SUBSPACES

ROHAN RAMCHAND

Let V be a vector space over a field F.

Definition 1. A vector space U is a sub-vector space or subspace of another vector space V, denoted $U \leq V$, iff the following properties hold:

$$u_1 + u_2 \in U, u_1, u_2 \in U$$
 $\mathbf{0} \in U$
$$\lambda u \in U, \lambda \in F$$
 $u \in U \leftrightarrow u^{-1} \in U$

This concept is illustrated in the following examples.

Example. Let X be a set over a field F, and let $Y \subseteq X$. Then let $F(X) = \{f : X \to F\}$ be the space of all functions that map X to F. Then $F_Y(X) = \{f : X \to F | f(y) = 0 \forall y \in Y\}$ is a subspace of F(X).

Example. Let $\mathbb{R}[X]$ be the set of all real-valued polynomials. Further, for some polynomial $p \in \mathbb{R}[X]$, define the **degree** of p as

$$\deg(p) = \max(\{n \ge 0 | a_n \ne 0\}).$$

Finally, define $\mathbb{R}_{\leq d}[X] = \{p \in \mathbb{R}[X] | \deg(p) \leq d\}$. This is referred to as the subspace of polynomials.

KERNEL AND IMAGE

We begin by defining two sets related to any linear transformation, its kernel and its image.

Definition 2. Let V, W be spaces over a field F, and let $T : V \to W$ be a linear transformation. Then the **image of** T, denoted $\text{Im}(T) \in W$, is defined as

$$Im(T) = \{ w \in W | \exists v \in V : T(v) = w \}.$$

Further, the kernel of T, denoted $ker(T) \in V$, is defined as

$$\ker(T) = \{ v \in V | T(v) = \mathbf{0} \}.$$

We now state two theorems of kernels and images.

Theorem 1. Let $T: V \to W$ be a vector space. Then $Im(T) \leq W$.

Proof. The proof is left as an exercise to the reader.

SUBSPACES 2

Theorem 2. Let $T: V \to W$ be a vector space. Then $\ker(T) \leq V$.

Proof. Let $v_1, v_2 \in \ker(T)$ and $\lambda \in F$. Then

$$T(v_1 + v_2) = T(v_1) + T(v_2)$$

$$= \mathbf{0} + \mathbf{0}$$

$$= \mathbf{0}$$

$$\therefore v_1 + v_2 \in \ker(T)$$

$$T(\lambda v) = \lambda T(v)$$

$$= \lambda \cdot \mathbf{0}$$

$$= \mathbf{0}$$

$$\therefore \lambda v_1 \in \ker(T)$$

Therefore, both properties of a subspace are satisfied and the proof is complete.

Let V be a vector space. We define two canonical subspaces (i.e. subspaces of any arbitrary vector field), along with a corresponding linear transformation.

A slightly more nuanced example of the kernel and image is presented below. Notice that the definition of the kernel below relies on the definition of the image.

Example. Let X, Y be sets, and let φ be map from X to Y. As before, define, $\varphi^*(f)(x)$ as a map from F(Y) to F(X), the space of F-valued functions on Y and X, respectively. It has been proven that φ^* is a linear transformation; then the kernel of φ^* is

$$\ker(\varphi^*) = \{f: Y \to F | f \circ \varphi = 0\} = \{f: Y \to F | \forall \, y \in \operatorname{Im}(\varphi): f(y) = 0\}.$$

By the example above, this can also be written $F_{\text{Im}(\varphi)}$. The pullback image, $\text{Im}(\varphi^*)$, is left as an exercise to the reader.

We are now equipped to state two theorems of kernels and images.

Theorem 3. Let $T: V \to W$ be a linear transformation between two spaces over a field F.

- (1) T is surjective iff Im(T) = W.
- (2) T is injective iff $ker(T) = \{0\}$.

Proof. (1) Left as an exercise to the reader.

SUBSPACES 3

(2) Let
$$v_1, v_2 \in V$$
 and $T(v_1) = T(v_2)$. Then
$$T(v_1) - T(v_2) = \mathbf{0}$$

$$T(v_1 - v_2) = \mathbf{0}$$

$$\to v_1 - v_2 \in \ker(T)$$

$$\to v_1 - v_2 = \mathbf{0}$$

$$v_1 = v_2$$
.

Then $T(v_1) = T(v_2) \implies v_1 = v_2$ and T is injective.

In the other direction, if T is injective, $\ker(T) = \{\mathbf{0}\}$ by definition, since not more than one element of V can equal 0 by definition of injectivity.