고급수학 및 연습 2 중간고사

(2011년 10월 22일(토) 오후 1:00 - 3:00)

학번: 이름:

모든 문제의 답에 풀이과정을 명시하시오. (총점 200점)

Problem 1 (20pts).

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

- (a) (10pts) Find grad f(0,0) if it exists.
- (b) (10pts) Is f differentiable at the origin?

Problem 2 (30pts). Let F denote the map

$$F: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (x,y+x^2)$

- (a) (10pts) Compute the inverse of F.
- (b) (10pts) Let $A := \{(x, y) \in \mathbb{R}^2 \mid x \in [-1, 1], y \in [-1 + x^2, 1 + x^2] \}$. What is $F^{-1}(A)$?
- (c) (10pts) Let f denote the function

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}$$
$$(x,y) \longmapsto x^2 + y^2 - 2x^2y + x^4.$$

Find minimum and maximum of f on the set A.

Problem 3 (20pts). For $t \geq 0$ compute the integral

$$\int_0^1 \frac{x^t - 1}{\log x} dx.$$

Problem 4 (20pts). Let $f(x, y, z) = x^4 + e^y + xyz^2$. Find the second-degree approximate polynomial $T_2 f((1, 1, 0), (x - 1, y - 1, z))$ of f at the point (1, 1, 0).

Problem 5 (30pts). Let $f(x,y) = xy + \frac{1}{3}(x^3 + y^3)$.

- (a) (15pts) Find all critical points of f.
- (b) (15pts) Determine the type (local maximum, local minimum or a saddle point) for each of the critical points in (a).

Problem 6 (20pts). If there exist, find the maximum value and the minimum value of the function $f(x, y, z) = x^2 + 2y^2 + z^2$ restricted to the regions xy + yz = 1.

Problem 7 (30pts). Let $f:[0,1]\to\mathbb{R}$ be a C^1 -function such that $f(0)=0,\ f'(x)>0$ for all $x \in (0,1)$ and let $g: \mathbb{R} \to \mathbb{R}$ be a positive C^1 -function such that g'(x) > 0 for all $x \in \mathbb{R}$. Define the map

$$F: \mathbb{R} \times [0,1] \longrightarrow \mathbb{R}^2$$

 $(x,y) \longmapsto (g(x)\cos(f(y)), g(x)\sin(f(y))).$

- (a) (10pts) Compute the Jacobian matrix F'.
- (b) (5pts) Show that F is locally invertible.
- (c) (5pts) Is F surjective?
- (d) (10pts) Give sufficient and necessary conditions for F to be an invertible map onto its image.

Problem 8 (30pts). Evaluate the line integral $\int_X \mathbf{F} \cdot d\mathbf{s}$, where $\mathbf{F}(x,y) = \frac{(-y,x)}{\sqrt{x^2 + y^2}}$ and Xis the following curve starting from (1,0) to (8,0) such that

- each path a_n is a circular arc of a circular sector of radius n with the central angle π $\overline{4}$, each b_n is a line segment of length 1.

