Exam 2 Solution

1. Version A

	Number of		
	degrees of	Number of	Number of
	freedom per	rows	columns
	element		
Plane stress 3 node (CST) triangle	6		
[D]		3	3
[B]		3	6
{σ}		3	1
3-D 10 node tetrahedral	30		
[D]		6	6
[B]		6	30
{σ}		6	1

Version B

	Number of degrees of freedom per element	Number of rows	Number of columns
Plane stress 6 node (LST) triangle	12		
[D]		3	3
[B]		3	12
{σ}		3	1
3-D 4 node tetrahedral	12		
[D]		6	6
[B]		6	12
{σ}		6	1

Version C

	Number of degrees of freedom per element	Number of rows	Number of columns
Plane stress 6 node (LST) triangle	12		
[D]		3	3
[B]		3	12
{σ}		3	1
3-D 8 node hexahedral (brick)	24		
[D]		6	6
[B]		6	24
{σ}		6	1

$$\frac{x_{1} = x_{2} y_{3} - y_{2} x_{3} = L H}{x_{1} = x_{2} y_{1} - x_{1} y_{3} = 0}$$

$$\frac{x_{2} = x_{1} + x_{2} - y_{2} x_{1} = 0}{B_{1} = y_{1} - y_{2} = -H}$$

$$\frac{y_{2} = y_{3} - y_{1} = H}{B_{2} = y_{3} - y_{1} = 0}$$

$$\frac{y_{1} = x_{1} - x_{2} = 0}{Y_{1} = x_{1} - x_{2} = 0}$$

$$\frac{y_{1} = x_{1} - x_{3} = 0}{Y_{2} = x_{1} - x_{1} = L}$$

$$\frac{y_{1} = x_{1} - x_{2} = 0}{A_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{1} x_{2} + x_{1}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{1}^{2}) = 1 - x_{1}^{2}L}$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2} x_{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L}$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2} x_{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L}$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2} x_{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L}$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2} x_{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L}$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2} x_{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L}$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2} x_{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L}$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2}^{2} x_{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2}^{2} x_{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2}^{2} x_{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2}^{2} x_{2}^{2} + x_{2}^{2} x_{2}^{2}) = \frac{1}{2}A_{1}(L + H - H x_{2}^{2}) = 1 - x_{1}^{2}L$$

$$\frac{y_{1}(x_{1}, x_{2}) = \frac{1}{2}A_{1}(x_{1} + B_{2}^{2} x_{2}^{2} + x_{2}^{2} x_{2}^{2} + x_{2}^{2} x_{2}^{2}} = \frac{1}{2}A_{1}(L + H - H x_{2}^$$

$$f_{52\gamma} = \rho_0 + \int_0^L (\frac{1}{2}) \left[1 - (\frac{1}{2})^2\right] dx$$

$$= \rho_0 + \int_0^L \frac{1}{2} - \frac{1}{2} dx$$

$$= \rho_0 + \left(\frac{x^2}{2L} - \frac{x^4}{4L^3}\right) \int_0^L$$

$$= \rho_0 + \left(\frac{1}{2} - \frac{1}{4}\right)$$

$$= \left[\frac{1}{4} \rho_0 + L\right]$$

Version A (<i>L</i> =2 mm)	$\{f_S\} = \begin{cases} 0\\ 83.3\\ 0\\ 50\\ 0\\ 0 \end{cases} $ N
Version B (<i>L</i> =3 mm)	$\{f_S\} = \begin{cases} 0 \\ 125 \\ 0 \\ 75 \\ 0 \\ 0 \end{cases} $ N
Version C (<i>L</i> =4 mm)	$\{f_S\} = \begin{cases} 0\\ 166.7\\ 0\\ 100\\ 0\\ 0 \end{cases} $ N

3. Version A (Note: Exact = 7.7287)

n=1	$I \cong (2)(2)(\cos 0 + 4\sin^2 0) = 4$
	$\cos\left(\frac{-1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{-1}{\sqrt{3}}\right) + \cos\left(\frac{-1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{1}{\sqrt{3}}\right) +$ $I \cong$
n=2	$\cos\left(\frac{1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{-1}{\sqrt{3}}\right) + \cos\left(\frac{1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{1}{\sqrt{3}}\right) +$
	$\approx 4\cos\left[\cos\left(\frac{1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{1}{\sqrt{3}}\right) + \right] = 8.1181$
	$4\left(\frac{5}{9}\right)\left(\frac{5}{9}\right)\left[\cos\left(\sqrt{\frac{3}{5}}\right) + 4\sin^2\left(\sqrt{\frac{3}{5}}\right)\right] +$
n=3	$I \cong 2\left(\frac{5}{9}\right)\left(\frac{8}{9}\right) \left[\cos(0) + 4\sin^2\left(\sqrt{\frac{3}{5}}\right)\right] +$
	$2\left(\frac{5}{9}\right)\left(\frac{8}{9}\right)\left[\cos\left(\sqrt{\frac{3}{5}}\right) + 4\sin^2(0)\right] +$
	$\left(\frac{8}{9}\right)\left(\frac{5}{9}\right)\left[\cos(0) + 4\sin^2(0)\right] +$
	$\approx 3.29812 + 2.92029 + 0.70588 + .79012 = 7.7144$

Version B (Note: Exact = 11.0946)

n=1	$I \cong (2)(2)(2\cos 0 + 4\sin^2 0) = 8$
n=2	$I \cong \frac{2\cos\left(\frac{-1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{-1}{\sqrt{3}}\right) + 2\cos\left(\frac{-1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{1}{\sqrt{3}}\right)}{(1)}$
	$I \cong 2\cos\left(\frac{1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{-1}{\sqrt{3}}\right) + 2\cos\left(\frac{1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{1}{\sqrt{3}}\right) +$
	$\cong 4\left[2\cos\left(\frac{1}{\sqrt{3}}\right) + 4\sin^2\left(\frac{1}{\sqrt{3}}\right)\right] = 11.4698$
n=3	$4\left(\frac{5}{9}\right)\left(\frac{5}{9}\right)\left[2\cos\left(\sqrt{\frac{3}{5}}\right) + 4\sin^2\left(\sqrt{\frac{3}{5}}\right)\right] +$
	$I \cong 2\left(\frac{5}{9}\right)\left(\frac{8}{9}\right)\left[2\cos(0) + 4\sin^2\left(\sqrt{\frac{3}{5}}\right)\right] +$
	$2\left(\frac{5}{9}\right)\left(\frac{8}{9}\right)\left[2\cos\left(\sqrt{\frac{3}{5}}\right) + 4\sin^2(0)\right] +$
	$\left(\frac{8}{9}\right)\left(\frac{5}{9}\right) \left[2\cos(0) + 4\sin^2(0)\right] +$
	$\approx 4.18050 + 1.41176 + 3.90795 + 1.58025 = 11.0805$

Version C (Note: Exact = 12.1853)

n=1	$I \cong (2)(2)(2\cos 0 + 5\sin^2 0) = 8$
n=2	$2\cos\left(\frac{-1}{\sqrt{3}}\right) + 5\sin^2\left(\frac{-1}{\sqrt{3}}\right) + 2\cos\left(\frac{-1}{\sqrt{3}}\right) + 5\sin^2\left(\frac{1}{\sqrt{3}}\right) +$ $I \cong$
	$2\cos\left(\frac{1}{\sqrt{3}}\right) + 5\sin^2\left(\frac{-1}{\sqrt{3}}\right) + 2\cos\left(\frac{1}{\sqrt{3}}\right) + 5\sin^2\left(\frac{1}{\sqrt{3}}\right) +$
	$\cong 4\left[2\cos\left(\frac{1}{\sqrt{3}}\right) + 5\sin^2\left(\frac{1}{\sqrt{3}}\right)\right] = 12.6614$
	$4\left(\frac{5}{9}\right)\left(\frac{5}{9}\right)\left[2\cos\left(\sqrt{\frac{3}{5}}\right) + 5\sin^2\left(\sqrt{\frac{3}{5}}\right)\right] +$
n=3	$I \cong 2\left(\frac{5}{9}\right)\left(\frac{8}{9}\right)\left[2\cos(0) + 5\sin^2\left(\sqrt{\frac{3}{5}}\right)\right] +$
	$2\left(\frac{5}{9}\right)\left(\frac{8}{9}\right)\left[2\cos\left(\sqrt{\frac{3}{5}}\right)+5\sin^2(0)\right]+$
	$\left(\frac{8}{9}\right)\left(\frac{5}{9}\right) \left[2\cos(0) + 5\sin^2(0)\right] +$
	$\cong 4.784448 + 4.39111 + 1.41176 + 1.58025 = 12.1676$

Makeup Exam Solution

1.

a)
$$x\left(\frac{1}{2}, \frac{1}{2}\right) = 3 \text{ mm}$$

b)
$$u\left(\frac{1}{2}, \frac{1}{2}\right) = 0.0169 \text{ mm}$$

2.

$$\{f_s\} = \begin{cases} 250 \text{ N} \\ 0 \\ 0 \\ 0 \\ 150 \text{ N} \\ 0 \end{cases}$$

3.

n=1:
$$I \cong 4.00$$

n=2:
$$I \cong 5.0489$$

n=3:
$$I \cong 5.4943$$