



FIG. 1



FIG. 2



FIG. 3

32 P - T G C A C T T G A A C G C A T G C T

DNA FRAGMENT LABELED WITH  $^{32}\text{P}$  AT 5' EDGE

SEQ ID: 3

32 P - T G C A C T T G A A C G C A T G C T



THESE FRAGMENTS CAN BE STRICTLY ISOLATED DEPENDING ON LENGTH THROUGH GEL ELECTROPHORESIS

FIG. 4

09262626 09262626

RETRIEVAL KEY IS GENERATED TO RETRIEVE VECTOR UNIT  
DEPENDING ON VECTOR AND RESTRICTION ENZYMES USED  
ON VECTOR SIDE AND OBJECT DNA FRAGMENT SIDE

VECTOR UNIT IS SPECIFIED USING GENERATED RETRIEVAL  
KEY AND AUTOMATICALLY REMOVED

F I G. 5



F I G. 6

00000000000000000000000000000000



F I G. 7

M13MP18  
M13MP19  
PBR322  
PSL1180  
PSL1190  
PT7T318U  
PT7T319U  
PTZ18R  
PTZ19R  
PUC18  
PUC19, ETC.

FIG. 8

VECTOR DB FORMAT

>ID  
PUC18  
>SEQ ID: 8  
TCGGCGGTTTCCGTGATGACGGTAAAAACCTCTGACACATGCAGCTCCGGAGACGGTCACAGCTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTGGCGGGTGTGGCTGGCTTAACTATGCGGCATCAGA  
GCAGATTGTACTGAGAGTCACCATATGCGGTGAAATACCGCACAGATGCGTAAGGAGAAAATACCGCATCAGGCGCCATTGCCCCATTCAAGGCTGCGCAACTGTTGGGAAGGGCGATCGGTGCGGGCCTCTCGTATTACGCCAGCTGGCGAAAGGG  
GGATGTGCTGCAAGGCGATTAAAGTGGGTAAACGCCAGGGTTTCCCAGTCACGACGTTGAAAACGACGGCCAGTGCCAA  
GCTTGATGCGCTGCAAGGCGACTCTAGAGGATCCCCGGTACCGAGCTGAAATCGTAATCATGGTCATAGCTGTTCT  
GTGTGAAATTGTATCCGCTCACAAATTCCACACACATACGAGCGGAAGCATAAGTGTAAAGCCTGGGTGCGCTAATG  
AGT GAGCTA ACT CAC AT T AAT TCGTTGCGT CACT GCCC GTT TCCAGT CGGGAA AC CTGTCGTGCGCAGCTGCATTAAT  
GAATCGGCCAACCGCGGGGAGAGGGCGGTTTGCCTATTGGGCCTCTCCGCTCAGTCAGTCACTGCTGCGCTCG  
GTCGTTGGCTGCGCGAGCGGTATCAGTCACTCAAAGGCCGTAACCGTTATCCACAGAATCAGGGATAACGCAGG  
AAAGAACATGTGAGCAAAGGCCAGCAGCAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCGTGGCTTTTCCATAGGCTCC  
GCCCGGCTGACGAGCATCACAAAATGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAGATAACCAGCG  
TTTCCCCCTGGAAGCTCCCTGCGCTCTCTGTTCCGACCCCTGCCGCTTACCGGATACTGTCGCCCTTCTCCCTC  
GGGAAGCGTGGCGTTCTCAAAGCTACGCGTGTAGGTATCTCAGTTCGGTGTAGGTGCTCGCTCCAAGCTGGCTGTG  
TGCACGAACCCCCCGTTCAGCCGACCGCTGCCCTTATCCGTAACCTATCGTCTTGAGTCCAACCCGGTAAGACACGAC  
TTATGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCCTGCTACAGAGTTCTGAAGTG  
GTGGCCTAACTACGGCTACACTAGAAGAACAGTATTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAGAG  
TTGGTAGCTTGTATCCGGCAAACAAACCCACCGCTGGTAGCGGTGGTTTTTGTGCAAGCAGCAGATTACGCCAGA  
AAAAAAGGATCTCAAGAAGATCTTGTATCTTGTACGGGTCTGACGCTCAGTGGAAACGAAAACACGTTAAGGGAT  
TTGGTCATGAGATTATCAAAAGGATCTCACCTAGATCTTAAATTAAAAATGAAGTTAAATCAATCTAAAGTA  
TATATGAGTAAACCTGGTCTGACAGTTACCAATGCTTAATCAGTGGGACCTATCTCAGCGATCTGTCTATTGTTCA  
TCCATAGTTGCCCTGACTCCCCGTCGTAGATAACTACGATACGGGAGGGCTTACCATCTGGCCCCAGTGTGCAATGAT  
ACCGCGAGACCCACGCTCACCGGCTCCAGATTATCAGCAATAAACCGACGCCAGCCGGAGGCCGAGCGCAGAAGTGGTC  
CTGCAACTTATCCGCTCCATCCAGTCTATTAAATTGGTGCAGGAAAGCTAGAGTAAGTAGTTGCGCAGTTAATAGTTG  
CGCAACGTTGTTGCCATTGCTACAGGCATCGTGGTGTACGCTCGTCTGGTATGGCTTATTAGCTCCGCTCCGATCGTGT  
ACGATCAAGCGAGTTACATGATCCCCATGTTGTGCAAAAAAGCGGTTAGCTCCCTGGCTCTCCGATCGTGT  
GTAAGTTGGCGCAGTGTATCACTCATGGTTATGGCAGCACTGCATAATTCTCTTACTGTATGCCATCCGTAAGATGC  
TTTCTGTGACTGGTGAGTACTCAACCAAGTCATTGAGAAATAGTGTATGCCGAGCTTGTCTTGGCCGGCGTC  
AATACGGGATAATACCGGCCACATAGCAGAACCTTAAAGTGTCTCATATTGAAAACGTTCTCGGGCGAAAACCTCT  
CAAGGATCTTACCGCTGGTGGAGATCCAGTTGATGTAAACCCACTCGTCACCCAACTGATCTTCAGCATCTTACTTT  
ACCGCGTTCTGGGTGAGCAAAAACAGGAAGGCAAAATGCCGAAAAAGGGATAAGGGCGACACGGAAATGTTGAAT  
ACTCATACTCTTCTTTCAATATTGAAGCATTATCAGGGTTATTGTCTCATGAGCGGATAACATATTGAATGTA  
TTAGAAAAATAACAAATAGGGTTCCGCGCACATTCCCCAAAAGTGCCACCTGACGTCTAAGAAACCATTATTATC  
ATGACATTAACCTATAAAATAGGCCTATCACGAGGCCCTTCGTC  
>MULTI  
399..450

FIG. 9

(\* INDICATES MULTIPLE CLONING SITE )

\*\*\*\*\*

SEQ ID: 9 GTGCCAAGCTTGCATGCCCTGAGGTCACTCTAGAGGATCCCCGGTACCGAGCTCGAATTTCGTAAT

SEQ ID: 10 AAGCTT→HIND III

SEQ ID: 11 GCATGC→SPH I

SEQ ID: 12 CTGGCAG→PST I

SEQ ID: 13 GTCGAC→SAL I, ACC I, HINC II

SEQ ID: 14 TCTAGA→XBA I

SEQ ID: 15 GGATCC→BAMH I

SEQ ID: 16 CCCGGG→SMA I, XMA I

SEQ ID: 17 GGTACC→KPN I

SEQ ID: 18 GAGCTC→SAC I

SEQ ID: 19 GAATTTC→ECOR I

FIG. 10

| VECTOR SIDE | OBJECT DNA<br>FRAGMENT SIDE |
|-------------|-----------------------------|
| HIND III    | HINDIII                     |
| SPH I       | SPH I                       |
| PST I       | PST I                       |
| SAL I       | SAL I                       |
| ACC I       | ACC I                       |
| HINC II     | HINC II                     |
| XBA I       | XBA I                       |
| BAMH I      | BAMH I                      |
| SMA I       | SMA I                       |
| XMA I       | XMA I                       |
| KPN I       | KPN I                       |
| SAC I       | SAC I                       |
| ECOR I      | ECOR I                      |
|             | OTHER RESTRICTION<br>ENZYME |
|             | • • •                       |

FIG. 11

0000000000000000

**DETERMINING RETRIEVAL KEY**

TWO RETRIEVAL KEYS ARE GENERATED ON EACH OF 5'  
(FORWARD) AND 3' (BACKWARD) SIDES ACCORDING TO  
VECTOR TYPE AND RESTRICTION ENZYME INFORMATION

S 2 1

**HOMOLOGY RETRIEVAL**

AFTER HOMOLOGY RETRIEVAL USING RETRIEVAL KEY,  
PRIMARY CANDIDATE LISTS FOR BOUNDARY PORTION 5'  
AND 3' SIDES ARE GENERATED

S 2 2

**HOMOLOGY CHECK**

HOMOLOGY CHECK IS MADE BETWEEN MULTIPLE CLONING  
SITE AND PRECEDING AREA OF PRIMARY CANDIDATE FOR  
5' BOUNDARY PORTION AND FOLLOWING AREA OF PRIMARY  
CANDIDATE FOR 3' BOUNDARY PORTION TO GENERATE  
LIST OF SECONDARY CANDIDATES FOR BOUNDARY PORTION

S 2 3

**SPECIFYING BOUNDARY AREA**

CHECK THAT EACH CANDIDATE IS UNIQUE, AND CHECK  
POSITIONAL RELATIONSHIP BETWEEN 5' SIDE SECONDARY  
CANDIDATE AND 3' SIDE SECONDARY CANDIDATE. IF OK,  
THESE CANDIDATES ARE SPECIFIED AS VECTOR UNIT.

S 2 4

**DETERMINING PORTION CLEAVED**

PORTION CLEAVED IN BOUNDARY AREA IS DETERMINED

S 2 5

**F I G. 1 2**

WHEN SINGLE-STRANDED AREA IS FOUND ON 3' SIDE

|             |                        |         |        |  |
|-------------|------------------------|---------|--------|--|
| STRAND A 5' | AREA A                 | AREA B3 | AREA C |  |
| STRAND B 3' | AREA C                 | AREA B3 | AREA A |  |
|             | ← RESTRICTION ENZYME → |         |        |  |
|             | SITE                   |         |        |  |

FIG. 1 3 A

WHEN NO SINGLE-STRANDED AREA IS FOUND

|             |                        |        |  |
|-------------|------------------------|--------|--|
| STRAND A 5' | AREA A                 | AREA C |  |
| STRAND B 3' | AREA C                 | AREA A |  |
|             | ← RESTRICTION ENZYME → |        |  |
|             | SITE                   |        |  |

FIG. 1 3 B

WHEN SINGLE-STRANDED AREA IS FOUND ON 5' SIDE

|             |                        |         |        |  |
|-------------|------------------------|---------|--------|--|
| STRAND A 5' | AREA A                 | AREA B5 | AREA C |  |
| STRAND B 3' | AREA C                 | AREA B5 | AREA A |  |
|             | ← RESTRICTION ENZYME → |         |        |  |
|             | SITE                   |         |        |  |

FIG. 1 3 C



FIG. 14



F I G . 1 5



F I G. 16

WHEN HIND III IS SPECIFIED ON VECTOR 5' SIDE  
XBA I IS SPECIFIED ON VECTOR 3' SIDE, HIND III IS  
SPECIFIED ON OBJECT DNA 5' SIDE, AND XBA I IS  
SPECIFIED ON OBJECT DNA 3' SIDE

(\*\*\*\*\*) INDICATES RESIDUAL MULTIPLECLONING SITE  
(+ + + +) INDICATES AN OBJECT DNA FRAGMENT

\*\*\*\*\* GTGCCAAGCTT ++++++ TCTAGAGGATCCCCGGGTACCGAGCTCGAATTCTGAAT  
 AAGCTT TCTIAGA  
 ↑              ↑  
 5' SIDE RETRIEVAL KEY    9' SIDE RETRIEVAL KEY  
 ( IN THIS EXAMPLE,  
 HIND III SITE )    ( IN THIS EXAMPLE, XBA I SITE )

FIG. 17



F I G. 1 8

SEARCHING BASE SEQUENCE OF OBJECT CLONE USING 3'  
SIDE RETRIEVAL KEY

S 54

STORING, AS LIST OF PRIMARY CANDIDATES FOR BOUNDARY PORTIONS, RETRIEVAL KEYS AND RETRIEVAL RESULTS OBTAINED AS AREAS INDICATING HOMOLOGY EXCEEDING PREDETERMINED VALUE. (LIST 3)

S 55

F I G. 19

S 6 1

DEFINING, IN MULTIPLE CLONING SITE OF VECTOR, RESTRICTION ENZYME SITE USED IN SHEARING 5' SIDE IN MULTIPLE CLONING SITE OF VECTOR AND AREA OUTSIDE ON 5' SIDE AS 5' SIDE RESIDUAL MULTIPLE CLONING SITE (5MCS)



S 6 2

WHEN VECTOR DB CONTAINS BASE SEQUENCE OTHER THAN MULTIPLE CLONING SITE, SUM OF 5MCS AND 5 BASES ON 5' SIDE FROM 5MCS IS DEFINED AS 5' SIDE RESIDUAL VECTOR AREA (5VA). IF VECTOR DB CONTAINS ONLY BASE SEQUENCE OF MULTIPLE CLONING SITE IN VECTOR DB, THEN 5 MCS IS 5VA.

A HOMOLOGY CHECK IS MADE ACCORDING TO FOLLOWING FLOWCHART  
ON ALL ELEMENTS IN PRIMARY CANDIDATES FOR BOUNDARY PORTIONS  
(LIST 5) OBTAINED IN 5' SIDE HOMOLOGY RETRIEVAL

DEFINING EACH CANDIDATE IN LIST 5 AND SEQUENCE AREA OUTSIDE ON 5' SIDE AS HOMOLOGY CHECK AREA (5HCA) FOR CORRESPONDING CANDIDATE

S 6 3



S 6 4

COMPARING NUMBER OF BASES IN 5' SIDE RESIDUAL VECTOR AREA (5VA), NUMBER OF BASES OF 5HCA, AND NUMBER OF BASES 20, AND DEFINING SMALLEST NUMBER OF BASES AS NUMBER OF BASES FOR USE IN HOMOLOGY CHECK (HCB)



S 6 5

EXTRACTING HCB BASES FROM 3' SIDE OF 5VA TO-CHECK HOMOLOGY TO HCB BASES ON 3' SIDE OF 5HCA



S 6 6

WHEN CONSTANT HOMOLOGY IS OBTAINED, EXTRACTED BASES ARE DEFINED AS SECONDARY CANDIDATES FOR 5' SIDE BOUNDARY PORTIONS.

F I G . 2 0



FIG. 21

S 71

DEFINING, IN MULTIPLE CLONING SITE OF VECTOR, RESTRICTION ENZYME SITE USED IN SHEARING 3' SIDE IN MULTIPLE CLONING SITE OF VECTOR AND AREA OUTSIDE ON 3' SIDE AS 3' SIDE RESIDUAL MULTIPLE CLONING SITE (3MCS)

S 72

WHEN VECTOR DB CONTAINS BASE SEQUENCE OTHER THAN MULTIPLE CLONING SITE, SUM OF 3MCS AND 5 BASES ON 3' SIDE FROM 3MCS IS DEFINED AS 3' SIDE RESIDUAL VECTOR AREA (3VA). IF VECTOR DB CONTAINS ONLY BASE SEQUENCE OF MULTIPLE CLONING SITE IN VECTOR DB, THEN 3MCS IS 3VA.

A HOMOLOGY CHECK IS MADE ACCORDING TO FOLLOWING FLOWCHART  
ON ALL ELEMENTS OF PRIMARY CANDIDATES FOR BOUNDARY PORTIONS  
(LIST 3) OBTAINED IN 3' SIDE HOMOLOGY RETRIEVAL

S 73

DEFINING EACH CANDIDATE IN LIST 3 AND SEQUENCE AREA OUTSIDE ON 3' SIDE AS HOMOLOGY CHECK AREA (3HCA) FOR CORRESPONDING CANDIDATE

S 74

COMPARING NUMBER OF BASES IN 3' SIDE RESIDUAL VECTOR AREA (3VA), NUMBER OF BASES OF 3HCA, AND NUMBER OF BASES 20, AND DEFINING SMALLEST NUMBER OF BASES AS NUMBER OF BASES FOR USE IN HOMOLOGY CHECK (HCB)

S 75

EXTRACTING HCB BASES FROM 5' SIDE OF 3VA TO CHECK HOMOLOGY TO HCB BASES ON 5' SIDE OF 3HCA

S 76

WHEN CONSTANT HOMOLOGY IS OBTAINED, EXTRACTED BASES ARE DEFINED AS SECONDARY CANDIDATES FOR 3' SIDE BOUNDARY PORTIONS.

F I G. 22

5' SIDE

3' SIDE

PRIMARY CANDIDATE FOR 3' SIDE BOUNDARY PORTION

CLONE BASE SEQUENCE

FIG. 23

F I G. 24

