První přednáška

NAIL062 Výroková a predikátová logika

Jakub Bulín (KTIML MFF UK) Zimní semestr 2023

Cesta k jistému úspěchu u zkoušky²

- Studujte průběžně (každý týden), a průběžně také testujte své znalosti: umíte sami napsat(!) definici, větu, důkaz?
- Před každou přednáškou alespoň zběžně projděte příslušné sekce v Zápiscích z přednášky. Ty obsahují vše, co po vás bude vyžadováno.¹ Snažte se pochopit smysl definic a tvrzení.
- Po každé přednášce si skripta podrobně přečtěte. Pokud něčemu nebudete rozumět, využijte konzultačních hodin.
- Snažte se zúčastnit všech přednášek, pokud nemůžete, včas se materiál doučte, případně využijte konzultačních hodin.
- Ujistěte se, že rozumíte nejen myšlenkám, ale umíte pracovat i s formalizmem: ten je neoddělitelnou součástí logiky.
- Stejnou pozornost věnujte i přípravě na cvičení.

¹Nedoporučujeme učit se primárně podle slidů! Mnoho detailů v nich chybí.

²Podrobnosti o zkoušce včas upřesníme. Základní formát i většina otázek ale pravděpodobně zůstanou stejné, viz loňské informace o zkouškách.

První přednáška

Program

- úvod do logiky
- neformální představení výrokové a predikátové logiky
- syntaxe výrokové logiky

Materiály

Zápisky z přednášky, Kapitola 1 a Sekce 2.1 z Kapitoly 2

Kapitola 1: Úvod do logiky

Co je logika?

Dvě definice:

- soubor principů, které jsou základem uspořádání prvků nějakého systému (např. počítačového programu, elektronického zařízení, komunikačního protokolu)
- 2. věda o uvažování prováděném podle striktních pravidel zachovávajících platnost

V informatice obojí: daný systém nejprve *formálně popíšeme*, a poté o něm *formálně uvažujeme* (automaticky!), tj. odvozujeme platné inference za použití nějakého dokazovacího systému

Historie a aplikace logiky

Filozofie ightarrow Matematika ightarrow Teoretická informatika ightarrow

Aplikovaná informatika

- logic programming
- discrete optimization (SAT solving, scheduling, planning)
- · database theory
- verification (software, hardware, protocol)
- automated reasoning and proving
- knowledge-based representation
- artificial intelligence

1.1 Výroková logika

Příklad ze života: Hledání pokladu

Při hledání pokladu jsme narazili na rozcestí dvou chodeb. Víme, že na konci každé chodby je buď poklad, nebo drak, ale ne obojí. Trpaslík nám řekl, že: "Alespoň jedna z těch dvou chodeb vede k pokladu", a že "První chodba vede k drakovi." Je známo, že trpaslíci buď vždy mluví pravdu, nebo vždy lžou. Kterou cestou se máme vydat?

Výroky neformálně

Výrok je tvrzení, kterému lze přiřadit pravdivostní hodnotu:

Prvovýroky (atomické výroky, výrokové proměnné) zkombinované pomocí logických spojek a závorek do složených výroků:

"(Trpaslík lže,) *právě když* (druhá chodba vede k drakovi.)"

"neplatí X", negace
 ∴ "X a Y", konjunkce
 ∴ "X nebo Y", disjunkce (není exkluzivní)
 ∴ "pokud X, potom Y", implikace (čistě logická)
 ∴ "X, právě když Y", ekvivalence

Formalizace ve výrokové logice

Volba množiny prvovýroků: bity informace popisující daný systém

```
p_1 = "Poklad je v první chodbě." p_2 = "Poklad je ve druhé chodbě."
```

Co nejmenší, např. hodnota t= "Trpaslík mluví pravdu." je jednoznačně určená hodnotami $\mathbb{P}=\{p_1,p_2\}$.

- Poklad nebo drak, ale ne obojí: zakódované do volby P (přítomnost draka je absence pokladu)
- "První chodba vede k drakovi." ⇔ ¬p₁
- "Alespoň jedna z chodeb vede k pokladu." ⇔ p₁ ∨ p₂
- Trpaslík buď mluví pravdu, nebo lže:

$$\varphi = (\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))$$

Teorie $T = \{\varphi\}$ v jazyce $\mathbb{P} = \{p_1, p_2\}$, φ je axiom T.

Modely a důsledky

Lze určit, kde je poklad? Je p_1 nebo p_2 důsledkem φ resp. T?

"Svět", ve kterém je např. v první chodbě poklad a ve druhé drak, popíšeme pomocí pravdivostního ohodnocení $p_1=1, p_2=0$, neboli modelu v=(1,0) jazyka $\mathbb P$. Celkem máme 4 "světy" a modely:

$$M_{\mathbb{P}} = \{(0,0), (0,1), (1,0), (1,1)\}.$$

Je "svět" popsaný modelem v=(1,0) konzistentní s tím, co víme, tj. platí v modelu v výrok φ resp. teorie T? Vyhodnotíme podle stromové struktury φ :

$$v(p_1) = 1, \ v(p_2) = 0, \ v(\neg p_1) = 0, \ v(p_1 \lor p_2) = 1, \ \ldots, \ v(\varphi) = 0$$

Množina modelů výroku φ (resp. modelů teorie T):

$$\mathsf{M}_{\mathbb{P}}(\varphi) = \mathsf{M}_{\mathbb{P}}(T) = \{(0,1)\}.$$

V každém modelu teorie T platí výrok p_2 , neboli p_2 je důsledek T.

Důkazové systémy

Ověřovat všechny modely je nepraktické, pro $|\mathbb{P}|=n$ máme 2^n modelů, a \mathbb{P} může být i nekonečná.

Důkazový systém

- důkaz výroku ψ z teorie T je formálně definovaný syntaktický objekt, snadno (mechanicky) ověřitelný
- lze hledat algoritmicky čistě na základě struktury ψ a axiomů T ("syntaxe"), nemusíme se zabývat modely ("sémantikou").

Klíčové vlastnosti:

- korektnost: pokud existuje důkaz ψ z T, potom ψ platí v T
- ullet úplnost, pokud ψ platí v T, potom existuje důkaz ψ z T

Ukážeme si metodu analytického tabla a rezoluční metodu. Obě dokazují *sporem*: předpokládají platnost T a $\neg \psi$, hledají spor.

Metoda analytického tabla

- důkaz je strom olabelovaný předpoklady o platnosti výroků
- v kořeni: neplatí dokazovaný výrok ψ (důkaz sporem)
- připojíme platnost axiomů z T
- dále budujeme tablo zjednodušováním výroků ve vrcholech, podle pravidel zaručujících invariant:

Každý model teorie T, ve kterém neplatí ψ , se musí *shodovat* s některou z větví tabla.

• například:

```
True (\varphi_1 \rightarrow \varphi_2) zredukujeme rozvětvením na False \varphi_1 a True \varphi_2, False (\varphi_1 \rightarrow \varphi_2) zredukujeme připojením True \varphi_1 a False \varphi_2.
```

- sporná větev = předpokládá True i False stejného výroku
- důkaz = všechny větve sporné (tj. nemůže existovat model T, ve kterém neplatí ψ)

Příklad tablo důkazu

Konjunktivní normální forma (CNF)

literál p, $\neg p$ klauzule disjunkce literálů CNF konjunkce klauzulí každý výrok má ekvivalentní CNF ($\psi \sim \psi'$, stejné modely)

$$(\neg p_1 \land (p_1 \lor p_2)) \lor (\neg (\neg p_1) \land \neg (p_1 \lor p_2))$$

nahradíme $\neg(\neg p_1) \sim p_1$ a $\neg(p_1 \lor p_2) \sim (\neg p_1 \land \neg p_2)$ (De Morgan)

$$(\neg p_1 \wedge (p_1 \vee p_2)) \vee (p_1 \wedge \neg p_1 \wedge \neg p_2)$$

a dále opakovaně použijeme distributivitu ∨ vůči ∧:

$$(\neg p_1 \lor p_1) \land (\neg p_1 \lor \neg p_1) \land (\neg p_1 \lor \neg p_2) \land (p_1 \lor p_2 \lor p_1) \land (p_1 \lor p_2 \lor \neg p_1) \land (p_1 \lor p_2 \lor \neg p_2)$$

už je CNF, ještě zjednodušíme: odstraníme duplicitní literály, a klauzule obsahující p_i a zároveň $\neg p_i$ (to jsou tautologie)

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2)$$

Rezoluční důkaz

Důkaz sporem: převedeme negaci dokazovaného do CNF a přidáme

 p_2 platí v T, právě když je následující CNF výrok nesplnitelný:

$$\neg p_1 \wedge (\neg p_1 \vee \neg p_2) \wedge (p_1 \vee p_2) \wedge \neg p_2$$

množinový zápis:

$$S = \{ \{\neg p_1\}, \{\neg p_1, \neg p_2\}, \{p_1, p_2\}, \{\neg p_2\} \}$$

rezoluční pravidlo: je-li $p \in C_1$ a $\neg p \in C_2$, potom rezolventa

$$C = (C_1 \setminus \{p\}) \cup (C_2 \setminus \{\neg p\})$$

platí v každém modelu, ve kterém platí C_1 i C_2

rezoluční zamítnutí S: posloupnost klauzulí, každá je buď z S nebo rezolventa předchozích, poslední je prázdná klauzule \square

protože \square nemá žádný model, je i S nesplnitelná

Příklad rezolučního důkazu

rezoluční zamítnutí (třetí klauzule je rezolventou 1. a 2., pátá je rezolventou 3. a 4.)

$$\{\neg p_1\}, \{p_1, p_2\}, \{p_2\}, \{\neg p_2\}, \Box$$

rezoluční strom (listy klauzule z S, vnitřní vrcholy rezolventy synů)

Příklad: Barvení grafů

Najděte vrcholové obarvení následujícího grafu třemi barvami.

graf: množina vrcholů a množina (libovolně) orientovaných hran

$$\mathcal{G} = \langle V; E \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle$$

jak formalizovat? pro $v \in V$ a $c \in C = \{R, G, B\}$:

$p_v^c = "vrchol v má barvu c"$

$$\mathbb{P} = \{ p_v^c \mid c \in C, v \in V \} = \{ p_1^R, p_1^G, p_1^B, p_2^R, p_2^G, p_2^B, p_3^R, p_3^G, p_3^B, p_4^R, p_4^G, p_4^B \}$$
máme celkem $|\mathsf{M}_{\mathbb{P}}| = 2^{12} = 4096$ modelů jazyka (12-dim. vektorů)

Formalizace hranového obarvení

• každý vrchol má nejvýše jednu barvu: $4^4 = 2^8 = 256$ modelů

$$T_1 = \{ (\neg p_v^R \vee \neg p_v^G) \wedge (\neg p_v^R \vee \neg p_v^B) \wedge (\neg p_v^G \vee \neg p_v^B) \mid v \in V \}$$

a každý vrchol má alespoň jednu barvu: 3⁴ = 81 modelů

$$T_{2} = T_{1} \cup \{p_{v}^{R} \lor p_{v}^{G} \lor p_{v}^{B} \mid v \in V\} = T_{1} \cup \{\bigvee_{c \in C} p_{v}^{c} \mid v \in V\}$$

 T_2 je extenze teorie T_1 neboť každý důsledek T_1 platí i v T_2 , zde dokonce $M_{\mathbb{P}}(T_2) \subseteq M_{\mathbb{P}}(T_1)$

• nakonec přidáme hranovou podmínku:

$$T_3 = T_2 \cup \{ \bigwedge_{c \in C} (\neg p_u^c \vee \neg p_v^c) \mid (u, v) \in E \}$$

Výsledná teorie T_3 je splnitelná (má model), právě když je graf \mathcal{G} 3-obarvitelný.

Co s ní?

Všechna obarvení?

 T_3 má 6 modelů: $v=\left(1,0,0,0,1,0,0,0,1,0,1,0\right)$ a další získané permutací barev

Odpovídají modelům teorie $T_3 \cup \{p_1^B, p_2^G\}$

Důkaz, že vrcholy 2 a 4 musí mít stejnou barvu?

Tablo s kořenem False $(p_2^R \wedge p_4^R) \vee (p_2^G \wedge p_4^G) \vee (p_2^B \wedge p_4^B)$

Nebo rezolucí: přidáme negaci $(p_2^R \wedge p_4^R) \vee (p_2^G \wedge p_4^G) \vee (p_2^B \wedge p_4^B)$, vše převedeme do CNF a zamítneme

1.2 Predikátová logika

Nevýhody formalizace ve výrokové logice

Teorie T_3 je poměrně velká, a 'natvrdo' kóduje graf G.

Obohatit jazyk $\mathbb{P}' = \mathbb{P} \cup \{p_5^R, p_5^G, p_5^B\}$ a vytvořit ještě větší teorii T_3' přidáním axiomů o vrcholu 5 a hranách (2,5), (3,5)?

A co vlastnosti obecně platné o všech nebo mnoha grafech?

V predikátové logice můžeme mluvit o vrcholech pomocí proměnných a přirozeně vyjádřit vlastnosti jako:

- "z vrcholu u vede hrana do vrcholu v"
- "vrchol u je zelený"

Predikátová logika: struktury a jazyk

Modely už nejsou 0–1 vektory, ale struktury, např. naše (orientované) grafy:

```
\begin{split} \mathcal{G} &= \langle V^{\mathcal{G}}; E^{\mathcal{G}} \rangle = \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\} \rangle \\ \mathcal{G}' &= \langle V^{\mathcal{G}'}; E^{\mathcal{G}'} \rangle = \langle \{1, 2, 3, 4, 5\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (2, 5), (3, 5)\} \rangle \end{split}
```

- množina vrcholů, a binární relace na této množině
- jazyk specifikuje kolik relací jakých arit má struktura mít, a symboly pro ně
- např. jazyk grafů $\mathcal{L} = \langle E \rangle$ (kde E je binární relační symbol)
- \mathcal{G} a \mathcal{G}' jsou struktury v jazyce \mathcal{L} (\mathcal{L} -struktury)
- můžeme mít také funkce a konstanty, a symbol = pro rovnost

Predikátová logika: syntaxe a sémantika

Syntaxe: místo prvovýroků atomické formule, např. E(x,y), kde x,y jsou proměnné reprezentující vrcholy; stejné logické spojky, ale navíc kvantifikátory:

```
(\forall x) "pro všechny vrcholy x" (\exists y) "existuje vrchol y"
```

(hrají roli "konjunkce" a "disjunkce" přes všechny prvky)

- "V grafu nejsou smyčky": $(\forall x)(\neg E(x,x))$
- "Existuje vrchol výstupního stupně 1":

$$(\exists x)(\exists y)(E(x,y) \land (\forall z)(E(x,z) \rightarrow y = z))$$

Sémantika: V daném grafu \mathcal{G} a při dosazení vrcholu u za proměnnou x a vrcholu v za proměnnou y vyhodnotíme E(x,y) jako True, právě když $(u,v) \in E^{\mathcal{G}}$.

Barvení grafů v predikátové logice

Jazyk $\mathcal{L}' = \langle E, R, G, B \rangle$, kde E je binární a R, G, B jsou unární relační symboly (R(x) znamená "vrchol x je červený")

 \mathcal{L}' -struktura: graf s trojicí množin vrcholů

$$\mathcal{G}_{C} = \langle V^{\mathcal{G}_{C}}; E^{\mathcal{G}_{C}}, R^{\mathcal{G}_{C}}, G^{\mathcal{G}_{C}}, B^{\mathcal{G}_{C}} \rangle$$

$$= \langle \{1, 2, 3, 4\}; \{(1, 2), (1, 3), (1, 4), (2, 3), (3, 4)\}, \{1\}, \{2, 4\}, \{3\} \rangle$$

 \mathcal{G}_C je expanze \mathcal{L} -struktury \mathcal{G} do jazyka \mathcal{L}' .

Nejvýše jedna barva, alespoň jedna barva, hranová podmínka:

- $(\forall x)((\neg R(x) \lor \neg G(x)) \land (\neg R(x) \lor \neg B(x)) \land (\neg G(x) \lor \neg B(x)))$
- $(\forall x)(R(x) \vee G(x) \vee B(x))$
- $(\forall x)(\forall y)(E(x,y) \rightarrow ((\neg R(x) \lor \neg R(y)) \land (\neg G(x) \lor \neg G(y)) \land (\neg B(x) \lor \neg B(y))))$

1.3 Další druhy logických systémů

Predikátové logiky vyšších řádů

- Predikátová logika, kde proměnné reprezentují jednotlivé vrcholy, je logika prvního řádu (first-order, FO)
- Logika druhého řádu (second-order, SO): proměnné i pro množiny vrcholů a n-tic vrcholů (tj. relace, funkce)

"Každá neprázdná zdola omezená podmnožina má infimum."

$$(\forall S)((\exists x)S(x) \land (\exists x)(\forall y)(S(y) \rightarrow x \leq y) \rightarrow (\exists x)((\forall y)(S(y) \rightarrow x \leq y) \land (\forall z)((\forall y)(S(y) \rightarrow z \leq y) \rightarrow z \leq x)))$$

 A v logice třetího řádu máme i množiny množin (např. v topologii).

Logiky zobecňující pojem pravdy

Kromě toho lze zobecnit pojem platnosti (pravdy):

- temporální logiky (platnost 'vždy', 'někdy v budoucnosti', 'dokud' apod.) – např. v paralelním programování
- modální logiky ('je možné', 'je nutné') v umělé inteligenci, uvažování autonomních agentů o svém okolí
- fuzzy logiky ('je 0.35 pravdivé') v automatických pračkách
- intuicionistická logika (povoluje jen konstruktivní důkazy, nemá zákon vyloučeného třetího)

1.4 O přednášce

Obsah předmětu

- I. Výroková logika (5 přednášek)
 - Syntaxe a sémantika
 - Problém SAT
 - Tablo metoda
 - Rezoluční metoda
- II. Predikátová logika (6 přednášek)
 - Syntaxe a sémantika
 - Tablo metoda v predikátové logice
 - Rezoluční metoda v predikátové logice
 - Aplikace: databáze, Prolog, verifikace
- III. Pokročilé partie (2 přednášky)
 - Teorie modelů
 - Nerozhodnutelnost a neúplnost

ČÁST I – VÝROKOVÁ LOGIKA

KAPITOLA 2: SYNTAXE A

SÉMANTIKA VÝROKOVÉ LOGIKY

Syntaxe a sémantika

syntaxe dává pravidla pro tvoření korektních formálních výrazů sestávajících ze symbolů, a pro operace s nimi (*výrok*, *důkaz*, ...) sémantika popisuje význam syntaktických objektů "v reálném světě" (*model*, ...)

Klíčem k logice je vztah mezi syntaxí a sémantikou:

- sémantické objekty studujeme pomocí syntaxe ('jaké výroky platí v modelu?')
- syntaktické pomocí sémantiky, např. ekvivalence výroků: $\psi \sim \psi'$ právě když $\mathsf{M}_{\mathbb{P}}(\psi) = \mathsf{M}_{\mathbb{P}}(\psi')$

2.1 Syntaxe výrokové logiky

Jazyk

určený množinou prvovýroků (výrokových proměnných, atomických výroků) – neprázdná, konečná nebo i *nekonečná*

$$\mathbb{P}_1 = \{p, q, r\}$$

$$\mathbb{P}_2 = \{p_0, p_1, p_2, p_3, \ldots\} = \{p_i \mid i \in \mathbb{N}\}$$

(obvykle spočetná, uspořádaná)

dále do jazyka patří logické symboly:

- logické spojky $\neg, \wedge, \vee, \rightarrow, \leftrightarrow$
- závorky (,)

Výrok

Výrok (výroková formule) v jazyce $\mathbb P$ je prvek množiny VF $_{\mathbb P}$ definované *induktivně*: VF $_{\mathbb P}$ je nejmenší množina splňující

- pro každý prvovýrok $p \in \mathbb{P}$ platí $p \in \mathsf{VF}_{\mathbb{P}}$,
- pro každý výrok $\varphi \in \mathsf{VF}_\mathbb{P}$ je $(\neg \varphi)$ také prvek $\mathsf{VF}_\mathbb{P}$
- pro každé $\varphi, \psi \in \mathsf{VF}_{\mathbb{P}}$ jsou $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, a $(\varphi \leftrightarrow \psi)$ také prvky $\mathsf{VF}_{\mathbb{P}}$.

Výroky jsou nutně konečné řetězce!

 $Var(\varphi)$: množina všech prvovýroků ve φ (vždy konečná) podvýrok: podřetězec, který je sám výrok

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))), \ \mathsf{Var}(\varphi) = \{p, q\}$$
 podvýroky: $p, q, (\neg q), (p \lor (\neg q)), r, (p \land q), (r \to (p \land q)), \varphi$

pravda:
$$\top = (p \lor (\neg p))$$
, spor: $\bot = (p \land (\neg p))$ (kde $p \in \mathbb{P}$ je pevně daný)

Konvence zápisu

při zápisu výroků můžeme vynechat některé závorky:

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q))) \text{ lze zapsat jako } p \lor \neg q \leftrightarrow (r \to p \land q)$$

- priorita operátorů: \neg nejvyšší, dále \land a \lor , nakonec \rightarrow a \leftrightarrow
- asociativita \land a \lor : nápis $p \land q \land r$ znamená výrok $(p \land (q \land r))$
- vnější závorky nemusíme psát

Poznámka: v definici jsme mohli místo *infixového* zápisu zvolit prefixový ("polskou notaci"): "každý prvovýrok je výrok, jsou-li φ, ψ výroky, jsou výroky také $\neg \varphi, \land \varphi \psi, \lor \varphi \psi, \rightarrow \varphi \psi, a \leftrightarrow \varphi \psi$ " nebo i postfixový

$$\varphi = \leftrightarrow \lor p \neg q \rightarrow r \land pq$$
$$\varphi = pq \neg \lor rpq \land \rightarrow \leftrightarrow$$

Důležitá je jen stromová struktura výroků!

Strom výroku

 $\mathsf{Tree}(\varphi)$ je zakořeněný uspořádaný strom, definovaný induktivně:

- $\varphi = p \in \mathbb{P}$: jediný vrchol, s labelem p
- $\varphi = (\neg \varphi')$: kořen s labelem \neg , jediný syn je kořen Tree (φ') .
- $\varphi = (\varphi' \square \varphi'')$ pro $\square \in \{\land, \lor, \rightarrow, \leftrightarrow\}$: kořen s labelem \square a dvěma syny: levý syn je kořen Tree (φ') , pravý Tree (φ'') .

$$\varphi = ((p \lor (\neg q)) \leftrightarrow (r \to (p \land q)))$$

rekonstrukce φ průchodem stromu, podvýroky odpovídají podstromům

Tree(φ) je jednoznačně určený!

Teorie

Teorie v jazyce $\mathbb P$ je libovolná množina výroků $T\subseteq \mathsf{VF}_{\mathbb P}.$ Výrokům $\varphi\in T$ říkáme také axiomy.

$$T=\emptyset$$
 a $T=\mathsf{VF}_\mathbb{P}$ nad libovolným jazykem, $T=\{p\wedge q,q\to (p\vee r)\}$ v jazyce $\mathbb{P}=\{p,q,r\}$ $T=\{p_0\}\cup\{p_i\to p_{i+1}\mid i\in\mathbb{N}\}$ nad nekonečným $\mathbb{P}=\{p_i\mid i\in\mathbb{N}\}$

Poznámka: *Konečnou* teorii by bylo možné (byť ne praktické!) nahradit jediným výrokem: konjunkcí všech axiomů.

Připouštíme ale i *nekonečné teorie*; hodí se např. pro popis systému v (diskrétním) čase $t=0,1,2,\ldots$