In [1]: import pandas as pd
z=pd.read_csv("C:\\Users\\ravit\\Downloads\\Mall_Customers.csv")
z.drop('CustomerID', axis=1)
z['Gender']=z['Gender'].map({'Male':0, 'Female':1})
display(z)

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	0	19	15	39
1	2	0	21	15	81
2	3	1	20	16	6
3	4	1	23	16	77
4	5	1	31	17	40
195	196	1	35	120	79
196	197	1	45	126	28
197	198	0	32	126	74
198	199	0	32	137	18
199	200	0	30	137	83

200 rows × 5 columns

```
import matplotlib.pyplot as plt
import pandas as pd
z=pd.read_csv("C:\\Users\\ravit\\Downloads\\Mall_Customers.csv")
z.drop('CustomerID',axis=1)
z['Gender']=z['Gender'].map({'Male':0,'Female':1})
plt.scatter(z['Annual Income (k$)'],z['Spending Score (1-100)'])
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
```



```
In [3]: from sklearn.cluster import KMeans
   import matplotlib.pyplot as plt
   import warnings
   warnings.filterwarnings('ignore')
   wcss=[]
   for i in range(1,11):
        kmeans=KMeans(n_clusters=i,init='k-means++',random_state=42)
        kmeans.fit(z)
        wcss.append(kmeans.inertia_)
   plt.plot(range(1,11),wcss)
   plt.xlabel('NO.OF CLUSTERS')
# we got no.of clusters is 2 as output
```

Out[3]: Text(0.5, 0, 'NO.OF CLUSTERS')

In [4]: from sklearn.preprocessing import normalize
import pandas as pd
z=pd.read_csv("C:\\Users\\ravit\\Downloads\\Mall_Customers.csv")
z.drop('CustomerID', axis=1)
z['Gender']=z['Gender'].map({'Male':0, 'Female':1})
data_scaled=normalize(z)
data_scaled=pd.DataFrame(data_scaled, columns=z.columns)
display(data_scaled)

		CustomerID	Gender	Age	Annual Income (k\$) Spending Score (1-1	
	0	0.021780	0.000000	0.413826	0.326705	0.849433
	1	0.023520	0.000000	0.246956	0.176397	0.952546
	2	0.113228	0.037743	0.754851	0.603881	0.226455
	3	0.048755	0.012189	0.280342	0.195020	0.938536
	4	0.093234	0.018647	0.578052	0.316997	0.745874
	195	0.798286	0.004073	0.142551	0.488747	0.321758
	196	0.821583	0.004170	0.187671	0.525479	0.116773
	197	0.797894	0.000000	0.128953	0.507751	0.298203
	198	0.814330	0.000000	0.130948	0.560619	0.073658
	199	0.775229	0.000000	0.116284	0.531032	0.321720

200 rows × 5 columns

```
In [9]: from sklearn.cluster import KMeans
    from sklearn.preprocessing import normalize
    import matplotlib.pyplot as plt
    import pandas as pd
    z=pd.read_csv("C:\\Users\\ravit\\Downloads\\Mall_Customers.csv")
    z.drop('CustomerID', axis=1)
    z['Gender']=z['Gender'].map({'Male':0, 'Female':1})
    data_scaled=normalize(z)
    data_scaled=pd.DataFrame(data_scaled,columns=z.columns)
    k_mean=KMeans(n_clusters=2)
    k_pre=k_mean.fit_predict(data_scaled)
    z['cluster_int']=k_pre
    display(z)
```

C:\Users\ravit\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Se t the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)	cluster_int
0	1	0	19	15	39	0
1	2	0	21	15	81	0
2	3	1	20	16	6	0
3	4	1	23	16	77	0
4	5	1	31	17	40	0
195	196	1	35	120	79	1
196	197	1	45	126	28	1
197	198	0	32	126	74	1
198	199	0	32	137	18	1
199	200	0	30	137	83	1

200 rows × 6 columns

```
In [10]: import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
z=pd.read_csv("C:\\lsers\\ravit\\Downloads\\Mall_Customers.csv")
z.drop('CustomerID', axis=1)
z['Gender']=z['Gender'].map({'Male':0, 'Female':1})
k_mean=KMeans(n_clusters=2)
k_pre=k_mean.fit_predict(data_scaled)
z['cluster_int']=k_pre

plt.scatter(z['Annual Income (k$)'],z['Spending Score (1-100)'],c=z['cluster_int'])
plt.xlabel('Annual Income (k$)')
plt.ylabel('Spending Score (1-100)')
plt.show()
C:\\Users\\ravit\AppData\\cal\\Programs\Python\Python311\Lib\\site-packages\\sklearn\cluster\\kmeans.py:1412: FutureWarning: The default value of `n init` will change from 10 to 'auto' in 1.4. Second in the content of the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'auto' in 1.4. Second in the change from 10 to 'a
```

C:\Users\ravit\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\cluster_kmeans.py:1412: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Se t the value of `n_init` explicitly to suppress the warning super()._check_params_vs_input(X, default_n_init=10)

