

Autonomes Fahren 1:10

Teampräsentation Carolo Cup 2015 Lippe Coast Performance Braunschweig, Februar 2015

Entwicklungsteam

Christian Winkelmann (Wirtschaftsingenieur)

Projektleitung / Hardware

Matthias Voß (Mechatronik)

Elektronik

Rainer Heither (Mechatronik)

Fahrer

Jan Kifmann (Mechatronik)

Kommunikation / Regelung

Hauke Ludwig (Mechatronik)

Rohsignalverarbeitung

Agenda

Hardwarearchitektur Softwarearchitektur Einparken Rundkurs Rundkurs mit Hindernissen Energiebilanz & Herstellungskosten **Ausblick**

Hardwarearchitektur

Hardwarearchitektur

Hardwarekomponenten

Sensorik

- Tiefenkamera
 - Asus XTION Pro Live
- RGB Kamera
 - Trust Vetro Wide Angle Webcam
- Hall-Sensoren
 - Im LRP Motor
- IR-Sensoren
 - Sharp GP2D120

Hardwarekomponenten

Aktoren & Fahrzeug

- Chassis
 - Reely 4WD Tourenwagen
- Brushlessmotor
 - LRP X12 17,5T
- Lenkservo
 - Modellcraft MC 410

Hardwarekomponenten

Verarbeitende Hardware

- Recheneinheit
 - cubieboard
- Mikrocontroller
 - 2x Arduino Mega 2560

Fertigung

Systemarchitektur

Softwarearchitektur cubieboard

Kamera

Aufnahme

Gray2BW

Spurerkennung

> Kantenfilter

Spurzuordnung

Fehlerdetektion

Stoplinie erkennen

Objekterkennung

> Objektbildung

Spurzuordnung

Ausweichkurs Spurplanung

Punktbewertung

Polynombildung Spurführung

Kurvenerkennung

Regler

Schnittstellen

UART

Debug

Kommunikation

Regler

Einparken

- → Problemstellung:
 → Erkennung von geeigneter Lücke
 - → Einparken in drei Schritten
- → Lösungsansatz: 1.) Lückendetektion mit Infrarot-Sensoren
 - 2.) Wegmessung mittels Hall-Signalen
 - 3.) Einparken in 3 Schritten mit Kollisionsdetektion

Rundkurs

→ Problemstellung:

- → Detektion und Zuordnung der Fahrstreifen
- → Planung der Trajektorie
- → geregelte Fahrt

→ Lösungsansatz:

- 1.) Extrahierung der Segmente je Bildzeile
- 2.) Zuordnung von Segmenten zu Linien
- 3.) Berechnung des Spurpolynoms
- 4.) Filterung des Spurpolynoms
- 5.) Spurpolynom an Regler übergeben

Rundkurs mit Hindernissen

→ Problemstellung:

- → Detektion von Hindernissen
- → Erkennung von Hindernis in Spur
- → Berechnung der Ausweichtrajektorie

→ Lösungsansatz:

- 1.) Objekterkennung mittels Kantenfilter
- 2.) Berechnung der Weltposition
- 3.) Abgleich der Objektposition mit Fahrschlauch
- 4.) Berechnung der Ausweichtrajektorie
- 5.) Ausweichpolynom an Regler übergeben

Tiefen-Kameraansicht

Energiebilanz

Bauteil	Spannung	Strom	Leistung
Servo	5 V	500 mA	2,5 W
Webcam	5 V	500 mA	2,5 W
Tiefensensor	5 V	500 mA	2,5 W
cubieboard	5 V	300 mA	1,5 W
2x Mikrocontroller	5 V	200 mA	1,0 W
Display	5 V	200 mA	1,0 W
Beleuchtung	5 V	240 mA	1,2 W
Motor (n=93%)	7,4 V	4000 mA	29,6 W

Energiebilanz

Leistungsaufnahme

Energiebilanz

Leistungsaufnahme ohne Motor

→ 11,2 W

Leistungsaufnahme mit Motor

→ 40,8 W

2 Zellen LiPo Akku 7,4 V 5000mhA → 37 Wh

Akkulaufzeit (ohne Motor) ca 3h 18 min

Akkulaufzeit (mit Motor) ca 54 min

Kosten

Komponenten	Kosten
Modellfahrzeug (incl. Fernbedienung & Servo)	49,95 €
Motor	49,99 €
Fahrtenregler	29,99€
cubieboard	39,99 €
2x Arduino Mega	30,00€
Trust Webcam	8,99 €
Asus Xtion Pro Life	110,00 €
Hacker LiPo-Akku	25,00 €
Platinenbauteile	10,00€
Software (Lizenzgebühren)	0,00€
Summe	<u>Nur 353,91 €</u>

Finanzierung

Finanzierung Projekt nur in der Freizeit ausschließlich durch Sponsoren Keine Kosten Eigenständige für Arbeit und Werbung Fertigung

21

Ausblick

In Zukunft andere Recheneinheit, z.B. cubieboard 4 CC-A80

Schnellere Verarbeitung der Daten, erweiterte Schnittstellen

Verkürzten Radstand

Für kürzere Parklücken

Anderes Chassis

Hochwertiger verarbeitet, genaueres Fahren

NOCH FRAGEN?

