

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁵ :		11) International Publication Number: WO 91/05023
C09D 163/02	A1	43) International Publication Date: 18 April 1991 (18.04.91)
(21) International Application Number: PCT/US		Brookside Avenue, Ambler, PA 19002 (US).
(22) International Filing Date: 26 September 1990	(Z0.U9.)	
(30) Priority data: 416,167 2 October 1989 (02.10.89) (71) Applicant: HENKEL CORPORATION [US/1] Brookside Avenue, Ambler, PA 19002 (US).	,	(81) Designated States: AT (European patent), AU, BE (European patent), BR, CA, CH (European patent), DE (European patent), ES (European patent), FR (European patent), GE (European patent), HU, IT (European patent), KP, KR, LU (European patent), NL (European patent), SE (European patent).
(72) Inventors: AHMED, Bashir, M.; 31631 Harlo Drison Heights, MI 48071 (US). JAYASURIYA, M.; 3051 Marcella Drive, Erie, PA 16506 (UKINS, Thomas, R.; P.O. Box 282, Wycombe, US).	Robit S). HC	Before the expiration of the time limit for amending the
(==)		

(54) Title: COMPOSITION AND PROCESS FOR AND ARTICLE WITH IMPROVED AUTODEPOSITED SURFACE COATING BASED ON EPOXY RESIN

(57) Abstract

The quality of coating in autodeposition from solutions in which the coating is predominantly derived from epoxy resins can be improved in two ways, which can be used jointly or separately: A blocked isotyanate is used as cross linking agent for the epoxy resin, and a surfactant that prevents the occurrence of phase separation during drying of the coating is used. Preferably the surfactant is a fluoroaliphatic polymer ester.

DESIGNATIONS OF "DE"

Until further notice, any designation of "DE" in any international application whose international filing date is prior to October 3, 1990, shall have effect in the territory of the Federal Republic of Germany with the exception of the territory of the former German Democratic Republic.

POR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

• •					
AT	Austria	ES	Spain	МС	Monaco
AU	Australia	Fì	Finland	MG	Madagascar
BB	Barbados	FR	France	ML	Mali
BE	Belgium	GA	Gabon	MR	Mauritania
BF	Burkina Fasso	GB	United Kingdom	MW	Malawi
BG	Bulgaria	GR	Greece	NL	Netherlands
BJ	Benip	HU	Hungary	NO	Norway
BR	Brazil	IT	Italy	PL	Poland
CA	Canada	JP	Japan	RO	Romania
CP	Central African Republic	KP	Democratic People's Republic	SED	Sudan
CC	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SN	Senegal
СМ	Cameroon	LJ	Liechtenstein	SU	Soviet Union
DE	Germany	LK	Sri Lanka	TD	Chad
DK	Denmark	LU .	Luxembourg	TÇ	Togo
	,		-	US	United States of America

COMPOSITION AND PROCESS FOR AND ARTICLE WITH IMPROVED AUTODEPOSITED SURFACE COATING BASED ON EPOXY RESIN

Field of the Invention

This invention relates to the use of aqueous liquid compositions (solutions or dispersions) with which active metal surfaces can be coated, by mere contact with the liquid composition, with an adherent polymer film that 5 increases in thickness the longer the time of contact, even though the liquid composition is stable for a long time against spontaneous precipitation or flocculation of any solid polymer, in the absence of contact with active metal. 10 (For the purposes of this application, the term "active metal" is to be understood as including iron and all the metals and alloys more active than iron in the electromotive series.) Such liquid compositions are denoted in this specification, and commonly in the art, as "autodeposition" or "autodepositing" compositions, dispersions, emulsions, 15 suspensions, baths, solutions, or a like term. Autodeposition is often contrasted with electrodeposition, which can produce very similar adherent films but requires that the surfaces to be coated be connected to a source of direct

15

20

25

30

35

current electricity for coating to occur.

In particular, this invention is concerned with autodeposition of high quality coatings based on epoxy resins.

5 Description of Related Art

U. S. Patent 3,592,699 of July 13, 1971 to Steinbrecher et al. is one of the early basic patents on autodeposition. It teaches autodeposition baths generally containing an appropriate polymer latex, an appropriate amount of a soluble accelerator or oxidizing agent such as hydrogen peroxide or dichromate ion, fluoride ions, and sufficient acid to keep the pH within the range of about 2.5 - 3.5.

Examples of suitable polymer dispersions, pigments, and other ingredients that can constitute the preponderance of autodeposited coatings are taught in U. S. Patent 4,411,937, especially in column 3 lines 24 - 50 and column 7 lines 23 - 63. Additional examples are described in U. S. Patent 4,186,219, especially in column 3 line 53 to column 4 line 48. Examples of epoxy resins and some cross linking agents for them that are suitable for use in autodepositing compositions are taught in U. S. Patents 4,180,603 of Dec. 25, 1979, 4,233,197 of Nov. 11, 1980, and 4,289,826, all to Howell, Jr. None of these patents teaches any use of isocyanates as cross linking agents, and operation according to the directions of any of these patents has generally been found by the present applicants to produce autodeposited film thicknesses no greater than 1.7 microns per minute of contact with the autodeposition composition (" μ m/min") at 20 - 25° C.

The use of "homogenization", i.e., subjecting crude emulsions with relatively large dispersed particles to mechanical comminuting forces in the presence of surfactant, in order to produce more stable emulsions with smaller dispersed particles, in preparing synthetic polymer emulsions is taught in U. S. Patent 4,177,177 of Dec. 4, 1979 to Vanderhoff et al.

A product information bulletin titled "Fluorad"

10

15

20

25

30

35

Coating Additives", published by the 3 M Company, St. Paul, Minnesota in June, 1986 describes coating defects such as creeping and cratering as susceptible to solution by use of FC-430 additive.

It is an object of this invention to provide suitable compositions and processes for relatively rapid autodeposition of surface coatings based on epoxy resins that are thick and continuous enough to be more protective than those achieved in the prior art.

Description of the Invention

Except in the operating examples, or where otherwise explicitly indicated, all numerical quantities in this description indicating amounts of material or reaction conditions are to be understood as modified by the word "about".

It has now been found that autodeposition baths that contain, as the primary film forming components, (i) epoxy resins derived from diglycidyl ethers of bisphenol-A and (ii) crosslink promoting curatives for such epoxy resins, can be improved in two ways, which may advantageously used in combination: (1) a sufficiently large amount of emulsifying agent can prevents development of coverage defects such as cracks or craters in the coatings during drying and cure and (2) a fully blocked dissocyanate that is stable in the acid environment that is preferred for autodeposition baths, in order to facilitate film formation at a practically useful speed, can be used as the sole or predominant crosslink promoting curative agent.

One important advantage achieved by a process according to this invention is a faster rate of film formation. Rates of over 5 μ m/min at room temperature are readily achieved.

Preferred compositions of autodeposition baths according to the present invention consist essentially of the following components:

(A) from 1 to 20, preferably from 2 to 10, % by weight of an epoxy resin component consisting of molecules

15

20

25

4

having formula I as follows:

$$CH_{2}$$
 $-CH_{2}$ $-CH_{$

$$A = -0 - CH_3 - CH_2 - CH_2 - CH_2 - CH_3 - CH_3$$

and n is an integer from 0 to 50, preferably from 0 to 20, more preferably from 0 to 6;

- (B) an emulsifying component in sufficient quantity to stably emulsify component (A);
- (C) from 0.1 to 20, preferably from 0.2 to 10, % by weight of a cross-linking component selected from one or both of the following molecular types:
 - (1) molecules containing at least two functional groups, such as amine, amide, imine, thiol, hydroxyl, carboxyl, and carboxylic acid anhydride, that are capable of chemical addition reactions with epoxy groups when mixed with molecules of formula I and heated to a temperature of at least 100°C; and
 - (2) molecules containing at least two isocyanate groups, each such group being blocked with a conventional blocking agent or internally blocked by formation of a uretdione structure, so that the blocked isocyanate group does not react at any appreciable rate at room temperature with hydroxyl groups but does react rapidly with such groups after being unblocked by heating to a temperature of at least 160°C;
- 30 (D) an accelerator component, such as acid, oxidizing agent, and/or complexing agent, in sufficient amount

10

15

20

25

30

35

to cause the dissolution of active metals from active metal surfaces in contact with the composition at a temperature of at least 20°C at a rate of at least 0.020 gram equivalent weights of metal ions per hour per square decimeter of contacted metal surface; and, optionally,

- (E) pigments, dyes, or other chemically stable colorant materials;
- (F) finely divided solids suitable as fillers in the coatings to be formed from the composition, such as silicates, borates, mica, talc, and clays; and
 - (G) water to form the balance of the composition. The composition is regarded as stably emulsified if no more than 1 % by weight of the solids content of the composition spontaneously separates from the composition in 30 days storage at room temperature in the absence of contact with active metal.

Preferably, component (A) has an average molecular weight in the range from 500 - 10,000, or more preferably in the range from 800 - 7,000. Preferably the average number of epoxide groups per molecule in component (A) is in the range from 1.7 - 2.5, or more preferably in the range from 1.9 - 2.1.

Component (B) may be any suitable material as known in the art. It is highly preferred, however, that component (B) be selected to have another property not previously achieved in the art: the ability to prevent the formation of open spots or other covering defects in the coatings formed from the composition, without unacceptably reducing the corrosion protection offered to the underlying metal by the coating formed by autodeposition.

The applicants, while not wishing to be bound by any particular theory, believe that the occurrence of coating flaws during coating with epoxy resin based autodeposition compositions in the prior art has been associated with phase separations that occur during the progress of the cross-linking reaction(s), as a result of the random nature

10

15

20

25

30

35

of initiation of cross linking and the tendency of growing cross linked polymer molecules to segregate spontaneously into one or more phases separate from the remaining It has been found that the use of large unreacted resin. quantities of conventional surfactant emulsifying agents can prevent such coating coverage defects, but the quantities required for this purpose are sufficiently large to reduce the protective value of the coatings, presumably because of reactions with the other constituents of the bath that change the chemical structure of the polymer film formed in a way that is deleterious to its protective It has been found. however, that certain value. fluorochemical emulsifying agents. specifically fluoroaliphatic polymeric esters, are free from this disadvantage. The use of fluoroaliphatic polymeric esters, at concentrations of 0.1 to 2.0 grams per liter (g/L) of total composition, more preferably at 0.3 - 1.0 g/L, or still more preferably at 0.3 - 0.5 g/L, is therefore highly preferred.

If component type (C)(1) is used, its constituents preferably have terminal amine, carboxylic acid, or amide groups.

If component type (C)(2) is used, as is generally preferred, its constituents preferably are chosen from molecules of the general formula II:

wherein each of B and B' independently is a monovalent moiety formed by removing the most active hydrogen atom from an amine, alcohol, amide, or oxime molecule; each of R and R' independently is a divalent hydrocarbon or carbonyl-hydrocarbon moiety derived by removing any two hydrogen atoms not attached to the same carbon atom from any hydrocarbon, or oxyhydrocarbon in which all oxygen atoms present are in carbonyl groups, having from 2 to 20 carbon atoms and having no unsaturation except aromatic and carbonyl unsaturation; and m is an integer from 0 - 20,

10

15

20

25

30

35

preferably from 0 - 10. The blocking groups B and B', which preferably are the same, can be derived from any suitable aliphatic, cycloaliphatic, aromatic, or alkylaromatic monoalcohol, monoamide, monoamine, or monooxime. Most preferably, the blocking groups are amides.

Component (D) is preferably chosen from the group consisting of hydrofluoric acid and its salts, fluorosilicic acid and its salts, fluorotitanic acid and its salts, ferric ion, acetic acid, phosphoric acid, sulfuric acid, nitric acid, hydrogen peroxide, peroxy acids, citric acid and its salts, and tartaric acid and its salts. The pH of the composition preferably is in the range of 2 - 4.

A process according to this invention comprises steps of contacting an object with an active metals surface with an autodeposition composition according to the invention, as described above, for a sufficient time ito cause the formation of a polymer film of a pre-determined thickness on the metal surface, separating the coated metal surface from contact with the autodepositing composition, rinsing the coated metal surface to remove at least some of the absorbed but otherwise unadhered solids in the autodeposition composition from the more adherent solid part of the coating, and heating the rinsed surface to form a final film.

optionally, a reagent to cause additional desirable reactions in the coated film may be included in the rinse used after cessation of contact between the wet coated surface and the bulk of the autodeposition composition, and/or separate treatment compositions for the wet coated films may be brought into contact with the wet coated films after rinsing, and such treatment(s) followed by additional rinsing(s), before final heating of the treated film.

In general, the compositions of this invention produce wet coated films that can be heated after simple rinsing with tap or deionized water to give good quality final

10

15

20

25

films, without the need for post-coating treatments that have often been recommended in the prior art. Many of these post-coating treatments contain chromium or other environmentally undesirable constituents, so that their use is preferably avoided in most cases. Contact between surfaces to be treated and compositions according to this invention, rinses, or other treatment compositions can be effected by any convenient method, such as immersion, spraying, roll coating, or the like, including combinations of more than one method.

Preferably, contact between active metal surfaces and the autodeposition compositions according to this invention is for a time between 0.5 and 10 minutes, more preferably between 1 and 3 minutes. Contact preferably is long enough to produce a final film thickness between 15 and 50 μ m, more preferably between 24 and 35 μ m. Final heating of the rinsed wet coated and optionally posttreated films is preferably at a temperature between 130 and 200° C, more preferably between 150 and 195° C, for a time of 3 to 60 minutes, more preferably for 10 to 30 minutes.

The practice of this invention may be further appreciated from the following working examples.

The first step in preparing an autodeposition bath is to prepare a suitable dispersion of the ingredients that will form the bulk of the eventual autodeposited coatings.

Dispersion Examples 1 and 2

The ingredients for these example were used in the following amounts:

	Ingredient	<u>Parts by Wei</u>	ght Used for:
30		Example 1	Example 2
	Epon [™] Resin 1001F	300	400
	IPDI-BF 1540 [™]	100	132
	Alipal™ CO-436	18	25
	Hexadecane	25	35
35	Toluene	720	532
	Methyl Iso-butyl Ketone ("MIBK	") 80	532
	Deionized water	2370	2348

10 .

15

20

25

35

EponTM 1001F resin is a commercial epoxy resin from Shell Chemical Co., with an equivalent weight per epoxide unit of about 500, made by reaction of epichlorohydrin with bisphenol-A. IPDI-BF 1540TM is a commercial diol extended isophorone diisocyanate prepolymer having an internally blocking uretdione structure, available from Hüls America, Inc. AlipalTM CO-436 is a commercial emulsifying agent, the ammonium salt of an alkyl phenol condensed with an average of four ethylene oxide units per molecule, available from GAF Corporation.

To make a dispersion, the epoxy resin, blocked diisocyanate, and hexadecane were all dissolved together in a mixture of the toluene and MIBK. This solution was then mixed with the deionized water. The resulting mixture was initially unstable, but it was homogenized in a Manton-Gaulin DispersatorTM to form a stable emulsion. All the organic solvents and some water were then removed from the emulsion by stripping under vacuum in a rotary evaporator to produce a stable dispersion of the resin and blocked diisocyanate in water. The solids content of these dispersions was 17.9 % by weight for Example 1 and 20 % by weight for Example 2.

Dispersion Examples 3 and 4

The ingredients for these example were used in the following amounts:

	Ingredient	Parts by Weight Used for		
		Example 3 Example 4		
	Epon TM Resin 1001F	75 466		
	IPDI-BF 1540 [™]	25 60		
30	Alipal TM CO-436	5 14		
	Hexadecane	7		
	Toluene	100 532		
	Methyl Iso-butyl Ketone ("MIBH	(") 100 532		
	Deionized water	619 2348		
		The second se		

These dispersions were prepared in the same manner as for Examples 1 and 2, except that for Example 3 an ultrasonic homogenizer rather than a Manton-Gaulin

DispersatorTM was used. The final solids contents were 15.9 % by weight for Example 3 and 31.0 % by weight for Example 4.

Dispersions prepared as described above were then used to prepare autodeposition baths, which were used for actual coating as described below.

Example 5

20

25

30

35

This example used an autodeposition bath having the following initial composition:

10	<u>Ingredient</u>	Parts by Weight Used
	Dispersion from Example 1	280
	Deionized water	663
	Autophoretic [™] Starter 219	53
	AB-255 TM carbon black pigment	4
15	Fluorad™ FC-430	0.4
	Dowfax TM 2 A 1	0.04

AutophoreticTM Starter 219 is a commercial acidic ferric fluoride solution available from the Parker+Amchem Division of Henkel Corporation. AB-255TM carbon black pigment is commercially available from Borden Chemical Co. FluoradTM FC-430 is a commercial product of 3 M Company described by its manufacturer as a mixture of substantially pure fluoroaliphatic polymeric esters. DowfaxTM 2 A 1 is a surfactant commercially available from Dow Chemical Co.

Thin rectangular panels of cold rolled steel about 88 x 101 mm in size were cleaned by immersion in a commercial alkaline dip cleaner, then rinsed successively in tap water and deionized water. Sample panels thus prepared were immersed in the acidic autodeposition bath with a composition as given above for each of the time intervals given in Table 1. They were then removed from the coating bath, allowed to drain and air dry for 60 seconds, rinsed in tap water for 60 seconds, again allowed to drain and air dry for 60 seconds, and finally rinsed in deionized or tap water for a sufficient time to remove all remaining liquid from the coating bath. The coatings were then dried in an oven maintained at 180 to 190° C for 20 minutes to obtain

P,

10

25

30

35

a solid coating.	The thickness	of	coating	formed, is	ālso
shown in Table 1.					

Table 1: COATING TIMES AND THICKN	ESSES FOR EXAMPLE 5	
Minutes of Contact Time:	0.5 1.0 1.5 2.0 3.1	Ö
Coating Thickness Formed. Microns:	13 18 23 26 3	2

The coated samples thus prepared were free from any visually apparent cracks, craters, spots, or other coating uniformity defects and had desirable high gloss, good corrosion resistance, as measured by conventional salt spray testing, and good resistance to humidity.

Example 6

This was performed in the same manner as Example 5, except that the autodeposition bath used has the following composition:

Ingredient	Parts by Weight Used
Dispersion from Example 2	250
Deionized water	689
20 Autophoretic TM Starter 214	53 (1964) 1964 (1964) 1964 1964 (1964) 1964
AB-255TM carbon black pigment	
Fluorad TM FC-430	1.0
Alipal TM EP-110	

AlipalTM EP-110 is a commercial emulsifying agent from GAF Corporation, described by its supplier as the ammonium salt of an alkyl phenol-ethylene oxide condensate.

Samples coated with this composition had corrosion resistance, gloss, and humidity resistance approximately equal to samples with coatings of similar thickness from Example 5.

Example 7

This was performed in the same manner as Example 5, except that the final rinse was with water (deionized) containing sufficient ammonium hydroxide to give a pH of 8. The gloss was as good and the corrosion resistance slightly better than for Example 5.

What is claimed is:

۴.

5

10

15

20

25

CLAIMS

- 1. A composition suitable for depositing a coating on an active metal surface contacted with the composition, consisting essentially of:
 - (A) from about 1 to about 20 % by weight of an epoxy resin component consisting of molecules having formula I:

$$CH_{2}$$
 $-CH_{2}$ $-CH_{$

$$A = -0 - \frac{\dot{c}_{H_3}}{\dot{c}_{H_3}} - 0 - c_{H_2} - \dot{c}_{H_3} - c_{H_3}$$

and n is an integer from 0 to 20;

- (B) an emulsifying component in sufficient quantity to stably emulsify component (A);
- (C) from about 0.1 to about 20 % by weight of a cross-linking component selected from one or both of the following molecular types:
 - (1) molecules containing at least two functional groups capable of addition reactions to epoxy groups when mixed with molecules of formula I and heated to a temperature of at least 100°C; and
 - (2) molecules containing at least two blocked isocyanate groups;
- (D) an accelerator in sufficient amount to cause the dissolution of active metals from solid objects, having surfaces constituted predominantly of active metals, that are introduced into the composition at a temperature of at least 20°C at a rate of at least about 0.02 gram equivalent

15

20

25

weights of metal ions per hour per square decimeter of bare metal surface introduced into the bath; and, optionally,

- (E) pigments, dyes, or other chemically stable colorant materials;
- (F) finely divided solids suitable as fillers in the coatings to be formed from the composition; and
- (G) water to form the balance of the composition.
- 2. A composition according to claim 1, wherein the cross10 linking component (C) consists predominantly of
 molecules bearing at least two blocked isocyanate
 groups each.
 - 3. A composition according to claim 2, wherein the cross linking component (C) is selected from molecules of the general formula II:

wherein each of B and B' independently is a monovalent moiety formed by removing the most active hydrogen atom from an amine, alcohol, amide, or oxime molecule; each of R and R' independently is a divalent hydrocarbon or carbonyl-hydrocarbon moiety derived by removing any two hydrogen atoms not attached to the same carbon atom from any hydrocarbon, or oxyhydrocarbon in which all oxygen atoms present are in carbonyl groups, having from 2 to 20 carbon atoms and having no unsaturation except aromatic and carbonyl unsaturation; and m is an integer from 0 - 20.

- A composition according to claim 3, comprising about 0.1 to about 1.0 g/L of fluoroaliphatic polymeric ester emulsifying component.
- 5. A composition according to claim 2, comprising about 0.1 to about 1.0 g/L of fluoroaliphatic polymeric ester emulsifying component.

ż

35

- 6. A composition according to claim 1, comprising about 0.1 to about 1.0 g/L of fluoroaliphatic polymeric ester emulsifying component.
- 7. A composition according to claim 6, comprising from about 2 to about 10 % by weight of an epoxy resin component consisting of molecules having formula I with n between 0 and 6 and from about 0.2 to about 10 % by weight of a cross-linking component.
- 8. A composition according to claim 4, comprising from about 2 to about 10 % by weight of an epoxy resin component consisting of molecules having formula I with n between 0 and 6 and from about 0.2 to about 10 % by weight of a cross-linking component.
- 9. A composition according to claim 3, comprising from about 2 to about 10 % by weight of an epoxy resin component consisting of molecules having formula I with n between 0 and 6 and from about 0.2 to about 10 % by weight of a cross-linking component.
- 10. A composition according to claim 1, comprising from about 2 to about 10 % by weight of an epoxy resin component consisting of molecules having formula I with n between 0 and 6 and from about 0.2 to about 10 % by weight of a cross-linking component.
- 11. In a process for applying a protective coating to an active metal surface of an object, said process comprising the steps of:
 - (I) contacting said active metal surface with an autodeposition composition for a sufficient time to form an adherent wet coating thereon;
- 30 (II) separating the wet coated active metal surface from contact with said autodeposition composition:
 - (III) rinsing the wet coated active metal surface with a predominantly aqueous liquid to remove unadhered autodeposition composition solid components

10

15

20

25

therefrom; and

- (IV) drying and heating the rinsed wet coated active metal surface to form a dry coating thereover, the improvement wherein said autodeposition composition consists essentially of:
 - (A) from 1 to 20% by weight of an epoxy resin component consisting of molecules having formula I:

$$CH_{2}$$
 CH_{2} $-CH_{2}$ $-CH_{2$

$$A = -0 - \frac{CH_3}{\dot{C}H_3} - 0 - CH_2 - \dot{C}H - CH_2 - \frac{CH_3}{\dot{C}H_3} - \frac{CH_3}{\dot{C}H_$$

and n is an integer from 0 to 20;

- (B) an emulsifying component in sufficient quantity to stably emulsify component (A);
- (C) from 0.2 to 10 % by weight of a cross-linking component selected from one or both of the following molecular types:
 - 1) molecules containing at least two functional groups capable of addition reactions to epoxy groups when mixed with molecules of formula I and heated to a temperature of at least 100°C; and
 - (2) molecules containing at least two blocked isocyanate groups;
- (D) an accelerator in sufficient amount to cause the dissolution of active metals from solid objects, having surfaces constituted predominantly of active metals, that are introduced into the composition at a temperature of at least 20° C at

WO 91/05023 PCT/US90/05464

16

a rate of at least 0.020 gram equivalent weights of metal ions per hour per square decimeter of metal surface introduced into the bath; and, optionally,

- (E) pigments, dyes, or other chemically stable colorant materials;
 - (F) finely divided solids suitable as fillers in the coatings to be formed from the composition; and
 - (G) water to form the balance of the composition.
- 12. A process according to claim 11, wherein the crosslinking component (C) consists solely or predominantly of molecules bearing at least two blocked isocyanate groups each.
- 13. A process according to claim 12, wherein the autodeposition compositions comprises fluoroaliphatic polymer ester emulsifying component.
 - 14. A process according to claim 11, wherein the autodeposition composition comprises fluoroaliphatic polymer ester emulsifying component.
- 15. A process according to claim 14, wherein said autodeposition comprises from about 2 to about 10 % by weight of an epoxy resin component consisting of molecules having formula I with n between 0 and 6 and from about 0.2 to about 10 % by weight of a cross-linking component.
 - 16. A process according to claim 11, wherein said autodeposition comprises from about 2 to about 10 % by
 weight of an epoxy resin component consisting of
 molecules having formula I with n between 0 and 6 and
 from about 0.2 to about 10 % by weight of a crosslinking component.

30

35

17. An article of manufacture including a surface layer comprising an outer coating of organic polymer over an active metal substrate, wherein said organic polymer has been deposited by a process comprising the steps

ş

of:

- (I) contacting said active metal surface for a sufficient time to form an adherent wet coating thereon with an autodeposition composition consisting essentially of:
 - (A) from 1 to 20 % by weight of an epoxy resin component consisting of molecules having formula I:

$$CH_{2}$$
 CH_{2} $-CH_{2}$ $-CH_{2$

$$A = -0 - CH_3 - CH_2 - CH_2$$

and n is an integer from 0 to 6;

- (B) an emulsifying component in sufficient quantity to stably emulsify component (A);
- (C) from 0.1 to 20 % by weight of a cross-linking component selected from one or both of the following molecular types:
 - groups capable of addition reactions to epoxy groups when mixed with molecules of formula I and heated to a temperature of at least 100°C; and
 - (2) molecules containing at least two blocked isocyanate groups;
- (D) an accelerator in sufficient amount to cause the dissolution of active metals from solid objects, having surfaces constituted predominantly of active metals, that are introduced into the composition at a temperature of attent 20°C at

15

10

20

25

WO 91/05023 PCT/US90/05464

18

a rate of at least 0.020 gram equivalent weights of metal ions per hour per square decimeter of bare metal surface introduced into the bath; and optionally,

- (E) pigments, dyes, or other chemically stable colorant materials;
 - (F) finely divided solids suitable as fillers in the coatings to be formed from the composition; and
 - (G) water to form the balance of the composition;
- 10 (II) separating the wet coated active metal surface from contact with said autodeposition composition;

5

15

25

- (III) rinsing the wet coated active metal surface with a predominantly aqueous liquid to remove unadhered autodeposition composition solid components therefrom; and
 - (IV) drying and heating the rinsed wet coated active metal surface to form a dry coating thereover.
- 18. An article of manufacture according to claim 17,
 20 wherein the cross-linking component (C) consists
 solely or predominantly of molecules bearing at least
 two blocked isocyanate groups each.
 - 19. An article of manufacture according to claim 18, wherein the autodeposition compositions comprises fluoroaliphatic polymer ester emulsifying component.
 - 20. An article of manufacture according to claim 17, wherein the autodeposition composition comprises fluoroaliphatic polymer ester emulsifying component.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US 90/05464

I. CLASS	SIFICATIO	N OF SUBJECT MATTER (if several cla	sification symbols apply, indirate all)	
According	to interns	tional Patent Classification (IPC) or to bot	h National Classification and DC	
IPC5: (. 09 D	103/02		
II. FIELD	S SEARCH	ED		2.96
		Minimum Docu	mentation Searched ⁷ , Classification Symbols	
Classificati	on System		Ciastification Symbols	
TDOT		C 09 D	est of the second	
IPC5			At a Mile I was Desumentation	
		Documentation Searches s to the Extent that such Docum	ther then Minimum Decumentation lents are included in Fields Searched ⁸	9 1 3 E
				1
			•	
III. DOCU	MENTS C	ONSIDERED TO BE RELEVANTS	17	Relevant to Claim No.13
Category *		ion of Document, ⁵¹ with indication, where		<u> </u>
Х	US, A	, 4847122 (GOLDBERG ET A	L) 11 July 1989,	1-2,11- 12,17-
	S	ee the whole document		18
		-		1 (A)
				- 00
A	DE, A	1, 3232463 (BAYER AG) 1	March 1984,	1-20
	S	ee page 3, line 11 - pag	e /, line io;	
ļ	C	laims 1-4		
	1	-	-	
				1-20
A	EP, A	1, 0084261 (FORD-WERKE A	KTIENGESELLSCHAFI)	1-20
	2	7 July 1983, see abstrac	: C;	
	C	laims 1-23		
		-	·	*
				1
}				
			and the second of the second	
7 Spec	ial catego	ries of cited documents: 10	"T" later document published after	the Interpetional filler date
"A" do	cument de	lining the general state of the art which is	not cited to enderstand the principle of priority date and not in coe cited to enderstand the principle season.	se or theory underlying the
"E" \$3	rlier docum	nent but published on or after the internat	ional "X" document of particular relevan	ntin, the claimed invalition
"L" do	ing date coment wh	ich may threw doubts on priority claim(s) d to establish the publication also of anoti	NAOLAS MA INAMARIAM Alfaba	
cit	nich is cite tation or st	d to establish the publication date of anoth her special reason (as specified)	on or meets, such combination belongers.	itie, the claimed invertion by an inventive step reten the
"O" do	cument ref	erring to an oral disclosure, use, exhibiti	on or ments, such combination being in the art.	envious to a person skilled
"P" do	cument pu	blished prior to the international filing da priority data claimed		é patent family
IV. CERT	TIFICATIO	N		Search Berthut
Date of th	e Actual C	ompletion of the International Search	Date of Mailing of this International	
31st J	Danuary	1991	1 8, 02	. 31
		ing Authority	Signature of Authorized Officer	7 //
memade				line / tolar
	FUKU	PEAN PATENT OFFICE	miss T. MORTENSEN	HII, LILLIUM

Form PCT/ISA/210 (second sheet) (January 1985)

	The state of the s	
DOCU	IMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No
regory	EP, A1, 0151661 (MOBAY CHEMICAL CORPORATION) 21 August 1985, see abstract; claims 1-9	1-20
i.	US, A, 4180603 (HOWELL, JR.) 25 December 1979, see the whole document	1-20
	-	
	·	

ANNEX TO THE INTERNATIONAL SEARCH REPORT ON INTERNATIONAL PATENT APPLICATION NO.PCT/US 90/05454

SA

41493

This annex lists the patent family members relating to the patent documents cited in the above-mentioned interpational search report. The members are as contained in the European Patent Office EDP file on The European Patent office is in no way liable for these particulars which are merely given for the purpose of information.

Patent document cited in search report	Publication date	Patent family member(s)		Publication date	
US-A- 4847122	11/07/89	EP-A- JP-A-	0294013 63301214	07/12/88 08/12/88	
DE-A1- 3232463	01/03/84	DE-A- EP-A-B- JP-A-	3377065 0104424 59062674	21/07/88 04/04/84 10/04/84	
EP-A1- 0084261	27/07/83	CA-A- JP-A- US-A-	1193277 58113216 4423171	10/09/85 06/07/83 27/12/83	
EP-A1- 0151661	21/08/85	CA-A- GB-A- US-A- US-A-	1233929 2127829 4522851 4608304	08/08/88 18/04/84 11/06/85 26/08/86	
US-A- 4180603	25/12/79	AU-D- BE-A- DE-A- FR-A-B- JP-A- NL-A- SE-A- US-A-	3283278 862960 2803534 2378575 53102349 7800945 7801114 4255305	09/08/79 16/05/78 03/08/78 25/08/78 06/09/78 02/08/78 01/08/78 10/03/81	