Risoluzione del compito n. 8 (Settembre 2023)

PROBLEMA 1

Trovate le soluzioni (z, w), con $z, w \in \mathbb{C}$, del sistema

$$\left\{egin{aligned} \Re z &= 3 + \Re w \ |z-w| &= 5 \ z+w &= 7 + 2\mathrm{i} \ . \end{aligned}
ight.$$

Dalla prima equazione $\Re(z-w)=\Re z-\Re w=3$, ed essendo $25=|z-w|^2=[\Re(z-w)]^2+[\Im(z-w)]^2=9+[\Im(z-w)]^2$ ricaviamo $\Im(z-w)=\pm 4$. Allora abbiamo due casi:

$$\Im(z-w)=+4\Rightarrow z-w=3+4\mathrm{i}\Rightarrow \begin{cases} z-w=3+4\mathrm{i}\\ z+w=7+2\mathrm{i} \end{cases} \Rightarrow z=5+3\mathrm{i}\;,\;w=2-\mathrm{i}$$

$$\Im(z-w) = -4 \Rightarrow z-w = 3-4i \Rightarrow \begin{cases} z-w = 3-4i \\ z+w = 7+2i \end{cases} \Rightarrow z = 5-i, \ w = 2+3i$$

e il sistema ha due soluzioni,

$$z = 5 + 3i$$
, $w = 2 - i$, $z = 5 - i$, $w = 2 + 3i$.

Per gli appassionati dei mucchi di conti, si può tranquillamente risolvere il sistema persino sostituendo $z=a+{\rm i}b$ e $w=x+{\rm i}y$. Ad esempio dalla prima e dalla terza equazione si ricava

$$\begin{cases} a = 3 + x \\ (a+x) + \mathbf{i}(b+y) = 7 + 2\mathbf{i} \end{cases} \iff \begin{cases} a - x = 3 \\ a + x = 7 \\ b + y = 2 \end{cases}$$

da cui a=5, x=2 e b+y=2. Usando la seconda equazione del sistema dato si ricavano i valori mancanti.

PROBLEMA 2

Considerate la funzione $f(x) = 3\arctan(x+1) + 2\log(x^2+2x+2) + 3\arctan(3/4) - 4\log(5/4)$.

- a) Calcolatene il dominio e i limiti agli estremi del dominio.
- b) Determinate gli intervalli di monotonia di f e i suoi punti di massimo o minimo locale.
- c) Determinate il segno di f e il numero degli zeri di f.
- d) Calcolate la derivata seconda e determinate gli intervalli di convessità e/o concavità di f.
- e) Disegnate il grafico di f.

Dato che il polinomio x^2+2x+2 è sempre positivo, la funzione è definita su tutto \mathbb{R} . Inoltre, dall'andamento del logaritmo a $+\infty$ e dell'arcotangente a $\pm\infty$ segue che la funzione ha limite $+\infty$ sia per $x\to +\infty$ che per $x\to -\infty$.

La funzione è continua e derivabile (infinite volte), e per ogni $x \in \mathbb{R}$

$$f'(x) = \frac{3}{(x+1)^2 + 1} + 2\frac{2x+2}{x^2 + 2x + 2} = \frac{4x+7}{x^2 + 2x + 2}.$$

Dal segno del numeratore si deduce che f è strettamente crescente su $[-7/4, +\infty[$ e strettamente decrescente su $]-\infty, -7/4]$, quindi ha minimo assoluto in $x_0=-7/4$ dove

$$\min f = f(-7/4) = 3\arctan(-3/4) + 2\log\left(\frac{49}{16} - \frac{7}{2} + 2\right) + 3\arctan(3/4) - 4\log(5/4) = 0$$

in quanto arctan è una funzione dispari mentre

$$2\log\left(\frac{49}{16} - \frac{7}{2} + 2\right) = 2\log\left(\frac{25}{16}\right) = 4\log\left(\frac{5}{4}\right).$$

Allora la funzione ha uno solo zero, nel punto di minimo, ed è positiva per $x \neq -7/4$. Per ogni $x \in \mathbb{R}$, la derivata seconda di f vale

$$f''(x) = \frac{d}{dx} \frac{4x+7}{x^2+2x+2} = \frac{4(x^2+2x+2)-(4x+7)(2x+2)}{(x^2+2x+2)^2} = \frac{-2(2x^2+7x+3)}{(x^2+2x+2)^2}$$

ed ovviamente il suo segno dipende dal segno del numeratore. Poiché l'equazione $2x^2+7x+3=0$ ha soluzione x=-3 o x=-1/2, deduciamo che f''(x)>0 se -3< x<-1/2, f''(x)=0 se x=-3 o x=-1/2, f''(x)<0 altrove. Quindi la funzione è (strettamente) concava su $(-\infty,-3]$, convessa su [-3,-1/2], concava $[-1/2,+\infty)$. In particolare, f ha due punti di flesso in corrispondenza dei punti di ascissa $x_1=-3$ e $x_2=-1/2$, dove $x_1< x_0< x_2$.

PROBLEMA 3

Considerate le funzioni $f(x) = \frac{2}{1 + e^x}$, $g(x) = \frac{1}{4} \operatorname{sen}(2x) - \cos x^2$.

- a) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0=0\,$ di $f(x)\,.$
- b) Scrivete lo sviluppo di Taylor di ordine 4 e centrato in $x_0 = 0$ di g(x).
- c) Trovate l'ordine e la parte principale di infinitesimo, per $x \to 0$, della funzione h(x) = f(x) + g(x).
- d) Calcolate al variare di $\, \alpha \in \mathbb{R} \,$ il limite $\, \ell_{lpha} = \lim_{x o 0} \frac{x^4}{h(x) lpha x^3} \, .$

Scriviamo

$$f(x) = \frac{2}{2 + (e^x - 1)} = \frac{1}{1 + t}, \quad t = \frac{e^x - 1}{2}$$

dove dallo sviluppo dell'esponenziale

$$t = \frac{1}{2} \left(x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} \right) + o(x^4)$$

e dunque $o(t^k) = o(x^k)$ per ogni k naturale. Quindi partendo dallo sviluppo

$$\frac{1}{1+t} = 1 - t + t^2 - t^3 + t^4 + o(t^4)$$

otteniamo

$$\begin{split} f(x) = &1 - \frac{1}{2} \left(x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24} \right) + o(x^4) \\ &+ \frac{1}{4} \left(x^2 + \frac{x^4}{4} + x^3 + \frac{x^4}{3} \right) - \frac{1}{8} \left(x^3 + \frac{3x^4}{2} \right) + \frac{x^4}{16} \\ = &1 - \frac{x}{2} + x^2 \left(-\frac{1}{4} + \frac{1}{4} \right) + x^3 \left(-\frac{1}{12} + \frac{1}{4} - \frac{1}{8} \right) \\ &+ x^4 \left(-\frac{1}{48} + \frac{1}{16} + \frac{1}{12} - \frac{3}{16} + \frac{1}{16} \right) + o(x^4) \; . \\ = &1 - \frac{x}{2} + \frac{x^3}{24} + o(x^4) \; . \end{split}$$

Inoltre, dagli sviluppi di seno e coseno ricaviamo facilmente

$$g(x) = \frac{1}{4} \left(2x - \frac{8x^3}{6} \right) - 1 + \frac{x^4}{2} + o(x^4) = -1 + \frac{x}{2} - \frac{x^3}{3} + \frac{x^4}{2} + o(x^4)$$

da cui segue che

$$h(x) = -\frac{7x^3}{24} + \frac{x^4}{2} + o(x^4)$$

è un infinitesimo di ordine tre con parte principale $-7x^3/24$. Infine, per x>0 risulta

$$\frac{x^4}{h(x) - \alpha x^3} = \frac{x^4}{(-7/24 - \alpha)x^3 + x^4/2 + o(x^4)} = \frac{x}{(-7/24 - \alpha) + x/2 + o(x)}$$

dove abbiamo usato che $o(x^4)/x^3=o(x)$, da cui concludiamo che il limite ℓ_α esiste per ogni $\alpha\in\mathbb{R}$ e vale

$$\ell_{\alpha} = \begin{cases} 2 & \text{se } \alpha = -7/24 \\ 0 & \text{se } \alpha \neq -7/24 \end{cases}.$$

PROBLEMA 4

Siano

$$a_n = 3 + rac{2}{n} + rac{124}{n\sqrt{n}} + o\Big(rac{1}{n\sqrt{n}}\Big) \;, \qquad b_n = rac{a_n^2}{3} \;.$$

a) Determinate per quale valore del parametro $c \in \mathbb{R}$ la serie

$$\sum_{n} \left| a_n - b_n + \frac{c}{n} \right|$$

risulta convergente.

b) Per il valore di c così determinato, studiate al variare di $\alpha \in \mathbb{R}$ la convergenza della serie

$$\sum_{n} \left| a_n - b_n + \frac{c}{n} \right|^{\alpha}$$
.

Dobbiamo calcolare il quadrato di a_n , e osserviamo che dal doppio prodotto di 3 con l'o piccolo rimarrà un $o(1/n\sqrt{n})$, quindi non ci sono troppi conti da fare per avere

$$a_n^2 = 9 + \frac{12}{n} + \frac{3 \cdot 248}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$

da cui

$$b_n = 3 + \frac{4}{n} + \frac{248}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right).$$

Allora

$$a_n - b_n + \frac{c}{n} = \frac{c-2}{n} - \frac{124}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right)$$
:

per $c \neq 2$ il termine che domina è (c-2)/n, e applicando il criterio del confronto asintotico alla serie (a termini positivi!) del punto a) otteniamo che questa diverge positivamente. Invece per c=2

$$\left| a_n - b_n + \frac{2}{n} \right| = \left| -\frac{124}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right) \right| \sim \frac{1}{n^{3/2}}$$

e per il criterio del confronto asintotico la serie del punto a) converge. A questo punto

$$\left| a_n - b_n + \frac{2}{n} \right|^{\alpha} = \left| -\frac{124}{n\sqrt{n}} + o\left(\frac{1}{n\sqrt{n}}\right) \right|^{\alpha} \sim \frac{1}{n^{3\alpha/2}}$$

e per il criterio del confronto asintotico la serie (anch'essa a termini positivi) del punto b) converge per $3\alpha/2 > 1 \iff \alpha > 2/3$ e diverge positivamente altrimenti.

Esercizio 1. Se $z=1+i\sqrt{3}$ allora

(A)
$$z^3 = -8$$
.

(C)
$$z^2 = 2 - 2i\sqrt{3}$$
.
(D) $z^4 = -1 - i\sqrt{3}$

(B)
$$z^3 = -1$$
.

(D)
$$z^4 = -1 - i\sqrt{3}$$

Osserviamo che |z|=2, quindi $|z^2|=4$ e $|z^3|=8$, dunque le risposte $z^3=-1$ e osserviamie che |z|=2, quindi |z|=1 e |z|=0, dunque le risposte |z|=1 e |z|=1 e |z|=0, dunque le risposte |z|=1 e |z|=1 quindi quello di |z|=1 e |z|=1 quindi quello di |z|=1 e |z|=1 quindi quello di |z|=1 quindi quello

Esercizio 2. Se $f, g: [-1,1] \to \mathbb{R}$ sono continue e verificano f(-1) = g(1) e g(-1) = g(1)f(1) allora

(A)
$$\exists c \in [-1, 1] : f(c) - g(c) = 0$$
.

- (C) se f è crescente, g è decrescente.
- (B) sia f che g si annullano in almeno un punto.
- (D) la funzione f(x) g(-x) è identica-

Quel che sappiamo è solo che f parte in x = -1 da una certa quota A = f(-1) e arriva in x=1 alla quota B=f(1), mentre g parte dalla quota B e arriva alla quota A. Dunque la funzione continua f-g passa dalla quota A-B alla quota opposta B-A, e per il Teorema di esistenza degli zeri si annulla in qualche punto. Le altre risposte sono errate, ad esempio f(x) = x + 10 e $g(x) = x - 2x^3 + 10$ verificano le ipotesi, ma non si annullano mai, g non è monotona anche se f è crescente, e chiaramente f(x) non è

Esercizio 3. Se $f: \mathbb{R} \to \mathbb{R}$ ed $1/2 \le f'(x) \le 2$ per ogni x allora

- (A) f è biunivoca. (B) f è lipschitziana di costante 1/2. (C) f non può essere dispari. (D) $f(3) f(2) \ge 5/2$.

La funzione f, essendo derivabile, è continua; inoltre ha derivata positiva dunque è strettamente crescente e quindi iniettiva. Infine per il Teorema di Lagrange

$$\frac{f(x) - f(0)}{x} = f'(\xi) \ge \frac{1}{2}$$

per qualche ξ fra 0 ed x, pertanto

$$x > 0$$
 \Rightarrow $f(x) \ge f(0) + \frac{1}{2}x \to +\infty$ per $x \to +\infty$
 $x < 0$ \Rightarrow $f(x) \le f(0) + \frac{1}{2}x \to -\infty$ per $x \to -\infty$

dunque per il Teorema dei valori intermedi l'immagine di f è tutto \mathbb{R} : allora essendo iniettiva e surgettiva è biunivoca. Se poi vogliamo controllare che le altre risposte siano sbagliate, basta osservare che f(x) = x ha derivata (che vale 1) fra 1/2 e 2, ma non è Lipschitziana di costante 1/2 (la costante è 1), è dispari, e f(3) - f(2) = 1 < 5/2.

Esercizio 4. Da un mazzo di 32 carte da poker si scelgono a caso 8 carte. Qual è la probabilità che fra di esse vi sia la donna di quadri?

I mucchietti diversi di 8 carte scelte fra le 32 di partenza sono $\binom{32}{8}$. Di questi, quelli favorevoli sono quelli che contengono la donna di quadri e 7 delle altre 31 carte, quindi sono $\binom{31}{7}$. La probabilità è quindi

$$\frac{\binom{31}{7}}{\binom{32}{8}} = \frac{31 \cdot 30 \cdots 25}{7!} \cdot \frac{8!}{32 \cdot 31 \cdots 25} = \frac{8}{32} = \frac{1}{4}.$$

In alternativa, possiamo pensare che le carte scelte siano le prime 8 del mazzo, quindi i casi favorevoli sono quelli in cui la donna di quadri occupa le prime 8 delle 32 posizioni possibili, cioè 1/4 dei casi.

Esercizio 5. Per $x \to +\infty$, la funzione $\sqrt{x^4 + 5x^2} - \sqrt{x^4 + 3x}$ ha limite

(A)
$$5/2$$
. (C) $-3/2$.

(A)
$$5/2$$
.
(B) 5 .
(C) $-3/2$.
(D) $+\infty$.

Gli argomenti di entrambe le radici tendono a $+\infty$, quindi scriviamo

$$\sqrt{x^4 + 5x^2} - \sqrt{x^4 + 3x} = \frac{(x^4 + 5x^2) - (x^4 + 3x)}{\sqrt{x^4 + 5x^2} + \sqrt{x^4 + 3x}} = \frac{5x^2 - 3x}{x^2 \left(\sqrt{1 + \frac{5}{x^2}} + \sqrt{1 + \frac{3}{x^3}}\right)} \to \frac{5}{2} \ .$$

Esercizio 6. L'integrale generalizzato $\int_3^{+\infty} \frac{x^2}{(x^3-2)^{3/2}} dx$ vale

(B)
$$+\infty$$
. (D) $2/3$

Abbiamo

$$\int \frac{x^2}{(x^3 - 2)^{3/2}} dx = \int_{\substack{\uparrow \\ x^3 - 2 = t}} \frac{1}{3} \int \frac{1}{t^{3/2}} dt = \frac{1}{3} \int t^{-3/2} dt = \frac{1}{3} \frac{t^{-1/2}}{1 - 1/2} = \int_{\substack{\uparrow \\ t = x^3 - 2}} \frac{-2}{3\sqrt{x^3 - 2}} dt$$

Allora

$$\int_{3}^{M} \frac{x^{2}}{(x^{3}-2)^{3/2}} dx = -\frac{2}{3} \left[\frac{1}{\sqrt{x^{3}-2}} \right]_{3}^{M} = -\frac{2}{3} \left[\frac{1}{\sqrt{M^{3}-2}} - \frac{1}{5} \right] \to \frac{2}{15}$$

per $\,M \to +\infty\,,$ e l'integrale generalizzato vale $\,2/15\,.$

Esercizio 7. La successione $\log_e \left(\frac{1+e^2n}{\sqrt{n}+n} \right) + \exp \left(\frac{n^2\log_e 5}{n+n^2} \right)$

(A) tende a 7.

(C) diverge positivamente.(D) tende a 2.

(B) tende a 5.

Abbiamo subito

$$\frac{1+e^4n}{\sqrt{n}+n} \to e^4 , \qquad \frac{n^2 \log 3}{n+n^2} \to \log 3$$

e quindi per la continuità di logaritmo ed esponenziale

$$\log\Bigl(\frac{1+\operatorname{e}^4 n}{\sqrt{n}+n}\Bigr) + \exp\Bigl(\frac{n^2\log 3}{n+n^2}\Bigr) \to \log\,\operatorname{e}^4 + \exp(\log 3) = 4+3 = 7\;.$$