Derivación e Integración numérica

Dinámica de Sistemas Mecánicos

2024-20

¿En qué se usan?

- Se aplican en diferentes áreas de la ingeniería como la simulación y el modelado de sistemas y fenómenos.
- Son menos precisos de la resolución analítica pero no necesitan la resolución de integrales y derivadas.
- En este curso, la utilizaremos para el análisis de datos experimentales

Integración numérica

Método del trapecio

Área bajo la curva = $A_1 + A_2 + A_3 + ... A_n$

$$A = \frac{\left(F_1 + F_2\right)\Delta x}{2}$$
$$A = \frac{\Delta x}{2}\left(F_1 + F_2\right)$$

$$A = \frac{\Delta x}{2} \left(F_1 + F_2 \right)$$

$$A_{1} = \frac{\Delta x}{2} (F_{1} + F_{2})$$

$$A_{2} = \frac{\Delta x}{2} (F_{2} + F_{3})$$

$$A_{3} = \frac{\Delta x}{2} (F_{3} + F_{4})$$

$$A_{4} = \frac{\Delta x}{2} (F_{3} + F_{4})$$

$$F_{1} = \frac{\Delta x}{2} (F_{3} + F_{4})$$

$$F_{2} = \frac{F_{2}}{F_{2}} = F_{3}$$

$$F_{3} = \frac{F_{4}}{F_{4}}$$

$$A_{T} = \frac{\Delta x}{2} (F_{1} + F_{2}) + \frac{\Delta x}{2} (F_{2} + F_{3}) + \frac{\Delta x}{2} (F_{3} + F_{4})$$

$$A_{T} = \frac{\Delta x}{2} [F_{1} + F_{2} + F_{2} + F_{3} + F_{3} + F_{4}]$$

$$A_{T} = \frac{\Delta x}{2} [F_{1} + F_{4} + 2F_{2} + 2F_{3}]$$

Si f(x) es continua en [a, b], entonces

$$A = \frac{\Delta x}{2} \left[f(x_0) + f(x_n) + 2 \sum_{n=1}^{n-1} f(x_i) \right]$$

donde
$$\Delta x = \frac{b-a}{n}$$
 $x_i = a + n\Delta x$

a es el límite inferior, b es el límite superior y n es el número de trapecios que deseas emplear en el calculo

Calcula la siguiente integral con el método del trapecio: 5

$$\int_{0}^{5} (x^3 - 5x^2 + 2x + 8) \, dx$$

Cálculo de Δx

$$\int_{0}^{5} (x^3 - 5x^2 + 2x + 8) \, dx$$

Consideramos 10 trapecios

$$\Delta x = \frac{b-a}{n} \qquad \Delta x = \frac{5-0}{10}$$

Cálculo de x_i

$$x_i = a + n\Delta x$$

n	$X_i = a + n\Delta x$	
0	0 + 0(0.5)=0	
1	0 + 1 (0.5)= 0.5	
2	0 + 2(0.5)=1	
3	0 + 3(0.5)=1.5	
4	0 + 4(0.5)=2	
5	0 +5(0.5)=2.5	
6	0 + 6(0.5)=3	
7	0 + 7(0.5)=3.5	
8	0 + 8(0.5)=4	
9	0 + 9(0.5)=4.5	
10	0 + 10(0.5)=5	

Cálculo de $f(x_i)$

Derivación numérica

Paso

El paso se define con la letra h

Paso

Reglas empíricas

```
x=valores en el orden de 0.001 h =0.001
x=valores en el orden de 0.01 h =0.01
x=valores entre 0.1 y 999 h =0.1
x=valores mayores de 1000 h =1
```

Ejemplo

```
x=0.005 h =0.001
x=0.09 h =0.01
x=0.7 h =0.1
x=1700 h =1
x=10 h =0.1
x=25,000 h =1
```


Modelos matemáticos

Primera derivada

$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$$

Segunda derivada

$$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2}$$

Las formulas derivan de la expansión de la serie de Taylor

Determina la primera y segunda derivada del siguiente polinomio en el punto x=0.5:

$$f(x) = -0.1x^4 - 0.15x^3 - 0.5x^2 - 0.25x + 1.2$$

A partir de las reglas que vimos podemos considerar el paso h=0.1

Determina la primera y segunda derivada del siguiente polinomio en el punto x=0.5:

Las derivada tercera y cuarta requieren conocer el valor de la función hasta dos pasos antes y después del valor de interés:

	х	F(x)
X _{i-2}	0.3	$f(x) = -0.1(0.3)^4 - 0.15(0.3)^3 - 0.5(0.3)^2 - 0.25(0.3) + 1.2 = 1.07514$
X _{i-1}	0.4	$f(x) = -0.1(0.4)^4 - 0.15(0.4)^3 - 0.5(0.4)^2 - 0.25(0.4) + 1.2 = 1.00784$
X	0.5	$f(x) = -0.1(0.5)^4 - 0.15(0.5)^3 - 0.5(0.5)^2 - 0.25(0.5) + 1.2 = 0.925$
X_{i+1}	0.6	$C(-1) = 0.1(0.6)^4 - 0.15(0.6)^3 - 0.5(0.6)^2 - 0.25(0.6) + 1.2 = 0.92464$

Primera derivada

	X	F(x)
X ₁₋₂	0.3	1.07514
X _{i-1}	0.4	1.00784
Xi	0.5	0.925
X _{i+1}	0.6	0.82464
X _{i+2}	0.7	0.70454

Primera derivada

$$f'(x_i) = \frac{-f(x_{i+2}) + 8f(x_{i+1}) - 8f(x_{i-1}) + f(x_{i-2})}{12h}$$

$$f'(0.5) = \frac{-0.70454 + 8(0.82464) - 8f(1.00784) + f(1.07514)}{12(0.1)}$$

$$f'(0.5) = -0.9125$$

Segunda derivada

	X	F(x)
X ₁₋₂	0.3	1.07514
X _{i-1}	0.4	1.00784
Xi	0.5	0.925
X _{i+1}	0.6	0.82464
X _{i+2}	0.7	0.70454

Segunda derivada

$$f''(x_i) = \frac{-f(x_{i+2}) + 16f(x_{i+1}) - 30f(x_i) + 16f(x_{i-1}) - f(x_{i-2})}{12h^2}$$

$$f''(0.5) = \frac{-0.70454 + 16(0.82464) - 30(0.925) + 16(1.00784) - 1.07514}{12 * (0.1)^2}$$

f''(0.5) = -1.75

