Lecture 15: Orders & Decimal Expansions

Tom Roby University of Connecticut

23 October 2012

Outline

- Orders of elements in \mathbf{Z}_m^* ;
- Orders and powers of $a \in \mathbf{Z}_m^*$;
- Periods of decimal expansions;

• Consider **Z**₉*. How many units? What are they? What are their powers?

- Consider Z₉*. How many units? What are they? What are their powers?
- DEF: Given $a \in \mathbf{Z}_m^*$, the least $n \in \mathbf{Z}^+$ s.t. $a^n = 1$ is called the **order** of a mod m. Sometimes we write ord(a), $ord_m(a)$, o(a) or $o_m(a)$.

- Consider Z₉*. How many units? What are they? What are their powers?
- DEF: Given $a \in \mathbf{Z}_m^*$, the least $n \in \mathbf{Z}^+$ s.t. $a^n = 1$ is called the **order** of a mod m. Sometimes we write ord(a), $ord_m(a)$, o(a) or $o_m(a)$.
- EG: What is the order of 2 mod 9? Of 7? What do you notice about the order of elements?

- Consider Z₉*. How many units? What are they? What are their powers?
- DEF: Given $a \in \mathbf{Z}_m^*$, the least $n \in \mathbf{Z}^+$ s.t. $a^n = 1$ is called the **order** of a mod m. Sometimes we write ord(a), $ord_m(a)$, o(a) or $o_m(a)$.
- EG: What is the order of 2 mod 9? Of 7? What do you notice about the order of elements?
- THM: If a mod m has order n, then for $k \in \mathbf{Z}^+$ $a^k = 1 \iff o(a) \mid k$.

- Consider Z₉*. How many units? What are they? What are their powers?
- DEF: Given $a \in \mathbf{Z}_m^*$, the least $n \in \mathbf{Z}^+$ s.t. $a^n = 1$ is called the **order** of a mod m. Sometimes we write ord(a), $ord_m(a)$, o(a) or $o_m(a)$.
- EG: What is the order of 2 mod 9? Of 7? What do you notice about the order of elements?
- THM: If $a \mod m$ has order n, then for $k \in \mathbf{Z}^+$ $a^k = 1 \iff o(a) \mid k$.
- PF: (⇐) is easy from the definitions.
 (⇒): Use division algorithm.

Here is the THE big theorem about orders in \mathbf{Z}_m^* .

Theorem

Let a mod m have order n. THEN

• For all $k \in \mathbf{Z}^+$, $a^k \equiv 1 \pmod{m} \iff o(a) \mid k$. In particular, $o(a) \mid \phi(m)$, and $a^k \equiv a^l \iff k \equiv l \pmod{\mathbf{o}(a)}$.

Here is the THE big theorem about orders in \mathbf{Z}_m^* .

Theorem

Let a mod m have order n. THEN

- For all $k \in \mathbf{Z}^+$, $a^k \equiv 1 \pmod{m} \iff o(a) \mid k$. In particular, $o(a) \mid \phi(m)$, and $a^k \equiv a^l \iff k \equiv l \pmod{\mathbf{o}(a)}$.
- ② If (k, o(a)) = 1, then a^k has the same order as a.

Here is the THE big theorem about orders in \mathbf{Z}_m^* .

Theorem

Let a mod m have order n. THEN

- For all $k \in \mathbf{Z}^+$, $a^k \equiv 1 \pmod{m} \iff o(a) \mid k$. In particular, $o(a) \mid \phi(m)$, and $a^k \equiv a^l \iff k \equiv l \pmod{\mathbf{o}(a)}$.
- ② If (k, o(a)) = 1, then a^k has the same order as a.
- **1** If $d \mid o(a)$, then a^d has order $\frac{o(a)}{d}$.

Here is the THE big theorem about orders in \mathbf{Z}_{m}^{*} .

Theorem

Let a mod m have order n. THEN

- For all $k \in \mathbf{Z}^+$, $a^k \equiv 1 \pmod{m} \iff o(a) \mid k$. In particular, $o(a) \mid \phi(m)$, and $a^k \equiv a^l \iff k \equiv l \pmod{\mathbf{o}(\mathbf{a})}$.
- ② If (k, o(a)) = 1, then a^k has the same order as a.
- **1** If $d \mid o(a)$, then a^d has order $\frac{o(a)}{d}$.
- If a_1 has order n_1 and a_2 has order n_2 in \mathbf{Z}_m^* , with $(n_1, n_2) = 1$, then $a_1 a_2$ has order $n_1 n_2$.

Here is the THE big theorem about orders in \mathbf{Z}_{m}^{*} .

Theorem

Let a mod m have order n. THEN

- For all $k \in \mathbf{Z}^+$, $a^k \equiv 1 \pmod{m} \iff o(a) \mid k$. In particular, $o(a) \mid \phi(m)$, and $a^k \equiv a^l \iff k \equiv l \pmod{\mathbf{o}(\mathbf{a})}$.
- ② If (k, o(a)) = 1, then a^k has the same order as a.
- **1** If $d \mid o(a)$, then a^d has order $\frac{o(a)}{d}$.
- If a_1 has order n_1 and a_2 has order n_2 in \mathbf{Z}_m^* , with $(n_1, n_2) = 1$, then $a_1 a_2$ has order $n_1 n_2$.

EG: Let's look at a power table for \mathbf{Z}_{19}^* .

Consider the decimal expansions of the following fractions:

 $\frac{1}{3}, \frac{1}{7}, \frac{7}{22}, \frac{15}{37}$.

Consider the decimal expansions of the following fractions: $\frac{1}{3}$, $\frac{1}{7}$, $\frac{7}{22}$, $\frac{15}{37}$.

$$\frac{1}{3} = .33333 \cdot \dots = .\overline{3}$$
 Period = 1
 $\frac{1}{7} = .1428571428 \cdot \dots = .\overline{142857}$ Period = 6
 $\frac{7}{22} = .3181818 \cdot \dots = 3.\overline{18}$ Period = 2
 $\frac{15}{37} = .405405405 \cdot \dots = .\overline{405}$ Period = 3

Consider the decimal expansions of the following fractions: $\frac{1}{3}$, $\frac{1}{7}$, $\frac{7}{22}$, $\frac{15}{37}$.

$$\frac{1}{3} = .33333 \cdots = .\overline{3}$$
 Period = 1
 $\frac{1}{7} = .1428571428 \cdots = .\overline{142857}$ Period = 6
 $\frac{7}{22} = .3181818 \cdots = 3.\overline{18}$ Period = 2
 $\frac{15}{37} = .405405405 \cdots = .\overline{405}$ Period = 3

Any Conjectures from here or the HW?

True/False: Every rational number has a repeating decimal expansion?

Consider the decimal expansions of the following fractions: $\frac{1}{3}$, $\frac{1}{7}$, $\frac{7}{22}$, $\frac{15}{37}$.

$$\frac{1}{3} = .33333 \cdots = .\overline{3}$$
 Period = 1
 $\frac{1}{7} = .1428571428 \cdots = .\overline{142857}$ Period = 6
 $\frac{7}{22} = .3181818 \cdots = 3.\overline{18}$ Period = 2
 $\frac{15}{37} = .405405405 \cdots = .\overline{405}$ Period = 3

Any Conjectures from here or the HW?

True/False: Every rational number has a repeating decimal expansion? ANS: **TRUE!**

Decimal Expansion Conjectures

Prove or Disprove & Salvage if Possible:

- **1** The period length of $\frac{1}{p}$ divides p-1;
- ② For each $b \ge 2$, all $\frac{a}{b}$ with (a, b) = 1 have same period length.
- **3** Expansion of $\frac{1}{b}$ is purely periodic when (10, b) = 1.
- Shifting digits (cyclically) gives another fraction with same denominator.

• To go from fractions to decimal expansions is easy. Why?

- To go from fractions to decimal expansions is easy. Why?
- Conversely, how do we go from fractions to decimals? EG, what fraction is represented by $x = .\overline{15}$?

- To go from fractions to decimal expansions is easy. Why?
- Conversely, how do we go from fractions to decimals? EG, what fraction is represented by $x = .\overline{15}$?
- How about $x = .\overline{405}$

- To go from fractions to decimal expansions is easy. Why?
- Conversely, how do we go from fractions to decimals? EG, what fraction is represented by $x = .\overline{15}$?
- How about $x = .\overline{405}$
- What happens in general with $x = .\overline{c_1c_2\cdots c_d}$?

- To go from fractions to decimal expansions is easy. Why?
- Conversely, how do we go from fractions to decimals? EG, what fraction is represented by $x = .\overline{15}$?
- How about $x = .\overline{405}$
- What happens in general with $x = .\overline{c_1c_2\cdots c_d}$?
- Some algebra shows that $\frac{a}{b}$ has a *purely periodic* decimal expansion $0.\overline{c_1\cdots c_d}\iff some$ representation of $\frac{a}{b}$ has denominator 10^d-1 for $some\ d\in \mathbf{Z}^+$.

- To go from fractions to decimal expansions is easy. Why?
- Conversely, how do we go from fractions to decimals? EG, what fraction is represented by $x = .\overline{15}$?
- How about $x = .\overline{405}$
- What happens in general with $x = .\overline{c_1c_2\cdots c_d}$?
- Some algebra shows that $\frac{a}{b}$ has a *purely periodic* decimal expansion $0.\overline{c_1\cdots c_d}\iff some$ representation of $\frac{a}{b}$ has denominator 10^d-1 for $some\ d\in \mathbf{Z}^+$.
- **NB:** The denominator may be something other than $10^d 1$ when the fractions is simplified to lowest terms.

- To go from fractions to decimal expansions is easy. Why?
- Conversely, how do we go from fractions to decimals? EG, what fraction is represented by $x = .\overline{15}$?
- How about $x = .\overline{405}$
- What happens in general with $x = .\overline{c_1c_2\cdots c_d}$?
- Some algebra shows that $\frac{a}{b}$ has a *purely periodic* decimal expansion $0.\overline{c_1\cdots c_d}\iff some$ representation of $\frac{a}{b}$ has denominator 10^d-1 for $some\ d\in \mathbf{Z}^+$.
- **NB:** The denominator may be something other than $10^d 1$ when the fractions is simplified to lowest terms.

EG:
$$\frac{5}{33} = \frac{15}{99} = .\overline{15}$$
; $\frac{1}{3} = \frac{3}{9} = 0.\overline{3}$.

Theorem

Let $x = \frac{a}{b} \in \mathbf{Q}^+$ with (b, 10) = 1. Then the decimal period of x is $ord_b(10)$, the order of 10 in \mathbf{Z}_b^* .

Theorem

Let $x = \frac{a}{b} \in \mathbf{Q}^+$ with (b, 10) = 1. Then the decimal period of x is $ord_b(10)$, the order of 10 in \mathbf{Z}_b^* .

Proof.

decimal period of $x = \text{least } d \ge 1 \text{ s.t. } x \text{ has denom. } 10^d - 1$

Theorem

Let $x = \frac{a}{b} \in \mathbf{Q}^+$ with (b, 10) = 1. Then the decimal period of x is $ord_b(10)$, the order of 10 in \mathbf{Z}_b^* .

decimal period of
$$x = \text{least } d \ge 1 \text{ s.t. } x \text{ has denom. } 10^d - 1$$
$$= \text{least } d \ge 1 \text{ s.t. } b \mid 10^b - 1$$

Theorem

Let $x = \frac{a}{b} \in \mathbf{Q}^+$ with (b, 10) = 1. Then the decimal period of x is $ord_b(10)$, the order of 10 in \mathbf{Z}_b^* .

decimal period of
$$x=$$
 least $d\geq 1$ s.t. x has denom. 10^d-1
$$= \text{least } d\geq 1 \text{ s.t. } b\mid 10^b-1$$

$$= \text{least } d\geq 1 \text{ s.t. } 10^b\equiv 1 \pmod b$$

Theorem

Let $x = \frac{a}{b} \in \mathbf{Q}^+$ with (b, 10) = 1. Then the decimal period of x is $ord_b(10)$, the order of 10 in \mathbf{Z}_b^* .

decimal period of
$$x=$$
 least $d\geq 1$ s.t. x has denom. 10^d-1
$$= \text{least } d\geq 1 \text{ s.t. } b\mid 10^b-1$$

$$= \text{least } d\geq 1 \text{ s.t. } 10^b\equiv 1 \pmod b$$

$$= \text{order of } 10 \mod b$$

Theorem

Let $x = \frac{a}{b} \in \mathbf{Q}^+$ with (b, 10) = 1. Then the decimal period of x is $ord_b(10)$, the order of 10 in \mathbf{Z}_b^* .

decimal period of
$$x = \text{least } d \ge 1 \text{ s.t. } x \text{ has denom. } 10^d - 1$$

$$= \text{least } d \ge 1 \text{ s.t. } b \mid 10^b - 1$$

$$= \text{least } d \ge 1 \text{ s.t. } 10^b \equiv 1 \pmod{b}$$

$$= \text{order of } 10 \text{ mod } b$$

р	3	7	9	11	13	17	19	21
Period $\frac{1}{p}$	1	6	1	2	6	16	18	6
$ord_{10}(p)$	1	6	1	2	6	16	18	6