

Technische Thermodynamik/Energielehre

3. Band eines Kompendiums zur Lehrveranstaltung

Formelsammlung

für das Grundstudium Maschinenbau, Verfahrenstechnik und Chemieingenieurwesen

Technische Universität Dresden Institut für Energietechnik Professur für Technische Thermodynamik Dr.-Ing. J. Meinert

Umdruck zur Lehrveranstaltung "Technische Thermodynamik / Teil I - Energielehre" für das Grundstudium Maschinenbau / Verfahrenstechnik / Chemieingenieurwesen

8. Auflage, Wintersemester 2009/10

Bearbeiter: Dr.-Ing. J. Meinert Bearbeitungsschluss: 31.08.2009

Inhaltsverzeichnis

1	Qua	ntität von Systemen	5
	1.1 1.2	Masse(-strom), Stoffmenge(-strom), Volumen(-strom)	5 5
	1.2	Homogene stongenische ($t = 1 \dots k$ Romponenten)	0
2	The	rmisches und energetisches Zustandsverhalten	6
	2.1	Reine reale Stoffe	7
	2.2	Ideale / perfekte Gase bzw. Gasgemische	8
		2.2.1 Thermisches Zustandsverhalten	8
	0.0	2.2.2 Energetisches Zustandsverhalten	8
	2.3	Feuchte Luft	10
		2.3.1 Definition wichtiger Größen	10
			10 11
		2.3.3 Energetisches Zustandsverhalten	11
3	Mas	ssebilanzen	12
4	Erst	er Hauptsatz für ruhende Systeme	13
5	Zwe	eiter Hauptsatz für ruhende Systeme	14
	5.1	Entropiebilanzen	14
	5.2	Exergiebilanzen	15
6	Einf	ache, innerlich reversible Prozesse	16
	6.1	Bezeichnungen spezieller Zustandsänderungen	16
	6.2	Beziehungen zwischen Zustandsgrößen bei perfekten Gasen	16
	6.3	Spezielle Berechnungsgleichungen für spezifische Prozessgrößen	17
7	Aus	gewählte stationäre irreversible Prozesse	18
	7.1	Einfache Prozesse mit beliebigen Medien	18
	7.2	Prozesse mit feuchter Luft	19
8	Phy	sikalische Größen und Konstanten sowie deren Einheiten	20
	8.1	Ausgewählte Größen mit gebräuchlichen Einheiten	20
	8.2	Wichtige Konstanten	20
	8.3	Wichtige angelsächsiche Einheiten und deren Umrechung	21
9	Stof	ffdatentabellen und Zustandsdiagramme	21

Symbolverzeichnis

Symbole und Kennzeichnungen

	T310. 1
A	Fläche
c	Strömungsgeschwindigkeit
c_p	(isobare) spez. Wärmekapazität
c_v	(isochore) spez. Wärmekapazität
e	spezifische Exergie
$\stackrel{E}{\cdot}$	Exergie des Systeminhaltes
E	stoffgebundener Exergiestrom
$egin{array}{c} E \ \dot{E} \ \dot{E}_P \ \dot{E}_Q \ \dot{E}_V \end{array}$	Exergie der mechanischen Leistung
\dot{E}_Q	Exergie des Wärmestromes
\dot{E}_V	Exergieverluststrom
g	Erdbeschleunigung
$H\left[h ight]$	[spezifische] Enthalpie
i,j,k,l	Zählgrößen
m,\dot{m}	Masse, Massestrom
M	molare Masse
M_d	Drehmoment an einer Welle
n	Polytropenexponent
n	Drehzahl
n,\dot{n}	Stoffmenge, Stoffmengestrom
p	Druck, Partialdruck
$P \equiv \dot{W}$	mechanische Leistung
$egin{aligned} Q\left[q ight],\ \dot{Q}\ \dot{\hat{q}} \end{aligned}$	[spezifische] Wärme, Wärmestrom
$\hat{\dot{q}}$	Wärmestromdichte
$\stackrel{\cdot}{R}$	spezifische Gaskonstante
$ar{R}$	universelle (molare) Gaskonstante
$S\left[s ight] ,\dot{S}$	[spezifische] Entropie,
[]/	Entropiestrom
S_{irr}, \dot{S}_{irr}	Entropieproduktion(-strom)
S_Q, \dot{S}_Q	Entropie(-strom) infolge
Q / Q	Wärme(-strom)
t	Celsius-Temperatur
T	Kelvin-Temperatur
$U\left[u\right]$	[spezifische] innere Energie
$V[v], \dot{V}$	[spezifisches] Volumen, Volumenstrom
W[w]	[spezifische] Arbeit
$W_R[w_R]$	[spezifische] Reibungsarbeit
$W_t[w_t]$	[spezifische] technische Arbeit
$W_V[w_V]$	[spezifische] Volumenänderungsarbeit
x	Wassergehalt
x	Dampfmasseanteil
y	allgemeine spezifische Zustandsgröße
z	Höhenkoordinate

Griechische Symbole

η_g	Gütegrad
κ	Isentropenexponent
μ	Massestromverhältnis
ξ	Masseanteil
ϱ	Dichte
au	Zeit
φ	relative Luftfeuchte
1/2	Stoffmengeanteil (Molanteil)

Tiefgestellte Indizes

Anfangs- bzw. Eintrittszustand ¹
End- bzw. Austrittszustand ¹
Bilanzgrenze
Entspanning / Expansion
Komponente i
feuchte Luft
trockene Luft
Gasgemisch, Mischungszustand
inn. reversibler Vergleichsprozess
Siede- bzw. Sättigungszustand
Umgebungszustand
Verdichtung / Kompression

Hochgestellte Indizes

y'	siedende Flüssigkeit
y''	trocken gesättigter Dampf
\bar{y}	molare Größe

Wichtige Begriffe

- $\begin{array}{c} \bullet \ , ... \ strom `` \\ \qquad \to \ zeitbezogen \end{array}$
- spezifische Größe
 - $\to {\rm massebezogen}$
- \bullet molare Größe
 - \rightarrow stoffmengebezogen

¹bei einfachen Prozessen

1 Quantität von Systemen

1.1 Masse(-strom), Stoffmenge(-strom), Volumen(-strom)

• Zusammenhang zwischen Masse(-strom) und Stoffmenge(-strom):

$$m = n \cdot M$$
 bzw. $\dot{m} = \dot{n} \cdot M$ (1)

• Zusammenhang zwischen Masse(-strom) und Volumen(-strom):

$$m = \varrho V = \frac{V}{v}$$
 bzw. $\dot{m} = \varrho \dot{V} = \frac{\dot{V}}{v}$ (2)

1.2 Homogene Stoffgemische ($i = 1 \dots k$ Komponenten)

• Gesamtmasse(-strom):

$$m = \sum_{i=1}^{k} m_i \qquad \to \qquad \dot{m} = \sum_{i=1}^{k} \dot{m}_i \tag{3}$$

• Gesamtstoffmenge(-strom):

$$n = \sum_{i=1}^{k} n_i \qquad \to \qquad \dot{n} = \sum_{i=1}^{k} \dot{n}_i \tag{4}$$

• Masseanteil:

$$\xi_i = \frac{m_i}{m} = \frac{\dot{m}_i}{\dot{m}} \qquad \to \qquad \sum_{i=1}^k \xi_i = 1 \tag{5}$$

• Stoffmengeanteil (Molanteil):

$$\psi_i = \frac{n_i}{n} = \frac{\dot{n}_i}{\dot{n}} \qquad \to \qquad \sum_{i=1}^k \psi_i = 1 \tag{6}$$

• Scheinbare molare Masse:

$$M_M = \sum_{i=1}^k \psi_i M_i \quad \text{bzw.} \quad \frac{1}{M_M} = \sum_{i=1}^k \frac{\xi_i}{M_i}$$
 (7)

• Weitere Zusammenhänge:

$$\xi_i = \psi_i \frac{M_i}{M_M} \rightarrow \psi_i = \xi_i \frac{M_M}{M_i} \rightarrow M_M = \frac{m}{n} = \frac{m_i}{\xi_i} \frac{\psi_i}{n_i} = M_i \frac{\psi_i}{\xi_i}$$
 (8)

2 Thermisches und energetisches Zustandsverhalten

• Thermische Zustandsgrößen:

- \rightarrow Druck p, Temperatur T, spezifisches Volumen v, Dichte ϱ :
 - o Allgemeiner Zusammenhang (für eine Phase):

$$v = v\left(T,\,p
ight)$$
 $\left[v\right] = 1 \; rac{\mathrm{m}^3}{\mathrm{kg}} \qquad o \quad ext{H\"{a}ufig verwendet:} \qquad \varrho = rac{1}{v}$

• Energetische Zustandsgrößen (für eine Phase):

- → Differenzial der spezifischen Entropie:

$$ds = \frac{du + p \, dv}{T} = \frac{dh - v \, dp}{T} \tag{9}$$

→ spezifische Wärmekapazität bei konstantem Druck:

$$c_p = \left(\frac{\partial h}{\partial T}\right)_n \qquad [c_p] = 1 \frac{\text{kJ}}{\text{kg K}}$$
 (10)

 \rightarrow spezifische Wärmekapazität bei konstantem Volumen:

$$c_v = \left(\frac{\partial u}{\partial T}\right)_v \qquad [c_v] = 1 \frac{\text{kJ}}{\text{kg K}}$$
 (11)

- Beachte: Die Bezeichungen "bei konstantem Druck" bzw. "bei konstantem Volumen" kennzeichnen das Messverfahren zur Bestimmung dieser Wärmekapazitäten. Dies bedeutet nicht, dass c_p bzw. c_v nur für isobare bzw. isochore Zustandsänderungen angewendet werden dürfen.
- \rightarrow mittlere spezifische Wärmekapazität im Temperaturbereich $T_0 \rightarrow T$:

$$c_{p,m}|_{T_0}^T = \frac{1}{T - T_0} \int_{T_0}^T c_p(T) dT$$
 bzw. $c_{v,m}|_{T_0}^T = \frac{1}{T - T_0} \int_{T_0}^T c_v(T) dT$ (12)

→ Damit ergeben sich die Differenzen der inneren Energie sowie der Enthalpie zu

$$u_{2} - u_{1} = c_{v,m}|_{T_{0}}^{T_{2}} (T_{2} - T_{0}) - c_{v,m}|_{T_{0}}^{T_{1}} (T_{1} - T_{0})$$

$$h_{2} - h_{1} = c_{p,m}|_{T_{0}}^{T_{2}} (T_{2} - T_{0}) - c_{p,m}|_{T_{0}}^{T_{1}} (T_{1} - T_{0})$$

$$(13)$$

2.1 Reine reale Stoffe

Alle spezifischen Zustandsgrößen werden **hier** mit y bezeichnet, d. h. die Größe y kann durch v, h, s oder u ersetzt werden.

• Charakterisierung des Zustandsverhaltens:

Bezeichnung	Temperatur	Dampfmasseanteil	Phasentest
unterkühlte Flüssigkeit	$T < T_S(p)$	\boldsymbol{x} nicht definiert	y < y'
siedende Flüssigkeit Zweiphasengebiet ("Nassdampf") trocken gesättigter Dampf	$ T = T_S(p) $	x = 0 $0 < x < 1$ $x = 1$	y = y' $y' < y < y''$ $y = y''$
überhitzter Dampf	$T > T_S(p)$	x nicht definiert	y > y''

 $T_S(p)$... Siedetemperatur beim Druck p

• Ermittlung der Zustandsgrößen:

→ unterkühlte/siedende Flüssigkeit:

$$y \approx y'(T) \tag{14}$$

y'... Stoffwerte der siedenden Flüssigkeit (Wasser: Tab. 9.4)

 \rightarrow Zweiphasengebiet ("Nassdampf") inkl. trocken gesättigter Dampf ("Sattdampf"):

$$y = y' + x (y'' - y')$$
 (15)

y'... Stoffwerte der siedenden Flüssigkeit (Wasser: Tab. 9.3 / 9.4) y''... Stoffwerte des trocken gesättigten Dampfes (Wasser: Tab. 9.3 / 9.4)

• Dampfmasseanteil:

• Spezifische Verdampfungsenthalpie:

$$x = \frac{m''}{m' + m''}$$
 bzw. $x = \frac{y - y'}{y'' - y'}$ (16) $h'' - h' = T_S(s'' - s')$

 \rightarrow überhitzter Dampf (Gasphase):

$$y = y(p, T) \tag{18}$$

(Wasser: Tab. 9.2 $\rightarrow v$, u, h, s = f(p, t))

• Hinweis:

Tab. 9.4 enthält thermische und energetische Zustandsgrößen für siedende Wasserflüssigkeit und trocken gesättigten Wasserdampf.

t	$p_{S}\left(t ight)$	$10^3 \cdot v'$	v''	u'	u''	h'	h''	s'	s''
°C	MPa	m^3/kg		kJ	/kg	kJ	/kg	kJ/(k	kgK)

Tab. 9.3 analog mit vertauschten Spalten 1 und 2.

2.2 Ideale / perfekte Gase bzw. Gasgemische

2.2.1 Thermisches Zustandsverhalten

- Thermische Zustandsgleichung (Idealgasbeziehung): ([T] = 1 K)
 - \rightarrow für reine Gase oder Einzelkomponente i im nicht reagierenden Gasgemisch: \circ für stoffdichte Systeme:

$$pV = mRT = n\bar{R}T \qquad \rightarrow \qquad p_i V = pV_i = m_i R_i T = n_i \bar{R}T \qquad (19)$$

o für stoffdurchlässige Systeme (zeitbezogen):

$$p\,\dot{V} = \dot{m}\,R\,T = \dot{n}\,\bar{R}\,T \qquad \rightarrow \qquad p_i\,\dot{V} = p\,\dot{V}_i = \dot{m}_i\,R_i\,T = \dot{n}_i\,\bar{R}\,T \tag{20}$$

→ intensive Schreibweisen bzw. umgestellte Formen:

$$pv = RT \rightarrow p\bar{v} = \bar{R}T$$
 bzw. $\frac{p}{T} = \frac{R}{v} = \frac{\bar{R}}{\bar{v}}$ oder $\varrho = \frac{p}{RT}$ (21)

- Spezifische Gaskonstante:
 - \rightarrow Gaskonstante eines Einzelgases ($M \dots$ molare Masse, aus Tab. 9.1):

$$R = \frac{\bar{R}}{M}$$
 mit $\bar{R} = 8,3145 \frac{\text{kJ}}{\text{kmol K}}$ (22)

→ Scheinbare spezifische Gaskonstante eines Gasgemisches:

$$R_M = \frac{\bar{R}}{M_M}$$
 mit M_M nach Gl. (7) bzw. $R_M = \sum_{i=1}^k \xi_i R_i$ (23)

• Partialdruck bzw. Partialvolumen eines Einzelgases in einem Gasgemisch:

$$p_i = \psi_i p \quad \rightarrow \quad \sum_{i=1}^k p_i = p \quad \text{bzw.} \quad V_i = \psi_i V \quad \rightarrow \quad \sum_{i=1}^k V_i = V$$
 (24)

2.2.2 Energetisches Zustandsverhalten

BEACHTE: \rightarrow Gleichungen nur für **perfekte** Gase ($c_p \neq f(T) = \text{konst.}$) gültig. \rightarrow **Bezugszustand** $\boxed{0}$: Wegen $h_0 = u_0 + p_0 v_0 = u_0 + R T_0$ darf jeweils

- nur h_0 oder u_0 gleich Null gesetzt werden $(p_0 v_0 = RT_0 > 0!)$.
- Absolutwert / Differenz der spezifischen Enthalpie:
 - \rightarrow für reine Gase:

$$h = c_p (T - T_0) + h_0 \qquad \to \qquad h_0 = h (T_0) \dots \text{ Bezugszustand (s. o.)}$$

$$h_2 - h_1 = c_p (T_2 - T_1) \qquad \to \qquad \frac{h_2 - h_1 = u_2 - u_1 + (p_2 v_2 - p_1 v_1)}{= u_2 - u_1 + R (T_2 - T_1)}$$
(25)

- Absolutwert / Differenz der spezifischen inneren Energie:
 - \rightarrow für reine Gase:

$$u = c_v (T - T_0) + u_0 \qquad \to \qquad u_0 = u (T_0) \dots \text{ Bezugszustand (s. o.)}$$

$$u_2 - u_1 = c_v (T_2 - T_1) \qquad \to \qquad u_2 - u_1 = h_2 - h_1 - (p_2 v_2 - p_1 v_1)$$

$$= h_2 - h_1 - R (T_2 - T_1) \qquad (26)$$

- Absolutwert / Differenz der spezifischen Entropie: (T = 1 K)
 - \rightarrow für reine Gase:

$$s = c_p \ln \frac{T}{T_0} - R \ln \frac{p}{p_0} + s_0 = c_v \ln \frac{T}{T_0} + R \ln \frac{v}{v_0} + s_0$$

 $s_0 = s (T_0)$... Bezugszustand (s. o.)

$$s_2 - s_1 = c_p \ln \frac{T_2}{T_1} - R \ln \frac{p_2}{p_1} = c_v \ln \frac{T_2}{T_1} + R \ln \frac{v_2}{v_1}$$
 (27)

• Zusammenhang zwischen c_p , c_v und R:

$$c_p - c_v = R \qquad \text{bzw.} \qquad \bar{c}_p - \bar{c}_v = \bar{R}$$

$$\text{bzw.} \qquad \kappa = \frac{c_p}{c_v} = \frac{\bar{c}_p}{\bar{c}_v} = \frac{c_p}{c_p - R} \quad \to \quad c_p = \frac{\kappa}{\kappa - 1} R \; ; \quad c_v = \frac{R}{\kappa - 1}$$
(28)

- Speziell für (nicht reagierende) Gasgemische gilt:
 - \rightarrow Allgemein: $(M \dots \text{Gemisch}, i \dots \text{Komponente } i)$

$$y_{M} = \sum_{i=1}^{k} \xi_{i} y_{i}$$
 mit $y = \begin{cases} c_{p} & \dots \text{ (isobare) spezifische Wärmekapazität} \\ c_{v} & \dots \text{ (isochore) spezifische Wärmekapazität} \\ h & \dots \text{ spezifische Enthalpie} \\ R & \dots \text{ Gaskonstante} \\ s & \dots \text{ spezifische Entropie (Nur bei unver-} \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$

→ Besonderheit bei der Berechnung der spezifischen Entropie eines Gasgemisches unter Berücksichtigung der Mischungseffekte:

$$s_M = \sum_{i=1}^k \xi_i \, s_i^* \quad \text{mit} \quad s_i^* = c_{p\,i} \, \ln \frac{T_M}{T_0} - R_i \, \ln \frac{p_i}{p_0} + s_{i0}$$
 (30)

 s_i^* ... spezifische Entropie der Gaskomponente iim Gasgemisch

 p_i ... Partialdruck der Gaskomponente i

2.3 Feuchte Luft

2.3.1 Definition wichtiger Größen

• Allgemeine Bezeichnungen:

 $m_L, m_W, m_{fL} \dots$ Trockenluftmasse, Wassermasse, Feuchtluftmasse $p_W \dots$ Partialdruck des Wasserdampfes Sättigungsdruck des Wassers bei t (aus Tab. 9.4 a)

• Wassergehalt: 2

$$x = \frac{m_W}{m_L} = \frac{\dot{m}_W}{\dot{m}_L} \qquad \bullet \text{ aber:} \qquad \xi_W = \frac{m_W}{m_L + m_W} = \frac{m_W}{m_{fL}}$$

$$\underbrace{Masseanteil \text{ Wasser}}$$
(31)

$$m_{fL} = m_W + m_L$$

 $m_{fL} = x m_L + m_L = (1+x) m_L$ \rightarrow $m_L = \frac{m_{fL}}{1+x}$

• Relative Luftfeuchte:

$$\varphi = \frac{p_W}{p_S(t)}$$

$$\begin{cases} \varphi = 0 & \dots & x = 0 & \dots \text{ trockene Luft} \\ 0 < \varphi < 1 & \dots & 0 \le x \le x_S(t) & \dots \text{ ungesättigte, feuchte Luft} \\ \varphi = 1 & \dots & x = x_S(t) & \dots \text{ gesättigte feuchte Luft} \\ \varphi \text{ n. def.} & \dots & x > x_S(t) & \dots \text{ übersättigte feuchte Luft} \end{cases}$$
(32)

• Weitere Zusammenhänge:

 \rightarrow ungesättigte/gesättigte feuchte Luft (0 < $\varphi \le 1$):

$$\xi_W = \frac{x}{1+x} \longrightarrow \xi_L = 1 - \xi_W \tag{33}$$

$$x = \frac{\xi_W}{1 - \xi_W} = \frac{M_W}{M_L} \frac{\psi_W}{1 - \psi_W} = \frac{M_W}{M_L} \frac{p_W}{p - p_W} \rightarrow \begin{cases} M_W = 18,02 \text{ kg/kmol} \\ M_L = 28,96 \text{ kg/kmol} \end{cases}$$
 (34)

$$x = \frac{M_W}{M_L} \frac{\varphi p_S(t)}{p - \varphi p_S(t)} = 0,622 \frac{\varphi p_S(t)}{p - \varphi p_S(t)} \quad \text{bzw.} \quad \varphi = \frac{p}{p_S(t)} \frac{x}{0,622 + x}$$
 (35)

Der Sättigungs-Wassergehalt $x_S(t)$ ist aus Gl. (35) berechenbar mit $\varphi = 1$.

2.3.2 Thermisches Zustandsverhalten

• Thermische Zustandsgleichung: (Gasgemisch aus trockener Luft L und Wasserdampf W)

$$p V = m R_{fL} T = n \bar{R} T$$

$$p_W V = m_W R_W T = n_W \bar{R} T \qquad \rightarrow \qquad p_L V = m_L R_L T = n_L \bar{R} T$$
(36)

• Spezifische (scheinbare) Gaskonstante:

$$R_{fL} = \xi_W R_W + (1 - \xi_W) R_L = R_W \frac{0.622 + x}{1 + x} \rightarrow \begin{cases} R_W = 0.4615 \text{ kJ/(kg K)} \\ R_L = 0.2871 \text{ kJ/(kg K)} \end{cases}$$
 (37)

²Wassermasse = WasserDampf + WasserFlüssigkeit + WasserEis $\rightarrow m_W = m_{WD} + m_{WF} + m_{WE}$.

• Spezifisches Volumen bzw. Dichte:

 \rightarrow ungesättigte/gesättigte feuchte Luft ($x \leq x_S$):

$$v = \frac{1}{\varrho} = \frac{R_W T}{p} \frac{0,622 + x}{1 + x} \tag{38}$$

Das spezifische Volumen gesättigter feuchter Luft v_S ist aus Gl. (38) berechenbar mit $x = x_S$ (x_S aus Gl. (35)).

 \rightarrow übersättigte feuchte Luft $(x > x_S)$ mit flüssigem Wasseranteil:

$$v = \frac{1}{\rho} = \frac{1}{1+x} \left[\frac{R_W T}{p} (0,622 + x_S) + (x - x_S) v'(t) \right]$$
 (39)

v'(t)... spezifisches Volumen der Wasserflüssigkeit (Tab. 9.4)

2.3.3 Energetisches Zustandsverhalten

• Spezifische Enthalpie der feuchten Luft:

Spezifische Enthalpie
$$h = \frac{H_{fL}}{m_L}$$
 mit $[h] = 1$ $\frac{\text{kJ}}{\text{kg}_L}$ (bezogen auf Trockenluftmasse).

 \rightarrow ungesättigte/gesättigte feuchte Luft ($x \le x_S$):

$$\frac{h}{\mathrm{kJ/kg}_L} = \left(1 + 1,86 \frac{x}{\mathrm{kg}_W/\mathrm{kg}_L}\right) \frac{t}{\mathrm{^{\circ}C}} + 2501 \frac{x}{\mathrm{kg}_W/\mathrm{kg}_L} \tag{40}$$

Die spezifische Enthalpie gesättigter feuchter Luft h_S ist aus Gl. (40) berechenbar mit $x = x_S$ (x_S aus Gl. (35)).

- \rightarrow übersättigte feuchte Luft $(x > x_S)$:
 - t > 0 °C \rightarrow mit flüssigem Wasseranteil:

$$\frac{h}{kJ/kg_L} = \left(1 - 2,33 \frac{x_S}{kg_W/kg_L} + 4,19 \frac{x}{kg_W/kg_L}\right) \frac{t}{^{\circ}C} + 2501 \frac{x_S}{kg_W/kg_L}$$
(41)

• t < 0 °C \rightarrow mit festem Wasseranteil (Eis):

$$\frac{h}{kJ/kg_L} = \left(1 - 0.23 \frac{x_S}{kg_W/kg_L} + 2.09 \frac{x}{kg_W/kg_L}\right) \frac{t}{^{\circ}C} + 2835 \frac{x_S}{kg_W/kg_L} - 334 \frac{x}{kg_W/kg_L}$$
(42)

• t=0 °C \rightarrow $mit\ teils\ fl\bar{u}ssigem,\ teils\ festem\ Wasseranteil: \begin{cases} WF \ldots & WasserFl\bar{u}ssigkeit & WE \ldots & WasserEis \\ \end{pmatrix}$

$$\frac{h}{\mathrm{kJ/kg}_L} = 2501 \frac{x_S}{\mathrm{kg}_W/\mathrm{kg}_L} - 334 \frac{x_{WE}}{\mathrm{kg}_W/\mathrm{kg}_L} \quad \text{wegen} \quad h_{WF}(0 \, ^{\circ}\mathrm{C}) = 0 \quad \text{laut Def.}$$
 (43)

Vorzeichenregelung für alle Bilanzgleichungen

 \rightarrow Plus (+) ... dem System zugeführt, am System verrichtet

 \rightarrow Minus (-) ... vom System abgeführt, vom System verrichtet

3 Massebilanzen

• Allgemeine Schreibweise:

$$\underbrace{\frac{dm}{d\tau}}_{(1)} = \underbrace{\sum_{i=1}^{k} \dot{m}_{i}}_{(2)} - \underbrace{\sum_{j=k+1}^{l} \dot{m}_{j}}_{(3)}$$
(44)

- (1) ... zeitliche Änderung der Masse im System (instationäres Glied)
- (2) ... Summe der zugeführten Massenströme (Einlassöffnungen, Index i)
- (3) ... Summe der abgeführten Massenströme (Auslassöffnungen, Index j)
- <u>1. Spezialfall:</u> Stoffdichte Systeme ($\dot{m}_i = \dot{m}_j = 0$, Prozessverlauf $\boxed{1} \rightarrow \boxed{2}$)
 - \rightarrow Aus Gl. (44):

$$dm = 0 \rightarrow \text{Integration:} \qquad m_2 - m_1 = 0$$
 (45)

- 2. Spezialfall: Stoffdurchlässige Systeme:
 - \rightarrow Aus Gl. (44) für stationäres Verhalten ($dm/d\tau=0$):

$$0 = \sum_{i=1}^{k} \dot{m}_i - \sum_{j=k+1}^{l} \dot{m}_j \quad \to \quad \sum_{i=1}^{k} \dot{m}_i = \sum_{j=k+1}^{l} \dot{m}_j$$
 (46)

→ Instationäres, einfaches System (mit je einer Ein- und Auslassöffnung):

$$\frac{dm}{d\tau} = \dot{m}_1 - \dot{m}_2 \tag{47}$$

ightarrow Spezielle Schreibweise für stationäres System mit je einer Ein- und Auslassöffnung:

$$\dot{m}_1 = \dot{m}_2 \tag{48}$$

- Berechnung des Masse- bzw. Volumenstromes in Abhängigkeit von Strömungsgeschwindigkeit und -querschnittsfläche:
 - → Kontinuitätsgleichung für eine eindimensionale Strömung ("Pfropfenströmung"):

$$\dot{V} = c A$$
 bzw. $\dot{m} = \varrho \dot{V} = \varrho c A = \frac{c A}{v}$ (49)

 $A\dots$ Strömungsquerschnittsfläche in m²

4 Erster Hauptsatz für ruhende Systeme

• Allgemeine Schreibweise:

$$\underbrace{\frac{dU}{d\tau}}_{(1)} = \underbrace{P}_{(2)} + \underbrace{\dot{Q}}_{(3)} + \underbrace{\sum_{i=1}^{k} \dot{m}_i \left(h_i + \frac{c_i^2}{2} + g z_i\right)}_{(4)} - \underbrace{\sum_{j=k+1}^{l} \dot{m}_j \left(h_j + \frac{c_j^2}{2} + g z_j\right)}_{(5)}$$
(50)

- (1) ... zeitliche Änderung der inneren Energie des Systems (instationäres Glied)
- (2) ... Summe der zu- bzw. abgeführten mechanischen Leistungen
- (3) ... Summe der zu- bzw. abgeführten Wärmeströme (nichtstoffgebundene Energie)
- (4) ... Summe der zugeführten stoffgebundenen Energie (Einlassöffnungen, Index i) $(h_i \dots \text{thermische}, c_i^2/2 \dots \text{kinetische} \text{ und } g z_i \dots \text{potenzielle Energie})$
- (5) ... Summe der abgeführten stoffgebundenen Energie (Auslassöffnungen, Index j)
- <u>1. Spezialfall:</u> Stoffdichte Systeme ($\dot{m}_i = \dot{m}_j = 0$, Prozessverlauf $\boxed{1} \rightarrow \boxed{2}$)
 - \rightarrow Aus Gl. (50) gilt mit der anschaulicheren Schreibweise $P \equiv \dot{W}$:

$$dU = (\dot{W} + \dot{Q}) d\tau = dW + dQ \quad \rightarrow \text{ Integration:} \quad \boxed{U_2 - U_1 = Q_{12} + W_{12}}$$
 (51)

 \rightarrow Berechnung der Arbeit bei <u>reversibler</u> und damit quasistatischer Zustandsänderung:

$$dW_{rev} = dW_V = -p \, dV$$
 bzw. $W_{12, rev} = W_{V, 12} = -\int_{1}^{2, rev} p(V) \, dV$ (52)

o mit dU = dH - d(pV) = dH - p dV - V dp wird aus Gln. (51) und (52):

$$dH = dQ + dW_t$$
 mit $dW_t = V dp$ bzw. $H_2 - H_1 = Q_{12} + \int_{1}^{2, rev} V(p) dp$ (53)

- \rightarrow Gl. (51) nach Division durch Masse m (spezifisch): $u_2 u_1 = q_{12} + w_{12}$
- 2. Spezialfall: Stoffdurchlässige Systeme $\dot{H} = \dot{m} h$
 - \rightarrow Aus Gl. (50) für (stationäres Verhalten $(dU/d\tau = 0)$:

$$0 = P + \dot{Q} + \sum_{i=1}^{k} \dot{m}_i \left(h_i + \frac{c_i^2}{2} + g z_i \right) - \sum_{j=k+1}^{l} \dot{m}_j \left(h_j + \frac{c_j^2}{2} + g z_j \right)$$
 (54)

 \rightarrow Spezielle Schreibweise für <u>stationäres</u> System mit je <u>einer</u> Ein- und Auslassöffnung:

$$P_{12} + \dot{Q}_{12} = \dot{m} \left[h_2 - h_1 + \frac{c_2^2 - c_1^2}{2} + g \left(z_2 - z_1 \right) \right]$$
 (55)

- Mechanische Leistung an einer Welle: $P_{12} (= \dot{W}_W) = 2 \pi n M_d \begin{cases} n \dots & \text{Drehzahl} \\ M_d \dots & \text{Drehmoment} \end{cases}$
- Gl. (55) nach Division durch Massestrom \dot{m} (spezifisch):

$$w_{t,12} + q_{12} = h_2 - h_1 + \frac{c_2^2 - c_1^2}{2} + g(z_2 - z_1)$$
 mit $w_{t,12} = \frac{P_{12}}{\dot{m}} \left(\equiv \frac{\dot{W}_{t,12}}{\dot{m}} \right)$ (56)

5 Zweiter Hauptsatz für ruhende Systeme

5.1 Entropiebilanzen

• Allgemeine Schreibweise:

$$\underbrace{\frac{dS}{d\tau} = \dot{S}_Q + \dot{S}_{irr} + \sum_{i=1}^k \dot{m}_i s_i - \sum_{j=k+1}^l \dot{m}_j s_j}_{(1)}$$
(57)

- (1) ... zeitliche Änderung der Entropie des Systems (instationäres Glied)
- (2) ... Summe der zu- bzw. abgeführten Entropieströme infolge Wärmetransport
- (3) ... irreversibler Entropieproduktionsstrom
- (4) ... Summe der zugeführten stoffgebundenen Entropie (Einlassöffnungen, Index i)
- (5) ... Summe der abgeführten stoffgebundenen Entropie (Auslassöffnungen, Index j)
- 1. Spezialfall: Stoffdichte Systeme ($\dot{m}_i = \dot{m}_j = 0$, Prozessverlauf $\boxed{1} \rightarrow \boxed{2}$)
 - \rightarrow Aus Gl. (57) gilt:

$$dS = (\dot{S}_Q + \dot{S}_{irr}) d\tau = dS_Q + dS_{irr} \quad \to \text{ Integration:} \quad \left| S_2 - S_1 = S_{Q,12} + S_{irr,12} \right| \quad (58)$$

- \rightarrow Gl. (58) nach Division durch Masse m (spezifisch): $s_2 s_1 = s_{a,12} + s_{irr,12}$
- 2. Spezialfall: Stoffdurchlässige Systeme
 - \rightarrow Aus Gl. (57) für stationäres Verhalten ($dS/d\tau = 0$):

$$\dot{S}_Q + \dot{S}_{irr} = \sum_{j=k+1}^l \dot{m}_j \, s_j - \sum_{i=1}^k \dot{m}_i \, s_i \tag{59}$$

→ Spezielle Schreibweise für stationäres System mit je einer Ein- und Auslassöffnung:

$$\dot{S}_{Q,12} + \dot{S}_{irr,12} = \dot{m} \left(s_2 - s_1 \right) \tag{60}$$

- \rightarrow Gl. (60) nach Division durch Massestrom \dot{m} (spezifisch): $s_2 s_1 = s_{q,12} + s_{irr,12}$
- Entropietransport gebunden an Wärme bzw. Wärmestrom:
 - \rightarrow Spezialformen bei lokal einheitlicher Temperatur der Bilanzgrenze T_{BG} :

$$S_Q = \frac{1}{T_{BG}} \int_{1}^{2} dQ \quad \rightarrow \quad S_{Q,12} = \frac{Q_{12}}{T_{BG}} \quad \text{bzw.} \quad \dot{S}_{Q,12} = \frac{\dot{Q}_{12}}{T_{BG}}$$
 (61)

- Entropie produktion bzw. Entropie produktions strom:
 - → Ermittlung jeweils als "bilanzschließende" Größe:

$$S_{irr, 12} = S_2 - S_1 - S_{Q, 12}$$

$$\dot{S}_{irr, 12} = \dot{S}_2 - \dot{S}_1 - \dot{S}_{Q, 12}$$

$$= \dot{m} (s_2 - s_1) - \dot{S}_{Q, 12}$$

$$= \dot{m} (s_2 - s_1) - \dot{S}_{Q, 12}$$

$$mit$$

$$\begin{cases}
\mathbf{Prozessklassifizierung:} \\
\dot{S}_{irr, 12} > 0 & \text{irreversibel} \\
\dot{S}_{irr, 12} = 0 & \text{reversibel} \\
\dot{S}_{irr, 12} < 0 & \text{unmöglich}
\end{cases} (62)$$

5.2 Exergiebilanzen

Der Index "U" bezieht sich auf den Umgebungszustand.

• Allgemeine Schreibweise:

$$\frac{dE}{d\tau} = \dot{E}_P + \dot{E}_Q - \dot{E}_V + \sum_{i=1}^k \dot{m}_i e_i - \sum_{j=k+1}^l \dot{m}_j e_j \tag{63}$$

- (1) ... zeitliche Änderung der Exergie des Systeminhaltes (instationäres Glied)
- (2) ... Summe der zu- bzw. abgeführten Exergien der mechanischen Leistung
- (3) ... Summe der zu- bzw. abgeführten Exergien der Wärme (nichtstoffgebundene Exergie)
- (4) ... Exergieverluststrom
- (5) ... Summe der zugeführten stoffgebundenen Exergie (Einlassöffnungen, Index i)
- (6) ... Summe der abgeführten stoffgebundenen Exergie (Auslassöffnungen, Index j)
- 1. Spezialfall: Stoffdichte Systeme ($\dot{m}_i = \dot{m}_j = 0$): \rightarrow siehe Fachliteratur
- 2. Spezialfall: Stoffdurchlässige Systeme: $\dot{E} = \dot{m} \, e$
 - \rightarrow Aus Gl. (63) für stationäres Verhalten:

$$\dot{E}_P + \dot{E}_Q - \dot{E}_V = \sum_{j=k+1}^l \dot{m}_j \, e_j - \sum_{i=1}^k \dot{m}_i \, e_i \tag{64}$$

→ Spezielle Schreibweise für stationäres System mit je einer Ein- und Auslassöffnung:

$$\dot{E}_{P,12} + \dot{E}_{Q,12} - \dot{E}_{V,12} = \dot{E}_2 - \dot{E}_1 = \dot{m} \left(e_2 - e_1 \right) \tag{65}$$

→ Exergie der mechanischen Leistung:

$$\dot{E}_{P,12} = P_{12} = \dot{m} \, w_{t,12} \tag{66}$$

→ Exergiestrom des Wärmestromes (allgemeine Form):

$$\dot{E}_{Q,12} = \int_{1}^{2} \left(1 - \frac{T_U}{T_{BG}} \right) d\dot{Q} \tag{67}$$

 \circ Spezialform bei lokal einheitlicher Temperatur der Bilanzgrenze T_{BG} :

$$\dot{E}_{Q,12} = \dot{Q}_{12} - T_U \, \dot{S}_{Q,12} = \left(1 - \frac{T_U}{T_{BG}}\right) \, \dot{Q}_{12} \tag{68}$$

 \rightarrow Exergieverluststrom:

$$\dot{E}_{V,12} = \dot{m} T_U s_{irr,12} = T_U \dot{S}_{irr,12}$$
(69)

 \rightarrow Exergiestrom / Exergiestrom
differenz des Stoffstromes:

$$\dot{E} = \dot{m} \left[h - h_U - T_U \left(s - s_U \right) + \frac{c^2}{2} + g z \right]$$
 (70)

$$\dot{E}_2 - \dot{E}_1 = \dot{m}(e_2 - e_1) = \dot{m} \left[h_2 - h_1 - T_U \left(s_2 - s_1 \right) + \frac{c_2^2 - c_1^2}{2} + g \left(z_2 - z_1 \right) \right]$$
(71)

6 Einfache, innerlich reversible Prozesse

$$\begin{array}{ccc} \text{Prozessverlauf} & \text{Anfang} \\ \text{Eintritt} \end{array} \right\} \ \boxed{1} \quad \rightarrow \quad \boxed{2\left\{,rev\right\}} \ \left\{ \begin{array}{c} \text{Ende} \\ \text{Austritt} \end{array} \right.$$

6.1 Bezeichnungen spezieller Zustandsänderungen

• Zustandsänderung bei konstantem spezifischen Volumen (isochor):

$$dv = 0 \rightarrow \boxed{v = const}$$

• Zustandsänderung bei konstantem Druck (**isobar**):

$$dp = 0 \rightarrow p = const$$

• Zustandsänderung bei konstanter Temperatur (**isotherm**):

$$dT = 0 \rightarrow T = const$$

Reversible Zustandsänderung in adiabatem System (adiabat + reversibel = isentrop):
 → aus 2. Hauptsatz in differenzieller, spezifischer Schreibweise:

$$ds = \frac{dq}{T} + ds_{irr}$$
 { adiabat $dq = 0$ reversibel $ds_{irr} = 0$ } $ds = 0 \rightarrow \boxed{s = const}$

 \bullet Reversible Zustandsänderung allgemein (**polytrop**) \rightarrow berechenbar nur für perfekte Gase:

$$ds = \frac{dq}{T} + ds_{irr} \quad \begin{cases} \text{ nicht adiabat} & dq \neq 0 \\ \text{reversibel} & ds_{irr} = 0 \end{cases}$$

6.2 Beziehungen zwischen Zustandsgrößen bei perfekten Gasen

	Isochore	Isobare	Isotherme	Isentrope	Polytrope	
	v = const	p = const	T = const	s = const	_	
$\frac{v_1}{v_2}$	= 1	$=\frac{T_1}{T_2}$	$=\frac{p_2}{p_1}$	$= \left(\frac{p_2}{p_1}\right)^{\frac{1}{\kappa}} = \left(\frac{T_2}{T_1}\right)^{\frac{1}{\kappa-1}}$		
$\frac{p_1}{p_2}$	$=\frac{T_1}{T_2}$	= 1	$=\frac{v_2}{v_1}$	$= \left(\frac{v_2}{v_1}\right)^{\kappa} = \left(\frac{T_1}{T_2}\right)^{\frac{\kappa}{\kappa - 1}}$	siehe Isentrope ersetze κ durch n	
$\frac{T_1}{T_2}$	$=\frac{p_1}{p_2}$	$=\frac{v_1}{v_2}$	= 1	$= \left(\frac{p_1}{p_2}\right)^{\frac{\kappa-1}{\kappa}} = \left(\frac{v_2}{v_1}\right)^{\kappa-1}$		
$s_2 - s_1$	$= c_v \ln \frac{p_2}{p_1}$	$= c_p \ln \frac{v_2}{v_1}$	$= R \ln \frac{v_2}{v_1}$	= 0	$= c_v \frac{n-\kappa}{n-1} \ln \frac{T_2}{T_1}$	
$u_2 - u_1$	$=c_{v}\left(T_{2}-T_{1}\right)$		= 0	$=c_{v}\left(T_{2}-T_{1}\right)$		
$h_2 - h_1$	$=c_{p}\left(T\right)$	$=c_p\left(T_2-T_1\right)$		$=c_p\left(T_2-T_1\right)$		

6.3 Spezielle Berechnungsgleichungen für spezifische Prozessgrößen

	q_{12}	$w_{V,12}$	$w_{t, 12} \ (= P_{12}/\dot{m})$			
• bei Zus	standsänderungen belie	biger Stoffe				
Isochore	$=u_2-u_1$	=0	$=v\left(p_{2}-p_{1}\right)$			
Isobar	$= h_2 - h_1$	$=-p\ (v_2-v_1)$	= 0			
Isentrope	= 0	$= u_2 - u_1$	$= h_2 - h_1$			
Isotherm	$=T\left(s_{2}-s_{1}\right)$	$= u_2 - u_1 - T(s_2 - s_1)$	$= h_2 - h_1 - T(s_2 - s_1)$			
• bei Zus	standsänderungen perfe	ekter Gase $(p v^n = \text{const.})$				
Isochore $n = \pm \infty$	$= c_v (T_2 - T_1)$ $= \frac{p_1 v}{\kappa - 1} \left(\frac{T_2}{T_1} - 1\right)$ $= \frac{v}{\kappa - 1} (p_2 - p_1)$	= 0	$= v (p_2 - p_1) = R (T_2 - T_1)$			
Isobare $n = 0$	$= c_p (T_2 - T_1)$ $= -\frac{\kappa}{\kappa - 1} w_{V, 12}$	$= p(v_1 - v_2)$ $= R(T_1 - T_2)$	= 0			
Isotherme $n=1$	$= -w_{V, 12} = -w_{t, 12}$	$= RT \ln \frac{p_2}{p_1} = p_1 v_1 \ln \frac{p_2}{p_1} = p_2 v_2 \ln \frac{p_2}{p_1}$				
Isentrope $n = \kappa$	= 0	$\begin{vmatrix} = c_v (T_2 - T_1) \\ = \frac{RT_1}{\kappa - 1} \left(\frac{T_2}{T_1} - 1 \right) \\ = \frac{RT_1}{\kappa - 1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{\kappa - 1}{\kappa}} - 1 \right] \end{vmatrix}$	$=\kappa w_{V,12}$			
Polytrope $n = c_v \frac{n - \kappa}{n - 1} (T_2 - T_1)$ $= \frac{n - \kappa}{\kappa - 1} w_{V, 12}$		$= \frac{R}{n-1} (T_2 - T_1)$ $= \frac{p_1 v_1}{n-1} \left[\left(\frac{p_2}{p_1} \right)^{\frac{n-1}{n}} - 1 \right]$	$= n \ w_{V, 12}$			
• bei Zus	standsänderung im Nas	sdampfgebiet realer Stoff	e			
Isochore	$= h'_2 + x_2 (h''_2 - h'_2)$ $- [h'_1 + x_1 (h''_1 - h'_1)]$ $- v (p_2 - p_1)$	= 0	$=v\left(p_{2}-p_{1}\right)$			
Isobare/ $= (h'' - h') (x_2 - x_1)$ Isotherme $= T (s_2 - s_1)$		$= p (x_2 - x_1) (v'' - v')$	= 0			
Isentrope	= 0	$ = h_2 - p_2 v_2 - (h_1 - p_1 v_1) $ $ mit h_i = h'_i + x_i (h''_i - h'_i) $ $ und v_i = v'_i + x_i (v''_i - v'_i) $	$= h'_2 + x_2 (h''_2 - h'_2)$ $- [h'_1 + x_1 (h''_1 - h'_1)]$			

7 Ausgewählte stationäre irreversible Prozesse

$$\begin{array}{ccc} \text{Realer} & & & \text{Reversibler} \\ \text{Prozessverlauf} & \boxed{1} \rightarrow \boxed{2} & & \text{Vergleichsprozess} & \boxed{1} \rightarrow \boxed{2, rev} \end{array}$$

Die Zustandsgrößen am Ende des reversiblen Vergleichsprozesses 2, rev werden mit Hilfe der Beziehungen aus Kapitel 6 bestimmt.

7.1 Einfache Prozesse mit beliebigen Medien

- Gütegrad der Verdichtung (Index "V") bzw. der Entspannung (Index "E"):
 - \rightarrow Die eingerahmten Gleichungen sind allgemeingültig.
 - \rightarrow Gütegrade sind definitionsgemäß <u>immer</u> kleiner eins $(\eta_{q,V/E} < 1)$
 - \rightarrow Spezielle Voraussetzungen für (Sonder-) Fälle 1 und 2:
 - <u>Fall 1:</u> thermisch ideal isoliert (adiabate Hülle, $\dot{Q}_{12} = 0$)
 - keine Änderung kinetischer und potenzieller Energie $(c_2 = c_1, z_2 = z_1)$
 - <u>Fall 2:</u> wie Fall 1, jedoch für perfekte Gase mit $T_{2,rev}$ aus Abschn. 6.2
 - \rightarrow Verdichter:

$$\eta_{g,V} = \frac{w_{t,12,rev}}{w_{t,12}} \qquad \underline{\text{Fall 1:}} \quad \eta_{g,V} = \frac{h_{2,rev} - h_1}{h_2 - h_1}; \ \underline{\text{Fall 2:}} \quad \eta_{g,V} = \frac{T_{2,rev} - T_1}{T_2 - T_1}$$
(72)

 \rightarrow Turbine bzw. Kolbenexpansionsmaschine:

$$\eta_{g,E} = \frac{w_{t,12}}{w_{t,12,rev}} \qquad \boxed{\text{Fall 1:}} \quad \eta_{g,E} = \frac{h_2 - h_1}{h_{2,rev} - h_1}; \quad \boxed{\text{Fall 2:}} \quad \eta_{g,E} = \frac{T_2 - T_1}{T_{2,rev} - T_1}$$
(73)

- Reibungsbehaftete Strömungsvorgänge: (innere Reibung im Fluid)
 - \rightarrow Annahmen: thermisch ideal isoliert (adiabate Hülle, $\dot{Q}_{12} = 0$)

$$h_2 + \frac{c_2^2}{2} + g \, z_2 = h_1 + \frac{c_1^2}{2} + g \, z_1 \tag{74}$$

- \rightarrow Spezialfälle:
 - o Horizontaler Kanal mit konstantem Strömungsquerschnitt A (siehe auch Gl. (49)):

$$h_2 + \frac{c_2^2}{2} = h_1 + \frac{c_1^2}{2}$$
 Masse-erhaltung: $\dot{m}_1 = \dot{m}_2 \rightarrow \left[\frac{\dot{m}}{A} = \frac{c_1}{v_1} = \frac{c_2}{v_2} \right]$ (75)

• Drosselvorgang:

Annahme:
$$h_i >> \frac{c_i^2}{2} + g z_i \longrightarrow h_2 = h_1$$
 (76)

o Gütegrad einer Düse (Index "Dü", horizontal $z_1 = z_2$):

$$\eta_{g, D\ddot{u}} = \frac{c_2^2 - c_1^2}{c_{2, rev}^2 - c_1^2} = \frac{h_2 - h_1}{h_{2, rev} - h_1} \tag{77}$$

o Gütegrad eines Diffusors (Index "Di", horizontal $z_1 = z_2$):

$$\eta_{g,Di} = \frac{c_{2,rev}^2 - c_1^2}{c_2^2 - c_1^2} = \frac{h_{2,rev} - h_1}{h_2 - h_1}$$
(78)

7.2 Prozesse mit feuchter Luft

- Annahmen: keine Zufuhr mechanischer Leistung $P_{12} = 0$
 - keine Änderung der kinetischen und potenziellen Energie $(c_2 = c_1, z_2 = z_1)$,
 - \bullet Gesamtdruck p bleibt in der Regel konstant
 - Ermittlung der Stoffdaten nach Abschn. 2.3
- Erwärmung bzw. Abkühlung: Merke: Wassergehalt konstant $\rightarrow x_2 = x_1$

$$\dot{Q}_{12} = \dot{H}_{fL, 2} - \dot{H}_{fL, 1} \quad \rightarrow \quad \dot{Q}_{12} = \dot{m}_L (h_2 - h_1)$$
 (79)

 $\rightarrow \dot{m}_L \dots$ Massestrom trockene Luft

 h_i ... Enthalpien der feuchten Luft entsprechend Gln. (40), (41), (42) in kJ/kg_L

- Befeuchtung mit Wasser: (thermisch ideal isoliertes System) (Index "W", Lufteintritt [1], Luftaustritt [2], $\dot{Q} = 0$)
 - \rightarrow Energiestrombilanz: $\dot{m}_L h_1 + \dot{m}_W h_W = \dot{m}_L h_2$ (h_W aus Abschn. 2.1) Massestrombilanz: $\dot{m}_L x_1 + \dot{m}_W = \dot{m}_L x_2$ (Wasser)
 - → Berechnung der Enthalpie des zuzuführenden Wassers:

$$h_W = \frac{h_2 - h_1}{x_2 - x_1} \tag{80}$$

- Entfeuchtung: (thermisch ideal isoliertes System) (Lufteintritt $\boxed{1}$, Luftaustritt $\boxed{2}$, $\dot{Q} = 0$)
 - \rightarrow Vorgehen: 1. Abkühlen der feuchten Luft bis in den Bereich der übersättigten feuchten Luft $[t_2 < t_S(p_{W1})]$
 - 2. Abscheiden des Wasseranteiles (Flüssigkeit/Eis) \rightarrow gesättigte feuchte Luft $(t_2 = t_S(p_{W2}), x_S, h_S)$ tritt aus
 - \rightarrow Energiestrombilanz: $\dot{m}_L h_1 \dot{m}_W h_W = \dot{m}_L h_S(t_2)$ Massestrombilanz: $\dot{m}_L x_1 - \dot{m}_W = \dot{m}_L x_S(t_2)$ (Wasser)
 - \rightarrow Berechnung des abgeschiedenen Wassermassestromes:

$$\dot{m}_W = \dot{m}_L \left[x_1 - x_S(t_2) \right]$$
 (81)

- Mischung zweier Feuchtluftmasseströme: (thermisch ideal isoliertes System) (Lufteintritt $\boxed{1}$ & $\boxed{2}$, Luftaustritt \boxed{M} , $\dot{Q}=0$)
 - \rightarrow Energiestrombilanz: $\dot{m}_{L,1} h_1 + \dot{m}_{L,2} h_2 = \dot{m}_{L,M} h_M$ Massestrombilanz: $\dot{m}_{L,1} x_1 + \dot{m}_{L,2} x_2 = \dot{m}_{L,M} x_M$ (Wasser) $\dot{m}_{L,1} + \dot{m}_{L,2} = \dot{m}_{L,M}$ (Luft)
 - → Berechnung der Enthalpie und des Wassergehaltes der Mischungsluft:

$$h_M = \frac{\mu h_1 + h_2}{1 + \mu}$$
 $mit \mu = \frac{\dot{m}_{L,1}}{\dot{m}_{L,2}}$ (82)

8 Physikalische Größen und Konstanten sowie deren Einheiten

8.1 Ausgewählte Größen mit gebräuchlichen Einheiten

Größe	Symbol	Name der Einheit	Abkür- zung	Umrechnung bzw. alternative Einheiten
Druck	p	Pascal	Pa	$1 \text{ Pa} = 1 \frac{N}{m^2} = 1 \frac{J}{m^3} = 1 \frac{\text{kg}}{\text{m s}^2}$
				$1 \text{ bar} = 10^5 \text{ Pa}$
innere Energie,	U,	Joule	J	$1 \text{ J} = 1 \text{ W s} = 1 \text{ N m} = 1 \frac{\text{kg m}^2}{\text{s}^2}$
Wärme, Exergie,	Q, E,			4 1 1 1 2 2 2 4 2 6 1 1 2 2 2 2 1 1
Arbeit	W			$1 \text{ kWh} = 3, 6 \cdot 10^6 \text{ W s} = 3,6 \text{ MJ}$
Enthalpie-, Wärme-,	$\dot{H}, \dot{Q},$	Watt	W	$1 \text{ W} = 1 \frac{\text{J}}{\text{s}} = 1 \frac{\text{N m}}{\text{s}} = 1 \frac{\text{kg m}^2}{\text{s}^3}$
Exergiestrom, Leistung	$ \begin{vmatrix} \dot{E}, \\ P (= \dot{W}) \end{vmatrix} $			1 PS = 0.74567 kW
Kraft	F	Newton	N	$1 \text{ N} = 1 \frac{\text{kg m}}{\text{s}^2}$
Länge	L	Meter	m	
Masse	m	Kilogramm	kg	$1 t (Tonne) = 10^3 kg$
Stoffmenge	n	Mol	mol	
Temperatur	t	Grad Celsius	°C	
	T	Kelvin	K	$\frac{T}{K} = \frac{t}{^{\circ}C} + 273,15 \text{ K}$
Zeit	τ	Sekunde	s	1 h (Stunde) = 3600 s

• Wichtige Vorsätze: (Die Vorsätze in Klammern sollten i. d. R. nicht verwendet werden.)

Vorsatz	Nano	Mikro	Milli	(Zenti)	(Dezi)	-	(Hekto)	Kilo	Mega	Giga
Symbol	n	μ	m	c	d	-	h	k	M	G
Potenz	10^{-9}	10^{-6}	10^{-3}	10^{-2}	10-1	10 ⁰	10 ²	10 ³	10 ⁶	109

8.2 Wichtige Konstanten

1. molares Normvolumen
$$\bar{v}_N=22,414~\frac{\text{m}^3}{\text{kmol}} \qquad \left\{ \begin{array}{l} \text{physikalischer} & p_N=101\,325 \text{ Pa} \\ \text{Normzustand} & T_N=273,15 \text{ K} \end{array} \right.$$

2. universelle Gaskonstante
$$\bar{R} = 8,3145 \; \frac{\mathrm{kJ}}{\mathrm{kmol}\,\mathrm{K}}$$

3. Erdbeschleunigung
$$g=9,81~{\rm \frac{m}{s^2}}$$

Dimension	Einheit	Abkürzung	Umrechnungsgleichung					
Länge	inch		1 inch	=	25,40	mm		
	foot	ft	1 ft	=	0,3048	m		
	yard	yd	1 yd	=	0,9144	m		
Fläche	squareinch	sq. in.	1 sq. in.	=	$6,\!4516$	${ m cm}^2$		
	squarefoot	sq. ft.	1 sq. ft.	=	0,0929	m^2		
Volumen	cubic foot	cu. ft.	1 cu. ft.	=	0,02832	m^3		
Masse	ounce		1 ounce	=	28,35	g		
	pound	lb	1 lb	=	$0,\!4536$	kg		
	short ton	sh. ton	$1 ext{ sh. ton}$	=	907,18	kg		
	long ton	lg. ton	1 lg. ton	=	1016,1	kg		
Kraft	pound	Lb	1 Lb	=	4,4448	N		
Druck	pound/squareinch	Lb/sq. in.	1 Lb/sq. in.	=	6,895	kPa		
Energie	British thermal unit	B. th. u.	1 B. th. u.	=	1,0551	kJ		
Leistung	horse-power	h. p.	1 h. p.	=	0,74567	kW = 1 PS		

9 Stoffdatentabellen und Zustandsdiagramme

- $\bullet \text{ Luftzusammensetzung (nach ISO 2553):} \quad \psi_{\mathrm{N_2}} = 0,781109, \; \psi_{\mathrm{O_2}} = 0,209548, \; \psi_{\mathrm{Ar}} = 0,009343$
- \bullet Spezifische isobare Wärmekapazität ausgewählter Idealgase³:

$$\frac{c_p}{\mathrm{kJ/(kg\,K)}} = a + b \cdot \left(\frac{T}{\mathrm{K}}\right) + c \cdot \left(\frac{T}{\mathrm{K}}\right)^2 + d \cdot \left(\frac{T}{\mathrm{K}}\right)^3 \tag{83}$$

Tabelle 9.1: Molare Massen und Koeffizienten der c_p - Gleichung - Gl. (83) - verschiedener Stoffe

Gas	Symbol	M	Koeffiz	zienten fi	$\operatorname{ir} c_p \operatorname{in} C$	Gl. (83)
		kg/kmol	a	$10^4 \cdot b$	$10^7 \cdot c$	$10^{11} \cdot d$
Stickstoff	N_2	28,01	0,9818	1,14	1,17	-5,02
Sauerstoff	O_2	32,00	0,7667	5,42	-2,724	5,26
Argon	Ar	39,95	0,5203	0,0	0,0	0,0
Neon	Ne	20,18	1,03	0,0	0,0	0,0
Helium	Не	4,00	5,193	0,0	0,0	0,0
Wasser	$_{\mathrm{H_2O}}$	18,02	1,74	2,54	4,375	-14,18
Kohlenstoffdioxid	CO_2	44,01	0,5428	12,43	-6,857	13,64
Kohlenstoffmonoxid	CO	28,01	0,953	2,27	0,304	-3,03
Schwefeldioxid	SO_2	64,06	0,4213	8,35	-5,17	11,1
trockene Luft		28,96	0,926	2,12	0,251	-2,58
Wasserstoff	H_2	2,02	14,52	-11,32	20,81	-44,7
Ammoniak	NH_3	17,03	1,4836	20,62	-1,137	-11,85
Methan	CH_4	16,04	1,1112	36,3	1,213	-40,8

³Näherung durch kubische Polynome, unterschiedliche Quellen

 ${\bf Tabelle~9.2:}~{\bf Spezifische~thermische~und~energetische~Zustandsgr\"{o}ßen~f\"{u}r~\ddot{u}berhitzten~Wasserdampf\\ nach IAPWS-IF97~(kursiv=trocken~ges\"{a}ttigter~Dampfzustand)$

t	v	u	h	s	t	v	u	h	s	
°C	m^3/kg	kJ/kg	kJ/kg	kJ	°C	m^3/kg	kJ/kg	kJ/kg	kJ	
	, ,		, ,	kg K		III / Kg	K9/ Kg	Ko/ Kg	kg K	
		= 0.1 MI				p = 0.2 MPa				
99,61	1,6940	2505,5	2674,9	7,3588	120,21	0,8857	2529,1	2706,2	7,1269	
100	1,6960	2506,2	2675,8	7,3610	130	0,9104	2545,2	2727,3	7,1796	
150	1,9367	2582,9	2776,6	7,6147	150	0,9599	2577,1	2769,1	7,2809	
200	2,1725	2658,2	2875,5	7,8356	200	1,0805	2654,7	2870,8	7,5081	
250	2,4062	2733,9	2974,5	8,0346	250	1,1989	2731,5	2971,3	7,7100	
300	2,6389	2810,7	3074,5	8,2171	300	1,3162	2808,8	3072,1	7,8940	
350	2,8710	2888,7	3175,8	8,3865	350	1,4330	2887,3	3173,9	8,0643	
400	3,1027	2968,3	3278,5	8,5451	400	1,5493	2967,1	3277,0	8,2235	
450	3,3342	3049,4	3382,8	8,6945	450	1,6655	3048,4	3381,5	8,3733	
500	3,5656	3132,2	3488,7	8,8361	500	1,7814	3131,3	3487,6	8,5151	
550	3,7968	3216,6	3596,3	8,9709	550	1,8973	3215,9	3595,4	8,6501	
600	4,0279	3302,8	3705,6	9,0998	600	2,0130	3302,2	3704,8	8,7792	
		= 0.3 MI					= 0.5 MF			
133,53	0,6058	2543,2	2724,9	6,9916	151,84	0,3748	2560, 7	2748,1	6,8206	
150	0,6340	2571,0	2761,2	7,0791	175	0,3995	2601,6	2801,4	6,9427	
200	0,7164	2651,0	2866,0	7,3132	200	0,4250	2643,4	2855,9	7,0611	
250	0,7965	2729,0	2967,9	7,5181	250	0,4744	2723,9	2961,1	7,2726	
300	0,8753	2807,0	3069,6	7,7037	300	0,5226	2803,3	3064,6	7,4614	
350	0,9536	2885,9	3172,0	7,8749	350	0,5701	2883,0	3168,1	7,6345	
400	1,0315	2966,0	3275,4	8,0346	400	0,6173	2963,6	3272,3	7,7954	
450	1,1092	3047,5	3380,2	8,1848	450	0,6642	3045,6	3377,7	7,9464	
500	1,1867	3130,5	3486,6	8,3269	500	0,7109	3128,9	3484,4	8,0891	
550	1,2641	3215,2	3594,5	8,4622	550	0,7576	3213,9	3592,6	8,2247	
600	1,3414	3301,6	3704,0	8,5914	600	0,8041	3300,4	3702,5	8,3543	
4 0 0 0 0 0		= 0.75 M			150000		= 1.0 MF		2 2 2 2 2	
167,76	0,2555	2574,0	2765,6	6,6835	179,89	0,1943	2582,8	2777,1	6,5850	
200	0,2791	2633,2	2842,5	6,8520	200	0,2060	2622,3	2828,3	6,6955	
250	0,3133	2717,3	2952,3	7,0727	250	0,2327	2710,5	2943,2	6,9266	
300	0,3462	2798,6	3058,2	7,2660	300	0,2580	2793,7	3051,7	7,1247	
350	0,3784	2879,4	3163,1	7,4415	350	0,2825	2875,7	3158,2	7,3028	
400	0,4102 $0,4417$	2960,7	3268,4 $3374,4$	7,6039	400	0,3066	2957,8	3264,4	7,4668	
450	· ·	3043,2	·	7,7559	450	0,3304	3040,8 $3124,9$	3371,2	7,6198	
500 550	0,4731 0,5043	3126,9 3212,1	3481,7 3590,4	7,8994 8,0355	500 550	0,3541 0,3777	3124,9 $3210,4$	3479,0 3588,1	7,7640 $7,9007$	
600	0,5043 0,5354	3212,1 3298,9	3700,5	8,1654	600	0,3777	3210,4 $3297,4$	3698,6	8,0309	
000	,			0,1004	1 000	<u> </u>			0,0303	
198,30	0.1317	= 1.5 MI 2593.5	2791,0	6 1 1 9 1	212,38	0,0996	= 2.0 MF 2599.2	2798,4	6,3392	
				6,4431						
250 300	$0,1520 \\ 0,1697$	2696,0 $2783,7$	2924,0 3038,3	6,7111 6,9199	250 300	0,1115 $0,1255$	2680,3 $2773,2$	2903,2 3024,3	6,5474 $6,7685$	
350	0,1697 $0,1866$	2868,2	3148,0	7,1035	350	$0,1255 \ 0,1386$	2773,2 $2860,5$	3137,6	6,7683 $6,9582$	
400	0,1800 $0,2030$	2951,8	3256,4	7,1035 7,2708	400	0,1500 0,1512	2945,8	3248,2	7,1290	
450	0,2030 $0,2192$	3035,9	3364,7	7,2708 $7,4259$	450	$0,1512 \ 0,1635$	3031,0	3358,1	7,1290 $7,2863$	
500	0,2132 0,2352	3120,8	3473,6	7,4239 $7,5716$	500	$0,1055 \ 0,1757$	3031,0 $3116,7$	3468,1	7,2803 $7,4335$	
550	0,2552 0,2510	3207,0	3583,5	7,7093	550	0,1757	3203,5	3578,9	7,4333 $7,5723$	
600	0,2610 $0,2668$	3294,5	3694,6	7,8404	600	0,1996	3291,5	3690,7	7,7042	
000	0,2000	0204,0	9094,0	1,0404	000	0,1990	0201,0	9090,1	1,1042	

 \dots Fortsetzung von Tabelle $\bf 9.2$

t	v	u	h	s	t	v	u	h	s	
0.0				kJ					kJ	
°C	m^3/kg	kJ/kg	kJ/kg	$\overline{\text{kg K}}$	$^{\circ}\mathrm{C}$	m^3/kg	kJ/kg	kJ/kg	$\overline{\text{kg K}}$	
	p	= 3.0 MI	Pa		p = 5.0 MPa					
233,86	0,0667	2603,3	2803,3	6,1858	263,94	0,0394	2597,0	2794,2	5,9737	
250	0,0706	2644,7	2856,5	6,2893	275	0,0414	2632,3	2839,5	6,0571	
300	0,0812	2750,8	2994,3	6,5412	300	0,0453	2698,9	2925,6	6,2109	
350	0,0906	2844,4	3116,1	6,7449	350	0,0520	2809,4	3069,3	6,4515	
400	0,0994	2933,4	3231,6	6,9233	400	0,0578	2907,4	3196,6	6,6481	
450	0,1079	3021,0	3344,7	7,0853	450	0,0633	3000,4	3317,0	6,8208	
500	0,1162	3108,5	3457,0	7,2356	500	0,0686	3091,6	3434,5	6,9778	
550	0,1244	3196,5	3569,6	7,3767	550	0,0737	3182,3	3550,8	7,1235	
600	0,1324	3285,5	3682,8	7,5102	600	0,0787	3273,3	3666,8	7,2604	
650	0,1405	3375,6	3797,0	7,6373	650	0,0836	3365,1	3783,3	7,3901	
700	0,1484	3467,1	3912,3	7,7590	700	0,0885	3457,9	3900,5	7,5137	
750	0,1563	3560,1	4029,0	7,8759	750	0,0933	3551,8	4018,6	7,6321	
	p	= 7.5 MI	Pa			<i>p</i> =	= 10,0 M	Pa		
290,54	0,0253	2575,8	2765,8	5,7792	311,00	0,0180	2545,1	2725,5	5,6159	
300	0,0267	2613,7	2814,3	5,8644	325	0,0199	2611,4	2810,2	5,7593	
350	0,0325	2759,3	3002,7	6,1805	350	0,0224	2699,5	2924,0	5,9458	
400	0,0370	2872,0	3149,3	6,4070	400	0,0264	2833,0	3097,4	6,2139	
450	0,0410	2973,3	3280,7	6,5954	450	0,0298	2944,4	3242,3	6,4217	
500	0,0448	3069,7	3405,3	6,7620	500	0,0328	3046,9	3375,1	6,5993	
550	0,0483	3164,1	3526,7	6,9141	550	0,0357	3145,4	3501,9	6,7584	
600	0,0518	3257,9	3646,5	7,0555	600	0,0384	3242,1	3625,8	6,9045	
650	0,0552	3351,7	3765,9	7,1885	650	0,0410	3338,2	3748,3	7,0409	
700	0,0586	3446,2	3885,4	7,3145	700	0,0436	3434,3	3870,3	7,1696	
750	0,0619	3541,5	4005,5	7,4348	750	0,0461	3531,0	3992,3	7,2918	
	<i>p</i> :	= 12,5 M	Pa		p = 15.0 MPa					
327,82	0,0135	2505,7	2674,5	5,4640	342,16	0,0103	2455,8	2610,9	5,3108	
350	0,0161	2624,7	2826,5	5,7128	350	0,0115	2520,8	2693,0	5,4435	
400	0,0200	2789,5	3039,9	6,0431	400	0,0157	2740,5	2975,5	5,8817	
450	0,0230	2913,6	3201,4	6,2748	450	0,0185	2880,7	3157,8	6,1433	
500	0,0256	3023,2	3343,6	6,4650	500	0,0208	2998,4	3310,8	6,3479	
550	0,0280	3126,1	3476,5	6,6317	550	0,0229	3106,3	3450,5	6,5230	
600	0,0303	3226,0	3604,8	6,7829	600	0,0249	3209,5	3583,3	6,6797	
650	0,0325	3324,4	3730,5	6,9229	650	0,0268	3310,4	3712,4	6,8235	
700	0,0346	3422,3	3855,0	7,0542	700	0,0286	3410,2	3839,5	6,9576	
750	0,0367	3520,4	3979,0	7,1785	750	0,0304	3509,8	3965,6	7,0839	
	p:	= 17,5 M	Pa			<i>p</i> =	= 20,0 MI	Pa		
354,67	0,0079	2390,4	2529,1	5,1428	365,75	0,0059	2294,2	2411,4	4,9299	
400	0,0125	2684,2	2902,3	5,7209	400	0,0099	2617,8	2816,8	5,5525	
450	0,0152	2845,3	3111,3	6,0210	450	0,0127	2807,1	3061,5	5,9041	
500	0,0174	2972,4	3276,7	6,2423	500	0,0148	2945,3	3241,2	6,1445	
550	0,0193	3085,9	3423,7	6,4266	550	0,0166	3064,8	3396,2	6,3390	
600	0,0211	3192,7	3561,5	6,5891	600	0,0182	3175,5	3539,2	6,5077	
650	0,0227	3296,1	3694,1	6,7369	650	0,0197	3281,7	3675,6	6,6596	
700	0,0243	3397,9	3823,9	6,8738	700	0,0211	3385,5	3808,2	6,7994	
750	0,0259	3499,0	3952,1	7,0023	750	0,0225	3488,1	3938,5	6,9301	

 $\begin{tabelle} \textbf{Tabelle 9.3:} Spezifische thermische und energetische Zustandsgrößen für siedende Wasserflüssigkeit (') und trocken gesättigten Dampf ('') nach IAPWS-IF97 ($ **Drucktabelle** $) \\ \end{tabelle}$

p_S	t_S	$10^3 \cdot v'$	v''	u'	u''	h'	h''	s'	s''
MPa	°C	m	$^{3}/\mathrm{kg}$	kJ/kg		$\mathrm{kJ/kg}$		kJ/(kgK)	
0,001	6,97	1,0001	129,180	29,30	2384,5	29,30	2513,7	0,1059	8,9749
0,002	17,50	1,0014	66,990	73,43	2398,9	73,43	2532,9	0,2606	8,7227
0,003	24,08	1,0028	45,655	100,99	2407,9	100,99	2544,9	0,3543	8,5766
0,004	28,96	1,0041	34,792	121,40	2414,5	121,40	2553,7	0,4224	8,4735
0,005	32,88	1,0053	28,186	137,76	2419,8	137,77	2560,8	0,4763	8,3939
0,006	36,16	1,0064	23,734	151,49	2424,3	151,49	2566,7	0,5209	8,3291
0,007	39,00	1,0075	20,525	163,36	2428,1	163,37	2571,8	0,5591	8,2746
0,008	41,51	1,0085	18,099	173,84	2431,4	173,85	2576,2	0,5925	8,2274
0,009	43,76	1,0094	16,200	183,25	2434,5	183,26	2580,3	0,6223	8,1859
0,01	45,81	1,0103	14,671	191,80	2437,2	191,81	2583,9	0,6492	8,1489
0,02	60,06	1,0171	7,6482	251,38	2456,0	251,40	2608,9	0,8320	7,9072
0,03	69,10	1,0222	5,2286	289,20	2467,7	289,23	2624,6	0,9439	7,7675
0,04	75,86	1,0264	3,9931	317,53	2476,3	317,57	2636,1	1,0259	7,6690
0,05	81,32	1,0299	3,2401	340,42	2483,2	340,48	2645,2	1,0910	7,5930
0,06	85,93	1,0331	2,7318	359,77	2488,9	359,84	2652,9	1,1452	7,5311
0,07	89,93	1,0359	2,3649	376,61	2493,9	376,68	2659,4	1,1919	7,4790
0,08	93,49	1,0385	2,0872	391,56	2498,2	391,64	2665,2	1,2328	7,4339
0,09	96,69	1,0409	1,8695	405,03	2502,1	405,13	2670,3	1,2694	7,3942
0,10	99,61	1,0431	1,6940	417,33	2505,5	417,44	2674,9	1,3026	7,3588
0,15	111,35	1,0527	1,1594	466,92	2519,2	467,08	2693,1	1,4335	7,2229
0,20	120,21	1,0605	0,88574	504,47	2529,1	504,68	2706,2	1,5301	7,1269
0,25	127,41	1,0672	0,71870	535,08	2536,8	$535,\!35$	2716,5	1,6072	7,0524
0,30	133,53	1,0732	0,60579	561,13	2543,2	561,46	2724,9	1,6718	6,9916
0,35	138,86	1,0786	0,52420	583,93	2548,5	584,31	2732,0	1,7275	6,9401
0,40	143,61	1,0836	0,46239	604,29	2553,1	604,72	2738,1	1,7766	6,8954
0,45	147,91	1,0882	0,41390	622,73	2557,1	623,22	2743,4	1,8206	6,8560
0,50	151,84	1,0926	0,37480	639,64	2560,7	640,19	2748,1	1,8606	6,8206
0,60	158,83	1,1006	0,31558	669,84	2566,8	$670,\!50$	2756,1	1,9311	6,7592
0,70	164,95	1,1080	0,27276	696,37	2571,8	697,14	2762,7	1,9921	6,7070
0,80	170,41	1,1148	0,24033	720,13	2576,0	721,02	2768,3	2,0460	6,6615
0,90	175,36	1,1212	0,21487	741,72	2579,7	742,72	2773,0	2,0944	6,6212
1,00	179,89	1,1272	0,19435	761,56	2582,8	762,68	2777,1	2,1384	6,5850
2,00	212,38	1,1768	0,09958	906,27	2599,2	908,62	2798,4	2,4470	6,3392
3,00	233,86	1,2167	0,06666	1004,7	2603,3	1008,4	2803,3	2,6456	6,1858
4,00	250,36	1,2526	0,04978	1082,4	2601,8	1087,4	2800,9	2,7967	6,0697
5,00	263,94	1,2864	0,03945	1148,1	2597,0	1154,5	2794,2	2,9207	5,9737
6,00	275,59	1,3193	0,03245	1205,8	2589,9	1213,7	2784,6	3,0274	5,8901
8,00	295,01	1,3847	0,02353	1306,0	2570,4	1317,1	2758,6	3,2077	5,7448
10,00	311,00	1,4526	0,01803	1393,3	2545,1	1407,9	2725,5	3,3603	5,6159
12,00	324,68	1,5263	0,01427	1473,0	2514,4	1491,3	2685,6	3,4965	5,4941
14,00	336,67	1,6097	0,01149	1548,3	2477,2	1570,9	2638,1	3,6230	5,3730
16,00	347,36	1,7095	0,00931	1622,3	2431,9	1649,7	2580,8	3,7457	5,2463
18,00	356,99	1,8395	0,00750	1698,9	2374,6	1732,0	2509,5	3,8717	5,1055
20,00	365,75	2,0386	0,00586	1786,3	2294,2	1827,1	2411,4	4,0154	4,9299
22,00	373,71	2,7503	0,00358	1961,4	2085,5	2021,9	2164,2	4,3109	4,5308

 $\begin{tabelle} \textbf{Tabelle 9.4:} Spezifische thermische und energetische Zustandsgrößen für siedende Wasserflüssigkeit (') und trocken gesättigten Dampf ('') nach IAPWS-IF97 (Temperaturtabelle) \end{tabelle}$

t_S	p_S	$10^3 \cdot v'$	v''	u'	u''	h'	h''	s'	s''
°C	MPa	m	$^{3}/\mathrm{kg}$	kJ/kg		kJ/kg		kJ/(kgK)	
0,01	0,00061	1,0002	206,00	0,00	2374,9	0,00	2500,9	0,0000	9,1555
5	0,00087	1,0001	147,02	21,02	2381,8	21,02	2510,1	0,0763	9,0249
10	0,00123	1,0003	106,31	42,02	2388,7	42,02	2519,2	0,1511	8,8998
15	0,00171	1,0009	77,881	62,98	2395,5	62,98	2528,4	0,2245	8,7804
20	0,00234	1,0018	57,761	83,92	2402,4	83,92	2537,5	$0,\!2965$	8,6661
25	0,00317	1,0030	43,341	104,84	2409,2	104,84	2546,5	0,3673	8,5568
30	0,00425	1,0044	32,882	125,74	2415,9	125,75	2555,6	0,4368	8,4521
35	0,00563	1,0060	25,208	146,64	2422,7	146,64	2564,6	0,5052	8,3518
40	0,00738	1,0079	19,517	$167,\!53$	2429,4	$167,\!54$	2573,5	0,5724	8,2557
45	0,00959	1,0099	15,253	188,43	2436,1	188,44	2582,5	0,6386	8,1634
50	0,01235	1,0121	12,028	209,32	2442,8	209,34	2591,3	0,7038	8,0749
55	0,01576	1,0145	9,5649	230,23	2449,4	230,24	2600,1	0,7680	7,9899
60	0,01995	1,0171	7,6677	251,13	2455,9	251,15	2608,8	0,8312	7,9082
65	0,02504	1,0199	6,1938	272,05	2462,4	272,08	2617,5	0,8935	7,8296
70	0,03120	1,0228	5,0397	292,99	2468,9	293,02	2626,1	0,9550	7,7540
75	0,03860	1,0258	4,1291	313,93	2475,2	313,97	2634,6	1,0156	7,6812
80	0,04741	1,0290	3,4053	334,90	2481,6	334,95	2643,0	1,0754	7,6110
85	0,05787	1,0324	2,8259	355,89	2487,8	355,95	2651,3	1,1344	7,5434
90	0,07018	1,0359	2,3591	376,90	2494,0	376,97	2659,5	1,1927	7,4781
95	0,08461	1,0396	1,9806	397,93	2500,0	398,02	2667,6	1,2502	7,4150
100	0,10142	1,0435	1,6719	418,99	2506,0	419,10	2675,6	1,3070	7,3541
110	0,14338	1,0516	1,2094	461,21	2517,7	461,36	2691,1	1,4187	7,2380
120	0,19867	1,0603	0,89130	503,57	2528,9	503,78	2705,9	1,5278	7,1291
130	0,27026	1,0697	0,66808	546,10	2539,5	546,39	2720,1	1,6346	7,0264
140	0,36150	1,0798	0,50852	588,81	2549,6	589,20	2733,4	1,7393	6,9293
150	0,47610	1,0905	0,39250	631,73	2559,0	632,25	2745,9	1,8420	6,8370
160	0,61814	1,1020	0,30682	674,89	2567,8	675,57	2757,4	1,9428	6,7491
170	0,79205	1,1143	0,24262	718,32	2575,7	719,21	2767,9	2,0419	6,6649
180	1,0026	1,1274	0,19386	762,06	2582,8	763,19	2777,2	2,1395	6,5841
190	1,2550	1,1414	0,15638	806,13	2589,1	807,57	2785,3	2,2358	6,5060
200	1,5547	1,1565	0,12722	850,60	2594,3	852,39	2792,1	2,3308	6,4303
210	1,9074	1,1727	0,10430	895,49	2598,4	897,73	2797,4	2,4248	6,3565
220	2,3193	1,1902	0,08610	940,88	2601,4	943,64	2801,1	2,5178	6,2842
230	2,7968	1,2090	0,07151	986,83	2603,0	990,21	2803,0	2,6102	6,2131
240	3,3467	1,2295	0,05971	1033,4	2603,2	1037,5	2803,1		6,1425
250	3,9759	1,2517	0,05009	1080,7	2601,9	1085,7	2801,0	2,7934	6,0722
260	4,6921	1,2761	0,04218	1128,8	2598,8	1134,8	2796,6	2,8847	6,0017
270	5,5028	1,3030	0,03562	1177,9	2593,7	1185,1	2789,7	2,9762	5,9304
280	6,4165	1,3328	0,03015	1228,1	2586,3	1236,7	2779,8	3,0681	5,8578
290	7,4416	1,3663	0,02556	1279,6	2576,4	1289,8	2766,6	3,1608	5,7832
300	8,5877	1,4042	0,02166	1332,7	2563,5	1344,8	2749,6	3,2547	5,7058
310	9,8647	1,4479	0,01834	1387,7	2547,0	1402,0	2727,9	3,3506	5,6243
320	11,284	1,4991	0,01548	1445,1	2526,0	1462,1	2700,7	3,4491	5,5373
330	12,858	1,5606	0,01298	1505,7	2499,3	1525,7	2666,2	3,5516	5,4425
340	14,600	1,6375	0,01078	1570,5	2464,6	1594,4	2622,1	3,6599	5,3359
350	16,529	1,7401	0,00880	1642,1	2418,1	1670,9	2563,6	3,7783	5,2109
360	18,666	1,8945	0,00694	1726,1	2351,3	1761,5	2481,0	3,9164	5,0527
370	21,043	2,2221	0,00495	1845,9	2229,4	1892,6	2333,5	4,1141	4,7996

 ${\bf Tabelle~9.4~a:~S\"{a}ttigungsdrucktabelle~f\"{u}r~Wasser} \\ (detaillierterer~Auszug~der~Spalten~1~\&~2~aus~Tabelle~9.4~insbesondere~zur~Behandlung~,feuchter~Luft")$

t_S	p_S	t_S	p_S	t_S	p_S
$^{\circ}\mathrm{C}$	kPa	$^{\circ}\mathrm{C}$	kPa	°C	kPa
-20	0,1033	20	2,3392	60	19,9458
-18	0,1249	22	2,6452	62	21,8664
-16	0,1507	24	2,9856	64	23,9421
-14	0,1812	26	3,3637	66	26,1827
-12	0,2173	28	3,7828	68	28,5986
-10	0,2599	30	4,2467	70	31,2006
-8	0,3100	32	4,7592	72	34,0001
-6	0,3687	34	5,3247	74	37,0088
-4	0,4375	36	5,9475	76	40,2389
-2	0,5177	38	6,6324	78	43,7031
0	0,6112	40	7,3844	80	47,4147
2	0,7060	42	8,2090	82	51,3875
4	0,8135	44	9,1118	84	55,6355
6	0,9354	46	10,0988	86	60,1738
8	1,0730	48	11,1764	88	65,0174
10	1,2282	50	12,3513	90	70,1824
12	1,4028	52	13,6305	92	75,6849
14	1,5989	54	15,0215	94	81,5420
16	1,8188	56	16,5322	96	87,7711
18	2,0647	58	18,1708	98	94,3902

Zustandsdiagramme

Auf den nachfolgenden Seiten werden drei wesentliche Zustandsdiagramme - teils als Ausschnitt - veranschaulicht. Dabei handelt es sich um

- das p, v Diagramm für Wasser (doppelt logarithmisch, Seite 27),
- \bullet das h,s- Diagramm für Wasser (Ausschnitt, Seite 28) sowie
- das h, x Diagramm für feuchte Luft (Seite 29).

