MATH703 : Martingales et Chaînes de Markov

Examen de 2^e session

Documents autorisés : polycopié de cours, table des lois usuelles

Mercredi 4 mars 2020.

Exercice 1. Soient X et Y deux variables aléatoires indépendantes, X suivant la loi de Bernoulli de paramètre 0 et <math>Y la loi $\mathcal{N}(0,1)$.

Calculer $\mathbb{E}\left[\cos(XY) \mid Y\right]$ puis $\mathbb{E}\left[\cos(XY)\right]$. Pensez à la fonction caractéristique de Y pour la deuxième partie de la question.

Exercice 2. Soit $(X_n)_{n\geq 1}$ une suite de variables aléatoires indépendantes et identiquement distribuées suivant la loi de Poisson de paramètre $\lambda > 0$. On pose $S_0 = 0$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$ et, pour $n \geq 1$,

$$S_n = X_1 + \ldots + X_n, \qquad \mathcal{F}_n = \sigma(X_1, \ldots, X_n).$$

- 1. (a) Montrer que $(S_n n\lambda)_{n>0}$ est une $(\mathcal{F}_n)_{n>0}$ -martingale.
 - (b) Donner la décomposition de Doob de $(S_n)_{n\geq 0}$.
- 2. Pour $n \geq 0$, on pose $M_n = (S_n n\lambda)^2 n\lambda$. Montrer que $(M_n)_{n\geq 0}$ est une $(\mathcal{F}_n)_{n\geq 0}$ martingale.
- 3. Pour $n \ge 0$, on pose $Z_n = 2^{S_n} e^{-\lambda n}$.
 - (a) Montrer que $(Z_n)_{n>0}$ est une $(\mathcal{F}_n)_{n>0}$ -martingale positive.
- (b) Justifier brièvement que $(Z_n)_{n\geq 0}$ converge presque sûrement vers une variable aléatoire Z_{∞} positive.
 - (c) En écrivant $Z_n = \exp(S_n \ln 2 \lambda n)$, montrer $Z_\infty = 0$ presque sûrement.

Exercice 3. Soient $p \in]0,1[$ et $(U_n)_{n\geq 0}$ des variables aléatoires indépendantes et identiquement distribuées suivant la loi $\mathbb{P}(U_0=1)=p, \mathbb{P}(U_0=-1)=1-p$. On note, pour tout entier $n\geq 0$,

$$X_n = U_0 \times U_1 \times \ldots \times U_n$$
.

Montrer que $(X_n)_{n\geq 0}$ est une chaîne de Markov à valeurs dans $\{-1,1\}$ dont on précisera la matrice de transition.

Exercice 4. Soit $(X_n)_{n\geq 0}$ une chaîne de Markov à valeurs dans $E=\{1,2,3,4\}$ de matrice de transition

$$P = \begin{pmatrix} 1/2 & 1/2 & 0 & 0 \\ 1/3 & 1/3 & 1/3 & 0 \\ 0 & 1/3 & 1/3 & 1/3 \\ 0 & 0 & 1/2 & 1/2 \end{pmatrix}.$$

- 1. (a) Préciser les valeurs de $\mathbb{P}_2(X_1=3)$ et de $\mathbb{E}_3[X_1]$.
- (b) On suppose dans cette question que la loi de X_0 est $\mu=(1/4\ 1/4\ 1/4\ 1/4)$. Déterminer la loi de X_1 puis $\mathbb{E}_{\mu}[X_1]$.
- 2. (a) Faire le graphe des transitions de la chaîne.
 - (b) Montrer que la chaîne est irréductible récurrente positive.
- 3. (a) Déterminer la probabilité invariante.
 - (b) Que vaut $\mathbb{E}_1[S_1]$ où $S_1 = \inf\{n \geq 1 : S_n = 1\}$?
- 4. Quelles sont les limites presque sûres de

$$\frac{1}{n} \sum_{k=0}^{n-1} X_k, \qquad \frac{1}{n} \sum_{k=0}^{n-1} X_k^2 ?$$