

Universidade Federal de Goiás Instituto de Matemática e Estatística Matemática

Matriz Curricular: MAT-BV-2016 Plano de Disciplina Ano Letivo: 2024 - 1º Semestre

Dados da Disciplina

	Código	Nome	Carga Horária	
		Nome	Teórica	Prática
	130	INTRODUÇÃO À COMPUTAÇÃO - VESPERTINO	32	32

Prof(a): Daniel Lima Ventura

Turma:

Ementa

Conceitos básicos: Noções de lógica de programação; tipos primitivos; constantes e variáveis; operadores; expressões. Comandos básicos: atribuição, entrada e saída. Estruturas de controle: seleção e repetição. Estruturas de dados homogêneas: vetores e matrizes. Modularização. Desenvolvimento de programas utilizando uma linguagem de alto nível.

Objetivo Geral

Fornecer ao aluno elementos básicos sobre computação, em particular o estudo de algoritmos e implementação de programas.

Objetivos Específicos

- 1. Compreender a estrutura lógica de uma linguagem de programação;
- 2. Elaborar algoritmos a partir da descrição textual de pequenos problemas;
- 3. Desenvolver programas em uma linguagem de programação;
- 4. Selecionar estruturas de dados simples para a implementação dos programas;
- 5. Elaborar algoritmos específicos para a solução de problemas numéricos e não numéricos.

Relação com Outras Disciplinas

A aplicação dos conceitos aprendidos na disciplina, e desenvolvidas na disciplina de Algoritmo e Estruturas de Dados I, permitem o discente desenvolver soluções algorítmicas que podem ser aplicadas às disciplinas do curso, tais como: Cálculo Numérico, Programação Linear, Álgebra Linear Computacional, Introduções às Modelagens Matemática e Estatística, Métodos Numéricos para Equações Diferenciais, dentre outras.

Programa

- 0. Histórico da Computação
- 1. Introdução e Conceitos básicos
- 2. Estrutura sequencial e seleção
- 3. Estrutura de Repetição
- 4. Estrutura de dados
- 5. Modularização

Em todas as unidades será utilizada a linguagem de programação C.

Procedimentos Didáticos

Legenda	Descrição	Objetivo
AEX	Aula teórica	Transmitir conhecimento utilizando quadro ou slides.
AP	Aula prática	Proporcionar ao aluno a aplicação prática do conteúdo ministrado em aula teórica.
ED	Estudo dirigido	Desenvolver a capacidade analítica, capacidade de síntese, de avaliação crítica e de análise.
OTR	Outros	Transmitir conhecimento utilizando quadro ou slides.
RE	Aula teórica com resolução de exercícios	Desenvolver o raciocínio lógico, criatividade e capacidade de abstração e a capacidade de identificar, analisar e projetar soluções de problemas.
SE	Seminários	Desenvolver o raciocínio lógico, criatividade, capacidade de abstração, capacidade para identificar, analisar, projetar soluções de problemas, a capacidade de comunicação oral e a capacidade de trabalhar em grupo.
TG	Trabalho em grupo	Desenvolver a capacidade de comunicação oral e escrita. Capacidade de trabalhar em grupo.

Conteúdo Programático / Cronograma

Inicio	Proc. Didático	Tópico	# Aul.
18/03/24	OTR	Acolhimento Ingressantes IME	4
25/03/24	AEX, RE, AP	Apresentação da disciplina; Introdução	4
01/04/24	AEX, RE, AP	Conceitos Básicos	
15/04/24	AEX, RE, AP	Estruturas de Seleção	10
06/05/24	AEX, RE, AP	Estruturas de Repetição.	
27/05/24	AEX, RE, AP	Estruturas de Dados (introdução)	
24/06/24	AEX, RE, AP	Modularização	10
		Total	64

Critério de Avaliação

Nesta disciplina será adotado o critério de avaliação continuada. Para a composição da nota final (NF) serão consideradas as atividades em sala e/ou extraclasse (atividades supervisionadas) e o trabalho final de implementação:

NF = (NA + 2*NT)/3

NA = Média aritmética das atividades em sala ou extraclasse.

NT = Nota do Trabalho Final (em grupo).

Horário de atendimento: segundas das 13.30 às 14.30 (INF 106) (ATIVIDADES SUPERVISIONADAS)

Observações:

- Será atribuída a nota 0,0 (zero) a qualquer atividade ou trabalho não realizado ou não entregue na data estipulada. O pedido de segunda chamada deverá seguir as normas estipuladas pelo RGCG.
- O aluno que comparecer a pelo menos 75% das aulas estará aprovado por frequência.
- O aluno que obtiver média final maior ou igual a 6,0 (seis) estará aprovado por média.
- Os alunos que se envolverem em plágio (desvios de conduta, seja como facilitador ou como beneficiário) receberão nota 0 (zero) para a atividade correspondente. O caso poderá ser levado ao conhecimento da coordenação do curso, do Núcleo Docente Estruturante e do Conselho Diretor do Instituto de Matemática e Estatística para as providências cabíveis e legais.
- O pedido de segunda chamada deverá ser protocolado conforme condições estipuladas na Resolução CONSUNI específica (RGCG) em vigor.
- As atividades supervisionadas indicadas no cronograma referem-se às atividades práticas e devem ser desenvolvidas segundo o Art. 16 do RGCG, o qual considera que os cursos presenciais possuem cada hora-aula de 60 (sessenta) minutos, sendo 50 (cinquenta) minutos de aulas teóricas e práticas e 10 minutos de atividades acadêmicas supervisionadas.

Data da Realização das Provas

Entrega do Trabalho Final: 15/07/2024

Local de Divulgação dos Resultados das Avaliações

Sala de aula e/ou SIGAA.

Bibliografia Básica

- ASCENCIO, A. F. G. e CAMPOS, E. A. V Fundamentos da Programação de Computadores Algoritmos, Pascal e C/C++. Prentice Hall. 2007.
- DEITEL, H. M., DEITEL, P. J. Como Programar em C. LTC, 1999.
- FORBELLONE, A. L. V. e EBERSPACHER, H. F. Lógica de Programação A Construção de Algoritmos e Estrutura de Dados. 3ª Edição. Prentice Hall, 2005.
- SCHILDT, Herbert. C Completo e Total, 3a ed., Makron Books, SP 1996.

Bibliografia Complementar

- ASCENCIO, A. F. G. e CAMPOS, E. A. V. Fundamentos da Programação de Computadores: algoritmos, Pascal, C/C++ e Java / -. 2ª Edição. Prentice Hall, 2007.
- LOPES, Anita e GARCIA Guto, Introdução à Programação 500 Algoritmos Resolvidos, Editora Campus, 2002.
- MANZANO, José Augusto N. G. e Oliveira, J. F., Algoritmos Lógica para Desenvolvimento de Programação de Computadores, Editora Érica, São Paulo, 2011.
- CORMEN T. H. et al., Algoritmos-Teoria e Prática, 2a Edição, Editora Campus 2002.
- FARRER, H. et al. Algoritmos Estruturados. 3ª Edição. LTC, 1999.
- SOUZA, M. A. F. et al. Algoritmos e Lógica de Programação. C. Learning. 2008.
- SCHILDT, H.; C Completo e Total; Makron Books, 1996.

Bibliografia Sugerida

FORBELLONE, A. L. V. e EBERSPACHER, H. F. Lógica de Programação – A Construção de Algoritmos e Estrutura de Dados, 3ª ed.. Prentice Hall. 2005.

DAMAS, L. Linguagem C, 10^a ed.. Editora LTC, 2007.

ZIVIANI, N. Projeto de Algoritmos Com Implementações em Pascal e C, 2ª ed.. Cengage, 2007.

de SOUZA, M. A. F., GOMES, M. M., SOARES, M. V.. Algoritmos e Lógica da Programação, 3ª ed.. Cengage, 2019. CORMEN, T.H., LEISERSON, C. E., RIVEST, R. L., STEIN, C. Introduction to Algorithms, 4th ed., MIT Press, 2022.

Termo de Entrega	Termo de Aprovação	
Apresentado à Coordenação no dia	Aprovado em Reunião de CD no dia	
Prof(a) Daniel Lima Ventura Professor	Prof. Dr. Eliomar Araújo de Lima Diretor do Instituto de Informática	
Termo de Ho	omologação	
Data de Expedição: Goiânia, de	e	