Objetivos da Aula:

Arquitetura do Data Warehouse

Professora: Juliana

15-8-2025

- OLTP On-Line Transaction Processing;
 (Processamento de Transação On-Line)
- OLAP On-Line Analytical Processing;
 (Processamento Analítico On-Line)
- Definições de Banco de Dados BD; Sistema de BD e Data Warehouse;
- Características do DW.
- Diferenças do Sistema de BD tradicional e Data Warehouse;
- Arquitetura do Data Warehouse;
- Benefícios do DW;
- Introdução a Banco de Dados Dimensional;
- Referência Bibliográfica

OLTP - On-Line Transaction Processing (Processamento de Transação On-Line)

- Processamentos que executam as operações do diaa-dia da organização.
- Ênfase ao suporte de negócio, por meio de um processamento rápido e eficiente de dados.
 - Ex: movimento bancário

Exemplo Processamento. Transação - OLTP

ContaA=R\$5000,00

ContaB=R\$2,00

ContaC=R\$100,00

ContaA=R\$4000,00

ContaB=R\$702,00

ContaC=R\$400,00

Ambiente OLTP:

- Operações;
- Leitura/Escrita;
- Escopo específico da aplicação;
- Dados Normalizados;
- Detalhe dos dados transação.

Considerações sobre sistemas OLTP

Modelo lógico

Vantagens

- Previne anomalias nas atualizações;
- Assegura consistência;
- Otimiza o processamento da aplicação.

Desvantagens

□Difícil de projetar relatórios analíticos (estático).

OLAP - OnLine Analytical Processing

(Processamento Analítico On-Line)

- Processamentos que suportam a tomada de decisões, por meio de consultas, análises e cálculos nos dados corporativos de DW. Usuários: analistas, gerentes e executivos;
- Permite analisar tendências e padrões em grandes quantidades de dados :
 - ao longo do tempo (histórico);
 - e por diferentes dimensões.
- Exemplos de ferramentas: IBM Cognos Analytics, Tableau e Power BI (Microsoft).

Exemplos de visualizações em ferramenta OLAP (1).

Total_2012

Opm	Qtd Ocr
1º BPMI	59058
20° BPMI	29472
23º BPMI	96207
41º BPMI	14066
46º BPMI	114615
5º BPMI	99650

Figura - Reporting Services - Ocorrências 2012 (MOREIRA, Fabio Augusto, 2013)

Exemplos de visualizações em ferramenta OLAP (2).

Figura - Visualização dos Dados Gerados a partir do Cubo (MOREIRA, Fabio Augusto, 2013)

Modelagem Dimensional

Definições de BD, Sistema de BD e Data Warehouse

- ➢ BD é uma coleção de dados relacionados que tem por objetivo atender a uma comunidade de usuários.
- > "O sistema de BD é basicamente um sistema de manutenção de registro por computadores, ou seja, um sistema cujo objetivo global é manter as informações e torná-las disponíveis quando solicitadas." (DATE, 1991)
- > DW é uma coleção de informações bem como um sistema de apoio.
- Data Warehousing fornece os subsídios necessários para a transformação de uma base de dados de uma organização de OLTP para OLAP.

Características do DW

- Orientado a Assuntos : Armazena as informações agrupadas/relacionadas por assuntos específicos, exemplo vendas;
- Variante com o Tempo : Todas as mudanças nos dados são armazenadas para proporcionar relatórios que mostram mudanças ao longo do tempo;
- Não volátil: Os dados do DW não são sobrepostos ou apagados;
- Integrado : contém dado de várias fontes de dados depois de serem limpos e padronizados, mostrando uma visão única sobre determinado assunto.

Diferenças do Sistema de BD tradicional e Data Warehouse (1)

- Os Sistemas de BD tradicionais são transacionais como Relacional ou Orientado a Objetos directionados para sistemas de operações transacionais. Exemplo: Sistema de Software Bancário.
- Os Data Warehouse são direcionados para aplicações de apoio às decisões.
- Os DW são otimizados para a recuperação dos dados e não para processamento rotineiro de transações.

Diferenças do Sistema de BD tradicional e Data Warehouse – DW (3)

	BD Tradicional	DW
	(OLTP)	(OLAP)
Propósito	Operações cotidianas	recuperação de informação e análise
Estrutura	RDBMS	RDBMS
Modelo de dados	Relacional	Multidimensional
Acesso	SQL	SQL + extensões para análise de dados
Condição dos dados	em mudança, incompleto	histórica, descritiva
Tipo de dados	dados que administram o empreendimento	dados que analisam o empreendimento

Diferenças do Sistema de BD tradicional e Data Warehouse – DW (4)

	OPERACIONAL	ANALÍTICO
Propósito Execução dos processos de negócio		Avaliação dos processos da empresa
Conteúdo dos dados	Valores recentes	Valores recentes e passados
Estrutura dos dados	Otimizada para transações individuais	Otimizada para consultas complexas (agregações)
Frequência de Acesso	Alta	Média a Baixa
Tipo de Acesso	Leitura, Atualização, Eliminação	Leitura
Uso	Previsível e Repetitivo	Randômico
Tempo de Resposta	Milissegundos	Alguns segundos a minutos
Usuários	Grande Número	Número Relativamente Pequeno

Fonte: Adaptado de Adamson (2010).

Arquitetura do Data Warehouse

ETL - extraction, transformation and loading (Extração, Transformação (limpeza) e carga dos dados)

Arquitetura do Data Warehouse Papéis (Funções):

- Usuários finais: São os gerentes, analista de negócio, especialista e executivos, que utilizam a informações para apoio à tomada de decisão;
- Gerente de Projetos: Gerente da área de TI e Gerente da área de negócios;
- Programadores e os analistas de sistemas responsável pela carga: -Responsáveis pela carga de dados, devem conhecer o mapeamento entre DW e os sistemas de operações transacionais (produção), além dos requisitos à filtragem e à integração de dados;
- Analistas de Negócio de TI: Traduz a necessidade do usuários finais para o analista de sistemas/programador;
- Analistas responsáveis pelo desenvolvimento e manutenção do DW e dos Data Marts: - Administrador de Banco de Dados (DBAS) dos sistemas transacionais, administradores de dados (DA);
- Programadores e analistas da ferramenta OLAP: Responsáveis pelos Aplicativos que acessarão o DW.

Sistemas de Operações Transacionais de Origem

- São os sistemas de operação que contém dados do negócio da organização e que controlam transações diárias. Exemplo: Sistema de Gestão de Reclamações.
- Os sistemas de origem devem ser considerados como externos ao data warehouse. Os sistemas de origem também são chamados Sistemas Legados ou OLTP.

Arquitetura do Data Warehouse Sistemas de Extração de Dados

- É necessário o desenvolvimento de sistemas ou avaliação de ferramentas para o processo de ETL.
- Esses sistemas devem filtrar, limpar, sumarizar e concentrar os dados de fontes externas e dos sistemas de operações transacionais;
- Ferramentas de Extração de Dados:
 - OWB Oracle Warehouse Builder
 - Platinum
 - Prism
 - Power Stage (sybase)
 - Pentaho

Operational Data Storage – ODS (Armazenamento de dados transacionais) OU Staging Area (Área de Trabalho)

- Refere-se a um armazenamento intermediário de dados do ambiente transacional antes da sua atualização no DW.
- O Caminho físico que os dados irão percorrer dos BD de sistemas transacionais até chegarem ao DW podem variar.
- ODS adiciona valor quando há diversas fontes heterogêneas para um data mart;

Operational Data Storage – ODS (Armazenamento de dados transacionais) OU Staging Area (Área de Trabalho)

Exemplo de utilização do ODS em sistemas disponíveis em horários distintos

Operational Data Storage – ODS (Armazenamento de dados operacionais) OU *Staging* Area (Área de Trabalho)

Aplicação do sistema ODS em sistema Bancário

Data warehouse e Data Mart

- Data Warehouse (DW) pode ser definido como um grande banco de dados que reúne e integra dados de diferentes fontes e sistemas operacionais, com objetivo de gerar informações que auxiliem o processo de tomada de decisão de determinada empresa ou organização.
- Um data mart trata de problema departamental ou local e é definido como um subconjunto altamente agregado de dados, normalmente escolhido para responder a uma questão de negócio específica ao invés da corporação inteira.

Área de apresentação dos dados

- A área de apresentação dos dados é o local em que os dados ficam organizados, armazenados e tornam-se disponíveis para serem consultados diretamente pelos usuários, por criadores de relatórios e por outras aplicações de análise. Essa área é tudo o que a comunidade de negócio vê e acessa através das ferramentas de acesso a dados;
- O por definição, toda ferramenta de acesso a dados consulta os dados na área de apresentação do DW;
- Ferramentas do tipo OLAP.

Benefícios do DW

- Visão integrada e total dos dados da empresa;
- Dados recentes e históricos facilmente acessíveis para a tomada de decisão;
- Tornar possíveis Sistemas de Suporte a Decisão sem sobrecarregar os Sistemas de Suporte ao Operacional;
- Tornar a informação consistente dentro de toda a organização

Banco de Dados Dimensional

É uma forma de Projetar o DW.

Utiliza conceitos de múltiplas dimensões (Multidimensional) (Não é o contexto de tempo e espaço)

Conceitos de Medidas e Dimensões

Medidas e Dimensões

- Uma Medida é um valor numérico totalizado utilizado para analisar/observar um determinado negócio.
 - Exemplo: Quant. De Vendas. Podendo ser um valor agregado.
- Dimensões filtros que afetam a maneira de visualizar as medidas.

Relatório Unidades Vendidas

113

Precisamos de dimensões para entender esse valor?

Análise Mensal

Elementos

January	February	March	April
14	41	33	25

- ➤ Unidade total de vendas (Medida) foi dividida em outros valores (meses).
- Quatro elementos da dimensão tempo.

Podemos inserir novas dimensões?

Análise por mês e produto

	January	February	March	April
Road-650			6	17
Mountain-100	6	16	6	8
Cable Lock	8	25	21	

- > Duas Dimensões: Tempo(Mês) e Produto.
- > Membros da dimensão tempo (Mês) = 4.
- Membros da dimensão produto = 3
- > Quantidade de dados = $4 \times 3 = 12$.

Análise por mês e produto (Nova Visualização)

Road-650	January		
Road-650	February		
Road-650	March	6	
Road-650	April	17	
Mountain-100	January	6	
Mountain-100	February	16	
Mountain-100	March	6	
Mountain-100	April	8	
Cable Lock	January	8	
Cable Lock	February	25	
Cable Lock	March	21	
Cable Lock	April		
	·		

Podemos inserir novas dimensões?

Análise por mês, produto e estado

		January	February	March	April
WA	Road-650			3	10
	Mountain-100	3	16	6	
	Cable Lock	4	16	6	
OR	Road-650			3	7
	Mountain-100	3			8
	Cable Lock	4	9	15	

- ightharpoonupQuantidade de dados = $2 \times 3 \times 4 = 24$.
- > Itens da dimensões são chamados de Membros.
- > Dimensões? Mês, Estado e Produto.
- > Membros? Itens das Dimensões. Exemplo: Estado: WA (Washington) e OR (Oregon)
- > Uma Medida? Quantidade de Unidades Vendidas

Análise por mês, produto e estado

Inserindo mais uma medida! Medidas são independentes!

		January		Febru	February I		March		April	
		U	\$	U	\$	U	\$	U	\$	
WA	Road-650					3	7.44	10	24.80	
	Mountain-100	3	7.95	16	42.40	6	15.90			
	Cable Lock	4	7.32	16	29.28	6	10.98			
OR	Road-650					3	7.44	7	17.36	
	Mountain-100	3	7.95					8	21.20	
	Cable Lock	4	7.32	9	16.47	15	27.45			

U = Units; \$ = Dollars

Armazenamento dos dados

O DW dimensional possui uma tabela que irá armazenar as medidas chamada tabela FATO

STATE_ID	PROD_ID	Month	Sales_Units	Sales_Dollars
1	347	1	3	7.95
1	447	1	4	7.32
2	347	1	3	7.95
2	447	1	4	7.32
1	347	2	16	42.40

> Linhas no menor nível de detalhe