```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
```

In [2]: data = pd.read_csv('acs_ny.csv')

In [3]: data.head()

Out[3]:

	Acres	FamilyIncome	FamilyType	NumBedrooms	NumChildren	NumPeople	NumRo
0	10- Jan	150	Married	4	1	3	9
1	10- Jan	180	Female Head	3	2	4	6
2	10- Jan	280	Female Head	4	0	2	8
3	10- Jan	330	Female Head	2	1	2	4
4	10- Jan	330	Male Head	3	1	2	5

In [4]: # data.info()
data.describe()

In [5]: # data.isnull().sum()

In [6]: x = data.iloc[:, 2:]
y = data.iloc[:, 1:2]

In [7]: encoded_x = pd.get_dummies(x,drop_first = True)

In [8]: from sklearn.model_selection import train_test_split
 X_train, X_test, Y_train, Y_test = train_test_split(encoded_x, y, test_size = 0.2, random_state = 0)

In [9]: from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

```
In [10]: from sklearn.decomposition import PCA
         pca = PCA(n components = None)
         X train = pca.fit transform(X train)
         X test = pca.transform(X test)
         explained variance = pca.explained variance ratio
```

21 PCA components would explain 70% of the variance. So, n components = 20

```
pca = PCA(n_components = 21)
In [11]:
         X train = pca.fit transform(X train)
         X test = pca.transform(X test)
         explained_variance = pca.explained_variance_ratio_
In [12]: explained_variance.sum()
Out[12]: 0.70782659642493506
In [13]: from sklearn.linear model import LinearRegression
         regression = LinearRegression()
         lm = regression.fit(X_train,Y_train)
In [14]: | y_pred = regression.predict(X_test)
In [15]:
         print(lm.intercept )
         print(lm.coef_)
         [ 110896.03566718]
         [ 25740.49144811
                             6826.07957203 -14733.98755492
                                                             6646.11675194
            -4935.35405931 10827.15269498 -1862.35518609 -3925.32898871
            -2716.33715587
                             2475.43489519
                                             1623.68203507
                                                             1465.18796052
                             -565.93740687 -1008.7609598
              300.53492013
                                                             1314.24719896
             2488.7288067
                            -1935.96478188
                                             2705.99290428
                                                             1044.20067516
             2087.79900133]]
In [16]: import sklearn
In [17]: #we will take out the R^2 value
         sklearn.metrics.r2 score(Y test, y pred)
Out[17]: 0.30358744933024473
```

In [18]: import statsmodels.api as sm

C:\Program Files (x86)\Microsoft Visual Studio\Shared\Anaconda3_64\lib\site-p ackages\statsmodels\compat\pandas.py:56: FutureWarning: The pandas.core.datet ools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.

from pandas.core import datetools

```
In [19]: X = X_train
Y = Y_train
## fit a OLS model with intercept on TV and Radio
X = sm.add_constant(X)
est = sm.OLS(Y, X).fit()

est.summary()
```

Out[19]: OLS Regression Results

Dep. Variable:	FamilyIncome	R-squared:	0.291
Model:	OLS	Adj. R-squared:	0.291
Method:	Least Squares	F-statistic:	355.8
Date:	Sat, 14 Apr 2018	Prob (F-statistic):	0.00
Time:	00:44:04	Log-Likelihood:	-2.3241e+05
No. Observations:	18196	AIC:	4.649e+05
Df Residuals:	18174	BIC:	4.650e+05
Df Model:	21		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	1.109e+05	632.424	175.351	0.000	1.1e+05	1.12e+05
x 1	2.574e+04	355.196	72.468	0.000	2.5e+04	2.64e+04
x2	6826.0796	399.064	17.105	0.000	6043.877	7608.282
х3	-1.473e+04	462.964	-31.825	0.000	-1.56e+04	-1.38e+04
x4	6646.1168	474.137	14.017	0.000	5716.764	7575.470
х5	-4935.3541	497.710	-9.916	0.000	-5910.913	-3959.795
х6	1.083e+04	515.938	20.985	0.000	9815.866	1.18e+04
х7	-1862.3552	550.660	-3.382	0.001	-2941.700	-783.010
x8	-3925.3290	568.021	-6.911	0.000	-5038.704	-2811.954
х9	-2716.3372	575.780	-4.718	0.000	-3844.920	-1587.754
x10	2475.4349	588.094	4.209	0.000	1322.714	3628.155
x11	1623.6820	593.402	2.736	0.006	460.558	2786.806
x12	1465.1880	596.525	2.456	0.014	295.943	2634.433
x13	300.5349	600.576	0.500	0.617	-876.651	1477.721
x14	-565.9374	605.755	-0.934	0.350	-1753.275	621.400
x15	-1008.7610	614.263	-1.642	0.101	-2212.775	195.253
x16	1314.2472	618.231	2.126	0.034	102.456	2526.038
x17	2488.7288	621.639	4.003	0.000	1270.257	3707.201
x18	-1935.9648	625.307	-3.096	0.002	-3161.626	-710.303
x19	2705.9929	626.278	4.321	0.000	1478.429	3933.556
x20	1044.2007	629.683	1.658	0.097	-190.038	2278.440

Omnibus:	13122.618	Durbin-Watson:	2.005
Prob(Omnibus):	0.000	Jarque-Bera (JB):	334621.308
Skew:	3.189	Prob(JB):	0.00
Kurtosis:	23.017	Cond. No.	1.78