WRITE (7.260)
      WRITE (6+247)
      WRITE (7.247)
      CALL BLANK(1)
      WRITE(6+238)(DP(IKK)+CP(M)+M=KS+L)
      WRITE (7.238) (DF([KK).CP(M).M=KS.L)
      CALL BLANK(!)
      DO 237 J=1+49
      MM=XL(J)
      MK =MM+10
      WRITE (7.261)MM.MK. (PPP (J.M).M=15.1P)
      WRITE(6+261)MM+MK+(PPP(J+M)+M=IS+IP)
237
      CALL BLANK(1)
      WRITE(6+236) (SPP(N)+N=15+1P)
      WRITE(7.236) (SPP(N).N=IS.IP)
      IF(L-12)2371+239+239
239
      L=O
      IKK=IKK+1
2371
      CONTINUE
      FORMAT (10X3HSUM7X+4(3X1PF11.4))
276
      PRINTING OF SUMS OF COMBINATIONVALUES
      WRITE(6+115)
      WRITE(7+115)
      WRITE (6.240)
      WRITE (7,240)
      CALL BLANK(1)
      WRITE (6:241)
      WRITF (7+241)
      WRITE (6+242)
      WRITE (7:242)
      CALL BLANK(1)
      WRITE(6+217)
      WRITE (7.217)
      WRITE(6:218)
      WRITF (7+218)
      CALL BLANK (3)
      IP=0
      DO 244 J=1.8
      IP=1P+4
      1S=1P-3
      WRITE(6.243) AP(J).(SPF(I).I=IS.IP)
      WRITE(7:243) AP(J):(SPF(1):1=1S:1P)
                                                                    B-10
      CALL BLANK(2)
      CONTINUE
244
      FORMAT (38X8HTABLF 69)
240
```

The contract of the contract o

```
241
      FORMAT (24X40HEFFICIENCY OF PHOSPHOR-FILM COMBINATIONS)
242
      FOPMAT (35X15HGRAINS/ELECTRON)
243
      FORMAT(10X+1A6+1X+4(5X1PE10-4))
      1P=0
      LO 248 IK=1+3
      WRITE(6:115)
      WRITE (7.115)
      IT=69+1K
      WRITE (6:245) IT
      WRITE (7:245) IT
      CALL BLANK(1)
      WRITE (6+246)
      WRITE (7.246)
      WRITE (6,247)
      WRITE (7:247)
      CALL BLANK (1)
      GOTO (249 + 250 + 251 ) + IK
249
      WRITE(6+225)
      WRITE (7+225)
      GOT0252
250
      WRITE (6+227)
      WRITE (7:227)
      GOT0252
      WRITE (6:228)
251
      WRITE (7.228)
252
      CALL BLANK (3)
      DO 253 J=1+8
      IP= IP+4
      IS=IP-3
      WRITE(6.243) AP(J).(SPP(I).I=IS.IP)
      WRITE(7,243) AP(J),(SPP(I),I=IS,IP)
      CALL BLANK(2)
      1P=1P+8
253
      CONTINUE
      IF (IK-2)2531+2532+248
2531
      1P=4
      GOTO 248
2532
      IP=8
      CONTINUE
248
      FORMAT (38X6HTABLE 12)
245
      FORMAT (19X48HEFFICIENCY OF PHOSPHOR-PHOTOCATHODE COMBINATIONS)
246
      FORMAT (28X29HPHOTOELECTRONS/10 KV-ELECTRON)
247
      STOP
      END
```

\$IBFTC SPICER SUBROUTINE LOAD (N1 +M+P) THIS PROGRAM READS CARDS С SEE PLOTTING PROGRAM FOR MORE INFORMATIONS С DIMENSION P(85.12) DO 12 I=1.M DO 12 J=1.N1 12 P(J+I)=0.0 L=N1+1 DO 6 J=1 • M READ (5.100) K D0 3 N=K+L 21 READ (5:101) X IF(X)5+6+5 5 P(N,J)=X 3 CONTINUE CONTINUE 6 100 FORMAT (12) FORMAT(E14.7) 101

> RETURN END

SIBFTC ADVGE SUFROUTINE ADVAGE (M.K.P.PV) THIS PROGRAM CALCULATES AVERAGEVALUES С DIMENSION P(85+12)+PV(85+12) С M=NUMBER OF VALUES K=NUMBER OF ARRAYS С PEVALUES READ IN PVEVALUES AVERAGE MM=M-1 70 15 J=1+M 00 15 I=1+K 15 PV(J.!)=0. DO 13 I=1 •K DO 13 J=1 .MM CHECK FOR ZEROVALUES С IF(P(J.I))14.13.14 IF(0(J+1+1))16+13+16 14 CALCULATE AVERAGE C

 $PV(J \cdot I) = (P(J \cdot I) + P(J + I \cdot I)) * \cdot 5$

16

13

CONTINUE

RETURN END

```
$13FTC SORT
      SUBROUTINE CHECK (X+PP+IST+XL+IEN)
      DIMENSIONX (85,12) .PP(12) .IST(12) .XL(85) .IEN(12)
      THIS PROGRAM FINDS THE EFFECTIVE INTERVAL
С
С
      X=PHOTOCATHODEEFFICIENCY
С
      PP=NUMBER OF NONZEROVALUES
С
      IST=STARTPOINT OF FIRST NONZEROVALUE
С
      XL=WAVELENGTH
      TEN=LAST NONZEROVALUE
С
      DO 7K=1.12
      1D=0
      M=0
      N=0
      30 9 L=1 +85
      IF(X(L,K)-1.0E-06)10.19.9
9
      ID=1
      GOTO 8
10
      IF(ID)8+3+8
      N=N+1
3
      CONTINUE
8
      op (K) =M
      IST(K)=XL(N+1)
      IEN(K)=250+10*(M+N)
7
      RETURN
19
      STOP
      END
```

SIBFTC MAXVL

SUBROUTINE NORM (X+N+M+XMAX+XN)
DIMENSION X(85+12)+XMAX(12)+XN(85+12)

- C THIS PROGRAM NORMALZIED ALL EFFICIENCYVALUES
- C X=VALUES TO BE NORMALIZED
- C N = NUMBER OF VALUES
- C M=NUMBER OF ARRAYS
- C XMAX=MAX. VALUE OF A COLUMN
- C XN=NORMALIZED VALUE
- C MAX VALUE OF A COLUMN

DO 5 I=1 • M

XMAX(I)=X(1+I)

PO 5 J=1+N

IF(XMAX(1)-X(J+1))6+5+5

- $6 \qquad XMAX(I)=X(J_{\bullet}I)$
- 5 CONTINUE

END

DO 7 I=1 .M

DO 7 J=1+N

- C NORMALISATION
- 7 XN(J,1)=X(J,1)/XMAX(1) RETURN

```
$IBFTC HEADL
      SUBROUTINE HEAD(ID+IT)
      THIS PROGRAM PRINTS HEADINGS
      ID=INDICATION OF HEADLINE NUMBER
      IT=TABLENUMBER
      WRITE(6:115)
      WRITE (7+115)
      WRITE (6,50) IT
      WRITE (7.50) IT
50
      FORMAT (38X6HTABLE 12)
      WRITE(6.105)
      WRITE (7+105)
      GOTO(51.52.53.54.55.56.57.58.59).ID
51
      WRITE(6+151)
      WRITE(7+151)
      GOTO 49
      WRITE (6+152)
52
      WRITE (7:152)
      GOTO 49
53
      WRITE(6+153)
      WRITE (7+153)
      GOTO 49
      WRITE (6+154)
54
      WRITE(7:154)
      GOTO 49
55
      WRITE (6+155)
      WRITE(7:155)
      GOTO 49
56
      WRITE (6+156)
      WRITE (7-156)
      GOTO 49
57
      WRITE (6:157)
      WRITE (7+157)
      GOTO 49
      WRITE(6+158)
58
      WRITE (7+158)
49
      WRITE (6+105)
      #RITE (7.105)
105
      FORMAT(1H )
115
      FORMAT(1H1)
151
      FORMAT(10X6HLAMBDA9X6HETAN 1.8X6HETAN 2.8X6HETAN 3.8X6HETAN 4)
152
      FORMAT(10X6HLAMBDA9X7HETAFN 1.7X7HETAEN 2.7X7HETAFN 3.7X7HETAEN 4)
153
      FORMAT(10X6HLAMBDA9X7HFTAFN 5.7X7HFTAEN 6.7X7HETAEN 7.7X7HFTAEN 8)
154
      FORMAT(10X6HLAMBDA9X7HETAQN 1.7X7HETAQN 2.7X7HETAQN 3.7X7HETAQN 4)
      FORMAT(10X6HLAMBDA9X7HETAUN 5,7X7HETAQN 6,7X7HETAQN 7,7X7HETAQN 8)
155
156
      FORMAT(10X6HLAMBDA9X7HETAZN 1.7X7HETAZN 2.7X7HETAZN 3.7X7HETAZN 4)
      FORMAT (10X6HLAMBDA9X7HETAZN 5+7X7HETAZN 6+7X7HETAZN 7+7X7HETAZN 8)
157
158
      FORMAT(10X6HLAMBDA9X7HETAZN 9.7X8HETAZN 10.6X8HETAZN 11.6X8HETAZN
     *12)
      RETURN
59
      END
```

\$IBFTC LINES

C BLANK LINES
SUBROUTINE BLANK(L)

C L=NUMBER OF BLANK LINFS
D01 I=1+L
VRITE(7+105)

1 WRITE(6+105)

105 FORMAT(1H)

RETURN FND SIBFTC MULCOM SUBROUTINE COMBI(PH+L+K+SL+M+N+PL+SPL) DIMENSION PH(85.12).PL(49.96).SPL(96).SL(85.12) С SEE PLOTTINGPROGRAM MM=0 DO 10 IP=1.K DO 11 IL=1+N MMFMM+1 SPL (MM) = 0 . N+1=L 11 07 FL(J.MM)=PH(J.IP)*SL(J.IL) SPL(MM)=SPL(MM)+PL(J+MM) 11 CONTINUE 10 CONTINUE RETURN END

3. FLOW CHART OF PROGRAM USED FOR TABLES

C-2

PG 2 8F 92

PG 9 6F 92

Maria Maria Maria

```
- - - ⊳ <sub>200</sub>
 HRITE (8.9900) H. (T(K).K=1.5)
  HRITE (6.115 )
HRITE (7.115 )
HRITE (6.1092)
HRITE (7.1082)
   HRITE (6.105)
HRITE (7.105)
HRITE (8.1091) (CP(J).J=1.6)
HRITE (7.1091) (CP(J).J=1.6)
               HRITE (6.105 )
HRITE (7.105 )
               DO 1500 I=50.85
                     H=XL(I)
               D8 2003
                                J=1.6
                 - 2003
              T(J)=Z(I.J)=10.
   HRITE (7.9900) H. (T(K).K=1.8)
   HMITE (6.9900) H. (T(K).K=1.6)
    HRITE (6.115 )
HRITE (7.115 )
HRITE (6.1069)
HRITE (7.1069)
HRITE (7.105 )
HRITE (7.105 )
HRITE (6.1091)
HRITE (7.1091)
               (6.1091) (CP(J).J=7.12)
(7.1091) (CP(J).J=7.12)
                  WRITE (6.105 )
WRITE (7.105 )
                  DO 1501 I=1.50
                   M=XL(I)
D62004 J=7,12
                     2004
                 T(J)=Z(I.J)=10.
                                                                                           C-5
                                                                           PG 5 6F 32
                   CONT. ON PG
```


C-6

PG 6 OF 32

C-7

CONT. ON PG 6

PG 7 OF 32

the state of the s


```
HRITE(6.105)
HRITE(7.105)
HRITE(6.814)I.I.I
HRITE(7.914)I.I.I
FORMAT (10X8HLAMBOA5X3HP AV (11.1H) 9X8HETA E (11.1H) 7X8HETA Q (11.1H))
                   WRITE(8.105)
WRITE(7.105)
D0311 J=1.49
MM=XL(J)
HK=HH+10
PT=10.4PR(J.I)
WRITE(7.015)MH.HK.PT.ETAE(J.I).ETAG(J.I)
                  WRITE(8.815)MM. MK.PT. ETRE(J. I) . ETAQ(J. I)
                      HRITE(3.105)
HRITE(7.105)
HRITE(8.016) SUMP(I).SUMET(I).SUMQ(I)
HRITE(7.016) SUMP(I).SUMET(I).SUMQ(I)
                   FORMAT(10X13.14.3X1PE11.4.2(5X1PE11.4))
                    FORMAT (10X3H3UM7X1PE11.4.2(5X1PE11.4))
                                         CONTINUE
                     CALCULATING OF PHOTOCATHODEEFFICIENCYVALUES
            C
                              CALL ADVAGE (85.12.Z.ZA)
                C
                          SUMEZESUM OF PHOTOCATHODEEFFICIENCIES
                                       SUMEZ(I)=0.
                                      DØ 313 I=1.12
                                                                                              C-12
                                      CONT. ON PG
                                                                                   PG 12 0F 32
```


PG 19 8F 32

The second secon

C-17

PG 17 8F 32

The second secon

C-19

PG 19 BF 32

C-22

and the second s

C-23

A STATE OF THE PARTY OF THE PAR

A STATE OF THE PARTY OF THE PAR

C-28

PG 28 8F 32

EG 20 8F 32

CONT. ON PG 32

C-31 PG 91 8F 32

CONT. ON PG 2

PG 1 OF 2

\$18FTC SORT SUBROUTINE CHECK(X.PP.IST.XL.IEN)
DIMENSIONX(85.12).PP(12).IST(12).XL(85).IEN(12) THIS PROGRAM FINDS THE EFFECTIVE INTERVAL X=PHOTOCOTHODEEFFICIENCY PP=NUMBER OF MONZEROVALUES IST=STARTPOINT OF FIRST MONZEROVALUE XL=HAVELENGTH IEN=LAST MONZEROVALUE 0000000 D6 7K=1.12 ID=0 N=0 N=0 DS 8 L=1.05 IF (X(L.K)-1.0E-06)10.19.9 H=H+1 10=1 G070 8 10 IF(10)8.3.6 0 N=N+1 C-37 CONT. ON PG 2 eg 1 6F 2

,

66 5 GE A

FORMAT (10X6HLAMBDA9X7HETAZN 9.7X6KETAZN 10.6X8HETAZN 11.6X8HETAZN 12)

158

FORMAT (10X6HLAMBDA9X7HETAZN 9.7X6KETAZN 10.6X8HETAZN 11.6X8HETAZN 12.6X8HETAZN 12.6


```
4. PROGRAM FOR PLOTTING
   SIBJOB HERMANN MAP
   SSETUP A(2)
                   DISK +860
   $IBJOB HERMANN MAP
   $18FTC DRIVER
         DIMENSION XL(87).P(87.96).F(87.12).Z(87.12).EQ(85.1).EE(85.1).B(4)
         *+ETA(87+4)+T(12)+ETAE(87+8)+ETAQ(87+8)+ETAZ(87+12)+XMAX(4)+XMAXE(8
         *) *XMAXQ(8) *XMAXZ(12) *DATA(438) *PC(87*12) *A(18) *BF(16) *BP(8) *BPC(12
         *) +BL(53) +BLA(1) +ORT3(1) +ORT1(16) +PP(8)
         LABELING-DATA FOR Y-AXIS A
   С
         DATA A(1)/106HGRAINS/QUANTUMJOULES/ELECTRONQUANTA/ELECTRONELECTRON
         *S/QUANTUM GRAINS/ELECTRONPHOTOELECTRONS/10 KV ELECTRON/
         LABELING-DATA FOR INDICATION BF.BP.BPC
   C
         DATA BF(1)/96HKODAK ROYAL-X PAN D=0.3 KODAK ROYAL-X PAN D=1.0 KODA
                             KODAK TRI-X PAN D=1.0
         *K TRI-X PAN D=0.3
          DATA BP(1)/48H P-4 P-11 P-16 P-20 P-22B P-22G P-22R P-31 /
          DATA PP(1)/48HP-4 P-11 P-16 P-20 P-22B P-22G P-22R P-31 /
                             S-20 S-20R S-25 S-25H1VARO S-4
         DATA BPC(1)/72HS-1
         *7 VARIANS-201FGA AS /
         LABELING-DATA FOR TITLES BL
         DATA BL(1) /315HSPECTRAL FILM EFFICIENCIESSPECTRAL PHOSPHOR EFFICI
         *ENCIESSPECTRAL PHOTOCATHODE EFFICIENCIESNORMALIZED SPECTRAL FILM E
         *FFICIENCIESNORMALIZED SPECTRAL PHOSPHOR EFFICIENCIESNORMALIZED SPE
         *CTRAL PHOTOCATHODE EFFICIENCIESSPECTRAL RESPONSE OF PHOSPHOR-FILM
         *COMBINATIONSSPECTRAL RESPONSE OF PHOSPHOR-PHOTOCATHORE COMBINATION
          DATA BLA(1)/6H
          CALCULATION OF FUNCTIONAL VALUES
   С
          CALL FLOTS (DATA + 438)
          CALL PLOT (0.4-2.0+3)
          DSQ=DIAMETER GRAINSIZE
   C.
          DS0=2.2
          K=0
          WAVELENGTHADJUSTMENT
   C
          DO 1 J=250,1090,10
          K=K+1
          XL(K)=J
          XL(86)PLOTSTART+XL(87)INTERVAL X-AXIS
   C
          XL (96)=250.
          XL(87)=150.
          SAVE XL(51) AND XL(52)
    C
          XS=XL (51)
          XM=XL (52)
          READ DATA F=FILM.PC=PHOSPHOR.Z=PHOTOCATHODE
    C
          CALL LOAD (50+4+F)
          CALL LOAD (50,8,PC)
          CALL LOAD (85+12+Z)
          EQ-CALCULATING FROM H*C/LAMBDA
    C
          DO 2 J=1 85
          EQ(J+1)=1.986305E-16/XL(J)
          EQ IN ELECTRON VOLTS IS CALLED EE
    C
          EE(J+1)=EG(J+1)/1.6021E-19
          CALCULATION OF FILM EFFICIENCIES
          B(1)=1*0/(10*0***15)-1*0/(10*0***45)
          B(2)=1.0/(10.0**.15)-1.0/(10.0**1.15)
          B(3)=1.0/(10.0**.1)-1.0/(10.0**9.4)
          B(4)=1.0/(10.0**.1)-1.0/(10.0**1.1)
          CALCULATING OF GRAINSIZE AREA
    С
          AA=4./(3.1415926*DSQ*DSQ)
          STORE ZEROS
          DO 3 1=1+4
                                                                      D-1
          DO 3 J=1+50
```

ETA(J+1)=0.

```
DO 50 I=1.4
      T(1)=B(1)*1.0E+15
      DO 5 J=1 +50
5
      ETA(J+1)=EQ(J+1)*AA*(T(1)/F(J+1))
      INFORMATION FOR PLOT Y-AXIS
      FTA(51+1)=1+E-05
      ETA (52 . 1 ) = . 5
   50 CONTINUE
      XL (51)=200.
      XL (52)=100.
      PLOT FOUR (4) CURVES ON ONE SET AXES END THIS PLOT
C
С
      PLOTTING OF FILMEFFICIENCIES
С
      SEE SUBROUTINE FOR ARGUMENTS
      CALL ELIM(XL.ETA.50.1.8F.4.0.75.1.8LA.8L.26.1.1..A.14.1.0.0.)
      CALCULATION OF PHOSPHOR EFFICIENCIES
С
      DO 7 I=1.8
      DO 7 J=1+50
7
      STAE (J.I)=0.
      00 60 1=1.8
      DO 6 J=1+50
      ETAE (J+1)=PC(J+1)*1.6021E-14
6
      ET.Q(J+1)=ETAE(J+1)/EQ(J+1)
      ETAQ(51+1)=1+E-01
      ETAE (51+1)=1+E-19
      ETAE (52+1)=0.375
      ETAQ(52.1)=0.5
   60 CONTINUE
      PLOTTING OF PHOSPHOR EFFICIENCIES
C
      CALL ELIM(XL.ETAE.50.8,PP.1.0.75.2.BLA.BL.30.27.1..A.15.15.0.0.)
      PLOTTING OF POSPHOREFFICIENCIES IN QUANTA/ELECTRON
С
       CALL ELIM(XL.ETAQ.50.8.PP.1.0.75.3.BLA.BL.30.27.1..A.15.30.0.0.0.)
      XL (51) = XS
      XL (52)=XM
      CALCULATION OF PHOTOCATHODES EFFICINCIES
C
       DO 8 1=1.12
       DO 8 J=1.85
      FTAZ(J.1)=0.
8
       DO 90 1=1.12
       DO 9 J=1.85
       ETAZ(J+1)=EE(J+1)*Z(J+1)
       ETAZ(86+1)=1.E-04
       ETAZ(87+1)=+5
   90 CONTINUE
       PLOTTING OF PHOTOCATHODE EFFICIENCIES
C
       CALL ELIM(XL, ETAZ, 85, 12, BPC, 1, 0, 75, 3, BLA, BL, 34, 57, 1, 4, 17, 45, 0, 0, )
С
       CALCULATION AND PLOT OF NORMALISED VALUES
       XL (51)=200.
       XL (52)=100.
       SUBSCRIPTS SEE SUBPROGRAM NORM
С
       CALL NORM (ETA . 50 . 4 . XMAX . Z)
       Z(51+1)=1-E-02
       Z(52+1)=0.375
       PLOTTING OF NORMALIZED FILMEFFICIENCIES
С
       CALL ELIM(XL,+Z+50+4+BF+4+0+75+1+BLA+BL+37+91+4++A+1+62+0+0+)
       CALL NORM(ETAE+50+8+XMAXE+F)
       F(51+1)=1.E-03
       F(52+1)=0.5
       PLOTTING OF NORMALIZED PHOSPHOREFFICIENCIES
       CALL ELIM(XL+F+50+8+PP+1+0+75+2+BLA+BL+41+128+4++A+1+62+0+0+)
       CALL NORM (ETAQ +50 +8 + XMAXQ +Z)
                                                                      D-2
       Z(51+1)=1.E-03
       Z(52+1)=0.5
```

```
С
      PLOTTING OF NORMALIZED PHOSPHOREFFICIENCIES
      CALL ELIM(XL.Z.50.8.PP.1.0.75.2.BLA.BL 41.128.4..A.1.62.0.0.)
      XL (51)=XS
      XL (52) = XM
      CALL NORM(ETAZ.B5.12.XMAXZ.Z)
      Z(86+1)=1.E-03
      Z(87+1)=0.5
      PLOTTING OF NORMALIZED PHOTOCATHODE EFFICIENCIES
С
      CALL ELIM(XL.Z.85.12.8PC.1.0.75.3.8LA.8L.45.169.4.,A.1,62.12.2.5)
      XL (51)=200.
      λL (52)=100.
C
      CALCULATION OF COMBINATIONS
      CALL COMBI (ETAQ.50.8.ETA.50.4.P)
      P(51+1)=1-E-04
      P(52+1)=0+5
      PLOTTING OF COMBINATION PHOSPHOR-FILM
С
      CALL ELIM(XL+P+50+32+BF+4+1+485+1+BP+8L+47+214+1++A+15+63+12+2+4)
      CALL COMBI(ETAO:50:8:ETAZ:50:12:P)
      P(51+1)=1.E-04
      P(52+1)=0.75
      PLOTTING OF COMBINATION PHOSPHOR - PHOTOCATHODE
С
      CALL ELIM(XL+P+50+96+BPC+1+1+485+3+BP+BL+55+261+1++A+29+78+25+1+3)
С
      NEV PAGE
      WRITE (6-115)
115
      FORMAT(1H1)
      WRITE CHECK-VALUES
C
      DO 10 J=1.50
      M=XL(J)
10
      WRITE(6.11)M.EQ(J.1).ETA(J.2).ETAE(J.7).P(J.20)
      FORMAT (5X13+4(3X1PE11+4))
11
      CALL PLOTE
      STOP
      END
```

```
SIBFTC SPICER
С
      THIS PROGRAM READS CARDS
      SUBROUTINE LOAD(N1+M+P)
C
      N1=NUMBER OF CARDS
C
      M=NUMBER OF ARRAYS
C
      P=NAME INDICATION
      DIMENSION P(87.12)
      SET ZEROS
7
      DO 12 I=1.M
      DO 12 J=1+N1
12
      P(J_1)=0.0
C.
      L IS USED WHEN MAX. NUMBER OF CARDS ARE READ IN
      L=N1+1
      DO 6 J=1+M
      K INDICATES STARTPOINT OF NONZEROVALUES
C
      READ (5.100) K
21
      DO 3 N=K+L
      READ VALUES X+STORE X IN P+STARTING IN K
      READ (5+101) X
      IF(X)5.6.5
5
      P(N.J)=X
3
      CONTINUE
      CONTINUE
100
      FORMAT (12)
      FORMAT(E14.7)
101
      RETURN
      END
```

\$IBFTC MAXVL

SUBROUTINE NORM (X.N.M.XMAX.XN)

- THIS PROGRAM FINDS MAX. VALUE OF AN ARRAY AND DIVIDES ALL VALUES С C
- OF THIS ARRAY WITH ITS MAX. VALUE DIMENSION X(87.12) .XMAX(12) .XN(87.12) C
- X=EFFICIENCY-VALUE + N=NUMBER OF VALUES . M= NUMBER OF ARRAYS . С
- XMAX=MAX.VALUE OF AN ARRAY. XN=NORMALIZED VALUE
- С MAY VALUE OF A COLUMN DO 5 1=1 .M XMAX(I)=X(I+I)00 5 J=1 N IF(XMAX(1)-X(J+1))6+5+5
- 6 $(1 \cdot C)X = (1)XAMX$
- CONTINUE 5
- С NORMALIZE VALUES BY XMAX 00 7 I=1 .M DO 7 J=1.N
- 7 (1)XAMX((1,U)X=(1,U)XXRETURN END

SIBFTC MULCOM THIS PROGRAM CALCULATES COMBINATIONS BETWEEN TWO KINDS OF VALUES SUBROUTINE COMBI(PH+L+K+SL+M+N+PL) **PH**=PHOSPHORVALUES L=NUMBER OF THESE VALUES K=NUMBER OF PHOSPHORARRAYS SL=NUMBER OF FILM OR PHOTOCATHODE VALUES C С M=NUMBER OF THESE VALUES С N=NUMBER OF ARRAYOF PHOTOCATHODES C PL=COMBINATION VALUE DIMENSION PH(87.8) . PL(87.96) . SL(87.12) С MM=NUMBER OF ARRAYS OF COMBINATION VALUE! MM=0 DO 10 1P=1.K 00 11 IL=1.N MM = MM + 1DO 11 J=1+M C CALCULATE COMBINATIONS PL(J.MM)=PH(J.IP)*SL(J.IL)

11

10

CONTINUE

CONTINUE RETURN END

```
SIBFTC ELIMIN
      THIS PROGRAM DOES THE MAINPLOTTING. VALUES TO BE PLOTTED ARE
      PREPARED. ZEROVALUES ARE ELIMINATED.
C
      SUBROUTINE ELIMIXL. ETA. M.L.ORTI.NB.XMO.KS.ORTO.H.NH.NHS.AB.W.NY.NS
     *Y+ITP+PITP)
      XL=WAVELENGTH.VALUE FOR X-AXIS
      ETA= EFFICIENCY VALUE FOR Y-AXIS
С
      M=VALUES OF ONE ARRAY
      L=INDICATION OF NUMBER OF ARRAYS
С
      CRT1=LABELING OF FILMNAMES
С
C
      NB=INDICATION FOR NUMBER OF LETTERS
      XMO PLOTSTART FOR ORTI
С
C
      KS=REPEATRATE
C
      ORTO=BLANKS OR PHOSPHORNAMES
C
      H=HEADLINE
      NH=NUMBER OF HEADLINELETTERS
      NHS=STARTLETTER IN HEADLINESTATEMENT
      AB=ARROWHEAD STARY
\mathbf{C}
      W=DATADIMENSION FOR HPLOT
      NY=NUMBER OF LETTERS FOR W
C
      NSY=STARTLETTER IN W-STATEMENT
C
      ITP=INDICATION IF OR IF NOT TWO HEADING LINES
С
      PITP=STARTPOINT FOR SECOND HEADING LINE
      DIMENSION XL(87).ETA(87.96).Y(87).X(87).ORT2(12).ORT0(8).H(53).W(1
     *8) + OR73(1) + ORT1(16) + PH(10)
C
      KP=INDICATOR FOR NUMBER OF FILMARRAYS
С
      N=STARTPOINT FOR ORTO
      NL=NUMBER OF LETTERS OF ORTI
C
      NL=NB*6
      JO 4 IB=1 . . . 4
      IE=18+3
      DO 3 1=18+1E
      K=INDICATES NUMBER OF NONZEROVALUES
С
      DO 2 J=1 .M
      ELIMINATING OF NONZEROVALUES
      IF (ETA(J.I)-ETA(M+1.1))2.2.1
  1
      CONTINUE
   2
      INDICATION LABELING X- AND Y-AXIS
      X(K)=XL(J)
      Y(K)=ETA(J+I)
      Y(K+1)=ETA(M+1+1)
      Y(K+2) = ETA (M+2 • 1)
      X(K+1)=XL(M+1)
      X(K+2)*XL(M+2)
      CALLING FOR PLOTTING AXIS
      CALL HPLOT (X+Y+K+1+IB+AB+W+NY+NSY)
  3
      CONTINUE
      KP=KP+1
      DECISION IF FILM OR PHOSPHOR NAMES OR BOTH
C
      IF (XMO-0.75)8.8.7
      PLOTTING OF PHOSPHORNAMES
C
7
      V=1.072
      NFP=6*N-5
      PO 6 I=1+4
      MOVEF=MOVE FIELD. MOVES HERE N=6 SYMBOLS OF LOCATION ORTO.
C
      STARTING POINT NFP TO LOCATION ORT3. STARTING POINT 1.
С
      CALL MOVEF (6+ORTO+NFP+ORT3+1)
      CALL SYMBOL (0.75.V..105.ORT3.0..6)
```

```
С
      THIS PROGRAM IN SYSTEMLIBRARY OF COMPUTER
      SUBP. SYMBOL = CALCOMP PROGRAM: 1. ARGUMENT STARTPOINT X-DIRECTION
      V=STARTPOINT Y-DIRECTION . 3. ARGUMENT LETTERHEIGHT.
С
      4. ARGUMENT TEXT TO BE PLOTTED. 5. ARGUMENT ANGLE OF LETTERS TO Y
      LAST ARGUMENT = NUMBER OF LETTERS OR SYMBOLS
6
      V=V-0.2
      PLOTTING OF FILM PHOSPHOR OR PHOTOCATHODE NAMES
      V=1.072
      KKP=4*KP
      KSP=KKP-3
      DO 5 I=KSP+KKP
      NF1 = 1 + ((I-1)*NL)
      CALL MOVEF(NL+ORT1+NF1+ORT2+1)
      CALL SYMBOL (XMO+V++105+ORT2+O++NL)
      V=V-0.2
      DECISION IF ONE OR TWO LINES FOR HEADING
      IF(ITP)11.11.12
12
      NHD=NH~ITP
      CALL MOVEF (NHD+H+NHS+PH+1)
      CALL SYMBOL(1.125.-1.18..125.PH.0..NHD)
      NNHS=NHS+NHD
      CALL MOVEF (ITP + H + NNHS + PH + 1)
      CALL SYMBOL (PITP -- 1.4.. 125. PH.O. : ITP)
      GOTO 13
      SECOND LINE
      CALL MOVEF (NH+H+NHS+PH+1)
11
      CALL SYMBOL (1 . 125 . - 1 . 18 . . 125 . PH . 0 . . NH)
C
      START NEW PAGE
13
      CALL PLOT(10.+0.+-3)
      REPEATDECISION FOR PHOSPHORNAMES
      TF (KP-KS) 4.9.10
      KP=0
9
      N=N+1
      CONTINUE
С
      RETURN TO MAINPROGRAM
10
      RETURN
      END
```

SIBFTC SPLOT SURROUTINE HPLOT(X.PX.K.1.KK.AA.YT.NYT.NSYT) THIS PROGRAM PLOTS AXIS-FRAME C X=WAVELENGTH X-AXIS PX=Y-VALUES TO BE PLOTTED C K=NUMBER OF NONZEROVALUES С I = NUMBER OF ARTAYS C KK=ARRAYSINDICATION С OTHER ARGUMENTS SEE SUBP. LABLE C DIMENSION X(87) .PX(87) .YT(18) L=I~KK (F(L)1+1+5 PLOTTING OF LOWER X-AXIS С 1 CALL HAXIS(0.,0.,6.,-1.,.143.X(K+1).X(K+2)) PLOTTING OF LEFT Y-AXIS C CALL LGAXIS(0..0..1H .1.8.. 90..PX(K+1).PX(K+2)) PLCTTING OF RIGHT Y-AXIS C CALL SLAXIS(6.+0.+1H ++1+8.+90.+PX(K+1)+PX(K+2)) PLOTTING OF UPPER X-AXIS С CALL HAXIS(0..8..6..0...143.X(K+1).X(K+2)) 5 CONTINUE PREPARING OF VALUES FOR PLOTTING C CALL LGLINE (X.PX.K.5.L.2) IF(L-3)8,7,8 7 CALL LABLE (AA.YT.NYT.NSYT) 8 CONTINUE RETURN END

```
SIBFTC ACHSE
      THIS PROGRAM PLOTS X-AXIS
      SUBROUTINE HAXIS(A+B+Z+L+U+XI+DA)
      A+B STARTINGCOORDINATES
      Z= INCERVALS ON X-AXIS
      L= ANNOTATION(-1) + NO ANNOTATION(0)
      U=CENTERING OF NUMBERS IN RELATION TO TIC+MARK
      XI=STARTNUMBER
C
      DA=INTERVALVALUE
      CALL PLOT (A+B+3)
      IF=Z+1 .
      N=XI
      IA=DA
      BB=8~.345
      DO 1 I=1+IF
      PI = I = 1
      λN=A+D1
      PLOT ANNOTATIONMARKS
C
      CALL PLOT(XN+B+2)
      CALL PLOT (XN+B-+125+2)
      CHANGE OF CENTERVALUE
С
      IF (N-1000)9 • 10 • 10
      U=.207
10
      CONTINUE
      ANNOTATION FOR LOWER. NO ANNOTATION FOR UPPER AXIS
      IF(L)11+12+11
      CALL NUMBER (XN-U+88++115+W+0++-1)
      PLCTTING OF INTERVALANNOTATIONMARKS
С
   12 N=N+1A
      IF(1-7)7+2+7
7
      IF(150.-DA)4.4.3
      ST1=0.1667
      NL=5
      GOTO 6
      ST1=0.2
3
      NL=4
      ST=XN
      DO 5 J=1 .NL
      ST=ST+STI
      CALL PLOT(ST+B+3)
      CALL PLOT(ST.B-0.07.2)
      CONTINUE
2
      CALL PLOT (XN+B+3)
      CONTINUE
      RETURN
      END
```

```
SIBFTC PFEIL
      THIS PROGRAM PLOTS SMALL NM+ LAMBDA + ARROWHEADS+ AUTHORS AND
      INDICATION OF CURVES
C
      SUBROUTINE LABLE (AS . Y . NY . NSY)
      AS= ARROWHEAD START
C
      Y=Y-AXIS DIMENSIONS
С
      NY-NUMBER OF LETTERS OF DIMENSIONS
С
C
      NSY=STARTLETTER OF DIMENSIONS
      DIMENSION Y(18) +PY(5)
      PLOT ARROWHEAD X-AXIS
С
      CALL PLOT (2. +-0.6+3)
      CALL PLOT (2.75.-0.6.2)
      CALL AROHD(3.25.-0.6.4.75.-.6.0.2.0.08.16)
C
      PLOT SMALL N
      XN=5.0
      XN AND YN STARTPOINT FOR SMALL N
C
      YN=-0.55
      BN=YN+0.075
      PLOT BRACKETS
С
      CALL PLOT (XN-0.02.8N.3)
      CALL PLOT (XN-0,05,EN+2)
      CALL PLOT (XN-0.05.5N-0.2.2)
      CALL PLOT (XN-0.02.EN-0.2.2)
      CALL PLOT (XN+YN+3)
      CALL PLOT(XN+YN-0+1+2)
      CALL PLOT(XN+YN-0.01+3)
      CALL PLOT (XN+0.02.YN.2)
      CALL PLOT (XN+0.04.YN.2)
      CALL PLOT (XN+0.06.YN-0.01.2)
      CALI. PLOT(XN+0.06.YN-0.1.2)
      PLOT SMALL M
      XM=STARTPOINT OF SMALL M
      XM=XN+0 • 1
      CALL PLOT (XM+YN+3)
      CALL PLOT (XM+YN-0+1+2)
      CALL PLOT (XM.YN-0.01.3)
      CALL PLOT (XM+0.02+YN+2)
      CALL PLOT (XM+0.04, YN.2)
      CALL PLOT (XM+0.06.YN-0.01.2)
      CALL PLOT (XM+0.06.YN-0.1.2)
      CALL PLOT (XM+0.06.YN-0.01.3)
      CALL PLOT (XM+0.08,YN+2)
      CALL PLOT(XM+0.1.YN.2)
      CALL PLOT (XM+0.12.YN-0.01.2)
      CALL PLOT (XM+0.12.YN-0.1.2)
      PLOT BRACKETS
      XB=XN+0.24
      CALL PLOT (XB+BN+3)
      CALL PLOT (XB+0.03.BN.2)
      CALL PLOT (XB+0.03.BN-0.2.2)
      CALL PLOT (XB+SN-0.2.2)
      PLOT LAMBDA
      XW=3.0
      YW=-0.58
      CALL PLOT (XW-0.0394.YW+ 1.0787.3)
      CALL PLOT (XW-0.0345.YW+0.0758.2)
       CALL PLOT (XW-C.0295, YW+0.0709,2)
      CALL PLOT (XW-0.0246.YW+0.0650.2)
       CALL PLOT (XW-0.0217.YW+0.0591.2)
       CALL PLOT (XW+0.0177.YW-0.0472.2)
                                                                  D-11
       CALL PLOT(XW+0.0246.YW-0.0580.2)
       CALL PLOT (XW+C.0315.YW-0.0593.2)
```

CALL PLOT (XW+0.0394.YW-0.0738.2) CALL PLOT (XW+0.0472.YW-0.0787.2) CALL PLOT(XW+YW+3) CALL PLOT(XW-0.0394.YW-0.0787.2) PLOT ARROWHEAD Y-AXIS CALL PLOT (-0.6 - AS + 3) ALE=AS+0.75 CALL PLOT (-0.6.ALE.2) ALS=AS+1 .25 AT=AS+2.75 CALL AROHD (-0.6+ALS+-0.6+AT+3.2+0.08+16) WS=AT+0.45 С PLOT DIMENSIONS ON Y-AXIS CALL MOVEF (NY , Y + NSY + PY +1) CALL SYMBOL (-.537.WS..125.PY.90..NY) С PLOT AUTHORS CALL SYMBOL(1.25.8.5..07.50HR. GEBEL. H. SPIEGEL. H. MESTWERDT AND * R. HAYSLETT, 0. +50) CALL SYMBOL (2.00,8.3..07.30HINTENSIFIER MATCHING PROBLEMS..0..30) V=1.125 70 1 1=1+4 IS=1-1 С LABEL INDICATION OF CURVES CALL SYMBOL (0.5.V..105.IS.0..-1) V=V-0.2 LABEL TITLE С CALL SYMBOL (0. .-1.18 .. 125 . 8HFIG. .0.,8) CALL SYMBOL (5.75.0.25.06.2HHS.0..2) RETURN END

*IBFTC DAIVEN DIMENSION XL(87).P(87.98).F(87.12).Z(87.12).EQ(85.1).EE(85.1).B(4) . ĒTĀ (97.4), T(12). ĒTĀĒ (87.8). ĒTĀQ (87.8). ĒTĀZ (87.12). XMĀŽ (4). XMĀŽE (8).XMAXQ(8).XMAXZ(12).DATA(438).PC(87.12).R(18).BF(16).BF(8).BPC(12).BL(53).BLA(1).GRT3(1).GRT1(16).PF(8) C LASELING-DATA FOR Y-AXIS A DATA A(1)/106HGRRINS/QUANTUHJOULES/ELECTRONQUANT:/ELECTRONELECTRON S/QUANTUM GRAINS/ELECTRONPHOTOELECTRONS/10 KV ELECTRON/ C LABELIKG-DATA FOR INDICATION BF. 8F. BPC DATA BF(1)/96HKODAK BOYAL-X PAN D=0.3 KODAK BOYAL-X PAN D=1.0 KODA K TRI-X PON D=0.3 KODAK TRI-X PAN D=1.0 / K TRI-X PON 0=0.3 DATE 6823/46H P-4 P-11 P-16 P-20 P-228 P-226 F-22R P-31 / DATE PENJ/48:4P-4 P-11 P-16 P-20 P-228 P-226 P-228 P-31 / 99TN B7C111/72MS-1 7 VARIANS-201/GR AS 5-20 5-20R 5-25 5-25H1VARO 5-4 5-11 5-1 C LABELING-DATA FOR TITLES BL DATA BL(1) /315HSPECTRAL FILM EFFICIENCIESSFECTRAL PHOSPHOR EFFICI ENCLESSPECTRAL PHOTOCATHODE EFFICIENCIESNORHALIZED SPECTRAL FILM E FFICIENCIESNORMALIZED SPECTARL PHOSPHOR EFFICIENCIESNORMALIZED SPECTARL PHOTOCATHODE EFFICIENCIESSPECTARL MESPONSE OF PHOSPHOR-FILM COMBINATIONSSPECTARL RESPONSE OF PROSPHOR-PHOTOCATHOOK COMBINATION DATA BLR(11/6H C CALCULATION OF FUNCTIONAL VALUES CALL PLOTS (DATA. 438) CALL PLOT(0..-2.0.3) C OSQ=DIRHETER GRAINSIZE 099:2.2 K=0 C HAVELENGTHADJUSTHENT 06 1 J=250.1090.10 E-1 CONT. ON PG

PG 1 OF 7

PG 2 0F 7

PG 1 8F 2


```
*IBFTC ELIMIN
         THIS PROGRAM DOES THE MAINPLOTTING. VALUES TO BE PLOTTED ARE PREPARED. ZEROVALUES REE ELIMINATED.
SUBROUTINE ELIMIXL.ETA. H.L. GRTI. NB. XHO. KS. GRTQ. H. NH. NHS. AB. W. NT. NS
T. ITP. PITP)
                           XL=HAVELENGTH. VALUE FOR X-AXIS
                  りいりのいりいり
                           ETA = EFFICIENCY VALUE FOR Y-AXIS
M=VALUES OF ONE ARRAY
L=INDICATION OF NUMBER OF ARRAYS
                           ORTI=LABELING OF FILMNAMES
NB=INDICATION FOR NUMBER OF LYTTERS
XHO PLOTSTART FOR ORTI
KS=REPERTARTE
                           ORTO=BLANKS OR PHOSPHORNAMES
                 000000000
                           H=HEADLINE
                          NH=NUMBER OF HEADLINELETTERS
NHS=STARTLETTER IN HEADLINESTATEMENT
                          AB-ARROWHERD START
                          N=DATRDINENSION FOR HPLOT
NY=NUMBER OF LETTERS FOR W
NSY=STARTLETTER IN W-STATEMENT
                    ITP=INDICATION IF OR IF NOT THO HERDING LINES PITP=STARTPOINT FOR SECOND HERDING LINE
DIMENSION XL(87).ETA(87.98).Y(87).X(87).ORT2(12).ORTO(8).H(59).H(18).CRT9(1).GRT1(18).PH(10)
                C
                          KP=INDICATOR FOR NUMBER OF FILMARRAYS
                                            KP=0
                           C
                                     MESTARTPOINT FOR ORTO
                                             N=1
                      C
                                NL=NUMBER OF LETTERS OF CATI
                                          HL=NB#6
                                      00 4 18=1.L.4
                                          1E=18+3
                                       00 9 I=18.1E >-
                 C
                           K=INDICATES NUMBER OF NONZEROVALUES
                                             ft=0
                                                                                                  E-12
                                      CONT. ON PG
                                                          3
                                                                                     eg 1 of 5
```


CONT. ON PG 9

PG 2 OF 5

THE CONTROL OF THE PROPERTY OF

E-20

CONT. ON PG 3

PG 2 OF 5

E-24

PG U OF 5

