EE 101: Basic Electronics Amplifier Basics

Nagarjuna Nallam

Department of EEE, IIT Guwahati, India

An ideal amplifier

What is the voltage gain as $v_{in} \rightarrow \infty$?

What is the voltage gain as $v_{in} \rightarrow \infty$?

What is the voltage gain as $v_{in} \rightarrow \infty$?

Transfer characteristics

Usable input DC voltage range

Transfer characteristics

Transfer characteristics of a practical amplifier

Large-signal characteristics

What is the voltage gain when $R_I \rightarrow 0$?

What is the voltage gain when $R_s \rightarrow \infty$?

A two-port model of a voltage amplifier

1.
$$A_{v0} = \frac{v_{out}}{v_{in}}|_{R_i = \infty}$$

2.
$$r_{in} = \frac{v_{in}}{i_{in}}|_{R_l = \infty}$$

3.
$$r_{out} = \frac{v_x}{i_y}|_{v_{in}=0}$$

Voltage gain
$$A_v = A_{v0} \times \frac{r_{in}}{r_{in} + R_s} \times \frac{R_l}{R_l + r_{out}}$$

An ideal single-ended amplifier

An ideal voltage amplifier

Equivalent model

$$r_{in} = \infty$$

$$r_{out}=0$$

Differential signal

Special case of a floating signal

Differential potential/signal: referenced with respect to each other terminal.

Common-mode signal

Common-mode potential/signal: present in both the signals

Need for differential processing

Single-ended signal processing: $MM - A_{v0} - MM$ Differential signal processing: Input common-mode signal Input con Rejected at the output Processed to the output

An ideal opamp

A differential amplifier

An equivalent model of a differential amplifier

Differential input
$$v_{id} = V_{ip} - V_{in}$$

An ideal opamp is an ideal differential amplifier with

$$r_{in} = \infty$$
 $r_{out} = 0$

$$A_{v0} o \infty$$

Summary

- Amplifiers: V-V, I-I, V-I, and I-V
- Small signal Vs. Large signal
- ▶ Amplifier parameters: A_{v0} , r_{in} , and r_{out}
- A two-port model of the amplifier
- Effect of source and load resistances on the voltage gain
- Differential and Common-mode signals
- An ideal OpAmp

Reference Book

[1] A. Sedra and K. C. Smith, "Microelectronic Circuits," 6th Ed., Oxford university press, 2011.