

Logic to wumpus world Logical entailment α |= β means sentence α entails the sentence β. if and only if, in every model in which α is true, β is also true α is a stronger assertion than β β may be true at more places, α is false Sentence x = 0 entails the sentence xy = 0.

Logic to wumpus world • Entailment can be applied to derive • Conclusions - Opical Inference • The set of all consequences of KB as a haystack • \alpha as a needle. • Entailment is like the needle being in the haystack • Inference is like finding it.

Wumpus world in Propositional logic The immutable aspects of the wumpus world P_{x,y} is true if there is a pit in [x, y]. W_{x,y} is true if there is a wumpus in [x, y], dead or alive. B_{x,y} is true if the agent perceives a breeze in [x, y]. S_{x,y} is true if the agent perceives a stench in [x, y].

* There is no pit in [1,1]: * R1: ¬P1,1 * R4: ¬B1,1 * R5: B2,1 * R5: B2,1 * R3: B2,1 ⇔ (P1,2 ∨ P2,1). * R3: B2,1 ⇔ (P1,1 ∨ P2,2 ∨ P3,1)

Pros and cons of propositional logic ② Propositional logic has very limited expressive power ③ B1,1 ⇔ (P1,2 ∨ P2,1) ③ Unlike natural Language ⑤ E.g., cannot say "pits cause breezes in adjacent squares" except by writing one sentence for each square


```
First-order logic

Whereas propositional logic assumes the world contains marks

First-order logic (like natural language) assumes the world contains

Objects: people, houses, numbers, colors, baseball games, wars, ...

Relations: red, round, prime, brother of, bigger than, part of, comes between, ...

Functions: father of, best friend, one more than, plus, ...
```


All romans were either loyal to Caesar or hated him
 ∀x: Roman(x) -> layalto(x, Caesar) ∨ hate(x, Caesar)
 Logical expression P is true for each object in the model
 P is true for all possible extended interpretation from m
 x refers to each domain element in each extended interpretation
 The universally quantified sentence,
 Equivalent to asserting a whole list of individual implications

A common mistake to avoid ■ Typically, ⇒ is the main connective with ∀ ■ Common mistake: using ∧ as the main connective with ∀ ∀x At(x,VIT) ∧ Smart(x) means "Everyone is at VIT and everyone is smart" - Do not use ∧ with ∀x for "⇒" the implication is true whenever its premise is false.

■ 3 ■ Someone at VIT is smart: ■ Someone at VIT is smart: ■ $\exists x \text{ At}(x,VIT) \land Smart(x)$ \$ ■ Equivalent to the disjunction of instantiations of PAt(KingJohn,VIT) \land Smart(KingJohn) At(Richard,VIT) \land Smart(Richard) At(Kingard,VIT) \land Smart(Richard) At(VIT,VIT) \land Smart(VIT) ... one sentence equal to many of prepositional logic with OR relation to all the objects Point of the preposition of the prep

A common mistake to avoid ■ Typically, ∧ is the main connective with ∃ ■ Common mistake: using ⇒ as the main connective with ∃: ■ Common mistake: using ⇒ as the main connective with ∃: ■ X At(x,VIT) ⇒ Smart(x) ■ One additional meaning, ■ Smart for object x is true even if anyone who is not at VIT! ■ Even if At(x,VIT) is false, Smart(x) is true.

Properties of quantifiers Some one like Broccoli ∃x Likes(x,Broccoli) There is no one who does not like Broccoli ¬∀x ¬Likes(x,Broccoli) ¬∀x ¬Likes(x,Broccoli) Properties of quantifiers Squantifier duality: Each of ∀ , ∃ can be expressed using the other qualifier Every one like icecream Vs. ∀x Likes(x,IceCream) There is no one who does not like ice cream ¬∃x ¬Likes(x,IceCream)

FOL Applications

■ Some students took French in spring 2001. $\exists x \text{ Student}(x) \land \text{ Takes}(x, F, \text{ Spring2001})$ ■ Every student who takes French passes it. $\forall x, s \text{ Student}(x) \land \text{ Takes}(x, F, s) \Rightarrow \text{ Passes}(x, F, s).$

FOL Applications

Only one student took Greek in spring 2001.

∃x Student(x)∧Takes(x, G, Spring2001)

∧ ∀y y≠x ⇒ ¬Takes(y, G, Spring2001)

No person buys an expensive policy.

∀x, y, z Person(x) ∧ Policy(y) ∧ Expensive(z) ⇒

¬Buys(x, y, z).

FOL - Wumpus world • First-order sentence stored in the KB • the percept and the time at which it occurred • Percept([Stench, Breeze, Glitter, None, None], 5) • Actions • Turn(Right), Turn(Left), Forward, Shoot, Grab, Climb • Best action query • ASKVARS(3 a BestAction(a, 5)) • Returns a binding list • {a/Grab}

FOL – Wumpus world • Current state from percept data • \forall t, s, g, m, c Percept([s, Breeze, g, m, c], t) \Rightarrow Breeze(t) • \forall t, s, b, m, c Percept([s, b, Glitter, m, c], t) \Rightarrow Glitter(t) • Reflex behavior • \forall t Glitter(t) \Rightarrow BestAction(Grab, t) • Squares Squares, • Adjacency • \forall x, y, a, b Adjacent([x, y], [a, b]) \Leftrightarrow (x = a \land (y = b - 1 \lor y = b + 1)) \lor (y = b \land (x = a - 1 \lor x = a + 1))

