Class core values

- 1. Be **respect**ful to yourself and others
- 2. Be **confident** and believe in yourself
- 3. Always do your **best**
- 4. Be cooperative
- 5. Be **creative**
- 6. Have **fun**
- 7. Be **patient** with yourself while you learn
- 8. Don't be shy to **ask "stupid" questions**
- 9. Be **inclusive** and **accepting**

Garbage in garbage out -

Learning Objectives

- 1. Apply simple statistical tools to find main features of the data
- 2. Describe the importance of data preparation for inputs
- 3. Apply python tools to prepare and clean data
- Describe the importance of distribution in data collection and train/test split
- 5. Perform train/test/split on data
- 6. Describe some of the databases for obtaining protein data

The basic components of a learning system

Finding important features

Finding important features

Intelligible Models for HealthCare: Predicting Pneumonia Risk and Hospital 30-day Readmission

Rich Caruana Microsoft Research rcaruana@microsoft.com

Paul Koch Microsoft Research paulkoch@microsoft.com Yin Lou LinkedIn Corporation ylou@linkedin.com

Marc Sturm NewYork-Presbyterian Hospital mas9161@nyp.org Johannes Gehrke Microsoft johannes@microsoft.com

Noémie Elhadad Columbia University noemie.elhadad@columbia.edu

	1,500 1,600 2,000	8 11 2			1940 2000 1990	X ₁ X ₂ X ₃
(:		
	1,300	3	2		2015	X _r


```
    1,500
    8
    3
    ...
    1940

    1,600
    11
    2
    ...
    2000

    2,000
    2
    3
    ...
    1990
```


X	1,500 1,600 2,000	11	2		1940 2000 1990	X ₁ X ₂ X ₃	Y	500,000 650,000 450,000
	1,300	3	2	:	2015	X _n		650,000

Non-numeric data needs to be turned into numbers

Brand new

Fully renovated

Partially renovated

Not remodeled

Non-numeric data needs to be turned into numbers – numerical categories

Brand new 1

Fully renovated 2

Partially renovated 3

Not remodeled 4

Non-numeric data needs to be turned into numbers – one-hot encoding

Brand new 1 1000
Fully renovated 2 0100
Partially renovated 3 0010
Not remodeled 4 0001

Data normalization

rooms: 1, 2, 3, 4,5

Size: 500 - 5,000

Data normalization

rooms: 1, 2, 3, 4,5

Size: 500 - 5,000

Data normalization

rooms: 1, 2, 3, 4,5

Size: 500 - 5,000

Min-max normalization Decimal scaling


```
1,500 8 3 ... 1940
1,600 NA 2 ... 2000
2,000 2 3 ... 1990
X
1,300 3 2 ... NA
```


	1,500	8	3		1940
	1,600	NA	2		2000
	2,000	2	3		1990
Y					
/				:	
				•	
	1,300	3	2		NA

1. Removing inputs with missing features


```
1,500 8 3 ... 1940
1,600 NA 2 ... 2000
2,000 2 3 ... 1990
X
:
```

- 1. Removing inputs with missing features
- 2. Substitute with the mean


```
1,500 8 3 ... 1940
1,600 NA 2 ... 2000
2,000 2 3 ... 1990
X
1,300 3 2 ... NA
```

- 1. Removing inputs with missing features
- 2. Substitute with the mean
- 3. Substitute with the most frequent

Types of input data for proteins

1. Simple input

```
protein_1 25 kDa pl=7.5 310 residues ... 2.5 hr half-life Stability<sub>1</sub> protein_2 10 kDa pl=4 50 residues ... 10 hr half-life Stability<sub>2</sub> protein_3 100 kDa pl=8 1200 residues ... 2 hr half-life Stability<sub>3</sub>
```

• • •

Finding proper data is highly task dependent

Classification

Yes/No or multi-class?
Are there labeled data available?
How much data is out there?
Can you add labels?

Public datasets can be a great place

Classification

Yes/No or multi-class?
Are there labeled data available?
How much data is out there?
Can you add labels?

Places to look into:

Datasets from other papers
Competitions that curate a dataset
Datasets that are not fully labeled, but can easily be modified

Where to find information on proteins?

- 1. PDB (https://www.rcsb.org/)
 - a. X-ray structures
 - b. Cryo-EM structures
 - c. NMR structures

Where to find information on proteins?

- 1. PDB (https://www.rcsb.org/)
- AlphaFold Protein structure database (https://alphafold.ebi.ac.uk/)
 - a. Predicted structures
 - b. Contains many disordered regions
 - c. Not fully pruned for oligomers

Developed by DeepMind and EMBL-EBI

Where to find information on proteins?

- 1. PDB (https://www.rcsb.org/)
- AlphaFold Protein structure database (https://alphafold.ebi.ac.uk/)
- 3. UniRef (https://www.uniprot.org/help/uniref)
 - a. 100 million protein sequences
 - b. 0.5% are manually annotated
 - c. Have clusters of % identity (UniRef50)

Where to find information on proteins?

- 1. PDB (https://www.rcsb.org/)
- AlphaFold Protein structure database (https://alphafold.ebi.ac.uk/)
- 3. UniRef (https://www.uniprot.org/help/uniref)
- 4. Pfam (http://pfam.xfam.org/)
 - a. Protein family domains
 - b. 19,632 families and clans

Specialized databases

- 1. OAS (http://opiq.stats.ox.ac.uk/webapps/oas/) for antibodies
- 2. ProteinNet (https://github.com/aglaboratory/proteinnet) for protein structures
- 3. APD3 (https://aps.unmc.edu/) for antimicrobial peptides
- 4. Disprot (https://disprot.org/) for disordered proteins
- 5. ..

Collecting data is a challenging task

Classification

Yes/No or multi-class?
Are there labeled data available?
How much data is out there?
Can you add labels?

Think about:

Time required for collection Storage Human error Automation

Representation matters!

1. Human errors: Check random subsets to make sure labeling can be trusted

- Human errors: Check random subsets to make sure labeling can be trusted
- 2. Technical errors during file transfer: Check the size of downloaded files

- Human errors: Check random subsets to make sure labeling can be trusted
- **2. Technical errors during file transfer:** Check the size of downloaded files
- 3. Missing values: Replace as explained

- Human errors: Check random subsets to make sure labeling can be trusted
- **2. Technical errors during file transfer:** Check the size of downloaded files
- 3. Missing values: Replace as explained
- **4. Data matching the task:** Think about what you need and make sure you have it.

Train/test/validation split

Training set is used to train the algorithm

Training set

Too simple models can't learn complex patterns

Training set

A more complex model is the solution to underfitting problems

Training set

A more complex model is the solution to underfitting problems

Training set

Data that is used by the learning algorithm to learn the hidden patterns in the data

Model is a good fit

Predicted ~ Real Good performance

Too complex models memorize the training set, resulting in overfitting

Training set

An overfit model performs poorly on a test set

Training set

Test set

Separate set of data to be used to evaluate model AFTER training

Model is a <u>overfitting</u>

Performance on test set << Performance on training set

An overfit model performs poorly on a test set

Training set
Test set

Separate set of data to be used to evaluate model AFTER training

Model is a <u>overfitting</u>

Performance on test set << Performance on training set

Simpler models or more data are solutions to overfitting

Training set

Test set

Separate set of data to be used to evaluate model AFTER training

Model is a <u>overfitting</u>

Performance on test set << Performance on training set

Validation set can help prevent overfitting

Training set
Test set
Validation set

Set of data separate from training set to evaluate the model during training

Cross-validation can help when we don't have lots of data

Training set

Test set

Validation set

Set of data separate from training set to evaluate the model during training

What's a good split?

- 1. Make sure you have enough training data
- 2. Check to see if cross-validation is an option
- 3. A complex model with many features and parameters benefit from having more training+validation set
- 4. Too small a test set will result in high variations in performance

Next lecture: Simple methods can take you a long way!

- 1. Simple input SVM, Random Forest, dense neural net
- 2. String of amino acids

```
ho_1 MGLTDILGFNREFDILAV...SPLFG s_1 MLKPTRVNMSERCGHITDENVCSR...TLVRF s_2 MIKRTVIHGRDFRWNYTSPL...GMNSWQ s_3 ...
```

Features: charge, pKa, size, functional groups, hydrogen bond status, ...

- 1. Simple input SVM, Random Forest, dense neural net
- 2. String of amino acids Natural language processing (RNN, LSTM, Transformers)

```
ho_1 MGLTDILGFNREFDILAV...SPLFG s_1 MLKPTRVNMSERCGHITDENVCSR...TLVRF s_2 MIKRTVIHGRDFRWNYTSPL...GMNSWQ s_3 ...
```

Features: charge, pKa, size, functional groups, hydrogen bond status, ...

- Simple input SVM, Random Forest, dense neural net
- String of amino acids Natural language processing (RNN, LSTM, Transformers)
- 2D image

- Simple input SVM, Random Forest, dense neural net
- String of amino acids Natural language processing (RNN, LSTM, Transformers)
- 2D image

- Simple input SVM, Random Forest, dense neural net
- String of amino acids Natural language processing (RNN, LSTM, Transformers)
- 2D image

- 1. Simple input SVM, Random Forest, dense neural net
- String of amino acids Natural language processing (RNN, LSTM, Transformers)
- 2D image

- 1. Simple input
- 2D image

SVM, Random Forest, dense neural net

String of amino acids Natural language processing (RNN, LSTM, Transformers)

Convolutional neural nets

- Simple input
- 2D image
- Graphs

SVM, Random Forest, dense neural net

String of amino acids Natural language processing (RNN, LSTM, Transformers)

Convolutional neural nets

- Simple input
- 2D image
- Graphs

SVM, Random Forest, dense neural net

String of amino acids Natural language processing (RNN, LSTM, Transformers)

Convolutional neural nets

Graph convolutional neural nets

- 1. Simple input
- 2. String of amino acids
- 3. 2D image
- 4. Graphs
- 5. 3D objects

SVM, Random Forest, dense neural net

Natural language processing (RNN, LSTM, Transformers)

Convolutional neural nets

Graph convolutional neural nets

