## § 6.1 PROBABILISTIC MODELING WITH DISCRETE SYSTEM

#### EXAMPLE

#### Two dining halls A and B

- Students will be dining in either A or B. At each time we count the number of students dining in the halls. A(n) or B(n) are the states.
- The students return to diner A with probability p and switch to diner with probability 1-p. The students return to diner B with probability q and switch to diner with probability 1-q.



#### REMARKS

- 1) States do not overlap. They are mutually exclusive (the student can only dine in A or B, but not in both at the same time).
- 2) The transitions between states are indicated by arrows with the transition probabilities.
- 3) The sum of the transition probabilities for each state must amount to one (1+(1-p)=1).

#### PROBABILISTIC MODEL

$$A(n+1) - A(n) = changes$$

$$= gains - loses$$

$$= (1-Q)B(n) - (1-p)A(n)$$

$$= (1-Q)B(n) - A(n) + pA(n)$$
So,
$$A(n+1) = pA(n) + (1-Q)B(n)$$
Similarl
$$B(n+1) = (1-p)A(n) + QB(n)$$

**Note:** In other sections, the values for P and Q are given. In this section, if data is a wall be one can perform a model fit to determine P and Q. This process is known as <u>parameter</u> identification

#### EX: CAR RENTAL AT TAMPA BAY AND ORLANDO

Let $\theta(n)$  be the number of rental vehicles at Orlando at time n. Similarly, let  $\tau(n)$  be the number of vehicles at Tampa Bay at time n.



So,  

$$\theta(n+1) = 0.6\theta(n) + 0.3\tau(n)$$
  
 $\tau(n+1) = 0.4\theta(n) + 0.7\tau(n)$ 

$$\begin{bmatrix} \theta \\ \tau \end{bmatrix} (n+1) = A \begin{bmatrix} \theta \\ \tau \end{bmatrix} (n)$$

Where,  $A = \begin{bmatrix} 0.6 & 0.3 \\ 0.4 & 0.7 \end{bmatrix}$ 

is the state transition matrix

#### EX: VOTER TENDENCIES



Let [R(n),D(n),I(n)] be the state of the voter tendencies

$$R(n+1)$$
 -  $R(n)$ = GAINS - LOSSES  
=  $0.2 D(n) + 0.4 I(n) - 0.25 R(n)$ 

-----O------

$$R(n+1) = 0.75 R(n) + 0.2 D(n) + 0.4 I(n)$$

Similarly,

$$D(n+1)=0.05 R(n) + 0.6 D(n) + 0.2 I(n)$$

$$I(n+1)=0.2 R(n) + 0.2 D(n) + 0.4 I(n)$$

$$Let \ \vec{x}(n) = \begin{bmatrix} R_n \\ D_n \\ I_n \end{bmatrix} \ A = \begin{bmatrix} 0.75 & 0.20 & 0.40 \\ 0.05 & 0.60 & 0.20 \\ 0.20 & 0.20 & 0.40 \end{bmatrix}$$

$$\bar{x}(n+1) = A\bar{x}(n)$$
 with  $\bar{x}(0) = [R_0 D_0 I_0]$ 

#### MODEL SOLUTION

# Assume that initially 1/3 of the voters are Republicans, 1/3 of the voters are Democrats, 1/3 of the voters are Independents

| n  | Republican  | Democrat    | Independent | SUM |
|----|-------------|-------------|-------------|-----|
| 0  | 0.33333333  | 0.33333333  | 0.33333333  | 1   |
| 1  | 0.45        | 0.283333333 | 0.266666667 | 1   |
| 2  | 0.500833333 | 0.245833333 | 0.253333333 | 1   |
| 3  | 0.526125    | 0.223208333 | 0.250666667 | 1   |
| 4  | 0.539502083 | 0.210364583 | 0.250133333 | 1   |
| 5  | 0.546752813 | 0.203220521 | 0.250026667 | 1   |
| 6  | 0.55071938  | 0.199275286 | 0.250005333 | 1   |
| 7  | 0.552896726 | 0.197102208 | 0.250001067 | 1   |
| 8  | 0.554093413 | 0.195906374 | 0.250000213 | 1   |
| 9  | 0.55475142  | 0.195248538 | 0.250000043 | 1   |
| 10 | 0.555113289 | 0.194886702 | 0.250000009 | 1   |
| 11 | 0.555312311 | 0.194687687 | 0.250000002 | 1   |
| 12 | 0.555421771 | 0.194578228 | 0.25        | 1   |
| 13 | 0.555481974 | 0.194518026 | 0.25        | 1   |
| 14 | 0.555515086 | 0.194484914 | 0.25        | 1   |
|    |             |             |             |     |



Remark: Given an initial state what's the limit point?

$$\vec{x}^* = \lim_{n \to \infty} \vec{x}(n) = \lim_{n \to \infty} A^n \, \overline{x_0}$$

#### Modeling infectious diseases

#### Epidemics:

Daniel Bernoulli was the first to derive a math model for the spread of infectious disease.

One of his models is called the SIR model

S~ people who are susceptible to the disease

I~ people who are infected with the disease

R∼ people who recovered and no longer susceptible



Assume the population carries the birth rate of  $\,\beta$  and the death rate  $\delta$ 

$$S(n+1)\text{-}S(n) = Gains\text{-}Losses$$

$$= \beta \ S(n) - \delta \ S(n)\text{-}\alpha \ S(n) \ I(n)$$

$$I(n+1) - I(n) = \lambda \ S(n) \ I(n) - g \ I(n) - \delta \ I(n)$$

$$R(n+1)$$
-  $R(n)$ =  $g$   $I(n)$ -  $\delta$   $R(n)$ 

### Homework §6.1 #1-4