MEU302 - Algèbre TD2

Exercice 1

Question 1.1(a)

La fonction de répartition F(x) est croissante, continue à droite, limite à gauche et bornée par 0 quand $x \to -\infty$ et par 1 quand $x \to +\infty$.

Prenons y tel que 0 < y < 1, il existe un x tel que $F(x) \ge y$. car $F(+\infty) = 1$ et y < 1. La fonction F(x) est croissante donc inf $\{F(x) \ge y\}$ est unique. Supposons x_1 le plus petit x telle que $F(x_1) \ge y$. Montrons que x_2 ne peut pas être inférieure à x_1 . x_2 est inférieure à x_1 alors $F(x_2) \le F(x_1)$ car la fonction de répartition F(x) est croissante. Soit $F(x_2) = F(x_1)$, mais par hypothèse x_1 est la plus petite valeur de x tel que $F(x_1) \ge y$, Soit $F(x_2) < F(x_1)$ ce qui contredit également l'hypothèse. Donc x_2 n'existe pas.

Question 1.1(b)

La fonction de répartion F(x) est croissante. Donc $\forall x \in \mathbb{R}, \forall \epsilon > 0, F(x + \epsilon) \geq F(x)$. Comme la fonction $Q_F(y)$ est bien définie on a $\forall y \in]0,1[,\forall \epsilon > 0,F(Q_F(y)+\epsilon) \geq F(Q_F(y))$. On a $Q_F(y)$ est le plus petit x tel que $F(x) \geq y$ et la fonction F(x) est croissante, donc $F(Q_F(y)) \geq y$. Par conséquent $F(Q_F(y)+\epsilon) \geq F(Q_F(y)) \geq y$,

Question 2

Si la fonction F est continue et strictement croissante, alors il existe exactement un seul x tel que F(x) = y et la fonction F(x) est inversible. Donc on a $Q_F(y) = F^{-1}(x)$ car $\inf\{x \in \mathbb{R}, F(x) \geq y\}$ est le x tel que F(x) = y. ???

Question 3(a)

Question 3(b)

$$Q_F(1/4) = \inf\{x \in \mathbb{R}, F(x) \ge 1/4\} = \inf\{x \in [1/3, \infty[\} = 1/3]\}$$

et

$$Q_F(3/4) = \inf\{x \in \mathbb{R}, F(x) \ge 3/4\} = \inf\{x \in \mathbb{R}, F(x) = 3/4\} = (3/4 + 1/2) * 2/3 = 5/6$$

et

$$Q_F(F(1/2)) = Q_F(1/2) = 1/3$$

et Pour $x \in [2/3, 1[$, on a $F(x) \in [1/2, 1[$ donc $Q_F(F(x)) \in [2/3, 1[$.

MEU302 - Algèbre TD2

Question 4

Non. On a sur l'exemple précédent F(2/3) = 1/2 et $Q_F(1/2) = 1/3 \neq 2/3$ et de même $Q_F(1/4) = 1/3$ et $F(1/3) = 1/2 \neq 1/4$.

Question 5

Pour tout $x \in \mathbb{R}$ on a $\forall x \in \mathbb{R}, Q_F(F(x)) \leq x$ par définition de la borne inférieure de Q_F et de la non décroissance de F. De même, on a $\forall y \in]0,1[,F(Q_F(y)) \geq y$.

- $Q(y) \le x \implies y \le F(x)$. On suppose $Q(y) \le x$, comme F est non décroissante on a $F(Q_F(y)) \le F(x)$. Mais $y \le F(Q_F(y))$, donc $y \le F(x)$
- $y \leq F(x) \implies Q(y) \leq x$. pour $y_1, y_2 \in]0, 1[$, avec $y_1 \leq y_2$ on a $\{x \in \mathbb{R}, F(x) \geq y_2\} \subseteq \{x \in \mathbb{R}, F(x) \geq y_1\}$. Donc $\inf\{x \in \mathbb{R}, F(x) \geq y_1\} \leq \inf\{x \in \mathbb{R}, F(x) \geq y_2\}$ donc $Q_F(y_1) \leq Q_F(y_2)$. Donc la fonction Q_F est croissante. On suppose $y \leq F(x)$, on a $Q_F(y) \leq Q_F(F(x))$, mais $Q_F(F(x)) \leq x$ donc $Q_F(y) \leq x$.

Donc $Q(y) \le x$ ssi $y \le F(x)$

Question 6

???

Question 7(a)

Supposons $x_1 \leq x_2$, on a $\{x_i \leq x_1\} \subseteq \{x_i \leq x_2\}$, donc $\sum_{n=1}^n 1_{\{x_i \leq x_1\}} \leq \sum_{n=1}^n 1_{\{x_i \leq x_2\}}$ donc $F_n(x_1) \leq F_n(x_2)$. Par conséquent, F_n est croissante.

Soit x une série numérique de \mathbb{R}^n , classons ces élément en une séquence décroissante $x_1 > x_2 > \ldots > x_n$. Prenons $y < x_n$, on a $F_n(y) = 0$ car $\{x_i < y\} = \emptyset$. Donc $\lim_{x \to -\infty} F_n(x) = 0$.

Soit x une série numérique de \mathbb{R}^n , classons ces élément en une séquence croissante $x_1 < x_2 < \ldots < x_n$. Prenons $y > x_n$, on a $F_n(y) = 1$ car $card\{x_i < y\} = n$. Donc $\lim_{x \to \infty} F_n(x) = 1$.

Question 7(b)

Soit une série numérique sur \mathbb{R}^n , prenons la sous-série x_m qui tend à droite vers un point x lorsque $m \to +\infty$. On a $\{x_i < x\} \subseteq \{x_i < x_m\}$ car $\forall m, x leq x_m$ et les ensembles $\{x_i < x_m\}$ sont de plus en plus petits lorsque n croit. On a donc $\lim_{n\to\infty} \{x_i < x_n\} = \{x_i < x\}$. Par conséquent $\lim_{m\to infty, x_m > x} F_n(x_m) = F_n(x)$ qui est la définition de la continuité à droite.

La fonction F_n est croissante et est continue à droite en tous points x, donc elle a F(x) comme limite à droite. La fonction F_n est comprise entre 0 et 1. Donc pour tous point x on a $0 \le \lim_{m \to \infty, x_m < x} \le F(x)$. Donc il existe une limite à gauche en tous point x.

Question 8(a)

La fonction de répartition de X_n est $F(x) = \sum_{i=1}^n p_i 1_{x_i < x}$. Comme la variable aléatoire X_n est uniforme, on a tous les $p_i = 1/n$. Donc $F(x) = \sum_{i=1}^n 1/n 1_{x_i < x} = F(x) = 1/n \sum_{i=1}^n 1_{x_i < x} = F_n()$.

Question 8(b)

L'espérance dune variable aléatoire discrete $X_n = \{x_1, x_2, \dots, x_n\}$ est $E(X_n) = \frac{x_1 + x_2 + \dots + x_n}{n}$ et la variance $V(x_n) = \frac{x_1^2 + x_2^2 + \dots + x_n^2}{n} - E^2(X - n)$.

MEU302 - Algèbre TD2

Question 9(a)

Question 9(b)

On a
$$Q_F(1/4) = -1$$
, $Q_F(2/4) = 1/2$, $Q_F(3/4) = 2$, $Q_F(0.05) = -1$, $Q_F(0.95) = 5$