Faster PET Reconstruction with Non-Smooth Anatomical Priors by Randomization and Preconditioning

Matthias J. Ehrhardt

Institute for Mathematical Innovation University of Bath, UK

November 4, 2019

Joint work with:

Mathematics: Chambolle (Paris), Richtárik (KAUST), Schönlieb (Cambridge)

PET imaging: Markiewicz, Schott (both UCL)

Outline

1) PET reconstruction via Optimization

$$\sum_{i=1}^n f_i(\mathbf{B}_i x) + g(x)$$

2) Randomized Algorithm for Convex Optimization

non-smooth
$$\mathbf{B}_{i}x$$
 expensive

3) Numerical Evaluation: clinical PET imaging

PET Reconstruction¹

$$u_{\lambda} \in \arg\min_{u} \left\{ \sum_{i=1}^{N} \mathsf{KL}(b_{i}; \mathbf{A}_{i}u + r_{i}) + \lambda \mathcal{R}(u; v) + \imath_{+}(u) \right\}$$

Kullback–Leibler divergence

$$\mathsf{KL}(b;y) = \begin{cases} y - b + b \log\left(\frac{b}{y}\right) & \text{if } y > 0 \\ \infty & \text{else} \end{cases}$$

Nonnegativity constraint

$$i_+(u) = \begin{cases} 0, & \text{if } u_i \ge 0 \text{ for all } i \\ \infty, & \text{else} \end{cases}$$

▶ **Regularizer**: e.g. $\mathcal{R}(u; v) = \mathsf{TV}(u)$

¹Brune '10, Brune et al. '10, Setzer et al. '10, Müller et al. '11, Anthoine et al.

^{&#}x27;12, Knoll et al. '16, Ehrhardt et al. '16, Hohage and Werner '16, Schramm et al.

^{&#}x27;17, Rasch et al. '17, Ehrhardt et al. '17, Mehranian et al. '17 and many, many more

PET Reconstruction¹

$$u_{\lambda} \in \arg\min_{u} \left\{ \sum_{i=1}^{N} \mathsf{KL}(b_{i}; \mathbf{A}_{i}u + r_{i}) + \lambda \mathcal{R}(u; v) + \imath_{+}(u) \right\}$$

Kullback-Leibler divergence

$$\mathsf{KL}(b;y) = \begin{cases} y - b + b \log\left(\frac{b}{y}\right) & \text{if } y > 0\\ \infty & \text{else} \end{cases}$$

Nonnegativity constraint

$$i_+(u) = \begin{cases} 0, & \text{if } u_i \ge 0 \text{ for all } i \\ \infty, & \text{else} \end{cases}$$

▶ Regularizer: e.g. $\mathcal{R}(u; v) = \mathsf{TV}(u)$

How to incorporate MRI information into \mathcal{R} ?

¹Brune '10, Brune et al. '10, Setzer et al. '10, Müller et al. '11, Anthoine et al.

^{&#}x27;12, Knoll et al. '16, Ehrhardt et al. '16, Hohage and Werner '16, Schramm et al.

^{&#}x27;17, Rasch et al. '17, Ehrhardt et al. '17, Mehranian et al. '17 and many, many more

Directional Total Variation

Let $\|\nabla v\| = 1$. Then u and v have **Parallel Level Sets** iff

$$u \sim v \Leftrightarrow \nabla u \parallel \nabla v \Leftrightarrow \nabla u - \langle \nabla u, \nabla v \rangle \nabla v = 0$$

Directional Total Variation

Let $\|\nabla v\| = 1$. Then *u* and *v* have **Parallel Level Sets** iff

$$u \sim v \quad \Leftrightarrow \quad \nabla u \parallel \nabla v \quad \Leftrightarrow \quad \nabla u - \langle \nabla u, \nabla v \rangle \nabla v = 0$$

Definition: The **Directional Total Variation (dTV)** of *u* is

$$\mathsf{dTV}(u) := \sum_{i} \| [\mathbf{I} - \xi_i \xi_i^T] \nabla u_i \|, \quad 0 \le \| \xi_i \| \le 1$$

Ehrhardt and Betcke '16, related to Kaipio et al. '99, Bayram and Kamasak '12

- ▶ If $\xi_i = 0$, then dTV = TV.

PET Reconstruction

Partition data in **subsets** \mathbb{S}_j :

$$\mathcal{D}_j(y) := \sum_{i \in \mathbb{S}_j} \mathsf{KL}(b_i; y_i)$$

$$\min_{u} \left\{ \sum_{j=1}^{m} \mathcal{D}_{j}(\mathbf{A}_{j}u) + \lambda \| \mathbf{D} \nabla u \|_{1} + \iota_{+}(u) \right\}$$

PET Reconstruction

Partition data in **subsets** S_i :

$$\mathcal{D}_j(y) := \sum_{i \in \mathbb{S}_j} \mathsf{KL}(b_i; y_i)$$

$$\min_{u} \left\{ \sum_{j=1}^{m} \mathcal{D}_{j}(\mathbf{A}_{j}u) + \lambda \| \mathbf{D} \nabla u \|_{1} + \imath_{+}(u) \right\}$$

$$\min_{x} \left\{ \sum_{i=1}^{n} f_i(\mathbf{B}_i x) + g(x) \right\}$$

$$\min_{\mathbf{x}} \left\{ \sum_{i=1}^{n} f_i(\mathbf{B}_i \mathbf{x}) + g(\mathbf{x}) \right\} \begin{vmatrix} n = m+1 & g(\mathbf{x}) = i_+(\mathbf{x}) \\ \mathbf{B}_i = \mathbf{A}_i & f_i = \mathcal{D}_i & i = 1, \dots, m \\ \mathbf{B}_n = \mathbf{D} \nabla & f_n = \lambda \| \cdot \|_1 \end{vmatrix}$$

PET Reconstruction

Partition data in **subsets** S_i :

$$\mathcal{D}_j(y) := \sum_{i \in \mathbb{S}_j} \mathsf{KL}(b_i; y_i)$$

$$\min_{u} \left\{ \sum_{j=1}^{m} \mathcal{D}_{j}(\mathbf{A}_{j}u) + \lambda \| \mathbf{D} \nabla u \|_{1} + \iota_{+}(u) \right\}$$

$$\min_{x} \left\{ \sum_{i=1}^{n} f_i(\mathbf{B}_i x) + g(x) \right\}$$

$$\min_{\mathbf{x}} \left\{ \sum_{i=1}^{n} f_i(\mathbf{B}_i \mathbf{x}) + g(\mathbf{x}) \right\} \begin{bmatrix} n = m+1 & g(\mathbf{x}) = i_+(\mathbf{x}) \\ \mathbf{B}_i = \mathbf{A}_i & f_i = \mathcal{D}_i & i = 1, \dots, m \\ \mathbf{B}_n = \mathbf{D} \nabla & f_n = \lambda \| \cdot \|_1 \end{bmatrix}$$

- f_i, g are non-smooth but can compute proximal operator $\operatorname{prox}_{f}(x) := \arg\min_{z} \left\{ \frac{1}{2} ||z - x||^{2} + f(z) \right\}.$
- Cannot compute proximal operator of $f_i \circ B_i$
- B_ix is expensive to compute

Primal-Dual Hybrid Gradient (PDHG) Algorithm¹

Given
$$x^{0}, y^{0}, \overline{y}^{0} = y^{0}$$

(1) $x^{k+1} = \operatorname{prox}_{g}^{\mathsf{T}}(x^{k} - \mathsf{T}\sum_{i=1}^{n} \mathsf{B}_{i}^{*}\overline{y}_{i}^{k})$
(2) $y_{i}^{k+1} = \operatorname{prox}_{f_{i}^{*}}^{\mathsf{S}_{i}}(y_{i}^{k} + \mathsf{S}_{i}\mathsf{B}_{i}x^{k+1}) \quad i = 1, ..., n$
(3) $\overline{y}_{i}^{k+1} = y_{i}^{k+1} + \theta(y_{i}^{k+1} - y_{i}^{k}) \quad i = 1, ..., n$

- \triangleright evaluation of \mathbf{B}_i and \mathbf{B}_i^*
- ightharpoonup proximal operator: $\operatorname{prox}_f^{\mathbf{S}}(x) := \operatorname{arg\,min}_z \left\{ \frac{1}{2} \|z x\|_{\mathbf{S}}^2 + f(z) \right\}$
- ightharpoonup convergence: $\theta = 1, \mathbf{C}_i = \mathbf{S}_i^{1/2} \mathbf{B}_i \mathbf{T}^{1/2}$

$$\left\| \begin{pmatrix} \mathbf{C}_1 \\ \vdots \\ \mathbf{C}_n \end{pmatrix} \right\|^2 < 1$$

¹Pock, Cremers, Bischof, Chambolle '09, Chambolle and Pock '11

Primal-Dual Hybrid Gradient (PDHG) Algorithm¹

Given
$$x^{0}, y^{0}, \overline{y}^{0} = y^{0}$$

(1) $x^{k+1} = \operatorname{prox}_{g}^{\mathsf{T}}(x^{k} - \mathsf{T}\sum_{i=1}^{n} \mathsf{B}_{i}^{*} \overline{y}_{i}^{k})$
(2) $y_{i}^{k+1} = \operatorname{prox}_{f_{i}^{*}}^{\mathsf{S}_{i}}(y_{i}^{k} + \mathsf{S}_{i} \mathsf{B}_{i} x^{k+1}) \quad i = 1, \dots, n$
(3) $\overline{y}_{i}^{k+1} = y_{i}^{k+1} + \theta(y_{i}^{k+1} - y_{i}^{k}) \quad i = 1, \dots, n$

- \triangleright evaluation of \mathbf{B}_i and \mathbf{B}_i^*
- ightharpoonup proximal operator: $\operatorname{prox}_f^{\mathbf{S}}(x) := \operatorname{arg\,min}_z \left\{ \frac{1}{2} \|z x\|_{\mathbf{S}}^2 + f(z) \right\}$
- ightharpoonup convergence: $\theta = 1, \mathbf{C}_i = \mathbf{S}_i^{1/2} \mathbf{B}_i \mathbf{T}^{1/2}$

$$\left\| \begin{pmatrix} \mathsf{C}_1 \\ \vdots \\ \mathsf{C}_n \end{pmatrix} \right\|^2 < 1$$

¹Pock, Cremers, Bischof, Chambolle '09, Chambolle and Pock '11

Stochastic PDHG Algorithm¹

Given
$$x^{0}, y^{0}, \overline{y}^{0} = y^{0}$$

(1) $x^{k+1} = \operatorname{prox}_{g}^{\mathsf{T}}(x^{k} - \mathsf{T}\sum_{i=1}^{n} \mathsf{B}_{i}^{*}\overline{y}_{i}^{k})$
Select $j^{k+1} \in \{1, \dots, n\}$ randomly.
(2) $y_{i}^{k+1} = \begin{cases} \operatorname{prox}_{f_{i}^{*}}^{\mathsf{S}_{i}}(y_{i}^{k} + \mathsf{S}_{i}\mathsf{B}_{i}x^{k+1}) & i = j^{k+1} \\ y_{i}^{k} & \text{else} \end{cases}$
(3) $\overline{y}_{i}^{k+1} = \begin{cases} y_{i}^{k+1} + \frac{\theta}{p_{i}}(y_{i}^{k+1} - y_{i}^{k}) & i = j^{k+1} \\ y_{i}^{k+1} & \text{else} \end{cases}$

- ▶ probabilities $p_i := \mathbb{P}(i = j^{k+1}) > 0$ (**proper** sampling)
- ► Compute $\sum_{i=1}^{n} \mathbf{B}_{i}^{*} \overline{y}_{i}^{k}$ using only \mathbf{B}_{i}^{*} for $i = j^{k+1} + \mathbf{memory}$

¹Chambolle, E, Richtárik, Schönlieb '18

Stochastic PDHG Algorithm¹

Given
$$x^{0}, y^{0}, \overline{y}^{0} = y^{0}$$

(1) $x^{k+1} = \operatorname{prox}_{g}^{\mathsf{T}}(x^{k} - \mathsf{T}\sum_{i=1}^{n} \mathsf{B}_{i}^{*}\overline{y}_{i}^{k})$
Select $j^{k+1} \in \{1, \dots, n\}$ randomly.
(2) $y_{i}^{k+1} = \begin{cases} \operatorname{prox}_{f_{i}^{*}}^{\mathsf{S}_{i}}(y_{i}^{k} + \mathsf{S}_{i}\mathsf{B}_{i}x^{k+1}) & i = j^{k+1} \\ y_{i}^{k} & \text{else} \end{cases}$
(3) $\overline{y}_{i}^{k+1} = \begin{cases} y_{i}^{k+1} + \frac{\theta}{p_{i}}(y_{i}^{k+1} - y_{i}^{k}) & i = j^{k+1} \\ y_{i}^{k+1} & \text{else} \end{cases}$

- ▶ probabilities $p_i := \mathbb{P}(i = j^{k+1}) > 0$ (**proper** sampling)
- ► Compute $\sum_{i=1}^{n} \mathbf{B}_{i}^{*} \overline{y}_{i}^{k}$ using only \mathbf{B}_{i}^{*} for $i = j^{k+1} + \mathbf{memory}$
- evaluation of \mathbf{B}_i and \mathbf{B}_i^* only for $i = j^{k+1}$.

¹Chambolle, E, Richtárik, Schönlieb '18

Convergence of SPDHG

Definition: Let $p \in \partial f(v)$. The **Bregman distance** of f is defined as

$$D_f^p(u,v) = f(u) - [f(v) + \langle p, u - v \rangle].$$

Convergence of SPDHG

Definition: Let $p \in \partial f(v)$. The **Bregman distance** of f is defined as

$$D_f^p(u,v) = f(u) - [f(v) + \langle p, u - v \rangle].$$

Theorem: Chambolle, E, Richtárik, Schönlieb '18

Let (x^{\sharp},y^{\sharp}) be a saddle point, choose $\theta=1$ and step sizes

 $S_i, T := \min_i T_i$ such that

$$\left\| \mathbf{S}_{i}^{1/2} \mathbf{B}_{i} \mathbf{T}_{i}^{1/2} \right\|^{2} < p_{i} \quad i = 1, \ldots, n.$$

Then almost surely $D_g^{r^{\sharp}}(x^k, x^{\sharp}) + D_{f^*}^{q^{\sharp}}(y^k, y^{\sharp}) \rightarrow 0$.

Step-sizes and Preconditioning

Theorem: E, Markiewicz, Schönlieb '18

Let $\rho < 1$. Then $\|\mathbf{S}_i^{1/2}\mathbf{B}_i\mathbf{T}_i^{1/2}\|^2 < p_i$ is satisfied by

$$\mathbf{S}_i = \frac{\rho}{\|\mathbf{B}_i\|} \mathbf{I}, \quad \mathbf{T}_i = \frac{p_i}{\|\mathbf{B}_i\|} \mathbf{I}.$$

If $\mathbf{B}_i \geq 0$, then the step-size condition is also satisfied for

$$\mathbf{S}_i = \operatorname{diag}\left(\frac{
ho}{\mathbf{B}_i 1}\right) \,, \quad \mathbf{T}_i = \operatorname{diag}\left(\frac{p_i}{\mathbf{B}_i^T 1}\right) \,.$$

Step-sizes and Preconditioning

Theorem: E, Markiewicz, Schönlieb '18

Let $\rho < 1$. Then $\|\mathbf{S}_i^{1/2}\mathbf{B}_i\mathbf{T}_i^{1/2}\|^2 < p_i$ is satisfied by

$$\mathbf{S}_i = \frac{\rho}{\|\mathbf{B}_i\|} \mathbf{I}, \quad \mathbf{T}_i = \frac{p_i}{\|\mathbf{B}_i\|} \mathbf{I}.$$

If $B_i \ge 0$, then the step-size condition is also satisfied for

$$\mathbf{S}_i = \operatorname{diag}\left(\frac{
ho}{\mathbf{B}_i 1}\right), \quad \mathbf{T}_i = \operatorname{diag}\left(\frac{p_i}{\mathbf{B}_i^T 1}\right).$$

Sanity Check: Convergence to Saddle Point (dTV)

More subsets are faster

Number of **subsets**: m = 1, 21, 100, 252

"Balanced sampling" is faster

uniform sampling: $p_i = 1/n$

balanced sampling:
$$p_i = \begin{cases} \frac{1}{2m} & i < n \\ \frac{1}{2} & i = n \end{cases}$$

Preconditioning is faster

Scalar step sizes:
$$\mathbf{S}_i = \frac{\rho}{\|\mathbf{B}_i\|} \mathbf{I}$$
, $\mathbf{T}_i = \frac{p_i}{\|\mathbf{B}_i\|} \mathbf{I}$

Preconditioned (vector-valued) step sizes:

$$\mathbf{S}_i = \operatorname{diag}\left(rac{
ho}{\mathbf{B}_i 1}
ight) \,, \quad \mathbf{T}_i = \operatorname{diag}\left(rac{
ho_i}{\mathbf{B}_i^T 1}
ight)$$

FDG

FDG, 20 epochs

FDG, 10 epochs

FDG, 5 epochs

FDG, 1 epoch

PDHG

Florbetapir

Florbetapir, 20 epochs

Florbetapir, 10 epochs

Florbetapir, 5 epochs

Florbetapir, 1 epoch

Conclusions and Outlook

Summary:

- Randomized optimization which exploits "separable structure"
- More subsets, balanced sampling and preconditioning all speed up
- only 5-20 epochs needed for advanced models on clinical data

Future work:

- evaluation in concrete situations (with Addenbrookes' Cambridge)
- **▶ sampling**: 1) optimal, 2) adaptive

