Advanced Encryption Standard

Christophe Clavier

University of Limoges

Christophe Clavier (Unilim)

Advanced Encryption Standard

1 / 12

GeneralitiesOperations in $GF(2^8)$ The algorithmSecurity of AESConclusion \bullet 0000000

AES Choice

- In January 1997 NIST made a call for candidature to define the Advanced Encryption Standard (AES)
- Indeed Data Encryption Standard DES is old and key length is not big enough, only 3-DES is considered as secure enough
- 15 candidates are proposed from different countries organisms, only 5 are selected in 1999 for final analysis: MARS, RC6, RIJNDAEL, SERPENT and TWOFISH
- RIJNDAEL is finally selected for the AES in November 2001, publication document is as U.S. FIPS PUB 197 (FIPS 197)

GeneralitiesOperations in $GF(2^{\circ})$ The algorithmSecurity of AESConclusion0 \bullet 00000

AES Conception

AES has been designed by two Belgians:

Joan Daemen

Vincent Rijmen

- DES is not working on element defined in a particular mathematical field
- AES is processing on elements of the Galois Field $GF(2^8)$
- Is it not based on the Feistel Scheme, it is a Substitution Permutation Network (SPN)

Christophe Clavier (Unilim)

Advanced Encryption Standard

3 / 12

Generalities ○○●○	Operations in $GF(2^8)$	The algorithm	Security of AES O	Conclusion O

AES

Three modes in AES are available for different security levels:

- AES 128 with 10 rounds: input message 128 bit, key is 128 bits long
- AES 192 with 12 rounds: input message 128 bit, key is 192 bits long
- AES 256 with 14 rounds: input message 128 bit, key is 256 bits long

GeneralitiesOperations in $GF(2^8)$ The algorithmSecurity of AESConclusion000●000000

AES Data Elements and $GF(2^8)$

- AES data are composed of elements of $GF(2^8)$: each byte is an element of $GF(2^8)$
- Mathematical structure gives many implementation possibilities
- Very useful also to implement protections and countermeasures against side channel attacks

Christophe Clavier (Unilim)

Advanced Encryption Standard

5 / 12

Generalities Operations in $GF(2^8)$ The algorithm Security of AES Conclusion 0000 \bullet 0 0 0

Addition in $GF(2^8)$

- Each byte value is represented by a polynomial (of degree at most 7) over $GF(2) = \{0,1\}$
- Addition over $GF(2^8)$ is simply the addition of polynomials (with coefficients in GF(2))

Example

•
$$a(x) = x^6 + x^3 + x^2 + 1$$
 \rightarrow $a = 01001101_2 = 4D_{16} = 77$

•
$$b(x) = x^7 + x^6 + x^5 + 1$$
 \rightarrow $b = 11100001_2 = E1_{16} = 225$

•
$$c(x) = a(x) + b(x) = x^7 + x^5 + x^3 + x^2 \rightarrow c = 10101100_2 = AC_{16} = 172$$

$$c = a \oplus b$$

Multiplication in $GF(2^8)$

- Multiplying two polynomials a(x) and b(x) may result in a polynomial of degree larger than 7
- The product is reduced modulo an irreducible polynomial m(x) of degree 8 (for AES, $m(x) = x^8 + x^4 + x^3 + x + 1$ (11B₁₆))

Example

- $a(x) = x^6 + x^3 + x^2 + 1$ \rightarrow $a = 01001101_2 = 4D_{16} = 77$
- $b(x) = x^7 + x^6 + x^5 + 1$ \rightarrow $b = 11100001_2 = E1_{16} = 225$
- $a(x) \cdot b(x) = x^{13} + x^{12} + x^{11} + x^{10} + x^5 + x^3 + x^2 + 1$
- $c(x) = a(x) \cdot b(x) \mod m(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1 \rightarrow c = 7F_{16}$

$$4\mathsf{D}\cdot\mathsf{E}1=7\mathsf{F}$$

Christophe Clavier (Unilim)

Advanced Encryption Standard

7 / 12

Generalities Operations in $GF(2^8)$ The algorithm Security of AES Conclusion 0000 00 00 0

The whole AES

Generalities Operations in $GF(2^8)$ The algorithm Security of AES Conclusion 0000 00 \bullet 0

Cryptnalysis

- AES has been designed to resist to differential cryptanalysis
- AES has been designed to resist to linear cryptanalysis
- No known/chosen plaintext attack is known on any of AES-128, AES-192 and AES-256
- A chosen plaintext attack on reduced round variants can break:
 - 7 rounds of 128-bit AES
 - 8 rounds of 192-bit AES
 - 8 rounds of 256-bit AES
- In 2009, related key attacks have been discovered on full 192-bit and 256-bit AES (not practical as requiring 2¹⁷⁶ and 2¹¹⁹ encryptions respectively)

Christophe Clavier (Unilim)

Advanced Encryption Standard

11 / 13

Generalities Operations in $GF(2^8)$ The algorithm Security of AES Conclusion 0000 0 \bullet

Conclusion

- AES is still today considered as a secure algorithm
- "Algebraic structure gives opportunities for discovering an attack on AES" can be heard...but nothing yet...
- Other final candidates MARS, RC6, SERPENT and TWOFISH are also recommended by NIST as secure algorithms

