Exercise 12

January 13, 2004

1.

Definition 1 A binray operation on a non empty set G is a function $+: G \times G \to G$.

Definition 2 An operation + on a set G is associative if

$$(a+b) + c = a + (b+c)$$

for all $a, b, c \in G$.

Definition 3 A group is a pair (G, +) of a non empty set G equipped with an associative operation +, and containing an element e such that:

- e + a = a = a + e for all $a \in G$
- for every $a \in G$, there is an element $b \in G$ with

$$a + b = e = b + a$$

Definition 4 Let (G,+) be a finite group. A nonempty subset S of G is a subgroup of G if $a,b\in S$ imply $a+b\in S$.

Prove the following theorem (it appears in many books on group theory).

Theorem 5 If G is a finite group and S is a subgroup of G, then the size of S (number of elements) devides the size of G.

Hint: For $t \in G$ define the set $St = \{s+t : s \in S\}$ (St is called a right coset of S in G). Show that any two right cosets of S in G are either identical or disjoint, and that the size (number of elements) of all right cosets is the same.

2.

1. Show that the set $Z_n = \{0, 1, \dots, n-1\}$ with addition modulo n forms a group.

- 2. Denote by Z_n^* the set of elements in Z_n that are relatively prime to n. Show that the set Z_n^* with multiplication modulo n forms a group.
- 3. Let (G,*) be a finite group. Show that for every $a \in G$ the set of all powers of a (a^0, a^1, a^2, \ldots) is a subgroup of G. Powers of an element are defined as follows: $a^0 = 1$, and for k > 1 $a^k = a^{k-1} * a$.
- 4. Use (1)-(3) and Lagrange's theorem to prove Fermat's theorem

Theorem 6 (Fermat) If p is a prime and a is an integer, then $a^p \equiv a \pmod{p}$