Архитектура аналитической системы DeFi DEFIMON Analytics Platform

DevOps Team DEFIMON Project

Август 2024

Contents

1	Введение	2
2	Обзор архитектуры	2
3	UML диаграмма компонентов системы	٠
4	Функциональная диаграмма	Ę
5	Диаграмма развертывания в Kubernetes	6
6	Схема данных 6.1 ClickHouse (временные ряды) 6.2 PostgreSQL (метаданные) 6.3 Redis (кэш и сессии)	6
7	Технические характеристики 7.1 Требования к ресурсам	
8	Безопасность и мониторинг 8.1 Безопасность 8.2 Мониторинг	
9	Масштабирование и отказоустойчивость 9.1 Горизонтальное масштабирование	
10	Заключение	8

1 Введение

Данный документ описывает архитектуру аналитической системы DeFi протоколов DEFIMON, развернутой на облачной инфраструктуре. Система предназначена для сбора, обработки и анализа данных из различных источников Web3 экосистемы, включая Ethereum, L2 сети, Cosmos, Polkadot и другие блокчейны.

2 Обзор архитектуры

Аналитическая система построена на микросервисной архитектуре и включает следующие основные компоненты:

- Уровень сбора данных: Data Ingestion Service, Blockchain Node
- $\bullet\,$ Уровень обработки: Stream Processing Service, AI/ML Service
- Уровень хранения: ClickHouse (временные ряды), PostgreSQL (метаданные), Redis (кэш)
- API уровень: Analytics API, Admin Dashboard
- Инфраструктурные сервисы: Kong (API Gateway), Kafka (очереди сообщений)
- Мониторинг: Prometheus, Grafana

3 UML диаграмма компонентов системы

Figure 1: UML диаграмма компонентов аналитической системы

4 Функциональная диаграмма

Figure 2: Функциональная диаграмма обработки данных

5 Диаграмма развертывания в Kubernetes

Figure 3: Диаграмма развертывания в Kubernetes

6 Схема данных

6.1 ClickHouse (временные ряды)

- protocol metrics метрики протоколов (TVL, объем, комиссии)
- pool_metrics метрики пулов ликвидности
- user_events события пользователей
- model_performance производительность ML моделей

6.2 PostgreSQL (метаданные)

• users - пользователи системы

- protocols каталог DeFi протоколов
- api_keys API ключи доступа
- 12 networks конфигурация L2 сетей

6.3 Redis (кэш и сессии)

- Кэширование результатов АРІ запросов
- Управление сессиями пользователей
- Rate limiting для API
- Временное хранение МL предсказаний

7 Технические характеристики

7.1 Требования к ресурсам

Компонент	CPU	RAM	Storage
Analytics API	500m-1000m	1-2Gi	-
Data Ingestion	1000m-2000m	2-4Gi	_
Stream Processing	1000m-2000m	2-4Gi	-
AI/ML Service	2000m-4000m	4-8Gi	-
Blockchain Node	2000m-4000m	8-16Gi	50Gi
ClickHouse	2000m-4000m	8-16Gi	500Gi
PostgreSQL	1000m-2000m	4-8Gi	100Gi
Redis	500 m - 1000 m	2-4Gi	50Gi

Table 1: Требования к ресурсам компонентов

7.2 Производительность

- API Throughput: 10,000+ запросов/секунду
- Latency: <50ms для кэшированных данных, <200ms для запросов к БД
- Data Ingestion: 5GB+ данных в день
- ML Predictions: 1000+ предсказаний/минуту
- Data Retention: 2 года для временных рядов

8 Безопасность и мониторинг

8.1 Безопасность

- ЈШТ токены для аутентификации АРІ
- Rate limiting на уровне пользователя и IP
- RBAC (Role-Based Access Control) B Kubernetes
- Network Policies для изоляции трафика
- Шифрование данных в покое и передаче

8.2 Мониторинг

- Метрики: СРU, RAM, сеть, диск, бизнес-метрики
- Логирование: Централизованные логи через ELK stack
- Алерты: Критические события и пороговые значения
- Трассировка: Распределенная трассировка запросов

9 Масштабирование и отказоустойчивость

9.1 Горизонтальное масштабирование

- Horizontal Pod Autoscaler (HPA) для stateless сервисов
- Kafka partitioning для распределения нагрузки
- Read replicas для баз данных
- CDN для статического контента

9.2 Отказоустойчивость

- Multi-AZ развертывание в Kubernetes
- Автоматический restart failed pods
- Circuit breaker pattern для внешних API
- Васкир стратегия для всех критических данных

10 Заключение

Представленная архитектура аналитической системы DEFIMON обеспечивает:

- Высокую производительность обработка больших объемов данных в реальном времени
- Масштабируемость горизонтальное и вертикальное масштабирование
- Надежность отказоустойчивость и автоматическое восстановление
- Безопасность современные практики защиты данных
- Наблюдаемость полный мониторинг всех компонентов системы

Система готова к production использованию и может быть развернута в любой Kubernetes среде с минимальными изменениями конфигурации.