

PROBABILISTIC MODELS

- Describe structure in data
- Describe process that generated the data
- Describe what we can never know, using randomness
- Understand how randomness affects our decisions

Same decision boundary. Different data statistics.

MULTINOMIAL

States. $x \in \{1, 2, ..., d\}$

Parameters. $\theta_1, \theta_2, \dots, \theta_d, \quad \theta_i \geq 0 \text{ for all } i, \sum_i \theta_i = 1.$

Probability Mass Function. $p(x|\theta) = \theta_x$

MULTIVARIATE GAUSSIAN

one-dimensional

two-dimensional

MULTIVARIATE GAUSSIAN

States. $x \in \mathbb{R}^d$

Parameters. $\mu \in \mathbb{R}^d$, $\Sigma \in \mathbb{R}^{d \times d}$, Σ positive definite.

Probability Density Function.

$$p(x \mid \mu, \Sigma) = (2\pi)^{-d/2} (\det \Sigma)^{-1/2} \exp\left\{-\frac{1}{2}(x - \mu)^{\mathsf{T}} \Sigma^{-1}(x - \mu)\right\}$$

Spherical Gaussian.

$$p(x \mid \mu, \sigma^2) = \left(2\pi\sigma^2\right)^{-d/2} \exp\left\{-\frac{1}{2\sigma^2} ||x - \mu||^2\right\}, \quad \mu \in \mathbb{R}^d, \sigma \in \mathbb{R}.$$

MAXIMUM LIKELIHOOD ESTIMATE (MLE)

PMF or PDF

Model.

For each parameter $\theta \in \mathbb{R}^d$, we have a distribution $p(x|\theta)$.

Data.

Set of observations $S = \{x^{(1)}, x^{(2)}, \dots, x^{(n)}\}$

Parameter estimation.

Find the parameter $\hat{\theta} \in \mathbb{R}^d$ that 'best' describes the data \mathcal{S} .

Likelihood.

$$p(S|\theta) = \prod_{x \in S} p(x|\theta)$$

Maximum Likelihood Estimate. $\hat{\theta} = \operatorname{argmax}_{\theta} p(\mathcal{S}|\theta)$

$$\hat{\theta} = \operatorname{argmax}_{\theta} p(\mathcal{S}|\theta)$$

LOG LIKELIHOOD

Maximizing the likelihood

$$p(\mathcal{S}|\theta) = \prod_{x \in \mathcal{S}} p(x|\theta)$$

is the same as minimizing the negative log likelihood

$$-\frac{1}{n}\log p(\mathcal{S}|\theta) = -\frac{1}{n}\log \prod_{x\in\mathcal{S}} p(x|\theta)$$
$$= \frac{1}{n}\sum_{x\in\mathcal{S}} -\log p(x|\theta).$$

In fact, we will define this to be the training loss.

It is the average of the point loss $-\log p(x|\theta)$.

MLE - MULTINOMIAL

Example.

Treat a document S as a *bag of words*, counting only how many times n(w) each dictionary word $w \in W$ appears in S.

Assume that the document was *generated* one word at a time, each word independently from the others.

Assume that words are drawn from same distribution $\theta = (\theta_w)$ where $w \in W$ appears with probability θ_w .

independent and identically distributed

$$p(\mathcal{S}|\theta) = \prod_{w \in W} \theta_w^{n(w)}$$

$$\mathcal{L}_n(\theta) = \frac{1}{n} \sum_{w \in W} -n(w) \log \theta_w$$

MLE - MULTINOMIAL

subject to $\theta_w \ge 0$ for all $w \in W$

$$\sum_{w \in W} \theta_w = 1$$

Using Lagrange multipliers, we showed that the minimum is attained at the following point.

MLE.
$$\hat{\theta}_{w} = \frac{n(w)}{\sum_{w' \in W} n(w')}$$

MLE - GAUSSIAN

Example.

Assume that data $S = \{x^{(1)}, x^{(2)}, ..., x^{(n)}\}$ is independent and identically distributed to a spherical Gaussian with mean $\mu \in \mathbb{R}^d$ and variance σ^2 .

Training Loss.

$$\mathcal{L}_n(\mu, \sigma^2) = -\frac{1}{n} \log p(\mathcal{S}|\mu, \sigma^2) = -\frac{1}{n} \sum_{x \in \mathcal{S}} \log p(x|\mu, \sigma^2)$$
$$= \frac{d}{2} \log(2\pi\sigma^2) + \frac{1}{2n\sigma^2} \sum_{x \in \mathcal{S}} ||x - \mu||^2$$

MLE.
$$\hat{\mu} = \frac{1}{n} \sum_{x \in \mathcal{S}} x$$
, $\hat{\sigma}^2 = \frac{1}{nd} \sum_{x \in \mathcal{S}} ||x - \hat{\mu}||^2$

CLASSIFICATION - MULTINOMIAL

Example.

Doc labels +, -. Bags of words S^+ , S^- . New unlabeled doc S.

First, compute MLEs for the likelihoods

$$p(\mathcal{S}^+|\theta^+) = \prod_{w \in \mathcal{S}^+} \theta_w^+, \quad p(\mathcal{S}^-|\theta^-) = \prod_{w \in \mathcal{S}^-} \theta_w^-.$$

Likelihood ratio.

We classify S by checking the sign of the log likelihood ratio

$$\log \frac{p(\mathcal{S}|\theta^{+})}{p(\mathcal{S}|\theta^{-})} = \sum_{w} n(w) \log \frac{\theta_{w}^{+}}{\theta_{w}^{-}}.$$
Linear classifier!

CLASSIFICATION - MULTINOMIAL

Bayesian posterior.

Assume prior probabilities p(+), p(-) on document labels. Again, we classify using the sign of the log likelihood ratio

$$\log \frac{p(\mathcal{S}|\theta^+)p(+)}{p(\mathcal{S}|\theta^-)p(-)} = \sum_{w} n(w) \log \frac{\theta_w^+}{\theta_w^-} + \log \frac{p(+)}{p(-)}.$$

This is equivalent to choosing the label with the higher *posterior probability*

$$p(+|\mathcal{S}) = \frac{p(\mathcal{S}|+)p(+)}{p(\mathcal{S})} = \frac{p(\mathcal{S}|\theta^+)p(+)}{p(\mathcal{S}|\theta^+)p(+)+p(\mathcal{S}|\theta^-)p(-)}$$

CLASSIFICATION — GAUSSIAN

Example.

Classifying between two Gaussians with the same variance σ^2 but different means μ^+ , μ^- .

$$\log \frac{P(x|\mu^{+},\sigma)}{P(x|\mu^{-},\sigma)} = \log P(x|\mu^{+},\sigma) - \log P(x|\mu^{-},\sigma)$$

$$= \log[C \cdot e^{-\frac{1}{2\sigma^{2}}||x-\mu^{+}||^{2}}] - \log[C \cdot e^{-\frac{1}{2\sigma^{2}}||x-\mu^{-}||^{2}}]$$

$$= \frac{1}{2\sigma^{2}}(2x \cdot \mu^{+} - 2x \cdot \mu^{-}) - ||\mu^{+}||^{2} + ||\mu^{-}||^{2}$$

$$= \frac{x \cdot (\mu^{+} - \mu^{-})}{\sigma^{2}} - \frac{1}{2\sigma^{2}}(||\mu^{+}||^{2} - ||\mu^{-}||^{2})$$
with offset!

SMOOTHING — MULTINOMIAL

Problem.

What if training data does not include word w? Then, $\hat{\theta}_w = 0$. What if test data includes word w? Then, classification fails.

$$\log \frac{p(\mathcal{S}|\theta^+)}{p(\mathcal{S}|\theta^-)} = \sum_{w} n(w) \log \frac{\theta_w^+}{\theta_w^-}$$

SMOOTHING — MULTINOMIAL

e.g. choose λ to be small but proportional to word distribution in all books

Solution.

Introduce prior distribution over θ .

$$P(\theta|\lambda_1,...,\lambda_n) = P(\theta|\lambda) = C \prod_{w \in W} \theta_w^{\lambda_w}$$

Estimate parameters by maximizing the posterior probability.

$$P(\theta|\mathcal{S}) \propto P(\mathcal{S}|\theta)P(\theta|\lambda) = \prod_{w \in W} \left[\theta_w^{n(w)} \cdot \theta_w^{\lambda_w}\right] = \prod_{w \in W} \left[\theta_w^{n(w) + \lambda_w}\right]$$

The hyper-parameters $\lambda_1, \dots, \lambda_n > 0$ act as *pseudo-counts*.

They give default values to θ_w if w does not appear in training, and their effect diminishes if w appears often in training.

SUMMARY

- Distributions
 - Multinomial
 - Multivariate Gaussian
 - Spherical Gaussian
- Maximum Likelihood
 - Training Loss
 - Multinomial MLE
 - o Gaussian MLE

- Log Likelihood Ratio
 - Multinomial classifier
 - Gaussian classifier
- Smoothing
 - o Prior

INTENDED LEARNING OUTCOMES

Probabilistic Models

- Explain how probabilistic modeling is useful in machine learning.
- Define the multinomial and the multivariate Gaussian distributions.
- Define independent and identically distributed (i.i.d.)

Maximum Likelihood

- Given a probabilistic model and data, describe a training loss for parameter estimation. Define maximum likelihood estimate (MLE).
- Given a probabilistic model and data, derive the MLE. Write down the MLE for multinomial and multivariate Gaussian distributions.

INTENDED LEARNING OUTCOMES

Log Likelihood Ratio

- Describe how to use the log likelihood ratio for classification.
- Derive linear classifiers given that the distribution for each label class is multinomial or multivariate Gaussian.

Bayesian Methods

- Describe how to compute the posterior probabilities using the prior probabilities and model probabilities.
- Explain how priors p(+), p(-) on labels give classifiers with offset.
- Explain how priors $p(\theta)$ on parameters give smoothed estimates.

