Microcontroladores – Período Suplementar 4 (ago a dez de 2021)

Controle de atividades

													F	∖ tivi	idad	des														
Alunos		1			2			3			4			5			6			7			8			9			10	
	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С	а	b	С
Allef Brenno Gomes de Lima	1	3	6	1	3	5	1	3	1	1	2	6	-	-	-	1	2	4	1	3	7	0	3	4	1	3	3			
Bruno Luan Gomes da Silva	1	2	3	-	-	-	1	3	3	1	3	5	-	-	-	1	2	4	1	3	6	1	3	5	1	3	2			
Danielle Victoria S. Eustaquio	1	3	6	1	3	6	1	3	1	1	3	6	1	3	5	1	თ	6	1	3	2	1	3	5	1	თ	4			
Denis Dala Paula Cordeiro	1	3	6	1	3	3	1	3	1	1	3	6	1	3	4	1	3	4	1	3	7	1	3	5	1	3	3			
Gabriel Teixeira Patricio	1	0	3	1	3	5	-	-	-	-	-	-	-	-	-	-	-	-	1	3	6	1	3	5	0	3	2			
Helter Yordan Alves da Costa	1	3	6	1	3	2	1	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•			
Henrique Elpidio Rufino Araujo	0	0	3	1	3	2	1	3	2	1	2	6	-	-	-	-	-	-	1	3	6	-3	3	4	0	3	4			
Laura Leticia A. O. Campos	1	3	6	1	3	5	1	3	1	1	3	6	0	3	6	1	3	5	1	3	6	1	3	4	1	3	2			
Lucas Jurani Lustosa Lopes	-3	3	2	-	-	-	1	3	1	1	2	4	0	3	6	0	2	3	1	3	7	0	2	3	-	-	-			
Matheus Soares de O. Mello	1	2	3	-	-	-	1	3	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Stenio Ellison Pereira Ferreira	1	3	5	1	3	3	1	3	1	1	3	6	-3	3	1	1	3	6	1	3	2	1	3	4	1	1	0			
Thiago Marques Silva	1	3	6	1	3	4	1	3	1	1	3	6	0	3	5	0	3	5	1	3	6	1	3	5	1	3	4			
Wendson Carlos S. da Silva	1	3	6	1	3	5	1	3	1	1	2	6	1	2	5	1	3	4	1	3	6	1	3	4	1	3	3			

Legenda:

Vejam as páginas seguintes com as atividades.

a) Entrega na data, até às 15h (1,0). Penalização de 3,0 pontos se entregue no dia seguinte.

b) Com comentários suficientes e esclarecedores. Até 3,0 pontos.

c) Atende as especificações. Até 6,0 pontos.

Descrição

Atividade 10 - Data de entrega: 02/12/21

Tema: Medindo de 0 a 3,5V em uma escala de 0 a 9 e indicação em display de 7 segmentos

Objetivo: Exercício de familiarização com o PIC16F628A.

Contexto: Um valor de tensão entre 0 e 3,5V deve ser representado em uma escala discreta, indicando a escala de 0 a 9, para representação em um display de 7 segmentos.

Especificações:

- O PIC16F628A deve ser utilizado nesta implementação;
- A tensão de entrada é de 0 a 3,5V;
- A conversão de tensão para a escala de 0 a 9 deve ser efetuada através do comparador;
- O valor da tensão deve ser convertido para codificação necessária para ser conectado a um display de 7 segmentos;
- A indicação deve ser efetuada em modo cíclico, atualizando o valor a cada 50ms;
- A PORTA B do PIC deve ser utilizada para se conectar ao display de 7 segmentos;
- Os níveis de tensão e a escala correspondente estão na descritos na tabela a seguir:

Valor da tensão (V)	Valor mostrado no display
V<0,35	0
0,35≤V<0,7	1
0,7≤V<1,05	2
1,05≤V<1,4	3
1,4≤V<1,75	4
1,75≤V<2,1	5
2,1≤V<2,45	6
2,45≤V<2,85	7
2,85≤V<3,2	8
3,2≤V	9

9. Comunicação com periférico (data de entrega: 23/11/21)

Objetivo: Implementar a comunicação entre microcontroladores, otimizando o consumo de energia.

Contexto: Um sistema didático é composto por 2 módulos, sendo um MESTRE e um ESCRAVO. Periodicamente o MESTRE solicita uma informação ao ESCRAVO, que responde utilizando a mesma codificação (para transmissão dos bits) definida no sensor DHT11.

Especificações:

- O módulo MESTRE e módulo ESCRAVO estão conectados seguindo a mesma configuração definida no datasheet do sensor DHT11:
- Implemente o módulo ESCRAVO;
- Enquanto n\u00e3o estiver operando, o m\u00f3dulo ESCRAVO deve permanecer em modo de economia de energia
- O módulo MESTRE envia uma solicitação ao módulo ESCRAVO a cada 10 segundos;
- O formato de solicitação é o mesmo utilizado na comunicação entre um microcontrolador e o sensor DHT11:
- Ao receber a solicitação, o módulo ESCRAVO:
 - sai do modo de economia de energia;

- efetua uma conversão A/D:
- envia o valor convertido ao módulo MESTRE utilizando a mesma codificação (para transmissão dos bits) definida no sensor DHT11;
- entra novamente em modo de economia de energia para aguardar a próxima solicitação do módulo MESTRE:
- Para garantir o menor consumo de energia, TODAS as atividades desnecessárias DEVEM permanecer desligadas durante o modo de economia de energia;

8. Economizando Energia (data de entrega: 11/11/21)

Objetivo: Otimizar o consumo de energia colocando o microcontrolador em modo "SLEEP".

Contexto: Implementar medidor de bateria "econômico" para que indique o nível de tensão em 4 níveis.

Especificações:

- O microcontrolador deve permanecer em modo "adormecido" devendo ser "acordado" a cada (aprox.)
 2s:
- Para garantir o menor consumo de energia, TODAS as atividades desnecessárias DEVEM permanecer desligadas durante o modo SLEEP;
- Ao ser "acordado", utilizando o *Watchdog*, o microcontrolador deve medir a tensão de uma bateria (através da porta GP0) e indicar o nível da tensão, segundo a tabela:

Tensão	GP1	GP2	GP4	GP5
Menor que 2	ON	OFF	OFF	OFF
2 < V < 3	OFF	ON	OFF	OFF
3 < V < 4	OFF	OFF	ON	OFF
Maior que 4V	OFF	OFF	OFF	ON

Os valores limite ficam a cargo do projetista.

- Após a atualização do nível de tensão, conforme a tabela acima, o microcontrolador deve voltar ao modo "adormecido";
- Estime (e demonstre seu cálculo), com base no tempo de execução do seu programa e nas informações do consumo estimado para o sistema, qual é a energia consumida em μWh.

7. Utilizando a EEPROM (data de entrega: 28/10/21)

Objetivo: Gravar e recuperar dados na memória perene (EEPROM).

Contexto: Medir o tempo para colocar em ordem crescente dados previamente armazenados na EEPROM.

Especificações:

- Apague todos os leds;
- Considere 40 bytes já armazenados na EEPROM, a partir do endereço 00h;
- Acenda o led GP5 imediatamente antes de iniciar a ordenação para sinalizar o início do processo;
- Coloque-os em ordem crescente:
- Apague o led GP5 imediatamente depois para sinalizar que a ordenação terminou;
- A medição será efetuada com o stopwatch do MPLAB;
- Esta tarefa terá um ponto suplementar para 3 alunos que conseguirem os menores tempos.

6. Comparador: controle de temperatura (data de entrega: 21/10/21)

Objetivo: Exercício de aplicação e gerenciamento do comparador.

Contexto: Sistema de controle de temperatura para ambiente refrigerado, utilizando o princípio da histerese para evitar a "flutuação" da comutação no valor de comparação. Para isso, utiliza-se dois valores distintos (T_{min} e $T_{máx}$) para definir uma faixa de comutação.

Como funciona:

- Condições iniciais 1:
 - o Supondo que a temperatura de controle do comparador está configurado para $T_{máx}$;

- O Supondo que a temperatura ambiente (T_{AR}), a ser comparada, é superior a $T_{m\acute{a}x}$;
- Nessas condições:
 - o compressor deve ser ligado;
 - e altera-se a configuração do comparador para T_{mín}.
- Condições iniciais 2:
 - \circ Supondo que a temperatura de controle do comparador está configurado para T_{min} ;
 - O Supondo que a temperatura ambiente (T_{AR}), a ser comparada, é inferior a T_{min} ;
 - Nessas condições:
 - o compressor deve ser desligado;
 - e altera-se a configuração do comparador para $T_{máx}$.
- Para qualquer outra condição diferente das descritas acima:
 - o Mantém o estado anterior de funcionamento do compressor (ligado ou desligado);
 - o Mantém o valor anterior de configuração do comparador $(T_{min}$ ou $T_{max})$.

Especificações:

• A conversão de temperatura (°C) para tensão (V) será feita considerando a seguinte expressão: V=0.285T-5.4

_	As faivas de temperatura	de controle deverão	obedecer à seguinte tabela	(vois na nágina coguinto):

	T _{mín} (°C)	T _{máx} (°C)
Allef	20	24
Ana Flavia	21	25
Bruno Henrique	22	26
Bruno Luan	23	27
Cinthya	24	28
Danielle	25	29
Denis	26	30
Elaine	20	25
Gabriel	21	26
Helter	22	27
Henrique	23	28
Laura Leticia	24	29
Leticia Sousa	25	30
Lucas	26	30
Matheus Arnaud	20	25
Matheus Ambrosio	21	26
Matheus Soares	22	27
Rebeca	23	28
Stenio	24	29
Thiago	25	30
Wendson	26	31
Weslley	20	25

- A escolha da equação do comparador deve ser justificada pela demonstração dos diferentes valores obtidos.
- GP1 deverá ser utilizado para receber o sinal de temperatura;
- GP2 deverá ser utilizado para fornecer o sinal de controle.

5. Controlador do brilho de um LED (data de entrega: 14/10/21)

Objetivo: Exercício com conversor A/D.

Contexto: Dimmer para um LED.

Especificações:

- O LED será acionado pela porta GP0;
- O sinal enviado pela porta GP0 será modulado pela largura do pulso, alterando o duty cycle;
- O controle do brilho do LED será, portanto, efetuado pela alteração do duty cycle (de 0 a 100%);
- Após o RESET, o LED deve iniciar apagado;
- A indicação do percentual do duty cycle será dada a partir de uma conversão A/D, em que 5V corresponde a 100%;
- Quando houver duty cycle diferente de 100%, a frequência do sinal deve ser de 500Hz;
- GP4 deverá ser utilizado para efetuar a conversão A/D.

4. Controlador automotivo: PISCA (data de entrega: 05/10/21)

Objetivo: Exercícios para gerenciamento de portas e de tempo (com TIMERs e interrupção).

Contexto: Sistema de sinalização automotiva, controlando o "pisca-pisca" lados direito e esquerdo, quando acionados.

Especificações:

- O sistema contém um interruptor de 3 posições, para acender 2 LEDs (LED-E e LED-D):
 - Quando na posição central, o LED-E e o LED-D permanecem apagados;
 - Quando na posição E (esquerda), o LED-E piscará com frequência de 1 Hz;
 - Quando na posição D (direita), o LED-D piscará com frequência de 1 Hz;
- O sistema contém um interruptor (liga-desliga), para piscar os dois LEDs ao mesmo tempo (função alerta), com frequência de 1 Hz. Esse interruptor deve ter maior prioridade;
- GP0 deverá ser utilizado com o interruptor que comandará a função "alerta";
- GP1 e GP2 deverão ser utilizados para o interruptor de 3 posições;
- GP4 e GP5 deverão ser utilizados, respectivamente, para os LED-E e LED-D;
- O uso de interrupção é obrigatório.

3. Identificando diferentes frequências (data de entrega: 14/09/21)

Objetivo: Exercícios para gerenciamento de portas e de timers.

Contexto: Dado um sinal de onda quadrada, que opera em 4 diferentes frequências, identificá-las com a sinalização através de LEDs.

Especificações:

- As frequências a serem verificadas são: 5kHz, 10kHz, 20kHz e 30kHz;
- A porta de entrada que receberá o sinal deve ser através de GP2;
- Os LEDs devem ser ativados (ON) apenas para indicar sua frequência correspondente, de acordo com a tabela abaixo:

GP0 ON apenas quando f=5kHz ± 10%
GP1 ON apenas quando f=10kHz ± 10%
GP4 ON apenas quando f=20kHz ± 10%
GP5 ON apenas quando f=30kHz ± 10%

O sinal fornecido pode ter uma variação de 10% sobre a frequência identificada;

2. Dia da semana (data de entrega: 28/08/21)

Objetivo: Implementação de um algoritmo.

Especificações:

Traduza para Assembly o ALGORITMO da Atividade 1. O objetivo é o mesmo: identificar a qual dia da semana corresponde a data indicada nas variáveis **dd**, **mm** e **aa**.

- O programa deve fornecer respostas para datas compreendidas entre 01/01/1930 e 31/12/2021;
- A resposta deve ser dada através do registrador **W** (work), de acordo com a seguinte notação:
 - W=0 → data fora da especificação;
 - W=1 → domingo;
 - W=2 → segunda-feira;
 - •
 - W=7 → sábado;
- O PROGRAMA deve ser implementado em Assembly (PIC12F675);

Alguns Valores Propostos para Testes (faça outros):

Datas verificadas	Descrição	Valor esperado
16/01/2025	Verificação de erro	0
16/01/2105	Verificação de erro	0
10/08/2021	Início das aulas	3
21/06/1970	Tri da copa de futebol	1
24/02/1955	Nasceu Steve Jobs	5
02/04/2005	Morte do papa João Paulo II	7
21/10/2021	Nossa 2 ^a . AV	5

1. Dia da semana (data de entrega: 17/08/21)

Objetivo: Exercício com algoritmo.

Especificações:

A partir de uma determinada data, indicada nas variáveis **dd**, **mm** e **aa**, proponha um ALGORITMO para identificar a qual dia da semana esta data corresponde.

- O algoritmo deve fornecer respostas para datas compreendidas entre 01/01/1910 e 31/12/2100;
- A resposta deve ser dada através da variável W, de acordo com a seguinte notação:
 - W=0 → data fora da especificação;
 - W=1 → domingo;
 - W=2 → segunda-feira;
 - ...
 - W=7 → sábado;
- O ALGORITMO deve ser escrito em Portugol (pseudocódigo escrito em português);
- Pela própria definição, o ALGORITMO deve ter uma sequência de passos descritivos, ordenados e sem ambiguidade;
- Os passos descritivos não podem conter ações abstratas ou que impliquem na utilização de outras operações diferentes das aritméticas (+, -, *, /). Estruturas condicionais e de repetição são permitidas.

Alguns Valores Propostos para Testes (faca outros):

Datas verificadas	Descrição	Valor esperado
16/01/1905	Verificação de erro	0
16/01/2105	Verificação de erro	0
10/08/2021	Início das aulas	3
21/06/1970	Tri da copa de futebol	1

24/02/1955	Nasceu Steve Jobs	5
02/04/2005	Morte do papa João Paulo II	7
21/10/2021	Nossa 2 ^a . AV	5