

(All rights reserved)

B.SC INFORMATION TECHNOLOGY, FIRST SEMESTER EXAMINATIONS: 2017/ 2018

DEPARTMENT OF COMPUTER SCIENCE

CSIT 313: PROGRAM DESIGN AND DATA STRUCTURES (3 CREDITS)

INSTRUCTIONS:

ANSWER ALL QUESTIONS IN SECTION A AND ANY TWO (2) OTHER
QUESTIONS FROM SECTION B (I.E. A TOTAL OF 3 QUESTIONS)

ANSWER ALL QUESTIONS IN ANSWER BOOKLETS PROVIDED

TIME ALLOWED: TWO AND A HALF (2½) HOURS

SECTION A:

(This Section carries 40 marks)

ANSWER ALL QUESTIONS IN THIS SECTION

1.

Briefly explain what Encapsulation is in Object Oriented programming.

[2 marks]

[3 marks]

1.

Give any 2 examples of using queues in computer systems.

[2 marks]

1.

Differentiate between struct and class in C++.

[2 marks]

1.

Use the table below to solve the following.

Name	Value
X	4
P	18
A	6

int *b = &a;

int k = *b

v = (x + p + k + a) *2 + (k *4)*a

What is v?

[3 marks]

1.

Consider the following declaration of a **stack** class which keeps tracks of book numbers. Implement the member functions of the **stack** class below including the constructor and destructor.

[15 marks]

```
#ifndef_STACK_H_
#define _STACK_H_
class Stack
private:
  int booknumber;
  int top;
  int size;
  public:
     Stack();
     ~Stack();
void push (int num);
     int pop();
int peep();
     Bool isEmpty();
     Bool isFull();
```

}

#endif

SECTION B:

ANSWER ANY TWO (2) QUESTIONS FROM THIS SECTION

1.

a. Copy and complete the following table using big-O notation.

Sorting Algorithms	Worst Case Scenario		Best Case Scenario
		Scenario	
Selection Sort			
Insertion Sort			
Bubble Sort			
Merge Sort			
Quicksort			

[7 marks]

a. The code below is the content of a file "queue.h" that gives the declaration of the class queue. The class is meant to manage a static queue of 20 students

```
#ifndef_QUEUE_H_
#define _QUEUE_H_
#define MAX_SIZE 20
class Queue {
private:
String name[MAX_SIZE];
int front;
int rear;
public:
Queue();
~Queue();
```

```
void enqueue(String name)
String dequeue();
String front;
String rear;
bool isFull();
bool isEmpty();
};
#endif
                                 [15 marks]
Define all the member functions of the class above including the constructor and destructor.
      a. Write short notes on the following
      I. Depth First Traversal
      II. Breadth First Traversal
                                          [8 marks]
      1.
      a. Below is a the declaration of a B-Tree. Implement the member functions in class BST i
ncluding the constructor and destructor.
#ifndef_BST_H_
#define _BST_H_
struct node {
```

```
int data;
node *left;
node * right;
};
class BST
{
private:
Node * root;
public:
BST();
~BST();
bool find(int item, node * par, node *loc);
void inorderPrint(node *ptr);
};
#endif
```

[20 marks]

a. Complete the table below

Example of Algorithm	Running Time in Big O Notation
Linear Search	
Binary Search	
Insertion for unordered array	
Insertion for ordered array	
Deletion for unordered array	
Deletion for ordered array	

[5 marks]

a.	What are	the f	following	terms	under	Graph	Termino!	logy

- I. Weighted graph
- II. Edge
- III. Adjacency Matrix
- IV. Incomplete graph
- V. Undirected Graph

[5 marks]

1.

a. Below is a the declaration of a Linked List. Implement the member functions in class

Linked List.

#ifndef_SLINK_H_

#define _SLINK_H_

struct node

```
{
int data;
node *next;
};
class list
{

private:
node *head,
node *tail;
public:
list();
~list();
void add_start(int value)
void add_end(int value)
```

int first();

```
int removehead();
int removetail();
void displayAll();
void delete_first()
void delete_last();
bool isEmpty();
};
```

[15 marks]

a. Consider the graph below

■ FIGURE 8.1B

Represent the graph using

I.	Adjacency list representation
II	. Adjacency matrix representation
[10 mar	ks]

- a. What are the following terms in tree terminology
- I. N-ary tree
- II. Degree or arity of a tree
- III. Subtree
- IV. Height of a(non-empty tree)
- V. Leaf Node

[5 marks]

1.

a. Use the tree structure below to answer the following questions

- I. What is the result of the "Preorder Transversal"
- II. What is the result of the "Inorder Transversal"
- III. What is the result of the "Postorder Transversal"
- IV. Give two reasons why the tree above is a Binary Tree

[15 marks]

a. Write a function in C++ to perform Linear(Sequential)Search on an array

[9 marks]

a. What are the following terms in Linked List terminology

- I. Node in a doubly linked list
- II. Singly Linked List
- III. Doubly Linked List

[6 marks]