

Effet Ramsauer-Townsend

Pré-ing 2 - MI5-C

Physique Moderne

Référent: M. AKRIDAS

<u>Réalisé par :</u>

Ziyad HADDADI Romain MICHAUT-JOYEUX

Nathan CHOUPIN

Section efficace

Schéma de la section efficace, en 2D, réalisé sur Canva.

Effet Ramsauer-Townsend

Observation de l'effet Ramsauer-Townsend lors de la collision d'atomes 4He, Robert S, 1979.

Éclairage au xénon à partir d'un tube flash, Alex Zhang, 2020.

Objectifs

Comprendre l'effet

 Comparer un modèle 1D à un modèle 3D

• Déterminer les limites du modèle

Puits fini de potentiel

Électron de masse m et d'énergie E > 0

$$V(x) = \begin{cases} -V_0 & \text{si } 0 \le x \le a \\ 0 & \text{sinon} \end{cases}$$

Potentiel (J) en fonction de la position (m), réalisé avec Canva.

Équation de Schrödinger indép. du temps, en une dimension :

$$\frac{-\hbar^2}{2m} \cdot \frac{d^2\psi(x)}{dx^2} + V(x) \cdot \psi(x) = E \cdot \psi(x)$$

En région I,
$$x < 0, V(x) = 0$$

On déduit

$$\psi_1(x) = Ae^{ik_1x} + Be^{-ik_1x}$$
, où Ae^{ik_1x} est l'onde incidente, Be^{-ik_1x} l'onde

réfléchie, et
$$k_1 = \sqrt{\frac{2 \, mE}{\hbar^2}}$$

En région II,
$$x \in [0,a], V(x) = -V_0$$

On déduit

$$\psi_2(x) = C e^{ik_2 x} + D e^{-ik_2 x}$$
, $k_2 = \sqrt{\frac{2m(E+V_0)}{\hbar^2}}$

En région III,
$$x > a, V(x) = 0$$

On déduit

$$|\psi_3(x)=Fe^{ik_3x}|$$
 où $|\psi_3|$ est l'onde transmise vers $|+x|$, $|k_3|=\sqrt{\frac{2mE}{\hbar^2}}$

Les conditions de continuité aux bords du puits sont :

$$(S): \begin{vmatrix} \psi_{1}(0) & = & \psi_{2}(0) \\ \psi_{1}'(0) & = & \psi_{2}'(0) \\ \psi_{2}(a) & = & \psi_{3}(a) \\ \psi_{2}'(a) & = & \psi_{3}'(a) \end{vmatrix}$$

Équivalent à :

$$(S) \Leftrightarrow \begin{cases} A + B &= C + D & (1) \\ k(A - B) &= q(C - D) & (2) \\ C e^{iqa} + D e^{-iqa} &= F e^{ika} & (3) \\ q(C e^{iqa} - D e^{-iqa}) &= k F e^{ika} & (4) \end{cases} \text{, avec } k = k_1 = k_3 \text{ et } q = k_2$$

Après résolution :

$$T = \frac{|F|^2}{|A|^2} = \frac{4k^2q^2}{4k^2q^2\cos^2(qa) + (k^2 + q^2)^2\sin^2(qa)}$$

En injectant k et q:

$$T = \left(1 + \frac{V_0^2}{4E(E+V_0)} \cdot \sin^2(\sqrt{(2m(E+V_0))}\frac{a}{\hbar})\right)^{-1}$$

Résultats

Nous avons:

- T coef. de transmission
- R coef. de réflexion

$$T+R=1$$

$$T=1 \Rightarrow \sin^2(qa)=0 \Rightarrow \sqrt{\frac{2m(E+V_0)}{\hbar^2}}a=n\pi$$
, $n\in\mathbb{N}$

Interprétation

• Effet pour des énergies précises

Interférences

Contredit la physique classique

Marche Ascendante avec E/Vo = 100.0

Modélisation de la propagation d'un paquet d'ondes, en Python, avec E/v0 = 100.

Observations

Marche Ascendante avec E/Vo = 0.8

Modélisation de la propagation d'un paquet d'ondes, en Python, avec E/v0 = 0.8.

Marche Ascendante avec E/Vo = 3.0

Modélisation de la propagation d'un paquet d'ondes, en Python, avec E/v0 = 3.

États stationnaires liés (E < 0, V = -V0)

États stationnaires liés (région II) modélisés en Python.

États stationnaires libres (E > 0, V = 0)

États stationnaires libres (région I, III) modélisés en Python.

Mesures expérimentales

Observation de l'effet Ramsauer-Townsend lors de la collision d'atomes 4He, Robert S, 1979.

Prédictions numériques

Coef. de réflexion (sans unité) en fonction de l'énergie d'un électron (ev), modélisé en Python.

Prédictions numériques

Coef. de transmission (sans unité) en fonction de l'énergie d'un électron (ev), modélisé en Python.

Prédictions numériques

```
def ramsauer_townsend():
# Paramètres
v\theta = 4 # Pontentiel
m = 9.11e-31 # Masse de l'électron
a = 3e-9 # Largeur du puits (nm)
hbar = 1.055e-34
eV = 1.602e - 19
# Plage d'énergies
E_{eV} = np.linspace(0.01, 10, 1000)
# Calcul des coef.
T = np.zeros_like(E_eV)
R = np.zeros_like(E_eV)
for i, E_ev in enumerate(E_eV):
    E = E_ev * eV # Conversion en Joules
    q = np.sqrt(2 * m * (E + v0 * eV)) / hbar
    terme_sin = np.sin(q * a)**2
    # On utilise la formule trouvée dans l'étude analytique
    T[i] = 1 / (1 + (v0**2) / (4 * E_ev * (E_ev + v0)) * terme_sin)
    R[i] = 1 - T[i]
```

Paramètres et calculs utilisés dans la prédiction, en Python

Comparaison

<u>Similitudes</u>

• Oscillations caractéristiques et amplitudes décroissantes

Minimas de diffusion

• R dépend de l'énergie

Différences

 En 1D, une trajectoire ⇒ oscillations plus régulières

• Minimas proches de 0 en 1D

<u>Limites du modèle</u>

• Ne modélise pas les interactions en 3D.

• Néglige les forces de Van der Waals (interactions faibles d'attraction entre atomes neutres).

• Néglige l'angle de diffusion.

• Paquets d'ondes plus réalistes

<u>Un modèle plus réaliste</u>

Le potentiel de Lennard-Jones :

$$V(r) = 4\epsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

où:

- r est la distance entre les deux atomes,
- ϵ est la profondeur du puits de potentiel, qui correspond à l'énergie minimale lorsque les deux atomes sont à la distance d'équilibre,
- σ est la distance à laquelle le potentiel s'annule.

Lennard-Jones

- Potentiel continu avec attraction/répulsion (forme r⁻⁶ et r⁻¹²).
- Prend en compte la physique réelle des interactions atomiques.
- Explique la cohésion des gaz nobles et les zones de «transparence».
- Plus proche des expériences sur l'effet Ramsauer-Townsend.

Lennard-Jones

Énergie (eV) en fonction de la position (m), en utilisant le modèle de Lennard-Jones, modélisé en Python.

Lennard-Jones

Coef. de transmission et réflexion en fonction de l'énergie (eV), modélisé en Python.

Conclusion