6G6Z3002 - Computational Methods for ODEs

Chapter 5 – Exercise 5 Part Solutions

Qn1:

$$y_{j+1} = y_j + h f_{j+1}$$

First we need to find the characteristic polynomial. Substituting $f = \lambda y$ gives

$$y_{j+1} = y_j + h \lambda y_{j+1}$$

Collecting the y terms gives:

$$(1-h\lambda)y_{j+1}-y_j=0$$

$$(1-h\lambda)\xi-1=0$$

$$\therefore \xi = \frac{1}{1 - h\lambda}$$

Therefore, we have a linear function (a polynomial) of degree 1, with only one root to be calculated for different values of $h\lambda$, as shown in the following table.

The interval of absolute stability is the set of \overline{h} for which $\left|\xi(\overline{h})\right| \leq 1$.

Now try different \overline{h} values in this and close to this range:

\overline{h}	-10	-2	-1	-0.5	0	0.1	0.5	1.1	2	10	100
ξ	0.09	0.33	0.5	0.67	1	1.1	2	10	1	0.11	0.01
		17	$ \xi \leq 1$				$ \xi > 1$		<u> </u>	$ \xi \leq 1$	

Hence, the method is absolutely stable for the set of \overline{h} where $\overline{h} \le 0$ or $\overline{h} \ge 2$.

Therefore the interval of absolute stability is $\overline{h} \notin [0,2]$.

On2

$$y_{j+2} = y_j + \frac{h}{2}(f_{j+1} + 3f_j)$$

First, we need to find the characteristic polynomial. Substituting $f = \lambda y$ gives:

$$y_{j+2} = y_j + \frac{h}{2}(\lambda y_{j+1} + 3\lambda y_j)$$

Collecting the y terms gives:

$$y_{j+2} - \frac{h\lambda}{2} y_{j+1} - (1 + \frac{3h\lambda}{2}) y_j = 0$$

$$\xi^2 - \frac{h\lambda}{2}\xi - (1 + \frac{3h\lambda}{2}) = 0$$

Therefore, we have a quadratic characteristic polynomial with two roots, to be calculated for different values of $h\lambda$, as shown in the following table:

\overline{h}	-5/3	-4/3	-1/3	0	0.1
$ \xi_1 $	1.225	1	0.88	1	1.048
$ \xi_2 $	1.225	1	0.247	1	1.098

The interval of absolute stability is the set of \overline{h} for which $\left|\xi_1(\overline{h})\right| \leq 1$ and $\left|\xi_2(\overline{h})\right| \leq 1$.

Therefore the interval of absolute stability is $\left[-\frac{4}{3},0\right]$.

You can use Matlab routines to find the roots of the characteristic polynomial as shown below:

```
>> h=-5/3;
>> p=[1 -h/2 -(1+3*h/2)];
>> r = roots(p)
 -0.4167 + 1.1517i
 -0.4167 - 1.1517i
>> r = abs(roots(p))
r =
  1.2247
  1.2247
>> h=-5/3:
>> h=-4/3;
>> p=[1 -h/2 -(1+3*h/2)];
>> r = roots(p)
 -0.3333 + 0.9428i
 -0.3333 - 0.9428i
>> r=abs(roots(p))
r =
  1
  1
etc.
Alternatively, you can use the following Matlab program, use the coefficients of the characteristics
polynomial from Qn2 and use the resulting output values to complete your table (shown for question 2).
%6G6Z3002 - Computational methods in ODEs
%Interval of Absolute Stability (script 1)
%Matlab script for producing a table for interval of absolute stability
%using Root Locus Method of a given LMS method- here AM2-step
%Note: the result is printed in columns, and not in rows as given in the
%lecture notes
out=[];
for h=1:-1:-7
p=[(1-5*h/12) - (1+8*h/12) (h/12)];
%r=roots(p);
```

fprintf('%6.1f %6.2f %6.2f\n',out)

r=abs(roots(p)); out=[h;r(1);r(2)];

end

A plot of the region of absolute stability for this method is shown below:

It can be seen that its region of absolute stability is the circle on the interval $\left[-\frac{4}{3},0\right]$ as diameter.

For this plot, the following Matlab programme was used.

```
%Region of absolute stability for the 2-step Adams Bashforth method w=exp(1i*linspace(0,2*pi)); z=2*(w.^2-1)./(w+3); plot(z) grid on
```

Qn3

Find the interval of absolute stability for the 3rd order Adams-Bashforth method using root locus method:

$$y_{j+1} = y_j + \frac{h}{12} \left[23f_j - 16f_{j-1} + 5f_{j-2} \right]$$

Rearranging the subscripts on both sides of the equation so that the lowest subscript is j:

$$y_{j+3} = y_{j+2} + \frac{h}{12} \left[23f_{j+2} - 16f_{j+1} + 5f_j \right]$$

Method 1 of obtaining the characteristic polynomial:

A comparison with the general formula with k = 3

$$\sum_{i=0}^{k} \alpha_i y_{j+i} = h \sum_{i=0}^{k} \beta_i f_{j+i}, \quad \text{with } \alpha_k = 1,$$

$$\alpha_3 = 1$$
, $\alpha_2 = -1$, $\alpha_1 = 0$, $\alpha_0 = 0$, $\beta_3 = 0$, $\beta_2 = \frac{23}{12}$, $\beta_1 = -\frac{16}{12}$, $\beta_0 = \frac{5}{12}$.

The characteristic polynomial $\rho(\xi)$ is:

$$\rho(\xi) = \sum_{i=0}^{3} \alpha_i \xi^i = \alpha_0 \xi^0 + \alpha_1 \xi^1 + \alpha_2 \xi^2 + \alpha_3 \xi^3 = \xi^3 - \xi^2.$$

$$\sigma(\xi) = \sum_{i=0}^{3} \beta_i \xi^i = \beta_0 \xi^0 + \beta_1 \xi^1 + \beta_2 \xi^2 + \beta_3 \xi^3 = \frac{23}{12} \xi^2 - \frac{16}{12} \xi + \frac{5}{12}.$$

 $\pi(\xi, h\lambda) = \rho(\xi) - h\lambda\sigma(\xi)$, therefore the Characteristics polynomial can be found as:

$$(\xi^3 - \xi^2) - \frac{h\lambda}{12} (23\xi^2 - 16\xi + 5) = 0$$

Collecting the like terms gives, the characteristic polynomial:

$$\xi^3 - (1 + \frac{23\overline{h}}{12})\xi^2 + \frac{16}{12}\overline{h}\xi - \frac{5}{12}\overline{h} = 0$$

Therefore, we have a cubic characteristic polynomial with three roots, to be calculated for different values of $h\lambda$. We can use the following Matlab code.

```
%6G6Z3002 - Computational methods in ODEs
%Interval of Absolute Stability (script 1)
%using Root Locus Method of a given LMS method- here AB3-step
%Note: the result is printed in columns, and not in rows as given in the
%lecture notes
out=[];
for h=0.1:-0.05:-0.6
p=[1 -(1+(23*h/12)) (16*h/12) -5*h/12];
%r=roots(p);
r=abs(roots(p));
out=[h;r(1);r(2);r(3)];
fprintf('%6.2f %6.3f %6.3f %6.3f\n',out)
end
```

The program produces the following table of results for the three roots of the cubic characteristic polynomial.

>> Inte	rvalAB3		
0.10	1.105	0.194	0.194
0.05	1.051	0.141	0.141
0.00	0.000	0.000	1.000
-0.05	0.951	0.173	0.126
-0.10	0.905	0.268	0.172
-0.15	0.861	0.353	0.205
-0.20	0.818	0.435	0.234
-0.25	0.516	0.777	0.260
-0.30	0.597	0.738	0.284
-0.35	0.677	0.698	0.308
-0.40	0.759	0.659	0.333
-0.45	0.841	0.617	0.361
-0.50	0.924	0.570	0.396
-0.55	1.008	0.477	0.477
-0.60	1.092	0.478	0.478

We can now set up the horizontal table for the three roots and show the interval of absolute stability, shown in the following table:

\overline{h}	-0.60	-0.55	-0.4	-0.20	-0.10	0.0	0.10
$ \xi_1 $	0.48	0	0.33	0.23	0.17	1	0.14
$ \xi_2 $	0.48	0	0.66	0.43	0.27	0	0.14
$ \xi_2 $	1.09	1	0.76	0.82	0.91	0	1.10

Hence, the interval of absolute stability is: $\left[-0.55,0\right]$, where all roots $\left|\xi_{1}(\overline{h}\,)\right| \leq 1$, $\left|\xi_{2}(\overline{h}\,)\right| \leq 1$, $\left|\xi_{3}(\overline{h}\,)\right| \leq 1$

Method 2 of obtaining the characteristic polynomial:

Note: you can derive your characteristic polynomial directly from the multistep formula

$$y_{j+1} = y_j + \frac{h}{12} \left[23f_j - 16f_{j-1} + 5f_{j-2} \right]$$

Rearranging the subscripts on both sides of the equation so that the lowest subscript is *j*:

$$y_{j+3} = y_{j+2} + \frac{h}{12} \left[23f_{j+2} - 16f_{j+1} + 5f_j \right]$$

Substituting $f = \lambda v$ gives:

$$y_{j+3} = y_{j+2} + \frac{h}{12} \left[23\lambda y_{j+2} - 16\lambda y_{j+1} + 5\lambda y_j \right],$$

Substituting $y_{j+1} = \xi^1$, and collecting the like terms gives, the cubic characteristic polynomial:

$$\xi^3 - (1 + \frac{23\overline{h}}{12})\xi^2 + \frac{16}{12}\overline{h}\xi - \frac{5}{12}\overline{h} = 0$$

The remaining steps for finding the interval of absolute stability will be the same as explained above.

Repeat the same process to find the interval of absolute stability for 3^{rd} order Adams-Moulton and 4^{th} order Adams Bashforth and Adams Moulton methods – i.e. 3 more tables and compare your results with the table on page 4, Chapter 5 lecture notes.

Next we will find the region of absolute stability for 3rdorder Adams-Bashforth method:

$$y_{j+1} = y_j + \frac{h}{12} \left[23f_j - 16f_{j-1} + 5f_{j-2} \right]$$

Step 1 - We need to find 1st and 2nd characteristic polynomials:

$$\rho(\xi) = \xi^3 - \xi^2$$

$$\sigma(\xi) = \frac{1}{12}(23\xi^2 - 16\xi + 5)$$

Step 2 – we write

$$\pi(\xi, h\lambda) = \rho(\xi) - h\lambda\sigma(\xi) = 0$$
, therefore $h\lambda = \frac{\rho(\xi)}{\sigma(\xi)} = \frac{12(\xi^3 - \xi^2)}{23\xi^2 - 16\xi + 5}$

Substituting
$$\xi = e^{i\theta}$$
, gives $h\lambda = \frac{12(e^{3i\theta} - e^{2i\theta})}{23e^{2i\theta} - 16e^{i\theta} + 5}$

We can modify the following Matlab code and plot the region of absolute stability:

```
%Region of absolute stability for the AB2 method
w=exp(li*linspace(0,2*pi));
z=2*(w.^2-w)./(3*w-1);
plot(z)
```

%Region of absolute stability for the AB3 method

```
w=exp(1i*linspace(0,2*pi));
z=12*(w.^3- w.^2)./(23*w.^2-
16*w+5);
plot(z)
grid on
```

Note that the region of absolute stability crosses the $Re(h\lambda)$ axis at -0.55, i.e. confirming the interval of absolute stability for the $3^{\rm rd}$ order AB method, i.e. $\left[-0.55, 0\right]$

Qn4

Rearranging the subscripts on both sides of the equation so that the lowest subscript is j gives:

$$y_{j+1} = y_j + \frac{h}{2} \left[f_{j+1} + f_j \right]$$
 with characteristic polynomial $(1 - \frac{\overline{h}}{2})\xi - (1 + \frac{\overline{h}}{2}) = 0$

$$\therefore \xi = \frac{1 + \frac{\overline{h}}{2}}{1 - \frac{\overline{h}}{2}}$$
. Therefore, for all negative values of $h\lambda$ from 0 to $-\infty$, the root of the characteristic

polynomial ξ will be less than 1 in magnitude, except when $h\lambda = 0$ when $\xi = 1$. Hence, the interval of absolute stability is $[-\infty, 0]$.

<u>Qn5</u>

Follow the method as described in Qn 3. You will find that for all negative $h\lambda$ values, at least one of the roots of the associated characteristic polynomial will be greater than 1 in magnitude.