INSTYTUT CYBERNETYKI TECHNICZNEJ POLITECHNIKI WROCŁAWSKIEJ ZAKŁAD SZTUCZNEJ INTELIGENCJI I AUTOMATÓW

Ćwiczenia laboratoryjne z Logiki Układów Cyfrowych

ćwiczenie 207

temat: AUTOMATY MOORE'A I MEALY

1. CEL ĆWICZENIA

Celem ćwiczenia jest zapoznanie studentów z dwoma podstawowymi kategoriami automatów oraz metodami transformacji automatu Moore'a w automat Mealy i odwrotnie.

2. PROGRAM ĆWICZENIA

- 1. Synteza automatów Moore'a i Mealy realizujących zadane przekształcenie
- 2. Transformacja automatu Moore'a w automat Mealy i odwrotnie

3. PROBLEMATYKA ĆWICZENIA

Automaty Moore'a i Mealy są automatami z pamięcią realizującymi przekształcenie sekwencji (ciągów liter) wejściowych w sekwencje wyjściowe.

Automaty te rozpoczynają swoje działanie w stanie początkowym. Następnie, kolejno podawane litery alfabetu wejściowego powodują zmianę stanu automatu oraz generację liter alfabetu wyjściowego.

Badane kategorie automatów różnią się sposobem generacji liter alfabetu wyjściowego. W przypadku automatu Moore'a, litera generowana na wyjściu zależy od aktualnego stanu. Automat Mealy wytwarza literę na wyjściu na podstawie stanu, w którym została podana litera alfabetu wejściowego oraz na podstawie tej litery.

Porównajmy automaty Moore'a i Mealy realizujące identyczne przekształcenie zbioru sekwencji wejściowych w zbiór sekwencji wyjściowych. Ponadto zakładamy, że oba automaty są w postaci minimalnej. Przy podanych wymaganiach, automat Moore'a posiada nie mniejszą liczbę stanów niż automat Mealy.

4. WIADOMOŚCI PODSTAWOWE

4.1 Definicje automatu Moore'a i Mealy

Automatem skończonym nazywamy dyskretny przetwornik informacji przekształcający sekwencje wejściowe w sekwencje wyjściowe, w sposób z góry zadany. Zbiór Z liter alfabetu wejściowego, zbiór Y liter alfabetu wyjściowego oraz zbiór Q stanów wewnętrznych są zbiorami skończonymi – stąd nazwa automatu.

Automat pracuje w dyskretnej skali czasu, przy czym punkty tej skali mogą być ponumerowane kolejnymi liczbami naturalnymi. Symbolem $z(t) \in Z$ oznaczamy literę podaną na wejście automatu w punkcie t dyskretnej chwili czasu. W podobny sposób interpretowane są symbole $q(t) \in Q$, $y(t) \in Y$.

Definicja 1

Automat skończony typu Mealy jest szóstka uporządkowaną:

A = $\langle Z, Q, Y, \Phi, \Psi, q_0 \rangle$, qdzie:

Z – alfabet wejściowy,

Q - zbiór stanów,

Y - alfabet wyjściowy,

 $\Phi: Z \times Q \rightarrow Q$ – funkcja przejść określająca zmiany stanów,

 $\Psi: Z \times Q \to Y$ – funkcja wyjść wyznaczająca literę generowaną na wyjściu, q_0 – stan początkowy.

Funkcja przejść określa stan $q(t+1) = \Phi(z(t), q(t))$, który osiągnie automat po podaniu na jego wejście liter z(t), jeśli litera ta została podana w stanie q(t).

Funkcja wyjść definiuje literę alfabetu wyjściowego:

$$y(t) = \Psi(z(t), q(t))$$

generowaną na wyjściu, jeśli w stanie q(t) podano na wejście literę z(t).

Interpretacja graficzna obu funkcji zawarta została na rysunku 1.

Definicja 2

Automat skończony typu Moore'a jest szóstka uporządkowaną:

$$A = \langle Z, Q, Y, \Phi, \Psi, q_0 \rangle$$

gdzie składowe Z, Q, Y, Φ oraz q_0 określone są identycznie jak dla automatu Mealy, zaś Ψ : $Q \to Y$ jest funkcją wyjść.

Funkcja wyjść określa literę: $y(t) = \Psi(q(t))$ generowaną przez automat po osiągnięciu stanu q(t).

Funkcję przejść i wyjść automatu Moore'a zilustrowane są na rysunku 2.

rysunek 2

4.2 Transformacja między automatami Moore'a i Mealy

Niech X* będzie zbiorem wszystkich sekwencji skończonej długości utworzonych z liter alfabetu X wraz ze słowem pustym.

Symbolem / Ψ oznaczamy uogólnioną funkcję wyjść automatu / Ψ : $Z^* \times Q \to Y^*$. Wartość tej funkcji / Ψ (/z, q) jest sekwencją wyjściową /y \in Y* generowaną w wyniku podania sekwencji /z \in Z* na wejście automatu znajdującego się w stanie q.

Definicja 3

Dwa automaty $A_1 = \langle Z, Q_1, Y, \Phi_1, \Psi_1, q_{01} \rangle$ oraz $A_2 = \langle Z, Q_2, Y, \Phi_2, \Psi_2, q_{02} \rangle$ nazywamy równoważnymi jeśli dla każdej sekwencji $Z \in Z^*$ spełniona jest równość: $\Psi_1(Z, q_{01}) = \Psi_2(Z, q_{02})$

Twierdzenie 1

Dla danego automatu Moore'a $A_1=$ < Z, Q_1 , Y, Φ_1 , Ψ_1 , $q_{01}>$ istnieje równoważny automat Mealy $A_2=$ < Z, Q_2 , Y, Φ_2 , Ψ_2 , $q_{02}>$ takie, że:

$$Q_2 = Q_1$$
, $\Phi_2 = \Phi_2 \Psi_2(z,q) = \Psi_1(\Phi_1(z,q))$, $q_{02} = q_{01}$.

Transformację automatu Moore'a w automat Mealy zobrazujemy postacią graficzną.

Przykład 1

Niech dany będzie automat Moore'a, jak na rysunku 3.

rysunek 3

Równoważny mu automat Mealy pokazany na rysunku 4.

rysunek 4

Przeanalizujmy przykładowe wartości funkcji przejść i wyjść obu automatów.

Niech w stanie q_0 automatu Moore'a, na wejściu pojawi się litera z_1 . W tym przypadku dla funkcji przejść mamy $\Phi_1(z_1, q_0) = q_1$. Zatem $\Phi_1(z_1, q_0) = q_2$. ponadto dla funkcji wyjść prawdziwa jest równość $\Psi_1(q_1) = y_2$, a więc $\Psi_2(z_1, q_0) = y_2$.

W przypadku transformacji automatu Mealy w automat Moore'a często wymagane jest zwiększenie liczby stanów. Rozważmy fragment grafu automatu Mealy ilustrowany rysunkiem 5a).

rysunek 5

Stanowi q_k automatu Mealy nie można przypisać tylko jednego stanu automatu Moore'a bowiem stan taki musiałby po osiągnięciu go w wyniku podania na wejście litery z_i generować literę y_j , natomiast po osiągnięciu tego stanu poprzez podanie litery z_p musiałby generować literę y_r . W tym przypadku stan q_k automatu Mealy zostanie odwzorowany w dwa stany automatu Moore'a odpowiadające parom uporządkowanym $< q_k$, $y_j >$ oraz $< q_k$, $y_r >$. Stany te można oznaczyć symbolami q_s i q_t - rysunek 5b).

Przykład 2

rysunek 6

Wynikiem transformacji automatu Mealy z rysunku 6 jest automat Moore'a pokazany na rysunku 7.

rysunek 7

Stan przyporządkowany parze $<q_2$, $y_2>$ może być wyeliminowany, bowiem nie może on być osiągnięty z żadnego ze stanów odpowiadających parom $<q_0$, $y_1>$, $<q_0$, $y_2>$.

Twierdzenie 2

Dla danego automatu Mealy $A_1 = \langle Z, Q_1, Y, \Phi_1, \Psi_1, q_{01} \rangle$ istnieje równoważny mu automat Moore'a $A_2 = \langle Z, Q_2, Y, \Phi_2, \Psi_2, q_{02} \rangle$ zdefiniowany następująco:

```
\begin{array}{l} Q_2=Q_1\times Y,\\ \Phi_2:Z\times Q_2\to Q_2\text{ taka, }\dot{z}e\ \Phi_2\ (z,\, <\!q,\, y)=<\Phi_1\ (z,\, q),\ \Psi_1\ (z,\, q)\!>,\ gdzie\ q\in Q_1,\\ \Psi_2:Q_1\times Y\to Y\text{ takie, }\dot{z}e\ \Psi 2\ (<\!q,\, y>)=y,\\ q_{20}\text{ jest jednym ze stanów }<\!q_{01},\, y\!>,\ gdzie\ y\in Y. \end{array}
```

4.3 Minimalizacja automatu

W celu uzyskania automatu z minimalną liczbą stanów, należy wykryć stany równoważne i zastąpić je jednym stanem.

Każdy z rozpatrywanym dotąd automatów charakteryzuje się tym, że w każdym z jego stanów może pojawić się na wejściu, każda z liter alfabetu wejściowego. Istnieją automaty, dla których w pewnych stanach podane mogą być na wejście tylko litery z podzbioru Z. Jeśli na wejściu automatu w stanie q_1 nie może być podana litera a_j , wówczas stosujemy następujące oznaczenie dla funkcji przejść $\Phi(z_j, q_j) = -$.

Rozważmy sytuację, w której na wejście automatu w stanie q_i po podaniu litery z_j , następuje zmiana stanu zgodnie z funkcją przejść $\Phi(z_j$, $q_i) = q_k$, natomiast generowana na wyjściu litera może być dowolna. W tym przypadku dla automatu Mealy stosujemy oznaczenie $\Psi(z_i, q_i = -$, natomiast dla automatu Moore'a $\Psi(q_k) = -$.

Definicja 4

Dwa stany q_i , q_j automatu $A=\langle Z,\,Q,\,Y,\,\Phi,\,\Psi,\,q_0\rangle$ z uogólnioną funkcją wyjść Ψ nazywamy równoważnymi, jeśli dla każdej sekwencji wejściowej $z\in Z^*$ prawdziwa jest równość

$$/\Psi(z, q_i) = /\Psi(z, q_i),$$

przy czym symbol "-" w sekwencji wyjściowej może być potraktowany jako równy dowolnej literze alfabetu wyjściowego Y.

Podobnie wartość $\Phi(z, q_k) =$ - funkcji przejść może być interpretowana jako równa dowolnemu stanowi $q \in Q$.

W procesie minimalizacji automatu wykorzystujemy własności, które obecnie przedstawimy.

Rozważmy dwa stany q_i , q_j automatu A. Niech dla każdej litery $z_k \in Z$ spełnione będą równości:

$$\Phi(z_k, q_i) = \Phi(z_k, q_j) \tag{1}$$

$$\Psi(z_k, q_i) = \Psi(z_k, q_j) \tag{2a}$$

$$\Psi(q_i) = \Psi(q_j) \tag{2b}$$

z uwzględnieniem swobody w interpretacji symbolu "-". Wyrażenie (2a) dotyczy automatu Mealy, natomiast wyrażenie (2b), automatu Moore'a.

warunki (1), (2a) lub (2b) są wystarczające dla równoważności stanów q_i , q_j . Warunki te nie są jednak warunkami koniecznymi.

W warunku koniecznym słabiej sformułowane są wymagania nałożone na funkcję przejść. W warunku tym wartość funkcji Φ muszą spełniać wyrażenie (1) lub stany $\Phi(z_k, q_i)$ i $\Phi(z_k, q_i)$ powinny być stanami zrównoważonymi.

Możemy zatem sformułować dla funkcji przejść słabszy warunek równoważności stanów niż wymaganie (1). Załóżmy bowiem, że funkcja przejść dla stanów q_i , q_j , dla każdego $z_k \in Z$ spełnia alternatywnie jeden z trzech warunków:

$$\Phi(z_k, q_i) = q_i i \Phi(z_k, q_j) = q_j$$
 (4)

$$\Phi(z_k, q_i) = q_i i \Phi(z_k, q_i) = q_i$$
(5)

Wyrażenia (4), (5) wskazują, że wymaganiem dla równoważności stanów q_i , q_j jest ich równoważność. Stąd wyrażenia (3), (4), (5) określają słabszy warunek równoważności niż warunek (1).

Proces wykrywania stanów równoważnych prześledźmy na przykładzie.

Przykład 3

Niech dane będą funkcje przejść i wyjść automatu Mealy opisane tabelą 1.

opracował: dr hab. inż. Jan Magott e-version: dr inż. Tomasz Kapłon

tabela 1

qz	0 0	0 1	11	1 0	
0	1,1	5 ,-	1	2,1	
1	4 , 1	1,0	3,0	4 ,-	
2	3 ,-	1,1	4,1	0 ,-	
3	_	5,0	5,0	4 , 1	
4	2,0	3,1	3,0	5,0	
5	4 ,-	3 ,-	5,0	_	

Obecnie przedstawimy znaczenie poszczególnych elementów tablicy.

Na przykład, gdy automat znajduje się w stanie 4 i otrzymuje na wejściu literę 01, przechodzi do stanu 3, generując na wyjściu literę 1. Na wejściu automatu znajdującego się w stanie 3 nie może być podana litera 00. W tym przypadku, w celu uproszczenia zapisów, w odpowiedniej kratce tabeli umieszczany jest symbol "--" zamiast "-, -". Automat będąc w stanie 5 i otrzymując na wejściu literę 01 może generować dowolną literę wyjściową.

Szukając stanów równoważnych porównujemy ze sobą wszystkie pary wierszy

Dwa wiersze opisujące stany q_i, q_i możemy zastąpić jednym, jeśli dla każdej litery $z_r \in Z$, ich składowe q_k , y_p znajdujące się w tej samej kolumnie (odpowiadające tej samej literze z_r alfabetu wejściowego) spełniają jeden z warunków:

- 1. obie składowe są równe sobie:
- q_p , $y_s=q_r$, y_t co oznacza, że $q_p=q_r$ i $y_s=y_t$, 2. jedna ze składowych jest "—" (czyli, równa "-, -", a druga może być dowolna,
- 3. jedna ze składowych równa jest q_p , -, natomiast druga q_p , y_k dla dowolnego y_k
- 4. jedna ze składowych jest postaci q_i , y_k , natomiast druga q_j , y_k .

Jeśli zastąpimy dwa wiersze dla stanów q_i, q_i wierszem q_i, to w tablicy pozostawimy wiersz qi (usuwając qi) oraz pozycje, w których występował stan qi zastępujemy stanem q_i pozostawiamy oznaczenie (q_i, q_j) wskazujące na rolę stanu q_i . Proces minimalizacji obrazują tabele 2, 3 i 4.

tabela 2 tabela 3

	qz	0 0	0 1	11	10		qz	0 0	0 1	11	10
	0	1,1	3 ,-	1	2,1		0	1,1	1 ,-		2,1
	1	4 , 1	1,0	3,0	4 ,-	(1 , 3 , 5)	1	4 , 1	1,0	1,0	4 , 1
	2	3 ,-	1,1	4 , 1	0 ,-		2	1,-	1,1	4,1	0 ,-
(3 , 5)	3	4 ,-	3,0	3,0	4,1		4	2,0	1,1	1,0	1,0
	4	2,0	3,1	3,0	3,0						

tabela 4

	qz	0 0	0 1	11	10
(0 , 2)	0	1,1	1,1	4,1	0,1
(1 , 3 , 5)	1	4,1	1,0	1,0	4 , 1
	4	2,0	1,1	1,0	1,0

Wynikowy automat na trzy stany zamiast sześciu stanów automatu pierwotnego.

5. PRZEBIEG ĆWICZENIA

Ćwiczenie przeprowadzane jest z wykorzystaniem zestawu AUT-01. Na płycie czołowej modelu znajduje się 13 lampek sygnalizacyjnych. Lampka umieszczona nad przełącznikiem klawiszowym opisanym MAINS sygnalizuje podłączenie napięć zasilających. Osiem lampek sygnalizacyjnych nad przełącznikami STATE 0 – STATE 7 służy do sygnalizacji stanów automatu, 4 lampki OUTPUT INDICATORS służą do sygnalizacji wyjść automatu oznaczonych symbolami Y0 – Y3.

Elementy manipulacyjne

Przełącznik MAINS służy do przyłączenia napięć zasilających. Zespół czterech przełączników klawiszowych X0 – X3 służy do wprowadzania liter alfabetu wejściowego modelowanego automatu. Wciśnięcia dowolnego z przycisków X0 – X3 odpowiada wprowadzeniu pojedynczej litery alfabetu wejściowego. Na jednym z gniazd FUNCTION X&S pojawia się sygnał utworzony z iloczynu stanu i wprowadzanej litery. Sygnał ten doprowadzony do odpowiednich gniazd STATE EXCITATION lub do gniazd OUTPUT EXCITATION powoduje wzbudzenie następnego stanu, wyzerowanie poprzedniego lub wzbudzenie odpowiedniego wyjścia. Zespół ośmiu przełączników STATEO – STATE7 służy do ustawiania stanów początkowych automatu. Naciśnięcie dowolnego z tych przełączników powoduje ustawienie nowej zawartości rejestru stanu i wyzerowanie rejestru wyjść.

Gniazda opisane FUNCTION X&S są przeznaczone do łączenia przewodami z gniazdami STATE EXCITATION w celu wzbudzenia stanów i wyjść automatu. Każda para gniazd FUNCTION X&S umiejscowiona na przecięciu wiersza X_n alfabetu wejściowego X z kolumną Sn stanów S odpowiada iloczynowi X_n & S_n .

Każdemu z ośmiu stanów STATEO – STATE7 odpowiadają 24 gniazda wzbudzenia stanów STATE EXCITATION.

Gniazda OUTPUT EXCITATION umożliwiają doprowadzenie sygnałów wzbudzających do układu wzbudzenia wyjść automatu.

Sygnały wzbudzające są doprowadzone z gniazd FUNCTION X&S w przypadku automatu Moore'a. Każdemu z czterech wyjść odpowiada 16 gniazd wzbudzenia oznaczonych Y0 – Y3.

Gniazda STATEO – STATE7 umieszczone w dolnej części płyty czołowej służą do wyprowadzenia z nich sygnałów wzbudzających wyjścia w przypadku automatu Moore'a.

Obsługa modelu:

- 1. Podłączyć przyrząd do sieci.
- 2. Włączyć napięcia zasilania przełącznikiem MAINS.
- 3. W momencie załączenia ustawienie stanów i wyjść jest przypadkowe. Przeprowadzić zerowanie wszystkich stanów i ustawić wymagany stan początkowy jednym z przełączników STATEO STATE7.
- 4. Dla zbudowania modelu automatu połączyć gniazda na płycie czołowej zgodnie z zadanymi tabelami przejść i wyjść. Programowanie przejść polega na połączeniu gniazd FUNCTION X&S z odpowiednimi gniazdami STATE EXCITATION. Na przykład, aby dla litery wejściowej X_1 uzyskać przejście S5 \rightarrow S3 należy połączyć gniazdo FUNCTION X1 & S5 z gniazdem S3 z kolumny STATE EXCITATION. Programowanie wyjść dla automatu Mealy jest analogiczne jak programowanie przejść.
- 5. Przejście automatu ze stanu do stanu i wzbudzenie wyjść zachodzi każdorazowo po wprowadzeniu pojedynczej litery alfabetu wejściowego. Należy to zrealizować przez wciśnięcie odpowiedniego przełącznika X0 X3. W danym momencie na wejście automatu może być podana tylko jedna litera alfabetu wejściowego, wzbudzony jeden stan i jedno wyjście.

6. ZADANIA DO WYKONANIA

Ćwiczenie jest podzielone na cztery moduły, z których każdy może być wykonany niezależnie.

Moduł A

- 1. Zaprojektować automat Moore'a będący sumatorem szeregowym liczb dwójkowych.
- 2. Zrealizować automat i sprawdzić jego działanie.
- 3. Podać równoważny automat Mealy i porównać obydwa modele.
- 4. Analogiczne czynności przeprowadzić dla subtraktora szeregowego z tym, że najpierw zaprojektować automat Mealy, z potem podać równoważny automat Moore'a.

Moduł B

- 1. Zaprojektować i zrealizować na stanowisku automat Mealy, który:
 - a) po wprowadzeniu litery X1 wyprowadza literę Y1 niezależnie od następnych liter,
 - b) po literze X2 i co najmniej jeszcze jednej dowolnej literze, literę Y2,
 - c) po literze X3 i co najmniej dwu dowolnych liter, literę Y3,
 - d) jako czwarte potraktować fakt nie wyprowadzania żadnej litery spośród Y1, Y2, Y3.
- 2. Sprawdzić poprawność realizacji wyżej wymienionego algorytmu.
- 3. Podać równoważny automat Moore'a.

Moduł C

- 1. Zadany automat Moore'a w formie tablicy przejść i wyjść przekształcić w automat Mealy.
- 2. Wykonać model automatu Mealy i sprawdzić poprawność translacji słów wejściowych w słowa wyjściowe.
- 3. W analogiczny sposób dokonać zmiany automatu Mealy na model Moore'a.

opracował: dr hab. inż. Jan Magott e-version: dr inż. Tomasz Kapłon

Moduł D

- 1. Zaproponować algorytm "otwierania zamka" oraz sygnalizacji alarmu (włamania) w przypadku wprowadzenia nieprawidłowej kombinacji liter wejściowych. Podać tablicę przejść i wyjść oraz graf automatu.
- 2. Wykonać model "zamka".
- 3. Dokonać prób "otwarcia" przez osoby nie znające prawidłowej kombinacji otwierającej.

LITERATURA

- 1. J. Bromirski, Teoria automatów, WNT, Warszawa, 1969
- 2. W. Majewski, A. Albicki, Algebraiczna teoria automatów, WNT, Warszawa, 1980
- 3. W. Traczyk, Układy cyfrowe automatyki, WNT, Warszawa, 1974