* Name Origin:

After the scientist Enrico Fermi.

* Sources:

Produced by bombarding lighter transuranium elements with still lighter particles or by neutron capture.

* Uses:

None

* Additional Notes:

Fermium, the eighth transuranium element of the actinide series to be discovered, was identified by Ghiorso and co-workers in 1952 in the debris from a thermonuclear explosion in the Pacific in work involving the University of California Radiation Laboratory, the Argonne National Laboratory, and the Los Alamos Scientific Laboratory. The isotope produced was the 20-hour ²⁵⁵Fm. During 1953 and early 1954. while discovery of elements 99 and 100 was withheld from publication for security reasons, a group from the Nobel Institute of Physics in Stockholm bombarded ²³⁸U with ¹⁶O ions, and isolated a 30-min a-emitter, which they ascribed to ²⁵⁰Fm, without claiming discovery of the element. This isotope has since been identified positively, and the 30-min half-life confirmed. The chemical properties of fermium have been studied solely with tracer amounts, and in normal aqueous media only the (III) oxidation state appears to exist. The isotope ²⁵⁴Fm and heavier isotopes can be produced by intense neutron irradiation of lower elements such as plutonium by a process of successive neutron capture interspersed with beta decays until these mass numbers and atomic numbers are reached. Twenty isotopes and isomers of fermium are known to exist. ²⁵⁷Fm, with a half-life of about 100.5 days, is the longest lived. ²⁵⁰Fm, with a half-life of 30 min, has been shown to be a product of decay of Element ²⁵⁰No. It was by chemical identification of ²⁵⁰Fm that production of Element 102 (nobelium) was confirmed.