Применение синтетических данных, полученных с помощью генеративной нейросети, для повышения качества моделей детекции Выпускная квалификационная работа бакалавра

Степанов Илья Дмитриевич Научный руководитель: к.ф.-м.н. А.В. Грабовой Научный констультант: А.В. Филатов

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 01.03.02 Прикладная математика и информатика

Применение синтетических данных для детекции

Задача

Создание высококачественных аугментаций с помощью генеративной нейросети для повышения качества моделей детекции.

Проблема

Существующие методы генеративной аугментации для задачи детекции имеют недостатки: генерация объектов исходного класса; аугментация фона вместо самих объектов; аугментация изображений, адаптированная под конкретную прикладную задачу.

Цель

Разработать автоматизированный алгоритм, способный генерировать качественные аугментации и нивелировать недостатки существующих подходов. Провести сравнительный анализ влияния аугментаций и исследовать вклад отдельных компонентов метода.

Модель детекции

Рассмотрим модель детекции как отображение:

$$D_{\omega}:X \to \mathcal{F}(\hat{T}),$$

где X — множество изображений, \hat{T} — пространство аннотаций для объектов, предсказанных моделью. $\mathcal{F}(\hat{T})$ — пространство предсказанных аннотаций изображений.

Пусть $\mathcal{L}(\omega)$ — функция потерь модели детекции. Решается следующая оптимизационная задача:

$$\omega^* = \arg\min_{\omega} \ \mathcal{L}(\omega),$$

Функция качества тАР

Рассмотрим функцию mAP (mean Average Precision):

$$\mathsf{mAP}: \{\hat{\mathcal{T}}\} \times \{\mathcal{T}\} \times [0,1] \to [0,1],$$

Для каждого класса $c \in \mathcal{C}$ вычисляется функция AP (Average Precision):

$$\mathsf{AP}(c,\tau,t,\hat{t}) = \int_0^1 P_c(r,\tau,t,\hat{t}) \, dr,$$

где $P_c(r,\tau,t,\hat{t})$ — функция, задающая кривую Precision—Recall для класса c при пороге τ , $t\subseteq T$ — множество истинных аннотаций для класса c, $\hat{t}\subseteq\hat{T}$ — множество предсказанных аннотаций для класса c.

$$\mathsf{mAP} = rac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \mathsf{AP}(c, \tau, t, \hat{t}).$$

Функция качества mAP_{50:95}

Рассмотрим функцию mAP_{50:95}:

$$\mathsf{mAP}_{50:95}: \{\hat{\mathcal{T}}\} \times \{\mathcal{T}\} \rightarrow [0,1]\text{,}$$

Определим промежуточную функцию $AP_{50:95}$ для каждого класса c:

$$\begin{split} \mathsf{AP}_{50:95}(c,\,t,\,\hat{t}) \; = \; \frac{1}{10} \sum_{\tau \in \{0.50,\,0.55,\,\dots,\,0.95\}} \mathsf{AP}(c,\,\tau,\,t,\,\hat{t}). \\ \\ \mathsf{mAP}_{50:95} \; = \; \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} \mathsf{AP}_{50:95}(c,\,t,\,\hat{t}). \end{split}$$

Рассмотрим модель генеративной аугментации как отображение:

$$F_{\psi,lpha,eta,\gamma}:X imes [0,1] \longrightarrow (X_{\mathsf{aug}} imes T_{\mathsf{aug}}) \cup \{arnothing\},$$
 $f_{\psi}:X o M imes L imes T_{\mathsf{aug}}$ $g_{lpha}:X imes L o P$ $h_{eta}:X imes M imes P o X_{\mathsf{aug}}$ $r_{\gamma}:Y imes M imes L imes [0,1] o \{0,1\}$

где X — пространство изображений, $X_{\rm aug}$ — пространство аугментированных изображений, $T_{\rm aug}$ — пространство аннотаций аугментированных объектов, f_{ψ} — модель детекции объекта, g_{α} — модель генерации текстового запроса, h_{β} — модель генерации нового объекта, r_{γ} — модель фильтрации генераций, M — пространство масок объектов, P — пространство текстовых запросов, $L \subset P$ — пространство классов объектов.

$$F_{\psi,lpha,eta,\gamma}(x, au) = egin{cases} (x_{
m aug},\ a_{
m aug}), & ext{если } r_{\gamma}ig(x_{
m aug},\ m,\,\ell,\, auig) = 1, \ & \ arnothing, & \ arnothing$$

- 1. f_{ψ} извлекает маску и аннотацию объекта.
- 2. g_{α} формирует текстовый запрос для нового объекта на основе изначального класса и исходного изображения.
- 3. h_{β} генерирует аугментацию с помощью маски, текстового запроса и исходного изображения.
- 4. r_{γ} фильтрует некачественные аугментации с заданным порогом $au \in [0,1].$

Пусть $\mathcal{D}=\mathcal{D}_{\mathsf{val}}\;\sqcup\;\mathcal{D}_{\mathsf{train}}.$ Рассмотрим аугментированный датасет для задачи детекции:

$$\mathcal{D}_{\mathsf{aug}}(\tau) = \left\{ (x_i^{\mathsf{aug}}, t_i^{\mathsf{aug}}), i = 1, \dots, m \right\},$$

где $(x_i,t_i)\in\mathcal{D}_{\mathrm{train}},\ (x_i^{\mathrm{aug}},a_i^{\mathrm{aug}})=F_{\psi,\alpha,\beta,\gamma}(x_i,\tau),\ a_i^*\in t_i$ — аннотация объекта с наибольшей площадью ограничивающего прямоугольника, $t_i^{\mathrm{aug}}=\left(t_i\setminus\left\{a_i^*\right\}\right)\cup\left\{a_i^{\mathrm{aug}}\right\}$ — аннотация аугментированного изображения, $\tau\in[0,1]$ — пороговое значение для модели фильтрации.

Утверждение 1:

Пусть $\mathcal{D}_{\mathsf{val}} = \{(x_i, \, t_i), \, i = 1, \dots, k\}$. Существует такое значение $\tau^* \in [0, 1]$, что модели детекции f_{θ_1} и g_{ϕ_1} , обученные на объединённом датасете $\mathcal{D}_{\mathrm{aug}}(\tau^*) \sqcup \mathcal{D}_{\mathrm{train}}$, достигают не меньшего значения по функциям mAP_{50} и $\mathrm{mAP}_{50:95}$ на $\mathcal{D}_{\mathsf{val}}$, чем модели f_{θ_2} и g_{ϕ_2} , обученные на $\mathcal{D}_{\mathrm{train}}$. То есть:

$$\begin{split} & \operatorname{mAP_{50}}\big(\{f_{\theta_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50}}\big(\{f_{\theta_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big), \\ & \operatorname{mAP_{50:95}}\big(\{f_{\theta_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50:95}}\big(\{f_{\theta_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big), \\ & \operatorname{mAP_{50}}\big(\{g_{\phi_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50}}\big(\{g_{\phi_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big), \\ & \operatorname{mAP_{50:95}}\big(\{g_{\phi_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50:95}}\big(\{g_{\phi_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big). \end{split}$$

Исследование влияния компонент: текстовый запрос

Рассмотрим модель аугментации следующего вида:

где
$$(m,\,\ell,\,a_{\mathsf{aug}}) = f_\psi(x),\,\,x_{\mathsf{aug}} = h_\beta\big(x,\,m,\,\ell\big).$$

Рассмотрим аугментированный датасет для задачи детекции:

$$\mathcal{D}_{\mathsf{aug}}^{'}(\tau) = \left\{ (x_i^{\mathsf{aug}}, \ t_i^{\mathsf{aug}}), \ i = 1, \dots, n \right\},\,$$

где $(x_i,t_i)\in\mathcal{D}_{\mathrm{train}},\ (x_i^{\mathrm{aug}},a_i^{\mathrm{aug}})=F_{\psi,\beta,\gamma}'(x_i,\tau),\ a_i^*\in t_i$ — аннотация объекта с наибольшей площадью ограничивающего прямоугольника, $t_i^{\mathrm{aug}}=\left(t_i\setminus\left\{\left.a_i^*\right.\right\}\right)\cup\left\{\left.a_i^{\mathrm{aug}}\right.\right\}$ — аннотация аугментированного изображения, $\tau\in[0,1]$ — пороговое значение для модели фильтрации.

Исследование влияния компонент: текстовый запрос

Утверждение 2:

Пусть $\mathcal{D}_{\mathsf{val}} = \{(x_i, \, t_i), \, i = 1, \dots, k\}$. Существует такое значение $\tau^* \in [0, 1]$, что модели детекции f_{θ_1} и g_{ϕ_1} , обученные на объединённом датасете $\mathcal{D}_{\mathrm{aug}}(\tau^*) \sqcup \mathcal{D}_{\mathrm{train}}$, достигают не меньшего значения по функциям mAP_{50} и $\mathrm{mAP}_{50:95}$ на $\mathcal{D}_{\mathsf{val}}$, чем модели f_{θ_2} и g_{ϕ_2} , обученные на $\mathcal{D}_{\mathsf{aug}}'(\tau^*) \sqcup \mathcal{D}_{\mathsf{train}}$. То есть:

$$\begin{split} & \operatorname{mAP_{50}}\big(\{f_{\theta_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50}}\big(\{f_{\theta_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big), \\ & \operatorname{mAP_{50:95}}\big(\{f_{\theta_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50:95}}\big(\{f_{\theta_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big), \\ & \operatorname{mAP_{50}}\big(\{g_{\phi_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50}}\big(\{g_{\phi_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big), \\ & \operatorname{mAP_{50:95}}\big(\{g_{\phi_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50:95}}\big(\{g_{\phi_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big). \end{split}$$

Исследование влияния компонент: фильтрация

Аналогично рассмотрим модель аугментации следующего вида:

$$F''_{\psi,\alpha,\beta}(x,\tau) = (x_{\text{aug}}, a_{\text{aug}})$$

где
$$(m, \ell, a_{\mathsf{aug}}) = f_{\psi}(x), \ x_{\mathsf{aug}} = h_{\beta}(x, m, g_{\alpha}(x, \ell)).$$

Рассмотрим аугментированный датасет для задачи детекции:

$$\mathcal{D}_{\mathsf{aug}}^{''}(\tau) = \left\{ \left(x_i^{\mathsf{aug}}, \ t_i^{\mathsf{aug}} \right), \ i = 1, \dots, n \right\},$$

где $(x_i,t_i)\in\mathcal{D}_{\mathrm{train}},\ (x_i^{\mathrm{aug}},a_i^{\mathrm{aug}})=F_{\psi,\alpha,\beta}''(x_i,\tau),\ a_i^*\in t_i$ — аннотация объекта с наибольшей площадью ограничивающего прямоугольника, $t_i^{\mathrm{aug}}=\left(t_i\setminus\left\{a_i^*\right\}\right)\cup\left\{a_i^{\mathrm{aug}}\right\}$ — аннотация аугментированного изображения, $\tau\in[0,1]$ — пороговое значение для модели фильтрации.

Исследование влияния компонент: фильтрация

Утверждение 3:

Пусть $\mathcal{D}_{\mathsf{val}} = \{(x_i, \, t_i), \, i = 1, \dots, k\}$. Существует такое значение $\tau^* \in [0, 1]$, что модели детекции f_{θ_1} и g_{ϕ_1} , обученные на объединённом датасете $\mathcal{D}_{\mathrm{aug}}(\tau^*) \sqcup \mathcal{D}_{\mathrm{train}}$, достигают не меньшего значения по функциям mAP_{50} и $\mathrm{mAP}_{50:95}$ на $\mathcal{D}_{\mathsf{val}}$, чем модели f_{θ_2} и g_{ϕ_2} , обученные на $\mathcal{D}_{\mathrm{aug}}''(\tau^*) \sqcup \mathcal{D}_{\mathrm{train}}$. То есть:

$$\begin{split} & \operatorname{mAP_{50}}\big(\{f_{\theta_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50}}\big(\{f_{\theta_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big), \\ & \operatorname{mAP_{50:95}}\big(\{f_{\theta_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50:95}}\big(\{f_{\theta_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big), \\ & \operatorname{mAP_{50}}\big(\{g_{\phi_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50}}\big(\{g_{\phi_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big), \\ & \operatorname{mAP_{50:95}}\big(\{g_{\phi_1}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big) \geq \operatorname{mAP_{50:95}}\big(\{g_{\phi_2}(x_i)\}_{i=1}^k, \{t_i\}_{i=1}^k\big). \end{split}$$

Влияние аугментаций

Dataset	Model	Setting	Size	mAP ₅₀	mAP _{50:95}
Pascal VOC	DETR	original	4000	57.2	41.2
		w/o expanded prompt w/o filter model	4000 + 4000	55.4	38.7
		w/o filter model	4000 + 4000	57.4	40.9
		ours	4000 + 4000	58.2	41.4
	YOLO	original	4000	59.6	41.5
		w/o expanded prompt w/o filter model	4000 + 4000	59.4	41.2
		w/o filter model		61.4	43.2
		ours	4000 + 4000	61.5	43.2
coco	DETR	original	5000	26.6	17.6
		w/o expanded prompt w/o filter model	5000 + 5000	27.5	17.8
		w/o filter model	5000 + 5000	26	16.5
		ours	5000 + 5000	27.8	17.8
	YOLO	original	5000	26.7	17.4
		w/o expanded prompt w/o filter model	5000 + 5000	27.5	17.9
		w/o filter model			17.9
		ours	5000 + 5000	28.2	18.3

Проведение сравнительного анализа значений функций качества ${\rm mAP_{50}}$ и ${\rm mAP_{50:95}}$ моделей DETR и YOLO, обученных на датасетах Pascal VOC и COCO с применением аугментаций и без них, а также анализ влияния отдельных компонентов.

Выносится на защиту

- 1. Предложен автоматизированный подход к созданию аугментированных изображений.
- 2. Проведены эксперименты, демонстрирующие влияние аугментаций на качество работы модели детекции.
- 3. Проведён анализ влияния отдельных компонентов метода на итоговое значение функций качества.