16.1 习题

张志聪

2025年4月24日

16.1.1

(1) *k* 的存在性。

对任意实数 x,令 $A := \{l \in \mathbb{Z} : l \leq x\}, k := \sup(A)$ 。

由命题 5.4.12(负实数有类似的命题)可知,存在有理数 q 和整数 N 使得

$$q \le x \le N$$

由命题 4.4.1 可知,存在一个整数 M 使得 $M \leq q$,于是

$$M \le x \le N$$

于是 A 非空,且有上界。

接下来,证明上确界是存在的,且上确界属于 A。换言之,任意一个元素为整数的非空有界集合都有一个最大元素。

由命题 5.5.9 (最小上界的存在性) 可知,A 存在上确界,设 k 是 A 的上确界。

反证法, 假设 $k \notin A$ 。

任取 $a_0 \in A$ (因为 A 是非空,所以 a_0 是存在的。) 因为 $k \notin A, a_0 \in A$,所以存在 $a_1 \in A$,且 $a_1 > a_0$ (否则 $a_0 = k$ 就是上确界了,与假设矛盾)。因为 $a_1 > a_0$,所以, $a_1 \ge a_0 + 1$ (A 中的元素都是整数)。递归地构造出 $a_2, a_3, \ldots, a_n, \ldots$ 。

所以,对任意 $n \ge 1$,都有 $a_n \ge a_0 + n$ 。于是,只要 n 足够大,就可以取到 $a_n > k$,这与 k 是 A 的上确界矛盾。

综上,整数 k 是存在的。

 $(2) y \in [0,1)$.

如果, $y \ge 1$, 那么, $x = k + y \ge k + 1$, 这与 $k \not\in A$ 的上确界矛盾 (因为 $k + 1 \in A$)。

同理, y < 0, x = k + y < k, 同样与 $k \notin A$ 。)

综上, $y \in y \in [0,1)$ 。

16.1.2

f 是 Z 周期的,所以,我们只需要了解它在 [0,1) 上的取值就行了。

• (a)

因为 f 在 \mathbb{R} 上连续的,那么,f 在 [0,1] 上也是连续的。

证明与引理 9.6.3 相同 (不能直接使用 9.6.3, 函数的值域不同)。

反证法,假设 f 在 [0,1] 是无界的。那么,对任意实数 M>0,都存在 $x\in[0,1)$,使得 $|f(x)|\geq M$ 。

特别地,对于每一个自然数 n,集合 $\{x \in [0,1]: |f(x)| \geq n\}$ (这里 f(x) 是复数,但 |f(x)| 是实数)都是非空的。所以我们可以选取 [0,1] 中的一个序列 $(x_n)_{n=1}^\infty$ 使得 $|f(x_n)| \geq n$ 对所有的 n 均成立。由于这个序列属于 [0,1],从而根据 9.1.24 可知,存在一个收敛于某个极限 $L \in [0,1]$ 的子序列 $(x_{n_j})_{j=0}^\infty$,其中 $n_0 < n_1 < n_2 < \ldots$ 是一个递增的自然数序列。特别地,对于所有的 $j \in \mathbb{N}$,均有 $n_j \geq j$ 。

因为 f 在 [0,1] 上连续,所以它在 L 处是连续的,并且我们有

$$\lim_{j \to \infty} f(x_{n_j}) = f(L) \tag{1}$$

所以序列 $(f(x_{n_j}))_{j=0}^{\infty}$ 是收敛的,从而是有界的。另外,我们从序列的构造过程中看出 $|f(x_{n_j})| \geq n_j \geq j$ 对所有的 j 均成立,从而序列 $(f(x_{n_j}))_{j=0}^{\infty}$ 是无界的,这是一个矛盾。

f 在 [0,1] 上有界,所以在 [0,1) 上也有界。

• (b)

以 f+g 为例,只需证明 f+g,满足连续的 \mathbb{Z} 周期复值函数的空间 (即: $C(\mathbb{R}/\mathbb{Z};\mathbb{C})$) 性质即可。

f+g 的连续性,证明略。

现在证明 f + g 是 \mathbb{Z} 周期性的。

$$(f+g)(x) = f(x) + g(x)$$
$$= f(x+k) + g(x+k)$$
$$= (f+g)(x+k)$$

命题得证。

• (c)

连续性由推论 14.3.2 保证。

接下来,需要证明,f是 \mathbb{Z} 周期性的。

反证法,假设 f 不是 \mathbb{Z} 周期性的,那么,存在 $x_0 \in [0,1)$,使得 $f(x_0) \neq f(x_0 + k)$ (其中,k 是任意整数)。

因为, $(f_n)_{n=1}^{\infty}$ 一致收敛于 f,那么,令 $\epsilon = |f(x_0) - f(x_0 + k)|$,存在 $N \ge 1$ 使得只要 $n \ge N$,就有

$$|f(x_0) - f_n(x_0)| < \frac{1}{4}\epsilon$$

$$|f(x_0 + k) - f_n(x_0 + k)| = |f(x_0 + k) - f_n(x_0)| < \frac{1}{4}\epsilon$$

我们有,

$$|f(x_0) - f(x_0 + k)| = |f(x_0) - f_n(x_0) + f_n(x_0) - f(x_0 + k)|$$

$$\leq |f(x_0) - f_n(x_0)| + |f_n(x_0) - f(x_0 + k)|$$

$$< \frac{1}{4}\epsilon + \frac{1}{4}\epsilon$$

$$= \frac{1}{2}\epsilon$$

存在一个矛盾。

16.1.3

- (a) (C(ℝ/ℤ;ℂ), d_∞) 符合定义 12.1.2 (度量空间)。
 符合下面四个公理:
 - (1) 对任意的 $f \in C(\mathbb{R}/\mathbb{Z};\mathbb{C})$,我们有 $d_{\infty}(f,f)=0$ 。 因为, $\sup_{x \in \mathbb{R}} |f(x)-f(x)| = \sup_{x \in \mathbb{R}} 0 = 0$,即: $d_{\infty}(f,f)=0$ 。
 - (2) (正性)对任意两个不同的 $f,g\in C(\mathbb{R}/\mathbb{Z};\mathbb{C})$,我们有 $d_{\infty}(f,g)>0$ 。

因为 $f \neq g$, 所以, 存在 $x_0 \in \mathbb{R}$ 使得 $f(x_0) \neq g(x_0)$, 于是 $d_{\infty}(f,g) \geq |f(x_0) - g(x_0)| > 0$ 。

- (3) (对称性)对任意的 $f,g\in C(\mathbb{R}/\mathbb{Z};\mathbb{C})$,我们有 $d_{\infty}(f,g)=d_{\infty}(g,f)$ 。

$$d_{\infty}(f,g) = \sup_{x \in \mathbb{R}} |f(x) - g(x)|$$
$$= \sup_{x \in \mathbb{R}} |g(x) - f(x)|$$
$$= d_{\infty}(g,f)$$

-(4)(三角不等式)对任意的 $f,g,h\in C(\mathbb{R}/\mathbb{Z};\mathbb{C})$,我们有 $d_{\infty}(f,h)\leq d_{\infty}(f,g)+d_{\infty}(g,h)$ 。

反证法, 假设 $d_{\infty}(f,h) > d_{\infty}(f,g) + d_{\infty}(g,h)$ 。

由上确界的定义和命题 6.3.6 可知,存在 $x_0 \in \mathbb{R}$ 使得

$$d_{\infty}(f,h) > |f(x_0) - h(x_0)|$$

$$> d_{\infty}(f,g) + d_{\infty}(g,h)$$

$$\geq |f(x_0) - g(x_0)| + |g(x_0) - h(x_0)|$$

综上, 我们有

$$|f(x_0) - h(x_0)| > |f(x_0) - g(x_0)| + |g(x_0) - h(x_0)|$$

因为对任意 $x \in \mathbb{R}$, 我们有

$$|f(x) - h(x)| = |f(x) - g(x) + g(x) - h(x)|$$

$$\leq |f(x) - g(x)| + |g(x) - h(x)|$$

存在矛盾。

• (d) $(C(\mathbb{R}/\mathbb{Z};\mathbb{C}),d_{\infty})$ 是完备的。 利用定理 14.4.5 可证。