01RAD - přednáška 9, 5.11.2024

4.3 PRESS rezidua

- pokud budeme chtít model použít nejen k vysvětlení vztahu mezi proměnnými, ale také pro predikci, hodila by se míra vyjadřující, jak dobře model predikuje
- šlo by použít IS nebo IP, museli bychom předem znát body, ve kterých chceme predikovat
- nejjednodušší přístup, jak měřit prediktivní přesnost modelu, by byl analýza reziduí pro predikce hodnot v nových x obecně ale nemáme data y v těchto bodech
- jedna možnost je použít data, která máme k dispozici postup: vynecháme jedno pozorování, naladíme model bez tohoto pozorování a porovnáme predikovanou a pozorovanou hodnotu pro vynechané pozorování
- předp., že vynecháme i-té pozorování a označme

$$\widehat{eta}_{(-i)}$$
 - odhad eta v modelu s vynechaným i -tým pozorováním $(M_{(-i)})$

$$\widehat{y}_{(-i)}$$
 - predikovanou hodnotu modelem $M_{(-i)}$ v bodě \mathbf{x}_i^T , tzn. $\widehat{y}_{(-i)} = \mathbf{x}_i^T \widehat{\boldsymbol{\beta}}_{(-i)}$

potom

$$\widehat{e}_{(-i)} = y_i - \widehat{y}_{(-i)}, \quad i = 1, \ldots, n,$$

nazýváme i-té PRESS reziduum

Otázka je, jak počítat $\widehat{e}_{(-i)}$, $i = 1, \ldots, n$

- pro n velké, se to zdá náročný problém, pro každé i je třeba naladit nový model
- naštěstí to nebude nutné, ukážeme totiž $\widehat{e}_{(-i)} = \frac{\widehat{e}_i}{1 h_i}$

Označme
$$\boldsymbol{x}_i^T$$
 i-tý řádek matice \boldsymbol{X}_i , $\boldsymbol{X}_{(-i)}$ matici \boldsymbol{X} bez i-tého řádku a $h_{ii} = \boldsymbol{H}_{ii}$.

VĚTA 4.1

Jestliže $h_{ii} \neq 1$, potom $\left(\boldsymbol{X}_{(-i)}^T \boldsymbol{X}_{(-i)}\right)^{-1} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} + \frac{(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_i \boldsymbol{x}_i^T (\boldsymbol{X}^T \boldsymbol{X})^{-1}}{1 - h_{ii}}.$

Důkaz.

Věta z LA: (Sherman-Morrison-Woodbury) Nechť ${\bf A}$ je $n \times n$ invertibilní matice a nechť ${\bf z}$ je $n \times 1$ sloupcový vektor. Jestliže ${\bf z}^T {\bf A}^{-1} {\bf z} \neq 1$,

Nechť A je $n \times n$ invertibilní matice a nechť z je $n \times 1$ sloupcový vektor. Jestliže $z'A^{-1}z \neq 1$, potom matice $B = A - zz^T$ je invertibilní a platí

$$B^{-1} = A^{-1} + \frac{A^{-1}zz^{T}A^{-1}}{1 - z^{T}A^{-1}z}$$
.

$V \check{\rm E} { m TA} \ 4.2$

Nechť $\widehat{e}_{(-i)}$ je i-té PRESS reziduum. Potom $\widehat{e}_{(-i)} = \frac{\widehat{e}_i}{1-h_{ii}}, \quad i=1,\ldots,n.$

Důkaz.

VĚTA 4.3

1) Nechť $\widehat{\beta}_{(-i)}$ značí LSE parametru β v modelu bez i-tého pozorování. Potom platí

$$\widehat{eta} - \widehat{eta}_{(-i)} = rac{(oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{x}_i\widehat{e}_i}{1 - h_{ii}} = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{x}_i\widehat{e}_{(-i)}.$$

2) Pro součet residuálních čtverců $SSE_{(-i)}$ v modelu bez i-tého pozorování platí

$$SSE_{(-i)} = \sum_{i=1}^n \widehat{e}_i^2 - \frac{\widehat{e}_i^2}{1 - h_{ii}}.$$

Důkaz.

Důsledek 4.1

V modelu (**) s m+1 parametry β a bez i-tého pozorování platí

$$\mathsf{E}\left[\mathit{SSE}_{(-i)}\right] = (n-m-2)\sigma^2, \quad \text{to znamená} \quad \widehat{\sigma}_{(-i)}^2 = \frac{\mathit{SSE}_{(-i)}}{n-m-2} \quad \text{je nestranný odhad } \sigma^2.$$

Dále pak

Dale pak
$$\widehat{\sigma}_{(-i)}^2 = \frac{(1 - h_{ii})(n - m - 1)s_n^2 - \widehat{e}_i^2}{(1 - h_{ii})(n - m - 2)} = \frac{1}{n - m - 2} \Big(SSE - \frac{\widehat{e}_i^2}{1 - h_{ii}} \Big),$$

Důkaz.

kde $s_n^2 = \frac{1}{n-m-1}SSE$ (pro plný model).

• dá se ukázat, že $SSE_{(-i)}$ a \hat{e}_i jsou nezávislé náhodné veličiny

$$ullet$$
 protože $rac{SSE_{(-i)}}{\sigma^2}\sim \chi^2(n-m-2)$ a $rac{\widehat{e}_i}{\sigma\sqrt{1-h_{ii}}}\sim {\it N}(0,1)$

• dostaneme
$$\frac{\widehat{e}_i}{\widehat{\sigma}_{(-i)}\sqrt{1-h_{ii}}} \sim t(n-m-2)$$

Tyrzení 4.1

Uvažujme model (**), kde $h(\boldsymbol{X}) = m+1$ a $\boldsymbol{e} \sim N_n(0, \sigma^2 \boldsymbol{I}_n)$. Nechť pro $i \in \hat{n}$ platí, že $h_{ii} \neq 1$.

Potom i-té (externě) studentizované reziduum

$$\hat{t}_i \sim t(n-m-2).$$

Poznámka 4.5

- \hat{t}_i lze použít pro test hypotézy, zda je *i*-té pozorování odlehlé (outlier), tedy
- H_0 : i-té pozorování není odlehlé v modelu $M \times H_1$: i-té pozorování je odlehlé v M,

• kde odlehlé značí odlehlé vzhledem k $M: \mathbf{Y} \sim N_n(\mathbf{X}\beta, \sigma^2 \mathbf{I}_n)$: a) střední hodnota i-tého pozorování se nerovná té dané modelem,

b) pozorovaná hodnota
$$Y_i$$
 je neobvyklá za platnosti M .

• H_0 zamítneme, pokud $|\hat{t}_i| > t_{1-\frac{\alpha}{2}}(n-m-2)$

pokud test použijeme na všechna pozorování, je potřeba aplikovat nějakou korekci na vícenásobné testování, např. Bonferroni

Poznámka 4.6 (Vztah mezi $\hat{e}_{(-i)}$ a \hat{t}_i)

Poznámka 4.6 (Vztah mezi
$$e_{(-i)}$$
 a

$$\bullet \ \widehat{e}_{(-i)} = \frac{\widehat{e}_i}{1 - h_{ii}} \quad \Rightarrow \quad \mathsf{E} \ \widehat{e}_{(-i)} = 0, \qquad \mathsf{Var} \ \widehat{e}_{(-i)} = \frac{\sigma^2}{1 - h_{ii}}$$

• standardizované PRESS reziduum
$$\frac{\widehat{e}_{(-i)}}{\sqrt{\operatorname{Var}\widehat{e}_{(-i)}}} = \frac{\frac{e_i}{1-h_{ii}}}{\frac{\sigma}{\sqrt{1-h_{ii}}}} = \frac{\widehat{e}_i}{\sigma\sqrt{1-h_{ii}}} = r_i$$

• pokud použijeme $\widehat{\sigma}_{(-i)}^2$ jako odhad σ^2 , pak studentizovaná PRESS rezidua

$$rac{\widehat{e}_i}{\widehat{\sigma}_{(-i)}\sqrt{1-h_{ii}}}=\widehat{t}_i$$

- $\widehat{e}_{(-i)} = \frac{\widehat{e}_i}{1 h_{ii}} \Rightarrow$ pokud *i*-té pozorování má velké h_{ii} , bude $\widehat{e}_{(-i)}$ mnohem větší, než \widehat{e}_i ,
 - pozorování s velkým h_{ii} jsou dobře modelována, ale měřeno $\widehat{e}_{(-i)}$ mohou špatně predikovat
 - to je další ukázka fit/prediction dilema
- stejný efekt nastává také pro $\widehat{\beta} \widehat{\beta}_{(-i)} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{x}_i \widehat{e}_{(-i)}$ rozdíl může být "malý", pokud je "fit" dobrý, ale může být také "velký", pokud je h_{ii} velké.

Míry influence

- ullet i pro perfektní model mohou dva různé vzorky (x, y) a (x', y') vést k různým závěrům
- většinou máme k dispozici jen originální data
- bude nás zajímat vliv *i*-tého řádku **X** na model
- ullet už víme, že velké h_{ii} indikuje, že i-té pozorování má velký vliv a velká rezidua naznačují možnou neadekvátnost modelu
- míry, které zavedeme, budou kombinovat tyto dva faktory
- ullet přístup z PRESS reziduí, tzn. jak velký vliv má vynechání i-tého pozorování na \widehat{eta} a $\widehat{m{y}}$

DFBETAS:

vliv vynechání i-tého pozorování na odhad $\widehat{oldsymbol{eta}}$ měří rozdíl

$$\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{(-i)} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_i \frac{\widehat{\boldsymbol{e}}_i}{1 - h_{ii}},$$

bude tedy základem pro naši analýzu

a) vliv *i*-tého pozorování na $\widehat{\beta}_j$:

- $\widehat{\beta}_j \widehat{\beta}_{(-i)j} = \frac{r_{ji} \, \widehat{e}_i}{1 h_{ii}}$, kde r_{ji} je (j, i)-tý prvek matice $\mathbf{R} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T$
- *i*-té pozorování budeme považovat za influenční na β_j , pokud $\widehat{\beta}_j \widehat{\beta}_{(-i)j}$ bude velké
- protože $\widehat{\beta}_j$ je náhodná veličina, "velké" bychom měli měřit relativně vzhledem k $s.d.(\widehat{\beta}_j) = \sigma \sqrt{v_j}$, kde $v_j = (\boldsymbol{X}^T \boldsymbol{X})_{jj}^{-1}$
- pokud ji odhadneme pomocí $\widehat{\sigma}_{(-i)}\sqrt{v_j}$, dostaneme definici

DFBETAS_{j,i} =
$$\frac{\widehat{\beta}_j - \widehat{\beta}_{(-i)j}}{\widehat{\sigma}_{(-i)}\sqrt{v_j}} = \frac{r_{ji}\widehat{e}_i}{\sqrt{v_j}\widehat{\sigma}_{(-i)}(1-h_{ii})} = \frac{r_{ji}}{\sqrt{v_j}}\frac{\widehat{t}_i}{\sqrt{1-h_{ii}}}$$
,

kde \hat{t}_i je (ext.) studentizované reziduum

- kombinuje efekt velkého rezidua \hat{t}_i a velkého h_{ii}
- ullet jedna možnost pro limitní hodnoty: i-té pozorování je považováno za influenční na odhad eta_j , pokud

$$|\mathrm{DFBETAS}_{j,i}| > \frac{2}{\sqrt{n}}$$

• máme $(m+1) \times n$ hodnot pro srovnání, zjednodušíme

b) vliv *i*-tého pozorování na celý vektor $\widehat{\beta}$:

- ullet použití nějaké normy na vektor $\widehat{eta} \widehat{eta}_{(-i)}$
- Cook navrhl

$$D_i = \frac{(\widehat{\beta} - \widehat{\beta}_{(-i)})^T \mathbf{M}(\widehat{\beta} - \widehat{\beta}_{(-i)})}{(m+1)c},$$

kde **M** je PD matice a c normalizační konstanta

- nejužívanější volba je $\boldsymbol{M} = \boldsymbol{X}^T \boldsymbol{X}$ a $c = s_n^2$
- Cookova vzdálenost:

$$D_i = \frac{(\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{(-i)})^T \boldsymbol{X}^T \boldsymbol{X} (\widehat{\boldsymbol{\beta}} - \widehat{\boldsymbol{\beta}}_{(-i)})}{(m+1)s_n^2}$$

dosazením dostaneme

$$D_i = \frac{1}{(m+1)s_-^2} \Big(\frac{\widehat{e}_i}{1-h_{ii}}\Big)^2 \boldsymbol{x}_i^{\mathsf{T}} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{X}^{\mathsf{T}} \boldsymbol{X} (\boldsymbol{X}^{\mathsf{T}} \boldsymbol{X})^{-1} \boldsymbol{x}_i = \frac{1}{m+1} \frac{h_{ii}}{1-h_{ii}} \frac{\widehat{e}_i^2}{s_-^2 (1-h_{ii})}$$

výpočetní tvar potom je

$$D_i = \frac{\widehat{r}_i^2}{m+1} \left(\frac{h_{ii}}{1-h_{ii}}\right) \qquad (\widehat{r}_i \text{ jsou interně studentizovaná (standardizovaná) rezidua)}$$

• $100(1-\alpha)\%$ simultánní IS pro β je:

$$C(\alpha) = \left\{ \beta \left| \frac{(\widehat{\beta} - \beta)^T \mathbf{X}^T \mathbf{X} (\widehat{\beta} - \beta)}{(m+1) s_n^2} \le F_{1-\alpha}(m+1, n-m-1) \right\} \right.$$

- tzn. $\widehat{\boldsymbol{\beta}}_{(-i)} \in C(\alpha) \Leftrightarrow D_i \leq \mathrm{F}_{1-\alpha}(m+1, n-m-1)$
- to je motivace pro **RULE OF THUMB**:

$$i$$
-té pozorování je influenční, jestliže $D_i > F_{rac{1}{2}}(m+1,n-m-1)$

(pro většinu m,n je $\mathrm{F}_{rac{1}{2}}pprox 1$, zjednodušení pravidla $D_i>1$)

Poznámka 4.9

Také platí, že

$$D_i = rac{(\widehat{oldsymbol{y}} - \widehat{oldsymbol{y}}_{(-i)})^T (\widehat{oldsymbol{y}} - \widehat{oldsymbol{y}}_{(-i)})}{(m+1)s_n^2},$$

tzn. D_i se dá chápat jako míra influence na celkovou predikci

DFFITS: vliv *i*-tého pozorování na \widehat{y}_i

$$\mathbf{DFFITS}_{i} = \frac{\widehat{y}_{i} - \widehat{y}_{(-i)}}{\widehat{\sigma}_{(-i)}\sqrt{h_{ii}}} = \dots = \widehat{t}_{i}\sqrt{\frac{h_{ii}}{1 - h_{ii}}}$$

RULE OF THUMB:
$$i$$
-té pozorování je influenční, pokud $|DFFITS_i| > 3\sqrt{\frac{m+1}{n-m-1}}$

Poznámka 4.10 (Míry influence v **R**)

- DFBETAS dfbetas(),
 DFFITS dffits(),
- Cookova vzdálenost D_i cooks.distance(), potenciál h_{ii} hatvalues()
- vše shrnuje funkce influence.measures()
- používaná pravidla: i-té pozorování je označeno za influenční, pokud

$$|\mathrm{DFBETAS}_{j,i}| > 1, \quad |\mathrm{DFFITS}_i| > 3\sqrt{\frac{m+1}{n-m-1}}, \quad D_i > F_{\frac{1}{2}}(m+1,n-m-1), \quad h_{ii} > 3\frac{m+1}{n}.$$