## PROGRAM 07: SEGMENTED SIEVE PROGRAM (Find Prime in Interval)



Examples: find Prime Numbers Between given Interval[Left, Right] (GFG)

Input : L = 20, R = 30

Output : 23, 29

Step 01: Apply Normal sieve from 0 to root R





Step 02: find base prime from .



Step 03: segmented sieve:



```
far ( Auto prim : basiprim ) {
          int Firstmul = ( Primu) * Primu /
          if I First-Mol 2 L) {
                Finst-mul += Primi;
           int j = max ( First-mul, primu * primu);
           wniw ( j = R) E
          sysimu [j-L] = falsi i
j+= primi i
```



| Prime 2 | 20       | $\frac{\mathbf{j} \leq \mathbf{R}}{202 = 30}$ |
|---------|----------|-----------------------------------------------|
| (       | 22       |                                               |
|         | 24<br>26 |                                               |
|         | 28       |                                               |
|         | 30       | 32 <= 30 X END                                |

3 21 
$$2|2=30$$
  
24  $27$   
30  $332=30$   $END$   
5 20  $202=30$   
25  $252=30$   
30  $352=30$   $END$   
35  $352=30$   $END$ 

Signm [1] = face 
$$j = 21+3$$
  
Signm [u] = face  $j = 24+3$   
Signm [v] = face  $j = 27+3$   
Signm [v] = face  $j = 30+3$   
Signm [v] = face  $j = 20+5$   
Signm [5] = face  $j = 25+5$   
Signm [5] = face  $j = 25+5$   
Signm [5] = face  $j = 30+5$ 

7 21 (19 <=30) END => SAM PROUSS for (11 13 17 19 23 29)

J = max(First-mul, Prim & Prim)

= max(21 1 7 x 7)

= 49

Final ANS (23 and 29)