# Caractérisation des classes en classification automatique

Variables actives et illustratives quantitatives et qualitatives

Ricco RAKOTOMALALA Université Lumière Lyon 2

### **PLAN**

- 1. Position du problème
- 2. Caractérisation univariée
  - a. De la partition
  - b. Des groupes
- 3. Caractérisation multivariée
  - a. Pourcentage d'inertie expliquée
  - b. Distance entre centres de classes
  - c. Couplage avec l'analyse factorielle
  - d. Utilisation d'une technique supervisée (ex. analyse discriminante)
- 4. Conclusion
- 5. Bibliographie

# La classification automatique

Constitution des groupes à partir des caractéristiques de proximité

### Classification automatique

Typologie, apprentissage non-supervisé, clustering

Variables « actives », servent à la constitution des groupes. Souvent (mais pas toujours) toutes quantitatives.

Variables « illustratives », ne participent pas à la constitution des groupes, mais permettent d'appuyer l'interprétation.

| Modele    | puissance | cylindree | vitesse | longueur | largeur | hauteur | poids | CO2 | prix  | origine | carburant |
|-----------|-----------|-----------|---------|----------|---------|---------|-------|-----|-------|---------|-----------|
| PANDA     | 54        | 1108      | 150     | 354      | 159     | 154     | 860   | 135 | 8070  | Europe  | Essence   |
| TWINGO    | 60        | 1149      | 151     | 344      | 163     | 143     | 840   | 143 | 8950  | France  | Essence   |
| CITRONC2  | 61        | 1124      | 158     | 367      | 166     | 147     | 932   | 141 | 10700 | France  | Essence   |
| YARIS     | 65        | 998       | 155     | 364      | 166     | 150     | 880   | 134 | 10450 | Autres  | Essence   |
| FIESTA    | 68        | 1399      | 164     | 392      | 168     | 144     | 1138  | 117 | 14150 | Europe  | Diesel    |
| CORSA     | 70        | 1248      | 165     | 384      | 165     | 144     | 1035  | 127 | 13590 | Europe  | Diesel    |
| GOLF      | 75        | 1968      | 163     | 421      | 176     | 149     | 1217  | 143 | 19140 | Europe  | Diesel    |
| P1007     | 75        | 1360      | 165     | 374      | 169     | 161     | 1181  | 153 | 13600 | France  | Essence   |
| MUSA      | 100       | 1910      | 179     | 399      | 170     | 169     | 1275  | 146 | 17900 | Europe  | Diesel    |
| CLIO      | 100       | 1461      | 185     | 382      | 164     | 142     | 980   | 113 | 17600 | France  | Diesel    |
| AUDIA3    | 102       | 1595      | 185     | 421      | 177     | 143     | 1205  | 168 | 21630 | Europe  | Essence   |
| MODUS     | 113       | 1598      | 188     | 380      | 170     | 159     | 1170  | 163 | 16950 | France  | Essence   |
| AVENSIS   | 115       | 1995      | 195     | 463      | 176     | 148     | 1400  | 155 | 26400 | Autres  | Diesel    |
| P407      | 136       | 1997      | 212     | 468      | 182     | 145     | 1415  | 194 | 23400 | France  | Essence   |
| CITRONC4  | 138       | 1997      | 207     | 426      | 178     | 146     | 1381  | 142 | 23400 | France  | Diesel    |
| MERC_A    | 140       | 1991      | 201     | 384      | 177     | 160     | 1340  | 141 | 24550 | Europe  | Diesel    |
| MONDEO    | 145       | 1999      | 215     | 474      | 194     | 143     | 1378  | 189 | 23100 | Europe  | Essence   |
| VECTRA    | 150       | 1910      | 217     | 460      | 180     | 146     | 1428  | 159 | 26550 | Europe  | Diesel    |
| PASSAT    | 150       | 1781      | 221     | 471      | 175     | 147     | 1360  | 197 | 27740 | Europe  | Essence   |
| VELSATIS  | 150       | 2188      | 200     | 486      | 186     | 158     | 1735  | 188 | 38250 | France  | Diesel    |
| LAGUNA    | 165       | 1998      | 218     | 458      | 178     | 143     | 1320  | 196 | 25350 | France  | Essence   |
| MEGANECC  | 165       | 1998      | 225     | 436      | 178     | 141     | 1415  | 191 | 27800 | France  | Essence   |
| P307CC    | 180       | 1997      | 225     | 435      | 176     | 143     | 1490  | 210 | 28850 | France  | Essence   |
| P607      | 204       | 2721      | 230     | 491      | 184     | 145     | 1723  | 223 | 40550 | France  | Diesel    |
| MERC_E    | 204       | 3222      | 243     | 482      | 183     | 146     | 1735  | 183 | 46450 | Europe  | Diesel    |
| CITRONC5  | 210       | 2496      | 230     | 475      | 178     | 148     | 1589  | 238 | 33000 | France  | Essence   |
| PTCRUISER | 223       | 2429      | 200     | 429      | 171     | 154     | 1595  | 235 | 27400 | Autres  | Essence   |
| MAZDARX8  | 231       | 1308      | 235     | 443      | 177     | 134     | 1390  | 284 | 34000 | Autres  | Essence   |
| BMW530    | 231       | 2979      | 250     | 485      | 185     | 147     | 1495  | 231 | 46400 | Europe  | Essence   |
| ALFA 156  | 250       | 3179      | 250     | 443      | 175     | 141     | 1410  | 287 | 40800 | Europe  | Essence   |

Objectif de l'étude : Identifier les catégories (groupes) de voitures « similaires » (c.-à-d. qui se ressemblent au regard de leurs propriétés)

Objectif: identifier des groupes d'observations ayant des caractéristiques similaires (ex. comportement d'achats de clients, caractère « polluant » de véhicules, etc.)

### On veut que:

- (1) Les individus dans un même groupe se ressemblent le plus possible
- (2) Les individus dans des groupes différents se démarquent le plus possible

#### Pourquoi?

- → Identifier des structures sous-jacentes dans les données
- → Résumer des comportements
- → Affecter de nouveaux individus à des catégories
- → Identifier les cas totalement atypiques

### Classification automatique

Interprétation des groupes



# Sur quelles informations repose l'interprétation des résultats?

Dans quelle mesure ces groupes sont-ils éloignés les uns des autres ?

Quelles sont les caractéristiques qui rapprochent les individus du même groupe, et qui différencient les individus appartenant à des groupes distincts?

Au regard des variables actives qui ont servi à constituer les groupes.

Mais aussi au regard des variables illustratives qui amènent un autre point de vue sur la constitution des classes.

### Classification automatique

Autre exemple dans le plan





Cet exemple permettra de comprendre la nature des calculs réalisés pour caractériser la partition et les groupes.

# Caractérisation univariée

Interprétation à l'aide des variables prises individuellement

Variables quantitatives

Evaluer dans quelle mesure la variable – prise individuellement – « contribue » à la constitution de la partition.



L'idée est de mesurer la dispersion de la variable attribuable à l'appartenance aux groupes



Equation d'analyse de variance

Variabilité totale = Variabilité inter - classes + Variabilité intra - classe SCT = SCE + SCR

$$\sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{g=1}^{G} n_g (\bar{x}_g - \bar{x})^2 + \sum_{g=1}^{G} \sum_{i=1}^{n_g} (x_i - \bar{x}_g)^2$$



Le rapport de corrélation  $\eta$  est défini par :

$$\eta^2 = \frac{SCE}{SCT}$$



 $\eta^2$  indique la proportion de variance de X expliquée par les groupes (o  $\leq \eta^2 \leq 1$ ). On peut l'interpréter (avec beaucoup de prudence) comme le pouvoir discriminant de la variable.



Variables quantitatives – Illustration sur le fichier des « autos »

### Moyennes conditionnelles

|           | G 1      | G 3      | G 2      | G 4      | % epl. |
|-----------|----------|----------|----------|----------|--------|
| poids     | 952.14   | 1241.50  | 1366.58  | 1611.71  | 85.8   |
| longueur  | 369.57   | 384.25   | 448.00   | 470.14   | 83.0   |
| cylindree | 1212.43  | 1714.75  | 1878.58  | 2744.86  | 81.7   |
| puissance | 68.29    | 107.00   | 146.00   | 210.29   | 73.8   |
| vitesse   | 161.14   | 183.25   | 209.83   | 229.00   | 68.2   |
| largeur   | 164.43   | 171.50   | 178.92   | 180.29   | 67.8   |
| hauteur   | 146.29   | 162.25   | 144.00   | 148.43   | 65.3   |
| prix      | 11930.00 | 18250.00 | 25613.33 | 38978.57 | 82.48  |
| CO2       | 130.00   | 150.75   | 185.67   | 226.43   | 59.51  |

<u>Remarque</u>: Ce n'était pas le propos ici, mais on notera une croissance des moyennes conditionnelles dans le sens gauche – droite pour quasiment toutes les variables ( $G_1 < G_3 < G_2 < G_4$ ) (après réarrangement). A approfondir dans l'interprétation des groupes.

La constitution des groupes s'est appuyée avant tout sur le poids, la longueur et la cylindrée (les autres variables contribuent quand même pas mal).

La segmentation se traduit par une différenciation des véhicules par les prix.

Variables qualitatives – V de Cramer

Une variable qualitative induit également une partition sur les observations. L'idée est de la confronter avec celle issue de la classification automatique.

Un tableau de contingence fait l'affaire.

| Nombre de Group∢Étiquet(▼ |        |         |               |  |  |  |  |
|---------------------------|--------|---------|---------------|--|--|--|--|
| Étiquettes de lig         | Diesel | Essence | Total général |  |  |  |  |
| G1                        | 3      | 4       | 7             |  |  |  |  |
| G2                        | 4      | 8       | 12            |  |  |  |  |
| G3                        | 2      | 2       | 4             |  |  |  |  |
| G4                        | 3      | 4       | 7             |  |  |  |  |
| Total général             | 12     | 18      | 30            |  |  |  |  |



Manifestement, la partition ne se traduit pas par une différenciation selon le type de carburant.



Le KHI-2 d'indépendance permet de caractériser la liaison



Le v de Cramer est une mesure issue du KHI-2 qui varie entre o (absence de liaison) et 1 (liaison parfaite)

$$v = \sqrt{\frac{\chi^2}{n \times \min(G - 1, L - 1)}}$$

Variables qualitatives - Tableaux des profils

Le tableau des profils donne une idée de la nature des groupes.

| Nombre de Group Étiquettes 🔻 |        |         |               |  |  |  |  |
|------------------------------|--------|---------|---------------|--|--|--|--|
| Étiquettes de li             | Diesel | Essence | Total général |  |  |  |  |
| G1                           | 42.86% | 57.14%  | 100.00%       |  |  |  |  |
| G2                           | 33.33% | 66.67%  | 100.00%       |  |  |  |  |
| G3                           | 50.00% | 50.00%  | 100.00%       |  |  |  |  |
| G4                           | 42.86% | 57.14%  | 100.00%       |  |  |  |  |
| Total général                | 40.00% | 60.00%  | 100.00%       |  |  |  |  |

Globalement, 60% des véhicules carburent à l'« essence ». La proportion passe à 66.67% dans le groupe **G2**.

| Nombre de Group Étiquettes 🔻 |         |         |               |  |  |  |  |  |
|------------------------------|---------|---------|---------------|--|--|--|--|--|
| Étiquettes de li             | Diesel  | Essence | Total général |  |  |  |  |  |
| G1                           | 25.00%  | 22.22%  | 23.33%        |  |  |  |  |  |
| G2                           | 33.33%  | 44.44%  | 40.00%        |  |  |  |  |  |
| G3                           | 16.67%  | 11.11%  | 13.33%        |  |  |  |  |  |
| G4                           | 25.00%  | 22.22%  | 23.33%        |  |  |  |  |  |
| Total général                | 100.00% | 100.00% | 100.00%       |  |  |  |  |  |

44.44% des véhicules à essence se retrouvent dans le groupe **G2**, lequel pèse pour 40% de la population.



Cette idée de comparaison de proportions sera approfondie dans l'interprétation des groupes.

Variables quantitatives – Valeur test

Les échantillons sont imbriqués. Au dénominateur, nous avons l'écart type de la moyenne dans le cas d'un tirage sans remise de  $n_k$  éléments parmi n.



L'écart est-il « significatif » ?

Comparaison des moyennes. Moyenne de la variable pour un groupe vs. Moyenne globale de la variable.

$$vt = \frac{\overline{x}_g - \overline{x}}{\sqrt{\frac{n - n_g}{n - 1} \times \frac{\sigma^2}{n_g}}}$$

- $\sigma^2$  est la variance empirique calculée sur l'ensemble de l'échantillon
- n, n<sub>k</sub> sont respectivement la taille de l'échantillon global, et celle du groupe « k »

La statistique suit très approximativement une loi normale (|vt| > 2, écart significatif à 5%).



Attention, contrairement aux illustratives, un test d'écart n'a pas vraiment de sens pour les variables actives parce qu'elles ont participé à la création du groupe.



### Variables quantitatives – Valeur test – Exemple

### On identifie mieux la nature des groupes.

|            |            | G1               |                  |            |              | G3               |                  |
|------------|------------|------------------|------------------|------------|--------------|------------------|------------------|
| Examples   |            |                  | [ 23.3 %] 7      | Examples   |              |                  | [ 13.3 %] 4      |
| Att - Desc | Test value | Group            | Overral          | Att - Desc | Test value   | Group            | Overral          |
| Continuous | attributes | : Mean (StdDev)  |                  | Continuou  | s attributes | : Mean (StdDev)  |                  |
| hauteur    | -0.69      | 146.29 (4.35)    | 148.00 (7.36)    | hauteur    | 4.09         | 162.25 (4.57)    | 148.00 (7.36)    |
| cylindree  | -3.44      | 1212.43 (166.63) | 1903.43 (596.98) | poids      | -0.58        | 1241.50 (80.82)  | 1310.40 (252.82) |
| puissance  | -3.48      | 68.29 (14.97)    | 137.67 (59.27)   | cylindree  | -0.67        | 1714.75 (290.93) | 1903.43 (596.98) |
| vitesse    | -3.69      | 161.14 (12.02)   | 199.40 (30.77)   | largeur    | -0.91        | 171.50 (3.70)    | 174.87 (7.85)    |
| longueur   | -3.75      | 369.57 (17.32)   | 426.37 (44.99)   | puissance  | -1.09        | 107.00 (27.07)   | 137.67 (59.27)   |
| largeur    | -3.95      | 164.43 (2.88)    | 174.87 (7.85)    | vitesse    | -1.11        | 183.25 (15.15)   | 199.40 (30.77)   |
| poids      | -4.21      | 952.14 (107.13)  | 1310.40 (252.82) | longueur   | -1.98        | 384.25 (10.66)   | 426.37 (44.99)   |

| 5          | - • • •      | (=,              |                  |            |              |                  | (,               |
|------------|--------------|------------------|------------------|------------|--------------|------------------|------------------|
| poids      | -4.21        | 952.14 (107.13)  | 1310.40 (252.82) | longueur   | -1.98        | 384.25 (10.66)   | 426.37 (44.99)   |
|            |              |                  |                  |            |              |                  |                  |
|            |              | G2               |                  |            |              | G4               |                  |
| Examples   |              |                  | [ 40.0 %] 12     | Examples   |              |                  | [ 23.3 %] 7      |
| Att - Desc | Test value   | Group            | Overral          | Att - Desc | Test value   | Group            | Overral          |
| Continuou  | s attributes | : Mean (StdDev)  |                  | Continuous | s attributes | : Mean (StdDev)  |                  |
| largeur    | 2.27         | 178.92 (5.12)    | 174.87 (7.85)    | cylindree  | 4.19         | 2744.86 (396.51) | 1903.43 (596.98) |
| longueur   | 2.11         | 448.00 (19.90)   | 426.37 (44.99)   | puissance  | 3.64         | 210.29 (31.31)   | 137.67 (59.27)   |
| vitesse    | 1.49         | 209.83 (20.01)   | 199.40 (30.77)   | poids      | 3.54         | 1611.71 (127.73) | 1310.40 (252.82) |
| poids      | 0.98         | 1366.58 (83.34)  | 1310.40 (252.82) | longueur   | 2.89         | 470.14 (24.16)   | 426.37 (44.99)   |
| puissance  | 0.62         | 146.00 (39.59)   | 137.67 (59.27)   | vitesse    | 2.86         | 229.00 (21.46)   | 199.40 (30.77)   |
| cylindree  | -0.18        | 1878.58 (218.08) | 1903.43 (596.98) | largeur    | 2.05         | 180.29 (5.71)    | 174.87 (7.85)    |
| hauteur    | -2.39        | 144.00 (3.95)    | 148.00 (7.36)    | hauteur    | 0.17         | 148.43 (5.74)    | 148.00 (7.36)    |



Calcul étendu aux variables illustratives



|        |              | G1        |             |        |              | G3          |             |         |              | G2        | •            |        |              | G4        |             |
|--------|--------------|-----------|-------------|--------|--------------|-------------|-------------|---------|--------------|-----------|--------------|--------|--------------|-----------|-------------|
| Examp  | oles         |           | [ 23.3 %] 7 | Examp  | les          |             | [ 13.3 %] 4 | Example | es           |           | [ 40.0 %] 12 | Examp  | les          |           | [ 23.3 %] 7 |
| Att -  | Test value   | Group     | Overral     | Att -  | Test value   | Group       | Overral     | Att -   | Test value   | Group     | Overral      | Att -  | Test value   | Group     | Overral     |
| Contir | nuous attrib | utes:Mea  | an          | Contir | nuous attrib | utes : Mean | (StdDev)    | Continu | uous attribu | tes : Mea | n (StdDev)   | Contin | nuous attrib | utes:Mea  | an          |
| CO2    | -3.08        | 130.00    | 177.53      | CO2    | -1.23        | 150.75      | 177.53      | CO2     | 0.78         | 185.67    | 177.53       | prix   | 4            | 38978.57  | 24557.33    |
| COZ    | -3.06        | (11.53)   | (45.81)     | COZ    | -1.23        | (9.54)      | (45.81)     | COZ     | 0.76         | (38.49)   | (45.81)      | prix   | 4            | (6916.46) | (10711.73)  |
| prix   | -3.5         | 11930.00  | 24557.33    | prix   | -1.24        | 18250.00    | 24557.33    |         | 0.43         | 25613.33  |              | CO2    | 3.17         | 226.43    | 177.53      |
| ргіх   | -3.5         | (3349.53) | (10711.73)  | prix   | -1.24        | (4587.12)   | (10711.73)  | prix    | 0.43         | (3879.64) | (10711.73)   | COZ    | 3,17         | (34.81)   | (45.81)     |

Variables quantitatives – Valeur test – Exemple



Plus que la valeur calculée des VT, ce sont les disparités et concomitances entre classes qui doivent attirer notre attention.



Il y a 4 classes, mais on se rend compte surtout qu'il y a deux types de « profils » de véhicules dans ce fichier de données. La **hauteur** joue un rôle essentiel dans cette distinction.

14

# $ar{z}_{ec{x}}$



## Caractérisation des groupes

Variables quantitatives – Enrichir l'analyse

On peut effectuer une comparaison deux à deux.

Le plus important est de savoir lire correctement les résultats !!!

Ou une comparaison une contre les autres.

Un groupe vs. Les autres – Taille d'effet (effect size) de Cohen (1988)

La valeur test est très sensible à la taille de l'échantillon, ex. si tous les effectifs sont multipliés  $vt = \frac{x_g - x}{\sqrt{\frac{n - n_g}{n - 1} \times \frac{\sigma^2}{n_g}}} = \sqrt{n_g} \times \frac{x_g - x}{\sqrt{\frac{n - n_g}{n - 1} \times \sigma^2}}$  par 100, la VT sera multipliée par 10 =  $\sqrt{100}$ 

→ Tous les écarts deviennent « significatifs ».

$$vt = \frac{\overline{x}_g - \overline{x}}{\sqrt{\frac{n - n_g}{n - 1} \times \frac{\sigma^2}{n_g}}} = \sqrt{n_g} \times \frac{\overline{x}_g - \overline{x}}{\sqrt{\frac{n - n_g}{n - 1} \times \sigma^2}}$$

La taille d'effet permet de dépasser cet écueil en se focalisant sur l'écart standardisé, nonobstant l'effectif des groupes.

$$es = \frac{\overline{x}_k - \overline{x}_{autres}}{\sigma}$$



- La taille d'effet est insensible à la taille de la base traitée.
   La valeur s'interprète en différences en « écarts-type » (ex. o.8 ⇔ l'écart est équivalent à o.8 fois l'écart-type). Comparaisons possibles d'une variable à l'autre.
   Quantifier les écarts en probabilités est possible également via les quantiles de la
  - loi normale (cf. page suivante).

X[, 2]

4

φ

-2

 $\bar{x}_{rouge}$ 

Un groupe vs. Les autres - Taille d'effet - Illustration et lecture des résultats

# Sous hypothèse de normalité des distributions!



Φ est la fonction de répartition de la loi normale centrée et réduite. Plus rigoureusement, on utiliserait l'écart-type intra (pooled) des écartstype de « rouge » et « autres ».



$$U_3 = \Phi(es) = 0.03$$

Il y a 3% de chances que les valeurs de (« bleu » et « vert ») soient en dessous de la médiane des valeurs de « rouge ». Ou 97% de chances qu'elles soient au dessus.



 $\bar{x}_{autres}$ 



 $U_2 = \Phi(|es|/2) = 0.827$ . 82.7% des valeurs les plus élevées de « autres » excèdent 82.7% des plus faibles valeurs de « rouge ».



 $U_1 = \frac{2U_2 - 1}{U_2} = 0.79$ . 79% des deux distributions ne se recouvrent pas (ou 21% des distributions se chevauchent).



D'autres variantes d'interprétations séduisantes existent (ex. CLES 'Common Language Effect Size' de McGraw et Wong, 1992)

Variables qualitatives – Valeur test

Basée sur la comparaison des proportions.
Proportion dans le groupe vs. Proportion dans la population globale.

| Nombre de Grc Étiquett ▼ |        |         |               |  |  |  |  |
|--------------------------|--------|---------|---------------|--|--|--|--|
| Étiquettes d             | Diesel | Essence | Total général |  |  |  |  |
| G1                       | 42.86% | 57.14%  | 100.00%       |  |  |  |  |
| G2                       | 33.33% | 66.67%  | 100.00%       |  |  |  |  |
| G3                       | 50.00% | 50.00%  | 100.00%       |  |  |  |  |
| G4                       | 42.86% | 57.14%  | 100.00%       |  |  |  |  |
| Total général            | 40.00% | 60.00%  | 100.00%       |  |  |  |  |

| Nombre de Grc Étiquett |        |         |               |  |  |  |  |
|------------------------|--------|---------|---------------|--|--|--|--|
| Étiquettes d           | Diesel | Essence | Total général |  |  |  |  |
| G1                     | 3      | 4       | 7             |  |  |  |  |
| G2                     | 4      | 8       | 12            |  |  |  |  |
| G3                     | 2      | 2       | 4             |  |  |  |  |
| G4                     | 3      | 4       | 7             |  |  |  |  |
| Total général          | 12     | 18      | 30            |  |  |  |  |

| Fréquence du caractère dans le                                                                          | Fréquence du caractère dans la |
|---------------------------------------------------------------------------------------------------------|--------------------------------|
| groupe (ex. proportion des voitures                                                                     | population (ex. proportion des |
| à essence <u>parmi</u> les <b>G</b> 2 = 66.67%)                                                         | voitures à essence = 60%)      |
| $vt = \sqrt{n_g} \times \frac{p_{l/g} - p_l}{\sqrt{\frac{n - n_g}{n - 1}} \times p_l \times (n - n_g)}$ | $(1-p_l)$                      |

$$vt = \sqrt{12} \times \frac{0.6667 - 0.6}{\sqrt{\frac{30 - 12}{30 - 1}} \times 0.6 \times (1 - 0.6)} = 0.5986$$



*vt* suit une loi normale de manière très approximative, surtout valable pour les variables illustratives. Valeur critique ±2 pour un test bilatéral à 5%



*vt* est aussi très sensible à la taille de l'échantillon, la notion de taille d'effet peut être aussi utilisée pour les comparaisons de proportions (Cohen, chapitre 6).

# Caractérisation multivariée

Prendre en compte le rôle conjoint des variables (qui ne sont certainement pas indépendantes deux à deux)

Pourcentage d'inertie expliquée

$$R^2 = \frac{4116.424}{4695.014} = 0.877$$



Remarque: il faut que les classes soient convexes pour que la mesure ait vraiment un sens c.-à.d. que le barycentre soit bien « au milieu » des points.

### Relation fondamentale (Théorème d'Huygens)

Inertie totale = Inertie inter - classes + Inertie intra - classe

$$T = B + W$$

$$\sum_{i=1}^{n} d^{2}(i,G) = \sum_{g=1}^{G} n_{g} d^{2}(g,G) + \sum_{g=1}^{G} \sum_{i=1}^{n_{g}} d^{2}(i,g)$$



Dispersion des barycentres conditionnels autour du barycentre global.

Dispersion à l'intérieur de chaque groupe.



Généralisation multivariée du carré du rapport de corrélation.

$$R^2 = \frac{B}{T}$$
 Pourcentage d'inertie expliquée par la partition.



La valeur en soi est une indication, R<sup>2</sup> permet surtout de comparer des solutions différentes (comportant le même nombre de classes).

Evaluer la proximité entre les classes



Distance entre centres de classes (carré de la distance euclidienne ici).

|    | G1 | G2    | G3    |
|----|----|-------|-------|
| G1 | -  | 15.28 | 71.28 |
| G2 |    | -     | 37.61 |
| G3 |    |       | -     |

La proximité entre centres de classes doit corroborer les informations proposées entres autres par la caractérisation univariée. Sinon problème.



| G1                                    |            |             |              | G2                                    |            |             |               | G3                                    |            |              |               |
|---------------------------------------|------------|-------------|--------------|---------------------------------------|------------|-------------|---------------|---------------------------------------|------------|--------------|---------------|
| Examples                              |            |             | [ 32.7 %] 98 | Examples                              |            |             | [ 34.0 %] 102 | Examples                              |            |              | [ 33.3 %] 100 |
| Att - Desc                            | Test value | Group       | Overral      | Att - Desc                            | Test value | Group       | Overral       | Att - Desc                            | Test value | Group        | Overral       |
| Continuous attributes : Mean (StdDev) |            |             |              | Continuous attributes : Mean (StdDev) |            |             |               | Continuous attributes : Mean (StdDev) |            |              |               |
| X2                                    | 9.78       | 2.05 (0.97) | -0.59 (3.26) | X2                                    | 6.54       | 1.13 (1.03) | -0.59 (3.26)  | X1                                    | 10.12      | 4.92 (1.06)  | 3.06 (2.26)   |
| X1                                    | -15.32     | 0.18 (0.82) | 3.06 (2.26)  | X1                                    | 5.1        | 3.98 (1.00) | 3.06 (2.26)   | X2                                    | -16.3      | -4.93 (1.01) | -0.59 (3.26)  |

Couplage avec une analyse factorielle



Une analyse factorielle (ACP ici puisque toutes les variables actives sont quantitatives) permet d'obtenir une vue synthétique des données, idéalement dans le plan.



On se rend compte que sur le premier axe, on distingue quasiparfaitement les classes.



L'ennui est qu'à la difficulté d'interprétation des classes s'ajoute la difficulté d'interprétation des axes factoriels.

Couplage avec l'ACP – Données voitures



Le 1<sup>er</sup> axe est dominé par l'effet de quasiment toutes les variables (effet taille). Le 2<sup>nd</sup> est porté par la variable « hauteur ». On dispose de 86.83% de l'information dans le 1<sup>er</sup> plan factoriel (71.75 + 15.08).





₹Ricco Rakotomalala

Tutoriels Tanagra - http://tutoriels-data-mining.blogspot.ii/

Utilisation des méthodes supervisées - Ex. Analyse discriminante



Prédire les groupes à l'aide d'une méthode supervisée, en profiter pour en extraire une interprétation (via les coefficients de l'analyse discriminante par ex.). On dispose directement d'une vue globale de l'influence des variables.

<u>lère étape</u>: on a de la chance (parce que les classes sont convexes), la discrimination est parfaite, l'AD reproduit fidèlement la constitution des classes.

Classes prédites (analyse discriminante)

| ees            |       | G3 | G1 | G2 | G4 | Total |  |
|----------------|-------|----|----|----|----|-------|--|
| Slasses observ | G3    | 4  | 0  | 0  | 0  | 4     |  |
|                | G1    | 0  | 7  | 0  | 0  | 7     |  |
|                | G2    | 0  | 0  | 12 | 0  | 12    |  |
|                | G4    | 0  | 0  | 0  | 7  | 7     |  |
|                | Total | 4  | 7  | 12 | 7  | 30    |  |

<u>2ème étape</u>: interprétation des coefficients

| nciust(, ward.b2)        |              |              |              |              |                        |         | Semblent conerents avec les      |
|--------------------------|--------------|--------------|--------------|--------------|------------------------|---------|----------------------------------|
| Classification functions |              |              |              |              | Statistical Evaluation |         | analyses précédentes. Bien !     |
| Attribute                | G1           | G3           | G2           | G4           | F(3,20)                | p-value | unalyses precedentes. Bien:      |
| puissance                | 0.688092     | 0.803565     | 1.003939     | 1.42447      | 8.37255                | 0.001   |                                  |
| cylindree                | -0.033094    | -0.027915    | -0.019473    | 0.004058     | 8.19762                | 0.001 📈 | Super étrange comme résultat.    |
| vitesse                  | 3.101157     | 3.33956      | 2.577176     | 1.850096     | 9.84801                | 0.000   | Super etrange comme resoltat.    |
| longueur                 | -1.618533    | -1.87907     | -1.383281    | -1.205849    | 6.94318                | 0.002 🗡 |                                  |
| largeur                  | 12.833058    | 13.640492    | 13.2026      | 13.311159    | 1.21494                | 0.330   | /                                |
| hauteur                  | 19.56544     | 21.647641    | 19.706549    | 20.206701    | 16.09182               | 0.000   | Pourquoi sont non significatifs? |
| poids                    | -0.145374    | -0.122067    | -0.130198    | -0.118567    | 0.43201                | 0.732   |                                  |
| constant                 | -2372.594203 | -2816.106674 | -2527.437401 | -2689.157002 |                        |         | •                                |

A la difficulté de reproduire exactement la partition s'ajoute les fragilités de la méthode supervisée. Dans cet exemple, clairement, des problèmes de colinéarité faussent les coefficients de certaines variables.



### Conclusion

- Interpréter les classes est une étape incontournable de la classification automatique.
- Les méthodes univariées ont l'avantage de la simplicité mais ne tiennent pas compte de l'effet conjoint des variables.
- Les méthodes multivariées proposent une vue plus globale mais ne sont pas toujours faciles à appréhender.
- En pratique, il faut s'appuyer sur les deux approches pour éviter de passer à côté d'informations importantes.
- Les techniques basées sur des comparaisons de moyennes et de barycentres ne tiennent la route que si les classes sont convexes (nuages de points conditionnels relativement ovoïdes).

# Bibliographie

### Ouvrages

Chandon J.L., Pinson S., « Analyse typologique – Théorie et applications », Masson, 1981.

Cohen J., « Statistical Power Analysis for the Behavorial Science », 2<sup>nd</sup> Ed., Psychology Press, 1988.

Gan G., Ma C., Wu J., « Data Clustering – Theory, Algorithms and Applications », SIAM, 2007.

L. Lebart, A. Morineau, M. Piron, « Statistique exploratoire multidimensionnelle », Dunod, 2000.

### **Tutoriels**

- « <u>Classification automatique sous R</u> », octobre 2015.
- « <u>Classification automatique sous Python</u> », mars 2016.

« Interpréter la valeur test », avril 2008.