Termodinâmica e Transferência de Calor 2022/2023

Aula n°3: Sistemas compressíveis simples

José M. Castanheira Departamento de Física, Universidade de Aveiro

10 de outubro de 2022

Uma substância pura é aquela cuja composição química é uniforme.

- Uma substância pura é aquela cuja composição química é uniforme.
- ▶ A fase de uma substância refere uma quantidade de substância pura com propriedade físicas homogéneas.

- Uma substância pura é aquela cuja composição química é uniforme.
- ▶ A fase de uma substância refere uma quantidade de substância pura com propriedade físicas homogéneas.
- ▶ Por exemplo uma mistura de água e gelo é uma substância pura que se apresenta em duas fases distintas click aqui.

- Uma substância pura é aquela cuja composição química é uniforme.
- ▶ A fase de uma substância refere uma quantidade de substância pura com propriedade físicas homogéneas.
- ▶ Por exemplo uma mistura de água e gelo é uma substância pura que se apresenta em duas fases distintas click aqui.
- Nesta UC iremos analisar essencialmente sistemas simples compressíveis. No caso de se tratarem de sistemas de substância puras, os estados de equilíbrio ficam totalmente definidos pela pressão, volume e temperatura, ou pelo volume específico, pressão temperatura.

Mostra a experiência que, para cada estado de equilíbrio de um sistema simples compressível, o volume, a pressão e a temperatura não são variáveis independentes, obedecendo a relações do tipo:

$$f(V, p, T) = 0$$
 ou $f(v, p, T) = 0$ (1)

▶ Mostra a experiência que, para cada estado de equilíbrio de um sistema simples compressível, o volume, a pressão e a temperatura não são variáveis independentes, obedecendo a relações do tipo:

$$f(V, p, T) = 0$$
 ou $f(v, p, T) = 0$ (1)

▶ A relação anterior, que se designa por equação de estado, pode ser representada por uma superfície num sistema de eixos (v, T, p), como se mostra na figura seguinte.

▶ Mostra a experiência que, para cada estado de equilíbrio de um sistema simples compressível, o volume, a pressão e a temperatura não são variáveis independentes, obedecendo a relações do tipo:

$$f(V, p, T) = 0$$
 ou $f(v, p, T) = 0$ (1)

▶ A relação anterior, que se designa por equação de estado, pode ser representada por uma superfície num sistema de eixos (v, T, p), como se mostra na figura seguinte.

Veja aqui a evolução dos sistema entre a fase líquida e a fase de vapor.

Para a análise dos sistemas quando existem duas fase em equilíbrio é conveniente definir o parâmetro de qualidade

$$x = \frac{m_{vapor}}{m_{liquid} + m_{vapor}}$$

Para a análise dos sistemas quando existem duas fase em equilíbrio é conveniente definir o parâmetro de qualidade

$$x = \frac{m_{vapor}}{m_{liquid} + m_{vapor}}$$

Calor latente de vaporização a quantidade de calor que é necessária para vaporizar uma unidade de massa de líquido saturado a uma determinada temperatura ou pressão.

As mudanças de fase também podem ocorrer entre sólido-líquido (fusão) e sólido-vapor (sublimação)

TAB	LE A-4	Properti	ies of Sup	erheated Wate	er Vapor (Conti	nued)		
Т	υ	и	h	s	υ	и	h	s
°C	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg	kJ/kg	kJ/kg	kJ/kg · K
	p =	5.0 bar =	= 0.50 MI	Pa	ı	p = 7.0 b	ar = 0.70	MPa
		$(T_{\rm sat}=15$	1.86°C)			$(T_{sat} =$	164.97°	C)
Sat.	0.3749	2561.2	2748.7	6.8213	0.2729	2572.5	2763.5	6.7080
180	0.4045	2609.7	2812.0	6.9656	0.2847	2599.8	2799.1	6.7880
200	0.4249	2642.9	2855.4	7.0592	0.2999	2634.8	2844.8	6.8865
240	0.4646	2707.6	2939.9	7.2307	0.3292	2701.8	2932.2	7.0641
280	0.5034	2771.2	3022.9	7.3865	0.3574	2766.9	3017.1	7.2233
320	0.5416	2834.7	3105.6	7.5308	0.3852	2831.3	3100.9	7.3697
360	0.5796	2898.7	3188.4	7.6660	0.4126	2895.8	3184.7	7.5063
400	0.6173	2963.2	3271.9	7.7938	0.4397	2960.9	3268.7	7.6350
440	0.6548	3028.6	3356.0	7.9152	0.4667	3026.6	3353.3	7.7571
500	0.7109	3128.4	3483.9	8.0873	0.5070	3126.8	3481.7	7.9299
600	0.8041	3299.6	3701.7	8.3522	0.5738	3298.5	3700.2	8.1956
700	0.8969	3477.5	3925.9	8.5952	0.6403	3476.6	3924.8	8.4391
	p =	10.0 bar	= 1.0 MI	Pa		= 15.0	bar = 1.5	MPa
		$(T_{\text{sat}} = 17$					198.32°	
Sat.	0.1944	2583.6	2778.1	6.5865	0.1318	2594.5	2792.2	6.4448
200	0.2060	2621.9	2827.9	6.6940	0.1325	2598.1	2796.8	6.4546
240	0.2275	2692.9	2920.4	6.8817	0.1483	2676.9	2899.3	6.6628
280	0.2480	2760.2	3008.2	7.0465	0.1627	2748.6	2992.7	6.8381
320	0.2678	2826.1	3093.9	7.1962	0.1765	2817.1	3081.9	6.9938
360	0.2873	2891.6	3178.9	7.3349	0.1899	2884.4	3169.2	7.1363
400	0.3066	2957.3	3263.9	7.4651	0.2030	2951.3	3255.8	7.2690
440	0.3257	3023.6	3349.3	7.5883	0.2160	3018.5	3342.5	7.3940
500	0.3541	3124.4	3478.5	7.7622	0.2352	3120.3	3473.1	7.5698
540	0.3729	3192.6	3565.6	7.8720	0.2478	3189.1	3560.9	7.6805
600	0.4011	3296.8	3697.9	8.0290	0.2668	3293.9	3694.0	7.8385
640	0.4198	3367.4	3787.2	8.1290	0.2793	3364.8	3783.8	7.9391

As propriedades das substância simples podem ser determinadas com base em valores tabelados, equações de estado, gráficos ou com recurso a software apropriado.

Ilustramos aqui o uso de tabelas para obter as propriedades da água.

Exercício 1.

Determine o volume específico do vapor de água à pressão de 10 bar e à temperatura de $215\,^{\circ}\mathrm{C}$.

p = 1	l0 bar
$T(^{\circ}C)$	$v \text{ (m}^3/\text{kg)}$
200	0.2060
215	v = ?
240	0.2275

TABLE A-2 Properties of Saturated Water (Liquid-Vapor): Temperature Table (Continued)

1 bar =	Conversions: = 0.1 MPa = 10 ² kPa		Volume /kg	Interna kJ		Enthalpy kJ/kg		Enti kJ/k			
Temp.	Press.	Sat. Liquid	Sat. Vapor	Sat. Liquid	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Sat. Vapor	Temp
	bar	$v_{\rm f} \times 10^3$	υ		u _s	ĥŧ	h _{fg}	ĥg		s _e	
50	.1235	1.0121	12.032	209.32	2443.5	209.33	2382.7	2592.1	.7038	8.0763	50
55	.1576	1.0146	9.568	230.21	2450.1	230.23	2370.7	2600.9	.7679	7.9913	55
60	.1994	1.0172	7.671	251.11	2456.6	251.13	2358.5	2609.6	.8312	7.9096	60
65	.2503	1.0199	6.197	272.02	2463.1	272.06	2346.2	2618.3	.8935	7.8310	65
70	.3119	1.0228	5.042	292.95	2469.6	292.98	2333.8	2626.8	.9549	7.7553	70
75	.3858	1.0259	4.131	313.90	2475.9	313.93	2321.4	2635.3	1.0155	7.6824	75
80	.4739	1.0291	3.407	334.86	2482.2	334.91	2308.8	2643.7	1.0753	7.6122	80
85	.5783	1.0325	2.828	355.84	2488.4	355.90	2296.0	2651.9	1.1343	7.5445	85
90	.7014	1.0360	2.361	376.85	2494.5	376.92	2283.2	2660.1	1.1925	7.4791	90
95	.8455	1.0397	1.982	397.88	2500.6	397.96	2270.2	2668.1	1.2500	7.4159	95
100	1.014	1.0435	1.673	418.94	2506.5	419.04	2257.0	2676.1	1.3069	7.3549	100
110	1.433	1.0516	1.210	461.14	2518.1	461.30	2230.2	2691.5	1.4185	7.2387	110
120	1.985	1.0603	0.8919	503.50	2529.3	503.71	2202.6	2706.3	1.5276	7.1296	120
130	2.701	1.0697	0.6685	546.02	2539.9	546.31	2174.2	2720.5	1.6344	7.0269	130
140	3.613	1.0797	0.5089	588.74	2550.0	589.13	2144.7	2733.9	1.7391	6.9299	140
150	4.758	1.0905	0.3928	631.68	2559.5	632.20	2114.3	2746.5	1.8418	6.8379	150
160	6.178	1.1020	0.3071	674.86	2568.4	675.55	2082.6	2758.1	1.9427	6.7502	160
170	7.917	1.1143	0.2428	718.33	2576.5	719.21	2049.5	2768.7	2.0419	6.6663	170
180	10.02	1.1274	0.1941	762.09	2583.7	763.22	2015.0	2778.2	2.1396	6.5857	180
190	12.54	1.1414	0.1565	806.19	2590.0	807.62	1978.8	2786.4	2.2359	6.5079	190
200	15.54	1.1565	0.1274	850.65	2595.3	852.45	1940.7	2793.2	2.3309	6.4323	200
210	19.06	1.1726	0.1044	895.53	2599.5	897.76	1900.7	2798.5	2.4248	6.3585	210
220	23.18	1.1900	0.08619	940.87	2602.4	943.62	1858.5	2802.1	2.5178	6.2861	220
230	27.95	1.2088	0.07158	986.74	2603.9	990.12	1813.8	2804.0	2.6099	6.2146	230
240	33.44	1.2291	0.05976	1033.2	2604.0	1037.3	1766.5	2803.8	2.7015	6.1437	240
250	39.73	1.2512	0.05013	1080.4	2602.4	1085.4	1716.2	2801.5	2.7927	6.0730	250
260	46.88	1.2755	0.04221	1128.4	2599.0	1134.4	1662.5	2796.6	2.8838	6.0019	260
270	54.99	1.3023	0.03564	1177.4	2593.7	1184.5	1605.2	2789.7	2.9751	5.9301	270
280	64.12	1.3321	0.03017	1227.5	2586.1	1236.0	1543.6	2779.6	3.0668	5.8571	280
290	74.36	1.3656	0.02557	1278.9	2576.0	1289.1	1477.1	2766.2	3.1594	5.7821	290
300	85.81	1.4036	0.02167	1332.0	2563.0	1344.0	1404.9	2749.0	3.2534	5.7045	300
320	112.7	1.4988	0.01549	1444.6	2525.5	1461.5	1238.6	2700.1	3.4480	5.5362	320
340	145.9	1.6379	0.01080	1570.3	2464.6	1594.2	1027.9	2622.0	3.6594	5.3357	340
360	186.5	1.8925	0.006945	1725.2	2351.5	1760.5	720.5	2481.0	3.9147	5.0526	360
374.14	220.9	3.155	0.003155	2029.6	2029.6	2099.3	0	2099.3	4.4298	4.4298	374.14

 $v_{\rm f} = ({\rm table \, value})/1000$

Exercício 2.

Considere um sistema que consiste em uma mistura bifásica líquido-vapor de água a $100\,^{\circ}$ C e com parâmetro de qualidade x=0.9. Determine o volume específico da mistura.

$$v = (1-x)v_f + xv_g$$
$$= v_f + x(v_g - v_f)$$

TABLE A-3 Properties of Saturated Water (Liquid-Vapor): Pressure Table

	onversions:	Specific	Volume	Interna		Enthalpy		Ent				
	10 ² kPa	m³	/kg	kJ			kJ/kg			g·K		
Press.	Temp.	Sat. Liquid $v_f \times 10^3$	Sat. Vapor	Sat. Liquid	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Sat. Vapor	Press.	
0.04	28.96	1.0040	34,800	121.45	2415.2	121.46	2432.9	2554.4	0,4226	8.4746	0.04	
0.06	36.16	1.0064	23,739	151.53	2425.0	151.53	2415.9	2567.4	0.5210	8.3304	0.06	
0.08	41.51	1.0084	18.103	173.87	2432.2	173.88	2403.1	2577.0	0.5926	8.2287	0.08	
0.10	45.81	1.0102	14.674	191.82	2437.9	191.83	2392.8	2584.7	0.6493	8.1502	0.10	
0.20	60.06	1.0172	7.649	251.38	2456.7	251.40	2358.3	2609.7	0.8320	7.9085	0.20	
0.30	69.10	1.0223	5.229	289.20	2468.4	289.23	2336.1	2625.3	0.9439	7.7686	0.30	
0.40	75.87	1.0265	3,993	317.53	2477.0	317.58	2319.2	2636.8	1.0259	7,6700	0.40	
0.50	81.33	1.0300	3.240	340.44	2483.9	340.49	2305.4	2645.9	1.0910	7.5939	0.50	
0.60	85.94	1.0331	2.732	359.79	2489.6	359.86	2293.6	2653.5	1.1453	7.5320	0.60	
0.70	89.95	1.0360	2.365	376.63	2494.5	376.70	2283.3	2660.0	1.1919	7.4797	0.70	
0.80	93.50	1.0380	2.087	391.58	2498.8	391.66	2274.1	2665.8	1.2329	7.4346	0.80	
0.90	96.71	1.0410	1.869	405.06	2502.6	405.15	2265.7	2670.9	1.2695	7,3949	0.90	
1.00	99.63	1.0432	1.694	417.36	2506.1	417.46	2258.0	2675.5	1.3026	7.3594	1.00	
1.50	111.4	1.0528	1.159	466,94	2519.7	467.11	2226.5	2693.6	1.4336	7.2233	1.50	
2.00	120.2	1.0605	0.8857	504.49	2529.5	504.70	2201.9	2706.7	1.5301	7.1271	2.00	
2.50	127.4	1.0672	0.7187	535.10	2537.2	535.37	2181.5	2716.9	1.6072	7.0527	2.50	
3.00	133.6	1.0732	0.6058	561.15	2543.6	561.47	2163.8	2725.3	1.6718	6.9919	3.00	
3,50	138.9	1.0786	0.5243	583.95	2546,9	584.33	2148.1	2732.4	1.7275	6.9405	3,50	
4.00	143.6	1.0836	0.4625	604.31	2553.6	604.74	2133.8	2738.6	1.7766	6.8959	4.00	
4.50	147.9	1.0882	0.4140	622.25	2557.6	623.25	2120.7	2743.9	1.8207	6.8565	4.50	
5.00	151.9	1.0926	0.3749	639.68	2561.2	640.23	2108.5	2748.7	1.8607	6.8212	5.00	
6.00	158.9	1.1006	0.3157	669.90	2567.4	670.56	2086.3	2756.8	1.9312	6.7600	6.00	
7.00	165.0	1.1080	0.2729	696.44	2572.5	697.22	2066.3	2763.5	1.9922	6.7080	7.00	
8.00	170.4	1.1148	0.2404	720.22	2576.8	721.11	2048.0	2769.1	2.0462	6.6628	8.00	
9.00	175.4	1.1212	0.2150	741.83	2580.5	742.83	2031.1	2773.9	2.0946	6.6226	9.00	
10.0	179.9	1.1273	0.1944	761.68	2583.6	762.81	2015.3	2778.1	2.1387	6.5863	10.0	
15.0	198.3	1.1539	0.1318	843.16	2594.5	844.84	1947.3	2792.2	2.3150	6.4448	15.0	
20.0	212.4	1.1767	0.09963	906.44	2600.3	908.79	1890.7	2799.5	2.4474	6.3409	20.0	
25.0	224.0	1.1973	0.07998	959.11	2603.1	962.11	1841.0	2803.1	2.5547	6.2575	25.0	
30.0	233.9	1.2165	0.06668	1004.8	2604.1	1008.4	1795.7	2804.2	2.6457	6.1869	30.0	
35.0	242.6	1.2347	0.05707	1045.4	2603.7	1049.8	1753.7	2803.4	2.7253	6.1253	35.0	
40.0	250.4	1.2522	0.04978	1082.3	2602.3	1087.3	1714.1	2801.4	2.7964	6.0701	40.0	
45.0	257.5	1.2692	0.04406	1116.2	2600.1	1121.9	1676.4	2798.3	2.8610	6.0199	45.0	
50.0	264.0	1.2859	0.03944	1147.8	2597.1	1154.2	1640.1	2794.3	2.9202	5.9734	50.0	
60.0	275.6	1.3187	0.03244	1205.4	2589.7	1213.4	1571.0	2784.3	3.0267	5.8892	60.0	
70.0	285.9	1.3513	0.02737	1257.6	2580.5	1267.0	1505.1	2772.1	3.1211	5.8133	70.0	
80.0	295.1	1.3842	0.02352	1305.6	2569.8	1316.6	1441.3	2758.0	3.2068	5.7432	80.0	
90.0	303.4	1.4178	0.02048	1350.5	2557.8	1363.3	1378.9	2742.1	3.2858	5.6772	90.0	
100.	311.1	1.4524	0.01803	1393.0	2544.4	1407.6	1317.1	2724.7	3.3596	5.6141	100.	
110.	318.2	1.4886	0.01599	1433.7	2529.8	1450.1	1255.5	2705.6	3.4295	5.5527	110.	

υ_r = (table value)/1000

Exercício 3.

Um recipiente rígido e fechado de volume $0.5\,\mathrm{m}^3$ é colocado numa placa de aquecimento . Inicialmente, o recipiente contém uma mistura de água líquida e vapor à pressão $p_1=1.0\,\mathrm{bar}$, sendo as massas de ambas as fases iguais. Com o aquecimento, a pressão no recipiente aumentou para $p_2=1.5\,\mathrm{bar}$. Indique os estados inicial e final num diagrama T-v e determine

- a) a temperatura, em °C, nos estados 1 e 2
- b) a massa de vapor presente nos estados 1 e 2, em kg.
- c) Se o aquecimento continuar, determine a pressão, em bar, quando o recipiente contém apenas vapor saturado.

É conveniente definir uma nova variável de estado tal que a sua variação, durante uma mudança de fase, corresponda ao calor latente. Essa variável é a entalpia

$$H = U + pV \tag{2}$$

É conveniente definir uma nova variável de estado tal que a sua variação, durante uma mudança de fase, corresponda ao calor latente. Essa variável é a entalpia

$$H = U + pV \tag{2}$$

A entalpia específica é dada por

$$h = u + pv (3)$$

É conveniente definir uma nova variável de estado tal que a sua variação, durante uma mudança de fase, corresponda ao calor latente. Essa variável é a entalpia

$$H = U + pV \tag{2}$$

A entalpia específica é dada por

$$h = u + pv (3)$$

Os valores da energia interna e da entalpia de várias substâncias também são dados em tabelas. Para misturas de duas fases líquido-vapor, os valores da energia interna e da entalpia podem ser calculados a partir dos valores nos pontos de saturação e do parâmetro de qualidade

$$u = (1 - x)u_f + xu_g = u_f + x(u_g - u_f)$$

$$h = (1 - x)h_f + xh_g = h_f + x(h_g - h_f)$$

TABLE A-7 Properties of Saturated Refrigerant 22 (Liquid-Vapor): Temperature Table

Pressure Conversions: 1 bar = 0.1 MPa		Specific m³/			Internal Energy kJ/kg		Enthalpy kJ/kg	'	Entr kJ/k			
Temp.	= 10 ² kPa Press.	Sat. Liquid	Sat. Vapor	Sat. Liquid	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Sat. Vapor	Temp.	
°C	bar	$v_f \times 10^3$	υ _z	u _f	u,	he	hfg	h,	Sį	Sg	°C	
-60	0.3749	0.6833	0.5370	-21.57	203.67	-21.55	245.35	223.81	-0.0964	1.0547	-60	
-50	0.6451	0.6966	0.3239	-10.89	207.70	-10.85	239.44	228.60	-0.0474	1.0256	-50	
-45	0.8290	0.7037	0.2564	-5.50	209.70	-5.44	236.39	230.95	-0.0235	1.0126	-45	
-40	1.0522	0.7109	0.2052	-0.07	211.68	0.00	233.27	233.27	0.0000	1.0005	-40	
-36	1.2627	0.7169	0.1730	4.29	213.25	4.38	230.71	235.09	0.0186	0.9914	-36	
-32	1.5049	0.7231	0.1468	8.68	214.80	8.79	228.10	236.89	0.0369	0.9828	-32	
-30	1.6389	0.7262	0.1355	10.88	215.58	11.00	226.77	237.78	0.0460	0.9787	-30	
-28	1.7819	0.7294	0.1252	13.09	216.34	13.22	225.43	238.66	0.0551	0.9746	-28	
-26	1.9345	0.7327	0.1159	15.31	217.11	15.45	224.08	239.53	0.0641	0.9707	-26	
-22	2.2698	0.7393	0.0997	19.76	218.62	19.92	221.32	241.24	0.0819	0.9631	-22	
-20	2.4534	0.7427	0.0926	21.99	219.37	22.17	219.91	242.09	0.0908	0.9595	-20	
-18	2.6482	0.7462	0.0861	24.23	220.11	24.43	218.49	242.92	0.0996	0.9559	-18	
-16	2.8547	0.7497	0.0802	26.48	220.85	26.69	217.05	243.74	0.1084	0.9525	-16	
-14	3.0733	0.7533	0.0748	28.73	221.58	28.97	215.59	244.56	0.1171	0.9490	-14	
-12	3.3044	0.7569	0.0698	31.00	222.30	31.25	214.11	245.36	0.1258	0.9457	-12	
-10	3.5485	0.7606	0.0652	33.27	223.02	33.54	212.62	246.15	0.1345	0.9424	-10	
-8	3.8062	0.7644	0.0610	35.54	223.73	35.83	211.10	246.93	0.1431	0.9392	-8	
-6	4.0777	0.7683	0.0571	37.83	224.43	38.14	209.56	247.70	0.1517	0.9361	-6	
-4	4.3638	0.7722	0.0535	40.12	225.13	40.46	208.00	248.45	0.1602	0.9330	-4	
-2	4.6647	0.7762	0.0501	42.42	225.82	42.78	206.41	249.20	0.1688	0.9300	-2	
0	4.9811	0.7803	0.0470	44.73	226.50	45.12	204.81	249.92	0.1773	0.9271	0	
2	5.3133	0.7844	0.0442	47.04	227.17	47.46	203.18	250.64	0.1857	0.9241	2	
4	5.6619	0.7887	0.0415	49.37	227.83	49.82	201.52	251.34	0.1941	0.9213	4	
6	6.0275	0.7930	0.0391	51.71	228.48	52.18	199.84	252.03	0.2025	0.9184	6	
8	6.4105	0.7974	0.0368	54.05	229.13	54.56	198.14	252.70	0.2109	0.9157	8	
10	6.8113	0.8020	0.0346	56.40	229.76	56.95	196.40	253.35	0.2193	0.9129	10	
12	7.2307	0.8066	0.0326	58.77	230.38	59.35	194.64	253.99	0.2276	0.9102	12	
16	8.1268	0.8162	0.0291	63.53	231.59	64.19	191.02	255.21	0.2442	0.9048	16	
20	9.1030	0.8263	0.0259	68.33	232.76	69.09	187.28	256.37	0.2607	0.8996	20	
24	10.164	0.8369	0.0232	73.19	233.87	74.04	183.40	257.44	0.2772	0.8944	24	
28	11.313	0.8480	0.0208	78.09	234.92	79.05	179.37	258.43	0.2936	0.8893	28	
32	12.556	0.8599	0.0186	83.06	235.91	84.14	175.18	259.32	0.3101	0.8842	32	
36	13.897	0.8724	0.0168	88.08	236.83	89.29	170.82	260.11	0.3265	0.8790	36	
40	15.341	0.8858	0.0151	93.18	237.66	94.53	166.25	260.79	0.3429	0.8738	40	
45	17.298	0.9039	0.0132	99.65	238.59	101.21	160.24	261.46	0.3635	0.8672	45	
50	19.433	0.9238	0.0116	106.26	239.34	108.06	153.84	261.90	0.3842	0.8603	50	
60	24.281	0.9705	0.0089	120.00	240.24	122.35	139.61	261.96	0.4264	0.8455	60	

 $v_{\rm f} = ({\rm table\ value})/1000$

Exercício 4.

Determine a entalpia específica do refrigerante 22 quando a sua temperatura é 12 °C e a sua energia interna específica é 144.58 kJ/kg.

TABLE A-7 Properties of Saturated Refrigerant 22 (Liquid-Vapor): Temperature Table

Pressure Conversions: 1 bar = 0.1 MPa		Specific m³/			Internal Energy kJ/kg		Enthalpy kJ/kg	'	Entr kJ/k			
Temp.	= 10 ² kPa Press.	Sat. Liquid	Sat. Vapor	Sat. Liquid	Sat. Vapor	Sat. Liquid	Evap.	Sat. Vapor	Sat. Liquid	Sat. Vapor	Temp.	
°C	bar	$v_f \times 10^3$	υ	Ug	u _e	he	h _{fe}	h,	Sf	Sg	°C	
-60	0.3749	0.6833	0.5370	-21.57	203.67	-21.55	245.35	223.81	-0.0964	1.0547	-60	
-50	0.6451	0.6966	0.3239	-10.89	207.70	-10.85	239.44	228.60	-0.0474	1.0256	-50	
-45	0.8290	0.7037	0.2564	-5.50	209.70	-5.44	236.39	230.95	-0.0235	1.0126	-45	
-40	1.0522	0.7109	0.2052	-0.07	211.68	0.00	233.27	233.27	0.0000	1.0005	-40	
-36	1.2627	0.7169	0.1730	4.29	213.25	4.38	230.71	235.09	0.0186	0.9914	-36	
-32	1.5049	0.7231	0.1468	8.68	214.80	8.79	228.10	236.89	0.0369	0.9828	-32	
-30	1.6389	0.7262	0.1355	10.88	215.58	11.00	226.77	237.78	0.0460	0.9787	-30	
-28	1.7819	0.7294	0.1252	13.09	216.34	13.22	225.43	238.66	0.0551	0.9746	-28	
-26	1.9345	0.7327	0.1159	15.31	217.11	15.45	224.08	239.53	0.0641	0.9707	-26	
-22	2.2698	0.7393	0.0997	19.76	218.62	19.92	221.32	241.24	0.0819	0.9631	-22	
-20	2.4534	0.7427	0.0926	21.99	219.37	22.17	219.91	242.09	0.0908	0.9595	-20	
-18	2.6482	0.7462	0.0861	24.23	220.11	24.43	218.49	242.92	0.0996	0.9559	-18	
-16	2.8547	0.7497	0.0802	26.48	220.85	26.69	217.05	243.74	0.1084	0.9525	-16	
-14	3.0733	0.7533	0.0748	28.73	221.58	28.97	215.59	244.56	0.1171	0.9490	-14	
-12	3.3044	0.7569	0.0698	31.00	222.30	31.25	214.11	245.36	0.1258	0.9457	-12	
-10	3.5485	0.7606	0.0652	33.27	223.02	33.54	212.62	246.15	0.1345	0.9424	-10	
-8	3.8062	0.7644	0.0610	35.54	223.73	35.83	211.10	246.93	0.1431	0.9392	-8	
-6	4.0777	0.7683	0.0571	37.83	224.43	38.14	209.56	247.70	0.1517	0.9361	-6	
-4	4.3638	0.7722	0.0535	40.12	225.13	40.46	208.00	248.45	0.1602	0.9330	-4	
-2	4.6647	0.7762	0.0501	42.42	225.82	42.78	206.41	249.20	0.1688	0.9300	-2	
0	4.9811	0.7803	0.0470	44.73	226.50	45.12	204.81	249.92	0.1773	0.9271	0	
2	5.3133	0.7844	0.0442	47.04	227.17	47.46	203.18	250.64	0.1857	0.9241	2	
4	5.6619	0.7887	0.0415	49.37	227.83	49.82	201.52	251.34	0.1941	0.9213	4	
6	6.0275	0.7930	0.0391	51.71	228.48	52.18	199.84	252.03	0.2025	0.9184	6	
8	6.4105	0.7974	0.0368	54.05	229.13	54.56	198.14	252.70	0.2109	0.9157	8	
10	6.8113	0.8020	0.0346	56.40	229.76	56.95	196.40	253.35	0.2193	0.9129	10	
12	7.2307	0.8066	0.0326	58.77	230.38	59.35	194.64	253.99	0.2276	0.9102	12	
16	8.1268	0.8162	0.0291	63.53	231.59	64.19	191.02	255.21	0.2442	0.9048	16	
20	9.1030	0.8263	0.0259	68.33	232.76	69.09	187.28	256.37	0.2607	0.8996	20	
24	10.164	0.8369	0.0232	73.19	233.87	74.04	183.40	257.44	0.2772	0.8944	24	
28	11.313	0.8480	0.0208	78.09	234.92	79.05	179.37	258.43	0.2936	0.8893	28	
32	12.556	0.8599	0.0186	83.06	235.91	84.14	175.18	259.32	0.3101	0.8842	32	
36	13.897	0.8724	0.0168	88.08	236.83	89.29	170.82	260.11	0.3265	0.8790	36	
40	15.341	0.8858	0.0151	93.18	237.66	94.53	166.25	260.79	0.3429	0.8738	40	
45	17.298	0.9039	0.0132	99.65	238.59	101.21	160.24	261.46	0.3635	0.8672	45	
50	19.433	0.9238	0.0116	106.26	239.34	108.06	153.84	261.90	0.3842	0.8603	50	
60	24.281	0.9705	0.0089	120.00	240.24	122.35	139.61	261.96	0.4264	0.8455	60	

 $v_r = \text{(table value)/1000}$

Exercício 4.

Determine a entalpia específica do refrigerante 22 quando a sua temperatura é 12 °C e a sua energia interna específica é 144.58 kJ/kg.

$$x = \frac{u - u_f}{u_g - u_f} = \frac{144.58 - 58.77}{230.38 - 58.77} = 0.5$$

TABLE A-7 Properties of Saturated Refrigerant 22 (Liquid-Vapor): Temperature Table

	Conversions:	Specific m ³	Volume	Internal kJ			Enthalpy kJ/kg		Entr kJ/k		
	= 0.1 MPa = 10 ² kPa	Sat.	Sat.	Sat.	Sat.	Sat.	KJ/Kg	Sat.	Sat.	Sat.	
Temp.	Press.	Liquid	Vapor	Liquid	Vapor	Liquid	Evap.	Vapor	Liquid	Vapor	Temp.
°C	bar	$v_t \times 10^3$	D _e	Uf	u _e	h _f	hte	h _e	Sf	Sg	°C
-60	0.3749	0.6833	0.5370	-21.57	203.67	-21.55	245.35	223.81	-0.0964	1.0547	-60
-50	0.6451	0.6966	0.3239	-10.89	207.70	-10.85	239.44	228.60	-0.0964	1.0256	-50
-30 -45	0.8290	0.7037	0.3239	-5.50	209.70	-5,44	236.39	230.95	-0.0474	1.0236	-30 -45
-40	1.0522	0.7109	0.2052	-0.07	211.68	0.00	233.27	233.27	0.0000	1.0005	-40
-36	1.2627	0.7169	0.2032	4.29	213.25	4.38	230.71	235.09	0.0000	0.9914	-36
-30	1.5049	0.7169	0.1750	8.68	214.80	8.79	228.10	236.89	0.0166	0.9914	-30
-30	1.6389	0.7262	0.1355	10.88	215.58	11.00	226.77	237.78	0.0460	0.9787	-30
-28	1.7819	0.7294	0.1252	13.09	216.34	13.22	225.43	238.66	0.0551	0.9746	-28
-26	1.9345	0.7327	0.1159	15.31	217.11	15.45	224.08	239.53	0.0641	0 9707	-26
-22	2.2698	0.7393	0.0997	19.76	218.62	19.92	221.32	241.24	0.0819	0.9631	-22
-20	2.4534	0.7427	0.0926	21.99	219.37	22.17	219.91	242.09	0.0908	0.9595	-20
-18	2.6482	0.7462	0.0861	24.23	220.11	24.43	218.49	242.92	0.0996	0.9559	-18
-16	2.8547	0.7497	0.0802	26.48	220.85	26.69	217.05	243.74	0.1084	0.9525	-16
-14	3.0733	0.7533	0.0748	28.73	221.58	28.97	215.59	244.56	0.1171	0.9490	-14
-12	3.3044	0.7569	0.0698	31.00	222.30	31.25	214.11	245.36	0.1258	0.9457	-12
-10	3.5485	0.7606	0.0652	33.27	223.02	33.54	212.62	246.15	0.1345	0.9424	-10
-8	3.8062	0.7644	0.0610	35.54	223.73	35.83	211.10	246.93	0.1431	0.9392	-8
-6	4.0777	0.7683	0.0571	37.83	224.43	38.14	209.56	247.70	0.1517	0.9361	-6
-4	4.3638	0.7722	0.0535	40.12	225.13	40.46	208.00	248.45	0.1602	0.9330	-4
-2	4.6647	0.7762	0.0501	42.42	225.82	42.78	206.41	249.20	0.1688	0.9300	-2
0	4.9811	0.7803	0.0470	44.73	226.50	45.12	204.81	249.92	0.1773	0.9271	0
2	5.3133	0.7844	0.0442	47.04	227.17	47.46	203.18	250.64	0.1857	0.9241	2
4	5.6619	0.7887	0.0415	49.37	227.83	49.82	201.52	251.34	0.1941	0.9213	4
6	6.0275	0.7930	0.0391	51.71	228.48	52.18	199,84	252.03	0.2025	0.9184	6
8	6.4105	0.7974	0.0368	54.05	229.13	54.56	198.14	252.70	0.2109	0.9157	8
10	6.8113	0.8020	0.0346	56.40	229.76	56.95	196.40	253.35	0.2193	0.9129	10
12	7.2307	0.8066	0.0326	58.77	230.38	59.35	194.64	253.99	0.2276	0.9102	12
16	8.1268	0.8162	0.0291	63.53	231.59	64.19	191.02	255.21	0.2442	0.9048	16
20	9.1030	0.8263	0.0259	68.33	232.76	69.09	187.28	256.37	0.2607	0.8996	20
24	10.164	0.8369	0.0232	73.19	233.87	74.04	183.40	257.44	0.2772	0.8944	24
28	11.313	0.8480	0.0208	78.09	234.92	79.05	179.37	258.43	0.2936	0.8893	28
32	12.556	0.8599	0.0186	83.06	235.91	84.14	175.18	259.32	0.3101	0.8842	32
36	13.897	0.8599	0.0186	88.08	236.83	89.29	170.18	260.11	0.3101	0.8842	36
40	15.341	0.8858	0.0151	93.18	237.66	94.53	166.25	260.71	0.3263	0.8738	40
45	17.298	0.8858	0.0131	99.65	238.59	101.21	160.25	261.46	0.3429	0.8672	45
50	17.298	0.9039	0.0132	106.26	239.34	101.21	153.84	261.46	0.3635	0.8603	50
60	24.281	0.9238	0.00116	120.00	240.24	122.35	139.61	261.96	0.3842	0.8455	60
60	24.281	0.9705	0.0089	120.00	240.24	122.35	139.61	201.96	0.4264	0.6455	60

 $v_r = \text{(table value)/1000}$

Exercício 4.

Determine a entalpia específica do refrigerante 22 quando a sua temperatura é 12 °C e a sua energia interna específica é 144.58 kJ/kg.

$$x = \frac{u - u_f}{u_g - u_f} = \frac{144.58 - 58.77}{230.38 - 58.77} = 0.5$$

$$h = (1-x)h_f + xh_g$$

= (1-0.5) × 59.35
+ 0.5 × 253.99 = 156.67 kJ/kg.

6.9919

TABLE A-4 **Properties of Superheated Water Vapor** m³/kg kJ/kg kJ/kg kJ/kg · K m³/kg kJ/kg kJ/kg kJ/kg · K p = 0.06 bar = 0.006 MPap = 0.35 bar = 0.035 MPa $(T_{--} = 36.16^{\circ}C)$ $(T_{\rm ext} = 72.69^{\circ}C)$ 23,739 2425.0 2567.4 8.3304 4.526 2473.0 2631.4 7.7158 Sat. 80 27.132 2487.3 2650.1 8.5804 4.625 2483.7 2645.6 7.7564 30.219 2544.7 2726.0 8.7840 2542.4 2723.1 7.9644 120 5.163 33.302 2602.7 2802.5 8.9693 5.696 2601.2 2800.6 8.1519 160 36.383 2661.4 2879.7 9.1398 6.228 2660.4 2878.4 8.3237 200 240 39,462 2957.8 9.2982 6.758 2720.3 2956.8 8,4828 2781.5 9.4464 2780.9 8.6314 280 42,540 3036.8 7.287 3036.0 320 45.618 2843.0 3116.7 9.5859 7.815 2842.5 3116.1 8.7712 48.696 2905.5 3197.7 9.7180 8.344 2905.1 3197.1 8.9034 360 51,774 2969.0 3279.6 9.8435 8.872 2968.6 3279.2 9.0291 400 54.851 3033.5 3362.6 9.9633 9.400 3033.2 3362.2 9.1490 440 500 59.467 3132.3 3489.1 10.1336 10.192 3132.1 3488.8 9.3194 p = 0.70 bar = 0.07 MPap = 1.0 bar = 0.10 MPa $(T_{sat} = 89.95^{\circ}C)$ $(T_{\rm sat} = 99.63^{\circ}C)$ 2.365 2494.5 2660.0 7,4797 1.694 2506.1 2675.5 7.3594 Sat. 2.434 2509.7 2680.0 7.5341 2506.7 2676.2 7.3614 100 1.696 2.571 2539.7 2719.6 7.6375 2537.3 2716.6 7.4668 120 1.793 2.841 2599.4 2798.2 7.8279 1.984 2597.8 2796.2 7.6597 160 200 3.108 2659.1 2876.7 8.0012 2.172 2658.1 2875.3 7.8343 240 3.374 2719.3 2955.5 8.1611 2.359 2718.5 2954.5 7.9949 280 3.640 2780.2 3035.0 8.3162 2.546 2779.6 3034.2 8.1445 2842.0 3115.3 8.4504 2841.5 3114.6 8.2849 320 3,905 2.732 360 4.170 2904.6 3196.5 8,5828 2904.2 3195.9 8.4175 2.917 4.434 2968.2 3278.6 8.7086 3.103 2967.9 3278.2 8.5435 400 4.698 3032.9 3361.8 8.8286 3.288 3032.6 3361.4 8,6636 440 500 5.095 3131.8 3488.5 8.9991 3131.6 3488.1 8.8342 3.565 p = 1.5 bar = 0.15 MPap = 3.0 bar = 0.30 MPa $(T_{\rm sat} = 111.37^{\circ}C)$ $(T_{\text{sat}} = 133.55^{\circ}\text{C})$

7.2233

7.2693

0.606 2543.6 2725.3

Sat. 1.159 2519.7 2693.6

120

1.188

2533.3 2711.4

Exercício 4.
Determine T, v e h para água a 0.10 MPa quando a sua energia interna específica é u = 2537.3 kJ/kg.

TABLE A-4 Properties of Superheated Water Vapor

°C	ນ	u	h	s	υ u h s
	m³/kg	kJ/kg	kJ/kg	kJ/kg · K	m³/kg kJ/kg kJ/kg·K
		.06 bar = (<i>T</i> _{sat} = 36		lPa .	p = 0.35 bar = 0.035 MPa $(T_{\text{sat}} = 72.69^{\circ}\text{C})$
Sat.	23.739	2425.0	2567.4	8.3304	4.526 2473.0 2631.4 7.7158
80	27.132	2487.3	2650.1	8.5804	4.625 2483.7 2645.6 7.7564
120	30.219	2544.7	2726.0	8.7840	5.163 2542.4 2723.1 7.9644
160	33.302	2602.7	2802.5	8.9693	5.696 2601.2 2800.6 8.1519
200	36.383	2661.4	2879.7	9.1398	6.228 2660.4 2878.4 8.3237
240	39.462	2721.0	2957.8	9.2982	6.758 2720.3 2956.8 8.4828
280	42.540	2781.5	3036.8	9.4464	7.287 2780.9 3036.0 8.6314
320	45.618	2843.0	3116.7	9.5859	7.815 2842.5 3116.1 8.7712
360	48.696	2905.5	3197.7	9.7180	8.344 2905.1 3197.1 8.9034
400	51.774	2969.0	3279.6	9.8435	8.872 2968.6 3279.2 9.0291
440	54.851	3033.5	3362.6	9.9633	9.400 3033.2 3362.2 9.1490
500	59.467	3132.3	3489.1	10.1336	10.192 3132.1 3488.8 9.3194

		0.70 bar (<i>T</i> _{sat} = 89	= 0.07 MF 9.95°C)	Pa Pa		p = 1.0 bar = 0.10 MPa $(T_{\text{sat}} = 99.63^{\circ}\text{C})$					
Sat.	2.365	2494.5	2660.0	7.4797	1.694	2506.1	2675.5	7.3594			
100	2.434	2509.7	2680.0	7.5341	1.696	2506.7	2676.2	7.3614			
120	2.571	2539.7	2719.6	7.6375	1.793	2537.3	2716.6	7.4668			
160	2.841	2599.4	2798.2	7.8279	1.984	2597.8	2796.2	7.6597			
200	3.108	2659.1	2876.7	8.0012	2.172	2658.1	2875.3	7.8343			
240	3.374	2719.3	2955.5	8.1611	2.359	2718.5	2954.5	7.9949			
280	3.640	2780.2	3035.0	8.3162	2.546	2779.6	3034.2	8.1445			
320	3.905	2842.0	3115.3	8.4504	2.732	2841.5	3114.6	8.2849			
360	4.170	2904.6	3196.5	8.5828	2.917	2904.2	3195.9	8.4175			
400	4.434	2968.2	3278.6	8.7086	3.103	2967.9	3278.2	8.5435			
440	4.698	3032.9	3361.8	8.8286	3.288	3032.6	3361.4	8.6636			

		1.5 bar = T _{sat} = 11	= 0.15 MP 1.37°C)	a	F		ar = 0.30 133.55°C		
at.	1.159	2519.7	2693.6	7.2233	0.606	2543.6	2725.3	6.9919	

Exercício 4.
 Determine T, v e h para água a 0.10 MPa quando a sua energia interna específica é u = 2537.3 kJ/kg.

$$h = u + pv$$

$$= 2.5373 \times 10^{6} + 10^{5} \times 1.793$$

$$= (25.373 + 1.793) \times 10^{5} \text{ J/kg}$$

$$= 2716.6 \text{ kJ/kg}.$$

 Duas propriedades intensivas importantes das substâncias puras e compressíveis simples são o calor específico a volume constante

$$c_v = \left(\frac{\partial u}{\partial T}\right)_v,$$
 (4)

 Duas propriedades intensivas importantes das substâncias puras e compressíveis simples são o calor específico a volume constante

$$c_v = \left(\frac{\partial u}{\partial T}\right)_v,\tag{4}$$

e o calor específico a pressão constante

$$c_p = \left(\frac{\partial h}{\partial T}\right)_p. \tag{5}$$

 Duas propriedades intensivas importantes das substâncias puras e compressíveis simples são o calor específico a volume constante

$$c_v = \left(\frac{\partial u}{\partial T}\right)_v,\tag{4}$$

e o calor específico a pressão constante

$$c_p = \left(\frac{\partial h}{\partial T}\right)_p. \tag{5}$$

A figura ao lado mostra o calor específico a pressão constante do vapor de água em função da temperatura e da pressão.

T ℃	$v \times 10^3$ m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg · K	$v \times 10^3$ m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg · K
		= 25 bar =					ar = 5.0 M	
		$(T_{\rm sat} = 22)$	3.99°C)			$(T_{sat} =$	263.99°C)	
20	1.0006	83.80	86.30	.2961	.9995	83.65	88.65	.2956
40	1.0067	167.25	169.77	.5715	1.0056	166.95	171.97	.5705
80	1.0280	334.29	336.86	1.0737	1.0268	333.72	338.85	1.0720
100	1.0423	418.24	420.85	1.3050	1.0410	417.52	422.72	1.3030
140	1.0784	587.82	590.52	1.7369	1.0768	586.76	592.15	1.7343
180	1.1261	761.16	763.97	2.1375	1.1240	759.63	765.25	2.1341
200	1.1555	849.9	852.8	2.3294	1.1530	848.1	853.9	2.3255
220	1.1898	940.7	943.7	2.5174	1.1866	938.4	944.4	2.5128
Sat.	1.1973	959.1	962.1	2.5546	1.2859	1147.8	1154.2	2.9202
	p:	= 75 bar =	7.5 MPa			p = 100 ba	ar = 10.0 l	ИРа
		$(T_{\rm sat} = 290$	0.59°C)			$(T_{sat} =$	311.06°C)	
20	.9984	83.50	90.99	.2950	.9972	83.36	93.33	.2945
40	1.0045	166.64	174.18	.5696	1.0034	166.35	176.38	.5686
80	1.0256	333.15	340.84	1.0704	1.0245	332.59	342.83	1.0688
	1.0397	416.81	424.62	1.3011	1.0385	416.12	426.50	1.2992
100			593,78	1.7317	1.0737	584.68	595,42	1.7292
	1.0752	585.72			1.0/3/			
140		585.72 758.13	766.55	2.1308	1.1199	756.65	767.84	2.1275
100 140 180 220	1.0752 1.1219						767.84 945.9	2.1275
140 180	1.0752	758.13	766.55	2.1308	1.1199	756.65		
140 180 220 260	1.0752 1.1219 1.1835	758.13 936.2	766.55 945.1	2.1308 2.5083	1.1199 1.1805	756.65 934.1	945.9	2.5039
140 180 220 260	1.0752 1.1219 1.1835 1.2696	758.13 936.2 1124.4	766.55 945.1 1134.0	2.1308 2.5083 2.8763	1.1199 1.1805 1.2645	756.65 934.1 1121.1	945.9 1133.7	2.5039 2.8699
140 180 220 260	1.0752 1.1219 1.1835 1.2696 1.3677	758.13 936.2 1124.4 1282.0	766.55 945.1 1134.0 1292.2	2.1308 2.5083 2.8763 3.1649	1.1199 1.1805 1.2645 1.4524	756.65 934.1 1121.1 1393.0 p = 200 ba	945.9 1133.7 1407.6	2.5039 2.8699 3.3596
140 180 220 260	1.0752 1.1219 1.1835 1.2696 1.3677	758.13 936.2 1124.4 1282.0	766.55 945.1 1134.0 1292.2	2.1308 2.5083 2.8763 3.1649	1.1199 1.1805 1.2645 1.4524	756.65 934.1 1121.1 1393.0 p = 200 ba	945.9 1133.7 1407.6	2.5039 2.8699 3.3596
140 180 220	1.0752 1.1219 1.1835 1.2696 1.3677	758.13 936.2 1124.4 1282.0	766.55 945.1 1134.0 1292.2	2.1308 2.5083 2.8763 3.1649	1.1199 1.1805 1.2645 1.4524	756.65 934.1 1121.1 1393.0 p = 200 ba	945.9 1133.7 1407.6	2.5039 2.8699 3.3596
140 180 220 260 Sat.	1.0752 1.1219 1.1835 1.2696 1.3677	758.13 936.2 1124.4 1282.0 150 bar = (T _{sat} = 342	766.55 945.1 1134.0 1292.2 = 15.0 MPa 2.24°C)	2.1308 2.5083 2.8763 3.1649	1.1199 1.1805 1.2645 1.4524	756.65 934.1 1121.1 1393.0 p = 200 ba (T _{sat} =	945.9 1133.7 1407.6 ar = 20.0 l 365.81°C)	2.5039 2.8699 3.3596

1.0337

1.0678

1.1120

1.1693 925.9 949.3

413.39 434.06

580.69 602.04

750.95 773.20 2.1147

1.2955

1.7242

2.4953

770.50 2.1210

100 1.0361 414.74 430.28

140 1.0707 582.66 598.72

180 1.1159 753.76

220

1.1748 929.9 947.5

1.2917

1.7193

2.4870

 Os valores da tabela mostram que o volume específico e a energia específica variam pouco com a pressão

°C	ນ× 10³ m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	υ× 10³ m³/kg	u kJ/kg	h kJ/kg	s kJ/kg · K
		= 25 bar = (<i>T</i> _{sat} = 223					ar = 5.0 M 263.99°C	
20	1.0006	83.80	86.30	.2961	.9995	83.65	88.65	.2956
40	1.0067	167.25	169.77	.5715	1.0056	166.95	171.97	.5705
80	1.0280	334.29	336.86	1.0737	1.0268	333.72	338.85	1.0720
100	1.0423	418.24	420.85	1.3050	1.0410	417.52	422.72	1.3030
140	1.0784	587.82	590.52	1.7369	1.0768	586.76	592.15	1.7343
180	1.1261	761.16	763.97	2.1375	1.1240	759.63	765.25	2.1341
200	1.1555	849.9	852.8	2.3294	1.1530	848.1	853.9	2.3255
220	1.1898	940.7	943.7	2.5174	1.1866	938.4	944.4	2.5128
Sat.	1.1973	959.1	962.1	2.5546	1.2859	1147.8	1154.2	2.9202

	p:	= 75 bar = (<i>T</i> _{sat} = 290		p = 100 bar = 10.0 MPa $(T_{\text{sat}} = 311.06^{\circ}\text{C})$				
20	.9984	83.50	90.99	.2950	.9972	83.36	93.33	.2945
40	1.0045	166.64	174.18	.5696	1.0034	166.35	176.38	.5686
80	1.0256	333.15	340.84	1.0704	1.0245	332.59	342.83	1.0688
100	1.0397	416.81	424.62	1.3011	1.0385	416.12	426.50	1.2992
140	1.0752	585.72	593.78	1.7317	1.0737	584.68	595.42	1.7292
180	1.1219	758.13	766.55	2.1308	1.1199	756.65	767.84	2.1275
220	1.1835	936.2	945.1	2.5083	1.1805	934.1	945.9	2.5039
260	1.2696	1124.4	1134.0	2.8763	1.2645	1121.1	1133.7	2.8699
Sat.	1.3677	1282.0	1292.2	3.1649	1.4524	1393.0	1407.6	3.3596

	p = 150 bar = 15.0 MPa $(T_{\text{sat}} = 342.24^{\circ}\text{C})$					p = 200 bar = 20.0 MPa (T _{sat} = 365.81°C)			
20	.9950	83.06	97.99	.2934	.9928	82.77	102.62	.2923	
40	1.0013	165.76	180.78	.5666	.9992	165.17	185.16	.5646	
80	1.0222	331.48	346.81	1.0656	1.0199	330.40	350.80	1.0624	
100	1.0361	414.74	430.28	1.2955	1.0337	413.39	434.06	1.2917	
140	1.0707	582.66	598.72	1.7242	1.0678	580.69	602.04	1.7193	
180	1.1159	753.76	770.50	2.1210	1.1120	750.95	773.20	2.1147	
220	1.1748	929.9	947.5	2.4953	1.1693	925.9	949.3	2.4870	

 Os valores da tabela mostram que o volume específico e a energia específica variam pouco com a pressão

$$v(T,p) \approx v_f(T)$$

 $u(T,p) \approx u_f(T)$

τ °C	$v \times 10^3$ m^3/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	$v \times 10^3$ m^3/kg	u kJ/kg	h kJ/kg	s kJ/kg · K
p = 25 bar = 2.5 MPa $(T_{\text{sat}} = 223.99^{\circ}\text{C})$							ar = 5.0 M 263.99°C)	
20	1.0006	83.80	86.30	.2961	.9995	83.65	88.65	.2956
40	1.0067	167.25	169.77	.5715	1.0056	166.95	171.97	.5705
80	1.0280	334.29	336.86	1.0737	1.0268	333.72	338.85	1.0720
100	1.0423	418.24	420.85	1.3050	1.0410	417.52	422.72	1.3030
140	1.0784	587.82	590.52	1.7369	1.0768	586.76	592.15	1.7343
180	1.1261	761.16	763.97	2.1375	1.1240	759.63	765.25	2.1341
200	1.1555	849.9	852.8	2.3294	1.1530	848.1	853.9	2.3255
220	1.1898	940.7	943.7	2.5174	1.1866	938.4	944.4	2.5128
Sat.	1.1973	959.1	962.1	2.5546	1.2859	1147.8	1154.2	2.9202

	p:	= 75 bar = (<i>T</i> _{sat} = 290		,	p = 100 bar = 10.0 MPa $(T_{\text{sat}} = 311.06^{\circ}\text{C})$			
20	.9984	83.50	90.99	.2950	.9972	83.36	93.33	.2945
40	1.0045	166.64	174.18	.5696	1.0034	166.35	176.38	.5686
80	1.0256	333.15	340.84	1.0704	1.0245	332.59	342.83	1.0688
100	1.0397	416.81	424.62	1.3011	1.0385	416.12	426.50	1.2992
140	1.0752	585.72	593.78	1.7317	1.0737	584.68	595.42	1.7292
180	1.1219	758.13	766.55	2.1308	1.1199	756.65	767.84	2.1275
220	1.1835	936.2	945.1	2.5083	1.1805	934.1	945.9	2.5039
260	1.2696	1124.4	1134.0	2.8763	1.2645	1121.1	1133.7	2.8699
Sat.	1.3677	1282.0	1292.2	3.1649	1.4524	1393.0	1407.6	3.3596

	p = 150 bar = 15.0 MPa ($T_{\text{sat}} = 342.24^{\circ}\text{C}$)					p = 200 bar = 20.0 MPa (T _{sat} = 365.81°C)			
20	.9950	83.06	97.99	.2934	.9928	82.77	102.62	.2923	
40	1.0013	165.76	180.78	.5666	.9992	165.17	185.16	.5646	
80	1.0222	331.48	346.81	1.0656	1.0199	330.40	350.80	1.0624	
100	1.0361	414.74	430.28	1.2955	1.0337	413.39	434.06	1.2917	
140	1.0707	582.66	598.72	1.7242	1.0678	580.69	602.04	1.7193	
180	1.1159	753.76	770.50	2.1210	1.1120	750.95	773.20	2.1147	
220	1.1748	929.9	947.5	2.4953	1.1693	925.9	949.3	2.4870	

 Os valores da tabela mostram que o volume específico e a energia específica variam pouco com a pressão

$$v(T,p) \approx v_f(T)$$

 $u(T,p) \approx u_f(T)$

$$\begin{array}{ll} h(T,p) & \approx & u_f(T) + p \upsilon_f(T) = \\ & & h_f(T) + \left[p - p_{\rm sat} \right] \upsilon_f(T) \end{array} \label{eq:hamiltonian}$$

TAB	TABLE A-5 Properties of Compressed Liquid Water							
T °C	$v \times 10^3$ m^3/kg	u kJ/kg	h kJ/kg	s kJ/kg · K	$v \times 10^3$ m ³ /kg	u kJ/kg	h kJ/kg	s kJ/kg · K
p = 25 bar = 2.5 MPa (T _{sat} = 223.99°C)				p = 50 bar = 5.0 MPa $(T_{\text{sat}} = 263.99^{\circ}\text{C})$				
20	1.0006	83.80	86.30	.2961	.9995	83.65	88.65	.2956
40	1.0067	167.25	169.77	.5715	1.0056	166.95	171.97	.5705
80	1.0280	334.29	336.86	1.0737	1.0268	333.72	338.85	1.0720
100	1.0423	418.24	420.85	1.3050	1.0410	417.52	422.72	1.3030
140	1.0784	587.82	590.52	1.7369	1.0768	586.76	592.15	1.7343
180	1.1261	761.16	763.97	2.1375	1.1240	759.63	765.25	2.1341
200	1.1555	849.9	852.8	2.3294	1.1530	848.1	853.9	2.3255
220	1.1898	940.7	943.7	2.5174	1.1866	938.4	944.4	2.5128
Sat.	1.1973	959.1	962.1	2.5546	1.2859	1147.8	1154.2	2.9202

p = 75 bar = 7.5 MPa (T _{sat} = 290.59°C)					p = 100 bar = 10.0 MPa $(T_{\text{sat}} = 311.06^{\circ}\text{C})$			
20	.9984	83.50	90.99	.2950	.9972	83.36	93.33	.2945
40	1.0045	166.64	174.18	.5696	1.0034	166.35	176.38	.5686
80	1.0256	333.15	340.84	1.0704	1.0245	332.59	342.83	1.0688
100	1.0397	416.81	424.62	1.3011	1.0385	416.12	426.50	1.2992
140	1.0752	585.72	593.78	1.7317	1.0737	584.68	595.42	1.7292
180	1.1219	758.13	766.55	2.1308	1.1199	756.65	767.84	2.1275
220	1.1835	936.2	945.1	2.5083	1.1805	934.1	945.9	2.5039
260	1.2696	1124.4	1134.0	2.8763	1.2645	1121.1	1133.7	2.8699
Sat.	1.3677	1282.0	1292.2	3.1649	1.4524	1393.0	1407.6	3.3596

	p = 150 bar = 15.0 MPa ($T_{\text{sat}} = 342.24^{\circ}\text{C}$)					p = 200 bar = 20.0 MPa (T _{sat} = 365.81°C)			
20	.9950	83.06	97.99	.2934	.9928	82.77	102.62	.2923	
40	1.0013	165.76	180.78	.5666	.9992	165.17	185.16	.5646	
80	1.0222	331.48	346.81	1.0656	1.0199	330.40	350.80	1.0624	
100	1.0361	414.74	430.28	1.2955	1.0337	413.39	434.06	1.2917	
140	1.0707	582.66	598.72	1.7242	1.0678	580.69	602.04	1.7193	
180	1.1159	753.76	770.50	2.1210	1.1120	750.95	773.20	2.1147	
220	1.1748	929.9	947.5	2.4953	1.1693	925.9	949.3	2.4870	

 Os valores da tabela mostram que o volume específico e a energia específica variam pouco com a pressão

$$v(T,p) \approx v_f(T)$$

 $u(T,p) \approx u_f(T)$

$$\begin{array}{ll} h(T,p) & \approx & u_f(T) + p \upsilon_f(T) = \\ & & h_f(T) + \left[p - p_{\rm sat} \right] \upsilon_f(T) \end{array} \label{eq:hamiltonian}$$

▶ Quando a contribuição da variação de pressão é pequena, i.e., quando a contribuição de $[p - p_{\text{sat}}] v_f(T)$ é pequena

$$h(T,p) \approx h_f(T)$$
.

Como a energia interna de uma substância incompressível depende apenas da temperatura

$$c_v(T) = \frac{\mathrm{d}u}{\mathrm{d}T}.\tag{6}$$

Como a energia interna de uma substância incompressível depende apenas da temperatura

$$c_v(T) = \frac{\mathrm{d}u}{\mathrm{d}T}.\tag{6}$$

A entalpia depende da temperatura e da pressão

$$h(T, p) = u(T) + pv,$$
 com v constante. (7)

Como a energia interna de uma substância incompressível depende apenas da temperatura

$$c_v(T) = \frac{\mathrm{d}u}{\mathrm{d}T}.\tag{6}$$

A entalpia depende da temperatura e da pressão

$$h(T, p) = u(T) + pv,$$
 com v constante. (7)

Assim, os calores específicos c_v e c_p de uma substância incompressível são iguais pois, da equação anterior, obtém-se

$$\left(\frac{\mathrm{d}h}{\mathrm{d}T}\right)_p = \frac{\mathrm{d}u}{\mathrm{d}T} \quad \Leftrightarrow c_p = c_v = c.$$

TABLE A-19 Properties of Selected Solids and Liquids: c_p , ρ , and κ

	Specific	Density,	Thermal	
	Heat, cp	P 3.	Conductivity, K	
Substance	(kJ/kg·K)	(kg/m³)	(W/m · K)	
Selected Solids, 300K				
Aluminum	0.903	2700	237	
Coal, anthracite	1.260	1350	0.26	
Copper	0.385	8930	401	
Granite	0.775	2630	2.79	
Iron	0.447	7870	80.2	
Lead	0.129	11300	35.3	
Sand	0.800	1520	0.27	
Silver	0.235	10500	429	
Soil	1.840	2050	0.52	
Steel (AISI 302)	0.480	8060	15.1	
Tin	0.227	7310	66.6	
Building Materials, 300K				
Brick, common	0.835	1920	0.72	
Concrete (stone mix)	0.880	2300	1.4	
Glass, plate	0.750	2500	1.4	
Hardboard, siding	1.170	640	0.094	
Limestone	0.810	2320	2.15	
Plywood	1.220	545	0.12	
Softwoods (fir, pine)	1.380	510	0.12	
Insulating Materials, 300K				
Blanket (glass fiber)	_	16	0.046	
Cork	1.800	120	0.039	
Duct liner (glass fiber, coated)	0.835	32	0.038	
Polystyrene (extruded)	1.210	55	0.027	
Vermiculite fill (flakes)	0.835	80	0.068	
Saturated Liquids				
Ammonia, 300K	4.818	599.8	0.465	
Mercury, 300K	0.139	13529	8.540	
Refrigerant 22, 300K	1.267	1183.1	0.085	
Refrigerant 134a, 300K	1.434	1199.7	0.081	
Unused Engine Oil, 300K	1.909	884.1	0.145	
Water, 275K	4.211	999.9	0.574	
300K	4.179	996.5	0.613	
325K	4.182	987.1	0.645	
350K	4.195	973.5	0.668	
375K	4.220	956.8	0.681	
400K	4.256	937.4	0.688	

▶ Das equações 6 e 7 obtém-se

$$u_{2} - u_{1} = \int_{T_{1}}^{T_{2}} c(T) dT$$

$$h_{2} - h_{1} = u_{2} - u_{1} + (p_{2} - p_{1}) v$$

$$\int_{T_{1}}^{T_{2}} c(T) + (p_{2} - p_{1}) v$$

	Specific Heat, c	Density,	Thermal Conductivity, r
Substance	(kJ/kg⋅K)	(kg/m^3)	(W/m·K)
Selected Solids, 300K			
Aluminum	0.903	2700	237
Coal, anthracite	1.260	1350	0.26
Copper	0.385	8930	401
Granite	0.775	2630	2.79
Iron	0.447	7870	80.2
Lead	0.129	11300	35.3
Sand	0.800	1520	0.27
Silver	0.235	10500	429
Soil	1.840	2050	0.52
Steel (AISI 302)	0.480	8060	15.1
Tin	0.227	7310	66.6
Building Materials, 300K			
Brick, common	0.835	1920	0.72
Concrete (stone mix)	0.880	2300	1.4
Glass, plate	0.750	2500	1.4
Hardboard, siding	1.170	640	0.094
Limestone	0.810	2320	2.15
Plywood	1.220	545	0.12
Softwoods (fir, pine)	1.380	510	0.12
Insulating Materials, 300K			
Blanket (glass fiber)	-	16	0.046
Cork	1.800	120	0.039
Duct liner (glass fiber, coated)	0.835	32	0.038
Polystyrene (extruded)	1.210	55	0.027
Vermiculite fill (flakes)	0.835	80	0.068
Saturated Liquids			
Ammonia, 300K	4.818	599.8	0.465
Mercury, 300K	0.139	13529	8.540
Refrigerant 22, 300K	1.267	1183.1	0.085
Refrigerant 134a, 300K	1.434	1199.7	0.081
Unused Engine Oil, 300K	1.909	884.1	0.145
Water, 275K	4.211	999.9	0.574
300K	4.179	996.5	0.613
325K	4.182	987.1	0.645
350K	4.195	973.5	0.668
375K	4.220	956.8	0.681
400K	4.256	937.4	0.688
Course Donne Course de la cours	1.0	0.00	

Das equações 6 e 7 obtém-se

$$u_{2} - u_{1} = \int_{T_{1}}^{T_{2}} c(T) dT$$

$$h_{2} - h_{1} = u_{2} - u_{1} + (p_{2} - p_{1}) v$$

$$\int_{T_{1}}^{T_{2}} c(T) + (p_{2} - p_{1}) v$$

Em intervalos de temperatura limitados, a variação do calor específico c com a temperatura pode ser pequena, e c pode ser tratado como constante sem uma perda significativa de precisão:

$$u_2 - u_1 = c \left(T_2 - T_1 \right)$$

$$h_2 - h_1 = c(T_2 - T_1) + (p_2 - p_1) v$$

Exercício 5.

Um décimo de mililitro de óleo de cozinha é colocado na câmara de um calorímetro chejo de oxigénio para que o óleo seja completamente queimado. A câmara encontra-se imersa numa massa de 2,15 kg de água. Para fins desta análise, as partes metálicas do aparelho podem ser consideradas equivalentes a uma massa de 0,5 kg de água. O calorímetro está bem isolado e, inicialmente, à temperatura de 25 ° C. O óleo é inflamado por uma faísca. Quando o equilíbrio é novamente atingido, a temperatura da água é 25.3 o C. Os volumes da câmara e do calorímetro permanecem constantes.

Determine a variação da energia interna do conteúdo da câmara, em kcal por mL de óleo de cozinha e em kcal por colher de sopa de óleo de cozinha.

Substâncias incompressíveis são, de facto, uma idealização. O volume de substâncias reais responde a variações quer da temperatura quer da pressão. As variações de volume dos sólidos devido a variações de pressão ou de temperatura são muito menores do que as respectivas variações em líquidos, e as destes muito menores do que as variações nos gases.

Substâncias incompressíveis são, de facto, uma idealização. O volume de substâncias reais responde a variações quer da temperatura quer da pressão. As variações de volume dos sólidos devido a variações de pressão ou de temperatura são muito menores do que as respectivas variações em líquidos, e as destes muito menores do que as variações nos gases.

Duas propriedades intensivas importantes das substâncias puras e compressíveis simples são o coeficiente de dilatação volumétrica

$$\beta = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p \tag{8}$$

Substâncias incompressíveis são, de facto, uma idealização. O volume de substâncias reais responde a variações quer da temperatura quer da pressão. As variações de volume dos sólidos devido a variações de pressão ou de temperatura são muito menores do que as respectivas variações em líquidos, e as destes muito menores do que as variações nos gases.

Duas propriedades intensivas importantes das substâncias puras e compressíveis simples são o coeficiente de dilatação volumétrica

$$\beta = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p \tag{8}$$

e coeficiente de compressibilidade isotérmica

$$\kappa = -\frac{1}{v} \left(\frac{\partial v}{\partial p} \right)_T. \tag{9}$$

A Tabela em baixo mostra os coeficientes de dilatação e de compressibilidade para a água. Note que a variação da compressibilidade com a temperatura é muito menor do que a variação do coeficiente de dilatação. Note também o valor negativo de $\beta(0\,^{\circ}\mathrm{C})$

TABLE 11.2	Volume Expansivity $\pmb{\beta}$ and Isothermal Compressibility $\pmb{\kappa}$ of Liquid Water at 1 atm Versus Temperature						
т (°С)	Density (kg/m³)	$eta imes 10^6 ext{(K)}^{-1}$	$\kappa imes 10^6$ (bar) $^{-1}$				
0	999.84	-68.14	50.89				
10	999.70	87.90	47.81				
20	998.21	206.6	45.90				
30	995.65	303.1	44.77				
40	992.22	385.4	44.24				
50	988.04	457.8	44.18				

Exercício 6.

Em casos de temperaturas extremamente elevadas, as linhas de caminho de ferro podem sofrer estragos causados por uma dilatação dos carris superior ao intervalo máximo suportado pelas eclissas, isto é, pelas juntas de união entre carris.

Considerando uma região em que as temperaturas variam no intervalo $[-30\,^{\circ}\,\mathrm{C}, 60\,^{\circ}\,\mathrm{C}]$, qual deve ser o comprimento de cada carril admitindo que as eclissas permitem um intervalo máximo de 20 mm entre carris?

Nota: Se considerarmos um volume esférico de um material isotrópico como o ferro

$$\beta = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = \frac{1}{(4/3)\pi r^3} \times 4\pi r^2 \left(\frac{\partial r}{\partial T} \right)_p = \frac{3}{r} \left(\frac{\partial r}{\partial T} \right)_p.$$

O coeficiente de dilatação volumétrica do ferro é $\beta=33\times 10^{-6} \left({^{\circ}\mathrm{C}} \right)^{-1}$ e, portanto, o coeficiente de dilatação linear é $\beta_1=\frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_p=\beta/3=11\times 10^{-6} \left({^{\circ}\mathrm{C}} \right)^{-1}.$

Figura mostra (A) a deformação de uma linha de caminho de ferro no Reino Unido durante a onda de calor do verão de 2018, e (B) o exemplo de uma eclissa.