

Campo de gravidade, Terra Normal e distúrbio de gravidade

Prof. André Luis Albuquerque dos Reis

A Terra Real

Na Geofísica estamos interessados na componente gravitacional que é relacionada com às variações de densidade no interior da Terra Na Geofísica estamos interessados na componente gravitacional que é relacionada com às variações de densidade no interior da Terra

É necessário que a gente consiga retirar todas as componentes que não são de origem gravitacional, como as variações temporais do campo ocasionadas pela atração luni-solar; deriva instrumental e variações na pressão atmosférica Na Geofísica estamos interessados na componente gravitacional que é relacionada com às variações de densidade no interior da Terra

É necessário que a gente consiga retirar todas as componentes que não são de origem gravitacional, como as variações temporais do campo ocasionadas pela atração luni-solar; deriva instrumental e variações na pressão atmosférica

Para isso, teremos que descrever bem o campo gravitacional e as outras componentes!

Seja uma massa unitária em repouso na superfície terrestre

Este corpo experimenta uma força gravitacional e uma força centrífuga. A resultante destas duas é o vetor gravidade.

Seja uma massa unitária em repouso na superfície terrestre

Componente centrífuga Componente gravitacional Vetor de gravidade

Este corpo experimenta uma força gravitacional e uma força centrífuga. A resultante destas duas é o vetor gravidade.

Este corpo experimenta uma força gravitacional e uma força centrífuga. A resultante destas duas é o vetor gravidade.

A soma destes vetores é o que chamamos de **vetor de gravidade**.

O módulo deste vetor é o que chamamos de **gravidade!**

(Hofmann-Wellenhof and Moritz, 2005)

Terra real

Podemos começar descrevendo o potencial de gravidade!

Terra real

Podemos começar descrevendo o potencial de gravidade!

Terra real

Podemos começar descrevendo o potencial de gravidade!

$$W_P = V_P + \Phi_P$$

Terra real

Podemos começar descrevendo o potencial de gravidade!

$$W_P = V_P + \Phi_P$$

Terra real

Podemos começar descrevendo o potencial de gravidade!

$$W_P = V_P + \Phi_P$$

$$V_P = \kappa_g \iiint \frac{\rho}{\ell} dv$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

Terra real

Podemos começar descrevendo o potencial de gravidade!

$$W_P = V_P + \Phi_P$$

$$V_P = \kappa_g \iiint \frac{\rho}{\ell} dv \quad \Phi_P = \frac{10^5}{2} \omega^2 (X^2 + Y^2)$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

Terra real

Podemos começar descrevendo o potencial de gravidade!

$$W_P = V_P + \Phi_P$$

$$V_P = \kappa_g \iiint \frac{\rho}{\ell} dv \quad \Phi_P = \frac{10^5}{2} \omega^2 (X^2 + Y^2)$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

Terra real

Podemos começar descrevendo o potencial de gravidade!

$$\nabla^2 W_P = \nabla^2 V_P + \nabla^2 \Phi_P$$

$$V_P = \kappa_g \iiint \frac{\rho}{\ell} dv \quad \Phi_P = \frac{10^5}{2} \omega^2 (X^2 + Y^2)$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

Terra real

Podemos começar descrevendo o potencial de gravidade!

$$\nabla^2 W_P \neq \nabla^2 V_P + \nabla^2 \Phi_P$$

$$V_P = \kappa_g \iiint \frac{\rho}{\ell} dv \quad \Phi_P = \frac{10^5}{2} \omega^2 (X^2 + Y^2)$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

Terra real

Podemos começar descrevendo o potencial de gravidade!

$$\nabla^2 W_P = \nabla^2 V_P + \nabla^2 \Phi_P$$

$$V_P = \kappa_g \iiint \frac{\rho}{\ell} dv \quad \Phi_P = \frac{10^5}{2} \omega^2 (X^2 + Y^2)$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

Terra real

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$\nabla^2 W_P \neq \nabla^2 V_P + \nabla^2 \Phi_P$$

$$V_P = \kappa_g \iiint \frac{\rho}{\ell} dv \quad \Phi_P = \frac{10^5}{2} \omega^2 (X^2 + Y^2)$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

Podemos expandir a componente gravitacional em harmônicos esféricos!

Terra real

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$W_P = V_P + \Phi_P$$

Potencial em termo de harmônicos esféricos!

$$V_{P} = \frac{GM}{r} \left(1 + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{a}{r} \right)^{n} \left[C_{nm} R_{nm}(\theta, \lambda) + S_{nm} Q_{nm}(\theta, \lambda) \right] \right)$$

Terra real

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$W_P = V_P + \Phi_P$$

Potencial em termo de harmônicos esféricos!

$$V_{P} = \frac{GM}{r} \left(1 + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} {a \choose r}^{n} \left[C_{nm} R_{nm}(\theta, \lambda) + S_{nm} Q_{nm}(\theta, \lambda) \right] \right)$$

Raio equatorial

Terra real

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$W_P = V_P + \Phi_P$$

Potencial em termo de harmônicos esféricos!

$$\left(1 + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{a}{r}\right)^n \left[C_{nm}R_{nm}(\theta, \lambda) + S_{nm}Q_{nm}(\theta, \lambda)\right]\right)$$

n e m são o grau e a ordem, respectivamente

Terra real

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$W_P = V_P + \Phi_P$$

Potencial em termo de harmônicos esféricos!

$$+\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\left(\frac{a}{r}\right)^{n}\left[C_{nm}R_{nm}(\theta,\lambda)+S_{nm}Q_{nm}(\theta,\lambda)\right]\right)$$

Constante gravitacional e a massa da Terra

Terra real

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$W_P = V_P + \Phi_P$$

Potencial em termo de harmônicos esféricos!

$$V_{P} = \frac{GM}{r} \left(1 + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{a}{r} \right)^{n} \left[C_{nm} R_{nm}(\theta, \lambda) + S_{nm} Q_{nm}(\theta, \lambda) \right] \right)$$

$$\hat{A}_{ngulo azimutal e colatitude}$$

Ângulo azimutal e colatitude

Terra real

Podemos começar descrevendo o potencial de gravidade!

$$\nabla^2 W_P = \nabla^2 V_P + (\nabla^2 \Phi_P)$$

$$V_P = \kappa_g \iiint \frac{\rho}{\ell} dv \left(\Phi_P = \frac{10^5}{2} \omega^2 (X^2 + Y^2) \right)$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

Podemos começar descrevendo o potencial de gravidade!

$$W_P = V_P + \Phi_P$$

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$W_P = V_P + \Phi_P$$

Estas equipotenciais são chamadas de **geopes**

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$W_P = V_P + \Phi_P$$

Estas equipotenciais são chamadas de **geopes**

A geope que coincide com o nível médio dos mares não perturbados é chamada de **geóide**

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$W_P = V_P + \Phi_P$$

Estas equipotenciais são chamadas de **geopes**

A geope que coincide com o nível médio dos mares não perturbados é chamada de **geóide**

Podemos começar descrevendo o potencial de gravidade!

$$\nabla W_P = \nabla V_P + \nabla \Phi_P$$

Podemos começar descrevendo o potencial de gravidade!

O potencial de gravidade é a soma entre duas funções escalares: o potencial gravitacional e o potencial centrífugo

$$\nabla W_P = \nabla V_P + \nabla \Phi_P$$

O vetor gravidade

$$\mathbf{g}_P = \nabla V_P + \nabla \Phi_P$$

O módulo deste vetor é o que chamamos de gravidade!

A unidade é o mGal!

$$1 \text{ mGal} = 10^{-5} \text{ m/s}^2$$

International Center for Global Earth Model (ICGEM)

Modelo EIGEN-6C4

São calculados sobre a superfície física da Terra

Utilizam diversos tipo de dados (i.e, aerolevantamento, terrestres e satélite).

Acabamos de descrever a Terra Real!

$$|\mathbf{g}_P| = |\nabla V_P| + |\nabla \Phi_P|$$

≈ 0,5 graus

Terra Normal

Podemos aproximar a terra por um elipsoide de revolução que possui:

Podemos aproximar a terra por um elipsoide de revolução que possui:

Terra Normal

Podemos aproximar a terra por um elipsoide de revolução que possui:

Origem no centro de massa da terra;

Terra Normal

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\widetilde{W}_{P} = U_{P} + \Phi_{P}$$

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\widetilde{W}_{P} = U_{P} + \Phi_{P}$$

$$ccc \tilde{\rho}$$

$$U_P = \kappa_g \iiint \frac{\tilde{\rho}}{\ell} dv$$

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\widetilde{W}_{P} = U_{P} + \Phi_{P}$$

$$U_{P} = \kappa_{g} \iiint \frac{\widetilde{\rho}}{\ell} dv$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

Podemos apre elipsoide

$$V_{P} = \frac{GM}{r} \left(1 + \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \left(\frac{a}{r} \right)^{n} \left[C_{nm} R_{nm}(\theta, \lambda) + S_{nm} Q_{nm}(\theta, \lambda) \right] \right)$$

Potencial em harmônicos esféricos!

- A ...
- Mesma velocie

$$\widetilde{W}_P = U_P + \Phi_P$$

$$U_P = \kappa_g \iiint \frac{\tilde{\rho}}{\ell} dv$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\widetilde{W}_P = U_P + \Phi_P$$

$$U_P = \kappa_g \iiint \frac{\tilde{\rho}}{\ell} dv \qquad \Phi_P = \frac{10^5}{2} \omega^2 (X^2 + Y^2)$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\widetilde{\nabla W_P} = \nabla U_P + \nabla \Phi_P$$

$$U_{P} = \kappa_{g} \iiint \frac{\tilde{\rho}}{\ell} dv \qquad \Phi_{P} = \frac{10^{5}}{2} \omega^{2} (X^{2} + Y^{2})$$

$$\ell = \sqrt{(X - X')^{2} + (Y - Y')^{2} + (Z - Z')^{2}}$$

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\gamma_P = \nabla U_P + \nabla \Phi_P$$
 Vetor gravidade normal

$$U_P = \kappa_g \iiint \frac{\tilde{\rho}}{\ell} dv \qquad \Phi_P = \frac{10^5}{2} \omega^2 (X^2 + Y^2)$$

$$\ell = \sqrt{(X - X')^2 + (Y - Y')^2 + (Z - Z')^2}$$

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\gamma_P = \nabla U_P + \nabla \Phi_P$$
 Vetor gravidade normal

$$\gamma = \frac{a \gamma_a cos^2 \varphi + b \gamma_b sen^2 \varphi}{\sqrt{a^2 cos^2 \varphi + b^2 sen^2 \varphi}}$$

Somigliana de 1929

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\gamma_{\rm P} = \nabla U_{\rm P} + \nabla \Phi_{\rm P}$$

Vetor gravidade normal

$$\gamma = \frac{a \gamma_a cos^2 \varphi + b \gamma_b sen^2 \varphi}{\sqrt{a^2 cos^2 \varphi + b^2 sen^2 \varphi}}$$

Somigliana de 1929

Terra Normal

O gravidade normal, que é o módulo do vetor gravidade normal, pode ser calculado pela fórmula Somigliana de1929 (calculado sobre a superfície do elipsoide)

Contudo, existe uma solução analítica para o cálculo da gravidade normal acima ou abaixo da superfície do elipsoide!

Li and Gotze (2001)

Terra Normal

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\gamma_{\rm P} = \nabla U_{\rm P} + \nabla \Phi_{\rm P}$$

Vetor gravidade normal

$$\gamma = \frac{a \gamma_a cos^2 \varphi + b \gamma_b sen^2 \varphi}{\sqrt{a^2 cos^2 \varphi + b^2 sen^2 \varphi}}$$

Somigliana de 1929

O gravidade normal, que é o módulo do vetor gravidade normal, pode ser calculado pela fórmula Somigliana de1929 (calculado sobre a superfície do elipsoide)

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\gamma_{\rm P} = \nabla U_{\rm P} + \nabla \Phi_{\rm P}$$

Vetor gravidade normal

$$\gamma = \frac{a \gamma_a cos^2 \varphi + b \gamma_b sen^2 \varphi}{\sqrt{a^2 cos^2 \varphi + b^2 sen^2 \varphi}}$$

Somigliana de 1929

O gravidade normal, que é o módulo do vetor gravidade normal, pode ser calculado pela fórmula Somigliana de1929 (calculado sobre a superfície do elipsoide)

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\gamma_{\rm P} = \nabla U_{\rm P} + \nabla \Phi_{\rm P}$$

Vetor gravidade normal

$$\gamma = \frac{a \gamma_a cos^2 \varphi + b \gamma_b sen^2 \varphi}{\sqrt{a^2 cos^2 \varphi + b^2 sen^2 \varphi}}$$

Somigliana de 1929

World Geodetic System de 1984 (WGS 84)

a = 6378137,0 m f = 1/298,25722 GM = 3986004.418 $\cdot 10^8$ m³/s² ω = 7292115. $\cdot 10^{-11}$ rad/s

O gravidade normal, que é o módulo do vetor gravidade normal, pode ser calculado pela fórmula Somigliana de1929 (calculado sobre a superfície do elipsoide)

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\gamma_{\rm P} = \nabla U_{\rm P} + \nabla \Phi_{\rm P}$$

Vetor gravidade normal

$$\gamma = \frac{a \gamma_a cos^2 \varphi + b \gamma_b sen^2 \varphi}{\sqrt{a^2 cos^2 \varphi + b^2 sen^2 \varphi}}$$

Somigliana de 1929

World Geodetic System de 1984 (WGS 84)

Sistema de Referência Geocêntrico das Américas (SIRGAS 2000)

O gravidade normal, que é o módulo do vetor gravidade normal, pode ser calculado pela fórmula Somigliana de1929 (calculado sobre a superfície do elipsoide)

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\gamma_P = \nabla U_P + \nabla \Phi_P$$
 Vetor gravidade normal

$$\gamma = \frac{a \gamma_a cos^2 \varphi + b \gamma_b sen^2 \varphi}{\sqrt{a^2 cos^2 \varphi + b^2 sen^2 \varphi}}$$

Somigliana de 1929

Analogamente a Terra real, a terra normal possui equipotenciais

- Origem no centro de massa da terra;
- O semieixo menor b coincide com o eixo de rotação da terra;
- A mesma massa da terra;
- Mesma velocidade de rotação.

$$\gamma_P = \nabla U_P + \nabla \Phi_P$$
 Vetor gravidade normal

$$\gamma = \frac{a \gamma_a cos^2 \varphi + b \gamma_b sen^2 \varphi}{\sqrt{a^2 cos^2 \varphi + b^2 sen^2 \varphi}}$$

Somigliana de 1929

Analogamente a Terra real, a terra normal possui equipotenciais

As equipotenciais são chamadas **esferopes**

Sobre o elipsoide

Sobre o elipsoide

Sobre a superfície

≈ 0,5 graus

Acabamos de descrever a Terra Normal!

Sobre o elipsoide

Sobre a superfície

Terra real

Terra Normal

Vetor gravidade

$$\mathbf{g}_P = \nabla V_P + \nabla \Phi_P$$

Terra real

Vetor gravidade

$$\mathbf{g}_P = \nabla V_P + \nabla \Phi_P$$

Terra real

Vetor gravidade normal

$$\gamma_{\rm P} = \nabla U_{\rm P} + \nabla \Phi_{\rm P}$$

Terra Normal

A velocidade de rotação é a mesma!

Terra real

Terra Normal

Caso a gravidade e a gravidade normal sejam calculadas no mesmo ponto P!

P(x,y,z)b a

Terra real

Terra Normal

Terra real

Vetor distúrbio de gravidade

$$\mathbf{\delta}_P = \mathbf{g}_P - \mathbf{\gamma}_P$$

Terra Normal

Como definir isso na prática?

$$\delta_P = \mathbf{g}_P - \mathbf{\gamma}_P$$

Distúrbio de gravidade

$$\delta_P = g_P - \gamma_P$$

Como definir isto na prática?

$\mathbf{\delta}_P = \mathbf{g}_P - \mathbf{\gamma}_P$ Considerando um sistema cartesiano topocêntrico.

Distúrbio de gravidade

$$\delta_P = g_P - \gamma_P$$

Como definir isto na prática?

Como definir isto na prática?

$$\mathbf{\delta}_P = \mathbf{g}_P - \mathbf{\gamma}_P$$

Considerando um sistema cartesiano topocêntrico.

Superfície Terrestre

Geóide

Elipsóide

$$\delta_P = g_P - \gamma_P$$

Como definir isto na prática?

Considerando um sistema cartesiano topocêntrico.

$$\delta_P = g_P - \gamma_P$$

Como definir isto na prática?

$$\mathbf{\delta}_P = \mathbf{g}_P - \mathbf{\gamma}_P$$

Superfície Terrestre

h = Altura ortométrica

Geóide

N = Altura Geoidal

Elipsóide

$$\delta_P = g_P - \gamma_P$$

Vetor distúrbio de gravidade

Como definir isto na prática?

$$\mathbf{\delta}_P = \mathbf{g}_P - \mathbf{\gamma}_P$$

Superfície Terrestre

h = Altura ortométrica

Geóide

N = Altura Geoidal

Elipsóide

H = Altura Geométrica

Distúrbio de gravidade

$$\delta_P = g_P - \gamma_P$$

Vetor distúrbio de gravidade

$\mathbf{\delta}_P = \mathbf{g}_P - \mathbf{\gamma}_P$

Como definir isto na prática?

Distúrbio de gravidade

$$\delta_P = g_P - \gamma_P$$

A altura dada no GPS!

$\delta_P = g_P - \gamma_P$

Distúrbio de gravidade

$\delta_P = g_P - \gamma_P$

Distúrbio de gravidade

Somente o efeitos das massas anômalas posicionadas na crosta e no manto, como também o efeito das massas topográficas (ou fontes gravimétricas)

Em resumo:

Fontes crustais Heterogeneidades do manto Ocean Crust Mantle

Caso as medições sejam realizadas em plataformas móveis (aviões, navios e etc)

Correção de Eotvos

Caso as medições sejam realizadas em plataformas móveis (aviões, navios e etc)

Correção de Eotvos

Uma das etapas do processamento de dados de gravidade chamada **correção de ar livre!**

Referências

- Blakely, R. J., 1996, Potential theory in gravity and magnetic applications: Cambridge University Press.
- Hofmann-Wellenhof, B. e H. Moritz, 2005, Physical Geodesy. Springer.
- Li, X., e H. J. Götze, 2001, Ellipsoid, geoid, gravity, geodesy, and geophysics: Geophysics, 66, 1660-1668. DOI: 10.1190/1.1487109.

Até a próxima aula!