### GB13624 - Maths for Computer Science

Lecture 1 – Introduction to Proofs

Claus Aranha

caranha@cs.tsukuba.ac.jp

College of Information Science

2022-10-05

Last updated October 9, 2023

#### Lecture 1 – Outline

In this lecture, we introduce the concept of **mathematical proofs**:

- Section 1: What are proofs, and why we need them;
- Section 2: Some proof methods;
- Section 3: Logical formulas and satisfiability;

This lecture covers the textbook's chapters 1, 2 and 3.

#### Part 1: Introduction to Proofs.

- 1 Introduction to Proofs
- Proof Methods
- 3 Logical Formulas

### What is a proof?

Some concepts are easy to understand, but not easy to show that they are true.



Pythagoras Theorem:

$$a^2+b^2=c^2$$

- It is easy to show this is true for any one triangle.
- But how do you show it is is true for all triangles?

The proof of the Pythagoras theorem is not obvious: there are more than 100 different proofs!

Claus Aranha (COINS) GB13624 2022-10-05 4/50

### What is a proof?

#### One Pythagoras Proof

- **Proof**: by geometric construction
- Arrange four identical triangles;
- Show that internal angles are right;
- Internal square area:  $c^2$
- External square area:  $(a + b)^2$
- $(a+b)^2 = c^2 + 4$ (area triangle)
- $(a+b)^2 = c^2 + 4(\frac{ab}{2})$
- $a^2 + 2ab + b^2 = c^2 + 2ab$
- $a^2 + b^2 = c^2$



The **Key Idea** of this proof is that *a*, *b* and *c* can be assigned to any right triangle. But how do we find a new proof?

#### False Proofs – Infinite Chocolate!

- Be Careful! It can be very hard to detect a wrong step in a proof.
- A wrong proof can be used to say something impossible is true.
- What is wrong in the proof below?



Claus Aranha (COINS) GB13624 2022-10-05 6/50

#### False Proofs – Infinite Chocolate!

- Be Careful! It can be very hard to detect a wrong step in a proof.
- A wrong proof can be used to say something impossible is true.
- What is wrong in the proof below? Always check your assumptions!



Claus Aranha (COINS) GB13624 2022-10-05 6/50

### **Proofs and Computer Science**

#### Why are proofs important for Computer Science?

Proofs can be used to show that a program is correct.
 (or to show that a program is incorrect)

#### Examples

- Prove that the output of a program is correct for any input.
- Prove that certain input will cause a bug or crash in a program.
- Prove that a program finishes in *N* steps;

### **Proofs and Computer Science**

#### Example:

Can you prove that the program below is correct (or incorrect)?

- To prove correctness, must prove for **any** input a, b, c
- To prove incorrectness, it is enough to show one input

## **Proof Concepts – Propositions**

A proposition is a statement that is either True or False, and nothing else.

#### **Proposition**

- 2 + 3 = 5
- 1+1=3
- $513 \times 435 = 223165$
- There is no human taller than 3 meters.
- It rained on October, 3rd, 2020, 10:00 in Tokyo.
- Emacs is better than Vim.

#### Not proposition

- What is 2 × 8?
- Please give me cake.
- It is raining now.

## Proof Concepts - Predicates

A predicate is a kind of proposition where the truth value depends on one or more variables:

- P(n): n is a prime number;
- *L(N)*: The name *N* has five letters;
- M(x, y): x and y are members of the same group;

#### Do not confuse predicates and number expressions!

Numeric expressions have numeric values, predicates have True or False values.

• 
$$p(x) = x^2 + 3x + 1$$
.

p(x) is a numeric expression;

• 
$$P(X)$$
:  $p(x+1) = p(x) + x + 1$ .

P(X) is a predicate;

• K : P(X) is True for any  $x \ge 0$ .

K is a proposition;

## **Proof Concepts**

Implication (IF)

An implication is a particular type of predicate that we use a lot, so it is important to know it well:

$$P \implies Q$$

There are many ways to describe the implication:

- *I*(*P*, *Q*): If P is true, Q is true;
- *I*(*P*, *Q*): When P is true, Q is true;

We usually don't write the I(P, Q) part, but it is important to remember that the implication itself is a predicate.

- Be Careful! When P is false, Q could be anything.
- A related predicate is If and only If (iff):
  - IFF(P,Q):  $P \implies Q \text{ AND } Q \implies P$ .
  - also written as P ⇐⇒ Q

Claus Aranha (COINS) GB13624 2022-10-05 11/50

## **Proof Concepts**

**Proof Methods** 

How do we prove something?

#### **Proposition**

For every nonnegative integer n, the value of  $p(n) = n^2 + n + 41$  is prime.

We could try to test values of *n* one by one:

$$p(0) = 41$$
, prime;  $p(1) = 43$ , prime;  $p(2) = 47$ , prime; ...,  $p(20) = 461$ , prime...

- When do we stop?
- $(p(40) = 41 \times 41$ , is not prime...)

We need better ways to prove propositions!

#### Part 2: Proof Methods

- Introduction to Proofs
- 2 Proof Methods
- 3 Logical Formulas

#### Inference Rules

Inference (or logic deductions) are used to prove new propositions by using propositions that have been proposed before.

We normally write an inference as follows:

$$\frac{P,Q,R}{X}$$

This means "propositions P, Q, R are true, meaning that proposition X is true".

Inference Rules are inferences that are particularly useful to build proofs. Let's see a few:

#### Inference Rules

**Modus Ponens** 

The *Modus Ponens* inference rule is:

$$\frac{P,P \implies Q}{Q}$$

If P is true, and P implies Q is true, then Q is true.

A few other related inference rules:

$$\frac{P \implies Q, Q \implies R}{P \implies R}, \frac{not(P) \implies not(Q)}{Q \implies P}$$

So one way to prove a proposition is to start with propositions that you know are true and use inference rules to reach the proposition you want to prove.

**Direct Proof** 

The *Modus Ponens* rule says that:

$$\frac{P,P \implies Q}{Q}$$

To prove Q, we have to prove that P, and that P implies Q.

We can prove an implication directly, by assuming P is true, and showing that Q must be true, step by step.

**Direct Proof** 

**Theorem:** If  $0 \le x \le 2$ , then  $-x^3 + 4x + 1 > 0$ 

#### Proof.

- Let's assume  $0 \le x \le 2$
- We can rewrite  $-x^3 + 4x$  as x(2-x)(2+x)
- If  $0 \le x \le 2$ , then x, (2 x), (2 + x) are all non-negative.
- $x(2-x)(2+x) \geq 0$
- x(2-x)(2+x)+1>0
- $-x^3 + 4x + 1 > 0$



Contrapositive

Another way to prove an implication is to "prove the contrapositive". This means using the following inference rule:

$$\frac{\mathsf{NOT}(Q) \implies \mathsf{NOT}(P)}{P \implies Q}$$

So if we show that when Q is false, then P is always false, it is equivalent to show that when P is true, then Q is always true.

Contrapositive

**Theorem:** if *r* is irrational, then  $\sqrt{r}$  is also irrational.

#### Proof.

We prove the contrapositive: If  $\sqrt{r}$  is rational, then r is also rational.

- If  $\sqrt{r}$  is rational, then  $\sqrt{r} = \frac{m}{n}$ .
- m and n are integers (definition of rational numbers)
- Square both sides:  $r = \frac{m^2}{r^2}$ .
- $m^2$  and  $n^2$  are also integers, so r is rational.



Claus Aranha (COINS) GB13624 2022-10-05 19/50

## Proving "If and only If"

Remember that "If and only If" can be defined as:

$$\frac{P \implies Q, Q \implies P}{P \iff Q}$$

So to prove  $P \iff Q$ , we can first prove the implication from P to Q, and then prove the implication from Q to P.

This is useful to show equivalence between two mathematical statements.

**Proof Methods** 

## **Proof By Cases**

#### Example

Let's say you are refactoring code, and you want to profe that the two code samples below are equivalent. How would you do it?

#### Code 1

```
If (X > 0 \text{ OR } (X \le 0 \text{ AND } Y > 100))
  print("Hello!")
```

#### Code 2

```
If (X > 0 \text{ OR } Y > 100)
  print("Hello!")
```

## **Proof By Cases**

Definition

Proof By Cases, is a proof technique that uses the idea of "divide and conquer".

You break one complicated problem into easier, smaller sub-problems.

Important! When you create the cases, make sure that all possible cases are covered!

### Example: Friends and Strangers

**Theorem:** In a group of 6 people, where **every pair** is either a friend or a stranger, then we **always** have at least a set of 3 mutual friends or a set of 3 mutual strangers.



Claus Aranha (COINS) GB13624 2022-10-05 23/50

### Example: Friends and Strangers

#### Proof.

The proof is by case analysis. Let "A" be one of the six people. There are two cases:

- 1 Among the 5 other people, at least 3 are friends with A;
- 2 Among the 5 other people, at least 3 are strangers with A;

Let's assume case (1). Let's call the three friends B, C, D. There are two subcases:

- A B-C, C-D, or B-D are friends. We have now 3 mutual friends with A and the pair here.
- B-C, C-D and B-D are strangers. This makes a 3 mutual strangers set with the three pairs.

This means that in case 1, the theorem holds. It is easy to see that case 2 is symmetrical to case 1.

 Claus Aranha (COINS)
 GB13624
 2022-10-05
 24/50

# A WRONG Proof By Cases

**Theorem:**  $2a^2 > a$ , for all  $a \in \mathbb{Z}$ .

#### Proof.

The proof is by case analysis.

- **1** Case 1: a > 0;
  - $2a^2$  is equal to  $2a \times a$
  - Since a > 0 and  $a \in \mathbb{Z}$ , then a > 1
  - 2 × 1 × 1 > 1
- 2 Case 2: a < 0</p>
  - Since a < 0 and  $a \in \mathbb{Z}$ , then a < 1
  - For any negative a,  $a^2$  is positive, so  $a^2 > a$ .

Because the theorem holds for case (1) and case (2), it holds for all possible cases.

П

What is wrong with this proof?

### **Proof By Contradiction**

Definition

"Proof by Contradiction" is a technique where you show that **the negative of the theorem implies a false fact to be true**.

For a simple example: "If gravity did not exist, then we would all be flying. Since we are not flying, then gravity must exist."

Sometimes, it can be easy to create a proof by contradiction by finding a good counter-example. Other times, we have to find an absurd consequence of the negative.

Use "Proof by Contradiction" to prove the following theorem:

**Theorem:**  $\sqrt{2}$  is an irrational number.

## Proof by Contradiction

#### Example

#### Proof.

We use proof by contradiction, and assume  $\sqrt{2}$  is rational.

- 1  $\sqrt{2} = \frac{m}{n}$ ;  $m, n \in \mathbb{Z}$ ;  $n \neq 0$ , and m, n have no common factors.
- 2  $n\sqrt{2} = m$  and squaring both sides give  $2n^2 = m^2$ .
- 3  $m^2$  is even (because  $n^2 = \frac{m^2}{2}$ )
- 4) If  $m^2$  is even, then m is even too. So m = 2k for some integer k.
- **5** So,  $2n^2 = (2k)^2$ , which leads to  $n^2 = 2k^2$ .
- 6 Following the logic of (3) and (4),  $n^2$  is even, and n is even too.
- $\bigcirc$  However, if m and n are even, it is a contradiction with (1).

GB13624 2022-10-05 27/50

## Well Ordering Principle

Definition

The Well Ordering Principle (WOP) is a very useful principle in mathematics, that can also look a little bit "obvious":

Every non-empty set of Non-negative Integer Numbers ( $\mathbb{Z}^+$ ) has one smallest element

## Well Ordering Examples

- What is the smallest age among students in Tsukuba?
- What is the smallest number of coins that adds to 876 yens?
- What are the smallest integers m and n so that  $x = \frac{m}{n}$ ?

## Well Ordering Principle Proof Example

We can re-write the proof that  $\sqrt{2}$  is irrational using WOP.

#### Proof.

- 2 By WOP, there is a **smallest** m and n so that  $\sqrt{2} = \frac{m}{n}$
- 3  $n\sqrt{2} = m$  and squaring both sides give  $2n^2 = m^2$ .
- 4  $m^2$  is even (because  $n^2 = \frac{m^2}{2}$ )
- **6** If  $m^2$  is even, then m is even too. So m = 2k for some integer k.
- 6 So,  $2n^2 = (2k)^2$ , which leads to  $n^2 = 2k^2$ .
- 7 Following the logic of (4) and (5),  $n^2$  is even, and n is even too.
- 8 If m and n are even, then  $\sqrt{2} = \frac{m/2}{n/2}$ , and m/2, n/2 are smaller than m, n, contradicting the WOP.

Claus Aranha (COINS) GB13624 2022-10-05

### Why is the WOP useful?

General form for a WOP proof

The WOP gives us a general framework to produce proofs by contradiction:

- Structure your theorem around predicate P(n), where  $n \in \mathbb{N}$ .
- Define a set *C* of counter examples, so that  $C := \{n \in \mathbb{N} | P(n) \text{ is false}\}.$
- By WOP, consider the minimum element  $m \in C$ .
- Find a contradiction, for example:
  - if m exists, then it implies in the existence of a smaller element  $m' < m, m' \in C$ .
  - if m exists, then actually P(m) is true, and m is not actually in C.
- Therefore, the minimum element m does not exist, the counter example set C does not exist, and P(n) is true for all n.

## WOP Proof examples:

Let's see two quick examples of proofs using WOP. Try doing these two proofs by yourself first:

- **Theorem:** Every n > 1,  $n \in \mathbb{N}$  is a product of prime numbers.
- **Theorem:** For every  $n \in \mathbb{N}$ , P(n) : n + 8 = 5a + 3b;  $a, b \in \mathbb{N}$ . (for every n, n + 8 is composed of a sum of 3s and 5s)

### WOP Proof example I: Prime factors

**Theorem:** Every integers bigger than 1 is a product of prime numbers.

#### Proof.

Proof by contradiction using the WOP.

- Assume, by WOP, that m is the smallest  $\mathbb{N}$  that is not a product of prime numbers.
- Obviously m is not a prime, so  $m = a_1 a_2 \dots a_n$ , where  $a_i$  is not prime.
- Is a<sub>i</sub> a product of prime numbers?
  - If  $a_i$  is a product of prime numbers, then  $a_i = p_1 p_2 \dots p_n$ , and m is now a product of prime numbers (contradiction)
  - If  $a_i$  is not a product of prime numbers, then m is not the **smallest** product of prime numbers. (contradiction)



### WOP Proof example II: Postal Numbers

#### Theorem:

For every n, n + 8 is composed of 3s and 5s.

#### Proof.

Proof by contradiction using the WOP

- First, we quickly verify that P(n) is true for 0..8
- By WOP, we assume that there is some minimum m > 8 where P(m) is false.
- If P(m) is false, then m + 8 cannot be composed of 3s and 5s.
- If m is minimum, then P(m-8) is true, and m is composed of 3s and 5s.
- If m is composed of 3s and 5s, then m + 8 is m + 3 + 5, and P(m) is true! (Contradiction)

 Claus Aranha (COINS)
 GB13624
 2022-10-05
 34/50

- Introduction to Proofs
- 2 Proof Methods
- 3 Logical Formulas

## Why Mathematical Language?

Human language can be imprecise, so we have mathematical language that can be more specific:

"Go to the supermarket to buy 1 milk pack. If they have eggs, buy 12."

Which of the following is correct?

- If the supermarket has eggs, buy 1 milk pack and 12 eggs.
- If the supermarket has eggs, buy 12 milk packs.

To avoid this imprecision, we prefer to use mathematical language when talking about logical relationships and proofs.

### Predicate Calculus and Logical Operators

The mathematical language that we use in this lecture is called *Predicate Calculus*. Predicate calculus connects **Predicates** and **Propositions** using logical operators.

Many of the logical operators you already know from boolean logic:

• AND, OR, XOR, NOT, etc...

There are a few more unusual logical operators too:

IMPLIES, IFF, FOR ALL, EXISTS

### Predicate Calculus and Truth Tables

To evaluate a formula in predicate calculus, we can use Truth Tables, which describe every possible truth value to each proposition.

Example: P AND Q IMPLIES R

| P     | Q            | R            | P AND Q | P AND Q IMPLIES R |
|-------|--------------|--------------|---------|-------------------|
| TRUE  | TRUE         | TRUE         | TRUE    | TRUE              |
| TRUE  | TRUE         | <b>FALSE</b> | TRUE    | FALSE             |
| TRUE  | <b>FALSE</b> | TRUE         | FALSE   | TRUE              |
| TRUE  | <b>FALSE</b> | <b>FALSE</b> | FALSE   | TRUE              |
| FALSE | TRUE         | TRUE         | FALSE   | TRUE              |
| FALSE | TRUE         | <b>FALSE</b> | FALSE   | TRUE              |
| FALSE | <b>FALSE</b> | TRUE         | FALSE   | TRUE              |
| FALSE | <b>FALSE</b> | <b>FALSE</b> | FALSE   | TRUE              |

## Logic Operators: "For All" and "Exists"

Two of the operators we mentioned are special, and deserve some special attention:

### Operator: For all

For a predicate P(x), FOR ALL P(x) is True if P(x) is true for **every** value of x. It is equivalent to a chain of "AND"s:

$$F(P(x)): \forall x_i \in X, P(x_0) \land P(x_1) \land \ldots \land P(x_n)$$

### Operator: Exists

For a predicate P(x), EXISTS P(x) is True if P(x) is true for **any** value of x. It is equivalent to a chain of "OR"s:

$$E(P(x)): \exists x_i \in X, P(x_0) \lor P(x_1) \lor \ldots \lor P(x_n)$$

Claus Aranha (COINS) GB13624 2022-10-05 39/50

# Validity and Satisfiability

The logical operators "exists" and "for all" are closed linked to the concepts of "Validity" and "Satisfiability":

 A logical formula is Valid if: The formula evaluates for true for every possible assignment of every variable.

For example:  $P \vee NOT P \implies Q$  is valid.

A logical formula is Satisfiable if: The formula evaluates for true for at least one
possible assignment of variables.

For example:  $P \lor (Q \land R)$  is satisfiable

## Validity and Satisfiability

**Proofs and Validity** 

There are many important implications and uses for the concepts of validity and satisfiability. For example, we can use these concepts when designing proofs.

If we define a proposition that we want to prove as a logical formula, we can say that the proposition is true if the logical formula is Valid.

On the other hand, we can define a proof by contradiction by showing that a logical formula that indicates the negative of the proposition is satisfiable.

## Equivalence

#### Comparison of Two Formulas

Another related concept is Equivalence. We say that two logical formulas are equivalent, if their result is identical for every variable assignment.

For example: NOT  $(P \lor Q)$  is equivalent to NOT  $P \land NOT Q$ 

(DeMorgan's Law)

The equivalence of two formulas is useful when rewriting code, and showing that two different pieces of code have the same result.

## Validity, Satisfiability, Equivalence and Truth tables

We can show the Validity, Satisfiability, or Equivalence of logical formulas using Truth tables:

- A formula is valid: If all lines in the truth table evaluate to TRUE.
- A formula is satisfiable: If at least one line in the truth table evaluates to TRUE.
- Two formulas are equivalent: If all lines in the truth table of the two formulas evaluate to the same value.

However, remember that the size of a truth table is  $2^n$ , where n is the number of variables in a formula, so this approach might not be feasible for complex formulas.

## The Satisfiability Problem

Consider the problem of simplifying a computer program: Given a program defined as a logical formula A, we want to find a smaller formula B that has the same functionality.

We can test if a certain B is equivalent to A by testing if the expression  $A \iff B$  is **valid**. Alternatively, We can test that B is **not** equivalent to A by testing if NOT ( $A \iff B$ ) is **satisfiable**. If we can find only one variable assignment where A and B are not equal, then we can discard the program candidate B.

This kind of analysis is useful for making programs run faster, or for creating simpler and cheaper hardware.

### The Satisfiability Problem

#### Proving equivalences

The basic algorithm for proving equivalence in a SAT problem is to test each combination of variables (each line in the truth table). As we discussed before, the number of lines is  $2^n$ , so this can take a very long time.

Interestingly, if we KNOW one set of variables that satisfy the formula, it is very quick to test it. Just evaluate the formula.

This characteristic of SAT: "Very slow to find the answer, very fast to check the answer", is one of the key characteristics of NP-hardness. If you can find a quick solution to the SAT problem, you would become a very famous computer scientist!

Conclusion

### Important Ideas from this lecture

- Proofs are sequences propositions that establish the truth or falsehood of an statement.
- Proof Techniques are organized ways to construct a proof;
  - Proof By Cases;
  - Contradiction;
  - Well Ordering Principle, etc;
- Predicate Logic use logical operators to show the truth or falsehood of a predicate;
  - Concepts of Validity and Satisfiability;
- There is a close relationship between proving an statement, and proving the correctness of a computer program

### Reminder: Exercise sheet at manaba

- The homework for this lecture is on manaba:
- You have to submit your homework before the next lecture;
- If you start the homework now, you can ask questions during the lecture time;
- You can discuss the exercise with other students, but your homework is individual

### Slide Credits

These slides were made by Claus Aranha, 2020. You are welcome to copy, re-use and modify this material, following the CC-SA-NC license.

These slides are based on "Mathematics For Computer Science (Spring 2015)", by Albert Meyer and Adam Chlipala, MIT OpenCourseWare. https://ocw.mit.edu.

Individual images in some slides might have been made by other authors. Please see the following slides for information about these cases.

## Image Credits I

1. Friends or Strangers Image from "Math for Computer Science" MIT-OCW slides