Project Rijkswaterstaat

TU Delft - CIEM6302 Advanced Data Science for Traffic and Transport Engineering

Group 2 Members:

 Heisuke Miyoshi
 5733693

 Klaas Sicking
 4948416

 Martijn Stok
 5070740

 Martin van Andel
 4577566

 Yixin Sun
 5715210

Project description

The project from Rijkswaterstaat is about improving the average response time of road inspectors. The main goal is to build a model for which the average response time is less than 18 minutes. This 18 minutes is important because this is the minimum requirement of the model. This can be achieved by optimizing the locations of road inspectors that are spread over the network. Something to take into account is the social impact, because the response time is average and some locations can be very far away from the closest road inspector and this cannot happen. This is the case the model needs to be changed even though the average is sufficient. What is also important to note is that the safety is improved when the response time is lower. Also the delays that arise from incidents can be reduced by a lower response time. Based on the information above a main research and multiple sub research questions are formulated.

Research questions

Main research question:

At which locations do the road inspectors need to be placed in order to optimize the response times?

Sub research questions:

- 1. What methodologies can be employed to address the primary research question effectively?
- 2. Are there geographical areas with a history of higher incident occurrence rates, and how should they be prioritized?
- 3. What is the optimal number of road inspectors required to meet response time objectives?
- 4. To what extent do date and time factors affect the deployment of road inspectors?
- 5. What ethical considerations should guide the deployment and operations of road inspectors?

Datasets used

- Csv file with incidents provides the location and the duration of incidents.
- Road network map shows the research area and provides the characteristics for each road.

Tech stack

The tech stack is split up into three categories. In the first category is the tech that is used in the first phase of the project. The second category are the methods that are tested to see if they can get an average response time of less than 18 minutes and this is part of the sub research questions. The last category is the programming that is needed for the methods and that includes the location of the repository.

Data preparation:

- Data Cleaning
- Visualization tools
- Python

Methods used:

- Path finding
- K-means Clustering (method gave insufficiënt results)

Programming:

- GitHub
- Python
- Gurobi
- Create subsections to reduce calculation time of notebook

Project backlog and priorities

In order to get a better idea of the different tasks that need to be completed for this project and the time it will take, a project backlog is provided here. For each of the different smaller tasks an estimation of the time necessary to complete it is given as well. Note that these times are a rough estimation and are subject to change because many of these tasks are new to us. If during the project new tasks come up or the estimated completion times change this project backlog will be updated.

Table 1: Priorities

Activity	Time (days)	Priority
Collecting the data used in the project	0.5	High
Cleaning the data	5	High
Visualizing the data	10	Middle

Creating a path finding model from the road inspectors to the incident location	10	High
Find the path travel time and average speed	2	High
Making an optimization model using the clustering method	15	Low
Making an optimization model using path finding method	15	High
Sensitivity analyses and calibration of the parameters of the optimisation	5	High
Validate the model with the other part of the dataset	4	High
Ethical consideration	1	Middle
Create a Dashboard for data story	7	Middle

Sprints

The following 8 tables are the 8 sprint backlogs.

Sprint 2	Data cleani Visualiz		Time			2023/09/12 to 2023/09/19 (one week)	
Д	ctivity	Time	Priority	Response		Criteria	
Da	ta clean	1/2 day	High	Klaas	tabl to	emove all data from the e that does not conform common sense or is elevant to the research.	
	Heat map	2 days	Middle	Martin van Andel		eate a few templates of w a heatmap could look like.	
Visualiz ation	Bar chart	2 days	Middle	Sun Yixin		ar charts can show the average number of cidents on weekdays at different hours.	
	Heat map - COROP	2 days	Middle	Heisuke Miyoshi		The heat map can show the number of incidents per COROP zone	
Work on the highway network		3 days	High	Klaas	hiç co	Reduce the size of the ghway network dataset and think how we can mbine the incident data and the road network	
	the Machine g(Clustering)	1 days	Low	Martijn Stok		derstand data and find a vay to cluster the data	

Sprint 3	Data cleanii Visualiz	٠ .	Time			2023/09/19 to 2023/09/26 (one week)
А	ctivity	Time	Priority	Response		Criteria
	Heat map	2 days	Middle	Martin van Andel		e heatmap can show the amount of incidents appening on the roads.
Visualiz ation	Bar chart	2 days	Middle	Sun Yixin	inte to	A concise interactive erface allows bar charts be called up as needed tead of being displayed all at once.
	Heat map -	2 days	Middle	Heisuke	The	heat map can show the

	COROP			Miyoshi	number of incidents per COROP zone
candic	ct potential lates for the zation model	3 days	High	Klaas	Reduce the size of the highway network dataset
	ng code for ustering	1.5 days	Low	Martijn Stok	Write the full code for the clustering and make a figure of all incidents for each cluster

Sprint 4	Prepare the material for Midcheck		Time			2023/09/26 to 2023/09/29
А	ctivity	Time	Priority	Response		Criteria
	Heat map	2 days	Middle	Martin van Andel	with	e heatmap is interactive the option to select the pe of incidents shown.
Visualiz ation	Bar chart	2 hours	Middle	Sun Yixin		clear explanation shows be bar chart and how it works
	Heat map - COROP	2 days	Middle	Heisuke Miyoshi	The heat map can show the number of incidents per COROP zone	
	r data from ustering	1.5 days	Low	Martijn Stok	nu av	rata gathered for each cluster with regard to mber of incident points, verage distances (with approximations) and explaining results
E	Ethics	1 day	Middle	Martin van Andel		document with several nsiderations on multiple ethical aspects.
into a sir	all the works agle notebook ate the Github wiki	1 day	High	Sun Yixin	aı	reate a notebook with mple explanations and nsiderations on ethics.
	nding model egration	3 days	High	Klaas	betv	finding shortest path veen two arbitrary points n the highway network

Sprint 5	Optimiza	tion		Time	2023/10/02 to 2023/10/09	
А	ctivity	Time	Priority	Response		Criteria
clustering and star	ed code for g for centroids ting code for edoids	1 days	Low	Martijn Stok	A working code of clusterin with centroids and make a start with cod for medoids	
model fo	optimisation or inspectors' ocation	2 days	High	Martin van Andel	w	ase mathematical model hich can determine the otimal locations of road inspectors
stream	ing on the lit for result alization	2 days	Middle	Sun Yixin		Having a deep erstanding of Streamlit's atures and applications
data to	t the incident the highway etwork	3 days	High	Klaas	_	ke sure that the incidents cation can be used for path finding
model fo	optimisation or inspectors' ocation	1 day	High	Heisuke Miyoshi	Ob	taining optimal locations of road inspectors

Sprint 6	Optimiza	tion	Time			2023/10/10 to 2023/10/13
А	ctivity	Time	Priority	Response		Criteria
_	on code for with medoids	1 days	Low	Martijn Stok		et a code that works for clustering method with medoids
model a	optimisation and work on ning results	2 days	High	Martin van Andel		rrect optimisation model and create a way to mbine optimised results
Creating	g Dashboard	3 days	Middle	Sun Yixin		nowing the visualization sult in streamlit for the Data part
	eparation and el building	4 days	High	Klaas	С	Deliver the data for the optimization model
upc	sation model late and lisation of	1 day	High	Heisuke Miyoshi	mo	oroving the optimisation odel and visualising the otimal solution on maps

solutions		

Sprint 7	Validation		Time			2023/10/16 to 2023/10/20
А	ctivity	Time	Priority	Response		Criteria
	1	-	-	Martijn Stok		-
	and combine ing model	4 days	High	Martin van Andel	crea the en	Combine the code for ating the cost matrix and optimisation model and sure that it can run in a easonable time frame
and creat	g Dashboard ing the weight natrix	2 days	Middle	Sun Yixin	for	eating the weight matix finding 120 inspectors ation and preparing the streamlit for final presentation
Creating	Cost matrix	4 days	High	Klaas	С	Deliver the data for the optimization model
upo visua	ation model late and lisation of lutions	5 days	High	Heisuke Miyoshi	mo	proving the optimisation odel and visualising the otimal solution on maps

Sprint 8				2023/10/23 to 2023/10/27	
А	ctivity	Time	Priority	Response	Criteria
	-	-	-	Martijn Stok	-
	e model and e validation	3 days	High	Martin van Andel	t the necessary training ata and create code to validate the results
and find	g Dashboard way to upload le to Github	2 days	Middle	Sun Yixin	Create a new streamlit ructure and use Github Desktop skillful

Sensitivity analysis	3 days	High	Klaas	Creating Sensitivity analysis model
Preparing for presentation	3 days	High	Heisuke Miyoshi	Complete preparing the slides and practice presentation

Sprint 9	Final check			Time			2023/10/30 to 2023/11/03
Activity		Time		Priority	Respons e	Criteria	
Streamlit Introduction page and run 1 validation script		3 hours		Middle	Martijn Stok	Write the chapters of the introduction page and finalize backlog	
Write streamlit explanations		2 days		Middle	Martin van Andel	Provide text and figures for the streamlit	
Creating Dashboard and update Github Wiki		2 days		Middle	Sun Yixin	Complete the streamlit and updat the sprint into Github wiki	
Get Sensitivity analysis results		1/2 day		High	Klaas	Combine all different results from the sensitivity analysis	
Finalize all notebooks		3 days		High	Klaas	Combine all code files into proper notebooks	
Creating Dashboard		5 days		Middle	Heisuke Miyoshi	Complete streamlit dashboard	