Verjetnost in statistika - definicije, trditve in izreki

Oskar Vavtar po predavanjih profesorja Jaka Smrekarja

2020/21

Kazalo

1	SLUČAJNI VEKTORJI	3
2	NEODVISNOST	5
3	FUNKCIJE in TRANSFORMACIJE slučajnih spremenljivk in vektorjev	6
	3.1 Slučajne spremenljivke	6
	3.2 Slučajni vektorji	7

1 SLUČAJNI VEKTORJI

Definicija 1.1 (Komulativna porazdelitvena funkcija). Slučajni vektor je taka funkcija/preslikava $\vec{X} = (X_1, \dots, X_n) : \Omega \to \mathbb{R}^n$, kjer je Ω verjetnostni prostor, za katero so množice

$$\{X_1 \le x_1, \dots, X_n \le x_n\} = \{X_1 \in (-\infty, x_1], \dots, X_n \in (-\infty, x_n]\}$$
$$= \{\vec{X} \in (-\infty, x_1] \times \dots \times (-\infty, x_n]\}$$
$$= \vec{X}^{-1} ((-\infty, x_1] \times \dots \times (-\infty, x_n])$$

dogodki za vse realne n-terice $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Komulativna porazdelitvena funkcija slučajnega vektorja \vec{X} je funkcija $F_X: \mathbb{R}^n \to [0,1]$ s predpisom

$$F_{\vec{X}}(x_1,\ldots,x_n) = \mathbb{P}(X_1 \le x_1,\ldots,X_n \le x_n).$$

Trditev 1.1 (Lastnosti KPF).

(1)

$$\lim_{\substack{x_i \to -\infty \\ x_1 \to \infty}} F_{\vec{X}}(x_1, \dots, x_n) = 0$$

$$\lim_{\substack{x_1 \to \infty \\ x_n \to \infty}} F_{\vec{X}}(x_1, \dots, x_n) = 1$$

(2) Monotonost:

Če je $x_i \leq y_i$ za $\forall i \in \{1, \dots, n\}$, je

$$F_{\vec{X}}(x_1, \dots, x_n) = F_{\vec{X}}(\vec{x}) \le F_{\vec{X}}(y).$$

To sledi iz monotonosti \mathbb{P} .

(3) ZVEZNOST Z DESNE:

$$\lim_{\vec{y} \searrow \vec{x}} F_{\vec{X}(\vec{y})} = F_{\vec{X}}(\vec{x})$$

Tu $\vec{y} \searrow \vec{x}$ interpretiramo kot $\vec{y_i} \searrow \vec{x_i}$ za $\forall i$.

Opomba. Lastnosti (1), (2) in (3) karakterizirajo družino abstraktnih komulativnih porazdelitvenih funkcij v primeru slučajnih spremeljivk (n = 1). V večrazsežnem prostoru to ne drži.

Izrek 1.1. Če je $F: \mathbb{R}^2 \to [0,1]$ zadošča (1), (2), (3) in (4):

$$F(b,d) - F(a,d) - F(b,c) + F(a,c) \ge 0$$

za vse četverice a < b in c < d, je F komulativna porazdelitvena funkcija nekega slučajnega vektorja $(X,Y): \Omega \to \mathbb{R}^2$.

Definicija 1.2 ('Zvezni' slučajni vektorj). Slučajni vektor $\vec{X}:\Omega\to\mathbb{R}^n$ ima (zvezno) gostoto, če obstaja taka zvezna funkcija $f_{\vec{X}}:\mathbb{R}^n\to[0,\infty)$, da zanjo velja

$$\mathbb{P}(\vec{x} \in \mathcal{B}) = \int_{\mathcal{B}} f_{\vec{X}}(x_1, \dots, x_n) \ dx_1 \dots dx_n,$$

za vsako Borelovo množico $\mathcal{B} \subset \mathbb{R}^n$.

Posplošitev. Pravimo, da ima vektor $\vec{X} = (X_1, \dots, X_n)$ n-razsežno normalno porazdelitev s parametrom $\vec{\mu} \in \mathbb{R}$ in $\Sigma \in \mathbb{R}^{n \times n}$ (simetrična in pozitivno definitna), če ima gostoto:

$$f_{\vec{X}}(\vec{x}) \ = \ (2\pi)^{-\frac{n}{2}} (\det \Sigma)^{-1} e^{-\frac{1}{2} \langle \ \Sigma^{-1}(\vec{x} - \vec{\mu}) \ , \ (\vec{x} - \vec{\mu}) \ \rangle}$$

2 NEODVISNOST

Definicija 2.1. Komponente X_1, \ldots, X_n slučajnega vektorja $\vec{X} = (X_1, \ldots, X_n)$ so *neodvisne*, če velja

$$F_{\vec{X}}(x_1,\ldots,x_n) = F_{X_1}(x_1)\cdot\ldots\cdot F_{X_n}(x_n)$$

za vse *n*-terice $(x_1, \ldots, x_n) \in \mathbb{R}^n$.

Opomba. Enakost lahko prepišemo v

$$\mathbb{P}\left(\vec{X} \in (-\infty, x_1] \times \ldots \times (-\infty, x_n]\right) = \mathbb{P}\left(X_1 \in (-\infty, x_1]\right) \cdot \ldots \cdot \mathbb{P}\left(X_n \in (-\infty, x_n]\right)$$

Trditev 2.1. Naj ima (X,Y) 'zvezno' gostoto f(X,Y) in naj bosta f_X in f_Y robni gostoti. Tedaj sta X in Y neodvisni natanko takrat, ko

$$f_{(X,Y)}(x,y) = f_X(x) \cdot f_Y(y)$$

za skoraj vse pare x in y.

Trditev 2.2 (Posledica prejšnje trditve). Naj ima (X,Y) 'zvezno' gostoto $f_{(X,Y)}(x,y)$. Tedaj sta X in Y neodvisni natanko takrat, ko velja

$$f_{(X,Y)}(x,y) = \Phi(x)\Psi(y)$$

za skoraj vse x in y, za neki nenegativni integralski funkciji.

3 FUNKCIJE in TRANSFORMACIJE slučajnih spremenljivk in vektorjev

3.1 Slučajne spremenljivke

Trditev 3.1 (Diskretni primer). Če je X diskretna slučajna spremenljivka z vrednostmi $\{x_i \mid i \in I\}$ in je g funkcija, ki preslika množico $\{x_i \mid i \in I\}$ na množico $\{y_j \mid j \in J\}$, je $g \circ X = g(X)$ diskretna slučajna spremenljivka z verjetnostno funkcijo

$$\mathbb{P}(g(X) = y_j) = \sum_{i: g(x:i) = y_i} \mathbb{P}(X = x_i)$$

Trditev 3.2 (Zvezni primer). Naj ima slučajna spremenljivka X 'zvezno' gostoto f_X , ki je različna od 0 natanko na intervalu (a,b), kjer $-\infty \le a \le b \le \infty$.

Naj bo $g:(a,b)\to (c,d)$ zvezna bijekcija. Zanima nas funkcija g(X)slučajne spremenljivke X.

Velja tudi

$$\mathbb{P}(X \in (a,b)) = \int_a^b f_X(x) \ dx = \int_{\mathbb{R}} f_X(x) \ dx = 1.$$

Velja $\{g(X) \leq z\} = \{X \leq g^{-1}(z)\}$. Ker je X slučajna spremenljivka, so $\{X \leq g^{-1}(z)\}$ dogodki za $z \in (c,d)$. Sledi, da je g(X) slučajna spremenljivka in velja:

$$F_{g(X)}(z) = \mathbb{P}(g(X) \le z) = \begin{cases} 1 & ; & z \ge d \\ F_X(g^{-1}(z)) & ; & z \in (c, d) \\ 0 & ; & z \le c \end{cases}$$

Če je g odvedljiva, sledi:

$$f_{g(X)}(z) = \frac{d}{dz} F_{g(X)}(z) = \begin{cases} \frac{f_X(g^{-1}(z))}{g'(g^{-1}(z))} ; & z \in (c, d) \\ 0 & ; \text{ sicer} \end{cases}$$

Za splošno odvedljivo bijekcijo $g:(a,b)\to(c,d)$ velja t.i. transformacijska formula:

$$f_{g(X)}(z) = \frac{f_X(g^{-1}(z))}{|g'(g^{-1}(z))|}, \quad \text{za } z \in (c, d).$$

3.2 Slučajni vektorji

Trditev 3.3. Naj bo $\vec{X}: \Omega \to \mathbb{R}^n$ slučajni vektor in naj bo $h: \mathbb{R}^n \to \mathbb{R}$ zvezna funkcija. Tedaj je $h(\vec{X}) = h(X_1, \dots, X_n)$ slučajna spremenljivka.

Trditev 3.4. Naj bo $\vec{X}:\Omega\to\mathbb{R}^n$ slučajni vektor z gostoto $f_{\vec{X}}$. Dalje naj bo $g:\mathbb{R}^n\to\mathbb{R}^n$ (ali $g:D\to E$ za primerni množici $D,E\subset\mathbb{R}^n$, kjer $\mathbb{P}(\vec{X}\in D)=1)$ zvezno diferenciabilna bijekcija. Tedaj ima slučajni vektor $g(\vec{X})$ gostoto

$$f_{g(\vec{X})}(\vec{z}) \ = \ f_{\vec{X}}(g^{-1}(\vec{z})) \cdot |\det Jg^{-1}(\vec{z})|$$

v točkah $\vec{z} \in \mathbb{R}^n$ (oz. $\vec{z} \in E$).

Za dvorazsežne vektorje, kjer je $\vec{z}=(u,v)$ in (U,V)=g(X,Y) ter posledično $(X,Y)=g^{-1}(U,V)$ se transformacijska formula glasi

$$f_{(U,V)}(u,v) = f_{(X,Y)}(g^{-1}(u,v)) \cdot |\det Jg^{-1}(u,v)|$$

oziroma

$$f_{(U,V)}(u,v) = f_{(X,Y)}(x(u,v),y(u,v)) \cdot \left\| \frac{\partial x}{\partial u} - \frac{\partial x}{\partial v} \right\|.$$

Upoštevaje $g \circ g^{-1} = id$ in posledično

$$Jg(g^{-1}(u,v)) \cdot Jg^{-1}(u,v) = I$$

zgornje prepišemo v

$$f_{(U,V)}(u,v) = \frac{f_{(X,Y))}(g^{-1}(u,v)}{|\det Jg(g^{-1}(u,v))|} = \frac{f_{(X,Y)}(x(u,v),y(u,v))}{\left|\left|\frac{\partial x}{\partial u} \frac{\partial x}{\partial v}\right|\right|_{(x(u,v),\ y(u,v))}}.$$

Trditev 3.5. Naj za $\vec{X}: \Omega \to \mathbb{R}^n$ velja $\vec{X} \sim N(\vec{\mu}, \Sigma)$ in naj bo $A: \mathbb{R}^n \to \mathbb{R}^n$ obraljiva matrika. Dalje naj bo $\vec{\nu} \in \mathbb{R}^n$. Tedaj

$$A\vec{x} + \vec{\nu} \sim N(A\vec{\mu} + \vec{\nu}, A\Sigma A^T).$$