

3V / 5V, Wide Bandwidth Quad 2:1 Mux

Preliminary Technical Data

ADG774

FEATURES

Low insertion loss and On Resistance: 6Ω typical On Resistance Flatness <2 Ω Single 3.3V/5V supply operation Rail-to-Rail Operation Very Low Distortion: 2% Low Quiescent Supply Current (100nA typical) Fast Switching Times t_{ON} 100 ns t_{OFF} 90 ns TTL/CMOS Compatible

APPLICATIONS
10/100 Base-TX/T4
100VG-AnyLAN
Token Ring 4/16 Mbps
ATM25
NIC Adapter and Hubs
SONET OCI 51.8 Mbps
T1/E1

Pin Compatible with PI5L200

GENERAL DESCRIPTION

The ADG774 is a monolithic CMOS device comprising four independently selectable switches. They are designed on a CMOS process which provides low power dissipation yet gives high switching speed and low on resistance.

The ADG774 is a Rail-to-Rail Quad 2:1 multiplexer/demultiplexer with three-state outputs. With data input of 0V to 5V levels the On-resistance typically varies from 5Ω to 7Ω . This device can be used to replace mechanical relays in low voltage (3.3V/5V systems) LAN applications .

The ADG774 has a wide bandwidth of 135MHz, and so can switch fast ethernet and ATM25 signals. The ADG774 switch distortion is typically less than 2% when switching into 100Ω UTP cables. The ADG774 operates from a single 3.3V/5V supply and is TTL logic compatible.

The on resistance profile is very flat over the full analog input range ensuring excellent linearity and low distortion when switching audio signals. Fast switching speed coupled with high signal bandwidth also make the parts suitable for video signal switching. CMOS construction ensures ultralow power dissipation making the parts ideally suited for portable and battery powered instruments.

Prelim D 11/97

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAM

The control logic for each switch is shown in the Truth Table for the ADG774 on page 4.

These switches conduct equally well in both directions when ON and have an input signal range which extends to the supplies. In the OFF condition, signal levels up to the supplies are blocked. The ADG774 switches exhibit break before make switching action. Inherent in the design is low charge injection for minimum transients when switching the digital inputs.

PRODUCT HIGHLIGHTS

- 1. Wide bandwidth data rates > 100MHz.
- 2. Ultralow Power Dissipation
- 3. Extended Signal Range
 The ADG774 is fabricated on a CMOS process giving an increased signal range which extends fully to the supply rails.
- Low leakage over temperature.
- 5. Break Before Make Switching
 This prevents channel shorting when the switches are
 configured as a multiplexer.
- 6. Crosstalk Crosstalk is typically -70dB @30MHz.

Preliminary Technical Data

 $\label{eq:SingleSupply} \textbf{SingleSupply} \quad (\textbf{V}_{DD} = +3.3 \ \textbf{V} \ , \ \textbf{GND} = \textbf{0} \ \textbf{V}, \ \textbf{All specifications} \ \textbf{T}_{MIN} \ \textbf{to} \ \textbf{T}_{MAX} \ \textbf{unless otherwise noted})$

	B Version			
Parameter	+25°C	${ m T_{MIN}}$ to ${ m T_{MAX}}$	Units	Test Conditions/Comments
ANALOG SWITCH		WELL	· · · · · · · · · · · · · · · · · · ·	
Analog Signal Range		0 V to V _{DD}	V	
On-Resistance (R_{ON})		15	Ω typ	$V_D = 0V \text{ to } 3V, I_S = -10 \text{ mA to } -30\text{mA};$
On-Resistance (RON)		22	Ω max	$v_{\rm D} = 0$ $v_{\rm to} 3$ $v_{\rm s}$ $v_{\rm S} = -10$ m/k to -30 m/k,
On-Resistance Match Between		22	32 IIIax	
Channels (ΔR _{ON})		1	Ω typ	$V_D = 0V \text{ to } 3 \text{ V}, I_S = -10 \text{ mA};$
Online (Arton)		3	Ω max	v _D ov to 5 v ₃ r ₃ r ₃ mrs
On-Resistance Flatness (R _{FLAT(ON)})		7	Ω typ	$V_D = 0V \text{ to } V_{DD}, V_{DD}, I_S = -1 \text{ mA};$
C-FLAT(ON)		12	Ω max	
LEAKAGE CURRENTS				
Source OFF Leakage I _S (OFF)		±100	nA max	$V_D = 3.0 \text{ V}, V_S = 3.0 \text{ V};$
				Test Circuit 2
Drain OFF Leakage I _D (OFF)		±100	nA max	$V_D = 3.0 \text{ V}, V_S = 3.0 \text{ V};$
				Test Circuit 2
Channel ON Leakage ID, IS (ON)		±5	nA max	$V_{\rm D} = V_{\rm S} = 3 \text{ V};$
				Test Circuit 3
DIGITAL INPUTS				
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current				
I _{INL} or I _{INH}			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±1	μA max	
DYNAMIC CHARACTERISTICS ²				
t_{ON}		28	ns typ	$R_{L} = 100 \Omega, C_{L} = 35 pF;$
		40	ns max	$V_S = +1.5 \text{ V}$; Test Circuit 4
t _{OFF}		4	ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$;
		20	ns max	$V_S = +1.5 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D	15		ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF;$
	10	10	ns min	$V_{S1} = V_{S2} = +3 \text{ V};$
				Test Circuit 5
Off Isolation		-75	dB typ	$R_L = 50 \Omega, f = 1MHz;$
				Test Circuit?
Channel-to-Channel Crosstalk		-75	dB typ	$R_{L} = 50 \Omega, C_{L} = 5 pF, f = 1 MHz;$
D 1 111 01D				Test Circuit 8
Bandwidth - 3dB		110	MHz typ	$R_L = 50 \Omega$; Test Circuit?
Distortion		4	% typ	$R_{\rm L} = 100 \ \Omega$
$C_{\rm S}$ (OFF)		15	pF typ	f = 1 KHz f = 1 KHz
$C_{\rm D}$ (OFF)		15 TBD	pF typ	f = 1 KHz f = 1 MHz
$C_D, C_S(ON)$		100	pF typ	
POWER REQUIREMENTS				$V_{DD} = +3.6 \text{ V}$
				Digital Inputs = 0 V or V_{DD}
$I_{ m DD}$		1	μA max	W = 12 0 W
I _{IN}		1 100	μA max	$V_{IN} = +3.0 \text{ V}$
I _O	1	100	mAmax	$V_{\rm S}/V_{\rm D} = 0V$

Specifications subject to change without notice.

NOTES ¹Temperature ranges are as follows; B Versions: –40°C to +85°C.

 $^{^2} Guaranteed \, by \, design, not \, subject \, to \, production \, test.$

ADG774

Parameter	B Version T _{MIN} to +25°C T _{MAX}	Units	Test Conditions/Comments
	+23 C I _{MAX}	Cints	rest Conditions/Comments
ANALOG SWITCH			
Analog Signal Range	0 V to V _{DD}	V	
On-Resistance (R _{ON)}	6	Ω typ	$V_D = 0V \text{ to } 5V, I_S = -10 \text{ mA to } -30\text{mA}$
	12	Ω max	
On-Resistance Match Between			
Channels (ΔR_{ON})	0.4	Ω typ	$V_D = 0V \text{ to 5 V, } I_S = -10 \text{ mA;}$
	2	Ω max	
On-Resistance Flatness $(R_{FLAT(ON)})$	3	Ω typ	$V_D = 0V \text{ to } 5V, V_{DD}, I_S = -1 \text{ mA};$
	5	Ω max	
LEAKAGE CURRENTS			
	±100	nA max	$V_D = 4.5 \text{ V}, V_S = 4.5 \text{ V};$
Source OFF Leakage I _S (OFF)	<u> </u>	na max	
Drain OFF Lockson L (OFF)	1100	. A	Test Circuit 2
Drain OFF Leakage I _D (OFF)	±100	nA max	$V_D = 4.5 \text{ V}, V_S = 4.5 \text{ V};$ Test Circuit 2
Channel ON Lasters I. I. (ON)	1.5	A	Test Circuit 2 $V_D = V_S = 4.5 \text{ V};$
Channel ON Leakage I_D , I_S (ON)	±5	nA max	2 0 ,
			Test Circuit 3
DIGITAL INPUTS			
Input High Voltage, V _{INH}	2.4	V min	
Input Low Voltage, V _{INL}	0.8	V max	
Input Current			
I _{INL} or I _{INH}		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
	±1	μ A max	
DVNIAMIC CHADACTEDISTICS2			
DYNAMIC CHARACTERISTICS ²	10		D = 100 O C = 25 = E
t_{ON}	10	ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$; $V_S = +3.0 V$; Test Circuit 4
	20	ns max	
$t_{ m OFF}$	5	ns typ	$R_L = 100 \Omega$, $C_L = 35 pF$;
Donal Defense Make Time Delaw	10	ns max	$V_S = +3.0 \text{ V}$; Test Circuit 4
Break-Before-Make Time Delay, t _D	15	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
	10 10	ns min	$V_{S1} = V_{S2} = +5V;$
000 1 1 2		ID.	Test Circuit 5
Off Isolation	-55	dB typ	$R_L = 100 \Omega$, $f = 30MHz$;
			Test Circuit?
Channel-to-Channel Crosstalk	-70	dB typ	$R_L = 100 \Omega$, $C_L = 5 pF$, $f = 30 MHz$;
D 1 111 01D		,	Test Circuit 8
Bandwidth - 3dB	137	MHz typ	$R_L = 100 \Omega$; Test Circuit?
Distortion $\Delta R_{ON}/R_{L}$	2	% typ	$R_L = 100 \Omega$
C_{S} (OFF)	13	pF typ	f = 1 KHz
C_D (OFF)	13	pF typ	f = 1 KHz
$C_D, C_S (ON)$	TBD	pF typ	f = 1 MHz
POWER REQUIREMENTS			$V_{DD} = +5.5V$
I O II DI TELLO TE			Digital Inputs = $0 \text{ V or } V_{DD}$
I_{DD}	1	μ A m ax	Digital inputs of or ADD
$ m I_{IN}$	1	μA max	V_{IN} = +5.0 V
	100	mAmax	$V_{\rm IN} = 13.0 \text{ V}$ $V_{\rm S}/V_{\rm D} = 0 \text{ V}$
I _O	100	шлшах	v St vD - U v

NOTES

Specifications subject to change without notice.

 $^{^{1}}Temperature$ ranges are as follows: B Versions: $-40^{\circ}C$ to $+85^{\circ}C$.

²Guaranteed by design, not subject to production test.

Preliminary Technical Data

Truth Table

E	IN	D1	D2	D 3	D4	Function
1	X	Hi-Z	Z Hi-Z	. Hi-Z	Hi-Z	DISABLE
0	1	S1A	S2A	S3A	S4A	IN = 0
0	1	S1B	S2B	S3B	S4B	IN = 1

ORDERING GUIDE

Model ¹	Temperature Range	Package Option ¹
ADG774BR	-40°C to +85°C	R-16A
ADG774BRQ	-40°C to +85°C	RQ-16

NOTES

PIN CONFIGURATION (SOIC/QSOP)

ABSOLUTE MAXIMUM RATINGS1

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

V_{DD} to GND0.3 V to +7 V
Analog, Digital Inputs ² $-0.3V$ to V_{DD} +0.3 V or
30 mA, Whichever Occurs First
Continuous Current, S or D
Peak Current, S or D
(Pulsed at 1 ms, 10% Duty Cycle max)
Operating Temperature Range
Industrial (B Version)40°C to +85°C
Storage Temperature Range65°C to +150°C
Junction Temperature+150°C
SOIC Package, Power Dissipation 600 mW
θ_{IA} Thermal Impedance
Lead Temperature, Soldering
Vapor Phase (60 sec) +215°C
Infrared (15 sec)+220°C

QSOP Package, Power Dissipation TI	BDmW
θ_{JA} Thermal Impedance TBI	D°C/W
Lead Temperature, Soldering	
Vapor Phase (60 sec)	+215°C
Infrared (15 sec)	+220°C
ESD	2kV

NOTES

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION_

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG774 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

¹ R = 0.15" Small Outline IC (SOIC);RQ= 0.15" Quality Small Outline Package (QSOP)

TERMI	NOLO	JGY

$\overline{V_{DD}}$	Most positive power supply potential.	$\overline{C_D(OFF)}$	"OFF" switch drain capacitance.		
GND	Ground (0 V) reference.		C _D , C _S (ON) "ON" switch capacitance.		
S	Source terminal. May be an input or output.	t_{ON}	Delay between applying the digital control input and the output switching on. See test circuit 4. Delay between applying the digital control input and the output switching off.		
D	Drain terminal. May be an input or output.				
IN	Logic control input.	$t_{ m OFF}$			
$\overline{\mathrm{E}}$	Logic Control input.				
R_{ON}	Ohmic resistance between D and S.	t_{D}	"OFF" time or "ON" time measured between the 90% points of both switches, when switch ing from one address state to another. See test circuit 5.		
ΔR_{ON}	On resistance match between any two channels i.e. $R_{\rm ON}$ max - $R_{\rm ON}$ min .				
$R_{FLAT(ON)} \\$	Flatness is defined as the difference between	Crosstalk			
	the maximum and minimum value of on-resistance as measured over the specified analog signal range.		A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.		
I _S (OFF) Source leakage current with the switch "OFF."		Off Isolation A measure of unwanted signal coupling			
I _D (OFF)	Drain leakage current with the switch "OFF."		through an "OFF" switch.		
I _D , I _S (ON) Channel leakage current with the switch "ON."		Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output		
$V_{\rm D} \ (V_{S})$	Analog voltage on terminals D, S.	mjection	during switching.		
C _S (OFF)	"OFF" switch source capacitance.	Bandwidth	Frequency Response of the awitch in the ON state measured at 3dB down.		

Typical Performance Graphs

T.B.D

T.B.D

Figure 1. On Resistance as a Function of V_D (V_S) for various Single Supplies.

Figure 2. On Resistance as a Function of V_D (V_S) for Different Temperatures with Single Supplies.

T.B.D

Figure 3. Insertion Loss vs. Frequency.

T.B.D

Figure 5 . Crosstalk vs. Frequency

T.B.D

Figure 7. Phase Response with switch on.

T.B.D

Figure 4. Off Isolation vs. Frequency

T.B.D

Figure 6. Total Harmonic Distortion vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

T.B.D

Test Circuit 4. Switching Times

T.B.D

Test Circuit 5. Break-Before-Make Time Delay

T.B.D

Test Circuit 6. Bandwidth

T.B.D

T.B.D

Test Circuit 7. Off Isolation

Test Circuit 8. Channel-to-Channel Crosstalk

MECHANICAL INFORMATION

Dimensions are shown in inches and (mm).

16-Pin QSOP (RQ-16)

T.B.D