Introduction
The direct problem
The dual problem
Numerical inversion

### Inverse potentials of one-body densities

Louis Garrigue Cergy's university

December 6<sup>th</sup>, 2024 Oslo

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

• No spin, static, space  $\mathbb{R}^d$ , electrons

- No spin, static, space  $\mathbb{R}^d$ , electrons
- States are  $\Psi \in \mathit{L}^{2}_{\mathsf{a}}\left(\left(\mathbb{R}^{\mathit{d}}\right)^{\mathit{N}},\mathbb{C}\right)$ , with  $\int_{\mathbb{R}^{\mathit{dN}}}|\Psi|^{2}=1$

- No spin, static, space  $\mathbb{R}^d$ , electrons
- ullet States are  $\Psi\in L^2_{\mathsf{a}}\left(\left(\mathbb{R}^d
  ight)^{\mathcal{N}},\mathbb{C}
  ight)$ , with  $\int_{\mathbb{R}^{d\mathcal{N}}}|\Psi|^2=1$
- $\Psi(\ldots,x_i,\ldots,x_j,\ldots) = -\Psi(\ldots,x_j,\ldots,x_i,\ldots)$

- No spin, static, space  $\mathbb{R}^d$ , electrons
- ullet States are  $\Psi\in L^2_{\mathsf{a}}\left(\left(\mathbb{R}^d
  ight)^N,\mathbb{C}
  ight)$ , with  $\int_{\mathbb{R}^{dN}}|\Psi|^2=1$
- $\Psi(\ldots,x_i,\ldots,x_j,\ldots) = -\Psi(\ldots,x_j,\ldots,x_i,\ldots)$
- Hamiltonian : operator of  $L^2_a((\mathbb{R}^d)^N,\mathbb{C})$

$$H_N(v) = \sum_{i=1}^N -\Delta_{x_i} + \sum_{1 \leq i < j \leq N} w(x_i - x_j) + \sum_{i=1}^N v(x_i)$$

- No spin, static, space  $\mathbb{R}^d$ , electrons
- States are  $\Psi \in \mathit{L}^{2}_{\mathsf{a}}\left(\left(\mathbb{R}^{d}\right)^{N},\mathbb{C}\right)$ , with  $\int_{\mathbb{R}^{dN}}\left|\Psi\right|^{2}=1$
- $\Psi(\ldots,x_i,\ldots,x_i,\ldots) = -\Psi(\ldots,x_i,\ldots,x_i,\ldots)$
- Hamiltonian : operator of  $L^2_a((\mathbb{R}^d)^N,\mathbb{C})$

$$H_N(v) = \sum_{i=1}^N -\Delta_{x_i} + \sum_{1 \leqslant i < j \leqslant N} w(x_i - x_j) + \sum_{i=1}^N v(x_i)$$

• Ground states are given by the eigenspace  $Ker(H_N(v) - E_N(v))$ , found by

$$E_N(v) = \inf_{\substack{\Psi \in H^1_{\mathsf{a}}((\mathbb{R}^d)^N) \\ \int |\Psi|^2 = 1}} \langle \Psi, H_N(v) \Psi \rangle$$

#### Pure and mixed states

Define  $P_{\Psi} := |\Psi\rangle \langle \Psi|$ .

#### Pure and mixed states

Define  $P_{\Psi} := |\Psi\rangle \langle \Psi|$ .

Pure states are

$$\left\{P_{\Psi}, \Psi \in H^1_{\mathsf{a}}(\mathbb{R}^{\mathit{dN}}), \int_{\mathbb{R}^{\mathit{dN}}} |\Psi|^2 = 1\right\}$$

#### Pure and mixed states

Define  $P_{\Psi} := |\Psi\rangle \langle \Psi|$ .

Pure states are

$$\left\{ P_{\Psi}, \Psi \in \mathit{H}^{1}_{\mathsf{a}}(\mathbb{R}^{\mathit{dN}}), \int_{\mathbb{R}^{\mathit{dN}}} |\Psi|^{2} = 1 \right\}$$

• Choose a basis  $(\Psi_i)_{i\in\mathbb{N}}$ . Mixed states are

$$\begin{aligned} \mathsf{Conv} \ &\left\{ P_{\Psi}, \Psi \in H^1_\mathsf{a}(\mathbb{R}^{dN}), \int_{\mathbb{R}^{dN}} |\Psi|^2 = 1 \right\} \\ &= \left\{ \sum_{i \in \mathbb{N}} \lambda_i P_{\Psi_i} \ \big| \ \sum_{i=1}^{+\infty} \lambda_i = 1, \lambda_i \geqslant 0 \right\} \\ &= \left\{ \Gamma \ \mathsf{op} \ \mathsf{of} \ H^1_\mathsf{a}(\mathbb{R}^{dN}) \ \big| \ \Gamma = \Gamma^* \geqslant 0, \mathrm{Tr} \ \Gamma = 1 \right\} \end{aligned}$$

ground mixed states : Ran  $\Gamma \subset \text{Ker}\left(H_N(v) - E_N(v)\right)$ 

# The one-body density

ullet One-body density (much less information than  $\Psi$ )

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{d(N-1)}} |\Psi|^2 (x, x_2, \dots, x_N) \mathrm{d}x_2 \cdots \mathrm{d}x_N$$

# The one-body density

ullet One-body density (much less information than  $\Psi$ )

$$\rho_{\Psi}(x) := N \int_{\mathbb{R}^{d(N-1)}} |\Psi|^2 (x, x_2, \dots, x_N) \mathrm{d}x_2 \cdots \mathrm{d}x_N$$

• 
$$\rho \geqslant 0$$
,  $\int \rho_{\Psi} = N$ ,  $\sqrt{\rho} \in H^1$ 

- Introduction
  - The setting
  - The goal
- 2 The direct problen
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

## Inverse potential

• Given  $\rho \geqslant 0$ ,  $\int \rho = N$ ,  $k \in \mathbb{N}$ , find v such that  $\rho_{\Psi^{(k)}(v)} = \rho$ .



Figure: Density  $\rho$  and its inverse  $\nu$ , for N=3 and k=2

## Inverse potential

• Given  $\rho \geqslant 0$ ,  $\int \rho = N$ ,  $k \in \mathbb{N}$ , find  $\nu$  such that  $\rho_{\Psi(\nu)} = \rho$ .



Figure: Density  $\rho$  and its inverse  $\nu$ , for N=3 and k=2

### Inverse potential

• Given  $\rho \geqslant 0$ ,  $\int \rho = N$ ,  $k \in \mathbb{N}$ , find  $\nu$  such that  $\rho_{\Psi(\nu)} = \rho$ .



Figure: Density  $\rho$  and its inverse  $\nu$ , for N=3 and k=2

Existence/uniqueness?

• Finding effective models in DFT

• Finding effective models in DFT

- Finding effective models in DFT
- Get rid of the complexity of interactions

- Finding effective models in DFT
- Get rid of the complexity of interactions



- Finding effective models in DFT
- Get rid of the complexity of interactions



- Finding effective models in DFT
- Get rid of the complexity of interactions



DFT map: 
$$\rho: v \mapsto \rho_{\Psi(v)} = \rho^{\mathsf{HK}}(v)$$

$$\rho^{\mathsf{HK}}(\mathsf{v}_\rho) = \rho$$

DFT map: 
$$\rho: v \mapsto \rho_{\Psi(v)} = \rho^{\mathsf{HK}}(v)$$

Given  $\rho \geqslant 0$ ,  $\int \rho = N$ , we search  $v_{\rho}$  such that

$$ho^{\mathsf{HK}}(v_{
ho}) = 
ho$$

• Is the DFT map injective ?

DFT map: 
$$\rho: v \mapsto \rho_{\Psi(v)} = \rho^{\mathsf{HK}}(v)$$

$$\rho^{\mathsf{HK}}(v_{\rho}) = \rho$$

- Is the DFT map injective ?
- What is the image? Is it dense?

DFT map: 
$$\rho: v \mapsto \rho_{\Psi(v)} = \rho^{\mathsf{HK}}(v)$$

$$\rho^{\mathsf{HK}}(v_{\rho}) = \rho$$

- Is the DFT map injective ?
- What is the image? Is it dense?
- Is the inverse problem well-posed?

DFT map: 
$$\rho: v \mapsto \rho_{\Psi(v)} = \rho^{\mathsf{HK}}(v)$$

$$ho^{\mathsf{HK}}(\mathsf{v}_{
ho}) = 
ho$$

- Is the DFT map injective ?
- What is the image? Is it dense?
- Is the inverse problem well-posed?
- How to invert it algorithmically?

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

## ho contains everything

#### Theorem (Hohenberg-Kohn, 1964)

Let  $w, v_1, v_2 \in L^{p>\max(2,2d/3)}(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$ . If there are two ground states  $\Psi_1$  and  $\Psi_2$  of  $H_N(v_1)$  and  $H_N(v_2)$ , such that

$$\rho_{\Psi_1} = \rho_{\Psi_2},$$

then 
$$v_1 = v_2 + \frac{E_1 - E_2}{N}$$
.

## ho contains everything

#### Theorem (Hohenberg-Kohn, 1964)

Let  $w, v_1, v_2 \in L^{p>\max(2,2d/3)}(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$ . If there are two ground states  $\Psi_1$  and  $\Psi_2$  of  $H_N(v_1)$  and  $H_N(v_2)$ , such that

$$\rho_{\Psi_1} = \rho_{\Psi_2},$$

then 
$$v_1 = v_2 + \frac{E_1 - E_2}{N}$$
.

• Implies existence of functionals for any quantity

## ho contains everything

#### Theorem (Hohenberg-Kohn, 1964)

Let  $w, v_1, v_2 \in L^{p>\max(2,2d/3)}(\mathbb{R}^d) + L^{\infty}(\mathbb{R}^d)$ . If there are two ground states  $\Psi_1$  and  $\Psi_2$  of  $H_N(v_1)$  and  $H_N(v_2)$ , such that

$$\rho_{\Psi_1} = \rho_{\Psi_2},$$

then 
$$v_1 = v_2 + \frac{E_1 - E_2}{N}$$
.

- Implies existence of functionals for any quantity
- Lieb (1964) remarked it relies on SUCP. Conjectures  $L^{\frac{3}{2}}(\mathbb{R}^3)$ , other mathematicians interested

### Strong UCP

#### Theorem (Strong UCP for many-body Schrödinger operators)

Assume that the potentials satisfy  $v, w \in L^p_{\mathrm{loc}}(\mathbb{R}^d)$  with  $p > \max\left(\frac{2d}{3}, 2\right)$ . If  $\Psi \in H^2_{\mathrm{loc}}(\mathbb{R}^{dN})$  is a non zero solution to  $H_N(v)\Psi = E\Psi$ , then  $|\{\Psi(X) = 0\}| = 0$ .

## Strong UCP

#### Theorem (Strong UCP for many-body Schrödinger operators)

Assume that the potentials satisfy  $v, w \in L^p_{\mathrm{loc}}(\mathbb{R}^d)$  with  $p > \max\left(\frac{2d}{3}, 2\right)$ . If  $\Psi \in H^2_{\mathrm{loc}}(\mathbb{R}^{dN})$  is a non zero solution to  $H_N(v)\Psi = E\Psi$ , then  $|\{\Psi(X) = 0\}| = 0$ .

• For  $N = 1 : L^{\frac{3}{2}}$  (Jerison Kenig 1985)

## Strong UCP

#### Theorem (Strong UCP for many-body Schrödinger operators)

Assume that the potentials satisfy  $v, w \in L^p_{\mathrm{loc}}(\mathbb{R}^d)$  with  $p > \max\left(\frac{2d}{3}, 2\right)$ . If  $\Psi \in H^2_{\mathrm{loc}}(\mathbb{R}^{dN})$  is a non zero solution to  $H_N(v)\Psi = E\Psi$ , then  $|\{\Psi(X) = 0\}| = 0$ .

- For  $N = 1 : L^{\frac{3}{2}}$  (Jerison Kenig 1985)
- For  $N \in \mathbb{N}$ : already known that  $\{\Psi(X) = 0\}$  is not an open set (Georgescu 1980) and (Schechter-Simon 1980).  $L^{\infty}$  with Jerison-Kenig

## Strong UCP

#### Theorem (Strong UCP for many-body Schrödinger operators)

Assume that the potentials satisfy  $v, w \in L^p_{\mathrm{loc}}(\mathbb{R}^d)$  with  $p > \max\left(\frac{2d}{3}, 2\right)$ . If  $\Psi \in H^2_{\mathrm{loc}}(\mathbb{R}^{dN})$  is a non zero solution to  $H_N(v)\Psi = E\Psi$ , then  $|\{\Psi(X) = 0\}| = 0$ .

- For  $N = 1 : L^{\frac{3}{2}}$  (Jerison Kenig 1985)
- For  $N \in \mathbb{N}$ : already known that  $\{\Psi(X) = 0\}$  is not an open set (Georgescu 1980) and (Schechter-Simon 1980).  $L^{\infty}$  with Jerison-Kenig
- Lammert (2018); Laestadius, Benedicks, Penz (2020)

### Strong UCP

#### Theorem (Strong UCP for many-body Schrödinger operators)

Assume that the potentials satisfy  $v, w \in L^p_{\mathrm{loc}}(\mathbb{R}^d)$  with  $p > \max\left(\frac{2d}{3}, 2\right)$ . If  $\Psi \in H^2_{\mathrm{loc}}(\mathbb{R}^{dN})$  is a non zero solution to  $H_N(v)\Psi = E\Psi$ , then  $|\{\Psi(X) = 0\}| = 0$ .

- For  $N = 1 : L^{\frac{3}{2}}$  (Jerison Kenig 1985)
- For  $N \in \mathbb{N}$ : already known that  $\{\Psi(X) = 0\}$  is not an open set (Georgescu 1980) and (Schechter-Simon 1980).  $L^{\infty}$  with Jerison-Kenig
- Lammert (2018); Laestadius, Benedicks, Penz (2020)
- This L<sup>p</sup> result uses technics developed by Carleman, Hörmander, Koch and Tataru

### Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

# Compactness of $v \mapsto \rho^{\mathsf{HK}}(v)$

#### Theorem (Main properties of $\Psi$ )

•  $v \mapsto \Psi(v)$  is  $\mathcal{C}^{\infty}$  from  $\mathcal{V}_N$  to  $H^1_p$ 

## Compactness of $v \mapsto \rho^{\mathsf{HK}}(v)$

#### Theorem (Main properties of $\Psi$ )

- $v \mapsto \Psi(v)$  is  $\mathcal{C}^{\infty}$  from  $\mathcal{V}_N$  to  $H^1_p$
- For  $v \in \mathcal{V}_N$ ,  $d_v \Psi : L^{d/2} + L^{\infty} \to H^1 \cap \{\Psi(v)\}^{\perp}$

$$(\mathrm{d}_v \Psi)\, u = - \big(H_N(v) - E_N(v)\big)_\perp^{-1} \big(\Sigma_{i=1}^N u(x_i)\big) \Psi(v),$$

 $\mathrm{d}_{\nu}\Psi$  is compact

## Compactness of $v\mapsto ho^{\mathsf{HK}}(v)$

#### Theorem (Main properties of $\Psi$ )

- $v \mapsto \Psi(v)$  is  $\mathcal{C}^{\infty}$  from  $\mathcal{V}_N$  to  $H^1_p$
- For  $v \in \mathcal{V}_N$ ,  $d_v \Psi : L^{d/2} + L^{\infty} \to H^1 \cap \{\Psi(v)\}^{\perp}$

$$(\mathrm{d}_{v}\Psi)\,u=-\big(H_{N}(v)-E_{N}(v)\big)_{\perp}^{-1}\big(\Sigma_{i=1}^{N}u(x_{i})\big)\Psi(v),$$

### $\mathrm{d}_{ u}\Psi$ is compact

• Let  $\Lambda \subset \mathbb{R}^d$  be a bounded open set. Assume  $v \in \mathcal{V}_N$ ,  $v_n \rightharpoonup v$  and  $v_n \mathbb{1}_{\mathbb{R}^d \setminus \Lambda} \to v \mathbb{1}_{\mathbb{R}^d \setminus \Lambda}$  in  $L^{p+\epsilon} + L^{\infty}$ . Then  $E_N(v_n) \to E_N(v)$ ,  $v_n \in \mathcal{V}_N$  for n large enough, and  $\boxed{\Psi(v_n) \to \Psi(v)}$  in  $H^1$ 

### III-posedness of the inversion

#### Theorem (The set of v-representable densities is very small)

Consider that the system lives in a bounded open set  $\Omega \subset \mathbb{R}^d$ .

Then  $L^{p>d/2} \ni v \mapsto \rho^{HK}(v) \in W^{1,1}$  is weak-strong continuous,  $(\rho^{HK})^{-1}$  is discontinuous, and  $\rho^{HK}(L^p(\mathbb{R}^d))$  has empty interior in  $W^{1,1} \cap \{ f \cdot = N \}$ .

### III-posedness of the inversion

#### Theorem (The set of v-representable densities is very small)

Consider that the system lives in a bounded open set  $\Omega \subset \mathbb{R}^d$ . Then  $L^{p>d/2} \ni v \mapsto \rho^{HK}(v) \in W^{1,1}$  is weak-strong continuous,

 $(\rho^{HK})^{-1}$  is discontinuous, and  $\rho^{HK}(L^p(\mathbb{R}^d))$  has empty interior in  $W^{1,1} \cap \{ \int \cdot = N \}.$ 

The inverse problem is ill-posed!

### Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

### Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

Target  $\rho$ : we search v such that

- $\rho_{\Psi(v)} = \rho$  for pure states,  $\Psi(v) \in \text{Ker}(H_N(v) E_N(v))$
- $\rho_{\Gamma(v)} = \rho$  for mixed states, Ran  $\Gamma(v) \subset \text{Ker}(H_N(v) E_N(v))$

Target  $\rho$ : we search v such that

- $\rho_{\Psi(v)} = \rho$  for pure states,  $\Psi(v) \in \text{Ker}(H_N(v) E_N(v))$
- $\rho_{\Gamma(v)} = \rho$  for mixed states, Ran  $\Gamma(v) \subset \text{Ker}(H_N(v) E_N(v))$

$$\begin{split} \left\{ \rho_{\Psi} \; \middle| \; \Psi \in \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \|\Psi\|_{L^{2}} &= 1 \right\} \\ &\subset \left\{ \rho_{\Gamma} \; \middle| \; \mathsf{Ran}\, \Gamma \subset \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \mathrm{Tr}\, \Gamma = 1 \right\} \end{split}$$

Target  $\rho$ : we search v such that

- $\rho_{\Psi(v)} = \rho$  for pure states,  $\Psi(v) \in \text{Ker}(H_N(v) E_N(v))$
- $\rho_{\Gamma(v)} = \rho$  for mixed states, Ran  $\Gamma(v) \subset \text{Ker}(H_N(v) E_N(v))$

$$\begin{split} \left\{ \rho_{\Psi} \;\middle|\; \Psi \in \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \|\Psi\|_{L^{2}} &= 1 \right\} \\ &\subset \left\{ \rho_{\Gamma} \;\middle|\; \mathsf{Ran}\,\Gamma \subset \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \mathrm{Tr}\,\Gamma = 1 \right\} \end{split}$$

Target  $\rho$ : we search v such that

- $\rho_{\Psi(v)} = \rho$  for pure states,  $\Psi(v) \in \text{Ker}(H_N(v) E_N(v))$
- $\rho_{\Gamma(v)} = \rho$  for mixed states, Ran  $\Gamma(v) \subset \text{Ker}(H_N(v) E_N(v))$

$$\begin{split} \left\{ \rho_{\Psi} \; \middle| \; \Psi \in \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \|\Psi\|_{L^{2}} &= 1 \right\} \\ &\subset \left\{ \rho_{\Gamma} \; \middle| \; \mathsf{Ran}\, \Gamma \subset \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \mathrm{Tr}\, \Gamma = 1 \right\} \end{split}$$

Inverse problem solved for

approximate invertibility with mixed ground states (Lieb 1983)

Target  $\rho$ : we search v such that

- $\rho_{\Psi(v)} = \rho$  for pure states,  $\Psi(v) \in \text{Ker}(H_N(v) E_N(v))$
- $\rho_{\Gamma(v)} = \rho$  for mixed states, Ran  $\Gamma(v) \subset \text{Ker}(H_N(v) E_N(v))$

$$\begin{split} \left\{ \rho_{\Psi} \; \middle| \; \Psi \in \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \|\Psi\|_{L^{2}} &= 1 \right\} \\ &\subset \left\{ \rho_{\Gamma} \; \middle| \; \mathsf{Ran}\, \Gamma \subset \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \mathrm{Tr}\, \Gamma = 1 \right\} \end{split}$$

- approximate invertibility with mixed ground states (Lieb 1983)
- classical systems at T > 0 (Chayes Chayes Lieb 1984)

Target  $\rho$ : we search v such that

- $\rho_{\Psi(v)} = \rho$  for pure states,  $\Psi(v) \in \text{Ker}(H_N(v) E_N(v))$
- $\rho_{\Gamma(v)} = \rho$  for mixed states, Ran  $\Gamma(v) \subset \text{Ker}(H_N(v) E_N(v))$

$$\begin{split} \left\{ \rho_{\Psi} \; \middle| \; \Psi \in \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \|\Psi\|_{L^{2}} &= 1 \right\} \\ &\subset \left\{ \rho_{\Gamma} \; \middle| \; \mathsf{Ran}\, \Gamma \subset \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \mathrm{Tr}\, \Gamma = 1 \right\} \end{split}$$

- approximate invertibility with mixed ground states (Lieb 1983)
- classical systems at T > 0 (Chayes Chayes Lieb 1984)
- quantum systems on lattices for mixed ground states (Chayes Chayes Ruskai 1985)

Target  $\rho$ : we search v such that

- $\rho_{\Psi(v)} = \rho$  for pure states,  $\Psi(v) \in \text{Ker}(H_N(v) E_N(v))$
- $\rho_{\Gamma(v)} = \rho$  for mixed states, Ran  $\Gamma(v) \subset \text{Ker}(H_N(v) E_N(v))$

$$\begin{split} \left\{ \rho_{\Psi} \;\middle|\; \Psi \in \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \|\Psi\|_{L^{2}} &= 1 \right\} \\ &\subset \left\{ \rho_{\Gamma} \;\middle|\; \mathsf{Ran}\,\Gamma \subset \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \mathrm{Tr}\,\Gamma = 1 \right\} \end{split}$$

- approximate invertibility with mixed ground states (Lieb 1983)
- classical systems at T > 0 (Chayes Chayes Lieb 1984)
- quantum systems on lattices for mixed ground states (Chayes Chayes Ruskai 1985)
- Moreau-Yosida regularization (Kvaal, Ekström, Teale, Helgaker, Tellgren, Ruggenthaler, Penz, Lammert, Herbst)

Target  $\rho$ : we search v such that

- $\rho_{\Psi(v)} = \rho$  for pure states,  $\Psi(v) \in \text{Ker}(H_N(v) E_N(v))$
- $\rho_{\Gamma(v)} = \rho$  for mixed states, Ran  $\Gamma(v) \subset \text{Ker}(H_N(v) E_N(v))$

$$\begin{split} \left\{ \rho_{\Psi} \; \middle| \; \Psi \in \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \|\Psi\|_{L^{2}} &= 1 \right\} \\ &\subset \left\{ \rho_{\Gamma} \; \middle| \; \mathsf{Ran}\, \Gamma \subset \mathsf{Ker}\left(H_{N}(v) - E_{N}(v)\right), \mathrm{Tr}\, \Gamma = 1 \right\} \end{split}$$

- approximate invertibility with mixed ground states (Lieb 1983)
- classical systems at T > 0 (Chayes Chayes Lieb 1984)
- quantum systems on lattices for mixed ground states (Chayes Chayes Ruskai 1985)
- Moreau-Yosida regularization (Kvaal, Ekström, Teale, Helgaker, Tellgren, Ruggenthaler, Penz, Lammert, Herbst)
- Numerical articles

#### Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

$$G_{
ho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v 
ho, \qquad \sup_{v \in L^{p}(\mathbb{R}^{d})} G_{
ho}(v) < +\infty$$

$$G_{\rho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v \rho, \qquad \sup_{v \in L^{p}(\mathbb{R}^{d})} G_{\rho}(v) < +\infty$$

• Gauge invariance  $G_{
ho}(v+c)=G_{
ho}(v)$ 

$$G_{
ho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v 
ho, \qquad \sup_{v \in L^{p}(\mathbb{R}^{d})} G_{
ho}(v) < +\infty$$

- Gauge invariance  $G_{\rho}(v+c)=G_{\rho}(v)$
- Concave for k = 0

$$G_{
ho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v 
ho, \qquad \sup_{v \in L^{p}(\mathbb{R}^{d})} G_{
ho}(v) < +\infty$$

- Gauge invariance  $G_{\rho}(v+c)=G_{\rho}(v)$
- Concave for k = 0
- On degenerate potentials,  $v \mapsto \rho_{\Psi(v)}$  and  $E_N$  are not differentiable

$$G_{\rho}^{(k)}(v) := E_{\mathcal{N}}^{(k)}(v) - \int_{\mathbb{R}^d} v \rho$$

Theorem (Optimality in the dual problem)

$$G_{\rho}^{(k)}(v) := E_{\mathcal{N}}^{(k)}(v) - \int_{\mathbb{R}^d} v \rho$$

#### Theorem (Optimality in the dual problem)

Take  $w \geqslant 0$ ,  $\rho \in L^1(\mathbb{R}^d)$ ,  $\rho \geqslant 0$ ,  $\int \rho = N$ ,  $\sqrt{\rho} \in H^1(\mathbb{R}^d)$ ,  $v \in L^{p>2}$  such that  $H_N(v)$  has a ground state.

- i) The following statements are equivalent
  - there is a  $k^{\text{th}}$  bound mixed state  $\Gamma$  of v such that  $\rho_{\Gamma} = \rho$
  - v is a local maximizer of  $G_{\rho}^{(k)}$
  - v is a global maximizer of  $G_{\rho}^{(k)}$

$$G_{\rho}^{(k)}(v) := E_{\mathcal{N}}^{(k)}(v) - \int_{\mathbb{R}^d} v \rho$$

#### Theorem (Optimality in the dual problem)

Take  $w \geqslant 0$ ,  $\rho \in L^1(\mathbb{R}^d)$ ,  $\rho \geqslant 0$ ,  $\int \rho = N$ ,  $\sqrt{\rho} \in H^1(\mathbb{R}^d)$ ,  $v \in L^{p>2}$  such that  $H_N(v)$  has a ground state.

- i) The following statements are equivalent
  - there is a  $k^{\text{th}}$  bound mixed state  $\Gamma$  of v such that  $\rho_{\Gamma} = \rho$
  - v is a local maximizer of  $G_{\rho}^{(k)}$
  - v is a global maximizer of  $G_{\rho}^{(k)}$
- ii) If v maximizes  $G_{\rho}^{(k)}$  and
  - dim Ker  $(H_N(v) E_N(v)) \in \{1, 2\}$ ,
  - or d = 1 and w = 0,

then v has a  $k^{\text{th}}$  bound pure state  $\Psi$  such that  $\rho_{\Psi} = \rho$ .

$$G_{\rho}^{(k)}(v) := E_{\mathcal{N}}^{(k)}(v) - \int_{\mathbb{R}^d} v \rho$$

#### Theorem (Optimality in the dual problem)

Take  $w \geqslant 0$ ,  $\rho \in L^1(\mathbb{R}^d)$ ,  $\rho \geqslant 0$ ,  $\int \rho = N$ ,  $\sqrt{\rho} \in H^1(\mathbb{R}^d)$ ,  $v \in L^{p>2}$  such that  $H_N(v)$  has a ground state.

- i) The following statements are equivalent
  - there is a  $k^{\text{th}}$  bound mixed state  $\Gamma$  of v such that  $\rho_{\Gamma} = \rho$
  - v is a local maximizer of  $G_0^{(k)}$
  - v is a global maximizer of  $G_{\rho}^{(k)}$
- ii) If v maximizes  $G_{\rho}^{(k)}$  and
  - dim Ker  $(H_N(v) E_N(v)) \in \{1, 2\},\$
  - or d = 1 and w = 0,

then v has a  $k^{\text{th}}$  bound pure state  $\Psi$  such that  $\rho_{\Psi} = \rho$ .

Does a maximum exist?

### Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

## Regularization

• 
$$G_{\rho}(v) = E_{N}(v) - \int v\rho$$
 is not coercive in  $L^{\rho}$ ! Ex:  $v \in L^{1} \cap L^{\rho>1}$ ,  $v \geqslant 0$ ,  $v_{n}(x) := n^{d}v(nx)$ ,  $\|v_{n}\|_{L^{\rho}}^{\rho} = n^{d(\rho-1)} \int v^{\rho} \to +\infty$  but  $E_{N}(v_{n}) = 0$ , and  $\int v_{n}\rho \to \rho(0) \int v$  is bounded

## Regularization

- $G_{\rho}(v) = E_{N}(v) \int v\rho$  is not coercive in  $L^{\rho}$ ! Ex:  $v \in L^{1} \cap L^{p>1}$ ,  $v \geqslant 0$ ,  $v_{n}(x) := n^{d}v(nx)$ ,  $\|v_{n}\|_{L^{\rho}}^{\rho} = n^{d(\rho-1)} \int v^{\rho} \to +\infty$  but  $E_{N}(v_{n}) = 0$ , and  $\int v_{n}\rho \to \rho(0) \int v$  is bounded
- Dual : restriction to potentials  $V = \sum_{i \in I} v_i \alpha_i$ ,  $v \in (v_i)_{i \in I} \in \ell^{\infty}(I, \mathbb{R})$ ,  $\alpha_i \in L^{\infty}(\Omega)$ ,  $\sum_{i \in I} \alpha_i = \mathbb{1}_{\Omega}$ ,  $r_i \in \mathbb{R}_+$ ,  $r_i = \int \rho \alpha_i$ ,  $\sum_{i \in I} r_i = N$

$$G_{r,\alpha}^{(k)}(v) := E_N\left(\sum_{i\in I} v_i \alpha_i\right) - \sum_{i\in I} v_i r_i,$$



## Coercivity

$$G_{r,\alpha}^{(k)}(v) \leqslant -\min\left(1, \frac{\sum_{v_i \geqslant c_{\Omega}} r_i}{\sum_{v_i < c_{\Omega}} r_i}\right) \|v - c_{\Omega}\|_{\ell_r^1} + c_R,$$

## Coercivity

$$G_{r,\alpha}^{(k)}(v) \leqslant -\min\left(1, \frac{\sum_{v_i \geqslant c_{\Omega}} r_i}{\sum_{v_i < c_{\Omega}} r_i}\right) \|v - c_{\Omega}\|_{\ell_r^1} + c_R,$$

#### Theorem (Existence of the inverse potential)

When I is finite  $G_{r,\alpha}^{(k)}$  is coercive and there exists a maximizer v. If  $\Omega \subset \mathbb{R}^d$  is bounded, there is a  $k^{\text{th}}$  excited N-particle ground mixed state  $\Gamma_v$  of  $H_N\left(\sum_{i\in I}v_i\alpha_i\right)$  such that  $\int \alpha_i\rho_{\Gamma_v}=r_i$  (=  $\int \alpha_i\rho$ )  $\forall i$ .

## Coercivity

$$G_{r,\alpha}^{(k)}(v) \leqslant -\min\left(1, \frac{\sum_{v_i \geqslant c_{\Omega}} r_i}{\sum_{v_i < c_{\Omega}} r_i}\right) \|v - c_{\Omega}\|_{\ell_r^1} + c_R,$$

#### Theorem (Existence of the inverse potential)

When I is finite  $G_{r,\alpha}^{(k)}$  is coercive and there exists a maximizer v. If  $\Omega \subset \mathbb{R}^d$  is bounded, there is a  $k^{\text{th}}$  excited N-particle ground mixed state  $\Gamma_v$  of  $H_N\left(\sum_{i\in I}v_i\alpha_i\right)$  such that  $\int \alpha_i\rho_{\Gamma_v}=r_i$  (=  $\int \alpha_i\rho$ )  $\forall i$ .

• Constructive inversion with mixed states

For a given  $\rho$ ,  $\epsilon > 0$ , there exists a potential v and  $\Gamma_v$  with  $\operatorname{Ran} \Gamma_v \subset \operatorname{Ker} \left( H_N(v) - E_N(v) \right)$  such that  $\|\rho_{\Gamma_v} - \rho\|_{L^1 \cap L^q} \leqslant \epsilon$ .

### Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- Mumerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

### Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

Minimize 
$$J(v) := \int_{\mathbb{R}^d} (\rho_{\Psi(v)} - \rho)^2$$
 ?

Minimize 
$$J(v) := \int_{\mathbb{R}^d} (\rho_{\Psi(v)} - \rho)^2$$
 ? Second idea, maximize

$$G_{\rho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v \rho$$

# Local dual problem

$$\begin{array}{ll}
^{+} \delta_{v} G_{\rho}^{(k)}(u) = \max_{\substack{\Psi_{0}, \dots, \Psi_{M_{k}-k} \in \text{Ker} \left(H_{N}(v) - E_{N}(v)\right) \\ \|\Psi_{i}\| = 1, \Psi_{i} \perp \Psi_{j} \\ 0 \leqslant i, j \leqslant M_{k} - k}} \min_{\substack{\Psi = \sum_{i=0}^{M_{k}-k} \lambda_{i} \Psi_{i} \\ 0 \leqslant i, j \leqslant M_{k} - k}} \int \left(\rho_{\Psi} - \rho\right) u
\end{array}$$

# Local dual problem

$$^{+}\delta_{v}G_{\rho}^{(k)}(u) = \max_{\substack{\Psi_{0},...,\Psi_{M_{k}-k} \in \operatorname{Ker}\left(H_{N}(v) - E_{N}(v)\right) \\ \|\Psi_{i}\| = 1, \Psi_{i} \perp \Psi_{j} \\ 0 \leqslant i, j \leqslant M_{k} - k}} \min_{\substack{\Psi = \sum_{i=0}^{M_{k}-k} \lambda_{i}\Psi_{i} \\ \lambda_{i} \in \mathbb{C}, \sum_{i} |\lambda_{i}|^{2} = 1}} \int \left(\rho_{\Psi} - \rho\right) u$$

#### Proposition (Local dual problem)

Take  $w \geqslant 0$ ,  $v \in \mathcal{V}_{N,\partial}$ . We have

$$\sup_{\substack{u \in L^p + L^\infty \\ \|u\|_{L^p + L^\infty} = 1}}^{+} \delta_v \, G_\rho(u) = \max_{\substack{Q \subset \operatorname{Ker}_{\mathbb{R}}(H_N(v) - E_N(v)) \\ \dim_{\mathbb{R}} Q = M_k - k + 1}}} \min_{\substack{\Gamma \in \mathcal{S}(Q) \\ \Gamma \geqslant 0, \operatorname{Tr} \Gamma = 1}} \|\rho_\Gamma - \rho\|_{L^{p'}} \,,$$

and the supremum is attained by  $u^* = \left| \frac{\rho_{\Gamma^*} - \rho}{\|\rho_{\Gamma^*} - \rho\|_{L^{p'}}} \right|^{p'-1} \operatorname{sgn}(\rho_{\Gamma^*} - \rho)$ , where  $\Gamma^*$  is an optimizer of the right hand side.

$$G_{\rho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v \rho$$

Maximize

$$G_{
ho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v 
ho$$

Fourier discretization

$$G_{\rho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v \rho$$

- Fourier discretization
- Consider a target  $\rho \geqslant 0$ ,  $\int \rho = N$

$$G_{\rho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v \rho$$

- Fourier discretization
- Consider a target  $\rho \geqslant 0$ ,  $\int \rho = N$
- Start from Bohm's potential  $\frac{\Delta\sqrt{\rho}}{\sqrt{\rho}}$  or Thomas-Fermi  $c_{\mathsf{TF}}\rho^{\frac{2}{3}}$

$$G_{
ho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v 
ho$$

- Fourier discretization
- Consider a target  $\rho \geqslant 0$ ,  $\int \rho = N$
- Start from Bohm's potential  $\frac{\Delta\sqrt{
  ho}}{\sqrt{
  ho}}$  or Thomas-Fermi  $c_{\mathsf{TF}} \rho^{\frac{2}{3}}$
- Iterate  $v_{n+1} = v_n + \alpha u^*$ ,  $+\delta_v G_\rho(u^*) = \max_{\|u\|=1} + \delta_v G_\rho(u) > 0$

$$G_{
ho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v 
ho$$

- Fourier discretization
- Consider a target  $\rho \geqslant 0$ ,  $\int \rho = N$
- Start from Bohm's potential  $\frac{\Delta\sqrt{
  ho}}{\sqrt{
  ho}}$  or Thomas-Fermi  $c_{\mathrm{TF}}
  ho^{\frac{2}{3}}$
- Iterate  $v_{n+1}=v_n+\alpha u^*$ ,  $+\delta_V G_{\rho}(u^*)=\max_{\|u\|=1}^{}+\delta_V G_{\rho}(u)>0$
- Line search for  $\alpha$ , temperature

$$G_{\rho}(v) := E_{N}(v) - \int_{\mathbb{R}^{d}} v \rho$$

- Fourier discretization
- Consider a target  $\rho \geqslant 0$ ,  $\int \rho = N$
- Start from Bohm's potential  $\frac{\Delta\sqrt{
  ho}}{\sqrt{
  ho}}$  or Thomas-Fermi  $c_{\mathrm{TF}}
  ho^{\frac{2}{3}}$
- Iterate  $v_{n+1}=v_n+\alpha u^*$ ,  $+\delta_{\nu}G_{\rho}(u^*)=\max_{\|u\|=1}^{}+\delta_{\nu}G_{\rho}(u)>0$
- Line search for  $\alpha$ , temperature
- Convergence criterion:  $\|
  ho^{\mathsf{HK}}(v_n) 
  ho\|_{L^1}/\mathsf{N} \leqslant \epsilon$

Introduction
The direct problem
The dual problem
Numerical inversion

The local problem Graphs Proof of coercivity What we learn

## Goal

#### What we know

ullet Approximate inversion with mixed states for any k

#### What we know

- Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$egin{aligned} \left\{ 
ho_{\Psi_{v}} \mid v \in (L^{p} + L^{\infty})(\Omega), \ & \Psi_{v} \in \mathsf{Ker}\left(H_{N}^{w=0}(v) - E_{N}(v)\right), \int_{\Omega^{N}} |\Psi_{v}|^{2} = 1 
ight\} \end{aligned}$$

is dense for the  $L^1 \cap L^q$  norm

#### What we know

- Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$egin{aligned} \left\{ 
ho_{\Psi_{v}} \mid v \in (L^{p} + L^{\infty})(\Omega), \ & \Psi_{v} \in \mathsf{Ker}\left(H_{N}^{w=0}(v) - E_{N}(v)\right), \int_{\Omega^{N}} |\Psi_{v}|^{2} = 1 
ight\} \end{aligned}$$

is dense for the  $L^1 \cap L^q$  norm

• When d = 3, it's not (uses Lieb 83)

#### What we know

- Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$egin{aligned} \left\{ 
ho_{\Psi_{v}} \mid v \in (L^{p} + L^{\infty})(\Omega), \ & \Psi_{v} \in \operatorname{Ker} \left( H_{N}^{w=0}(v) - E_{N}(v) 
ight), \int_{\Omega^{N}} |\Psi_{v}|^{2} = 1 
ight\} \end{aligned}$$

is dense for the  $L^1 \cap L^q$  norm

• When d = 3, it's not (uses Lieb 83)

#### What we want to know

#### What we know

- Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$egin{aligned} \left\{ 
ho_{\Psi_{v}} \mid v \in (L^{p} + L^{\infty})(\Omega), \ & \Psi_{v} \in \operatorname{Ker} \left( H_{N}^{w=0}(v) - E_{N}(v) 
ight), \int_{\Omega^{N}} |\Psi_{v}|^{2} = 1 
ight\} \end{aligned}$$

is dense for the  $L^1 \cap L^q$  norm

• When d = 3, it's not (uses Lieb 83)

#### What we want to know

• Uniqueness for  $k \geqslant 1$ ?

#### What we know

- ullet Approximate inversion with mixed states for any k
- When d = 1, the set of pure state densities

$$egin{aligned} \left\{ 
ho_{\Psi_{v}} \mid v \in (L^{p} + L^{\infty})(\Omega), \ & \Psi_{v} \in \mathsf{Ker}\left(H_{N}^{w=0}(v) - E_{N}(v)
ight), \int_{\Omega^{N}} |\Psi_{v}|^{2} = 1 
ight\} \end{aligned}$$

is dense for the  $L^1 \cap L^q$  norm

• When d = 3, it's not (uses Lieb 83)

#### What we want to know

- Uniqueness for  $k \geqslant 1$ ?
- Inversion with pure states for d = 2?

## Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn



Figure: Plot for d=1, N=5, k=0 on the left, k=3 on the right,  $\log_{10}|\rho_n-\rho|$ ,  $\log_{10}|\nu_n-\nu|$ 

# Uniqueness



Figure:  $d=1,\ N=3,\ k=0$  left, k=1 middle, k=5 right. Densities in blue, inverse potentials in other colors



Figure: d=2, N=5, k=0; v,  $\rho_{\Psi^{(0)}(v)}$ ,  $\log_{10}|v_n-v|$ ,  $\log_{10}|\rho_n-\rho_{\Psi^{(0)}(v)}|$ 

### d=3



Figure: d=3, N=4, k=1 ; ho,  $v_{\it n}$ ,  $\log_{10}|\rho_{\it n}-\rho|$ 

# Simulations at high densities



Figure: Convergence of  $\rho_N^{-1}(N\rho)/N^{\frac{2}{d}}$ ,  $\int \rho = 1$ 

# Simulations at high densities



Figure: Convergence of  $\rho_N^{-1}(N\rho)/N^{\frac{2}{d}}$ ,  $\int \rho = 1$ 

# Conjecture

For any  $\rho\geqslant 0$  such that  $\int \rho=1$  and  $\sqrt{\rho}\in H^1$ ,

$$\frac{\rho_N^{-1}\left(N\rho\right)}{N^{\frac{2}{d}}}\underset{N\rightarrow+\infty}{\rightarrow}$$

# Conjecture

For any  $\rho \geqslant 0$  such that  $\int \rho = 1$  and  $\sqrt{\rho} \in H^1$ ,

$$\frac{\rho_N^{-1}(N\rho)}{N^{\frac{2}{d}}} \xrightarrow[N \to +\infty]{} v_{\mathsf{TF},\rho} = -\rho^{\frac{2}{d}}$$

The direct statement version is in Founais, Lewin, Solovej (2019)

## Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

### Statement

#### **Theorem**

Take  $w \in (L^p + L^\infty)(\mathbb{R}^d, \mathbb{R}_+)$ . Let  $\alpha$  be a partition of unity of  $\Omega$ , with  $\alpha_i \in L^\infty(\Omega, \mathbb{R}_+)$ , such that we have R > 0 for which

$$(\operatorname{supp} \alpha_i) \setminus \bigcup_{j \in I, j \neq i} \operatorname{supp} \alpha_j$$

contains a ball of radius R, uniformly in  $i \in I$ . Let  $r \in \ell^1(I, \mathbb{R}_+)$  be such that  $\sum_{i \in I} r_i = N$  and  $r_i > 0$  for all  $i \in I$ . For any  $v \in \ell^1_r(I, \mathbb{R})$  such that  $E_N(\sum_{i \in I} v_i \alpha_i) = 0$ , we have

$$G_{r,\alpha}^{(k)}(v) \leqslant -\min\left(1, \frac{\sum_{v_i \geqslant c_{\Omega}} r_i}{\sum_{v_i < c_{\Omega}} r_i}\right) \|v - c_{\Omega}\|_{\ell_r^1} + c_R$$

### Proof

• We assumed that there are points  $y_i \in \mathbb{R}^d$  such that for any  $i \in I$ ,

$$B_R(y_i) \subset (\operatorname{supp} \alpha_i) \setminus \bigcup_{j \in I, j \neq i} \operatorname{supp} \alpha_j.$$

We write  $X=(x_1,\ldots,x_N)$  and  $Y_i:=(y_i,\ldots,y_i)$ . Take normalized  $\Phi_0,\ldots,\Phi_k\in\wedge^N H^1_0(B_R)$  with disjoint supports. Take some non-empty  $Q\subset I$  and for  $j\in\{0,\ldots,k\}$ , form

$$\Psi_{j,Q}(X) := \frac{1}{\sqrt{\sum_{i \in Q} r_i}} \sum_{i \in Q} \sqrt{r_i} \ \Phi_j(X - Y_i).$$

This satisfies 
$$\int_{\Omega^N} |\Psi_{j,Q}|^2 = 1$$
,  $T(\Psi_{j,Q}) = T(\Phi_j)$ ,  $W(\Psi_{i,Q}) = W(\Phi_i)$  and

$$\rho_{\Psi_{j,Q}}(x) = \left(\sum_{i \in Q} r_i\right)^{-1} \sum_{i \in Q} r_i \rho_{\Phi_j}(x - y_i).$$

We use the expression

$$E_N^{(k)}(V) = \inf_{\dim A = k+1} \max_{\substack{\Psi \in A \\ \int_{\Omega^N} |\Psi|^2 = 1}} \mathcal{E}_V(\Psi)$$

and choose the frame  $A := (\Psi_{0,Q}, \dots, \Psi_{k,Q})$  so that

$$G_{r,\alpha}^{(k)}(v) \leqslant -\sum_{i \in I} v_i r_i + \max_{\substack{\lambda_j \in \mathbb{C} \\ \sum_{i=0}^k |\lambda_j|^2 = 1}} \mathcal{E}_{V(v)} \left( \sum_{j=0}^k \lambda_j \Psi_{j,Q} \right).$$

For any  $i \in I$ , the only non-vanishing element of  $\alpha$  in  $B_R(y_i)$  is  $\alpha_i$ , so  $\alpha_i = 1$  on  $B_R(y_i)$  and

$$\int_{\Omega} \alpha_i \rho_{\Psi_{j,Q}} = \frac{\mathit{Nr}_i \delta_{i \in Q}}{\sum_{\ell \in Q} r_\ell},$$

$$\int_{\Omega} V(v) \rho_{\sum_{j=0}^k \lambda_j \Psi_{j,Q}} = \sum_{j=0}^k |\lambda_j|^2 \int_{\Omega} V(v) \rho_{\Psi_{j,Q}} = \frac{N \sum_{i \in Q} v_i r_i}{\sum_{\ell \in Q} r_\ell}.$$

We see that the external potential energy of the trial state does not depend on the  $\lambda_j$ 's. Defining  $c_R := \max_{\substack{\lambda_j \in \mathbb{C} \\ \sum_{i=0}^k |\lambda_i|^2 = 1}} \mathcal{E}_0\left(\sum_{j=0}^k \lambda_j \Psi_{j,Q}\right)$ ,

we deduce that

$$G_{r,\alpha}(v) \leq c_R + \frac{N}{\sum_{i \in Q} r_i} \sum_{i \in Q} v_i r_i - \sum_{i \in I} v_i r_i$$

$$= c_R + \frac{\sum_{i \in I \setminus Q} r_i}{\sum_{i \in Q} r_i} \sum_{i \in Q} v_i r_i - \sum_{i \in I \setminus Q} v_i r_i.$$

Since G is gauge invariant, for any  $\mu \in \mathbb{R}$  and any non-empty  $Q \subset I$ , we have

$$G_{r,\alpha}(v) = G_{r,\alpha}(v-\mu) \leqslant c_R + \frac{\sum_{I \setminus Q} r_i}{\sum_{i \in Q} r_i} \sum_{i \in Q} (v_i - \mu) r_i - \sum_{i \in I \setminus Q} (v_i - \mu) r_i.$$

We define the two sets  $I_v^{\pm} := \{i \in I \mid \pm v_i > \pm c_{\Omega}\}$ . In the case  $I_v^{-} \neq \emptyset$ , we take  $Q = I_v^{-}$  and  $\mu = c_{\Omega}$  yielding

$$\begin{aligned} G_{r,\alpha}(v) - c_R &\leqslant \frac{\sum_{v_i \geqslant c_{\Omega}} r_i}{\sum_{v_i < c_{\Omega}} r_i} \sum_{v_i < c_{\Omega}} (v_i - c_{\Omega}) r_i - \sum_{v_i \geqslant c_{\Omega}} (v_i - c_{\Omega}) r_i \\ &\leqslant \min\left(1, \frac{\sum_{v_i \geqslant c_{\Omega}} r_i}{\sum_{v_i < c_{\Omega}} r_i}\right) \left(\sum_{v_i < c_{\Omega}} (v_i - c_{\Omega}) r_i - \sum_{v_i \geqslant c_{\Omega}} (v_i - c_{\Omega}) r_i\right) \\ &\leqslant -\frac{\sum_{v_i \geqslant c_{\Omega}} r_i}{M} \|v - c_{\Omega}\|_{\ell^{\frac{1}{2}}}. \end{aligned}$$

### Table of contents

- Introduction
  - The setting
  - The goal
- 2 The direct problem
  - Uniqueness
  - III-posedness
- The dual problem
  - Literature
  - Optimality properties
  - Regularization
- 4 Numerical inversion
  - The local problem
  - Graphs
  - Proof of coercivity
  - What we learn

## What we learn from simulations

• Confirms Gaudoin and Burke (2004), no uniqueness for  $k \ge 1$ 

### What we learn from simulations

- Confirms Gaudoin and Burke (2004), no uniqueness for  $k \ge 1$
- For d = 2, the set of pure states densities

$$egin{aligned} \left\{ 
ho_{\Psi_{v}} \mid v \in (L^{p} + L^{\infty})(\Omega), \ & \Psi_{v} \in \operatorname{Ker} \left( H_{N}^{w=0}(v) - E_{N}(v) 
ight), \int_{\Omega^{N}} |\Psi_{v}|^{2} = 1 
ight\} \end{aligned}$$

is dense in the set of positive functions

### What we learn from simulations

- Confirms Gaudoin and Burke (2004), no uniqueness for  $k \ge 1$
- For d = 2, the set of pure states densities

is dense in the set of positive functions

• Degeneracies are generic, even for d = 1. Need to be considered, not in literature

#### Conclusions

• No uniqueness for  $k \geqslant 1$  (simulations)

#### Conclusions

- No uniqueness for  $k \ge 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find v such that  $\|\rho_{\Gamma(v)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$

#### Conclusions

- No uniqueness for  $k \ge 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find v such that  $\|\rho_{\Gamma(v)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$
- Pure states inversion:
  - d = 1 yes (theoretical)
  - d = 2 yes (simulations)
  - d = 3 no (theoretical but not rigorous)

#### Conclusions

- No uniqueness for  $k \ge 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find v such that  $\|\rho_{\Gamma(v)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$
- Pure states inversion:
  - d = 1 yes (theoretical)
  - d = 2 yes (simulations)
  - d = 3 no (theoretical but not rigorous)
- We gave an algorithm

#### Conclusions

- No uniqueness for  $k \ge 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find v such that  $\|\rho_{\Gamma(v)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$
- Pure states inversion:
  - d = 1 yes (theoretical)
  - d = 2 yes (simulations)
  - d = 3 no (theoretical but not rigorous)
- We gave an algorithm

#### Conclusions

- No uniqueness for  $k \geqslant 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find v such that  $\|\rho_{\Gamma(v)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$
- Pure states inversion:
  - d = 1 yes (theoretical)
  - d = 2 yes (simulations)
  - d = 3 no (theoretical but not rigorous)
- We gave an algorithm

#### Next questions

Exact v-representability

#### Conclusions

- No uniqueness for  $k \ge 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find  $\nu$  such that  $\|\rho_{\Gamma(\nu)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$
- Pure states inversion:
  - d = 1 yes (theoretical)
  - d = 2 yes (simulations)
  - d = 3 no (theoretical but not rigorous)
- We gave an algorithm

- Exact v-representability
- Extension for current DFT

#### Conclusions

- No uniqueness for  $k \ge 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find  $\nu$  such that  $\|\rho_{\Gamma(\nu)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$
- Pure states inversion:
  - d = 1 yes (theoretical)
  - d = 2 yes (simulations)
  - d = 3 no (theoretical but not rigorous)
- We gave an algorithm

- Exact v-representability
- Extension for current DFT
- Coercivity proof applicable to Moreau-Yosida?

#### Conclusions

- No uniqueness for  $k \ge 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find  $\nu$  such that  $\|\rho_{\Gamma(\nu)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$
- Pure states inversion:
  - d = 1 yes (theoretical)
  - d = 2 yes (simulations)
  - d = 3 no (theoretical but not rigorous)
- We gave an algorithm

- Exact v-representability
- Extension for current DFT
- Coercivity proof applicable to Moreau-Yosida?
- Compare the different methods

#### Conclusions

- No uniqueness for  $k \ge 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find  $\nu$  such that  $\|\rho_{\Gamma(\nu)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$
- Pure states inversion:
  - d = 1 yes (theoretical)
  - d = 2 yes (simulations)
  - d = 3 no (theoretical but not rigorous)
- We gave an algorithm

- Exact v-representability
- Extension for current DFT
- Coercivity proof applicable to Moreau-Yosida?
- Compare the different methods
- Accelerate the convergence, work with functionals developpers

#### Conclusions

- No uniqueness for  $k \ge 1$  (simulations)
- Constructive mixed states inversion: for any  $\rho, k, d, \epsilon$ , we can find  $\nu$  such that  $\|\rho_{\Gamma(\nu)} \rho\|_{L^1 \cap L^q} \leqslant \epsilon$
- Pure states inversion:
  - d = 1 yes (theoretical)
  - d = 2 yes (simulations)
  - d = 3 no (theoretical but not rigorous)
- We gave an algorithm

- Exact v-representability
- Extension for current DFT
- Coercivity proof applicable to Moreau-Yosida ?
- Compare the different methods
- Accelerate the convergence, work with functionals developpers
- Symmetry study