Automata and Grammars (BIE-AAG)

5. Finite state transducers

Jan Holub

Department of Theoretical Computer Science
Faculty of Information Technology
Czech Technical University in Prague

© Jan Holub, 2011

BIE-AAG (2011/2012) - J. Holub: 5. Finite state transducers - p. 1/41

Definition Le T and T

Le T and D be alphabets. A *homomorphism* is every mapping h from T to D^* . The domain of homomorphism h can be extended to T^* like this: $h(\varepsilon)=\varepsilon,$

Formal translations

$$h(xa) = h(x)h(a), \forall x, x \in T^*, a \in T.$$

BIF-AAG (2011/2012) - J. Holub: 5. Finite state transducers - p. 3/4

Formal translations

Definition

Formal translation is a binary relation $Z \subseteq L \times 2^V$, L and V are languages.

The *domain* is set L and the range is set 2^V .

Relation Z maps a set of translations Z(w), which is itself from V, to an element w of set L.

If Z(w) contains at most one element for every $w \in L$, set Z is a function (could be partial) and the translation is said to be unambiguous.

Formal translations

Example

translation of a string of decimal digits to a string of binary digits

a	0	1	2	3	4	5	6	7	8	9
h(a)	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

h(1996) = 0001100110010110

Formal translations

Definition

Prefix notation of an expression and postfix notation of an expression E:

- 1. If E is a variable or a constant, then prefix notation and postfix notation of E is E.
- 2. If E is an expression of the form E_1 op E_2 , where op is a binary operator, then
 - (a) $op \ E_1' E_2'$ is prefix notation, where E_1' and E_2' are prefix notations.
 - (b) $E_1''E_2''op$ is postfix notation, where E_1'' and E_2'' are postfix notations.
- 3. If E is an expression of the form (E_1) , then
 - (a) prefix notation of (E_1) is prefix notation of expression E_1 ,
 - (b) postfix notation of (E_1) is postfix notation of expression E_1 ,

Translation grammars

Definition

Translation grammar is TG = (N, T, D, R, S), where

- $oldsymbol{ ilde{I}}$ N is a finite set of nonterminal symbols,
- T is a finite set of input symbols,
- lacksquare D is a finite set of output symbols,
- R is a finite set of rules in the form A → α, where A ∈ N,
 α ∈ (N ∪ T ∪ D)*,
- ullet S is the starting symbol.

It holds that $T \cap D = \emptyset$ and $(T \cup D) \cap N = \emptyset$.

BIF-AAG (2011/2012) - J. Holub: 5. Finite state transducers - p. 7/

Formal translations

Example

Infix notation: a*(b+c)Prefix notation: *a+bcPostfix notation: abc+*

Example of a translation:

 $\{(x,y):x \text{ is infix notation of an expression, } y \text{ is postfix notation of the same expression}\}.$

Translation grammars

Definition

 $TG = (N, T, D, R, S), \alpha, \beta, \gamma \in (N \cup T \cup D)^*, A \in N.$

- 1. α derives in one step β , $\alpha \Rightarrow \beta$ if and only if $\exists \tau, \omega, \gamma \in (N \cup T \cup D)^*, A \in N, \alpha = \tau A \omega, \beta = \tau \gamma \omega, A \rightarrow \gamma \in R$
- 2. α derives β , $\alpha \Rightarrow^* \beta$ if and only if $\exists \alpha_1, \alpha_2, ..., \alpha_n \in (N \cup T \cup D)^*, (n \ge 1)$ $\alpha = \alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_n = \beta$.

The sequence $\alpha_1, \alpha_2, ..., \alpha_n$ is called translation derivation of length n of string β from string α .

reflexive and transitive closure: \Rightarrow^*

transitive closure: \Rightarrow^+

Translation grammars

Example

$$TG=(\{E\},\{+,*,a\},\{\oplus,\circledast,@\},P,E)$$
, where P : $(1)E \rightarrow +EE \oplus (2)E \rightarrow *EE \circledast (3)E \rightarrow a@$

$$\begin{split} E &\Rightarrow +EE \oplus \\ &\Rightarrow +a@E \oplus \\ &\Rightarrow +a@*EE \circledast \oplus \\ &\Rightarrow +a@*a@E \circledast \oplus \\ &\Rightarrow +a@*a@a@ \circledast \oplus \end{split}$$

Translation grammars

Example

$$TG=(\{E\},\{+,*,a\},\{\oplus,\circledast,@\},P,E)$$
, where P : $(1)E \rightarrow +EE \oplus \qquad (2)E \rightarrow *EE \circledast \qquad (3)E \rightarrow a@$

TG generates a translation of expressions in prefix notation to expressions in postfix notation.

$$E \Rightarrow +EE \oplus$$

$$\Rightarrow +a@E \oplus$$

$$\Rightarrow +a@*EE \oplus \oplus$$

$$\Rightarrow +a@*a@E \oplus \oplus$$

$$\Rightarrow +a@*a@a@ \oplus \oplus$$

Derivation generates a pair (+a * aa, @@@) that belongs to translation Z(TG).

Translation grammars

Definition

$$TG = (N, T, D, R, S).$$

$$\begin{aligned} & \textit{Input homomorphism } h_i^{TG} \text{: } h_i^{TG}(a) = \left\{ \begin{array}{l} a & \text{for } a \in T \cup N \\ \varepsilon & \text{for } a \in D \end{array} \right. \\ & \textit{Output homomorphism } h_o^{TG} \text{: } h_o^{TG}(a) = \left\{ \begin{array}{l} \varepsilon & \text{for } a \in T \\ a & \text{for } a \in D \cup N \end{array} \right. \end{aligned}$$

Definition

Translation defined by translation grammar TG = (N, T, D, R, S): $Z(TG) = \{(h_i^{TG}(w), h_o^{TG}(w)) : S \Rightarrow^* w, w \in (T \cup D)^*\}.$

Translation grammars

Definition

$$TG = (N, T, D, R, S).$$

Input grammar of translation grammar TG is CFG $G_i = (N, T, P_i, S)$, where $P_i = \{A \to h_i(\alpha) : A \to \alpha \in R\}$.

Output grammar of translation grammar TG is CFG

 $G_o = (N, D, P_o, S)$, where $P_o = \{A \rightarrow h_o(\alpha) : A \rightarrow \alpha \in R\}$.

Definition

CFG $G = (N, T \cup D, R, S)$ is characteristic grammar of translation grammar TG = (N, T, D, R, S).

L(G) is characteristic language of translation Z(TG). $w \in L(G)$ is characteristic sentence of pair (x, y), where $x = h_i(w)$,

 $y = h_o(w)$.

Translation grammars

Definition

TG = (N, T, D, R, S) is *regular*, if all rules in R are of the form:

- $lacksquare A o axB \text{ or } A o ax, \text{ where } A, B \in N, a \in T, x \in D^*$
- ${\bf J} \to \varepsilon$ in case that S is not present in the right-hand side of any rule.

Finite transducers

Definition

Finite transducer $FT = (Q, T, D, \delta, q_0, F)$, where

- ullet Q is a finite set of states,
- T is a finite set of input symbols,
- D is a finite set of output symbols,
- δ is a mapping from $Q \times (T \cup \{\varepsilon\})$ into $2^{Q \times D^*}$,
- $m{9} \quad q_0 \in Q$ is the start state,
- $F \subseteq Q$ is the set of final states.

IE-AAG (2011/2012) - J. Holub: 5. Finite state transducers - p. 13/41

Translation grammars

Example

$$RTG = (\{S, A, P, K\}, \{a, +, *\}, \{@, \oplus, \circledast\}, R, S), \text{ where } R$$
:

$$S \to a@A \qquad A \to *K$$

$$S \to a@$$
 $A \to +P$

$$K \to a@ *A \qquad P \to a@ \oplus A$$

$$K \to a@\circledast$$
 $P \to a@\oplus$

$$S \Rightarrow a@A$$

$$\Rightarrow a@ + P$$

$$\Rightarrow a@ + a@ \oplus A$$

$$\Rightarrow a@ + a@ \oplus * K$$

$$\Rightarrow a@ + a@ \oplus * a@ \circledast$$
.

Translation: $(a + a * a, @@ \oplus @\circledast)$.

Finite transducers

riffic transduct

Definition

Configuration of a finite transducer $FT = (Q, T, D, \delta, q_0, F)$ is a triple $(q, x, y) \in Q \times T^* \times D^*$.

 (q_0, x, ε) is the *initial configuration*.

 $(q, \varepsilon, y), q \in F$ is the *final configuration*.

Transition relation $\vdash a$ defined on the set of configurations:

If $\delta(q, a)$ contains (r, z), then $(q, ax, y) \vdash (r, x, yz), x \in T^*, y \in D^*$.

Transitive closure: ⊢+

Reflexive and transitive closure: ⊢*

k-th power: \vdash^k

Finite transducers

Definition

Translation defined by a finite transducer $FT = (Q, T, D, \delta, q_0, F)$: $Z(FT) = \{(u, v) : (q_0, u, \varepsilon) \vdash^* (q, \varepsilon, v), q \in F\}$

Definition

FT is *deterministic*, if for all its states it holds:

- 1. $|\delta(q,a)| \leq 1, \forall a \in T \text{ and } \delta(q,\varepsilon) = \emptyset \text{ or }$
- 2. $|\delta(q,\varepsilon)| \le 1$ and $\delta(q,a) = \emptyset$, $\forall a \in T$.

Sequential mapping

Definition

Sequential mapping S:

- 1. Preserves the length of the string, i.e. if y = S(x), then |x| = |y|.
- 2. If two input strings have the same prefix of length k > 0, then also the corresponding output strings have identical prefixes of length at least k.

That means $S(xx_1) = yy_1$ and $S(xx_2) = yy_2$ and |x| = |y|.

Finite transducers

Example

FT, that divides by three binary numbers divisible by three.

$$FT = (\{N, J, D\}, \{0, 1\}, \{0, 1\}, \delta, N, \{N\}), \text{ where } \delta$$
:

$$\delta(N,0) = \{(N,0)\} \qquad \qquad \delta(J,1) = \{(N,1)\}$$

$$\delta(J,1) = \{(N,1)\}$$

$$\delta(N,1) = \{(J,0)\}$$

$$\delta(D, 0) = \{(J, 1)\}\$$

$$\delta(J,0) = \{(D,0)\}$$

$$\delta(D,1) = \{(D,1)\}$$

δ	0	1
N	(N, 0)	(J, 0)
J	(D, 0)	(N,1)
D	(J,1)	(D,1)

Sequential mapping

Definition

Mealy automaton $M = (Q, T, D, \delta, \lambda, q_o, F)$, where

- Q is a finite set of states.
- T is a finite set of input symbols,
- D is a finite set of output symbols.
- ullet is a mapping from $Q \times T$ into Q called *transition function*,
- ullet λ is a mapping from $Q \times T$ into D called *output function*,
- \bullet $q_0 \in Q$ is the start state,
- ullet $F \subseteq Q$ is a set of final states.

Sequential mapping

Definition

Moore automaton $M=(Q,T,D,\delta,\lambda,q_o,F)$, where

- $m{Q}$ is a finite set of states,
- T is a finite set of input symbols,
- D is a finite set of output symbols,
- $m{\bullet}$ is a mapping from $Q \times T$ into Q called *transition function*,
- λ is a mapping from Q into D called *output function*,
- \bullet $q_0 \in Q$ is the start state,
- ullet $F \subseteq Q$ is a set of final states.

Attributed translations

Definition

Attributed translation is a relation $Z_A \subseteq T^* \times D^*$, where T^* is a set of input attributed strings, D^* is a set of output attributed strings.

Example

Input: attributed strings over alphabet $\{a, +, *, (,)\}$. Symbol a has an attribute x (its range are all integers).

Output: v with an attribute y (its range are all integers).

$$(a[10]$$
 , $v[10]$),
 $(a[5] + a[6]$, $v[11]$),
 $(a[3] * a[4] + a[2], v[14]$).

Attributed translations

Attributed translations

- Attribute quantity that has a value from some set (range of the attribute). E.g. a variable in source code that has a defined type.
- Attributed symbol symbol of alphabet that has a mapped (possibly empty) set of attributes.
- Attributed string string of attributed symbols.

E.g.

x.a $x[x.a_1, x.a_2, ..., x.a_n]$

Example

a.x is a relative address, where the value of operand a is stored. Address p, on which the relative operand addresses are based. Function cho0se(x) that chooses value from address x.

$$p = 100, \mathtt{choose}(102) = 3, \mathtt{choose}(103) = 5, \mathtt{choose}(104) = 6$$

$$(a[3]*a[4] + a[2], v[33])$$

Attributed translations

The values of attributed output symbols can depend on:

- values of attributes of input symbols,
- structure of the input string,
- provided parameters.

Attributed translations

Attribute:

- synthesized its value depends on information contained inside the subtree,
- inherited its value depends on (outside) context of the subtree.

AAG (2011/2012) - J. Holub: 5. Finite state transducers - p. 25/41

Attributed translation tree

Attributed translation tree

Attributed translations

attributed translation sentence:

attributed string of output symbols that belong to the leaves of the attributed translation tree AT

semantic evaluation of translation tree:

- calculation of values of attributes in a translation tree
 - ullet we set the values of inherited attributes of the root of AT
 - we set the values of the synthesized attributes of the leaves
 - we go through the nodes of the tree in some order and evaluate their attributes

RIE-AAG (2011/2012) - I. Holub: 5. Finite state transducers - p. 28/A

Attributed translations

Example

Perform a translation of expression with operators +, *, = and operands. Provided are addresses on which the operands are stored. The output language of the translation is a machine code that has the following instructions:

LOAD $addr, r \dots$ loads the contents of addr into register r,

ADD ... adds two registers 1 a 2 and stores the result in

register 1,

... multiplies two registers 1 a 2 and stores the result MUL

in register 1,

... prints the register 1. PRINT

$$(a[20] =$$
, LOAD[20,1] PRINT[]

$$(a[10] + a[30] = \qquad \text{, LOAD[10,1] LOAD[30,2] ADD[] PRINT[]}$$

(a[10] + a[20] * a[30] =, LOAD[10,1] LOAD[20,2] ADD[] LOAD[30,2] MUL[] PRINT[])

Example (continued)

Semantic rules and their mapping to rules:

	Syntax	Semantics		
1.	$S \to a \text{ LOAD } P$,	$\texttt{LOAD}.adr \leftarrow a.adr$	$\texttt{LOAD}.r \leftarrow 1$	
2.	$P \to +A$,			
3.	$P \to *M$,			
4.	$P \rightarrow = \text{PRINT},$			
5.	$A \to a \text{ LOAD } B,$	$\texttt{LOAD}.adr \leftarrow a.adr$	$\texttt{LOAD}.r \leftarrow 2$	
6.	$M \to a \; \text{LOAD} \; N,$	$\texttt{LOAD}.adr \leftarrow a.adr$	$\texttt{LOAD}.r \leftarrow 2$	
7.	$B \to + \mathrm{ADD}\ A,$			
8.	$B \to * \operatorname{ADD} M,$			
9.	$B \to = { m ADD\ PRINT},$			
10.	$N \to + \mathrm{MUL} \; A,$			
11.	$N \to \ast \; \mathrm{MUL} \; M,$			
12.	$N \rightarrow =$ MUL PRINT.			

Attributed translations

Attributed translations

Example (continued)

Base grammar of attributed translation grammar

 $TG = (\{S, P, A, B, M, N\}, \{a, +, *, =\},$ $\{LOAD, ADD, MUL, PRINT\}, R, S\}$, where R:

1. $S \to a \text{ LOAD } P$, 5. $A \to a \text{ LOAD } B$, 9. $B \to = \text{ ADD PRINT}$,

2. $P \rightarrow + A$, 6. $M \rightarrow a \text{ LOAD } N$, 10. $N \rightarrow + \text{ MUL } A$,

3. $P \rightarrow * M$, 7. $B \rightarrow + ADD A$, 11. $N \rightarrow * MUL M$,

4. $P \rightarrow = \text{PRINT}$, **8.** $B \rightarrow * \text{ADD } M$, **12.** $N \rightarrow = \text{MUL PRINT}$.

Symbols	Inherited attributes	Synthesized attributes
a		adr
LOAD	adr, r	
ADD		
MUL		
PRINT		

Attributed translation tree

Example (continued)

Attributed translation tree for input string a[10] + a[20] * a[30] =.

Attributed translation tree

Definition

Attributed translation tree AT of attributed input sentence w in ATG=(TG,A,V,F) is a translation tree of this sentence w constructed in TG (without considering attributes) and extended in the following manner:

- 1. Attributes defined by set A(X) are assigned to every node evaluated with a symbol $X \in N \cup T \cup D$.
- 2. Values of inherited attributes of the root of the tree AT are set.
- 3. Values of the synthesized attributes of leaves of AT are determined by the input sentence w.
- 4. Let u_0 be an inner node X and u_1, u_2, \ldots, u_n $(n \geq 0)$ be the direct descendants of u_0 evaluated with X_1, X_2, \ldots, X_n and let $X_0 \to X_1 X_2 \ldots X_n$ be a syntax rule (r). Then it holds for the values of attributes that belong to nodes $u_k, 0 \leq k \leq n$ that: if $t := f_{rtk}(a_1, a_2, \ldots, a_m)$ is a semantic rule for calculation of value of attribute t that belongs to node u_k , then the value of the attribute t is given by this semantic rule.

BIE-AAG (2011/2012) - J. Holub: 5. Finite state transducers - p. 33/41

Attributed translation grammar

Definition

Attributed translation grammar ATG = (TG, A, V, F), where:

- $TG = (N, T, D, R, S_o)$ base translation grammar, where R: $(r) \ X_0 \to X_1 X_2 \dots X_{n_r}$, where $n_r \ge 0, X_0 \in N, X_k \in (N \cup T \cup D)$ for $1 \le k \le n_r$.
- A a finite set of attributes ($A = S \cup I, S \cap I = \emptyset$, S is a set of synthesized attributes, I is a set of inherited attributes). For every attribute a its $range\ H(a)$ is given.
- V mapping: to every $X \in N$ it maps a set $A(X) \in A$. The input symbols have synthesized attributes, output symbols have inherited attributes.
- **●** F finite set of semantic rules. $\forall X_k \ (1 \le k \le n_r)$ on the right-hand side of rule $r \in R$ and its inherited attribute d: $d := f_{rel}(a_1, a_2, \dots, a_m) \text{ where } a_1, a_2, \dots, a_m \text{ are a}$

 $d:=f_{rdk}(a_1,a_2,...,a_m)$, where $a_1,a_2,...,a_m$ are attributes of symbols in rule $r. \forall$ synthesized attribute s of symbol X_o on the left-hand side of rule $r \in R$:

$$s := f_{rso}(a_1, a_2, \dots, a_m)$$
, where a_1, a_2, \dots, a_m are

Attributed translation grammar

Determining the values of all attributes is not possible unless:

- the values of inherited attributes of the start symbol are given,
- the values of synthesized attributes of input symbols are given.

BIE-AAG (2011/2012) - J. Holub: 5. Finite state transducers - p. 35/4

Regular attributed translations

Definition

ATG is regular ATG if it holds that:

- 1. The base translation grammar is regular.
- 2. Nonterminal symbols have only inherited attributes.

Regular attributed translations

Example

Translation of decimal numbers: $RTG=(\{C\},\{d\},\{\emptyset\},P,C)$, where $P\colon C\to dC|d@$.

Symbols	Inherited attributes	Synthesized attributes
d		code
C	value	
0	value	

Syntax	Semantics		
$C^0 \rightarrow dC^1$	$C^1.value := C^0.value * 10 + h(d.\mathit{code})$		
$C \rightarrow d @$	value := C.value * 10 + h(d.code)		

Function h(x) has one argument – code of a digit – whose value is decimal value of the digit. The initial value of attribute C.value of the start symbol is 0.

Regular attributed translations

Example (continued)

Modified translation grammar

Syntax	Semantics		
$C \rightarrow dZ$	Z.value := h(d.code)		
$Z^0 \rightarrow dZ^1$	$\boxed{Z^1.value := Z^0.value * 10 + h(d.\mathit{code})}$		
$Z \to \# @$	$\bigcirc.value := Z.value$		

BIF-AAG (2011/2012) - J. Holub: 5. Finite state transducers - p. 39/41

Regular attributed translations

Example (continued)

DFT

Regular attributed translations

Example

RATG for a model of a calculator with keys 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, +, *, =. Input are the expressions with operators + and *. Symbol = will be the end of the expression. Operators + a * have the same priority. two registers = two attributes x and y

$$RTG = (\{S, P, A, M, N\}, \{d, +, *, =\}, \{\emptyset\}, P, S).$$

Notation d.h expresses the value of the input digit.

Regular attributed translations

Example (continued)

Syntax	Semantics		
$S \rightarrow dP$	P.x := d.h	P.y := 0	
$P^0 \to dP^1$	$P^1.x := P^0.x * 10 + d.h$	$P^1.y := P_0.y$	
$P \rightarrow +A$	A.x := P.x + P.y		
$P \rightarrow *M$	M.x := P.x + P.y		
$P \rightarrow = \emptyset$	$\bigcirc .x := P.x + P.y$		
$A \rightarrow dP$	P.x := d.h	P.y := A.x	
$M \to dN$	N.x := d.h	N.y := M.x	
$N^0 \rightarrow dN^1$	$N^1.x := N^0.x * 10 + d.h$	$N^1.y := N_0.y$	
$N \rightarrow +A$	A.x := N.x * N.y		
$N \to *M$	M.x := N.x * N.y		
$N \rightarrow 0$	$\bigcirc .x := N.x * N.y$		

BIE-AAG (2011/2012) - J. Holub: 5. Finite state transducers - p. 41/4