PATENT ABSTRACTS OF JAPAN

(11)Publication number:

07-304110

(43) Date of publication of application: 21.11.1995

(51)Int.CI.

B29K 23:00 CO8L 23:02

(21)Application number : 06-098394

(71)Applicant: UBE IND LTD

(22)Date of filing:

12.05.1994

(72)Inventor: KURAUCHI HIROSHI

AKAZAWA TETSUO KAWABATA AKIRA

(54) LAMINATED POROUS FILM AND PRODUCTION THEREOF

(57)Abstract:

PURPOSE: To obtain a laminated porous film having a fine uniform pore size, having a proper non-perforation start temp, and a high nonperforation keeping temp, wide in a non-perforation keeping temp, region, high in peel strength and capable of improving the defect of a conventional laminated porous film.

CONSTITUTION: A laminated film consisting of three or more layers wherein polypropylene and polyethylene are alternately laminated is stretched and perforated to obtain a laminated porous film.

LEGAL STATUS

[Date of request for examination]

18.09.1997

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted

registration]

[Date of final disposal for application]

[Patent number]

3003830

[Date of registration]

19.11.1999

[Number of appeal against examiner's decision of

rejection]

[Date of requesting appeal against examiner's decision

of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

LAMINATED POROUS FILM AND PRODUCTION THEREOF

Bibliographic data

Patent number: JP7304110

Publication date: 1995-11-21

Inventor: KURAUCHI HIROSHI; others: 02

Applicant: UBE IND LTD

Classification:

- international: B29D9/00; B29D7/01; B32B5/18; C08J9/00

- european:

Application number: JP19940098394 19940512

Priority number(s):

Abstract of JP7304110

PURPOSE: To obtain a laminated porous film having a fine uniform pore size, having a proper non-perforation start temp. and a high nonperforation keeping temp., wide in a non-perforation keeping temp. region, high in peel strength and capable of improving the defect of a conventional laminated porous film.

CONSTITUTION: A laminated film consisting of three or more layers wherein polypropylene and polyethylene are alternately laminated is stretched and perforated to obtain a laminated porous film.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平7-304110

(43)公開日 平成7年(1995)11月21日

(51) Int.Cl. ⁸ B 2 9 D 9/00 7/01 B 3 2 B 5/18	識別記号	庁内整理番号 2126-4F 2126-4F	F I			技術表示箇所
COSJ 9/00	CES					
// B 2 9 K 23:00		審査請求	未請求 請求項	頁の数 5 OL	. (全 10 頁)	最終頁に続く
(21)出願番号	特願平6-98394		(71)出願人	000000206	₹ 会₩	
(22)出顧日	平成6年(1994)5月12日				节西本町1丁目	12番32号
			(72)発明者			号 宇部興産株
			(72)発明者			号 宇部興産株
			(72)発明者	川端明		
				大阪府枚方面式会社枚方面		号 宇部興産株

(54) 【発明の名称】 積層多孔質フイルム及びその製法

(57) 【要約】

【目的】本発明は、微細で均一な孔径を有し、無孔化開始温度が適度な温度で、無孔化維持上限温度が高く、無孔化維持温度領域が広く、また剥離強度が高く、従来の積層多孔質フイルムの難点を改良できる積層多孔質フイルム及びその製法に関する。

【構成】本発明は、ポリプロピレンとポリエチレンとが 交互に積層された三層以上の積層フイルムを延伸して多 孔化してなる積層多孔質フイルム及びその製法に関す る。 【特許請求の範囲】

【請求項1】ポリプロピレンとポリエチレンとが交互に 積層された三層以上の積層フイルムを延伸して多孔化し てなる積層多孔質フイルム。

【請求項2】ポリプロピレンとポリエチレンとが、ポリプロピレン、ポリエチレン、ポリプロピレンの順序で交互に積層された三層以上の積層フイルムを延伸して多孔化してなる極大孔径が $0.02\sim2\,\mu\,\mathrm{m}$ 、空孔率が $3.0\sim8.0\,\%$ 、層間剥離強度が $3\sim6.0\,\mathrm{g}/1.5\,\mathrm{mm}$ 、無孔化開始温度が $1.3.5\sim1.4.0\,^\circ$ C、無孔化維持上限温度が $1.8.0\sim1.9.0\,^\circ$ Cの積層多孔質フイルム。

【請求項3】ポリプロピレンフイルムとポリエチレンフイルムを $120\sim140$ ° Cの温度で熱圧着した三層以上の積層フイルムを、 $110\sim140$ ° Cの温度領域で熱処理した後、マイナス20° C~プラス50° Cの温度に保持された状態で $5\sim200$ %延伸し、次いで $70\sim130$ ° Cの温度に保持された状態で $100\sim400$ %延伸した後、後者の延伸時の温度より $5\sim45$ ° C高い温度で熱処理することを特徴とする積層多孔質フイルムの製法。

【請求項4】ポリプロピレンフイルムとポリエチレンフィルムとが交互になるように $120\sim140^\circ$ Cの温度で熱圧着した三層以上の積層フイルムを、 $110\sim140^\circ$ Cの温度領域で熱処理した後、 20° C $\sim35^\circ$ Cの温度に保持された状態で $10\sim100$ %延伸し、次いで $70\sim130^\circ$ Cの温度に保持された状態で $100\sim400$ %延伸した後、後者の延伸時の温度より $5\sim45^\circ$ C高い温度で熱処理して、極大孔径が $0.02\sim2\mu$ m、空孔率が $30\sim80\%$ 、層間剥離強度が $3\sim60$ g 15 mm、無孔化開始温度が $135\sim140^\circ$ C、無 30孔化維持上限温度が $180\sim190^\circ$ Cの積層多孔質フイルムを得ることを特徴とする積層多孔質フイルムの製法。

【請求項5】ポリプロピレンフイルムの複屈折が $10 \times 10^{-3} \sim 20 \times 10^{-3}$ で、150° Cで30分熱処理後の100%伸長時の弾性回復率が $80 \sim 94$ %であり、ポリエチレンフイルムの複屈折が $20 \times 10^{-3} \sim 40 \times 10^{-3}$ で、50%伸長時の弾性回復率が $20 \sim 50$ %である請求項4又は請求項5に記載の積層多孔質フイルムの製法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、剥離強度が高く、微細で均一な孔径を有し、熱による無孔化維持温度領域が広い積層多孔質フイルム及びその製法に関する。更に詳しくは、本発明はポリプロピレンとポリエチレンとが積層された三層以上の積層フイルムを延伸して多孔化してなる積層多孔質フイルムに関し、電池用セパレータ、電解コンデンサー用セパレータ、絶縁体等の電子機器分野、人工肺用隔膜、血漿浄化膜、呼吸性医療用衣料等の医療 50

2

分野、細菌やウイルスろ過等の水処理分野、ガス分離分野、空調分野等々で広く使用することができる。

[0002]

【従来の技術】従来無孔の積層フイルムや単層の多孔質フイルムについてはすでに多数知られているが、これらに比べて積層多孔質フイルムについての提案は少ない。近年技術の高度化に伴い、種々の分野で利用目的に応じた高精度のフイルムの要求が高くなり、積層多孔質フイルムが注目されるようになってきた。

【0003】電池を例にとってみると、電池には正負両極の短絡防止のためにセパレータが介在しているが、近年高エネルギー密度、高起電力、自己放電の少ないリチウム電池のような非水電解液電池、特にリチウム二次電池が開発、実用化されるようになってきた。リチウム電池の負極としては例えば金属リチウム、リチウムと他の金属との合金、カーボンやグラファイト等のリチウムイオンを吸着する能力又はインターカレーションにより吸蔵する能力を有する有機材料、リチウムイオンをドーピングした導電性高分子材料等が知られており、また正極としては例えば(CF_X) $_n$ で示されるフッ化黒鉛、M nO_2 、 V_2 O_5 、CuO、 Ag_2 CrO_4 、 TiO_2 等の金属酸化物や硫化物、塩化物が知られている。

【0004】また非水電解液として、エチレンカーボネート、プロピレンカーボネート、 γ ープチロラクトン、アセトニトリル、1, 2ージメトキシエタン、テトラヒドロフラン等の有機溶媒にLiPF $_6$ 、LiBF $_4$ 、LiCIO $_4$ 、LiCF $_3$ SO $_3$ 等の電解質を溶解したものが使用されている。しかしリチウムは特に反応性が強いため、外部短絡や誤接続等により異常電流が流れた場合、電池温度が著しく上昇してこれを組み込んだ機器に熱的ダメージを与える懸念がある。このような危険性を回避するために、従来セパレータとして下記のような種々の多孔質フイルムの使用が提案されている。

【0005】①ポリエチレン、ポリプロピレン等の熱可塑性樹脂の単層の多孔質フイルム(特公昭46-40119号公報、特公昭55-32531号公報、特公昭59-37292号公報、特開昭60-23954号公報、特開平2-75151号公報、米国特許第3679538号明細書等)。

0 ②分子量の異なるポリエチレン混合物やポリエチレンとポリプロピレンの混合物を素材とした多孔質フイルム (特開平2-21559号公報、特開平2-334309公報、特開平5-331306号公報等)。

③支持体に熱可塑性樹脂や不織布を用いた多孔質フイルム(特開平3-245457公報、特開平1-258358公報等)。

④材質の異なる熱可塑性樹脂の多孔質膜を複数枚積層した積層多孔質フイルム (特開昭62-10857号公報、特開昭63-308866号公報、特公昭3-65776号公報、特開平6-20671号公報等)。

⑤またその他、積層多孔質フイルムとして二枚の多孔質 膜を接着剤を介して又は介さずに接着又は熱圧着したも のが知られている。

【0006】これらの単層又は積層多孔質フイルムをセパレータとして使用する基本的な考え方は、両極間の短絡防止、電池電圧の維持等を図ると共に、異常電流等で電池の内部温度が所定温度以上に上昇したときに、多孔質フイルムを無孔化させて、換言すると孔を塞いで、両極間にイオンが流れないように電気抵抗を増大させ、電池機能を停止させて過度の温度上昇による発火等の危険を防止し安全を確保することにある。過度の温度上昇による危険防止機能は、電池用セパレータとして極めて重要な機能であり、一般に無孔化或いはシャットダウン(SDと略称)と呼ばれている。

【0007】本明細書においては多孔質フイルムのガス 透過速度(ガーレー値:秒/100cc)が6000を 越えた時点を無孔化開始温度或いはSD開始温度と称す る。なおガス透過速度はガス透過率と称することもあ る。電池用セパレータにおいては、無孔化開始温度が低 すぎると、僅かな温度上昇でイオンの流れが阻止される ため実用性の面で問題があり、また逆に高すぎるとリチ ウム電池等においては発火等を引き起こす危険性がある ため安全性の面で問題がある。一般に無孔化開始温度は 110~160°C、好ましくは120~150°Cが 好適と認識されている。また本明細書においては無孔化 或いはSD状態が維持される温度の上限温度を無孔化維 持上限温度或いは耐熱温度と称し、無孔化開始温度或い はSD開始温度から耐熱温度までの温度領域或いは温度 幅を、無孔化維持温度領域或いは耐熱温度幅と称するこ とにする。セパレータに多孔質フイルムを使用した電池 において、電池内の温度が無孔化維持上限温度を越えて 上昇した場合、フイルムが溶断して破れが生じ、無孔化 状態が喪失して、再びイオンが流れだし更なる温度上昇 を招く。それ故電池用セパレータとしては適当な無孔化 開始温度を有し、無孔化維持上限温度が高く無孔化維持 温度領域が広いという特性が要求される。また電池用セ パレータとしては、前記無孔化に関する特性の他に、電 気抵抗が低いこと、引張弾性率等の機械的強度が高いこ と、厚みムラや電気抵抗等のバラツキが小さいこと等が 要求される。

[0008]

【発明が解決しようとする課題】多孔質フイルムは前記①~⑤のように種々のものが提案されているが、本発明者らの研究によると、例えば電池用セパレータとして、ポリプロピレンの単層多孔質フイルムは無孔化開始温度が 170° C程度以上とリチウムの融点に近いという難点があり、ポリエチレンの単層多孔質フイルムは無孔化開始温度が 135° C程度と適当な温度であるが、無孔化維持上限温度が 145° C程度であるため無孔化維持温度領域が狭すぎるという他に、引張弾性率が低いため

電池の生産工程で伸びが生じやすく生産性の面でも難点があり、熱可塑性樹脂の単層の多孔質フイルムは安全面等で更に改良の余地がある。

【0009】また、分子量の異なるポリエチレン混合物を多孔化した多孔質フイルムは、無孔化維持上限温度が150°C程度及び引張弾性率が3400kg/cm²程度と上記ポリエチレンの単層多孔質フイルムよりも若干高くなる程度である。またポリエチレンとポリプロピレンの混合物を延伸して多孔化した海島構造の多孔質フイルムは、無孔化維持上限温度180°C程度、引張弾性率4200~6400kg/cm²程度でポリエチレン混合物の場合よりもSD機能、機械的性質等は改良されるが未だ十分とは言えず、また混合物を延伸して多孔化した海島構造の形成は品質面でのバラツキが生じやすくその再現性に難点がある。

【0010】また、支持体に不織布等を用いた多孔質フィルムは、不織布等に起因する安全性に難点があるだけでなく、無孔化維持に関しても上記ポリエチレン、ポリプロピレン等の多孔質フィルムの場合と同様に高温での信頼性の面で改良が必要である。

【0011】材質の異なる熱可塑性樹脂の多孔質膜を複 数枚重ね合わせて積層した積層多孔質フイルムについて は、いずれも予めフイルムを延伸等で多孔化して2種類 の材質の異なる多孔質フイルムを製造した後これを重ね 合わせ、延伸、圧着、接着剤による接着等によって製造 されている。このようにして得られた積層多孔質フイル ムは、基本的には電池用セパレータとしての特性を備え ているはずであるが、実生産においては重ね合わせによ ってそれぞれのフイルムの孔の位置がずれ、微孔が表面 から裏面まで連通しないことが多く得られた積層多孔質 フイルムは電気抵抗が増加し易い。また特にフイルムの カールやシワが生じ易い。すでに多孔化されているため 接着自体困難な面はあるが、強く高温で圧着、接着等を すると孔が押し潰されて多孔質フイルムとしての機能を 喪失し、電気抵抗が増加する。また多孔質フイルムとし ての機能を維持するために、かるく圧着、接着等をする と剥離強度が低いためセパレータを電池に組み込む工程 でフイルムの剥がれ、シワ、伸び等が生じ、電池の品質 面で問題が残る。また多孔質フイルムを重ね合わせて延 伸した場合、基本的に製造工程が増えるだけでなく、多 かれ少なかれ上記の問題点が生じ易く、またガーレー値 も低いので電池用セパレータとしては改良の余地があ

【0012】本発明者らは、すでに単層の多孔質フイルム(特公平2-11620号公報等)、ポリエチレン多孔質膜とポリプロピレン多孔質膜が積層した積層多孔質フイルム(特開平6-20671号公報)等について提案しているが、上述した点に鑑み、多孔質フイルム、特に微細で均一な孔径を有し、無孔化開始温度が適度な温度で、無孔化維持上限温度が高く、無孔化維持温度領域

が広く、また剥離強度や引張弾性率が高く、且つ従来の 積層多孔質フイルムの難点を改良できる熱可塑性の積層 多孔質フイルムを開発することを課題として、鋭意研究 を重ねた結果、本発明に到った。

[0013]

【課題を解決するための手段】本発明は、ポリプロピレンとポリエチレンとが交互に積層された三層以上の積層フイルムを延伸して多孔化してなる積層多孔質フイルムに関する。また本発明は、ポリプロピレンとポリエチレンとが、ポリプロピレン、ポリエチレン、ポリプロピレン、ポリエチレンの順序で交互に積層された三層以上の積層フイルムを延伸して多孔化してなる極大孔径が $0.02\sim2\,\mu\,\mathrm{m}$ 、空孔率が $30\sim80\%$ 、層間剥離強度が $3\sim60\,\mathrm{g}/15\,\mathrm{mm}$ 、無孔化開始温度が $135\sim140\,\mathrm{s}$ C、無孔化維持上限温度が $180\sim190\,\mathrm{s}$ Cの積層多孔質フイルムに関する。

【0014】更にまた本発明は、ポリプロピレンフイル ムとポリエチレンフイルムを120~140°Cの温度 で熱圧着した三層以上の積層フイルムを、110~14 0°Cの温度領域で熱処理した後、マイナス20°C~ プラス50°Cの温度に保持された状態で5~200% 延伸し、次いで70~130°Cの温度に保持された状 態で100~400%延伸した後、後者の延伸時の温度 より5~45°C高い温度で熱処理することを特徴とす る積層多孔質フイルムの製法に関する。また本発明は、 ポリプロピレンフイルムとポリエチレンフイルムとが交 互になるように120~140°Cの温度で熱圧着した 三層以上の積層フイルムを、110~140° Cの温度 領域で熱処理した後、20°C~35°Cの温度に保持 された状態で10~100%延伸し、次いで70~13 0°Cの温度に保持された状態で100~400%延伸 した後、後者の延伸時の温度より5~45°C高い温度 で熱処理して、極大孔径が0.02~2μm、空孔率が 30~80%、層間剥離強度が3~60g/15mm、 無孔化開始温度が135~140°C、無孔化維持上限 温度が180~190°Cの積層多孔質フイルムを得る ことを特徴とする積層多孔質フイルムの製法に関する。 また本発明は、複屈折が10×10⁻³~20×10 -3で、150°Cで30分熱処理後の100%伸長時の 弾性回復率が80~94%のポリプロピレンフイルム と、複屈折が $2.0 \times 1.0^{-3} \sim 4.0 \times 1.0^{-3}$ で、5.0 %伸 長時の弾性回復率が20~50%のポリエチレンフイル ムとを、130~140°Cの温度で熱圧着した三層以 上の積層フイルムを、110~140°Cの温度領域で 熱処理した後、マイナス20°C~プラス50°Cの温 度に保持された状態で10~100%延伸し、次いで7 0~130° Cの温度に保持された状態で100~40 0%延伸した後、後者の延伸時の温度より5~45°C 高い温度で熱処理することを特徴とする積層多孔質フイ ルムの製法に関する。

6

【0015】本発明は、多孔化していないポリプロピレ ンとポリエチレンとが交互に積層された三層以上の積層 フイルムを延伸して多孔化することを骨子とする。積層 数は、三層以上で、ポリプロピレンとポリエチレンとが 交互に積層されておれば、例えば四層でも五層でもよく 各層を構成するポリプロピレン及びポリエチレンはそれ ぞれ各層で分子量が異なっていてもよい。ポリプロピレ ンは立体規則性の高いものが好ましく、またポリエチレ ンは高密度ポリエチレンが好ましいが中密度ポリエチレ ンでもよい。これらポリプロピレンとポリエチレンには 界面活性剤、老化防止剤、可塑剤、難燃剤、着色剤等の 添加剤が含まれていてもよい。三層以上の積層フイルム は、フイルムの厚みが均一で延伸により多孔化する性質 を備えていれば、共押出しで一度に積層されたもので も、別々に成形して得られたポリエチレンフイルムとポ リプロピレンフイルムを積層したものでもよい。しかし 成形機等の設備、成形操作の容易さ等を考慮すると後者 の別々に成形する方が有利である。成形方法は、Tダイ による溶融成形が好適であるが、インフレーション法や 湿式溶液法等を採用することもできる。別々にフイルム をTダイによる溶融成形する場合、一般にそれぞれの樹 脂の溶融温度より20~60°C高い温度で、ドラフト 比10~1000、好ましくは200~500のドラフ ト比で行なわれ、また引取速度は特に限定はされないが 普通 $10\sim50$ m/min. で成形されるが、特に得ら れたフイルムの複屈折及び弾性回復率が、延伸後の積層 多孔質フイルムの孔径、空孔率、層間剥離強度、機械的 強度等に影響する。

【0016】ポリプロピレンフイルムは、その複屈折が $1.0 \times 1.0^{-3} \sim 2.0 \times 1.0^{-3}$ 、好ましくは 1.1×1.0^{-3} ~14×10⁻³で、150°Cで30分熱処理後の10 0%伸長時の弾性回復率が80~94%、好ましくは8 4~92%の範囲にあるのが好適である。またポリエチ レンフイルムは、その複屈折が $2.0 \times 1.0^{-3} \sim 4.0 \times 1$ 0^{-3} 、好ましくは $2.5 \times 1.0^{-3} \sim 3.5 \times 1.0^{-3}$ で、5.0%伸長時の弾性回復率が20~50%、好ましくは25 ~40%の範囲にあるのが好適である。ポリプロピレン フイルムとポリエチレンフイルムの複屈折がこれらの範 囲をはずれると、多孔化が十分にできないので適当では なく、また弾性回復率が上記範囲をはずれた場合も多孔 化の程度が十分でなくなるので好ましくない。これら各 フイルムの厚みは、延伸、多孔化後の積層多孔質フイル ムの厚み、用途等とも関係しているが、普通には各フイ ルムとも5~20 μ m、さらには10~15 μ mが適当 である。

【0017】本発明において、複屈折は偏光顕微鏡を使用し、直交ニコル下でベレックコンペンセータを用いて測定された値である。また、弾性回復率は、次の式

(1) 及び(2) による。式(1) はポリプロピレンフ50 イルムの場合、式(2) はポリエチレンフイルム場合で

(5)

. 7

ある。なお、ポリプロピレンフイルムは150° Cで30分熱処理後、25° C、65%相対湿度において試料幅10mm、長さ50mmで引張試験機にセットし50mm/min.の速度で100%まで伸長した後、直ちに同速度で弛緩させたものを測定し、またポリエチレンフイルムは、25° C、65%相対湿度において試料幅*

*15mm、長さ2インチで引張試験機にセットし2インチ/min.の速度で50%まで伸長した後、1分間伸長状態で保持しその後同速度で弛緩させたものを測定した。

【0018】 【数1】

式(1)

100%伸長時の長さ-100%伸長後荷重0となった時の長さ

弹性回復率(%) = -----

伸長前の長さ

[0019]

※ ※【数2】

式(2)

50% 伸長時の長さ-50% 伸長後荷重0となった時の長さ

弹性回復率.(%) = -----

- 50% 伸長時の長さ-伸長前の長さ

【0020】ポリプロピレンフイルムとポリエチレンフィルムは、熱圧着によって積層される。三枚のフイルムの積層においては、これを加熱されたロール間を通し熱圧着される。詳細には、フイルムが3組の原反ロールスタンドから巻きだされ、加熱されたロール間でニップされ圧着されて積層される。積層は、各フイルムの複屈折及び弾性回復率が実質的に低下しないように熱圧着することが必要である。また三枚は、特に表と裏がポリプロピレンで真ん中がポリエチレンになるように積層するのが、フイルムのカールがなく、外傷もうけ難く積層多孔質フイルムの耐熱性、機械的強度等がよく、また電池用なパレータとしての安全性、信頼性等々の特性を満たす上からも好適である。

【0021】加熱されたロールの温度、換言すると熱圧着温度は、120~140°C、更に好ましくは125~135°Cが好適である。温度が低すぎるとフイルム間の剥離強度が弱くその後の延伸工程で剥がれが生じ、また逆に高すぎるとポリエチレンが溶融しフイルムの複屈折及び弾性回復率が大きく低下し、所期の課題を満たす積層多孔質フイルムが得られない。ニップ圧は1~3 kg/cm²、巻きだし速度は0.5~8 m/min. が適当である。また積層フイルムの剥離強度は、3~60g/15 mmの範囲が好適である。積層フイルムの厚みは、特に制限されないが一般には20~60 μ mが適当である。

【0022】積層フイルムは延伸する前に熱処理される。熱処理は加熱空気循環オーブンもしくは加熱ロールにより定長もしくは $3\%\sim10\%$ の緊張下で行われる。熱処理温度は、 $110\sim140°$ C、好ましくは $115\sim130°$ Cの範囲が好適である。温度が低いと十分に多孔化せず、また高すぎるとポリエチレンの溶酔が生じ

20 て不都合である。熱処理時間は3秒~3分間程度でよ い

【0023】熱処理された積層フイルムは延伸して多孔化し積層多孔質フイルムにする。延伸は、低温延伸した後高温延伸するのが好ましい。いずれか一方の延伸だけではポリプロピレンとポリエチレンが十分に多孔化されなかったり、層間剥離強度が低くなったりして電池用セパレータとしての特性が悪くなる。

【0024】低温延伸は普通には延伸ロールの周速差で延伸される。低温延伸の温度はマイナス20°C~プラス50°C、特に20~35°Cが好ましい。この延伸温度が低すぎると作業中にフイルムの破断が生じ易く、逆に高すぎると多孔化が不十分になるので好ましくない。低温延伸の倍率は5~200%、好ましくは10~100%の範囲である。延伸倍率が低すぎると、所定の空孔率が小さいものしか得られず、また高すぎると所定の空孔率と孔径のものが得られなくなるので上記範囲が適当である。本発明において低温延伸倍率(E_1)は次の式(3)に従う。式(3)の L_1 は低温延伸後のフイルム寸法を意味し、 L_0 は低温延伸前のフイルム寸法を意味する。

[0025]

【数3】

式(3) $L_1 - L_0$ $E_1 = \frac{}{} \times 100$

~130°Cの範囲が好適である。温度が低いと十分に 【0026】低温延伸した積層フイルムは、次いで高温 多孔化せず、また高すぎるとポリエチレンの溶融が生じ 50 延伸される。高温延伸は普通には加熱空気循環オープン C

中で延伸ロールの周速差で延伸される。段数は特に制限されないが $7 \sim 14$ 段が適当である。高温延伸の温度は $70 \sim 130^\circ$ C、特に $80 \sim 125^\circ$ Cが好ましい。この範囲を外れると十分に多孔化されないので適当でない。また高温延伸は低温延伸の温度より $40 \sim 100^\circ$ C高い温度で行うのが好適である。高温延伸の倍率は $100 \sim 400\%$ の範囲である。延伸倍率が低すぎると、ガス透過率が低く、また高すぎるとガス透過率が高くなりすぎるので上記範囲が好適である。本発明において高温延伸倍率(E_2) は次の式(4)に従う。式(4)の 10 L 2 は高温延伸後のフイルム寸法を意味し、 E_1 は低温延伸後のフイルム寸法を意味する。

[0027] [数4]

式 (4)
$$L_2 - L_1$$

$$E_1 = \frac{1}{2} \times 100$$

【0028】本発明においては低温延伸と高温延伸をした後、高温延伸の温度より5~45°C高い温度で熱処理する。熱処理は、延伸時に作用した応力残留によるフイルムの延伸方向への収縮を防ぐために予め延伸後のフイルム長さが10~50%減少する程度熱収縮させる方法や延伸方向の寸法が変化しないように規制して加熱処理する一般に熱固定とよばれている方法等で行われる。この熱処理によって寸法安定性のよい所期の課題を満たすことができる層間剥離強度の高い積層多孔質フイルムが得られる。

【0029】本発明において、積層多孔質フイルムは前記製造条件の選択によっても多少異なるが、空孔率は $30\sim80\%$ 、好ましくは $35\sim60\%$ 、極大孔径は $0.02\sim2\mu$ m、好ましくは $0.08\sim0.5\mu$ mである。空孔率が低すぎると電池用セパレータとして使用したときの機能が十分でなく、また大きすぎると機械的強度が悪くなる。また極大孔径が小さ過ぎると、電池用セパレータや電解コンデンサー用セパレータとして使用したときイオンの移動性が悪く、その他の医療、水処理、空調分野等の用途においても抵抗が大きくなるので適当でなく、また極大孔径が大きすぎると電池用セパレータや電解コンデンサー用セパレータではイオン移動が大きすぎ、水処理分野では細菌やウイルス等の除去が十分でなく、また医療分野では血漿浄化膜としては不十分になる。

【0030】また本発明において、積層多孔質フイルムのガス透過速度は150~1500、好ましくは300~800である。電池用セパレータとして使用する場合、ガス透過速度が遅すぎると、イオンの流れが抑制され、また速すぎるとイオンの流れが速すぎて故障時の温 50

10

度上昇を高めることになるので適当ではない。層間剥離強度は $3\sim60$ g/15 mmである。また積層多孔質フィルムのカール度は5 mm以下、好ましくは3 mm以下、更には2 mm以下である。層間剥離強度が低いと、例えば電池用セパレータの製造工程でフイルムの剥がれ、カール、伸び等が生じ易く製品の品質面で問題がある。積層多孔質フイルムの全体の厚みは用途に応じて適宜選択され特に制限はないが、電池用セパレータの場合機械的強度、性能、小型化等の面から $20\sim50$ μ mが適当である。

[0031]

【実施例】次に実施例を示し本発明を更に詳細に説明するが、本発明はこれら一実施例に限定されるものではない。

【0032】実施例1

吐出幅1000mm、吐出リップ開度4mmのTダイを使用し、数平均分子量70000、重量平均分子量480000、メルトインデックス3のポリプロピレン(字部興産株式会社製、宇部ポリプロF103EA)を、200°Cで溶融押出した。吐出フイルムは90°Cの冷却ロールに導かれ、25°Cの冷風が吹きつけられて冷却された後、32m/min.で引き取られた。このときのドラフト比は366であった。得られた未延伸ポリプロピレンフイルムの膜厚は 12μ m、複屈折は 14.7×10^{-3} 、弾性回復率は150°C、60分熱処理後で88.2%であった。

【0033】吐出幅1000mm、吐出リップ開度4mmのTダイを使用し、密度0.968、メルトインデックス5.5の高密度ポリエチレン(三井石油化学株式会社製、ハイゼックス2208 J)を、173°Cで溶融押出した。吐出フイルムは115°Cの冷却ロールに導かれ、25°Cの冷風が吹きつけられて冷却された後、40m/min.で引き取られた。このときのドラフト比は448であった。得られた未延伸ポリエチレンフイルムの膜厚は 11μ m、複屈折は 27.1×10^{-3} 、50%伸長時の弾性回復率は29.6%であった。

【0034】この未延伸ポリプロピレンフイルムと未延伸ポリエチレンフイルムとを使用し、両外層がポリプロピレンで内層がポリエチレンのサンドイッチ構成の3層の積層フイルムを次のようにして製造した。三組の原反ロールタンドから、未延伸ポリプロピレンフイルムと未延伸ポリエチレンフイルムをそれぞれ巻きだし速度5.4m/min.で巻きだし、加熱ロールに導き温度125°C、線圧1.8kg/cmで熱圧着し、その後同速度で50°Cの冷却ロールに導いて巻き取った。このときの速度は5.4m/min.、巻きだし張力はポリプロピレンフイルムが3kg、ポリエチレンフイルムが0.9kgであった。得られた積層フイルムは膜厚34μmで、剥離強度は16g/15mmであった。

【0035】この3層の積層フイルムは125°Cに加

熱された熱風循環オーブン中に導かれ5%の緊張下で113秒通過熱処理された。次いで熱処理した積層フイルムは、35°Cに保持されたニップロール間で20%低温延伸された。このときのロール間は350mm、供給側のロール速度は1.6m/min.であった。引き続き110°Cに加熱された熱風循環オーブン中に導かれ、ロール周速差を利用してローラ間で総延伸量115%になるまで高温延伸された後、125°Cに加熱されたロールで16.7%緩和させて25秒間熱固定され、連続的に積層多孔質フイルムを得た。

【0036】得られた積層多孔質フイルムの膜厚、空孔 率、極大孔径、細孔表面積、ガス透過速度、引張強度、 引張弾性率、SD開始温度、耐熱温度、剥離強度等の測 定結果を表1に示す。また積層多孔質フイルムにはカー ルはほとんどなく、ピンホールは認められなかった。ま た、熱閉塞挙動を図1に示す。図1において縦軸はガス 透過率(秒/100cc)、横軸は温度(°C)であ る。なお、空孔率、極大孔径、細孔表面積は、水銀ポロ シメータ(ユアサアイオニック社製)で測定し、ガス透 過速度(ガーレー)はJIS P8117に準じて、ま た引張強度、引張弾性率はASTM D-822に準じ て測定した。剥離強度は25°C、65%相対湿度にお いて幅15mmで、予め測定接着面の一部を剥がした試 料を作成し、長さ75mmで引張試験機にT状態にセッ トして500mm/min. の速度で層間剥離強度を測 定した。また、熱閉塞挙動、SD開始温度、耐熱温度 は、試料の積層多孔質フイルムを60mmΦのホルダー に全周拘束状態で取付け、各所定温度に設定された熱風 循環オーブン中に1分間放置し、次いで試料を熱風循環 オーブンから取り出して拘束状態で室温まで冷却し、各 温度処理された試料の透過率をJIS P8117に準 じて測定した。またカール度は、幅20mm、長さ10 0 mmの試料フイルムを水平な金属板上に置き、除電ブ ラシでかるく2~3回ならして5分経過後、図5に示す ように、水平面に対して湾曲したフイルムの両端部を結 ぶ平行線の中心部から水平面迄の距離(D)を測定し た。

【0037】実施例2

吐出幅1000mm、吐出リップ開度4mmのTダイを使用し、数平均分子量70000、重量平均分子量480000、メルトインデックス3のポリプロピレン(宇部興産株式会社製、宇部ポリプロF103EA)を、200°Cで溶融押出した。吐出フイルムは90°Cの冷却ロールに導かれ、25°Cの冷風が吹きつけられて冷却された後、32m/min.で引き取られた。このときのドラフト比は3660であった。得られた未延伸ポリプロピレンフイルムの膜厚は 12μ m、複屈折は 14.7×10^{-3} 、弾性回復率は150°C、60分熱処理後で88.2%であった。

【0038】吐出幅1000mm、吐出リップ開度2m 50

12

mのTダイを使用し、密度 0.964、メルトインデックス 0.3 の高密度ポリエチレン(三井石油化学株式会社製、ハイゼックス 5202 B)を、177° Cで溶融押出した。吐出フイルムは 120° Cの冷却ロールに導かれ、25° Cの冷風が吹きつけられて冷却された後、35 m/m i n. で引き取られた。このときのドラフト比は 380 であった。得られた未延伸ポリエチレンフイルムの膜厚は 12μ m、複屈折は 35.3×10^{-3} 、50% 伸長時の弾性回復率は 38.9% であった。

【0039】この未延伸ポリプロピレンフイルムと未延伸ポリエチレンフイルムとを使用し、両外層がポリプロピレンで内層がポリエチレンのサンドイッチ構成の3層の積層フイルムを次のようにして製造した。三組の原反ロールタンドから、未延伸ポリプロピレンフイルムと未延伸ポリエチレンフイルムをそれぞれ巻きだし速度5.4m/min.で巻きだし、加熱ロールに導き温度130°C、線圧1.8kg/cmで熱圧着し、その後同速度で50°Cの冷却ロールに導いて巻き取った。このときの速度は5.45m/min.、巻きだし張力はポリプロピレンフイルムが3kg、ポリエチレンフイルムが0.9kgであった。得られた積層フイルムは膜厚34μmで、剥離強度は7g/15mmであった。

【0040】この3層の積層フイルムは125°Cに加熱された熱風循環オーブン中に導かれ5%の緊張下で113秒通過熱処理された。次いで熱処理した積層フイルムは、35°Cに保持されたニップロール間で20%低温延伸された。このときのロール間は350mm、供給側のロール速度は1.6m/min.であった。引き続き110°Cに加熱された熱風循環オーブン中に導かれ、ロール周速差を利用してローラ間で総延伸量115%になるまで高温延伸された後、125°Cに加熱されたロールで16.7%緩和させて25秒間熱固定され、連続的に積層多孔質フイルムを得た。

【0041】得られた積層多孔質フイルムは実施例1と同様にして膜厚、空孔率、極大孔径、細孔表面積、ガス透過速度、引張強度、引張弾性率、SD開始温度、耐熱温度、剥離強度等を測定した。測定結果を表1に、また熱閉塞挙動を図2に示す。また積層多孔質フイルムにはカールははほとんどなく、ピンホールは認められなかった。

【0042】比較例1

吐出幅1000mm、吐出リップ開度4mmのTダイを使用し、密度0.964、メルトインデックス0.3の高密度ポリエチレン(三井石油化学株式会社製、ハイゼックス5202B)を、163°Cで溶融押出した。吐出フイルムは125°Cの冷却ロールに導かれ、25°Cの冷風が吹きつけられて冷却された後、10m/min.で引き取られた。このときのドラフト比は120であった。得られた未延伸ポリエチレンフイルムの膜厚は 38μ m、複屈折は 31.6×10^{-3} 、50%伸長時の

弾性回復率は41.3%であった。

【0043】この未延伸ポリエチレンフイルムは125°Cに加熱された熱風循環オーブン中に導かれ10%の緊張下で150秒通過熱処理された。次いで熱処理したフイルムは、35°Cに保持されたニップロール間で50%低温延伸された。このときのロール間は350mm、供給側のロール速度は1.2m/min.であった。引き続き80°Cに加熱された熱風循環オーブン中に導かれ、ロール周速差を利用してローラ間で延伸量100%まで高温延伸された後、108°Cに加熱されたロールで16.7%緩和させて28秒間熱固定され、連続的にポリエチレン単層多孔質フイルムを得た。

【0044】得られた多孔質フイルムは実施例1と同様にして膜厚、空孔率、極大孔径、細孔表面積、ガス透過速度、引張強度、引張弾性率、SD開始温度、耐熱温度等を測定した。測定結果を表1に、また熱閉塞挙動を図3に示す。

【0045】比較例2

吐出幅 1000 mm、吐出リップ開度 4 mmの T ダイを使用し、数平均分子量 7000 、重量平均分子量 4800 000 、メルトインデックス 3 のポリプロピレン(字部興産株式会社製、宇部ポリプロF 103 E A)を、190° C で溶融押出した。吐出フイルムは 90° C の冷却ロールに導かれ、25° C の冷風が吹きつけられて冷却された後、40 m/min. で引き取られた。このときのドラフト比は 156 であった。得られた未延伸ポリプロピレンフイルムの膜厚は 29μ m、複屈折は 13.2×10^{-3} 、弾性回復率は 150° C、60 分熱処理後で 92 % であった。

14

【0046】この未延伸ポリプロピレンフイルムは150°Cに加熱された熱風循環オーブン中に導かれ10%の緊張下で113秒通過熱処理された。次いで熱処理したフイルムは、130°Cに保持されたニップロール間で20%低温延伸された。このときのロール間は350mm、供給側のロール速度は1.6m/min.であった。引き続き130°Cに加熱された熱風循環オーブン中に導かれ、ロール周速差を利用してローラ間で延伸量115%まで高温延伸された後、145°Cに加熱されたロールで16.7%緩和させて25秒間熱固定され、連続的にポリプロピレン単層多孔質フイルムを得た。

【0047】得られたポリプロピレンの多孔質フイルムは実施例1と同様にして膜厚、空孔率、極大孔径、細孔表面積、ガス透過速度、引張強度、引張弾性率、SD開始温度、耐熱温度等を測定した。測定結果を表1に、また熱閉塞挙動を図4に示す。

【0048】比較例3

特公昭 55-32531 号公報に開示された方法によって、厚さが 8μ m、多孔度が 49%、平均孔径が 0.123μ mのポリエチレン多孔膜を作成した。また同様にして厚さが 18μ m、多孔度が 52%、平均孔径が 0.190μ mのポリプロピレン多孔膜を作成した。ついでロールプレスを用いて 134% Cでポリエチレン多孔膜とポリプロピレン多孔膜とを積層圧着して積層多孔フイルムを得た。この積層多孔フイルムについて実施例 12% に測定した結果を表 11% に示す。

[0049]

【表1】

15			16			
	実施例 1	実施例2	比較例 1	比較例2	比較例3	
膜厚(μm)	31	31	30	25	25	
空孔率 (%)	44. 6	44. 9	45. 6	44. 6	49. 5	
極大孔径 (µm)	0. 1741	0. 1784	0. 1776	0. 1568	0. 171	
細孔表面積(m²/g)	54	78	54	67	64	
ガス透過性						
ガーレー値(秒/100cc)	540	750	517	333	1000	
弓房慰寅(Kg/cm²)MD	1000	1410	1630	1330	1770	
TD	130	100	88	170	100	
引房弹性率(Kg/cm²)TD	8600	11900	4600	5900	4300	
SD開始温度 (°C)	135	140	135	170	135	
無孔化維持上限温度(°C)	190	190	140	190	190	
剝腐眩蚊度(g ∕ 15mm)	24. 9	10. 3			0. 6	

0.5

[0050]

【発明の効果】本発明の積層多孔質フイルムは、微細で 均一な孔径を有し、無孔化開始温度が適度な温度で、無 孔化維持上限温度が高く、無孔化維持温度領域が広く、 また剥離強度が高くて従来の積層多孔質フイルムの難点 を改良でき、安全性、信頼性、精度等の要求される電池 用セパレータ、電解コンデンサー用セパレータ、絶縁体 40 等の電子機器分野、人工肺用隔膜、血漿浄化膜、呼吸性 医療用衣料等の医療分野、細菌のウイルスろ過等の水処 理分野、ガス分離分野、空調分野等々で好適に使用する ことができる。。また本発明によると連続的に品質のバ ラツキのない前記積層多孔質フイルムを効率よく製造す

カール度 (mm)

ることができる。

1.8

【図面の簡単な説明】

0.5

【図1】本発明の実施例1の積層多孔質フイルムの熱閉 塞挙動。

0.8

15.5

【図2】本発明の実施例2の積層多孔質フイルムの熱閉 塞挙動。

【図3】比較例1のポリエチレン単層の多孔質フイルム の熱閉塞挙動。

【図4】比較例2のポリプロピレン単層の多孔質フイル ムの熱閉塞挙動。

【図5】カール度の測定方法を説明する図である。

(10)

フロントページの続き

(51) Int. Cl. 6 C 0 8 L 23:02

識別記号

庁内整理番号

FΙ

技術表示箇所