

a place of mind

THE UNIVERSITY OF BRITISH COLUMBIA

Trees

Tree terminology
Tree traversal
Search trees
Analysis

The adventure thus far...

CPSC 259 topics up to this point

Review: Dictionary ADT

 Abstract data type (ADT) – a mathematical description of an object and a set of operations on the object

Alternatively, a collection of data and the operations for accessing the

data

• Example: Dictionary ADT

Stores pairs of strings: (word, definition)

- Operations:
 - Insert(word, definition)
 - Remove(word)
 - Lookup(word)

Insert

Feet

 Useful for something, presumably

Find(Z125 Pro)

- Z125 Pro
 - Fun in the sun!

• Super 9 LC

- Smell like a lawnmower
- Z125 Pro
 - Fun in the sun!
- CB300F
 - For the mildmannered commuter

data storage implemented with a data structure

Review: linked lists

- Linked lists are constructed out of *nodes*, consisting of
 - a data element
 - a pointer to another node
- Lists are constructed as chains of such nodes

Trees

- Trees are also constructed from nodes
 - Nodes may now have pointers to one or more other nodes.

- called the *root* of the tree (root node)
- Each node is connected by an edge to another node
- A tree is a *connected* graph
 - There is a *path* to every node in the tree
 - A tree has one less edge than the number of nodes

Tree relationships

- Node *v* is said to be a *child* of *u*, and *u* the *parent* of *v* if
 - There is an edge between the nodes *u* and *v*, and
 - u is above v in the tree,
- This relationship can be generalized
 - E and F are *descendants* of A ✓
 - D and A are *ancestors* of G
 - B, C and D are *siblings*
 - F and G are? ×

More tree terminology

- A *leaf* is a node with no children
- A path is a sequence of nodes $v_1 \dots v_n$
 - where v_i is a parent of v_{i+1} $(1 \le i \le n)$

- A subtree is any node in the tree along with all of its descendants
- The *degree* of a node is the number of children the node has
- Branching factor: the maximum degree of any node in the tree
- A binary tree is a tree with at most two children per node, i.e. branching factor = 2
 - The children are referred to as *left* and *right*
 - We can also refer to left and right subtrees

Tree terminology example

Binary tree terminology

every node has at most 2 children

Measuring trees

- The height of a node v is the number of nodes in the longest path from v to a leaf (the further reachable leaf)
 - The height of the tree is the height of the root
- → An empty tree has height 0, a tree containing only a root has height 1
- The *depth* of a node *v* is the number of edges in the path from *v* to the root
 - This is also referred to as the *level* of a node
- Note that there is a slightly different formulation of the height of a tree
 - where the height of an empty tree is -1
 - but for this course we will use the definition of empty tree height is zero

Tree measurements explained

Perfect binary trees

- A binary tree is *perfect*, if
 - No node has only one child
 - And all the leaves have the same depth
- A perfect binary tree of height h has
 - $2^h 1$ nodes, of which 2^{h-1} are leaves
- Perfect trees are also *complete*

12

Height of a perfect tree

- Each level doubles the number of nodes
 - Level 0 has 1 node (2^0)

l=h-1

height: h

24

binary

- Level 1 has 2 nodes (2^1) or 2 times the number in Level 0
- Level 2 has 4 nodes (2²)
- Therefore a perfect tree with $\frac{1}{2}$ levels has $2^{\frac{1}{2}+1} 1$ nodes

Bottom level has 2^h nodes, i.e. just over half of the nodes are leaves

gereally

a perfect K-ary

every node has k

2022W1 Hassan Khosravi / Geoffrey Tien

Complete binary trees

"almost perfect"

- A binary tree is *complete* if
 - The leaves are on at most two different levels,
 - The second to bottom level is completely filled in and
 - The leaves on the bottom level are as far to the left as possible

Balanced binary trees

- A binary tree is *balanced* if
 - Leaves are all about the same distance from the root
 - The exact specification varies
- Sometimes trees are balanced by comparing the height of nodes
 - e.g. the height of a node's right subtree is at most one different from the height of its left subtree (e.g. AVL trees)
- Sometimes a tree's height is compared to the number of nodes
 - e.g. red-black trees

Balanced binary trees

Imbalanced binary trees

by AVL property

Binary tree traversal

- A traversal algorithm for a binary tree visits each node in the tree
 - Typically, it will do something while visiting each node!
- Traversal algorithms are naturally recursive
- There are three traversal methods
 - inOrder
 - preOrder
 - postOrder

inOrder traversal algorithm

```
void inOrder(BNode* nd)
{
  if (nd != NULL)
  {
   inOrder(nd->left);
   visit(nd);
   inOrder(nd->right);
  }
}
```

```
typedef struct BNode
{
  int data;
  struct BNode* left;
  struct BNode* right;
} BNode;
```

The visit function would do whatever the purpose of the traversal is (e.g. print the data value of the node).

preOrder traversal

postOrder traversal

computing the number of nucles in a tree counting int count (BNode + nd) { if (nd == NULL)return 0; else { int 1 = count (nd->left); int r = count (nd → right); int +01a = | +) + -; return total; post -order

23

de allerate every node (using free()) post - Dole which tree Surre tree copy a tree pre-ode-allocate note -assign children as pox -order m-order ble . ought · structurally , tells · not of subter root of subrece left /right positional 13 visite | ax is visited first

24

iClicker 09.1

• What will be the sequence visited by a pre-order traversal from the root?

E. 9248610735

2022W1

iClicker 09.2

• What will be the sequence visited by an in-order traversal from the root?

A. 5829430167

B. 5832407916

C. 6107359248

D. 2984501637

E. 9248610735

in-order:

left

root

right

• What will be the sequence visited by a post-order traversal from the root?

Exercise

- What will be printed by an in-order traversal of the tree?
 - preOrder? postOrder?

Before we move on...

Another type of tree traversal

- We have seen pre-order, in-order, post-order traversals
- What about a traversal that visits every node in a level before working on the next level?
 - level-order traversal

2022W1

Hassan Khosravi / Geoffrey Tien

Binary search trees

A data structure for the Dictionary ADT?

- A binary search tree is a binary tree with a special property
 - For all nodes in the tree:

- All nodes in a right subtree have labels *greater* than or equal to the label of the subtree's root
- Binary search trees are fully ordered

BST inOrder traversal

BST implementation

- Binary search trees can be implemented using a reference structure
- Tree nodes contain data and two pointers to nodes

BST search

- To find a value in a BST search from the root node:
 - If the target is less than the value in the node search its left subtree
 - If the target is greater than the value in the node search its right subtree
 - Otherwise return true, (or a pointer to the data, or ...)
- How many comparisons?
 - One for each node on the path
 - Worst case: height of the tree + 1

search(27);

search(16);

search(12);

Search implementation

• Search can be implemented iteratively or recursively

```
int search(BNode* nd, int key) {
  if (nd == NULL) return FALSE;
  else if (nd->data == key) return TRUE;
  else {
    if (key < nd->data)
      return search(nd->left, key);
    else
      return search(nd->right, key);
  }
}
```

BST insertion

- The BST property must hold after insertion
- Therefore the new node must be inserted in the correct position
 - This position is found by performing a search
 - If the search ends at the (null) left child of a node make its left child refer to the new node
 - If the search ends at the right child of a node make its right child refer to the new node
- The cost is about the same as the cost for the search algorithm, O(height)

BST insertion example

BST insertion example

Insert implementation

• Insert can also be implemented iteratively or recursively

```
BNode* insert(BNode* nd, int key) {
  if (nd == NULL) {
    BNode* newnode = (BNode*) malloc(sizeof(BNode));
    newnode->data = key;
    newnode->left = NULL;
    newnode->right = NULL;
    return newnode;
 else {
    if (key < nd->data)
      nd->left = insert(nd->left, key);
    else
      nd->right = insert(nd->right, key);
    return nd;
```

Find Min, Find Max

- Find minimum:
 - From the root, keep following left child links until no more left child exists (i.e. NULL)
- Find maximum:
 - From the root, follow right child links until no more right child exists

findMin

Iterative implementation

```
int findMin(BNode* nd) {
   BNode* curr = nd;
   if (nd == NULL)
     return -1;
   else {
     while (curr->left != NULL)
        curr = curr->left;
     return curr->data;
   }
}
```

findMax is implemented symmetrically

BST removal

- After removal the BST property must hold
- Removal is not as straightforward as search or insertion
 - With insertion the strategy is to insert a new leaf
 - Which avoids changing the internal structure of the tree
 - This is not possible with removal
 - Since the removed node's position is not chosen by the algorithm
- There are a number of different cases that must be considered
 - The node to be removed has no children
 - Remove it (assigning null to its parent's reference)
 - The node to be removed has one child
 - Replace the node with its subtree
 - The node to be removed has two children
 - ...??

BST removal

Target is a leaf node (no children)

BST removal

Looking at the next node

- One of the issues with implementing a BST is the necessity to look at both children
 - And, just like a linked list, look ahead for insertion and removal
 - And check that a node is null before accessing its member variables
- Consider removing a node with one child in more detail

Looking ahead

Remove 59

Step 1: We need to find the node to remove and its parent

To make the correct link, we need to know if the node to be removed is a left or right child

```
while (nd != target) {
  if (nd == NULL)
    return;
  if (target < nd->data) {
    parent = nd;
    nd = nd->left;
    isLeftChild = true;
  else {
    parent = nd;
    nd = nd->right;
    isLeftChild = false;
2022W1
```


Left or right?

Remove 59

```
while (nd != target) {
  if (nd == NULL)
    return;
  if (target < nd->data) {
    parent = nd;
    nd = nd->left;
    isLeftChild = true;
  else {
    parent = nd;
    nd = nd->right;
    isLeftChild = false;
```

Now we have enough information to detach 59, after attaching its child to 54.

Removing a node with 2 children

- The most difficult case is when the node to be removed has two children
 - The strategy when the removed node had one child was to replace it with its child
 - But when the node has two children problems arise
- Which child should we replace the node with?
 - We could solve this by just picking one ...
- But what if the node we replace it with also has two children?
 - This will cause a problem

Find the predecessor

- When a node has two children, instead of replacing it with one of its children, find its *predecessor*
 - A node's predecessor is the *right most* node of its *left subtree*
 - The predecessor is the node in the tree with the largest value less than the node's value
- The predecessor cannot have a right child and can therefore have at most one child
 - Why?

Predecessor node

32's predecessor

Why use the predecessor?

- The predecessor has some useful properties
 - Because of the BST property it must be the largest value less than its ancestor's value
 - It is to the right of all of the nodes in its ancestor's *left* subtree so must be greater than them
 - It is less than the nodes in its ancestor's *right* subtree
 - It can have at most only one child
- These properties make it a good candidate to replace its ancestor

What about the successor?

- The successor to a node is the left most child of its right subtree
 - It has the smallest value greater than its ancestor's value
 - And cannot have a left child

Pick either one, but be consistent!

Replacement with successor

Remove 32

Find successor and replace data

Replacement with successor

In this example the successor had no subtree

Replacement with predecessor

Remove 63

Find predecessor and replace data

Replacement with predecessor

Find predecessor and replace data

BST efficiency

- The efficiency of BST operations depends on the *height* of the tree
 - All three operations (search, insert and delete) are *O*(height)
 - If the tree is complete the height is [log(height)]
 - What if it isn't complete?

Height of a BST

Insert 7

Insert 4

Insert 1

Insert 9

Insert 5

This is a complete BST

 $\text{height} = \lfloor \log_2 n \rfloor + 1 = 3$

Insert 1

Insert 7

Insert 4

Insert 5

This is a linked list with extra unused pointers

for Dictionary ADT implamentation
Wast also
insert O(n)
remove

Search
O(n)

Balanced BSTs

- It would be ideal if a BST was always close to complete
 - i.e. balanced
- How do we guarantee a balanced BST?
 - We have to make the structure and / or the insertion and removal algorithms more complex
 - e.g. **red black** trees, AVL trees
 - These structures are outside the scope of this course, but you may read Thareja Chapter 10.4 10.5 for interest

Readings for this lesson

- Thareja
 - Chapter 9.1 9.4
 - Chapter 10.1 10.2.9