

Universidade Federal de Santa Maria

Departamento de Eletrônica e Computação

PROJETO DE SISTEMAS EMBARCADOS

Acesso ao hardware em microcontroladores

Prof. Carlos Henrique Barriquello barriquello@gmail.com

Objetivos

 Compreender como é feita a interface entre microcontrolador e o mundo externo

Tema e conteúdo

Dispositivos periféricos

• ADC: Conversor analógico-digital.

• Interrupções.

 Os sinais encontrados no mundo real são <u>contínuos</u> (ou analógicos, pois variam no tempo de forma contínua), como, por exemplo: a <u>intensidade</u> <u>luminosa</u> de um ambiente que se modifica com a distância, a <u>aceleração</u> de um carro de corrida, a <u>temperatura</u> em um ambiente, etc.

 Entretanto, os processadores manipulam dados no formato digital (numérico), os quais devem ser representados por um número finito de bits.

 A conversão analógico-digital (A/D) é o processo que possibilita a representação de sinais analógicos no mundo digital. Desta forma é possível utilizar os dados extraídos do mundo real para cálculos ou operar seus valores.

 Em um conversor A/D, entra um sinal analógico e sai um sinal digital, a cada intervalo fixo de tempo.

A informação digital é diferente de sua forma original contínua em dois aspectos fundamentais:

- É <u>amostrada</u> porque é baseada em amostragens, ou seja, são realizadas leituras em um intervalo fixo de tempo no sinal contínuo;
- É <u>quantizada</u> porque é atribuído um valor proporcional a cada amostra com base em um **conjunto finito** de valores possíveis.

Para cada faixa de valores do sinal analógico corresponde um valor digital

A um intervalo fixo "mede-se" o valor do sinal analógico.

- Características importantes de um conversor A/D:
 - Frequência de amostragem (*Hertz Hz*)
 - Define o intervalo de tempo entre amostras consecutivas
 - Resolução (número de bits)
 - Define a capacidade de representação do valor quantizado em um valor numérico.

Método de aproximação sucessiva

Conversor A/D

- Cada microcontrolador normalmente possui um conversor A/D (pode ter mais).
- Este conversor é compartilhado por diversas entradas analógicas (canais)
- Porém apenas um canal pode ser convertido de cada vez (usa-se um MUX).

- Características do módulo A/D:
 - Algoritmo de aproximação linear sucessiva com resolução de 10 bits
 - até 8 entradas analógicas (canais)
 - Referência de tensão interna de 1,1V.

- Características do módulo A/D:
 - Conversão simples ou contínua.
 - Tempo de amostragem configurável.
 - Modo de baixo consumo de energia.

- Características do módulo A/D:
 - Interrupção associada ao final de uma conversão.
 - Operação com baixo nível de ruído.
 - Sensor de temperatura integrado.

!!! Exemplo referente a um microcontrolador AVR da Microchip/Atmel-http://www.atmel.com/products/microcontrollers/avr/

Conversor A/D – Atmega328P

ADMUX – ADC Multiplexer Selection Register

Bit	7	6	5	4	3	2	1	0	_76
(0x7C)	REFS1	REFS0	ADLAR	-	MUX3	MUX2	MUX1	MUX0	ADMUX
Read/Write	R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	• %
Initial Value	0	0	0	0	0	0	0	0	

Table 24-3. Voltage Reference Selections for ADC

REFS1	REFS0	/oltage Reference Selection						
0	0	AREF, Internal V _{ref} turned off						
0	1	AV _{CC} with external capacitor at AREF pin						
1	0	Reserved						
1	1	Internal 1.1V Voltage Reference with external capacitor at AREF pin						

!!! Exemplo referente a um microcontrolador AVR da Microchip/Atmel-http://www.atmel.com/products/microcontrollers/avr/

Conversor A/D – Atmega328P

Table 24-4. Input Channel Selections

able 24-4. Input Granner Gelections							
MUX30	Single Ended Input						
0000	ADC0						
0001	ADC1						
0010	ADC2						
0011	ADC3						
0100	ADC4						
0101	ADC5						
0110	ADC6						
0111	ADC7						
1000	ADC8 ⁽¹⁾						
1001	(reserved)						
1010	(reserved)						
1011	(reserved)						
1100	(reserved)						
1101	(reserved)						
1110	1.1V (V _{BG})						
1111	0V (GND)						

Note: 1. For Temperature Sensor.

Registradores

- Status and control register, ADCSRA
- Status and control register, ADCSRB
- Data result registers, ADCH and ADCL
- Digital input disable register, DIDR0

ADCSRA - ADC Control and Status Register A

Bit	7	6	5	4	3	2	1	0	
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	<u></u>
Initial Value	0	0	0	0	0	0	0	0	

ADEN (ADC Enable)

ADSC (ADC Start Conversion)

ADIF (ADC Interrupt Flag)

ADIE (ADC Interrupt Enable)

ADCSRA - ADC Control and Status Register A

Bit	7	6	5	4	3	2	1	0	
(0x7A)	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	ADCSRA
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Table 24-5. ADC Prescaler Selections

ADPS2	ADPS1	ADPS0	Division Factor
0	0	0	2
0	0	1	2
0	1	0	4
0	1	1	8
1	0	0	16
1	0	1	32
1	1	0	64
1	1	1	128

!!! Exemplo referente a um microcontrolador AVR da Microchip/Atmelhttp://www.atmel.com/products/microcontrollers/avr/

Conversor A/D – Atmega328P

ADCL and ADCH - The ADC Data Register

ADLAR = 0

Bit	15	14	13	12	11	10	9	8	
(0x79)	-	-	-	-	-	-	ADC9	ADC8	ADCH
(0x78)	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADC1	ADC0	ADCL
	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

ADLAR = 1

Bit	15	14	13	12	11	10	9	8	
(0x79)	ADC9	ADC8	ADC7	ADC6	ADC5	ADC4	ADC3	ADC2	ADCH
(0x78)	ADC1	ADC0	_	_	_	-	-	_	ADCL
	7	6	5	4	3	2	1	0	
Read/Write	R	R	R	R	R	R	R	R	
	R	R	R	R	R	R	R	R	
Initial Value	0	0	0	0	0	0	0	0	
	0	0	0	0	0	0	0	0	

ADCSRB – ADC Control and Status Register B

Bit	7	6	5	4	3	2	1	0	
(0x7B)	-	ACME	=	-	-	ADTS2	ADTS1	ADTS0	ADCSRB
Read/Write	R	R/W	R	R	R	R/W	R/W	R/W	•
Initial Value	0	0	0	0	0	0	0	0	

Table 24-6. ADC Auto Trigger Source Selections

ADTS2	ADTS1	ADTS0	Trigger Source		
0	0	0	Free Running mode		
0	0	1	Analog Comparator		
0	1	0	External Interrupt Request 0		
0	1	1	Timer/Counter0 Compare Match A		
1	0	0	Timer/Counter0 Overflow		
1	0	1	Timer/Counter1 Compare Match B		
1	1	0	Timer/Counter1 Overflow		
1	1	1	Timer/Counter1 Capture Event		

DIDR0 - Digital Input Disable Register 0

Bit	7	6	5	4	3	2	1	0	<u> </u>
(0x7E)	_	-	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADC0D	DIDR0
Read/Write	R	R	R/W	R/W	R/W	R/W	R/W	R/W	
Initial Value	0	0	0	0	0	0	0	0	

Sensor de temperatura integrado (canal 8)

Table 24-2. Temperature vs. Sensor Output Voltage (Typical Case)

Temperature / °C	-45°C	+25°C	+85°C
Voltage / mV	242mV	314mV	380mV

$$T = \{ [(ADCH << 8) | ADCL] - T_{OS} \} / k$$

Programando o Conversor A/D

Modo de amostra única

```
void adc init(void)
 ADMUX = 0x0F; // usa o canal em 0V
ADMUX |= (1 << REFS0); // usa AVcc como referencia
 ADMUX &= ~(1 << ADLAR); // resolução de 10 bits, com alinhamento à direita
 ADCSRA |= (1 << ADPS1) | (1 << ADPS0); // ajusta clock do ADC para 125 kHz (1MHz com prescala de
8)
uint16 t adc read(uint8 t canal)
  uint16 t ADC res;
 ADMUX = (canal & 0x0F); // define o canal
 ADCSRA |= (1 << ADEN); // habilita o ADC
  ADCSRA |= (1 << ADSC); // Inicia conversao do ADC
  while(ADCSRA & (1 << ADSC)); // aguarda fim da conversao</pre>
  ADC res = ADCL;
  ADC res = (ADCH << 8) + ADC res; // leitura do resultado
  ADMUX &= ~0x0F; // retorna para o canal 0V
  return ADC res;
```

Programando o Conversor A/D

Modo de amostragem contínua

```
void adc init(void)
 ADMUX = 0x0F; // usa o canal em 0V
ADMUX |= (1 << REFS0); // usa AVcc como referencia
 ADMUX &= ~(1 << ADLAR); // resolução de 10 bits, com alinhamento à direita
 ADCSRA |= (1 << ADPS1) | (1 << ADPS0); // ajusta clock do ADC para 125 kHz (1MHz com prescala de 8)
uint16 t adc read(uint8 t canal)
  uint16 t ADC res;
 ADMUX |= (canal & 0x0F); // define o canal
 ADCSRA |= (1 << ADEN); // habilita o ADC
  ADCSRA |= (1 << ADSC); // Inicia conversao do ADC
  while(ADCSRA & (1 << ADSC)); // aguarda fim da conversao</pre>
 ADC res = ADCL;
  ADC res = (ADCH << 8) + ADC res; // leitura do resultado
  ADMUX &= ~0x0F; // retorna para o canal 0V
  return ADC res;
```

Bibliografia e sugestões de leitura

 ATMEL 8-BIT MICROCONTROLLER WITH 4/8/16/32KBYTES IN-SYSTEM PROGRAMMABLE FLASH DATASHEET