Решения на задачите по геометрия

Този материал е изготвен със съдействието на школа Sicademy

G1. Даден е $\triangle ABC$. Нека A_1 , B_1 и C_1 са средите на страните BC, CA и AB съответно. Описаната окръжност около $\triangle CA_1B_1$ пресича за втори път описаните окръжности около $\triangle CAC_1$ и $\triangle CBC_1$ в точките M и N съответно. Ако O е центърът на описаната окръжност около $\triangle ABC$, то да се докаже, че OM = ON.

Решение. Ще използваме стандартните означения за ъглите в триъгълник. От условието следва, че

$$\angle CMC_1 = 180^{\circ} - \alpha$$
 и $\angle CMA_1 = \angle CB_1A_1 = \alpha$

откъдето заключаваме, че $M \in A_1C_1$. Аналогично $N \in B_1C_1$. От друга страна, $OA_1 \perp BC$ и $B_1C_1 \parallel BC$, т.е. $OA_1 \perp B_1C_1$. Аналогично $OB_1 \perp A_1C_1$ и следователно O е ортоцентър за $\triangle A_1B_1C_1$. Тогава

$$\angle A_1 O B_1 = 180^{\circ} - \angle A_1 C_1 B_1 = 180^{\circ} - \gamma,$$

т.е. O лежи на описаната окръжност около $\triangle CA_1B_1$. В същото време,

$$\angle C_1 A_1 O = \angle C_1 B_1 O = 90^\circ - \gamma$$

т.е. O е среда на \widehat{MN} и OM = ON.

G2. Диагоналите на четириъгълника ABCD се пресичат в точка P. Означаваме с M и N средите на страните AD и BC съответно. Ако MN пресича диагоналите AC и BD в точките K и L съответно, а описаните окръжности около $\triangle APD$ и $\triangle BPC$ се пресичат за втори път в точка Q, то да се докаже, че MN разполовява $\angle PSQ$, където S е средата на KL.

Решение. (Е. Стоянов, С. Боев) От условието следва, че

$$\angle PAC = \angle PAE = \angle PDE = \angle PDB$$
 w $\angle PCA = \angle PCE = \angle PBE = \angle PBD$,

т.е. $\triangle APC \sim \triangle DPB$. От друга страна.

$$\frac{AK}{KC} = \frac{S_{AMN}}{S_{CNM}} = \frac{S_{DMN}}{S_{BNM}} = \frac{DL}{BL}.$$

Следователно точките K и L са съответни в подобните триъгълници, т.е. $\angle AKP = \angle DLP$ и четириъгълникът KPLE е вписан. Нещо повече,

$$\frac{KP}{PL} = \frac{AK}{DL} = \frac{AK}{KE} \cdot \frac{KE}{EL} \cdot \frac{EL}{DL} = \frac{S_{AML}}{S_{MEL}} \cdot \frac{KE}{EL} \cdot \frac{S_{MEL}}{S_{DML}} = \frac{KE}{EL},$$

т.е. KPLE е хармоничен четириъгълник. Остава да пресечем ES^{\rightarrow} с описаната около KPLE окръжност в точка T и да проверим, че KP = LT, т.е. $\angle ESK = \angle TSL = \angle PSK$.

G3. Даден е остроъгълен $\triangle ABC$. Нека A_1 е средата на дъгата \widehat{BC} от описаната окръжност около $\triangle ABC$, несъдържаща връх A, а A_2 е симетричната на A_1 относно BC. Аналогично дефинираме точките B_2 и C_2 . Да се докаже, че описаната окръжност около $\triangle A_2B_2C_2$ минава през точката на Нагел за $\triangle ABC$.

Решение. (С. Димитров) Нека H е ортоцентърът на $\triangle ABC$. Ще покажем, че точките A_2, B_2 и C_2 лежат на окръжност с диаметър NH, която е известна като окръжност на Фурман (Fuhrmann circle).

Лема 1. Даден е $\triangle ABC$ с точка на Нагел N и център I на вписаната в него окръжност. Нека M е среда на AB. Тогава $IM \parallel CN$ и 2IM = CN.

Доказателство. Нека G е медицентърът на $\triangle ABC$. От правата на Нагел следва, че N,G и I лежат в този ред на една права и NG=2GI. От друга страна CG=2MG. Тогава $\frac{NG}{IG}=\frac{CG}{MG}=2$ и $\angle NGC=\angle IGM$. Тогава $\triangle NGC\sim\triangle IGM$ с кофициент на подобие 2. Освен това $\angle GNC=\angle GIM$, което означава, че $IM\parallel CN$, а от коефициента на подобие следва $\frac{CN}{MI}=2$, откъдето CN=2IM и лемата е доказана.

Лема 2. Даден е $\triangle ABC$ с точка на Нагел N и среда M на страната AB. Тогава симетричната точка на N относно M лежи на $\angle ACB$.

Доказателство. Нека P е пресечната точка на ъглополовящата на $\angle C$ и правата NM. Знаем, че $I \in CP$, където I е центърът на вписаната окръжност в $\triangle ABC$. От Лема 1 знаем, че $MI \parallel CN$ и 2MI = CN. Тогава MI е средна отсечка в $\triangle CNP$, откъдето M е среда на NP и така P е симетричната на N относно M.

Лема 3. Даден е $\triangle ABC$ с точка на Нагел N. Ъглополовящата на $\angle ACB$ пресича описаната около $\triangle ABC$ окръжност за втори път в точка C_1 . Точка Q е симетрична на N относно AB. Тогава $\angle QC_1A = \angle BAC$.

Доказателство. Нека P е симетричната на N относно средата на AB. От Лема 2 знаем, че CP е ъглополовяща на $\angle ACB$ т.е. в случая C,P и C_1 са колинеарни. От друга страна ANBP е успоредник. Тогава AN = BP и $\angle NAB = \angle PBA$. От симетрията спрямо AB имаме AN = AQ и $\angle NAB = \angle QAB$. Така получихме, че AQ = BP и $\angle QAB = \angle PBA$. Понеже C_1 е среда на дъга, то $AC_1 = BC_1$ и $\angle ABC_1 = \angle BAC_1$. Тогава $\angle QAC_1 = \angle PBC_1$, $AC_1 = BC_1$ и AQ = BP, откъдето следва, че $\triangle AQC_1 \cong \triangle BPC_1$ и тогава $\angle QC_1A = \angle PC_1B$ като съответни елементи в тези еднакви триъгълници. Но $\angle PC_1B = \angle CAB$ като вписани в описаната около $\triangle ABC$ окръжност, което означава, че $\angle QC_1A = \angle BAC$ и лемата е доказана.

Забележка. Задачата може да се реши като следствие от правата на Нагел (виж задача 3.2 в сборника "555 задачи по геометрия"). Същата хомотетия оттам върши работа и за доказателство на тази задача.