

CALCULUS

Prof. Liang ZHENG

Spring 2025

About this course (II)

Textbook

Grading

Homework: 20%

Midterm: 30%

Final: 50%

QQ group code

Course Subject

• What is calculus?

Calculus, a mathematical concept, is the study of differentiation and integration of functions in advanced mathematics.

• What is the three important part of calculus?

The three important part of calculus is limits, differentiation, integration.

• What is the research object and key tool of calculus?

The research object of calculus is functions and the key tool for studying calculus is the limit.

• Calculus has extensive applications in almost all fields such as physics, astronomy, optics mechanics, and thermodynamics.

• Functions are fundamental to the study of calculus. A review of functions and their graphs is necessary and beneficial.

DEFINITION: A function f from a set D to a set Y is a rule that assigns a unique (single) element $y \in Y$ to each element $x \in D$. In this case, we say that "y is a function of x" and write this symbolically as y = f(x).

The set D of all possible input values is called the domain of the function. The set

$$R = \{ y | y = f(x), \forall x \in D \}$$

is called the range of the function.

When we define a function y = f(x) with a formula and the domain is not stated explicitly or restricted by context, the domain is assumed to be the largest set of real xvalues for which the formula gives real y-values, which is called the natural domain.

natural domain =
$$\{x \in \mathbb{R} | f(x) \text{ is a real number.} \}$$

Example 1:

Let's verify the natural domains and associated ranges of some simple functions.

1)
$$y = x^2$$
.

$$2) \quad y = \sqrt{x} .$$

$$y = \frac{1}{x}.$$

$$4) \quad y = \sqrt{4-x} \ .$$

1)
$$y = x^2$$
. 2) $y = \sqrt{x}$. 3) $y = \frac{1}{x}$. 4) $y = \sqrt{4-x}$. 5) $y = \sqrt{1-x^2}$.

The Vertical Line Test for a Function

Consider a relation defined by a set of points (x, y) graphed on a rectangular coordinate system. The graph defines y as a function of x if no vertical line intersects the graph in more than one point.

Common Functions:

1 Linear Function:

$$f(x) = mx + b$$

where m and b are constants.

Special cases:

1)
$$m = 0$$
:

2)
$$m = 1$$
, $b = 0$: $f(x) = b$

$$f(x) = b$$

constant function.

(x) = b identity function.

Common Functions:

2 Power Function:

$$f(x) = x^a$$

where a is a constant.

Common Functions:

3 Polynomial Function:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

where *n* be a whole number and a_n ,, a_0 are real numbers $(a_n \neq 0)$.

FIGURE 1.18 Graphs of three polynomial functions.

Common Functions:

4 Rational Function:

$$f(x) = \frac{p(x)}{q(x)}$$

where p(x) and q(x) are polynomials.

FIGURE 1.19 Graphs of three rational functions. The straight red lines approached by the graphs are called

Common Functions:

⑤ Trigonometric Functions:

$$sin x = \frac{y}{r}$$

$$cos x = \frac{x}{r}$$

$$tan x = \frac{sin x}{cos x} = \frac{y}{x}$$

$$cot x = \frac{cos x}{sin x} = \frac{x}{y}$$

$$sec x = \frac{1}{cos x} = \frac{r}{x}$$

$$csc x = \frac{1}{r} = \frac{r}{r}$$

sinx

Common Functions: (6) Exponential Functions and **(7)** Logarithmic Functions

Exponential Functions

Domain: $(-\infty, \infty)$

Range: $(0, \infty)$

Horizontal asymptote: y = 0

Passes through (0, 1)

If b > 1, the function is increasing.

If 0 < b < 1, the function is

decreasing.

Logarithmic Functions

Domain: $(0, \infty)$

Range: $(-\infty, \infty)$

Vertical asymptote: x = 0

Passes through (1, 0)

If b > 1, the function is increasing.

If 0 < b < 1, the function is

decreasing.

Common Functions:

8 Piecewise-Defined Functions

General Piecewise-Defined Function

Greatest Integer Function Absolute Value Function