Pontifícia Universidade Católica de Minas Gerais Instituto de Ciências Exatas e Informática – ICEI Arquitetura de Computadores I

ARQ1 - Recuperação 01

Tema: Sistemas de Numeração e circuitos combinatórios

Exercícios:

01.) Dado o mapa de Veitch-Karnaugh:

n	m	M	f(a,b,c,d)				
0	a'b'c'd'	A+B+C+D	0				
1	a'b'c'd	A+B+C+D'	0				
2	a'b'c d'	A+B+C'+D	1				
3	a'b'c d	A+B+C'+D'	1				
4	a'b c'd'	A+B'+C+D	0				
5	a'b c'd	A+B'+C+D'	1				
6	a'b c d'	A+B'+C'+D	0				
7	a'b c d	A+B'+C'+D'	1				
8	a b'c'd'	A'+B+C+D	0				
9	a b'c'd	A'+B+C+D'	1				
Α	a b'c d'	A'+B+C'+D	1				
В	a b'c d	A'+B+C'+D'	1				
С	a b c'd'	A'+B'+C+D	0				
D	a b c'd	A'+B'+C+D'	1				
Е	a b c d'	A'+B'+C'+D	0				
F	abcd	A'+B'+C'+D'	0				

	0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Е	F
mintermos																
	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	Е	F
MAXTERMOS																

Determinar e implementar os circuitos equivalentes em Verilog e no Logisim:

- a.) expressão canônica para SoP(a,b,c,d)
- b.) expressão canônica para PoS(A,B,C,D)
- c.) simplificação de mintermos por mapa de Veitch-Karnaugh
- d.) simplificação de MAXTERMOS por mapa de Veitch-Karnaugh
- e.) expressão SoP equivalente com portas NAND de 2 entradas (usar dupla negação)
- f .) expressão PoS equivalente com portas NOR de 2 entradas (usar dupla negação)

- 02. Implementar no Verilog e no Logisim as expressões abaixo para obter as tabelas verdade:
 - a.)

 module f (output s, input a, input b, input c);
 wire w1, w2, w3, w4;
 not NOT_1 (w1,b);
 not NOT_1 (w2,c);
 and AND_1 (w3,a,w2);
 and AND_2 (w4,a,w1,c);
 or OR__1 (s,w3,w4);
 endmodule // s = f (a,b,c)
 - b.) a expressão SoP simplificada e implementada apenas com portas NAND
 - c.) a expressão PoS simplificada
 - d.) mux(mux(a,b',a),mux(a,c',a),b)
- 03. Implementar no Verilog e no Logisim a expressão S=(A'+C).(A+B).(B+C)
- 04. Expressar a representação segundo a norma IEEE-754 de 18.625 em 32 bits.
- 05. Calcular:
 - a.) 1/4 de FACE₁₆ já em complemento de 2
 - b.) quociente e o resto de 235₈ dividido por 17₁₆
 - c) $a^b = (-a)^(-b)$ em um byte para a=5 e b=3
 - d.) (-11)₁₀ em complemento de 2 com tamanhos iguais a 7, 6 e 5 bits