MATH 8237

LECTURE Mar. 26, 2021

PERMUTATIONS OF ROWS AND COLUMNS OF MATRICES

Let G be a graph with adjacency matrix A. Suppose that p is a permutation of the vertices of G.

As a result of the permutation, the adjacency matrix of G gets its rows and columns permuted as well. How the permuted matrix can be represented?

Definition Given a permutation

$$p = \begin{pmatrix} 1 & 2 & \cdots & n \\ \sigma(1) & \sigma(2) & \cdots & \sigma(n) \end{pmatrix},$$

the **permutation matrix** $P = [p_{j,j}]$ of p is defined as

$$p_{i,j} = \begin{cases} 1, & \text{if } j = \sigma(i), \\ 0, & \text{otherwise.} \end{cases}$$

It turns out that for any $n \times n$ matrix A, permuting the columns of A amounts to post-multiplication of A by P.

Likewise permuting the rows of A amounts to pre-multiplication of A by P^{-1}

Observation If G is a graph and $V\left(X\right)$ are permuted by a permutation p, the adjacency matrix of the resulting graph is given by

$$P^{-1}AP$$
,

where P is the permutation matrix of p.

Since an automorphism of a graph is a permutation of its vertices, we see the following fact:

Observation If G is a graph with adjacency matrix A and p is an automorphism of G, then

$$P^{-1}AP = A,$$

where P is the permutation matrix of p.

EIGENVECTORS TO THE LARGEST EIGENVALUE AND AUTOMORPHISMS

Knowing the symmetries of a graph G can be quite useful in finding the spectral radius of $\lambda_1(G)$.

Definition We say that u and v are **equivalent in** G, if there exists an automorphism $p:G\to G$ such that p(u)=v.

Vertex equivalence implies useful properties of eigenvectors to $\lambda_1(G)$:

Proposition 2 Let G be a connected graph of order n, and let u and v be equivalent vertices in G.

If (x_1, \ldots, x_n) is an eigenvector to $\lambda_1(G)$, then $x_u = x_v$.

Proof Let G be a connected graph with adjacency matrix A, and let $\mathbf{x} := (x_1, \dots, x_n)$ be an eigenvector to $\lambda_1(G)$.

Without loss of generality, we suppose that x is the Perron vector of G.

Let $p: G \to G$ be an automorphism of G such that p(u) = v.

Note that p is a permutation of $V\left(G\right)$, and let P be the permutation matrix of p.

Since p is an automorphism, we have

$$P^{-1}AP = A.$$

Hence,

$$P^{-1}AP\mathbf{x} = A\mathbf{x} = \lambda_1\mathbf{x},$$

and left-multiplying with P, we get

$$AP\mathbf{x} = \lambda_1 P\mathbf{x}.$$

Now we see that

$$A(P\mathbf{x}) = \lambda_1(P\mathbf{x})$$
,

and therefore, Px is an eigenvector to A. Moreover, Px is a permutation of x and therefore it is also a Perron vector.

Since G is connected, x is unique, implying that Px = x, and so

$$x_u = x_v$$
.

Remark Note that eigenvector entries corresponding to equivalent vertices need not be equal for disconnected graphs.

For example, let G is a union of two disjoint copies of a graph H. There is a natural automorphism that exchanges the two copies of H, and we can always choose a Perron vector that is zero over one of the copies, because $\lambda_1(G) = \lambda_1(H)$.

Proposition 2 implies the following practical statement:

Corollary 3 If G is a connected graph and V(G) is partitioned into equivalence classes by the relation "u is equivalent to v", then every eigenvector to $\lambda_1(G)$ is constant within each equivalence class.

SPECTRAL RADIUS AND PERRON VECTOR OF $K_{p,q}$

Let us now use Corollary 3 to calculate the spectral radius and the Perron vector of the complete bipartite graph $K_{p,q}$.

Proposition 4 For the graph $K_{p,q}$ we have:

(1)

$$\lambda_1(K_{p,q}) = \sqrt{pq}$$
.

(2) The Perron vector of $K_{p,q}$ is

$$(\frac{1}{\sqrt{2p}}, \dots, \frac{1}{\sqrt{2p}}, \frac{1}{\sqrt{2q}}, \dots, \frac{1}{\sqrt{2q}})$$

Proof Write X and Y for the vertex classes of $K_{p,q}$ and suppose that |X| = p and |Y| = q.

Before starting the proof, it is necessary to realize that every two vertices from X are equivalent in $K_{p,q}$, and so are every two vertices from Y.

Let $X=\{1,\ldots,p\}$, $Y=\{p+1,\ldots,p+q\}$, and let (x_1,\ldots,x_n) be a Perron vector of $K_{p,q}$.

Corollary 3 implies that

$$x_1 = \dots = x_p,$$

$$x_{p+1} = \dots = x_{p+q}.$$

Let $x = x_1$ and $y = x_{p+1}$.

The eigenequations for vertices 1 and p+1 give

$$\lambda_1 x = qy$$
,

$$\lambda_1 y = px$$
.

Multiplying these equations and cancelling xy, which is nonzero, we get

$$\lambda_1^2 = pq$$
,

thus proving clause (1) of Proposition 4.

For clause (2) note that the eigenequation for vertex 1, together with $\lambda_1 = \sqrt{pq}$, gives

$$\sqrt{pq}x = qy.$$

Cancelling \sqrt{q} and squaring both sides, we get

$$px^2 = qy^2.$$

On the other hand,

$$px^2 + qy^2 = 1,$$

because (x_1, \ldots, x_n) is a Perron vector.

Now we see that

$$px^2 = qy^2 = 1/2,$$

and (2) follows.

JOIN OF GRAPHS

Next we introduce an important graph operation, which belongs to graph theory in general.

Definition Suppose that H and G are two vertex disjoint graphs. The **join** of H and G is a graph obtained by taking the union of H and G, and joining every vertex for H to every vertex of G.

The join of H and G is denoted by $H \vee G$.

- Let us right away note that $H \vee G = G \vee H$.
- In addition, graph join is an associative operation, that is

$$F \lor (G \lor H) = (F \lor G) \lor H.$$

So we can simply write $F \vee G \vee H$ for $F \vee (G \vee H)$.

Examples of joins of graphs

(1)

$$K_n = K_s \vee K_{n-s}$$
.

(2)

$$K_{p,q} = \overline{K}_p \vee \overline{K}_q$$
.

(3) A complete 3-partite graph $K_{a,b,c}$ can be described as $K_{a,b,c} = \overline{K}_a \vee \overline{K}_b \vee \overline{K}_c$.

(4) Recall that $T_r(n)$ stands for the r-partite Turán graph of order n. We have

$$T_r(n) = T_{r-1}(n - \lfloor n/r \rfloor) \vee \overline{K}_{\lfloor n/r \rfloor}.$$

(5) If G and H are disjoint graphs, their union $G \cup H$ satisfies $\overline{G \cup H} = \overline{G} \vee \overline{H}$.

THE SPECTRAL RADIUS OF A JOIN OF REGULAR GRAPHS

Theorem (Finck, Grohman) Let G_1 be a r_1 -regular graph of order n_1 and G_2 be a r_2 -regular graph of order n_2 .

Then λ_1 ($G_1 \vee G_2$) is the larger solution of the equation

$$x^{2} - (r_{1} + r_{2}) x + r_{1}r_{2} - n_{1}n_{2} = 0.$$
 (1)

This formula is useful in numerous situations, but the actual goal of our proof is to introduce yet another technique for solving such problems.

Proof When one looks at $G_1 \vee G_2$, it seems very likely that its Perron vector must be constant within G_1 and within G_2 .

This turns out to be indeed the case, but a proof is not immediately seen.

However, based on that expectation, we may try to come up with an appropriate nonnegative vector that is an eigenvector to some eigenvalue λ of $G_1 \vee G_2$.

Then by the last Perron Frobenius theorem it would turn out that

$$\lambda_1 (G_1 \vee G_2) = \lambda.$$

Take a $(n_1 + n_2)$ -vector with n_1 entries equal to x and n_2 entries equal to y, where x and y are to be determined. Assign the x-entries to the vertices of G_1 and the y-entries to the vertices of G_2 .

We use this vector to devise one equation for all vertices of G_1 and another one for all vertices of G_2 :

$$\lambda x = r_1 x + n_2 y$$

$$\lambda y = r_2 y + n_1 x.$$
(2)

This system is equivalent to

$$(\lambda - r_1) x = n_2 y$$

$$(\lambda - r_2) y = n_1 x.$$

and eventually we get

$$\lambda^2 - (r_1 + r_2) \lambda + r_1 r_2 - n_1 n_2 = 0.$$

The larger root of this equation is

$$\lambda = \frac{r_1 + r_2 + \sqrt{(r_1 - r_2)^2 + 4n_1n_2}}{2}.$$

It is not hard to see that $\lambda > r_1$ and $\lambda > r_2$.

Consequently, the system (2) has a solution for some positive x and y.

So we have found that λ is an eigenvalue to $G_1 \vee G_2$ with a positive eigenvector.

Since $G_1 \vee G_2$ is always connected (even if G_1 or G_2 are not) the Perron-Frobenius theorem implies that

$$\lambda = \lambda_1 (G_1 \vee G_2)$$
.

THANK YOU