After this lecture you should be able to:

- define what a force is and give examples
- describe how multiple forces on a single object can be though of as a single net force
- identify the units of force
- describe the fundamental, long range forces in physics and differentiate between fundamental forces and contact forces
- discuss Newton's Third Law and its importance for measuring forces
- describe how to measure a force

"Classical Mechanics"

Mechanics - branch of physics that is concerned with how and why large things move slowly (compared to the speed of light)

- y statics forces on things that do not move
- dynamics forces on things that do move and where they go

Force - a push or pull

- vague but we will fill in more types
- units of push Newton in SI, pound in US Customary system
- 1 Newton = 0.225 lbs

Force is a new kind of quantity: a **vector** quantity

Scalar vs Vector

Scalar is a "normal" quantity like number of apples, or temperature, or mass. Ex: If I have 10 apples in bucket and I add 5 more, then I always have 15 apples.

But vector quantities are quantities **with direction**

Ex: I have a 50 N push on an object and a 100 N push on the object,

I do not always get a 150 Newton push as a result!

It depends on the **direction** in which the forces are applied.

So the result of multiple forces acting on an object is called the **net force** or the **resultant**.

So what are some types of forces and how can we describe them?

Fundamental Long Range forces - caused by force fields excited from a property of matter

- gravitational force
 - gravitational field excited by mass of an object
 - exerts a force on the mass of another object
 - also called "weight" on the surface of a planet/moom

- electromagnetic force
 - -electromagnetic field excited by stationary and moving charges
 - deal with this next semester

Contact forces

- not fundamental! (caused mostly by electromagnetic force and electron repulsion)
- but they are usefully and found in everyday life
- not a comprehensive list, we will cover others later

Normal force

- from a surface to an object that is resting or moving on that surface
- always perpendicular to the surface
- always prevents motion in the perpendicular direction to the surface

Friction

- from a surface to an object that is resting or moving on that surface
- always parallel to the surface in the opposite direction as the motion or to prevent motion

- kinetic friction vs. static friction - on an object at rest Coron an object in motion

Tension

- —- force applied by a rope, wire, chain, string etc. to an object
 - always applied to the object in the same direction as the rope

Measuring Forces

Newton's third law - "Every action has an equal + opposite reaction.

- Forces always occur in pairs
- These interaction pairs always act **on different objects** interacting

Measure force by its effect on something else

- distortion
- motion

Distortion of a spring is easy to see and calibrate - usually against the force of gravity

At the end of this video you can:

- identify key features of vectors.
- describe how to graphically find the result of many vector forces acting together
- analyze a situation involving forces and create a free body diagram

Horizontal

$$F_1 = +100N$$
 $F_2 = -50N$
 $= 100N - 50N$
 $= -x - direction$
 $= 100N - 50N$

To sum up so far:

- take forces in the x-direction and give them a +/- sign
- add up those to get a net force (resultant) in the x-direction
- take forces in the y-direction and give them a +/- sign
- add them up to get a net force in the y-direction

At the end of this video you can

- use trigonometry to find the components of a vector
- add any number of vectors in any direction to find the components of the net force
- use the net force components to find the net force magnitude
- use the net force components to find the net force direction

To sum up (modified now)

- √- put down a coordinate system (cleverly)
- $\sqrt{\ }$ find the x and y components for all the vectors that point diagonally to the coordinate system
- ✓ take forces in the x-direction and give them a +/- sign
 - add up those to get a net force (resultant) in the x-direction
- take forces in the y-direction and give them a +/- sign
 - add them up to get a net force in the y-direction
 - use the net force components to find the magnitude and direction

hypotosur A opposite de 130 de x A adjacent side

	\mathcal{B}_{x}	
	100 B	W

tontal <u>Verfre</u>	eal
sin0 =	= <u>opp</u> hyp
$\frac{A_{\times}}{\sqrt{10N}} = \frac{A_{\times}}{\sqrt{10N}}$	= Ay ION
	s) = Ay
x=+8.66N Ay=	+5N
	rical
=+8.66N 	-5N Put this
$5(30^{\circ}) = A_{x}$ $= +8.66N$ $A_{y} = \frac{10N \sin(28)}{28}$ $= +8.66N$ $\frac{\text{Vert}}{\text{By}} = \frac{10}{28}$	+5N tical

	X	7
A:	+9,66N	+5N_
B:	+8.66N	-5N
Result	+17.32N	ON
	/	

all down each colum

uts of the net force

17.32N East magnitude direction

24.8°= 150°-155.2

	X	V
Α.	-13N	-61
B:	+9N	-5N
=== R:	-41	-11N

$$\cos(24.9^{\circ}) = \frac{A_{\times}}{14.32N}$$

$$|4|32 \cos(24.9) = A_{\times}$$

$$R^2 = (4N)^2 + (11N)^2$$

Resultant: 11.7N, 70° South of West

Trig Review

$$\begin{vmatrix} 90 = 0 + 0 \\ 0 = 90 - 0 \end{vmatrix}$$

$$C = \sqrt{a^2 + b^2}$$

$$C^2 = a^2 + b^2$$

$$a^2 = C^2 - b^2$$

$$a = \sqrt{c^2 - b^2}$$

$$|\sin \theta| = \frac{b}{c} = \frac{opp}{hyp}$$
 $|\cos \theta| = \frac{a}{c} = \frac{adj}{hyp}$
 $|\tan \theta| = \frac{b}{c} = \frac{opp}{adj}$

$$\cos 30^{\circ} = \frac{F_{x}}{10N}$$
 $|0N\cos 30^{\circ} = F_{x} = 9.66N$
 $|0N\cos 30^{\circ} = F_{y} = \frac{F_{y}}{10N}$
 $|0\sin 30^{\circ} = F_{y} = \frac{F_{y}}{10N}$

$$\sin 60 = \frac{F_X}{10N}$$

$$10N \sin 60 = F_X$$

$$F_X = 9.66N$$

$$\cos 60 = \frac{F_{W}}{10N}$$

$$F_{W} = 5N$$

$$F_{\alpha} = 1000N$$

