Chaos, Fractals, and Dynamics

Derek Li

Contents

1	Introduction						
	1.1	Dynamical systems	3				
	1.2	Fixed points	4				
	1.3	Eventually fixed points	4				
	1.4	Periodic points	4				
2	Graphical Analysis of Dynamics 5						
	2.1	Attracting and repelling fixed points	5				
	2.2	Fixed points of linear and approximating linear functions	5				
	2.3	Orbits near a periodic orbit	6				
	2.4	Application: approximating square roots	6				
3	Generalization of State Space 7						
	3.1	Measuring distance in a general state space	7				
		3.1.1 Distance functions	7				
		3.1.2 General features of distance functions	7				
	3.2	Generalize open intervals and limits	7				
	3.3	Generalize attraction and repulsion to state spaces	8				
4	Sen	niconjugacy	10				
	4.1		10				
			10				
			10				
			11				
	4.2		11				
	4.3		13				
	4.4		13				

5	Dynamics of Quadratic Maps Chaos in the Shift Map				
6					
	6.1	Proper	rties	16	
		6.1.1	Sensitive dependence on initial conditions	16	
		6.1.2	Topological transitivity	16	

1 Introduction

1.1 Dynamical systems

Definition 1.1. A repeated movement is called a *dynamical system*. It is described in two parts:

- (1) Space you are moving around in the state space.
- (2) How to move, i.e., the dynamical map.

Example 1.1. (Standard) Quadratic maps

- State space: \mathbb{R} .
- Dynamical map: $Q_c(x) = x^2 + c$.

Example 1.2. Rotation maps

- State space: The unit circle \mathbb{T} .
- Dynamical map: Rotate the circle α radians counterclockwise. $R_{\alpha}(\theta) \equiv \theta + \alpha$.

Example 1.3. Doubling maps

- State space: T.
- Dynamical map: $D(\theta) \equiv 2\theta$.

Example 1.4. Shift maps

- State space: The set of sequences of 0 and 1, $2^{\mathbb{N}}$.
- Dynamical map: Erase the first digit.

There are two ways to look at repetition. Say we have a dynamical system with dynamical map F and state space $Y, F: Y \to Y$.

- Follow individual points. For $y \in Y$, look at the sequence of points y, F(y), F(F(y)), ..., called the **orbit** of y.

of F, F^n .

$$\circ$$
 Note: $F^2(y) = F \circ F(y) = F(F(y)), F(y)^2 = F(y) \cdot F(y).$

1.2 Fixed points

Definition 1.2. x is a *fixed point* of F iff it satisfies the equation F(x) = x. Fixed points often make good landmarks in the state space of a dynamical system.

Example 1.5. $F(x) = x^2 - 0.3 = x \Rightarrow p_{\pm} = \frac{1}{2}(1 \pm \sqrt{1 + 4 \times 0.3}).$

Example 1.6. Rotation map, R_{α} with $\alpha \neq 0$: There are no fixed points.

Example 1.7. Doubling map, the point θ is fixed iff $D(\theta) \equiv \theta \Rightarrow 2\theta \equiv \theta \Rightarrow \theta \equiv 0$.

Example 1.8. Shift map: Only fixed points are $\overline{0}$ and $\overline{1}$.

1.3 Eventually fixed points

Definition 1.3. An *eventually fixed point* of $F: Y \to Y$ is a point whose orbit eventually reacts a fixed point, i.e., $F^{n+1}(y) = F^n(y)$, for some $n \in \{0, 1, 2, ...\}$.

Example 1.9. The orbit of $\frac{2\pi}{8}$ under the doubling map.

Example 1.10. Eventually fixed points of the shift map on $2^{\mathbb{N}}$ are $0011\overline{0}, 0100\overline{1}$, and so on.

1.4 Periodic points

Definition 1.4. A *periodic point* of $F: Y \to Y$ is a point where orbit eventually returns to its starting point, that is y periodic if $F^n(y) = y$ for some $n \in \mathbb{N}$.

Example 1.11. $G(x) = x^2 - 1$ on \mathbb{R} . The orbit of 0(-1) eventually returns to 0(-1).

Definition 1.5. An *n*-periodic point of $F: Y \to Y$ is a point y with $F^n(y) = y$. If y is n-periodic, it is also 2n/3n/4n/cdots-periodic. The smallest period of a periodic point is called its $minimum/prime\ period$.

2 Graphical Analysis of Dynamics

[Try to draw some graphs to analyze the dynamical systems.]

2.1 Attracting and repelling fixed points

Definition 2.1. Let $F : \mathbb{R} \to \mathbb{R}$, $p \in \mathbb{R}$ s.t. F(p) = p. A **basin of attraction** for p is an open interval $p \in I \subset \mathbb{R}$ s.t. every $x \in I$ is mapped to $F(x) \in I$, i.e., every orbit starting in I stays in I forever, or $F(x) \in I$, $\forall x \in I \Leftrightarrow F(I) \subset I$, and every orbit in I limits to p.

Definition 2.2. A *region of repulsion* for p is an open interval $p \in I$ s.t. every $x \in I$ eventually leaves I (allowed to com back) unless x = p.

If p has a b.o.a., p is attracting. If p has a r.o.r., p is repelling. For some cases, the orbit never leaves the open ball but does not limit to p, then p is **neither attracting nor repelling**.

2.2 Fixed points of linear and approximating linear functions

For $F(x) = ax, a \in \mathbb{R}$, it has a single fixed point 0. If |a| < 1, the fixed point 0 of ax is attracting. If |a| > 1, the fixed point 0 of ax is repelling.

Now, we can see the approximately linear functions. When we say a function F is differentiable at p, we mean its graph near p is close to a straight line, i.e., $F(p + \Delta x) \approx F(p) + F'(p) + \Delta x$, when $\Delta x \approx 0$.

Say p is a fixed point of F, F is differentiable on some I containing p, and we have: if |F'(p)| < 1, the fixed point p is attracting; if |F'(p)| > 1, the fixed point p is repelling.

- When F is differentiable near a fixed point $p, |F'(p)| \neq 1$, we say p is **hyperbolic**.
- A hyperbolic fixed point is always either attracting or repelling.
- Non-hyperbolic fixed points could be attracting or repelling.

2.3 Orbits near a periodic orbit

Definition 2.3. A periodic orbit is attracting if every point on the orbit is an attracting fixed point of F^n , where n is the minimum period.

Definition 2.4. A periodic orbit is repelling if every point on the orbit is a repelling fixed point of F^n , where n is the minimum period.

Definition 2.5. A periodic orbit is hyperbolic if every point on the orbit is a hyperbolic fixed point of F^n , where n is the minimum period. If $|(F^n)'(p)| < 1$, the orbit of p is attracting. If $|(F^n)'(p)| > 1$, the orbit of p is repelling.

Example 2.1. $G(x) = x^2 - 1$, the orbit has minimum period 2. We have $(G \circ G)'(0) = G'(G(0)) \cdot G'(0) = 0 < 1$, then 0 is an attracting hyperbolic fixed point of G^2 . Hence, the orbit of 0 is an attracting periodic orbit. Similarly, $(G \circ G)'(-1) = 0$.

2.4 Application: approximating square roots

Let $H_a(x) = \frac{1}{2}(x + \frac{a}{x}), a \in (0, \infty), x \in (0, \infty).\sqrt{a}$ is an attracting fixed point, with the whole state space as its basin of attraction.

We have $H_a(x) = x \Rightarrow a = x^2$. Since the state space is $(0, \infty)$, the only fixed point is \sqrt{a} .

3 Generalization of State Space

3.1 Measuring distance in a general state space

3.1.1 Distance functions

- Standard distance function on \mathbb{R} : The d between two points $x, y \in \mathbb{R}$ is d(x, y) = |y x| or d(x, x + a) = |a|.
- Standard distance function on \mathbb{T} : The d between two points on the unit circle is the length of the shortest path from one to the other, or $d(\theta, \theta + \alpha) \equiv |\alpha|, \alpha \in [-\pi, \pi].$
- Standard distance function on $2^{\mathbb{N}}$: Given two different sequences $x, y \in 2^{\mathbb{N}}$, let m be the number of digits before the first place they differ, $d(x,y) = 2^{-m}$. When x = y, d(x,y) = 0.

Example 3.1. $x = 010100101001 \cdots$, $y = 010101010101 \cdots$, then the distance is $d(x, y) = 2^{-5}$.

Example 3.2.
$$x = 10000 \cdots, y = 01111 \cdots, d(x, y) = 2^0 = 1.$$

3.1.2 General features of distance functions

A function that satisfies these properties below is called a *metric*.

- The distance functions take a pair of points x, y in a state space Y and gives back a number $d(x, y) \in [0, \infty)$.
- $d(x, y) = d(y, x), \forall x, y \in Y$.
- $d(x,y) = 0 \Leftrightarrow x = y$.
- (Triangle inequality) $d(x,y) \leq d(x,p) + d(p,y), \forall x,y,p \in Y$.

3.2 Generalize open intervals and limits

Definition 3.1. Y is a state space with a metric d and an **open ball** of radius r around x as the set $B_x(r) = \{y \in Y | d(x, y) < r\}$.

Example 3.3. In $2^{\mathbb{N}}$, with the standard metric, the open ball $B_x(2^{-n})$ is the set of sequences that match x for at least the first n+1 digit. For instance, $x=00100110000\cdots$, $B_x(2^{-4})$ consists of the sequences that look like $00100\cdots$.

Definition 3.2. p is the *limit* of $x_1, x_2, ...$ if $\forall r > 0, \exists x_n, x_{n+1}, ...$ that stays inside $B_x(r)$.

 \circ Note: A sequence can have at most one limit, $\lim_{n\to\infty} x_n = p$.

Example 3.4.
$$x_n = \underbrace{000\cdots 0}_{n \text{ zeros}} 111\cdots \text{ in } 2^{\mathbb{N}}, \lim_{n\to\infty} x_n = \overline{0}.$$

Proof. We know $d(x_n, \overline{0}) = 2^{-n}$, we need $2^{-n} < \varepsilon$, i.e., $n < \log_2(\frac{1}{\varepsilon})$. Thus, we take $N = \log_2(\frac{1}{\varepsilon})$.

Therefore,
$$\forall \varepsilon > 0, \exists N > 0 \text{ s.t. } n > N \Rightarrow x_n \in B_{\overline{0}}(\varepsilon).$$

3.3 Generalize attraction and repulsion to state spaces

Consider a dynamical system with state space Y and dynamical map F and we have a metric d on Y. Suppose $p \in Y$ is a fixed point of F.

- A basin of attraction for p is an open ball U with the following properties:
 - (1) $p \in U$.
 - (2) Every orbit starting in U stays in U forever.
 - (3) Every orbit starting in U limits to p. If there is a b.o.a. for p, we say p is attracting.
- A region of repulsion for p is an open ball U with the following properties:
 - (1) $p \in U$.
 - (2) Every orbit starting in U eventually leaves U unless it starts at p.

If there is a r.o.r. for p, we say p is repelling.

Example 3.5. The doubling map $D: \mathbb{T} \to \mathbb{T}$ defined by $D(\theta) \equiv 2\theta$ has a single fixed point 0, which is repelling.

Example 3.6. The shift map $S: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ has two fixed points $\overline{0}$ and $\overline{1}$, both of which are repelling.

Solution. We can find $B_{\overline{0}}(1)$ is a r.o.r. for $\overline{0}$. $B_{\overline{0}}$ consists of all sequences that look like $0 \cdots$. Pick any point $x \in B_{\overline{0}}(1)$ other than $\overline{0}$ and we know x has at least a 1, say

$$x = \underbrace{0 \cdots}_{n \text{ digits}} 1 \cdots,$$

and then we have $S^n(x) = 1 \cdots \notin B_{\overline{0}}(1)$.

Example 3.7. The dynamical map A is defined on $2^{\mathbb{N}}$ as each 1 that is followed by a 0 turns into a 0. Classifying fixed points as attracting, repelling or neither.

Solution. Fixed points are $p_n = \underbrace{0 \cdots 0}_{n \text{ zeros}} \overline{1}, q = \overline{0}.p_n$ is repelling, $\forall n \ge 0$.

Consider any $x \in B_{p_n}(2^{-n})$ other than p_n itself, then after first 1 occurs, there must be a 0 somewhere, say

$$x = \underbrace{0 \cdots 0}_{n} 1 \cdots 0 \cdots.$$

Hence, $A(x) = 0 \cdots 01 \cdots 00 \cdots$, $A^2(x) = 0 \cdots 01 \cdots 000 \cdots$, ..., and thus $A^n(x) = \underbrace{0 \cdots 0}_{n+1} \cdots 0 \cdots \notin B_{p_n}(2^{-n})$.

4 Semiconjugacy

4.1 The doubling map and the shift map

We can represent number as binary sequences. For example,

$$\frac{1}{6} = 0.1666... = \frac{1}{10} + \frac{6}{100} + \frac{6}{1000} + \cdots,$$

or

$$\frac{1}{6} = 0.001010... = \frac{0}{2} + \frac{0}{4} + \frac{1}{8} + \frac{0}{16} + \frac{1}{32} + \cdots$$

Define $\phi: 2^{\mathbb{N}} \to \mathbb{T}$ given by $\phi(w) \equiv 2\pi w$, where w is the sequence of binary digits.

Actually, ϕ is an example of a semiconjugacy from S to D. When doubling a number, each binary digit moves one place to the left. For example, $D(2\pi \cdot 0.00\overline{10}) \equiv 2 \cdot 2\pi \cdot 0.00\overline{10} \equiv 2\pi \cdot 0.0\overline{10}$.

If a 1 moves into the 1's place, we can change it back into a 0, because that changes the angle by 2π . For example, $D(2\pi \cdot 0.11\overline{10}) \equiv 2\pi \cdot 1.1\overline{10} \equiv 2\pi + 2\pi \cdot 0.1\overline{10} \equiv 2\pi \cdot 0.1\overline{10}$.

We can express the relation map between the shift map and the doubling map in a formula $D(\phi(w)) = \phi(S(w))$, i.e., to double the angle with binary map representation w, first shift w and see what angle the result represents.

4.1.1 Finding fixed points

Theorem 4.1. If $w \in 2^{\mathbb{N}}$ is a fixed point of S, then $\phi(w) \in \mathbb{T}$ is a fixed point of D.

Proof. Suppose
$$S(w) = w$$
, then $D(\phi(w)) = \phi(S(w)) = \phi(w)$.

4.1.2 Finding periodic points

Theorem 4.2. If $S^n(w) = w$, then $D^n(\phi(w)) \equiv \phi(w)$.

Theorem 4.3. If $S^n(w)$ is a fixed point of S, then $D^n(\phi(w))$ is a fixed point of D.

Example 4.1. $\overline{01}$ is 2-periodic of S, then $\phi(\overline{01})$ is a 2-periodic of D.

$$\phi(\overline{01}) \equiv 2\pi \left(\frac{0}{2} + \frac{1}{2^2} + \frac{0}{2^3} + \frac{1}{2^4} + \cdots \right) \equiv 2\pi \cdot \frac{1}{4} \left(1 + \frac{1}{4} + \frac{1}{4^2} + \cdots \right)$$
$$\equiv 2\pi \cdot \frac{1}{4} \cdot \frac{1}{1 - 1/4} \equiv \frac{2}{3}\pi.$$

Example 4.2. $\overline{000111}$ is 6-periodic for S. First, calculate 0.000111 = $\frac{7}{64}$, then

$$\phi(\overline{000111}) \equiv 2\pi \cdot \left(\frac{7}{64} + \frac{7}{64^2} + \frac{7}{64^3} + \cdots\right) \equiv 2\pi \cdot \frac{7}{64} \left(1 + \frac{1}{64} + \frac{1}{64^2} + \cdots\right)$$
$$\equiv 2\pi \cdot \frac{7}{64} \cdot \frac{64}{63} \equiv \frac{2}{9}\pi.$$

4.1.3 Finding eventually fixed points

The eventually fixed points of S are the sequences that end with $\overline{0}$ and $\overline{1}$. Theses sequences describe the angles $2\pi t$ where t is a faction with a power of 2 in the denominator: $2\pi \cdot \frac{\alpha}{2\beta}$.

4.2 Formal definition of semiconjugacy

Definition 4.1. Let X be a space, consider a map $d: X \times X \to [0, \infty)$ s.t.

$$d(x,y) = d(y,x), \forall x, y \in X.$$

$$d(x,y) = 0 \Leftrightarrow x = y.$$

$$d(x,y) \leq d(x,w) + d(w,y), \forall x, y, w \in X.$$

This map d is called a **metric** on X and the pair (X, d) is a **metric** space.

Definition 4.2. Let $(X, d_X), (Y, d_Y)$ be metric spaces. Consider a map $f: X \to Y, f$ is **continuous** at $x_0 \in X$ iff $\forall \varepsilon > 0, \exists \delta > 0$ s.t. $\forall x \in B(x_0, \delta) \Rightarrow f(x) \in B(f(x_0), \varepsilon)$. If f is continuous at all $x_0 \in X$, then f is called continuous in X.

Definition 4.3. Let X and Y be metric spaces. Consider two maps $f: X \to X, g: Y \to Y$. A **semiconjugacy** is a map $\psi: X \to Y$ s.t.

- (1) ψ is surjective, i.e., every point in Y has a preimage.
- (2) There is an integer m > 0 s.t. ψ is at most m-to-one.
- (3) ψ is continuous.
- (4) $\psi(f(x)) = g(\psi(x))$, or $\psi \circ f = g \circ \psi$.

Example 4.3. $D: \mathbb{T} \to \mathbb{T}$ is given by $\theta \mapsto 2\theta \mod 2\pi, S: 2^{\mathbb{N}} \to 2^{\mathbb{N}}$ is given by $x_1x_2x_3\cdots\mapsto x_2x_3\cdots$. Let $\theta=2\pi t, t\in [0,1], t=\sum_{n=1}^{\infty}\frac{x_n}{2^n}, x_n=0$ or 1.

Define $\phi: 2^{\mathbb{N}} \to \mathbb{T}$, given by $(x_n) \mapsto 2\pi \sum_{n=1}^{\infty} \frac{x_n}{2^n} \mod 2\pi.\phi$ is a semiconjugacy from S to D.

Proof. (1) ϕ is surjective, i.e., every $\alpha \in \mathbb{T}$ can be written as $\alpha \equiv \phi(w)$ for some w. This is true because every α can be written as $\alpha \equiv 2\pi \cdot x, x \in [0, 1]$ and every x admits a binary expansion $x = 0.w_1w_2...$

- (2) For any $\alpha \in \mathbb{T}$, there are only finitely many $w \in 2^{\mathbb{N}}$ s.t. $\phi(w) \equiv \alpha$. This is true because most $x \in [0,1]$ only have one binary representation. The only case when having more than one representation is when x is rational with denominator a power of 2 (for example, $\frac{1}{2} = 0.1\overline{0} = 0.0\overline{1}$) and thus ϕ is at most 2-to-1.
- (3) ϕ is continuous. Define d_1 is on $2^{\mathbb{N}}$, d_2 is on \mathbb{T} . Pick any $w_0 = (x_n^0) \in 2^{\mathbb{N}}$. Let $\varepsilon > 0$. For $w \in 2^{\mathbb{N}}$,

$$d_2(\phi(w), \phi(w_0)) \equiv \left| 2\pi \left(\sum_{n=1}^{\infty} \frac{x_n}{2^n} - \sum_{n=1}^{\infty} \frac{x_n^0}{2^n} \right) \right| \mod 2\pi \leqslant 2\pi \cdot \sum_{n=1}^{\infty} \frac{|x_n - x_n^0|}{2^n} \mod 2\pi.$$

Pick an open ball $B(w_0, 2^{-N})$, for all $w \in B(w_0, 2^{-N})$, we know

$$d_2(\phi(w), \phi(w_0)) \le 2\pi \cdot \sum_{n=N+2}^{\infty} \frac{|x_n - x_n^0|}{2^n} \mod 2\pi \le 2\pi \cdot \sum_{n=N+2}^{\infty} \frac{1}{2^n} = \frac{\pi}{2^N}.$$

We want $d_2(\phi(w), \phi(w_0)) \leq \frac{\pi}{2^N} < \varepsilon$, i.e., $N > \log_2(\frac{\pi}{\varepsilon})$. Hence, take $\delta = 2^{-N}$ for $N > \log_2(\frac{\pi}{\varepsilon})$, if $w \in B(w_0, \delta)$, then $d_2(\phi(w), \phi(w_0)) < \varepsilon$. Therefore, ϕ is continuous at w_0 . Since w_0 is arbitrary, ϕ is continuous.

(4)
$$\phi(S(w)) = D(\phi(w))$$
. We have $w = w_1 w_2 w_3 \cdots, S(w) = w_2 w_3 \cdots, \phi(S(w)) = 2\pi (0.w_2 w_3...)$.

Besides.

$$\phi(w) = 2\pi(0.w_1w_2w_3...), D(\phi(w)) = 2 \cdot 2\pi(0.w_1w_2w_3...) = 2\pi(w_1.w_2w_3...)$$
$$= 2\pi w_1 + 2\pi(0.w_2w_3...)$$
$$= 2\pi(0.w_2w_3...)\phi(S(w)).$$

Thus, ϕ is a semiconjugacy from S to D.

4.3 Semiconjugacy toolbox

Let $E:W\to W, F:X\to X, \psi:W\to X$ be a semiconjugacy.

Theorem 4.4. If w is a fixed point of E, then $\psi(w)$ is a fixed point of F.

Proof.
$$F(\psi(w)) = \psi(E(w)) = \psi(w)$$
.

Theorem 4.5. $F^n(\psi(w)) = \psi(E^n(w)), \forall w \in W, n \in \mathbb{N}.$

Corollary 1. If $\psi: W \to X$ is a semiconjugacy from E to F, then ψ is also a semiconjugacy from E^n to $F^n, \forall n \in \mathbb{N}$.

Theorem 4.6. If w is an n-periodic point of E, then $\psi(w)$ is an n-periodic point of F.

Proof. If
$$E^n(w) = w$$
, then $F^n(\psi(w)) = \psi(E^n(w)) = \psi(w)$.

Theorem 4.7. If w is an eventually fixed point of E, then $\psi(w)$ is an eventually fixed point of F.

Proof. We have $E^{n+1}(w) = E^n(w)$. Then,

$$F^{n+1}(\psi(w)) = \psi(E^{n+1}(w)) = \psi(E^n(w)) = F^n(\psi(w)).$$

Theorem 4.8. Suppose ψ is at most m-to-one. If $\psi(w)$ is a fixed point of F, the orbit of w mush eventually reach a periodic point of E, with a minimum period of at most m.

4.4 The quadratic map and the doubling map

Consider the quadratic map $F(x) = x^2 - 2$, $F: [-2,2] \rightarrow [-2,2]$. Define $\psi: \mathbb{T} \rightarrow [-2,2]$ given by $\psi(\theta) \equiv 2\cos\theta$. After checking, we can draw a conclusion that ψ is a semiconjugacy from D to F.

5 Dynamics of Quadratic Maps

The dynamics have different performances in different ranges of c. In order to understand $Q_c : \mathbb{R} \to \mathbb{R}$, it helps to focus on the points whose orbits do not fly off toward infinity. These points form a subset of $K_c \subset \mathbb{R}$, called the **filled Julia set** of Q_c .

When c is in the "upper range" $(-1.4011551..., \infty)$, we have a very simple description of $K_c: [-p_+, p_+]$.

When c is in the "middle range" $(-2, -1.4011551...), K_c = [-p_+, p_+],$ but the orbits inside K_c are bananas.

When c is in the "lower range" $(-\infty, -2]$, graphical analysis and a semi-conjugacy are used.

• c = -2

Theorem 5.1. The composition of two semiconjugacies is always a semiconjugacy.

Recall that the binary representation $\phi: 2^{\mathbb{N}} \to \mathbb{T}$, which is a semiconjugacy from the shift map to doubling map and the function $h: \mathbb{T} \to [-2,2]$ given by $h(\theta) \equiv 2\cos\theta$ is a semiconjugacy from the doubling map to $Q_{-2}: [-2,2] \to [-2,2]$. Thus, $h\circ\phi$ is a semiconjugacy from the shift map to $Q_{-2}: [-2,2] \to [-2,2]$.

- $c \in (-\infty, -2)$
 - The points outside $[-p_+, p_+]$ have orbits that fly off toward infinity. These points are not in K_c , and they form a subset $L_0 \subset \mathbb{R}$. The points that enter L_0 after one step but not before, form a subset $L_1 \subset \mathbb{R}$. Since their orbits fly off toward infinity, these points are not in K_c either. Finally, K_c is what is left after we remove all the subsets $L_0, L_1, L_2, ...$ from \mathbb{R} .
 - \circ A warm-up for the lower range V map.
 - (1) $V(x) = 3|x| 2, x \in \mathbb{R}$, which is similar to Q_c with $c \in (\infty, -2]$.

(2) The filled Julia set of the V map: Say K is the filled Julia set of V. We have

$$L_0 = (-\infty, -1) \cup (1, \infty), L_1 = \left(-\frac{1}{3}, \frac{1}{3}\right), L_2 = \left(-\frac{7}{9}, -\frac{5}{9}\right) \cup \left(\frac{5}{9}, \frac{7}{9}\right), ...,$$

and thus $K = \mathbb{R} \setminus (L_0 \cup L_1 \cup \cdots)$.

- (3) An itinerary function for the V map.
- ① Removing L_0 and L_1 leaves two intervals. Call the left one I_0 and the right one I_1 . The set K divides naturally into two parts. Defined a function $\tau: K \to 2^{\mathbb{N}}$ in the following way:

The *n*th digit of
$$\tau(x) = \begin{cases} 0, V^n(x) \in I_0 \\ 1, V^n(x) \in I_1 \end{cases}$$
.

- ② τ is an example of an itinerary function. Intuitively, the sequence $\tau(x)$ tells when the orbit of x visits the left and right parts of K.
- ③ τ is a semiconjugacy from $V: K \to K$ to the shift map and τ is invertible and its inverse is a semiconjugacy and thus τ is a conjugacy.
 - (4) Dividing up the filled Julia set.
- ① Removing L_0 and L_1 left us with two intervals I_0 and I_1 . Removing L_2 divides each of I_0 and I_1 into two second-level intervals, and so on. For example, the first quarter of I_0 maps to I_{11} , so call it I_{011} .
- ② If we know which nth-level interval a point $x \in K$ is inside, we can know the first n digits of $\tau(x)$. For example, $\frac{9}{26} \in I_{101}$, then $\tau(\frac{9}{26})$ looks like $101 \cdots$.
 - 3 Each *n*th-level has width $\frac{2}{3^n}$.

6 Chaos in the Shift Map

6.1 Properties

6.1.1 Sensitive dependence on initial conditions

You can totally change the long-term behavior of an orbit just by nudging it a tiny bit.

Theorem 6.1. In any $B_w(2^{-n})$, no matter how small, there exists a point v s.t. $d(S^k(v), S^k(w)) > \frac{1}{2}$ for some k.

6.1.2 Topological transitivity

It can take you from any open ball to any other open ball.

Theorem 6.2. Given a "source" open ball U and a "destination" open ball V in $2^{\mathbb{N}}$, there exists a point $u \in U$ whose orbit eventually enters V.

6.1.3 Density of periodic points

Every open ball, no matter how small, has periodic points inside it.

Theorem 6.3. Every open ball includes a periodic point.