

Regressão

Introdução

- A um modelo de regressão consiste um modelo, o qual foi gerado com base nos valores dos atributos dos exemplos, de uma de forma que esse modelo possa predizer um valor numérico contínuo
- Para isso pode-se utilizar
 - Métodos estatísticos
 - Métodos de aprendizado de máquina

Estrutura dos Modelos de Regressão

 O propósito dos modelos de regressão é identificar uma relacional funcional entre o atributo alvo (atributo cujo valor deseja-se prever no futuro) e os demais atributos que caracterizam os exemplos

Preço (em R\$ x 1000)
230
320
120
850

Estrutura dos Modelos de Regressão

Tamanho da casa (em m²)	Preço (em R\$ x 1000)
60	230
85	320
44	120
380	850

Estrutura dos Modelos de Regressão

- Sendo assim, os modelos de regressão podem ser utilizados para dois objetivos:
 - Ressaltar e interpretar a dependência entre o atributo alvo e os demais atributos
 - Prever valores futuros relacionados ao atributo alvo (considerando o modelo prévio que identificou a relação funcional entre os demais atributos e o atributo alvo)

Exemplos de Uso

- Qual o custo de produção para produzir um determinado número de itens
 - Base histórica de custos de produção quando produzidos um determinado número de itens
 - Descobrir a relação entre número de produtos produzidos e o custo de produção
 - Prever qual será o custo de produção caso deseje aumentar o número de produtos produzidos

Exemplos de Uso

 Interpretação do impacto das vendas de produtos frente a investimentos em propagandas em diferentes mídias

- Base história com valores gastos em cada tipo de media (jornal, revistas, TV, rádio, ...) e o impacto na venda de produtos
 - 1 Descobrir qual atributo tem maior relação com a variável alvo
 - Prever qual será o impacto nas vendas dado uma especificação de investimento nas diferentes medias

- Seja um conjunto de dados D composto de m observações e n+1 atributos
 - *n* atributos explanatórios (atributos/variáveis independentes, atributos preditores, ...)
 - 1 atributo alvo (variável dependente, resposta, saída desejada, ...)
- Os valores das variáveis independentes do *i*-ésimo exemplo será denotado por \mathbf{x}_i ($\mathbf{x}_i \in \mathbb{R}^n$)
- O valor do atributo alvo de x_i é denotado por y_i

Regressão univariada (número de atributos preditores = 1)

Tamanho da casa (em m²)	Preço (em R\$ x 1000)
60	230
85	320
44	120
380	850
γ	
X	y

Regressão multivariada (número de atributos preditores > 1)

Gasto TV (milhares R\$)	Gasto Rádio (milhares R\$)	Aumento Vendas (%)
100	10	10%
150	15	16%
50	20	7%
300	300	40%
200	50	23%
	(y

- Os vetores das m observações de um conjunto $\mathcal D$ serão denotados por $\mathbf X$ $(m \times n)$
- Os valores associados à essas m observações serão denotados pelo vetor $\mathbf{y} = (y_1, y_2, \times, y_m)$
- Por fim:
 - Seja Y uma variável aleatória que representa os valores dos atributos alvo
 - Seja X_j uma variável aleatória associada com o valor do j-ésimo atributo

- Formalmente:
 - Um modelo de regressão visa encontrar uma função

$$f: \mathbb{R}^n \to \mathbb{R}$$

que expressa o relacionamento entre a variável dependente Y e as n variáveis explanatórias X_i

$$Y=f(X_1,X_2,\ldots,X_n)$$

Estrutura dos Modelos de Regressã Exemplos de Uso Definição Formal

Definição Formal

• Em geral, o processo de identificar a função f (também chamada de hipótese), pode ser dividida em duas fases

- Escolher qual classe de algoritmos utilizar
- Escolher um modelo com maior poder de predição (maior capacidade de generalização)

 Além disso, a grande maioria dos modelos de regressão irão tentar obter seu modelos de forma a minimizar o erro residual
 → diferença entre um valor predito por um modelo e um valor real

 Os modelos s\(\tilde{a}\) obtidos obtendo os valores dos pesos (\(w\)) que ponderam os atributos

 Os valores de w informarão o quão a sua variação afetará a variável Y

 Portanto, o valor de w dará sua importância para prever a variável de saída → quanto maior, mais importante é o respectivo atributo

Regressão Linear

- Modelos de regressão linear representam a família mais conhecida (e simples) de modelos de regressão
- Os possíveis tipos de hipóteses consistem em funções lineares

$$Y = w_1X_1 + w_2X_2 + \cdots + w_nX_n + b = \sum_{j=1}^n w_jX_j + b$$

ullet Se houver uma única variável (n=1), o modelo de regressão linear vira a equação da reta

$$Y = wX + b$$

Regressão Linear

$$b = 1,5$$

$$w = 0.5$$

$$b = 0$$

$$w = 0,5$$

$$b = 1$$

Regressão Linear Univariada

- Para modelos de regressão linear, vamos considerar o modelo de regressão linear simples (um único atributos explanatório e um atributo alvo)
- Para isso, o conjunto de dados é reduzido a m pares de valores (x_i, y_i) , $1 \le i \le m$

Correlação

• É possível obter os a solução (valores dos coeficientes) de forma analítica por meio das seguintes igualdades

$$w = \frac{\sigma_{xy}}{\sigma_{xx}}$$

$$b = \overline{\mu}_y - w \overline{\mu}_x$$

Correlação

na qual

$$\overline{\mu}_{x} = \frac{\sum_{i=1}^{m} x_{i}}{m}, \quad \overline{\mu}_{y} = \frac{\sum_{i=1}^{m} y_{i}}{m}$$

representam a média do atributo explanatória e a média do atributo alvo respectivamente, e

$$\sigma_{xy} = \sum_{i=1}^{m} (x_i - \overline{\mu}_x)(y_i - \overline{\mu}_y)$$

$$\sigma_{xx} = \sum_{i=1}^{m} (x_i - \overline{\mu}_x)^2, \text{ e } \sigma_{yy} = \sum_{i=1}^{m} (y_i - \overline{\mu}_y)^2$$

expressam a covariância de x e y, a variância de x e a variância de y respectivamente (já considerando as simplificações matemáticas)

Perceptron

 Também irá obter os valores dos parâmetros w e b só que por meio de aprendizado supervisionado

Perceptron

Treinamento

$$w^{t+1} = w_t + \eta(y_i - f(x_i)) * x_i$$
$$b^{t+1} = b^t + \eta(y_i - f(x_i))$$

- Realizar o treinamento até
 - Um número fixo de épocas
 - Até que os valores dos parâmetros não se alterem
 - Até que seja atingido um erro quadrático médio abaixo de um limiar

Exercício

Calcule os modelos de regressão que utilizando o método da Correlação e Perceptron (com nº máximo de épocas = 2, $\eta = 0.1$, $w^0 = 0$ e b = 0 para o seguinte conjunto de dados

Х	у
1	3
2	5
3	7
4	9
5	11

Regressão Linear Multivariada

 No caso da regressão multivariada, há mais de um atributo descritivo para um determinado exemplo

 Nesse caso, tem-se que se aprender o peso associado a cada atributo

O resto é igual à regressão linear simples

Método Matricial

Perceptron

Exercício

Considere os dados apresentados abaixo e todos os pesos iniciais de um perceptron iguais a 0. Considere também um $\eta=0,01$. Faça 3 iterações completas e apresente os pesos obtidos.

Nota Disciplina I	Nota Disciplina 2	Nota Disciplina 3	Nota Disciplina 4	Nota IA
8,5	9,0	10	10	8,0
9,0	2,0	5,5	6,0	7,5
3,5	5,0	6,0	7,0	5,0
4,0	2,0	2,5	7,5	6,6

Validação de Modelos de Regressão

- Dentre as várias possibilidas para avaliar os resultados de um modelo de regressão (inclusive os vistos para validação de modelos de previsão em séries temporais), vamos o
 - Soma quadrática das diferenças (sum of squared differences)
 - Coeficiente de determinação (coefficient of determination)
 - Soma do erro quadrático (sum of squared errors)

Soma quadrática das diferenças

A primeira soma quadrática das diferenças

$$SSM = \prod_{i=1}^{m} (f(x) - \overline{\mu}_y)^2$$

 Representa o erro de predição quando a média do atributo y é utilizado como uma estimativa da resposta

Soma quadrática das diferenças

A segunda soma quadrática das diferenças

$$SST = i = 1^m = {m \atop i=1} (y_i - \overline{\mu}_y)^2$$

• Representa a quantidade de erro no modelo de regressão

Coeficiente de determinação

 O coeficiente de determinação R² expressa a proporção das duas somas quadráticas das diferenças apresentadas anterioremente

$$R^{2} = \frac{SSM}{SST} = \frac{\sum_{i=1}^{m} (f(x_{i}) - \overline{\mu}_{y})^{2}}{\sum_{i=1}^{m} (y_{i} - \overline{\mu}_{y})^{2}}$$

 Se o resultado é próximo de 1, pode-se concluir que a variabilidade explicada no atributo alvo pode ser explicada pelo modelo de regressão

Soma dos erros quadráticos

O bom e velho erro quadrático

$$SSE = \sum_{i=1}^{m} (f(x_i) - y_i)^2$$

- Nessa medida, quanto mais próximo de 0, melhor
- OBSERVAÇÃO: as demais medidas de avaliação de preditor de séries temporais também podem ser utilizados aqui

Esquema de Avaliação

- Como podemos estimar quão bem um regressor irá se comportar se comportar frente a dados novos (ou não vistos)?
- Se utilizarmos o próprio conjunto de dados que foi utilizado para construir o regressor (também conhecido por conjunto de treinamento) para avaliá-lo, a estimativa tende a ser otimista
- Portanto, para avaliar/estimar a performance de um regressor, deve-se utilizar um conjunto de teste
 - Exemplos que n\u00e3o pertencem ao conjunto de treinamento
 - Os exemplos de teste também devem possuir os valores do atributo alvo

Holdout

- O conjunto de exemplos é particionado aleatoriamente em dois conjuntos independentes: treinamento e teste
- Tipicamente 2/3 s\u00e3o utilizados para treinamento e o restante para teste
- Uma variação do método Holdout é o Random Subsampling, na qual o método Holdout é executado k vezes
 O resultado final é a média dos resultados de cada iteração

Figura: Holdout

k-Fold Cross-Validation

- Os dados são aleatoriamente particionados em k subconjuntos mutuamente exclusivos conhecidos como "folds" (D_1, D_2, \ldots, D_k)
- Os folds são de tamanhos iguais
- O procedimento de treino e teste é executado k vezes
- A cada iteração i, D_i é utilizado como conjunto de teste, e os folds restantes são utilizados para treinamento
- Diferente dos métodos Holdout e Random Subsampling, cada exemplo é usado o mesmo número de vezes para treinamento e uma única vez para teste
- O resultado da regressão é a média dos resultados das iterações

Figura: 3-fold cross-validation

Normalmente é utilizado 10-fold cross-validation

Material Complementar

Simple linear regression

https://en.wikipedia.org/wiki/Simple_linear_regression

Isotonic Regression

https://en.wikipedia.org/wiki/Isotonic_regression

Commons Math: The Apache Commons Mathematics Library

http://commons.apache.org/proper/commons-math/

Material Complementar

Matriz Inversa

https://pt.wikipedia.org/wiki/Matriz_inversa

Regressão não linear

https://pt.wikipedia.org/wiki/Regress%C3%A3o_n%C3%A3o_linear

Como fazer uma regressão linear simples no Excel

https://www.voitto.com.br/blog/artigo/regressao-linear-simples-no-excel

Análise de Regressão no LibreOffice

https://help.libreoffice.org/Calc/Regression_Analysis/pt-BR

Introdução Regressão Linear Regressão Linear Univariada Regressão Linear Multivariada Avaliação de Modelos de Regressão **Material Complementa**r

Imagem do Dia

Sistemas de Apoio à Decisão http://lives.ufms.br/moodle/

Rafael Geraldeli Rossi rafael.g.rossi@ufms.br

Slides baseados no material do prof. Bruno Magalhães nogueira e em [Vercellis, 2011]

Referências Bibliográficas I

Vercellis, C. (2011).

Business intelligence: data mining and optimization for decision making.

John Wiley & Sons.