Epsilon-Delta Proof

Miliyon T.

January 21, 2015

Single Variable

Precise Definition of Limit

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the limit of f(x) as x approaches x_0 is the number L, written as

$$\lim_{x \to x_0} f(x) = L$$

For every number $\epsilon>0$, there exists a corresponding number $\delta>0$. Such that for all x.

$$0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon$$

Historical Note

The foundations of the rigorous study of analysis were laid in the nineteenth century, notably by the mathematicians Cauchy and Weierstrass.

Augustine Louis Cauchy

The foundations of the rigorous study of analysis were laid in the nineteenth century, notably by the mathematicians Cauchy and Weierstrass. Central to the study of this subject are the formal definitions of limits and continuity. The foundations of the rigorous study of analysis were laid in the nineteenth century, notably by the mathematicians Cauchy and Weierstrass.

Figure 1: Cauchy

Carl Weierstrass

Figure 2: Weierstrass

The foundations of the rigorous study of analysis were laid in the nineteenth century, notably by the mathematicians Cauchy and Weierstrass. Central to the study of this subject are the formal definitions of limits and continuity. The foundations of the rigorous study of analysis were laid in the nineteenth century, notably by the mathematicians Cauchy and Weierstrass. Central to the study of this subject are the formal definitions of limits and continuity.

Let D be a subset of \mathbf{R} and let $f \colon D \to \mathbf{R}$ be a real-valued function on D. The function f is said to be *continuous* on D if, for all $\epsilon > 0$ and for all $x \in D$, there exists some $\delta > 0$ (which may depend on x) such that if $y \in D$ satisfies

One may readily verify that if f and g are continuous functions on D then the functions f+g, f-g and f.g are continuous. If in addition g is everywhere non-zero then f/g is continuous.

The foundations of the rigorous study of analysis were laid in the nineteenth century, notably by the mathematicians Cauchy and Weierstrass. Central to the study of this subject are the formal definitions of limits and continuity. The foundations of the rigorous study of analysis were laid in the nineteenth century, notably by the mathematicians Cauchy and Weierstrass. Central to the study of this subject are the formal definitions of limits and continuity.

Let D be a subset of \mathbf{R} and let $f: D \to \mathbf{R}$ be a real-valued function on D. The function f is said to be *continuous* on D if, for all $\epsilon > 0$ and for all $x \in D$, there exists some $\delta > 0$ (which may depend on x) such that if $y \in D$ satisfies

One may readily verify that if f and g are continuous functions on D then the functions f+g, f-g and f.g are continuous. If in addition g is everywhere non-zero then f/g is continuous.

Multi-variable

Precise Definition

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that the limit of f(x) as x approaches x_0 is the number L, written as

$$\lim_{(x,y)\to(x_0,y_0)} f(x,y) = L$$

If ,for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$. Such that for all x.

$$0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \epsilon$$

The foundations of the rigorous study of *analysis* were laid in the nineteenth century, notably by the mathematicians Cauchy and Weierstrass. Central to the study of this subject are the formal definitions of *limits* and *continuity*.

Let D be a subset of \mathbf{R} and let $f \colon D \to \mathbf{R}$ be a real-valued function on D. The function f is said to be *continuous* on D if, for all $\epsilon > 0$ and for all $x \in D$, there exists some $\delta > 0$ (which may depend on x) such that if $y \in D$ satisfies

$$|y-x|<\delta$$

then

$$|f(y) - f(x)| < \epsilon$$
.

One may readily verify that if f and g are continuous functions on D then the functions f+g, f-g and f.g are continuous. If in addition g is everywhere non-zero then f/g is continuous.

References

- [1] [Serg Lang] Linear Algebra, Addison-Wesley Publishing. 1972
- [2] [Kolman §Hill] Introduction to Linear Algebra with Applications.2000
- [3] [Demissu Gemeda] An Introduction to Linear Algebra, Addis Ababa University Press.2000