Иерархическая организация АСУ ТП

Полевой уровень АСУ ТП

Полевые средства АСУ ТП

Технические средства для непосредственного контроля и управления технологическими процессами

Точки контроля и управления

Физическое сопряжение АСУ ТП с технологическим объектом управления

[ТОУ] — [ТКУ] — [АСУТП]

Датчики

Первичные преобразователи информации.

Информация о состоянии технологического объекта в точках контроля Пример: Датчик давления, врезанный в трубопровод.

Исполнительные устройства

Воздействие на технологический объект в точках управления.

Пример: Запорно-регулирующая арматура (клапаны, задвижки на трубопроводах).

Каналы ввода-вывода АСУ ТП

УРОВЕНЬ Управляющая программа **УПРАВЛЕНИЯ цифровые** текущие значения контролируемых ¦параметров Канал ввода Канал вывода **Устройство Устройство** сопряжения сопряжения с объектом с объектом (YCO) (YCO) ПОЛЕВОЙ Полевой Полевой **УРОВЕНЬ** кабель кабель Исполнительное Датчик устройство Точка контроля Точка управления

Технологический объект управления

Каналы ввода-вывода АСУ ТП

Типы каналов ввода-вывода

- Аналоговые входные:
 - натуральные
 - унифицированные
 - нестандартные
- Аналоговые выходные
- Дискретные входные
- Дискретные выходные
- Цифровой интерфейс к комплектным устройствам

Каналы аналогового ввода

Максимальные возможности

(адаптивность, точность, разрешение и т.д.)

Максимальная стоимость канала,

если аналого-цифровое преобразование выполняется непосредственно в точке контроля (в микроконтроллере датчика)

Каналы аналогового ввода

УСО для последовательной (циклической) обработки аналоговых сигналов одного типа

Каналы аналогового ввода

Требования к полевым средствам

Надежность

Необходимо обеспечить срок службы, достаточный для успешного применения

в конкретной точке контроля и управления. Может потребоваться защита

от механических воздействий, жидкостей, агрессивных сред, коррозии, вибрации, электромагнитных полей, аномальной температуры, окисления контактов и т.д.

Пример: Датчик температуры в топке должен бесперебойно работать не менее года, поскольку его замена возможна только при ежегодной летней профилактике.

Диагностика

Автоматическая или автоматизированная проверка работоспособности.

Ремонтопригодность

Нормативное время на замену.

Возможность замены без остановки технологического процесса (горячая замена).

Экономичность

IP-рейтинг

	Твёрдые тела		Жидкости
0	Нет защиты	0	Нет защиты
1	Защищён от объектов >50 мм (рука)	1	Защищён от капающей жидкости или конденсата
2	Защищён от объектов >12 мм (пальцы)	2	Защищён от разбрызгивания жидкости под углом 15 градусов
3	Защищён от объектов >2,5 мм (инструменты/проволока)	3	Защищён от разбрызгивания жидкости под углом 60 градусов
4	Защищён от объектов >1 мм (тонкий инструмент)	4	Защищён от разбрызгивания жидкости в любом направлении
5	Защищён от пыли, ограниченного проникновения	5	Защищён от сильной струи воды
6	Целиком защищён от пыли	6	Защищён от больших волн
7	Не существует	7	Защищён от последствий опускания в воду
8	Не существует	8	Защищён от полного погружения

Защищенность устройств ввода-вывода

- Механические воздействия
- Жидкости
- Агрессивные среды (коррозия)
- Температура
- Вибрация
- Электромагнитные поля
- Окисление контактов

Требования к полевым средствам

Надежность Диагностика Ремонтопригодность Экономичность Должна быть возможна замена на аналоги ...

Функциональные требования

Необходимые и достаточные

Точность (погрешность измерения, стабильность и отклонение сигнала управления)

Разрешающая способность (обработка всех *существенных* событий)

Для простых массово выпускаемых и применяемых средств и систем автоматизации

должны выполняться все требования к полевым средствам, полностью и без исключений.

При создании общепромышленных и комплексных АСУ ТП возможны случаи, когда

для конкретной точки контроля и управления невозможно подобрать полевое средство, полностью соответствующие всем требованиям, функциональным в том числе.

Выбор датчика

Измерение температуры

- Термометры сопротивления (применимы в АСУ ТП)
- Термопары (применимы в АСУ ТП)
- Термисторы
- Полупроводниковые датчики
- Другие

Выбор датчика

Входные натуральные сигналы (термопары, термометры сопротивления).

Требования

- Точность измерения
- Любые типы градуировок
- Высокая помехозащищенность
- Компенсация «холодного спая» (для термопар)
- Гибкие схемы подключения
- Диагностика

Выбор датчика

Критерии выбора датчика температуры

- измеряемый диапазон температуры и допустимые отклонения по точности измерений;
- место расположения датчика внутри измеряемой среды или объекта;
- условия эксплуатации (нормальные, повышенная влажность, высокоокислительная атмосфера, пожароопасные, сейсмоопасные и т.п.);
- время стабильности и возможность демонтажа датчика для периодической поверки;
- возможность индивидуальной градуировки или взаимозаменяемости датчиков;
- вид полученного измеренного сигнала на выходе: градусы, сопротивление, напряжение, ток, возможность самостоятельного перерасчета в температуру.

```
Термометры сопротивления (RTD) R(T)=Ro*F(T-To)
```

Pt100-термометр:

Диапазон: -200 + 600 Гр.С

Чувствительность: 0.2 Ом/Гр.С

Градуировочные таблицы: DIN, ГОСТ

Высокая точность измерений (\sim 0,1 Гр.С)

Термометры сопротивления (RTD). Схемы подключения

Термометры сопротивления (RTD). Двухпроводная схема подключения

V_м= Напряжение, измеряемое вольтметром

V_p= Напряжение на резисторе

Измеренное сопротивление =
$$\frac{V_M}{I}$$
 = R + (2 x R_{LEAD})

Источник: Control Engineering с данными от Keithley Instruments.

Термометры сопротивления (RTD). Четырехпроводная схема подключения

Источник: Control Engineering с данными от Keithley Instruments.

Недостатки термометров сопротивления (RTD)

- Высокая стоимость
- Большая инерционность
- Чувствительны к ударам и вибрациям, нельзя применять в агрессивных средах.
- Небольшой диапазон измерений (от -200 до +800 гр. С)
- Для RTD необходим источник тока.
- Возможен саморазогрев: если RTD нагревается тестовым током, может появиться погрешность измерения.
 Например, при измерении низкой температуры, тепло от RTD может поднять ожидаемую температуру.
- Возможна значительная погрешность измерения, если нет компенсации сопротивления подводящих проводов (при двухпроводной схеме подключения).
- Попытки измерений за пределами температурного диапазона RTD могут привести к высокому уровню погрешностей и/или повреждению датчика.

Термопары

Диапазон применения: от -270 до +2700 ТоС Та

Чувствительность: мкВ/°С (Т)

Градуировочные таблицы: DIN, ГОСТ

Дифференциальное измерение по двум точкам

Термопара

напряжение в цепи (разность потенциалов) в результате эффекта Зеебека (Сибека)

а — коэффициент Зеебека

Типы термопар

требования к термопарам определяются ГОСТ 6616-94

ТПП13, тип R платинородий- платиновые

ТПП10, тип S платинородий- >платиновые

ТПР, тип В платинородий- платинородий

ТЖК, тип J железо-константановые (железо-медьникелевые)

ТМКн, тип Т медь-константановые (медь-медьникелевые)

ТНН, тип N никросил-нисиловые (никельхромникель-

никелькремниевые).

ТХА, тип К хромель-алюмелевые

ТХКн, тип Е хромель-константановые

ТХК, тип L хромель-копелевые

ТМК, тип М медь-копелевые

ТСС, тип I сильх-силиновые

ТВР, тип А-1, А-2, А-3 вольфрамрений-вольфрамрениевые

Выходные сигналы термопар типов J, K и S

- Термопара типа S имеет самый широкий диапазон измерений
- Термопара типа Ј более чувствительна

Зависимость коэффициента Сибека от температуры для термопар типов J, K и S

Выбираем участок с наименьшей линейностью (наибольшее отклонение):

- В диапазоне 400-800 °C используем термопару типа К
- В диапазоне 900-1700 °C используем термопару типа S

Термопары

Термопары. Компенсация Тх.с.

Термопары. Компенсация Тх.с.

Термопары. Компенсация Тх.с.

Преимущества термопар

- Простота производства и низкая стоимость.
- Не требуют дополнительных источников энергии.
- Большой температурный диапазон измерения.
- Возможно измерение высоких температур (до 2700 °C).
- Износоустойчивы, применимы в агрессивных средах.

Недостатки термопар

- Точность более 1 °С трудно достижима.
 Для большей точности необходимо использовать термометры сопротивления или термисторы.
- Измерение напряжения, а не тока: измерение низких ЭДС может осложниться электромагнитными шумами и наводками.
- На показания влияет температура свободных концов (температура «холодного спая»), на которую необходимо вносить поправку.

Аналого-цифровое преобразование

Упрощенная схема АЦП двухтактного интегрирования

Две стадии преобразования

1) Интегрирование

замкнут ключ S1, интегратор И интегрирует входное напряжение Uвх, время интегрирования t1 постоянно, в качестве таймера используется счетчик с коэффициентом Ксч

$$t_1 = \frac{K_{\text{CY}}}{f_{\text{TAKT}}} \qquad \qquad U_{\text{M}}(t_1) = -\frac{1}{RC} \int_0^{t_1} U_{\text{BX}}(t) dt = -\frac{U_{\text{BX.CP}} K_{\text{CY}}}{f_{\text{TAKT}} RC}$$

2) Счёт

замкнут ключ S2, на вход интегратора поступает опорное напряжение (его знак противоположен входному напряжению), выходное напряжение интегратора линейно падает до нуля, счетчик накапливает результат преобразования n2

$$U_{\text{II}}(t_1) + \frac{1}{RC} \int_{t_1}^{t_1+t_2} U_{\text{OII}} dt = 0 \qquad t_2 = \frac{n_2}{f_{\text{TAKT}}} \qquad n_2 = \frac{U_{\text{BX.CP}} K_{\text{CY}}}{U_{\text{OII}}}$$

Временные диаграммы АЦП двухтактного интегрирования

В окончательный результат n2 входят не мгновенные значения преобразуемого напряжения, а только значения, усредненные за время t1 Определим коэффициент передачи помехи Кп Пусть на вход интегратора поступает гармонический сигнал единичной амплитуды частотой f с произвольной начальной фазой j.

Среднее значение этого сигнала за время интегрирования t1 равно

$$U_{\rm CP} = \frac{1}{t_1} \int_{0}^{t_1} \sin(2\pi f t + \varphi) dt = \frac{\sin(\pi f t_1 + \varphi) \sin \pi f t_1}{\pi f t_1}$$

Эта величина достигает максимума по модулю при j = +/- pk, k=0, 1,

$$\frac{2,\dots}{\text{В этом случа}} K_{\Pi} = \left| \frac{\sin^2 \pi f t_1}{\pi f t_1} \right|$$

Переменное напряжение, период которого в целое число раз меньше t1, подавляется совершенно.

Поэтому целесообразно выбрать тактовую частоту такой, чтобы Ксч х fтакт было бы равным или кратным периоду напряжения промышленной сети.

Частотная характеристика коэффициента подавпения помех АЦП двухтактного интегрирования

Входные унифицированные сигналы

Входные унифицированные сигналы (0-5мА, 4-20мА, 0-10В)

- Точность измерения
- Различные схемы подключения
- Источники питания для 2-х проводной схемы
- Защита
- Диагностика

Входные унифицированные сигналы (0-5мА, 4-20мА, 0-10В)

- Датчики давления
- Датчики расхода
- Датчики положения
- прочие

Входные дискретные сигналы

- Логический уровень
 - низкоуровневые 0-24V DC (0-48, 0-60V DC)
 - высокоуровневые 0-220V AC/DC
- Входной ток
- Гальваническая изоляция
 - групповая
 - индивидуальная
- Схема подключения
 - потенциальный вход
 - "сухой контакт"
- Индикация состояния

Входные дискретные сигналы

Выходные дискретные сигналы

- Логический уровень
- низкоуровневые 24V DC (0-60V DC)
 - высокоуровневые 220V AC/DC
- Выходной ток
 - слаботочные (20мА)
 - сильноточные (1-3А) и более
- Гальваническая изоляция
 - групповая
 - индивидуальная
- Диагностика состояния выходов
- Индикация состояния

Выходные дискретные сигналы

Модули цифрового интерфейса

- Датчики с цифровым выходом
- Интеллектуальные приводы
- Счетчики (электроэнергии, тепла, расхода воды, расхода газа)
- Устройства частотного возбуждения
- Микропроцессорные устройства электрических защит

Каналы цифрового интерфейса к комплектным устройствам

- Поддержка распространенных протоколов связи
- Различные физические интерфейсы RS-232, RS-422, RS-485, оптоволокно
- Диагностика
- Индикация состояния

Требования к способам подключения

- Подключение жестких полевых кабелей
- •Надежные клеммы, не требующие обслуживания (Wago 0.08 2.5 мм2)
- Конфигурация схемы подключаемых устройств
- Индикация состояния
- Гальваническая развязка
- Удобство монтажа
- Дополнительные функции (встроенные источники питания, цепи защиты и т.п.)

УСО серии MIRage-N Сопряжение с технологическим оборудованием

Полевые кабели присоединяются непосредственно к клеммам УСО.

УСО формирует цифровые физические текущие значения контролируемых параметров технологического оборудования, определяет исправность полевых каналов и качество сигнала и отправляет в управляющие компьютеры сетевые пакеты с диагностикой и физическими текущими значениями.

УСО серии MIRage-N Надежное подключение полевых цепей

Для подключения полевых цепей сечением от 0,08 до 2,5 кв. мм (без специальной формовки) в УСО серии MIRage-N используются безвинтовые подпружиненные клеммы фирмы «Wago», которые нечувствительны к вибрации и не требуют постоянного обслуживания

УСОЗащита от неисправностей в поле

УСО обеспечивают защиту всего остального ПТК от неисправностей и повреждений полевых технических средств. Из строя может выйти только УСО, непосредственно связанное с местом неисправности.

Каналы ввода-вывода: диагностика

Аналоговые входные

Обрыв

Короткое замыкание

«Замерзание»

Аппаратная недостоверность

Технологическая недостоверность

Некорректные значения в данном контексте

Аналоговые выходные

Некорректное управление в данном контексте

Дискретные входные

Некорректные значения в данном контексте

Отсутствие питания

Обрыв

Короткое замыкание

Дискретные выходные

Некорректное управление в данном контексте