Paths of analysis*

Synthia

October 10, 2022

1 Analysis parameters

Analysis type: Automatic Retrosynthesis

Rules: none selected

Filters: Exclude Diastereoselecitve reactions, Tunnels, FGI, FGI with protec-

tions

Max. paths returned: 50

Max. iterations: 2000

Commercial:

1. Max. molecular weight - 1000 g/mol

2. Max. price - 1500 \$/g

Published:

- 1. Max. molecular weight 1000 g/mol
- 2. Popularity 5

My Stockroom:

1. Max. molecular weight - 1000 g/mol

Reaction scoring formula: TUNNEL_COEF*FGI_COEF*STEP*20+1000 000*(CONFLICT+NON SELECTIVITY+FILTERS+PROTECT)

Chemical scoring formula: SMALLER^ 3,SMALLER^ 1.5

Min. search width: 400

Max. reactions per product: 60

^{*}The results stated herein were generated using the proprietary platform owned and maintained by Grzybowski Scientific Inventions, Inc., a subsidiary of Merck KGaA, Darmstadt Germany. The results are provided on an as is basis, and shall be used solely in connection with the rights afforded in the license agreement and for no other purpose.

 ${f Strategies:}\ {f none}\ {f selected}$

FGI Coeff: 0

Tunnels Coeff: 0

JSON Parameters: {}

2 Paths

3 paths found. Paths are sorted by score. Reactions are sorted in appearance order for each path.

2.1 Path 1

Score: 106.04

Figure 1: Outline of path 1

2.1.1 Brown Hydroboration of Alkenes

Substrates:

1. 1-but-3-enyl-1h-(1,2,3)triazole

Products:

1. OCCCCn1ccnn1

Typical conditions: B2H6.H2O2.THF.NaOH

Protections: none

Reference: 10.1002/9780470638859.conrr118

Retrosynthesis ID: 4772

2.1.2 Jones Oxidation

Substrates:

1. OCCCCn1ccnn1

Products:

1. 4-(1H-1,2,3-triazol-1-yl)butanoic acid - available at Sigma-Aldrich

Typical conditions: cromate.sulfate.H2O.acetone

Protections: none

Reference: 10.1002/9780470638859.conrr349 and 10.1021/jm00270a004

Retrosynthesis ID: 11160

2.1.3 Bromination of aromatic compounds

Substrates:

1. 4-(1H-1,2,3-triazol-1-yl)butanoic acid - available at Sigma-Aldrich

Products:

1. O=C(O)CCCn1cc(Br)nn1

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.1.4 Synthesis of silanes, stannanes and germanes from Grignard reagents

$$CI-Si$$
 + O OH O O

Substrates:

- 1. TMSCl available at Sigma-Aldrich
- $2. \ O{=}C(O)CCCn1cc(Br)nn1$

Products:

1. C[Si](C)(C)c1cn(CCCC(=O)O)nn1

 $\textbf{Typical conditions:}\ 1. nBuLi. or. Mg. THF. -78C. 2. Si-Cl. to.rt$

Protections: none

Reference: 10.1021/jo802433t AND 10.1021/ja01108a009

Retrosynthesis ID: 5402

2.1.5 Synthesis of alkyl chlorides from carboxylic acids

Substrates:

 $1. \ C[Si](C)(C)c1cn(CCCC(=O)O)nn1 \\$

Products:

1. C[Si](C)(C)c1cn(CCCCl)nn1

 $\textbf{Typical conditions:} \ \operatorname{Ag}(Phen) \\ 2OTf. OtBu. Cl. acetonitrile. \\ RT$

Protections: none

Reference: DOI: 10.1021/ja210361z

Retrosynthesis ID: 11619

2.1.6 Blanc bromomethylation

Substrates:

1. C[Si](C)(C)c1cn(CCCCl)nn1

2. Formalin - available at Sigma-Aldrich

Products:

 $1. \ C[Si](C)(C)c1nnn(CCCCl)c1CBr \\$

Typical conditions: HBr.heat

Protections: none

Reference: 10.1021/ja011493q and 10.1021/ma012195g and 10.1016/S0040-

4039(02)01769-0 and 10.1021/ja002069c

2.1.7 Synthesis of alkyl Grignard reagents

Substrates:

 $1. \ C[Si](C)(C)c1nnn(CCCCl)c1CBr \\$

2. Magnesium - available at Sigma-Aldrich

Products:

 $1. \ C[Si](C)(C)c1nnn(CCCCl)c1C[Mg]Br \\$

 $\textbf{Typical conditions:} \ \mathrm{Mg.THF} \ \mathrm{or} \ \mathrm{iPrMgBr}$

Protections: none

Reference: DOI: 10.1021/jo00002a039 and 10.1021/jo047877r and

10.1021/ol006618v

2.1.8 Grignard-Type Reaction

Substrates:

1. C[Si](C)(C)c1nnn(CCCCl)c1C[Mg]Br

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)C=CCCC1

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or 10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.1.9 Alkylation of tertiary alcohols

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)C=CCCC1

Products:

 $1. \ C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCCC2$

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules24091643

Retrosynthesis ID: 31010930

2.2 Path 2

Score: 231.16

Figure 2: Outline of path 2

2.2.1 Synthesis of alkyl chlorides from alcohols

1. 3-[1,2,3]triazol-1-yl-propan-1-ol

Products:

1. C5H8ClN3

Typical conditions: cyanuric chloride.DMF.DCM.RT

Protections: none

Reference: DOI: 10.1021/ol017168p

Retrosynthesis ID: 11617

2.2.2 Bromination of aromatic compounds

Substrates:

1. C5H8ClN3

Products:

1. ClCCCn1cc(Br)nn1

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

2.2.3 Synthesis of arylsilanes

Substrates:

- 1. ClCCCn1cc(Br)nn1
- 2. TMSCl available at Sigma-Aldrich

Products:

 $1. \ C[Si](C)(C)c1cn(CCCCl)nn1 \\$

Typical conditions: 1.nBuLi.2.ClSnR3

Protections: none

Reference: 10.1071/CH9851147.

Retrosynthesis ID: 5370

2.2.4 Blanc bromomethylation

Substrates:

1. C[Si](C)(C)c1cn(CCCCl)nn1

2. Formalin - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CBr

Typical conditions: HBr.heat

Protections: none

Reference: 10.1021/ja011493q and 10.1021/ma012195g and 10.1016/S0040-

4039(02)01769-0 and 10.1021/ja002069c

Retrosynthesis ID: 31010730

2.2.5 Synthesis of alkyl Grignard reagents

Substrates:

 $1. \ C[Si](C)(C)c1nnn(CCCCl)c1CBr \\$

2. Magnesium - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1C[Mg]Br

 $\textbf{Typical conditions:} \ \mathrm{Mg.THF} \ \mathrm{or} \ \mathrm{iPrMgBr}$

Protections: none

Reference: DOI: 10.1021/jo00002a039 and 10.1021/jo047877r and

10.1021/ol006618v

Retrosynthesis ID: 10011828

2.2.6 Grignard-Type Reaction

Substrates:

1. C[Si](C)(C)c1nnn(CCCCl)c1C[Mg]Br

2. 2-Cyclohexen-1-one - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)C=CCCC1

 $\textbf{Typical conditions:} \ \operatorname{Mg} \ \mathrm{or} \ \operatorname{Li.ether}$

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or

10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

2.2.7 Alkylation of tertiary alcohols

Substrates:

 $1. \ C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)C=CCCC1$

Products:

 $1. \ C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCCC2$

 $\textbf{Typical conditions:} \ \ \textbf{K2CO3}. acetone. heat$

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643

Retrosynthesis ID: 31010930

2.3 Path 3

Score: 231.16

Figure 3: Outline of path 3

2.3.1 An azide and acetylene free synthesis of 1-substituted 1,2,3-triazoles

Substrates:

1. Glyoxal dimethyl acetal - available at Sigma-Aldrich

2. Tosylhydrazide - available at Sigma-Aldrich

3. 3-Chloropropylamine hydrochloride - available at Sigma-Aldrich

Products:

1. C5H8ClN3

 $\textbf{Typical conditions:} \ 1. TsNHNH2. MeOH. rt \ 2. Amine. AcOH. heat$

 ${\bf Protections:}\ {\rm none}$

Reference: 10.1016/j.tetlet.2020.152483

2.3.2 Bromination of aromatic compounds

Substrates:

1. C5H8ClN3

Products:

 $1. \ ClCCCn1cc(Br)nn1$

Typical conditions: Br2.Fe

Protections: none

Reference: 10.1021/acs.accounts.6b00120

Retrosynthesis ID: 7777000

2.3.3 Synthesis of arylsilanes

1. ClCCCn1cc(Br)nn1

2. TMSCl - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1cn(CCCCl)nn1

Typical conditions: 1.nBuLi.2.ClSnR3

Protections: none

Reference: 10.1071/CH9851147. Retrosynthesis ID: 5370

2.3.4 Blanc bromomethylation

Substrates:

 $1. \ C[Si](C)(C)c1cn(CCCCl)nn1 \\$

2. Formalin - available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CBr

Typical conditions: HBr.heat

Protections: none

Reference: 10.1021/ja011493q and 10.1021/ma012195g and 10.1016/S0040-ma012195g

4039(02)01769-0 and 10.1021/ja002069c

2.3.5 Synthesis of alkyl Grignard reagents

Substrates:

- $1. \ C[Si](C)(C)c1nnn(CCCCl)c1CBr \\$
- 2. Magnesium available at Sigma-Aldrich

Products:

 $1. \ C[Si](C)(C)c1nnn(CCCCl)c1C[Mg]Br \\$

 $\textbf{Typical conditions:} \ \mathrm{Mg.THF} \ \mathrm{or} \ \mathrm{iPrMgBr}$

Protections: none

Reference: DOI: 10.1021/jo00002a039 and 10.1021/jo047877r and

10.1021/ol006618v

2.3.6 Grignard-Type Reaction

Substrates:

- 1. C[Si](C)(C)c1nnn(CCCCl)c1C[Mg]Br
- 2. 2-Cyclohexen-1-one available at Sigma-Aldrich

Products:

1. C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)C=CCCC1

Typical conditions: Mg or Li.ether

Protections: none

Reference: 10.1021/jo010494y or 10.1016/j.steroids.2015.09.009 or 10.1021/jo061349t or 10.1021/ja056165v (SI page 19)

Retrosynthesis ID: 25134

2.3.7 Alkylation of tertiary alcohols

 $1. \ C[Si](C)(C)c1nnn(CCCCl)c1CC1(O)C=CCCC1$

Products:

 $1. \ C[Si](C)(C)c1nnn2c1CC1(C=CCCC1)OCCC2$

Typical conditions: K2CO3.acetone.heat

Protections: none

Reference: 10.1016/S0040-4020(01)90106-1 and 10.1021/acs.analchem.5b04461

and 10.3390/molecules 24091643