Word Embeddings

CS 6956: Deep Learning for NLP

Overview

- Representing meaning
- Word embeddings: Early work
- Word embeddings via language models
- Word2vec and Glove
- Evaluating embeddings
- Design choices and open questions

Overview

- Representing meaning
- Word embeddings: Early work
- Word embeddings via language models
- Word2vec and Glove
- Evaluating embeddings
- Design choices and open questions

Vector space representations of words

Historically, a diverse collection of ideas and methods

- 1980s/1990s/2000s
 - Latent semantic analysis (LSA)
 - Probabilistic LSA, topic models
- 2000s/2010s
 - Word embeddings via neural language models
 - word2vec
 - Glove

What defines the context of a word?

Several answers possible

What defines the context of a word?

Several answers possible

- Entire documents: Words that occur in the same documents are related
 - Example: soccer and referee may show up in the same document often because they share a topic

What defines the context of a word?

Several answers possible

- Entire documents: Words that occur in the same documents are related
 - Example: soccer and referee may show up in the same document often because they share a topic
- 2. Neighboring words: Words that occur in the context of the same words carry similar meanings
 - Example: NYC and Yankees may be used in interchangably in certain contexts, but NYC and baseball may not.

Documents as context

Arose in the information retrieval world

 Led to latent semantic analysis (LSA), topic models, latent Dirichlet analysis

Captures relatedness between words

Neighboring words as context

- Typically uses a window around a word
- For example, suppose we consider a window of size 2 to the left and right
 - John sleeps during the day and works at night.
 - Mary starts her day with a cup of coffee.
 - John starts his day with an angry look at his inbox.

Neighboring words as context

- Typically uses a window around a word
- For example, suppose we consider a window of size 2 to the left and right

John sleeps during the day and works at night.

Mary starts her day with a cup of coffee.

John starts his day with an angry look at his inbox.

Neighboring words as context

- Typically uses a window around a word
- For example, suppose we consider a window of size 2 to the left and right

John sleeps during the day and works at night.

Mary starts her day with a cup of coffee.

John starts his day with an angry look at his inbox.

We have a co-occurrence vector

during	the	and	works	starts	her	his	with	а	an
1	1	1	1	2	1	1	2	1	1

Not showing entries with zeros, which will include all other words

Neighboring words as features

Commonly seen in NLP, especially with linear models

Standard features before neural networks became common

However:

- 1. Sparsity can cause problems
- 2. High dimensionality can cause problems

In both cases, with regard to generalization and memory

Addressing sparsity and dimensionality

- Dimensionality reduction
- Project the word-word co-occurrence matrix to a lower dimensional space
 - Perform singular value decomposition
 - Suppose C is the co-occurrence matrix, then
 - $U, \Sigma, V^T = svd(C)$
 - ullet Treat the rows of U as word embeddings
- Key idea: Word embeddings as dense, low dimensional vectors

Variants on this theme

1. Frequent words can dominate counts

- Words like a, the, is, in, etc will occcur in the context of nearly every word
- Control for this by putting an upper limit on the count. For eg:
 If a word occurs more than 100 times in a context, then
 restrict its count to 100.

Variants on this theme

1. Frequent words can dominate counts

- Words like a, the, is, in, etc will occcur in the context of nearly every word
- Control for this by putting an upper limit on the count. For eg:
 If a word occurs more than 100 times in a context, then
 restrict its count to 100.

2. Instead of counts, we can use other properties of words in contexts

- Eg: log frequencies, correlation coefficients, etc
- All these will give us different embeddings
- We will revisit this idea soon

Good news: The embeddings capture meaningful regularities

Both syntactic and semantic

Rohde, Douglas LT, Laura M. Gonnerman, and David C. Plaut. "An improved model of semantic similarity based on lexical co-occurrence." *Communications of the ACM* 8, no. 627-633 (2006): 116.

Bad news: SVD is slow

- The matrix at hand is huge
 - Rows/columns = Number of words
- Time complexity of SVD is cubic in this number
 - However, various incremental SVD algorithms exist
- But do we need to perform this computation at all?

Rohde, Douglas LT, Laura M. Gonnerman, and David C. Plaut. "An improved model of semantic similarity based on lexical co-occurrence." *Communications of the ACM* 8, no. 627-633 (2006): 116.