

U-Net to predict segmentation in raster images

Otaviano Cruz - Mestrado/CAP

Outline

- Amazon Rainforest and deforestation
- Methodology
- Results
- Conclusions

// Amazon rainforest

Deforestation in Rondônia state [5].

- Amazon rainforest deforestation[5].
- Biodiversity loss [5].
- Deforestation increasement [2][3][5][6][7].
- Raster Images available by tools created by INPE [6][7].

// Study Region and its Specifications

- Jamari National Forest.
- State Rondônia.
- Images with 657x1196.
- X-band.
- June and October

Table 1. Characteristics of the COSMO-SkyMed scenes used in this study.

Parameter	Specification
Platform	COSMO-SkyMed
Launch	June 2007
Swath	620 km
Wavelength	X-band
Polarization	HH
Number of satellites	4
Year	2018
Acquisition mode	Stripmap HIMAGE
Size	$40 \text{ km} \times 40 \text{ km}$
Incidence angle	~55°
Spatial resolution	$3 \mathrm{m} \times 3 \mathrm{m}$

[8]

// Methodology

- U-Net [1].
- Deforestation Segmentation using U-Net [2].
- Patches with 64x64x1

// Methodology

Grid Search (Hyper Parameters Optimization)

Tools:

- Optuna (Instances Parallelism).
- Tensorboard(Compile all the instances).
- Tensorflow Keras (Modeling).

Hyperparameters Evaluation:

• Filters number (32,64,128).

Data augmentation:

- Default operations.
- Autoencoders.

How to select the best model?

- Execution Time.
- Validation Error.
- Train Error.

Hardware:

CPU: Intel(R) Xeon(R) Gold 5118 CPU @

2.30GHz

RAM: 755GB

GPU: 4xNVIDIA Tesla V100 16GB

// Results

Final Model:

• Input shape: 64x64x2 (Two images)

• Output shape: 64x64x1

• Filters: 128

Worst case scenario

// Conclusions

Segmentation

- U-Net do a great work.
- Locating the deflorestation in most cases.

Machine Learning Techniques

- Autoencoders use was not possible because of the high number of gradient vanish or explosion.
- The initial objective was to compare the data augmentation brought by autoencoder with the default flip and rotation.

Data Augmentation

 Only used the default data augmentation (rotation and flip).

Thank You

otavianocruz@id.uff.br

// References

- [1] <u>U-net</u>
- [2] U-Net deforestation segmentation
- [3] Desmatamento na Amazônia tem a maior taxa em 15 anos
- [4] Alto desmatamento
- [5]<u>IPAM</u>
- [6] Terrabrasilis
- [7] PRODES
- [8] A Comparative Assessment of Machine-Learning Techniques for Forest Degradation Caused by Selective Logging in an Amazon Region Using Multitemporal X-Band SAR Images

Documentation: Tensorflow / Optuna / Tensorboard