МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НОЕ ГОСУЛА РСТВЕННОЕ АВТОНОМНОЕ ОГРАЗОВАТЕЛЬНОЕ М

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ имени В.И.ВЕРНАДСКОГО» **ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ**

Кафедра компьютерной инженерии и моделирования

ТАРАН ЕВГЕНИЙ ПАВЛОВИЧ

Практикум

по курсу «Обработка сигналов»

для обучающихся направления подготовки: 09.03.01 Информатика и вычислительная техника очной формы обучения

Рекомендовано к печати заседанием кафедры компьютерной инженерии и моделирования протокол № 5 от 15.01.2020

Рекомендовано к печати:

Учебно-методическим советом Физико-технического института (структурное подразделение) ФГАОУ ВО «КФУ им. В.И.Вернадского»

протокол № 5 от 24.01.2020

Составитель (автор): Таран Евгений Павлович, к.ф.-м.н., доцент кафедры компьютерной инженерии и моделирования

ВВЕДЕНИЕ

Настоящий практикум, включает в себя описания практических занятий по дисциплине «Обработка сигналов» для студентов направления подготовки 09.03.01 - Информатика и вычислительная техника. В практикум включены работы, в которых необходимо разработать программное обеспечение, позволяющее обрабатывать сигналы с применением необходимого математического аппарата.

Целью практикума является получение практических навыков обработки аналоговых и цифровых сигналов.

Требования к студентам по подготовке, выполнению и отчету по практическим занятиям:

- 1. Студент приходит на практическое занятие, ознакомившись с теоретическим материалом по данной теме, необходимым для выполнения практического задания.
- 2. В начале занятия преподаватель проверяет подготовку к практическому занятию и оценивает ее. Студенты, не знающие теорию вопроса, к выполнению работы не допускаются.
- 3. Отчет по практическому занятию должен содержать: доскональное и развренутое решение практического задания.
- 4. Порядок сдачи практического задания: практические задания сдаются лично каждым студентом, при этом студент должен четко и точно ответить на вопросы преподавателя о ходе выполнения практического задания, а так же на теоретические вопросы.

Для самоконтроля и подготовки студентов к практическим занятиям описание каждой из них содержит теоретический материал. Некоторые вопросы требуют более глубокой проработки теоретического материала и умения применять его в нестандартных условиях. Для подготовки к практическим занятиям, как правило, достаточно воспользоваться каким-либо одним из рекомендованных учебников или пособий, данными методическими указаниями, а также конспектом лекций, по соответствующим разделам дисциплины «Обработка сигналов».

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. Нефедов В.И., Сигов А.С. Радиотехнические цепи и сигналы: учебник для академического бакалавриата. М.: Издательство Юрайт, 2019. 266 с. https://biblio-online.ru/viewer/radiotehnicheskie-cepi-i-signaly-433792#page/1
- 2. Вадутов О.С. Электроника. Математические основы обработки сигналов: учебник и практикум для академического бакалавриата. М.: Издательство Юрайт, 2019. 307 с. https://biblio-online.ru/viewer/elektronika-matematicheskie-osnovy-obrabotki-signalov-433991#page/1
- 3. Плаксиенко, В.С. Основы приема и обработки сигналов: учебное пособие / В.С. Плаксиенко, Н.Е. Плаксиенко; Министерство образования и науки РФ, Южный федеральный университет. Таганрог: Издательство Южного федерального университета, 2016. Ч. 1. 73 с.: схем., табл. Библиогр. в кн. ISBN 978-5-9275-1926-2; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=493268.
- 4. Современные информационные каналы и системы связи : учебник / В.А. Майстренко, A.A. Соловьев, М.Ю. Пляскин, А.И. Тихонов Минобрнауки России, Омский государственный технический университет, Сибирский государственный автомобильно-дорожный университет (СибАДИ), Академия военных наук Российской Федерации. - Омск: Издательство ОмГТУ, 2017. - 452 с.: табл., граф., схем., ил. -Библиогр. в кн. - ISBN 978-5-8149-2458-2; То же [Электронный ресурс]. -URL: http://biblioclub.ru/index.php?page=book&id=493441.
- 5. 2. Душин, В.К. Теоретические основы информационных процессов и систем: учебник / В.К. Душин. 5-е изд. Москва: Издательско-торговая корпорация «Дашков и К°», 2016. 348 с.: ил. Библиогр. в кн. ISBN 978-5-394-01748-3; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=453880.

Тема: Представление сигналов в ортонормированном базисе.

Время необходимое для выполнения практического задания – 4 часа.

Необходимое оборудование: Компьютерный класс, отвечающий требованиям техники безопасности.

Необходимое программное обеспечение: Интегрированная среда разработки Microsoft Visual Studio.

- 1. Пройти инструктаж по технике безопасности работы в компьютерном классе, изучить инструкции по технике безопасности и правилам оказания первой медицинской помощи.
- 2. Задан произвольный сигнал (рисунок 1.1). Параметры сигнала заданы в таблице 1.1.
- 3. Разработать программное обеспечение, которое будет аппроксимировать данный импульс системой ортонормированных функций Уолша.
- 4. Определить норму импульса и энергию сигнала.
- 5. Определить энергию импульса через систему ортонормированных функций Уолша.
- 6. Провести цикл вычислительных экспериментов, в котором определить количество коэффициентов при разложении по функциям Уолша исходя из потери относительной энергии сигнала (10 %, 5 %, 2 %, 1 %, 0,1 %).
- 7. Графически изобразить исходный и аппроксимированный импульсы для различного количества коэффициентов при разложении по функциям Уолша.
- 8. Сделать вывод по полученным результатам.

Рисунок 1.1 – Вид импульса.

Таблица 1.1. Параметры сигнала

№ варианта	1	2	3	4	5	6	7	8	9	10
Сигнал	a	б	В	Γ	Д	e	Ж	3	И	К
E _{max} , B	100	90	80	70	60	50	40	30	20	10
t _и , мкс	2	4	6	8	10	12	14	16	18	20

№ варианта	11	12	13	14	15	16	17	18	19	20
Сигнал	К	И	3	Ж	e	Д	Γ	В	б	a
E _{max} , B	95	85	75	65	55	45	35	25	15	5
t _и , мкс	40	44	48	52	56	60	64	68	72	76

№ варианта	21	22	23	24	25	26	27	28	29	30
Сигнал	e	Д	Γ	ж	3	В	б	И	К	a
E _{max} , B	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
t _и , мкс	100	200	300	400	500	600	700	800	900	1000

Произвольный сигнал s(t) может быть представлен в виде обобщенного ряда Фурье в ортонормированном базисе:

$$s(t) = \sum_{i=0}^{\infty} c_i \cdot u_i(t)$$
 (1.1),

где c_i — коэффициенты обобщенного ряда Фурье; $u_i(t)$ — система ортонормированных функций:

$$(\mathbf{u}_{i}, \mathbf{u}_{j}) = \begin{cases} 1, i = j \\ 0, i \neq j \end{cases}$$
 (1.2).

Коэффициенты обобщенного ряда Фурье получаются путем скалярного произведения произвольного сигнала на соответствующую базисную функцию:

$$c_{i} = (s, u_{i}) = \int_{t_{1}}^{t_{2}} s(t) \cdot u_{i}(t) \cdot dt$$
 (1.3),

где $[t_1, t_2]$ – область определения сигнала.

Норма и энергия сигнала определяются следующими выражениями:

$$\|\mathbf{s}\| = \sqrt{\int_{-\infty}^{\infty} \mathbf{s}^2(t) \cdot dt} \; ; \; \mathbf{E}_{\mathbf{s}} = \|\mathbf{s}\|^2 = \int_{-\infty}^{\infty} \mathbf{s}^2(t) \cdot dt$$
 (1.4).

Одной из систем ортонормированных функций является система функций Уолша, которая на отрезке своего существования [-T/2, T/2] принимает значения ± 1 . Система функций Уолша обычно строится в безразмерном базисе (9=t/T, $9\in[-1/2;1/2]$) и обозначается wal(k, 9), где k определяет номер функции Уолша.

Вычисление функций Уолша может производить с использованием рекуррентного уравнения:

$$wal(2 \cdot n + p, 9) = (-1)^{[n/2]+p} \cdot \left\{ wal(n, 2 \cdot 9 + \frac{1}{2}) + (-1)^{n+p} \cdot wal(n, 2 \cdot 9 - \frac{1}{2}) \right\}, n=0, 1, 2, ...(1.5),$$

где [n/2] — наибольшее целое число, меньшее или равное n/2; p — принимает значение 0 или 1 в зависимости от того какая функция Уолша вычисляется (для четной функции Уолша p=0, для нечетной — p=1). Функция Уолша нулевого порядка (wal(0, 9)) постоянна на отрезке $-1/2 \le 9 \le 1/2$:

$$wal(0, 9) = \begin{cases} 0, 9 < -1/2 \\ 1, -1/2 \le 9 \le 1/2 \\ 0, 9 > 1/2 \end{cases}$$
 (1.6).

Разложение произвольного сигнала с конечной энергией, заданного на временном интервале [-T/2, T/2], в обобщенный ряд Фурье по функциям Уолша имеет вид:

$$s(t) = \sum_{k=0}^{\infty} c_k \cdot wal(k, t/T)$$
 (1.7).

Коэффициенты в разложении по функциям Уолша определяются следующим выражением:

$$c_{k} = \int_{-1/2}^{1/2} s(\vartheta) \cdot wal(k, \vartheta) \cdot d\vartheta$$
 (1.8).

Энергия произвольного сигнала, аппроксимированного ортонормированной системой функций Уолша, определяется следующим выражением:

$$E_{w} = \sum_{k=0}^{\infty} c_{k}^{2}$$
 (1.9).

Количество коэффициентов в разложении по функциям Уолша определяется из следующего выражения:

$$\frac{\left|E_{s}-E_{w}\right|}{E_{s}}\cdot100\%\leq\delta\tag{1.10},$$

где δ - потеря относительной энергии сигнала.

Тема: Спектральный анализ периодических сигналов.

Время необходимое для выполнения практического задания – 4 часа

Необходимое оборудование: Компьютерный класс, отвечающий требованиям техники безопасности.

Необходимое программное обеспечение: Интегрированная среда разработки Microsoft Visual Studio.

- 1. Пройти инструктаж по технике безопасности работы в компьютерном классе, изучить инструкции по технике безопасности и правилам оказания первой медицинской помощи.
- 2. Сигнал представляет собой периодическую последовательность импульсов длительностью $\tau_{\rm u}$ и периодом T (рисунок 2.1). Параметры периодической последовательности импульсов заданы в таблице 2.1.
- 3. Разработать программное обеспечение, осуществляющее спектральный анализ периодической последовательности импульсов.
- 4. Получить аналитические выражения для коэффициентов разложения.
- 5. Найти амплитуду и фазу гармоник и построить амплитудные и фазовые спектральные диаграммы.
- 6. Провести цикл вычислительных экспериментов, в котором определить количество гармоник исходя из потери относительной мощности сигнала (10 %, 5 %, 2 %, 1 %, 0,1 %).
- 7. Графически изобразить исходный и аппроксимированный периодические сигналы для различного количества гармоник при разложении в спектр.
- 8. Сделать вывод по полученным результатам.

Рисунок 2.1 – Вид периодической последовательности импульсов.

Таблица 2.1. Параметры периодической последовательности импульсов

№ варианта	1	2	3	4	5	6	7	8	9	10
Сигнал	a	б	В	Γ	Д	e	ж	3	И	К
E _{max} , B	5	10	15	20	25	30	35	40	45	50
t _и , мкс	116	112	108	104	100	96	92	88	84	80
Т, мкс	232	448	-	208	-	384	-	-	-	160

№ варианта	11	12	13	14	15	16	17	18	19	20
Сигнал	Л	M	a	б	В	Γ	Д	e	Ж	3
$\mathbf{E}_{\mathbf{max}},\mathbf{B}$	55	60	65	70	75	80	85	90	95	100
t _и , мкс	76	72	68	64	60	56	52	48	44	40
Т, мкс	152	108	100	384	-	84	-	72	-	-

№ варианта	21	22	23	24	25	26	27	28	29	30
Сигнал	И	К	Л	M	a	б	В	Γ	Д	e
E _{max} , B	120	140	160	180	200	220	240	260	280	300
t _и , мкс	36	32	28	24	20	16	12	8	4	2
Т, мкс	-	48	32	48	80	128	-	32	-	4

Периодическая последовательность импульсов может быть записана в виде ряда Фурье для периодического сигнала:

$$s(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cdot \cos(n \cdot \omega_1 \cdot t) + b_n \cdot \sin(n \cdot \omega_1 \cdot t)$$
 (2.1),

где $\omega_1 = 2 \cdot \pi \cdot f$ — основная частота последовательности; a_0 , a_n , b_n — коэффициенты разложения в ряд Фурье.

Коэффициенты разложения рассчитываются по следующим формулам:

$$a_{0} = \frac{2}{T} \cdot \int_{-T/2}^{T/2} s(t) \cdot dt; \ a_{n} = \frac{2}{T} \cdot \int_{-T/2}^{T/2} s(t) \cdot \cos(n \cdot \omega_{1} \cdot t) dt; \ b_{n} = \frac{2}{T} \cdot \int_{-T/2}^{T/2} s(t) \cdot \sin(n \cdot \omega_{1} \cdot t) dt \ (2.2),$$

где T=1/f – период последовательности импульсов.

Таким образом, периодический сигнал содержит постоянную составляющую и бесконечный набор гармонических колебаний (гармоник) с частотами, кратными основной частоте последовательности (ω_n =n· ω_1 , n=1, 2, 3, ...).

Эквивалентная форма ряда Фурье:

$$s(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} A_n \cdot \cos(n \cdot \omega_1 \cdot t - \varphi_n)$$
 (2.3),

где A_n – амплитуда, ϕ_n – начальная фаза n-ой гармоники. Амплитуда и начальная фаза гармоник определяются через коэффициенты ряда Фурье:

$$A_0 = \sqrt{a_n^2 + b_n^2}$$
; $tg\phi_n = \frac{b_n}{a_n}$ (2.4).

Зависимость амплитуды гармоник от частоты представляет собой амплитудную спектральную диаграмму, а зависимость начальной фазы гармоник от частоты — фазовую спектральную диаграмму для конкретного сигнала.

Средняя мощность для периодической последовательности импульсов определяется следующим выражением:

$$P_{c} = \frac{1}{T} \cdot \int_{-T/2}^{T/2} s^{2}(t) \cdot dt$$
 (2.5).

Мощность, заключенная в сложном периодическом сигнале, может быть рассчитана через коэффициенты ряда Фурье:

$$P_{k} = \left(\frac{a_{0}}{2}\right)^{2} + \frac{1}{2} \cdot \sum_{n=1}^{\infty} (A_{n})^{2}$$
 (2.6).

При учете конечного числа гармоник теряется часть мощности. Выбор максимальной гармоники (определение практической ширины спектра) зависит от отношения P_c/P_k :

$$\frac{P_k}{P_k} \geq \delta$$
.

где δ - потеря относительной мощности сигнала.

Тема: Спектральный анализ непериодических сигналов.

Время необходимое для выполнения практического задания- 6 часов.

Необходимое оборудование: Компьютерный класс, отвечающий требованиям техники безопасности.

Необходимое программное обеспечение: Интегрированная среда разработки Microsoft Visual Studio.

Ход работы

- 1. Пройти инструктаж по технике безопасности работы в компьютерном классе, изучить инструкции по технике безопасности и правилам оказания первой медицинской помощи.
- 2. Задан одиночный импульс амплитудой E_{max} и длительностью t_{u} . (Из периодической последовательности импульсов (рисунок 2.1) выбирается один импульс, параметры которого приведены в таблице 2.1).
- 3. Разработать программное обеспечение, которое позволяет получить спектральную плотность одиночного импульса.
- 4. Построить амплитудный и фазовый спектр заданного импульса.
- 5. Провести цикл вычислительных экспериментов, в котором определить практическую ширину спектра исходя из потери относительной энергии сигнала (10 %, 5 %, 2 %, 1 %, 0,1 %).
- 6. Построить графики амплитудного и фазового спектров заданного импульса в зависимости от практической ширины спектра.
- 7. Графически изобразить исходный и аппроксимированный периодические сигналы для различной практической ширины спектра.
- 8. Сделать вывод по полученным результатам.

Методические указания к выполнению практического задания

Одиночный импульс может быть представлен как во временной области, так и в частотной. Переход из временной в частотную область осуществляется с помощью прямого преобразования Фурье:

$$S(j\omega) = \int_{-\infty}^{\infty} s(t) \cdot e^{-j\cdot\omega \cdot t} \cdot dt$$
 (3.1),

где s(t) – заданный сигнал; $S(\omega)$ — спектральная плотность сигнала s(t).

Переход из частотной области во временную осуществляется с помощью обратного преобразования Фурье:

$$s(t) = \frac{1}{2 \cdot \pi} \cdot \int_{-\infty}^{\infty} S(j\omega) \cdot e^{j\omega \cdot t} \cdot d\omega$$
 (3.2),

Спектральная плотность сигнала представляет собой комплексную величину. Спектральную плотность можно выразить через модуль (амплитудный спектр $|S(j\omega)|$) и аргумент (фазовый спектр $\psi(t)$):

$$\left| S(j\omega) \right| = \sqrt{\left[\text{Re}(S(j\omega)) \right]^2 + \left[\text{Im}(S(j\omega)) \right]^2} \; ; \; tg\psi(t) = \frac{\text{Im}(S(j\omega))}{\text{Re}(S(j\omega))}$$
 (3.3),

где $Re(S(j\omega)),\ Im(S(j\omega))$ — вещественная и мнимая части спектральной плотности $S(j\omega).$

При переходе из временной области в частотную сигнал должен быть абсолютно интегрируемым:

$$\int_{-\infty}^{\infty} |s(t)| \cdot dt < \infty \tag{3.4}.$$

Полная энергия одиночного импульса определяется следующим выражением:

$$E_{c} = \int_{-\infty}^{\infty} s^{2}(t) \cdot dt$$
 (3.5).

Энергия, сосредоточенная в полосе частот $[0\div\omega_k]$, определяется, согласно теоремы Парсеваля, следующим соотношением:

$$E_{\Delta\omega} = \frac{1}{\pi} \cdot \int_{0}^{\omega_{k}} (S(\omega))^{2} \cdot dt$$
 (3.6).

Определение практической ширины спектра (значения ω_k) зависит от отношения $E_{\Delta\omega}/E_c$:

$$\frac{E_{\Delta\omega}}{E_c} \ge \delta \tag{3.7}.$$

где δ - потеря относительной энергии сигнала.

Тема: Корреляционный анализ сигналов.

Время необходимое для выполнения практического задания – 4 часа.

Необходимое оборудование: Компьютерный класс, отвечающий требованиям техники безопасности.

Необходимое программное обеспечение: Интегрированная среда разработки Microsoft Visual Studio.

- 1. Пройти инструктаж по технике безопасности работы в компьютерном классе, изучить инструкции по технике безопасности и правилам оказания первой медицинской помощи.
- 2. Заданы два сигнала (рисунок 4.1, таблица 4.1).
- 3. Разработать программное обеспечение по корреляционной обработке сигналов.
- 4. Определить автокорреляционные функции аналитическим методом.
- 5. Рассчитать взаимокорреляционную функцию двух сигналов и определить интервал корреляции, как сдвиг во времени, при котором величина взаимокорреляционной функции $B_{uv}(\tau)$ становится меньше B_{uv} max.
- 6. Построить графики автокорреляционных функций и взаимокорреляционной функции.

Рисунок 4.1 – Вид сигналов.

Emax, B

t_и, мкс

Таблица 4.1. Параметры сигналов

2, 4

6, 6

4, 4

8, 8

2, 1

10, 10

1 4031111	цα т. г.	Tapa	мстрь	i Crii iia	JIOD.					
№ варианта	1	2	3	4	5	6	7	8	9	10
Сигналы	а, в	б, г	д, е	ж, и	3, к	л, м	н, р	о, п	a, p	б, п
E _{max} , B	5, 10	2, 2	1, 1	4, 4	5, 5	2, 4	2, 2	2, 4	6, 8	1, 1
t _н , мкс	2, 2	4, 2	4, 2	2, 2	10, 10	4, 8	4, 4	8, 8	20, 20	4, 4
№ варианта	11	12	13	14	15	16	17	18	19	20
Сигналы	В, О	г, н	д, м	е, л	ж, к	3, И	а, д	б, е	В, Ж	г, з

№ варианта	21	22	23	24	25	26	27	28	29	30
Сигналы	И, Н	м, р	a, o	б, з	в, д	к, м	г, е	г, н	И, М	а, б
E _{max} , B	1, 1	4, 4	2, 2	4, 2	1, 1	10, 5	4, 2	1, 1	5, 5	4, 4
t _и , мкс	8, 8	12, 12	4, 4	2, 4	4, 2	50, 50	10, 10	4, 4	4, 4	10, 10

10, 10

12, 12

1, 1

16, 16

Методические указания к выполнению практического задания

Корреляционный анализ сигналов используется для количественного определения взаимодействия сигналов друг с другом во временной области. Исследуемые сигналы должны иметь локализованный во времени импульсный характер. Автокорреляционная функция (АКФ) представляет собой степень отличия сигнала $\mathbf{u}(\mathbf{t})$ и его смещенной во времени копии $\mathbf{u}(\mathbf{t}-\mathbf{\tau})$:

$$B_{u}(\tau) = \int_{0}^{\infty} u(t) \cdot u(t - \tau) \cdot dt$$
 (4.1).

4, 4

20, 20

1, 2

24, 24

10, 10

12, 24

16, 32

При τ=0 автокорреляционная функция равна энергии сигнала.

АКФ представляет собой симметричную кривую с центральным положительным максимумом. В зависимости от вида сигнала АКФ может иметь как монотонно убывающий, так и колеблющийся характер.

Для различия сигналов u(t) и v(t) как по форме, так и по взаимному расположению на оси времени используется взаимокорреляционная функция (ВКФ):

$$B_{uv}(\tau) = \int_{-\infty}^{\infty} u(t) \cdot v(t - \tau) \cdot dt$$
 (4.2).

 $BK\Phi$ служит мерой «устойчивости» ортогонального состояния при сдвигах сигналов во времени. $BK\Phi$ не является четной функцией и не всегда достигает максимального значения при τ =0.

Под интервалом корреляции понимается временной сдвиг сигнала относительно исходного, в пределах которого автокорреляционная или взаимокорреляционная функции отличны от нуля. В качестве интервала корреляции может использоваться временной промежуток, в пределах которого корреляционная функция, взятая по модулю, больше некоторого минимального значения.

Тема: Сигналы с ограниченным спектром.

Время необходимое для выполнения практического задания – 6 часов.

Необходимое оборудование: Компьютерный класс, отвечающий требованиям техники безопасности.

Необходимое программное обеспечение: Интегрированная среда разработки Microsoft Visual Studio.

- 1. Пройти инструктаж по технике безопасности работы в компьютерном классе, изучить инструкции по технике безопасности и правилам оказания первой медицинской помощи.
- 2. Задан сигнал (таблица 5.1).
- 3. Разработать программное обеспечение для исследования сигналов с ограниченным спектром.
- 4. Определить эффективную ширину спектра данного сигнала.
- 5. Рассчитать отсчетные значения этого сигнала, необходимые для его однозначного восстановления.
- 6. Восстановить сигнал по его отсчетным значениям.
- 7. Построить график исходного сигнала, диаграмму полученных отсчетных значений, график восстановленного сигнала.
- 8. Сделать выводы по работе.

Таблица 5.1. Параметры сигнала

№ варианта	1	2	3	4	5	6	7	8	9	10
Сигналы	a	б	В	Γ	Д	e	Ж	3	И	К
(рисунок 3.1)										
E _{max} , B	20	18	16	14	12	10	8	6	4	2
t _и , мкс	1	2	3	4	5	6	7	8	9	10

№ варианта	11	12	13	14	15	16	17	18	19	20
Сигналы	Л	M	Н	0	П	p	a	б	В	Γ
(рисунок 3.1)										
E _{max} , B	22	24	26	28	30	32	34	36	38	40
t _и , мкс	100	200	300	400	500	600	700	800	900	1000

№ варианта	21	22	23	24	25	26	27	28	29	30
Сигналы	Д	e	ж	3	И	К	Л	M	Н	0
(рисунок 3.1)										
E _{max} , B	1	10	20	30	40	50	60	70	80	90
t _и , мкс	10	9	8	7	6	5	4	3	2	1

Любой сигнал имеет бесконечный спектр. Однако, как правило, существует эффективная ширина спектра (ω_B), в пределах которой передается основная мощность сигнала. Определяется эффективная ширина спектра с использованием теоремы Парсеваля (3.6). Эффективная ширина выбирается исходя из потери не более 1% энергии сигнала (3.7).

Сигнал с ограниченным спектром может быть представлен в виде набора дискретных отсчетных значений сигнала, взятых через равные промежутки времени $\Delta \tau = 1/(2 \cdot f_{_{\rm R}}) = \pi/\omega_{_{\rm R}}$.

Произвольный сигнал s(t) с ограниченным спектром может быть разложен в обобщенный ряд Фурье по базису Котельникова:

$$s(t) = \sum_{k=-\infty}^{\infty} c_k \cdot Sc_k(t; \omega_B)$$
 (5.1),

где c_k – коэффициенты обобщенного ряда Фурье; $Sc_k(t;\omega_B)$ – k-ая отсчетная функция, совокупность которых образует базис Котельникова. $Sc_k(t;\omega_B)$ вычисляется по следующей формуле:

$$Sc_{k}(t; \omega_{B}) = \sqrt{\frac{\omega_{B}}{\pi}} \cdot \frac{\sin(\omega_{B} \cdot (t - k \cdot \pi/\omega_{B}))}{\omega_{B} \cdot (t - k \cdot \pi/\omega_{B})}$$
(5.2).

Коэффициенты обобщенного ряда Фурье вычисляются о следующей формуле:

$$c_{k} = (s(t), Sc_{k}(t; \omega_{B})) = \sqrt{\frac{\omega_{B}}{\pi}} \cdot \int_{-\infty}^{\infty} s(t) \cdot \frac{\sin(\omega_{B} \cdot (t - k \cdot \pi/\omega_{B}))}{\omega_{B} \cdot (t - k \cdot \pi/\omega_{B})} \cdot dt$$
 (5.3).

Зная спектральную плотность $S(\omega)$ заданного сигнала s(t) и используя обобщенную формулу Рэлея, можно найти коэффициенты разложения через интеграл по частотному спектру:

$$c_{k} = \sqrt{\frac{\omega_{B}}{\pi}} \cdot \left\{ \frac{1}{2 \cdot \pi} \cdot \int_{-\omega_{B}}^{\omega_{B}} S(\omega) \cdot \exp[j \cdot k \cdot \pi \cdot \omega/\omega_{B}] \cdot d\omega \right\}$$
 (5.4).

Мгновенное значение сигнала s(t) в k-ой отсчетной точке $t_k = k \cdot \pi / \omega_B = k / (2 \cdot f_B)$:

$$s_{k} = \frac{1}{2 \cdot \pi} \cdot \int_{-\omega_{-}}^{\omega_{B}} S(\omega) \cdot \exp[j \cdot k \cdot \pi \cdot \omega / \omega_{B}] \cdot d\omega$$
 (30).

Тогда ряд Котельникова имеет вид:

$$s(t) = \sum s_k \cdot \frac{\sin(\omega_B \cdot (t - k \cdot \pi/\omega_B))}{\omega_B \cdot (t - k \cdot \pi/\omega_B)}$$
(31),

$$c_{k} = \sqrt{\frac{\pi}{\omega_{B}}} \cdot s_{k}$$
 (32).

Тема: Дискретные сигналы.

Время необходимое для выполнения практического задания – 6 часов.

Необходимое оборудование: Компьютерный класс, отвечающий требованиям техники безопасности.

Необходимое программное обеспечение: Интегрированная среда разработки Microsoft Visual Studio.

- 1. Пройти инструктаж по технике безопасности работы в компьютерном классе, изучить инструкции по технике безопасности и правилам оказания первой медицинской помощи.
- 2. Дискретный сигнал задан в виде набора из 8 равноотстоящих отсчетов на интервале своей периодичности (значения отсчетов приведены в таблице 6.1).
- 3. Разработать программное обеспечение для исследования дискретных сигналов.
- 4. Определить коэффициенты дискретного преобразования Фурье.
- 5. Восстановить сигнал по полученным коэффициентам.
- 6. Построить график восстановленного сигнала, на котором отметить в виде точек значения заданных отсчетов.
- 7. Сделать выводы по работе.

Таблица 6.1. Значения отсчетов дикретного сигнала

№ варианта № отсчета	1	2	3	4	5	6	7	8	9	10
1	1	1	0	0	2	2	1	2	2	2
2	1	1	0	0	2	2	1	2	1	1
3	1	0	1	0	1	1	2	1	0	1
4	1	0	1	0	1	1	2	1	0	0
5	0	1	0	1	1	0	2	2	0	2
6	0	1	0	1	1	0	2	2	0	1
7	0	0	1	1	2	1	1	0	1	1
8	0	0	1	1	2	1	1	0	2	0

№ варианта № отсчета	11	12	13	14	15	16	17	18	19	20
1	1	0	2	1	0	1	1	2	2	2
2	2	1	2	0	1	2	0	2	1	0
3	1	2	1	1	2	2	2	0	0	1
4	2	0	0	2	2	1	1	0	2	1

5	2	0	0	2	2	1	0	1	1	1
6	1	1	1	1	2	2	1	1	0	1
7	2	2	2	0	1	2	0	0	2	0
8	1	0	2	1	0	1	2	0	1	2

№ варианта № отсчета	21	22	23	24	25	26	27	28	29	30
1	2	1	1	0	1	1	0	1	1	0
2	1	1	2	1	1	0	0	1	2	0
3	2	2	1	2	1	2	1	2	0	0
4	1	2	2	2	2	1	2	0	1	1
5	0	1	1	0	2	1	2	0	1	1
6	1	1	0	1	1	2	1	2	0	1
7	0	0	1	2	1	0	0	1	2	2
8	1	0	0	2	1	1	0	1	1	2

Дискретный сигнал $x_{д}(t)$ представляет собой последовательность $(..., x_{-1}, x_{0}, x_{1}, x_{2}, ...)$, отсчетных значений сигнала x(t) в точках $(..., t_{-1}, t_{0}, t_{1}, t_{2}, ...)$ соответственно. Отсчеты дискретных сигналов берутся, как правило, через равный промежуток времени (интервал (шаг) дискретизации):

$$\Delta = t_{m} - t_{m-1} = t_{m-1} - t_{m-2} = \dots$$
 (6.1).

Если сигнал задан на отрезке [0, Т] (Т является периодом для периодического сигнала), то полное число отсчетов

$$N = T/\Lambda \tag{6.2}.$$

Сопоставив исходному сигналу x(t) дискретную модель с учетом комплексного ряда Фурье, имеем:

$$x(t) = \Delta \cdot \sum_{k=0}^{N-1} x_k \cdot \delta(t - k \cdot \Delta) = \Delta \cdot \sum_{n=-\infty}^{\infty} C_n \cdot e^{j2 \cdot \pi \cdot n \cdot t/T}$$
 (6.3).

Для определения коэффициентов C_n используется дискретное преобразование Фурье (ДПФ):

$$C_{n} = \frac{1}{N} \cdot \sum_{k=0}^{N-1} x_{k} \cdot e^{-j \cdot 2 \cdot \pi \cdot n \cdot k / N}$$
 (6.4).

Свойства ДПФ:

- 1. Число коэффициентов С_п равно количеству отсчетов N.
- 2. Коэффициент С₀ является средним значением всех отсчетов:

$$C_0 = \frac{1}{N} \cdot \sum_{k=0}^{N-1} x_k \tag{6.5}.$$

3. Если N – четное число, то

$$C_{N/2} = \frac{1}{N} \cdot \sum_{k=0}^{N-1} x_k \cdot (-1)^k$$
 (6.6).

4. Если отсчетные значения x_k – вещественные числа, то коэффициенты ДПФ, номера которых располагаются симметрично относительно N/2, образуют сопряженные пары:

$$C_{N-n} = \frac{1}{N} \cdot \sum_{k=0}^{N-1} x_k \cdot e^{-j \cdot 2 \cdot \pi \cdot (N-n) \cdot k/N} = \frac{1}{N} \cdot \sum_{k=0}^{N-1} x_k \cdot e^{j \cdot 2 \cdot \pi \cdot n \cdot k/N} = C_n^*$$
 (6.7).

Для восстановления сигнала x(t) с ограниченным спектром по заданным отсчетным значениям $(x_0, x_1, x_2, ..., x_{N-1})$ необходимо найти коэффициенты ДПФ $(C_0, C_1, C_2, ..., C_{N/2})$ и использовать следующий ряд Фурье:

$$x(t) = C_0 + 2 \cdot |C_1| \cdot \cos(2 \cdot \pi \cdot t/T + \phi_1) + 2 \cdot |C_2| \cdot \cos(4 \cdot \pi \cdot t/T + \phi_2) + \dots + |C_{N/2}| \cdot \cos(N \cdot \pi \cdot t/T + \phi_{N/2})$$
(6.8),

где ϕ_i =arg C_i – фазовый угол коэффициента ДПФ.

Для определения отсчетных значений по известным значениям коэффициентов C_n используется обратное дискретное преобразование Фурье (ОДПФ):

$$x_{k} = \sum_{n=0}^{N-1} C_{n} \cdot e^{j \cdot 2 \cdot \pi \cdot n \cdot k / N}$$
 (6.9).