

Low Voltage Supply Static CMOS 2:1 MUX

FIVE DIFFERENT TECHNIQUES TO REDUCE STATIC POWER CONSUMPTION

Omama Mahmoud Hassan Elsayed Elrefaei, 2001704 | ECE612 | Fall 2021

Software tools: Cadence Virtuoso, 65nm

Static CMOS Logic:

A static CMOS circuit has an nMOS pull-down network to connect the output to o (GND) and pMOS pull-up network to connect the output to 1 (V_{DD}). The networks are arranged such that one is ON and the other OFF for any input pattern.

Advantages:

- 1. Robustness (i.e., low sensitivity to noise), good performance, and easy to design,
- 2. Fast and low power consumption with no static power dissipation,
- 3. Insensitive to device variations, and minimum switching time,
- 4. Widely supported by CAD tools, and readily available in standard cell libraries,

Disadvantages:

1. Large area.

TECHNIQUES TO REDUCE STATIC POWER CONSUMPTION:

1] Transistor Stacking:

Stacked transistors will have larger V_{th} which will reduce the leakage current, and causes lower V_{DS} which will reduce the ON current.

Disadvantages:

- 1. Large transistor count and larger delay.
- 2] Negative Body Biasing (NBB):

Causes larger V_{th} which will reduce the leakage current.

Disadvantages:

- 1. Need body bias generation circuit, and triple well needed.
- 3] Schmitt Transistor Logic:

Output NMOS and PMOS increase V_{th} of middle NMOS and PMOS. Does not reduce the value of leakage, but allows operation at lower voltages.

Advantages:

- 1. Hysteresis improves noise performance,
- 2. Power mostly consumed by leakage quenching path.
- 4] Dynamic Leakage Suppression Logic (DLS):

Feedback path limits leakage path dynamically.

Disadvantages:

1. Very low frequency of operation.

TECHNIQUES TO REDUCE STATIC POWER CONSUMPTION:

5] Forward Body Biased DLS (FBB-DLS) [3]:

The DLS header and footer transistors was shown to greatly reduce logic gate delay with just a small increase in leakage power.

Fig. 1. The Forward Body Biased (FBB) DLS inverter logic gate.

For the pull-up logic, FBB lowers the V_T of M_{HN} , which leads to a significant increase in I_{ON} , and thus shorter gate delay. When the pull-up logic is leaking ($V_{IN} = V_{DD}$), the lower V_T of the M_{HN} increases the voltage V_X settles at from $V_{DD}/2$. This leads to:

- I. $V_{GS,HN}$ being further reduced below $-V_{DD}/2$, which increases leakage due to Gate-Induced Drain Leakage (GIDL),
- II. $V_{DS,HN}$ being decreased, which reduces leakage due to Drain-Induced Barrier Lowering (DIBL).

Where $V_{BN} = V_{DD}$ and $V_{BP} = \text{GND}$.

These two effects counteract, and result in a small net increase in I_{OFF} . A similar analysis can be done for the pull-down logic.

Advantages:

1. The L_{V_T} FBB variant enables circuits to operate at up to a few kHz.

Disadvantages:

1. The leakage power is less than an order of magnitude below the leakage floor of static CMOS implemented with H_{V_T} devices.

MUX 2-1:

In this project I used this mux schematic, which consists of two tristate buffer, and it is assumed to be perfectly symmetric $L_{min} = 60 \text{ nm}$, $W_{ref} = 120 \text{ nm}$.

S	Α	В	Y
0	0	0	0
0	0	1	1
0	1	0	0
О	1	1	1
1	О	0	0
1	О	1	0
1	1	О	1
1	1	1	1

The total static current, I_{DD} is also called the leakage current or the quiescent supply current flowing between V_{DD} and GND. The static power consumption is proportional to this static current [2]:

$$P_{static} = I_{DD} * V_{DD}$$

Testbench:

The logic 1 equal V_{DD} . NMOS, and PMOS are "nch", and "pch".

1] Normal: f = 1KHz, $V_{DD} = 0.1V$

2] Transistor Stacking: $\underline{f} = 1KHz$, $V_{DD} = 0.1V$

ECE 612

Project

Negative Body Biasing: f = 1KHz, $V_{DD} = 0.1V$ The size is the same as Normal.

4] Schmitt Transistor Logic: f = 1Hz, $V_{DD} = 90mV$ The other transistors are as Stacking.

Dynamic Leakage-Suppression Logic: f=1Hz, $V_{DD}=0.1V$ Since increasing W_{PB} and decreasing W_{NT} improves the OUT falling transition while degrading its rising transition, $W_{PB}=12W_{ref.}$ and $W_{NT}=6W_{ref.}$ [3]. The other transistor sizes are the same as Norma

6] Forward Body Biased DLS: f = 1Hz, $V_{DD} = 0.1V$

125 4 time (ms)

MUX 2-1:

Testbench:

To measure the static power I put all input stimulus by DC voltage sources to make all the circuit nodes stabilize on the operating point, and power consumption is constant. I run DC simulation sweeping V_{DD} from 0.1V to 0.8V to plot the power which equal the average of I_{DD} at the eight inputs conditions multiply by V_{DD} .

This when Transistor Stacking, and Schmitt Transistor Logic sized by 8, 4 for the tristate PUN and PDN, 4, 2 for the output inverter and Schmitt transistors PUN and PDN.

References:

- [1] Rabaey: Sections 6.1 & 6.2
- [2] Weste: Sections 9.1 & 9.2
- [3] Lim, Wootaek, et al. "Batteryless Sub-nW Cortex-Mo+ processor with dynamic leakage-suppression logic." Solid-State Circuits Conference-(ISSCC), 2015 IEEE International. IEEE, 2015.
- [4] Truesdell, D. S., & Calhoun, B. H. (2019). Improving Dynamic Leakage Suppression Logic with Forward Body Bias in 65nm CMOS. 2019 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S). doi:10.1109/s3s46989.2019.9320713.