HXH 2022.10.78

| ,,,,,,                                                                                                   |                                            |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------|
| 1. Homogeneous Newwork Imbedding                                                                         | 可服 wordz we 注風 末 阅 质                       |
| 1分字一个图G=(V, E) 新维验包                                                                                      | 计机设                                        |
| ijtz.: arg max IT IT P(c/v; E                                                                            | 9) (1)<br>计算时,把相求这一转换的计数函数。                |
| N(v) 表示节型Vin 外域                                                                                          | arg max $\Sigma \Sigma \log P(c V;\theta)$ |
| P(c[Viθ) 表示 VG定 Vmf.有cin 序.存槽                                                                            |                                            |
| 2. Heterogeneous Network Zmhelding (                                                                     | mepach zver)                               |
| 2. Herergeneous Network Zmbelding (  1) Hererogeneous Skip-gram  1/72: G = (V, E, T) · With  Tv >        | >> V>TV<br>(E> TE 1/1/1+ 1/E   >2          |
| 最大化存在异族上下土 Necvin to                                                                                     | 4.                                         |
| arg max $\Sigma$ , $\Sigma$ log $p(x)$                                                                   | $Ce(V;\theta)$ (2)                         |
| arg max \( \sum_{\text{teTv}} \) \( \text{Lefv} \) \( \text{CteNt(v)} \) \( \text{kfiv} \)               | 基in M 居 (市市公司 Hexterogenous)               |
|                                                                                                          |                                            |
| e Xct · Xv                                                                                               | · ips:这里未考虑节至美兰(tGTV)                      |
| P(Ce V;0) = Juev eXu-Xv                                                                                  | からを記述するを対と美生(tGTV)  Srftman  inioを  inioを  |
| Xv: 知時Xm多V约·基示节至Vin                                                                                      | 的量基分。(注意:不同类型的产品格全的一种发生)                   |
| 2 2 4 13                                                                                                 | 472 × 91   18 1   1   2 2 1                |
| ②多科<br>内立一个发彩样样本量M                                                                                       | 海阳地和克莱特笔记                                  |
| (2) $\lambda$ $\lambda$ $\lambda$ : (P) $\sigma(X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} \frac{1}{1+e^{-X}}$ | Eum ~ P(u) [ wg & (-Xum:Xv)]               |
| # (x)= 1+e-x                                                                                             |                                            |
| P(u): 被光注之的方布                                                                                            |                                            |

的好不解保不同类堂的节生江间的关系、在入 3. 差于无路经m 随机熔支 至 skip-gram 中、建立每个节至in弄杨郊的 流至奔废网络: G = (V, E, T) 之路沿框架: D: Vi A V2 A -- V4 At Ve+1 ... KC7 VC VIBLIA-神美登 多七岁的经济1张学被定义为:  $P(\sqrt{t+1}|V^{i}, \mathcal{P}) = \begin{cases} \frac{1}{|N_{t+1}(V_{t}^{i})|} \\ 0 \end{cases}$ (Vi+1, Vti)EE, \$\psi(Vit) = \x +/ (Vit), Vei)E产, Ø(Vit) #t+1 外席节至从tn 类型 (VtH, Kt) € E # Vtie Vt. Netl (Vei) 表示Vei等主的你城中属于Ven类型的带色(根据空间次践结) 此外: 之路经第一个节星美堂专最后一个节星美堂-致-

the P(Vit) Vei) = P(Vit) Vi), if t=1

4. Metaparhavee ++ 国际实现并构现图中体的市场文义系联的建模 之悔: (V, E, T) · Wich |Tv|>1 最大化存在异质上下文 Newin toky: arg max  $\Sigma$   $\Sigma$  log  $p(ce|v;\theta)$  0 veV teTv  $cteN_{t}(v)$ 

McV): Vin MAR. 节生类型为第七种 SUFTEMONY ATTEMATES.  $P(c_{1}|V;\theta) = \frac{e^{X_{c_{1}} \cdot X_{V}}}{2u_{e}V} e^{X_{u} \cdot X_{V}}$ 

Xv: 这阵Xm多V行·基示节至V的向量基于。

以进: 根据处理的节星第七年报题  $p(Ce|V;\theta)$  处就softmax  $p(Ce|V;\theta) = \frac{e^{\chi_{Ce} \cdot \chi_{V}}}{\int_{ueVe} e^{\chi_{ue} \cdot \chi_{V}}}$  电就是说:  $\mu_{V}$  人根据 国际基础的基础。

对比对采作。motopochzvee++ 定对上是 在 skip-groum 模型的新客层考虑了 节点Vin每个金属节点的节星类型



负采样。收号。

坛立一个发彩棒 楼本曼 M

(2)  $\lambda \lambda \lambda \tau$ : (9  $\sigma(\chi_{c_t}, \chi_v) + \sum_{m=1}^{M} E_{um} p_{uu} \sum_{v \in \mathcal{V}} [\omega_{\sigma} \sigma(-\chi_{um}, \chi_v)]$ 

V= VVUVAUVOUVP

K= KV+KA+Ko+Kp

Piun:被光注之加力和

$$\mathcal{O}(X) = \log \sigma(X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{u_{t}} \sum_{m=1}^{M} [\log \sigma(-X_{u_{t}} \cdot X_{V})]$$

Morapach wee:  $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{um} \sim p_{(u)} [\log \circ (-X_{um} \cdot X_{V})]$ merapach wee ++:  $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$ merapach wee ++  $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$ metapach wee ++  $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$ metapach wee ++  $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$ metapach wee ++  $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$   $(pg \circ (X_{ct} \cdot X_{V}) + \sum_{m=1}^{M} E_{ut} \sim p_{(ut)} [\log \circ (-X_{ut} \cdot X_{V})]$