Distributed representations and RNNs Computational Semantics 2021

Adam Ek

Plan

- Part 1: Distributed representations (25 min)
- Part 2: Language modeling (20 min)
- Part 3: Break (15min)
- Part 4: PyTorch example: Part-of-Speech tagging (45 min)

The great switcheroo

Previously we learned about count vectors and composing vectors

The great switcheroo

- Previously we learned about count vectors and composing vectors
- But count vectors have several problems:
 - Sparsity:
 - few degrees of similarity
 - language have a Zipfian-distribution

The great switcheroo

- Previously we learned about count vectors and composing vectors
- But count vectors have several problems:
 - Sparsity:
 - few degrees of similarity
 - language have a Zipfian-distribution
 - Post-processing necessary:
 - Weighting: TF-IDF, PPMI, ...
 - Dimensionality reduction: SVD

• Instead of counting the context (distributional) let's predict the context!

- Instead of counting the context (distributional) let's predict the context!
- We initialize word representations (embeddings) as random vectors of dimension D

- Instead of counting the context (distributional) let's predict the context!
- We initialize word representations (embeddings) as random vectors of dimension D
- We train a binary classifier on a task T: does w_a occur in the context of w_b ?

- Instead of counting the context (distributional) let's predict the context!
- We initialize word representations (embeddings) as random vectors of dimension D
- We train a binary classifier on a task T: does w_a occur in the context of w_b ?
- The thing we care about is the *embeddings*

- Instead of counting the context (distributional) let's predict the context!
- We initialize word representations (embeddings) as random vectors of dimension D
- We train a binary classifier on a task T: does w_a occur in the context of w_b ?
- The thing we care about is the *embeddings*
- That is, can we use the embeddings to predict other things than the context (for example word similarity)

Learning distributed representations

■ The task we try to solve is: does w_a occur in the context of w_b ?

Learning distributed representations

- The task we try to solve is: does w_a occur in the context of w_b ?
- Like with count vectors we must define what a context *is*, which we do with a *hyperparameter k* (aka. window size)

Learning distributed representations

- The task we try to solve is: does w_a occur in the context of w_b ?
- Like with count vectors we must define what a context *is*, which we do with a *hyperparameter k* (aka. window size)
- In this setup we have a center word w_c and some context words w_o (outside words)

Word2Vec

- We'll consider two methods, SkipGram and Continuous Bag-of-words (CBOW)
- aka. Word2Vec

Skip-Gram Model

■ We select a center word t and predict the context words

Skip-Gram Model

■ We select a center word t and predict the context words

Predicting the context words

$$P(w_{t-1}|w_t) = \frac{exp(w_{t-1}^T w_t)}{\sum_{w \in V} exp(w^T w_t)}$$

CBOW Model

■ Based on a "bag of words", predict the center word

CBOW Model

■ Based on a "bag of words", predict the center word

Predicting the context words

$$P(w_t|CBOW) = \frac{exp(w_t)}{\sum_{w \in V} exp(w)}$$

A neural network for Word2Vec

- To apply either of these models we'll use *neural networks*
- In both methods, the setup is simple:

A neural network for Word2Vec

- To apply either of these models we'll use *neural networks*
- In both methods, the setup is simple:
 - Perform non-linear transformations with weight matrices
 - Calculate the probability of the target word

A neural network for Word2Vec

- To apply either of these models we'll use *neural networks*
- In both methods, the setup is simple:
 - Perform non-linear transformations with weight matrices
 - Calculate the probability of the target word
 - Calculate loss with Negative Log Likelihood
 - Adjust the weight matrices with gradient descent such that the accuracy goes up (that is, minimize the negative log likelihood)

What is a weight matrix?

$$W^{n,d} = \begin{bmatrix} x_0^0 & \dots & x_n^0 \\ & \vdots & \\ x_0^d & \dots & x_n^k \end{bmatrix}$$

 \blacksquare takes an input of size n, and produces and output of size d

Machine learning expert visualization (https://xkcd.com/1838/)

Machine learning expert visualization (https://xkcd.com/1838/)

A quick look at Stochastic Gradient Descent

Semantic Space

The big WOW: Bilingual Dictionary Induction

• If we have embeddings in language X and a language Z, we can find word translations!

The big WOW: Bilingual Dictionary Induction

• If we have embeddings in language X and a language Z, we can find word translations!

Figure 1: A general schema of the proposed self-learning framework. Previous works learn a mapping W based on the seed dictionary D, which is then used to learn the full dictionary. In our proposal we use the new dictionary to learn a new mapping, iterating until convergence.

Bilingual Dictionary Induction

- "Learning bilingual word embeddings with (almost) no bilingual data" (Artexe, et. al (2017))
- We formalize our objective as the euclidean distance between the items in our seed dictionary:

$$W^* = \underset{W}{\text{arg min}} \ \sum_{i} \sum_{j} D_{ij} ||X_{i*}W - Z_{j*}||^2$$

Bilingual Dictionary Induction

- "Learning bilingual word embeddings with (almost) no bilingual data" (Artexe, et. al (2017))
- We formalize our objective as the euclidean distance between the items in our seed dictionary:

$$W^* = \underset{W}{\text{arg min}} \ \sum_{i} \sum_{j} D_{ij} ||X_{i*}W - Z_{j*}||^2$$

	English-Italian			English-German			English-Finnish		
	5,000	25	num.	5,000	25	num.	5,000	25	num.
Mikolov et al. (2013a)	34.93	0.00	0.00	35.00	0.00	0.07	25.91	0.00	0.00
Xing et al. (2015)	36.87	0.00	0.13	41.27	0.07	0.53	28.23	0.07	0.56
Zhang et al. (2016)	36.73	0.07	0.27	40.80	0.13	0.87	28.16	0.14	0.42
Artetxe et al. (2016)	39.27	0.07	0.40	41.87	0.13	0.73	30.62	0.21	0.77
Our method	39.67	37.27	39.40	40.87	39.60	40.27	28.72	28.16	26.47

Table 1: Accuracy (%) on bilingual lexicon induction for different seed dictionaries

- Predict which word from a vocabulary that comes next given a piece of text
- "the model predicts <BLANK>" but what is <BLANK>?

- Predict which word from a vocabulary that comes next given a piece of text
- "the model predicts <BLANK>" but what is <BLANK>?

$$P(x_{t+1}|x_t,...,x_1)$$

- Predict which word from a vocabulary that comes next given a piece of text
- "the model predicts <BLANK>" but what is <BLANK>?
 - the next word
 - a word

$$P(x_{t+1}|x_t,...,x_1)$$

- Predict which word from a vocabulary that comes next given a piece of text
- "the model predicts <BLANK>" but what is <BLANK>?
 - the next word
 - a word
 - something meaningful

$$P(x_{t+1}|x_t,...,x_1)$$

- Predict which word from a vocabulary that comes next given a piece of text
- "the model predicts <BLANK>" but what is <BLANK>?
 - the next word
 - a word
 - something meaningful
 - a grammatically plausible word
 - a semantically plausible word

$$P(x_{t+1}|x_t,...,x_1)$$

■ But what is x_{t+1} ? And $x_t, ..., x_0$?

- But what is x_{t+1} ? And $x_t, ..., x_0$?
- "Items" in our vocabulary; a collection of strings extracted from our training corpus

- But what is x_{t+1} ? And $x_t, ..., x_0$?
- "Items" in our vocabulary; a collection of strings extracted from our training corpus
- We build the vocabulary by tokenizing our text, but how we tokenize is up to us

- But what is x_{t+1} ? And $x_t, ..., x_0$?
- "Items" in our vocabulary; a collection of strings extracted from our training corpus
- We build the vocabulary by tokenizing our text, but how we tokenize is up to us
- Thus, what we do in language modeling is...

Formal definition (2)

$$P(w_1,...,w_T) = \prod_{1}^{T} P(w_t|w_{t-1},...,w_1)$$

- But what is x_{t+1} ? And $x_t, ..., x_0$?
- "Items" in our vocabulary; a collection of strings extracted from our training corpus
- We build the vocabulary by tokenizing our text, but how we tokenize is up to us
- Thus, what we do in language modeling is...
- assign probability (and consequently a representation) to a sequence of symbols

Formal definition (2)

$$P(w_1,...,w_T) = \prod_{t=1}^{T} P(w_t|w_{t-1},...,w_1)$$

Ok, cool! What is the use in that?

Auto-complete (e.g. google search)

- Auto-complete (e.g. google search)
- Text generation

- Auto-complete (e.g. google search)
- Text generation
- Translation

- Auto-complete (e.g. google search)
- Text generation
- Translation
- Actually, as it turn out: 99% (handwavy number) of NLP benefit from language modeling (Nikolai will tell you more about this in the next lecture)

Let us consider some history (oh god, no...)

- First statistical (language) models were based on n-grams and co-occurrence
- They worked "ok" but suffered some major drawbacks:

Let us consider some history (oh god, no...)

- First statistical (language) models were based on n-grams and co-occurrence
- They worked "ok" but suffered some major drawbacks:
 - Context limited to n tokens

Let us consider some history (oh god, no...)

- First statistical (language) models were based on n-grams and co-occurrence
- They worked "ok" but suffered some major drawbacks:
 - Context limited to n tokens
 - Rare words

Then, in 2015-ish neural networks entered the scene (YAY!) and has alleviated many of the issues:

 Neural Networks use RNNs to process sequences, which can model an arbitrarily long contexts

Then, in 2015-ish neural networks entered the scene (YAY!) and has alleviated many of the issues:

- Neural Networks use RNNs to process sequences, which can model an arbitrarily long contexts
 - Not really, RNNs still have trouble with long dependencies

Then, in 2015-ish neural networks entered the scene (YAY!) and has alleviated many of the issues:

- Neural Networks use RNNs to process sequences, which can model an arbitrarily long contexts
 - Not really, RNNs still have trouble with long dependencies
- Words are represented as distributed vectors
- which allows a model to compute similarities which helps with rare words (and frequent words for that matter)

 Encode the tokens in your sentence as distributed representations

- Encode the tokens in your sentence as distributed representations
- Can we use word2vec for this? ...

- Encode the tokens in your sentence as distributed representations
- Can we use word2vec for this? ...
- Feed the encoded tokens to an RNN

- Encode the tokens in your sentence as distributed representations
- Can we use word2vec for this? ...
- Feed the encoded tokens to an RNN
 - Predict the next token

- Encode the tokens in your sentence as distributed representations
- Can we use word2vec for this? ...
- Feed the encoded tokens to an RNN
 - Predict the next token
- Continue until you've reached the end of the sentence

RNN

RNN un-rolled

■ What does the final h_t represent?

- What does the final h_t represent?
 - \rightarrow A "summary" representation of the sentence

- What does the final h_t represent?
 - → A "summary" representation of the sentence
 - \rightarrow It's a summary because this is the accumulated hidden state from the entire input sequence

The RNN Cell

■ How do we go from o_t to \hat{y}

■ How do we go from o_t to \hat{y}

 $o h_t W + b$ where $W \in \mathbb{R}^{d(h_t),|V|}$

- The target word is predicted by $\hat{y}' = softmax(\hat{y})$
- $softmax(\hat{y_i}) = \frac{e^{y_i}}{\sum_{T=0}^{K} e^{y_t}}$ for i in 1...K

- The target word is predicted by $\hat{y}' = softmax(\hat{y})$
- $softmax(\hat{y}_i) = \frac{e^{y_i}}{\sum_{T=0}^K e^{y_t}} \text{for } i \text{ in } 1...K$

- The target word is predicted by $\hat{y}' = softmax(\hat{y})$
- $softmax(\hat{y}_i) = \frac{e^{y_i}}{\sum_{T=0}^{K} e^{y_t}}$ for i in 1...K

■ This yields a vector \hat{y}' that contain the probabilities for each item in our vocabulary

- The target word is predicted by $\hat{y}' = softmax(\hat{y})$
- $softmax(\hat{y}_i) = \frac{e^{y_i}}{\sum_{T=0}^{K} e^{y_t}}$ for i in 1...K

- This yields a vector \hat{y}' that contain the probabilities for each item in our vocabulary
- Then we calculate the Negative Log Likelikhood loss :) and stir the pile (with gradient descent)

■ Intrinsic: Use the model on a specific intermediate task

- Intrinsic: Use the model on a specific intermediate task
 - For Word2Vec: Analogy tests, word similarity
 - For language models: Perplexity (does the model assign high probability to the test set?)

- Intrinsic: Use the model on a specific intermediate task
 - For Word2Vec: Analogy tests, word similarity
 - For language models: Perplexity (does the model assign high probability to the test set?)
- Extrinsic: Use the model in some application or downstream task

- Intrinsic: Use the model on a specific intermediate task
 - For Word2Vec: Analogy tests, word similarity
 - For language models: Perplexity (does the model assign high probability to the test set?)
- Extrinsic: Use the model in some application or downstream task
 - Plug the word representations obtained into another model (parsing/QA-model/...)

Natural Language Generation (NLG)

■ We can use language models to generate language

Conditioned Natural Language Generation (NLG)

- But generating based on nothing will most likely just give us nonsense...
- Language usually happens in some context, or as an response to something

Machine translation (MT)

- We use a so-called *seq2seq*-model
- Encode a sentence from the source language

Machine translation (MT)

- We use a so-called *seq2seq*-model
- Encode a sentence from the source language
- Generate a sentence in the target language

Next up...

Questions?

A short look at the attention mechanism

- When using NLG or MT, the contextual information (etc...) are encoded only in the initial hidden state h_t
- This information will easily be forgotten after some time-steps
- We can use attention to alleviate this problem by looking back at the context at every time-step

Attention

