Представяне на графи

1. Матрица на съседство

$$A = \left\| a_{ij} \right\|_{n \times n} = egin{cases} a_{ij} = 1 & \text{ако има дъга/ребро между връх } i \text{ и връх } j \\ a_{ij} = 0 & \text{ако няма дъга/ребро между връх } i \text{ и връх } j \end{cases}$$

2. Претеглена матрица на съседство

Ако графът е претеглен – линиите/дъгите имат тегла, то вместо 1 в матрицата се вписва това число.

3. Матрица на достижимост (за ориентиран граф)

$$extbf{\emph{R}} = \left\| r_{ij} \right\|_{n \times n} = egin{cases} r_{ij} = 1 & \text{ако върхът } x_i \text{ е достижим от върха } x_j \\ a_{ij} = 0 & \text{ако върхът } x_i \text{ не е достижим от върха } x_j \end{cases}$$

Как се определя:

1) Определя се матрицата на съседство. Например:

	x ₁	X ₂	X ₃	X ₄	X ₅
x ₁	0	٦-	0	0	0
X ₂	0	1	1	0	0
X ₃	0	0	1	1	0
X ₄	0	1	0	0	0
X ₅	1	0	1	0	0

Матрица на съседство:
$$A = \| m{4} \|$$

$$\mathbf{A} = \begin{vmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \end{vmatrix}$$

2) Определят се $\Gamma^{-1}(x_i)$ – множеството от върхове, непосредствено достижими от върха

$$X_i$$
 .

$$\Gamma^{-1}(x_1) = \{x_2\}, \ \Gamma^{-1}(x_2) = \{x_2, x_3\}, \ \Gamma^{-1}(x_3) = \{x_3, x_4\}, \ \Gamma^{-1}(x_4) = \{x_2\}, \ \Gamma^{-1}(x_5) = \{x_1, x_3\}.$$

3) Определят се множествата на достижимост $R(x_i)$:

$$R(x_{i}) = \{x_{i}\} \cup \Gamma^{-1}(x_{i}) \cup \Gamma^{-2}(x_{i}) \cup ... \cup \Gamma^{-p}(x_{i}).$$

$$R(x_{1}) = \{x_{1}\} \cup \{x_{2}\} \cup \{x_{2}, x_{3}\} \cup \{x_{2}, x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} = \{x_{1}, x_{2}, x_{3}, x_{4}\}$$

$$R(x_{2}) = \{x_{2}\} \cup \{x_{2}, x_{3}\} \cup \{x_{2}, x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} = \{x_{2}, x_{3}, x_{4}\}$$

$$R(x_{3}) = \{x_{3}\} \cup \{x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} = \{x_{2}, x_{3}, x_{4}\}$$

$$R(x_{4}) = \{x_{4}\} \cup \{x_{2}\} \cup \{x_{2}, x_{3}\} \cup \{x_{2}, x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} = \{x_{2}, x_{3}, x_{4}\}$$

$$R(x_{5}) = \{x_{5}\} \cup \{x_{1}, x_{3}\} \cup \{x_{2}, x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} = \{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\}$$

Задача: За графа от фигурата да се определят:

- а) матрицата на съседство;
- б) множествата на достижимост;
- в) матрицата на достижимост;
- г) матрицата на обратна достижимост.

	X ₁	X ₂	X ₃	X ₄	X ₅
X ₁	0	1	0	0	0
X ₂	0	1	1	0	0
X ₃	0	0	1	1	0
X ₄	0	1	0	0	0
X ₅	1	0	1	0	0

Множества на достижимост на върховете:
$$R\left(x_{1}\right) = \{x_{1}\} \cup \{x_{2}\} \cup \{x_{2}, x_{3}\} \cup \{x_{2}, x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} = \{x_{1}, x_{2}, x_{3}, x_{4}\}$$

$$x_{1} \rightarrow x_{2} \quad x_{2} \rightarrow x_{2} \quad x_{2} \rightarrow x_{2} \quad x_{2} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{3} \quad x_{3} \rightarrow x_{3}$$

$$x_{3} \rightarrow x_{4} \quad x_{4} \rightarrow x_{2}$$

$$R\left(x_{2}\right) = \{x_{2}\} \cup \{x_{2}, x_{3}\} \cup \{x_{2}, x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} = \{x_{2}, x_{3}, x_{4}\}$$

$$x_{2} \rightarrow x_{2} \quad x_{2} \rightarrow x_{2} \quad x_{2} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{3} \quad x_{3} \rightarrow x_{3}$$

$$x_{3} \rightarrow x_{4} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$R\left(x_{3}\right) = \{x_{3}\} \cup \{x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} \cup \{x_{2}, x_{3}, x_{4}\} = \{x_{2}, x_{3}, x_{4}\}$$

$$x_{3} \rightarrow x_{4} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{3} \rightarrow x_{4} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{3} \rightarrow x_{4} \quad x_{4} \rightarrow x_{2}$$

$$x_{3} \rightarrow x_{4} \quad x_{4} \rightarrow x_{2}$$

$$x_{4} \rightarrow x_{2} \quad x_{2} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{2} \rightarrow x_{3}$$

$$x_{3} \rightarrow x_{4} \quad x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{2} \rightarrow x_{3}$$

$$x_{3} \rightarrow x_{4} \quad x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{2} \rightarrow x_{3} \quad x_{3} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2}$$

$$x_{3} \rightarrow x_{4} \quad x_{4} \rightarrow x_{2}$$

$$x_{4} \rightarrow x_{2} \rightarrow x_{3} \quad x_{4} \rightarrow x_{4} \rightarrow x_{2}$$

$$x_{5} \rightarrow x_{4} \quad x_{4} \rightarrow x_{2} \rightarrow x_{4}$$

$$x_{4} \rightarrow x_{2} \rightarrow x_{4} \rightarrow x_{4} \rightarrow x_{4} \rightarrow x_{4} \rightarrow x_{4} \rightarrow x_{$$

 $X_4 \rightarrow X_2$

2200				X ₅
1	1	1	1	0
0	1	1	1	0
0	1	1	1	0
0	1	1	1	0
1	1	1	1	1
	0	0 1	0 1 1	0 1 1 1

Матрица на достижимост: $\mathbf{R} = \| \mathbf{\uparrow} \|$

Множества на достижимост на върховете:

$$R(x_1) = \{x_1\} \cup \{x_2\} \cup \{x_2, x_3\} \cup \{x_2, x_3, x_4\} \cup \{x_2, x_3, x_4\} = \{x_1, x_2, x_3, x_4\}$$

$$R(x_2) = \{x_2\} \cup \{x_2, x_3\} \cup \{x_2, x_3, x_4\} \cup \{x_2, x_3, x_4\} = \{x_2, x_3, x_4\}$$

$$R(x_3) = \{x_3\} \cup \{x_3, x_4\} \cup \{x_2, x_3, x_4\} \cup \{x_2, x_3, x_4\} = \{x_2, x_3, x_4\}$$

$$R(x_4) = \{x_4\} \cup \{x_2\} \cup \{x_2, x_3\} \cup \{x_2, x_3, x_4\} \cup \{x_2, x_3, x_4\} = \{x_2, x_3, x_4\}$$

$$R(x_5) = \{x_5\} \cup \{x_1, x_3\} \cup \{x_2, x_3, x_4\} \cup \{x_2, x_3, x_4\} = \{x_1, x_2, x_3, x_4, x_5\}$$

	x ₁	X ₂	X ₃	X ₄	X ₅			
\mathbf{x}_{1}	1	1	1	1	0	h		
X ₂	0	1	1	1	0	Н		
X ₃	0	1	1	1	0	Ш		
X ₄	0	1	1	1	0	+++		
X ₅	1	1	1	1	1			

Матрица на обратна достижимост: $\mathbf{\mathcal{Q}} = \| \cdot \|_{\bullet_{\bullet}}$

- 4. Нареждаща функция на ориентиран граф тази функция съпоставя на всеки връх от графа ниво, към който той принадлежи.
 - 1) Определяме матрицата на съседство:

	v ₁	V ₂	V ₃	V ₄	V ₅
V ₁	0	0	٦-	1	1
V ₂	0	0	0	0	0
V ₃	0	1	0	0	0
V ₄	0	0	0	0	1
V ₅	0	0	1	0	0

Матрица на съседство: $A = \| \P$

$$\mathbf{A} = \begin{vmatrix} 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{vmatrix}.$$

- 2) Определяме върховете без входни дъги в колоната за тях в матрицата на съседство има само 0. В случая това е v_1 . $\Rightarrow N_1 = \{v_1\}$.
 - 3) Премахваме тези върхове и излизащите им дъги и правим стъпки 1 и 2 за подграфа.

Матрица на съседство: $A = \| \P$

$$\mathbf{A} = \begin{vmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{vmatrix}$$

Върхове без входни дъги: v_4 . $\Longrightarrow N_2 = \{v_4\}$.

$$A = \begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{vmatrix}$$

Върхове без входни дъги: v_5 . $\Rightarrow N_3 = \{v_5\}$.

$$\mathbf{A} = \begin{vmatrix} 0 & 0 \\ 1 & 0 \end{vmatrix}$$

Върхове без входни дъги: v_3 . $\Rightarrow N_4 = \{v_3\}$.

$$A = ||0||$$

Върхове без входни дъги: v_2 . $\Rightarrow N_5 = \{v_2\}$.

5. Минимално покриващо дърво (неориентиран граф)

Например, за следния граф:

	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆
v ₁	0	5	0	0	3	5
V ₂	5	0.	2	2	0	5
V ₃	0	2	0.	2	0	0
V ₄	0	2	2	0	4	0
V ₅	3	0	0	4	0	8
V ₆	5	5	0	0	8	0

Претеглена матрица на съседство: $A = \| \cdot \|$

$$\mathbf{A} = \begin{bmatrix} 0 & 5 & 0 & 0 & 3 & 5 \\ 5 & 0 & 2 & 2 & 0 & 5 \\ 0 & 2 & 0 & 2 & 0 & 0 \\ 0 & 2 & 2 & 0 & 4 & 0 \\ 3 & 0 & 0 & 4 & 0 & 8 \\ 5 & 5 & 0 & 0 & 8 & 0 \end{bmatrix}$$

Всеки от върховете участва в дървото и на ниво 0 имаме:

k = 0
$$\begin{pmatrix} v_1 \\ v_2 \end{pmatrix} \begin{pmatrix} v_3 \\ v_4 \end{pmatrix} \begin{pmatrix} v_5 \\ v_6 \end{pmatrix}$$

Търсим най-късите ребра в матрицата. Това са тези с дължина 2 в случая. Те свързват v_2 с v_3 , v_2 с v_4 и v_3 с v_4 .

Добавяме първите две ребра, защото ако добавим и третото ще се получи цикъл, а в дърветата не може да има цикли.

Следващото по дължина ребро е с дължина 3 и е между v_1 и v_5 .

Следващото по дължина ребро е с дължина 4 и е между v_4 и v_5 . По този начин се свързват двете поддървета.

Следващите по дължина ребра са с дължина 5 и са между:

- \bullet v_1 и v_2 води до цикъл;
- \bullet v_1 и v_6 може да се включи;
- $lacktriangledown_2$ и v_6 вече сме добавили горното и това ще доведе до цикъл.

Полученото дърво има дължина: 2+2+4+3+5=16.

6. Минимален Хамилтонов цикъл

Ако имаме N точки в равнината с разстоянията между тях, трябва да определим найкъсият път, който минава във всяка точка по един път и се връща в началната (произволно избрана). Търговски пътник трябва да обходи N града, като тръгне от един (приет за начален) и се върне в него, без да минава два пъти през един и същ град, и цената на транспортните разходи да бъде минимална.

	v ₁	V ₂	V ₃	V ₄	V ₅
v ₁	0	5	5 15		9
V ₂	5	0	7	8	9
V ₃	15	7	0.	3	12
V ₄	1	8	3	0.	21
V ₅	9	9	12	21	Ö

Матрица на съседство: $A = \| \cdot \|$

$$\mathbf{A} = \begin{vmatrix} 0 & 5 & 15 & 1 & 9 \\ 5 & 0 & 7 & 8 & 9 \\ 15 & 7 & 0 & 3 & 12 \\ 1 & 8 & 3 & 0 & 21 \\ 9 & 9 & 12 & 21 & 0 \end{vmatrix}$$

$$v_1 \xrightarrow{1} v_4 \xrightarrow{3} v_3 \xrightarrow{7} v_2 \xrightarrow{9} v_5 \xrightarrow{9} v_1$$

Матрица на съседство: $A = \| \cdot \|$

Задача 1.

- 1. Претеглена матрица на съседство
- 2. Локални степени на върховете
- 3. Брой ребра
- 4. Цикломатично число
- 5. Ойлеров цикъл
- 6. Хамилтонов цикъл

	v ₁	V ₂	V ₃	V ₄	V ₅	V ₆	v ₇	V ₈
v ₁	Ó	5	0	5	0	0	0	0
V ₂	5	0.	5	10	0	0	20	0
V ₃	0	5	0	0	5	0	0	0
V ₄	5	10	0	0	0	5	10	0
V ₅	0	0	5	0	0	0	0	5
V ₆	0	0	0	5	0	0	5	0
v ₇	0	20	0	10	0	5	0	5
V ₈	0	0	0	0	5	0	5	0

Претеглена матрица на съседство: $A = \| \P$

1. Претеглена матрица на съседство

$$A = \begin{bmatrix} 0 & 5 & 0 & 5 & 0 & 0 & 0 & 0 \\ 5 & 0 & 5 & 10 & 0 & 0 & 20 & 0 \\ 0 & 5 & 0 & 0 & 5 & 0 & 0 & 0 \\ 5 & 10 & 0 & 0 & 0 & 5 & 10 & 0 \\ 0 & 0 & 5 & 0 & 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 5 & 0 & 0 & 5 & 0 \\ 0 & 20 & 0 & 10 & 0 & 5 & 0 & 5 \\ 0 & 0 & 0 & 0 & 5 & 0 & 5 & 0 \end{bmatrix}$$

2. Локални степени на върховете

 $\rho(v_1) = 2$ – върхът v_1 е свързан с два върха v_2 и v_4 ;

 $\rho(v_2) = 4$ – върхът v_2 е свързан с четири върха v_1 , v_3 , v_4 и v_7 ;

 $\rho(v_3) = 2$ – върхът v_3 е свързан с два върха v_2 и v_5 ;

 $\rho(v_4) = 4$ – върхът v_4 е свързан с четири върха v_1 , v_2 , v_6 и v_7 ;

 $\rho(v_5) = 2$ – върхът v_5 е свързан с два върха v_3 и v_8 ;

 $\rho(v_6) = 2$ – върхът v_6 е свързан с два върха v_4 и v_7 ;

 $\rho(v_7) = 4$ – върхът v_7 е свързан с четири върха v_2 , v_4 , v_6 и v_8 ;

 $\rho(v_8) = 2$ – върхът v_8 е свързан с два върха v_5 и v_7 .

3. Брой ребра

$$m = \frac{\sum_{i=1}^{8} \rho(v_i)}{2} = \frac{2+4+2+4+2+2+4+2}{2} = 11$$

4. Цикломатично число

 $\lambda = m - n + 1 = 11 - 8 + 1 = 4$ (брой върхове n = 8)

5. Ойлеров цикъл

Условието за **Ойлеров цикъл** е локалните степени на върховете да са четни числа. В този граф, от точка 2 се вижда, че е така. Следователно, има Ойлеров цикъл и един такъв е:

$$(v_1, v_2), (v_2, v_3), (v_3, v_5), (v_5, v_8), (v_8, v_7), (v_7, v_2), (v_2, v_4), (v_4, v_7), (v_7, v_6), (v_6, v_4), (v_4, v_1).$$

6. Хамилтонов цикъл – няма критерий за такъв, но в случая има Хамилтонов цикъл и един примерен такъв е:

$$(v_1, v_2), (v_2, v_3), (v_3, v_5), (v_5, v_8), (v_8, v_7), (v_7, v_6), (v_6, v_4), (v_4, v_1).$$

Залача 2.

За графа да се определят:

- 1. Матрица на съседство;
- 2. Матрица на достижимост;
- **3.** Матрица на обратна достижимост \boldsymbol{Q} (получава се от матрицата \boldsymbol{R} , като стълбът v_i от \boldsymbol{R} става ред v_i в \boldsymbol{Q}).
 - 1. Матрица на съседство;

	v ₁	V ₂	V ₃	V ₄	V ₅	V ₆	v ₇
v ₁	0	1	0	0	1	0	0
V ₂	0	1	0	1	0	0	0
V ₃	0	0	0	1	0	0	0
V ₄	0	0	0	0	1	0	0
V ₅	0	0	0	0	1	0	0
V ₆	0	0	1	0	0	0	1
v ₇	0	0	0	1	0	1	0

Матрица на съседство: $A = \| \cdot \|$

$$A = \begin{vmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{vmatrix}$$

2. Матрица на достижимост:

$$R(v_1) = \{v_1\} \cup \{v_2, v_5\} \cup \{v_2, v_4, v_5\} \cup \{v_2, v_4, v_5\} = \{v_1, v_2, v_4, v_5\}$$

$$R(v_2) = \{v_2\} \cup \{v_2, v_4\} \cup \{v_2, v_4, v_5\} \cup \{v_2, v_4, v_5\} = \{v_2, v_4, v_5\}$$

$$R(v_3) = \{v_3\} \cup \{v_4\} \cup \{v_5\} \cup \{v_5\} = \{v_3, v_4, v_5\}$$

$$R(v_4) = \{v_4\} \cup \{v_5\} \cup \{v_5\} = \{v_4, v_5\}$$

$$R(v_5) = \{v_5\} \cup \{v_5\} = \{v_5\}$$

$$R(v_5) = \{v_5\} \cup \{v_5\} - \{v_5\}$$

$$R(v_6) = \{v_6\} \cup \{v_3, v_7\} \cup \{v_4, v_6\} \cup \{v_3, v_5, v_7\} \cup \{v_4, v_5, v_6\} \cup \{v_3, v_5, v_7\} \cup \{v_4, v_5, v_6\} = \{v_3, v_4, v_5, v_6, v_7\}$$

$$= \{v_3, v_4, v_5, v_6, v_7\}$$

$$R(v_7) = \{v_7\} \cup \{v_4, v_6\} \cup \{v_3, v_5, v_7\} \cup \{v_4, v_5, v_6\} = \{v_3, v_4, v_5, v_6, v_7\}$$

$$R (v_1) = \{v_1\} \cup \{v_2, v_3\} \cup \{v_2, v_4, v_5\} \cup \{v_2, v_4, v_5\} = \{v_1, v_2, v_4, v_5\} \}$$

$$v_1 \rightarrow v_2 \qquad v_2 \rightarrow v_2 \qquad v_2 \rightarrow v_2$$

$$v_1 \rightarrow v_5 \qquad v_2 \rightarrow v_4 \qquad v_2 \rightarrow v_4$$

$$v_5 \rightarrow v_5 \qquad v_4 \rightarrow v_5$$

$$v_2 \rightarrow v_2 \qquad v_2 \rightarrow v_2 \qquad v_2 \rightarrow v_2$$

$$v_2 \rightarrow v_4 \qquad v_2 \rightarrow v_4 \qquad v_2 \rightarrow v_4$$

$$v_4 \rightarrow v_5 \qquad v_5 \rightarrow v_5$$

$$R (v_3) = \{v_3\} \cup \{v_4\} \cup \{v_5\} \cup \{v_5\} \rightarrow \{v_5\} = \{v_3, v_4, v_5\} \}$$

$$v_3 \rightarrow v_4 \vee_4 \rightarrow v_5 \vee_5 \rightarrow v_5$$

$$R (v_4) = \{v_4\} \cup \{v_5\} \cup \{v_5\} \rightarrow \{v_5\} = \{v_4, v_5\} \}$$

$$v_4 \rightarrow v_5 v_5 \rightarrow v_5$$

$$R (v_6) = \{v_5\} \cup \{v_3, v_7\} \cup \{v_4, v_6\} \cup \{v_3, v_5, v_7\} \cup \{v_4, v_5, v_6\} \cup \{v_3, v_5, v_7\} =$$

$$v_6 \rightarrow v_3 \qquad v_3 \rightarrow v_4 \qquad v_4 \rightarrow v_5 \qquad v_3 \rightarrow v_4 \qquad v_4 \rightarrow v_5$$

$$v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_5 \rightarrow v_5 \qquad v_5 \rightarrow v_5$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_3 \qquad v_5 \rightarrow v_5 \qquad v_5 \rightarrow v_5$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_3 \qquad v_5 \rightarrow v_5 \qquad v_5 \rightarrow v_5 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_4 \qquad v_6 \rightarrow v_3 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

$$v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7 \qquad v_7 \rightarrow v_6 \qquad v_6 \rightarrow v_7$$

 $= \{ v_3, v_4, v_5, v_6, v_7 \}$

	V ₁	V ₂	V ₃	V ₄	V ₅	V ₆	v ₇
v ₁	٦	1	0	1	1	0	0
V ₂	0	1	0	1	1	0	0
V ₃	0	0	1	1	1	0	0
V ₄	0	0	0	1	1	0	0
V ₅	0	0	0	0	1	0	0
> 6	0	0	1	1	1	1	1
v ₇	0	0	. 1	1	1	1	1

Матрица на достижимост: $\mathbf{\textit{R}} = \| \mathbf{\uparrow} \|$

Множества на достижимост на върховете:

$$\begin{array}{l} R \left(\mathsf{v}_1 \right) = \{ \mathsf{v}_1 \} \cup \{ \mathsf{v}_2, \mathsf{v}_5 \} \cup \{ \mathsf{v}_2, \mathsf{v}_4, \mathsf{v}_5 \} \cup \{ \mathsf{v}_2, \mathsf{v}_4, \mathsf{v}_5 \} = \{ \mathsf{v}_1, \mathsf{v}_2, \mathsf{v}_4, \mathsf{v}_5 \} \\ R \left(\mathsf{v}_2 \right) = \{ \mathsf{v}_2 \} \cup \{ \mathsf{v}_2, \mathsf{v}_4 \} \cup \{ \mathsf{v}_2, \mathsf{v}_4, \mathsf{v}_5 \} \cup \{ \mathsf{v}_2, \mathsf{v}_4, \mathsf{v}_5 \} = \{ \mathsf{v}_2, \mathsf{v}_4, \mathsf{v}_5 \} \\ R \left(\mathsf{v}_3 \right) = \{ \mathsf{v}_3 \} \cup \{ \mathsf{v}_4 \} \cup \{ \mathsf{v}_5 \} \cup \{ \mathsf{v}_5 \} = \{ \mathsf{v}_3, \mathsf{v}_4, \mathsf{v}_5 \} \\ R \left(\mathsf{v}_4 \right) = \{ \mathsf{v}_4 \} \cup \{ \mathsf{v}_5 \} \cup \{ \mathsf{v}_5 \} = \{ \mathsf{v}_4, \mathsf{v}_5 \} \\ R \left(\mathsf{v}_5 \right) = \{ \mathsf{v}_5 \} \cup \{ \mathsf{v}_5 \} = \{ \mathsf{v}_5 \} \\ R \left(\mathsf{v}_6 \right) = \{ \mathsf{v}_6 \} \cup \{ \mathsf{v}_3, \mathsf{v}_7 \} \cup \{ \mathsf{v}_4, \mathsf{v}_6 \} \cup \{ \mathsf{v}_3, \mathsf{v}_5, \mathsf{v}_7 \} \cup \{ \mathsf{v}_4, \mathsf{v}_5, \mathsf{v}_6 \} \cup \{ \mathsf{v}_3, \mathsf{v}_5, \mathsf{v}_7 \} = \{ \mathsf{v}_3, \mathsf{v}_4, \mathsf{v}_5, \mathsf{v}_6, \mathsf{v}_7 \} \\ R \left(\mathsf{v}_7 \right) = \{ \mathsf{v}_7 \} \cup \{ \mathsf{v}_4, \mathsf{v}_6 \} \cup \{ \mathsf{v}_3, \mathsf{v}_5, \mathsf{v}_7 \} \cup \{ \mathsf{v}_4, \mathsf{v}_5, \mathsf{v}_6 \} \cup \{ \mathsf{v}_3, \mathsf{v}_5, \mathsf{v}_7 \} = \{ \mathsf{v}_7 \} \cup \{ \mathsf{v}_4, \mathsf{v}_6 \} \cup \{ \mathsf{v}_4, \mathsf{v}_6 \} \cup \{ \mathsf{v}_4, \mathsf{v}_5, \mathsf{v}_6 \} \cup \{ \mathsf{v}_3, \mathsf{v}_5, \mathsf{v}_7 \} = \{ \mathsf{v}_7 \} \cup \{ \mathsf{v}_4, \mathsf{v}_6 \} \cup \{ \mathsf{v}_4, \mathsf{v}_6 \} \cup \{ \mathsf{v}_4, \mathsf{v}_5, \mathsf{v}_6 \} \cup \{ \mathsf{v}_3, \mathsf{v}_5, \mathsf{v}_7 \} = \{ \mathsf{v}_7 \} \cup \{ \mathsf{v}_7 \} \cup \{ \mathsf{v}_8, \mathsf{v}_9 \} \cup \{ \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_7 \} = \{ \mathsf{v}_9, \mathsf{v}_9 \} \cup \{ \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9 \} \cup \{ \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9 \} \cup \{ \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9 \} \cup \{ \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9 \} \cup \{ \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9, \mathsf{v}_9 \} \cup \{ \mathsf{v}_9, \mathsf$$

3. Матрица на обратна достижимост – \boldsymbol{Q} (получава се от матрицата \boldsymbol{R} , като стълбът v_i от \boldsymbol{R} става ред v_i в \boldsymbol{Q}).

Матрица на обратна достижимост:

$$\mathbf{Q} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

Задача 3.

За зададения с матрицата на съседство ориентиран граф D да се определи нареждащата функция:

Определяме върховете без входни дъги – в колоната за тях в матрицата на съседство има само 0. В случая това са v_1 и v_8 . $\Rightarrow N_1 = \{v_1, v_8\}$.

Премахваме тези върхове и излизащите им дъги и повтаряме стъпките за подграфа.

	V ₂		V ₄	V ₅	V ₆	V ₇
V ₂	0	0	0	0	0	0
V ₃	1	0	0	0	1	0
V ₄	0	0	0	1	0	1
V ₅	0	1	0	0	0	0
V ₆	0	0	0		0	0
v ₇	0	0	0	0	1	0

Матрица на съседство: $A = \| \cdot \|$

Върхове без входни дъги: v_4 . $\Longrightarrow N_2 = \{v_4\}$.

		V ₂	V ₃	V ₅	V ₆	V ₇
	V ₂	0	0	0	0	0
	V ₃	7	0	0	1	0
	V ₅	0	1	0	0	0
1	V ₆	0	0	0	0	0
	v ₇	0	0	0	.1	0.

Матрица на съседство: $m{A} = \| \begin{tabular}{c|ccc} & & & & & \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}$

Върхове без входни дъги: v_5 и v_7 . $\Rightarrow N_3 = \{v_5, v_7\}$.

37.1)											
	V ₂	V ₃	V ₆								
V ₂	0	0	0								
V ₃	1	0	1								
V ₆	0	0	0								

Матрица на съседство: $A=\| \stackrel{\bullet}{\P}^{\bullet}$

$$A = \begin{vmatrix} 0 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{vmatrix}$$

Върхове без входни дъги: v_3 . $\Rightarrow N_4 = \{v_3\}$.

$$oldsymbol{oldsymbol{v}_6}$$
 Матрица на съседство: $oldsymbol{A} = ig\| oldsymbol{\dot{f v}} ig\|$

$$A = \begin{vmatrix} 0 & 0 \\ 0 & 0 \end{vmatrix}$$

Върхове без входни дъги: v_2 и v_6 . $\Rightarrow N_5 = \{v_2, v_6\}$.

Задача 4.

Система за предаване на информация има 10 станции $v_1 \div v_{10}$. Всяко предаване на съобщение от станция i към станция j става с определена вероятност P_{ij} за прихващане на съобщението. Да се определи начинът, по който трябва да се предаде информацията до всички станции, така че рискът от прихващане на съобщение да е минимален, ако вероятностите са следните:

$$\begin{array}{lllll} P_{14} = 0.11 & P_{25} = 0.8 & P_{46} = 0.1 & P_{79} = 0.4 & P_{24} = 0.18 \\ P_{15} = 0.5 & P_{27} = 0.11 & P_{47} = 0.7 & P_{710} = 0.13 & P_{39} = 0.6 \\ P_{12} = 0.6 & P_{34} = 0.8 & P_{56} = 0.15 & P_{89} = 0.14 & P_{78} = 0.9 \\ P_{910} = 0.19 & P_{23} = 0.15 & P_{38} = 0.18 & P_{57} = 0.9 \end{array}$$

Решение:

Всяка станция е връх в графа.

Вероятността за прихващане е **линия/ребро** в графа между връх i и връх j.

Предаването на информацията до всички станции с минимална вероятност от прихващане на съобщението е **минималното покриващо дърво на този граф**.

Задачата може да се сведе до намиране на минимално покриващо дърво, като системата се замени с граф върховете, на който съвпадат със станциите, а ребрата са вероятностите за прихващане на съобщението при предаването му между съответната двойка станции.

Съответната претеглена матрица на съседство е:

<i>A</i> =	0	0,6	0	0,11	0,5	0	0	0	0	0
	0,6	0	0,15	0,18	0,8	0	0,11	0	0	0
	0	0,15	0	0,8	0	0	0	0,18	0,6	0
	0,11	0,18	0,8	0	0	0,1	0,7	0	0	0
	0,5	0,8	0	0	0	0,15	0,9	0	0	0
	0	0	0	0,1	0,15	0	0	0	0	0
	0	0,11	0	0,7	0,9	0	0	0,9	0,4	0,13
	0	0	0,18	0	0	0	0,9	0	0,14	0
	0	0	0,6	0	0	0	0,4	0,14	0	0,19
	0	0	0	0	0	0	0,13	0	0,19	0

Съгласно алгоритъма на Краскал се строят частичните графи:

$$G_0 \rightarrow V_1$$
 V_2 V_3 V_4 V_5 V_6 V_7 V_8 V_9 V_{10} V_8

Най-късото ребро е
$$\left(v_4,v_6\right)$$
 с дължина $0,10$.
$$G_1 \to \begin{array}{c} v_1 \\ v_2 \end{array} \quad \begin{array}{c} v_3 \\ v_4 \end{array} \quad \begin{array}{c} v_5 \\ v_7 \end{array} \quad \begin{array}{c} v_8 \\ v_9 \end{array} \quad \begin{array}{c} v_{10} \\ v_{10} \end{array}$$
 $k=1$

Ребрата (v_1, v_4) и (v_2, v_7) са с дължина 0,11.

Следващото по дължина ребро е (v_7, v_{10}) с дължина 0,13.

Следващото по дължина ребро е (v_8, v_9) с дължина 0,14.

С дължина 0,15 са ребрата: (v_2, v_3) и (v_5, v_6) .

Добавяме ребрата (v_2, v_4) и (v_3, v_8) с дължина 0,18.

Това е минималното покриващо дърво за този граф и от него ясно се вижда оптималния начин за предаване на информацията до всички станции. Минималното покриващо дърво е с дължина: