Checking your Code

Use the Build function (F7) in ATMEL studio to check for simple errors:

- Syntax Errors
- Undeclared Variables / Variables not in scope
- Incorrect use of functions

Timers

Clock Select

• Based off f_{osc} (and Prescaler) or from external source (via Tn Pin)

Clock Logic

- This instructs the timer/counter what to do next
- Considers parameters from other inputs (clock pulse, TOP & BOTTOM values, setup registers)

Timer/Counter

- Register TCNTn
- Will either count up, down, or reset to TOP/BOTTOM value

Output Compare Registers

- OCRnA/OCRnB
- Control the outputs on OCnA/OCnB pins on the μC
- OCRnA can also influence the Control Logic

Timer Modes

- There are four different modes
 - Normal
 - Clear Timer on Compare Match (CTC)
 - Fast PWM
 - Phase-Correct PWM
- For this week, we will be able to use either Normal Mode or CTC
 - CTC requires less of the μ C's resources
 - Normal mode is more involved to operate (but can be easier to understand)

Modes - Normal

- Timer counts up from 0 to 0xFF (25)
- Events can be set on the timer to occur when the values in Output Compare Registers match
- Four Compare Match Modes
 - Normal
 - Toggle
 - Clear
 - Set

Modes - Clear on Compare Match (CTC)

- Timer counts up from 0 to the TOP value stored in OCRnA
- When reached, the timer clears to 0, and an Interrupt is triggered (if enabled)
- Four Compare Match Modes
 - Normal
 - Toggle
 - Clear
 - Set

Generating Square Wave Signals

Calculating Top Values for Frequencies

$$f_{PWM} = \frac{f_{osc}}{2 \times Prescaler \times (Top + 1)} \qquad \Longrightarrow \qquad Top = \frac{f_{osc}}{2 \times Prescaler \times f_{PWM}} - 1$$

Let's suppose we want to drive a speaker:

- Have a variable frequency from 1kHz to 20kHz
- Speaker is connected to PB4 (OC2A)
- Uses the Timer to generate the frequency w/o code execution

What registers will we need to consider?

- Timer 2 (connected to Speaker)
 - TCCR2A
 - TCCR2B
 - TIMSK2

Table 16-7. Waveform Generation mode bit description.

Mode	WGM2	WGM1	WGMo	Timer/Counter mode of operation	ТОР	Update of OCRx at	TOV flag set on ⁽¹⁾⁽²⁾
0	0	0	0	Normal	0xFF	Immediate	MAX
1	0	0	1	PWM, phase correct	0xFF	TOP	воттом
2	0	1	0	СТС	OCRA	Immediate	MAX
3	0	1	1	Fast PWM	0xFF	TOP	MAX
4	1	0	0	Reserved	_	_	-

- These are some of the available modes
 - These will affect the timer frequency, and therefore the output PWM frequencies we can generate
- There are two approaches CTC and Normal Mode
 - Both are included

Determine Register Values: TCCR2B

Bit	7	6	5	4	3	2	1	0	_
	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	TCCR2B
Read/write	W	W	R	R	R/W	R/W	R/W	R/W	•
Initial value	0	0	0	0	0	0	0	0	

- FOC2A/FOC2B Force Output Compare A/B
 - Not used
 - Hence, set to 00
- WGM22– Waveform Generation Mode
 - We will be using CTC (even though it makes sense to use Fast PWM)
 - Hence, set to 0
- CS22 CS20 Clock Select
 - Let us determine the necessary prescaler...

Table 16-8. Clock Select bit description.

CS22	CS21	CS20	Description
0	0	0	No clock source (Timer/Counter stopped)
0	0	1	clk _{T2S} /(no prescaling)
0	1	0	clk _{T2S} /8 (from prescaler)
0	1	1	clk _{T2S} /32 (from prescaler)
1	0	0	clk _{T2S} /64 (from prescaler)
1	0	1	clk _{T2S} /128 (from prescaler)
1	1	0	clk _{T2S} /256 (from prescaler)
1	1	1	clk _{T2S} /1024 (from prescaler)

- These are the available prescalers
 - These will affect the timer frequency, and therefore the output PWM frequencies we can generate
- Note: Register Booklet contains the wrong table
 - Use the table above for Timer 2

What should we set the Prescaler to? Let us use trial & error to calculate a value.

$$f_{PWM} = \frac{f_{osc}}{2 \times Prescaler \times (Top + 1)} \rightarrow f_{PWM} = \frac{4 \times 10^6}{Prescaler \times (Top + 1)}$$

Firstly, try with Prescaler = 1 – Find the TOP Value @ $f_{pwm(min)}$ = 1 kHz:

$$1000 = \frac{4 \times 10^6}{1 \times (Top+1)} \rightarrow Top = 3999 \rightarrow \therefore \text{Prescaler} \neq 1$$

Now, try with Prescaler = 8 – Find the TOP Value @ $f_{pwm(min)}$ = 1 kHz:

$$1000 = \frac{4 \times 10^6}{8 \times (Top+1)} \rightarrow Top = 499 \rightarrow \therefore \text{Prescaler} \neq 8$$

Now, try with Prescaler = 32 - Find the TOP Value @ $f_{pwm(min)} = 1$ kHz:

$$1000 = \frac{4 \times 10^6}{8 \times (Top+1)} \rightarrow Top = 124 \rightarrow \therefore \text{Prescaler} = 32$$

Prescaler is 32

Determine Register Values: TCCR2B

Bit	7	6	5	4	3	2	1	0	_
	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	TCCR2B
Read/write	W	W	R	R	R/W	R/W	R/W	R/W	
Initial value	0	0	0	0	0	0	0	0	

// Define the value of TCCR2B
TCCR2B = 0b00000011;

- FOC2A/FOC2B Force Output Compare A/B
 - Not used
 - Hence, set to 00
- WGM22– Waveform Generation Mode
 - We will be using CTC (even though it makes sense to use Fast PWM)
 - Hence, set to 0
- CS22 CS20 Clock Select
 - Prescaler of 32
 - Hence, set to 011

How do we update the TOP Value? Simply by setting the TOP value OC2A:

$$Top = \frac{f_{osc}}{2 \times Prescaler \times f_{PWM}} - 1$$

$$OC2A = \frac{125}{f_{PWM (kHz)}}$$

Example – Speaker Sound Generator (Normal)

Determine Register Values: TCCR2B

Bit	7	6	5	4	3	2	1	0			
	FOC2A	FOC2B	<u> </u>	<u> </u>	WGM22	CS22	CS21	CS20	TCCR2B	_	// Define the value of TCCR2B
Read/write	W	W	R	R	R/W	R/W	R/W	R/W			TCCR2B = 0b00000011;
Initial value	0	0	0	0	0	0	0	0			

- FOC2A/FOC2B Force Output Compare A/B
 - Not used
 - Hence, set to 00
- WGM22– Waveform Generation Mode
 - We will be using CTC (even though it makes sense to use Fast PWM)
 - Hence, set to 0
- CS22 CS20 Clock Select
 - Prescaler of 32
 - Hence, set to 011

Example – Speaker Sound Generator (Normal)

How do we update the toggle value? Simply by adding a representative amount of time to OC2A in an Interrupt.

$$Top = \frac{f_{osc}}{2 \times Prescaler \times f_{PWM}} - 1$$

$$OC2A = OC2A + \frac{125}{f_{PWM}} (kHz)$$