1. Considerando somente a métrica "tempo de execução" diga qual foi seu o melhor e o pior caso observado para cada método de ordenação?

Bolha: O melhor desempenho foi para n = 1 mil, quando a média foi 0,004040 segundos O pior desempenho foi para n = 100 mil, quando a média foi 34.386481 segundos

Inserção: O melhor desempenho foi para n = 1 mil, quando a média foi 0.001309 segundos O pior desempenho foi para n = 100 mil, quando a média foi 7,648 segundos

Seleção: O melhor desempenho foi para n = 1 mil, quando a média foi 0.002322 segundos

O pior desempenho foi para n = 100 mil, quando a média foi 1,3342 segundos

Heapsort: O melhor desempenho foi para n = 1 mil , quando a média foi 0.000166 segundos O pior desempenho foi para n = 100 mil, quando a média foi 0.014101 segundos

Mergesort: O melhor desempenho foi para n = 1 mil , quando a média foi 0.000261segundos O pior desempenho foi para n = 100 mil, quando a média foi 0.023018 segundos

Quicksort: O melhor desempenho foi para n = 1 mil , quando a média foi 0.000162 segundos O pior desempenho foi para n = 100 mil, quando a média foi 0.016242 segundos

2. Considerando somente a métrica "quantidade de comparações" diga qual função de n melhor descreve o desempenho de cada método de ordenação?

Bolha, Seleção e Inserção: O(n²)

Sendo os 3 algoritmos com custo semelhante, para cada valor de n sejam: 959.639, 24.540.091, 98.711.127, 396.084.194, 2.487.915.240 e 9.951.660.960. Quando você compara com, por exemplo, n^2 , dá os seguintes valores: 1.000.000, 25.000.000, 100.000.000, 400.000.000, 2.500.000.000, 10.000.000.000. As comparações aplicadas são próximas do valor de n^2 .

Heapsort e Mergesort:

Os dois algoritmos são O(n log n) em sua eficiência média, assim como o Quicksort, o motivo é pelo algoritmo trabalhar com divisão do problema em problemas menores e assim por diante até que a condição seja satisfeita.

Quicksort:

O(n log n), pelo mesmo motivo do heapsort e mergesort ele recebe essa função, porém o seu pior caso é de $\Theta(n^2)$.

3. Considerando as métricas "quantidade de trocas" e "quantidade de comparações" faça uma relação entre essas duas métricas e diga uma função que represente tal relação.

Bolha	1K	5K	10K	20K	50K	100K
Número de	499500	12497501	16777216	16777216	16777216	16777216
Comparações						
Número de	243357	6366576.5	16777216	16777216	16777216	16777216
Trocas						

Pode-se concluir que a relação entre a quantidade de comparações (f(x)) e a quantidade de trocas (x) é:

$$f(x) = \frac{x}{2}$$

Seleção	1K	5K	10K	20K	50K	100K
Número de	999	4999	9999	19999	49999	99999
Comparações						
Número de	994	4988	9988.900391	19987	49988	99986
Trocas						

Pode-se concluir que a relação entre a quantidade de comparações (f(x)) e a quantidade de trocas (x) é:

$$f(x) = x + 10$$