Predicting air quality using meteorological observations in Kampala, Uganda

Konstanze, Paulos, Jerome

Value & Stakeholder

Value

- Predicting particulate matter concentration based on meteorological measurements
- Protect community health by warning population in case of expected high particulate matter load

Stakeholder

• **Ministry of Health**, which makes the prediction system available to various stakeholders and to the population

Dataset

• Dataset result of AirQo research initiative of Makerere University, Kampala, Uganda

 ca. 15000 weather and particulate matter observation sets at five locations in Kampala

- per observation set:
 - -> **five days** of **hourly meteorological** measurements (e.g. temperature, precipitation)
 - -> one particulate matter measurement 24 hours after last weather observation

Target variable: particulate matter concentration

• PM2.5 concentration [μg m⁻³] (particles with a diameter smaller than 2.5 μm)

Health Concern	PM _{2.5} (μgm ⁻³)	Precautions
Good	0 - 12	None
Moderate	13 - 35	Unusually sensitive people should consider reducing prolonged or heavy exertion
Unhealthy for Sensitive Groups	36 - 55	Sensitive groups should reduce prolonged or heavy exertion
Unhealthy	56 - 150	Everyone should reduce prolonged or heavy exertion, take more breaks during outdoor activities
Very Unhealthy	151 - 250	Everyone should avoid prolonged or heavy exertion, move activities indoors or reschedule
Hazardous	250 +	Everyone should avoid all physical activities outdoors.

Features

temperature [°C]

- precipitation, wind speed and direction, temperature, relative humidity
- average over five days of weather observations used

relative humidity []

RMSE score & baseline model

RMSE (Root Mean Squared Error) score

- -> can be thought of a kind of mean deviation between the predicted and the observed values
- -> in a way to answer the question: "How far off should we expect our model to be on its next prediction on average?"

baseline model

- -> always predict the test set's mean particulate matter load of 58 µg m⁻³
- -> score: RMSE = 42 μ g m⁻³ ~ 72 % of the mean particulate matter load

Models to predict particulate matter concentration

Model	RMSE [µg m ⁻³]	Percentage of the mean particulate matter load [%]
Baseline model	42	~ 72
Multivariate linear regression	41	~ 71
Decision tree	36	~ 62
Random Forest	28	~ 48

→ linear regression model here not suitable due to non-linear target-feature relationships

→ best prediction by Random Forest Regression

Summary

• ca. 15000 meteorological measurements used to train and test models to predict particulate matter load 24 hours ahead

features: precipitation, wind speed and direction, temperature, relative humidity

• linear regression not suitable due to non-linear target-features relations

- best performance by Random Forest Regression with RMSE of 28 μg m⁻³
 - → ~ 48 % of mean particulate matter load
 - → ~ deviation of two categories in the upper part of guideline on hazardous levels

Outlook

- result of error analysis: model underestimates large particulate matter
 concentrations
 - → separate model formulation for extreme and thus the most dangerous particulate matter concentrations required?
- model analysis for the five locations separately and more sophisticated analysis for different averaging periods
- better averaging of wind direction

