Analyse anancée

Locally convex spaces

Question 1/19

Basic properties/example of bounded sets

Réponse 1/19

A subset of a normed space is bounded iff it is contained in B(0,R) for R>0 $\{u_n, n \in \mathbb{N}\}\$ for (u_n) convergent is bounded A finite union/sum of bounded sets is bounded A compact set is bounded A subset A of a Fréchet space of semi-norms (p_n) is bounded iff there exists (M_n) such that for all $u \in A$, $p_n(a) \leq M_n$

Question 2/19

Necessary condition for X to be a Fréchet space

Réponse 2/19

If X is endowed with a family of separating semi-norms for which the space is complete then X is a Fréchet space

Question 3/19

Topological properties of hyperplanes

Réponse 3/19

Hyperplanes are dense or closed
Dense iff the associated linear map is
continuous

Question 4/19

Properties of K + F with $K \subseteq X$ compact and $F \subseteq X$ closed

Réponse 4/19

K + F is closed

Question 5/19

Existence of symmetric neighbourhoods

Réponse 5/19

If W is a neighbourhood of 0 then there exists a neighbourhood V of 0 such as V=-V and $V+V\subseteq W$

Question 6/19

Separation of compac and closed sets in a TVS

Réponse 6/19

If X is a TVS, K is a compact subset of X and F a closed subset of X then there exists a neighbourhood V of 0 such that $(K+V)\cap (F+V)=\varnothing$

Question 7/19

Bounded set

Réponse 7/19

A is bounded if for all neighbourhood V of 0, there exists $t_0 > 0$ such that, for all $t \ge t_0$, $A \subseteq tV$

A is bounded if for all neighbourhood V of 0, there exists t > 0 such that $A \subseteq tV$

Question 8/19

Link between \overline{A} , \overline{B} and $\overline{A+B}$

Réponse 8/19

$$\overline{A} + \overline{B} \subseteq \overline{A + B}$$

Question 9/19

Properties of \overline{A} and \mathring{A} when A is convex

Réponse 9/19

$$\overline{A}$$
 and \mathring{A} are convex
If $\mathring{A} \neq \emptyset$ then $\mathring{A} = \overline{A}$

Question 10/19

Properties of $p_A: X \longrightarrow \mathbb{R}_+$ $u \longmapsto \inf(\{t > 0, u \in tA\})$ for $A \subseteq X$ absorbing

Réponse 10/19

 p_A is well defined and positively homogeneous, $p_A(0) = 0$ and p_A is sub-additive If A is convex, $\{p_A(x)<1\}\subseteq A\subseteq \{p_A(x)\leqslant 1\}$ and if A is open then $A = \{p_A(x) < 1\}$ If A is convex and balanced, p_A is a semi-norm If X is a normed space and A is a neighbourhood of the origin then there exists $K \geqslant 0$ such that $p_A(u) \leqslant K \|u\|_X$

Question 11/19

Bounded map

Réponse 11/19

A map is bounded if it maps bounded sets to bounded sets

Question 12/19

Linear functional

Réponse 12/19

Linear map $X \to \mathbb{K}$ with X a K-vector space

Question 13/19

 $A \subseteq X$ is absorbing

Réponse 13/19

$$\forall u \in X, \exists t > 0, tu \in A$$

Question 14/19

Hyperplane

Réponse 14/19

Kernel of a non-trivial linear map It has dimension 1 (the converse holds)

Question 15/19

Link between bounded and continuous linear maps

Réponse 15/19

A continuous linear map is bounde A bounded linear map of a normed vector space is bounded In a space with a compatible metric invariant by translation, a bounded linear map is continuous iff it is sequentially continuous at 0

Question 16/19

 $A \subseteq X$ is balanced

Réponse 16/19

$$\forall |\lambda| \leqslant 1, \lambda A \subseteq A$$

Question 17/19

Properties of A + U with $A \subseteq X$ and $U \subseteq X$ open

Réponse 17/19

A+U is open

Question 18/19

 $A \subseteq X$ is convex

Réponse 18/19

$$tA + (1-t)A \subseteq A$$
 for all $t \in [0,1]$

Question 19/19

Fréchet space

Réponse 19/19

Topological vector space with a compatible metric, that is invariant by translation and with which the space is complete