Package 'metaVAR'

July 4, 2024
Title Multivariate Meta-Analysis of Vector Autoregressive Model Coefficients
Version 0.9.1
Description Estimates the mean vector and covariance matrix of the multivariate meta-analysis of vector autoregressive model coefficients.
<pre>URL https://github.com/jeksterslab/metaVAR,</pre>
https://jeksterslab.github.io/metaVAR/
<pre>BugReports https://github.com/jeksterslab/metaVAR/issues</pre>
License MIT + file LICENSE
Encoding UTF-8
Roxygen list(markdown = TRUE)
Depends R ($>= 3.5.0$), OpenMx
Imports numDeriv, Matrix
Suggests knitr, rmarkdown, testthat, simStateSpace
RoxygenNote 7.3.2
NeedsCompilation no
Author Ivan Jacob Agaloos Pesigan [aut, cre, cph] (https://orcid.org/0000-0003-4818-8420)
Maintainer Ivan Jacob Agaloos Pesigan <r.jeksterslab@gmail.com></r.jeksterslab@gmail.com>
Contents
coef.metavarmeta Meta print.metavarmeta summary.metavarmeta vcov.metavarmeta
Index

2 Meta

coef.metavarmeta

Estimated Parameter Method for an Object of Class metavarmeta

Description

Estimated Parameter Method for an Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
coef(object, ...)
```

Arguments

```
object an object of class metavarmeta.
... further arguments.
```

Value

Returns a vector of the mean estimated parameters.

Author(s)

Ivan Jacob Agaloos Pesigan

Meta

Fit Multivariate Meta-Analysis

Description

This function estimates the mean and covariance matrix of a vector of coefficients using the estimated coefficients and sampling variance-covariance matrix from each individual.

Usage

```
Meta(
   y,
   v,
   mu_start = NULL,
   mu_lbound = NULL,
   mu_ubound = NULL,
   sigma_l_start = NULL,
   sigma_l_lbound = NULL,
   sigma_l_ubound = NULL,
   try = 1000,
   ncores = NULL
)
```

print.metavarmeta 3

Arguments

У	A list. Each element of the list is a numeric vector of estimated coefficients.
V	A list. Each element of the list is a sampling variance-covariance matrix of y.
mu_start	Numeric vector. Optional vector of starting values for mu.
mu_lbound	Numeric vector. Optional vector of lower bound values for mu.
mu_ubound	Numeric vector. Optional vector of upper bound values for mu.
sigma_l_start	Numeric matrix. Optional matrix of starting values for t(chol(sigma)).
${\tt sigma_l_lbound}$	Numeric matrix. Optional matrix of lower bound values for $t(chol(sigma))$.
${\tt sigma_l_ubound}$	Numeric matrix. Optional matrix of upper bound values for $t(chol(sigma))$.
try	Positive integer. Number of extra tries for OpenMx::mxTryHard().
ncores	Positive integer. Number of cores to use.

Details

For $i = \{1, \dots, n\}$, the objective function used to estimate the mean μ and covariance matrix Σ of the random coefficients \mathbf{y}_i is given by

$$\ell\left(\boldsymbol{\mu},\boldsymbol{\Sigma}\mid\mathbf{y}_{i},\mathbb{V}\left(\mathbf{y}_{i}\right)\right)=-\frac{1}{2}\left[q\log\left(2\pi\right)+\log\left(\left|\mathbb{V}\left(\mathbf{y}_{i}\right)-\boldsymbol{\Sigma}\right|\right)+\left(\mathbf{y}_{i}-\boldsymbol{\mu}\right)'\left(\mathbb{V}\left(\mathbf{y}_{i}\right)-\boldsymbol{\Sigma}\right)^{-1}\left(\mathbf{y}_{i}-\boldsymbol{\mu}\right)\right]$$

where q is the number of unique elements in μ and Σ , and $\mathbb{V}(\mathbf{y}_i)$ is the sampling variance-covariance matrix of \mathbf{y}_i .

Author(s)

Ivan Jacob Agaloos Pesigan

print.metavarmeta

Print Method for Object of Class metavarmeta

Description

Print Method for Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
print(x, alpha = 0.05, digits = 4, ...)
```

Arguments

X	an object of class metavarmeta.
alpha	Numeric vector. Significance level α .
digits	Integer indicating the number of decimal places to display.
	further arguments.

4 vcov.metavarmeta

Author(s)

Ivan Jacob Agaloos Pesigan

summary.metavarmeta

Summary Method for Object of Class metavarmeta

Description

Summary Method for Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
summary(object, alpha = 0.05, digits = 4, ...)
```

Arguments

object an object of class metavarmeta. alpha Numeric vector. Significance level α .

digits Integer indicating the number of decimal places to display.

... further arguments.

Author(s)

Ivan Jacob Agaloos Pesigan

vcov.metavarmeta

Variance-Covariance Matrix Method for an Object of Class metavarmeta

Description

Variance-Covariance Matrix Method for an Object of Class metavarmeta

Usage

```
## S3 method for class 'metavarmeta'
vcov(object, ...)
```

Arguments

object an object of class metavarmeta.

... further arguments.

vcov.metavarmeta 5

Value

Returns the variance-covariance matrix of the estimated parameters.

Author(s)

Ivan Jacob Agaloos Pesigan

Index

```
* Meta-Analysis of VAR Functions
    Meta, 2
* metaVAR
    Meta, 2
* meta
    Meta, 2
* methods
    coef.metavarmeta, 2
    print.metavarmeta, 3
    summary.metavarmeta, 4
    vcov.metavarmeta, 4
coef.metavarmeta, 2
Meta, 2
OpenMx::mxTryHard(), 3
print.metavarmeta, 3
summary.metavarmeta, 4
vcov.metavarmeta, 4
```