Tidying data: extras

Packages

library(tidyverse)

The pig feed data again

```
my_url <- "http://ritsokiguess.site/datafiles/pigs1.txt"
pigs <- read_table(my_url)
pigs</pre>
```

```
# A tibble: 5 x 5
    pig feed1 feed2 feed3 feed4
    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> < 87.9
2 2 57 67.7 92.1 84.2
3 3 65 74 90.2 83.1
4 4 58.6 66.3 96.5 85.7
5 61.7 69.8 99.1 90.3
```

Make longer (as before)

```
# A tibble: 20 x 3
    pig feed weight
  <dbl> <dbl> <dbl>
      1 feed1 60.8
      1 feed2 68.7
   1 feed3 92.6
   1 feed4 87.9
5
   2 feed1 57
6
      2 feed2 67.7
      2 feed3 92.1
8
      2 feed4 84.2
      3 feed1
             65
10
      3 feed2
               74
```

Make wider two ways 1/2

pivot_wider is inverse of pivot_longer:

```
pigs_longer %>%
  pivot_wider(names_from=feed, values_from=weight)
```

we are back where we started.

Make wider 2/2

Or

```
pigs_longer %>%
  pivot_wider(names_from=pig, values_from=weight)
```

```
# A tibble: 4 x 6
feed '1' '2' '3' '4' '5'
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 2
feed2 68.7 67.7 74 66.3 69.8
feed3 92.6 92.1 90.2 96.5 99.1
feed4 87.9 84.2 83.1 85.7 90.3
```

Disease presence and absence at two locations

Frequencies of plants observed with and without disease at two locations:

Specie	es Dise	ease present	Dise	Disease absent			
	Location	X Location Y	Location X	Location Y			
Α	44	12	38	10			
В	28	22	20	18			

This has two rows of headers, so I rewrote the data file:

Species	present_x p	resent_y	absent_x	absent_y
Α	44	12	38	10
В	28	22	20	18

Read in

... into data frame called prevalence:

```
my_url <- "http://ritsokiguess.site/STAC32/disease.txt"
prevalence <- read_table(my_url)
prevalence</pre>
```

Lengthen and separate

```
# A tibble: 8 x 4
 Species disease location
                           freq
 <chr> <chr> <chr>
                       <dbl>
                             44
1 A
         present x
2 A
         present y
                             12
         absent x
3 A
                             38
4 A
         absent y
                             10
5 B
         present x
                             28
6 B
         present y
                             22
7 B
         absent x
                             20
8 B
         absent
                             18
```

Making longer, the better way

```
# A tibble: 8 x 4
 Species disease location frequency
 <chr> <chr> <chr>
                             <dbl>
1 A present x
                                44
2 A
                                12
         present y
3 A
         absent x
                                38
4 A
         absent v
                                10
5 B
                                28
         present x
6 B
         present y
                                22
7 B
                                20
         absent x
         absent
                                18
8 B
               У
```

Tidying data: extras

Making wider, different ways 1/2

```
# A tibble: 2 x 5
disease A_x A_y B_x B_y
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> 28
2 absent 38 10 20 18
```

Making wider, different ways 2/2

```
prevalence_longer %>%
  pivot_wider(names_from=location, values_from=frequency)

# A tibble: 4 x 4
  Species disease x y
```

<chr> <chr> <dbl> <dbl>

Interlude

Pigs data again:

```
pigs_longer %>%
  group_by(feed) %>%
  summarize(weight_mean=mean(weight))
```

```
# A tibble: 4 x 2
feed weight_mean
<chr> <dbl>
1 feed1 60.6
2 feed2 69.3
3 feed3 94.1
4 feed4 86.2
```

What if summary is more than one number?

eg. quartiles:

```
pigs_longer %>%
 group_by(feed) %>%
  summarize(r=quantile(weight, c(0.25, 0.75)))
Warning: Returning more (or less) than 1 row per `summarise()` group was deprecated
dplyr 1.1.0.
i Please use `reframe()` instead.
i When switching from `summarise()` to `reframe()`, remember that `reframe()`
  always returns an ungrouped data frame and adjust accordingly.
`summarise()` has grouped output by 'feed'. You can override using the
`.groups` argument.
# A tibble: 8 x 2
# Groups: feed [4]
 feed r
 <chr> <dbl>
1 feed1 58.6
2 feed1 61.7
3 feed2 67.7
4 feed2 69.8
5 feed3 92.1
6 feed3 96.5
```

Following the hint (gives no warning)

```
pigs_longer %>%
 group by (feed) %>%
 reframe(r=quantile(weight, c(0.25, 0.75)))
# A tibble: 8 x 2
 feed
 <chr> <dbl>
1 feed1 58.6
2 feed1 61.7
3 feed2 67.7
4 feed2 69.8
5 feed3 92.1
6 feed3 96.5
7 feed4 84.2
8 feed4 87.9
```

this also works

```
pigs_longer %>%
  group_by(feed) %>%
  summarize(r=list(quantile(weight, c(0.25, 0.75)))) %>%
  unnest(r)
```

```
# A tibble: 8 \times 2
  feed
  <chr> <dbl>
1 feed1 58.6
2 feed1 61.7
3 feed2 67.7
4 feed2 69.8
5 feed3 92.1
6 feed3 96.5
7 feed4 84.2
8 feed4 87.9
```

Or, even better, use enframe:

```
quantile(pigs_longer$weight, c(0.25, 0.75))
  25% 75%
65.975 90.225
enframe(quantile(pigs_longer$weight, c(0.25, 0.75)))
# A tibble: 2 x 2
 name value
 <chr> <dbl>
1 25% 66.0
2 75% 90.2
```

A nice look

Run this one line at a time to see how it works:

```
pigs_longer %>%
  group_by(feed) %>%
  summarize(r=list(enframe(quantile(weight, c(0.25, 0.75)))))
  unnest(r) %>%
  pivot_wider(names_from=name, values_from=value) -> d
d
```

```
# A tibble: 4 x 3
feed `25%` `75%`
<chr> <dbl> <dbl>
1 feed1 58.6 61.7
2 feed2 67.7 69.8
3 feed3 92.1 96.5
4 feed4 84.2 87.9
```

A hairy one

A +ibbla. 10 v 0

18 people receive one of three treatments. At 3 different times (pre, post, followup) two variables y and z are measured on each person:

```
my_url <- "http://ritsokiguess.site/STAC32/repmes.txt"
repmes0 <- read table(my url)
repmes0
```

# 1	A tippie: .	18 X 8							
	${\tt treatment}$	rep	pre_y	post_y	fu_y	pre_z	post_z	fu_z	
	<chr></chr>	<dbl></dbl>							
1	Α	1	3	13	9	0	0	9	
2	Α	2	0	14	10	6	6	3	
3	Α	3	4	6	17	8	2	6	
4	Α	4	7	7	13	7	6	4	
5	Α	5	3	12	11	6	12	6	
6	Α	6	10	14	8	13	3	8	
7	В	1	9	11	17	8	11	27	
8	В	2	4	16	13	9	3	26	
	Tidying data: extras							i	

Create unique ids

```
repmes0 %>% mutate(id=str_c(treatment, ".", rep)) %>%
  select(-rep) %>%
  select(id, everything()) -> repmes
repmes
```

# A tibble	e: 18 x 8						
id	treatment	pre_y	post_y	fu_y	pre_z	post_z	fu_z
<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 A.1	A	3	13	9	0	0	9
2 A.2	A	0	14	10	6	6	3
3 A.3	A	4	6	17	8	2	6
4 A.4	A	7	7	13	7	6	4
5 A.5	Α	3	12	11	6	12	6
6 A.6	Α	10	14	8	13	3	8
7 B.1	В	9	11	17	8	11	27
8 B.2	В	4	16	13	9	3	26
9 B.3	В	8	10	9	12	0	18

Tidying data: extras

20 / 28

Attempt 1

```
# A tibble: 108 \times 5
   id
        treatment time var
                                 VVV
   <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>
 1 A.1 A
                   pre y
2 A.1 A
                   post y
                                  13
3 A.1 A
                   fu
                         V
4 A.1 A
                   pre
                         z
5 A.1 A
                   post
                         Z
6 A.1 A
                   fu
                         z
7 A.2 A
                         У
                   pre
8 A.2
         Α
                   post
                                  14
                         У
```

Comment

This is too long! We wanted a column called y and a column called z, but they have been pivoted-longer too.

Attempt 2

```
repmes %>% pivot_longer(contains("_"),
                      names to=c("time", ".value"),
                      names_sep="_"
                      ) -> repmes3
repmes3
 A tibble: 54 \times 5
  id treatment time
                                 Z
  <chr> <chr> <chr> <chr> <dbl> <dbl>
1 A.1 A
                 pre
2 A.1 A
                 post 13
3 A.1 A
                 fıı
4 A.2 A
                                 6
                 pre
5 A.2 A
                 post 14
                                 6
6 A.2 A
                                 3
                 fu
                       10
7 A.3 A
                                 8
                 pre
8 A.3
        Α
                           6
                 post
```

Comment

This has done what we wanted.

Make a graph

Comment

- A so-called "spaghetti plot":
 - ▶ The three measurements for each person are joined by lines
 - ▶ The lines are coloured by treatment.

Or do the plot with means

Comment

- On average, the two real treatments go up and level off
- but the control group is very different.