

EL2, Musterlösung zum Praktikum #3: Wirbelstrombremse

Einleitende Fragen

- 1. Sind die Rohre "magnetisch" (im umgangssprachlichen Sinn)? Was bedeutet das für die relative Permeabilität μ_r des Materials der beiden Rohre?
 - Der Supermagnet haftet an keinem der beiden Rohre. Die Rohre sind damit «unmagnetisch», genauer: $\mu_r = 1$.
- 2. Durch das Fallen verliert der Magnet an potentieller Energie. Wohin geht die verlorene potentielle Energie?
 - Sie wird am ohmschen Widerstand des Rohrmaterials dissipiert.
- 3. Erklären Sie anhand der untenstehenden Skizze, wie die Bremsung funktioniert.

Der untere Wirbelstrom stösst den Magneten nach oben ab, der obere Wirbelstrom zieht den Magneten zurück.

Messaufgaben 1 und 2

Kupferrohr	Länge (m)	rho (Ω m)	Zeiten (s)			Mittel	Geschw.
oberes Segment	0.2	1.80E-08	3.86 3.76	3.93	3.93	3.870	0.052
unteres Segment	0.2	1.80E-08	3.83 3.79	3.86	3.81	3.823	0.052
		_					_
Aluminiumrohr	Länge (m)	rho	Zeiten			Mittel	Geschw.
Aluminiumrohr oberes Segment	Länge (m) 0.2	rho 3.59E-08	Zeiten 1.89 1.86	1.98	1.92	Mittel 1.913	Geschw. 0.105

Verifikation und Vergleich mit der Theorie

1. Verhältnisse spezifischer Widerstände und Fallgeschwindigkeiten

Verhältnisse

oberes Segment	0.501	0.494
unteres Segment	0.501	0.507

Die Formel in der Anleitung kann bestätigt werden.

2. Fallgeschwindigkeit

```
% Fallender Pillen-Magnet
clc
d = [0.003 0.003]; % m, Magnethöhe
r = [0.004 0.004]; % m, Magnetradius
m = [0.01 0.01]; % kg, Masse Magnet
B = [0.9 0.9]; % T, Feldstärke Magnet
a = [0.005 0.005]; % m, Lochradius
w = [0.003 0.003]; % m, Wandstärke
g = 9.81; % m/s^2, Erdbeschleunigung
rho = [1.8E-8 3.59E-8]; % Ohm · m, spez. Widerstand
mu0 = 4*pi*1E-7; % H/m, magn. Feldkonstante
vapprox = 1024*m*g.*rho.*a.^4/45./(4*pi^2*B.^2.*r.^4.*(d.^2+r.^2))./w
```

Das obige Skript ergibt mit

```
vapprox = 0.0409 0.0816
```

eine grobe Näherung der tatsächlichen Fallgeschwindigkeiten (rund 20 % zu tief).