

Final Project: Building a Computer Vision-Based Object Detection and Classification System in Urban Street Scenario Using U-Net CNN Model

Group members: Clark (Xuanyao) Qian Daphne (Yiyang) Zhang

Psych 186B Instructor: Zili Liu, PhD

3/12/2025

Introduction & Motivation

Interest: How are Autonomous Vehicles trained?

Deep Learning: Computer Vision Models (Object Detection & Semantic

Segmentation)

Backgound & Literature Review

- Existing models:
- U-Net
- Strengths: Efficient, widely-used baseline.
- Other advanced models: DeepLabV3, Mask-RCNN
- Literature: Semantic segmentation of urban environments:
 Leveraging U-Net deep learning model for cityscape image analysis

Hypothesis

 Can a basic U-Net architecture provide accurate semantic segmentation?

• Enhancements (e.g., data augmentation, weight adjustment, resolution adjustments) will improve object segmentation accuracy.

Dataset:

- Dataset: CityScapes images (urban scenarios)
- Diversity:
 - 5000 fine annotated images (1024 * 2048)
 - 50 cities in Germany
 - Summer, Spring, Fall
 - Daytime
 - Good -> Medium (Flare) Weather Condition

- Features:
 - 8 Groups (flat, human, vehicle, construction, object...)
 - o 30 Classes (car, person, rider, vegetation, road...)

Model:

- U-Net Architecture
- Initially designed for Biomedical
- Image Segmentation
 - Good performance using
- small-scale dataset
 - Encoder-Decoder structure

U-Net Explained

stage1 1024 * 1024 x16

> stage2 512 * 512 x32

stage3 256 * 256 x64 Encoder

Input 1024*1024 x1

stage1

Decoder

stage4 1024 * 1024 x16

stage3 512 * 512 x32

stage2 256 * 256 x64 Input: An RGB picture

Output: A segmentation map of the same shape that assigns each pixel to one of the classes (road, building, vegetation, sky, etc.).

Evaluation criteria

Intersection over Union (IoU)

- Initial Baseline Accuracy:
 - Mean IoU > 0.5 as the acceptable threshold.
 - Mean IoU < 0.5 indicates poor segmentation (especially people).

Initial Settings:

□ Data Selection:

- Randomly selected 50% of the original data (2500)
- 80:20 Train/Validation Split (2000 Train, 500 Validation)
- Additional 500 data for testing

☐ Selected Classes:

Person, Car, Building, Sky, Vegetation, Road

☐ Hyperparameters:

Epoches: 20

Activation function: softmax

Optimizer: Adam

Learning rate: 0.0001

Batch size: 8

Input Resolution: 128 * 128

Table 1. The proposed model parameter setup.

Hyperparameter	Configurations	
Activation function	"softmax"	
Optimizer	Adam	
Learning rate	0.0001	
Batch size	32	
Epochs	20-25	
Metrics	IoU & mean IoU	
Input images size	128 × 128	

Results:

Paper Performance

Higher training and validation loU compared to the first 20 epochs in the paper.

Potential Reason:

- Different Batch Size (8 vs 32)
- Different Training Data
- Different Testing Data

Project Performance

Further investigation: Class Wise Accuracy

Successful Results:

• Good performance on simple scenarios (clear, sky, roads, background, few vehicle/human).

- People and vehicles consistently challenging (IoU < 0.5).
- Insights:
- Complexity of scenario significantly affects performance.

Resolution Adjustment: 128x128 to 256x256 significantly improves overall

accuracy (paired t-test p<0.05).

• Limitation: Computationally Expensive

100+ minute training time

GPU ran out of memory when training higher resolutions

• **Weight Adjustment**: increasing weight for the person/car class gradually increases their accuracy with the cost of slight decrease in accuracy of other class. Model deteriorates when weight > 0.2.

```
### Weights for Focal loss

FOCAL_LOSS_WEIGHTS = [

0.1825,  # road

0.0525,  # building

0.025,  # vegetation

0.01,  # sky

0.0525,  # person

0.0525  # car
```


Weight Adjustment - case study

Model Prediction

Weight=0.08

Weight=0.12

Weight=0.16

Weight=0.20

Weight=0.24

Beyond 0.2 threshold, model starts to over-generalize classifications and make significant prediction errors

 Incomplete prediction on vehicles (especially false prediction on window reflections)

Color Jitter: Randomly change saturation, contrast, brightness of the image

Purpose: Robustness when dealing with different color/texture on cars

- Data Augmentation: to improve general robustness
- Horizontal Flip, Random Crop
- Result: No significant improvement on car or overall prediction

Generalization to Peculiar Scenarios

Limitations

Model deficiency:

Small Object Detection

3D Urban Morphology Interpretation

Model Interpretability

Project deficiency:

Computation power

Limited data-Reliability Across Atmospheric Conditions

Pixel-wise compared to regional-wise evaluation

Conclusion

Summary of Results:

• U-Net effective baseline; limited accuracy in complex scenarios.

Improvements:

Choose diverse datasets
Improve computation power
Incorporate regional wise metric

Explore more advanced architectures (DeepLab V3+, PointNet++).

Implications:

Segmentation accuracy directly impacts real-world decision-making.

Thank you