凝聚态场论: 讲义

Condensed Matter Field theory: Notes

当前进度: 尚未完成.

前言

2025/4/20 编: 更改了模板, 彻底调整了之前的一些遗留问题

2025/3/10 编: 完成了部分内容, 附录中的两章目前已经被隐藏起来了, 之后会挑选出需要的内容进行筛选, 正文第二章正在缓慢进行中, 后续彻底完成后会注释掉这些无用信息, 目前目录仅供参考, 还没有完全来得及修正, 前言也尚未完成, 仅修正了部分明显的问题

2025/2/21 编: 为了更加贴合书名, 后续的计划中会把第一章和第二章放在附录中, 供选择性阅读, 主体仍放在凝聚态场论中. 后续一些细节部分需要逐步修正. 一些格式上的错误将由场论初步章节完成后逐一修订.

很多初学者在初次自学较高深的物理的时候往往会犯一个错误:被同等级的高深的数学所迷惑,认为学好这些物理离不开这些数学.但事实上,学好物理确实离不开数学,但仅仅是一小部分的数学.例如,学好量子力学离不开线性代数,但经常有很多物理系的学生拐去学习泛函分析,李代数,辛几何之类的内容,而这些数学内容往往只有一小部分应用在物理上面,打着先学完这些数学再开始学习物理的想法,只会让物理的学习一拖再拖.我们应当意识到,数学不过是物理的工具,切勿舍本逐末.

但这并不意味着数学不重要,离开数学的物理不亚于纸上谈兵,毫无意义.而对于本讲义,前面的部分并不十分紧要,仅作为开启凝聚态场论的先备知识,将重要的部分提取出来,作为先导知识.

前言仅供参考,不代表最终前言内容和书中内容,该前言已经是第四版.

530 Group

Contents

Preface									
Co	ntent	s		3					
1	李群, 李代数及辛几何								
	1.1	李群 (Lie Gro	oup) 初步	1					
		1.1.1 群与	李群 (Lie Group)	1					
		1.1.2 指数	映射与对数映射	6					
		1.1.3 单参	数子群	7					
	1.2	李群与李代数	数	9					
		1.2.1 李代	数	9					
		1.2.2 李氏	三定理和无穷小变换	12					
		1.2.3 李群	的无穷小生成元	12					
		1.2.4 典型	李群和李代数	13					
	1.3	李代数进阶		13					
		1.3.1 张量	, 不可约张量	13					
		1.3.2 卡西	米尔算符 (Casimir operator)	13					
		1.3.3 典型	李代数的二阶卡西米尔算符	13					
2	场论	初步		14					
	2.1	路径积分		15					
		2.1.1 量子	系统与经典系统中的路径积分	15					
		2.1.2 路径	积分初步	17					
		2.1.3 欧式	路径积分	22					
		2.1.4 统计	物理中的泛函积分	29					
	2.2	二次量子化与	与格林函数	34					
A	补充内容								
	A.1	带电粒子的拉	位格朗日量	35					
В	数学内容补充								
	B.1	楔积,外微分	·与外代数	37					
		B.1.1 楔积		37					
		B.1.2 外微	分	39					
			实例	41					
	B.2	微分流形		42					
	B 3	流形上的外流		12					

	B.4 B.5 B.6 B.7 B.8	纤维丛 同调群 De Rham 上同调群 仿射联络空间与黎曼流形 电磁理论是 U(1) 丛上的联络	42 42 42 43 43
C	math	ematica 的基本用法	44
D	D.1	及解析 第一章	45 45 45
E		/ 参考 致谢	46 46 46
按:	48		

李群,李代数及辛几何 1

章节导论: 对称性与对称性破缺

仍在画饼,可以参考这篇知乎文章,写的很不错:知乎专栏

最近看了一些辛几何的内容, 觉得很有意思, 后续也会加进来.

非常有意思的是,我打算讲3次诺特定理,分别从基本角度出发,李代数角度,辛流形的角度进行叙述.

需要强调的是,受限于章节内容,我们的出发角度都是物理角度,且较为狭隘和数学上有**很大区别**,想深入了解可以参考一些经典案例:

- 1. 微分流形: 流形导论 (Loring W.Tu)
- 2. 李代数:Lie Groups,Lie Algebras,and Representations:An Elementary Introduction(Brian C. Hall)
- 3. 辛几何: 经典力学的数学方法 (阿诺尔德);Lectures on Symplectic Geometry(da Silva)

1.1 李群 (Lie Group) 初步

1.1.1 群与李群 (Lie Group)

我们或许听说过一个说法:"物理学的关键是对称和守恒", 而诺特定理给出了对称性与守恒性的联系, 例如, 时间平移不变性意味着能量守恒; 空间平移不变性意味着动量守恒; 转动不变性意味着角动量守恒; 电势和向量势的规范不变性得出电荷的守恒等. 而描述对称性的语言就是群论.

我们可以认为群是一类拥有特殊结构的集合,即满足如下关系的集合¹:

Definition 1.1.1 (群的定义) 设 G 是一个集合, 若满足下面 4 个条件, 则称 G 为一个群 (*Group*)

1. G 中存在一种运算规则, 对 G 中的任意两个元素 $g,h \in G$,

1.1	李群 (Lie Group) 初步 1
1.1.1	群与李群 (Lie Group) 1
1.1.2	指数映射与对数映射 6
1.1.3	单参数子群 7
1.2	李群与李代数 9
1.2.1	李代数 9
1.2.2	李氏三定理和无穷小变换 12
1.2.3	李群的无穷小生成元 12
1.2.4	典型李群和李代数 13
1.3	李代数进阶13
1.3.1	张量, 不可约张量 13
1.3.2	卡西米尔算符 (Casimir op-
	erator) 13
1.3.3	典型李代数的二阶卡西米
	尔算符 13

一个不得不提的事情是,倘若要把李群李 代数和辛几何讲明白,或甚至是完全照本 宣科的写一遍,涉及到的篇幅也远远不是 一章可以容纳的下的,于是挑选了一部分 简单的,适用于入门的内容.

另一点是目前的章节还比较粗糙, 仍需要 足够的打磨, 所以较后续的小节迟迟不能 够完成, 大概李代数会讲到不可约表示这 一部分.

不过说实话,对于物理系的数学,微积分和 线代可以解决 95% 的问题,剩下的 5% 只 需要用到一点点李群李代数和表示论以及 辛结构了,所以也不必为此担忧什么.

1: 当然,这里会忽略对于主线无用的那些 群论内容,所以如果和数学系的抽象代数 对比,你甚至可能会感觉到学的不是同一 个东西

这一章虽然名字比较吓人,但并没有太过深入讲解李群与李代数,主要为了帮助物理系学生来快速对这一门学科建立印象.当然,我们不能保证在后续的不断更新中是否会改变这一点,在最初的版本中,这一章被置于第三章,也就是初量的后续部分,以及这一章的进度只会跟进后续章节的需要,也就是说这一章的全部已完成内容足以支撑起后续章节的学习.

存在对应G中的一个元素.记为

$$k = g \circ h(k = gh) \tag{1.1}$$

2. 运算规则满足交换律, 对 G 中的任意三个元素 $g,h,k \in G$, 存在

$$(gh)k = g(hk) \tag{1.2}$$

3. G 中存在一个幺元 e(有时也称单位元), 使得对于 G 中任意 元素 q,均有

$$ge = eg = g \tag{1.3}$$

4. G 中每一个元素 g, 均存在一逆元 g^{-1} , 使得

$$gg^{-1} = g^{-1}g = e (1.4)$$

我们可以发现, 群的运算规则通常不满足交换律, 特殊的, 我们把满 足交换律的群称为阿贝尔群 (Abel Group)2.

Definition 1.1.2 (子群的定义) 设 G 是一个群,H 为 G 的一个子集 $(H \subseteq G)$, 若 H 按照 G 的运算规则仍是一个群, 则称 H 是 G 的子 群.

下面我们将给出一系列典型的群的实例,请根据定义思考它们是怎 么构成的,并且尝试找到一些共性.

Example 1.1.1 全体实数 \mathbb{R} (或复数 \mathbb{C}), 对加法构成一个阿贝尔群. 我们知道有理数全体是 R 的子群, 而全体偶数是有理数的子群, 自 然也是 ℝ 的子群, 那么存在一个问题: 无理数全体, 或奇数全体是 否是 ℝ 的子群? 3

Example 1.1.2 全体实数除去零 $\mathbb{R}/0$ 或全体复数除去零 $\mathbb{C}/0$ 对乘 法构成阿贝尔群.

同样的, 我们有个问题: 为什么要除去 0?4

Example 1.1.3 $G = \{1, -1, i, -i\}$ 对复数乘法运算构成一有限阿 贝尔群. 这里 1 是 G 的幺元, 而-1 的逆元就是-1,i 与 -i 互为逆元.

Example 1.1.4 行列式不为零的 n 阶实矩阵全体对矩阵乘法构成 一个群,n 阶全线性群,其记为GL(n,R),它的元素由 n^2 个独立实 参数所确定. 其是一个 n² 维 (不可交换) 李群, 在后面我们会再次 讨论它.

2: 关于这个有一个经典笑话: 一位美国数 学教授来到法国, 见路边有一小孩, 遂上前 问到:"小朋友,你知道 1+2 等于几吗?"小 孩摇摇头说:"不知道."教授正想感叹法 国数学教育如此之落后, 却听到小孩接着 说: "虽然我不知道 1+2 等于几, 但是我知 道 1+2 等于 2+1, 因为整数加法群是阿贝 尔群!"

- 3: 都不是, 首先对于无理数我们注意到 $\pi + (-\pi) = 0$, 而 0 不是无理数, 故无 理数不构成加法群. 同样的, 我们注意到 1+(-1)=0.0 同样也不是奇数, 故奇数也 不构成加法群.
- 4: 答案是显然的, 群中幺元为 1, 但 0/0 无 意义.

Example 1.1.5 行列式为 1 的 2 阶实矩阵全体对矩阵乘法构成一 个群: 二阶 (实) 特殊线性群 SL(2,R). 因为二阶实矩阵 四个实数 a,b,c,d 构成, 由于行列式为 1 的要求, 使他们必须满足 条件:ad-bc=1. 所以 SL(2,R) 中的元素由 3 个独立的实参数所 确定. 按照下面将要给出的定义可见 SL(2, R) 是一个三维 (不可 交换) 李群, 而且它是 GL(2,R) 的子群.

Example 1.1.6 行列式为 1 的 n 阶实矩阵全体对矩阵乘法构成一 个群:n 阶特殊线性群 SL(n,R), 这是一个 n^2-1 维 (不可交换) 李 群, 而且它是 GL(n,R) 的子群.

Example 1.1.7 行列式不为 0 的 n 阶复矩阵全体对矩阵乘法构成 一个群:n 阶 (复) 全线性群 GL(n,C), 行列式为 1 的 n 阶复矩阵全 体对矩阵乘法构成一个群:n 阶 (复) 特殊线性群 SL(n,C). GL(n,C) 是一个 $2n^2$ 维 (不可交换) 李群,SL(n,C) 是一个 $2n^2$ — 12 维 (不可交换) 李群.

我们发现, 所举的例子 (除第一个外) 都存在共同点: 元素都是矩阵 (实数和复数可看作一阶矩阵), 群的运算法则都是矩阵乘法. 我们把 这类群统称为线性群,线性群也是最具代表性的一类李群,今后所使 用的李群基本上都是线性群.

下面我们正式讲入李群这一部分的内容.

Definition 1.1.3 (Lie 群的定义) 设 G 是一个 r 维流形, 同时 G 又 是一个群,并将其幺元记为e,因e又是流形G中的一点,所以可 取定一个包含 e 的局部坐标邻域 U; 在 U 中取定坐标系 $\{U, \varphi\}$. 设取e为坐标原点,有

$$\varphi(e) = (0, 0, \cdots, 0) \tag{1.5}$$

任取U中的三个元素g,h,k,并设其坐标为

$$\begin{split} &\varphi(g)=(x_1,x_2,\cdots,x_r)\\ &\varphi(h)=(y_1,y_2,\cdots,y_r)\\ &\varphi(k)=(z_1,z_2,\cdots,z_r) \end{split} \tag{1.6}$$

事实上,从现在开始,我们就已经走上物 理的道路上了, 实际上, 哪怕你掌握了这 一章的全部内容, 可能对于数学上的抽 象代数那一套仍非常陌生, 但早已足够 应付物理上的内容了. 在上一段, 我们给 出了一个断言:"今后所使用的李群基本 上都是线性群", 实际上, 我们完全可以这 么说, 如果不去碰高能和那些 fancy 的 理论 (例如弦论,Ads/CFT 等), 哪怕仅掌握 U(1), SU(2), SU(4), SO(2), SO(3) 这几 个群和其表示论对于凝聚态学习就远远足 够了.

而群乘法 k = qh 则可以被定义为以下形式:

$$\begin{split} z_1 &= f_1(x_1, \cdots, x_r; y_1, \cdots, y_r) \\ z_2 &= f_2(x_1, \cdots, x_r; y_1, \cdots, y_r) \\ z_r &= f_r(x_1, \cdots, x_r; y_1, \cdots, y_r) \end{split} \tag{1.7}$$

我们要求这r个函数 f_1, f_2, \dots, f_r 是无限次可导的(光滑的). 我们 把这r个函数 f_1, f_2, \dots, f_r 称为G的乘法函数. 其完全确定了群 G 的结构. 我们把这样的群 G 叫做一个 r 维李群.

我们现在根据群的定义来给出几个自然性质

- 1. 第一个定义是显然的, 因为李群的定义建立在这种运算规则 上, 我们只需要对另外 3 个条件进行讨论.
- 2. 我们现在给出交换律所导出的性质, 为方便表述, 我们简记群 乘法关系为 z = f(x, y):

$$f(f(x,y),z) = f(x,f(y,z))$$
 (1.8)

3. 对于幺元 e, 其坐标为 $(0,0,\dots,0)$, 所以有 ex = xe = x.

$$f(x,0) = f(0,x) = x (1.9)$$

4. 对于逆元 g^{-1} , 我们设其坐标为 $(\tilde{x}_1, \cdots \tilde{x}_r)$, 于是有

$$f(x,\tilde{x}) = f(\tilde{x},x) = 0 \tag{1.10}$$

我们很容易看出,乘法函数是很抽象的,只有乘法函数来研究李群往 往是无处下手的(更何况我们是学物理的),于是有了李代数的理论. 不过在展开李代数之前, 我们使用几个实际的李群的例子来帮助建 立对于李群的理解.

Example 1.1.8 $T_2=\left\{\begin{bmatrix}e^{x_1}&x_2\\0&1\end{bmatrix}\middle|x_1,x_2\in\mathbb{R}\right\}$. 这个群的元素由 两个独立实参数 x_1, x_2 决定. 所以, T_2 是一个二维流形 5 . 我们现在 来逐个验证其满足群的要求.

5: 流形: 一句话来表述是将一个空间的局 部近似为一个欧氏空间, 我们把这个欧氏 空间称为流形 (manifold), 你可以把它当做 一种空间.

Proof. 1. 首先我们验证其封闭性

$$\begin{bmatrix} e^{x_1} & x_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^{y_1} & y_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{x_1} e^{y_1} & e^{x_1} y_2 + x_2 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{x_1 + y_1} & e^{x_1} y_2 + x_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{z_1} & z_2 \\ 0 & 1 \end{bmatrix} \in T_2$$
(1.11)

并同时写出其乘法函数,不难发现其乘法函数是无限次可微 的.

$$\begin{split} z_1 &= f_1(x_1, x_2; y_1, y_2) = x_1 + y_1, \\ z_2 &= f_2(x_1, x_2; y_1, y_2) = e^{x_1} y_2 + x_2. \end{split} \tag{1.12}$$

- 2. T₂ 的乘法运算为矩阵乘法, 自然满足结合律.
- 3. 对于幺元, 我们注意到

$$\begin{bmatrix} e^0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \tag{1.13}$$

4. 我们注意到有

$$\begin{bmatrix} e^{-x_1} & -x_2 e^{-x_1} \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^{x_1} & x_2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} e^{x_1} & x_2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} e^{-x_1} & -x_2 e^{-x_1} \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
(1.14)

所以逆元为 $\begin{vmatrix} e^{-x_1} & -x_2 e^{-x_1} \\ 0 & 1 \end{vmatrix}$ 并容易验证其不满足交换律.

Example 1.1.9 我们的下一个实例是绕定轴转动的旋转群 SO(2), 显然, 我们只需要一个变量 (转动角 θ) 就可以表述一个转动变换, 所以我们表示群元为 $q(\theta)$, 其中 θ 的取值范围是 $[0,2\pi)$. 而群的运 算法则可以被规定为相继的两个转动,即转动角相加,但需要保持 转动角始终在取值范围内. 我们可以使用公式表达:

$$g(\theta_1)g(\theta_2) = g(\theta_{12}), \qquad \theta_{12} = (\theta_1 + \theta_2) \mod 2\pi$$
 (1.15)

我们容易验证其满足对应的 4 条性质. 不过我们在关于线性代数 的学习中, 我们知道: 我们也可以使用旋转矩阵来表述定轴转动.

$$\begin{bmatrix} x \\ y \end{bmatrix} \xrightarrow{g(\theta)} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{bmatrix}$$
(1.16)

我们发现, 旋转矩阵是 SO(2) 群的群元. 我们在下一个例子会更加 深入讨论这部分内容.

Example 1.1.10 现在我们需要讨论三维旋转群 SO(3), 其群元表 示三维空间中绕某个固定点的一个转动 $g \in SO(3)$, 为了方便表 述 SO(3), 我们使用如图所示的欧拉 (Euler) 角 (α, β, γ) 来表示一 个转动.

我们给出最终群元的表示:

$$g = g_z^{\alpha} g_x^{\beta} g_z^{\gamma} \tag{1.17}$$

因此,SO(3) 的元素可以通过三个独立参量 α , β , γ 来确定,因此不难验证 SO(3) 是一个三维李群.

现在我们给出另一种表述 SO(3) 的方法.

我们对于两个矢量 $x=(x_1,x_2,x_3),y=(y_1,y_2,y_3)$ 给出三维欧式空间 \mathbb{R}_3 的内积:

$$\langle x, y \rangle = \sum_{j=1}^{3} x_j y_j = x_1 y_1 + x_2 y_2 + x_3 y_3 \tag{1.18}$$

我们定义一个线性变换算符 $g = (g_{ij})$, 存在关系

$$x \xrightarrow{g} x' = gx = \begin{bmatrix} g_{11} & g_{12} & g_{13} \\ g_{21} & g_{22} & g_{23} \\ g_{31} & g_{32} & g_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$
(1.19)

$$g \in SO(3) \Leftrightarrow \langle gs, gy \rangle = \langle x, y \rangle \quad \forall x, y \in \mathbb{R}_3 \quad \text{ $\underline{\square}$ det $g > 0$}$$

而且我们发现 $\langle gs,gy\rangle = \langle x,g^Tgy\rangle$, 其中 g^T 表示 g 的转置, 即 $g_{ij}^T=g_{ij}$, 我们根据刚才所给出的关系发现 $\langle x,g^Tgy\rangle = \langle x,y\rangle$, 即 $g^Tg=\mathbf{1}$, 我们把满足关系 $g^Tg=gg^T$ 的线性变换构成的群称为正交群.

对于 3 阶矩阵 g, 存在 9 个元素, 但为了满足特殊正交群的特殊性 ($\det g = 1$) 和正交性 ($g^T g = gg^T$), 共有 6 个方程需要满足. 所以, 我们可以拿出 3 个作为独立参数, 这再次证明了 g 可以表述 SO(3) 这个三维李群.

1.1.2 指数映射与对数映射

对于无穷小变换,它是一个拥有特殊结构的线性空间,我们称它构成的代数结构为**李代数**.

这里, 我们再次强调, 后面默认所有的群都是**线性群**, 群的运算规则都是**矩阵乘法!**

我们回到这一节前面所提到的,由于矩阵乘法不可交换,导致运算变得复杂,那么有没有一种办法,可以让复杂的运算变为较简单的运算呢(最好还是物理中最喜欢的线性运算)?

答案是肯定的, 我们高中就学过一种特殊的运算: 指数运算, 它可以 把较为复杂的乘法变为较为简单的加法, 即对于给出的 $y_1 = e^{x_1}, y_2 =$

Figure 1.1: 欧拉角

我们依次写出绕 z 轴旋转 α 角; 绕 x 轴旋转 β 角; 绕 z 轴旋转 γ 角的三个群元的矩阵表示:

$$g_z^{\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{bmatrix}$$

$$g_x^\beta = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\beta & -\sin\beta \\ 0 & \sin\beta & \cos\beta \end{bmatrix}$$

$$g_z^\gamma = \begin{bmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

在前面的部分, 我们强调了群的乘法一般不可交换, 这直接导致了刻画李群的乘法 函数变得非常复杂, 这意味着想通过研究 乘法函数来研究李群是不现实的. 而为了研究李群的各种结构, 我们可以对李群在 幺元处的无穷小变换进行研究, 而 Lie 证明了李群的主要特征可以通过无穷小变换来得到, 这就是为什么现在称这类群为李群的原因.

 e^{x_2} , 我们有

$$y_1 y_2 = e^{x_1} e^{x_2} = e^{x_1 + x_2} (1.20)$$

这样, 我们就实现了运算的"降级", 并且还是线性运算. 现在, 问题变 为, 我们能否同样应用这种方式, 将矩阵乘法转变为某种加法呢?

答案同样是肯定的,但由于矩阵乘法比代数乘法更为复杂,相应的 "加法" 自然也更加复杂. 而为了得到这种简单的"加法"运算, 我们 首先对 n 阶矩阵 A 定义幂指数:

$$e^A = \exp(x) = \mathbf{1} + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \cdots$$
 (1.21)

易证此级数对于任意的矩阵 A 都是收敛的. 并且对于零矩阵 O, 显 然有

$$e^O = \mathbf{1} \tag{1.22}$$

并且, 前面我们多次提到矩阵乘法相比代数乘法是不可交换的, 那 么, 反应到对应的"加法"运算上, 自然也有区分加法的性质, 即当且 仅当 A. B 对易的时候, 才有 $e^A e^B = e^{A+B}$, 这是主要的困难点, 那么 我们的主要问题就集中在 $e^A e^B = e^?$ 上, 这也就是我们将要学习的 李代数的内容, 不过, 在正式开始李代数的内容之前, 我们先讨论一 下其他同样有价值的内容.

我们仅了解了和指数函数对应的运算,而我们高中还知道,指数函数 的逆运算是对数函数,接下来我们效仿之前的内容,对对数函数应用 同样的定义方法:

同样对于 n 阶矩阵 A. 我们定义⁶

$$\log A = (A - \mathbf{1}) - \frac{(A - \mathbf{1})^2}{2} + \frac{(A - \mathbf{1})^3}{3} - \frac{(A - \mathbf{1})^4}{4} + \cdots \quad \text{(1.23)}$$

不同于指数函数, 为了保证级数收敛, 我们要求 A-1 的每一个元素的绝对值均小于 $\frac{1}{2}$, 即要求 A 是与幺元邻近的元素. 并且指数函数 与对数函数互为逆运算的关系对于这个定义同样适用(仅需泰勒展 开即可证明, 留给读者自行尝试).

1.1.3 单参数子群

在前面,我们通过代数方法初步建立了一些对应关系,这一小节,我 们通过几何的角度再次考虑这个对应关系.

Definition 1.1.4 (单参数子群) 设 G 为一个李群, 并且 $\gamma(t)(-\infty <$ $t < \infty$) 为 g 中过幺元 e 的一条曲线, 则对每一取定的 $t_0 \in \mathbb{R}, \gamma(t_0)$

6: 在物理的语境中,log 通常仅指 ln, 同样 的,本文中采取该写法.

是G中的一个元素,并设参数t满足:

$$\gamma(t_1 + t_2) = \gamma(t_1)\gamma(t_2) \tag{1.24}$$

则称 $\gamma(t)$ 是 G 中的一个单参数李群.

现在我们通过几何的角度思考问题.

我们将李群 G 的一个单参数子群看成流形 G (对二维 Lie 群,可将 G 看成为一张曲面) 中过 e 处的一条曲线. 从微积分知道这只要对 $\gamma(t)$ 在 t=0 处求导即得 $\gamma(t)$ 在 t=0 处的切向量, $\gamma'(0)=\frac{d\gamma(t)}{dt}$.(因 为我们只讨论线性群, 所以 $\gamma(t)$ 是矩阵, 其元素是 t 的函数, $\gamma'(t)$ 表 示对 $\gamma(t)$ 的每一元素求导所得的矩阵). 由于:

$$\gamma(t+s) = \gamma(t)\gamma(s) \tag{1.25}$$

两边对s 求导,同时令s=0,得到一个微分方程

$$\gamma'(t) = \gamma(t)\gamma'(0) \tag{1.26}$$

对于这类微分方程, 我们知道其解为

$$\gamma(t) = \exp(t\gamma'(0)) \tag{1.27}$$

由此,我们知道,单参数子群必能表达为指数映射的形式.

由解的形式可见,对于G在幺元处的切空间 T_eG 的任意一个向量 $A = \gamma'(0)$, 就有 G 中的一元素 $\gamma(1) = \exp(\gamma'(0))$ 与之对应. 现在我 们稍微总结一下: 对于李群 G 这个流形, 我们可以找到其单参数子 群 T_cG 作为其切空间,并且我们可以找到一个指数映射从切空间到 原空间, 很快, 当我们学会李代数的时候, 我们会再次使用李代数的 语言来总结:"李代数就是李群的切空间所导出的代数".

我们再次回到群 G 和它的单参数子群, 我们发现, 如果给定 G 中与 幺元邻近的一个元素 7g , 并定义向量 $A = \log g$, 则由 $e^A = g$ 知, A 为 G 在 e 处之切向量, $e^t A$ 为以 A 为单位切向量的单参数子群. 因此, 对 G 中与幺元 e 邻近的一个元素就有 $T_e(G)(G$ 在幺元处的切空间) 中一向量 A 与之对应, 也就是说, 设 $U \subset G$ 中包含 e 的一个适当邻 域,我们建立了一种对应关系

$$G \supset U \overset{\log}{\underset{\exp}{\longleftrightarrow}} T_e(G)$$

$$g \to A = \log g$$

$$e^A \leftarrow A$$
 (1.28)

Figure 1.2: 二维李群与其单参数子群

7: 当然, 由于我们研究线性群, 幺元为单 位矩阵.

这种对应关系可以使我们对李群的研究转化到与其对应的在幺元 e 处的切空间 $T_{e}(G)$. 而我们知道, $T_{e}(G)$ 是由向量组成的线性空间,其 线性结构具有先天优势,拥有远比李群简单的结构和运算.但由于我 们前面所提到的,由于矩阵乘法相比于数乘的不可交互性,自然由此 导出的切空间的运算自然也不能简单用普通加减法来表述,即右侧 关系图

为此, 我们迫切需要引入一种新的代数结构来反映 G 中的不可交换 性,而具有这种新结构的线性空间 $T_{e}(G)$,就是我们下一节所要讲 的李代数.

$$\begin{array}{lll} T_e(G) & G \\ A & \longrightarrow & e^A \\ B & \longrightarrow & e^B \\ A+B \to e^{A+B} \neq e^A e^B \end{array}$$

1.2 李群与李代数

1.2.1 李代数

由上面的讨论,我们现在知道 $e^A e^B \neq e^{A+B}$,那么,问题自然变为: $e^A e^B =$ $e^{?}$, 或者表述为.G 的单参数子群的代数结构是什么样的?

为了解决这个问题, 我们设 $A, B \in T_{\mathfrak{o}}(G)$, 取一个参数 t, 并要求 |t|适当小, 从而能够保证 e^{tA} 与 e^{tB} 均为李群 G 中与幺元 e 邻近的元 素8. 现在我们构造一个函数:

$$g(t) = e^{tA}e^{tB}e^{-tA}e^{-tB} (1.29)$$

显然, 对于特例, 即如果 e^{tA} 与 e^{tB} 可交换, g(t) = e = 1, 对于不可交 换的情况,q(t) 与幺元 e 的偏离程度反映了 e^{tA} 与 e^{tB} 的乘法与可交 换的乘法之间的差异大小. 现在我们具体分析 g(t).

$$\begin{split} g(t) &= e^{tA} e^{tB} e^{-tA} e^{-tB} \\ &= \mathbf{1} + t^2 [A,B] + \frac{t^3}{2} ([A,[A,B]] - [B,[B,A]]) + O(t^4) \end{split} \tag{1.30}$$

这里我们使用了对易子记号[,],不过对于李代数,它也称为李括号, 李乘法 9 . 对于函数 g(t), 我们有

$$\frac{g(t) - 1}{t^2} = [A, B] + O(t) \tag{1.31}$$

因此, 考虑极限 $t \to 0$ 时,

$$\lim_{t \to 0} \frac{g(t) - \mathbf{1}}{t^2} = [A, B] \tag{1.32}$$

由此、我们发现李群 G 的元素 e^{tA} 与 e^{tB} 的乘法的不可交换程度在 |t| 很小时主要取决于 [A,B]

8: 这个要求是必要的, 我们需要满足后续 使用级数的收敛性.

展开的计算过程

$$\begin{split} g(t) &= e^{tA}e^{tB}e^{-tA}e^{-tB} \\ &= (1+tA+\frac{t^2}{2!}A^2+\frac{t^3}{3!}A^3+\cdots)(1+tB+\frac{t^2}{2!}B^2+\frac{t^3}{3!}B^3+\frac{t^2}{2!}B^2+\frac{t^3}{3!}B^3+\frac{t^2}{2!}B^2+\frac{t^3}{3!}B^3+\frac{t^2}{2!}B^2+\frac{t^3}{3!}B^3+\frac{t^2}{2!}B^2+\frac{t^3}{3!}B^3+\frac{t^2}{2!}B^2+\frac{t^3}{3!}B^3+\frac{t^2}{2!}B^2+\frac{t^3}{2!}B^2+\frac{t^3}{2!}B^2+\frac{t^3}{2!}B^2+\frac{t^3}{2!}B^2+\frac{t^3}{2!}B^2+\frac{t^3}{2!}B^3+O(t^4)\}\\ &= t^3(\frac{A^3}{6}+\frac{A^2B}{2}+\frac{AB^2}{2}+\frac{B^3}{6})+O(t^4)\}\\ &= t^3(\frac{A^3}{6}+\frac{A^2B}{2}+\frac{AB^2}{2}+\frac{B^3}{6})+O(t^4)\}\\ &= t^4(A+B-A-B)+t^2(AB-BA)+t^3(\frac{A^2B}{2}-\frac{t^3}{2}ABA+BAB)+O(t^4)\\ &= t^4(A+B+AB)+O(t^4)\\ &= t^4(A+B+AB)+\frac{t^3}{2!}(A,AB)+O(t^4)\\ &= t^4(A+B+AB)+O(t^4)\\ &= t^4(A+B)+O(t^4)\\ &= t^4($$

后面会加以区分的使用对易子和李括号.

现在我们做变量代换 $t = \sqrt{s}$, 则

$$\frac{g(\sqrt{s}) - g(0)}{s} = [A, B] + O(\sqrt{s}) \tag{1.33}$$

并因此

$$\lim_{s \to 0} \frac{g(\sqrt{s}) - g(0)}{s} = [A, B] \tag{1.34}$$

这也说明 [A,B] 是李群 G 中过幺元的曲线 $g(\sqrt{s})$ 在幺元处的切向 量, 即 $[A, B] \in T_e(G)$, 这也意味着我们证明了如下关系

$$\forall A, B \in T_e(G), [A, B] \in T_e(G) \tag{1.35}$$

即对易子 (李括号) 对向量空间 $T_e(G)$ 的封闭性.

此时, 我们可以回答开头所提到的问题了, 不妨设 $e^{tA}e^{tB} = e^{tC}$, 则

$$\begin{split} tC &= \log e^{tC} = \log e^{tA} e^{tB} \\ &= (tA + tB) + \frac{1}{2} [tA, tB] + \frac{1}{12} [tA, [tA, tB] - tB, [tB, tA]] + O(t^4) \end{split} \tag{1.36}$$

由此可见,只要给出李括号, $T_e(G)$ 中知道了与 e^{tA} , e^{tB} 相对应的元 素 tA, tB 即可求得 $T_e(G)$ 中与 $e^{tA}e^{tB}$ 相对应的元素. 因此, 我们认 为李括号可以表述李群切空间的代数结构,并对于李括号有如右侧 所示的性质.

我们称有了李括号的向量空间 $T_{\circ}(G)$ 构成一个李代数, 更准确的来 讲是李群 G 的李代数, 并记为 \mathfrak{a} .

李群的李代数完全刻画了李群在幺元附近的结构, 而要研究李群在 幺元附近的性质只需要研究李代数即可,但是需要注意的是,李代数 仅刻画了李群在幺元附近的局部性质,不能反映其整体性质,一个李 群对应一个李代数,而一个李代数可以对应多个李群.

Definition 1.2.1 (结构常数) 设 G 是一个 r 维李群, 取定幺元 e 的 一个邻域 U, 在 U 中取定坐标系 $\{U, \varphi\}$ 并取 e 为坐标原点:

$$\varphi(e) = (0, 0, \cdots, 0) \tag{1.37}$$

对于其的单参数子群, 我们有

$$\begin{cases} \gamma_j(t), & j=1,2,\cdots,r \\ \varphi(\gamma_j(t)) = (\underbrace{0,\cdots,0}_{(j-1) \uparrow r},t,0,\cdots,0) \end{cases} \tag{1.38}$$

为其r条坐标曲线.

以 $X_i = \gamma_i'(0), j = 1, 2, \cdots, r$ 记为其在幺元处的切向量. 即 $X_i \in$

展开的计算过程

李括号的性质

$$[A,A] = 0$$

$$[A,B] = -[B,A]$$

$$[A,c] = 0 \ (c 只是一个数)$$

$$[A+B,C] = [A,C] + [B,C]$$

$$[A,BC] = [A,B] \ C + B[A,C]$$

$$[A,[B,C]] + [B,[C,A]] + [C,[A,B]] = 0$$

 $T_e(G) = \mathfrak{g}, j = 1, 2, \dots, r$. 显然, $\{X_1, X_2, \dots, X_r\}$ 可取作为向量空 间 $T_{e}(G)$ 的基—— $T_{e}(G)$ 中任一向量可用它们的线性组合表出 由于 $[X_i, X_i] \in \mathfrak{g}$, 所以

$$[X_i, X_j] = \sum_{j,k=1}^n C_{ij}^k X_k \quad i, j = 1, 2, \dots, r$$
(1.39)

这 r^3 个数 $\{C_{ij}^k\}k, i, j = 1, 2, \dots, r$ 称为李群以 $\{X_1, X_2, \dots, X_r\}$, 为基的结构常数,

对于李代数 \mathfrak{g} 中任意向量 X,Y, 有

$$X = \sum_{j=1}^{r} \xi^{j} X_{j}$$

$$Y = \sum_{j=1}^{r} \eta^{j} X_{j}$$

$$X \sim (\xi^{1}, \xi^{2}, \dots, \xi^{r})$$

$$Y = (\eta^{1}, \eta^{2}, \dots \eta^{r})$$

$$Z = [X, Y] = \left[\sum_{j=1}^{r} \xi^{j} X_{j}, \sum_{k=1}^{r} \eta^{k} X_{k}\right] = \sum_{i=1}^{r} \sum_{j,k=1}^{r} C_{jk}^{i_{k}} \xi^{j} \eta^{k} X_{i}$$

$$(1.40)$$

将 Z 也用坐标表示

$$Z = \sum_{i=1}^{r} \zeta^{i} X_{i}, \quad Z \sim (\zeta^{1}, \zeta^{2}, \cdots \zeta^{r})$$
 (1.41)

此时易求出结构常数

$$\zeta^{i} = \sum_{j,k=1}^{r} C_{jk}^{i} \xi^{j} \eta^{k}, \quad i = 1, 2, \cdots, r$$
(1.42)

由此可见,结构常数可以完全确定一个李代数.

需要强调的是,结构常数与基的选取有关,而李代数的一个重要的问 题就是如何选取适当的基使结构常数最简单.

或许到此, 你可能还对结构常数一头雾水, 在再次讲解结构常数之 前,我们还是先给出一些基本性质,并实际算一下结构常数.

$$\begin{split} C^k_{ij} &= -C^k_{ji} & i, j, k = 1, 2, \cdots, r \\ &\sum_{l=1}^r \left(C^l_{ij} C^m_{lk} + C^l_{jk} C^m_{li} + C^l_{ki} C^m_{lj} \right) = 0 \quad i, j, k, m = 1, 2, \cdots, r. \end{split}$$
 (1.43)

Example 1.2.1 我们再次考虑由例题 3.8 给出的群
$$T_2 = \left\{ \begin{bmatrix} e^{x_1} & x_2 \\ 0 & 1 \end{bmatrix} \middle| x_1, x_2 \in \mathbb{R} \right\}$$
,我们知道 $\gamma_1(t) = \begin{bmatrix} e^t & 0 \\ 0 & 1 \end{bmatrix} - \infty < t < \infty$ 与 $\gamma_2(t) = \begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} -$

 $\infty < t < \infty$ 是 T_2 的两个单参数子群,同时也是过幺元的两条曲 线, 我们给出在幺元处的切向量 $X_1=\gamma_1'(0)=\begin{bmatrix}1&0\\0&0\end{bmatrix}$, $X_2=$ $\gamma_2'(0) = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, 因此李群 T_2 的李代数 \mathfrak{t}_2 的基由 X_1, X_2 组成, 现 在来求结构常数.

$$\begin{split} [X_1,X_1] &= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad [X_2,X_2] = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \\ [X_1,X_2] &= \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = X_2. \\ (1.44) \\ \text{MFU}, C_{11}^1 &= C_{11}^2 = C_{22}^1 = C_{22}^2 = 0, \quad C_{12}^1 = -C_{21}^1 = 0, \quad C_{12}^2 = 1, \quad C_{21}^2 = -1. \end{split}$$

Example 1.2.2 我们再次回到 SO(3) 群, 现在我们来求其李代数 so(3) 及其结构常数.

我们列出其群元 (绕 x, y, z 的转动), 即旋转矩阵, 如右侧所示

此时, 我们发现, 这是其的三个单参数子群, 而它们在幺元处的切 向量一并给出

$$I_1=g_x'(0), \quad I_2=g_y'(0), \quad I_3=g_z'(0). \tag{1.45} \label{eq:1.45}$$

于是 $\{I_1, I_2, I_3\}$ 构成 SO(3) 的李代数 $\mathfrak{so}(3)$ 的一组基, 其李括号 为:

$$[I_1, I_2] = I_1 I_2 - I_2 I_1 = I_3, [I_2, I_3] = I_1, [I_3, I_1] = I_2$$
 (1.46)

同时得出结构常数 $C_{12}^1 = 0, C_{12}^2 = 0, C_{12}^3 = 1, \dots$

我们可以发现,对于这个李括号,其还等价于三维欧式空间的向量 乘法, 我们就得到了简单情况下的李括号的退化情况.

三个群元的矩阵表示:

$$g_x(t) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos t & -\sin t \\ 0 & \sin t & \cos t \end{bmatrix}$$

$$g_y(t) = \begin{bmatrix} \cos t & 0 & \sin t \\ 0 & 1 & 0 \\ -\sin t & 0 & \cos t \end{bmatrix}$$

$$g_z(t) = \begin{bmatrix} \cos t & -\sin t & 0 \\ \sin t & \cos t & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

1.2.2 李氏三定理和无穷小变换

1

1.2.3 李群的无穷小生成元

1.2.4 典型李群和李代数

1

- 1.3 李代数进阶
- 1.3.1 张量, 不可约张量

1

1.3.2 卡西米尔算符 (Casimir operator)

1

1.3.3 典型李代数的二阶卡西米尔算符

1

场论初步 | 2

从这一章开始,我们正式进入主题,也是真正核心的部分.现在开始每一章开头都会附带一段简单的小文章来快速总览部分内容,从而可以快速的建立对这些概念的朴素认知.

引子: 最小作用量原理与路径积分

我们都知道,数学上很讲究"公理",希望一切都可以由公理自然给出,无论是欧几里得的平面几何几大公设还是近现代的 ZFC 公理系统,都试图为数学大厦建立一个夯实的根基,而这群搞物理的和搞数学又常常客串,自然而然,这些人也开始思考物理有没有所谓的公设,牛顿三定律? 麦克斯韦方程组? 薛定谔方程? 爱因斯坦场方程? 虽然这些定律都是正确的,但都在对应的能标下成立,谈不上"公理".而最后,弄出来一些似是而非的东西,我们这一篇便讲其中之一:最小作用量原理.

而什么是最小作用量原理呢? 正所谓水往低处流, 水不会无缘无故的克服重力向上做功, 它永远沿着做功最少的路径前进. 对于我们中学就学过的电路来讲, 导线会把电阻短路, 因为电流自发的按照对外做功最小的路径前进. 而这种按对外做功最小的行为, 我们统称为最小作用量原理. 作用量是系统拉格朗日量对时间的泛函 (即函数的函数), 而 Wick 转动告诉我们, 实轴上的最小作用量原理就是虚时上的最小能量原理.

我们知道,量子态和经典态是截然不同的,一个量子态经由某条路径 (区分实际空间中的路径和概念上的路径) 到达一个结果的量子态的 传播过程并不能像经典的时候那样直接表述出来: 我们只知道起始时刻的位置和终点时刻的位置,中间的过程也不是传统意义上的移动,而是黑箱一般,经过一定时间之后就转移到终点,中间的过程是未知的.

于是, 我们的首要目的就是破解这个黑箱, 对于初态和末态, 我们定义了一个新的算符: 传播子来代表这个黑箱过程. 而下一刻粒子出现在末态的概率幅依赖于始末位置间的所有路径, 但是我们知道, 两点间可能有无数种方式路径, 但那又如何? 费曼提出了路径积分, 将所有可能的路径全部积分一遍. 其遵循了一些简朴的思想: 对于过多扭曲的路径, 我们可以认为反复的部分的平均为 0, 自然也不必考虑扭曲转圈的情况, 路径被统一为单行线. 而始末位置的连线则是经典路径, 所有扭曲的其他路径都要以经典路径为核心, 偏离太远的也被近似为 0.

2.1	路径	积分										15
2.1.1	量子	系统	与	经	典	Ļ	<u></u>	纺	5 =	þ	的	J
	路径	积分										15
2.1.2	路径	积分	初:	步								17
2.1.3	欧式	路径	积:	分								22
2.1.4	统计	物理	中	的流	Ž١	沤	秄	1.5	分			29
2.2	二次	量子	化.	与柞	各;	林	逐	1 3	汝			34

这里给出来自于陈童老师的从经典力学出 发的视角:

最小作用量原理 (principle of least action). 按照最小作用量原理, 粒子在相空间中不 是按照哈密顿正则方程这样的微分方程演 化, 粒子是按"代价"最小的相空间路径 演化. 即是说, 粒子的演化路径有无穷多种 可能性,每一条可能的演化路径都要付出 一个相应的"代价",而粒子的真实演化路 径是所有可能路径中"代价"最小的那条, 严格一点说应该是"代价"取极值的那条 (更严格地说应该是"代价"取驻值的那条, 但是驻值这个概念比较微妙, 为了使得读 者更好理解, 我们统一称作极值). 每一条 路径的"代价"就叫做这条路径的作用量. 很显然,最小作用量原理看起来与哈密顿 正则方程完全不同,结果却可以证明,这 两种描述粒子在相空间中如何演化的方式 物理上完全等价. 哈密顿正则方程是一种 局部视角的描述方式,每一个时刻都只需 用到当前相点 (相空间点) 局部邻域内的 信息, 因为微分方程中的求导运算只涉及 邻域. 而最小作用量原理是一种全局视角 的描述方式, 需要知道每一条可能路径的 作用量这种全局信息, 奇妙的是, 这两种 不同视角在物理上却是等价的. 人们有时 候将微分方程这样的局部视角称作蚂蚁视 角 (蚂蚁太小,每一只蚂蚁都只能看到一 个很小的邻域), 而将最小作用量原理这样 的全局视角称作上帝视角. 看待物理的蚂 蚁视角源自于牛顿, 正是牛顿想到用微分 方程来描述物理规律. 而上帝视角则源自 于几何光学中的费马原理, 然后经过莫培 督 (Maupertuis) 和哈密顿等人推广到力学 里来. 实际上, 最小作用量原理有时候也称 作哈密顿原理. 不可思议的是, 我们可以用 这样两种完全不同的视角来看待同样的物

不仅如此,这种局部视角和全局视角也都可以延伸到量子物理中,在量子力学中,局部视角大致会导致算符描述,而全局视角会导致路径积分描述.

我们此时从最小作用量原理来解释这个朴素的思想: 存在无穷多可 能的路线,但是大部分都是高阶项,这说明我们可以取最少的路径来 表述这个过程,作用量相当于不同路径的权重,最小作用量原理要求 总体权重和最小,这意味着需要有效路径最少,也对应着之前所遵循 的原理.

另外需要强调的是,一次量子化(量子力学)告诉我们应当使用波来 描述粒子,二次量子化又重新使用粒子来描述波,这些虽然符合实验 现象,但是对于某些情况就捉襟见肘了.路径积分时区别于那两种的 表述方法,它认为需要使用场来表述粒子,其构建了场论形式的泛函 积分方法.

2.1 路径积分

在初等量子力学的学习中,我们在经典量子化的框架内进行表述,在 本节, 我们将初步探索另一种表述方法: 路径积分法.

2.1.1 量子系统与经典系统中的路径积分

我们采取通过一个最基本物理图像的方式来引入路径积分: 考虑一 维空间内的一个有质量 m 的粒子, 其动力学可以通过拉格朗日量来 表述:1

1: 本章开始采取这类更加清晰的公式标 注方法.

并假设粒子位于与时间无关的势V(q)中. 我们使用广义坐标q来表 述粒子的位置², 对于广义坐标, 同样有 $\dot{q}=\partial_t q$. 于是, 根据我们在理 论力学中所学到的欧拉-拉格朗日方程

$$\frac{\mathrm{d}}{\mathrm{d}t}\frac{\partial L(q,\dot{q})}{\partial \dot{q}} = \frac{\partial L(q,\dot{q})}{\partial q} \quad \text{也就是} \quad m\ddot{q} = -\frac{\partial V(q)}{\partial q}. \tag{2.2}$$

2: 广义坐标往往指一组无关联约束的坐 标, 即对于三维坐标表述, 如果 x, y, z 之 间没有约束方程,那么x,y,z就可以认为 是一组广义坐标. 不过, 目前可以仅把它们 (2.2) 当做特殊的坐标/动量(对于广义动量).

同时, 我们考虑由下式定义的**哈密顿量** H(p,q)

$$H(p,q)=p\dot{q}-L(q,\dot{q})=\frac{p^2}{2m}+V(q)$$
 其中广义坐标被定义为
$$p=\frac{\partial L(q,\dot{q})}{\partial \dot{q}}=m\dot{q}$$
 (2.3)

我们于是通过哈密顿量给出该粒子的经典动力学关系(特别强调的 一点是,在对哈密顿量偏导时,我们认为广义坐标和广义动量是无关 联的.):

$$\dot{p} = -\frac{\partial H(p,q)}{\partial q} = -\frac{\partial V(q)}{\partial q}, \\ \dot{q} = \frac{\partial H(p,q)}{\partial p} = \frac{p}{m} \tag{2.4}$$

在量子力学中, 我们把广义坐标和广义动量的关系上升至对易关系 (后续我们把广义坐标和广义动量简称为坐标和动量).

$$[\hat{q}, \hat{p}] = i\hbar \tag{2.5}$$

同时经典变量 A(p,q) 同时上升为算符 $\hat{A} \equiv A(\hat{p},\hat{q})$ 自然经典哈密顿量也变为量子哈密顿量方程.

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{q}) \tag{2.6}$$

我们知道系统的物理态由希尔伯特空间 \mathcal{H} 中的态矢量 $|\psi(t)\rangle$ 所描述,我们使用薛定谔方程来描述态矢量的时间演化:

能量
$$E$$

$$i\hbar \, \partial_t \, |\psi(t)\rangle = \hat{H} \, |\psi(t)\rangle \tag{2.7}$$
 哈密顿量算符

我们熟知我们可以利用时间演化算符 \hat{U} 写成方程的解:

$$|\psi(t)\rangle=\hat{U}(t)|\psi(t=0)\rangle,\quad i\hbar\,\partial_t\hat{U}(t)=\hat{H}\hat{U}(t). \tag{2.8}$$

由于哈密顿量与时间无关, 所以我们可以写成时间演化算符的表示

$$\hat{U}(t) = e^{-\frac{i}{\hbar}\hat{H}t} \tag{2.9}$$

在这里, 我们重申一点: 给定时空位置的波函数代表了该粒子位于该时空位置的概率振幅.

同时我们写出

t_f 时刻时粒子位于 q_f 的概率 $\psi(q_f,t_f) = \langle q_f|\psi(t_f)\rangle = \langle q_f|\hat{U}(t_f-t_i)|\psi(t_i)\rangle = \int \mathrm{d}q_i U(q_f,q_i;t_f-t_i) \psi(q_i,t_i)$ (2.10) t_i 时刻时粒子位于 q_i 的概率

其中 $U(q_f, q_i; t_f - t_i) = \langle q_f | \hat{U}(t_f - t_i) | q_i \rangle$ 被称为传播子, 其表示了 这个粒子在 $t_f - t_i$ 时间内从位置 q_i 传播到位置 q_f 的概率振幅. 并 且若已知哈密顿量 \hat{H} 本征态 $\{|n\rangle, \epsilon_n\}$, 那么我们以此可以把传播子

$$\begin{split} U(q_f,q_i;t_f-t_i) &= \langle q_f|e^{-\frac{i}{\hbar}\hat{H}(t_f-t_i)}|q_i\rangle = \sum_n \langle q_f|n\rangle e^{-\frac{i}{\hbar}\epsilon_n(t_f-t_i)}\langle n|q_i\rangle \\ &= \sum_n e^{-\frac{i}{\hbar}\epsilon_n(t_f-t_i)}\varphi_n(q_f)\varphi_n^*(q_i) \end{split} \tag{2.11}$$

其中 $\varphi_n(q) = \langle q|n\rangle$ 为坐标表象下的波函数. 我们发现传播子给出了 关于这个哈密顿量的波函数和能级的全部信息,这也意味着我们可 以把求解波函数的问题变为求解这个哈密顿量所对应的传播子的 问题.

2.1.2 路径积分初步

我们刚刚发现了通过求解传播子可以间接求解波函数, 而现在的问 题是: 如何求出传播子? 这里我们用到费曼的路径积分方法, 我们先 来首先说明传播子可以写为路径积分的形式.

我们首先考虑一个充分短的时间 ϵ

$$U(q_f,q_i;\epsilon) = \langle q_f|e^{-i\hat{H}\epsilon}|q_i\rangle \cong \langle q_f|e^{-i\epsilon\frac{\hat{p}^2}{2m}}e^{-i\epsilon V(\hat{q})}|q_i\rangle \tag{2.12}$$
 Baker-Hausdorff 规则 $e^{\epsilon\hat{A}+\epsilon\hat{B}}=e^{\epsilon\hat{A}}e^{\epsilon\hat{B}}e^{\mathcal{O}(\epsilon^2)}$

我们在其中插入一个单位算符的谱分解3,在下面的式子中,我们使 用了归一化假设 $\langle q|p\rangle=L^{-1/2}e^{ipq}\ q\in[0,L],q$ 为连续的位置变量, 而 $p = n^{2\pi}$ $n \in \mathbb{Z}$ 为离散的动量变量 (关于边界 L, 并且有归一化条 件 $e^{ipL}=1$), 在极限 $L\to\infty$, 存在 $\frac{1}{L}\sum_{n}\to\int_{-\infty}^{\infty}\frac{\mathrm{d}p}{2\pi}$. 于是, 式子变为

3: 此时已经开始采取自然单位制了 (对单 位制可以参考附录).

$$\begin{split} U(q_f,q_i;\epsilon) &= \sum_p \langle q_f|e^{-i\epsilon\frac{\hat{p}^2}{2m}}|p\rangle \langle p|e^{-i\epsilon V(\hat{q})}|q_i\rangle \\ &= \int \frac{\mathrm{d}p}{2\pi} \exp\biggl\{-i\epsilon\biggl[\frac{p^2}{2m} + V(q_i)\biggr] + ip(q_f - q_i)\biggr\} \quad \text{(2.13)} \\ &= \biggl(\frac{m}{2\pi i\epsilon}\biggr)^{1/2} \exp\biggl\{i\epsilon\biggl[\frac{m}{2}\frac{(q_f - q_i)^2}{\epsilon^2} - V(q_i)\biggr]\biggr\}. \end{split}$$

此处计算需要利用留数定理, 附录中给出了 mma 计算代码

为了使对 p 的积分收敛, 我们假设 ϵ 包含一个小的负虚部, 我们发现, 指数上的部分恰好是 i 乘以无穷小作用量 $S(q_f,q_i;\epsilon)$, 不难发现这个作用量对应着无穷小时间 ϵ 内 q_i 和 q_f 之间以恒定速度的直线路径, 于是, 我们把式子写为如下形式:

$$U(q_f, q_i; \epsilon) = \left(\frac{m}{2\pi i \epsilon}\right)^{1/2} e^{iS(q_f, q_i; \epsilon) + \mathcal{O}(\epsilon^2)} \tag{2.14}$$

仅有无穷小时间间隔的传播子显然是远远不够的, 现在我们想计算出任意时间间隔 t_f-t_i 的传播子 $U(q_f,q_i;t_f-t_i)$. 我们考虑将时间段 t_f-t_i 分割为 N 个长为 $\epsilon=(t_f-t_i)/N$ 的等大小的部分, 只要最终我们取极限 $N\to\infty$ $(\epsilon\to0)$, 并对全部时间步积分, 就得到了任意时间间隔 t_f-t_i 的传播子.

$$\begin{split} U(q_f,q_i;t_f-t_i) &= \langle q_f|e^{-i\hat{H}\epsilon}\cdots e^{-i\hat{H}\epsilon}|q_i\rangle \\ &= \int \prod_{k=1}^{N-1} \mathrm{d}q_k \langle q_f|e^{-i\hat{H}\epsilon}|q_{N-1}\rangle \langle q_{N-1}|e^{-i\hat{H}\epsilon}|q_{N-2}\rangle \cdots \langle q_1|e^{-i\hat{H}\epsilon}|q_i\rangle \\ &= \int \prod_{k=1}^{N-1} \mathrm{d}q_k \prod_{k=1}^N U(q_k,q_{k-1};\epsilon) \end{split} \tag{2.15}$$

其中 $q_0 = q_i, q_N = q_f$, 在2.14中, 我们对每个时间步传播子都忽略了 ϵ^2 的高阶项, 对于整体, 其导致了阶为 ϵ 的总误差.

$$U(q_f, q_i; t) = \lim_{N \to \infty} \left(\frac{mN}{2\pi i t}\right)^{N/2} \int \prod_{k=1}^{N-1} \mathrm{d}q_k e^{iS[q]} \tag{2.16}$$

其中作用量为

$$S[q] = \sum_{k=1}^{N} S(q_k, q_{k-1}; \epsilon) = \epsilon \sum_{k=1}^{N} \left[\frac{m}{2} \frac{(q_k - q_{k-1})^2}{\epsilon^2} - V(q_{k-1}) \right]$$
 (2.17)

在极限 $N \to \infty$, 我们可以把求和写做积分:

$$\begin{split} \epsilon \sum_{k=1}^N \frac{m}{2} \frac{(q_k - q_{k-1})^2}{\epsilon^2} &\to \int_{t_i}^{t_f} \mathrm{d}t \frac{m}{2} \dot{q}^2 \\ \epsilon \sum_{k=1}^N V(q_{k-1}) &\to \int_{t_i}^{t_f} \mathrm{d}t V(q) \end{split} \tag{2.18}$$

我们使用 q(t) 表示这个粒子的 "路径"(trajectory), 对于始末位置 $q(t_i) = q_i, q(t_f) = q_f$, 但这并不意味着在大 N 极限下的连续性/可 微性. 我们定义积分测度为如下形式⁴:

$$\mathcal{D}[q] = \lim_{N \to \infty} \left(\frac{mN}{2\pi i \hbar t} \right)^{N/2} \prod_{k=1}^{N-1} \mathrm{d}q_k \tag{2.19}$$

4: 我们可以认为这个形式不过是把一些成套的东西包装成一个微分算符, 依赖这种写法, 可以简化我们对于路径积分的表述

于是传播子可以简化为

$$U(q_f,q_i;t_f-t_i) = \int_{q(t_i)=q_i}^{q(t_f)=q_f} \mathcal{D}[q] e^{\frac{i}{\hbar}S[q]} \tag{2.20} \label{eq:2.20}$$

同时作用量被定义为

$$S[q] = \int_{t_i}^{t_f} \mathrm{d}t \, L(q,\dot{q})$$
 (2.21)

现在我们发现,这个作用量的形式与路径 q(t) 的经典作用量的形式一致.

我们不难注意到: 积分测度 \mathcal{D} 中包含的极限是**发散的**, 在处理发散问题之前, 我们首先尝试讨论其物理含义: 对于传播子, 我们从公式角度出发观察传播子的形式, 我们不难发现这个积分过程只规定了初值条件 (初态位置和时间以及末态位置和时间), 我们需要对**所有可能的**路径进行积分 (或者说是求和, 这两者并没有太大区别), 并且对于求和过程, 我们最后得出的答案是依赖于作用量的对每条路径的**加权和**. 而按照物理情景的解释, 我们有"当一个物理过程⁵可以以多种路径进行时, 它的概率幅由每种路径的幅值之和给出6".

但是, 我们发现这并没有解决发散问题, 于是我们要求路径是足够 "好"的. 即要求动力学项 $[q(t+\epsilon)-q(t)]^2/\epsilon$ 在极限 $\epsilon\to 0$ 时收敛, 并认为在不满足这个条件的路径会剧烈震荡, 其平均值为 0, 即不那么 "好"的路径. 事实上, 这种方法似乎完全看不出来严格的数学依据, 但现实如此 (这里可以引用那些经典的物理小笑话了, 至少我们目前不用去思考如何把这些东西严谨化.)7.

经典极限

或许你们发现在上一部分的结尾中, 我们并没有像往常一样去省略约化普朗克常数 ħ, 这有关于经典极限的讨论.

我们所关注的重点路径为"贴近"经典路径的路径, 其作用量是静态的.

$$\left. \frac{\delta S[q]}{\delta q(t)} \right|_{q=q_c} = 0 \tag{2.22}$$

对于非静态的路径, 其意味着作用量的大幅振荡, 其平均值为 0, 或者说, 更准确的, 传播子 $U(q_f,q_i;t_f-t_i)$ 由路径 q(t) 所主导, 其作用量 S[q] 与经典作用量 $S_c=S[q_c]$ 相差一个 \hbar 阶项: $|S-S_c|\lesssim\hbar$. 当 $|S_c|\gg\hbar$ 时, 这些路径非常接近经典作用量的路径. 而对于相反的极

- 5: 我们并没有区别宏观和微观, 这是因为 其对宏观仍然适用, 但由于对应原理, 我们 不必对宏观现象如此分析.
- 6: 英文原文:When a process can take place in more than one way, its probability amplitude is given by the sum of the amplitudes for each way.

7: 关于这一大段的文字讨论是必须的, 其 有助于构建量子场论的物理图景, 事实上, 在这一章我一直在尝试把更多重点放在公 式内部并突出显示它, 倘若把重点置于一 大堆文字中, 读者不加以仔细的阅读的话, 便很容易错过去. 而且, 对于物理这一门学 科, 过于长段的文字很难真的揭示什么内 涵, 它们往往起到解释公式的作用, 或者说, 公式才是文章的主体. 同样的, 这一大段内 容我放在了脚注中, 同样为了让人们去注 意到它. 限中, 同样满足条件 $|S - S_c| \lesssim \hbar$ 的路径就与经典作用量导致的路径截然不同. 于是, 形式上的经典极限对于与 $\hbar \to 0$ 的极限.

Remark 2.1.1 为了得到极限 $\hbar \to 0$ 中的传播子, 我们写出 $q(t) = q_c(t) + r(t)$ (我们假设仅存在唯一一条经典轨道.), 并把作用量对于 r(t) 展开到第二阶.

$$\begin{split} &U(q_f,q_i;t_f-t_i)\\ &\simeq e^{\frac{i}{\hbar}S[q_c]}\int_{r(t_i)=0}^{r(t_f)=0}\mathcal{D}[r]\exp\bigg\{\frac{i}{2\hbar}\int_{t_i}^{t_f}\mathrm{d}t\,\mathrm{d}t'\frac{\delta^2S[q]}{\delta q(t)\delta q(t')}\bigg|_{q=q_c}r(t)r(t')\bigg\} \end{split} \tag{2.23}$$

这类积分被称为**高斯积分**, 高斯积分并不需要你去思考如何巧妙积分出来, 仅需套用公式就能得出答案, 而对应的积分表全部列在下面, 即式2.25.

$$U(q_f,q_i;t_f-t_i) \simeq e^{\frac{i}{\hbar}S[q_c]} \det \left(\frac{1}{2\pi i \hbar} \frac{\delta^2 S[q]}{\delta q(t) \delta q(t')} \bigg|_{q=q_c} \right)^{-1/2} \ \mbox{(2.24)} \label{eq:Uqf}$$

我们最后得到的结果所遵循的过程被称为稳态相位近似.

高斯积分表

如下表, 其中 K 是对称矩阵.

$$\int_{-\infty}^{+\infty} e^{-\frac{1}{2}ax^{2}} dx = \sqrt{\frac{2\pi}{a}} \qquad \int_{-\infty}^{+\infty} x^{2n} e^{-\frac{1}{2}ax^{2}} dx = \sqrt{2\pi} a^{-\frac{2n+1}{2}} (2n-1)!!
\int_{-\infty}^{+\infty} e^{-\frac{1}{2}ax^{2} + Jx} dx = \sqrt{\frac{2\pi}{a}} e^{-\frac{J^{2}}{2a}} \qquad \int_{-\infty}^{+\infty} e^{-\frac{1}{2}ax^{2} + iJx} dx = \sqrt{\frac{2\pi}{a}} e^{-\frac{J^{2}}{2a}}
\int_{-\infty}^{+\infty} e^{i(\frac{1}{2}ax^{2} + Jx)} dx = \sqrt{\frac{2\pi i}{a}} e^{-i\frac{J^{2}}{2a}} \qquad \int_{-\infty}^{+\infty} e^{-\frac{1}{2}x^{T}Kx} d^{n}x = \sqrt{\frac{(2\pi)^{n}}{\det K}} e^{-\frac{1}{2}JK^{-1}J}
\int_{-\infty}^{+\infty} e^{i(\frac{1}{2}x^{T}Kx + Jx)} d^{n}x = \sqrt{\frac{(2\pi i)^{n}}{\det K}} e^{-\frac{i}{2}JK^{-1}J}$$

$$\int_{-\infty}^{+\infty} e^{i(\frac{1}{2}x^{T}Kx + Jx)} d^{n}x = \sqrt{\frac{(2\pi i)^{n}}{\det K}} e^{-\frac{i}{2}JK^{-1}J}$$

$$(2.25)$$

需要强调的是,虽然看似高斯积分较为复杂,但都处于高等数学范畴内的积分,如需要记忆的话也可以仅记忆下面这个,其他都可以通过简单的系数替换得到:

$$\int_{-\infty}^{+\infty} e^{-\frac{1}{2}ax^2 + Jx} \, \mathrm{d}x = \sqrt{\frac{2\pi}{a}} e^{\frac{J^2}{2a}}$$
 (2.26)

时序算符以及哈密顿量

对于海森堡绘景下算符的矩阵元, 例如算符 $\hat{q}(t) = e^{i\hat{H}t}\hat{q}e^{-i\hat{H}t}$

$$\langle q_f, t_f | \hat{q}(t) | q_i, t_i \rangle = \langle q_f | e^{-i\hat{H}(t_f - t)} \hat{q} e^{-i\hat{H}(t - t_i)} | q_i \rangle \tag{2.27}$$

如之前那样,我们将时间间隔无限拆分并再次积分,就可以得到矩阵元的路径积分表示:

$$\langle q_f, t_f | \hat{q}(t) | q_i, t_i \rangle = \int_{q(t_i) = q_i}^{q(t_f) = q_f} \mathcal{D}[q] q(t) e^{iS[q]} \tag{2.28} \label{eq:2.28}$$

而为了使用路径积分表示两个不同时间的算符的乘积, 我们引入一个新算符, 其被定义为

时序算符

$$\begin{array}{c} \downarrow \\ T \end{array} \left[\prod_{i=1}^n \hat{q}_i(t_i) \right] = \sum_p \left(\prod_{j=1}^{n-1} \Theta(t_{p_j} - t_{p_{j+1}}) \right) \epsilon \prod_{k=1}^n \hat{q}_{pk}(t_{pk}) \quad \text{(2.29)} \\ \uparrow \\ \mathring{ \mathref{N}} 跃函数, 即 \ x \geq 0 \rightarrow \Theta(x) = 1; x < 0 \rightarrow \Theta(x) = 0 \end{array} \right]$$

于是我们不难看出,虽然这个算符形式看起来十分复杂,但并没有对原来的算符进行实质性改变,只不过是按照时间顺序把这些算符的乘积进行排序,这也是这个算符被称为**时序算符**的原因.并且对于式子中的 ϵ ,其对于玻色子算符总是取 +1,对于费米子算符,其依赖于前面的排序的奇偶性:对于偶置换取正,对于奇置换取负. 我们以最简单的二阶情景为例:

$$T\hat{q}(t)\hat{q}(t') = \Theta(t - t')\hat{q}(t)\hat{q}(t') + \Theta(t' - t)\hat{q}(t')\hat{q}(t)$$
(2.30)

其路径积分表示为

$$\langle q_f,t_f|T\hat{q}(t)\hat{q}(t')|q_i,t_i\rangle = \int_{q(t_i)=q_i}^{q(t_f)=q_f} \mathcal{D}[q]q(t)q(t')e^{iS[q]} \tag{2.31}$$

回想这一形式的物理意义, 我们发现路径积分自然表示了算符按一个时序的乘积的期望.

路径积分的哈密顿形式

我们先前的作用量都是有拉格朗日形式给出,现在我们一并写出同样对于哈密顿形式的传播子,积分测度以及作用量:

$$\begin{split} U(q_f,q_i;t_f-t_i) &= \lim_{N\to\infty} \int \prod_{k=1}^{N-1} \mathrm{d}q_k \int \prod_{k=1}^N \frac{\mathrm{d}p_k}{2\pi} e^{\sum_{k=1}^N \left[ip_k(q_k-q_{k-1})-i\epsilon\frac{p_k^2}{2m}-i\epsilon V(q_{k-1})\right]} \\ &\equiv \int_{q(t_i)=q_i}^{q(t_f)=q_f} \mathcal{D}[p,q] e^{iS[p,q]} \\ \mathcal{D}[p,q] &= \lim_{N\to\infty} \prod_{k=1}^{N-1} \mathrm{d}q_k \prod_{k=1}^N \frac{\mathrm{d}p_k}{2\pi} \\ S[p,q] &= \lim_{N\to\infty} \sum_{k=1}^N \left[p_k(q_k-q_{k-1})-\epsilon\frac{p_k^2}{2m}-\epsilon V(q_{k-1})\right] \\ &\equiv \int_{t_i}^{t_f} \mathrm{d}t[p\dot{q}-H(p,q)] \end{split}$$

2.1.3 欧式路径积分

回忆我们在统计力学中的学习, 通过配分函数可以得到几乎全部我们所关心的物理量, 而同样的, 对于凝聚态场论, 我们仍需要重点关注配分函数.

我们首先写出配分函数的形式

$$Z = \operatorname{Tr} e^{-\beta \hat{H}} = \int dq \langle q | e^{-\beta \hat{H}} | q \rangle$$
 (2.33)

为了揭示经典与量子统计力学直接的联系, 我们从演化算符 $e^{-i\hat{H}t}$ 在一个虚时 (时间为虚数) 的情况下求解, 其中虚时 $t=-i\beta$ (对于 SI 单位制, $t=-i\beta\hbar$), 自然得出凝聚态场论中的配分函数. 我们自然看出来一个重要的事情: 经典统计力学与凝聚态场论 (也称为量子统计力学) 之间仅仅差了一个变换 $t\to -i\tau$. 我们称这个变换为 **Wick 转动 (Wick rotation)**. 即在复时间平面上旋转了 $-\pi/2$ 角. 虚时的概念在凝聚态场论中至关重要, 我们依次作 **Wick** 转动, 传播子变为:

$$\begin{split} U(q_f,q_i;-i\tau) &= \lim_{N \to \infty} \left(\frac{mN}{2\pi\tau}\right)^{N/2} \int \prod_{k=1}^{N-1} dq_k e^{-\epsilon \sum_{k=1}^{N} \left[\frac{m}{2} \frac{(q_k-q_{k-1})^2}{\epsilon^2} + V(q_{k-1})\right]} \\ &= \int_{q(0)=q_i}^{q(\tau)=q_f} \mathcal{D}[q] e^{-S_E[q]}. \end{split} \tag{2.34}$$

对于虚时路径积分, 同样的边界满足 $q(0) = q_i; q(\tau) = q_f$, 对于不同路径的权重同样有作用量给出:

欧几里得作用量(欧式作用量)

经典极限对于虚时路径积分也是同样的,并且通过 Wick 旋转,我们可以将欧式作用量变为实时作用量:

$$S_E[q] \xrightarrow{\text{Wick } \vec{\kappa} \not = it} i \int_0^t \mathrm{d}t' \left[-\frac{m}{2} \dot{q}^2 + V(q) \right] = -iS[q]. \tag{2.36}$$

自然可以继续写出配分函数为

$$Z = \int dq U(q, q, -i\beta) = \int_{q(\beta) = q(0)} \mathcal{D}[q] e^{-S_E[q]}$$
 (2.37)

作为所有周期为 β 的周期性路径的虚时路径积分, 虚时算符 $\hat{q}(\tau) = e^{\tau \hat{H}} \hat{q} e^{-\tau \hat{H}}$ 的期望自然写出

$$\langle \hat{q}(\tau) \rangle = \frac{1}{Z} \operatorname{Tr} \left[e^{-\beta \hat{H}} \hat{q}(\tau) \right] = \frac{1}{Z} \int_{q(\beta) = q(0)} \mathcal{D}[q] q(\tau) e^{-S_E[q]} \tag{2.38}$$

同样的, 对于多个不同时间算符的时序乘积, 我们利用时序算符按 τ 进行排序, 并有

$$\langle T_{\tau}\hat{q}(\tau)\hat{q}(\tau')\rangle = \frac{1}{Z} \int_{q(\beta)=q(0)} \mathcal{D}[q]q(\tau)q(\tau')e^{-S_E[q]}$$
 (2.39)

如果 $\beta \to 0$ 或 $\hbar \to 0$, 传播子 $U(q,q;-i\beta\hbar)$ 就可以仅利用一个时间 步 (N=1) 计算出来⁸. 其导致

8: 为了直观的和德布罗意关系联系起来, 此处再次把 ħ 显现出来

$$\begin{split} Z_{\text{cl}} &= \frac{1}{\hbar} \sqrt{\frac{m}{2\pi\beta}} \int \mathrm{d}q e^{-\beta V(q)} \\ &\equiv \int_{-\infty}^{\infty} \frac{\mathrm{d}p}{2\pi\hbar} \int_{-\infty}^{\infty} \mathrm{d}q \mathrm{exp} \bigg\{ -\beta \bigg[\frac{p^2}{2m} + V(q) \bigg] \bigg\} \end{split} \tag{2.40}$$

我们发现配分函数变为经典配分函数, 在有限温度 $T < \infty$ 的情况下, 如果势能 V(q) 在德布罗意波长 $\xi_{th} \sim \hbar/\sqrt{mT}$ 的数量级下的长度尺度缓慢变化, 那么我们认为量子统计力学的配分函数退化为经典统计力学的配分函数, 即**对应原理**.

方程还显示了经典系统的一个非常重要的特性: 热力学和动力学是分离的: 粒子的位置和动量是独立变量, 可以积分出动量 (这会产生对自由能的附加贡献作用), 并仅以位置变量的形式写出配分函数. 相比之下, 在量子系统中, 坐标和动量是两个不对易算符, 因此静力学和动力学不是独立的. 这就是为什么配分函数可以与虚时中的演化算子相关联的原因.

题目: 空间内存在一个有质量的一维自由粒子

已知空间内存在一个有质量的一维自由粒子, 质量为 m. 请计算出它的传播子

对于自由粒子, 其拉格朗日量中的势能为 0, 仅有动能项, 对于位置 q 的粒子, 我们直接写出其拉格朗日量:

$$L(q,\dot{q}) = \frac{1}{2}m\dot{q}^{2} \tag{2.41}$$

由于我们需要使用路径积分解决这个问题, 我们把作用量按照极限求和的形式写出:

$$S = \int_{t_i}^{t_f} dt \frac{m}{2} \dot{q}^2 \to \epsilon \sum_{k=1}^{N} \frac{m}{2} \frac{(q_k - q_{k-1})^2}{\epsilon^2}$$
 (2.42)

继续写出路径积分形式的传播子:

$$U(q_f,q_i;t) = \lim_{N \rightarrow \infty} \left(\frac{mN}{2\pi i t}\right)^{N/2} \int \prod_{k=1}^{N-1} \mathrm{d}q_k \exp\left\{i\frac{m}{2\epsilon} \sum_{k=1}^N (q_k - q_{k-1})^2\right\} \tag{2.43}$$

对变量逐个积分,得到最终结果,计算过程位于右侧附录

$$U(q_f,q_i;t) = \left(\frac{m}{2\pi i t}\right)^{1/2} \exp\left(i\frac{m(q_f-q_i)^2}{2t}\right) \tag{2.44} \label{eq:2.44}$$

这个累次积分的计算很容易出错,我在对应的 mathematica 文件中给出了相应的数值验证代码供自行验证.

Remark 2.1.2 事实上,像示例中那样逐步计算高斯积分虽然可行,但十分麻烦,那么有没有那么一种方法可以简化我们的运算负担呢?答案是肯定的.按照下面的五个步骤可以大大简化这个复杂的过程.

1. 表达传播子: 将传播子表示为所有满足边界条件的路径积分

$$U(x',T;x,0) = \int_{x(0)=x}^{x(T)=x'} \mathcal{D}[x(t)]e^{iS[x(t)]}$$
 (2.45)

- 2. 分解路径: 将路径分解为经典路径 $x_{cl}(t)$ 和量子路径 (或者称量子涨落) y(t), 即 $x(t) = x_{cl}(t) + y(t)$, 其中 y(0) = y(T) = 0.
- 3. 计算经典作用量 S_{cl} : 求解经典运动方程, 代入边界条件得到 经典路径, 并计算其作用量.
- 4. 处理涨落积分: 对于二次型作用量, 涨落部分的路径积分为高斯型, 结果为归一化因子 N(T).

我们首先对 q_1 进行积分, 式子变形为

$$\begin{split} U(q_f,q_i;t) &= \lim_{N \to \infty} \left(\frac{mN}{2\pi i t}\right)^{N/2} \int \prod_{k=1}^{N-1} \mathrm{d}q_k \\ &\times \exp\left\{i \frac{m}{2\epsilon} (q_1-q_i)^2 + i \frac{m}{2\epsilon} \sum_{k=2}^N (q_k-q_{k-1})^2\right\} \end{split}$$

我们提取出对于 a, 的部分

$$\begin{split} U(q_f,q_i;t) &= \lim_{N \to \infty} \left(\frac{mN}{2\pi i t}\right)^{N/2} \\ &\times \int \mathrm{d}q_1 \exp\left\{i\frac{m}{2\epsilon}(q_1^2 + 2q_1q_0)\right\} \\ &\times \int \prod_{k=2}^{N-1} \mathrm{d}q_k \\ &\times \exp\left\{i\frac{m}{2\epsilon}q_0^2 + i\frac{m}{2\epsilon}\sum_{k=2}^N (q_k - q_{k-1})^2\right\} \end{split}$$

利用高斯积分, 我们有

$$\begin{split} U(q_f,q_i;t) &= \lim_{N \to \infty} \left(\frac{mN}{2\pi i t}\right)^{N/2} \times \sqrt{\frac{2\pi i t}{mN}} \exp\{-i\frac{2mq_0^2}{\epsilon}\} \\ &\times \int \prod_{k=2}^{N-1} \mathrm{d}q_k \\ &\times \exp\left\{i\frac{m}{2\epsilon}q_0^2 + i\frac{m}{2\epsilon}\sum_{k=2}^{N}(q_k - q_{k-1})^2\right\} \end{split}$$

不断重复对变量逐一使用高斯积分的这一 过程,直至得出结果:

$$U(q_f,q_i;t) = \left(\frac{m}{2\pi i t}\right)^{1/2} \exp\left(i\frac{m(q_f-q_i)^2}{2t}\right)$$

9: 注意: 计算后结果尽量避免使用速度 v 或加速度 a, 统一使用 x 来表示

5. 最终结果: 传播子为 $U = N(T)e^{iS_{cl}}$, 通过计算或对比确定 N(T) (实际上 e 指数的部分是一个 wick 转动的代换)

10

Proof. 谐振子的传播子:

- 1. 拉格朗日量: $L = \frac{1}{2}m\dot{x}^2 \frac{1}{2}m\omega^2x^2$
- 2. 经典路径满足 $\ddot{x} + \omega^2 x = 0$, 其解为

$$x_{\rm cl}(t) = x\cos(\omega t) + \frac{x' - x\cos(\omega T)}{\sin(\omega T)}\sin(\omega t) \tag{2.46} \label{eq:2.46}$$

3. 经典作用量

$$S_{\rm cl} = \frac{m\omega}{2\sin(\omega T)} \left[(x'^2 + x^2)\cos(\omega T) - 2xx' \right] \eqno(2.47)$$

4. 当频率 $\omega \to 0$ 时, 谐振子退化为自由粒子, 由自由粒子的结 果对比谐振子的量纲得到归一化因子

$$N(T) = \sqrt{\frac{m\omega}{2\pi i \sin(\omega T)}}$$
 (2.48)

5. 最终结果:

$$\begin{split} U_{\rm osc}(x',T;x,0) &= \\ \sqrt{\frac{m\omega}{2\pi i \sin(\omega T)}} \exp\left(\frac{im\omega}{2\sin(\omega T)} \left[(x'^2 + x^2)\cos(\omega T) - 2xx' \right] \right) \end{split} \tag{2.49}$$

矢量势的路径积分

直接对经典哈密顿量是较为困难的, 我们以矢量势为例来解释这个 事情:

我们同样以一个例子来引入这个问题: 考虑一个三维空间内的自由 粒子, 受到 $\mathbf{B} = \nabla \times \mathbf{A}$ 的磁场作用, 其拉格朗日量可以写为

要对经典哈密顿量 H(p,q) 进行量子化, 仅仅将经典变量 p 和 q 替换为相应的量 子算符通常是不够的. 当这种对应规则导 致产生非对易算符 \hat{p} 和 \hat{q} 的乘积时,必须 通过附加条件 (例如哈密顿量的厄米性)来 确定算符的顺序. 这些困难在路径积分表 述中也表现出来: 为了尊重算符的正确顺 序, 路径积分必须被仔细定义.

粒子却能
$$L(\mathbf{q}, \dot{\mathbf{q}}) = \frac{1}{2}m\dot{\mathbf{q}}^2 + e\dot{\mathbf{q}} \cdot \mathbf{A}(\mathbf{q})$$
 (2.50)

10: 整个过程最难的部分通常为得出归一 化因子, 在下面我们将通过谐振子的方式 来实际认识如何应用这个方法.

广义势能 (附录中给出了详细的讨论)

同样的,我们可以以此直接给出哈密顿量

$$H(\mathbf{p}, \mathbf{q}) = \frac{[\mathbf{p} - e\mathbf{A}(\mathbf{q})]^2}{2m}$$
(2.51)

在确定量子哈密顿量时,必须选定算符乘积 $\hat{\mathbf{p}} \cdot \mathbf{A}(\hat{\mathbf{q}})$ 的排序顺序. 通过要求哈密顿量保持厄米性这一条件,可推导出

$$\hat{H} = \frac{1}{2m} \left[\hat{\mathbf{p}}^2 - e \hat{\mathbf{p}} \cdot \mathbf{A}(\hat{\mathbf{q}}) - e \mathbf{A}(\hat{\mathbf{q}}) \cdot \hat{\mathbf{p}} + e^2 \mathbf{A}(\hat{\mathbf{q}})^2 \right] = \frac{\left[\hat{\mathbf{p}} - e \mathbf{A}(\hat{\mathbf{q}}) \right]^2}{2m} \tag{2.52}$$

该表达式也可通过规范不变性推导得出, 这意味着哈密顿量只能是规范不变组合 $\hat{\mathbf{p}} - e\mathbf{A}(\hat{\mathbf{q}})$ 的函数. 任何其他量子化方案都会在哈密顿量中引入正比于对易子 $e[\hat{\mathbf{p}},\mathbf{A}(\hat{\mathbf{q}})] = -ie\nabla \cdot \mathbf{A}(\hat{\mathbf{q}})$ 的项, 这将同时破坏厄米性和规范不变性.

由于拉格朗日量中存在附加项 $e\dot{\mathbf{q}}\cdot\mathbf{A}(\mathbf{q})$,我们预期沿无穷小轨迹 $^{11}(\mathbf{q}_k,\mathbf{q}_{k-1};)$ 这里是 trajectory,而不是 path,之后的的作用量 $S(\mathbf{q}_k,\mathbf{q}_{k-1};\epsilon)$ 可表达为 代 trajectory,路径指代 path.

$$S(\mathbf{q}_k, \mathbf{q}_{k-1}; \epsilon) = \frac{m}{2} \frac{(\mathbf{q}_k - \mathbf{q}_{k-1})^2}{\epsilon} + e(\mathbf{q}_k - \mathbf{q}_{k-1}) \cdot \mathbf{A}(\mathbf{q}) \qquad (2.53)$$

由于矢量势 $\mathbf{A}(\mathbf{q})$ 的作用不可忽视, 所以我们面临一个关键问题: 这个矢量势究竟该取路径端点 \mathbf{q}_k 、 \mathbf{q}_{k-1} , 还是中间某个位置的值? 考虑到典型量子路径满足 $|\mathbf{q}_k - \mathbf{q}_{k-1}| \sim \sqrt{\epsilon}$ 的量级关系, $\dot{\mathbf{q}} \cdot \mathbf{A}(\mathbf{q})$ 的不同离散化方式会引起作用量 ϵ 量级的变化——这在路径积分中绝不能忽略.

要解决这个难题,我们可以从哈密顿量的厄米性要求入手. 该条件直接决定了时间演化算符必须满足对称关系 $U(\mathbf{q}_k,\mathbf{q}_{k-1};\epsilon)^*=U(\mathbf{q}_{k-1},\mathbf{q}_k;-\epsilon)$, 进而导出作用量的反对称性 $S(\mathbf{q}_k,\mathbf{q}_{k-1};\epsilon)=-S(\mathbf{q}_{k-1},\mathbf{q}_k;-\epsilon)$. 通过仔细分析这些约束条件,最终唯一可行的方案是将矢量势 \mathbf{A} 取值于路径中点 $(\mathbf{q}_k+\mathbf{q}_{k-1})/2$. 当然,对称化的处理方式不止一种——例如取端点平均 $[\mathbf{A}(\mathbf{q}_k)+\mathbf{A}(\mathbf{q}_{k-1})]/2$,或是构造其他关于 \mathbf{q}_k 和 \mathbf{q}_{k-1} 对称的表达式——这些方案之所以可行,关键在于它们都满足量子路径积分的收敛性: 要求差异项为 $\mathcal{O}[(\mathbf{q}_k-\mathbf{q}_{k-1})^2]=\mathcal{O}(\epsilon)$,而相应作用量的差异项则为可忽略的 $\mathcal{O}(\epsilon^{3/2})$ 量级.

但是我们发现, 由哈密顿量厄米性导出的"中点法则"是其中唯一与规范不变性相容的选择. 在规范变换 $\mathbf{A} \to \mathbf{A} + \nabla \Lambda$ 下, 沿路径 $(\mathbf{q}_i,t_i) \to (\mathbf{q}_f,t_f)$ 的作用量只会改变关于矢量势的那一项

$$e\int_{t_i}^{t_f}\mathrm{d}t\dot{\mathbf{q}}\cdot\nabla\Lambda(\mathbf{q})=e\int_{\mathbf{q}_i}^{\mathbf{q}_f}\mathrm{d}\mathbf{q}\cdot\nabla\Lambda(\mathbf{q})=e[\Lambda(\mathbf{q}_f)-\Lambda(\mathbf{q}_i)]\quad\text{(2.54)}$$

传播子相应变换为

$$U(\mathbf{q}_f, \mathbf{q}_i; t_f - t_i) \rightarrow e^{ie\Lambda(\mathbf{q}_f)} U(\mathbf{q}_f, \mathbf{q}_i; t_f - t_i) e^{-ie\Lambda(\mathbf{q}_i)}$$
 (2.55)

同时反映了波函数相位的变化

$$\varphi(\mathbf{q}) \to e^{ie\Lambda(\mathbf{q})} \varphi(\mathbf{q})$$
 (2.56)

除一个平庸的相位因子外, 传播子与规范函数 Λ 无关 (规范不变性). 在路径积分表述中, 作用量的改变量由

$$e\sum_{k=1}^{N} (\mathbf{q}_k - \mathbf{q}_{k-1}) \cdot \nabla \Lambda(\mathbf{u}_k)$$
 (2.57)

若选择在点 u_k 处计算式2.53中的矢量势A,为验证式2.54与2.57的一致性(此处假设规范函数 Λ 具有良好数学性质),可将式2.54重新表述为:

$$\begin{split} &\Lambda(\mathbf{q}_f) - \Lambda(\mathbf{q}_i) = \sum_{k=1}^N [\Lambda(\mathbf{q}_k) - \Lambda(\mathbf{q}_{k-1})] \\ &= \sum_{k=1}^N \left\{ (\mathbf{q}_k - \mathbf{q}_{k-1}) \cdot \nabla \Lambda(\mathbf{u}_k) \right. \\ &\left. + \frac{1}{2} (1 - 2\theta) [(\mathbf{q}_k - \mathbf{q}_{k-1}) \cdot \nabla]^2 \Lambda(\mathbf{u}_k) + \mathcal{O}[(\mathbf{q}_k - \mathbf{q}_{k-1})^3] \right\} \end{split}$$

当选取离散化点 $\mathbf{u}_k = \mathbf{q}_{k-1} + \theta(\mathbf{q}_k - \mathbf{q}_{k-1})$ 时(其中 $0 \le \theta \le 1$),由于经典路径满足 $|\mathbf{q}_k - \mathbf{q}_{k-1}|^2 \sim \epsilon$,若未选择中点法则 $(\theta \ne 1/2)$,则方程右端第二项在 $\epsilon \to 0$ 极限下不会消失. 唯一可行的方案是取 $\theta = 1/2$,即 $\mathbf{u}_k = (\mathbf{q}_k + \mathbf{q}_{k-1})/2$ (中点法则). 在此选择下,方程2.54与2.57完全一致.

为完整论证中点法则的普适性, 我们通过显式计算传播子 $U(\mathbf{q}_k,\mathbf{q}_{k-1};\epsilon)$ 给出另一种证明. 将其重构为:

为了避免直接指数分解造成的误差,我们再次应用

$$e^{\bar{\epsilon}(\hat{A}+\hat{B})} = e^{\frac{\bar{\epsilon}}{2}\hat{B}}e^{\bar{\epsilon}\hat{A}}e^{\frac{\bar{\epsilon}}{2}\hat{B}} + \mathcal{O}(\bar{\epsilon}^3) \tag{2.60}$$

于是得到:

$$\begin{split} \langle \mathbf{q}_{k}|e^{-i\bar{\epsilon}\mathbf{u}\cdot[\hat{\mathbf{p}}-eA(\hat{\mathbf{q}})]}|\mathbf{q}_{k-1}\rangle &= e^{\frac{i}{2}e\bar{\epsilon}\mathbf{u}\cdot\mathbf{A}(\mathbf{q}_{k})} \\ &\times \langle \mathbf{q}_{k}|e^{-i\bar{\epsilon}\mathbf{u}\cdot\hat{\mathbf{p}}+\mathcal{O}(\epsilon^{3/2})}|\mathbf{q}_{k-1}\rangle \\ &\times e^{\frac{i}{2}e\bar{\epsilon}\mathbf{u}\cdot\mathbf{A}(\mathbf{q}_{k-1})} \end{split} \tag{2.61}$$

现在忽略高阶项误差,利用完备性关系插入两个单位算符,自然得出

$$\begin{split} \langle \mathbf{q}_{k}|e^{-i\bar{\epsilon}\mathbf{u}\cdot\hat{\mathbf{p}}}|\mathbf{q}_{k-1}\rangle &= \sum_{\mathbf{p},\mathbf{p}'} \langle \mathbf{q}_{k}|\mathbf{p}\rangle \langle \mathbf{p}|e^{-i\bar{\epsilon}\mathbf{u}\cdot\hat{\mathbf{p}}}|\mathbf{p}'\rangle \langle \mathbf{p}'|\mathbf{q}_{k-1}\rangle \\ &= \int \frac{\mathrm{d}^{3}p}{(2\pi)^{3}}e^{i\mathbf{p}\cdot(\mathbf{q}_{k}-\mathbf{q}_{k-1}-\bar{\epsilon}\mathbf{u})} \\ &= \frac{1}{\bar{\epsilon}^{3}}\delta\left(\frac{\mathbf{q}_{k}-\mathbf{q}_{k-1}}{\bar{\epsilon}}-\mathbf{u}\right) \end{split} \tag{2.62}$$

传播子自然可以得出:

$$\begin{split} U(\mathbf{q}_{k},\mathbf{q}_{k-1};\epsilon) &= \left(\frac{m}{2i\pi\epsilon}\right)^{3/2} \exp\biggl\{i\epsilon\biggl[\frac{m}{2}\frac{(\mathbf{q}_{k}-\mathbf{q}_{k-1})^{2}}{\epsilon^{2}} \\ &+ \frac{e}{2}\frac{\mathbf{q}_{k}-\mathbf{q}_{k-1}}{\epsilon}\cdot\left(\mathbf{A}(\mathbf{q}_{k})+\mathbf{A}(\mathbf{q}_{k-1})\right)\biggr]\biggr\} \end{split} \tag{2.63}$$

我们注意到, 当用表达式 $[A(q_k) + A(q_{k-1})]/2$ 近似表示矢量势 A(q)时 (如前所述, 这等同于中点法则), 包含作用量与虚数单位 i 相乘的指数项会呈现特定形式 12 .

多粒子系统

只需稍加扩展,我们就能为包含 N 个通过两体势 $v(q_i-q_j)$ 相互作用的粒子系统 (为简化考虑一维情形) 写出配分函数或传播子的路径积分表达式. 希尔伯特空间被定义为张量积空间 $\mathcal{H}\otimes \cdots \otimes \mathcal{H}(\mathcal{H})$ 表示单粒子希尔伯特空间) 的子空间, 其中包含所有根据粒子的量子统计特性进行适当对称化或反对称化的 N 粒子态. 配分函数可表示为 13 :

误差处理

处理误差项要注意误差余项!

计算提示

此处利用了
$$\langle \mathbf{p}|e^{-i\mathbf{u}\hat{\mathbf{p}}}|\mathbf{p}'\rangle = e^{-i\mathbf{u}\mathbf{p}'}\delta(\mathbf{p} - \mathbf{p}')$$
和 $\langle \mathbf{q}|\mathbf{p}\rangle = \frac{1}{(2\pi)^{3/2}}e^{i\mathbf{p}\cdot\mathbf{q}}$ 以及关系
$$\int \frac{\mathrm{d}^3p}{(2\pi)^3}e^{i\mathbf{p}\cdot(\mathbf{q})} = \delta^{(3)}(\mathbf{q})$$

12: 我们也可以直接验证,由传播子 $U(q_k,q_{k-1};\epsilon)$ 产生的波函数时间演化结果与哈密顿量所描述的演化一致. 这为路径积分的有效性提供了确凿证明.

13: 这里给出了一种表述, 同样也有使用 $|q_1\cdots q_N\rangle=|q_1\rangle\otimes\cdots\otimes|q_N\rangle$ 的表述方法 的, 这两种记号均可.

对所有可能的排列求和

对于玻色子系统, 置换因子 ϵ_P 取值为 1; 对于费米子系统, ϵ_P 则等于排列 P 的置换符号 (即奇排列取-1, 偶排列取 1).

类似于单粒子情况, 我们再次利用完备性关系:

$$\int dq_1 \cdots dq_N |q_1 \cdots q_N| (q_1 \cdots q_N) = 1$$
 (2.65)

对于每个时间步,我们有路径积分

$$Z = \frac{1}{N!} \sum_{P \in S_N} \epsilon_P \int_{q_i(\beta) = q_{P(i)}(0)} \mathcal{D}[q] e^{-S_E[q]}$$
 (2.66)

以及对于欧式作用量

$$S_{E}[q] = \int_{0}^{\beta} d\tau \left[\frac{m}{2} \sum_{i=1}^{N} \dot{q}_{i}^{2} + \sum_{\substack{i,j=1\\(i < j)}}^{N} v(q_{i} - q_{j}) \right]$$
 (2.67)

该表达式与单粒子情形具有明显相似性,但对于多粒子系统的研究并不适用.在后续内容中,我们将再次引入路径积分(更准确地说,配分函数的泛函积分表示),这种基于相干态、通过对所有场构型进行加权积分(权重由适当的作用量决定)的表述方式,最终被证明是更为便捷的数学框架.这成为(量子)统计物理与场论的核心特征:具有无限自由度的系统自然地通过场(而非所有粒子的坐标集合)进行描述.在深入探究量子多体系统之前,我们将在下节讨论场论的一个基本范例.

2.1.4 统计物理中的泛函积分

在这一节中, 我们探讨量子谐振弦¹⁴的泛函积分方法. 这个简单模型已经展现出(更复杂的, 即非谐)量子系统场论的诸多核心特征.

经典谐振弦

我们考虑一个具有平衡长度 L 和线质量密度 ρ 的一维谐振弦系统. 该系统的动力学由拉格朗日量描述, 其中 $\phi(x,t)$ 表示位于平衡构型 中 x 至 x + dx 位置之间, 质量为 ρ dx 的质元相对于平衡位置的位移.

$$L[\phi] = \int_0^L \mathrm{d}x \mathcal{L}(\partial_x \phi, \dot{\phi}) \tag{2.68}$$

其中 \mathcal{L} 称为拉格朗日密度.

对应连续介质的动能密度

$$\mathcal{L}(\partial_x \phi, \dot{\phi}) = \frac{1}{2} \rho \dot{\phi}^2 - \frac{1}{2} \kappa (\partial_x \phi)^2$$
 (2.69)

反映 Hooke 定律的连续形式的势能

14: 在粒子视角下, '谐振' 系统 (即拉格朗日量在变量中呈二次型的系统) 对应无相互作用的粒子体系, 而' 非谐振' 系统则包含粒子间的相互作用. 这些粒子未必对应裸粒子, 而可能指代元激发 (这一概念将在后续章节详细阐述). 而弦则区别于之前的单个粒子, 注意这里并不是"弦论"当中的弦, 应注意区分.

该谐振弦可视为一维 "晶体" 的低能或长波极限——该晶体由质量 $m = \rho a$ 的质点构成 (平衡态间距为 a), 质点间通过劲度系数 κ/a 的 弹簧连接¹⁵.

由欧拉-拉格朗日方程

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial \mathcal{L}(\partial_x \phi, \dot{\phi})}{\partial \dot{\phi}} + \frac{\mathrm{d}}{\mathrm{d}x} \frac{\partial \mathcal{L}(\partial_x \phi, \dot{\phi})}{\partial (\partial_x \phi)} = 0 \tag{2.70}$$

可以求解出波函数 (求解时注意把 $\partial_x \phi$ 和 $\dot{\phi}$ 作为独立变量分别求导):

$$\rho \ddot{\phi} - \kappa \,\partial_x^2 \phi = 0 \tag{2.71}$$

解的形式为平面波 $\phi(x,t) \propto \exp\{i(kx-c|k|t)\} + \text{c.c.}$, 其中 c.c. 为复共轭项, 其传播速度为 $c = \sqrt{\kappa/\rho}$. 在周期性边界条件 $\phi(x+L,t) = \phi(x,t)$ 下, 波数 k 取分立值 $k = p\frac{2\pi}{L}$ (p 为整数).

量子谐振弦

 $\phi(x,t)$ 的共轭动量定义为

$$\Pi(x,t) = \frac{\partial \mathcal{L}(\partial_x \phi, \dot{\phi})}{\partial \dot{\phi}(x,t)} = \rho \dot{\phi}(x,t) \tag{2.72}$$

相应的哈密顿量则定义为

$$H = \int_0^L \mathrm{d}x \left[\Pi \dot{\phi} - \mathcal{L}(\partial_x \phi, \dot{\phi}) \right] = \int_0^L \mathrm{d}x \left[\frac{\Pi^2}{2\rho} + \frac{1}{2} \kappa (\partial_x \phi)^2 \right] \tag{2.73}$$

为了对弦进行量子化、我们将 ϕ 和 Π 提升为满足对易关系的算符

$$[\hat{\phi}(x), \hat{\Pi}(x')] = i\delta(x - x') \tag{2.74}$$

由于满足周期性关系,显然引入傅里叶变换进行处理是极其有效的:

$$\hat{\phi}(k) = \frac{1}{\sqrt{L}} \int_0^L \mathrm{d}x e^{-ikx} \hat{\phi}(x) = \hat{\phi}^\dagger(-k)$$

$$\hat{\Pi}(k) = \frac{1}{\sqrt{L}} \int_0^L \mathrm{d}x e^{-ikx} \hat{\Pi}(x) = \hat{\Pi}^\dagger(-k)$$
(2.75)

傅里叶变换后的场算符满足对易关系

$$\label{eq:partial_problem} \begin{split} [\hat{\phi}(k),\hat{\phi}(k')] = [\hat{\Pi}(k),\hat{\Pi}(k')] = 0 \quad \ \ \, \ \, \ \, [\hat{\phi}(k),\hat{\Pi}^{\dagger}(k')] = i\delta_{k,k'} \end{split} \tag{2.76}$$

这使我们能够将哈密顿量写成谐振子的求和形式16

$$\hat{H} = \sum_{k} \left[\frac{1}{2\rho} \hat{\Pi}^{\dagger}(k) \hat{\Pi}(k) + \frac{1}{2} \rho \omega_k^2 \hat{\phi}^{\dagger}(k) \hat{\phi}(k) \right]$$
 (2.77)

15: 一 维 晶 体 系 统 的 拉 格 朗 日 量 可 表 述 为 $L(q_i,\dot{q}_i) = \frac{1}{2}\sum_{i=1}^n [m\dot{q}_i^2 - k_s(q_{i+1} - q_i)^2]$, 其 中 q_i 表示第 i 个原子相对于其平衡位置 的位移. 该系统的简正模 (声子) 以频率 $\omega_k = \sqrt{2k_s/m} \left(1 - \cos ka\right)^{1/2}$ 传播. 在 长波极限 $|k|a \ll 1$ 下,可恢复连续谐振弦的线性频谱关系 $\omega = c|k|$, 其中波速 $c = \sqrt{\kappa/\rho}$.

在这里我们发现,场是一个无穷多自由度的物理量,于是坐标提升为位移场,动量变为共轭动量,但是它们之间满足的对易关系不变.在经典物理学中,我们有百谈不厌的'质点'的概念,但是在场论中,我们描述一个粒子就不能够通过单一的坐标和动量来表述,而是使用位移场算符和共轭动量作为替代,在之后我们会逐步展示这类语言的必要性

16: 此处使用傅里叶变换把连续化的场变 为多个谐振子的叠加 其中 $\omega_k=c|k|$, 且求和覆盖所有满足边界条件 $e^{ikL}=1$ 的波矢 $k=p\frac{2\pi}{L}(p\in\mathbb{Z})$. 通过引入产生算符和湮灭算符 \hat{a}_k^\dagger 和 \hat{a}_k 来辅助对角化哈密顿量 \hat{H}

$$\begin{split} \hat{a}(k) &= \sqrt{\frac{\rho \omega_k}{2}} \left[\hat{\phi}(k) + \frac{i}{\rho \omega_k} \hat{\Pi}(k) \right], \\ \hat{a}^\dagger(k) &= \sqrt{\frac{\rho \omega_k}{2}} \left[\hat{\phi}^\dagger(k) - \frac{i}{\rho \omega_k} \hat{\Pi}^\dagger(k) \right]. \end{split} \tag{2.78}$$

产生湮灭算符具有如下对易关系

$$[\hat{a}(k),\hat{a}(k')] = [\hat{a}^{\dagger}(k),\hat{a}^{\dagger}(k')] = 0, \quad [\hat{a}(k),\hat{a}^{\dagger}(k')] = \delta_{k,k'} \quad (2.79)$$

显然两个场算符可以通过我们引入的产生算符和湮灭算符重写为如下形式¹⁷.

$$\begin{split} \hat{\phi}(k) &= \sqrt{\frac{1}{2\rho\omega_k}} \left(\hat{a}(k) + \hat{a}^\dagger(-k) \right) \\ \hat{\Pi}(k) &= i\sqrt{\frac{\rho\omega_k}{2}} \left(\hat{a}^\dagger(-k) - \hat{a}(k) \right) \end{split} \tag{2.80}$$

将 $\hat{\phi}(k)$ 和 $\hat{\Pi}(k)$ 的表达式代入原哈密顿量, 展开后利用算符的对易 关系化简¹⁸.

最终我们得到:

$$\hat{H} = \sum_{k} \omega_k \left(\hat{a}_k^{\dagger} \hat{a}_k + \frac{1}{2} \right) \tag{2.81}$$

定义以 k 为下标的谐振子本征态为

$$|n_{k}\rangle = \frac{1}{\sqrt{n_{k}!}} \left(\hat{a}_{k}^{\dagger}\right)^{n_{k}} |0\rangle,$$

$$\omega_{k} \left(\hat{a}_{k}^{\dagger} \hat{a}_{k} + \frac{1}{2}\right) |n_{k}\rangle = \omega_{k} \left(n_{k} + \frac{1}{2}\right) |n_{k}\rangle$$
(2.82)

其中 $|0\rangle=|n_k=0\rangle$ 是归一化真空态: $\hat{a}_k|0\rangle=0$ 且 $\langle 0|0\rangle=1$. 阶梯 算符 \hat{a}_k 和 \hat{a}_k^{\dagger} 满足

$$\begin{split} \hat{a}_k |n_k\rangle &= \sqrt{n_k} |n_k - 1\rangle \\ \hat{a}_k^\dagger |n_k\rangle &= \sqrt{n_k + 1} |n_k + 1\rangle \end{split} \tag{2.83}$$

可视为动量 k 的元激发 (声子) 的湮灭算符和产生算符, 其中 $n_k = \langle n_k | \hat{a}_k^\dagger \hat{a}_k | n_k \rangle$ 表示态 $|n_k \rangle$ 中的声子数目. 哈密顿量的本征态可通过

17: 这里通过系数 $\sqrt{\frac{1}{2\rho\omega_k}}$ 和 $i\sqrt{\frac{\rho\omega_k}{2}}$ 的调整,确保算符满足正则对易关系 $[\hat{\phi}(k),\hat{\Pi}(k')]=i\delta(k-k')$

18: 这里很多教材都采取 'one easily finds' 等叙述方法跳过了对角化这一块的计算, 实际上对于初学者还是具有很大的门槛的, 在相应的 mathematica 文件中给出了计算代码 (3/12, 尚未搞明白 NCAlgebra 包,目前代码还不可用)

态 $|n_k\rangle$ 的张量积构造获得,

$$\begin{split} |n_{k_1}\cdots n_{k_i}\cdots\rangle &= |n_{k_1}\rangle\otimes\cdots\otimes|n_{k_i}\rangle\otimes\cdots = \prod_i \frac{\left(\hat{a}_{k_i}^\dagger\right)^{n_{k_i}}}{\sqrt{n_{k_i}!}}|\mathrm{vac}\rangle\\ \hat{H}|n_{k_1}\cdots n_{k_i}\cdots\rangle &= \left[\sum_j \left(n_{k_j} + \frac{1}{2}\right)\omega_{k_j}\right]|n_{k_1}\cdots n_{k_i}\cdots\rangle \end{split} \tag{2.84}$$

其中 $|vac\rangle$ 表示真空态,即满足 $\hat{a}_k|vac\rangle=0$ (对所有 k)的归一化态. 本征态 $|n_{k_1}\cdots n_{k_i}\cdots\rangle$ 具有总声子数 $n=\sum_i n_{k_i}$. 希尔伯特空间可写为直和 $\mathcal{H}=\mathcal{H}_0\oplus\mathcal{H}_1\oplus\cdots\oplus\mathcal{H}_n\oplus\cdots$, 其中 \mathcal{H}_n 表示含 n 个声子的希尔伯特空间.这类希尔伯特空间通常称为 Fock 空间,也即是二次量子化形式的基础.

泛函积分表述可通过遵循前面讨论的路径积分相同步骤获得. 其中 $\hat{\phi}(x)$ 和 $\hat{\Pi}(x)$ 扮演单粒子位置算符 \hat{q} 与动量算符 \hat{p} 的角色(唯一区别在于它们都由 x 标记). 可以引入满足 $\hat{\phi}(x)|\phi\rangle = \phi(x)|\phi\rangle$ 和 $\hat{\Pi}(x)|\Pi\rangle = \Pi(x)|\Pi\rangle$ 的态矢 $|\phi\rangle$ 与 $|\Pi\rangle$. 由于这两组态矢 $\{|\phi\rangle\}$ 和 $\{|\Pi\rangle\}$ 构成希尔伯特空间的完备基组,我们有以下完备性关系:

$$\mathcal{N}\lim_{a\to 0} \int \prod_{l=0}^{L/a} \mathrm{d}\phi(la)|\phi\rangle\langle\phi| = 1$$

$$\mathcal{N}'\lim_{a\to 0} \int \prod_{l=0}^{L/a} \mathrm{d}\Pi(la)|\Pi\rangle\langle\Pi| = 1$$
(2.85)

此处我们对一维弦进行离散化处理, 连续变量 x 变为离散变量 x = la. 当 $a \to 0$ 时恢复为谐振弦¹⁹. 此步骤对于正确定义完备性关系及泛函积分测度是必要的. \mathcal{N} 和 \mathcal{N}' 是不重要的归一化常数, 它们对配分函数贡献一个因子, 但不影响期望值. 后续推导中将予以忽略.

19: 此处有多种表述方式,如谐振弦(string),谐振链(chain)等等,此后统一使用弦作为表达(本书中不会涉及弦论)

为将配分函数表示为泛函积分, 我们使用第一个完备性关系得到

$$Z = \sum_{n} \langle n|e^{-\beta\hat{H}}|n\rangle = \int d\phi \sum_{n} \langle n|e^{-\beta\hat{H}}|\phi\rangle\langle\phi|n\rangle = \int d\phi \langle\phi|e^{-\beta\hat{H}}|\phi\rangle$$
(2.86)

其中 $\mathrm{d}\phi \equiv \prod_{l=0}^{L/a} \mathrm{d}\phi(la)$ 且 $\{|n\rangle\}$ 表示哈密顿量 \hat{H} 的完备基组. 我们现按照开头使用的方法, 将虚时 β 分割为 N 个无穷小步长 $\epsilon = \beta/N^{20}$.

$$Z = \int \prod_{k=1}^{N} d\phi_k \prod_{k=1}^{N} \langle \phi_k | e^{-\epsilon \hat{H}} | \phi_{k-1} \rangle$$
 (2.87)

其中 $\phi_0 = \phi_N$, 对于 $\epsilon \to 0$, 我们可以近似得出

$$\langle \phi_k | e^{-\epsilon \hat{H}} | \phi_{k-1} \rangle = \langle \phi_k | \exp \left\{ -\frac{\epsilon}{2\rho} \int \mathrm{d}x \hat{\Pi}^2 \right\} \exp \left\{ -\frac{\epsilon \kappa}{2} \int \mathrm{d}x (\partial_x \hat{\phi})^2 \right\} | \phi_{k-1} \rangle \tag{2.88}$$

20: 虚时常用 τ 或 β 表述, 并无区别, 并且 区分这里 k 是离散时间变量, 不是之前的 과물

同样的, 我们再次利用完备性关系插入"1"

$$\begin{split} \langle \phi_k | e^{-\epsilon \hat{H}} | \phi_{k-1} \rangle &= \int \mathrm{d}\Pi_k \exp\left\{-\frac{\epsilon}{2\rho} \int \mathrm{d}x \Pi_k^2 - \frac{\epsilon \kappa}{2} \int \mathrm{d}x (\partial_x \phi_{k-1})^2 \right\} \langle \phi_k | \Pi_k \rangle \langle \Pi_k | \phi_{k-1} \rangle \\ &= \int \mathrm{d}\Pi_k \exp\left\{-\frac{\epsilon}{2\rho} \int \mathrm{d}x \Pi_k^2 - \frac{\epsilon \kappa}{2} \int \mathrm{d}x (\partial_x \phi_{k-1})^2 + i \int \mathrm{d}x \Pi_k (\phi_k - \phi_{k-1}) \right\} \end{split}$$

将完备性关系代入原本配分函数2.87并取连续时间极限后,配分函数变为

此处使用 $\langle \phi_k | \Pi_k \rangle = \exp\{i \int dx \Pi_k \phi_k\}$ 结果忽略了一个不相关的乘以公式的系数(即乘性系数)

$$Z = \int_{\phi(x,\beta) = \phi(x,0)} \mathcal{D}[\Pi,\phi] \exp\left\{-\int_0^\beta \mathrm{d}\tau \int_0^L \mathrm{d}x \left[\frac{\Pi^2}{2\rho} + \frac{\kappa}{2} (\partial_x \phi)^2 - i\Pi\dot{\phi}\right]\right\} \tag{2.90}$$

配分函数可表示为虚时内对实场 $\phi(x,\tau)$ 和 $\Pi(x,\tau)$ 的泛函积分. 对 Π 进行高斯积分后, 可得

$$Z = \int_{\phi(x,\beta) = \phi(x,0)} \mathcal{D}[\phi] e^{-S_E[\phi]}$$
 (2.91)

其中欧式作用量

$$S_E[\phi] = \frac{1}{2} \int_0^\beta d\tau \int_0^L dx \left[\rho \dot{\phi}^2 + \kappa (\partial_x \phi)^2 \right]$$
 (2.92)

这里的积分测度被定义为

$$\mathcal{D}[\phi] = \lim_{N \to \infty} \lim_{a \to 0} \prod_{k=1}^{N} \prod_{l=0}^{L/a} \mathrm{d}\phi(la, k\beta/N)$$
 (2.93)

(此处同样忽略一个乘性常数). 进行 Wick 转动 $(\tau = it)$ 后, 可见实时作用量由经典作用量 $S[\phi] = \int dt \int_0^L dx \mathcal{L}(\partial_x \phi, \dot{\phi})$ 给出.

由于场 $\phi(x,\tau)$ 是周期性的, 因此可以展开为傅里叶级数

$$\phi(x,\tau) = \frac{1}{\sqrt{\beta}} \sum_{\omega_n} e^{-i\omega_n \tau} \phi(x, i\omega_n)$$

$$\phi(x, i\omega_n) = \frac{1}{\sqrt{\beta}} \int_0^\beta d\tau e^{i\omega_n \tau} \phi(x, \tau)$$
(2.94)

其中离散频率

$$\omega_n = \frac{2\pi}{\beta} n \quad (n \in \mathbb{Z}) \tag{2.95}$$

被称为松原频率 (Matsubara frequency; 虚时频率)

傅里叶变换后的场 $\phi(k,i\omega_n)$ 对角化了作用量

$$S_{E}[\phi] = \frac{\rho}{2} \sum_{k,\omega} \phi(-k,-i\omega_{n}) \left(\omega_{n}^{2} + \omega_{k}^{2}\right) \phi(k,i\omega_{n}) \tag{2.96} \label{eq:2.96}$$

因此配分函数可表示为高斯积分的乘积. 注意由于 $\phi(x,\tau)$ 是实场,

满足 $\phi(-k,-i\omega_n)=\phi^*(k,i\omega_n).$

泛函积分形式

1

2.2 二次量子化与格林函数

补充内容

A.1 带电粒子的拉格朗日量

我们知道拉格朗日量往往是用来描述保守体系的,面对像洛伦兹力 这类非保守力,我们如果仍维持保守体系的拉格朗日方程不变,势必 要引入广义势能.

我们根据电动力学的知识写出带电粒子在电磁场中的洛伦兹力:

$$F = q(E + v \times B) \tag{A.1}$$

电磁场又满足麦克斯韦方程组

$$\begin{cases} \nabla \times E + \frac{\partial B}{\partial t} = 0 \\ \nabla \cdot E = \rho/\varepsilon_0 \\ \nabla \times B - \mu_0 \varepsilon_0 \frac{\partial E}{\partial t} = \mu_0 j \\ \nabla \cdot B = 0 \end{cases}$$
 (A.2)

利用

$$B = \nabla \times A \tag{A.3}$$

代入麦克斯韦方程组的第一个式子, 得到 $\nabla \times \left(E + \frac{\partial A}{\partial t}\right) = 0$, 自然 定义出标量势

$$-\nabla \varphi = E + \frac{\partial A}{\partial t} \tag{A.4}$$

于是洛伦兹力可以重写为

$$F = q \left[-\nabla \varphi - \frac{\partial A}{\partial t} + v \times (\nabla \times A) \right] \tag{A.5}$$

现在我们需要将其写为如下形式来得到广义势能

$$Q_{\alpha} = -\frac{\partial U}{\partial q_{\alpha}} + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial U}{\partial \dot{q}_{\alpha}} \tag{A.6}$$

首先我们写出其分量形式

$$\begin{split} &(\nabla\varphi)_x = \frac{\partial\varphi}{\partial x} \\ &[v\times(\nabla\times A)]_x = v_y\left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) - v_z\left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \\ &\left(\frac{\partial A}{\partial t}\right)_x = \frac{\partial A_x}{\partial t} \end{split} \tag{A.7}$$

于是洛伦兹力的 x 分量可以写做

$$F_{x} = q \left[-\frac{\partial \varphi}{\partial x} - \frac{\partial A_{x}}{\partial t} + v_{y} \left(\frac{\partial A_{y}}{\partial x} - \frac{\partial A_{x}}{\partial y} \right) - v_{z} \left(\frac{\partial A_{x}}{\partial z} - \frac{\partial A_{z}}{\partial x} \right) \right]$$
(A.8)

由于矢势 A 是坐标和时间的函数. 由于 A 是粒子所在点的电磁场的 矢势, 因此 A 中的坐标变量是粒子在对应时刻的空间位置, 它们对时间的微商就是粒子的速度, 因此有

$$\frac{\mathrm{d}A_x}{\mathrm{d}t} = \frac{\partial A_x}{\partial t} + v_x \frac{\partial A_x}{\partial x} + v_y \frac{\partial A_x}{\partial y} + v_z \frac{\partial A_x}{\partial z} \tag{A.9}$$

分量表达式变为

$$F_x = q \left[-\frac{\partial \varphi}{\partial x} - \frac{\mathrm{d}A_x}{\mathrm{d}t} + v_x \frac{\partial A_x}{\partial x} + v_y \frac{\partial A_y}{\partial x} + v_z \frac{\partial A_z}{\partial x} \right] \tag{A.10}$$

又因为矢量势和标量势都和速度无关,自然有

$$\begin{split} \frac{\mathrm{d}A_x}{\mathrm{d}t} &= \frac{\mathrm{d}}{\mathrm{d}t} \left[\frac{\partial}{\partial v_x} (A \cdot v) \right] = \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial v_x} (-\varphi + A \cdot v) \\ \left(v_x \frac{\partial A_x}{\partial x} + v_y \frac{\partial A_y}{\partial x} + v_z \frac{\partial A_z}{\partial x} \right) &= v \cdot \frac{\partial A}{\partial x} = \frac{\partial}{\partial x} (v \cdot A) \end{split} \tag{A.11}$$

终于, 我们把分量式写为

$$F_x = q \left[-\frac{\partial}{\partial x} (\varphi - A \cdot v) | + \frac{\mathrm{d}}{\mathrm{d}t} \frac{\partial}{\partial v_x} (\varphi - A \cdot v) \right] \tag{A.12}$$

对比广义力和广义势能的式子, 我们得出了广义势能的表达

$$\boxed{U = q\varphi - qA \cdot v} \tag{A.13}$$

相应的拉格朗日量自然写出

$$L = \frac{1}{2}mv^2 - q\varphi + qA \cdot v \tag{A.14}$$

数学内容补充

B.1 楔积,外微分与外代数

B.1.1 楔积

为了讲清楚楔积 1 , 我们首先需要回忆一下高数我们已经学过的内容, 对于一个二元函数 f(x,y), 其二重积分

1: 楔积, 又称外积, 但区分向量叉乘, 叉乘 仅适用于三维情况, 而外积对维数没有要 求

$$A = \iint_D f(x, y) \, \mathrm{d}x \, \mathrm{d}y \tag{B.1}$$

假设为了便于计算积分, 需要引入变量代换

$$\begin{cases} x = x(x', y') \\ y = y(x', y') \end{cases}$$
 (B.2)

坐标变换后, 我们知道可以利用雅可比行列式写为如下形式

$$A = \iint f(x,y) \left| \frac{\partial(x,y)}{\partial(x',y')} \right| dx' dy'$$
 (B.3)

我们发现,雅可比行列式的计算往往利用了向量叉乘来求面积,但是我们知道,向量叉乘在高维情况下是非良定义的,这要求我们对高维下的体积微分的运算引入一种新的运算符: 楔积. 对于上面的二重积分的积分微元 $\mathrm{d}x\,\mathrm{d}y$,我们定义其中的运算关系: $\mathrm{d}x\wedge\mathrm{d}y$.

对于普通矢量的楔积运算, 我们根据其楔积 "次数"k 定义其为 k-矢量, 如矢量 \vec{x} 即 1-矢量, $\vec{x} \wedge \vec{y}$ 则为 2-矢量. 一个 k-矢量象征一个 k 维的**有向**体积, 而由 k-矢量之间的代数运算关系构成的代数被称为外代数, 这类代数最显著的特征就是反交换性:

$$dx \wedge dy = -dx \wedge dy$$

由于这种关系,自然可以发现

$$dx \wedge dx = -dx \wedge dx = 0$$
, $dy \wedge dy = -dy \wedge dy = 0$

或许这里不能够假定每一个人都学过雅可 比行列式,对于这个坐标变换,其雅可比行 列式定义为

$$\left|\frac{\partial(x,y)}{\partial(x',y')}\right| = \frac{\partial x}{\partial x'}\frac{\partial y}{\partial y'} - \frac{\partial x}{\partial y'}\frac{\partial y}{\partial x'}$$

写成行列式形式即

$$\mathbf{J} = \left| \frac{\partial(x,y)}{\partial(x',y')} \right| = \left| \begin{array}{cc} \frac{\partial x}{\partial y'} & \frac{\partial x}{\partial x'} \\ \frac{\partial y}{\partial y'} & \frac{\partial y}{\partial x'} \end{array} \right|$$

其几何意义代表坐标前后体积微元 (对于二维则是面积微元) 的比值, 推导过程并不是这一部分的重点, 故省略.

利用这种新的代数关系, 我们发现微元之间的坐标变换变得更加清晰

$$dx \wedge dy = \left(\frac{\partial x}{\partial x'} dx' + \frac{\partial x}{\partial y'} dy'\right) \wedge \left(\frac{\partial y}{\partial x'} dx' + \frac{\partial y}{\partial y'} dy'\right)$$

$$= \frac{\partial x}{\partial x'} \frac{\partial y}{\partial y'} dx' \wedge dy' + \frac{\partial x}{\partial y'} \frac{\partial y}{\partial x'} dy' \wedge dx'$$

$$= \left(\frac{\partial x}{\partial x'} \frac{\partial y}{\partial y'} - \frac{\partial x}{\partial y'} \frac{\partial y}{\partial x'}\right) dx' \wedge dy'$$

$$= \left|\frac{\partial (x, y)}{\partial (x', y')}\right| dx' \wedge dy'.$$
(B.4)

在运算过程中, 雅可比行列式自动出现了, 并且, 这类关系自然与高维情况下兼容, 对于 n 重微元 $dx^1 dx^2 \cdots dx^n$, 其以外代数形式写作 $dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n$, 并且满足反交换关系

$$\mathrm{d}x^i \wedge \mathrm{d}x^j = -\,\mathrm{d}x^j \wedge \mathrm{d}x^i$$

并且, 我们将被积函数 $f(x^1, x^2, ..., x^n)$ 与 $\mathrm{d} x^1 \wedge \mathrm{d} x^2 \wedge \cdots \wedge \mathrm{d} x^n$ 乘起来称为一个 n 重微分形式, 即 n 形式记为 ω :

$$\omega = f(x^1, x^2, ..., x^n) dx^1 \wedge dx^2 \wedge \cdots \wedge dx^n$$
(B.5)

于是, 我们可以重新写出 n 元函数的积分表达, 其实际上是对 n 形式 ω 的积分

$$A = \int \omega \tag{B.6}$$

对于n个变量的情况,我们对n形式进行推广,定义k-形式(k-form) α :

$$\alpha = \frac{1}{k!} \alpha_{i_1 i_2 \cdots i_k} \, \mathrm{d} x^{i_1} \wedge \mathrm{d} x^{i_2} \wedge \cdots \wedge \mathrm{d} x^{i_k} \tag{B.7}$$

这里使用了爱因斯坦求和约定. 对于任意的 k-形式, 我们要求 k-形式的分量 $\alpha_{i_1i_2\cdots i_k}$ 对 k 个指标两两反对称, 即全反对称 2 .

对于三维情况,由于只有三个变量,自然仅存在 0,1,2,3 四种非零的 微分形式,我们对于这四种微分形式分别讨论:

- 1. 0-形式就是普通的标量函数
- 2. 1-形式可以写为 $a_1 dx + a_2 dy + a_3 dz$, 不难发现其分量 (a_1, a_2, a_3) 恰好构成一个三维空间的矢量场 $\mathbf{a}(\mathbf{x})$, 于是三维空间的 1-形式 可以写为

$$a_1 dx + a_2 dy + a_3 dz = \mathbf{a}(\mathbf{x}) \cdot d\mathbf{x}$$

3. 2-形式同样可以写为

$$a = \frac{1}{2} a_{ij}(\mathbf{x}) \, \mathrm{d} x^i \wedge \mathrm{d} x^j = a_{12} \, \mathrm{d} x \wedge \mathrm{d} y + a_{23} \, \mathrm{d} y \wedge \mathrm{d} z + a_{31} \, \mathrm{d} z \wedge \mathrm{d} x$$

2: 即交换任意两个指标变号

由于外代数的反交换性质, 很显然 k-形式中的 k 个指标 $i_1, i_2, ..., i_k$ 取值必须两两不同, 否则对 α 的贡献将为零. 特别的, 这意味着,n 形式是最高重的非零形式, 任何 k > n 的 k 形式都必定为零, 因为这时候它的 k 个指标取值必定会出现重复, 不可能两两不同.

特别的, 对于 2-形式, 记 $a_{12}=b_3, a_{23}=b_1, a_{31}=b_2$, 并且定义映射 $\mathrm{d}x \wedge \mathrm{d}y \to \mathrm{d}z, \mathrm{d}y \wedge \mathrm{d}z \to \mathrm{d}x, \mathrm{d}z \wedge \mathrm{d}x \to \mathrm{d}y, 则$ 有 $a_{12}\,\mathrm{d}x \wedge \mathrm{d}y + a_{23}\,\mathrm{d}y \wedge \mathrm{d}z + a_{31}\,\mathrm{d}z \wedge \mathrm{d}x \to b_1\,\mathrm{d}x + b_2\,\mathrm{d}y + b_3\,\mathrm{d}z$ 可见,3 维空间 2-形式和 1-形式之间能够建立一对一映射. 因此,2-形式的 3 个独立非零分量 $(a_{23}, a_{31}, a_{12}) = (b_1, b_2, b_3) = \mathbf{b}$ 刚好构成一个 3 维空间矢量。同时,上面这个对映也告诉我们, $(\mathrm{d}y \wedge \mathrm{d}z, \mathrm{d}z \wedge \mathrm{d}x, \mathrm{d}x \wedge \mathrm{d}y)$ 也告诉我们, $(\mathrm{d}y \wedge \mathrm{d}z, \mathrm{d}z \wedge \mathrm{d}x, \mathrm{d}x \wedge \mathrm{d}y)$ 也完全类似于一个 3 维空间的矢量微元,通常将之定义为面积元矢量 dS,

 $\mathrm{d} S = (\mathrm{d} y \wedge \mathrm{d} z, \mathrm{d} z \wedge \mathrm{d} x, \mathrm{d} x \wedge d y)$

我们称这类 k-形式与 n-k-形式之间的一一映射关系为霍奇 (Hodge) 对偶

4. 3-形式与 0-形式类似, 可以写做 $f(x, y, z) dx \wedge dy \wedge dz$

B.1.2 外微分

对于微分形式,为了与之前的微分运算进行一定的区分,我们定义一种新的微分运算:外微分. 我们首先以一个简单的例子引入:对于二维空间内的 1-形式 $a=a_x\,\mathrm{d}x+a_y\,\mathrm{d}y$,我们定义其外微分 $\mathrm{d}a$ 为

$$da = da_x \wedge dx + da_y \wedge dy$$
 (B.8)

这样的外微分显然是结合外代数与微分的产物, 对其进行计算得到³

$$da = (\partial_x a_y - \partial_y a_x) dx \wedge dy$$
 (B.9)

显然,da 只有一个分量 $(\partial_x a_y - \partial_y a_x)$, 并且其恰好是二维矢量 $\mathbf a$ 的 旋度.

另一方面, 在高数中, 我们熟知二维空间内有格林公式

$$\oint_{\partial D} (a_x \, \mathrm{d}x + a_y \, \mathrm{d}y) = \int_D (\partial_x a_y - \partial_y a_x) \, \mathrm{d}x \, \mathrm{d}y \tag{B.10}$$

其中 ∂D 为一个闭合回路,D 为这条回路包括的区域,利用微分形式,可以将其重新写为

$$\int_{\partial D} a = \int_{D} da \tag{B.11}$$

类似于二维空间的 1-形式, 我们继续分析三维空间的 1-形式 $a = \mathbf{a} \cdot d\mathbf{x} = a_x dx + a_y dy + a_z dz$ 的外微分 da, 其定义同样为

$$da = da_x \wedge dx + da_y \wedge dy + da_z \wedge dz$$
 (B.12)

通过与二维情况完全类似的运算, 我们得到结果

$$\mathrm{d}a = (\partial_x a_y - \partial_y a_x)\,\mathrm{d}x \wedge \mathrm{d}y + (\partial_y a_z - \partial_z a_y)\,\mathrm{d}y \wedge \mathrm{d}z + (\partial_z a_x - \partial_x a_z)\,\mathrm{d}z \wedge \mathrm{d}x$$
 (B.13)

这是一个三维空间的 2-形式,da 的三个独立分量同样恰好构成三维 矢量 a 的旋度 $\nabla \times a$, 即

$$da = (\nabla \times \mathbf{a}) \cdot d\mathbf{S} \tag{B.14}$$

使用微分形式重写

$$\int_{\partial D} a = \int_{D} da \tag{B.15}$$

于是我们发现,B.11与B.15完全一致.

3: 具体运算步骤

$$\begin{split} \mathrm{d} a &= \mathrm{d} a_x \wedge \mathrm{d} x + \mathrm{d} a_y \wedge \mathrm{d} y \\ &= (\partial_x a_x \, \mathrm{d} x + \partial_y a_x \, \mathrm{d} y) \wedge \mathrm{d} x \\ &+ (\partial_x a_y \, \mathrm{d} x + \partial_y a_y \, \mathrm{d} y) \wedge \mathrm{d} y \\ &= \partial_y a_x \, \mathrm{d} y \wedge \mathrm{d} x + \partial_x a_y \, \mathrm{d} x \wedge \mathrm{d} y \\ &= (\partial_x a_y - \partial_y a_x) \, \mathrm{d} x \wedge \mathrm{d} y, \end{split}$$

我们继续向下考虑三维空间的 2-形式的外微分 da, 其定义同样为

$$da = da_{12} \wedge dx \wedge dy + da_{23} \wedge dy \wedge dz + da_{31} \wedge dz \wedge dx$$
 (B.16)

计算得到

$$da = (\partial_3 a_{12} + \partial_1 a_{23} + \partial_2 a_{31}) dx \wedge dy \wedge dz$$
 (B.17)

同样利用 $(a_{23}, a_{31}, a_{12}) = (b_1, b_2, b_3) = \mathbf{b}$, 我们可以把结果重写为

 $\mathrm{d}a = (\partial_1 b_1 + \partial_2 b_2 + \partial_3 b_3)\,\mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z = (\nabla \cdot \mathbf{b})\,\mathrm{d}x \wedge \mathrm{d}y \wedge \mathrm{d}z$ (B.18) 很明显结果是一个 3-形式, 并且恰好给出了三维矢量的**散度**.

于是, 我们发现, 对于三维空间的高斯定理

$$\oint_{\partial V} \mathbf{b} \cdot d\mathbf{S} = \int_{V} (\nabla \cdot \mathbf{b}) \, dV \tag{B.19}$$

利用外微分仍然可以写完类似B.11与B.15的形式. 我们将其扩展为

$$\int_{\partial D} \alpha = \int_{D} d\alpha \tag{B.20}$$

式中 α 表示三维空间中的一个 k-1-形式,D 表示三维空间中一个以 ∂D 为边界的 k 维曲面 (因此 ∂D 是 k-1 维的, 而 $d\alpha$ 则是一个 k-形式).k=2 时, 它就是斯托克斯公式, k=3 时它就是高斯定理. 可见, 利用外微分运算, 我们可以将矢量分析中那些著名的公式和定理统一起来.

我们可以将其扩展到n维形式,k-1-形式的外微分为一个k-形式,B.20也被称为广义斯托克斯公式.

外微分有一个尤为重要的性质,对任意微分形式连续进行两次外微分,结果恒等于 0

$$d^2\alpha = d(d\alpha) \equiv 0 \tag{B.21}$$

我们知道了外微分可以令相应的微分形式维度上升一次,同样的,我们引入两个类似的算符来表达对于微分形式的其他操作.

在前面, 我们了解了k-形式与n-k-形式之间存在一一映射, 被称为霍奇对偶, 于是引入运算符 \star (有时也使用 \star), 即对k-形式取其n-k-形式. 我们将在微分几何后面再次讨论. 对于

$$\mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}x + \frac{\partial f}{\partial y} \mathrm{d}y + \frac{\partial f}{\partial z} \mathrm{d}z$$

取 * 运算后, 即得

$$\star \mathrm{d}f = \frac{\partial f}{\partial x} \mathrm{d}y \wedge \mathrm{d}z + \frac{\partial f}{\partial y} \mathrm{d}z \wedge \mathrm{d}x + \frac{\partial f}{\partial z} \mathrm{d}x \wedge \mathrm{d}y \tag{B.22}$$

对于外微分,存在两个常用概念.首先,一个微分形式 α ,如果它的外微分等于零,即 $d\alpha=0$ 我们就称它为闭形式.其次,一个微分形式 α ,如果它是另一个微分形式 β 的外微分,即有 $\alpha=d\beta$,我们就称这样的 α 为一个恰当形式.很显然,任何恰当形式.都必定是闭形式!反过来,闭形式却不一定是恰当形式,闭形式什么时候是恰当形式什么时候不是.这往往和空间的拓扑有关系,是所谓的 de Rahm 上同调研究的内容.

对于外微分, 存在类似于普通复合函数的 莱布尼茨公式

 $d(\mu \wedge \lambda) = d\mu \wedge \lambda + (-1)^{\deg \mu} \mu \wedge d\lambda$ 其中 $\deg \mu$ 为微分形式 μ 的次数. 以及与 d 对应的可以令微分形式降次的运算符 δ, 定义为

$$\delta = -(-1)^g (-1)^{n(k+1)} \star d\star \tag{B.23}$$

其中, g 为度规.

利用外微分, 我们可以把我们熟知的麦克斯韦方程组 (四维时空) 变得更加简洁

$$\begin{cases} \mathrm{d}F = 0 \\ \mathrm{d}\star F = \mu_0\star J \end{cases} \tag{B.24}$$

当然, 当我们继续深入学习, 我们可以得到最终的数学表述: 电磁理 论是 U(1) 丛上的**联络**

$$\psi(x) \mapsto e^{i\varphi(x)}\psi(x)$$
 (B.25)

B.1.3 简单实例

保守力

回顾力学中我们对于质点系保守力的定义:

$$\sum_{i} \mathbf{F}_{i} \cdot \mathbf{d}\mathbf{x}_{i} = -\,\mathbf{d}V. \tag{B.26}$$

并引入指标 $\mu = 1, 2, 3, \cdots, 3N$, 即对每个质点的 3 个笛卡尔坐标, 于是保守力自然可以重写为

$$F_{\mu} \, \mathrm{d} x^{\mu} = - \, \mathrm{d} V(x^1, ..., x^{3N}) \tag{B.27}$$

显然这是一个 1-形式, 并将其简记为 F, 并且我们能够发现其还是一个恰当形式, 满足

$$F = -\,\mathrm{d}V\tag{B.28}$$

势能为 0-形式, 在前面我们知道一个恰当形式必是**闭形式**, 立刻得出

$$dF = 0 (B.29)$$

将 dF 展开运算,得到

$$\mathrm{d}F = (\partial_{\mu}F_{\nu})\,\mathrm{d}x^{\mu}\wedge\mathrm{d}x^{\nu} = [\frac{1}{2}(\partial_{\mu}F_{\nu} - \partial_{\nu}F_{\mu}) + \frac{1}{2}(\partial_{\mu}F_{\nu} + \partial_{\nu}F_{\mu})]\,\mathrm{d}x^{\mu}\wedge\mathrm{d}x^{\nu} \tag{B.30}$$

后一项由于反对称关系为0,于是有

$$\mathrm{d}F = \frac{1}{2} (\partial_{\mu} F_{\nu} - \partial_{\nu} F_{\mu}) \, \mathrm{d}x^{\mu} \wedge \mathrm{d}x^{\nu} \tag{B.31}$$

即等价于

$$\partial_{\mu}F_{\nu} - \partial_{\nu}F_{\mu} = 0 \tag{B.32}$$

对于单个质点, 我们得出的结果自然为对力 \mathbf{F} 的旋度 $\nabla \times \mathbf{F} = 0$, 并 且由斯托克斯公式

$$\int_{\partial D} F = \int_{D} \mathrm{d}F = 0 \tag{B.33}$$

这意味着保守力 1-形式在坐标空间内的任意闭合回路积分都为 01, 我们常称这类积分为功,于是,这也就是说明保守力在任意闭合回路 做的功为 0.

热力学

1

B.2 微分流形

1

B.3 流形上的外微分

1

B.4 纤维丛

1

B.5 同调群

1

B.6 De Rham 上同调群

B.7 仿射联络空间与黎曼流形

1

B.8 电磁理论是 U(1) 丛上的联络

mathematica 的基本用法

4.1-式子 13

输入代码

D

答案及解析

D.1 第一章

1

D.2 第二章

E

致谢/参考

E.1 致谢

感谢 elegantbook 所提供的模板,https://elegantlatex.org/. 并非 elegantbook

E.2 参考

本文主要参考的书籍和期刊如下:

- 1. Modern Quantum Mechanics 2nd.J.J.Sakurai
- 2. Quantum Field Theory in Condensed Matter Physics 2nd. Alexei M.Tsvellk
- 3. Entanglement in Many-Body Systems(RMP)
- 4. 物理学家用李群李代数
- 5.《李群与李代数》讲义-李世雄
- 6. Nicolas Dupuis Field Theory of Condensed Matter and Ultracold Gases
- 7. Conformal Field Theory A.N. Schellekens
- 8. 经典力学新讲-陈童(主要参考部分为微分形式部分)

参考了十余本, 之后慢慢整理, 并会改为 bib 引用的.

免责声明: 本讲义仅限个人学习使用, 仅供参考. 部分图片为个人重绘, 部分图片来源 wiki. 同时, 本讲义的全部内容和代码已公开至github 主页, 允许二次传播, 允许自行更改, 但请注意讲义仅为多本书和综述的整理和综合, 且仍处于更新状态, 不排除未来将前几章重置的可能性.

按字母排序的索引

preface, 2