Foundations of Machine Learning

Part A: Logistic Regression

Logistic Regression for classification

Linear Regression:

$$h(x) = \sum_{i=0}^{n} \beta_i x_i = \beta^T X$$

 Logistic Regression for classification:

$$h_{\beta}(x) = \frac{1}{1 + e^{-\beta^T X}} = g(\beta^T x)$$

$$g(z) = \frac{1}{1 + e^{-z}}$$

is called the logistic function or the sigmoid function.

Sigmoid function properties

- Bounded between 0 and 1
- $g(z) \to 1$ as $z \to \infty$
- $g(z) \to 0$ as $z \to -\infty$

$$g'(z) = \frac{d}{dz} \frac{1}{1 + e^{-z}}$$

$$= \frac{1}{(1 + e^{-z})^2} \cdot e^{-z}$$

$$= \frac{1}{1 + e^{-z}} \cdot (1 - \frac{1}{1 + e^{-z}})$$

$$= g(z)(1 - g(z))$$

Logistic Regression

- In logistic regression, we learn the conditional distribution
 P(y|x)
- Let $p_y(x; \beta)$ be our estimate of P(y|x), where β is a vector of adjustable parameters.
- Assume there are two classes, y = 0 and y = 1 and

$$P(y = 1|x) = h_{\beta}(x)$$

$$P(y = 0|x) = 1 - h_{\beta}(x)$$

Can be written more compactly

$$P(y|x) = h(x)^{y} (1 - h(x))^{1-y}$$

We can used the gradient method

Maximize likelihood

$$L(\beta) = p(\vec{y}|X;\beta)$$

$$= \prod_{i=1}^{m} p(y_i|x_i;\beta)$$

$$= \prod_{i=1}^{m} h(x_i)^{y_i} (1 - h(x_i))^{1-y_i}$$

$$l(\beta) = \log(L(\beta))$$

$$= \sum_{i=1}^{m} y^i \log h(x^i) + (1 - y_i)(\log(1 - h(x_i))$$

$$l(\beta) = \sum_{i=1}^{m} y^{i} \log h(x^{i}) + (1 - y_{i})(\log(1 - h(x_{i})))$$

- How do we maximize the likelihood? Gradient ascent
 - Updates: $\beta = \beta + \alpha \nabla_{\beta} l(\beta)$

Assume one training example (x,y), and take derivatives to derive the stochastic gradient ascent rule.

$$= \left(\left(y \frac{1}{g(\beta^{T}(x))}\right)^{\frac{\partial}{\partial \beta_{j}}} l(\beta)$$

$$- (1 - y) \frac{1}{1 - g(\beta^{T}x)} \frac{\partial}{\partial \beta_{j}} g(\beta^{T}x)$$

$$= \left(\left(y \frac{1}{g(\beta^{T}(x))}\right) - (1 - y) \frac{1}{1 - g(\beta^{T}x)} g(\beta^{T}x) (1 - g(\beta^{T}x) \frac{\partial}{\partial \beta_{j}} \beta^{T}x\right)$$

$$= (y(1 - g(\beta^{T}x)) - (1 - y)g(\beta^{T}x))x_{j}$$

$$= (y - h_{\beta}(x))x_{j}$$

$$\beta = \beta + \alpha \nabla_{\beta} l(\beta)$$
$$\beta_j = \beta_j + \alpha (y^{(i)} - h_{\beta}(x^i)) x_j^{(i)}$$

Part B: Introduction to Support Vector Machine

Support Vector Machines

- SVMs have a clever way to prevent overfitting
- They can use many features without requiring too much computation.

Logistic Regression and Confidence

Logistic Regression:

$$p(y = 1|x) = h_{\beta}(x) = g(\beta^T x)$$

- Predict 1 on an input x iff $h_{\beta}(x) \geq 0.5$, equivalently, $\beta^T x \geq 0$
- The larger the value of $h_{\beta}(x)$, the larger is the probability, and higher the confidence.
- Similarly, confident prediction of y = 0 if $\beta^T x \ll 0$
- More confident of prediction from points (instances) located far from the decision surface.

Preventing overfitting with many features

- Suppose a big set of features.
- What is the best separating line to use?
- Bayesian answer:
 - Use all
 - Weight each line by its posterior probability
- Can we approximate the correct answer efficiently?

Support Vectors

- The line that maximizes the minimum margin.
- This maximum-margin separator is determined by a subset of the datapoints.
 - called "support vectors".
 - we use the support vectors to decide which side of the separator a test case is on.

The support vectors are indicated by the circles around them.

Functional Margin

- Functional Margin of a point (x_i, y_i) wrt (w, b)
 - Measured by the distance of a point (x_i, y_i) from the decision boundary (w, b)

$$\gamma^i = y_i(w^T x_i + b)$$

- Larger functional margin →more confidence for correct prediction
- Problem: w and b can be scaled to make this value larger
- Functional Margin of training set $\{(x_1,y_1),(x_2,y_2),\dots,(x_m,y_m)\} \text{ wrt } (w,b) \text{ is }$ $\gamma = \min_{1 \leq i \leq m} \gamma^i$

Geometric Margin

- For a decision surface (w, b)
- the vector orthogonal to it is given by w.
- The unit length orthogonal vector is $\frac{w}{\|w\|}$
- $\bullet \ \ P = Q + \gamma \frac{w}{\|w\|}$

Geometric Margin

$$P = Q + \gamma \frac{w}{\|w\|}$$

$$(b1, b2) = (a1, a2) - \gamma \frac{w}{\|w\|}$$

$$\to w^{T} \left((a1, a2) - \gamma \frac{w}{\|w\|} \right) + b = 0$$

$$\to \gamma = \frac{w^{T}(a1, a2) + b}{\|w\|}$$

$$= \frac{w}{\|w\|}^{T} (a1, a2) + \frac{b}{\|w\|}$$

$$= \frac{w}{\|w\|}^{T} (a1, a2) + \frac{b}{\|w\|}$$

$$\gamma = y. \left(\frac{w}{\|w\|}^{T} (a1, a2) + \frac{b}{\|w\|} \right)$$

Geometric margin : ||w|| = 1Geometric margin of (w,b) wrt S={ $(x_1, y_1), (x_2, y_2), ..., (x_m, y_m)$ } -- smallest of the geometric margins of individual points. Maximize margin width denotes +1

odenotes -1

- Assume linearly separable training examples.
- The classifier with the maximum margin width is robust to outliners and thus has strong generalization ability

Maximize Margin Width

- Maximize $\frac{\gamma}{\|w\|}$ subject to
- $y_i(w^Tx_i + b) \ge \gamma \text{ for } i = 1, 2, ..., m$
- Scale so that $\gamma = 1$
- Maximizing $\frac{1}{\|w\|}$ is the same as minimizing $\|w\|^2$
- Minimize w. w subject to the constraints
- for all (x_i, y_i) , i = 1, ..., m:

$$w^T x_i + b \ge 1 \text{ if } y_i = 1$$

$$w^T x_i + b \le -1 \text{ if } y_i = -1$$

Large Margin Linear Classifier

Formulation:

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

such that

$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Solving the Optimization Problem

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

- Optimization problem with convex quadratic objectives and linear constraints
- Can be solved using QP.
- Lagrange duality to get the optimization problem's dual form,
 - Allow us to use kernels to get optimal margin classifiers to work efficiently in very high dimensional spaces.
 - Allow us to derive an efficient algorithm for solving the above optimization problem that will typically do much better than generic QP software.

Part C: Support Vector Machine: Dual

Lagrangian Duality in brief

The Primal Problem

min_w
$$f(w)$$

s.t. $g_i(w) \le 0$, $i = 1,...,k$
 $h_i(w) = 0$, $i = 1,...,l$

The generalized Lagrangian:

$$L(w,\alpha,\beta) = f(w) + \sum_{i=1}^{k} \alpha_i g_i(w) + \sum_{i=1}^{l} \beta_i h_i(w)$$

the α 's ($\alpha_i \ge 0$) and β 's are called the Lagrange multipliers Lemma:

$$\max_{\alpha,\beta,\alpha_i \ge 0} L(w,\alpha,\beta) = \begin{cases} f(w) & \text{if } w \text{ satisfies primal constraints} \\ \infty & \text{otherwise} \end{cases}$$

A re-written Primal:

$$\min_{w} \max_{\alpha,\beta,\alpha_i \geq 0} L(w,\alpha,\beta)$$

Lagrangian Duality, cont.

The Primal Problem
$$p^* = \min_{w} \max_{\alpha, \beta, \alpha_i \ge 0} L(w, \alpha, \beta)$$

The Dual Problem:
$$d^* = \max_{\alpha, \beta, \alpha_i \ge 0} \min_{w} L(w, \alpha, \beta)$$

Theorem (weak duality):

$$d^* = \max_{\alpha, \beta, \alpha_i \ge 0} \min_{w} L(w, \alpha, \beta) \le \min_{w} \max_{\alpha, \beta, \alpha_i \ge 0} L(w, \alpha, \beta) = p^*$$

Theorem (strong duality):

Iff there exist a saddle point of $L(w, \alpha, \beta)$, we have $d^* = p^*$

The KKT conditions

If there exists some saddle point of *L*, then it satisfies the following "Karush-Kuhn-Tucker" (KKT) conditions:

$$\frac{\partial}{\partial w_i} L(w, \alpha, \beta) = 0, \quad i = 1, ..., k$$

$$\frac{\partial}{\partial \beta_i} L(w, \alpha, \beta) = 0, \quad i = 1, ..., l$$

$$\alpha_i g_i(w) = 0, \quad i = 1, ..., m$$

$$g_i(w) \le 0, \quad i = 1, ..., m$$

$$\alpha_i \ge 0, \quad i = 1, ..., m$$

Theorem: If w^* , a^* and b^* satisfy the KKT condition, then it is also a solution to the primal and the dual problems.

Support Vectors

- Only a few α_i 's can be nonzero
- Call the training data points whose α_i 's are nonzero the support vectors

$$\alpha_i g_i(w) = 0, \quad i = 1, \dots, m$$

If
$$\alpha_i > 0$$
 then $g(w) = 0$

Solving the Optimization Problem

Quadratic programming with linear constraints

minimize
$$\frac{1}{2} \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^T\mathbf{x}_i + b) \ge 1$$

Lagrangian Function

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t. $\alpha_i \ge 0$

s.t.

Solving the Optimization Problem

minimize
$$L_p(\mathbf{w}, b, \alpha_i) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^T \mathbf{x}_i + b) - 1 \right)$$

s.t.
$$\alpha_i \ge 0$$

Minimize wrt w and b for fixed α

$$\frac{\partial L_p}{\partial \mathbf{w}} = 0 \qquad \mathbf{w} = \sum_{i=1}^n \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial L_p}{\partial h} = 0 \qquad \sum_{i=1}^n \alpha_i y_i = 0$$

$$L_p(w,b,\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j) - b \sum_{i=1}^m \alpha_i y_i$$

$$L_p(w,b,\alpha) = \sum_{i=1}^m \alpha_i - \frac{1}{2} \sum_{i,j=1}^m \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

The Dual problem

Now we have the following dual opt problem:

$$\max_{\alpha} \mathbf{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

s.t.
$$\alpha_i \ge 0$$
, $i = 1, ..., k$

$$\sum_{i=1}^{m} \alpha_i y_i = 0.$$

This is a quadratic programming problem.

– A global maximum of α_i can always be found.

Support vector machines

• Once we have the Lagrange multipliers $\{\alpha_i\}$ we can reconstruct the parameter vector w as a weighted combination of the training examples:

$$w = \sum_{i=1}^{m} \alpha_i y_i \mathbf{x}_i$$

$$w = \sum_{i=1}^{m} \alpha_i y_i \mathbf{X}_i \qquad w = \sum_{i \in SV} \alpha_i y_i \mathbf{X}_i$$

- For testing with a new data z
 - Compute

$$w^{T}z + b = \sum_{i \in SV} \alpha_{i} y_{i} (\mathbf{x}_{i}^{T}z) + b$$

and classify z as class 1 if the sum is positive, and class 2 otherwise

Note: w need not be formed explicitly

Solving the Optimization Problem

The discriminant function is:

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b = \sum_{i \in SV} \alpha_i \mathbf{x}_i^T \mathbf{x} + b$$

- It relies on a dot product between the test point x and the support vectors x_i
- Solving the optimization problem involved computing the dot products $x_i^T x_j$ between all pairs of training points
- The optimal w is a linear combination of a small number of data points.

Part D: SVM – Maximum Margin with Noise

Linear SVM formulation

Find w and b such that

$$\frac{2}{\|w\|}$$
 is maximized

And for each of the m training points (x_i, y_i) , $y_i(w, x_i + b) \ge 1$

Find w and b such that

$$||w||^2 = w.w$$
 is minimized

And for each of the m training points (x_i, y_i) , $y_i(w, x_i + b) \ge 1$

Limitations of previous SVM formulation

 What if the data is not linearly separable?

Or noisy data points?

Extend the definition of maximum margin to allow non-separating planes.

How to formulate?

• Minimize $||w||^2 = w.w$ and number of misclassifications, i.e., minimize w.w + #(training errors)

No longer QP formulation

Objective to be minimized

Minimize

W.W

+ C(distance of error points to their

correct zones)

• Add slack variables ξ_i

Maximum Margin with Noise

C controls the relative importance of maximizing the margin and fitting the training data.
Controls overfitting.

$$w.w + C \sum_{k=1}^{m} \xi_k$$

 m_{-} constraints

$$\begin{cases} w. x_k + b \ge 1 - \xi_k \text{ if } y_k = 1 \\ w. x_k + b \le -1 + \xi_k \text{ if } y_k = -1 \end{cases}$$

$$\equiv$$

$$y_k(w. x_k + b) \ge 1 - \xi_k$$
, k=1,...,m
 $\xi_k \ge 0$, k=1,...,m

Lagrangian

$$L(w, b, \xi, \alpha, \beta)$$

$$= \frac{1}{2}w \cdot w + C \sum_{i=1}^{m} \xi_{i}$$

$$+ \sum_{i=1}^{m} \alpha_{i} [y_{i}(x \cdot w + b) - 1 + \xi_{i}] - \sum_{i=1}^{m} \beta_{i} \xi_{i}$$

 α_i 's and β_i 's are Lagrange multipliers (≥ 0).

Dual Formulation

Find $\alpha_1, \alpha_2, \dots, \alpha_m$ s.t.

$$\max_{\alpha} \mathbf{J}(\alpha) = \sum_{i=1}^{m} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_i \alpha_j y_i y_j (\mathbf{x}_i^T \mathbf{x}_j)$$

Linear SVM

s.t. $\alpha_i \ge 0$, i = 1, ..., m $\sum_{i=1}^{m} \alpha_i y_i = 0.$

Noise Accounted

s.t.
$$0 \le \alpha_i \le C$$
, $i = 1,...,m$
$$\sum_{i=1}^m \alpha_i y_i = 0.$$

Solution to Soft Margin Classification

- x_i with non-zero α_i will be support vectors.
- Solution to the dual problem is:

$$w = \sum_{i=1}^{m} \alpha_i y_i x_i$$
$$b = y_k (1 - \xi_k) - \sum_{i=1}^{m} \alpha_i y_i x_i x_k$$

for any k s.t. $\alpha_k > 0$ For classification,

$$f(x) = \sum_{i=1}^{m} \alpha_i y_i x_i \cdot x + b$$

(no need to compute w explicitly)

Part E: Nonlinear SVM and Kernel function

Non-linear decision surface

- We saw how to deal with datasets which are linearly separable with noise.
- What if the decision boundary is truly non-linear?
- Idea: Map data to a high dimensional space where it is linearly separable.
 - Using a bigger set of features will make the computation slow?
 - The "kernel" trick to make the computation fast.

Non-linear SVMs: Feature Space

 $\Phi: x \to \phi(x)$

Non-linear SVMs: Feature Space

Kernel

- Original input attributes is mapped to a new set of input features via feature mapping Φ .
- Since the algorithm can be written in terms of the scalar product, we replace x_a . x_b with $\phi(x_a)$. $\phi(x_b)$
- For certain Φ 's there is a simple operation on two vectors in the low-dim space that can be used to compute the scalar product of their two images in the high-dim space

$$K(x_a, x_b) = \phi(x_a).\phi(x_b)$$

Let the kernel do the work rather than do the scalar product in the high dimensional space.

Nonlinear SVMs: The Kernel Trick

With this mapping, our discriminant function is now:

$$g(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b = \sum_{i \in SV} \alpha \phi(\mathbf{x}_i)^T \phi(\mathbf{x}) + b$$

- We only use the dot product of feature vectors in both the training and test.
- A kernel function is defined as a function that corresponds to a dot product of two feature vectors in some expanded feature space:

$$K(x_a, x_b) = \phi(x_a).\phi(x_b)$$

The kernel trick

$$K(x_a, x_b) = \phi(x_a).\phi(x_b)$$

Often $K(x_a, x_b)$ may be very inexpensive to compute even if $\phi(x_a)$ may be extremely high dimensional.

Kernel Example

2-dimensional vectors $\overline{x} = [x_1 x_2]$ let $K(x_i, x_i) = (1 + x_i, x_i)^2$ We need to show that $K(x_i, x_i) = \phi(x_i) \cdot \phi(x_i)$ $K(x_i, x_i) = (1 + x_i x_i)^2$ $= 1 + x_{i1}^2 x_{i1}^2 + 2 x_{i1} x_{i1} x_{i2} x_{i2} + x_{i2}^2 x_{i2}^2 + 2 x_{i1} x_{i1} + 2 x_{i2} x_{i2}$ = $[1 x_{i1}^2 \sqrt{2} x_{i1}^2 x_{i2}^2 \sqrt{2} x_{i1}^2 \sqrt{2} x_{i2}].[1 x_{i1}^2 \sqrt{2} x_{i1}^2 x_{i2}^2 \sqrt{2} x_{i1}^2 \sqrt{2} x_{i2}]$ $= \varphi(x_i). \varphi(x_i),$ where $\phi(x) = \begin{bmatrix} 1 & x_1^2 & \sqrt{2} & x_1 & x_2 & x_2^2 & \sqrt{2} & x_1 & \sqrt{2} & x_2 \end{bmatrix}$

Commonly-used kernel functions

- Linear kernel: $K(x_i, x_j) = x_i \cdot x_j$
- Polynomial of power p:

$$K(x_i, x_j) = (1 + x_i, x_j)^p$$

Gaussian (radial-basis function):

$$K(x_i, x_j) = e^{-\frac{\|x_i - x_j\|^2}{2\sigma^2}}$$

Sigmoid

$$K(x_i, x_j) = \tanh(\beta_0 x_i, x_j + \beta_1)$$

In general, functions that satisfy *Mercer's condition* can be kernel functions.

Kernel Functions

- Kernel function can be thought of as a similarity measure between the input objects
- Not all similarity measure can be used as kernel function.
- Mercer's condition states that any positive semi-definite kernel K(x, y), i.e.

$$\sum_{i,j} K(x_i, x_j) c_i c_j \ge 0$$

 can be expressed as a dot product in a high dimensional space.

SVM examples

© Eric Xing @ CMU, 2006-2010

Examples for Non Linear SVMs – Gaussian Kernel

Nonlinear SVM: Optimization

Formulation: (Lagrangian Dual Problem)

maximize
$$\sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

such that
$$0 \le \alpha_i \le C$$

$$\sum_{i=1}^n \alpha_i y_i = 0$$

The solution of the discriminant function is

$$g(x) = \sum_{i \in SV} \alpha_i K(x_i, x_j) + b$$

Performance

- Support Vector Machines work very well in practice.
 - The user must choose the kernel function and its parameters
- They can be expensive in time and space for big datasets
 - The computation of the maximum-margin hyper-plane depends on the square of the number of training cases.
 - We need to store all the support vectors.
- The kernel trick can also be used to do PCA in a much higherdimensional space, thus giving a non-linear version of PCA in the original space.

Multi-class classification

- SVMs can only handle two-class outputs
- Learn N SVM's
 - SVM 1 learns Class1 vs REST
 - SVM 2 learns Class2 vs REST
 - :
 - SVM N learns ClassN vs REST
- Then to predict the output for a new input, just predict with each SVM and find out which one puts the prediction the furthest into the positive region.

Part F: SVM – Solution to the Dual Problem

The SMO algorithm

The SMO algorithm can efficiently solve the dual problem. First we discuss Coordinate Ascent.

Coordinate Ascent

Consider solving the unconstrained optimization problem:

```
\max_{\alpha} W(\alpha_1, \alpha_2, ..., \alpha_n)
```

```
Loop until convergence: {  \text{for } i=1 \text{ to } n \text{ } \{ \\ \alpha_i = \arg\max_{\widehat{\alpha_i}} W(\alpha_1, \ldots, \widehat{\alpha_i}, \ldots, \alpha_n) \text{ } ; \\ \}  }
```

Coordinate ascent

- Ellipses are the contours of the function.
- At each step, the path is parallel to one of the axes.

Sequential minimal optimization

Constrained optimization:

$$\max_{\alpha} \mathbf{J}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i} \cdot \mathbf{x}_{j})$$
s.t. $0 \le \alpha_{i} \le C$, $i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

• Question: can we do coordinate along one direction at a time (i.e., hold all $\alpha_{[-i]}$ fixed, and update α_i ?)

The SMO algorithm

$$\max_{\alpha} \mathbf{W}(\alpha) = \sum_{i=1}^{m} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i} \cdot \mathbf{x}_{j})$$
s.t. $0 \le \alpha_{i} \le C$, $i = 1, ..., m$

$$\sum_{i=1}^{m} \alpha_{i} y_{i} = 0.$$

- Choose a set of α_1 's satisfying the constraints.
- α_1 is exactly determined by the other α 's.
- We have to update at least two of them simultaneously to keep satisfying the constraints.

The SMO algorithm

Repeat till convergence {

- 1. Select some pair α_i and α_j to update next (using a heuristic that tries to pick the two that will allow us to make the biggest progress towards the global maximum).
- 2. Re-optimize W(α) with respect to α_i and α_j , while holding all the other α_k 's ($k \neq i; j$) fixed.

• The update to α_i and α_j can be computed very efficiently.

Thank You