INITIATION A L'ALGÈBRE - A

TD #3: Nombres complexes et trigonométrie

Exercice 1. Mettre sous forme algébrique les nombres complexes suivants :

$$\frac{1}{4i}$$
, $\frac{3+i}{2-3i}$, $\frac{1}{3+i}$ + $\frac{1}{3-i}$, $\frac{2+i}{1-2i}$ + $\frac{i}{1+i}$, $(1-2i)^6$.

Exercice 2. Mettre sous forme algébrique :

$$\frac{3+6i}{3-4i}, \qquad \left(\frac{1+i}{2-i}\right)^2, \qquad \frac{2+5i}{1-i} + \frac{2-5i}{1+i}, \qquad \frac{52i}{1-2i}, \qquad \left(-\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^3,$$

$$\frac{(1+i)^9}{(1-i)^7}, \qquad -\frac{2}{1-i\sqrt{3}}, \qquad \frac{1}{(1+2i)(3-i)}, \qquad \frac{1+2i}{1-2i}.$$

Exercice 3. Montrer que pour tout nombre complexe a, b, z on a

$$|z-a|^2+|z-b|^2=2\left|z-\frac{a+b}{2}\right|^2+\frac{|b-a|^2}{2}.$$

Donner une interprétation géométrique de ce résultat.

Exercice 4. Soit z un nombre complexe. Montrer que

$$|z| \ge |\operatorname{Re}(z)| \ge \operatorname{Re}(z)$$
, et $|z| \ge \operatorname{Im}(z) | \ge \operatorname{Im}(z)$.

Exercice 5. Soient z et z' deux nombres complexes de module 1 tels que $zz' \neq -1$. Démontrer que $\frac{z+z'}{1+zz'}$ est réel, et préciser son module

Indication: on pourra utiliser les formes exponentielles $z=e^{i\theta}$ et $z'=e^{i\theta'}$ ainsi que les formules d'Euler.

Exercice 6. Mettre sous forme trigonométrique les nombres complexes suivants :

$$\begin{aligned} & 3 + 3i, \ -1 - i\sqrt{3}, \ -\frac{4}{3}i, \ -2, \ e^{i\theta} + e^{i2\theta} \ (\theta \in] - \pi, \pi[) \\ & 1 + i, \ 1 + i\sqrt{3}, \ \sqrt{3} + i, \ \frac{1 + i\sqrt{3}}{\sqrt{3} - i}, \ 1 + e^{i\theta} \ (\theta \in] - \pi, \pi[) \\ & 1 + i(1 + \sqrt{2}), \frac{\tan(\phi) - i}{\tan(\phi) + i} \ \left(\phi \in \right] - \frac{\pi}{2}, \frac{\pi}{2} \left[\right) \\ & \frac{1}{1 + i\tan(\theta)} \ \left(\theta \in \right] - \frac{\pi}{2}, \frac{\pi}{2} \left[\right) \end{aligned}$$

Exercice 7. Déterminer le module et un argument des nombres complexes $e^{e^{i\theta}}$ et $e^{i\theta} + e^{2i\theta}$ et $e^{i\theta} - 1$ avec $\theta \in \mathbb{R}$.

Exercice 8. Soit $z = r(\cos \theta + i \sin \theta)$, avec $r \in \mathbb{R}_+^*$, $\theta \in \mathbb{R}$. Excrise sous formetrigonométrique \overline{z} , -z et $\frac{1}{z}$.

Exercice 9. Ecrire sous forme exponentielle

$$-3,\, -2i,\, 1+i,\, 1-i,\, 1+i\sqrt{3},\, \frac{1+i\sqrt{3}}{1-i},\, 1+e^{i\frac{\pi}{3}},\, e^{i\frac{4\pi}{3}}-1.$$

Exercice 10. Mettre sous forme algébrique

$$(1+i)^{21}$$
, $\left(\frac{\sqrt{3}+1}{1+i}\right)^{20}$.

Exercice 11. Développer

 $cos(5\theta)$, $sin(5\theta)$, sin(2x)sin(3x), cos(5x)cos(7x).

Exercice 12. Linéariser

$$\cos(x)\sin^2(x)$$
, $\cos^2(x)\sin(x)$, $\cos^4(\theta)\sin^2(\theta)$.

Exercice 13. Déterminer l'ensemble E des nombres complexes tels que |z-i|=|z-iz|=|z-1|.

Exercice 14. Déterminer l'ensemble $E = \{z \in \mathbb{C} : |z+3| = 2|z|\}.$

Exercice 15. Soit $\theta \in \mathbb{R}$. Calculer $\sum_{k=1}^{n} \cos(k\theta)$ et $\sum_{k=1}^{n} \sin(k\theta)$.

Exercice 16.

- 1. Evaluer $\sum_{k=0}^{n} {n \choose k} e^{i(a+kb)}$.
- 2. En déduire $\sum_{k=0}^{n} {n \choose k} \cos(a+kb)$.

Exercice 17. Soit a, b deux nombres complexes distincts. Déterminer $E_{\theta} = \{z \in \mathbb{C} \setminus \{a, b\} \mid \arg(\frac{z-a}{z-b}) = \theta \quad [\pi] \}$

- 1. Dans le cas où $\theta \equiv 0$ $[\pi]$,
- 2. Dans le cas où $\theta \not\equiv 0$ $[\pi]$.

Exercice 18.

- 1. Déterminer les racines 4-èmes de −1.
- 2. Déterminer les racines 5-èmes de $\frac{1+i}{\sqrt{3}-i}$.
- 3. Déterminer les racines 6-èmes de 27i.

Exercice 19. Résoudre dans \mathbb{C} les équations $z^2 - (5 - 14i)z - 2(5i + 12) = 0$, $z^2 - (3 + 4i)z - 1 + 5i = 0$, $z^2 - (3 + 4i)z - 1 + 5i = 0$ et $z^4 + 2z^2 + 4 = 0$.

Exercice 20. Résoudre dans C les équations

- 1. $iz^3 = (1+i)z^2 (1-2i)z (6+8i)$ sachant qu'elle possède une solution réelle.
- 2. $z^4 z^3 + z^2 z + 1 = 0$
- 3. $z^7 = \overline{z}$
- 4. $(z-1)^5 = (z+1)^5$
- 5. $e^z = 3\sqrt{3} 3i$.

Exercice 21. [Construction à la règle et au compas d'un pentagone régulier]. On va construire un pentagone régulier avec un compas et une règle non graduée.

On note $w = e^{\frac{2i\pi}{5}}$

- 1. Montrer que w est une racine 5-ème de l'unité.
- 2. Calculer $1 + w + w^2 + w^3 + w^4$. On pose $A = w + w^4$, $B = w^2 + w^3$.
- 3. Calculer A + B et AB.
- 4. En déduire la valeur de A et B.
- 5. En déduire la valeur de w puis celle de $\cos\left(\frac{2\pi}{5}\right)$ et $\sin\left(\frac{2\pi}{5}\right)$.

 Dans le plan complexe (O, \vec{u}, \vec{v}) , on note \mathscr{C} le cercle unité centré en O, C le point d'affixe -1, B le point d'affixe i et P_0 le point d'affixe 1. On note M le milieu de [OC].
- 6. Comment peut-on obtenir M avec la règle et le compas? Le cercle de centre M et de rayon [MB] coupe la droite (OC) en D. La médiatrice de [OD] coupe \mathscr{C} en un point P_1 .
- 7. Déterminer l'affixe de P_1 .
- 8. En déduire une construction d'un pentagone régulier.

Exercice 22. On cherche à déterminer tous les réels t tels que

$$\cos t = \frac{1+\sqrt{5}}{4}.$$

- 1. Démontrer qu'il existe une unique solution dans l'intervalle $\left]0,\frac{\pi}{4}\right[$. Dans la suite, on notera t_0 cette solution.
- 2. Calculer $cos(2t_0)$, puis démontrer que $cos(4t_0) = -cos(t_0)$.
- 3. En déduire t_0 .
- 4. Résoudre l'équation.

Exercice 23. On souhaite montrer que arctan(2) n'est pas un multiple rationnel de π . Soient (a_n) et (b_n) les suites numériques réelles définies par $(1+2i)^n=a_n+ib_n$.

- 1. Montrer que (a_n) vérifie la relation de récurrence $a_{n+2} = 2a_{n+1} 5a_n$, $n \ge 0$.
- 2. Montrer par récurrence que $a_n \equiv 2^{n+1} \mod 5$ pour tout entier $n \ge 1$
- 3. Supposons que $\arctan(2)$ soit un multiple rationnel de π , i.e. $\exists p \in \mathbb{N}, q \in \mathbb{N}^*$ tels que $\arctan(2) = \pi \frac{p}{q}$.
 - (a) Montrer qu'il existe un entier naturel $n \ge 1$ tel que $(1+2i)^n \in \mathbb{R}$. On pourra écrire sous forme exponentielle 1+2i en fonction de arctan(2).
 - (b) Conclure.