

Topic-specific sentiment analysis for tweets by German MPs

Statistical consulting

REFERENCES

- 1 Introduction & project outline
- 2 General theoretical context
- 3 Analysis
 - 1 Data
 - 2 Standard machine learning solution
 - 3 Deep learning solution
- 4 Knowledge transfer
- 5 Discussion

INTRODUCTION & PROJECT OUTLINE

1 INTRODUCTION

- Social media: constant stream of publicly available text data
- Twitter established as a medium for political discourse and constant source of information
- Frequently resurfacing research questions:
 - Which topics are being addressed?
 - What kind of **sentiment** is expressed about these topics?

PROJECT OUTLINE

- **Primary goal:** analysis of public sentiment in a topic-aware manner for posts scraped from Twitter by German Members of Parliament (MPs)
 - → Explore how topic-specific sentiment analysis can be implemented with (1) standard ML techniques and (2) more complex DL models.
- Secondary goal: make analysis of social media texts in a political context more easily accessible to researchers
 - → Provide teaching material on both approaches, composed as a coherent online course

GENERAL THEORETICAL CONTEXT

GENERAL THEORETICAL CONTEXT

Figure: Adopted and modified from Min and Park (2016)

\rightarrow Topic-specific sentiment analysis

TOPIC MODELING: IDEA

- Goal: discover latent semantic structures in a corpus & group documents into topical clusters with characteristic topic-word distributions
 - Exploratory tool → unsupervised learning task
 - Means of dimensionality reduction
- For each document $d \in \{1, 2, ..., D\}$, assign a topic label $k \in \{1, 2, ..., K\}$
 - K: key **hyperparameter**
 - Interpretability up to human practitioner

2 TOPIC MODELING: TAXONOMY

Figure: Source: own representation, published on https://lisa-wm.github.io/nlp-twitter-r-bert/

TOPIC MODELING: GENERATIVE APPROACHES

Idea: reverse-engineer the imaginative process of document generation with hierarchical Bayesian mixture models

- For each document $d \in \{1, 2, \dots, D\}$, draw a vector of topic proportions from some assumed distribution
- For each word position $n \in \{1, 2, ..., N_d\}, N_d \in \mathbb{N}$,
 - 1 draw a topic assignment from the distribution associated with the document-specific topic proportions
 - 2 draw a word from the distribution associated with the topic

TOPIC MODELING: GENERATIVE APPROACHES

Figure: Source: own representation, published on https://lisa-wm.github.io/nlp-twitter-r-bert/

2 SENTIMENT ANALYSIS

- **Goal**: assign sentiment labels to documents in our case, out of {positive, negative}, formalized as $y \in \mathcal{Y} = \{0,1\}$
- Standard classification task
- Find $f: \mathcal{X} \to \mathbb{R}^g$, $\mathcal{X} \subseteq \mathbb{R}^p$ for $p \in \mathbb{N}$
- Methods considered:
 - Standard ML: random forests & regularized logistic regression
 - BERT: fine-tuning to sentiment analysis

2 TOPIC-SPECIFIC SENTIMENT ANALYSIS

Idea: combine topic modeling & sentiment analysis

- Subsequent modeling mostly due to the complexity of joint models
- Standard ML:
 - Build clusters of tweets based on topic modeling
 - Use clusters to generate topic-specific word embeddings
- BERT:
 - Aspect-based sentiment analysis (ABSA)
 - Aspect extraction & aspect sentiment classification

ANALYSIS

KNOWLEDGE TRANSFER

DISCUSSION

REFERENCES

- Aggarwal, C. C. (2018). Machine Learning for Text, Springer.
- Benoit, K. and Matsuo, A. (2020). spacyr: Wrapper to the 'spaCy' 'NLP' Library. R package version 1.2.1.
 - **URL:** https://CRAN.R-project.org/package=spacyr
- Benoit, K., Watanabe, K., Wang, H., Nulty, P., Obeng, A., Müller, S., Matsuo, A., Lowe, W. and Müller, C. (2021). quanteda: Quantitative Analysis of Textual Data. R package version 3.0.0. **URL:** https://CRAN.R-project.org/package=quanteda
- Bishop, C. M. (2006). Pattern Recognition and Machine Learning, Springer.
- Blei, D. M., Ng, A. Y. and Jordan, M. I. (2003). Latent dirichlet allocation, Journal of Machine Learning Research 3: 993-1022.
- Breiman, L., Friedman, J. H., Olshen, R. J. and Stone, C. J. (1984). Classification and Regression Trees, Chapman & Hall/CRC.
- Devlin, J., Chang, M., Lee, K. and Toutanova, K. (2018). BERT: pre-training of deep bidirectional transformers for language understanding, CoRR abs/1810.04805.
 - **URL:** http://arxiv.org/abs/1810.04805
- Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2019). Bert: Pre-training of deep bidirectional transformers for language understanding.

- Feurer, M. and Hutter, F. (2019). Hyperparameter optimization, in F. Hutter, L. Kotthoff and J. Vanschoren (eds), Automated Machine Learning. Methods, Systems, Challenges, Springer, pp. 3-34.
- Goodfellow, I., Bengio, Y. and Courville, A. (2016). Deep Learning, MIT Press. http://www. deeplearningbook.org.
- Hastie, T., Qian, J. and Tay, K. (2021). An introduction to glmnet.
- Japkowicz, N. and Shah, M. (2011). Evaluating Learning Algorithms. A Classification Perspective, Cambridge University Press.
- Lang, M., Binder, M., Richter, J., Schratz, P., Pfisterer, F., Coors, S., Au, Q., Casalicchio, G., Kotthoff, L. and Bischl, B. (2019). mlr3: A modern object-oriented machine learning framework in R, Journal of Open Source Software .
 - **URL:** https://joss.theoj.org/papers/10.21105/joss.01903
- Lindsey, J. K. (1997). Applying Generalized Linear Models, Springer.
- Louppe, G. (2014). Understanding Random Forests. From Theory to Practice, PhD thesis, University of Liege.
- Min, S. and Park, J. (2016). Mapping out narrative structures and dynamics using networks and textual information.
- Murphy, K. P. (2021). Probabilistic Machine Learning: An Introduction, MIT Press.

- Pan, S. J. and Yang, Q. (2010). A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering 22(10): 1345-1359.
- Pavlopoulos, I. (2014). Aspect-Based Sentiment Analysis, PhD thesis, Athens University of Economics and Business.
- Pennington, J., Socher, R. and Manning, C. (2014). GloVe: Global vectors for word representation, Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Association for Computational Linguistics, Doha, Qatar, pp. 1532–1543. **URL:** https://www.aclweb.org/anthology/D14-1162
- R Core Team (2021). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
- Richardson, L. (2007). Beautiful Soup Documentation.
- Roberts, M. E., Stewart, B. M. and Airoldi, E. M. (2016). A model of text for experimentation in the social sciences, Journal of the American Statistical Association 111(515): 988-1003.
- Roberts, M., Stewart, B., Tingley, D. and Airoldi, E. (2013). The structural topic model and applied social science, Advances in Neural Information Processing Systems Workshop on Topic Models, pp. 1–20.
- Roberts, M., Stewart, B., Tingley, D. and Benoit, K. (2020). stm: Estimation of the Structural Topic Model. R package version 1.3.6.
 - **URL:** https://CRAN.R-project.org/package=stm
- Roesslein, J. (2020). Tweepy: Twitter for Python!

- Ruder, S. (2019). Neural Transfer Learning for Natural Language Processing, PhD thesis, National University of Ireland, Galway.
- Schulze, P. and Wiegrebe, S. (2020). Twitter in the parliament a text-based analysis of german political entities, Technical report, Ludwig-Maximilians-Universität, Munich.
- Selivanov, D., Bickel, M. and Wang, Q. (2020). text2vec: Modern Text Mining Framework for R. R package version 0.6.
 - **URL:** https://CRAN.R-project.org/package=text2vec
- van Rossum, G. and Drake, F. L. (2011). The Python Language Reference Manual, Network Theory Ltd.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. and Polosukhin, I. (2017). Attention is all you need, CoRR abs/1706.03762.
 - **URL:** http://arxiv.org/abs/1706.03762
- Vayansky, I. and Kumar, S. A. (2020). A review of topic modeling methods, Information Systems 94.
- Xu, H., Liu, B., Shu, L. and Yu, P. S. (2019). Post-training for review reading comprehension and aspect-based sentiment analysis, Proceedings of NAACL-HLT, Minneapolis, USA, p. 2324–2335.
- Zhang, A., Lipton, Z. C., Li, M. and Smola, A. J. (2020). Dive into Deep Learning. https://d2l.ai.

