MA3227 Numerical Analysis II

Assignment 4

Simon Etter, 2019/2020 Deadline: 17 April 2020, 18.00 Total marks: 10

1 Uniformly distributed points on the disk [5 marks]

Lecture 23 introduced the transformation and rejection sampling techniques for sampling according to a given target distribution \mathcal{F} . The goal of this exercise is to use these techniques for sampling Uniform D, where $D = \{x \in \mathbb{R}^2 \mid ||x||_2 \leq 1\}$ denotes the unit disk and Uniform S for a two-dimensional set $S \subset \mathbb{R}^2$ is defined through

$$(\operatorname{Uniform} S)(A) = \frac{\operatorname{area}(A)}{\operatorname{area}(S)}$$
 for all $A \subset S$.

- 1. Complete randdisk_rejection() such that it samples $X \sim \text{Uniform } D$ using rejection sampling with proposal distribution $\mathcal{G} = \text{Uniform } [-1,1]^2$.
- 2. How many samples of Uniform $[-1,1]^2$ does randdisk_rejection() require on average to produce a single sample of Uniform D?
- 3. Let \mathcal{R} be the distribution on [0,1] given by $\mathcal{R}([a,b]) = \int_a^b 2r \, dr$ for all $[a,b] \subset [0,1]$. Show that if $R \sim \mathcal{R}$ and $\Phi \sim \text{Uniform}[0,2\pi]$ independently, then

$$X(R, \Phi) = \begin{pmatrix} R \cos(\Phi) \\ R \sin(\Phi) \end{pmatrix} \sim \text{Uniform } D.$$

Hint. You may use that for any $f: D \to \mathbb{R}$, we have that

$$\int_{D} f(x) dx = \int_{0}^{1} \int_{0}^{2\pi} f(X(r,\phi)) r d\phi dr$$

4. Complete randdisk_transformation() such that it samples $X \sim \text{Uniform } D$ using the result from Task 3.

Hint. You can check your answers to Tasks 1 and 4 using plot_samples().

2 Importance sampling for highly concentrated integrals [5 marks]

We have seen in Lecture 22 that $\int_0^1 f(x) dx = \mathbb{E}[f(X)]$ for $X \sim \text{Uniform}[0,1]$ and that the integral on the right-hand side can be estimated using Monte Carlo sampling. In this task, we will first revise the Monte Carlo error estimate discussed at the end of Lecture 24 (Tasks 1 to 3), and then we will see how for a specific class of functions f(x), the sampling efficiency can be improved using the importance sampling theorem introduced in Lecture 23 (Tasks 4 to 7).

¹More precisely, the statement holds for any integrable $f: D \to \mathbb{R}$, but characterising integrable functions is beyond the scope of this module and all practically relevant functions are integrable.

- 1. Complete uniform_sampling(f,N) such that it uses Monte Carlo sampling to estimate the expectation and variance of f(X) with $X \sim \text{Uniform}[0,1]$.
- 2. Complete plot_histogram() as described in the code.
- 3. (Unmarked) The provided function sin_integral() uses uniform_sampling() to estimate

$$\int_0^1 \frac{\pi}{2} \sin(\pi x) \, dx = 1,\tag{1}$$

and plot_histogram() to visualise the accuracy of the estimates. Use this function to check your answers to Tasks 1 and 2. If your answers are correct, you will observe that $\tilde{\mathbb{E}}_{100}[f(X)]$ achieves a relative accuracy of roughly 10%.

4. (Unmarked) The provided function concentrated_integral() uses uniform_sampling() to estimate

$$\int_0^1 \frac{1}{0.0906401} \exp\left(-\left(20\left(x - 0.5\right)\right)^4\right) dx \approx 1.$$
 (2)

Run this function and observe how the relative accuracy of $\tilde{\mathbb{E}}_{100}[f(X)]$ drops to about 50% when applied to (2) instead of (1).

5. (Unmarked) The importance sampling theorem from Lecture 23 can easily be generalised to the following statement.

Importance sampling theorem. Assume X and Y are random variables distributed according to probability densities $p_X(x)$ and $p_Y(x)$, respectively. Then,

$$\mathbb{E}[f(X)] = \mathbb{E}\left[f(Y)\frac{p_X(Y)}{p_Y(Y)}\right]. \tag{3}$$

Our aim for the remainder of this exercise is to use this result with a $p_Y(x)$ chosen such that Monte Carlo sampling applied to the expectation on the right-hand side of (3) becomes as accurate as possible. We have seen in Lecture 23 that this is equivalent to minimising the variance of $f(Y) \frac{p_X(Y)}{p_Y(Y)}$, and clearly this variance is minimised if we choose $p_Y(x) = C f(x) p_X(x)$ for some C > 0 since then $f(Y) \frac{p_X(Y)}{p_Y(Y)} = \frac{1}{C}$ has variance 0. Unfortunately, in the case of (2) we have

$$f(x) p_X(x) = \frac{1}{0.0906401} \exp(-(20(x-0.5))^4),$$

and it is unclear how we could sample $p_Y(x) = C f(x) p_X(x)$ efficiently. Instead, we will resort to choosing Y normally distributed with mean $\mu = 0.5$ and standard deviation $\sigma = 0.05$, i.e. $Y \sim \mathcal{N}(0.5, 0.05^2)$. Run plot_concentrated_integrand() and observe how $p_Y(x)$ and f(x) have roughly the same shape and hence $\frac{f(Y)}{p_Y(Y)}$ is reasonably close to being constant.

- 6. Complete importance_sampling(f,N,m,s) such that it uses Monte Carlo sampling to estimate the expectation and variance of $f(Y) \frac{p_X(Y)}{p_Y(Y)}$ where $Y \sim \mathcal{N}(m, s^2)$ and $p_X(x)$, $p_Y(x)$ denote the probability density functions of Uniform[0, 1] and $\mathcal{N}(m, s^2)$, respectively. Hint. $p_Y(x)$ is implemented in normal_pdf().
- 7. (Unmarked) Uncomment the line plot_histogram(... importance_sampling ...) in concentrated_integral(). Observe how importance sampling achieves a much better accuracy than uniform sampling in the case of (3).