

Escuela Superior de Cómputo Instituto Politécnico Nacional

Algoritmos Genéticos

Dra. en C. Miriam Pescador Rojas

Antecedentes

- ☐ Los algoritmos genéticos (AG) fueron desarrollados originalmente por John Holland en 1975.
- ☐ Un AG es una heurística de búsqueda que imita el proceso de evolución natural

Utiliza conceptos de teorías de evolución tal como: "Selección Natural" y "Herencia Genética".

Introducción

- La principal metáfora de la computación evolutiva consiste en:
- La evolución de la naturaleza como fuente de inspiración (adaptación/selección natural)
- La aptitud de los individuos se determina por su medio ambiente

Aptitud → posibilidades de supervivencia y reproducción

Esquema general de un algoritmo genético

- Dada una población de individuos, la presión ambiental causa una selección natural.
- Los individuos con mayor aptitud tienen una mayor probabilidad de reproducirse y heredar sus características genéticas.
- Se genera una nueva generación de individuos que heredaron características de sus padres.
- Solo sobreviven los individuos que mejor se adaptan al ambiente (elitismo).

Algoritmo genético

- Crear una población inicial de individuos
- > Evaluar la aptitud de los individuos
- ➤ Mientras el criterio de terminación no se cumpla, entonces:
 - Seleccionar a los padres para la recombinación
 - Recombinar (con cierta probabilidad) la información genética de los padres para generar descendientes
 - Aplicar (con cierta Probabilidad) proceso de mutación a los descendientes
 - Evaluar la aptitud de los nuevos individuos en la población
 - ❖ Seleccionar a los sobrevivientes para la siguiente generación (Elitismo)
- Reportar al mejor individuo de la población

Codificación de la información genética

- La información necesaria para construir un organismo vivo está codificada en el ADN de ese organismo
- El genotipo (ADN en el interior) determina el fenotipo
- Genes → rasgos fenotípicos es un mapeo complejo

 Pequeños cambios en el genotipo conducen a pequeños cambios en el organismo (por ejemplo, altura, color del cabello)

Tipos de codificación

☐ Codificación binaria,

□Codificación de permutaciones

Chromosoma A	1	5	3	2	6	4	7	9	8
Chromosoma B	8	5	6	7	2	3	1	4	9

^{*} Se considera un proceso de codificación y decodificación de las variables de un problema

Codificación del problema

Tip. En cada generación, después de aplicar los operadores evolutivos verificar que las variables se encuentren dentro de los límites.

Tipos de codificación

□Codificación directa de las variables de decisión

- Representación real o entera
- Simbólica
- Por instrucciones.

Cromosoma A	1.2324 5.3243 0.4556 2.3293 2.4545
Cromosoma B	ABDJEIFJDHDIERJFDLDFLFEGT
Cromosoma C	(atrás), (atrás), (derecha), (adelante), (izquierda)

Protein

Optimización: El problema de la mochila (entera)

maximizar
$$\sum_{i=1}^{n} x_{i} v_{i}$$
sujeto a
$$\sum_{i=1}^{n} x_{i} w_{i} \leq W$$

donde: $v_i > 0$, $w_i > 0$,

$$x_i \in \{0, 1\}$$

$$x_i \in \{0, 1\}$$
 $para 0 \le i \le n$

Posibles soluciones	
candidatas	

Id Solución	01	02	О3	04	O 5	f(x)	Fact?
1	1	0	1	0	1		
2	1	1	1	0	0		
3	1	0	0	1	1		
4	1	1	1	1	1		

Problema de minería de datos (modelado)

Reglas de asociación

T Id	Transacción
1	{pan, leche}
2	{pan, pañales, cerveza, huevo}
3	{leche, pañales, cerveza, cocacola}
4	{pan, leche, pañales, cerveza}
5	{pan, leche, pañales, cocacola}

El soporte de una regla:
$$supp(X \to Y) = supp(X \cup Y)$$
 La confianza de una regla:

 $conf(X \to Y) = \frac{conf(X \to Y)}{conf(X \to Y)}$

T Id	Cerveza	Pan	Leche	Pañales	Huevo	CocaCola
1	0	1	1	0	0	0
2	1	1	0	1	1	0
3	1	0	1	1	0	1
4	1	1	1	1	0	0
5	0	1	1	1	0	1

 $supp(X \cup Y)$

supp(X)

Problema de aprendizaje máquina (clasificación)

Selección de características

Todas las características

Selección de características

Características finales

Problemas de planificación de tareas

	ĺ									
Nodes	1	2	3	4	5	6	7	8	9	10
1	0	0	1	1	0	0	0	0	1	0
2	0	0	0	0	0	1	0	0	0	1
3	1	0	0	0	0	1	1	1	0	0
4	1	0	0	0	1	0	1	0	1	0
5	0	0	0	1	0	0	0	0	0	1
6	0	1	1	0	0	0	0	0	0	0
7	0	0	1	1	0	0	0	1	1	0
8	0	0	1	0	0	0	1	0	0	1
9	1	0	0	1	0	0	1	0	0	0
10	0	1	0			0	0	1	0	0
				(b)						

Evolutionary search

Generación de la población inicial

POBLACION INICIAL

Cuando no se tiene información del espacio de búsqueda la población inicial se puede generar mediante las siguientes técnicas:

- a) Distribución uniforme aleatoria.
- b) Diseño de experimentos, p.ej. Hipercubos latinos

Por el contrario si se tiene conocimiento de **soluciones prometedoras** en el espacio de búsqueda es recommendable incorporarlas en la población inicial.

Población aleatoria en un problema de optimización continua

Paisaje de aptitud

Figura 2.9: Ilustración gráfica del proceso evolutivo de un algoritmo genético.

Población inicial: Ejemplos de distribuciones

Tip. Introducir conocimiento del espacio de búsqueda. Aproximaciones a la solución (por otros métodos)

Esquema General de Algoritmo Genético

Selección Natural

En la teoría de la evolución de Darwin se dice que sólo los organismos mejor adaptados a su entorno tienden a sobrevivir y transmitir sus características genéticas en número creciente a las generaciones siguientes, mientras que los menos adaptados tienden a ser eliminados.

Dra. Miriam Pescador Rojas

Selección de padres

• Muchos esquemas son posibles siempre y cuando los cromosomas de mejor puntuación sean más probables.

La puntuación se denomina a menudo como "aptitud" (fitness)

 Se puede utilizar diferentes estrategias de selección, entre las más comunes se tiene la selección por torneo.

Selección por torneos

- Es un método para seleccionar individuos de una población en un algoritmo genético.
- Este método de selección implica la ejecución de varios "torneos" entre unos pocos individuos elegidos al azar de la población.
- El ganador de cada torneo (el que tiene la mejor aptitud) se selecciona para el proceso de recombinación.
- La presión de selección se ajusta fácilmente cambiando el tamaño del torneo. Si el tamaño del torneo es mayor, los individuos más débiles tienen una probabilidad menor de ser seleccionados.

Algoritmo para selección por torneo binario

- Mientras no se tenga el número total de individuos:
 - Se mezcla a los individuos de la población
 - Se eligen pares de individuos que competirán entre sí
 - Se selecciona al individuo con una mayor aptitud en cada torneo
- Veáse el siguiente ejemplo

Ejemplo de Torneo binario

Torneo binario

Población actual

No	Aptitud
(1)	254
(2)	47
(3)	457
(4)	194
(5)	85
(6)	310

Torneo 1

Mezcla 1	Ganadores
(2)	
(6)	(6)
(1)	
(3)	(3)
(5)	
(4)	(4)

Torneo 2

Mezcla 2	Ganadores
(4)	
(1)	(1)
(6)	(6)
(5)	
(2)	
(3)	(3)

Individuos seleccionados y parejas conformadas:

Pareja 1: (6) y (1), Pareja 2: (3) y (6), Pareja 3: (4) y (3)

Ejercicio

No	Fitness
(1)	111
(2)	695
(3)	354
(4)	998
(5)	210
(6)	15
(7)	96
(8)	152
(9)	348
(10)	563

Torn	eo 1	Torneo 2			
Mezcla 1	Ganadores	Mezcla 2	Ganadores		
(10)		(7)			
(1)		(5)			
(7)		(10)			
(2)		(1)			
(5)		(3)			
(8)		(8)			
(6)		(2)			
(3)		(4)			
(9)		(6)			
(4)		(9)			

Ejemplo de Torneo n-ario

Allopatric and sympatric speciation of finches by natural selection into many different niches

Selección proporcional

Aplicamos la selección proporcional de aptitud con el método de ruleta:

□Repetimos la extracción tantas veces como sea necesario (el tamaño de la población)

Selección de ruleta

Calcular el valor esperado T

- Repetir N veces (donde n es el tamaño de la población):
 - Generar un número aleatori r entre 0.0 y T
 - Agregue los valores
 esperados hasta que la sum
 sea mayor que igual a r
 - Se selecciona al sujeto que hace esta suma exceda el límite.

Selección de ruleta

Ejemplo

id	Aptitud	Esperanza	Porcentaje
1	25	0.32894	6.57894
2	81	1.06578	21.31578
3	36	0.47368	9.473684
4	144	1.89473	37.89473
5	94	1.23684	24.73684
suma	380	5.0	100

r = 1.3

(ind1) sum = 0.33 < r

(ind2) sum = 1.39 > r

Individuo 2 es seleccionado

Ejercicio

No	Fitness	Valor esperado
(1)	111	
(2)	695	
(3)	354	
(4)	998	
(5)	210	
(6)	15	
(7)	96	
(8)	152	
(9)	348	
(10)	563	

Número aleatorio r ∈ [0.0, 10.0] r = 5.5

Operadores de cruza (crossover)

- □Para cada pareja, se decide con una cierta probabilidad (p. ej, 0.6) sí se recombinaran para generar nuevos descendientes.
- \square P. ej. suponga que solo se decidió recombinar las parejas (s_1, s_2) and (s_5, s_6) .
- □Para cada pareja, se aplica un operador de recombinación. Por ejemplo: cruza de un punto

Cruza de un punto en codificación binaria (pareja 1)

Padres antes de la cruza:

$$S_1 = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

$$S_{2} = \begin{bmatrix} 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Descendientes después de la cruza

$$S1' = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ S2'' = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}$$

Cruza de un punto en codificación binaria (pareja 2)

Antes de la cruza:

$$S_5 = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

$$S_{6} = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Después de la cruza

$$S5' = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Cruza de 2 puntos

- Se seleccionan aleatoriamente 2 puntos de cruza
- Se realiza la división de la información con esos puntos
- Se intercambia la información genética como sigue:

Cruza de n-puntos

- Selecciona aleatoriamente n puntos de cruza
- Se divide cromosoma en estos puntos
- Alterna entre los dos padres para generar los descendientes

Cruza uniforme

 Se recorre uno a uno los elementos del cromosoma y se elige si se selecciona la información de uno u otro padre (como si se tratará de un volado "flip")

Operador: Mutación

Mutación Binaria

□Antes de aplicar mutación:

$$s_1$$
 = 1110110101

$$s_2$$
 = 1111010101

$$s_3$$
 = 1110111101

$$s_4$$
`` = 0111000101

$$s_5$$
`` = 0100011101

$$s_6$$
 = 1110110011

☐ Después de aplicar mutación :

$$s_1$$
 = 1110100101

$$s_2$$
 = 1111110100

$$s_3$$
 " = 1110101111

$$s_4$$
 '' = 0111000101

$$s_5$$
 = 0100011101

$$s_6$$
 '' = 1110110001

Operador de cruza VS mutación

- Durante decadas se ha discutido cuál de los dos operadores es mejor
- La respuesta considera lo siguiente:
 - Esto depende del problema,
 - Sin embargo en general es major considerer ambos operadores

References

- ➤ Genetic Algorithms: A Tutorial By Dr. Nysret Musliu, Associate Professor Database and Artificial Intelligence Group, Vienna University of Technology.
- Introduction to Genetic Algorithms, Assaf Zaritsky Ben-Gurion University, Israel (www.cs.bgu.ac.il/~assafza)