Лекция 4

- Объединение нитей в блоки и варпы.
- Оптимальная конфигурация нитей.
- Иерархия памяти.


```
#include <stdio.h>
#include <stdlib.h>
 global void qShowIdx() {
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
int warp idx = threadIdx.x / warpSize;
int lane idx = threadIdx.x % warpSize;
printf(" %5d\t%5d\t %2d\t%2d\n",
          idx, blockIdx.x, warp idx, lane idx);
```

```
int main(int argc, char** argv) {
if(argc < 3)
 fprintf(stderr,
       "USAGE: Threads per blockf blocks
  return -1;
int threads per block=atoi(arqv[1]);
 int num of blocks=atoi(argv[2]);
gShowIdx<<<num of blocks, threads per block>>>();
cudaDeviceSynchronize();
return 0;
```

```
Idx blk wrp lane
30
   0 0 30
31 0 0 31
33 0 1 1
62
         30
63 0 1 31
95 1 0 31
96 1 1 0
97 1 1 1
127 1
```

./lab4a 64 2 | sort -g -k1,1 -k2,2 -k4,4 > stat.txt

Оптимальное количество нитей в блоках *(сокрытие латентности)*

Кол-во варпов % 32 ==0 && Кол-во варпов / 32 > 1 Кол-во блоков >= Кол-во мультипроцессоров

Detected 1 CUDA Capable device(s) Device 0: "NVIDIA GeForce RTX 2060"	
CUDA Driver Version / Runtime Version	12.0 / 11.1
CUDA Capability Major/Minor version number:	7.5
(30) Multiprocessors, (64) CUDA Cores/MP:	1920 CUDA Cores
Memory Clock rate:	7001 Mhz
Memory Bus Width:	192-bit
L2 Cache Size:	3145728 bytes
motal amount of constant moments.	
Total amount of constant memory:	65536 bytes
Total amount of shared memory per block:	49152 bytes
Total shared memory per multiprocessor:	65536 bytes
Total number of registers available per block:	65536
Warp size:	32
Maximum number of threads per multiprocessor:	1024
Maximum number of threads per block:	1024

Detected 2 CUDA Capable device(s) Device 0: "GeForce GTX 1050" CUDA Driver Version / Runtime Version CUDA Capability Major/Minor version number:	9.1 / 9.1 6.1
(5) Multiprocessors, (128) CUDA Cores/MP:	640 CUDA Cores
Memory Clock rate: Memory Bus Width: L2 Cache Size:	3504 Mhz 128-bit 1048576 bytes
Total amount of constant memory: Total amount of shared memory per block: Total number of registers available per block: Warp size: Maximum number of threads per multiprocessor: Maximum number of threads per block:	65536 bytes 49152 bytes 65536 32 2048 1024

https://docs.nvidia.com/cuda/archive/11.2.0/cuda-c-programming-guide/index.html#compute-capabilities

Table 15. Technical Specifications per Compute Capability													
	Compute Capability												
Technical Specifications	3.5	3.7	5.0	5.2	5.3	6.0	6.1	6.2	7.0	7.2	7.5	8.0	8.6
Warp size		32											
Maximum number of resident blocks per SM	1	16 32							16	32	16		
Maximum number of resident warps per SM		64							32	64	48		
Maximum number of resident threads per SM		2048							1024	2048	1536		
Number of 32-bit registers per SM	64 K	128 K	28 K 64 K										
Maximum number of 32-bit registers per thread block		64 K 32 K 64 K 32 K						64 K					
Maximum number of 32-bit registers per thread	255												

```
global void gSum(int* a, int *b) {
  int i=threadIdx.x+blockIdx.x*blockDim.x;
  a[i]+=b[i];
}
```

```
int N=1<<atoi(argv[1]);
int num_threads=atoi(argv[2]);
int num_blocks=N/num_threads;</pre>
```

```
gSum<<<num blocks, num threads>>>(a,b);
  cudaDeviceSynchronize();
  CUDA_CHECK_RETURN(cudaGetLastError());
```

```
/Lab4 # ncu --target-processes all -k gSum ./lab4 20 32
```

```
gSum(int *, int *), 2023-Feb-20 17:05:19, Context 1, Stream 7
Section: GPU Speed Of Light Throughput
------
Duration usecond 69.38
-------
Section: Occupancy
```

50

33.63

•

Theoretical Occupancy

Achieved Occupancy

```
/Lab4 # ncu --target-processes all -k gSum ./lab4 20 64
```

```
gSum(int *, int *), 2023-Feb-20 17:05:19, Context 1, Stream 7
Section: GPU Speed Of Light Throughput
------
Duration usecond 42.78
------
Section: Occupancy
```

100

79.17

Theoretical Occupancy

Achieved Occupancy


```
#define DUMMY LENGTH 102
 global void gInit(int* a, int* b) {
 int i=threadIdx.x+blockIdx.x*blockDim.x;
 int dummy [DUMMY LENGTH];
                                          быдло-
 for(int j=0;j<DUMMY LENGTH;j++)</pre>
                                          код
   dummy[j] = j %2 + 1;
 a[i]=dummy[DUMMY LENGTH-2]*i;
b[i]=dummy[DUMMY LENGTH-1]*i+1;
```

```
/PGP-2023> nvprof -m local_memory_overhead ./lab4 20 32
```

```
Invocations Metric Name Metric Description
                                Min Max Avq
Device "GeForce GTX 1050 (0)"
Kernel: gInit(int*, int*)
        local memory overhead Local Memory Overhead
                                98.11% 98.11% 98.11%
Kernel: qSum(int*, int*)
   1 local memory overhead Local Memory Overhead
                                 0.00% 0.00% 0.00%
```

Type	Time(%)	Time Cal	lls		
		A	va .	Min	Max
				Nam	е
GPU activities:	83.15%	4.3196ms	1		
		4.3	196ms	4.3196ms	4.3196ms
				gInit(int*	, int*)
	4.67%	242.60us	1		
		242	.60us	242.60us	242.60us
				gSum(int*,	int*)

#define DUMMY LENGTH 101

```
/PGP-2023> nvprof -m local_memory_overhead ./lab4 20 32
```

```
Invocations Metric Name Metric Description
                                Min Max Avq
Device "GeForce GTX 1050 (0)"
Kernel: gInit(int*, int*)
        local memory overhead Local Memory Overhead
                                0.00% 0.00% 0.00%
Kernel: qSum(int*, int*)
   1 local memory overhead Local Memory Overhead
                                0.00% 0.00% 0.00%
```

Type	Time(%)	Time	Calls		
			Avg	Min	Max
				N	ame
GPU activities:	16.67%	173.67us	1		
		1	73.67us	173.67us	173.67us
				gInit(in	t*, int*)
	23.26%	242.25us	1		
		2	42.25us	242.25u	s 242.25us
				gSum(int	.*, int*)