NOTAS DE AULA

PRÁTICA DE ENSINO I

UNINOVE

PRÁTICA DE ENSINO I

1- INTRODUÇÃO

I. As regras do Desenho Geométrico:

Regra 1: os únicos instrumentos permitidos no Desenho Geométrico (além de lápis e papel) são a régua não graduada e o compasso.

Regra 2: As operações gráficas que podem ser efetuadas com os instrumentos acima são:

- i) assinalar um ponto, arbitrário sobre uma figura já desenhada no papel;
- ii) traçar uma reta arbitrária, mas passando por um ponto conhecido;
- iii) traçar uma reta que passa por dois pontos conhecidos;
- iv) traçar um arco de circunferência de centro e raio ou ambos arbitrários, ou um deles conhecido e outro arbitrário, ou ambos conhecidos.

Queremos ressaltar que essas são as únicas operações gráficas permitidas à régua e ao compasso.

Dessa forma, mesmo que a régua tenha escala, ela não pode ser utilizada para nenhuma operação gráfica a única exceção permitida é a colocação no papel não podemos usar a régua para, por exemplo, determinar o ponto médio de um segmento, nem para construir ângulo reto ou traçar retas paralelas usando os bordos da régua etc.

Regra 3: É proibido fazer contas com as medidas dos dados. Considerações algébricas são permitidas na dedução de um problema, desde que a resposta seja depois obtida graficamente obedecendo-se as regras anteriores.

II . Simbologia:

A, B, C ponto (qualquer letra maiúscula)
r, s, t, u reta, semirreta ou segmento de reta (qualquer letra
minúscula)
$r = \overrightarrow{AB}$ reta r que passa pelos pontos A e B
$r = \overrightarrow{AB}$ semirreta r de origem em A que se dirige para B
$r = \overline{AB}$ segmento de reta r com extremos A e B
$\alpha,\beta,\gamma,\delta$ plano (qualquer letra minúscula do alfabeto grego)
\widehat{ABC} ângulo de vértice B e lados \overline{BA} e \overline{BC}
\hat{B} o ponto B é o vértice do ângulo
∠ ângulo
ΔABC triângulo de vértices A, B e C
a // ba é paralelo a b
a⊥b a é perpendicular a b
= igual
≠ diferente
≡ coincidente ou equivalente
≅congruente
~ semelhante

2 - CONCEITOS FUNDAMENTAIS

		_		.,	-				
	_	μ	റ	H	a	0	n	റ	c
•			J		м	v		J	·

As figuras geométricas planas formadas pela reunião de uma linha poligonal fechada simples com a sua região interna são denominadas *polígonos*.

1. Triângulo: é um polígono de três lados:
Vértices:
Lados:
Ângulos:

Classificação dos triângulos quanto aos lados:

	Tem os três lados congruentes
Triângulo equilátero	
	Tem dois lados congruentes
Triângulo isósceles	

Tem os três lados com medidas diferentes

Classificação dos triângulos quanto aos ângulos:

Triângulo acutângulo	Tem todos os ângulos agudos (menor que 90º)
Triângulo obtusângulo	Tem um ângulo obtuso (maior que 90º)
Triangulo retângulo	Tem um ângulo reto (igual a 90º)

2. Quadrilátero: é um polígono de quatro lados:

2.1. Trapézio: é um quadrilátero que tem apenas 2 lados paralelos chamados de BASE.

Classificação dos trapézios:

Trapézio isósceles	é aquele cujos lados não paralelos são congruentes.
Trapézio retângulo	é aquele no qual um dos lados não paralelos é perpendicular às bases.
Trapézio escaleno	é aquele cujos lados não paralelos não são congruentes.

2.2.Paralelogramo: é um quadrilátero que tem os lados opostos paralelos.
Propriedades dos paralelogramos: • Em todo paralelogramo dois ângulos opostos quaisquer são congruentes. • Em todo paralelogramo dois lados opostos quaisquer são congruentes.
a) Retângulo: é um paralelogramo que tem os 4 ângulos congruentes (retos).
 b) Losango: é um paralelogramo que tem os 4 lados congruentes. Propriedade dos losangos: todo losango tem diagonais perpendiculares que se cortam ao meio.
c) Quadrado: é um paralelogramo que tem os 4 lados congruentes e os 4 ângulos congruentes (retos).

II - Circunferências:

1. Definição:

Circunferência é o conjunto dos pontos de um plano cuja distância a um ponto O dado é igual a uma distância r (não nula) dada:

Na circunferência acima, destacamos:

- o ponto O é o centro;
- o segmento OP (de medida r) é o raio;
- o segmento AB (de medida 2r) é o diâmetro;
- o segmento CD é uma corda;

2. Arcos de circunferência

3. Ângulo central e ângulo inscrito:

3. INSTRUMENTOS DE DESENHO

O uso adequado dos materiais de desenho é indispensável, permitindo desenvolver melhores hábitos de limpeza, ordem e precisão. Daremos a seguir algumas instruções sobre os principais instrumentos usados no Desenho Geométrico:

A régua: É o instrumento usado para traçar retas.

O compasso: É o instrumento usado para traçar circunferências e para transportar medidas.

A ponta seca e a grafite devem estar sempre no mesmo nível.

O par de esquadros: Serão utilizados para traçar retas paralelas e perpendiculares.

4. CONSTRUÇÕES FUNDAMENTAIS

I - Retas perpendiculares:

1. Definições:

1.1 Retas concorrentes: Duas retas r e s são *concorrentes* quando têm um único ponto comum.

$$r \cap s = \{P\}$$

1.2 Retas perpendiculares: Duas retas concorrentes são *perpendiculares* quando formam quatro ângulos congruentes, ou seja, de medidas iguais a 90°.

2. Construção de retas perpendiculares:

Traçar a reta s, perpendicular à reta r, passando pelo ponto p pertencente à r.

1º Processo:

- São dados a reta r e o ponto P.
- Com centro no ponto P e raio qualquer, traçar um arco que intercepta a reta r nos pontos A e B.
- Determinar o ponto C, traçando arcos com centros nos pontos A e B de mesmo raio, porém com medida maior do que a metade do segmento AB.
- Traçar a reta s passando por P e C.
- A reta s é perpendicular à reta r.

2º Processo:

- São dados a reta r e o ponto P.
- Com centro no ponto P e raio qualquer, traçar um arco que intercepta a reta r no ponto A.
- Com centro no ponto A e raio igual ao anterior, traçar um arco que corta o arco anterior no ponto B.
- Com o mesmo raio, determinar o ponto C com um arco de centro em B e o ponto D com um arco de centro em C.
- Traçar a reta s passando por P e D.
- A reta s é perpendicular à reta r.

3º Processo: para P próximo da margem do papel.

- São dados a reta r e o ponto P.
- Marcar um ponto C qualquer, fora da reta r.
- Com centro no ponto C, traçar um arco passando por P que intercepta a reta r no ponto A.
- Determinar o ponto B traçando a reta AC.
- Traçar a reta s passando por P e B.
- A reta s é perpendicular à reta r.

Traçar a reta s, perpendicular à reta r, passando pelo ponto P que não pertence à r.

1º Processo:

- São dados a reta r e o ponto P.
- Com centro no ponto P, traçar um arco que intercepta a reta r nos pontos A e B.
- Determinar o ponto C, traçando arcos com centros nos pontos A e B de mesmo raio, porém com medida maior do que a metade do segmento AB.
- Traçar a reta s passando por P e C.
- A reta s é perpendicular à reta r.

2º Processo:

- São dados a reta r e o ponto P.
- Marcar, em r, dois pontos A e B quaisquer.
- Com centro no ponto A e raio AP, traçar um arco.
- Com centro no ponto B e raio BP, traçar um arco que corta o arco anterior no ponto C.
- Traçar a reta s passando por P e C.
- A reta s é perpendicular à reta r.

- 3º Processo: para P próximo da margem do papel.
- São dados a reta r e o ponto P.
- Marcar, em r, dois pontos A e B quaisquer.
- Com centro nos pontos A e B traçar dois arcos ambos passando pelo ponto P.
- Os arcos construídos interceptam-se também no ponto C.
- Traçar a reta s passando por P e C.
- A reta s é perpendicular à reta r.

II - Mediatriz de um segmento:

1. Definições:

- 1.1- Ponto médio: Um ponto M é chamado ponto médio do segmento AB se M divide AB em dois segmentos congruentes AM e MB.
- 1.2- Mediatriz: Uma reta m é chamada *mediatriz* de um segmento AB se m é perpendicular à AB e passa pelo ponto médio M de AB .

2. Construção de mediatriz:

1º Processo:

- É dado um segmento AB .
- Com centros nos pontos A e B e raio qualquer, porém maior que a metade da medida de AB, traçar dois arcos que se interceptam nos pontos C e D.
- Traçar a reta m passando por C e D.
- A reta m é a mediatriz do segmento AB .

2º Processo:

- É dado um segmento AB .
- Determinar o ponto C, intersecção de dois arcos de mesmo raio (maior que a metade da medida de AB) e centros em A e B.
- Determinar o ponto D, do mesmo lado que o ponto C construído, procedendo de modo análogo ao item anterior.
- Traçar a reta m passando por C e D.
- A reta m é a mediatriz do segmento AB .

- 3º Processo: para segmentos maiores.
- É dado um segmento AB .
- Determinar pontos auxiliares A. e B. tais que AA. = BB..
- Traçar a reta m mediatriz do segmento auxiliar \overline{AB} ., usando o 1º ou o 2º processo.
- A reta m é a mediatriz do segmento AB .

III . Retas paralelas:

1. Definições:

Retas paralelas: Duas retas r e s, de um mesmo plano, são *paralelas* quando não têm ponto comum.

 $r \cap s = \emptyset$

2- Construção de retas paralelas:

Traçar a reta s, paralela à reta r, passando pelo ponto P.

1º Processo:

- São dados a reta r e o ponto P.
- Com centro no ponto P e raio qualquer, traçar um arco que intercepta a reta r no ponto A.
- Determinar o ponto B, traçando um arco com centro no ponto A e raio igual ao anterior.
- Com centro no ponto B e raio igual ao anterior, traçar um arco que corta o primeiro arco construído no ponto C.
- Traçar a reta s passando por P e C.
- A reta s é paralela à reta r.

2º Processo:

- São dados a reta r e o ponto P.
- Com centro no ponto P e raio qualquer, traçar um arco que intercepta a reta r no ponto A.
- Determinar o ponto B, traçando um arco com centro no ponto A e raio igual ao anterior.
- Com centro no ponto A e raio igual à medida de BP, traçar um arco determinando o ponto C.
- Traçar a reta s passando por P e C.
- A reta s é paralela à reta r.

3º Processo:

- São dados a reta r e o ponto P.
- Marcar um ponto O qualquer na reta r.
- Com centro no ponto O e raio OP, traçar um arco que intercepta a reta r nos pontos A e B.
- Com centro no ponto B e raio igual à medida de AP, traçar um arco determinando o ponto C.
- Traçar a reta s passando por P e C.
- A reta s é paralela à reta r.

4º Processo:

- São dados a reta r e o ponto P.
- Marcar dois pontos A e B quaisquer na reta r.
- Com centro no ponto A e raio AP, traçar um arco que intercepta a reta r no ponto P¹.
- Com centro no ponto B e raio igual ao anterior, traçar um arco que intercepta a reta r no ponto Q¹.
- Com centro no ponto Q¹. e raio igual à medida de PP¹, traçar um arco determinando o ponto Q.
- Traçar a reta s passando por P e Q.
- A reta s é paralela à reta r.

Traçar a reta s, paralela à reta r, conhecendo-se a distância d entre elas.

- São dados a reta r e a distância d.
- Marcar um ponto A qualquer na reta r.
- Traçar, a partir de A, uma reta p perpendicular à reta r.
- Com centro no ponto A e raio igual à distância dada, traçar um arco que intercepta a reta p no ponto P.
- Pelo ponto P, trace a reta s paralela à reta r utilizando qualquer um dos processos anteriores.

EXERCÍCIOS:

1. Trace as retas m e n perpendiculares à reta r, pelos pontos P e Q, respectivamente, aplicando o 1º processo:

2. Trace a reta t perpendicular ao raio OT de uma circunferência de raio 2,5cm pela extremidade T, aplicando o 1º processo:

3.	Construa	0	retângulo	ABCD	cujos	lados	medem	30mm	е	45mm
	Aplique o	10	processo p	ara o tr	açado	da per	pendicular	:		

4. Trace a reta r perpendicular ao segmento AB pela extremidade A, aplicando o 2º processo:

A B

5. Construa o triângulo retângulo ABC cujos catetos medem respectivamente 4,5cm e 5,5cm. Utilize o 2º processo para traçar a perpendicular:

6. Construa o trapézio retângulo ABCD cujas bases medem 5,5cm e 3,0cm e sua altura é de 4,0cm. Aplique o 2º processo:

7.	Trace	а	reta	S	perpendicular	ao	segmento	AB	pela	extremidade	Α,
	aplica	ndo	o o 3º	pr	rocesso:						

8. Construa o triângulo retângulo ABC cujos catetos medem 5,5cm e 5,5cm. Utilize o 3º processo para traçar a perpendicular:

9. Dado o triângulo ABC, trace $r \perp \overline{BC}$ pelo ponto A, $s \perp \overline{AC}$ pelo ponto B e $t \perp \overline{AB}$ pelo ponto C. Utilize o 1º processo.

O que voce observou?		

10. Trace as retas r, s e t perpendiculares à reta m, pelos pontos R, S e T utilizando o 1º, 2º e 3º processos respectivamente:

.R

.T

m

11. Pelo ponto médio do segmento PQ, trace a reta s perpendicular à reta r:

12. Construa um triangulo isósceles sabendo que sua base mede 60 mm e a altura desse triângulo mede 55 mm. M é o ponto médio da base.

13. Trace m, mediatriz do segmento AB e n, mediatriz do segmento BC, aplicando o 2º processo.

Determine o ponto P, tal que $\{P\} = m \cap n$. P é ponto médio do segmento AC?

14. Trace a mediatriz do segmento AB, aplicando o 3º processo:

15. Trace as retas r e s paralelas à reta t, pelos pontos P e Q, respectivamente. Aplique o 1º processo:

Ρ.

16. Construa o retângulo ABCD, sabendo que $P \in CD$, utilizando o 1º processo de traçado de paralelas:

. P

A B

17. Trace as retas r e s paralelas à reta t, pelos pontos P e Q, respectivamente, aplicando o 2º processo:

Ρ.

. Q

18. Trace as retas r e s paralelas à reta t, pelos pontos P e Q, respectivamente, aplicando o 3º processo:

Ρ.

t

19. Pelo ponto médio do segmento AC, trace a reta s paralela ao segmento BC utilizando o 3° processo. Determine o ponto D, tal que $\{D\} = s \cap AB$:

D é ponto médio do segmento AB?_____

20. Trace as retas r e s paralelas à reta t, pelos pontos P e Q, respectivamente, aplicando o 4º processo:

21. Trace o feixe de retas paralelas r // s // t // u de modo que d(r,s) = 2 cm, d(s,t) = 2.5 cm e d(t,u) = 1.5 cm:

r

5. TEOREMA DE TALES

Teorema de Tales: Um feixe de retas paralelas determina, em duas retas transversais quaisquer, segmentos proporcionais.

I – Divisão de Segmentos:

Divisão de Segmentos em partes iguais.

1º Processo:

• É dado um segmento \overline{AB} .

Como exemplo, vamos dividir \overline{AB} . em 5 partes iguais:

- Traçar uma reta r, auxiliar, passando pela extremidade A.
- Determinar, em r, os pontos 1, 2, 3, 4 e 5 traçando arcos de mesmo raio (qualquer), marcados a partir do ponto A.
- Traçar um segmento que liga o ponto 5 à extremidade B.
- Determinar os pontos C, D, E e F em \overline{AB} , traçando retas paralelas ao segmento B5 que passam pelos pontos 1, 2, 3 e 4. Use o par de esquadros para traçar as paralelas!
- O segmento \overline{AB} . fica dividido em 5 partes iguais.

2º Processo:

- Dado \overline{AB} . , traçar por A uma reta r qualquer.
- Traçar por B uma reta s, paralela a r.
- Marcar em r, a partir de A, e em s, a partir e B, os pontos 1, 2, 3, 4 e 5 traçando arcos de mesmo raio.
- Determinar os pontos C, D, E e F em \overline{AB} ., traçando segmentos que une os pares de pontos: A e 5, 1 e
- 4, 2 e 3, 3 e 2, 4 e 1, 5 e B, como mostra a figura.
- O segmento \overline{AB} fica dividido em 5 partes iguais.

Divisão de Segmentos em partes de medidas proporcionais.

- É dado um segmento \overline{AB} .
- Como exemplo, vamos dividir \overline{AB} em partes proporcionais a 1, 2 e 3, usando o 1º processo:
- Determinar, na reta auxiliar r, os pontos 1, 2, 3, 4, 5 e 6 traçando arcos de mesmo raio (de comprimento u), obtendo um segmento de comprimento igual a 1u + 2u + 3u = 6u.
- Determinar os pontos C e D em \overline{AB} , traçando retas paralelas ao segmento B6 que passam pelos pontos 1 e 3.
- Os pontos C e D dividem \overline{AB} em partes proporcionais a 1, 2 e 3.

II - Terceira e quarta proporcional:

1. Definições:

a- Dados a e b, dizemos que x é a *terceira proporcional* se a, b, b e x formam, nessa ordem, uma proporção.

Ou seja:

$$\frac{a}{b} = \frac{b}{x}$$

b- Dados a, b e c, dizemos que x é a *quarta proporcional* se a, b, c e x formam, nessa ordem, uma proporção.

Ou seja:

$$\frac{a}{b} = \frac{c}{x}$$

2.Construções:

- **2.1** Dados os segmentos de medidas a, b e c, determinar, nessa ordem, a guarta proporcional:
- Traçar duas retas r e s concorrentes no ponto A.
- Sobre uma das retas (por exemplo na reta r), posicionar os segmentos a e b.
- a = \overline{AB} e b = \overline{BC} .
- Na outra reta (reta s), posicionar o segmento $c = \overline{AD}$.
- Traçar um segmento que liga os pontos B e D.
- Determinar o ponto E em s, traçando uma reta paralela ao segmento \overline{BD} e que passa pelo ponto C.
- Pelo Teorema de Tales, o segmento \overline{DE} é a 4ª proporcional.

- **2.2** Dados os segmentos de medidas a e b, determinar, nessa ordem, <u>a terceira</u> <u>proporcional.</u>
- Traçar duas retas r e s concorrentes no ponto A.
- Sobre uma das retas (por exemplo na reta s), posicionar os segmentos a e b.
- a = \overline{AB} e b = \overline{BC} .
- Na outra reta (reta r), repetir o segmento $b = \overline{AD}$.
- Traçar um segmento que liga os pontos B e D.
- Determinar o ponto E em r, traçando uma reta paralela ao segmento \overline{BD} e que passa pelo ponto C.
- Pelo Teorema de Tales, o segmento \overline{DE} é a 3^a proporcional.

III - Média geométrica ou Média Proporcional

1. Definição: Dados a e b, dizemos que x é a <u>média geométrica</u> se a, x, x e b formam, nessa ordem, uma proporção.

Ou seja:
$$\frac{a}{x} = \frac{x}{b} \implies x^2 = ab \implies x = \sqrt{ab}$$

2. Construção:

- São dados os segmentos de medidas a e b.
- Traçar em uma reta r, auxiliar, os segmentos a = \overline{AB} e b = \overline{BC} , consecutivos.
- Determinar o ponto médio M do segmento $\overline{\mathit{AC}}$.
- Traçar a semicircunferência de centro em M e raio \overline{AM} .
- Determinar o ponto D na semicircunferência, traçando uma reta perpendicular ao segmento \overline{AC} e que passa pelo ponto B.
- O segmento $x = \overline{BD}$ é a média geométrica de a e b.

IV- Segmento Áureo:

1. Definições:

1.1 Chama-se *retângulo áureo* um retângulo ABCD com a seguinte propriedade: se o dividirmos em um quadrado e um outro retângulo, o novo retângulo é semelhante ao original.

Sendo a e b as dimensões do retângulo original, a definição acima se traduz na relação:

$$\frac{b}{a} = \frac{a - b}{b}$$

2. Construção:

- É dado o segmento \overline{AB} de medida a.
- Determinar o ponto médio M de \overline{AB} .
- Traçar uma reta perpendicular ao segmento \overline{AB} pela extremidade B.
- Determinar o ponto D na perpendicular tal que $\overline{BD} = \overline{BM}$.
- Traçar uma reta pelos pontos A e D.
- Com centro em D, traçar uma circunferência de raio \overline{BD} .
- Determinar os pontos E e E^1 . de intersecção entre a reta \overleftrightarrow{BD} e a circunferência anterior.
- $\overline{AE} = \overline{AC} = \underline{\text{segmento aureo interno}} \text{ de } \overline{AB}$
- $\overline{AE^1}$. = $\overline{AC^1}$. = <u>segmento áureo externo</u> de AB:

EXERCÍCIOS:

1. Divida o segmento AB = 8,5 cm em 7 partes iguais aplicando o 1º processo.

2. Divida o segmento AB = 12,5 cm em 9 partes iguais aplicando o 2º processo.

3. Divida o segmento AB = 10 cm em partes proporcionais a 3, 4 e 6.

4. Construa um quadrado ABCD cujo perímetro mede EF = 13 cm

5. Construa um triângulo ABC, de perímetro DE = 11 cm, sabendo que seus lados são proporcionais a 4, 3 e 2.

6. Dados a = 20 mm, b = 30 mm e c = 35 mm, determine, nessa ordem, a 4^a proporcional.

7. Determine a 4^a proporcional dos segmentos de medidas a, c e b, nessa ordem. a = 2.0 cm , b = 3.0 cm e c = 4.0 cm.

8. Dados a = 30 mm e b = 50 mm, determine, nessa ordem, a 3^a proporcional.

9. Determine a 3^a proporcional dos segmentos de medidas a e b, nessa ordem. a = 5.0 cm e b = 3.0 cm.

10. Construa o triângulo ABC de lados a = 25 mm, b = 30 mm e $c = 3^a$ proporcional de a e b, nessa ordem.

11. Determine a média geométrica dos segmentos de medidas a = 20 mm e b = 30 mm.

12. Determine a média geométrica dos segmentos de medidas a = 4,5 cm e b = 2,5 cm.

13. Construa um quadrado de lado I sabendo que I é a média geométrica dos segmentos de medidas a = 2,0 cm e b = 4,0 cm.

14. Determine o segmento áureo do segmento AB = 4,5 cm.

EXERCÍCIOS DE REVISÃO 01

- 1) Construa um retângulo de lados 5,0cm e 2,5cm.
- 2) Construa um triângulo retângulo de catetos 60mm e 30mm.
- Construa um trapézio retângulo dado sua altura de 4,0cm e as bases
 6,0cm e 3,5cm.
- 4) Construa um triângulo isósceles cuja base mede 4cm e os lados 5,5cm.
- 5) Construa um triângulo equilátero de lado 3,5cm.
- 6) Construa um triângulo de lados 43mm, 50mm e 60mm.
- 7) Trace uma reta perpendicular a reta dada passando pelo ponto A e outra pelo ponto B ∈ r

8) Trace uma reta paralela distante de 3,0cm da reta dada.

- 9) Divida os segmentos em partes iguais.
- a) $\overline{AB} = 60$ mm em 7 partes
- b) $\overline{CD} = 50$ mm em 4 partes.
- **10)**Construa um triângulo cujo perímetro é \overline{DE} = 14cm sabendo que seus lados são proporcionais à 3, 4 e 5.

- **11)**Construa um quadrado cujo lado é a 4ª proporcional a=2,0cm b=4,0cm e c=3,5cm.
- 12) Determinar a média geométrica dos segmentos a=5,4cm e b=3,2cm.
- **13)**Construa um triângulo eqüilátero cujo lado é a média geométrica dos segmentos a e b.

a	b

BOM ESTUDO !!

6. ÂNGULOS

I. Definição:

Chama-se *ângulo* à reunião de duas semirretas de mesma origem não coincidentes.

Vértice:

Semirretas:

Ângulo:

II . Transporte de ângulos:

• É dado um ângulo AÔB de medida α.

- Traçar uma semirreta de origem O₁, que será um dos lados do ângulo a ser construído.
- Com centro no ponto O e raio qualquer, traçar um arco que intercepta os lados do ângulo dado nos pontos C e D.
- ullet Com centro no ponto O_1 e raio igual ao anterior, traçar um arco que intercepta a semirreta no ponto E.
- Com centro no ponto E e raio igual à medida de CD, traçar um arco que corta o anterior no ponto F.
- Traçar a semirreta O₁F, que é o outro lado do ângulo.
- Os ângulos AÔB e FÔ₁E são congruentes; ou seja, $m(AÔB) = m(FÔ₁E) = \alpha$.

III . Bissetriz de um ângulo:

- Definição: é a semirreta que tem origem no vértice do ângulo e o divide em dois ângulos congruentes.
- 2. Construção da bissetriz:

Traçar a bissetriz de um ângulo com vértice conhecido.

1º Processo:

- É dado um ângulo de vértice O.
- Com centro no ponto O traçar um arco determinando os pontos A e B nos lados do ângulo.
- Determinar o ponto C, traçando arcos com centros nos pontos A e B de mesmo raio, porém com medida maior do que a metade do segmento AB.
- Traçar a semirreta OC que é a bissetriz do ângulo dado.

2º Processo:

- É dado um ângulo de vértice O.
- Com centro no ponto O, traçar dois arcos consecutivos de mesmo raio em cada um dos lados do ângulo, determinando os pontos A, B, C e D.
- Determinar o ponto E, traçando os segmentos AD e BC.
- Traçar a semirreta OE que é a bissetriz do ângulo dado.

Traçar a bissetriz de um ângulo com vértice desconhecido.

- São dadas as retas r e s não paralelas.
- Traçar uma reta t qualquer que corta as retas r e s nos pontos A e B respectivamente, determinando quatro ângulos.
- Traçar as bissetrizes dos quatro ângulos formados e determinar os pontos C e
 D no cruzamento das bissetrizes.
- Traçar a reta CD que contém a bissetriz do ângulo determinado por r e s.

IV . Construção de ângulos:

1) Ângulo de 60º:

- Traçar uma semirreta qualquer de origem O, que será um dos lados do ângulo pedido.
- Com centro no ponto O e raio qualquer, traçar um arco determinando o ponto A na semirreta.
- Com centro no ponto A e mesmo raio anterior, traçar um arco que corta o primeiro no ponto B.
- Traçar a semirreta OB que é o outro lado do ângulo.

2) Ângulo de 30°:

- Construir um ângulo de 60°.
- Traçar a bissetriz do ângulo de 60° obtendo um ângulo de medida 60° : 2 = 30° .

3) Ângulo de 75°:

 Neste problema vamos construir um ângulo cuja medida é igual à soma (diferença) das medidas de dois ângulos.

Exercícios:

1. Utilizar os ângulos abaixo para os exercícios a) ao e).

a) Transporte os ângulos α e β :

Eliza Maria Baptistella Lima
b) Adicione os ângulos α e β:
c) Subtraia o ângulo α de β:
d) Multiplique o ângulo α por 4.

e) Divida o ângulo $\,\beta$ por 4:

2. Dados os ângulos α e β :

Construa o triângulo ΔABC de base AB dada, sabendo que:

a) o ângulo mede α e o ângulo B mede β .

b) o ângulo mede 2α e o ângulo B mede $\frac{\beta}{2}$

.

c) o ângulo mede $\frac{\alpha}{2}$ e o ângulo B mede $\frac{3\beta}{4}$.

d) o ângulo mede α + β e o ângulo B mede β - α :

e) o triângulo ABC é retângulo de cateto AB e ângulo B mede α .

3. Trace a bissetriz do ângulo formado pelas retas r e s.

- 4. Construa os seguintes ângulos:
- **a)** 15⁰
- **b)** 45°
- **c)** 120°
- **d)** 105°
- **e)** 135°
- **f)** 150°
- **g)** 90°
- **h)** 75°
- **i)** 270°

V . Divisão de ângulos:

Neste item, veremos como dividir um ângulo em partes congruentes.

- 1. Divisão em n partes congruentes, sendo n uma potência de 2 (n = 2, 4, 8,16, 32 ...):
- Basta traçar bissetrizes.

2. Divisão em 3 partes congruentes:

- 2.1 Trissecção do ângulo de 90°:
- \bullet Traçar uma circunferência λ qualquer com centro em O que intercepta os lados do ângulo nos pontos A e B.

- Com mesmo raio de λ , traçar dois arcos com centros em A e em B, obtendo os pontos C e D no primeiro arco.
- As semirretas OC e OD dividem o ângulo em três partes congruentes.

2.2 Trissecção de um ângulo qualquer:

- \bullet Traçar uma circunferência λ qualquer com centro em O que intercepta os lados do ângulo nos pontos A e B.
- Traçar a bissetriz do ângulo AÔB que corta λ no ponto C.
- Prolongar os lados do ângulo AÔB, obtendo, em λ, os pontos D e E.
- Determinar o ponto F na bissetriz tal que OC = CF.
- Unir os pontos D e E ao ponto F, obtendo, em λ, os pontos G e H.
- As semirretas OG e OH dividem o ângulo em três partes aproximadamente iguais.

3. Divisão em n partes congruentes, sendo n um número que não é potência de 2:

- \bullet Traçar uma circunferência λ qualquer com centro em O que intercepta os lados do ângulo nos pontos A e B.
- Prolongar o lado AO do ângulo obtendo, em λ, o ponto C.
- Determinar o ponto D traçando arcos de centros A e C e raio AC.
- Nesse exemplo, dividiremos o ângulo em n = 5 partes iguais:
- Traçar o segmento BD obtendo o ponto E em AC.
- Dividir o segmento AE em 5 partes iguais.
- Determinar F, G, H e I em λ , traçando as semirretas de origem em D que passam pelos pontos de divisão de AE.
- As semirretas OF, OG, OH e OI dividem o ângulo em 5 partes aproximadamente iguais.

Exercícios:

1. Divida o ângulo abaixo em 7 partes iguais:

2. Divida o ângulo abaixo em 5 partes iguais:

3. Divida o ângulo abaixo em 3 partes iguais:

4. Construa o triângulo isósceles ΔDEF sabendo que a base é a média geométrica dos segmentos de medidas a=2.8~cm e b=4.5~cm e que os ângulos da base medem $\frac{2}{7}~\alpha$:

5. Construa um triângulo \triangle ABC cuja base AB mede 5,0cm e cujos ângulos da base medem $\alpha = \frac{1}{3} \theta$ e $\beta = \frac{2}{3} \theta$, onde $\theta = 60^{\circ}$.