CasADi tutorial

```
0  #
1  #
2  #
3  #
4  #
5  #
6  #

11  from numpy import *
import numpy
import numpy
from casadi import *
from pylab import *
```

ODE integration

Let's construct a simple Van der Pol oscillator.

DAE problem formulation as expected by CasADi's integrators:

```
dae = {'x':vertcat(x,y), 'p':u, 'ode':ode}
```

The whole series of sundials options are available for the user

Create the Integrator

```
34 F = integrator("F", "cvodes", dae, opts)
35 print "%d -> %d" % (F.n_in(),F.n_out())
```

6 -> (

Setup the Integrator to integrate from 0 to t=tend, starting at [x0,y0] The output of Integrator is the state at the end of integration. To obtain the whole trajectory of states, use Simulator:

```
ts=numpy.linspace (0, tend, 100)

x0 = 0; y0 = 1

opts = {}

opts["fsens_err_con"] = True

opts["quad_err_con"] = True

opts["abstol"] = 1e-6

opts["reltol"] = 1e-6

opts["grid"] = ts

opts["output_t0"] = True

sim = integrator ("sim", "cvodes", dae, opts)

sol = sim (x0=[x0,y0], p=0)
```

```
sol = sol['xf'].full().T
```

Plot the trajectory

```
figure ()
plot(sol[:,0],sol[:,1])
title ('Van der Pol phase space')
xlabel('x')
ylabel('y')
show()
```


Sensitivity for initial conditions

```
67
    def out(dx0):
68
            res = F(x0=[x0+dx0,y0])
69
            return res["xf"].full()
   dx0=numpy.linspace(-2,2,100)
   out = array([out(dx) for dx in dx0]).squeeze()
   dxtend=out[:,0]-sol[-1,0]
73 figure ()
   plot(dx0, dxtend)
   grid ()
   title ('Initial perturbation map')
77
   xlabel('dx(0)')
   ylabel ('dx(tend)')
79
   show()
```



```
#

dintegrator = F.derivative(1,0)

res = dintegrator(der_x0=[x0,y0], fwd0_x0=[1,0])

A = res["fwd0_xf"][0]

A = float(A) # FIXME

plot(dx0,A*dx0)

legend(('True sensitivity', 'Linearised sensitivity'))

plot(0,0,'o')

show()
```


The interpetation is that a small initial circular patch of phase space evolves into ellipsoid patches at later stages.

```
95
96
    def out(t):
97
             res = dintegrator(der_x0=[x0,y0], fwd0_x0=[1,0])
             A=res["fwd0_xf"].full()
98
99
             res = dintegrator(der_x0=[x0,y0], fwd0_x0=[0,1])
100
             B=res["fwd0_xf"].full()
101
             return array([A,B]).squeeze().T
102
103
    circle = array([[sin(x), cos(x)]] for x in numpy.linspace(0,2*pi,100)]).T
104
105
    figure ()
    plot(sol[:,0],sol[:,1])
106
107
    grid ()
    for i in range (10):
109
             J=out(ts[10*i])
110
             e=0.1*numpy.dot(J, circle).T+sol[10*i,:]
111
             plot(e[:,0],e[:,1],color='red')
112
113 show ()
```


The figure reveals that perturbations perpendicular to the phase space trajectory shrink.

Symbolic intergator results

Since Integrator is just another Function, the usual CasADi rules for symbolic evaluation are active.

We create an MX 'w' that contains the result of a time integration with: - a fixed integration start time, t=0s - a fixed integration end time, t=10s - a fixed initial condition (1,0) - a free symbolic input, held constant during integration interval

```
u=MX.sym("u")
123
124
    w = F(x0=MX([1,0]),p=u)["xf"]
        We construct an MX function and a python help function 'out'
```

```
127
    f=Function('f', [u],[w])
128
129
    def out(u):
130
             w0 = f(u)
131
             return w0.full()
132
133
    print out(0)
       [[-2.54395395]
```

```
[-0.43932676]]
    print out(1)
134
```

```
[[-0.25397819]
[ 1.39637624]]
```

Let's plot the results

```
137
    uv=numpy.linspace (-1, 1, 100)
138
139
    out = array([out(i) for i in uv]).squeeze()
```

```
figure ()
141
    plot (uv, out)
142
    grid ()
    title ('Dependence of final state on input u')
    xlabel('u')
    ylabel ('state')
145
146
    legend(('x', 'y'))
147
    show()
```

