

Supporting Information for

- Semiparametric robust mean estimations based on the orderliness of quantile averages
- 4 Tuban Lee.
- 5 E-mail: tl@biomathematics.org
- 6 This PDF file includes:
- 7 Supporting text
- 8 Legend for Dataset S1
- 9 Other supporting materials for this manuscript include the following:
- Dataset S1

Supporting Information Text

- Then, the orderliness for parametric distributions will be discussed. For simplicity, $0 \le \epsilon \le \frac{1}{2}$ is assumed in the following proofs 12 unless otherwise specified.
- **Theorem 0.1.** The Weibull distribution is ordered if the shape parameter $\alpha \leqslant \frac{1}{1-\ln(2)} \approx 3.259$.

Proof. The pdf of the Weibull distribution is $f(x) = \frac{\alpha e^{-\left(\frac{x}{\lambda}\right)^{\alpha}\left(\frac{x}{\lambda}\right)^{\alpha-1}}{\lambda}}{\lambda}$, $x \ge 0$, the quantile function is $F^{-1}(p) = \lambda(-\ln(1-p))^{1/\alpha}$, $1 \ge p \ge 0$, $\alpha > 0$, $\lambda > 0$. Then, the standardized bias of a symmetric quantile average with a breakdown point ϵ , is

$$B_{SQA}(\epsilon,\alpha) = \frac{SQA_{\epsilon} - \mu}{\sigma} = \frac{\frac{1}{2} \left(\lambda (-\ln(1-\epsilon))^{1/\alpha} + \lambda (-\ln(\epsilon))^{1/\alpha} \right) - \lambda \Gamma \left(1 + \frac{1}{\alpha} \right)}{\sqrt{\lambda^2 \left(\Gamma \left(1 + \frac{2}{\alpha} \right) - \Gamma \left(1 + \frac{1}{\alpha} \right)^2 \right)}}.$$

$$\frac{\partial \mathbf{B}_{\mathrm{SQA}}}{\partial \epsilon} = \frac{\frac{(-\ln(1-\epsilon))^{\frac{1}{\alpha}-1}}{\alpha-\alpha\epsilon} + \frac{(-\ln(\epsilon))^{1/\alpha}}{\alpha\epsilon\ln(\epsilon)}}{2\sqrt{\Gamma\left(\frac{\alpha+2}{\alpha}\right)-\Gamma\left(1+\frac{1}{\alpha}\right)^{2}}}. \text{ Let } g(\epsilon,\alpha) = \frac{(-\ln(1-\epsilon))^{\frac{1}{\alpha}-1}}{\alpha-\alpha\epsilon} + \frac{(-\ln(\epsilon))^{1/\alpha}}{\alpha\epsilon\ln(\epsilon)} = -\left(-\ln\left(1-\epsilon\right)\right)^{\frac{1}{\alpha}}\left((1-\epsilon)\left(\ln\left(1-\epsilon\right)\right)\right)^{-1} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha-\alpha\epsilon} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} = -\left(-\ln\left(1-\epsilon\right)\right)^{\frac{1}{\alpha}}\left((1-\epsilon)\left(\ln\left(1-\epsilon\right)\right)\right)^{-1} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha-\alpha\epsilon} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha-\alpha\epsilon} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} = -\left(-\ln\left(1-\epsilon\right)\right)^{\frac{1}{\alpha}}\left((1-\epsilon)\left(\ln\left(1-\epsilon\right)\right)\right)^{-1} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha-\alpha\epsilon} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha-\alpha\epsilon} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} = -\left(-\ln\left(1-\epsilon\right)\right)^{\frac{1}{\alpha}} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha-\alpha\epsilon} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} = -\left(-\ln\left(1-\epsilon\right)\right)^{\frac{1}{\alpha}} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} = -\frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} = -\frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} = -\frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} + \frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} = -\frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)} = -\frac{(-\ln(\epsilon))^{\frac{1}{\alpha}-1}}{\alpha\epsilon\ln(\epsilon)}$$

$$_{16}$$
 $(-\ln(\epsilon))^{\frac{1}{\alpha}}(\epsilon\ln(\epsilon))^{-1}$. Arranging the equation $g(\epsilon,\alpha)=0$, it can be shown that $\frac{\epsilon}{(1-\epsilon)}=\left(\frac{\ln(\epsilon)}{\ln(1-\epsilon)}\right)^{\frac{1}{\alpha}-1}$. Let $L(\epsilon)=\frac{\epsilon}{(1-\epsilon)}$,

17
$$R(\epsilon,\alpha) = \left(\frac{\ln{(\epsilon)}}{\ln{(1-\epsilon)}}\right)^{\frac{1}{\alpha}-1}$$
, $LmR(\epsilon,\alpha) = L(\epsilon,\alpha) - R(\epsilon,\alpha)$, then $\frac{\partial LmR}{\partial \alpha} = \frac{\ln{\left(\frac{\ln{(\epsilon)}}{\ln{(1-\epsilon)}}\right)}\left(\frac{\ln{(\epsilon)}}{\ln{(1-\epsilon)}}\right)^{\frac{1}{\alpha}-1}}{\alpha^2}$. For $0 \le \epsilon \le \frac{1}{2}$, $\frac{\partial LmR}{\partial \alpha} \ge 0$, 18 so $LmR(\epsilon,\alpha)$ is monotonic with respect to α . When $\alpha = \frac{1}{1-\ln{(2)}}$, $g(\epsilon) = -\frac{1}{\epsilon(-\ln{(\epsilon)})^{\ln{(2)}}} + \frac{1}{(1-\epsilon)(-\ln{(1-\epsilon)})^{\ln{(2)}}}$ Let $h(\epsilon) = \frac{1}{\epsilon(-\ln{(\epsilon)})^{\ln{(2)}}}$.

so
$$LmR(\epsilon,\alpha)$$
 is monotonic with respect to α . When $\alpha = \frac{1}{1-\ln(2)}$, $g(\epsilon) = -\frac{1}{\epsilon(-\ln(\epsilon))^{\ln(2)}} + \frac{1}{(1-\epsilon)(-\ln(1-\epsilon))^{\ln(2)}}$ Let $h(\epsilon) = -\frac{1}{1-\ln(2)}$

$$\epsilon(-\ln(\epsilon))^{\ln(2)}, \ h'(\epsilon) = \frac{(-\ln(\epsilon))^{\ln(2)} \ln(2\epsilon)}{\ln(\epsilon)}, \text{ for } 0 \le \epsilon \le e^{-\ln(2)} = \frac{1}{2}, \ h'(\epsilon) \ge 0. \text{ As a result, } h(\epsilon) \text{ is monotonic increasing, } h(\epsilon) - h(1-\epsilon) \text{ is also monotonic increasing. So, if } 0 \le \epsilon \le \frac{1}{2}, \ h(\epsilon) - h(1-\epsilon) \le \frac{1}{2},$$

$$h(1-\epsilon)$$
 is monotonic increasing, $h(\epsilon) - h(1-\epsilon)$ is also monotonic increasing. So, if $0 \le \epsilon \le \frac{1}{2}$, $h(\epsilon) - h(1-\epsilon) \le \frac{1}{2}$

$$h(\epsilon) = h(\epsilon) = h(\epsilon)$$
, $h(\epsilon) = h(\epsilon) = h(\epsilon)$, $h(\epsilon) = h(\epsilon)$ is monotonic increasing, $h(\epsilon) = h(\epsilon) = h(\epsilon)$ is monotonic increasing. So, if $0 \le \epsilon \le \frac{1}{2}$, $h(\epsilon) = h(1-\epsilon) \le h(\frac{1}{2}) = h(1-\frac{1}{2}) = 0$, $g(\epsilon,\alpha) \le 0$. So, $\frac{\partial B_{SQA}}{\partial \epsilon} \le 0$, $B_{SQA}(\epsilon,\alpha)$ is monotonic decreasing in ϵ when $\alpha \le \frac{1}{1-\ln(2)}$. The assertion follows from Theorem ??.

SI Dataset S1 (dataset one.xlsx)

Raw data of asymptotic biases of all estimators shown in Figure 1 in the Main Text and the standard errors of these 24 estimators for the generalized Gaussian distribution.

References

23