CSE 102 - Midterm Study Guide

Zack Traczyk

Vaggos, Winter 2024

Contents

1	Intr	oductory Material Review	2
	1.1	Asymptotic Bounds	2
	1.2	Inductive Proofs	
2	Solving Recurrence Relations 3		
	2.1	Master Theorem	3
	2.2	Unpacking Tree / Algebraic Pattern	5
	2.3	Substitution	5
		Guess and Verify	5
3	Algo	prithms	5
_	3.1	Binary Search	5
	3.2	·	5
	J	3.2.1 Lower Bounds	5
	3.3	Merge Sort	5
	3.4	Number of leaves / depth as proof for lower asymptotic bounds	5
	3.5	Quick Select	5
	3.6	Dynamic Programming	5
		3.6.1 Fibonacci	5
		3.6.2 Binomial Coefficients	5
		3.6.3 Maximize independent set	5
		3.0.0 Waximize independent set	J
4		etice Problems	5
	4.1	Introductory Material Review	5
	4.2	Solving Recurrence Relations	7
		Algorithms	

1 Introductory Material Review

1.1 Asymptotic Bounds

Definition 1 (Big-O). f(n) = O(g(n)) if there exists a positive constant c and an integer n_0 such that $f(n) \le c \cdot g(n)$ for all $n \ge n_0$.

Definition 2 (Big- Ω). $f(n) = \Omega(g(n))$ if there exists a positive constant c and an integer n_0 such that $c \cdot g(n) \leq f(n)$ for all $n \geq n_0$.

Definition 3 (Big- Θ). $f(n) = \Theta(g(n))$ if there exists positive constants c_1 , c_2 , and an integer n_0 such that $c_1 \cdot g(n) \le f(n) \le c_2 \cdot g(n)$ for all $n \ge n_0$.

1.2 Inductive Proofs

Definition 4 (Inductive Proof). Simples rules of induction taken from CSE 16 with Prof. Tracy Larrabee.

- 1. Write down the Left Hand Side of P(k+1).
- 2. Rewrite P(k+1) to include Left Hand Side P(k).
- 3. Replace Left Hand Side of P(k) with Right Hand Side of P(k).
- 4. Rewrite so Right Hand Side of P(k) becomes Right Hand Side of P(k+1).

Examples:

Proof. For all $n \in \mathbb{Z}^+$ the number $n^2 + n$ is even

Base Case (n = 1):

$$n^2 + n = 1 + 1 = 2$$
, which is even

Inductive Hypothesis:

Assume $n^2 + n$ is even, prove $(n + 1)^2 + (n + 1)$ is even

$$(n+1)^2 + (n+1) = n^2 + 2n + 1 + n + 1$$
(1)

$$= n^2 + n + 2n + 2 \tag{2}$$

$$2p = n^2 + n$$
, 2p is the definition of even (3)

$$=2p+2n+2$$
 (4)

$$= 2(p+n+1), \text{ which is even}$$
 (5)

2 Solving Recurrence Relations

2.1 Master Theorem

Definition 5 (Master Theorem). Let $a \ge 1$ and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

where we interpret n/b to mean either $\lfloor n/b \rfloor$ or $\lceil n/b \rceil$. Then T(n) has the following asymptotic bounds:

- 1. If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$.
- 2. If $f(n) = \Theta(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$.
- 3. If $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \leq kf(n)$ for some constant k < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$.

- 2.2 Unpacking Tree / Algebraic Pattern
- 2.3 Substitution
- 2.4 Guess and Verify
- 3 Algorithms
- 3.1 Binary Search
- 3.2 Sorting
- 3.2.1 Lower Bounds
- 3.3 Merge Sort
- 3.4 Number of leaves / depth as proof for lower asymptotic bounds
- 3.5 Quick Select
- 3.6 Dynamic Programming
- 3.6.1 Fibonacci
- 3.6.2 Binomial Coefficients
- 3.6.3 Maximize independent set

4 Practice Problems

4.1 Introductory Material Review

Problem 4.1. Let $f(n) = 100n^2 + 10n + 1000$. Use the definition of Big-O to prove $f(n) = O(n^2)$.

Problem 4.2. Let $f(n) = 100n + 0.001n \log n$. Use the definition of Big-O to prove $f(n) = O(n \log n)$.

Answer: HW1 - Ex.2

Problem 4.3. Let $f(n) = 50n \log n + 30n$. Use the definition of Big-O to prove $f(n) = O(n^3)$.

Problem 4.4. Prove that T(n) = 2T(n-1) + 1 is $T(n) = 2^n - 1$.

Answer: HW1 - Ex.1 Part 2

4.2 Solving Recurrence Relations

Problem 4.5. Find tight asymptotic bounds (big-Theta) for $T(n) = 2T(n/4) + n^2\sqrt{n}$

Problem 4.6. Find tight asymptotic bounds (big-Theta) for $T(n) = T(n-1) + \frac{1}{n}$

Answer: HW3 - Ex.4

Problem 4.7. Find tight asymptotic bounds (big-Theta) for T(n) = 1600T(n/4) + n! (hint: answering this shouldn't require too many, if any, difficult calculations)

Problem 4.8. Find tight asymptotic bounds (big-Theta) for $T(n) = 6T(n/3) + n^4/\log^{25} n$ (hint: answering this shouldn't require too many, if any, difficult calculations)

Answer: HW3 - Ex.4

Problem 4.9. Find tight asymptotic bounds (big-Theta) for $T(n) = \sqrt{n}T(\sqrt{n}) + n$ (hint: when everything fails, you guess and check)

Problem 4.10. Find tight asymptotic bounds (big-Theta) for $T(n) = T(n/2) + n(5 - \cos^2 n \sin^{20} n)$ (hint: answering this shouldn't require too many, if any, difficult calculations, just think the most basic trigonometric inequality)

Answer: HW3 - Ex.4

Problem 4.11. Find tight asymptotic bounds (big-Theta) for $T(n) = \alpha T(n/4) + n^2$ (hint: your answer should depend on the α parameter)

Problem 4.12. Find tight asymptotic bounds (big-Theta) for $T(n) = 5T(n/5) + \frac{n}{\log_5 n}$ (hint: think of $n = 5^m$. Also the recursion $T(n) = T(n-1) + \frac{1}{n}$ above may come in handy.)

Answer: HW3 - Ex.4

4.3 Algorithms