

# Health Insurance claim

CAUSE AND EFFECT ANALYSIS

ANOOP E R | DATA ANALYTICS | 06-01-2023

# 1) Perform the Exploratory Data Analysis on the data.

a) Identify the categorical and continuous variables

| Categorical variables | Continuous variables |
|-----------------------|----------------------|
| Sex                   | Bmi                  |
| Smoker                | Charges              |
| Region                |                      |

Age and Children is discrete so we separately place it in the category "discrete".

b) Make Histograms and box plots (univariate analysis) for continuous variables and do a correlation analysis (multivariate analysis)







| Correlation analysis |             |             |  |
|----------------------|-------------|-------------|--|
|                      |             |             |  |
|                      | bmi         | charges(\$) |  |
| bmi                  | 1           |             |  |
| charges(\$)          | 0.198340969 | 1           |  |

# c) Make relevant Pivot tables and charts for:

1)Male/Female ratio and share information on which gender has more smokers

| Count of smoker | Column Labels |     |   |    |
|-----------------|---------------|-----|---|----|
| Sex             | no            | yes | • |    |
| female          |               | 547 | 1 | 15 |
| male            |               | 517 | 1 | 59 |

Male by Female Ratio = **1.382608696** 

By examining the male by female ratio we see that the ratio is above 1,thus we can conclude that males has more smokers.



### 2)Charges vs Age

| Age   | Average of charges(\$) |
|-------|------------------------|
| 15-24 | 9011.340               |
| 25-34 | 10352.393              |
| 35-44 | 13134.169              |
| 45-54 | 15853.928              |
| 55-65 | 18513.276              |
| Grand |                        |
| Total | 13270.422              |



# 3)Charges vs BMI

| ВМІ   | Average of<br>charges(\$) |
|-------|---------------------------|
| 15-25 | 10282.22447               |
| 25-35 | 12714.63543               |
| 35-45 | 16913.68151               |
| 45-55 | 17547.92675               |



## 4) Charges for Smokers vs Non-smokers

| Average of Smokers charges(\$) |             |  |
|--------------------------------|-------------|--|
| yes                            | 32050.23183 |  |
| no                             | 8434.268298 |  |



# d) Region-wise smokers vs Non-smokers analysis with one or more pivot table and charts

| No of             |        |    |     |
|-------------------|--------|----|-----|
| smoker            | Region |    |     |
| <b>Row Labels</b> | yes    | no |     |
| northeast         | 67     |    | 257 |
| northwest         | 58     |    | 267 |
| southeast         | 91     |    | 273 |
| southwest         | 58     |    | 267 |







Southeast has more number of smokers and northwest along with southwest holds the less number of smokers

## e) Region-wise charges for smokers vs non-smokers

| Average of charges(\$) | Column Labels |           |  |  |
|------------------------|---------------|-----------|--|--|
| Row Labels             | no            | yes       |  |  |
| northeast              | 9165.532      | 29673.536 |  |  |
| northwest              | 8556.464      | 30192.003 |  |  |
| southeast              | 8032.216      | 34844.997 |  |  |
| southwest              | 8019.285      | 32269.063 |  |  |

### f) Has charges got something to do with the number of dependents?

Correlation between number of dependents and charges = 0.067998

Since we have a positive relation we can say that they are directly related. Thus we can say that as the value of no of dependents increase, charges also increase.

### g) Do a similar dependants-charges analysis, Region-wise

| Average of charges(\$) | Number of<br>Students |           |           |           |           |           |
|------------------------|-----------------------|-----------|-----------|-----------|-----------|-----------|
| Region                 | 0                     | 1         | 2         | 3         | 4         | 5         |
| northeast              | 11626.463             | 16310.206 | 13615.153 | 14409.913 | 14485.193 | 6978.973  |
| northwest              | 11324.371             | 10230.256 | 13464.315 | 17786.161 | 11347.019 | 8965.796  |
| southeast              | 14309.868             | 13687.042 | 15728.471 | 18449.846 | 14451.024 | 10115.442 |
| southwest              | 11938.505             | 10406.485 | 17483.486 | 10402.442 | 14933.261 | 8444.159  |

# h) Do at least one more pivot table and chart of your own choice on the remaining variables

| Average of bmi | Sex         |             |  |  |
|----------------|-------------|-------------|--|--|
| Row Labels     | female      | male        |  |  |
| no             | 30.53952468 | 30.77058027 |  |  |
| yes            | 29.60826087 | 31.50418239 |  |  |

### i) Give your understanding from the patterns observed in point (b)

#### Interpretation for observations made in point (b)

- **❖** The datas in BMI is normally distributed with a median of 30.4.
- ❖ For BMI the first quartile data is under 26.272 and third quartile data is under 34.7.
- **❖** The datas in Charges are positively skewed with a median of 9382.033.
- **❖** The first quartile data is under 4733.635.
  - j) Give your interpretation for observations made in point (c)

### <u>Interpretation for observations made in point (c)</u>

- Males has more number of smokers.
- **❖** The BMI range of 45-55 has highest average charge of 17547.92675.
- **Average charges for smokers is four times the charges for non-smokers.**
- **❖** The Age group 55-65 has the highest average charge of 18513.26.

# 2) Edit the data as following, to obtain dummy variables:

- a) Sex: Replace all the "Males" with "1" and "Females" with "0", creating numerical entries for gender this way will help you do analysis further. You can use the "Replace with Match entire cell content" option. Do a replace all to save time.
- b) Smoker: Replace all the "Smokers" with "1" and "Non-smokers" with "0".
- c) Region: We always create one less category column for the dummy data w.r.t the categories available for that original variable. So for Region, we will create three dummy columns, assuming "Northeast" as zero and omit the column for it. Now create three columns for "northwest", "Southeast", "Southwest". Whichever row has "northwest" region as an entry will take "1" as an entry otherwise "0" in "northwest" column. Similarly in the "Southeast" column, whichever row had "southeast" as an entry will take "1" as the new entry and "0" for the rest of the column (Southeast). Do a similar operation on the "Southwest" column. Please refer to the below image for your understanding,
- a) We use the if function to edit the data (=IF(Cell="male",1,0))
- b) We use the if function to edit the data (=IF(Cell="yes",1,0))
- c) We use the if function to edit the data (=IF(Cell=" northwest",1,0)) We use the if function to edit the data (=IF(Cell=" Southeast",1,0)) We use the if function to edit the data (=IF(Cell=" Southwest ",1,0))

| SEX modified 💌 | SMOKERS ~ | northwest 🔻 | southeast 🔻 | southwest 🔻 |
|----------------|-----------|-------------|-------------|-------------|
| 0              | 1         | 0           | 0           | 1           |
| 1              | 0         | 0           | 1           | 0           |
| 1              | 0         | 0           | 1           | 0           |
| 1              | 0         | 1           | 0           | 0           |
| 1              | 0         | 1           | 0           | 0           |
| 0              | 0         | 0           | 1           | 0           |
| 0              | 0         | 0           | 1           | 0           |
| 0              | 0         | 1           | 0           | 0           |
| 1              | 0         | 0           | 0           | 0           |
| 0              | 0         | 1           | 0           | 0           |
| 1              | 0         | 0           | 0           | 0           |
| 0              | 1         | 0           | 1           | 0           |
| 1              | 0         | 0           | 0           | 1           |
| 0              | 0         | 0           | 1           | 0           |
| 1              | 1         | 0           | 1           | 0           |
| 1              | 0         | 0           | 0           | 1           |
| 0              | 0         | 0           | 0           | 0           |
| 1              | 0         | 0           | 0           | 0           |
| 1              | 0         | 0           | 0           | 1           |
| 1              | 1         | 0           | 0           | 1           |

3) Do a descriptive summary analysis for the edited data. Perform a Multiple Linear Regression analysis to identify which variables decide the insurance charges/billed insurance claim. Give your interpretation for the above analysis, do another set of regression analysis by dropping insignificant variables, if needed.

### **Descriptive Summary Analysis of edited data**

We use the summary statistics in the data analytics function

| age             |            |                                                  | bmi            |         |            |     |
|-----------------|------------|--------------------------------------------------|----------------|---------|------------|-----|
| Mean            | 39.2070    |                                                  | Mean           |         | 30.66      | 534 |
| Standard Error  | 0.3841     |                                                  | Standard Error |         | 0.166      |     |
| Median          | 39.0000    |                                                  | Median         |         | 30.4000    |     |
| Mode            | 18.0000    |                                                  | Mode           |         | 32.30      | 000 |
| Standard        | 14.0500    |                                                  | Standard       |         | 6.098      |     |
| Deviation       |            |                                                  | Deviation      |         |            |     |
| Sample Variance | 197.4014   |                                                  | Sample Variano | e       | 37.18      |     |
| Kurtosis        | -1.2451    |                                                  | Kurtosis       |         | -0.05      | 07  |
| Skewness        | 0.0557     |                                                  | Skewness       |         | 0.284      | 10  |
| Range           | 46.0000    |                                                  | Range          |         | 37.17      | 700 |
| Minimum         | 18.0000    |                                                  | Minimum        |         | 15.96      | 600 |
| Maximum         | 64.0000    |                                                  | Maximum        |         | 53.13      | 300 |
| Sum             | 52459.0000 |                                                  | Sum            |         | 41027.6250 |     |
| Count           | 1338.0000  |                                                  | Count          |         | 1338.0000  |     |
|                 |            |                                                  |                |         |            |     |
| children        |            | Si                                               | EX             |         |            |     |
|                 |            |                                                  |                |         |            |     |
| Mean            | 1.0949     | N                                                | 1ean           | 0.5052  |            |     |
| Standard Error  | 0.0330     | St                                               | tandard Error  | 0.      | 0137       |     |
| Median          | 1.0000     | N                                                | 1edian         | 1.      | 0000       |     |
| Mode            | 0.0000     | N                                                | 1ode           | 1.0000  |            |     |
| Standard        | 1.2055     | St                                               | tandard        | 0.      | 5002       |     |
| Deviation       |            | _                                                | eviation       |         |            |     |
| Sample Variance | 1.4532     | <del>                                     </del> | ample Variance | _       | 2502       |     |
| Kurtosis        | 0.2025     |                                                  | urtosis        | -2.0026 |            |     |
| Skewness        | 0.9384     | Skewness                                         |                | -0.0210 |            |     |
| Range           | 5.0000     | R                                                | ange           | 1.0000  |            |     |
| Minimum         | 0.0000     | N                                                | 1inimum        | 0.      | 0000       |     |
| Maximum         | 5.0000     | N                                                | 1aximum        | 1.      | 0000       |     |
| Sum             | 1465.0000  | Sı                                               | um             | 6       | 76.0000    |     |
| Count           | 1338.0000  | C                                                | ount           | 13      | 338.0000   |     |
|                 |            |                                                  |                | •       |            |     |

| SMOKERS            |           | northwest          |           | southeast          |           |
|--------------------|-----------|--------------------|-----------|--------------------|-----------|
|                    |           |                    |           |                    |           |
| Mean               | 0.2048    | Mean               | 0.2429    | Mean               | 0.2720    |
| Standard Error     | 0.0110    | Standard Error     | 0.0117    | Standard Error     | 0.0122    |
| Median             | 0.0000    | Median             | 0.0000    | Median             | 0.0000    |
| Mode               | 0.0000    | Mode               | 0.0000    | Mode               | 0.0000    |
| Standard Deviation | 0.4037    | Standard Deviation | 0.4290    | Standard Deviation | 0.4452    |
| Sample Variance    | 0.1630    | Sample Variance    | 0.1840    | Sample Variance    | 0.1982    |
| Kurtosis           | 0.1458    | Kurtosis           | -0.5599   | Kurtosis           | -0.9495   |
| Skewness           | 1.4648    | Skewness           | 1.2004    | Skewness           | 1.0256    |
| Range              | 1.0000    | Range              | 1.0000    | Range              | 1.0000    |
| Minimum            | 0.0000    | Minimum            | 0.0000    | Minimum            | 0.0000    |
| Maximum            | 1.0000    | Maximum            | 1.0000    | Maximum            | 1.0000    |
| Sum                | 274.0000  | Sum                | 325.0000  | Sum                | 364.0000  |
| Count              | 1338.0000 | Count              | 1338.0000 | Count              | 1338.0000 |

| southwest          |           | charges(\$)        |                |
|--------------------|-----------|--------------------|----------------|
|                    |           |                    |                |
| Mean               | 0.2429    | Mean               | 13270.4223     |
| Standard Error     | 0.0117    | Standard Error     | 331.0675       |
| Median             | 0.0000    | Median             | 9382.0330      |
| Mode               | 0.0000    | Mode               | 1639.5631      |
| Standard Deviation | 0.4290    | Standard Deviation | 12110.0112     |
| Sample Variance    | 0.1840    | Sample Variance    | 146652372.1529 |
| Kurtosis           | -0.5599   | Kurtosis           | 1.6063         |
| Skewness           | 1.2004    | Skewness           | 1.5159         |
| Range              | 1.0000    | Range              | 62648.5541     |
| Minimum            | 0.0000    | Minimum            | 1121.8739      |
| Maximum            | 1.0000    | Maximum            | 63770.4280     |
| Sum                | 325.0000  | Sum                | 17755824.9908  |
| Count              | 1338.0000 | Count              | 1338.0000      |

We use the regression analysis in data analytics function from the data tab for Multiple Linear Regression analysis

### **SUMMARY OUTPUT**

| Regression        |             |
|-------------------|-------------|
| Statistics        |             |
| Multiple R        | 0.866552384 |
| R Square          | 0.750913035 |
| Adjusted R Square | 0.74941364  |
| Standard Error    | 6062.102289 |
| Observations      | 1338        |

| ANOVA      |      |             |             |             |                   |
|------------|------|-------------|-------------|-------------|-------------------|
|            | df   | SS          | MS          | F           | Significance<br>F |
| Regression | 8    | 1.47235E+11 | 18404336091 | 500.8107416 | 0                 |
| Residual   | 1329 | 48839532844 | 36749084.16 |             |                   |
| Total      | 1337 | 1.96074E+11 |             |             |                   |

|         | Coefficie | Standard | t Stat   | P-value  | Lower    | Upper    | Lower    | Upper    |
|---------|-----------|----------|----------|----------|----------|----------|----------|----------|
|         | nts       | Error    |          |          | 95%      | 95%      | 95.0%    | 95.0%    |
| Interce | -         | 987.8191 | -        | 5.57904E | -        | -        | -        | -        |
| pt      | 11938.53  | 752      | 12.08575 | -32      | 13876.39 | 10000.68 | 13876.39 | 10000.68 |
|         | 858       |          | 302      |          | 342      | 373      | 342      | 373      |
| age     | 256.8563  | 11.89884 | 21.58665 | 7.78322E | 233.5137 | 280.1989 | 233.5137 | 280.1989 |
|         | 525       | 907      | 523      | -89      | 784      | 267      | 784      | 267      |
| bmi     | 339.1934  | 28.59947 | 11.86013 | 6.49819E | 283.0884 | 395.2984 | 283.0884 | 395.2984 |
|         | 536       | 048      | 055      | -31      | 256      | 816      | 256      | 816      |
| childre | 475.5005  | 137.8040 | 3.450554 | 0.000576 | 205.1632 | 745.8378 | 205.1632 | 745.8378 |
| n       | 451       | 925      | 599      | 968      | 856      | 047      | 856      | 047      |
| SEX     | -         | 332.9454 | -        | 0.693347 | -        | 521.8415 | -        | 521.8415 |
|         | 131.3143  | 391      | 0.394402 | 519      | 784.4702 | 517      | 784.4702 | 517      |
|         | 594       |          | 037      |          | 705      |          | 705      |          |
| SMOKE   | 23848.53  | 413.1533 | 57.72320 | 0        | 23038.03 | 24659.03 | 23038.03 | 24659.03 |
| RS      | 454       | 548      | 196      |          | 071      | 838      | 071      | 838      |
| northw  | -         | 476.2757 | -        | 0.458768 | -        | 581.3704 | -        | 581.3704 |
| est     | 352.9638  | 859      | 0.741091 | 933      | 1287.298 | 037      | 1287.298 | 037      |
|         | 994       |          | 422      |          | 203      |          | 203      |          |
| southe  | -         | 478.6922 | -        | 0.030781 | -        | -        | -        | -        |
| ast     | 1035.022  | 095      | 2.162186 | 739      | 1974.096 | 95.94732 | 1974.096 | 95.94732 |
|         | 049       |          | 952      |          | 773      | 58       | 773      | 58       |
| southw  | -         | 477.9330 | -        | 0.044764 | -        | -        | -        | -        |
| est     | 960.0509  | 243      | 2.008756 | 93       | 1897.636 | 22.46559 | 1897.636 | 22.46559 |
|         | 913       |          | 337      |          | 383      | 965      | 383      | 965      |

AVERAGE = 42.0353%

ACCURACY = 57.9647%

### **Interpretation for the above analysis**

- **>** From this analysis we can observe that the insignificant variables are sex and southeast.
- > The variable Smokers have a pvalue, i.e it is the most significant variable.
- > This model has a accuracy of 57.964%.

# **Observing p-value**

Model created after removing the variables sex and northwest.

| SUMMARY           |             |
|-------------------|-------------|
| OUTPUT            |             |
| Regression        |             |
| Statistics        |             |
| Multiple R        | 0.866476426 |
| R Square          | 0.750781397 |
| Adjusted R Square | 0.749657948 |
| Standard Error    | 6059.146461 |
| Observations      | 1338        |

| ANOVA      |      |           |             |           |            |
|------------|------|-----------|-------------|-----------|------------|
|            | df   | SS        | MS          | F         | Significan |
|            |      |           |             |           | ce F       |
| Regression | 6    | 1.47209E+ | 24534813009 | 668.28213 | 0          |
|            |      | 11        |             | 55        |            |
| Residual   | 1331 | 488653435 | 36713255.83 |           |            |
|            |      | 15        |             |           |            |
| Total      | 1337 | 1.96074E+ |             |           |            |
|            |      | 11        |             |           |            |

|           | Coefficients | Standar | t Stat      | P-value | Lower  | Upper  | Lower  | Upper  |
|-----------|--------------|---------|-------------|---------|--------|--------|--------|--------|
|           |              | d Error |             |         | 95%    | 95%    | 95.0%  | 95.0%  |
| Intercept | -            | 949.538 | -           | 1.6058  | -      | -      | -      | -      |
|           | 12165.382    | 1396    | 12.81189447 | 9E-35   | 14028. | 10302. | 14028. | 10302. |
|           | 44           |         |             |         | 13689  | 62798  | 13689  | 62798  |
| age       | 257.00639    | 11.8892 | 21.61669729 | 4.6151  | 233.68 | 280.33 | 233.68 | 280.33 |
|           | 06           | 5335    |             | 1E-89   | 26728  | 01084  | 26728  | 01084  |
| bmi       | 338.64133    | 28.5540 | 11.85964939 | 6.4997  | 282.62 | 394.65 | 282.62 | 394.65 |
|           | 47           | 7641    |             | 4E-31   | 54353  | 72342  | 54353  | 72342  |
| children  | 471.54414    | 137.655 | 3.425526743 | 0.0006  | 201.49 | 741.59 | 201.49 | 741.59 |
|           | 44           | 9519    |             | 3229    | 78697  | 04191  | 78697  | 04191  |
| SMOKERS   | 23843.874    | 411.659 | 57.92141097 | 0       | 23036. | 24651. | 23036. | 24651. |
|           | 93           | 0831    |             |         | 30359  | 44628  | 30359  | 44628  |
| southeast | -            | 415.205 | -           | 0.0388  | -      | -      | -      | -      |
|           | 858.46964    | 505     | 2.067577697 | 72641   | 1672.9 | 43.941 | 1672.9 | 43.941 |
|           | 18           |         |             |         | 9817   | 11379  | 9817   | 11379  |
| southwest | -            | 413.755 | -           | 0.0587  | -      | 28.939 | -      | 28.939 |
|           | 782.74522    | 9633    | 1.891804105 | 3399    | 1594.4 | 66291  | 1594.4 | 66291  |
|           | 98           |         |             |         | 30123  |        | 30123  |        |

# **Observing co-orelation**

Model created after removing the variables **Northwest** and **Southwest**.

| SUMMARY<br>OUTPUT     |             |
|-----------------------|-------------|
|                       |             |
| Regression Statistics |             |
| Multiple R            | 0.866105937 |
| R Square              | 0.750139494 |
| Adjusted R Square     | 0.74901315  |
| Standard Error        | 6066.944607 |
| Observations          | 1338        |

| ANOVA      |      |                 |             |                 |                    |
|------------|------|-----------------|-------------|-----------------|--------------------|
|            | df   | SS              | MS          | F               | Significanc<br>e F |
| Regression | 6    | 1.47083E+1<br>1 | 24513836220 | 665.99538<br>65 | 0                  |
| Residual   | 1331 | 4899120425<br>0 | 36807816.87 |                 |                    |
| Total      | 1337 | 1.96074E+1<br>1 |             |                 |                    |

|           | Coefficients | Standar | t Stat      | P-value | Lower  | Upper  | Lower  | Upper  |
|-----------|--------------|---------|-------------|---------|--------|--------|--------|--------|
|           |              | d Error |             |         | 95%    | 95%    | 95.0%  | 95.0%  |
| Intercept | -12225.124   | 957.856 | -           | 2.8118  | -      | -      | -      | -      |
|           |              | 346     | 12.76300361 | E-35    | 14104. | 10346. | 14104. | 10346. |
|           |              |         |             |         | 19667  | 05132  | 19667  | 05132  |
| age       | 257.02131    | 11.9080 | 21.58380403 | 7.8189  | 233.66 | 280.38 | 233.66 | 280.38 |
|           | 98           | 64      |             | E-89    | 07002  | 19393  | 07002  | 19393  |
| bmi       | 333.96314    | 28.4896 | 11.72227788 | 2.8465  | 278.07 | 389.85 | 278.07 | 389.85 |
|           | 42           | 1163    |             | 7E-30   | 37084  | 25801  | 37084  | 25801  |
| children  | 468.97791    | 137.840 | 3.402314192 | 0.0006  | 198.56 | 739.38 | 198.56 | 739.38 |
|           | 52           | 8603    |             | 88007   | 88968  | 69335  | 88968  | 69335  |
| SEX       | -            | 333.208 | -           | 0.6982  | -      | 524.47 | -      | 524.47 |
|           | 129.19106    | 0003    | 0.387718988 | 85997   | 782.86 | 90266  | 782.86 | 90266  |
|           | 87           |         |             |         | 11641  |        | 11641  |        |
| SMOKERS   | 23866.029    | 413.325 | 57.74147264 | 0       | 23055. | 24676. | 23055. | 24676. |
|           | 12           | 6052    |             |         | 18848  | 86976  | 18848  | 86976  |
| southeast | -            | 388.508 | -           | 0.1363  | -      | 183.12 | -      | 183.12 |
|           | 579.02918    | 5342    | 1.490389868 | 58685   | 1341.1 | 66187  | 1341.1 | 66187  |
|           | 28           |         |             |         | 84984  |        | 84984  |        |