

实验报告

19/10 \$

课程名称: 实验名称: 光的干涉 实验日期: 2023 年 10 月 19 日下午 班 级: 0716 2201 数学班级: 学 号:1120220S08姓 名: 郭忠滨

一、实验目的

(1)观察劈尖干涉和牛顿环这两种光的干涉现象

(2) 你习利用劈尖干涉原理测量被踢丝的真怪;用牛顿环测量被面曲率半径

一、实验仪器

测量显微镜、钠光灯,牛顿环,光学平面玻璃

三、实验原理

当两列。被动方向相同,频率相同,而且位相查保持恒定的单色光相遇后,相遇的区域内有些地方由于两列波射叠加,提动总是加强的,而另一些地方由于接动的看加总是减弱,形成的这种稳定的强度不均匀的观象,形式的干涉。

如图1所示,波放置玻璃丝于两平面玻璃之间,且平均于相交之核边。当率色的平约元金直(ico)入射到两平面玻璃形成的空气男(n-1)时,在劈尖C点的两束反射光 Q', H产生干涉,形成明暗相间的条位,根据 擎膜干涉的公式,有

$$\int \delta = 2e + \frac{1}{2} = 2k \frac{1}{2}$$
 $k=1, 2, 3, ...$ 明 $\delta = 2e + \frac{1}{2} = (2k+1) \frac{1}{2}$ $k=0, 1, 2 ...$ 暗

同一干涉录收所在处的各点空气勇的厚度都是相等的,因此等原干涉录仗。在两块破离相差处 e=0,两束光的光程差 f= 之,所以应查到暗依。设第k,录暗条纸处的劈头厚度为e,,穿k,+4k暗纹外的劈尖厚度为e2,这两条暗纹间的横向水平距离为分,而两暗依处劈尖厚度至为4d:

$$\Delta d = e_z - e_1 = \Delta k \frac{\Delta}{2}$$

$$tand = \frac{\Delta d}{x} = \frac{\Delta k \Delta}{2x}$$

玻璃丝直径 D=tand= Aak

联系方式:

指导教师签字:

联系方式:_

MERKERA

实验报告

课程名称:	实验名称:	实验日期:	年	F F
班 级:	教学班级:	学 号:	姓 名:	
2、牛顿环				
	如图2所示,当平行光			
	形成的空气劈时产生	长的干涉现象,干涉	泽校是属于等	厚干涉的
许多同心圆环,				
十涉原理同	1劈夹干涉、分析可得4		£7x与盘镜曲面	半役尺的关系为:
	R = TE	(k = 0,1,2,)		
注意: 牛顿行	中心不是理论上的一个	暗点而是 一个暗窗	时, 这样造成牛	极环的中心及
	E. 因此可以使 K 为别职			
	$\begin{cases} \gamma_m^2 = mR\lambda \\ \gamma_n^2 = nR\lambda \end{cases}$			
可将: 尺=-	7m2-7n1 , 京	俭所用钠光灯波长	bλ=589.3 n	m
,实验内容与	1			
	的显微镜下面有一个一	K E 針結 I W 收 E K	+ 4 56+31 9	始结744
	以使工作台分别在人			
小观察贸失		1 72 /0 19/19/11/1 30/11	11/10/2/4	is to Dorolman
		+	18-1-26	
	放在星物镜工作台上			
	,丝平竹与核山 回返		动石甸与工作台	移动为向世面
(2) 给显微智	竟调焦,直到看到清明	拓的干涉争依		
(3)使又丝的	支点够到劈尾一边,:	注意空程的影响,	2歌某一暗纹1	的影响,然后
₹30条赔货(△	k 取30)记录位置,同	时测量30条暗役的	7的级离X,车	实验要求重复
	朝一个方向不断数下去			
	美尖到玻璃丝的 既高 [
2. 观测牛顿				
	放到工作台上,打开印	为光刊, 轻动半浅岩	1、使从目墙,中方	与到的视野
	, 使能看清义丝, 将镣			
晰为止	1 1 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Signal KI William	14,017,31	

指导教师签字:_

实验报告

课程名称:	实验名称:	实验日期:	年	月	日
班 级:	教学班级:	学号:	姓	名:	

(4) 转动鼓轮,使叉丝的交点对准牛顿环园证外第一个环,然后再转动数笔,数列左边第11个环处,为了消除空程的影响,必须多第一些距离,然后再近回到第11个环处,记下此时的位置(X11),然后再向左移动到第一个环,记下位置(X1)。再他换向左移动到圆斑另外一侧第一环处(记为X1),继续向左,西到左边第11个环处(记为X1)。这样就测到了十个位置,由(X1、X1)/2 即(X1、X1)/2 可得到 Y11和 Y1。按以上 节聚重复测 6次,测量过程中注意消除空程的影响

五. 思考题

- 1、在牛板环实验中,反射光与鹰射光所形成的干涉条设有什么不同?
- 2、劈头干涉实验中所得到的干涉条效并不与棱完全啊,解解原因
- 3、在测量牛顿环的平凸透镜曲率半经R时,如果在实验中测加与加时,未通过干涉圆条设中心,是否仍可以使用公司R= 1/10-1/2 ?

指导教师签字:_____

原始数据

作业纸 嘿昭名称:

班级:	教学班级	ŧ:	姓名:		学号:	第 页	=
	Xu	χ,	χ,'	χ.,'	D _i ,	D, 18%	
1	27. 444mm	26.028mm	29.855 mm	22.380 mm	5.064mm	2.173 mm	
2	27.510	26.049	23,865	22.459	5.051mm	2.184 mm	
3	27. 432	26.050	23.870	22.371	5.061 mm	2.180 mm	
4	27, 561	26.041	23,845	22.448	5.113 mm	2.196 mm	
5	27. 439	25.980	23,798	22.350	5.089mm		
	Xin	X*	L.	袽	L*		6 m
	4.981	7, 293	29.	010	2.220		6 m
	5,150	7,447	29.0	744	2.340		
	5.262	7,591	29,	356	2.575		7)
	5.378	7.670	29.		2.723		
	5.578	7. 891	29.		2.880		

联系方式:_

数	据处理	作业	2 纸	课程名称:		
班级:	教学班级:	姓名:	4	⊱号 :	第 页	
牛顿环	Xu /mm	X./mm	Xi'/mm	Xis/mm	Du/mm	D./mm
1	27.444	26,028	23, 855	22,380	5.064	2,173
2	27.510	26.049	23.865	22. 459	5.051	2.184
3	27. 432	26.050	23.870	22.371	5,061	2.180
4	27. 561	26.041	23,845	22,448	5.113	2,196
5.	27. 439	25. 980	23,798	22,350	5.089	2.182
	$\frac{\sum_{i=1}^{5} Q_{ii} i}{5} = 5.076 $ $\frac{\sum_{i=1}^{5} (Q_{ii} i - \overline{Q}_{ii})^{2}}{5 \times 4}$		$\overline{D}_{i} = \underbrace{\sum_{i=1}^{5} D_{i,1}}_{5}$ $m \qquad U_{B} (1)$	$\frac{i}{2} = 2.183 \text{ m}$ $D_0) = \frac{0.01}{12}$		m
	$P_{i} = \sqrt{\frac{\sum_{i=1}^{n} (D_{i}i - \overline{D}_{i})}{5 \times 4}}$	~		$D_1) = \frac{0.01}{\sqrt{3}}$		
u (D	$U_{\text{II}}) = \sqrt{U_{\text{A}}^2(\hat{p}_{\text{II}}) + U_{\text{B}}^2}$	(Ou) = 0,013	mm U(D ₁) = \(U_A(Q_1) +	+ UB (D1) =	0.007mm
$R = \frac{D}{4}$	$\frac{\partial_{11}^{2} - \mathcal{O}_{1}^{2}}{4 \times (\bullet 1 - 1) \times \lambda} = \frac{1}{2}$	5.076 ² - 2.183 4 x 10 x 589.3	×10-6 = 89	0.727mm		
U(R) =	2 (+10,12 (1) + 0,2 ut		$6^2 \times 0.013^2 + 2.$ $\times 10 \times 589.3$		= 5.59 2 6	mm

R = (890, 7274+ 5.5926) mm

作业纸

教学班级:

赞尖干涉

	X in (mm	X*/mm	Lin /mm	L*/mm	Xx-Xin/mm	Lza- Lz/mm
1	4.981	7, 293	29.010	2,220	2.312	26.790
2	5,150	7.447	29.044	2.240	2.297	26.804
3	5,262	7.591	29,356	2.575	2,329	26.781
4	5.378	7.670	29.411	z,723	2.712	26.688
5	5.578	7.891	29.500	2.880	2,313	26.620

$$\bar{\chi} = \frac{2.312 + 2.297 + 2.329 + 2.292 + 2.313}{5} = 2.309 \text{ mm}$$

$$\overline{L} = \frac{26.790 + 26.804 + 26.781 + 26.688 + 26.620}{5} = 26.737 \text{mm}$$

$$U_{A}(X) = \sqrt{\frac{\sum_{i=1}^{n} (\Delta X_{i} - \overline{X})^{*}}{5 \times 4}} = 0.007 \text{ mm} \qquad U_{B}(X) = 6.006 \text{ mm}$$

$$U_A(L) = \int_{\frac{\pi}{5}}^{\frac{\pi}{5}} (E_i - \frac{\pi}{4})^2 = 0.036 \text{mm}$$
 $U_B(X) = 0.006 \text{mm}$

$$U(X) = JU_{a}(X) + U_{b}(X) = 0.009 \text{ mm}$$
 $U(L) = JU_{a}(L) + U_{b}(L) = 0.036 \text{ mm}$

$$0 = \frac{L \lambda \Delta K}{2 \times} = \frac{26.737 \times 589.30 \times 10^{-6} \times 10}{2 \times 2.309} = 0.034 | \text{mm}$$

$$D = \frac{L \lambda \Delta k}{2x} = \frac{26.737 \times 589.30 \times 10^{-6} \times 10}{2 \times 2.309} = 0.034 \text{ mm}$$

$$U(P) = \frac{\lambda}{2} \Delta k \sqrt{\frac{uE}{\chi^2} + \frac{L^2 U_x^2}{\chi^4}} = \frac{589.3 \times 10^{-5}}{2} \sqrt{\frac{0.036^2}{2.309^2} + \frac{26.737^2 \times 0.009^2}{2.309^4}} = 0.0001 \text{ mm}$$

答:反射光产生的干涉条纹与透射光产生的干涉条纹强度相反, 100分割光 与虚射光形成的干涉条纹是互补的,反射干涉条纹是高有纹的他为对应 校射干涉条贷是暗贷,原因在于从光疏介质到光密介质在界面上发生发生,