Model-Constructing Satisfiability Calculus A Model-Based Approach to SMT

Dejan Jovanović

SRI International

SAT/SMT Summer School, Stanford, 2015

Outline

- Introduction
- 2 Arithmetic
- Theory Combination
- 4 Conclusion

Outline

- Introduction
- 2 Arithmetic
- Theory Combination
- 4 Conclusion

Satisfiability Modulo Theories and DPLL(T)

Problem

Check a given formula for satisfiability modulo the union of background theories.

Example (QF_UFLRA)

$$(z = 1 \lor z = 0) \land (x - y + z = 1) \land (f(x) > f(y))$$

Main idea behind DPLL(T):

- Use a SAT solver to enumerate the Boolean structure.
- Check Boolean assignments with a decision procedure.

DPLL(T) Architecture

DPLL(T): Pros and Cons

Good

- Simple interface
- Only conjunctions of constraints
- General combination methods

DPLL(T): Pros and Cons

Good

- Simple interface
- Only conjunctions of constraints
- General combination methods

What can be improved?

- Simple interface can be restrictive
- Arbitrary conjunctions of constraints
- General combination methods

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

And so on...

Example ([Exponential enumeration of paths.

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

How to fix this?

- Extensions of DPLL(T) can add new literals [BNOT06].
- Magic needed to discover these literals [BDdM08, HAMM14].
- More pragmatic approach would be desirable.

Rethink the Architecture!

- Why is SAT solver special?
- Why the restriction on the interface?
- Let's dig deeper into how SAT solvers work.

Boolean Satisfiability

$$x_n \vee \cdots \vee x_1 \vee \overline{y_m} \vee \cdots \vee \overline{y_1}$$

- Resolution procedure by Davis, Putnam [DP60]
- Search procedure by Davis, Logemann, Loveland [DLL62]

Resolution (DP)

- Find a proof
- Saturation
- Exponential

- Find a model
- Search and backtracking
- Exponential

 $\begin{array}{c|cccc} X \lor y \lor \overline{z} & X \lor \overline{y} \lor \overline{z} & \overline{X} \lor y \lor \overline{z} & \overline{X} \lor \overline{y} \lor \overline{z} \\ \hline X \lor y \lor z & X \lor \overline{y} \lor z & \overline{X} \lor y \lor z & \overline{X} \lor \overline{y} \lor z \\ \hline \end{array}$

$$\begin{array}{c|cccc} x_{\vee}y_{\vee}\overline{z} & x_{\vee}\overline{y}_{\vee}\overline{z} & \overline{x}_{\vee}y_{\vee}\overline{z} & \overline{x}_{\vee}\overline{y}_{\vee}\overline{z} \\ \hline x_{\vee}y_{\vee}z & x_{\vee}\overline{y}_{\vee}z & \overline{x}_{\vee}y_{\vee}z & \overline{x}_{\vee}\overline{y}_{\vee}z \\ \hline \end{array}$$

Boolean Resolution

 $\begin{array}{c|cccc} \hline X \lor y \lor \overline{z} & X \lor \overline{y} \lor \overline{z} & \overline{X} \lor y \lor \overline{z} & \overline{X} \lor \overline{y} \lor \overline{z} \\ \hline \hline X \lor y \lor z & X \lor \overline{y} \lor z & \overline{X} \lor y \lor z & \overline{X} \lor \overline{y} \lor z \\ \hline \end{array}$

Eliminate z

Eliminate z

- Eliminate z
- Eliminate y

- Eliminate z
- ② Eliminate y

- Eliminate z
- Eliminate y
- Eliminate x

- Eliminate z
- Eliminate y
- Seliminate x
- unsat

$$\begin{array}{c|cccc} x \lor y \lor \overline{z} & x \lor \overline{y} \lor \overline{z} & \overline{x} \lor y \lor \overline{z} & \overline{x} \lor \overline{y} \lor \overline{z} \\ \hline \hline x \lor y \lor z & x \lor \overline{y} \lor z & \overline{x} \lor \overline{y} \lor z & \overline{x} \lor \overline{y} \lor z \\ \hline \end{array}$$

① try $x \mapsto \top$

$$\begin{array}{c|c} y \vee \overline{z} & \overline{y} \vee \overline{z} \\ \hline y \vee z & \overline{y} \vee z \end{array}$$

- ① try $x \mapsto \top$
 - ① try $y \mapsto \top$

- ① try $x \mapsto \top$

- ① try $x \mapsto \top$
 - lacktriangledown try $y\mapsto \top$, unsat

$$\begin{array}{c|c}
y \lor \overline{z} & \overline{y} \lor \overline{z} \\
\hline
y \lor z & \overline{y} \lor z
\end{array}$$

- ① try $x \mapsto \top$
 - ① try $y \mapsto \top$, unsat
 - 2 try $y \mapsto \bot$

- ① try $x \mapsto \top$
 - lacktriangledown try $y\mapsto \top$, unsat
 - 2 try $y \mapsto \bot$

- ① try $x \mapsto \top$
 - lacktriangledown try $y \mapsto \top$, unsat
 - 2 try $y \mapsto \bot$, unsat

$$\begin{array}{c|cccc} x \lor y \lor \overline{z} & x \lor \overline{y} \lor \overline{z} & \overline{x} \lor y \lor \overline{z} & \overline{x} \lor \overline{y} \lor \overline{z} \\ \hline x \lor y \lor z & x \lor \overline{y} \lor z & \overline{x} \lor y \lor z & \overline{x} \lor \overline{y} \lor z \\ \hline \end{array}$$

- ① try $x \mapsto \top$
 - lacktriangledown try $y \mapsto \top$, unsat
 - ② try $y \mapsto \bot$, unsat
- 2 try $x \mapsto \bot \dots$

Marques-Silva, Sakallah [SS97] GRASP: A new search algorithm for satisfiabiliy

Moskewicz, Madigan, Zhao, Zhang, Malik [MMZ⁺01] CHAFF: Engineering an efficient SAT solver

Conflict-Directed Clause Learning

- Use the search to guide resolution
- Use resolution to guide the search

$$\begin{array}{c|cccc} x \lor y \lor \overline{z} & x \lor \overline{y} \lor \overline{z} & \overline{x} \lor y \lor \overline{z} & \overline{x} \lor \overline{y} \lor \overline{z} \\ \hline x \lor y \lor z & x \lor \overline{y} \lor z & \overline{x} \lor y \lor z & \overline{x} \lor \overline{y} \lor z \\ \hline \end{array}$$

$$\begin{array}{c|cccc} x_{\vee}y_{\vee}\overline{z} & x_{\vee}\overline{y}_{\vee}\overline{z} & \overline{x}_{\vee}y_{\vee}\overline{z} & \overline{x}_{\vee}\overline{y}_{\vee}\overline{z} \\ \hline x_{\vee}y_{\vee}z & x_{\vee}\overline{y}_{\vee}z & \overline{x}_{\vee}y_{\vee}z & \overline{x}_{\vee}\overline{y}_{\vee}z \\ \hline \end{array}$$

$$\begin{array}{c|cccc} x \lor y \lor \overline{z} & x \lor \overline{y} \lor \overline{z} & \overline{x} \lor y \lor \overline{z} & \overline{x} \lor \overline{y} \lor \overline{z} \\ \hline x \lor y \lor z & x \lor \overline{y} \lor z & \overline{x} \lor y \lor z & \overline{x} \lor \overline{y} \lor z \\ \hline \end{array}$$

[x, y]

[x, y]

Unit Propagation

 $(\overline{x} \lor \overline{y} \lor \overline{z})$ is unit, propagate \overline{z} .

 $[\![x]\!]$

Model Construction

Build partial model by assigning variables to values

$$\llbracket \ldots, x, \ldots, \overline{y}, \ldots, z, \ldots \rrbracket$$
.

Unit Reasoning

Reason about unit constraints

$$(\bar{x} \lor y \lor \bar{z} \lor w)$$
.

Explain Conflicts

Explain conflicts using clausal reasons

$$(\overline{x} \lor y \lor \overline{z})$$
.

Outline

- Introduction
- 2 Arithmetic
- Theory Combination
- 4 Conclusion

Linear Arithmetic

$$a_1x_1 + \cdots + a_nx_n \ge b$$
 $a_1x_1 + \cdots + a_nx_n = b$

DPLL(T): Simplex

A model builder for a conjunction of linear constraints.

- Search for a model
- Escape conflicts through pivoting
- Built for the DPLL(T) framework

[DDM06] A fast linear-arithmetic solver for DPLL(T)

Linear Arithmetic

$$a_1x_1 + \cdots + a_nx_n \ge b$$
 $a_1x_1 + \cdots + a_nx_n = b$

Fourier-Motzkin Resolution

$$\frac{2x + 3y - z \ge -1}{6x + 9y - 3z \ge -3} \quad \frac{-3x - 2y + 4z \ge 2}{-6x - 4y + 8z \ge 4}$$
$$5y + 5z \ge 1$$

- Feels like Boolean resolution (elimination).
- Behaves like Boolean resolution (exponential).

Model Construction

Build partial model by assigning variables to values

$$\llbracket \ldots, C_1, C_2, \ldots, x \mapsto 1/2, \ldots, y \mapsto 1/2, \ldots, z \mapsto -1, \ldots \rrbracket$$
.

Unit Reasoning

Reason about unit constraints

$$C_1 \equiv (x + y + z + w \ge 0)$$
 $C_2 \equiv (x + y + z - w > 0)$.

Explain Conflicts

Explain conflicts using valid clausal reasons

$$(\overline{C_1} \vee \overline{C_2} \vee x + y + z > 0)$$
.

$$\underbrace{2y - x - 2 < 0}_{C_1} \wedge \underbrace{-2y - x + 4 < 0}_{C_2}$$

$$\underbrace{\frac{c_1}{2y - x - 2 < 0}}_{C_1} \wedge \underbrace{\frac{c_2}{-2y - x + 4 < 0}}_{C_2}$$

$$[c_1, c_2, x \mapsto 0.5]$$

Unit Constraint Reasoning

$$2y - x - 2 < 0 \Rightarrow (y < 1.25)$$

$$-2y - x + 4 < 0 \Rightarrow (y > 1.75)$$

$$\llbracket \mathbf{c}_1, \mathbf{c}_2, \mathbf{x} \mapsto \mathbf{v}.\mathbf{o} \rrbracket$$

$$\underbrace{\frac{c_1}{2y - x - 2 < 0}}_{C_1} \wedge \underbrace{\frac{c_2}{-2y - x + 4 < 0}}_{C_2}$$

$$[[c_1, c_2, x \mapsto 0.5]]$$

Explanation $C_1 \wedge C_2 \Rightarrow x \neq 0.5$

$$\underbrace{\frac{c_1}{2y - x - 2 < 0}}_{C_1} \land \underbrace{\frac{c_2}{-2y - x + 4 < 0}}_{C_2}$$

$$[[C_1, C_2, \mathbf{x} \mapsto 0.5]]$$

Explanation $C_1 \wedge C_2 \Rightarrow$

Fourier-Motzkin

$$\frac{2y - x - 2 < 0 \qquad -2y - x + 4 < 0}{-2x + 2 < 0}$$

$$\llbracket \mathsf{C}_1, \mathsf{C}_2, \mathsf{x} \mapsto 0.5 \rrbracket$$

Explanation $C_1 \wedge C_2 \Rightarrow$

Fourier-Motzkin

$$\frac{2y - x - 2 < 0 \qquad -2y - x + 4 < 0}{-2x + 2 < 0}$$

$$\llbracket \mathsf{C}_1, \mathsf{C}_2, \mathsf{x} \mapsto 0.5 \rrbracket$$

Explanation $C_1 \wedge C_2 \Rightarrow x > 1$

$$\underbrace{\frac{c_1}{2y - x - 2 < 0}}_{C_1} \wedge \underbrace{\frac{c_2}{-2y - x + 4 < 0}}_{C_2}$$

$$[[c_1, c_2, x \mapsto 0.5]]$$

Explanation $\overline{C_1} \vee \overline{C_2} \vee (x > 1)$

$$\underbrace{2y - x - 2 < 0}^{C_1} \land \underbrace{-2y - x + 4 < 0}^{C_2}$$

$$[[C_1, C_2]]$$

Explanation $\overline{C_1} \vee \overline{C_2} \vee (x > 1)$

$$\underbrace{\frac{c_1}{2y-x-2<0}}_{C_1} \wedge \underbrace{\frac{c_2}{-2y-x+4<0}}_{C_2}$$

$$\underbrace{[\![} c_1, c_2, x>1]\!]}_{\text{Explanation } \overline{C_1}} \vee \underbrace{\overline{C_2}}_{\text{$<$}} \vee \underbrace{(x>1)}_{\text{$<$}}$$

$$\overbrace{2y-x-2<0}^{C_1} \wedge \overbrace{-2y-x+4<0}^{C_2}$$

$$[C_1,C_2,x>1,x\mapsto 2]$$
Explanation $\overline{C_1} \vee \overline{C_2} \vee (x>1)$

$$\underbrace{\begin{array}{c} c_1 \\ 2y-x-2<0 \end{array}}_{C_1} \wedge \underbrace{\begin{array}{c} c_2 \\ -2y-x+4<0 \end{array}}_{C_2}$$

$$\underbrace{\begin{bmatrix} C_1, C_2, x > 1, x \mapsto 2, y \mapsto 1.5 \end{bmatrix}}_{C_2}$$
Explanation $C_1 \vee \overline{C_2} \vee (x > 1)$

$$\underbrace{\begin{array}{c} c_1 \\ 2y-x-2<0 \end{array}}_{C_1} \wedge \underbrace{\begin{array}{c} c_2 \\ -2y-x+4<0 \end{array}}_{C_2}$$

$$\underbrace{\begin{bmatrix} C_1, C_2, x > 1, x \mapsto 2, y \mapsto 1.5 \end{bmatrix}}_{C_2}$$
Explanation $C_1 \vee \overline{C_2} \vee (x > 1)$

$$\underbrace{\begin{array}{c} c_1 \\ 2y-x-2<0 \end{array}}_{C_1} \wedge \underbrace{\begin{array}{c} c_2 \\ -2y-x+4<0 \end{array}}_{C_2}$$

$$\underbrace{\begin{bmatrix} C_1, C_2, x > 1, x \mapsto 2, y \mapsto 1.5 \end{bmatrix}}_{C_2}$$
Explanation $C_1 \vee \overline{C_2} \vee (x > 1)$

Linear Real Arithmetic: Comparison to DPLL(T)

Example (Diamonds)

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

Linear Real Arithmetic: Comparison to DPLL(T)

Example (Diamonds)

$$a_0 > a_n \wedge \bigwedge_{k=0}^{n-1} ((a_k < b_k \wedge b_k < a_{k+1}) \vee (a_k < c_k \wedge c_k < a_{k+1}))$$

Linear Real Arithmetic: Comparison to DPLL(T)

	mcsat		cvc4		z3		mathsat5		yices	
set	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
clocksynchro (36)	36	123.11	36	1166.55	36	1828.74	36	1732.59	36	1093.80
DTPScheduling (91)	91	31.33	91	72.92	91	100.55	89	1980.96	91	926.22
miplib (42)	8	97.16	27	3359.40	23	3307.92	19	5447.46	23	466.44
sal (107)	107	12.68	107	13.46	107	6.37	107	7.99	107	2.45
sc (144)	144	1655.06	144	1389.72	144	954.42	144	880.27	144	401.64
spiderbenchmarks (42)	42	2.38	42	2.47	42	1.66	42	1.22	42	0.44
TM (25)	25	1125.21	25	82.12	25	51.64	25	1142.98	25	55.32
ttastartup (72)	70	4443.72	72	1305.93	72	1647.94	72	2607.49	72	1218.68
uart (73)	73	5244.70	73	1439.89	73	1379.90	73	1481.86	73	679.54
	596	12735.35	617	8832.46	613	9279.14	607	15282.82	613	4844.53

Linear Real Arithmetic: Comparison to DPLL(T)

```
DPLL(T) Simplex (CVC4)

Total Physical Source Lines of Code (SLOC) = 22,597

Development Effort Estimate, Person-Years (Person-Months) = 5.28 (63.38)

(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 1.01 (12.10)

(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 5.24

Total Estimated Cost to Develop = $ 713,502

(average salary = $56,286/year, overhead = 2.40).
```

```
MCSAT Fourier-Motzkin (CVC4)

Total Physical Source Lines of Code (SLOC) = 1,966

Development Effort Estimate, Person-Years (Person-Months) = 0.41 (4.88)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.38 (4.57)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 1.07

Total Estimated Cost to Develop = $ 54,942
(average salary = $56,286/year, overhead = 2.40).
```

Generated using David A. Wheeler's 'SLOCCount'.

Non-Linear Arithmetic

$$f(\vec{y}, x) = a_m \cdot x^{d_m} + a_{m-1} \cdot x^{d_{m-1}} + \dots + a_1 \cdot x^{d_1} + a_0$$

f is in $\mathbb{Z}[\vec{y}, x]$, a_i are in $\mathbb{Z}[\vec{y}]$

Examples

$$f(x,y) = (x^2 - 1)y^2 + (x + 1)y - 1 \in \mathbb{Z}[x,y]$$
$$g(x) = 16x^3 - 8x^2 + x + 16 \in \mathbb{Z}[x]$$

Polynomial Constraints

$$f(x,y) > 0 \land g(x) < 0$$

Non-Linear Arithmetic

Tarski [Tar48] Quantifier elimination Decidable, non-elementary

Collins [Col75] Cylindrical Algebraic Decomposition Doubly-exponential

Canny [Can88], Grigor'ev [Gri88]

$$p_1 > 0 \lor (p_2 = 0 \land p_3 < 0)$$
 $p_1, p_2, p_3 \in \mathbb{Z}[x_1, \dots, x_n]$

Projection (Saturation)

Project polynomials using a projection P

$$\{p_1, p_2, p_3\} \mapsto \{p_1, p_2, p_3, p_4, \dots, p_n\}$$
.

Lifting (Model construction)

For each variable x_k

- **1** Isolate roots of $p_i(\alpha, x_k)$.
- ② Choose a cell *C* and assign $x_k \mapsto \alpha_k \in C$, continue.
- If no more cells, backtrack.

Model Construction

Build partial model by assigning variables to values

$$\llbracket \ldots, \mathsf{C}_1, \mathsf{C}_2, \ldots, \mathsf{x} \mapsto \sqrt{2}/2, \ldots \rrbracket$$
.

Unit Reasoning

Reason about unit constraints

$$C_1 \equiv (x^2 + y^2 < 1)$$

$$C_2 \equiv (xy > 1)$$
.

Explain Conflicts

Explain conflicts using valid clausal reasons

$$(\overline{C_1} \vee \overline{C_2} \vee x \le 0 \vee x \ge 1) .$$

Unit Reasoning

Reason about unit constraints

$$C_1 \equiv (x^2 + y^2 < 1)$$

$$C_2 \equiv (xy > 1)$$
.

$$x^3 - 2x^2 + 1 > 0$$

$$x^3 - 2x^2 + 1 > 0 \qquad -3x^3 + 8x^2 - 4x > 0$$

 $x^3 - 2x^2 + 1 > 0$ $-3x^3 + 8x^2 - 4x > 0$

 $x^3 - 2x^2 + 1 > 0$ $-3x^3 + 8x^2 - 4x > 0$

Model Construction

Build partial model by assigning variables to values

$$\llbracket \ldots, \mathsf{C}_1, \mathsf{C}_2, \ldots, \mathsf{x} \mapsto \sqrt{2}/2, \ldots \rrbracket$$
.

Unit Reasoning

Reason about unit constraints

$$C_1 \equiv (x^2 + y^2 < 1)$$

$$C_2 \equiv (xy > 1)$$
.

Explain Conflicts

Explain conflicts using valid clausal reasons

$$(\overline{C_1} \vee \overline{C_2} \vee x \leq 0 \vee x \geq 1) .$$

Explain Conflicts

Explain conflicts using valid clausal reasons

$$(\overline{\textit{C}_1} \vee \overline{\textit{C}_2} \vee \textit{x} \leq 0 \vee \textit{x} \geq 1)$$
 .

Unit Constraint Reasoning

$$x^{2} + y^{2} < 1 \Rightarrow -\sqrt{3/2} < y < \sqrt{3/2}$$
$$-2y - x + 4 < 0 \Rightarrow y > \sqrt{2}$$

$$\llbracket \mathsf{C}_1, \mathsf{C}_2, \mathsf{x} \mapsto \sqrt{2/2} \rrbracket$$

Explanation $C_1 \wedge C_2 \Rightarrow x \neq \sqrt{2}/2$

Explanation $C_1 \wedge C_2 \Rightarrow$

$$\overbrace{x^2 + y^2 < 1}^{C_1} \wedge \overbrace{xy > 1}^{C_2}$$

CAD Projection

$$\mathsf{P} = \{x, -4 + 4x^2, 1 - x^2 + x^4\}$$

CAD Projection

$$P = \{x, -4 + 4x^2, 1 - x^2 + x^4\}$$

Explanation $C_1 \wedge C_2 \Rightarrow x \leq 0 \lor x \geq 1$

Explanation
$$\overline{C_1} \lor \overline{C_2} \lor x \le 0 \lor x \ge 1$$

Explanation $\overline{C_1} \lor \overline{C_2} \lor x \le 0 \lor x \ge 1$

Explanation $\overline{C_1} \lor \overline{C_2} \lor x \le 0 \lor x \ge 1$

Explanation
$$\overline{C_1} \lor \overline{C_2} \lor x \le 0 \lor x \ge 1$$

Explanation
$$\overline{C_1} \vee \overline{C_2} \vee x \leq 0 \vee x \geq 1$$

$$[\![\textit{\textbf{C}}_1, \textit{\textbf{C}}_2, \textit{\textbf{x}} \geq 1, \textit{\textbf{x}} \mapsto 3/2]\!]$$

Explanation $\overline{C_1} \lor \overline{C_2} \lor x \le 0 \lor x \ge 1$

Non-Linear Real Arithmetic: SMT-COMP 2015

Model-Based Procedures

Linear Real Arithmetic

- Generalizing DPLL to Richer Logics [MKS09]
- Conflict Resolution [KTV09]
- Natural Domain SMT [Cot10]

Linear Integer Arithmetic

• Cutting to the Chase: Solving Linear Integer Arithmetic [JDM11]

Non-Linear Real Arithmetic

Solving Non-Linear Arithmetic [JDM12, Jov12]

General Framework

• Model-Constructing Satisfiability Calculus [DMJ13, JBdM13]

Outline

- Introduction
- 2 Arithmetic
- Theory Combination
- 4 Conclusion

Theory Combination

Combination of Theories

Given individual decision procedures for (quantifier free) first-order theories T_1 and T_2 how can we combine them in a modular fashion into a decision procedure for a theory $T_1 \oplus T_2$?

Theory Combination

Combination of Theories

Given individual decision procedures for (quantifier free) first-order theories T_1 and T_2 how can we combine them in a modular fashion into a decision procedure for a theory $T_1 \oplus T_2$?

- Nelson-Oppen Method [NO79]
- Allows one to decide the combination using decision procedures for T₁ and T₂ as black-boxes
- Most SMT Solvers that involve more than one theory use a combination method based on Nelson-Oppen

Complexity

$$O(\mathcal{T}_1(n)) \oplus O(\mathcal{T}_2(n)) \Rightarrow O(2^{n^2} \times (\mathcal{T}_1(n) + \mathcal{T}_2(n)))$$
.

Complexity

$$O(\mathcal{T}_1(n)) \oplus O(\mathcal{T}_2(n)) \Rightarrow O(2^{n^2} \times (\mathcal{T}_1(n) + \mathcal{T}_2(n)))$$
.

Complexity

$$O(\mathcal{T}_1(n)) \oplus O(\mathcal{T}_2(n)) \Rightarrow O(2^{n^2} \times (\mathcal{T}_1(n) + \mathcal{T}_2(n)))$$
.

Complexity

$$O(\mathcal{T}_1(n)) \oplus O(\mathcal{T}_2(n)) \Rightarrow O(2^{n^2} \times (\mathcal{T}_1(n) + \mathcal{T}_2(n)))$$
.

Complexity

$$O(\mathcal{T}_1(n)) \oplus O(\mathcal{T}_2(n)) \Rightarrow O(2^{n^2} \times (\mathcal{T}_1(n) + \mathcal{T}_2(n)))$$
.

Again, two modules have a restricted interface to each other!

Model-based theory combination [dMB08]

Uninterpreted Functions

$$x = y$$
 $x \neq y$ $x = f(y, z)$

DPLL(T): Congruence Closure

- Incremental algorithms for congruence closure.
- Propagation of entailed equalities.
- Combination through Nelson-Oppen style procedures.

Uninterpreted Functions

$$x = y$$
 $x \neq y$ $x = f(y, z)$

DPLL(T): Congruence Closure

- Incremental algorithms for congruence closure.
- Propagation of entailed equalities.
- Combination through Nelson-Oppen style procedures.

Alternative: Ackermannization [Ack54]

$$x_1 = y_1 \land x_2 = y_2 \Rightarrow f(x_1, x_2) = f(y_1, y_2)$$

$$[\![f(x) < f(y)]\!]$$

$$\llbracket f(x) < f(y), \quad f(x) \mapsto 0 \rrbracket$$

$$\llbracket f(x) < f(y), f(x) \mapsto 0, f(y) \mapsto 1 \rrbracket$$

$$[f(x) < f(y), f(x) \mapsto 0, f(y) \mapsto 1, x \mapsto 0]$$

$$[f(x) < f(y), f(x) \mapsto 0, f(y) \mapsto 1, x \mapsto 0, y \mapsto 0]$$

$$[f(x) < f(y), f(x) \mapsto 0, f(y) \mapsto 1, x \mapsto 0, y \mapsto 0]$$

$$x = y \Rightarrow f(x) = f(y)$$

$$[f(x) < f(y), f(x) \mapsto 0, f(y) \mapsto 1, x \mapsto 0, y \mapsto 0]$$

$$x \neq y \lor f(x) = f(y)$$

$$\llbracket f(x) < f(y), f(x) \mapsto 0, f(y) \mapsto 1 \rrbracket$$

$$x \neq y \lor f(x) = f(y)$$

$$[f(x) < f(y), f(x) \mapsto 0, f(y) \mapsto 1, x \neq y]$$

$$x \neq y \lor f(x) = f(y)$$

$$\llbracket f(\mathbf{x}) < f(\mathbf{y}), \ f(\mathbf{x}) \mapsto 0, \ f(\mathbf{y}) \mapsto 1, \ \mathbf{x} \neq \mathbf{y}, \ \mathbf{x} \mapsto 0 \rrbracket$$

$$x \neq y \lor f(x) = f(y)$$

$$[f(x) < f(y), f(x) \mapsto 0, f(y) \mapsto 1, x \neq y, x \mapsto 0, y \mapsto 1]$$

$$x \neq y \lor f(x) = f(y)$$

Uninterpreted Functions: Comparison to DPLL(T)

	mcsat		cvc4		z3		mathsat5		yices	
set	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)	solved	time (s)
EufLaArithmetic (33)	33	39.57	33	49.11	33	2.53	33	20.18	33	4.61
Hash (198)	198	34.81	198	10.60	198	7.18	198	1330.88	198	2.64
RandomCoupled (400)	400	68.04	400	35.90	400	31.44	400	18.56	384	39903.78
RandomDecoupled (500)	500	34.95	500	40.63	500	30.98	500	21.86	500	3863.79
Wisa (223)	223	9.18	223	87.35	223	10.80	223	65.27	223	2.80
wisas (108)	108	40.17	108	5221.37	108	443.36	106	1737.41	108	736.98
	1462	226.72	1462	5444.96	1462	526.29	1460	3194.16	1446	44514.60

Uninterpreted Functions: Comparison to DPLL(T)

```
DPLL(T) CC (CVC4)

Total Physical Source Lines of Code (SLOC) = 5,727

Development Effort Estimate, Person-Years (Person-Months) = 1.25 (15.00)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.58 (7.00)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 2.14

Total Estimated Cost to Develop = $ 168,836
(average salary = $56,286/year, overhead = 2.40).
```

```
MCSAT Ackermanization (CVC4)

Total Physical Source Lines of Code (SLOC) = 247

Development Effort Estimate, Person-Years (Person-Months) = 0.05 (0.55)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.17 (2.00)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 0.28

Total Estimated Cost to Develop = $ 6,223
(average salary = $56,286/year, overhead = 2.40).
```

Outline

Introduction

- 2 Arithmetic
- Theory Combination
- 4 Conclusion

MCSAT: Simple Architecture

Each plugins reasons about their domain:

- Track when a constraint becomes unit or fully assigned [MMZ⁺01].
- Unit constraints imply feasible sets of individual variables.
- Propagate any constraints/variables whose value is implied.
- Explain any unit conflicts with clausal explanations.
- When asked, decide unassigned variable to feasible value.

MCSAT: Implementations

- QF_NRA in Yices2
- QF_NRA in Z3
- QF_UFLRA in CVC4 Link
- LibPoly: Library for polynomial manipulation LibPoly: Library for polynomial manipulation

MCSAT: Appeal

Compared to DPPL(T)

- Only need to reason about constraints in one variable.
- Easy to add new decision procedures.
- Can generate new facts in a conflict directed manner.
- Simple combination mechanism: build the model.
- Performs well on practical problems.

MCSAT: TODO & Research Problems

- Linear arithmetic
 - Simplex vs Fourier-Motzkin?
 - Add integer reasoning.
- Non-linear arithmetic:
 - More natural conflict explanations?
 - Integrate interval reasoning into MCSAT [BDG⁺14].
 - Add integer reasoning.
- Bit-vectors, floating point, strings...
 - How to reason about unit constraints?
 - How to represent feasible sets?
 - How to explain conflicts?
- Arrays
 - Adapt lemmas on demand to MCSAT [BB08]?

References L

[Ack54] Wilhelm Ackermann.

Solvable cases of the decision problem.

1954.

[BB08] Robert Brummayer and Armin Biere.

Lemmas on demand for the extensional theory of arrays.

Journal on Satisfiability, Boolean Modeling and Computation, 6:165–201, 2008.

[BDdM08] Nikolaj Bjørner, Bruno Dutertre, and Leonardo de Moura.

Accelerating lemma learning using joins-dppl (join).

Proceedings of short papers at LPAR, 8, 2008.

[BDG⁺14] Martin Brain, Vijay D'Silva, Alberto Griggio, Leopold Haller, and Daniel Kroening. Deciding floating-point logic with abstract conflict driven clause learning.

Formal Methods in System Design, 45(2):213–245, 2014.

[BNOT06] Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.

Splitting on demand in sat modulo theories.

In Logic for Programming, Artificial Intelligence, and Reasoning, pages 512–526,

2006.

[Can88] John Canny.

Some algebraic and geometric computations in pspace.

In Proceedings of the twentieth annual ACM symposium on Theory of computing, pages 460–467, 1988.

References II

[Col75] George E Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In Automata Theory and Formal Languages, pages 134–183, 1975. [Cot10] Scott Cotton. Natural domain SMT: A preliminary assessment. Formal Modeling and Analysis of Timed Systems, pages 77–91, 2010. [DDM06] Bruno Dutertre and Leonardo De Moura. A fast linear-arithmetic solver for DPLL(T). In Computer Aided Verification, pages 81–94, 2006. [DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-proving. Communications of the ACM, 5(7):394–397, 1962. [dMB08] Leonardo de Moura and Nikolaj Bjørner. Model-based theory combination. *Electronic Notes in Theoretical Computer Science*, 198(2):37–49, 2008. [DMJ13] Leonardo De Moura and Deian Jovanović. A model-constructing satisfiability calculus. In Verification, Model Checking, and Abstract Interpretation, pages 1–12, 2013.

References III

[DP60] Martin Davis and Hilary Putnam.

 $\label{lem:computing} A \ computing \ procedure \ for \ quantification \ theory.$

Journal of the ACM (JACM), 7(3):201-215, 1960.

[Gri88] D Yu Grigor'ev.

Complexity of deciding tarski algebra.

Journal of symbolic Computation, 5(1):65–108, 1988.

[HAMM14] Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maïza.

How to compute worst-case execution time by optimization modulo theory and a clever encoding of program semantics.

In Proceedings of the 2014 SIGPLAN/SIGBED conference on Languages, compilers and tools for embedded systems, pages 43–52. ACM, 2014.

[JBdM13] Dejan Jovanović, Clark Barrett, and Leonardo de Moura.

The design and implementation of the model constructing satisfiability calculus. Formal Methods in Computer-Aided Design, 2013.

[JDM11] Dejan Jovanović and Leonardo De Moura.

Cutting to the chase: solving linear integer arithmetic.

In Automated Deduction, pages 338–353. 2011.

[JDM12] Dejan Jovanović and Leonardo De Moura.

Solving non-linear arithmetic.

In Automated Reasoning, pages 339–354. 2012.

References IV

[Jov12] Dejan Jovanović.

SMT Beyond DPLL(T): A New Approach to Theory Solvers and Theory Combination.

PhD thesis, Courant Institute of Mathematical Sciences New York, 2012.

[KTV09] Konstantin Korovin, Nestan Tsiskaridze, and Andrei Voronkov.

Conflict resolution.

In *Principles and Practice of Constraint Programming*, pages 509–523. 2009.

[MKS09] Kenneth L McMillan, Andreas Kuehlmann, and Mooly Sagiv.

Generalizing DPLL to richer logics.

In Computer Aided Verification, pages 462–476, 2009.

[MMZ⁺01] Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik.

Chaff: Engineering an efficient sat solver.

In *Proceedings of the 38th annual Design Automation Conference*, pages 530–535. ACM, 2001.

[NO79] Greg Nelson and Derek C Oppen.

Simplification by cooperating decision procedures.

ACM Transactions on Programming Languages and Systems (TOPLAS), 1(2):245–257, 1979.

References V

[SS97] João P Marques Silva and Karem A Sakallah. Grasp—a new search algorithm for satisfiability. In Proceedings of the 1996 IEEE/ACM international conference on Computer-aided design, pages 220-227. IEEE Computer Society, 1997.

[Tar48] Alfred Tarski.

A decision method for elementary algebra and geometry.

1948.