IPS: Assignment 4

Due date: 10am, 23/11/23

Stephen Connor

Instructions

Submit your answers to all questions marked 🏠 Hand-in. You should upload to Moodle your solutions as a *pdf file*.

Marks will be awarded for clear, logical explanations, as well as for correctness of solutions. You should also look at the other questions in preparation for your Week 9 seminar.

Starter

These questions should help you to gain confidence with the basics.

S1. Let X be a random variable with $\mathbb{E}[X] = 5$. What is the expectation of 3X + 5? If furthermore $\mathbb{E}[X^2] = 30$, what is the variance of X?

S2. A Hand-in

Buses leave campus for the train station every 20 minutes, at 0, 20 and 40 minutes past the hour. If a student arrives at the bus stop at a time that is uniformly distributed between 10.00 and 10.45, find the probability that they wait

- a) less than 5 minutes for a bus;
- b) more than 10 minutes for a bus.
- **S3.** A random variable Z has probability density function

$$f_Z(x) = \begin{cases} \frac{6}{5675} (5x^2 + 3x + 11) & \text{for } 3 \le x \le 8\\ 0 & \text{otherwise.} \end{cases}$$

Would you expect $\mathbb{E}[Z]$ to lie closer to 3 or to 8? Calculate $\mathbb{E}[Z]$ and check whether your intuition was correct.

S4. A Hand-in

Let $X \sim \text{Geom}(p)$. Calculate $\mathbb{E}[h(X)]$, where $h(x) = e^{tx}$ for some t > 0. For what values of t is $\mathbb{E}[h(X)] < \infty$?

Hint: use the result for infinite geometric series.

S5. Suppose that you have a lecture at 14.00, and that the time taken to travel from your room to the lecture theatre is normally distributed with mean 30 minutes and standard deviation 4 minutes. What is the latest time you should leave your room if you want to be 99% certain that you will not miss the start of the lecture? (Hint: if $Z \sim N(0,1)$ then the R function qnorm(p) returns the value $z \in \mathbb{R}$ such that $\mathbb{P}(Z \leq z) = p$.)

1

- **S6.** Give an example of a joint probability table for two discrete random variables X and Y, each having only two possible values, so that $F_{X,Y}(5,6) = 0.4$, $F_X(5) = 0.5$, $F_Y(6) = 0.6$ and $\mathbb{E}[X] = 10$, $\mathbb{E}[Y] = 4$.
- **S7.** Let $X: \Omega \to \{1,2\}$ and $Y: \Omega \to \{0,1\}$ be two discrete random variables. The following is a partial table of their joint and their marginal mass functions:

$y \setminus x$	1	2	$p_{Y}(y)$
0	1/6	1/2	
$1 p_{X}(x)$	5/12		1

- a) Fill in the missing values.
- b) Determine the joint distribution function of X and Y.
- c) Calculate $\mathbb{P}(X + Y = 2)$.
- d) Calculate $\mathbb{E}[X]$ and $\mathbb{E}[Y]$.
- e) Let Z = XY. Calculate $\mathbb{E}[Z]$.
- f) Are X and Y independent?
- **S8.** Let X and Y be random variables. Show that $Cov(X,Y) = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y]$.

Main course

These are important, and cover some of the most substantial parts of the course.

A married couple decide to have children until they have at least one child of each sex: let X denote the total number of children that they have. The probability of any one child being a boy is p (with the sex of each child being independent of all the others).

- a) What is the mass function of X? (I.e. write down $\mathbb{P}(X = n)$ for all $n \in X(\Omega)$.)
- b) Show that

$$\mathbb{E}[X] = \frac{1 - p(1-p)}{p(1-p)}.$$

Hint: you may find it useful to refer to the result from lectures that if $Y \sim \text{Geom}(p)$ then $\mathbb{E}[Y] = 1/p$.

- c) For what value of p is $\mathbb{E}[X]$ minimised?
- **M2.** Let $X \sim \text{Exp}(\lambda)$. Use proof by induction to show that

$$\mathbb{E}[X^m] = \frac{m!}{\lambda^m}$$

for all $m \in \mathbb{N} \cup \{0\}$.

M3. The joint probability mass function $p_{X,Y}(x,y)$ of two random variables X and Y is summarised by the following table:

$x \setminus y$	-1	0	1
4	$\eta - 1/16$	$1/4-\eta$	0
5	1/8	3/16	1/8

2

$\overline{x \backslash y}$	-1	0	1
6	$\eta + 1/16$	1/16	$1/4-\eta$

where η is a real number.

- a) Extend the table by including also the marginal probabilities, i.e., the values of the probability mass functions p_X and p_Y .
- b) Which are the valid choices for η ?
- c) Is there a value of η for which X and Y are independent?

M4. Prove that binomial coefficients satisfy the identity

$$n\binom{n-1}{r-1} = r\binom{n}{r}.$$

Use this to find $\mathbb{E}[X]$ and Var(X), where $X \sim Bin(n, p)$.

M5. Show that if Z is a standard normal random variable then, for x > 0,

- a) $\mathbb{P}(Z > x) = \mathbb{P}(Z < -x);$
- b) $\mathbb{P}(|Z| > x) = 2\mathbb{P}(Z > x);$
- c) $\mathbb{P}(|Z| < x) = 2\mathbb{P}(Z < x) 1$.

Hint: express the probabilities in terms of integrals over the density function ϕ , and use the fact that ϕ is a symmetric function (i.e. $\phi(z) = \phi(-z)$).

M6. Let X be a discrete random variable. Show that for all functions $h_1,h_2\,:\,\mathbb{R} o\mathbb{R}$,

$$\mathbb{E}[h_1(X) + h_2(X)] = \mathbb{E}[h_1(X)] + \mathbb{E}[h_2(X)].$$

M7. Let X and Y be random variables and let $r, s, t, u \in \mathbb{R}$. Show that

$$\rho(rX+s,tY+u) = \begin{cases} \rho(X,Y) & \text{if } rt > 0\\ 0 & \text{if } rt = 0\\ -\rho(X,Y) & \text{if } rt < 0 \end{cases}$$

where $\rho(X,Y)$ denotes the correlation coefficient of X and Y.

M8. Let $X \sim \mathsf{Uniform}(0,a)$ for some a > 0. Show that for any $n \in \mathbb{N}$,

$$\mathbb{E}[X^n] = \frac{a^n}{n+1}.$$

Use this to determine $\rho(X,X^2)$, and show that this does not depend upon the value of a.

M9. A bag contains 3 cubes, 4 pyramids and 7 spheres. An object is drawn randomly from the bag and its type is recorded. Then the object is replaced. This is repeated 20 times.

- a. Let C_i be the indicator random variable for the event that the *i*-th draw gives a cube, for i = 1, ..., 20. Calculate $\mathbb{E}[C_i], \mathbb{E}[C_i^2]$ and $\mathbb{E}[C_iC_i]$ for $i \neq j$.
- b. Let C be the number of times a cube was drawn, Use that $C = \sum_{i=1}^{20} C_i$ to calculate $\mathbb{E}[C]$ and Var(C).

3

- c. Let S_i be the indicator random variable for the event that the i-th draw gives a sphere. Calculate $\mathbb{E}[C_iS_i]$ and $\mathbb{E}[C_iS_i]$ for $i \neq j$.
- d. Let S be the number of times a sphere was drawn. Use the above results to calculate $\mathbb{E}[CS]$, Cov(C,S), $\rho(C,S)$.

Dessert

Still hungry for more? Try these if you want to push yourself further.

D1. Consider a random variable $X \sim \text{Uniform}[a, b]$, where a and b are unknown. You are told that

$$\mathbb{P}(X < 2) = 1/3$$
 and $\mathbb{P}(1 < X \le 3) = 1/2$.

Given this information, find a and b.

D2. Let X and Y be two independent geometrically distributed random variables with parameter p, i.e., $X \sim \text{Geom}(p)$ and $Y \sim \text{Geom}(p)$. For any natural numbers i and n with i < n calculate the conditional probability $\mathbb{P}(X = i \mid X + Y = n)$. Describe in words the meaning in terms of Bernoulli trials of what you just calculated.

Challenge question

A stick of length 1 is snapped into two at a point $U \sim \text{Uniform}(0,1)$. What is the expected length of the piece containing the point s, where s is some fixed number between 0 and 1? For what values of s is this expected length maximised/minimised? How does the variance of this length depend upon s?