54. Матрицы Адамара. (Первая) конструкция Пэли с квадратичными вычетами при n = p + 1, p = 4m + 3.

Определение: Для простого p определим $p \times p$ матрицу Якобсталя Q формулой $Q_{jl} = \left(\frac{j-l}{p}\right)$ (это символ Лежандра).

I конструкция Пэли: Пусть $p \equiv 3 \pmod 4$. Тогда матрица

$$\left(\begin{array}{cc}
1 & e^T \\
e & Q - E_p
\end{array}\right)$$

где e — столбец из единиц, а E_p — единичная матрица, является матрицей Адамара порядка p+1.

 \blacktriangle Рассмотрим скалярное произведение строк a_1 и a_2 матрицы Q

$$\sum_{b=1}^{p} \left(\frac{a_1 - b}{p} \right) \left(\frac{a_2 - b}{p} \right) = \sum_{x=1}^{p} \left(\frac{x}{p} \right) \left(\frac{c + x}{p} \right) = \sum_{x=1}^{p-1} \left(\frac{x}{p} \right) \left(\frac{x \cdot x^{-1}(x + c)}{p} \right) =$$

$$= \sum_{x=1}^{p-1} \left(\frac{x}{p}\right)^2 \left(\frac{1+x^{-1}c}{p}\right) = \sum_{x \not\equiv 0 \pmod{p}} \left(\frac{1+x^{-1}c}{p}\right) = \sum_{y \not\equiv 1 \pmod{p}} \left(\frac{y}{p}\right) = 0 - \left(\frac{1}{p}\right) = -1$$

Рассмотрим скалярное произведение строк искомой матрицы. По сравнению со скалярным произведением строк Q добавится слагаемое 1 и вычтутся $\left(\frac{a_1-a_2}{p}\right)$ и $\left(\frac{a_2-a_1}{p}\right)$. Они отличаюся в $\left(\frac{-1}{p}\right)$ раз. $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}=(-1)^{\frac{4m+2}{2}}=(-1)^{2m+1}=-1\Rightarrow$ слагаемые с символом Лежандра сократятся \Rightarrow скалярное произведение любых двух строк искомой матрицы равно $(-1)+1=0\Rightarrow$ это матрица Адамара