Example 2.1.

- 1. The set $\mathbb{Z} = \{\dots, -n, \dots, -1, 0, 1, \dots, n, \dots\}$ of integers is an abelian group under addition, with identity element 0. However, $\mathbb{Z}^* = \mathbb{Z} \{0\}$ is not a group under multiplication.
- 2. The set \mathbb{Q} of rational numbers (fractions p/q with $p,q \in \mathbb{Z}$ and $q \neq 0$) is an abelian group under addition, with identity element 0. The set $\mathbb{Q}^* = \mathbb{Q} \{0\}$ is also an abelian group under multiplication, with identity element 1.
- 3. Given any nonempty set S, the set of bijections $f: S \to S$, also called *permutations* of S, is a group under function composition (i.e., the multiplication of f and g is the composition $g \circ f$), with identity element the identity function id_S . This group is not abelian as soon as S has more than two elements. The permutation group of the set $S = \{1, \ldots, n\}$ is often denoted \mathfrak{S}_n and called the *symmetric group* on n elements.
- 4. For any positive integer $p \in \mathbb{N}$, define a relation on \mathbb{Z} , denoted $m \equiv n \pmod{p}$, as follows:

$$m \equiv n \pmod{p}$$
 iff $m - n = kp$ for some $k \in \mathbb{Z}$.

The reader will easily check that this is an equivalence relation, and, moreover, it is compatible with respect to addition and multiplication, which means that if $m_1 \equiv n_1 \pmod{p}$ and $m_2 \equiv n_2 \pmod{p}$, then $m_1 + m_2 \equiv n_1 + n_2 \pmod{p}$ and $m_1 m_2 \equiv n_1 n_2 \pmod{p}$. Consequently, we can define an addition operation and a multiplication operation of the set of equivalence classes \pmod{p} :

$$[m] + [n] = [m+n]$$

and

$$[m]\cdot [n] = [mn].$$

The reader will easily check that addition of residue classes \pmod{p} induces an abelian group structure with [0] as zero. This group is denoted $\mathbb{Z}/p\mathbb{Z}$.

- 5. The set of $n \times n$ invertible matrices with real (or complex) coefficients is a group under matrix multiplication, with identity element the identity matrix I_n . This group is called the *general linear group* and is usually denoted by $\mathbf{GL}(n,\mathbb{R})$ (or $\mathbf{GL}(n,\mathbb{C})$).
- 6. The set of $n \times n$ invertible matrices A with real (or complex) coefficients such that $\det(A) = 1$ is a group under matrix multiplication, with identity element the identity matrix I_n . This group is called the *special linear group* and is usually denoted by $\mathbf{SL}(n,\mathbb{R})$ (or $\mathbf{SL}(n,\mathbb{C})$).
- 7. The set of $n \times n$ matrices Q with real coefficients such that

$$QQ^{\top} = Q^{\top}Q = I_n$$