Y POLITECNICO DI MILANO

Prof. Raffaela Mirandola February 29, 2016

CHRISTIAN ZICHICHI (840565) LUIGI MARROCCO (854884)

THE PROJECT → Big_City Taxi Service Optimization

MAKE THE ACCESS TO THE SERVICE EASIER FOR PASSENGERS

FAIRNESS OF TAXI QUEUES

- WEB APPLICATION MOBILE APPLICATIONS
 - User's Side Ride Requests/Reservations
 - Taxi driver's Side Availability and Call Confirmations

REQUIRED SYSTEM FUNCTIONALITIES

FAIR MANAGEMENT OF QUEUES OF AVAILABLE TAXIS

- Zones ←→ Queues
- Availability Updates and Call Confirmations
- Ride Rejection → Taxi moved to Last Position

CREATE AND MANAGE TAXI RIDE REQUESTS

- User: Form Filling (Web) / GPS Position (Mobile)
- System: Pick a Taxi (How?)

CREATE AND MANAGE TAXI RIDE RESERVATIONS

- User: Form Filling
- System: Pick a Taxi 10 Minutes before the Ride (How?)

POSSIBILITY TO EXTEND BASIC SERVICES AND ADD FUNCTIONS

Application Programming Interfaces (APIs)

MAIN ASSUMPTIONS

BIG_CITY

- Division in fixed-size zones (2 km² each)
- Origin and Destination of Taxi Ride

TAXIS

- Pre-registered Drivers and each Taxi has a unique ID Code
- Embedded Android Auto OS Device
- GPS correct
- 10 minutes of Maximum Waiting Time
- End of Ride

PASSENGERS

- Correct Data (GPS, Forms)
- Honesty
- Max N° People for a Ride
- Cash Payments

PROPOSED SYSTEM AND ACTORS

CLIENT SIDE, managed by a BACK-END Centralized Server Application:

- USER MOBILE APPLICATION: Android, iOS, HTML/CSS/JS Hybrid Development
- USER WEB APPLICATION: Front-end similar to User Mobile App
- TAXI MOBILE APPLICATION: Android Auto

ACTORS

- GUEST: Not yet registered, signs up filling a form
- USER: Registered with Email and Password, has access to the service
- TAXI DRIVER: Employed and pre-registered by the government

FUNCTIONAL REQUIREMENTS

GUEST

- Sign up into the User Web Application or Mobile Application by filling up a form with Username and Password

USER

- Log in into the web application or mobile application with username and password
- Create a Ride Request
- Create a Ride Reservation
- Check the list of Booked Taxis
- Cancel a Ride Reservation

TAXI DRIVER

- Confirm a Ride
- Reject a Ride
- Update their Availability

SYSTEM

- Propose a Ride to taxi drivers
- Confirm Requests or Reservations to the User with related information
- Insert, remove or move a Taxi from a queue

NON FUNCTIONAL REQUIREMENTS (1)

USER WEB APPLICATION INTERFACE MOCKUP

Created with Balsamiq - www.balsamiq.com

NON FUNCTIONAL REQUIREMENTS (2)

USER MOBILE APPLICATION INTERFACE MOCKUP

NON FUNCTIONAL REQUIREMENTS (3)

TAXI ANDROID AUTO OS APPLICATION INTERFACE MOCKUP

SOFTWARE SYSTEM ATTRIBUTES

AVAILABILITY: system online 24/7

SECURITY: SSL encryption. Password hashing and salting

RELIABILITY: 99.99 %. 52.56 minutes of downtime per year

AA. 2015-2016 Software Engineering 2 - Project

SPECIFICATIONS (1)

REGISTRATION OF A GUEST

- Email address used only once

USER / TAXI DRIVER LOG-IN

- Correct information must be inserted

DYNAMIC MANAGEMENT OF TAXI QUEUES

- A FIFO Queue for each Zone
- Taxi AVAILABLE ← → Taxi inserted in the Queue
- Taxi AVAILABLE moves to other Zone \rightarrow Dynamic update of Queues (TimeStamp)
- Taxi NOT AVAILABLE $\leftarrow \rightarrow$ Taxi not present in the Queue
- Ride Rejection → Taxi moved to the Last Position of the Queue

TAXI RIDE REQUEST

- Web Application → Meeting Location is required (Form)
- Mobile Application → Meeting Location provided by built-in GPS
- No Taxi for a Ride in a Zone → Picking the First in the nearest zone's queue
- Taxi Code and Waiting Time Assignment
- A request is ACTIVE → no other requests can be made

SPECIFICATIONS (2)

TAXI RIDE RESERVATION

- Form Filling (Origin, Destination, Meeting Date and Time)
- Confirmed only if done at least 2 hours before the Meeting Time
- 10 minutes before the Meeting Time, for the system Ride Reservation = Ride Request
- Up to 10 minutes before the Meeting Time, Cancellation is allowed

CONFIRMATION / REJECTION OF A RIDE

- Once a Ride is proposed on display, Taxi drivers have 15 seconds to answer
- In those 15 seconds, no other Ride are proposed to the same Taxi Driver
- At the End of a Ride, End Ride button will be pressed

UPDATE TAXI DRIVER AVAILABILITY

- Confirmation of a ride \rightarrow Availability OFF \rightarrow Taxi removed from Queue

LIST OF BOOKED TAXIS

- History of concluded/pending requests/reservations

SERVICE EXTENSIONS AND NEW FUNCTIONS

- APIs to add functions (Malicious Users Detection, Taxi Sharing Service)

USE CASE DIAGRAM

USER EXPERIENCE DIAGRAM (PASSENGER)

USER EXPERIENCE DIAGRAM (TAXI DRIVER)

SEQUENCE DIAGRAMS

TAXI DRIVER UPDATES THEIR AVAILABILITY (ON-OFF)

USER VIEWS LIST OF BOOKED TAXIS AND CANCEL A RESERVATION

STATE CHART DIAGRAM (EXAMPLE)

USER CREATES A TAXI RIDE RESERVATION

CLASS DIAGRAM

ARCHITECTURAL DESIGN (1)

ARCHITECTURAL DESIGN (2)

DESIGN CHOICES

MVC DESIGN PATTERN:

REST MESSAGES:

DEPLOYMENT DIAGRAM

COMPONENT DIAGRAM

RUNTIME VIEW (1)

A USER MAKES A TAXI RIDE REQUEST FROM THE MOBILE APPLICATION

RUNTIME VIEW (2)

A RIDE IS PROPOSED TO A TAXI DRIVER

RUNTIME VIEW (3)

A TAXI DRIVER REJECTS A RIDE

RUNTIME VIEW (4)

A TAXI MOVES FROM ONE ZONE TO ANOTHER WHILE ITS AVAILABILITY IS ON

INTEGRATION TESTING STRATEGY

BOTTOM-UP STRATEGY

- Drivers are used to test "leaf" components
- Once leaf modules have been tested, components of the relative higher level are integrated in sequence and another driver is used to test the modules below
- This operation is repeated until the top level of the system is reached

First step

Second step

SOFTWARE & SUBSYSTEMS INTEGRATION (1)

APPLICATION SUBSYSTEM

ROUTING SUBSYSTEM

SUBSYSTEM INTEGRATION SEQUENCE

SOFTWARE & SUBSYSTEMS INTEGRATION (2)

ENTIRE INTEGRATED SYSTEM

TOOLS AND TEST EQUIPMENT REQUIRED

APACHE JMETER: to test the performance of subsystems

- Routing: simulation to test the maximum number of simultaneously connected users
- Application: simulation of heavy load on REST API
- Storage: performance of database queries

JUNIT: Framework for Unit Testing in Java

- Unit tests of the single components
- Also used for Integration Testing

MOCKITO

- It generates mock objects, stubs and drivers

ARQUILLIAN

- Framework useful to perform Integration Testing of components with environment configurations and utilities

MANUAL TESTING

- Technique needed to simulate typical input data of the User (GUI Testing)

PROGRAM STUBS AND TEST DATA REQUIRED

TEST DATABASE

- Sample User data needed to perform some test cases

LIGHTWEIGHT API CLIENT

- To test the REST APIs without the actual client applications

EXTERNAL GPS STUB

- Needed to replace the external GPS system (Google Maps). It provides sample data

DRIVERS

- Needed to replace components not yet available for the integration test phase to test other lower-level components

FUNCTION POINTS TECHNIQUE (1)

INTERNAL LOGIC FILES (ILF)

- Passengers, Taxi Drivers, Queues, Zones, Locations, Ride Requests/Reservation
- Entities with a simple structure and small number of fields
- SIMPLE weight of ILF for all of them (7)
- $ILF FP = 6 \times 7 = 42$

EXTERNAL LOGIC FILES (ELF)

- External GPS Data
- Entity with a structure of average complexity
- MEDIUM weight of ELF for it (7)
- ELF FP = 7

EXTERNAL INPUTS (EI)

- User Login/Logout, User Registration, Ride Request creation, Ride Reservation creation, Ride Reservation Cancellation, Taxi Driver Ride Response, Taxi Driver Availability Switch.

All of them are SIMPLE operations (SIMPLE Weight of EI, 3)

- Polling Request, simple operation but periodic and frequent (MEDIUM Weight of EI, 4)
- EI FP = $7 \times 3 + 1 \times 4 = 25$

FUNCTION POINTS TECHNIQUE (2)

EXTERNAL OUTPUT (EO)

- Polling Output
- COMPLEX operation due to the use of more entities (cronjob)
- COMPLEX weight of EO for it (7)
- -EOFP = 7

EXTERNAL INQUIRY (EI)

- Passenger Notification View, Taxi Driver Notification View They are SIMPLE operations (SIMPLE weight of EI, 3 each)
- Passenger List of Booked Taxis View (Retrieval of all rides and Cancellation possibility)
 Taxi Driver In-Ride View (Google Maps API invocations)
 They are operations of Average Complexity (MEDIUM weight of EI, 4 each)
- $-EIFP = 2 \times 3 + 2 \times 4 = 14$

TOTAL FUNCTION POINTS (UFP) = 42 + 7 + 25 + 7 + 14 = 144

COCOMO ANALYSIS (1)

COCOMO II - Constructive Cost Model

Software	Size	Sizing Method S	ource Lines	of Code ▼						
	SLOC	% Design Modified	% Code Modified	% Integration Required	Assessment Softw and Understa Assimilation (0% - 5 (0% - 8%)	nding (0-	_			
New	6624									
Reused		0	0							
Modified										
Software	Scale Drivers									
Precedentedness		Nominal	▼ Architecture / Risk Resolution		Low	•	Process Maturity	Nominal	•	
Development Flexibility		Nominal	▼ Team Cohesion		High	•				
Software	Cost Drivers									
Product				Person	nel			Platform		
Required Software Reliability		High	▼ Analyst	Capability	Nominal	•	Time Constraint	Very High	1 4	
Data Base Size		High	▼ Program	nmer Capability	High	•	Storage Constraint	Nominal	•	
Product Complexity No		Nominal	▼ Person	Personnel Continuity		•	Platform Volatility	Low	•	
Developed for Reusability Nominal			▼ Applica	Application Experience Low		•	Project			
Documentation Match to Lifecycle Needs Nomina			Nominal	▼ Platforn	Experience	Low	•	Use of Software Tools	Nominal	•
				Langua	ge and Toolset Experien	ce Nominal	•	Multisite Development	Low	•
								Required Development Schedule		•
Maintena	nce Off ▼							, toquilde borotophion bolloudo	TTOTTINIA	
	Labor Rates									

Cost per Person-Month (Dollars) 2000

COCOMO ANALYSIS (2)

Results

Software Development (Elaboration and Construction)

Effort = 38.3 Person-months Schedule = 12.2 Months Cost = \$76567

Total Equivalent Size = 6624 SLOC

Acquisition Phase Distribution

Phase	I/ Derenn	Schedule (Months)	_	Cost (Dollars)
Inception	2.3	1.5	1.5	\$4594
Elaboration	9.2	4.6	2.0	\$18376
Construction	29.1	7.6	3.8	\$58191
Transition	4.6	1.5	3.0	\$9188

Software Effort Distribution for RUP/MBASE (Person-Months)

Contract End of Distribution for Itel AmbAoE (Forcest Montale					
Phase/Activity	Inception	Elaboration	Construction	Transition	
Management	0.3	1.1	2.9	0.6	
Environment/CM	0.2	0.7	1.5	0.2	
Requirements	0.9	1.7	2.3	0.2	
Design	0.4	3.3	4.7	0.2	
Implementation	0.2	1.2	9.9	0.9	
Assessment	0.2	0.9	7.0	1.1	
Deployment	0.1	0.3	0.9	1.4	

TASK SCHEDULE

T1: RASD v1.0, T2: RASD v2.0, T3: DD v1.0, T4: RASD v3.0, T5: DD v2.0, T6: DD v3.0, T7: ITPD v1.0, T8: DD v4.0, T9: PPD v1.0, T10: Front-end development, T11: Back-end development, T12: Acceptance Testing

RISK MANAGEMENT

RISK	PROBABILITY OF OCCURRENCE	EFFECT (IMPACT ON THE SYSTEM)	RECOVERY STRATEGY
Geolocation System (Google Maps) stops working	Very Low	Catastrophic	If the problem is temporary, use another external service to let the system work again.
Database cannot process as many transactions per second as expected	Moderate	Serious	Investigate the possibility of buying a higher performance database.
Temporary unavailability of personnel involved in critical tasks	Moderate	Serious	Reorganize the resource allocation so that there is more overlap of work and people therefore understand each other's jobs. Another aspect to consider is to select those people that are not already executing other critical activities.
Underestimated Development Time	Moderate	Serious	Investigate buying-in components; investigate the use of a program generator.

CONCLUSION

Any Questions?

