Nome:

nº de estudante:

Declaro que desisto:

Departamento de Matemática da Universidade de Aveiro

Cálculo I - agr. 4

2021/22

Duração: 1h30

$2.^{\underline{0}}$ teste em recurso

- Este exame contém **4 questões** no total, com uma questão por folha. O enunciado do exame contém no total 5 folhas numeradas de 0 até 4. Na página inicial (esta página, pág. 0) encontras também a cotação e formulários.
- Cada pergunta deve ser respondida na **respetiva folha do enunciado** começa na frente e, se necessário, continua no verso. Se for preciso podes ainda continuar em folhas de continuação mas tens de dizer qual é a questão a que estás a continuar a responder.
- Não podes misturar respostas a diferentes perguntas na mesma folha. Por exemplo, não podes responder a parte da pergunta 2 na mesma folha da questão 1, e vice-versa.
- Deves identificar todas as folhas que usares com o teu nome e $n^{\underline{o}}$ de estudante. Deves indicar no enunciado de cada pergunta quantas folhas de continuação usaste para essa pergunta.
- Todos os raciocínios devem ser convenientemente justificados e todas as respostas devem ser cuidadosamente redigidas.

Cotação:

1. 6; 2. 5; 3. 6;

Algumas fórmulas de derivação

4. 3.

C ~ 1	d
função de x	$\frac{d}{dx}$
$m u(x), m \in \mathbb{R}$	m u'(x)
$u(x)^n, n \in \mathbb{R}$	$n u(x)^{n-1} u'(x)$
$\log_a u(x) , \ a \in \mathbb{R}^+ \setminus \{1\}$	$\frac{u'(x)}{u(x)\ln a}$ $a^{u(x)}u'(x)\ln a$
$a^{u(x)}, a \in \mathbb{R}^+$	$a^{u(x)}u'(x)\ln a$
$\sin u(x)$	$\cos u(x) u'(x)$
$\cos u(x)$	$-\sin u(x) u'(x)$
$\tan u(x)$	$\sec^2 u(x) u'(x)$
$\cot u(x)$	$-\csc^2 u(x) u'(x)$
$\sec u(x)$	$\tan u(x) \sec u(x) u'(x)$
$\csc u(x)$	$-\cot u(x) \csc u(x) u'(x)$
$\sinh u(x)$	$\cosh u(x) u'(x)$
$\cosh u(x)$	$\sinh u(x) u'(x)$
$\arcsin u(x)$	$\frac{u'(x)}{\sqrt{1-u(x)^2}}$
arccos u(x)	$-\frac{u'(x)}{\sqrt{1-u(x)^2}}$
$\arctan u(x)$	$\frac{u'(x)}{1+u(x)^2}$ $u'(x)$
$\operatorname{arccot} u(x)$	$-\frac{u'(x)}{1+u(x)^2}$

Algumas fórmulas trigonométricas

$\sec u = \frac{1}{\cos u}$	$\csc u = \frac{1}{\sin u}$
$\cot u = \frac{\cos u}{\sin u}$	
$\cos^2 u = \frac{1 + \cos(2u)}{2}$	$\sin^2 u = \frac{1 - \cos(2u)}{2}$
$1 + \tan^2 u = \sec^2 u$	$1 + \cot^2 u = \csc^2 u$
$\cos^2(\arcsin u) = 1 - u^2$	$\sin^2(\arccos u) = 1 - u^2$

Algumas fórmulas hiperbólicas

$\sinh u = \frac{e^u - e^{-u}}{2}$	$ \cosh u = \frac{e^u + e^{-u}}{2} $
$\cosh^2 u - \sinh^2 u = 1$	

Nome:	nº de estudante:
${\bf N^0}$ folhas de continuação:	

- 1. Seja $\mathcal{A} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2}{2} \leq y \leq \frac{1}{1+x^2} \}$.
 - (a) Calcula os pontos de interseção dos gráficos de $y=\frac{x^2}{2}$ e de $y=\frac{1}{1+x^2}$. Nota: Para efeitos da resolução das alíneas seguintes informa-se que a solução é $(-1,\frac{1}{2})$ e $(1,\frac{1}{2})$, mas nenhuma cotação terás na presente alínea se apenas verificares que estes pontos satisfazem as duas equações.
 - (b) Representa geometricamente a região A.
 - (c) Calcula a área da região A.

Resposta à questão 1:

Nome:		n^{0} de estudante:
$N^{\underline{o}}$ folhas de continuação:	(Questão 2).	

2. (a) Considera o seguinte integral impróprio. Determina a sua natureza e, no caso de convergência, o seu valor.

$$\int_0^1 \sqrt{\frac{\arcsin x}{1 - x^2}} \, dx.$$

(b) Determina a soma da seguinte série numérica convergente:

$$\sum_{n=0}^{+\infty} \left(\frac{99}{10^{2n+2}} - \frac{3/2}{(n+1)(n+2)} + \frac{2^{n-1}}{3^n} \right).$$

Resposta à questão 2:

Nome:	\mathbf{n}^{0} de estudante:	
N^0 folhas de continuação:	Questão 3).	

 $3.\,$ Estuda a natureza das seguintes séries numéricas. Em caso de convergência indica se é simples ou absoluta.

(a)
$$\sum_{n=1}^{+\infty} \frac{n + (-1)^n 2^n}{n 2^n}$$
; (b) $\sum_{n=1}^{+\infty} (-1)^n \frac{(n + \ln n)^n}{2^n n^{n+1}}$.

Sugestão: Para estudares a natureza da série dos módulos na alínea (a), se for útil podes tirar partido do facto de $|n + (-1)^n 2^n|$ ser igual a $2^n + (-1)^n n$.

Resposta à questão 3:

Nome:			n^{Q} de estudante:
$\mathrm{N}^{\scriptscriptstyle \mathrm{O}}$ folha	s de continuação:	Questão 4).	

- 4. Considera a série $\sum_{n=1}^{+\infty} \left(1 \frac{\ln n}{n}\right)^n.$
 - (a) Explica porque é que não é possível determinar a sua natureza através do Critério de Cauchy.
 - (b) Calcula

$$\lim_{x \to +\infty} \left(1 - \frac{\ln x}{x}\right)^x.$$

(c) Diz, justificando, se com base no resultado da alínea anterior podes dizer qual é a natureza da série.

Resposta à questão 4: