Laborator 1

Transformări simple ale imaginilor

Obiective: trecerea de la o imagine color reprezentată în spațiul RGB la o imagine grayscale; negativarea unei imagini; modificarea intensității unei imagini.

A. Imaginea digitală ca matrice

Imaginile digitale pot fi reprezentate folosind matrice.

Imagine binară. O imagine binară (alb - negru) poate fi reprezentată folosind o matrice ce conține numai valorile 0 și 255 (unde 0 reprezintă negru iar 255 reprezintă alb). *Observație*: o imagine poate fi normată, având valori în intervalul $0 \div 1$ (unde 0 reprezintă negru iar 1 reprezintă alb).

Figura 1. Reprezentarea matriceală a unei imagini binare (alb – negru)

Imagine grayscale. Imaginile cu niveluri de gri (imagini *grayscale*) pot fi și ele reprezentate ca matrice, fiecare element al matricei reprezentând intensitatea pixelului respectiv. Valorile intensităților se exprimă în mod uzual pe 8 biți, cu alte cuvinte sunt disponibile 256 de niveluri de gri pentru intensitatea fiecărui pixel.

Figure 2. Cele 256 de niveluri de gri posibile

Figura 3. Reprezentarea matriceală a unei imagini grayscale

Imagine color. O imagine în spațiul color RGB este reprezentată ca o matrice cu trei straturi: stratul de roșu (Red), stratul de verde (Green) și stratul de albastru (Blue).

Figura 4. Reprezentarea matriceală a unei imagini color

Figura 5. Aditivitatea culorilor

B. Transformări simple ale imaginilor

1. Imagine grayscale

Nivelul de gri corespunzător culorii unui pixel se obține prin aducerea la aceeași intensitate a celor trei componente ale culorii pixelului respectiv (R-rosu, G-verde, B-albastru). Procedeul se aplică pentru toți pixelii din imagine.

$$I = 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$

2. Negativarea imaginii

$$R = 255 - R$$

 $G = 255 - G$
 $B = 255 - B$

3. Modificarea intensității (luminozității)

Luminozitatea unei imagini se poate modifica prin adunarea unei valori (Δ) la componentele culorii fiecărui pixel din imaginea respectivă, având însă grijă să nu se iasă în afara intervalului [0, 255]. Folosind o valoare pozitivă ($\Delta > 0$), se obține o luminozitate mai deschisă, în timp ce o valoare negativă ($\Delta < 0$) determină o luminozitate mai închisă a imaginii. Modificarea luminozității poate fi efectuată folosind următoarea regulă:

$$G = \begin{cases} 255, dacă \ G + \Delta > 255 \\ 0, dacă \ G + \Delta < 0 \\ G + \Delta, \hat{i}n \ rest \end{cases}$$

$$B = \begin{cases} 255, \ dac\ \ B + \Delta > 255 \\ 0, \ dac\ \ \ B + \Delta < 0 \\ B + \Delta, \ \hat{n} \ \ rest \end{cases}$$

C. Desfășurarea lucrării

1. Să se transforme o imagine RGB într-o imagine grayscale

2. Să se reprezinte negativa unei imagini color

3. Să se modifice luminozitatea unei imagini color

Imagine intrare

4. Să se pseudocoloreze o imagine

Imagine intrare

