Detecção de Intrusão Através de Redes Neurais Profundas com Saídas Antecipadas para Inferência Rápida e Confiável

<u>João Andre Simioni</u>, Eduardo Kugler Viegas, Altair Olivo Santin, Pedro Horchulhack

Programa de Pós-Graduação em Informática - Pontifícia Universidade Católica do Paraná {joao.asimioni, eduardo.viegas, santin, pedro.horchulhack}@ppgia.pucpr.br

SBSeg 2024

Simpósio Brasileiro em Segurança da Informação (SBSeg)

Agenda

- Introdução
- Proposta
- Pré-avaliação
- Implementação
- Avaliação
- Conclusões

<u>Contextualização - Dispositivos de IoT</u>

Contextualização - Dispositivos de IoT

NÚMERO CRESCENTE DE DISPOSITIVOS

Contextualização - Dispositivos de IoT

NÚMERO CRESCENTE DE DISPOSITIVOS

PRINCIPAIS ALVOS DE CIBERATAQUES

<u>Contextualização - Dispositivos de IoT</u>

NÚMERO CRESCENTE DE DISPOSITIVOS

PRINCIPAIS ALVOS DE CIBERATAQUES

RECURSOS LIMITADOS

Contextualização - Sistemas de Detecção de Intrusão de Rede (NIDS)

Contextualização - Sistemas de Detecção de Intrusão de Rede (NIDS)

Contextualização - Sistemas de Detecção de Intrusão de Rede (NIDS)

AQUISIÇÃO DE DADOS

Contextualização - Sistemas de Detecção de Intrusão de Rede (NIDS)

PUCPR

AQUISIÇÃO DE DADOS

EXTRAÇÃO DE CARACTERÍSTICAS

Contextualização - Sistemas de Detecção de Intrusão de Rede (NIDS)

PUCPR

EXTRAÇÃO DE CARACTERÍSTICAS

CLASSIFICAÇÃO

PUCPR

Contextualização - Sistemas de Detecção de Intrusão de Rede (NIDS)

PUCPR

Contextualização - Sistemas de Detecção de Intrusão de Rede (NIDS)

Contextualização - Desafios

Contextualização - Desafios

<u>Contextualização - Desafios</u>

ACURÁCIA CUSTO COMPUTACIONAL

<u>Contextualização - Desafios</u>

<u>Contextualização - Desafios</u>

Early Exits

Early Exits

COMPORTAMENTO TRADICIONAL

Early Exits

TESTANDO SAÍDA 1

Early Exits

TESTANDO SAÍDA N - 1 (NÚMERO DE SAÍDAS É ESCOLHA DE PROJETO)

Early Exits

SE NENHUMA SAÍDA ACEITA, VAI PARA A ÚLTIMA

Early Exits

MÓDULO DE REJEIÇÃO PODE DECIDIR NÃO CLASSIFICAR

Proposta Dataset MAWIFlow

AQUISIÇÃO DE DADOS

Samplepoint-F - MAWI Arquivos PCAP Trânsito: Japão <-> EUA

EXTRAÇÃO DE CARACTERÍSTICAS

58 Características
Extraídas
Dados Classificados

7.056.320 amostras - Jan - Dez / 2016

https://mawi.wide.ad.jp/mawi/

Proposta

AlexNet com uma saída antecipada e módulo de rejeição

Avaliação Arquitetura Tradicional

EVENTOS POR SEGUNDO

RASPBERRY	DESKTOP	DESKTOP
Pl 3	CPU	GPU
7,36	247,34	17.609

Avaliação

Arquitetura Tradicional

EVENTOS POR SEGUNDO

RASPBERRY	DESKTOP	DESKTOP
Pl 3	CPU	GPU
7,36	247,34	17.609

TAXA DE ERRO FPR / FNR MÊS A MÊS

Otimização multi-objetivo

Otimização multi-objetivo

SAÍDAS ANTECIPADAS REPRO TEMPO I

- Threshold ataque saída 1
- Threshold normal saída 1

Otimização multi-objetivo

SAÍDAS ANTECIPADAS RECORDO TEMPO INCOMENTAL DE LA CONTRO TE

- Threshold ataque saída 1
- Threshold normal saída 1

- Threshold ataque saída 2
- Threshold normal saída 2

Otimização multi-objetivo - Ponto de Operação

Rejeição Máxima: 90% (Fixo)

Ponto de operação:

- Definido pelo operador
- Trade-off entre Erro e Tempo

Avaliação

MELHORIAS

COMPARAÇÃO SCORE F1 NO TEMPO TAXAS DE ERRO E REJEIÇÃO NO TEMPO

Conclusões

- Desafios do NIDS em IoT: Dificuldades em detecções confiáveis devido a altos requisitos de processamento e mudanças no comportamento do tráfego de rede.
- Esquema proposto: Introdução de saídas antecipadas e classificador com opção de rejeição para aumentar a eficiência.
- Taxa de detecção aprimorada: Saídas antecipadas permitem maior detecção de intrusão em dispositivos de IoT com recursos limitados.
- Confiabilidade na classificação: O classificador com rejeição garante precisão em cenários com novos comportamentos de tráfego de rede.
- Resultados e trabalhos futuros: Redução de custos de processamento e aumento de acurácia. Futuro foco em incorporar atualizações de modelo para eventos rejeitados.

Detecção de Intrusão Através de Redes Neurais Profundas com Saídas Antecipadas para Inferência Rápida e Confiável

Perguntas?

SBSeg 2024

Simpósio Brasileiro em Segurança da Informação (SBSeg)

