RACHUNEK PRAWDOPODOBIEŃSTWA, WYDZIAŁ ELEKTRONIKI (26 V 2021)

LISTA 5. DWUWYMIAROWE ZMIENNE LOSOWE

1. Rozkład zmiennej losowej (X, Y) zadany jest tabelką

$X \setminus Y$	1	2	6	9
2	0,1	0,1	0,1	0,1
4	0,1	0	0	0,3
6	0	0.1	0	0,1

Wyznacz rozkłady brzegowe. Czy zmienne X i Y są niezależne? Jakie wartości należy wpisać w powyższą tabelkę, aby zmienne X i Y o wyliczonych rozkładach brzegowych były niezależne?

- 2. Rozkład zmiennej losowej (X,Y) jest absolutnie ciągły z gęstością $f_{(X,Y)}(x,y)=1/4$, gdy tylko |x|<1 oraz |y|<1. W pozostałych przypadkach $f_{(X,Y)}(x,y)=0$. Wyznacz gęstości brzegowe. Czy X i Y są niezależne?
- 3. Rozkład zmiennej losowej (X,Y) zadany jest poniższą tabelką.

X\ Y	-1	0	1	2
-1	0,2	0,1	0	0,1
0	0,1	0	0,2	0,1
1	0,1	0	0	0,1

Wyznacz rozkłady brzegowe zmiennych X i Y oraz macierz kowariancji wektora (X,Y). Czy zmienne losowe X i Y są niezależne?

- 4. Zmienne losowe X i Y są niezależne i mają rozkłady jednostajne na odcinku [0,1]. Wyznacz rozkład łączny wektora (X,Y), a następnie oblicz $\mathbb{P}(X\leqslant Y\leqslant \frac{1}{2})$ oraz $\mathbb{E}(Xe^{XY})$.
- 5. Wektor losowy (X,Y) ma rozkład absolutnie ciągły z gęstością

$$f_{(X,Y)}(x,y) = \left\{ \begin{array}{ll} x+y &, & \text{gdy } x \in [0,1], y \in [0,1], \\ 0 &, & \text{w pozostalych przypadkach.} \end{array} \right.$$

Wyznacz rozkłady brzegowe, ich wartości oczekiwane oraz wariancje. Wyznacz macierz kowariancji wektora (X,Y). Czy zmienne X i Y są niezależne?

6. Moc prądu zadana jest wzorem $W = I^2 R$, gdzie I oznacza natężenie prądu zaś R oznacza jego opór. Zakładamy, że I oraz R sa niezależnymi zmiennymi losowymi o gestościach

$$f_I(x) = 6x(1-x), x \in [0,1],$$

 $f_R(y) = 2y, y \in [0,1].$

Wyznacz $\mathbb{E}W$ oraz $\mathbb{E}W^2$.

- 7. Niech X i Y będą niezależnymi zmiennymi losowymi, przy czym X ma rozkład wykładniczy z parametrem $\lambda=3$, zaś Y ma rozkład normalny N(3,4). Wyznacz wartość oczekiwaną oraz wariancje zmiennej losowej Z=4X-5Y+6.
- 8. Uzasadnij, że dla dowolnych zmiennych losowych X i Y zachodzi

$$Var(X + Y) = VarX + VarY + 2Cov(X, Y).$$

9. Niech X będzie zmienną losową o rozkładzie Poissona z parametrem $\lambda=4$ oraz Y=2X+Z,gdzie Z jest niezależną od X zmienną losową o rozkładzie Bernoulliego B(10,1/2). Wyznacz $\mathbb{C}\text{ov}(X,Y)$.

1