Устойчивые варианты метода SSA для анализа временных рядов

Третьякова Александра Леонидовна, гр. 422

Санкт-Петербургский государственный университет Прикладная математика и информатика Вычислительная стохастика и статистические модели

Научный руководитель: к.ф.-м.н., доц. Голяндина Н.Э. Рецензент: м.н.с. Шлемов А.Ю.

Санкт-Петербург 2018г.

Постановка задачи

Рассмотрим вещественнозначный временной ряд

$$\mathsf{X} = (x_1, \dots, x_N)$$
, где N — длина ряда.

Задача

Разложение временного ряда на интерпретируемые аддитивные составляющие:

$$X = S + R$$

S - cигнал,

 $R - \underline{\mu}$ ум.

Метод: «Гусеница»-SSA (Singular Spectrum Analysis).

Постановка задачи

Рис.: График ряда с выделяющимся наблюдением и восстановление сигнала в присутствии выброса и без него.

Задача: необходимо исследовать устойчивость метода SSA к выделяющимся наблюдениям, а также предложить более устойчивые модификации метода.

Метод SSA для выделения сигнала ранга r

Ряд $X = (x_1, \ldots, x_N)$. Пусть 0 < L < N — длина окна. K = N - L + 1. Обозначим \mathcal{M} — пространство матриц $L \times K$, $\mathcal{M}_{\mathcal{H}}$ — пространство ганкелевых матриц $L \times K$, \mathcal{M}_r — множество матриц ранга, не превосходящего r.

 $Pяд X \mapsto траекторная матрица X$:

$$\mathbf{X} = [X_1 : \dots : X_K] = \begin{pmatrix} x_1 & x_2 & x_3 & \dots & x_K \\ x_2 & x_3 & x_4 & \dots & x_{K+1} \\ x_3 & x_4 & x_5 & \dots & x_{K+2} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_L & x_{L+1} & x_{L+2} & \dots & x_N \end{pmatrix}.$$

$\mathsf{M}\mathsf{e}\mathsf{T}\mathsf{o}\mathsf{d}\mathsf{S}\mathsf{S}\mathsf{A}$ для выделения сигнала ранга r

- ullet Оператор вложения $\mathcal{T}:\mathbb{R}^N o\mathcal{M}_{\mathcal{H}}:\mathcal{T}(\mathsf{X})=\mathbf{X}$.
- ullet $\Pi_r:\mathcal{M} o\mathcal{M}_r$ проектор на множество матриц ранга, не превосходящего r.
- ullet $\Pi_{\mathcal{H}}:\mathcal{M} o\mathcal{M}_{\mathcal{H}}$ проектор на пространство ганкелевых матриц.

Структура сигнала S: ранг траекторной (ганкелевой) матрицы $\mathcal{T}(\mathsf{S})$ равняется r.

Получаем оценку сигнала:

$$\tilde{\mathsf{S}} = \mathcal{T}^{-1} \Pi_{\mathcal{H}} \Pi_r \mathcal{T}(\mathsf{X}),$$

где проекторы можно строить по различным нормам.

Вид проекторов по норме в \mathbb{L}_2

Определение

Пусть ${\bf A}$ — матрица $m \times n$. Норма в пространстве \mathbb{L}_2 (норма Фробениуса):

$$\|\mathbf{A}\|_{\mathrm{F}} = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} a_{ij}^2}.$$

- $\Pi_{\mathcal{H}}$ проектор на пространство ганкелевых матриц по норме Фробениуса посредством усреднения элементов на диагоналях i+j= const: $\|\mathbf{X}-\mathbf{Y}\|_{\mathrm{F}}^2 \longrightarrow \min_{\mathbf{Y} \in \mathcal{M}_{\mathcal{H}}}$.
- ullet П $_r$ проектор на множество матриц ранга r по норме Фробениуса: $\|\mathbf{X}-\mathbf{Y}\|_{\mathrm{F}}^2 \longrightarrow \min_{\mathbf{Y}\in\mathcal{M}_r}$, $\mathbf{Y}=\sum_{i=1}^r \sqrt{\lambda_i} U_i V_i^{\mathrm{T}}$.

Вид проекторов по норме в \mathbb{L}_1

Определение

Пусть \mathbf{A} — матрица $m \times n$. Норма в пространстве $\mathbb{L}_1:\|\mathbf{A}\|_1=\sum\limits_{i,j}|a_{ij}|.$

Замечание

Так как $\operatorname{argmin} \mathbb{E} |\xi - a| = \operatorname{med} \xi$, то $\Pi_{\mathcal{H}}$ строится посредством выбора медианы значений на диагоналях $i+j={\sf const.}$

Для построения проектора на множество матриц ранга r в \mathbb{L}_1 имеется несколько методов:

- Последовательный метод;
- Метод с регуляризацией;
- Регрессионный метод (шаг последовательного метода).

L1-SSA. Реализация. Последовательный метод

В R-пакете pcaL1 имеется peaлизация последовательного метода peшeния задачи $\|\mathbf{X} - \mathbf{U}\mathbf{V}^{\mathrm{T}}\|_{1}^{2} \longrightarrow \min_{\mathbf{U},\mathbf{V}}, \ \mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}_{r}.$

Алгоритм l1pca [Jot et al., 2017]:

- **①** Инициализация $\mathbf{V}(0) \in \mathbb{R}^{r \times n}$.
- t := t + 1.
- $\mathbf{0} \ \mathbf{U}(t) = \underset{\mathbf{U} \in \mathbb{R}^{m \times r}}{\operatorname{argmin}} ||\mathbf{X} \mathbf{U}\mathbf{V}^{\mathrm{T}}(t-1)||_{1}.$
- $\mathbf{V}(t) = \underset{\mathbf{V} \in \mathbb{R}^{r \times n}}{\operatorname{argmin}} ||\mathbf{X} \mathbf{U}(t)\mathbf{V}^{\mathrm{T}}||_{1}.$
- if $\mathbf{V}(t) \neq \mathbf{V}(t-1)$ then Go to Step 2 else $\mathbf{V} := \mathbf{V}(t); \mathbf{U} := \mathbf{U}(t)$.

Решаем задачу, меняя на каждой итерации ${f U}$ и ${f V}$ и разбивая исходную задачу на линейные подзадачи.

L1-SSA. Реализация. Метод с регуляризацией

Задача:
$$\|\mathbf{X} - \mathbf{U}\mathbf{V}^{\mathrm{T}}\|_1^2 \longrightarrow \min_{\mathbf{U},\mathbf{V}}, \ \mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}_r.$$

Определение

Введем норму $\|\mathbf{E}\|_* = \sum\limits_i \mu_i$, где μ_i — сингулярные числа матрицы \mathbf{E} .

Замечание

- $oldsymbol{Q}$ Пусть $\mathbf{E} = \mathbf{U}\mathbf{V}^{\mathrm{T}}$. Тогда $\|\mathbf{E}\|_* = \|\mathbf{V}\|_*$, т.к. $\mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}_r$.

Переходим к задаче:

$$\|\mathbf{X} - \mathbf{U}\mathbf{V}^{\mathrm{T}}\|_{1}^{2} + \lambda \|\mathbf{V}\|_{*} \longrightarrow \min_{\mathbf{U}, \mathbf{V}}, \quad \mathbf{U}^{\mathrm{T}}\mathbf{U} = \mathbf{I}_{r}.$$

Метод был взят из статьи [Zheng, Liu, Sugimoto et al., 2012]. Реализация с исправлениями — собственная.

Этапы исследования

- Сравнение стандартного метода L2-SSA с различными параметрами, его модификации (SSA с центрированием) и треугольного фильтра (фильтра Бартлетта).
- Сравнение варианта L2SVD-L1H-SSA с проектором на пространство ганкелевых матриц в \mathbb{L}_1 с методом L2-SSA.
- ullet Сравнение различных способов построения проектора в \mathbb{L}_1 на множество матриц ранга, не превосходящего r, между собой, а также сравнение их с базовым методом L2-SSA.

Связь метода L2-SSA с линейными фильтрами.

Известно (Шлемов, 2011; Golyandina, Zhigljavsky, 2013):

- Результат восстановления сигнала методом L2-SSA сводится к применению системы линейных фильтров.
- Модификация SSA с центрированием (совпадает с методом с проекцией на вектор из единиц) также представима в виде системы линейных фильтров.

Утверждение

Коэффициенты фильтра, которому соответствует метод SSA с проекцией на вектор $(1,\dots,1)^{\mathrm{T}}$ с восстановлением по компоненте, соответствующей проекции, в точке \tilde{x}_m , где 1 < m < L-1:

$$\left(\frac{1}{(m+1)L},\frac{2}{(m+1)L},\ldots,\frac{1}{L},\ldots,\frac{1}{L},\ldots,\frac{2}{(m+1)L},\frac{1}{(m+1)L}\right).$$

Связь метода L2-SSA с линейными фильтрами

Утверждение

Восстановление методом SSA с проекцией на подпространство, натянутое на вектор $(1, \dots, 1)^{\mathrm{T}}$, по компоненте, соответствующей проекции, совпадает с применением фильтра Бартлетта с длиной окна, равной 2L-1 при $L \le s \le K$.

Коэффициенты метода SSA с проекцией не совпадают с коэффициентами фильтра Бартлетта при $1 \le m \le L-1$ и $K + 1 \le m \le N$.

Описание вычислительного эксперимента

Пусть длина ряда N=240. Рассмотрим временной ряд

$$x_n = e^{n/N} + \sin(2\pi n/120 + \pi/6) + \varepsilon_n, \ \varepsilon_n \sim N(0, 1),$$
 $y_{n_0} = x_{n_0} + \delta.$

Выделяющиеся наблюдения находятся в точках x_5 или x_{130} . Сравнения проводятся по величине ошибки, согласованной с \mathbb{L}_2 (MSE), и ошибки, согласованной с \mathbb{L}_1 (MAD):

$$\mathsf{MSE}(\tilde{S},S) = \mathbb{E}\left(\frac{1}{N}\sum_{i=1}^{N}(\tilde{s}_i - s_i)^2\right), \mathsf{MAD}(\tilde{S},S) = \mathbb{E}\left(\frac{1}{N}\sum_{i=1}^{N}|\tilde{s}_i - s_i|\right)$$

где S — сигнал, $ilde{S}$ — оценка сигнала. Будем вычислять RMSE = $\sqrt{\text{MSE}}$. Число повторов для оценок ошибок M=100.

Вычислительные эксперименты (L2-SSA)

Сравнивались следующие методы:

- ullet Полное выделение сигнала, r равно рангу сигнала
 - метод SSA с L=120, r=3 (лучшая отделимость от шума)
 - ullet метод SSA с L=30, r=3 (отделимость хуже)
- Похожие между собой методы
 - метод SSA с L=30, r=1 (средний вариант между разделимостью и сглаживанием)
 - ullet метод SSA с проекцией на вектор $(1,\dots,1)^{\mathrm{T}}$, L=30
 - ullet фильтр Бартлетта с длиной окна 2L-1, где L=30
- Сглаживание
 - ullet метод SSA с L=10, r=1

Ошибка L2-SSA в зависимости от размера выброса

δ (RMSE)	SSA120.3	SSA30.3	SSA30.1	SSAProj	Bartl	SSA10.1
0	0.018	0.027	0.139	0.143	0.136	0.034
9_{130}	0.886	0.760	0.547	0.544	0.542	0.804
9_{5}	0.366	1.810	0.298	0.310	0.552	0.921

MSE for 6 methods (outlier is in the middle of the row)

Рис.: Зависимость MSE от размера выброса, находящегося в точке x_{130} . Длина ряда N=240.

Сравнение трех вариантов L1-SSA между собой и с методом L2-SSA

δ (RMSE)		L2-SSA		
(IXIVISE)	pcaL1	ALM	L1-regr	SSA120.3
0	0.021	0.019	0.022	0.018
9_{130}	0.022	0.020	0.064	0.886
9_{5}	0.024	0.023	0.031	0.366

δ (MAD)	pcaL1	ALM	L1-regr	SSA120.3
0	0.016	0.009	0.019	0.013
9_{130}	0.021	0.010	0.031	0.751
9_{5}	0.016	0.010	0.030	0.132

Лучшими методами оказываются:

<u>При отсутствии выбросов,</u> RMSE: метод L2-SSA,

MAD: L1-SSA с регуляризацией.

В присутствии выбросов, RMSE и MAD: метод L1-SSA с регуляризацией.

Разложение MSE в сумму дисперсии и квадрата смещения при разной длине окна

$$\mathsf{MSE}(\tilde{S},S) = \mathsf{Var}(\tilde{S}) + (\mathsf{Bias}(\tilde{S},S))^2.$$

<u>Без выделяющегося наблюдения</u> основную часть MSE методов $L2 ext{-SSA}$ и $L1 ext{-SSA}$ составляет дисперсия.

L	Var (L2)	Bias ² (L2)	Var (L1)	$Bias^2\ (L1)$
10	0.0021	3.2e-05	0.0017	0.0003
120	0.0003	1.9e-06	0.0004	0.0001

В присутствии выброса в точке x_{130} основную часть MSE восстановления методом L2-SSA составляет смещение. Однако для L1-SSA основную часть ошибки составляет дисперсия.

L	Var ₁₃₀ (L2)	$Bias^2_{130}$ (L2)	$Var_{130}\left(L1\right)$	$Bias^2_{130}$ (L1)
10	0.0061	0.0255	0.0027	0.0003
120	0.0003	0.0054	0.0003	0.0001

Результаты

- Проведено теоретическое сравнение метода SSA с проекцией и фильтра Бартлетта.
- Проведено сравнение метода L2-SSA и его модификаций. Построены рекомендации по выбору параметров метода при разной величине выброса.
- Рассмотрен промежуточный вариант L2SVD-L1H-SSA, однако эффекта устойчивости не выявлено.
- Рассмотрен метод L1-SSA, устойчивый к выбросам. Найдены и частично самостоятельно реализованы методы проекции в \mathbb{L}_1 на множество матриц ранга, не превосходящего r.
- Проведены численные эксперименты, в которых выявлена самая точная и устойчивая реализация метода L1-SSA (проблема: медленная реализация).

