Barème.

- Calculs : chaque question sur 2 point, total sur 34 points, ramené sur 5 points.
- Problèmes : chaque question sur 4 points, total sur 104 points, ramené sur 15 points, +50%.

Statistiques descriptives.

Soit
$$\varphi: \mathbb{R} \to \mathbb{R}, \ x \mapsto \min\left(\frac{1}{10} \lceil 10x \rceil; 20\right)$$
.

	Calculs	Problème	Note finale
Transformation	c	p	$\varphi\left(\frac{5c}{34} + 1, 5\frac{15p}{104}\right)$
Note maximale	31	63	16,8
Note minimale	8	13	4
Moyenne	$\approx 19,98$	$\approx 37,02$	$\approx 10,99$
Écart-type	$\approx 4,91$	$\approx 10,98$	$\approx 2,75$
Premier quartile	18	30	9,45
Médiane	21	37	10,9
Troisième quartile	22	42	12, 4

Remarques générales.

- Certains utilisent encore le symbole \Leftrightarrow pour signifier une déduction. Je l'ai souvent sanctionné. Un exemple de franche maladresse : « Montrons que pour tout x > 0, $\ln(1+x) < x \Leftrightarrow \ln(1+x) x < 0$ ». Il n'y a rien à démontrer : c'est évident. Une autre : $A^2 A = I_3 \Leftrightarrow A(A I_3) = I_3 \Leftrightarrow (A I_3)A = I_3$ est vraie. Pour autant, on n'a pas $A^{-1} = A I_3$.
- La plupart d'entre vous présentent très correctement leur copie, c'est bien. Quelques étudiants récalcitrants ont été sanctionnés (j'indique $n \to p$ pour indiquer que les n points de la question ont été diminués en p points). Certains ont du mal à identifier la conclusion à encadrer.
- Il est important d'introduire correctement les variables utilisées. Le « avec » doit être proscrit.
- Tout au long du devoir, certains ont eu du mal à passer les écritures du rang n au rang n+1. Par exemple, la somme $\sum_{n=1}^{2n} n$ se transforme en $\sum_{n=1}^{2n+2} n$, et non en $\sum_{n=1}^{2n+1} n$.

I - Un exercice déjà vu

2) En notant B le « candidat inverse » de A, il convient de vérifier $AB = I_3$ et $BA = I_3$. Il convient d'établir l'inversibilité de A avant d'écrire A^{-1} .

II – La série harmonique

- 1) On demande la réponse la plus précise possible, c'est-à-dire la monotonie stricte.
- 3) J'ai relevé beaucoup d'erreurs dans le passage de n à n+1. Une erreur vue plusieurs fois : « la suite (H_n) est croissante, donc la suite $(H_{n+1}-H_n)$ est croissante ». Fondamentalement, cela revient à soustraire des inégalités.
- 6) Certains essaient de raisonner par récurrence. Cela n'a aucun sens ici.
- **9)** Beaucoup oublient que H_{m+1} n'est pas entier.
- 10) La plupart d'entre-vous définissent la fonction $x \mapsto \ln(1+x) x$ sur \mathbb{R}_+^* et non sur \mathbb{R}_+ . C'est franchement maladroit. N'oubliez pas de justifier la dérivabilité des fonctions manipulées avant de dériver.
- 11) Vous pouviez procéder sans étude de fonction. Il suffisait d'observer que $\ln(1+x) = -\ln(1/(1+x)) = -\ln(1-x/(x+1))$, puis d'appliquer le résultat précédent en -x/(x+1). Ce n'étais pas possible si vous aviez mené l'étude sur \mathbb{R}_+^* .

- **15)** La limite $\frac{\ln(n+1)}{\ln(n)} \xrightarrow[n \to +\infty]{} 1$ était à justifier.
- 17) Un minorant est une constante!
- 19) Beaucoup d'erreurs de raisonnement ici : on vous demandait juste de trouver de tels a et b. Il suffisait donc de les exhiber et de justifier qu'ils convenaient. Les raisonnements du type « a(k+2) + b(k+1) = 1 donc a = 1 et b = -1 » sont faux à k fixé et étaient donc à justifier attentivement.
 - Les valeurs de a et de b à fournir ne devaient bien entendu pas dépendre de k.
- 21) Un point important est la gestion des deux variables m et n. Vous ne pouviez pas effectuer de récurrence sur deux indices! Le plus simple était de fixer m et de faire une récurrence simple sur n.
 - Lors de la phase d'initialisation, il convenait de discuter sur la valeur de m.

Et vu qu'il me reste un peu de place, une once de culture...

