

Universidad Tecnológica de la Mixteca

Clave DGP 509394

Ingeniería en Diseño

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
Dibujo Asistido por Computadora CAD	

Cuarto Semestre	035042	85
CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Conocer y aplicar las plataformas de dibujo por computadora 2D y 3D para la representación de propuesta de diseño en la ingeniería.

TEMAS Y SUBTEMAS

1. Introducción al sistema CAD

- 1.2. Ambiente de trabajo
 - 1.2.1 Unidades de medida
 - 1.2.2 Personalización de ambiente (options: user preferences, drafting, display)
 - 1.2.3 Barras de herramientas superior e inferior
 - 1.2.4 Línea de comandos
 - 1.2.5 Coordenadas absolutas y relativas
 - 1.2.6 Tutorial (F1)

2. Dibujo en dos dimensiones

- 2.1 Barra de herramientas de dibujo (draw: line, polyline, circle etc.)
 - 2.1.1 Creación de bloques y bloques dinámicos
 - 2.1.2 Textos y hatches
 - 2.1.3 Entrada de medidas por coordenadas
 - 2.1.4 Ubicación de puntos objetc snap y settings
 - 2.1.5 Manejo de ortho mode, grid, snap
- 2.2 Barra de herramientas de modificación (modify: erase, copy, mirror, offset, etc.)
 - 2.2.1 Ubicación en el espacio en relación al origen y dominio del zoom
- 2.3. Capas (layers)
 - 2.3.1 Nuevos layers
 - 2.3.2 Asignación de color
 - 2.3.3 Tipos y calidad de línea
 - 2.3.4 Importar y exportar layers
 - 2.3.5 Apagar, prender, congelar y bloquear
 - 2.4 Acotación de dibujo (dimensión)
 - 2.4.1 Creación de cotas
 - 2.4.2 Tipos y edición de cotas
- 2.5. Referencias externas
 - 2.5.1 Importar
 - 2.5.2 Cortar
 - 2.5.3 Explotar para compartir.
 - 2.5.4 Cambio de planos por UCS
 - 2.5.5 Insertar imágenes
- 2.6 Impresión.
 - 2.6.1 Impresión en espacio papel (layout)
 - 2.6.2 Impresión en espacio modelo
 - 2.6.3 Cuadros de datos, márgenes y solapas
 - 2.6.4 Impresión en PDF y en plotter

3. Dibujo en tres dimensiones

- 3.1. Ambiente 3D
 - 3.1.1. Vistas tridimensionales (view)
 - 3.1.2 Manejo de UCS
 - 3.1.3 Monitor (wiewports)
 - 3.1.4 Custom view
 - 3.1.5 Custom visual styles
- 3.2 Creación de sólidos
 - 3.2.1 Extruccion de poli líneas (extrude)

- 3.2.2 Solids
- 3.2.3 Superficies de revolución (Surfaces)
- 3.2.4 Mesh
- 3.2.5 Edicion de sólidos (solids editing)
- 3.2.6 Secciones (sección plane)
- 3.3 Modificaciones 3d
 - 3.3.1 Formación 3d (array 3d)
 - 3.3.2 Espejo 3d (mirror 3d)
 - 3.3.3 Rotación 3d (rotate 3d)
 - 3.3.4 Orbitar 3d (orbir 3d)

4. Formatos de exportación e importación

- 4.1 Importación de otros programas de diseño
- 4.2 Exportación hacia otros programas de diseño
 - 4.2.1 Por vectores
 - 4.2.2 Por volumen
 - 4.2.3 Por imagen
- 4.3 Interacción con software 2D

5. Presentación de proyectos

- 5.1 Renders rápidos
 - 5.1.1 Tamaños y calidades
 - 5.1.2 Formatos

6. Introducción al Software 3D

- 6.1 Ambiente de trabajo
- 6.2 Creación de sólidos
 - 6.2.1 Entidades de croquis
 - 6.2.2 Operaciones
 - 6.2.3 Operaciones especiales
- 6.3 Ensamble de piezas
 - 6.3.1 Referenciar piezas
 - 6.3.2 Restricciones
 - 6.3.3 Operaciones de ensamble
 - 6.3.4 Interferencias
- 6.4 Planos
 - 6.4.1 Referenciar piezas y/o ensambles
 - 6.4.2 Creación de vistas
 - 6.4.3 Acotado de piezas

ACTIVIDADES DE APRENDIZAJE

El profesor expondrá los temas y hará uso de medios audiovisuales y equipos didácticos que ayuden a mejorar la comprensión y aprendizaje.

Los alumnos participarán en la solución de ejercicios relacionados con la carrera, basándose en la lógica y la repetición de tareas para un dominio de los programas.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACION Y ACREDITACION

Al inicio del curso el profesor deberá indicar el procedimiento de evaluación que deberá comprender evaluaciones parciales que tendrán una equivalencia de 50% de la calificación final y un examen ordinario que equivaldrá al restante 50%.

Las evaluaciones podrán ser escritas y/o prácticas y cada una consta de un examen teórico-práctico, tareas y proyectos. La parte práctica de cada evaluación deberá estar relacionada con la ejecución exitosa y la documentación de la solución del problema sobre temas del curso.

Pueden ser consideradas otras actividades como: el trabajo extra clase y la participación durante las sesiones del curso.

El examen tendrá un valor mínimo de 50%, las tareas, proyectos y otras actividades, un valor máximo de 50%.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Básica

- 1. Dong Wei, Kathleen Gibson. Arquitectura y diseño por computadora. Editorial McGraw Hill
- 2. Cogollor Gómez, J. Domine AutoCAD 2005. México. Alfaomega Ra-Ma. (2005)
- 3. Cecil Jensen, Jay D. Helsel, Dennis R. Short. Dibujo y diseño en ingeniería. 6a. Ed. México: McGraw-Hill Interamericana, 2004
- 4. David C. Planchard Marie P. Planchard. *Engineering design: with Solidworks 2010*. [Shawnee Mission, Kansas]: Schroff Development Corporation, 2010.

De Consulta

- 1. Jensen & Manson. Fundamentos de dibujo. Editorial McGraw-Hill. 1993 6ª edición
- 2.John Edward Akin. *Finite element analysis concepts: via Solidworks.* Hackensack, New Jersey: World Scientific, 2010. Kuang-Hua Chang. *Motion simulation and mechanism design: with solidworks motion 2009.* [Shawnee Mission, Kansas]: Schroff Development Corporation, 2010.
- 3. *SolidWorks 2006, conceptos básicos de SolidWorks: piezas y ensamblajes*. SolidWorks Corporation, 2005. En http://www.solidworks.es/
- 4. Tutoriales Autodesk Knowledge Network. www.knowledge.autodesk.com.

PERFIL PROFESIONAL DEL DOCENTE

Profesionista con estudios de maestría o doctorado con especialidad en el área de diseño industrial, arquitectura o afín y experiencia en docencia a nivel de licenciatura o postgrado. Preferentemente con antecedentes en trabajos de generación y aplicación de conocimientos, tutorías y gestión académica.

Vo.Bo. Autorizó

I.D. Eruvid Cortés Camacho Jefe de Carrera Dr. Agustín Santiago Alvarado Vice-Rector Académico