Estadística Descriptiva

Métrica	Individuales	Agrupados
Media	$\overline{x} = \frac{1}{n} \sum_{k=0}^{n} x_k$	$\bar{x} = \frac{1}{n} \sum_{j=1}^{k} f_j \cdot x_j$
Mediana	$\tilde{x} = \begin{cases} x_{\frac{n+1}{2}} & n \text{ es impar} \\ \frac{x_{\frac{n}{2}} + x_{\frac{n}{2}+1}}{2} & n \text{ es par} \end{cases}$	$\tilde{x} = L_{i-1} + \frac{\frac{n}{2} - F_{i-1}}{f_i} A$
Varianza	$s^{2} = \frac{1}{n-1} \sum_{k=1}^{n} (x_{k} - \bar{x})^{2}$	$s^{2} = \frac{1}{n-1} \sum_{j=1}^{k} f_{j} (x_{j} - \bar{x})^{2}$
Desviación	$s = \sqrt{s^2}$	$s = \sqrt{s^2}$
estándar		
Percentiles	$P_k = \begin{cases} \frac{x_j + x_{j+1}}{2} & r = 0\\ x_{\lceil j+1 \rceil} & r > 0 \end{cases}$	$\frac{P_k}{\frac{nk/100 - F_{k-1}}{f_k}A} = L_{k-1} + \frac{1}{f_k}$

Rango	$x_{\text{máx}} - x_{\text{mín}}$
Rango in-	$RIQ = Q_3 - Q_1$
tercuartil	
Coeficiente	$CV = \frac{s}{\bar{r}}$
de varia-	, and the second
ción	
Covariaza	$Cov(x,y) = \frac{1}{n-1} \sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})$
Coeficiente	$r = \frac{\operatorname{Cov}(x, y)}{s_x s_y}$
de relación	$S_X S_Y$
Asimetría	$A_s = \frac{1}{ns^3} \sum_{k=1}^{n} (x_k - \bar{x})^3$
Curtosis	$A_c = \frac{1}{ns^4} \sum_{k=1}^{n} (x_k - \bar{x})^4$

Probabilidad de eventos

$P(A) = \frac{\text{Casos Favorables}}{\text{Casos Totales}}$	$P(A \cap B) = P(A)P(B)$, independien-
$\Gamma(\Lambda) = \frac{\Gamma(\Lambda)}{\text{Casos Totales}}$	tes
Probabilidad de la	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$
unión eventos	$P\left(\bigcup_{k=1}^{n} A_k\right) = \sum_{k=1}^{n} P(A_k)$, disjuntos
Probabilidad Condi-	$P(B A) = \frac{P(A \cap B)}{P(A)}$
cional	1 (11)
Probabilidad Total	$P(A) = \sum_{k=1}^{n} P(A B_k)P(B_k)$
Teorema de Bayes	$P(B_k A) = \frac{P(A H_k)P(B_k)}{n}$
	$\sum_{k=1} P(A B_k)P(B_k)$

Análisis Combinatorio

conjunto ti-	Sin repetición	Con Repetición						
po								
$\{a,b,c,d\}$								
Con	$n\mathbb{C}k = \frac{n!}{(n-k)!k!}$	$n\mathbb{C}\mathbb{R}k = \frac{(n+k-1)!}{(n-1)!k!}$						
orden	()	(** **)****						
Sin orden	$n\mathbb{P}k = \frac{n!}{(n-k)!}$	$n\mathbb{P}\mathbb{R}k=n^k$						
conjunto tip	$oo \{a,a,a,b,b,b,c,c,c,$	d, d}						
$n\mathbb{P}n_1, n_2, \dots, n_k = \frac{n!}{\prod\limits_{j=1}^k n_j!}$, donde $\sum\limits_{j=1}^k n_j = n$								

	Cor	ntinua	Discreta						
Propiedades	$P(X \le x)$	Media y varianza	Propiedades	$P(X \le x)$	Media y varianza				
$f(x) \ge 0$	$\int_{-\infty}^{x} f(t)dt$	$\mu = E(X) = \int_{-\infty}^{+\infty} x f(x) dx$	$p(x) \ge 0$	$\sum_{k=1}^{\infty} p_k$	$\mu = E(X) = \sum_{k=0}^{n} x_k p_k$				
$\int_{-\infty}^{+\infty} f(x)dx = 1$	$J-\infty$	$\sigma^2 = V(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$	$\sum_{k=0}^{n} p(k) = 1$	k=0	$\sigma^2 = V(X) = \sum_{k=0}^{n} (x_k - \mu)^2 p_k$				

E · · · · · D/V · · · · ·	Г	X7	A	C 1
Function $P(X = x)$	Esperanza	Varianza	Asimetria	Curtosis
				4 (4
	пр	np(1-p)	$\frac{1-2p}{\sqrt{np(1-p)}}$	$3+\frac{1-6p(1-p)}{np(1-p)}$
$\overline{\hspace{1cm}}$	$\frac{an}{N}$	$np(1-p)\frac{N-n}{N-1}$	$\frac{(N-2a)(N-2n)\sqrt{N-1}}{(n-2)\sqrt{na(N-a)(N-n)}}$	
$\frac{e^{-\lambda}\lambda^x}{x!}$	λ	λ	$\frac{1}{\sqrt{\lambda}}$	$3+\frac{1}{\lambda}$
$ \begin{pmatrix} x-1 \\ k-1 \end{pmatrix} p^k q^{x-k} \qquad \begin{pmatrix} x+k-1 \\ k-1 \end{pmatrix} p^k q^x $	$\frac{k}{p}$ $\frac{qk}{p}$	$\frac{k(1-p)}{p^2}$	$\frac{2-p}{\sqrt{k(1-p)}}$	$3 + \frac{p^2 - 6p + 6}{k(1 - p)}$
$p(1-p)^{x-1} \qquad p(1-p)^x$	$\frac{1}{p}$ $\frac{q}{p}$	$\frac{1-p}{p^2}$	$\frac{2-p}{\sqrt{1-p}}$	$3 + \frac{p^2 - 6p + 6}{1 - p}$
0 otro caso	$\frac{a+b}{2}$	$\frac{(b-a)^2}{12}$	0	9 5
$\begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} \exp\left(-\frac{x}{\beta}\right) & x > 0\\ 0 & \text{otro caso} \end{cases}$	αβ	$\alpha \beta^2$	$\frac{2}{\sqrt{\alpha}}$	$3\left(1+\frac{2}{\alpha}\right)$
$\begin{cases} \frac{1}{\beta} \exp\left(-\frac{x}{\beta}\right) & x > 0\\ 0 & \text{otro caso} \end{cases}$	β	β^2	2	9
$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	μ	σ^2	0	3
$\begin{cases} \frac{1}{2^{\frac{v}{2}}}\Gamma(\frac{v}{2})}x^{\frac{v}{2}-1}e^{-\frac{x}{2}} & x > 0\\ 0 & \text{otro caso} \end{cases}$	v	2v	$\sqrt{\frac{8}{v}}$	$\frac{12}{v}$
		$ \begin{pmatrix} n \\ x \end{pmatrix} p^{x} (1-p)^{n-x} & np \\ \frac{\binom{a}{x} \binom{N-a}{n-x}}{\binom{N}{n}} & \frac{an}{N} \\ \frac{e^{-\lambda}\lambda^{x}}{x!} & \lambda \\ \frac{e^{-\lambda}\lambda^{x}}{x!} & \lambda \\ \begin{pmatrix} x-1 \\ k-1 \end{pmatrix} p^{k}q^{x-k} & \begin{pmatrix} x+k-1 \\ k-1 \end{pmatrix} p^{k}q^{x} & \frac{k}{p} & \frac{qk}{p} \\ \frac{1}{b-a} & a \leq x \leq b \\ 0 & \text{otro caso} \\ \frac{1}{\beta^{\alpha}} \frac{1}{\Gamma(\alpha)} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right) & x > 0 \\ 0 & \text{otro caso} \\ \frac{1}{\beta} \exp\left(-\frac{x}{\beta}\right) & x > 0 \\ 0 & \text{otro caso} \\ \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^{2}}{2\sigma^{2}}\right) & \mu \\ \frac{1}{2^{\frac{v}{2}}} \frac{1}{\Gamma(\frac{v}{2})} x^{\frac{v}{2}-1} e^{-\frac{v}{2}} & x > 0 \\ 0 & \text{otro caso} \\ \end{pmatrix} $	$ \begin{pmatrix} \binom{n}{x} p^x (1-p)^{n-x} & np & np(1-p) \\ \frac{\binom{a}{x} \binom{N-a}{n-x}}{\binom{N}{n}} & \frac{an}{N} & np(1-p) \frac{N-n}{N-1} \\ \frac{e^{-\lambda} \lambda^x}{x!} & \lambda & \lambda \\ \frac{x-1}{k-1} p^k q^{x-k} & \binom{x+k-1}{k-1} p^k q^x & \frac{k}{p} & \frac{qk}{p} & \frac{k(1-p)}{p^2} \\ p(1-p)^{x-1} & p(1-p)^x & \frac{1}{p} & \frac{q}{p} & \frac{1-p}{p^2} \\ \frac{1}{b-a} & a \leq x \leq b & \frac{a+b}{2} & \frac{(b-a)^2}{12} \\ \frac{1}{\beta^\alpha \Gamma(a)} x^{\alpha-1} \exp\left(-\frac{x}{\beta}\right) & x > 0 & \alpha\beta & \alpha\beta^2 \\ 0 & \text{otro caso} & \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) & \mu & \sigma^2 \\ \frac{1}{2^{\frac{\nu}{2}} \Gamma(\frac{\nu}{2})} x^{\frac{\nu}{2}-1} e^{-\frac{x}{2}} & x > 0 \\ 0 & \text{otro caso} & v & 2v \\ \end{pmatrix} $	$ \begin{pmatrix} \binom{n}{x} p^x (1-p)^{n-x} & np & np(1-p) & \frac{1-2p}{\sqrt{np(1-p)}} \\ \frac{\binom{a}{x} \binom{N-a}{n-x}}{\binom{N}{n}} & \frac{an}{N} & np(1-p) \frac{N-n}{N-1} & \frac{(N-2a)(N-2n)\sqrt{N-1}}{(n-2)\sqrt{na(N-a)(N-n)}} \\ \frac{e^{-\lambda}\lambda^x}{x!} & \lambda & \lambda & \frac{1}{\sqrt{\lambda}} \\ \binom{x-1}{k-1} p^k q^{x-k} & \binom{x+k-1}{k-1} p^k q^x & \frac{k}{p} & \frac{qk}{p} & \frac{k(1-p)}{p^2} & \frac{2-p}{\sqrt{k(1-p)}} \\ p(1-p)^{x-1} & p(1-p)^x & \frac{1}{p} & \frac{q}{p} & \frac{1-p}{p^2} & \frac{2-p}{\sqrt{1-p}} \\ \frac{1}{b-a} & a \le x \le b & \frac{a+b}{2} & \frac{(b-a)^2}{12} & 0 \\ 0 & \text{otro caso} & \alpha\beta & \alpha\beta^2 & \frac{2}{\sqrt{\alpha}} \\ \frac{1}{\beta} \exp\left(-\frac{x}{\beta}\right) & x > 0 & \alpha\beta & \alpha\beta^2 & \frac{2}{\sqrt{\alpha}} \\ \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) & \mu & \sigma^2 & 0 \\ \frac{1}{2^{\frac{1}{2}} \Gamma(\frac{p}{2})} x^{\frac{p}{2}-1} e^{-\frac{p}{2}} & x > 0 \\ 0 & \text{otro caso} & v & 2v & \sqrt{\frac{8}{p}} \end{aligned} $

Teorema Central del Límite: Sean $X_1, X_2, ..., X_n$; n variables aleatorias independientes con media μ y varianza σ^2 , (con cualquier distribución de probabilidad) entonces, la **variable promedio** $\bar{X} = \frac{1}{n} \sum_{k=1}^{n} X_k$ tiene media μ y desviación estándar $\frac{\sigma}{\sqrt{n}}$ y tiende a una ley normal de probabilidades conforme n tiende al infinito. La variable estandarizada: $Z = \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma}$ converge a una ley normal estándar.

Resultado: Siendo X variable aleatoria Binomial. La variable $Y = \frac{X - np}{\sqrt{npq}}$ converge a la ley normal estandarizada.

Distribuciones de muestreo de las variables media, total y proporción

			, , , , ,							
Variable		Varianza de la poblac	ión conocida	Varianza de la población desconocida (Estimada)						
		Tamaño de la Población N	Población infinita	Tamaño de la Población N	Población infinita					
Media	$\bar{X} = \frac{\sum_{k=1}^{n} X_k}{n}$ $E(\bar{X}) = \mu$	$V(\bar{X}) = \frac{\sigma^2(N-n)}{n(N-1)}$	$V(\bar{X}) = \frac{\sigma^2}{n}$	$\hat{V}(\bar{X}) = \frac{s^2(N-n)}{nN}$	$\hat{V}(\bar{X}) = \frac{s^2}{n}$					
Total	$T = n\bar{X}$ $E(T) = n\mu$	$V(T) = n\sigma^2 \frac{(N-n)}{(N-1)}$	$V(T) = n\sigma^2$	$\hat{V}(T) = ns^2 \frac{(N-n)}{N}$	$\hat{V}(T) = ns^2$					
Proporción	$P = \frac{X}{n}$ $E(P) = p$	$V(P) = \frac{pq(N-n)}{n(N-1)}$	$V(P) = \frac{pq}{n}$	$\hat{V}(P) = \frac{\hat{p}\hat{q}(N-n)}{N(n-1)}$	$\hat{V}(P) = \frac{\hat{p}\hat{q}}{n}$					

Intervalos de confianza

Media	Varianza poblacional conocida (σ^2)	$\bar{X} - z_{1-\frac{\alpha}{2}} \sqrt{V(\bar{X})} < \mu < \bar{X} + z_{1-\frac{\alpha}{2}} \sqrt{V(\bar{X})}$						
μ	Varianza muestral conocida (s ²)	$\bar{X} - t_{1-\frac{\alpha}{2}, n-1} \sqrt{\hat{V}(\bar{X})} < \mu < \bar{X} + t_{1-\frac{\alpha}{2}, n-1} \sqrt{\hat{V}(\bar{X})}$						
Proporción	Varianza poblacional conocida (σ^2)	$P - z_{1 - \frac{\alpha}{2}} \sqrt{V(P)}$						
р	Varianza muestral conocida (s ²)	$P - z_{1 - \frac{\alpha}{2}} \sqrt{\hat{V}(P)}$						
$z_{1-\frac{\alpha}{4}}=1.64$ al 90 % confianza, $z_{1-\frac{\alpha}{4}}=1.96$ al 95 % confianza, $z_{1-\frac{\alpha}{4}}=2.58$ al 99 % confianza								

Pruebas de Hipótesis

Media	Proporción	Bondad de Ajuste	Varianza
$t = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$	$z = \frac{ P - P_0 - \frac{1}{2n}}{\sqrt{\frac{P_0 Q_0}{n}}}$	$\chi^{2} = \sum_{j=1}^{k} \frac{(O_{j} - e_{j})^{2}}{e_{j}}$	$\chi^2 = \frac{(n-1)s^2}{\sigma_0^2}$

														f _{0.05} (v_n, v_d)															
v_d	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1 v _n	161.448	18.513	10.128	7.709	6.608	5.987	5.591	5.318	5.117	4.965	4.844	4.747	4.667	4.600	4.543	4.494	4.451	4.414	4.381	4.351	4.325	4.301	4.279	4.260	4.242	4.225	4.210	4.196	4.183	4.171
2	199.500	19.000	9.552	6.944	5.786	5.143	4.737	4.459	4.256	4.103	3.982	3.885		3.739	3.682	3.634	3.592	3.555	3.522	3.493	3.467	3.443	3.422	3.403	3.385	3.369	3.354	3.340	3.328	3.316
3 4	215.707 224.583	19.164 19.247	9.277 9.117	6.591	5.409 5.192	4.757 4.534	4.347 4.120	4.066 3.838	3.863	3.708 3.478	3.587	3.490		3.344	3.287	3.239	3.197 2.965	3.160 2.928	3.127 2.895	3.098 2.866	3.072 2.840	3.049 2.817	3.028 2.796	3.009 2.776	2.991	2.975 2.743	2.960	2.947	2.934	2.922
5	230.162	19.296	9.013	6.256	5.050	4.387	3.972	3.687	3.482	3.326	3.204	3.106		2.958	2.901	2.852	2.810	2.773	2.740	2.711	2.685	2.661	2.640	2.621	2.603	2.587	2.572	2.558	2.545	2.534
6	233.986	19.330	8.941	6.163	4.950	4.284	3.866	3.581	3.374	3.217	3.095	2.996		2.848	2.790	2.741	2.699	2.661	2.628	2.599	2.573	2.549	2.528	2.508	2.490	2.474	2.459	2.445	2.432	2.421
7 8	236.768	19.353 19.371	8.887 8.845	6.094	4.876 4.818	4.207	3.787	3.500	3.293	3.135	3.012 2.948	2.913		2.764	2.707	2.657	2.614	2.577	2.544	2.514	2.488	2.464	2.442	2.423	2.405	2.388	2.373	2.359	2.346	2.334
9	240.543	19.385	8.812	5.999	4.772	4.099	3.677	3.388	3.179	3.020	2.896	2.796		2.646	2.588	2.538	2.494	2.456	2.423	2.393	2.366	2.342	2.320	2.300	2.282	2.265	2.250	2.236	2.223	2.211
10	241.882	19.396	8.786	5.964	4.735	4.060	3.637	3.347	3.137	2.978	2.854	2.753		2.602	2.544	2.494	2.450	2.412	2.378	2.348	2.321	2.297	2.275	2.255	2.236	2.220	2.204	2.190	2.177	2.165
11 12	242.983	19.405 19.413	8.763 8.745	5.936 5.912	4.704 4.678	4.027	3.603	3.313	3.102	2.943	2.818	2.717		2.565	2.507	2.456	2.413	2.374	2.340	2.310	2.283	2.259	2.236	2.216	2.198	2.181	2.166	2.151	2.138	2.126
13	243.906	19.415	8.729	5.891	4.655	3.976	3.550	3.259	3.048	2.887	2.761	2.660	2.577	2.507	2.448	2.425	2.353	2.342	2.280	2.276	2.222	2.198	2.204	2.155	2.136	2.119	2.103	2.118	2.104	2.092
14	245.364	19.424	8.715	5.873	4.636	3.956	3.529	3.237	3.025	2.865	2.739	2.637	2.554	2.484	2.424	2.373	2.329	2.290	2.256	2.225	2.197	2.173	2.150	2.130	2.111	2.094	2.078	2.064	2.050	2.037
15	245.950	19.429	8.703	5.858	4.619	3.938	3.511	3.218	3.006 2.989	2.845	2.719	2.617		2.463	2.403		2.308	2.269	2.234	2.203		2.151	2.128	2.108	2.089		2.056	2.041	2.027	2.015
16 17	246.464 246.918	19.433	8.692 8.683	5.844 5.832	4.604	3.922	3.494	3.202	2.989	2.828	2.701	2.599		2.445 2.428	2.368	2.333	2.289	2.250	2.215	2.184	2.156 2.139	2.131	2.109	2.088	2.069	2.052	2.036	2.021	2.007 1.989	1.995
18	247.323	19.440	8.675	5.821	4.579	3.896	3.467	3.173	2.960	2.798	2.671	2.568		2.413	2.353	2.302	2.257	2.217	2.182	2.151	2.123	2.098	2.075	2.054	2.035	2.018	2.002	1.987	1.973	1.960
19	247.686	19.443	8.667	5.811	4.568	3.884	3.455	3.161	2.948	2.785	2.658	2.555		2.400	2.340	2.288	2.243	2.203	2.168	2.137	2.109	2.084	2.061	2.040	2.021	2.003	1.987	1.972	1.958	1.945
20 21	248.013	19.446 19.448	8.660 8.654	5.803 5.795	4.558	3.874	3.445	3.150	2.936	2.774	2.646	2.544		2.388	2.328	2.276	2.230	2.191	2.155	2.124	2.096	2.071	2.048	2.027	2.007 1.995	1.990	1.974	1.959	1.945	1.932
22	248.579	19.450	8.648	5.787	4.541	3.856	3.426	3.131	2.917	2.754	2.626	2.523		2.367	2.306	2.254	2.208	2.168	2.133	2.102	2.073	2.048	2.025	2.003	1.984	1.966	1.950	1.935	1.921	1.908
23	248.826	19.452	8.643	5.781	4.534	3.849	3.418	3.123	2.908	2.745	2.617	2.514	2.429	2.357	2.297	2.244	2.199	2.159	2.123	2.092	2.063	2.038	2.014	1.993	1.974	1.956	1.940	1.924	1.910	1.897
24	249.052	19.454 19.456	8.639	5.774	4.527	3.841	3.410	3.115	2.900	2.737	2.609	2.505		2.349	2.288	2.235	2.190	2.150	2.114	2.082	2.054	2.028	2.005 1.996	1.984	1.964	1.946	1.930	1.915	1.901	1.887
25 26	249.260 249.453	19.456	8.634 8.630	5.769 5.763	4.521 4.515	3.835	3.404	3.108	2.893	2.730	2.594	2.498		2.341	2.280	2.227	2.174	2.141	2.106	2.074	2.045	2.020	1.988	1.967	1.955	1.938	1.921	1.906 1.897	1.891	1.878 1.870
27	249.631	19.459	8.626	5.759	4.510	3.823	3.391	3.095	2.880	2.716	2.588	2.484	2.398	2.326	2.265	2.212	2.167	2.126	2.090	2.059	2.030	2.004	1.981	1.959	1.939	1.921	1.905	1.889	1.875	1.862
28	249.797	19.460	8.623	5.754	4.505	3.818	3.386	3.090	2.874	2.710	2.582	2.478		2.320	2.259	2.206	2.160	2.119	2.084	2.052	2.023	1.997	1.973	1.952	1.932	1.914	1.898	1.882	1.868	1.854
29 30	249.951 250.095	19.461 19.462	8.620 8.617	5.750 5.746	4.500	3.813	3.381	3.084	2.869 2.864	2.705	2.576	2.472		2.314	2.253	2.200	2.154	2.113	2.077	2.045	2.016	1.990 1.984	1.967 1.961	1.945	1.926	1.907 1.901	1.891 1.884	1.875	1.861	1.847
	0.00 0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	1.00	1.10	1.20	1.30	1.40	1.50	1.60	1.70	1.80	1.90	2.00	2.10	2.20	2.30	2.40	2.50	2.60	2.70	2.80	2.90	3.00
	50000 0.4601 49900 0.4591			0.34458	0.30854	0.27425	0.24196	0.21186	0.18406 0.18340	0.15866 0.15805	0.13567 0.13512	0.11507 0.11458		0.08076	0.06681	0.05480	0.04457	0.03593	0.02872	0.02275	0.01786	0.01390	0.01072	0.00820	0.00621	0.00466	0.00347	0.00256	0.00187	0.00135
	49801 0.4581 49701 0.4573				0.30678	0.27259	0.24041	0.21041	0.18273	0.15745		0.11410		0.08001	0.06616	0.05425	0.04410	0.03554	0.02839	0.02248	0.01765	0.01373	0.01058	0.00809	0.00612		0.00342		0.00184	0.00133
0.0100 0.	49601 0.4562	0 0.41683	0.37828	0.34090	0.30503	0.27093	0.23885	0.20897	0.18141	0.15625	0.13350	0.11314	0.09510	0.07927	0.06552	0.05370	0.04363	0.03515	0.02807	0.02222	0.01743	0.01355	0.01044	0.00798	0.00604	0.00453	0.00336	0.00248	0.00181	0.00131
	49501 0.4552 49402 0.4542		0.37733 0.37638	0.33999	0.30415 0.30328	0.27010 0.26928	0.23808 0.23730	0.20825 0.20754	0.18075 0.18010	0.15565 0.15505	0.13296 0.13243	0.11266 0.11218	0.09468 0.09425	0.07890 0.07853	0.06520 0.06489	0.05343 0.05316	0.04340 0.04317	0.03495 0.03476	0.02791 0.02775	0.02208 0.02195	0.01732 0.01721	0.01347 0.01338	0.01038 0.01031	0.00792 0.00787	0.00599	0.00449 0.00446	0.00334	0.00246 0.00244	0.00179 0.00178	0.00130 0.00128
	49302 0.4532 49202 0.4522			0.33816	0.30240		0.23653	0.20682	0.17944	0.15446 0.15386	0.13189 0.13136	0.11171 0.11123		0.07817 0.07780	0.06457	0.05289		0.03457	0.02759		0.01711	0.01329	0.01024 0.01017	0.00781	0.00591	0.00443	0.00329	0.00242	0.00176 0.00175	0.00127 0.00126
0.0225 0.	49102 0.4512	5 0.41196	0.37354	0.33633	0.30066	0.26681	0.23499	0.20540	0.17813	0.15327	0.13082	0.11076	0.09300	0.07744	0.06394	0.05235	0.04249	0.03419	0.02727	0.02156	0.01690	0.01312	0.01010	0.00771	0.00583	0.00436	0.00324	0.00238	0.00174	0.00125
0.0200	49003 0.4502 48903 0.4492		0.001	0.33542 0.33451	0.29979 0.29892	0.26599 0.26517	0.23423 0.23346	0.20469 0.20398	0.17748 0.17683	0.15268 0.15209	0.13029 0.12977	0.11029 0.10982		0.07708 0.07672	0.06363	0.05208 0.05182	0.04226 0.04204	0.03400	0.02711 0.02696	0.02143 0.02131	0.01679 0.01669	0.01304 0.01296	0.01004 0.00997	0.00765 0.00760	0.00578 0.00574	0100.00	0.00322	0.00236 0.00235	0.00172 0.00171	0.00124 0.00123
010000	48803 0.4482 48704 0.4473		0.37070	0.33360	0.29806	0.26435	0.23270	0.20327	0.17619	0.15151	0.12924	0.10935		0.07636	0.06301	0.05155	0.04182	0.03362	0.02680	0.02118	0.01659	0.01287	0.00990	0.00755	0.00570	0.00427	0.00317	0.00233	0.00169	0.00122
0.0350 0.	48604 0.4463	1 0.40710	0.36881	0.33178	0.29632	0.26271	0.23117	0.20186	0.17489	0.15033	0.12819	0.10842	0.09094	0.07564	0.06239	0.05102	0.04137	0.03325	0.02650	0.02093	0.01638	0.01271	0.00977	0.00745	0.00562	0.00421	0.00312	0.00229	0.00167	0.00120
	48504 0.4453 48405 0.4443				0.29546 0.29460		0.23041 0.22965			0.14975 0.14917	0.12766 0.12714			0.07529 0.07493	0.06209 0.06178	0.05076 0.05050	0.04115 0.04093	0.03307 0.03288		0.02080 0.02068	0.01628 0.01618	0.01263 0.01255	0.00971 0.00964	0.00739 0.00734	0.00558 0.00554	0.00418 0.00415			0.00165 0.00164	0.00119 0.00118
	48305 0.4433 48205 0.4423	4 0.40420 6 0.40323	0.36599	0.32906	0.29374	0.26027	0.22889	0.19975	0.17297	0.14859	0.12662 0.12610	0.10703	0.08972	0.07458	0.06148	0.05024	0.04071	0.03270	0.02604	0.02055	0.01608	0.01246 0.01238	0.00958	0.00729	0.00550	0.00411	0.00305	0.00224	0.00163	0.00117
0.0475 0.	48106 0.4413	7 0.40226	0.36411	0.32726	0.29202	0.25865	0.22738	0.19836	0.17169	0.14743	0.12559	0.10611	0.08891	0.07388	0.06087	0.04973	0.04028	0.03234	0.02574	0.02030	0.01588	0.01230	0.00945	0.00719	0.00542	0.00405	0.00300	0.00220	0.00160	0.00115
	48006 0.4403 47907 0.4394			0.32636 0.32545	0.29116 0.29030	0.25785 0.25704	0.22663 0.22588	0.19766 0.19697		0.14686 0.14629	0.12507 0.12456	0.10565 0.10519		0.07353 0.07318	0.06057 0.06027	0.04947 0.04922	0.04006 0.03984	0.03216 0.03198	0.02559 0.02544	0.02018 0.02006	0.01578 0.01568	0.01222 0.01215	0.00939	0.00714	0.00539 0.00535		0.00298 0.00296	0.00219 0.00217	0.00159 0.00158	0.00114 0.00113
	47807 0.4384 47707 0.4374	1 0.39936 3 0.39840		0.32455	0.28945			0.19628	0.16979			0.10474		0.07283	0.05997	0.04896	0.03963	0.03180	0.02529			0.01207	0.00926	0.00704		0.00397	0.00293	0.00215	0.00156	0.00113
0.0600 0.	47608 0.4364	4 0.39743	0.35942	0.32276	0.28774	0.25463	0.22363	0.19489	0.16853	0.14457	0.12302	0.10383	0.08691	0.07215	0.05938	0.04846	0.03920	0.03144	0.02500	0.01970	0.01539	0.01191	0.00914	0.00695	0.00523	0.00391	0.00289	0.00212	0.00154	0.00111
	47508 0.4354 47409 0.4344	6 0.39647 7 0.39550		0.32186 0.32097	0.28689 0.28604	0.25383 0.25303	0.22288 0.22214	0.19421 0.19352	0.16790 0.16727		0.12252 0.12201	0.10338 0.10294		0.07180 0.07146	0.05909	0.04821 0.04796	0.03899 0.03878	0.03127 0.03109	0.02485 0.02471	0.01958 0.01946	0.01529 0.01519	0.01183 0.01176	0.00908 0.00902	0.00690 0.00685	0.00520 0.00516	0.00388 0.00385	0.00287 0.00285	0.00210 0.00209	0.00153 0.00151	0.00110 0.00109
	47309 0.4334 47210 0.4325	0.07454	0.00002	0.32007	0.28519	0.25223	0.22139	0.19283	0.16665	0.14287 0.14231	0.12150 0.12100	0.10249	0.08573	0.07112	0.05850	0.04771	0.03857	0.03092	0.02456	0.01934	0.01510	0.01168	0.00895	0.00680	0.00512	0.00382	0.00282	0.00207	0.00150	0.00108 0.00107
0.0725 0.	47110 0.4315	2 0.39262	0.35476	0.31828	0.28349	0.25063	0.21991	0.19147	0.16540	0.14175	0.12050	0.10160	0.08495	0.07044	0.05792	0.04721	0.03816	0.03057	0.02428	0.01911	0.01491	0.01153	0.00883	0.00671	0.00505	0.00376	0.00278	0.00204	0.00148	0.00106
0.0775 0.	47011 0.4305 46911 0.4295			0.51757	0.28265 0.28180	0.24904	0.21917 0.21843	0.19011		0.14063	0.12000 0.11950	0.10071	0.08418	0.07011 0.06977	0.05763 0.05734	0.04697 0.04672	0.03795 0.03774	0.03040 0.03022	0.02399	0.01899 0.01888	0.01482 0.01472	0.01138	0.00877 0.00872	0.00666 0.00662	0.00501 0.00498		0.00274	0.00202	0.00146 0.00145	0.00105 0.00104
	46812 0.4285 46712 0.4276		0.000		0.28096 0.28011	0.24825	0.21770	0.205.20		0.14007 0.13952	0.11900 0.11850	0.10027		0.06944	0.05705	0.04648	0.03754	0.03005	0.02385	0.01876 0.01865	0.01463	0.01130 0.01123	0.00866	0.00657	0.00494			0100255	0.00144	0.00104
0.0850 0.	46613 0.4266	1 0.38782	0.35012	0.31384	0.27927	0.24667	0.21623	0.18808	0.16231	0.13896	0.11801	0.09940	0.08303	0.06877	0.05648	0.04599	0.03713	0.02971	0.02357	0.01853	0.01444	0.01116	0.00854	0.00648	0.00487	0.00363	0.00268	0.00196	0.00142	0.00102
0.0900 0.	46514 0.4256 46414 0.4246	5 0.38591						0.18740 0.18673							0.05620 0.05592									0.00643 0.00639						0.00101 0.00100
0.0925 0. 0.0950 0.	46315 0.4236 46216 0.4227			0.31118				0.18606						0.06778										0.00634					0.00138 0.00137	0.00099
	46116 0.4217																													