FICHE 08-02: Inégalité de réarrangement: ANAL01-1 1.15

Yvann Le Fay

Juillet 2019

Enoncé

Soient $x_1 \geq x_2 \geq \ldots \geq x_n$ et $y_1 \geq y_2 \geq \ldots \geq y_n$ des réels. Soit (z_1, \ldots, z_n) une permutation des (y_1, \ldots, y_n) . Montrer que

$$\sum_{k=1}^{n} x_i z_i \le \sum_{k=1}^{n} x_i y_i$$

Solution

Notons pour $\sigma \in \mathfrak{S}_n$, $T(\sigma) = \sum_{k=1}^n x_i y_{\sigma(i)}$, \mathfrak{S}_n étant fini, il existe bien au moins une permutation qui maximise la somme. Parmi celles-ci considérons σ une avec le plus de points fixes. Supposons par l'absurde que $\sigma \neq \mathrm{Id}$, il existe alors $j \in [1; n-1]$ tel que $\sigma(j) \neq j$ et tel que $\forall i \in [1; j-1]$, $\sigma(i) = i$. Autrement dit j est le point le plus petit qui ne soit pas un point fixe. Nécessairement $\sigma(j) > j$ par minimalité de j, aussi, il existe $k \in [j+1; n]$ tel que $\sigma(k) = j$. On en déduit que

$$x_j \le x_k$$
 $j = \sigma(k) < \sigma(j) \Rightarrow y_j \le y_{\sigma(j)}$

Soit encore,

$$(x_k - x_j)(y_{\sigma(j)} - y_j) = x_k y_{\sigma(j)} - x_j y_{\sigma(j)} + x_j y_j - x_k y_j \ge 0$$

Ce qui est équivalent à

$$x_k y_{\sigma(j)} + x_j y_j \ge x_j y_{\sigma(j)} + x_k y_j \tag{1}$$

Posons

$$\tau(i) = \begin{cases} j \text{ si } i = j \\ \sigma(j) \text{ si } i = k \\ \sigma(i) \text{ sinon} \end{cases}$$

Mais l'inégalité (1) est équivalente à $T(\tau) \ge T(\sigma)$. La somme de droite étant maximale, on obtient que τ réalise aussi le maximum, or τ admet au moins un point fixe de moi que σ , ce qui est contradictoire par la minimalité du nombre de points fixes de σ , donc $\sigma = \mathrm{Id}$.

Remarquons que l'inégalité de Tchebychev de l'exercice précédent se déduit facilement de cette égalité, en effet, on a

$$x_1y_1 + \dots + x_ny_n \le x_1y_1 + \dots + x_ny_n$$

$$x_1y_2 + \dots + x_ny_1 \le x_1y_1 + \dots + x_ny_n$$

$$\vdots$$

$$x_1y_n + \dots + x_ny_{n-1} \le x_1y_1 + \dots + x_ny_n$$

D'où en sommant, $(x_1 + \ldots + x_n)(y_1 + \ldots + y_n) \le n(x_1y_1 + \ldots + x_ny_n)$, puis en divisant par n^2 , on obtient bien l'inégalité de Tchebychev.