University of Science, VNU-HCM Faculty of Information Technology

Data Structure and Algorithm

Binary Search Tree Balanced Tree AVL

Lecturer: Lê Ngọc Thành

Email: Inthanh@fit.hcmus.edu.vn

Outline

- Tree
- Binary Tree
- Binary Search Tree
- Balanced Binary Search Tree
 - AVL

Tree

- A tree <T> (Tree) is:
 - A set of elements, called nodes p₁, p₂, ..., p_N
 - If N = 0, the tree <T> is called an empty tree (NULL)
 - If N > 0:
 - There exists only one node p_k called the root of the tree
 - The remaining nodes are divided into m sets of nonintersections:
 - $-T_1, T_2, ..., T_m$
 - Each <T_i> is 1 subtree of the <T> tree

Tree

- The root node does not have a parent node.
- Each other node has only 1 parent node
- Each node can have multiple children.
- No cycle

- Node: is an element in the tree.
 - Each node can contain any data
- Branch: is the connection between two nodes
- Parent node
- Child node
- Sibling nodes: are nodes that have the same parent node
- Degree of node p_i: is the number of children of p_i

- Root node: A node that has no parent
- Leaf node (external node): node has degree
 = 0 (no child node)
- Internal node: is a node which has a parent node and a child node
- Subtree

- Degree of tree: is the largest degree of the nodes in the tree
 - Degree (<T>) = max {degree (p_i) / p_i ∈ <T>}
- Path between node p_i to node p_j: is a series of consecutive nodes from p_i to p_j such that there are branches between two adjacent nodes.
 - Path(a, d)?

- Level:
 - Level(p) = 0 if p = root
 - Level(p) = 1 + level(parent(p)) if p! = Root
- Height of tree (h_T): the longest path from the root node to the leaf node
 - $-h_{T}$ = max {Path(root, p_{i}) | p_{i} is the leaf node ∈ <T>}

Outline

- Tree
- Binary Tree
- Binary Search Tree
- Balanced Binary Search Tree
 - AVL

A binary tree is a tree with degree = 2

- The height of a binary tree has N nodes:
 - $-h_T(max) = N$
 - $-h_{T}(min) = [log_2N] + 1$

- There are 2 ways to organize a binary tree:
 - Stored by array
 - Stored by structure pointers

#	Node	Left child	Right Child
		1	
0	*	1	2
1	-	3	4
2	/	5	6
3	a	-1	-1
4	Ъ	-1	-1
5	c	-1	-1
6	d	-1	-1

Tree structure using pointers

```
typedef struct tagBT NODE {
   int Data;
   tagBT NODE *pLeft; //pointer to the left child node
   tagBT NODE *pRight; //pointer to the right child node
} BT NODE; // binary tree node
typedef struct BIN TREE {
  int
        Count; //Number of nodes in the tree
  BT NODE *pRoot; //the pointer to the root node
}; // binary tree
```

Traverse in Tree

- There are 3 ways to traverse the tree:
 - Pre-Order (NLR)
 - In-Order (LNR)
 - Post-Order (LRN)

(a) Preorder traversal

(b) Inorder traversal

(c) Postorder traversal

Traverse in Tree - NLR

```
void NLR(const BT_NODE *pCurr)
{
   if (pCurr==NULL)
     return;
   "Do something at pCurr"
   NLR(pCurr->pLeft);
   NLR(pCurr->pRight);
}
```


Traverse in Tree - NLR

Traverse in Tree - LNR

```
void LNR(const BT_NODE *pCurr)
{
   if (pCurr==NULL)
      return;
   LNR(pCurr->pLeft);
   "Do something at pCurr"
   LNR(pCurr->pRight);
}
```


Traverse in Tree - LRN

```
void LRN(const BT_NODE *pCurr)
{
   if (pCurr==NULL)
      return;
   LRN(pCurr->pLeft);
   LRN(pCurr->pRight);
   "Do something at pCurr"
}
```


Outline

- Tree
- Binary Tree
- Binary Search Tree
- Balanced Binary Search Tree
 - AVL

Binary Search Tree

- The binary search tree is:
 - A binary tree
 - Each node p of the tree satisfies:
 - All nodes in the left subtree (p-> pLeft) are less than the value of p

```
\forall q \in p-> pLeft: q-> Data < p-> Data
```

 All nodes in the right subtree (p-> pRight) are greater than the value of p

Example

Which tree is Binary Search Tree (BST)?

Example

Which tree is Binary Search Tree (BST)?

Operations in BST

- Create a empty tree
- Check the empty tree
- Find an element
- Add 1 element
- Delete 1 element

Create and check empty trees

Create a empty tree:

```
void BSTCreate(BIN_TREE &t)
{
    t.Count = 0;    // number of nodes in BST
    t.pRoot = NULL; // pointer of root node
}
```

Check a empty tree:

```
int BSTIsEmpty(const BIN_TREE &t)
{
   if (t.pRoot==NULL)
     return 1;
   return 0;
}
```

Search for an element

Example search for element 25:

Search for an element

Example search for element 31:

Search for an element

```
BT_NODE *BSTSearch(const BT_NODE *pCurr, int Key)
{
   if (pCurr==NULL) return NULL; //Not Found
   if (pCurr->Data==Key) return pCurr; // Found
   else if (pCurr->Data > Key) // Search in left subtree
        return BSTSearch(pCurr->pLeft, Key);
   else // Search in right subtree
        return BSTSearch(pCurr->pRight, Key);
}
```

Add new element

Example for adding element 26:

Add new element

Example for adding element 27:

Add new element

```
int BSTInsert(BT NODE *&pCurr, int newKey)
\{
     if (pCurr==NULL) {
         pCurr = new BT NODE; // Create new node
         pCurr->Data = newKey;
         pCurr->pLeft = pCurr->pRight = NULL;
          return 1; // Success to add new element
     if (pCurr->Data > newKey) // Add to left subtree
         return BSTInsert(pCurr->pLeft, newKey);
     else if (pCurr->Data < newKey) // Add to right subtree
         return BSTInsert(pCurr->pRight, newKey);
     else return 0; // Key is existed, don't add it
```

Delete an element

- Operation to delete an element:
 - Apply a search algorithm to determine which node contains the element to be deleted
 - If found, delete the element from the tree.
 - Delete node without any child node
 - Delete node with 1 child node
 - Delete node with 2 children

Delete an element without child

Example of deleting element 4 (without child nodes)

Delete an element with right child

Example of deleting element 25 (with a right child node

Delete an element with right child

Delete node with only the right child node

Delete an element with left child

Example of deleting element 75 (with a left child node

Delete an element with left child

Delete node with only the left child node

Example of deleting element 40 (with 2 children)

- Delete element pCurr with 2 child nodes:
 - Instead of deleting the pCurr node directly ...
 - ... we find an element to replace p,
 - ... copy data of p to pCurr,
 - ... delete node p.
- Substitute element p:
 - is the largest element in the left subtree; or...
 - is the smallest element in the right subtree

Delete element 40 (with 2 children):

Delete element 40 (with 2 children):

Way 2: substitute the smallest element in the right subtree

```
int BSTDelete(BT NODE *&pCurr, int Key)
    if (pCurr==NULL) return 0; // Not Found
    if (pCurr->Data > Key) // Find the element on left subtree
        return BSTDelete(pCurr->pLeft, Key);
    else if (pCurr->Data < Key) // Find the element on right subtree
        return BSTDelete(pCurr->pRight, Key);
    // Found node to delete (pCurr)
    Delete(pCurr);
    return 1;
```

```
void Delete(BT NODE *&pCurr)
    BT NODE *pTemp = pCurr;
    if (pCurr->pRight==NULL) // Only a left child node
       pCurr = pCurr->pLeft;
    else if (pCurr->pLeft==NULL) // Only a right child node
       pCurr = pCurr->pRight;
    else // With 2 children
         pTemp = SearchStandFor(pCurr->pLeft, pCurr);
    delete pTemp;
```

```
BT NODE * SearchStandFor(BT NODE *&p, BT NODE *pCurr)
     //Find the element to substitute
     if (p->pRight != NULL)
         return SearchStandFor(p->pRight, pCurr);
     //Substitute
     pCurr->Data = p->Data;
                                      // Copy data from p to pCurr
     BT NODE *pTemp = p;
     p = p-pLeft;
                                      // Save the left sub-branch
     return pTemp;
                                      // Delete substituted element
```

Outline

- Tree
- Binary Tree
- Binary Search Tree
- Balanced Binary Search Tree
 - AVL

Why need tree balance?

The BST tree can be unbalanced

Some trees are balanced

- AVL Tree
- Red-Black Tree
- AA Tree
- Splay Tree

•

AVL

- AVL tree is a balanced BST tree
- AVL tree created by 3 authors: Adelson,
 Velskii, Landis proposed in 1962
- This is the first proposed dynamic balanced tree model
- The AVL tree does not have "absolute" balance, but the two child-tree never have a height difference of more than 1

AVL

- The AVL tree is:
 - A search binary tree
 - Each node p of the tree is satisfactory:
 - the height of the left subtree (p-> pLeft) and the height of the right subtree (p-> pRight) differ by no more than 1.

$$\forall p \in T_{AVL}$$
: $abs (h_p -> pLeft - h_p -> pRight) \le 1$

Which tree is AVL?

Balance

- Add each node in the tree a Bal field, expressing the state of that node:
 - Bal = -1: node deviated left (the left subtree is higher than the right subtree)
 - Bal = 0: balance node (the left subtree is as high as the right subtree)
 - Bal = +1: node deviates right (the right subtree is higher than the left subtree)

Balance

Balance

```
typedef struct tagAVLT_NODE {
  int Data;

int Bal; // Balance (-1,0,1)
  tagBT_NODE *pLeft;
  tagBT_NODE *pRight;
} AVLT_NODE;
```

AVL Tree

Operations that make the tree unbalanced

- Add an element
- Delete an element

Find the unbalance node

- Traverse from the newly added node back to the root node.
- If there is an unbalanced node, perform tree adjustment at that node.
- Adjustment can cause the nodes above to become unbalanced, so we need to adjust until no nodes are unbalanced.

Find the unbalance node

Adding new element make tree unbalance.

Find the unbalance node

Deleting an element make tree unbalance

Adjust the tree that is left off

Adjust the tree that is right off

 Create an AVL tree with the keys respectively: 30, 20, 10,...

Comments

- Tree height:
 - $-h_{AVL} < 1.44log_2(N + 1).$
 - The AVL tree was 44% higher than that of an optimal binary tree.
- Search cost: O(log₂N)
- Cost of adding an element O(log₂N)
 - Search: O(log₂N)
 - Tree adjustment: O(log₂N)
- Cost of deleting element O(log₂N)
 - Search: O(log₂N)
 - Tree adjustment: O(log₂N)

The End.