Lecture 2 Decision Theory

Agenda

- >Introduction to Decision Making
- > Decision Making Without Probabilities
- >Decision Making With Probabilities
- >Expected Value of Perfect Information
- >Next Class

© Copyright 2003, Alan Marshall

Decision Analysis

- >Techniques used to make decisions among a set of discrete alternatives in the face of uncertain future events
 - investments
 - new products
 - facility expansion
 - choice of professors/courses

Copyright 2003, Alan Marshall

Key Characteristics

- >Important problem
- >Unique
- >Non-instantaneous decision required
- >Complex
- >Uncertainty

© Copyright 2003, Alan Marshall

Terminology

- >Decision Alternatives
 - controllable; our choice
- >Outcomes (States of nature)
 - future events, uncontrollable
 - define all (mutually exclusive, collectively exhaustive)
- >Payoffs
 - $V(D,S) \leftarrow Value \text{ of A Decision in a certain } State$
- >Criteria, for evaluation of alternations

Copyright 2003, Alan Marshall

Structuring Decision Problems

- >Payoff Table
 - matrix/table of actions vs outcomes, payoffs
- >Decision Trees
 - chronological representation of problem
 - nodes and branches
 - 2 types of nodes: square = decision, round = outcome
 - payoffs at end of branches

© Copyright 2003, Alan Marshall

Payoff Tables

		States of Nature			
		S_1	S_2	S_3	
on	D_1	$V(D_1,S_1)$	$V(D_1,S_2)$	$V(D_1,S_3)$	
Decision	D_2	$V(D_2,S_1)$	$V(D_2,S_2)$	$V(D_2,S_3)$	
De	D_3	$V(D_3,S_1)$	$V(D_3,S_2)$	$V(D_3,S_3)$	

© Copyright 2003, Alan Marshall

Types of Problems

- >CERTAINTY know which outcome (state of nature) will occur; hence select best alternative
- >UNCERTAINTY no probability information available
- >RISK probabilities of outcomes (states of nature) are available

Copyright 2003, Alan Marshall

Decisions Under Uncertainty

- >When decision maker doesn't know which outcome will occur & has no probability estimates
- >Four commonly used criteria:
 - equally likely (LAPLACE)
 - the optimistic approach (MAXIMAX)
 - the conservative approach (MAXIMIN)
 - the MINIMAX REGRET approach

© Copyright 2003, Alan Marshall

Decisions Under Uncertainty

	Payoff Table		States of Nature				
			S ₁	S ₂	S ₃		
	on	D_1	10,000	6,500	-4,000		
	cisi	D_2	8,000	6,000	1,000		
	De	D_3	5,000	5,000	5,000		

- >What decision would you choose?
- >Why?

© Copyright 2003, Alan Marshall

Laplace Criterion

>Assume all states are equally likely

Payoff		Sta	Average		
Table		S ₁	S_2	S ₃	Payoff
uo	D_1	10,000	6,500	-4,000	4,167
ecision	D ₂	8,000	6,000	1,000	5,000
Ğ	D_3	5,000	5,000	5,000	5,000

© Copyright 2003, Alan Marsha

Optimistic Approach

- >Used by optimistic (aggressive?) decision maker
- >Decision with the largest possible payoff is chosen
- >Any concerns about this approach?

© Copyright 2003, Alan Marshall

Maximax (Optimistic)

><u>Maxi</u>mize the <u>max</u>imum payoff

Payoff		Sta	Maximum		
Table		S ₁	S_2	S ₃	Payoff
on	D ₁	10,000	6,500	-4,000	10,000
ecision	D_2	8,000	6,000	1,000	8,000
De	D ₃	5,000	5,000	5,000	5,000

© Copyright 2003, Alan Marshall

Conservative/Pessimistic Approach

- >For conservatives or pessimists
- >For each decision identify the minimum payoff; select the maximum of these minimum payoffs
- >Any concerns about this approach?

Copyright 2003, Alan Marshall

Maximin (Pessimistic)

> Maximize the minimum payoff

Pa	yoff	Sta	States of Nature				
Table		S ₁	S_2	S_3	Payoff		
on	D_1	10,000	6,500	-4,000	-4,000		
Decision	D ₂	8,000	6,000	1,000	1,000		
De	D ₃	5,000	5,000	5,000	5,000		

© Copyright 2003, Alan Marshall

Minimax Regret Approach

- > Construct a regret (opportunity loss) table
- > For each state of nature calculate the difference between each payoff and the largest payoff for that state of nature.
- >Using regret table, the maximum regret for each possible decision is listed
- > Chose decision which minimizes the maximum regrets

© Copyright 2003, Alan Marshall

Minimax Regret

>Minimize the maximum regret

Payoff		States of Nature			
Table		S ₁	S ₂	S ₃	
on	D ₁	10,000	6,500	-4,000	
ecision	D ₂	8,000	6,000	1,000	
De	D ₃	5,000	5,000	5,000	

Re	gret	Sta	Maximum		
Table		S ₁	S ₂	S ₃	Regret
uo	D ₁	0	0	9,000	9,000
cisior	D_2	2,000	500	4,000	4,000
De	D°	5 000	1 500	0	5 000

© Copyright 2003, Alan Marshal

Minimization Problems

- >These problems have been maximization problems seeking the best payoff
- >What is these had been minimization problems seeking the best/lowest cost

© Copyright 2003, Alan Marshall

Minimization Problems

- >Minimin (Optimistic)
 - choose the global lowest cost option
- >Minimax (Pessimistic)
 - identify maximum costs for each decision, then select the minimum of these
- >Minimax regret
 - minimal of the maximum regrets

© Copyright 2003, Alan Marshall

Minimization Objective

Pa	yoff	States of Nature		Minimum	Maximum	
Table		S ₁	S ₂	S ₃	Cost	Cost
Б	D ₁	10,000	6,500	-4,000	-4,000	10,000
Decision	D_2	8,000	6,000	1,000	1,000	8,000
۱	D_3	5,000	5,000	5,000	5,000	5,000
					Minimin	Minimax

 Regret Table
 States of Nature
 Maximum Regret

 5
 D1
 5,000
 1,500
 0
 5,000

 6
 D2
 3,000
 1,000
 5,000
 5,000

 0
 D3
 0
 0
 9,000
 9,000

Copyright 2003, Alan Marshall

Decisions Under Risk

- >Probabilities known for Outcomes (States of Nature)
- >Use Expected Value Approach
- >The decision yielding the best expected return is chosen

© Copyright 2003, Alan Marshall

Expected Value

>Expected value of a decision alternative is the sum of weighted payoffs for that alternative

© Copyright 2003, Alan Marshall

Expected Value

>Expected value (EV) of decision alternative D_i is defined as:

$$EV(D_i) = \sum_{i=1}^{N} P(S_j) V(D_i, S_j)$$

- >N = the number of states of nature
- >P(S_j) = the probability of state of nature s_i
- $>V(D_i,S_j)$ = the payoff corresponding to decision alternative d_i and state of nature s_i

Expected Value

- > That last slide will keep the Mathematicians and Statisticians happy
- > A more practical approach, or view, of EV:

State	S ₁	S ₂	S ₃	
P(S)	0.6	0.2	0.2	
Payoff	10,000	6,500	-4,000	EV
EV(Payoff)	6,000	1,300	-800	6,500

© Copyright 2003, Alan Marshall

Sumproduct Function (Excel)

- > The sumproduct function can speed up making up our spreadsheet, and add to its general applicability
- > in cell e3: =sumproduct(b2..d2,b3..d3)

State	S ₁	S ₂	S ₃	
P(S)	0.6	0.2	0.2	EV
Payoff	10,000	6,500	-4,000	6,500
EV(Payoff)	6,000	1,300	-800	6,500

© Copyright 2003, Alan Marshall

Decisions Under Risk

>Expected value approach

Pa	Payoff States of Nature				
Table		S ₁	S_2	S_3	$EV(D_i)$
P((S)	0.6	0.2	0.2	
on	D_1	10,000	6,500	-4,000	6,500
Decision	D_2	8,000	6,000	1,000	6,200
De	D ₃	5,000	5,000	5,000	5,000
				_	(3)

© Copyright 2003, Alan Marshall

Expected Value of Perfect Information

- > Frequently information is available which can improve the probability estimates for the possible outcomes (states of nature)
- > Expected value of perfect information (EVPI) is the increase in the expected profit that would result if one knew with certainty which state of nature would occur
- > EVPI provides an <u>upper bound</u> on the expected value of any sample or survey information

© Copyright 2003, Alan Marshall

EVPI Calculation

> Difference between the expected payoff under perfect information and the expected payoff of the optimal decision without perfect information

© Copyright 2003, Alan Marshall

EVPI Calculation - I

Payoff		Sta			
Table		S ₁	S_2	S_3	$EV(D_i)$
P(S)		0.6	0.2	0.2	
o	D_1	10,000	6,500	-4,000	6,500
Decision	D_2	8,000	6,000	1,000	6,200
De	D ₃	5,000	5,000	5,000	5,000

Best	10,000	6,500	5,000	8,300
				-6,500
			EVPI	1,800

© Copyright 2003, Alan Marshall

3

EVPI Calculation - II

- > The EVPI can also be calculated as the expected regret under the optimal decision under uncertainty
- > D₁ was the optimal decision under uncertainty

P(S)	0.6	0.2	0.2	E(Regret)
D ₁	0	0	9000	1,800

© Copyright 2003, Alan Marshall

Next Class

- >Practice Problems for
 - Linear Programming
 - Decision Theory

© Copyright 2003, Alan Marshall

3