Asynchronous parallel primal-dual block update method

 $\label{eq:Yangyang Xu} % \begin{center} \textbf{Yangyang Xu} \\ \textbf{Department of Mathematical Sciences, RPI} \\ \end{center}$

MOPTA 2017, Lehigh University

August 18, 2017

Multi-block affinely constrained programs

$$\min_{x} F(x) = f(x_1, \dots, x_m) + \sum_{i=1}^{m} g_i(x_i), \text{ s.t. } \sum_{i=1}^{m} A_i x_i = b.$$
 (MBP)

- $x=(x_1,\ldots,x_m)$: partition depends on applications
- f Lipschitz differentiable; g_i simple and possibly nondifferentiable
- Examples: basis pursuit, dual support vector machine, portfolio optimization, ...

This talk: one parallel method for (MBP) based on block update

Proximal block coordinate update method

Without affine constraint: $\min_x f(x) + \sum_{i=1}^m g_i(x_i)$.

Algorithm 1: Proximal block coordinate update with initial point x^0

for
$$k = 0, 1, ..., do$$

Choose one block i_k .

For $i \neq i_k$, let $x_i^{k+1} = x_i^k$ and for $i = i_k$, update x_i by

$$x_i^{k+1} \in \underset{x_i}{\operatorname{arg min}} \langle \nabla_{x_i} f(x^k), x_i \rangle + \frac{\eta_i}{2} ||x_i - x_i^k||^2 + g_i(x_i).$$

- Different ways to choose i_k: cyclic, random, greedy
- First appears in [Tseng-Yun'09] and popularized since [Nesterov'12]
- Convergence and rate extensively studied [Nesterov'12, Richtarik-Takac'14, Razaviyayn-Hong-Luo'13, X.-Yin'13, X.-Yin'17, Hong et. al'17, etc]
- May not converge for nondifferentiable nonseparable function

Alternating direction method of multipliers

Without nonseparable term $f: \min_{x} \sum_{i=1}^{m} g_i(x_i)$, s.t. $\sum_{i=1}^{m} A_i x_i = b$

Algorithm 2: Alternating direction method of multipliers with initial x^0, λ^0

for k = 0, 1, ..., doUpdate x_i for $i=1,2,\ldots,m$ sequentially by $\begin{bmatrix} x_i^{k+1} \in \arg\min_{x_i} g_i(x_i) + \langle \lambda^k, A_i x_i \rangle + \frac{\beta}{2} \left\| A_{\le i} x_{\le i}^{k+1} + A_i x_i + A_{\ge i} x_{\ge i}^k - b \right\|^2. \\ \text{Let } \lambda^{k+1} \leftarrow \lambda^k + \rho(A x^{k+1} - b). \end{bmatrix}$

Let
$$\lambda^{k+1} \leftarrow \lambda^k + o(Ax^{k+1} - b)$$
.

- Simpler than the augmented Lagrangian method
- 2-block convex programs: convergence guaranteed, also known as Douglas-Rachford splitting [DR'56]
- 3 or more block convex programs: may diverge [Chen et. al'16]

Divergence of 3-block ADMM [Chen et. al'16]

Apply ADMM to $\{\min 0, \text{ s.t. } A_1x_1 + A_2x_2 + A_3x_3 = 0\}$

• Equivalent to the iterative method: $\begin{bmatrix} x_2^{k+1} \\ x_3^{k+1} \\ \boldsymbol{\lambda}^{k+1} \end{bmatrix} = \mathbf{L}^{-1} \mathbf{R} \begin{bmatrix} x_2^k \\ x_3^k \\ \boldsymbol{\lambda}^k \end{bmatrix}, \text{ where }$

$$\mathbf{L} = \left[\begin{array}{ccc} A_2^\top A_2 & 0 & \mathbf{0} \\ A_3^\top A_2 & A_3^\top A_3 & \mathbf{0} \\ A_2 & A_3 & \mathbf{I} \end{array} \right]$$

and

$$\mathbf{R} = \begin{bmatrix} 0 & -A_2^{\top} A_3 & A_2^{\top} \\ 0 & 0 & A_3^{\top} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} - \frac{1}{\|A_1\|^2} \begin{bmatrix} A_2^{\top} A_1 \\ A_3^{\top} A_1 \\ A_1 \end{bmatrix} \begin{bmatrix} -A_1^{\top} A_2, -A_1^{\top} A_3, A_1^{\top} \end{bmatrix}$$

Divergence of 3-block ADMM [Chen et. al'16]

- Guaranteed convergence if $ho({f L}^{-1}{f R})<1$ and divergence if $ho({f L}^{-1}{f R})>1$

• Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$

• $\rho(\mathbf{L}^{-1}\mathbf{R}) \approx 1.0278$ and thus diverges

Remidies for convergence of multi-block ADMM

Additional assumptions

- parts of the objective are strongly convex [Han-Yuan'12, Chen-Shen-You'13, Cai-Han-Yuan'17]
- near orthogonality between A_i 's [Chen et. al'16]

Modification

- back substitution after each cycle [He-Tao-Yuan'12]
- Jacobi proximal update [He-Ma-Yuan'16, Deng et. al'17]
- random permutation before each cycle and on linear system [Sun-Luo-Ye'15]

Proposed: primal-dual randomized block update

Algorithm 3: Primal-dual randomized block update method

Initialization: choose x^0, λ^0 and let $r^0 = Ax^0 - b$.

for
$$k = 0, 1, ..., do$$

Choose i_k uniformly at random.

For $i \neq i_k$, let $x_i^{k+1} = x_i^k$ and for $i = i_k$, update x_i by

$$x_i^{k+1} \in \underset{x_i}{\arg\min} \left\langle \nabla_{x_i} f(x^k) + A_i^{\top} (\lambda^k + \beta r^k), x_i \right\rangle + \frac{\eta_i}{2} \|x_i - x_i^k\|^2 + g_i(x_i)$$

Let
$$r^{k+1} \leftarrow r^k + A_{i_k}(x_{i_k}^{k+1} - x_{i_k}^k)$$
 and $\lambda^{k+1} \leftarrow \lambda^k + \rho(Ax^{k+1} - b)$.

- Similar idea appears in [Dang-Lan'14, Yu-Lin-Yang'15] for bilinear saddle-point problems without nonseparable f
- [Hong et. al'14] randomly picks one among x_i's and λ; subsequence convergence if dual stepsize diminishing

Convergence results

Assumptions:

- 1. Existence of a primal-dual solution (x^*, λ^*)
- 2. f and g_i 's are convex
- 3. $abla_{x_i}f$ Lipschitz continuous with constant L_i

Convergence results: if $\eta_i \geq L_i + \beta \|A_i\|^2$ and $\rho \in (0, \frac{\beta}{m}]$, then

- $F(x^k) \stackrel{p}{\to} F(x^*)$ and $||r^k|| \stackrel{p}{\to} 0$
- $\max\left(|\mathbb{E}[F(\bar{x}^k)-F(x^*)]|,\mathbb{E}\|A\bar{x}^k-b\|\right)=O(1/k)$ with \bar{x}^k averaged point

Test on the counterexample in [Chen et. al'16]

Test on quadratic programming

Nonnegativity constrained quadratic programming:

$$\underset{x}{\operatorname{minimize}} \ \frac{1}{2} x^{\top} Q x + c^{\top} x, \quad \text{subject to} \ A x = b, \ x \geq 0.$$

Q positive semidefinite and singular

Coordinate friendly structure

An operator T is coordinate friendly if

$$\sum_{i=1}^{m} \operatorname{cost}[(Tx)_{i}] = O(\operatorname{cost}[Tx])$$

May require maintaining intermediate computation

Examples:

- Matrix-vector multiplication: T(x) = Ax + b
- Proximal mapping of separable function $f(x) = \sum_{i=1}^m f_i(x_i)$
- Gradient of regression functions e.g., least square, logistic regression
- More . . .

Peng-Wu-X.-Yan-Yin'16. Coordinate update methods: structures, algorithms, and applications. *Annals of Mathematical Sciences and Applications*.

Async-parallel primal-dual block update

Architecture

- data stored in a global memory
- each agent (CPU, core) can read and write data from the global memory

Diagram of proposed async-parallel method

- Worker nodes compute partial gradients $abla_{x_i} f(x)$
- Master node updates x and λ

Pseudocode

Algorithm 4: Async-parallel primal-dual block update method

Initialization: choose x^0 and λ^0 ; let $r^0 = Ax^0 - b$ and k = 0.

while Not convergent do

if worker node then

Pick j uniformly at random and read x as \hat{x} .

Compute $\nabla_j f(\hat{x})$ and write it together with j to global memory

if master node then

if one new pair
$$\left(j, \nabla_j f(\hat{x})\right)$$
 then

Let
$$i_k = j$$
 and $v^k = \nabla_j f(\hat{x})$

else

igspace Pick i_k uniformly at random and let $v^k =
abla_{i_k} f(x^k)$

For any $i \neq i_k$, keep $x_i^{k+1} = x_i^k$, and for $i = i_k$, update x_i by

$$x_i^{k+1} \in \underset{x_i}{\operatorname{arg min}} \langle v^k - A_i^\top (\lambda^k - \beta r^k), x_i \rangle + g_i(x_i) + \frac{\eta_i}{2} ||x_i - x_i^k||^2.$$

Update r and λ ; increase k.

- all nodes continuously working
- Delay on x: used \hat{x} may not be the current iterate in the memory
- $\bullet \ \ \mathsf{No} \ \mathsf{delay} \ \mathsf{on} \ r \ \mathsf{and} \ \lambda$
- No waste of partial gradients
 - if $\nabla_{x_i} f$ much more expensive than $A_i^\top \lambda$ and \mathbf{prox}_{q_i}
 - examples: dual support vector machine, portfolio optimization

Sync-parallel versus Async-parallel

Synchronous

- Pros: convergence directly from non-parallel method
- Cons: idle time wasted, memory-access congestion

Asynchronous

- Pros: no idle time, no memory-access congestion
- Cons: convergence requires new technique

Convergence results

Assumptions:

- 1. Existence of a primal-dual solution (x^*, λ^*)
- 2. f and g_i 's are convex
- 3. $\nabla_{x_i} f$ Lipschitz continuous with constant L_i
- 4. delay on \hat{x} uniformly bounded by au

Convergence results: if $\eta_i \geq L_i + \beta \|A_i\|^2 + C\tau^2/m$ and $\rho \in (0, \frac{\beta}{m}]$, then

- $\bullet \ F(x^k) \stackrel{p}{\to} F(x^*) \text{ and } \|r^k\| \stackrel{p}{\to} 0$
- $\max\left(\mathbb{E}|F(\bar{x}^k)-F(x^*)|,\mathbb{E}\|A\bar{x}^k-b\|\right)=O(1/k)$ with \bar{x}^k averaged point

Remark: if $\tau=o(\sqrt{m})$, the stepsize weakly affected by delay and nearly linear speed-up can be achieved

Literature

- Async-parallel method first appears in [Chazan-Miranker'69] for solving linear system
- Recently lots of work on stochastic gradient [Nedic-Bertsekas-Borkar'01, Langford-Smola-Zinkevich'09, Agarwal-Duchi'11, Recht et. al'11, ...]
- Async-parallel randomized block update first in [Liu et. al'15]
- Async-parallel primal-dual block update in [Wei-Ozdaglar'13, Zhang-Kwok'14, Chang et. al'16] for multi-agent optimization
- Async-parallel method for fixed point problems [Baudet'78, Bertsekas'83, Combettes-Eckstein'16, Peng et. al'16, ...]

Numerical examples

Quadratic programming with delay-dependent stepsize

- simulated results with m = 2000
- \hat{x} selected from most recent au iterates uniformly at random
- stepsize set dependent on delay

Observation: delay affects convergence

Quadratic programming with delay-independent stepsize

- simulated results with m = 2000
- \hat{x} selected from most recent τ iterates uniformly at random
- stepsize set regardless of delay

Observation: delay almost not affects convergence

Dual support vector machine

$$\min_{\theta} \frac{1}{2} \theta^{\top} \operatorname{diag}(y) X^{\top} X \operatorname{diag}(y) \theta - e^{\top} \theta, \text{ s.t. } y^{\top} \theta = 0, \ 0 \le \theta_i \le C, \forall i.$$

- each column of X one sample
- news20¹ is used and has 19,996 samples and 1,355,191 features
- each block has 50 or 51 coordinates

 $^{^{1} \}mathtt{https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/}$

Sync-parallel method on dual support vector machine

 Every time, p blocks are selected and updated in parallel, where p is the number of cores

Observation: slower convergence with more blocks updated every time due to smaller stepsize

Async-parallel method on dual support vector machine

stepsize set regardless of delay

Observation: convergence behavior almost same for different numbers of cores

Speed-up by sync and async-parallel methods

measured by running time

Observation: sync-parallel method almost no speed-up due to inbalance loading and idle waiting time while async-parallel method about x12 speed-up

Conclusions

- Proposed a primal-dual randomized block update method for affinely constrained multi-block convex programs
- Proposed an async-parallel primal-dual block update method
- Established probability convergence and sublinear rate results
- Presented numerical results on both sync and asyn-parallel methods and significantly better speed-up observed for the latter

Open question: convergence and speed up if \boldsymbol{r} and $\boldsymbol{\lambda}$ outdated

References

- Y. Xu. Asynchronous parallel primal-dual block update methods, arXiv preprint arXiv:1705.06391, 2017.
- 2. X. Gao, Y. Xu, and S. Zhang. *Randomized Primal-Dual Proximal Block Coordinate Updates*, arXiv preprint arXiv:1605.05969, 2016.
- Z. Peng, T. Wu, Y. Xu, M. Yan, and W. Yin. Coordinate Friendly Structures, Algorithms and Applications, Annals of Mathematical Sciences and Applications 1(1), 57–119, 2016.
- 4. E. Wei and A. Ozdaglar. On the O(1/k) convergence of asynchronous distributed alternating direction method of multipliers. IEEE on GlobalSIP, 551–554, 2013.
- J. Liu, S. J. Wright, C. Ré, V. Bittorf, and S. Sridhar. An asynchronous parallel stochastic coordinate descent algorithm. JMLR, 16: 285–322, 2015.