Markdown file created by Joel Swift for RNAseq homework for (SLU)BCB5200 $\,$

1. Download the required fastq file and run fastQC

Download

fastq-dump SRR2567795
fastq-dump SRR2567786

FastQC

fastqc SRR2567795.fastq
unzip SRR2567795_fastqc.zip
cd SRR2567795_fastqc/
less fastqc_data.txt

A. Results

>>Per base sequence quality pass										
#Base	1 1	-	Upper Quartile	10th Percentile 90th Percentile						
1	32.61830937634032	34.0	31.0 34.0	31.0 34.0						
2	32.76358148901108	34.0	31.0 34.0	31.0 34.0						
3	32.85438385669965	34.0	31.0 34.0	31.0 34.0						
4	36.29484318341469	37.0	37.0 37.0	35.0 37.0						
5	36.129828934292924	37.0	35.0 37.0	35.0 37.0						
6	36.07655709672344	37.0	35.0 37.0	35.0 37.0						
7	36.076784371043544	37.0	35.0 37.0	35.0 37.0						
8	36.11765685798143	37.0	36.0 37.0	35.0 37.0						
9	37.87177184400032	39.0	38.0 39.0	35.0 39.0						
10-14	38.18013047902665	39.4	38.2 39.4	35.2 39.4						
15-19	39.21341152617363	40.6	39.0 41.0	36.0 41.0						
20-24	39.00362805598665	40.0	38.4 41.0	35.4 41.0						
25-29	38.97166848077938	40.0	38.4 41.0	35.0 41.0						
30-34	38.90321370201526	40.0	38.0 41.0	35.0 41.0						
35-39	38.65456082414552	40.0	38.0 41.0	34.2 41.0						
40-44	38.33118902207272	40.0	38.0 41.0	33.6 41.0						
45-49	38.12031297160288	40.0	37.0 41.0	33.0 41.0						
50-54	37.65930857005945	39.4	36.4 41.0	32.6 41.0						
55-59	36.886755329066794	38.4	35.2 40.4	31.6 41.0						
60-64	35.97182879735841	36.8	35.0 39.6	31.0 41.0						
65-69	34.947880045060536	35.4	34.0 38.2	30.0 40.4						
70-74	33.94976444260529	35.0	33.6 36.6	29.2 39.0						
75-79	32.9069587607627	34.8	32.4 35.2	28.4 37.2						
80-84	32.58564200836563	35.0	33.0 35.0	27.8 36.0						

85-89	31.8508099737922	213 35	32.	8 35.0	26.4	35.4
90-94	32.8899968569756	34	8 32.	4 34.8	30.2	34.8
95-99	36.4433074567156	37	.4 37.	2 37.4	35.0	37.4
100-104	38.0949824746160	9 39	.4 38.	2 39.4	35.2	39.4
105-109	39.1769946787310)8 41	.0 39.	0 41.0	36.0	41.0
110-114	39.0797859015832	21 41	.0 39.	0 41.0	35.8	41.0
115-119	38.8591867614980)5 40	38.	4 41.0	35.0	41.0
120-124	38.5916025873999	91 40	.0 38.	0 41.0	34.2	41.0
125-129	38.3134048026737	76 40	38.	0 41.0	33.6	41.0
130-134	38.0875401994823	32 40	38.	0 41.0	33.0	41.0
135-139	38.2836446205955	52 40	38.	0 41.0	33.2	41.0
140-144	37.6991708068561	18 39	.6 37.	2 40.6	32.8	41.0
145-149	37.5976527976960)5 39	.6 36.	8 41.0	32.6	41.0
150-154	36.7934723210915	556 38	35.	6 40.6	31.8	41.0
155-159	35.7503085454913	36 36	35.	0 39.2	31.0	41.0
160-164	34.6628097036199	96 35	34.	4 37.6	30.0	39.4
165-169	33.7328356249069	954 35	34.	0 36.2	29.6	38.0
170-174	33.0406535457528	304 35	34.	0 35.2	29.0	36.6
175-179	32.4650594036232	25 35	34.	0 35.0	29.0	36.0
180	32.0837492391778	35	33.	0 35.0	27.0	35.0

B. What does the "Yellow Box" in the "Per base sequence quality" represent?

The yellow box represents the inter-quartile range (25-75%).

2. Retreiving the Reference Genome and annotation file.

- cp /public/ahnt/courses/bcb5200/HW7/Schizosaccharomyces_pombe_all_chromosomes.fa ./
- cp /public/ahnt/courses/bcb5200/HW7/schizosaccharomyces_pombe.genome.gff3 ./

A. Provide the citation for the genome assembly.

- From .gff3 file I extracted #!genome-build-accession GCA_000002945.2
- Searched GCA_000002945.2 on NCBI
- Clicked on related information tab Assembly
- Clicked on related information tab PubMed

Wood, V., et al. "The genome sequence of Schizosaccharomyces pombe." Nature 415.6874 (2002): 871-880

3. Use Tophat2 to map files to reference, guided by the gff3 file.

```
#Correcting the fasta genome file
sed -i 's/chromosome_1/I/g' spombe.fa
sed -i 's/chromosome_2/II/g' spombe.fa
sed -i 's/chromosome_3/III/g' spombe.fa
#Remove ab and mating type sequences from fasta genome file
vi spombe.fa
#Build the index
bowtie2-build spombe.fa spombe
#Align
tophat2 -p 8 -o SRR2567786/ -G spombe.gff spombe ../data/SRR2567786_1.fastq \
../data/SRR2567786_2.fastq
tophat2 -p 8 -o SRR2567795/ -G spombe.gff spombe ../data/SRR2567795_1.fastq \
../data/SRR2567795_2.fastq
     What are the overall mapping rates for SRR2567786 &
SRR2567795?
SRR2567786
Left reads:
                  : 13112183
         Input
          Mapped : 12801875 (97.6% of input)
           of these:
                        701758 (5.5%) have multiple alignments (127 have >20)
Right reads:
         Input
                   : 13112183
                  : 12284963 (93.7% of input)
          Mapped
                        658511 ( 5.4%) have multiple alignments (128 have >20)
           of these:
95.7% overall read mapping rate.
Aligned pairs: 12138221
    of these:
                 650677 ( 5.4\%) have multiple alignments
                   3060 (0.0%) are discordant alignments
92.5% concordant pair alignment rate
SRR2567795
Left reads:
         Input
                   : 12984309
          Mapped : 12714799 (97.9% of input)
```

```
of these:
                         951056 (7.5%) have multiple alignments (183 have >20)
Right reads:
          Input
                   : 12984309
           Mapped : 12634825 (97.3% of input)
            of these:
                         941243 ( 7.4%) have multiple alignments (206 have >20)
97.6% overall read mapping rate.
Aligned pairs: 12452673
     of these:
                  926951 (7.4%) have multiple alignments
                    4725 ( 0.0%) are discordant alignments
95.9% concordant pair alignment rate.
5. Use Cuflinks to assemble transcriptomes from the two alignment
files, report the number of genes and transcripts assemblied for each
RNA library.
#SRR7725686
mv accepted_hits.bam SRR7725686.bam
mkdir cufflinks
cufflinks -o SRR2567786/cufflinks/ -p 8 -u -g spombe.gff -b spombe.fa \
SRR2567786/SRR7725686.bam
#SRR7725695
mv accepted_hits.bam SRR7725695.bam
mkdir cufflinks
cufflinks -o SRR2567795/cufflinks/ -p 8 -u -g spombe.gff -b spombe.fa \
SRR2567795/SRR7725695.bam
#Number of genes
###SRR7725686
head -n -1 genes.fpkm_tracking | wc -1
#6160
###SRR7725695
head -n -1 genes.fpkm_tracking | wc -1
#5897
#Number of Transcripts
```

cut -f3 transcripts.gtf | grep "transcript" -c

###SRR7725686

###SRR7725695

#7437

```
cut -f3 transcripts.gtf | grep "transcript" -c
#7298
```

6. Use Cuffmerge to merge the transcripts generated by cufflinks for both files

```
#make assembly file that contains the path to both transcript.gtf files
echo SRR2567786/cufflinks/transcripts.gtf > assemblies.txt
echo SRR2567795/cufflinks/transcripts.gtf >> assemblies.txt

#Cuffmerge
cuffmerge -s spombe.fa assemblies.txt

#Find number of transcripts produced after cuffmerge
wc -l merged_asm/merged.gtf
#11359
```

7. Use Cuffcompare to compare the merged annotation file to the reference annotation. Report the stats output and the number of novel transcripts with novel isoforms (include a description).

```
mkdir cuffcompare
cuffcompare -r spombe.gff merged_asm/merged.gtf
# Summary for dataset: merged_asm/merged.gtf :
#
     Query mRNAs: 5756 in 5622 loci (2524 multi-exon transcripts)
#
           (110 multi-transcript loci, ~1.0 transcripts per locus)
# Reference mRNAs : 6886 in
                             6197 loci (2531 multi-exon)
# Super-loci w/ reference transcripts:
                                     5362
Base level: 94.9 97.8
       Exon level: 78.3 85.4 78.4 85.6
#
     Intron level: 98.3 95.4 98.5 95.6
# Intron chain level: 84.2 84.5 100.0 100.0
 Transcript level:
                    62.2 74.5 62.5 74.8
#
      Locus level: 75.8 83.5 80.8 87.1
#
     Matching intron chains:
                            2132
             Matching loci:
                            4700
#
         Missed exons:
                        447/12220 ( 3.7%)
```

```
251/11192 ( 2.2%)
#
           Novel exons:
        Missed introns:
                            92/5333 ( 1.7%)
         Novel introns:
                            172/5490 ( 3.1%)
                            323/6197 ( 5.2%)
           Missed loci:
            Novel loci:
                            166/5622 ( 3.0%)
# Total union super-loci across all input datasets: 5622
#Finding all novel transcripts
cut -f4 cuffcmp.tracking | grep -c "j"
#285
#I was able to find the number of novel transcipts by first searching
#the Class codes that are assigned to each record in the cuffcmp.tracking
#file, these are located in column 4. Per the documentation j represents
#"Potentially novel isoform (fragment): at least one splice junction is shared with a
# reference transcript". So a cut and grep command has the ability to count these.
```

8. Run htseq-count to convert mapped results to counts.

```
#Sort the bam files by name
samtools sort -n SRR7725695.bam -o SRR7725695_sorted.bam
samtools sort -n SRR7725686.bam -o SRR7725686_sorted.bam
#Convert gff3 to gtf
gffread spombe.gff -T -o spombe.gtf
#Run htseq-count with both sorted BAM files.
htseq-count -f bam -r name SRR2567795/SRR7725695 sorted.bam \
SRR2567786/SRR7725686_sorted.bam spombe.gtf > counts.txt
getwd()
setwd("/home/kenizzer/Downloads")
library(edgeR)
#Reading and tidying data
count_table <- read.delim("/home/kenizzer/Downloads/counts.txt", header = FALSE,\</pre>
row.names = 1, sep = "t")
colnames(count_table) <- c("sample_1", "sample_2")</pre>
y = DGEList(count_table, group=1:2)
y$samples
#Filter out lowly expressed genes
keep \leftarrow rowSums(cpm(y)>1) >= 2
```

```
y <- y[keep, , keep.lib.sizes=FALSE]
#Normalize for differnces in library size
y <- calcNormFactors(y)</pre>
y$samples
#Accounting for the lack of replicates within the data
#must set the biological variability coef. by hand
#I selected 0.2 because this study compared wild type
#fission yeasts. This likely means that there is some variability
#between samples of the same organism but likely not as much as is
#common in a study with humans.
bcv <- 0.2
et <- exactTest(y, dispersion=bcv^2)</pre>
FDR <- p.adjust(et$table$PValue, method="BH")</pre>
sum(FDR < 0.05)
plotMD(et)
abline(h=c(-1,1), col="blue")
#Result 427 genes that are deferentially expressed between the samples
```


Figure 1: plot Smear plot generated using the edgeR package.