第五章 波动

一、产生机械波的条件

- 1. 波源:作机械振动的物体
- 2. 弹性媒质:能传播机械振动的媒质

二、弹性体的变形规律

- 1. 弹性:外力撤去后,形变可以完全恢复的性质
- 2. 弹性体:具有弹性的物体(理想模型) 各向同性均匀弹性体:各点弹性相同,各点弹性与 方向无关。
- 3. 弹性形变遵循的规律 胡克定律: 应力 = 模量 × 应变

4. 弹性形变常见类型:

(对固体的)拉压, (对固体的)剪切, (气液固体的)容变

拉压: 应力 $\sigma = f/s$, 应变 $\varepsilon = \Delta l/l$,

胡克定律: 应力 = 模量 \times 应变, 即 $\sigma = Y\varepsilon$

Y 杨氏弹性模量(度量材料抗拉压形变的能力)

剪切: 应力 $\tau = f/s$, 应变 θ

胡克定律: 应力 = 模量 \times 应变, $\tau = G\theta$

G 切变弹性模量(度量材料抗剪切形变的能力)

容变: 应力 $\sigma = f/s$, (容)应变 $\Delta V/V$

胡克定律: 应力 = 模量 imes 应变, $f/s = -B\Delta V/V$

B 容变弹性模量 (度量材料抗容积形变的能力)

三、<mark>机械波的形成:</mark> 因媒质各部分间的弹性联系, 会使振动传播开去, 这就形成了波动 ——机械波

上游的质元依次带动下游的质元振动, 质元的振动状态将在 较晚时刻于"下游"出现; 波动是振动状态的传播, 不是媒质的传播.

一、波的几何描述

(1) 波面: 由振动相位相同的点所组成的面

(2) 波前: 最前面的波面

(3) 波线:表示波传播方向的直线

各向同性介质中波线上波面

平面波: 波面为平面的波

球面波: 波面为球面的波

二、机械波的分类

按波线与振动方向关系:横波,纵波

按持续时间: 连续波, 脉冲波

按波面形状: 平面波, 球面波, 柱面波

按波形是否传播: 行波, 驻波

按复杂程度: 简谐波, 复波

横波: 质点的振动方向和波的传播方向垂直

传播媒质:具有剪切弹性或产生张力

机械横波只能在固体或柔软绳索中传播

纵波: 质点的振动方向和波的传播方向平行

传播媒质: 具有拉压弹性或容变弹性

机械纵波可在固体、液体或气体中传播

地震波主要包含纵波和横波

来自地下的纵波(P波)引起地面上下颠簸振动。

来自地下的横波(S波)能引起地面的水平晃动。

横波是地震时造成建筑物破坏的主要原因。

由于纵波在地球内部传播速度大于横波,所以地震时,纵波总是先到达地表。这样,发生地震时,一般人们先感到上下颠簸, 过数秒到十几秒后才感到有很强的水平晃动。这一点非常重要, 因为纵波给我们一个警告,告诉我们造成建筑物破坏的横波马上要到了, 快点作出防备。

三、波的特征量

1. 波速业 振动状态传播的速度

由媒质的性质决定与波源情况无关

弹性媒质中u: 波速 = $\sqrt{rac{
otin
otin$

波速仅仅取决于媒质的弹性和惯性

横波: 固体,
$$u=\sqrt{\frac{G}{
ho}}$$
; 柔绳, $u=\sqrt{\frac{T}{\lambda}}$

纵波: 固体,
$$u=\sqrt{\frac{Y}{
ho}}$$
; 液气: $u=\sqrt{\frac{B}{
ho}}$

2. 周期T: 一个完整的波通过波线上的某点所需的时间. 由波源决定 (波源、观测者均不动时)

频率: $u = \frac{1}{T}$ 角频率: $\omega = 2\pi\nu$

 T, ν, ω 反映了波的时间周期

3. 波长λ: 波线上相邻的振动状态相同的两质元间的距离

 $\lambda = uT$,有波源和媒质共同决定.波长反映波的空间周期。

四、波动的传播特征: 各质元振动的周期(T)与波源相同,各质元的振动状态不同(即相位不同),沿 波的传播方向,各质元相位依次落后. $\frac{\Delta x}{\lambda} = \frac{\Delta \phi}{2\pi} = \frac{\Delta t}{T}$

一、平面简谐波: 所有质点作谐振动且波面为平面的波

二、平面简谐波的波动方程: y = f(x,t)

描述媒质中各质点位移y随各点平衡位置x和时间t变化的函数关系

以原点O为参考点: O点处质点的振动方程为

$$y_o = A\cos(\omega t + \varphi_0)$$

O点的任一振动状态传到P点,需要时间 $\Delta t = rac{x}{t}$,

正向波波函数: $y = A\cos[\omega(t-\frac{x}{u}) + \varphi_0]$

P点比O点超前时间 $\Delta t = rac{x}{u}$, $y_P(x,t) = y_0(0,t+rac{x}{u})$

反向波波函数:
$$y = A\cos[\omega(t + \frac{x}{u}) + \varphi_0]$$

以 x_0 为参考点: Q点处质点的振动方程为

$$y_{x_0} = A\cos(\omega t + arphi_{x_0})$$

Q点的任一振动状态传到P点,需要时间 $\Delta t = rac{x-x_0}{u}$,则波动方程:

$$y = A\cos[\omega(t\pm \frac{x-x_0}{u}) + \varphi_{x_0}]$$

 $\frac{x-x_0}{u}$:表示x处质元的振动落后(或超前) x_0 处质元振动的时间。

波动方程:
$$y = A\cos[\omega(t\pm\frac{x-x_0}{u})+\varphi_{x_0}]$$

波动方程其它形式: $\omega = \frac{2\pi}{T} = 2\pi\nu$, $\lambda = uT$
$$y = A\cos[2\pi(\frac{t}{T}\pm\frac{x-x_0}{\lambda})+\varphi_{x_0}]$$

$$y = A\cos[2\pi(\nu t\pm\frac{x-x_0}{\lambda})+\varphi_{x_0}]$$

$$y = A\cos[2\pi(\nu t\pm\frac{x-x_0}{\lambda})+\varphi_{x_0}]$$

- 确定波动方程的二个条件:
 - 1. 已知 \vec{u} ;
 - 2. 波线上一点的振动方程.

三、波动方程的物理意义(正向传播波为例)

1. 在空间某位置 $x = x_1$, 有

$$y=A\cos\left[\omega(t-rac{x_1}{u})+arphi_0
ight]=A\cos\left[\omega t+(arphi_0-rac{\omega x_1}{u})
ight]$$
 表示 $x=x_1$ 处的振动函数,其中 $arphi_0-rac{\omega x_1}{u}$ 为初相。

2. 在某时刻 $t=t_1$,有

$$y = A\cos\left[\omega(t_1 - \frac{x}{u}) + \varphi_0
ight]$$

表示 $t = t_1$ 时刻的波形。

例1: 已知波线上B点的振动规律为 $y = A\cos(\omega t + \varphi)$,就下面三种坐标取法,分别列出波动表达式及P点的振动方程

解: (1)
$$x = b$$
, $y = A\cos[\omega(t - \frac{x}{u}) + \varphi]$
(2) $x = -b$, $y = A\cos[\omega(t + \frac{x}{u}) + \varphi]$
(3) $x = a + b$, $y = A\cos[\omega(t - \frac{x - a}{u}) + \varphi]$

$$y_P = A\cos[\omega(t - \frac{b}{u}) + \varphi]$$

例2: 已知: T = 4 s. 求 P点的振动方程

解: $y_P = A\cos(\omega t + \varphi_P)$

方法一:
$$\omega=rac{2\pi}{T}=rac{\pi}{2}$$
, $arphi_p=-rac{\pi}{2}$

方法二: 由
$$t=0$$
波形图可知: $\varphi_p=-\frac{\pi}{2}$,

$$y_P = 0.2\cos(\frac{\pi}{2}t - \frac{\pi}{2}) \text{ (cm)}$$

例 3: 已知波动 T=2 s, t=0时刻波形如图所示 求:

(1) 波动方程; (2) \overline{OB} 长度.

解: (1)
$$T=2$$
, $\lambda=40$, $u=\frac{\lambda}{T}=20$, $\omega=\frac{2\pi}{T}=\pi$, $A=10$, $t=0$ 时: $y_0=-5$, $v_0<0$

$$arphi_0=rac{2}{3}\pi,\quad y_0=10\cos[\pi t+rac{2}{3}\pi]$$
波动方程: $y=10\cos[\pi(t-rac{x}{20})+rac{2}{3}\pi]$

(2) OB长度

解:
$$\overline{OB} = (\varphi_O - \varphi_B) \frac{\lambda}{2\pi}$$

$$t=0$$
时: $y_B=0$, $v_B<0$, $arphi_B=rac{\pi}{2}$

$$\overline{OB} = (\frac{2}{3}\pi - \frac{\pi}{2}) \cdot \frac{40}{2\pi} = 3.33 \text{ (cm)}$$

一、能量和能量密度

(1) 动能:

$$egin{array}{lll} \Delta W_k &=& rac{1}{2} \Delta m v^2 = rac{1}{2} (
ho \Delta v) (rac{\partial y}{\partial t})^2 \ &=& rac{1}{2}
ho \Delta V A^2 \omega^2 \sin^2 \omega (t - rac{x}{u}) \end{array}$$

(2) 势能:

$$\Delta W_p = rac{1}{2}
ho u^2 \Delta V (rac{\partial y}{\partial x})^2 = rac{1}{2}
ho \Delta V A^2 \omega^2 \sin^2 \omega (t - rac{x}{u}) = \Delta W_k$$

(3) 总能量:

$$\Delta W = \Delta W_k + \Delta W_p =
ho \Delta V A^2 \omega^2 \sin^2 \omega (t - rac{x}{u})$$

(4) W_{ii} 与 E_{ik} 的比较

波动(质元)	振动(系统)
(非孤立系统)	(孤立系统)
W_{it} 随 t 变化, 不守恒	$E_{ extbf{\textit{k}}}$ 不随 t 变化,守恒
质元在不断接受或放出能量	**
$W_{k i k}$ 、 $W_{p i k}$ 同步变化	E_{k} 振、 E_{p} 振此消彼长

(5) 能量密度: 单位体积内的能量

$$arepsilon = \Delta W/\Delta V =
ho A^2 \omega^2 \sin^2 \omega (t-rac{x}{u})$$

(6) 平均能量密度: 能量密度在一个周期内的平均值

$$ar{arepsilon} = rac{1}{T} \int_0^T arepsilon dt =
ho A^2 \omega^2 \left\{ [\int_0^T \sin^2 \omega (t - x/u) dt] / T
ight\}$$
 $= rac{1}{2}
ho A^2 \omega^2$

二、波的强度

1. 能流P: 单位时间内通过某一面积的波能 $P = Su\varepsilon$.

2. 平均能流 \bar{P} (焦耳/秒): 能流在一个周期内的平均 值。

$$ar{P} \;\; = \;\; rac{1}{T} \int_0^T P dt = rac{Su}{T} \int_0^T arepsilon dt = ar{arepsilon} Su, \;\; ar{arepsilon} = rac{1}{2}
ho A^2 \omega^2$$

3. 波的强度 *I* (平均能流密度): 通过垂直于波的传播方向的单位面积的平均能流。

$$I = rac{ar{P}}{S} = ar{arepsilon}u = rac{1}{2}
ho A^2 \omega^2 u$$
,单位:焦耳/秒米²

例题1: 波在无吸收的,均匀无限大介质中传播,试证

1. 平面波: A保持不变。

2. 球面波: A与r成反比。

证明:

1. 无吸收, $ar{P}_1 = ar{P}_2$

$$egin{aligned} ar{P}_1 = ar{arepsilon}uS = rac{1}{2}
ho A_1^2\omega^2 uS, & ar{P}_2 = ar{arepsilon}uS = rac{1}{2}
ho A_2^2\omega^2 uS \ A_1 = A_2 \end{aligned}$$

2. 无吸收, $ar{P}_1 = ar{P}_2$

$$rac{1}{2}
ho A_1^2\omega^2 u(4\pi r_1^2) = rac{1}{2}
ho A_2^2\omega^2 u(4\pi r_2^2), \hspace{0.5cm} rac{A_1}{A_2} = rac{r_2}{r_1}$$

5.5: 惠更斯原理

一、原理

波动所到达的媒质中各点均可作为发射子波的波源,其 后任一时刻这些子波的包迹 就是新的波阵面。

二、应用

1. 用惠更斯原理确定下一时刻波的波前

5.5: 惠更斯原理

5.5: 惠更斯原理

2. 用惠更斯原理解释衍射现象

一、波的叠加

1. 波的独立传播原理:

几列同时在媒质中传播的波,它们的传播特性(波长、频率、波速、波形) 不会因其它波的存在而发生变化。

2. 波的叠加原理:

在相遇区域内任一点的振动,为各列波单独存在时在该点所引起的振动位移和矢量和: $\vec{r} = \vec{r_1} + \vec{r_2}$

二、波的干涉

1. 干涉的条件: 相干波源: 振动方向相同, 频率相同, 位相差恒定

2. 干涉的基本特征: 两列波在空间迭加区域, 形成某些点振动始终加强, 某些点振动始终减弱的稳定分布.

3. 干涉加强减弱的条件:

相干波源: $y_{s1} = A_1 \cos(\omega t + \varphi_1)$

$$y_{s2}=A_2\cos(\omega t+arphi_2)$$
相千波: $y_1=A_1\cos[\omega(t-rac{r}{u})+arphi_1]$ $y_2=A_2\cos[\omega(t-rac{r}{u})+arphi_2]$ P 点: $y_{p1}=A_1\cos(\omega t+arphi_1-2\pi r_1/\lambda)$ $y_{p2}=A_2\cos(\omega t+arphi_2-2\pi r_2/\lambda)$ $y_p=y_{p1}+y_{p2}=A\cos(\omega t+arphi)$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1A_2\cos\Delta\Phi}$$
 $\Delta\Phi = arphi_2 - arphi_1 - 2\pi(r_2 - r_1)/\lambda$
 $\Delta\Phi = \pm 2k\pi, \quad A = A_1 + A_2, \quad$ 千涉加强
 $\Delta\Phi = \pm (2k+1)\pi, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $otag = \varphi_2, \quad \Delta r = r_2 - r_1 \text{ 波程}$
 $abla r = \pm k\lambda, \quad A = A_1 + A_2, \quad$ 千涉加强
 $abla r = \pm k\lambda, \quad A = A_1 + A_2, \quad$ 千涉加强
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱
 $abla r = \pm (2k+1)\lambda/2, \quad A = |A_1 - A_2|, \quad$ 千涉减弱

利用声波干涉控制噪声

1. 干涉型消声器的结构原理图

2. 摩托车的排气系统中干涉型消声器

波的反射

- 反射点是自由端:反射波引起反射点的振动的位相和 入射波引起的振动位相相同。
- 反射点是固定端:反射波引起反射点的振动的位相和 入射波引起的振动位相相反。

5.7 驻波

一、驻波

1. 概念: 一对振幅相同、在同一条直线上沿反向传播的相干波叠加而形成的波

2. 驻波方程:

$$y_1 = A\cos(\omega t - rac{2\pi}{\lambda}x), \quad y_2 = A\cos(\omega t + rac{2\pi}{\lambda}x)$$

$$y=y_1+y_2=2A\cos\omega t\cosrac{2\pi}{\lambda}x$$

5.7 驻波

3. 驻波特征分析

(1) 各点振幅 $A'=|2A\cos 2\pi \frac{x}{\lambda}|$ 随x作周期性变化 χ 腹(A'=2A)位置: $x=\pm 2k\frac{\lambda}{4}$ $(k=0,1,2,\ldots)$ 波节(A'=0)位置: $x=\pm (2k+1)\frac{\lambda}{4}(k=0,1,2,\ldots)$ 相邻波节(或波腹)的距离: $x_{k+1}-x_k=\frac{\lambda}{2}$

5.7 驻波

- (2) 相邻两波节之间的质点振动相位相同,波节两侧质点 的振动相位相反。
- (3) 能量只在两波节间的波腹与波节转移,而无能量的定向传播。
- (4) 形式象波,本质却是介质的一种特殊振动状态。

人耳听到的声音的频率与声源的频率相同吗?

- v_B : 观察者相对于媒质的运动速度
- v_s: 波源相对于媒质的运动速度
- · ν_s: 波源的频率
- · ν: 观察者接受到的频率
- u: 波速; λ : 波长; $\nu_s = \frac{u}{\lambda}$
- (1) 波源和观察者都不动的情况

$$u = \frac{u}{\lambda} = \nu_s$$
 频率不变

(2) 波源不动,观察者以速度 v_B 向着波源运动

$$u=rac{u+v_B}{\lambda}=rac{u+v_B}{u/
u_s}=rac{u+v_B}{u}
u_s$$
 $u=rac{u+v_B}{u}
u_s,\,\,\,\,\,\,$ 频率升高

若观察者以速度 v_B 离开波源运动

$$u=rac{u-v_B}{u}
u_s, \quad$$
 頻率降低 $u=v_B, \quad
u=0$

(3) 观察者不动, 波源以速度 v_s 向着观察者运动

$$\lambda' = \lambda - v_s T = (u - v_s) T$$

波源趋近观察者:

$$u = rac{u}{\lambda'} = rac{u}{(u-v_s)T} = rac{u}{u-v_s}
u_s$$

波源远离观察者:

$$u = \frac{u}{u + v_s} \nu_s$$

(4) 相对于媒质波源和观察者同时运动

当波源和观察者彼此趋近时:

$$u = rac{u + v_B}{\lambda} = rac{u + v_B}{u - v_s}
u_s$$

当波源和观察者彼此离开时:

$$u = rac{u - v_B}{u + v_s}
u_s$$

当 $v_s>u$ 时, 多普勒公式失效