Assignment 1: Advanced Intelligent Data Ingestion, Transformation, and Exploratory Data Analysis (EDA)

Timeline: 13th February 2025 – 21st February 2025

Instructions

1. Plagiarism Policy:

- o Any form of plagiarism will result in disqualification.
- Ensure all work is original.
- o Cite any external sources used in your submission.

2. Dataset:

- Use the dataset from Assignment 0: Amazon Review Data.
- Dataset Link: Amazon Review Data
- o Ensure you use the same loaded dataset as in Assignment 0.

3. Git Repository:

- o Maintain a private Git repository for this assignment.
- Push your work regularly to GitHub.
- o Ensure proper folder structure (eda/, visualizations/, logs/).

4. Naming Conventions:

- Use clear and meaningful names for scripts, functions, and variables.
- o Examples: eda_summary.py, review_distribution.png, sentiment_analysis.ipynb.

5. Documentation:

- o A README.md must be included with:
 - An overview of the assignment.
 - Steps to run your EDA code.
 - Key insights and findings.
- o A report that will be in the zip folder you upload on the GCR.

Objective

This assignment focuses on developing an advanced real-time data ingestion and transformation pipeline while conducting an in-depth, interactive Exploratory Data Analysis (EDA) to extract meaningful insights. The assignment consists of two primary components:

1. Real-time Data Ingestion & Transformation

- Utilize Apache Spark Structured Streaming to create a scalable data pipeline.
- Implement **dynamic** data cleaning, preprocessing, and **real-time anomaly detection** during ingestion.

2. Advanced Interactive Exploratory Data Analysis (EDA)

- Perform an in-depth, query-driven analysis and visualization of the processed data.
- Identify trends, patterns, and correlations through multidimensional EDA.

Assignment Breakdown

1. Data Ingestion & Transformation (Apache Spark Streaming)

Students are required to build a **real-time data pipeline** that ingests data from a source (e.g., **Kafka, socket, or local file stream**). The pipeline should:

- Stream and preprocess data dynamically.
- Perform **data cleaning**, including handling missing values, removing duplicates, and normalizing data.
- Detect outliers and anomalies using Spark SQL or MLlib.
- Convert raw data into a structured format suitable for analysis.

Expected Deliverables

- A Python script or Jupyter Notebook implementing the pipeline using Apache Spark.
- A **GitHub repository** containing well-structured and modular scripts.
- Error-handling mechanisms to ensure smooth data ingestion.

2. Advanced Exploratory Data Analysis (EDA) on Transformed Data

After ingestion and cleaning, students must conduct an **in-depth, query-driven EDA**, including:

Step 1: Data Understanding & Summary Statistics

- Evaluate dataset shape, column types, missing values, and basic statistics.
- Summarize dataset using mean, median, mode, min/max, standard deviation.

Step 2: Meaningful Query-Based EDA

Perform at least 8 meaningful queries from the dataset. Examples include:

- 1. What are the top 5 most reviewed products?
- 2. How do average review ratings differ across product categories?
- 3. What is the correlation between review length and review rating?
- 4. How do reviews trend over time? (time-series analysis)
- 5. What percentage of reviews mention words like 'refund', 'return', or 'defective'?
- 6. Which brands/products have the most polarized reviews (most 1-star and 5-star reviews)?
- 7. How do verified and non-verified purchases compare in ratings?
- 8. Which product categories tend to have the most fake-looking reviews (e.g., excessive repetition of words)?

Step 3: Text Analysis (Basic NLP)

- Most Frequent Words: Generate a word cloud after removing stopwords.
- Sentiment Analysis: Classify reviews as positive, neutral, or negative based on ratings.
- Topic Modeling (Bonus): Implement LDA to find common themes in reviews.

Step 4: Correlation & Business Insights

- Identify highly reviewed products and top-rated categories.
- Detect which words correlate with positive/negative reviews.
- Determine which features impact a product's success using correlation heatmaps.

Step 5: Interactive & Visual EDA

- Generate at least eight insightful, interactive visualizations using Plotly, Dash, or Altair.
- Store all visuals in the **visualizations/** folder.

Bonus Dataset

In addition to the main dataset, students will be provided with a **bonus JSON dataset**. **Performing EDA on this dataset will result in extra marks**.

- The bonus dataset will contain **user behavioral data** (clicks, views, add-to-cart actions).
- Students can combine insights from both datasets for a richer analysis.
- The bonus dataset file will be included in the assignment package.

Submission Requirements

1. GitHub Repository

- Push all work regularly to a **private GitHub repository**.
- Ensure a proper **folder structure** (eda/, scripts/, README.md).
- Name files meaningfully (e.g., eda_summary.py, streaming_pipeline.py).

2. Report Submission

- A **README.md** explaining:
 - Steps to run the ingestion pipeline.
 - Summary of EDA findings.
- A **PDF report** containing:
 - Visualizations
 - o Key insights from query-based analysis
 - o Discussion on trends, patterns, and business implications.

3. Logging & Error Handling

• Maintain logs in a logs/ folder to track errors and processing time.

4. Code Documentation

Ensure the code is modular, well-commented, and includes function descriptions.

5. Final Upload to GCR

- Submit a zip folder containing:
 - All scripts (.py / .ipynb)
 - Final PDF report
 - Bonus dataset analysis (if done for extra marks)
- Zip folder name: [RollNumber1]_[RollNumber2].zip

Evaluation Criteria

Criteria Weightage

Real-time Data Ingestion & Cleaning 30%

Criteria	Weightage
Query-Driven EDA & Visualizations	30%
Code Quality & GitHub Usage	20%
Documentation & Report Clarity	20%

Bonus Points

- Use Spark MLlib to detect anomalies in review ratings.
- Develop an interactive dashboard using Dash, Streamlit, or Voila.
- Optimize Spark jobs for better performance (caching, partitioning).
- Incorporate Bonus Dataset for additional insights.

Deadline

21st February 2025 (End of day)

Students are expected to maintain **regular commits on GitHub** and ensure their work is **well-documented and reproducible**. Each assignment should have an individual folder i.e. Assignment 1, Assignment 2 and so on...