

Extractores Axiales para Techo RX

INFORMACIÓN GENERAL

La serie RX, ha sido diseñada para cubrir las necesidades de extracción en áreas comerciales e industriales, que requieren eliminar aire viciado ó contaminado y mantenerlo alejado de centros de trabajo y almacenaje.

Esta serie cuenta con opciones de transmisión directa y poleas-bandas; así mismo, ofrece hélices de distintos materiales como son; aluminio, plástico y acero al carbón, dependiendo de las necesidades de aplicación.

RXD, opción en transmisión directa; ofrece tres tamaños de diámetro nominal 630, 800 y 1000 mm; con 4 y 6 polos de velocidad asíncrona, en sus motores. Estos modelos tienen la ventaja de ser de un costo menor de mantenimiento y montaje.

RXT, opción en transmisión poleas-bandas, cuenta con dos tipos de arreglo, con motor dentro del flujo de aire para el manejo de aire limpio y con motor fuera del flujo, con accesorios que facilitan el montaje y mantenimiento del motor. Ofrece cuatro tamaños de diámetro nominal 800, 1000, 1250 y 1500 mm, con la ventaja de ser equipos silenciosos, debido a las velocidades reducidas a las que trabajan.

Entre sus principales aplicaciones se encuentran: bodegas, áreas de manufactura, ensamble, almacenaje, centros de servicio, centros comerciales, etc.

1

TIPO DE HÉLICES

Hélice de aluminio inyectado, que además de ser material anti-chispa y resistente a la corrosión, tiene un excelente acabado y resistencia a altas velocidades.

Hélice para el tamaño 1500, aerodinámica, con 5 álabes, fabricada en acero, unida al casquillo por un cartabón en placa de acero de gran resistencia y asegurada con tornillería especial.

Hélice de material termo plástico reforzado con

Hélices aerodinámicas y eficientes, de gran robustez, con 6 álabes fabricadas en acero, unido a un disco estrella embutido de fijación, para los tamaños 800, 1000 y 1250.

RXD

Extractores axiales para techo Transmisión directa

RXD (630/4P, 630/6P, 800/6P, 1000/6P)

Caudal máximo: 35,852 m³/hr [21,102 cfm] Presión estática máxima: 25.4 mmca [1 inwg]

NOMENCLATURA

EXTRACTORES AXIALES PARA TECHO TRANSMISIÓN DIRECTA

Hélices aerodinámicas, fabricadas en aluminio y plástico, para distintas aplicaciones.

Oído de aspiración fabricado en lámina galvanizada, de calibres adecuados a cada modelo, troquelado en una sola pieza. Diseñado para evitar turbulencias y permitir una mayor aspiración del flujo de aire.

El cuello de descarga, está fabricado en lámina galvanizada, con acabados especiales que aportan la rigidez necesaria y presentación al equipo. Esencial para el direccionamiento del aire.

Brazos soportes fabricados en lámina negra pintada, con recubrimiento de aplicación en polvo gris estándar.

Compuertas anti-retorno de accionamiento por sobre-presión, son fabricadas en lámina de aluminio, con canales de desagüe, bisagras, tornillería y pernos, en acero inoxidable y permanecerá cerrada cuando el equipo se encuentre fuera de operación, evitando la entrada de basura, polvo y otros elementos ajenos a la instalación.

Base motor fabricado en lámina negra pintada con recubrimiento en polvo gris y colocado de forma que no obstruya el flujo de aire.

Los motores trifásicos empleados son fabricados bajo especificaciones NEMA. Protección IP 55, para protección de ambientes húmedos y polvo.

^{*}La presentación de las fotografías son de manera ilustrativa.

EXTRACTORES AXIALES PARA TECHO TRANSMISIÓN DIRECTA

RXD 630

						PRESION	ESTATI	CA mmc	a - inwg.		•		
HP	RPM	0.00 m	m/0.00"	3.17mm/0.125"		6.35mr	6.35mm/0.25"		m/0.50"	19.05mi	m/0.75"	25.4mm/1.00"	
""	RPIVI	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР
		m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)
3/4	1140	6054	0.67	5683	0.72	5165	0.77	3287	0.80	1804	0.81	544	0.88
3/4	1140	10286	69.3	9656	68.6	8775	67.5	5584	62.3	3065	55.4	924	41.5
4	1140	7208	0.96	6827	0.98	6341	1.05	4122	1.06	2325	1.06	1162	1.25
ı	1140	12246	71.4	11599	70.7	10773	69.9	7003	64.9	3950	58.3	1975	50.3
2	1750	8783	1.98	8541	2.00	8270	2.10	7636	2.23	6731	2.32	5705	2.45
2	1730	14923	78.1	14512	77.8	14051	77.4	12974	76.5	11436	75.0	9692	73.1

RXD 800

					•	PRESION	ESTATI	CA mmc	a - inwg.		•		
HP	RPM	0.00 m	m/0.00"	3.17mm	1/0.125"	6.35mr	n/0.25"	12.70m	m/0.50"	19.05mi	m/0.75"	25.4mn	n/1.00"
""	RPIVI	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР
		m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)
1 1/2	1140	9596	1.42	9141	1.50	8566	1.60	7234	1.74	5267	1.79	3602	1.83
1 1/2	1140	16303	70.5	15531	69.9	14554	69.1	12291	67.2	8949	63.5	6120	59.1
2	1140	11287	1.84	10833	1.92	10289	2.03	8715	2.17	6476	2.23	4358	2.19
	1140	19177	71.5	18406	71.0	17481	70.5	14807	68.5	11003	65.1	7404	60.5
3	1140	12703	2.87	12297	2.99	11839	3.12	10467	3.31	7622	3.28	4979	3.14
	1140	21583	73.2	20892	72.8	20115	72.4	17784	71.0	12950	67.3	8460	62.4

RXD 1000

						PRESION	ESTATION	CA mmc	a - inwg.				
НР	RPM	0.00 m	m/0.00"	3.17mm	1/0.125"	6.35mr	n/0.25"	12.70m	m/0.50"	19.05mi	n/0.75"	25.4mn	n/1.00"
	RPIVI	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР
		m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)
2	1140	11908	2.00	10956	2.12	10051	2.18	7878	2.20	5840	2.24	4029	2.32
	1140	20231	70.8	18615	69.8	17077	68.8	13385	66.0	9923	62.6	6846	58.3
3	1140	15165	2.79	14393	3.00	13531	3.07	11578	3.16	9172	3.24	6720	3.20
3	1140	25766	73.6	24454	73.0	22989	72.3	19671	70.5	15583	67.8	11417	64.2
5	1140	21102	4.84	20172	5.10	19241	5.37	17149	5.59	14649	5.75	10522	5.63
5	1140	35852	77.4	34272	76.9	32691	76.3	29136	75.0	24889	73.2	17877	69.4

5

EXTRACTORES AXIALES PARA TECHO TRANSMISIÓN DIRECTA

EXTRACTORES AXIALES PARA TECHO TRANSMISIÓN DIRECTA

Dimensiones en mm.

MODELO	Α	В	С	D	E	F
RXD-630	794	480	15	640	810	235
RXD-800	980	720	40	780	1100	250
RXD-1000	1225	720	50	965	1255	290

Dimensiones en inches.

MODELO	Α	В	С	D	E	F
RXD-630	31 1/4	18 7/8	9/16	25 3/16	31 7/8	9 1/4
RXD-800	28 9/16	28 3/8	1 9/16	30 11/16	43 5/16	9 13/16
RXD-1000	48 1/4	28 1/4	1 15/16	38	49 7/16	11 7/16

RXT-C Extractores axiales para techo
Transmisión poleas-bandas
Motor dentro del flujo

RXT (800, 1000, 1250 y 1500)

Caudal máximo: 92,703 m³/hr [54,563 cfm] Presión estática máxima: 19.05 mmca [0.75 inwg]

NOMENCLATURA

Hélices aerodinámicas, fabricadas en acero al carbón, pintado con pintura en polvo poliéster, acabado estándar.

Oído de aspiración fabricado en lámina galvanizada, de calibres adecuados a cada modelo, troquelado en una sola pieza. Diseñado para evitar turbulencias y permitir una mayor aspiración del flujo de aire.

El cuello de descarga, está fabricado en lámina galvanizada, con acabados especiales que aportan la rigidez necesaria y presentación al equipo. Esencial para el direccionamiento del aire.

Los rodamientos a bolas son de reconocida marca, integrados en chumaceras de fundición de metal para piso, seleccionadas para larga durabilidad a las más altas RPM de catálogo.

Compuertas anti-retorno de accionamiento por sobre-presión, son fabricadas en lámina de aluminio.

Base motor fabricado en lámina galvanizada y colocada de forma que no obstruya el flujo de aire.

Los motores trifásicos empleados son fabricados bajo especificaciones NEMA. Protección IP 55, para protección de ambientes húmedos y polvo.

Los ejes se fabrican con acero AISI C-1045. Todas las tolerancias dimensionales, son totalmente comprobadas con el fin de garantizar un ajuste preciso. Todos los ejes son revestidos con un barniz anticorrosión.

Poleas fabricadas en acero de alta calidad, y son ideales, para alcanzar una alta eficiencia de velocidad y potencia entre dos o más puntos. Permitiéndonos obtener transmisiones mucho más ligeras.

Bandas fabricadas con cuerpo de hule sintético, que distribuye la fuerza de manera uniforme entre las cuerdas y cubierta de textil impregnado con hule sintético, resistente al calor, aceites y grasas.

9

^{*}La presentación de las fotografías son de manera ilustrativa.

				•		PRESION	N ESTATI	CA mmc	a - inwg.	•		
HP	ÁNGULO	RPM	0.00 m	m/0.00"	3.17mm/0.125"		6.35mm/0.25"		12.70m	m/0.50"	19.05m	m/0.75"
ПР	ANGULU	RPIVI	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР
			m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)
1/2	27	530	7256	0.37	6055	0.38	4829	0.35	2271	0.54		
1/2	21	530	12328	58.2	10288	56.1	8204	53.5	3858	44.7		
3/4	27	700	9448	0.71	8587	0.75	7334	0.72	3994	0.88	2427	1.18
3/4	21	700	16053	65.9	14590	64.8	12461	63.0	6785	56.0	4124	50.2
1	27	800	10754	0.96	10023	0.98	8926	0.99	5690	1.05	3863	1.25
	27 8	800	18271	69.0	17029	68.1	15166	66.8	9667	61.6	6563	57.1

						PRESION	I ESTATI	CA mmc	a - inwg.	•		-
HP	ÁNGULO	RPM	0.00 m	m/0.00"	3.17mm	n/0.125"	6.35mr	n/0.25"	12.70m	m/0.50"	19.05mi	n/0.75"
ПР	ANGULU	KPW	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР
			m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)
3/4	27	550	14440	0.75	12831	0.75	9810	0.75	4356	0.98		
3/4	21	550	24533	66.9	21800	65.5	16667	62.4	7400	53.1		
1	27	610	16088	0.97	14440	0.99	11458	1.00	6435	1.08		
I	21	610	27333	68.9	24533	67.6	19467	65.0	10933	58.3		
1 1/2	27	700	18560	1.46	17267	1.47	15303	1.50	9849	1.63		
1 1/2	21	27 700 3	31534	72.0	29336	71.1	26000	69.7	16734	64.6		

						PRESIÓN	ESTATION	CA mmc	a - inwg.			
НР	ÁNGULO	RPM	0.00 m	m/0.00"	3.17mm	1/0.125"	6.35mr	n/0.25"	12.70m	m/0.50"	19.05mi	n/0.75"
ПР	ANGULU	RPIVI	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР
			m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)
1	27	450	18973	9.95	16634	0.98	11904	0.99	5368	1.32		
Į.	21	27 450	32235	68.0	28262	66.5	20226	62.6	9120	53.4		
1 1/2	27	500	21099	1.43	18867	1.45	15731	1.43	8982	1.68	3082	2.18
1 1/2	21	300	35847	70.0	32054	68.7	26727	66.6	15260	60.1	5237	47.8
2	27	540	22864	1.93	20812	1.96	18453	2.00	11784	2.25	5886	2.57
	21	540	38845	72.0	35360	70.9	31351	69.5	20022	64.3	10000	56.3
3	27 610	25685	2.90	23941	2.92	21581	2.85	15118	2.99	9887	3.3	
	3 27	610	43638	74.0	40675	73.2	36667	72.0	25686	67.8	16797	62.9

						PRESION	ESTATI	CA mmc	a - inwg.			
НР	ÁNGULO	RPM	0.00 m	m/0.00"	3.17mm	1/0.125"	6.35mr	n/0.25"	12.70m	m/0.50"	19.05mi	n/0.75"
ПР	ANGULU	RPIVI	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР	CFM	ВНР
			m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)	m³/hr	dB(A)
3	18	550	34817	2.98	32911	3.13	30921	3.45	22548	4.11		
3	10	550	59155	76.0	55916	75.3	52535	74.6	38310	70.9		
5	25	550	43936	4.76	42361	4.83	40537	5.00	32331	5.70	18486	6.30
3	23	330	74648	79.0	71972	78.6	68873	78.1	54930	75.5	31409	69.0
7 1/2	32	550	50631	7.35	47785	7.65	45250	7.88	39403	8.28		
7 1/2	32	330	86022	84.0	81187	83.3	76879	82.7	66945	81.1		
10	26 550	54563	9.96	51666	9.99	49234	10.2	43439	10.5			
10	10 36	550	92703	87.0	87780	86.4	83648	85.8	73802	84.4		

Dimensiones en mm.

MODELO	Α	В	С	D	Е	F
RXT-800	980	720	40	365	980	1100
RXT-1000	1225	720	50	455	1150	1255
RXT-1250	1460	890	25	455	1430	1455
RXT-1500	1750	1120	45	530	1750	1770

Dimensiones en inches.

MODELO	Α	В	С	D	E	F
RXT-800	38 9/16	28 3/8	1 9/16	14 3/8	38 9/16	43 5/16
RXT-1000	48 1/4	28 3/8	1 15/16	17 15/16	45 1/4	49 7/16
RXT-1250	57 1/2	35 1/16	1	17 15/16	56 5/16	57 5/16
RXT-1500	68 7/8	44 1/8	1 3/4	20 7/8	68 14/16	69 11/16

Dimensiones en mm.

MODELO	Α	В	С	D	E	F
RXT-800	980	720	500	1200	1430	425
RXT-1000	1225	720	550	1270	1675	500
RXT-1250	1460	890	600	1550	1880	485
RXT-1500	1750	1120	750	1865	2265	625

Dimensiones en mm.

MODELO	Α	В	С	D	E	F
RXT-800	38 9/16	28 3/8	19 11/16	47 1/4	56 5/16	16 3/4
RXT-1000	48 1/4	28 3/8	21 5/8	50	65 15/16	19 11/16
RXT-1250	57 1/2	35 1/16	23 5/8	61	74	19 1/8
RXT-1500	68 7/8	44 1/8	29 1/2	73 1/2	89 3/16	24 5/8

Roof curb

Fabricado en lámina galvanizada con calibre de acuerdo al tamaño del equipo. Diseñado para la fácil instalación y manejo del extractor en la zona a ser colocado.

Cubierta intemperie

Es utilizada para protección del motor. Fabricada en lámina galvanizada y cuenta con sellos a su alrededor, para evitar filtraciones. Es removible y cuenta con puerta de inspección, para la fácil y correcta revisión y mantenimiento del motor.

Malla de protección en descarga

Cumple con el objetivo de no permitir el paso de piezas y aves al interior del sitio donde son utilizados los extractores.

Malla protección en succión

Fabricada con el objetivo de prevenir la entrada de objetos al interior del equipo y evitar el contacto con piezas en movimiento.

Compuertas anti retorno

Pueden ser construidas en lámina galvanizada o acero inoxidable.

Graseras extendidas

Tubo flexible colocado en los puntos de engrase de piezas en movimiento (rodamientos) para mantener la lubricación adecuada de los mismos, ideal para uso en lugares estrechos y de difícil acceso.

Tornillería de acero inoxidable

Para evitar zonas de corrosión, por las condiciones climáticas.

COMPUERTA ANTI-RETORNO

Dimensiones en mm.

Billionolonoo on milli				
MODELO	ØA	CAL		
RXD-630	700	24		
RXD/T-800	880	24		
RXD/T-1000	1050	20		
RXT-1250	1300	18		
RXT-1500	1560	18		

Dimensiones en inches.					
MODELO	ØΑ	CAL			
RXD-630	27 9/16	24			
RXD/T-800	34 5/8	24			
RXD/T-1000	41 5/16	20			
RXT-1250	51 3/16	18			
RXT-1500	61 7/16	18			

ROOF CURB

Dimensiones en mm.

Difficusiones en mi					3 611 1111111.
MODELO	Α	В	С	D	Е
RXD/T-800	1200	1200	550	500	300
RXD/T-1000	1350	1350	550	500	300
RXT-1250	1545	1545	600	500	300
RXT-1500	1865	1865	750	700	400

Dimensiones en inche					en inches.
MODELO	Α	В	С	D	Е
RXD/T-800	47 1/4	47 1/4	215/8	19 11/16	11 13/16
RXD/T-1000	53 1/8	53 1/8	21 5/8	19 11/16	11 13/16
RXT-1250	60 7/8	60 7/8	23 5/8	19 11/16	11 13/16
RXT-1500	73 1/2	73 1/2	29 1/2	27 9/16	15 3/4

CUBIERTA PROTECCIÓN MOTOR

Dimensiones en mm.

MODELO	Α	В	С	D
RXT-800	425	425	280	395
RXT-1000	485	485	385	440
RXT-1250	485	485	385	440
RXT-1500	535	630	445	590

Dimensiones en inch				
MODELO	Α	В	С	D
RXT-800	16 3/4	16 3/4	11	15 9/16
RXT-1000	19 1/8	19 1/8	71 5/16	17 5/16
RXT-1250	19 1/8	19 1/8	71 5/16	17 5/16
RXT-1500	21 1/16	24 13/16	17 1/2	23 1/4

MALLA PROTECCIÓN EN DESCARGA

			Dir	mensiones en mm.
MODELO	ØA	ØB	С	NxØ
RXD-630	795	770	6	8 x 11.1
RXD/T-800	980	955	6	8 x 11.1
RXD/T-1000	1225	1200	6	12 x 14.2
RXT-1250	1460	1435	6	12 x 14.2
RXT-1500	1750	1725	6	12 x 14.2

			Dime	nsiones en inches.
MODELO	ØA	ØB	С	NxØ
RXD-630	31 5/16	30 5/16	1/4	8 x 7/16
RXD/T-800	38 9/16	37 5/8	1/4	8 x 7/16
RXD/T-1000	48 1/4	47 1/4	1/4	12 x 9/16
RXT-1250	57 1/2	56 1/2	1/4	13 x 9/16
RXT-1500	68 7/8	67 15/16	1/4	14 x 9/16

MALLA PROTECCIÓN EN SUCCIÓN

	Dimensiones en mm.				
MODELO	Α	В	С		
RXD-630	688	688	290		
RXD/T-800	829	829	420		
RXD/T-1000	1065	1065	460		
RXT-1250	1130	1130	470		
RXT-1500	1487	1487	595		

	Dimensiones en mn					
MODELO	Α	В	С			
RXD-630	27 1/6	27 1/16	11 7/16			
RXD/T-800	32 5/8	32 5/8	16 9/16			
RXD/T-1000	41 15/16	41 15/16	18 1/8			
RXT-1250	44 1/2	44 1/2	18 1/2			
RXT-1500	58 9/16	58 9/16	23 7/16			

RECUBRIMIENTOS

APLICACIÓN ESTÁNDAR

• Pintura en polvo poliéster

La pintura estándar S&P, es ideal para aplicaciones comerciales e industriales, donde los contaminantes corrosivos sean de moderados a bajos.

Su aplicación consiste en partículas de pigmento y resinas, que mediante un proceso electrostático se adhieren a la superficie del metal, previamente desengrasado, fosfatizado y decapado; posteriormente mediante alta temperatura obtiene sus características de acabado liso, uniforme, dureza, resistencia a impacto, resistencia química y a la abrasión adecuada con gran resistencia a agentes corrosivos (hasta 800 horas de Cámara Salina de acuerdo a corrosión ASTM B-117, Ampollamiento ASTM D-714 y Adherencia ASTM D-1654).

RECUBRIMIENTOS ESPECIALES

Cuando el uso de un ventilador se destina a aplicaciones industriales, donde el ambiente en el que operará es altamente corrosivo, es recomendable aplicar algún recubrimiento especial que pueda resistir este tipo de atmósferas.

Para ello Soler & Palau pone a su disposición acabados especiales:

Pintura epóxica altos sólidos

Recubrimiento epóxico de dos componentes curado con poliamida, modificado con amina.

Este es un recubrimiento especial para S&P, pudiendo ser usado como primario, enlace acabado o como recubrimiento único. Su uso en ventiladores es ideal ya que aplicado a piezas metálicas sometidas a humedad o inmersión ofrece gran resistencia. Su adherencia es excelente en cualquier tipo de acero, incluyendo los que tengan acabados galvanizados. Es un producto versátil altos sólidos que posee excelentes propiedades recomendado para ambientes corrosivos severos.

Su apariencia es semimate y el color es caqui. Obteniendo un total de 1000 horas cámara salina.

Resistencia química:

Ácido	Muy bueno	Abrasión	Excelente	Intemperie	Muy bueno
Álcalis	Excelente	Solventes	Excelentes		-
Humedad	Excelentes	Sales	Excelentes		

Importante: Este producto es susceptible al caleo debido a la radiación UV. Temperatura máxima de servicio: 93 °C servicio continuo y 148 ° C intermitente.

• Pintura en polvo poliester de alta resistencia

Pintura de tipo especial, el cuál es usado como recubrimiento único, fabricado especial para el cuidado del sustrato, debido a su alta resistencia a la corrosión y excelente nivel de adherencia. Su aplicación es mediente el curado y su acabado es liso, con excelente nivel de dureza, flexiblilidad, resistencia al impacto y abrasión. Recomendado para sitios donde el nivel de humedad y rocio salino sean altos.

Resistencia química:

Ácido	Muy bueno	Abrasión	Excelente	Humedad	Excelentes
Álcalis	Excelente	Sales	Excelente	Intemperie	Muy bueno

Recubrimientos fenólicos secado al aire

Este acabado es especial y se sugiere consultar a fábrica para condiciones comerciales.

Ofrecen excelente resistencia a humos que contengan ácidos, bases, sales inorgánicas y solventes.

Buena resistencia para condensados y espreado de estos componentes.

TABLA DE CONVERSIONES

	CAUDAL		,	VELOCIDAD			AREA	
multiplique	por	para obtener	multiplique	por	para obtener	multiplique	por	para obtener
CFM	0.0004719	m³/seg	fpm	0.0167	fps	in ²	0.006944	ft ²
CFM	0.02832	m³/min	fpm	0.00508	m/seg	in ²	0.0006452	m ²
CFM	1.699	m³/hr	fpm	0.3048	m/min	in ²	645.16	mm ²
CFM	0.47195	l/seg	fps	60	fpm	ft ²	144	in ²
CFM	28.317	I/min	fps	0.3048	m/seg	ft ²	0.0929	m ²
m³/seg	2118.9	CFM	fps	18.288	m/min	ft ²	92903	mm ²
m³/seg	60	m³/min	m/seg	196.85	fpm	m ²	10.76	ft ²
m³/seg	3600	m³/hr	m/seg	3.2808	fps	m ²	1550	in ²
m³/seg	1000	l/seg	m/seg	60	m/min	m ²	10 6	mm ²
m³/seg	60000	I/min	m/min	3.2808	fpm		DENSIDAD	
m³/min	35.315	CFM	m/min	0.05468	fps	multiplique	por	para obtener
m³/min	0.0167	m³/seg	m/min	0.0167	m/seg	lb/ft ³	16.02	kg/m ³
m³/min	60	m³/hr		PRESIÓN	1 1 1 3	kg/m ³	0.06243	lb/ft ³
m³/min	16.667	l/seg	multiplique	por	para obtener	J.	LONGITUD	
m³/min	1000	I/min	in c.H ₂ O	0.03607	psi	multiplique	por	para obtener
m³/hr	0.58858	CFM	in c.H ₂ O	0.07343	in c.Hg	ft	12	in
m³/hr	0.0167	m³/min	in c.H ₂ O	248.66	Pa	ft	0.3048	m
m³/hr	0.0003	m³/seg	in c.H ₂ O	25.4	mm c.H ₂ O	ft	304.8	mm
	0.2778	l/seg	in c.H ₂ O	1.8651	mm c.Hg	in	0.0833	ft
m³/hr		_	in c.H 20					
m³/hr	16.667	l/min	_	0.002454	atm	in	0.0254	m
l/seg	2.1189	CFM	in c.Hg	0.49115	psi	in	25.4	mm
l/seg	0.001	m³/seg	in c.Hg	13.619	in c.H 2O	m	3.2808	ft
l/seg	0.06	m³/min	in c.Hg	3386.4	Pa	m	39.37	in
l/seg	3.6	m³/hr	in c.Hg	345.91	mm c.H ₂ O	m	1000	mm
l/seg	60	l/min	in c.Hg	25.4	mm c.Hg	mm	0.003281	ft
VOLUMEN		in c.Hg Pa	0.03342 0.000145	atm	mm	0.03937	in	
multiplique	por	para obtener			psi	mm	0.001	m
ft ³	1728	in ³	Pa	0.004022	in c.H ₂ O	PESO		
ft ³	28.317	l 2	Pa	0.0002953	in c.Hg	multiplique	por	para obtener
ft ³	0.02832	m ³	Pa	0.10215	mm c.H ₂ O	lb	16	OZ
in ³	0.000579	ft ³	Pa	0.007501	mm c.Hg	lb	453.59	gramos
in ³	0.01639	1	Pa	0.0000099	atm	lb	0.45359	kg
in ³	0.0000164	m ³	mm c.H ₂ O	0.00142	psi	kg	2.2046	lb
I	0.03531	ft ³	mm c.H 2O	0.03937	in c.H ₂ O	kg	35.274	OZ
1	61.024	in ³	mm c.H 2O	0.002891	in c.Hg	kg	1000	gramos
1	0.001	m ³	mm c.H ₂ O	9.7898	Pa		POTENCIA	
m ³	35.315	ft ³	mm c.H 2O	0.07343	mm c.Hg	multiplique	por	para obtener
m ³	61024	in ³	mm c.H 2O	0.0000966	atm	HP	745.7	W
m ³	1000	I	mm c.Hg	0.01934	psi	HP	0.7457	KW
			mm c.Hg	0.53616	in c.H ₂ O	W	0.00134	HP
			mm c.Hg	0.03937	in c.Hg		TEMPERATURA	
			mm c.Hg	133.32	Pa		°F = 9/5 C +32	
			mm c.Hg	13.619	mm c.H ₂ O		°C = 5/9 (F-32)	
			mm c.Hg	0.001316	atm			

20

SyP México
Blvd. A-15 Apdo. Postal F-23
Parque Industrial Puebla 2000
Puebla, Pue. México C.P. 72310
Tel. 52 (222) 2 233 911, 2 233 900
Fax. 52 (222) 2 233 914, (800) 2 291 500
http:// www.soler-palau.com.mx
e-mail: comercialmx@soler-palau.com.mx

SyP Colombia
Autopista Medellín km 2.7
Parque Industrial Los Nogales
Bodega 10
Cota, Cundinamarca, Colombia
PBX: (+571 896 4130)
e-mail: comercial@solerpalau.com.co

