INFORMATION SYSTEMS IN HEALTH CARE

Michel Kana, Ph.D.

Lesson 5 – Winter Term 2014

Schedule

- Database theory
- 2. Database design
- 3. SQL

Database theory

A database is an information system for storing, processing and retrieving data.

- Hierarchical database
- Network database
- Relational database
- Object-oriented database

Zdroj. Wikipedia.org

Relational database

USER				
USER_ID	NAME		AGE	
1	Jana		18	
2	Pavel		25	
3	Jan		42	
4	Aja		45	
5	Radek		19	
6	Radka		17	

Table name

row

column

Relational database

USER (USER_ID number, NAME text, AGE number)

Relational database – primary key

A primary key is a column or a group of column that uniquely identify the data in a table row.

USER				
USER_ID		NAME	AGE	
1		Jana	18	
2		Pavel	25	
3		Jan	42	
4		Aja	45	
5		Radek	19	
6		Radka	17	

INVOICE				
INVOICE_ID	USER_ID	VALUE		
1	1	400		
2	1	100		
3	6	800		
4	5	300		
5	6	200		
6	4	400		

Relational database – foreign key

A foreign key links one or more columns of a table with columns of a foreign table.

INVOICE				
INVOICE_ID	USER_ID	VALUE		
1	1	400		
2	1	100		
3	6	800		
4	5	300		
5	6	200		
6	4	400		
<u></u>				

Database design

- Indentify tables, columns, primary keys and foreign keys
- Data requirements for a hospital health care system:
 - Team A
 - Each patient can have one or more insurances
 - Team B
 - There are two types of patient health records: department health records and ambulatory health records
 - Team C
 - A health records folder contains one or more health records of the same patient
 - A patient can have several health records folders
 - Team D
 - A health record folder can be borrowed by a department, a doctor or another hospital
 - There is a history about who borrowed which folders

Database design

Team A

- Each patient can have one or more insurances
 - PATIENT (PATIENT_ID, PATIENT_NAME, PATIENT_AGE, PATIENT_GENDER)
 - INSURANCE (INSURANCE_ID, INSURANCE_NAME)
 - PATIENT_INSURANCE (PATIENT_ID, INSURANCE_ID)
- Team B
 - There are two types of patient health records: department health records and ambulatory health records
 - RECORD_TYPE (RECORD_TYPE_ID, RECORD_TYPE_NAME)
 - RECORD (RECORD _ID, PATIENT_ID, RECORD _TYPE_ID, RECORD _DATE)
- Team C
 - A <u>health records folder contains one or more health records of the same patient.</u> A patient can have <u>several</u> health records folders
 - FOLDER (FOLDER_ID, FOLDER_NAME, PATIENT_ID)
 - FOLDER_RECORD (FOLDER _ID, RECORD _ID)
- Team D
 - A health record folder can be borrowed by a <u>department</u>, a <u>doctor or another hospital</u>
 - BORROWER_TYPE (BORROWER_TYPE_ID, BORROWER_TYPE_NAME)
 - BORROWER (BORROWER_ID, BORROWER _TYPE_ID, BORROWER _NAME)
 - There is a history about who borrowed which folders
 - HISTORY (HISTORY_ID, BORROWER_ID, FOLDER_ID, HISTORY_DATE)

SQL

Structured Query Language is a declarative language that serves the following purposes:

- Data structure definition
 - CREATE
 - ALTER
 - DROP
- Data manipulation
 - Storing data
 - INSERT
 - Actualizing data
 - UPDATE
 - Deleting data
 - DELETE
 - Querying data
 - SELECT
- Database administration
 - Managing access rights
 - GRANT
 - Managing transactions
 - START TRANSACTION, COMMIT, ROLLBACK

SQL - Data Definition Language

BORROWER (BORROWER_ID, BORROWER_TYPE_ID, BORROWER_NAME) **HISTORY** (HISTORY_ID, BORROWER_ID, FOLDER_ID, HISTORY_DATE)

Database definition **CREATE DATABASE db** name; Table definition CREATE TABLE table_name (column_name1 column_type1, column_name2 column_type2, ... PRIMARY KEY (column_name1, ...)); Data types: INT, VARCHAR(length), DATE Primary key: PRIMARY KEY Create the database BMT DB Team A - Table definition PATIENT (PATIENT_ID, PATIENT_NAME, PATIENT_AGE, PATIENT_GENDER) **INSURANCE** (INSURANCE_ID, INSURANCE_NAME) PATIENT_INSURANCE (PATIENT_ID, INSURANCE_ID) Team B - Table defintion **RECORD_TYPE** (RECORD_TYPE_ID, RECORD_TYPE_NAME) **RECORD** (RECORD _ID, PATIENT_ID, RECORD _TYPE_ID, RECORD _DATE) Team C - Table definition **FOLDER** (FOLDER_ID, FOLDER_NAME, PATIENT_ID) FOLDER_RECORD (FOLDER _ID, RECORD _ID) Team D - Table definition BORROWER TYPE (BORROWER TYPE ID, BORROWER TYPE NAME)

SQL - Data Definition Language

Create the database BMI DB CREATE DATABASE BMI_DB; Team A CREATE TABLE patient (patient id INT PRIMARY KEY, patient name VARCHAR(80), patient age INT, patient gender INT); CREATE TABLE insurance (insurance id INT PRIMARY KEY, insurance name VARCHAR(160)); CREATE TABLE patient_insurance (patient_id INT, insurance_id INT, PRIMARY KEY (patient_id, insurance_id)); Team B CREATE TABLE record_type (record_type_id INT PRIMARY KEY, record_type_name VARCHAR(30)); CREATE TABLE record (record id INT PRIMARY KEY, patient id INT, record type id INT, record date DATE); Team C CREATE TABLE folder (folder_id INT PRIMARY KEY, folder_name VARCHAR(80), patient_id INT); CREATE TABLE folder_record (folder_id INT, record_id INT, PRIMARY KEY (folder_id, record_id)); Team D CREATE TABLE borrower type (borrower type id INT PRIMARY KEY, borrower type name VARCHAR(80)); CREATE TABLE borrower (borrower_id INT PRIMARY KEY, borrower _type_id INT, borrower _name VARCHAR(160)); CREATE TABLE history (history id INT PRIMARY KEY, borrower id INT, folder id INT, history date DATE);

SQL – Data Manipulation Language

- Storing data
 - INSERT INTO table_name (column_name1, column_name2, ...)
 VALUES (value column1, value column2, ...);
- □ Team A store a patient with 1 health insurance and a patient with 2 health insurances
 - PATIENT (PATIENT ID, PATIENT NAME, PATIENT AGE, PATIENT GENDER)
 - INSURANCE (INSURANCE_ID, INSURANCE_NAME)
 - PATIENT_INSURANCE (PATIENT_ID, INSURANCE_ID)
- □ Team B store a department health record and an ambulatory health record for both patients
 - **RECORD_TYPE** (RECORD_TYPE_ID, RECORD_TYPE_NAME)
 - **RECORD** (RECORD _ID, PATIENT_ID, RECORD _TYPE_ID, RECORD _DATE)
- □ Team C store 2 health records folders for each patient
 - FOLDER (FOLDER_ID, FOLDER_NAME, PATIENT_ID)
 - FOLDER_RECORD (FOLDER _ID, RECORD _ID)
- □ Team D store 1 doctor and two loans of a health records folder for each patient
 - **BORROWER TYPE** (BORROWER TYPE ID, BORROWER TYPE NAME)
 - BORROWER (BORROWER_ID, BORROWER _TYPE_ID, BORROWER _NAME)
 - **HISTORY** (HISTORY_ID, BORROWER_ID, FOLDER_ID, HISTORY_DATE)

SQL – Data Manipulation Language

```
Team A
        INSERT INTO patient (patient id, patient name, patient age, patient gender) VALUES (1, 'Jakub Janda', 25, 'male');
        INSERT INTO insurance (insurance id, insurance name) VALUES (1, 'Všeobecná zdravotní pojišťovna');
        INSERT INTO patient insurance (patient id, insurance id) VALUES (1, 1):
    Team B
        INSERT INTO record type (record type id, record type name) VALUES (1, 'oddělení'), (2, 'ambulantní');
        VALUES INSERT INTO record (record _id, patient _id, record _type_id, record _date) VALUES (1, 1, 1, now());
    Team C
П
        INSERT INTO folder (folder_id, folder_name, patient_id) VALUES (1, 'Složka záznamů pro Jakuba Jandu', 1);
        INSERT INTO folder record (folder id, record id) VALUES (1, 1);
    Team D
       INSERT INTO borrower type (borrower type id, borrower type name)
        VALUES (1, 'oddělení'), (2, 'lékař'), (3, 'nemocnice');
       INSERT INTO borrower (borrower_id, borrower_type_id, borrower_name) VALUES (1, 2, 'MUDr. Jan Malík');
        INSERT INTO history (history_id, borrower_id, folder_id, history_date) VALUES (1, 1, 1, now());
```

Querying data

SELECT column_name1, column_name2, ...
FROM table_name
[WHERE conditions]
[GROUP BY column_name1, column_name2, ...]
[HAVING conditions]
[ORDER BY column_name1, column_name2, ...]
[LIMIT row_count];

PATIENT (PATIENT_ID, PATIENT_NAME, PATIENT_AGE, PATIENT_GENDER)

INSURANCE (INSURANCE ID, INSURANCE NAME)

PATIENT_INSURANCE (PATIENT_ID, INSURANCE_ID)

RECORD_TYPE (RECORD_TYPE_ID, RECORD_TYPE_NAME)

RECORD (RECORD _ID, PATIENT_ID, RECORD _TYPE_ID, RECORD _DATE)

FOLDER (FOLDER_ID, FOLDER_NAME, PATIENT_ID)

FOLDER_RECORD (FOLDER _ID, RECORD _ID)

BORROWER_TYPE (BORROWER_TYPE_ID, BORROWER_TYPE_NAME)

BORROWER (BORROWER_ID, BORROWER _TYPE_ID, BORROWER _NAME)

HISTORY (HISTORY_ID, BORROWER_ID, FOLDER_ID, HISTORY_DATE)

□ Team A

- Total number of patients
- Insurance of patient Jakub Janda
- Folders borrowed by doctor MUDr. Malík

¬ Team B

- Total number of male patients
- Ambulantory health records of patient Jakub Janda
- All patients without folders

Team C

- Folders which were borrowed by a hospital
- Oldest patient
- Last date when a folder of patient Klára Bíla was borrowed

Team D

- Number of health insurances for patient Ludmila Černa
- All health records for patient Jana Hezka
- All loans of health records for patient Švejk which were made by doctors and hospitals

PATIENT (PATIENT_ID, PATIENT_NAME, PATIENT_AGE, PATIENT_GENDER)

INSURANCE (INSURANCE_ID, INSURANCE_NAME)

PATIENT_INSURANCE (PATIENT_ID, INSURANCE_ID)

RECORD_TYPE (RECORD_TYPE_ID, RECORD_TYPE_NAME)

RECORD (RECORD _ID, PATIENT_ID, RECORD _TYPE_ID, RECORD _DATE)

FOLDER (FOLDER ID, FOLDER NAME, PATIENT ID)

FOLDER_RECORD (FOLDER _ID, RECORD _ID)

BORROWER_TYPE (BORROWER_TYPE_ID, BORROWER_TYPE_NAME)

BORROWER (BORROWER_ID, BORROWER_TYPE_ID, BORROWER_NAME)

HISTORY (HISTORY_ID, BORROWER_ID, FOLDER_ID, HISTORY_DATE)

Team A

- Total number of patients select count(*) from patient
- Insurance of patient Jakub Janda select insurane.insurance_name from insurance, patient, patient_insusurance where insurance.insurance_id = patient_insurance.insurance_id and patient_insurance.patient_id = patient.patient_id and patient.patient_name = 'Jakub Janda'
- Folders borrowed by doctor MUDr. Malík select folder.folder_name from folder, borrower, history where folder.folder_id = history.folder_id and history.borrower_id = borrower.borrower_id and borrower.borrow_name = 'MUDr. Malik'

PATIENT (PATIENT ID, PATIENT NAME, PATIENT AGE, PATIENT GENDER)

INSURANCE (INSURANCE_ID, INSURANCE_NAME)

PATIENT_INSURANCE (PATIENT_ID, INSURANCE_ID)

RECORD_TYPE (RECORD_TYPE_ID, RECORD_TYPE_NAME)

RECORD (RECORD _ID, PATIENT_ID, RECORD _TYPE_ID, RECORD _DATE)

FOLDER (FOLDER ID, FOLDER NAME, PATIENT ID)

FOLDER_RECORD (FOLDER _ID, RECORD _ID)

BORROWER_TYPE (BORROWER_TYPE_ID, BORROWER_TYPE_NAME)

BORROWER (BORROWER_ID, BORROWER _TYPE_ID, BORROWER _NAME)

HISTORY (HISTORY_ID, BORROWER_ID, FOLDER_ID, HISTORY_DATE)

□ Team B

- Total number of male patients select * from patient where gender='male'
- Ambulantory health records of patient Jakub Janda select record.* from record, record_type, patient where record.record_type_id = record_type.record_type_id and record.patient_id = patient.patient_id and record_type.record_type_name = 'ambulantní' and patient.patient_name = 'Jakub Janda'
- All patients without folders select patient.patient_name, count(*) from folder, patient where folder.patient_id = patient.patient_id group by patient.patient_name having count(*)=0

PATIENT (PATIENT_ID, PATIENT_NAME, PATIENT_AGE, PATIENT_GENDER)

INSURANCE (INSURANCE_ID, INSURANCE_NAME)

PATIENT_INSURANCE (PATIENT_ID, INSURANCE_ID)

RECORD_TYPE (RECORD_TYPE_ID, RECORD_TYPE_NAME)

RECORD (RECORD _ID, PATIENT_ID, RECORD _TYPE_ID, RECORD _DATE)

FOLDER (FOLDER_ID, FOLDER_NAME, PATIENT_ID)

FOLDER_RECORD (FOLDER _ID, RECORD _ID)

BORROWER_TYPE (BORROWER_TYPE_ID, BORROWER_TYPE_NAME)

BORROWER (BORROWER_ID, BORROWER _TYPE_ID, BORROWER _NAME)

HISTORY (HISTORY_ID, BORROWER_ID, FOLDER_ID, HISTORY_DATE)

□ Team C

- Folders which were borrowed by a hospital select folder.* from folder, borrower, borrower_type, history where folder.folder_id = history.folder_id and history.borrower_id = borrower.borrower_id and borrower. borrower_type_id = borrower_type. borrower_type and borrower_type. borrower_type_name = 'nemocnice'
- Oldest patient
 select * from patient order by patient_age desc limit 1
- Last date when a folder of patient Klára Bíla was borrowed select max(history.date) from history, folder, patient where history.folder_id = folder.fodler_id and folder.patient_id = patient.patient_id and patient.patient_name = 'Klara Bila'

PATIENT (PATIENT_ID, PATIENT_NAME, PATIENT_AGE, PATIENT_GENDER)

INSURANCE (INSURANCE_ID, INSURANCE_NAME)

PATIENT_INSURANCE (PATIENT_ID, INSURANCE_ID)

RECORD_TYPE (RECORD_TYPE_ID, RECORD_TYPE_NAME)

RECORD (RECORD _ID, PATIENT_ID, RECORD _TYPE_ID, RECORD _DATE)

FOLDER (FOLDER_ID, FOLDER_NAME, PATIENT_ID)

FOLDER_RECORD (FOLDER _ID, RECORD _ID)

BORROWER TYPE (BORROWER TYPE ID, BORROWER TYPE NAME)

BORROWER (BORROWER_ID, BORROWER _TYPE_ID, BORROWER _NAME)

HISTORY (HISTORY ID, BORROWER ID, FOLDER ID, HISTORY DATE)

Team D

- Number of health insurances for patient Ludmila Černa select count(*) from insurance, patient where insurance id = patient.insurance id and patient.patient name = 'Ludmila Cerna'
- All health records for patient Jana Hezka select * from record, patient where record.patient id = patient.patient id patient_patient_name = 'Jana Hezka'
- All loans of health records for patient Švejk which were made by doctors and hospitals select * from history, borrower, borrower type, patient, folder

where history.borrower id = borrower.borrower id

and borrower_type_id = borrower_type.borrower_type_id

and history.folder_id = folder.folder_id

and folder.patient id = patient.patient id

borrower_type.borrower_type_name in ('doctor', 'hospital') and

patient.patient name = 'Svejk'

Database Systems

- Commercial database systems
 - Oracle
 - Informix Dynamic Server
 - Microsoft SQL Server
 - □ IBM DB2
 - Sybase, Teradata, SQL Anywhere
- Open source database systems
 - MySQL
 - PostgreSQL
 - Firebird
 - Ingres

Database system MySQL

Database system MySQL - phpMyAdmin

Homework

- webstu.fbmi.cvut.cz personal server
- databaze.fbmi.cvut.cz server for this homework
- Account activation:
 - 1. FTP Connection (create your working directory):
 - Your PC -> ftp://databaze.fbmi.cvut.cz
 - Use your faculty login and password
 - Open the admin web page
 - http://databaze.fbmi.cvut.cz/yourlogin
 - Click on the link Vytvořit databázi for creating your database
 - 4. Your should receive an email on your faculty account with login details to MySQL

Homework

- Create and insert illustrative data into the following tables in your faculty or personal database
 - PATIENT (PATIENT_ID, PATIENT_NAME, PATIENT_AGE, PATIENT_GENDER)
 - INSURANCE (INSURANCE_ID, INSURANCE_NAME)
 - PATIENT_INSURANCE (PATIENT_ID, INSURANCE_ID)
 - RECORD_TYPE (RECORD_TYPE_ID, RECORD_TYPE_NAME)
 - RECORD (RECORD _ID, PATIENT_ID, RECORD _TYPE_ID, RECORD _DATE)
 - FOLDER (FOLDER_ID, FOLDER_NAME, PATIENT_ID)
 - FOLDER_RECORD (FOLDER _ID, RECORD _ID)
 - BORROWER_TYPE (BORROWER_TYPE_ID, BORROWER_TYPE_NAME)
 - BORROWER (BORROWER_ID, BORROWER _TYPE_ID, BORROWER _NAME)
 - HISTORY (HISTORY ID, BORROWER ID, FOLDER ID, HISTORY DATE)
- Write SQL queries for the following tasks and run them against your database:
 - Folders with the highest number of ambulantory records for pacient Klara Novakova
 - Hospital with the highest number of rentals of folders for patients younger than 30 years old
 - Insurance with 100 or more folder rentals made by doctors
 - Records older than 10 days for pacients insured at VZP. For each record, display the total number of folders where the record appears, the total number of departments who rent those folders, the total number of rentals of those folders
- Send an export of your database together with the queries by Oct 26
- Install OpenMRS on your Laptop