# Aprendizado Profundo

**Normalizing Flows** 

Professor: Lucas Silveira Kupssinskü

### Agenda

- Modelos Geradores revisão
- Visão geral de Normalizing Flows
- Mudança de Variável em distribuições de probabilidade
- Loss
- O que são *Flows* 
  - Composição de *Flows*
  - Linear Flows
  - Coupling Flows
  - Afine Coupling Flows

- O objetivo de um modelo gerador é aprender uma distribuição de probabilidade sobre uma variável aleatória X usando um conjunto de dados observados  $\left\{x^{(i)}\right\}_{i=1}^{N}$  com uma densidade de probabilidade  $p_X(x)$  parametrizada por  $\theta$
- Repare que, podemos ter interesse tanto em amostrar quanto em avaliar  $p_X(x)$

- Vamos olhar novamente para GANs
  - Conseguimos amostrar  $p_X$
  - Avaliar o valor de  $p_X$  é inviável



- Normalizing Flows vão são modelos geradores probabilísticos que permitem tanto amostrar quanto avaliar  $p_X(x)$
- Consistem em transformar uma distribuição tratável base (e.g. z  $\sim \mathcal{N}(0,1)$ ) em uma outra distribuição usando funções inversíveis





• Abaixo um exemplo de transformação de densidades de probabilidades 1D



- Caso discreto
  - Realizar mudança de variável no caso discreto é trivial
  - Vamos imaginar o lançamento de uma moeda
    - $p_X(x=1) = \frac{1}{6}$
  - Se aplicarmos uma função inversível, por exemplo  $f(x)=x^2$ , o espaço amostral do nosso experimento muda
    - $\{1,2,3,4,5,6\} \rightarrow \{1,4,9,16,25,36\}$
  - Logo, para calcularmos  $p_z(z=9)$  temos que perceber que  $z=9\equiv x=3$ , por consequência as probabilidades são iguais

- Caso contínuo
  - Aqui nossa noção fundamental passa a ser um intervalo de probabilidades, não um evento pontual

 Ao aplicar essa função (inversível e derivável) a densidade sofre uma deformação



- Repare as duas distribuições ao lado
- Perceba que, um determinado volume de uma das distribuições pode ser achatado ou alongado ao efetuar a transformação



- $X \sim \mathcal{N}(0,1)$
- $p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$
- $z = \ln(x)$
- $p_Z(z) = ?$

- $X \sim \mathcal{N}(0,1)$
- $p_X(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$
- $z = \exp(x)$
- $p_Z(z) = ?$
- $x = \ln(z)$
- $P(Z \le z) = P(X \le \ln(z))$ 
  - $CDF(z) = CDF(\ln(z))$
  - $p_Z(z) = p_X(\ln(z)) \frac{\partial(\ln x)}{\partial dz}$
  - $p_Z(z) = \frac{1}{z\sqrt{2\pi}} \exp\left(-\frac{\ln(z)^2}{2}\right)$

$$p(x)dx = p(z)dz$$

$$p(x)dx = p(z)dz$$

$$p(x) = p(z) \left| \frac{dz}{dx} \right|$$

O módulo é colocado para garantir que o resultado seja positivo e que não tenhamos que nos preocupar com direções de integrações e derivadas ©

#### Loss

 Para realizar o treinamento do nosso modelo, seguimos usando o framework de maximizar a verossimilhança dos dados

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left[ \prod_{i=1}^{N} P(x^{(i)} | \theta) \right]$$

#### Loss

Para realizar o treinamento do nosso modelo, seguimos usando o framework de maximizar a

verossimilhança dos dados

$$\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \left[ \prod_{i=1}^{N} P(x^{(i)} | \theta) \right]$$

$$= \underset{\theta}{\operatorname{argmin}} \left[ \sum_{i=1}^{N} -\log \left( P(x^{(i)} | \theta) \right) \right]$$

$$= \underset{\theta}{\operatorname{argmin}} \left[ \sum_{i=1}^{N} -\log \left( P(z^{(i)}) \left| \frac{\partial f(z^{(i)}, \theta)}{\partial z^{(i)}} \right|^{-1} \right) \right]$$

$$= \underset{\theta}{\operatorname{argmin}} \left[ \sum_{i=1}^{N} \left[ \log \left| \frac{\partial f(z^{(i)}, \theta)}{\partial z^{(i)}} \right| -\log P(z^{(i)}) \right] \right]$$

- Um flow é uma função f(x)
  - Paramétrica (queremos definir parâmetros)
  - Inversível (queremos calcular o flow nos dois sentidos)
  - Diferenciável (queremos otimizar via backprop)
  - Conseguimos computar a inversa e o determinante da Jacobiana de maneira eficiente

 A classe de funções diferenciáveis e inversíveis é fechada em composição

$$f = f_k \circ f_{k-1} \circ \cdots \circ f_2 \circ f_1$$

• Isso nos possibilita projetar camadas que computam um flow e criar redes com múltiplas dessas camadas



$$f = f_k \circ f_{k-1} \circ \dots \circ f_2 \circ f_1$$

$$f^{-1} = f_1^{-1} \circ f_2^{-1} \circ \dots \circ f_{k-1}^{-1} \circ f_k^{-1}$$

$$\left| \frac{\partial f[z, \theta]}{\partial z} \right| = \left| \frac{\partial f_k[f_{k-1}, \theta_k]}{\partial f_{k-1}} \right| \cdot \left| \frac{\partial f_{k-1}[f_{k-2}, \theta_{k-1}]}{\partial f_{k-2}} \right| \dots \left| \frac{\partial f_2[f_1, \theta_2]}{\partial f_1} \right| \cdot \left| \frac{\partial f_1[z, \theta_1]}{\partial z} \right|$$

#### Linear Flow

 Uma transformação linear pode ser um Linear Flow se a matriz admitir inversa

$$f(x) = \theta x + b$$

- Inversa:  $f^{-1}(z) = \theta^{-1}(z b)$
- Problemas:
  - Pouco expressivas
  - Determinante e inversa podem ter custo  $O(d^3)$

### Linear Flow

|                                                                 | Inverse          | Determinant |
|-----------------------------------------------------------------|------------------|-------------|
| Full                                                            | $O(d^3)$         | $O(d^3)$    |
| Diagonal                                                        | O(d)             | O(d)        |
| Triangular                                                      | $O(d^2)$         | O(d)        |
| Block Diagonal                                                  | $O(c^3d)$        | $O(c^3d)$   |
| LU Factorized [Kingma and Dhariwal 2018]                        | $O(d^2)$         | O(d)        |
| Spatial Convolution [Hoogeboom et al 2019; Karami et al., 2019] | $O(d \log d)$    | O(d)        |
| 1x1 Convolution<br>[Kingma and Dhariwal 2018]                   | $O(c^3 + c^2 d)$ | $O(c^3)$    |







• Jacobiana: 
$$Df(x) = \begin{bmatrix} I & 0 \\ \frac{\partial \hat{f}(x^B|\theta(x^A))}{\partial x^A} & \hat{f}(x^B|\theta(x^A)) \end{bmatrix}$$

- Determinante da Jacobiana:
  - $\hat{f}(x^B|\theta(x^A))$

#### Discreto vs Contínuo

- Como imagens são quantizadas, podemos ter problemas de singularidades ao tentar ajustar uma distribuição contínua
- Para atenuar esse tipo de problema é possível adicionar um ruído (usualmente uniforme) a distribuição modelada



#### **TLDR**

- Normalizing Flows são modelos geradores capazes de amostragem e avaliação da probabilidade
- São construídos com base em uma série de transformações invertíveis
- Ainda não possuem a mesma qualidade de GANs ou modelos difusores

#### Referências

- KOBYZEV, Ivan; PRINCE, Simon JD; BRUBAKER, Marcus A. Normalizing flows: An introduction and review of current methods. **IEEE transactions on pattern analysis and machine intelligence**, v. 43, n. 11, p. 3964-3979, 2020.
- Capítulo 16 Understanding Deep Learning Simon J. Prince