1 Неопределенный интеграл и его свойства

Первообразная функции и неопределенный интеграл Основной задачей интегрального исчисления является восстановление функции F(x) по известной производной f(x) (дифференциалу f(x)dx) этой функции. Таким образом, интегрирование — это действие, обратное дифференцированию. Результат интегрирования проверяется путем дифференцирования.

Функция $F(x), x \in X$, называется nepsoofpashoй для функции f(x) на множестве $X \subset \mathbb{R}$, если она дифференцируема для любого $x \in X$ и F'(x) = f(x) или dF(x) = f(x)dx.

Совокупность F(x) + C, где C — произвольная постоянная, всех первообразных функции f(x) на множестве X называется неопределенным интегралом и обозначается

$$\int f(x)dx = F(x) + C.$$

С геометрической точки зрения неопределенный интеграл представляет собой однопараметрическое семейство кривых y = F(x) + C (C — параметр), обладающих следующим свойством: все касательные к кривым в точках с абсциссой $x = x_0$ параллельны между собой:

$$(F(x) + C)'_{x=x_0} = F'(x) = f(x_0)$$

Основные свойства неопределенного интеграла

1. Производная от неопределенного интеграла равна подынтегральной функции; дифференциал от неопределенного интеграла равен подынтегральному выражению:

$$\left(\int f(x)dx\right)' = f(x) \qquad \qquad \text{или} d\left(\int f(x)dx\right) \qquad \qquad = f(x)dx. \tag{1}$$

$$\int dF(x) = F(x) + C \qquad \qquad \text{или} \int F'(x)dx = F(x) + C. \tag{2}$$

2. Постоянный множитель можно выносить за знак интеграла т.е.

$$\int af(x)dx = a \cdot \int f(x)dx.$$

3. Интеграл от суммы равен сумме интегралов от всех слагаемых:

$$\int (f_1(x) \pm f_2(x) \pm \ldots \pm f_n(x)) dx = \int f_1(x) dx \pm \int f_2(x) dx \pm \ldots \pm \int f_n(x) dx$$

4. Если F(x) — первообразная функции f(x), то

$$\int f(ax+b)dx = \frac{1}{a}F(ax+b) + C.$$

5. **Инвариантность формул интегрирования.** Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:

$$\int f(x)dx = F(x) + C \Rightarrow \int f(u)du = F(u) + C,$$

где u — дифференцируемая функция.

2 Интегрирование по частям и замена переменной

1. Интегрирование подстановкой (заменой переменной) — состоит в том, что в интеграле $\int f(x)dx$ переменную x заменяют функцией от переменной t по формуле $x=\varphi(t)$, откуда $dx=\varphi'(t)dt$, т.е. имеет место формула

$$\int f(x)dx = \int f(\varphi(t))\varphi'(t)dt.$$

2. **Интегрирование по частям.** Пусть u(x) и v(x) — две дифференцируемые функции переменной x, тогда соотношение

$$\int udv = uv - \int vdu,$$

называется формулой интегрирования по частям. Эта формула получается из формулы дифференциала произведения d(uv) = udv + vdu интегрированием обеих частей.

Приведем некоторые часто встречающиеся типы интегралов, вычисляемых методом интегрирования по частям.

- (a) Интегралы вида $\int P(x)e^{kx}dx$, $\int P(x)\sin kxdx$, $\int P(x)\cos kxdx$. (P(x) многочлен, k некоторое число). Для нахождения этих интегралов за u принимают многочлен.
- (b) Интегралы вида $\int P(x) \ln x dx$, $\int P(x) \arcsin x dx$, $\int P(x) \arccos x dx$, $\int P(x) \arccos x dx$, $\int P(x) \arccos x dx$. Для нахождения этих интегралов за u принимают множитель, стоящий при многочлене.

3 Интегрирование рациональных дробей

Рациональной дробью называется функция, которая может быть представлена в виде отношения двух многочленов. Рациональная дробь называется правильной, если степень числителя меньше степени знаменателя. В противном случае рациональная дробь называется неправильной. Всякую правильную рациональную дробь можно представить в виде суммы конечного числа простейших рациональных дробей первого и четвертого типов, причем каждому множителю знаменателя соответствует единственная дробь или сумма k дробей:

1.
$$x-a\mapsto \frac{A}{x-a}$$

2.
$$(x-a)^k \mapsto \frac{A_k}{(x-a)^k} + \frac{A_{k-1}}{(x-a)^{k-1}} + \dots + \frac{A_1}{x-a}$$

3.
$$x^2 + px + q \mapsto \frac{Ax + B}{x^2 + px + q}$$

4.
$$(x^2 + px + q)^k \mapsto \frac{A_k x + B_k}{(x^2 + px + q)^k} + \frac{A_{k-1} x + B_{k-1} x}{(x^2 + px + q)^{k-1}} + \dots + \frac{A_1 x + B_1}{x^2 + px + q}$$

Для интегрирования рациональной функции $R(x) = \frac{P_n(x)}{Q_m(x)}$, где $P_n(x)$ и $Q_m(x)$ — полиномы n и m степеней соответственно нужно проверить:

1. Если $n \ge m \Rightarrow$ выделить целую часть,

$$\frac{P_n(x)}{Q_m(x)} = S_{n-m}(x) + \frac{P_k(x)}{Q_m(x)},$$

где k < m.

2. Если $n < m \Rightarrow$ разложить на простейшие.

4 Разложение на простейшие

Простейшей дробью называется рациональная дробь одного из следующих четырех типов:

$$I.\frac{A}{x-a} \qquad II.\frac{A}{(x-a)^n} \qquad (n \ge 2). \tag{3}$$

$$III. \frac{Ax+B}{x^2+px+q} \qquad IV. \frac{Ax+B}{(x^2+px+q)^n} \qquad (n \ge 2). \tag{4}$$

Здесь A, B, a, p, q — действительные числа, а трехчлен не имеет действительных корней, т.е. $\frac{p^2}{4} - q < 0$. Для нахождение коэффициентов разложения применяют метод неопределенных коэффициентов и метод частных значений.

Метод частных значений основан на том, что если два многочлена равны, то они равны при любых значениях аргумента.

Memod неопределенных коэффициентов основан на сравнении коэффициентов при одинаковых степенях x левой и правой частей, т.е. если два многочлена равны, то, соответственно, равны их коэффициенты при одинаковых степенях x.

5 Интегрирование простейших дробей.

Простейшие дроби первого и второго типов интегрируются непосредственно с помощью основных правил интегрального исчисления. Интеграл от простейшей дроби третьего типа приводится к табличным интегралам путем выделения в числителе дифферницала знаменателя к сумме квадратов:

$$\begin{split} \int \frac{(Ax+B)dx}{x^2+px+q} &= \left| \frac{d(x^2+px+q) = (2x+p)dx}{Ax+B = \frac{A}{2}(2x+p) + B - \frac{Ap}{2}} \right| = \frac{A}{2} \int \frac{d(x^2+px+q)}{x^2+px+q} + \left(B - \frac{Ap}{2}\right) \int \frac{dx}{x^2+px+q} = \\ &= \frac{A}{2} \ln x^2 + px + q + \left(B - \frac{Ap}{2}\right) \int \frac{d\left(x + \frac{p}{2}\right)}{(x + \frac{p}{2})^2 + q - \frac{p^2}{4}} = \\ &= \frac{A}{2} \ln x^2 + px + q + \left(B - \frac{Ap}{2}\right) \frac{1}{\sqrt{q - \frac{p^2}{4}}} \arctan \frac{2x+p}{\sqrt{4q-p^2}} + C. \end{split}$$