

planetmath.org

Math for the people, by the people.

antipodal map on S^n is homotopic to the identity if and only if n is odd

 $Canonical\ name \qquad Antipodal Map On Sn Is Homotopic To The Identity If And Only If N Is Odd$

Date of creation 2013-03-22 15:47:33 Last modified on 2013-03-22 15:47:33

Owner mps (409) Last modified by mps (409)

Numerical id 5

Author mps (409)
Entry type Derivation
Classification msc 51M05
Classification msc 15-00

Lemma. If $X: S^n \to S^n$ is a unit vector field, then there is a homotopy between the antipodal map on S^n and the identity map.

Proof. Regard S^n as a subspace of R^{n+1} and define $H: S^n \times [0,1] \to R^{n+1}$ by $H(v,t) = (\cos \pi t)v + (\sin \pi t)X(v)$. Since X is a unit vector field, $X(v) \perp v$ for any $v \in S^n$. Hence ||H(v,t)|| = 1, so H is into S^n . Finally observe that H(v,0) = v and H(v,1) = -v. Thus H is a homotopy between the antipodal map and the identity map.

Proposition. The antipodal map $A: S^n \to S^n$ is homotopic to the identity if and only if n is odd.

Proof. If n is even, then the antipodal map A is the composition of an odd of reflections. It therefore has degree -1. Since the degree of the identity map is +1, the two maps are not homotopic.

Now suppose n is odd, say n=2k-1. Regard S^n has a subspace of \mathbb{R}^{2k} . So each point of S^n has coordinates (x_1,\ldots,x_{2k}) with $\sum_i x_i^2 = 1$. Define a map $X: \mathbb{R}^{2k} \to \mathbb{R}^{2k}$ by $X(x_1,x_2,\ldots,x_{2k-1},x_{2k}) = (-x_2,x_1,\ldots,-x_{2k},x_{2k-1})$, pairwise swapping coordinates and negating the even coordinates. By construction, for any $v \in S^n$, we have that ||X(v)|| = 1 and $X(v) \perp v$. Hence X is a unit vector field. Applying the lemma, we conclude that the antipodal map is homotopic to the identity.

References

- [1] Hatcher, A. Algebraic topology, Cambridge University Press, 2002.
- [2] Munkres, J. Elements of algebraic topology, Addison-Wesley, 1984.