Transmission Control Protocol (TCP)

ТСР: Услуги

- RFCs 793, 1122, 1323, 2018, 2581, 2873, 2988, 3168, 4614
- Надеждна комуникация между два приложни процеса (приложения)
 - Гарантира, че данните ще бъдат доставени без загуба, дублирания <u>гараптира,</u> че данните ще обдат доставени <u>осъ загуоа,</u> <u>или грешки.</u> През множество надеждни и/или ненадеждни мрежи С контролиране на потока, грешките и задръстванията
- С използване на съединение
 - Приложението изисква съединение за трансфер на данните
 - Установяване на надеждно съединение
 - 3-кратно ръкостискане гарантира надежден и синхронизиран старт на комуникацията между двете крайни точки Съединението се установява между двойка сокети Сокет = IP адрес+ номер на порт 1 сокет може да се използва за няколко съединения едновременно
 - Разпадане на съединението
 - Гарантиране доставката на всички данни преди разпадане на съединението
- 4(3)-кратно ръкостискане От точка до точка (Е2Е)
 - Съединението има 2 крайни точки, идентифицирани чрез *сокети*. Няма поддръжка на *multicasting* и *broadcasting*!

Forouzan, B.A., TCP/IP Protocol Suit, 4th ed., McGraw-Hill, 2010

Синдром, създаден от подателя: Алгоритм на Nagle

(прилаган от подателя)

- Стъпка 1
 - Изпращане на 1. порция данни, получени от предаващото приложение.
 - Дори, ако това е само 1 байт.
- Стъпка 2
 - Акумулиране на данни в изходящия буфер докато:
 - Получателят изпрати обратно потвърждение (АСК), или
 - Се съберат достатъчно данни за запълване на:
 - Сегмент с максимален размер (MSS), или
 - ½ от прозореца на подателя
 - Изпращане на сегмент
- Стъпка 3
 - Повторяне на стъпка 2 до края на комуникацията

Синдром, създаден от получателя: Алгоритм на Clark (прилаган от получателя)

- Изпращане на потвърждение, веднага след пристигане на сегмент.
 - За да се подпомогне точното изчисление/актуализиране на RTT от страна на подателя
- Но се анонсира нулев размер на прозореца, докато във входящия буфер не се освободи достатъчно място, равно на:
 - <u>1 MSS</u>, или
 - ½ от буфера

available buffer space \geq MIN $\left| \frac{\text{buffer size}}{} \right|$ – , maximum segment size

Синдром, създаден от получателя: Забавено потвърждение (прилагано от получателя)

- Забавя се изпращането на потвърждение
- Докато не се освободи достатъчно място във входящия буфер

Предимство

- Намален трафик
 - Получателят не е длъжен да потвърждава всеки сегмент (особено, ако няма данни за предаване в обратната посока)

Недостатък

- Забавено потвърждение може да принуди подателя да изпрати отново някой сегмент
 - Затова потвържденията се бавят не повече от 500 ms

контрол на грешките

ТСР: Контрол на грешките

- Базиран на **РАR** схема
- Положителна квитанция с повторно предаване
 Positive Acknowledgement with Retransmission
 Всеки ТСР сегмент съдържа контролна сума
- в заглавната си част
- За защита от грешки на целия ТСР сегмент
- (вкл. псевдозглавната част)
- Получател

 - Ако сегментът не е повреден, го потвърждава с АСК.
 Кумулативни потвърждения
 Рiggybacking
 Сегментите, използвани само за потвърждение (т.е. без данни), не консумират поредни номера и не се потвърждават.

 - Ако сегментът е <u>повреден</u>, го отхвърля <u>без</u> изпращане на отрицателна квитанция (NAK).
 - Ако сегментът пристигне <u>не поред</u>, отлага АСК, докато не пристигнат всички липсващи сегменти.
- Подател
 - Ако таймерът се нулира преди пристигането на ACK, предава повторно сегмента.
 - Тъй като или сегементът е повреден или изгубен, или потвърждението му се изгубило.

ТСР контрол на грешките: Проблеми

- Сегментите могат да се <u>забавят при</u> <u>транзита</u>
 - Може да се наложи повторното им предаване
 - Но с различен диапазон от байтове
 в сравнение с първоначалното им предаване
- Изисква се внимателно администриране
 - За да се следи кои байтове са били правилно доставени досега

ТСР контрол на задръстванията

ТСР: Контрол на задръстванията (прод.)

- Основно допускане от страна на ТСР
 - Изтичане на времето за изчакване (timeout) се причинява от задръствания, а не поради грешки в IP пакетите.
- Вярно в кабелните мрежи
 - Комуникационните линии в днешно време са много надеждни (напр. при използване на влакнесто-оптични кабели)
 - Много рядко пакетите пристигат с грешки
- Погрешно в безжичните мрежи
 - Изключително ненадеждни
 - Пакети се губят или пристигат с грешки винаги, по всяко време.
 - Друг подход е необходим за контрол на задръстванията

ТСР контрол на задръстванията:

3. фаза – Рязко свиване на прозореца (Multiplicative Decrease)

• Агресивно
— Защото на мрежата ѝ е трудно да се възстанови от претоварването

• Подател:
— Ако възникне timeout
— Намалява ssthresh до ½ от cwnd
— Връща се към 1. фаза (Slow Start)

• Т.е. възвръща първоначалната стойност на cwnd (=1 MSS)

T	CP: Pea	лизаци	И	
Measure	RFC 1122	TCP Tahoe	TCP Reno	NewReno
RTT Variance Estimation	1	1	✓	1
Exponential RTO Backoff	1	1	1	1
Karn's Algorithm	1	1	✓	1
Slow Start	1	1	✓	1
Dynamic Window Sizing on Congestion	1	1	/	1
Fast Retransmit		1	1	1
Fast Recovery			1	1
Modified Fast Recovery				1
г	. (6)			

- Бързо възстановяване (fast recovery)

 В случай на бързо повторно предаване, прозорецът се намалява наполовина и директно се преминава към 2. фаза (плавно нарастване на прозореца)

 Модифицирано бързо възстановяване

 Подобрена реакция при загуба на 2 сегмента от един прозорец (делу възстановяване)
- Stallings, W., Data and Computer Communications, 9th ed.

- Дефиниран в RFC 2960
- Първоначално стандартизиран от IETF SIGTRAN WG за транспортиране на SS7 сигнализация през IP мрежи
- По-късно еволюира до транспортен протокол с общо предназначение, осигуряващ надеждно, пълно-дуплексно съединение с подобрени опции за доставка.
 - Необходим за нови приложения като IP телефония (VoIP), ISDN over IP, media gateway control, ...

Protocol	Port Number	Description			
IUA	9990	ISDN over IP			
M2UA	2904	SS7 telephony signaling			
M3UA	2905	SS7 telephony signaling			
H.248	2945	Media gateway control			
H.323	1718, 1719, 1720, 11720	IP telephony			
SIP	5060	IP telephony			
Table 16.1 Forouzan, B.A., TCP/IP Protocol Suit, 4th ed., McGraw-Hill, 2010					

SCTP: Прилики с TCP

- Логическо съединение
 - <u>Асоциация</u>
- Пълен дуплекс
- Надежден транспорт
- Поредни номера за контрол на потока и на грешките
 - Същия диапазон като TCP, т.е. (0, 2³²-1).
- · Piggybacking
- Контролна сума
 - 32 бита (SCTP) / 16 бита(TCP)
- Бързо повторно предаване в случай на:
 - 4 SACKs (SCTP) / 3 ACKs (TCP)
- Бързо възстановяване
- Контрол на задръстванията (същите фази като ТСР)
 - Но прилагани поотделно за всеки поток (stream)

SCTP: Разлики с TCP Ориентиран към съобщения, а не към байтове.

- Ориентиран към съоощения, а не към оаитове.
 (запазва границите на съобщенията на приложния слой)
- Номерира парчета от данни (chunks)
- ТСР номерира байтове
- Последователни номера се използват само за потвърждение на данни (data chunks)
- Control chunks се потвърждават с други control chunks
- Потвърждава последния получен номер, не следващия очакван номер.
 - Т.е. АСК $_{\rm X}$ означава 'Изпрати ми X+1'
- Няма опции в заглавната част
- Опциите се задават чрез дефиниране на нови chunk видове
- Поддръжка на множество потоци от данни (multi-streaming) ако един поток е блокиран, останалите продължават да доставят данни, аналогично на магистралните платна.
 - ТСР използва само 1 поток от данни
- Multi-homing (хостовете могат да дефинират няколко IP адреса / мрежови интерфейси във всеки край на комуникацията за отказоустойчивост; ако един от пътищата за доставка се провали, започва използването на друг)
 - ТСР използва само по 1 IP адрес във всеки край на комуникацията

SCTP vs. TCP & UDP					
Feature	UDP	TCP	SCTP		
Connection oriented	No	Yes	Yes		
Reliable transport	No	Yes	Yes		
Unreliable transport	Yes	No	Yes		
Preserve message boundaries	Yes	No	Yes		
Ordered delivery	No	Yes	Yes		
Unordered delivery	Yes	No	Yes		
Data checksum	Yes	Yes	Yes		
Checksum size (bits)	16	16	32		
Path MTU	No	Yes	Yes		
Flow-, error-, congestion control	No	Yes	Yes		
Multiple streams	No	No	Yes		
Multi-homing support	No	No	Yes		

