## **CS4100** Computer Architecture

Spring 2024, Homework 3

Due: 23:59, 4/21/2024

1. (18 points) Please modify the ALU design introduced in the class to satisfy the following requirements:

| Ainvert | Bnegate | Operation | Function |
|---------|---------|-----------|----------|
| 0       | 1       | 01        | AND      |
| 0       | 1       | 10        | OR       |
| 0       | 1       | 00        | add      |
| 0       | 0       | 00        | sub      |
| 1       | 0       | 01        | NOR      |
| 0       | 1       | 11        | add-ext  |
| 0       | 0       | 11        | sub-ext  |



Here, "add-ext" and "sub-ext" refer to 32-bit addition and subtraction with sign-extension to 64 bits. You are required to draw the circuit diagrams for each 1-bit ALU and the 64-bit ALU. For each 1-bit ALU, use only one full adder to perform an addition or subtraction operation, similar to the method demonstrated in class. Additionally, show the ALU control signals for "add-ext" and "sub-ext" in your design.







- 2. (14 points) Consider two unsigned binary numbers: M = 1110 and N = 1001.
  - (a) (7 points) Write down each step of  $M \times N$  according to version 1 of the multiply algorithm.

| Iteration | Step                    | Multiplier | Multiplicand | Product   |
|-----------|-------------------------|------------|--------------|-----------|
| 0         | Initial values          | 1001       | 0000 1110    | 0000 0000 |
| 1         | Prod = Prod + Mcand     | 1001       | 0000 1110    | 0000 1110 |
|           | Shift left multiplicand | 1001       | 0001 1100    | 0000 1110 |
|           | Shift right multiplier  | 0100       | 0001 1100    | 0000 1110 |
| 2         | Prod = Prod + 0         | 0100       | 0001 1100    | 0000 1110 |
|           | Shift left multiplicand | 0100       | 0011 1000    | 0000 1110 |
|           | Shift right multiplier  | 0010       | 0011 1000    | 0000 1110 |
| 3         | Prod = Prod + 0         | 0010       | 0011 1000    | 0000 1110 |
|           | Shift left multiplicand | 0010       | 0111 0000    | 0000 1110 |
|           | Shift right multiplier  | 0001       | 0111 0000    | 0000 1110 |
| 4         | Prod = Prod + Mcand     | 0001       | 0111 0000    | 0111 1110 |
|           | Shift left multiplicand | 0001       | 1110 0000    | 0111 1110 |
|           | Shift right multiplier  | 0000       | 1110 0000    | 0111 1110 |

M \* N = 0111 1110

(b) (7 points) Write down each step of  $M \times N$  according to version 2 of the multiply algorithm.

| <b>Iteration</b> | Step                   | Multiplicand | Product   |
|------------------|------------------------|--------------|-----------|
| 0                | Initial values         | 1110         | 0000 1001 |
| 1                | LeftProd += Mcand      | 1110         | 1110 1001 |
|                  | Shift right multiplier | 1110         | 0111 0100 |
| 2                | LeftProd += 0          | 1110         | 0111 0100 |
|                  | Shift right multiplier | 1110         | 0011 1010 |
| 3                | LeftProd += 0          | 1110         | 0011 1010 |
|                  | Shift right multiplier | 1110         | 0001 1101 |
| 4                | LeftProd += Mcand      | 1110         | 1111 1101 |
|                  | Shift right multiplier | 1110         | 0111 1110 |

M \* N = 0111 1110

- 3. (14 points) Consider two unsigned binary numbers: M = 0111 and N = 0101.
  - (a) (7 points) Write down each step of  $M \div N$  according to version 1 of the division algorithm.

| algorithm.  Iteration | Step                          | Quotient | Divisor   | Remainder |
|-----------------------|-------------------------------|----------|-----------|-----------|
| 0                     | Initial values                | 0000     | 0101 0000 | 0000 0111 |
| 1                     | Rem = Rem - Div               | 0000     | 0101 0000 | 1011 0111 |
|                       | Rem < 0                       |          |           |           |
|                       | ⇒ Rem += Div                  | 0000     | 0101 0000 | 0000 0111 |
|                       | ⇒ Shift left quotient         |          |           |           |
|                       | Shift right divisor           | 0000     | 0010 1000 | 0000 0111 |
|                       | Rem = Rem - Div               | 0000     | 0010 1000 | 1101 1111 |
|                       | Rem < 0                       |          |           |           |
| 2                     | ⇒ Rem += Div                  | 0000     | 0010 1000 | 0000 0111 |
|                       | ⇒ Shift left quotient         |          |           |           |
|                       | Shift right divisor           | 0000     | 0001 0100 | 0000 0111 |
|                       | Rem = Rem - Div               | 0000     | 0001 0100 | 1111 0011 |
|                       | Rem < 0                       |          |           |           |
| 3                     | ⇒ Rem += Div                  | 0000     | 0001 0100 | 0000 0111 |
|                       | ⇒ Shift left quotient         |          |           |           |
|                       | Shift right divisor           | 0000     | 0000 1010 | 0000 0111 |
|                       | Rem = Rem - Div               | 0000     | 0000 1010 | 1111 1101 |
|                       | Rem < 0                       |          |           |           |
| 4                     | ⇒ Rem += Div                  | 0000     | 0000 1010 | 0000 0111 |
|                       | ⇒ Shift left quotient         |          |           |           |
|                       | Shift right divisor           | 0000     | 0000 0101 | 0000 0111 |
| 5                     | Rem = Rem - Div               | 0000     | 0000 0101 | 0000 0010 |
|                       | Rem >= 0                      |          |           |           |
|                       | ⇒ Shift left quotient         | 0001     | 0000 0101 | 0000 0010 |
|                       | $\Rightarrow$ quotient[0] = 1 |          |           |           |
|                       | Shift right divisor           | 0001     | 0000 0010 | 0000 0111 |

## (b) (7 points) Write down each step of $M \div N$ according to version 2 of the division algorithm.

| Iteration | Step                                            | Divisor | Remainder / Quotient |
|-----------|-------------------------------------------------|---------|----------------------|
| 0         | Initial values                                  | 0101    | 0000 0111            |
| 1         | Shift left remainder                            | 0101    | 0000 1110            |
|           | LeftRem -= Dsivisor                             | 0101    | 1011 1110            |
|           | Rem < 0  ⇒ LeftRem += Divisor  ⇒ Shift left Rem | 0101    | 0001 1100            |
| 2         | LeftRem -= Dsivisor                             | 0101    | 1100 1100            |
|           | Rem < 0  ⇒ LeftRem += Divisor  ⇒ Shift left Rem | 0101    | 0011 1000            |
| 3         | LeftRem -= Dsivisor                             | 0101    | 1110 1000            |
|           | Rem < 0  ⇒ LeftRem += Divisor  ⇒ Shift left Rem | 0101    | 0111 0000            |
| 4         | LeftRem -= Dsivisor                             | 0101    | 0010 0000            |
|           | Rem >= 0  ⇒ Shift left Rem  ⇒ Rem[0] = 1        | 0101    | 0100 0001            |
| 5         | Shift right leftRem                             | 0101    | 0010 0001            |

M/N = 0001...0010

- 4. (12 points) Answer the following questions in detail. You will receive 0 point if you only write down the answers.
  - (a) (4 points) What decimal number does the bit pattern 05948DEC<sub>16</sub> represent if it's a two's complement integer? If it's an unsigned number, is the result the same as the two's complement? If they are different, why?

```
05948DEC_{16}=12+14*16+13*16^2+8*16^3+4*16^4+9*16^5+5*16^6 = 93621740_{10} 因為在 signed 的情况下 sign bit 是 0,因此 signed 與 unsigned 的結果會是一樣的。
```

(b) (4 points) Answer problem (a) with a different bit pattern FA6B7214<sub>16</sub>. signed number:

```
\begin{split} FA6B7214_{16} &= 1111\_1010\_0110\_1011\_0111\_0010\_0001\_0100_2 \\ &= - (0000\_0101\_1001\_0100\_1000\_1101\_1110\_1011_2 + 1) \\ &= - (0000\_0101\_1001\_0100\_1000\_1101\_1110\_1100_2) \\ &= - 93621740_{10} \end{split}
```

unsigned number:

```
FA6B7214_{16} = 1111\_1010\_0110\_1011\_0111\_0010\_0001\_0100_2 \\ = 4201345556_{10}
```

以 signed 的方式來看,sign bit 為 1 代表是負數,因此結果會與 unsigned 的結果不一樣。

(c) (4 points) What decimal numbers do 05948DEC<sub>16</sub> and FA6B7214<sub>16</sub> represent if they are IEEE 754 floating point numbers.

```
05948DEC_{16} = 0000\_0101\_1001\_0100\_1000\_1101\_1110\_1100_2
```

- $\Rightarrow$  0\_00001011\_001010010001101111101100
- $\Rightarrow$  sign bit: 0, exponent:  $11_{10} 127_{10}$  (bias) = -116<sub>10</sub>,

fraction: 00101001000110111101100<sub>2</sub>

$$\Rightarrow 1 + 2^{-3} + 2^{-5} + 2^{-8} + 2^{-12} + 2^{-13} + 2^{-15} + 2^{-16} + 2^{-17} + 2^{-18} + 2^{-20} + 2^{-21}$$
$$= 1 + 0.160581 = 1.160581$$

⇒ Decimal number: 1.160581 \* 2<sup>-116</sup>

 $FA6B7214_{16} = 1111\_1010\_0110\_1011\_0111\_0010\_0001\_0100_2$ 

- $\Rightarrow$  1 11110100 11010110111001000010100<sub>2</sub>
- $\Rightarrow$  sign bit: 1, exponent:  $244_{10} 127_{10} = 117_{10}$

fraction: 11010110111001000010100<sub>2</sub>

$$\Rightarrow 1 + 2^{-1} + 2^{-2} + 2^{-4} + 2^{-6} + 2^{-7} + 2^{-9} + 2^{-10} + 2^{-11} + 2^{-14} + 2^{-19} + 2^{-21}$$
$$= 1 + 0.839419 = 1.839419$$

⇒ Decimal number: -1.839419 \* 2<sup>117</sup>

- 5. (10 points) Consider two decimal numbers: X = 88.4375 and Y = -7.3125.
  - (a) (6 points) Write down X and Y in the IEEE 754 single precision format. You must detail how you get your answer, or you will receive 0 point.

(b) (4 points) Assuming X and Y are given in the IEEE 754 single precision format. Show all the steps to perform X × Y and write the solution in the IEEE 754 single precision format.

X \* Y = 11000100001000011010110011000000

- 6. (20 points) Consider a new floating-point number representation that is only 16 bits wide. The leftmost bit is still the sign bit, the exponent is 9 bits wide and has a bias of 255, and the fraction is 6 bits long. A hidden 1 to the left of the binary point is assumed. In this representation, any 16-bit binary pattern having 000000000 in the exponent field and a non-zero fraction indicates a denormalized number:  $(-1)^{S} \times (0 + \text{Fraction}) \times 2^{-254}$ . Write the answers of (a), (b) and (c) in scientific notation, e.g.,  $1.0101 \times 2^{2}$ .
  - (a) (3 points) What is the smallest positive "normalized" number, denoted as a0? sign bit: 0, exponent: 000000001, fraction: 000000 exponent bias =  $1 255 = 254 => a0 = 1.0000002 * 2^{-254}$ .
  - (b) (6 points) What is the largest positive "denormalized" number, denoted as a1? What is the second largest positive "denormalized" number, denoted as a2?

```
sign bit: 0, exponent: 000000000, fraction: 111111 0.111111<sub>2</sub> * 2^6 = 111111_2 = 63_{10} a1 = 63 * 2^{-260} = 111111_2 * 2^{-260} = 1.111110_2 * 2^{-255} sign bit: 0, exponent: 000000000, fraction: 111110 0.111110<sub>2</sub> * 2^6 = 111110_2 = 62_{10} a2 = 62 * 2^{-260} = 111110_2 * 2^{-260} = 1.111100_2 * 2^{-255}
```

- (c) (4 points) Find the differences between a0 and a1, and between a1 and a2.  $a0-a1=1.000000_2*2^{-254}-1.111110_2*2^{-255}=0.000001_2*2^{-254}=1.000000_2*2^{-260}\\a1-a2=1.111110_2*2^{-255}-1.111100_2*2^{-255}=0.000010_2*2^{-255}=1.000000_2*2^{-260}$
- (d) (3 points) What binary number does the binary pattern 1011110110101111 represent? sign bit: 1, exponent: 011110110, fraction: 100111 exponent bias =  $011110110_2 255_{10} = 246_{10} 255_{10} = -9_{10}$   $1.100111_2 = 1100111_2 * 2_{10}^{-6} = 103_{10} * 2_{10}^{-6}$  This number is  $-103_{10} * 2_{10}^{-15}$ .
- (e) (4 points) Let U be the nearest representation of the decimal number 1.31; that is, U has the smallest approximation error. What is U? What is the actual decimal number represented by U?

```
0.31*2 \Rightarrow (0).62*2 \Rightarrow (1).24*2 \Rightarrow (0).48*2 \Rightarrow (0).96*2 \Rightarrow (1).92*2 \Rightarrow
(1).84*2 \Rightarrow (1).68 (進位)。 \Rightarrow 1.31_{10} = 1.010100_2 \cdot 255 + 1 = 256_{10}
\Rightarrow \text{sign bit: 0, exponent: } 100000001 \text{ (256}_{10}\text{), fraction: } 010100
U is 0000000001010100. Its actual decimal number is 1.3125
```

- 7. (12 points) **X** is a 32-bit signed integer variable, & is the bitwise-AND operator, and ">>" is the sra (shift right arithmetic) operator. For the following options, determine whether they provide the correct result for  $(\mathbf{X}/4)$  and explain the reasons.
  - (a) (X + 3) >> 2
  - (b)  $((X \ge 0) ? X >> 2 : (X + 3) >> 2)$
  - (c) X >> 2
  - (d) (X + ((X >> 31) & 3)) >> 2

Let A be a nonnegative 32-bit signed integer. Obviously, A >> 2 = A/4.

$$(-A)/4 = -(A/4) = -(A >> 2) = -(A >> 2) + 1 = ((-A) >> 2) + 1 = (-A + 4) >> 2$$
  
=  $(-A + 1 + 3) >> 2 = (-A + 3) >> 2$ 

Therefore, X / 4 = X >> 2 if X >= 0. Otherwise, X / 4 = (X + 3) >> 2.

Counter case:

$$\Rightarrow$$
 Use X / 4 = (X + 3) >> 2: For X = 1 >= 0, (X + 3) >> 2 = 1  $\neq$  X / 4 = 0

$$\Rightarrow$$
 Use X / 4 = X >> 2: For X = -1 < 0, X >> 2 = -1  $\neq$  X / 4 = 0

- (a) 由上述可知, 若 X >= 0 則 (X+3) >> 2 不一定等於 X/4
- (b) 由上述可知,((X>=0)?X>>2:(X+3)>>2)=X/4
- (c) 由上述可知, 若 X < 0 則 X >> 2 不一定等於 X / 4
- (d) 若 X < 0 則 (X + ((X >> 31) & 3)) >> 2 = (X + 3) >> 2 = X / 4 若 X >= 0 則 (X + ((X >> 31) & 3)) >> 2 = (X + 0) >> 2 = X / 4 (X + ((X >> 31) & 3)) >> 2 = X / 4