Машинное обучение: задание 2

1 Теоретические задачи

1.1 Ответы в листьях регрессионного дерева

Какая стратегия поведения в листьях регрессионного дерева приводит к меньшему матожиданию ошибки по MSE: отвечать средним значением таргета на объектах обучающей выборки, попавших в лист, или отвечать таргетом для случайного объекта из листа (считая все объекты равновероятными)?

Ответ:

Пусть y^* - ответ, который мы даем в листе регрессионного дерева. Попробуем минимизировать матожидание ошибки по MSE:

$$E(\frac{1}{n}\sum_{i=1}^{n}(y_i-y^*)^2)=\frac{1}{n}\sum_{i=1}^{n}E(y_i-y^*)^2$$
 раскрыли по линейности, а теперь возьмём производную от этого выражения и приравняем к нулю

Для отдельного слагаемого $E(y - y^*)^2 = Ey^2 - 2y^*Ey + E(y^*)^{\frac{3}{2}}$

$$(Ey^2 - 2y^*Ey + E(y^*)^2)' = 2Ey - 2y^*$$

Для суммы:
$$\sum_{i=1}^{n} (Ey_i - y^*) = 0$$

$$y^* = rac{1}{n} \sum_{i=1}^n E y_i$$
 - среднее значение таргета минимизирует матожидание ошибки по MSE

1.2 Линейные модели в деревьях

Одна из частых идей - попытаться улучшить регрессионное дерево, выдавая вместо константных ответов в листьях ответ линейной регрессии, обученной на объектах из этого листа. Как правило такая стратегия не дает никакого ощутимого выигрыша. Попробуйте объяснить, почему? Как стоит модифицировать построение разбиений в дереве по MSE, чтобы при разбиении получались множества, на которых линейные модели должны работать неплохо?

Ответ

Регрессионное дерево - это кусочно постоянная функция, которое каждому объекту, который дошел до листа, сопоставляет константный ответ таким образом, чтобы минимизаровать ошибку на этом объекте. Значит, все объекты, находящиеся в одном листе, имеют значения targeta близкое к какому-то константному и линейная регрессия на таких объектах не даст особого выигрыша.

Если в разбиениях в дереве брать множетсва с большими разбросами значений, то линейные модели на них будут работать неплохо

1.3 Unsupervised decision tree

Unsupervised решающие деревья можно было бы применить для кластеризации выборки или оценки плотности, но проблема построения таких деревьев зак,лючается в введении меры информативности. В одной статье предлагался следующий подход - оценивать энтропию множества S по формуле:

$$H(S) = \frac{1}{2}ln((2\pi e)^n|\Sigma|)$$

Здесь Σ - оцененная по множеству матрица ковариаций. Т.е. не имея других сведений, в предложенном подходе мы по умолчанию считаем, что скопления точек можно приближенно считать распределенными нормально. Убедитесь, что это выражение в самом деле задает энтропию многомерного нормального распределения.

Ответ

Если посчитать энтропию многомерного нормального распределения

$$f(x)=rac{1}{\sqrt{(2\pi)^n|\Sigma|}}\cdot e^{-rac{1}{2}(x-\mu)^T\cdot\Sigma^{-1}\cdot(x-\mu)}$$
 - плотность

$$H(x) = -\int\limits_{-\infty}^{+\infty} f(x) ln(f(x)) dx$$
, то действительно получится данное выражение

$$H(S) = \frac{1}{2}ln((2\pi e)^n |\Sigma|)$$

2 Применение решающего дерева

20% баллов за задание, оценочное время выполнения 30 минут + установка GraphViz

Постройте решающее дерево из sklearn на датасете german credit data из UCI репозитория и визуализируйте его. Попробуйте проинтерпретировать первые несколько разбиений, изу- чив описание признаков. Постройте графики зависимости качества на кросс-валидации и на обучающей выборке от глубины дерева

In [301]:

```
from sklearn.tree import DecisionTreeRegressor
from sklearn.model_selection import cross_val_score
from IPython.display import Image
from sklearn import tree
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score, classification_report

import numpy as np
import pydotplus
import pandas as pd
import matplotlib.pyplot as plt
import scipy.stats as sps

%pylab inline
```

Populating the interactive namespace from numpy and matplotlib

```
C:\Program Files\Anaconda3\envs\py27\lib\site-packages\IPython\core\magics\p
ylab.py:161: UserWarning: pylab import has clobbered these variables: ['siz
e', 'clf']
`%matplotlib` prevents importing * from pylab and numpy
   "\n`%matplotlib` prevents importing * from pylab and numpy"
```

Подготавливаем данные

```
In [302]:
```

```
# данные взяты отсюда https://onlinecourses.science.psu.edu/stat857/node/215
data = pd.read_csv('data/german_credit_data/german_credit.csv')
```

In [303]:

```
credit_data = pd.DataFrame(data)
credit_data_features = credit_data.columns[1:]
X_data = credit_data.iloc[:, 1:]
y_data = credit_data.Creditability
```

Строим дерево

In [304]:

```
model = tree.DecisionTreeClassifier()
model.fit(X_data, y_data)
```

Out[304]:

In [305]:

In [306]:

```
graph = pydotplus.graphviz.graph_from_dot_file("credit_tree.out")
Image(graph.create_png())
```

Out[306]:

Попробуем уменьшить глубину дерева

In [322]:

Out[322]:

Вывод:

Разбиение очень легко интерпертируется: как и в реальной жизни, мы сначала смотрим на баланс счета клиента, потом на срок и сумму кредита и т.д

Проверим качество алгоритма, построим графики зависимости качества на кросс-валидации и на обучающей выборке от глубины дерева

In [319]:

In [326]:

```
cross_val_scores = []
for d in depth:
    cross_val_scores.append((cross_val_score(tree.DecisionTreeClassifier(random_state=0, ma

plt.plot(depth, cross_val_scores, color='red', label='cross val score')
plt.ylabel('cross val score')
plt.xlabel('depth')
plt.legend()
plt.show()
```


In [327]:

```
accuracy_scores = []
for d in depth:
    model = tree.DecisionTreeClassifier(random_state=0, max_depth = d)
    model.fit(train_data, train_target)
    accuracy_scores.append(accuracy_score(model.predict(test_data),test_target))

plt.plot(depth, accuracy_scores, color='green', label='accuracy')
plt.ylabel('accuracy')
plt.xlabel('depth')
plt.legend()
plt.show()
```


Вывод

Видно, что чем больше у дерева глубина, тем оно больше подстраивается под выборку

3 Реализация решающего дерева (опциональная часть)

In [288]:

from sklearn.datasets import load_boston

In [289]:

boston = load_boston()

```
In [290]:
print boston.DESCR
Boston House Prices dataset
Notes
_____
Data Set Characteristics:
    :Number of Instances: 506
    :Number of Attributes: 13 numeric/categorical predictive
    :Median Value (attribute 14) is usually the target
    :Attribute Information (in order):
        - CRIM
                  per capita crime rate by town
        - ZN
                   proportion of residential land zoned for lots over 25,000
sq.ft.
        - INDUS
                   proportion of non-retail business acres per town
        - CHAS
                  Charles River dummy variable (= 1 if tract bounds river;
 0 otherwise)
                  nitric oxides concentration (parts per 10 million)
        - NOX
        - RM
                  average number of rooms per dwelling
                  proportion of owner-occupied units built prior to 1940
        - AGE
        - DIS
                  weighted distances to five Boston employment centres
                  index of accessibility to radial highways
        - RAD
        - TAX
                  full-value property-tax rate per $10,000
        - PTRATIO pupil-teacher ratio by town
        - B
                   1000(Bk - 0.63)^2 where Bk is the proportion of blacks by
town
                   % lower status of the population
        - LSTAT
        - MEDV
                  Median value of owner-occupied homes in $1000's
    :Missing Attribute Values: None
```

:Creator: Harrison, D. and Rubinfeld, D.L.

This is a copy of UCI ML housing dataset. http://archive.ics.uci.edu/ml/datasets/Housing (http://archive.ics.uci.edu/ml/datasets/Housing)

This dataset was taken from the StatLib library which is maintained at Carne gie Mellon University.

The Boston house-price data of Harrison, D. and Rubinfeld, D.L. 'Hedonic prices and the demand for clean air', J. Environ. Economics & Management, vol.5, 81-102, 1978. Used in Belsley, Kuh & Welsch, 'Regression diagnostic s

...', Wiley, 1980. N.B. Various transformations are used in the table on pages 244-261 of the latter.

The Boston house-price data has been used in many machine learning papers th at address regression problems.

References

- Beisley, Kun & Weiscn, 'Regression diagnostics: identifying influential Data and Sources of Collinearity', Wiley, 1980. 244-261.
- Quinlan, R. (1993). Combining Instance-Based and Model-Based Learning. In Proceedings on the Tenth International Conference of Machine Learning, 236 -243, University of Massachusetts, Amherst. Morgan Kaufmann.
- many more! (see http://archive.ics.uci.edu/ml/datasets/Housing) (htt p://archive.ics.uci.edu/ml/datasets/Housing))

In [299]:

```
boston_data = pd.DataFrame(boston.data)
boston_data.columns = boston.feature_names
boston_data['target'] = boston.target
```

In [300]:

```
boston_data.head()
```

Out[300]:

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В
0	0.00632	18.0	2.31	0.0	0.538	6.575	65.2	4.0900	1.0	296.0	15.3	396.90
1	0.02731	0.0	7.07	0.0	0.469	6.421	78.9	4.9671	2.0	242.0	17.8	396.90
2	0.02729	0.0	7.07	0.0	0.469	7.185	61.1	4.9671	2.0	242.0	17.8	392.83
3	0.03237	0.0	2.18	0.0	0.458	6.998	45.8	6.0622	3.0	222.0	18.7	394.63
4	0.06905	0.0	2.18	0.0	0.458	7.147	54.2	6.0622	3.0	222.0	18.7	396.90

Создаем решающее дерево стандартным жадным алгоритмом

In [293]:

In [296]:

```
class DecisionTree:
    def __init__(self, features, max_depth=0):
        Поля
        root: Node - корень дерева
        max_depth: int - максимальная глубина дерева
        features: np.array - признаки
        self.max_depth = max_depth
        self.features = features
    def __builder(self, X_train, y_train, cur_depth):
        answers = np.array(y_train)
        size = len(y_train)
        # если в X_train мало элементов или превышена максимальная глубина, то объединяем в
        # и в ответе даем среднее значение
        if (size <= 6 or (self.max_depth != 0 and cur_depth >= self.max_depth)):
            new leaf = Node(answers.mean())
            new_leaf.num = size
            return new_leaf;
        X_copy = X_train.copy()
        X_copy.insert(0, 'target', y_train)
        # находим наиболее информативное разбиение, пользуясь критерием МSE
        max_inf = 0
        best_feat = ''
        best_thr = 0
        for feature in self.features:
            # переберем все значения признака
            values = np.array(X_train[feature])
            thresholds = np.unique(values)
            for threshold in thresholds:
                y_left = X_copy[X_copy[feature] <= threshold].target</pre>
                y_right = X_copy[X_copy[feature] > threshold].target
                if (len(y_left) != 0 and len(y_right) != 0):
                        H left = sum((y left - y left.mean())**2)/len(y left)
                        H_right = sum((y_right - y_right.mean())**2)/len(y_right)
                        inf = len(y_left)*H_left/size + len(y_right)*H_right/size
                        if (inf >= max inf):
                            max inf = inf
                            best feat = feature
                            best_thr = threshold
        # разбиваем выборку на две части с помощью найденного разбиения
        X train 0 = X copy[X copy[best feat] <= best thr]</pre>
        X_train_1 = X_copy[X_copy[best_feat] > best_thr]
```

```
# если мы так неудачно разбили, что в одном множестве совсем не оказалось элементов
    # то создаем новый лист
    if (len(X train 0) <= 5 or len(X train 1) <= 5):</pre>
        if len(X_train_0) <= 5:</pre>
            new_leaf = Node(X_train_1.target.mean())
            return new_leaf;
        else:
            new_leaf = Node(X_train_0.target.mean())
            return new leaf;
    # иначе создаем новую вершину и продолжаем построение дерева
    new_vertex = Node(0, best_feat, best_thr)
    new_vertex.left = self.__builder(X_train_0.iloc[:, 1:], X_train_0.target, cur_depth
    new_vertex.right = self.__builder(X_train_1.iloc[:, 1:], X_train_1.target, cur_dept
    return new_vertex;
def __find(self, x, cur_vertex):
    if (cur_vertex.feature != ''):
        if x[cur_vertex.feature] <= cur_vertex.threshold:</pre>
            return self.__find(x, cur_vertex.left);
        else:
            return self.__find(x, cur_vertex.right);
    else:
        return cur_vertex.data
def fit(self, X_train, y_train):
    self.root = self.__builder( X_train, y_train, 0)
def predict(self, X_test):
    size = len(X_test)
    y_pred = np.zeros(size)
    for i in range(0, size-1):
        y_pred[i] = self.__find(X_test.iloc[i], self.root)
    return y_pred
```

Оценим качество

Посчитам разброс

In [298]:

```
predict = clf.predict(test_data)
print sum((predict - test_target)**2)/len(predict)
```

73.7774186665

Вывод:

к сожалелнию, алгоритм работает не очень хорошо, дисперсия достаточно большая

In []:			