Name: Kiran Yadav

Email: kiranyadav1102003@gmail.com

Course Name:Devops and Cloud Computing Cours

Assignment Name: Linux

Git Link:https://github.com/Hydra-Dev110/Linux

Drive Link:

https://docs.google.com/document/d/1xnSN4sTER_nrXpKICDnhrCetZNbWpCcLmJS-QL3gtgE/edit?usp

=sharing

.....

1.What is Linux?

-> Linux is an operating system unix like operating system kernel that servers as the foundation for a wide range of operating systems known as Linux distributions(or distros). These operating systems are used on a wide variety of devices from servers and desktops to smartphone and embedded systems.

Key Features:

- -Open Source
- -Stable and Secure
- -Multitasking and Multiuserds
- -Customizable.

2. What is the difference between Hard Link & Soft Link?

-> **Hard Link**: It is essentially another name(alian) for an existing file. It points directly to the file's inode(the data

structure that stores the actual file content and metadata).

Key Characteristics:

- Stores the same inode number as the original file.
- No distinction between the original file and the hard link both are equal.
- If the original file deleted the data still exists as long as one hard link remains.
- Cannot span across different file systems or partitions.

- Cannot link to directories(to prevent loops in the filesystem).

Example: In original.txt hardlink.txt

Soft Link(Symbolic Link or Symlink): A Soft Link is a special file that contain a path to another file or directory. It like

a shortcut.

Key Characteristics:

- Points the file name/path, not the inode
- Different inode number than the original file.
- -Can link directories.
- -Can span across file systems or partitions.
- -If the original file is deleted, the symlink becomes broken or dangling link.

3. What is a Kernel in Linux?

-> In Linux(and all operating systems) the kernel is the core component that acts as a bridge between the hardware and the software. It manages systems, resources and allows software to communicate with the hardware in a controlled and efficient manner.

Key Responsibilities of kernel.

- 1. Process Management.
- 2. Memory Management.
- 3. Device Management.
- 4. File System Management.
- 5. System Calls Interface.

4. How do you create a user account?

-> Using adduser:

```
hydra_02@DESKTOP-1FI938H:/$ sudo adduser abhi
Adding user 'abhi' ...
Adding new group 'abhi' (1005) ...
Adding new user 'abhi' (1002) with group 'abhi' ...
Creating home directory 'home/abhi' ...
Copying files from '/etc/skel' ...
New password:
Retype new password:
Sorry, passwords do not match.
passwd: Authentication token manipulation error
passwd: password unchanged
Try again? [y/N] y
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for abhi
Enter the new value, or press ENTER for the default
          Full Name []:
          Room Number []:
          Work Phone []:
          Home Phone []:
          Other []:
Is the information correct? [Y/n] y
```

5. What is the 'grep' command used for in Linux?

- -> The grep command in Linux is used to search for text patterns in files or command output.
 - Finds lines in a file that match a word, phrase, or pattern.
 - Supports **regular expressions** for advanced searching.
 - Can be used with other commands to filter output.
 - -Basic syntax of grep

grep[options] pattern filename

Example :- grep "Hello" testfile.txt

6. Step1: Create user p1

Step2: He should be part of 3 groups g1,g2,g3.

Step3: whenever he creates a file automatically in the group section of file grp g1 should come.

-> Step 1: Create the user p1

Step 2: Create groups and add p1 to them

```
hydra_02@DESKTOP-1FI938H:~$ sudo groupadd g1
hydra_02@DESKTOP-1FI938H:~$ sudo groupadd g2
hydra_02@DESKTOP-1FI938H:~$ sudo groupadd g3
hydra_02@DESKTOP-1FI938H:~$ sudo usermod -g g1 -aG g2,g3 p1
```

Step 3: Ensuring files created by p1 belongs to g1

```
hydra_02@DESKTOP-1FI938H:~$ su - p1
Password:
p1@DESKTOP-1FI938H:~$ touch testfile
p1@DESKTOP-1FI938H:~$ ls -l testfile
-rw-r--r-- 1 p1 g1 0 May 15 19:19 testfile
```

- 7. You suspect that a particular process is consuming excessive CPU resources on your Linux server. How would you identify and terminate this process?
- -> To identify the Process using High CPU (use top for monitoring)

top	- 07	:43:22 up	,	1:2	28.	1 user	load	average:	0.00.0	9.00. B	. 80	
Tasl	cs:	37 total,		1	run	ning, 3	6 sleep	ing, 0	stopped	1, 0:	zombie	
		θ.θ us,										
	Mem						3 free,		used,		.4 buff/c	
118	Swap	: 2048.	θ	tot	tal,	2048.	θ free,	Θ.6	used.	5254	.8 avail	Mem
	PID	USER	P	R	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+	COMMAND
		root		θ	Θ	165808	11264	8388 S	0.3	0.2	0:00.88	
	2	root	2	0	Θ	2776	1920	1796 S	0.0	0.0	0:00.22	init-systemd(Ub
	9	root	2	θ	Θ	2776	132	132 S	0.0	0.0	0:00.00	init
	62	root	1	9	-1	105196	29592	28544 S	0.0	0.5	0:00.53	systemd-journal
	91	root	2	8	Θ	21964	5700	4456 S	0.0	0.1	0:00.39	systemd-udevd
	93	systemd+	2	θ	Θ	25664	12548	8116 S	0.0	0.2	0:00.22	systemd-resolve
	94	systemd+	2	0	Θ	89364	6568	5764 S	0.0	0.1	0:00.36	systemd-timesyn
	166	root	2	8	Θ	4308	2764	2468 S	0.0	0.0	0:00.02	cron
	167	message+	2	θ	Θ	8584	4696	4152 S	0.0	0.1	0:00.26	dbus-daemon
	173	root	2	θ	Θ	30136	19112	10320 S	0.0	0.3	0:00.15	networkd-dispat
	174	syslog	2	8	Θ	222404	5128	4568 S	0.0	0.1	0:00.08	rsyslogd
	177	root	2	θ	Θ	15332	7596	6624 S	0.0	0.1	0:00.20	systemd-logind
	192	root	2	8	Θ	3240	1120	1028 S	0.0	0.0	0:00.00	agetty
	197	root	2	8	Θ	3196	1116	1028 S	0.0	0.0	0:00.00	agetty
	207	root	2	θ	Θ	107164	21180	13076 S	0.0	0.4	0:00.11	unattended-upgr
	271	root	2	0	Θ	2784	204	80 S	0.0	0.0	0:00.00	SessionLeader
	272	root	2	8	Θ	2784	208	80 S	0.0	0.0	0:00.32	Relay(273)
	273	hydra_02	2	θ	Θ	6120	5088	3332 S	0.0	0.1	0:00.06	bash
	274	root	2	8	Θ	7528	4936	4016 S	0.0	0.1	0:00.01	login
	325	hydra_02	2	8	Θ	16932	9352	7884 S	0.0	0.2	0:00.07	systemd
	326	hydra_02	2	θ	Θ	168736	3352	16 S	0.0	0.1	0:00.00	(sd-pam)
	331	hydra_02	2	θ	Θ	6100	4752	3192 S	0.0	0.1	0:00.01	bash
		root	2	0	Θ	8096	4736	3896 S	0.0	0.1	0:00.03	su
	432	p1	2	θ	Θ	16940	9388	7920 S	0.0	0.2	0:00.26	systemd
	433	p1	2	8	Θ	168736	3352	16 S	0.0	0.1	0:00.00	(sd-pam)
	438	p1	2	8	Θ	6116	5096	3344 S	0.0	0.1	0:00.01	bash
	490	root	2	θ	Θ	8092	4684	3844 S	0.0	0.1	0:00.03	su
	491	hydra_02	2	0	Θ	6116	5160	3404 S	0.0	0.1	0:00.04	bash
	576	root	2	8	Θ	8092	4744	3984 S	0.0	0.1	0:00.04	su
	577	p1	2	θ	Θ	6116	5096	3348 S	0.0	0.1	0:00.03	bash
	680	root	2	8	Θ	8092	4736	3896 S	0.0	0.1	0:00.06	su
	681	hydra_02	2	0	Θ	6212	5232	3472 S	0.0	0.1	0:00.14	bash
	808	root	2	θ	Θ	8092	4672	3832 S	0.0	0.1	0:00.03	su
	889	abhi	2	8	Θ	6248	5196	3440 S	0.0	0.1	0:00.04	bash

To terminate the process(kill (PID))

Kill (PID) will terminate the process.

Example: kill 5302.