

- 1 INTRODUCTION
- 2 ANALYSE DES DONNÉES
- FEATURE ENGINEERING
- SÉLECTION DES MODÈLES
- 5 OUVERTURE

INTRODUCTION

1 INTRODUCTION Variables

Variables explicatives

- date
- service
- gare_depart
- gare_arrivee
- duree_moyenne
- nb_train_prevu
- Longitude_gare_depart (ajoutée)
- Lattitude_gare_depart (ajoutée)
- Longitude_gare_arrivee (ajoutée)
- Lattitude_gare_arrivee (ajoutée)

Variables cibles

- retard_moyen_arrivee
- prct_cause_externe
- prct_cause_infra
- prct_cause_gestion_trafic
- prct_cause_materiel_roulant
- prct_cause_gestion_gare
- prct_cause_prise_en_charge_voyageurs

ANALYSE DES DONNÉES

2 ANALYSE DES DONNÉES Analyse temporelle des variables

2 ANALYSE DES DONNÉES Analyse de la répartition des variables

2 ANALYSE DES DONNÉES Matrice de corrélation

duree moyenne nb_train_prevu nb annulation nb train depart retard retard_moyen_depart retard_moyen_tous_trains_depart nb train retard arrivee retard_moyen_arrivee retard moyen tous trains arrivee nb train retard sup 15 retard_moyen_trains_retard_sup15 nb train retard sup 30 nb train retard sup 60 prct cause externe prct cause infra prct cause gestion trafic prct cause materiel roulant prct cause gestion gare prct_cause_prise_en_charge_voyageurs nombre objets perdus depart nombre objets perdus arrivee Longitude gare depart Lattitude gare depart Longitude gare arrivee Lattitude gare arrivee mois

2 ANALYSE DES DONNÉES Utilisation de paramètres de modèles

Poids d'une régression linéaire

2 ANALYSE DES DONNÉES Utilisation de paramètres de modèles

Nœuds d'un arbre de décision

FEATURE ENGINEERING

FEATURES DIRECTEMENT PRÉSENTES DANS LES DONNÉES

Features numériques

- Nombre de trains : centré-réduit
- Durées moyennes : centrées-réduites
- Coordonnées GPS : centrées-réduites
- Pourcentages : normalisés entre 0 et 1
- Dates : encodage affine
 - janvier 2018 = -1, décembre 2022 = 1

Features catégorielles

- Service : one-hot encoding
- Gare de départ : one-hot encoding
- Gare d'arrivée : one-hot encoding

DISTANCE

Calculée à l'aide des coordonnées GPS des gares d'arrivée et départ

Distance à la surface de la sphère

Centrée-réduite

FEATURE ENGINEERING Mois – Informations implicites

MOIS

Informations implicites

FEATURE ENGINEERING

3

Mois – Utilisation par les modèles

Nœuds d'un arbre de décision (avec les mois)

MOIS - ONE-HOT ENCONDING

 \bullet

Décembre (0 0 0 0 0 0 0 0 0 0 1)

- Facile de prendre une décision sur le mois
- Linéairement indépendants
 - (utile pour la régression linéaire)

- Tous les mois sont équi-distants
 - (impact seulement le KNN)
- Une corrélation à la saison doit être apprise pour chaque mois de la saison
- Utilise 12 dimensions

MOIS – EMBEDDING SUR LE CERCLE UNITÉ

- Distance en lien avec la proximité temporelle
 - (impact seulement le KNN)
- Corrélation saison facilement exprimable
- **Utilise 2 dimensions**

- Isoler un mois nécessite plus de travail
 - ex. arbre de decision : 2 noeuds
- Linéairement dépendants
 - Mauvais pour la régression linéaire

SIMILARITÉ DES LIAISONS – UTILISATION DES LABELS

Proriété d'un bon embedding f pour les liaisons:

Plus deux liaisons x_1 et x_2 sont similaires, plus $||f(x_1) - f(x_2)||$ est petit

$$f(x) = moyenne(y_M | M \in training) \in \mathbb{R}^7$$

$$| \text{label de } x \text{ au mois } M$$

SÉLECTION DES MODÈLES

Evaluation plus précise des modèles

Plus lente qu'une grid search sans cross validation

Utilisation d'un ensemble de test séparé

One-Hot Encoding

Low Dimensional Embedding

Dimension

138

Grid Search Time

90 minutes 20 minutes

Model	RMSE One-Hot	RMSE Low Dim
Linear Regression	0,295	0,286
Ridge	0,295	0,286
Lasso	0,320	0,287
KNeighbors	0,281	0,280
Support Vector Regression	0,303	0,289
Decision Tree	0,300	0,293
Random Forest	0,325	0,279
ExtraTrees	0,314	0,276
AdaBoost	0,295	0,286
XGBoost	0,293	0,279

5 OUVERTURE

ASPECT RÉSEAU

Partage d'infrastructures communes entre:

Prise en compte dans:

ASPECT ENVIRONNEMENTAL

COMPROMIS PERFORMANCES VS ÉMISSIONS

Annexes

Similarité des liaisons – Importance des gares

[Applicable seulement au KNN]

Avoir la même gare de départ et/ou d'arrivée a une forte influence sur les quantités à prédire

- \rightarrow Prendre une contribution λ apprise plutôt que 1 dans la distance au carré
- \rightarrow Remplacer one -hot(gare) par λ one -hot(gare)

Plus généralement,

Avoir la même gare de départ n'a pas la même influence qu'avoir la même gare d'arrivée

- \rightarrow Prendre deux contributions α , β apprises plutôt que 1 dans la distance au carré
- $\rightarrow \alpha \ one hot(d\acute{e}part)$ et $\beta \ one hot(arriv\acute{e}e)$

Similarité des liaisons – Importance des gares

[Applicable seulement au KNN]

 Les gares ont plus d'influence que les autres features.

• La gare d'arrivée a plus d'influence que la gare de départ.

•
$$\alpha = 4/3 \text{ et } \beta = 2$$