Controle Estatístico de Qualidade

Breno Cauã Rodrigues da Silva

2025-05-06

Índice

1	Intro	odução		
	1.1	Ferran	nentas Básicas do Controle da Qualidade	4
		1.1.1	Estratificação	4
		1.1.2	Folhas de Verificação	7
		1.1.3	Diagrama de Ishikawa	(
2	Gráf	ficos Us	suais	11
	2.1	Histog	grama	11
		_	Construção do Histograma com Limites de Especificação	11
	2.2	Gráfic	o de Pareto	12
	2.3	Diagra	ama de Correlação ou Diagrama de Dispersão	14
		2.3.1	Construção do Diagrama de Correlação	14
		2.3.2	Cálculo do Coeficiente de Correlação Linear de Pearson	17
		2.3.3	Teste de Hipótese para o Coeficiente de Correlação Linear de Pearson	17
		2.3.4	Conclusão	19
3	Lista	as e Ex	ercícios	20
	3.1	Lista l	I	20
		3.1.1	1. Simule (no R e Python) um conjunto de dados com três turnos de	
			produção e números de defeitos	20
		3.1.2	2. Monte um diagrama de espinha de peixe para o seguinte problema:	
			"Produto entregue com atraso". Use papel ou software. Sugestões de	
			Pacote no R: Mermaid e DiagrammeR	20
		3.1.3	3. Com base nos dados a seguir, construa um gráfico de Pareto (no	
			papel, R ou Python) e interprete os resultados.	20
		3.1.4	4. Simule 200 observações com $\mu = 50$ e $\sigma = 10$	21
		3.1.5	5. Reúna-se com seu grupo faça o seguinte:	21

4	Lista II							
	4.1	1. Utilize os vetores abaixo e construa o diagrama de dispersão. $X = \begin{bmatrix} 5 \\ 7 \\ 11 \\ 13 \\ 15 \end{bmatrix}$ e						
		$Y = \begin{bmatrix} 2 \\ 4 \\ 8 \\ 10 \\ 12 \end{bmatrix}. \dots \dots$	22					
		4.1.1 a. Descreva o tipo de relação entre as variáveis	22					
		4.1.2 b. Adicione uma reta de tendência	22					
	4.2	2. Geração de dados com correlação negativa	22					
		4.2.1 a. Gere dois vetores de 30 elementos com correlação negativa	22					
		4.2.2 b. Construa o gráfico de dispersão	22					
		4.2.3 c. Calcule a correlação de Pearson	22					
	4.3	3. Dados reais - mtcars. Utilize o conjunto de dados mtcars	22					
		4.3.1 a. Há relação entre mpg (milhas por galão) e wt (peso)?	22					
		4.3.2 b. Faça o gráfico e interprete-o	22					
		4.3.3 c. Calcule a correlação de maneira adequada	22					
		4.3.4 d. A relação é positiva ou negativa?	22					
	4.4	4. Construção de Função - Crie uma função correlacao_diagnostico() que:	22					
Re	eferen	nces	24					

1 Introdução

Material de apoio para a disciplina de **Controle Estatístico de Qualidade** da *Falculdade* de *Estatística* (FAEST) da *Universidade Federal do Pará* (UFPA).

1.1 Ferramentas Básicas do Controle da Qualidade

As sete ferramentas da qualidae são técnicas estatísticas simples para resolver problemas na indústria.

- Estratificação
- Folhas de Verificação
- Diagrama de Ishikawa
- Histograma
- Diagrama de Pareto
- Gráfico de Dispersão
- Gráfico de Controle

1.1.1 Estratificação

É uma técnica usada para **separar dados em grupos significativos** para facilitar a análise.

- Permite observar padrões escondidos em dados mistos.
- Ajuda identificar fontes de variação.

Figura 1.1: Exemplo de Simulação de Dados Estratificados em Python.

Figura 1.2: Exemplo de Simulação de Dados Estratificados em R.

1.1.1.1 Definição de Estratificação

"Processo de dividir dados em subgrupos (estratos) com base em características relevantes como turno, máquina, operador, etc."

• Exemplo: Existe diferênça de desempenho entre os turnos?

1.1.1.2 Tipos de Estratificação

- Por tempo: turno, dia da semana, mês;
- Por local: máquina, setor, linha de produção;
- Por **pessoas:** operador, equipe;
- Por método ou material.

Tabela 1.1: Exemplos de Tipos de Estratificação.

Tipo	Exemplo
Tempo	Turno
Local	Máquina
Pessoa	Operador
Método	Matéria-prima

Figura 1.3: Exemplo 2 de Simulação de Dados Estratificados em Python.

Figura 1.4: Exemplo 2 de Simulação de Dados Estratificados em R.

1.1.2 Folhas de Verificação

São formulários usados para coletar e organizar dados de forma sistemática.

- Facilitam a visualização e interpretação de dados.
- Podem ser adaptados para diversos propósitos.

1.1.2.1 Definição de Folha de Verificação

""Documento estruturado para registrar dados observacionais em tempo real.

Usada para:

- Contagem de defeitos
- Localização de falhas
- Frequência de ocorrências

Verificação: Distribuição do Processo de Produção

Verificação: Item Defeituoso

Verificação: Localização de Defeitos

Verificação: Causas de um defeito ou falha

Verificação: Satisfação do Cliente (ex.: questionários de satisfação)

Folha de verificação								
Dia								
Defeito	1	2	3	4	5	6	7	Total
Arranhão	//				//	///		7
Bolha		///		1	1		1	6
Mancha	1		////		1	//	1	9
Amassado				//		1		3
Total	3	3	4	3	4	6	2	25

Figura 1.5: Exemplo de folha de verificação de defeitos na lataria de um carro.

Figura 1.6: Exemplo Gráfico da Folha de Verificação em Python.

Figura 1.7: Exemplo Gráfico da Folha de Verificação em R.

1.1.2.2 Conclusão sobre Folhas de Verificação

Facilitam a padronização da coleta de dados Auxiliam na identificação de padrões São a base para análises gráficas e estatísticas posteriores

1.1.3 Diagrama de Ishikawa

Também conhecido como diagrama de causa e efeito ou espinha de peixe.

- Ferramenta para análise de problemas.
- Organiza causas potenciais de um efeito específico.

1.1.3.1 Como construir um Diagrama de Ishikawa

- 1. Defina claramente o problema (efeito).
- 2. Trace uma linha horizontal com o problema no final (efeito).
- 3. Adicione as categorias principais de causa (método, máquina, mão de obra, material, meio ambiente, medição, etc.)
- 4. Liste causas específicas em cada categoria.

Figura 1.8: Exemplo de diagrama de causa e efeito (Ishikawa).

2 Gráficos Usuais

2.1 Histograma

- O que é um Histograma?
 - Um histograma é uma representação gráfica da distribuição de frequências de dados contínuos.
 - Mostra como os valores se distribuem por intervalos (classes).
 - Ajuda a visualizar:
 - * Tencência central
 - * Dispersão
 - * Assimetria
 - * Possíveis anomalias

2.1.1 Construção do Histograma com Limites de Especificação

- Limites de especificação:
 - Limite inferior de especificação (LSE): menor valor permitido para uma característica de qualidade.
 - Limite superior de especificação (LIE): maior valor permitido para uma característica de qualidade.
- Etapas principais:
 - 1. Coletar dados contínuos (ex.: tempo, peso, medida, etc.).
 - 2. Definir os intervalos de classe.
 - 3. Contar quantos dados caem em cada intervalo.
 - 4. Representar as frequências com barras adjacentes.

Figura 2.1: Exemplo de Histograma com Limites de Especificação em Python.

Figura 2.2: Exemplo de Histograma com Limites de Especificação em R.

- Quando a maioria dos dados está entre LIE e LSE Processo Capaz.
- Quando muitos dados estão fora dos limites Processo Não Capaz.

2.2 Gráfico de Pareto

È um gráfico de barras que **ordena as causas ou categorias em ordem decrescente** de frequência.

- Baseado no Princípio de Pareto (80/20)
- 80% dos resultados provêm de 20% das causas
- Ajuda a identificar os principais problemas
- Exemplo: Dados Simulados de Defeitos.

Tabela 2.1: Dados Simulados de Defeitos.

Categoria	Freq
Erro A	40
Erro B	25
Erro C	15
Erro D	12
Erro E	8

Figura 2.3: Exemplo do Gráfico de Pareto em Python.

Figura 2.4: Exemplo do Gráfico de Pareto em R.

2.3 Diagrama de Correlação ou Diagrama de Dispersão

2.3.1 Construção do Diagrama de Correlação

• Passos:

- 1. Coletar pares de observações (X, Y);
- 2. Plotar os pontos em um gráfico de dispersão;
- 3. Analisar visualmente a existência e o tipo de correlação.

• Correlação Linear Positiva:

- Quando uma variável aumenta, a outra também tende a aumentar.
- Os pontos seguem uma tendência crescente.

• Correlação Linear Negativa:

- Quando uma variável aumenta, a outra também tende a diminuir.
- Os pontos seguem uma tendência decrescente.

Figura 2.5: Exemplo de Diagrama de Dispersão em Python.

Figura 2.6: Exemplo de Diagrama de Dispersão em R.

• Ausência de Correlação Linear:

- Os pontos não seguem padrão algum.
- Indica ausência de relação linear.

Figura 2.7: Exemplo de Diagrama de Dispersão (Sem Relação Linear) em Python.

Figura 2.8: Exemplo de Diagrama de Dispersão (Sem Relação Linear) em R.

2.3.2 Cálculo do Coeficiente de Correlação Linear de Pearson

O Coeficiente de Correlação Linear de Pearson mede a força e direção da relação linear entre duas variáveis. Tal medida é obtida a partir da expressão:

$$\hat{\rho} = r = \frac{Cov(X,Y)}{\sigma_X \sigma_Y} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2 \sum_{i=1}^{n} (y_i - \bar{y})^2}}$$
(2.1)

- Obeservações Importantes:
 - Varia de -1 a 1:
 - * 1: correlação positiva perfeita;
 - * 0: sem correlação linear;
 - * -1: correlação negativa perfeita.

2.3.3 Teste de Hipótese para o Coeficiente de Correlação Linear de Pearson

Normalmente, se testa a significância de $\hat{\rho}$ com as seguintes hipóteses:

$$\begin{cases} H_0: \text{Ausência de associação linear } (\rho=0); \\ H_1: \text{Presença de associação linear } (\rho\neq0). \end{cases} \tag{2.2}$$

Usa-se para testar as hipótes da Equação 2.2 a seguinte estatística de teste:

$$t_0 = \frac{\hat{\rho}\sqrt{n-2}}{\sqrt{1-\hat{\rho}^2}},\tag{2.3}$$

que sob a hipótese nula (H_0) segue uma distribuição t_{n-2} . Vejamos o exemplo:

• Geração do Dados & Visualização Gráfica:

Figura 2.9: Dados Simulados para Exemplo em Python.

Figura 2.10: Dados Simulados para Exemplo em R.

• Cálculo do Coeficiente de Correlação:

Coeficiente de Correlação de Pearson: r = 0.6424 Intervalo de Confiança (95%): 0.3671, 0.8142 Coeficiente de Correlação de Pearson: r = 0.7175 Intervalo de Confiança (95 %): 0.4818 0.8564

• Teste de Hipótes para o Coeficiente de Correlação:

Estatística de Teste (W) = 0.9621 Nível Descritivo (p-value) = 0.3509

Estatística de Teste (W) = 0.9627 Nível Descritivo (p-value) = 0.3630

Estatística de Teste (t) = 4.4353 Graus de Liberdade (df) = 28 Nível Descritivo (p-value) = 0.0001

Shapiro-Wilk normality test

data: x W = 0.97894, p-value = 0.7966

Shapiro-Wilk normality test

data: y W = 0.96204, p-value = 0.3488

Estatística de Teste: t = 5.4508

Graus de Liberdade: gl = 28

Valor-p: 0

2.3.4 Conclusão

- São úteis para investigar relação entre variáveis
- Ajudam a detectar tendências visuais
- O coeficiente de Pearson quantifica a força da relação
- Há um teste que verifica a significância estatística dessa relação

3 Listas e Exercícios

3.1 Lista I

- 3.1.1 1. Simule (no R e Python) um conjunto de dados com três turnos de produção e números de defeitos.
- 3.1.1.1 a. Faça um boxplot para comparar os defeitos entre turnos.
- 3.1.1.2 b. Comente se a estratificação revela alguma diferença relevante.
- 3.1.2 2. Monte um diagrama de espinha de peixe para o seguinte problema: "Produto entregue com atraso". Use papel ou software. Sugestões de Pacote no R: Mermaid e DiagrammeR.
- 3.1.3 3. Com base nos dados a seguir, construa um gráfico de Pareto (no papel, R ou Python) e interprete os resultados.

Problemas	Frequência
Risco	80
Mancha	68
Corte	50
Tinta Fraca	45
Erro de Montagem	30

- 3.1.3.1 a. Quais problemas devem ser atacados primeiro?
- 3.1.3.2 b. Qual o percentual acumaludo dos dois problemas mais frquentes?
- **3.1.4 4. Simule 200 observações com** $\mu = 50$ e $\sigma = 10$.
- 3.1.4.1 a.Crie um histograma.
- **3.1.4.2** b. Defina limites de especificação mais estreitos: LIE = 45 e LSE = 55.
- 3.1.5 5. Reúna-se com seu grupo faça o seguinte:
- 3.1.5.1 Colete um conjunto de dados reais (ex.: tempo para executar uma tarefa simples).
- 3.1.5.2 Classifique os dados usando estratificação (ex.: por turno, grupo, dia, etc.).
- 3.1.5.3 Construa um histograma, gráfico de Pareto e, se possível um diagrama de Ishikawa para o problema observado.
- 3.1.5.4 Apresente os resultados com uma breve conclusão.

21

4 Lista II

4.1 1. Utilize os vetores abaixo e construa o diagrama de

dispersão.
$$X = \begin{bmatrix} 5 \\ 7 \\ 11 \\ 13 \\ 15 \end{bmatrix}$$
 e $Y = \begin{bmatrix} 2 \\ 4 \\ 8 \\ 10 \\ 12 \end{bmatrix}$.

- 4.1.1 a. Descreva o tipo de relação entre as variáveis.
- 4.1.2 b. Adicione uma reta de tendência.
- 4.2 2. Geração de dados com correlação negativa.
- 4.2.1 a. Gere dois vetores de 30 elementos com correlação negativa.
- 4.2.2 b. Construa o gráfico de dispersão.
- 4.2.3 c. Calcule a correlação de Pearson.
- 4.3 3. Dados reais mtcars. Utilize o conjunto de dados mtcars.
- 4.3.1 a. Há relação entre mpg (milhas por galão) e wt (peso)?
- 4.3.2 b. Faça o gráfico e interprete-o.
- 4.3.3 c. Calcule a correlação de maneira adequada.
- 4.3.4 d. A relação é positiva ou negativa?
- 4.4 4. Construção de Função Crie uma função correlacao_diagnostico() que:
 - Plote o gráfico de dispersão
 - Calcule o r

- Execute o teste cor_test()Apresente o valor-p do teste

References