

Lecture 09

Statistics

Announcements

Statistics

Estimation

Statistical Inference:

Making conclusions based on data in random samples

Example:

fixed

Use the data to guess the value of an unknown number

depends on the random sample

Create an **estimate** of the unknown quantity

Terminology

- Population: A collection of individuals
 - All flights out of SFO last summer

- Variable: Something that varies in the population
 - airline (categorical variable)
 - amount of delay in departure (quantitative variable)

Sample: A subset of the population

Why take a sample?

You want to understand the variable in the population,

but

 you don't have the resources to measure the variable on all the individuals in the population,

SO

you just measure it on a subset of them.

"Tickets in a box"

Best way to draw the sample

At random!

Two distributions

distribution of the population

empirical distribution of a sample

Why sample at random?

The empirical distribution of a large random sample is very likely to be close to the distribution of the population.

That's why.

The effect of sample size

 Larger random samples are more likely to resemble the population than smaller ones.

- However, if the method of sampling is not random, taking a larger sample isn't necessarily better.
 - You could just end up with a big bad sample.

More terminology

- Parameter: A number calculated using the values in the population
 - Median delay among all flights
 - Proportion of voters who are Republican

- Statistic: A number calculated using the values in a sample
- A statistic can be used as an estimate of a parameter.

Probability distribution of a statistic

- Values of a statistic vary because random samples vary
- "Sampling distribution" or "probability distribution" of a statistic consists of:
 - All possible values of the statistic
 - Corresponding probabilities
- Can be hard to calculate
 - Need math
 - Or generate many random samples

Empirical distribution of a statistic

- Empirical distribution of the statistic:
 - Based on simulated values of the statistic
 - Consists of all the observed values of the statistic,
 - and the proportion of times each value appeared
- Good approximation to the probability distribution of the statistic if the number of repetitions in the simulation is large.

Simulating a Statistic

- Figure out the code to generate one value of the statistic
- Create an empty array in which you will collect simulated values
- For each repetition of the process:
 - Simulate one value of the statistic
 - Append this value to the collection array
- The array will contain all of the simulated values

(Demo)

Assessing Models

Steps in Assessing a Model

- Come up with a statistic that will help you decide whether the data support the model or an alternative view of the world.
- Simulate the statistic under the assumptions of the model.
- Draw a histogram of the simulated values. This is the model's prediction for how the statistic should come out.
- Compute the observed statistic from the sample in the study.
- Compare this value with the histogram.
- If the two are not consistent, that's evidence against the model.

Jury Selection

Swain vs. Alabama, 1965

- Talladega County, Alabama
- Robert Swain, black man convicted of crime
- Appeal: one factor was all-white jury
- Only men 21 years or older were allowed to serve
- 26% of this population were black
- Swain's jury panel consisted of 100 men
- 8 people on the panel were black (8%)

Supreme Court Ruling

 About disparities between the percentages in the eligible population and the jury panel, the Supreme Court wrote:

> "... the overall percentage disparity has been small and reflects no studied attempt to include or exclude a specified number of [blacks]"

The Supreme Court denied Robert Swain's appeal

Sampling from a Distribution

Sample at random from a categorical distribution:

```
sample_proportions(sample_size, pop_distribution)
```

- Samples at random from the population
- Returns an array containing the distribution of the categories in the sample

A Genetic Model

Gregor Mendel, 1822-1884

A Model

- Pea plants of a particular kind
- Each one has either purple flowers or white flowers

- Mendel's model:
 - Each plant is purple-flowering with chance 75%, regardless of the colors of the other plants
- Question:
 - Is the model good, or not?

Choosing a Statistic

- Start with percent of purple-flowering plants in sample
- If that percent is much larger or much smaller than 75, that is evidence against the model
- Distance from 75 is the key
- Statistic:
 - | sample percent of purple-flowering plants 75 |
- If the statistic is large, that is evidence against the model

Testing Hypotheses

Choosing One of Two Viewpoints

Based on data

- "Chocolate has no effect on cardiac disease."
- "Yes, it does."
- "This jury panel was selected at random from eligible jurors."
- "No, it has too many people with college degrees."

Estimation

Perfect information

- You want to know how many US voters support a particular policy.
- You could ask everyone. That works.
- But, sometimes we can't afford to do that. So, instead, we could ask some of them, and draw inferences about the general population.

A common scenario

- You have to make a decision based on incomplete information.
- The quality of your decision is affected by
 - the information that you have
 - the information that you don't have

 So, before making the decision, it is worth examining why and how your information came to be incomplete.

population...

- Formulate a question you want to answer (a parameter of the population).
- Visualize the data (the population).
- Compute the answer.
- Interpret the results, and explain them in language without statistical jargon.

If you don't...

- Formulate a question you want to answer (a parameter of the population).
- Select a method of inference.
- Visualize the data (the sample).
- Calculate the statistic on your sample, then apply the method to estimate the population parameter.
- Interpret the results, and explain them in language without statistical jargon.