MAT1100 - Grublegruppe Fasit 1

Jørgen O. Lye

Formel for en linje

Gitt 2 komplekse tall z_1 og z_2 påsto jeg at linjen mellom dem kan parametriseres med

$$L(t) = tz_1 + (1 - t)z_2$$

Argument via vektorer

Hvis z_1 og z_2 tenkes på som vektorer i planet så er $z_1 - z_2$ vektoren imellom dem. $t(z_1 - z_2)$ er en vektor parallell med $z_1 - z_2$ for alle t.

Vektoren $L(t) = tz_1 + (1-t)z_2 = z_2 + t(z_1 - z_2)$ er dermed en vektor som starter i z_2 og peker langs $z_1 - z_2$. Hvis man varierer t tegner man derfor opp linjen mellom z_1 og z_2 .

Argument via stigningstall til en graf

Husk at dersom stigningstallet ikke er ∞ kan man skrive en linje i planet som en graf ved

$$y(x) = ax + b$$

Siden denne linjen skal gjennom punktene (x_1, y_1) og (x_2, y_2) har vi ligningene

$$y_1 = y(x_1) = ax_1 + b$$

og

$$y_2 = y(x_2) = ax_2 + b$$

Fra disse finner man

$$a = \frac{y_2 - y_1}{x_2 - x_1}$$

og

$$b = \frac{y_1 x_2 - x_1 y_2}{x_2 - x_1}$$

Slik at et punkt (x, y) ligger på linjen mellom (x_1, y_1) og (x_2, y_2) kan skrives som at

$$y = ax + b = \frac{y_2 - y_1}{x_2 - x_1}x + \frac{y_1x_2 - y_2x_1}{x_2 - x_1}$$

Eller (hvis man ganger med $(x_2 - x_1)$)

$$y(x_2 - x_1) - x(y_2 - y_1) = (y_1 x_2 - y_2 x_1)$$
(1)

Hvis man ser på formelen for L(t) sier den at

$$x(t) = tx_1 + (1-t)x_2 = t(x_1 - x_2) + x_2$$

og

$$y(t) = ty_1 + (1-t)y_2 = t(y_1 - y_2) + y_2$$

Setter man disse 2 inn for x og y i ligning (1) ser man at denne er oppfylt:

$$(t(y_1 - y_2) + y_2)(x_2 - x_1) - (t(x_1 - x_2) + x_2)(y_2 - y_1) =$$

$$t(y_1 - y_2)(x_2 - x_1) - t(x_1 - x_2)(y_2 - y_1) + y_2(x_2 - x_1) - x_2(y_2 - y_1)$$

$$= y_2(x_2 - x_1) - x_2(y_2 - y_1) = y_2x_2 - y_2x_1 - x_2y_2 + x_2y_1 = y_1x_2 - y_2x_1$$
Dvs

$$y(x_2 - x_1) - x(y_2 - y_1) = (y_1x_2 - y_2x_1)$$

Dette viser at x(t) og y(t) slik definert over ligger på linjen mellom (x_1, y_1) og (x_2, y_2) for alle t.

Kalkulus 3.2.16

a)

Ganger man oppe og nede i med $(\bar{z}+1)$ får man

$$\frac{z-1}{z+1} \cdot \frac{\bar{z}+1}{\bar{z}+1} = \frac{z\bar{z}+z-\bar{z}-1}{|z|^2+z+\bar{z}+1} = \frac{z-\bar{z}}{2+z+\bar{z}}$$

Hvis z=x+iy så er $z+\bar{z}=x+iy+(x-iy)=2x=2{\rm Re}(z)$ mens $z-\bar{z}=2iy=2i{\rm Im}(z).$ Dvs at

$$\frac{z-1}{z+1} = \frac{2iy}{2+2x} = \frac{iy}{1+x}$$

Som åpenbart er rent imaginært.

b)

Siden forholdet er rent imaginært er vinkelen mellom z+1 og z-1 lik $\pm \frac{\pi}{2}$. Dette kan man tolke som Thales setning.

Kalkulus 3.2.17

a)

Det er 2 måter jeg foreslår. Den raskeste måten er å bruke

$$z = L(t) = tz_1 + (1-t)z_2 = t(z_1 - z_2) + z_2$$

og kreve at t skal være reell. Man løser ligningen over for t:

$$t = \frac{z - z_2}{z_1 - z_2}$$

Denne skal være reell.

Man kunne like godt byttet ut z_1 og z_2 og bruke formelen for linjen mellom dem (da med en annen parameter s).

$$z = L(s) = sz_2 + (1 - s)z_1 = s(z_2 - z_1) + z_1$$

slik at

$$s = \frac{z - z_1}{z_2 - z_1}$$

Denne skal selvsagt også være reell, slik at tallet $-\frac{s}{t}$ skal være reelt (det er forholdet mellom 2 reelle tall ganget med -1).

$$-\frac{s}{t} = -\frac{\frac{z-z_1}{z_2-z_1}}{\frac{z-z_2}{z_1-z_2}} = \frac{z-z_1}{z-z_2}$$

Dvs. z er på linjen hvis og bare hvis $\frac{z-z_1}{z-z_2} \in \mathbb{R}$ (eller $z=z_2$). Den andre måten jeg kommer på å løse denne oppgaven er å skrive z=

Den andre måten jeg kommer på å løse denne oppgaven er å skrive z = x + iy, $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$ og regne litt på $\frac{z-z_1}{z-z_2}$. Man vil da komme frem til at imaginærdelen er 0 hvis og bare hvis

$$y(x_2 - x_1) - x(y_2 - y_1) = (y_1x_2 - y_2x_1)$$

Dette viste jeg over at var det samme som at (x, y) er på linjen mellom (x_1, y_1) og (x_2, y_2) .

b)

Midtpunktet mellom z_1 og z_2 er $z_3 = \frac{z_1 + z_2}{2}$. At z_1 og z_2 begge skal ligge på sirkelen er uttrykt ved at

$$|z_1 - z_3| = |z_2 - z_3| = \frac{1}{2}|z_1 - z_2|$$

Vi kan også skrive at

$$R = \frac{1}{2}|z_1 - z_2| = \frac{1}{2}|(z - z_2) - (z - z_1)|$$

Pass på at du ser hvorfor siste likhet er sann.

Kvadrerer vi begge sider har vi

$$R^{2} = \frac{1}{4}|(z - z_{2}) - (z - z_{1})|^{2}$$

Siden $|z|^2 = z\bar{z}$ kan dette siste skrives som

$$R^{2} = \frac{1}{4} \left((z - z_{2}) \overline{(z - z_{2})} - (z - z_{2}) \overline{(z - z_{1})} - \overline{(z - z_{2})} (z - z_{1}) + \overline{(z - z_{1})} (z - z_{1}) \right)$$

Eller

$$R^{2} = \frac{1}{4} \left(|z - z_{2}|^{2} - 2\operatorname{Re}\left((z - z_{2})\overline{(z - z_{1})} \right) + |z - z_{1}|^{2} \right)$$

Et punkt z er på sirkelen hvis og bare hvis

$$|z - z_3| = \frac{1}{2}|z_1 - z_2| = R$$

Eller

$$|z - z_3|^2 = R^2$$

Bruker man definisjonen av z_3 finner man

$$\left| z - \frac{1}{2}(z_1 + z_2) \right|^2 = R^2$$

Eller

$$R^{2} = \left| \frac{1}{2}(z - z_{1}) + \frac{1}{2}(z - z_{2}) \right|^{2} = \frac{1}{4} \left| (z - z_{1}) + (z - z_{2}) \right|^{2}$$

Analogt med utregningen over kan dette skrives som at

$$R^{2} = \frac{1}{4} \left(|z - z_{1}|^{2} + 2\operatorname{Re}\left(z - z_{1})\overline{(z - z_{2})}\right) + |z - z_{2}|^{2} \right)$$

z ligger altså på sirkelen hvis og bare hvis

$$\frac{1}{4} \left(|z - z_1|^2 + 2 \operatorname{Re} \left(z - z_1 \right) \overline{(z - z_2)} \right) + |z - z_2|^2 \right)$$

$$= \frac{1}{4} \left(|z - z_2|^2 - 2 \operatorname{Re} \left((z - z_2) \overline{(z - z_1)} \right) + |z - z_1|^2 \right)$$

Dette forenkles til

$$2\operatorname{Re}\left(z-z_1)\overline{(z-z_2)}\right) = -2\operatorname{Re}\left(z-z_1)\overline{(z-z_2)}\right)$$

Som igjen betyr

$$\operatorname{Re}\left(z-z_1)\overline{(z-z_2)}\right)=0$$

Ganger man med $(z-z_2)$ oppe og nede i uttrykket $(z-z_1)\overline{(z-z_2)}$ får man

$$\frac{z-z_1}{z-z_2} \cdot |z-z_2|^2$$

Realdelen til dette er 0 hvis og bare hvis

$$\frac{z-z_1}{z-z_2}$$

er rent imaginær.

Dette lengre regnestykket viser at zligger på sirkelen hvis og bare hvis $\frac{z-z_1}{z-z_2}$ er rent imaginær.

3.2.18

a)

Kall z=1+it. Da er $w=\frac{z}{\bar{z}}.$ Vi kan så regne ut at

$$|w| = \left|\frac{z}{\bar{z}}\right| = \frac{|z|}{|\bar{z}|} = 1$$

siden $|z| = |\bar{z}|$. Dette viser at |w| = |w - 0| er en konstant og dermed har w konstant avstand fra 0 og ligger på sirkelen sentrert i 0 med radius 1 (enhetssirkelen).

b)

Skriv $w=|w|e^{i\theta}=e^{i\theta}$ (|w| = 1 fra a)). Skriv også $z=re^{i\phi}.$ Da er

$$e^{i\theta} = w = \frac{z}{\bar{z}} = \frac{re^{i\phi}}{re^{-i\phi}} = e^{2i\phi}$$

Da er

$$\theta + 2\pi n = 2\phi$$

for en eller annen $n \in \mathbb{Z}$. Vi det at $\tan(\phi) = \frac{t}{1}$ slik at

$$t = \tan(\phi) = \tan\left(\frac{\theta + 2\pi n}{2}\right) = \tan\left(\frac{\theta}{2} + n\pi\right)$$

Man kan enten håpe at man er i mål og gjette/anta at n=0. Men det er ikke nødvendig hvis man bruker litt trigonometriske formler:

$$\tan(x + n\pi) = \frac{\sin(x + n\pi)}{\cos(x + n\pi)} = \frac{\sin(x)\cos(n\pi) + \sin(n\pi)\cos(x)}{\cos(x)\cos(n\pi) - \sin(x)\sin(n\pi)}$$

Husk at $\cos(n\pi) = (-1)^n$ og at $\sin(n\pi) = 0$, slik at

$$\tan(x + n\pi) = \frac{(-1)^n \sin(x)}{(-1)^n \cos(x)} = \tan(x)$$

Dvs. at

$$t = \tan\left(\frac{\theta}{2} + n\pi\right) = \tan\left(\frac{\theta}{2}\right)$$