Report from the CIDER Working Group on

Reconciling laboratory measurements on the electrical conductivity of hydrous olivine

Samer Naif¹, Elizabeth Ferriss¹, and Erik Hauri²

- ¹ Lamont-Doherty Earth Observatory
- ² Carnegie Institution of Washington

March 24, 2017

The Electrical Conductivity of Hydrous Olivine Working Group was formed with CIDER support to discuss and attempt to resolve a long-standing discrepancy in electrical conductivity measurements on hydrous olivine samples. Existing laboratory studies all agree that structurally incorporated hydrogen defects, colloquially referred to as water, enhance the electrical conductivity (EC) of olivine. However, the measurements from independent laboratory groups diverge by more than an order of magnitude regarding the sensitivity of olivine EC to the concentration of incorporated water. Such a large discrepancy leads to conflicting interpretations of magnetotelluric soundings on the role of water in upper mantle processes.

A recent analysis by Gardés et al (2014) suggested the discrepancy between published EC measurements can be resolved by accounting for errors in the estimated water concentration of individual samples. The water concentrations were typically measured with FTIR (Fourier Transform Infrared Spectroscopy), which has been shown to underestimate the water content in olivine by up to a factor of four. In an effort to better quantify this bias, we gathered over 30 hydrated olivine samples from several sources and used the nanoSIMS (Secondary Ion Mass Spectrometry) facility at the Carnegie Institution of Washington to measure the total water concentration in each sample for comparison with prior FTIR measurements.

We are in the process of compiling the sample descriptors and nanoSIMS measurements, which upon completion will be uploaded to the EarthChem online repository for public use. In addition, a manuscript describing the dataset, including sample compositions, FTIR spectra, and nanoSIMS measurements, is currently being prepared for publication. Table 1 lists details for the measured samples.

Workshop Outcomes

In August 2016, results from the nanoSIMS measurements were shared and discussed during a two-day workshop at the Department of Terrestrial Magnetism campus of Carnegie Institution of Washington. The meeting brought together 20 participants, which are listed in Table 2. Selected participants gave presentations reviewing instrumentation and laboratory practices on measuring EC with impedance spectroscopy and on measuring water concentrations with FTIR and SIMS.

Open discussions touched on a wide range of topics. Our working group reached consensus on a number of points regarding **FTIR** laboratory protocols:

- several FTIR spectra should be recorded per sample to improve measurement uncertainties
- FTIR spectra should be recorded both before and after measuring EC of a sample
- raw FTIR spectra should be included in published work, or uploaded to an online repository such as the PULI spectral database (http://puli.mfgi.hu)
- for single crystals, polarized FTIR should be used whenever possible
- when using unpolarized FTIR, avoid the Paterson (1982) calibration since it is difficult to backtrack and apply corrections
- if normalized unpolarized FTIR spectra are given, also report the non-normalized sample thickness and the baseline correction
- if using the Paterson (1982) calibration, report the area beneath the spectra

Our working group also prioritized research needs going forward:

- A recurring theme was the need to better understand "site-specific" hydrogen incorporation and diffusion and how it influences EC
- Studies have focused on measuring EC of hydrated olivine. Future work should also consider pyroxenes, which have the capacity to hold much more water than olivine and thus may contribute significantly to conduction
- More deuterium-hydrogen diffusion experiments on olivine as well as other nominally anhydrous minerals (pyroxenes, garnets)
- New techniques for measuring EC of hydrated samples at high temperatures are needed, currently not possible due to dehydration related issues
- More EC experiments on effect of grain size and grain boundary diffusion.
- What is the effect of carbon (and other impurities) along grain boundaries on EC of hydrous samples?
- Need tighter constraints on mineral-mineral water partitioning to better understand which hydrous mineral phases may dominate mantle EC

Table 1: Olivine sample characteristics. Unpolarized FTIR used Paterson (1982) calibration. Polarized FTIR used Bell et al (2003) calibration. ND: yet to be measured. TBD: water contents not yet determined from existing FTIR spectra. SZ: significant zonation with higher concentrations on the rims. *Samples not published as of March 2017.

Sample	Crystal (single/poly)	Source	H ₂ O wt ppm (SIMS/FTIR)	FTIR
$\frac{\text{sample}}{\text{s1}}$	single	Yang (2012)	14/40	Polarized
f1	single	Yang (2012)	$\frac{14}{40}$ $\frac{40}{35}$	Polarized
f2	single	Yang (2012)	30/40	Polarized
f3	single	Yang (2012)	19/35	Polarized
1K453	single	Yoshino et al (2006)	$\frac{13}{39}$ $272/220$	Unpolarized
1K472	single	Yoshino et al (2006)	76/90	Unpolarized
1K472 1K473	single	Yoshino et al (2006)	678/220	Unpolarized
5K1126	poly	Yoshino et al (2009)	99/80	Unpolarized
5K1120 5K1122	poly	Yoshino et al (2009)	ND/1600	Unpolarized
5K1122 5K1112		Yoshino et al (2009)	ND/1600 $ND/1600$	Unpolarized
PC28	poly	Du Frane & Tyburczy (2012)	74/ND	only SIMS
	single	Faul*	,	
6841 6850	poly	Faul*	62/ND	Unpolarized Unpolarized
	poly		40/ND	Unpolarized
1579	poly	Faul*	16/ND	Unpolarized
6772	poly	Faul*	78/ND	Unpolarized
K1697-A	single	Sun & Karato*	SZ/TBD	Unpolarized
K1694-B	single	Sun & Karato*	SZ/TBD	Unpolarized
SC1-2	single	Ferriss*	5/4	Polarized
Kiki1	single	Ferriss*	14/19	Polarized
5K2812	poly	Yoshino*	2568/ND	Unpolarized
5K2820	poly	Yoshino*	1821/ND	Unpolarized
5K2813	poly	Yoshino*	278/ND	Unpolarized
5K2821	poly	Yoshino*	235/ND	Unpolarized
5K2871	poly	Yoshino*	1727/ND	Unpolarized
5K2897	poly	Yoshino*	138/ND	Unpolarized
5K2900	poly	Yoshino*	225/ND	Unpolarized
1K2429	poly	Yoshino*	23/ND	Unpolarized
1K2448	poly	Yoshino*	$4764/\mathrm{ND}$	Unpolarized
1K2434	poly	Yoshino*	298/ND	Unpolarized
1K2449	poly	Yoshino*	311/ND	Unpolarized
1K2541	poly	Yoshino*	303/ND	Unpolarized

Table 2: Workshop participants

Participant	Affiliation		
Simon Clark	Macquarie University		
Moussa Dia	William & Mary		
Wyatt Du Frane	Lawrence Livermore National Lab		
Uli Faul	Massachusetts Institute of Technology		
Elizabeth Ferriss	Lamont-Doherty Earth Observatory		
Gordana Garapic	State University of New York, New Paltz		
Erik Hauri	Carnegie Institution of Washington		
Shun Karato	Yale University		
Jed Mosenfelder	University of Minnesota		
Samer Naif	Lamont-Doherty Earth Observatory		
Mattia Pistone	Smithsonian Institution		
Adam Sarafian	Woods Hole Oceanographic InstitutionI		
Emily Sarafian	Woods Hole Oceanographic Institution		
Pavithra Sekhar	Virginia Tech		
Peng Sun	Yale University		
James Tyburczy	Arizona State University		
Peter van Keken	Carnegie Institution of Washington		
Lara Wagner	Carnegie Institution of Washington		
Tony Withers	Western University		
Takashi Yoshino	Okayama University		

References

- Bell, D. R., G. R. Rossman, J. Maldener, D. Endisch, and F. Rauch (2003), Hydroxide in olivine: A quantitative determination of the absolute amount and calibration of the IR spectrum, *Journal of Geophysical Research*, 108(B2), 2105.
- Du Frane, W. L., and J. A. Tyburczy (2012), Deuterium-hydrogen exchange in olivine: Implications for point defects and electrical conductivity, *Geochemistry Geophysics Geosystems*, 13, Q03004.
- Gardés, E., F. Gaillard, and P. Tarits (2014), Toward a unified hydrous olivine electrical conductivity law, *Geochemistry Geophysics Geosystems*, 15, 4984–5000.
- Paterson, M. S. (1982), The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials, *Bulletin de Mineralogie*, 105, 20–29.
- Yang, X. (2012), Orientation-related electrical conductivity of hydrous olivine, clinopyroxene and plagioclase and implications for the structure of the lower continental crust and uppermost mantle, *Earth and Planetary Science Letters*, 317–318, 241–250.
- Yoshino, T., T. Matsuzaki, S. Yamashita, and T. Katsura (2006), Hydrous olivine unable to account for conductivity anomaly at the top of the asthenosphere, *Nature*, 443 (7114), 973–976.
- Yoshino, T., T. Matsuzaki, A. Shatskiy, and T. Katsura (2009), The effect of water on the electrical conductivity of olivine aggregates and its implications for the electrical structure of the upper mantle, *Earth and Planetary Science Letters*, 288(1–2), 291–300.