Devoir maison n°13: Ln, IAF et suites

Jules Charlier, Thomas Diot, Pierre Gallois, Jim Garnier
1E1

Problème 1 - Fonction logarithme népérien

1)

2)

3)

4)

5) a)

b)

c)

Problème 2 - Inégalité des accroissements finis et suites

Partie A

1) Supposons être dans les conditions de l'énoncé. Posons :

$$g(x) = f(x) - f(a) - M(x - a)$$

$$h(x) = f(x) - f(a) - m(x-a) \\$$

Alors, d'une part, g(a) = h(a) = 0. De plus, ces deux fonctions sont dérivables sur a; b[par sommes de fonctions dérivables et pour tout $a \in a; b[$:

$$g'(x) = f'(x) - M \leq 0$$
 par hypothèse

Ainsi que :

$$h'(x) = f'(x) - m \geq 0$$
 par hypothèse

Donc g est décroissante sur]a;b[. Comme elle est continue sur [a;b], on peut conclure que, comme $b\geq a,$ $g(b)\leq g(a)=0,$ d'où :

$$f(b)-f(a) \leq M(b-a)$$

Similairement, h est croissante sur]a;b[et $h(b)\geq h(a)=0,$ d'où :

$$m(b-a) \leq f(b) - f(a)$$

Partie B

On définit sur \mathbb{R}_* :

$$\varphi(x) = \frac{1}{2} \left(x + \frac{5}{x} \right)$$

1) φ est impaire : soit $x \in \mathbb{R}_*$. Alors $-x \in \mathbb{R}_*$ et :

$$\varphi(-x) = \frac{1}{2} \left(-x - \frac{5}{x} \right) = -\frac{1}{2} \left(x + \frac{5}{x} \right)$$
$$= -\varphi(x)$$

2)

• Quand $x \to +\infty : \frac{5}{x} \to 0$ et par somme :

$$\lim_{x \to +\infty} \varphi(x) = +\infty$$

• Quand $x \to -\infty : \frac{5}{x} \to 0$ et par somme :

$$\lim_{x \to -\infty} \varphi(x) = -\infty$$

- Quand $x \to 0^-: \frac{5}{x} \to -\infty$ et par somme :

$$\lim_{x \to 0^-} \varphi(x) = -\infty$$

• Quand $x \to 0^+ : \frac{5}{x} \to +\infty$ et par somme :

$$\lim_{x \to 0^+} \varphi(x) = +\infty$$

3) φ est dérivable sur son intervalle de définition comme somme de deux fonctions dérivables sur \mathbb{R}_* . Sa dérivée est pour tout $x \in \mathbb{R}_*$:

$$\varphi'(x) = \frac{1}{2} - \frac{5}{2x^2}$$

Ainsi, $\varphi'(x) \leq 0$ si et seulement si :

$$\begin{split} \frac{1}{2} & \leq \frac{5}{2x^2} \\ \iff x^2 & \leq 5 \\ \iff x \in \left[-\sqrt{5}; \sqrt{5} \right] \cap \mathbb{R}_* \end{split}$$

On a donc le tableau de variations suivant :

- 4) TODO: Thomas? dis moi si tu ne veux pas le faire:3
- **5)** Soit $x \in \mathbb{R}_*$:

$$\varphi(x) - x = \frac{x}{2} + \frac{5}{2}x - x$$
$$= -\frac{x}{2} + \frac{5}{2}x$$
$$= \frac{5 - x^2}{2x}$$

Ce qu'il fallait démontrer.

6) Soit $x \in \left[\sqrt{5}; \frac{5}{2}\right]$. Alors $x \ge \sqrt{5}$, et par le 3), $\varphi'(x) \ge 0$. De plus :

$$\varphi'(x) \le \frac{1}{10}$$

$$\iff \frac{1}{2} - \frac{1}{10} \le \frac{5}{2x^2}$$

$$\iff \frac{4}{5} \le \frac{5}{x^2}$$

$$\iff x^2 \le \frac{25}{4}$$

$$\iff x \le \frac{5}{2} \operatorname{car} x \ge \sqrt{5} \ge 0.$$

Donc $0 \le \varphi'(x) \le \frac{1}{10} \operatorname{sur} \left[\sqrt{5}; \frac{5}{2} \right]$.

Partie C

1)

2)

3) a)

b)

4)

5)