

Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt information regarding your submission.

The first page of your submissions is displayed below.

Submission author: HARINATH BABU

Assignment title: Assessment 1

Submission title: report.pdf

File name: report.pdf

File size: 404.02K

Page count: 12

Word count: 2,109

Character count: 8,894

Submission date: 08-Mar-2025 11:44AM (UTC+0000)

Submission ID: 2608811599

```
CS7DS3 Applied Statistical Modelling
Assignment I
Name: Harmath Babu
Student ID: 24440602
Course: MSc in Computer Science - Data Science

Q1

S2 fails if both components falls,
\mathbb{F}(S_2 \text{ fails}) = \mathbb{F}(x_1 \text{ fails and } x_2 \text{ fails})
Given,
\mathbb{F}(x_1 \text{ fails}) = \mathbb{P}(x_2 \text{ fails and } x_2 \text{ fails}) = \theta
Since x_1 \& x_2 failing are independent,
\mathbb{F}(S_2 \text{ fails}) = \mathbb{F}(x_1 \text{ fails}) * \mathbb{F}(x_2 \text{ fails})
\theta_1 = \theta = \theta
\theta_1 = \theta^2

Q2

A -> Total number of observed failures
\theta = 0.08; n = 1000
Each system follows a bernoulli trial, with the two outcomes: Component failure (failure in trial). The given a systems can thus be modeled with a binomial distribution with a probability of \theta_1 = \theta^2 = 0.8^q, and thus \theta_1 = 0.0064.

i

As stated in the Probability Review II notes under the section Expectation and variance of random variables for a binomial distribution,
\mathbb{E}[A] = n * \theta_1
\mathbb{E}[A] = 1000 * 0.0064
\mathbb{E}[A] = 1000 * 0.0064
\mathbb{E}[A] = 6.4
```