

SRM Institute of Science and Technology College of Engineering and Technology

SET B

DEPARTMENT OF ECE

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-2023 (EVEN)

Test: CLAT- 3 Date: 2.05.2023 Course Code & Title: 18ECC206J - VLSI Design Time: 10:30-12:10 PM

Year & Sem: III & VI Max. Marks: 50

Course Articulation Matrix:

	Program Learning Outcomes (POs)															
			Graduate Attributes										PSO			
S. No.	Course Outcomes (COs)	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	Design and implement digital circuits using Verilog HDL to simulate and verify the designs.	-	3	3	-	3	-	-	-	1	ı	-	-	2	1	-
2	Design general VLSI system components, adder cells and multipliers to address the design of datapath subsystem.	-	3	3	-	3	-	-	-	1	-	-	-	2	1	-
	Examine the characteristics of MOS transistors	3	2	-	-	-	-	-	-	-	-	-	-	2	-	-
4	Analyze CMOS inverter and other complex logic gates designed using different logic styles	-	2	2	-	1	-	-	-	,	1	-	-	2	1	-
5	Explain how the transistors are built, and understand the physical implementation of circuits.	-	1	1	-	-	-	-	-	-	-	-	-	2	-	-

	Answer any five questions									
Q. No	Question	Marks	BL	CO	PO					
No 1	a. If the n-MOS and p-MOS of the CMOS inverters are interchanged the output is measured at: i) Source of both transistor ii) Drains of both transistor iii) Drain of n-MOS and source of p-MOS iv) Source of n-MOS and drain of p-MOS b. Implement the Boolean function F= (A (B C + D))' using complementary CMOS Logic.	1+4+5	2 4 4	CO4	PO2 PO3 PO3					
	c. Find the Inverter switching threshold for long channel devices with proper expressions.									

	The above expressions were derived under the assumption that the transistors are velocity-				
	saturated. When the PMOS and NMOS are long-channel devices, or when the supply voltage is low, velocity saturation does not occur ($V_{M^-}V_T < V_{DSAT}$). Under these circumstances, Eq. (5.6) holds for V_{M^-} Derive.				
	$V_{M} = \frac{V_{Tn} + r(V_{DD} + V_{Tp})}{1 + r} \text{ with } r = \sqrt{\frac{k_{p}}{k_{n}}} $ (5.6)				
2	a. When the input of the CMOS inverter is equal to Inverter Threshold Voltage V _{th} , the transistors are operating in: i) N-MOS is cutoff, p-MOS is in Saturation ii) P-MOS is cutoff, n-MOS is in Saturation iii) Both the transistors are in linear region iv) Both the transistors are in saturation region b. Implement AND/NAND logic using Differential cascade voltage switch logic and Complementary Pass transistor logic				
	DCVS:		2		PO3
	(a) AND/NAND	1+9	3	CO4	PO3
	CPT:				
	$a \downarrow b \qquad a \qquad a \qquad b \qquad a \qquad \bar{a} \qquad \bar{b} \qquad a \qquad b \qquad a \qquad \bar{b} $				
	(a) AND gate (b) AND/NAND array				
3	a. In CMOS logic circuit the p-MOS transistor acts as: i) Pull down network ii) Pull up network iii) Load	1+9	2	CO4	PO2
	iv) Short to ground b. Implement and analyze the NOR and NAND logic using Clocked CMOS network.		2		

	$b \leftarrow Q \qquad a \leftarrow Q \qquad a \leftarrow b$ $b \leftarrow Q \qquad a \leftarrow b$ $c_{out} = b$ $b \leftarrow Q \qquad a \leftarrow b$ $c_{out} = b$ $c_{out} = a \leftarrow b$				
4	a. NMOS devices are formed in				
	i) p-type substrate of high doping level ii) n-type substrate of low doping level iii) p-type substrate of moderate doping level iv) n-type substrate of high doping level b. Draw 2 -input NAND gate using CMOS layout C.Implement the boolean expression using stick diagram F=(AB+CD)' Euler paths {ABCD} OUT A B C D	1+4+5	1 3 4	CO5	PO2
5	a . Which is used for the interconnection? i) boron	1+9	1		
	ii) oxygen iii) aluminium iv) silicon		2	CO5	PO2
6	b. Illustrate p-well CMOS fabrication process. a. Oxidation process is carried out using		1		
	i) hydrogen and oxygen ii) low purity oxygen iii) sulphur iv) nitrogen b. Describe the Si oxidation mechanisms. What are the uses of SiO ₂	1+9	•	CO5	PO2
		•	•		

	in VLSI circuits? Classify the SiO ₂ layer formation techniques and discuss them in brief.		3	
	Silicon dioxide O2 Silicon O2 Silicon O2 Silicon O2 Figure 4.1: Oxidation process silicon			
	There are many applications for silicon dioxide. One of them is as diffusion mask. Dopant such as phosphorus and boron have lower diffusion rate in silicon dioxide than in silicon. Therefore, any etching windows on the masking oxide layer, one can dope silicon substrate at the designated area by dopant diffusion process			
	Semiconductor can be oxidized by various methods that include thermal oxidation, electrochemical anodization, and plasma enhanced chemical vapor deposition PECVD.			
7	a. Stick diagrams are those which convey layer information through i) thickness ii) color iii) shapes iv) layers b. Analyze and describe the static and dynamic power consumption for CMOS Inverter.			
	Vin Switching Current Vout Direct Path	1+5+4	1 2 2	PO2
	Figure 1. Dynamic power consumption c. Discuss the plasma etching process.		_	
	Plasma etching is a form of plasma processing used to fabricate integrated circuits. It involves a high-speed stream of glow discharge (plasma) of an appropriate gas mixture being shot (in pulses) at a sample. The plasma source, known as etch species, can be either charged (ions) or neutral (atoms and radicals).			

Course Outcome (CO) and Bloom's level (BL) Coverage in Questions

Approved by the Course Coordinator

Signature of the Question paper setter

Evaluation Sheet

Name of the Student:

Register No.:

Answer any 5 Five Questions									
Q. No	CO	PO	Maximum	Marks	Total				
			Marks	Obtained					
1a	CO4	PO2	1						
1b (i)	CO4	PO3	4						
1b (ii)	CO4	PO3	5						
2a	CO4	PO3	1						
2b	CO4	PO3	9						
3a	CO4	PO2	1						
3b	CO4	PO2	9						
4a	CO5	PO2	1						
4b(i)	CO5	PO2	4						
4b(ii)	CO5	PO2	5						
5a	CO5	PO2	1						
5b	CO5	PO2	9						
6a	CO5	PO2	1						
6b	CO5	PO2	9		1				
7a	CO5	PO2	1		1				
7b(i)	CO4	PO2	5		1				
7b)ii)	CO5	PO2	4	1					

Consolidated Marks:

СО	Maximum Marks	Marks Obtained	PO	Maximum Marks	Marks Obtaine
4	35		PO2	51	
5	35		PO3	19	
Total			Total		

Signature of Course Teacher

Signature of the Course Coordinator

Signature of the Academic Advisor