CAPÍTULO 11

Banco de dados

Praticamente todo programa precisa ler ou armazenar dados. Para uma quantidade pequena de informação, arquivos simples resolvem o problema, mas, uma vez que os dados precisem ser atualizados, problemas de manutenção e dificuldade de acesso começam a aparecer.

Depois de algum tempo, o programador começa a ver que as operações realizadas com arquivos seguem alguns padrões, como: inserir, alterar, apagar e pesquisar. Ele também começa a perceber que as consultas podem ser feitas com critérios diferentes e que, à medida que o arquivo cresce, as operações se tornam mais lentas. Todos esses tipos de problema foram identificados e resolvidos há bastante tempo, com o uso de programas gerenciadores de banco de dados.

Programas gerenciadores de banco de dados foram desenvolvidos de forma a organizar e facilitar o acesso a grandes massas de informação. No entanto, para usarmos um banco de dados, precisamos saber como eles são organizados. Neste capítulo, abordaremos os conceitos básicos de banco de dados, bem como a utilização da linguagem SQL e o acesso via linguagem de programação, no caso, Python.

As listagens do capítulo 11 são bem maiores que as do restante do livro. É recomendado ler este capítulo perto de um computador e em alguns casos com as listagens impressas em papel ou facilmente acessíveis no site do livro.

11.1 Conceitos básicos

Para começarmos a utilizar os termos de banco de dados, é importante entender como as coisas funcionavam antes de usarmos computadores para controlar o registro de informações.

Não muito tempo atrás, as pessoas usavam a própria memória para armazenar informações importantes, como os números de telefones de amigos próximos e

até o próprio número de telefone. Hoje, com a proliferação de celulares, praticamente perdemos essa capacidade, por falta de uso. Mas, para entender banco de dados, precisamos compreender por que eles foram criados, quais problemas eles resolveram e como eram as coisas antes deles.

Imagine que você é uma pessoa extremamente popular e que precisa controlar mais de 100 contatos (nome e telefone) dos amigos mais próximos. Lembre-se de imaginar essa situação num mundo sem computadores. O que você faria para controlar todos os dados?

Provavelmente, você escreveria todos os nomes e telefones de seus novos contatos em folhas de papel. Usando um caderno, poder-se-ia facilmente anotar um nome abaixo do outro, com o número de telefone anotado mais à direita da folha.

Nome	Telefone
João	98901-0109
André	98902-8900
Maria	97891-3321

Tabela 11.1 – Exemplo de nomes anotados numa folha de papel

O problema com anotações em papel é que não conseguimos alterar os dados lá escritos, salvo se escrevermos a lápis, mas o resultado nunca é muito agradável. Outro problema é que não conhecemos novas pessoas em ordem alfabética, o que resulta numa lista de nomes e telefones desordenada. O papel também não ajuda quando temos mais amigos com nomes que começam por uma letra que outra, ou quando nossos amigos têm vários nomes, como João Carlos, e você nunca se lembra se registrou como João ou como Carlos!

Agora, imagine que estamos controlando não apenas nossos amigos, mas também contatos comerciais. No caso dos amigos, apenas nome e telefone já bastam para reestabelecer o contato. No caso de um contato comercial, a empresa onde a pessoa trabalha e a função que ela desempenha são importantes também. Com o tempo, precisaríamos de vários cadernos ou pastas, um para cada contato, organizados em armários, talvez uma gaveta para cada tipo de registro. Antes de os computadores se tornarem populares, as coisas eram organizadas dessa forma, e em muitos lugares são assim até hoje.

Uma vez que os problemas que podem ser resolvidos com banco de dados foram apresentados, nós já podemos aprender alguns conceitos importantíssimos para continuar o estudo, como: campos, registros, tabelas e tipos de dados.

Campos são a menor unidade de informação em um sistema gerenciador de banco de dados. Se fizermos uma comparação com nossa agenda no papel, nome e telefone seriam dois campos. O campo nome armazenaria o nome de cada contato; e o campo telefone, o número de telefone, respectivamente.

Cada linha de nossa agenda seria chamada de registro. Um registro é formado por um conjunto conhecido de campos. Em nosso exemplo, cada pessoa na agenda, com seu nome e telefone, formaria um registro.

Podemos pensar em tabelas do banco de dados como a unidade de armazenamento de registros do mesmo tipo. Imagine uma entrada da agenda telefônica, onde cada registro, contendo nome e telefone, seria armazenado. O conjunto de registros do mesmo tipo é organizado em tabelas, nesse caso, na tabela agenda ou lista telefônica.

	Tabela				
	Campo Nome	Campo Telefone			
	Nome	Telefone			
	Maria	97891-3321			
Registros	André	98902-8900			
	João	98901-0109			

Figura 11.1 – Campos, Registros e tabela.

Os conceitos de campo, registro e tabela são fundamentais para o entendimento do resto de texto, vide figura 11.1. Não hesite em reler essa seção, caso algum desses conceitos ainda não estejam claros para você. Eles serão reapresentados nas seções seguintes, quando serão aplicados em um banco de dados demonstrativo.

11.2 SOL

Structured Query Language (SQL – Linguagem de Consulta Estruturada) é a linguagem usada para criar bancos de dados, gerar consultas, manipular (inserir, atualizar, alterar e apagar) registros e, principalmente, realizar consultas. É

uma linguagem de programação especializada na manipulação de dados, baseada na álgebra relacional e no modelo relacional criado por Edgar F. Codd (http://pt.wikipedia.org/wiki/Edgar_Frank_Codd).

Neste capítulo, nós veremos como escrever comandos SQL para o banco SQL ite que vem pré-instalado com o interpretador Python e que é facilmente acessível de um programa. A linguagem SQL é definida por vários padrões, como SQL-92, mas cada banco de dados introduz modificações e adições ao padrão, embora o funcionamento básico continue o mesmo. Neste capítulo, nós veremos exclusivamente os comandos SQL no formato aceito pelo banco SQLite.

11.3 Python & SQLite

O SQLite é um gerenciador de banco de dados leve e completo, muito utilizado e presente mesmo em telefones celulares. Uma de suas principais características é não precisar de um servidor dedicado, sendo capaz de se iniciar a partir de seu programa. Nesta seção, nós veremos os comandos mais importantes e as etapas necessárias para utilizar o SQLite. Vejamos um programa Python que cria um banco de dados, uma tabela e um registro na listagem 11.1.

► Listagem 11.1 Exemplo de uso do SQLite em Python

A primeira coisa a fazer é informar que utilizaremos um banco SQLite. Isso é feito em ①. Depois do import, várias funções e objetos que acessam o banco de dados se tornam disponíveis ao seu programa. Antes de continuarmos, vamos criar o banco de dados em ②. A conexão com o banco de dados se assemelha à manipulação de um arquivo, é a operação análoga a abrir um arquivo. O nome do banco de dados que estamos criando será gravado no arquivo agenda.db. A extensão .db é apenas uma convenção, mas é recomendado diferenciar o nome do arquivo de um arquivo normal, principalmente porque todos os seus dados serão guardados nesse arquivo. A grande vantagem de um banco de dados é que o registro de informações e toda a manutenção dos dados são feitos automaticamente para você com comandos SQL.

Em 3, criamos um cursor. Cursores são objetos utilizados para enviar comandos e receber resultados do banco de dados. Um cursor é criado para uma conexão, chamando-se o método cursor(). Uma vez que obtivemos um cursor, nós podemos enviar comandos ao banco de dados. O primeiro deles é criar uma tabela para guardar nomes e telefones. Vamos chamá-la de agenda:

```
create table agenda(nome text, telefone text)
```

O comando SQL usado para criar uma tabela é create table. Esse comando precisa do nome da tabela a criar; nesse exemplo, agenda e uma lista de campos entre parênteses. Nome e telefone são nossos campos e text é o tipo. Embora em Python não precisemos declarar o tipo de uma variável, a maioria dos bancos de dados exige um tipo para cada campo. No caso do SQLite, o tipo não é exigido, mas vamos continuar a usá-lo para que você não tenha problemas com outros bancos, e para que a noção de tipo comece a fazer sentido. Um campo do tipo text pode armazenar dados como uma string do Python.

Em ②, utilizamos o método execute de nosso cursor para enviar o comando ao banco de dados. Observe que escrevemos o comando em várias linhas, usando apóstrofos triplos do Python. A linguagem SQL não exige essa formatação, embora ela deixe o comando mais claro e simples de entender. Você poderia ter escrito tudo em uma só linha e mesmo utilizar uma string simples do Python.

Com a tabela criada, podemos começar a introduzir nossos dados. Vejamos o comando SQL usado para inserir um registro:

```
insert into agenda (nome, telefone) values (?, ?)
```

O comando insert precisa do nome da tabela, onde iremos inserir os dados, e também do nome dos campos e seus respectivos valores. into faz parte do comando insert e é escrito antes do nome da tabela. O nome dos campos é escrito logo a seguir, separados por vírgula e, dessa vez, não precisamos mais informar o

tipo dos campos, apenas a lista de nomes. Os valores que vamos inserir na tabela são especificados também entre parênteses, mas na segunda parte do comando insert que começa após a palavra values. Em nosso exemplo, a posição de cada valor foi marcada com interrogações, uma para cada campo. A ordem dos valores é a mesma dos campos; logo, a primeira interrogação se refere ao campo nome; a segunda, ao campo telefone. A linguagem SQL permite que escrevamos os valores diretamente no comando, como uma grande string, mas, hoje em dia, esse tipo de sintaxe não é recomendada, por ser insegura e facilmente utilizada para gerar um ataque de segurança de dados chamado SQLInjection (http://pt.wikipedia.org/wiki/Inje%C3%A7%C3%A3o_de_SQL). Você não precisa se preocupar com isso agora, principalmente porque, ao utilizarmos as interrogações, estamos utilizando parâmetros que evitam esse tipo de problema. Podemos entender as interrogações como um equivalente das máscaras de string do Python, mas que utilizaremos com comandos SQL.

Em **6**, utilizamos o método execute para executar o comando insert, mas, dessa vez, passamos os dados logo após o comando. No exemplo, "Nilo" e "7788-1432" irão substituir a primeira e a segunda interrogação quando o comando for executado. É importante notar que os dois valores foram passados como uma tupla.

Uma vez que o comando é executado, os dados são enviados para o banco de dados, mas ainda não estão gravados definitivamente. Isso acontece, pois estamos usando uma transação. Transações serão apresentadas com mais detalhes em outra seção; por enquanto, considere o comando commit em 3 como parte das operações necessárias para modificar o banco de dados.

Antes de terminarmos o programa, fechamos (close) o cursor e a conexão com o banco de dados, respectivamente em 7 e 3. Veremos mais adiante como usar a sentença with do Python para facilitar essas operações.

Execute o programa e verifique se o arquivo agenda.db foi criado. Se você executar o programa uma segunda vez, um erro será gerado com a mensagem:

```
Traceback (most recent call last):
    File "criatabela.py", line 9, in <module>
          ''')
sqlite3.OperationalError: table agenda already exists
```

Este erro acontece porque a tabela agenda já existe. Se você precisar executar o programa novamente, apague o arquivo agenda.db. Lembre-se de que todos os dados estão nesse arquivo e, ao apagá-lo, tudo é perdido. Você pode apagar esse arquivo sempre que quiser reinicializar o banco de dados.

Vejamos agora como ler os dados que gravamos no banco de dados, vamos fazer uma consulta (*query*). O programa da listagem 11.2 realiza a consulta e mostra os resultados na tela.

► Listagem 11.2 – Consulta

```
import sqlite3
conexão = sqlite3.connect("agenda.db")
cursor = conexão.cursor()
cursor.execute("select * from agenda") 1
resultado=cursor.fetchone() 2
print("Nome: %s\nTelefone: %s" % (resultado)) 3
cursor.close()
conexão.close()
```

O programa é muito parecido com o anterior, uma vez que precisamos importar o módulo do SQLite, estabelecer uma conexão e criar um cursor. O comando SQL que realiza uma consulta é o comando select.

```
select * from agenda
```

O comando select, em sua forma mais simples, utiliza uma lista de campos e uma lista de tabelas. Em nosso exemplo, a lista de campos foi substituída por * (asterisco). O asterisco representa todos os campos da tabela sendo consultada, nesse caso nome e telefone. A palavra from é utilizada para separar a lista de campos da lista de tabelas. Em nosso exemplo, apenas a tabela agenda. O comando select é executado na linha ①.

Para acessar os resultados do comando select, devemos utilizar o método fetchone de nosso cursor ②. Esse método retorna uma tupla com os resultados de nossa consulta ou None, caso a tabela esteja vazia. Para simplificar nosso exemplo, o teste de None foi retirado.

A tupla retornada possui a mesma ordem dos campos de nossa consulta, nesse caso nome e telefone. Assim, resultado[0] é o primeiro campo, no caso nome e resultado[1] é o segundo, telefone. Em 3, usamos uma string em Python e uma máscara com dois %s, um para cada campo na tupla resultado.

Execute o programa e verifique o resultado:

Nome: Nilo

Telefone: 7788-1432

Vejamos agora como incluir os outros telefones de nossa agenda. O programa da listagem 11.3 apresenta o método executemany. A principal diferença entre executemany e execute é que executemany trabalha com vários valores. Em nosso exemplo, utilizamos uma lista de tuplas, dados. Cada elemento da lista é uma tupla com dois valores, exatamente como fizemos no programa da listatem 11.1.

► Listagem 11.3 – Inserindo múltiplos registros

Com os dados inseridos pelo programa, nossa agenda deve ter agora 4 registros. Vejamos como imprimir o conteúdo de nossa tabela, usando o mesmo comando SQL, mas, dessa vez, trabalhando com vários resultados.

► Listagem 11.4 – Consulta com múltiplos resultados

Veja o novo programa de consulta na Listagem 11.4. Em ♠, utilizamos o método fetchall de nosso cursor para retornar uma lista com os resultados de nossa

consulta. Em ②, utilizamos a variável registro para exibir os dados. Assim como vimos o método executemany, que aceita uma lista de tuplas como parâmetro, fetchall retorna uma lista de tuplas. Cada elemento dessa lista é uma tupla contendo todos os campos retornados pela consulta. Uma vez que temos a lista resultado, utilizamos um simples for para trabalhar com cada registro.

O método fetchall retorna None caso o resultado da consulta seja vazio. Veremos isso em outros exemplos. Para consultas pequenas, contendo poucos registros como resultado, o método fetchall é muito interessante e fácil de utilizar. Para consultas maiores, onde mais de 100 registros são retornados, outros métodos de obter os resultados da consulta podem ser mais interessantes. Esses métodos evitam a criação de uma longa lista, que pode ocupar uma grande quantidade de memória e demorar muito tempo para executar.

A listagem 11.5 mostra o método fetchone **1** sendo utilizado dentro de uma estrutura de repetição **while**. Como não sabemos quantos registros serão retornados, utilizamos um **while True**, que é interrompido quando o método fetchone retorna **None**, significando que todos os resultados da consulta já foram obtidos. Você pode ler *fetch* como obter; logo, fetchone seria obter um resultado e fetchall obter todos os resultados. A vantagem de fetchone nesse caso é que imprimimos o resultado da consulta tão logo obtemos um e mantemos a impressão à medida que outros resultados forem chegando. Esse tempo de entrega é um conceito importante a perceber, uma vez que os dados vêm do banco de dados para o nosso programa. Essa transferência é controlada pelo banco de dados, responsável por executar nossa consulta e gerar os resultados.

► Listagem 11.5 – Consulta, registro por registro

Antes de passarmos para comandos SQL mais avançados, vejamos a estrutura with do Python que pode nos ajudar a não nos esquecermos de chamar os métodos close de nossos objetos. A listagem 11.6 mostra o programa equivalente ao da listagem 11.5, mas utilizando a cláusula with. Uma das vantagens de utilizarmos with é que criamos um bloco onde um objeto é tido como válido. Se algo acontecer dentro do bloco, como uma exceção, a estrutura with garante que o método close será chamado. Na realidade, with chama o método __exit__ no fim do bloco e funciona muito bem com arquivos e conexões de banco de dados. Infelizmente, cursores não possuem o método __exit__, obrigando-nos a chamar manualmente o método close, ou a importar um módulo especial, contextlib, que oferece a função closing ①, que adapta um cursor com um método __exit__, que chama close. Por enquanto, esse detalhe pode ficar apenas como uma curiosidade, mas falaremos mais de with no restante deste capítulo.

► Listagem 11.6 – Uso do with para fechar a conexão

```
import sqlite3
from contextlib import closing ①
with sqlite3.connect("agenda.db") as conexão:
    with closing(conexão.cursor()) as cursor:
        cursor.execute("select * from agenda")
    while True:
        resultado=cursor.fetchone()
        if resultado == None:
            break
        print("Nome: %s\nTelefone: %s" % (resultado))
```

Exercício 11.1 Faça um programa que crie o banco de dados *preços.db* com a tabela **preços** para armazenar uma lista de preços de venda de produtos. A tabela deve conter o nome do produto e seu respectivo preço. O programa também deve inserir alguns dados para teste.

Exercício 11.2 Faça um programa para listar todos os preços do banco *preços.db*.

11.4 Consultando registros

Até agora, não fomos além do que poderíamos ter feito com simples arquivos texto. A facilidade de um sistema de banco de dados começa a aparecer quando precisamos procurar e alterar dados. Ao trabalharmos com arquivos, essas operações devem ser implementadas em nossos programas, mas com o SQLite, podemos realizá-las usando comandos SQL. Primeiramente, vamos utilizar uma variação do comando select para mostrar apenas alguns registros, implementando uma seleção de registros com base em uma pesquisa. Pesquisas em SQL são feitas com a cláusula where. Vejamos o comando SQL que seleciona todos os registros da agenda, cujo nome seja igual a "Nilo".

```
select * from agenda where nome = "Nilo"
```

Veja que apenas acrescentamos a cláusula where após o nome da tabela. O critério de seleção ou de pesquisa deve ser escrito como uma expressão, no caso nome = "Nilo". A listagem 11.7 mostra o programa com essa modificação.

► Listagem 11.7 – Consulta com filtro de seleção

```
import sqlite3
conexão = sqlite3.connect("agenda.db")
cursor = conexão.cursor()
cursor.execute("select * from agenda where nome = 'Nilo'")
while True:
    resultado=cursor.fetchone()
    if resultado == None:
        break
    print("Nome: %s\nTelefone: %s" % (resultado))
cursor.close()
conexão.close()
```

Ao executarmos o programa da listagem 11.7, devemos ter apenas um resultado:

```
Nome: Nilo
Telefone: 7788-1432
```

Veja que escrevemos 'Nilo' entre apóstrofos. Aqui, podemos usar um pouco do que já sabemos sobre strings em Python e escrever:

```
cursor.execute('select * from agenda where nome = "Nilo"')
```

Ou seja, poderíamos trocar as aspas por apóstrofos ou ainda usar aspas triplas:

```
cursor.execute("""select * from agenda where nome = "Nilo" """)
```

No caso de nosso exemplo, o nome 'Nilo' é uma constante e não há problemas em escrevê-lo diretamente em nosso comando select. No entanto, caso o nome a filtrar viesse de uma variável, ficaríamos tentados a escrever um programa, como o da listagem 11.8.

► Listagem 11.8 – Consulta com filtro de seleção vindo de variável

```
import sqlite3
nome=input("Nome a selecionar: ")
conexão = sqlite3.connect("agenda.db")
cursor = conexão.cursor()
cursor.execute('select * from agenda where nome = "%s"' % nome)
while True:
    resultado=cursor.fetchone()
    if resultado == None:
        break
    print("Nome: %s\nTelefone: %s" % (resultado))
cursor.close()
conexão.close()
```

Execute o programa da listagem 11.8 com vários valores: Nilo, João e Maria. Experimente também com um nome que não existe. A cláusula where funciona de forma parecida a um filtro. Imagine que o comando select cria uma lista e que a expressão lógica definida no where é avaliada para cada elemento. Quando o resultado dessa avaliação é verdadeiro, a linha é copiada para uma outra lista, a lista de resultados, retornada pela nossa consulta.

Veja que o programa funciona relativamente muito bem, exceto quando nada encontramos e o programa termina sem dizer muita coisa. Nós vamos corrigir esse problema logo a seguir, mas execute o programa da listagem 11.8 mais uma vez e digite a seguinte sequência como nome:

```
X" or "1"="1
```

Surpreso com o resultado? Esse é o motivo por não utilizarmos variáveis em nossas consultas. Esse tipo de vulnerabilidade é um exemplo de SQLInjection, um ataque bem conhecido. Isso acontece por que o comando SQL resultante é:

```
select * from agenda where nome = "X" or "1"="1"
```

Para evitar este tipo de ataque, sempre utilize parâmetros com valores variáveis.

O or da linguagem SQL funciona de forma semelhante ao **or** do Python. Dessa forma, nossa entrada de dados foi modificada por um valor digitado no programa. Esse tipo de erro é muito grave e pode ficar muito tempo em nossos programas sem ser percebido. Isso acontece porque a consulta é uma string como outra qualquer, e o valor passado para o método **execute** é a string resultante. Dessa forma, o valor digitado pelo usuário pode introduzir elementos que nós não desejamos. Os operadores relacionais **and** e **not** funcionam exatamente como em Python, e você também pode usá-los em expressões SQL.

Para não cairmos nesse tipo de armadilha, utilizaremos sempre parâmetros em nossas consultas.

► Listagem 11.9 – Consulta utilizando parâmetros

```
import sqlite3
nome=input("Nome a selecionar: ")
conexão = sqlite3.connect("agenda.db")
cursor = conexão.cursor()
cursor.execute('select * from agenda where nome = ?', (nome,))
x=0
while True:
    resultado=cursor.fetchone()
    if resultado == None:
      if x == 0:
         print("Nada encontrado.")
      break
    print("Nome: %s\nTelefone: %s" % (resultado))
    x+=1
cursor.close()
conexão.close()
```

Na listagem 11.9, utilizamos um parâmetro, como fizemos antes para inserir nossos registros. Um detalhe importante é que escrevemos (nome,), repare a vírgula após nome. Esse detalhe é importante, pois o segundo parâmetro do método execute é uma tupla, e, em Python, tuplas com apenas um elemento são escritas com uma vírgula após o primeiro valor. Veja também que utilizamos a variável x para contar quantos resultados obtivemos. Como o método fetchone retorna None

quando todos os registros foram recebidos, verificamos se x == 0, para saber se algo já havia sido obtido anteriormente ou se devemos imprimir uma mensagem dizendo que nada foi encontrado.

Exercício 11.3 Escreva um programa que realize consultas do banco de dados preços.db, criado no exercício 11.1. O programa deve perguntar o nome do produto e listar seu preço.

Exercício 11.4 Modifique o programa do exercício 11.3 de forma a perguntar dois valores e listar todos os produtos com preços entre esses dois valores.

11.5 Atualizando registros

Já sabemos como criar tabelas, inserir registros e fazer consultas simples. Vamos começar a usar o comando update para alterar nossos registros. Por exemplo, vamos alterar o registro com o telefone de "Nilo" para "12345-6789":

```
update agenda set telefone = "12345-6789" where nome = 'Nilo'
```

A cláusula where funciona como no comando select, ou seja, ela avalia uma expressão lógica que, quando verdadeira, inclui o registro na lista de registros a modificar. A segunda parte do comando update é a cláusula set. Essa cláusula é usada para indicar o que fazer nos registros selecionados pela expressão do where. No exemplo, set telefone = "12345-6789" muda o conteúdo do campo telefone para "12345-6789". O comando inteiro poderia ser lido como: atualize os registros da tabela agenda, alterando o telefone para "12345-6789" em todos os registros onde o campo nome é igual a "Nilo". Vejamos o programa da listagem 11.10.

► Listagem 11.10 – Atualizando o telefone

Nesse exemplo, utilizamos constantes, logo não precisamos usar parâmetros. As mesmas regras que aprendemos para o comando select se aplicam ao comando update. Se os valores não forem constantes, você tem que utilizar parâmetros.

O comando update pode alterar mais de um registro de uma só vez. Faça uma cópia do arquivo agenda. db e experimente modificar o programa da Listagem 11.10, retirando a cláusula where:

```
update agenda set telefone = "12345-6789"
```

Você verá que todos os registros foram modificados:

Nome: Nilo

Telefone: 12345-6789

Nome: João

Telefone: 12345-6789

Nome: André

Telefone: 12345-6789

Nome: Maria

Telefone: 12345-6789

Sem a cláusula where, todos os registros serão selecionados e alterados. Vamos utilizar a propriedade rowcount de nosso cursor para saber quantos registros foram alterados por nosso update. Veja o programa da listagem 11.11 com essas alterações.

► Listagem 11.11 – Exemplo de update sem where e com rowcount

Não se esqueça de que, após modificar o banco de dados, precisamos chamar o método commit, como fizemos ao inserir os registros. Caso nos esqueçamos, as alterações serão perdidas.

A propriedade rowcount é muito interessante para confirmarmos o resultado de comandos de atualização, como update. Essa propriedade não funciona com select, retornando sempre -1. Por isso, na listagem 11.9, contamos os registros retornados

por nosso select em vez de usarmos rowcount. No caso de update, poderíamos fazer uma verificação de quantos registros seriam alterados antes de chamarmos o commit. Vejamos o programa da listagem 11.12.

► Listagem 11.12 – update com rollback

No programa da listagem 11.12, utilizamos o valor de rowcount para decidir se as alterações deveriam ser registradas ou ignoradas. Como já sabemos, o método commit grava as alterações. O método rollback faz o inverso, abortando as alterações e deixando o banco de dados como antes. Os métodos commit e rollback fazem o controle de transações do banco de dados. Podemos entender uma transação como um conjunto de operações que deve ser executado completamente. Isso significa operações que não fazem sentido, salvo se realizadas em um só grupo. Se a execução do grupo falhar, todas as alterações causadas durante a transação corrente devem ser revertidas (rollback). Caso tudo ocorra como planejado, as operações serão armazenadas definitivamente no banco de dados (commit). Veremos outros exemplos mais adiante.

Exercício 11.5 Escreva um programa que aumente o preço de todos os produtos do banco *preços.db* em 10%.

Exercício 11.6 Escreva um programa que pergunte o nome do produto e um novo preço. Usando o banco *preços.db*, atualize o preço deste produto no banco de dados.

11.6 Apagando registros

Além de inserir, consultar e alterar registros, podemos também apagá-los. O comando delete apaga registros com base em um critério de seleção, especificado na cláusula where que já conhecemos. Faça outra cópia do arquivo agenda.db. Copie o antigo banco de dados, com os registros antes de executarmos o programa da listagem 11.11.

A sintaxe do comando delete é:

```
delete from agenda where nome = 'Maria'
```

Ou seja, apague da tabela **agenda** todos os registros com nome igual a "Maria". Vejamos o programa da listagem 11.13.

► Listagem 11.13 — Apagando registros

Utilizamos o método rowcount para ter certeza de que estávamos apagando apenas um registro. Assim como no comando insert e update, você precisa chamar commit para gravar as alterações ou rollback, caso contrário.

11.7 Simplificando o acesso sem cursores

A interface de banco de dados do Python nos permite executar alguns comandos utilizando diretamente o objeto da conexão, sem criarmos explicitamente um cursor. Vejamos a listagem 11.14, que é uma versão simplificada do programa da listagem 11.4.

► Listagem 11.14 – Consulta vários registros, acesso simplificado

Na listagem 11.14, utilizamos a estrutura with para facilitar o fechamento da conexão. Em ①, conexão. execute retorna um cursor que pode ser usado com for. Você pode também utilizar o método executemany diretamente com o objeto conexão. Essa utilização simplificada funciona muito bem com SQLite, mas não faz parte da interface padrão de banco de dados do Python, a DB-API 2.0. Ao utilizar cursores, você obedece a DB-API 2.0 que é implementada por outros bancos de dados, simplificando a migração de seu código para outros bancos de dados, como o MySQL ou MariaDB.

11.8 Acessando os campos como em um dicionário

Acessar os campos por posição nem sempre é tão fácil. Em Python, usando SQLite, podemos acessá-los pelo nome, adicionando uma linha:

```
conexão.row_factory = sqlite3.Row
```

Vejamos o programa completo na Listagem 11.15.

► Listagem 11.15 – Acessando os campos pelo nome

```
import sqlite3
conexão = sqlite3.connect("agenda.db")
conexão.row_factory = sqlite3.Row
cursor = conexão.cursor()
for registro in cursor.execute("select * from agenda"):
    print("Nome: %s\nTelefone: %s" % (registro["nome"], registro["telefone"]))
cursor.close()
conexão.close()
```

Dessa forma, registro pode ser acessado como se fosse um dicionário, onde o nome do campo é usado como chave. Outra facilidade que essa linha traz é que as chaves são aceitas independentemente se escrevermos o nome dos campos em maiúsculas ou minúsculas. Por exemplo:

```
print("Nome: %s\nTelefone: %s" % (registro["NOME"], registro["Telefone"]))
```

11.9 Gerando uma chave primária

Até agora, trabalhamos apenas com campos normais, ou seja, campos que contêm dados. Conforme nossas tabelas crescem, trabalhar com os dados pode não ser a melhor solução, e precisaremos acrescentar campos para manter o banco de dados. Uma dessas necessidades é identificar cada registro de maneira única. Nós podemos utilizar dados que não se repetem, ou que não deveriam se repetir, como o nome da pessoa, como uma chave primária. Podemos entender uma chave primária como a chave de um dicionário, mas, nesse caso, para tabelas em nosso banco de dados. Qualquer campo ou um conjunto de campos podem servir de chave primária. Uma alternativa oferecida pelo SQLite é a geração automática de chaves. Nesse caso, o banco se encarrega de criar números únicos para cada registro.

Vamos implementar outro banco de dados, com a população da cada estado do Brasil. Veremos como deixar o SQLite gerar uma chave primária automaticamente:

Ao criarmos a tabela estados, estamos especificando três campos: id, nome e população. Veja que id e população são do tipo integer, ou seja, números inteiros (int). id é o campo que escolhemos para ser a chave primária dessa tabela, e escrevemos primary key autoincrement para que o SQLite gere eses números automaticamente. Entenda id como a abreviação de identificador único ou identidade. *Primary key* significa chave primária.

O programa da listagem 11.16 cria o banco de dados brasil.db, a tabela estados e também inclui o nome e a população de todos os estados brasileiros. Os dados foram extraídos da Wikipédia (http://pt.wikipedia.org/wiki/Anexo:Lista_de_unidades_federativas_do_Brasil_por_popula%C3%A7%C3%A3o).

▶ Listagem 11.16 — Criação do banco de dados com a população dos estados brasileiros

```
import sqlite3
```

```
dados = [["São Paulo",43663672], ["Minas Gerais",20593366], ["Rio de Janeiro",
16369178], ["Bahia",15044127], ["Rio Grande do Sul",11164050], ["Paraná",10997462],
["Pernambuco",9208511], ["Ceará",8778575], ["Pará",7969655], ["Maranhão",6794298],
["Santa Catarina",6634250], ["Goiás",6434052], ["Paraíba", 3914418], ["Espírito
Santo",3838363], ["Amazonas",3807923], ["Rio Grande do Norte", 3373960], ["Alagoas",
3300938], ["Piauí",3184165], ["Mato Grosso",3182114], ["Distrito Federal",2789761],
["Mato Grosso do Sul",2587267], ["Sergipe",2195662], ["Rondônia",1728214],
["Tocantins",1478163], ["Acre",776463], ["Amapá",734995], ["Roraima",488072]]
```

O valor do campo id será gerado automaticamente. Uma vez que temos a população dos estados, vamos fazer uma consulta para listar os estados em ordem alfabética. Veja o programa completo na listagem 11.17. Ao executar esse programa, observe os valores gerados no campo id, no caso valores numéricos de 1 a 27.

► Listagem 11.17 – Consulta dos estados brasileiros, ordenados por nome

A grande diferença é que estamos utilizando a cláusula order by para ordenar os resultados de nossa consulta; neste caso, pelo campo nome.

```
select * from estados order by nome
```

Modifique o programa para que os estados sejam impressos pela população, usando a consulta:

```
select * from estados order by população
```

Execute o programa novamente e veja que os estados foram agora impressos pela população, mas da menor para a maior. Embora essa seja a ordem normal, quando trabalhamos com lista de estados por população, esperamos ver do estado mais populoso para o menos populoso, ou seja, na ordem inversa (decrescente) dos valores. Vejamos esse resultado ao adicionarmos desc após o nome do campo:

```
select * from estados order by população desc
```

11.10 Alterando a tabela

Vamos acrescentar mais alguns campos a nossa tabela de estados. Um campo para a região do Brasil e outro para a sigla do estado. Em SQL, o comando utilizado para alterar os campos de uma tabela é o alter table.

```
alter table estados add sigla text
alter table estados add add região text
```

O comando alter table do SQLite é limitado se comparado com outros bancos de dados. Em outros bancos, pode-se alterar vários campos com um só alter table, mas no SQLite, somos obrigados a alterar um campo de cada vez. As limitações do alter table do SQLite não param por aí. Por isso, planeje suas tabelas com cuidado e, caso precise realizar grandes mudanças, prefira criar uma outra tabela com as alterações e copiar os dados da tabela antiga. Execute o programa da listagem 11.18 para alterar a tabela estados e adicionar os campos sigla e região.

► Listagem 11.18 – Alterando a tabela

Agora que a tabela possui os novos campos, vamos alterar nossos registros e preencher a região e sigla de cada estado. Execute o programa da listagem 11.19.

► Listagem 11.19 – Preenchendo a sigla e a região de cada estado

Agora nosso banco de dados possui uma tabela estados com a população, sigla e região de cada estado. Esses novos campos permitirão utilizarmos funções de agregação da linguagem SQL: count, min, max, avg e sum.

11.11 Agrupando dados

Um banco de dados pode realizar operações de agrupamento de dados facilmente. Podemos, por exemplo, solicitar o valor mínimo de um grupo de registros, assim como também o máximo ou a média desses valores. No entanto, temos que modificar nossos comandos SQL para indicar uma cláusula de agrupamento, ou seja, devemos indicar como o banco de dados deve agrupar nossos registros.

Vejamos como realizar um grupo simples e exibir quantos registros fazem parte desse grupo, usando a função count. A cláusula SQL que indica agrupamento é group by, seguida do nome dos campos que compõem o grupo. Imagine que o banco vai concatenar cada um desses campos, criando um valor para cada registro. Vamos chamar esse valor de "chave de grupo". Todos os registros com a mesma chave de grupo fazem parte do mesmo grupo e serão representados por apenas um registro na consulta de seleção. Essa consulta com grupo só pode conter os campos utilizados para compor a chave do grupo e funções de agrupamento de dados, como min (mínimo), max (máximo), avg (média), sum (soma) e count (contagem).

Um exemplo concreto como nosso banco de dados é agrupar os estados por região. A consulta seria algo como:

```
select região, count(*) from estados group by região
```

Esse comando utilizada a cláusula group by região para especificar a chave de grupo. Dessa forma, todos os registros que pertencem a mesma região são agrupados. Observe que os campos após o select incluem região e count(*). O campo região pôde ser incluído, pois faz parte da chave de grupo especificada na group by. A função count(*) retorna quantos registros fazem parte do grupo. Vejamos o resultado do programa da listagem 11.20.

► Listagem 11.20 – Agrupando e contando estados por região

```
import sqlite3
print("Região Número de Estados")
print("===== =========")
with sqlite3.connect("brasil.db") as conexão:
    for região in conexão.execute("""
        select região, count(*)
        from estados
        group by região"""):
        print("{0:6} {1:17}".format(*região))
```

Resultado da execução do programa da listagem 11.20:

Região	Número	de	Estados
=====	=====		
CO			4
N			7
NE			9
S			3
SE			4

Vamos adicionar as funções min, max, sum, avg no campo população. Veja o programa da listagem 11.21.

► Listagem 11.21 — Usando as funções de agregação

Resultado do programa da listagem 11.21:

Região	Estados	População	Mínima	Máxima	Média	Total (soma)
=====	======	=	=======	=======	=======	========
CO	4	2	2,587,267	6,434,052	3,748,298	14,993,194
N	7		488,072	7,969,655	2,426,212	16,983,485
NE	9	2	2,195,662	15,044,127	6,199,406	55,794,654
S	3	6	5,634,250	11,164,050	9,598,587	28,795,762
SE	4	3	3,838,363	43,663,672	21,116,145	84,464,579
Brasil:	27		488,072	43,663,672	7,445,618	201,031,674

Com o programa da listagem 11.21, conseguimos calcular a população mínima, máxima, média e total de cada região e também para o Brasil. Veja que na segunda consulta, a que calcula os dados para o Brasil, não utilizamos a cláusula group by, fazendo com que todos os registros façam parte do grupo.

Ao utilizarmos as funções de agregação e a cláusula group by, podemos continuar usando tudo que já aprendemos em SQL, como as cláusulas where e order by. Vejamos o mesmo programa da listagem 11.21, mas com as linhas ordenadas pela população total de cada região em ordem decrescente.

► Listagem 11.22 – Funções de agregação com order by

No programa da listagem 11.22, apenas acrescentamos a linha order by sum(população) desc no final de nossa consulta. Veja que repetimos a função de agregação sum(população) para indicar que a ordenação será feita pela soma da população. Você pode utilizar a cláusula as do SQL para dar nomes às colunas de uma consulta. Veja a consulta modificada para usar as e criar uma coluna tpop para a soma da população:

Veja que escrevemos sum(população) as tpop, dando o nome tpop à soma. Depois, utilizamos o nome tpop na cláusula do order by. Esse tipo de construção evita a repetição da função na consulta e facilita a leitura.

Resultado da execução do programa da listagem 11.22:

Região	Estados	População	Mínima	Máxima	Média	Total (soma)
=====	======	=		=======	=======	========
SE	4	3	3,838,363	43,663,672	21,116,145	84,464,579
NE	9	2	2,195,662	15,044,127	6,199,406	55,794,654
S	3	6	634,250	11,164,050	9,598,587	28,795,762
N	7		488,072	7,969,655	2,426,212	16,983,485
CO	4	2	2,587,267	6,434,052	3,748,298	14,993,194
Brasil:	27		488,072	43,663,672	7,445,618	201,031,674

Podemos também filtrar os resultados após o agrupamento, usando a cláusula having. Para entender a diferença entre where e having, imagine que where é executada antes do agrupamento, selecionando os registros que farão parte do resultado, antes do agrupamento ser realizado. A cláusula having, avalia o resultado do agrupamento e decide quais farão parte do resultado final. Por exemplo, podemos escolher apenas as regiões com mais de 5 estados. Como a quantidade de estados por região só é conhecida após o agrupamento (group by), essa condição deve aparecer em uma cláusula having.

Veja o programa completo na listagem 11.23.

► Listagem 11.23 — Utilizando having para listar apenas as regiões com mais de 5 estados

Resultando em:

Região	Estados	População	Mínima	Máxima	Média	Total (soma)
=====	======		======	=======		========
NE	9		2,195,662	15,044,127	6,199,406	55,794,654
N	7		488,072	7,969,655	2,426,212	16,983,485

Uma vez que apenas as regiões Norte (N) e Nordeste (NE) possuem mais de 5 estados.

11.12 Trabalhando com datas

Embora o SQLite trabalhe com datas, o tipo DATE não é suportado diretamente, gerando uma certa confusão entre datas e strings. Vamos criar uma tabela com um campo do tipo data.

► Listagem 11.24 – Criando uma tabela de feriados nacionais

No programa da listagem 11.24, criamos a tabela feriados e inserimos algumas datas. Observe que escrevemos as datas no formato ISO 8601 (http://pt.wikipedia. org/wiki/ISO_8601), ou seja: ANO-MÊS-DIA. Nesse formato, a data do Natal (25/12/2014) é escrita como 2014-12-25. Escrever as datas nesse formato é uma característica do SQLite. Sempre escreva suas datas no formato ISO ao trabalhar com esse gerenciador de banco de dados. Observe que utilizamos o tipo date (data) na coluna data. Modifique o ano de 2014 para o ano corrente, caso necessário.

Vejamos como acessar esses valores no programa da listagem 11.25.

► Listagem 11.25 – Acessando um campo do tipo data

```
import sqlite3
with sqlite3.connect("brasil.db") as conexão:
    for feriado in conexão.execute("select * from feriados"):
        print(feriado)

Que resulta em:
    (1, '2014-01-01', 'Confraternização Universal')
    (2, '2014-04-21', 'Tiradentes')
    (3, '2014-05-01', 'Dia do trabalhador')
    (4, '2014-09-07', 'Independência')
    (5, '2014-10-12', 'Padroeira do Brasil')
```

```
(6, '2014-11-02', 'Finados')
(7, '2014-11-15', 'Proclamação da República')
(8, '2014-12-25', 'Natal')
```

No programa da listagem 11.25, acessamos o campo data como fazemos até então, sem algum procedimento especial. Veja que, ao imprimirmos a tupla feriado com o resultado de nossa seleção, o campo data foi impresso como uma string qualquer. Nada impede que utilizemos strings para representar datas, como fizemos ao criar o banco de dados, mas campos datas são mais interessantes, pois podemos facilmente consultar o dia da semana e também realizar operações com datas.

Vamos modificar nossa conexão com o SQLite de forma a solicitar o processamento dos tipos de campo em nossas consultas. Ao solicitarmos a conexão, devemos passar detect_types=sqlite3.PARSE_DECLTYPES como parâmetro. Vejamos a listagem 11.26 com essa modificação.

► Listagem 11.26 – Solicitando o tratamento do tipo dos campos

```
import sqlite3
```

```
with sqlite3.connect("brasil.db",detect_types=sqlite3.PARSE_DECLTYPES) as conexão:
    for feriado in conexão.execute("select * from feriados"):
        print(feriado)
```

O resultado do programa da listagem 11.26 é bem diferente:

```
(1, datetime.date(2014, 1, 1), 'Confraternização Universal')
(2, datetime.date(2014, 4, 21), 'Tiradentes')
(3, datetime.date(2014, 5, 1), 'Dia do trabalhador')
(4, datetime.date(2014, 9, 7), 'Independência')
(5, datetime.date(2014, 10, 12), 'Padroeira do Brasil')
(6, datetime.date(2014, 11, 2), 'Finados')
(7, datetime.date(2014, 11, 15), 'Proclamação da República')
(8, datetime.date(2014, 12, 25), 'Natal')
```

Veja que os valores do campo data agora são objetos da classe datetime.date. Isso evita termos que fazer a conversão manualmente de string para datetime.date. No programa da listagem 11.27, utilizamos o método strftime do objeto da classe datetime.date para exibir apenas o dia e o mês da data, sem o ano.

► Listagem 11.27 – Trabalhando com datas

```
import sqlite3
with sqlite3.connect("brasil.db",detect_types=sqlite3.PARSE_DECLTYPES) as conexão:
    conexão.row_factory = sqlite3.Row
    for feriado in conexão.execute("select * from feriados"):
        print("{0} {1}".format(feriado["data"].strftime("%d/%m"), feriado["descrição"]))
```

No programa da listagem 11.27, voltamos a utilizar row_factory para acessarmos os campos por nome, como em um dicionário. O método strftime foi utilizado com a máscara "%d/%m" para exibir apenas o dia e o mês. Você pode verificar os formatos aceitos por strftime na tabela 93.

Vejamos o resultado do programa da listagem 11.27:

```
01/01 Confraternização Universal
21/04 Tiradentes
01/05 Dia do trabalhador
07/09 Independência
12/10 Padroeira do Brasil
02/11 Finados
15/11 Proclamação da República
25/12 Natal
```

Vejamos um pouco o que podemos fazer com os objetos do módulo datetime.

► Listagem 11.28 – Feriados nos próximos 60 dias

```
import sqlite3
import datetime
hoje = datetime.date.today()
hoje60dias = hoje + datetime.timedelta(days=60)
with sqlite3.connect("brasil.db",detect_types=sqlite3.PARSE_DECLTYPES) as conexão:
    conexão.row_factory = sqlite3.Row
    for feriado in conexão.execute("select * from feriados where data >= ? and data <= ?", (hoje, hoje60dias)):
        print("{0} {1}".format(feriado["data"].strftime("%d/%m"), feriado["descrição"]))</pre>
```

O programa da listagem 11.28 utiliza objetos do módulo datetime. Em hoje, guardamos a data atual (datetime.date.today()). Em hoje60dias, utilizamos um objeto do tipo datetime.timedelta para acrescentar 60 dias à data atual. Com esses dois

objetos date, podemos utilizar a cláusula where do SQLite para selecionar os feriados entre hoje e hoje60dias. Consulte a documentação do Python para saber mais sobre o módulo datetime. Os objetos das classes timedelta e datetime.datetime são bastante úteis, caso você precise realizar operações com datas e guardar a hora com a data (datetime).

11.13 Chaves e relações

Agora que já sabemos o básico de como manipular registros em nosso banco de dados, veremos conceitos mais avançados que permitirão trabalharmos com várias tabelas. Para selecionarmos nossos registros, vimos que precisamos construir expressões lógicas que identifiquem ou que permitam a seleção desses registros. No caso de nossa agenda, o campo nome foi usado em nossas expressões, mas utilizar dados como critério de seleção não é uma boa ideia a longo termo. Dados podem mudar e se repetir entre várias tabelas. Por exemplo, imagine a situação onde nossa agenda teria vários telefones por pessoa, como na tabela 11.2:

Tabela 11.2 – Agenda com uma tabela

nome	número	tipo
Nilo	12345-6789	Casa
Nilo	98745-4321	Celular

Nesse exemplo, poderíamos simplesmente adicionar dois registros com o mesmo nome, mas estaríamos complicando nosso trabalho mais tarde, pois, se quiséssemos mudar o telefone de um dos registros, não poderíamos utilizar nome = "Nilo" como critério de seleção, seríamos obrigados a utilizar uma condição composta por nome e telefone.

Esse problema poderia ser resolvido adicionando-se uma chave que identificasse cada pessoa de forma única. Essa chave pode ser um simples número, desde que único, vamos chamá-la de identificador, ou simplesmente id. A tabela 11.3 mostra nossos dados com esse novo campo.

Tabela 11.3 – Agenda com uma tabela e uma chave

id	nome	número	tipo
1	Nilo	12345-6789	Casa
1	Nilo	98745-4321	Celular

Embora nossos dados estejam em melhor forma, ainda estamos repetindo o campo nome várias vezes. E o campo id não identifica unicamente cada registro. Esse tipo de problema é chamado de redundância de dados. Em uma base de dados, quanto menos redundância tivermos em nossos dados, mais fácil será de mantê-los. Por exemplo, imagine que queiramos mudar o nome Nilo para adicionar também Menezes. Teríamos que atualizar os dois registros, pois guardamos a mesma informação em dois lugares (registros) diferentes.

Uma melhor forma de representar esses dados é dividindo nossos dados em várias tabelas. Por exemplo, uma tabela para nome e outra para telefone. Vejamos as tabelas 11.4 e 11.5 com essa nova divisão. Veja que o campo id na tabela 11.4 pode ser usado como chave primária. A chave primária (id) da tabela nomes foi copiada na tabela 11.5, no campo id nome.

Tabela 11.4 – Tabela nomes

id	Nome
1	Nilo

Tabela 11.5 – Tabela Telefones

id_nome	número	tipo
1	12345-6789	Casa
1	98745-4321	Celular

Dessa forma, armazenamos o nome em apenas um lugar. Ainda temos outros problemas, pois agora nossos telefones não possuem um identificador único. Veja como ficaria nossa tabela, acrescentando-se uma chave a Telefones, tabela 11.6:

Tabela 11.6 – Tabela telefones

id	id_nome	número	tipo
1	1	12345-6789	Casa
2	1	98745-4321	Celular

Assim, uma chave primária é um campo de um registro que o identifica de forma única na tabela. Resolvemos nosso problema de redundância, mas como acessar esses dados em tabelas diferentes com comandos SQL? Bem, vamos utilizar o comando select, mas com várias tabelas e especificar uma forma de as interligar.

Esse comando difere de nossos outros exemplos por utilizar mais de uma tabela, após a cláusula from. Uma vez que utilizamos várias tabelas, somos obrigados a especificar como essas tabelas se relacionam; caso contrário, obteremos o que é chamado de produto cartesiano, onde nosso resultado conterá a combinação de cada registro da primeira tabela, com cada registro da segunda. É esse relacionamento que é especificado em nomes.id = telefones.id_nomes, ou seja, especificamos um critério que liga as duas tabelas; no caso, quando o campo id da tabela nomes (nomes.id) for igual ao campo id_nomes da tabela telefones (telefones.id_nomes).

Mas o tipo do telefone ainda se repete, o que pode levar a resultados indesejáveis em nossa agenda. Vamos criar outra tabela para guardar os tipos de telefone de forma a não repeti-los. Veja o resultado nas tabelas 11.7 e 11.8.

id	id_nome	número	id_tipo
1	1	12345-6789	1
2	1	98745-4321	2

Tabela 11.7 Tabela telefones com o campo id_tipo

Tabela 11.8 Tabela Tipos

id	descrição
1	Casa
2	Celular

Vejamos os comandos SQL para criar essas tabelas:

Com o uso de primary key autoincrement, como já vimos anteriormente, o SQLite se encarregará de gerar os números que utilizaremos em nossas chaves primárias. Agora, podemos revistar a agenda do capítulo 10 e convertê-la para utilizar um banco de dados em vez de um simples arquivo-texto.

11.14 Convertendo a agenda para utilizar um banco de dados

Converter a agenda para um banco de dados nos levará a enfrentar um problema de mapeamento entre objetos e os bancos de dados relacionais, como o SQLite. Um dos maiores problemas nesse tipo de mapeamento é manter os dados entre nosso programa e o banco de dados sincronizados. Existem bibliotecas inteiras escritas apenas para resolver esse tipo de problema, usando o que é chamado de Mapeamento Objeto Relacional (*Object-Relational Mapping*, ORM). Em nossa agenda, temos uma lista de registros, cada um com um nome e uma lista de telefones. Cada telefone possui um tipo pré-cadastrado.

Primeiramente, vamos criar uma subclasse de ListaÚnica para controlar os registros apagados de nossas listas. Depois, criaremos métodos em uma outra classe, chamada DBAgenda, responsável por manter o banco de dados e executar as operações da agenda. Uma mudança nessa nova versão da agenda é que carregamos o registro apenas quando precisamos carregar. Ao voltarmos ao menu principal, todas as mudanças já estarão salvas no banco de dados, fazendo as opções Lê e Grava inúteis.

► Listagem 11.29 – Novas classes – listagem parcial

```
class DBListaÚnica(ListaÚnica):
    def __init__(self, elem_class):
        super().__init__(elem_class)
       self.apagados = []
    def remove(self, elem):
       if elem.id is not None:
           self.apagados.append(elem.id)
        super().remove(elem)
    def limpa(self):
        self.apagados = []
class DBNome(Nome):
    def init (self, nome, id =None):
        super(). init (nome)
       self.id = id
class DBTipoTelefone(TipoTelefone):
    def __init__(self, id_, tipo):
        super(). init (tipo)
        self.id = id
```

```
class DBTelefone(Telefone):
    def init (self, número, tipo=None, id =None, id nome=None):
        super(). init (número, tipo)
       self.id = id
       self.id nome = id nome
class DBTelefones(DBListaÚnica):
    def init (self):
        super(). init (DBTelefone)
class DBTiposTelefone(ListaÚnica):
    def __init__(self):
        super().__init__(DBTipoTelefone)
class DBDadoAgenda:
    def init (self, nome):
        self.nome = nome
       self.telefones = DBTelefones()
    @property
    def nome(self):
       return self. nome
    @nome.setter
    def nome(self, valor):
        if type(valor)!=DBNome:
           raise TypeError("nome deve ser uma instância da classe DBNome")
        self. nome = valor
    def pesquisaTelefone(self, telefone):
        posição = self.telefones.pesquisa(DBTelefone(telefone))
       if posição == -1:
           return None
       else:
           return self.telefones[posição]
```

A classe DBListaÚnica herda de nossa classe ListaÚnica e sua principal função é manter uma lista de id apagados. Isso nos permitirá apagar os elementos de nossas listas e, numa fase seguinte, apagá-los do banco de dados. A classe DBListaÚnica só pode trabalhar com classes que possuam um atributo id.

As classes DBNome e DBTelefone derivam de Nome e Telefone respectivamente. A principal diferença é que agora elas incluem o atributo id. Veja que esse atributo é um

parâmetro opcional, pois, ao criarmos nossos objetos, eles não terão ainda suas chaves primárias. Além disso, usaremos o fato de que objetos sem id provavelmente acabaram de ser criados e precisam ser inseridos no banco de dados. Isso ficará mais claro no programa completo.

Já na classe DBDadosAgenda modificamos o tipo da lista de telefones de Telefones para DBTelefones. A classe DBTelefones é uma derivação de DBListaÚnica que aceita apenas elementos do tipo DBTelefone. Fizemos o mesmo entre DBTipoTelefone e DBTiposTelefones.

Até agora, fizemos apenas a mudança dos tipos, em preparação para trabalhar com o banco de dados. A principal mudança foi o novo atributo id que acrescentamos em todas as nossas classes. É o valor desse campo que utilizaremos em nossas consultas, alterações e remoções.

► Listagem 11.30 – Listagem parcial – Classe DBAgenda

```
BANCO = """
create table tipos(id integer primary key autoincrement,
                   descrição text);
create table nomes(id integer primary key autoincrement,
                   nome text);
create table telefones(id integer primary key autoincrement,
                   id nome integer,
                   número text,
                   id_tipo integer);
insert into tipos(descrição) values ("Celular");
insert into tipos(descrição) values ("Fixo");
insert into tipos(descrição) values ("Fax");
insert into tipos(descrição) values ("Casa");
insert into tipos(descrição) values ("Trabalho");
class DBAgenda:
    def __init__(self, banco):
        self.tiposTelefone = DBTiposTelefone()
        self.banco = banco
        novo = not os.path.isfile(banco)
        self.conexão = sqlite3.connect(banco)
```

```
self.conexão.row factory = sqlite3.Row
   if novo:
        self.cria banco()
    self.carregaTipos()
def carregaTipos(self):
   for tipo in self.conexão.execute("select * from tipos"):
        id = tipo["id"]
        descrição = tipo["descrição"]
        self.tiposTelefone.adiciona(DBTipoTelefone(id , descrição))
def cria banco(self):
    self.conexão.executescript(BANCO)
def pesquisaNome(self, nome):
    if not isinstance(nome, DBNome):
        raise TypeError("nome deve ser do tipo DBNome")
    achado = self.conexão.execute("""select count(*)
                                     from nomes where nome = ?""",
                                     (nome.nome,)).fetchone()
   if(achado[0]>0):
        return self.carrega por nome(nome)
   else:
        return None
def carrega por id(self, id):
    consulta = self.conexão.execute(
            "select * from nomes where id = ?", (id,))
    return carrega(consulta.fetchone())
def carrega por nome(self, nome):
    consulta = self.conexão.execute(
            "select * from nomes where nome = ?", (nome.nome,))
   return self.carrega(consulta.fetchone())
def carrega(self, consulta):
   if consulta is None:
        return None
   novo = DBDadoAgenda(DBNome(consulta["nome"], consulta["id"]))
   for telefone in self.conexão.execute(
        "select * from telefones where id nome = ?",
        (novo.nome.id,)):
```

```
ntel = DBTelefone(telefone["número"], None,
                              telefone["id"], telefone["id nome"])
            for tipo in self.tiposTelefone:
                if tipo.id == telefone["id tipo"]:
                    ntel.tipo = tipo
                    break
            novo.telefones.adiciona(ntel)
        return novo
    def lista(self):
        consulta = self.conexão.execute(
                "select * from nomes order by nome")
        for registro in consulta:
            yield self.carrega(registro)
def novo(self, registro):
        try:
            cur = self.conexão.cursor()
            cur.execute("insert into nomes(nome) values (?)",
                         (str(registro.nome),))
            registro.nome.id = cur.lastrowid
            for telefone in registro.telefones:
                cur.execute("""insert into telefones(número,
                               id tipo, id nome) values (?,?,?)""",
                            (telefone.número, telefone.tipo.id,
                             registro.nome.id))
                telefone.id = cur.lastrowid
            self.conexão.commit()
        except:
            self.conexão.rollback()
            raise
        finally:
            cur.close()
    def atualiza(self, registro):
        try:
            cur = self.conexão.cursor()
            cur.execute("update nomes set nome=? where id = ?",
                (str(registro.nome), registro.nome.id))
```

```
for telefone in registro.telefones:
            if telefone.id is None:
                cur.execute("""insert into telefones(número,
                               id_tipo, id_nome)
                               values (?,?,?)""",
                        (telefone.número, telefone.tipo.id,
                        registro.nome.id))
                telefone.id = cur.lastrowid
            else:
                cur.execute("""update telefones set número=?,
                                      id tipo=?, id_nome=?
                                      where id = ?""",
                        (telefone.número, telefone.tipo.id,
                        registro.nome.id, telefone.id))
        for apagado in registro.telefones.apagados:
            cur.execute("delete from telefones where id = ?", (apagado,))
        self.conexão.commit()
        registro.telefones.limpa()
   except:
        self.conexão.rollback()
        raise
   finally:
        cur.close()
def apaga(self, registro):
   try:
        cur = self.conexão.cursor()
        cur.execute("delete from telefones where id_nome = ?",
                        (registro.nome.id,))
        cur.execute("delete from nomes where id = ?",
                     (registro.nome.id,))
        self.conexão.commit()
   except:
        self.conexão.rollback()
        raise
   finally:
        cur.close()
```

A listagem 11.30 apresenta a classe DBAgenda, que substituirá a classe Agenda. A classe DBAgenda mantém o banco de dados em sincronia com as classes e objetos em memória, sendo responsável por todas as operações com o banco. Esse tipo de construção em camadas evita termos que escrever o código de manipulação e criação do banco na classe AppAgenda.

A primeira coisa que a classe DBAgenda faz é verificar se banco de dados já existe. Essa verificação é feita antes do pedido de conexão no método __init__. Para saber se o banco já existe, utilizamos a função os.path.isfile(banco). Caso o arquivo não exista, ele será criado pelo método cria_banco, chamado logo após a conexão com o banco de dados. Veja que guardamos o objeto conexão como um atributo de DBAgenda.

O método cria_banco é muito simples, utilizando o método executescript da conexão. Esse método executa vários comandos de uma só vez. Para simplificar a criação do banco, escrevemos o código que cria todas as tabelas e popula a tabela tipos na variável global BANCO. A execução de vários comandos só é possível porque eles estão separados por ;.

O método carrega_tipos realiza a leitura de todos os tipos de telefone no banco de dados e os guarda na lista tiposTelefone. Observe o cuidado em manter os id. Esse valor será utilizado depois para obter o tipo correto de cada telefone.

O método pesquisa_nome também traz novidades. Nele, executamos uma consulta usando a função count(*). Se um registro for encontrado, o método carrega_por_nome é chamado para transformar o resultado de nossa consulta em uma coleção de objetos, da mesma forma que trabalhamos com a agenda no capítulo 10. Veja também que utilizamos a cláusula where para pesquisar na tabela nomes diretamente, uma vez que não carregamos todos os registros do banco de dados para a memória.

Em carrega, o resultado de nossa consulta é transformado em um objeto DBDadoAgenda, após criarmos uma instância de DBNome com os campos nome e id vindos de nossa consulta. Esse tipo de acesso é possível, pois registramos self.conexão.row_factory = sqlite3.Row no método __init__. Uma vez que o nome foi carregado, utilizamos seu id como id_nome em nossa próxima consulta, que carregará os valores de telefone. Observe o cuidado durante a leitura dos telefones e a transformação do resultado em DBTelefone. Como o tipo ainda não foi carregado e temos todos eles em memória, fazemos uma pesquisa em self.TiposTelefone para converter o id em uma instância de TipoTelefone. É esse tipo de mapeamento que não é tão simples de fazer e que é bastante trabalhoso pela grande quantidade de código necessária para mantê-lo. É nessas horas que um ORM ajuda. Uma

vez que tudo foi convertido, novo é retornado com todos os dados pré-carregados.

O método lista executa uma consulta total da tabela nomes. Porém, para evitar a criação de uma grande lista, utilizamos a instrução yield do Python que retorna cada valor carregado, um de cada vez. Na realidade, o método lista retorna um gerador (*generator*) que pode ser utilizado em um for do Python. Isso evita termos que carregar e converter todos os valores antes de ter os primeiros resultados na tela.

Em novo, convertemos um objeto do tipo DBDadoAgenda em registros das tabelas nomes e telefones. Essa conversão é realizada dentro de uma transação, daí o porquê de utilizamos explicitamente um cursor (cur). Realizar essa operação dentro de uma transação permitirá melhorar a consistência do banco de dados, pois se um erro acontecer antes de completarmos todas as operações, o estado do banco de dados será revertido ao estado anterior ao início de nossas operações. Como o id de nomes é gerado automaticamente, veja que utilizamos a propriedade lastrowid de nosso cursor, logo após a execução do insert. Desta forma, podemos utilizar o novo id para popular a tabela de telefones. Realizamos então o mesmo processo a cada novo telefone, atribuindo o valor de lastrowid ao id do telefone.

Já o método atualiza é bem mais complexo. Durante a atualização de um registro, precisamos atualizar o campo nome na tabela de nomes. Em nossa solução caseira, não temos como saber se nome foi alterado ou não. Poderíamos alterar a classe para saber quando o nome foi alterado e executar o update apenas quando necessário. Esta é outra característica das bibliotecas de ORM que trazem esse tipo de funcionalidade em suas classes. Para mantermos a agenda o mais simples possível, nome sempre será atualizado. Para cada telefone, fazemos a verificação do valor de telefone.id. Se um telefone já possui um valor em id, provavelmente ele já está registrado no banco de dados e precisa ser atualizado. Caso ainda não possua um valor em id, provavelmente se trata de um telefone inserido durante a alteração. Dessa forma, escolhemos entre fazer um insert ou um update na tabela telefones. Por último, verificamos se a lista de apagados possui uma lista de id a apagar. Essa lista foi construída pela classe DBListaÚnica, onde guardamos o id de cada elemento apagado. Essa mudança foi necessária, pois diferente dos novos registros e dos registros alterados, os registros apagados são removidos de nossa lista. Se não mantivermos a lista dos id apagados, ficaríamos sem saber quais telefones foram removidos, e nosso banco ficaria inconsistente. Para cada id na lista de apagados, executamos um delete. Logo após, terminamos a transação com um commit para nos assegurarmos de que todas as operações foram registradas no banco de dados e, só então, apagamos a lista de telefones removidos com o método limpa.

O método apaga é um pouco mais simples. Nele, utilizamos a mesma estrutura de proteção e uma transação. O interessante é que, primeiramente, apagamos os telefones e, depois, os nomes. Da forma que geramos nosso banco de dados, essa ordem não importa, uma vez que não estamos utilizando os recursos de integridade referencial do banco.

O programa da agenda é apresentado por inteiro na listagem 11.31.

► Listagem 11.31 – Agenda com banco de dados completo

```
import sys
import sqlite3
import os.path
from functools import total ordering
BANCO = """
create table tipos(id integer primary key autoincrement,
                   descrição text);
create table nomes(id integer primary key autoincrement,
                   nome text);
create table telefones(id integer primary key autoincrement,
                   id_nome integer,
                   número text,
                   id tipo integer);
insert into tipos(descrição) values ("Celular");
insert into tipos(descrição) values ("Fixo");
insert into tipos(descrição) values ("Fax");
insert into tipos(descrição) values ("Casa");
insert into tipos(descrição) values ("Trabalho");
.....
def nulo ou vazio(texto):
    return texto == None or not texto.strip()
def valida_faixa_inteiro(pergunta, inicio, fim, padrão = None):
    while True:
        try:
            entrada = input(pergunta)
            if nulo ou vazio(entrada) and padrão != None:
                entrada = padrão
```

```
valor = int(entrada)
            if inicio <= valor <= fim:</pre>
                return(valor)
        except ValueError:
            print("Valor inválido, favor digitar entre %d e %d" %
                 (inicio, fim))
def valida faixa inteiro ou branco(pergunta, inicio, fim):
   while True:
        try:
            entrada = input(pergunta)
            if nulo ou vazio(entrada):
                return None
            valor = int(entrada)
            if inicio <= valor <= fim:</pre>
                return(valor)
        except ValueError:
            print("Valor inválido, favor digitar entre %d e %d" %
                 (inicio, fim))
class ListaÚnica:
   def __init__(self, elem_class):
        self.lista = []
        self.elem class = elem class
    def __len__(self):
        return len(self.lista)
    def iter (self):
        return iter(self.lista)
    def getitem (self, p):
        return self.lista[p]
    def indiceVálido(self, i):
        return i>=0 and i<len(self.lista)</pre>
    def adiciona(self, elem):
        if self.pesquisa(elem) == -1:
            self.lista.append(elem)
    def remove(self, elem):
        self.lista.remove(elem)
```

```
def pesquisa(self, elem):
        self.verifica tipo(elem)
        try:
            return self.lista.index(elem)
        except ValueError:
            return -1
    def verifica tipo(self, elem):
        if type(elem)!=self.elem class:
            raise TypeError("Tipo inválido")
    def ordena(self, chave = None):
        self.lista.sort(key= chave)
class DBListaÚnica(ListaÚnica):
    def __init__(self, elem_class):
        super().__init__(elem_class)
        self.apagados = []
    def remove(self, elem):
        if elem.id is not None:
            self.apagados.append(elem.id)
        super().remove(elem)
    def limpa(self):
        self.apagados = []
@total ordering
class Nome:
    def init (self, nome):
        self.nome = nome
    def __str__(self):
        return self.nome
    def repr (self):
        return "<Classe {3} em 0x{0:x} Nome: {1} Chave: {2}>".format(
                id(self), self.__nome, self.__chave,
                type(self).__name__)
    def __eq__(self, outro):
        return self.nome == outro.nome
    def __lt__(self, outro):
        return self.nome < outro.nome</pre>
```

```
@property
    def nome(self):
        return self. nome
    @nome.setter
    def nome(self, valor):
        if nulo ou vazio(valor):
            raise ValueError("Nome não pode ser nulo nem em branco")
        self. nome = valor
        self. chave = Nome.CriaChave(valor)
    @property
    def chave(self):
        return self. chave
    @staticmethod
    def CriaChave(nome):
        return nome.strip().lower()
class DBNome(Nome):
    def __init__(self, nome, id_=None):
        super(). init (nome)
        self.id = id
@total_ordering
class TipoTelefone:
    def __init__(self, tipo):
        self.tipo = tipo
    def str (self):
        return "({0})".format(self.tipo)
    def __eq__(self, outro):
        if outro is None:
            return False
        return self.tipo == outro.tipo
    def lt (self, outro):
        return self.tipo < outro.tipo</pre>
class DBTipoTelefone(TipoTelefone):
    def init (self, id , tipo):
        super(). init (tipo)
        self.id = id
```

```
class Telefone:
   def init (self, número, tipo=None):
       self.número = número
       self.tipo = tipo
   def __str__(self):
       if self.tipo!=None:
          tipo = self.tipo
       else:
           tipo = ""
       return "{0} {1}".format(self.número, tipo)
   def eq (self, outro):
       return self.número == outro.número and (
              (self.tipo == outro.tipo) or (
               self.tipo == None or outro.tipo == None))
   @property
   def número(self):
       return self. número
   @número.setter
   def número(self, valor):
       if nulo ou vazio(valor):
           raise ValueError("Número não pode ser None ou em branco")
       self. número = valor
class DBTelefone(Telefone):
   def init (self, número, tipo=None, id =None, id nome=None):
       super(). init (número, tipo)
       self.id = id_
       self.id nome = id nome
class DBTelefones(DBListaÚnica):
   def init (self):
       super().__init__(DBTelefone)
class DBTiposTelefone(ListaÚnica):
   def __init__(self):
       super(). init (DBTipoTelefone)
```

```
class DBDadoAgenda:
    def init__(self, nome):
       self.nome = nome
       self.telefones = DBTelefones()
    @property
    def nome(self):
       return self. nome
    @nome.setter
    def nome(self, valor):
       if type(valor)!=DBNome:
            raise TypeError("nome deve ser uma instância da classe DBNome")
        self. nome = valor
    def pesquisaTelefone(self, telefone):
       posição = self.telefones.pesquisa(DBTelefone(telefone))
       if posição == -1:
            return None
       else:
            return self.telefones[posição]
class DBAgenda:
    def init (self, banco):
        self.tiposTelefone = DBTiposTelefone()
       self.banco = banco
       novo = not os.path.isfile(banco)
       self.conexão = sqlite3.connect(banco)
       self.conexão.row factory = sqlite3.Row
       if novo:
            self.cria_banco()
        self.carregaTipos()
    def carregaTipos(self):
       for tipo in self.conexão.execute("select * from tipos"):
            id_ = tipo["id"]
            descrição = tipo["descrição"]
            self.tiposTelefone.adiciona(DBTipoTelefone(id , descrição))
    def cria banco(self):
        self.conexão.executescript(BANCO)
```

```
def pesquisaNome(self, nome):
    if not isinstance(nome, DBNome):
        raise TypeError("nome deve ser do tipo DBNome")
    achado = self.conexão.execute("""select count(*)
                                     from nomes where nome = ?""".
                                     (nome.nome,)).fetchone()
   if(achado[0]>0):
        return self.carrega por nome(nome)
   else:
        return None
def carrega por id(self, id):
    consulta = self.conexão.execute(
            "select * from nomes where id = ?", (id,))
   return carrega(consulta.fetchone())
def carrega por nome(self, nome):
    consulta = self.conexão.execute(
            "select * from nomes where nome = ?", (nome.nome,))
    return self.carrega(consulta.fetchone())
def carrega(self, consulta):
   if consulta is None:
        return None
   novo = DBDadoAgenda(DBNome(consulta["nome"], consulta["id"]))
   for telefone in self.conexão.execute(
        "select * from telefones where id_nome = ?",
        (novo.nome.id,)):
        ntel = DBTelefone(telefone["número"], None,
                          telefone["id"], telefone["id nome"])
        for tipo in self.tiposTelefone:
            if tipo.id == telefone["id tipo"]:
                ntel.tipo = tipo
                break
        novo.telefones.adiciona(ntel)
   return novo
```

```
def lista(self):
    consulta = self.conexão.execute(
            "select * from nomes order by nome")
   for registro in consulta:
        yield self.carrega(registro)
def novo(self, registro):
   try:
        cur = self.conexão.cursor()
        cur.execute("insert into nomes(nome) values (?)",
                     (str(registro.nome),))
        registro.nome.id = cur.lastrowid
        for telefone in registro.telefones:
            cur.execute("""insert into telefones(número,
                           id tipo, id nome) values (?,?,?)""",
                        (telefone.número, telefone.tipo.id,
                         registro.nome.id))
            telefone.id = cur.lastrowid
        self.conexão.commit()
   except:
        self.conexão.rollback()
        raise
   finally:
        cur.close()
def atualiza(self, registro):
   try:
        cur = self.conexão.cursor()
        cur.execute("update nomes set nome=? where id = ?",
            (str(registro.nome), registro.nome.id))
        for telefone in registro.telefones:
            if telefone.id is None:
                cur.execute("""insert into telefones(número,
                               id tipo, id nome)
                               values (?,?,?)""",
                        (telefone.número, telefone.tipo.id,
                        registro.nome.id))
                telefone.id = cur.lastrowid
```

else:

```
cur.execute("""update telefones set número=?,
                                          id tipo=?, id nome=?
                                          where id = ?""",
                            (telefone.número, telefone.tipo.id,
                            registro.nome.id, telefone.id))
            for apagado in registro.telefones.apagados:
                cur.execute("delete from telefones where id = ?",
                            (apagado,))
            self.conexão.commit()
            registro.telefones.limpa()
        except:
            self.conexão.rollback()
            raise
        finally:
            cur.close()
    def apaga(self, registro):
        try:
            cur = self.conexão.cursor()
            cur.execute("delete from telefones where id nome = ?",
                            (registro.nome.id,))
            cur.execute("delete from nomes where id = ?",
                         (registro.nome.id,))
            self.conexão.commit()
        except:
            self.conexão.rollback()
            raise
        finally:
            cur.close()
class Menu:
    def __init__(self):
        self.opções = [ ["Sair", None] ]
    def adicionaopção(self, nome, função):
        self.opções.append([nome, função])
    def exibe(self):
        print("====")
```

```
print("Menu")
        print("====\n")
        for i, opção in enumerate(self.opções):
            print("[{0}] - {1}".format(i, opção[0]))
        print()
    def execute(self):
        while True:
            self.exibe()
            escolha = valida faixa inteiro("Escolha uma opção: ",
                         0, len(self.opções)-1)
            if escolha == 0:
                break
            self.opções[escolha][1]()
class AppAgenda:
   @staticmethod
    def pede_nome():
         return(input("Nome: "))
   @staticmethod
    def pede_telefone():
         return(input("Telefone: "))
    @staticmethod
    def mostra dados(dados):
        print("Nome: %s" % dados.nome)
        for telefone in dados.telefones:
            print("Telefone: %s" % telefone)
        print()
    @staticmethod
    def mostra_dados_telefone(dados):
        print("Nome: %s" % dados.nome)
        for i, telefone in enumerate(dados.telefones):
           print("{0} - Telefone: {1}".format(i, telefone))
        print()
    def init (self, banco):
        self.agenda = DBAgenda(banco)
        self.menu = Menu()
        self.menu.adicionaopção("Novo", self.novo)
```

```
self.menu.adicionaopção("Altera", self.altera)
    self.menu.adicionaopção("Apaga", self.apaga)
    self.menu.adicionaopção("Lista", self.lista)
   self.ultimo nome = None
def pede tipo telefone(self, padrão = None):
   for i,tipo in enumerate(self.agenda.tiposTelefone):
        print(" {0} - {1} ".format(i,tipo),end=None)
   t = valida faixa inteiro("Tipo: ",0,
        len(self.agenda.tiposTelefone)-1, padrão)
   return self.agenda.tiposTelefone[t]
def pesquisa(self, nome):
   if type(nome)==str:
        nome = DBNome(nome)
   dado = self.agenda.pesquisaNome(nome)
    return dado
def novo(self):
   novo = AppAgenda.pede_nome()
   if nulo ou vazio(novo):
        return
   nome = DBNome(novo)
   if self.pesquisa(nome) != None:
        print("Nome já existe!")
        return
   registro = DBDadoAgenda(nome)
    self.menu telefones(registro)
   self.agenda.novo(registro)
def apaga(self):
   nome = AppAgenda.pede nome()
   if(nulo_ou_vazio(nome)):
      return
   p = self.pesquisa(nome)
   if p != None:
        self.agenda.apaga(p)
   else:
        print("Nome não encontrado.")
```

```
def altera(self):
   nome = AppAgenda.pede nome()
   if(nulo ou vazio(nome)):
       return
   p = self.pesquisa(nome)
   if p != None:
        print("\nEncontrado:\n")
        AppAgenda.mostra dados(p)
        print("Digite enter caso não queira alterar o nome")
        novo = AppAgenda.pede nome()
        if not nulo ou vazio(novo):
            p.nome.nome = novo
        self.menu telefones(p)
        self.agenda.atualiza(p)
   else:
        print("Nome não encontrado!")
def menu telefones(self, dados):
   while True:
        print("\nEditando telefones\n")
        AppAgenda.mostra dados telefone(dados)
        if(len(dados.telefones)>0):
            print("\n[A] - alterar\n[D] - apagar\n", end="")
        print("[N] - novo\n[S] - sair\n")
        operação = input("Escolha uma operação: ")
        operação = operação.lower()
        if operação not in ["a","d","n", "s"]:
            print("Operação inválida. Digite A, D, N ou S")
            continue
        if operação == 'a' and len(dados.telefones)>0:
            self.altera telefones(dados)
        elif operação == 'd' and len(dados.telefones)>0:
            self.apaga telefone(dados)
        elif operação == 'n':
            self.novo telefone(dados)
        elif operação == "s":
           break
```

```
def novo telefone(self, dados):
   telefone = AppAgenda.pede telefone()
    if nulo ou vazio(telefone):
        return
   if dados.pesquisaTelefone(telefone) != None:
        print("Telefone já existe")
   tipo = self.pede tipo telefone()
   dados.telefones.adiciona(DBTelefone(telefone, tipo))
def apaga telefone(self, dados):
   t = valida faixa inteiro ou branco(
        "Digite a poisção do número a apagar, enter para sair: ",
        0, len(dados.telefones)-1)
   if t == None:
        return
   dados.telefones.remove(dados.telefones[t])
def altera telefones(self,dados):
   t = valida faixa inteiro ou branco(
        "Digite a poisção do número a alterar, enter para sair: ",
        0, len(dados.telefones)-1)
   if t == None:
        return
   telefone = dados.telefones[t]
   print("Telefone: %s" % telefone)
   print("Digite enter caso não queira alterar o número")
   novotelefone = AppAgenda.pede telefone()
   if not nulo ou vazio(novotelefone):
        telefone.número = novotelefone
   print("Digite enter caso não queira alterar o tipo")
   telefone.tipo = self.pede_tipo_telefone(
        self.agenda.tiposTelefone.pesquisa(telefone.tipo))
```

```
def lista(self):
        print("\nAgenda")
        print("-"*60)
        for e in self.agenda.lista():
            AppAgenda.mostra dados(e)
        print("-"*60)
    def execute(self):
        self.menu.execute()
if __name__ == "__main__":
    if len(sys.argv) > 1:
        app = AppAgenda(sys.argv[1])
        app.execute()
    else:
        print("Erro: nome do banco de dados não informado")
        print("
                     agenda.py nome do banco")
```

Na classe AppAgenda, modificamos as opções do menu e os tipos usados nas pesquisas. Veja que, com a utilização da classe DBAgenda, conseguimos isolar as operações de banco de dados da classe AppAgenda. Como não temos operações de leitura e gravação, o nome do banco de dados deve ser passado obrigatoriamente na linha de comando. Uma mensagem de erro será exibida caso você se esqueça desse detalhe.