

KARATINA UNIVERSITY

UNIVERSITY EXAMINATIONS 2024/2025 ACADEMIC YEAR

FOURTH YEAR FIRST SEMESTER REGULAR

EXAMINATIONS FOR THE DEGREE OF:

BACHELOR OF SCIENCE W/EDUCATION (P106);

BACHELOR OF EDUCATION (E101).

COURSE CODE: MAT 416

COURSE TITLE: FUNCTIONAL ANALYSIS II

DATE: 13th DEC., 2024 **TIME:** 3:00PM - 5:00PM

INSTRUCTIONS : See Inside

Answer question **ONE** in Section **A** and any other **Two** from Section **B**.

SECTION A

QUESTION ONE (30 marks)

- a) Let $\mathcal{H}=L^2[0,\,1]$ be the space of square integrable functions over $[0,\,1]$. Find the norm of the function $f(x)=x^2+i$. (3 marks)
- b) Define
 - i) A Pre Hilbert Space. (4 marks)
 - ii) Hilbert adjoint operator. (3 marks)
- c) Consider "the differentiation operator" defined on the Hilbert space $L^2(\mathbb{R})$, that is: $T:L^2(\mathbb{R})\to L^2(\mathbb{R})$, $T(f)=\frac{d}{dx}f(x)$, where $L^2(\mathbb{R})$ is the space of square-integrable functions.

Show that this operator is:

- i) Linear. (3 marks)
- ii) Not bounded. (4 marks)
- d) State and prove the Cauchy Schwartz inequality for a Hilbert space \mathcal{H} . (5 marks)
- e) Suppose \mathbf{u} , \mathbf{v} and \mathbf{w} are vectors in a Hilbert space \mathcal{H} such that $\langle \mathbf{u}, \mathbf{v} \rangle = 2$, $\langle \mathbf{v}, \mathbf{w} \rangle = -3$, $\langle \mathbf{u}, \mathbf{w} \rangle = 4$, and $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 3$, $\|\mathbf{w}\| = 5$. Evaluate $\langle 2\mathbf{v} + \mathbf{w}, 3\mathbf{u} - 2\mathbf{w} \rangle$. (4 marks)

MAT 115 Page 2 of 5

i) Define "a linear Functional" in a Hilbert Space \mathcal{H} . (2 marks) f) ii) Give two examples of linear functionals on some Hilbert (2 marks) space H. QUESTION TWO (20 marks) a) Prove that \mathbb{R}^n is a Hilbert Space. (8 marks) b) Let $(X, \langle \cdot, \cdot \rangle)$ be a pre-Hilbert space, and let $U, V \subseteq X$ be a subspace of X. i) Define the term "orthogonal complement" of U in X. (2 marks) ii) Show that $U \subseteq V \Longrightarrow U^{\perp} \supseteq V^{\perp}$. (4 marks) c) Let \mathcal{H} be a Hilbert Space. i) Define an orthogonal complement M^{\perp} of a $M \subseteq \mathcal{H}$. (2 marks) ii) Show that M^{\perp} is a closed subspace of \mathcal{H} . (4 marks) QUESTION THREE (20 marks) a) Give an example of an incomplete Pre - Hilbert space. Illustrate why the space is incomplete. (5 marks) b) Let \mathcal{H} be a Hilbert space. i) Define the term "norm" on \mathcal{H} . (2 marks) ii) Prove that the norm defined in part (i) is indeed a norm. (4 marks) i) State the Pythagorean Theorem for orthogonal vectors in a Hilbert space \mathcal{H} . (2 marks)

MAT 115 Page 3 of 5

- ii) Prove the Pythagorean Theorem for orthogonal vectors in a Hilbert space \mathcal{H} . (3 marks)
- d) State and prove the parallelogram law with reference to a Hilbert space \mathcal{H} . (4 marks)

QUESTION FOUR (20 marks)

- a) Give any two properties of the Hilbert adjoint operator. (2 marks)
- b) Let $T: \mathcal{H}_1 \to \mathcal{H}_2$ be a bounded linear operator between two Hilbert spaces \mathcal{H}_1 and \mathcal{H}_2 , and let $T^*: \mathcal{H}_2 \to \mathcal{H}_1$ be the Hilbert adjoint operator of T. Also let α be a scalar. Show that
 - i) $\langle T^*y, x \rangle = \langle y, Tx \rangle$ for all $x, y \in \mathcal{H}_1$.. (2 marks)
 - ii) $(S+T)^* = S^* + T^*$, where S and T are bounded linear operators from Hilbert spaces while S^* and T^* are the Hilbert adjoint operators of S and T respectively. (3 marks)
 - iii) $(\alpha T)^* = \overline{\alpha} T^*$ (2 marks)
- c) i) Define the term "a bounded linear functional" on a Hilbert space H. (2 marks)
 - ii) Give two examples of bounded linear functionals on some Hilbert space H. (4 marks)
- d) Let $f(x) = e^x$ and g(x) = 1 be two functions in the Hilbert space $L^2([0, \ln 2])$.
 - i) Determine if f and g are orthogonal. (2 marks)

MAT 115 Page 4 of 5

ii) Find d(f,g). (3 marks)

QUESTION FIVE (20 marks)

- a) Give any:
 - i) Two similarities of the Banach and Hilbert spaces. (2 marks)
 - ii) Two differences between Banach spaces and Hilbert spaces. (3 marks)
- b) State (without proof) any two fundamental theorems related to

 Hilbert spaces: (4 marks)
- c) Give two examples of linear functionals on different Hilbert spaces H. (3 marks)
- d) Define an orthonomal basis of a Hilbert space \mathcal{H} (3 marks)
- e) Let $\{v_k\}_{k=1}^{\infty}$ be a sequence of unit vectors in a Hilbert space \mathcal{H} . Define a mapping $\Phi: \mathcal{H} \longrightarrow \mathbb{C}$ by $: \Phi(v) = \sum_{k=1}^{\infty} \frac{1}{k^2} \langle \vec{v}, \vec{v_k} \rangle$.. Show that Φ is:
 - i) Well defined. (3 marks)
 - ii) Bounded. (2 marks)

MAT 115 Page 5 of 5