MATHEMATIK IM WEB-BROWSER MIT JSXGRAPH

ALFRED WASSERMANN, UNIVERSITÄT BAYREUTH

14. WORKSHOP - MATHEMATIK IN INGENIEURWISSENSCHAFTLICHEN STUDIENGÄNGEN

ERLANGEN, 18.9.2017

OUTLINE

- Mathematik im Web-Browser
- JSXGraph
- JessieCode
- sketchometry
- Etwas Mathematik

ZU MEINER PERSON

- Universität Bayreuth
 - Lehrstuhl Mathematik und ihre Didaktik, Prof.
 Volker Ulm
 - Forschungsstelle Mobiles Lernen mit digitalen Medien, Prof. Peter Baptist
- Seit 1996: Mathematik im Web-Browser
- Vortrag 2011: Dynamische Mathematik-Software für Web und eBook, 9. Workshop, Jade Hochschule

DYNAMISCHE GEOMETRIE IN BAYREUTH

ABGESCHLOSSENE PROJEKTE

- Geonet (1996)
- GEONEXT (2000)

AKTUELLE PROJEKTE

- sketchometry (2011)
- JessieCode (2012)
- JSXGraph (2007)

SKETCHOMETRY

- Dynamische-Geometrie-System
- Zielgruppe: Schüler

JESSIECODE

- Sprache für Geometrie und mathematische Visualisierung
- Programmiersprache und Compiler
- Zielgruppe: Autoren, Programmierer, (Schüler, Studenten)

JSXGRAPH

- JavaScript Bibliothek
- Zielgruppe: Autoren, Web-Entwickler, Programmierer

BEISPIELE

MATHEMATIK IM WEB-BROWSER

PROGRAMMAUSFÜHRUNG IM WEB-BROWSER

- Ursprünglich: nur statische Web-Seiten
- Ab 1996 Programmausführung möglich:
 - Java
 - JavaScript
 - Flash
 - andere Plug-ins (kaum Bedeutung)

FLASH

- 2007: sehr weit verbreitet (96 % Browserabdeckung)
- ab 2008 mit der Einführung des iPhone zum Scheitern verurteilt

JAVA-PLUG-IN

- Java: Programmiersprache (1996)
- Java-Programme werden in einem Browser-Plug-in oder als eigenständige Programme ausgeführt
- Entwickelt von Sun / Oracle
- Beispiele: Geonet / GEONExT / GeoGebra / Cinderella
- Java: sehr effiziente Ausführung im Web-Browser
- Umfangreiche Programmiersprache
- Sicherheitsprobleme / Versionsprobleme / ökonomische Konflikte

JAVASCRIPT

- seit 1996 in praktisch allen Browser verfügbar
- kein Plug-in nötig
- wurde 2001 als ernsthafte Programmiersprache "entdeckt" (Google Maps)
- ab 2008 mit der Einführung des iPhone:
 - sprunghafte Verbesserung der Effizienz (JIT-Compiler)

JAVASCRIPT

- Läuft mittlerweile auch
 - auf Servern (nodejs)
 - standalone (Electron / Atom / Visual Studio Code)
 - Apps
 - in e-Books (epub3 und ibook)

GRAPHIK IM WEB-BROWSER

- Bitmap-Bilder (gif, jpeg, png)
- Vektorgraphik:
 - VML: Internet-Explorer < 10</p>
 - SVG: Alle Browser
- <canvas>-Element: png-Bild

GRAPHIK IM WEB-BROWSER

- JavaScript kann
 - SVG- und VML-Graphiken manipulieren
 - in canvas-Element zeichnen
- 2007: Start der Entwicklung von JSXGraph
- verwendet SVG, VML oder canvas
- Mittlerweile ist VML vollständig von SVG abgelöst

JSXGRAPH

JSXGraph ist eine JavaScript Bibliothek für **Dynamische Geometrie**, **Funktionsgraphen**, **Diagramme**, und **Datenvisualisierung** im Web-Browser.

- http://jsxgraph.org
- Open source http://github.com/jsxgraph/jsxgraph
- Lizenz: LGPL und MIT
- Erstmals vorgestellt: 2008

TECHNISCHE DETAILS

- Läuft in jedem Web Browser (sogar IE 5.5) und in e-Books (epub3, ibook)
- Läuft auf PC, Tablet und Smartphone
- Basiert auf keiner anderen Bibliothek
- Benötigt ungefähr 140 kB
- Nahtlose Integration in Webseite
- Bedienung mit Maus, Pointer, Multi-Touch
- Kann auch auf server-basierte Berechnungen zugreifen
- Unterstützt Mathjax

LIVE-BEISPIEL

jsfiddle

BEISPIEL

```
var board = JXG.JSXGraph.initBoard('box',
         {boundingbox: [-1.5, 2, 1.5, -1], keepaspectratio:tru
var A = board.create('point', [1, 0]),
    B = board.create('point', [-1, 0]),
    C = board.create('point', [0.2, 1.5]),
    pol = board.create('polygon', [A, B, C], {
            fillColor: '#FFFF00',
            lines: {
                strokeWidth: 2,
                strokeColor: '#009256'
        });
var nABC = hoard create('perpendicular', [no] horders[0]
```

FUNKTIONSUMFANG

- Euklidische Geometrie
- Funktionsgraphen
- Parameter- und Polar-Kurven
- •

SPEZIELLE MÖGLICHKEITEN

- Kurven
 - Verschiedene Spline-Kurven
 - Bezier-Kurven
- Turtle-Graphik
 - PostScript-ähnliche plot-Kommandos
 - Einstieg in Differentialgleichungen
- Numerische Mathematik
- Symbolische Ableitungen

NUMERISCHE MATHEMATIK

- Differentialgleichungen: Runge-Kutta
- Gauss-Bareiss-Determinanten Algorithmus (stabil)
- Integration: quadrature algorithm qag von QUADPACK.
- Ableitungsfreier Nullstellen-Algorithmus
- Ableitungsfreier Funktionsplot-Algorithmus
- ...

JESSIECODE

- Programmiersprache und Compiler für Geometrie und Mathematische Visualisierung
- Beispiel und Referenz: http://bin.sketchometry.org
- Open source http://github.com
- Lizenz: LGPL und MIT

BEISPIEL

```
p = point(-1, 0);
circ = circle(p, 3);
q = glider(-1.7, 3.1, circ);
segment(p, q);
digits = 1;
text = text(-1, 1,
    function() { return '|' +
            p.getName() + q.getName() +
            | | = | + trunc(dist(p, q), digits);
});
text.move([2, 4]);
```

WARUM JESSIECODE?

- Einfachere Eingabe als JavaScript
- Erlaubt Mathematik-Eingabe anstatt JavaScript-Eingabe
- Funktionsplot bei JSXGraph verwendet JessieCode
- Sicherheit (z.B. bei e-Learning-Systemen)
- Kompiliert nach JavaScript und JessieCode

JAVASCRIPT VS. JESSIECODE

JAVASCRIPT:

```
var s = board.create('slider', [[-2,2], [2,2], [-10, 1, 10]]
var f = function {return s.Value() * Math.sin(x * x); };
var plot = board.create('functiongraph', [f]);
```

JESSIECODE:

```
s = slider([[-2,2], [2,2], [-10, 1, 10]]);
f = map (x) -> s * sin(x^2);
plot = functiongraph(f);
```

MÖGLICHKEITEN

- Sprache (JavaScript-ähnlich):
 - Alle JSXGraph-Objekte, z.B. point(x,y)
 - Schleifen,
 - Verzweigungen,
 - Funktionen,
 - Abbildungen,
- Erzeugt *AST* (abstract syntax tree)
- Neu:
 - Ableitungen
 - Erste Versuche zur Vereinfachung von algebraischen Ausdrücken

SKETCHOMETRY

- http://sketchometry.org
- Dynamisches-Geometrie-System
- Basiert auf JSXGraph und JessieCode
- Übersetzungen in viele Sprachen
- Fokus auf aber nicht eingeschränkt auf touch devices
- Interaktion durch Skizzieren sketching
- Responsive design: auch auf Smartphones benutzbar
- Frei verfügbar

PHILOSOPHIE

SKETCHOMETRY: SKIZZENWERKZEUG FÜR SCHÜLER

- Schüler skizzieren ihre Ideen auf eine (fast) leere sketchometry-Zeichenfläche
- und schreiben ihre Beobachtungen in ihr (Papier)-Arbeitsheft
- sketchometry ist kein Autorentool für Lehrer

TECHNISCHE DETAILS

- Apps für iOS, Android, Chrome
- Läuft auch im Web-Browser (Chrome, Firefox, IE10+, Safari, ...)
- Cloud-Unterstützung:
 - Apple iCloud, Dropbox, Google Drive, Microsoft OneDrive, WebDAV, Festplatte
- Kann z.B. in Moodle eingebettet werden

MATHEMATIK ZUR GESTENERKENNUNG

SKETCH-ERKENNUNG

Basiert auf

- Gestenerkennung
 - Yang Li, *Protractor: a fast and accurate gesture recognizer*, CHI 2010
- Eckenerkennung
- Punkte und andere Objekte, die überfahren wurden

PROTRACTOR

- Unistroke recognizer
- Example based recognizer
- Algorithm:

Input: (x, y) data points of stroke

1. Resample

Determine N equidistant data points by linear interpolation

2. Normalize

Translate centroid to origin and (optionally) rotate ightarrow vector s

3. Find nearest template vector t to stroke vector s

FIRST APPROACH

Find example stroke having closest angle,

i.e. maximize for the stroke vector s

$$rac{|\langle s,t
angle|}{|s||t|}$$

among all template strokes t

TAKE ROTATION INTO ACCOUNT

Maximize the expression

$$rac{\langle s, t(heta)
angle}{|s||t(heta)|}$$

It is easy to see that

$$heta=rctan(rac{a}{b})$$
 where $a=\langle s,t
angle$ and

VIELEN DANK!