

Content Image (*I_{content}*)

Style Image (I_{style})

Output Image (I_{output})

1. How to represent content

Content Representation

Content Representation

For "Conv1_1"

1. # of filter:

?

2. size of filter:

? x?

3. # of feature:

?x?x?

Content Representation

For "Conv1_1"

1. # of filter:

64

2. size of filter: ? x?

3. # of feature: ? x ? x ?

Content Representation

For "Conv1_1"

1. # of filter:

64

2. size of filter: 5 x 5

3. # of feature: ? x ? x ?

Content Representation

For "Conv1_1"

1. # of filter:

64

- 2. size of filter: 5 x 5
- 3. # of feature: 64 x 5 x 5

Content Representation

- l: index for layer
- *i*: index for filter
- F_{ij}^l : j^{th} feature in i^{th} filter of l^{th} layer

VGG-16 Conv1 1

Content Representation

- l: index for layer
- *i*: index for filter
- F_{ij}^l : j^{th} feature in i^{th} filter of l^{th} layer

VGG-16 Conv1 1

Content Representation

- l: index for layer
- *i*: index for filter
- F_{ij}^l : j^{th} feature in i^{th} filter of l^{th} layer

Content Representation

- l: index for layer
- *i*: index for filter
- F_{ij}^l : j^{th} feature in i^{th} filter of l^{th} layer

Content Representation

•
$$L_{content}(\vec{p}, \vec{x}, l) =$$

$$\frac{1}{2} \sum_{i,j} (F_{ij}^l - P_{ij}^l)^2$$

• Features (F_{i*}^l) for same area (j) should be similar.

Output Image

Content Image

Style Representation

- *l*: index for layer
- *i*: index for filter
- F_{ij}^l : j^{th} feature in i^{th} filter of l^{th} layer

VGG-16 Conv1_1

Style Representation

Style Representation

- $\bullet \quad G^l = \left(\widehat{F}^l\right)^T \widehat{F}^l$
- $\rightarrow G^l$: (# of filter) x (# of filter)
- → dot-product between features

•
$$E_l = \frac{1}{4N_l^2 M_l^2} \sum_{i,j} (G^l - A^l)^2$$

- $L_{style} = \sum_{l} w_{l} E_{l}$
- Relation between features (G^l) should be similar.

Image generation

- $L_{total} = \alpha L_{content} + \beta L_{style}$
- Generate image via gradient descent

$$\left(\frac{dL_{total}}{dI_{output}}\right)$$

- No weight update (use pretrained VGG19 model)
- Update output image

Reference

- [1] Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." *Proceedings of the IEEE conference on computer vision and pattern recognition*. 2017.
- [2] https://web.stanford.edu/class/cs20si/2017/index.html
- [3] https://github.com/Hvass-Labs/TensorFlow-Tutorials/blob/master/15_Style_Transfer.ipynb