Data Engineering Take-Home Assignment

Scenario:

You are working as a Data Engineer at a company that processes large-scale streaming and batch data for e-commerce analytics. The company has a data lake and a data warehouse, and they need you to create a robust data pipeline to process, transform, and integrate data from various sources. Your solution must demonstrate proficiency in data pipeline creation, big data processing, and optimization techniques.

Assignment Goals:

- 1. **Data Ingestion**: Process raw datasets from multiple CSV files and load them into a staging area.
- 2. **Data Transformation**: Implement complex transformations, including cleaning, aggregation, and deduplication using Spark or Pandas.
- 3. **Data Storage**: Design a schema for a data warehouse and load the transformed data.
- 4. **SQL Analysis**: Write SQL queries for business insights.
- 5. **Optimization**: Use big data techniques to optimize query performance and data processing.
- 6. **Documentation**: Provide clear documentation for your pipeline and decisions.

Tasks

1. Data Ingestion

You are given the following raw data sources, all in CSV format:

- transactions.csv: Contains transactional data with details about customer purchases.
- **users.csv**: Contains user data with demographic information.
- **products.csv**: Contains product metadata.

Your task:

- Build an ingestion pipeline to load all the data into a staging area (use Pandas or PySpark).
- Handle missing values, data type inconsistencies, and invalid records.

2. Data Transformation

Transform the ingested data to create two cleaned tables:

- 1. CustomerTransactionSummary:
 - Columns: CustomerID, TotalSpent, TotalTransactions, LastTransactionDate
- 2. **ProductPerformance**:
 - Columns: ProductID, TotalSales, AveragePrice, UnitsSold

Bonus: Use PySpark's window functions or Pandas groupby to perform aggregations.

3. Data Storage

- Create a **star schema** for a data warehouse to store the transformed data.
- Design the following tables:
 - 1. **FactTransaction**: Includes transactional details.
 - 2. **DimCustomer**: Includes customer information.
 - 3. **DimProduct**: Includes product details.

Load the transformed data into these tables using an SQL-based database like SQLite, Postgres, or any data warehouse technology (e.g., Snowflake or BigQuery).

4. SQL Analysis

Write SQL queries to provide the following business insights:

- 1. Find the top 5 customers based on total spending.
- 2. Identify the best-selling product in each category.
- 3. Calculate the daily sales trend for the last 7 days.
- 4. Find the category with the highest sales in the last month.

5. Optimization

Optimize your transformations and queries:

- Use caching or persisting in PySpark.
- Partition data by date or category.
- Implement bucketing in PySpark for faster joins (optional).

6. Documentation

Provide a comprehensive README file that includes:

- An overview of your solution.
- Steps to set up and run the pipeline.
- Assumptions and challenges.
- Examples of how your solution can scale to larger datasets.

Dataset

Dataset 1: transactions.csv

Contains transaction details.

TransactionID CustomerID Pr				oductID Category		Quantity Price TransactionDate			onDate		
	T001	C001	P001	Electronics	1	499.99	2023-12-	20T12:00:0	00Z		
	T002	C002	P002	Books	2 1	12.99	2023-12-21	T14:30:00	$Z \mid$		
	T003	C001	P003	Home Applian	nces 1	29	9.99 2023	-12-21T16	200:00Z		

Dataset 2: users.csv

Contains user demographic information.

CustomerID	Name	Email	Age	Country
C001	Alice Doe	alice@example.com	32	USA
C002	Bob Smith	bob@example.com	45	UK
C003	Charlie Wu	charlie@example.com	29	Canada

Dataset 3: products.csv

Contains product metadata.

ProductID	ProductName	Category	Brand Price
P001	Smartphone	Electronics	BrandX 499.99
P002	Novel	Books	BrandY 12.99
P003	Blender	Home Appliances	BrandZ 299.99

Deliverables

1. Codebase:

- Python scripts or notebooks for the pipeline.
- SQL scripts for queries.

2. **Output**:

- Cleaned CSV files or parquet files for the transformed data.
- Database dump or schema with example data.

3. **Documentation**:

• README with instructions and explanation.

4. **Bonus**:

• Optional visualizations or insights.

Evaluation Criteria

1. Technical Skills:

- Effective use of Python and PySpark.
- Efficient and correct SQL queries.

2. **Scalability**:

- Solutions for handling large-scale data.
- Partitioning and caching techniques.

3. Code Quality:

• Modular, well-structured, and readable code.

4. **Documentation**:

• Clarity, completeness, and professionalism.