Table of Contents

Sheet 1A	Table of Contents
Sheet 1B	Space Duel [™] Upright Wiring Diagram (037937-01 A)
Sheet 2A	Space Duel Cocktail Wiring Diagram (038027-01 A)
Sheet 2B	Color X-Y Power Supply Wiring Diagram (037394-01 B) Regulator/Audio II Schematic Diagram (035435-04 B)
Sheet 3A	Fluorescent Light and Speaker Wiring Diagram (035833-01 A) Coin Door Wiring Diagram (037542-01 A) Utility Panel Wiring Diagram (038004-01 A)
Sheet 3B	Guide to Game PCB Schematic (036837-01, or -02 B) Sheets 4A-8A
Sheet 4A	Power Input, Clock, Power-on Reset, Watchdog
Sheet 4B	Test Connector, Microprocessor, Address Decoder
Sheet 5A	Read-Only Memory, Random-Access Memory, High-Score Table
Sheet 5B	Read-Only Memory, Random-Access Memory, High-Score Table Coin Door and Control Panel Input, Option Switch Input and Audio Output, Coin Door and Control Panel Output Vector Address Decoder, Vector Read-Only Memory, Vector Random-Access Memory, Vector Memory Data Buffer, Vector Address Selector
Sheet 6A	Vector Address Decoder, Vector Read-Only Memory, Vector Random-Access Memory, Vector Memory Data Buffer, Vector Address Selector
Sheet 6B	
Sheet 7A	State Machine, State Machine Clock, State Machine Clock Logic, Decoder Disable, Address Controller
Sheet 7B	Normalization Flag, Center Flag, Vector Flag, Halt Flag, Go Flag, Vector Scaling, Vector Timer
Sheet 8A	Z Intensity and Blanking, R-G-B Output
Sheet 8B	DAC Reference and Bipolar Current Sources, X-Axis Output, Y-Axis Output
Sheet 9A	Color X-Y Display Schematic Diagram (92-053 A)
Sheet 9B	Troubleshooting with the CAT Box: Memory Map, Troubleshooting with Read/Write Controller A. CAT Box Preliminary Set-up B. Address and Data Lines C. RAM D. Option Switch Inputs E. Custom Audio I/O Chips
Sheet 10A	F. Player and Option Switch P10/11 Inputs G. Analog Vector-Generator H. LED, Coin Counter, and Invert Outputs
Sheet 10B	Troubleshooting with Signature Analysis A. Signature Analysis Set-up B. Address Lines C. Address Decoder D. ROM and Data Lines Watchdog

Schematic Package Supplement to

Operation, Maintenance and Service Manual

@ATAR1 INC. 1982

Space Duel™ Upright Wiring Diagram

Space Duel™ SP-181 Sheet 1B 2nd printing 3L

Space Duel™ Cocktail Wiring Diagram

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL Reproduction flootides without the specific design of the production flootides without the specific design is only conditionally saved, and neither record or bossession thereof conditionally saved and neither record or bossession thereof conditional or transfers also profits in or it contacts to use, in supplier matter of the drawing or any fail to reproduce this drawing or any part thereof. Except for manufactors weights of Alash in c., and for manufactors and the specific of Alash in c., and for manufactors in the specific of Alash in c., and for manufactors and the specific of Alash in c., and for manufactors and the specific of Alash in c., and for manufactors and the specific of Alash in c., and for manufactors and the specific of Alash in the spec manusecomes), employs of Main, inc., and no manufacture under the corporation's wintern locates, inc. spits of granted to reproduce this drawing or the subject matter thereof unless by which agreement with or written per

Space Duel[™]

SP-181 Sheet 2A ASSESSING CORP. 2nd printing 3L

Regulator/Audio II PCB Schematic Diagram

Color X-Y Power Supply Wiring Diagram

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONTRIBENTIAL. Reproduction forbidden without the social cut written permission of Am. Inc. Sunnyale, CA. This drawing soldy conditionally issued, and written receipe nor care to the sold of the drawing or any design or technical information shown thereon, nor any right special information shown thereon, nor any right special individual of the sold of the

Space Duel[™]

AfARI INC 1982

SP-181 Sheet 2B 2nd printing 3L

Fluorescent Light And Speaker Wiring Diagram

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL. Reproduction forbidden without the son cities written persons and Alaza, inc., Sumyrate CA. The drawing is only conditionally issued, and methe received in the conditional conditionactional conditional conditional conditional conditional condition

SP-181 Sheet 3A 2nd printing 3L

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL. Reproduction forbidden without the specific written persons on data. In C. Summyate CA. This specific written persons on data in C. Summyate CA. This possession thereof. The specific was not been controlled to the property of the specific was not been controlled to the subject matter of the darvang or a design or technical information shown thereon mor are specificated and the subject matter of the darvang or all the specific was designed to the subject matter the subject matter the subject matter the subject matter the specific was designed to the subject matter the subject

SP-181 Sheet 4A

2nd printing 3L

ADARG MIR. 198.

LSOF

SP-181 Sheet 4B ATABLING 1982 2nd printing 3L

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL Reproduction floridden without the specific written persons on data, in C. Somynate C. A. This deams of the control of the specific written persons on data, in C. Somynate C. A. This deams of the control of the control

Space Duel[™]

165: INV - 10a

SP-181 Sheet 5A 2nd printing 3L

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL Reproduction forbidden without the specific written persons and Allaria. Inc. Summyras CA. This drawing is only conditionally issued, and bettler receipt for the control of the control of

Space Duel[™]

ATARILING 1982

SP-181 Sheet 6A 2nd printing 3L

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL. Reproduction forbidden without the specific written persons on darks, inc., Somysale, CA. This possession thereone was a second of the confidence of th

SP181 Sheet 68 2nd printing 3L

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL. Reproduction forbidden without the specific written persons and Afairs. Inc. Surveyvels, CA. This social properties of the specific properties of the drawing or an element of use the subject matter of the drawing or an experience specific properties of the sp

 SP-181
 Sheet 7B

 ATARHING 1982
 2nd printing 3L

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL. Reproduction forbidden without the specific winten permission of Alan. Inc. Summysiae, CA. This specific without persons of the specific person of the dawing of an experience of the specific person of the specific pe

Space Duel[™]

ATARILING 1982

SP-181 Sheet 8A 2nd printing 3L

Color X-Y Display Schematic Diagram NECK PCB DEFLECTION PCB P314 0 02 1 0.050 123,500 5.3,500 SEE NOTE 7. WHT/8CU 2 2 18 36 to #90 15 CKT SHPUT COME A.M.P. NG.1-480711-0 410EG 8+ (PHI VIEW) H.V. PCB -12.IV 8908 100K R907 2.2, 2W VIDEO 8+ 150 1/21

GENERAL NOTES

- 1. Resistance values in ohms, ¼ watt, ±5%, unless otherwise noted. K = 1,000, M = 1,000,000
- Capacitance value of 1 or less is in microFarads, above 1 in picoFarads, unless otherwise noted.
- 3. *Q900 and Q906 are not in High-Voltage PCB.
- All D.C. voltages are ±10% measured from point indicated to ground, using a high-impedance meter. Voltages are measured with no signal input and controls are in a normal operating position.
- Circled numbers indicate location of waveform reading.
- ZD100-101 uses (66X0040-007) zener diode in series with (340X2331-934) 330-ohm resistor in early production models.
- Use a 1,000:1 probe when measuring G2 (screen) or focus voltage.

Components identified by shading have special characteristics important to safety and should be replaced only with identical types.

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL. Reproduction forhidden without the specific written persons and Alan, inc., Summyrab. CA. This possible of the specific written persons of Alan, inc., Summyrab. CA. This possible on the specific written persons to use the subject matter of the deaming on a decision or technical information shown thereon not also grad significant or the specific with the specific without the specific with the specific without the specific with the specific with specific with

Space Duel[™]

ATARE INC. 1981

SP-181 Sheet 9A 2nd printing 3L

Troubleshooting with the CAT Box

Memory Map

DECIMAL ADDRESS	R/W	D 7	D6	D5		TA D3	D2	D1	DO	FUNCTION
0000-03FF		0	D	D	D	D	٥	D	D	1K Program RAMO
0800	R R R R R R R	D	Đ	D	D	D	D	D	D	3 KHz Input HALT (1 = Halted) DIAG STEP Input (0 = On) Self-Test Input (0 = On) SLAM Input (0 = On) Utility Coin Input (0 = On) Left Coin Input (0 = On) Right Coin Input (0 = On)
0900	R	D	_							SHIELDS1 Input (1 = On)
0901	2 2 2 2	D D	D							FIRE1 Input (1 = On) SHIELDS2 Input (1 = On) FIRE2 Input (1 = On) ROTATE LEFT1 (1 = On)
0903	E E	D	P D							ROTATE RIGHT: (1 = On) ROTATE LEFT2 (1 = On) ROTATE RIGHT2 (1 = On)
0904	R	D	D							THRUST1 Input (1 = On) START Input (1 = On)
evos	12	Э	ē							THRUST2 Input (1 = On) Option Input (1 = On)
0906	R	D D	D							GAME SELECT Input (1 = O Option Input (1 = On) Cabinet Input 1 = Upright,
	R		D							0 = Cocktail Option Input (1 = On)
0A00 0C00	α333333	D D	D D	D	D	Đ	D	D D	D	EAROMRD INVERT Y (1 = Invert) INVERT X (1 = Invert) START LED (0 = On) SELECT LED (0 = On) Coin Lockout Output (0 = On Left Coin Counter
0C80 0D00 0D00 0D00 0E00	3 3333								D	Right Coin Counter VGGÖ WDCLR VGRST INTACK
0E80	* * * *					D	D	D	D	EAROM Con-CS1 EAROM Con-C1 (Inverted) EAROM Con-C2 EAROM Con-CK
0F00-0F3F 1000-100F 1400-140F 2000-27FF 2800-3FFF 4000-87FF	W RR	D D D D D	0 0 0 0	00000	0 0 0 0	000000	00000	000000	00000	EAROMWR Custom I/O 0 (Unfiltered) Custom I/O 1 (Filtered) 2K VRAMO-VRAM1 6K VROM1-VROM2 20K Program ROM0-ROM4

Troubleshooting with the Read/Write Controller

A. CAT Box Preliminary Set-up

1. Remove:

- The electrical power from the game.
- The wiring harness from the game PCB.
- The game PCB from the game cabinet.
- The microprocessor chip C2 from the game PCB.

2. Connect:

- · The harness from the game to the game board. (Use extender cables if available.)
- Φ0 and Φ2 test points together with the shortest possible jumper.
- WDDIS test point to ground.
- . The CAT Box flex cable to the game PCB test edge connector.

3. Power Up:

- The game. The CAT Box.
- 4. Set CAT Box Switches:
- TESTER SELF-TEST: (OFF)
- TESTER MODE: R/W
- Press TESTER RESET

B. Address and Data Lines

- 1. Perform the CAT Box preliminary set-up.
- 2. Connect the DATA PROBE to the CAT Box and the game ground test point.
- 3. TESTER MODE: R/W
- 4. BYTES: 1
- 5. PULSE MODE: UNLATCHED
- 6. R/W MODE: (OFF)
- 7. R/W: WRITE
- 8. Key in address pattern on the keyboard (use AAAA to start)
- 9. Push DATA SET
- 10. Key in data pattern on the keyboard (use AA to start)
- 11. R/W MODE: STATIC
- 12. Probe the IC-pin with the data probe and check for the 1 or 0 LED as indicated in Table 2-2. Repeat this step for each address and data line.
- 13. Repeat steps 6-12 using 5555 in step 7 and 55 in

Table 2-2 Address and Data Lines

When writing AAAA pattern	Address and data lines	When writin 5555 pattern
Logic State	IC-Pin	Logic State
1	R2-12	0
Ó	R2-13	1
1	R2-14	Ó
0	R2-15	1
1	B1-7	0
0	B1-12	1
1	B1-14	0
0	B1-16	1
1	C1-9	0
0	C1-7	1
1	C1-5	0
0	C1-3	1
1	C1-12	0
0	C1-14	1
1	C1-16	0
0	C1-18	1
1	F2-9	0
0	F2-8	1
1	F2-7	0
0	F2-6	1
1	F2-5	0
0	F2-4	1
1	F2-3	0
0	F2-2	1

€. RAM

- 1. Perform the CAT Box preliminary set-up.
- 2. Set the CAT Box switches as follows:
 - a. Press TESTER RESET
 - b. DBUS SOURCE: ADDR
 - c. BYTES: 1024
 - d. R/W MODE: (OFF)
 - e. R/W: WRITE f. Enter 0000 on the keypad

 - g. Toggle R/W MODE to PULSE and back to (OFF) h. R/W: READ
- i. Toggle R/W MODE to PULSE and back to (OFF)
- 3. If the CAT Box reads an address that doesn't compare, the COMPARE ERROR LED lights up, the AD-DRESS/SIGNATURE display shows the failing address location, and the ERROR DATA DISPLAY switch is enabled. Using this switch, determine if the error is in the high-or low-order RAM.
- 4. Repeat the test with DBUS SOURCE set to ADDR.
- 5. Repeat steps 2-4, entering 2000 on the keypad (step

D. Option Switch Inputs

- 1. Perform the CAT Box preliminary set-up.
- 2. BYTES: 1
- 3. R/W: WRITE
- 4. R/W MODE: (OFF)
- 5. Key in 100F
- 6. Push DATA SET
- 7. Key in 00 8. R/W: READ
- 9. R/W MODE: (OFF)
- 10. Key in 100B
- 11. R/W MODE: STATIC, then to (OFF)
- 12. R/W: READ
- 13. Key in 1008
- 14. R/W MODE: STATIC
- 15. Activate each option switch toggle at location D4 while monitoring the DATA display. The DATA display will change if the switches are operating prop-
- 16. Repeat steps 3-15, entering 140B in step 5 and 1408 in step 10, and activate switches at location

E. Custom Audio I/O Chips

Space Duel™ has two custom audio I/O chips. Each must be tested separately. There are several ways to test the chips:

- . Perform the self-test.
- · Substitute good part for defective
- Use the procedure that follows.
- Perform the CAT Box preliminary set-up.
- 2. BYTES: 1
- 3. R/W: WRITE
- 4. R/W MODE: (OFF)
- 5. Enter address from Table 2-3
- Press DATA SET

under the porgonation's written license, no right is grantie to reproduce this drawing or the subject matter thereof, un-less by written agreement with or written permission from

- 7. Enter the data from Table 2-3
- 8. R/W MODE to PULSE and back to (OFF)
- 9. Repeat steps 5-8 for each address and data, and note the test results.

2nd printing 3L

ADDRESS	DATA	TEST RESULTS
100F	00	
100F	03	
1000	55	
1000	AF	Custom Audio I/O Chip #1
1001	<u> </u>	channel 1 produces pure t
1001	00	Custom Audio I/O Chip #1 channel 1 off.
1002	55	
1003	AF	Custom Audio I/O Chip #1 channel 2 produces pure t
1003	00	Custom Audio I/O Chip #1 channel 2 off.
1004	55	
1005	AF	Custom Audio I/O Chip #1
		channel 3 produces pure t
1005	00	Custom Audio I/O Chip #1 channel 3 off.
1006	55	
1007	AF	Custom Audio I/O Chip #1 channel 4 produces pure t
1007	00	Custom Audio I/O Chip #1 channel 4 off.
140F	00	
140F	03	
1400	55	
1401	AF	Custom Audio I/O Chip #0
1401	P.	channel 1 produces pure t
1401	00	Custom Audio I/O Chip #0 channel 1 off.
1402	55	
1403	AF	Custom Audio I/O Chip #0 channel 2 produces pure t
1403	00	Custom Audio I/O Chip #0 channel 2 off.
1404	55	
1405	AF	Custom Audio I/O Chip #0 channel 3 produces pure t
1405	00	Custom Audio I/O Chip #0 channel 3 off.
1406	55	
1407	AF	Custom Audio I/O Chip #0 channel 4 produces pure t
1407	00	Custom Audio I/O Chip #0 channel 4 off.

F. Player and Option Switch P10/11 Inputs

- Perform the CAT Box preliminary set-up.
- 3. R/W: READ

2. BYTES: 1

ADDRESS

0800

0900

0901

0902

0903

0904

0905

0906

- 4. For each address of Table 2-4, do the following:
 - R/W MODE: (OFF) Enter address R/W MODE: STATIC

Activate input switch for address. Table 2-4 Player and DIP Switch Inputs

INPUT SWITCH Right coin switch Left coin switch Self-test switch Slam switch

SHIELDS, Player 1

SHIELDS, Player 2

FIRE, Player 1

FIRE, Player 2

ROTATE LEFT.

ROTATE RIGHT.

ROTATE LEFT.

THRUST, Player 2

P10/11, toggle 4

GAME SELECT

P10/11, toggle 3

P10/11, toggle 2

Player 1

Player 1

TEST RESULTS Lower nybble (right digit) of DATA display changes when right or

left coin, or self-test switches are activated. Upper nybble of DATA display is unstable, but has noticeable change when slam switch is activated. Upper nybble of DATA

display changes when each input switch is activated. Upper nybble of DATA display changes when each input switch is activated.

Upper nybble of DATA display changes when each input switch is activated. Upper nybble of DATA display changes when

Player 2 each input switch is ROTATE RIGHT. activated. Player 2 Upper nybble of DATA THRUST, Player 1 display changes when START each input switch is activated.

Upper nybble of DATA DIP switch at location display changes when each input switch is activated. Upper nybble of DATA DIP switch at location display changes when each input switch is activated. Connector J20, pin R Upper nybble of DATA DIP switch at location display changes when

J20-R is grounded and

ungrounded, or when

DIP switch P10/11 tog-

gle 2 is set to on and

off.

G. Analog Vector-Generator

1. Test

- 1. Perform the CAT Box preliminary set-up.
- 2 DATA SOURCE: DATA
- 3. R/W: WRITE
- 4 B/W MODE: (OFF)
- 5. Key in address from Table 2-5 or press AD-DRESS INCR.
- Press DATA SET 7. Key in data from Table 2-5
- 8. Set R/W MODE to PULSE and then to (OFF)
- 9. Repeat steps 5-8 for each address in Table 2-5

-CAUTION -

10. R/W: READ

You may damage the circuitry of the X-Y display if you key in the VGGO signal without first checking all the addresses and data. Check the data by reading each address location using steps 10-14:

11. R/W MODE: (OFF) 12. Key in address or press ADDRESS INCR. 13. R/W MODE: PULSE 14. Check the data in the DATA display against the

data in Table 2-5. If you are sure the data is correct, proceed to steps 15-19:

15. R/W MODE: WRITE 16. R/W: (OFF) 17. Kev in VGGO address 0C80 18. R/W to PULSE and then back to (OFF)

19. After writing to the VGGO address, the screen should show a large plus sign. Failure of the horizontal or vertical circuits shows up as a single line drawn on the screen. If the screen does not display a large plus sign, contact Atari Field Service.

Table 2-5 Analog Vector-Generator Data

Table 2-3	Analog	vector-denerate	Da
ADDRESS	DATA	ADDRESS	DATA
2000	00	200C	00
2001	70	200D	21
2002	40	200E	80
2003	80	200F	1F
2004	77	2010	80
2005	64	2011	1F
2006	00	2012	00
2007	00	2013	01
2008	80	2014	00
2009	1F	2015	20
200A	00	2016	00

2017

00

200B

H. LED, Coin Counter and **Invert Outputs**

- 1 Perform the CAT Box preliminary set-up.
- 2. DBUS SOURCE: DATA
- 3. BYTES: 1
- 4. R/W: WRITE
- 5. R/W MODE: (OFF)
- 6. Enter address 0C00

-CAUTION -

If you write ON data to activate a solenoid, deactive the solenoid immediately by writing the OFF data. If you leave a solenoid activated for more than 10 seconds, you may have to replace the solenoid and/or its driver, due to overheating.

7 For each DATA output of Table 2-6, do the following:

- a. To activate output: Press DATA SET
- Enter ON-DATA for desired output R/W MODE: STATIC, then (OFF)
- b. To deactivate output: Press DATA SET Enter OFF-DATA of activated output
- R/W MODE: STATIC, then (OFF)

Table 2-6 LED and Coin Counter Outputs Key in address 0C00 for the seven outputs below.

OUTPUT DEVICE OFF-DATA ON-DATA **Right Coin Counter** 39 38 3A 38 Left Coin Counter 38 Coin Door Lockout 30 38 GAME SELECT 28 LED 18 38 START LED INVERTX* 78 38 38 INVERTY * * **B8**

- *When INVERTX is activated, check for logic 1 on pin 16 of IC
- **When INVERTY is activated, check for logic 1 on pin 16 of IC E10.

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING COMPUTED REPORT AND A COMPUTED REPORT AND A

the corporation

Space Duel™ SP-181 Sheet 10A

2nd printing 3L

ATARLLING 1982

Troubleshooting with Signature Analysis

A. Signature Analysis Set-up

- Perform the CAT Box preliminary set-up.
- Connect the three BNC to E-Z clip cables (supplied with the CAT Box) to the SIGNATURE ANALYSIS CONTROL START, STOP and CLOCK lacks on the CAT Box
- 3 Attach the three black E-Z clips to a ground loop on the Space DuelTM game PCB.
- 4. Attach the CAT Box data probe to the DATA jack on the CAT Box.
- 5. The colored E-Z clips on the cables will be moved about for each group of signatures to be taken.
- 6. Set the CAT Box switches as follows: TESTER MODE: SIG
- TESTER SELF-TEST: OFF PULSE MODE: LATCHED
- START: As indicated STOP: As indicated CLOCK: As indicated
- 7. Power up the game board and the CAT Box.

B. Address Lines

1. CAT Box Settings for Address Bus Test Probe Trigger IC-Pin Test Pt. R2-12 Start

R2-12 Stop Clock C2-39 Verify CAT Box settings and connections as follows:

 probe GND test point = 0000 signature • probe +5V test point = 0001 signature

2. Signatures Lagia Broba

R2-13

R2-12

Logic Probe	Signal	Signature Should Be
on IC-Pin	Name	Snoula Be
C1-18	AB0	บบบบ
C1-16	AB1	5555
C1-14	AB2	CCCC
C1-12	AB3	7F7F
C1-3	AB4	5H21
C1-5	AB5	0AFA
C1-7	AB6	UPFH
C1-9	AB7	52F8
B1-16	AB8	HC89
B1-14	AB9	2H70
B1-12	AB10	HPP0
B1-7	AB11	1293
B1-5	AB12	HAP7
R2-14	A13	3C96

A14

A 15

3827

755U

C. Address Decoder

While testing decoders and ROMs, it may

be necessary to add 270 pF capacitors to ADDR 12, 13, 14 and 15 to eliminate unsta ble signatures.

CAUTION

1. CAT Box Settings for Address

Decode	r iesī		
Probe	Trigger	IC-Pin	Test P.t.
Start	٦	R2-12	
Stop	Z.	R2-12	
Clock	٦		Φ2

2. Signatures

Verify CAT Box settings and connections as follows: • probe GND test point = 0000 signature

 probe + 5V test point = 0001 signature Signal Signature

Lagic Probe on IC-Pin	Logic Probe on Test Pt.	Signai Name	Should Be
R2·2 R2·1 R3·6 R2·4			7631 383A 4 P0A 04UH
R2-3	VMEM ROMO ROM1	VMEM ROMO ROM1	160U 12U3 CFHH 57HH
H3-10	ROM2 ROM3 ROM4	ROM2 ROM3 ROM4 ROM	96F8 546U 755P 5FU9

Jumper RW test point to +5V test point.

Logic Probe on IC-Pin	Signal Name	Signature Should Be
K6-12 K6-11 K6-10 P3-1	SINP1 SINP2 EAROMRD RAMO	U14U HF1A L'0HA 51FP
P3-2 P3-3 P3-4	RAM1	6C23 £87H 5AAC
P3-5	<u>100</u>	C787
P3-6 R3-11	IO1 IOS	9UAP 2828
Remove jumper	between B/W	test point and +

Remove jumper between R/W test point and +5V test point.

NOTE:

around.

If you are taking signatures on a PCB connected to a game, disconnect the connector to the coin counter(s). The coin counter will energize while K4-6 is connected to Jumper WRITE, K4-6, to GND test point. Signal

Name

Logic Probe

on IC-Pin

M5-8		5AAC	
L4-1	OUTPUT	C9FU	
L4-2	VGGO	258A	
L4-3	WDCLR	4C6C	
L4-4	VGRST	7079	
L4-5	INTACK	F425	
L4-6	EAROMCON	6175	
L4-7	EAROMWR	HAU2	

Signature

Should Be

ROM4

D. ROM and Data Lines

We are providing only the signatures for ROM4. This ROM contains the self-test procedure that tests all the other ROMs and displays a number representing a ROM failure.

-NOTE -When taking signatures of ROM4, install 270 pF capacitors between IC R2, pin 12 and ground and IC R2, pin 14 and ground.

1. CAT Box Settings for ROM4 Test (I.C. J1 for ROM part no. 136006-201) Trigger Test Pt. Probe

Stop	_=	ROM4
Clock	7_	Ф2
Verify CAT Box sett	tings and conn	ections as follows

probe GND test point = 0000 signature

probe +5V test point = 755U signature

2

Start

2. Signatures		
Logic Probe	Signal	Signature
on IC-Pin	Name	Should Be
J1-9	D0	46A2
J1-10	D1	0325
J1-11	D2	10H5
J1-13	D3	P228
J1-14	D4	9FP1
J1-15	D5	5U58
J1-16	D6	C57C
J1-17	D7	2C95

Watchdog

The Watchdog circuit will send continuous reset pulses to the microprocessor if a problem exists within the microprocessor circuit. If the self-test fails to run, it is a good practice to check the reset line.

RESET is a microprocessor input (pin 40). In a properly operating game, reset should occur during powerup or when the reset pushbutton is activated. A pulsing RESET line indicates that something is causing the microprocessor to lose its place within its program.

- Typical causes are: 1. Open or shorted address or data bus lines
- 2. Bad microprocessor chip
- 3 Bad bus buffers
- 4 Bad ROM
- 5. Bad RAM
- 6. Any bad input or output that causes an address or data line to be held in a constant high or low state

A pulsing RESET signal indicates a problem exists somewhere within the microprocessor circuitry rather than within the Analog Vector-Generator.

NOTICE TO ALL PERSONS RECEIVING THIS DRAWING CONFIDENTIAL Reproduction fundades without the system of the production of under the corporation's written license, no right is grante to reproduce this drawing or the subject matter thereof, un-less by written agreement with or written permission from the corporation.

Space Duel

SP-181 Sheet 10B

2nd printing 3L

ATABOUNE, 1982