

The Book Review App

Amit Shah Chaitali Kamble Jinesh Dhruv

Motivation

- Regular Purchases at Amazon
- Reviews, the dominating reason for convincing someone to buy a product.
- Sentiment Analysis
- The potential of Naïve Bayes in Text Analysis
- 2016 Local Consumer Survey:
 - 84% people trust online reviews.
 - > 90% consumers read less than 10 reviews before forming an opinion.
 - > 54% people visit website after reading positive reviews.

Problem Definition

- Reviews important for product and company survival.
- Inconsistency amongst user understanding about Rating reviews vs their impression about the product, so User rating cannot be the sole factor to determine positive/negative review.
- Need a way to categorize a review as a positive/negative review based on the actual review contents.
- Most users do not read more than 10 reviews before making an opinion.
- ▶ Need a way to rank and display the most helpful reviews to the user.

About the dataset

- Raw Dataset:
 - ▶ 8,89,401 reviews (rows) and 9 attributes.
- Data cleaning and sampling:
 - Sampled data to reduce to 50,000 reviews, for the scope of this project.
 - ► Thresholding: at least 100 reviews for each book.
- Final dataset:
 - > 35,148 reviews of 78 unique books, and 5 key attributes.
 - Created Ground Truth: Assigning review with 4 star or more as positive, others negative.

Key Issues

- Naïve Bayes did not perform very well on raw reviews.
- Determining a review as top helpful.
- Android Application Development
- Front end design issues

Solutions

- Naïve Bayes did not perform very well on raw reviews.
 - ▶ Preprocessing reviews through Transformation, Punctuation & Stop word Removal, Tokenization, Stemming.
- Determining a review as top helpful.
 - ► Factors considered: Date, Review Text, Review Rating
- Android Application Development
 - ▶ New to Android, hosting client server mechanism.
- Front end design issues
 - Design decisions about the interface.

Our Book Review System

- Performed Sentiment analysis of Amazon book reviews and built a model to predict a new review as a positive review or a negative review.
- Additional functionality of a data-driven ranking algorithm to identify the top 10 reviews for a book.
- Two parts:
 - 1. Sentiment Analysis and Review Categorization:
 - ▶ Rank a review as positive/negative.
 - Naïve Bayes Algorithm
 - 2. Review Ranking:
 - Display only top 10 reviews to the user.
 - Custom ranking algorithm

Algorithm - (1) Sentiment Analysis

- Objective: Be able to classify a new review as positive / negative.
- Naïve Bayes very powerful for text analysis.
- Advantages:
 - Efficient and easy
 - Robust to irrelevant attributes
- Performed Naïve Bayes on raw data directly poor results (67% Accuracy)
- Need of preprocessing.

Algorithm - (1) Sentiment Analysis

Preprocessing:

- 1. Transformation
- Punctuation and Stop word Removal
- 3. Tokenization
- 4. Stemming using Porter's stemmer
- Spell check Failed Attempt.
- Split data:
 - ► Training data (70%)
 - ► Testing data (30%)

Evaluation

- After training the system, evaluated performance on test data.
- Computed the accuracy by the formula

$$Accuracy = \frac{Correctly\ predicted\ class}{Actual\ class}$$

- Without preprocessing:
 - Accuracy 67%
 - Vocabulary of positive and negative words were not a true representation of category.
- After preprocessing:
 - Accuracy 82%
 - Not perfect, but working much better.

Evaluation

- Review important for user to make purchase decision.
- Local Survey Stats:
 - > 90% consumers read less than 10 reviews before forming an opinion.
- Order of review display matters.
- What factors should determine the order?
 - ► Is only date enough?
 - NO!

- Analysis of reviews, to determine key factors.
- Assigned each factor weight, to signify importance.
- Factors (Total Weight: 75):
 - Date (Max Weight: 35)
 - ▶ Review Text (Max Weight: 25) length is important
 - Rating (Max Weight: 15)
- ▶ Top 10 Reviews with maximum total weight will be displayed.

- **Example:**
- Consider below reviews, which is better?
 - "Good." Date: 08/01/2017 Rating: 4 stars
 - "This is a great book, its very interesting and the scene is portrayed in a beautiful way." Date: 02/15/2012. Rating: 5 stars

- Example:
- Consider below reviews, which is better?
 - ► "Good." Date: 08/01/2017 Rating: 4 stars
 - "This is a great book, its very interesting and the scene is portrayed in a beautiful way." Date: 02/15/2012 Rating: 5 stars

Factors:

Date Review Text Rating

System Architecture

- The application resides on the Android phone and interacts with a back-end server to retrieve data.
- The application involves:
- 1. A back-end server: (Java TCP Socket Programming)
 - ▶ This server performs two core functionalities.
 - a) Build model on training data of Naïve Bayes and predict a new review as positive / negative.
 - b) Rank and display top 10 reviews to the user.
- 2. Front-end application: (Android)
 - User can search a specific book by ID and see its reviews.
 - User can also post a new review.

Limitations

- ► The model results are not perfect, it does predict incorrectly sometimes
- Naïve Bayes does not consider bigrams properly.
- Review Ranking functionality is based on very limited factors.

Conclusion and Future Work.

- Built a portable android application to help user find and post reviews of a book.
- The User Interface can be improvised to add more functionalities and improvise the design
- Learnt usage of Naïve Bayes for sentiment analysis and the importance of preprocessing.
- The results of Naïve Bayes can be enhanced further by adding bigrams to the model.
- Developed a custom ranking algorithm to identify top reviews, this functionality can be enhanced to include more factors and assign weight more efficiently while ranking reviews.