정렬

- 간단한 정렬 알고리즘 선택정렬, 버블정렬, 삽입정렬
- 분할과 정복 (Divide and Conquer) 방법
- 분할과 정복에 의한 알고리즘 병합정렬과 퀵정렬
- 힙정렬 (Heapsort)
- 정렬 하한계
- 기수정렬(Radix Sort)
- Counting Sort (계수 정렬)

◆ <u>두 원소의 (키) 비교에 의한 정렬 방법이 아닌 정렬 알고</u> 리즘: 기수정렬(radix sort), 계수정렬(counting sort)

Radix (기수) 정렬

- ◆ <u>두 원소의 (키) 비교에 의한 정렬 방법이 아닌 정렬 알고리즘:</u> 기수정렬(radix sort), 계수정렬(counting sort)
- ◆ 정렬할 자료들: x₀, x₁, x₂, x₃,, x_{n-1} (d: 정렬 자료의 최대 자리 개수)

r: 진수

(각 자료의 가장 오른쪽 자릿수가 1번째 자릿수이다.)

Radix sort (계속)

- 10 1234 9 7234 67 9181 733 197 7 3 Bin Extent for the control of the control of

							7		
			3,	7234			197		
10	9181		733	1234			67		9
0	1	2 /	3	4	5	6	7	8	9

Bin[]

9			7234						
7	10		1234			67		9181	197
3			733						
0	1	2	3	4	5	6	7	8	9

Bin[]

3 7 9 10 733 1234 7234 67 9181 197

Radix sort (계속)

6번 만큼 루프가 좋게 될

- 3 7 9 10 733 1234 7234 67 9181 197

를 지원하다. d=4 이트로 d=4번만에 전설됨.

67									
10									
9									
7	197	7234							
3	9181	1234					733		
0	1	2	3	4	5	6	7	8	9

- 3 7 9 10 67 9181 197 1234 7234 733

733									
197									
67									
10									
9									
7									
3	1234						7234		9181
0	1	2	3	4	5	6	7	8	9

- 3 7 9 10 67 197 733 1234 7234 9181

- Counting sort:
 - No (key) comparisons!
 - → 가정: input is in the range 0..k
 - Basic idea:
 - Count number of elements $k \le$ each element i
 - Use that number to place i in position k of sorted array
 - 수행시간: O(n + k) 서 거지면 한鷄.
 - Stable sort
 - Does not sort in place:
 - O(n) array to hold sorted output
 - O(k) array for scratch storage

- ◆ 가정: ¾ (0 ~k)
 - n integers which are in the range [0 ... k]
- ♦ Idea:
 - For each element x, find the number of elements ≤
 - Place x into its correct position in the output array

KE 63/2/1/ DICHOL


```
Algorithm CountingSort(A, B, k)
  // A: 정렬하고자 하는 리스트
                                                     1 2 3 4
                                                                    5
                                                                           7
                                                                        6
  // B: 정렬 결과를 저장하는 리스트
  // C[i]: A에서 i보다 같거나 작은 수의 개수
                                                      6
                                                                 3
                                                                    4
                                                                            4
     for i = 0 to k
                                                          2
                                                             3
                                                                    5
       C[i] = 0
                                               B
                                                                        4
     for j = 0 to n-1
       C[A[j]] += 1
                                                          2 3 4 5
                                                                        6
     for i = 1 to k
       C[i] = C[i] + C[i-1]
                                                             4
                                                                        8
     for j = n-1 downto 0
       B[C[A[j]]-1] = A[j]
       C[A[j]] -= 1
               3 4 5
                                                             3
                                                                    5
B
                                               В
               3
                                                                     4
                      4
                                                             3
               3
                         6
                  5
                         8
```

```
Algorithm CountingSort(A, B, k)
                                       1 2 3 4 5 6 7
   for i = 0 to k
                                               3
                                                 4
      C[i] = 0
    for j = 0 to n-1
                                         2 3 4 5 6 7
                                  B
      C[A[j]] += 1
                                            3
                                                 4
   for i = 1 to k
                                         2 3 4 5
      C[i] = C[i] + C[i-1]
   for j = n-1 downto 0
      B[C[A[j]]-1] = A[j]
      C[A[j]] -= 1
                                          2 3 4
        2 3 4 5 6 7
                                                 5 6 7
                                  В
B
                                            3
                                                 4
                                            3
                                                    6
          3
             4 5
```

```
Algorithm CountingSort(A, B, k)
                                      1 2 3 4 5 6 7
    for i = 0 to k
                                              3
                                                 4
      C[i] = 0
    for j = 0 to n-1
                                         2 3 4 5 6 7
                                  B
      C[A[j]] += 1
                                            3
                                                 4
    for i = 1 to k
                                         2
                                            3
                                                   6
      C[i] = C[i] + C[i-1]
    for j = n-1 downto 0
      B[C[A[j]]-1] = A[j]
      C[A[j]] -= 1
                                         2 3 4
        2 3 4 5 6 7
                                                 5 6 7
                                  В
В
                                                 4
                                            3
                                                   6
          3
             4 5 6
```