1 Uvod v Umetno inteligenco

1.1 Turingov test

Opazovalec po pogovru ne more lociti racunalnika od cloveka.

2 STROINO UCENIE

2.1 Problemski prostor, ocenjevanje znanja

2.2 EVALVIRANJE HIPOTEZ

Pomembni kriteriji:

- konsistentnost hipotez z primeri (ucnimi)
- splosnost (tocnost za nevidene primere)
- · razumljivost hipotez

Ocenjevanje uspesnosti pri klasifikaciji na podlagi njihove toc-

TP - true positive, FP - false positive, FN - false negative, TN - true negative

Klasifikacijska tocnost =
$$\frac{TP + TN}{TP + TN + FP + FN} = \frac{TP + TN}{N}$$

Napaka 1. tipa = FP, napaka 2. tipa = FN

Obcutljivost/senzitivnost =
$$TPR = \frac{TP}{TP + FN}$$

2.3 Gradnia odlocitvenih dreves

Informacijski prispevek $Gain(A) = I - I_{res}(A)$, I=H(C)

$$I_{\text{res}} = -\sum_{v_i \in A} p_{v_i} \sum_{c} p(c|v_i) \log_2 p(c|v_i)$$

Za koliko se entropija zmanjsa po delitvi z Atributom A.

Razmerje inofrmacijskega prispevka atributa A:

$$IGR(A) = \frac{Gain(A)}{H(A)}$$

2.3.1 TDIDT (Top down induction decision tree) algoritem

Pozresen algoritem, ki lokalno izbira najbolsi atribut.

- kratkoviden algoritem
- 2.3.2 BINARIZACHA ATRIBUTOV

Aleternativa za resevanje problematike z vecvrednostnimi atributi: Primer: barve ∈ rdeca, rumena, zelena, modra

- Strategije, razbijemo v dve mnozici: - rdeca, rumena, zelena, modra
- rdeca, rumena, zelena, modra

Prednost: manjse vejanje drevesa.

2.4 Ucenje iz sumnih podatkov (rezanje)

tocnost t...verjetnost pravilnosti klasifikacije

napaka e ... 1-t

relativna frekvenca $p = \frac{n}{N}$

m-ocena $p = \frac{n + p_a * m}{N + m}$

m... koliko zaupam apriorni verjetnosti

p_q apriorna verjetnost (domenski ekspert lahko pove)

Laplacova ocena verjetnosti $p = \frac{n+1}{N+k}$

k...stevilo vseh moznih razredov

2.4.1 REP (REDUCED ERROR PRUNNING)

Dela dobro ce imamo veliko rezalno mnozico.

Obicajno uporabljamo relativno frekvenco za ocenjevanje verjet-

 $G(v) = \# napak_T - \# napak_T$

 $G(v) \ge 0 \Rightarrow$ rezemo podrevo

e(C) = 3

 $e_T = 2 + 3 = 5$

 $G(C) = 5 - 3 = 2 \ge 0 \rightarrow \text{rezemo}$

2.4.2 MEP (MINIMAL ERROR PRUNNING)

e...staticna napaka,E...vzvratna napaka, $e \le E \rightarrow$ rezemo poddrevo

$$e_L(d) = 1 - t = 1 - \frac{13+1}{20+2} = 0.363$$

 $E_L(d) = 12/20 \cdot e_L(d_l) + 8/20 \cdot e_L(d_d) = \frac{12}{20} \cdot (1 - \frac{7+1}{12+2}) + \frac{8}{20}(1 - \frac{13+1}{20+2})$

2.5 Ocenievanie uspesnosti modelov

tocnost t ... verjetnost pravilnosti klasifikacije

Laplacova ocena verjetnosti $p = \frac{n+1}{N+k}$

k...stevilo vseh moznih razredov

 $t_{L1} = \frac{2+1}{3+3} = 0.5, t_{L2} = \frac{4+1}{7+3} = 0.5, t_{L3} = \frac{2+1}{2+3} = 0.6$ tocnost drevesa: $t_D = 3/12 \cdot 0.5 + 7/12 \cdot 0.5 + 2/12 \cdot 0.6 = 0.5167$

2.6 OBRAVNANVA MANKAJOCIH ATRIBUTOV, NAVINI BAYESOV KLASI-FIKATOR

2.6.1 NAIVNI BAYES

Ce poznamo razred, kam klasificiramo ce nepoznamo atributov:

Klasifikator:
$$\operatorname{argmax}_{c \in C} P(c) \prod_{i=1}^{n} P(x_i|c)$$

 $c \dots razred, x_i \dots atributi$

Verjetnost::

$$P(C = c|x_1,...,x_n) = \frac{P(C = c)P(X_1 = x_i|C = c)P(X_2 = x_j|C = c)...}{P(X_1 = x_i)P(X_2 = x_j)...}$$

Primer moski: visina ≥ 175 , teza ≥ 65 , spol = M

$X \backslash Y$	Razred A	Razred B		
p_a	$P(A) = \frac{2}{3}$	$P(B) = \frac{1}{3}$		
spol	P(M A)	$P(M B)$ $P(V \ge 175 B)$		
visina	$P(V \ge 175 A)$			
teza	$P(T \ge 65 A)$	$P(T \ge 65 B)$		
$P(y) \prod_{i=1}^{n} P(x_i y)$				

2.6.2 Nomogragmi

Ciljni razred $C = c_T$

$$X_{X_i=x_j} = \ln \left(\frac{P(X_i=x_j|C=c_T)}{P(X_i=x_j|C=\overline{c_T})} \right)$$

2.7 K-najblizjih sosedov

3 Vrste ucenja

3.1 Nadzorovano ucenje (supervised learning)

Ucni primeri so podani/oznaceni kot vrednosti vhodov in izhodov.

 $(\vec{x}_1, \vec{y}_1), (\vec{x}_2, \vec{y}_2), \dots, (\vec{x}_N, \vec{y}_N)$

 $\vec{x_i}$... atributi, $\vec{y_i}$... ciljna spremenljivka

Locimo dve vrsti problemov:

- 1. Klasifikacijski problemi yi diskretna
- 2. Regresijski problemi y_i zvezna

3.1.1 Lokalno utezena regresija

$$h(\vec{x}_{i}^{2}) = \frac{\sum_{i=1}^{k} w_{i} \cdot f(\vec{x}_{i}^{2})}{\sum_{i=1}^{k} w_{i}}, w_{i}(d)...uto$$

Α	В	С	dolžina	d(xiixi)	Wi	Wi-f(~	<u>;)</u>
0	0	0	9	4	415	915	
0	0	0	10	4	115	2	
0	1	1	9	2_	413	3	1. () S. w f (x;)
0	2	0	12	2	113	4	N(x,) = 12
0	2	1	12	1	112	6	٠
1	0	0	12	3	1/4	3	$h(x_1) = \frac{\sum_{i=1}^{N} w_i \cdot f(x_1)}{\sum_{i=1}^{N} w_i}$ $= \frac{\sum_{i=1}^{N} w_i \cdot f(x_1)}{\sum_{i=1}^{N} w_i} = M.359$
1	0	0	15	3	114	15/4	7c = 11.359
1	1	1	11	1	112	11/2	15
1	1	1	15	1	112	15/2	-
1	1	1	9	1	112	912	
1	2	0	9	1	112	512	
1	2	1	12	0	1	12	
					76	1111	•
okalno i	uteženo regr	esijo želir	no napove	dati dolžino p	ostrvi z at		$\{A=1,B=2,C=1\}$. Pri izračunu uporabi:
	tansko razd		rjenje raze	dalj,			
indenni	funkcijo w_i :	1					

3.1.2 Regresijska drevesa

Linearna regresija je poseben primer regresijskega drevesa. V listih regresijskega drevesa vcasih napovemo kar povprecno

3.2 Nenadzorovano ucenje (unsupervised learning)

Ucni primeri niso oznaceni (nimajo ciljne spremenljivke), ucimo se vzorcev v podatkih, (npr. grucenje)

3.2.1 HIERARHICNO GRUCENJE

Poveze po podobnosti med primeri, primer zacne kot samostojna gruca, na koncu vsi primeri pripadajo eni gruci

Dendrogram: drevo, ki predstavlja grucenje.

Single-linkage: povezava med grucami je najkrajse razdalje med primeroma iz razlicnih gruc.

Complete-linkage: povezava med grucami je najdaljsa razdalja med primeroma iz razlicnih gruc.

Average-linkage: povezava med grucami je povprecna razdalja med primeroma iz razlicnih gruc.

3.2.2 K-MEANS

- 1. V prostor dodamo k centroidov, ki predstavljajo gruce.
- 2. Izracunamo ketri centroid je najblizji vsakemu primeru.
- 3. Izracunamo nove centre gruc = $\frac{1}{|G|} \sum_{i \in C} x_i$
- 4. Ponovimo korake 2 in 3 dokler se centri ne premaknejo.

3.3 Spodbujevalno ucenje - reinforcement learning

Inteligentni agent se uci iz zaporedja nagrad in kazni

- 3.4 Ocenjevanje ucenja
- 3.4.1 Precno preverianie

Poseben primer veckratnega ucenja in testiranja

k-kratno precno preverjanje

- · celo ucno mnozico razbij na k disjunktnih podmnozic
- za vsako od k podmnozic:
- uporabi mnozico kot testno mnozico
- uporabi preostalih k-1 mnozic kot ucno mnozico
- · povpreci dobljenih k ocen tocnosti v koncno oceno

Pri precnem preverjanju uporabimo vse podatke za testiranje in

Metoda **leave one out** je poseben primer precnega preverjanja Imamo dve hipotezi A in B. Izkase se, da A bolje napoveduje na ucnih podatkih B pa na testnih. Potem je B verjetno boljsa hipoteza.

4 Preiskovanje

NEINFORMIRANI PREISKOVALNI ALGORITMI

- 4.1.1 ISKANIE V SIRINO
- 4.1.2 ISKANJE V GLOBINO

Izboljsave:

· Iskanje s sestopanjem

 depth-limited-search (vnapej definiramo globino l (dolocimo preko domenskega znanja))

4.1.3 ITERATIVNO POGLABLJANJE

problem gobinsko omejenega iskanja -> nastavitev meje l Mejo l postopoma povecujemo za 1, dokler ne najdemo resitve.

- popolnost: Daoptimalnost: Da
- casovna zahtevnost O(b^d)
- prostorska zahtevnost O(bd)

Boljse od iskanja v globino/sirino

4.1.4 DVOSMERNO ISKANJE

Ideja: pognati vzporedni iskanji od zacetka do cilja in od cilja do zacetka.

Motivacija:

Implemenatcija dvosmernega iskanja

- · ciljno vozlisce mora biti znano
- originalni problemski prostor preslikamo v dvosmerni prosto stanj E1, E2 dosegljiv iz E in S1,S2,S3 dosegljiv iz S (S,E) -> (S1, E1), (S1,E2), (S2, E1), (S2, E2)... Vozlisce (Si, Ei) je v dvosmernem prostur ciljo vozlisce ce velja E=S (soda dolzina na isto mesto pridemo iz obeh strani) ali S->E (liha pot sosednja)

4.1.5 CENOVNO - OPTIMALNO ISKANJE

- posplositev iskanja v sirino (iskanje v sirino je optimalno, ce so cene vseh povezav enake 1)
- · dijkstra basically (sam do zadnga noda)
- https://stackoverflow.com/a/14587449

4.2 Informirani preiskovalni algoritmi

4.1.6 Primerjava algoritmov

4.2.1	HEVRISTICNO PREISKOVANJE
ideja:	preiskovanje usmerjamo z dodatnim znanjem (ocenitye

sirino globino omejitvijo globine

funcija za obetavnost vozlisca)
hevristika je ocenitvena funkcija za obetavnost vozlisca

Niso optimalni algoritmi (ne zagotavljajo optimalnih resitev)

Primeri hev. algoritmov:

- A*
- IDA*

Kriterij

- · RBFS (recursive best-first search)
- · iskanje v snopu (beam search)
- · plezanje na hrib (hill climbing)

4.2.2 pozresno preiskovanje/ greedy best-first search

h(n) hevristicna ocena

vrednotenje vozlisca f(n) = h(n) hevristicna ocena ... npr manhatan distance (zracna razdalja)

- popolnost (ali najde vedno resitev): Ne
- optimalnost: Ne
- casovna zahtevnost $O(b^m)$, kjer je m najvecja globina drevesa

4.2.3 A'

Ideja: boljsa hevrisiticna fun

Vozlisca vrednotimo glede na ceno najboljse poti skozi vozlisce n $f(n)=g(n)+h(n),\,g(n)$ cena poti do n (znano), h(n) cena od n do najblizjega cilja (ocena)

prioritetna vrsta (max glede na f(n)) Basically dijkstra + h(n) (A* is basically an informed variation of Dijkstra.)

- popolnost: Da (ce ustreza pogoju dopustnosti)
- optimalnost: Da (ce ustreza pogoju dopustnosti)
- casovna zahtevnost O(b^m), kjer je m najvecja globina drevesa h(n) je dopustna ce nikoli ne precenjuje cene do cilja
- hevristika optimisticna predvideva da je do cilja manj kot dejansko je (zracna razdalja, igra 8 ploscic)
- $\forall h(n) \leq h*(n)$, kjer je h*(n) dejanska cena optimalne poti do cilja za vozlisce n-h(n)=0 ($A^*=$ dijkstra), preiskovanje s cenami, velja da je sevedno optimalen

4.2.4 IDA* (Iterative deepening A*)

Deluje kot **dfs**, vendar za mejo uporabljamo f(n) namest globine za mejo na zacetku izberemo vrednost f(n) zacetnega v - na vsaki iteraciji razvijemo vsa vozlisca z f(n) <= mejni vrednosti - za naslednjo iteracijo izberemo mejo, ki je najmanjsi f(n) od se nerazvitih vozlisc

Ucinkovitost

- neucinkovit ce vozlisca raznolika f(n)
- prednost: ne hrani vec vseh vozlisc kot A*
- optimalen: ce razvija v prioritetnem vrsntem redu, h(n) mora biti monotona|konsistentna (h(n) skos pada) (posledicno tudi dopustna)

 iterativno poglabljanje | dvosmerno iskapje (n, n') + h(n')

(h naslednjega vozlisca manjsi ker je blizji cilja)

• monotona \rightarrow dopustna (proti primer h(n) = 0)

4.2.5 Kakovost hevristicnih funkcij

7	2	4
5		6
8	3	1

Primer igra 8 ploscic

- -h₁: stevilo ploscic ki niso na pravem mestu (8)
- -h₂: vsota manhattanskih razdalj ploscic do pravega mesta(3+1+2+2+2+3+3+2=18)

Kakovost h ocenimo z:

- stevilom generirarnih vozlisc
- z efektivnim faktorjem vejanja (koliko vozlisc N je algoritem generiral da je na globini d nasel resitev)

	število generiranih vozlišč			efektivni faktor vejanja		
Globina	IDS	A*(h₁)	A*(h ₂)	IDS	A*(h₁)	A*(h ₂)
2	10	6	3	2,45	1,79	1,79
4	112	13	12	2,87	1,48	1,45
6	680	20	18	2,73	1,34	1,30
8	6384	39	25	2,80	1,33	1,24
10	47127	93	39	2,79	1,38	1,22
12	3644035	227	73	2,78	1,42	1,24
14	?	539	113	?	1,44	1,23
16	?	1301	211	?	1,45	1,25
18	?	3056	363	?	1,46	1,26
20	?	7276	676	?	1,47	1,27
22	?	18094	1219	?	1,48	1,28
24	?	39135	1641	?	1,48	1,26

Vidimo $h_2(n) \ge h_1(n) \forall n$ pravimo h_2 **dominira** h_1

4.3 Lokalno preiskovalni algoritmi

4.3.1 PLEZANJE NA HRIB

Ne pomnemo poti do cilja, ampak samo trenutno stanje Koristni v primerih:

- ce nas zanima samo kakovost resitve (in ne pot do cilja)
- resevanje optimizacijskih problemov (kjer je podana **kriterijska funkcija** za oceno kakovosti resitve)

Prednosti:

- majhna poraba prostora

Primer 4 kraljice na sahovnici - kriterijska funkcija: maksimiziramo - (minus) stevilo kraljic, ki se medsebojno napadajo Tezave:

- lokalni maksimumi
- "rame, plaote" (kriterijska funkcija konstantna vrednost)
- grebeni (za plezanje navzgor je potreben sestop po pobocju grebena)

Resevanje iz lokalnih maksimumov:

- koraki vstran: ce ima naslednje stanje isto vrednost kriterijske funkcie, dovolimo premik v to stanje
- stohasticno plezanje na hrib: iz mnozice boljsih stanj, verjetnostno izberemo naslednje stanje (pri cemer upostevamo da imajo boljsa stanja vecjo verjetnost izbora)
- nakljucni ponovni zagon: veckrat pozeni plezanje na hrib iz nakljucnih stanj dokler ne najdes resitve

4.3.2 SIMULIRANO OHLAJANJE

algoritem ki izvira iz metalurgije (ko je jeklo tekoce, so molekule v njem bolj gibljive; ko se ohlaja se strjuje in molekuele se umirjajo) Analogija:

- generiramo nakljucne sosede trenutnega stanja
- ce najdemo boljse stanje ga izberemo
- ce najdemo slabse stanje, ga izberemo z doloceno verjetnostjo
- verjetnost izbire neoptimalnega stanja s casom pada (nizanje temperature)

4.3.3 Lokalno iskanje v snopu

Algoritem:

- v spominu hrani k aktualnih stanj namesto enega
- izberi k optimalnih stanj od sosedov aktualnih stanj
- ponavaljaj do ustavitnega pogoja
- 4.4 Grafi AND/OR, NEDETERMINISTICNO OKOLJE