

NRF24L01+PA+LNA Wireless Module (Traducido por Rambal Ltda.)

Descripción:

El módulo inalámbrico NRF24L01+PA+LNA opera en la banda ISM de 2.4 GHz se hacen aplicaciones punto a punto (P2P). Además se añade el chip de potencia PA y LNA (Amplificador de bajo ruido), un conmutador RF y un filtro pasa banda compuesto por un amplificador de potencia RF bidireccional, haciendo que la distancia de comunicación efectiva se amplíe considerablemente.

Tamaño pequeño: 45.54mm x 16.46mm, fácil de integrar en cualquier producto con limitaciones de espacio. Los clientes pueden utilizar el puerto SPI de Arduino o cualquier otro microcontrolador para controlar el NRF24L01+PA+LNA.

Características:

Especificaciones	NRF24L01
Frecuencia	2.4 GHz – 2.5 GHz
Voltaje de operación	3 – 3.6 v Max
Corriente en modo emisor (peak)	115 mA
Corriente en modo receptor (peak)	45 mA
Multi-frecuencia	125 frecuencias
Canales de recepción que soporta	6
Temperatura de trabajo	-45º a 70º C
Temperatura de almacenaje	-45º a 125º C
Sensibilidad del receptor	-95 dbm
Poder de transmisión	+20 dbm, 50Ω
Modulación	GMSK (Modulación desplazamiento
	mínimo gaussiano)
Ganancia del PA	20 dB
Ganancia del LNA	10 dB
Distancia máxima en condiciones *optimas.	1000 metros

^{*} Distancia medida en zona rural libre de ruido y con antenas a la vista a 1000 metros de altura (información del fabricante).

Descripción de pines :

Modulo PIN	Nombre	Función
Pin 1	GND	Tierra
Pin 2	VCC	1.9 – 3.6 v
Pin 3	CE	Moo de operación, Tx/Rx
Pin 4	CSN	SPI Chip select
Pin 5	SCK	Reloj SPI
Pin 6	MOSI	Entrada (in) SPI
Pin 7	MISO	Salida (out) SPI
Pin 8	IRQ	Interruptor

Diodo:

El diodo ideal es un componente discreto que permite la circulación de corriente entre sus terminales en un determinado sentido, mientras que la bloquea en el sentido contrario, al pasar la corriente reduce el voltaje en 0.7v.

Conectar dos diodos en serie al Vcc para reducir el voltaje.

Ejemplo con Arduino:

Cuando enciendes el emisor manda el valor 1023 continuamente, el receptor si recibe dicho valor parpadea el led 13, además de poder verlo con el monitor serie. Funciona con la librería "Mirf"

En la imagen y tabla siguiente se muestra la conexión del Arduino con el NRF24L01.

Pines del NRF24L01	Pines del Arduino
Vcc	Vcc (3.3v)
GND	GND
CE	Pin digital 9
SCN	Pin digital 10
SCK	Pin digital 13
MOSI	Pin digital 11
MISO	Pin digital 12
IRQ	No se conecta

Código Arduino emisor


```
1 //Emisor
 2 #include <SPI.h>
 3 #include <Mirf.h>
 4 #include <nRF24L01.h>
 5 #include <MirfHardwareSpiDriver.h>
 6
 7 int rate = 1023;
8 void setup()
9
10
     Serial.begin(9600);
11
12
     Mirf.spi = &MirfHardwareSpi;
13
     Mirf.init();
     Mirf.setRADDR((byte *)"servl");
14
     Mirf.payload = sizeof(rate);
15
     Mirf.channel = 102;
16
17
     Mirf.config();
18
19
     Mirf.configRegister(RF_SETUP,0x0f);
20
     Mirf.configRegister(EN_AA, 0x00);
21 }
22
   void loop()
23
24
       Serial.println(rate,DEC);
25
       Mirf.setTADDR((byte *)"cliel");
26
       Mirf.send((byte *) &rate);
27
        while(Mirf.isSending())
28
29
        {
30
        }
31
        //delay(100);
32
      }
```


Código Arduino receptor

```
1 //Receptor
2 #include <SPI.h>
3 #include <Mirf.h>
4 #include <nRF24L01.h>
5 #include <MirfHardwareSpiDriver.h>
6 int rate;
7 int val=0;
8 void setup()
9 {
10
    pinMode(13, OUTPUT);
11
     digitalWrite(13,LOW);
12
     Serial.begin(9600);
13
     Mirf.spi = &MirfHardwareSpi;
14
     Mirf.init();
15
     Mirf.setRADDR((byte *)"cliel");
16
     Mirf.payload = sizeof(rate);
17
     Mirf.channel = 102;
18
     Mirf.config();
19
20
     Mirf.configRegister(RF_SETUP,0x0f);
21
     Mirf.configRegister(EN AA, 0x00);
22
23 }
24 void loop()
25 | {
26
     while(!Mirf.dataReady())
27
28
       //digitalWrite(13,LOW);
29
     Mirf.getData((byte *) &rate);
30
31
     Serial.println(rate);
32
     if (rate == 1023)
33
     {
34
        if (val ==0)
35
          val = 1023;
36
37
          digitalWrite(13,HIGH);
38
         }
39
         else
40
            val = 0;
41
42
           digitalWrite(13,LOW);
43
          }
44
      }
45
      //delay(100);
46 }
```


Ejemplo con Basic Stamp:

En la tabla e imagen siguiente se muestra la forma de conectar un Basic Stamp con un transmisor/receptor NRF24L01.

Pines del NRF24L01	Pines del Basic Stamp
Vcc	Vcc (3.3v)
GND	GND
CE	Pin 7
CSN	Pin 6
SCK	Pin 8
MOSI	Pin 10
MISO	Pin 9
IRQ	No se conecta

