Introduction Stealth Distributed Hash Tables Authentication Conclusion

Authentication in Stealth Distributed Hash Tables

Andrew MacQuire, Andrew Brampton, Idris A. Rai,
Nicholas J. P. Race and Laurent Mathy
{macquire,brampton,rai,race,laurent}@comp.lancs.ac.uk
Computing Department
Lancaster University, UK

Wednesday 30th August **Euromicro 2006**

Outline

- Introduction
 - What is a Distributed Hash Table?
 - What security problems exist?
- Stealth Distributed Hash Tables
 - How can a Stealth DHT help?
 - How can nodes be authenticated?
- Authentication
 - How does a Stealth DHT PKI work?
 - What implementation considerations exist?
- 4 Conclusion

What is a Distributed Hash Table?

Common Characteristics

- DHTs allow data sharing amongst numerous machines
- Nodes and data are consistently identified via hash functions
- Distributed routing algorithms allow any node to be located
- Peer-to-peer system: typically all nodes are treated equally

What security problems exist?

Common Attacks

- Messages are routed through intermediate nodes
 - Sniffing
 - Man-in-the-Middle
 - Denial of Service
- Nodes can inject unwanted messages
 - Spoofing
 - Pollution

What security problems exist?

Common Attacks

- Messages are routed through intermediate nodes
 - Sniffing
 - Man-in-the-Middle
 - Denial of Service
- Nodes can inject unwanted messages
 - Spoofing
 - Pollution

What can be done?

- Could simply deny access to untrusted nodes...
 - ...might exclude well-behaved nodes unnecessarily
- Better to restrict the operations untrusted nodes can perform
 - ...but how can nodes be separated into trusted and untrusted?

What can be done?

- Could simply deny access to untrusted nodes...
 - ...might exclude well-behaved nodes unnecessarily
- Better to restrict the operations untrusted nodes can perform
 - ...but how can nodes be separated into trusted and untrusted?

How can a Stealth DHT help?

- Stealth DHTs separate nodes into Service and Stealth classes
 - An altered join procedure (without phase 'b') stops Stealth nodes from being routing intermediaries

How can nodes be authenticated?

- Service node status is given to trusted nodes only, all others become Stealth nodes
 - ...however, a system is required to enforce this separation

Public Key Infrastructures

 ...allow multiple users to validate each other's identities and messages (as well as encrypt traffic) with no prior exchange of data

Typical PKI Components

- Registration Authority
- Certification Authority
- Certificate Repository
- Revocation List?

How can nodes be authenticated?

- Service node status is given to trusted nodes only, all others become Stealth nodes
 - ...however, a system is required to enforce this separation

Public Key Infrastructures

 ...allow multiple users to validate each other's identities and messages (as well as encrypt traffic) with no prior exchange of data

Typical PKI Components

- Registration Authority
- Certification Authority
- Certificate Repository
- Revocation List?

How can nodes be authenticated?

- Service node status is given to trusted nodes only, all others become Stealth nodes
 - ...however, a system is required to enforce this separation

Public Key Infrastructures

 ...allow multiple users to validate each other's identities and messages (as well as encrypt traffic) with no prior exchange of data

Typical PKI Components

- Registration Authority
- Certification Authority
- Certificate Repository
- Revocation List?

How does a Stealth DHT PKI work?

- Could be a completely external system...
- Could also consist of one or more internal service nodes...
 - The Registration and Certification Authorities must be highly trusted
 - The Certificate Repository can be any node(s), as certificates are immutable and digitally signed

Certification Hierarchy

- Single globally trusted key?
 - Simple, but problematic if the key is ever compromised
- Hierarchy of keys?
 - More complex, but allows for finer-grained control
 - Highest-level keys can be kept secure and used rarely

Permissions Management

- Permissions within certificates?
 - Simple, but increases message size
 - Does not require an extra lookup
 - Difficult to alter; certificates are immutable
- Hold permissions on dedicated service node(s)?
 - Complex, yet flexible
 - Increases messaging overhead through lookups

Certificate Revocation

- Short expiry times?
 - Nodes are re-issued certificates periodically; unwanted certificates are not re-issued
 - Tradeoff between certification overhead and response time
- Certificate Revocation List?
 - List stored/replicated across dedicated service node(s)
 - Polled periodically or per-authentication operation; another tradeoff between overhead and response time

- Authentication Granularity
 - How often are messages validated?
 - Per-hop?
 - Per-message?
 - Per-session?
 - Are complete certificates chains included in messages?
 - Increased message size, but no extra messaging required

Percentage increase in number of messages...

Percentage increase in lookup latency...

Conclusion

- Stealth DHTs were originally proposed to separate powerful from less powerful nodes
- This distinction can be extended to trusted and untrusted nodes
- By limiting the operations stealth nodes can perform, untrusted nodes can still be serviced
- By enforcing the separation through a PKI, Stealth DHTs can supply a secure, resilient overlay

Thank you for listening.

Any questions?

Authentication in Stealth Distributed Hash Tables

Andrew MacQuire, Andrew Brampton, Idris A. Rai,
Nicholas J. P. Race and Laurent Mathy
{macquire,brampton,rai,race,laurent}@comp.lancs.ac.uk
Computing Department
Lancaster University, UK

Wednesday 30th August Euromicro 2006

