Replicación

- Abrazadera Deslizante: Proteína circular que asegura que la ADN polimerasa permanezca unida a la cadena molde.
- Cadena Conductora: Se sintetiza en la misma dirección que el movimiento de la horquilla de replicación.
- Cadena Retardada: Se sintetiza en dirección opuesta al movimiento de la horquilla, generando fragmentos de Okazaki.
- Cargador de Abrazadera: Dispositivo multiproteico que abre la abrazadera para envolver el DNA & permite que la polimerasa se disocie en el momento adecuado.
- Cebador (Primer): Segmento corto de RNA que sirve como punto de inicio para la síntesis de DNA.
- 6. Dogma Central de la Biología Molecular: La información genética fluye del DNA al RNA & del RNA a las proteínas.
- DNA Ligasa: Enzima que une los fragmentos de DNA formando enlaces fosfodiéster entre fragmentos de Okazaki.
- 8. **DNA Polimerasa I:** Enzima que elimina el cebador de RNA & lo reemplaza con DNA, con actividad exonucleasa 3'→5' & 5'→3'.
- DNA Polimerasa III: Principal enzima en la replicación que cataliza la formación de enlaces 3',5'-fosfodiéster.
- Fragmentos de Okazaki: Fragmentos cortos de DNA sintetizados en la cadena retardada.

- 11. **Helicasas:** Enzimas que separan las dos cadenas de la doble hélice durante la replicación.
- 12. **Semiconservativo:** Cada molécula nueva tiene una cadena parental & una hija.
- 13. **Nucleosomas:** Estructuras que se desensamblan antes de la horquilla de replicación & se reensamblan en las cadenas hijas.
- 14. **Orígenes de Replicación:** Secuencias específicas donde inicia la formación de la horquilla de replicación.
- 15. **Primosoma:** Complejo formado por la primasa & helicasas.
- 16. **Primasa:** Enzima que sintetiza fragmentos cortos de RNA (cebadores).
- 17. **Proteínas SSB (Single-Strand Binding):**Proteínas que estabilizan la conformación del DNA de cadena única y previenen la formación de lazos.
- 18. **Replicación/Duplicación:** Síntesis de DNA a partir de DNA mediante la complementariedad de bases.
- 19. Replisoma: Complejo de polipéptidos que incluye el primosoma.
- 20. **Señales de Terminación:** Secuencias específicas que desensamblan la maquinaria de replicación al finalizar el proceso.
- 21. **Transcripción:** Síntesis de RNA a partir del DNA.
- 22. **Traducción:** Síntesis de proteínas a partir del RNA mensajero (RNAm).

Replicación

 Dogma central de la biología molecular: La información genética fluye del DNA al RNA, & del RNA a las proteínas. (¿Qué expresa el dogma central de la biología molecular?)

• Procesos de Síntesis

- o **Replicación/Duplicación**: Síntesis de DNA a partir de DNA.
- o **Transcripción**: Síntesis de RNA a partir del DNA (info. contenida en el DNA).
- Traducción/Translación: Síntesis de proteínas a partir del RNAm (info. contenida en el RNAm).
 - **RNAm**: ARN mensajero.
 - ¿Qué es replicación & qué es traducción? Replicación: Síntesis de DNA
 a partir de DNA. Traducción: Síntesis de proteínas a partir de RNAm.

Duplicación

- **Replicación/Duplicación:** Síntesis de DNA a partir de DNA.
 - o Consiste en generar una copia de DNA mediante la complementariedad de bases.
- En cada división celular, el DNA debe duplicarse.
- Cadena parental: Cadena vieja.
- Cadena hija: Cadena nueva.

• Características:

- o Esencial para la reproducción celular & viral.
- o Conceptualmente sencilla, pero mecánicamente compleja.

- Semiconservativa: cada cadena parental sirve como molde para la síntesis de una nueva.
- Ordenada & secuencial.
- O Utiliza sustratos activados: desoxiribonucleósidos 5'-trifosfato (dNTP).
- O Discontinua: en la cadena rezagada se sintetizan fragmentos de Okazaki.
- Altamente precisa: supera en exactitud a otros procesos enzimáticos. (¿Cuál es el proceso más exacto catalizado por enzimas? Replicación.) (La replicación en humanos: Es más exacta que cualquier proceso catalizado por enzimas.)
- o Coordinada con el ciclo celular (crecimiento & división).

Modelos de Replicación

- Semiconservativo (*In vivo*):
 - o Cada molécula nueva tiene una cadena parental & una hija.
 - Se conserva la mitad del DNA parental (u original).

• Conservativo:

- Una molécula contiene ambas cadenas parentales; la otra, ambas cadenas hijas.
- o Todo el DNA parental permanece intacto en una molécula.

• Disperso:

 Cada molécula tiene fragmentos parentales & hijas intercalados en ambas cadenas.

Replicación en Procariotas (Bacterias)

- La síntesis ocurre de manera discontinua, formando fragmentos.
- Fases principales del proceso:
 - o Fusión (Separación) de las cadenas parentales: mediada por las helicasas.
 - Síntesis del cebador: Primer; pequeños fragmentos de RNA (primasa). (¿Qué es un primer? Segmentos corto de RNA)
 - O Síntesis de DNA: por la acción de la DNA polimerasa III (principal enzima).
 - o Unión de fragmentos: la *DNA ligasa* conecta los fragmentos de Okazaki.
 - o Control del superenrollamiento: realizado por las topoisomerasas.
- Horquillas de replicación: Regiones donde se está duplicando el DNA, por un complejo multienzimático.
- Burbujas de replicación: Áreas donde ocurre la replicación en fragmentos.

Componentes Proteícos de la Horquilla de Replicación (Enumere los componentes

proteícos de la horquilla de replicación.)

I. Helicasas. IV. Proteína SSB (*Proteínas de unión al*

II. Primasas. DNA de cadena única).

III. DNA Polimerasas. V. DNA Ligasa.

VI. Topoisomerasas.

Componentes Proteícos

VII. Helicasas. IX. Primosoma.

VIII. Primasa. X. DNA Polimerasa I.

- XI. DNA Polimerasa III
- XII. DNA Ligasa.
- XIII. Proteína SSB.
- XIV. Topoisomerasas.
- XV. Abrazadera deslizante.
- XVI. Cargador de la abrazadera.

• Helicasas:

- Separan las dos cadenas de la doble hélice. (Separa las 2 cadenas del DNA durante la replicación en procariotas: Helicasas.)
- o Actividad en ambas direcciones $(5'\rightarrow 3' \& 3'\rightarrow 5')$.
- o Forman un **anillo hexamérico** que rodea el DNA.
- o Separan 1000 pb/seg.

• Primasa:

- Sintetiza fragmentos de RNA (10 pb) (*cebador o primer*) a intervalos de 100-200
 pb.
- o La primasa sintetiza DNA. FALSO.
- Helicasa + Primasa = **Primosoma**.
 - o El primosoma está formado por la primase y: **Helicasas.**
 - o La DNA Polimerasa I & la DNA Ligasa forman el primosoma. FALSO.

DNA Polimerasas

• DNA polimerasa I:

- Elimina el cebador de RNA cebador (primer) & lo reemplaza por DNA. (Es la DNA Polimerasa que elimina el fragmento de RNA cebador & lo reemplaza con DNA en procariotas: I.) (La elimicación del cebador es llevada a cabo por la DNA Polimerasa I en procariotas. VERDADERO.)
- Función de reparación (actividad exonucleasa $3' \rightarrow 5' & 5' \rightarrow 3'$).
- o Realiza la **traslación de mella**.
 - Traslación de mella: Proceso en el que se elimina el cebador de RNA & se sustituye por DNA.
 - Eliminación de ribonucleótidos del extremo 5' del RNA cebador.

• DNA polimerasa III:

- o Principal enzima en la replicación.
- o Cataliza la formación de enlaces 3',5'-fosfodiéster.
- Actividad exonucleasa 3'→5'.

• DNA polimerasa II:

Función desconocida.

• DNA ligasa:

- Une los fragmentos de DNA formando enlaces fosfodiéster entre fragmentos de Okazaki.
- O Une el extremo 3' de un f. de Okazaki con el extremo 5' del f. anterior.
- ¿Qué es un fragmento de Okazaki? Fragmentos cortos de DNA que la cadena rezagada es sintetizada.

• Proteínas SSB (Single-strand binding protein o proteínas de unión al DNA de cadena única):

- Se unen al DNA de cadena única.
- Estabilizan la conformación de la horquilla de replicación al prevenir la formación de lazos. (Mantienen la cadena tensa o recta.)
- Las proteínas SSB previenen la formación de lazos en el DNA durante la replicación. VERDADERO.

• Topoisomerasas:

- Controlan el superenrollamiento del DNA durante la replicación. (Lleva a cabo el control del superenrrolamiento durante la replicación: DNA Topoisomeras.)
- o Rompen un enlace fosfodiéster en una cadena del ADN, permitiendo que la hélice rote libremente para aliviar la tensión por el superenrollamiento.
- O Después de relajar la torsión, vuelven a formar el enlace fosfodiéster.
- o ¿Qué enzimas llevan a cabo el control del superenrrolamiento durante la replicación? **Topoisomerasas.**

• Abrazadera Deslizante:

 Proteína circular que asegura que la ADN polimerasa permanezca unida a la cadena molde.

• Cargador de abrazadera:

O Dispositivo multiproteico que abre la abrazadera para envolver el DNA.

 Permite que la polimerasa se disocie en el momento adecuado (Carga & descarga la abrazadera).

Cadena Conductora & Retardada

- Cadena conductora: Se sintetiza en la misma dirección que el movimiento de la horquilla de replicación. (La cadena conductora de replicación: Se sintetiza en dirección de 5' a 3'.) (¿Cuál de las cadenas hijas se sintetiza en la misma dirección que el movimiento de la horquilla? Cadena conductora.)
- Cadena retardada: Se sintetiza en dirección opuesta al movimiento de la horquilla, generando fragmentos de Okazaki.
 - Describa todos los detalles, vistos en clase, referentes a cómo se forma la cadena retardada de DNA en la replicación. Se sintetiza en dirección contraria al movimiento de la horquilla de replicación.

Modelo Correcto para la Duplicación

- Ambas crecen en la dirección $5' \rightarrow 3'$.
- Cadena líder: Sintetizada continuamente en dirección $5' \rightarrow 3'$.
- Cadena rezagada: Sintetizada en fragmentos de 100-200 pb (en humanos) & 1000-200 pb (en procariotas).
- Fragmentos de Okazaki:
 - Más largos en procariotas (bacterias).
 - Más cortos en eucariotas (humanos).

- ¿Los fragmentos de Okazaki son más largos en eucariotas o en procariotas? En procariotas.
- Durante la duplicación del DNA en procariotas, se forma una figura característica que se asemeja a la letra teta (θ).

Orígenes de Replicación

- Secuencias específicas que definen dónde inicia la formación de la horquilla de replicación.
 - o Ricas en bases A=T.
- Atraen proteínas específicas necesarias para iniciar la replicación.
- **Señales de Terminación:** Secuencias específicas que desensamblan la maquinaria de replicación al finalizar el proceso.

Replicación en Procariotas (Bacterias) & Eucariotas (Humanos) (Diferencias)

Características	Procariotas	Eucariotas
Momento de replicación	Durante el ciclo celular	Fase S del ciclo celular (Es la fase del ciclo cellular en que ocurre la replicación en eucariotas: S)
Velocidad	Rápida (~10 veces más veloz)	Lenta (50 nucleótidos/seg)
Fragmentos de Okazaki	Más grandes (1000-2000 pb)	Más pequeños (100-200 pb)
N. de orígenes	Único	Varios; Miles por cromosoma
Cantidad de ADN	Menos cantidad que en eucariotas	50 veces más cantidad que en procariotas
Empaquetamiento de ADN	No está empaquetado en histonas	Fuertemente empaquetado en histonas

Síntesis de histonas	No asociada.	Fuertemente Asociada (Para el empaquetamiento).
ADN Polimerasas	Tres polimerasas: I, II, II	Cinco polimerasas: α , β , γ , δ , y ϵ
Replisomas/Replicones	Presentes (complejo que incluye el primosoma) (En los procariotas, pero no en los eucariotas, hay: Replisomas.)	No presentes
Nucleosoma	No existe.	Está presente.
Similitudes Mecanismos	Es semiconservativa & ocurre de manera continua en una	
básicos de replicación	cadena & discontinua en la otra.	

- ¿Qué es un replicón o replisoma? Complejo de polipéptidos que incluye el primosoma.
- ¿Cuáles son los tres problemas que se presentan en la replicación en eucariotas & que no se presenta en procariotas ?
- 1. Estructura nucleosómica de la cromatina.
- 2. Velocidad de replicación.
- 3. Replicación de genomas lineales.
- En los procariotas, pero no en las eucariotas, hay: 3 tipos de DNA polimerasas.
- En eucariotas hay cinco tipos de DNA Polimerasas. VERDADERO.
- ¿Cuántos origenes tiene una bacteria? 1 Origen.
- ¿Dónde es más lenta la replicación, en bacterias o en humanos? En humanos.

Estructura Nucleosómica de la Cromatina

- Los nucleosomas se desensamblan antes de la horquilla de replicación & se reensamblan en las cadenas hijas. ¿Qué pasa con los nucleosomas durante la replicación? Se desensamblan por delante de la horquilla de replicación & luego se reensamblan en una u otra de las cadenas hijas.
- Se utilizan histonas preexistentes & de nueva síntesis de manera aleatoria.

Velocidad de Replicación

- Es más lenta debido a la estructura compleja de la cromatina.
- Se compensa con múltiples orígenes de replicación, generando burbujas de replicación bidireccionales.
- Las regiones activas en transcripción se replican primero; las inactivas, más tarde.

Replicación de Genomas Lineales

- **Problema**: La eliminación del cebador deja un hueco que no puede llenarse, acortando el cromosoma.
- **Solución**: Adición de telómeros por la telomerasa, que añade repeticiones en la cadena rezagada. (*Los telómeros:* **Son secuencias repetitivas.**)
- ¿Qué es un telómero? Secuencia repetitiva que se adiciona en los extremos de los cromosomas lineales.
- **Ejemplo humano:** Repetición de secuencia 5'-GGGTTA-3'. (*El DNA humano es ____ por lo que se requiere de la adicción de telómeros durante la replicación. Lineal.)*

Síntesis de ADN en los Extremos de Cromosomas Lineales

• Cadena Rezagada

- La cadena rezagada requiere un iniciador (primer de RNA) para sintetizar el extremo de la cadena madre (Parental DNA).
- La cadena de DNA principal se sintetiza de manera continua (Leading strand).

 La cadena rezagada se sintetiza de forma discontinua, con fragmentos de Okazaki (Lagging strand).

• Secuencia Final de los Telómeros

 Los telómeros terminan con una secuencia repetida de 5'-GGGTTA-3' (en humanos) que se repite múltiples veces.

• Telomerasa:

- Enzima que añade repeticiones en la cadena rezagada molde (parental strand).
- o La telomerase: Sintetiza secuencias que son repetitivas.
- La telomerasa: Sólo participa en la solución de un problema que se da en la replicación de DNA lineal.

Overview

- Dogma central de la biología molecular:
 - o Flujo genético: DNA → RNA → Proteínas.
- Definición:
 - o **Replicación:** Síntesis de DNA a partir de DNA.
- Características de la replicación:
 - o **Semiconservativa:** Cada nueva molécula tiene una cadena parental y una hija.
 - o **Discontinua:** Fragmentos de Okazaki en la cadena rezagada.
 - o **Precisa:** Proceso más exacto catalizado por enzimas.
 - o Coordinada: Relación con el ciclo celular.
- Modelos de replicación:
 - o **Semiconservativo:** Se conserva una cadena parental.
 - o Conservativo: DNA parental intacto en una molécula.
 - o **Disperso:** Fragmentos parentales e hijos mezclados.
- Etapas de la replicación en procariotas:
 - o Fusión de cadenas: Helicasa separa las cadenas parentales.
 - o Síntesis del cebador: Primasa forma fragmentos cortos de RNA (primer).
 - Síntesis de DNA: DNA polimerasa III extiende las cadenas.
 - o Unión de fragmentos: DNA ligasa conecta fragmentos de Okazaki.
 - o Control del superenrollamiento: Topoisomerasas lo regulan.
- Estructuras clave:
 - o Horquilla de replicación: Sitio donde ocurre la duplicación.

o Burbuja de replicación: Áreas activas de replicación.

Componentes Proteícos

Componente	Función Principal	Detalles
Helicasas	Separan las dos cadenas de la doble hélice de DNA.	 - Actividad bidireccional (5'→3' y 3'→5'). - Anillo hexamérico. - Velocidad: 1000 pb/seg.
Primasa	Sintetiza fragmentos cortos de RNA (cebadores o primers).	 - Fragmentos de ~10 pb. - Funciona junto con helicasas formando el primosoma.
Primosoma	Complejo helicasa + primasa.	-
DNA Polimerasa I	Reemplaza cebadores de RNA con DNA y realiza reparación.	 - Actividad exonucleasa (3'→5' y 5'→3'). - Responsable de la traslación de mella.
DNA Polimerasa III	Enzima principal de replicación del DNA.	 Cataliza enlaces 3',5'- fosfodiéster. Actividad exonucleasa 3'→5' (corrección de errores).
DNA Polimerasa II	Función desconocida.	-
DNA Ligasa	Une fragmentos de DNA formando enlaces fosfodiéster.	 Conecta fragmentos de Okazaki en la cadena rezagada. Une extremos 3' y 5' adyacentes.
Proteínas SSB	Estabilizan el DNA de cadena única.	- Previenen formación de lazos en la cadena molde.
Topoisomerasas	Controlan el superenrollamiento del DNA.	 Rompen y religan enlaces fosfodiéster. Alivian tensión por torsión.
Abrazadera Deslizante	Mantiene la DNA polimerasa unida a la cadena molde.	- Asegura la continuidad de la replicación.
Cargador de Abrazadera	Abre la abrazadera deslizante para envolver el DNA.	 Facilita la disociación de la polimerasa cuando es necesario.

• Cadena Conductora:

Se sintetiza continuamente en dirección $5' \rightarrow 3'$, siguiendo el movimiento de la horquilla de replicación.

• Cadena Retardada:

o Se sintetiza en dirección opuesta a la horquilla en fragmentos cortos (Okazaki).

• Fragmentos de Okazaki:

- o Más largos en procariotas (1000-2000 pb).
- o Más cortos en eucariotas (100-200 pb).

• Modelo Correcto de Duplicación:

- Ambas cadenas crecen en dirección $5' \rightarrow 3'$.
- o Cadena líder: Continua.
- o Cadena rezagada: Discontinua (fragmentos de Okazaki).

• Orígenes de Replicación:

O Secuencias específicas ricas en A=T que inician la formación de la horquilla.

• Señales de Terminación:

o Secuencias que detienen la replicación & desensamblan el complejo.

Características	Procariotas (Bacterias)	Eucariotas (Humanos)
Momento de replicación	Durante el ciclo celular	Fase S del ciclo celular
Velocidad	Rápida (~10 veces más veloz)	Lenta (50 nucleótidos/seg)
Fragmentos de Okazaki	Más grandes (1000-2000 pb)	Más pequeños (100-200 pb)
Número de orígenes	Único	Varios; miles por cromosoma
Cantidad de ADN	Menor cantidad	50 veces más que en procariotas
Empaquetamiento de ADN	No empaquetado en histonas	Fuertemente empaquetado en histonas
Síntesis de histonas	No asociada	Fuertemente asociada
ADN Polimerasas	Tres tipos: I, II, III	Cinco tipos: α , β , γ , δ , ϵ
Replisomas/Replicones	Presentes (complejo que incluye el primosoma)	No presentes
Nucleosoma	No existe	Está presente
Problemas exclusivos en eucariotas	No presentes	 Estructura nucleosómica Velocidad Genomas lineales
Similitudes en el mecanismo	Ambas son semiconservativas, con síntesis continua y discontinua.	Ambas son semiconservativas, con síntesis continua y discontinua.

• Estructura Nucleosómica:

 Los nucleosomas se desensamblan antes de la horquilla de replicación y se reensamblan en las cadenas hijas usando histonas preexistentes y de nueva síntesis.

Velocidad de Replicación:

- o Más lenta por la cromatina, compensada con múltiples orígenes y burbujas bidireccionales.
- o Regiones activas se replican primero; inactivas, después.

• Replicación en Genomas Lineales:

- o **Problema:** Eliminación del cebador acorta el cromosoma.
- Solución: Telómeros (secuencias repetitivas, ex. 5'-GGGTTA-3' en humanos) añadidos por telomerasa.

• Síntesis en Extremos Cromosómicos:

- o Cadena líder: Síntesis continua.
- o Cadena rezagada: Síntesis discontinua con fragmentos de Okazaki.
- **Telomerasa:** Enzima que extiende la cadena rezagada añadiendo repeticiones.