Lösungsstrategien für NP-schwere Probleme der Kombinatorischen Optimierung

Thomas Andreae

Sommersemester 2016 Blatt 1

A: Präsenzaufgaben am 11. April 2016

1. Wir betrachten das folgende Entscheidungsproblem:

INTERVAL SCHEDULING

Eingabe: Eine Menge von reellen Intervallen $[a_i, b_i]$ mit $a_i < b_i$ (i = 1, ..., n) sowie eine Schranke $k \in \mathbb{Z}, k \geq 1$.

Frage: Enthält diese Menge eine Teilmenge von k Intervallen, die sich paarweise nicht überlappen? (Erklärung: Zwei Intervalle überlappen sich, wenn sie mehr als nur einen Punkt gemeinsam haben.)

Für die beiden nachfolgenden Fragen gibt es jeweils drei Antwortmöglichkeiten:

- (i) Ja,
- (ii) Nein,
- (iii) Unbekannt, da man nicht weiß, ob $P \neq NP$ oder P = NP gilt.

Geben Sie kurze Erklärungen für Ihre Antworten!

- a) Gilt INTERVAL SCHEDULING \leq_p VERTEX COVER?
- b) Gilt INDEPENDENT SET \leq_p INTERVAL SCHEDULING?
- 2. Wir betrachten nun das folgende Entscheidungsproblem:

SET PACKING

Eingabe: Eine Familie S_i $(i=1,\ldots,n)$ von endlichen Mengen sowie eine Schranke $k \in \mathbb{Z}$, $k \geq 1$.

Frage: Gibt es unter den Mengen S_i eine Kollektion von k Mengen, die paarweise disjunkt sind?

Klären Sie wie in 1., ob (i), (ii) oder (iii) zutrifft:

- a) Gilt SET PACKING \leq_p VERTEX COVER?
- b) Gilt INDEPENDENT SET \leq_p SET PACKING?
- **3.** Zunächst eine Definition: Für einen Graphen G = (V, E) sei $D \subseteq V$. Man nennt D eine dominierende Menge von G, falls für jeden Knoten $v \in V$ gilt: Der Knoten v liegt in D oder v hat einen Nachbarn in D. Wir betrachten das folgende Entscheidungsproblem:

DOMINIERENDE MENGE

Eingabe: Ein Graph G = (V, E) sowie eine Schranke $k \in \mathbb{Z}, k \ge 1$.

Frage: Besitzt G eine dominierende Menge D mit $|D| \leq k$?

Zeigen Sie, dass DOMINIERENDE MENGE ein NP-vollständiges Problem ist!

Hinweis: Zunächst ist zu zeigen, dass DOMINIERENDE MENGE in NP liegt. Sodann – dies ist die Hauptaufgabe – ist eine geeignete Reduzierung vorzunehmen. Tipp: Versuchen Sie es mit SET COVER

4. Eine Bemerkung zu 3D-MATCHING:

3D-MATCHING zeichnet sich dadurch aus, dass man es sowohl als einen Spezialfall von SET COVER als auch von SET PACKING auffassen kann.

(*****)

Erläutern Sie die Bemerkung $(\star)!$

5. Als bekannt setzen wir voraus, dass 3-COLORING ein NP-vollständiges Problem ist. Entsprechend zu 3-COLORING definiert man k-COLORING für $k \in \{1, 2, ...\}$. Für welche k ist k-COLORING ein NP-vollständiges Problem?

B: Hausaufgaben zum 18. April 2016

- 1. a) Als bekannt setzen wir voraus, dass 3D-MATCHING ein NP-vollständiges Problem ist. Entsprechend zu 3D-MATCHING definiert man kD-MATCHING für $k \geq 2$. Formulieren Sie das Problem 4D-MATCHING und zeigen Sie, dass 4D-MATCHING ein NP-vollständiges Problem ist.
 - b) Für jedes feste $k \geq 2$ definieren wir das Problem k-CLIQUE wie folgt:

k-CLIQUE

Eingabe: Ein Graph G = (V, E).

Frage: Enthält G einen vollständigen Graphen mit k Knoten?

Für welche $k \geq 2$ ist k-CLIQUE ein NP-vollständiges Problem?

Hinweis: Zur Lösung von Aufgabe 1 reicht es natürlich nicht, Antworten ohne Begründung zu geben; es kommt darauf an, Antworten zu geben *und deren Richtigkeit nachzuweisen*.

2. Gegeben sei eine Menge $A = \{a_1, \ldots, a_n\}$ sowie eine Kollektion B_1, \ldots, B_m von Teilmengen von A. Eine Menge $H \subseteq A$ wird $Hitting\ Set$ für B_1, \ldots, B_m genannt, falls $H \cap B_i \neq \emptyset$ für alle $i \in \{1, \ldots, m\}$ gilt. Wir betrachten das folgende Entscheidungsproblem:

HITTING SET

Eingabe: Eine Menge $A = \{a_1, \ldots, a_n\}$, Teilmengen B_1, \ldots, B_m von A sowie eine Schranke $k \in \mathbb{Z}, k \geq 1$.

Frage: Gibt es ein Hitting Set $H \subseteq A$ für B_1, \ldots, B_m , für das $|H| \le k$ gilt?

- a) Beweisen Sie, dass HITTING SET ein NP-vollständiges Problem ist, indem Sie erstens nachweisen, dass HITTING SET in NP liegt, und zweitens 3-SAT zur Reduktion heranziehen.
- b) Um die NP-Vollständigkeit von HITTING SET nachzuweisen, muss man nicht unbedingt 3-SAT verwenden. Fällt Ihnen eine andere (möglichst einfache) Reduktion eines NP-vollständigen Problems auf HITTING SET ein?