Weighted Finite-State Transducers in Speech Recognition

Part I. Mathematical Foundation and Algorithms

Mehryar Mohri and Michael Riley (*)
AT&T Labs - Research
{mohri, riley}@research.att.com

(*) with contributions from Fernando Pereira and Mark-Jan Nederhof.

Why Weighted Finite-State Transducers?

1. Efficiency and Generality of Classical Automata Algorithms

- Efficient algorithms for a variety of problems (e.g. string-matching, compilers, Unix, design of controllability systems in aircrafts).
- General algorithms: rational operations, intersection.

2. Weights

- Handling uncertainty: text, handwritten text, speech, image, biological sequences.
- Increased generality: finite-state transducers, multiplicity.

3. Applications

- Text: pattern-matching, indexation, compression.
- Speech: Large-vocabulary speech recognition, speech synthesis.
- Image: image compression, filters.

Software Libraries

• **FSM Library**: Finite-State Machine Library – general software utilities for building, combining, optimizing, and searching weighted automata and transducers.

http://www.research.att.com/sw/tools/fsm/

• **GRM Library**: Grammar Library – general software collection for constructing and modifying weighted automata and transducers representing grammars and statistical language models.

http://www.research.att.com/sw/tools/grm/

FSM Library

The FSM utilities construct, combine, minimize, and search weighted finitestates machines (FSMs).

• User Program Level: Programs that read from and write to files or pipelines, fsm(1):

```
fsmintersect in1.fsm in2.fsm >out.fsm
```

• C(++) Library Level: Library archive of C(++) functions that implements the user program level, fsm(3):

```
Fsm in1 = FSMLoad("in1.fsm");
Fsm in2 = FSMLoad("in2.fsm");
Fsm out = FSMIntersect(fsm1, fsm2);
FSMDump("out.fsm", out);
```

• **Definition Level:** Specification of *labels*, of *costs*, and of kinds of FSM representations.

FSM File Types

- Textual Format: Used for manual inputting and viewing of FSMs
 - Acceptor Files
 - Transducer Files
 - Symbols Files
- Binary Format: 'Compiled' representation used by all FSM utilities.

Compiling, Printing, and Drawing FSMs

• Compiling

```
fsmcompile -s tropical -iA.syms <A.txt >A.fsm
fsmcompile -s log -iA.syms -oA.syms -t <T.txt >T.fsm
```

• Printing

```
fsmprint -iA.syms <A.fsm >A.txt
fsmprint -iA.syms -oA.syms <T.fsm >T.txt
```

• Drawing

```
fsmdraw -iA.syms <A.fsm | dot -Tps >A.ps
fsmdraw -iA.syms -oA.syms <T.fsm | dot -Tps >T.ps
```

Weight Sets: Semirings

A semiring $(\mathbb{K}, \oplus, \otimes, \overline{0}, \overline{1}) = a$ ring that may lack negation.

- Sum: to compute the weight of a sequence (sum of the weights of the paths labeled with that sequence).
- **Product:** to compute the weight of a path (product of the weights of constituent transitions).

SEMIRING	Set	\oplus	\otimes	$\overline{0}$	1
Boolean	{0,1}	V	\wedge	0	1
Probability	\mathbb{R}_{+}	+	×	0	1
Log	$\mathbb{R} \cup \{-\infty, +\infty\}$	\oplus_{\log}	+	$+\infty$	0
Tropical	$\mathbb{R} \cup \{-\infty, +\infty\}$	min	+	$+\infty$	0

with \bigoplus_{\log} defined by: $x \bigoplus_{\log} y = -\log(e^{-x} + e^{-y})$.

Automata/Acceptors

• Graphical Representation (A.ps):

• Acceptor File (A.txt):

```
0 0 red .5
0 1 green .3
1 2 blue
1 2 yellow .6
2 .8
```

• Symbols File (A.syms):

```
red 1
green 2
blue 3
yellow 4
```

Transducers

• Graphical Representation (T.ps):

• Transducer File (T.txt):

```
0 0 red yellow .5
0 1 green blue .3
1 2 blue green
1 2 yellow red .6
2 .8
```

• Symbols File (T.syms):

```
red 1 green 2 blue 3 yellow 4
```

Definitions and Notation - Paths

• Path π

- Origin or previous state: $p[\pi]$.
- Destination or next state: $n[\pi]$.
- Input label: $i[\pi]$.
- Output label: $o[\pi]$.

Sets of paths

- $-P(R_1,R_2)$: set of all paths from $R_1 \subseteq Q$ to $R_2 \subseteq Q$.
- $-P(R_1,x,R_2)$: paths in $P(R_1,R_2)$ with input label x.
- $-P(R_1,x,y,R_2)$: paths in $P(R_1,x,R_2)$ with output label y.

Definitions and Notation – Automata and Transducers

1. General Definitions

- Alphabets: input Σ , output Δ .
- States: Q, initial states I, final states F.
- Transitions: $E \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times (\Delta \cup \{\epsilon\}) \times \mathbb{K} \times Q$.
- Weight functions: initial weight function $\lambda: I \to \mathbb{K}$ final weight function $\rho: F \to \mathbb{K}$.

2. Machines

• Automaton $A = (\Sigma, Q, I, F, E, \lambda, \rho)$ with for all $x \in \Sigma^*$:

$$\llbracket A \rrbracket(x) = \bigoplus_{\pi \in P(I, x, F)} \lambda(p[\pi]) \otimes w[\pi] \otimes \rho(n[\pi])$$

• Transducer $T = (\Sigma, \Delta, Q, I, F, E, \lambda, \rho)$ with for all $x \in \Sigma^*, y \in \Delta^*$:

$$\llbracket T \rrbracket(x,y) = \bigoplus_{\pi \in P(I,x,y,F)} \lambda(p[\pi]) \otimes w[\pi] \otimes \rho(n[\pi])$$

Rational Operations – Algorithms

Definitions

OPERATION	Definition and Notation
Sum	$[\![T_1 \oplus T_2]\!](x,y) = [\![T_1]\!](x,y) \oplus [\![T_2]\!](x,y)$
Product	$[\![T_1 \otimes T_2]\!](x,y) = \bigoplus_{x \in \mathbb{Z}} [\![T_1]\!](x_1,y_1) \otimes [\![T_2]\!](x_2,y_2)$
Closure	$ T^* (x,y) = \bigoplus_{n=0}^{\infty} [T]^n (x,y) $

• Conditions on the closure operation: condition on T: e.g. weight of ϵ -cycles = $\overline{0}$ (regulated transducers), or semiring condition: e.g. $\overline{1} \oplus x = \overline{1}$ as with the tropical semiring (locally closed semirings).

Complexity and implementation

- Complexity (linear): $O((|E_1| + |Q_1|) + (|E_2| + |Q_2|))$ or O(|Q| + |E|).
- Lazy implementation.

Sum – Illustration

- Program: fsmunion A.fsm B.fsm >C.fsm
- Graphical Representation:

Product - Illustration

- Program: fsmconcat A.fsm B.fsm >C.fsm
- Graphical Representation:

Closure - Illustration

- Program: fsmclosure B.fsm >C.fsm
- Graphical Representation:

Some Elementary Unary Operations – Algorithms

• Definitions

OPERATION	Definition and Notation	LAZY IMPLEMENTATION
Reversal	$\left[\widetilde{T}](x,y) = [T](\widetilde{x},\widetilde{y}) \right]$	No
Inversion	$[T^{-1}](x,y) = [T](y,x)$	Yes
Projection	$A] (x) = \bigoplus_{y} [T](x,y)$	Yes

• Complexity and implementation

- Complexity (linear): O(|Q| + |E|).
- Lazy implementation (see table).

Reversal – Illustration

- Program: fsmreverse A.fsm >C.fsm
- Graphical Representation:

eps/0 4 green/1.2 blue/2 3 blue/0 2 green/0.3 1/0

A.fsa

C.fsa

Inversion – Illustration

- Program: fsminvert A.fsm >C.fsm
- Graphical Representation:

A.fst

C.fst

Projection – Illustration

- Program: fsmproject -1 T.fsm >A.fsm
- Graphical Representation:

T.fst

A.fsa

Some Fundamental Binary Operations – Algorithms

Definitions

OPERATION	DEFINITION AND NOTATION	Condition
Composition	$[T_1 \circ T_2](x,y) = \bigoplus_z [T_1](x,z) \otimes [T_2](z,y)$	\mathbb{K} commutative
Intersection	$[A_1 \cap A_2](x) = [A_1](x) \otimes [A_2](x)$	\mathbb{K} commutative
Difference	$[A_1 - A_2](x) = [A_1 \cap \overline{A_2}](x)$	A_2 unweighted &
		deterministic

Complexity and implementation

- Complexity (quadratic): $O((|E_1| + |Q_1|)(|E_2| + |Q_2|))$.
- Path multiplicity in presence of ϵ -transitions: ϵ -filter.
- Lazy implementation.

Composition – Illustration

- Program: fsmcompose A.fsm B.fsm >C.fsm
- Graphical Representation:

Multiplicity & ϵ -Transitions – Problem

${\bf Solution-Filter}\ F\ {\bf for\ Composition}$

Replace $T_1 \circ T_2$ by $T_1 \circ F \circ T_2$.

Intersection – Illustration

- Program: fsmintersect A.fsm B.fsm > C.fsm
- Graphical Representation:

C.fsa

Difference – Illustration

- Program: fsmdifference A.fsm B.fsm > C.fsm
- Graphical Representation:

C.fsa

Optimization Algorithms – Overview

Definitions

OPERATION	DESCRIPTION
Connection	Removes non-accessible/non-coaccessible states
ϵ -Removal	Removes ϵ -transitions
Determinization	Creates equivalent deterministic machine
Pushing	Creates equivalent pushed/stochastic machine
Minimization	Creates equivalent minimal deterministic machine

• Conditions: There are specific semiring conditions for the use of these algorithms. E.g. not all weighted automata or transducers can be determinized using the determinization algorithm.

Connection – Algorithm

Definition

- Input: weighted transducer T_1 .
- Output: weighted transducer $T_2 \equiv T_1$ with all states connected.

• Description

- 1. Depth-first search of T_1 from I_1 .
- 2. Mark accessible and coaccessible states.
- 3. Keep marked states and corresponding transitions.

Complexity and implementation

- Complexity (linear): $O(|Q_1| + |E_1|)$.
- No natural lazy implementation.

Connection – Illustration

• Program: fsmconnect A.fsm >C.fsm

• Graphical Representation: green/0.2 red/0.5 blue/0 2 /0.8 green/0.3 yellow/0.6 red/0 A.fsa red/0.5 green/0.3 blue/0 2/0.8yellow/0.6

C.fsa

ϵ -Removal – Algorithm

Definition

- Input: weighted transducer T_1 with ϵ -transitions.
- Output: weighted transducer $T_2 \equiv T_1$ with no ϵ -transition.
- **Description** (two stages):
 - 1. Computation of ϵ -closures: for any state p, states q that can be reached from p via ϵ -paths and the total weight of the ϵ -paths from p to q.

$$C[p] = \{(q, w) : q \in \epsilon[p], d[p, q] = w \neq \overline{0}\}$$

with:

$$d[p,q] = \bigoplus_{\pi \in P(p,\epsilon,q)} w[\pi]$$

- 2. Removal of ϵ 's: actual removal of ϵ -transitions and addition of new transitions.
 - \implies All-pair K-shortest-distance problem in T_{ϵ} (T reduced to its ϵ -transitions).

Complexity and implementation

- All-pair shortest-distance algorithm in T_{ϵ} .
 - * k-Closed semirings (for T_{ϵ}) or approximation: generic sparse shortest-distance algorithm [See references].
 - * Closed semirings: Floyd-Warshall or Gauss-Jordan elimination algorithm with decomposition of T_{ϵ} into strongly connected components [See references],

```
space complexity (quadratic): O(|Q|^2 + |E|).
time complexity (cubic): O(|Q|^3(T_{\oplus} + T_{\otimes} + T_*)).
```

- Complexity:
 - * Acyclic T_{ϵ} : $O(|Q|^2 + |Q||E|(T_{\oplus} + T_{\otimes}))$.
 - * General case (tropical semiring): $O(|Q||E| + |Q|^2 \log |Q|)$.
- Lazy implementation: integration with on-the-fly weighted determinization.

ϵ -Removal – Illustration

- Program: fsmrmepsilon T.fsm >TP.fsm
- Graphical Representation:

Part I. Algorithms

Determinization - Algorithm

Definition

- Input: determinizable weighted automaton or transducer M_1 .
- Output: $M_2 \equiv M_1$ subsequential or deterministic: M_2 has a unique initial state and no two transitions leaving the same state share the same input label.

• Description

- 1. Generalization of subset construction: weighted subsets $\{(q_1, w_1), \ldots, (q_n, w_n)\}, w_i$ remainder weight at state q_i .
- 2. Weight of a transition in the result: \oplus -sum of the original transitions pre- \otimes -multiplied by remainders.

Conditions

- Semiring: weakly left divisible semirings.
- -M is determinizable \equiv the determinization algorithm applies to M.
- All unweighted automata are determinizable.
- All acyclic machines are determinizable.

- Not all weighted automata or transducers are determinizable.
- Characterization based on the twins property.

• Complexity and Implementation

- Complexity: exponential.
- Lazy implementation.

Determinization of Weighted Automata – Illustration

b/1

• Program: fsmdeterminize A.fsm > D.fsm

• Graphical Representation:

Mohri & Riley

Part I. Algorithms

Optimization Algorithms

Determinization of Weighted Transducers – Illustration

• Program: fsmdeterminize T.fsm > D.fsm

• Graphical Representation: a:b/0.6b:eps/0.4 a:a/0.1b:b/0.3a:b/0.2 a:eps/0.5 4/0.7 a:c/0.5 c:eps/0.7 $\{(0, b, 0)\}$ a:a/0.2 a:b/0.1 a:eps/0.1 $\{(1, c, 0.4),$ $\{(0, eps, 0)\}$ b:a/0.3 (2, a, 0)a:b/0.6 $\{(3, b, 0),$ (4, eps, .1)} a:b/0.5 /(eps, 0.8) $\{(4, eps, 0)\}$ /(eps, 0.7) c:c/1.1

Part I. Algorithms

Optimization Algorithms

Pushing – Algorithm

Definition

- Input: weighted automaton or transducer M_1 .
- Output: $M_2 \equiv M_1$ such that the longest common prefix of all outgoing paths = ϵ or such that the \oplus -sum of the weights of all outgoing transitions = $\overline{1}$ modulo the string/weight at the initial state.
- **Description** (two stages):
 - 1. Single-source shortest distance computation: for each state q,

$$d[q] = \bigoplus_{\pi \in P(q,F)} w[\pi]$$

2. Reweighting: for each transition e such that $d[p[e]] \neq \overline{0}$,

$$w[e] \leftarrow (d[p[e]])^{-1}(w[e] \otimes d[n[e]])$$

- Conditions (automata case)
 - Weakly divisible semiring.
 - Zero-sum free semiring or zero-sum free machine.

• Complexity

- Automata case
 - * Acyclic case (linear): $O(|Q| + |E|(T_{\oplus} + T_{\otimes}))$.
 - * General case (tropical semiring): $O(|Q| \log |Q| + |E|)$.
- Transducer case: $O((|P_{max}| + 1) |E|)$.

Weight Pushing – Illustration

- Program: fsmpush -ic A.fsm >P.fsm
- Graphical Representation:
 - Tropical semiring

Log semiring

Label Pushing – Illustration

- Program: fsmpush -il T.fsm >P.fsm
- Graphical Representation:

Minimization – Algorithm

Definition

- Input: deterministic weighted automaton or transducer M_1 .
- Output: deterministic $M_2 \equiv M_1$ with minimal number of states and transitions.
- **Description**: two stages
 - 1. Canonical representation: use pushing or other algorithm to standardize input automata.
 - 2. Automata minimization: encode pairs (label, weight) as labels and use classical unweighted minimization algorithm.

Complexity

- Automata case
 - * Acyclic case (linear): $O(|Q| + |E|(T_{\oplus} + T_{\otimes}))$.
 - * General case (tropical semiring): $O(|E| \log |Q|)$.
- Transducer case
 - * Acyclic case: $O(S + |Q| + |E|(|P_{max}| + 1))$.
 - * General case: $O(S + |Q| + |E| (\log |Q| + |P_{max}|))$.

Minimization – Illustration

- Program: fsmminimize D.fsm >M.fsm
- Graphical Representation:

Part I. Algorithms

Equivalence – Algorithm

Definition

- Input: deterministic weighted automata A_1 and A_2 .
- Output: TRUE if $A_2 \equiv A_1$, FALSE otherwise.
- **Description**: two stages
 - 1. Canonical representation: use pushing or other algorithm to standardize input automata.
 - 2. **Test**: encode pairs (label, weight) as labels and use classical algorithm for testing the equivalence of unweighted automata.

Complexity

- First stage: $O((|E_1| + |E_2|) + (|Q_1| + |Q_2|) \log(|Q_1| + |Q_2|))$ if using pushing in the tropical semiring.
- Second stage (quasi-linear): $O(m \alpha(m, n))$ where $m = |E_1| + |E_2|$ and $n = |Q_1| + |Q_2|$, and α is the *inverse of Ackermann's function*.

Equivalence – Illustration

- Program: fsmequiv [-v] D.fsm M.fsm
- Graphical Representation:

M.fsa

Single-Source Shortest-Distance Algorithms – Algorithm

- Generic single-source shortest-distance algorithm
 - Definition: for each state q,

$$d[q] = \bigoplus_{\pi \in P(q,F)} w[\pi]$$

- Works with any queue discipline and any semiring k-closed for the graph.
- Coincides with classical algorithms in the specific case of the tropical semiring and the specific queue disciplines: best-first (Dijkstra), FIFO (Bellman-Ford), or topological sort order (Lawler).

• N-best strings algorithm

- General N-best paths algorithm augmented with the computation of the potentials.
- On-the-fly weighted determinization.

Single-Source Shortest-Distance Algorithms – Illustration

- Program: fsmbestpath [-n N] A.fsm > C.fsm
- Graphical Representation:

C.fsa

Pruning – Illustration

- Program: fsmprune -c1.0 A.fsm >C.fsm
- Graphical Representation:

C.fsa

Compilation of Weighted CFGs – Algorithm

Definition

- Input: weighted context-free grammar G.
- Output: weighted automaton A representing G.
- Condition: G must be strongly regular, e.g. rules of each set M of mutually recursive nonterminals are either all right-linear or all left-linear.

Description

- 1. Build the dependency graph D_G of the input grammar G.
- 2. Compute the strongly connected components (SCCs) of D_G .
- 3. Construct weighted automaton K(S) for each SCC S and for each non-terminal $X \in S$ a weighted automaton M(X) derived from K(S).
- 4. Create simple automaton M_G accepting exactly the set of active non-terminals A.
- 5. Expand M_G on-the-fly for each input string using lazy replacement and editing.

• Complexity and Implementation

- Compact intermediate representation of G by a weighted transducer T.
- Compilation algorithm applies to T rather than G.
- Lazy compilation algorithm, complexity (linear): O(|T|).

Compilation of Weighted CFGs – Illustration

Grammar G	Dependency Graph	Weighted Automata $K(S)$	$egin{array}{c} ext{Activation} \ ext{Automaton} \ ext{M_G} \end{array}$
$\begin{array}{cccc} Z . 1 & \rightarrow & XY \\ X . 2 & \rightarrow & aY \\ Y . 3 & \rightarrow & bX \\ Y . 4 & \rightarrow & c \end{array}$	Z Y	$K(\{Z\})$: X Y $K(\{X,Y\})$: X $A/0.2$ $B/0.3$ Y $C/0.4$ F	0 Z 1

- Grammar G: $Z . 1 \rightarrow XY \quad X . 2 \rightarrow aY \quad Y . 3 \rightarrow bX \quad Y . 4 \rightarrow c$
- Program: grmread -i lab -w cfg.txt | grmcfcompile -i lab -s Z
- Graphical Representation:

Regular Approximation of Weighted CFGs – Algorithm

Definition

- Input: arbitrary weighted context-free grammar G.
- Output: G' strongly regular approximation of G with $L(G) \subseteq L(G')$.

Description

- 1. Let M be a set of mutually recursive non-terminals.
- 2. For each nonterminal $A \in M$, add new nonterminal $A' \notin N$, new rule:

$$A' \rightarrow \epsilon$$

3. Replace each rule with left-hand side $A \in M$:

$$A \rightarrow \alpha_0 B_1 \alpha_1 B_2 \alpha_2 \cdots B_m \alpha_m$$

with
$$m \geq 0$$
, $B_1, \ldots, B_m \in M$, $\alpha_0 \ldots \alpha_m \in (\Sigma \cup (N - M))^*$, by:
$$A \rightarrow \alpha_0 B_1$$

$$B'_1 \rightarrow \alpha_1 B_2$$

$$B'_2 \rightarrow \alpha_2 B_3$$

$$\cdots$$

$$B'_{m-1} \rightarrow \alpha_{m-1} B_m$$

$$B'_m \rightarrow \alpha_m A'$$

 $(A \to \alpha_0 \ A' \text{ when } m = 0).$

• Complexity and Implementation

- At most one new non-terminal symbol for any non-terminal symbol of G.
- Readable and modifiable result, structure of original grammar still apparent.
- Complexity of the simple variant of the algorithm (linear): O(|G|).
- Grammar compilation algorithm directly applies to the resulting approximate grammar.

Regular Approximation of Weighted CFGs – Illustration

Grammar G	Regular Approximation	Graphical Representation
$E \rightarrow E + T$ $E \rightarrow T$ $T \rightarrow T * F$ $T \rightarrow F$ $F \rightarrow (E)$ $F \rightarrow a$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	T' F T' (E) 0 $*$ 1

• Program:

grmcfapproximate -i lab -o nlab cfg.fsm > ncfg.txt
grmread -i nlab ncfg.txt | grmcfcompile -i nlab -s E >M

Conclusion

• Generality and Efficiency

- Algorithms based on a general algebraic framework (semirings).
- Algorithms applying to machines of 500M transitions.
- Convenient combination and optimization of different information sources (components) of a complex system.

• Speech Processing Applications

- Automatic Speech Recognition (see Part II).
- Speech Synthesis.
- Spoken-Dialog Applications.