CS161 2 LECTURE 2

1 Lecture 1

2 Lecture 2

1. Big O: upper bound. Let T(n), g(n) be functions of positive integers. Formally, T(n) = O(g(n)) iff $\exists c, n_0 > 0$ such that $\forall n \geq n_0, 0 \leq T(n) \leq c \cdot g(n)$.

- 2. $\Omega(\dots)$ means a lower bound. We say T(n) is $\Omega(g(n))$ if T(n) grows at least as fast as g(n) as $n \to \infty$. Formally, $T(n) = \Omega(g(n))$ iff $\exists c, n_0 > 0$ such that $\forall n \ge n_0$, we have $0 \le c \cdot g(n) \le T(n)$.
- 3. We say $T(n) = \Theta(g(n))$ if both of the above are true.