R Lecture #4

November 24th, 2017

Hyeokkoo Eric Kwon (KAIST)

hkkwon7@business.kaist.ac.kr

Econometrics: Paradigm

Econometrics

- Econometrics is the application of statistical techniques and analyses to the study of problems and issues in economics.
- Economics suggests important relationships, often with policy implications, but virtually never suggests quantitative magnitudes of causal effects.
 - 1. What is the quantitative effect of reducing class size on student achievement?
 - 2. How does another year of education change earnings?
 - 3. What is the price elasticity of cigarettes?
 - **4.** What is the effect on output growth of a 1 percentage point increase in interest rates by the Fed?
 - 5. What is the effect on housing prices of environmental improvements?

Steps in Empirical Economic Analysis

- 1. Specify an economic model.
- 2. Specify an econometric model.
- 3. Gather data.
- 4. Analyze data according to econometric model.
- 5. Draw conclusions about your economic model.

Step 1. Economic Model of Education

- What is the effect of education on wages?
 - 1. wage=f(educ,exper,tenure)
 - 2. educ=years of education
 - *3.* exper=years of workforce experience
 - *4. tenure=years at current job*

Step 2: Specify an Econometric Model

- In the wage example, we can't reasonably observe all of the varia bles. For example, what matters?
- We need to specify an econometric model based on observable factors.
 - 1. Wage= $f(educ, exper, tenure) + \varepsilon$

Step 3: Gathering Data

Types of Data:

- Cross-Sectional Data
- Time Series Data
- Panel/Longitudinal Data

Cross-Sectional Data

- A sample of individuals, households, firms, cities, states, or other units, taken at a given point in time
- Random Sampling
- Mostly used in applied microeconomics
- Examples
 - 1. General Social Survey
 - 2. US Census
 - *3.* Most other surveys

Cross-Sectional Data (Cont'd)

Obs	wage	educ	exper	female	married
1	3.10	11	2	1	0
2	3.24	12	22	1	1
3	6.00	11	3	0	1
525	3.50	16	4	0	0
526	4.25	14	5	1	0

Time Series Data

- Observations on a variable or several variables over time
- E.g. stock prices, money supply, CPI, GDP, annual homicide rates, etc.
- Because past events can influence future events, and lags in behavior are common in economics, time is an important dimension of time-series
- More difficult to analyze than cross-sectional data
- Observations across time are not independent
- May also have to control for seasonality

Time Series Data (Cont'd)

Obs	year	avgmin	avgcov	unemp	gnp
1	1950	0.20	20.1	15.4	878.7
2	1951	0.21	20.7	16.0	925.0
3	1952	0.23	22.6	14.8	1015.9
37	1986	3.35	58.1	18.9	4281.6
38	1987	3.35	58.2	16.8	4496.7

Panel/Longitudinal Data

- A panel data set consists of a time series for each cross-sectional member
- E.g. select a random sample of 500 people, and follow each for 10 years.

obs	personid	year	wage	dinout
1	1	1990	5.50	2
2	1	1992	6.50	4
3	1	1994	6.75	4
4	2	1990	10.50	6
5	2	1992	10.50	5
6	2	1994	11.25	2
7	3	1990	7.75	5
				12
900	300	1994	15.00	2

Steps 4 & 5: Analyzing Data and Draw Conclusion

- Analyze the data based on the econometric estimation, validate the econometric findings, and draw conclusions.
- Why Use The Econometric Framework?
 - 1. Understanding covariation
 - **2.** Prediction of the outcome of interest
 - 3. The search for "causal" effects

Model Estimation

Income & Consumption

Where OLS comes from

- Think of fitting a line to the data. This will never pass through every point
- Let *ui* be the deviation associated with the *i*th observation ("residual")

$$C_{i} = \alpha + \beta Y_{i} + u_{i}$$

$$\hat{C}_{i} = \alpha + \beta Y_{i}$$

$$C_{i} = \hat{C}_{i} + u_{i}$$

- Every choice of *a* and *b* will generate a new set of *ui*
- OLS chooses a and b to minimize sum of squared ui
- "Best fit" : *R2*

Where OLS comes from (Cont'd)

OLS Assumptions

- Model is linear in parameters.
- The data are a random sample of the population (independent).
- The expected value of the errors is always zero.
- The residuals have constant variance.
- The errors are normally distributed.

Simple OLS in R

lm(formula, data)

- **formula** : a symbolic description of the model to be fitted
- **data**: a data frame, list or environment containing the variables in the model
 - install.packages("car")
 - 2. library(car)
 - 3. Prestige

education: Average education of occupational incumbents, years, in 1971.

income: Average income of incumbents, dollars, in 1971.

women: Percentage of incumbents who are women.

prestige: Pineo-Porter prestige score for occupation, from a social survey conducted in the mid-1960s.

census: Canadian Census occupational code.

type: Type of occupation. A factor with levels (**bc**, Blue Collar; **prof**, Professional, Managerial, and Technical; **wc**, White Collar)

Linear Regression

- 1. reg1 <- lm (prestige ~ education + income + women, data = Prestige)
- 2. summary(reg1)

Dependent Variable or response variable, explained variable, outcome variable

Independent Variable or regressor, explanatory variable, predictor variable

Linear Regression

- 1. reg1 <- lm(prestige ~ education + income + women, data = Prestige)
- 2. summary(reg1)

```
call:
lm(formula = prestige ~ education + income + women, data = Prestige)
Residuals:
              1Q Median
    Min
                                       Max
-19.8246 -5.3332 -0.1364 5.1587 17.5045
                                                          a% risk of concluding
                                                          that a relationship exists
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                                          when there is no actual
(Intercept) -6.7943342 3.2390886
                                 -2.098
education
            4.1866373 0.3887013 10.771
                                         < 2e-16 ***
                                                          relationship
income
            0.0013136 0.0002778 4.729 7.58e-06 ***
           -0.0089052 0.0304071 -0.293
                                          0.7702
women
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
Residual standard error: 7.846 on 98 degrees of freedom
```

Multiple R-squared: 0.7982, Adjusted R-squared: 0.792 F-statistic: 129.2 on 3 and 98 DF, p-value: < 2.2e-16

Linear Regression

- 1. reg1 <- lm(prestige ~ education + income + women, data = Prestige)
- 2. summary(reg1)

```
call:
lm(formula = prestige ~ education + income + women, data = Prestige)
Residuals:
              1Q Median
    Min
-19.8246 -5.3332 -0.1364 5.1587 17.5045
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.7943342 3.2390886 -2.098 0.0385
education 4.1866373 0.3887013 10.771 < 2e-16
income
           0.0013136 0.0002778 4.729 7.58e-06 ***
           -0.0089052 0.0304071 -0.293 0.7702
women
               0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sianif. codes:
Residual standard error: 7.846 on 98 degrees of freedom
Multiple R-squared: 0.7982, Adjusted R-squared: 0.792
F-statistic: 129.2 on 3 and 98 DF, p-value: < 2.2e-16
```

About 80 percent of variance can be explained by the variables

Linear Regression

- 1. reg1 <- lm(prestige ~ education + income + women, data = Prestige)
- 2. summary(reg1)

```
call:
lm(formula = prestige ~ education + income + women, data = Prestige)
Residuals:
              1Q Median
    Min
                                       Max
-19.8246 -5.3332 -0.1364 5.1587 17.5045
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
                                                         Prestige Score increases
(Intercept) -6.7943342 3.2390886
                                 -2.098
                                                         as the education and
education
            4.1866373 0.3887013 10.771 < 2e-16
                                  4.729 7.58e-06
income
            0.0013136 0.0002778
                                                         income level increase
           -0.0089052 0.0304071 -0.293
women
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 7.846 on 98 degrees of freedom
Multiple R-squared: 0.7982, Adjusted R-squared: 0.792
F-statistic: 129.2 on 3 and 98 DF, p-value: < 2.2e-16
```

- Factor variable regression with no interactions
 - 1. $reg2 < -lm(prestige \sim education + income + type, data = Prestige)$

(Intercept) -0.6229292 5.2275255 -0.119 0.905 education 3.6731661 0.6405016 5.735 1.21e-07 *** income 0.0010132 0.0002209 4.586 1.40e-05 *** typeprof 6.0389707 3.8668551 1.562 0.122 typewc -2.7372307 2.5139324 -1.089 0.279

Ceteris paribus, Prof. and Wc. have higher and lower Prestige Score than Bc., Respectively.

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 7.095 on (4 observations deleted due to Multiple R-squared: 0.8349, A F-statistic: 117.5 on 4 and 93 DF

1	Be	Prof	Wc
Intercept	-0.62	-0.62 + 6.04 = 5.42	-0.62 - 2. 74 = -3.36
Education	3.67	3.67	3.67
Income	0.001	0.001	0.001

- Factor variable regression with interactions
 - 1. $reg3 < -lm(prestige \sim income + type*education, data = Prestige)$

```
call:
lm(formula = prestige ~ income + type * education, data = Prestige)
Residuals:
                   Median
     Min
              1Q
-15.1168 -4.1751
                   0.4384
                            5.1625 15.2362
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                   -2.331e+00 7.783e+00 -0.299
income
                   1.052e-03 2.201e-04
                                        4.782 6.66e-06 ***
typeprof
                   2.209e+01 1.520e+01
                                        1.454
                                                   0.149
typewc
                   -2.822e+01 1.959e+01 -1.440
                                                   0.153
                                        4.096 9.12e-05 ***
education
                    3.852e+00 9.406e-01
typeprof:education -1.227e+00 1.304e+00 -0.941
                                                   0.349
typewc:education
                   2.270e+00 1.872e+00
                                          1.213
                                                   0.228
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

The positive effect of Education Level on Prestige Score is greater for Prof. but smaller for Wc. compared to Bc.

Residual standard error: 7.036 on 91 degrees of freedom

(4 observations deleted due Multiple R-squared: 0.8411, F-statistic: 80.27 on 6 and 9

	Bc	Prof	Wc
Intercept	-2.33	-2.33+ 2.21 =- 0.12	-2.33 -2.82 = -5.15
Education	3.85	3.85 -1.23 = 2.62	3.85+ 2.27 = 6.12
Income	1.05	1.05	1.05

Logistic Regression for Binary Dependent Variable

glm(formula, data, family = "binomial")

- **formula**: a symbolic description of the model to be fitted
- **data**: a data frame, list or environment containing the variables in the model
 - 1. logitex <- read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
 - 2. logitreg1<- glm(admit ~ gre + gpa + rank, logitex , family =
 "binomial")</pre>
 - 3. summary(logitreg1)

Poisson Regression for Count Dependent Variable

glm(formula, data, family = "poisson")

- **formula** : a symbolic description of the model to be fitted
- **data**: a data frame, list or environment containing the variables in the model
 - 1. poissonex <- read.csv("https://stats.idre.ucla.edu/stat/data/poisson_sim.csv")
 - 2. poissonreg1<- glm(num_awards ~ prog + math, poissonex,
 family = "poisson")</pre>
 - *3.* summary(poissonreg1)

Fixed Effect Regression for Panel Data

plm(formula, data, index, model="within")

- **formula**: a symbolic description of the model to be fitted
- data: a data frame, list or environment containing the variables in the model
- **index**: the individual and time indexes
 - 1. install.packages("plm")
 - 2. library(plm)
 - 3. panel_data <-read.csv("panel data.csv", sep=",")</pre>
 - 4. FEregression<-plm(invest~mvalue+kstock, panel_data,
 index=c("company","year"), model="within")</pre>
 - summary(FEregression)

Experiments

Difficulties Arising from Observational to Estimate Causal Effects

- Ideally, we would like an experiment
- But almost always we only have observational (nonexperimental) data
- Challenges include
 - 1. confounding effects (omitted factors)
 - 2. simultaneous causality
 - 3. "correlation does not imply causation"

Causality & Ceteris Paribus

- What we really want to know is: does the independent variable have a causal effect on the dependent variable
- But: <u>Correlation does not imply causation</u>
- Suppose we want to know if higher education leads to higher worker wage

Causality & Ceteris Paribus (Cont'd)

- If we find a relationship between education and wages, we don't know much
- Why? What if highly educated people have higher IQs, and it's really high IQ that leads to higher wages?
- If you give a random person more education, will they get higher wages?

Causality & Ceteris Paribus (Cont'd)

- What we want to know is... Does higher education lead to higher wages ceteris paribus... <u>holding all else constant</u>
- We have to control for IQ, experience, gender, job training, etc.
- But we can't control for everything!

What is an Experiment?

- Research method in which
 - 1. conditions (extraneous) are controlled
 - 2. so that 1 or more independent variables can be manipulated to test a hypothesis about a dependent variable.
- Allows
 - 1. evaluation of causal relationships among variables
 - 2. while all other variables are eliminated or controlled.

A/B Test

Definitions

Experimental Treatments

Alternative manipulations of the independent variable being investigated

Experimental Group

Group of subjects exposed to the experimental treatment

Control Group

- Group of subjects exposed to the control condition
- Not exposed to the experimental treatment

Randomization

• Assignment of subjects and treatments to groups is based on chance

Pretest-Posttest Control Group Design

- A.K.A., Before-After with Control
- True experimental design
- Experimental group tested before and after treatment exposure
- Control group tested at same two times without exposure to experimental treatment
- Includes random assignment to groups
- Effect of all extraneous variables assumed to be the same on both groups
- Do run the risk of a testing effect

Pretest-Posttest Control Group Design (Cont'd)

X =exposure of a group to an experimental treatment

O = observation or measurement of the dependent variable

random assignment of test units; individuals selected as subjects for the experiment are randomly assigned to the experimental groups

Diagrammed as	Before		After
1. Treatment Group:	O_1	X	O_2
2. Control Group:	O_{o}		O_4

Effect of the experimental treatment equals

$$(O_2 - O_1) - (O_4 - O_3)$$

Difference-in-Difference

- Diagrammed as Before After
 - 1. Treatment Group: O_1 X O_2
 - 2. Control Group: O_3
- Effect of the experimental treatment equals

$$(O_2 - O_1) - (O_4 - O_3)$$

• $y_{it} = \beta_0 + \beta_1 \operatorname{treat}_i + \beta_2 \operatorname{after}_t + \beta_3 \operatorname{treat}_i^* \operatorname{after}_t$

		$atter_t = 0$	$after_t = 1$
		Before	After
treat _i = 1	Treatment	β_1	$\beta_1 + \beta_2 + \beta_3$
$treat_i = o$	Control	0	β_2

Effect of the experimental treatment equals

$$(O_2 - O_1) - (O_4 - O_3) = \beta_3$$

Difference-in-Difference (Ex)

What is the effect of increasing the minimum wage on employment at fast food restaurants?

Confounding factor: national recession

Treatment group = NJ (New Jerwery) **Control** group = PA (Pennsylvania)

Before = Feb 92 **After** = Nov 92

- 1. did <- read.csv("did.csv")
- 2. $didreg = lm(fte \sim treated + t + treated*t, did)$
- *3. summary(didreg)*

id	Store ID
t	Feb. 1992 = 0; Nov. 1992 = 1
treated	New Jersey = 1; Pennsylvania = 0
fte	Output: Full Time Employment
bk	Burger King == 1
kfc	Kentuky Fried Chiken == 1
roys	Roy Rogers == 1
wendys	Wendy's == 1