

FORMULA

Number of moles
$$n = \underline{m} \underline{\text{(mass)}}$$

M (molar mass)

Number of moles of solute
$$n = cV$$

Number of moles of a gas
$$n = \frac{V}{22.41}$$

pH of a solution pH =
$$-\log [H^{+}]$$

Density
$$\rho = \frac{\text{mass of sample}}{\text{volume of sample}}$$

Units

Volumes are given in the units of litres (L), or millilitres (mL)

Temperatures are given in the units of degrees Celsius (°C) or Kelvin (K).

It may be assumed that 0.0° C = 273.1 K

Energy changes are given in the SI unit kilojoule (kJ)

Pressures are given in the SI unit kilopascal (kPa) and in atmospheres.

Solution concentrations are given in the unit moles per litre (mol L⁻¹)

Constants

Universal Gas Constant, R = 8.315 J K⁻¹ mol⁻¹

Avogadro Constant, N = 6.022 x 10²³ mol⁻¹

Volume of 1.000 mol of an ideal gas at 0.0°C and 101.3 kPa is 22.41 L

S.T.P. is 0.0°C and 101.3 kPa

Equilibrium Constant for Water at 25° C Kw = $1x10^{-14}$

Solubility rules for ionic solids in water

Soluble in water

Soluble	Exceptions							
Colubic	Insoluble	Slightly soluble						
Most chlorides	AgCl,	PbCl ₂						
Most bromides	AgBr,	PbBr ₂						
Most iodides	AgI, PbI ₂							
All nitrates	NI							
All ethanoates	No exceptions							
Most sulfates	SrSO ₄ , BaSO ₄ , PbSO ₄	CaSO ₄ , Ag ₂ SO ₄						

Insoluble in water

Insoluble	Exceptions							
modubic	Soluble	Slightly soluble						
Most hydroxides	NaOH, KOH, Ba(OH) ₂ (NH₄OH and AgOH do not exist)	Ca(OH) ₂ , Sr(OH) ₂						
Most carbonates	Na ₂ CO ₃ , K ₂ CO ₃ , (NH ₄) ₂ CO ₃							
Most phosphates	Na ₃ PO ₄ , K ₃ PO ₄ , (NH ₄) ₃ PO ₄							
Most sulfides	Na ₂ S, K ₂ S, (NH ₄) ₂ S							

Soluble = more than 0.1 mole dissolves per litre

Slightly soluble = between 0.01 and 0.1 mole dissolves per litre

Insoluble = less than 0.01 mole dissolves per litre

Colour of species in aqueous solution

Cation	Colour	Cation	Colour
Al ³⁺	colourless	Mn ²⁺	very pale pink
NH ₄	colourless	Ni ²⁺	green
Ba ²⁺	colourless	Ag⁺	colourless
Ca ²⁺	colourless	Na⁺	colourless
Cr ³⁺	deep green	Sr ²⁺	colourless
Co ²⁺	pink	Sn ²⁺	colourless
Cu ²⁺	blue	Zn ²⁺	colourless
Fe ²⁺	pale green		
Fe ³⁺	brown		
K ⁺	colourless		
Pb ²⁺	colourless		
Mg ²⁺	colourless		

Anion	Colour
Br⁻	colourless
C ℓ -	colourless
Cr O ₄ ²⁻	yellow
Cr ₂ O ₇ ²⁻	orange
Ι-	colourless
Mn O ₄	deep purple
PO ₄ ³⁻	colourless
S ²⁻	colourless
-	

Halogen	Colour					
$C\ell_{2(aq)}$	pale yellow					
Br _{2 (aq)}	orange					
I _{2(aq)}	brown					
Halogen in orga	ınic solvent					
Halogen	Colour					
· ······ge···	Coloui					
Br ₂	red					
-						
Br ₂	red					
Br ₂	red					
Br ₂	red					
Br ₂	red					

Standard Reduction Potentials at 25°C

Half-reaction			E°(volts)
F ₂ (g) + 2 e ⁻	-	2 F⁻ (aq)	+ 2.87
$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	-	2 H₂O(ℓ)	+ 1.78
$PbO_2(s) + SO_4^{2-}(aq) + 4 H^+(aq) + 2 e^-$	\rightarrow	PbSO ₄ (s) + 2 H ₂ O(ℓ)	+ 1.69
2 HC ℓ O(aq) + 2 H $^{+}$ (aq) + 2 e $^{-}$	\rightleftharpoons	$C\ell_2(g) + 2 H_2O(\ell)$	+ 1.61
$MnO_{4}^{-}(aq) + 8 H^{+}(aq) + 5 e^{-}$	ightharpoonup	$Mn^{2+}(aq) + 4 H_2O(\ell)$	+ 1.51
Au ³⁺ (<i>aq</i>) + 3 e ⁻	\rightleftharpoons	Au(s)	+ 1.50
$HC\ell O(aq) + H^{\dagger}(aq) + 2 e^{-}$	=	$C\ell^-(aq) + H_2O(\ell)$	+ 1.48
PbO ₂ (s) + 4 H ⁺ (aq) + 2 e ⁻	\rightleftharpoons	$Pb^{2+}(aq) + 2 H_2O(t)$	+ 1.46
Cl ₂ (g) + 2 e ⁻	\rightarrow	2 C ℓ⁻(aq)	+ 1.36
$Cr_2O_7^{2-}$ (aq) + 14 H ⁺ (aq) + 6 e ⁻	\rightleftharpoons	$2 \operatorname{Cr}^{3+}(aq) + 7 \operatorname{H}_2 \operatorname{O}(\ell)$	+ 1.23
$O_2(g) + 4 H^+(aq) + 4 e^-$	\rightleftharpoons	2 H₂O('ℓ')	+ 1.23
$\operatorname{Br}_2(\ell)$ + 2 e ⁻	\rightleftharpoons	2 Br ⁻ (aq)	+ 1.07
$NO_{3}^{-}(aq) + 4 H^{+}(aq) + 3 e^{-}$	ightharpoonup	$NO(g) + 2 H_2O(\ell)$	+ 0.96
Ag⁺(<i>aq</i>) + e⁻	ightharpoonup	Ag(s)	+ 0.80
Fe ³⁺ (<i>aq</i>) + e ⁻	\rightleftharpoons	Fe ²⁺ (aq)	+ 0.77
$O_2(g) + 2 H^+(aq) + 2 e^-$	\Rightarrow	$H_2O_2(aq)$	+ 0.68
I₂(s) + 2 e⁻	Á	2 l⁻(aq)	+ 0.54
$O_2(g) + 2 H_2O(\ell) + 4 e^-$		4 OH⁻(<i>aq</i>)	+ 0.40
Cu ²⁺ (aq) + 2 e ⁻		Cu(s)	+ 0.34
$S(s) + 2H^{+}(aq) + 2e^{-}$	=	H ₂ S(aq)	+ 0.14
2 H ⁺ (aq) + 2 e ⁻	\rightarrow	$H_2(g)$	0 exactly
Pb ²⁺ (aq) + 2 e ⁻	-	Pb(s)	- 0.13
Sn ²⁺ (aq) + 2 e ⁻	-	Sn(s)	- 0.14
Ni ²⁺ (aq) + 2 e ⁻	=	Ni(s)	- 0.26
$Co^{2+}(aq) + 2 e^{-}$	=	Co(s)	- 0.28
PbSO ₄ (s) + 2 e ⁻	==	$Pb(s) + SO_4^{2-}(aq)$	- 0.36
Cd ²⁺ (aq) + 2 e ⁻			- 0.40
$2 CO_2(g) + 2 H^+(aq) + 2 e^-$			- 0.43
$Fe^{2+}(aq) + 2 e^{-}$			- 0.44
Cr ³⁺ (aq) + 3 e ⁻			- 0.73
$Zn^{2+}(aq) + 2 e^{-}$			- 0.76
		$H_2(g) + 2 OH^- (aq)$	- 0.83
$Mn^{2+}(aq) + 2 e^{-}$			- 1.18
$A\ell^{3+}(aq) + 3 e^{-}$		$A\ell$ (s)	- 1.66
$Mg^{2+}(aq) + 2 e^{-}$			- 2.37
$Na^+(aq) + e^-$			- 2.71
$Ca^{2+}(aq) + 2e^{-}$			- 2.76
$Sr^{2+}(aq) + 2e^{-}$			- 2.89
$Ba^{2+}(aq) + 2e^{-}$			- 2.91
K ⁺ (aq) + e ⁻	•	K(s)	- 2.93

Periodic Table

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 H 1.008																		2 He 4.003
	3 Li 6.941	4 Be 9.012											5 B 10.81	6 C 12.01	7 N 14.01	8 O 16.00	9 F 19.00	10 Ne 20.18
	11 Na 22.99	12 Mg 24.31											13 At 26.98	14 Si 28.09	15 P 30.97	16 S 32.06	17 Cℓ 35.45	18 Ar 39.95
	19 K 39.10	20 Ca 40.08	21 Sc 44.96	22 Ti 47.88	23 V 50.94	24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 Co 58.93	28 Ni 58.69	29 Cu 63.55	30 Zn 65.38	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79.90	36 Kr 83.80
	37 Rb 85.47	38 Sr 87.62	39 Y 88.91	40 Zr 91.22	41 Nb 92.91	42 Mo 95.94	43 Tc	44 Ru 101.1	45 Rh 102.9	46 Pd 106.4	47 Ag 107.9	48 Cd 112.4	49 In 114.8	50 Sn 118.7	51 Sb 121.8	52 Te 127.6	53 I 126.9	54 Xe 131.3
	55 Cs 132.9	56 Ba 137.3	57 *La 138.9	72 Hf 178.5	73 Ta 180.9	74 W 183.9	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt 195.1	79 Au 197.0	80 Hg 200.6	81 TI 204.4	82 Pb 207.2	83 Bi 209.0	84 Po	85 At	86 Rn
	87 Fr	88 Ra 226.0	89 **Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt									
	* Lanthanide Series			58 Ce 140.1	59 Pr 140.9	60 Nd 144.2	61 Pm	62 Sm 150.4	63 Eu 152.0	64 Gd 157.3	65 Tb 158.9	66 Dy 162.5	67 Ho 164.9	68 Er 167.3	69 Tm 168.9	70 Yb 173.0	71 Lu 175.0	
			** Actinide Series		90 Th 232.0	91 Pa	92 U 238.0	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

← Atomic Number← Symbol← Atomic Mass