Norbert Błąszczyk 195563 Bartosz Kluchciński 195615

METODY NUMERYCZNE – LABORATORIUM

Zadanie 3 – Metody interpolacji

Opis rozwiązania

W zadaniu została wykorzystana metoda Lagrange'a dla węzłów równoodległych. wartości wielomianów interpolowanych obliczane są za pomocą schematu Hornera.

Wyniki

Poniższa tabela przedstawia wyniki badań na podanych funkcjach w zakresie od 0 do 10, przy sprawdzaniu wartości poza węzłem dla x=0.25.

Funkcja	Ilość węzłów	Wartość w X
$-3x^3 + 5x^2 - 4x + \sin(x)$	4	-0.824684
$-3x^3 + 5x^2 - 4x + \sin(x)$	11	-0.487753
$-3x^3 + 5x^2 - 4x + \sin(x)$	61	-0.666424
x - 4.75	4	4.34477
x - 4.75	11	2.92206
x - 4.75	21	1.72833
$ 0.45 - x + \cos(x) - (1.3x^2 - 4.1x + 5.6)$	4	-5.57699
$ 0.45 - x + \cos(x) - (1.3x^2 + 4.1x + 5.6)$	11	-5.52143
$ 0.45 - x + \cos(x) - (1.3x^2 + 4.1x + 5.6)$	61	-5.09301

Wykresy dla funkcji pierwszej : $-3x^3 + 5x^2 - 4x + \sin(x)$

Wykresy dla funkcji drugiej : |x - 4.75|

Wykresy dla funkcji trzeciej : $|0.45 - x| + \cos(x) - (1.3x^2 - 4.1x + 5.6)$

Wnioski

- 1. Interpolacja daje przybliżone wartości w punktach między węzłami.
- 2. Zwiększanie ilości węzłów poprawia dokładność tylko do pewnego momentu, za duża ilość węzłów może doprowadzić do pojawienia się oscylacji Rungego (widocznych na ostatnich, trzecich przykładach dla każdej z funkcji).
- 3. Do interpolacji wielomianu n-tego stopnia potrzebne jest n+1 węzłów.