Лабораторная работа 6 Основы программирования на языке C#

1. ЦЕЛЬ РАБОТЫ

Целью данной работы является получение базовых навыков программирования на языке высокого уровня С# в среде программирования Microsoft Visual Studio.

2. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Создание консольного приложения в Microsoft Visual C#:

Запустите Visual Studio, выберите File -> New Project...

Рисунок 1 – Создание проекта

В открывшемся окне выберите Console Application:

Рисунок 2 – Выбор консольного приложения

В поле Name введите желаемое имя проекта.

Нажмите ОК.

Рисунок 3 – Окно выбора названия проекта

Должен появиться исходный файл «Program.cs» и содержащий следующий исходный код:

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace test
{
    class Program
    {
        static void Main(string[] args)
          {
            }
        }
    }
}
```

Где блок using аналогичен блоку подключения библиотек и пространств имён в C++, а метод класса Program под названием Main, является аналогом функции main в C++.

(запуск и отладка приложение в Visual C# осуществляются из меню Debug, либо клавишами F5 и F6 соответственно)

Далее в Таблице 1 представлены основные типы данных языка С#:

Таблица 1 – Основные типы данных

C #	.NET	Количество	Описание
тип	Framework тип	бит	
bool	System.Boolean	8	Логический тип, может принимать только два значения: true и false
byte	System.Byte	8	Беззнаковый байт
sbyte	System.SByte	8	Знаковый байт
char	System.Char	16	Символ Unicode
decimal	System.Decimal	128	Десятичное число с фиксированной точностью
double	System.Double	64	Число с плавающей запятой
float	System.Single	32	Число с плавающей запятой
int	System.Int32	32	Целое знаковое число
uint	System.UInt32	32	Целое беззнаковое число
long	System.Int64	64	Целое знаковое число
ulong	System.UInt64	64	Целое беззнаковое число
object	System.Object	-	Базовый тип данных, все остальные типы являются производными от него
short	System.Int16	16	Целое знаковое число
ushort	System.UInt16	16	Целое беззнаковое число
String	System.String	-	Строка символов Unicode

В языке С# все встроенные типы данных являются классами и содержат в себе ряд полезных функций.

Узнать их можно, например, используя средства среды разработки Visual C#:

Рисунок 3 – Пример метода класса int

Рисунок 4 – Пример метода класса char

Работа с массивами данных в С# реализована следующим способом:

```
//объявление массива с последующей его инициализацией int[] a; a = new int[5]; //объявление массива с его константной инициализацией int[] b = {1, 2, 3}; //объявление двумерного массива размерностью 5х5 элементов int [,] d = new int[5,5]; // обращение к элементу массива происходит так же как и в C++ int c = b[1];
```

Циклические, арифметические, логические и условные операторы в языке С#, в целом, аналогичны подобным операторам в С++. Важные отличия и дополнения будут рассмотрены в последующих лабораторных работах.

Процедуры и функции.

Поскольку язык С# является ООП языком, любая процедура или функция должна являться методом того или иного класса; это накладывает ряд правил на их разработку и использование. Подробно эта тема будет рассматриваться по мере изучения классов и методов работы с ними, здесь же представлена информация, необходимая для выполнения лабораторной работы.

Пример простой функции:

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace test
{
    class Program
    {
        //onucanue функции
        static int add(int a, int b)
        {
            return a + b;
        }
        static void Main(string[] args)
        {
            //Bызов функции
            int a = add(1,2);
        }
    }
}
```

```
Где:
static — ключевое слово, означающее, что метод можно вызывать без создания экземпляра класса, в котором он описан int — тип возвращаемого значения add — имя метода
(int a, int b) — параметры метода
```

К примеру, для обмена значений переменных числового типа можно реализовать следующий метод swap:

```
static void swap(ref int a, ref int b)
{
    a = a + b;
    b = a - b;
    a = a - b;
}

static void Main(string[] args)
{
    //вызов функции
    int v1 = 1, v2 = 2;
    swap(ref v1, ref v2);
}
```

Функции ввода и вывода.

В языке С# работа с консолью осуществляется при помощи встроенного класса Console. Ввод и вывод осуществляются при помощи двух групп методов: Console.Read() и Console.Write().

Для выполнения лабораторной работы вполне достаточно методов Console.ReadLine() и Console.WriteLine().

Примеры использования:

```
static void Main(string[] args)
{
    Console.WriteLine("Введите слово:");
    string word = Console.ReadLine();

    Console.WriteLine("Введите число:");
    int digit = int.Parse(Console.ReadLine());

    Console.WriteLine(" word = {0}, digit = {1}", word, digit);

    Console.ReadKey();
}
```

```
где:
```

Console.WriteLine() — функция для вывода строки в консоль.

Console.ReadLine() — функция получения строки из консоли.

{0}, {1} — указание, в каком месте выводить значение 0-го и 1-го параметров функции. Console.ReadKey() — ожидание нажатия клавиши перед окончанием работы программы. int.Parse — метод типа данных int, преобразующий значение переданное в качестве параметра в int, если это возможно.

1. Порядок выполнения работы

Задание 1. Ознакомьтесь с теоретическим материалом, приведенным в пункте «Краткие теоретические положения» данных методических указаний и конспектом лекций по данной теме.

Задание 2. Разработайте программы по своему варианту.

2. Оформление отчета

Отчет по работе должен содержать:

- название и цель работы;
- номер варианта;
- · файлы *.cs;
- текст основной программы с комментариями;
- текст кода программы, результаты работы программы.

3. БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Шилдт Г. С# 4.0: полное руководство. Издательство: Вильямс, 2011 г. (страницы с 67 по 143)
- 2. Основы программирования на С#: http://www.intuit.ru/studies/courses/2247/18/info (лекции с 1 по 16)

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Переменные каких типов данных С# не имеют фиксированный размер?
- 2. Каким образом производится объявление переменных?
- 4. Как осуществляется ввод/вывод в консоль в С#?
- 5. Для чего используется ключевое слово using?
- 6. Какие типы данных С# не являются классами?

Примечание к заданию: Параметры n, m (если присутствует) считываются с клавиатуры в одну строку. Элементы одномерного массива (строки двумерного) считываются с клавиатуры одной строкой через пробел. Решения задач оформить в виде двух методов (функций): void Solve1(), void Solve2().

Варианты заданий:

Bap.	Задание			
1	1. Дан массив из п элементов. Все отрицательные элементы заменить на 3.			
	2. Дана матрица A(n, m). Найти наименьший элемент в каждой строке			
	матрицы.			
2	1. Дан массив из п элементов. Все положительные элементы возвести в			
	квадрат, а отрицательные умножить на 2.			
	2. Дана матрица A(n, n). Вычислить сумму элементов второй строки и			
	произведение элементов первого столбца.			
3	1. Дан массив из п элементов. Все чётные элементы сложить, вывести			
	массив и результат.			
	2. Дана матрица A(n, n). Найти наибольший элемент на главной			
	диагонали.			
4	1. Дан массив из п элементов. Вычислить сумму элементов, стоящих			
	до первого отрицательного элемента.			
	2. Дана матрица A(n, m). Найти сумму элементов главной диагонали и			
	поставить её на место последнего элемента.			
5	1. Дан массив из п элементов. Найти элементы, которые при делении			
	на 7 дают остаток 1, 2 или 5.			
	2. Дана матрица A(n, m). Найти в ней максимальный элемент.			
6	1. Дан массив из n элементов. Вычислить R=S+P, где S – сумма чётных			
	элементов, меньших 3, Р – произведение нечётных элементов, больших 1.			
	2. Дана матрица A(n, m). Найти количество положительных элементов.			
7	1. Дан массив из п элементов. Вычислить среднее арифметическое			
	элементов, больших 3,5.			
	2. Дана матрица A(n, m). Найти количество отрицательных элементов.			
8	1. Дан массив из п элементов. Вычислить число отрицательных			
	элементов и число элементов, принадлежащих отрезку [1, 2].			

	A() C ~
	2. Дана матрица A(n, n). Сделать ячейки через одну равными нулю в
0	«шахматном порядке».
9	1. Дан массив из п элементов. Вычислить сумму тех элементов,
	которые делятся на 5 и не делятся на 7.
10	2. Дана матрица A(n, m). Найти количество полных квадратов в ней.
10	1. Дан массив из п элементов. Вычислить сумму элементов таких, что
	модуль каждого из них меньше квадрата его номера.
	2. Дана матрица A(n, m). Найти разность между наибольшим и
11	наименьшим элементом в матрице. 1. Дан массив из п элементов. Вычислить сумму тех элементов,
11	которые нечётны и отрицательны.
	2. Дана матрица A(n, m). Найти произведение наибольшего и
	наименьшего элемента в матрице.
12	1. Дан массив из п элементов. Вычислить сумму элементов кратных 5.
12	2. Дана матрица A(n, m). Найти наименьший элемент в каждой строке
	матрицы.
13	1. Дан массив из п элементов. Заменить значения отрицательных
=	элементов их квадратами, значения положительных увеличить на 7.
	2. Дана матрица A(n, n). Вычислить сумму элементов второй строки и
	произведение элементов первого столбца.
14	1. Даны два массива A и B по п элементов. Получить массив C, в
	котором $ci = \frac{2 \cdot a_i + \sin(b_i)}{a_i}$.
	котором $c_i = \frac{a_i}{a_i}$
	2. Дана матрица A(n, n). Найти наибольший элемент на главной
	диагонали.
15	1. Сформировать массив A, в котором $a_i = i^2 + 1$. Сформировать массив
	B, в котором $b_i = 2.5 * a_i$, если $a_i < 2.5$ и $b_i = a_i / 2.5$ иначе.
	2. Дана матрица A(n, m). Найти сумму элементов главной диагонали и
	поставить её на место последнего элемента.
16	1. Дан массив из n элементов. Вычислить R=S+P, где S – сумма чётных
	элементов, меньших 3, Р – произведение нечётных элементов, больших 1.
1.77	2. Дана матрица A(n, m). Найти в ней максимальный элемент.
17	1. Дан массив из п элементов. Вычислить среднее арифметическое
1	элементов, больших 3,5.
1.0	2. Дана матрица A(n, m). Найти количество положительных элементов.
18	1. Дан массив из п элементов. Вычислить число отрицательных
	элементов и число элементов, принадлежащих отрезку [1, 2].
19	2. Дана матрица A(n, m). Найти количество положительных элементов. 1. Лан массив из п элементов. Вычислить сумму тех элементов.
19	1. Дан массив из n элементов. Вычислить сумму тех элементов, которые делятся на 5 и не делятся на 7.
	2. Дана матрица A(n, m). Найти в ней минимальный элемент.
20	1. Дан массив из п элементов. Вычислить сумму элементов таких, что
20	модуль каждого из них меньше квадрата его номера.
	2. Дана матрица A(n, m). Транспонировать её.
21	1. Дан массив из п элементов. Вычислить сумму тех элементов,
<u>~ 1</u>	которые нечётны и отрицательны.
	Rotophe ne termin n otprinatembilis.

	2 II		
22	2. Дана матрица A(n, n). Отразить её по главной диагонали.		
22	1. Дан массив из п элементов. Вычислить сумму элементов кратных 7.		
	2. Дана матрица A(n, n). Вычислить модуль разности элементов второй		
	строки и произведение элементов первого столбца.		
23	1. Дан массив из п элементов. Заменить значения отрицательных		
	элементов их квадратами, значения положительных увеличить на 12.		
	2. Дана матрица A(n, n). Вычислить произведение элементов второй		
	строки и сумму элементов второго столбца.		
24	1. Дан массив из п элементов. Все отрицательные элементы заменить		
	на 3.		
	2. Дана матрица A(n, n). Вычислить среднее арифметическое всех		
	элементов.		
25	1. Дан массив из п элементов. Все положительные элементы возвести в		
	квадрат, а отрицательные умножить на 2.		
	2. Дана матрица A(n, n). Вычислить сумму всех элементов на главной и		
	побочных диагоналях.		
26	1. Дан массив из п элементов. Все чётные элементы сложить, вывести		
	массив и результат.		
	2. Дана матрица A(n, n). Найти количество нулевых элементов.		
27	1. Дан массив из п элементов. Вычислить сумму элементов, стоящих		
	до первого отрицательного элемента.		
	2. Дана матрица A(n, n). Заменить каждый нулевой элемент на сумму		
	индексов этой ячейки.		
28	1. Дан массив из п элементов. Найти элементы, которые при делении		
	на 13 дают остаток 1, 5 или 7.		
	2. Дана матрица A(n, n). Отразить её по главной диагонали.		
29	1. Дан массив из n элементов. Вычислить R=S+P, где S – сумма чётных		
	элементов, меньших 3, Р – произведение нечётных элементов, больших 15.		
	2. Дана матрица A(n, n). Отразить её по побочной диагонали.		
30	1. Дан массив из п элементов. Все положительные элементы возвести в		
	квадрат, а отрицательные умножить на 4.		
	2. Дана матрица A(n, n). Найти количество элементов, кратных 10.		