

MACHINE LEARNING

EINSTEIN GUSTAVO

CLASSIFICAÇÃO DE FALHAS EM CHAPAS DE AÇO

CARACTERÍSTICAS DO PROBLEMA:

DATA SET MULTIVARIÁVEL ATRIBUTOS INTEIROS E REAIS TAREFA PRINCIPAL: CLASSIFICAÇÃO

TIPOS DE FALHAS A SEREM CLASSIFICADAS

PASTRY

DIRTINESS

STAINS

Z SCRATCH

BUMPS

K SCATCH

OTHER FAULTS

X_MINIMUM	X_MAXIMUM	Y_MINIMUM	VARIÁVEIS
X_MINIMUM	X_MAXIMUM	Y_MINIMUM	INDEPENDENTES
PIXELS_AREAS	Y_MAXIMUM	X_PERIMETER	INULTLINULIS
Y_PERIMETER	SUM_OF_LUMINOSITY	MINIMUM_OF_LUMINOS	LOGOFAREAS
. <u>_</u>			LOG_X_INDEX
MAXIMUM_OF_LUMINOSITY	LENGTH_OF_CONVE YER	TYPEOFSTEEL_A300	LOG_Y_INDEX
TYPEOFSTEEL_A400	STEEL_PLATE_THIC KNESS	EDGES_INDEX	ORIENTATION_INDEX
EMPTY_INDEX	SQUARE_INDEX	OUTSIDE_X_INDEX	LUMINOSITY_INDEX
EDGES_X_INDEX	EDGES_Y_INDEX	OUTSIDE_GLOBAL_INDEX	SIGMOIDOFAREAS

O1. ESTUDO COMPARATIVO

Acurácia desejada

02. EDA

Definir modelo de classificador

METODOLOGIA

03. APLICAÇÃO

Implementação e validação do modelo

BASEADO NOS POUCOS REPOSITÓRIOS DISPONÍVEIS A ACURÁCIA DESEJADA ESTARIA ENTRE 45% E 75% DE ASSERTIVIDADE.

FOI ADOTADO ENTÃO UM VALOR DE 60% DE ACURÁCIA AO MENOS PARA CONSIDERAR O MODELO UM SUCESSO.

- 0.8

- 0.4

- 0.0

ANÁLISE EXPLORATÓRIA DE DADOS

PROBLEMAS IDENTIFICADOS NO DATASET

QUANTIDADE DESBALANCEADA DE AMOSTRAS DE CADA TIPO DE FALHA QUANTIDADE MUITO GRANDE DE VARIÁVEIS COM POUCA INTERDEPENDENCIA

DIMENSÃO DOS DADOS MUITO DISTOANTES

K-NEAREST NEIGHBORS

DEVIDO O DATASET SER DE VARIÁVEIS COM POUCA INTERDEPENDÊNCIA E DEVIDO À SIMPLICIDADE DE IMPLEMENTAÇÃO, ESTE FOI O MODELO DE CLASSIFICADOR ESCOLHIDO.

RESULTADOS

DEVIDO À GRANDEZA MUITO DIFERENTE ENTRE OS PARÂMETROS, UMA NORMALIZAÇÃO SE MOSTROU ESSENCIAL DURANTE A ANÁLISE PCA, A MUDANÇA PARA DIMENSÕES MENORES NÃO RESULTOU EM MAIOR PRECISÃO, ENTÃO FOI CONSIDERADO APENAS A ROTAÇÃO, E MANTEVE-SE OS 27 PARÂMETROS A PRESENÇA DE UMA CLASSIFICAÇÃO GENÉRICA CUJO NÚMERO DE AMOSTRAS É MUITO SIGNIFICATIVO PREJUDICOU O MODELO

RESULTADOS

O NÚMERO DE VIZINHOS MOSTROU NÃO MELHORAR MUITO O RESULTADO APÓS 5 VIZINHOS, ESTANDO OTIMIZADO DENTRO DO INTERVALO DE 5 A 10 VIZINHOS

CONCLUSÃO

UMA VEZ QUE O OBJETIVO FOI ALCANÇADO(ACURÁCIA DE PELO MENOS 60%), A ESCOLHA DO KNN SE MOSTROU CORRETA E RESOLVEU O PROBLEMA

ACURÁCIA DO KNN INICIALMENTE: (50 +- 2)%

ACURÁCIA DO KNN APÓS NORMALIZAÇÃO DOS DADOS: (65 +- 2)%

CURÁCIA DO KNN APÓS NORMALIZAÇÃO DOS DADOS E ANÁLISE DE COMPONENTES PRINCIPAIS: (70 +- 2)%