BLM2041 Signals and Systems

The Instructors:

Prof. Dr. Nizamettin Avdın naydin@yildiz.edu.tr

Asist, Prof. Dr. Ferkan Yilmaz ferkan@vildiz.edu.tr

BLM2041 Signals and Systems

Spectrum Representation

Problem Solving Skills

- Math Formula
 - Sum of Cosines
 - Amp, Freq, Phase
- Recorded Signals
 - Speech
 - Music
 - No simple formula
- · Plot & Sketches
 - -S(t) versus t

 - Spectrum
- **MATLAB**
- Numerical
- Computation
- Plotting list of numbers

LECTURE OBJECTIVES

- Sinusoids with **DIFFERENT** Frequencies
 - SYNTHESIZE by Adding Sinusoids

$$x(t) = \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

- SPECTRUM Representation
 - Graphical Form shows **DIFFERENT** Freqs

LECTURE OBJECTIVES

- Signals with **HARMONIC** Frequencies
 - Add Sinusoids with $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

FREQUENCY can change vs. TIME

Chirps:

$$x(t) = \cos(\alpha t^2)$$

Introduce Spectrogram Visualization (specgram.m) (plotspec.m)

LECTURE OBJECTIVES

· Work with the Fourier Series Integral

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi k/T_0)t} dt$$

- **ANALYSIS** via Fourier Series
 - For **PERIODIC** signals: $x(t+T_0) = x(t)$
- **SPECTRUM** from Fourier Series
 - $-a_k$ is Complex Amplitude for k-th Harmonic

• Plot Complex Amplitude vs. Freq $4e^{-j\pi/2} \qquad 7e^{j\pi/3} \qquad 7e^{-j\pi/3} \qquad 4e^{j\pi/2}$ $-250 \qquad -100 \qquad 0 \qquad 100 \qquad 250 \qquad f \text{ (in Hz)}$

INVERSE Euler's Formula

• Solve for cosine (or sine)

$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

SPECTRUM Interpretation

• Cosine = sum of 2 complex exponentials:

$$A\cos(7t) = \frac{A}{2}e^{j7t} + \frac{A}{2}e^{-j7t}$$

One has a positive frequency
The other has negative freq.
Amplitude of each is half as big

NEGATIVE FREQUENCY

- Is negative frequency real?
- Doppler Radar provides an example
 - Police radar measures speed by using the Doppler shift principle
 - Let's assume 400Hz ←→60 mph
 - +400Hz means towards the radar
 - -400Hz means away (opposite direction)
 - Think of a train whistle

SPECTRUM of SINE

• Sine = sum of 2 complex exponentials:

$$A\sin(7t) = \frac{A}{2j}e^{j7t} - \frac{A}{2j}e^{-j7t}$$
$$= \frac{1}{2}Ae^{-j0.5\pi}e^{j7t} + \frac{1}{2}Ae^{j0.5\pi}e^{-j7t}$$
$$= \frac{1}{j} = j = e^{j0.5\pi}$$

- Positive freq. has phase = -0.5π
- Negative freq. has phase = $+0.5\pi$

SPECTRUM ---> SINUSOID

• Add the spectrum components:

What is the formula for the signal x(t)?

Gather (A,ω,ϕ) information

- Frequencies: - -250 Hz
- · Amplitude & Phase
- -100 Hz
- $-\pi/2$ ⊥π/3
- _ 0 H₇
- 100 Hz - 250 Hz
- _ 10 $-\pi/3$

Note the conjugate phase

DC is another name for zero-freq component **DC** component always has $\phi=0$ or π (for real x(t))

Add Spectrum Components-1 · Amplitude & Phase · Frequencies: -250 Hz _ -100 Hz - 0 Hz 100 Hz - 250 Hz x(t) = 10 + $7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t}$ $4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$

Add Spectrum Components-2

Simplify Components

$$x(t) = 10 +$$

$$7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t}$$

$$4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$$

Use Euler's Formula to get REAL sinusoids:

$$A\cos(\omega t + \varphi) = \frac{1}{2}Ae^{-j\varphi}e^{j\omega t} + \frac{1}{2}Ae^{-j\varphi}e^{-j\omega t}$$

FINAL ANSWER

$$x(t) = 10 + 14\cos(2\pi(100)t - \pi/3) + 8\cos(2\pi(250)t + \pi/2)$$

So, we get the general form:

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

Summary: GENERAL FORM

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

$$x(t) = X_0 + \sum_{k=1}^{N} \Re\{X_k e^{j2\pi f_k t}\}$$

$$x(t) = X_0 + \sum_{k=1}^{N} \Re\{X_k e^{j2\pi f_k t}\}$$

$$x(t) = X_0 + \sum_{k=1}^{N} \left\{\frac{1}{2} X_k e^{j2\pi f_k t} + \frac{1}{2} X_k^* e^{-j2\pi f_k t}\right\}$$

Example: Synthetic Vowel

- Sum of 5 Frequency Components
 - Complex amplitudes for harmonic signal that approximates the vowel sound «ah»

f_k (Hz)	X_k	Mag	Phase (rad)
200	(771 + j12202)	12,226	1.508
400	(-8865 + j28048)	29,416	1.876
500	(48001 - j8995)	48,836	-0.185
1600	(1657 - j13520)	13,621	-1.449
1700	4723 + j0	4723	0

Periodic Signals, Harmonics & Time-Varying Sinusoids

• Nearly Periodic in the Vowel Region - Period is (Approximately) T = 0.0065 sec Speech: BAT 0.2 0.2 0.28 0.285 0.29 0.295

Define FUNDAMENTAL FREO

• Now, a much HARDER problem • Given a recording of a song, have the computer write the music • Can a machine extract frequencies? • Yes, if we COMPUTE the spectrum for x(t) • During short intervals

Time-Varying Frequency

- Frequency can change vs. time
 - Continuously, not stepped
- FREQUENCY MODULATION (FM)

$$x(t) = \cos(2\pi f_c t + v(t))$$
VOICE

- CHIRP SIGNALS
 - Linear Frequency Modulation (LFM)

New Signal: Linear FM

- Called Chirp Signals (LFM)
 - Quadratic phase

$$x(t) = A\cos(\alpha t^2 + 2\pi f_0 t + \varphi)$$

QUADRATIC

- Freq will change LINEARLY vs. time
 - Example of Frequency Modulation (FM)
 - Define "instantaneous frequency"

INSTANTANEOUS FREQ

• Definition

$$x(t) = A\cos(\psi(t))$$

$$\Rightarrow \omega_i(t) = \frac{d}{dt}\psi(t)$$
Derivative of the "Angle"

• For Sinusoid:

$$x(t) = A\cos(2\pi f_0 t + \varphi)$$

$$\psi(t) = 2\pi f_0 t + \varphi$$

$$\Rightarrow \omega_i(t) = \frac{d}{dt} \psi(t) = 2\pi f_0$$
Makes sense

INSTANTANEOUS FREQ of the Chirp

- Chirp Signals have Quadratic phase
- Freq will change LINEARLY vs. time

$$x(t) = A\cos(\alpha t^{2} + \beta t + \varphi)$$

$$\Rightarrow \psi(t) = \alpha t^{2} + \beta t + \varphi$$

$$\Rightarrow \omega_i(t) = \frac{d}{dt}\psi(t) = 2\alpha t + \beta$$

OTHER CHIRPS

 $\psi(t)$ can be anything:

$$x(t) = A\cos(\alpha\cos(\beta t) + \varphi)$$

$$\Rightarrow \omega_i(t) = \frac{d}{dt}\psi(t) = -\alpha\beta\sin(\beta t)$$

 $\psi(t)$ could be speech or music:

- FM radio broadcast

BLM2041 Signals and Systems

Fourier Series Coefficients

HISTORY

• Jean Baptiste Joseph Fourier (1768-1830)

- Napoleonic eraStudied the mathematical
- theory of heat conduction

 Established the partial
- differential equation governing heat diffusion and solved it by using infinite series of trigonometric funcions.
- http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Fourier.html

SPECTRUM DIAGRAM

· Recall Complex Amplitude vs. Freq

Harmonic Signal

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$$

PERIOD/FREQUENCY of COMPLEX EXPONENTIAL:

$$2\pi(f_0) = \omega_0 = \frac{2\pi}{T_0}$$
 or $T_0 = \frac{1}{f_0}$

SYNTHESIS vs. ANALYSIS

SYNTHESIS

- Easy

HARD

- Given (ω_k, A_k, ϕ_k) create x(t)

• Synthesis can be

- ANALYSIS
 - Hard
 - Given x(t), extract $(\boldsymbol{\omega}_k, A_k, \phi_k)$
 - How many?
 - Need algorithm for computer
- Synthesize Speech so that it sounds good

STRATEGY: $x(t) \rightarrow a_k$

- ANALYSIS
 - Get representation from the signal
 - Works for **PERIODIC** Signals
- Fourier Series
 - Answer is: an INTEGRAL over one period

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\omega_0 kt} dt$$

INTEGRAL Property of *exp*(*j*)

• INTEGRATE over ONE PERIOD

$$\int_{0}^{T_{0}} e^{-j(2\pi/T_{0})mt} dt = \frac{T_{0}}{-j2\pi m} e^{-j(2\pi/T_{0})mt} \Big|_{0}^{T_{0}}$$

$$= \frac{T_{0}}{-j2\pi m} (e^{-j2\pi m} - 1)$$

$$\int_{0}^{T_{0}} e^{-j(2\pi/T_{0})mt} dt = 0$$

$$m \neq 0$$

$$\omega_{0} = \frac{2\pi}{T_{0}}$$

ORTHOGONALITY of exp(j)

• PRODUCT of exp(+j) and exp(-j)

$$\frac{1}{T_0} \int_0^{T_0} e^{j(2\pi/T_0)\ell t} e^{-j(2\pi/T_0)kt} dt = \begin{cases} 0 & k \neq \ell \\ 1 & k = \ell \end{cases}$$

$$\frac{1}{T_0} \int_0^{T_0} e^{j(2\pi/T_0)(\ell-k)t} dt$$

Isolate One FS Coefficient

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j(2\pi/T_0)kt}$$

$$\frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)\ell t} dt = \frac{1}{T_0} \int_0^{T_0} \left(\sum_{k=-\infty}^{\infty} a_k e^{j(2\pi/T_0)kt} \right) e^{-j(2\pi/T_0)\ell t} dt$$

$$\frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)\ell t} dt = \sum_{k=-\infty}^{\infty} a_k \left(\frac{1}{T_0} \int_0^{T_0} e^{j(2\pi/T_0)kt} e^{-j(2\pi/T_0)\ell t} dt \right) = a_\ell$$

$$\Rightarrow a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} dt$$
Integral is zero except for $k = \ell$

SOUARE WAVE EXAMPLE

$$x(t) = \begin{cases} 1 & 0 \le t < \frac{1}{2}T_0 \\ 0 & \frac{1}{2}T_0 \le t < T_0 \end{cases}$$
 for $T_0 = 0.04$ sec.

FS for a SQUARE WAVE $\{a_k\}$

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} dt \qquad (k \neq 0)$$

$$a_k = \frac{1}{.04} \int_0^{.02} 1 e^{-j(2\pi/.04)kt} dt = \frac{1}{.04(-j2\pi k/.04)} e^{-j(2\pi/.04)kt} \Big|_0^{.02}$$

$$= \frac{1}{(-j2\pi k)} (e^{-j(\pi)k} - 1) = \frac{1 - (-1)^k}{j2\pi k}$$

DC Coefficient: a_0

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} dt \qquad (k = 0)$$

$$a_0 = \frac{1}{T_0} \int_0^{T_0} x(t) dt = \frac{1}{T_0} (\text{Area})$$

$$a_0 = \frac{1}{.04} \int_0^{.02} 1 dt = \frac{1}{.04} (.02 - 0) = \frac{1}{2}$$

Fourier Coefficients a_{ν}

- a_k is a function of k
 - Complex Amplitude for k-th Harmonic
 - This one doesn't depend on the period, T_0

$$a_k = \frac{1 - (-1)^k}{j2\pi k} = \begin{cases} \frac{1}{j\pi k} & k = \pm 1, \pm 3, \dots \\ 0 & k = \pm 2, \pm 4, \dots \\ \frac{1}{2} & k = 0 \end{cases}$$

Fourier Series Integral

• HOW do you determine a_k from x(t)?

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t)e^{-j(2\pi/T_0)kt}dt$$
Fundamental Frequency $f_0 = 1/T_0$

$$a_{-k} = a_k^* \quad \text{when } x(t) \text{ is real}$$

$$a_0 = \frac{1}{T_0} \int_0^{T_0} x(t)dt \quad \text{(DC component)}$$

Fourier Series & Spectrum

SPECTRUM DIAGRAM • Recall Complex Amplitude vs. Freq a_{k}^{*} $4e^{-j\pi/2}$ a_{0} a_{0}

Harmonic Signal
$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{j2\pi k f_0 t}$$
 period/frequency of complex exponential:
$$2\pi (f_0) = \omega_0 = \frac{2\pi}{T_0} \quad \text{or} \quad T_0 = \frac{1}{f_0}$$

STRATEGY: $x(t) \rightarrow a_k$

- ANALYSIS
 - Get representation from the signal
 - Works for **PERIODIC** Signals
- Fourier Series
 - Answer is: an INTEGRAL over one period

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j\omega_0 kt} dt$$

FS: Rectified Sine Wave
$$\{a_k\}$$

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi/T_0)kt} dt \qquad (k \neq \pm 1)$$

$$a_k = \frac{1}{T_0} \int_0^{T_0/2} \sin(\frac{2\pi}{T_0}t) e^{-j(2\pi/T_0)kt} dt \qquad Half-Wave Rectified Sine}$$

$$= \frac{1}{T_0} \int_0^{T_0/2} \frac{e^{j(2\pi/T_0)t} - e^{-j(2\pi/T_0)t}}{2j} e^{-j(2\pi/T_0)kt} dt$$

$$= \frac{1}{T_0} \int_0^{T_0/2} \frac{e^{j(2\pi/T_0)t} - e^{-j(2\pi/T_0)t}}{2j} e^{-j(2\pi/T_0)kt} dt$$

$$= \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k-1)t} dt - \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k+1)t} dt$$

$$= \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k-1)t} dt - \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k+1)t} dt$$

$$= \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k-1)t} dt - \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k+1)t} dt$$

$$= \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k-1)t} dt - \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k+1)t} dt$$

$$= \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k-1)t} dt - \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k+1)t} dt$$

$$= \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k-1)t} dt - \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k+1)t} dt$$

$$= \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k-1)t} dt - \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k+1)t} dt$$

$$= \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k-1)t} dt - \frac{1}{1} \int_0^{T_0/2} e^{-j(2\pi/T_0)(k+1)t} dt$$

FS: Rectified Sine Wave $\{a_k\}$ $a_k = \frac{e^{-j(2\pi/T_0)(k-1)t}}{j2T_0(-j(2\pi/T_0)(k-1))} \Big|_0^{T_0/2} - \frac{e^{-j(2\pi/T_0)(k+1)t}}{j2T_0(-j(2\pi/T_0)(k+1))} \Big|_0^{T_0/2}$ $= \frac{1}{4\pi(k-1)} \left(e^{-j(2\pi/T_0)(k-1)T_0/2} - 1 \right) - \frac{1}{4\pi(k+1)} \left(e^{-j(2\pi/T_0)(k+1)T_0/2} - 1 \right)$ $= \frac{1}{4\pi(k-1)} \left(e^{-j\pi(k-1)} - 1 \right) - \frac{1}{4\pi(k+1)} \left(e^{-j\pi(k+1)} - 1 \right)$ $= \left(\frac{k+1-(k-1)}{4\pi(k^2-1)} \right) \left(-(-1)^k - 1 \right) = \begin{cases} 0 & k \text{ odd} \\ \frac{1}{j4} & k = \pm 1 \\ \frac{-1}{\pi(k^2-1)} & k \text{ even} \end{cases}$

Fourier Coefficients a_k

- a_k is a function of k
 - Complex Amplitude for *k*-th Harmonic
 - This one doesn't depend on the period, T_0

$$a_k = \frac{1 - (-1)^k}{j2\pi k} = \begin{cases} \frac{1}{j\pi k} & k = \pm 1, \pm 3, \dots \\ 0 & k = \pm 2, \pm 4, \dots \\ \frac{1}{2} & k = 0 \end{cases}$$

Fourier Series Synthesis

• HOW do you **APPROXIMATE** x(t)?

$$a_k = \frac{1}{T_0} \int_{0}^{T_0} x(t)e^{-j(2\pi/T_0)kt} dt$$

• Use FINITE number of coefficients

$$x(t) = \sum_{k=-N}^{N} a_k e^{j2\pi k f_0 t}$$

$$a_{-k} = a_k^* \quad \text{when } x(t) \text{ is real}$$

