A Rough Guide to Gravitational Radiation

Achamveedu Gopakumar

Tata Institute of Fundamental Research, Mumbai

June 6, 2019

Outline

Aim is to provide an introduction to Gravitational Waves (GWs) without using General Relativity

What are GWs?

- Rough estimates for GW amplitude & Luminosity...
- Why we expect GW background in the nano-Hertz frequency range?
- Bernard F. Schutz, Gravitational waves on the back of an envelope;
 American Journal of Physics 52, 412 (1984);
 https://doi.org/10.1119/1.13627

GWs: I

General Relativity (GR) defines GWs as ripples in the curvature of space-time that propagate with the speed of light!

It is possible to **COMPUTE** most of the crucial effects of GWs using Newtonian Gravitational Theory, Classical Electrodynamics & some elements of Special Relativity

GWs: I

General Relativity (GR) defines GWs as ripples in the curvature of space-time that propagate with the speed of light!

It is possible to **COMPUTE** most of the crucial effects of GWs using Newtonian Gravitational Theory, Classical Electrodynamics & some elements of Special Relativity

• Newtonian gravity involves a scalar potential $\phi_{\rm N}({\bf x},t)$ such that $\nabla\phi_{\rm N}=4\,\pi\,G\,
ho$, such that

$$\phi_{N}(\mathbf{x},t) = -G \int \frac{\rho(\mathbf{y},t)}{r} d^{3}y, \quad r \equiv |\mathbf{x} - \mathbf{y}|$$
 (1)

A change in $\phi_{\rm N}({\bf x},t)$ due to a change in $\rho({\bf y},t)$ propagate instantaneously

 Special Relativity demands that no information should be able to propagate faster than c: the speed of light

GWs: II

To make $\phi_{
m N}$ consistent with Special Relativity, we modify it

$$\phi_{\rm R}(\mathbf{x},t) = -G \int \frac{\rho(\mathbf{y},t-\frac{r}{c})}{r} d^3y$$
 (2)

Dominant effects of GWs can be deducted from such a retarded gravitational potential

This simple insertion will help us to define GWs in a non-rigorous way

GWs: II

To make $\phi_{
m N}$ consistent with Special Relativity, we modify it

 $\phi_{\rm R}(\mathbf{x},t) = -G \int \frac{\rho(\mathbf{y},t-\frac{r}{c})}{r} d^3y$ (2)

Dominant effects of GWs can be deducted from such a retarded gravitational potential

This simple insertion will help us to define GWs in a non-rigorous way

ullet $\phi_{
m R}$ satisfies the scalar wave equation

$$\Box \phi_{\rm R} \equiv \left(\nabla^2 - \frac{\partial^2}{c^2 \, \partial^2 t} \right) \, \phi_{\rm R} = 4 \, \pi \, G \, \rho$$

ullet Take the spatial gradient of $\phi_{
m R}$

$$\nabla \phi_{R} = G \int \left(\frac{\rho}{r} - \frac{\partial \rho}{c \, \partial t} \right) \frac{\mathbf{x} - \mathbf{y}}{r^{2}} \, d^{3} \mathbf{y} \tag{3}$$

Achamveedu Gopakumar (TIFR) Primer to GWs June 6, 2019 4 / 18

GWs: III

• If $|{m x}|\gg |{m y}_{
m mx}|$, we have $r\sim |{m x}|$ & can negelct 1/r term in the previous Eq.

$$m{n} \cdot m{\nabla} \phi_{
m R} \sim rac{\partial \phi_{
m R}}{c \, \partial t}, \ \ m{n} = m{x}/|m{x}| \ \phi_{
m R}/\lambda \sim 1/c imes \phi_{
m R}/T$$

• If we are far away from a GW source, the typical length scale over which ϕ_R varies is $\mathbf{c} \times$ the typical time scale over which ϕ_R changes

GWs: III

• If $|{m x}|\gg |{m y}_{
m mx}|$, we have $r\sim |{m x}|$ & can negelct 1/r term in the previous Eq.

$$m{n} \cdot m{\nabla} \phi_{\mathrm{R}} \sim rac{\partial \phi_{\mathrm{R}}}{c \, \partial t}, \quad m{n} = m{x}/|m{x}|$$
 (4) $\phi_{\mathrm{R}}/\lambda \sim 1/c \times \phi_{R}/T$

- If we are far away from a GW source, the typical length scale over which ϕ_R varies is ${\bf c}$ × the typical time scale over which ϕ_R changes
- This is true for a wave traveling at speed c
 This is our Gravitational Wave
- ullet Recall that $\phi_R \sim v^2$. Therefore, the amplitude of GW should be \sim

$$h \sim \frac{\left(\text{time} - \text{dependent part of } \phi_R\right)}{c^2}$$
 (5)

An estimate for the dominate contribution to h: I

Consider a region $|x|\gg |y|b$ & we have far-zone expansion

0

$$1/r \equiv |\mathbf{x} - \mathbf{y}|^{-1} \sim \frac{1}{|\mathbf{x}|} + \mathbf{y} \cdot \mathbf{n} |\mathbf{x}|^{-2}$$
 (6)

This leads to (if we neglect $\mathcal{O}(|\mathbf{x}|^{-2})$ terms)

$$\phi_{\mathrm{R}} = -\frac{G}{|\mathbf{x}|} \int \rho(\mathbf{y}, t_r) d^3 y, \quad t_r = t - \frac{r}{c}$$
 (7)

- Let $t_0 = t \frac{|\mathbf{x}|}{c}$ & this leads to $t_r \sim t_0 \mathbf{y} \cdot \mathbf{n}/c$
- Expand $\rho(t_r)$ about t_0

$$\phi_R = \frac{-G}{|\mathbf{x}|} \left\{ \int \left[\rho(t_0) - \frac{\dot{\rho}}{c} \, \mathbf{n} \cdot \mathbf{y} + \frac{\ddot{\rho}}{2 \, c^2} \, (\mathbf{n} \cdot \mathbf{y})^2 + \ldots \right] d^3 y \right\}$$
(8)

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - かり(で

An estimate for the dominate contribution to h: II

First term

$$\int \rho(t_0)d^3y \equiv M \tag{9}$$

• Let $\mathbf{v} = \frac{d\mathbf{y}}{dt}$; the second term involves

$$n_i \int \dot{\rho} y_i \, d^3 y = n_i \int \rho \, v_i \, d^3 y = \mathbf{n} \cdot \mathbf{P} \tag{10}$$

where P is the conserved momentum of the source

An estimate for the dominate contribution to h: II

First term

$$\int \rho(t_0)d^3y \equiv M \tag{9}$$

• Let $\mathbf{v} = \frac{d\mathbf{y}}{dt}$; the second term involves

$$n_i \int \dot{\rho} y_i \, d^3 y = n_i \int \rho \, v_i \, d^3 y = \mathbf{n} \cdot \mathbf{P} \tag{10}$$

where \boldsymbol{P} is the conserved momentum of the source

Third term contains

$$\int \ddot{\rho} \, y_i \, y_j \, d^3 \, y = \ddot{I}_{ij} \tag{11}$$

where $I_{ij}(t) \equiv \int \rho(t) y_i y_i d^3y$ is the quadrupole moment of gravitating source & $\ddot{I}_{ij} = \int \rho v_i v_j d^3y$

Retarded potential becomes

$$\phi_R \sim -\frac{GM}{|\mathbf{x}|} + \frac{G\mathbf{n} \cdot \mathbf{P}}{c|\mathbf{x}|} - \frac{G}{2c^2} \frac{\ddot{l}_{ij} n_i n_j}{|\mathbf{x}|}, \qquad (12)$$

An estimate for the dominate contribution to h: III

This leads to

$$h \sim \frac{G}{2c^4} \frac{\ddot{l}_{ij} n_i n_j}{|\mathbf{x}|} \tag{13}$$

• Note that h depends only on the components of l_{ij} along n, the direction of propagation of the wave & this is due to the fact that we are dealing with scalar waves

An estimate for the dominate contribution to h: III

This leads to

$$h \sim \frac{G}{2c^4} \frac{\ddot{l}_{ij} n_i n_j}{|\mathbf{x}|} \tag{13}$$

- Note that h depends only on the components of l_{ij} along n, the direction of propagation of the wave & this is due to the fact that we are dealing with **scalar waves**
- In GR, GWs are ripples in the curvature of space-time & space-time
 & its disturbances are described by tensors
- ullet $I_{ij}
 ightarrow$ transverse components of trace-free tensor ${\cal I}_{ij} = I_{ij} rac{\delta_{ij}}{3}\,I_{kk}$
- In GR, we have

$$h_{ij}^{\mathsf{TT}} = \frac{2 G}{c^4 r} \ddot{\mathcal{I}}_{ij}(t - r/c)$$
 (14)

This implies that spherically symmetric motion **WILL NOT** produce GWs. Any spherically symmetric tensor $\propto \delta_{ij}$ & hence \mathcal{I}_{ij} vanishes

An estimate for GW luminosity: I

• In classical ED, the dominant order multipole radiation from a charge distribution is the dipole radiation. The vector potential A_i in the wave-zone

$$A_j = \frac{1}{c \, r} \, \dot{d}_j(t_r) \tag{15}$$

The 1/r EM fields **E** & **B** depend only on the components of $\dot{\boldsymbol{d}}$ transverse to \boldsymbol{n} ; $d_j^{\mathrm{T}} \equiv P_{jk} \, d_k$, $P_{jk} = \delta_{jk} - n_j \, n_k$

• The Larmor formula provides the expression for EM luminosity

$$\mathcal{L}_{\text{EM}} = \frac{2}{3c^3} \ddot{d}_j \ddot{d}_j, \ d_j = e \, y_i \tag{16}$$

• For gravitating systems, linear & angular momenta provide electric & magnetic *type* dipole moments & they are conserved $\mu = \frac{1}{c} \sum_{a} \mathbf{y}^{a} \times \mathbf{d}^{a} = \frac{1}{c} \sum_{a} \mathbf{y}^{a} \times m_{a} \mathbf{v}^{a} = \frac{1}{c} \sum_{a} \mathbf{L}^{a}$

4D > 4@ > 4 = > 4 = > 9 Q (~

9 / 18

An estimate for GW luminosity :II

 $\mathcal{L}_{\mathrm{GW}} \propto rac{(3) \, (3)}{l_{ij}} \,$ & dimensional consideration require us to have G/c^5

• Explicit calculations in GR provides

$$\mathcal{L}_{GW} = \frac{G}{5 c^5} \mathcal{I}_{ij}^{(3)} \mathcal{I}_{ij}^{(3)} \tag{17}$$

An estimate for GW luminosity :II

 $\mathcal{L}_{\mathrm{GW}} \propto rac{(3) \, (3)}{l_{ij}} \, \&$ dimensional consideration require us to have G/c^5

Explicit calculations in GR provides

$$\mathcal{L}_{GW} = \frac{G}{5 c^5} \mathcal{I}_{ij}^{(3)} \mathcal{I}_{ij}^{(3)} \tag{17}$$

• $^{(3)}I_{ij} \sim M R^2/T^3 \sim M V^3/R$

$$\mathcal{L}_{GW} \sim \frac{G}{c^5} (M/R)^2 V^6 \sim L_0 (r_{Sch}/R)^2 (V/c)^6$$
, (18)

where $L_0=rac{c^5}{G}\sim 3.6 imes 10^{52} ext{J/s \& } r_{
m Sch}=G\,M/c^2$

• $\mathcal{L}_{\text{G}W}$ is maximal if $R \sim r_{\text{Sch}} \& V \sim c$ Compact objects, having time-dependent quadrupole moment, moving with velocities $\sim c$ are copious sources of GWs Stochastic GW background from massive BH binaries

How GWs affect TOAs: I

- Nano-Hz- μ Hz GWs are expected to be extra-galactic
- A travel time delay between the source-Earth path and the source-pulsar path is expected
- GWs that present in timing residuals at time t depends on the 'difference' $\Delta h_{+,\times} = h_{+,\times}^p h_{+,\times}^E$
- If we consider "Earth term," $h_{+,\times}^E(t)$ at t, we need to consider 'pulsar term," $h_{+,\times}^P(t-d/c)$ for a pulsar of distance d
- \bullet Passing GWs induces a shift in the pulsar's (constant intrinsic) spin frequency, ν_0

How GWs affect TOAs: II

• If a GW propagates along the positive z direction

$$z(t) = \frac{\nu_0 - \nu(t)}{\nu_0} = \frac{\alpha^2 - \beta^2}{2(1+\gamma)} \Delta h_+(t) + \frac{\alpha \beta}{1+\gamma} \Delta h_\times(t) .$$

 α, β , and γ provide a pulsar's direction cosines w.r.t the x, y, and z axes (Detweiler 1979)

- Observable timing residuals, induced by the GWs, are given by the integral over time of the above Equation
- $\bullet R(t) = \int_0^t \frac{\nu_0 \nu(t')}{\nu_0} \delta t'$
- It's derivation is straightforward

Stochastic GWB from massive BH binaries ?: I

Cosmological population of MBH binaries is expected to provide a diffusive GW background for PTAs !!

We need to compute # of sources in a frequency interval $\Delta f = 1/T_{\rm obs}$

•

$$\Delta N = \left(\frac{dN}{df}\right) \Delta f = \frac{dN}{dt} \left(\frac{df}{dt}\right)^{-1} \Delta f \tag{19}$$

•

$$\Delta N \propto \frac{dN}{dt} \left(\mathcal{M}_c^{-5/3} f_{\rm GW}^{-11/3} \right) \Delta f$$
 (20)

- ullet There are some 10^{11} galaxies in our Universe and each galaxy is likely to experience one merger with another galaxy in Hubble time (10^{10} year)
- $ightarrow rac{dN}{dt} \sim 10$ mergers/year

Stochastic GWB from massive BH binaries ?: I

ullet ightarrow a rough estimate for the number of binary BH sources in a frequency interval $\Delta f = 1/T_{
m obs}$

$$\begin{split} \Delta \textit{N} \sim 3 \times 10^{12} \, \left(\frac{\mathcal{M}}{10^9 \, \textit{M}_\odot}\right)^{-5/3} \, \left(\frac{\textit{f}_{\rm GW}}{10^{-8} \, \textit{Hz}}\right)^{-11/3} \, \left(\frac{\textit{T}_{\rm obs}}{10 \, \textit{yr}}\right)^{-1} \\ \times \left(\frac{\textit{dN/dt}}{10 \rm merger/yr}\right) \end{split}$$

ullet This is clearly >>1

•

This ensures a diffuse GW background in the PTA GW frequency window from merging massive BHs in the universe

• It is NOT very difficult to show that its characteristic strain spectrum is given by $h_c(f) = A_{1 vr} \times (f/yr^{-1})^{-2/3}$

$h_c(f)$ derivation : I

This derivation for $h_c(f)$ is essentially due to Phinney

- ullet Let $\mathcal{E}_{\mathit{gw}}$ be the total present day energy density in GWs
- Let $\Omega_{gw}(f)$ be the RATIO between the present-day energy density per logarithmic frequency interval, in GWs AND the rest-mass energy density $\rho_c c^2$ that would be required to close the universe $\rho_c = 3H_0^2/(8\pi G)$
- $\mathcal{E}_{gw} \equiv \int_0^\infty \rho_c c^2 \Omega_{gw}(f) \, df/f$(1)

$h_c(f)$ derivation : I

This derivation for $h_c(f)$ is essentially due to Phinney

- ullet Let $\mathcal{E}_{\mathit{gw}}$ be the total present day energy density in GWs
- Let $\Omega_{gw}(f)$ be the RATIO between the present-day energy density per logarithmic frequency interval, in GWs AND the rest-mass energy density $\rho_c c^2$ that would be required to close the universe $\rho_c = 3H_0^2/(8\pi G)$
- $\mathcal{E}_{gw} \equiv \int_0^\infty \rho_c c^2 \Omega_{gw}(f) \, df/f$(1)
- Let N(z)dz be the number of events in unit comoving volume between redshifts z and z + dz
- $\mathcal{E}_{gw} \equiv \int_0^\infty N(z) \frac{1}{1+z} \, dE_{gw} \, dz$ \mathcal{E}_{gw} must be equal to sum of the energy densities radiated at each redshift, divided by (1+z)
- $\bullet \ \, \mathcal{E}_{gw} \equiv \int_0^\infty \int_0^\infty N(z) \frac{1}{1+z} \frac{dE_{gw}}{df_r} f_r \frac{df_r}{f_r} \, dz \qquad \qquad f = f_r/(1+z)$

$h_c(f)$ derivation : II

- $\mathcal{E}_{gw} = \int_0^\infty \int_0^\infty N(z) \frac{1}{1+z} f_r \frac{dE_{gw}}{df_r} dz \frac{df}{f}$
- We have already argued that $\mathcal{E}_{gw} \equiv \int_0^\infty \rho_c c^2 \Omega_{gw}(f) \, df/f.....(1)$
- ullet Equating the above two equations o

$$\rho_c c^2 \Omega_{gw}(f) = \int_0^\infty N(z) \frac{1}{1+z} \left. \left(f_r \frac{dE_{gw}}{df_r} \right) \right|_{f_r = f(1+z)} dz .$$

• The energy density in GWs per log frequency interval is equal to the comoving number density of event remnants, times the (redshifted) energy each event produced per log frequency interval.

$h_c(f)$ derivation : III

•

• It is fairly easy to compute $\frac{dE_{gw}}{df_r}$ associated with a massive BH binary inspiraling along circular orbits

 $\frac{dE_{gw}}{df_r} = \frac{\pi}{3} \frac{1}{G} \frac{(G\mathcal{M})^{5/3}}{(\pi f_r)^{1/3}} \text{ for } f_{\min} < f_r < f_{\max} , \qquad (21)$

- This leads to $\Omega_{gw}(f)=\frac{8\pi^{5/3}}{9}\frac{1}{c^2H_0^2}(G\mathcal{M})^{5/3}f^{2/3}N_0\langle(1+z)^{-1/3}\rangle$ $N_0=\int_0^\infty N(z)\,dz$ is the present-day comoving number density of merged remnants
- It is convenient to introduce h_c : the characteristic amplitude of the gravitational wave spectrum over a logarithmic frequency interval as $\mathcal{E}_{gw} \equiv \int_0^\infty \rho_c c^2 \Omega_{gw}(f) \, df/f \equiv \int_0^\infty \frac{\pi}{4} \frac{c^2}{G} f^2 h_c^2(f) \frac{df}{f}$,
- For massive BH binaries, $h_c^2(f) = \frac{4}{3\pi^{1/3}} \frac{1}{c^2} \frac{(G\mathcal{M})^{5/3}}{f^{4/3}} N_0 \langle (1+z)^{-1/3} \rangle$
- $h_c \propto f^{-2/3}$

