基礎抽象代數 代數結構

許胖

板燒高中

January 23, 2015

大綱

- 1 簡介
- ② 二元運算的性質
 - 基本性質
 - 單位元素
 - 反元素
 - 零元素與零因子
 - 符號簡化
 - 其他性質

二元運算

定義 (二元運算)

一個函數 $\mathcal{R}: A \times B \to C$,對於所有 $a \in A \setminus b \in B$,存在唯一的 $c \in C$,使得 $\mathcal{R}(a,b) = c$,我們稱 \mathcal{R} 是一個從 $A \times B$ 到 C 的二元運算 (Binary Operation),此時記爲 $a\mathcal{R}b = c$ 。

二元運算

定義 (二元運算)

一個函數 $\mathcal{R}: A \times B \to C$,對於所有 $a \in A \setminus b \in B$,存在唯一的 $c \in C$,使得 $\mathcal{R}(a,b) = c$,我們稱 \mathcal{R} 是一個從 $A \times B$ 到 C 的二元運算 (Binary Operation),此時記爲 $a\mathcal{R}b = c$ 。

註

若 A = B = C = S, 我們稱 R 是定義在 S 上的二元運算。

範例

範例

下列爲二元運算:

1 整數加法 $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$

範例

- 1 整數加法 $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$
- ② 實數乘法 $\cdot : \mathbb{R}^2 \to \mathbb{R}$

範例

- ① 整數加法 $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$
- ② 實數乘法 $\cdot: \mathbb{R}^2 \to \mathbb{R}$
- 3 實係數矩陣乘法 $\cdot: \mathbb{M}_{m \times n}(\mathbb{R}) \times \mathbb{M}_{n \times p}(\mathbb{R}) \to \mathbb{M}_{m \times p}(\mathbb{R})$

範例

- **1** 整數加法 $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$
- ② 實數乘法 $: \mathbb{R}^2 \to \mathbb{R}$
- 3 實係數矩陣乘法 $\cdot: \mathbb{M}_{m \times n}(\mathbb{R}) \times \mathbb{M}_{n \times p}(\mathbb{R}) \to \mathbb{M}_{m \times p}(\mathbb{R})$
- **④** 充要條件 ⇔: $\mathcal{L} \times \mathcal{L} \rightarrow \{\top, \bot\}$

範例

- ① 整數加法 $+: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$
- ② 實數乘法 $: \mathbb{R}^2 \to \mathbb{R}$
- 3 實係數矩陣乘法 $\cdot: \mathbb{M}_{m \times n}(\mathbb{R}) \times \mathbb{M}_{n \times p}(\mathbb{R}) \to \mathbb{M}_{m \times p}(\mathbb{R})$
- **4** 充要條件 ⇔: $\mathcal{L} \times \mathcal{L} \rightarrow \{\top, \bot\}$
- **5** $\mathcal{O}(n^2)$ 的 LCS 演算法 LCS: $\{0,1\}^m \times \{0,1\}^n \to \{0,1\}^k$

定義 (n元運算)

一個函數 $\mathcal{R}: A_1 \times A_2 \times \ldots \times A_n \to B$,對於所有 $(a_1, a_2, \ldots, a_n) \in A_1 \times A_2 \times \ldots \times A_n$,存在唯一的 $b \in B$,使得 $\mathcal{R}(a_1, a_2, \ldots, a_n) = b$,我們稱 \mathcal{R} 是一個從 $A_1 \times A_2 \times \ldots \times A_n$ 到 B 的 n元運算 (n-ary Operation)。

定義 (n元運算)

一個函數 $\mathcal{R}: A_1 \times A_2 \times \ldots \times A_n \to B$,對於所有 $(a_1, a_2, \ldots, a_n) \in A_1 \times A_2 \times \ldots \times A_n$,存在唯一的 $b \in B$,使得 $\mathcal{R}(a_1, a_2, \ldots, a_n) = b$,我們稱 \mathcal{R} 是一個從 $A_1 \times A_2 \times \ldots \times A_n$ 到 B 的 **n** 元運算 (n-ary Operation)。

定義 (代數結構與代數系統)

一代數結構 (Algebraic Structure) $(S, \mathcal{R}_1, \ldots, \mathcal{R}_n)$ 满足以下條件

若 $\mathcal{R}_1, \ldots, \mathcal{R}_n$ 爲定義在 S 上的 n 元運算,則稱 $(S, \mathcal{R}_1, \ldots, \mathcal{R}_n)$ 爲代數系統 (Algebraic System)。

定義 (n元運算)

一個函數 $\mathcal{R}: A_1 \times A_2 \times \ldots \times A_n \to B$,對於所有 $(a_1, a_2, \ldots, a_n) \in A_1 \times A_2 \times \ldots \times A_n$,存在唯一的 $b \in B$,使得 $\mathcal{R}(a_1, a_2, \ldots, a_n) = b$,我們稱 \mathcal{R} 是一個從 $A_1 \times A_2 \times \ldots \times A_n$ 到 B 的 **n** 元運算 (n-ary Operation)。

定義 (代數結構與代數系統)

- 一代數結構 (Algebraic Structure) $(S, \mathcal{R}_1, \ldots, \mathcal{R}_n)$ 满足以下條件
 - 有一非空集合 S

若 $\mathcal{R}_1,\ldots,\mathcal{R}_n$ 爲定義在 S 上的 n 元運算,則稱 $(S,\mathcal{R}_1,\ldots,\mathcal{R}_n)$ 爲代數 系統 (Algebraic System)。

定義 (n元運算)

一個函數 $\mathcal{R}: A_1 \times A_2 \times \ldots \times A_n \to B$,對於所有 $(a_1, a_2, \ldots, a_n) \in A_1 \times A_2 \times \ldots \times A_n$,存在唯一的 $b \in B$,使得 $\mathcal{R}(a_1, a_2, \ldots, a_n) = b$,我們稱 \mathcal{R} 是一個從 $A_1 \times A_2 \times \ldots \times A_n$ 到 B 的 n元運算 (n-ary Operation)。

定義 (代數結構與代數系統)

- 一代數結構 (Algebraic Structure) $(S, \mathcal{R}_1, \ldots, \mathcal{R}_n)$ 滿足以下條件
 - ① 有一非空集合 S
 - ② R1,..., Rn 爲定義在 S 上的二元運算

若 $\mathcal{R}_1,\ldots,\mathcal{R}_n$ 爲定義在 S 上的 n 元運算,則稱 $(S,\mathcal{R}_1,\ldots,\mathcal{R}_n)$ 爲代數 系統 (Algebraic System)。

定義 (n元運算)

一個函數 $\mathcal{R}: A_1 \times A_2 \times \ldots \times A_n \to B$,對於所有 $(a_1, a_2, \ldots, a_n) \in A_1 \times A_2 \times \ldots \times A_n$,存在唯一的 $b \in B$,使得 $\mathcal{R}(a_1, a_2, \ldots, a_n) = b$,我們稱 \mathcal{R} 是一個從 $A_1 \times A_2 \times \ldots \times A_n$ 到 B 的 n 元運算 (n-ary Operation)。

定義 (代數結構與代數系統)

- 一代數結構 (Algebraic Structure) $(S, \mathcal{R}_1, \ldots, \mathcal{R}_n)$ 满足以下條件
 - ① 有一非空集合 S
 - ② R₁,...,R_n 爲定義在 S 上的二元運算
 - 3 一系列的公理 A

若 $\mathcal{R}_1, \ldots, \mathcal{R}_n$ 爲定義在 S 上的 n 元運算,則稱 $(S, \mathcal{R}_1, \ldots, \mathcal{R}_n)$ 爲代數系統 (Algebraic System)。

範例

範例

下列爲代數結構:

① 有理數與加法、乘法 ($\mathbb{Q},+,\cdot$)

範例

- ① 有理數與加法、乘法 (ℚ,+,·)
- ② 複係數矩陣乘法 (M_{n×n}(ℂ),·)

範例

- 有理數與加法、乘法 (ℚ,+,·)
- ② 複係數矩陣乘法 $(M_{n\times n}(\mathbb{C}),\cdot)$
- ③ 正整數與最大公因數 (\mathbb{Z}^+ , gcd), 其中最大公因數爲二元運算 gcd : $\mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$

- 有理數與加法、乘法 (ℚ,+,·)
- ② 複係數矩陣乘法 $(M_{n\times n}(\mathbb{C}),\cdot)$
- ③ 正整數與最大公因數 (\mathbb{Z}^+ , gcd), 其中最大公因數爲二元運算 gcd : $\mathbb{Z}^+ \times \mathbb{Z}^+ \to \mathbb{Z}^+$
- 4 函數合成 (F(ℝ, ℝ), ∘)

基本性質 (1)

定義 (封閉律)

一個代數結構 (S, \mathcal{R}) 中,若對於所有 $a, b \in S$,使得 $a\mathcal{R}b \in S$,則稱二元運算 \mathcal{R} 對 S 滿足**封閉律 (Closure)**。

基本性質 (1)

定義 (封閉律)

一個代數結構 (S, \mathcal{R}) 中,若對於所有 $a, b \in S$,使得 $a\mathcal{R}b \in S$,則稱二元運算 \mathcal{R} 對 S 滿足**封閉律 (Closure)**。

定義 (結合律)

一個封閉的代數結構 (S,\mathcal{R}) 中,若對於所有 $a,b,c \in S$,使得 $(a\mathcal{R}b)\mathcal{R}c = a\mathcal{R}(b\mathcal{R}c)$,則稱二元運算 \mathcal{R} 對 S 具有**结合律** (Associativity, Associative property)。

基本性質 (1)

定義 (封閉律)

一個代數結構 (S,\mathcal{R}) 中,若對於所有 $a,b\in S$,使得 $a\mathcal{R}b\in S$,則稱二元運算 \mathcal{R} 對 S 滿足**封閉律 (Closure)**。

定義 (結合律)

一個封閉的代數結構 (S,\mathcal{R}) 中,若對於所有 $a,b,c \in S$,使得 $(a\mathcal{R}b)\mathcal{R}c = a\mathcal{R}(b\mathcal{R}c)$,則稱二元運算 \mathcal{R} 對 S 具有**结合律** (Associativity, Associative property)。

定義 (交換律)

一個封閉的代數結構 (S,R) 中,若對於所有 $a,b \in S$,使得 aRb = bRa,則稱二元運算 R 對 S 具有**交換律 (Commutativity, Commutative property)**。

基本性質 (2)

定義 (吸收律)

一個封閉的代數結構 $(S, \mathcal{R}_1, \mathcal{R}_2)$ 中,若對於所有 $a, b \in S$,使得

$$a\mathcal{R}_1(a\mathcal{R}_2b) = a$$

 $a\mathcal{R}_2(a\mathcal{R}_1b) = a$

,則稱二元運算 $\mathcal{R}_1, \mathcal{R}_2$ 在 S 上滿足吸收律 (Absorption law)。

基本性質 (2)

定義 (吸收律)

一個封閉的代數結構 $(S, \mathcal{R}_1, \mathcal{R}_2)$ 中,若對於所有 $a, b \in S$,使得

$$a\mathcal{R}_1(a\mathcal{R}_2b) = a$$

 $a\mathcal{R}_2(a\mathcal{R}_1b) = a$

,則稱二元運算 $\mathcal{R}_1,\mathcal{R}_2$ 在 S 上滿足吸收律 (Absorption law)。

註

吸收律是定義在一對二元運算上,因此不能單獨定義一個運算子具有吸收律。

4□ > 4□ > 4 = > 4 = > = 990

基本性質 (3)

定義 (分配律)

一個封閉的代數結構 $(S, \mathcal{R}_1, \mathcal{R}_2)$ 中,若對於所有 $a, b, c \in S$,使得

$$a\mathcal{R}_1(b\mathcal{R}_2c) = (a\mathcal{R}_1b)\mathcal{R}_2(a\mathcal{R}_1c)$$
$$(b\mathcal{R}_2c)\mathcal{R}_1a = (b\mathcal{R}_1a)\mathcal{R}_2(c\mathcal{R}_1a)$$

,則稱二元運算 R_1 在 S 上對 R_2 具有**分配律 (Distributivity, Distributive property)**。

基本性質 (3)

定義 (分配律)

一個封閉的代數結構 $(S, \mathcal{R}_1, \mathcal{R}_2)$ 中,若對於所有 $a, b, c \in S$,使得

$$a\mathcal{R}_1(b\mathcal{R}_2c) = (a\mathcal{R}_1b)\mathcal{R}_2(a\mathcal{R}_1c)$$
$$(b\mathcal{R}_2c)\mathcal{R}_1a = (b\mathcal{R}_1a)\mathcal{R}_2(c\mathcal{R}_1a)$$

,則稱二元運算 R_1 在 S 上對 R_2 具有**分配律 (Distributivity, Distributive property)**。

註

儘管 R_1 對 R_2 有分配律,但 R_2 未必對 R_1 有分配律。

單位元素 (1)

定義 (單位元素)

- 一個封閉的代數結構 (S, \mathcal{R}) 中,若
 - 存在 $e_i \in S$,對所有 $a \in S$, $e_i \mathcal{R} a = a$,則 e_i 爲左單位元素 (Left identity)
 - 存在 $e_r \in S$, 對所有 $a \in S$, $aRe_r = a$, 則 e_r 爲右單位元素 (Right identity)
 - 存在 $e \in S$,對所有 $a \in S$,eRa = aRe = a,則 e 爲單位元素 (Identity)

單位元素 (2)

定理 (單位元素存在性)

一個封閉的代數結構 (S, \mathcal{R}) 中,若存在左單位元素 e_l 、右單位元素 e_r ,則 $e_l = e_r$,即單位元素存在。

單位元素 (2)

定理 (單位元素存在性)

一個封閉的代數結構 (S, \mathcal{R}) 中,若存在左單位元素 e_l 、右單位元素 e_r ,則 $e_l = e_r$,即單位元素存在。

定理 (單位元素唯一性)

一個封閉的代數結構 (S, R) 中,若存在單位元素,則單位元素唯一。

反元素 (1)

定義 (反元素)

- 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 $e \in S$,若對 $a \in S$,
 - 存在 $b_1 \in S$, $b_1 Ra = e$, 則 b_1 稱爲 a 的左反元素 (Left inverse)
 - 存在 $b_r \in S$, $aRb_r = e$, 則 b_r 稱爲 a 的右反元素 (Right inverse)
 - 存在 $b \in S$, bRa = aRb = e, 則 b 稱爲 a 的反元素 (Inverse), a 又稱可逆元素 (Invertible element)

若對所有 $a \in S$ 都有反元素,則稱 \mathcal{R} 在 S 上有反元素 (Inverse property)。

反元素 (2)

性質

一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,則 e 的反元素爲 e。

反元素 (2)

性質

一個封閉的代數結構 (S,\mathcal{R}) 存在單位元素 e,則 e 的反元素爲 e。

定理 (反元素存在性*)

一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,且 \mathcal{R} 具有結合律,若 $a \in S$ 存在左反元素 b_l ,右反元素 b_r ,則 $b_l = b_r$,即反元素存在。

反元素 (2)

性質

一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,則 e 的反元素爲 e。

定理 (反元素存在性*)

一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,且 \mathcal{R} 具有結合律,若 $a \in S$ 存在左反元素 b_l ,右反元素 b_r ,則 $b_l = b_r$,即反元素存在。

定理 (反元素唯一性*)

一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,且 \mathcal{R} 具有結合律,若 $a \in S$ 存在反元素,則反元素唯一。

反元素 (3)

定理

一個封閉的代數結構 (S, \mathcal{R}) 若滿足結合律,則以下兩個敘述是等價的:

反元素 (3)

定理

一個封閉的代數結構 (S, \mathcal{R}) 若滿足結合律,則以下兩個敘述是等價的:

- 1 有左單位元素 e₁
 - ② 對所有 $a \in S$,存在左反元素

反元素 (3)

定理

- ① 有左單位元素 e₁② 對所有 a ∈ S, 存在左反元素
 - 2 **1** e₁ 是單位元素
 - ② (*)對所有 $a \in S$,存在反元素

零元素 (1)

定義 (零元素)

- 一個封閉的代數結構 (S, \mathcal{R}) 中,若
 - 存在 $z_l \in S$, 對所有 $a \in S$, $z_l \mathcal{R} a = z_l$, 則 z_l 爲左零元素 (Left zero element)
 - 存在 $z_r \in S$,對所有 $a \in S$, $aRz_r = z_r$,則 z_r 爲右零元素 (Right zero element)
 - 存在 $z \in S$, 對所有 $a \in S$, zRa = aRz = z , 則 z 爲零元素 (Zero element)

零元素 (1)

定義 (零元素)

- 一個封閉的代數結構 (S,R) 中,若
 - 存在 $z_l \in S$,對所有 $a \in S$, $z_l \mathcal{R} a = z_l$,則 z_l 爲左零元素 (Left zero element)
 - 存在 $z_r \in S$,對所有 $a \in S$, $aRz_r = z_r$,則 z_r 爲右零元素 (Right zero element)
 - 存在 $z \in S$,對所有 $a \in S$,zRa = aRz = z,則 z 爲零元素 (Zero element)

註

零元素又稱吸收元素 (Absorbing element)。

零元素 (2)

定理 (零元素存在性*)

一個封閉的代數結構 (S, \mathcal{R}) 具有結合律,若存在左零元素 z_I ,右零元素 z_r ,則 $z_I = z_r$,即零元素存在。

零元素 (2)

定理 (零元素存在性*)

一個封閉的代數結構 (S, \mathcal{R}) 具有結合律,若存在左零元素 z_I ,右零元素 z_r ,則 $z_I = z_r$,即零元素存在。

定理 (零元素唯一性*)

一個封閉的代數結構 (S, \mathcal{R}) 具有結合律,若存在零元素,則零元素唯一。

零元素 (3)

定理

一個封閉的代數結構 (S, \mathcal{R}) 有單位元素 e、零元素 z,若 $|S| \ge 2$,則 $e \ne z$ 。

零元素 (3)

定理

一個封閉的代數結構 (S, \mathcal{R}) 有單位元素 e、零元素 z,若 $|S| \ge 2$,則 $e \ne z$ 。

性質

(*) 一個封閉的代數結構 (S,\mathcal{R}) 存在單位元素 e,若 \mathcal{R} 在 S 上有零元素 z 且 $z\neq e$,則 z 沒有反元素。

零因子

定義 (零因子)

一個封閉的代數結構 (S,\mathcal{R}) 中存在零元素 z , 若 $a,b \in S$ 且 $a,b \neq z$, 使得 $a\mathcal{R}b = z$, 則 a,b 稱爲**零因子 (Zero divisor)** \circ

零因子

定義 (零因子)

一個封閉的代數結構 (S,\mathcal{R}) 中存在零元素 z,若 $a,b \in S$ 且 $a,b \neq z$,使得 $a\mathcal{R}b = z$,則 a,b 稱爲**零因子 (Zero divisor)**。

定理 (零因子性質)

- 一個封閉的代數結構 (S, R) 滿足以下條件:
 - 有結合律
 - 存在單位元素 e
 - 存在零元素 z

若 a,b ∈ S 是零因子,則 a,b 沒有反元素。

消去律 (1)

定義 (消去律)

- 一個封閉的代數結構 (S, \mathcal{R}) 中,對所有 $a, b, c \in S$,若
 - aRb = aRc 可得到 b = c,則 R 在 S 上有左消去律 (Left cancellation law)。
 - bRa = cRa 可得到 b = c,則 R 在 S 上有右消去律 (Right cancellation law)。
 - R 滿足左消去律和右消去律,則 R 在 S 上有消去律 (Cancellation law)。

消去律 (2)

定理 (消去律性質)

- 一個封閉的代數結構 (S, R) 滿足以下條件:
 - 有結合律
 - 有單位元素 e
 - 對所有 a∈ S 都有反元素

則R在S上有消去律。

消去律 (3)

定理

消去律 (3)

定理

- 1 e 是單位元素
 - ② 對所有 $a \in S$,存在反元素

消去律 (3)

定理

- 企是單位元素
 - ② 對所有 a ∈ S,存在反元素
- ② 對於任意 $a,b \in S$, x,y 是未知數, 方程式 aRx = b 和 yRa = b 存在唯一解。

定義 (單位元素記號)

- 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,若
 - R 爲加法 +s,則 e 爲加法單位元素 (Additive identity),此時 e 記爲 Os。

定義 (單位元素記號)

- 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,若
 - R 爲加法 +s,則 e 爲加法單位元素 (Additive identity),此時 e
 記爲 0s。
 - \mathcal{R} 爲乘法 \cdot_S ,則 e 爲乘法單位元素 (Multiplicative identity) , e 記爲 1_S 。

定義 (單位元素記號)

- 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,若
 - • R 爲加法 +_S , 則 e 爲加法單位元素 (Additive identity) , 此時 e
 e
 e 爲0 s 。
 - \mathcal{R} 爲乘法 \cdot_S ,則 e 爲乘法單位元素 (Multiplicative identity) , e 記爲 1_S 。

註

1 +s 不是真的代表實數或複數的加法運算,而是代表他在 S 上有類似我們常見的加法性質,因此用這個符號容易聯想;·s 亦然。

定義 (單位元素記號)

- 一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,若
 - • R 爲加法 +_S , 則 e 爲加法單位元素 (Additive identity) , 此時 e
 e
 e 爲0s。
 - \mathcal{R} 爲乘法 \cdot_S ,則 e 爲乘法單位元素 (Multiplicative identity) , e 記爲 1_S 。

註

- +s 不是真的代表實數或複數的加法運算,而是代表他在 S 上有類似我們常見的加法性質,因此用這個符號容易聯想;·s 亦然。
- ② 使用 0 和 1 做爲記號只是方便我們去聯想他的性質,事實上並不是實數的「0|和「1|,只是單純的符號。

4 D > 4 D > 4 E > 4 E > E 9040

符號簡化 (2)

定義 (反元素記號)

一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,且所有 $a \in S$ 均有反元素 $b \in S$,若

● R 爲加法 +s,則 b 爲加法反元素 (Additive inverse),此時 b 記 爲 -a。

符號簡化 (2)

定義 (反元素記號)

一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,且所有 $a \in S$ 均有反元素 $b \in S$,若

- \mathcal{R} 爲加法 $+_S$,則 b 爲加法反元素 (Additive inverse),此時 b 記 爲 -a 。
- \mathcal{R} 爲乘法 \cdot_S ,則 b 爲**乘法反元素 (Multiplicative inverse)** ,此時 b 記爲 a^{-1} 。

符號簡化 (2)

定義 (反元素記號)

一個封閉的代數結構 (S, \mathcal{R}) 存在單位元素 e,且所有 $a \in S$ 均有反元素 $b \in S$,若

- \mathcal{R} 爲加法 $+_S$,則 b 爲加法反元素 (Additive inverse),此時 b 記 爲 -a 。
- \mathcal{R} 爲乘法 \cdot_S ,則 b 爲**乘法反元素 (Multiplicative inverse)** ,此時 b 記爲 a^{-1} 。

註

同樣地,-a和 a-1 只是單純的符號,不要和減法與倒數搞混。

幂等律

定義 (幂等元素與幂等律)

一個封閉的代數結構 (S, \mathcal{R}) 中,若有 $a \in S$,使得 $a\mathcal{R}a = a$,則 a 稱爲 **幂等元素 (Idempotent element)**。若所有 $a \in S$ 都是幂等元素,則稱 二元運算 \mathcal{R} 在 S 上滿足**幂等律 (Idempotent)**。