1 化合物半導体の安定性と積層欠陥エネルギー

1.1 積層欠陥構造

半導体材料中には各種の欠陥が見られ,使用したときにリーク電流が起こり,故障の原因となることが知られている.特に転位の拡張転位(Extended dislocation)の幅を支配する積層欠陥エネルギーは,半導体材料の欠陥生成の容易さを知る上で重要なパラメータのひとつである.その積層欠陥エネルギーと必要十分条件の関係にある積層欠陥(Stacking fault)は周期的に積まれた層に何らかの原因によりずれが生じ,局所的に積層構造がずれてしまうことで起こる.この積層欠陥を説明するにあたり,基本結晶構造である fcc 構造と hcp 構造を用いる.図 1(a)に示すように fcc 構造の積層周期 ABCABC…に積層欠陥が入ることにより,局所的に積層周期 CACA という hcp 構造が現れる.なお,このように局所的に fcc 構造と hcp 構造をとるサイトを c と h で表記する.このような積層欠陥は,結晶成長時に生じたり,図 1 (b)に示すように,一本の完全転位(Perfect dislocation)が二つの部分転位(Partial dislocation)に分離して拡張転位を作るときに生じる.この二つの部分転位で囲まれた領域が積層欠陥である.また,積層欠陥エネルギーが小さいほど拡張転位の幅は大きく,すべりに対して大きな抵抗を持つ.したがって,塑性変形が積層欠陥エネルギーの大小に大きく左右されることになる.

図 1: 積層欠陥構造の模式図. (a)fcc 構造中に積層欠陥が入った場合の積層周期の変化. (b) 拡張転位の原子配置.

1.2 計算モデル

以上のことから,fcc 構造と hcp 構造とのエネルギー差と積層欠陥エネルギーには相関があることが知られている.また,四面体構造をもつ化合物半導体でも,fcc 構造の代わりに Zincblende (ZB) 構造が,hcp 構造の代わりに Wurtzite (W) 構造が対応するが,これらにもそれらの相関が報告されている.本節では,III-V 族半導体,II-VI 族半導体から成る ZB 構造と W 構造のユニットセルを作り,第一原理計算ソフト VASP を用いてそれぞれの構造エネルギーを求め,構造エネルギー差(Δ E)を求めた.計算条件として,エネルギー差が精度よく再現されるように,カットオフエネルギーを 1000 eV に設定した.

1.3 計算結果と議論

図2は,図3に示す実験的に得られた化合物半導体の積層欠陥エネルギーと我々が計算で求めたZBとWとの構造エネルギー差との相関を示している.積層欠陥エネルギーは電子顕微鏡観察の部分転位の幅を,weak-beam 法あるいは高分解能像から求めている.なお,我々が計算で求めた値は図3の青色の列を示す.この構造エネルギー差と積層欠陥エネルギーとは正の相関を示しており,これらの値の間に線形近似が成り立つことを期待させる.しかし,CdSeは実験的に得られている安定構造を再現していない.また,これらの相関はそれほど高くない.実験結果との矛盾に関しては,VASPの計算精度を検討する必要性がある.また,相関が高くないという結果に関しては積層間の相互作用が単純な2層間の相互作用だけで決定しないことを示唆している.

図 2: 積層欠陥エネルキー () と,ZB 構造とW 構造のエネルキー差 (ΔE) との相関.

*	-							: - =:e
	stable structure	method	$\gamma(mJ/m^2)$	γ'(meV/bond)	c/a	e*0/e	S	ΔE(eV/ion)
C	D	WB	285± 40	98± 14	1.660	0	0	0.0241
Si	D	WB	55±7	44± 5.5	1.653	0	0	0.0106
Ge	D	WB	60± 10	52± 8.5	1.662	0	0	0.0179
GaP	Z	WB	43±5	34± 4		0.24	5.53	0.0186
GaAs	Z	WB	45±7	39± 6	-	0.20	8.69	0.0236
GaSb	Z	WB	53±7	53± 7	100	0.15	10.21	0.0248
InP	Z	WB	18±3	17±3	72	0.27	3.90	0.0113
InAs	Z	WB	30±3	30±3	72	0.22	4.29	0.0118
InSb	Z	WB	38± 4	43± 5	1.635	0.21	7.37	0.0213
ZnS	Z	WB	≦ 6	≦ 5	1.637	0.41	-0.37	0.0056
ZnSe	Z	WB	13± 1	11±1	1.634	0.34	1.29	0.0089
ZnTe	Z	WB	16± 2	16± 2	1.645	0.27	1.48	0.0122
CdTe	Z	WB	9±1	10± 1	1.637	0.34	1.44	0.0073
AIN	W	HR	220± 70	115± 40	1.600	0.40	-2.76	-0.0433
GaN	W	WB	20±3	11± 2	1.627	0.42	1.	-0.0105
InN	w	HR	41±8	28± 5	1.611	[3]	()-1	-0.02
ZnO	w	HR	100± 20	57± 11	1.603	0.53	-3.86	-0.0141
CdS	W	WB	8.7± 1.5	8.0± 1.4	1.632	0.40	-2.85	-0.0026
CdSe	W	HR	14±5	14±5	1.635	0.41	-2.39	0.002
BeO	W	WB	41±9	16± 3.5	1.623	0.62	2.08	-0.010

^{*} Ref[1] S. Takeuchi, and K. Suzuki, "Stacking Fault Energies of Tetrahedrally Coordinated Crystals," Phys. Stat. Sol., (a) 171 (1999), 99-103.

D:Diamond Z:ZincBlende W:Wurtzite WB:Weak-Beam HR:High-Resolusion

図 3: 実験的に得られた化合物半導体の積層欠陥エネルギーと,計算結果.