## Основы машинного обучения

Лекция 5 Линейная регрессия

Евгений Соколов

esokolov@hse.ru

НИУ ВШЭ, 2022

## Обучение линейной регрессии

$$\frac{1}{\ell} \|Xw - y\|^2 \to \min_{w}$$

• Вычисление MSE в NumPy:

np.square(X.dot(w) - y).mean()

## Обучение линейной регрессии

## Среднеквадратичная ошибка

• MSE для линейной регрессии:

$$Q(w_1, ..., w_d) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\mathbf{w_1} x_1 + \dots + \mathbf{w_d} x_d - y_i)^2$$

## Производная

$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$



## Производная

• Если точка  $x_0$  — экстремум и в ней существует производная, то

$$f'(x_0) = 0$$



## Производная

• Если точка  $x_0$  — экстремум и в ней существует производная, то

$$f'(x_0) = 0$$



## Градиент

• Градиент — вектор частных производных

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}, \dots, \frac{\partial f}{\partial x_d}\right)$$

• У градиента есть важное свойство!

#### Важное свойство

- Зафиксируем точку  $x_0$
- В какую сторону функция быстрее всего растёт?



#### Важное свойство

- Зафиксируем точку  $x_0$
- В какую сторону функция быстрее всего растёт?
- В направлении градиента!
- Если градиент равен нулю, то это экстремум

## Условие экстремума

• Если точка  $x_0$  — экстремум и в ней существует производная, то

$$\nabla f(x_0) = 0$$

## Условие экстремума

• Если точка  $x_0$  — экстремум и в ней существует производная, то

$$\nabla f(x_0) = 0$$

- Если функция выпуклая, то экстремум один
- MSE для линейной регрессии выпуклая!
  - (при некоторых условиях)

## Обучение линейной регрессии

• Можно посчитать градиент MSE:

$$\nabla \frac{1}{\ell} \|Xw - y\|^2 = \frac{2}{\ell} X^T (Xw - y)$$

• Приравниваем нулю и решаем систему линейных уравнений:

$$w = (X^T X)^{-1} X^T y$$

#### Аналитическое решение

$$w = (X^T X)^{-1} X^T y$$

- Если матрица  $X^T X$  вырожденная, то будут проблемы
- Даже если она почти вырожденная, всё равно будут проблемы
- Если признаков много, то придётся долго ждать

# Переобучение и регуляризация линейных моделей

## Нелинейная задача

$$a(x) = w_0 + w_1 x$$



## Нелинейная задача

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4$$



## Нелинейная задача

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$



## Симптом переобучения

$$a(x) = 0.5 + 13458922x - 43983740x^2 + \cdots$$

- Большие коэффициенты симптом переобучения
- Эмпирическое наблюдение

## Симптом переобучения

- Большие коэффициенты в линейной модели это плохо
- Пример: предсказание роста по весу

$$a(x) = 698x - 41714$$

- Изменение веса на 0.01 кг приведет к изменению роста на 7 см
- Не похоже не правильную зависимость

## Регуляризация

- Будем штрафовать за большие веса!
- Пример функционала:

$$Q(a,X) = \frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2$$

• Регуляризатор:

$$||w||^2 = \sum_{j=1}^d w_j^2$$

## Регуляризация

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

•  $\lambda$  — коэффициент регуляризации

## Регуляризация

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda ||w||^2 \to \min_{w}$$

• Аналитическое решение:

$$w = (X^T X + \lambda I)^{-1} X^T y$$

• Гребневая регрессия (Ridge regression)

$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 \to \min_{w}$$



$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 0.01 \|w\|^2 \to \min_{w}$$



$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 1 \|w\|^2 \to \min_{w}$$



$$a(x) = w_0 + w_1 x + w_2 x^2 + w_3 x^3 + w_4 x^4 + \dots + w_{15} x^{15}$$

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (a(x_i) - y_i)^2 + 100 \|w\|^2 \to \min_{w}$$



#### Лассо

• Регуляризованный функционал

$$\frac{1}{\ell} \sum_{i=1}^{\ell} (\langle w, x_i \rangle - y_i)^2 + \lambda \sum_{j=1}^{d} |w_j| \to \min_{w}$$

- LASSO (Least Absolute Shrinkage and Selection Operator)
- Некоторые веса зануляются
- Приводит к отбору признаков

## Регуляризаторы

• 
$$||z||_2 = \sqrt{\sum_{j=1}^d z_j^2} - L_2$$
-норма

• 
$$||z||_1 = \sum_{j=1}^d |z_j| - L_1$$
-норма