

W W W . T R E I N A W E B . C O M . B R

Docker - Containers, Imagens, Volumes e Networks

O que são Containers?

- Processos
- Namespaces
- Cgroups

Processos

No contexto de sistemas operacionais, um processo é um programa em execução juntamente com todas as informações necessárias para controlar sua execução. Um processo é a unidade básica de alocação de recursos e gerenciamento de tarefas em um sistema operacional. Cada processo representa uma tarefa ou um programa em execução, e o sistema operacional gerencia múltiplos processos concorrentemente.

🧔 top		×	+	~								-	0	×
top - 11:12:50 up 17 min, 1 user, load average: 0.00, 0.00, 0.00														
	41 total,							stoppe		zombie				
%Cpu(s):										, 0.0 si				
MiB Mem				14792.				used,		9.3 buff/				
win Swat	: 4096.	υ το	ται,	4096.	v free,	V	0.0	usea.	150/9	.8 avail	mem			
PTD	USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME	COMMAND			
	root	20	0	167060	12388	8192		0.0	0.1		systemd			
1000	root	20	ø	2324	1192	1084		0.0	0.0		init-systemd(Ub			
(T)	root	20	ő	2352	80	68		0.0	0.0	0:00.00				
	root	19	-1	47800	14384	13372		0.0	0.1		systemd-journal			
	root	20	ō	21952	5888	4424	s	0.0	0.0		systemd-udevd			
78	root	20	0	4492	164	20	s	0.0	0.0		snapfuse			
80	root	20	0	4492	152	0	S	0.0	0.0	0:00.00	snapfuse			
81	root	20	0	4624	208	52	s	0.0	0.0	0:00.00	snapfuse			
82	root	20	0	4848	1836	1364	S	0.0	0.0	0:00.56	snapfuse			
89	root	20	0	4492	204	56	S	0.0	0.0	0:00.00	snapfuse			
90	root	20	0	4780	1828	1268		0.0	0.0		snapfuse			
96	root	20	0	4492	188	44	S	0.0	0.0	0:00.00	snapfuse			
100	root	20	0	4492	200	48	S	0.0	0.0	0:00.00	snapfuse			
	root	20	0	4492	184	36		0.0	0.0		snapfuse			
	root	20	0	4492	148	0		0.0	0.0		snapfuse			
	root	20	0	4492	196	48		0.0	0.0		snapfuse			
117	root	20	0	4764	1732	1268	S	0.0	0.0	0:00.70	snapfuse			

Namespaces

Os namespaces são um mecanismo que permite isolar recursos de sistema para processos individuais ou grupos de processos. Eles são uma parte importante da tecnologia de contêineres e são usados para criar ambientes isolados nos quais os processos podem ser executados sem afetar o sistema hospedeiro ou outros processos.

- Namespace ABC
 - o Processo 123
 - Processo 456
 - o Processo 789
- Namespace DEF
 - Processo 321
 - o Processo 654
 - Processo 987

Cgroups

São um recurso em sistemas operacionais Linux que permitem o controle, limitação e monitoramento dos recursos de sistema alocados a processos ou grupos de processos. Eles são usados principalmente para gerenciar o uso de recursos, como CPU, memória, disco e largura de banda da rede, entre outros, para que múltiplos processos possam ser executados de forma eficiente e justa em um sistema compartilhado.

Containers

Um contêiner é um processo isolado em execução em uma máquina host que está isolado de todos os outros processos em execução nessa máquina host. Esse isolamento utiliza namespaces do kernel e cgroups. O Docker torna essas capacidades acessíveis e fáceis de usar. Para resumir, um contêiner:

- É uma instância executável de uma imagem. Você pode criar, iniciar, parar, mover ou excluir um contêiner usando a API, ou CLI do Docker.
- Pode ser executado em máquinas locais, máquinas virtuais ou implantado na nuvem.
- É portátil (e pode ser executado em qualquer sistema operacional).
- Está isolado de outros contêineres e executa seu próprio software, binários, configurações, etc.

Containers != VM

Virtual Machines

Containers

O que são Imagens?

"Um contêiner em execução utiliza um sistema de arquivos isolado. Esse sistema de arquivos isolado é fornecido por uma imagem, e a imagem deve conter tudo o que é necessário para executar um aplicativo - todas as dependências, configurações, scripts, binários, etc. A imagem também contém outras configurações para o contêiner, como variáveis de ambiente, um comando padrão para execução e outros metadados." – Docker - What is an image?

Dockerfile

```
• • •
FROM node:18-alpine
WORKDIR /app
COPY . .
RUN yarn install --production
CMD ["node", "src/index.js"]
EXPOSE 3000
```

WWW.TREINAWEB.COM.BR

O que é o Docker?

"O Docker é uma plataforma aberta para desenvolver, enviar e executar aplicativos. O Docker permite que você separe seus aplicativos da sua infraestrutura, para que você possa entregar software rapidamente. Com o Docker, você pode gerenciar sua infraestrutura da mesma forma que gerencia seus aplicativos. Ao aproveitar as metodologias do Docker para enviar, testar e implantar código, você pode reduzir significativamente o intervalo entre escrever código e executá-lo em produção." – Docker - Overview

Arquitetura do Docker

Conceitos importantes

- **Contêineres:** São instâncias em tempo de execução das imagens Docker. Os contêineres são isolados uns dos outros e do sistema host, mas compartilham o kernel do sistema operacional subjacente, o que os torna leves e eficientes.
- **Imutabilidade:** As imagens Docker são imutáveis, o que significa que, uma vez criadas, elas não são alteradas. Se você precisar fazer uma alteração, deve criar uma nova imagem. Isso ajuda a garantir consistência e previsibilidade em ambientes de desenvolvimento, teste e produção.
- **Reutilização:** As imagens Docker podem ser reutilizadas em diferentes ambientes e por diferentes equipes. Isso facilita a colaboração e a implantação de aplicativos em vários ambientes, como desenvolvimento, teste e produção.
- Registros Docker: As imagens Docker são armazenadas em registros Docker, que são repositórios online onde as imagens podem ser compartilhadas e distribuídas.
- **Dockerfile:** É um arquivo de configuração usado para definir como uma imagem Docker deve ser construída. Ele lista as instruções para instalar dependências, copiar arquivos, configurar variáveis de ambiente e executar comandos dentro do contêiner.
- Layering: As imagens Docker são compostas por camadas (layers) empilhadas umas sobre as outras. Cada instrução no Dockerfile cria uma nova camada. Isso permite que as imagens sejam eficientes em termos de armazenamento, pois camadas compartilhadas entre imagens semelhantes são reutilizadas.