

SEM0530 - Problemas de Engenharia Mecatrônica II

4. Solução de sistemas lineares

Marcelo A. Trindade (trindade@sc.usp.br)

4. Solução de sistemas lineares

Tarefa:

Calcular os deslocamentos de uma estrutura sujeita a carregamento de forças e/ou deslocamentos usando um modelo discreto de molas em série, no qual as molas tem coeficiente variável representando uma diminuição da área da seção transversal da estrutura. A lei que rege os coeficientes de rigidez das molas é:

$$k_n = k_{min} + \Delta k e^{-b n}, b = 0,2, k_{min} = 10 \text{ kN/m},$$

 $\Delta k = (50 + 0.5 N) \, \mathrm{kN/m}$, sendo N formado pelos dois últimos algarismos do Número USP do aluno.

- Considerando os valores de rigidez das molas, construa a matriz de rigidez do sistema tal que $\mathbf{K}\mathbf{u} = \mathbf{F}, \mathbf{u} = \{u_1, ..., u_{10}\}$
- Determine a solução ${\bf u}=\{u_1,...,u_{10}\}$ para o caso no qual duas forças são aplicadas simultaneamente: uma de $100\,{
 m N}$ na extremidade livre (u_{10}) e uma força de $-50\,{
 m N}$ na metade do comprimento (u_5)
- Determine a solução ${\bf u}=\{u_1,...,u_{10}\}$ para o caso no qual um deslocamento de $3~{
 m cm}$ é imposto à extremidade livre (u_{10})
- ullet Faça um gráfico ($u_n \ \mathrm{vs} \ n$) para cada condição de carregamento e mostre-os na mesma figura
- Apresentar em relatório único em PDF, memória de cálculo, scripts MATLAB, gráficos solicitados, soluções encontradas e conclusões.