Problem 1. There are $\lfloor \log_2 n \rfloor + 1$ powers of 2 between 1 and n, including $1 = 2^0$. For $\lfloor \log_2 n \rfloor$, the operation costs more than 1. All together, these operations cost $\sum_{i=0}^{\lfloor \log_2 n \rfloor} 2^i < 2^{\log_2(n)+1} = 2n$ (the sum of all powers of 2 up to 2^k is $2^{k+1}-1$). The remaining less than n operations each cost 1. Overall, the cost of n operations is bounded by 3n, that is, each operation costs no more than 3 on average.

Problem 2. At each power of 2 there needs to be enough credit to pay for the operation. At most, all credit can be used up. In that case, the operations up to the next power of 2 need to build up enough credit to pay for it. For every i which is a power of 2, there are i/2 operations (counting the i-th one itself) since the previous power of 2. The total cost of these operations is i + (i/2 - 1) < 1.5 * i. To charge a total of 1.5 * i over i/2 operations, we charge each operation a cost of 3. That is enough to pay for the operations where i is not a power of 2 and by the above explanation, it builds up enough credit to pay for those operations where i is a power of 2.

Problem 3. The number of undirected pairs (2-element sets) of vertices is $n+(n-1)+(n-2)+\cdots+3+2+1=(n+1)*n/2$. The number of directed pairs is n*n, from each vertex to each vertex (it is not quite twice as much as the number of directed pairs because for self-loops there are no two directions). For each of these pairs, an edge can exist or not. Therefore, there are $2^{(n+1)*n/2}$ distinct undirected graphs and 2^{n^2} distinct directed graphs.

Problem 4.

	Complexity	Explanation	Advantage / Disadv.
Storage	$\Theta(V+E)$	constant time per linked list element	same
Lookup	O(V)	find u , then find v in adjl list	slower (larger constant)
Insert edge	O(V)	find u , then insert edge	asymptotically slower
Delete edge	O(V)	lookup edge, delete in constant time	slower (larger constant)
Insert vertex	O(1)	insert vertex at beginning of list	asymptotically faster
Delete vertex	O(V+E)	iterate over adj. lists to remove references	faster (smaller constant)

Problem 5.

	adjacency lists	adjacency matrix
single in-degree	O(V+E)	$\Theta(V)$
single out-degree	O(V)	$\Theta(V)$
all in-degrees	$\Theta(V+E)$	$\Theta(V^2)$
all out-degrees	$\Theta(V+E)$	$\Theta(V^2)$

Problem 7. Treat each possible configuration of the puzzle as a vertex and connect two vertices via an edge if they can be converted into each other with a single move. This yields 16! vertices and between 16 and 2*16! edges (two to four edges per vertex). The task is to find a shortest path, with regard to number of edges, from the vertex representing the starting configuration to the vertex representing the solved puzzle. BFS can be used to find such a path, if it exists. The graph can be "built" during traversal since the adjacencies for each vertex can be computed and need not be given or determined in advance.