Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Science

End Sem (Even) Examination May-2018 CA3CO08 Mathematics-II

Branch/Specialisation: Computer Application Programme: BCA

Maximum Marks: 60 Duration: 3 Hrs.

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

- Rolle's theorem will be verified for the function $f(x) = x^2 6x + 8$ in 1 Q.1 i. the interval [2, 4] when the value of x is
 - (a) 2 (b) 3

- (c) 4
- (d) 0
- The value of $D^n (ax + b)^m$ is equal to

(b) $m! a^n (ax + b)^m$

(a)
$$\frac{m!}{(m-n)!} a^n (ax+b)^{m-n}$$
 (b) $m! a^n (ax+b)^m$ (c) $\frac{1}{(m-n)!} (ax+b)^{m-n}$ (d) $m! (ax+b)^{m-n}$

- The condition for the point (a, b) to be a saddle point of the function 1 f(x,y) is
 - (a) $rt s^2 = 0$
- (b) $rt s^2 < 0$
- (c) $rt s^2 > 0$

- (d) None of these
- iv. If $u = x^3 + y^3 3xy^2$ then value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y}$ is equal to
 - (c) 2u (a) u (d) 1
- $\int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta =$ 1
 - (a) B(m, n) (b) B(n, m)
- (c) $\frac{1}{2}B(m,n)$ (d) 2B(m,n)
- vi. $\Gamma(n+1) =$, where n is an integer. (a) n! (b) 1
- (c) (n-1)! (d) 0
- $\int_{0}^{1} \int_{0}^{1} xy \, dxdy =$
- (b) 1

- (d) 0

P.T.O.

1

1

1

1

viii.
$$\int_0^{\pi/2} \int_{\pi/2}^{\pi} \sin(x+y) \, dy dx =$$

- (a) 0 (b) 1 (c) $\frac{1}{2}$ (d) -1
- ix. The condition that Mdx + Ndy = 0 to be exact is $(a) \frac{\partial M}{\partial x} = \frac{\partial N}{\partial y} \quad (b) \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \qquad (c) \frac{\partial M}{\partial x} = 2 \frac{\partial N}{\partial y} \quad (d) \ 2 \frac{\partial M}{\partial x} = \frac{\partial N}{\partial y}$
- X. General solution of differential equation $\frac{d^2y}{dx^2} y = 0$ is
 - (a) $y = e^x$ (b) $y = e^{-x}$ (c) $y = ae^x + be^{-x}$ (d) None of these
- Q.2 i. Verify first mean value theorem for the function $f(x) = x^3 3x^2 + 4$
- 2x + 5 in [0, 1]. ii. Expand $\tan^{-1} x$ in ascending powers of x by Maclaurin's theorem.
- OR iii. If $y = (\sin^{-1} x)^2$ then prove that $(1 x^2)y_{n+2} (2x + 1)xy_{n+1} n^2y_n = 0.$
- Q.3 Attempt any two:
 - i. If $u = log(x^3 + y^3 + z^3 3xyz)$ than prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$
 - ii. Discuss the maximum and minimum values of the following function 5
 - $u = xy + \frac{a^3}{x} + \frac{a^3}{y}$

5

- iii. State and prove Euler's theorem for function of two variables.
- Q.4 i. Prove that $\Gamma 1/2 = \sqrt{\pi}$
 - ii. Prove that $\beta(m,n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$
- OR iii. Show that $\int_0^2 x (8 x^3)^{1/3} dx = \frac{16\pi}{9\sqrt{3}}$.
- Q.5 i. Evaluate 4

$$\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} (x+y+z) dx dy dz.$$

ii. Evaluate

$$\int_{0}^{1} \int_{0}^{\sqrt{(1+x^{2})}} \frac{dxdy}{1+x^{2}+y^{2}}$$

6

7

OR iii. Evaluate $\iint_R y dx dy$ where R is the region bounded by the parabola $\int_R y dx dy$ where R is the region bounded by the parabola $\int_R y dx dy$ where R is the region bounded by the parabola $\int_R y dx dy$ where R is the region bounded by the parabola

Q.6 i. Solve

$$(1 + 4xy + 2y^2) dx + (1 + 4xy + 2x^2) dy = 0$$

ii. Solve

$$(1+y^2) + (x - e^{-tan^{-1}y}) \frac{dy}{dx} = 0$$

OR iii. Solve

$$(D^2 - 2D + 5) y = e^{2x} \sin x$$

æ	MEDICAPS UNIVERSITY, INDORE	Page 1
	END SEM EXAMINATION MAY-2018	0
	CA3CODE MATHEMATICS -IL B.C.A. (EVEN SEM)	Man. Mark
	(b) 3	1
(11)	$(a) \frac{m!}{(m-n)!} a^n (an+b)^{m-n}$	1
(iii)	(b) &t-s2<0	L
(iv)	(b) 3u	1
3	$(c) \frac{1}{2} \beta(m,n)$	1
(vi,	(a) n;	1
(V 15)	(c) ±	1
(xi)	(b) $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$	1
(x)	$(c)Y = ae^{x} + be^{-x}.$	<u></u>
w.2(i)	Given $f(x) = x^2 - 3x^2 + 2x + 5$ in [0,1].	
	By Lagrange's Mean value theorem or first mean value	
120	theorem we know that " If f(x) be a function defined	
*	on [a,b] such that(i) f(a) \pm f(b) (ii) f(x) is continuous	
	function in the closed interval [a, b], (iii) f(x) is differentiable	
	in the open interval (a, b). They there exists at least	
	one seal value $C \in (0,b)$ such that	+2
	$f'(c) = \frac{f(b) - f(a)}{(b-a)}$	
	Clearly here we have $f(0) = 5^-$ and $f(1) = 1-3+2+5=5$	+1
	f(0) = +(1) = 5	
	ALSO $f(x) = 3x^2 - 6x + 2 \Rightarrow f'(c) = 3c^2 - 6c + 2$	
et.	:. By L.M.V.T. $f'(c) = \frac{f(b) - f(a)}{b - a} \Rightarrow 3c^2 - 6c + 2 = 0$	
	$C = -(-6) \pm \sqrt{(6)^2 - 4 \times 3 \times 2} = 6 \pm \sqrt{12}$	
	2×3 6	
	Le singly typetion does not softsfield the	+1
	condition of Limite Limite	-
	theosem can be not be verified.	

Page 2 Que-2(11) Let $y = f(x) = f(x) = f(x) \rightarrow \bigcirc$ \Rightarrow $\forall 0 = 4an^{\dagger}0 = 0$ +1 Differentiating equ. (1) wat 'x , we get $f_1 = \frac{1}{(1+x^2)} = (1+x^2)^{-1}$ or $y_1 = 1 - x^2 + x^4 - x^6 + \cdots$ ("By Binomial expansion $(1+x)_{-1} = 1-x+x_5-x_5+--$ =) (y,)0 = 1 +1 By successive differentiation of y, west'x, we get $y_2 = -2x + 4x^3 - 6x^5 + - (d_2)_0 = 0$ + \perp $d_3 = -2 + 12x^2 - 30x^4 + - (\vartheta_3)_0 = -2$ $y_4 = 24x - 120x^3 + - -$ $(y_4)_0 = 0$ Ju = 24 - 360 x2+ - -(ys-)0 = 24 we know that by McLaurin's theosem J= Jo + 2 (J1)0 + 2 (J2)0 + 23 (J3)0 + 24 (J4)0+ 25 (b)0+ $-i y = ten \sqrt{x} = 0 + \frac{x}{L1} + \frac{x^2}{L2} + \frac{x^3}{13} (-2) + \frac{x^4}{14} + 0 + \frac{x^5}{L5} = 24 + \frac{x^5}{14} = 0 + \frac{x^5}{$ $-1 d = ten^{4}x = x - \frac{x^{3}}{3} + \frac{x^{5}}{5} - \frac{x^{7}}{2} + \cdots$ +1 e-2(iii) Oriven $y=(\sin^{-1}x)^2 \longrightarrow (1)$ Differentiating equ. (1) wast'n' we get $di = 2 \sin^2 x \cdot \frac{1}{\sqrt{1-x^2}} \quad \text{or} \quad \sqrt{1-x^2} \quad di = 2 \sin^2 x$ 十上 squaring both stells we get $(1-x^2) d_1^2 = 4(\sin^4 x)^2 \Rightarrow (1-x^2)d_1^2 = 4d_1 (-1)x(9)$ +0.5 Again diff. equ. (2) wat 'n' we get (1-x2) 271.82 + (0-2x) y,2 = 471 Or $(1-x^2)d_2 - xd_1 = 2$. (dividing by 2y, +1.5

Differentiating equ. (3) on Homes by Leibnitz's theorem, weget +1 $\mathcal{D}^{\eta}((1-\chi^2)\mathcal{Y}_2)-\mathcal{D}^{\eta}(\chi\mathcal{Y}_1)=\mathcal{D}^{\eta}(2)$ ++ $[(1-\chi^2), y_{n+2} + n.(-2\chi)y_{n+1} + n(n-1)(-2)y_n]$ $-\left[x,y_{n+1}+n.(1),y_{n}\right]=0$ $\Rightarrow (1-x^2) d_{n+2} - 2n x d_{n+1} + (n^2-n) d_n - x d_{n+1} - n d_n = 0$ Turs we have (1-x2) yn+2 - (2n+1) x yn+1 - n2yn =0. ++ (Leibnitz's Huosem " If u and v an function of x, then Dr(40 v) = nco Dru + nc, Dr-14. Dv + nc Dn-24. D2v + --+ 20 min) Que 3(i) GIVINU = log (x3+ y3+ Z3-3xyz) -> 9 on diff a partially wit x, y and z, we get $\frac{\partial u}{\partial x} = \frac{(3x^2 - 3yz)}{(x^3 + y^3 + z^3 - 3xyz)} \rightarrow 2$ +1 $\frac{\partial U}{\partial y} = \frac{(3y^2 - 3ZX)}{(x^3 + y^3 + z^3 - 3xyz)} \rightarrow 0$ 41 $\frac{\partial u}{\partial z} = \frac{(3z^2 - 3\eta\eta)}{(\chi^3 + \eta^3 + z^3 - 3\eta\eta z)} \longrightarrow \textcircled{5}$ +1 adding ear. 2 3 and 3 $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3(x^2 + y^2 + z^2 - xy - yz - zx)}{2}$ 41 [(x3+y3+z3)-(3xyz)] $= 3(x^2 + y^2 + z^2 - xy - yz - zx)$ (x+y+2) (x2+y2+22-xy-y2-Zx) $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$ 41 4.3(11) Given $u = xy + \frac{a^2}{x} + \frac{a^3}{y} \longrightarrow 1$ $\frac{1}{2} \cdot \frac{\partial u}{\partial x} = y - \frac{a^3}{x^2} \quad ; \quad \frac{\partial u}{\partial y} = x - \frac{a^3}{y^2}$ +2 for Max or Min put $\frac{34}{3x} = 0$ and $\frac{34}{3y} = 0$; we get $\frac{34}{3\pi} = 0 \Rightarrow y - \frac{9^3}{x^2} = 0 \Rightarrow 0^2 = x^2y \text{ and } 0$ $\frac{34}{3y} = 0 \Rightarrow x - \frac{\alpha^9}{y^2} = 0 \Rightarrow \alpha^9 = x \cdot y^2 \longrightarrow 3$ $\chi^2 y = y^2 \chi \implies \chi = y$ +0.5

put x=y in equ. (2) we get Page 4 23 = 93 => x=a - , y=a : (a, a) is called sterHoway point. NOW $2 = \frac{\partial^2 y}{\partial x^2} = \frac{20^2}{y^2}$; $S = \frac{\partial^2 y}{\partial x \partial y} = 1$; $t = \frac{\partial^2 y}{\partial y^2} = \frac{20^2}{y^2}$ at the point (9,0) 2=2>0; S=1, t=2 and $8t - 5^2 = 2 \times 2 - (1)^2 = 3 > 0$ Since &t-s2=3>0 and &=2>0. They u has a minima +1 at (a,a) and $U_{min(a,a)} = a^2 + a^2 + a^2 = 3a^2$. AWELL Euler Theorem If f(x,y) is a homogeneous function of x and y with degree n, then x at + y af = nf 41 Proof since f(x, y) is a homogeneous function of degree n then by dufinition +1 $f(x_i y) = x^n f(\frac{1}{x})$ Diff. equ. 1 pastially asst'x) we get $\frac{\partial f}{\partial x} = \chi^n f(\frac{y}{x}), (-\frac{y}{x^2}) + f(\frac{y}{x}), \eta \chi^{n-1}$ $=) \frac{\partial f}{\partial x} = -yx^{n-2} f(\frac{y}{x}) + nx^{n-1} f(\frac{y}{x})$ $-i \propto \frac{\partial f}{\partial x} = -y \times^{n-1} f(\frac{1}{2}) + n \times^{n} f(\frac{1}{2}) \longrightarrow \bigcirc$ +1 and $\frac{\partial f}{\partial x} = \chi^n f(\frac{y}{x}), \frac{1}{x}$ $\int_{\mathbb{R}^n} \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} + \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x} + \frac{\partial$ +1 adding equ. (2) and (3) we get $\frac{\partial x}{\partial x} + \frac{\partial y}{\partial y} = -\frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{$ i.e. $x \frac{\partial t}{\partial x} + y \frac{\partial t}{\partial y} = nf$

Jane.

tage 5 Que. 4(1) To prove == 1 we know that by difficition of german function $In = \int_0^\infty e^{-t} t^{n-1} dt ; \longrightarrow (1); n>0$ 1005 pulling n= 1 in 1 we get $\frac{1}{2} = \int_0^\infty e^{-t} t^{-1/2} dt$ put t=x2 => dt = 2ndx $-i \int_{\frac{\pi}{2}} = 2 \int_{0}^{\infty} e^{-\chi^{2}} d\chi \longrightarrow 2$ +0.5 Simi. $I_{\frac{1}{2}} = 2 \cdot \int_{0}^{\infty} e^{-y^{2}} dy \longrightarrow 3$ 5.5 By 2 and 3 $(T_{\frac{1}{2}})^2 = 4 \int_0^\infty \int_0^\infty e^{-(x^2+y^2)} dx dy$ changing into polar coordinate x=2 coso; y=10100 40.5 drady= rollado, l'mit 0 -> 0 to 2; 2 -> 0 to 00. $-i \left(\frac{1}{2}\right)^2 = 4 \int_{0}^{\sqrt{2}} \int_{0}^{\infty} e^{-s^2} s \, ds \, ds$ +04 Again put 22=4=) 21ds=du $= 4 \int_{0=0}^{\pi/2} \left\{ \int_{0}^{\infty} e^{-4} \cdot \frac{du}{2} \right\} d0 = 2 \int_{0=0}^{\pi/2} \left(e^{-4} \right)^{\infty} d0$ (=e=0; e=1 $= 2.\int_{0.00}^{\pi/2} d\theta = 2.\left[\theta\right]_{0}^{\pi/2} = \pi$ 402 1.5. (=)2 = x => / = T = Vx Answer. By definition of cramma function Im = Joet todt, m>0 D ++ pulling $t = \chi^2$ we get $\int_0^{\infty} e^{-\chi^2} \chi^{2m-1} dx$. $m = 2 \cdot \int_{0}^{\infty} e^{-y^{2}} y^{2n-1} dy$ 4-1 -. Im. In = 4 1 1 e (n2+y2) 2m-1 y2n-1 andy changing into polar coordinates i.e. x=2 coro; y=1110 +1 dredy = raledo cimit 0 -> 0 to 2 2 2 -> 0 to 00 $\overline{m} \cdot \overline{n} = 4 \int_{0.0}^{x/2} \int_{0.0}^{x} e^{-x^2} \cos^{2m-1} \theta \cdot \sin^{2n-1} \theta \cdot \sin^{2$ +1 $= 2 \int_{0}^{x/2} \cos^{2m-1} \cos^{2m} \cos d\theta \cdot 2 \int_{0}^{\infty} e^{-s^{2}} e^{2(m+n)-1} ds + 1$

Fig. 6. =
$$[2(m,n)] \cdot [m+n]$$
 (": $J_{0=0}^{R_{1}} = J_{0}^{R_{1}} = J_{0}^{R_{$

19. $\int_{0}^{2} x (8-x^{3})^{1/3} dx = \frac{16x}{9\sqrt{3}}$ Awwel

gue4 (iii)

Page 7 Let $I = \int_0^2 \int_0^2 \int_0^2 (x+y+z) dx dy dz$ $= I = \int_{0}^{3} \int_{x}^{2} \int_{0}^{1} (\alpha + y + z) dz \int_{0}^{3} dx dy$ = 10 /2 [2z+yz+z2] dxdy = $\int_{0}^{2} \int_{0}^{2} (x+y+\frac{1}{2}) dxdy = \int_{0}^{2} \int_{1}^{2} (x+y+\frac{1}{2}) dy \int_{0}^{2} dx$ $= \int_0^3 (xy + \frac{y^2}{2} + \frac{y}{2})^2 dx = \int_0^3 (2x + 3) dx$ ╃┸ = $\left[2\frac{\chi^2}{2} + 3\chi\right]^3 = \left[\chi^2 + 9\chi\right]^3 = 9 + 9 = 18$. Auswer +1 >lee-5711) het I = 1 1 1/1+x2 drady
1+x2+y2 = 1 [] VI+22 dy] of (1+22) + 42] of x +1 $= \int_{\chi=0}^{1} \left(\frac{1}{\sqrt{1+\chi^2}} + 4n \sqrt{\frac{3}{1+\chi^2}} \right) \int_{0}^{1/1+\chi^2} d\chi$ $\int_{\sqrt{q^2+y^2}}^{1/2} d\chi = \frac{1}{a} + 4n \sqrt{\frac{3}{a}}$ +2 = 1 + 1 (tent 1 - tent 0) doc 十十 (-; len 1 = x = 1 1 000 41 = = [log x + VI+x2] +1 = 1 log(1+12) or x sloth(1). Auswes +1 Let I = 11 & Hordy. where R is the region bounded by the parabolas y2=4x and x2=4y solving of and @ we get point of intersection $\left(\frac{\chi^{2}}{4}\right)^{2} = 4\chi \implies \chi(\chi^{2} - 64) = 0 \implies \chi = 0, 4$ ie winit for x -> 0 to 4 + 1 (tor and for y > 22 to 2va + 1 (form)

$$I = \int_{X=0}^{4} \int_{y=2}^{2\sqrt{2}} \int_{x_{2}}^{2\sqrt{2}} \int_{x_{2}}^{2\sqrt{$$