CS246 Homework 3 Answers

Charlie Zhang

Feb 2013

- 1 Question 1 Latent Features for Recommendations
- 1.1 (a)

$$\epsilon_{iu} = r_{iu} - q_i * p_u^T$$

$$q_i \leftarrow q_i + \eta(\epsilon_{iu}p_u - \lambda q_i)$$

$$p_u \leftarrow p_u + \eta(\epsilon_{iu}q_i - \lambda p_u)$$

Where η is the learning rate.

1.2 (b)

Figure 1: Error in first 40 iterations with $\eta=0.002$:

1.3 (c)

Figure 2: E_{te} as of K with $\lambda = 0.0$:

Figure 3: E_{tr} as of K with $\lambda = 0.0$:

Figure 4: E_{te} as of K with $\lambda = 0.2$:

Figure 5: E_{tr} as of K with $\lambda = 0.2$:

True statements are: \mathbf{B} , \mathbf{D} , \mathbf{H}

1.4 (d)

Update model as:

$$R_{iu} = \mu + b_u + b_i + q_i \cdot p_u^T$$

The update equations are:

$$\epsilon_{iu} = r_{iu} - q_i * p_u^T$$

$$q_i \leftarrow q_i + \eta(\epsilon_{iu}p_u - \lambda q_i)$$

$$p_u \leftarrow p_u + \eta(\epsilon_{iu}q_i - \lambda p_u)$$

$$b_i \leftarrow b_i + \eta(\epsilon_{iu} - \lambda b_i)$$

$$b_u \leftarrow b_u + \eta(\epsilon_{iu} - \lambda b_u)$$

Where η is the learning rate.

And plot the following:

Figure 6: Error in first 40 iterations with $\eta = 0.03$:

Figure 7: E_{te} as of K with $\lambda = 0.0$:

Figure 8: E_{tr} as of K with $\lambda = 0.0$:

Figure 9: E_{te} as of K with $\lambda = 0.2$:

Figure 10: E_{tr} as of K with $\lambda = 0.2$:

2 Question 2 – PageRank Computation

2.1 (a)

$$\begin{split} r - r^{(k)} &= \beta M r - \beta M r^{(k-1)} \\ &= \beta M (r - r^{(k-1)}) \\ &= \beta^2 M^2 (r - r^{(k-2)}) \\ &= \dots \\ &= \beta^k M^k (r - r^{(0)}) \\ M \text{ is stochastic, } \|M^k r\|_1 <= 1, \|M^k r^{(0)}\|_1 <= 1 \\ \text{So } \|r - r^{(k)}\|_1 <= \|\beta^k M^k r\|_1 + \|\beta^k M^k r^{(0)}\|_1 <= 2\beta^k \end{split}$$

2.2 (b)

Let I be the number of iterations.

$$||r - r^{(I)}||_1 <= 2\beta^I <= \delta$$

 $I>=\log_{\beta}(\delta/2)=\frac{\log(2/\delta)}{\log(1/\beta)}$ We need iterate through every edge one time for each

iteration. So total running time is:

$$Im = m \frac{\log(2/\delta)}{\log(1/\beta)} = O(\frac{m}{\log(1/\beta)})$$

2.3 (c)

Let c_j be the total number of visits at node j, Then $r_j = c_j \frac{1-\beta}{nR}$

Based on the algorithm, we have: $E[c_j] = \sum_{i->j} \beta \frac{E[c_i]}{\deg(i)} + R$

So,
$$E[\tilde{r_j}] = E[c_j] \frac{1-\beta}{nR} = \sum_{i->j} \beta \frac{E[c_i] \frac{1-\beta}{nR}}{deg(i)} + \frac{1-\beta}{n}$$

= $\sum_{i->j} \beta \frac{E[c_i \frac{1-\beta}{nR}]}{deg(i)} + \frac{1-\beta}{n}$

$$= \sum_{i->j} \beta \frac{E[\tilde{r_i}]}{deg(i)} + \frac{1-\beta}{n}$$

Which can be re-written as: $E[\tilde{r_j}] = \frac{1-\beta}{n} \mathbf{1}^T + \beta M E[\tilde{r_j}]$

We also have: $r_j = \frac{1-\beta}{n} \mathbf{1}^T + \beta M r_j$

So $E[\tilde{r_j}] = r_j$

2.4 (d)

Expected run time of one random walker $E[w] = \sum_{i=1}^{\infty} i(1-\beta)\beta^{i-1} = \frac{1}{1-\beta}$ Expected running time of MC algorithm is: $E[w] \cdot nR = \frac{nR}{1-\beta}$

2.5 (d)

Power Iteration CPU time (40 Iterations): 13.341 ms

MC Algorithm with R=1,

CPU time: $0.701~\mathrm{ms}$

Average errors at Top 10, 30, 50, 100:

0.0028874375033

0.00381215746702

0.00337883645241

0.00257711933559

Figure 11: Error at Top K, R = 1

MC Algorithm with R=3,

CPU time: $1.800~\mathrm{ms}$

Average errors at Top 10, 30, 50, 100:

0.00258007835315

0.00231232051217

0.00199818494762

0.00149559856577

Figure 12: Error at Top K, R=3

MC Algorithm with R=5,

CPU time: $2.577~\mathrm{ms}$

Average errors at Top 10, 30, 50, 100:

0.00299232555129

0.00228341943338

0.00180001027051

0.00131482088127

Figure 13: Error at Top K, R = 5

3 Question 3 – Similarity Ranking

3.1 (a)

$$s_A(camera, phone) = 0.343$$

 $s_A(camera, printer) = 0.0$

If first iteration, $s_A(camera, phone) = C1 \frac{s_B(nokia, nokia) + s_B(nokia, apple) + s_B(kodak, nokia) + s_B(kodak, apple) + s_B(cannon, nokia) + s_B(cannon, apple)}{6} = C1 \frac{s_B(nokia, nokia) + s_B(nokia, apple) + s_B(kodak, nokia) + s_B(kodak, apple) + s_B(kodak, apple) + s_B(kodak, apple)}{6} = C1 \frac{s_B(nokia, nokia) + s_B(nokia, apple) + s_B(kodak, nokia) + s_B(kodak, apple)}{6} = C1 \frac{s_B(nokia, nokia) + s_B(nokia, apple) + s_B(kodak, nokia) + s_B(kodak, apple)}{6} = C1 \frac{s_B(nokia, nokia) + s_B(nokia, apple)}{6} = C1 \frac{s_B(nokia, apple) + s_B(nokia, apple)}{6} = C1 \frac{s_B(nokia, apple)}{6}$

$$C1^{\frac{1+0+0+0+0+0}{6}} = 0.133$$

Intermediate results (Nodes are indexed based on the order in graph, e.g. 'cameras' == 1, 'phones' == 2):

```
Round 1:
s_A: (1, 2): 0.133333
(1, 3): 0.000000
(3, 3): 1.000000
(2, 3): 0.000000
(2, 2): 1.000000
(1, 1): 1.000000

\dot{s}_B: \\
(1, 2): 0.000000

(1, 3): 0.000000
(3, 3): 1.000000
(4, 5): 0.000000
(4, 4): 1.000000
(5, 5): 1.000000
(1, 4): 0.000000
(2, 4): 0.400000
(1, 5): 0.000000
(2, 3): 0.400000
(2, 2): 1.000000
(2, 5): 0.400000
(3, 4): 0.000000
(1, 1): 1.000000
(3, 5): 0.800000
Round 2:
s_A: (1, 2): 0.293333
(1, 3): 0.000000
(3, 3): 1.000000
(2, 3): 0.000000
(2, 2): 1.000000
(1, 1): 1.000000
\begin{array}{c} s_B: \\ (1, 2): \ 0.000000 \end{array}
(1, 3): 0.000000
(3, 3): 1.000000
(4, 5): 0.106667
(4, 4): 1.000000
(5, 5): 1.000000
(1, 4): 0.000000
(2, 4): 0.453333
(1, 5): 0.000000
(2, 3): 0.453333
(2, 2): 1.000000
(2, 5): 0.453333
(3, 4): 0.106667
(1, 1): 1.000000
(3, 5): 0.800000
Round 3:
s_A: (1, 2): 0.343111
```

(1, 3): 0.000000(3, 3): 1.000000 (2, 3): 0.000000 (2, 2): 1.000000 (1, 1): 1.000000 s_B : (1, 2): 0.000000 (1, 3): 0.000000 (3, 3): 1.000000 (4, 5): 0.234667 (4, 4): 1.000000 (5, 5): 1.000000 (1, 4): 0.000000(2, 4): 0.517333 (1, 5): 0.000000(2, 3): 0.517333(2, 2): 1.000000 (2, 5): 0.517333 (3, 4): 0.234667 (1, 1): 1.000000 (3, 5): 0.800000

3.2(b)

Similarity equation incorporating link weights:
$$s_A(X,Y) = C1 \frac{\sum\limits_{i=1}^{|O(X)|} \sum\limits_{j=1}^{|O(Y)|} s_B(O_i(X),O_j(Y)) \cdot W_i(X) \cdot W_j(Y)}{\sum\limits_{i=1}^{|O(X)|} \sum\limits_{j=1}^{|O(X)|} W_i(X) \cdot W_j(Y)}$$

Where $W_i(X)$ is the weight of the i_{th} edge originating from X. Similarly, we

define s_B as following:

define
$$s_B$$
 as following:
$$s_B(x,y) = C2 \frac{\sum\limits_{i=1}^{|I(x)|} \sum\limits_{j=1}^{|I(y)|} s_A(I_i(x),I_j(y)) \cdot w_i(x) \cdot w_j(y)}{\sum\limits_{i=1}^{|I(x)|} \sum\limits_{j=1}^{|I(y)|} w_i(x) \cdot w_j(y)}$$

Where $w_i(x)$ is the weight of the i_{th} edge originating from x.

3.3 (c)

In
$$K_{2,1}$$
, $s_A(1,2) = 0.800$

In
$$K_{2,2}$$
, $s_A(1,2) = 0.624$

For $K_{2,1}$:

If first iteration,

$$s_A(1,2) =$$

$$C1^{\frac{s_B(1,1)}{1}} =$$

$$C1\frac{1}{1} = 0.8$$

$$s_A(1,1) = 1$$

$$s_A(2,2) = 1$$

$$s_B(1,1) = 1$$

Intermediate results:

Round 1:

 s_A : (1, 2): 0.800000 (1, 1): 1.000000 (2, 2): 1.000000

 s_B : (1, 1): 1.000000 Round 2:

 s_A : (1, 2): 0.800000 (1, 1): 1.000000 (2, 2): 1.000000

 s_B : (1, 1): 1.000000 Round 3:

 s_A : (1, 2): 0.800000 (1, 1): 1.000000 (2, 2): 1.000000 s_B : (1, 1): 1.000000

For $K_{2,2}$:

If first iteration,

$$\begin{split} s_A(1,2) &= \\ C1 \frac{s_B(1,1) + s_B(1,2) + s_B(2,1) + s_B(2,2)}{4} &= \\ C1 \frac{1 + 0 + 0 + 1}{4} &= 0.4 \\ s_A(1,1) &= 1 \\ s_A(2,2) &= 1 \\ s_A(2,1) &= s_A(1,2) = 0.4 \\ \\ s_B(1,2) &= \\ C2 \frac{s_A(1,1) + s_A(1,2) + s_A(2,1) + s_A(2,2)}{4} &= \\ C2 \frac{1 + 0 + 0 + 1}{4} &= 0.4 \\ s_B(1,1) &= 1 \\ s_B(2,2) &= 1 \end{split}$$

Intermediate results:

 $s_B(2,1) = s_B(1,2) = 0.4$

Round 1:

 $\begin{array}{c} s_A \colon \\ (1,\,2) \colon 0.400000 \\ (1,\,1) \colon 1.000000 \\ (2,\,2) \colon 1.000000 \\ s_B \colon \\ (1,\,2) \colon 0.400000 \\ (1,\,1) \colon 1.000000 \\ (2,\,2) \colon 1.000000 \\ \text{Round 2:} \\ s_A \colon \\ (1,\,2) \colon 0.560000 \\ (1,\,1) \colon 1.000000 \\ (2,\,2) \colon 1.000000 \\ (2,\,2) \colon 1.000000 \\ s_B \colon \\ (1,\,2) \colon 0.560000 \\ (1,\,1) \colon 1.000000 \\ (2,\,2) \colon 1.000000 \\ (2,\,2) \colon 1.000000 \\ \text{Round 3:} \\ s_A \colon \\ (1,\,2) \colon 0.624000 \\ \end{array}$

 $\begin{array}{c} (1,\,1)\colon\,1.000000\\ (2,\,2)\colon\,1.000000\\ s_B\colon\\ (1,\,2)\colon\,0.624000\\ (1,\,1)\colon\,1.000000\\ (2,\,2)\colon\,1.000000 \end{array}$

$3.4 \quad (d)$

Update the equations as:

$$\begin{split} N_A(X,Y) &= |O(X)| * |O(Y)|, \\ s_A(X,Y) &= \frac{(1 - (1 - C1)^{N_A(X,Y)})}{N_A(X,Y)} \sum_{i=1}^{|O(X)|} \sum_{j=1}^{|O(Y)|} s_B(O_i(X), O_j(Y)) \end{split}$$

$$N_B(x,y) = |I(x)| * |I(y)|,$$

$$s_B(x,y) = \frac{(1 - (1 - C2)^{N_B(x,y)})}{N_B(X,Y)} \sum_{i=1}^{|I(x)|} \sum_{j=1}^{|I(y)|} s_A(I_i(x), I_j(y))$$

The algorithm will converge. And final values are symmetric, and between [0, 1](Replaced C1/C2 with another const $(1 - (1 - C1)^{N_A(X,Y)})$ and $(1 - (1 - C1)^{N_A(X,Y)})$ that varies depending on the number of supporting evidences. More support, higher C1/C2)

Converged value of $s_A(1,2)$ for $K_{2,1}$:

0.49107427590144004

and for $K_{2,2}$:

0.996805111821086

The algorithm assigns higher score for $s_A(1,2)$ in $K_{2,2}$ since there are more support.

4 Question 4 – Dense Communities in Networks

4.1 (a)

4.1.1 (i)

Suppose $|A(S)| < \frac{\epsilon}{1+\epsilon}|S|$,

We denote $S \setminus A(S)$ as B(S)

Then
$$|B(S)| = |\{i \in S | deg_s(i) > 2(1+\epsilon)\rho(S)\}| > \frac{1}{1+\epsilon}|S|$$

$$|E[B(S)]| \ge |B(S)| \cdot 2(1+\epsilon)\rho(S)/2 > \frac{1}{1+\epsilon}|S| \cdot (1+\epsilon)\frac{|E[S]|}{|S|} = |E[S]|$$
, which is impossible.

So
$$|A(S)| \ge \frac{\epsilon}{1+\epsilon} |S|$$

4.1.2 (ii)

We denote S in the i_{th} iteration as S_i

Based on the proof in i, we have: $|S_{i+1}| < \frac{1}{1+\epsilon}|S|$

$$|S_k| < \frac{1}{(1+\epsilon)^k}|S| = \frac{1}{(1+\epsilon)^k}n$$

$$S_k \neq \emptyset$$
, So $|S_k| \geq 1$, $k < log_{1+\epsilon}(n)$

4.2 (b)

4.2.1 (i)

If
$$\exists v \in S^* | deg_{S^*}(v) < \rho^*(G)$$

We can remove v from $S^*,$ let the resulting set be $S' = S^* \backslash \{v\}$

$$\rho(S') = \frac{|E[S']|}{|S'|} = \frac{|E[S^*]| - deg_{S^*}(v)}{|S^*| - 1}$$

Since
$$deg_{S^*}(v) < \rho^*(G) = \frac{|E[S^*]|}{|S^*|}$$
,

$$\rho(S') = \frac{|E[S^*]| - deg_{S^*}(v)}{|S^*| - 1} > \frac{|E[S^*]|}{|S^*|}$$

S' is 'denser' than S^* . Which is contrary to the statement that S^* is the densest

subgrapph of G.

So such v doesn't exist.

4.2.2 (ii)

In the first iteration of the while loop in which there exists a node $v \in S^* \cap A(S)$, Since $v \in S^*$, base on proof in \mathbf{i} , we have $deg_{S^*}(v) \ge \rho^*(G)$

Since
$$v \in A(S)$$
, we have $deg_S(v) \le 2(1+\epsilon)\rho(S)$

$$A(S) \in S$$
, So $S^* \cap A(S) \in S$, So $deg_{S^*}(v) \leq deg_S(v)$

$$2(1+\epsilon)\rho(S) \ge deg_S(v) \ge deg_{S^*}(v) \ge \rho^*(G)$$

In conclusion, $2(1+\epsilon)\rho(S) \ge \rho^*(G)$

4.2.3 (iii)

There should be at least 1 iteration (Assume in j_{th} iteration) in which there exist node v such that $v \in S^* \cap A(S)$.

Then
$$2(1+\epsilon)\rho(S_j) \ge \rho^*(G)$$

$$\rho(\bar{S}) = \max_{i=1}^{NumIter} \{\rho(S_i)\} \ge \rho(S_j) \ge \frac{1}{2(1+\epsilon)} \rho^*(G)$$

4.3 (c)

4.3.1 (i)

Number of iterations when $\epsilon = \{0.1, 0.5, 1, 2\}$ are:

 $\{7, 5, 4, 3\}$ Corresponding theoretical bounds are:

Figure 14: Num iterations and bounds

4.3.2 (ii)

Figure 15: $\rho(S_i)$ as of i

Figure 16: $|E(S_i)|$ as of i

Figure 17: $|S_i|$ as of i

4.3.3 (iii)

The Graph become empty after removing 9 iterations. (After 9 dense communities being found)

The plot of $\rho(\bar{S}_j), |E[\bar{S}_j]|$ and $|\bar{S}_j|$:

Figure 18: $\rho(\bar{S}_j)$ as of j

Figure 19: $|E[\bar{S}_j]|$ as of j

Figure 20: $|\bar{S}_j|$ as of j

 $\label{eq:the code: the code code} The code: \\$ from collections import defaultdict

```
import copy
import itertools
from optparse import OptionParser
import random
import sets
import sys
import time
def preprocess(graph_file):
  f = open(graph_file)
  V = sets.Set()
  num_edge = 0
  for line in f:
    a, b = line.strip().split('\t')
    if a not in V:
      V.add(a)
    if b not in V:
      V.add(b)
    num_edge += 1
  f.close()
  return V, num_edge
def count_edge(graph_file, S):
  f = open(graph_file)
  count = 0
  for line in f:
    a, b = line.strip().split('\t')
if (a in S) and (b in S):
      count += 1
  f.close()
  return count
def find_dense(graph_file, eps, removed=None):
    V, e = preprocess(graph_file)
  if removed:
    V.difference_update(removed)
    if len(V) == 0:
      return None, None, None, None, None
  S_bar = copy.copy(V)
  rho_S_bar = float(e) / len(V)
  S = copy.copy(V)
  num_iter = 0
  list_rho = []
  list_num_edge = []
  list_size_s = []
while len(S) > 0:
    num_iter += 1
    deg = defaultdict(int)
    num_edge = 0
f = open(graph_file)
    for line in f:
      a, b = line.strip().split('\t')
      if removed and ((a in removed) or (b in removed)):
         continue
       if (a not in S) or (b not in S):
         continue
      deg[a] += 1
```

```
deg[b] += 1
      num_edge += 1
    f.close()
    rho_S = float(num_edge) / len(S)
    list_rho.append(rho_S)
    list_num_edge.append(num_edge)
    list_size_s.append(len(S))
    A = sets.Set()
    num_edge_remove = 0
    for v in S:
      if deg[v] \le 2 * (1 + eps) * rho_S:
        num_edge_remove += deg[v]
             num_edge_remove /= 2
    S.difference_update(A)
    if len(S) == 0:
      break
    rho_S = float(num_edge - num_edge_remove) / len(S)
    if rho_S > rho_S_bar:
      rho_S_bar = rho_S
      S_bar = copy.copy(S)
  return S_bar, num_iter, list_rho, list_num_edge, list_size_s
def main():
  parser = OptionParser()
  parser.add_option("-f", "--file", dest="file", type="string",
                     help="File containing the graph.")
  (options, args) = parser.parse_args()
  for eps in [0.05, 0.1, 0.5, 1, 2]:
    S_bar, num_iter, list_rho, list_num_edge, list_size_s = find_dense(options.file, eps)
    print "Eps: %f, num iteration: %d" % (eps, num_iter)
    print list_rho
print list_num_edge
    print list_size_s
  removed = sets.Set()
  eps = 0.05
  list_rho = []
  list_num_edge = []
  list_size_s = []
  for j in xrange(1, 21):
    print "%d-th iter" % j
S_bar, t1, t2, t3, t4 = find_dense(options.file, eps, removed)
    if not S_bar:
      print "Remaining graph is empty"
      break
    num_edge = count_edge(options.file, S_bar)
print "rho: %f" % (float(num_edge) / len(S_bar))
    list_rho.append(float(num_edge) / len(S_bar))
    print "num_edge: %d" % num_edge
    list_num_edge.append(num_edge)
    print "size_S_bar: %d" % len(S_bar)
list_size_s.append(len(S_bar))
    removed = removed.union(S_bar)
    print S_bar
  print list_rho
```

```
print list_num_edge
print list_size_s

if __name__ == '__main__':
    main()
```