STORING METHOD FOR MEMORY CONTENTS

Publication number: JP61151897

Publication date: 1986-07-10

Inventor: KOIBUCHI SHOICHI

Applicant: YAMATAKE HONEYWELL CO LTD

Classification:

- international: G11C17/00; G06F12/16; G11C7/00; G11C16/02;

G11C29/00; G11C29/04; G11C17/00; G06F12/16; G11C7/00; G11C16/02; G11C29/00; G11C29/04; (IPC1-

7): G11C7/00; G11C17/00

- European:

Application number: JP19840273135 19841226 Priority number(s): JP19840273135 19841226

Report a data error here

Abstract of JP61151897

PURPOSE:To increase the overall lifetime of a memory to which the replacement frequency of contents of an EEPROM, etc. is limited, by performing the replacement of contents with an approximately equal frequency for each address. CONSTITUTION:A data code DC0 is stored to a head address #0 of a code area CE, and the end marks EM are stored to both head addresses #1 and #2 following the address #0. Then the corresponding data DT0 is stored to plural continu ous addresses with the head address of a data area DE defined as a standard. When data are stored, a data code DC1 is stored to the address #1 after replace ment of the contents. At the same time, the mark EM is stored to the address #3. The data DT1 is stored to each address following the data DT0. Hereafter the similar operations are repeated. The storage of 1 time is carried out to addresses #0 and n+2; while the storage of 2 times are carried out to addresses #1-n+1 respectively. Then the storage of one time is carried out to each address of the area DE. Thus the storage frequencies are averaged.

Data supplied from the esp@cenet database - Worldwide

⑩ 日本国特許庁(IP)

⑩ 特許出願公開

◎ 公開特許公報(A) 昭61-151897

@Int_Cl_4 G 11 C 17/00 7/00 識別記号 101 庁内整理番号 6549-5B 6549-5B ❸公開 昭和61年(1986)7月10日

客査請求 未請求 発明の数 1 (全10百)

図発明の名称 メモリの内容格納方法

②特 願 昭59-273135

②出 願 昭59(1984)12月26日

の発明者 鯉 渕 正 一 東京都大田区西六郷4丁目28番1号 山武ハネウェル株式

会社内 の出 顔 人 山武ハネウエル株式会 東京都被谷区波谷 2 丁目 12番19号

9代理人 弁理士 山川 政樹 外2名

明 細 書

1. 発明の名称

メモリの内容格納方法

2. 特許請求の範囲

内容の更新が可能であり、かつ、電源が切断されても内容を保持すると共に、内容更新の回数かな 対限されたかいて、最初のテータ格納に取られたかいて、最初のテータ格納に取られまりの特別である。 と共に次位かは、カーマーを発生を発力である。 と共に次位かし、つぎのデータ格が取られて、マークを格がし、つぎのデータ格が場合に対し、アーマーのでは、アーマークのドーのであると共に前配エンドマークのドーので、大きなので、以降であると共にののので、は、以降であると共にの方法を発力を表現を表現である。

3. 発明の詳細を説明

[強業上の利用分野]

本発明は、EEPROM (Electrically Er asable and Programmable Read Only Memory.) 等の、内容更新が可能であり、かつ、 電源が切断されても内容を保持すると共に、内容 更新の函数が制限されているメモリに対し、内容 の格納を行なう方法に関するものである。

[従来の技術]

一般に、創御製数、データル調果製能においては、 半固定的なデータ、または、動作上選次発生する 可変データ中技に参照するものは、RAM(Ran dom Acceas Memory、)へ格的のうえ、電板 の切断によつても内容が消滅しないものとする目 的上、BAM を電能等のパックアップ電源により 動作状態を維持するものとしているが、電池の交 美またはパックアップ電源への切着回路等を戻す るため、近来は、EBPROM を用いるものとなつ ている。

[発明が解決しよりとする問題点]

しかし、現在の EEPROM は、内容更新の回数 に割膜があり、一般の RAM と同じくランダムに 任意な番地へデータを格納し、かつ、これと同一 番地の内容を更新しながらデータを格納すると、 短期間により内容の更新が不可能となる問題を生 する。

[問題点を解決するための手段]

削述の問題を解決するため、本発明はつぎの手 象により構成するものとなつている。

すなわち、EEPROM 等のメモリド対し内容の 格納を行なう方法において、最初のデータ格的 既し、メモリの格納エリア中停足書地へデータを 格納すると共に欠位かよびこれにつぐ各番地へ各 オエンドマータを格的し、つぎのデータ格納でに はエンドマータの格納された先位の番地では ななのかがすると共に工化ですの参加されたた が動すると共にエンドマータを格納し、 の場響地の次位の番地へエンドマータを格納し、 は簡単の機能作を必要に応じて反復するもの としている。

(作用)

したがつて、まず、格前エリアの特定番地へデ ータが格納され、ついで、エンドマータの格納さ れた先位側の番地へ内容を更新のうえ、つぎのデ ータが格納され、以降順次に、必要に応じて以上

制制動作を行ない、必要とするデータをRAM 3 に対してアクセスすると共に、EEPROM 4~6 へもアクセスし、EEPROM 4~6中へ格約され ている文字、配号等のパターンを用いてブリント アクトのデータを編集のうえ、I/F・8 を介して PRT 9 へ送出し、これによつて所足のデータを 印字させるものとなつている。

なか、文字、配号等のパターンは、I/F・7を 介して必要とするものが与えられ、これを EBP ROM 4~6 へ格納のうえ使用される。

第1回は、EEPROM 4~6 K対するデータの 格納状況を示す図であり、この例では、これらが コードエリアCE とデータエリアDE と K分割さ れ、データエリアDE K に文字、影号等のパター ンを示すテータDT。一DTn か順次に格納され、 格納エリアとして用いるコードエリアCE の先頭 書地*0 乃亜最終香地*n+2 K わたつては、デ ータ DT。一DTn 化 TN 応させたデータコード DC。 して DCn、 まよび、エンドマータ EM が 格納され ると共K、コードエリアCE なよびデータエリア の幾作が反復されるものとなり、各番地の内容更 新回数がほど均等になると共に、格納中に電源が 切断されても内容の有効性決定が支離なく行なえ るものとなる。

(実施例)

以下、実施的を示す図によつて本発明の詳細を 説明する。

第2回は、EEPROM を用いる装敵のブロック 図であり、マイタロブロセンサ等のブロセンサ(以下、CPU)1 を中心とし、回足メモリ(以下、RAM)3、EEP ROM 4~5、かよび、インターフェイス(以下、 I/F)7、8を輸出に配し、これらを母縁により 観視してかり、1/F・7 を介しては図上省時し 大上位の主電算根またはキーボード、ブラン哲 製示経験等からなる端末機器が接続され、I/F・8 を介してはブリンタ(以下、PRT)9 が接続されている。

ことにおいて、CPU 1 は ROM 2 中の命令を 実行し、I/F・7 を介する入力データに応じて

DE 以外の香地 *r には、データコードDC。~ DCn が 有効であることを示す有効マーク AM が 格納されるものとなつている。

すなわち、最初のデータ格納に際しては、Wの とかり、特定者地としての先頭音地。○ヘデータ コードDC。 を格納すると共に、次位かよびこれ につぐ名者地。1、・2 ヘエンドマークEM を格 納する一方、データコードDC。と対応するデー タDT。をデータエリアDEの先頭者地を希準と して複数者地にわたり進張して格納する。

なか、・印が新らたに格納されたことを示して いる。

ついて、(B)のとおり、つぎのデータを格納する
ときは、コードエリアCEのエンドマータEMが
格納されている先位側の番地・1 へ内容を更新
のえデータコードDCIを格的すると共に、エン
ドマータEMの格的された後位側番地・2 のエリ
アータエリア TDE KはデータDT。 につぐる番地・アータDT。
を格納し、以降、同様の操作を兼録番地・n+2

まで反復する。

すると兼後には、間のとかり乗奏養地。n+2 かよびこれの匿前の善地。n+1 へ エンドマーク EM が格納され、エンドマークEM の格納され、エンドマークEM の格納され、エンドマークEM の格納でのデータコードDCn が格納されると共に、データエリアDE では、乗奏養地역へデータDTn が格納される。 したがつて、コードエリアCE にかいては、養地。0 かよび。n+2 が61 回、養地。1~1・11 では各2回の格納がなされると共に、データエリアDE にかいては会番地に対し合本1回の格納が 行なわれるものとなり、格納回数の平均化が実現

また、内容の観み出しに際しては、まず、香地 *r、の有効マータAMをチェックし、これが正常 であれば、香地*0から、エンドマークEMが正常 常に速鉄して格前されている先位調番地の直前の 香地までのデータコードが有効であり、データコ ードに応じてデータエリアDEのデータを観み出 して用いるものとすればよい。

→ EM の格納殊先位番地*121 KL9!番目の データコードDC! をエンドマータEM の格納さ れている先位側の番地へ格納し、!番目のデータ DT! を*DT!→ DE*122 KL9格納してか ら、エンドマータ*EM→ EM の格納殊を位置 地+1*123 KL9, エンドマータEM の格納 されている後位偶番地の次位の番地へエンドマータ EM を格納し、王ルーチンを介してステップ 101 以降を必要KGEして反復する。

第4 図は、同様の読み出し操作を示すフローチャートであり、書地・*r に AM あり *f * 201 が YES であれば、エンドャータ * EM 連続 *f * 202 をチェックし、これの YES に応じて先頭書地、*0 から先位 EM の 運動の番地までの 76 有効 *211 と失足し、データエリブ * D Eの 対応するデータ読み出し、*212 を行なう。

また、ステップ 202 が NO のときは、先顕 番地・≠0から EM の番地-2 までの内容有効* 221 の決定を行ない、ステップ 212 へ移行す る。 たとし、エンドマータEM が連続して絡納されていなければ、後位像のエンドマータEM を格納 する際に電信所等が生じた場合であり、格納されているエンドマータEM の養地から2を連引いた 順位の香地までのデータコードが有効となる。

以上に対し、内容をクリプレで再駆的を行な う際は、クリアと共に不効コード人Mの各ピット を反転して $\overline{\text{AM}}$ とするか、各ピットのクリプを でなうCとにより、内容がすべてクリプされて いるCとを表示できる。

第3図は、CPU1 による格納操作のフローチャートであり、まず、番地、*rにAM あり?*
101 をチェックし、これがNOであれば、DC。
→*0*111 により番地*0 ヘデータコード
DC。 を格納し、'DT。→ DE*112 によりデータDT。をデータエリアDE へ格納のうえ、
*EM→*1・*2*113 によつてエンドマーク
EM を番地*1、*2 へ格納し、かつ、初初マーク'AM→*r*114 により番地、不務納する。
また、ステップ101 が NO のときは、'DC!

これに対し、ステップ 201 が NO のときは、 ・内容集効 * 231 と決定する。

第 5 図は、他の実施例を示す格納状況の図であり、第 1 図と同様であるが、コードエリア C E は 先顕者地 *0 ~ 素枝者地 *n により構成され、 データコード DC1 以降、エンドコード BM、 *2 Uび、スタートマーク SM が稀削されるものとな つており、著地 *0~ *n が *n か *0 へか けても環境的に使用されるものとなつている。

なお、データエリアDE も同様に循環的に使用 される。

すなわち、東初のデータ格納に願しては、似の とかり、先顕著地 * 0 および次位の著地 * 1 へ スタートマータ SM を格納すると共に、第3位の 著地 * 2 ヘデータコード DC, を格約し、かつ、 これの次位かよびこれにつぐる清地 * 3、* 4 へ エンドマーク BM を格納する一方、データコード DC, と初応するデータ DT, をデータエリア DE の先顕著地を基準として複数著地にわたり連続して 工料納する。 なお、・印が第1図と同じく新らた代格納され たととを示している。

ついて側のとおり、つぎのアータを格納するときは、コードエリアCEのエンドマークEMが格納されている先位側の番地®3へ内容を更新のり えデータコードDCIを格納すると共に、エンドマークEMの格納されている後位側番地の次位の 蓄地®5へエンドマークEMを格納し、データエリアDEにはデータDT, につぐ各番地へアータ DT, を格納し、以降、同様の格納執作を最終黄地®nまで反復する。

すると、遊には(Gのとかり、枝純醤地 *n ェリ 二つ前の書地 * n - 2 ヘデータコード DC_{n - 3} が 格拍されると共に、最終番地 *n にはエンドマー とM が格納され、テータエリアDE にかいて はデータ DT_{n - 3} が格納される。

また、これにつぐデータの格納時には、最終書始 *n の直前の番始 *n-1 ヘデータコードDC_{B-2} を絡納すると共に、先頭番地 *0 ヘエンドマーク EM を、スタートマークSM の格納された後位網

データDT。~DTn および DTn 以降は各々が72 バイトにより構成されるものとなつているため、 これらのパイト数に応じて各エリア CE, DE お よびスペースの警地数および格納容量が定められる。

したがつて、第5回の場合、コードエリア CE においては、 $(W\sim 0)$ を1 周期とすれば、善地 4 0、 4 2、 4 3 が各3回、番地 4 1、 4 4、 4 n が各2回、 その他の台費塩が各1回の格前幾作を受けるものとなり、これと同様の周期を必要に応じて反復すれば、各要地の内容更新回数がほど均等となる。

また、内容の試み出しに験しては、各スタート コード SM をチェックし、 これらが正常であれ ば、 これらにつぐ番地乃至二つのエンドマータEM が正常に格約されている番地の面割の番地までの データコードが有効であり、 これを番地 $^{\circ}$ 0 $^{\circ}$ 10、 更に $^{\circ}$ n から $^{\circ}$ 0 $^{\circ}$ 0 へかけて情報的に確認し、 データコードに応じてデータエリアDE のデータを 読み出して用いるものとすればよい。 香地*1 の次位の香地*2 ヘスタートマーク S M を各々内容を更新のうえ格納する一方、データエ リア D E には、データコード D C n-2 と 別 応 T るデータ D T n-2 を格納し、D の状態とする。

更に、データを格納する縣は、ビのとかり、エンドマークEM の格納された先位演者地『n ヘテータコード・DCnー1 を搭納すると決に、エンドマークEM の格納された書地『0 の次位の勧地』、エンドマーク EM の格納された後位需番地『2 の 次位の番地』3 ヘスタートマーク SM の格納された後位需番地『2 の 次位の番地』3 ヘスタートマーク SM を格約し、以降、同様の格納操作を必要に応じて反復すると、例の状態を介して選次データコードDCn 以降かよび、データ DTn 以降が順次にかつ領域的に格納され、こって内容の更新か行なわれる。

なか、データコード DCs ~ DCn かよび DC1 以降としては2 パイトが用いられ、有効マークAM、 スタートマーク SM かよびエンドマーク BM と しては、データコード DCs ~ DCn かよび DC; 以降とは別値のコードを用いるものとなつでかり、

すなわち、スタートマークSM かよびエンドマークEM が正常に格的されていれば、データコードかよびデータも正常であり、電頭断棒により格的中に異常を生ずれば、スタートコードSM またはエンドマークEM が正常に格納されないものとなる。

このため、同様の手順により、電視切断後の再 投入時に内容のチェックを行ない、内容が有効か 否かを高信頼性により判断することができる。

第6 図は、CPU1 による格約操作のフローチ ナートであり、* 最初のデータ? * 301 を判断 し、これが YES であれば、* SM→*0・*1* 311 に L D スタートマーク SM を普地*0 かよ び*1 へ格約し、* DC1→*2 * 312 によつ エテータコード DC1 を番地*2 へ格納のうえ、 DT1→ DE * 313 に L D データ DT1 をデータ よりプーク DE * 314 によっテータ DT4 を帯地*3 *4* 314 によってエンドマータ EM を帯地*3 および*4 へ格納する。

ステップ 301 が NO であれば、番地 **n に

EM あり? *302 をチェックし、これの NO K 応じて ! 番目のデータコード *DC! → EM の格 納得先位番地の直期の番地 *321 K L リエンドマーク EM の格 納されている先位番地の直期の番 地へ格 納し、これに応するデータ *DT! → DE *322 K L コてデータエリア DE ^格納のうえ、*EM→EM の格納決技位番地 + 1 *323 K L リ、 獲納的な験位を含めてエンドマーク EM をこれの 機能されている 使位番地の次位の番地へ格納 する。

また、ステップ 302 の YES K応じては、ス タートマーク・SM→ SM の格納殊後位壽地+ 1° 331、かよび、ステップ 321、322 と同 じく・DCi→ EM の格納殊先位書地の 直前の 番地 332、・DTi→ DE 333 を行ない、 エンドマーク・EM→ SM の格納殊先位書地。 334 を行なつてから、主ルーテンを介しステッ ブ301 以降な反復する。

第7図は、同様を読み出し操作を示すフローチャートであり、まず、コードエリアCB にスター

トマーク・SM あり? * 401 およびエンドマーク・EM あり? * 402 をチェックしいずれも
YES であれば、スタートマーク・SM 連続? * 411 およびエンドマーク・EM 連続? * 412 を確認し、これらの YES に応じて・彼位 SM のつぎの番地から便位EM の画剤の書始までの
写有効・421 と終定し、データエリア・DE から別応するデータ扱み出し* 422 を行なう。
また、ステップ412 が NO のときは * 後位
SM のつぎの資地から完位 EM の書地 - 2 まで

また、ステツブ412 が NO のときは * 後位 SM のつぎの番地から先位 BM の番地-2 まで の内容有効* 431 と決定し、ステップ 422 へ 移行する。

一方、ステップ411 の NOに応じては、エンドマータ・EM 連続?。 441 を確認し、これが YES であれば、スタートマータ・SM の番地 + 2から彼位EM の距前の番地までの内容有効。 451 と決定し、スナップ422 へ移行する。 また、ステップ441 が NO のときは、スタートマータ・SM の番地 + 2 から EM の 番地 -2 までの内容有効。461 と決定し、スナップ

422 へ移行する。

以上に対し、ステップ 401、402 のいずれかが NO のときは、内容無効。471 と決定し、 直ちに主ルーチンを介してステップ 401 以降を 反復する。

たとし、第1回かよび罪5回にかいては、テータ DTo ~ DTn かよび DT1、以降のバイト数が かいため、コードエリア CE と別途に データエ リアDE を設けたか、データ DTo ~ DTn かよび DT1 以降のパイト数が少をければ、コードエリ アCE のみとし、データコード DCo ~ DCn かよび DC1 以降と低納してもよく、第1回または第5 DT1 以降を格納してもよく、第1回または第5 DT1 以降を格納してもよく、第1回または第5 DT1 以降の とする場合は、データコード DCo ~ DCn かよび DC1 以降ペデータ DTo ~ DTn かよび DT1 以降の 格納養地コードを付加し、あるいは、 CPU 1 がデータコード DCo ~ DCn かよび DC1 以降に応じてデータ DTo ~ DTn かよび DT1。以降の格納養地を用力に、コードエリア DE (~ 知 て格納養地を服成に定めるものとしてもよく、第 2 図の構成も条件に応じた選定が任意である等、 種々の変形が自在である。

[発明の効果]

以上の設明により明らかなとかり不発明によれば、EEPROM 等の内容更新函数が制限されたメモリにかいて、任意地塔に任ま場本内容更新が行なわれ、特定者地へ内容更新が行なわれ、特定者地へ内容更新が優まれる。のになると共に、EEPROM ヘアータを精納中に電源が切断されてもエンドマークEM が構装せず、有効性の決定が更薄なく行なえ、からるメモリの内容格納方法として顕著な効果が得られる。

4. 図面の簡単な説明

図は不発明の実施例を示し、第1図は EEPROM に対するデータの結前状況を示す図、第2図は EEPROM を用いる装置のブロック図、第3図は CPU による格前状況のフローチャート、第4図 に同様の配み出し状況を示すフローチャート、第 5図は他の実施例を示す第1図と関係な図、第6 図本よび第7図は排5図と対応する第3図かよび

第4図と同様な図である。

1・・・・CPU (プロセクサ)、4~6・・
・・EEPROM (メモリ)、CE・・・コード
エリア (発射ニリア)、DE・・・・デーチエリ
ア、DCo~ DCn・・・・データコード、AM
・・・オ効マーク、SM・・・・スタートマー
ク、EM・・・エンドマーク、DTo~DTn・
・・・データa

特許出顧人 山武ハネウェル株式会社

代理人 山川政樹(ほか2名)

第3図

第4図

										第6团			
		(A)		(B)		(C)		(0)		(E)		(F)	
	(.0	S M]*	S M]	S M]	ЕМ]•	EM]	D Cn	7.
CE	-1	S M	*	S M	1	SM	1	S M		EM		E M	1
	1 2	D Cı	*	D C ı		DCi	1	\$ M	*	S M]	EM	1.
	* 3	E M	*	D C 2	*	D C2	ļ	D C 2		S M]*	SM]
	# 4	E M	*	ЕМ		0 C3	1	D C3		D C 3	1	S M	
	± 5		1	E M	*	D C4		DC4]	D C4		D C4]
	i	<u> </u>	i		į	<u></u>			l]]
	#n-2					D Ca+3	*	DCn-3		DC a-3	Ì	DC 4-3]
	en-I					ЕМ	Į			D Cn-2		DC=-2]
	(on					ЕМ	*	EM		DC a-1	*	DCn-1] .
									1				
DE		οт,	-	DTı		OT,		DTI		DT;		DΤι	
				DT ₂		DT ₂		DT2		OT ₂		DT ₂	
													
						DT _{n-3}		0 Ta-3		DTa-3		DT ₆₋₃	
								0Ta-2		D Tn-2		OTs-2	
										DT _{n-1}		DTn-1	
Į												DTa	

方式

