

നമ്മുടെ ചുറ്റുപാടിൽ വൈവിധ്യമാർന്ന ഒട്ടേറെ പദാർഥങ്ങളുണ്ടല്ലോ. ഈ പദാർഥങ്ങളെല്ലാം ആറ്റങ്ങൾ കൂടിച്ചേർന്ന തന്മാത്രകളാൽ നിർമിത മാണെന്ന് നിങ്ങൾ മനസ്സിലാക്കിയിട്ടുണ്ടല്ലോ. പദാർഥങ്ങളെ അവയുടെ തന്മാത്രകളിലെ ആറ്റങ്ങൾക്കനുസരിച്ച് മൂലകങ്ങൾ എന്നും സംയുക്ത ങ്ങളെന്നും രണ്ടായി തരംതിരിച്ചിട്ടുണ്ട്. വ്യത്യസ്ത മൂലകങ്ങളുടെ ആറ്റ ങ്ങൾ കൂടിച്ചേർന്നാണ് സംയുക്ത തന്മാത്രകൾ ഉണ്ടായിരിക്കുന്നതെന്ന് നിങ്ങൾക്കറിയാം. എങ്കിൽ

- എങ്ങനെയാണ് ആറ്റങ്ങൾ തമ്മിൽ കൂടിച്ചേരുന്നത്?
- എന്തിനാണ് ആറ്റങ്ങൾ തമ്മിൽ കൂടിച്ചേരുന്നത്?
- എല്ലായ്പ്പോഴും ആറ്റങ്ങൾ ഒരേ രീതിയിലാണോ കൂടിച്ചേരുന്നത്?
- തന്മാത്രകളിൽ ആറ്റങ്ങൾ ചേർന്നു നിൽക്കാനുള്ള കാരണം എന്ത്?
 ഇത്തരം കാര്യങ്ങളെക്കുറിച്ച് നിങ്ങൾ എപ്പോഴെങ്കിലും ചിന്തിച്ചു നോക്കി യിട്ടുണ്ടോ?

ഇലക്ട്രോൺ വിന്യാസവും സ്ഥിരതയും

ആറ്റങ്ങൾ ചേർന്ന് തന്മാത്രയുണ്ടാകുന്നത് സ്ഥിരത കൈവരിക്കാൻ വേണ്ടി യാണ്. പീരിയോഡിക് ടേബിളിന്റെ ചിത്രം നിങ്ങൾ കണ്ടിരിക്കും. ഇതിൽ 18-ാം ഗ്രൂപ്പിൽ വരുന്ന മൂലകങ്ങളാണ് ഉൽകൃഷ്ട വാതകങ്ങൾ അഥവാ അലസവാതകങ്ങൾ. ഇവയെ അങ്ങനെ വിളിക്കാനുള്ള കാരണം എന്താ യിരിക്കും?

ഉൽകൃഷ്ട വാതകങ്ങളുടെ ഇലക്ട്രോൺ വിന്യാസം സൂചിപ്പിക്കുന്ന പട്ടിക 2.1 നിരീക്ഷിക്കുക.

മുലകം		അറ്റോമിക നമ്പർ	ഇലക്ട്രോൺ വിന്യാസം
ഹീലിയം	(He)	2	2
നിയോൺ	(Ne)	10	2, 8
ആർഗോൺ	(Ar)	18	2, 8, 8
ക്രിപ്റ്റോൺ	(Kr)	36	2, 8, 18, 8
സീനോൺ	(Xe)	54	2, 8, 18, 18, 8
റഡോൺ	(Rn)	86	2, 8, 18, 32, 18, 8

പട്ടിക 2.1

ഹീലിയം ഒഴികെയുള്ള മറ്റു മൂലകങ്ങളുടെ ബാഹൃതമഷെല്ലിൽ എത്ര ഇലക്ട്രോൺ ഉണ്ട്?

ഏതൊരു മൂലകത്തിന്റെയും ബാഹ്യതമഷെല്ലിൽ ഉൾക്കൊള്ളാവുന്ന പരമാ വധി ഇലക്ട്രോണുകളുടെ എണ്ണം എത്ര?

ബാഹ്യതമഷെല്ലിൽ എട്ട് ഇലക്ട്രോൺ വരുന്ന ക്രമീകരണം **അഷ്ടക** ഇലക്ട്രോൺ വിന്യാസം (Octet configuration) എന്നറിയപ്പെടുന്നു.

ഒരു ആറ്റത്തിലെ അഷ്ടക ഇലക്ട്രോൺ സംവിധാനം സ്ഥിരതയുള്ള ഘടനയാണ്. ഉൽകൃഷ്ട വാതകങ്ങൾക്ക് ഈ ഘടനയുള്ളതിനാൽ അവയ്ക്ക് സ്ഥിരത ഉണ്ട്. അതിനാൽ അവ സാധാരണയായി രാസപ്ര വർത്തനത്തിൽ ഏർപ്പെടുന്നില്ല.

ഹീലിയം ആറ്റത്തിൽ ഒരു ഷെൽ മാത്രമേയുള്ളൂ. ഒന്നാം ഷെല്ലിൽ ഉൾക്കൊള്ളാവുന്ന പരമാവധി ഇലക്ട്രോണുകളുടെ എണ്ണം 2 ആണ്. അതിനാൽ ഹീലിയത്തിന്റെ കാര്യത്തിൽ രണ്ട് ഇലക്ട്രോൺ സംവിധാനം സ്ഥിരതയുളളതാണ്.

പട്ടിക 2.2 ലെ മൂലകങ്ങളുടെ ഇലക്ട്രോൺ വിന്യാസം വിശകലനം ചെയ്യൂ.

മൂലകം	അറ്റോമിക നമ്പർ	ഇലക്ട്രോൺ വിനൃാസം
മഗ്നീഷ്യം	12	2, 8, 2
ഓക്സിജൻ	8	2, 6
സോഡിയം	11	2, 8, 1
ക്ലോറിൻ	17	2, 8, 7

പട്ടിക 2.2

 പട്ടിക 2.2 ലെ മൂലകങ്ങളുടെ ആറ്റങ്ങൾക്ക് സ്ഥിരതയുണ്ടോ? എന്തു കൊണ്ട്?

ഇവ സ്ഥിരത നേടുന്നത് എങ്ങനെയായിരിക്കും? നമുക്ക് നോക്കാം.

രാസബന്ധനത്തിലൂടെ ആറ്റങ്ങൾ ബാഹൃതമ ഷെല്ലിൽ എട്ട് ഇല ക്ട്രോൺ ക്രമീകരണം നേടി സ്ഥിരത കൈവരിക്കുന്നു.

പട്ടിക 2.2 ലെ മൂലകങ്ങൾ ഉണ്ടാക്കുന്ന സംയുക്തങ്ങൾ നിങ്ങൾക്ക് പരി ചയമുണ്ടല്ലോ. ഏതാനും സംയുക്തങ്ങളുടെ പേര് എഴുതുക.

ഇത്തരം തന്മാത്രകളിൽ അറ്റങ്ങളെ തമ്മിൽ ചേർത്തു നിർത്തുന്ന തെന്താണ്?

ഒരു തന്മാത്രയിൽ അതിലെ ആറ്റങ്ങളെ പരസ്പരം ചേർത്തു നിർത്തുന്ന ബലത്തെ രാസബന്ധനം (Chemical Bond) എന്നു പറയുന്നു.

അയോണിക ബന്ധനം (Ionic Bonding)

ഏതെല്ലാം ആറ്റങ്ങൾ ചേർന്നാണ് സോഡിയം ക്ലോറൈഡ് ഉണ്ടാകുന്നത്? ഓരോ ആറ്റത്തിന്റെയും ഇലക്ട്രോൺ വിന്യാസം (പട്ടിക 2.2) വിശക ലനം ചെയ്യൂ.

- സോഡിയത്തിന്റെ ബാഹൃതമഷെല്ലിലുള്ള ഇലക്ട്രോണുകളുടെ എണ്ണം എത്രയാണ്?
- ക്ലോറിന്റെ ബാഹ്യതമഷെല്ലിലുള്ള ഇലക്ട്രോണുകളുടെ എണ്ണമോ?
- സോഡിയത്തിനും ക്ലോറിനും സ്ഥിരത കൈവരിക്കാൻ എന്താണ് മാർഗം?

ഇലക്ട്രോൺ ഡോട്ട് ഡയഗ്രം

മൂലകത്തിന്റെ പ്രതീകത്തിനു ചുറ്റും

ഇലക്ട്രോണുകളെ കുത്തുകൾ

1875 - 1946

(ഡോട്ട്) ഉപയോഗിച്ച് ചിത്രീകരി ക്കുന്ന രീതി ആദ്യമായി അവലംബി ച്ചത് ഗിൾബർട്ട് എൻ. ലൂയിസ് എന്ന അമേരിക്കൻ രസതന്ത്രജ്ഞനാണ്. കുത്തുകൾക്കു പുറമേ ഗുണന ചി ഹ്നങ്ങ ളും ഉപയോഗിക്കാറുണ്ട്. മൂല കത്തിന്റെ പ്രതീകത്തിനു ചുറ്റും

ബാഹൃതമ ഷെല്ലിലെ ഇലക്ട്രോണുകളെ മാത്രമാണ് രേഖ പ്പെടുത്തുന്നത്.

- സോഡിയം ക്ലോറൈഡ് രൂപീകരണ ത്തിൽ ഓരോ മൂലക ആറ്റത്തിലും നടക്കുന്ന ഇലക്ട്രോൺ കൈമാറ്റം ബോർ മാതൃകയിൽ ചിത്രീകരിച്ചിരി ക്കുന്നത് (ചിത്രം 2.1) വിശകലനം ചെയ്യൂ.
- ഇലക്ട്രോൺ കൈമാറ്റം നടന്നു കഴി ഞ്ഞാൽ സോഡിയം, ക്ലോറിൻ എന്നീ ആറ്റങ്ങളുടെ ചാർജിന് എന്തെങ്കിലും മാറ്റം സംഭവിക്കുമോ? ചർച്ച ചെയ്യൂ.

ചിത്രം 2.1

സോഡിയം ആറ്റവും ക്ലോറിൻ ആറ്റവും ഇലക്ട്രോൺ കൈമാറ്റം ചെയ്യു ന്നവിധം **ഇലക്ട്രോൺ ഡോട്ട് ഡയഗ്രം** ഉപയോഗിച്ച് ചിത്രീകരിച്ചിരി ക്കുന്നു (ചിത്രം 2.2). രാസബന്ധനത്തിൽ പങ്കെടുക്കുന്നത് ബാഹൃതമ ഷെല്ലിലെ ഇലക്ട്രോണുകൾ ആയതിനാൽ അവയുടെ എണ്ണം മാത്രം സൂചിപ്പിക്കുന്ന ചിത്രീകരണമാണിത്.

$$\underset{(2, 8, 1)}{\overset{\bullet}{\text{Na}}} + \underset{(2, 8, 7)}{\overset{\bullet}{\text{Cl}}} \xrightarrow{} \underset{(2, 8)}{\overset{\bullet}{\text{Na}}} + \underset{(2, 8, 8)}{\overset{\bullet}{\text{Cl}}}$$

ചിത്രം 2.2

സോഡിയം ക്ലോറൈഡ് രൂപീകരണവുമായി ബന്ധപ്പെട്ട് രാസപ്രവർത്ത നത്തിനു മുൻപും ശേഷവുമുള്ള ഇലക്ട്രോൺ ക്രമീകരണം പരിശോ ധിച്ച് പട്ടിക 2.3 പൂർത്തിയാക്കുക.

	സോദ	ധിയം	ക്ലോറിൻ		
	യസപ്രവർത്തനത്തിനു മുൻപ്	രാസപ്രവർത്തനത്തിനു ശേഷം	യസപ്രവർത്തനത്തിനു മുൻപ്	രാസപ്രവർത്തനത്തിനു ശേഷം	
ഇലക്ട്രോൺ വിനൃാസം					
ഇലക്ട്രോണിന്റെ എണ്ണം					
പ്രോട്ടോണിന്റെ എണ്ണം					
ചാർജ്					

പട്ടിക 2.3

- ഇലക്ട്രോൺ വിട്ടുകൊടുത്ത ആറ്റം ഏത്? എത്ര ഇലക്ട്രോൺ?
- ഇലക്ട്രോൺ സ്വീകരിച്ച ആറ്റം ഏത്? എത്ര ഇലക്ട്രോൺ?
- ആറ്റങ്ങൾക്ക് ചാർജ് ലഭിച്ചുകഴിഞ്ഞാൽ അവ ഏതു പേരിലറിയപ്പെടും
- സോഡിയം ക്ലോറൈഡ് രൂപീകരണവുമായി ബന്ധപ്പെട്ട ഇലക്ട്രോൺ കൈമാറ്റം സമവാക്യമായി എഴുതാം.

Na
$$\rightarrow$$
 Na⁺ + 1e⁻
Cl + 1e⁻ \rightarrow Cl⁻

സോഡിയം ക്ലോറൈഡ് രൂപീകരണത്തിൽ സോഡിയം ഒരു ഇലക്ട്രോ ണിനെ വിട്ടുകൊടുത്ത് സോഡിയം അയോൺ (Na⁺) ആയി മാറുന്നു. പോസിറ്റീവ് അയോണുകളെ കാറ്റയോണുകൾ (Cations) എന്നു പറയുന്നു. ക്ലോറിൻ ഒരു ഇലക്ട്രോണിനെ സ്വീകരിച്ച് ക്ലോറൈഡ് അയോൺ (Cr) ആയി മാറുന്നു. നെഗറ്റീവ് അയോണുകളെ ആനയോണുകൾ (Anions) എന്നു പറയുന്നു. ഈ പ്രവർത്തനത്തിലൂടെ സോഡിയം ആറ്റവും ക്ലോറിൻ ആറ്റവും ബാഹ്യതമഷെല്ലിൽ അഷ്ടക പൂർത്തീകരണം വഴി സ്ഥിരത കൈവരിക്കുന്നു. ഇപ്രകാരമുണ്ടാകുന്ന വിപരീത ചാർജുള്ള അയോണുകൾ തമ്മിൽ വൈദ്യുതാകർഷണത്തിൽ (Electrostatic force of attraction) ഏർപ്പെടുകയും അവയെ പരസ്പരം ബന്ധിപ്പിച്ച് നിർത്തുകയും ചെയ്യുന്നു. ഇത്തരം ബന്ധനത്തെ അയോണിക ബന്ധനമെന്ന് പറയുന്നു. സോഡിയം ക്ലോറൈഡിൽ അയോണികബന്ധനമാണുള്ളത്.

ഇലക്ട്രോൺ കൈമാറ്റം മൂലമുണ്ടാകുന്ന രാസബന്ധനമാണ് അയോണിക ബന്ധനം. വിപരീത ചാർജുകളുള്ള അയോണുകൾ തമ്മിലുള്ള വൈദ്യുതാകർഷണമാണ് അയോണിക ബന്ധനത്തിൽ അയോണുകളെ ചേർത്തുനിർത്തുന്നത്.

മഗ്നീഷ്യവും ഓക്സിജനും ചേർന്ന് മഗ്നീഷ്യം ഓക്സൈഡ് (MgO) ഉണ്ടാകുന്നത് എങ്ങനെയെന്ന് നോക്കാം.

ചുവടെ തന്നിരിക്കുന്ന ഇലക്ട്രോൺ ഡോട്ട് ഡയഗ്രം (ചിത്രം 2.3) പരി ശോധിച്ച് പട്ടിക 2.4 പൂർത്തിയാക്കുക.

	മഗ്നീ	ഷ്യം	ഓക്സിജൻ		
	രാസപ്രവർത്ത നത്തിനു മുൻപ്	രാസപ്രവർത്തനത്തിനു ശേഷം	രാസപ്രവർത്ത നത്തിനു മുൻപ്	രാസപ്രവർത്ത നത്തിനു ശേഷം	
ഇലക്ട്രോൺ വിനൃാസം					
ഇലക്ട്രോണിന്റെ എണ്ണം					
പ്രോട്ടോണിന്റെ എണ്ണം					
ചാർജ്					

പട്ടിക 2.4

സ്ഥിരത കൈവരിച്ചപ്പോൾ മഗ്നീഷ്യത്തിന്റെയും ഓക്സിജന്റെയും ബാഹൃതമഷെല്ലിലെ ഇലക്ട്രോണുകളുടെ എണ്ണത്തിലുണ്ടായ മാറ്റം ശ്രദ്ധി ക്കുക. മഗ്നീഷ്യവും ഓക്സിജനും സ്ഥിരത കൈവരിച്ചത് എങ്ങനെയെന്ന് ഇപ്പോൾ ബോധ്യപ്പെട്ടല്ലോ. മഗ്നീഷ്യം ഓക്സൈഡിലേത് അയോണി കബന്ധനമാണെന്ന് ഇതിൽനിന്നും മനസിലാക്കാം.

ഇതുപോലെ സോഡിയം ഓക്സൈഡിലെ (Na_2O) അയോണിക ബന്ധനം ചിത്രീകരിച്ചിരിക്കുന്നതു (ചിത്രം 2.4) നോക്കൂ.

$$Na + O + Na \rightarrow Na^{\dagger} = Na^{\dagger} = Na^{\dagger}$$

ചുവടെയുള്ള സംയുക്തങ്ങളിലെ അയോണിക ബന്ധനം ഇലക്ട്രോൺ ഡോട്ട് ഡയഗ്രം ഉപയോഗിച്ച് ചിത്രീകരിക്കുക.

സൂചന (അറ്റോമിക നമ്പർ Na = 11, F = 9, Mg = 12)

- സോഡിയം ഫ്ളൂറൈഡ് (NaF)
- മഗ്നീഷ്യം ഫ്ളൂറൈഡ് (MgF₂)

അയോണിക ബന്ധനം വഴിയുണ്ടാകുന്ന സംയുക്തങ്ങൾ അയോണിക സംയുക്തങ്ങൾ (lonic Compounds) എന്നറിയപ്പെടുന്നു.

സഹസംയോജക ബന്ധനം (Covalent bonding)

ഫ് ളൂറിൻ (F_2), ക്ലോറിൻ (CI_2), ഓക്സിജൻ (O_2), നൈട്രജൻ (N_2) മുതലായവ ദ്വയാറ്റോമിക തന്മാത്രകളാണ്. ഇവയുടെ തന്മാത്രാ രൂപീക രണം എങ്ങനെയെന്ന് പരിശോധിക്കാം.

ഫ്ളൂറിൻ ആറ്റത്തിന്റെ ബോർ മാതൃക ചിത്രം 2.5 ൽ നൽകിയിരിക്കുന്നു.

ചിത്രം 2.5

- ഫ്ളൂറിന്റെ അറ്റോമിക നമ്പർ എത്ര?
 - ______
- ഇലക്ട്രോൺ വിന്യാസം എഴുതൂ _ _ _ _ _ _ _
- അഷ്ടക ഇലക്ട്രോൺ സംവിധാനം ലഭിക്കാൻ ഒരു ഫ്ളൂറിൻ ആറ്റ ത്തിന് എത്ര ഇലക്ട്രോൺ കൂടി വേണം? _ _ _ _ _ _

ഒരു ഫ്ളൂറിൻ ആറ്റം മറ്റൊരു ഫ്ളൂറിൻ ആറ്റത്തിന് ഇലക്ട്രോൺ വിട്ടു കൊടുക്കാൻ സാധ്യതയുണ്ടോ? ചിന്തിച്ചു നോക്കൂ. ഈ തന്മാത്രയിൽ അയോണിക ബന്ധനം സാധ്യമാണോ? ചർച്ച ചെയ്യു.

രണ്ട് ഫ്ളൂറിൻ ആറ്റങ്ങൾക്കും അഷ്ടക സംവിധാനം നേടാൻ എന്താണ് മാർഗം?______

ഒരു ഫ്ളൂറിൻ തന്മാത്രയിലെ രണ്ട് ഫ്ളൂറിൻ ആറ്റങ്ങൾ രാസബന്ധനത്തി

ലേർപ്പെട്ടിരിക്കുന്ന വിധം ചിത്രീകരിച്ചിരിക്കുന്നതു (ചിത്രം 2.6) വിശകലനം ചെയ്യുക.

ചിത്രം 2.6

- എത്ര ജോഡി ഇലക്ട്രോണുകൾ പങ്കുവച്ചു? _ _ _ _ _ _ _ .

ഇലക്ട്രോൺ പങ്കുവയ്ക്കൽ മൂലമുണ്ടാകുന്ന രാസബന്ധനത്തെ സഹസംയോജക ബന്ധനം എന്നു പറയുന്നു.

ബന്ധനത്തിൽ ഏർപ്പെട്ട ഇലക്ട്രോണുകളെ സാധാരണയായി നാം ജോഡികളായാണ് പ്രസ്താവിക്കുന്നത്. ഫ്ളൂറിൻ തന്മാത്രാരൂപീകരണ ത്തിൽ ഒരു ജോഡി ഇലക്ട്രോൺ പങ്കുവച്ചതിനാൽ ഇതൊരു **ഏകബ** ന്ധന (Single bond) മാണ്. രാസബന്ധനത്തിൽ ഏർപ്പെട്ടിരിക്കുന്ന മൂലക ങ്ങളുടെ പ്രതീകങ്ങൾക്കിടയിൽ ഒരു ചെറിയ വരകൊണ്ടാണ് ഏകബന്ധനം സൂചിപ്പിക്കുന്നത് (F – F)

ക്ലോറിന്റെ അറ്റോമികനമ്പർ 17 ആണ്.

ഇലക്ട്രോൺ വിന്യാസം എഴുതൂ. _ _ _ _ _ _ _ _ _ _ _ _

ക്ലോറിൻ ആറ്റത്തിന്റെ ഇലക്ട്രോൺ ഡോട്ട് ഡയഗ്രം വരക്കൂ. രണ്ട് ക്ലോറിൻ ആറ്റങ്ങൾ ചേർന്നുള്ള ക്ലോറിൻ തന്മാത്രാരൂപീകരണത്തിന്റെ ഇലക്ട്രോൺ ഡോട്ട് ഡയഗ്രം വരച്ചു നോക്കൂ.

എത്ര ജോഡി ഇലക്ട്രോണുകൾ പങ്കുവയ്ക്കുന്നുവെന്നു കണ്ടെത്തുക. ഇനി ഓക്സിജൻ, നൈട്രജൻ എന്നീ തന്മാത്രകളിലെ രാസബന്ധനം ചിത്രീകരിച്ചിരിക്കുന്നതു (ചിത്രം 2.7) നോക്കൂ.

ചിത്രം 2.7

ഇവയിൽ ഓരോന്നിലും എത്ര ജോഡി ഇലക്ട്രോണുകളാണ് പങ്കുവച്ചി ട്യുള്ളത്? രണ്ടു ജോഡി ഇലക്ട്രോണുകൾ പങ്കുവച്ചുണ്ടാകുന്ന സഹസം യോജക ബന്ധനം ദിബന്ധനം (Double bond) എന്നും മൂന്നു ജോഡി ഇലക്ട്രോണുകൾ പങ്കുവച്ചുണ്ടാകുന്ന സഹസംയോജക ബന്ധനം ത്രിബന്ധനം (Triple bond) എന്നും അറിയപ്പെടുന്നു. ഓക്സിജൻ തന്മാത്രയിൽ ദിബന്ധനവും നൈട്രജൻ തന്മാത്രയിൽ ത്രിബന്ധനവുമാണെന്ന് മനസ്സിലായില്ലേ. ഇവയെ പ്രതീകം ഉപയോഗിച്ച് യഥാക്രമം O = O, N ≡ N

എന്നിങ്ങനെ സൂചിപ്പിക്കാം.

ഇതുവരെ പരിചയപ്പെട്ട സഹസംയോജക ബന്ധനവുമായി ബന്ധപ്പെട്ടു ചുവടെ നൽകിയിട്ടുള്ള പട്ടിക 2.5 പൂർത്തിയാക്കുക

മൂലകതന്മാത്രകൾ	പങ്കുവയ്ക്കുന്ന ഇലക്ട്രോൺ ജോഡികളുടെ എണ്ണം	രാസബന്ധനം
F ₂		ഏകബന്ധനം
Cl ₂		
O ₂		
N_2		

പട്ടിക 2.5

ഇനി വ്യത്യസ്ത ആറ്റങ്ങൾ ചേർന്നുണ്ടാകുന്ന സഹസംയോജക ബന്ധനം നോക്കാം.

ഹൈഡ്രജൻ ക്ലോറൈഡ് (HCI) തന്മാത്രയിലെ രാസബന്ധനം ചിത്രീകരി ച്ചിരിക്കുന്നത് (ചിത്രം 2.8) വിലയിരുത്തൂ.

ചിത്രം 2.8

- പങ്കുവയ്ക്കുന്ന ഇലക്ട്രോൺ ജോഡികളുടെ എണ്ണമെത്ര?
- പ്രതീകങ്ങൾ ഉപയോഗിച്ചു ബന്ധനം ചിത്രീകരിക്കുക.

കാർബൺടെട്രാക്ലോറെഡ് (CCI₄) തന്മാത്രാ രൂപീകരണം എങ്ങനെയെന്ന് മനസ്സിലാക്കാം.

കാർബണിന്റെയും ക്ലോറിന്റെയും ഇലക്ട്രോൺ ഡോട്ട് ഡയഗ്രം വരയ്ക്കൂ.

- കാർബൺ ആറ്റത്തിന് അഷ്ടകം പൂർത്തിയാക്കാൻ എത്ര ഇല ക്ട്രോൺ വേണം? _ _ _ _ _ _ _ _ _ _
- കാർബണിന് അഷ്ടകം പൂർത്തിയാക്കാൻ എത്ര ക്ലോറിൻ ആറ്റവു മായി സംയോജിക്കേണ്ടിവരും?
- കാർബൺട്യെടാക്ലോറൈഡ് തന്മാത്രയുടെ രൂപീകരണം ചിത്രീക രിച്ചിരിക്കുന്നതു (ചിത്രം 2.9) നോക്കൂ.

$$\cdot \dot{\mathbf{C}} \cdot + 4 \cdot \ddot{\mathbf{C}} : \rightarrow (\mathbf{C} \cdot \mathbf{C} \cdot \mathbf{C}$$

കാർബൺ

ക്ലോറിൻ

കാർബൺടെട്രാക്ലോറൈഡ്

ചിത്രം 2.9

- കാർബൺ ആറ്റം ഓരോ ക്ലോറിൻ ആറ്റവുമായി എത്ര ജോഡി ഇല ക്ട്രോണുകളെ പങ്കുവയ്ക്കുന്നു?
- കാർബൺ ആറ്റം എല്ലാ ക്ലോറിൻ ആറ്റങ്ങളുമായി ആകെ എത്ര
 ജോഡി ഇലക്ട്രോണുകളെ പങ്കുവയ്ക്കുന്നു?
- പ്രതീകങ്ങൾ ഉപയോഗിച്ചു തന്മാത്രയെ എങ്ങനെ സൂചിപ്പിക്കാം?

സഹസംയോജക ബന്ധനം വഴി ഉണ്ടാകുന്ന സംയുക്തങ്ങളെ സഹ സംയോജക സംയുക്തങ്ങൾ (Covalent compounds) എന്നു വിളിക്കാം. അലോഹ മൂലകങ്ങൾ തമ്മിൽ സംയോജിക്കുമ്പോൾ സാധാരണയായി സഹസംയോജക സംയുക്തങ്ങളാണ് ഉണ്ടാകുന്നത്.

സഹസംയോജക സംയുക്തങ്ങൾക്ക് ചില ഉദാഹരണങ്ങൾ നൽകിയിരിക്കുന്നു. ഇവയിലെ രാസബന്ധനം ഇലക്ട്രോൺ ഡോട്ട് ഡയഗ്രം ഉപയോഗിച്ചു ചിത്രീകരിക്കുക.

CH₄, HF, H₂O

ഇലക്ട്രോനെഗറ്റിവിറ്റി (Electronegativity)

സഹസംയോജക ബന്ധനത്തിൽ പങ്കുവയ്ക്കപ്പെട്ട ഇലക്ട്രോൺ ജോഡികളെ രണ്ടാറ്റങ്ങളും ആകർഷിക്കുമല്ലോ. സഹസംയോജക ബ ന്ധനത്തിൽ ഏർപ്പെട്ട രണ്ടാറ്റങ്ങൾക്കിടയിൽ പങ്കുവെച്ച ഇലക്ട്രോൺ ജോഡികളെ ആകർഷിക്കാനുള്ള അതത് ആറ്റത്തിന്റെ കഴിവാണ് ഇലക്ട്രോനെഗറ്റിവിറ്റി.

മൂലകങ്ങളുടെ ഇലക്ട്രോനെഗറ്റിവിറ്റി താരതമ്യം ചെയ്യുന്നതിനായി വ്യത്യസ്ത ഇലക്ട്രോനെഗറ്റിവിറ്റി സ്കെയിലുകൾ ആവിഷ്കരിച്ചിട്ടുണ്ട്. ഇവയിൽ ലീനസ് പോളിങ് (Linus Pauling) എന്ന അമേരിക്കൻ ശാസ്ത്ര ജ്ഞൻ ആവിഷ്കരിച്ച ഇലക്ട്രോനെഗറ്റിവിറ്റി സ്കെയിൽ ആണ് ഏറ്റവും പ്രചാരത്തിലുള്ളത്. ഇതൊരു ആപേക്ഷിക സ്കെയിലാണ്. പൂജ്യത്തിനും നാലിനും ഇടയിലുള്ള സംഖ്യകളാണ് ഇതിൽ മൂലകങ്ങളുടെ ഇലക്ട്രോ നെഗറ്റിവിറ്റി വിലകളായി നൽകിയിട്ടുള്ളത്. ഈ സ്കെയിലിൽ ഇലക്ട്രോ നെഗറ്റിവിറ്റി ഏറ്റവും കൂടിയ മൂലകം ഫ്ളൂറിൻ ആണ്.

ലീനസ് പോളിങ് (1901 – 1994)

പോളിങ് ഇലക്ട്രോനെഗറ്റിവിറ്റി സ്കെയിലിന്റെ ഒരു ഭാഗം ചിത്രീകരിച്ചിരിക്കുന്നത് വിശകലനം ചെയ്യൂ (ചിത്രം 2.10).

ചിത്രം 2.10

ചുവടെ പട്ടിക 2.6 -ൽ ചില സംയുക്തങ്ങളും അവയുടെ സ്വഭാവും നൽകി യിരിക്കുന്നു. അവയിലെ ഘടകമൂലകങ്ങളുടെ ഇലക്ട്രോനെഗറ്റിവിറ്റി വ്യത്യാസം കണ്ടെത്തി പട്ടിക പൂർത്തിയാക്കുക.

സംയുക്തങ്ങൾ	ഘടകമൂലകങ്ങളുടെ ഇലക്ട്രോ നെഗറ്റിവിറ്റിയിലെ വൃത്യാസം	സംയുക്തത്തിന്റെ സ്വഭാവം
കാർബൺ മോണോക്സൈഡ് (CO)	3.44 - 2.55 = 0.89	സഹസംയോജകം
സോഡിയം ക്ലോറൈഡ് (NaCl)		അയോണികം
മീതെയ്ൻ (CH ₄)		സഹസംയോജകം
മഗ്നീഷ്യം ക്ലോറൈഡ് (MgCl₂)		അയോണികം
സോഡിയം ഓക്സൈഡ് (Na ₂ O)		അയോണികം

പട്ടിക 2.6

ഒരു സംയുക്തത്തിലെ ഘടകമൂലകങ്ങളുടെ ഇലക്ട്രോനെഗറ്റിവിറ്റി വിലകൾ തമ്മിലുള്ള വ്യത്യാസം 1.7 ഓ അതിൽ കൂടുതലോ ആണെ പൊതുവെ അയോണിക സ്വഭാവവും 1.7 ൽ കുറവാണെങ്കിൽ സഹസംയോജക സ്വഭാവവും ആയിരിക്കും ഉണ്ടാവുക.

പോളാർ സ്വഭാവം (Polar Nature)

ദ്വയാറ്റോമിക മൂലക തന്മാത്രകളിലെ രണ്ട് ആറ്റങ്ങൾക്കും ഇലക്ട്രോനെഗ റ്റിവിറ്റി തുല്യമായതിനാൽ പങ്കുവയ്ക്കപ്പെടുന്ന ഇലക്ട്രോൺ ജോഡിയെ അവ തുല്യമായി ആകർഷിക്കുന്നു. ഉദാ. H₂, N₂ എന്നിവ.

എന്നാൽ സംയുക്തതന്മാത്രകളിൽ ഇങ്ങനെയല്ല. ഹൈഡ്രജൻ ക്ലോറൈഡ് (HCI) തന്മാത്ര പരിഗണിക്കൂ.

- ഹൈഡ്രജന്റെ ഇലക്ട്രോനെഗറ്റിവിറ്റി എത്രയാണ്?_ _ _ _ _ _
- ക്ലോറിന്റെ ഇലക്ട്രോനെഗറ്റിവിറ്റി എത്ര?______.
- സഹസംയോജകബന്ധനത്തിൽ ഏർപ്പെട്ട ഇലക്ട്രോൺ ജോഡിയെ ഏതു മൂലക ആറ്റത്തിന്റെ ന്യൂക്ലിയസാണ് കൂടുതൽ ആകർഷിക്കാൻ

ജലം ഒരു പോളാർ തന്മാത്ര

ജലം ഒരു പോളാർ തന്മാത്രയാണ്. ജല ത്തിന്റെ വിഭിന്ന സവിശേഷതകൾക്ക് അടിസ്ഥാനം അതിന്റെ പോളാർ സ്വഭാ വമാണ്. പൊതുവെ മോളിക്യുലാർ മാസ് കുറഞ്ഞിരുന്നിട്ടും ജലം ദ്രാവകാവസ്ഥ യിലാ യിരിക്കാൻ കാരണ മിതാണ്. കാർബണികവും അകാർബണികവു മായ അനേകം സംയുക്തങ്ങളെ ലയി പ്പിച്ച് സാർവിക ലായകമാകാൻ ജല ത്തിന് കഴിയുന്നതിന്റെ കാരണവും ഈ പോളാർ സ്വഭാവം തന്നെ.

ഇലക്ട്രോനെഗറ്റിവിറ്റി കൂടിയ CI ആറ്റം പങ്കുവയ്ക്കപ്പെട്ട ഇലക്ട്രോൺ ജോഡിയെ അതിന്റെ ന്യൂക്ലിയസിനടുത്തേക്ക് കൂടുതൽ ആകർഷിക്കും. ഇതിന്റെ ഫലമായി സഹസംയോ ജക സംയുക്തമായ ഹൈഡ്രജൻ ക്ലോറൈഡിൽ ക്ലോറിന്റെ ഭാഗത്ത് ഭാഗികമായ നെഗറ്റീവ് ചാർജും (ഡെൽറ്റാ നെഗ റ്റീവ് δ^-) ഹൈഡ്രജന്റെ ഭാഗത്ത് ഭാഗികമായ പോസിറ്റീവ് ചാർജും (ഡെൽറ്റാ പോസിറ്റീവ് δ^+) സംജാതമാകുന്നു. ഇതിനെ ചുവടെ കൊടുത്തിട്ടുള്ള രീതിയിൽ സൂചിപ്പിക്കാം.

ഭാഗികമായ വൈദ്യുതചാർജുകളുള്ള ഇത്തരം സഹസംയോജക സംയുക്തങ്ങളെ പോളാർ സംയുക്തങ്ങൾ എന്നു വിളിക്കുന്നു. HF, HBr, H_2O എന്നിവ പോളാർ സംയുക്തങ്ങൾക്ക് ഉദാഹരണങ്ങളാണ്. ബഹു അറ്റോ മിക തന്മാത്രകളിൽ പോളാർ സ്വഭാവം നിർണയിക്കുന്നതിൽ തന്മാത്ര യുടെ ജ്യാമിതീയ ആകൃതിയും ഒരു ഘടകമാണ്. ജലം (H_2O), അമോണിയ (NH_1) തുടങ്ങിയവ ഇത്തരം സംയുക്തങ്ങളാണ്.

രാസബന്ധനത്തിലുണ്ടാകുന്ന വ്യത്യാസം സംയുക്തങ്ങളുടെ സ്വഭാവ ത്തിലും പ്രകടമാകും. അയോണിക സംയുക്തങ്ങളുടെയും സഹസംയോ ജക സംയുക്തങ്ങളുടെയും ഗുണങ്ങൾ പട്ടിക 2.7 ൽ നൽകിയിരിക്കുന്നത് വിശകലനം ചെയ്യൂ. സോഡിയം ക്ലോറൈഡ് അയോണിക സംയുക്തവും മെഴുക് സഹസംയോജക സംയുക്തവുമാണ്. പട്ടികയിലെ വിവരങ്ങൾ ഇവയുടെ ഗുണങ്ങളുമായി ഒത്തുനോക്കു.

ഗുണങ്ങൾ	അയോണിക സംയുക്തം	സഹസംയോജക സംയുക്തം
അവസ്ഥ	ഖരം	ഖരം, ദ്രാവകം, വാതകം എന്നീ മൂന്ന് അവ സ്ഥകളിലും കാണപ്പെടുന്നു.
ജലത്തിലെ ലേയത്വം	ജലത്തിൽ ലയിക്കുന്നു.	ജലത്തിൽ പൊതുവെ ലയിക്കു ന്നില്ല. ഓർഗാനിക് ലായകങ്ങ ളിൽ (മണ്ണെണ്ണ, CCI_4 , ബെൻ സീൻ മുതലായവ) ലയിക്കുന്നു.
വെദ്യുതചാലകത	ലായനി ആയിരിക്കുമ്പോഴും ഉരു കിയ അവസ്ഥയിലും വൈദ്യുതി കടത്തി വിടുന്നു.	0
ദ്രവണാങ്കം (Melting Point) തിളനില (Boiling Point)	ഉയർന്നത്	പൊതുവെ താഴ്ന്നത്.

സംയോജകത (Valency)

മൂലകങ്ങൾ രാസബന്ധനത്തിൽ ഏർപ്പെട്ടു സ്ഥിരത കൈവരിക്കുന്നു. അവ സംയോജിക്കുമ്പോൾ ഇലക്ട്രോൺ കൈമാറ്റം നടത്തുകയോ പങ്കുവയ്ക്കു കയോ ചെയ്യുന്നു.

രാസപ്രവർത്തനത്തിൽ ഏർപ്പെടുമ്പോൾ ഒരു ആറ്റം വിട്ടുകൊടുക്കു കയോ സ്വീകരിക്കുകയോ പങ്കുവയ്ക്കുകയോ ചെയ്യുന്ന ഇലക്ട്രോ ണിന്റെ എണ്ണം ആണ് അതിന്റെ സംയോജകത

സോഡിയം ക്ലോറൈഡ് രൂപീകരണത്തിൽ സോഡിയം ഒരു ഇലക്ട്രോ

സം യുക്തങ്ങൾ	ഘടക മൂലകങ്ങൾ	അറ്റോമിക നമ്പർ	ഇലക്ട്രോൺ വിന്യാസം	കൈമാറ്റംചെയ്യുകയോ പങ്കുവെയ്ക്കുകയോ ചെയ്യുന്ന ഇലക്ട്രോണിന്റെ എണ്ണം	സംയോജകത
	Na	11		1	1
NaCl	Cl	17			
	Mg	12		2	2
MgO	0	8			
115	Н	1		1	1
HF	F		2,7		
CCl₄	С	6		4	4
4	Cl		2,8,7		

എങ്ങനെ ബന്ധപ്പെട്ടിരിക്കുന്നുവെന്ന് കണ്ടെത്തുക.

പട്ടിക 2.8

രാസസൂത്രത്തിലേക്ക്

മഗ്നീഷ്യവും ($_{12}$ Mg) ക്ലോറിനും ($_{17}$ Cl) കൂടിച്ചേരുന്നു എന്ന് കരുതുക. ഇത നുസരിച്ച് താഴെ നൽകിയിരിക്കുന്ന പട്ടിക പൂർത്തിയാക്കുക.

മൂലകം	അറ്റോമിക നമ്പർ	ഇലക്ട്രോൺ വിന്യാസം	വിട്ടുകൊടുക്കുകയോ സ്വീകരിക്കുകയോ ചെയ്യുന്ന ഇലക്ട്രോണുകളുടെ എണ്ണം
Mg	12		
СІ	1 <i>7</i>		

പട്ടിക 2.9

മഗ്നീഷ്യം വിട്ടുകൊടുക്കുന്ന ഇലക്ട്രോണുകളെ സ്വീകരിക്കാൻ എത്ര ക്ലോറിൻ ആറ്റങ്ങൾ ആവശ്യമാണ്?

അപ്പോൾ മഗ്നീഷ്യം ക്ലോറൈഡ് ഉണ്ടാകുമ്പോൾ ആ തന്മാത്രയിൽ ഒരു മഗ്നീഷ്യം ആറ്റവും രണ്ടു ക്ലോറിൻ ആറ്റങ്ങളുമല്ലേ ഉണ്ടാവുക. അതു കൊണ്ട് മഗ്നീഷ്യം ക്ലോറൈഡിന്റെ രാസസൂത്രം MgCl₂ ആയിരിക്കുമല്ലോ. പ്രതീകങ്ങൾ ഉപയോഗിച്ച് ഒരു തന്മാത്രയിലെ ആറ്റങ്ങളുടെ എണ്ണത്തെ സൂചിപ്പിക്കുന്ന രീതിയിലുള്ള ചുരുക്കെഴുത്താണ് രാസസൂത്രം അലൂമിനിയം ഫ്ളുറിനുമായി സംയോജിച്ച് അലുമിനിയം ഫ്ളൂറൈഡ് ഉണ്ടാകുന്ന വിധം നോക്കൂ.

മൂലകം	അറ്റോമിക നമ്പർ	ഇലക്ട്രോൺ വിന്യാസം	വിട്ടുകൊടുക്കുകയോ സ്വീകരിക്കുകയോ ചെയ്യുന്ന ഇലക്ട്രോണുകളുടെ എണ്ണം
Al	13		
F	9		

പട്ടിക 2.10

അലുമിനിയം വിട്ടുകൊടുക്കുന്ന ഇലക്ട്രോണുകളെ സ്വീകരിക്കാൻ ആവശ്യമായ ഫ്ളൂറിൻ ആറ്റങ്ങളുടെ എണ്ണം ?...... അലുമിനിയം ഫ്ളൂറൈഡിന്റെ രാസസൂത്രം എഴുതൂ താഴെ പറയുന്ന സംയുക്തങ്ങളുടെ രാസസൂത്രം എഴുതിനോക്കൂ..

- സോഡിയം ഓക്സൈഡ്
- അലൂമിനിയം ക്ലോറൈഡ്

- അലുമിനിയം ഓക്സൈഡ് ഒരു സംയുക്തത്തിന്റെ രാസസൂത്രം എഴുതുന്നതിൽ സംയോജകതക്ക് നിർണായകമായ സ്ഥാനമുണ്ട്.
- അലുമിനിയം ഓക്സൈഡിന്റെ രാസസൂത്രം സംയോജകതകൾ ഉപ യോഗിച്ച് എഴുതുന്നതിനുള്ള എളുപ്പവഴി കണ്ടെത്താം.
- അലുമിനിയം ഓക്സൈഡിലെ ഘടകമൂലകങ്ങൾ ഏതൊക്കെ യാണ്?
- അലുമിനിയം, ഓക്സിജൻ ഇവയുടെ സംയോജകത എത്ര?
- ഇലക്ട്രോ നെഗറ്റിവിറ്റി കുറഞ്ഞ മൂലകത്തിന്റെ പ്രതീകം ആദ്യം വരുന്ന വിധത്തിൽ ഘടക മൂലകങ്ങളുടെ പ്രതീകങ്ങൾ അടുത്ത ടുത്ത് എഴുതുക.

Al O

$$Al_2 O_3$$

അലുമിനിയം ഓക്സൈഡിന്റെ രസസൂത്രം $\operatorname{Al}_2\operatorname{O}_3$ ആണെന്നു കണ്ട ല്ലോ.

- കാർബൺ ഡൈഓക്സൈഡിന്റെ രാസസൂത്രം എഴുതി നോക്കാം.
- ഘടക മൂലകങ്ങൾ ഏതെല്ലാം?......,
- ഇലക്ട്രോനെഗറ്റിവിറ്റി കുറഞ്ഞ മൂലകം കാർബൺ ആണല്ലോ.
 എങ്കിൽ പ്രതീകങ്ങൾ അടുത്തടുത്തായി എഴുതൂ.
- കാർബണിന്റെ സംയോജകത 4 ഉം ഓക്സിജന്റേത് 2 ഉം ആയാൽ $\mathbf{C_2} \ \mathbf{O_4} \ \mathbf{0}$ എന്നെഴുതാം.
- പാദാങ്കങ്ങളുടെ പൊതുഘടകംകൊണ്ട് പാദാങ്കങ്ങളെ ഹരിക്കുക

$$C_{\frac{2}{2}}O_{\frac{4}{2}} = C_{1}O_{2}$$

പാദാങ്കം ഒന്നാണെങ്കിൽ രേഖപ്പെടുത്തേണ്ടതില്ല. അപ്പോൾ $\mathrm{C_1O_2} = \mathrm{CO_2}$ എന്നെഴുതാം

പട്ടിക പൂർത്തിയാക്കുക.

	മൂലകങ്ങൾ	സംയുക്തം			
പേര്	സംയോ ജകത	പേര്	സംയോ ജകത	പേര്	രാസസുത്രം
	55 65 157		55 55 157		
പൊട്ടാസ്വം	1	ഓക്സിജൻ	2	പൊട്ടാസ്വം ഓക്സൈഡ്	K ₂ O
സിങ്	2	ബ്രോമിൻ	1		
കാർബൺ		ക്ലോറിൻ		കാർബൺ ടെട്രാ ക്ലോറൈഡ്	CCI ₄
മഗ്നീഷ്വം	2	ഫ്ളൂറിൻ	1		
	പൊട്ടാസ്വം സിങ് കാർബൺ	പേര് സംയോ ജകത പൊട്ടാസ്വം 1 സിങ് 2 കാർബൺ	പേര് സംയോ പേര് ജകത പേര് പൊട്ടാസ്വം 1 നിങ് 2 കോർബൺ കോറിൻ	പേര് സംയോ ജകത പേര് സംയോ ജകത പൊട്ടാസ്വം 1 ഓക്സിജൻ 2 സിങ് 2 ബ്രോമിൻ 1 കാർബൺ കോറിൻ	പേര് സംയോ ജകത പേര് സംയോ ജകത പേര് പൊട്ടാസ്വം 1 ഓക്സിജൻ 2 പൊട്ടാസ്വം ഓക്സൈഡ് സിങ്ക് 2 ബോമിൻ 1 കാർബൺ കോർബൺ ടെട്രാ ക്ലോറൈഡ്

ചില മൂലകങ്ങളുടെ പ്രതീകങ്ങളും അവയുടെ സംയോജകതകളും ചുവടെ നൽകിയിരിക്കുന്നു. ഇവ ഉപയോഗിച്ച് 4 സംയുക്തങ്ങളുടെ രാസസൂത്ര ങ്ങൾ എഴുതുക.

മൂലകം	സംയോജകത
0	2
Cl	1
Li	1
Zn	2

വിലയിരുത്താം

 ചുവടെ കൊടുത്തിരിക്കുന്ന പട്ടിക പൂർത്തീകരിച്ച് ചോദ്യങ്ങൾക്ക് ഉത്തരം കണ്ടെത്തുക (പ്രതീകങ്ങൾ യഥാർഥമല്ല).

മൂലകാ	അറ്റോമിക നമ്പർ	ഇലക്ട്രോൺ വിന്യാസം
Р	9	2, 7
Q	17	
R	10	
S	12	

- a) മുകളിൽ കൊടുത്തിരിക്കുന്ന മൂലകങ്ങളിൽ സ്ഥിരത ഏറ്റവും കൂടിയ മൂലകം ഏത്? ഉത്തരം സാധൂകരിക്കുക.
- b) രാസപ്രവർത്തനങ്ങളിൽ ഇലക്ട്രോണുകൾ വിട്ടുകൊടുക്കുന്ന മൂലകം ഏത്?
- c) S എന്ന മൂലകം P യുമായി സംയോജിച്ച് ഉണ്ടാകുന്ന സംയു ക്തത്തിന്റെ രാസസൂത്രം എഴുതുക.
- ചില മൂലകങ്ങളുടെ ഇലക്ട്രോനെഗറ്റിവിറ്റി വിലകൾ നൽകിയിരി ക്കുന്നു. ഇവ വിലയിരുത്തി താഴെ കൊടുത്തിരിക്കുന്ന സംയുക്ത ങ്ങൾ അയോണികമോ സഹസംയോജകമോ എന്നു കണ്ടെത്തി എഴുതുക.

(ഇലക്ട്രോനെഗറ്റിവിറ്റി Ca = 1.0, O = 3.5 C = 2.5, S = 2.58, H = 2.2, F = 3.98)

സൾഫർ ഡൈഓക്സൈഡ് (SO_2)

ജലം (H₂O)

കാൽസ്യം ഫ്ളൂറൈഡ് (CaF₂)

കാർബൺ ഡൈഓക്സൈഡ് (CO₂)

3. ചില മൂലകങ്ങളും അവയുടെ സംയോജകതകളും നൽകിയിരിക്കുന്നു.

മൂലകം	സംയോജകത
Ва	2
Cl	1
Zn	2
0	2

- a) ബേരിയം ക്ലോറൈഡിന്റെ രാസസൂത്രം എഴുതുക
- b) സിങ്ക് ഓക്സൈഡിന്റെ രാസസൂത്രം എഴുതുക.
- c) കാൽസ്യം ഓക്സൈഡിന്റെ രാസസൂത്രം CaO എന്നാണ്. കാൽസൃത്തിന്റെ സംയോജകത എത്ര?

തുടർപ്രവർത്തനങ്ങൾ

- മീതെയ്ൻ (CH₄) ഈതെയ്ൻ (C₂H₆) എന്നിവയിലെ രാസബന്ധനം ഇലക്ട്രോൺ ഡോട്ട് ഡയഗ്രം ഉപയോഗിച്ച് ചിത്രീകരിക്കൂ.
- ചിത്രങ്ങളിൽ കാണിച്ചിരിക്കുന്നത് പോലെ ഉപകരണങ്ങൾ ക്രമീക രിച്ച് പരീക്ഷണം ചെയ്യുക.

നിരീക്ഷണം രേഖപ്പെടുത്തൂ. നിരീക്ഷണത്തിന്റെ അടിസ്ഥാനത്തിൽ കറിയുപ്പ്, പഞ്ചസാര എന്നിവ ഓരോന്നും ഏത് തരം സംയുക്തമാ ണെന്ന് തിരിച്ചറിയുക.

3. P, Q,R,S എന്നിവ നാലു മൂലകങ്ങളാണ്. ഇവയുടെ അറ്റോമിക നമ്പ റുകൾ യഥാക്രമം 8, 17, 12, 16 എന്നിങ്ങനെയാണ്. എങ്കിൽ താഴെ പ്പറയുന്ന മൂലകജോഡികൾ തമ്മിൽ സംയോജിച്ചുണ്ടാകുന്ന സംയു ക്തങ്ങളിൽ ഓരോന്നിലും ഏത് തരം രാസബന്ധനമാണെന്ന് കണ്ടെ ത്തുക. ഇവയിലെ ബന്ധനം വിവിധ വസ്തുക്കൾ (ഉദാ: മുത്തുകൾ, ധാന്യങ്ങൾ) ഉപയോഗിച്ചു നിർമിച്ചു പ്രദർശിപ്പിക്കുക.

(ഇലക്ട്രോനെഗറ്റിവിറ്റി വിലകൾ P= 3.44, Q= 3.16,R=1.31,S=2.58)

- 1. P, R
- 2. P, S
- 3. Q, R