Transformer with GLU Variant Pseudocode

Zheling Zhang

March 5, 2024

Algorithm 1 Transformer model with Gated Linear Unit (GLU) variant

Require: x, a sequence of token IDs.

Ensure: y, the output sequence after passing through the Transformer model with a GLU variant.

- 1: Hyperparameters: N, the number of layers; d_{model} , the dimensionality of token embeddings; d_{ff} , the dimensionality of the feedforward layer; h, the number of attention heads.
- 2: Parameters θ include all following parameters:
- 3: $E \in \mathbb{R}^{d_{\text{vocab}} \times d_{\text{model}}}$, the token embedding matrix.
- 4: $PE \in R^{\text{max_position} \times d_{\text{model}}}$, the positional embedding matrix.
- 5: For each layer $l \in [1...N]$:
- 6: $W_Q^l, W_K^{\tilde{l}}, W_V^{\tilde{l}} \in R^{d_{\text{model}} \times (d_{\text{model}}/h)}$, attention parameter matrices for each head.
- 7: $W_O^l \in R^{(d_{\text{model}}/h) \times d_{\text{model}}}$, output projection matrix for multi-head attention.
- 8: $\gamma^l, \beta^l \in \mathbb{R}^{d_{\text{model}}}$, parameters for layer normalization before and after the multi-head attention, respectively.
- 9: $W_1^l \in R^{d_{\text{model}} \times d_{\text{ff}}}, \ \hat{W}_2^l \in R^{d_{\text{ff}} \times d_{\text{model}}}$, weights for the feedforward network.
- 10: $W_g^l \in R^{d_{\rm ff} \times d_{\rm model}}$, weights for the gating mechanism in the GLU variant.
- 11: $b_1^l, b_2^l, b_g^l \in R^{d_{\text{model}}}$, biases for the feedforward network and the gating mechanism.
- 12: $W_u \in R^{d_{\text{model}} \times d_{\text{vocab}}}$, the unembedding matrix.
- 13: Initialize the output sequence y to an empty list.
- 14: Compute the embedded input sequence $E_x = E[x] + PE[pos]$, where pos is the position sequence.
- 15: for each layer $l \in [1...N]$ do
- 16: Apply layer normalization: $X_{\text{norm}} = \text{LayerNorm}(E_x, \gamma^l, \beta^l)$.
- 17: Calculate self-attention: $Z = \text{MultiHeadAttention}(X_{\text{norm}}, W_Q^l, W_K^l, W_V^l, W_Q^l)$.
- 18: Apply residual connection and layer normalization: $X_{\text{norm}} = \text{LayerNorm}(X_{\text{norm}} + Z, \gamma^l, \beta^l).$
- 19: Apply the first feedforward projection: $F1 = W_1^l X_{\text{norm}} + b_1^l$.
- 20: Apply the GLU variant: $G = \text{GLU-Variant}(F1, W_q^l, b_q^l)$.
- 21: Apply the second feedforward projection: $F2 = W_2^l G + b_2^l$.
- 22: Apply residual connection: $E_x = X_{\text{norm}} + F2$.
- 23: Append the result to the output sequence y.
- 24: Compute the unembedded output: $P = \operatorname{softmax}(W_u y)$.
- 25: return P
- 26: **function** GLU_VARIANT (X, W_q, b_q)
- 27: Split the input matrix into two equal parts: A, B = split(X, 2, axis = -1).
- 28: Apply a non-linearity to the first part: $A = \tanh(A)$.
- 29: Apply the gating mechanism to the second part: $B = \operatorname{sigmoid}(W_q B + b_q)$.
- 30: Element-wise multiplication of the results: $G = A \times B$.
- 31: return G