```
!pip install branca plotly scikit-learn imblearn --quiet
    !pip install xgboost --quiet
    !pip install h3 folium --quiet
    ERROR: Operation cancelled by user
 1 import numpy as np
    from IPython.display import Image
 3
    import branca.colormap as cm
    import pandas as pd
    import seaborn as sns
    import plotly.express as px
    from plotly.offline import init_notebook_mode, iplot
    import seaborn as sns
    import matplotlib.pyplot as plt
 9
    from imblearn.over_sampling import SMOTE
10
    from imblearn.pipeline import Pipeline
11
12
    from xgboost import XGBClassifier
13
    import h3
    import matplotlib
14
15
    import imblearn
16
    import os
 1 data = pd.read_excel('Telco_customer_churn.xlsx')
```

2 data.sample(5)

	CustomerID	Count	Country	State	City	Zip Code	Lat Long	Latitude	Longitude	Gender	 Contract	Paperless Billing
871	1513-XNPPH	1	United States	California	Los Angeles	90037	34.002642, -118.287596	34.002642	-118.287596	Female	 Month-to- month	Yes
3103	1060-ENTOF	1	United States	California	Los Angeles	90028	34.099869, -118.326843	34.099869	-118.326843	Female	 One year	Yes
1401	9526-JAWYF	1	United States	California	Blythe	92225	33.674583, -114.71612	33.674583	-114.716120	Male	 Month-to- month	Nc
3219	6908- VVYHM	1	United States	California	Pasadena	91104	34.165383, -118.123752	34.165383	-118.123752	Male	 Month-to- month	Yes
6245	2862-PFNIK	1	United States	California	San Leandro	94578	37.704384, -122.126703	37.704384	-122.126703	Male	 Month-to- month	Yes

5 rows × 33 columns

1 data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 7043 entries, 0 to 7042
Data columns (total 33 columns):

#	Column	Non-Null Count	Dtype
0	CustomerID	7043 non-null	object
1	Count	7043 non-null	int64
2	Country	7040 non-null	object
3	State	7040 non-null	object
4	City	7040 non-null	object
5	Zip Code	7043 non-null	int64
6	Lat Long	7043 non-null	object
7	Latitude	7043 non-null	float64
8	Longitude	7043 non-null	float64
9	Gender	7043 non-null	object
10	Senior Citizen	7043 non-null	object
11	Partner	7043 non-null	object
12	Dependents	7043 non-null	object
13	Tenure Months	7043 non-null	int64
14	Phone Service	7043 non-null	object
15	Multiple Lines	7043 non-null	object
16	Internet Service	7043 non-null	object
17	Online Security	7035 non-null	object
18	Online Backup	7038 non-null	object
19	Device Protection	7043 non-null	object
20	Tech Support	7043 non-null	object
21	Streaming TV	7043 non-null	object
22	Streaming Movies	7043 non-null	object
23	Contract	7043 non-null	object
24	Paperless Billing	7043 non-null	object
25	Payment Method	7043 non-null	object
26	Monthly Charges	7043 non-null	float64
27	Total Charges	7043 non-null	object
28	Churn Label	7043 non-null	object

```
29 Churn Value 7043 non-null int64
30 Churn Score 7043 non-null int64
31 CLTV 7043 non-null int64
32 Churn Reason 1869 non-null object
dtypes: float64(3), int64(6), object(24)
memory usage: 1.8+ MB
```

- · what services customers use,
- · type of contract
- the lifetime of the client in the service
- · payment method
- · the amount of monthly payments of customers and their total costs in the service,
- · customer locations,
- gender and age of the client
- · reason for churn (for clients in the churn)

```
1 data['Total Charges']
             108.15
            151.65
   2
             820.5
   3
            3046.05
             5036.3
   4
             1419.4
   7038
            1990.5
   7039
   7040
             7362.9
   7041
             346.45
   7042
             6844.5
   Name: Total Charges, Length: 7043, dtype: object
1 data['Total Charges'] = pd.to_numeric(data['Total Charges'], errors='coerce')
2 data['Total Charges']
            108.15
   0
             151.65
   1
   2
            820.50
   3
            3046.05
   4
           5036.30
   7038
            1419.40
   7039
            1990.50
   7040
            7362.90
   7041
            346.45
   7042
            6844.50
   Name: Total Charges, Length: 7043, dtype: float64
1 data.isnull().sum()
```

```
CustomerID
Count
Country
                           3
State
City
Zip Code
                           0
Lat Long
                           0
Latitude
                           0
Longitude
                           0
Gender
Senior Citizen
Partner
Dependents
Tenure Months
Phone Service
                           0
Multiple Lines
                           0
Internet Service
                           0
Online Security
Online Backup
Device Protection
                           0
Tech Support
                           0
Streaming TV
Streaming Movies
Contract
                           0
Paperless Billing
                           0
Payment Method
                           0
Monthly Charges
Total Charges
                           0
                          11
Churn Label
                           0
Churn Value
                           0
Churn Score
                           0
CLTV
Churn Reason
                       5174
dtype: int64
```

1 data.groupby('Churn Label')['CustomerID'].nunique()

Churn Label No 5174 Yes 1869

Name: CustomerID, dtype: int64

1 data[data['Total Charges'].isna()]

	CustomerID	Count	Country	State	City	Zip Code	Lat Long	Latitude	Longitude	Gender	 Cc
2234	4472-LVYGI	1	United States	California	San Bernardino	92408	34.084909, -117.258107	34.084909	-117.258107	Female	
2438	3115-CZMZD	1	United States	California	Independence	93526	36.869584, -118.189241	36.869584	-118.189241	Male	
2568	5709-LVOEQ	1	United States	California	San Mateo	94401	37.590421, -122.306467	37.590421	-122.306467	Female	
2667	4367-NUYAO	1	United States	California	Cupertino	95014	37.306612, -122.080621	37.306612	-122.080621	Male	
2856	1371-DWPAZ	1	United States	California	Redcrest	95569	40.363446, -123.835041	40.363446	-123.835041	Female	
4331	7644- OMVMY	1	United States	California	Los Angeles	90029	34.089953, -118.294824	34.089953	-118.294824	Male	
4687	3213-VVOLG	1	United States	California	Sun City	92585	33.739412, -117.173334	33.739412	-117.173334	Male	
5104	2520-SGTTA	1	United States	California	Ben Lomond	95005	37.078873, -122.090386	37.078873	-122.090386	Female	
5719	2923-ARZLG	1	United States	California	La Verne	91750	34.144703, -117.770299	34.144703	-117.770299	Male	 (
6772	4075-WKNIU	1	United States	California	Bell	90201	33.970343, -118.171368	33.970343	-118.171368	Female	
6840	2775-SEFEE	1	United States	California	Wilmington	90744	33.782068, -118.262263	33.782068	-118.262263	Male	

¹¹ rows \times 33 columns

calculating difference between Total Charges and calculated charges

```
1 data['diff_in_charges'] = data['Total Charges'] - data['calc_charges']
```

¹ data.dropna(subset=['Country', 'State', 'City'], inplace=True)

¹ data['calc_charges'] = data['Monthly Charges'] * data['Tenure Months']

¹ fig = px.histogram(data, x="diff_in_charges",color = 'Contract',marginal="box")

² fig.show()

 $1\ data.groupby('Contract')[['Total\ Charges','diff_in_charges']]. \\ quantile([.50,.80,.90,.95])$

		Total Charges	diff_in_charges
Contract			
Month-to-month	0.50	679.9500	0.0000
	0.80	2492.4200	24.8400
	0.90	3846.7150	54.0800
	0.95	4968.0300	85.3450
One year	0.50	2657.5500	0.7750
	0.80	5286.4600	55.0500
	0.90	6341.2500	92.2000
	0.95	7072.4725	133.3375
Two year	0.50	3623.9500	0.5000
	0.80	6399.2400	61.5300
	0.90	7457.6100	97.5700
	0.95	7922.3400	139.1800

- 1 data['Total Charges'] = np.where(data['Total Charges'].isna() == True,data['calc_charges'], data['Total Charges'])
- 1 data = data.drop(['calc_charges','diff_in_charges'], axis=1)
- 1 plt.pie(data['Churn Label'].value_counts(), labels=['No Churn','Churn'], autopct='%1.1f%*')

1 data.groupby(['Country','State'])['CustomerID'].count()

Country State
United States California 7046
Name: CustomerID, dtype: int64

1 data['City'].nunique()

1129

```
1 fig = px.scatter_mapbox(data.groupby(['Latitude', 'Longitude'])['CustomerID'].count().reset_index(), lat="Latitude", lon=
2 fig.update_layout(mapbox_style="open-street-map")
3 fig.update_layout(margin={"r":0,"t":0,"l":0,"b":0})
4 fig.show()
```



```
1 f, ax = plt.subplots(figsize=(18,5))
2 plt.bar(
3   data.groupby('City')['CustomerID'].count().sort_values(ascending=False).head(
4   10).index,
5   data.groupby('City')['CustomerID'].count().sort_values(ascending=False).head(10).values,
6 )
7 ax.legend(fontsize = 14)
```

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an ur <matplotlib.legend.Legend at 0x7927655c3a90>


```
1 \text{ hex\_level} = 5
3 data['hex_id'] = data.apply(lambda x: h3.geo_to_h3(x['Latitude'], x['Longitude'], hex_level), axis=1)
5 hex_counts = data.groupby('hex_id')['CustomerID'].count().reset_index(name='total_clients')
 6 hex_counts['center'] = hex_counts['hex_id'].apply(lambda x: h3.h3_to_geo(x))
8
 9 color_range = [hex_counts['total_clients'].min(), hex_counts['total_clients'].max()]
10 colormap = cm.LinearColormap(["purple","red","orange","yellow","green"],vmin = min(color_range), vmax = max(color_range)
11
12 mean_lat, mean_lon = hex_counts['center'].apply(lambda x: x[0]).mean(), hex_counts['center'].apply(lambda x: x[1]).mean()
13 map_center = [mean_lat, mean_lon]
14 m = folium.Map(location=map_center, zoom_start=6, tiles='Stamen Terrain')
15
16 for _, row in hex_counts.iterrows():
17
       folium.Polygon(
           locations=h3.h3_to_geo_boundary(row['hex_id']),
18
19
           fill=True,
20
           fill_color=colormap(row['total_clients']),
21
          fill_opacity=0.7,
22
          stroke=False,
          tooltip=f"Number of clients: {row['total_clients']}"
23
      ).add_to(m)
24
25
26 colormap.caption = 'Number of clients'
27 m.add_child(colormap)
```



```
1 churn = data.assign(churn_clients = np.where(data['Churn Label']=='Yes',data['CustomerID'],None)).groupby(['hex_id']).ag
1 clients = data.groupby(['hex_id'])['CustomerID'].count().reset_index()
1 churn_data = clients.join(churn.set_index(['hex_id']), on=['hex_id'])
1 churn_data['churn_rate'] = churn_data['churn_clients']/churn_data['CustomerID']
```

1 churn_data

	hex_id	CustomerID	churn_clients	churn_rate						
0	85280043fffffff	4	1	0.25	11.					
1	8528004bfffffff	4	1	0.25						
2	8528004fffffff	4	1	0.25						
3	85280207fffffff	4	1	0.25						
4	8528020bfffffff	4	1	0.25						
709	85485b03ffffff	5	1	0.20						
710	85485b33fffffff	5	1	0.20						
711	85485b63ffffff	5	0	0.00						
712	85485babfffffff	5	3	0.60						
713	85485bb7ffffff	10	3	0.30						
714 rows × 4 columns										

```
1 churn_data['center'] = churn_data['hex_id'].apply(lambda x: h3.h3_to_geo(x))
2
3
4 color_range = [churn_data['churn_rate'].min(), churn_data['churn_rate'].max()]
5 colormap = cm.LinearColormap(["green","orange","red"],vmin = min(color_range), vmax = max(color_range))
6
```

```
8 map_center = [mean_lat, mean_lon]
 9 m = folium.Map(location=map_center, zoom_start=6, width='100%', height='80%',tiles='Stamen Terrain')
11 for _, row in churn_data.iterrows():
      folium.Polygon(
12
13
           locations=h3.h3_to_geo_boundary(row['hex_id']),
14
           fill=True,
15
           fill_color=colormap(row['churn_rate']),
16
           fill_opacity=0.7,
17
           stroke=False,
           tooltip=f"Churn rate: {row['churn_rate']}<br>Number of customers: {row['CustomerID']}"
18
19
       ) add_to(m)
20
21 colormap.caption = 'Churn rate'
22 m.add_child(colormap)
23
24 m
    Make this Notebook Trusted to load map: File -> Trust Notebook
     Leaflet (https://leafletjs.com) | Map tiles by Stamen Design (http://stamen.com), under CC BY 3.0 (http://oreativecommons.org/licenses/by/3.0), Data by © OpenStr
                                                                                                Map (http://openstreetmap.org), under CC BY SA
     (http://creativecommons.org/licenses/by-sa/3.0).
```

```
1 plt.scatter(
2   churn_data['CustomerID'],
3   churn_data['churn_rate'],
4 )
```

<matplotlib.collections.PathCollection at 0x792763db7e50>

```
1.0
```

- 1 fig, ax = plt.subplots()
- $2~ax.scatter(churn_data['CustomerID'],~churn_data['churn_rate'],~s=churn_data['churn_rate']*100,~c=churn_rate']*100,~c=churn_rate'$ 100,~c=churn_rate']*100,~c=churn_rate'100,~c=churn_rate'100,~c=churn_rate']*100,~c=churn_rate'100,~c=churn_rate'100,~c=churn_rate'100,~c
- 3 ax.set_xlabel('Customer ID')
- 4 ax.set_ylabel('Churn Rate')

Text(0, 0.5, 'Churn Rate')

- 1 plt.hist(data['Tenure Months'], bins=50)
- 2 plt.legend()
- 3 plt.xlabel('Tenure Months')
- 4 plt.ylabel('Number of customers')

WARNING:matplotlib.legend:No artists with labels found to put in legend. Note that artists whose label start with an ur Text(0, 0.5, 'Number of customers')

1 data.groupby('Churn Label')['Tenure Months'].quantile([.50,.75,.90,.95])

```
Churn Label
No
                       38.0
              0.75
                       61.0
              0.90
                       71.0
              0.95
                        72.0
Yes
              0.50
                        10.0
              0.75
                       29.0
                       51.0
              0.90
              0.95
                       60.0
```

Name: Tenure Months, dtype: float64

1 data.groupby('Churn Label')['Tenure Months'].mean()

Churn Label No 37.569965 Yes 18.006431

Name: Tenure Months, dtype: float64

	Churn Reason	CustomerID
1	Attitude of support person	192
4	Competitor offered higher download speeds	189
5	Competitor offered more data	161
7	Don't know	153
3	Competitor made better offer	140
0	Attitude of service provider	135
2	Competitor had better devices	130
14	Network reliability	103
18	Product dissatisfaction	102
17	Price too high	98
19	Service dissatisfaction	89
10	Lack of self-service on Website	88
8	Extra data charges	56
13	Moved	53
11	Limited range of services	44
12	Long distance charges	44
9	Lack of affordable download/upload speed	44
16	Poor expertise of phone support	20
15	Poor expertise of online support	19
6	Deceased	6

¹ plt.bar(grouped['Churn Reason'], grouped['CustomerID'])

² plt.xticks(rotation=90)

```
Text(4, 0, 'Competitor made better offer'),
Text(5, 0, 'Attitude of service provider'),
Text(6, 0, 'Competitor had better devices'),
Text(7, 0, 'Network reliability'),
Text(8, 0, 'Product dissatisfaction'),
Text(9, 0, 'Price too high'),
Text(10, 0, 'Service dissatisfaction'),
Text(11, 0, 'Lack of self-service on Website'),
Text(12, 0, 'Extra data charges'),
Text(13, 0, 'Moved'),
Text(14, 0, 'Limited range of services'),
Text(15, 0, 'Long distance charges'),
Text(16, 0, 'Lack of affordable download/upload speed'),
Text(17, 0, 'Poor expertise of phone support'),
Text(18, 0, 'Poor expertise of online support'),
Text(19, 0, 'Deceased')])

200

175 -
```

Contract types

125 -

Let's see what types of contracts there are in the service and how this affects the churn rate.

```
2 # Assuming your data is in a DataFrame called 'data'
 3 churn labels = data['Churn Label'].unique()
 4 contracts = data['Contract'].unique()
 6 fig, ax = plt.subplots(figsize=(7, 5))
 8 # Create a dictionary to map contract types to colors
 9 contract_colors = {'Month-to-month': 'lightblue', 'One year': 'lightgreen', 'Two year': 'lightcoral'}
10
11 width = 0.2
12 x = np.arange(len(churn_labels))
13
14 for i, contract in enumerate(contracts):
15
      contract_data = data[data['Contract'] == contract]
16
      counts = [contract_data[contract_data['Churn Label'] == label]['Churn Label'].count() for label in churn_labels]
      ax.bar(x + i * width, counts, width=width, label=contract, color=contract_colors[contract])
17
18
19 ax.set_xlabel('Churn Label')
20 ax.set_ylabel('Count')
21 ax.set_title('Number of customers by contract type')
22 ax.set_xticks(x + width)
23 ax.set_xticklabels(churn_labels)
24 ax.legend(title='Contract', loc='upper right')
25
26 plt.tight_layout()
27 plt.show()
```

Number of customers by contract type

```
Contract
1 grouped = data.groupby(['Contract', 'Churn Label'])['CustomerID'].count().reset_index()
1 fig = px.pie(data.groupby(['Contract','Churn Label'])['CustomerID'].count().reset_index(),
               values='CustomerID',
              names='Contract',
3
              facet_col = 'Churn Label',
title = 'Churn rate by contract type')
4
5
6
7 fig.show()
```

Churn rate by contract type

1 data.groupby(['Contract','Churn Label'])['Tenure Months'].mean()

Contract	Churn Label	
Month-to-month	No	21.033333
	Yes	14.040557
One year	No	41.674063
	Yes	44.963855
Two year	No	56.602914
	Yes	61.270833
Name: Tenure Mo	nths dtyne:	float64

Name: Tenure Months, dtype: float64

Total charges

1 plt.hist(data['Total Charges'], bins=50)

```
547.,
                                         312.,
                                                        272.,
   (array([1098.,
                                                270.,
                                                               270.,
                                                                      235.,
                          404.,
                                  337.,
                                         121.,
            180.,
                   190.,
                           135.,
                                  123.,
                                                 116.,
                                                        104.,
                                                                93.,
                                                                      115.,
             99.,
                                   79.,
                                          99.,
                                                                80.,
                    92.,
                           100.,
                                                         82.,
                                                                       86.,
                                                100.,
             86.,
                                   71.,
                                                         74.,
                            60.,
                                          75.,
                                                                83.,
                                                                       62.,
                    102.,
                                                 93.,
                            58.,
                                   56.,
                                          57.,
                                                 44.,
             73.,
                                                         44.,
                     62.,
                            26.,
             41.,
                     29.,
                                   18.,
                                           8.]),
                      173.696,
                                                      694.784,
                                347.392,
                                           521.088,
    array([
              0.
           1042.176, 1215.872, 1389.568, 1563.264, 1736.96 , 1910.656,
           2084.352, 2258.048, 2431.744, 2605.44 , 2779.136, 2952.832,
           3126.528, 3300.224, 3473.92 ,
                                          3647.616, 3821.312,
                                                               3995.008.
           4168.704, 4342.4 , 4516.096, 4689.792, 4863.488, 5037.184,
           5210.88 , 5384.576, 5558.272, 5731.968, 5905.664, 6079.36 ,
           6253.056, 6426.752, 6600.448, 6774.144, 6947.84 , 7121.536,
           7295.232, 7468.928, 7642.624, 7816.32 , 7990.016, 8163.712,
           8337.408, 8511.104, 8684.8 ]),
             ainer object of 50
                                                                      I
1 plt.hist(data['Monthly Charges'], bins=50)
```

Monthly Charges

```
(array([868., 316., 66., 343., 13., 59., 25., 25., 74., 8., 62., 32., 57., 194., 19., 190., 107., 96., 204., 43., 148., 85., 67., 125., 48., 278., 115., 166., 265., 66., 307., 156., 150., 250., 27.0, 130., 164., 213., 23., 236., 114., 140., 177.
           259.,
                   82., 270., 130., 164., 213.,
                                                            93., 236., 114., 149., 177.,
                           58., 50.,
76. 22.27,
            82., 115.,
                                   50.,
                                            54.,
                                                   17.]),
                      20.26,
                                            24.28,
                                                                  28.3 ,
 array([ 18.25,
                                                      26.29,
                                                                             30.31,
                                                                                       32.32.
                                 38.35,
                                                       42.37.
                                                                  44.38,
                                                                                        48.4 ,
                                                                            46.39.
            34.33.
                       36.34,
                                            40.36,
                                                                                        64.48,
            50.41,
                      52.42,
                                 54.43,
                                            56.44,
                                                       58.45,
                                                                  60.46,
                                                                             62.47,
                      68.5 ,
                                                                                        80.56,
                                            72.52,
            66.49.
                                 70.51,
                                                       74.53,
                                                                  76.54,
                                                                            78.55,
                     84.58,
            82.57,
                                86.59,
                                           88.6 ,
                                                       90.61,
                                                                 92.62,
                                                                            94.63,
                                                                                       96.64,
            98.65, 100.66, 102.67, 104.68, 106.69, 108.7, 110.71, 112.72,
          114.73, 116.74, 118.75]),
```

<BarContainer object of 50 artists>)

1 data.groupby('Churn Label')['Monthly Charges'].quantile([.50,.75,.95,.99])

```
0.50
                       64.4250
No
             0.75
                       88.4000
             0.95
                      108.4175
             0.99
                      115.1000
Yes
             0.50
                       79.6500
             0.75
                       94.2000
             0.95
                      105.6250
             0.99
                      111.1350
Name: Monthly Charges, dtype: float64
```

```
1 corr_df = data.copy()
```

```
1 corr_df['Churn Label'].replace(to_replace='Yes', value=1, inplace=True)
2 corr_df['Churn Label'].replace(to_replace='No', value=0, inplace=True)
```

```
1 df_dummies = pd.get_dummies(corr_df[['Churn Label','Phone Service','Multiple Lines','Internet Service','Online Security'
                                    'Online Backup', 'Device Protection', 'Tech Support', 'Streaming TV',
2
                                    'Streaming Movies']])
4 df_dummies.head()
```

	Churn Label	Phone Service_No	Phone Service_Yes	Multiple Lines_No	Multiple Lines_No phone service	Multiple Lines_Yes	Internet Service_DSL	Internet Service_Fiber optic	Internet Service_No	Online Security_No	
0	1	0	1	1	0	0	1	0	0	0	
1	1	0	1	1	0	0	0	1	0	1	
2	1	0	1	0	0	1	0	1	0	1	
3	1	0	1	0	0	1	0	1	0	1	
4	1	0	1	0	0	1	0	1	0	1	

```
1 plt.figure(figsize=(9, 7))
2 sns.heatmap(df_dummies.corr(), annot=False, cmap='coolwarm')
```

⁴ plt.show()


```
1 internet_services = data.groupby('Internet Service')['CustomerID'].count().reset_index()
2 plt.bar(internet_services['Internet Service'], internet_services['CustomerID'])
3 plt.xlabel('Internet Service')
4 plt.ylabel('Number of customers')
```


Tech Support

Tech support option and churn

- 1 internet_services = data.groupby('Internet Service')['CustomerID'].count().reset_index()
- 1 plt.bar(internet_services['Internet Service'], internet_services['CustomerID'])

<BarContainer object of 3 artists>

```
3000 -
2500 -
2000 -
1500 -
1000 -
1600 = px.bar(data.groupby(['Internet Service','Online Security',
```

```
fig = px.bar(data.groupby(['Internet Service','Online Security',
1
                                                      'Churn Label'])['CustomerID'].count().reset_index(),
2
3
                  x="Internet Service",
4
                  y="CustomerID",
5
                  color="Churn Label",
6
                  #barmode="group",
 7
                  text = 'CustomerID',
8
                  facet_col = 'Online Security'
9
10
    fig.show()
```


Internet Service Internet Service Internet Service

Churn rate by customer payment method

Distribution of the clients by gender

8 fig.show()

10 fig.show()

Churn rate by customer age


```
1 data.groupby('Senior Citizen')['CustomerID'].count()
  Senior Citizen
       5900
  No
       1140
  Yes
  Name: CustomerID, dtype: int64
3
          x="Senior Citizen",
4
          y="CustomerID",
5
          color="Churn Label",
          #barmode="group",
6
          facet_row="Partner",
7
8
          facet_col = 'Dependents'
9
```


Double-click (or enter) to edit

Double-click (or enter) to edit