CPSC 8420 Advanced Machine Learning Week 6: Unsupervised Learning

Dr. Kai Liu

September 22, 2020

Learning Outcomes

Our goal for today's lecture is to understand:

- PCA and Projection
- K-means and its variations
- Non-negative Matrix Factorization (NMF) with solutions through Multiplicative Updating Algorithm (MUA)
- NMF with solutions via Alternating Minimization

Non-Negative Matrix Factorization

Disadvantage of PCA

Consider Error Construction formulation of PCA: $||x_i - U\lambda_i||^2$, $s.t.U^TU = I$, that each data point is approximately represented by a linear combination of U_i with coefficients $\lambda_i := U^Tx_i$, apparently it can be negative. However, in real-life, some operations are only additive, thus we may add non-negativeness constraint on the factor.

Another example is image processing, that each pixel should be within [0,255], negative pixel is meaningless. To enhance the interpretability, we introduce Non-negative Matrix Factorization.

Non-Negative Matrix Factorization

Non-Negative Matrix Factorization

$$\begin{bmatrix} 4.2 & 3.5 & 1 & 1.5 \\ 4 & 3.8 & 1.2 & 1.4 \end{bmatrix} \approx \begin{bmatrix} 4 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 0.9 & 0.8 & 0.1 & 0.2 \\ 0.1 & 0.2 & 0.9 & 0.8 \end{bmatrix}$$
$$\approx \begin{bmatrix} 1 & 4 \\ 1 & 4 \end{bmatrix} \begin{bmatrix} 0.1 & 0.2 & 0.9 & 0.8 \\ 0.9 & 0.8 & 0.1 & 0.2 \end{bmatrix}$$

MUA for NMF

Non-negative Matrix Factorization problem:

$$\min_{X,Y \ge 0} h(X,Y) = \frac{1}{2} \|Q - XY\|_F^2$$

5 images of 2 people

Multiplicative Updating Algorithm (MUA) (Lee & Seung, 2001):

$$Y_{ij} \leftarrow Y_{ij} \frac{(X^TQ)_{ij}}{(X^TXY)_{ij}}, \ X_{ij} \leftarrow X_{ij} \frac{(QY^T)_{ij}}{(XYY^T)_{ij}}$$

Convergence and Majorize-Minimization

Minorize-Maximization

Alternating-Minimization

$$\min_{X,Y \ge 0} h(X,Y) = \frac{1}{2} \|Q - XY\|_F^2$$

- The NMF objective is Nonconvex.
- 2. Convex w.r.t. each component (X, Y)

K-means v.s. NMF

K-means v.s. NMF

NMF	а	b		С		d		
C1	0.9	0.15		0.	8.0		0.25	
C2	0.2	0.8		0.	0.1		8.0	
K-means		а		b	С		d	
		1						
C1		1		0	1		0	
C2		0		1	0		1	

Convergence of Gradient Descent

Strongly Convex Strongly Smooth Function

We say a continuously differentiable function $f: \mathbb{R}^p \to \mathbb{R}$ is α -strongly convex (SC) and β -strongly smooth (SS) if for every $x, x^+ \in \mathbb{R}^p$, we have:

$$\frac{\alpha}{2}\|x^{+} - x\|_{2}^{2} \le f(x^{+}) - f(x) - \langle \nabla f(x), x^{+} - x \rangle \le \frac{\beta}{2}\|x^{+} - x\|_{2}^{2}, (1)$$

based on which we will have:

$$f(x^{+}) \leq f(x) - \frac{1}{2\beta} \|\nabla f(x)\|^{2}$$

$$f(x^{+}) \geq f(x) - \frac{1}{2\alpha} \|\nabla f(x)\|^{2}.$$
 (2)

Replacing x^+ with x^* , then we will have:

$$\frac{1}{2\beta} \|\nabla f(x)\|^2 \le f(x) - f(x^*) \le \frac{1}{2\alpha} \|\nabla f(x)\|^2 \tag{3}$$

Linear Convergence Rate

$$f(x^{+}) - f(x^{*}) \leq f(x) - f(x^{*}) - \frac{1}{2\beta} \|\nabla f(x)\|^{2}$$

$$\leq f(x) - f(x^{*}) - \frac{\alpha}{\beta} (f(x) - f(x^{*}))$$

$$= (1 - \frac{\alpha}{\beta})(f(x) - f(x^{*}))$$
(4)

which implies $\frac{f(x^+)-f(x^*)}{f(x)-f(x^*)}=1-\frac{\alpha}{\beta}$, is the definition of linear convergence. Then to obtain ϵ -suboptimal result, we need $\mathcal{O}(\log\frac{1}{\epsilon})$ iterations, which is way faster than sub-linear rate $\mathcal{O}(\frac{1}{\epsilon})$.

Non Strongly Convex

$$f(x^{+}) - f(x^{*}) \leq f(x) - f(x^{*}) - \frac{1}{2\beta} \|\nabla f(x)\|^{2}$$

$$\leq \langle \nabla f(x), x - x^{*} \rangle - \frac{1}{2\beta} \|\nabla f(x)\|^{2}$$
(5)

on the other hand we have:

$$||x^{+} - x^{*}||^{2} = ||x - \eta \nabla f(x) - x^{*}||^{2}$$

$$= ||x - x^{*}||^{2} - 2\eta \langle \nabla f(x), x - x^{*} \rangle + \eta^{2} ||\nabla f(x)||^{2}$$

$$= ||x - x^{*}||^{2} - 2\eta (\langle \nabla f(x), x - x^{*} \rangle - \frac{\eta}{2} ||\nabla f(x)||^{2}),$$
(6)

then we have

$$\langle \nabla f(x), x - x^* \rangle - \frac{\eta}{2} \| \nabla f(x) \|^2 = \frac{1}{2\eta} (\|x - x^*\|^2 - \|x^+ - x^*\|^2), \text{ and therefore } f(x^+) - f(x^*) \le \frac{1}{2\eta} (\|x - x^*\|^2 - \|x^+ - x^*\|^2)$$

Non Strongly Convex

Summation the equation above from k=0 to k=T-1, we have: $\sum_{k=0}^{T-1} f(x_{k+1}) - f(x^*) \leq \frac{\|x_0 - x^*\|^2 - \|x_T - x^*\|^2}{2\eta} \leq \frac{\|x_0 - x^*\|^2}{2\eta}, \text{ then } f(x_T) - f(x^*) \leq \frac{1}{T} \sum_{k=0}^{T-1} f(x_{k+1}) - f(x^*) \leq \frac{\|x_0 - x^*\|^2}{2T\eta}, \text{ which is sub-linear convergence rate. Then to obtain ϵ-suboptimal result, we need <math>T = \mathcal{O}(\frac{1}{\epsilon})$ iterations.