Coordination dans les SMA Problématique et Approches

AMAL EL FALLAH SEGHROUCHNI Amal.Elfallah@lip6.fr

Plan

- 1. Problématique de la coordination
- 2. Approches de coordination
- 3. Exemple: Coordination par formation de coalitions
- 4. Conclusion

Plan

- 1. Problématique de la coordination
- 2. Approches de coordination
- 3. Exemple: Coordination par formation de coalitions
- 4. Conclusion

Définition de la Coordination

"Coordination corresponds to all the additional activities that are required to be performed, in an environment with several agents, and that one agent pursuing the same goal(s) would not accomplish" [Malone 88]

- Management of inter-dependencies between activities [Malone 94]
- The process by which agents reason about their actions and those of others in order to ensure consistency of joint actions [Jennings 96]

La coordination est présente dans divers systèmes & applications

- Dans les systèmes naturels et dans les systèmes logiciels
- La nature est une source d'inspiration

Exemples de l'ingénierie des systèmes logiciels

man-made systems

Autonomous Formation Flying and UAV Networks

Exemples de l'ingénierie des systèmes logiciels

Terra Dynamica project aims to provide an interactive and real-time simulation of 100 000 urban actors (animation and representation)

Transport NW - bus

- ...

Traffic:

- cars
 - bycycles
- pedestrians

Road signs:

- traffic lights

-...

Actors:

- individuals
 - groups
 - crowds

- ...

D'autres situations de coordination ...

Pourquoi la coordination?

Hypothèses

- Agents logiciels, autonomes, hétérogènes, coopératifs ou concurrents, distribués et communicants
- Environnement partagé et dynamique
- Ressources limitées

Problèmes

- Génériques
 - Exécutions concurrentes => Blocage, famine, etc.
 - Communications asynchrones => Absence d'état global

Spécifiques

- Définition des communications dans un système ouvert
- Gestion des informations incomplètes, vision partielle des agents
- Conciliation entre autonomie et exécution globale

Problématique de la coordination

- Différentes perspectives
 - Problème de prise de décision distribuée sous incertitude
 - Problème relatif à la connaissance et l'action
 - Problème de conception tel que la coordination de "frameworks" pour des organisations Homme-Machine
 - Etc.
- Processus qui contrôle et/ou guide le comportement des agents
 - Atteindre ou maintenir un état global où les états locaux des agents sont compatibles (résolution d'interactions négatives)
 - Favoriser la synergie des agents (résolution d'interactions positives)

Planification de missions aériennes

Une Mission d'Interception Agent: Pilote **Triangulation** Localisation Tir Navigation gyidée Réorganisation **CAP** Données d'interception Détection Besoin de réorganisation et/ou de replanification Décollage Ordre décollage quand de nouveaux événements se produisent

Exemple de planification de missions aériennes

Rationalité

- Objectifs propres aux pilotes = accomplir mission et survie
- Objectif global = la mission d'interception
- Tendance naturelle à la coopération (car bénéfique)
- Autonomie limitée
 - Interventions humaines potentielles (la base)
 - Pas de possibilité de triche (surveillance à distance)
- Homogénéité
 - Vision centralisée de la mission
- Environnement
 - Dynamique et incertain

En tant que mécanisme

Centralisé

- → Facile à mettre en oeuvre, règles établies, are well established, a protocol can be followed, ..
- Mais sensible à la panne de l'agent central

Distribué

- → Réaliste dans certaines situations, plus proche des exigences de l'I.A.D. et plus robuste..
- Mais nécessite des techniques sophistiquées (e.g. temporiées et des interactions efficaces)

2 modèles de coordination : orienté tâches et orienté agents

Modèles de coordination (1/2)

- Modèles orientés tâches
 - Issus de la résolution distribuée de problèmes
 - Existence d'un agent « central »
 - Affectation des tâches et coordination souvent centralisées
 - Existence d'un but global
 - Agents généralement coopératifs
 - Optimisation de l'efficacité globale
- Exemple

Intéressant pour les approches descendantes

Modèles de coordination (2/2)

Modèles orientés agents

- Absence de but global
- Absence d'agent « central »
- Coordination distribuée (ex. négociation, consensus, etc.)
- Agents généralement compétitifs
 - Exemple: optimisation d'une fonction d'utilité individuelle

Exemple

- Scénario du «Commerce électronique»
 - Agents égoïstes : maximisation du profit individuel
 - Coordination basée sur l'atteinte de consensus
 - Stratégies individuelles inconnues a priori

Modèles orientés agents

- Dans cet exemple les agents sont compétitifs ou coopératifs
- Optimisation d'une utilité individuelle ou collective
 - Inspirée des systèmes réactifs (self* systems)
 - But global : survie du système (coherence, consensus, pas de collision, etc..).

Utile pour une approche ascendante

Hanoi Traffic

Principales phases d'un mécanisme de coordination

Plan

- 1. Problématique de la coordination
- 2. Approches de coordination
- 3. Exemple: Coordination par formation de coalitions
- 4. Conclusion

Principales approches

- Coordination orientée résolution distribuée de problèmes
 - Distributions spatiales, fonctionnelles, temporelles
 - Ex. DVMT (PGP et GPGP)
- Coordination basée sur les structures organisationnelles
 - Organisations statiques versus dynamiques
 - Exemple : systèmes normatifs, systèmes de règles, etc.
- Coordination basée sur les protocoles de coopération
 - Coopération par interaction
 - Exemple : enchères, CNP, etc.
- Négociation et prise de décision distribuée
 - Théorie des jeux, théorie d'aide à la décision, etc.
- Coordination par planification multi-agent ou distribuée
- Coordination fondée sur la formation de coalitions

Pour résumer

Situations de coordination

- La plupart des mécanismes/modèles/situations de coordination sont hybrides
 - e.g. allocation de tâches est centralisée mais la coordination est distribuée
- Coopération et compétition peuvent co-exister au sein du système à différents niveaux de l'organisation
 - e.g. la coopération est temporaire au sein d'une coalition mais la compétition est permanente au sein du système

Plan

- 1. Problématique de la coordination
- 2. Approches de coordination
- 3. Exemple: Coordination par formation de coalitions
- 4. Conclusion

Coordination par formation de coalitions

Exemple de répartition de tâches

- Union de compagnies aériennes -
 - Le système reçoit un ensemble de tâches
 - ensemble de vols
 - Tâches divisées en sous-tâches
 - Un vol : suite d'étapes
 - Une sous-tâche : compétences + gain

Application : compagnies aériennes

Objectifs

- Système unifié de réservation
- Répartition satisfaisante des étapes
- Gestion de la concurrence et de la rationalité économique

Exemple

- Agents
 - {EUAL, AMAL, WOAL, USAL, AFAL, FRAL, BUAL}
- Tâches
 - Sous-tâches = {New York Madrid (via Paris et Lyon), Los Angeles Moscou (via New York et Paris), Berlin Johannesburg (via Paris)}
 - + gains associés

Compétences

{autorisation de survol d'un pays, capacité en passagers, rayon d'action}

Contexte

- Agents du SMA
 - Cognitifs et spécialisés (compétences spécifiques et limitées)
 - Compétitifs (contexte économique)
 - Hétérogènes (stratégies variables)
- Tâches du SMA
 - Tâches décomposables en sous-tâches
 - Réalisation d'une tâche requiert plus d'un agent
- But du SMA
 - Atteinte de consensus pour la répartition des tâches

Comportement des agents cognitifs

- Chaque agent possède
 - Une rationalité économique
 - Implémentée sous forme de stratégies
 - Une stratégie se traduit par des préférences variables
 - Un ensemble de compétences
 - Liées aux sous-tâches
 - Ne couvrent pas entièrement une tâche

Le comportement d'un agent résulte de sa rationalité et de ses compétences

Formation de coalitions

- Coalition
 - Organisation dynamique
 - Environnements ouverts et dynamiques
 - Engagements ponctuels et contextuel
 - Réactions opportunistes et dynamiques
 - Formation / Dissolution
 - Contexte-dépendante
- Coalitions appliquées à la répartition de tâches
 - Organisation pour coordonner les comportements des agents
 - Coalition : ensemble d'agents coopérant pour résoudre une tâche divisée en sous-tâches
 - Synergie des compétences
 - Groupement par intérêt

Problème de formation de coalitions

- Un PFC est défini comme un 5-uplet <A, T, S, C, P> où :
 - A : Agents candidats pour exécuter des sous-tâches
 - T: tâches à accomplir
 - S : Sous-tâches à accomplir
 - C : Compétences
 - P : Profit (gain associé à une sous-tâche)
- Solution: affectation de toutes les sous-tâches
 - application σ : S \rightarrow A, prenant en compte les compétences
- But : atteinte de consensus concerant une solution

Quel protocole de coordination?

- Hétérogénéité : Problème des interactions
 - Soit standardisation (à la FIPA) : permet argumentation
 - Soit simplification (échange de préférences)
- Rationalité économique
 - Incitation à la coopération (bénéfique pour les agents)
 - Prévoir de contraindre si nécessaire
 - Indépendant des stratégies (universel)
 - Ne pas favoriser d'agent (égalitaire)
- Forte autonomie
 - Prévenir la fraude (vérification + sanction)
 - Comportement éventuellement complexe (rationalité limitée, calcul sur le long / court terme ...)
 - Aucune hypothèse sur le comportement des agents

Protocole de formation de coalitions

- Objectif: Parvenir à une répartition des sous-tâches entre les agents par atteinte d'un consensus
- Algorithme distribué basé sur la négociation
 - Échange de préférences
 - Contrôle du respect du protocole
 - Garantie de l'impartialité
 - Favorisation de l'atteinte d'un consensus par la formation d'alliance
 - Etablissement d'une règle qui garantit l'atteinte d'un consensus

Principes du protocole

- Calcul des préférences
- Echange de préférences
- Formation d'alliances en cas de blocage

Représentation des préférences

- Préférences :
 - « distances » entre solutions
 - Pas de messages complexes (hétérogénéité)
 - Exemple :

X préfère largement σ_1 à σ_2 $\Leftrightarrow \delta (\sigma_1, \sigma_2) = .9$

Matrice antisymetrique :

Calcul des préférences

Préférences initiales

$$\delta_a^0(\sigma_1,\sigma_2) = \frac{income(\sigma_1) - income(\sigma_2)}{Sup_{\sigma}income(\sigma)}$$

Préférences dépendantes

$$\mathcal{S}'_{a}(\sigma_{1},\sigma_{2}) = \omega \times \mathcal{S}'_{a}(\sigma_{1},\sigma_{2}) + (1-\omega)^{b \in A \setminus \{a\}}$$

$$|A| - 1$$

Fléxible: $\omega \rightarrow 0$; Rigide: $\omega \rightarrow 1$

Diffusion parallèle

Algorithme - Diffusion parallèle

- For all α∈ A do
 - θ * ← Encrypt(θ , key)
 - broadcast(θ*)
 - { diffuser l'information cryptée }
 - receiptAll($\theta*$, $A\setminus \alpha$)
 - { attendre toutes les réceptions }
 - broadcast(« Ack »)
 - receiptAll(« Ack », A\α)
 - broadcast(key, $A \setminus \alpha$)
 - { diffuser la clé }

Echange de préférences

Formation d'alliances

Algorithme - Les préférences

- IndPref ← IPC {Calcul des préférences initiales}
- h → DiffParallèle(IndPref) {Diffusion et mise à jour}
- ◆ While (¬ consensus) do
 - If RSPC(h) Then sendAll(«Mode déblocage ?»)
 - If receive(«Mode déblocage ?») Then
 - If RSAC Then sendAll(«accepte déblocage»)
 - If receiveAll(«accepte déblocage»)
 - Then call mode_déblocage
 - DepPref ← IPC {Calcul des préférences dépendantes}
 - h → DiffParallèle(DepPref)

Algorithme - Mode déblocage

- Broadcast(«propose formation alliance», AFPC(h))
 - { AFPC : ensemble des agents à qui proposer une alliance }
- For each a / receive(«propose alliance»,α) do
 - If $\alpha \in AFAC(h)$ Then send(«j'accepte», α) { AFAC : décide si la proposition de α est acceptable }
 - If (pas d'alliance formée) Then
 - B←SMA.nearestAgents()
 - SMA.nearestAgents(): fonction commune connue au début du processus }
 - Les membres de B doivent former une alliance

Terminaison

- Définition : une histoire contient une boucle si une situation se présente deux fois.
- Théorème : si un CFP détecte les boucles, alors le processus termine.
- Preuve :
 - nombre fini de solutions
 - consensus si tout le monde a la même préférence

Résultats de la simulation

- Nombre d'agents
 - Incidence sur la vitesse de convergence
- Stratégie
 - Incidence sur les gains des agents
 - Incidence sur la vitesse de convergence
- Compétition
 - Incidence sur les gains des agents
 - Incidence sur la vitesse de convergence

Nombre d'agents

Nombre de tours / Nombre d'agents

Gain d'un agent face à une population uniforme

Gain d'un agent face à une population uniforme

Vitesse de convergence dans le cas d'une population uniforme

Gain d'un agent / Nombre de sous-tâches par agent

Nombre de tours / Nombre de sous-tâches par agent

Conclusion

- Quel Modèle de coordination pour quel SMA ?
 - Systèmes orientés tâches
 - Systèmes orientés agents
 - Agents coopératifs
 - Agents compétitifs
- Critères d'évaluation
 - Efficacité,
 - Qualité de la solution
 - Tolérance aux pannes
 - Adaptabilité
 - Réactivité

