

Serverless Machine Learning on Modern Hardware

Patrick Stuedi IBM Research

#Res6SAIS

Serverless Computing

- No need to setup/manage a cluster
- Automatic, dynamic and finegrained scaling
- Sub-second billing
- AWS Lambda, Google Cloud Functions, Azure Functions, Databricks Serverless

Challenge: Performance

Example: Sorting 100GB

Challenge: Performance

Challenge: Performance (2)

- Scheduler: when to best add/remove resources?
- Container startup: may have to dynamically spin up containers per function
- **Storage:** input data needs to be fetched from remote storage (e.g., S3)
 - As opposed to compute-local storage, e.g., HDFS
- Data sharing: intermediate needs to be temporarily stored on remote storage (S3, Redis)
 - Affects operations like shuffle, broadcast, etc.,

Challenge: Performance (2)

- Scheduler: when to best add/remove resources?
- Container startup: may have to dynamically spin up containers per function
- Storage: input data needs to be fetched from remote storage (e.g., S3)
 - As opposed to compute-local storage, e.g., HDFS
- Data sharing: intermediate needs to be temporarily stored on remote storage (S3, Redis)
 - Affects operations like shuffle, broadcast, etc.,

Example: MapReduce (Cluster)

Serverless MapReduce

data is

I/O Overhead

Example: Sorting 100GB

Example: SQL, Query 77 / TPC-DS benchmark

Example: SQL, Query 77 / TPC-DS benchmark

Example: Iterative ML (e.g., linear regression) could be co-located with worker nodes PS W W *) fetch model params *) compute *) update model *) fetch model params *) compute *) update model

Example: Iterative ML (e.g., linear regression) could be co-located with worker nodes PS W W *) read training data *) fetch model params *) compute *) update model *) use cached data *) fetch model params *) compute *) update model

Can we...

- ..use Spark to run such workloads in a serverless fashion?
 - Dynamic scaling of compute nodes as jobs are running
 - No cluster configuration
 - No startup time
- ..reduce the performance overheads to a minimum?

Scheduling:

- 1) Use serverless framework to schedule executors
- 2 Use serverless framework to schedule tasks
- 3 Enable Spark to dynamically scale up and down executors

• Intermediate data:

- 1 Executors cooperate with scheduler to flush data remotely
- 2 Consequently store all intermediate state remotely

Scheduling:

- High startup Latency!
- 1) Use serverless framework to schedule executors
- 2 Use serverless framework to schedule tasks
- (3) Enable Spark to dynamically scale up and down executors

Intermediate data:

- 1 Executors cooperate with scheduler to flush data remotely
- 2 Consequently store all intermediate state remotely

Scheduling:

- 1 Use serverless framework to schedule executors
- 2 Use serverless framework to schedule tasks
- (3) Enable Spark to dynamically scale up and down executors

Intermediate data:

- 1 Executors cooperate with scheduler to flush data remotely
- 2 Consequently store all intermediate state remotely

Slow!

Scheduling:

- 1) Use serverless framework to schedule executors
- 2 Use serverless framework to schedule tasks

(3) Enable Spark to dynamically scale up and down executors

• Intermediate data:

- 1 Executors cooperate with scheduler to flush data remotely
- 2 Consequently store all intermediate state remotely

Slow!

Scheduling:

- 1) Use serverless framework to schedule executors
- 2 Use serverless framework to schedule tasks
- 3) Enable Spark to dynamically scale up and down executors

Intermediate data:

Executors cooperate with scheduler to flush data remotely

Consequently store all intermediate state remotely

High startup Latency!

Slow!

Complex!

Scheduling:

- 1) Use serverless framework to schedule executors
- 2 Use serverless framework to schedule tasks
- (3) Enable Spark to dynamically scale up and down executors

Intermediate data:

Complex!

- 1 Executors cooperate with scheduler to flush data remotely
- (2) Consequently store all intermediate state remotely

High startup Latency!

Slow!

"The HCl Scheduler: Going all-in on Heterogeneity", Michael Kaufmann et al., HotCloud'17

Putting things together

Workloads:

- Deep learning (digit recognition) using Spark/Tensorflow, MNIST data set
- SQL: TPC-DS

Clusters:

- 8 node cluster, 10Gb/s Ethernet
- 8 node cluster, 100Gb/s RoCE

Software

Spark2.2, Tensorflow 1.2

Putting things together

Putting things together

What about Performance?

Workloads:

- Deep learning (digit recognition) using Spark/Tensorflow, MNIST data set
- SQL: TPC-DS

Clusters:

- 8 node cluster, 10Gb/s Ethernet
- 8 node cluster, 100Gb/s RoCE

Software

Spark2.3, Tensorflow 1.2

Conclusion

- Efficient serverless computing is challenging
 - Local state (e.g. shuffle, cached input, network state) is lost as compute cloud scales up/down
- This talk: turning Spark into a serverless framework by
 - Implementing a new serverless scheduler
 - Consequently storing compute state remotely using Apache Crail
- Supports arbitrary Spark workloads with almost no performance ovherhad
 - MapReduce, SQL, Iterative Machine Learning
- Implicit support for fast network and storage hardware
 - e.g, RDMA, NVMe

Future Work

- Add support for dynamic re-partitioning on scale events
- Add support for automatic caching
- Add more sophisticated scheduling policies

Thanks to

Michael Kaufmann, Adrian Schuepbach, Jonas Pfefferle, Animesh Trivedi, Bernard Metzler, Ana Klimovic, Yawen Wang

Backup

Workloads and Frameworks

	Microservices	Workflows	MapReduce	SQL	ML
AWS λ, Google CF, Azure F					
AWS λ + AWS StepFunction					
PyWren					
Databricks Serverless					

Serverless frameworks not designed to run arbitrary workloads

