HOW TO DO DEEP LEARNING WITHOUT A PHD.

MATH FOR DEEP LEARNING:

- 1) Deep Learning, Ian Goodfellow (<u>www.deeplearningbook.org</u>) Chapter 1 of this book covers Linear Algebra, Probability and Calculus. Short, Simple and Comprehensive.
- 2) Elements of Statistical Learning, Friedman (web.stanford.edu/~hastie/Papers/ESLII.pdf) Comprehensive Guide to learning the math behind Machine Learning.
- 3) Math and Computation, Avi Wigderson (www.math.ias.edu/files/mathandcomp.pdf)

BASICS OF COMPUTER SCIENCE

1) Introduction to Algorithms by Cormen - Universal Guide to Learning the basics of computer science. What came first? Algorithms or Cormen? Nobody knows....

MATLAB

- 1) Just Joking, MATLAB sucks. We only use Python.
- 2) Python Course from Codecademy (https://www.codecademy.com/learn/learn-python)
- 3) Python Documentation (https://docs.python.org/3/)
- 4) On a side note, when learning any new package or framework, the best place to get started is the documentation. The second best place is an introductory blog (Medium is a good place).

STATISTICAL LEARNING/MACHINE LEARNING INTRO

- 1) Andrew Ng's Machine Learning Course (https://www.coursera.org/learn/machine-learning)
- 2) Machine Learning by ColumbiaX on EdX
- 3) Siraj Raval's Live Videos on YouTube He explains complex problems in a simple way. His live videos are great. His video descriptions also have good learning resources.
- *Our take: Watch a week of videos in Andrew Ng's course and then watch Siraj Raval's videos and read blogs to get a deeper understanding of the concepts. Then implement them as a project.

NEURAL NETWORKS/DEEP LEARNING

- 1) Andrew Ng's Deep Learning Specialisation Course (www.coursera.org/specializations/deep-learning) Yes, his courses are *that* good.
- 2) Neural Networks and Deep Learning by Michael Nielsen (www.neuralnetworksanddeeplearning.com) Lucid explanation of Neural Networks
- 3) Hinton's Neural Network Course (<u>www.coursera.org/learn/neural-networks</u>) Godfather of Deep Learning. Need I say more?
- 4) Stanford Computer Vision Course http://cs231n.stanford.edu/

- 5) Stanford NLP Course http://web.stanford.edu/class/cs224n/
- 6) Reinforcement Learning by David Silver

GETTING STARTED WITH PROJECTS IN DEEP LEARNING

- 1) Fast.ai's courses are based around projects (http://www.fast.ai)
- 2) Siraj Raval's Youtube Channel has a lot of projects that you can practice
- 3) Sentdex's Youtube Channel also has a lot of projects
- 4) Machine Learning Mastery (<u>www.machinelearningmastery.com</u>)

SOME ESSENTIAL PACKAGES/FRAMEWORKS

- 1) Numpy http://www.numpy.org/ 5) NLTK http://www.nltk.org/
- 2) Pandas https://pandas.pydata.org/ 6) OpenCV https://opencv.org/
- 3) Matplotlib https://matplotlib.org/7) TensorFlow https://www.tensorflow.org/
- 4) Keras https://keras.io/
- 8) Sci-kit Learn http://scikit-learn.org/

BLOGS

- 1) Math http://www.inference.vc
- 2) NLP and lit surveys: http://ruder.io
- 3) Almost everything AI&DL: http://www.wildml.com
- 4) Best journal hands down: https://distill.pub
- 5) Intuition behind DL architectures: http://colah.github.io
- 6) Learn ML concepts easily and quickly http://fastml.com/

RESEARCH PAPERS

- 1) http://deeplearning.net/reading-list/
- 2) Google Brain https://research.google.com/teams/brain/
- 3) Deep Mind https://deepmind.com/research/publications/
- 4) Arxiv Sanity http://www.arxiv-sanity.com/
- 5) Paper summaries: http://blog.acoyler.org

SYSTEMS/DEPLOYMENT/CLOUD

- 1) Architecture of Open Source Applications http://aosabook.org/en/index.html
- 2) FloydHub https://www.floydhub.com/
- 3) Google Cloud Platform https://cloud.google.com/
- 4) Amazon Web Services https://aws.amazon.com/

MACHINE LEARNING NEWS & COMPETITIONS

- 1) KDNuggets https://www.kdnuggets.com/
- 2) Hacker News https://news.ycombinator.com/
- 3) Indian Deep Learning Initiative (IDLI) & AIDL FB Page
- 4) Reddit r/MachineLearning, r/learnmachinelearning, r/datascience
- 5) Twitter is where researchers share and discuss papers, concepts and ideas
- 6) ML Challenges, Competitions & Datasets https://www.kaggle.com/