Генеративное обучение

Денис Волхонский

Программа занятия

- Зачем нужны генеративные сети и что они умеют
- Как работают Generative Adversarial Networks
- Советы по обучению GANs
- Открытые проблемы GANs

Progressive Growing of GANs

Video: https://www.youtube.com/watch?v=G06dEcZ-QTg

Генеративное обучение

- Вход: набор данных X (например, изображений)
- Предположение: данные получены из распределения р(x)
- Задача: научиться генерировать новые данные из р(х)

Вопрос: как?

Генеративное обучение: оценка плотности

Генеративное обучение: генерация новых данных

Training Data Sample Generator (CelebA) Karras et al, 2017)

История. Генерация лиц

История. Генерация Image Net

Odena et al 2016

Miyato et al 2017

Zhang et al 2018

Вопрос: зачем нужно генеративное обучение?

Зачем нужно генеративное обучение?

- Работа с высокоразмерными сложными распределениями
- Симулирование возможного будущего (планирование, RL)
- Работа с пропусками в данных
- Semi-supervised learning
- Мульти-модальный выход
- Генерация реалистичных семплов

Предсказание следующего кадра видео

Ground Truth MSE Adversarial

(Lotter et al 2016)

Super-resolution

original bicubic SRResNet SRGAN (21.59dB/0.6423) (23.44dB/0.7777) (20.34dB/0.6562)

iGAN

- (Zhu et al 2016)
- https://www.youtube.com /watch?v=9c4z6YsBGQ0

Introspective Adversarial Networks

- (Brock et al 2016)
- https://www.youtube .com/watch?v=FDEL BFSeqQs

Image to Image Translation

(Isola et al 2016)

Принцип максимального правдоподобия

$$m{ heta}^* = rg \max_{m{ heta}} \mathbb{E}_{x \sim p_{ ext{data}}} \log p_{ ext{model}}(m{x} \mid m{ heta})$$

Генеративные модели

Variational Autoencoder

$$\log p(\boldsymbol{x}) \ge \log p(\boldsymbol{x}) - D_{\mathrm{KL}} (q(\boldsymbol{z}) || p(\boldsymbol{z} \mid \boldsymbol{x}))$$
$$= \mathbb{E}_{\boldsymbol{z} \sim q} \log p(\boldsymbol{x}, \boldsymbol{z}) + H(q)$$

CIFAR-10 samples (Kingma et al 2016)

Недостаток: плохое качество генерации

GANs

- Используют скрытое представление
- Не требуются Марковские цепи
- Самое лучшее качество генерации

Как работают GANs

Как работают GANs

Как работают GANs

Генератор

- Дифференцируемая функция
- Не требуется инвертируемость
- Любой размер z

$$\boldsymbol{x} = G(\boldsymbol{z}; \boldsymbol{\theta}^{(G)})$$

Дискриминатор

- Обычный бинарный классификатор
- Дифференцируемая функция
- На вход принимает реальные объекты и сгенерированные
- Выход: fake/real

Обучение GANs

- Использовать SGD-like алгоритм на двух минибатчах одновременно:
 - Минибатч тренировочного множества
 - Минибатч сгенерированных объектов
- Опционально: k шагов для одного игрока на один шаг другого

Minimax Game

$$\begin{split} J^{(D)} &= -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z}) \right) \right) \\ J^{(G)} &= -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log D\left(G(\boldsymbol{z}) \right) \end{split}$$

- Генератор максимизирует логарифмическую вероятность ошибки дискриминатора
- Эвристическая мотивация; генератор все еще может учиться, даже когда дискриминатор успешно отвергает все образцы генератора

Стратегия дискриминатора

• Для любых p_data(x) и p_model(x) оптимальная D(x) будет:

$$D(x) = rac{p_{ ext{data}}(x)}{p_{ ext{data}}(x) + p_{ ext{model}}(x)}$$

Оценка этой плотности в режиме обучения с учителем — ключевая аппроксимация, используемая в GANs

DCGAN

Deconvolution layers + BN

DCGANs для LSUN Bedrooms

Арифметика GANs

Важна ли дивергенция?

Модификация GANs к ММП

$$\begin{split} J^{(D)} &= -\frac{1}{2} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \log D(\boldsymbol{x}) - \frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \log \left(1 - D\left(G(\boldsymbol{z}) \right) \right) \\ J^{(G)} &= -\frac{1}{2} \mathbb{E}_{\boldsymbol{z}} \exp \left(\sigma^{-1} \left(D\left(G(\boldsymbol{z}) \right) \right) \right) \end{split}$$

 Когда дискриминатор оптимален, градиент генератора совпадает с градиентом максимального правдоподобия

("On Distinguishability Criteria for Estimating Generative Models", Goodfellow 2014, pg 5)

Сравнение функций потерь Генератора

Loss не объясняет резкость изображений

• Аппроксимация важнее, чем функция потерь

Советы по обучению

Лейблы улучшают субъективное качество изображений

- Обучение условной модели p(y|x) обычно даёт лучшие результаты для всех классов, чем обучение p(x) (Denton et al 2015)
- Даже обучение p(x,y) заставляет семплы из p(x) выглядеть гораздо лучше (Salimans et al 2016)

Односторонее сглаживание меток

• Loss дискриминатора по умолчанию

cross_entropy(1., discriminator(data)) + cross_entropy(0., discriminator(samples))

Одностороннее сглаживание меток (Salimans et al 2016)

cross_entropy(.9, discriminator(data)) + cross_entropy(0., discriminator(samples))

Преимущества сглаживания меток

- Хорошая регуляризация (Szegedy et al 2015)
- Не снижает точность классификации
- Специфичные для GANs преимущества:
 - Предотвращает дискриминатор от передачи слишком большого градиента генератору
 - Мы не поощряем "экстримальные" сэмплы

Batch Norm

- Вход: X={x(1), x(2), .., x(m)}
- Вычисляем среднее и стандартное отклонение признаков Х
- Нормализуем признаки (вычитаем среднее, делим на стандартное отклонение)
- Операция нормализации часть графа
- Обратное распространение вычисляет градиент через нормализацию

Вопрос: что плохого в таком подходе?

Корреляции внутри батча!

Вопрос: какое решение?

Reference Batch Norm

- Фиксируем reference batch $R=\{r^{(1)}, r^{(2)}, ..., r^{(m)}\}$
- Для новых входных данных $X = \{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$
- Вычисляем среднее и стандартное отклонение признаков R
 - Хотя R не изменяется, значения признаков изменяются, когда изменяются параметры модели
- Нормализуем признаки X, используя среднее и стандартное отклонение для R
- Каждый x⁽ⁱ⁾ всегда одинаково обрабатывается, независимо от того, какие семплы появляются в батче
- Проблема: переобучение на R!!!

Вопрос: как будем решать?

Virtual Batch Norm

- Фиксируем reference batch $R=\{r^{(1)}, r^{(2)}, ..., r^{(m)}\}$
- Для новых входных данных $X = \{x^{(1)}, x^{(2)}, ..., x^{(m)}\}$
- Для каждого x⁽ⁱ⁾ в X:
 - \circ Конструируем виртуальный батч V, содержащий $x^{(i)}$ и всё из R
 - Вычисляем среднее и стандартное отклонение признаков V
 - Нормализуем признаки x⁽ⁱ⁾, используя среднее и стандартное отклонение признаков V

Балансировка G и D

- Обычно дискриминатор "выигрывает"
- Это хорошо—теоретические выводы основаны на том, что *D* идеальный
- Обычно D больше и глубже, чем G
- Иногда нужно D обновлять больше, чем G
- Не пытайтесь ограничить D от того, чтобы он стал слишком умным
 - Используйте сглаживание меток класса

Проблемы GANs

Сходимость

- Алгоритмы оптимизации обычно сходятся в седловую точку или локальный минимум, но это нам обычно подходит
- Алгоритмы, оптимизирующие игровую постановку, могут вообще не достичь равновесия

Сходимость GANs

- Используя выпуклость в функциональном пространстве, теоретически гарантируется, что обучение GAN сходится, если мы можем напрямую изменять функции плотности, но:
 - Вместо этого мы модифицируем G и D (отношение плотностей)
 - Мы рассматриваем сложные высокоразмерные параметрические функции
- Мы можем тренироваться в течение очень долгого времени, генерируюя много различных классов семплов без улучшения качества генерации

Коллапс модели

$$\min_{G} \max_{D} V(G, D) \neq \max_{D} \min_{G} V(G, D)$$

- D внутри: сходимость к правильному распределению
- С внутри: все сгенерированные точки на самом вероятном месте

(Metz et al 2016)

Коллапс модели

- Игры с функцией потерь не помогают
- GANs всегда коллапсируют к более слабым моделям, чем могли бы

Коллапс модели: плохое разнообразие

this small bird has a pink breast and crown, and black primaries and secondaries.

the flower has petals that are bright pinkish purple with white stigma

this magnificent fellow is almost all black with a red crest, and white cheek patch.

this white and yellow flower have thin white petals and a round yellow stamen

(Reed et al, ICLR 2017)

(Reed et al 2016)

Выборочные части объектов

Проблема с подсчётами

Проблема с перспективой

Проблемы с глобальной структурой

Unrolled GANs

• Backprop through *k* updates of the discriminator to prevent mode collapse:

(Metz et al 2016)

Evaluation

- Никто не понимает до конца, как обучать GANs
- Хорошее правдоподобие и плохие семплы
- Хорошие семплы и плохое правдоподобие
- Нету способа понять, насколько хороши семплы

Supervised Discriminator

(Odena 2016, Salimans et al 2016)

Интерпретируемое скрытое представление

InfoGAN (Chen et al 2016)

State of the art

PPGN Samples

(Nguyen et al 2016)

PPGN for caption to image

oranges on a table next to a liquor bottle

(Nguyen et al 2016)

Заключение

- GAN'ы это сложно, но работает
- Много нерешённых задач (you are welcome!)