Controlo Automático - Projecto

Bloqueio Neuromuscular em Anestesia

Daniela Silva Diogo Cordeiro Hugo Sales Tiago Ferrero

2020

Introdução

Este trabalho tem como principal objetivo pôr em prática os conhecimentos adquiridos na disciplina de Controlo Automático. Esta apresentação contém uma breve explicação sobre o que foi feito em cada um dos exercícios, que se encontra mais pormenorizado no relatório. O software usado para a realização deste trabalho foi o Matlab.

$$G(s) = \frac{40 \alpha^{3}}{s^{3} + 15 \alpha s^{2} + 54 \alpha^{2} s + 40 \alpha^{3}}$$

Exercício 1

 $\begin{array}{l} \text{sample} = 10 \times 2 \\ 0.0219 \ 1.2746 \ 0.0528 \ 2.5362 \\ 0.0352 \ 1.5503 \\ 0.0293 \ 1.4728 \\ 0.0308 \ 1.9499 \\ 0.0330 \ 2.4823 \\ 0.0282 \ 1.2615 \\ 0.0295 \ 1.2390 \\ 0.0329 \ 2.5669 \\ 0.0394 \ 2.0425 \end{array}$

Exercício 2

a)

Critério de Routh-Hurwitz para o nosso polinómio. Daqui, vem que α tem de ser positivo.

b)

Exercício 3

a)

Representação matricial do modelo de espaço de estados obtido:

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -40\alpha^3 & -54\alpha^2 & -15\alpha \end{bmatrix} x + \begin{bmatrix} B \\ 0 \\ 40\alpha^3 \end{bmatrix} u \tag{1}$$

b)

Pelo teste de Kalman, conclui-se que o sistema é controlável. Como os pólos do sistema se localizam todos no semiplano esquerdo do plano complexo, então o sistema é estável

c)

