Introduction to particle physics at LHC

Limassol - July 19, 2025

Relativistic kinematics

- 1. Find the inverse lorentz transformation for time and space.
- 2. Show, that in the non-relativistic limit $(v \ll c)$ total energy equals the sum of a mass and a classic kinematic energy of a particle.
- 3. Show that massless particle cannot decay into two massive particles.
- 4. Can a massive particle decay into two massless particles?
- 5. Can two massive particles be produced in collision of two massless particles?
- 6. Can a K^+ meson decay into $\pi^+\pi^+\pi^-$?
- 7. Heavy particle with mass M decays into two lighter particles, m_1 and m_2 . Find the momenta of the decay products of initial particle and draw their momentum distributions. How is this momentum distribution related to the beta decay problem, discussed in the lecture?
- 8. Hypothetical particle decays into 4 very light particles, their measured momentum components in the detector are $p_{x,1}, p_{x,2}, ... p_{z,3}, p_{z,4}$. What is the measured invariant mass of the initial particle? Consider general case, when there are N particles with measured momenta.

General particle physics problems

- 1. Estimate the ratio of number of Z bosons and Higgs boson produced in 2012 at LHC.
- 2. Estimate the ratio of number of Z and Higgs bosons, decaying to muons.

Table 1: Masses of Elementary Particles (in ${\rm GeV})$

Particle	Mass (GeV)		
Quarks			
Up (u)	~0.0022		
Down (d)	~ 0.0047		
Charm (c)	1.27		
Strange (s)	~ 0.096		
Top (t)	172.76		
Bottom (b)	4.18		
Leptons			
Electron (e^-)	0.000511		
Muon (μ^-)	0.10566		
Tau (τ^{-})	1.77686		
Electron Neutrino (ν_e)	$< 2.2 \times 10^{-9}$		
Muon Neutrino (ν_{μ})	$< 0.17 \times 10^{-6}$		
Tau Neutrino (ν_{τ})	$< 18.2 \times 10^{-6}$		
Bosons			
Photon (γ)	0		
Gluon (g)	0		
W^{\pm} boson	80.379		
Z boson	91.1876		
Higgs boson (H)	125.25		

Table 2: Masses of Selected Mesons and Baryons (in ${\rm GeV}/c^2$)

Particle	Type	$Mass (GeV/c^2)$		
Mesons				
π^+ (Charged pion)	Light meson	0.13957		
π^0 (Neutral pion)	Light meson	0.13498		
K^+ (Charged kaon)	Strange meson	0.49368		
K^0 (Neutral kaon)	Strange meson	0.49761		
η	Light meson	0.54786		
D^0	Charmed meson	1.86483		
D^+	Charmed meson	1.86965		
B^0	Bottom meson	5.27963		
B^+	Bottom meson	5.27934		
$J/\psi \ (c\bar{c})$	Charmonium	3.09690		
$\Upsilon(1S) \ (b\bar{b})$	Bottomonium	9.46030		
Baryons				
Proton (p)	Nucleon	0.93827		
Neutron (n)	Nucleon	0.93957		
Λ	Strange baryon	1.11568		
Σ^+	Strange baryon	1.18937		
Σ^0	Strange baryon	1.19264		
Ξ^0	Doubly strange	1.31486		
Ω_{-}	Triply strange	1.67245		
Λ_c^+	Charmed baryon	2.28646		
Ξ_c^{0}	Charmed baryon	2.47087		
Λ_b^0	Bottom baryon	5.61960		

Table 3: Production Cross Sections at $\sqrt{s}=13~{\rm TeV}~({\rm LHC})$

Process	Production Mode	Cross Section (pb)		
Higgs Boson				
Higgs (H)	Gluon Fusion (ggF)	\sim 48.6		
	Vector Boson Fusion (VBF)	~ 3.8		
	WH associated	~1.4		
	ZH associated	~ 0.9		
	$t\bar{t}H$ associated	~ 0.5		
Electroweak Bosons				
Z boson (Z)	Inclusive (Drell-Yan)	~57,000		
W^{\pm} boson	Inclusive (Drell-Yan)	$\sim 95,000$		
Top Quark				
$t\bar{t}$ pair	QCD production	~832		
Single top	t-channel	~ 136		
	s-channel	~7.1		
	tW associated	\sim 71.7		

Table 4: Branching Fractions of the W, Z, and Higgs Bosons (approximate)

Boson	Decay Mode	Branching Fraction (%)
W	$W \to e \nu_e$	10.8
W	$W \to \mu \nu_{\mu}$	10.6
W	$W o au u_{ au}$	11.3
W	$W \to \text{hadrons}$	67.6
Z	$Z \rightarrow e^+e^-$	3.37
Z	$Z \to \mu^+ \mu^-$	3.37
Z	$Z o au^+ au^-$	3.37
Z	$Z \to \nu \bar{\nu}$ (all flavors)	20.0
Z	$Z \to \text{hadrons}$	69.9
H	$H o b ar{b}$	58.0
H	$H \to WW^*$	21.5
H	H o gg	8.5
H	$H \to \tau^+ \tau^-$	6.3
H	$H \to c\bar{c}$	2.9
H	$H o ZZ^*$	2.6
H	$H \to \gamma \gamma$	0.23
H	$H o Z\gamma$	0.15
Н	$H \to \mu^+ \mu^-$	0.02