大数据科学与应用技术

Lecturer: 焦在滨(Zaibin JIAO)

Email: jiaozaibin@mail.xjtu.edu.cn

Overview

- Naïve Bayes Classifier
- Decision Tree Model

Thomas Bayes

Evolution Tree

Bayes Theorem

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A|B)P(B) = P(B|A)P(A)$$

Likelihood of evidence B if A is true

$$P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$$

Posterior probability of A given the evidence B

Prior probability that evidence B is true

Fish Example

- Salmon vs. Tuna
- Grab a fish at random.
- $P(\omega_1)=P(\omega_2)$
- $P(\omega_1)>P(\omega_2)$
- Additional information

$$P(\omega_i \mid x) = \frac{P(x \mid \omega_i)P(\omega_i)}{P(x)}$$

Shooting Example

Probability of Kill

• P(A): 0.6

• P(B): 0.5

- One shoot from A
- One shoot from B
- What is the probability that it is shot down by A?
 - C: The target is killed.

Cancer Example

- ω_1 : Cancer; ω_2 : Normal
- $P(\omega_1)=0.008$; $P(\omega_2)=0.992$
- Lab Test Outcomes: + vs. –
- $P(+|\omega_1)=0.98$; $P(-|\omega_1)=0.02$
- $P(+|\omega_2)=0.03$; $P(-|\omega_2)=0.97$
- Now someone has a positive test result...
- Is he/she doomed?

Cancer Example

$$P(\omega_1 | +) \propto P(+ | \omega_1) P(\omega_1) = 0.98 \times 0.008 = 0.0078$$

$$P(\omega_2 | +) \propto P(+ | \omega_2) P(\omega_2) = 0.03 \times 0.992 = 0.0298$$

$$P(\omega_1 \mid +) < P(\omega_2 \mid +)$$

$$P(\omega_1 \mid +) = \frac{0.0078}{0.0078 + 0.0298} = 0.21 >> P(\omega_1)$$

Headache & Flu Example

- H="Having a Fever"
- F="Coming down with COVID-19"
- P(H)=1/10; P(F)=1/40; P(H|F)=1/2
- What does this mean?
- One day you wake up with a fever ...
- Since 50% COVID-19 cases are associated with fever ...
- I must have a 50-50 chance of coming down with COVID-19!

Headache & Flu Example

The truth is ...

$$P(F|H) = \frac{P(H|F)P(F)}{P(H)} = \frac{1/2 \times 1/40}{1/10} = \frac{1}{8}$$

Naïve Bayes Classifier

$$\omega_{MAP} = \underset{\omega_i \in \omega}{\operatorname{arg\,max}} P(\omega_i \mid a_1, a_2, ..., a_n)$$

$$\omega_{MAP} = \underset{\omega_i \in \omega}{\operatorname{arg\,max}} \frac{P(a_1, a_2, ..., a_n \mid \omega_i) P(\omega_i)}{P(a_1, a_2, ..., a_n)}$$

$$\omega_{MAP} = \underset{\omega_i \in \omega}{\operatorname{arg\,max}} P(a_1, a_2, ..., a_n \mid \omega_i) P(\omega_i)$$

Conditionally Independent

$$\omega_{MAP} = \underset{\omega_i \in \omega}{\operatorname{arg\,max}} P(\omega_i) \prod_j P(a_j \mid \omega_i)$$

MAP: Maximum A Posterior

Independence

$$P(A \cap B) = P(A)P(B|A) \qquad P(B|A) = P(B)$$

$$P(A \cap B) = P(A)P(B)$$

Conditionally Independent

$$P(A, B | G) = P(A | G)P(B | G) \iff P(A | G, B) = P(A | G)$$

$$P(A, B \mid G) = P(A, B, G) / P(G) = P(A \mid B, G) \times P(B, G) / P(G)$$
$$= \underline{P(A \mid B, G)} \times P(B \mid G)$$

Conditional Independence

P(Cancer|Male) = 65/100,000P(Cancer|Female) = 48/100,000

- Are the two events Male/Female and Cancer independent?
- Assume smoking is the sole contributing factor to cancer.

Conditionally Independent

P(Cancer|Male, Smoking) = P(Cancer|Smoking)

Conditional Independence

$$P(R \cap B) = 6/49$$

 $P(R) = 16/49$
 $P(B) = 18/49$
 $P(R \cap B) \neq P(R)P(B)$
Not Independent

$$P(R \cap B|Y) = 1/6$$

$$P(R|Y) = 1/3$$

$$P(B|Y) = 1/2$$

$$P(R \cap B|Y) = P(R|Y)P(B|Y)$$

Conditionally Independent

Conditional Independence

- Two coins: fair vs. biased (two-headed)
- Select one coin at random and toss twice.
- A: First coin toss is head.
- B: Second coin toss is head.
- C: You selected the fair coin.

$$P(A) = P(B) = 0.5 \times 0.5 + 0.5 \times 1.0 = 0.75$$

$$P(C|A) = \frac{P(A|C)P(C)}{P(A|C)P(C) + P(A|\neg C)P(\neg C)} = \frac{0.5 \times 0.5}{0.5 \times 0.5 + 1 \times 0.5} = \frac{1}{3}$$

$$P(B|A) = \frac{1}{3} \times 0.5 + \frac{2}{3} \times 1.0 = \frac{5}{6} \neq P(B)$$
 Not Independent

$$P(B|A,C) = P(B|C) = 0.5$$

Conditionally Independent

Independent ≠ **Uncorrelated**

$$\rho_{X,Y} = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E((X - \mu_X)(Y - \mu_Y))}{\sigma_X \sigma_Y}$$

$$X \in [-1, 1]$$

$$Y = X^2$$

X	Y
1	1
0.5	0.25
0.2	0.04
0	0
-0.2	0.04
-0.5	0.25
-1	1

Cov $(X,Y)=0 \rightarrow X$ and Y are uncorrelated.

However, Y is completely determined by X.

Estimating $P(\alpha_j | \omega_i)$

α_1	α_2	α_3	ω
	+		ω_1
			ω_2
	-		ω_1
	+		ω_1
			ω_2

$$P(\omega_1) = 3/5;$$
 $P(\omega_2) = 2/5$

$$P(a_2 = + | \omega_1) = 2/3$$

$$P(a_2 = '-' | \omega_1) = 1/3$$

$$P(a_{jk} \mid \omega_i) = \frac{\left| a_j = a_{jk} \wedge \omega = \omega_i \right| + 1}{\left| \omega = \omega_i \right| + \left| a_j \right|}$$

How about continuous variables?

Tennis Example

Day	Outlook	Temperature	Humidity	Wind	Play Tennis
Day1	Sunny	Hot	High	Weak	No
Day2	Sunny	Hot	High	Strong	No
Day3	Overcast	Hot	High	Weak	Yes
Day4	Rain	Mild	High	Weak	Yes
Day5	Rain	Cool	Normal	Weak	Yes
Day6	Rain	Cool	Normal	Strong	No
Day7	Overcast	Cool	Normal	Strong	Yes
Day8	Sunny	Mild	High	Weak	No
Day9	Sunny	Cool	Normal	Weak	Yes
Day10	Rain	Mild	Normal	Weak	Yes
Day11	Sunny	Mild	Normal	Strong	Yes
Day12	Overcast	Mild	High	Strong	Yes
Day13	Overcast	Hot	Normal	Weak	Yes
Day14	Rain	Mild	High	Strong	No

Tennis Example

```
Given:
< Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong >
Predict:
PlayTennis (yes or no)
Bayes Solution:
P(PlayTennis = yes) = 9/14
P(PlayTennis = no) = 5/14
P(Wind = strong \mid PlayTennis = yes) = 3/9
P(Wind = strong \mid PlayTennis = no) = 3/5
P(yes)P(sunny \mid yes)P(cool \mid yes)P(high \mid yes)P(strong \mid yes) = 0.0053
P(no)P(sunny \mid no)P(cool \mid no)P(high \mid no)P(strong \mid no) = 0.0206
The conclusion is not to play tennis with probability:
```

Decision Making

A Survey Dataset

District	House Type	Income	Previous Customer	Outcome
Suburban	Detached	High	No	Nothing
Suburban	Detached	High	Yes	Nothing
Rural	Detached	High	No	Responded
Urban	Semi-detached	High	No	Responded
Urban	Semi-detached	Low	No	Responded
Urban	Semi-detached	Low	Yes	Nothing
Rural	Semi-detached	Low	Yes	Responded
Suburban	Terrace	High	No	Nothing
Suburban	Semi-detached	Low	No	Responded
Urban	Terrace	Low	No	Responded
Suburban	Terrace	Low	Yes	Responded
Rural	Terrace	High	Yes	Responded
Rural	Detached	Low	No	Responded
Urban	Terrace	High	Yes	Nothing

A Survey Dataset

- Given the data collected from a promotion activity.
 - Could be tens of thousands of such records.
- Can we find any interesting patterns?
 - All rural households responded ...
- To find out which factors most strongly affect a household's response to a promotion.
 - Better understanding of potential customers
- Need a classifier to examine the underlying relationships and make future predictions.
- Send promotion brochures to selected households next time.
 - Targeted Marketing

A Tree Model District Suburban Rural Urban 2:3 4:0 3:2 House Type **Previous Customer** Detached Semi-detached Terrace No Yes 0:2 1:0 3:0 0:2 Income Red: Responded High Low **Purple: Nothing** 0:1 1:0

Another Tree Model

Red: Responded

Purple: Nothing

Some Notes ...

- Rules can be easily extracted from the built tree.
 - (District = Rural) → (Outcome = Responded)
 - (District = Urban) AND (Previous Customer = Yes) → (Outcome = Nothing)
- One dataset, many possible trees
- Occam's Razor
 - The term *razor* refers to the act of shaving away unnecessary assumptions to get to the simplest explanation.
 - "When you have two competing theories that make exactly the same predictions, the simpler one is the better."
 - "The explanation of any phenomenon should make as few assumptions as possible, eliminating those making no difference in the observable predictions of the explanatory hypothesis or theory."
- Simpler trees are generally preferred.

ID3

- How to build a shortest tree from a dataset?
- Iterative Dichotomizer 3
- Ross Quinlan: http://www.rulequest.com/
- One of the most influential Decision Trees models
- Top-down, greedy search through the space of possible decision trees
- Since we want to construct short trees ...
- It is better to put certain attributes higher up the tree.
- Some attributes split the data more purely than others.
- Their values correspond more consistently with the class labels.
- Need to have some sort of measure to compare candidate attributes.

Entropy

$$Entropy(S) = -\sum_{i=1}^{C} p_i \log(p_i)$$

 p_i : the proportion of instances in the dataset that take the i th target value

$$S = [9/14 (responses), 5/14 (no responses)]$$

Entropy(S) =
$$-\frac{9}{14}\log_2\frac{9}{14} - \frac{5}{14}\log_2\frac{5}{14} = 0.940$$

$$Gain(S, A) = Entropy(S) - \sum_{v \in A} \frac{|S_v|}{|S|} Entropy(S_v)$$

S_v: the subset of S where attribute A takes the value v.

Attribute Selection

$$Gain(S, District) = Entropy(S) - \frac{5}{14}Entropy(S_{District=Suburban})$$

$$-\frac{5}{14}Entropy(S_{District=Urban}) - \frac{4}{14}Entropy(S_{District=Rural})$$

$$= 0.940 - \frac{5}{14} \cdot 0.971 - \frac{5}{14} \cdot 0.971 - \frac{4}{14} \cdot 0 = 0.247$$

$$Gain(S, Income) = Entropy(S) - \frac{7}{14}Entropy(S_{Income=High})$$

$$-\frac{7}{14}Entropy(S_{Income=Low})$$

$$= 0.940 - \frac{7}{14} \cdot 0.9852 - \frac{7}{14} \cdot 0.5917 = 0.152$$

Overfitting

- It is possible to create a separate rule for each training sample.
 - Perfect Training Accuracy vs. Overfitting
 - Random Noise, Insufficient Samples
- We want to capture the general underlying functions or trends.
- Definition
 - Given a hypothesis space H, a hypothesis $h \in H$ is said to overfit the training data if there exists some alternative hypothesis $h' \in H$, such as h has smaller error than h' over the training samples, but h' has a smaller error than h over the entire distribution of instances.
- Solutions
 - Stop growing the tree earlier.
 - Allow the tree to overfit the data and then post-prune the tree.

ID3 Framework

- ID3(Examples, Target_attribute, Attributes)
- Create a Root node for the tree.
- If Examples have the same target attribute T, return Root with label=T.
- If Attributes is empty, return Root with label=the most common value of Target_attribute in Examples.
- A ← the attribute from *Attributes* that best classifies *Examples*.
- The decision attribute for $Root \leftarrow A$.
- For each possible value v_i of A
 - Add a new tree branch below Root, corresponding to A= v_i.
 - Let Examples (v_i) be the subset of Examples that have value v_i for A.
 - If *Examples* (*v_i*) is empty
 - Below this new branch add a leaf node with label=the most common value of *Target_attribute* in *Examples*.
 - Else below this new branch add the subtree
 - ID3(Examples(v_i), Target_attribute, Attributes-{A})
- Return Root

ID3 Framework

Pruning (剪枝)

剪枝(pruning)是决策树算法对付过拟合的主要手段。

一、基于测试集剪枝的基本策略

预剪枝(prepruning): 在决策树生成过程中,对每一个节点在划分前先进行估计,若当前节点的划分不能带来决策树泛化性能的提升,则停止划分,并标记当前节点为叶节点。

后剪枝(post-pruning): 先生成一颗完整的决策树, 然后自底向上对非叶节点进行考察, 若将该节点对应的子树替换为叶节点能带来决策树泛化性能提升,则将该子树替换为叶节点。

如何判断剪枝泛化后性能是否提升? 留出法

表 4.2 西瓜数据集 2.0 划分出的训练集(双线上部)与验证集(双线下部)

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	2111 4 ±4	朝	稍凹.	软粘	是
10	青绿	硬挺	训练	析	平坦	软粘	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	测试	f	稍凹	硬滑	是
9	乌黑	稍蜷	1X3 MT/2	*	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

Ent(D)=1 色泽: $Ent(D_{ \oplus \textcircled{\#}})=1$; $Ent(D_{ \oplus \textcircled{\#}})=0.8113$; $Ent(D_{ \mathring{\mathbb{R}} \dot{\mathbb{H}}})=0$; Gain(D, 色泽)=0.2775

根蒂: $Ent(D_{\text{卷}})=0.918$; $Ent(D_{\text{稍卷}})=1$; $Ent(D_{\text{硬挺}})=0$; Gain(D, 根蒂)=0.115

敲声: $Ent(D_{浊响})=0.918$; $Ent(D_{沉闷})=0.918$; $Ent(D_{清脆})=0$; Gain(D, 敲声)=0.1738

纹理: $Ent(D_{清晰})=0.918$; $Ent(D_{稍糊})=0.918$; $Ent(D_{欖ォ)}=0$; Gain(D, 纹理)=0.1738

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是 是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹 .	软粘	是
10	青绿	硬挺	 清脆	清晰	平坦	软粘	 否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

脐部: Ent(D_{凹陷})=0.8113;

 $Ent(D_{$ 稍凹 $})=1;$

 $Ent(D_{\underline{\Psi}\underline{\dagger}\underline{\exists}})=0;$

Gain(D, 脐部)=0.2775

触感: Ent(D_{硬滑})=1;

Ent(D软料。

Gain(D, 触感)=0

二、预剪枝(prepruning):

对节点①不做划分-叶节点-坏瓜-正确率4/7 对节点做划分-子节点作为叶节点 ②-好瓜; ③-好瓜; ④-坏瓜-正确率

样例:

4:脐部=凹陷-好瓜-正确

5: 脐部=凹陷-好瓜-正确

8: 脐部=稍凹-好瓜-正确

9:脐部=稍凹-好瓜-错误

11: 脐部=平坦-坏瓜-正确

12:脐部=平坦-坏瓜-正确

13:脐部=凹陷-好瓜-错误

划分后正确率: 5/7-划分

好瓜 编号 触感 色泽 敲声 脐部 根蒂 纹理 是 青绿 蜷缩 沉闷 清晰 凹陷 硬滑 4 是 浅白 蜷缩 凹陷 硬滑 5 浊响 清晰 是 乌黑 稍蜷 浊响 清晰 稍凹 硬滑 8 否 乌黑 稍蜷 稍糊 稍凹 硬滑 9 沉闷 否 浅白 硬挺 清脆 模糊 平坦 硬滑 11 否 浅白 蜷缩 模糊 平坦 软粘 12 浊响 否 青绿 稍蜷 稍糊 凹陷 硬滑 13 浊响

稍糊

模糊

模糊

稍糊

稍凹

平坦

平坦

凹陷

硬滑

硬滑

软粘

硬滑

沉闷

清脆

浊响

浊响

乌黑

浅白

浅白

青绿

9

11

12

13

稍蜷

硬挺

蜷缩

稍蜷

划分前正确率: 5/7-不划分

样例:

否否

否

否

4: 脐部=凹陷-好瓜-正确 and色泽=青绿 好瓜-正确

5:脐部=凹陷-好瓜-正确 and色泽=浅白 坏瓜-错误

13: 脐部=凹陷-好瓜-错误 and色泽=青绿 好瓜-错误

划分后正确率: 4/7-不划分

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是是是
9 11 12 13	乌 渓 臼 浅 白 青 绿	稍蜷 硬缩 蜷蜷	沉闷 清脆 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

样例集:

8: 脐部=稍陷-好瓜-正确 and根蒂=稍卷 好瓜-正确

9: 脐部=稍凹-好瓜-错误 and根蒂=稍卷 好-错误

划分后正确率: 5/7-不划分

保留分支 数	训练时 间	泛化 性能	欠拟合 风险
少	小	强	大
很多分支 未展开	学到的特本进行II		

验证集精度

"色泽=?" 划分前: 71.4%

划分后: 57.1%

预剪枝决策:禁止划分

验证集精度

"根蒂=?" 划分前: 71.4%

划分后: 71.4%

预剪枝决策:禁止划分

三、后剪枝:

样例:

4:脐部=凹陷-好瓜-正确

5: 脐部=凹陷-坏瓜-错误

8: 脐部=稍凹-坏瓜-错误

9: 脐部=稍凹-好瓜-错误

11:脐部=平坦-坏瓜-正确

12: 脐部=平坦-坏瓜-正确 13: 脐部=凹陷-好瓜-错误

				(D 脐	部=?					
			凹陷		70-001	稍凹			——平	坦	
		② 色 注	筝=?			(3 根	等=?		4 坏	瓜
	青绿		乌黑	浅白	(5)	稍蜷		蜷缩	硬挺		
	好瓜	(好		坏瓜		泽=?	坏		好瓜		
E	脐部	触感	好瓜	青绿		乌黑	浅	白			
斤斤	凹陷 凹陷	硬滑 硬滑	是是	好瓜	(6)	理=?	好	瓜			

好瓜

		,					
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4 5 8	青绿 浅白 乌黑	蜷缩 蜷缩 稍蜷	沉闷 浊响 浊响	清晰 清晰 清晰	凹陷 凹陷 稍凹	硬滑 硬滑 硬滑	是 是 是
9 11 12 13	乌黑 浅白 浅白 青绿	稍 艇 艇 蜷 網 蜷 蜷	沉闷 清脆 浊响 浊响	稍糊 模糊 模糊 稍糊	稍凹 平坦 凹陷	硬滑 硬滑 软粘 硬滑	否否否否

清晰 模糊 正确率: 3/7

好瓜

1、考虑节点⑥-叶节点-好瓜 样例8由原来错误-正确-整体正确率 提高-剪枝 {1.2.3.1

2、考虑节点⑤-叶节点-好瓜 整体正确率不变-不减枝

3、考虑节点② -叶节点-好瓜 整体正确率提高 -减枝

验证集中{4,5,8,11,12}分类正确,决策树验证集精度为71.4%

表 4.2 西瓜数据集 2.0 划分出的训练集(双线上部)与验证集(双线下部)

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
ラボーブ		414,241	叫人	以任	या ।पा	州北北水	XIII
1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹.	软粘	是
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否
编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否

Entropy Bias

- The entropy measure guides the entire tree building process.
- There is a natural bias that favours attributes with many values.
- Consider the attribute "Birth Date"
 - Separate the training data into very small subsets.
 - Very high information gain
 - A very poor predicator of the target function over unseen instances.
- Such attributes need to be penalized!

SplitInformation(S, A) =
$$-\sum_{i=1}^{C} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

$$GainRatio(S, A) = \frac{Gain(S, A)}{SplitInformation(S, A)}$$

GINI

Gini Index for a given node t :

$$Gini(D) = \sum_{k=1}^{N} \sum_{k' \neq k} p_k p_{k'} = 1 - \sum_{k=1}^{N} p_k^2$$

(NOTE: p is the relative frequency of class j at node t).

- Maximum (1 $1/n_c$) when records are equally distributed among all classes, implying least interesting information
- Minimum (0.0) when all records belong to one class, implying most interesting information

GINI
$$Gini(D) = \sum_{k=1}^{N} \sum_{k' \neq k} p_k p_{k'} = 1 - \sum_{k=1}^{N} p_k^2$$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Gini = 1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$

P(C1) =
$$1/6$$
 P(C2) = $5/6$
Gini = $1 - (1/6)^2 - (5/6)^2 = 0.278$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$
Gini = 1 - $(2/6)^2$ - $(4/6)^2$ = 0.444

GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at node p.

GINI

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	6
C2	6
Gini	= 0.500

Gini (N1)
=
$$1 - (5/7)^2 - (2/7)^2 = 0.408$$
 Gi
Gini (N2)
= $1 - (1/5)^2 - (4/5)^2 = 0.32$

	N1	N2
C1	5	1
C2	2	4
Gin	i=0.3	71

Error

Classification error at a node t :

$$Error(t) = 1 - \max_{i} P(i \mid t)$$

- Measures misclassification error made by a node.
 - Maximum (1 $1/n_c$) when records are equally distributed among all classes, implying least interesting information
 - Minimum (0.0) when all records belong to one class, implying most interesting information

Error

 $Error(t) = 1 - \max P(i \mid t)$

C1	0
C2	6

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$
 $Error = 1 - max(0, 1) = 1 - 1 = 0$

Error =
$$1 - \max(0, 1) = 1 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Error =
$$1 - \max(1/6, 5/6) = 1 - 5/6 = 1/6$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Error =
$$1 - \max(2/6, 4/6) = 1 - 4/6 = 1/3$$

Comparison

For a 2-class problem:

Continuous Attributes

Samples are sorted based on *Temperature*.

$$Gain(S, A) = Entropy(S) - \frac{1}{3} \cdot 0 - \frac{2}{3} \cdot (-\frac{3}{4} \cdot \log_2 \frac{3}{4} - \frac{1}{4} \cdot \log_2 \frac{1}{4}) = 1 - 0.541 = 0.459$$

$$Gain(S,B) = Entropy(S) - \frac{1}{6} \cdot 0 - \frac{5}{6} \cdot (-\frac{3}{5} \cdot \log_2 \frac{3}{5} - \frac{2}{5} \cdot \log_2 \frac{2}{5}) = 1 - 0.809 = 0.191$$

要解决的问题-决策树

- 1、如何选择属性?
- 2、选择划分属性后,如 何划分样本集合?

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	-	是
3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	_	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	-	稍凹	硬滑	是
9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	-	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	-	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13	_	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰		软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	-	沉闷	稍糊	稍凹	硬滑	否

D有17个样例,设 ω_x =1,a=色泽, D_a ={2,3,4,6,7,8,9,10,11,12,14,15,16,17}

$$Ent(D_a) = -\frac{6}{14}\log_2\frac{6}{14} - \frac{8}{14}\log_2\frac{8}{14} = 0.985$$

 ${a^1, a^2, a^3}={$ 青绿,乌黑,浅白 $}$

$$Ent(D_a^1) = -\frac{2}{4}\log_2\frac{2}{4} - \frac{2}{4}\log_2\frac{2}{4} = 1$$

$$Ent(D_a^2) = -\frac{4}{6}\log_2\frac{4}{6} - \frac{2}{6}\log_2\frac{2}{6} = 0.918$$

$$Ent(D_a^3) = -\frac{0}{4}\log_2\frac{0}{4} - \frac{4}{4}\log_2\frac{4}{4} = 0$$

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	-	是
3	乌黑	蜷缩	_	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	_	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	-	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	-	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	_	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13		稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰		软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

$$Gain(D_a, 色泽) = Ent(D_a) - \sum_{v=1}^{3} r_a^v Ent(D_a^v)$$

$$=0.985 - \frac{4}{14} \times 1 - \frac{6}{14} \times 0.918 - \frac{4}{14} \times 0 = 0.306$$

$$Gain(D, 色泽) = \rho \times Gain(D_a, 色泽)$$

$$=\frac{14}{17}\times0.306=0.252$$

Gain(D, 色泽) = 0.252; Gain(D, 根蒂) = 0.171;

 $Gain(D, \tilde{w}) = 0.145; \quad Gain(D, \tilde{y}) = 0.424;$

Gain(D, 脐部) = 0.289; Gain(D, 触感) = 0.006.

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜
1	_	蜷缩	浊响	清晰	凹陷	硬滑	是
2	乌黑	蜷缩	沉闷	清晰	凹陷	-	是
3	乌黑	蜷缩	-	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	_	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	_	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
8	乌黑	稍蜷	浊响	_	稍凹	硬滑	是
9	乌黑	_	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	_	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	_	否
12	浅白	蜷缩	_	模糊	平坦	软粘	否
13		稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰		软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	_	沉闷	稍糊	稍凹	硬滑	否

 $D_{\text{\'e}}^{\text{fim}} = \{1, 2, 3, 4, 5, 6, 15, 8, 10\}$

 $D_{\text{gr}}^{\text{fl}} = \{7,9,13,14,17,8,10\}$

 $D_{\text{\'e}}^{\bar{ ext{#}}} = \{11,12,16,8,10\}$

样例{8, 10}在三个节点的权重分 别为: {7/15, 5/15, 3/15}

解决问题1:如何选择属性

训练数据集-D;属性-a

D中属性a上没有缺失的样例子集- D_a

设属性a的取值集合为 -{ a^1, a^2, \dots, a^V };

$$D_a^v = \left\{ \left(x_i, y_i \right) \in D_a \mid x_{ia} = a^v \right\} \Rightarrow D_a = \bigcup_{v=1}^V D_a^v$$

$$D_{ak} = \left\{ \left(x_i, y_i \right) \in D_a \mid y_i = C_k \right\} \Rightarrow D_a = \bigcup_{k=1}^{|Y|} D_{ak}^v$$

设样例点的权重为 ω_x ,定义如下量

$$\rho_{a} = \frac{\sum_{x \in D_{a}} \omega_{x}}{\sum_{x \in D_{ak}} \omega_{x}}$$

$$p_{ak} = \frac{\sum_{x \in D_{ak}} \omega_{x}}{\sum_{x \in D_{a}} \omega_{x}} \cdots (1 \le k \le |Y|)$$

$$r_{a}^{v} = \frac{\sum_{x \in D_{a}^{v}} \omega_{x}}{\sum_{x \in D} \omega_{x}} \cdots (1 \le v \le V)$$

信息增益推广为:

$$Ent(D_a) = -\sum_{k=1}^{|Y|} p_{ak} \log p_{ak}$$

$$Gain(D, a) = \rho_a Gain(D_a, a) = \rho_a \left(Ent(D_a) - \sum_{v=1}^{V} r_a^v Ent(D_a^v) \right)$$

纹理=清晰

编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜	权重
1	-	蜷缩	浊响	清晰	凹陷	硬滑	是	1
2	乌黑	蜷缩	沉闷	清晰	凹陷		是	1
3	乌黑	蜷缩	-	清晰	凹陷	硬滑	是	1
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是	1
5	-	蜷缩	浊响	清晰	凹陷	硬滑	是	1
6	青绿	稍蜷	浊响	清晰	-	软粘	是	1
8	乌黑	稍蜷	浊响	-	稍凹	硬滑	是	7/15
10	青绿	硬挺	清脆	-	平坦	软粘	否	7/15
15	乌黑	稍蜷	浊响	清晰	-	软粘。	g.co香 ine	Mea 1 z

$$Ent(\tilde{D}) = -\sum_{k=1}^{|Y|} \tilde{p}_k log_2 \tilde{p}_k = -0.753 \times log_2 0.753 - 0.247 \times log_2 0.247 = 0.806$$

$$Ent(\tilde{D^1}) = -(\frac{2.467}{3.467}log_2\frac{2.467}{3.467} + \frac{1}{3.467}log_2\frac{1}{3.467}) = 0.867 \tag{"色泽=乌黑"}$$

$$Ent(\tilde{D}^2) = -(\frac{2}{2.467}log_2\frac{2}{2.467} + \frac{0.467}{2.467}log_2\frac{0.467}{2.467}) = 0.700$$
 ("色泽=青绿")

$$Gain(D, a) = \rho \times \left(Ent(\tilde{D}) - \sum_{v=1}^{V} \tilde{r}_v Ent(\tilde{D}^v)\right)$$

$$= 0.748 \times (0.806 - 0.584 \times 0.867 - 0.416 \times 0.700) = 0.006$$

色泽:

$$\rho = \frac{\sum_{x \in \tilde{D}} w_x}{\sum_{x \in D} w_x}$$

$$\tilde{p}_1 = \frac{\sum_{x \in \tilde{D}_1} w_x}{\sum_{x \in \tilde{D}} w_x}$$

(无缺失值样本中,好瓜的比例)

$$\tilde{p}_2 = \frac{\sum_{x \in \tilde{D}_2} w_x}{\sum_{x \in \tilde{D}} w_x}$$

(无缺失值样本中,坏瓜的比例)

$$\tilde{r}_1 = \frac{\sum_{x \in \tilde{D}^1} w_x}{\sum_{x \in \tilde{D}} w_x}$$

(无缺失值样本中,"色泽=乌黑"的样本的比例)

$$\tilde{r}_2 = \frac{\sum_{x \in \tilde{D}^2} w_x}{\sum_{x \in \tilde{D}} w_x}$$

(无缺失值样本中,"色泽=青绿"的样本的比例)

解决问题2:如何划分样本集合

 $x \in D_a$ 正常划分

 $x \notin D_a$ 将 x 划分到所有子节点中,但样例的权重值调整为: $r_a^v \omega_x$

一个新的问题: 含有缺失属性的实际样本如何分类

编号	Outlook	$Temp(^{\circ}\!\mathrm{F})$	Humidity(
1	sunny	75	70	
2	sunny	80	90	Outlook
3	sunny	85	85	
4	sunny	72	95	sunny overcast rain
5	sunny	69	70	Oyelcast
6	-	72	90	
7	overcast	83	78	humidity ≤ 75 (7,8,9,6(0.2)) windy
8	overcast	64	65	
9	overcast	81	75	y N true f
10	rain	71	80	Y N true
11	rain	65	70	
12	rain	75	80	(15) $(2.246(0.4))$ $(10.116(0.4))$ (12.24)
13	rain	68	80	(1,5) $(2,3,4,6(0.4))$ $(10,11,6(0.4))$ $(12,$
14	rain	70	96	Idioc://blog.csdn.haiyari.zizi

outlook=sunny, temperature=70, humidity=?, windy=false.

一个新的问题: 含有缺失属性的实际样本如何分类

outlook=sunny, temperature=70, humidity=?, windy=false.

一个新的问题: 含有缺失属性的实际样本如何分类

outlook=sunny, temperature=70, humidity=?, windy=false.

humidity属性值未知,两个分支的可能性都需考虑:

- 如果humidity<=75,类别是play。
- 如果humidity>75,

则: Don' t play的概率为3/3.4 (88%), Play的概率是0.4/3.4 (12%)。

 $play: 2/5.4 \times 100\% + 3.4/5.4 \times 12\% = 44\%$

Don't play: $3.4/5.4 \times 88\% = 56\%$

多变量决策树的基本思想

Reading Materials

- Online Tutorial
 - http://www.decisiontrees.net/node/21 (with interactive demos)
 - http://www.autonlab.org/tutorials/dtree18.pdf
 - http://people.revoledu.com/kardi/tutorial/DecisionTree/index.html
 - http://www.public.asu.edu/~kirkwood/DAStuff/decisiontrees/index.html
- Tom Mitchell, Machine Learning, Chapters 3&6, McGraw-Hill.
- ❖ Additional reading about Naïve Bayes Classifier
 - http://www-2.cs.cmu.edu/~tom/NewChapters.html
- Software for text classification using Naïve Bayes Classifier
 - http://www-2.cs.cmu.edu/afs/cs/project/theo-11/www/naive-bayes.html

