TECHNISCHE UNIVERSITÄT BERLIN

WiSe 2012/13

Fakultät II - Mathematik und Naturwissenschaften

Institut für Mathematik

Dozenten: G. Bärwolff, F. Tröltzsch

Assistenten: R. Kehl, P. Nestler, M. Voss

https://www.isis.tu-berlin.de/course/view.php?id=7176

Abgabe: 03.12.-07.12.2012

6. Übung Analysis II für Ingenieure

(Extremwerte mit und ohne Nebenbedingungen)

Achtung: Die Vorlesung von Herrn Bärwolff wird am 30.11. und 7.12. in den Raum H 0104 verlegt.

Tutoriumsvorschläge

1. Aufgabe

Es sei

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \begin{pmatrix} x \\ y \end{pmatrix} \neq \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ 0, & \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{cases}.$$

Berechnen Sie $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ und $\frac{\partial^2 f}{\partial y \partial x}(0,0)$. Steht das Ergebnis im Widerspruch zum Satz von Schwarz?

2. Aufgabe

Seien

$$f: \mathbb{R}^3 \to \mathbb{R}, \quad (x, y, z) \mapsto y(x - 2)^2 + (y - 1)^2 + z^2,$$

 $g: \mathbb{R}^3 \to \mathbb{R}, \quad (x, y, z) \mapsto y(x - 2)^2 - (y - 1)^2 - z^2.$

Geben Sie die kritischen Punkte von f und g an. Wo liegen die lokalen Minima und Maxima dieser Funktionen, und sind diese global?

3. Aufgabe

Berechnen Sie die Extremstellen der Funktion

$$f(x, y, z) = x - 2y + 2z$$

in der Menge $K = \{(x, y, z) : x^2 + y^2 + z^2 \le 9\}$.

Hausaufgaben

1. Aufgabe

(10 Punkte)

Berechnen Sie alle lokalen und globalen Extrema der Funktion

$$f(x,y) = (x-y)^2 + 2x^2$$

auf der Menge $\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$.

2. Aufgabe

(6 Punkte)

Gegeben sei die Funktion

$$f: \mathbb{R}^3 \to \mathbb{R}, \quad (x, y, z) \mapsto 2x^2 + 4yz + y^2 + 5z^2$$

Bestimmen Sie die Punkte in denen die Funktion lokale Extrema besitzt. Sind diese Extrema auch global?

3. Aufgabe

(4 Punkte)

Finden Sie das Rechteck mit dem größten Flächeninhalt und den Seitenlängen a, b, für die gilt a + b = 10. Formulieren Sie dazu eine Extremwertaufgabe mit Nebenbedingung und lösen Sie diese Aufgabe mit dem Lagrange-Verfahren.

Gesamtpunktzahl: 20