Chapitre

Arithmétiques sur les nombres entiers positifs

1

1.1 Notation avec exposants positifs

Notation 1.1 — Les puissances de 2.

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 2 \times 2$$

$$2^3 = 2 \times 2 \times 2$$

$$2^4 = 2 \times 2 \times 2 \times 2$$

$$2^5 = 2 \times 2 \times 2 \times 2 \times 2$$

$$2^6 = 2 \times 2 \times 2 \times 2 \times 2 \times 2$$

Notation 1.2 — Les puissances de 10.

$$10^0 = 1$$

$$10^1 = 10$$

$$10^2 = 10 \times 10 = 100$$

$$10^3 = 10 \times 10 \times 10 = 1000$$

$$10^6 = 10 \times 10 \times 10 \times 10 \times 10 \times 10 = 1000000$$

$$10^{n} = \underbrace{10 \times 10 \times \ldots \times 10}_{n \text{ facteurs}} = 1 \underbrace{\ldots 0}_{n \text{ zéros}}$$

a+b; Et a-b, pour soustraire b d'a; Et ab, pour les multiplier l'vne par l'autre; Et 4, pour diuiser a par b; Et a a, ou a, pour multiplier a par soy mesme; Et a, pour le multiplier encore vne sois par a, & ainsi a l'insini; Et

Figure 1.1 – « 2 à la puissance 4 » « 2 élevée à la puissance 4 » « 2 puissance 4 »

Figure 1.2 – Cette notation est due à Descartes « Discours de la méthode » (1637).

Les puissances d'un nombre a

$$a^0 = 1$$

$$a^1 = a$$

$$a^2 = a \times a = aa$$

le carré de a

$$a^3 = a \times a \times a = aaa$$

le cube de a

$$a^4 = a \times a \times a \times a = aaaa$$

$$a^5 = a \times a \times a \times a \times a = aaaaa$$

$$a^6 = a \times a \times a \times a \times a \times a = aaaaaa$$

R Distinguer:

$$2a^3 = 2 \times a^3 = 2 \times a \times a \times a = 2aaa$$

$$(2a)^3 = (2a) \times (2a) \times (2a) = 8aaa$$

1.1.1 Carré d'un nombre et l'aire d'un carré

Définition 1.1 a désigne un nombre. La puissance

$$a^2 = aa = a \times a$$

s'appelle aussi « le carré de a ».

Comme toutes les exposants, l'exposant « 2 » est prioritaire à la multiplication et l'addition.

■ Exemple 1.1 — Quelques carrés parfaits à connaitre. Les carrés de nombres entiers sont dits « carrés parfaits ».

Figure 1.4 – Pour calculer le carré d'un nombre positif, on utilise la touche x^2 de la calculatrice. La touche S+D sert à passer d'écriture dé-

cimale à fraction d'entier (lorsque c'est

Figure 1.3 – Pour a nombre positif : $a \ge 0$. Le nombre a^2 s'interprète

comme « l'aire d'un carré de côté a ».

possible).

1.1.2 Exercices

Exercice 1 Complète le tableau. Vous pouvez utiliser les touches x^2 x^3 et x^4 si besoin.

On dit	On écrit	On doit calculer	On trouve
2 à la puissance 4	2^4	$2 \times 2 \times 2 \times 2$	
3 à la puissance 4		$3 \times 3 \times 3 \times 3$	
	6^{3}		216
5 à la puissance 3			
5 à la puissance			625
	7^5		
		$8 \times 8 \times 8 \times 8 \times 8$	
		$9 \times 9 \times 9$	
	39		
10 à la puissance 2			
2 à la puissance			1 024
le carré de cinq a			
cinq fois le carré de a			
	$5a^2$		

Exercice 2 — **f**. Pour chaque cas, calculer les expressions demandées.

c)
$$3^4 \text{ et } 4 \times 3$$

e)
$$3 \times 5$$
 et 5^3

g)
$$5 \times 2$$
 et 2^5

i)
$$5^2$$
 et 5×2

b)
$$2 \times 9 \text{ et } 9^2$$

d)
$$2 \times 6 \text{ et } 2^6$$

f)
$$10^2 \text{ et } 10 \times 2$$

h)
$$1^3 \text{ et } 3 \times 1$$

j)
$$6 \times 3$$
 et 6^3

Défi : pour quelles valeurs de x entières, l'égalité $x^2=2x$ est-elle vraie ?

Exercice 3 Complète le tableau.

Puissance	Écriture développée
$5x^2$	
$4t^6$	
$(4a)^3$	
	$3x \times 3x$
$(x+y)^2$	

Puissance	Écriture développée
$(9xy)^1$	
	$7ab \times 7ab \times 7ab$
$(ab)^2$	
	$a \times a \times a \times b \times b$
	(a-2)(a-2)(a-2)

■ Exemple 1.2 — Je fais. Écrire sous la forme d'un entier les expressions suivantes en respectant les priorités opératoires.

Exercice 4 — **A**, à vous. Mêmes consignes. Présenter les calculs à la verticale.

$$a = 2 \times 3^{2} - 5$$

$$b = 37 + 5^{2} \times 3$$

$$c = 2^{3} + 7(8 - 3)$$

$$d = (2 + 1)^{3} - 2^{3}$$

$$e = (13 - 2^{3}) \times 2 + 6^{2}$$

$$f = 2^{2} \times 8 - 5 - 1$$

$$g = \frac{48}{2^{4}}$$

$$h = \frac{(5 - 2)^{3}}{2 \times 7 - 5}$$

Défi : quel est le nombre manquant ? $\frac{4(\ldots+3)^2}{5(14-3^2)} = 16$.

Exemple 1.3 — Je fais. Évaluer les expressions suivantes lorsque x=2, y=3.

Exercice 5 — \blacksquare , à vous. Évaluer les expressions suivantes lorsque a=3, b=4, c=5 et d=6.

$$A = 2a^{3} - b$$
 $C = 2 \times a^{2} - 2bc + d$ $E = 2(b + c^{2})$ $G = 2a^{2} + cd$ $B = (a + c)^{2}$ $D = 2^{b} - 3c - d$ $F = \frac{cd}{a} + b^{2}$ $H = 2c^{d-b}$

Exercice 6 — 🗹. Donner l'écriture décimale des nombres suivants :

Exercice 7 Compléter les pointillés par une puissance de 10.

a)
$$1 \text{ km} = \dots \text{ m}$$
 d) $7 000 000 \text{ m} = 7 \times \dots \text{ mm}$ g) $4 \text{ L} = 4 \times \dots \text{ mL}$ b) $7 000 000 \text{ m} = 7 \times \dots \text{ m}$ e) $1 \text{ m}^2 = \dots \text{ mm}^2$ h) $0.52 \text{ kg} = 5.2 \times \dots \text{ g}$ c) $5 \text{ km} = 5 \times \dots \text{ cm}$ f) $57 \text{ L} = 5.7 \times \dots \text{ cL}$ i) $1 \text{ m}^3 = \dots \text{ mm}^3$

solution de l'exercice 2.

$$a = 16; 8$$
 $c = 81; 12$ $e = 15; 125$ $g = 10; 32$ $i = 25; 10$ $j = 18; 216$

solution de l'exercice 4.

$$a = 13$$
 | $b = 112$ | $c = 43$ | $d = 19$ | $e = 46$ | $f = 26$ | $g = 3$ | $h = 3$

${\rm km^3}$	${ m hm^3}$	dam^3	m^3	$ m dm^3$	${ m cm^3}$	mm^3

CLG Jeanne d'Arc, 4e

1.2 Facteurs, multiples et division euclidienne

Définition 1.2 — **Multiples.** Les multiples de l'entier n sont tous les nombres entiers s'écrivent comme produit $kn = k \times n$, avec k un entier :

$$0 \times n = 0;$$
 $1 \times n = n;$ $2 \times n;$ $3 \times n;$...

■ Exemple 1.4

- a) 45 est un multiple de 9 et de 5 car $45 = 5 \times 9$.
- b) Enumérer tous les diviseurs de 45.
 - Pour tout entier m, $0 = 0 \times m$. Donc 0 **est un multiple de tout entier, et tout entier divise** 0. Néanmoins, l'usage est souvent d'ignorer 0 comme multiple.

Définition 1.3 — **Division entière.** Soit un entier n et un entier non nul d.

On appelle quotient de n par d l'entier q tel que :

$$qd \leqslant n < qd + d$$

Le reste de la division de n par d est l'entier définit par :

$$n = qd + r$$
 $0 \le r < d$

n est un multiple de d lorsque le reste de la division de n par d est nul.

$$-\frac{17}{15} \frac{5}{3} - \frac{20}{0} \frac{5}{4}$$

Figure 1.5 – 17 = $3 \times 5 + 2$ et $20 = 4 \times 5$

■ Exemple 1.5

- a) $3 \times 5 \le 17 < 4 \times 5$ et $17 = 3 \times 5 + 2$.
- b) $4 \times 5 \le 20 < 5 \times 5$ et $20 = 4 \times 5 + 0$.

Figure 1.6 — Un script pour tester si nbr est divisible par 7

Dans Scratch, l'instruction n modulo d permet de calculer le reste de la division de n par d.

Par exemple 12 modulo 5=2.

1.2.1 Exercices

Exercice $1 - \mathbf{\Xi}$.

	Vrai	Faux	
1/3 est un diviseur de 6			1/6 est un mu
2/6 est un diviseur de 3			2 / 18 est un m
3/3 est un diviseur de 9			3/7 est un mu
4/ 1 est un diviseur de 18			4/7 est un mu
5/ 18 est un diviseur de 9			5 / 24 est un m
6/7 est un diviseur de 7			6/8 est un div

	Vrai	Faux
1/6 est un multiple de 3		
2/ 18 est un multiple de 3		
3/7 est un multiple de 1		
4/7 est un multiple de 7		
5/ 24 est un multiple de 6		
6/8 est un diviseur de 4		

lacksquare Exemple 1.6 — lacksquare, je fais.

	Vrai	Faux
$1/2$ est un facteur de $2 \times 3 \times 7 \times 13$		
$2/3$ est un facteur de $2 \times 3 \times 7 \times 13$		
$3/4$ est un facteur de $2 \times 3 \times 7 \times 13$		
$4/5$ est un facteur de $2 \times 3 \times 7 \times 13$		
$5/6$ est un facteur de $2 \times 3 \times 7 \times 13$		
6/21 est un facteur de $2 \times 3 \times 7 \times 13$		
$7/$ 15 est un facteur de $2 \times 3 \times 5 \times 7 \times 13$		
8/70 est un facteur de $2 \times 3 \times 5 \times 7 \times 13$		
$9/3^2$ est un facteur de $2 \times 3 \times 5 \times 7 \times 13$		
10/ $2 \times 3^2 \times$ est un facteur de $2^3 \times 3^2 \times 5 \times 7 \times 23$		

Exercice 2 — 🖼, je fais.

	Vrai	Faux
$1/9$ est un facteur de $2 \times 3^2 \times 5 \times 7 \times 13$		
$2/4$ est un facteur de $2^3 \times 3^2 \times 5 \times 7 \times 23$		
$3/8$ est un facteur de $2^3 \times 3^2 \times 5 \times 7 \times 23$		
$4/$ 16 est un facteur de $2^3 \times 3^2 \times 5 \times 7 \times 23$		
$5/28$ est un facteur de $2^3 \times 3^2 \times 5 \times 7 \times 23$		
6 / 3^3 est un facteur de $2^2 \times 3^2 \times 5 \times 7 \times 23$		
$7/$ 10 est un facteur de $2 \times 5 \times 7 \times 11 \times 17$		
8/10 est un facteur de $2 \times 5^3 \times 7 \times 13$		
$9/$ 15 est un facteur de $2 \times 5^3 \times 7 \times 13$		
10/ 5^2 est un facteur de $2 \times 5^3 \times 7 \times 13$		
11/ 10×7 est un facteur de $2 \times 5^3 \times 7 \times 13$		
12/22 est un facteur de $2 \times 5^3 \times 7 \times 11 \times 13$		

CLG Jeanne d'Arc, 4^e Année 2021/2022

Exercice $3 - \mathbf{\Pi}$, à vous. Sans utiliser la calculatrice, calculer le quotient et le reste de la division euclidienne de a par b dans les cas suivants, puis compléter l'égalité qui résume la division.

a)
$$a = 17; b = 4, 17 = ... \times 4 + ...$$

b)
$$a = 51; b = 6, 51 = \dots \times 6 + \dots$$

c)
$$a = 0; b = 19, 0 = ... \times 19 + ...$$

d)
$$a = 27; b = 3, 27 = ... \times 3 + ...$$

e)
$$a = 32; b = 7, 32 = ... \times 7 + ...$$

f)
$$a = 32; b = 4, 32 = ... \times 4 + ...$$

g)
$$a = 55; b = 8, 55 = ... \times 8 + ...$$

h)
$$a = 55; b = 6, 55 = ... \times 6 + ...$$

Exercice 4 À l'aide de la touche F de ta calculatrice, calculer le quotient et le reste de la division de a par b dans les cas suivants. Écrire l'égalité qui résume la division.

a)
$$a = 83$$
; $b = 15$

c)
$$a = 612$$
; $b = 74$

e)
$$a = 171819$$
: $b = 4$

b)
$$a = 83; b = 5$$

d)
$$a = 612$$
: $b = 8$

c)
$$a = 612$$
; $b = 74$
d) $a = 612$; $b = 8$
e) $a = 171819$; $b = 4$
f) $a = 171819$; $b = 4321$

Exercice 5

Si on continue cette suite de symboles, quels seront les symboles en positions 100 et 101 de la suite?

Exercice 6

Cette année (en 2021), le 1^{er} Janvier était un vendredi. Quel jour de la semaine correspond au 100^e jour de l'année?

Exercice 7

- 1) a) Donner le chiffre des unités de 3^n pour n allant de 0 à 10. Qu'observer vous?
 - b) Trouver le chiffre des unités de 3^{2021} .
- 2) Trouver le chiffre des unités de 8²⁰²¹.

Exercice 8 En utilisant les critères de divisibilité indiquer si 1548 est divisible par 2? 3? 5? 9?

■ Exemple 1.7 — établir la liste des diviseurs d'un entier. L'ensemble des diviseurs de 36.

$$\frac{1}{36}$$
 Diviseurs(36) = {1;

■ Exemple 1.8 — à vous. L'ensemble des diviseurs de 60.

$$\frac{1}{60}$$
 Diviseurs(60) = $\{1;$

On trace une ligne horizontale. On teste la divisibilité pour d = 1, puis 2, puis 3, etc. Chaque fois que d divise le nombre n, on note cet entier d au-dessus de la ligne, et le quotient de n par d au dessous de la ligne. On aura trouvé tous les diviseurs lorsque d^2 dépasse n.

Exercice 9 Détermine l'ensemble des diviseurs de 18, 33, 85, 97, 144 et 214.

1.3 Nombres premiers

Définition 1.4 Un nombre entier est **premiers** s'il admet **exactement** 2 diviseurs **différents** : 1 et lui même.

On classe les nombres entiers en 3 catégories :

l'unité 1

les nombres premiers 2, 3, 5...

les nombres composés tout le reste.

■ Exemple 1.9 Vérifier que les nombres 149 et 173 sont premiers.

Théorème 1.10 — Nombres premiers < 100. sont :

- 2, 3, 5 et 7.
- tous les nombres non divisibles par 2, 3, 5 et 7.
- Exemple 1.11 11, 31 et 97 sont des nombres premiers.

Théorème 1.12 — théorème fondamental de l'arithmétique. Tout nombre entier $n \in \mathbb{N}^*$ se décompose de manière unique (à l'ordre près) en produit de facteurs premiers.

■ Exemple 1.13 31 est un nombre premier, sa décomposition en facteurs premiers est lui-même.

 $1008 = 2^4 \times 3^2 \times 7^1.$ Le facteur 2 a pour multiplicité 4. $25777 = 149 \times 173.$

Figure 1.7 – Ne pas oublier d'appuyer sur **EXE** après le nombre.

1.3.1 Exercices

Exercice 1 — Le Crible d'Ératosthène. est un algorithme permettant de trouver tous les nombres premiers inférieurs à un certain nombre entier fixé à l'avance (par exemple ici, les nombres premiers inférieurs à 100). Voici le début :

- On barre 1 qui d'après la définition n'est pas premier
- On entoure 2 car premier. Les multiples de 2, autre que 2 ne sont pas premiers, on peut donc les barrer.
- On entoure 3, car premier.
- 4 est un multiple de 2, il a été éliminé...

Poursuivre en entourant les nombres premiers du tableau ci-dessous :

1 1/ 1/								
1	2) 3	4	5	6	7	8	9	10
11 12	2 13	14	15	16	17	18	19	20
21 22	2 23	24	25	26	27	28	29	30
31 32	2 33	34	35	36	37	38	39	40
41 42	2 43	44	45	46	47	48	49	50
51 52	2 53	54	55	56	57	58	59	60
61 62	2 63	64	65	66	67	68	69	70
71 72	2 73	74	75	76	77	78	79	80
81 82	2 83	84	85	86	87	88	89	90
91 92	2 93	94	95	96	97	98	99	100

Les nombres premiers entre 1 et 10

Les nombres premiers entre 11 et 100

■ Exemple 1.14 — Décomposer en facteurs premiers.

24 =

Exercice 2 Décomposer en facteur premiers les nombres suivants. Utiliser écriture à exposants.

- a) 6
- c) 24
- e) 72
- g) 30
- i) 420

- b) 12
- d) 240
- f) 720
- h) 36
- j) 12 600

Exercice $3 - \blacksquare$.

	Vrai	Faux
1/3 est un facteur premier de 12		
2/4 est un facteur premier de 12		
3/6 est un facteur premier de 12		
4/7 est un facteur premier de 12		
5/3 est un facteur premier de 36		
6 / 9 est un facteur premier de 36		

	Vrai	Faux
1/ 1 est un facteur premier de 36		
2 / 2 est un facteur premier de 36		
3/7 est un facteur premier de 36		
4/3 est un facteur premier de 27		
5/7 est un facteur premier de 27		
6 / 9 est un facteur premier de 27		

Exercice 4

Pour chaque cas, trouve une suite de 4 nombres **consécutifs** qui vérifient les indications données. Tous les nombres sont inférieurs à 100.

Exercice 5

- a) À l'aide de la calculatrice donner la décomposition en facteurs premiers de 1080.
- b) Entourer, sans calcul supplémentaire, les nombres qui divisent 1080 :

13
$$2^2 \times 3^2$$
 $2 \times 3^3 \times 5^2$ $2^4 \times 3$

Exercice 6

- a) À l'aide de la calculatrice donner la décomposition en facteurs premiers de 72.
- b) Entourer, sans calcul supplémentaire, les nombres qui sont des multiples de 72 :

$$3^2 \times 5$$
 $2^3 \times 3^2 \times 5^2$ $2^4 \times 5$ $2^4 \times 3^2 \times 5 \times 7$

Exercice 7 On a les décomposition en facteurs premiers de $42 = 2 \times 3 \times 7$ et $91 = 7 \times 13$. En déduire la décomposition en facteurs premiers de :

$$A = 42^2$$
 $B = 91^2$ $C = 42^3$ $D = 91^3$ $E = 15 \times 91$