Algebraic Combinatorics: HW6

various.

April 2, 2024

Problem 1 (Trees with prescribed degrees and Cayley's formula).

(a) Given positive integers d_1, d_2, \ldots, d_n such that $\sum d_i = 2n - 2$, show that the number of labelled trees on [n] such that vertex i has degree d_i for each i is

$$\frac{(n-2)!}{\prod (d_i-1)!}.$$

- (b) Prove Cayley's formula from (a).
- (c) What is the number of all trees on n vertices with exactly n-l leaves? (Hint: You may use (a) and leave your answer in terms of Stirning's number of the second kind.)

Proof. (a) The proof via Prüfer codes is a trivial arrangement argument. Proceeding by induction on n, the base case n = 1 is also trivial. So, assume that the statement holds for n - 1, that is, there are

$$\frac{(n-3)!}{\prod_{i=1}^{n-1} (d_i - 1)!}$$

ways to create a labelled tree with $\sum d_i = 2n - 4$.

For n vertices, notice that there must be at least one vertex with degree 1 since the sum of degrees is 2n-2. Assign d_n to be the vertex with degree 1. Then, we have n-1 remaining vertices ways to connect the nth vertex to. If we connect to the kth vertex, then we are interested in the number of labelled trees with degrees $d_1, d_2, \ldots d_k - 1, \ldots, d_{n-1}$, which is $\frac{(n-3)!}{\prod_{i=1}^{n-1} (d_i-1)!} \cdot (d_k-1).$ So, the total number of valid trees on [n] vertices is

$$\begin{split} \sum_{k=1}^{n-1} \frac{(n-3)!}{\prod_{i=1}^{n-1} (d_i - 1)!} \cdot (d_k - 1) &= \frac{(n-3)!}{\prod_{i=1}^{n-1} (d_i - 1)!} \cdot \sum_{k=1}^{n-1} (d_k - 1) \\ &= \frac{(n-3)!}{\prod_{i=1}^{n-1} (d_i - 1)!} \cdot (2n - 3 - (n-1)) \\ &= \frac{(n-2)!}{\prod_{i=1}^{n-1} (d_i - 1)!} \cdot \frac{1}{0!} \\ &= \frac{(n-2)!}{\prod_{i=1}^{n} (d_i - 1)!}, \end{split}$$

as desired. The proof by induction is complete.

(b) Finding the total number of labelled trees on [n] is the same to summing $\frac{(n-2)!}{\prod(d_i-1)!}$ over all possible degrees d_1, d_2, \ldots, d_n such that $\sum d_i = 2n-2$. Note that $\frac{(n-2)!}{\prod(d_i-1)!}$ is the number of ways to order n-2 numbers in a row, where x appears d_x-1 times, so our sum is counting the number of ways to list n-2 integers in an ordered row, where each number is between 1 and n, which is precisely n^{n-2} .

This proof effectively travels through Prüfer codes.

(c) Let vertices l+1 through n be the leaves, so $d_{l+1}=d_{l+2}=\cdots=d_n=1$. The sum of the remaining degrees is 2n-2-(n-l)=n+l-2. By (a), the number of trees is then

$$\frac{(n-2)!}{\prod_{i=1}^{l} (d_i - 1)!}$$

Problem 2 (Counting Spanning trees of $K_{m,n}$). Find the value of $\tau(K_{m,n})$ using:

- (i) Matrix-Tree Theorem.
- (ii) Combinatorial argument, say, that of Prüfer or Joyal.
- (iii) Let L be the Laplacian of $K_{m,n}$.
 - (a) Find a simple upper bound on rank(L mI).
 - (b) Deduce a lwoer bound on the multiplicity of eigenvalue L equal to m.
 - (c) Assume $m \neq n$ and do the same for n.
 - (d) Find the remaining eigenvalues of L.
 - (e) Use (a)-(d) to compute $\tau(K_{m.n})$.
- *Proof.* (i) Recall that the Matrix-Tree Theorem states that $\tau(G) = |L_0|$. We let vertices v_1 through v_m be within the first partite and v_{m+1} through v_{m+n} be within the second partite. Then, the Laplacian of $K_{m,n}$ is

$$L = \begin{pmatrix} nI_m & -J_{m \times n} \\ -J_{n \times m} & mI_n \end{pmatrix},$$

Then, we have

$$L_0 = \begin{pmatrix} nI_m & -J_{m\times(n-1)} \\ -J_{(n-1)\times m} & mI_{n-1} \end{pmatrix},$$

and we may use row operations and $\tau(K_{m,n}) = |L_0| = n^{m-1}m^{n-1}$.

(ii) First, we note that one of the partites of $K_{m,n}$ must be larger than the other. [EXPLANATION OF THIS] Therefore, WLOG, let n > m. We divide the vertices of $K_{m,n}$ into two sets, A and B, where |A| = m and |B| = n. Then, we delete the smallest leaf in B and append its neighbor to the Prüfer code. We repeat this process until |B| = m. Then, we delete the smallest leaf in A and append its neighbor to the Prüfer code, followed by deleting the smallest leaf in B and appending its neighbor, etc.

From the first part of the process, we have n^{m-n} ways to choose the neighbors of the leaves in B, and from the second part of the process, we have $m^{m-1}n^{m-1}$ ways to choose the neighbors of the leaves in A. Whence,

$$\tau(K_{m,n}) = m - nm^{m-1}n^{m-1} = n^{m-1}m^{n-1}$$

.

Problem 4. Starting at a point x_0 we walk along the edges of a connected graph G according to the following rules:

- We never use the same edge twice in the same direction.
- Whenever we arrive at a point $x \neq x_0$ not previously visited, we mark the edge along which we entered x. We use the marked edge to leave x only if we must, that is, if we have used all the other edges before.

Show that we get stuck at x_0 , and that, by then, every edge has been traversed in both direction.

Proof. Set the vertex at which we get stuck to be v. Suppose, for the sake of contradiction, then $v \neq x_0$. Then, if we consider the number of times we have traversed an edge to arrive $at \ v$, this must be one more than the number of times we have traversed an edge to leave $from \ v$. Thus, there must be at least one edge that we have not traversed in both directions, so we may traverse that edge and leave. Therefore, we must be stuck at x_0 .

We now show that, when we get stuck at x_0 , every other edge must be traversed in both directions, where we duplicate each edge and direct it, to create the enter-exit effect. Then, consider the "in-tree" rooted at x_0 . Suppose, for the sake of contradiction, that we get stuck at x_0 when there is still some untraversed edges. At least one of those eddges but be an edge of the in-tree rooted at v, and let the point closest to x_0 (in the in-tree) on an untraversed edge of the in-tree be y. Since we travel to and from y an equal number of times, there is an "exit" from y we don't use, so y is closer to x_0 than the initial vertex on the untraversed edge, meaning that y = v (by the choice of edge). But, if there is an in-edge to x_0 , then we must certainly also have an unused out-edge, contradicting our stuckness. So, all edges are traversed in our manually constructed directed graph, meaning all edges are traversed twice in the original graph.

Problem 5 (Universal cycles for S_n). (i) Let $n \geq 3$. Show that there does not exist a sequence $a_1, a_2, \ldots, a_{n!}$ such that all the n! contiguous blocks $a_i, a_{i+1}, \ldots, a_{i+n-1}$ (subscripts taken modulo n!) are all the n! permutations of S_n .

- (ii) Show that for all $n \ge 1$, there exist a sequence $a_1, a_2, \ldots, a_n!$ such that all the n! contiguous blocks $a_i, a_{i+1}, \ldots, a_{i+n-2}$ consists of the first n-1 terms $b_1, b_2, \ldots, b_{n-1}$ of all permutations b_1, b_2, \ldots, b_n of [n].
 - Such sequences are called **universal cycles** for S_n (for example, for n = 3, 123213 is a universal cycle.)
- (iii) For n=3, find the number of universal cycles beginning with 123.

Proof. (i) There are (n-1)! sequences that begin with a given i (integer $1 \le i \le n$), so the is must be evenly spaced throughout the sequence, which means that the sequence is just (n-1)! copis of a_1, a_2, \ldots, a_n , which will certainly not contain all n! permutations of S_n .

For the example of n = 3, the requirement of 2 blocks beginning wth 1, 2, and 3 force a structure of ABCABC, which, because of the repeat, doesn't contain all n! permutations.

(ii)

- (iii) The beginning 123 gives blocks of 12 and 23, so the next term can be a block of 32 or 31, giving cases of:
 - (a) 1232: we've accounted for 23 already, so the next number must be 1. In 12321, we already have a 12, so the next number must be 3, yielding the universal cycle 123213.
 - (b) 1231: we've accounted for 12 already, so the next number must be 3. In 12313, we already have a 31, so the last number must be a 2, yielding the universal cycle 123132.

We confirm that all permutations are present, so the two universal cycles are

12313, 123132

_