

Home

<u>Grades</u>

Quizzes

<u>Assignments</u>

Modules

Discussions Ø

Homework 2

Due Oct 21 at 2:59am **Points** 100 **Questions** 10 **Available** until Oct 21 at 2:59am **Time Limit** 60 Minutes **Allowed Attempts** 3

Instructions

We use the conventions in the QBook101.

The default programming language for coding is Python. You may write pieces of code during this exercise.

When there are two or more correct answers, you must pick all and only the correct answers.

Take the Quiz Again

Attempt History

	Attempt	Time	Score
KEPT	Attempt 2	6 minutes	80 out of 100
LATEST	Attempt 2	6 minutes	80 out of 100
	Attempt 1	19 minutes	50 out of 100

(!) Correct answers are hidden.

Score for this attempt: 80 out of 100

Submitted Oct 7 at 10:14pm This attempt took 6 minutes.

Incorrect

Question 1	0 / 10 pts
Which one(s) of the following operator	ors are stochastic?
$ \begin{pmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} $	
$\Box \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$	
$\begin{pmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{pmatrix}$	

Last Attempt Details:

Time:	6 minutes
Current Score:	80 out of 100
Kept Score:	80 out of
000.0.	100

2 Attempts so far

(View Previous

<u>Attempts</u>

1 More Attempt available

Take the Quiz Again

(Will keep the highest of all your scores)

You are given a classical biased coin landing on Tails with probability 0.4. The coin is flipped for 1000 times. Which one is the most likely outcome compared to the others? Heads: 585 Tails: 415 Heads: 102 Tails: 898 Heads: 500 Tails: 500

Question 4	10 / 10 pts
Each row sum of a probabilistic ope	erator adds up to 1.
False	
O True	

Question 5 $10 \ / \ 10 \ ext{pts}$ We combine two probabilistic bits ($b_1 \otimes b_2$ where

Question 6	10 / 10 pts
What is the dimension of the vect with 2 coins?	or representing a system
O 16	
O 8	
O 2	
⊚ 4	

Incorrect Question 7

0 / 10 pts

If we want to simulate a biased coin landing on tails with probability 0.4, what should be the value of P in the following code?

```
from random import randrange
heads = tails = 0
for i in range(1000):
    if randrange(100) <= P:
        tails = tails + 1
    else:
        heads = heads + 1
print(heads,tails)</pre>
```

39

0 42

0 41

40

10 / 10 pts

Question 8

In the fictional site called "Zone" (Stalker, 1979 film):

- if today is sunny, the probability that tomorrow is sunny is
- if today is sunny, the probability that tomorrow is rainy is 0.8.
- if today is rainy, the probability that tomorrow is sunny is 0.4 and
- if today is rainy, the probability that tomorrow is rainy is 0.6.

Since there are only two states of weather, we can represent the daily change as a probabilistic operator.

Which one of the following can be this probabilistic operator?

- $\begin{pmatrix}
 0.2 & 0.8 \\
 0.4 & 0.6
 \end{pmatrix}$
- $\begin{pmatrix} 0.6 & 0.8 \\ 0.4 & 0.2 \end{pmatrix}$
- $\begin{pmatrix} 0.4 & 0.6 \\ 0.8 & 0.2 \end{pmatrix}$
- $\begin{pmatrix}
 0.4 & 0.2 \\
 0.8 & 0.6
 \end{pmatrix}$

Question 9

10 / 10 pts

The following code prints a randomly picked probabilistic state:

```
from random import randrange
a = b = c = d = randrange(100)
sum = a + b + c + d
state = [a/sum,b/sum,c/sum,d/sum]
print(state)
```

- True
- False

Question 10

10 / 10 pts

```
from random import randrange
heads = tails = 0
for i in range(100):
    if randrange(4)==randrange(4): heads = heads + 1
    else: tails = tails + 1
print(heads)
```

Which one is the most likely outcome?

0 4			
98			
27			
0 12			

Quiz Score: 80 out of 100

◆ Previous