Lenguajes, Computación y Sistemas Inteligentes

Grado en Ingeniería Informática de Gestión y Sistemas de Información
Escuela de Ingeniería de Bilbao (UPV/EHU)

Departamento de Lenguajes y Sistemas Informáticos

2º curso

Curso académico: 2023-2024

Grupo 16

Tema 3: Lenguajes (1ª parte)

1,000 puntos

Modelo de examen

Índice

3.1 Definición formal de lenguajes como conjuntos (1,000 puntos)

Sea el alfabeto $A = \{a, b, c\}$:

- 3.1.1. (0,100 puntos) Dar la definición formal del lenguaje L_1 formado por las palabras que tienen exactamente una aparición del símbolo a y en las que esa a aparece exactamente en la tercera posición empezando desde la izquierda. Las posiciones se cuentan desde 1, es decir, no existe la posición 0. Por ejemplo, las palabras $cca\varepsilon$, $cbabbb\varepsilon$, $bbabbb\varepsilon$, $ccac\varepsilon$ y $cbabbccbc\varepsilon$ pertenecen al lenguaje L_1 pero ε , $ab\varepsilon$, $aaaa\varepsilon$, $aaac\varepsilon$, $bcbc\varepsilon$, $ccabbba\varepsilon$, $cbcbca\varepsilon$ y $aaaabacc\varepsilon$ no pertenecen a L_1 .
- **3.1.2.** (0,100 puntos) Dar la definición formal del lenguaje L_2 formado por las palabras que terminan con el símbolo b. Por ejemplo, $cbbccb\varepsilon$, $abbbabbab\varepsilon$, $acabaccab\varepsilon$, $ab\varepsilon$, $b\varepsilon$, $bbb\varepsilon$ y $babbcccb\varepsilon$ pertenecen a L_2 pero ε , $c\varepsilon$, $aaa\varepsilon$, $cacba\varepsilon$, $caaccc\varepsilon$, $abcaaa\varepsilon$ y $cbcaaa\varepsilon$ no pertenecen a L_2 .
- 3.1.3. (0,100 puntos) Dar la definición formal del lenguaje L_3 formado por las palabras que cumplen una de las siguientes dos propiedades pero que no cumplen las dos propiedades: (1) tener exactamente una aparición del símbolo a y que esa a aparezca exactamente en la tercera posición empezando desde la izquierda; (2) terminar con el símbolo b. Por ejemplo, las palabras $cca\varepsilon$, $cbabbc\varepsilon$, $bbaccc\varepsilon$, $ccac\varepsilon$, $b\varepsilon$, $acaacbcb\varepsilon$, $cbcbb\varepsilon$, $bbaab\varepsilon$ y $cbabbccbc\varepsilon$ pertenecen al lenguaje L_3 pero ε , $ac\varepsilon$, $aaaa\varepsilon$, $aaac\varepsilon$, $bcbc\varepsilon$, $ccabbb\varepsilon$, $cbcbca\varepsilon$ y $aaaabacc\varepsilon$ no pertenecen a L_3 .

- **3.1.6.** (0,100 puntos) Dar la definición formal del lenguaje L_6 formado por las palabras que empiezan y terminan con el mismo símbolo. Por ejemplo, $ccebc\varepsilon$, $abbbabba\varepsilon$, $acabacca\varepsilon$, $a\varepsilon$, $c\varepsilon$, $ccc\varepsilon$ y $babbcceb\varepsilon$ pertenecen a L_6 pero ε , $cacb\varepsilon$, $caacceb\varepsilon$, $abcaab\varepsilon$ y $cbcaaa\varepsilon$ no pertenecen a L_6 .
- **3.1.7.** (0,100 puntos) Dar la definición formal del lenguaje L_7 formado por las palabras que no empiezan y terminan con el mismo símbolo. Por ejemplo, ε , $cacb\varepsilon$, $caacccb\varepsilon$, $abcaab\varepsilon$ y $cbcaaa\varepsilon$ pertenecen a L_7 pero $cccbc\varepsilon$, $abbbabba\varepsilon$, $acabacca\varepsilon$, $a\varepsilon$, $c\varepsilon$, $ccc\varepsilon$ y $babbcccb\varepsilon$ no pertenecen a L_7 .
- **3.1.8.** (0,100 puntos) Dar la definición formal del lenguaje L_8 formado por las palabras que empiezan con el prefijo $aaa\varepsilon$. Por ejemplo, $aaa\varepsilon$, $aaabbbb\varepsilon$, $aaacabbaa\varepsilon$, $aaaaaaaa\varepsilon$ y $aaabbcaccb\varepsilon$ pertenecen a L_8 pero ε , $cccbc\varepsilon$, $abbbabba\varepsilon$, $acabacca\varepsilon$, $a\varepsilon$, $c\varepsilon$, $ccc\varepsilon$ y $babbcccb\varepsilon$ no pertenecen a L_8 .
- **3.1.10.** (0,100 puntos) Dar la definición formal del lenguaje L_{10} formado por las palabras que contienen una única a y en las que la posición de a indica el número de apariciones de b. Por ejemplo, $ab\varepsilon$, $accbccc\varepsilon$, $acccbc\varepsilon$, $bbbab\varepsilon$, $ccabcbbccc\varepsilon$ y $bbbbacccbc\varepsilon$ pertenecen a L_{10} mientras que ε , $abb\varepsilon$, $ccc\varepsilon$, $aaabb\varepsilon$, $cbbba\varepsilon$, $ccacccc\varepsilon$ y $ccabbbbbc\varepsilon$ no pertenecen a L_{10} .