Gouttes nageuses dans un champ de gravité

Gabriel Melka Encadrante : Mathilde Reyssat

ENS de Lyon Université Claude Bernard Lyon 1 Laboratoire Gulliver, ESPCI Paris

Août 2025

Plan

- Introduction
- 2 Méthodologie
- Résultats
- Conclusion

Contexte

- Étude de microgouttelettes auto-propulsées par effet Marangoni.
- Propulsion due aux gradients de tension superficielle.
- Objectif : comprendre l'influence de la gravité sur leur vitesse.

Fig. 1 : Mécanisme simplifié

Fig. 2: Effet Marangoni sur une goutte

Mécanisme de nage

- Au-delà de la CMC, formation de micelles inverses.
- Absorption d'eau \rightarrow micelles gonflées.
- Création de gradients interfaciaux ⇒ propulsion.

Fig. 3: Explication du mouvement par effet Marangoni

Préparation du matériel

- Solutions salines (15% NaCl) et tensioactif (> CMC).
- Capillaires carrés de 400 μ m, silanisation interne.
- Production des gouttes via micropointe + femtojet.

Fig. 4: Capillaire

Fig. 5 Schéma capillaire incliné

Observation expérimentale

- Microscope confocal inclinable.
- Suivi des gouttes à 2 fps.
- Analyse des vitesses par ImageJ (tracking manuel ou semi-automatisé).

Fig. 6: Bonne détection

Fig. 7 : Mauvaise détection

Gouttes passives

• Vitesse $V_p = A(\lambda) \sin(\alpha)$.

Fig. 8 : Gouttes passives sous gravité, pour plusieurs confinements

Figure 9 – Régression des différentes pentes en fonction du confinement

- Vitesse V_p proportionnelle à $\sin(\alpha)$.
- ullet Bon accord avec la théorie (sauf à 90°).

Gouttes actives sous gravité

Fig. 10 : Vitesse de nage de gouttes actives sous gravité

- Définition : $V_s = V_a V_p$.
- Gravité accentue la vitesse de nage, sauf pour les angles très élevés
- Effet maximal pour confinements intermédiaires.

Gouttes actives contre gravité

Fig. 11 : Vitesse de nage de gouttes actives contre gravité

- Nagent initialement vers le haut malgré g.
- Vitesse de nage constante avant chute

Modélisation

- Force de propulsion $F_{prop} \sim rK\Delta c$.
- Équilibre entre gravité et traînée, et force de propulsion : relation théorique : $\frac{V_s^0}{\sin(\alpha_c)} = A(\lambda) \ .$

Fig. 12 : Gouttes actives contre gravité, comparaison avec la théorie pour plusieurs concentrations de surfactant

Incertitudes

- Tracking manuel vs traitement numérique.
- Incertitude relative $\approx 2\%$.

Fig. 13 : Traitement numérique pour goutte passive avec λ = 0.82, α =44.9

Conclusion

- Étude conjointe de gouttes passives et actives.
- Gravité peut renforcer ou contrer la nage.
- Effets marqués du confinement et de la concentration.

Perspectives

- Tester capillaires plus larges et circulaires.
- Étudier d'autres forçages (contre-écoulements).
- Optimiser la silanisation pour reproductibilité.

Remerciements

- Merci à Mathilde Reyssat et Léo-Paul Barbier.
- Merci au Laboratoire Gulliver (ESPCI).

Références I

[1] N. Desai, S. Michelin, 2021.

C. de Blois et al., 2019.

Z. Izri et al., 2014.

M. Morozov, S. Michelin, 2021.

Castonguay et al., 2023.

C. de Blois de La Calande, thèse 2022.