水下机器人控制系统文档 📍 👂

由于个人使用习惯问题并没有采用 tf 坐标系来控制机器 😂 😂

简介

机器人总计有4种工作模式:

- 开环作业
- 定深, 定姿 (Z roll pitch 轴闭环)
- 定深, 定姿, 定向 (Z roll yaw pitch 轴闭环)
- 悬停 (XYZ roll yaw pitch 轴闭环)

巡游控制

机器人使用惯性导航单元获取自身位移。

机器人视觉部分使用Yolov5-lite。

由状态机设置工作目标和工作模式以控制机器人运行。

作业控制

机器人图传采用了操作手本地端或机载电脑端运行SRS视频流服务器,并使用ffmpeg推流的方式。在操作手本地端使用webrtc协议获取视频流并在web端播放。

控制方案采用在操作手本地端运行的web_controller应用在后台监听手柄、键盘输入并使用UDP协议与ros节点通信以控制机器人工作。

机载控制系统

文件结构如下

```
| └── test
└─ src
   — uv_control_py
    ├─ package.xml
      - resource
      ├─ setup.cfg
      ├─ setup.py
      ├─ test
      — uv_control_py
        ├─ __init__.py
        — uv_cmd_pannel.py
         ├─ uv_web_pannel.py
        └─ uv_core.py
    — u∨_msgs
      ├─ CMakeLists.txt
      ├─ include
      ├─ msg
      | ├── Pid.msg
      | ├── PidParameters.msg
      | ├── PropellerThrust.msg
      | ├─ RobotAxis.msg
      | └── WorkState.msg
      ├─ package.xml
      └─ src
     – uv_vision_py
      ├─ package.xml
      - resource
      ├─ setup.cfg
      ├─ setup.py
      ├─ test
      — uv_vision_py
         ├─ __init__.py
         — uv_capture.py
         — uv_capture2web.py
         — uv_srs.py
         └─ uv_imshow.py
```

编译方法:

在该工作空间下使用 rebuild.sh 脚本

bash scripts/run/rebuild.sh

视觉部分 uv_vision_py

视觉部分节点包含在功能包 uv_vision_py 中

uv_capture

这是一个用于捕获并矫正发布图像的节点

有两个启动参数 --front-cam | --back-cam 用于指定输入的摄像机设备,当其中一个参数的输入值被设置为 none 时,该设备将不会被打开

该节点发布话题

- front_cam_image/raw 前置摄像头图像
- back_cam_image/raw 后置摄像头图像

使用示例

```
ros2 run uv_vision_py uv_capture --front-cam "/dev/video0" --back-cam "/dev/video1"
```

uv_capture2web

这是一个用于捕获并矫正图像,将图像信息推流至srs服务器的节点

有四个启动参数: --front-cam --back-cam 用于指定输入的摄像机设备,当其中一个参数的输入值被设置为 none 时,该设备将不会被打开; --front-cam-url --back-cam-url 用于指定两个摄像机采集图像的推流地址。

使用示例

```
ros2 run uv_vision_py uv_capture2web --front-cam "/dev/video0" --back-cam "/dev/video1" --host "192.168.3.3"
```

其中推流地址建议使机载电脑自身运行的srs服务器地址

uv srs

这是一个启动srs服务器的节点

有一个启动参数 --path 用于指定srs服务器启动脚本

更建议直接使用启动脚本启动srs服务器:

```
bash ~/Workspace/Rosws/scripts/run/srs_start.sh
```

使用示例

```
ros2 run uv_vision_py uv_srs --path "~/Workspace/Rosws/scripts/run/srs_start.sh"
```

控制部分 uv_control_py

控制部分节点包含在功能包 uv_control_py 中

uv_core

该节点负责一切与核心板的通信任务

有一个启动参数 --cfg 用于指示配置文件路径

该节点发布话题

- cabin_state 舱内状态参数,类型为 CabinState
- propeller_thrust 推进器推力参数,类型为 PropellerThrust
- robot_position 机器人位置参数, 类型为 RobotAxis
- robot_speed 机器人速度参数,类型为 RobotAxis
- pid_parameters PID参数, 类型为 PidParameters

该节点订阅话题

- openloop_thrust 开环模式推力参数, 类型为 RobotAxis
- servo_control 舵机角度参数, 类型为 CabinState
- pid_set 设置的PID参数, 类型为 PidParameters
- work_state 机器人工作模式参数,类型为workState

使用示例

ros2 run uv_control_py uv_core --cfg
'/home/macabaka/Workspace/Rosws/core_config.json'

uv_cmd_pannel

该节点用于在shell中展示机器人状态,并控制机器人移动

请注意,在shell中结束该节点时请使用 CTRL + Z 以避免shell界面中错行的问题

该节点发布话题

- openloop_thrust 开环模式推力参数, 类型为 RobotAxis
- servo_control 舵机角度参数, 类型为 CabinState
- work_state 机器人工作模式参数,类型为 workState

该节点订阅话题

- cabin_state 舱内状态参数,类型为 CabinState
- propeller_thrust 推进器推力参数,类型为 PropellerThrust
- robot_position 机器人位置参数,类型为 RobotAxis
- robot_speed 机器人速度参数,类型为 RobotAxis

使用示例

ros2 run uv_control_py uv_cmd_pannel

uv_web_pannel

该节点用于在web中展示机器人状态,并控制机器人移动

需要在windows本地运行web_controller应用来控制机器人移动

该节点有启动参数如下:

- --cam 用于指示摄像头设备
- --host 用于指示SRS主机地址
- --height 用于指示图像高度
- --width 用于指示图像宽度
- --port 用于指示对网络控制器开放的端口

该节点发布话题

- openloop_thrust 开环模式推力参数, 类型为 RobotAxis
- servo_control 舵机角度参数,类型为 CabinState
- work_state 机器人工作模式参数, 类型为 workState

该节点订阅话题

- cabin_state 舱内状态参数,类型为 CabinState
- propeller_thrust 推进器推力参数, 类型为 PropellerThrust
- robot_position 机器人位置参数,类型为 RobotAxis
- robot_speed 机器人速度参数, 类型为 RobotAxis

使用示例

```
ros2 run uv_control_py uv_web_pannel --cam "/dev/video0" --host "192.168.3.18" --port 10086
```

ROS2消息定义 uv_msgs

该功能包中定义了所有使用的ROS2消息类型

• CabinState

```
float32 temp
float32 hum
uint8 leak
float32 voltage
float32[2] servo
```

• PidParameters

```
uint8 aix
float32 p
float32 i
float32 d
float32 i_limit
```

• PidParametersSum

```
float32[4] x #0~3 p,i,d,i_limit
float32[4] y
float32[4] z
float32[4] roll
float32[4] pitch
float32[4] yaw
```

• PropellerThrust

float32[6] thrust

RobotAxis

```
float32 x
float32 y
float32 z
float32 roll
float32 yaw
float32 pitch
```

• WorkState

uint8 state

通信结构

结构构成

协议内容

机载电脑-->运动控制单元

格式

位数		内容
0~1	起始位	Oxfa Oxaf
2	内容标志位	内容含义
3~N-2	内容信息	机器人信息,由具体内容决定
N-1 ~ N	终止位	0xfb 0xbf

内容

机器人运动参量

对应内容标志位 0x01

注意,使用此指令设置机器人工作状态时,位置、姿态、速度、角速度需置零。

内容	数据类型	位 宽	内容
发布者/ 控制指令	uint8	1	slam 0x10; Mems 0x11; IMU 0x13; 开环工作 0x00; 定姿 定 深 0x01; 定姿 定深 定向 0x02; 定位 0x03
位置	float [3]	3*4	x,y,z
姿态	float [3]	3*4	roll,pitch,yaw
速度	float [3]	3*4	x,y,z
角速度	float[3]	3*4	roll,pitch,yaw

PID参数

对应内容标志位 0x02

内容	数据类型	位 宽	内容
指定轴	uint8	1	0x01 X; 0x02 Y; 0x03 Z; 0x04 roll; 0x05 pitch; 0x06 yaw
Р	float	4	比例参量
I	float	4	积分参量
D	float	4	微分参量

F	内容	数据类 型	位 宽	内容
I	limit	float	4	积分限幅

电机PWM输出数据

对应内容标志位 0x03

内容	数据类型	位宽	内容
电机1PWM输出数据	uint16	2	对应电机1
电机2PWM输出数据	uint16	2	对应电机2
电机3PWM输出数据	uint16	2	对应电机3
电机4PWM输出数据	uint16	2	对应电机4
电机5PWM输出数据	uint16	2	对应电机5
电机6PWM输出数据	uint16	2	对应电机6

推力数据

对应内容标志位 0x04

该条信息主要用于上行时输出电机数据。

内容	数据类型	位宽	内容
电机1推力输出数据	float	6	对应电机1
电机2推力输出数据	float	6	对应电机2
电机3推力输出数据	float	6	对应电机3
电机4推力输出数据	float	6	对应电机4
电机5推力输出数据	float	6	对应电机5
电机6推力输出数据	float	6	对应电机6

推力数据

对应内容标志位 0x05

该条信息主要用于下行时控制电机旋转。

内容	数据类型	位宽	内容
x轴推力输出数据	float	6	对应电机1
y轴推力输出数据	float	6	对应电机2
z轴推力输出数据	float	6	对应电机3

内容	数据类型	位宽	内容
roll轴推力输出数据	float	6	对应电机4
pitch轴推力输出数据	float	6	对应电机5
yaw轴推力输出数据	float	6	对应电机6

机载电脑-->状态监测单元

机器人舱内数据

对应内容标志位 0x06

内容	数据类型	位宽	内容
温度	uint8	1	就是实际温度
湿度	uint8	1	0~255 对应0~100%
漏水	uint8	1	1为漏水 0为未漏水
电压	uint8	1	0~255对 <u>应</u> 0~12V
舱的1	uint8	1	0~255 对应零位到满转
舵机2	uint8	1	0~255 对应零位到满转