PHYS2114 Cheat Sheet

Joey Liang

June 2021

Contents

1	Mathematics Preliminary		
	1.1	IMPORTANT NOTE	
	1.2	Cartesian Coordinates	
	1.3	Cylindrical Coordinates	
	1.4	Spherical Coordinates	
	1.5	Gauss' Divergence Theorem	
	1.6	Stokes' Theorem	
	Ref	erences	

1 Mathematics Preliminary

1.1 IMPORTANT NOTE

The following notations are taken from Griffth's 'Introduction to Electromachenics'. $\![1]$

Where as the line, area and volume integral elements are the following;

- Line integral element: $d\vec{l}$.
- Area integral element: $d\vec{a}$.
- Volume integral element: $d\tau$.

1.2 Cartesian Coordinates

The line and volume integral elements are

$$d\vec{l} = \hat{x} dx + \hat{y} dy + \hat{z} dz,$$

$$d\tau = dx dy dz.$$

And the following are some common operators

$$\nabla t = \frac{\partial t}{\partial x}\hat{x} + \frac{\partial t}{\partial x}\hat{y} + \frac{\partial t}{\partial z}\hat{z},$$

$$\nabla \cdot \vec{v} = \frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z},$$

$$\nabla \times \vec{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \hat{x} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \hat{y} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \hat{z},$$

$$\nabla^2 t = \frac{\partial^2 t}{\partial x^2} + \frac{\partial^2 t}{\partial y^2} + \frac{\partial^2 t}{\partial z^2}.$$

1.3 Cylindrical Coordinates

The conversion of Cartesian to Cylinderical coordinates[2] are

$$x = r \cos \phi$$
,

$$y = r \sin \phi$$
,

$$z = z$$

note that $\phi \in [0, 2\pi]$.

The line and the volume integral elements are

$$d\vec{l} = \hat{s} ds + s\hat{\phi} d\phi + \hat{z} dz,$$

$$d\tau = s \, ds \, d\phi \, dz.$$

The following are some common vector operators

Gradient:
$$\nabla t = \frac{\partial t}{\partial s}\hat{s} + \frac{1}{s}\frac{\partial t}{\partial \phi}\hat{\phi} + \frac{\partial t}{\partial z}\hat{z},$$

$$\text{Divergence:} \quad \nabla \cdot \vec{v} = \frac{1}{s} \frac{\partial}{\partial s} + \frac{1}{s} \frac{\partial v_{\phi}}{\partial \phi} + \frac{\partial v_{z}}{\partial z},$$

Curl:
$$\nabla \times \vec{v} = \left(\frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z}\right) \hat{x} + \left(\frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x}\right) \hat{y} + \left(\frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y}\right) \hat{z},$$

Laplacian:
$$\nabla^2 t = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial t}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2}.$$

1.4 Spherical Coordinates

Note that $\theta \in [0, \pi]$ denotes the angle between z-axis and the vector of interest, and that $\phi \in [0, 2\pi]$ denotes the angle between x-axis and the projection of the vector of interest on to the xy-plane.[2]

The conversion of Cartesian to Spherical coordinates are shwon as the follows

$$x = r\sin(\theta)\cos(\phi),$$
 $y = r\sin(\theta)\sin(\phi),$ $z = r\cos(\theta).$

And the line and volume integral elements are

$$d\vec{l} = \hat{r} dr + r\hat{\theta} d\theta + r\sin(\theta)\hat{\phi} d\phi, \qquad d\tau = r^2\sin(\theta) dr d\theta d\phi.$$

The following are the common operators

Gradient:
$$\nabla t = \hat{r} \frac{\partial t}{\partial r} + \frac{\hat{\theta}}{r} \frac{\partial t}{\partial \theta} + \frac{\hat{\phi}}{r \sin(\theta)} \frac{\partial t}{\partial \phi},$$

Divergence:
$$\nabla \cdot \vec{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (v_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$

Curl:
$$\nabla \times \vec{v} = \frac{1}{r \sin \theta} \left(\frac{\partial}{\partial \theta} \sin(\theta) v_{\phi} - \frac{\partial v_{\theta}}{\partial \phi} \right) \hat{r} + \frac{1}{r} \left(\frac{1}{\sin \theta} \frac{\partial v_{r}}{\partial \phi} - \frac{\partial}{\partial r} r v_{\phi} \right) \hat{\theta} + \frac{1}{r} \left(\frac{\partial}{\partial r} r v_{\theta} - \frac{\partial v_{r}}{\partial \theta} \right) \hat{\phi},$$

$$\text{Laplacian:} \qquad \nabla^2 t = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial t}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial t}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 t}{\partial \phi^2}$$

1.5 Gauss' Divergence Theorem

Suppose V is a subset of \mathbb{R}^n (in the case of $n=3,\,V$ represents a volume in three-dimensional space) which is compact and has a piecewise smooth boundary

S (also indicated with $\partial V=S$). If \vec{F} is a countinueously differentiable vector filed defined on a neighbourhood of V, then:

$$\iiint_V \left(\nabla \cdot \vec{F} \right) \, \mathrm{d}V = \oiint_S \left(\vec{F} \cdot \hat{n} \right) \, \mathrm{d}S.$$

The left side is a volume integral over the volume V, the right side is the surface integral over the boundary of the volume V. The closed manifold ∂V is oriented by outward-pointing normal, and \vec{n} is the outward pointing normal at each point on the boundary ∂V . ($\mathrm{d}\vec{S}$ may be used as a shorthand for $\vec{n}\,\mathrm{d}S$.) In terms of the intuitive description above, the left-hand side of the equation represents the total of the sources in the volume V, and the right-hand side represents the total flow across the boundary S.[3]

1.6 Stokes' Theorem

Suppose we have a boundary $\partial \Sigma = S$ that bounds the surface Σ with \vec{F} defined in $\Sigma,$ then

$$\iint_{\Sigma} (\nabla \times \vec{F}) \cdot \vec{n} \, dS = \oint_{S} \vec{F} \cdot d\vec{l}.$$

Figure 1: A visual representation for the Stokes' theorem[4]

References

- [1] David J Griffiths. Introduction to electrodynamics; 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 1999. URL: https://cds.cern.ch/record/611579.
- [2] Del in cylindrical and spherical coordinates. en. Page Version ID: 1016691595. Apr. 2021. URL: https://en.wikipedia.org/w/index.php?title=Del_in_cylindrical_and_spherical_coordinates&oldid=1016691595 (visited on 06/03/2021).
- [3] Divergence theorem. en. Page Version ID: 1025269448. May 2021. URL: https://en.wikipedia.org/w/index.php?title=Divergence_theorem& oldid=1025269448 (visited on 06/05/2021).
- [4] Stokes' theorem. en. Page Version ID: 1014735398. Mar. 2021. URL: https://en.wikipedia.org/w/index.php?title=Stokes%27_theorem&oldid=1014735398 (visited on 06/05/2021).