Exercice 1. On observe un échantillon X_1, X_2, \ldots, X_n indépendant et identiquement distribué de loi uniforme sur [0, 2a] où a est un réel strictement positif, de densité

$$f_a(x) = \frac{1}{2a} \text{ pour } x \in [0, 2a].$$

Dans ce problème, on étudie deux estimateurs de a.

- **1.** Soit $\hat{a} = \overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$, la moyenne des observations.
 - a) Calculez l'espérance d'une variable aléatoire de densité f_a .
 - **b)** Montrez que \hat{a} est un estimateur sans biais de a.
 - c) Calculez la variance de \hat{a} .
- **2.** Soit $M = \max\{X_1, \dots, X_n\}$ l'observation maximale.
 - a) i. Calculez la fonction de répartition d'une variable aléatoire de densité f_a .
 - ii. Pour tout $t \ge 0$, calculez $\mathbf{P}(M \le t)$.
 - iii. En déduire la densité de M.
 - **b) i.** Pour tout réel c, calculez l'espérance de cM.
 - ii. En déduire un estimateur sans biais de a, que l'on notera \tilde{a} .
 - iii. Calculez la variance de \tilde{a} .
- 3. Conclure : quel est le meilleur estimateur?