BLOC 4= Tema 6 + Tema 7: Diagnòstic del model mitjançant proves χ^2 + Proves basades en rangs

LLIÇONS TEMA 7. Proves basades en rangs

- **7.1** La prova dels signes per a comparar dues mostres aparellades
- **7.2** La prova dels rangs signats de Wilcoxon per a comparar dues mostres aparellades
- **7.3** La prova de Mann-Whitney-Wilcoxon per a comparar dues mostres independents

7.1 La prova dels signes i la prova dels rangs signats de Wilcoxon per a comparar dues mostres aparellades

Volem comparar dos mètodes, A i B, i saber quin és millor, superior, més eficient, ..

Disposem de dades aparellades (X,Y) contínues, no normals i per tant les proves Z i t de Student no són vàlides.

Mètodes no paramètrics alternatius:

- La prova dels signes i
- 2 la prova dels rangs signats de Wilcoxon

Les proves es diuen no paramètriques perque fan molt poques suposicions sobre la naturalesa de les lleis de probabilitat de X i Y.

- Avantatge: Aplicabilitat general i en particular quan X i Y no són normals
- La prova dels rangs signats de Wilcoxon és preferible si X i Y es poden quantificar numèricament
- **Inconvenient**: menys potència que altres proves, per exemple, que la prova de la t de Student per a dades aparellades quan X i Y són normals

Notació

Partim de la comparació de dos mètodes A i B i d'una variable numèrica resposta tal que valors grans de la mateixa indiquen més efectivitat, més eficiència o superioritat.

- $oldsymbol{0}$ X_i la resposta al mètode A
- 2 Y_i la resposta al mètode B
- **1** Tenim n parelles (X_i, Y_i) de variables aleatòries. Si es dona X > Y preferim A abans que B.

Es poden donar 2 situacions

- Disposem de n individus (o ítems), A cada individu se l'administren els dos mètodes A i B.
- Disposem de 2n individus (o ítems), els aparellem de forma el més homogènia possible, administrem el mètode A a un membre de la parella i el mètode B a l'altre membre

La prova dels signes: Exemple de l'acné

Estudi per comparar l'efectivitat de dos fàrmacs A i B per tractar l'acné juvenil.

- Seleccionem 30 joves entre 14 i 20 anys
- Els aparellem per gènere, edat i severitat de l'acné.
- Per cada parella escollim a l'atzar un jove i li assignem el fàrmac A; a l'altre li assignem el B.
- Prenen la medicació durant 3 mesos i una dermatòloga especialitzada (que no sap quin fàrmac han pres) estableix, per cada parella, quin dels dos fàrmacs ha estat més efectiu després d'haver seguit la medicació (A o B)
- Resultat: La dermatòloga estableix que en 12 parelles de les 15 el fàrmac A és més efectiu que no pas el B.

Hipòtesi nul.la i alternativa

Es poden donar dues situacions:

Que els dos fàrmacs siguin igual d'efectius ⇔

 H_0 : Els dos fàrmacs A i B són igual d' efectius

⇔ el dos joves, d'una mateixa parella, tenen la mateixa probabilitat d'exhibir un millor efecte.

En general,
$$H_0: p = \text{Prob}\{X > Y\} = 1/2$$

② Que un fàrmac, per exemple l'A, sigui més efectiu que l'altre, el $B \Leftrightarrow$

 H_1 : El fàrmac A és **més efectiu** que el fàrmac B

 \Leftrightarrow el jove que rep el fàrmac A té una probabilitat més gran d'1/2 d'exhibir un millor efecte que no pas l'altre jove de la mateixa parella i que rep el fàrmac B.

En general,
$$H_1: p = \text{Prob}\{X > Y\} > 1/2$$

Prova dels signes: Mesura de discrepància

- Mesura de discrepància, S_n , compta el nombre de parelles tals que $X_i > Y_i$: resposta de la primera component (mètode A) millor que la resposta de la segona component (mètode B)
- Rebutjarem per valors grans de S_n ja que indiquen que hi han més parelles a on el mètode A és millor que el B
- S_n segueix un model Bin(n, p) on $p = Prob\{X > Y\}$
- Si H_0 és cert $\Rightarrow S_n \sim Bin(n, 1/2)$. Aleshores: $E(S_n|H_0) = n\frac{1}{2}$ i $Var(S_n|H_0) = n\frac{1}{2}\frac{1}{2} = n\frac{1}{4}$.
- En una prova amb nivell α , la regió de rebuig ve donada per $R = \{(X_i, Y_i) : S_n > c_\alpha\}$ on el valor c_α és tal que

$$\mathbf{P}\{Bin(n,1/2)>c_{\alpha}\}\geq\alpha.$$

i es pot trobar a les taules de la Binomial.

• **NOTA:** En aquesta prova NO rebutjar H_0 implica que $p \le \frac{1}{2}$ i per tant que el mètode B és **millor** que el mètode A.

Exemple de l'acné

 H_0 : no hi ha diferència entre l'efectivitat dels fàrmacs A i B H_1 : el fàrmac A és més efectiu que el fàrmac B S_{15} = nombre de parelles on A és més efectiu que B $\sim Bin(15,1/2)$ sota H_0 : $p = \text{Prob}\{X > Y\} = 1/2$

- La dermatòloga ha observat que a 12 parelles el fàrmac A és més efectiu que no pas el $B \Rightarrow s_{15} = 12$.
- Notem que $P\{Bin(15, 1/2) > 10\} = 1 P\{Bin(15, 1/2) \le 10\}$
- Trobem a les taules per n=15 i p=0.5 que $\mathbf{P}\{Bin(15,1/2)\leq 10\}=0.9408$ i $\mathbf{P}\{Bin(15,1/2)\leq 11\}=0.9824$
- $\mathbf{P}\{Bin(15,1/2)>10\}=1-0.9408=0.0592>\alpha$ $\mathbf{P}\{Bin(15,1/2)>11\}=1-0.9824=0.0176<\alpha$ i per tant $\mathbf{c}_{\alpha}=\mathbf{c}_{0.05}=\mathbf{10}$

Exemple de l'acné: Conclusió

- Per un nivell de significació $\alpha = 0.0592 \Rightarrow$ Regió de Rebuig $R = \{(X_i, Y_i) : S_{15} > 10\}.$
- Com que $s_{15} = 12 \in R = \{(X_i, Y_i) : S_{15} > 10\}$. Rebutgem H_0 amb un risc $\alpha = 0.0593$ i concluim que el fàrmac A és millor que el B.
- El p-valor es calcula com

$$\begin{aligned} \mathbf{P}_{H_0} \{ S_{15} \geq 12 \} &=& \mathbf{P}_{H_0} \{ S_{15} = 12 \} + \mathbf{P}_{H_0} \{ S_{15} = 13 \} \\ &+& \mathbf{P}_{H_0} \{ S_{15} = 14 \} + \mathbf{P}_{H_0} \{ S_{15} = 15 \} \\ &=& 0.0139 + 0.0032 + 0.0005 + 0.0000 \\ &=& 0.0176 \end{aligned}$$

Comentaris sobre la prova dels signes

- Es diu prova dels signes perque les dades són del tipus:
 +,+,-,+,···,- on
 - un signe + indica que $X_i > Y_I$ o que la resposta del primer component de la parella és millor (més efectiva) que la segona;
 - ② un signe indica que $X_i < Y_I$ o que la resposta del primer component de la parella és pitjor (menys efectiva) que la segona.
- Estem descartant la possibilitat de que l'efecte sigui el mateix pels dos membres de la parella, és a dir, $P(X_i = Y_i) = 0$.
- Suposem que totes les parelles responen al mateix model probabilístic: $p_1 = p_2 = \ldots = p_m = p$, és a dir, la probabilitat d'una millor resposta del primer membre de la parella és la mateixa per cadascuna de les n parelles
- Quan n>20 i p=1/2, Bin(n,1/2) s'aproxima a $N(\frac{n}{2},\frac{n}{4})$. Es pot fer servir la llei normal i la regió de rebuig és $R=\{(X_i,Y_i): \frac{S_n-n/2}{\sqrt{n/4}}>z_{\alpha}\}$ on z_{α} és el percentil de la N(0,1).
- La prova dels signes és de fet una prova d'hipòtesi sobre la mediana de la població.

7.2 La prova dels rangs signats de Wilcoxon

Seguim amb la comparació de dos mètodes A i B i d'una variable numèrica resposta tal que valors grans de la mateixa indiquen més efectivitat, més eficiència o superioritat.

- X_i la resposta al mètode A, Y_i la resposta al mètode B i n parelles (X_i, Y_i) de variables aleatòries tals que si $X_i > Y_i$ preferim A abans que B.
- ② Contrastem $H_0: p = \text{Prob}\{X > Y\} = 1/2 \text{ versus}$ $H_1: p = \text{Prob}\{X > Y\} > 1/2$
- **3** Calculem $D_1 = X_1 Y_1, D_2 = X_2 Y_2, \dots, D_n = X_n Y_n$
- Suposarem que no hi han empats $(|D_i| \neq |D_j| \text{ per a tot } i \neq j) \text{ i que } |D_i| \neq 0.$
- **5** Suposem que D_1, D_2, \ldots, D_n són variables aleatòries independents i idènticament distribuïdes amb distribució contínua. Ens referim de forma genèrica per D = X Y

Mesura de discrepància i regió de rebuig

• Mesura de discrepància W_n basada en les diferències $D_i = X_i - Y_i$ i en el rang que ocupen, concretament en la suma dels rangs de les diferències positives.

$$W_n$$
 = la suma dels rangs amb signe $+ = \sum_{i=1}^n R_i \mathbf{1} \{D_i > 0\}$

- 2 Rebutjarem H_0 quan $W_n \ge c$.
- **1** La llei que segueix W_n sota H_0 es pot calcular de forma explícita i exacte i la major de paquets estadístics la tenen incorporada. Es pot veure que sota H_0 :

$$E(W_n|H_0) = \frac{n(n+1)}{4}$$
 i $Var(W_n|H_0) = \frac{n(n+1)(2n+1)}{24}$

1 En aquest curs només donem l'aproximació per situacions en que comptem amb més de 20 parelles $(n \ge 20)$ i en aquest cas

$$\frac{W_n - E(W_n)}{\sqrt{Var(W_n)}} = \frac{W_n - \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} \xrightarrow{n \to \infty} N(0,1)$$

Exemple fictici per jugar

Suposem que tenim 6 parells:

i	X_i	Y_i	D_i	$ D_i $	signe	R_i	R_i +
1	3.84	3.03	0.81	0.81	+	2	+2
2	6.27	4.91	1.36	1.36	+	4	+4
3	8.75	7.65	1.10	1.10	+	3	+3
4	4.39	5.00	-0.61	0.61	_	1	-1
5	9.24	7.42	1.82	1.82	+	5	+5
6	5.61	7.59	-1.98	1.98	_	6	-6

- Calculem les diferències D_i. Notem que una diferència D_i
 positiva indica que X_i és més gran que Y_i i per tant que A és
 millor que B en la parella i i quan més gran sigui aquest valor
 més gran és la diferència
- Calculem $|D_i|$ i anotar el signe de D_i
- Calculem el rang R_i de $|D_i|$
- Anotem el rang signat R_i +

Càlculs amb l'exemple fictici

- $E(W_6|H_0) = \frac{6(6+1)}{4} = 10.5$
- $Var(W_6|H_0) = \frac{6(6+1)(2*6+1)}{24} = 22.75$

•

$$\frac{W_6 - \frac{6 \times 7}{4}}{\sqrt{\frac{6 \times 7 \times 13}{24}}} = \frac{W_6 - 10.5}{\sqrt{22.75}} = \frac{W_6 - 10.5}{4.77} \sim N(0, 1)$$

- Amb $\alpha = 0.05$ rebutjarem H_0 quan $\frac{W_6 10.5}{4.77} > z_{0.05} = 1.645$.
- A partir de les dades calculem $w_6 = 2 + 4 + 3 + 5 = 14$. Com que $\frac{14-10.5}{4.77} = 0.73 < 1.645$ NO rebutgem H_0
- Càlcul del valor p de la prova (fem servir l'aproximació normal amb n=6, tot i que en general cal que n>20):

$$P(W_6 \ge 14) = P\left(\frac{W_6 - 10.5}{4.77} \ge \frac{14 - 10.5}{\sqrt{22.75}}\right) = P(Z \ge 0.73) = 0.2327$$

• valor- $p = 0.2327 > 0.05 \Rightarrow$ no podem rebutjar $H_0 \Rightarrow$ no hi ha diferència entre els mètodes A i B.

Prova dels rangs signats de Wilcoxon: Resum

- Anotem els valors X_i i Y_i
- 2 Calculem D_1, D_2, \ldots, D_n i el seu valor absolut $|D_1|, |D_2|, \ldots, |D_n|$.
- **3** Ordenem de més petit a més gran les quantitats $|D_1|, |D_2|, \dots, |D_n|$.
- Assignem rangs R_i a cada parella i de la forma següent: Al D_i més petit li correspon rang 1, el segon rang 2, \cdots , el més gran rang n. Si la parella 1 té una diferència que és la 4a més petita tindrem $R_1 = 4, \cdots$, si la parella 3 té una diferència que és la més petita, tindrem $R_3 = 1$,
- ullet Calculem la mesura de discrepància $W_n=$ la suma dels rangs amb signe +
- Per un nivell de significació α calculem z_{α} i rebutjarem H_0 quan $\frac{W_n \frac{n(n+1)}{4}}{\sqrt{\frac{n(n+1)(2n+1)}{24}}} > z_{\alpha}$

La prova del signes vs la prova de Wilcoxon

En general fem servir:

- La prova del signes quan les variables X i Y no es poden quantificar numèricament, per exemple, sabem que Y és millor que X pero no podem quantificar la diferència,
- 2 La prova del signes quan la distribució de X i Y és contínua però molt asimètrica o té cues molt llargues. En aquest cas la mediana és una millor mesura de localització que la mitjana.
- La prova de Wilcoxon dels rangs signats quan les variables X i Y SI que es poden quantificar numèricament,
- La prova de Wilcoxon dels rangs signats quan la distribució de X i Y és contínua i simètrica però el model normal no és plausible.

Llegir Ugarte, Militino i Arnholt, capítol 10.1, 10.2 i 10.3, pàgines 403-422

7.3 Comparació de dues mostres independents: prova de Mann-Whitney-Wilcoxon

- Mètode proposat per Wilcoxon i Mann-Whitney l'any 1940
- Serveix per contrastar si dues mostres independents provenen d'una mateixa població (contínua).
- Peña l'anomena Contraste de Wilcoxon (no s'ha de confondre amb la prova dels rangs signats de Wilcoxon de l'apartat 7.2.)

Prova de Mann-Whitney-Wilcoxon: Notació i supòsits

Partim de dues poblacions representades per va contínues X i Y amb funcions de distribució F i G. Plantegem la següent prova d'hipòtesis:

 H_0 : Mediana F = Mediana G H_1 : Mediana $F \neq$ Mediana G

- X_1, \ldots, X_n : n observacions iid de F
- Y_1, \ldots, Y_m : m observacions iid de G.
- Suposarem que no hi ha cap empat, és a dir, per tot i, j: $P(X_i = X_j) = 0$, $P(Y_i = Y_j) = 0$, $P(X_i = Y_j) = 0$
- Sota H₀, és a dir, si X₁,..., X_n i Y₁,..., Y_m estan tretes de la mateixa distribució (mateixa mediana), els rangs corresponents a X₁,..., X_n estaran repartits entre els n + m valors de forma uniforme, en particular, no estaran concentrats ni en els valors més petits ni els més grans.

Exemple: Rendiment de dos mòtors A i B de cotxe

Volem comparar el rendiment de dos mòtors A i B.

Les següents dades donen el rendiment (en %) de la transmissió del mòtor fins les rodes (de 0.3 m).

Mòtor A: 137.5; 140.7; 106.9; 175.1; 177.3; 120.4; 77.9; 104.2

(n=8)

Mòtor B : 103.3; 121.7; 98.4; 161.5; 167.8; 67.3 (m = 6)

i	Maquina	Xi	j	Maquina	Уј
1	Α	137.5	1	В	103.3
2	Α	140.7	2	В	121.7
3	Α	106.9	3	В	98.4
4	Α	175.1	4	В	161.5
5	Α	177.3	5	В	167.8
6	Α	120.4	6	В	67.3
7	Α	77.9			
8	Α	104.2			

Prova de Mann-Whitney-Wilcoxon: Procediment

• Formem una mostra única amb les N=m+n observacions de les dues mostres. Per exemple, n=8 i m=6 i

$$x_1, x_2, \cdots, x_8$$
 ; y_1, y_2, \cdots, y_6

- ② Ordenem les N = m + n = 14 observacions de les dues mostres de la més petita a la més gran.
- **3** Assignem rangs R_{X_i} $(i=1,\cdots,n)$ i R_{Y_j} $(j=1,\cdots,m)$ (valors entre 1 i N=n+m) a cada una de les N observacions de la mostra combinada

Rendiment de dues màquines: rangs

Maquina	x_i ,	Уј	rang	R_{x_i}	R_{y_j}
В	67	.3	1		1
Α	77	.9	2	2	
В	98	.4	3		3
В	103	3.3	4		4
Α	104	1.2	5	5	
Α	106	5.9	6	6	
Α	120	0.4	7	7	
В	121	1.7	8		8
Α	137	7.5	9	9	
Α	140	0.7	10	10	
В	161	1.5	11		11
В	167	7.8	12		12
Α	175	5.1	13	13	
Α	177	7.3	14	14	

Prova de Mann-Whitney- Wilcoxon: Mesura de discrepància

- \bullet H_0 : Mediana Rend. Motor A = Mediana Rend. Motor B.
- **3** Sigui M_X la suma dels rangs assignats a les n observacions X_1, \ldots, X_n i M_Y la suma dels rangs assignats a les m observacions Y_1, \ldots, Y_m , és a dir:

$$M_X = \sum_{i=1}^{n} R_{X_i}$$
 i $M_Y = \sum_{i=1}^{m} R_{Y_i}$

- A l'exemple: $M_X = 2 + 5 + 6 + 7 + 9 + 10 + 13 + 14 = 66$ i $M_V = 1 + 3 + 4 + 8 + 11 + 12 = 39$
- M_X és la mesura de discrepància entre les dades i H_0 ja que sota H_0 , els rangs corresponents a X_1, \ldots, X_n estaran distribuits entre els n+m valors uniformement (sense cap patró concret), i no estaran concentrats ni en els valors més petits ni els més grans.
 - Valors de M_X molt petits o molt grans donen idea de la llunyania de H_0 . De forma equivalent es podria fer servir M_Y .

Estudiant M_x sota H_0

• Observem que la suma de tots els rangs és:

$$M_X + M_Y = \sum_{i=1}^{n+m} i = (n+m) \left(\frac{n+m+1}{2}\right) = N \frac{N+1}{2}$$

Per tant

$$M_Y = N\frac{N+1}{2} - M_X$$

• Sota H_0 el rang d'una observació X (igual per les Y) és

$$\frac{1}{n+m}=\frac{1}{N}$$

ja que els rangs assignats a X_1, \ldots, X_n serien els mateixos que si haguéssim tret n rangs sense reemplaçament d'una caixa que contingui els valors $1, 2, \ldots, n + m = N$.

Esperança i Variància de M_X (o M_Y) sota H_0

•
$$E(R_{X_i}) = \sum_{i=1}^{n+m} i \frac{1}{n+m} = \frac{\sum_{i=1}^{n+m} i}{n+m} = \frac{n+m+1}{2}$$

•

$$E(M_X) = E\left(\sum_{i=1}^n R(X_i)\right) = nE\{R_{X_i}\} = n\frac{n+m+1}{2}$$

$$E(M_Y) = N\frac{N+1}{2} - E(M_X) = m\frac{n+m+1}{2}$$

$$\operatorname{Var}(M_X) = \operatorname{Var}(M_Y) = \frac{mn(m+n+1)}{12}$$

Llegir Peña 12.4.3 pàgines 504-507 **Nota:** Errada en pàgina 506 de Peña: La variància ha d'estar dividida per 12 i no 2.

Aproximació normal de la llei de M_x (o M_Y) sota H_0

En aquest curs només fem servir l'aproximació normal que és vàlida quan n, m > 5.

Si fem servir M_X

$$M_X \sim N\left(\frac{n(m+n+1)}{2}, \frac{mn(m+n+1)}{12}\right)$$

o de forma equivalent

$$\frac{M_X - \frac{n(m+n+1)}{2}}{\sqrt{\frac{mn(m+n+1)}{12}}} \sim N\left(0,1\right)$$

Si fem servir M_Y

$$M_Y \sim N\left(\frac{m(m+n+1)}{2}, \frac{mn(m+n+1)}{12}\right)$$

o de forma equivalent

$$\frac{M_{Y} - \frac{m(m+n+1)}{2}}{\sqrt{\frac{mn(m+n+1)}{12}}} \sim N(0,1)$$

Prova de Mann-Whitney-Wilcoxon

② Si M_X és o bé molt petita o bé molt gran, rebutjarem H_0 . La regió de rebuig per un nivell de significació α és

$$R = \{(X_1, \dots, X_n, Y_1 \dots, Y_m) : M_X < c_1(\alpha) \text{ o } M_X > c_2(\alpha)\}$$

① Per tal de trobar els valors crítics, $c_1(\alpha)$ i $c_2(\alpha)$, que defineixen la regió de rebuig, necessitem calcular la distribució del nostre estadístic en cas que la hipòtesi nul.la sigui certa. Existeixen taules per la distribució de M_x sota H_0 i els paquets estadístics també ho tenen implementat. En aquest curs només fem servir l'aproximació normal que és vàlida quan n, m > 5

Prova de Mann-Whitney-Wilcoxon: Conclusions

9 Per un nivell de significació α , si fem servir M_X rebutgem H_0 si

$$\left|\frac{M_X - \frac{n(m+n+1)}{2}}{\sqrt{\frac{mn(m+n+1)}{12}}}\right| > z_{\alpha/2}$$

o equivalentment substituïnt N = n + m

$$M_X < \frac{n(N+1)}{2} - z_{\alpha/2} \sqrt{\frac{mn(N+1)}{12}} = c_1(\alpha/2)$$

 $M_X > \frac{n(N+1)}{2} + z_{\alpha/2} \sqrt{\frac{mn(N+1)}{12}} = c_2(\alpha/2)$

 \odot El p valor es troba com habitualment a partir de les taules de la N(0,1)

Rendiment dels dos mòtors: Conclusió

• Sota
$$H_0$$
: $E(M_X) = n \frac{n+m+1}{2} = 60 \text{ i}$
 $Var(M_X) = \frac{mn(m+n+1)}{12} = 60 \text{ (}\sqrt{60} = 7.75\text{)}$

•

$$\frac{M_X - \frac{n(m+n+1)}{2}}{\sqrt{\frac{mn(m+n+1)}{12}}} = \frac{M_X - \frac{8*15}{2}}{\sqrt{\frac{6*8*15}{12}}} = \frac{M_X - 60}{7.75} \sim N(0,1)$$

• Per $\alpha = 0.05 \Rightarrow z_{\alpha/2} = 1.96$

$$c_{1}(0.025) = \frac{n(N+1)}{2} - z_{\alpha/2} \sqrt{\frac{mn(N+1)}{12}}$$

$$= \frac{8*15}{2} - 1.96 \sqrt{\frac{8*6*15}{12}} = 44.82$$

$$c_{2}(0.025) = \frac{n(N+1)}{2} + z_{\alpha/2} \sqrt{\frac{mn(N+1)}{12}}$$

$$= \frac{8*15}{2} + 1.96 \sqrt{\frac{8*6*15}{12}} = 75.18$$

Rendiment dels dos mòtors: Conclusió

$$R = \{(X_1, \dots, X_8, Y_1 \dots, Y_6) : M_X < c_1(\alpha/2) \circ M_X > c_2(\alpha/2)\}$$

= \{(X_1, \dots, X_8, Y_1 \dots, Y_6) : M_X < 44.82 \ \o \ M_X > 75.18\}

Com que hem observat $M_X = 66$, no rebutgem H_0 i concluïm que no hi ha diferència en els rendiments dels dos mòtors.

Exemple fusió del gel

En absència de qualsevol coneixement anterior que faci referència a que la fusió del gels es comporta com una normal semblaria més segur utilitzar un mètode no paramètric. Com que les mides de les mostres són bastant petites (n=13,m=8) serà dificil comprovar la normalitat.

Mètode A	Mètode A	Mètode B	
79.981	80.051	80.024	
80.041	80.033	79.941	
80.021	80.022	79.982	
80.042	80.001	79.979	
80.031	80.023	79.975	
80.032		80.038	
80.043		79.955	
79.971		79.976	

 H_0 : Mediana Energia per fondre el gel amb A = Mediana Energia per fondre el gel amb B *versus*

 H_1 : Mediana Energia per fondre el gel amb A superior a Mediana Energia per fondre el gel amb B.

Rangs fusió del gel

La següent taula dóna els rangs per a cadascun dels dos mètodes.

Mètode A	Mètode A	Mètode B
7	21	13
18	16	1
10	11	8
19	9	6
14	12	4
15		17
20		2
3		5

Rebutjarem H_0 si M_X = suma rangs del Mètode A $\geq c_1$ o equivalentment si M_Y = suma rangs del Mètode B $\leq c_2$.

$$\left\{ \begin{array}{ll}
 M_X & = & 175 \\
 M_Y & = & 56
 \end{array} \right\} \longrightarrow M_X + M_Y = 231 = N(N+1)/2$$

Les taules en general estan preparades per treballar amb el $\min\{M_X,M_Y\}$, en aquest cas $\min\{M_X,M_Y\} = 56$.

Taula Mann-Whitney-Wilcoxon i Conclusió Fusió del Gel

De la taula de Mann Whitney agafem com $n_1 = \max\{n, m\}$ i $n_2 = \min\{n, m\}$. Tenim $n_1 = 13$ i $n_2 = 8$

Per un test bilateral	Per un test unilateral	$c(\alpha)$ per min $\{M_X, M_Y\}$
0.20	0.100	69
0.10	0.050	64
0.05	0.025	60
0.01	0.005	53

Per un nivell de significació del 5%, $c_2(0.05) = 64$ i com $M_Y = 56 < 64$ rebutgem H_0 i concluïm que cal més energia per fondre el gel amb el mètode A que amb al mètode B.

De fet com que $c_2(0.025) = 60$ i 56 < 60, podem concloure que amb una significació del 2.5% el mètode A és superior al mètode B. Podem també afirmar que 0.005 < p-valor < 0.025.

Quan al tema 5 ho haviem resolt amb la t de Student haviem arribat a la mateixa conclusió.

