Last class:

Thought of explicit method as Eule's method applied to $u' = \frac{1}{h^2} D \times$

So $\frac{k}{h^2}$ $\langle \frac{2}{11} \rangle$ 75h. This analysis is only hearistic: we don't yet know the eigenvalues of $\frac{1}{h^2}$ D. To learn these, it's erough to study D. We make a lucky guess $w_j = e^{Jrx_j}$ $J^2 = -1$ (makes trip 1d's easy). 2565121 Dw; = e Jrx; [eJrh - Z + cJrh] xin= x; + h = - 2 w; [| + cos(inh)] ETO = (000+JSLO $e^{-JO} = \cos\theta - J \sin\theta$ = -4 wj [sin (rh)] So we almost have an eigenvalue: analysis doesn't apply at j=1, j=N.

But we let

$$V_{j} = I_{m}(w_{j})$$
 $V = nT$
 $V_{0} = 0$ $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$
 $V_{NH} = 0$

Analysis fun Euler's method:

$$\frac{k\left(-\frac{4r}{h^2}\right)}{k^2} \sin^2\left(\frac{r_1 h}{2}\right) > -7$$

$$\frac{k}{h^2} \sin^2\left(\frac{r_2 h}{2}\right) < \frac{1}{2}$$

$$\frac{k}{h^2} \cos^2\left(\frac{r_2 h}{2}\right) < \frac{1}{2}$$

$$\cos^2\left(\frac{r_2 h}{2}\right) = \cos^2\left(\frac{r_2 h}{2}\right)$$

$$\cos^2\left(\frac{r_2 h}{2}\right) = \cos^2\left(\frac{r_2 h}{2}\right)$$

So
$$\frac{k}{h^2} < \frac{1}{2}$$

If k > h2 then the true step 13

too tong for the transient modeled with

This number of spartial steps.

Foorce Analysis: (a fast rule of thus approuch) 23 = (1+71) m Vk=eJrxk For all but the boundy pourts Suppose Uj=V Uissite = > Vi-1 + (1-2x)v; + > Vi+1 = v; [(1-2x) +)e - 5rh + e 5rh] = v; [1+ \ [-2 + cos(Th)]] = v-[1-4)sin2(nh) To award rusters: lity want secent at soundry politics. -15 1-4 x 31/2 (ah) 5 1 · ころいと(か) ⇒ ララス caditor.

$$u_{t} = u_{xx} + f$$

$$u_{tt} = u_{xx} + f_{t}$$

$$= u_{xx} + f_{t}$$

$$=$$

$$\begin{array}{l} ||U_{i,s}|| = ||\lambda U_{ci,j}|| + ||(1-2\lambda)U_{i,j}|| + ||\lambda U_{ci,j}|| + ||k|_{ci,j}| \\ ||U_{i,j}|| = ||\lambda U_{ci,j}|| + ||(1-2\lambda)U_{i,j}|| + ||\lambda U_{i,j}|| + ||k|_{i,j}|| +$$

$$E_{i} \subseteq E_{o} + TC \begin{bmatrix} \frac{k}{2} + \frac{l^{2}}{6} \end{bmatrix}$$

$$0 \le s \le M.$$

Thum: If
$$h_{en} > 0$$
, $k_{en} > 0$ $\frac{k}{h^2} \le \frac{1}{2}$, + compositors: $l_e k_f$ $\left(x^{(n)}, \xi^{(n)}\right) \rightarrow \left(x, \xi\right)$

50 solves 13 O(n).

Fourer Analysis:

$$\left[-\lambda e^{Jhr} + (1r2\lambda) - \lambda e^{Jhr}\right] e^{Jxr} = ce^{Jxr}$$

$$c^{-1} = \left[1 + 2\lambda - \lambda 2 \cos(hr) \right]$$

$$= \left[1 + 2\lambda \left(1 - \cos(hr) \right) \right]$$

$$c = \frac{\left[1 + 4 \right] + 4 \left[\frac{ha}{2}\right]}{\left[1 + 4 \right] + 5 \left[\frac{hz}{2}\right]} \leq 1, \text{ regardless of } \lambda.$$

2)
$$O(h) + O(\xi^2)$$
.

Generalization: 0-method

$$\vec{u}_{jn} = \vec{u}_{j} + \Theta \lambda D \vec{u}_{j} + (10) \lambda D \vec{u}_{jn} + \vec{f}_{j}$$

$$\begin{bmatrix} 1 - (1-6)\lambda D \vec{u}_{j+1} = [1+9\lambda] \vec{u}_{j} + \vec{f}_{j} \end{bmatrix}$$

explicit when $\theta = 1$. Backwels Euler, $\theta = 0$.