CSCI 5561 HW2

1.

Linearity:

let
$$y[x] = \alpha f[x] + \beta g[x]$$
,
 $\Rightarrow T\{\alpha f[x] + \beta g[x]\} = T\{y[x]\}$, by assumption of $y[x]$
 $= y[x-n]$, by def of $T\{\}$
 $= \alpha f[x-n] + \beta g[x-n]$, by def of $y[x]$
 $= \alpha T\{f[x]\} + \beta T\{g[x]\}$, by def of $T\{\}$
 $T\{\alpha f[x] + \beta g[x]\} = \alpha T\{f[x]\} + \beta T\{g[x]\}$, so is Linear.

Shift-Invariance:

let
$$f_s[x] = Shift\{f[x]\} = f[x - x_0], h[x] = T\{f[x]\} = f[x - n],$$

 $\Rightarrow T\{f_s[x]\} = f[x - x_0 - n], by def of T\{\}$
 $= Shift\{h[x]\}, by def of Shift\{\}$
 $T\{f_s[x]\} = Shift\{h[x]\}, so is Shift Invariant.$

2.

Linearity:

let
$$y[x] = \alpha f[x] + \beta g[x]$$
,
 $\Rightarrow T\{\alpha f[x] + \beta g[x]\} = T\{y[x]\}$, by assumption of $y[x]$
 $= c_1 y[x] + c_2 y[x-1] + c_3 y[x-2]$, by def of $T\{\}$
 $= c_1 (\alpha f[x] + \beta g[x]) + c_2 (\alpha f[x-1] + \beta g[x-1]) + c_3 (\alpha f[x-2] + \beta g[x-2])$, by def of $y[x]$
 $= \alpha (c_1 f[x] + c_2 f[x-1] + c_3 f[x-2]) + \beta (c_1 g[x] + c_2 g[x-1] + c_3 g[x-2])$, by associativity
 $= \alpha T\{f[x]\} + \beta T\{g[x]\}$, by def of $T\{\}$
 $T\{\alpha f[x] + \beta g[x]\} = \alpha T\{f[x]\} + \beta T\{g[x]\}$, so is Linear.

Shift-Invariance:

let
$$f_s[x] = Shift\{f[x]\} = f[x-x_0]$$
, $h[x] = T\{f[x]\} = c_1f[x] + c_2f[x-1] + c_3f[x-2]$, $\Rightarrow T\{f_s[x]\} = c_1f[x-x_0] + c_2f[x-x_0-1] + c_3f[x-x_0-2]$), by def of $T\{\}$ $= c_1f[x-x_0] + c_2f[x-1-x_0] + c_3f[x-2-x_0]$), by commutativity $= Shift\{h[x]\}$, by def of $Shift\{\}$ $T\{f_s[x]\} = Shift\{h[x]\}$, so is $Shift Invariant$.

3.

Linearity:

let
$$y[x] = \alpha f[x] + \beta g[x]$$
,
 $\Rightarrow T\{\alpha f[x] + \beta g[x]\} = T\{y[x]\}$, by assumption of $y[x]$
 $= y[x^2]$, by def of $T\{\}$
 $= \alpha f[x^2] + \beta g[x^2]$, by def of $y[x]$
 $= \alpha T\{f[x]\} + \beta T\{g[x]\}$, by def of $T\{\}$

$$T\{\alpha f[x] + \beta g[x]\} = \alpha T\{f[x]\} + \beta T\{g[x]\}$$
, so is Linear.

Shift-Invariance:

let
$$f_s[x] = Shift\{f[x]\} = f[x-x_0], h[x] = T\{f[x]\} = f[x^2],$$

 $\Rightarrow T\{f_s[x]\} = f[(x-x_0)^2] = f[x^2 - 2x_0x + x_0^2], by def of T\{\}$
 $\neq Shift\{h[x]\} = f[x^2 - x_0], by def of Shift\{\}$
 $T\{f_s[x]\} \neq Shift\{h[x]\}$, so is **not** Shift Invariant.

4.

Linearity:

let
$$y[x] = \alpha f[x] + \beta g[x],$$

 $\Rightarrow T\{\alpha f[x] + \beta g[x]\} = T\{y[x]\}, \text{ by assumption of } y[x]$
 $= y^2[x], \text{ by def of } T\{\}$
 $= (\alpha f[x] + \beta g[x])^2, \text{ by def of } y[x]$
 $= \alpha^2 f^2[x] + 2\alpha \beta f[x]g[x] + \beta^2 g^2[x]$
 $\alpha T\{f[x]\} + \beta T\{g[x]\} = \alpha f^2[x] + \beta g^2[x], \text{ by def of } T\{\}$
 $T\{\alpha f[x] + \beta g[x]\} \neq \alpha T\{f[x]\} + \beta T\{g[x]\}, \text{ so is not Linear.}$

Shift-Invariance:

let
$$f_s[x] = Shift\{f[x]\} = f[x - x_0], h[x] = T\{f[x]\} = f^2[x],$$

 $\Rightarrow T\{f_s[x]\} = (f[x - x_0])^2, by def of T\{\}$
 $= Shift\{h[x]\} = (f[x - x_0])^2, by def of Shift\{\}$
 $T\{f_s[x]\} = Shift\{h[x]\}, so is Shift Invariant.$

5.

Linearity:

let
$$y[x] = \alpha f[x] + \beta g[x],$$

 $\Rightarrow T\{\alpha f[x] + \beta g[x]\} = T\{y[x]\}, \text{ by assumption of } y[x]$
 $= cy[x] + d, \text{ by def of } T\{\}$
 $= c(\alpha f[x] + \beta g[x]) + d, \text{ by def of } y[x]$
 $= c\alpha f[x] + c\beta g[x] + d$
 $\alpha T\{f[x]\} + \beta T\{g[x]\} = \alpha (cf[x] + d) + \beta (cf[x] + d), \text{ by def of } T\{\}$
 $= \alpha cf[x] + \beta cg[x] + \alpha d + \beta d$
 $T\{\alpha f[x] + \beta g[x]\} \neq \alpha T\{f[x]\} + \beta T\{g[x]\}, \text{ so is not Linear.}$

Shift-Invariance:

let
$$f_s[x] = Shift\{f[x]\} = f[x-x_0], h[x] = T\{f[x]\} = cf[x] + d,$$

 $\Rightarrow T\{f_s[x]\} = cf_s[x] + d, by def of T\{\}$
 $= cf[x-x_0] + d, by def of f_s$

=
$$Shift\{h[x]\}$$
, by def of $Shift\{\}$
 $T\{f_s[x]\} = Shift\{h[x]\}$, so is Shift Invariant.

6.

Linearity:

let
$$y[x] = \alpha f[x] + \beta g[x],$$

 $\Rightarrow T\{\alpha f[x] + \beta g[x]\} = T\{y[x]\}, \text{ by assumption of } y[x]$
 $= e^{y[x]}, \text{ by def of } T\{\}$
 $= e^{\alpha f[x] + \beta g[x]}, \text{ by def of } y[x]$
 $\alpha T\{f[x]\} + \beta T\{g[x]\} = \alpha e^{f[x]} + \beta e^{g[x]}, \text{ by def of } T\{\}$
 $T\{\alpha f[x] + \beta g[x]\} \neq \alpha T\{f[x]\} + \beta T\{g[x]\}, \text{ so is not Linear.}$

Shift-Invariance:

let
$$f_s[x] = Shift\{f[x]\} = f[x-x_0], h[x] = T\{f[x]\} = e^{f[x]},$$

 $\Rightarrow T\{f_s[x]\} = e^{f_s[x]}, by def of T\{\}$
 $= e^{f[x-x_0]}, by def of f_s$
 $= Shift\{h[x]\}, by def of Shift\{\}$
 $T\{f_s[x]\} = Shift\{h[x]\}, so is Shift Invariant.$

7.

Linearity:

let
$$y[x] = \alpha f[x] + \beta g[x],$$

 $\Rightarrow T\{\alpha f[x] + \beta g[x]\} = T\{y[x]\}, \text{ by assumption of } y[x]$
 $= x + cy[x], \text{ by def of } T\{\}$
 $= x + c(\alpha f[x] + \beta g[x]), \text{ by def of } y[x]$
 $= x + c\alpha f[x] + c\beta g[x]$
 $\alpha T\{f[x]\} + \beta T\{g[x]\} = \alpha(x + cf[x]) + \beta(x + cg[x]), \text{ by def of } T\{\}$
 $= \alpha x + \beta x + \alpha cf[x] + \beta cg[x]$
 $T\{\alpha f[x] + \beta g[x]\} \neq \alpha T\{f[x]\} + \beta T\{g[x]\}, \text{ so is not Linear.}$

Shift-Invariance:

let
$$f_s[x] = Shift\{f[x]\} = f[x-x_0], h[x] = T\{f[x]\} = x + cf[x],$$

 $\Rightarrow T\{f_s[x]\} = x + f_s[x], \text{ by def of } T\{\}$
 $= x + cf[x-x_0], \text{ by def of } f_s$
 $Shift\{h[x]\} = (x-x_0) + cf[x-x_0], \text{ by def of Shift}\{\}$
 $T\{f_s[x]\} \neq Shift\{h[x]\}$, so is **not** Shift Invariant.