(relativistic and linear) Perturbation Theory

And its observables

Juan Carlos Hidalgo Instituto de Ciencias Físicas, UNAM

Second Mexican School on Cosmological Perturbation Theory (MEXPT2). IF-UNAM. June 11, 2018.

Part 1. Homogeneous Universe

The unperturbed Universe

- Cosmological principle estipulates that universe is invariant: Wherever you stand (homogeneous) and whichever direction you look at (isotropic)
- Comoving coordinates and uniform dynamics yield,

$$\vec{R} = a(t)\vec{r}$$
 \Longrightarrow $\vec{v} = H(t)\vec{R}(r,t)$ where $H(t) = \frac{a}{a}$

• Particles representing galaxies move in geodesics (worldlines) at fixed \vec{r} which only intersect at the singular points far in the past (or future), these are

fundamental observers.

The unperturbed Universe

· Comoving coordinates and uniform expansion yield,

$$\vec{R} = a(t)\vec{r}$$
 \Longrightarrow $\vec{v} = H(t)\vec{R}(r,t)$ where $H(t) = \frac{a}{a}$

 Robertson/Walker proved that the Friedmann-Lemaitre-Robertson-Walker metric is the most general case of an homogeneous and isotropic expansion

$$ds^{2} = -dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1 - k r^{2}} + r^{2} (d\theta^{2} + \sin(\theta)^{2} d\phi^{2}) \right]$$

Where the curvature \mathbf{k} defines the geometry of space

The unperturbed Universe

· Comoving coordinates and uniform expansion yield,

$$\vec{R} = a(t)\vec{r}$$
 \Longrightarrow $\vec{v} = H(t)\vec{R}(r,t)$ where $H(t) = \frac{a}{a}$

• Robertson/Walker proved that the Friedmann-Lemaitre-Robertson-Walker metric is the most general case of an homogeneous and isotropic expansion

$$ds^{2} = -dt^{2} + a(t)^{2} \left[\frac{dr^{2}}{1 - k r^{2}} + r^{2} (d\theta^{2} + \sin(\theta)^{2} d\phi^{2}) \right]$$

Where spatial curvature \mathbf{k} defines the geometry

Unperturbed ingredients

• Stress Energy tensor with anisotropic stress.

$$T^{\mu}_{\nu} = (\rho + p)u^{\mu}u_{\nu} + \delta^{\mu}_{\nu}p + \pi^{\mu}_{\nu}, \qquad T^{\mu}_{\nu}u^{\nu} = -\rho u^{\mu}$$

- Proper frame of perfect fluid $T_{\mu\nu} = \operatorname{diag}(-\rho, p, p, p)$. (with $p = \omega \rho$)
- Dark matter presents no velocity dispersion, no pressure, no shear $\left| p_{\scriptscriptstyle DM} = 0 \right|$

Unperturbed ingredients (fluid)

• Stress Energy tensor with anisotropic stress.

$$T^{\mu}_{\nu} = (\rho + p)u^{\mu}u_{\nu} + \delta^{\mu}_{\nu}p + \pi^{\mu}_{\nu} \qquad T^{\mu}_{\nu}u^{\nu} = -\rho u^{\mu}$$

- Proper frame of perfect fluid $T_{\mu\nu} = \text{diag}(-\rho, p, p, p)$. (with $q = \pi^{\mu}_{\nu} = 0$)
- From distribution function

$$T^{\mu\nu} = \frac{g}{(2\pi)^3} \int f p^{\mu} p^{\nu} \frac{d^3 p}{E}$$

• Energy density, momentum density and pressure

$$\rho = \frac{g}{(2\pi)^3} \int f E \, d^3 p \quad (\rho + P) \mathbf{v} = \frac{g}{(2\pi)^3} \int f \mathbf{p} \, d^3 p \qquad P = \frac{g}{3(2\pi)^3} \int f p^2 \frac{d^3 p}{E}$$

- For ultra-relativistic particles $p_{\rm RAD}=E_{\rm RAD}$, thus $\rho_{\rm RAD}=3\,p_{\rm RAD}$
- If $\pi^{\mu}_{\nu} = 0$, this is a perfect fluid.
- Dark matter presents no pressure, no shear and no anisotropic stress.

$$p_{DM} = 0$$

Unperturbed ingredients (scalar field)

• Stress Energy tensor with anisotropic stress.

$$T^{\mu}_{\nu} = (\rho + p)u^{\mu}u_{\nu} + \delta^{\mu}_{\nu}p + \pi^{\mu}_{\nu}$$

- Proper frame of perfect fluid $T_{\mu\nu} = \operatorname{diag}(-\rho, p, p, p)$. (with $p = \omega \rho$)
- Dark matter presents no pressure, no shear and no anisotropic stress.
- A scalar field has

$$T^{\mu}_{\ \nu} = g^{\mu\alpha}\varphi_{,\alpha}\varphi_{,\nu} - \delta^{\mu}_{\ \nu} \left(U(\varphi) + \frac{1}{2}g^{\kappa\lambda}\varphi_{,\kappa}\varphi_{,\lambda} \right)$$

• The homogeneous field can be described as a perfect fluid

$$u_{\mu} = \frac{\varphi_{,\mu}}{|g^{\lambda\kappa}\varphi_{,\lambda}\varphi_{,\kappa}|} \qquad \rho = -g^{\lambda\kappa}\varphi_{,\lambda}\varphi_{,\kappa} + U \;, \qquad P = -g^{\lambda\kappa}\varphi_{,\lambda}\varphi_{,\kappa} - U \;. \label{eq:posterior}$$
 See Alma Gonzalez's Talk

Evolution of FLRW metrics

• Einstein equations (and Conservation of $T_{\mu\nu}$) for a perfect fluid ($p = \omega \rho$)

$$\frac{d\rho}{dt} = -3H(p+\rho)$$

$$\frac{d\rho}{dt} = -3H(p+\rho) \qquad H^2 + \frac{kc^2}{a^2} = \frac{8\pi G}{3}\rho + \frac{1}{3}\Lambda \qquad \left(\frac{H}{H_0}\right)^2 = \Omega_m + \Omega_\Lambda + \Omega_\kappa$$

$$\left(\frac{H}{H_0}\right)^2 = \Omega_m + \Omega_\Lambda + \Omega_\kappa$$

Solutions (null curvature)

$$\rho = \rho_0 a^{-3(1+\omega)} \qquad a(t) = \left(\frac{t}{t_0}\right)^{2/3(\omega+1)}$$

Evolution of FLRW metrics

• In an FLRW universe, the comoving horizon is related to the (comoving) Hubble radius $ds^2 = 0 \rightarrow d\eta = dr$

$$r_c = \int_0^{\eta} d\eta' = \int_0^a \frac{c}{aH} d\log a = \int_0^a r_H d\log a = \begin{cases} r_H & \text{Radiation domination} \\ 2r_H & \text{Matter domination} \end{cases}$$

- Hubble Horizon $r_H = \frac{c}{aH} = \frac{c}{\mathcal{H}}$
- Comoving horizon ever expanding

$$\frac{dr_H}{dt} = -\frac{\ddot{a}}{\dot{a}^2} = a \frac{4\pi G}{H^2} (p + \rho/3)$$

(Problem for Big Bang)

• Homogeneous Universe beyond the r_H at recombination.

ast scattering surface

Horizon

Galaxies

Here & Now

Solution: Inflation

- Homogeneous Universe beyond the r_{H} at recombination.
- Require a shrinking r_H for early times: inflation

$$\frac{d}{dt}\left(\frac{1}{aH}\right) = -\frac{\ddot{a}}{\dot{a}^2} \ll 0 \qquad \qquad \frac{\ddot{a}}{a} = -4\pi G(p + \frac{1}{3}\rho)$$

$$\frac{\ddot{a}}{a} = -4\pi G(p + \frac{1}{3}\rho)$$

'comoving' Hubble length

Scalar field (inflaton)

$$\rho = \frac{1}{2}(\dot{\varphi})^2 + V(\varphi), \quad p = \frac{1}{2}(\dot{\varphi})^2 - V(\varphi)$$

Slow roll conditions.

$$\dot{\varphi}^2 << V(\varphi) \qquad \qquad \ddot{\varphi} << 3H\dot{\varphi}$$
 See Jorge Mastache's Talk

$$\ddot{\varphi} << 3H\dot{\varphi}$$

Observers and kinematics

Comoving (orthogonal) observer,

$$u_{\mu} = n_{\mu} = \frac{d\eta}{dx^{\mu}}$$

$$n_{\mu}n^{\mu}=-1$$

• Kinematic quantities defined with projection tensor : 3+1 formalism

world-line

4-velocity of matter in FLRW

$$P_{\nu\mu} \equiv g_{\nu\mu} + n_{\mu} n_{\nu} = a(t) [\eta_{\mu\nu} + \delta_{\mu 0} \delta_{0\nu}]$$

projector on hypersurfaces of constant $\eta:\Sigma$

Observers and kinematics

Comoving (orthogonal) observer,

$$n_{\mu} = \frac{d\eta}{dx^{\mu}} \qquad n_{\mu}n^{\mu} = -1$$

$$n_{\mu}n^{\mu}=-1$$

• Kinematic quantities defined with projection tensor, $P_{vu} \equiv g_{vu} + n_u n_v$

$$n_{\mu;\nu} = \frac{1}{3}\theta \, \mathcal{P}_{\mu\nu} + \sigma_{\mu\nu} + \omega_{\mu\nu} - a_{\mu}n_{\nu} \,,$$

• Expansion θ , vorticity $\omega_{\mu\nu}$, shear $\sigma_{\mu\nu}$ and acceleration a_{μ} .

$$\theta = n^{\mu}_{\; ;\mu} \, ,$$

$$\theta = n^{\mu}_{;\mu}, \quad \sigma_{\mu\nu} = \frac{1}{2} \mathcal{P}_{\mu}^{\ \alpha} \mathcal{P}_{\nu}^{\ \beta} \left(n_{\alpha;\beta} + n_{\beta;\alpha} \right) - \frac{1}{3} \theta \mathcal{P}_{\mu\nu}, \quad \omega_{\mu\nu} = \frac{1}{2} \mathcal{P}_{\mu}^{\ \alpha} \mathcal{P}_{\nu}^{\ \beta} \left(n_{\alpha;\beta} - n_{\beta;\alpha} \right)$$

$$\omega_{\mu\nu} = \frac{1}{2} \mathcal{P}_{\mu}^{\ \alpha} \mathcal{P}_{\nu}^{\ \beta} \left(n_{\alpha;\beta} - n_{\beta;\alpha} \right)$$

Geometrical quantities

- The rate of change of an infinitesimally commoving volume V is given by
- $\frac{1}{V}\frac{dV}{d\eta} = \theta = 3H$
- The Lie derivative of the projection tensor along the velocity field is the extrinsic curvature of spatial hypersurfaces

$$K_{\mu\nu} \equiv \frac{1}{2} \pounds_n \mathcal{P}_{\mu\nu} = \mathcal{P}_{\nu}^{\ \lambda} n_{\mu;\lambda} = \frac{1}{3} \theta \, \mathcal{P}_{\mu\nu} + \sigma_{\mu\nu} \,. \qquad K^{\mu}_{\ \mu} = K = H$$

Geometrical quantities

- The rate of change of an infinitesimally commoving volume V is given by $\frac{1}{V}\frac{dV}{dn} = \theta = 3H$

• The Lie derivative of the projection tensor along the velocity field is the extrinsic curvature of spatial hypersurfaces

$$K_{\mu\nu} \equiv \frac{1}{2} \pounds_n \mathcal{P}_{\mu\nu} = \mathcal{P}_{\nu}^{\ \lambda} n_{\mu;\lambda} = \frac{1}{3} \theta \, \mathcal{P}_{\mu\nu} + \sigma_{\mu\nu} \,. \qquad K^{\mu}_{\ \mu} = K = H$$

Ricci identity for the velocity field:

$$(\nabla_{\mu}\nabla_{\alpha} - \nabla_{\alpha}\nabla_{\mu})u_{\sigma} = R_{\mu\alpha\sigma\lambda}u^{\lambda}$$

Trace and contraction with the four velocity (assuming null acceleration):

$$\dot{\Theta} + \frac{1}{3}\Theta^2 + 2(\sigma^2 - \omega^2) = R_{\mu\lambda}u^{\alpha}u^{\lambda}$$

Similar propagation of shear and vorticity.

Part 2. Perturbations

What are perturbations?

Approximating scheme to solve problems from solutions to related simplifications.
 Example:

$$\sqrt{y} = \sqrt{x^2 (1+\varepsilon)} = x\sqrt{1+\varepsilon} \to \sqrt{26} = \sqrt{25+1} = 5\sqrt{1+\frac{1}{25}} \approx 5(1+1/50) \approx 5.1(=5.099)$$

For tensors $\mathbf{T}(\eta, x^i) = \mathbf{T}_0(\eta) + \delta \mathbf{T}(\eta, x^i)$.

And a Taylor expansion
$$\delta \mathbf{T}(t,x) = \sum_{n} \frac{\varepsilon^{n}}{n!} \delta \mathbf{T}_{n}(t,x)$$

Why use perturbations?

• Approximating scheme to solve problems from solutions to related simplifications.

For tensors
$$\mathbf{T}(\eta, x^i) = \mathbf{T}_0(\eta) + \delta \mathbf{T}(\eta, x^i)$$
.

And a Taylor expansion

$$\delta \mathbf{T}(t,x) = \sum_{n} \frac{\varepsilon^{n}}{n!} \delta \mathbf{T}_{n}(t,x)$$

In Cosmological Perturbation Theory we deal with deviations from FLRW Universe:

• Small, all coordinate-dependent inhomogeneities or anisotropies.

$$\rho(x,t) = \overline{\rho}(t) + \delta \rho(x,t) = \overline{\rho}(t)(1+\delta)$$

Why Perturbations? Observations from CMB:

$$\frac{\delta T}{T} \simeq 10^{-5}$$
See J.A. Vazquez's Talk

A toy model approximation

Spherical collapse model:

$$\rho(r < r_a) = \overline{\rho}(t) + \delta \rho(t)$$

• Top hat configuration, with an initial background expansion.

$$H_a^2 = \frac{8\pi G}{3}\rho_b = \frac{8\pi G}{3} \left[\rho_b + \delta\rho - \delta\rho\right] = \frac{8\pi G}{3} \left[\rho_a - \delta\rho\right]$$

A top hat approximation

Spherical collapse model:

$$\rho(r < r_a) = \overline{\rho}(t) + \delta \rho(t)$$

• Top hat configuration, with an initial background expansion.

$$H_a^2 = \frac{8\pi G}{3}\rho_b = \frac{8\pi G}{3} \left[\rho_b + \delta\rho - \delta\rho\right] = \frac{8\pi G}{3} \left[\rho_a - \delta\rho\right]$$

Positive spatial curvature accounts for overdensity

$$\frac{k c^2}{r^2(t_i)} = \frac{8\pi G}{3} \delta \rho(t_i)$$

A top hat approximation

Spherical collapse model:

$$\rho(r < r_a) = \overline{\rho}(t) + \delta \rho(t)$$

Top hat configuration, with an initial background expansion.

$$H_a^2 = \frac{8\pi G}{3}\rho_b = \frac{8\pi G}{3}[\rho_b + \delta\rho - \delta\rho] = \frac{8\pi G}{3}[\rho_a - \delta\rho]$$

$$\delta^{lin}_{\text{vir}} = \frac{3}{20} (9\pi)^{2/3}$$

Complete non-linear description

$$\frac{\rho_a}{\overline{\rho}} = 1 + \frac{\delta \rho_a}{\overline{\rho}} = \frac{r_b^3}{r_a^3} = \left[\frac{\eta^2}{\frac{a_{\text{max}}}{2} (1 - \cos \eta)} \right] + \delta_{\text{lin}} = 1 + \frac{3}{20} \left(6\pi \frac{t}{t_{max}} \right)^{2/3},$$

$$1 + \delta_{\lim} = 1 + \frac{3}{20} \left(6\pi \frac{t}{t_{max}} \right)^{2/3},$$

$$\mathcal{S}^{lin}_{col} = \frac{3}{20} (12\pi)^{2/3}$$

What are perturbations?

$$\rho(x,t) = \overline{\rho}(t) + \delta \rho(x,t) = \overline{\rho}(t)(1+\delta)$$

Unambiguous definition of perturbations requires a map.

$$\delta \rho = \underbrace{\rho} - \underbrace{\bar{\rho}}_{\bar{\mathcal{M}}}?$$

$$\delta Q = Q - \Phi(\bar{Q})$$

- The map must account for a small deviation from background.
- No unique way of defining this map Φ (re: gauge choice).
- No unique way of defining perturbations (i.e. gradient expansion).

$$\nabla^2 Q/(aH)^2 \rightarrow -k^2 Q/(aH)^2 \ll 1$$
 (at super-horizon scales)

What are perturbations?

$$\rho(x,t) = \overline{\rho}(t) + \delta \rho(x,t) = \overline{\rho}(t)(1+\delta)$$

• Unambiguous definition of perturbations requires a map.

$$\delta \rho = \underbrace{\rho - \bar{\rho}}_{\mathcal{M}}?$$

$$\delta Q = Q - \Phi(\bar{Q})$$

- The map must account for a small deviation from background.
- No unique way of defining this map (e.g. gauge choice).
 - What if $\overline{Q} = 0$? Then δQ is independent of mapping.
 - ullet Then δQ is **Gauge-Independent** (Stewart-Walker Lemma)

Metric Perturbations

• The metric tensor perturbations

$$g_{\mu\nu} = \overline{g}_{\mu\nu}(t) + \delta g_{\mu\nu}(x,t)$$

Shift Potential

Metric Perturbations

 $g_{\mu\nu} = \overline{g}_{\mu\nu}(t) + \delta g_{\mu\nu}(x,t)$ The metric tensor perturbations

$$\delta g_{00} = -2a^2 \phi \qquad \qquad \qquad \text{Gravitational potential (Newtonian potential)}$$

$$\delta g_{0i} = a^2 (B_{,i} - S_{i})$$

$$\delta g_{ij} = 2 \, a^2 \, (-2\psi + E_{,ij} + F_{i,j} + h_{ij})$$
 Shift Potential
$$\delta g_{k}^{\ k} = \text{Local scale factor} \qquad (\tilde{O}_{i} \tilde{O}_{j} - \frac{1}{3} \nabla^2) (E' + B) = \text{Shear scalar}$$

- Split from Helmholtz Theorem (see Bardeen, 1980)
- Scalar, vector and tensors decouple at first order.

Metric Perturbations

The metric tensor perturbations

$$g_{\mu\nu} = \overline{g}_{\mu\nu}(t) + \delta g_{\mu\nu}(x,t)$$

Potential shift

Geometrical quantities:

• Intrinsic Curvature of spatial hypersurfaces $^{(3)}R_1=rac{4}{a^2}
abla^2\psi_1$

• Acceleration
$$a_i = \phi_{,i}$$

- Expansion
- Expansion Proper time $d\tau = (1+\phi)dt$

$$^{(3)}R_1 = \frac{4}{a^2} \nabla^2 \psi_1$$

$$\theta = \frac{3}{a} \left[\mathcal{H} - \mathcal{H}\phi - \psi' + \frac{1}{3} \nabla^2 \sigma \right]$$

$T_{\mu\nu}$ Perturbations

The Stress-Energy tensor split

$$T_{\mu\nu} = \overline{T}_{\mu\nu}(t) + \delta T_{\mu\nu}(x,t)$$

Split for velocity:

$$u^{\mu} = a^{-1} \left(1 - \phi, v^{i} + v^{i} \right)$$

$T_{\mu\nu}$ Perturbations

The Stress-Energy tensor split

$$T_{\mu\nu} = \overline{T}_{\mu\nu}(t) + \delta T_{\mu\nu}(x,t)$$

$$\delta T^0_{\ 0} = -\delta \rho_1 \ ,$$

$$\delta T^0_{\ i} = (\rho_0 + P_0) \left(v_{1i} + B_{1i} \right)$$

$$\delta T^i_{\ j} = \delta P_1 \delta^i_{\ j} + a^{-2} \pi^{\ i}_{(1) \ j} \ ,$$
 Velocity potential

Matter density perturbation (recall $T^{\mu}_{\ \nu}u^{\nu} = -\rho u^{\mu}$)

Anisotropic stress

• Split for velocity:

 $u^{\mu} = a^{-1} \left(1 - \phi, v^{i} + v^{i} \right)$

Scalar field:

$$\delta T^{0}_{0} = a^{-2} \overline{\varphi}' (\phi \overline{\varphi}' - \delta \varphi') - U_{,\varphi} \delta \varphi$$

$$\delta T^0_{\ i} = -a^{-2}\overline{\varphi}'(\delta\varphi_{,i})$$

$$\delta T^{i}_{j} = \left[a^{-2} \overline{\varphi}' (\delta \varphi' - \phi \overline{\varphi}') - U_{,\varphi} \delta \varphi \right] \delta^{i}_{j}$$

- $\overline{Q}(t)$ depends on our choice of equal-time hypersurface at each point (x,t):
- So $\delta Q(r,t)$ will also depend on this choice of time-slicing or gauge choice

Gauge Transformation: $x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}$ Coordinate transformation which maps points of one slicing to another

- Must be small change
- 2) Helmholtz split $\xi^{\mu} = (\alpha, \beta^i + \beta^i)$
- Imposed to specific characteristics of $\delta Q(r,t)$

$$\delta Q = Q - \Phi(\bar{Q})$$

- $\overline{Q}(t)$ depends on our choice of equal-time hypersurface at each point (x,t):
- So $\delta Q(r,t)$ will also depend on this choice of time-slicing or gauge choice

Gauge Transformation: $x^{\mu} \rightarrow x^{\mu} + \xi^{\mu}$ Coordinate transformation which maps points of one slicing to another

- 1) Must be small change
- 2) Helmholtz split $\xi^{\mu} = (\alpha, \beta^i + \beta^i)$
- Imposed to specific characteristics of $\delta Q(r,t)$
- 4) ¡OJO!: spurious quantities may appear
- Soln: Fix the gauge completely!

Active approach: Map transforming perturbed quantities

$$\widetilde{\mathbf{T}} = e^{\pounds_{\xi}} \mathbf{T}$$

- Vector field generating transformation $\xi^{\mu} = (\alpha, \beta^i + \beta^i) = \xi_1^{\mu} + \frac{1}{2} \xi_2^{\mu}$
- Expansion of exponential map $\exp(\pounds_{\xi}) = 1 + \epsilon \pounds_{\xi_1} + \frac{1}{9} \epsilon^2 \pounds_{\xi_1}^2 + \frac{1}{9} \epsilon^2 \pounds_{\xi_2} + \dots$
- Split of tensor transformation $\tilde{\overline{T}} = \overline{T}$ $\tilde{T}_1 = T_1 + \pounds_{\varepsilon_1} \overline{T}$ $\tilde{T}_{2} = T_{2} + \pounds_{\varepsilon_{2}} \overline{T} + (\pounds_{\varepsilon_{1}})^{2} \overline{T} + 2\pounds_{\varepsilon_{1}} T_{1}$

$$\xi^{\mu} = (\boldsymbol{\alpha}, \boldsymbol{\beta}^{i} + \boldsymbol{\beta}_{,}^{i}) = \varepsilon \xi_{1}^{\mu} + \frac{1}{2} \varepsilon^{2} \xi_{2}^{\mu}$$

Passive approach: Provide relation between coordinates $\tilde{x}^{\mu}(q)$ and $x^{\mu}(q)$

$$\widetilde{x}^{\mu}(q) = x^{\mu}(q) - \epsilon \xi_1^{\mu}(q)$$

- Require physical (total) quantities invariant $\tilde{\rho}(\tilde{x}^{\mu}) = \rho(x^{\mu})$
- Expansion of both sides in perturbations $\rho(x^{\mu}) = \rho_0(x^0) + \epsilon \delta \rho_1(x^{\mu})$

$$\widetilde{\rho}(\widetilde{x}^{\mu}) = \rho_0\left(\widetilde{x^0}\right) + \epsilon\widetilde{\delta\rho_1}\left(\widetilde{x^{\mu}}\right) = \rho_0(x^0) + \epsilon\left(-\rho_0'(x^0)\xi_1^0(x^{\mu}) + \widetilde{\delta\rho_1}(x^{\mu})\right)$$

Result: Transformation rule at first order:

$$\widetilde{\delta\rho_1} = \delta\rho_1 + \rho_0'\xi_1^0$$

Same applies for any other 4-scalar (c.f. active approach)

$$\tilde{Q}_1 = Q_1 + \overline{Q}' \alpha_1$$

- Vector and tensor transformations computed through exponential map.
- Relevant results from vectors
 - Velocity transformation $\tilde{v}_1 = v_1 \beta_1$
 - Scalar off-diagonal metric $\tilde{B}_1 = B_1 + \beta_1' \alpha_1$
- Results from tensor transformations
 - Scalar metric potentials

$$\widetilde{\phi_1} = \phi_1 + \mathcal{H}\alpha_1 + \alpha'_1,$$

$$\widetilde{\psi}_1 = \psi_1 - \mathcal{H}\alpha_1,$$

$$\widetilde{E}_1 = E_1 + \beta_1,$$

Gravitational Waves

$$\widetilde{h}_{1ij} = h_{1ij}$$

Gauges...what Gauges?

- Observers may measure different observables
- Observers that see uniform density:
 - Require:

$$\delta \tilde{\rho}_1 = \delta \rho_1 - \overline{\rho}' \alpha_1 = 0 \rightarrow \alpha_{1\rho} = \frac{\delta \rho_1}{\overline{\rho}'}$$

$$\tilde{\psi}_{\rho} = \psi - \mathcal{H} \frac{\delta \rho_{1}}{\overline{\rho}'} \equiv -\zeta$$

Gauges...what Gauges?

- Observers may measure different observables
- Observers that see uniform field:
 - Require:

$$\delta \tilde{\rho}_1 = \delta \rho_1 - \overline{\rho}' \alpha_1 = 0 \rightarrow \alpha_{1\rho} = \frac{\delta \rho_1}{\overline{\rho}'}$$

Result: Curvature perturbation in uniform density gauge.

$$\tilde{\psi}_{\rho} = \psi - \mathcal{H} \frac{\delta \rho_{1}}{\overline{\rho}'} \equiv -\zeta$$

- Observers with unperturbed spatial hypersurfaces:
 - Require $\tilde{\psi} = \tilde{E} = 0$

$$\alpha_{\psi 1} = \psi_1 / \mathcal{H}, \ \beta_{\psi 1} = -E_1$$

Result: Field perturbation in **flat gauge**.

$$\delta \tilde{\varphi}_{\rho 1} = \delta \varphi_1 + \overline{\varphi}' \frac{\psi_1}{\mathcal{H}} \equiv Q_{MS}$$

Gauges...what Gauges?

- Observers may measure different observables
- Observers that see uniform scalar field:
 - $\alpha_{\varphi 1} = \frac{\delta \varphi_1}{\overline{\varphi}'}$ Require:
 - Result: Curvature perturbation in Uniform field gauge.

$$\tilde{\psi}_{\varphi_1} = \psi_1 + \mathcal{H} \frac{\delta \varphi_1}{\overline{\varphi}'}$$

Gauges...what Gauges?

- Observers may measure different observables
- Observers that see uniform scalar field:
 - $\alpha_{\varphi 1} = \frac{\delta \varphi_1}{\overline{\varphi}'}$ Require:
 - Result: Curvature perturbation in Uniform field gauge.

$$\tilde{\psi}_{\varphi 1} = \psi_1 + \mathcal{H} \frac{\delta \varphi_1}{\overline{\varphi}'}$$

- Observers that experience no shear:
 - Require

$$\alpha_{\ell 1} = -\sigma_1 = B_1 - E_1'$$

Result: Metric potentials in Longitudinal or Newtonian Gauge.

$$\begin{split} \widetilde{\phi}_{\ell 1} &= \phi_1 + \mathcal{H} \left(B_1 - E_1' \right) + \left(B_1 - E_1' \right)' \equiv \Phi \\ \widetilde{\psi}_{\ell 1} &= \psi_1 - \mathcal{H} \left(B_1 - E_1' \right) \equiv \Psi \end{split}$$

Gauge Invariants

Combine two scalars

$$\widetilde{\psi}_1 = \psi_1 - \mathcal{H}\alpha_1, \ \widetilde{\delta\rho_1} = \delta\rho_1 + \rho_0'\alpha_1$$

Obtain a Gauge-invariant quantity from their difference

$$\frac{\psi_1}{\mathcal{H}} - \frac{\delta \rho}{\overline{\rho}}$$

Gauge Invariants

Combine two scalars

$$\widetilde{\psi}_1 = \psi_1 - \mathcal{H}\alpha_1, \ \widetilde{\delta\rho_1} = \delta\rho_1 + \rho_0'\alpha_1$$

Obtain a Gauge-invariant quantity The Uniform density curvature

$$\frac{\psi_1}{\mathcal{H}} - \frac{\delta \rho_1}{\bar{\rho}'} = \frac{\tilde{\psi}_{\rho 1}}{\mathcal{H}} \equiv -\frac{\zeta}{\mathcal{H}}$$

Gauge Invariants

Combine two scalars

$$\widetilde{\psi}_1 = \psi_1 - \mathcal{H}\alpha_1, \ \widetilde{\delta\rho_1} = \delta\rho_1 + \rho_0'\alpha_1$$

Obtain a Gauge-invariant quantity The Uniform density curvature

$$\frac{\psi_1}{\mathcal{H}} - \frac{\delta \rho_1}{\overline{\rho}'} = \frac{\tilde{\psi}_{\rho 1}}{\mathcal{H}} \equiv -\frac{\zeta}{\mathcal{H}}$$

Bardeen Potentials are the first but not only gauge-invariants.

$$\begin{split} \tilde{\phi}_{\ell 1} &= \phi_{1} + \mathcal{H}\left(B_{1} - E_{1}'\right) + \left(B_{1} - E_{1}'\right)' \equiv \Phi \\ \tilde{\psi}_{\ell 1} &= \psi_{1} - \mathcal{H}\left(B_{1} - E_{1}'\right) \equiv \Psi \end{split}$$

Curvature Perturbation in Uniform field (comoving) gauge

$$\tilde{\varphi}^{\text{ge}} = \psi_1 + \mathcal{H} \frac{\delta \varphi_1}{\bar{\varphi}'} \equiv \mathcal{R}$$

$$\Sigma_{\phi} : \text{uniform field}$$

$$\delta \varphi = 0$$

$$\Sigma_{\rho} : \text{uniform density}$$

$$\Sigma_{\epsilon} : \text{flat}$$

Gauge lessons

- Physically meaningful $ilde{Q}_1$ are found by fixing a gauge completely.
- Gauge-invariant $ilde{Q}_1$ is any fixed-gauge quantity.
- Gauge transformations show only two degrees of freedom $\xi^{\mu} = (\alpha, \beta^i + \beta^i)$
- Different problems do with specific gauges.

Part 3. Perturbation Dynamics

Conservation Equations: adiabaticity

Perturbations can be explained (at large scales) as Q's evaluated at shifted time (cf. ϕ):

$$\delta Q(x,\eta) = Q(\eta + \delta \eta(x)) - \overline{Q}(\eta) \approx \overline{Q}(\eta)' \delta \eta$$

If each component of the density is separately conserved (meets a continuity equation).

$$\frac{\delta \rho_1^{(i)}}{\overline{\rho}^{(i)}} = -\frac{1}{3\mathcal{H}} \frac{\delta \rho_1^{(i)}}{\rho^{(i)} + P^{(i)}} = \delta \eta \approx \phi$$

Each component of the set of non-interacting ingredients is adiabatic

$$P^{(i)} = P^{(i)} \left(\rho^{(i)}(x^{\mu}) \right) \longrightarrow -3\mathcal{H}\delta\eta = \frac{\delta_1^{(\gamma)}}{4/3} = \frac{\delta_1^{(\nu)}}{4/3} = \delta_1^{(m)} = \delta_1^{(b)}$$

Each adiabatic component is determined by the total density perturbation

$$\delta(r,t) = \sum_{i} \delta^{(i)}(r,t)$$

Energy conservation at first order (continuity equation)

$$\delta \rho' + 3\mathcal{H}(\delta \rho + \delta p) - 3(\rho + P)\psi' + (\rho + p)\nabla^2(v + \sigma) = 0$$

In terms of uniform density curvature (with $c_{\rm s}^2 \equiv \frac{P'}{\rho'}$):

$$\zeta' = -\mathcal{H} \frac{\delta p_{\text{nad}}}{p + \rho} - \frac{1}{3} \nabla^2 v_l$$
 where $\delta p_{\text{nad}} = \delta p - c_s^2 \delta \rho$

Energy conservation at first order (continuity equation)

$$\delta \rho' + 3\mathcal{H}(\delta \rho + \delta p) - 3(\rho + P)\psi' + (\rho + p)\nabla^2(v + \sigma) = 0$$

In terms of uniform density curvature (with $c_{\rm s}^2 \equiv \frac{P'}{c'}$):

$$\zeta' = -\mathcal{H} \frac{\delta p_{\text{nad}}}{p + \rho} - \frac{1}{3} \nabla^2 v_l \longrightarrow \text{Constant } \zeta \text{ for adiabatic } \delta P \text{ and large scales: } k \ll \mathcal{H}$$

- Result valid at all orders, ζ is conserved if no entropy perturbations appear.
- Physical reasoning behind the δN formalism.

Momentum conservation (Euler equation)

$$V' + (1 - 3c_{\rm s}^2)\mathcal{H}V + \phi + \frac{1}{\rho + P}\left(\delta P + \frac{2}{3}\nabla^2\Pi\right) = 0$$

Momentum conservation (Euler equation) $V' + (1 - 3c_{\rm s}^2)\mathcal{H}V + \phi + \frac{1}{\rho + P}\left(\delta P + \frac{2}{3}\nabla^2\Pi\right) = 0$

In a comoving gauge: V = v + B = 0

 $(\rho + P)\phi = \delta P + (2/3)\nabla^2\Pi \longrightarrow$ Acceleration produced by pressure gradients because: $\phi_{i} = a_{i}$

- Momentum conservation (Euler equation) $V' + (1 - 3c_{\rm s}^2)\mathcal{H}V + \phi + \frac{1}{\rho + P}\left(\delta P + \frac{2}{3}\nabla^2\Pi\right) = 0$
- In a comoving gauge: V = v + B = 0

$$(\rho + P)\phi = \delta P + (2/3)\nabla^2\Pi \longrightarrow$$
 Acceleration produced by pressure gradients

- For pressureless dust: $(aV)' + a\phi = 0$
 - In synchronous gauge dust velocity V evolves as:

$$V_{\phi 1} \approx 1/a$$

Momentum conservation (Euler equation)

$$V' + (1 - 3c_{\rm s}^2)\mathcal{H}V + \phi + \frac{1}{\rho + P}\left(\delta P + \frac{2}{3}\nabla^2\Pi\right) = 0$$

In a comoving gauge: V = v + B = 0

$$(\rho + P)\phi = \delta P + (2/3)\nabla^2\Pi$$
 \longrightarrow Acceleration produced by pressure gradients

- For pressureless dust: $(aV)' + a\phi = 0$
 - \longrightarrow In synchronous gauge dust velocity B evolves as:

$$V_{\phi 1} \approx 1/a$$

In Longitudinal gauge, Euler + continuity:

$$\delta'_{\ell 1} + 2\mathcal{H}\delta'_{\ell 1} - \left(4\pi G \overline{\rho} + c_s^2 \nabla^2\right) \delta_{\ell 1} = 0$$
 Tarea!

Einstein Equations

Energy and momentum constraints

$$3\mathcal{H}(\psi' + \mathcal{H}\phi) - \nabla^2 \left[\psi + \mathcal{H}\sigma\right] = -4\pi G a^2 \delta \rho,$$

$$\psi' + \mathcal{H}\phi = -4\pi G a^2 (\rho + P) v + B$$

In longitudinal gauge:

$$3\mathcal{H}\left(\Psi' + \mathcal{H}\Phi\right) - \nabla^2\Psi = -4\pi G a^2 \delta \rho_{\ell},$$

$$\Psi' + \mathcal{H}\Phi = -4\pi G a^2 (\rho + P) v_{\ell}$$

$$\nabla^2\Psi = 4\pi G a^2 \delta \rho_{\text{com}}$$

Poisson Equation at all scales!

Einstein Equations

Evolution equations:

$$\psi'' + 2\mathcal{H}\psi' + \mathcal{H}\phi' + \left(2\mathcal{H}' + \mathcal{H}^2\right)\phi = 4\pi G a^2 \left(\delta P + \frac{2}{3}\nabla^2\Pi\right).$$
$$\sigma' + 2\mathcal{H}\sigma + \psi - \phi = 8\pi G a^2\Pi$$

In longitudinal gauge:

Evolution for potentials:

$$\Psi'' + 3(1 + c_s^2)\mathcal{H}\Psi' + [2\mathcal{H}' + (1 + 3c_s^2)\mathcal{H}^2 - c_s^2\nabla^2]\Psi = 0$$

And for dust (cf. Friedmann eqns):

$$\Psi'' + 3\mathcal{H} \Psi' = 0 \implies$$

$$\Psi = const.$$

See Josué De Santiago's Talk

Lessons so far:

- Gauges must be always specified and quantities in fully fixed gauges are always gauge invariant quantities.
- Uniform density curvature perturbation ζ is conserved on large scales.
- Bardeen potentials are conserved during pressureless matter dominated eras.
- **Spherical collapse provides intuition** of the meaning and evolution of metric perturbations.
- Adiabaticity as an indicator of evolution through growing mode.

Pending Lessons:

- Jeans scale and threshold amplitude for collapse.
- δN Formalism and the separate universe approach.
- Newtonian regime for perturbation theory.

References

- David Lyth, Andrew Liddle. The primordial density perturbation. CUP, 2009
- Karim Malik, David Wands. Cosmological Perturbations. arXiv:0809.4944v2
- George F. R. Ellis, Roy Maartens, Malcolm A. H. MacCallum, Relativistic Cosmology. CUP, 2012
- David Langlois, Lectures on inflation and cosmological perturbations, arXiv:1001.5259v1
- Julien Lesgourges. Neutrino Cosmology. CUP, 2013

Chapter 3. Perturbation Solutions

Questions to answer:

- Jeans Instability.
- Velocity dispersion in dark matter.
- Map between coordinates or map between manifolds.
- Growing and decaying modes.
- Smallness of perturbations.
- Statistical treatment.