SOCIAL NETWORK ANALYSIS

UNIT- I: INTRODUCTION

Social Network Definitions

- Practice of expanding one's business and / or social contacts by making connections through individuals through social media sites
- The use of internet-based social media programs to make connections with friends, family, classmates, customers and clients
- To build social relations with other people who share similar personal or career interests, activities, backgrounds or real-life connections

Social Network Analysis

- Social network analysis (SNA) is the process of investigating social structures (mapping and measuring of relationships and flows) through the use of network and graph theories
- It characterizes networked structures in terms of nodes and ties, edges or links
- Nodes represents individual actors, people, or things within the network
- The *ties*, *edges*, or *links* represents relationships or interactions that connect them

SEMANTIC WEB Definitions

- Tim Berners-Lee inventor of WWW Web as a whole can be made more intelligent and perhaps even intuitive about how to serve a user's needs
- W3C The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries
- The Semantic Web, Web 3.0, the Linked Data Web, the Web of Data, enables data to be linked from a source to any other source and to be understood by computers so that they can perform increasingly sophisticated tasks on our behalf

LINKED DATA Definitions

- Linked data is an approach to publishing structured data and sharing data on the web, so that it can be interlinked and become more useful through semantic queries
- a term used to describe exposing, sharing, and connecting pieces of data, information, and knowledge on the Semantic Web using URIs and RDF (Resource Description Format)

Relationship between SNA and Semantic Web

 Social Network Analysis (SNA) - has to understand and exploit on-line social interactions

 Semantic Web provides models to leverage these interactions in social networks

Example:

- Who is Frank van Harmelen?
- Results top 10 related to Frank van Haremelen, next Mark van Harmelen, town name Harmelen
- Giving specific query "Frank van Harmelen" returns FVH of vriji university and other persons with same name
- Problems
- query becomes over-specified
- no guarantee it returns for whole name
- other format of name like FV Harmelen not recognized

- Example
- Show me photos of Paris
- returns paris city, Paris Hilton popular person on web
- Problems:
- Associating keywords with photo difficult computers cannot recognize objects in photos
- Search engine recognize based on context (name of file, text around image)

Example:

- Find new music that I (might) like
- Need to think to pose this query
- Problems:
- Like image search understands by context, cant understand content of music
- Most music are shared illegal, not reachable by web (shared peer-topeer)
- Music fast moving, web too slow to update
- Next option Change search by band name or its alias query by example
- This retrieve music by different artists similar not discover new music

- Example:
- Tell me about music players with a capacity of atleast 4GB
- Problems:
- SE don't know 4GB as capacity, music player properties and how to compare
- SE can search specific info not by description of item
- Problem of information extraction difficult (Ex. Making SE to understand to extract price amount)
- More than one names "capacity" and "memory"
- Altogether it is unreliable to use for product search

Inference – Lack of knowledge

- Knowledge gap between computer and user
- Technological difficulties understanding natural language, to see the content of image or multimedia
- Lack of background knowledge only human possess
- Extensive background knowledge (Ex. Beyond music database)
- Problem of information retrieval or aggregating information (Ex. Not all shop owners provide info' or format not same to compile)

- Semantic Web apply advanced knowledge technologies to fill knowledge gap between human and machine
- Provide knowledge in a form (already available / additional background knowledge) readily process and reason with
- Solution for first query: (Who is Frank van Harmelen?)
- Attach semantic profile to personal web pages (Ex. FOAF)
- Search Engine resolves or report ambiguity and ask for additional info'
- Also used in Ads along side queries

- Solution for Second Query: (Show me photos of Paris)
- Attach metadata to images
- Ex. Flickr allows annotate images with geographic coordinates
- Enables upload image & drag and drop in map, to see other users images also in map
- Enables visualization searching and based on hit to conclude query results
- Ex. used in multimedia research project artwork housed in different locations
 - Stores metadata about images and artists
 - Retrieves artists of the style, other artists belong to the movement following the style, even results with different terms for the same style

- Solution for Third Query: (Find new music that I (might) like)
- Background knowledge for music needed Ex. Online Radio (Music Genome project) Pandora
- Pandora create vocabulary describing the characteristics of music (all attributes)
- Re-use music from other sources, most/recently played music from personal playlist, tracks new music updated by data providers

- Solution for Fourth Query: (Tell me about music players with a capacity of atleast 4GB)
- Create minimal, shared, top-level schema in ontology language
- Semantic language allows for extensibility
- In the example query, vendor specific extension possible if described in existing shared element format
- Mapping between entire schema or part of a schema is possible
- Ex. Vodafone Live! Portal catalog of contents provided by partners
- Captures commonatlities of mobile content in a single shared top-level schema
- Has flexibility partner to extend general schema
- If another operator wants to classify differently just change the mapping between 2 companies