Statistics 350 Help Card

Summary Measures

Sample Mean

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum x_i}{n}$$

Sample Standard Deviation

$$s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n - 1}} = \sqrt{\frac{\sum x_i^2 - n\bar{x}^2}{n - 1}}$$

Probability Rules

• Complement rule

$$P(A^C) = 1 - P(A)$$

• Addition rule

General: P(A or B) = P(A) + P(B) - P(A and B)

For independent events:

$$P(A \text{ or } B) = P(A) + P(B) - P(A)P(B)$$

For mutually exclusive events: P(A or B) = P(A) + P(B)

• Multiplication rule

General: $P(A \text{ and } B) = P(A)P(B \mid A)$

For independent events: P(A and B) = P(A)P(B)

For mutually exclusive events: P(A and B) = 0

• Conditional Probability

General: $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

For independent events: $P(A \mid B) = P(A)$

For mutually exclusive events: $P(A \mid B) = 0$

Discrete Random Variables

Mean

$$E(X) = \mu = \sum x_i p_i = x_1 p_1 + x_2 p_2 + \dots + x_k p_k$$

Standard Deviation

$$s.d.(X) = \sigma = \sqrt{\sum (x_i - \mu)^2 p_i} = \sqrt{\sum (x_i^2 p_i) - \mu^2}$$

Binomial Random Variables

$$P(X = k) = \binom{n}{k} p^{k} (1 - p)^{n-k}$$

where
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Mean

$$E(X) = \mu_X = np$$

Standard Deviation

$$s.d.(X) = \sigma_X = \sqrt{np(1-p)}$$

Normal Random Variables

• $z - \text{score} = \frac{\text{observation} - \text{mean}}{\text{standard deviation}} = \frac{x - \mu}{\sigma}$

• Percentile: $x = z\sigma + \mu$

• If X has the $N(\mu, \sigma)$ distribution, then the variable $Z = \frac{X - \mu}{\sigma}$ has the N(0,1) distribution.

Normal Approximation to the Binomial Distribution

If *X* has the B(n, p) distribution and the sample size *n* is large enough (namely $np \ge 10$ and $n(1-p) \ge 10$),

then X is approximately $N(np, \sqrt{np(1-p)})$.

Sample Proportions

$$\hat{p} = \frac{x}{n}$$

Mean

$$E(\hat{p}) = \mu_{\hat{p}} = p$$

Standard Deviation

$$\text{s.d.}(\hat{p}) = \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Sampling Distribution of \hat{p}

If the sample size n is large enough (namely, $np \ge 10$ and $n(1-p) \ge 10$)

then \hat{p} is approximately $N\left(p, \sqrt{\frac{p(1-p)}{n}}\right)$.

Sample Means

Mean

$$E(\overline{X}) = \mu_{\overline{X}} = \mu$$

Standard Deviation

$$s.d.(\overline{X}) = \sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

Sampling Distribution of \overline{X}

If X has the $N(\mu, \sigma)$ distribution, then \overline{X} is

$$N(\mu_{\overline{X}}, \sigma_{\overline{X}}) \Leftrightarrow N(\mu, \frac{\sigma}{\sqrt{n}}).$$

If X follows any distribution with mean μ and standard deviation σ and n is large,

then
$$\overline{X}$$
 is approximately $N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$.

This last result is Central Limit Theorem

Population Proportion	Two Population Proportions	Population Mean
Parameter p	Parameter $p_1 - p_2$	Parameter μ
Statistic \hat{p}	Statistic $\hat{p}_1 - \hat{p}_2$	Statistic \bar{x}
Standard Error	Standard Error	Standard Error
$s.e.(\hat{p}) = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$	s.e. $(\hat{p}_1 - \hat{p}_2) = \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$	$s.e.(\overline{x}) = \frac{s}{\sqrt{n}}$
Confidence Interval	Confidence Interval	Confidence Interval
$\hat{p} \pm z^*$ s.e. (\hat{p})	$(\hat{p}_1 - \hat{p}_2) \pm z^* \text{s.e.} (\hat{p}_1 - \hat{p}_2)$	$\overline{x} \pm t^* \text{s.e.}(\overline{x})$ df = $n-1$
Conservative Confidence Interval		
, , Z		Paired Confidence Interval
$\hat{p} \pm \frac{z}{2\sqrt{n}}$		$\overline{d} \pm t^* \text{s.e.}(\overline{d})$ df = $n-1$
Large-Sample z-Test	Large-Sample z-Test	One-Sample t-Test
$z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$	$z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$	$t = \frac{\overline{x} - \mu_0}{\text{s.e.}(\overline{x})} = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \qquad \text{df} = n - 1$
Sample Size	where $\hat{p} = n_1 \hat{p}_1 + n_2 \hat{p}_2$	Paired t-Test
$n = \left(\frac{z^*}{2m}\right)^2$	where $\hat{p} = \frac{n_1 \hat{p}_1 + n_2 \hat{p}_2}{n_1 + n_2}$	$t = \frac{\overline{d} - 0}{\text{s.e.}(\overline{d})} = \frac{\overline{d}}{s_d / \sqrt{n}} \qquad \text{df} = n - 1$

Two Population Means				
General	Pooled			
Parameter $\mu_1 - \mu_2$	Parameter $\mu_1 - \mu_2$			
Statistic $\overline{x}_1 - \overline{x}_2$	Statistic $\overline{x}_1 - \overline{x}_2$			
Standard Error	Standard Error			
s.e. $(\overline{x}_1 - \overline{x}_2) = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$	pooled s.e. $(\bar{x}_1 - \bar{x}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$			
	where $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$			
Confidence Interval	Confidence Interval			
$(\overline{x}_1 - \overline{x}_2) \pm t^* (\text{s.e.}(\overline{x}_1 - \overline{x}_2))$ df = min $(n_1 - 1, n_2 - 1)$	$(\overline{x}_1 - \overline{x}_2) \pm t^* \text{(pooled s.e.}(\overline{x}_1 - \overline{x}_2))$ df = $n_1 + n_2 - 2$			
Two-Sample t-Test	Pooled Two-Sample t-Test			
$t = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\text{s.e.}(\overline{x}_1 - \overline{x}_2)} = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \qquad \text{df} = \min(n_1 - 1, n_2 - 1)$	$t = \frac{\overline{x}_1 - \overline{x}_2 - 0}{\text{pooled s.e.}(\overline{x}_1 - \overline{x}_2)} = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \qquad \text{df} = n_1 + n_2 - 2$			

One-Way ANOVA							
SS Groups = SSG = $\sum_{\text{groups}} n_i (\overline{x}_i - \overline{x})^2$	$MS Groups = MSG = \frac{SSG}{k-1}$	AN	NOVA Tal	ble			
$CC = CCC = \sum_{i=1}^{n} (i - 1) = \frac{2}{n}$		5	Source	SS	DF	MS	F
SS Error = SSE = $\sum_{\text{groups}} (n_i - 1) S_i$	S Error = SSE = $\sum_{\text{groups}} (n_i - 1) s_i^2$ MS Error = MSE = $s_p^2 = \frac{\text{SSE}}{N - k}$	1 1	Groups Error	1	k-1 $N-k$	MS Groups MS Error	F
SS Total = SSTO = $\sum_{\text{values}} (x_{ij} - \overline{x})^2$	$F = \frac{\text{MS Groups}}{\text{MS Error}}$		Γotal	SSTO	N-1		
Confidence Interval $\overline{x}_i \pm t^* \frac{s_p}{\sqrt{n_i}}$ $df = N - k$		Under H_0 , the F statistic follows an $F(k-1, N-k)$ distribution.					

Regression		
Linear Regression Model	Standard Error of the Sample Slope	
Population Version: Mean: $\mu_Y(x) = E(Y) = \beta_0 + \beta_1 x$ Individual: $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$	s.e. $(b_1) = \frac{s}{\sqrt{S_{XX}}} = \frac{s}{\sqrt{\sum (x - \bar{x})^2}}$ Confidence Interval for β_1	
where ε_i is $N(0,\sigma)$	1	
Sample Version:	$b_1 \pm t^* \text{s.e.}(b_1) \qquad \qquad \text{df} = n - 2$	
Mean: $\hat{y} = b_0 + b_1 x$	t-Test for β_1	
Individual: $y_i = b_0 + b_1 x_i + e_i$	To test $H_0: \beta_1 = 0$	
	$t = \frac{b_1 - 0}{\text{s.e.}(b_1)} \qquad \text{df} = n - 2$	
	or $F = \frac{MSREG}{MSE}$	
Parameter Estimators	Confidence Interval for the Mean Response	
$b_{1} = \frac{S_{XY}}{S_{XX}} = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^{2}} = \frac{\sum (x - \overline{x})y}{\sum (x - \overline{x})^{2}}$ $b_{0} = \overline{y} - b_{1}\overline{x}$	$\hat{y} \pm t^* \text{ s.e.(fit)} \qquad \text{df} = n - 2$ where s.e.(fit) = $s \sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{XX}}}$	
$b_0 = \overline{y} - b_1 \overline{x}$ Residuals	Prediction Interval for an Individual Response	
$e = y - \hat{y} = \text{observed } y - \text{predicted } y$	$\hat{y} \pm t^*$ s.e.(pred) df = $n-2$	
	where s.e.(pred) = $\sqrt{s^2 + (\text{s.e.(fit}))^2}$	
Correlation and its square	Standard Error of the Sample Intercept	
$r = \frac{S_{XY}}{\sqrt{S_{XX}S_{YY}}}$	s.e. $(b_0) = s\sqrt{\frac{1}{n} + \frac{\bar{x}^2}{S_{XX}}}$	
$r^2 = \frac{SSTO - SSE}{SSTO} = \frac{SSREG}{SSTO}$	Confidence Interval for β_0	
where $SSTO = S_{YY} = \sum_{y} (y - \overline{y})^2$	$b_0 \pm t^* \text{s.e.}(b_0) \qquad \qquad \text{df} = n - 2$	
Estimate of σ	t-Test for β_0	
$s = \sqrt{MSE} = \sqrt{\frac{SSE}{n-2}}$ where $SSE = \sum (y - \hat{y})^2 = \sum e^2$	To test $H_0: \beta_0 = 0$ $b_0 - 0$	
	$t = \frac{b_0 - 0}{\text{s.e.}(b_0)} \qquad \text{df} = n - 2$	

Chi-Square Tests		
Test of Independence & Test of Homogeneity	Test for Goodness of Fit	
Expected Count	Expected Count	
$E = \text{expected} = \frac{\text{row total} \times \text{column total}}{\text{total } n}$	$E_i = \text{expected} = np_{i0}$	
Test Statistic	Test Statistic	
$X^{2} = \sum \frac{(O - E)^{2}}{E} = \sum \frac{\text{(observed - expected)}^{2}}{\text{expected}}$	$X^{2} = \sum \frac{(O - E)^{2}}{E} = \sum \frac{(\text{observed} - \text{expected})^{2}}{\text{expected}}$	
df = (r-1)(c-1)	df = k - 1	
16 V C 11 2 (16) 17 4 17 4 17 (17) 16 1 1 V (17) 2 (18)		