

What is Direct Current (DC)?

Definition

Direct Current (DC) is a current, that does not change in time

Switch is turned "on" at: t = 1 sec

What is Alternating Current (AC)?

Definition

Alternating Current (AC) is a current, that changes in time

Sinusoidal Alternating Current

Non - Sinusoidal Alternating Current

Parameters of a Sinusoidal Waveform

Definition

Sinusoidal voltage is a voltage with waveform as shown on the RHS

$$V(t) = \hat{V} \sin(wt + \alpha)$$

where

V(t) is the voltage waveform,

 \hat{V} is the peak value (amplitude), w is the angular frequency, α is the phase shift, i.e. angle of the voltage at t = 0, (phase angle)

$$f = 50 \text{ Hz}$$

 $w = 2 \pi f = 314 \text{ rad/sec}$

Sinusoidal Voltage

Parameters of a Sinusoidal Waveform

Voltage Waveform

Parameters of a Sinusoidal Waveform

Period and Frequency

Full period = $T = 20 \text{ msec} \Leftrightarrow 360 ^{\circ}$

Frequency = 1/ T = 1/(20 x 10 ⁻³) = 50 Hz

AC (Alternating Current) Circuit

Positive half cycle

Negative half cycle

(prevents current flow) between

positive and negative conductors

AC Circuits

Elements of AC Circuits: Capacitor

Symbolic

representation

Capacitance

Capacitor-Practical Configuration

Geometry

Capacitor plates are packaged in a roll form in order to have smaller size

Capacitor-Practical Configuration

Geometry

Capacitor cylinders are then connected in parallel in bank form

Capacitor-Practical Configuration

Geometry

Capacitor banks

Control relay

Capacitor-Practical Configuration

Geometry Single Phase Three Phase Single and three-phase capacitor banks

MV (Medium Voltage) Shunt Capacitor Banks

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 14

MV (Medium Voltage) Shunt Capacitor Banks

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 15

MV (Medium Voltage) Shunt Capacitor Banks

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 16

LV (Low Voltage) Capacitor Banks

Protective Breakers

Contactors

Capacitor Bank

Electronic Capacitors in a Motherboard

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 18

Basic Relation

Basic Principle

- Charge stored in a capacitor is proportional to the capacitance C,
- Charge stored in a capacitor is proportional to the voltage V applied

or

Q = C V
where, Q is charge stored (Coulombs),
V is voltage (Volts),
C is capacitance (Farads)

Voltage Source Capacitance

Symbolic Representation

Definition of Farad

Definition

1 Farad is the capacitance that creates 1 Volt voltage difference between the terminals of the plates when charged by 1 Coulomb of electrical charge

$$Q = C V$$

where, $Q = 1$ Coulomb,
 $V = 1 Volt$,
 $C = 1 Farad$

Current in a Capacitance

Definition

The relation;

$$Q = C V$$

may be written in time domain as;

$$Q(t) = C V(t)$$

or differentiating both sides with respect to time

$$dQ(t)/dt = C dV(t)/dt$$

remembering that;

$$dQ(t)/dt = I(t)$$

It can be written that;

$$I(t) = C \, dV(t) \, / \, dt$$

Current in a Capacitance

Phase Shift between Current and Voltage Waveforms

```
I(t) = C d V(t) / dt
= C d/dt V_{max} sin wt
= C V_{max} w coswt
= I_{max} coswt
where, I_{max} = C V_{max} w
```


Current in a Capacitance

Definition

The above equation may be integrated with respect to time, yielding the following voltage - current relation for a Capacitor

$$V(t) = (1/C) \int I(t)dt + V(0)$$

where V(0) is the initial voltage across the capacitor, representing the initial voltage due to the initial charge stored in the capacitor

Switch is turned "on" at: t = 0 sec

Example - 1

Problem

Determine the time waveform of the current flowing in the circuit shown on the RHS by assuming that the capacitor is charged by the exponential voltage V(t) shown in the figure

$$V(t) = 5 (1 - e^{-t})$$
 Volts

V(t) C = 0.1 F

 V_{max} = Maximum voltage that can be reached = 5 Volts Q_{max} = C x V_{max} = Maximum charge that can be stored

Example - 1

Solution

$$I(t) = C dV(t)/dt$$

$$V(t) = 5 (1 - e^{-t}) Volts$$

Hence,

I(t) = C d V(t) / dt= $C d/dt 5 (1 - e^{-t})$ = $0.1 \times 5 e^{-t}$ = $0.5 \times e^{-t}$ Ampers

Example - 1

Charge Stored in a Capacitor

Now, determine the time waveform of the charge stored in the capacitor

Charge stored in the capacitor starts from zero and gradually increases to its final value

$$Q(t) = C \times V(t)$$

= 0.1 x 5 (1 - e^{-t})
= 0.5 x (1 - e^{-t}) Coulombs

 $Q_{max} = C_x V_{max} = Maximum charge that can be stored$

Example - 2

Problem

Current source shown in the circuit shown on the RHS provides 10 A constant_current within the time interval;

tε[0, 1 sec]

Capacitor is initially charged to 2 Volts voltage

Determine the voltage across the capacitor within the time interval;

tε[0, 1 sec]

Switch is turned "on" at: t = 0 sec, "off" at: t = 1.0 sec.

Example - 2

Solution

Voltage across the capacitance can be expressed as

$$V(t) = (1/C) \int I(t)dt + V(0)$$

where,

$$V(0) = 2 Volts$$

is the initial voltage across the capacitor

Hence;

$$V(t) = (1/C) \int I(t) dt + 2$$

= 1 \times 10 \int dt + 2
= 10 t + 2 Volts

Solution of R-C Circuits

Problem

Solve the "RC circuit" shown on the RHS for current waveform I(t) flowing in the circuit when the switch is turned "on" at t = 0

Solution

Writing down KVL for the circuit

$$V(t) = R I(t) + V_c(t)$$

= $R I(t) + (1/C) \int I(t)dt + V_c(0)$

Differentiating both sides wrt time once;

$$d/dt \ V(t) = R \ d/dt \ I(t) + (1/C) \ I(t)$$
or dividing both sides by R
$$d/dt \ I(t) + (1/RC) \ I(t) = (1/R) \ d/dt \ V(t)$$

Switch is turned "on" at: t = 0 sec

 $d/dt \ Vc(0) = 0$

A first order ordinary differential equation

Solution of the resulting First Order Ordinary Differential Equation

Solution

Solve the resulting first order ordinary differential equation (ODE)

$$d/dt I(t) + (1/RC) I(t) = (1/R) d/dt V(t)$$

$$d/dt I(t) + (1/RC) I(t) = (1/R) d/dt (\hat{V} \sin(wt + \alpha))$$

$$d/dt I(t) + (1/RC) I(t) = (\hat{V}/R) w \cos(wt + \alpha)$$

Solution of the resulting First Order Ordinary Differential Equation

Solution

Solve the resulting first order ordinary differential equation (ODE)

$$dI(t) / dt + (1/RC) I(t) = (\hat{V}/R) w \cos(wt + \alpha)$$

Define an integration factor $\mu(t) = e^{t/RC}$ Multiply both sides of the above ODE by this factor;

$$\mu(t) \, dI(t)/dt + I(t) \, (1/RC) \, \mu(t) = \mu(t) \, (\mathring{V}/R) \, w \cos (wt + \alpha)$$

$$\mu(t) \, dI(t)/dt + I(t) \, d/dt \, \mu(t) = (\mathring{V}/R) \, \mu(t) \, w \cos (wt + \alpha)$$

$$d/dt \, [\mu(t) \, I(t)] = (\mathring{V}/R) \, \mu(t) \, w \cos (wt + \alpha)$$

$$= (\mathring{V}/R) \, \mu(t) \, w \cos (wt + \alpha) \, dt + I(0)$$

$$\mu(t) \, I(t) = (\mathring{V}/R) \, w \, \mu(t) \cos (wt + \alpha) \, dt + I(0)$$

$$I(t) = \mathring{I} \, \mu(t)^{-1} \, w \, \mu(t) \cos (wt + \alpha) \, dt + \mu(t)^{-1} I(0)$$

Switch is turned "on" at: t = 0 sec

$$d/dt \mu(t) = (1/RC) \mu(t)$$

Solution of the resulting First Order Ordinary Differential Equation

Solution (Continued)

Substituting the integration factor $\mu(t) = e^{t/RC}$ into the above solution;

$$I(t) = \int_{-t/RC}^{\infty} e^{-t/RC} w \int_{-t/RC}^{\infty} \cos(wt + \alpha) dt + e^{-t/RC} I(0)$$

$$= \int_{-t/RC}^{\infty} e^{-t/RC} w \int_{-t/RC}^{\infty} (\cos wt \cos \alpha - \sin wt \sin \alpha) dt + e^{-t/RC} I(0)$$

cos(a + b) = cos a cos b - sin a sin b

<u>Taken from the Reference:</u> Calculus and Analytic Geometry, Thomas, Addison Wesley, Third Ed. 1965

Reference

Solution of the resulting First Order Ordinary Differential Equation

Solution (Continued)

Now, proceeding;

$$I(t) = \int_{-t/RC}^{\infty} e^{-t/RC} w \int_{-t/RC}^{\infty} (\cos w t \cos \alpha - \sin w t \sin \alpha) dt + e^{-t/RC} I(0)$$

$$= \int_{-t/RC}^{\infty} e^{-t/RC} w [\cos \alpha \int_{-t/RC}^{\infty} \cos w t dt - \sin \alpha \int_{-t/RC}^{\infty} \sin w t dt] + e^{-t/RC} I(0)$$

<u>Taken from the Reference:</u>Calculus and Analytic Geometry, Thomas, Addison Wesley, Third Ed. 1965, pp. 369

Solution of the resulting First Order Ordinary Differential Equation

Solution of the resulting First Order Ordinary Differential Equation

Solution of the resulting First Order Ordinary Differential Equation

Solution of the resulting First Order Ordinary Differential Equation

Solution of the resulting First Order Ordinary Differential Equation

Solution of the resulting First Order Ordinary Differential Equation

Solution (Continued)

Switch is turned "on" at: t = 0 sec

Substituting the above term into the solution;

$$I(t) = \frac{\int w}{\sqrt{(1/RC)^2 + w^2}} \sin(wt + \alpha + \beta) + e^{-t/RC}I(0)$$

$$I_{ss}(t) = Steady-State\ Term$$

$$I_{tr}(t) = Transient\ Term$$

Solution of the resulting First Order Ordinary Differential Equation

Calculation of Initial Value of I(t)

Initially, the system is an AC circuit operating in steady state, with a resistance R and capacitance C drived by an AC source

$$V(t) = \hat{V} \sin(wt + \alpha)$$

Hence the current I(t) depends on the source voltage V(t) and Z = R + j X

$$I / \theta = V / \alpha / (R + jX)$$

$$I / \theta = V / \alpha / Z / Tan^{-1} (X / R)$$

$$I / \theta = \hat{V} / Z / \alpha + Tan^{-1} (X / R)$$

Switch is turned "on" at: t = 0 sec

Please note that capacitive reactance has negative angle

Solution of the resulting First Order Ordinary Differential Equation

Calculation of Initial Value of I(t)

Switch is turned "on" at: t = 0 sec

Solution of the resulting First Order Ordinary Differential Equation

Solution (Continued)

Substituting the above term into the solution, the final form of the solution waveform becomes;

$$I(t) = \frac{\hat{l} w}{\sqrt{(1/RC)^2 + w^2}} \sin(wt + \alpha + \beta) + e^{-t/RC} \hat{V} / Z \sin(\alpha + \beta)$$

 $I_{ss}(t)$ = Steady-State Term

 $I_{tr}(t)$ = Transient Term

R-C Circuits: Example

Example

Now assume that the parameters of the circuit on the RHS are as follows;

$$V(t) = V \sin wt = 312 \sin wt Volts$$

R = 10 Ohms

 $C = 10 \mu Farads$

$$I(t) = \frac{\hat{I} w}{\sqrt{(1/RC)^2 + w^2}} \sin(wt + \alpha + \beta) + e^{-t/RC} I(0)$$

 $I_{ss}(t)$ = Steady-State Term

 $I_{tr}(t) = Transient Term$

Switch is turned "on" at: t = 0 sec

R-C Circuits: Example

Steady-State Term

$$I(t) = \frac{1}{\sqrt{(1/RC)^2 + w^2}} \left[\cos (\alpha + \beta) \sin wt + \sin (\alpha + \beta) \cos wt \right]$$

a sin wt + b cos wt
= sin (wt +
$$\alpha$$
 + β)

-20

AC Circuits

R-C Circuits: Example

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 45

-25

R-C Circuits: Example

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 46

RC Circuits with DC Voltage Source - Two Simple Rules

Rule - 1

A filled capacitor acts initially as a DC voltage source due to the stored charge

$$V(t) = (1/C) \int_{-\infty}^{0} I(t)dt = V(0) = V_{0}$$

The initial voltage of this capacitor may then be represented as a DC voltage source in series with an uncharged capacitor

RC Circuits with DC Voltage Source - Two Simple Rules

The current waveform will then be;

$$I(t) = I(\infty) + [I(0) - I(\infty)] e^{-t/\tau}$$

Where au is called the time constant of the circuit defined as;

T = RC = The time required a for capacitor to reach 63 % of its full charge

I(t) (Amp)

1.0

2.0

 $= 2 \Omega x 1000 \mu F = 2 x 1000 x 10^{-6} = 0.002 \text{ sec}$

0.0

0.0

$$I(0) = (V_{DC} - V_0)/R$$

0.5 0.4 0.3 0.2 0.1

3.0

Then the initial value of current will be;

$$I(0) = (V_{DC} - V_0) / R$$

Please note that an uncharged capacitor acts effectively as short circuit, i.e. $V_0 = 0$

5.0

t (sec)

4.0

RC Circuits with DC Voltage Source - Two Simple Rules

Rule - 2

A fully charged capacitor acts finally as open circuit to DC current

$$I(t) = C d/dt V(t) = C d/dt (constant) = 0 (OC)$$

Then the final value of current will be; $I(\infty) = 0$

The current waveform will then be;

$$I(t) = I(\infty) + [I(0) - I(\infty)] e^{-t/\tau}$$

Where τ is called the time constant of the circuit defined as:

T = RC = The time required a for capacitor toreach 63 % of its full charge $= <math>2 \Omega x 1000 \mu F = 2 x 1000 x 10^6 = 2 msec$

RC Circuits with DC Voltage Source - Two Simple Rules

Solution

Substituting the above expressions into the current expression

The initial value of current will be;

$$I(0) = (V_{DC} - V_0) / R$$

The final value of current will be;

$$I(\infty)=0$$

The current waveform will then be;

$$I(t) = I(\infty) + [I(0) - I(\infty)] e^{-t/\tau}$$

$$I(t) = [(V_{DC} - V_0)/R] e^{-t/\tau}$$

Meaning of the Time Constant au

Definition

Time constant τ of a electric circuit is the duration for the current to get reduced by 63 % of its initial value

Time constant τ of an RC circuit is simply expressed as:

 $\mathcal{T} = RC$

The Effect of au on decay

Example

Problem

Find the voltage waveform across the 1 mF capacitor shown on the RHS, when it has an initial voltage of 6 Volts and charged by a 24 Volts DC voltage source through a wire with 2 Ohm resistance

Capacitor will behave as a DC source at the beginning and as OC at the end, hence;

$$V(0) = V_0 = 6 \ Volts$$

$$V(\infty) = V_S = 24 \text{ Volts}$$

The voltage waveform will then be;

$$V(t) = V(\infty) + [V(0) - V(\infty)] e^{-t/\tau}$$

$$V(t) = 24 + (6 - 24) e^{-t/0.002} = 24 - 18 e^{-t/0.002}$$
 Volts

T = RC = Time Constant: The time required for a capacitor to reach 63 % of full charge = 2 x 1000 μ F = 2 x 0.001 = 0.002 sec

Energy Stored in a Capacitor

Instantaneous Energy Stored in a Capacitor

Assuming that the instantaneous voltage across the capacitor is $V_c(t)$

$$P(t) = V_{C}(t) I(t)$$

$$W_{C}(t) = \int P(t) dt$$

$$= \int V_{C}(t) I(t) dt$$

$$= \int V_{C}(t) C dV_{C}(t) / dt dt$$

$$= C \int V_{C}(t) dV_{C}(t)$$

or

$$W_C(t) = (1/2) C V_C^2(t)$$

Example

Calculate the stored energy in a 10 µF capacitor fully charged with a 12 Volts DC voltage

 $W_c = (1/2) 10 \times 10^{-6} \times 12^2 = 720 \times 10^{-6}$ Joule

Example

Problem

Find the instantaneous energy in the capacitor for the voltage shown in the figure

$$V(t) = \hat{V} \sin wt$$

$$W_C(t) = (1/2) C V_C^2(t)$$

$$W_c(t) = (1/2) 10 \times 10^{-6} \text{ V}^2 \sin^2 wt$$

= 0.000005 x 312² sin² wt
= 0.4867 sin² wt
= 0.4867 ($\frac{1}{2} - \frac{1}{2} \cos 2wt$)

$$\sin^2 wt = 1 - \cos^2 wt = 1 - (1 + \cos 2wt)/2$$

= $\frac{1}{2} - \frac{1}{2} \cos 2wt$

Series Connected Capacitances

Series connected capacitances

$$V_{1}(t) = (1/C_{1}) \int I(t)dt$$

$$V_{2}(t) = (1/C_{2}) \int I(t)dt$$

$$\pm \dots = \pm$$

$$V(t) = [(1/C_{1}) + (1/C_{2})] \int I(t)dt$$

$$= (1/C_{tot}) \int I(t)dt$$

Hence,

$$C_{tot} = \frac{1}{(1/C_1) + (1/C_2)}$$

Series connected capacitances are combined in the same way as for shunt connected resistances

Series and Shunt Connected Capacitances

Shunt connected capacitances

$$I_{1}(t) = C_{1} d V(t) / dt$$
 $I_{2}(t) = C_{2} d V(t) / dt$
 $= +$

$$I(t) = (C_{1} + C_{2}) d V(t) / dt$$
 $= C_{tot} d V(t) / dt$

Where, $C_{tot} = C_1 + C_2$ is the total capacitance

Shunt connected capacitances are simply added

Inductance

Inductance is a winding or coil of wire around a core

Core may be either insulator or a ferromagnetic material

Symbolic representation

Ferrite Core Toroidal Inductor

Definition

Ferriet core inductor has a toroidal ferrit core inside

Ferrite core

Toroidal coil

Air Core Inductor

Configuration

Air core inductor has no core inside

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 59

Basic Relation

Definition

Voltage across an inductor is proportional to the rate of change of current

V(t) = L d I(t) / dt
where, V(t) is the voltage across the
inductance,
I(t) is the current flowing
through,
L is the inductance (Henry)

1 Henry is the value of inductance defined as
1 Henry = 1 Volt x 1 second / 1 Amp

Voltage Source V(t) Inductance L I(t) V(t)

Current in an Inductance

Definition

Voltage Source V(t)

Inductance L

The equation;

V(t) = L d I(t) / dt

can be written in inverse form as

$$I(t) = (1/L) \int V(t)dt + I(0)$$

where I(0) is the current initially flowing in the inductor

Current in an Inductance

Phase Shift between Current and Voltage Waveforms

Series and Shunt Connected Inductors

Series connected inductors are added

$V_{1}(t) = L_{1} d I(t) / dt$ $V_{2}(t) = L_{2} d I(t) / dt$ \pm $V(t) = (L_{1} + L_{2}) d I(t) / dt$

where

$$L_{tot} = L_1 + L_2$$

is the total inductance

Series connected inductances

Series and Shunt Connected Inductors

Shunt connected inductances are combined in the same way as in shunt connected resistances

Hence,

$$L_{tot} = \frac{1}{(1/L_1) + (1/L_2)}$$

Shunt connected inductances

Example - 3

Problem

Calculate the voltage across the 100 mH inductor with the current shown in the figure on the RHS

$$\begin{split} I(t) &= 0 & t < 1 \text{ s} \\ I(t) &= 1/((5-1)) \ (t-1) = \frac{1}{4} \ (t-1) & 1 \le t \le 5 \text{ s} \\ I(t) &= 1 & 5 \le t \le 9 \text{ s} \\ I(t) &= -1/((5-1)) \ (t-13) = -\frac{1}{4} \ (t-13) & 9 \le t \le 13 \text{ s} \\ I(t) &= 0 & t \ge 13 \text{ s} \end{split}$$

Example - 3

Solution

$$V(t) = L d I(t) / dt$$

Differentiating the expression for current waveform

$$d/I(t) dt = d (\frac{1}{4} (t - 1)) / dt = \frac{1}{4}$$

and multiplying by the inductance L ($L = 10^{-1} H$);

$$V(t) = 0$$
 $t < 1 \text{ s}$
 $V(t) = 10^{-1} \times \frac{1}{4} = 0.025 \text{ V}$
 $1 \le t \le 5 \text{ s}$
 $V(t) = 0$
 $5 \le t \le 9 \text{ s}$
 $V(t) = -10^{-1} \times \frac{1}{4} = -0.025 \text{ V}$
 $9 \le t \le 13 \text{ s}$
 $V(t) = 0$
 $t \ge 13 \text{ s}$

Example - 4

Problem

Assume that the inductor shown on the RHS is connected to a voltage source with the waveform shown in the figure Determine the inductor current waveform by assuming that the initial current in the inductor is zero

$$V(t) = 0$$
 $t < 0 \text{ sec}$
 $V(t) = -10 \text{ V}$ $0 \le t \le 1 \text{ sec}$
 $V(t) = 0$ $t \ge 1 \text{ sec}$

Example - 4

Solution

$$I(t) = (1/L) \int V(t) dt + I(0)$$

Integrating the voltage expression;

$$I(t) = (1/L) \int V(t) dt + I(0)$$

= 1/(100 x 10⁻³) $\int V(t) dt$

$$I(t) = 0 t < 0 \sec t$$

$$I(t) = 1/(100 \times 10^{-3}) \int V(t) dt$$

$$= 10 \int V(t) dt$$

$$= 10 \int -10 dt$$

$$= -100 t 0 \le t \le 1 \sec t$$

$$I(t) = -100 A t \ge 1 \sec t$$

0.5

1.0 t (sec)

-100

0.0

Energy Stored in an Inductor

Problem

Calculate the instantaneous energy stored in an inductor with an inductance L and an instantaneous voltage V_I (t)

$$P(t) = V_L(t) I(t)$$

$$W_L(t) = \int P(t) dt$$

$$= \int V_L(t) I(t) dt$$

$$= \int I(t) L dI(t) / dt dt$$

$$= L \int I(t) dI(t)$$

or

$$W_L(t) = \frac{1}{2} L I^2(t)$$

Example - 5

Problem

Find the instantaneous energy in the inductor for the current shown in the figure

$$I(t) = 0$$
 $t < 1 s$
 $I(t) = \frac{1}{4}(t-1) Amp$
 $1 \le t \le 5 s$
 $I(t) = 1 Amp$
 $5 \le t \le 9 s$
 $I(t) = -\frac{1}{4}(t-13) Amp$
 $9 \le t \le 13 s$
 $I(t) = 0$
 $t \ge 13 s$

Example - 5

Solution

 $W_L(t) = \frac{1}{2} L I^2(t)$

By using the above formula

W(t) = 0 Joule	t < 1 s
$W(t) = \frac{1}{2} 10^{-2} \times (\frac{1}{4} (t-1))^2$	
= $0.3125 \times 10^{-3} \times (t-1)^2$ Joules	1 ≤ t ≤ 5 s
$W(t) = 0.01 / 2 \times 1^2 = 0.005$ Joules	$5 \le t \le 9 s$
$W(t) = \frac{1}{2} 10^{-2} \times (\frac{1}{4} (t - 13))^2$	
= $0.3125 \times 10^{-3} \times (t - 13)^2$ Joules	$9 \le t \le 13 \text{ s}$
W(t)=0	t ≥ 13 s

Please note that 1 Joule = 1 Watt x 1 sec

R-L Circuits

Problem

Solve the R-L circuit shown on the RHS which consists of a resistance in series with an inductance for current waveform when the switch is turned "on" at time: t = 0 sec

Solution

Writing down KVL for the circuit

$$V(t) = R I(t) + L dI(t) / dt$$

or
$$dI(t) / dt + (R/L) I(t) = (1/L) V(t)$$

Switch is turned "on" at: t = 0 sec

A first order ordinary differential equation

Solution of the resulting First Order Ordinary Differential Equation

Solution

Solve the resulting first order ordinary differential equation (ODE)

$$dI(t) / dt + (R/L) I(t) = (1/L) V(t)$$

 $dI(t) / dt + (R/L) I(t) = (1/L) V(t)$

Solution of the resulting First Order Ordinary Differential Equation

Solution

Solve the resulting first order ordinary differential equation (ODE)

$$dI(t) / dt + (R/L) I(t) = (\hat{V}/L) \sin(wt + \alpha)$$

Define an integration factor $\mu(t) = e^{tR/L}$ Multiply both sides of the above ODE by this factor;

$$\mu(t) \, dl(t)/dt + l(t) \, (R/L) \, \mu(t) = \mu(t) \, (\mathring{V}/L) \sin (wt + \alpha)$$

$$\mu(t) \, dl(t)/dt + l(t) \, d/dt \, \mu(t) = (\mathring{V}/L) \, \mu(t) \sin (wt + \alpha)$$

$$d/dt \, [\mu(t) \, l(t)] = (\mathring{V}/L) \, \mu(t) \sin (wt + \alpha)$$

$$= (\mathring{V}/L) \, \mu(t) \sin (wt + \alpha) \, dt + l(0)$$

$$\mu(t) \, l(t) = (\mathring{V}/L) \, \mu(t) \sin (wt + \alpha) \, dt + l(0)$$

$$= (\mathring{V}/L) \, \mu(t) \sin (wt + \alpha) \, dt + l(0)$$

$$= (\mathring{V}/L) \, \mu(t) \sin (wt + \alpha) \, dt + \mu(t)^{-1} \, l(0)$$

$$V(t) = \hat{V} \sin(wt + \alpha)$$

 $d/dt \mu(t) = (R/L) \mu(t)$

Solution of the resulting First Order Ordinary Differential Equation

Solution (Continued)

Substituting the integration factor $\mu(t) = e^{tR/L}$ into the above solution;

$$I(t) = \int e^{-tR/L} \int e^{tR/L} \sin(wt + \alpha) dt + e^{-tR/L} I(0)$$

Let α = 0 (for simplicity) $\int e^{tR/L} \sin wt \, dt = e^{tR/L}$ $(R/L) \sin wt - w \cos wt$ $(R/L)^2 + w^2$

Taken from the Reference: Calculus and Analytic Geometry, Thomas, Addison Wesley, Third Ed. 1965, pp. 369

Switch is turned "on" at: t = 0 sec

Solution of the resulting First Order Ordinary Differential Equation

Solution (Continued)

Substituting the above term into the solution;

$$I(t) = \int_{-t}^{t} e^{-t R/L} e^{t R/L} \int_{-t}^{t} \frac{(R/L) \sin wt - w \cos wt}{(R/L)^2 + w^2} + e^{-t R/L} I(0)$$

$$I(t) = I$$
 -----+ $e^{-tR/L}I(0)$
 $(R/L)^2 + w^2$

$$I(t) = ---- (sinwt - (wL/R) coswt) + e^{-tR/L} I(0)$$

 $(wL/R)^2 + 1$

Steady-State Term

Transient Term

Switch is turned "on" at: t = 0 sec

Solution of the resulting First Order Ordinary Differential Equation

Numerical Example

Now assume that the parameters of the circuit on the RHS are as follows;

 $V(t) = 312 \sin wt Volts$

R = 1 Ohms

L = 10 mHenry

Switch is turned "on" at: t = 0 sec

Solution of the resulting First Order Ordinary Differential Equation

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 78

Solution for DC Voltage - Two Simple Rules

Rule - 1

An inductor with no initial current acts as an open circuit to a DC voltage source initially

$$I(0) = (1/L) \int_{-\infty}^{0} V(t) dt = I_0 = 0$$
 (OC)

Then, the initial value of current will be; I(0) = 0

$$I(0) = 0$$

The current waveform will then be; $I(t) = I(\infty) + [I(0) - I(\infty)] e^{-t/\tau}$

 τ = L / R = Time Constant: The time required for the inductor to reach 63 % of full current = 2 mH / 1 Ω = 0.002 / 1 = 0.002 Sec

Solution for DC Voltage - Two Simple Rules

Rule - 2

An inductor acts as a short circuit to a DC current (or voltage) finally

$$V(t) = L d/dt I(t) = L d/dt (ct) = 0 (SC)$$

Then, the final value of current will be; $I(\infty) = V/R$

$$I(\infty) = V/R \qquad I(0) = 0$$

The current waveform will then be; $I(t) = I(\infty) + [I(0) - I(\infty)] e^{-t/\tau} \leftarrow 0$

 τ = L / R = Time Constant: The time required for the inductor to reach 63 % of full current = 2 mH / 1 Ω = 0.002 / 1 = 0.002 Sec

Solution for DC Voltage - Two Simple Rules

or $I(t) = V/R - V/R e^{-t/\tau}$ $= V/R (1 - e^{-t/\tau})$

 τ = L / R = Time Constant: The time required for the inductor to reach 63 % of full current = 2 mH / 1 Ω = 0.002 / 1 = 0.002 Sec

Example - 6

Problem

Find the current waveform in the 2 mH inductor with 6 Amps initial current connected to a 24 Volt DC voltage source through a wire with 1 Ohm resistance as shown on the RHS

Inductor has 6 Amp initial current;

$$I(0) = I_0 = 6 Amp$$

Inductor will be SC at the end, hence;

$$I(\infty) = V/R = 24/1 = 24$$
 Amps

The current waveform will then be;

$$I(t) = I(\infty) + [I(0) - I(\infty)] e^{-t/\tau}$$

$$I(t) = 24 + (6 - 24) e^{-t/0.002} = 24 - 18 e^{-t/0.002}$$
 Amps

Example - 7

Problem

Solve the circuit shown on the RHS for current waveform flowing in the inductor

Solution

First take out the branch containing inductor, and find the Thevenin Equivalent circuit of the part shown on the LHS seen from the terminals A and B

Kill the voltage source, and find R_{eq} .

$$R_{eq} = 10 // 5$$

= 10 x 5 /(10 + 5)
= 10 / 3 Ohms

Example - 7 (Continued)

Solution (Continued)

Open circuit terminals A - B and find V_{AB}

$$V = 24 \ V \times R_2 / (R_1 + R_2)$$

= 24 \ \times 5 / 15 = 24 / 3
= 8 \ V

- Form the resulting Thevenin equivalent Circuit,
- Connect the inductance to the resulting Thevenin equivalent circuit,
- Solve the resulting circuit by using the straightforward method described in Example 6

R-L-C Circuits

Problem

Solve the following circuit for current waveform, which consists of a resistance, an inductance and a capacitance connected in series

Solution

Writing down KVL for the circuit;

$$V(t) = R I(t) + V_L(t) + V_C(t)$$

= R I(t) + L dI(t)/dt + (1/C) \int I(t)dt + V_C(0)

Differentiating both sides wrt time once;

$$dV(t)/dt = R \ dI(t)/dt + Ld^{2}I(t)/dt^{2} + (1/C)I(t)$$
or
$$d^{2}I(t)/dt^{2} + (R/L)dI(t)/dt + (1/LC) \ I(t) = (1/L) \ dV(t)/dt$$

A second order ordinary differential equation

Initial Conditions

Differential Equation

 $d^{2}I(t)/dt^{2} + (R/L)dI(t)/dt + (1/LC)I(t) = (1/L)dV(t)/dt$

Initial Conditions

$$I_L(0) = I_{L0}$$

$$V_C(0) = V_{C0}$$

 $V_c(0) = V_{c0}$

Please note that a differential equation needs initial conditions in number equal to its order, i.e. two here

Initial Conditions

Differential Equation

 $d^{2}I(t)/dt^{2} + (R/L)dI(t)/dt + (1/LC)I(t) = (1/L)dV(t)/dt$

Initial Conditions

The voltage initial condition $V_c(0)$ may also be written as,

$$V_C(0) = V(0) - V_L(0) - V_R(0)$$

$$= V(0) - L \, d/dt \, I_L(0) - R \, I_L(0)$$

or

 $d/dt I_L(0) = I_L'(0) = (1/L) [V(0) - V_C(0) - R I_L(0)]$ 2

Initial Conditions

Differential Equation

 $d^2I(t)/dt^2 + (R/L)dI(t)/dt + (1/LC)I(t) = (1/L)dV(t)/dt$

Initial Conditions

Thus the initial conditions in terms of the solution variable I(t) may now be written as,

$$I_L(0) = I_{L0}$$

$$I_L'(0) = (1/L) [V(0) - V_C(0) - R I_L(0)]$$
2

Please note that a differential equation needs initial conditions in number equal to its order, i.e. two here

Example

R-L-C Circuit

Solve the R-L-C circuit with the given parameters shown on the RHS for current I(t)

Writing down KVL for the circuit shown on the RHS the following ODE is obtained

$$d^2I(t)/dt^2 + (R/L)dI(t)/dt + (1/LC)I(t) = (1/L)dV(t)/dt$$

$$1/(LC) = 1/(1x \ 2.494 \ x \ 10^{-3}) = 401$$

 $d^{2}I(t)/dt^{2} + (2/1) dI(t)/dt + 401 I(t) = (1/1) dV(t)/dt$ $d^{2}I(t)/dt^{2} + 2 dI(t)/dt + 401 I(t) = d/dt (100 e^{-4t}) = -400 e^{-4t}$

Initial Conditions

$$V_C(0) = V_{C0} = 87 \text{ Volts}$$

 $I_L(0) = I_{L0} = 0$

Solution

R-L-C Circuit

First, obtain the homogeneous equation by setting the RHS source function to zero

$$d^2I(t)/dt^2 + 2 dI(t)/dt + 401 I(t) = 0$$

Then, solve the characteristic equation

$$s^2 + 2s + 401 = 0$$

$$s_1, s_2 = (-b \mp \sqrt{b^2 - 4 \times a \times c}) / (2 a)$$

= $-1 \mp j 20$

Eigenvalues of the differential equation

Solution

R-L-C Circuit

Then, the homogeneous solution becomes

$$I(t) = k_1 e^{s1t} + k_2 e^{s2t}$$

$$= k_1 e^{(-1-j20)t} + k_2 e^{(-1+j20)t}$$

$$= k_1 e^{-t} \times e^{-j20t} + k_2 e^{-t} \times e^{j20t}$$

$$= e^{-t} (k_1 e^{-j20t} + k_2 e^{j20t})$$

 $k_1(\cos\theta - j\sin\theta)$

$$k_1(\cos\theta + j\sin\theta)$$

=
$$e^{-t}$$
 [k_1 (cos 20 $t - j$ sin 20 t)
+ k_2 (cos 20 $t + j$ sin 20 t)]

Taken from the Reference: Calculus and Analytic Geometry, Thomas, Addison Wesley, Third Ed. 1965, pp. 867

Euler's Identity $e^{j\theta} = \cos \theta + j \sin \theta$

 θ = 20 t

Euler's Identity

Definition

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$|e^{j\theta}| = |\cos \theta + j\sin \theta|$$

= $\sqrt{\cos^2 \theta + \sin^2 \theta}$
= 1

Graphical Representaion

Solution

R-L-C Circuit

Rearranging the terms

$$I(t) = e^{-t} [k_1 (\cos 20t - j \sin 20t) + k_2 (\cos 20t + j \sin 20t)] = e^{-t} [(k_1 + k_2) \cos 20t + (k_2 - k_1) \sin 20t]$$

V(t) = 100 e^{-4 t}

C = 2.494 mF

-

 $R = 2 \Omega$

I = 1H

A B ← Unknown coefficients to determined

Hence, the homogeneous solution (decaying sinusoidal term) becomes;

$$I(t) = e^{-t} (A \cos 20t + B \sin 20t)$$

Solution

Nonhomogeneous Solution (Transient Term)

Now the nonhomogeneous solution (transient term) is to be determined

Definition of the Nonhomogeneous Solution

General form of the nonhomogeneous solution (transient term) may be expressed as

$$I_n(t) = c e^{-4t}$$

where, $I_n(t)$ is the nonhomogeneous solution, c is an unknown coefficient to be determined

Solution

Nonhomogeneous Solution (Transient Term)

Substitute the nonhomogeneous solution;

$$I_n(t) = c e^{-4t}$$

to the given differential equation;

$$d^2I(t)/dt^2 + 2 dI(t)/dt + 401 I(t) = -400 e^{-4t}$$

and solve it for the unknown coefficient c

$$d^{2}(ce^{-4t})/dt^{2} + 2 d(ce^{-4t})/dt + 401 ce^{-4t} = -400 e^{-4t}$$

$$16c(e^{-4t}) + 2c(-4(e^{-4t})) + 401 c(e^{-4t}) = -400 (e^{-4t})$$

These terms cancel

Solution

Nonhomogeneous Solution (Transient Term)

$$d^{2}(ce^{-4t})/dt^{2} + 2 d(ce^{-4t})/dt + 401 ce^{-4t} = -400 e^{-4t}$$

$$16c(e^{-4t}) + 2c(-4(e^{-4t})) + 401 c(e^{-4t}) = -400 e^{-4t}$$

$$16c - 8c + 401c = -400$$

409 c = -400 or c = -400 / 409 = -0.97799

Thus, the nonhomogeneous solution becomes;

$$I_n(t) = -0.97799 e^{-4t}$$

These terms cancel

Solution

Complete Solution

Complete solution is the summation of the homogeneous (decaying sinusoidal) and nonhomogeneous solutions (transient term)

Transient Term

Decaying Sinosoidal Term

$$I(t) = -0.97799 e^{-4t} + e^{-t} (A \cos 20t + B \sin 20t)$$

Unknown coefficients to determined

Solution

Determination of the Unknown Coefficients

$$I(t) = -0.97799 e^{-4t} + e^{-t} (A \cos 2t + B \sin 2t)$$

Transient Term

Decaying Sinosoidal Term

The above solution must satisfy the given initial conditions;

$$I_L(0) = I_{L0} = 0$$

 $V_C(0) = V_{C0} = 87 \text{ Volts}$

Solution

Determination of the Unknown Coefficients

Substitute the given initial conditions into the complete solution equation and solve for the unknown coefficients A and B;

$$I(t) = -0.97799 e^{-4t} + e^{-t} (A \cos 2t + B \sin 2t)$$

Transient Term

Decaying Sinosoidal Term

$$I_L(0) = I_{L0} = 0$$

 $V_C(0) = V_{C0} = 87 \text{ Volts}$

Solution

Determination of the Unknown Coefficients

Substitute the given initial conditions into the complete solution equation and solve for the unknown coefficients A and B;

$$I_L(t) = -0.97799 e^{-4t} + e^{-t} (A \cos 20t + B \sin 20t)$$

$$I_L(0) = -0.97799 e^{0} + e^{0} (A \cos 0 + B \sin 0)$$

$$= -0.97799 + A = 0$$

$$A = 0.97799$$

$$I_L(0) = I_{L0} = 0$$

 $V_C(0) = V_{C0} = 87 \text{ Volts}$

Solution

Determination of the Unknown Coefficients

$$I_{t}(t) = -0.97799 e^{-4t} + e^{-t} (A \cos 20t + B \sin 20t)$$

$$V(0) = 100 e^{-4t}$$
= 100 e^{-4x0}
= 100 V

87 V

0 V

$$d/dt I_{L}(0) = I_{L}'(0) = (1/L) [V(0) - V_{C}(0) - R I_{L}(0)]$$

$$= (1/1) (100 - 87 - 2 \times 0)$$

$$= 13 \text{ Amp/sec}$$

$$I_L(0) = I_{L0} = 0$$

 $V_C(0) = V_{C0} = 87 \text{ Volts}$

Solution

Determination of the Unknown Coefficients

$$d/dt I_L(t) = 0.97799 \times 4 e^{-4t} - e^{-t} (A \cos 20t + B \sin 20t) + e^{-t} (-20 A \sin 20 t + 20 B \cos 20t)$$

$$d/dt I_L(0) = 0.97799 \times 4 e^0 - e^0 (A \cos 0 + B \sin 0) + e^0 (-20 A \sin 0 + 20 B \cos 0) = 13 \text{ Amp/sec}$$

= 0.97799 x 4 - A + 20 B = 13 Amp/sec
= 0.97799 x 4 - 0.97799 + 20 B = 13 Amp/sec

+ V(t) = 100 e^{-4t} C = 2.494 mF +

 $B = (13 - 3 \times 0.9799) / 20 = 0.5033$

Solution Terms

General form of the Solution

 $I_L(t) = -0.9799 e^{-4t} + e^{-t} (0.97799 \cos 20t + 0.5033 \sin 20t)$

Transient Term

Decaying sinosoidal Term

Solution Terms

Transient Term

 $I_L(t) = (-0.9799 \,\mathrm{e}^{-4\,t}) + \mathrm{e}^{-t} \,(0.97799 \,\mathrm{cos}\,20t + 0.5033 \,\mathrm{sin}\,20t)$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 104

Solution Terms

Sinusoidal Terms

 $I_L(t) = -0.9799 e^{-4t} + e^{-t} (0.97799 \cos 20t + 0.5033 \sin 20t)$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 105

Solution Terms

Exponentially Decaying Sinusoidal Term

 $I_L(t) = -0.9799 e^{-4t} + e^{-t} (0.97799 \cos 20t + 0.5033 \sin 20t)$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 106

-0.80

-1.20

AC Circuits

Solution Terms

Exponentially Decaying Sinusoidal Term

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 107

Solution Terms

Overall Solution

 $I_L(t) = -0.9799 e^{-4t} + e^{-t} (0.97799 \cos 20t + 0.5033 \sin 20t)$

Homework:

Solve the same problem for the case that the voltage source has a sinusoidal waveform

RMS Value

Definition: RMS (Root Mean Square)

RMS value of an AC current is the value of DC current that would dissipate the same amount of power on a resistance R

The above definition is based on the principle of equating the heating effects of the AC and DC currents calculated in both cases

First, calculate the power dissipated (heating effect) in the resistance R in the DC circuit shown on the RHS

$$V_R = R \times I_{DC}$$

$$P_{DC} = V_R \times I_{DC}$$

$$= R \times I_{DC}^2$$

RMS Value

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 110

RMS Value

Definition

$$V_R = R \times I_{DC}$$

$$P_{DC} = V_R \times I_{DC}$$

$$= R \times I_{DC}^2$$

$$V_{R}(t) = R \times I(t)$$

$$P_{AC}(t) = V(t) \times I(t)$$

$$= R I(t)^{2} = R ((V_{max} / R) \sin wt)^{2}$$

$$= R (I_{max} \sin wt)^{2}$$

Now let us equate the power dissipations in the above cases

RMS Value

Definition

$$V_R = R \times I_{DC}$$

$$P_{DC} = V_R \times I_{DC}$$

$$= R \times I_{DC}^2$$

```
V_{R}(t) = R \times I(t)
P_{AC}(t) = V(t) \times I(t)
= R I(t)^{2} = R ((V_{max} / R) \sin wt)^{2}
= R (I_{max} \sin wt)^{2}
```


RMS Value

Definition

In principle, the DC power waveform is <u>NOT</u> equal to the AC power waveform

They may however, be equal in terms of their averages, i.e. the mean of DC power transferred to the load over a period may be equated to that of AC power transferred to the load within a period

 $Average(P_{AC})$

RMS Value

Hence, equating the averages of the two terms;

 $Average(P_{DC}) = Average(P_{AC})$

$$P_{DC \ avg} = (1/T) \int_{0}^{T} R I_{DC}^{2} dt = (1/T) R I_{DC}^{2} t \Big|_{0}^{T} = R I_{DC}^{2}$$

 $Average(P_{AC})$

RMS Value

Definition

Please note that average value of an AC waveform is calculated as

$$P(t)_{avg} = (1/T) \int_{0}^{T} P_{AC}(t) dt$$
$$= (1/T) \int_{0}^{T} R I(t)^{2} dt$$

Average =
$$\frac{Area under the Curve}{Period}$$
$$= (1/T) \int_{0}^{T} P_{AC}(t) dt$$

RMS Value

Hence, equating the average of the two terms;

$$R_{DC}^{2} = (1/T)R_{0}^{T} \int_{0}^{T} I(t)^{2} dt$$

$$I_{DC}^{2} = (1/T) \int_{0}^{T} I(t)^{2} dt$$

$$I_{rms} = \sqrt{(1/T) \int I(t)^2 dt}$$

Example

Problem

Find the RMS value of the sinusoidal current waveform;

$$I(t) = I_{max}$$
 sinwt

I_{rms}

shown on the RHS

Solution

$$I_{rms} = \sqrt{(1/T) \int I(t)^2 dt}$$

$$= \sqrt{(1/T) \int [I_{max} \sin wt]^2 dt}$$

$$= I_{max} \sqrt{(1/T) \int \sin^2 wt dt}$$

RMS Value

Solution

$$I_{RMS} = I_{max} \sqrt{(1/T) \int \sin^2 wt \ dt}$$

Now use;

$$sin^{2} wt = 1 - cos^{2} wt$$

= 1 - (1 + cos 2wt) / 2
= 1 - ½ - ½ cos 2wt
= ½ - ½ cos 2wt

$$I_{RMS} = I_{max} \sqrt{(1/T) \int (\frac{1}{2} - \frac{1}{2} \cos 2wt) dt}$$

$$I_{RMS} = I_{max} \sqrt{(1/T) \left[\int \frac{1}{2} dt - \int \frac{1}{2} \cos 2wt dt \right]}$$

Taken from the Reference: Calculus and Analytic Geometry, Thomas, Addison Wesley, Third Ed. 1965, pp. 348

RMS Value

$$I_{RMS} = I_{max} \sqrt{(1/T) \left[\int \frac{1}{2} dt - \int \frac{1}{2} \cos 2wt dt \right]}$$

= 0

$$I_{RMS} = I_{max} \sqrt{(1/T) \frac{1}{2} \int dt} = I_{max} \sqrt{\frac{1}{2} (1/T) T}$$

$$I_{DC} = \sqrt{\frac{1}{2}} I_{max}$$

= $I_{max} / \sqrt{2} = I_{rms} = I_{max} \times 0.7071$

Rule: RMS value of a sinusoidal waveform is $1/\sqrt{2}$ of its peak value

RMS Value of a Sinusoidal Waveform

Problem

Calculate the RMS value of the sinusoidal voltage waveform shown on the RHS

$$V_{rms} = V_{max} / \sqrt{2}$$

= $V_{max} \times 0.7071$
= 312 x 0.7071 = 220 Volts

RMS value of the domestic voltage in Turkey

Example - 8

Problem

Calculate the RMS value of the rectangular voltage waveform shown on the RHS

$$V_{rms} = \sqrt{(1/T) \int V(t)^2 dt}$$

$$= \sqrt{(1/0.3) \left[\int_0^{0.1} 4^2 dt + \int_{0.1}^{0.3} (-4)^2 dt \right]}$$

$$= 4 \text{ Volts}$$

$V_{rms} = \sqrt{(1/T) \int V(t)^2 dt}$

EE 209 Fundamentals of Electrical and Electronics Engineering, Prof. Dr. O. SEVAİOĞLU, Page 122