An Introduction to Logistic and Probit Regression Models

Goals

Brief overview of logistic and probit models

Example in Stata

Interpretation within & between models

Binary Outcome

- Examples:
 - Yes/No
 - Success/Failure
 - Heart Attack/No Heart Attack
 - In/Out of the Labor Force

Modeling a Binary Outcome

- Latent Variable Approach
 - We can think of y* as the underlying latent propensity that y=1
 - Example 1: For the binary variable, heart attack/no heart attack, y* is the propensity for a heart attack.
 - Example 2: For the binary variable, in/out of the labor force, y*
 is the propensity to be in the labor force.

$$y^* = \alpha + \beta x + \varepsilon$$

$$y_{i} = \begin{cases} 1 & \text{if } y_{i}^{*} > \tau \\ 0 & \text{if } y_{i}^{*} \leq \tau \end{cases}$$

Where τ is the threshold

Logit versus Probit

• Since y^* is unobserved, we use do not know the distribution of the errors, ϵ

 In order to use maximum likelihood estimation (ML), we need to make some assumption about the distribution of the errors.

Logit versus Probit

- The difference between Logistic and Probit models lies in this assumption about the distribution of the errors
- Logit

$$\ln\left(\frac{p_i}{(1-p_i)}\right) = \sum_{k=0}^{k=n} \beta_k x_{ik}$$

- Standard logistic distribution of errors
- Probit

$$\Phi^{-1}(p_i) = \sum_{k=0}^{k=n} \beta_k x_{ik}$$

Normal distribution of errors

Probability Density Function (PDF) and Cumulative Distribution Function (CDF)

Figure 1.1 The Standard Normal and Standard Logistic Probability Distributions -2.52.5 -5.00.0 5.0 -5.0 -2.50.0 2.5 5.0 PDF of the Standard Normal Distribution CDF of the Standard Normal Distribution 0.5 -2.52.5 5.0 -5.00.0 -5.0-2.50.0 2.5 5.0 CDF of the Standard Logistic Distribution PDF of the Standard Logistic Distribution

Source: Park (2010)

Which to choose?

Results tend to be very similar

Preference for one over the other tends to vary by discipline

Simple Example in Stata

Data: NLSY 97

Sample: BA degree earners

- Dependent Variable: Entry into a STEM occupation
- Independent Variable: Parent education (categorical variable of highest degree: 2-year degree or lower versus BA and Advanced Degree)

Stata Output: Logit

```
. logit stemjob pared ba pared adv if sampleba == 1
Iteration 0: log likelihood = -920.3815
Iteration 1: log likelihood = -913.98734
Iteration 2: log likelihood = -913.94785
Iteration 3: log likelihood = -913.94785
Logistic regression
                                           Number of obs = 2112
                                           LR chi2(2) = 12.87
                                           Prob > chi2 =
                                                              0.0016
Log likelihood = -913.94785
                                           Pseudo R2 =
                                                              0.0070
    stemjob
                 Coef. Std. Err.
                                         P>|z|
                                                  [95% Conf. Interval]
                                     Z
              .4771138 .1411431 3.38
   pared ba
                                         0.001
                                                  .2004784
                                                            .7537492
  pared adv
              .3685459 .1490065
                                   2.47
                                         0.013
                                                  .0764986 .6605932
      cons
              -1.920446 .0957723 -20.05
                                         0.000
                                                 -2.108156
                                                            -1.732736
```

Interpretation

- Logistic Regression
 - Log odds
 - Interpretation: Among BA earners, having a parent whose highest degree is a BA degree versus a 2-yr degree or less increases the log odds of entering a STEM job by 0.477.

Interpretation

- Logistic Regression
 - Log odds
 - Interpretation: Among BA earners, having a parent whose highest degree is a BA degree versus a 2-year degree or less increases the log odds by 0.477.
 - However, we can easily transform this into odds ratios by exponentiating the coefficients: exp(0.477)=1.61
 - Interpretation: BA degree earners with a parent whose highest degree is a BA degree are 1.61 times more likely to enter into a STEM occupation than those with a parent who have a 2-year degree or less.

Stata Output: logistic

"logistic" command outputs odds ratios instead of log odds

```
. logistic stemjob pared ba pared adv if sampleba == 1
Logistic regression
                                              Number of obs
                                                                    2112
                                              LR chi2(2)
                                                                  12.87
                                              Prob > chi2
                                                                  0.0016
Log likelihood = -913.94785
                                              Pseudo R2
                                                                  0.0070
    stemjob
              Odds Ratio
                         Std. Err.
                                            P>|z|
                                                      [95% Conf. Interval]
                                       Z
   pared ba
               1.611417 .2274404
                                     3.38
                                            0.001
                                                     1.221987
                                                                2.124952
  pared adv
                                     2.47
                                            0.013
                                                                 1.93594
               1.445631 .2154084
                                                     1.079501
                                   -20.05
                                            0.000
                                                      .1214617
                                                                 .1768001
                .1465416
                          .0140346
      cons
```

Stata Output: probit

```
. probit stemjob pared ba pared adv if sampleba == 1
Iteration 0: log likelihood = -920.3815
Iteration 1: log likelihood = -913.95526
Iteration 2: log likelihood = -913.94785
Iteration 3: log likelihood = -913.94785
Probit regression
                                            Number of obs
                                                          = 2112
                                                          = 12.87
                                            LR chi2(2)
                                            Prob > chi2
                                                               0.0016
                                                         =
Log likelihood = -913.94785
                                            Pseudo R2
                                                               0.0070
                                          P>|z| [95% Conf. Interval]
    stemjob
                 Coef.
                        Std. Err.
                                      Z
                        .0779146
                                    3.37
                                          0.001
                                                   .1099786 .415398
   pared ba
               .2626883
  pared adv
               .2014769
                        .0818166
                                    2.46
                                          0.014
                                                   .0411193 .3618345
      cons
              -1.136796
                         .051066 -22.26
                                          0.000
                                                  -1.236883 -1.036708
```

Interpretation

Probit Regression

- Z-scores
 - Interpretation: Among BA earners, having a parent whose highest degree is a BA degree versus a 2-year degree or less increases the z-score by 0.263.
 - Researchers often report the marginal effect, which is the change in y* for each unit change in x.

Comparison of Coefficients

Variable	Logistic Coefficient	Probit Coefficient	Ratio
Parent Ed: BA Deg	.4771	.2627	1.8
Parent Ed: Advanced Deg	.3685	.2015	1.8

Comparing Across Models

 It can be misleading to compare coefficients across models because the variance of the underlying latent variable (y*) is not identified and can differ across models.

Some Possible Solutions to this Problem:

Predicted Probabilities

- Gives predicted values at substantively meaningful values of x_k
- y*-standardized coefficients
 - B_k^{sy*} gives the standard deviation increase in y* given a one unit increase in x_k , holding all other variables constant.
- Fully standardized coefficients
 - B_k^s gives the standard deviation increase in in y^* , given a one standard deviation increase in x_k , holding all other variables constant.
- Marginal effects
 - The slope of the probability curve relating x to Pr(y=1|x), holding all other variables constant

A Few Examples of Hypothesis Testing and Model Fit for Logistic Regression in Stata

- Likelihood Ratio
 - Irtest
- Wald test
 - test
- Akaike's Information Criterion (AIC)/Bayesian Information Criterion (BIC)
 - estat ic
- Or for a variety of fit statistics
 - fitstat

References

- Agresti, Alan. An introduction to categorical data analysis. Vol. 423. Wiley-Interscience, 2007.
- Long, J. Scott. Regression models for categorical and limited dependent variables. Vol. 7. Sage, 1997.
- Powers, D., and Y. Xie. "Statistical method for categorical data analysis Academic Press." San Deigo, CA (2000).