Gesundheit & Ernährung

Makronährstoffe III: Eiweiß

Adrian Helberg

14.07.2021

Agenda

- Theorie
 - Profil
 - Stoffwechsel
 - Qualität
 - Bedarf
 - Zufuhrempfehlung
 - Sport
 - Gluten
 - mTOR
- 2 Praxis
- Fragerunde

Theorie

Eiweiß im Profil I

Was ist Eiweiß?

- Fachwort: Protein, bei > 100 Aminosäuren spricht man von Eiweiß
- Aminosäuren als kleinste Bausteine von Einweiß
- Liefert das "Baumaterian" für den Körper
- Kann bei Bedarf in Energie verbrannt werden (4 ckal/g)
- Ca. 20% der Körpermasse
- Über 50.000 verschiedene Eiweiße im Körper aus 20 Aminosäuren
- 9 der 20 Aminosäuren sind essenziell

Eiweiß im Profil II

Abbildung: Aminosäure

Abbildung: Verschiedene Kombinationen aus Aminosäuren

Eiweißstoffwechsel I

- Eine durchschnittliche Ernährung besteht zu 15% aus Eiweiß (ca. 75g)
- Ca. 70g Eiweiß wird zusätzlich aus abgestorbenen Zellen recycelt
- Ca. 15g Eiweiß ist schließlich Verdauungsverlust
- Eiweiße werden mithilfe von Verdauungsenzyme im Darm in ihre Einzelteile zerlegt
- Die Aminosäuren können dann die Darmwand passieren und somit ins Blut gelangen

Eiweißstoffwechsel II

Abbildung: Eiweißstoffwechsel Zellen

Eiweißstoffwechsel III

Abbildung: Eiweißstoffwechsel Leber

Eiweißqualität I

Die biologische Wertigkeit ...

- ist eine Methode zur Bewertung der Eiweißqualität
- wird durch die Zusammensetzung der Aminosäuren bestimmt
- referenziert das Hühnerei (Wertigkeit 100), da dieses alle essentiellen Aminosäuren in einem sehr günstigen Verhältnis enthält

Abbildung: Biologische Wertigkeit von Eiweiß

Eiweißqualität II

Abbildung: Biologische Wertigkeit verschiedener Lebensmitteln

Eiweißqualität III

Tipps für Veganer

- Hülsenfrüchte sind Pflicht!
- Kombinationen für eine biologische Wertigkeit von 100
 - Erbsen + Reis
 - Bohnen + Mais
 - Soja-Produkte, um die Eiweißmenge zu erhöhen

Bedarf

- Eiweißbedarf = Eiweißverlust aus
 - $\bullet \ \, \mathsf{Stoffwechsel} \to \mathsf{Stickstoffgehalt} \ \mathsf{im} \ \mathsf{Urin}$
 - $\bullet \ \, \mathsf{Verdauungsverluste} \to \mathsf{Stickstoffgehalt} \,\, \mathsf{im} \,\, \mathsf{Stuhl} \,\,$
- Ein 70kg schwerer Mensch verliert ca. 24g Eiweiß am Tag
- → Allgemeiner Bedarf von 0,3g / kg Körpergewicht

Zufuhrempfehlung

Zufuhrempfehlung unter Berücksichtigung

- der Verdauungverluste (ca. 10%) bei der Nahrungsaufnahme
- einer mittelmäßigen biologischen Wertigkeit
- eines Sicherheitszuschlages von ca. 0.5g / kg Körpergewicht
- → Allgemeine Zufuhrempfehlung von 0,8g / kg Körpergewicht
- → Ein 70kg schwerer Mensch sollte also 56g Eiweiß aufnehmen

Mehrbedarf bei:

- Kindern und Jugendlichen (1g / kg Körpergewicht)
- Schwangerschaft (+10g Elweiß am Tag)
- Stillzeit (+15g Eiweiß am Tag)
- Leistungssportlern

Sport I

Ausdauersport

- Leerung der Glykogenspeicher (Traubenzucker wird knapp)
- Traubenzucker wird im Energiestoffwechsel benötigt, also braucht der Körper eine Alternative
- → Verbrennen von Aminosäuren zu Energie (Gluconeogenese)
- Bei Leistungssport steigt der Eiweißbedarf auf 1,2 1,4g / kg Körpergewicht
- ightarrow Das betrifft nicht den Freizeitsportler, der 5x pro Woche Laufen geht!

Sport II

Kraftsport

- Eiweiß fördert den Muskelaufbau, die Leistungsfähigkiet und die Regeneration
- Bei Leistungssport steigt der Eiweißbedarf auf 1,6g / kg Körpergewicht
- Studien belegen keine weiteren Vorteile bei einer Eiweißaufnahme von über 2g / kg Körpergewicht

Sport III

Eiweißbedarf bei Sportlern

- Kraftsportler von 80kg
- Tägliche Kalorienzufuhr von 3000 ckal
- Eiweißanteil der Ernährung von über 20% durch eiweißreiche Lebensmittel
- ightarrow Das entspricht einer Eiweißzufuhr von 1,9g / kg Körpergewicht

Sport IV

Ist zu viel Eiweiß schädlich?

- Bis vor kurzem: Kein wissenschaftlicher Beweis
- Nieren werden stärker Belastet
- Erhöhter Verlust von Mineralstoffen, wie zB. Calcium
- "Sichere" Obergrenze von 2g / kg Körpergewicht

Gluten I

Gluten ...

- sind Klebereiweiße
- kommt in Weizen, Roggen und Gerste vor
- hält beim Brotbacken den Teig zusammen
- hält Luftbläschen fest, die bei der Teiggärung entstehen

Gluten II

Probleme im Zusammenhang mit Gluten

- Gluten führt bei vielen Menschen zu einer Autoimmunreaktion des Darmes (Zöliakie)
- Gluten führt bei vielen Menschen zu Glutensensitivität
 - Verdauungsproblemen
 - Schmerzen
 - Migräne
 - Konzentrationsschwäche
 - Chronischer Erschöpfung
 - Depression
 - Blutarmut
 - Taubheitsgefühle
- Gluten führt bei vielen Menschen zum "Leaky Gut Syndrome"

Gluten III

Forschung

- Prof. Alessio Fasano
- "Gluten ist für jeden Menschen schädlich, aber nicht jeder Mensch wird krank"
- Darmspalten lassen sich öffnen und schließen, was durch Zonulin gesteuert wird
- Aufgrund der speziellen Struktur von Gluten haben die Verdauungsenzyme Probleme damit das Gluten in freie Aminosäuren zu spalten → es entstehen "Bruchstücke"
- Gedunde Menschen "gewinnen" den Kampf gegen die k\u00f6rperfremden Bruchst\u00fccke

Gluten IV

Abbildung: Glutenverdauung

Gluten V

Abbildung: Zonulinausschüttung bei Glutenverdauung

mTOR I

Mechanistic Target of Rapamycin . . .

- ist ein Protein, das gezielt Moleküle "aktiviert"
- beeinflusst die Vermehrung von Zellen und die Signalkaskade einer Immunantwort
- wird durch Rapamycin gehemmt und wirkt dann gegenteilig
- → Eine Aktivierung wirkt leistungssteigernd, wachstumsfördernd, muskelaufbauend und wundheilend
- \rightarrow Eine Hemmung verringert Entzündungsvorgänge und macht Autophagie (zelluläre Regenerations- und Reparationsvorgänge) erst möglich

mTOR II

Aktivierung

- Hoher Blutspiegel von essentiellen Aminosäuren
- Hoher Blutspiegel von Traubenzucker
- Hoher Insulinblutspiegel
- Hoher Energiestatus (ATP) in den Zellen
- Starker mechanischer Trainingsreiz

mTOR III

Hemmung

- Nahrungsmangel (temporäres Fasten, da keine mTOR-Hämmung, wenn der Aminosäurenpool zu stark absinkt)
- Unterstützend wirken mTOR-hemmend:
 - Melatonin (Schlafhormon)
 - Vitamin D
 - Alphaliponsäure (Antioxidans)
 - bestimmte Polyphenole (zB. im schwarzen, ungesüßten Kaffee)
 - Oleocanthal und Oleuropein (zB. in Olivenöl und Olivenblattextrakt)

mTOR IV

Fazit aus der Forschung

"Ein gesunder Organismus braucht sowohl mTor-Aktivierung, als auch mTor-Hemmung, idealerweise in natürlichen Zyklen. Ist mTor aktiviert werden Zellen aufgebaut (u.a. Muskelaufbau) und die Wundheilung gefördert. Eine Hemmung von mTor hingegen reduziert Entzündungen, erhöht die Reparaturvorgänge im Körper (Autophagie) und fördert daher auch die Langlebigkeit. Zur Optimierung der eigenen Gesundheit gilt es seinen praxistauglichen "Sweet-Spot" zu finden, indem nach einer Phase der mTor-Aktivierung eine Phase der mTor-Hemmung folgt, beispielsweise durch die Kombination einer eiweißreichen Kost und körperlicher Betätigung, gefolgt von Kurzzeitfasten."

Praxis

Tipps & Tricks

- Gluten reduzieren, zB. Backwaren (mal wieder)
 - Weizen, Roggen, Gerste ("Nur" drei Getreidepflanzen meiden)
 - Selbsttest: 14 Tage lang glutenfreie Ernährung
 - Glutenbedingte Beschwerden verschwinden in kurzer Zeit und man kann dises dann auf Gluten zurückführen
- Vortrag von Prof. Alessio Fasano: https://www.youtube.com/watch?v=VvfTV57iPUY
- Ein guter Einstieg in eine insgesamt gesündere Ernährungsweise mit dem Fokus auf natürliche, echte Lebensmittel im Vordergrund stehen
- Temporäres Fasten

Fragerunde