We will use the following lemma, which is a known result in fair division theory. This result can be found, for example, as Lemma 7 in "Fair partitioning of • " by Cardinal, Langerman, Palvolgyi (2021), or Theorem 2 in "Fair division of a discrete item" by Algaba et al. (2019). These papers attribute the proof technique to Gale (1993) and Scarf (1967).

Fair Partition Lemma: Let
$$v_1,\ldots,v_m\in\mathbb{R}^n_{\geq 0}$$
. Suppose that for each $i\in\{1,\ldots,n\}$, there exists a partition of $\{1,\ldots,m\}$ into n sets $J_{i,1},\ldots,J_{i,n}$ such that $(\sum_{j\in J_{i,k}}v_j)_i\geq 1$ for all $k\in\{1,\ldots,n\}$. Then there exists a partition of $\{1,\ldots,m\}$ into n sets K_1,\ldots,K_n such that $(\sum_{j\in K_i}v_j)_i\geq 1$ for all $i\in\{1,\ldots,n\}$.