Réseaux sans fil pour l'IoT MAC et routage – Partie 2 IOM-R409

sigfox

IUT de Béziers, dépt. R&T © 2023 http://www.borelly.net/ Christophe.BORELLY@umontpellier.fr

LoRaWAN couche MAC

- Classe A « All »: communication bidirectionnelle 1UL
 - + 2 DL définies aléatoirement (ALOHA).
 - 1^{er} DL sur même canal, 2ème DL canal fixe configuré
- Classe B « Beacon »: Idem classe A + un slot de réception programmé en plus. La planification réalisée par l'envoi d'un beacon de synchronisation par la passerelle.
- Classe C « Continuous » : end-devices qui écoutent le réseau en permanence. Réservé aux périphériques qui n'ont pas de contraintes d'énergie!

SigFox couche MAC

- Chaque message UL est envoyé 3 fois
- Max. 4 DL msg/device/jour (8 octets/msg)

802.11 couche MAC

- La sous-couche MAC (Medium Access Control) p. 818
 - DCF (Distributed Coordination Function)
 - PCF (Point Coordination Function)
 - HCF (Hybrid Coordination Function)
 - MCF (Mesh Coordination Function)

Figure 9-1—MAC architecture

DCF (Distributed Coordination Function)

- La fonction DCF est la base du système 802.11 et doit être disponible sur tous les équipements.
- DCF est aussi connue sous le sigle CSMA/CA.
 - Carrier Sense Multiple Access with Collision Avoidance
- C'est un système plus restrictif que CSMA/CD (utilisé sur les réseaux Ethernet pour la détection de collisions).
- Des intervalles de temps de "silence" obligatoires entre les trames permettent de gérer les collisions...

Fonction PCF

- La fonction PCF (Point Cordination Function) est optionnelle et permet de fournir une fenêtre de fonctionnement sans collisions (CFP – Contention Free Period).
- Le système nécéssite un coordinateur (PC Point Coordinator).
- C'est en général le point d'accès qui joue le rôle de PC.
- Les stations capables de fonctionner dans ce mode sont appelées CF-Pollable.
- La fenêtre CFP débute à intervalles réguliers indiqués dans les trames BEACON tranportant l'élément DTIM (Delivery Traffic Indication Map).

Fonction HCF

- La fonction HCF (Hybrid Cordination Function) permet d'ajouter des fonctionalités de QoS (Quality of Service).
- 2 modes d'accès existent :
 - EDCA: Enhanced Distributed Channel Access.
 - HCCA: HCF controlled Channel Access.

Intervalles entre les trames

- RIFS : Reduced Interframe Space
- **SIFS**: Short Inter-Frame Space
- PIFS: Point coordination IFS = SIFS + 1 slot time
- DIFS: Distributed IFS = SIFS + 2 slot time
- AIFS: Arbitration IFS (QoS Quality of Service)
- **EIFS**: Extended IFS (stations qui ne peuvent pas décoder les trames)

Transmission d'une trame

- Le récepteur confirme la réception des données par une trame ACK (Acknowledge) espacée de SIFS.
- Si l'émetteur ne reçoit pas de ACK, il retransmet les données jusqu'à obtenir confirmation.

Format des trames MAC

Norme 802.11 2012 - page 381

Frame Control (2 octets)	Duration/ ID (2 octets)	Address 1 (6 octets)	Address 2 (6 octets)	Address 3 (6 octets)		equence Control Coctets)	dress 4 octets)
QoS Control (2 octets)	HT Control (4 octets)		Frame Body (0-7951 octets)			FCS (4 octe	

- MAC : Medium Access Control
- QoS : Quality of Service
- **HT**: High-Throughput
- FCS: Frame Check Sequence

Frame control

B0 B1	B2 B3	B4	В7	В8	B B9		
Protocol Version	Туре	Subtype	Subtype To DS		From DS		
B10	B11	B12		B13	B14		B15
More Frag	Retry	Pwr Mgt		More Data	Protected Frame	d	Order

- DS: Distribution System (e.g. réseau filaire)
- To DS: Bit à 1 quand la trame est envoyée à l'AP pour le DS
- From DS : Bit à 1 quand la trame est envoyée depuis le DS

Divers champs

- Protocol version : 0
- Type et Subtype : management, control, data
- More Frag : Bit à 1 s'il y a plusieurs fragments
- Retry: Bit à 1 s'il s'agit d'une retransmission
- Power Managment : Bit à 1 indique que la station sera en veille après cette trame
- More Data : utilisé en power management pour indiquer qu'il y a des trames bufferisées pour la station
- Protected Frame : indique une trame chiffrée
- Order : indique qu'il faut respecter l'ordre des trames

Utilisation des adresses

- Une trame peut contenir jusqu'à 4 adresses :
 - @1 est toujours l'adresse de l'équipement qui doit recevoir la trame
 - @2 est toujours l'adresse de l'équipement qui a envoyé la trame
 - @3 est utilisée pour indiquer l'adresse manquante
 - @4 ne sert que lors d'un envoi de trame entre AP (WDS Wireless Distribution System)

ToDS	FromDS	@1	@2	@3	@4
0	0	DA	SA	BSSID	-
0	1	DA	BSSID	SA	-
1	0	BSSID	SA	DA	-
1	1	RA	TA	DA	SA

RA: Recipient Address DA: Destination Address

SA: Source Address TA: Transmitter Address

Frame Body 802.11

- Les trames de données sont en général encapsulées à l'aide de LLC (802.2 Logical Link Control) – 3 octets + SNAP (SubNetwork Access Protocol) – 5 octets.
- Pour IP : AA AA 03 00 00 00 08 00
- Pour ARP : AA AA 03 00 00 00 08 06
- Voir tableaux P2 et P3 page 2647 de la norme 802.11-2012

CSMA/CA (1)

- Quand une station reçoit une trame (broadcast), elle met à jour un temporisateur interne (NAV – Network Allocation Vector) avec la valeur de la durée indiquée dans la trame (si cette valeur est plus grande que la valeur existante dans le NAV).
- Ce compteur est décrémenté tout les "timeslot".
- La station s'abstient de transmettre avant que le NAV soit arrivé à zéro.

CSMA/CA (2)

- Quand le NAV arrive à zéro, la station attend une durée fixe DIFS (Distributed Inter-Frame Space).
- Ensuite, pour éviter une collision si plusieurs stations sont en attente de transmission, DCF se sert d'un temporisateur aléatoire supplémentaire sur chaque station (algorithme de backoff).
- La station sélectionne aléatoirement une valeur entre 0 et CW (Contention Window - max. 255) et attend le nombre de timeslot indiqué.

CSMA/CA (3)

- Si après cela, le médium est toujours libre, la station peut émettre.
- Si une autre station émet avant la fin du temporisateur CW, la station met à jour le NAV sans toucher au temporisateur CW.
- Lorsque le NAV revient à zéro, le processus de la fenêtre de contention reprend où il en était.

CSMA/CA (4)

- Au bout du nombre de tentatives fixé (dot11LongRetryLimit ou dot11ShortRetryLimit), il augmente la valeur de CW (de la forme 2N-1).
 - 7, 15, 31, 63... jusqu'à 255
- A chaque transmission correcte, CW est remis à la valeur de départ (aCWmin - e.g. 7).

Exemple

Problème du noeud caché

- Le client de gauche ne reçoit pas les signaux des clients de droite (il est caché!).
- Par contre, il peut communiquer avec l'AP...

RTS/CTS

- Système de réservation du support.
 - Noeud caché ou trame trop longue (dot11RTSThreshold)
- L'émetteur envoi une trame courte : RTS (Request To Send).
- L'AP confirme la réservation avec une trame
 CTS (Clear To Send).

Exemple RTS/CTS

Figure 9-4—RTS/CTS/data/ACK and NAV setting

Fragmentation

- Dans un environnement radio perturbé, la fragmentation vise à augmenter la fiabilité des transmissions, en découpant les données en "petits" paquets.
- Ces petits paquets auront plus de probabilité d'être transmis correctement.
- Cependant, chaque paquet doit être aquitté ce qui diminue un peu l'efficacité globale du réseau.

11/04/2023

Réseaux maillés sans fil

- WMN: Wireless Mesh Network
- Réseaux fortement interconnectés (moins de points névralgiques et moins de sensibilité aux pannes/défaillances)
- 2 techniques d'envoi des données :
 - Par « inondation » (flooding) : relai des message
 - Par routage dynamique (établi en général avec la liste des voisins de chaque nœud)
 - Plus de 70 protocoles existants !

Wifi mesh

- IEEE 802.11s : Début en 2003
 - Intégrée à la norme IEEE 802.11-2012
- Connexions ad hoc : point à point
- Il faut paramétrer uniquement le premier équipement
- Les terminaux :
 - Mesh Point (MP : lien entre 2 voisins)
 - Mesh STAtion (MSTA : Station + fonctions Mesh)
 - Mesh Acces Point (MAP : MP + fonctions AP)
 - Mesh Portal (MPP : Connecté au réseau filaire)

Réseau wifi mesh

Mise en place des liens

- Découverte des voisins (MBeacons)
- Liaison entre 2 stations
 - Possibilité de plusieurs liens (2,4 GHz et/ou 5 GHz)
 - Non sécurisée : MPM (Mesh Peering Management)
 - Sécurisée : AMPE (Authenticated Mesh Peering Exchange)
 - SAE (Simultaneous Authentication of Equals)
 - Echanges DH (Diffie-Hellman)
 - 802.1X (RADIUS) Nécessite une connexion filaire vers le serveur AAA.

Routage Wifi mesh

- Routage propriétaire possible
- Protocole de routage mobile par défaut
 - HWMP (Hybrid Wireless Mesh Protocol)
 - 2 approches complémentaires :
 - Découverte dynamique de chemin basée sur AODV (Ad hoc On-demand Distance Vector – RFC 3561)
 - Création d'arborescence proactive (Trames HWMP)

Trames HWMP

- **PREQ**: Path Request
- PREP : Path Response
- PERR: Path Error
- RANN: Root Announcement
- Utilisation d'une métrique de coût des liens (débit et taux d'erreurs) afin de choisir le meilleur chemin
- Afin d'éviter les boucles, les trames contiennent :
 - Le nombre de sauts vers la source
 - TTL (Time To Live) décrémenté à chaque saut
 - Un numéro de séquence (SN)

Format des trames

- Jusqu'à 6 adresses :
 - SA: Source Address
 - DA: Destination Address
 - TA: Transmitter Address
 - RA : Receiver Address

Figure 9-42—Example addressing for a Mesh Data frame

Routage à la demande (1)

Diffusion de la demande de route PREQ

Réponse PREP en unicast en utilisant le meilleur chemin vers la source

Routage à la demande (2)

- La source envoie une trame PREQ vers la destination à tous ses voisins
- A la réception d'une trame PREQ
 - Mise à jour du chemin vers la source (si SN >= valeur courante et meilleure métrique)
 - Propagation aux voisins (S'il y a eu création ou modification du chemin)
- Le destinataire répond dans une trame PREP
- Les stations intermédiaires propagent la trame PREP vers la source et mémorisent le chemin vers la destination
- Si une métrique meilleure est reçue par le destinataire, il renvoie une trame PREP
- Si un lien est rompu, une trame PERR est envoyée aux voisins

Création d'arborescence proactive

- Définir une racine (root e.g. MPP)
- Établissement d'une route vers la racine
- Les trames contiennent la métrique de la route vers la racine
- Envoyées régulièrement par la racine
- 2 modes :
 - Mécanisme proactif PREQ :
 - Les nœuds propagent la trame Proactive PREQ après l'avoir mise à jour
 - Les réponses Proactive PREP des nœuds établissent le chemin depuis la racine
 - Mécanisme proactif RANN (Annonce de racine) :
 - Chaque nœud envoi un PREQ vers la racine qui répond avec un PREP
 - 3 étapes pour créer les routes

Mécanisme proactif RANN

Diffusion RANN

Envoi PREQ vers R en unicast La racine répond PREP en unicast

Bluetooth mesh network

- Normalisé le 13 juillet 2017
- Fonctionne sur Bluetooth Low Energy (BLE)
- Réseau basé sur le relai de messages (flood network : inondation)
 - Extension de la portée normale des communications BLE

- 3 types d'adresses :
 - Unicast (32767 adresses), groupe d'équipements (16384 adresses dont 256 fixes) ou virtuelle (Label UUID - 128 bits)

Messages BT mesh

- Tous les messages sont chiffrés et authentifiés
 - 2 clés : network key (NetKey) et application key (AppKey)
- Ils possèdent un numéro de séquence pour éviter les rejeux
- Taille des messages non segmentés : 11 octets (10+1, 9+2, 8+3)
- Mécanisme SAR : Segmentation and Reassembly
 - Jusqu'à 32 segments (max. 384 octets)
- Le TTL (Time To Live) est décrémenté à chaque retransmission (Évite les boucles – max. 126)
- Les nœuds conservent un cache pour ne pas retransmettre un message identique
- Envoi de message : type publish/suscribe
- 1 nœud peut appartenir à plusieurs groupes (plusieurs NetKey)

Membres d'un réseau BT mesh

- Node : Membre du réseau
- Relay Node : Re-transmission des messages
- Friend Node : Mémorise les messages pour les LPN
- Low Power Node : La plupart du temps « endormi »
- 2 types de support pour l'envoi de messages :
 - Advertising (ADV bearer)
 - GATT (Generic ATTribute bearer)
- Un proxy permet la traduction ADV<=>GATT

Exemple de réseau BT mesh

Fig 2.8 Page 35/333 Bluetooth Mesh profile v1.0.1

Fonctionnement d'un réseau BT mesh

- Nécessite un « Provisioner » (e.g. un smart phone)
 - Génère une clé NetKey et alloue les adresses unicast
 - Détecte les équipements non connectés (Unprovisioned Device Beacons)
- Une fois membre du réseau, un nœud obtient les clés AppKey et les adresses de publication / souscription du « Configuration Client »
- Le réseau n'a pas besoin du Provisioner pour fonctionner
- Mais s'il est endommagé ou perdu, il faut réapprovisionner tous les nœuds
- Le message « Heartbeat » peut être envoyé périodiquement par un nœud afin d'indiquer sa présence (utilisé également pour déterminer la distance avec les autres nœuds)

Mise en place d'un réseau mesh ZigBee

- Ajout d'un équipement sur le réseau par interaction utilisateur (e.g. bouton, QR code, etc)
 Lip pour sour accuré.
- Un nouveau nœud :
 - Détecte les canaux disponibles
 - Choisi un réseau ouvert
 - Action sur le contrôleur durée 180 s
 - S'associe et reçoit la clé réseau
 - Échange la clé TCLK

Réseau mesh Zigbee

6IoWPAN

- Depuis 2007
- IPv6 Low power Wireless Personal Area Networks
- Fragmentation et réassemblage (MTU IPv6 1280 octets)
 - De 65 à 75 octets utiles par trame 802.15.4
 - Header compression (HC1 IPv6 et HC2 UDP)
- 2 types de routage :
 - Route-over: routage du paquet IPv6 (reconstitué sur chaque équipement) – Efficace en cas de perte de trames - LOADng (Lightweight On-demand Ad hoc distance-vector routing protocol – next generation)
 - Mesh-under: routage sur la couche 6LoWPAN avec les fragments du paquet IPv6 – Délai de transmission plus court -RPL (Routing Protocol for Low power and Lossy Networks)

Comparaisons

	Wifi mesh	BT mesh	Zigbee	6loWPAN	
Débit max.	10,5 Gbps	2 Mbps	250 Kbps		
Fréquence	2,4/5/6 GHz	2,4 GHz	868 MHz et 2,4 GHz		
Nombre de nœuds	-	jusqu'à 32000	65536		
Routage	HWMP	Flooding	AODV	LOADng/ RPL	
Année	2012	2017	2003	2007	

Références

- https://en.wikipedia.org/
- Norme IEEE 802.11 2012
- Réseaux Wifi : notions fondamentales P. ROSHAN –
 J. LEARY Cisco Systems 2004
- Bluetooth Mesh Profile v 1.0.1 2017
- Norme IEEE 802.15.4 2011