University of Saskatchewan Department of Computer Science

CMPT 215.3 MIDTERM EXAMINATION

October 31st, 2000

Total Marks: 50

CLOSED BOOK and CLOSED NOTES

NO CALCULATOR

Time: 75 minutes

Instructions

Read each question carefully and write your answer legibly on the examination paper. No other paper will be accepted. You may use the backs of pages for rough work but all final answers must be in the spaces provided. The marks for each question are as indicated. Allocate your time accordingly.

Ensure that your name AND student number are clearly written on the examination paper and that your name is on every page.

Note: a reference table of MIPS instructions is provided at the end of the examination paper.

Question	Marks
l (5 marks)	
2 (10 marks)	
3 (15 marks)	
4 (20 marks)	Control of the Contro
Total	

Name:	
Student Number:	

Name:	Page 2
Student Number:	
 General (5 marks in total - 1 mark for each part) Give the technical term that the following descriptions or definitions. 	best fits each of
(a) A "law" that quantifies how the system performance enhancement possible improvement is limited by the amount that the improved feature is used.	le with a given
(b) Information that tells the linker which words must be changed when an object the address space.	: file is shifted in
(c) A style of instruction set architecture in which arithmetic instructions I operands.	nave no explicit
(d) The laws of this type of algebra are used to simplify logic equations.	
(e) During execution of a program with nested procedure calls, there may be structures on the stack simultaneously.	many of these

2. Computer Performance (10 marks in total)

(a) (2 marks) Consider a program for which 75% of the instructions executed are of a type A, and 25% are of a type B. Suppose that class A instructions each require 2 clock cycles on average. If the overall CPI of the program is 2.5, how many clock cycles must be required by each class B instruction on average?

Name:	Page 3
Student Number:	
(b) (6 marks) In each of the following parts, state which ones of the CPU execution time (number of machine language instructions e CPI) may change, when the indicated system change is made (and a	executed, clock cycle time,
(i) a new compiler is used	
(ii) a different implementation of the (same) instruction set architec	cture is used
(c) (2 marks) Suppose that the MIPS rating for a particular program what is the clock period length in nanoseconds? (Recall that a seconds.)	is 500. If the CPI is 2.0, a nanosecond is 1.0 x 10.9
3. Arithmetic (15 marks in total)	
(a) (3 marks) Perform the following conversions.	
(i) Convert 28 ₁₀ to a base 3 number.	
(ii) Convert -23 ₁₀ to a 6-bit 2's complement binary number.	
(iii) Convert 7206 ₈ to a base 2 number.	

Name:				Doga 4
				Page 4
Studen	t Numbe	er:		
		marks) Suppose we wish to find mputer program.	d the sum of three numbers X, Y, Z	Z at some point in a
	(i)	If the numbers are floating point (X+Y)+Z vs. X+(Y+Z)) make a Explain your answer.	int numbers, can the order in which any difference (i.e., have any impa	we add them (e.g. ct on the outcome)
	(ii)) Repeat part (i), but now assuming the MIPS "add" instruction.	ng that the numbers are signed intege	ers that we add using
	(iii	 Repeat part (i), but now assuming the MIPS "addu" instruction. 	ng that the numbers are signed intege	rs that we add using
	nur bia	mbers have a 1 bit sign field, follow	4 floating point standard, single precisewed by an 8 bit exponent field (in bia mificant field. Give the representation	sed notation with a

Name:	 	
Student Number:	 	

(d) (4 marks) In the ALU design discussed in class, the ALU accepted two 32 bit inputs, and produced a 32 bit result. The operations supported included addition and subtraction. It is desirable to have an additional 1 bit output from the adder that equals 1 if signed overflow occurs during an addition or subtraction operation, and 0 otherwise. Give a truth table for such a 1 bit output, as a logic function of the high order bits of the operands (a_{31} and b_{31}), the high order bit of the result (result₃₁), and "Binvert" (which equals 1 if the operation is a-b, and equals zero if the operation is a+b). Then, using your truth table, derive a logic equation in sum-of-products form. (You don't need to simplify it.)

Page 5

Name	pa	Page 6
Stude	nt Number:	
	(e) (2 marks) If Booth's algorithm was used to multiply the 8-bit signed binary number by the 8-bit signed binary number 11010100, how many times would the multiplica be added or subtracted?	
	. 4. Machine and Assembly Language (20 marks in total)	

(a) (5 marks) List the five MIPS addressing modes, giving (and briefly describing how it works) an example of each.

Name:		
1 1041110 ·	 	

Page 7

Student Number:

(b) (3 marks) Consider the following code fragment.

.data
A: .word 2
.word 4
.word 6
.word 8
.word 10

.text

main: la \$t0, A lw \$t1, 4(\$t0) sub \$t2, \$t1, \$t1 li \$s0, 10

loop: addi \$t2, \$t2, 1

add \$s0, \$t1, \$s0 bne \$t2, \$t1, loop

(i) Following execution of the above code, what are the contents of \$s0?

(ii) What would happen if we ran the above code with the "lw" instruction replaced by "lw \$t1, 3(\$t0)"?

Student Number:

(c) (12 marks) Write a recursive MIPS procedure that prints the integer values stored in a binary tree, using a "preorder" traversal. Each node of the tree is implemented with three consecutive words of memory, as shown below on the left. On the right is an example tree, and the output that your procedure should give for this tree.

integer value	ptr to left child	ptr to right child	2 5
			3' 4 6
address x	address x+4	address x+8	output integers 1,2,3,4,5,6 (in that order)

Each child pointer gives the memory address of the first word of the corresponding child node, with a memory address of zero indicating that there is no such child node. To implement a preorder traversal, you print the root node value, then the values from the left subtree (using a recursive call), then the values from the right subtree (using a recursive call). Your procedure should take a single argument, the address of the root node of the tree (or subtree), in \$a0. Recall that the syscall code for printing an integer is "1".