REPREZENTACJA WIEDZY

REALIZACJE SCENARIUSZY DZIAŁAŃ

PROJEKT NR 5

Szef:

ROBERT JAKUBOWSKI

Autorzy:
Mariusz Ambroziak
Paweł Bielicki
Karol Bocian
Hanna Dziegciar
Karol Dzitkowski
Mateusz Jankowski
Wiktor Ryciuk

Spis treści

1.	Opis zadania										
2.	Opis języka akcji										
	2.1. Sygnatura języka										
	2.2. Opis domeny										
	2.3. Scenariusze działań										
	2.4. Semantyka										
3.	Opis języka kwerend										
4.	Przykłady										
	4.1. Pytanie czy scenariusz może wystąpić										
	4.2. Pytanie czy dany warunek zachodzi w danym czasie										
	4.3. Pytanie czy dana akcja jest wykonywana w danym czasie										
	4.4. Pytanie czy cel jest osiągalny										
	4.5. Brak integralności										

1 Opis zadania

Zadaniem projektu jest opracowanie i zaimplementowanie:

- języka akcji pewnej klasy systemów dynamicznych,
- język kwerend zapewniającego uzyskanie odpowiedzi na określone pytania.

Szczegółowy opis klasy systemów dynamicznych oraz języka akcji jest opisany w rozdziale 'Opis języka akcji', natomiast język kwerend oraz zadawane pytania znajdują się w rozdziale 'Opis języka kwerend'. W tym dokumencie znajduje się również rozdział 'Algorytmy wnioskowania', w którym zostały opisane algorytmy, które zostaną zaimplementowane. W ostatnim rozdziale znajdują się przykłady. Pokazują ona konkretne przypadki użycia oraz oczekiwane wyniki działania programu.

2 Opis języka akcji

Język akcji zaprojektowany na potrzeby zadania, musi spełniać następujące warunki:

- 1. Prawo inercji.
- 2. Sekwencyjność działań.
- 3. Możliwe akcje niedeterministyczne.
- 4. Liniowy model czasu czas dyskretny.
- 5. Pełna informacja o wszystkich:
 - (a) akcjach,
 - (b) skutkach bezpośrednich.
- 6. Akcja posiada:
 - (a) warunek początkowy,
 - (b) czas trwania $t \ge 1, t \in \mathbb{N}$,
 - (c) efekt akcji.
- 7. Podczas trwania akcji, wartości zmiennych, na które ona wpływa, nie są znane.
- 8. Występujące rodzaje efektów:
 - (a) środowiskowe,
 - (b) dynamiczne.
- 9. Akcje mogą być niewykonalne.
- 10. Stany opisywane częściowo (obserwacje). (TODO wyjaśnić)
- 11. Pewne stany mogą rozpocząć wykonywanie pewnych akcji.

Językiem odpowiadającym powyższym założeniom jest język AL opisujący domeny akcji z czasem liniowym.

2.1 Sygnatura języka

```
\psi=(F,Ac,\mathbb{N})gdzie:

F-zbiór zmiennych inercji (fluentów)

Ac-zbiór akcji

\mathbb{N}-zbiór liczb naturalnych (czas trwania akcji)
```

2.2 Opis domeny

Rodzaje zdań występujących w projektowanym języku (domena języka): Oznaczenia:

```
f – fluent

Ac_i, Ac_j \in Ac

\pi \in Forms(F)

d_i, d \in \mathbb{N}
```

- initially α Określa stan początkowy fluentów w formule α .
- (Ac_i, d_i) causes α if π Akcja Ac_i trwająca d_i chwil powoduje stan α , jeśli zachodzi warunek π .
- (Ac_i, d_i) invokes (Ac_j, d_j) after d if π Akcja Ac_i trwająca d_i chwil powoduje wykonanie akcji Ac_j trwającej d_j chwil po d chwilach od zakończenia akcji Ac_i , jeśli zachodzi warunek π .
- (Ac_i, d_i) releases f if π Akcja Ac_i trwająca d_i chwil powoduje uwolnienie f po zakończeniu akcji Ac_i , jeśli zachodzi warunek π .
- π triggers (Ac_i, d_i) Akcja Ac_i trwająca d_i chwil jest wykonywana, jeśli zajdzie warunek π .

2.3 Scenariusze działań

Scenariusze działań opisane są w następujący sposób:

- Sc = (OBS, ACS)
- $OBS = \{(\gamma_1, t_1), ..., (\gamma_m, t_m)\}$, gdzie: $m \ge 0$ – obserwacje, gdzie każda obserwacja jest stanem częściowym (stanem spełniającym warunek γ w pewnym punkcie czasu t). γ – zbiór (np. $x_1 = True, x_2 = True, x_3 = False$).
- $ACS = \{((Ac_1, d_1), t_1), ..., ((Ac_n, d_n), t_n)\}$, gdzie: $n \ge 1$, $Ac_i \text{akcja}$, $d_i \text{czas trwania akcji}$, $t_i \text{punkt w czasie (rozpoczęcie akcji)}$.

2.4 Semantyka

Definicja 2.1. Semantyczną strukturą języka AL nazywamy system S = (H, O, E) taki, że:

- $H: F \times \mathbb{N} \longrightarrow \{0,1\}$ jest funkcją historii, pozwala ona stwierdzić, jaki stan ma pewny fluent w danej chwili czasu.
- $O: Ac \times \mathbb{N} \longrightarrow 2^F$ jest funkcją okluzji. Dla pewnej ustalonej akcji A i chwili czasu $t \in \mathbb{N}$ funkcja O(A,t) zwraca zbiór fluentów, na który akcja A ma wpływ, jeśli zostanie zakończona od czasu t-1 do t.
- E ⊆ Ac×N×N jest relacją wykonań akcji. Para (A, t, d) należy do relacji E jeśli akcja A trwająca d czasu jest rozpoczęta w czasie t. W naszym modelu zakładamy warunek sekwencyjności działań.
 Oznacza on, że tylko jedną akcje możemy wykonać w danym czasie tak, więc jeśli (A, t, d) ∈ E oraz (B, t, d) ∈ E, to A = B.

Niech: A, B będą akcjami, f - fluentem, α, π - będą formułami, d, d_2, d_3 - liczbami naturalnymi (oznaczającymi czas trawania akcji) oraz $fl(\alpha)$ będzie zbiorem fluentów występujących w α . Wtedy dla zdań języka AL muszą być spełnione następujące warunki:

- Dla każdego wyrażenia $((A,d) \ causes \ \alpha \ if \ \pi) \in D$ i dla każdego momentu w czasie $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$ oraz $(A,t,d) \in E$, wtedy $H(\alpha,t+d)=1$ i $fl(\alpha) \subseteq O(A,t+d)$.
- Dla każdego wyrażenia $((A,d) \ release \ f \ if \ \pi) \in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$ oraz $(A,t,d) \in E$, wtedy $f \in O(A,t+d)$.
- Dla każdego wyrażenia (π triggers (A,d)) $\in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi,t)=1$, wtedy $(A,t,d) \in E$.
- Dla każdego wyrażenia $((A, d_1) \ invokes \ (B, d_2) \ after \ d \ if \ \pi) \in D$ i dla każdego momentu czasu $t \in \mathbb{N}$, jeżeli $H(\pi, t) = 1$ oraz $(A, t, d_1) \in E$, wtedy $(B, t + d + d_1, d_2) \in E$.

Definicja 2.2. Niech S = (H, O, E) będzie strukturą języka AL, Sc = (OBS, ACS) będzie scenariuszem, oraz D domeną. Powiem, że S jest strukturą dla Sc zgodnym z opisem domeny D jeśli:

- Dla każdej obserwacji $(\alpha, t) \in OBS$, $H(\alpha, t) = 1$
- $ACS \subseteq E$

Definicja 2.3. Niech $O_1,O_2\colon X\longrightarrow 2^Y,$ mówimy, że $O_1\prec O_2$ jeżeli $\forall x\in X\ O_1(x)\subseteq O_2(x)$ oraz $O_1\neq O_2.$

Definicja 2.4. Niech S = (H, O, E) będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem domeny D. Mowimy, że S jest O-minimalną strukturą, jeżeli nie istnieje struktura S' = (H', O', E') dla tego samego scenariusza i domeny taka, że $O' \prec O$.

Definicja 2.5. Niech S = (H, O, E) będzie strukturą dla scenariusza Sc = (OBS, ACS) zgodną z opisem domeny D. S będziemy nazywać modelem Sc zgodnym z opisem D jeżeli:

- S jest O-minimalny
- Dla każdego momentu w czasie $t, d \in \mathbb{N}$, jeżeli istnieje $f \in F$: takie, że $H(f, t) \neq H(f, t + d)$ to istnieje pewna akcja $A \in Ac$ trwająca d czasu, taka, że $f \in O(A, t + d)$.

• Nie istnieje, żadna struktura S' = (H', O', E') dla Sc zgodna z opisem D która spełnia poprzednie warunki oraz taka, że $E' \subset E$.

Uwaga 2.1. Nie dla każdego scenariusza można ułożyć model. Mówimy, że scenariusz Sc jest zgodny jeśli istnieje do niego model zgodny z domeną D.

3 Opis języka kwerend

Zdefiniowany język akcji może być odpytywany przez poniżej zaprezentowany język kwerend, który zapewnia uzyskanie odpowiedzi TRUE/FALSE na następujące pytania:

- Q1. Czy podany scenariusz jest możliwy do realizacji zawsze/kiedykolwiek?
 - always/ever executable Sc
 Oznacza, że scenariusz Sc zawsze/kiedykolwiek jest możliwy do realizacji.
- **Q2.** Czy w chwili $t \ge 0$ realizacji podanego scenariusza warunek γ zachodzi zawsze/kiedykolwiek?
 - $always/ever\ \gamma\ at\ t\ when\ Sc$ Oznacza, że zawsze/kiedykolwiek w chwili t realizacji scenariusza Sc zachodzi warunek γ .
 - $always/ever\ \gamma\ when\ Sc$ Oznacza, że zawsze/kiedykolwiek w pewnej chwili t realizacji scenariusza Sc zachodzi warunek γ .
- $\mathbf{Q3.}$ Czy w chwili t realizacji scenariusza wykonywana jest akcja A?
 - performing A at t when Sc
 Oznacza, że zawsze w chwili t realizacji scenariusza Sc zachodzi akcja A.
 - $performing\ A\ when\ Sc$ Oznacza, że zawsze w pewnej chwili t realizacji scenariusza Sc zachodzi akcja A.
 - performing at t when Sc
 Oznacza, że zawsze w chwili t realizacji scenariusza Sc zachodzi pewna akcja A.
- **Q4.** Czy podany cel γ jest osiągalny zawsze/kiedykolwiek przy zadanym zbiorze o.bserwacji OBS?
 - always/ever accesible γ when Sc Oznacza, że cel γ jest osiągalny zawsze/kiedykolwiek przy zadanym zbiorze obserwacji OBS przy realizacji scenariusza Sc.

Semantyka kwerend w języku

Niech Sc będzie scenariuszem, D niech będzie opisem domeny języka, wtedy powiemy, że kwerenda Q jest konsekwencją Sc zgodnie z D (ozn. Sc, $D \mid \approx Q$)

- zapytanie kwerendą Q postaci γ at t when Sc zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $H(\gamma,t)=1$
- zapytanie kwerendą Q postaci γ when Sc zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $\exists_{t\in N}\ H(\gamma,t)=1$

- zapytanie kwerendą Q postaci performing~A at t when Sc zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $(A,t) \in E$
- zapytanie kwerendą Q postaci performing~A~when~Sc zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $\exists_{t\in N}~(A,t)\in E$
- zapytanie kwerendą Q postaci performing at t when Sc zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $\exists_{A\in Ac}$ $(A,t)\in E$
- zapytanie kwerendą Q postaci accesible γ when Sc zwróci wynik TRUE jeśli dla każdego modelu S=(H,O,E) scenariusza Sc zgodnego z D zajdzie $\exists_{t\in\mathbb{N}}\exists_{A\in Ac}$ $\gamma\in O(A,t)$

jeśli warunek nie zajdzie program zwróci wartość FALSE.

4 Przykłady

4.1 Pytanie czy dana akcja jest wykonywana w pewnym czasie

Ten przykład pokazuje przypadek kwerendy, która pyta, czy dana akcja jest wykonywana w pewnym czasie.

4.1.1 Historia

Mamy Billa i psa Maxa. Jeśli Bill idzie, to Max biegnie. Jeśli Bill gwiżdże , Max szczeka. Jeśli Bill zatrzymuje się, Max również. Jeśli Bill przestaje gwizdać, to Max przestaje szczekać.

4.1.2 Opis akcji

```
initially \neg go\_Bill and \neg run\_Max and \neg whistle\_Bill and \neg bark\_Max (goes_Bill, 2) causes running\_Max (goes_Bill, 2) invokes (run\_Max, 2) after 1 (whistles_Bill, 1) causes barking\_Max (whistles_Bill, 1) invokes (barks\_Max, 1) after 1
```

4.1.3 Scenariusz

```
Sc = (OBS, ACS)

OBS = \emptyset

ACS = (goes\_Bill, 0 + 1), (whistles\_Bill, 5 + 2), (goes\_Bill, 7 + 2)
```

4.1.4 Kwerendy

- 1. performing running_Max at 8 when Sc
- 2. performing $running_Max$ when Sc
- 3. performing at 8 when Sc

4.1.5 Analiza

Odpowiedzi na powyższe kwerendy są następujące:

- 1. FALSE,
- 2. TRUE,
- 3. TRUE.

Ilustruje to poniższy diagram:

			goes_Bill		runs_Max		es_Bill bark	s_Max	goes_Bill		runs_Max	
	0	1	2	3	4	5	6	7	8	9	10	11
go_Bill	-G	G	G	-G	-G	-G	-G	G	G	-G	-G	-G
run_Max	-R	-R	-R	R	R	-R	-R	-R	-R	R	R	-R
whistle_Bill	-WV	-W	-W	-W	-VV	W	-WV	-VV	-W	-W	-W	-W
bark_Max	-B	-B	-B	-B	-B	-B	В	-B	-B	-B	-B	-B
okluzja	{}	{}	{}		{}	{}	{}	{}	{}	{}	{}	{}

4.2 Brak integralności

Przykład *Brak integralnośći* pokazuje scenariusz, który mimo zgodności z warunkami zadania, jest sprzeczny z logiką *common sense* (z powodu braku warunków integralności).

4.2.1 Historia

Mamy Billa oraz komputer. Bill może nacisnąć przycisk Wlqcz lub odłączyć komputer od zasilania. Komputer jest wyłączony i podłączony do zasilania. Jeżeli zostanie naciśnięty jego przycisk Wlqcz, to komputer włącza się.

4.2.2 Opis akcji

initially $\neg on_computer$ and $connects_power_computer$ and $\neg swithing_on_computer$ ($click_button_on, 1$) causes $switching_on_computer$ ($click_button_on, 1$) invokes ($switch_on_computer, 2$) after 1 ($switch_on_computer, 1$) causes $on_computer$ ($disconnect_power, 1$) causes $on_computer$ and $\neg swithing_on_computer$

4.2.3 Scenariusz

$$Sc = (OBS, ACS)$$
$$OBS = \emptyset$$

 $ACS = (click_button_on, 0+1), (disconnect_power, 3+1), (click_button_on, 4+1)$

4.2.4 Kwerendy

- 1. $swithing_on_computer$ at 6+2 when Sc
- 2. $swithing_on_computer$ and $\neg on_computer$ at 6+2 when \mathbf{Sc}

4.2.5 Analiza

Powyższy scenariusz jest prawidłowy, lecz zawiera pewną niezgodność. W chwili t=4+1 komputer zostaje odcięty od zasilania. Powinien więc wyłączyć się. Bill chwili t=5+1 naciska przycisk Wlącz.Komputer zacznie włączać się mimo iż jest odcięty od zasilania. Zachodzą dwa sprzeczne ze sobą stany, tj. $swithing_on_computer = T$ i $on_computer = T$. Odpowiedzi na powyższe kwerendy będą odpowiednio: 1. TRUE i 2. FALSE. Należy zaznaczyć, że odpowiedzi zgodnie z logiką commonsense powinny być sobie równe.

		click_b	outton	switching_on_computer	discon	net_power clic	k_button	switching_on_computer	
	0	1	2	3	4	5	6	7	8
on_computer	F	F	F	F	-F	?F	?F	?F	?F
connects_power_computer	T	T	T	T	T	-T	-T	-T	-T
switching_on_computer	G	G	-G	-G	-G	G	G	G	G
okluzja	0	0	0	0	0	0	0	0	0