Tutorial on Expectation-Maximization Algorithm

Long Qiu

qiul@comp.nus.edu.sq

School of Computing

National University of Singapore

Maximum Likelihood Estimation

- Maximum Likelihood Estimation
- Example #1 (from [1]): MLE with missing data

- Maximum Likelihood Estimation
- Example #1 (from [1]): MLE with missing data
- EM Algorithm

- Maximum Likelihood Estimation
- Example #1 (from [1]): MLE with missing data
- EM Algorithm
- Example #2 (from [1]): MLE with a hidden variable

- Maximum Likelihood Estimation
- Example #1 (from [1]): MLE with missing data
- EM Algorithm
- Example #2 (from [1]): MLE with a hidden variable
- Discussion

Maximum Likelihood Estimation

- Parameter Estimation: Given
 - a set of observed data $\{x_1, x_2, ...\}$, and
 - a proposed model $p(x \mid \theta)$

to find

• the value for one or more parameters θ that maximize the likelihood:

$$L(\theta; x) = p(x_1, x_2, \dots \mid \theta).$$

Α	В
0	0
0	0
0	0
0	?
0	1
1	0
1	1
1	1

	\overline{A}	A
\overline{B}	$p(\overline{AB})$	$p(A\overline{B})$
B	$p(\overline{A}B)$	p(AB)

Α	В
0	0
0	0
0	0
0	1
1	0
1	1
1	1

Estimate parameters in joint distribution: θ

	\overline{A}	A
\overline{B}	3/7	1/7
B	1/7	2/7

Opt 1: Ignore the incomplete data

В
0
0
0
0
0
1
0
1
1

	\overline{A}	A
\overline{B}	4/8	1/8
B	1/8	2/8

- Opt 1: Ignore the incomplete data
- Opt 2: Fill in a best guessed value

Α	В
0	0
0	0
0	0
0	?
0	1
1	0
1	1
1	1

	\overline{A}	A
\overline{B}	0.25	0.25
B	0.25	0.25

- Opt 1: Ignore the incomplete data
- Opt 2: Fill in a best guessed value
- Opt 3: Fill in with distribution

Α	В
0	0
0	0
0	0
0	0.5, 0
	0.5, 1
0	1
1	0
1	1
1	1

	\overline{A}	A
\overline{B}	0.25	0.25
B	0.25	0.25

- Opt 1: Ignore the incomplete data
- Opt 2: Fill in a best guessed value
- Opt 3: Fill in with distribution

Α	В
0	0
0	0
0	0
0	0.5, 0
	0.5, 1
0	1
1	0
1	1
1	1

	\overline{A}	A
\overline{B}	3.5/8	1/8
B	1.5/8	2/8

- Opt 1: Ignore the incomplete data
- Opt 2: Fill in a best guessed value
- Opt 3: Fill in with distribution

Α	В
0	0
0	0
0	0
0	0.7, 0
	0.3, 1
0	1
1	0
1	1
1	1

	\overline{A}	A
\overline{B}	3.5/8	1/8
B	1.5/8	2/8

- Opt 1: Ignore the incomplete data
- Opt 2: Fill in a best guessed value
- Opt 3: Fill in with distribution

Problem Setting

- observation: $x_i = (x_{i1}, x_{i2}, ..., x_{iN}), i = 1...k$
- modeling:
 - observable variables: $X = (X_1, X_2, ..., X_N)$
 - hidden/latent variables: $Z = (Z_1, Z_2, ..., Z_M)$
 - probability model: $p(x, z \mid \theta)$
- parameter estimation:
 - find the values for θ that maximize the *log likelihood* $l(\theta; x, z) \triangleq \log p(x, z \mid \theta)$

Why observability matters?

If Z is observable, we can maximize the *complete log likelihood*:

$$l_{\mathbf{c}}(\theta; x, z) \triangleq \log p(x, z \mid \theta);$$

If Z is hidden, we need to maximize the incomplete log likelihood:

$$l(\theta; x) \triangleq \log p(x \mid \theta) = \log \sum_{z} p(x, z \mid \theta).$$

an arbitrary distribution: $q(z \mid x)$

$$l(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

an arbitrary distribution: $q(z \mid x)$

$$l(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

Jensen's Inequality: For a real continuous concave function f(x):

$$\sum_{x} p(x)f(x) \le f\left(\sum_{x} p(x)x\right)$$

an arbitrary distribution: $q(z \mid x)$

$$l(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\stackrel{\ge}{=} \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\stackrel{\triangle}{=} \mathcal{L}(q, \theta)$$

an arbitrary distribution: $q(z \mid x)$

$$l(\theta; x) = \log p(x \mid \theta)$$

$$= \log \sum_{z} p(x, z \mid \theta)$$

$$= \log \sum_{z} q(z \mid x) \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\stackrel{\geq}{=} \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

$$\stackrel{\triangle}{=} \mathcal{L}(q, \theta)$$

 $\mathcal{L}(q,\theta)$ is a lower bound of $l(\theta;x)$

Expectation Step

With θ fixed, find q that maximizes $\mathcal{L}(q, \theta)$.

$$\mathcal{L}(q, \theta) = \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}$$

Expectation Step

With θ fixed, find q that maximizes $\mathcal{L}(q, \theta)$.

$$\mathcal{L}(q, \theta) = \sum_{z} q(z \mid x) \log \frac{p(x, z \mid \theta)}{q(z \mid x)}$$
$$q^{(t+1)}(z \mid x) \Downarrow$$
$$\psi p(z \mid x, \theta^{(t)})$$

Expectation Step

With θ fixed, find q that maximizes $\mathcal{L}(q, \theta)$.

$$\mathcal{L}(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)}$$

$$q^{(t+1)}(z \mid x)$$

$$\psi p(z \mid x, \theta^{(t)})$$

$$\mathcal{L}(p(z \mid x, \theta^{(t)}), \theta^{(t)}) = \sum_{z} p(z \mid x, \theta^{(t)}) \log \frac{p(x,z \mid \theta^{(t)})}{p(z \mid x, \theta^{(t)})}$$

$$= \sum_{z} p(z \mid x, \theta^{(t)}) \log p(x \mid \theta^{(t)})$$

$$= \log p(x \mid \theta^{(t)})$$

$$= l(\theta^{(t)}; x)$$

Maximization Step

With q fixed, find θ that maximizes $\mathcal{L}(q, \theta)$.

$$\mathcal{L}(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)}$$

$$= \sum_{z} q(z \mid x) \log p(x,z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$

$$= \langle l_{c}(\theta; x, z) \rangle_{q} - \sum_{z} q(z \mid x) \log q(z \mid x)$$

Maximization Step

With q fixed, find θ that maximizes $\mathcal{L}(q, \theta)$.

$$\mathcal{L}(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)}$$

$$= \sum_{z} q(z \mid x) \log p(x,z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$

$$= \langle l_{c}(\theta; x, z) \rangle_{q} - \sum_{z} q(z \mid x) \log q(z \mid x)$$

Just need to maximize $\langle l_c(\theta; x, z) \rangle_q$, which is no more difficult than maximizing $\log p(x, z \mid \theta)$, the complete log likelihood.

Maximization Step

With q fixed, find θ that maximizes $\mathcal{L}(q, \theta)$.

$$\mathcal{L}(q,\theta) = \sum_{z} q(z \mid x) \log \frac{p(x,z \mid \theta)}{q(z \mid x)}$$

$$= \sum_{z} q(z \mid x) \log p(x,z \mid \theta) - \sum_{z} q(z \mid x) \log q(z \mid x)$$

$$= \langle l_{c}(\theta; x, z) \rangle_{q} - \sum_{z} q(z \mid x) \log q(z \mid x)$$

Just need to maximize $\langle l_c(\theta; x, z) \rangle_q$, which is no more difficult than maximizing $\log p(x, z \mid \theta)$, the complete log likelihood.

Now we have improved θ : 1)it leads to higher likelihood; and 2) q is ready to be further, better, estimated.

EM: an Iterative Process

- ullet Start with initial $heta^0$
- Repeat until convergence

E-Step:
$$p(z \mid x, \theta^{(t)}) \rightarrow q^{(t+1)} (= \operatorname{argmax}_q \mathcal{L}(q, \theta^{(t)}))$$

M-Step:
$$\theta^{(t+1)} = \operatorname{argmax}_{\theta} \mathcal{L}(q^{(t+1)}, \theta)$$

Α	В	#	$Pr(H^m \mid D^m, \theta)$
0	0	6	
0	1	1	
1	0	1	
1	1	4	

Parameters to estimate:

$$Pr(H) = ?$$
 $Pr(A \mid H) = ?$
 $Pr(A \mid \overline{H}) = ?$

$$Pr(B \mid H) = ?$$

$$Pr(B \mid \overline{H}) = ?$$

Α	В	#	$Pr(H^m \mid D^m, \theta)$
0	0	6	
0	1	1	
1	0	1	
1	1	4	

Parameters initialized:

$$Pr(H) = 0.4$$

$$Pr(A \mid H) = 0.55$$

$$Pr(A \mid \overline{H}) = 0.61$$

$$Pr(B \mid H) = 0.43$$

$$Pr(B \mid \overline{H}) = 0.52$$

Α	В	#	$Pr(H^m \mid D^m, \theta)$
0	0	6	.48
0	1	1	.39
1	0	1	.42
1	1	4	.33

Iteration 1: E-Step

$$Pr(H \mid A, B) = \frac{Pr(A, B, H)}{Pr(A, B)}$$

$$= \frac{Pr(A, B \mid H) Pr(H)}{Pr(A, B)}$$

$$= \frac{Pr(A, B \mid H) Pr(H)}{Pr(A, B)}$$

$$= \frac{Pr(A \mid H) Pr(B \mid H) Pr(H)}{Pr(A, B \mid H) Pr(H) + Pr(A, B \mid \overline{H}) (1 - Pr(H))}$$

Parameters initialized:

$$Pr(H) = 0.4$$

$$Pr(A \mid H) = 0.55$$

$$Pr(A \mid \overline{H}) = 0.61$$

$$Pr(B \mid H) = 0.43$$

$$Pr(B \mid \overline{H}) = 0.52$$

Α	В	#	$Pr(H^m \mid D^m, \theta)$
0	0	6	.48
0	1	1	.39
1	0	1	.42
1	1	4	.33

Iteration 1: E-Step

Iteration 1: M-step (parameters re-estimated):

$$Pr(H) = 0.42$$

$$Pr(A \mid H) = 0.35$$

$$Pr(A \mid \overline{H}) = 0.46$$

$$Pr(B \mid H) = 0.34$$

$$Pr(B \mid \overline{H}) = 0.47$$

Α	В	#	$Pr(H^m \mid D^m, \theta)$
0	0	6	.52
0	1	1	.39
1	0	1	.39
1	1	4	.28

Iteration 2: E-Step

Iteration 1:
M-step
(parameters re-estimated):

$$Pr(H) = 0.42$$

$$Pr(A \mid H) = 0.35$$

$$Pr(A \mid \overline{H}) = 0.46$$

$$Pr(B \mid H) = 0.34$$

$$Pr(B \mid \overline{H}) = 0.47$$

Α	В	#	$Pr(H^m \mid D^m, \theta)$
0	0	6	.52
0	1	1	.39
1	0	1	.39
1	1	4	.28

Iteration 2: E-Step

Iteration 2:
M-step
(parameters re-estimated):

$$Pr(H) = 0.42$$

$$Pr(A \mid H) = 0.31$$

$$Pr(A \mid \overline{H}) = 0.50$$

$$Pr(B \mid H) = 0.30$$

$$Pr(B \mid \overline{H}) = 0.50$$

Α	В	#	$Pr(H^m \mid D^m, \theta)$
0	0	6	.79
0	1	1	.31
1	0	1	.31
1	1	4	.05

Iteration 5: E-Step

Iteration 5:
M-step:

$$Pr(H) = 0.46$$

$$Pr(A \mid H) = 0.09$$

$$Pr(A \mid \overline{H}) = 0.69$$

$$Pr(B \mid H) = 0.09$$

$$Pr(B \mid \overline{H}) = 0.69$$

Α	В	#	$Pr(H^m \mid D^m, \theta)$
0	0	6	.971
0	1	1	.183
1	0	1	.183
1	1	4	.001

Iteration 10: E-Step

Iteration 10: M-step:

$$Pr(H) = 0.52$$

$$Pr(A \mid H) = 0.03$$

$$Pr(A \mid \overline{H}) = 0.83$$

$$Pr(B \mid H) = 0.03$$

$$Pr(B \mid \overline{H}) = 0.83$$

Properties of EM:

- Properties of EM:
 - Each iteration increases the log likelihood;

- Properties of EM:
 - Each iteration increases the log likelihood;
 - Susceptible to local maximum. Solution: Initialize $\theta^{(0)}$ randomly, or for multiple times.

- Properties of EM:
 - Each iteration increases the log likelihood;
 - Susceptible to local maximum. Solution: Initialize $\theta^{(0)}$ randomly, or for multiple times.
- Commonly used for:

- Properties of EM:
 - Each iteration increases the log likelihood;
 - Susceptible to local maximum. Solution: Initialize $\theta^{(0)}$ randomly, or for multiple times.
- Commonly used for:
 - mixture models;

- Properties of EM:
 - Each iteration increases the log likelihood;
 - Susceptible to local maximum. Solution: Initialize $\theta^{(0)}$ randomly, or for multiple times.
- Commonly used for:
 - mixture models;
 - HMM;

- Properties of EM:
 - Each iteration increases the log likelihood;
 - Susceptible to local maximum. Solution: Initialize $\theta^{(0)}$ randomly, or for multiple times.
- Commonly used for:
 - mixture models;
 - HMM;
 - models with hidden variables (why do we need hidden variables?), etc.

References

- [1] Leslie Pack Kaelbling, sma5504/MIT6.825 lecture notes (available on MIT OpenCourseWare: ocw.mit.edu/OcwWeb/Electrical-Engineering-and-Computer-Science)
- [2] Michael I. Jordan, An Introduction to Probabilistic Graphical Models (Book Draft)