Fizika 2 - izpeljave

insightfulbriyan

29. 05. 2025

Kazalo

1	Valovna enačba	2
2	Lomni količnik	4
3	Lomni zakon	5
4	Odbojni zakon	7
5	Mikroskop	8
6	Daljnogled	9
7	Absorpcija EM valovanja	10
8	Okrogla luč po Lambertovem zakonu	11
9	Michelson-Morleyev interferometer	13
10	Stefanov zakon	15
11	Wienov zakon	16
12	Gostota energijskega toka	17
13	Absorpcija svetlobe	18
14	Polarizacija	19
15	Braggova enačba	20
16	Comptonsko sipanje	22
17	Ciklotron	24
18	Bohrov model atoma	25
19	Uporabliene enačbe	26

1 Valovna enačba

1.1

Faradejev 150 in Amperov 152 zakon lahko združimo v valovno enačbo.

1.2

. $\vec{J} = 0$ $\vec{D} = \epsilon_0 \vec{E}$ $\vec{B} = \mu_0 \vec{H}$

$$\vec{E} = (0, E_y(x, t), E_z(x, t))$$

$$\vec{H} = (0, H_y(x, t), H_z(x, t))$$

1.3

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ E_x & E_y & E_z \end{vmatrix} = \left(\frac{\partial E_z}{\partial y} - \frac{\partial E_y}{\partial z}, \frac{\partial E_x}{\partial z} - \frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} - \frac{\partial E_z}{\partial y} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_y}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}, \frac{\partial E_z}{\partial x} \right) = \left(0, -\frac{\partial E_z}{\partial x}$$

$$= -\mu_0 \left(\frac{\partial H_x}{\partial t}, \frac{\partial H_y}{\partial t}, \frac{\partial H_z}{\partial t} \right) = -\mu_0 \left(0, \frac{\partial H_y}{\partial t}, \frac{\partial H_z}{\partial t} \right)$$
 (1)

$$\frac{\partial E_z}{\partial x} = \mu_0 \frac{\partial H_y}{\partial t}$$
 (2)
$$\frac{\partial E_y}{\partial x} = -\mu_0 \frac{\partial H_z}{\partial t}$$
 (3)

$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ H_x & H_y & H_z \end{vmatrix} = \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}, \frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}, \frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} \right) = \left(0, -\frac{\partial H_z}{\partial x}, \frac{\partial H_y}{\partial x} \right) = \left(0, -\frac{\partial H_z}{\partial x}, \frac{\partial H_y}{\partial x} - \frac{\partial H_z}{\partial y} \right) = \left(0, -\frac{\partial H_z}{\partial x}, \frac{\partial H_y}{\partial x} - \frac{\partial H_z}{\partial y} \right) = \left(0, -\frac{\partial H_z}{\partial x}, \frac{\partial H_y}{\partial x} - \frac{\partial H_z}{\partial y} \right) = \left(0, -\frac{\partial H_z}{\partial x}, \frac{\partial H_y}{\partial x} - \frac{\partial H_z}{\partial y} -$$

$$=\epsilon_0\left(\frac{\partial H_x}{\partial t},\frac{\partial H_y}{\partial t},\frac{\partial H_z}{\partial t}\right)=\epsilon_0\left(0,\frac{\partial H_y}{\partial t},\frac{\partial H_z}{\partial t}\right) \quad \textbf{(4)}$$

$$\frac{\partial H_z}{\partial x} = -\epsilon_0 \frac{\partial E_y}{\partial t}$$
 (5)
$$\frac{\partial H_y}{\partial x} = \epsilon_0 \frac{\partial E_z}{\partial t}$$
 (6)

1.5

$$\begin{split} \frac{\partial E_y}{\partial x} &= -\mu_0 \frac{\partial H_z}{\partial t} & \frac{\partial H_z}{\partial x} &= -\epsilon_0 \frac{\partial E_y}{\partial t} \\ \frac{\partial^2 E_y}{\partial x \partial t} &= -\mu_0 \frac{\partial^2 H_z}{\partial t^2} & \frac{\partial^2 H_z}{\partial x^2} - \epsilon_0 &= \frac{\partial^2 E_y}{\partial t \partial x} \end{split}$$

1.6

$$\frac{\partial^2 E_y}{\partial x^2} \frac{1}{-\mu_0} = -\epsilon_0 \frac{\partial^2 E_y}{\partial t^2} \tag{7}$$

1.7

$$E_y = E_0 \cos(\omega t - kx); \omega = 2\pi f, k = \frac{\omega}{c_0}$$
(8)

$$\frac{\partial^2 E_y}{\partial x^2} = -k^2 E_y; \frac{\partial^2 E_y}{\partial t^2} = -\omega^2 E_y \tag{9}$$

$$k^{2}E_{y}\frac{1}{-\epsilon_{0}\mu_{0}} = \omega^{2}E_{y} = \frac{\omega^{2}}{c_{0}^{2}}\frac{1}{-\epsilon_{0}\mu_{0}}E_{y}$$
(10)

$$\frac{1}{\epsilon_0 \mu_0} = c_0^2 \tag{11}$$

2 Lomni količnik

$$c = \frac{1}{\sqrt{\epsilon_r \epsilon_0 \mu_r \mu_0}}; c_0 = \frac{1}{\sqrt{\epsilon_0 \mu_0}}$$
 (12)

$$n = \frac{c}{c_0} = \sqrt{\frac{\epsilon_0 \mu_0}{\epsilon_r \epsilon_0 \mu_r \mu_0}} = \frac{1}{\sqrt{\epsilon_r \mu_r}}$$
 (13)

3 Lomni zakon

3.1

Minimiziramo čas preleta žarkov od točke A do točke B, ki sta v različnih medijih z različnimi n.

3.2

 $t(\alpha,\beta)$ ima ekstrem, če je dt=0

$$t = t_1 + t_2 \tag{14}$$

$$t = \frac{s_1}{c_1} + \frac{s_2}{c_2} \tag{15}$$

$$t = \frac{h_1}{\cos(\alpha) * c_1} + \frac{h_2}{\cos(\beta) * c_2}$$
 (16)

$$dt = \frac{\partial t}{\partial \alpha} d\alpha + \frac{\partial t}{\partial \beta} d\beta = 0$$
 (17)

$$\frac{h_1 \sin(\alpha)}{\cos^2(\alpha) * c_1} d\alpha = -\frac{h_2 \sin(\beta)}{\cos^2(\beta) * c_2} d\beta \tag{18}$$

$$\frac{d\alpha}{d\beta} = -\frac{h_2}{h_1} \frac{c_1}{c_2} \frac{\sin(\beta)}{\sin(\alpha)} \frac{\cos^2(\alpha)}{\cos^2(\beta)} \tag{19}$$

3.3

L je razdalja med točkama po y osi, ker je konstantna, je dL=0

$$L = l_1 + l_2 = \frac{h_1}{\tan(\alpha)} + \frac{h_2}{\tan(\beta)}$$
 (20)

$$dL = \frac{h_1}{\cos^2(\alpha)} d\alpha + \frac{h_2}{\cos^2(\beta)} d\beta = 0$$
 (21)

$$\frac{h_1}{\cos^2(\alpha)}d\alpha = -\frac{h_2}{\cos^2(\beta)}d\beta \tag{22}$$

$$\frac{d\alpha}{d\beta} = -\frac{h_2 \cos^2(\beta)}{h_1 \cos^2(\alpha)} \tag{23}$$

$$-\frac{h_2}{h_1}\frac{c_1}{c_2}\frac{\sin(\beta)}{\sin(\alpha)}\frac{\cos^2(\alpha)}{\cos^2(\beta)} = -\frac{h_2}{h_1}\frac{\cos^2(\beta)}{\cos^2(\alpha)}$$
(24)

$$\Rightarrow \frac{\sin(\beta)}{\sin(\alpha)} = \frac{c_1}{c_2} = \frac{\frac{c_0}{n_1}}{\frac{c_0}{n_2}} = \frac{n_2}{n_1}$$
 (25)

$$\Rightarrow n_1 \sin(\alpha) = n_2 \sin(\beta) \tag{26}$$

4 Odbojni zakon

$$t = t_1 + t_2 \tag{27}$$

$$t = \frac{s_1}{c} + \frac{s_2}{c} \tag{28}$$

$$t = \frac{h}{\cos(\alpha) * c} + \frac{h}{\cos(\beta) * c} \tag{29}$$

$$dt = \frac{\partial t}{\partial \alpha} d\alpha + \frac{\partial t}{\partial \beta} d\beta = 0$$
 (30)

$$\frac{h\sin(\alpha)}{\cos^2(\alpha)*c}d\alpha = -\frac{h\sin(\beta)}{\cos^2(\beta)*c}d\beta \tag{31}$$

$$\frac{d\alpha}{d\beta} = -\frac{\sin(\beta)}{\sin(\alpha)} \frac{\cos^2(\alpha)}{\cos^2(\beta)} \tag{32}$$

4.1

L je razdalja med točkama po y osi, ker je konstantna, je dL=0

$$L = l_1 + l_2 = \frac{h}{\tan(\alpha)} + \frac{h}{\tan(\beta)}$$
(33)

$$dL = \frac{h}{\cos^2(\alpha)} d\alpha + \frac{h}{\cos^2(\beta)} d\beta = 0$$
 (34)

$$\frac{h}{\cos^2(\alpha)}d\alpha = -\frac{h}{\cos^2(\beta)}d\beta \tag{35}$$

$$\frac{d\alpha}{d\beta} = -\frac{\cos^2(\alpha)}{\cos^2(\beta)} \tag{36}$$

$$-\frac{\sin(\beta)}{\sin(\alpha)}\frac{\cos^2(\alpha)}{\cos^2(\beta)} = -\frac{\cos^2(\alpha)}{\cos^2(\beta)}$$
(37)

$$\Rightarrow \frac{\sin(\beta)}{\sin(\alpha)} = 1 \tag{38}$$

$$\Rightarrow \sin(\alpha) = \sin(\beta) \tag{39}$$

$$\Rightarrow \alpha = \beta \tag{40}$$

5 Mikroskop

$$\tan(\varphi_1) = \frac{p}{x_0} \tag{41}$$

$$\tan(\varphi_2) = \frac{i}{f_{ok}} \tag{42}$$

$$\frac{i}{e} = \frac{p}{f_{ob}} \tag{43}$$

$$M = rac{ an(arphi_2)}{ an(arphi_1)}$$
 (44)

$$M = \frac{ex_0}{f_{ok}f_{ob}} \tag{45}$$

6 Daljnogled

$$\tan(\varphi_1) = \frac{p}{a} = \frac{s}{b} \tag{46}$$

$$\tan(\varphi_2) = \frac{s}{f_{ok}} \tag{47}$$

$$\frac{1}{f_{ob}} = \frac{1}{a} + \frac{1}{b} \Rightarrow b = \frac{af_{ob}}{a - f_{ob}}$$
 (48)

$$M = \frac{\tan(\varphi_2)}{\tan(\varphi_1)} = \frac{b}{f_{ok}} \tag{49}$$

$$M = \frac{af_{ob}}{f_{ok}(a - f_{ob})} \tag{50}$$

7 Absorpcija EM valovanja

Telo debeline x in koeficientom absorpcije μ bo absorbira svetlobni tok j. Tanko telo debeline dx absorbira svetlobni tok dj

$$dj = -\mu j dx \tag{51}$$

$$\frac{1}{j}dj = -\mu dx \tag{52}$$

$$\int_{j_0}^{j(x)} \frac{1}{j} dj = -\mu \int_0^x dx \tag{53}$$

$$ln(j(x)) - ln(j_0) = -\mu x$$
 (54)

$$\ln\left(\frac{j(x)}{j_0}\right) = -\mu x \tag{55}$$

$$j(x) = j_0 e^{-\mu x} \tag{56}$$

8 Okrogla luč po Lambertovem zakonu

8.1

$$B(\theta) = B_0 \tag{57}$$

$$dI = B(\theta)\cos(\beta)dS \tag{58}$$

$$dS = xd\varphi dx \tag{59}$$

$$dS = \int_0^{2\pi} x dx d\varphi \tag{60}$$

$$dS = 2\pi x dx \tag{61}$$

$$dI = B_0 \cos(\beta) 2\pi x dx \tag{62}$$

$$dE = \frac{dI}{r^2}\cos(\beta) \tag{63}$$

$$dE = \frac{B_0}{r^2} \cos^2(\beta) 2\pi x dx \tag{64}$$

$$r = \sqrt{x^2 + h^2} \tag{65}$$

$$\cos(\beta) = \frac{h}{r} \tag{66}$$

$$r = \frac{h}{\cos(\beta)} \tag{67}$$

$$\tan(\beta) = \frac{x}{h} \Rightarrow x = h \tan \beta \tag{68}$$

$$\frac{1}{\cos^2(\beta)}d\beta = \frac{1}{h}dx\tag{69}$$

$$dx = h \frac{1}{\cos^2(\beta)} d\beta \tag{70}$$

8.3

$$\beta(x) = \arctan\left(\frac{x}{h}\right) \tag{71}$$

$$\beta(0) = 0 \tag{72}$$

$$\beta(R) = \beta_0 = \arctan\left(\frac{R}{h}\right) \tag{73}$$

8.4

$$E = \int dE = \int_0^\beta \frac{B_0 \cos^2(\beta) \cos^2(\beta) 2\pi h \sin(\beta) h}{h^2 \cos(\beta) \cos^2(\beta)} d\beta$$
 (74)

$$E = \int_0^\beta B_0 \sin(\beta) \cos(\beta) 2\pi d\beta \tag{75}$$

$$E = B_0 \pi \int_0^\beta \sin(2\beta) d\beta \tag{76}$$

$$E = B_0 \pi \int_0^{2\beta} \sin(u) du; u = 2\beta \Rightarrow du = 2d\beta$$
 (77)

$$E = \frac{B_0 \pi}{2} (-\cos(u))|_{u=0}^{2\beta}$$
 (78)

$$E = \frac{B_0 \pi}{2} (1 - \cos(2\beta)) \tag{79}$$

(80)

8.5

Če je R velik

$$\lim_{R\to\infty}E=\lim_{\beta\to\frac{\pi}{2}}\frac{B_0\pi}{2}(1-\cos(2\beta_0))=\frac{B_0\pi}{2}(1-\cos(\pi))=\frac{B_0\pi}{2}(1+1)=B_0\pi \tag{81}$$

9 Michelson-Morleyev interferometer

9.1

$$T_{t} = \frac{2L}{\sqrt{c^{2}-v^{2}}}$$

$$T_{l} = \frac{L}{c-v} + \frac{L}{c+v} = \frac{L(c+v)+L(c-v)}{(c-v)(c+v)}$$

$$T_{l} = \frac{2L}{\sqrt{c^{2}(1-\frac{v^{2}}{c^{2}})}}$$

$$T_{l} = \frac{2L}{c^{2}-v^{2}}$$

$$T_{l} = \frac{2L}{c} \frac{1}{1-\frac{v^{2}}{c^{2}}}$$

$$T_l - T_t = \frac{2L}{c} \left(\frac{1}{1 - \frac{v^2}{c^2}} - \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \right)$$
 (82)

$$(T_l - T_t)c = k\lambda = 2L\left((1 + \frac{v^2}{c^2}) - (1 + \frac{1}{2}\frac{v^2}{c^2})\right)$$
(83)

$$k\lambda = 2L\frac{1}{2}\frac{v^2}{c^2} = L\frac{v^2}{c^2}$$
 (84)

Če interferometer zavrtimo za 90° lahko zapišemo $k\lambda = -L {v^2 \over c^2}$

$$n = \frac{k_1 \lambda - k_2 \lambda}{\lambda} = \frac{L \frac{v^2}{c^2} + L \frac{v^2}{c^2}}{\lambda} = \frac{2L}{\lambda} \frac{v^2}{c^2}$$
 (85)

(86)

Žal se teoretični izračun ne ujema z eksperimentom

9.4

Če upoštevamo Lorentzovo transformacijo 19.4 lahko zapišemo

$$T_l = \frac{2L\sqrt{1 - \frac{v^2}{c^2}}}{c} \frac{1}{1 - \frac{v^2}{c^2}} = \frac{2L}{c} \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} = T_t$$
 (87)

10 Stefanov zakon

Lahko ga izpeljemo z integriranjem Planckovega zakona 19.4

$$j = \int_0^\infty \frac{dj}{d\lambda} d\lambda = \int_0^\infty \frac{2\pi h c_0^2}{\lambda^5 \left(e^{\frac{hc_0}{\lambda k_B T}} - 1\right)} d\lambda$$
 (88)

10.1

 $x = \tfrac{hc_0}{\lambda k_B T} \Rightarrow d\lambda = -\tfrac{hc_0}{k_B T x^2} dx \text{ in } \lambda \to 0 \Rightarrow x \to \infty, \lambda \to \infty \Rightarrow x \to 0$

$$j = \int_{\infty}^{0} \frac{2\pi h c_0^2}{\left(\frac{hc_0}{k_B T x}\right)^5 (e^x - 1)} \left(-\frac{hc_0}{k_B T x^2}\right) dx \tag{89}$$

$$j = \frac{2\pi (k_B T)^4}{h^3 c_0^3} \int_0^\infty \frac{x^3}{e^x - 1} dx$$
 (90)

$$j = \frac{2\pi (k_B T)^4}{h^3 c_0^3} \cdot \frac{\pi^4}{15} = \frac{2\pi^5 k_B^4 T^4}{15h^3 c_0^3}$$
(91)

$$j = \sigma T^4; \sigma = \frac{2\pi^5 k_B^4}{15h^3 c_0^3} = 5,67 \cdot 10^{-8} \frac{\mathsf{W}}{\mathsf{m}^2 \mathsf{K}^4}$$
 (92)

11 Wienov zakon

Lahko ga izpeljemo z odvajanjem Planckovega zakona 19.4

$$\frac{dj}{d\lambda} = \frac{2\pi h c_0^2}{\lambda^5 \left(e^{\frac{hc_0}{\lambda k_B T}} - 1\right)} \tag{93}$$

$$\frac{dj}{dx} = \frac{2\pi k_B^5 T^5}{h^4 c_0^3} \frac{x^5}{e^x - 1}; x = \frac{hc_0}{\lambda k_B T}$$
(94)

11.1

$$\frac{dj}{dx} = A \frac{x^5}{e^x - 1} = 0 {(95)}$$

$$\frac{5x^4(e^x-1)-x^5e^x}{(e^x-1)^2}=0$$
(96)

$$5x^4(e^x - 1) - x^5e^x = 0 (97)$$

$$5(e^x - 1) = xe^x {(98)}$$

$$5 = x \frac{e^x}{e^x - 1} \tag{99}$$

$$x \approx 4.9651$$
 (100)

(101)

$$\lambda_{max} = \frac{hc_0}{k_B T x} = \frac{hc_0}{4.9651 k_B T} \tag{102}$$

$$\lambda_{max}T = k_W = 2.898 \cdot 10^{-3} \text{m K}$$
 (103)

12 Gostota energijskega toka

12.1

 $\overline{j} = \overline{w}c_0$ $w_E = \frac{1}{2}\epsilon_0 E^2$ $w_B = \frac{1}{2}\mu_0 H^2 = \frac{1}{2}\frac{B^2}{\mu_0}$ $w = w_E + w_B = \frac{1}{2}\epsilon_0 E^2 + \frac{1}{2}\frac{B^2}{\mu_0}$ $\vec{E} = \vec{B} \times \vec{c}_0$ $c_0^2 = \frac{1}{\epsilon_0 \mu_0}$

$$E = E_0 \cos(\omega t - kx) \tag{104}$$

$$B = B_0 \cos(\omega t - kx) \tag{105}$$

12.2

$$\overline{w} = \frac{1}{2} \epsilon_0 E_0^2 \overline{\cos(\omega t - kx)} + \frac{1}{2} \frac{B^2}{\mu_0} \overline{\cos(\omega t - kx)}$$
 (106)

$$\overline{w} = \frac{1}{4}\epsilon_0 E_0^2 + \frac{1}{4} \frac{B^2}{\mu_0} \tag{107}$$

$$\overline{w} = \frac{1}{4}\epsilon_0 E_0^2 + \frac{1}{4} \frac{B^2}{\mu_0} \tag{108}$$

$$\overline{w} = \frac{1}{4}\epsilon_0 E_0^2 + \frac{1}{4} \frac{E_0^2}{\mu_0 c_0^2} \tag{109}$$

$$\overline{w} = \frac{1}{4}\epsilon_0 E_0^2 + \frac{1}{4}\epsilon_0 E_0^2$$
 (110)

$$\overline{w} = \frac{1}{2}\epsilon_0 E_0^2 = \frac{1}{2} \frac{B_0^2}{\mu_0} \tag{111}$$

(112)

$$\overline{j} = \overline{w}c_0 = \frac{1}{2}\epsilon_0 E_0^2 c_0 = \frac{1}{2} \frac{B_0^2}{\mu_0} c_0 \tag{113}$$

13 Absorpcija svetlobe

14 Polarizacija

15 Braggova enačba

Slika 1: https://en.wikipedia.org/wiki/Braggs%27_law Da pride do konstruktivne interferencije mora biti razlika poti med dvema žarkoma, ki se odbijeta od dveh ploskev kristala, enaka celotnemu številu valovnih dolžin λ

$$N\lambda = |AB| + |BC| - |AC'| \tag{114}$$

$$|AB| = |BC| = \frac{d}{\sin(\theta)} \tag{115}$$

$$|AC| = \frac{2d}{\tan(\theta)} \tag{116}$$

$$|AC'| = |AC|\cos(\theta) = \frac{2d\cos(\theta)}{\sin(\theta)}\cos\theta = \frac{2d\cos^2(\theta)}{\sin(\theta)}$$
(117)

(118)

$$N\lambda = \frac{d}{\sin(\theta)} + \frac{d}{\sin(\theta)} - \frac{2d\cos^2(\theta)}{\sin(\theta)}$$
 (119)

$$N\lambda = \frac{2d}{\sin(\theta)}(1 - \cos^2(\theta)) \tag{120}$$

$$N\lambda = \frac{2d}{\sin(\theta)}\sin^2(\theta) \tag{121}$$

$$N\lambda = 2d\sin(\theta) \tag{122}$$

15.2

Naj bo φ kot med vpadnim žarkom in žarkom sipane svetlobe

$$N\lambda = 2d\sin(\frac{1}{2}\varphi) \tag{123}$$

16 Comptonsko sipanje

Slika 2: https://en.wikipedia.org/wiki/Compton_scattering

. $\Delta\sum_i E_i = 0$ $\Delta\sum_i P_i = 0$ E = hf $E_e = \sqrt{(p_e c_0)^2 + (m_e c_0^2)^2}$ $E = Pc_0$

$$E_{\gamma} + E_e = E_{\gamma}' + E_e' \tag{124}$$

$$E_{\gamma} = hf \tag{125}$$

$$E_e = m_e c_0^2; P_e = 0 {(126)}$$

$$E'_{\gamma} = hf' \tag{127}$$

$$E'_e = \sqrt{(P'_e c_0)^2 + (m_e c_0^2)^2}$$
 (128)

$$hf + m_e c_0^2 = hf' + \sqrt{(P'_e c_0)^2 + (m_e c_0^2)^2}$$
 (129)

$$P_e^{\prime 2}c_0^2 = (hf + m_e c_0^2 - hf')^2 - m_e^2 c_0^4$$
(130)

$$\vec{P_{\gamma}} + \vec{P_e} = \vec{P'_{\gamma}} + \vec{P'_e}$$
 (131)

$$\vec{P}'_e = \vec{P}_{\gamma} + \vec{P}'_{\gamma}; P_e = 0$$
 (132)

$$P_e'^2 = \vec{P}_e' \cdot \vec{P}_e' = (\vec{P}_{\gamma} + \vec{P}_{\gamma}') \cdot (\vec{P}_{\gamma} + \vec{P}_{\gamma}')$$
 (133)

$$P_e'^2 = P_\gamma^2 + P_\gamma'^2 - 2P_\gamma \cdot P_\gamma' \cos(\varphi) \tag{134} \label{eq:134}$$

$$P_e'^2 c_0^2 = P_{\gamma}^2 c_0^2 + P_{\gamma}'^2 c_0^2 - 2P_{\gamma} \cdot P_{\gamma}' \cos(\varphi) c_0^2$$
 (135)

$$P_e'^2 c_0^2 = (hf)^2 + (hf')^2 - 2hfhf'\cos(\varphi)$$
 (136)

$$(hf + m_e c_0^2 - hf')^2 - m_e^2 c_0^4 = (hf)^2 + (hf')^2 - 2hfhf'\cos(\varphi)$$
 (137)

$$((hf)^2 + (m_ec_0^2)^2 + (hf')^2 + 2(hf)(m_ec_0^2) - 2(hf')(m_ec_0^2) - 2(hf)(hf')) +$$

$$-m_e^2 c_0^4 = (hf)^2 + (hf')^2 - 2(hf)(hf')\cos(\varphi)$$
 (138)

$$(hf)^2 + (hf')^2 + 2(hf)(m_ec_0^2) - 2(hf')(m_ec_0^2) - 2(hf)(hf') =$$

$$= (hf)^2 + (hf')^2 - 2(hf)(hf')\cos(\varphi)$$
 (139)

$$2(hf)(m_ec_0^2) - 2(hf')(m_ec_0^2) = -2(hf)(hf')\cos(\varphi)$$
 (140)

$$fm_e c_0^2 - f' m_e c_0^2 = -hff' \cos(\varphi)$$
 (141)

$$fc_0^2 - f'c_0^2 = -\frac{hff'}{m_0}\cos(\varphi)$$
 (142)

$$\frac{c_0^2}{f'} - \frac{c_0^2}{f} = -\frac{h}{m_e}\cos(\varphi)$$
 (143)

$$\frac{c_0}{f'} - \frac{c_0}{f} = -\frac{h}{m_e c^2} \cos(\varphi) \qquad (144)$$

$$\lambda' - \lambda = -\frac{h}{m_e c_0^2} \cos(\varphi) \qquad \text{(145)}$$

17 Ciklotron

18 Bohrov model atoma

Uporabliene enačbe 19

19.1 Matematika

Gradient

$$\vec{\nabla}f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) \tag{146}$$

Divergenca

$$\vec{\nabla} \cdot \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$
 (147)

Maxwellove enačbe 19.2

Faradejev zakon v integralni obliki Amperov zakon v integralni obliki

$$\oint \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{S}$$
 (149)

Faradejev zakon v diferencialni obliki

$$\vec{\nabla} \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \tag{150}$$

19.3 **Optika**

Enačba preslikave

$$\frac{1}{f} = \frac{1}{a} + \frac{1}{b} \tag{153}$$

Enačba leče

$$\frac{1}{f} = (\frac{n_2}{n_1} - 1)(\frac{1}{R_1} + \frac{1}{R_2}); \tag{154}$$

R>0, če je središče krivulje na nasprotni strani leče, kot površina, ki jo opisuje

Skupek leč

$$\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} - \frac{d}{f_1 f_2} \tag{155}$$

19.4 Moderna fizika

Rotacija

$$ec{
abla} imes ec{F} = egin{bmatrix} ec{i} & ec{j} & ec{k} \ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \ F_x & F_y & F_z \ \end{pmatrix}$$
 (148)

$$\oint \vec{E} \cdot d\vec{l} = -\frac{\partial}{\partial t} \int \vec{B} \cdot d\vec{S} \qquad (149) \qquad \int \vec{H} \cdot d\vec{s} = \int J d\vec{S} + \int \frac{\partial \vec{D}}{\partial t} \cdot d\vec{S} \quad (151)$$

Amperov zakon v diferencialni obliki

$$\vec{\nabla} \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$
 (152)

Lomni zakon (3)

$$n_1 \sin(\alpha) = n_2 \sin(\beta) \tag{156}$$

Mikroskop (5)

$$M = \frac{ex_0}{f_{ok}f_{ob}} \tag{157}$$

Daljnogled (6)

$$M = \frac{af_{ob}}{f_{ok}(a - f_{ob})}$$
 (158)

Lorentzova transformacija

Galilejeva transformacija

$$x' = \gamma(x - vt)$$
 $x = \gamma(x' + vt')$ (159) $x' = x - vt$ $x = x' + vt'$ (164)

$$x' = x - vt$$
 $x = x' + vt'$ (164)

$$y' = y \qquad y = y' \tag{160}$$

$$y' = y \qquad y = y' \tag{165}$$

$$z' = z \qquad z = z' \tag{161}$$

$$z' = z \qquad z = z' \tag{166}$$

$$y' = y$$
 $y = y'$ (160) $y' = y$ $y = y'$ $z' = z$ $z = z'$ (161) $z' = z$ $z = z'$ $t' = \gamma(t - \frac{v}{c^2}x)$ $t = \gamma(t' + \frac{v}{c^2}x')$ (162) $t' = t$ $t = t'$

$$t' = t t = t' (167)$$

(168)

Lorentzov faktor

Planckov zakon

$$\gamma = \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}$$
 (163)
$$\frac{dj}{d\lambda} = \frac{2\pi hc^2}{\lambda^5 \left(e^{\frac{hc}{\lambda k_B T}} - 1\right)}$$