

10386 Experimental Techniques in Quantum Technology Group 8 - David Ullrich (s246822), Enrique Escobar Fernández-Marcote (s250770), Jan Scarabelli Calopa (s246846), Lakshmi Prasad Nanabala (s246851), Livia Darboe (s240388), Thomas Borup Ravnborg (s214434)

Continuous variable Quantum Key Distribution

11/06/2025 DTU

Introduction

- Information coded in Continuous variable properties such as the amplitude and phase quadratures
- Coherent Communication: Common phase referencing using a local oscillator (LO)
- CVQKD transmitter: Encode random bits by modulation.
- CVQKD receiver: Decode either amplitude or phase quadrature only (Homodyne)

11/06/2025 DTU Experiment Presentation

Comparison to DV-QKD

	DV-QKD	CV-QKD
Year	2019	2019
Light	Discrete Photon	Continuous Wave
	•	
	•	v.W.
Information carrier	Photon polarization/phase	Field phase or amplitude
State representation	Density matrix	Wigner function
	5.5 6.4 6.5 6.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0	84 64 65 65 65 65 65 65 65 65 65 65 65 65 65
Detector	single-photon detector	Homodyne/Heterodyne
Practical maximum range	104 km (307 km)	202.81 km
Output key rate	12.7 kbps (3.18 bps)	$6.24 \mathrm{\ bps}$

11/06/2025 DTU Experiment Presentation

Initial Implementation

- Choice of states: Single mode Coherent states
- Choice of modulation: Gaussian modulation of Coherent states (GMCS)
- Choice of detection: Homodyne Detection
- Type of Error Correction/Post processing: Reverse Reconciliation (RR)
- As usual with QKD, a given protocol has two possible implementations, **prepare**and measure (PM) or entanglement based (EB), which are known to be

 equivalent in the case of Gaussian protocols

11/06/2025 DTU Experiment Presentation

Why CV-QKD?

Advantages

- Compatibility with classical telecom infrastructure (coherent states and homodyne detection).
- Avoid single-photon detectors (very challenging to produce).
- Higher Key Rate in medium distances (50-100 km) due to high speed modulation and detection.
- No need for single photon sources use lasers with gaussian modulation instead.

Disadvantages

- Excess noise and channel loss.
- High sensitivity to excess noise.
- Limited security proofs.
- Less intuitive and theoretically complex than DV.

Overview of protocol

Encoding

- Alice encodes information in amplitude (x) and phase (p) quadratures of coherent states.
- Their quadratures are continuous variables.
- Note: Alice agrees with Bob on a way of encoding bits into coherent states.

Decoding

- Homodyne detection: Bob measures randomly one of the two quadratures.
- He discretizes the measurement into bits.

Sifting

- Bob shares which quadratures he has measured.
- Alice only keeps the bits corresponding to Bob's chosen quadrature.

Post-processing

Reconciliation

- Goal: Convert noisy, continuous data into identical binary strings
- Different strategies:
 - 1. Forward reconciliation (*FR*): Bob corrects his data according to Alice's data
 - 2. Reverse reconciliation (*RR*): Alice corrects her data to estimate Bob's data

Note: Generally speaking *RR* performs better!

Parameter estimation

- **Goal:** Upper bound Eve's information
- Key rate: $R = \beta I(A:B) I(A:E)$

Privacy amplification

- Alice & Bob share a bit string, but some of these bits might be know to Eve
- Solution: Apply hashfunction to sections of the string

Homodyne detection

• Randomly measure **amplitude** or **phase** quadrature, depending on **phase difference** $\phi = \{0,\pi/2\}$

Advantage:

- Higher precision in measurements, i.e. higher SNR.
- Simpler post-processing techniques
- Less complex post-processing

• Disadvantage:

Lower key rate due to basis switching

 In general, better for longer distances/lower noise QKD, but worse for scenarios that require a higher key rate.

Experimental setup

- CV QKD setup
 - Tunable Laser → strong local oscillator (LO) and signal
 - Signal: attenuated, modulated in amplitude (AM) and phase (PM) and polarization matched
 - Local oscillator: phase shift (PS)
 - LO and signal interfered and AC/DC currents measured using Homodyne detector (HD)

Measurement strategy

- Component characterization
 - Power measurements from couplers and variable attenuator (VATT)
 - Amplitude and phase modulators investigated on oscilloscope
 - Homodyne detection performed without modulation

11/06/2025 DTU Experiment Presentation

10