

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 2002年10月30日
Date of Application:

出願番号 特願2002-316142
Application Number:

[ST. 10/C] : [JP2002-316142]

出願人 京セラミタ株式会社
Applicant(s):

2003年 8月19日

特許庁長官
Commissioner,
Japan Patent Office

今井 康夫

【書類名】 特許願
【整理番号】 03-00474
【提出日】 平成14年10月30日
【あて先】 特許庁長官 殿
【国際特許分類】 B41J 2/44
B41J 2/45
H04N 1/29
G03G 15/00
【発明の名称】 L E D アレイ露光装置及びそれを備えた画像形成装置
【請求項の数】 6
【発明者】
【住所又は居所】 大阪府大阪市中央区玉造1丁目2番28号 京セラミタ
株式会社内
【氏名】 大庭 忠志
【特許出願人】
【識別番号】 000006150
【氏名又は名称】 京セラミタ株式会社
【代理人】
【識別番号】 100085501
【弁理士】
【氏名又は名称】 佐野 静夫
【手数料の表示】
【予納台帳番号】 024969
【納付金額】 21,000円
【提出物件の目録】
【物件名】 明細書 1
【物件名】 図面 1
【物件名】 要約書 1
【包括委任状番号】 0001263

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 LEDアレイ露光装置及びそれを備えた画像形成装置

【特許請求の範囲】

【請求項 1】 画素データに応じて点灯制御される複数のLED発光素子からなる1つまたは複数のLEDアレイチップがライン状に配設され、各LED発光素子の光量データに基づき該LED発光素子の光量補正を行い、該LED発光素子の発光をレンズアレイを介して結像させて露光を行うLEDアレイ露光装置において、レンズアレイを透過した各LED発光素子のビーム面積のばらつきに対するビーム面積補正と、現像バイアスの程度に応じて前記ビーム面積補正の大小を調節する重み付けとが、前記光量補正に重畠されることを特徴とするLEDアレイ露光装置。

【請求項 2】 前記ビーム面積補正は、補正対象となるLED発光素子を含む前後複数個のLED発光素子のビーム面積を平均値化し、該平均値と補正対象となるLED発光素子のビーム面積の差分の大小に応じて行うことを特徴とする請求項1に記載のLEDアレイ露光装置。

【請求項 3】 前記ビーム面積の平均値が移動平均値となるように、移動平均値の対象となる前記前後複数個のLED発光素子が、補正対象となるLED発光素子とともに移動することを特徴とする請求項2に記載のLEDアレイ露光装置。

【請求項 4】 前記前後複数個のLED発光素子は、補正対象となるLED発光素子を先頭とする後続する複数個のLED発光素子であることを特徴とする請求項2または請求項3のいずれかに記載のLEDアレイ露光装置。

【請求項 5】 前記前後複数個のLED発光素子は、補正対象となるLED発光素子を含む同一のLEDアレイチップ内のLED発光素子であることを特徴とする請求項2に記載のLEDアレイ露光装置。

【請求項 6】 請求項1乃至請求項5のいずれかに記載のLEDアレイ露光装置を備えた画像形成装置。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、画像形成時に書き込み用として使用されるLEDアレイ露光装置及びそれを備えた画像形成装置に関する。

【0002】**【従来の技術】**

複写機やプリンタ及びファクシミリなどの画像形成装置には、被記録媒体である用紙などに直接画像を形成する直接画像形成方式と、感光体などからなる中間媒体に一旦画像を記録し、その画像を最終的な被記録媒体に転写する間接画像形成方式とがある。家庭などにおける小規模な使用を除けば、被記録媒体に普通紙を使用できる間接画像形成方式の画像形成装置が広く使用されている。

【0003】

また、複写機などの画像形成装置では、従来、アナログ画像情報をアナログ画像形成プロセスを用いて記録形成していたが、最近の情報のデジタル化に伴い、デジタル画像形成プロセスを用いてデジタル情報として処理し、被記録媒体に微小なドットからなる画像を形成することが一般的に行われている。このような画像形成装置では、微小なドットの集合で形成されるデジタル画像情報を、帯電した感光体に微小なドットとして露光して静電潜像を形成する。その後、現像器で粉状のトナーを用いて可視化して、被記録媒体である用紙に転写して画像を形成する。

【0004】

デジタル画像情報を感光体に露光する装置としては、レーザダイオードなどが発光するレーザ光を利用して露光を行うレーザ露光装置や、デジタル画像の1ドットに対応した微小なLED（発光ダイオード）を多数個直線状に配列してアレイ状とし、感光体の軸方向（主走査方向）に配置して露光を行うLEDアレイ露光装置がある。特に最近では、LEDアレイ露光装置が小型化、低価格化、制御の容易さ、機械的可動部がなく信頼性が高いなどの面で、プリンタやその他の画像形成装置に幅広く使用されている。

【0005】

このようなLEDアレイ露光装置は、プリント基板と、その上に搭載されるL

LEDアレイチップと、これに電流を供給して駆動する駆動ICと、LEDアレイチップの発光面と感光体との間に在ってLED発光素子からの光を感光体上にビームとして収束して結像させる複数のレンズの集合体であるレンズアレイと、これらの部品を保持する保持部材などを備えている。

【0006】

LEDアレイチップは、少なくとも被記録媒体（用紙）の幅以上の有効走査幅を露光できるよう、基板上に1個または複数個配置されており、帯電した感光体に静電潜像を形成するための露光源をなしている。このLEDアレイチップ上には、ビデオデータ（記録しようとする画像データ）のそれぞれの画素に対応する微小なLED発光素子が一列に配置されている。例えば600dpiの解像度でA4サイズの記録幅に対応する場合、1個または複数個のLEDアレイチップが有するLED発光素子の総数は少なくとも5120個になる。

【0007】

駆動ICは、各LED発光素子を駆動して発光させる回路を有しており、前記基板（または外部）に1個または複数個搭載されている。レンズアレイは、複数のシリンダ状のレンズを束にして配列したものであり、LED発光素子の光を感光体上に収束させてビーム形状のドットとして露光する。

【0008】

しかし、各LED発光素子の発光強度にはばらつきがあり、そのばらつきが被記録媒体上の可視化された画像で、濃度のむらやスジとなってあらわれ、記録品質の劣化を引き起こす。そのため、従来のLEDアレイ露光装置では、各LED発光素子の露光エネルギーが一定になるように補正する光量補正データを、LED発光素子個々に予め準備しておき、この光量補正データに従って、各LED発光素子が発光するときの露光エネルギーのばらつきを補正していた。

【0009】

また、レンズアレイの不均一な配列などにより解像力にばらつきがあつたり、レンズアレイの取り付け誤差によりLED発光素子からの光の焦点位置がずれたりすると、感光体上に結像するドットが歪んだり、解像力がばらついたりする。各LED発光素子の発光強度のばらつきを±2%程度に収まるように補正したと

しても、レンズアレイによる解像力にばらつきがあると、可視化された画像では濃度むらが顕著に現れる。

【0010】

また、潜像画像を現像して可視化する現像プロセスにおいて、現像ローラに与える現像バイアス（電圧）の程度によっても、濃度むらが顕著になる傾向が確認されている。現像バイアスは、感光体上の静電潜像が帶電したトナーをひきつける際の所謂しきい値として作用するため、高い現像バイアスではしきい値が高くなり、LED発光素子による光量やビーム面積のばらつきが顕著にあらわれ、濃度むらやスジとして視認され易くなる。特に、複数の画像形成部を使用して異なる色の画像を同時に形成するタンデム方式のカラー画像形成装置では、各色ごとにトナーの特性が違うために、印加する現像バイアスも異なる場合がある。また、单一の画像形成部を備えた白黒画像形成装置であっても、部材のばらつきや装置間のばらつきにより、現像バイアスを個々調整することもあり、現像バイアスの違いが画像の濃度むらやスジの発生に与える影響も無視できない。

【0011】

従来技術で光量補正されたLED発光素子であっても、感光体上の露光ドットの露光エネルギー曲線が異なるため、現像バイアスを与えて現像すると現像されたドットの面積が異なる問題がある。これに対して、特許文献1によると、LED発光素子ごとの発光を一定距離離れた仮想空中線上で露光面積が一定になるよう光量補正データを作成し、このデータに基づいて発光を調整することを提案している。

【0012】

【特許文献1】

特開2002-2016号公報

【0013】

特許文献1に開示された方法によると、現像バイアスを使用することを前提にして露光面積（ビーム面積）を均一にできるが、異なる現像バイアスが与えられた場合の補正に関しては考慮されていないし、現像バイアスが濃度むらに及ぼす影響度も考慮されておらず、従って、その濃度むらを低減する補正を行っているわ

けではない。

【0014】

本発明は、斯かる実状に鑑みなされたものであり、LEDアレイ露光装置において、光量補正とともに、ビーム面積の補正に対して異なる現像バイアスによる影響の重み補正を加味して、濃度むらやスジを大幅に低減することが可能なLEDアレイ露光装置及びそれを備えた画像形成装置を提供することを目的とするものである。

【0015】

【課題を解決するための手段】

上記目的を達成するために、本発明では、画素データに応じて点灯制御される複数のLED発光素子からなる1つまたは複数のLEDアレイチップがライン状に配設され、各LED発光素子の光量データに基づき該LED発光素子の光量補正を行い、該LED発光素子の発光をレンズアレイを介して結像させて露光を行うLEDアレイ露光装置において、レンズアレイを透過した各LED発光素子のビーム面積のばらつきに対するビーム面積補正と、現像バイアスの程度に応じて前記ビーム面積補正の大小を調節する重み付けとが、前記光量補正に重畠される構成とする。

【0016】

更に、本発明では、前記ビーム面積補正是、補正対象となるLED発光素子を含む前後複数個のLED発光素子のビーム面積を平均値化し、該平均値と補正対象となるLED発光素子のビーム面積の差分の大小に応じて行う構成とする。

【0017】

また、本発明では、前記ビーム面積の平均値が移動平均値となるように、移動平均値の対象となる前記前後複数個のLED発光素子が、補正対象となるLED発光素子とともに移動する構成とする。

【0018】

前記した前後複数個のLED発光素子は、補正対象となるLED発光素子を先頭とする後続する複数個のLED発光素子である。

【0019】

あるいは、前記前後複数個のLED発光素子は、補正対象となるLED発光素子を含む同一のLEDアレイチップ内のLED発光素子となっている。

【0020】

更に、本発明は、前記のLEDアレイ露光装置を使用して画像形成装置を構成している。

【0021】

【発明の実施の形態】

以下、本発明の詳細を図1～図7に基づいて説明する。先ず、本発明に係るLEDアレイ露光装置を使用した画像形成装置の概略構成について、図1に基づき説明する。図1は、本発明に係るLEDアレイ露光装置を使用したカラープリンタの概略を模式的に示す正面図である。

【0022】

図1において、符号1は、画像形成装置の一例としてのカラープリンタである。その主要構成部品として、2は筐体、3Bと3Yと3Cと3Mはそれぞれブラック、イエロー、シアン、マゼンタ用の画像形成部で、10Bと10Yと10Cと10Mは、それぞれ前記の色のトナーホッパーで、12は被記録媒体である用紙14を格納する給紙カセット、13は給紙ガイド、11aと11bは搬送ベルト駆動ローラ、8は搬送ベルト、9は転写ローラ、17は定着部、15は排紙ガイド、16は排紙部である。また、各色の画像形成部3B、3Y、3C、3Mは、それ、現像器4、感光体5、主帯電器6、LEDアレイ露光装置7、クリーニング部20などから構成されている。

【0023】

カラープリンタ1において、主帯電器6によって帯電した感光体5上には、LEDアレイ露光装置7によって静電潜像が形成され、現像器4により現像されて可視画像が形成される。このようなプロセスが各色ごとに行われる。給紙カセット12から給紙された用紙14は給紙ガイドにより案内されて、図中、反時計方向に回転している搬送ベルト8の上面に吸着されて、各色の画像形成部3B、3Y、3C、3Mの直下を通過するときに、転写ローラ9によって各色の画像が用紙14に順次転写される。このように用紙14上でフルカラー画像を形成した4

色のトナーは、用紙14が定着部17を通過する際に定着される。その後、用紙14は排紙ガイド15により排紙部16に排出案内される。

【0024】

次に、上記のようなカラープリンタ1が備えているLEDアレイ露光装置7について、その詳細を図2に基づき説明する。図2は、本発明に係わるLEDアレイ露光装置の概略模式図で、(a)は上面図、(b)は正面図である。LEDアレイ露光装置7は、配線を有する基板30上に一列に配置された1個または複数個のLEDアレイチップ31と、そのLEDアレイチップ31の上方に配されて正立等倍の像を結像するレンズアレイ32(例えば、日本板硝子社製の商品名「セルフォック・レンズ・アレイ」)と、LEDアレイチップ31の各LED発光素子を駆動する回路を収めた1個または複数個の駆動IC33とから構成されている。実際には、上記の基板30とレンズアレイ32などは図示しない保持部材により保持されている。また、各LED発光素子の発光を補正するなどの制御を行う制御部34を外部に設ける場合もある。

【0025】

図2(b)において、5はドラム状の感光体を示し、レンズアレイ32がLED発光素子の発光を受光して屈折透過させ、ドラム面上に結像する様子を破線で示している。

【0026】

このように、図1のカラープリンタ1に外部のPC(不図示)などから送信されてくるプリントデータの各画素に対応してLED発光素子が駆動され、その発光がレンズアレイ32を介して、感光体5にドットとして結像する。従来技術に関する説明したように、各LED発光素子の露光エネルギーのばらつきを補正するには、事前に測定した各LED発光素子の露光エネルギーに基づいて周知の方法で、駆動電流値や発光時間あるいはその両方を補正するための補正值を算出して、その補正值を光量補正值として、図2で示した制御部34や図1で示したカラープリンタ1の制御部(不図示)あるいはLEDアレイ露光装置7に記憶部を設けて記憶させておく。

【0027】

次に、LEDアレイ露光装置7の少なくとも有効走査幅の全てのLED発光素子がレンズアレイ32を介して結像するビーム面積をLED発光素子個々に予め測定算出して、それぞれのビーム面積を、図2(a)で示した制御部34や図1で示したカラープリンタ1の制御部(不図示)あるいはLEDアレイ露光装置7に記憶部を設けて記憶させておく。

【0028】

本発明にかかる補正方法について説明する前に、図3を参照して、現像バイアスの影響の概略を説明する。図3は、露光エネルギーとドット面積の関係を表す模式図で、(a)は露光エネルギー曲線を、(b)は露光ビーム面積を、(c)は現像された画像面積を模式化している。また、露光エネルギー曲線e1とe2のエネルギー量(曲線が占める面積)は同じとする。図3で明らかなように、同じ露光エネルギー(光量)であっても、ビーム面積はLED発光素子やレンズアレイ32のばらつきにより異なり、現像時に与える現像バイアスによっても、実際に現像されるドットの画像面積は異なる。そのため、LED発光素子個々の光量やビーム面積と、現像バイアスを考慮して行う補正について図4を参照して説明する。

【0029】

図4は、LED発光素子を補正して駆動するカラープリンタ1の概略回路ブロック図である。40はプリント制御部で、41は前記した補正を行う補正回路で、42は光量補正值を記憶している光量補正值記憶部で、43はビーム面積を記憶しているビーム面積記憶部で、44はカラープリンタ1のエンジン部を制御するプリントエンジン制御回路であり、図では現像器45に所定の現像バイアスを与える状態を図示し、その他は省略している。7はLEDアレイ露光装置である。また、PCは外部に接続された情報端末装置であり、例えばパソコンをあらわしている。

【0030】

図4の構成では、まず、PCからプリントドライバによりラスター処理された(画素に分解された)プリントデータがプリント制御信号とともにプリント制御部40に送信される。また、現像器44に与えられている現像バイアスのデータ

もプリントエンジン制御部44によって読み込まれる。この現像バイアスデータは、カラープリンター1の組み立て時に設定される場合もあれば、図示しない濃度センサーで画像濃度を検出し、プリントエンジン制御回路44が自動で調整する場合もある。次に、プリント制御部40は例えば1走査ラインごとの画像信号を補正回路41に送出すると同時に、プリント駆動信号をLEDアレイ露光装置7に送出してプリントを開始させる。補正回路41は前記画像信号と現像バイアスデータを受けて、その画素を露光するLED発光素子の光量補正值とビーム面積を、光量補正值記憶部42とビーム面積記憶部43とからそれぞれ読み込み、現像バイアスデータとともに後述する方法で補正を行い、LED発光素子を駆動するための補正済み画像信号として、タイミング用のクロックとともにLEDアレイ露光装置7に送出する。この時、送出する補正済み画像信号の量は、1走査ライン分またはそれを複数個に分割した1走査ブロック分であり、この分量のデータをLEDアレイ露光装置7がラッチして同時発光させるためのラッチ信号も送出する。

【0031】

上記の説明のように、本発明では、従来の光量補正とともにビーム面積に対する補正を施し、さらに現像バイアスの程度に応じた補正も行っている。図5は、現像バイアスに係わる補正が、プリントされた画像の粒状度に与える影響を表した図である。図の縦軸は粒状度を、横軸は現像バイアス電圧を表している。また、符号a～dの曲線は、それぞれ補正強度3、5、7、9による粒状度と現像バイアス電圧と関係を示しており、この数値が大きいほど補正度が高いことになる。

【0032】

粒状度の数値が高いとプリントされた画像は荒くなり、数値が低いと、きめ細かな画像になる。そのため、プリントされた画像の濃度むらやスジは、粒状度が高いと顕著になると同時に視認しやすくなるという性質がある。図5によると、現像バイアスが大きいものほど、補正強度を強くしないと粒状度が大きくなつて、濃度むらや筋が発生しやすくなる。反対に、現像バイアスが小さいものは補正強度を強くすると粒状度が大きくなつて、同様の問題が発生し易くなることがわ

かる。言い換えれば、現像バイアスが大きいと、プリントされた画素は、濃度むらやスジが現われ易くなる。そのため、図4を参照して説明した補正においては、現像バイアスの程度も考慮して補正を行っている。

【0033】

次に、このような補正方法を図6を参照して説明する。図6は、本発明に係わる各LED発光素子を駆動する際に使用する補正方法を図式化したものである。なお、説明の簡略化のために、LED発光素子は5個で1つの補正グループを形成するように説明しているが、実際には、1つのLEDアレイチップ単位で、あるいは32個～256個単位のLED発光素子で1つの補正グループを形成するようにするとよい。

【0034】

図6において、最初のステップS1で、プリントされる画素が取り込まれ、その画素番号Nを1から順番に割り当てる。最初の画素の番号を1として、画素5までを示している。次のステップS2で、現像バイアスSを読み取る。ステップS3で、それぞれの画素に対応するLED発光素子の光量補正值Lを取り込み、ステップS4で、それぞれの画素に対応するLED発光素子のビーム面積Aを取り込む。ステップS5で、画素1～5のビーム面積の平均値Mを算出して、ステップS6で、平均値Mに対するそれぞれの画素のビーム面積Aの差分（M-A）を算出する。さらに、ステップS7で、平均値Mに対する差分Dの割合Pを算出する。

【0035】

このように算出された割合Pの絶対値が大きいほど、その画素に対応するLED発光素子のビーム面積が、グループ平均から大きくばらついていることになる。そのため、ステップS8で、上記のように得られた割合Pに対して、補正のランク付けを行い、そのランクに対応する補正に必要な係数を別途実験などで算出しておき、ビーム面積補正值Bとする。次のステップS9では、現像バイアスSを判断し、前記したように大きな現像バイアスであれば強い補正がかかるようになら、小さな現像バイアスであれば弱い補正がかかるようになら、現像バイアスSによる重み付けを行い、最終的な補正係数Cを得る。最後にステップS10で、LED

発光素子の基準駆動値に各画素の光量補正值Lを乗じ、更に上記で得られた補正係数Cを乗ずることにより、各LED発光素子の駆動値Iを算出する。

【0036】

上記のような方法で、LEDアレイ露光装置7のLED発光素子を、レンズアレイ32の影響も考慮して、光量、ビーム面積、更に、現像バイアスによる視認具合のばらつきに対して補正を行うため、濃度むらやスジの発生を大幅に低減させることが可能になる。上記の例では、LED発光素子5個を1つのグループとして平均化して、各素子をグループ内でのばらつきに対して補正するよう正在するため、グループごとのばらつきがほぼ均一である場合は、プリントされた画素も平均化されるが、グループごとにばらつきがある場合には、以下に説明する方法を採用すると、更に高い効果を上げることができる。

【0037】

図7は本発明に係わる各LED発光素子を駆動する際に使用する別の補正方法を図式化したものである。なお、説明の簡略化のために、LED発光素子は5個で1つの補正グループを形成するように説明しているが、実際には、1つのLEDアレイチップ単位で、あるいは32個～256個単位のLED発光素子で1つの補正グループを形成するようにするとよい。

【0038】

図7において、最初のステップS1で、1走査ラインあるいは1走査ブロック（例えば、LEDアレイチップ単位）ごとにプリントされるN個の画素が取り込まれ、その画素番号を1からNとし、特定の画素番号をnとする。図7では、最初の画素の番号を1として、画素9までを図示している。次のステップS2で、現像バイアスSを取り込む。ステップS3で、各画素に対応するLED発光素子の光量補正值Lを取り込み、ステップS4で、各画素に対応するLED発光素子のビーム面積Aを取り込む。ステップS5-1で、画素1に注目して、画素1～5のビーム面積の平均値M1を算出し、ステップS5-2で、画素2に注目して、画素2～6のビーム面積の平均値M2を算出し、ステップS5-3で、画素3に注目して、画素3～7のビーム面積の平均値M3を算出し、ステップS5-4で、画素4に注目して、画素4～8のビーム面積の平均値M4を算出し、ステッ

プS 5-5で、画素5に注目して、画素5～9のビーム面積の平均値M 5を算出する。以降、同様に、最後の画素Nまで上記のような平均値Mを求める。実際の使用例では、有効走査幅の外側にもLED発光素子が配列されており、有効走査幅の最後の画素Nに注目して平均値Mを求める場合は、これらの有効走査幅の外側にあるLED発光素子を利用しても良い。または、最後の画素の領域では平均値を求めるサンプル数を減らして行っても良い。ステップS 6で、注目した画素nの平均値M nに対する画素のビーム面積Aの差分（M n - A n）を算出する。さらに、ステップS 7で、平均値M nに対する差分D nの割合P nを算出する。

【0039】

このように算出された割合P nの絶対値が大きいほど、その画素に対応するLED発光素子のビーム面積が、グループ平均から大きくばらついていることになる。そのため、ステップS 8で、上記のように得られた割合P nに対して、補正のランク付けを行い、そのランクに対応する補正に必要な係数を別途実験などで算出しておき、ビーム補正值B nとする。次のステップS 9では、現像バイアスSを判断し、前記したように大きな現像バイアスであれば強い補正がかかるよう、小さな現像バイアスであれば弱い補正がかかるように、現像バイアスSに対応した重み付けを行い、最終的な補正係数C nを得る。最後にステップS 10で、LED発光素子の基準駆動値に各画素の光量補正值L nを乗じ、更に上記で得られた補正係数C nを乗することにより、各LED発光素子の駆動データI nを算出する。

【0040】

上記の方法では、注目画素ごとに移動するグループの平均値（移動平均）を使用するため、レンズアレイ32による影響も考慮して、LEDアレイ露光装置7のLED発光素子を、光量やビーム面積、且つ現像バイアスによる視認具合のばらつきに対して補正を行う。その補正が移動平均に基づくため、緩やかに連続した補正を行うことが可能となり、濃度むらやスジの発生を更に低減させることができる。

【0041】

尚、図6と図7とを参照して説明した補正方法では、平均値Mを求める画素の

グループを、注目画素に後続する5個の画素で説明したが、画素グループは注目画素に後続する複数の画素に限らず、注目画素の前後の連続する画素であってもよい。更に、画素グループは連続する必要はなく、2画素おきに選択するような不連続画素であってもよい。また、前記したようにグループを形成する画素は5個に限定されることは言うまでもない。同時に、図6と図7で使用した数値は理解を助けるための数値であり、この数値に本発明の実施形態が限定されるものではない。

【0042】

また、図6や図7で説明した補正を、LEDアレイ露光装置7内に制御部を設けて、その制御部で行ってもよいし、図2や図4で示したような外部の制御部や、カラープリンタ1の制御回路に含ませてもよい。また、このような補正制御を演算で行ってもよいし、ASICなどに統合して回路で行うことも可能である。

【0043】

【発明の効果】

本発明では、レンズアレイを透過した各LED発光素子のビーム面積のばらつきに対するビーム面積補正と、現像バイアスの程度に応じてビーム面積補正の大小を調節する重み付けとを光量補正に重畠する構成としているため、従来のように光量補正のみでは効率的に抑制できなかった画像の濃度むらやスジを大幅に低減できるという優れた効果を奏するとともに、大きな現像バイアスに設定することが必要で、濃度むらや筋が発生しやすい場合でも、適切な補正が可能となる。

【0044】

更に、本発明では、補正対象となるLED発光素子を含む前後複数個のLED発光素子のビーム面積を平均化し、該平均値と補正対象となるLED発光素子のビーム面積の差分の大小に応じて行う構成にしているため、段階的に急激に行われる補正による弊害が起こりにくい構成になっている。

【0045】

また、本発明では、前記ビーム面積の平均値が移動平均値となるように、移動平均値の対象となる前記前後複数個のLED発光素子が、補正対象となるLED発光素子とともに移動する構成としているため、補正が緩やかに行われ、補正の

境界が認識されにくくなる。

【0046】

更に、本発明は、このようなLEDアレイ露光装置を画像形成装置に使用するため、与える現像バイアスが異なっても、また、複数の現像器で異なる現像バイアスを使用するカラー画像形成装置においても大きな効果を奏することが可能となる。

【図面の簡単な説明】

【図1】 本発明に係るLEDアレイ露光装置を使用したカラープリンタの概略を模式的に示す正面図である。

【図2】 本発明に係わるLEDアレイ露光装置の概略模式図で、(a)は上面図、(b)は正面図である。

【図3】 露光エネルギーとドット面積の関係を表す模式図である。

【図4】 LED発光素子を補正して駆動するカラープリンタ1の概略回路ブロック図である。

【図5】 補正強度の違いによる現像バイアス電圧と粒状度の関係を表した図である。

【図6】 本発明に係わる各LED発光素子の駆動補正方法を図式化したものである。

【図7】 本発明に係わる各LED発光素子の別の駆動補正方法を図式化したものである。

【符号の説明】

- 1 カラープリンタ
- 2 筐体
- 3B、3C、3M、3Y 画像形成部
- 4 現像器
- 5 感光体
- 6 主帯電器
- 7 LEDアレイ露光装置
- 8 搬送ベルト

9 転写ローラ

10B、10C、10M、10Y トナーホッパー

11a、11b 搬送ベルト駆動ローラ、

12 給紙カセット

13 給紙ガイド

14 用紙

15 排紙ガイド

16 排紙部

17 定着部

20 クリーニング部

30 基板

31 LEDアレイチップ

32 レンズアレイ

33 駆動IC

34 制御部

40 プリント制御部

41 補正回路

42 光量補正值記憶部

43 ビーム面積記憶部

44 プリントエンジン制御回路

45 現像器

【書類名】

図面

【図 1】

【図2】

(a)

(b)

【図3】

【図4】

【図 5】

補正強度の違いによる現像バイアスと粒状度の関係

【図 6】

S1	画素番号	N	1	2	3	4	5
S2	現像バイアス	S			340		
S3	光量補正值	L	1.1	0.8	1.5	0.9	1
S4	ビーム面積	A	10	8	15	5	12
S5	ビーム面積平均値	M			10		
S6	差分(M-A)	D	0	2	-5	5	-2
S7	割合(D/M)	P	0	0.2	-0.5	0.5	-0.2
S8	ビーム面積補正值	B	割合(P)のランク付け (各画素ごと)				
S9	補正係数	C	ビーム面積補正值(B) × 現像バイアス(S)による重み (各画素ごと)				
S10	各LED発光素子駆動値	I	基準駆動値 × 光量補正值(L) × 補正係数(C) (各画素ごと)				

【図 7】

S1	画素番号	N	1	2	3	4	5	6	7	8	9	...
S2	現像バイアス	S										340
S3	光量補正值	L	1.1	0.8	1.5	0.9	1	0.5	1.2	1.3	0.5	...
S4	ビーム面積	A	10	8	15	5	12	14	6	9	10	...
S5-1	ビーム面積移動平均値	M1	10									
S5-2		M2										
S5-3		M3										
S5-4		M4										
S5-5		M5										
S6	差分(M-A)	D	0	2.8	-4.6	4.2	-1.8	...				
S7	割合(D/M)	P	0	0.26	-0.4	0.46	-0.2	...				
S8	ビーム面積補正值	B	割合(P)のランク付け (各画素ごと)									
S9	補正係数	C	ビーム面積補正值(B) × 現像バイアス(S)の重み (各画素ごと)									
S10	各LED発光素子駆動値	I	基準駆動値 × 光量補正值(L) × 補正係数(C) (各画素ごと)									

【書類名】 要約書

【要約】

【課題】 光量補正とともに、ビーム面積の補正に現像バイアスに対する補正を加味することにより、濃度むらやスジを大幅に低減することが可能なLEDアレイ露光装置及びそれを備えた画像形成装置を提供する。

【解決手段】 LEDアレイ露光装置において、レンズアレイを透過した各LED発光素子のビーム面積のばらつきに対するビーム面積補正と、現像バイアスの程度に応じてビーム面積補正の大小を調節する重み付けとが、光量補正に重畠される。

【選択図】 図7

特願 2002-316142

出願人履歴情報

識別番号 [000006150]

1. 変更年月日 2000年 1月31日
[変更理由] 名称変更
住 所 大阪府大阪市中央区玉造1丁目2番28号
氏 名 京セラミタ株式会社