Eric Du		Physics 221B
Final Exam	Quantum Mechanics II	March 2, 2025

Header styling inspired by CS 70: https://www.eecs70.org/

Problem 1

We are given the Lagrangian density of the Dirac field

$$\mathcal{L}(\psi,\psi_{,\mu}) = \frac{i}{2}\overline{\psi}\gamma^{\mu}\psi_{,\mu} - \frac{i}{2}\psi_{,\mu}\psi - m\overline{\psi}\psi$$

- a) Show that \mathcal{L} is not invariant under local U(1) gauge transformations $\psi \to \psi' = e^{i\lambda(x)}\psi$.
- b) In \mathcal{L} , replace the ordinary derivatives $\psi_{,\mu}=\partial_{\mu}\psi$ by covariant derivatives $\psi_{;\mu}=D_{\mu}\psi=(\partial_{\mu}+igA_{\mu})\psi$, with a new vector field $A_{\mu}(x)$ and a constant g. Find a condition on A_{μ} so that the new Lagrangian density \mathcal{L}' is invariant under local gauge transformations.
- c) Derive the Dirac equation from the new Lagrangian \mathcal{L}' . Waht is the interpretation of A_{μ} ?

Calculate the propagator $\Delta(x) = \int \frac{d^3k}{(2\pi)^3} \frac{1}{\omega_k} \sin(kx)$ for both spacelike and timelike x explicitly in terms of Bessel functions.

A particle of mass m and energy E scatters at a scattering center. At scattering resonance, one of the partial amplitudes has a maximum. State the scattering cross section σ at that E, assuming that the other partial amplitudes are neglegible.

The exchange integral ($e = \hbar = 1$)

$$K_{10}^{nl} = \int d^3r_1 d^3r_2 \frac{\psi_{100}^*(\mathbf{r}_1)\psi_{nl0}^*(\mathbf{r}_2)\psi_{100}(\mathbf{r}_2)\psi_{nl0}(\mathbf{r}_1)}{|\mathbf{r}_1 - \mathbf{r}_2|}$$

where ψ_{nlm} is the usual hydrogenlike wave function, is responsible for the energy difference between the ortho- and parahelium states.

- a) Expand $1/|\mathbf{r}_1 \mathbf{r}_2|$ in terms of spherical harmonics and express K_{10}^{nl} as a purely radial integral $K_{10}^{nl} \int dr_1 r_1^2 \int dr_2 r_2^2 \dots$ Denote R_{nl} are the radial functions corresponding to ψ_{nlm} , $r_> = \max(r_1, r_2)$, and $r_< = \min(r_1, r_2)$.
- b) For l = n 1, argue why K can't be negative. Hint: How many zeros do the Radial functions have?

A charged, spinless particle with mass m (such as an ion) is trapped in a 3-D harmonic potential $V=\frac{1}{2}m\omega^2r^2$, where r is the distance from the center. Denote $|l,m,n\rangle$ the energy eigenstates. The electromagnetic field is initially in the vacuum state. Give an expression for the decay time constant of the state $|1,0,0\rangle$ into the state $|0,0,0\rangle$. Please don't evaluate any matrix elements explicitly. Instead, state only whether they are zero, linear in the electromagnetic field operator ${\bf A}$, or quadratic.