

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FACULTY OF MECHANICAL

ENGINEERING

Session: F4,

Paper: 34120

Date: 15th of October, 2021

MotoShield: Open Miniaturized DC Motor Hardware Prototype for Control Education

Gergely Takács*, Ján Boldocký, Erik Mikuláš, Tibor Konkoly and Martin Gulan

Motivation: Hands-on control engineering education

- Control engineering students require extensive hands-on training
- Numerical exercises and simulation examples are not enough
- The ongoing pandemic has shown the value of take-home experiments
- The closed-loop feedback control of the speed of a direct current (DC) motor is one of the fundamental examples in control engineering

DC Motor speed control simulation example in a well-known educational resource:

Motivation: DC motor control – Commercial Trainers

Quanser QNET DC Motor

BYTRONIC DC Motor Training System

Xing Ke MMT1A

Motivation: DC motor control – Improvised Devices

Open-loop (no feedback)!

Motivation: Source of inspiration - Arduino, a universal platform to build on

- Cheap
- Open-source
- Easy to buy
- Standardized
- Free integrated development environment (IDE)
- Great community and abundance of learning materials
- Cross-compatibility and easy hardware expansion through so-called Shields

Motivation: New tools for control engineering and mechatronics education

Create novel tools for control engineering and mechatronics education, implementing a lab experiment on a single Arduino expansion Shield, essentially a tiny control / mechatronics laboratory in the palm of your hand that is

- Cheap
- Open-source
- Possible to build at home even by beginners (DIY)
- Standardized
- Free software library compatible to the Arduino IDE

Visit <u>www.automationshield.com</u> ...

Introducing the MotoShield – an early prototype

Institute of Automation,

Measurement and Applied Informatics

SiF

MotoShield: Open-Source Hardware (see www.automationshield.com)

Editable schematic files:

Editable PCB layouts:

Manufacturing-ready formats:

Institute of Automation,

Measurement and Applied Informatics

MotoShield: A truly low-cost hardware

Name	Description	PCB	Mark	Pcs.	Unit	Total (\$)
PCB	FR4, 2 layer, 1.6 mm thick		(a)	1	0.48	0.48
DC motor	DFRobot FIT0487 DC motor with gearbox and encoder	U5	(c)	1	12.20	12.20
Motor bracket	DFRobot FIT0160 plastic bracket for motor with bolts and nuts		(d)	1	3.68	3.68
Opamp	LM358AN, operational amplifier	U3	(g)	1	0.24	0.24
Motor Driver	L293D, push-pull 4-channel motor driver	U4	(e)	1	3.59	3.59
DIP16 socket	DIP16 IC socket	U4	, ,	1	0.08	0.08
Resistor	$1 \text{ M}\Omega \ 0.5\%, \ 0805, \ \text{SMD}$	R1,R2,R3,R4	(h)	4	0.03	0.12
Resistor	$10 \Omega 0.1\%, 0805, SMD$	R	(f)	1	0.03	0.03
Resistor	$10 \text{ k}\Omega \ 0.5\%, \ 0805, \ \text{SMD}$	Rf	(i)	1	0.04	0.04
Resistor	$5.1 \text{ k}\Omega \ 0.5\%, \ 0805, \ \text{SMD}$	Rg	(j)	1	0.016	0.016
Resistor	$270 \Omega 5\%, 0805, SMD$	R8	(m)	1	0.004	0.004
$_{ m LED}$	Red LED, 0805, SMD	D1	(n)	1	0.07	0.07
Pot shaft	$5 \times 18.7 \text{ mm}$; e.g. ACP 14187-NE		(1)	1	0.10	0.10
$\operatorname{Trimmer}$	$10 \text{ k}\Omega$, 250 mW , single turn THT trimmer	POT1	(k)	1	0.34	0.34
Header	10×1, female, stackable, 0.1" pitcl e.g. SparkFun 474-PRT-10007)		(b)	1	0.072	0.072
Header	8×1, female, stackable, 0.1" pitch of SparkFun 454 PRT-10007)		(b)	2	0.22	0.22
Header	6×1 , female, stackable, 0.1 " in (e.g. SparkF 1742 10007)		(b)	1	0.11	0.11

MotoShield: Arduino API

Simplified application programming interface (API) in C/C++ ARDUIN included within the **AutomationShield library** for the free Arduino IDE:

- Initialize hardware
 - MotoShield.begin();
- Calibrate speed limits
 - MotoShield.calibration();
- Read motor speed to y (% or rpm)

```
y = MotoShield.sensorRead();
```

Send a certain power u to DC motor (% PWM)

```
MotoShield.actuatorWrite(u);
```

- Read external reference r
- r = MotoShield.referenceRead();

MotoShield: Further possibilities: MATLAB and Simulink API

MATLAB[®]

API available for MATLAB as well, keeps consistent nomenclature and usage with the Arduino API:

API created for the Simulink with real-time control and deployment features:

- Initialize hardware
 MotoShield.begin()
- Calibrate speed limits
 MotoShield.calibration()

Typical classroom examples: PID control (Arduino IDE)

```
MotoShield.stepEnable=false; //--Setting the flag to false # built-in ISR sets flag to ARDUINO (COM)
```

```
void step() { //--Algorith ran once per sal
#if !AUTO
  r = MotoShield.referenceRead();
#else AUTO
  if (i >= sizeof(R)/sizeof(float)) { //--I 75.0
   MotoShield.actuatorWrite(0.0); //--St
    while(true); //--End of program execu
  if (k % (T*i) == 0) { //--Moving through}
  r = R[i];
                 //--Change input val
    i++;
                                     //--I
  k++;
#endif
y = MotoShield.sensorRead();
                             //--Sens
u = PIDAbs.compute(r-y, 0, 100, 0, 100);
MotoShield.actuatorWrite(u);
```


Typical classroom examples: System Identification (MATLAB)

1. First-principles modeling 2. DAQ and Identification

$$J\ddot{\omega}(t) = K_{t}i(t) - b\dot{\omega}(t)$$

$$U(t) = Ri(t) + L\frac{\mathrm{d}i(t)}{\mathrm{d}t} + \varepsilon(t),$$

$$G(s) = \frac{K}{K^2 + (Js + b)(Ls + R)}$$

$$\begin{bmatrix} \ddot{\omega}(t) \\ \dot{i}(t) \end{bmatrix} = \begin{bmatrix} -\frac{b}{J} & \frac{K}{J} \\ -\frac{K}{L} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} \dot{\omega}(t) \\ i(t) \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix} U(t)$$

Institute of Automation, Measurement and Applied Informatics

```
data = detrend(data);
data.InputName = 'Input Voltage';
data.InputUnit = 'V';
data.OutputName{1} = 'Angular Velocity';
data.OutputUnit{1} = 'rad/s';
data.OutputName{2} = 'Current';
data.OutputUnit{2} = 'A';
data.Tstart = 0;
data.TimeUnit = 's';
%% Initial guess of model parameters
J = 0.01;
                % Moment of inertia
b = 0.1;
                % Viscous friction constant
            % Electromotive force constant # Vo
            % Motor torque constant # Torque ov
R = 10;
                % Electric resistance
L = 3;
              % Electric inductance
dtheta0 = data.y(1,1);
                                % Initial veloci
i0 = data.y(1,2);
                         % Initial current
    % StateSpace Model
   A = [-b/J]
                   Kt/J;
         -Kt/L
                   -R/L];
    B = [0;
       1/L];
    C = [1 \ 0;
         0 1];
    D = [0;
         0];
    K = zeros(2,2);
    x0 = [dtheta0; i0];
```

3. Validation

Typical classroom examples: Auto-generated control code (Simulink)

1. Block scheme using the Simulink API

ulink API 2. Deployment to MCU and live view

Other "shields" within our open initiative - visit www.automationshield.com

Thank you for your attention!

Visit www.automationshield.com for more details

and please feel free to contact me any time via:

www: gergelytakacs.com

e-mail: gergely.takacs@stuba.sk

researchgate.net/profile/Gergely_Takacs

linkedin.com/in/gergelytakacs

