## BỘ GIÁO DỤC VÀ ĐÀO TẠO

# TRƯỜNG ĐẠI HỌC BÁCH KHOA THÀNH PHỐ HỒ CHÍ MINH KHOA KHOA HỌC ỨNG DỤNG

\_\_\_\_\_



## BÁO CÁO BÀI TẬP NHÓM GIẢI TÍCH MẠCH

GVHD: NGUYỄN THANH NAM

Lớp bài tập: L06

NHÓM: Viện Điện BKU

## Danh sách thành viên

| Họ và tên              | MSSV    | Phân công công việc |
|------------------------|---------|---------------------|
| Bùi Trần Gia Hưng      | 2211353 | Bài 4               |
| Nguyễn Trần Trọng Hùng | 2211343 | Bài 3               |
| Phạm Chung Kiên        | 2211731 | Bài 5 + 6           |
| Nguyễn Trường Sơn      | 2212930 | Bài 1 + 2           |
| Bùi Việt Tiến          | 2213445 | Bài 7               |

### Bài tập nhóm Ch04

<u>Ch04-Bài 01A</u>: Dùng hình bài 6.13 sách bài tập MĐ2 ... cho E=40V; R=3K; L=0,5H.

a) Giải bài toán tìm  $i_L(t)$  bằng PP tích phân kinh điển từ đó tìm biểu thức i(t) cho  $t \in (-\infty, +\infty)$ 

b) Giải lại dùng PP toán tử Laplace ...

Lập sơ đồ toán tử - tìm  $I_L(s)$ , I(s) từ đó chuyển thành  $i_L(t)$  và i(t) cho t>0.







#### <u>Ch04-Bài 02B</u>: Cho mạch hình bên, giả sử tại t=0 khoá K được chuyển từ vị trí 1 sang vị trí 2 !

Cho e(t)=  $100\cos(2000t)$  V; R=  $2K\Omega$ ; L= 1H; C=  $0.25\mu$ F.

a) Phức hóa, giải mạch khi t<0 (K đang đóng) tìm i<sub>L</sub>(t).

→ Tính sơ kiện i<sub>L</sub>(0-).

Cho  $u_c(0-) = 30 \text{ V}$  (Tu đã sac sẵn trước!);

b) Với t>0 ... Giải bài toán dùng PP toán tử Laplace ...

Lập sơ đồ toán tử - tìm  $I_L(s)$ ,  $U_C(s)$ 

từ đó tìm  $i_L(t)$  và  $u_C(t)$ 

c) Giải lại dùng PP tích phân kinh điển – tìm biểu thức  $u_c(t)$  từ đó suy ra  $i_L(t)$ .

Thử so sánh hai PP khi giải bài này ?!







| 12 (0 <sup>†</sup> ) = 4 (0 <sup>†</sup> ) = 4 (0 <sup>†</sup> ) = 40 (0 <sup>†</sup> ) = 60 (0 <sup>†</sup> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| trug shien khe trong viec gia Pt shea & va bién đôi ngườc laplace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Ch04-Bài 3C: Hình 6.12 - Bài 6.12 sách bài tập MĐ2 ... cho e(t)=40cos(1000t) V; R=1K; L=1H;C=1μ.

Giả sử tại t=0 khoá K được mở ra

a) Phức hóa, giải mạch khi t<0 (K đang đóng) tìm i<sub>L</sub>(t),

 $u_c(t) \rightarrow T$ ính các sơ kiện  $i_L(0-)$  và  $u_c(0-)$ ;

b) Với t>0 ... Giải bài toán dùng PP toán tử Laplace ... Lập sơ đồ toán tử - tìm  $I_L(s)$ ,  $U_c(s)$  từ đó tìm  $i_L(t)$  và  $u_c(t)$ 









| An = | 1 0! |          | 9,02     | s = |
|------|------|----------|----------|-----|
|      | 202  |          |          |     |
| i =  |      | -> 4 CH) | = 1 (-1) | , d |

#### Ch04-Bài 04C: Dùng hình bài trên – hình 6.12 - Bài 6.12 sách bài tập MĐ2 ...

cho nguồn DC: e(t)=E=40 V; R=2K $\Omega$ ; L=5H; C=0,5 $\mu$ F. (Khác với trong sách MĐ1) Hãy giả sử

tại t=0 khoá K được đóng lại (t<0 khoá K mở).

a) Viết các pt vi phân theo  $i_L(t)$  và  $u_C(t)$ .

b) Giải mạch bằng PP tích phân kinh điển tìm  $i_L(t)$  và  $u_C(t)$ .

c) Từ đó tìm biểu thức dòng i(t) đi qua nguồn E

→ Hãy vẽ dạng đồ thị i(t) này cho t>0.





| 10000                |          | 1. Tiple 1990 |          |       | F. F                                         | I a           |
|----------------------|----------|---------------|----------|-------|----------------------------------------------|---------------|
|                      |          | 40 1          |          | XU    |                                              |               |
| Maxl                 |          | 40            | ]_]      | n (m  | A                                            |               |
| 7, 60                | R        | 2             |          |       | a diame                                      |               |
| tim N                | ced va i | ud I          | otaji 85 | hoa   | 88 at                                        | 8;            |
| 100000               | MN -     | R             |          |       | 2 2 2                                        |               |
| Zv (P)               |          |               | -1       |       | 1 10)                                        | A = 111-11111 |
| 0/8                  |          | 100           | PC       | , a   | 11/1                                         |               |
|                      |          |               |          |       | SOC 08 02 00                                 |               |
| TOT                  | cra Mc:  |               |          |       |                                              | 8 30 L        |
| - Tr (p              | )= pc +  |               |          | 0     | essili (iii                                  |               |
| The RECEIPT          | 1        | 17041         | 17       | 0     | 400                                          |               |
| e) L(                | Poten    | Cp +          |          | 0     |                                              |               |
| (a) 2 <sub>1</sub> 3 |          | m + i         | 490      |       |                                              |               |
| Sw 94:               | Mc+1 -   | you t         | Carel    | yant  | 110.                                         | 8m (490t)     |
| =) Mc(t)             | = 40 +   | e foot [c     | 108(49   | 0+) + | Calm                                         | 1(490+) T     |
| PTOT                 | ma il:   |               | 1 2 2 2  |       |                                              |               |
| ZVQ                  | ) = pL+  | 2R+           | 1 -      | = 0   | 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10 |               |
|                      | 1002     | DRC0 -        | 1        |       |                                              |               |
|                      | Massin   | AKCP -        |          | +0    | 100 1 100 1 100 100 100 100 100 100 100      |               |

$$\begin{array}{l} \Rightarrow \{1/2 = -400 \pm i490 \\ \Rightarrow y \text{ for } : \text{ lith} = 20 \pm 200 \pm 1200 (490 \pm) + 22 \sin (490 \pm) \} \\ \Rightarrow \{1/4 = 20 \pm 20 \pm 200 \pm 1200 (490 \pm) + 22 \sin (490 \pm) \} \\ \Rightarrow \text{ Tim } \text{ for } \text{ lieu} : \Rightarrow \text{ tim } \text{ Ale}(0^{\pm}), \text{ in}(0^{\pm}) \\ + \text{ Mc}(0^{\pm}) = \text{ lieu} : \Rightarrow \text{ tim } \text{ Ale}(0^{\pm}), \text{ in}(0^{\pm}) \\ + \text{ Mc}(0^{\pm}) = \text{ lieu} : \Rightarrow \text{ tim } \text{ Ale}(0^{\pm}), \text{ in}(0^{\pm}) \\ + \text{ Mc}(0^{\pm}) = \text{ lieu} : \Rightarrow \text{ tim } \text{ Ale}(0^{\pm}), \text{ in}(0^{\pm}) \\ + \text{ Mc}(0^{\pm}) = \text{ lieu} : \Rightarrow \text{ tim } \text{ Ale}(0^{\pm}), \text{ in}(0^{\pm}) = 0 \\ + \text{ lieu} : \Rightarrow \text{ tim } \text{ lieu} : \Rightarrow \text{ tim } \text{ lieu} : \Rightarrow \text{ lieu}$$



Ch04-Bài 05D: Dữ liệu Bài 6.24 sách bài tập MĐ2 (Hình 6.24) ... Giải bằng PP tích phân kinh điển









#### Ch04-Bài 07E: Dùng hình Bài 6.27 sách bài tập MĐ2 (Hình 6.27) ...

#### Cho R= 2 K $\Omega$ ; C= 1 $\mu$ F; E=20 V và t<sub>0</sub>= 2 ms

Dùng Laplace toán tử hoá các nguồn – toán tử hoá sơ đồ - giải tìm  $U_c(s)$  và chuyển thành  $u_c(t)$ .

- a) e(t)=e<sub>1</sub>(t) có dạng xung tam giác
- b)  $e(t)=e_2(t)$  có dạng xung vuông Vẽ dạng kết quả  $u_c(t)$  cho trường hợp này !



Clien Bui Via Tim: 22 13695 Ch04 - Bai 07E R=2Ka; C=1uF; E=20V & to=2ms e(+) (+) c = uc19 x kh; 1 (0 tacé: 4 (0) = 0 e1(+)= 1 e3(+) + e4(+) Trangeté: / e;(+) = E/+ +.[1(+) -1(+-10)]

[24(+) = (-) \* + 2E + 2E)[1(+-10)-1(+-410)] => e1(+) = E+.1(+) - E+.1(+-to)+(=++2E)1(+-to)+(Ef-+2E)1(+-to)  $= \frac{E}{40} \cdot 1(4) + \left(-\frac{2E}{40} + 2E\right) \cdot 1(4-40) + \left(\frac{E}{40} + 2E\right) \cdot 1(4-260)$ = 10000 + 1(f) + (-20000f + 40) 1(+-10) + (10000 + -40), 1(+-2+0) = 10000 f. 1(1) + [-20000 (+-10) - 20000 fo + 40] - 1(f-10) [10000 (1-210)+20000 to -40] [(1-10) =) E(s) = 10000. 1 1 - 200000 - Sto - (20000 de - 40) = sto. + 10000 e 2 to 1 + (20000 to - 60) e - 5 to 1 =(10000 - 20000 e - sto +10000 e - 210)- 1

