

ETF3231/5231 Business forecasting

Ch7. Regression models

https://bf.numbat.space/

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

Multiple regression and forecasting

$$\mathbf{y}_t = \beta_0 + \beta_1 \mathbf{x}_{1,t} + \beta_2 \mathbf{x}_{2,t} + \cdots + \beta_k \mathbf{x}_{k,t} + \varepsilon_t.$$

- \blacksquare y_t is the variable we want to predict: the "response' 'variable
- Each $x_{j,t}$ is numerical and is called a "predictor". They are usually assumed to be known for all past and future times.
- The coefficients β_1, \ldots, β_k measure the effect of each predictor after taking account of the effect of all other predictors in the model.

That is, the coefficients measure the marginal effects.

 $\mathbf{\varepsilon}_t$ is a white noise error term

Example: US consumption expenditure

```
fit cons <- us change %>%
 model(lm = TSLM(Consumption ~ Income))
report(fit cons)
## Series: Consumption
## Model: TSLM
##
## Residuals:
    Min 10 Median 30 Max
## -2.582 -0.278 0.019 0.323 1.422
##
## Coefficients:
##
    Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.5445 0.0540 10.08 < 2e-16 ***
## Income
         ## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.591 on 196 degrees of freedom
## Multiple R-squared: 0.147. Adjusted R-squared: 0.143
## F-statistic: 33.8 on 1 and 196 DF, p-value: 2e-08
```

Example: US consumption expenditure

```
fit consMR <- us change %>%
 model(lm = TSLM(Consumption ~ Income + Production + Savings + Unemployment))
report(fit consMR)
## Series: Consumption
## Model: TSLM
##
## Residuals:
     Min
            10 Median 30
                               Max
## -0.906 -0.158 -0.036 0.136 1.155
##
## Coefficients:
##
          Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.25311 0.03447 7.34 5.7e-12 ***
## Income 0.74058 0.04012 18.46 < 2e-16 ***
## Production 0.04717 0.02314 2.04 0.043 *
## Savings -0.05289 0.00292 -18.09 < 2e-16 ***
## Unemployment -0.17469
                         0.09551 -1.83 0.069 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.31 on 193 degrees of freedom
## Multiple R-squared: 0.768, Adjusted R-squared: 0.763
## F-statistic: 160 on 4 and 193 DF, p-value: <2e-16
```

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

Trend

Linear trend

$$x_t = t$$

- t = 1, 2, ..., T
- Strong assumption that trend will continue.

Nonlinear trend

Piecewise linear trend with bend "knot" at au

$$x_{1,t} = t$$

$$x_{2,t} = (t - \tau)_{+} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

- $lue{\beta_1}$ trend slope before time τ
- $\beta_1 + \beta_2$ trend slope after time τ
- More knots can be added forming more $(t \tau)_+$

9

Nonlinear trend

Piecewise linear trend with bend "knot" at au

$$x_{1,t} = t$$

$$x_{2,t} = (t - \tau)_{+} = \begin{cases} 0 & t < \tau \\ (t - \tau) & t \ge \tau \end{cases}$$

- \blacksquare β_1 trend slope before time τ
- $\beta_1 + \beta_2$ trend slope after time τ
- More knots can be added forming more $(t \tau)_+$

Quadratic or higher order trend

$$x_{1,t} = t, \quad x_{2,t} = t^2, \quad \dots$$

NOT RECOMMENDED!

Uses of dummy variables

Seasonal dummies

- For quarterly data: use 3 dummies
- For monthly data: use 11 dummies
- For daily data: use 6 dummies
- What to do with weekly data?

Outliers

■ If there is an outlier, you can use a dummy variable to remove its effect.

Holidays

For monthly data

- Christmas: always in December so part of monthly seasonal effect
- Easter: use a dummy variable $v_t = 1$ if any part of Easter is in that month, $v_t = 0$ otherwise.
- Ramadan and Chinese new year similar.

For daily data

If it is a public holiday, dummy=1, otherwise dummy=0.

Fourier series

Periodic seasonality can be handled using pairs of Fourier terms:

$$s_k(t) = \sin\left(\frac{2\pi kt}{m}\right)$$
 $c_k(t) = \cos\left(\frac{2\pi kt}{m}\right)$

$$y_t = a + bt + \sum_{k=1}^{K} \left[\alpha_k s_k(t) + \beta_k c_k(t) \right] + \varepsilon_t$$

- Every periodic function can be approximated by sums of sin and cos terms for large enough *K*.
- Choose *K* by minimizing AICc.
- Called "harmonic regression"

Distributed lags

Lagged values of a predictor.

Example: x is advertising which has a delayed effect

```
    x<sub>1</sub> = advertising for previous month;
    x<sub>2</sub> = advertising for two months previously;
    :
    x<sub>m</sub> = advertising for m months previously.
```

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

Multiple regression and forecasting

For forecasting purposes, we require the following assumptions:

- $\mathbf{\varepsilon}_t$ are uncorrelated and zero mean
- ε_t are uncorrelated with each $x_{i,t}$.

It is useful to also have $\varepsilon_t \sim N(0, \sigma^2)$ when producing prediction intervals or doing statistical tests.

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

Comparing regression models

- \blacksquare R^2 does not allow for "degrees of freedom".
- Adding *any* variable tends to increase the value of R^2 , even if that variable is irrelevant.

Comparing regression models

- \blacksquare R^2 does not allow for "degrees of freedom".
- Adding any variable tends to increase the value of R^2 , even if that variable is irrelevant.

To overcome this problem, we can use adjusted R^2 :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

Comparing regression models

- \blacksquare R^2 does not allow for "degrees of freedom".
- Adding any variable tends to increase the value of R^2 , even if that variable is irrelevant.

To overcome this problem, we can use adjusted R^2 :

$$\bar{R}^2 = 1 - (1 - R^2) \frac{T - 1}{T - k - 1}$$

where k = no. predictors and T = no. observations.

Maximizing \bar{R}^2 is equivalent to minimizing $\hat{\sigma}^2$.

$$\hat{\sigma}^2 = \frac{1}{T - k - 1} \sum_{t=1}^{T} \varepsilon_t^2$$

Akaike's Information Criterion

$$AIC = -2\log(L) + 2(k+2)$$

- L = likelihood
- = k = # predictors in model.
- AIC penalizes terms more heavily than \bar{R}^2 .

Akaike's Information Criterion

$$AIC = -2\log(L) + 2(k+2)$$

- L = likelihood
- = k = # predictors in model.
- AIC penalizes terms more heavily than \bar{R}^2 .

$$AIC_C = AIC + \frac{2(k+2)(k+3)}{T-k-3}$$

Minimizing the AIC or AICc is asymptotically equivalent to minimizing MSE via leave-one-out cross-validation (for any linear regression).

Bayesian Information Criterion

$$BIC = -2\log(L) + (k+2)\log(T)$$

where *L* is the likelihood and *k* is the number of predictors in the model.

- BIC penalizes terms more heavily than AIC
- Also called SBIC and SC.
- Minimizing BIC is asymptotically equivalent to leave-v-out cross-validation when v = T[1 1/(log(T) 1)].

Leave-one-out cross-validation

For regression, leave-one-out cross-validation is faster and more efficient than time-series cross-validation.

- Select one observation for test set, and use remaining observations in training set. Compute error on test observation.
- Repeat using each possible observation as the test set.
- Compute accuracy measure over all errors.

Traditional evaluation

Traditional evaluation

Time series cross-validation

Traditional evaluation

Leave-one-out cross-validation

Traditional evaluation

Leave-one-out cross-validation

Choosing regression variables

Best subsets regression

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

Choosing regression variables

Best subsets regression

- Fit all possible regression models using one or more of the predictors.
- Choose the best model based on one of the measures of predictive ability (CV, AIC, AICc).

Warning!

- If there are a large number of predictors, this is not possible.
- For example, 44 predictors leads to 18 trillion possible models!

Choosing regression variables

Backwards stepwise regression

- Start with a model containing all variables.
- Try subtracting one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

Forwards stepwise regression

- Start with a model containing only a constant.
- Add one variable at a time. Keep the model if it has lower CV or AICc.
- Iterate until no further improvement.

Hybrid backwards and forwards also possible.

Stepwise regression is not guaranteed to lead to the best possible model.

What should you use?

Notes

- Stepwise regression is not guaranteed to lead to the best possible model.
- Inference on coefficients of final model will be wrong.

Choice: CV, AIC, AICc, BIC, \bar{R}^2

- BIC tends to choose models too small for prediction (however can be useful for large *k*).
- \bar{R}^2 tends to select models too large.
- AIC also slightly biased towards larger models (especially when *T* is small).
- Empirical studies in forecasting show AIC is better than BIC for forecast accuracy.

Choice between AICc and CV (double check AIC and BIC where possible).

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

Ex-ante versus ex-post forecasts

- Ex ante forecasts are made using only information available in advance.
 - require forecasts of predictors
- Ex post forecasts are made using later information on the predictors.
 - useful for studying behaviour of forecasting models.
- trend, seasonal and calendar variables are all known in advance, so these don't need to be forecast.

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

Multiple regression forecasts

Fitted values

$$\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y} = \mathbf{H}\mathbf{y}$$

where $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$ is the "hat matrix''.

Leave-one-out residuals

Let h_1, \ldots, h_T be the diagonal values of H, then the cross-validation statistic is

$$CV = \frac{1}{T} \sum_{t=1}^{T} [e_t/(1-h_t)]^2,$$

where e_t is the residual obtained from fitting the model to all T observations.

- 1 The linear model with time series
- 2 Some useful predictors for linear models
- 3 Residual diagnostics
- 4 Selecting predictors and forecast evaluation
- 5 Forecasting with regression
- 6 Matrix formulation
- 7 Correlation, causation and forecasting

Correlation is not causation

- \blacksquare When x is useful for predicting y, it is not necessarily causing y.
- e.g., predict number of drownings y using number of ice-creams sold x.
- Correlations are useful for forecasting, even when there is no causality.
- Better models usually involve causal relationships (e.g., temperature *x* and people *z* to predict drownings *y*).