

COS10004 Computer Systems

Lecture 8.1 Arm ASM – LED Flash (part 1) - pulling a GPIO pin low CRICOS provider 00111D

Dr Chris McCarthy

OUR ARM ASM AGENDA

assignment (mov, ldr)

- arithmetic (add, sub, mul, div)
- labels, branch (b)

- registers, GPIO

selection (cmp, tst)

- functions, parameters (bl)
- stack (push, pop)
- building up immediate constants
- ARM timer
- Turn on off GPIO (gpio.s) (OK01, OK02)

FROM WEEK 7

See https://www.youtube.com/watch?v=Rd9kvVs1ISQ for my tutorial on wiring this circuit

TURNING ON AN LED

```
BASE = $FE000000 ; $ means HEX
```

GPIO_OFFSET=\$200000

mov r0,BASE

orr r0,GPIO_OFFSET ;r0 now equals 0xFE200000

mov r1,#1

Isl r1,#24 ;write 1 into r1, Isl 24 times to move the 1 to bit 24

str r1,[r0,#4] ;write it into 5th (16/4+1)block of function register

mov r1,#1

Isl r1,#18 ;write 1 into r1, Isl 18 times to move the 1 to bit 18

str r1,[r0,#28] ;write it into first block of pull-up register

loop\$:

b loop\$;loop forever

TURNING ON AN LED

BASE = \$FE000000; \$ means HEX GPIO OFFSET=\$200000 What about these numbers? mov r0,BASE orr r0,GPIO OFFSET ;r0 now equals 0xFE200000 Where did they come from And what do they mean? mov r1,#1 ;write 1 into r1, Isl 24 times to move the 1 to bit 24 Isl r1,#24 ;write it into 5th (16/4+1)block of function register These numbers all refer to str r1,[r0,#4] settings and programming of the GPIO registers. mov r1,#1 Isl r1,#18 ;write 1 into r1, lsl 18 times to move the 1 to bit 18 str r1,[r0,#28] ;write it into first block of pull-up register To understand this part of the Code we need to understand loop\$: what the GPIO chip is, and

how we interface with it to

read to and write from the

GPIO header pins.

b loop\$

;loop forever

GPIO LAYOUT FOR RPI 2B, 3B AND 4

3V3

GPIO EXPANSION

MAKING THE LED FLASH (OK2)

pseudocode:

Program the GPIO 18 for output

Enable

wait

Disable

wait-

repeat

We need to wait because the LED will flash too fast to see. The clock speed of the ARM – 700MHz – 1.2GHz.

Lab 8 Task resource on Canvas

MAKING THE LED FLASH (OK2)

pseudocode:

Program the GPIO 18 for output

Enable

wait

Disable

wait-

repeat

We need to wait because the LED will flash too fast to see. The clock speed of the ARM – 700MHz – 1.2GHz.

Lab 8 Task resource on Canvas

FUNCTIONALITY NEEDED

- Pull GPIO18 low (disable led)
- Insert delay between led enable and disable
- Lets deal with turning off LED first!

RECALL PSUEDO CODE

- store location of GPIO (BASE + GPIOADDR) in r0
- Enable "writing" for GPIO18 (our LED)
 - we need to set certain bits in the "function" register to program GPIO18 for writing
- Set output of GPIO18
 - Light on: set bit in the appropriate "write 1" register
 - Light off: set bit in the appropriate "write 0" register
- loop forever

RECALL PSUEDO CODE

- store location of GPIO (BASE + GPIOADDR) in r0
- Enable "writing" for GPIO18 (our LED)
 - we need to set certain bits in the "function" register to program GPIO18 for writing
- Set output of GPIO18
 - Light on: set bit in the appropriate "write 1" register
 - Light off: set bit in the appropriate "write 0" register
- loop forever

start of the BASE+ GPIO (RPi 2/3). Add this address to everything in the GPIO

1. SELECT FUNCTION numbers are packed into

Each pin programmed by a 3-bit number. Those numbers are packed into 30 bits of each word

Hex	Offset (dec)	32-bit regsiters	Function Select Register			
0x3F200000	C)	store GPIO start address:	bits 0-2 = GPIO 0	bits 3-5 = GPIO 1	bits 6-8 = GPIO 2
	1	GPIO 0 - 9	ldr r0,=0x3F200000	bits 9-11 = GPIO 3	bits 12-14 = GPIO 4	
	2			bits 15-17 = GPIO 5	bits 18-20 = GPIO 6	bits 21-23 = GPIO 7
	3			bits 24-26 = GPIO 8	bits 27-29 = GPIO 9	
0x3F200004	4	GPIO 10 - 19	Enable Write: to GPIO18 (Lab 7)	bits 0-2 = GPIO 10	bits 3-5 = GPIO 11	bits 6-8 = GPIO 12
	5		mov r1,#1	bits 9-11 = GPIO 13	bits 12-14 = GPIO 14	
	6		lsl r1,#24	bits 15-17 = GPIO 15	bits 18-20 = GPIO 16	bits 21-23 = GPIO 17
	7		str r1,[r0,#4]	bits 24-26 = GPIO 18	bits 27-29 = GPIO 19	
0x3F200008 0x3F20000C	8	GPIO 20 - 29	Enable Read: from GPIO24(pin)	bits 0-2 = GPIO 20	bits 3-5 = GPIO 21	bits 6-8 = GPIO 22
	9		mov r1,#0	bits 9-11 = GPIO 23	bits 12-14 = GPIO 24	
	10	GF10 20 - 29	lsl r1,#12	bits 15-17 = GPIO 25	bits 18-20 = GPIO 26	bits 21-23 = GPIO 27
	11		str r1,[r0,#8]	bits 24-26 = GPIO 28	bits 27-29 = GPIO 29	
	12	GPIO 30 - 39		bits 0-2 = GPIO 30	bits 3-5 = GPIO 31	bits 6-8 = GPIO 32
	13			bits 9-11 = GPIO 33	bits 12-14 = GPIO 34	
	14			bits 15-17 = GPIO 35	bits 18-20 = GPIO 36	bits 21-23 = GPIO 37
	15			bits 24-26 = GPIO 38	bits 27-29 = GPIO 39	
0x3F200010	16			bits 0-2 = GPIO 40	bits 3-5 = GPIO 41	bits 6-8 = GPIO 42
	17	GPIO 40 - 49		bits 9-11 = GPIO 43	bits 12-14 = GPIO 44	
	18	GF10 40 - 49		bits 15-17 = GPIO 45	bits 18-20 = GPIO 46	bits 21-23 = GPIO 47
	19			bits 24-26 = GPIO 8	bits 27-29 = GPIO 49	
0x3F200014	20	20 21 GPIO 50 - 54	0-7 bits	bits 0-2 = GPIO 50	bits 3-5 = GPIO 51	bits 6-8 = GPIO 52
	2,1		8-15 bits	bits 9-11 = GPIO 53	bits 12-14 = GPIO 54	
	12		16-22 bits			
	23		23-29 bits			

Add 4 bytes (1 word) each time we go above 30 bits (10 GPIO pins)

0x3F200018

3 registers control writing 0, writing 1 or reading each pin.

55

56

58

59

60

read bit n to detect

GPIO 32+n

0x3F200038

0x3F20004C

2. SET VALUE (R/W)

Each pin programmed by a 1-bit number. 32 numbers are packed into 32 bits of each

bits 24-31 = GPIO 24-31

bits 0-7 = GPIO 32-39

bits 8-15 = GPIO 40-47

bits 16-22 = GPIO 48-54

TURNING OFF THE LED (GPIO 18)

```
BASE = \$FE000000
GPIO OFFSET = $200000
mov r0, BASE
orr r0, GPIO OFFSET
;start of GPIO
  ;program GPIO for output, turp
;set bit 18
mov r1,#1
lsl r1,#18
;write to "set low" register
str r1, [r0, #40]
```

Remember? The GPIO has (at offset):

Offset 0 bytes: Function registers
Offset 28 bytes: Set high registers
Offset 40 bytes: Set low registers
Offset 52 bytes: Read registers.
See RPiGPIO.xlsx

INSERT DELAY WITH BUSY WAIT TIMER

- Pseudocode:
 - Program GPIO18 LED for output
 - Loop1:
 - Turn LED on (pull GPIO18 high)
 - Busy wait
 - Turn LED off (pull GPIO18 low)
 - Busy wait
 - branch to loop1

SUMMARY

- To make LED flash we turn LED on an off with inserted time delays
- Pulling a GPIO register pin low follows same pattern as pulling high
 - Write "1" to the appropriate position in the "off" register
 - Everything else is the same!
- Busy wait time needs a comparison and a loop:
 - Next lecture we discuss how to do this!