

Multiplexing

- Many to one/one to many
- **Types of multiplexing**

Group Members

Abrar Sagheer	19010819-025
Zahid Rai	19010819-028
Saim Raza	19010819-048
Aqsa Noor	19010819-009
Adnan Mirza	19010819-032

Multiplexing

- It is the set of techniques that allows the simultaneous transmission of multiple signals across a single data link.
- Multiplexing is done using a device called Multiplexer (MUX) that combine n input lines to generate one output line i.e. (*many to one*).
- At the receiving end a device called Demultiplexer (DEMUX) is used that separate signal into its component signals i.e. one input and several outputs (one to many).

Multiplexing

Advantages of Multiplexing

- More than one signals can be sent over single medium or link
- Effective use of the bandwidth of medium

Multiplexing v/s Without Multiplexing

a. No multiplexing

b. Multiplexing

Types of Multiplexing

Frequency Division Multiplexing

- ➡It is an analog technique.
- Signals of different frequencies are combined into a composite signal and is transmitted on the single link.
- Bandwidth of a link should be greater than the combined bandwidths of the various channels.
- Each signal is having different frequency.
- Channels are separated by the strips of unused bandwidth called *Guard Bands* (to prevent overlapping).

FDM: Frequency Division Multiplexing

Applications of FDM

- FDM is used for FM & AM radio broadcasting.
- \blacktriangleleft AM frequency = 530 to 1700 kHz.
- FM frequency = 88 to 108 MHz.
- FDM is used in television broadcasting.
- First generation cellular telephone also uses FDM.

FDM, Time Domain

Multiplexing, Frequency Domain

Demultiplexing, Time Domain

Demultiplexing, Frequency Domain

Wave Division Multiplexing

- WDM is an analog multiplexing technique.
- **♥**Working is same as FDM.
- In WDM different signals are *optical or light* signals that are transmitted through optical fiber.
- Various light waves from different sources are combined to form a composite light signal that is transmitted across the channel to the receiver.
- At the receiver side, this composite light signal is broken into different light waves by Demultiplexer.
- This Combining and the Splitting of light waves is done by using a PRISM. Prism bends beam of light based on the angle of incidence and the frequency of light wave.

Wave Division Multiplexing

Time Division Multiplexing

- It is the digital multiplexing technique.
- Channel/Link is not divided on the basis of *frequency* but on the *basis of time*.
- Total time available in the channel is divided between several users.
- Each user is allotted a particular time interval called *time slot* or *slice*.
- In TDM the data rate capacity of the transmission medium should be greater than the data rate required by sending of receiving devices.

TDM

Types of TDM

- Synchronous TDM
- **S**Asynchronous TDM

Synchronous TDM

- Each device is given same Time Slot to transmit the data over the link, whether the device has any data to transmit or not.
- Each device places its data onto the link when its *Time Slot* arrives, each device is given the possession of line turn by turn.
- If any device does not have data to send then its time slot remains empty.
- Time slots are organized into *Frames* and each frame consists of one or more time slots.
- If there are *n* sending devices there will be *n* slots in frame.

Synchronous TDM

Multiplexing Process in STDM

- ►In STDM every device is given opportunity to transmit a specific amount of data onto the link.
- Each device gets its turn in fixed order and for fixed amount of time = INTERLEAVING.
- ► Interleaving is done by a character (one byte).
- Each frame consist of four slots as there are four input devices.
- Slots of some devices go empty if they do not have any data to send.

TDM, Multiplexing

TDM, Demultiplexing

Disadvantages of STDM

The channel capacity cannot be fully utilized. Some of the slots go empty in certain frames.

Framing Bits

Asynchronous TDM

- Also known as Statistical Time Division multiplexing.
- In this time slots are not *Fixed* i.e. slots are Flexible.
- Total speed of the input lines can be greater than the capacity of the path.
- In ASTDM we have n input lines and m slots i.e. m less than n (m < n).
- Slots are not predefined rather slots are allocated to any of the device that has data to send.

Asynchronous TDM

Frames and Addresses

a. Only three lines sending data

Frames and Addresses

b. Only four lines sending data

Frames and Addresses

c. All five lines sending data

THANK YOU