Extra Questions - Velocity analysis using relative velocity equation or instant centre method

(Meriam & Kraige, 7th edition, SI version)

5/71 For the instant represented point B crosses the horizontal axis through point O with a downward velocity v = 0.6 m/s. Determine the corresponding value of the angular velocity ω_{OA} of link OA.

[Answer ω_{OA} = 3.33 rad/s CW]

5/79 At the instant represented the triangular plate ABD has a clockwise angular velocity of 3 rad/s. For this instant determine the angular velocity ω_{BC} of link BC.

[Answer ω_{BC} = 3 rad/s CW]

5/179 All conditions of the previous problem remain the same, except now, rather than rotating about a fixed center, the disk rolls without slipping on the horizontal surface. If the disk has a clockwise angular velocity of $20 \, \text{rad/s}$ and a counterclockwise angular acceleration of $5 \, \text{rad/s}^2$, determine the velocity and acceleration of pin A relative to the slotted member BC and the angular velocity and angular acceleration of BC. The value of r is $200 \, \text{mm}$. Neglect the distance from the center of pin A to the edge of the disk.

[Answer ω_{BC} = 1.046 rad/s CW; v_{rel} = 7.71 m/s]

5/182 The crank OA revolves clockwise with a constant angular velocity of 10 rad/s within a limited arc of its motion. For the position $\theta = 30^{\circ}$ determine the angular velocity of the slotted link CB and the acceleration of A as measured relative to the slot in CB.

[Answer $\omega_{BC} = 5 \text{ rad/s CW}$]

5/191 The pin A in the bell crank AOD is guided by the flanges of the collar B, which slides with a constant velocity v_B of $0.9\,\mathrm{m/s}$ along the fixed shaft for an interval of motion. For the position $\theta=30^\circ$ determine the velocity of the plunger CE, whose upper end is positioned by the radial slot in the bell crank.

[Answer $v_{CE} = 2.078 \text{ m/s}$]

5/198 The figure illustrates a commonly used quick-return mechanism which produces a slow cutting stroke of the tool (attached to D) and a rapid return stroke. If the driving crank OA is turning at the constant rate $\dot{\theta}=3\,\mathrm{rad/s}$, determine the magnitude of the velocity of point B for the instant when $\theta=30^\circ$.

[Answer $v_B = 0.289 \text{ m/s}$]