1.137 Densidade e Empuxo

Objetivo

Determinar a densidade de sólidos utilizando o conceito de empuxo.

Materiais Utilizados

1 uma balança digital, 1 béquer (ou outro recipiente semelhante) com água, 1 fio fino, diversos materiais sólidos (zinco, chumbo, alumínio, cobre, latão, vidro, etc).

Montagem e Procedimento

Com a balança de precisão determine a massa do sólido utilizado. Coloque o béquer com água sobre a balança e nele mergulhe o sólido, suspendendo o pelo fio. Faça com que ele afunde totalmente, sem encostar em nenhuma parte do recipiente. Um esquema da montagem e realização do experimento está na Fig. (1.155).

Figura 1.155: Megulhando o corpo no líquido sobre a balança.

Estando inicialmente a balança zerada, anote a massa aparente do sólido por ela medida (sólido mergulhado na água). Conhecendo a massa real e aparente do sólido, bem como a densidade da água $(1g/cm^3)$, determine a densidade do solido.

Uma observação importante que precisa ser aqui destacada é que o método para a realização desse experimento somente funciona quando a densidade do sólido é maior da densidade do líquido pois, caso contrário, o sólido flutua, parcial ou totalmente.

Análise e Explicação

A densidade ou massa especifica de uma substância, é a razão entre sua massa pelo seu volume. Se uma substancia de massa (m) ocupa um volume (V), sua densidade (ρ) é dada por:

$$\rho = \frac{m}{V} \tag{1.139}$$

Cada substância apresenta uma densidade característica. Esta, porém, varia com a pressão e temperatura, pois o volume de uma substância depende do grau de agitação e da aproximação entre as moléculas.

De acordo com o principio de Arquimedes, sobre um corpo total ou parcialmente mergulhado num fluído, age uma forca vertical de baixo para cima, chamada empuxo (E), cuja intensidade é igual ao peso do volume do líquido deslocado pelo corpo, ou:

$$E = m_l q \tag{1.140}$$

onde g é a aceleração da gravidade e m_l a massa correspondente ao volume do líquido deslocado. Escrevendo m em função da densidade e do volume (usando a Eq. 1.139) a Eq. 1.140) fica:

$$E = \rho_l q V_l \tag{1.141}$$

onde ρ_l é a densidade do líquido e V_l o volume do líquido deslocado.

A partir do conceito de empuxo pode-se desenvolver um método que facilitará muito na determinação da densidade de corpos. Igualando as Eqs. (1.140) e (1.141), vem que:

$$mg = \rho_l gV \tag{1.142}$$

Se o corpo mergulhado no líquido for mais denso, ele acaba afundando totalmente, de modo que o volume do líquido deslocado é igual ao volume do sólido: $V_l=V_s$. Sendo $V_s=m_s/\rho_s$, escreve-se (1.143) como $m_lg=\rho_lgm_s/\rho_s$, donde vem que:

$$\rho_s = \rho_l \left(\frac{m_s}{m_l}\right) \tag{1.143}$$

Se o corpo submerso é apoiado numa balança no fundo do recipiente, a balança indicara uma forca atuante para cima sobre o objeto, que será igual a intensidade P-E. Assim, os objeto submersos aparentam pesar menos do que eles normalmente pesam. Representando m_l , que é a massa aparente do sólido (massa do líquido deslocado), por m_s' , a Eq. (1.143) pode ser escrita como:

$$\rho_s = \rho_l \left(\frac{m_s}{m_s'} \right) \tag{1.144}$$

onde ρ_s é a densidade do sólido, ρ_l a densidade do líquido, m_s a massa real do sólido e m_s' a massa aparente do sólido.

Na Tab. (1.12) temos os dados obtidos em um experimento, considerando a densidade da água como sendo $\rho=1g/cm^3$, bem como o erro percentual (o erro percentual é o módulo da diferença entre a densidade de massa tabelada com a massa medida, dividido pela massa tabelada, vezes 100) em relação à valores tabelados de densidade de sólidos:

Tabela 1.12: Massas e densidades de substâncias.

Substância	m_s	m_s'	$ ho_{exp}$	$ ho_{tab}$	Erro (%)
Latão	101,6	11,94	8, 51	8,4	1,3
Alumínio	18,3	6,73	2,72	2,7	0,7
Cobre	21, 5	2,43	8,85	8,9	0,6
Zinco	12,68	1,79	7,08	7, 1	0,3
Chumbo	24,03	2,12	11,3	11,3	0,0

Para determinar a densidade de líquidos o procedimento é semelhante. Neste caso basta conhecer a densidade do sólido que, a partir de (1.144) a densidade do líquido passa a ser dada por:

$$\rho_l = \rho_s \left(\frac{m_s'}{m_s} \right)$$