Assignment 14

Surbhi Agarwal

Abstract—This document shows some properties of matrices, their inverse and determinant.

The matrix $\mathbf{A} = \begin{pmatrix} 1 & \text{Problem} \\ 5 & 9 & 8 \\ 1 & 8 & 2 \\ 9 & 1 & 0 \end{pmatrix}$ satisfies:

- 1) **A** is invertible and the inverse has all integer entries.
- 2) $det(\mathbf{A})$ is odd.
- 3) det(A) is divisible by 13
- 4) det(A) has atleast two prime divisors.

2 Solution

Performing some elementary row operations on the given matrix,

$$\begin{pmatrix}
5 & 9 & 8 \\
1 & 8 & 2 \\
9 & 1 & 0
\end{pmatrix}
\xrightarrow{R_2 \leftarrow R_2 - \frac{1}{5}R_1}
\begin{pmatrix}
5 & 9 & 8 \\
0 & \frac{31}{5} & \frac{2}{5} \\
0 & \frac{-76}{5} & \frac{-72}{5}
\end{pmatrix}$$

$$\xrightarrow{R_3 \leftarrow R_3 + \frac{76}{31}R_2}
\begin{pmatrix}
5 & 9 & 8 \\
0 & \frac{31}{5} & \frac{2}{5} \\
0 & 0 & \frac{-416}{31}
\end{pmatrix}$$
(2.0.1)

After obtaining a triangular form of the matrix, we can say

 $|\mathbf{A}|$ = product of diagonal entries of the triangular matrix

(2.0.3)

$$= 5 \times \frac{31}{5} \times \frac{-416}{31} = -416 \tag{2.0.4}$$

1. **A** is invertible and the inverse has all integer entries

 $det(\mathbf{A}) \neq 0$, hence **A** is invertible.

A is an integer matrix and has all integer entries. $\therefore det(A)$ is an integer

If A^{-1} is an integer matrix and has all integer entries, then $det(A^{-1})$ will be an integer.

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_{3\times3}$$

 $det(\mathbf{A}\mathbf{A}^{-1}) = det(\mathbf{I}) = 1$
 $det(\mathbf{A})det(\mathbf{A}^{-1}) = 1$
This is possible only when $det(\mathbf{A}) = \pm 1$

	But we have seen that $det(\mathbf{A}) = -416$, hence \mathbf{A}^{-1} does not have all integer entries. Given option is false.
2. det(A) is odd	False, as seen from (2.0.4)
3. det(A) is divisible by 13	True. Since $det(\mathbf{A}) = -416$, which is divisible by 13.
4. det(A) has atleast two prime divisors	The Smith Normal form of A can be expressed as $\mathbf{A}' = \mathbf{SAT}$ where S and T are invertible square matrices such that \mathbf{SAT} is diagonal. $\mathbf{A}' = \begin{pmatrix} 14 & -15 & -6 \\ 16 & -17 & -7 \\ 71 & -76 & -31 \end{pmatrix} \begin{pmatrix} 5 & 9 & 8 \\ 1 & 8 & 2 \\ 9 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 & -82 \\ 0 & 1 & -94 \\ 0 & 0 & 1 \end{pmatrix}$ $\implies \mathbf{A}' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 416 \end{pmatrix}$ where the diagonal elements are called elementary divisors. Hence, given option is true.

TABLE 1: Verifying with given options