Eks	empel (Matched z-transformation)
	esign et digitalt laupastilter der sikrer at signaler ed frekvenser højere end 2 kHz dampes mindst 20 dB
a-f	et er besteut at et 1 dB Chebyshev filter med orden 3, fskæringsfrekvens fa=1 kHz og samplefrekvens fs=8 kHz over- lder denne specifikation.
	et digitale filter bestemmes ved brug at matched z-transferm.
	Besteun det analoge prototypefilters frekvensnormerede og faktoriserede overfæringsfunktion HCD.
	Ved tabelopslag (Tabel 3.3 side 171) findes prototypefiltret
	$H(S) = \begin{cases} 0,49417 & 0,99421 \\ 5 + 0,49417 & 5^2 + 0,494175 + 0,99421 \end{cases}$
	H ₁ (5) H ₂ (5)
2.	Bestem de analoge frekvensnormerede poler og nulpunkter.
	Polen for H.(s) er
	S, = -0,49417
	Polerne for Hz(s) er
	5 = -0,2471 ± 50,9660
3.	Bestem de denormerade poler og nulpunkter.
	Den denormerede pol for Hister
	$\sigma_{1} = -0,49417 \cdot w_{0} = -3105$, $w_{0} = 1000 \cdot 271$
	De denormerede poler for Hz(3) er
	$\sigma_{2} \pm j \omega_{2} = (-0.247 \pm j0.9660) \cdot \omega_{a}$ $= -1563 \pm j6070$
4.	Bestem den digitale overføringsfunktions koefficienter.
10	
	Forst transformeres H,(s) efter denormering ved brug af z = est ao1 _ ao1
	$G_{1}(z) = \frac{a_{01}}{z - e^{a_{1}T}} - \frac{a_{01}}{z + b_{11}}$
	For at DC forstærkningen er 7 (6,(z=1)=1) gælder det at
	a = 1+b,,
	og fra a,(z) ses det at b, = -e^oiT = -0,6783 => a01=0,3217

Vi far dermed $G_1(z) = \frac{O_13217}{Z - O_16783} = \frac{O_13217}{1 - O_16783}$ His der ønskes et filter med unnimal forsinkels nolpunkt indsættes i origo (dette ændrær ikke amp Demne overføringsfunktion er $G_1(z) = \frac{O_13217z}{Z - O_16783} = \frac{O_13217z}{1 - O_167832}$ Nu trænsførmeres tk(s) efter denormering veck ao2 $G_2(z) = \left(\frac{Z}{Z} - \frac{e^{z_1}}{e^{z_1}} e^{z_2} \frac{Z}{Z} \right) \left(\frac{Z}{Z} - \frac{e^{z_1}}{e^{z_2}} e^{z_2} \frac{Z}{Z} \right)$ $= \frac{z^2}{Z^2} - \frac{e^{z_1}}{e^{z_1}} e^{z_2} \frac{Z}{Z} + \frac{e^{z_1}}{e^{z_2}} e^{z_2} \frac{Z}{Z}$ $= \frac{z^2}{Z^2} - \frac{e^{z_1}}{e^{z_2}} e^{z_2} \frac{Z}{Z} + \frac{e^{z_2}}{e^{z_2}} e^{z_2} \frac{Z}{Z}$ For at DC forstarkmingen er 1 gælder det caz $z = 1 + b_{12} + b_{22} z$ og fra $G_2(z)$ ses det at $z = 1 + b_{12} + b_{22} z$ og fra $G_2(z)$ ses det at $z = 1 + b_{12} + b_{22} z$ $G_2(z) = \frac{e^{z_1}}{Z^2} - \frac{e^{z_2}}{Z^2} \frac{Z}{Z} = \frac{e^{z_2}}{1 - 1, 1953} \frac{Z}{Z} + e^{z_2} \frac{Z}{Z} = \frac{e^{z_2}}{1 - 1, 1953} \frac{Z}{Z} + e^{z_2} \frac{Z}{Z} = \frac{e^{z_2}}{2} \frac{Z}{Z} - \frac{e^{z_2}}{2} \frac{Z}{Z} = \frac{e^{z_2}}{2} \frac{Z}{Z} $		2-1	brug af z=e ^{5T}	jūw ₂ T	002 + b12 2 + b22	x-1			0,6783 z ⁻²	
Hivis a nolpour Denne Nu tr Goz For a a a a a a a a a a a a a a a a a a a	$G_{1}(z) = \frac{0.3217}{2 - 0.6783} - \frac{0.3217z}{1 - 0.678}$ Her ønskes et filter med minimal forsinkel kt indsættes i origo (dette ændrer ikke amp		aoz	aoz			$= -2e^{\sigma_z T} cos(\omega_z T) = -1,1953$	$2 = e^{202T} = 0,6783$ =) $a_{02} = 0,4829$ = dermed $0,4929$ 0.49292	$\frac{0,4929z^2}{(z) = z^2 - 1,1953z + 0,6783} = \frac{0,4929}{1 - 1,1953z^{-1}}$	

