Testing

by M. E. J. Newman

UNIVERSIDADE DE SÃO PAULO Departamento de Computação e Matemática

presented by Kaique M. M. Oliveira

06 de Dezembro de 2023

Sumário

- Introdução
- O Modelo SIR
 - Descrição Matemática
 - Número Básico de Reprodução
 - Tamanho da Epidemia
- Modelo SIR em Grafos
 - Modelo de Configuração Percolado
 - Funções Geradas
 - Tamanho da epidemia
 - Exemplos
- Referências

Introdução O Modelo SIR Modelo SIR em Grafos Referências

Introdução

O que está por vir?

O objetivo é generalizar o modelo SIR de Kermack e McKendrick, um modelo que assume população homogênea e taxa de contato e remoção fixas, para um modelo onde em grafos com a distribuição de graus quaisquer, com taxas de infeção e remoção sendo também distribuições quaisquer.

Modelo de Kermack e McKendrick

Modelo SIR

- *s*, *i*, *r* := Percentual de Susceptíveis, Infectados e Removidos;
- $\beta, \gamma :=$ Taxa média de Contato e de Remoção por tempo;

$$\bullet \text{ O modelo \'e dado por } \begin{cases} \frac{ds}{dt} &= -\beta is; \\ \frac{di}{dt} &= \beta is - \gamma i; \text{ onde } s+i+r=1; \\ \frac{dr}{dt} &= \gamma i \gamma. \end{cases}$$

- Note que a taxa de infeção é homogênea, ou seja, a chance de um indivíduo infectado contaminar outra pessoa é sempre a mesma, independente da pessoa.
- Soluções analíticas para o modelo são difíceis de encontrar, o que não nos impede de tirar conclusões importantes sobre o comportamento do modelo.

Modelo de Kermack e McKendrick

Número Básico de Reprodução

- Suponha que a população sucetível seja 1. O Número Básico de Reprodução R_0 é o número médio de pessoas que a doença é transmitida antes da pessoa ser imunizada. Note que, se $R_0 > 1$ a doença cresce, já se $R_0 < 0$, a doença descresce. O limiar epidemiológico é definido quando $R_0 = 1$ i.
- No modelo SIR, a doença cresce quando $\frac{di}{dt} > 0$. Supondo que s=1 obtemos

$$0 < \frac{di}{dt} = \beta i s - \gamma i \iff 0 < \beta i - \gamma i \iff i < \frac{\beta}{\gamma} i \iff 0 < \frac{\beta}{\gamma}$$

ou seja, $R_0 = \frac{\beta}{\gamma}$ denota o início da epidemia.

Modelo de Kermack e McKendrick

Tamanho da Epidemia

• O tamanho da epidemia no modelo SIR nunca é igual a 1 independente se $R_0 >> 1$ (onde $R_0 < \infty$), ou seja

$$s_{\infty}=1-r_{\infty}>0, \quad \forall R_0\in\mathbb{R}.$$

A demonstração deste fato é envolvida, eis um modelo visual interativo para exploração: geogebra

Modelo de Configuração Percolado

Modelo de Configuração

 Dada uma sequência de graus (k_i)_{i∈N}, o grafo é selecionado de forma uniforme e aleatória do conjunto de todos os grafos possíveis gerados por esta sequência. A figura abaixo representa o algoritmo:

- No algoritmo acima, a chance de duas pontas se contectarem é sempre a mesma, independente das pontas.
- O próximo passo é generalizar a escolha da sequência $(k_i)_{i\in\mathbb{N}}$ a partir de uma distribuição de graus p_k de nossa escolha, qualquer que seja ela.

Percolação por Ligações

• Considere um grafo qualquer. Dada uma probabilidide ϕ , o processo de percolação por ligações é definido como o processo de ocupação de ligações aleatoriamente com probabilidade ϕ . Veja o exemplo abaixo.

(b) φ = 0.7

• Estamos interessados em analisar o espaço de todos os grafos de configuração com distribuição de grau p_k e percolação T, como definiremos a seguir

Taxa Média de Transmissão

- Considere um par de indivíduos conectados i e j, sendo i infecioso e j suscetível;
- Seja r_{ij} a probabilidade de i infectar j;
- Suponha que i permanece infectado por um tempo total τ_i ;
- ullet A probabilidade $1-T_{ij}$ que i não transmitirá a doença para j é

$$1-T_{ij}=\lim_{\delta t\to 0}(1-r_{ij}\delta t)\tau_i/\delta t=e^{-r_{ij}\tau_i}.$$

Logo a probabilidade de Transmição é dada por

$$T_{ij} = 1 - e^{-r_{ij}\tau_i}. (1)$$

Taxa Média de Transmissão

- Note que podemos escolher r_{ij} e τ_i da maneira que quisermos. Em particular, consideremos que r_{ij} e τ_i são variáveis aleatórias i.i.d (independentes e identicamente distribuídas) escolhidas a partir das distribuições P(r) e $P(\tau)$, respectivamente.
- Definimos T como a média (valor esperado) de T_{ij} sobre a distribuição de probabilidade conjunto de P(r) e $P(\tau)$, i.e

$$T = \langle T_{ij} \rangle = 1 - \int_0^\infty \int_0^\infty P(r)P(\tau)e^{-r\tau} dr d\tau \qquad (2)$$

 Uma conclusão que o valor T nos fornece é que, globalmente (uma parte não trivial da população), as diferenças locais (individuais) são niveladas e não afetam o comportamento da doença em nível populacional.

Algumas Observações

- Considere um surto de uma doença partindo de um indivíduo, em uma rede, com transmissibilidade T. Marque como "ocupado"todas as ligações onde ocorre transmissão. O tamanho total do surto é o tamanho do componente do grafo que o individuo inicial participa.
- O processo descrito acima é idêntico ao modelo de percolação por ligações com taxa ${\cal T}$
- Por fim, o nosso modelo epidemiológico será matematicamente descrito pelo processo de percolação por ligações com taxa T sobre uma rede condigurada.

Funções Geradoras

Distribuição do Grau

ullet Considere a função geradora para a distribuição de graus p_k

$$g_0(x) = \sum_{k=0}^{\infty} p_k x^k = p_0 + p_1 x + p_2 x^2 + \dots$$

Algumas propriedades da função geradora são

•
$$p_k = \frac{g^{(k)}(0)}{k!}$$
, • $\langle 1 \rangle = g_0(1) = 1$, • $\langle k \rangle = g'_0(1)$, ...

•
$$\langle k^n \rangle = \left(z \frac{\delta}{\delta z} \right)^k g_0(z) \Big|_{z=1}$$
.

•
$$g_{0(\sum_{k=1}^{n} X)}(z) = [g_0(z)]^n$$

Distribuição do Grau Excedente

 Note que a distribuição de graus tendo seguido uma aresta é proporcinal a kp_k. Logo, sua função geradora é dada por

$$\frac{\sum kp_kx}{\sum kp_k}=x\frac{G_0'(x)}{G_0'(1)}.$$

 Logo, a função geradora G₁ da distribuição de graus excedente é

$$G_1(x) = \frac{G'_0(x)}{G'_0(1)} = \frac{G'_0(x)}{z},$$
 (3)

onde $z = G'_0(1)$.

Distribuição das Ligações Ocupadas

- Faremos a mesma análise que a de cima mas, desta vez, sobre o modelo de percolação de ligações.
- A probabilidade de que um vértice tenha m de suas k arestas ocupadas é dado por $\binom{k}{m}T^m(1-T)^{k-m}$. A distribuição $G_0(x;T)$ do número de ligações ocupadas será dado por:

$$G_0(x;T) = \sum_{m=0}^{\infty} \sum_{k=m}^{\infty} {k \choose m} T^m (1-T)^{k-m} x^m$$
 (4)

$$= \sum_{k=0}^{\infty} p_k \sum_{m=0}^{k} {k \choose m} T^m (1-T)^{k-m} x^m$$
 (5)

$$=\sum_{k=0}^{\infty}p_{k}(1-T+xT)^{k}=G_{0}(1+(x-1)T). \quad (6)$$

Tamanho da epidemia

 Analogamente, a distribuição de ligações ocupadas excedentes é dada por

$$G_1(x;T) = G_1(1+(x-1)T).$$
 (7)

Distribuição do Tamanho dos Surtos da Doença

• Seja $P_s(T)$ a distribuição dos surtos de tamanho s para uma transmissibilidade T, o que equivalentemente é a distribuição dos componentes no modelo de percolação. Seja $H_0(x;T)$ a sua função gerados correspondente, ou seja,

$$H_0(x;T) = \sum_{s=0}^{\infty} P_s(T) x^s.$$
 (8)

Exemplos

 Seguindo a mesma lógica que anteriormente, H₁(x; T) é a função geradora para a distribuição dos componentes excedentes. É possível que H₀ e H₁ satisfazem:

$$H_1(x;T) = xG_1(H_1(x;T),T),$$
 (9)

$$H_0(x;T) = xG_0(H_1(x;T),T).$$
 (10)

• Solucionando as equações acima, analiticamente ou numericamente, é possível encontrar a distribuição dos surtos $P_s(T)$ de tamanho dados por

$$P_s(T) = \frac{H_0^{(k)}(0)}{k!} \tag{11}$$

Média dos Surtos

Apesar de nem sempre conseguirmos encontrar a distrubuição
P_s(T) dos surtos em forma fechada, a média (s) do tamanho dos surtos é sempre possível de se encontrar, como segue:

$$\langle s \rangle = H'_0(1;T) = 1 + G'_0(1;T)H'_1(1;T).$$
 (12)

Então

$$\langle s \rangle = 1 + \frac{TG_0'(1)}{1 - TG_1'(1)}$$
 (13)

• Note que $\langle s \rangle$ diverge quando $TG_1'(1)=1$, tal ponto define o quando surto não ficará mais confinado a um número finito de casos (lembrando que a nossa análise depende que n>>1).

Tamanho da epidemia

As nossas definições de H₀ e H₁ das equações (9) e (10) foram feitas supondo que não existem auto-ligações em um próprio nó ou múltiplas ligações entre dois nós. Logo H₀ e H₁ estão definidos fora do componente gigante e podemos encontrar o tamanho S(T) da epidemia fazendo

$$H_0(1;T) = \sum_{s=0}^{\infty} P_s = 1 - S(T).$$
 (14)

Então $S(T)=1-G_0(H_1(1;T);T)$. Portanto, a probabilidade de um surto com transmissão T se tornar uma epidemia é simplesmente S(T).

Grau dos Infectados

- Test
- Como H_1 só está definido fora do componente gigante, então $H_1(1;T)$ é a probabilidade de um nó não estar conectado a epidemia via um de seus vizinhos. É possível mostrar que a média z_{out} dos graus fora da epidemia é

$$z_{out} = \frac{H_1(1;T)[1-T+H_1(1;T)]}{1-S}z.$$
 (15)

E que a média z_{in} dentro dos graus dentro da epidemia é

$$z_{out} = \frac{1 - H_1(1; T)[1 - T + H_1(1; T)]}{S} z.$$
 (16)

Como esperado $z_{out} < z$ e $z_{in} \ge z$ e, também, se um nó tem grau k, conforme $k \to \infty$ a change dele se infectar é 1.

Exemplo

Distribuição segundo Lei de Potência

- Seja $p_k = Ck^{\alpha}e^{-k/\kappa}, \quad k \ge 1$, onde $C, \alpha, \kappa \in \mathbb{R}$ e $C = Li_{\alpha}(e^{-1/\kappa}.$
- Sejam P(r) e $P(\tau)$ distribuições discretas e uniformes para N nós e valor fixo $0 \le r \le r_{max}$ e $0 \le \tau \le r_{max}$ escolhido.
- Então $T_{ij} = 1 (1 r_{ij})^{\tau_i} = 1 (1 r)^{\tau}$, então.
- $T = \langle T_{ij} \rangle = 1 \sum_{r=0}^{n} \sum_{\tau=0}^{n} \left(\frac{1}{r^{n-1}} \frac{1}{\tau^{n-1}} (1-r)^{\tau} \right)$
- $G_0(x) = \frac{\operatorname{Li}_{\alpha}(xe^{-1/\kappa})}{\operatorname{Li}_{\alpha}(e^{-1/\kappa})};$ $G_0(x) = \frac{\operatorname{Li}_{\alpha-1}(xe^{-1/\kappa})}{xLi_{\alpha-1}(e^{-1/\kappa})};$
- $G_1(x) = \frac{\operatorname{Li}_{\alpha-1}(e^{-1/\kappa})}{\operatorname{Li}_{\alpha-2}(e^{-1/\kappa}) \operatorname{Li}_{\alpha-1}(e^{-1/\kappa})};$

Exemplo

Distribuição segundo Lei de Potência

- $\bullet \ \langle s \rangle = 1 + \frac{T[\operatorname{Li}_{\alpha-1}(\mathrm{e}^{-1/\kappa})]^2}{\operatorname{Li}_{\alpha}(\mathrm{e}^{-1/\kappa})[(T+1)\operatorname{Li}_{\alpha-1}(\mathrm{e}^{-1/\kappa})-T\operatorname{Li}_{\alpha-2}(\mathrm{e}^{-1/\kappa})]};$
- O tamanho S da epidemia não pode ser achada de forma fechada, mas pode ser numericamente aproximada, como visto anteriormente. A proxima figura representa a soluções aproximadas para

 $N=100000, \alpha=2$, para cada $\kappa=5,10$ e 15. Sob as mesmas condições, também é representada a simulação de 10000 surtos para cada grafo gerado com para cada par $(P(r),P(\tau))$ onde P(r)=0.1/N,0.2/N,...,1/N e $P(\tau)=1/N,2/N,...,10/N$.

Exemplo

Distribuição segundo Lei de Potência

Referências

M. E. J. Newman, Spread of epidemic disease on networks. Phys. Rev. E, 66(1):016128, 2002.

M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications.

Phys. Rev. E, 64(2):026118, 2001.

M. E. J. Newman Networks.

Oxford University Press, 2018.