1. Create a list named my_list in python with the following data points

```
In [9]: my list = [45.4, 44.2, 36.8, 35.1, 39.0, 60.0, 47.4, 41.1, 45.8, 35.6]
         print(my list)
         [45.4, 44.2, 36.8, 35.1, 39.0, 60.0, 47.4, 41.1, 45.8, 35.6]
In [6]: # a.
                 Print the 5th element in the list
         my_list[4]
Out[6]: 39.0
In [11]: # b.
                 Append 55.2 to my_list
         my_list.append(55.2)
         print(my_list)
         [45.4, 44.2, 36.8, 35.1, 39.0, 47.4, 41.1, 45.8, 35.6, 55.2]
In [12]: # c.
                 Remove the 6th element in the list
         my_list.remove(my_list[5])
         print(my_list)
         [45.4, 44.2, 36.8, 35.1, 39.0, 41.1, 45.8, 35.6, 55.2]
                 Iterate over the list to print data points greater than 45
In [15]:
         for i in range(0,len(my list)):
             #print(i)
             if my list[i] > 45:
                 print(my_list[i])
         45.4
         45.8
         55.2
         # 2.
                  Introduction to numpy -
In [17]: # a.
                 Import the numpy library using the following command - import numpy
         import numpy
In [19]: # b.
                 Declare numpy array with the same data points as in my list using numpy.
         my list = numpy.array(my list)
                 Compute the mean and standard deviation using numpy.mean() and numpy.std(
In [21]:
         print(numpy.mean(my_list))
         print(numpy.std(my_list))
```

42.02222222 6.05984557518

- In [23]: # d. Use logical referencing to get only those values that are less than 45
 my_list[my_list<45]</pre>
- Out[23]: array([44.2, 36.8, 35.1, 39., 41.1, 35.6])
- In [24]: # e. Compute the max and min of the array using numpy.max() and numpy.min()
 print(numpy.max(my_list))
 print(numpy.min(my_list))

55.2 35.1

3. Introduction to pandas –

- In [26]: # a. Import the pandas library import pandas
 import pandas
- In [33]: # b. Read the IRIS dataset into iris using pandas.read_csv(). Data file iris = pandas.read_csv("Iris.csv")
- In [34]: # c. Using iris.head(), display the head of the dataset
 iris.head()
- Out[34]:

	ld	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species
0	1	5.1	3.5	1.4	0.2	Iris-setosa
1	2	4.9	3.0	1.4	0.2	Iris-setosa
2	3	4.7	3.2	1.3	0.2	Iris-setosa
3	4	4.6	3.1	1.5	0.2	Iris-setosa
4	5	5.0	3.6	1.4	0.2	Iris-setosa

- In [43]: # d. Use DataFrame.drop() to drop the id column
 iris2 = iris.drop('Id', axis=1)
- In [44]: # e. Subset dataframe to create a new data frame that includes only the measur
 iris2 = iris2[iris2.Species == 'Iris-setosa']

In [45]: # f. Use DataFrame.describe() to get the summary statistics
 iris2.describe()

Out[45]:

	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm
count	50.00000	50.000000	50.000000	50.00000
mean	5.00600	3.418000	1.464000	0.24400
std	0.35249	0.381024	0.173511	0.10721
min	4.30000	2.300000	1.000000	0.10000
25%	4.80000	3.125000	1.400000	0.20000
50%	5.00000	3.400000	1.500000	0.20000
75%	5.20000	3.675000	1.575000	0.30000
max	5.80000	4.400000	1.900000	0.60000

In [47]: # g. iris3

g. Use DataFrame.groupby() to create grouped data frames by Species and comp
iris3 = iris.groupby('Species')
iris3.describe()

Out[47]:

		Id	PetalLengthCm	PetalWidthCm	SepalLengthCm	SepalWidth
Species						
	count	50.00000	50.000000	50.000000	50.000000	50.000000
	mean	25.50000	1.464000	0.244000	5.006000	3.418000
	std	14.57738	0.173511	0.107210	0.352490	0.381024
Iris-	min	1.00000	1.000000	0.100000	4.300000	2.300000
setosa	25%	13.25000	1.400000	0.200000	4.800000	3.125000
	50%	25.50000	1.500000	0.200000	5.000000	3.400000
	75%	37.75000	1.575000	0.300000	5.200000	3.675000
	max	50.00000	1.900000	0.600000	5.800000	4.400000
	count	50.00000	50.000000	50.000000	50.000000	50.000000
	mean	75.50000	4.260000	1.326000	5.936000	2.770000
	std	14.57738	0.469911	0.197753	0.516171	0.313798
Iris-	min	51.00000	3.000000	1.000000	4.900000	2.000000
versicolor	25%	63.25000	4.000000	1.200000	5.600000	2.525000
	50%	75.50000	4.350000	1.300000	5.900000	2.800000
	75%	87.75000	4.600000	1.500000	6.300000	3.000000
	max	100.00000	5.100000	1.800000	7.000000	3.400000
	count	50.00000	50.000000	50.000000	50.000000	50.000000
	mean	125.50000	5.552000	2.026000	6.588000	2.974000
	std	14.57738	0.551895	0.274650	0.635880	0.322497
Iris-	min	101.00000	4.500000	1.400000	4.900000	2.200000
virginica	25%	113.25000	5.100000	1.800000	6.225000	2.800000
	50%	125.50000	5.550000	2.000000	6.500000	3.000000
	75%	137.75000	5.875000	2.300000	6.900000	3.175000
	max	150.00000	6.900000	2.500000	7.900000	3.800000

In [74]: # h. Use DataFrame.boxplot() to plot boxplots by Species
 iris3.boxplot()
 #import matplotlib.pyplot as plt
 #plt.boxplot(iris2.SepalLengthCm)

Out[76]:

In [73]: # i. Plot a scatter matrix plot using the seaborn library. Use the following t
import seaborn as sns
sns.pairplot(iris, hue='Species')

Out[73]: <seaborn.axisgrid.PairGrid at 0x29800be2b38>

Out[75]:

