СОДЕРЖАНИЕ

1	Введ	дение	5
2	Введ	дение	6
	2.1	Модель сверхширокоугольного объектива	8
	2.2	Обзор существующих систем стереозрения, использующих	
		сверхширокоугольные изображения	8
	2.3	Обоснование выбора ПО	9
3			11

1 ВВЕДЕНИЕ

2 ВВЕДЕНИЕ

За последние годы был совершён существенный прогресс в доступности и точности сенсоров, позволяющих мобильным роботам осуществлять оценку окружающего пространства. Такие информационно-измерительные устройства как лидары, сонары (и что-нибудь ещё) стали основной опорой алгоритмов для алгоритмов автономной навигации и локализации. Тем не менее в роботах по-прежнему присутствуют оптические системы, так как они дают наиболее читаемую информацию для оператора в случаях, когда его вмешательство необходимо. Существенная часть современных мобильных роботов имеют у себя на борту камеры с широким () или сверхшироким () углами обзора, так как они, хоть и вносят искажения в воспринимаемую картину, позволяют охватить больше окружающего пространства. Набор таких камер может составлять систему кругового обзора [], позволяющую оператору видеть не только в любом направлении, но даже с видом от третьего лица []. Схема подобной системы приведена на рисунке 2.1.

SAMPLE

Рис. 2.1 – Системы кругового обзора

В случае автономных мобильных роботов подобные системы включаются лишь по необходимости, но при этом могут быть весьма дорогостоящими и занимать место в корпусе. Согласно схемам на рисунке 2.1 широкоугольные камеры в системах кругового обзора роботов часто имеют области пересечения их полей зрения, что позволяет проводить оценку глубины / использовать алгоритмы стереозрения / использовать камеры как стереопару. Это даёт роботу вспомогательный (или единственный) источник трёхмерной информации об окружении без дополнительных расходов.

Однако значительные радиальные искажения изображения, вызванные особенностями используемых объективов, вместе с тем фактом, что области пересечения обычно расположены ближе к краям изображения, не позволяют использовать известные алгоритмы стереозрения.

Целью работы является разработка и изучение точности системы стереозрения, основанной на ортогонально расположенных сверхширокоугольных камерах.

В ходе работы решаются следующие задачи:

- Обзор современных алгоритмов стереозрения / алгоритмов калибровки изображений широкоугольных камеры.
- Обоснование выбора программного обеспечения, используемого для разработки и тестирования алгоритма.
- Разработка алгоритма устранения искажений fisheye-объектива и системы стереозрения на его основе.
- Оценка точности оценки глубины в виртуальной среде.

2.1 Модель сверхширокоугольного объектива

Сверхширокоугольные объективы имеют в своей основе сложную систему линз, схема которой представлена на рисунке 2.2. Особенности этой системы позволяют достигать существенного угла обзора, но также являются причиной аберрации и характерных искажений изображения.

Рис. 2.2 – Системы кругового обзора

Перед использованием снимков с подобных камер необходимо избавиться от искажений. Для осуществления этого необходима модель камеры - набор уравнений, который позволяет найти проекцию точки в мировых координатах на плоскость изображения. Стандартная для обычных камер модель камерыобскуры хоть и способна учитывать радиальные искажения, не работает при таких больших углах зрения. В настоящий момент есть несколько распространённых моделей, аппроксимирующих реальные искажения подобных объективов. Модель Каналлы и Брандта [1] реализована в ОрепСV и предлагает

2.2 Обзор существующих систем стереозрения, использующих сверх-широкоугольные изображения

2.3 Обоснование выбора ПО

Разработку и первоначальные испытания алгоритма стереозрения целесообразно проводить в виртуальной среде. Это позволяет значительно упростить разработку, так как уменьшает время на проверку гипотез и расходы на реальное оборудование, особенно в случае неудачных испытаний. Из-за этих факторов виртуальное моделирование в робототехнике приобрело широкое распространение и активно применяется, например, для разработки систем локализации и навигации беспилотного транспорта []. Возросшее качество компьютерной графики к тому же позволило моделировать реалистичное окружение, что особенно важно при работе с системами технического зрения.

Для разработки алгоритма, описанного в этой работе, нужна виртуальная среда, в которой можно симулировать несколько широкоугольных камер и настраивать их параметры, легко интегрировать алгоритмы технического зрения и создать окружение, приближенное к тому, в котором будет работать алгоритм. На данный момент исследователю доступен широкий выбор программного обеспечения, подходящего для этой задачи. В таблице 2.1 представлено сравнение имеющихся предложений по основным изложенным выше требованиям.

По результатам оценки собранные сведений было принято решение проводить разработку в симуляторе Unity. Он позволяет подробно настраивать камеру и эмулировать fisheye-объектив, строить реалистичные сцены благодаря свободному импорту моделей, а при программировании в симуляторе можно использовать сторонние программы в виде динамически подключаемых библиотек. По функционалу так же подходит NVIDIA Isaac Sim, но от него пришлось отказаться из-за высоких системных требований и новизны продукта.

Разрабатываемое решение должно иметь возможность внедрения в ПО робота, поэтому должно реализовываться на одном из популярных и быстродейственных языков программирования. Учитывая необходимость интеграции с Unity и потребность использовать популярные библиотеки, был выбран язык С++. Другим важным фактором является основная библиотека обработки изображений. В качестве основы для программной части была выбрана библиотека

Таблица 2.1 – Сравнение ПО для симуляции

Название	Симуляция	Реалистичное	Интеграция кода	Доступі	
Пазванис	fisheye-камер	моделирование	интеграции кода		
Gazebo	Возможна	Затруднено	Возможна	Бесплат	
Gazeoo			посредством ROS		
RoboDK	Нет	Затруднено	Нет	От 145€	
Webots	Затруднена	Возможно	Возможна	Бесплат	
CoppeliaSim	Затруднена	Затруднено	Возможна	Бесплат	
NVIDIA Isaac Sim	Возможна	Возможно	Возможна	Бесплат	
CARLA	Затруднена	Возможно	Возможна	Бесплат	
Unity	Возможна	Возможно	Возможна	Бесплат	

OpenCV, являющаяся стандартом при разработке систем технического зрения. Она доступна к использованию со множеством языков программирования, но наилучшую производительность показывает именно с C^{++} [].

3 СПИСОК ЛИТЕРАТУРЫ

1. J. Kannala and S.S. Brandt. A generic camera model and calibration method for conventional, wide-angle, and fish-eye lenses. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 28(8):1335–1340, 2006.