

Examen Primera Ordinaria

1 EXTRACCIÓN de datos

En la extracción de datos se cargará información a s3. Se hará en su totalidad usando Spark, no es válido utilizar librerías como boto3 o derivados.

1.1 Archivos

Será necesario cargar los siguientes archivos de datos directamente a S3.

1.1.1 clientes.json

Descripción: Fichero JSON de datos de clientes.

Columnas: id_cliente, nombre, direccion, preferencias_alimenticias.

1.1.2 restaurantes.json:

Descripción: Fichero JSON para datos de restaurantes.

Columnas: id_restaurante, nombre, id_hotel.

1.1.3 habitaciones.csv

Descripción: Fichero CSV para datos de habitaciones.

Columnas: numero_habitacion, categoria, tarifa_por_noche.

1.1.4 menus.csv

Descripción: Archivo CSV para los datos de los menús.

Columnas: id_menu, nombre_plato, precio, disponibilidad, id_restaurante.

1.2 Postgres

Esta información vendrá desde Postgres, para ellos tendréis que leer dos archivos csv y cargarlos en una BBDD de postgres.

• **Puerto BBDD:** 9999

Nombre BBDD: PrimOrdNombre usuario: primOrd

Password usuario: bdaPrimOrd

1.2.1 empleados.csv

Descripción: Fichero CSV de datos de empleados.

Columnas: id_empleado, nombre, posicion, fecha_contratacion.

Tabla: Empleados

1.2.2 hoteles.csv

Descripción: Fichero CSV de datos de hoteles.

Columnas: id_hotel, nombre_hotel, direccion_hotel.

Tabla: Hoteles

1.3 Kafka

Esta información vendrá desde kafka, para ellos tendréis que **leer un archivo txt, convertirlo** al formato **json** y **enviarlo** por **kafka**.

1.3.1 reservas.txt

Descripción: Fichero de texto para datos de reservas con separación única:

*** Reserva 1 ***

ID Cliente: 23

Fecha Llegada: 2024-04-20 Fecha Salida: 2024-04-25 Tipo Habitacion: Suite

Preferencias Comida: Vegetariano

ID Restaurante: 17

Cada reserva se indica con "*** Reserva {id} ***".

Para cada reserva, se indica el ID del cliente, la fecha de llegada, la fecha de salida, el tipo de habitación, las preferencias dietéticas y el ID del restaurante.

La información se leerá una vez introducida en kafka a través de Spark, es decir, el **productor** de la información **no utiliza spark**, pero el **consumer** sí **utiliza spark**.

2 TRANSFORMACIÓN de datos

En esta etapa, los datos ya estarán en s3 con LocalStack y tendréis que prepararlos para el apartado de análisis, modificad lo que veais conveniente. **No hace falta hacer ningún tratamiento de errores, vacíos, etc. Es opcional.**

3 LOAD: Data Warehouse

3.1 Data loading

Los datos transformados se cargarán en Postgres para su análisis posterior en 4 tablas distintas que responderán a las preguntas del Data analytics. Solo poner la información de cada tabla que sea interesante para resolver estas preguntas.

3.2 Data analytics

Usando Apache Spark tenéis que obtener los datos a través de postgres y realizar consultas que contengan análisis avanzados sobre los datos almacenados en el almacén de datos.

Pregunta 1: ¿Qué clientes han hecho reservas y cuáles son sus preferencias de habitación y comida?

Pregunta 2: ¿Qué habitaciones hay reservadas para cada reserva, y cuáles son sus respectivas categorías y tarifas nocturnas?

Pregunta 3: ¿Quiénes son los empleados que trabajan en cada restaurante, junto con sus cargos y fechas de contratación?

Pregunta 4: ¿Cuántas reservas se hicieron para cada categoría de habitación, y cuáles son las correspondientes preferencias de comida de los clientes?

Hadoop

Hacer un MapReduce y un archivo Pig Latin que responda a la siguiente pregunta usando un archivo csv dado en los apartados anteriores:

¿Cuántas reservas se hicieron al mes?

4 Estructura del proyecto

Para este proyecto tendréis que seguir la siguiente estructura:

data_Prim_ord/: Esta carpeta contiene todos los datos necesarios para el análisis.

- **json/**: Aquí se almacenan los archivos json.
- text/: Aquí se almacena el archivo txt
- **csv/:** Esta carpeta almacena los archivos csv.

data_generation/: Esta carpeta contiene todos los archivos python que generen los archivos anteriores, **tienen que generarlos en la carpeta especificada.**

apps_Prim_ord/: Esta carpeta contiene el resto de archivos py.

- data_integration.py: Almacena datos en s3
- data_transformation.py: Organiza/une los datos, es opcional.
- data_load.py: Guarda los datos en las 4 tablas distintas de Postgres.
- data_analysis.py: documento donde se realiza el análisis de datos.

Hadoop/: Esta carpeta contiene los archivos asociados a Hadoop, el .Java y .pig

Si existe algún archivo más que sea necesario **comentarlo** con el profesor.

5 Evaluación

Me tendréis que hacer un zip con todos los archivos utilizados para hacer el examen.