

3 为了避免报警器发生故障时危及人员

4. (20 分)图 1 中光耦输出端电路如图(a),内部是一个光电三极管,R_L是后级放大电路 A 的输入电阻 30 P 1140 的输入电阻,设 $R_L=\mathrm{IM}\Omega$, $R_2=\mathrm{Ik}\Omega$ 。光电三极管可以等效为光电二极管 Dp 后接三极管 Th 。光电三极管可以等效为光电二极管 Dp 后接三极 管 Γ_1 ,此时图(a)输出端等效为图(b)。若将光电二极管 Γ_2 的电流用电流源表示,则图(b)可以等效为图(c)。若将光电二极管 Γ_2 的电流用电流源表示,则图(d)。 以等效为图(c),其中 i_p 处箭头指示光电流的真实方向。光电二极管 Dp 的等效电路如图(d), 电流源i, 代表入射光产生的光电流,R。代表电流源内阻,R,代表引线电阻,D 代表普通二 极管, C_j 代表二极管结电容。硅光电二极管 R_p 为数十 $M\Omega$ 以上, R_s 为几十 Ω 以下。 R_p 、 D 中流过的电流并不反映接收光的强弱。 C_j 和 R_o 的充放电时间常数很大,会影响光电二极 管对光变化的快速响应。光耦的光电三极管 T1 的集电极电流与发光二极管 D1、D2 发射电流之比称为电流传的比 CTR,设 CTR=100。设 T1 的 β =100, γ_{bb} =200 Ω ,温度的电压当量 $V_T=26 \mathrm{mV}$,饱和压降 $V_{CES}=0.4\mathrm{V}$ 。设电源 $Vcc=5\mathrm{V}$ 。 (1) 光电二极管可工作在零偏置(又称光伏或短路)模式、反向偏置(光导)模式。由图(d), 分析光伏和光导模式有什么不同的优缺点?光耦中的光电二极管 Dp 工作于什么模式?

- (2) 图(c)中设 $i_{\rm p}=10\mu{\rm A}$ 为直流电流,求此时的 $I_{\rm C}$ 、 $V_{\rm CE}$ 。判断 T1 工作于什么状态(放大/
- (3) 图(c)中,以电流源 i_p 作为输入,画出交流通路及小信号等效电路。
- (4) 图(c)中,以电流源 $_{i}$ 两端作为输入端,求互阻增益 $_{i}$ $_{c}$ 、输入电阻 $_{i}$ 、输出电阻 $_{i}$ R。 的表达式 (无需代入数值计算)。
- (5) 发生漏电时,D1、D2 流过较大电流。定性画出此时输出电压 ν_2 波形。

R5 增大输入电阻

I

PITBOT/BEGTRETEO-Va

