Pan African 2003

Day 1

- 1 Let $N_0 = \{0, 1, 2 \cdots\}$. Find all functions: $N_0 \to N_0$ such that:
 - (1) f(n) < f(n+1), all $n \in N_0$;
 - (2) f(2) = 2;
 - (3) f(mn) = f(m)f(n), all $m, n \in N_0$.
- 2 The circumference of a circle is arbitrarily divided into four arcs. The midpoints of the arcs are connected by segments. Show that two of these segments are perpendicular.
- 3 Does there exists a base in which the numbers of the form:

 $10101, 101010101, 1010101010101, \cdots$

are all prime numbers?

Pan African 2003

Day 2

1 Let $\mathbb{N}_0 = \{0, 1, 2 \cdots\}$. Does there exist a function $f : \mathbb{N}_{0 \to \mathbb{N}_0}$ such that:

$$f^{2003}(n) = 5n, \forall n \in \mathbb{N}_0$$

where we define: $f^1(n) = f(n)$ and $f^{k+1}(n) = f(f^k(n)), \forall k \in \mathbb{N}_0$?

- $\boxed{2}$ Find all positive integers n such that 21 divides $2^{2^n} + 2^n + 1$.
- 3 Find all functions $f: R \to R$ such that:

$$f(x^2) - f(y^2) = (x+y)(f(x) - f(y)), x, y \in R$$