Homework 4

For a given set of training sample $(y_i, \mathbf{x}_i) \in \mathbb{R} \times \mathbb{R}^p$, the (linear) kernel quantile regression (KQR) to estimate the τ th conditional quantile of y given \mathbf{x} , $f(\mathbf{x}) = \beta_0 + \boldsymbol{\beta}^T \mathbf{x}$ solves

$$(\hat{\beta}_0, \hat{\boldsymbol{\beta}}) = \underset{\beta_0, \boldsymbol{\beta}}{\operatorname{argmin}} \sum_{i=1}^n \rho_{\tau} \{ y_i - f(\mathbf{x}_i) \} + \frac{\lambda}{2} \boldsymbol{\beta}^T \boldsymbol{\beta}$$
 (1)

where $\rho_{\tau}(u) = u\tau - u\mathbb{1}\{u < 0\}.$

1. Justify that (1) is equivalent to solve

$$\min_{\beta_0, \beta, \xi, \zeta} \quad \tau \sum_{i=1}^n \xi_i + (1 - \tau) \sum_{i=1}^n \zeta_i + \frac{\lambda}{2} \beta^T \beta$$
 (2)

subject to

$$-\zeta_i \le y_i - f(\mathbf{x}_i) \le \xi_i$$
 and $\xi_i, \zeta_i \ge 0$.

2. Introducing Lagrange multipliers $\alpha_i, \gamma_i, \kappa_i, \rho_i \geq 0, i = 1, \dots, n$, the primal function of (2) is given by

$$L_{p}: \tau \sum_{i=1}^{n} \xi_{i} + (1 - \tau) \sum_{i=1}^{n} \zeta_{i} + \frac{\lambda}{2} \boldsymbol{\beta}^{T} \boldsymbol{\beta} + \sum_{i=1}^{n} \alpha_{i} \{y_{i} - f(\mathbf{x}_{i}) - \xi_{i}\}$$

$$- \sum_{i=1}^{n} \gamma_{i} \{y_{i} - f(\mathbf{x}_{i}) + \zeta_{i}\} - \sum_{i=1}^{n} \kappa_{i} \xi_{i} - \sum_{i=1}^{n} \rho_{i} \zeta_{i}.$$

- (a) Derive KKT (stationary / complementary slackness) conditions.
- (b) Show that corresponding dual problem is given by

$$\max_{\theta_1, \dots, \theta_n} \sum_{i=1}^n \theta_i y_i - \frac{1}{2\lambda} \sum_{i=1}^n \sum_{j=1}^n \theta_i \theta_j \mathbf{x}_i^T \mathbf{x}_j$$
subject to
$$-(1 - \tau) \le \theta_i \le \tau, \quad i = 1, \dots, n$$

$$\sum_{i=1}^n \theta_i = 0.$$
(3)

where $\theta_i = \alpha_i - \gamma_i$.

3. Write your own R code to solve linear KQR that returns β_0 and $\boldsymbol{\beta}$ using either ipop{} function in kernlab package or solve.QP() in quadprog. You can get $\boldsymbol{\beta}$ by solving QP problem in (3) and β_0 from the fact that $y_i - (\beta_0 + \boldsymbol{\beta}^T \mathbf{x}_i) = 0$ for all i such that $-(1 - \tau) < \alpha_i < \tau$.