2022 年普通高等学校招生全国统一考试 (新高考全国Ⅱ券) 数学

注意事项:

- 1. 答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上.
- 2. 答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动, 用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上 无效.
- 3. 考试结束后, 将本试卷和答题卡一并交回.
- 一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项 是符合题目要求的.
- 1. 已知集合 $A = \{-1,1,2,4\}, B = \{x | |x-1| \le 1\}, \quad \text{则 } A \cap B = ($
- A. $\{-1,2\}$ B. $\{1,2\}$ C. $\{1,4\}$ D. $\{-1,4\}$

- 2. (2+2i)(1-2i) = (
- A. -2+4i B. -2-4i C. 6+2i
- D. 6-2i
- 3. 中国的古建筑不仅是挡风遮雨的住处, 更是美学和哲学的体现. 如图是某古建筑物的剖面图,

 DD_1,CC_1,BB_1,AA_1 是举, OD_1,DC_1,CB_1,BA_1 是相等的步,相邻桁的举步之比分别为

 $\frac{DD_1}{OD_1} = 0.5, \frac{CC_1}{DC_1} = k_1, \frac{BB_1}{CB_1} = k_2, \frac{AA_1}{BA_1} = k_3$,若 k_1, k_2, k_3 是公差为 0.1 的等差数列,且直线 OA 的斜率为 0.725,

则
$$k_3 = ($$
)

A. 0.75

B. 0.8

C. 0.85

D. 0.9

4. 己知
$$\vec{a} = (3,4), \vec{b} = (1,0), \vec{c} = \vec{a} + t\vec{b}$$
,若 $<\vec{a}, \vec{c}> = <\vec{b}, \vec{c}>$,则 $t = ($

В. -5

C. 5

D. 6

5. 有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有多少种

A. 12 种

B. 24 种

C. 36 种

D. 48 种

6. 角
$$\alpha$$
, β 满足 $\sin(\alpha + \beta) + \cos(\alpha + \beta) = 2\sqrt{2}\cos\left(\alpha + \frac{\pi}{4}\right)\sin\beta$,则())

A $tan(\alpha + \beta) = 1$

B. $tan(\alpha + \beta) = -1$

C. $tan(\alpha - \beta) = 1$

D. $tan(\alpha - \beta) = -1$

7. 正三棱台高为 1,上下底边长分别为 $3\sqrt{3}$ 和 $4\sqrt{3}$,所有顶点在同一球面上,则球的表面积是(

A. 100π

B. 128π

C. 144π

D. 192π

8. 若函数
$$f(x)$$
 的定义域为 **R**,且 $f(x+y)+f(x-y)=f(x)f(y)$, $f(1)=1$,则 $\sum_{k=1}^{22} f(k)=(x+y)$

A. -3

B. -2

C. 0

D. 1

二、选择题: 本题共 4 小题, 每小题 5 分, 共 20 分.在每小题给出的选项中, 有多项符合题目 要求.全部选对的得5分,部分选对的得2分,有选错的得0分.

9. 函数
$$f(x) = \sin(2x + \varphi)(0 < \varphi < \pi)$$
 的图象以 $\left(\frac{2\pi}{3}, 0\right)$ 中心对称,则(

A.
$$y = f(x)$$
 在 $\left(0, \frac{5\pi}{12}\right)$ 单调递减

B.
$$y = f(x)$$
 在 $\left(-\frac{\pi}{12}, \frac{11\pi}{12}\right)$ 有 2 个极值点

C. 直线
$$x = \frac{7\pi}{6}$$
 是一条对称轴

D. 直线
$$y = \frac{\sqrt{3}}{2} - x$$
 是一条切线

10. 已知 O 为坐标原点,过抛物线 $C: y^2 = 2px(p > 0)$ 的焦点 F 的直线与 C 交于 A, B 两点,点 A 在第一象限,点 M(p,0),若 |AF|=|AM|,则(

A. 直线 AB 的斜率为 $2\sqrt{6}$

B. |OB| = |OF|

C. |AB| > 4 |OF|

D. $\angle OAM + \angle OBM < 180^{\circ}$

11. 如图,四边形 ABCD 为正方形,ED 上平面 ABCD, $FB/\!\!/ ED$,AB = ED = 2FB,记三棱锥 E - ACD,F - ABC, F - ACE 的体积分别为 V_1, V_2, V_3 ,则(

A.
$$V_3 = 2V_2$$

B.
$$V_3 = 2V_1$$

C.
$$V_3 = V_1 + V_2$$

D.
$$2V_3 = 3V_1$$

12 对任意
$$x$$
, y , $x^2 + y^2 - xy = 1$, 则 ()

A.
$$x+y \le 1$$

B.
$$x + y \ge -2$$

C.
$$x^2 + y^2 \le 2$$

D.
$$x^2 + y^2 \ge 1$$

三、填空题: 本题共 4 小题,每小题 5 分,共 20 分.

- 13. 已知随机变量 X 服从正态分布 $N(2,\sigma^2)$,且 $P(2 < X \le 2.5) = 0.36$,则 P(X > 2.5) =______.
- 15. 已知点 A(-2,3), B(0,a) ,若直线 AB 关于 Y=a 的对称直线与圆 $(x+3)^2+(y+2)^2=1$ 存在公共点,则实数 a 的取值范围为
- 16. 已知椭圆 $\frac{x^2}{6} + \frac{y^2}{3} = 1$,直线 l 与椭圆在第一象限交于 A, B 两点,与 x 轴,y 轴分别交于 M, N 两点,且 |MA| = |NB|, $|MN| = 2\sqrt{3}$,则直线 l 的方程为______.

四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.

- 17. 已知 $\{a_n\}$ 为等差数列, $\{b_n\}$ 是公比为 2 的等比数列,且 $a_2-b_2=a_3-b_3=b_4-a_4$.
- (1) 证明: $a_1 = b_1$;
- (2) 求集合 $\{k | b_k = a_m + a_1, 1 \le m \le 500\}$ 中元素个数.
- 18. 记 $_{\Delta}ABC$ 的三个内角分别为 $_{A}$, $_{B}$, $_{C}$, 其对边分别为 $_{a}$, $_{b}$, $_{c}$, 分别以 $_{a}$, $_{b}$, $_{c}$ 为边长的三个正三角形的面积依次为 $_{S_{1}}$, $_{S_{2}}$, $_{S_{3}}$, 已知 $_{S_{1}}$ $_{S_{2}}$ + $_{S_{3}}$ = $\frac{\sqrt{3}}{2}$, $\sin B$ = $\frac{1}{3}$.
- (1) 求 △*ABC*的面积;
- (2) 若 $\sin A \sin C = \frac{\sqrt{2}}{3}$, 求 b.
- 19. 在某地区进行流行病调查,随机调查了 100 名某种疾病患者的年龄,得到如下的样本数据频率分布直方图.

- (1) 估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值作代表);
- (2) 估计该地区一人患这种疾病年龄在区间[20,70]的概率;
- (3)已知该地区这种疾病的患病率为0.1%,该地区年龄位于区间[40,50]的人口占该地区总人口的16%, 从该地区任选一人,若此人年龄位于区间[40,50],求此人患该种疾病的概率.(样本数据中的患者年龄位

于各区间的频率作为患者年龄位于该区间的概率,精确到0.0001)

20. 如图, PO是三棱锥 P-ABC 的高, PA=PB, $AB \perp AC$, $E \in PB$ 的中点.

- (1) 求证: *OE* // 平面 *PAC*;
- (2) 若 $\angle ABO = \angle CBO = 30^{\circ}$, PO = 3, PA = 5, 求二面角C AE B 的正弦值.
- 21. 设双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点为 F(2,0),渐近线方程为 $y = \pm \sqrt{3}x$.
- (1) 求 C 的方程;
- (2) 过F的直线与C的两条渐近线分别交于A,B两点,点 $P(x_1,y_1)$, $Q(x_2,y_2)$ 在C上,且

 $x_1 > x_2 > 0, y_1 > 0$. 过 P 且斜率为 $-\sqrt{3}$ 的直线与过 Q 且斜率为 $\sqrt{3}$ 的直线交于点 M,请从下面①②③中选取两个作为条件,证明另外一个条件成立:

①M在AB上;②PQ//AB;③|MA|=|MB|.

注: 若选择不同的组合分别解答,则按第一个解答计分.

- 22. 已知函数 $f(x) = xe^{ax} e^{x}$.
- (1) 当a = 1时,讨论f(x)的单调性;
- (2) 当x > 0时, f(x) < -1, 求 a 的取值范围;
- (3) 设 $n \in \mathbb{N}^*$, 证明: $\frac{1}{\sqrt{1^2+1}} + \frac{1}{\sqrt{2^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} > \ln(n+1)$.