In [1]: #Employee Salary prediction using adult csv
#load your library

import pandas as pd

In [2]: data=pd.read_csv('adult.csv')

In [3]: data

Out[3]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-chile
1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband
2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband
4	18	?	103497	Some- college	10	Never- married	?	Own-chile
•••								
48837	27	Private	257302	Assoc- acdm	12	Married- civ- spouse	Tech- support	Wife
48838	40	Private	154374	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband
48839	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried
48840	22	Private	201490	HS-grad	9	Never- married	Adm- clerical	Own-chile
48841	52	Self-emp- inc	287927	HS-grad	9	Married- civ- spouse	Exec- managerial	Wife

48842 rows × 15 columns

Out[4]: (48842, 15)

In [5]: data.head()

Out[5]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	rī
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Bl
1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	Wł
2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	Wł
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	BI
4	18	?	103497	Some- college	10	Never- married	?	Own-child	Wł

In [6]: data.head(7)

Out[6]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship	ra
0	25	Private	226802	11th	7	Never- married	Machine- op-inspct	Own-child	Bl
1	38	Private	89814	HS-grad	9	Married- civ- spouse	Farming- fishing	Husband	Wł
2	28	Local-gov	336951	Assoc- acdm	12	Married- civ- spouse	Protective- serv	Husband	Wł
3	44	Private	160323	Some- college	10	Married- civ- spouse	Machine- op-inspct	Husband	Bl
4	18	?	103497	Some- college	10	Never- married	?	Own-child	Wł
5	34	Private	198693	10th	6	Never- married	Other- service	Not-in- family	Wł
6	29	?	227026	HS-grad	9	Never- married	?	Unmarried	Bl

In [7]: data.tail()

Out[7]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship
48837	27	Private	257302	Assoc- acdm	12	Married- civ- spouse	Tech- support	Wife
48838	40	Private	154374	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband
48839	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried
48840	22	Private	201490	HS-grad	9	Never- married	Adm- clerical	Own-chile
48841	52	Self-emp- inc	287927	HS-grad	9	Married- civ- spouse	Exec- managerial	Wife

In [8]: data.tail(7)

Out[8]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship
48835	53	Private	321865	Masters	14	Married- civ- spouse	Exec- managerial	Husband
48836	22	Private	310152	Some- college	10	Never- married	Protective- serv	Not-in famil
48837	27	Private	257302	Assoc- acdm	12	Married- civ- spouse	Tech- support	Wife
48838	40	Private	154374	HS-grad	9	Married- civ- spouse	Machine- op-inspct	Husband
48839	58	Private	151910	HS-grad	9	Widowed	Adm- clerical	Unmarried
48840	22	Private	201490	HS-grad	9	Never- married	Adm- clerical	Own-chile
48841	52	Self-emp- inc	287927	HS-grad	9	Married- civ- spouse	Exec- managerial	Wif

In [9]: #NULL VALUES
 data.isna()

Out[9]:

	age	workclass	fnlwgt	education	educational- num	marital- status	occupation	relationship
0	False	False	False	False	False	False	False	False
1	False	False	False	False	False	False	False	False
2	False	False	False	False	False	False	False	False
3	False	False	False	False	False	False	False	False
4	False	False	False	False	False	False	False	False
•••								
48837	False	False	False	False	False	False	False	False
48838	False	False	False	False	False	False	False	False
48839	False	False	False	False	False	False	False	False
48840	False	False	False	False	False	False	False	False
48841	False	False	False	False	False	False	False	Fals€

48842 rows × 15 columns

```
In [10]: #null values
         data.isna().sum() #mean mdeian mode arbitrary
Out[10]: age
                           0
         workclass
         fnlwgt
         education
                           0
         educational-num
                           0
         marital-status
                           0
         occupation
                           0
         relationship
         race
                           0
         gender
         capital-gain
                           0
         capital-loss
                           0
         hours-per-week
                           0
         native-country
                           0
```

In [11]: print(data.occupation.value_counts())

income

dtype: int64

```
Prof-specialty
                             6172
        Craft-repair
                             6112
        Exec-managerial
                             6086
        Adm-clerical
                             5611
                             5504
        Sales
        Other-service
                             4923
        Machine-op-inspct
                             3022
                             2809
        Transport-moving
                             2355
        Handlers-cleaners
                             2072
        Farming-fishing
                             1490
        Tech-support
                             1446
        Protective-serv
                              983
        Priv-house-serv
                              242
        Armed-Forces
                               15
        Name: count, dtype: int64
In [12]: print(data.gender.value_counts())
        gender
        Male
                  32650
        Female
                  16192
        Name: count, dtype: int64
In [13]: print(data.education.value_counts())
        education
        HS-grad
                        15784
        Some-college
                        10878
        Bachelors
                         8025
        Masters
                         2657
        Assoc-voc
                         2061
                         1812
        11th
        Assoc-acdm
                         1601
        10th
                         1389
        7th-8th
                          955
        Prof-school
                          834
        9th
                          756
        12th
                          657
        Doctorate
                          594
        5th-6th
                          509
        1st-4th
                          247
        Preschool
                           83
        Name: count, dtype: int64
In [14]: print(data['marital-status'].value_counts())
        marital-status
        Married-civ-spouse
                                 22379
        Never-married
                                 16117
        Divorced
                                  6633
        Separated
                                  1530
        Widowed
                                  1518
        Married-spouse-absent
                                   628
        Married-AF-spouse
                                    37
        Name: count, dtype: int64
```

occupation

```
In [15]: print(data.workclass.value_counts())
        workclass
        Private
                            33906
        Self-emp-not-inc
                             3862
        Local-gov
                             3136
        ?
                             2799
        State-gov
                             1981
        Self-emp-inc
                             1695
        Federal-gov
                             1432
        Without-pay
                               21
        Never-worked
                               10
        Name: count, dtype: int64
In [16]: print(data.relationship.value_counts())
        relationship
        Husband
                          19716
        Not-in-family
                          12583
        Own-child
                           7581
        Unmarried
                           5125
        Wife
                           2331
        Other-relative
                           1506
        Name: count, dtype: int64
In [17]: print(data.race.value_counts())
        race
        White
                              41762
        Black
                               4685
        Asian-Pac-Islander
                               1519
        Amer-Indian-Eskimo
                                470
        Other
        Name: count, dtype: int64
In [19]: data.workclass.replace({'?':'Others'},inplace=True)
In [20]: print(data.occupation.value_counts())
        occupation
        Prof-specialty
                             6172
        Craft-repair
                             6112
        Exec-managerial
                             6086
        Adm-clerical
                             5611
        Sales
                             5504
        Other-service
                             4923
                             3022
        Machine-op-inspct
                             2809
        Transport-moving
                             2355
        Handlers-cleaners
                             2072
        Farming-fishing
                             1490
        Tech-support
                             1446
        Protective-serv
                              983
        Priv-house-serv
                              242
        Armed-Forces
                               15
        Name: count, dtype: int64
```

In [21]: data

Out[21]:

relationship	occupation	marital- status	educational- num	education	fnlwgt	workclass	age	
Own-chile	Machine- op-inspct	Never- married	7	11th	226802	Private	25	0
Husband	Farming- fishing	Married- civ- spouse	9	HS-grad	89814	Private	38	1
Husband	Protective- serv	Married- civ- spouse	12	Assoc- acdm	336951	Local-gov	28	2
Husband	Machine- op-inspct	Married- civ- spouse	10	Some- college	160323	Private	44	3
Own-chile	?	Never- married	10	Some- college	103497	Others	18	4
								•••
Wife	Tech- support	Married- civ- spouse	12	Assoc- acdm	257302	Private	27	48837
Husband	Machine- op-inspct	Married- civ- spouse	9	HS-grad	154374	Private	40	48838
Unmarried	Adm- clerical	Widowed	9	HS-grad	151910	Private	58	48839
Own-child	Adm- clerical	Never- married	9	HS-grad	201490	Private	22	48840
Wife	Exec- managerial	Married- civ- spouse	9	HS-grad	287927	Self-emp- inc	52	48841

48842 rows × 15 columns

```
In [22]: data.workclass.replace({'?':'notlisted'},inplace=True)
```

```
In [23]: print(data.workclass.value_counts())
```

```
workclass
        Private
                            33906
        Self-emp-not-inc
                             3862
        Local-gov
                             3136
        Others
                             2799
        State-gov
                             1981
        Self-emp-inc
                             1695
        Federal-gov
                             1432
        Without-pay
                               21
        Never-worked
                               10
        Name: count, dtype: int64
In [24]: | data=data[data['workclass']!='Without-pay']
         data=data[data['workclass']!='Never-worked']
In [25]: print(data['workclass'].value_counts())
        workclass
        Private
                            33906
        Self-emp-not-inc
                             3862
        Local-gov
                             3136
        Others
                             2799
        State-gov
                             1981
        Self-emp-inc
                             1695
        Federal-gov
                             1432
        Name: count, dtype: int64
In [26]: data.shape
Out[26]: (48811, 15)
In [27]: data=data[data['education']!='5th-6th']
         data=data[data['education']!='1st-4th']
         data=data[data['education']!='Preschool']
In [28]: print(data.education.value_counts())
        education
        HS-grad
                        15768
        Some-college
                        10873
        Bachelors
                         8025
        Masters
                         2657
                         2061
        Assoc-voc
        11th
                         1809
        Assoc-acdm
                         1599
        10th
                         1387
        7th-8th
                          952
        Prof-school
                          834
        9th
                          756
        12th
                          657
        Doctorate
                          594
        Name: count, dtype: int64
In [29]: data.shape
```

```
Out[29]: (47972, 15)
In [30]: data=data[data['relationship']!='Wife']
         data=data[data['relationship']!='Other-relative']
In [31]: print(data.relationship.value_counts())
        relationship
        Husband
                         19336
        Not-in-family
                         12372
        Own-child
                          7529
        Unmarried
                          5023
        Name: count, dtype: int64
In [32]: data.shape
Out[32]: (44260, 15)
In [33]: data=data[data['race']!='Amer-Indian-Eskimo']
         data=data[data['race']!='Other']
In [34]: print(data.race.value_counts())
        race
        White
                              38136
        Black
                               4145
        Asian-Pac-Islander
                               1258
        Name: count, dtype: int64
In [35]: data.shape
Out[35]: (43539, 15)
In [36]: data=data.drop(columns=['education'])
In [37]:
         data
```

•		age	workclass	fnlwgt	educational- num	marital- status	occupation	relationship	race	g
	0	25	Private	226802	7	Never- married	Machine- op-inspct	Own-child	Black	
	1	38	Private	89814	9	Married- civ- spouse	Farming- fishing	Husband	White	
	2	28	Local-gov	336951	12	Married- civ- spouse	Protective- serv	Husband	White	
	3	44	Private	160323	10	Married- civ- spouse	Machine- op-inspct	Husband	Black	
	4	18	Others	103497	10	Never- married	?	Own-child	White	F
	•••									
	48835	53	Private	321865	14	Married- civ- spouse	Exec- managerial	Husband	White	
	48836	22	Private	310152	10	Never- married	Protective- serv	Not-in- family	White	
	48838	40	Private	154374	9	Married- civ- spouse	Machine- op-inspct	Husband	White	
	48839	58	Private	151910	9	Widowed	Adm- clerical	Unmarried	White	F
	48840	22	Private	201490	9	Never- married	Adm- clerical	Own-child	White	

43539 rows × 14 columns

```
In [39]: #outlier ( #others column (marital-status occupation relationship))
import matplotlib.pyplot as plt
plt.boxplot(data['age'])
plt.show()
```



```
In [42]: data.shape
Out[42]: (42652, 14)
In [43]: plt.boxplot(data['capital-gain'])
         plt.show()
        100000 -
                                                  0
         80000
         60000 -
                                                  0
         40000
         20000 -
              0
                                                  1
In [44]: plt.boxplot(data['educational-num'])
```

plt.show()


```
In [47]: plt.boxplot(data['hours-per-week'])
   plt.show()
```



```
In [48]: data.shape
Out[48]: (41860, 14)
In [49]: #Label encodin
from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
    data['workclass']=encoder.fit_transform(data['workclass'])
    data['marital-status']=encoder.fit_transform(data['marital-status'])
    data['occupation']=encoder.fit_transform(data['occupation'])
    data['relationship']=encoder.fit_transform(data['relationship'])
    data['race']=encoder.fit_transform(data['race'])
    data['gender']=encoder.fit_transform(data['gender'])
    data['native-country']=encoder.fit_transform(data['native-country'])
    data
```

Out[49]:

0		age	workclass	fnlwgt	educational- num	marital- status	occupation	relationship	race	gen
	0	25	3	226802	7	4	7	2	1	
	1	38	3	89814	9	2	5	0	2	
	2	28	1	336951	12	2	11	0	2	
	3	44	3	160323	10	2	7	0	1	
	4	18	2	103497	10	4	0	2	2	
	•••									
	48835	53	3	321865	14	2	4	0	2	
	48836	22	3	310152	10	4	11	1	2	
	48838	40	3	154374	9	2	7	0	2	
	48839	58	3	151910	9	6	1	3	2	
	48840	22	3	201490	9	4	1	2	2	

41860 rows × 14 columns

```
In [50]: x=data.drop(columns=['income']) #input data
    y=data['income'] #output data
    x
```

	age	workclass	fnlwgt	educational- num	marital- status	occupation	relationship	race	gen
0	25	3	226802	7	4	7	2	1	
1	38	3	89814	9	2	5	0	2	
2	28	1	336951	12	2	11	0	2	
3	44	3	160323	10	2	7	0	1	
4	18	2	103497	10	4	0	2	2	
•••									
48835	53	3	321865	14	2	4	0	2	
48836	22	3	310152	10	4	11	1	2	
48838	40	3	154374	9	2	7	0	2	
48839	58	3	151910	9	6	1	3	2	
48840	22	3	201490	9	4	1	2	2	

41860 rows × 13 columns

```
In [51]: x=data.drop(columns=['income'])
         y=data['income']
In [52]: y
Out[52]: 0
                   <=50K
         1
                   <=50K
         2
                   >50K
         3
                   >50K
         4
                   <=50K
                  >50K
         48835
         48836
                  <=50K
         48838
                  >50K
         48839
                   <=50K
         48840
                   <=50K
         Name: income, Length: 41860, dtype: object
In [53]: from sklearn.preprocessing import MinMaxScaler
         scaler=MinMaxScaler()
         x=scaler.fit_transform(x)
         Х
```

```
Out[53]: array([[0.12280702, 0.5 , 0.14426962, ..., 0. , 0.39795918,
                0.95
                         ],
               [0.35087719, 0.5
                                   , 0.05149899, ..., 0.
                                                              , 0.5
                0.95
               [0.1754386 , 0.16666667, 0.21886443, ..., 0.
                                                              , 0.39795918,
                0.95
                         ],
               [0.38596491, 0.5 , 0.09522013, ..., 0.
                                                              , 0.39795918,
                0.95
                                   , 0.09355147, ..., 0.
                                                              , 0.39795918,
               [0.70175439, 0.5
                0.95
                         ],
               [0.07017544, 0.5 , 0.1271279 , ..., 0. , 0.19387755,
                         ]], shape=(41860, 13))
In [54]: from sklearn.model_selection import train_test_split
        xtrain, xtest, ytrain, ytest= train_test_split(x,y, test_size=0.2, random_state=23,
In [55]: xtrain
Out[55]: array([[0.45614035, 0.5 , 0.16856953, ..., 0.34527089, 0.44897959,
                0.95
               [0.12280702, 0.5
                                   , 0.14996909, ..., 0. , 0.39795918,
                0.95
                                   , 0.13973701, ..., 0. , 0.55102041,
               [0.40350877, 0.5
                0.95
                     ],
               . . . ,
                                   , 0.25734188, ..., 0.
               [0.64912281, 0.5
                                                              , 0.39795918,
               0.95
               [0.22807018, 0.5
                                   , 0.06656572, ..., 0.
                                                              , 0.39795918,
                0.95 ],
               [0.1754386 , 0.16666667, 0.10733961, ..., 0.
                                                              , 0.44897959,
                0.95
                        ]], shape=(33488, 13))
In [56]: #machine Learning algorithm
        from sklearn.neighbors import KNeighborsClassifier
         knn=KNeighborsClassifier()
         knn.fit(xtrain, ytrain) #input and output training data
         predict=knn.predict(xtest)
         predict #predict value
Out[56]: array(['<=50K', '>50K', '<=50K', '>50K', '<=50K'],
              shape=(8372,), dtype=object)
In [57]: from sklearn.metrics import accuracy score
        accuracy_score(ytest, predict)
Out[57]: 0.8190396559961778
In [58]: #Deep learning Algorithm
        from sklearn.linear_model import LogisticRegression
         lr=LogisticRegression()
         lr.fit(xtrain, ytrain) #input and output training data
         predict1=lr.predict(xtest)
         predict1 #predict value
```

```
Out[58]: array(['<=50K', '<=50K', '<=50K', '>50K', '>50K', '<=50K'],
                shape=(8372,), dtype=object)
In [59]: from sklearn.metrics import accuracy score
         accuracy_score(ytest, predict1)
Out[59]: 0.8324175824175825
In [60]: from sklearn.neural_network import MLPClassifier
         clf=MLPClassifier(solver='adam', hidden_layer_sizes=(5,2), random_state=2, max_iter
         clf.fit(xtrain, ytrain)
         predict2=clf.predict(xtest)
         predict2
Out[60]: array(['<=50K', '<=50K', '<=50K', ..., '>50K', '>50K', '<=50K'],
                shape=(8372,), dtype='<U5')
In [61]: from sklearn.metrics import accuracy score
         accuracy_score(ytest, predict2)
Out[61]: 0.8338509316770186
In [62]: from sklearn.pipeline import Pipeline
         from sklearn.model_selection import train_test_split
         from sklearn.metrics import accuracy_score, classification_report
         from sklearn.linear_model import LogisticRegression
         from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
         from sklearn.neighbors import KNeighborsClassifier
         from sklearn.svm import SVC
         from sklearn.preprocessing import StandardScaler, OneHotEncoder
         X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_sta
         models = {
             "LogisticRegression":LogisticRegression(),
             "RandomForest": RandomForestClassifier(),
             "KNN": KNeighborsClassifier(),
             "SVM": SVC(),
             "GradientBoosting": GradientBoostingClassifier()
         }
         results = {}
         for name, model in models.items():
             pipe = Pipeline([
                 ('scaler', StandardScaler()),
                 ('model', model)
             1)
             pipe.fit(X train, y train)
             y_pred = pipe.predict(X_test)
             acc = accuracy_score(y_test, y_pred)
             results[name] = acc
             print(f"{name} Accuracy: {acc:.4f}")
```

LogisticRegre	ession Accura	cy: 0.839	5	
	precision	-	f1-score	support
<=50K	0.86	0.93	0.90	6263
>50K	0.74	0.56	0.64	2109
accuracy			0.84	8372
macro avg	0.80	0.75	0.77	8372
weighted avg	0.83	0.84	0.83	8372
RandomForest	Accuracy: 0.	8548		
	precision	recall	f1-score	support
<=50K	0.88	0.94	0.91	6263
>50K	0.76	0.61	0.68	2109
accuracy			0.85	8372
macro avg	0.82	0.78	0.79	8372
weighted avg	0.85	0.85	0.85	8372
KNN Accuracy:	0.8280			
•	precision	recall	f1-score	support
<=50K	0.87	0.91	0.89	6263
>50K	0.69	0.58	0.63	2109
accuracy			0.83	8372
macro avg	0.78	0.75	0.76	8372
weighted avg	0.82	0.83	0.82	8372
SVM Accuracy:	0.8465			
•	precision	recall	f1-score	support
<=50K	0.86	0.95	0.90	6263
>50K	0.78	0.55	0.64	2109
accuracy			0.85	8372
macro avg	0.82	0.75	0.77	8372
weighted avg	0.84	0.85	0.84	8372
GradientBoost	ing Accuracy	: 0.8622		
	precision	recall	f1-score	support
<=50K	0.88	0.95	0.91	6263
>50K	0.80	0.60	0.69	2109
accuracy			0.86	8372
macro avg	0.84	0.78	0.80	8372
weighted avg	0.86	0.86	0.86	8372

```
plt.bar(results.keys(), results.values(), color='blue')
plt.ylabel('Accuracy Score')
plt.title('Model Comparision')
plt.xticks(rotation=45)
plt.grid(True)
plt.show()
```



```
In [64]:
    from sklearn.linear_model import LogisticRegression
    from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
    from sklearn.neighbors import KNeighborsClassifier
    from sklearn.svm import SVC
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    import joblib

# Train-test split
X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state)

# Define models
models = {
    "LogisticRegression": LogisticRegression(max_iter=1000),
    "RandomForest": RandomForestClassifier(),
    "KNN": KNeighborsClassifier(),
    "SVM": SVC(),
```

```
"GradientBoosting": GradientBoostingClassifier()
}
results = {}
# Train and evaluate
for name, model in models.items():
   model.fit(X_train, y_train)
   preds = model.predict(X_test)
   acc = accuracy_score(y_test, preds)
   results[name] = acc
   print(f"{name}: {acc:.4f}")
# Get best model
best_model_name = max(results, key=results.get)
best_model = models[best_model_name]
# Save the best model
joblib.dump(best_model, "best_model.pkl")
print(" Saved best model as best_model.pkl")
```

LogisticRegression: 0.8364

RandomForest: 0.8546

KNN: 0.8208 SVM: 0.8438

GradientBoosting: 0.8622

☑ Best model: GradientBoosting with accuracy 0.8622

Saved best model as best_model.pkl