Octal 3-State Noninverting Bus Transceiver

High-Performance Silicon-Gate CMOS

The MC54/74HC245A is identical in pinout to the LS245. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

The HC245A is a 3-state noninverting transceiver that is used for 2-way asynchronous communication between data buses. The device has an active-low Output Enable pin, which is used to place the I/O ports into high-impedance states. The Direction control determines whether data flows from A to B or from B to A.

- · Output Drive Capability: 15 LSTTL Loads
- · Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2 to 6 V
- Low Input Current: 1 μA
- · High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the Requirements Defined by JEDEC Standard No. 7A
- Chip Complexity: 308 FETs or 77 Equivalent Gates

LOGIC DIAGRAM

PIN 10 = GND PIN 20 = V_{CC}

MC54/74HC245A

FUNCTION TABLE

Contro	l Inputs	
Output Enable	Direction	Operation
L	L	Data Transmitted from Bus B to Bus A
L	Н	Data Transmitted from Bus A to Bus B
Н	Х	Buses Isolated (High-Impedance State)

X = don't care

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
VCC	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	- 1.5 to V _{CC} + 1.5	V
V _{I/O}	DC Output Voltage (Referenced to GND)	-0.5 to V _{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	± 20	mA
I _{I/O}	DC Output Current, per Pin	± 35	mA
Icc	DC Supply Current, V _{CC} and GND Pins	± 75	mA
PD	Power Dissipation in Still Air, Plastic or Ceramic DIP† SOIC Package†	750 500	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package) (Ceramic DIP)	260 300	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq VCC. Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or VCC).

Unused outputs must be left open.

Ceramic DIP: - 10 mW/°C from 100° to 125°C

SOIC Package: - 7 mW/°C from 65° to 125°C

For high frequency or heavy load considerations, see Chapter 2 of the Motorola High-Speed CMOS Data Book (DL129/D).

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter			Max	Unit
VCC	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)			Vcc	V
TA	Operating Temperature, All Package Types			+ 125	°C
t _r , t _f	Input Rise and Fall Time V((Figure 1) V(V(CC = 2.0 V CC = 4.5 V CC = 6.0 V	0 0 0	1000 500 400	ns

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Gu	Guaranteed Limit		
Symbol	Parameter	Test Conditions	v _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
VIH	Minimum High-Level Input Voltage	$V_{Out} = 0.1 \text{ V or V}_{CC} - 0.1 \text{ V}$ $ I_{Out} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.5 3.15 4.2	1.5 3.15 4.2	1.5 3.15 4.2	V
V _{IL}	Maximum Low–Level Input Voltage	$V_{Out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$ $ I_{Out} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.5 1.35 1.8	0.5 1.35 1.8	0.5 1.35 1.8	V
VOH	Minimum High-Level Output Voltage	$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}}$ $ I_{\text{out}} \le 20 \mu\text{A}$	2.0 4.5 6.0	1.9 4.4 5.9	1.9 4.4 5.9	1.9 4.4 5.9	V
		$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{Out}} \le 6.0 \text{ mA} \\ I_{\text{Out}} \le 7.8 \text{ mA}$	4.5 6.0	3.98 5.48	3.84 5.34	3.70 5.20	
V _{OL}	Maximum Low–Level Output Voltage	$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}}$ $ I_{\text{out}} \le 20 \mu\text{A}$	2.0 4.5 6.0	0.1 0.1 0.1	0.1 0.1 0.1	0.1 0.1 0.1	V
		$V_{\text{in}} = V_{\text{IH}} \text{ or } V_{\text{IL}} I_{\text{Out}} \le 6.0 \text{ mA} \\ I_{\text{Out}} \le 7.8 \text{ mA}$	4.5 6.0	0.26 0.26	0.33 0.33	0.40 0.40	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND, Pin 1 or 19	6.0	± 0.1	± 1.0	± 1.0	μΑ
loz	Maximum Three–State Leakage Current	Output in High-Impedance State $V_{\text{in}} = V_{\text{IL}} \text{ or } V_{\text{IH}}$ $V_{\text{out}} = V_{\text{CC}} \text{ or GND, I/O Pins}$	6.0	± 0.5	± 5.0	± 10	μΑ
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	4	40	160	μА

NOTE: Information on typical parametric values and high frequency or heavy load considerations can be found in Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).

MOTOROLA 2

^{*} Maximum Ratings are those values beyond which damage to the device may occur.

Functional operation should be restricted to the Recommended Operating Conditions.

[†]Derating — Plastic DIP: - 10 mW/°C from 65° to 125°C

AC ELECTRICAL CHARACTERISTICS ($C_L = 50 \text{ pF}$, Input $t_f = t_f = 6 \text{ ns}$)

			Guaranteed Limit			
Symbol	Parameter	V _{CC}	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH} , t _{PHL}	Maximum Propagation Delay, A to B, B to A (Figures 1 and 3)	2.0 4.5 6.0	75 15 13	95 19 16	110 22 19	ns
t _{PLZ} , t _{PHZ}	Maximum Propagation Delay, Direction or Output Enable to A or B (Figures 2 and 4)	2.0 4.5 6.0	110 22 19	140 28 24	165 33 28	ns
tPZL, tPZH	Maximum Propagation Delay, Output Enable to A or B (Figures 2 and 4)	2.0 4.5 6.0	110 22 19	140 28 24	165 33 28	ns
tTLH, tTHL	Maximum Output Transition Time, Any Output (Figures 1 and 3)	2.0 4.5 6.0	60 12 10	75 15 13	90 18 15	ns
C _{in}	Maximum Input Capacitance (Pin 1 or Pin 19)		10	10	10	pF
C _{out}	Maximum Three–State I/O Capacitance (I/O in High–Impedance State)	_	15	15	15	pF

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, $V_{CC} = 5.0 \text{ V}$		1
C _{PD}	Power Dissipation Capacitance (Per Transceiver Channel)*	40	pF	l

^{*} Used to determine the no–load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see Chapter 2 of the Motorola High–Speed CMOS Data Book (DL129/D).

SWITCHING WAVEFORMS

TEST CIRCUITS

^{*} Includes all probe and jig capacitance

 $\begin{array}{c|c} & \text{TEST POINT} \\ \hline \\ \text{DEVICE} \\ \text{UNDER} \\ \text{TEST} \end{array} \begin{array}{c} \text{OUTPUT} & \text{$1\,\text{k}\Omega$} \\ \hline \\ \text{C_L^*} \end{array} \begin{array}{c} \text{CONNECT TO V_CC WHEN } \\ \text{TESTING tp}_\text{LZ} \text{ AND tp}_\text{ZL}. \\ \text{CONNECT TO GND WHEN } \\ \text{TESTING tp}_\text{LZ} \text{ AND tp}_\text{ZH}. \end{array}$

Figure 3. Figure 4.

3 MOTOROLA

^{*} Includes all probe and jig capacitance

EXPANDED LOGIC DIAGRAM

MOTOROLA

OUTLINE DIMENSIONS

- NOTES:

 1. LEADS WITHIN 0.25 (0.010) DIAMETER, TRUE
 POSITION AT SEATING PLANE, AT MAXIMUM
 MATERIAL CONDITION.
- 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
 3. DIMENSIONS A AND B INCLUDE MENISCUS.

	MILLIMETERS		INC	HES	
DIM	MIN	MAX	MIN	MAX	
Α	23.88	25.15	0.940	0.990	
В	6.60	7.49	0.260	0.295	
O	3.81	5.08	0.150	0.200	
D	0.38	0.56	0.015	0.022	
F	1.40	1.65	0.055	0.065	
G	2.54 BSC		0.100	BSC	
Н	0.51	1.27	0.020	0.050	
۲	0.20	0.30	0.008	0.012	
K	3.18	4.06	0.125	0.160	
Г	7.62	7.62 BSC		BSC	
M	0 °	15°	0°	15°	
N	0.25	1.02	0.010	0.040	

NOTES:

- IOLES:
 1 DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.
 3. DIMENSION L TO CENTER OF LEAD WHEN
 FORMED PARALLEL.
 4. DIMENSION B DOES NOT INCLUDE MOLD
- FLASH.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.010	1.070	25.66	27.17
В	0.240	0.260	6.10	6.60
С	0.150	0.180	3.81	4.57
D	0.015	0.022	0.39	0.55
Е	0.050	BSC	1.27	BSC
F	0.050	0.070	1.27	1.77
G	0.100 BSC		2.54	BSC
J	0.008	0.015	0.21	0.38
K	0.110	0.140	2.80	3.55
L	0.300	BSC	7.62 BSC	
M	0°	15°	0°	15°
N	0.020	0.040	0.51	1.01

5

- OTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

 2. CONTROLLING DIMENSION: MILLIMETER.

 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.

 4. MAXIMUM MOLD PROTRUSION 0.150

- 4. MAXIMUM MOLD PROTRUSION 0.130
 (0.006) PER SIDE.

 5. DIMENSION D DOES NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	12.65	12.95	0.499	0.510
В	7.40	7.60	0.292	0.299
С	2.35	2.65	0.093	0.104
D	0.35	0.49	0.014	0.019
F	0.50	0.90	0.020	0.035
G	1.27	BSC	0.050	BSC
J	0.25	0.32	0.010	0.012
K	0.10	0.25	0.004	0.009
M	0 °	7 °	0 °	7°
Р	10.05	10.55	0.395	0.415
R	0.25	0.75	0.010	0.029

MC54/74HC245A

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola describe and tooroey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

MFAX: RMFAX0@email.sps.mot.com -TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

MC54/74HC245A/D

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.