Running

Modeling of Human Movement MCEN 4228/5228 Fall 2021

Running

- Running Kinematics
- Running Kinetics
- Running Energetics

Running kinematics

- What defines gaits?
- Components of a stride
- Vertical displacement of the body
- Horizontal velocity of the body

What defines a walk vs. a run?

- Kinematic
- Kinetic

Walking and running speeds

Walking speeds: 0.5 - 2 m/s

Running speeds: 2.5 m/s - max

Peak for elite male athletes = 12 m/s

Running kinematics

- What defines gaits?
- Components of a stride
- Vertical displacement of the body
- Horizontal velocity of the body

Kinematic terms for gait analysis

<u>Stride</u>: One complete cycle from an event (e.g., right foot touch-down) to the next time that event occurs.

Stance phase: Time when a limb is in contact with the ground.

<u>Swing phase</u>: Time when a limb is NOT in contact with the ground.

Kinematic terms for gait analysis

<u>Double support</u>: Time when 2 limbs are in contact with the ground.

Aerial phase: Time when no feet are on the ground.

Both support stance Single limb support stance Single limb

Right | limb

Stance phase

Swing phase

Double support Walk Stride time **Stance** time Left Right

Run

Right

R. swing

Left

L. swing

L. swing

Overall ///// Aerial

Aerial

Walk

Run

Time ----

Comparison of walk vs. run

- stance time: run < walk
- swing time: run > walk
- stride time: run << walk

- aerial time: run >> walk (0)
- double support: run (0) << walk

Walk and Run

Forward velocity fluctuates, reaching its slowest value at the middle of the stance phase.

V_x never reaches zero

Walking vs. running

Double stance?

Aerial phase?

Position of hip:

highest at mid-stance in running.

lowest at mid-stance in walking.

Leg posture during stance phase.

straighter in walking than running

Both walk & run: forward velocity reaches minimum at the middle of the stance phase.

Time (s)

Walk: 1.25 m/s

0.2 0.3 Time (s) 0.4

Run: 3.9 m/s

0.1

-0.3 0.0

v_x & KE decreaser_y & GPE decrease

v_x & KE increase r_y & GPE increase

RUN

But what about EE?

Run: spring mechanism

 $E_{k,t}$ & $E_{p,g}$ are in phase. Elastic energy is stored in leg.

C.O.M.

Leg (spring)

Walk Inverted pendulum

Run Spring mechanism

C.O.M.

Leg

C.O.M.

Leg