0.1 Examples

- (a) $\{\text{stone spaces}\}\iff \{\text{boolean algebras}\}$
- (b) {affine schemes} \iff {comm rings} op .

Have the notion of a dualizing object in both cases. For example $S = \operatorname{Spec}(A)$ then,

$$\operatorname{Hom}_{\operatorname{Aff}}\left(\operatorname{Spec}\left(A\right),\mathbb{A}_{\mathbb{Z}}^{1}\right)\cong\operatorname{Hom}_{\operatorname{CRing}}\left(\mathbb{Z}[x],A\right)\cong A$$

The dualizing object for Stone spaces and Boolean algebras is $\mathbb{B} = \{0, 1\}_{\text{disc}}$ because maps to these give clopen subsets.

There are adjunctions, $\mathbf{Top} \to \mathbf{Locales}$ and $\mathbf{Top} \to \mathbf{Topoi}$ but these are not equivalence of categories.

Let X be a topological space. Then $\mathcal{O}(X)$ is the lattice of open subsets with union and intersection.

Definition 0.1.1. A poset with all colimits and finite limits is called a frame with distributative property (c.f. distributive lattice).

Definition 0.1.2. Locales = Frame^{op}. Then there is a functor \widetilde{F} : Top \to Loc given by $X \mapsto \mathcal{O}(X)$ and $f: X \to Y$ is sent to $f^*: \mathcal{O}(X) \to \mathcal{O}(Y)$ (goes the opposite way in Loc.

Remark. This is NOT faithful since $X = \{0, 1\}_{\text{indiscrete}}$ then $\widetilde{F} = U$ treats X and * the same.

Remark. To to recover $\mathcal{O}(X)$ from a top space X. Let $S = \{0,1\}$ with $\{1\}$ open but $\{0\}$ not this is the Serpinski space. Then $\operatorname{Hom}(X,S) = \mathcal{O}(X)$.

Remark. The category Frame = Loc^{op} is naturally "algebraic" meaning the forgetful functor Frame \rightarrow Set has a left adjoint.

However, Top^{op} is not algebraic in any real sense.

This functor $u: \text{Top} \to \text{loc}$ is fully faithful in many cases for example on sober spaces.

Remark. Locales are "pointless" topology

Remark. Let $X \in \text{Top}$ then we get a category,

$$Sh(X) = \{sheaves on X\}$$

We can define what a sheaf is on any local and Sh factors through Top \rightarrow Locales.

Definition 0.1.3. A *topos* is a category equivalent to Sh(C) where C is not necessarily localic (it is just some category with a grothendieck topology).

Remark. An abelian group A is a surjection $\mathbb{Z}^N \to A$.

Definition 0.1.4. A logos ξ is a category that can be presented as a left-exact localization of a presheaf category:

$$f: \Pr(\mathcal{C}) \to \xi$$

meaning f admits a fully-faitful right-adjoint and f preserves finite limits where \mathcal{C} is small.

Remark. The category of abelian groups is locally presentable but not a logos.

0.2 Map of Logoi

Impose conditions so that they "look like" continuous map of topological spaces. Let $f: X \to Y$ be a map of topological spaces then I get included maps between their categories of sheaves f^* : $Sh(Y) \to Sh(X)$ and $f_*: Sh(X) \to Sh(Y)$ where f^* is left-adjoint to f_* and f^* preserves finite limits.

Definition 0.2.1. A map of logoi $f^*: \xi \to \eta$ is cocontinuous and preserves finite limits.

Remark. Then there is a right adjoint by the adjoint functor theorem for locally presentable categories.

Example 0.2.2. If X is a topological space. Then Sh(X) is a logos with

$$F: \Pr(\mathcal{O}(X)) \to \operatorname{Sh}(X)$$

sheafification.

The same thing also works for locales. Then covers are $\{U_i \to U\}$ such that $\coprod U_i = U$.

Then the category D = Nat(Fin, Set) is a logos. This is $\Pr(\text{Fin}^{\text{op}})$ is the left exact cocompletion of the trivial category. That is, if ξ is a logis, then an object of ξ is exactly a map,

$$D \to \xi$$

of logoi. This is because an object of a category is a map $\{*\} \to \mathcal{C}$ then we take the completion so that $\{*\}$ becomes a logos. This is completely analogous to how we get elements of a ring A via,

$$\operatorname{Hom}\left(\mathbb{Z}[X],A\right)$$