

Институт теплофизики им.С.С. Кутателадзе СО РАН

Лаборатория синтеза новых материалов

- Электродуговой синтез углеродных наноматериалов
- CVD синтез графена и создание функциональных элементов на его основе
- Создание тонкопленочных структур методом магнетронного напыления
- Развитие теоретических моделей фазовых превращений в неравновесных условиях (конденсация, кристаллизация, испарение)

Новосибирский научный центр Novosibirsk scientific center

Производство графена

CVD

ARC discharge

CVD Roll-to-Roll

Покрытие плоских образцов графен/стекло

I. A. Kostogrud, E. V. Boyko, and D. V. Smovzh, "The main sources of graphene damage at transfer from copper to PET/EVA polymer" // Mater. Chem. Phys., 2018
I. A. Kostogrud, E. V. Boyko, and D. V. Smovzh, "CVD Graphene Transfer from Copper Substrate to Polymer" // Materials Today: Proceedings, 2017

Покрытие цилиндрических образцов

Взаимодействие графена с жидкой и газовой средами

Graphene

Модификация свойств графена

Модификация свойств поверхности

- Непроницаема для газов
- Защита от окисления
- Защита от водородного охрупчивания
- Защита от агрессивных сред
- Изменение химических свойств поверхности

Прозрачность для электромагнитного взаимодействия

Оптическая

прозрачность

Прозрачность для смачивания

Свойства графена = свойства системы

Измерение контактного

угла смачивания

Измерение контактного угла смачивания проводилось методом лежачей капли. Определение значений углов проводилось тангенциальным методом

Сопротивление графен-полимерного композита на воздухе и в воде

Создание датчика на твердой подложке

Функционализация графена электродуговой сажей

Функционализация графена магнетронным

Напылением НЧ олова Оптимальные параметры синтеза МЅ Магнетронное напыление НЧ олова Тип МРС НіРІ МЅ Давление 1 Па. Мощность 50 Вт. Время напыления 10 с. напыления

Графеновая защита от коррозии

Autolab PGSTAT 30 (Metrohm, Голландия). 0.5 М КСІ

Защита от водородного охрупчивания

Тепловизионные снимки образцов без покрытия (Cu) и с покрытием графена (Cu + Gr). На снимке отмечена область подсчета средней температуры (среднее число точек составляло \sim 2000).

Тепловизор FLIR x6530sc Разрешение матрицы 640 х

$$I_{px} \sim \dot{q}_{rad} = \varepsilon_0 \sigma T_o^4$$

512 Максимальная мощность радиационного излучения медного цилиндра: T_o без покрытия — $4 \pm 0.3 \; \mathrm{kBt/m^2}$

$$T_o = \left(\frac{mI_{px}}{\varepsilon_0 \sigma}\right)^{-4}$$

• с графеновым покрытием — 1 ± 0.1 кВт/м²

Защита от излучения

Зависимость коэффициента черноты меди от температуры поверхности

Изменение степени черноты меди при нагревании с графеновым покрытием и без — обозначены синим и красными цветами соответственно.

Защитное покрытие СВЧ резонаторов

Рост добротности 5%, за счет увеличения проводимости Графен – покрытие защищающее от деградации

Изменение добротности резонатора после модификации поверхности. QL - добротность резонатора с модификацией, Qpure - добротность резонатора до модификации его поверхности.

Защита от вторичных разрядов

Fig. 4. (color online) SEY of graphene films with different layers, and that of the copper substrate.

Частота резонатора составляла ~2430 MHZ, добротность ~400, импульсная мощность генератора 100 Вт

Фотоэлектрический и болометрический эффекты

Параметры лазера:

Model: SDLaser 303 λ=532±10 nm P=5 mW

Зависимость температуры в плоскости Thermal Imager - FLIR x6530sc

Экспериментальная проверка термоакустики

Результаты отжига графена

Восстановление сопротивления после отжига на воздухе

Причины двух экспоненциальной кинетики:

- \square Адсорбция двух типов молекул (H_2O и O_2);
- □ Наличие двух типов структурных дефектов (1D и 2D);
- □ Сочетание физической адсорбции (быстрая стадия, обусловленная Ван-дер-ваальсовыми взаимодействиями) и хемосорбции (медленная стадия, связанная с образованием химических связей).

Разработке элементной базы, изделий электроники, на основе графена

Установки осаждения металлических слоев при обработке полупроводниковых пластин

Institute of Thermophysics S.S. Kutateladze Novosibirsk state University Advanced materials synthesis laboratory (AMS Lab)

Old

40

30

Senior researcher – 5 Researcher – 7 Aspirants – 5 Students - 8

