Neural Networks

Data Mining & Analytics

Prof. Zach Pardos

INFO254/154: Spring '19

Neural Networks: Terminology

edge, weight, coefficient

node, layer, activation function, loss

Neural Networks: Terminology

edge, weight, coefficient

node, layer, activation function, loss

Neural Networks: Abstract levels

Hardware / Software optimization

Model of the mind

Neural Networks: Abstract levels

Hardware / Software optimization

Model of the mind

Contemporary applications

Long Short-Term Memory (a type of neural network) + Reinforcement Learning: https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Contemporary applications

Generative Adversarial Networks https://thispersondoesnotexist.com/

Contemporary applications

Machine Translation of words (word2vec): https://arxiv.org/abs/1309.4168 Phrase Translation (sequence2sequence):

https://blog.keras.io/a-ten-minute-introduction-to-sequence-to-sequence-learning-in-keras.html

Classification: $X \longrightarrow Y^{\text{(the target)}}$

Classification: $X \longrightarrow Y^{\text{(the target)}}$

Decision Tree

Learns a series of if-then-else rules to apply to X to get Y

Decision Tree

| Vouth | middle_aged | senior | Letter | senior | vest | ru

Neural Network

Learns a series of if-then-else rules to apply to X to get Y

Learns a series of matrix multiplications to apply to X (an embedding) to get Y

Decision Tree

youth middle Aged senior stadent?

no yes fair excellent

no yes no yes

Learns a series of if-then-else rules to apply to X to get Y

Learns a series of matrix multiplications to apply to X (an embedding) to get Y

Loosely similar concepts

Decision Trees	Neural Networks
Impurity	Loss
Depth	Layers
Rules	Weights

Neural Network

Neural Networks - Overview

Weaknesses

- Long training times
- Large hyper parameter
 - # hidden layers, # hidden nodes in each layer, learning rate, max epochs, noise injection, validation set stopping criterion
- Interpretability (area of research)

Strengths

- Turing complete
- High tolerance for noise
- Recent progress in GPU computing has sped up training considerably (~10-100x vs CPU)
- Dimensionality reduction techniques
 (<u>t-sne</u>) have opened up possibilities for interpretability

- Backpropagation
- Input layer
- Hidden layer
- Output layer
- 'n' layer network
- "fully connected"
- Activations

- Backpropagation
 - Algorithm for iteratively improving the prediction of the model by updating the model's weights based on prediction error (loss)
 - Typically variants on Stochastic Gradient Descent (SGD)

An overview of gradient descent optimization algorithms (Rudder, blog)

- Backpropagation
- Input layer
 - A vector of numeric features
 - Categoricals are typically converted to one-hot
 - Numeric is typically normalized
 - Number of nodes in the output layer = # of classes

- Backpropagation
- Input layer
- Hidden layer
 - All-connected to the previous and next layers' nodes
 - Has a user defined number of nodes
 - There can be multiple hidden layers stacked on top of one another
 - Nodes in the hidden layer have an activation function
 - Different hidden layers can have different numbers of nodes and activations

- Backpropagation
- Input layer
- Hidden layer
- Output layer
 - The number of nodes corresponds to the number of classes being predicted
 - Except for binary classes, which are represented with a single node
 - Nodes in the output layer also have an activation function
 - A single output node can be used for numeric prediction (regression)
 - The activation function should be compatible with the output type

- Backpropagation
- Input layer
- Hidden layer
- Output layer
- Activations

- Backpropagation
- Input layer
- Hidden layer
- Output layer
- 'n' layer network
 - o n = # layers the input layer
- "All (or fully) connected"
 - In a typical Multi-layer feed-forward network, all nodes in the previously x_n layer are connected to all nodes in the subsequent later

The Perceptron (node)

- 1. Weight Initialization
 - Weights
 - o bias
- 2. Forward propagation of Input
 - $\bigcirc \qquad I_j = \sum_i w_{ij} O_i + \theta_j, \quad \theta_j \text{ is the } \overrightarrow{\mathbf{bias}} \text{ of the unit.}$
 - O_j = $\frac{1}{1+e^{-I_j}}$. Squashing function

Logistic regression

 $O = X^*W_{XO} =$

Input = one-hot of sock color (3 values)
Output = are shoes black? (binary)

Logistic regression

Input = one-hot of sock color (3 values)
Output = are shoes black? (binary)

What needs to be added to complete this logistic model?

No bias, no squashing (activation) function

Logistic regression

Input = one-hot of sock color (3 values)
Output = are shoes black? (binary)

$$O = X^*W_{XO} = -0.3171$$

Sigmoid =
$$\frac{1}{1 + e^{-a}}$$

Add a sigmoid activation to "squash" input to an output domain of 0 to 1

No bias

Logistic regression

Input = one-hot of sock color (3 values) Output = are shoes black? (binary)

$$O = X*W_{XO} = -0.3171$$

sigmoid(O) = 0.4214

Add a sigmoid activation to "squash" input to an output domain of 0 to 1 Sigmoid =

Sigmoid =
$$\frac{1}{1 + e^{-x}}$$

Logistic regression

$$W_{XO} = \begin{array}{c} 0.6948 \\ -0.3171 \\ -0.9502 \end{array}$$

$$O = X^*W_{XO} = -0.3171 + bias$$

Input = one-hot of sock color (3 values)
Output = are shoes black? (binary)

Add a bias is like adding a constant "hot" feature to your instances

Logistic regression

Input = one-hot of sock color (3 values)
Output = are shoes black? (binary)

Add a bias is like adding a constant "hot" feature to your instances

(In a logistic regression, bias is the y-intercept)

Relevance to Lin. Alg.

Logistic regression

$$O = X^*W_{XO} = -0.3171 + bias$$

Input = one-hot of sock color (3 values)
Output = are shoes black? (binary)

What about generalizing to classification problem with more than two classes?

(Multinomial) Logistic regression

Input = one-hot of sock color (3 values)
Output = are shoes black? (binary)

$X = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

$$O = X^*W_{XO} =$$

$$y_i = \frac{e^{z_i}}{\sum_{j \in Classes} e^{z_j}}$$
Softmax
Activation

Generalizes to multi-class (multinomial logistic) with an output node per class + softmax activation

Multilayer Perceptron

Input size = 3 Hidden size = 2

X =	0	1	0	
	0.6948		0.0344	input dimensionality
W _{xh} =	0.3171		0.4387	imens
XII	0.9502		0.3816	sional
	ou	tput dime	nsionality	ity
$h = X^*W$	' _{xh} =	?	?	

Input size = 3 Output size = 2

X =	0	1	0
-----	---	---	---

 $W_{xh} = \begin{bmatrix} 0.6948 & 0.0344 \\ 0.3171 & 0.4387 \\ 0.9502 & 0.3816 \end{bmatrix}$

h = 0.3171 0.4387

Input size = 3 Output size = 2

$$W_{xh} = \begin{bmatrix} 0.6948 & 0.0344 \\ 0.3171 & 0.4387 \\ 0.9502 & 0.3816 \end{bmatrix}$$

h =	0.3171	0.4387

$$W_{ho} = \frac{0.20}{-0.55}$$
 $O = h*W_{ho} = -0.1779$

No bias, no squashing (activation) function

Input size = 3 Output size = 2

X =	0	1	0

$$W_{xh} = \begin{bmatrix} 0.6948 & 0.0344 \\ 0.3171 & 0.4387 \\ 0.9502 & 0.3816 \end{bmatrix}$$

$$h = 0.3171 \quad 0.4387$$

$$W_{ho} = \begin{bmatrix} 0.20 \\ -0.55 \end{bmatrix}$$
 $O = h*W_{ho} = -0.1779$

sigmoid(O) = 0.4556 No bias

Input size = 3 Output size = 2

X =	0	1	0
-----	---	---	---

$$W_{xh} = \begin{bmatrix} 0.6948 & 0.0344 \\ 0.3171 & 0.4387 \\ 0.9502 & 0.3816 \end{bmatrix}$$

$$h = 0.3171 + h_{bias[0]} 0.4387 + h_{bias[1]}$$

$$W_{ho} = \frac{0.20}{-0.55}$$
 $O = h*W_{ho} + O_{bias}$

sigmoid(O) =

Example **Keras** implementation

Of a multilayer perceptron

```
from keras.layers import Input, Dense
from keras.models import Model
# This returns a tensor
inputs = Input(shape=(784,))
# a layer instance is callable on a tensor, and returns a tensor
x = Dense(64, activation='relu')(inputs)
x = Dense(64, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)
# This creates a model that includes
# the Input Layer and three Dense Layers
model = Model(inputs=inputs, outputs=predictions)
model.compile(optimizer='rmsprop',
              loss='categorical crossentropy',
              metrics=['accuracy'])
model.fit(data, labels) # starts training
```

Use of Keras is optional for the upcoming lab - scikit's neural network package is acceptable and simpler

Exercise

- 1. Can you find weight values that minimize the error for this instance?
- 2. Do these values work well for a 2nd instance: $X = [1 \ 0 \ 0], Y = 1$?
- 3. What modifications (if necessary) were needed to accommodate both instances (minimize the average of their errors)?

X =	0	1	0	Y = 0	0	0.6948	
	0.6948		0.0344		0.31		
$W_{xh} =$	0.3171		0.4387		$\left(1\right)^{0}$	4387 0.03 P 250	$\left\langle \right\rangle $
All	0.9502		0.3816		200		
					0	0.3816 0.4387	
h =	0.3171	0.4387			0		
					X	h	0
$W_{ho} =$	0.20	0 =	h*W _{ho} =	= -0.177	79		
110	-0.55		ho		. •	1	
sigmoid(O) =	0.4556		Error =	= Sign	noid(O) - Y	Sigmoid = $\frac{1}{1 + e^{-x}}$	

SGD

Backpropagation using Stochastic Gradient Descent (for efficient weight value search)

Covered Thursday

Additional Neural Network details

- Batch size
- Epoch
- Stopping criteria
- Rules of thumb in network design
- Tractability
- Applications (ImageNet, word2vec, AlphaGo)
- GPU acceleration
- Neural network software frameworks

Data Mining & Analytics

Process - continued

3. Backpropagation of error

•
$$Err_j = O_j(1 - O_j)(T_j - O_j)$$

- Error in a single output unit
- Oj actual output of unit j
- Tj known target value of the training tuple

•
$$Err_j = O_j(1 - O_j) \sum_k Err_k w_{jk}$$

- Error of a hidden unit is the weighted sum of the errors connected to it
- Weights and biases are updated.

$$\Delta w_{ij} = (l)Err_jO_i.$$
 $\Delta \theta_j = (l)Err_j.$ $w_{ij} = w_{ij} + \Delta w_{ij}.$ $\theta_j = \theta_j + \Delta \theta_j.$

Han, Kamber, Pei (2011), Sec 9.2.3

Algorithm - Neural Networks

Algorithm: Backpropagation. Neural network learning for classification or numeric prediction, using the backpropagation algorithm.

Input:

- D, a data set consisting of the training tuples and their associated target values;
- I, the learning rate;
- network, a multilayer feed-forward network.

Output: A trained neural network.

Method:

- (1) Initialize all weights and biases in *network*;
- (2) while terminating condition is not satisfied {
- (3) **for** each training tuple X in D {
- (4) // Propagate the inputs forward:(5) for each input layer unit j {
- (6) For each input layer unit $j \in O_i = I_i$; // output of an input unit is its actual input value
- (7) **for** each hidden or output layer unit j {
- (8) $I_{j} = \sum_{i} w_{ij} O_{i} + \theta_{j}; //\text{compute the net input of unit } j \text{ with respect to}$
 - the previous layer, i
- (9) $O_j = \frac{1}{1+e^{-I_j}}$; } // compute the output of each unit j

(2011), Sec 9.2.2

Han, Kamber, Pei

Algorithm - Neural Networks (continued)

```
// Backpropagate the errors:
(10)
                   for each unit j in the output layer
(11)
                           Err_j = O_j(1 - O_j)(T_j - O_j); // compute the error
(12)
                   for each unit j in the hidden layers, from the last to the first hidden layer
(13)
                           Err_j = O_j(1 - O_j) \sum_k Err_k w_{jk}; // compute the error with respect to
(14)
                                     the next higher layer, k
                   for each weight w_{ij} in network {
(15)
                           \Delta w_{ij} = (l) Err_i O_i; // weight increment
(16)
                           w_{ij} = w_{ij} + \Delta w_{ij}; \(\right\) // weight update
(17)
                   for each bias \theta_i in network {
(18)
                           \Delta \theta_i = (l) Err_i; // bias increment
(19)
                           \theta_i = \theta_i + \Delta \theta_i; } // bias update
(20)
(21)
```

Han, Kamber, Pei (2011), Sec 9.2.2

Terminating Condition

Terminating condition: Training stops when

- All Δw_{ij} in the previous epoch are so small as to be below some specified threshold, or
- The percentage of tuples misclassified in the previous epoch is below some threshold, or
- A prespecified number of epochs has expired.
- Accuracy no longer is increasing on a held out validation set

Example

Table 9.1 Initial Input, Weight, and Bias Values

x_1	x_2	x_3	w_{14}	<i>w</i> ₁₅	w ₂₄	w ₂₅	w ₃₄	<i>w</i> ₃₅	w ₄₆	<i>w</i> ₅₆	θ_4	θ_5	θ_6
1	0	1	0.2	-0.3	0.4	0.1	-0.5	0.2	-0.3	-0.2	-0.4	0.2	0.1

 Table 9.2
 Net Input and Output Calculations

Unit, j	Net Input, I_j	Output, O _j
4	0.2 + 0 - 0.5 - 0.4 = -0.7	$1/(1+e^{0.7}) = 0.332$
5	-0.3 + 0 + 0.2 + 0.2 = 0.1	$1/(1 + e^{-0.1}) = 0.525$
6	(-0.3)(0.332) - (0.2)(0.525) + 0.1 = -0.105	$1/(1+e^{0.105}) = 0.474$

Example- continued

Table 9.3 Calculation of the Error at Each Node

Unit, j	Err _j
6	(0.474)(1 - 0.474)(1 - 0.474) = 0.1311
5	(0.525)(1 - 0.525)(0.1311)(-0.2) = -0.0065
4	(0.332)(1-0.332)(0.1311)(-0.3) = -0.0087

Table 9.4 Calculations for Weight and Bias Updating

Weight	
or Bias	New Value
W46	-0.3 + (0.9)(0.1311)(0.332) = -0.261
<i>w</i> ₅₆	-0.2 + (0.9)(0.1311)(0.525) = -0.138
w_{14}	0.2 + (0.9)(-0.0087)(1) = 0.192
w_{15}	-0.3 + (0.9)(-0.0065)(1) = -0.306
w ₂₄	0.4 + (0.9)(-0.0087)(0) = 0.4
w ₂₅	0.1 + (0.9)(-0.0065)(0) = 0.1
w ₃₄	-0.5 + (0.9)(-0.0087)(1) = -0.508
W35	0.2 + (0.9)(-0.0065)(1) = 0.194
θ_6	0.1 + (0.9)(0.1311) = 0.218
θ_5	0.2 + (0.9)(-0.0065) = 0.194
θ_4	-0.4 + (0.9)(-0.0087) = -0.408

Further Backprop Example

Calculate

- 1. The outputs of all nodes on the first feed-forward pass
- 2. The errors at each hidden and output node
- 3. The updated weight values
- The outputs of all nodes on the second feed-forward pass

NOTE: skip bias updates to save time

Guide <u>here</u>