

Álgebra Linear na Construção da Arquitetura de Controle de Robôs Autônomos com Rodas Omnidirecionais

Alexandre Pereira de Freitas Lucas Rafael de Aguiar Silva Samuel Morais Barros Sérgio Reinier Sousa Macário Vinícius de Freitas Lima Moraes

08/11/2019

Sumário

1 Introdução

2 Enunciado do problema

2.1 Deslizamento de Rodas

Considere um robô simétrico, com m = $(v_1, v_2, v_3, v_4)^T$ indicando a velocidade tangencial dos motores, D a matriz de velocidades, e v um vetor tridimensional $(v_x, v_y, Rw)^T$. Dado isso, teste a inconsistência da velocidade dos motores e, consequentemente, se há rodas deslizando.

2.2 Economia de Energia

Considerando o resultado do problema anterior, ou seja, caso seja detectado inconsistência com os motores e alguma das rodas esteja deslizando. É possível corrigir rapidamente esse problema sem alterar a configuração física do robô (número de motores, número de rodas etc.)? Se sim proponha uma solução adequada.

3 Resolução do problema

3.1 Item 1

Consideremos o robô da figura, no qual os ângulos das rodas superiores são α e os da inferiores são β , o vetor $m = \begin{pmatrix} v1, v2, v3, v4 \end{pmatrix}^T$ representa as velocidades tangenciais dos motores e o vetor $v = \begin{pmatrix} v_x, v_y, Rw \end{pmatrix}^T$ a velocidade total do robô (translacional e rotacional).

Para procurarmos inconsistências nas velocidades dos motores (que indicam deslizamento nas rodas), partiremos da relação inicial dada por:

$$m = Dv$$

Como é possível notar, a matriz D não é quadrada, ela não possuui inversa, então não podemos, inicialmente, isolar o vetor "v", no entanto, podemos achar uma matriz equivalente, chamada de Matriz Pseudoinversa (D^+) , que usaremos com intuito de isolar o vetor das velocidades Euclidianas.

Definição Pseudo-inversa (Moore-Penrose)

De acordo com a definição pseudo-inversa de Moore-Penrose, vemos que se D tem seu espaço coluna LI, podemos calcular a sua inversa da seguinte maneira:

$$D^+ = (D^*D)^{-1}D^*$$

Demonstração da propriedade:

Daí usando a expressão anterior e multiplicando por D pela direita, temos: $D^+D=(D^*D)^{-1}(D^*D)=I=>(D^+$ é a inversa a esquerda de D)

Aplicando a pseudo-inversa na equação inicial, obtemos: $m=Dv => D^+m=D^+Dv => v=D^+m$

Com a constante comunicação do robô e do controlador acerca da situação das velocidades dos motores, podemos sempre testar a inconsistência da matriz m, de modo que se as relações m=Dv e $v=D^+m$ são válidas, então $m=DD^+m$ também o é. Para testar a consistência das velocidades, basta testar a validade da última expressão.

Caso essa igualdade não ocorra, podemos afirmar com certeza que alguma roda está com velocidade inconsistente e portanto, deslizando. Contudo, existe a possibilidade de que múltiplas rodas também estejam deslizando em uma taxa que faça com que a relação permaneça válida, no entando, isto é extremamente improvável.

Assim, vamos trabalhar testando a validade da expressão:

$$m = DD^+m = > (I - DD^+m) = 0$$

Para $\alpha = \pi/6$ e $\beta = \pi/4$, teremos a seguinte relação: $(v1 - v2) = (v3 - v4)(sqrt2/3)$

Logo, se essa relação **não** for válida, alguma das rodas não está rodando da maneira correta.

3.2 Item 2

Para identificarmos uma possível perda ou desperdício de energia precisamos identificar como funciona o vetor aceleração do robô, dado por: $a=C_{\alpha}f_{k}$ Partindo desse ponto, é fácil notar que existem combinações de forças dos motores que geram uma aceleração nula: a=0, como o vetor: $f_{o}=\left(1,-1,1,-1\right)$. Em outras palavras, o vetor f_{o} pertence ao núcleo de C_{α} .

Essa interessante observação nos permite expandir o raciocínio para resolver o problema de desperdício de energia. Note que se um vetor g pertence ao núcleo de C_{α} , então qualquer combinação de vetores f que inclua g produz a mesma aceleração que f-g, pois:

$$a = C_{\alpha}(f) = C_{\alpha}(f - g) + C_{\alpha}(g) = C_{\alpha}(f - g)$$

Como calculado anteriormente na seção 3.1, $dim(C_{alpha}) = 3$, daí, aplicando o teorema do posto-nulidade para C_{α} , temos:

$$Rank(C_{\alpha}) + Ker(C_{\alpha}) = Dim(coluna)$$

Daí tiramos que $Ker(C_{\alpha})=1$, e portanto qualquer vetor no núcleo de C_{α} é da forma λf_k .

O fato interessante de se notar é que primeiro, testamos as validades das velocidades através da equação: $(I - DD^+)m = 0$ e agora, concluímos que qualquer

vetor no núcleo de C_{α} gera uma aceleração nula no robô. Podemos estreitar ainda mais essa relação, se usarmos o conceito de operador de projeção ortogonal:

As matrizes DD^+eD^+D são operadores de projeção ortogonal, P, ou seja, são hermitianos $(P=P^*)$, por definição, e são idempotentes $(P^2=P)$. Daí, as seguintes propriedades se seguem:

 DD^+ é o operador de projeção ortogonal na Im(D), e por consequência, $I-DD^+$ é o operador de projeção ortogonal em ker(A).

Se analisarmos as matrizes C_{α} e D, podemos notar que $C_{\alpha} = (1/\alpha M)(D^T)$, como nossas matrizes estão no corpo dos R, sabemos que $D^T = D^*$, então podemos ver que C_{α} é a matriz adjunta de D multiplicada por uma constante! Então, se quisermos corrigir o deslizamento de velocidades, verificando a consistência da equação $(I - DD^+)m = 0$, basta vermos que o operador $(I - DD^+)$ projeta m no $ker(D^*)$, logo a relação que queremos manter válida é que m seja **ortogonal** ao vetor que compõem a base do $ker(C_{\alpha})$.

Correção:

4 Conclusão