# Nov1 Note

# Hongdou Li 11/1/2018

### Recap:

• 
$$\{Y_t\} \sim AR(p)$$
 if 
$$Y_t = \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \epsilon_t$$
 
$$\phi(B)Y_t = \epsilon_t$$
 where  $\phi(Z) = 1 - \phi_1 Z - \phi_2 Z^2 - \dots - \phi_p Z^p$ 

• 
$$\{Y_t\} \sim \sim MA(q)$$
 if 
$$Y_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \ldots + \theta_q \epsilon_{t-q}$$
$$Y_t = \theta(B) \epsilon_t$$
 where  $\theta(Z) = 1 + \theta_1 Z + \theta_2 Z^2 + \ldots + \theta_q Z^q$ 

•  $\phi(Z)$  and  $\theta(Z)$  are "generating functions" AKA "characteristic polynomials"

### **Mathematical Prerequisites**

A power series is an infinite sum representation of a function

$$f(x) = \sum_{n=0}^{\infty} a_n x^n$$

• EX1:

$$e^x = sum_{n=0}^{\infty} \frac{x^n}{n!}$$
 (exponential series)

• EX2

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 (geometric series) Converges if |x|<1

EX3:

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)(a)(x-a)^n}}{n!}$$
 (Taylor Series)

• EX4:

$$\frac{1}{1-x+x^2-2x^3} = \frac{1}{1-(x-x^2+2x^3)} = \sum_{n=0}^{\infty} (x-x^2+2x^3)^n$$
 converage if  $|x-x^2+2x^3| < 1$ 

1

## Complex Numbers:

$$\sqrt{-1} \equiv i \text{ (imaginery number)}$$

A complex number can be generally written as:

 $Z = a + bi \in C$  where  $a, b \in R$ , a is the real part and bi is the complex part.

(there is a graph)

- |Z| > 1 implies that Z lies outside the unite circle
- $|Z| \le 1$  implies that Z lies on/insideside the unite circle



Figure 1: A caption

#### Remarks

- MA(q) is stationary for all q
- $AR(p) = MA(\infty)$  if "stationary conditions" hold
- $MA(q) = AR(\infty)$  if "invertibility conditions" hold

### **Stationarity Conditions**

we know  $\phi(B)Y_t = \epsilon_t$ ,  $Y_t = \frac{1}{\phi(B)}\epsilon_t$  (1) (inverse the function)

because any function has a powerseries representation we know

$$\frac{1}{\phi(B)} = \sum_{n=0}^{\infty} \psi_n B^n = \psi_0 + \psi_1 B + \psi_2 B^2 + \dots \equiv \psi(B)$$

let's substitute this into equation(1)

$$Y_t = \psi(B)\epsilon_t$$

$$= (\psi_0 + \psi_1 B + \psi_2 B^2 + \dots)\epsilon_t$$

$$= \psi_0 \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + \psi_3 \epsilon_{t-3} + \dots$$

if  $\psi_0 = 1$ , this looks like  $MA(\infty)$ .

In order for this to be useful, we require that  $\psi_0 \epsilon_t + \psi_1 \epsilon_{t-1} + \psi_2 \epsilon_{t-2} + \psi_3 \epsilon_{t-3} + \dots$  converges. This converges if  $\sum_{n=0}^{\infty} \psi_n Z^n$  converges which happens if and only if the zeros(roots) of  $\psi(Z)$  lie outside the unit circle in the complex plane.

Thus, an AR(p) model can be written as an  $MA(\infty)$  model is  $\phi(Z)$ , the AR generating function, has zeros outside the unit circle in the complex plane.

$$\phi(z) \neq 0$$
 for any Z such that  $|Z| \leq 1$ 

or equivalently  $\phi(Z) = 0$  only for Z such that |Z| > 1 (stationary condition)

#### **Invertibility Conditions**

We know  $Y_t = \theta(B)\epsilon_t$  if  $\{Y_t\} \sim MA(q)$ 

$$\frac{1}{\theta(B)}Y_t = \epsilon_t \ (2)$$

Because any function has a power series representation we know

$$\frac{1}{\theta(B)} = \sum_{n=0}^{\infty} \lambda_n B^n = \lambda_0 + \lambda_1 B + \lambda_2 B^2 = \dots \equiv \lambda(B)$$

substituting this into equation(2) yields:

$$\lambda(B)Y_t = \epsilon_t$$

$$(\lambda_0 + \lambda_1 B + \lambda_2 B^2 + \dots)Y_t = \epsilon_t$$

$$\lambda_0 Y_t + \lambda_1 Y_{t-1} + \lambda_2 Y_{t-2} + \dots = \epsilon_t$$

if 
$$\lambda_0 = 1$$
, this looks like  $AR(\infty)$ 

Inorder for this to be useful we require  $\lambda_0 Y_t + \lambda_1 Y_{t-1} + \lambda_2 Y_{t-2} + \dots$  to converge which happens if and only if the zeros of  $\theta(Z)$  lie outside the unit circle in the complex plane.

Thus an MA(q) model is invertible iff:

$$\theta(z) \neq 0$$
 for any Z such that  $|Z| \leq 1$ 

or equive lently  $\theta(Z)=0$  only for z such that  $|\mathbf{Z}|>1$