What Is Claimed Is:

7 ·

	shift-register	

- a first transistor having a first source/drain coupled to a first terminal, a second source/drain, and a first gate coupled to a reset signal to stop the shift-register unit outputting a pulse signal;
- a second transistor having a third source/drain coupled to
 the second source/drain, a fourth source/drain
 coupled to a second terminal, and a second gate
 coupled to a setting signal to the initial
 shift-register unit;
- a third transistor having a fifth source/drain coupled to an output terminal, a third gate coupled to the second source/drain and a sixth source/drain coupled to a clock signal to start outputting the pulse signal; and
- a fourth transistor having a seventh source/drain coupled to the first terminal, an eighth source/drain coupled to the output terminal and a fourth gate coupled to a refresh signal to set a voltage level of the shift-register unit in a standby mode.
- 2. The shift-register unit as claimed in claim 1, further comprising a fifth transistor having a ninth source/drain coupled to the first terminal, a tenth source/drain coupled to the second source/drain and a fifth gate coupled to a preset signal to set a voltage level of the third gate.
- 3. The shift-register unit as claimed in claim 2, wherein the transistors are p-type transistors and the first terminal

- is coupled to a power source and the second terminal is coupled to the setting signal.
- 1 4. The shift-register unit as claimed in claim 2, wherein 2 the transistors are p-type transistors and the voltage level of 3 the first terminal exceeds that of the second terminal.
- 5. The shift-register unit as claimed in claim 2, wherein the transistors are n-type transistors and the first terminal is coupled to a ground level and the second terminal is coupled to the setting signal.
- 6. The shift-register unit as claimed in claim 2, wherein the transistors are n-type transistors and the voltage level of the second terminal exceeds that of the first terminal.
- 7. The shift-register unit as claimed in claim 1, wherein the transistors are thin film transistors.
- 1 8. The shift-register unit as claimed in claim 1, wherein the transistors are MOS transistors.
 - 9. A shift-register circuit, comprising:
- 2 first-stage shift-register unit, a final-stage 3 shift-register unit and a plurality of middle-stage units connected between 4 shift-register first-stage shift-register unit and the final-stage 5 shift-register unit, wherein the shift-register 6 units are connected in serial and each shift-register 7 unit outputs a pulse signal in sequence after the 8 first-stage shift-register unit receives an initial 9 setting signal; 10

1

11	each shift-register unit comprising:
12	a clock terminal for receiving a clock signal;
13	a setting terminal for receiving a setting signal for
14	trigging the shift-register unit to output the
15	clock signal as the pulse signal; and
16	a reset terminal for receiving a reset signal to
17	reset the shift-register unit to stop
18	outputting the pulse signal, wherein the reset
19	terminals of the first-stage and the
20	middle-stage shift-register units are
21	respectively connected to the output signal of
22	the subsequent stage shift-register unit, the
23	reset terminal of the final-stage
24	shift-register unit is connected to the output
25	signal of the first-stage shift-register unit,
26	the setting terminal of the middle-stage and
27	the final-stage shift-register units are
28	respectively connected to the output signal of
29	the previous stage shift-register unit, the
30	setting terminal of the first-stage
31	shift-register unit is connected to the initial
32	setting signal, the clock terminals of the odd
33	stage shift-register units are connected to a
34	first clock signal as the clock signal and the
35	clock terminals of the even stage
36	shift-register units are connected to a second
37	clock signal as the clock signal.

10. The shift-register circuit as claimed in claim 9, wherein the shift-register unit comprises:

3	a first transistor having a first source/drain coupled to
4	a first terminal, a second source/drain, and a first
5	gate coupled to the reset terminal;
6	a second transistor having a third source/drain coupled to
7	the second source/drain, a fourth source/drain
8	coupled to a second terminal, and a second gate as
9	the setting terminal; and
10	a third transistor having a fifth source/drain coupled to
11	an output terminal, a third gate coupled to the second
12	source/drain and a sixth source/drain as the clock
13	terminal.
1	11. The shift-register circuit as claimed in claim 10,
2	wherein the shift-register unit further comprises:
3	a fourth transistor having a seventh source/drain coupled
4	to the first terminal, an eighth source/drain coupled
5	to the output terminal and a fourth gate as a refresh
6	terminal coupled to a refresh signal to set a voltage
7	level of the shift-register unit in a standby mode;
8	and
9	a fifth transistor having a ninth source/drain coupled to
10	the first terminal, a tenth source/drain coupled to
11	the second source/drain and a fifth gate as a preset
12	terminal to set a voltage level of the third gate,
13	wherein the refresh terminals of the even stage
14	shift-register units are coupled to the first clock
15	signal, and the refresh terminals of the odd stage
16	shift-register units are coupled to the second clock
17	signal.

1

2

3

1 2

- 1 12. The shift-register circuit as claimed in claim 11, 2 wherein the first and the second clock signals have the same 3 frequency and different duty cycles.
- 1 13. The shift-register circuit as claimed in claim 12, 2 wherein the transistors are p-type transistors and the first 3 terminal is coupled to a power source and the second terminal 4 is coupled to the setting signal.
- 1 14. The shift-register unit as claimed in claim 12, 2 wherein the transistors are p-type transistors and the voltage 3 level of the first terminal exceeds that of the second terminal.
 - 15. The shift-register unit as claimed in claim 12, wherein the transistors are n-type transistors and the first terminal is coupled to a ground level and the second terminal is coupled to the setting signal.
 - 16. The shift-register unit as claimed in claim 12, wherein the transistors are n-type transistors and the voltage level of the second terminal exceeds that of the first terminal.
- 1 17. The shift-register unit as claimed in claim 10, wherein the transistors are thin film transistors.
- 1 18. The shift-register unit as claimed in claim 10, wherein the transistors are MOS transistors.
- 1 19. A shift-register circuit, comprising:
- a first-stage shift-register unit, a second-stage shift-register unit, a third-stage shift-register unit and a fourth-stage shift-register unit

5 connected in serial, wherein each shift-register unit outputs a pulse signal in sequence after the 6 7 first-stage shift-register unit receives an initial 8 setting signal; each shift-register unit comprising: 9 10 a clock terminal for receiving a clock signal; 11 a setting terminal for receiving a setting signal for 12 triggering the shift-register unit to output 13 the clock signal as the pulse signal; and a reset terminal for receiving a reset signal to 14 15 reset the shift-register unit to 16 outputting the pulse signal, wherein the reset 17 terminals of the first-stage, the second-stage 18 and the third-stage shift-register units are 19 respectively connected to the output signal of 20 the subsequent stage shift-register unit, the setting terminal of the second-stage, the 21 22 third-stage and the fourth stage 23 shift-register units are respectively 24 connected to the output signal of the previous 25 stage shift-register unit, the setting 26 terminal of the first-stage shift-register 27 unit is connected to the initial setting 28 signal, the clock terminals of the first-stage 29 and the fourth-stage shift-register units are 30 connected to a first clock signal as the clock 31 signal, the clock terminal of the second-stage 32 shift-register unit is connected to a second 33 clock signal as the clock signal and the clock 34 terminal of the third-stage shift-register

35	unit is connected to a third clock signal as the
36	clock signal.
1	20. The shift-register circuit as claimed in claim 19,
2	wherein the shift-register unit comprises:
3	a first transistor having a first source/drain coupled to
4	a first terminal, a second source/drain, and a first
5	gate coupled to the reset terminal;
6	a second transistor having a third source/drain coupled to
7	the second source/drain, a fourth source/drain
8	coupled to a second terminal, and a second gate as
9	the setting terminal; and
10	a third transistor having a fifth source/drain coupled to
11	an output terminal, a third gate coupled to the second
12	source/drain and a sixth source/drain as the clock
13	terminal.
1	21. The shift-register circuit as claimed in claim 20,
2	wherein the shift-register unit further comprises:
3	a fourth transistor having a seventh source/drain coupled
. 4	to the first terminal, an eighth source/drain coupled
5	to the output terminal and a fourth gate as a refresh
6	terminal coupled to a refresh signal to set a voltage
7	level of the shift-register unit in a standby mode;
8	and
9	a fifth transistor having a ninth source/drain coupled to
10	the first terminal, a tenth source/drain coupled to
11	the second source/drain and a fifth gate as a preset
12	terminal to set a voltage level of the third gate,
13	wherein the refresh terminal of the first-stage

1.

2

4

1 2

3

1

14	shift-register unit is coupled to the first clock
15	signal, the refresh terminal of the second-stage
16	$\verb shift-register unit is coupled to the second clock \\$
17	signal and the refresh terminal of the third-stage
18	shift-register unit is coupled to the third clock
19	signal.

- 1 22. The shift-register circuit as claimed in claim 21, 2 wherein the first, the second and the third clock signals have 3 the same frequency and different duty cycles.
 - 23. The shift-register circuit as claimed in claim 22, wherein the transistors are p-type transistors and the first terminal is coupled to a power source and the second terminal is coupled to the setting signal.
 - 24. The shift-register unit as claimed in claim 22, wherein the transistors are p-type transistors and the voltage level of the first terminal exceeds that of the second terminal.
- 25. The shift-register unit as claimed in claim 22, wherein the transistors are n-type transistors and the first terminal is coupled to a ground level and the second terminal is coupled to the setting signal.
 - 26. The shift-register unit as claimed in claim 22, wherein the transistors are n-type transistors and the voltage level of the second terminal exceeds that of the first terminal.
- 1 27. The shift-register unit as claimed in claim 20, 2 wherein the transistors are thin film transistors.

- 1 28. The shift-register unit as claimed in claim 20,
- wherein the transistors are MOS transistors.