MAT240 Assignment 1

Nicolas Coballe

September 14, 2021

3. a)

Proof.

Consider g and g' are both inverses of f.

$$g(f(x)) = x = g'(f(x)), \ \forall x \in X$$

Since x was chosen arbitrarily, f(x) is just an arbitrary object in Y. Thus, $g(y) = g'(y), \ \forall y \in Y$ and g = g'

b) $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$ is not invertible because it is not a bijection. This is because $1 \neq -1$ but f(1) = f(-1) (This is shown by the problem below.)

c)

Proof.

 \Rightarrow

We will first prove that f is a surjection.

By assumption $\forall y \in Y$, f(g(y)) = y and because g(y) is just an arbitrary element of X, this shows that $\forall y \in Y$, $\exists x \in X$ st f(x) = y

We will now show that f is an injection.

Assume that f is not an injection.

Thus, $\exists x, x' \in X \text{ st } x \neq x' \text{ and } f(x) = f(x')$

Then g(f(x)) = g(f(x')) = x = x' and thus we have reached a contradiction.

Thus we have proven that f is bijective.

 \Leftarrow

Because $f: X \to Y$ is a bijective function, then

$$\forall y \in Y, \exists ! x \in X \text{ st } f(x) = y$$

Thus we can construct a function $g:Y\to X$ that maps all $y\in Y$ to the unique $x\in X$ st f(x)=y

Thus, by construction g(f(x)) = x and f(g(y)) = y

d) It does not follow that $f \circ g = I_Y$

Proof.

Consider the function $f:\{a\} \to \{1,2\}$ such that f(a)=1 and the function $g:\{1,2\} \to \{a\}$ such that g(1)=a and g(2)=aThus $(g\circ f)(a)=a$ and $(g\circ f)=I_X$ But $(f\circ g)(2)=1$ so $(f\circ g)\neq I_Y$

Thus we have constructed a counterexample.

e) It does follow that $f \circ g = I_Y$ now.

Proof.

If $g\circ f=I_X$ then f is injective because if we assume f is not injective, then we result in the contradiction where

$$g(f(x)) = g(f(x')) = x = x'$$
 when $x \neq x'$

Thus f is injective and surjective, making it a bijection, and by part c, this implies that it is invertible and there exists a g st $f \circ g = I_Y$