Dynamika rotačního pohybu

Michal Červeňák
dátum merania: 16.12. 2016
skupina: 4
$Klasifikace: \dots \dots \dots$

1 Pracovní úkol

- 1. DU: Odvoď te kapacitu C deskového kondenzátoru.
- 2. DU: Pro deskový kondenzátor stanovte závislost poměru S/d plochy desek S a vzdálenosti d mezi nimi jako funkci náboje Q a napětí U. Následně spočítejte hodnotu poměru S/d pro vzduchový deskový kondenzátor s volbou Q = Qmax = $50~\mu\text{C}$ a U = Umax = 100~kV.
- 3. Změřte průrazné napětí U mezi deskami kondenzátoru pro deset různých vzdáleností desek d. Náboj přivádějte až do průrazu mezi deskami kondenzátoru. Průrazné napětí U určete prostřednictvím silového působení na vahách ve chvíli průrazu a vztahu (13). Z naměřených hodnot průrazného napětí U pro různé vzdálenosti d určete následně dielektrickou pevnost vzduchu a porovnejte ji s tabulkovou hodnotou pro suchý vzduch. Diskutujte důvod případné odlišnosti hodnot.
- 4. Změřte přitažlivé síly mezi deskami kondenzátoru v závislosti na doskoku jiskřiště s 1 pro tři různé vzdálenosti desek d. Náboj přivádějte až do průrazu na kulovém jiskřišti s mikrometrickým šroubem, paralelně připojenému k deskovému kondenzátoru. Ze silového působení spočítejte napětí a ze vztahu v poznámce se pokuste určit neznámou funkci f(s/D) ze vztahu (14) vzhledem k podmínce (15) a monoťonnosti funkce u doskoku s. Experimentální data a nalezenou funkci zpracujte do grafu.
- 5. Zvolte si dvě konfigurace elektrod, nastavte na nich napětí cca $10~\rm V$ a zmapujte potenciál v síti $12\times 12~\rm bodů.~\rm V$ domácím vyhodnocení prověď te grafické zpracovnání naměřených dat.

2 Pomôcky

Wimshurstova elektrika, váhy, doskový kondenzátor, kolové iskrisko, podstavec, sada vodičov, zkratovač, regulovatelný zdroj 12V, souprava pro mapování elektrostatického pole, voltmetr.

3 Teória

Pre výpočet napäti
aUzo sily F=mg,ktorá pôsobí na dosky kondenzátora s plocho
uSpoužijeme vzťah

$$U = \sqrt{\frac{2mgd^2}{\varepsilon S}},\tag{1}$$

kde ε je primitivita vákua (vzduchu).

K výpočtu dielektrickej pevnosti vzduchu E_p z napätia medzi doskami a ich vzdialenosťami použijeme vzťah

$$E_p = \frac{V}{d} \,. \tag{2}$$

Na spočítanie prierazu použije vzťah

$$U = 27.75 \left(1 + \frac{0.757}{\sqrt{\gamma D}} \right) \frac{\gamma s}{f\left(\frac{s}{D}\right)},$$

$$\gamma = \frac{p}{p_a} \cdot \frac{293.16}{273.16 + t},$$
(3)

pričom D je priemer guľôčky iskriska a s ich vzdialenosť, p je atmosferický tlak a p_a je normálny atmosferický tlak a t je teplota v [°C]

3.0.1 Spracovanie chýb merania

Označme $\langle t \rangle$ aritmetický priemer nameraných hodnôt t_i , a Δt hodnotu $\langle t \rangle - t$, pričom

$$\langle t \rangle = \frac{1}{n} \sum_{i=1}^{n} t_i \,, \tag{4}$$

a chybu aritmetického priemeru

$$\sigma_0 = \sqrt{\frac{\sum_{i=1}^n (t_i - \langle t \rangle)^2}{n(n-1)}},$$
(5)

pričom n je počet meraní.

4 Postup merania

- 1. Najskôr bol odmeraný priemer doskového kondenzátora.
- 2. Následne bola pripojená Wimshurstova elektrika ku doskovému kondenzátoru
- 3. Kondenzáto bol vyskratovaný a bola pomocou šubléry odmeraná vzdialenosť dosiek, a pomocou elektriky nabíjaný až do prierazu
- 4. Pri prieraze bola odčítaná hmotnosť.
- 5. Posledné dva body boli opakované pre rôzne vzdialenosti dosiek kondenzátoru.
- 1. K obvodu z predchádzajúceho pokusu bolo pripojené paralelne iskrisko

- 2. Pomocou šuplery bol odmeraný priemer guličoek iskriska.
- Kondenzátor bol vyskratovaný a bola pomocou šuplery odmeraná vzdialenosť dosiek, a vzájomná vzdialenosť guľôčok iskriska a pomocou elektriky nabíjaný až do prierazu na iskrisku.
- 4. Pri prieraze bola odčítaná hmotnosť.
- 5. Posledné dva body boli opakované pre roznes vzdialenosti dosiek kondenzátoru a vzdialenosti iskriska.
- 1. Do Petriho misky bola naliatia destilovaná voda
- 2. Do Petriho misky boli vložené elektródy.
- 3. Elektródy boli pripojené k zdroju napätia
- 4. Na každom z 140 bol zmeraný pomocou voltmetru potenciál voči zemi zdroja.
- 5. Postup sa opakoval pre oba typy elektród.

5 Výsledky merania

Teplota vzduchu bola určená na $t=22,3\,^{\circ}\mathrm{C}$, tlak vzduchu $p=991\,\mathrm{Hpa}$, priemer guľôčok iskriska na $D=(1,465\pm0,005)\,\mathrm{cm}$. Plocha kondenzátora na $S==0,022\,\mathrm{m}^2$

Chyba pri meraní hmotnosti sa pohybuje v okolo 40%, hlavne pretože som nestíhal sledovať pristroj aj nabíjať kondenzátor.

Do tabuľky Tab. 1 boli zaznamenané namerané hodnoty vzdialenosti dosiek kondenzátoru a hmotnosť, teda sila, ktorou sa dosky priťahovali. Z nich boli vypočítané podľa 1 hodnoty napätia U a pomocou 2 hodnota dielektrickej pevnosti vzduchu E_p . Pomocou 4 a 5 bola určená priemerná hodnota $E_p = (1.02 \pm 0.60 \text{st.} \pm 0.4 \text{sys.}) \text{ MV} \cdot \text{m}^{-1}$.

$\frac{d}{[\text{cm}]}$	$\frac{m}{[g]}$	$\frac{U}{[\mathrm{kV}]}$	$\frac{E_p}{[\mathrm{kV}\cdot\mathrm{m}^{-1}]}$
1.1	38.0	21.59	1962
2.0	35.0	37.67	1883
3.0	10.0	30.20	1006
4.0	6.0	31.19	779
4.5	4.5	30.39	675
5.0	3.5	29.78	595
5.5	2.0	24.76	450
6.0	0.5	13.51	225
3.5	9.5	34.34	981
2.5	25.0	39.79	1591

Tab. 1: Namerané hodnoty vzdialenosti dosiek d kondenzátoru, hmotnosť m, vypočítané hodnoty napätia U a dielektrickej pevnosti vzduchu E_p .

V tabuľke Tab 2 sú namerané hodnoty vzdialenosti dosiek d, vzdialenosti guľôčok iskriska s, a hmotnosť m^1 . Ďalej vypočítané hodnoty napätia medzi doskami kondenzátoru U podľa 1, a neznámej funkcie f(s/D) podľa 3.

d	s	m	U	$\frac{s}{D}$	$f\left(\frac{s}{D}\right) \cdot 10^{-3}$
[cm]	[mm]	[g]	[kV]	[-]	[-]
1.50	5.00	70	39.95	0.34	0.025
1.50	6.00	190	65.82	0.41	0.018
1.50	7.00	205	68.37	0.48	0.021
1.50	4.00	60	36.99	0.27	0.022
1.50	3.00	35	28.25	0.21	0.021
1.50	5.50	170	62.26	0.38	0.018
1.50	6.50	270	78.46	0.45	0.017
1.50	7.50	_	_	0.51	_
1.50	4.50	85	44.02	0.31	0.021
1.50	3.50	45	32.03	0.24	0.022
2.00	5.00	10	20.13	0.34	0.050
2.00	6.00	55	47.22	0.41	0.023
2.00	6.50	80	56.95	0.45	0.023
2.00	7.00	95	62.06	0.48	0.023
2.00	7.50	110	66.78	0.51	0.023
2.00	8.00	135	73.98	0.55	0.022
2.00	8.50	150	77.98	0.58	0.022
2.00	9.00	175	84.23	0.62	0.021
2.00	9.50	195	88.91	0.65	0.021
2.00	10.00	220	94.44	0.68	0.021
1.00	4.00	225	47.75	0.27	0.017
1.00	3.50	185	43.30	0.24	0.016
1.00	3.00	170	41.51	0.21	0.015
1.00	2.50	105	32.62	0.17	0.015
1.00	2.00	50	22.51	0.14	0.018
1.00	1.50	5	7.12	0.10	0.042

Tab. 2: Namerané hodnoty vzdialenosti dosiek d, vzdialenosti guľôčok iskriska s, a hmotnosť m, vypočítané hodnoty napätia U, a neznámej funkcie f(s/D).

Na obrázkoch Obr. 1 a 2 sú vyobrazené 2 rozmerné mapy elektrického pola v okolí elektród, na z-tovú osu je vynesená hodnota napätia U voči zemi zdroja.

6 Diskusia & Záver

Na wikipedii[2] som dohľadal, Dielektrická pevnosť vzduchu, kde je určená na 3 MV, pre suchý vzduch. Keďže v deň merania pršalo/snežilo tak vzduch nebol suchý a najmä toto prispelo k zníženiu prieraznosti.

V druhej časti pri meraní prierazného napätie sa síce experiment podaril ale pri výpočte $f\left(s/D\right)$, som niekde neustále robil asi numerickú alebo systematickú chybu a hodnota vychádza o 3 rády menšia ako by mala byť a navyše ani

 $^{^1\}mathrm{Rovnako}$ ako v prvom prípade

Obr. 1: Grafické znázornenie závislosť potenciálu Una polohe \boldsymbol{x} a \boldsymbol{y}

Obr. 2: Grafické znázornenie závislosť potenciálu Una polohe \boldsymbol{x} a \boldsymbol{y}

Obr. 3: Závislosť neznámej funkcie $f\left(s/D\right)$ od s/D

nedopovedá predpokladu f(0)=1. Aj napriek tomu je vynesený graf viď Obr, 3.

 ${\bf V}$ poslednej časti vidíme závislosť napätia na polohe, konkrétne Obr. 1 a Obr. 2.

Reference

- [1] Dynamika rotačního pohybu [cit. 02.01.2017]Dostupné po prihlásení z Kurz: Fyzikální praktikum I:https://praktikum.fjfi.cvut.cz/pluginfile.php/4352/mod_resource/content/2/Kondenzator_161002.pdf
- [2] Dielektrická pevnost [cit 14.1. 2017] dostupné na: https://cs.wikipedia.org/wiki/Dielektrick%C3%A1_pevnost