CC2

Documents, calculatrices et portables interdits. Chaque réponse doit être justifiée. Il sera tenu compte du soin accordé à la rédaction.

Durée: 1h 30

Exercice 1. 1. Question de cours. Soit n un entier supérieur ou égal à 2 et soit $k \in \mathbb{Z}$. Montrer que dans l'anneau $(\mathbb{Z}/n\mathbb{Z}, +, \times)$, \overline{k} est inversible (pour la loi \times) si et seulement si les entiers k et n sont premiers entre eux.

2. Application : donner la liste de tous les éléments inversibles de l'anneau $(\mathbb{Z}/12\mathbb{Z}, +, \times)$. Préciser l'inverse de chaque élément inversible.

Exercice 2. Soit $(A, +, \times)$ un anneau commutatif intègre. On note U(A) l'ensemble des éléments de A inversibles pour la loi \times (ces éléments sont appelés des unités).

1. Soit p un entier supérieur ou égal à 1. Et ant donné un élément quelconque a de A, démontrer l'équivalence suivante :

$$a \in U(A) \iff a^p \in U(A)$$
.

- 2. On suppose dans cette question que l'anneau A ne possède qu'un nombre fini d'idéaux. Soit a un élément $non\ nul$ de A.
- a) Justifier qu'il existe $n, m \in \mathbb{N}$, avec n < m, tels que $a^n A = a^m A$.
- b) On pose p = m n $(p \in \mathbb{N}^*)$. En utilisant le fait que a^n appartient à $a^m A$, montrer que $a^p \in U(A)$.
- 3. Que peut-on dire de A, si A ne possède qu'un nombre fini d'idéaux?

Exercice 3. 1. Trouver deux polynômes $U, V \in \mathbb{R}[X]$ tels que

$$U(X)(X^2 + X - 2) + V(X)(X^2 + 1) = 1$$
.

2. On note \mathcal{S} le sous-ensemble de $\mathbb{R}[X]$ constituée des polynômes P tels que

$$\begin{cases} X^2 + 1 & \text{divise } P(X) \\ X^2 + X - 2 & \text{divise } P(X) - 1 \end{cases}$$

Utiliser 1. pour trouver un élément P_0 de S. Montrer que tout élément P de S est de la forme

$$P(X) = P_0(X) + (X^2 + 1)(X^2 + X - 2)Q(X)$$
, avec $Q \in \mathbb{R}[X]$.

Exercice 4. On considère le sous-ensemble suivant de \mathbb{R} :

$$B = \{a + b\sqrt{2}; a, b \in \mathbb{Z}\}.$$

- 1. Montrer que B est un sous-anneau de $(\mathbb{R}, +, \times)$.
- 2. Pour $x = a + b\sqrt{2}$ (avec $a, b \in \mathbb{Z}$), on pose $N(x) = a^2 2b^2$. Montrer que

$$\forall (x,y) \in B \times B$$
, $N(xy) = N(x)N(y)$

- 3. Soit $x \in B$. Montrer que si $N(x) = \pm 1$, alors x est une unité de l'anneau B.
- 4. Soit $x \in B$. Montrer que si N(x) est un nombre premier ou l'opposé d'un nombre premier, alors x est un élément irréductible de l'anneau B.