

ANSI Escape Codes

ANSI Escape Sequences

Standard escape codes are prefixed with Escape:

Ctrl-Key: ^[

• Octal: \033

Unicode: \u001b

Hexadecimal: \x1B

• Decimal: 27

Followed by the command, somtimes delimited by opening square bracket ([), known as a Control Sequence Introducer (CSI), optionally followed by arguments and the command itself.

Arguments are delimeted by semi colon (;).

For example:

\x1b[1;31m # Set style to bold, red foreground.

Sequences

- ESC sequence starting with ESC (\x1B)
- CSI Control Sequence Introducer: sequence starting with ESC [or CSI (\x9B)
- DCS Device Control String: sequence starting with ESC P or DCS (\x90)
- OSC Operating System Command: sequence starting with ESC] or OSC (\x9D)

Any whitespaces between sequences and arguments should be ignored. They are present for improved readability.

General ASCII Codes

Name	decimal	octal	hex	C-escape	Ctrl-Key	Description			
BEL	7	007	0x07	\a	^G	Terminal bell			
BS	8	010	0x08	\b	^H	Backspace			
НТ	9	011	0x09	\t	^I	Horizontal TAB			
LF	10	012	0x0A	\n	^J	Linefeed (newline)			
VT	11	013	0x0B	\v	^K	Vertical TAB			
FF	12	014	0x0C	\f	^L	Formfeed (also: New page NP)			
CR	13	015	0x0D	\r	^M	Carriage return			
ESC	27	033	0x1B	\e *	^[Escape character			
DEL	127	177	0x7F	<none></none>	<none></none>	Delete character			

Note: Some control escape sequences, like \e for ESC, are not guaranteed to work in all languages and compilers. It is recommended to use the decimal, octal or hex representation as escape code.

Note: The Ctrl-Key representation is simply associating the non-printable characters from ASCII code 1 with the printable (letter) characters from ASCII code 65 ("A"). ASCII code 1 would be ^A (Ctrl-A), while ASCII code 7 (BEL) would be ^G (Ctrl-G). This is a common representation (and input method) and historically comes from one of the VT series of terminals.

Cursor Controls

ESC Code Sequence	Description
ESC[H	moves cursor to home position (0, 0)
<pre>ESC[{line};{column}H ESC[{line};{column}f</pre>	moves cursor to line #, column #
ESC[#A	moves cursor up # lines
ESC[#B	moves cursor down # lines
ESC[#C	moves cursor right # columns
ESC[#D	moves cursor left # columns
ESC[#E	moves cursor to beginning of next line, # lines down
ESC[#F	moves cursor to beginning of previous line, # lines up
ESC[#G	moves cursor to column #
ESC[6n	request cursor position (reports as ESC[#;#R)
ESC M	moves cursor one line up, scrolling if needed
ESC 7	save cursor position (DEC)

ESC 8	restores the cursor to the last saved position (DEC)
ESC[s	save cursor position (SCO)
ESC[u	restores the cursor to the last saved position (SCO)

Note: Some sequences, like saving and restoring cursors, are private sequences and are not standardized. While some terminal emulators (i.e. xterm and derived) support both SCO and DEC sequences, they are likely to have different functionality. It is therefore recommended to use DEC sequences.

Erase Functions

ESC Code Sequence	Description
ESC[J	erase in display (same as ESC[0J)
ESC[0J	erase from cursor until end of screen
ESC[1J	erase from cursor to beginning of screen
ESC[2J	erase entire screen
ESC[3J	erase saved lines
ESC[K	erase in line (same as ESC[0K)
ESC[0K	erase from cursor to end of line
ESC[1K	erase start of line to the cursor
ESC[2K	erase the entire line

Note: Erasing the line won't move the cursor, meaning that the cursor will stay at the last position it was at before the line was erased. You can use \r after erasing the line, to return the cursor to the start of the current line.

Colors / Graphics Mode

ESC Code Sequence	Reset Sequence	Description
ESC[1;34;{}m		Set graphics modes for cell, separated by semicolon (;).
ESC[0m		reset all modes (styles and colors)
ESC[1m	ESC[22m	set bold mode.
ESC[2m	ESC[22m	set dim/faint mode.
ESC[3m	ESC[23m	set italic mode.
ESC[4m	ESC[24m	set underline mode.
ESC[5m	ESC[25m	set blinking mode
ESC[7m	ESC[27m	set inverse/reverse mode
ESC[8m	ESC[28m	set hidden/invisible mode
ESC[9m	ESC[29m	set strikethrough mode.

Note: Some terminals may not support some of the graphic mode sequences listed above.

Note: Both dim and bold modes are reset with the ESC[22m sequence. The ESC[21m sequence is a non-specified sequence for double underline mode and only work in some terminals and is reset with ESC[24m.

Color codes

Most terminals support 8 and 16 colors, as well as 256 (8-bit) colors. These colors are set by the user, but have commonly defined meanings.

8-16 Colors

Color Name	Foreground Color Code	Background Color Code
Black	30	40
Red	31	41
Green	32	42
Yellow	33	43
Blue	34	44
Magenta	35	45
Cyan	36	46
White	37	47
Default	39	49
Reset	0	0

Note: the Reset color is the reset code that resets all colors and text effects, Use Default color to reset colors only.

Most terminals, apart from the basic set of 8 colors, also support the "bright" or "bold" colors. These have their own set of codes, mirroring the normal colors, but with an additional ;1 in their codes:

```
# Set style to bold, red foreground:
\x1b[1;31mHello
```

Set style to dimmed white foreground with red background
\x1b[2;37;41mWorld

Terminals that support the **aixterm specification** (https://sites.ualberta.ca/dept/chemeng/AIX-43/share/man/info/C/a_doc_lib/cmds/aixcmds1/aixterm.htm) provides bright versions of the ISO colors, without the need to use the bold modifier:

Color Name	Foreground Color Code	Background Color Code
Bright Black	90	100
Bright Red	91	101
Bright Green	92	102
Bright Yellow	93	103
Bright Blue	94	104
Bright Magenta	95	105
Bright Cyan	96	106
Bright White	97	107

256 Colors

The following escape codes tells the terminal to use the given color ID:

ESC Code Sequence	Description			
ESC[38;5;{ID}m	Set foreground color.			
ESC[48;5;{ID}m	Set background color.			

Where {ID} should be replaced with the color index from 0 to 255 of the following color table:

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
21			24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41
42	43	44	45	46	47	48	49	50	51					56	57	58	59	60	61	62
63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80	81	82	83
84	85	86	87			90	91	92	93	94	95	96	97	98	99	100	101	102	103	104
105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123		125
126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146
147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167
168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188
189	190	191	192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207	208	209
210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230
231								239	240	241	242	243	244	245	246	247	248	249	250	251
252	253	254	255																	

(https://user-images.githubusercontent.com/995050/47952855-ecb12480-df75-11e8-89d4-ac26c50e80b9.png)

The table starts with the original 16 colors (0-15).

The proceeding 216 colors (16-231) or formed by a 3bpc RGB value offset by 16, packed into a single value.

The final 24 colors (232-255) are grayscale starting from a shade slightly lighter than black, ranging up to shade slightly darker than white.

Some emulators interpret these steps as linear increments (256 / 24) on all three channels, although some emulators may explicitly define these values.

RGB Colors

More modern terminals supports **Truecolor** (https://en.wikipedia.org/wiki/Color_depth#True_color_.2824-bit.29) (24-bit RGB), which allows you to set foreground and background colors using RGB.

These escape sequences are usually not well documented.

ESC Code Sequence	Description
ESC[38;2;{r};{g};{b}m	Set foreground color as RGB.
ESC[48;2;{r};{g};{b}m	Set background color as RGB.

Note that ;38 and ;48 corresponds to the 16 color sequence and is interpreted by the terminal to set the foreground and background color respectively. Where as ;2 and ;5 sets the color format.

Screen Modes

Set Mode

ESC Code Sequence	Description
ESC[= {value}h	Changes the screen width or type to the mode specified by value.
ESC[=0h	40 x 25 monochrome (text)
ESC[=1h	40 x 25 color (text)
ESC[=2h	80 x 25 monochrome (text)
ESC[=3h	80 x 25 color (text)
ESC[=4h	320 x 200 4-color (graphics)
ESC[=5h	320 x 200 monochrome (graphics)

ESC[=6h	640 x 200 monochrome (graphics)
ESC[=7h	Enables line wrapping
ESC[=13h	320 x 200 color (graphics)
ESC[=14h	640 x 200 color (16-color graphics)
ESC[=15h	640 x 350 monochrome (2-color graphics)
ESC[=16h	640 x 350 color (16-color graphics)
ESC[=17h	640 x 480 monochrome (2-color graphics)
ESC[=18h	640 x 480 color (16-color graphics)
ESC[=19h	320 x 200 color (256-color graphics)
ESC[= {value}l	Resets the mode by using the same values that Set Mode uses, except for 7, which disables line wrapping. The last character in this escape sequence is a lowercase L.

Common Private Modes

These are some examples of private modes, which are not defined by the specification, but are implemented in most terminals.

ESC Code Sequence	Description
ESC[?251	make cursor invisible
ESC[?25h	make cursor visible
ESC[?471	restore screen
ESC[?47h	save screen

ESC[?1049h	enables the alternative buffer
ESC[?10491	disables the alternative buffer

Refer to the **XTerm Control Sequences** (https://invisible-island.net/xterm/ctlseqs/ctlseqs.html) for a more in-depth list of private modes defined by XTerm.

Note: While these modes may be supported by the most terminals, some may not work in multiplexers like tmux.

Keyboard Strings

```
ESC[{code};{string};{...}p
```

Redefines a keyboard key to a specified string.

The parameters for this escape sequence are defined as follows:

- code is one or more of the values listed in the following table. These values represent keyboard keys and key combinations. When using these values in a command, you must type the semicolons shown in this table in addition to the semicolons required by the escape sequence. The codes in parentheses are not available on some keyboards.
 ANSI.SYS will not interpret the codes in parentheses for those keyboards unless you specify the /X switch in the DEVICE command for ANSI.SYS.
- string is either the ASCII code for a single character or a string contained in quotation marks. For example, both 65 and "A" can be used to represent an uppercase A.

IMPORTANT: Some of the values in the following table are not valid for all computers. Check your computer's documentation for values that are different.

List of keyboard strings

Key	Code	SHIFT+code	CTRL+code	ALT+code
F1	0;59	0;84	0;94	0;104
F2	0;60	0;85	0;95	0;105
F3	0;61	0;86	0;96	0;106
F4	0;62	0;87	0;97	0;107
F5	0;63	0;88	0;98	0;108
F6	0;64	0;89	0;99	0;109
F7	0;65	0;90	0;100	0;110
F8	0;66	0;91	0;101	0;111
F9	0;67	0;92	0;102	0;112
F10	0;68	0;93	0;103	0;113
F11	0;133	0;135	0;137	0;139
F12	0;134	0;136	0;138	0;140
HOME (num keypad)	0;71	55	0;119	
UP ARROW (num keypad)	0;72	56	(0;141)	
PAGE UP (num keypad)	0;73	57	0;132	
LEFT ARROW (num keypad)	0;75	52	0;115	
RIGHT ARROW (num keypad)	0;77	54	0;116	
END (num keypad)	0;79	49	0;117	

DOWN ARROW (num keypad)	0;80	50	(0;145)	
PAGE DOWN (num keypad)	0;81	51	0;118	
INSERT (num keypad)	0;82	48	(0;146)	
DELETE (num keypad)	0;83	46	(0;147)	
HOME	(224;71)	(224;71)	(224;119)	(224;151)
UP ARROW	(224;72)	(224;72)	(224;141)	(224;152)
PAGE UP	(224;73)	(224;73)	(224;132)	(224;153)
LEFT ARROW	(224;75)	(224;75)	(224;115)	(224;155)
RIGHT ARROW	(224;77)	(224;77)	(224;116)	(224;157)
END	(224;79)	(224;79)	(224;117)	(224;159)
DOWN ARROW	(224;80)	(224;80)	(224;145)	(224;154)
PAGE DOWN	(224;81)	(224;81)	(224;118)	(224;161)
INSERT	(224;82)	(224;82)	(224;146)	(224;162)
DELETE	(224;83)	(224;83)	(224;147)	(224;163)
PRINT SCREEN			0;114	
PAUSE/BREAK			0;0	
BACKSPACE	8	8	127	(0)
ENTER	13		10	(0

TAB	9	0;15	(0;148)	(0;165)
NULL	0;3			
А	97	65	1	0;30
В	98	66	2	0;48
С	99	66	3	0;46
D	100	68	4	0;32
Е	101	69	5	0;18
F	102	70	6	0;33
G	103	71	7	0;34
Н	104	72	8	0;35
1	105	73	9	0;23
J	106	74	10	0;36
K	107	75	11	0;37
L	108	76	12	0;38
М	109	77	13	0;50
N	110	78	14	0;49
0	111	79	15	0;24
Р	112	80	16	0;25
Q	113	81	17	0;16

+	 	 	
114	82	18	0;19
115	83	19	0;31
116	84	20	0;20
117	85	21	0;22
118	86	22	0;47
119	87	23	0;17
120	88	24	0;45
121	89	25	0;21
122	90	26	0;44
49	33		0;120
50	64	0	0;121
51	35		0;122
52	36		0;123
53	37		0;124
54	94	30	0;125
55	38		0;126
56	42		0;126
57	40		0;127
	115 116 117 118 119 120 121 122 49 50 51 52 53 54 55 56	115 83 116 84 117 85 118 86 119 87 120 88 121 89 122 90 49 33 50 64 51 35 52 36 53 37 54 94 55 38 56 42	115 83 19 116 84 20 117 85 21 118 86 22 119 87 23 120 88 24 121 89 25 122 90 26 49 33 50 64 0 51 35 52 36 53 37 54 94 30 55 38 56 42

0	48	41		0;129
-	45	95	31	0;130
=	61	43		0;131
[91	123	27	0;26
]	93	125	29	0;27
	92	124	28	0;43
i	59	58		0;39
1	39	34		0;40
1	44	60		0;51
	46	62		0;52
1	47	63		0;53
· ·	96	126		(0;41)
ENTER (keypad)	13		10	(0;166)
/ (keypad)	47	47	(0;142)	(0;74)
* (keypad)	42	(0;144)	(0;78)	
- (keypad)	45	45	(0;149)	(0;164)
+ (keypad)	43	43	(0;150)	(0;55)
5 (keypad)	(0;76)	53	(0;143)	

Resources

- Wikipedia: ANSI escape code (https://en.wikipedia.org/wiki/ANSI_escape_code)
- Build your own Command Line with ANSI escape codes
 (http://www.lihaoyi.com/post/BuildyourownCommandLinewithANSIescapecodes.html)
- ascii-table: ANSI Escape sequences (http://ascii-table.com/ansi-escape-sequences.php)
- bluesock: ansi codes (https://bluesock.org/~willkg/dev/ansi.html)
- bash-hackers: Terminal Codes (ANSI/VT100) introduction (http://wiki.bash-hackers.org/scripting/terminalcodes)
- XTerm Control Sequences (https://invisible-island.net/xterm/ctlseqs/ctlseqs.html)
- VT100 Various terminal manuals (https://vt100.net/)
- xterm.js Supported Terminal Sequences (https://xtermjs.org/docs/api/vtfeatures/)