LAPORAN PRAKTIKUM 3 Analisis Algoritma

Disusun oleh:

Asep Budiyana Muharam 140810180029

PROGRAM STUDI S1 TEKNIK INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN 2020

Latihan Analisa

Minggu ini kegiatan praktikum difokuskan pada latihan menganalisa, sebagian besar tidak perlu menggunakan komputer dan mengkoding program, gunakan pensil dan kertas untuk menjawab persoalan berikut!

1. Untuk $T(n)=2+4+6+8+16+\cdots+n^2$, tentukan nilai C, f(n), n_o , dan notasi Big-O sedemikian sehingga T(n)=O(f(n)) jika $T(n)\leq C$ untuk semua $n\geq n_0$

Jawab:

2. Buktikan bahwa untuk konstanta-konstanta positif p, q, dan r: $T(n) = pn^2 + qn + r$ adalah $O(n^2), \Omega(n^2), dan \Theta(n^2)$

Jawab:

T(n) =
$$pn^2 + qn + r$$

make $T(n)$ berorde 2, Schinson kompleksitas Asimpotik-nya
Saito $O(n^2)$, $Q(n^2)$ den $O(n^n)$... berdasimkan Teoreman 3
Control 3^d with

3. Tentukan waktu kompleksitas asimptotik (Big-O, Big-Ω, dan Big-Θ) dari kode program berikut: for k ← 1 to n do
for i ← 1 to n do
for j ← to n do
wij ← wij or wik and wkj
endfor
endfor

1

Jawab:

endfor

For
$$k \leftarrow 1$$
 to $n \neq 0$

for $i \leftarrow 1$ to $n \neq 0$

for $i \leftarrow 1$ to $n \neq 0$

for $i \leftarrow 1$ to $n \neq 0$

work case $= \Omega(n) * O(n) * O(n) * O(n) * O(n)$

which is $i \leftarrow 0$ to $i \leftarrow 0$ to

4. Tulislah algoritma untuk menjumlahkan dua buah matriks yang masing-masing berukuran n x n. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big-Ω, dan Big-Θ?

Jawab:

Algorithm manjundahkan dua bugh matriks boukuran
$$n \times n$$

for $i \in I$ to n do

for $j \in I$ to n do

Junich $(i,j):=$ matriks, $(i,j)+$ matrik $(i,j)+$ matrix $(i,j)+$ ma

5. Tulislah algoritma untuk menyalin (copy) isi sebuah larik ke larik lain. Ukuran elemen larik adalah n elemen. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big-Ω, dan Big-O?

1

Jawab:

Algorithm Copy lank ke lank lain

for
$$i \in I$$
 to n do

 $B(i) \in A(i)$

But ase $E \subseteq I$ (i), ketter $n = I$

where I is a summent I is I and I is I as I is I and I is I and I is I as I is I and I is I is I as I is I and I is I is I as I is I in I is I in I is I in I is I is I in I is I in I in I is I in I is I in I in I in I in I in I in I is I in I

6. Diberikan algoritma Bubble Sort sebagai berikut:

```
procedure BubbleSort (input/output a1, a2, ..., an : integer)
 ( Mengurut tabel integer TabInt[1..n] dengan metode pengurutan bubble-
 sort
  Masukan: a1, a2, ..., an
   Keluaran: a1, a2, ..., an (terurut menaik)
 Deklarasi
                  ( indeks untuk traversal tabel )
    k : integer
    pass : integer ( tahapan pengurutan )
    temp : integer ( peubah bantu untuk pertukaran elemen tabel )
Algoritma
    for pass ← 1 to n - 1 do
      for k ← n downto pass + 1 do
         if a_k < a_{k-1} then
             ( pertukarkan ak dengan ak-1 )
             temp ← a<sub>x</sub>
             a_k \leftarrow a_{k-1}
             a_{k-1} \leftarrow temp
         endif
      endfor
    endfor
```

- (a) Hitung berapa jumlah operasi perbandingan elemen-elemen tabel!
- (b) Berapa kali maksimum pertukaran elemen-elemen tabel dilakukan?
- (c) Hitung kompleksitas waktu asimptotik (Big-O, Big-Ω, dan Big-Θ) dari algoritma Bubble Sort tersebut!

Jawab:

(Tmin) kasus minimal

- 3 Aulan perbandingan: (n-1) kati
- (6) Julah pertrearan = \$
- (C) Kamplobsitus Asimplatic: D(N-1)

Scanned with - \(\omega \) (M)
CamScanner

(Twales) kasus maksmal

- (3) south portandamy = N2 taki
- (9 smun portearan : n keli
- (c) komplex s.tss Assupplate = () (n2+n) = ()(n2) = 0 (n2+n) = 0 (n2)
- 7. Untuk menyelesaikan problem X dengan ukuran N tersedia 3 macam algoritma:
 - (a) Algoritma A mempunyai kompleksitas waktu O(log N)
 - (b) Algoritma B mempunyai kompleksitas waktu O(N log N)
 - (c) Algoritma C mempunyai kompleksitas waktu O(N²) Untuk problem X dengan ukuran N=8, algoritma manakah yang paling cepat? Secara asimptotik, algoritma manakah yang paling cepat?

Jawab:

Vulue problem X down M=0, maken

Algorithm A = log N = log & \$0,903

Algoritma B = Nlog N = 8 log 8 ~ 7,225

Algoritma C : N2 = 82 = 64

sadi, dorgan N=0 Algorithma Clan yang paling copat

Socara Asimptoble

M2>N los N Z los N

Schnogar total Algorithma C law young pasing copat.

8. Algoritma mengevaluasi polinom yang lebih baik dapat dibuat dengan metode Horner berikut:

$$p(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + ... + x(a_{n-1} + a_n x)))...))$$

```
function p2(input x : real) → real
( Mengembalikan nilai p(x) dengan metode Horner)

Deklarasi
    k : integer
    b<sub>1</sub>, b<sub>2</sub>, ..., b<sub>n</sub> : real

Algoritma
    b<sub>n</sub> ← a<sub>n</sub>
    for k ← n - 1 downto 0 do
        b<sub>k</sub> ← a<sub>k</sub> + b<sub>k · 1</sub> * x
endfor
    return b<sub>0</sub>
```

Hitunglah berapa operasi perkalian dan penjumlahan yang dilakukan oleh algoritma diatas, Jumlahkan kedua hitungan tersebut, lalu tentukan kompleksitas waktu asimptotik (Big-O)nya. Manakah yang terbaik, algoritma p atau p2?

1

Jawab:

Operaci person =
$$(N-1)$$
 key'
Operaci personalahan = $(N-1)$ leal;
$$T(N) = (N-1) + (N-1)$$
= $2N-2$
= $O(N)$

CS Scanned with CamScanner