

ECE 57000

Special topics: modern ML theory/concepts The benefits of Over-parameterization

Chaoyue Liu Fall 2024

Content

What is over-parameterization

Benefits of over-parameterization

- Double descent
- Automatic variance reduction
- Transition to linearity

Over-parameterization

The number of model parameters p is greater than the number of training samples n

The goal of ML training is to fit the data (or at least *approximately* fit):

$$f_i(\mathbf{w}) = f(\mathbf{w}; \mathbf{x}_i) = y_i$$

Another perspective: solve the set of equations

$$f_1(\mathbf{w}) = y_1$$

 $f_2(\mathbf{w}) = y_2$
...
$$f_n(\mathbf{w}) = y_n$$

$$n \text{ equations (constraints)}$$

p parameters (degrees of freedom)

In over-parameterization regime, the data can be exactly fit (namely, the set of equations can be exactly solved) -- **Interpolation**

Interpolation

the data can be exactly fit:

$$f_i(\mathbf{w}) = f(\mathbf{w}; \mathbf{x}_i) = y_i, \quad \forall i \in [n]$$

Training loss can be exactly zero $\mathcal{L}(\mathbf{w}^*) = 0$.

Moreover, each individual loss can be exactly zero:

$$\ell_i(\mathbf{w}^*) = 0, \qquad \forall i \in [n]$$

Overfitting?

Fitting data with polynomial features:

- Number of training samples n = 16
- Number of model parameters p = d

Double descent

Automatic variance reduction

In under-parameterized regime,

SGD needs a **decreasing** learning rate to converge: $\eta_t \to 0$

Example:

Dataset:

$$\mathbf{x}_1 = (1,2), \quad y_1 = 4$$
 $w_1 + 2 \cdot w_2 = 4$
 $\mathbf{x}_2 = (-2,1), \quad y_1 = 2 \implies -2 \cdot w_1 + w_2 = 2$
 $\mathbf{x}_3 = (1,-4), \quad y_1 = 4$ $w_1 - 4 \cdot w_2 = 4$

Stochastic gradient $\nabla \ell_i(\mathbf{w}) = \nabla \mathcal{L}(\mathbf{w}) + \epsilon$ Stochastic noise ϵ : $Var[\epsilon] \neq 0$

Automatic variance reduction

In over-parameterized regime, SGD with a **constant** learning rate can converge: $\eta_t = \eta$

Intuition:

- At global minima \mathbf{w}^* where $\mathcal{L}(\mathbf{w}^*) = 0$, each $\ell_i(\mathbf{w}^*) = 0$, because $f_i(\mathbf{w}^*) = y_i$. Namely, stochastic noise $\epsilon = \nabla \ell_i(\mathbf{w}^*) - \nabla \mathcal{L}(\mathbf{w}^*) = 0$
- At other points $\mathbf{w} \neq \mathbf{w}^*$, stochastic gradients $\nabla \ell_i = (f_i y_i) \cdot \nabla f_i$, therefore, $Var[\epsilon] \sim \mathbb{E}[|f_i(\mathbf{w}) y_i|^2]$; noise variance decreases as training loss decreases.

For more theory, see https://arxiv.org/pdf/1810.13395

Transition to linearity

A neural network f is a function $f(\theta, x)$

network f as a function of input $f_{\theta}(x)$

Universal approximation [Hornik et al. 1989]:

- Neural networks can approximate any *continuous* functions on a finite domain
- Larger network width ⇒ better approximation
- Infinite network width ⇒ exactly match the target function.

Fixing input x, network f as a function of weights $f_x(\theta)$

Transition to linearity [Liu, Zhu, Belkin NeurIPS 20]:

- Neural networks $f_{\chi}(\theta)$ is close to a linear function: non-linear terms are small, on a finite domain
- Larger network width ⇒ smaller non-linear term
- Infinite network width \Rightarrow non-linear term vanishes

Transition to linearity

$$f(\theta) = f(\theta_0) + \nabla f(\theta_0)(\theta - \theta_0) + \frac{1}{2}(\theta - \theta_0)^T H(\theta_0)(\theta - \theta_0) + \cdots$$

Vanishes as network width $m \to \infty$

Transition to linearity

Why is *transition to linearity* useful?

- Simplifies the neural network function (w.r.t. parameters θ)
- Simplifies loss landscape
- Theoretical guarantees for convergence of gradient descent algorithms (including SGD)

Illustration: two-layer network

Two-layer neural network (f):

$$f(x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \sigma(w_i x)$$

Initialization: $v_{0,i} \sim \mathcal{N}(0,1)$; $w_{0,i} \sim \mathcal{N}(0,1)$.

Notations

- weights $\theta = {\{\theta_i\}_{i=1}^m, \ \theta_i = (v_i, w_i),}$
- Non-linear activation σ : e.g., *sigmoid*, *tanh*, ReLU

Assembly model view

Network

$$f(\theta) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \sigma(w_i x) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} g_i$$

Observation 1: Assembly operation is a scaled summation

Assembly model

Sub-models $g_i = v_i \sigma(w_i x)$

Observation 2: sub-model independence -- sub-models share no weights

Network
$$f(\theta) = \frac{1}{\sqrt{m}} \sum_{i=1}^{m} v_i \sigma(w_i x) \triangleq \frac{1}{\sqrt{m}} \sum_{i=1}^{m} g_i(\theta)$$

Lagrange remainder

Taylor expansion: (at initialization θ_0)

$$f(\theta) = f(\theta_0) + \nabla f(\theta_0)(\theta - \theta_0) + \frac{1}{2}(\theta - \theta_0)^T H(\xi)(\theta - \theta_0)$$
linear part: $f_{lin}(\theta)$ non-linear part: $\mathcal{R}(\theta)$

*:
$$\xi$$
 is between θ and θ_0
Hessian $H = \frac{\partial^2 f}{\partial \theta^2}$

Lagrange remainder (the non-linear part):

$$\mathcal{R}(\theta) = \frac{1}{2} (\theta - \theta_0)^T H_f(\xi) (\theta - \theta_0) = \frac{1}{2\sqrt{m}} \sum_{i=1}^m (\theta - \theta_0)^T H_{g_i}(\xi) (\theta - \theta_0)$$
Obs 1: assembly
$$H_f(\xi) = \frac{1}{\sqrt{m}} \sum_{i=1}^m H_{g_i}(\xi)$$

Lagrange remainder (the non-linear part):

$$\mathcal{R}(\theta) = \frac{1}{2} (\theta - \theta_0)^T H_f(\xi) (\theta - \theta_0) = \frac{1}{2\sqrt{m}} \sum_{i=1}^m (\theta - \theta_0)^T H_{g_i}(\xi) (\theta - \theta_0) = \frac{1}{2\sqrt{m}} \sum_{i=1}^m (\theta_i - \theta_{0,i})^T H_{g_i}(\xi) (\theta_i - \theta_{0,i})$$
Obs 2: Independence
$$(\theta_j - \theta_{0,j})^T H_{g_i}(\xi) (\theta_j - \theta_{0,j}) = 0$$

$$\forall j \neq i$$

Lagrange remainder (the non-linear part):

$$\mathcal{R}(\theta) = \frac{1}{2\sqrt{m}} \sum_{i=1}^{m} (\theta_i - \theta_{0,i})^T H_{g_i}(\xi) (\theta_i - \theta_{0,i})$$

each sub-model
$$g_i$$
 is smooth:
$$|\mathcal{R}(\theta)| \leq \frac{1}{2\sqrt{m}} \sum_{i=1}^{m} ||H_{g_i}(\xi)||_{sp} \cdot ||\theta_i - \theta_{0,i}||^2$$

$$\leq \frac{\beta}{2\sqrt{m}} ||\theta - \theta_0||^2$$

$$\sim O(\frac{1}{\sqrt{m}}), \quad \text{for finite } ||\theta - \theta_0||^2$$

in a finite domain. e.g., a ball $B(\theta_0, R)$ of finite radius R

Transition to Linearity

Lagrange remainder (the non-linear part):

$$|\mathcal{R}(\theta)| \sim O(\frac{1}{\sqrt{m}})$$
, for finite $||\theta - \theta_0||^2$

When m is large, $|\mathcal{R}(\theta)|$ is small; When $m \to \infty$, $|\mathcal{R}(\theta)| \to 0$.

Transition to linearity:

$$f(\theta) = f(\theta_0) + \nabla f(\theta_0)(\theta - \theta_0) + \frac{1}{2}(\theta - \theta_0)^T H(\xi)(\theta - \theta_0)$$
Linear part: $f_{lin}(\theta)$ Non-linear part: $\mathcal{R}(\theta)$

equivalently
$$||H(\theta)||_{sp} \sim O\left(\frac{1}{\sqrt{m}}\right), \forall \theta \in B(\theta_0, R), \text{ for } m \to \infty.$$

How about deep networks?

$$\alpha^{(0)} = x$$

$$\tilde{\alpha}^{(l)} = \frac{1}{\sqrt{m_{l-1}}} \sum_{i=1}^{m_{l-1}} w_i^{(l)} \alpha_i^{(l-1)}, \forall l = 1, 2, \dots, L$$

$$\alpha^{(l)} = \sigma(\tilde{\alpha}^{(l)}), \forall l = 1, 2, \dots, L - 1$$

$$f = \tilde{\alpha}^{(L)}$$

Transition to Linearity holds, because:

- Random initialization: each weight $w_{ij}^{(l)} \sim N(0,1)$, i,i,d.
- Each layer has the scaled summation assembly form: $\frac{1}{\sqrt{m}}\sum$ (i.e., **Obs 1**)
- Independence of sub-models hold, after an appropriate rotation. (i.e., **Obs 2**)