Source Separation 2

안인규 (Inkyu An)

Speech And Audio Recognition (오디오 음성인식)

https://mairlab-km.github.io/

What is Source Separation?

• Source Separation literally means separate any source of particular interest...

What is Source Separation?

Source Separation literally means separate any source of

particular interest...

What is Source Separation?

Source Separation literally means separate any source of

particular interest...

Blind Source Separation

• Goal: extract K sources from the noisy mixture w/o (or with very little) information about the mixing process

 We know denoising and specific guided separation, how can we apply DL here?

Encoder-Separation-Decoder (ESD)

Blind Source Separation – First Idea

Goal: just use Encoder-Separation-Decoder (ESD) with several decoders

Blind Source Separation – First Idea

• Goal: just use Encoder-Separation-Decoder (ESD) with several

Blind Source Separation – PIT

• Idea: Permutation-Invariant Training (PIT), take the best loss of all permutations of predictions

Blind Source Separation – PIT

• Idea: Permutation-Invariant Training (PIT), take the best loss of all permutations of predictions

Blind Source Separation – PIT

PIT[2017] is the first working DL baseline without clustering

Blind Source Separation – RNN-based

• TasNet (2017): solve blind speaker separation (2 speakers tried)

- 1D CNN Encoder
- Heavy (1024hid) 4-layer LSTMs as Separator
- **FC**(!) decoders each of 1024 units
- Short segments of audio (5ms at 8kHz SR) as input
- PIT used

Trained and evaluated on WSJ0-2mix

One of the first serious DNN baselines together with PIT

Method	Causal	SI-SNRi	SDRi
uPIT-LSTM [4]	✓	_	7.0
TasNet-LSTM	✓	7.7	8.0
DPCL++ 3	×	10.8	_
DANet [5]	×	10.5	_
uPIT-BLSTM-ST [4]	×	_	10.0
TasNet-BLSTM	×	10.8	11.1

Blind Source Separation – RNN-based

• TasNet (2017): solve blind speaker separation (2 speakers tried)

- 1D CNN Encoder
- **Heavy** (1024hid) 4-layer **LSTM**s as Separator
- **FC**(!) decoders each of 1024 units
- Short segments of audio (5ms at 8kHz SR) as input
- PIT used

Trained and evaluated on WSJ0-2mix

One of the first serious DNN baselines together with PIT

Method	Causal	SI-SNRi	SDRi	
uPIT-LSTM [4]	✓	_	7.0	
TasNet-LSTM	✓	7.7	8.0	
DPCL++ 3	×	10.8	_	•
DANet [5]	×	10.5	_	
uPIT-BLSTM-ST [4]	×	_	10.0	25M
TasNet-BLSTM	×	10.8	11.1	parameters
				parameters

Blind Source Separation – RNN-based

- Dual-Path RNN (2020): solve blind speaker separation (2 speakers tried)
 - Dual-Path RNN
 - **Light:** 2.6M parameters
 - **Streaming**-ready
 - Short overlapping chunks of audio (2ms at 16kHz SR) as input

Application: speech enhancement, separation with known number of speakers...

SI-SNRi: WSJ02-mix ~18

B. DPRNN block

Blind Source Separation - CNN-based

- ConvTasNet (2018): solve blind speaker separation (2 speakers tried)
 - 1D CNN Encoder
 - TCN (Temporal Convolutional Network) ResNet-like structure as Separator
 - Arbitrary-length audio as input
 - PIT used

Trained and evaluated on WSJ0-2mix

The second serious DNN baseline together with PIT and TasNet

Blind Source Separation – CNN-based

- ConvTasNet (2018): solve blind speaker separation (2 speakers tried)
 - 1D CNN Encoder
 - TCN (Temporal Convolutional Network) ResNet-like structure as Separator
 - Arbitrary-length audio as input
 - PIT used

Trained and evaluated on WSJ0-2mix

The second serious DNN baseline together with PIT and TasNet

Method	Model size	Causal	SI-SNRi (dB)	SDRi (dB)
DPCL++ [5]	13.6M	×	10.8	_
uPIT-BLSTM-ST [7]	92.7M	×	_	10.0
DANet [8]	9.1M	×	10.5	_
ADANet [9]	9.1M	×	10.4	10.8
cuPIT-Grid-RD [50]	47.2M	×	_	10.2
CBLDNN-GAT [T2]	39.5M	×	_	11.0
Chimera++ [10]	32.9M	×	11.5	12.0
WA-MISI-5 [TT]	32.9M	×	12.6	13.1
BLSTM-TasNet [26]	23.6M	×	13.2	13.6
Conv-TasNet-gLN	5.1M	×	15.3	15.6
uPIT-LSTM [7]	46.3M	✓	_	7.0
LSTM-TasNet [26]	32.0M	✓	10.8	11.2
Conv-TasNet-cLN	5.1M	✓	10.6	11.0
IRM	_	_	12.2	12.6
IBM	_	_	13.0	13.5
WFM	_	_	13.4	13.8

Blind Source Separation – Transformer-based

- SepFormer (2021): solve blind speaker separation (2 speakers tried)
 - **Transformer**-based dual-path architecture
 - Self-Attention layers replace TCN blocks in separator
 - Handles long-term temporal dependencies efficiently
 - Fully convolutional Encoder/Decoder in time domain
 - PIT (Permutation Invariant Training)
 used

Trained and evaluated on WSJ0-2mix and WHAM! datasets

Blind Source Separation – Transformer-based

- **SepFormer (2021):** solve blind speaker separation (2 speakers tried)
 - Transformer-based dual-path architecture
 - Self-Attention layers replace TCN blocks in separator
 - Handles long-term temporal dependencies efficiently
 - Fully convolutional Encoder/Decoder in time domain
 - PIT (Permutation Invariant Training) used

Trained and evaluated on WSJ0-2mix and WHAM! datasets

Table 1. Best results on the WSJ0-2mix dataset (test-set). DM stands for dynamic mixing.

Model	SI-SNRi	SDRi	# Param	Stride
Tasnet [27]	10.8	11.1	n.a	20
SignPredictionNet [28]	15.3	15.6	55.2M	8
ConvTasnet [15]	15.3	15.6	5.1M	10
Two-Step CTN [29]	16.1	n.a.	8.6M	10
DeepCASA [18]	17.7	18.0	12.8M	1
FurcaNeXt [19]	n.a.	18.4	51.4M	n.a.
DualPathRNN [17]	18.8	19.0	2.6M	1
sudo rm -rf [21]	18.9	n.a.	2.6M	10
VSUNOS [20]	20.1	20.4	7.5M	2
DPTNet* [22]	20.2	20.6	2.6M	1
Wavesplit** [23]	21.0	21.2	29M	1
Wavesplit** + DM [23]	22.2	22.3	29M	1
SepFormer	20.4	20.5	26M	8
SepFormer + DM	22.3	22.4	26M	8