

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Computación

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA

Física para ingeniería

Primero	025014	85
SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES)DE LA ASIGNATURA

Abordar desde un punto de vista cualitativo los conceptos de cinemática, dinámica y electricidad que permitan interpretar algunos fenómenos de la naturaleza.

TEMAS Y SUBTEMAS

- 1. Unidades, cantidades físicas y vectores
 - 1.1.Estándares y unidades
 - 1.2.Conversiones de unidades
 - 1.3. Vectores y suma de vectores
 - 1.4.Componentes de vectores
 - 1.5. Vectores unitarios
 - 1.6.Producto de vectores

2.Cinemática

- 2.1.Desplazamiento, velocidad y aceleración
- 2.2. Movimiento con aceleración constante
- 2,3. Movimiento en dos dimensiones: circular y tiro parabólico

3.Dinámica

- 3.1.Fuerza y masa
- 3.2.Leyes de Newton
- 3.3. Fuerza gravitacional y peso
- 3.4. Aplicaciones de las leyes de Newton
- 3.5. Trabajo y energía
- 3.6. Energía cinética y potencial
- 3.7. Fuerzas conservativas y no conservativas

4.Electricidad

- 4.1.Carga eléctrica y ley de Coulomb
- 4.2.Campo eléctrico
- 4.3. Corriente eléctrica y voltaje
- 4,4.Relación conceptual entre electricidad y magnetismo

ACTIVIDADES DE APRENDIZAJE

- Exposición y análisis de cada tema en sesiones dirigidas por el profesor.
- Uso de TICs como apoyo en la comprensión de conceptos y solución de problemas.
- Asignar a los alumnos ejercicios para resolver, seleccionando algunos para exponer ante grupo.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACIÓN

Para aprobar el curso se realizarán tres evaluaciones parciales (50 %) y una evaluación final (50%).Para cada evaluación se realizará un examen y se evaluarán tareas y proyectos.

El examen tendrá un valor mínimo de 50% y las tareas y proyectos un valor máximo de 50%. Adicionalmente se recomienda:

- Respecto a las evaluaciones prácticas, estas deben estar relacionada con la ejecución exitosa y la documentación de la solución de problemas sobre temas del curso.
- Considerar el trabajo extra clase, la participación durante las sesiones del curso y la asistencia a las asesorías, como elementos para la evaluación del alumno.

BIBLIOGRAFÍA (TIPO, TITULO, AUTOR, EDITORIAL Y AÑO)

Básica:

- Física para ciencias e ingenierías, volumen 1 (7a ed.). Serway, R. & Jewett J. W. México: Cengage Learning. 2008.
 Física para ciencias e ingenierías con Física Moderna, volumen 2 (7a ed.). Serway, R. & Jewett J. W. México:
- Cengage Learning. 2009.

 R. A. Física Universitaria, volumen 1 (12a ed.). Young, H. D. & Freedman. México: Pearson Educación. 2009.
- R. A. Física Universitaria con Física Moderna, volumen 2 (12a ed.). Young, H. D. & Freedman. México: Pearson Educación. 2009.
- 5. Principles of Analog Electronics. Saggio, G. CRC Press. 2014.

Consulta:

- Física (6a ed.). Wilson, J., Bufa A. J., & Lou B. México: Pearson Educación. 2007.
- 2. Principios de Circuitos Eléctricos (8a ed.). Floyd, T. L. México: Pearson Educación. 2007.

PERFIL PROFESIONAL DEL DOCENTE

Licenciatura, maestría o doctorado en Física o área afín.

Experiencia profesional o docente mínima de 1 año.

AUTORIZÓ
DR. AGUSTIN SANTIAGO ALVARADO
VICE-RECTOR ACADÉMICO

VICE-RECTORIA ACADÉMICA

JEFATURA DE CARRERA Ingenieria en computación