

27

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07C 63/04, C07D 307/77, A61K 31/19		A2	(11) International Publication Number: WO 98/42650 (43) International Publication Date: 1 October 1998 (01.10.98)
(21) International Application Number: PCT/US98/05455		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).	
(22) International Filing Date: 19 March 1998 (19.03.98)			
(30) Priority Data: 60/040,870 21 March 1997 (21.03.97) US			
(71) Applicant (for all designated States except US): ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US).			
(72) Inventors; and (75) Inventors/Applicants (for US only): FLEISCH, Jerome, H. [US/US]; 10532 Coppergate, Carmel, IN 46032 (US). JACKSON, William, T. [US/US]; 7036 Bexley Drive, Indianapolis, IN 46256 (US). SAWYER, Jason, S. [US/US]; 5718 North Winthrop Avenue, Indianapolis, IN 46220 (US).			
(74) Agents: LENTZ, Nelsen, L. et al.; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285 (US).			
<p>Published <i>Without international search report and to be republished upon receipt of that report.</i></p>			

(54) Title: LEUKOTRIENE ANTAGONISTS USEFUL FOR TREATING CYSTIC FIBROSIS

(57) Abstract

This invention provides methods for the treatment or inhibiting of the symptoms of cystic fibrosis which comprises administering to a mammal in need thereof an effective amount of a compound having activity as a leukotriene B₄ antagonist.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

-1-

LEUKOTRIENE ANTAGONISTS USEFUL FOR TREATING CYSTIC FIBROSIS

5

Cystic fibrosis (CF) is an inherited disease that usually manifests itself in early childhood. Increasing numbers of children with cystic fibrosis are now surviving into young adulthood: the median age of survival currently 10 exceeds 30 years. Some patients have a variant form of the disease in which symptoms first appear during adolescence or adulthood.

More than 200 different cystic fibrosis transmembrane conduct and regulator (CFTR) mutations have been detected. 15 Although the function of CFTR remains unknown, it appears to be closely involved with chloride transport across epithelial membranes.

Nearly all exocrine glands are affected in the pathology of CF in varying distribution and degree of 20 severity. Involved glands fall into 3 types: (1) those that become obstructed by viscid or solid eosinophilic material in the lumen (pancreas, intestinal glands, intrahepatic bile ducts, gallbladder, submaxillary glands); (2) those that produce an excess of histologically normal 25 secretions (tracheobronchial and Brunner's glands); and (3) those that are normal histologically but secrete excessive Na and Cl (sweat, parotid, and small salivary glands). Duodenal secretions are viscid and contain an abnormal mucopolysaccharide.

30

It is likely that impaired tracheobronchial clearance of the abnormal secretions leads to widespread mucous plugging of airways with secondary bacterial infection and consequent generalized bronchiectasis. The bacterial flora 35 in the airways is highly stereotyped: early in the course of the disease, *S.aureus* is found in the sputum; subsequently, mucoid strains of *P.aeruginosa* are isolated

-2-

(mucoid in this context refers to a slimy substance secreted by the colony of organisms growing on a culture plate).

Fifty percent of all patients present with pulmonary manifestations usually consisting of chronic cough and

5 wheezing associated with recurrent or chronic pulmonary infections. Cough is the most troublesome complaint, often accompanied by gagging, vomiting, and disturbed sleep. With disease progression, there are intercostal retractions, use of accessory muscles of respiration, a barrel-chest

10 deformity, digital clubbing, and cyanosis. Upper respiratory tract involvement includes nasal polyposis and opacification of the paranasal sinuses. Teenagers may have retarded growth, delayed onset of puberty, and a declining tolerance for exercise. Pulmonary complications in

15 adolescents and adults include pneumothorax, hemoptysis, and right heart failure secondary to pulmonary hypertension.

Insulin-requiring diabetes develops in 2 to 3% of patients, and multinodular biliary cirrhosis with varices and portal hypertension develops in 4 to 5% of adolescents and adults.

20 Chronic and/or recurrent abdominal pain may be related to intussusception, peptic ulcer disease, periappendiceal abscess, pancreatitis, gastroesophageal reflux, esophagitis, gallbladder disease, or episodes of partial intestinal obstruction secondary to abnormally viscous fecal contents.

25 The chest radiograph may strongly suggest the diagnosis of cystic fibrosis. Extrapulmonary manifestations may also suggest the diagnosis of cystic fibrosis. Prominent among these findings are pancreatic insufficiency with consequent steatorrhea, recurrent partial intestinal obstruction caused by abnormal fecal accumulation (so-called meconium ileus equivalent), heat prostration, hepatic cirrhosis, and aspermia in males.

A sweat test with pilocarpine iontophoresis performed in an experienced laboratory is highly sensitive and 35 specific for cystic fibrosis. Sweat chloride concentrations exceeding 60 mEq/L are found in 98 percent of patients with cystic fibrosis. Although sweat chloride concentrations

-3-

increase with age, values greater than 80 mEq/L are not found in normal persons or in patients with any other respiratory illness.

Treatment of cystic fibrosis includes management of 5 infections and use of respiratory therapy modalities designed to mobilize secretions, including regular percussion and postural drainage.

Research in the area of allergic reactions of the lung has provided evidence that arachidonic acid derivatives 10 formed by the action of lipoxygenases are related to various disease states. Some of these arachidonic acid metabolites have been classified as members of a family of eicosatetraenoic acids termed leukotrienes. Three of these substances are currently thought to be major components of 15 what has been previously called slow reacting substance of anaphylaxis (SRS-A) and have been designated leukotrienes C₄, D₄, and E₄ (LTC₄, LTD₄, and LTE₄, respectively).

Another arachidonic acid metabolite, leukotriene B₄ (LTB₄), is a proinflammatory lipid which has been implicated 20 in the pathogenesis of psoriasis, arthritis, chronic lung diseases, acute respiratory distress syndrome, shock, asthma, inflammatory bowel diseases, and other inflammatory states characterized by the infiltration and activation of polymorphonuclear leukocytes and other proinflammatory 25 cells. Thus activated, the polymorphonuclear leukocytes liberate tissue-degrading enzymes and reactive chemicals causing the inflammation. Antagonism of LTB₄ should therefore provide a novel therapeutic approach to treatment of these and other LTB₄ mediated conditions.

Because of the debilitating effects of cystic fibrosis 30 there continues to exist a need for effective treatment.

This invention provides a method for the treatment or inhibiting cystic fibrosis in mammals comprising 35 administering to a mammal in need thereof an effective amount of a compound of Formula I

-4-

wherein:

5

R₁ is C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl, C₁-C₄ alkoxy, (C₁-C₄ alkyl)thio, halo, or R₂-substituted phenyl;

10

each R₂ and R₃ are each independently hydrogen, halo, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, (C₁-C₄ alkyl)-S(O)_q-, trifluoromethyl, or di-(C₁-C₃ alkyl)amino;

15

X is -O-, -S-, -C(=O), or -CH₂-;

Y is -O- or -CH₂-;

20

or when taken together, -X-Y- is -CH=CH- or

—C≡C— ;

25

Z is a straight or branched chain C₁-C₁₀ alkylideny;

30

A is a bond, -O-, -S-, -CH=CH-, or -CR_aR_b-, where R_a and R_b are each independently hydrogen, C₁-C₅ alkyl, or R₇-substituted phenyl, or when taken together with the carbon atom to which they are attached form a C₄-C₈ cycloalkyl ring;

-5-

R₄ is R₆

-6-

where,

5 each R₆ is independently -COOH, 5-tetrazolyl,
 -CON(R₉)₂, or -CONHSO₂R₁₀;

10 each R₇ is hydrogen, C₁-C₄ alkyl, C₂-C₅ alkenyl,
 C₂-C₅ alkynyl, benzyl, methoxy, -W-R₆, -T-G-R₆,
 (C₁-C₄ alkyl)-T-(C₁-C₄ alkylidenyl)-O-, or
 hydroxy;

R₈ is hydrogen or halo;

-7-

each R₉ is independently hydrogen, phenyl, or C₁-C₄ alkyl, or when taken together with the nitrogen atom form a morpholino, piperidino, piperazino, or pyrrolidino group;

5

R₁₀ is C₁-C₄ alkyl or phenyl;

R₁₁ is R₂, -W-R₆, or -T-G-R₆;

10

each W is a bond or straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

15

each G is a straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

each T is a bond, -CH₂-, -O-, -NH-, -NHCO-, -C(=O)-, or -S(O)_q-;

20

K is -C(=O)- or -CH(OH)-;

each q is independently 0, 1, or 2;

p is 0 or 1; and

25

t is 0 or 1;

provided when X is -O- or -S-, Y is not -O-;

30

provided when A is -O- or -S-, R₄ is not R₆;

provided when A is -O- or -S- and Z is a bond, Y is not -O-; and

35

provided W is not a bond when p is 0;

-8-

or a pharmaceutically acceptable salt or solvate thereof.

The following definitions refer to the various terms used throughout this disclosure.

5 The term "C₁-C₅ alkyl" refers to the straight and branched aliphatic radicals of 1 to 5 carbon atoms such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl, 2,2-dimethylpropyl, and the like. Included within this definition are the terms "C₁-C₃ alkyl" and
10 "C₁-C₄ alkyl".

The term "C₂-C₅ alkenyl" refers to straight and branched aliphatic radicals of 2 to 5 carbon atoms containing one double bond, such as -CH=CH₂, -CH₂CH=CH₂, -CH₂CH₂CH=CH₂, -CH₂C(CH₃)=CH₂, -CH₂CH=C(CH₃)₂, and the like.

15 The term "C₂-C₅ alkynyl" refers to straight and branched aliphatic residues of 2 to 5 carbon atoms containing one triple bond, such as -C≡CH, -CH₂-C≡CH, -CH₂CH₂C≡CH, -CH₂CH(CH₃)C≡CH, -CH₂C≡CCH₃, and the like.

20 The term "C₁-C₄ alkoxy" refers to methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, and tert-butoxy.

The term "halo" refers to fluoro, chloro, bromo, and iodo.

25 The term "C₁-C₁₀ alkylideny" refers to a divalent radical derived from a C₁-C₁₀ alkane such as -CH₂-, -CH(CH₃)-, -C(CH₃)₂-, -CH(C₂H₅)-, -CH₂CH₂-, -CH₂CH(CH₃)-, -CH(CH₃)CH₂-, -CH(CH₃)CH(CH₃)-, -CH₂C(CH₃)₂-, -CH₂CH(C₂H₅)-, -CH₂CH₂CH₂-, -CH₂CH(CH₃)CH₂-, -CH₂CH(C₂H₅)CH₂-, -CH₂CH₂CH(C₂H₅)-, -C(CH₃)₂CH₂CH₂-, -CH(CH₃)CH₂CH(CH₃)-, -CH₂CH₂CH₂CH₂-, -CH₂C(CH₃)₂CH₂CH₂-,
30 -CH₂C(CH₃)₂CH₂-, -CH₂CH₂CH(C₂H₅)CH₂-, -CH₂CH₂CH₂CH₂CH₂-, -CH(CH₃)CH₂CH₂CH₂CH₂CH₂-, -CH₂CH₂CH₂CH₂CH₂CH₂-, and the like. Included within this definition are the terms "C₁-C₄ alkylidene" and "C₂-C₄ alkylidene".

35 The term "C₄-C₈ cycloalkyl" refers to a cycloalkyl ring of four to eight carbon atoms, such as cyclobutyl, cyclopentyl, cyclohexyl, 4,4-dimethylcyclohexyl, cycloheptyl, cyclooctyl, and the like.

-9-

The term "straight or branched chain divalent hydrocarbyl residue of one to eight carbon atoms" refers to a divalent radical derived from a straight or branched alkane, alkene, or alkyne of one to eight carbon atoms.

5 Depending upon the branching and number of carbon atoms, as will be appreciated by organic chemists, such a moiety can contain one, two or three double or triple bonds, or combinations of both. As such, this term can be considered an alkylidene group as defined above containing from 1 to 8
10 carbon atoms optionally containing one to three double or triple bonds, or combinations of the two, limited as noted in the preceding sentence.

This invention includes the pharmaceutically acceptable base addition salts of the compounds of Formula I. Such salts include those derived from inorganic bases, such as ammonium and alkali and alkaline earth metal hydroxides, carbonates, bicarbonates, and the like, as well as salts derived from basic organic amines, such as aliphatic and aromatic amines, aliphatic diamines, hydroxyalkylamines, and the like. Such bases useful in preparing the salts of this invention thus include ammonium hydroxide, potassium carbonate, sodium bicarbonate, calcium hydroxide, methyl amine, diethyl amine, ethylene diamine, cyclohexylamine, ethanolamine, and the like. The potassium and sodium salt forms are particularly preferred.

25 This invention includes both mono-salt forms, i.e., a 1:1 ratio of a compound of Formula I with a base as previously described, as well as di-salt forms in those instances where a compound of Formula I has two acidic groups. In addition, this invention includes any solvate forms of the compounds of Formula I or salts thereof, such as ethanol solvates, hydrates, and the like.

30 It is recognized that in compounds having branched alkyl, alkylidenyl, or hydrocarbyl functionality, and in those compounds bearing double or triple bonds, various stereoisomeric products may exist. This invention is not limited to any particular stereoisomer but includes all

-10-

possible individual isomers and mixtures thereof. The term "5-tetrazolyl" refers to both tautomers, ie, (1H)-5-tetrazolyl and (2H)-5-tetrazolyl.

5 A most preferred group of compounds employed in the methods of the present invention are those compounds of Formula Ia:

10

and pharmaceutically acceptable base addition salts thereof. Especially preferred are those compounds wherein R₂ is halo, particularly fluoro. Preferred R₁ substituents are propyl
15 and especially ethyl.

Preferred Z substituents include C₂-C₄ alkylidene, particularly -CH₂CH₂- and -CH₂CH₂CH₂CH₂- . Preferred A groups include -O-, -CH₂-, -CH(R₇-substituted phenyl)-, and -C(CH₃)₂-.

20 Preferred R₄ groups include -COOH, 5-tetrazolyl, or a mono-, di-, or tri-cyclic group as drawn above wherein there is at least one acidic group attached to a ring, such as -W-COOH, -T-G-COOH, or the corresponding tetrazole derivatives. The preferred W moiety is that of a bond or
25 straight chain C₁-C₄ alkylidene; preferred G moieties are straight chain C₁-C₄ alkylidene. It is preferred that R₅ or R₇ be C₁-C₄ alkyl, especially n-propyl.

Particularly preferred groups are those wherein A is -CH(R₇-substituted phenyl)- and R₄ is -COOH or 5-tetrazolyl. Also preferred are those compounds wherein A is -O- and R₄ is

-11-

Preferred aspects of this substructure are those wherein R₇ is C₁-C₄ alkyl, especially n-propyl, and R₆ is 5 -W-COOH. Particularly preferred are those compounds wherein T is -O- or -S- and W is a bond.

Particularly preferred compounds of the instant invention include 2-[2-propyl-3-[3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid; 10 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxyphenoxy)phenyl)propionic acid; 1-(4-(carboxymethoxy)phenyl)-1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)hexane ; 3-[4-[7-carboxy-9-15 oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]-9H-xanthene]]propanoic acid; 5-[3-[2-(1-carboxy)-ethyl]-4-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]phenyl]-4-pentyanoic acid or a pharmaceutically acceptable salt or solvate thereof.

20 The leukotriene B₄ (LTB₄) antagonists employed in the methods of the present invention may be synthesized essentially as described in US Patent No. 5,462,954 issued October 31, 1995, the entire contents of which are herein incorporated by reference.

25 The following examples further illustrate the preparation of the intermediates and compounds employed in this invention. The examples are illustrative only and are not intended to limit the scope of the invention. Melting points were determined on a Thomas-Hoover apparatus and are uncorrected. NMR spectra were determined on a GE QE-300 spectrometer. All chemical shifts are reported in parts per 30 million (Δ) relative to tetramethylsilane. Chemical shifts

-12-

of aromatic protons of quinoline species in DMSO-d₆ are concentration dependent. The following abbreviations are used to denote signal patterns: s = singlet, d = doublet, t = triplet, q = quartet, b = broad, m = multiplet. Infrared spectra were determined on a Nicolet DX10 FT-IR spectrometer. Mass spectral data were determined on a CEC-21-110 spectrometer using electron impact (EI) conditions, a MAT-731 spectrometer using free desorption (FD) conditions, or a VG ZAB-3F spectrometer using fast atom bombardment (FAB) conditions. Silica gel chromatography was performed using ethyl acetate/hexane gradients unless otherwise indicated. Reverse-phase chromatography was performed on MCI CHP20P gel using an acetonitrile/water or methanol/water gradient unless otherwise indicated. Tetrahydrofuran (THF) was distilled from sodium/benzophenone ketyl immediately prior to use. All reactions were conducted under argon atmosphere with stirring unless otherwise noted. Where structures were confirmed by infra-red, proton nuclear magnetic resonance, or mass spectral analysis, the compound is so designated by "IR", "NMR", or "MS", respectively.

Example 1

3-[2-[3-[(5-Ethyl-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]propoxy]-1-dibenzofuran]propanoic acid disodium salt

-13-

A. Preparation of 3,3-diethoxy-2,3-dihydro-1H-benzofuro-[3,2-f][1]benzopyran.

5

A solution of 2-hydroxydibenzofuran (5.00 g, 27.2 mmol), triethylorthoacrylate (10.1 g, 54.3 mmol) and pivalic acid (1.39 g, 13.6 mmol) in toluene (100 mL) was refluxed for 18 hours. The mixture was cooled to room temperature and washed once with water and once with a saturated sodium bicarbonate solution, dried over sodium sulfate, filtered and concentrated in vacuo to provide an orange oil. This material was diluted with hexane and maintained at -20°C for 18 hours. The resulting crystals were collected via vacuum filtration to provide 5.67 g (67%) of the desired title intermediate, mp 64°C; NMR (CDCl_3) 7.96 (d, $J = 7.8$ Hz, 1H), 7.57 (d, $J = 8.0$ Hz, 1H), 7.46 (t, $J = 8$ Hz, 1H), 7.35 (m, 2H), 7.06 (d, $J = 8.8$ Hz, 1H), 3.82 (q, $J = 7.2$ Hz, 2H), 3.73 (q, $J = 6.8$ Hz, 2H), 3.35 (t, $J = 6.9$ Hz, 2H), 2.29 (t, $J = 7.0$ Hz, 2H), 1.23 (t, $J = 7.1$ Hz, 6H); MS-FD m/e 312

-14-

(p); IR (CHCl₃, cm⁻¹) 2982, 1494, 1476, 1451, 1434, 1251, 1090, 1054, 975.

Analysis for C₁₉H₂₀O₄:

Calc: C, 73.06; H, 6.45;

5 Found: C, 72.81; H, 6.72.

B. Preparation of 3-[1-(2-hydroxydibenzofuran)]-propanoic acid ethyl ester.

10 A mixture of 3,3-diethoxy-2,3-dihydro-1H-benzofuro-[3,2-f][1]benzopyran (3.50 g, 11.2 mmol) and 10% aqueous hydrochloric acid (5 mL) in ethyl acetate (30 mL) was stirred at room temperature for 1 hour. The resulting mixture was washed once with water, dried over sodium sulfate, filtered and concentrated *in vacuo* to provide a tan solid.
15 Recrystallization from hexane/ethyl acetate provided 3.11 g (98%) of the desired title intermediate as an off-white crystalline material: mp 128-131°C; NMR (CDCl₃) 7.88 (d, J = 7.7 Hz, 1H), 7.59 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 7.2 Hz, 1H), 7.37 (d, J = 8.9 Hz, 1H), 7.36 (t, J = 6.6 Hz, 1H), 7.13 (d, J = 8.8 Hz, 1H), 7.13 (q, J = 8.8 Hz, 2H), 3.43 (t, J = 5.8 Hz, 2H), 3.01 (t, J = 7.7 Hz, 2H), 1.23 (t, J = 7.2 Hz, 3H); MS-FD m/e 284 (100, p), 256 (65), 238 (17); IR (KBr, cm⁻¹) 2985 (b), 1701, 1430, 1226, 1183, 1080.

25 Analysis for C₁₇H₁₆O₄:

Calc: C, 71.82; H, 5.67;

Found: C, 71.90; H, 5.43.

C. Preparation of 3-[2-[3-[[5-ethyl-2-(phenylmethoxy)-[1,1'-biphenyl]-4-yl]oxy]propoxy]-1-dibenzofuran]propanoic acid ethyl ester.

30 3-[1-(2-Hydroxydibenzofuran)]propanoic acid ethyl ester (625 mg, 2.20 mmol) was dissolved in dimethylformamide (10 mL) and carefully treated at room temperature with 95% sodium hydride (58 mg, 2.4 mmol). When gas evolution had

-15-

ceased, 2-benzyloxy-1-phenyl-5-ethyl-4-(3-chloro-1-propyloxy)benzene (836 mg, 2.20 mmol) was added and the resulting mixture was stirred for 18 hours. The mixture was diluted with ether and washed once with water. The organic layer was dried over sodium sulfate, filtered, and concentrated *in vacuo* to provide a dark oil. Silica gel chromatography (ethyl acetate/hexane) provided 200 mg (14%) of the desired titled intermediate as a colorless oil: NMR (CDCl_3) 8.11 (d, $J = 7.7$ Hz, 1H), 7.57 (m, 3H), 7.48 (t, $J = 7.3$ Hz, 1H), 7.20-7.44 (m, 10 H), 7.17 (s, 1H), 7.08 (d, $J = 8.9$ Hz, 1H), 6.67 (s, 1H), 5.05 (s, 2H), 4.29 (t, $J = 6.2$ Hz, 2H), 4.26 (t, $J = 6.1$ Hz, 2H), 4.15 (q, $J = 7.2$ Hz, 2H), 3.54 (t, $J = 8.5$ Hz, 2H), 2.67 (m, 4H), 2.37 (t, $J = 6.0$ Hz, 2H), 1.21 (m, 6H).

15

D. Preparation of 3-[2-[3-[(5-ethyl-2-hydroxy[1,1'-biphenyl]-4-yl)oxy]propoxy]-1-dibenzofuran]propanoic acid disodium salt.

20

To a nitrogen-purged solution of 3-[2-[3-[(5-ethyl-2-(phenylmethoxy)[1,1'-biphenyl]-4-yl)oxy]propoxy]-1-dibenzofuran]propanoic acid ethyl ester (200 mg, 0.318 mmol) in a 1:1 mixture of methanol/tetrahydrofuran (40 mL) was added 10% palladium on carbon (25 mg). The resulting suspension was hydrogenated at 1 atm pressure for 24 hours at room temperature. The mixture was filtered through a short pad of Florisil® and the filtrate concentrated *in vacuo*. The residue was dissolved in a 1:1 mixture of methanol/tetrahydrofuran (20 mL) and treated with 5N sodium hydroxide solution (2 mL) at room temperature for 24 hours. The resulting mixture was extracted once with diethyl ether. The aqueous layer was acidified with 5N hydrochloric acid solution and extracted twice with methylene chloride. The combined methylene chloride fractions were concentrated *in vacuo*. The residue was dissolved in a minimum of 1N sodium hydroxide solution and purified on HP-20 resin to provide 53 mg (30%) of the desired title product as a fluffy white

-16-

solid: NMR (DMSO-d₆) 8.12 (d, J = 6.9 Hz, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.37-7.57 (m, 5H), 7.30 (m, 2H), 7.14 (m, 2H), 6.96 (s, 1H), 6.93 (s, 1H), 4.30 (t, J = 7.3 Hz, 2H), 4.14 (t, J = 5.4 Hz, 2H), 2.48 (m, 4H), 2.23 (m, 4H), 1.10 (t, J = 7.6 Hz, 3H); MS-FAB m/e 555 (88, p + 1), 533 (62); IR (CHCl₃, cm⁻¹) 3384 (b), 2969, 1566, 1428, 1257, 1181.

5 Analysis for C₃₂H₂₈O₆Na₂:

Calc: C, 69.31; H, 5.09;

Found: C, 69.51; H, 5.39.

10

Example 2

15 7-Carboxy-9-oxo-3-[3-(2-ethyl-5-hydroxy-4-phenylphenoxy)propoxy]-9H-xanthene-4-propanoic acid disodium salt monohydrate

A mixture of 2-benzyloxy-1-phenyl-5-ethyl-4-(3-chloro-1-propyloxy)benzene (749 mg, 1.97 mmol), ethyl 7-carboethoxy-3-hydroxy-9-oxo-9H-xanthene-4-propanoate (729 mg, 1.97 mmol), potassium carbonate (1.36 g, 9.85 mmol) and potassium iodide (33 mg, 0.20 mmol) was refluxed for 24 hours. Dimethylsulfoxide (2 mL) was added and heating continued for 24 hours. The reaction mixture was cooled to room temperature, diluted with ethyl acetate, and washed once with water. The organic layer was dried over sodium sulfate, filtered and concentrated in vacuo to reveal a tan solid. This material was dissolved in ethyl acetate (30 mL) and the resulting solution purged with nitrogen. To this solution was added 10% palladium on carbon (120 mg) and the

-17-

resulting suspension hydrogenated at 1 atmosphere of pressure. The solution was filtered and concentrated *in vacuo* to provide a colorless oil. This material was dissolved in a solution of 1:1 methanol/tetrahydrofuran (30 mL) and treated with 5N sodium hydroxide solution (2 mL) at room temperature for 18 hours. The resulting solution was extracted once with diethyl ether and the aqueous layer acidified with 5N hydrochloric acid solution. The resulting precipitate was collected via suction filtration. This material was converted to the di-sodium salt and purified as described above for the preparation of Example 1(D) to provide 390 mg (56%) of the desired title product as a fluffy white solid: NMR (DMSO-d₆) 12.65 (s, 1H, -OH), 8.65 (s, 1H), 8.28 (dd, J = 8.5, 2.0 Hz, 1H), 8.01 (d, J = 8.9 Hz, 1H), 7.50 (m, 3H), 7.29 (t, J = 7.8 Hz, 2H), 7.17 (m, 2H), 6.93 (s, 1H), 6.89 (s, 1H), 4.26 (m, 4H), 3.12 (m, 2H), 2.47 (m, 2H), 2.23 (m, 2H), 1.10 (t, J = 7.4 Hz, 3H); MS-FAB m/e 627 (24, p), 605 (40), 583 (24), 331 (24), 309 (100); IR (KBr, cm⁻¹) 3419 (b), 2962, 1612, 1558, 1443, 1390, 1277, 1084.

Analysis for C₃₄H₂₈O₉Na₂·H₂O:

Calc: C, 63.34; H, 4.69;

Found: C, 63.36; H, 4.50.

2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid sodium salt

-18-

A. Preparation of 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-(phenylmethoxy)phenoxy]propoxy]phenoxy]-5 benzoic acid methyl ester.

A mixture of 2-benzyloxy-1-(4-fluorophenyl)-5-ethyl-4-(3-chloro-1-propyloxy)benzene (20.0 g, 50.2 mmol) and sodium iodide (75.3 g, 502 mmol) in 2-butanone (200 mL) was refluxed for 6 hours. The mixture was diluted with ether and washed once with water. The organic layer was dried over sodium sulfate, filtered, and concentrated in vacuo to provide a colorless oil. This material was dissolved in

-19-

dimethylformamide (100 mL) and treated with 2-(3-hydroxy-2-propylphenoxy)benzoic acid methyl ester (14.4 g, 50.2 mmol) and potassium carbonate (20.8 g, 151 mmol) at room temperature for 24 hours. This mixture was diluted with water and twice extracted with ether. The aqueous layer was separated and back-extracted once with ethyl acetate. The combined organic layers were dried over sodium sulfate, filtered, and concentrated *in vacuo* to provide a yellow oil. Silica gel chromatography provided 25.4 g (78%) of the desired title intermediate as a pale golden oil: NMR (CDCl_3) 7.91 (d, $J = 7.8$ Hz, 1H), 7.54 (d, $J = 8.6$ Hz, 1H), 7.52 (d, $J = 8.5$ Hz, 1H), 7.25-7.43 (m, 6H), 7.03-7.38 (m, 5H), 6.84 (d, $J = 8.3$ Hz, 1H), 6.71 (d, $J = 8.1$ Hz, 1H), 6.63 (s, 1H), 6.47 (d, $J = 8.1$ Hz, 1H), 5.03 (s, 2H), 4.24 (t, $J = 5.7$ Hz, 2H), 4.21 (t, $J = 5.8$ Hz, 2H), 3.86 (s, 3H), 2.69 (t, $J = 7.8$ Hz, 2H), 2.64 (t, $J = 7.7$ Hz, 2H), 2.34 (quintet, $J = 6.0$ Hz, 2H), 1.60 (heptet, $J = 5.0$ Hz, 2H), 1.22 (t, $J = 7.5$ Hz, 3H), 0.94 (t, $J = 7.5$ Hz, 3H); MS-FD m/e 648 (p); IR (CHCl_3 , cm^{-1}) 2960, 1740, 1604, 1497, 1461, 1112.

Analysis for $\text{C}_{41}\text{H}_{41}\text{O}_6\text{F}$:

Calc: C, 75.91; H, 6.37;
Found: C, 76.15; H, 6.45.

B. Preparation of 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid methyl ester.

2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-(phenylmethoxy)phenoxy]propoxy]phenoxy]benzoic acid methyl ester (33.0 g, 50.9 mmol) was de-benzylated as described above for the preparation of Example 2 to provide 27.3 g (96%) of the title intermediate as an amber oil: NMR (CDCl_3) 7.90 (dd, $J = 7.8, 1.7$ Hz, 1H), 7.42 (m, 3H), 7.05-7.23 (m, 4H), 6.99 (s, 1H), 6.84 (d, $J = 8.1$ Hz, 1H), 6.70 (d, $J = 8.1$ Hz, 1H), 6.55 (s, 1H), 6.46 (d, $J = 8.1$ Hz, 1H),

-20-

5.05 (s, 1H, -OH), 4.23 (m, 4H), 3.86 (s, 3H), 2.68 (t, J = 7.4 Hz, 2H), 2.62 (q, J = 7.5 Hz, 2H), 2.36 (quintet, J = 6.0 Hz, 2H), 1.60 (heptet, J = 7.7 Hz, 2H), 1.20 (t, J = 7.6 Hz, 3H), 0.94 (t, J = 7.4 Hz, 3H); MS-FD m/e 558 (p); IR (CHCl₃, cm⁻¹) 2965, 1727, 1603, 1496, 1458, 1306, 1112.

Analysis for C₃₄H₃₅O₆F:

Calc: C, 73.10; H, 6.31;
Found: C, 73.17; H, 6.42.

10 C. Preparation of 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid sodium salt.

15 2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid methyl ester (21.5 g, 38.5 mmol) was hydrolyzed as described above for the preparation of Example 2. The acid was converted to the sodium salt and purified as described above for the preparation of Example 1(D) to provide 16.7 g (77%) of the desired title product as a white amorphous solid: NMR (DMSO-d₆) 10.50 (bs, 1H, -OH), 7.51 (m, 3H), 7.20 (t, J = 7.4 Hz, 1H), 7.13 (m, 2H), 7.00 (m, 2H), 6.95 (s, 1H), 6.67 (dd, J = 8.2, 3.3 Hz, 2H), 6.62 (s, 1H), 6.26 (d, J = 8.2 Hz, 1H), 4.14 (t, J = 5.8 Hz, 2H), 4.02 (t, J = 5.7 Hz, 2H), 2.60 (t, J = 6.8 Hz, 2H), 2.47 (q, J = 7.3 Hz, 2H), 2.16 (t, J = 5.9 Hz, 2H), 1.45 (heptet, J = 7.5 Hz, 2H), 1.07 (t, J = 7.5 Hz, 3H), 0.81 (t, J = 7.4 Hz, 3H); MS-FAB m/e 568 (38, p + 1), 567 (100, p), 544 (86), 527 (77), 295 (65), 253 (45); IR (KBr, cm⁻¹) 3407 (b), 2962, 1603, 1502, 1446, 1395, 1239, 1112.

30 Analysis for C₃₃H₃₂O₆FNa:

Calc: C, 69.95; H, 5.69; F, 3.35;
Found: C, 69.97; H, 5.99; F, 3.52.

35 The methods of the present invention describe the use of leukotriene antagonists for the treatment or

-21-

inhibition of cystic fibrosis which is characterized by the excessive release of leukotriene B4.

The term "excessive release" of a leukotriene refers to an amount of the leukotriene sufficient to 5 exacerbate the symptoms of cystic fibrosis. The amount of leukotriene which is considered to be excessive will depend on a variety of factors, including the amount of leukotriene required to cause the symptoms of disease, and the species of the mammal involved. As will be appreciated by those 10 skilled in the art, the success of treating a mammal suffering from cystic fibrosis characterized by an excessive release of leukotriene with a compound of Formula I will be measured by the regression or prevention of the symptoms of the condition.

Cystic fibrosis is a multi-organ disease arising 15 from an abnormality of the chloride ion channel that regulates transportation of chloride ions across fluid-transporting epithelial cells. The defect leads to altered 20 secretions, blocked ducts and reduced mucosal defenses to infections. Ultimately, patients become hosts for chronic, recurring infections such as *Pseudomonas aeruginosa* in the lung. Once the infection persists in this organ, a chronic 25 inflammatory response ensues with massive infiltration of neutrophils. The sputum becomes extremely viscous due to accumulation of DNA from degraded neutrophils. In addition, much of the tissue damage in the lung is a result of proteases and reactive oxidants released by these granulocytes.

-22-

Assays

Assay 1

The effectiveness of compounds of Formula I to inhibit the binding of tritiated LTB₄ to guinea pig lung membranes
5 was determined as follows.

[³H]-LTB₄ Radioligand Binding Assay in Guinea Pig Lung
Membranes

10 [³H]-LTB₄ (196-200 Ci/mmol) was purchased from New England Nuclear (Boston, MA). All other materials were purchased from Sigma (St. Louis, MO). Incubations (555 mL) were performed in polypropylene minitubes for 45 minutes at 30°C and contained 25 mg of guinea pig lung membrane protein
15 (Silbaugh, et al., European Journal of Pharmacology, 223 (1992) 57-64) in a buffer containing 25 mM MOPS, 10 mM MgCl₂, 10 mM CaCl₂, pH 6.5, approximately 140 pM [³H]-LTB₄, and displacing ligand or vehicle (0.1% DMSO in 1 mM sodium carbonate, final concentration) as appropriate. The binding
20 reaction was terminated by the addition of 1 mL ice cold wash buffer (25 mM Tris-HCl, pH 7.5) followed immediately by vacuum filtration over Whatman GF/C glass fiber filters using a Brandel (Gaithersburg, MD) 48 place harvester. The filters were washed three times with 1 mL of wash buffer.
25 Retained radioactivity was determined by liquid scintillation counting at 50% counting efficiency using Ready Protein Plus cocktail (Beckman, Fullerton, CA). Nondisplaceable binding was determined in the presence of 1 mM LTB₄ and was usually less than 10% of total binding. Data
30 were analyzed using linear regression analysis of log-logit plots of the values between 10% and 90% of control binding to calculate IC₅₀s and slope factors (pseudo-Hill coefficients). IC₅₀ values thus obtained were corrected for radioligand concentration (Cheng and Prusoff, Biochem. Pharmacol., 22, 3099 (1973)) to calculate K_i values. pK_i is
35 the mean -log K_i for n experiments.

-23-

Compounds of the instant invention tested in the above assay were found to have a pKi of between 7 and 11.

A chronic endobronchial infection in rats serves as a
5 good model of the inflammatory response associated with
cystic fibrosis (Konstan, et al., Am. Rev. Respir. Dis.,
141, 186-92, 1990).

10 Assay 2

For an inoculum, a slurry of agarose beads containing
10⁷ colony-forming units per ml of *P.aeruginosa*, strain 3064
(a mucoid isolate from a cystic fibrosis patient) is
15 prepared. Young adult male rats weighing 150 grams are
lightly anesthetized with ether and inoculated in the left
lung with 60 µl of the slurry using a bead-tipped 20 gauge
needle inserted through a tracheal incision. Control groups
are injected with sterile untreated beads. Animals are
20 housed in hanging cages and allowed free access to rat chow
and water. Oral dosing with a compound of formula I or
vehicle is done twice daily for a period of 14 days. Daily
weights of each animal are recorded.

At the end of the dosing period, the rats are
25 sacrificed by exsanguination. Lungs from half of the
animals in each treatment group are used to make
histological examinations; lungs from the other half are
used for quantitative bacteriologic counts. The lungs used
for histologic examination are initially fixed in 10%
30 formalin in phosphate-buffered saline (PBS). The left lungs
are then cut sagitally into 3 slices, 3 mm thick, and the
entire medial, central and lateral surfaces embedded in
paraffin, then sectioned at 5 µm thickness and stained with
hematoxylin-eosin. For comparison with non-infected tissue,
35 a midsagittal slice of the right lung is also similarly
processed. Stained sections are viewed at 160-fold
magnification. Each section is divided into units of 0.75

-24-

mm square size and each square scored for the presence or absence of inflammation. Inflammatory foci consist of inflammatory cells as well as areas of necrosis and fibrosis. Six hundred squares are counted in the left lung 5 and 300 in the right lung. For bacteriologic examination, lungs are removed aseptically and homogenized in 50 ml of PBS. Serial dilutions are spread on replicate tryptic soy agar plates and colony-forming units counted after 20 hours incubation at 37°C. Dose-response effects are obtained by 10 dividing the animals into 4 experimental groups of 20 rats each. Animals in these groups are treated with either vehicle, or 10, 25 or 50 mg/kg doses of a compound of formula I. The effectiveness of a treatment is mainly assessed by comparing the percentage of left lung involved 15 in inflammation of the treated group to that of the vehicle control. Comparisons of weight gain and lung bacteriologic counts between the groups serve as secondary parameters of interest.

20 The therapeutic and prophylactic treatments provided by this invention are practiced by administering to a mammal in need thereof a dose of a compound of formula I or a pharmaceutically acceptable salt or solvate thereof, that is effective to inhibit or treat the symptoms of cystic 25 fibrosis.

The term "inhibit" includes its generally accepted meaning which includes prohibiting, preventing, restraining and slowing, stopping or reversing progression, severity or a resultant symptom. As such, the present method includes 30 both medical therapeutic and/or prophylactic administration as appropriate.

While it is possible to administer a compound employed in the methods of this invention directly without any formulation, the compounds are usually administered in the 35 form of pharmaceutical formulation comprising a pharmaceutically acceptable excipient and at least one compound of the present invention. The compounds or

-25-

formulations of the present invention may be administered by the oral and rectal routes, topically, parenterally, e.g., by injection and by continuous or discontinuous intra-arterial infusion, in the form of, for example, tablets,
5 lozenges, sublingual tablets, sachets, cachets, elixirs, gels, suspensions, aerosols, ointments, for example, containing from 0.01 to 90% by weight of the active compound in a suitable base, soft and hard gelatin capsules, suppositories, injectable solutions and suspensions in
10 physiologically acceptable media, and sterile packaged powders adsorbed onto a support material for making injectable solutions. Such formulations are prepared in a manner well known in the pharmaceutical art and comprise at least one active compound. See, e.g., REMINGTON'S
15 PHARMACEUTICAL SCIENCES, (16th ed. 1980).

In making the formulations employed in the present invention the active ingredient is usually mixed with an excipient, diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule, sachet, paper or other container. When the excipient serves as a diluent, it can be a solid, semi-solid, or liquid material, which acts as a vehicle, carrier or medium for the active ingredient. In preparing a formulation, it may be necessary to mill the active compound to provide the appropriate particle size prior to combining with the other ingredients. If the active compound is substantially insoluble, it ordinarily is milled to a particle size of less than 200 mesh. If the active compound is substantially water soluble, the particle size is normally adjusted by
20 milling to provide a substantially uniform distribution in the formulation, e.g. about 40 mesh.

Some examples of suitable carriers, excipients and diluents include lactose, dextrose, sucrose, sorbitol, mannitol, starches, gum acacia, calcium phosphate, alginate, tragacanth, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, tragacanth, gelatin, water, syrup, and methyl cellulose.

-26-

The formulations can additionally include: lubricating agents such as talc, magnesium stearate, and mineral oil; wetting agents; emulsifying and suspending agents; preserving agents such as methyl- and

5 propylhydroxybenzoates; sweetening agents; and flavoring agents. The compositions of the invention can be formulated so as to provide quick, sustained or delayed release of the active ingredient after administration to the patient by employing procedures known in the art.

10 The compounds of this invention may be delivered transdermally using known transdermal delivery systems and excipients. Most preferably, a compound of this invention is admixed with permeation enhancers including, but not limited to, propylene glycol, polyethylene glycol
15 monolaurate, and azacycloalkan-2-ones, and incorporated into a patch or similar delivery system. Additional excipients including gelling agents, emulsifiers, and buffers may be added to the transdermal formulation as desired.

20 For topical administration, a compound of this invention ideally can be admixed with any variety of excipients in order to form a viscous liquid or cream-like preparation.

25 For oral administration, a compound of this invention ideally can be admixed with carriers and diluents and molded into tablets or enclosed in gelatin capsules.

30 In the case of tablets, a lubricant may be incorporated to prevent sticking and binding of the powdered ingredients in the dies and on the punch of the tabletting machine. For such purpose there may be employed for instance aluminum, magnesium or calcium stearates, talc or mineral oil.

Preferred pharmaceutical forms of the present invention include capsules, tablets and aerosols.

35 The therapeutic and prophylactic treatments provided by this invention are practiced by administering to a mammal in need thereof a dose of a compound of formula I or a pharmaceutically acceptable salt or solvate thereof that is

-27-

effective to inhibit or treat the symptoms of cystic fibrosis.

Advantageously for this purpose, formulations may be provided in unit dosage form, preferably each dosage unit containing from about 5 to about 500 mg (from about 5 to 50 mg in the case of parenteral or inhalation administration, and from about 25 to 500 mg in the case of oral or rectal administration) of a compound of Formula I. Dosages from about 0.5 to about 300 mg/kg per day, preferably 0.5 to 20 mg/kg, of active ingredient may be administered although it will, of course, readily be understood that the amount of the compound or compounds of Formula I actually to be administered will be determined by a physician, in the light of all the relevant circumstances including the condition to be treated, the choice of compound to be administered and the choice of route of administration and therefore the above preferred dosage range is not intended to limit the scope of the present invention in any way.

The specific dose of a compound administered according to this invention to obtain therapeutic or prophylactic effects will, of course, be determined by the particular circumstances surrounding the case, including, for example, the route of administration the age, weight and response of the individual patient, the condition being treated and the severity of the patient's symptoms.

In general, the compounds of the invention are most desirably administered at a concentration that will generally afford effective results without causing any serious side effects and can be administered either as a single unit dose, or if desired, the dosage may be divided into convenient subunits administered at suitable times throughout the day.

While all of the compounds illustrated above exemplify LTB₄ inhibition activity in vitro, we have also discovered that compounds bearing a single acidic group (R₆) are considerably more orally bioactive when administered to mammals compared with those compounds bearing two such

-28-

acidic groups. Thus, a preferred embodiment when administering compounds of Formula I orally to mammals comprises administering compounds bearing a single acidic R₆ functionality.

5 The following formulation examples may employ as active compounds any of the compounds of this invention. The examples are illustrative only and are not intended to limit the scope of the invention in any way.

10

Formulation 1

Hard gelatin capsules are prepared using the following ingredients:

		<u>Quantity (mg/capsule)</u>
15	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxyphenoxy)phenyl)propanoic acid	250
	Starch	200
20	Magnesium stearate	10

The above ingredients are mixed and filled into hard gelatin capsules in 460 mg quantities.

25

Formulation 2

A tablet is prepared using the ingredients below:

		<u>Quantity (mg/tablet)</u>
30	1-(4-(Carboxymethoxy)phenyl)-1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)hexane	250
	Cellulose, microcrystalline	400
35	Silicon dioxide, fumed	10
	Magnesium stearate	5

-29-

The components are blended and compressed to form tablets each weighing 665 mg.

Formulation 3

5

An aerosol solution is prepared containing the following components:

	<u>Weight %</u>	
10		
	3-[4-[7-Carboxy-9-oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-9H-xanthene]]propanoic acid	0.25
	Ethanol	30.00
15	Propellant 11 (trichlorofluoromethane)	10.25
	Propellant 12 (Dichlorodifluoromethane)	29.75
	Propellant 114 (Dichlorotetrafluoroethane)	29.75
20		

The active compound is dissolved in the ethanol and the solution is added to the propellant 11, cooled to -30°C. and transferred to a filling device. The required amount is then fed to a container and further filled with the pre-mixed propellants 12 and 114 by means of the cold-filled method or pressure-filled method. The valve units are then fitted to the container.

30

-30-

Formulation 4

Tablets each containing 60 mg of active ingredient are made up as follows:

5	2-[2-Propyl-3-[3-[2-ethyl-5-hydroxy-4-(4-fluorophenyl)phenoxy]propoxy]phenoxy]-benzoic acid sodium salt	60 mg
	Starch	45 mg
10	Microcrystalline cellulose	35 mg
	Polyvinylpyrrolidone (as 10% solution in water)	4 mg
	Sodium carboxymethyl starch	4.5 mg
	Magnesium stearate	0.5 mg
15	Talc	1 mg
	Total	150 mg

The active ingredient, starch and cellulose are passed through a No. 45 mesh U.S. sieve and mixed thoroughly. The 20 solution of polyvinylpyrrolidone is mixed with the resultant powders which are then passed through a No. 14 mesh U.S. sieve. The granules so produced are dried at 50-60° and passed through a No. 18 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate and talc, 25 previously passed through a No. 60 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg.

-31-

Formulation 5

Capsules each containing 80 mg of medicament are made as follows:

5	5-[3-[2-(1-Carboxy)ethyl]-4-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]-phenyl]-4-pentynoic acid	80 mg
	Starch	59 mg
10	Microcrystalline cellulose	59 mg
	Magnesium stearate	2 mg
	Total	200 mg

The active ingredient, cellulose, starch and magnesium stearate are blended, passed through a No. 45 mesh U.S. sieve, and filled into hard gelatin capsules in 200 mg quantities.

Formulation 6

20 Suppositories each containing 225 mg of active ingredient are made as follows:

25	3-(2-(3-(2-Ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxyphenoxy)phenyl)propanoic acid	250
	Starch	200
	Magnesium stearate	10

30 The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of nominal 2 g capacity and allowed to cool.

-32-

Formulation 7

Suspensions each containing 50 mg of medicament per 5 mL dose are made as follows:

5	2-[2-Propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid	50 mg
	Sodium carboxymethyl cellulose	50 mg
10	Sugar	1 g
	Methyl paraben	0.05 mg
	Propyl paraben	0.03 mg
	Flavor	q.v.
	Color	q.v.
15	Purified water to	5 mL

The medicament is passed through a No. 45 mesh U.S. sieve and mixed with the sodium carboxymethylcellulose, sugar, and a portion of the water to form a suspension. The 20 parabens, flavor and color are dissolved and diluted with some of the water and added, with stirring. Sufficient water is then added to produce the required volume.

Formulation 8

An intravenous formulation may be prepared as follows:

2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid	100 mg
Isotonic saline	1,000 ml

The solution of the above ingredients generally is 30 administered intravenously to a subject at a rate of 1 ml per minute.

-33-

We claim:

1. A method for treating or inhibiting cystic
5 fibrosis in a mammal which comprises administering to a
mammal in need thereof an effective amount of a compound of
the formula I

10

wherein:

15 R₁ is C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl,
C₁-C₄ alkoxy, (C₁-C₄ alkyl)thio, halo, or R₂-
substituted phenyl;

20 each R₂ and R₃ are each independently hydrogen,
halo, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, (C₁-C₄
alkyl)-S(O)_q⁻, trifluoromethyl, or di-(C₁-C₃
alkyl)amino;

X is -O-, -S-, -C(=O), or -CH₂-;

25 Y is -O- or -CH₂-;

or when taken together, -X-Y- is -CH=CH- or

30

-34-

Z is a straight or branched chain C₁-C₁₀
alkylidenyl;

5 A is a bond, -O-, -S-, -CH=CH-, or -CR_aR_b-, where
R_a and R_b are each independently hydrogen, C₁-C₅
alkyl, or R₇-substituted phenyl, or when taken
together with the carbon atom to which they are
attached form a C₄-C₈ cycloalkyl ring;

R₄ is R₆

10

-35-

where,

5 each R₆ is independently -COOH, 5-tetrazolyl,
-CON(R₉)₂, or -CONHSO₂R₁₀;

10 each R₇ is hydrogen, C₁-C₄ alkyl, C₂-C₅ alkenyl,
C₂-C₅ alkynyl, benzyl, methoxy, -W-R₆, -T-G-R₆,
(C₁-C₄ alkyl)-T-(C₁-C₄ alkylideny)-O-, or
hydroxy;

R₈ is hydrogen or halo;

-36-

each R₉ is independently hydrogen, phenyl, or C₁-C₄ alkyl, or when taken together with the nitrogen atom form a morpholino, piperidino, piperazino, or pyrrolidino group;

5

R₁₀ is C₁-C₄ alkyl or phenyl;

R₁₁ is R₂, -W-R₆, or -T-G-R₆;

10

each W is a bond or straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

15

each G is a straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

each T is a bond, -CH₂-, -O-, -NH-, -NHCO-, -C(=O)-, or -S(O)_q-;

20

K is -C(=O)- or -CH(OH)-;

each q is independently 0, 1, or 2;

p is 0 or 1; and

25

t is 0 or 1;

provided when X is -O- or -S-, Y is not -O-;

30

provided when A is -O- or -S-, R₄ is not R₆;

provided when A is -O- or -S- and Z is a bond, Y is not -O-; and

35

provided W is not a bond when p is 0;

-37-

or a pharmaceutically acceptable salt or solvate thereof.

2. The method as claimed in **Claim 1** employing a compound of the formula

5

or a pharmaceutically acceptable salt or solvate thereof.

10 3. The method as claimed in **Claim 2** employing 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid or a pharmaceutically acceptable salt or solvate thereof.

15 4. The method as claimed in **Claim 2** employing 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)propoxy)-6-(4-carboxy-phenoxy)phenyl)propionic acid or a pharmaceutically acceptable salt or solvate thereof.

20 5. The method as claimed in **Claim 2** employing 1-(4-(carboxy-methoxy)phenyl)-1-(1H-tetrazol-5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy)hexane or a pharmaceutically acceptable salt or solvate thereof.

25 6. The method as claimed in **Claim 2** employing 3-[4-[7-carboxy-9-oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]-9H-xanthene]]propanoic acid or a pharmaceutically acceptable salt or solvate thereof.

30 7. The method as claimed in **Claim 2** employing 5-[3-[2-(1-carboxy)-ethyl]-4-[3-[2-ethyl-4-(4-fluorophenyl)-5-

-38-

hydroxyphenoxy]-propoxy]phenyl]-4-pentyoic acid or a pharmaceutically acceptable salt or solvate thereof.

8. The method as claimed in any one of **Claims 1**
5 to 7 in which the mammal is a human.

9. Use of a compound of formula I

10

wherein:

15 R₁ is C₁-C₅ alkyl, C₂-C₅ alkenyl, C₂-C₅ alkynyl,
C₁-C₄ alkoxy, (C₁-C₄ alkyl)thio, halo, or R₂-
substituted phenyl;

20 each R₂ and R₃ are each independently hydrogen,
halo, hydroxy, C₁-C₄ alkyl, C₁-C₄ alkoxy, (C₁-C₄
alkyl)-S(O)_q-, trifluoromethyl, or di-(C₁-C₃
alkyl)amino;

25 X is -O-, -S-, -C(=O), or -CH₂-;

Y is -O- or -CH₂-;

or when taken together, -X-Y- is -CH=CH- or

30

-39-

Z is a straight or branched chain C₁-C₁₀
alkylidenyl;

5 A is a bond, -O-, -S-, -CH=CH-, or -CR_aR_b-, where
R_a and R_b are each independently hydrogen, C₁-C₅
alkyl, or R₇-substituted phenyl, or when taken
together with the carbon atom to which they are
attached form a C₄-C₈ cycloalkyl ring;

R₄ is R₆

10

-40-

where,

5 each R₆ is independently -COOH, 5-tetrazolyl,
-CON(R₉)₂, or -CONHSO₂R₁₀;

10 each R₇ is hydrogen, C₁-C₄ alkyl, C₂-C₅ alkenyl,
C₂-C₅ alkynyl, benzyl, methoxy, -W-R₆, -T-G-R₆,
(C₁-C₄ alkyl)-T-(C₁-C₄ alkylideny)-O-, or
hydroxy;

R₈ is hydrogen or halo;

-41-

each R₉ is independently hydrogen, phenyl, or C₁-C₄ alkyl, or when taken together with the nitrogen atom form a morpholino, piperidino, piperazino, or pyrrolidino group;

5

R₁₀ is C₁-C₄ alkyl or phenyl;

R₁₁ is R₂, -W-R₆, or -T-G-R₆;

10

each W is a bond or straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

15

each G is a straight or branched chain divalent hydrocarbyl radical of one to eight carbon atoms;

each T is a bond, -CH₂-, -O-, -NH-, -NHCO-, -C(=O)-, or -S(O)_q-;

20

K is -C(=O)- or -CH(OH)-;

each q is independently 0, 1, or 2;

p is 0 or 1; and

25

t is 0 or 1;

provided when X is -O- or -S-, Y is not -O-;

30

provided when A is -O- or -S-, R₄ is not R₆;

provided when A is -O- or -S- and Z is a bond, Y is not -O-; and

35

provided W is not a bond when p is 0;

-42-

or a pharmaceutically acceptable salt or solvate thereof,
optionally in combination with a pharmaceutically acceptable
excipient, for the preparation of a pharmaceutical
composition for the treatment or inhibiting of cystic
fibrosis in a mammal.

10. The use according to **claim 9** employing a
compound of the formula;

10

or a pharmaceutically acceptable salt or solvate thereof.

11. The use according to **claim 9** wherein the
15 compound employed is 2-[2-propyl-3-[3-[2-ethyl-4-(4-
fluorophenyl)-5-hydroxyphenoxy]propoxy]phenoxy]benzoic acid
or a pharmaceutically acceptable salt or solvate thereof.

12. The use according to **claim 9** wherein the
20 compound employed is 3-(2-(3-(2-ethyl-4-(4-fluorophenyl)-5-
hydroxyphenoxy)propoxy)-6-(4-carboxy-
phenoxy)phenyl)propionic acid or a pharmaceutically
acceptable salt or solvate thereof.

25 13. The use according to **claim 9** wherein the
compound employed is 1-(4-(carboxy-methoxy)phenyl)-1-(1H-
tetrazol-5-yl)-6-(2-ethyl-4-(4-fluorophenyl)-5-
hydroxyphenoxy)hexane or a pharmaceutically acceptable salt
or solvate thereof.

-43-

14. The use according to **claim 9** wherein the compound employed is 3-[4-[7-carboxy-9-oxo-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]-9H-xanthene]]propanoic acid or a pharmaceutically acceptable salt or solvate thereof.

15. The use according to **claim 9** wherein the compound employed is 5-[3-[2-(1-carboxy)-ethyl]-4-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]phenyl]-4-pentynoic acid or a pharmaceutically acceptable salt or solvate thereof.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : C07C 63/04, C07D 307/77, A61K 31/19		A3	(11) International Publication Number: WO 98/42650 (43) International Publication Date: 1 October 1998 (01.10.98)
<p>(21) International Application Number: PCT/US98/05455 (22) International Filing Date: 19 March 1998 (19.03.98) (30) Priority Data: 60/040,870 21 March 1997 (21.03.97) US</p> <p>(71) Applicant (<i>for all designated States except US</i>): ELI LILLY AND COMPANY [US/US]; Lilly Corporate Center, Indianapolis, IN 46285 (US).</p> <p>(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): FLEISCH, Jerome, H. [US/US]; 10532 Coppergate, Carmel, IN 46032 (US). JACKSON, William, T. [US/US]; 7036 Bexley Drive, Indianapolis, IN 46256 (US). SAWYER, Jason, S. [US/US]; 5718 North Winthrop Avenue, Indianapolis, IN 46220 (US).</p> <p>(74) Agents: LENTZ, Nelsen, L. et al.; Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285 (US).</p>			<p>(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).</p> <p>Published <i>With international search report.</i></p> <p>(88) Date of publication of the international search report: 23 December 1998 (23.12.98)</p>

(54) Title: **LEUKOTRIENE ANTAGONISTS USEFUL FOR TREATING CYSTIC FIBROSIS**

(57) Abstract

This invention provides methods for the treatment or inhibiting of the symptoms of cystic fibrosis which comprises administering to a mammal in need thereof an effective amount of a compound having activity as a leukotriene B₄ antagonist.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republik of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/05455

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :C07C 63/04; C07D 307/77; A61K 31/19

US CL :549/385, 391; 560/56; 514/453, 455, 568, 569, 571

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 549/385, 391; 560/56; 514/453, 455, 568, 569, 571

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAS ONLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	US 5,552,441 A (DILLARD et al.) 03 September 1996, entire document	1-15
X	US 5,563,164 A (CLEMENS et al.) 08 October 1996, entire document.	1-15
X	US 5,462,954 A (BAKER et al.) 31 October 1995, entire document	1-15
X	US 5,478,857 A (CLEMENS et al.) 26 December 1995, entire document.	1-15
X	US 5,543,428 A (SAWYER et al.) 06 August 1996, entire document.	1-15

Further documents are listed in the continuation of Box C.

See patent family annex.

• Special categories of cited documents:	
"A"	document defining the general state of the art which is not considered to be of particular relevance
"B"	earlier document published on or after the international filing date
"L"	document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reasons (as specified)
"O"	document referring to an oral disclosure, use, exhibition or other means
"P"	document published prior to the international filing date but later than the priority date claimed
"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
"A"	document member of the same patent family

Date of the actual completion of the international search

11 SEPTEMBER 1998

Date of mailing of the international search report

17 SEP 1998

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer
MATTHEW V. GRÜMBLING
Telephone No. (703) 308-1235