Karola Adlera č. 5, 841 02 Bratislava

PL 05/2

šk. rok: 2019/2020

Názov cvičenia:

Rezonančné obvody

Ciel': naučiť študentov merať a vyhodnotiť z hľadiska šírky prenášaného frekvenčného pásma rezonančnú charakteristiku paralelného rezonančného obvodu (PRO) bez tlmenia a s tlmením

Úlohy:

- 1. Vypočítajte:
 - rezonančnú frekvenciu fovyp PRO
- 2. Odmerajte:
 - > amplitúdovo-frekvenčnú charakteristiku netlmeného a tlmeného PRO
- 3. Nakreslite:
 - ightharpoonup amplitúdovo-frekvenčnú charakteristiku netlmeného a tlmeného PRO U=F(f) a U'=F(f') predloženého paralelného rezonančného obvodu
- 4. Určte:
 - \triangleright z nakreslených charakteristík šírku prenášaného frekvenčného pásma B_3 a B_3 ′ netlmeného a tlmeného PRO
- 5. Porovnajte:
 - \triangleright rezonančnú frekvenciu vypočítanú f_{0vvp} a odmeranú f_{0odm}
 - > kvalitu Q a Q' netlmeného a tlmeného PRO

Schéma zapojenia: pre *PARALELNÝ* rezonančný obvod

Použité prístroje:

EV – elektronický voltmeter *TESLA BM579 mVoltmeter*

G – vf generátor s čítačom *VELLEMAN HPG1 1MHz*

Prípojné vodiče

Použité pasívne súčiastky:

C – kondenzátor $C = 4\mu$ F, tolerancia 10 %, $U_{max} = 600$ V

L – cievka L = 6,25m H, $I_{max} = 0,8$ A, počet závitov = 400

R – rezistor $R = 68 \Omega$, tolerancia 5 %, $P_{max} = 2 \text{ W}$

Tabuľka nameraných a vypočítaných hodnôt:

$$f_{0vyp.} = 1006,58 \text{ Hz}$$

 $f_0 = 950 \text{ Hz}$

$$R = 68 \Omega$$

 $f_0' = 1040 \text{ Hz}$

 $\mathbf{f_d}$ ($\mathbf{f'_d}$) – dolná hraničná frekvencia netlmeného (tlmeného) PRO

f₀ (f'₀) – rezonančná frekvencia netlmeného (tlmeného) PRO

f_h (f'_h) – horná hraničná frekvencia netlmeného (tlmeného) PRO

	$\mathbf{R} \to \infty$		$R = 68 \Omega$		
M.Č.	f (kHz)	$\mathbf{U}\left(\mathbf{V}\right)$	f ′(kHz)	U'(V)	Poznámka
1.	0,4	0,4	0,4	0,5	
2.	0,66	0,7	0,55	0,7	f _d , f' _d
3.	0,85	0,96	0,75	0,91	
4.	0,95	1	1,04	1	f0, f'0
5.	1,15	0,94	1,45	0,88	
6.	1,48	0,7	1,81	0,7	f _h , f' _h
7.	1,6	0,5	2	0,65	

Vzorce: dosaďte konkrétne hodnoty do vzorcov

Rezonančná frekvencia:

$$f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}} = \frac{1}{2 \cdot \pi \cdot \sqrt{6,25.10^{-3} \cdot 4.10^{-6}}} = 1006,584 \text{ (Hz)}$$

Šírka prenášaného frekvenčného pásma netlmeného PRO pri poklese o 3 dB:

$$B_3 = f_h - f_d = 1,48 - 0,66 = 0,82$$
 (Hz)

Šírka prenášaného frekvenčného pásma tlmeného PRO pri poklese o 3 dB:

$$B'_3 = f'_h - f'_d = 1,81 - 0,55 = 1,26$$
 (Hz)

Kvalita netlmeného PRO:

Kvalita tlmeného PRO:

$$Q = \frac{f_d + f_h}{2(f_h - f_d)} = \frac{0,66 + 1,48}{2.(1,48 - 0,66)} = 1,3(-) \ Q' = \frac{f'_d + f'_h}{2(f'_h - f'_d)} = \frac{0,55 + 1,81}{2.(1,81 - 0,55)} = 0,94(-)$$

Odnov pri rezonancji netlmeného PRO

Odnov pri rezonancji tlmeného PRO

$$R_{p} = \frac{Q}{\omega_{0} \cdot C} = \frac{1,3}{2 \cdot \pi \cdot 950 \cdot 4.10^{-6}} = 54,45 \,(\Omega) \, R'_{p} = \frac{Q'}{\omega_{0} \cdot C} = \frac{0,94}{2 \cdot \pi \cdot 1040 \cdot 4.10^{-6}} = 35,9(\Omega)$$

Postup pri meraní: Generátorom sme si naladili f_{0vyp} a na EV kontrolovali, či sedí s hodnotou výstupného napätia 1V, ak ju nemala hľadali sme f_{0odm} pri tejto hodnote. Hodnotovo sa o niečo líšila s vypočítanou. Odmerali sme zopár frekvencií vyšších, ako naša rezonančná (nadrezonancia) a pri poklese o 3db pri napätí 0,707 V f_h . Následne vyšších, ako naša rezonančná (podrezonancia) a taktiež pri poklese o 3db \Rightarrow 0,707 V f_d .

Vyhodnotenie:

Pomocou programu Excel alebo na milimetrový papier nakreslite amplitúdovo-frekvenčnú charakteristiku U = F(f) pre netlmený a U' = F(f') pre tlmený PRO. Pre frekvenčnú os použite logaritmickú mierku.

Doplňte tabuľku hodnotami, ktoré ste dosiahli meraním a výpočtami:

	netlmený PRO		tlmený PRO		
B ₃ (kHz)	Q (-)	$\mathbf{R}_{\mathbf{p}}\left(\Omega\right)$	B 3′ (kHz)	Q'(-)	$\mathbf{R_{p}}'\left(\Omega\right)$
0,82	1,3	54,45	1,26	0,94	35,96

Meraním sme zistili, že šírka prenášaného frekvenčného pásma B3 netlmeného PRO je menšia

ako šírka prenášaného pásma **B**3° tlmeného PRO. Kvalita PRO je väčšia pri **netlmenom** PRO ako pri **tlmenom** Z toho vyplýva, na rozšírenie šírky prenášaného frekvenčného pásma PRO používame tlmiaci **odpor**, pričom kvalita sa **znižuje**

Rezonancia je kmitanie vzniká pri výmene kinetickej a potenciálnej energie.

Uved'te typy rezonancie:

- ➤ Mechanická napríklad pochod vojakov po moste
- ➤ Akustická napríklad strunové hudobné nástroje
- Elektrická napríklad pri striedavých obvodoch, ktoré okrem činných R obsahujú aj L a C Rezonančné obvody (RO) sú obvody, od ktorých sa rezonancia požaduje na presne určenej frekvencií sú zostavené iba zo súčiastok frekvenčne závislých a to cievka (L) a kondenzátor (C). Rozdelenie RO:
 - > SÉRIOVÉ cievka a kondenzátor sú zapojené za sebou
 - > PARALELNÉ cievka a kondenzátor sú zapojené vedľa seba

doplňte názvy RO pre obr. 1 a obr.2

doplňte všetky obvodové veličiny pre obr. 1 a obr.2

prirad'te fázorové diagramy A a B pre jednotlivé ideálne RO uvedené na obr. 1 a obr.2

Paralelný RO a fázorový diagram B

Sériový RO a fázorový diagram A

Odvoďte **Thomsonov vzťah** pre výpočet **Rezonančnej** frekvencie pre SRO a PRO:

SRO:
 PRO:

$$U_L = U_C$$
 $I_L = I_C$
 $I.X_L = I.X_C$ /: I
 $U/X_L = U/X_C$
 $2\pi f_0 L = 1/2\pi f_0 C$ /* $2\pi f_0 C$
 $U*B_L = U*B_C$ /: U
 $(2\pi f_0)^2 * L * C = 1$
 $1/2\pi f_0 L = 2\pi f_0 C$ /* $2\pi f_0 C$
 $4\pi^2 f_0^2 LC = 1$ /: $4\pi^2 f_0^2$
 $(2\pi f_0)^2 * L * C = 1$
 $\Rightarrow f_0 = \frac{1}{2 \cdot \pi \cdot \sqrt{L \cdot C}}$

Do pripravených osových súradníc nakreslite tvary rezonančných kriviek, t. j. závislosť U = f(frekvencie) alebo I = f(frekvencie) a fázové frekvenčné charakteristiky, t.j. závislosť $\varphi = f(frekvencie)$ pre jednotlivé rezonančné obvody.

Obr. 3 je pre Paralelný rezonančný obvod a obr.4 je pre Sériový rezonančný obvod.

SPŠE

Karola Adlera č. 5, 841 02 Bratislava

PL 05/2

šk. rok: 2019/2020

Obr. 4

Z rezonančných a fázových frekvenčných charakteristík vyplýva:

1. SRO – frekvencia *nižšia* ako rezonančná frekvencia, platí $f < f_0$ vzniká **podrezonancia** $X_C > X_L$ – obvod má **kapacitný** charakter, prúd **predbieha** napätie.

Frekvencia je *vyššia* ako rezonančná frekvencia, platí $f > f_0$ vzniká **nadrezonancia** $X_C < X_L$ – obvod má **indukčný** charakter, prúd **zaostáva** za napätím.

2. PRO – frekvencia *nižšia* ako rezonančná frekvencia, platí $f < f_0$ vzniká **podrezonancia** $B_C < B_L$ – obvod má **indukčný** charakter, prúd **zaostáva** za napätím.

Frekvencia je *vyššia* ako rezonančná frekvencia, platí $f > f_0$ vzniká **nadrezonancia** $B_C > B_L$ – obvod má **kapacitný** charakter, prúd **predbieha** napätie.

Využitie rezonančných obvodov:

PRO – v rádioprijímačoch (preladiteľná cievka), na ladenie konkrétnej frekvencie

SRO – využíva sa ako anténa

Napíšte, kde ste sa stretli v bežnom živote s rezonančnými obvodmi a v krátkosti popíšte

