4.1.3. Критерий согласия Пирсона

Предположим, что выполнено n измерений некоторой случайной величины ξ : $x_1, x_2, ..., x_n$, (4.4)

И есть основания полагать, что результаты распределены нормально с плотностью вероятности

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-m)^2}{2\sigma^2} \cdot (4.5)}$$

Параметры закона распределения m и σ обычно неизвестны. Вместо неизвестных параметров подставляют значения их оценок, которые вычисляют по следующим формулам:

$$m^* = \frac{1}{n} \sum_{i=1}^{n} x_i, (4.6)$$

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - m^*)^2}. (4.7)$$

В качестве критерия проверки выдвинутой гипотезы примем критерий согласия Пирсона (критерий согласия "хи- квадрат")

$$\chi^{2} = \sum_{i=1}^{k} \frac{\left(m_{i} - m_{i}^{T}\right)^{2}}{m_{i}^{T}}, (4.8)$$

Где k – число интервалов, на которые разбито выборочное распределение, m_i - частоты эмпирического распределения; m_i^T – частоты теоретического распределения. Из формулы вытекает, что критерий характеризует близость эмпирического и теоретического распределений: чем меньше различаются m_i и m_i^T , тем меньше значение $\chi 2$.

Доказано, что при $n \to \infty$ закон распределения случайной величины (4.8) независимо от того, какому закону распределения подчинена генеральная совокупность, стремится к закону распределения $\chi 2$ с r степенями свободы. Число степеней свободы определяется равенством r=k-1-s , где k- число частичных интервалов; S — число параметров предполагаемого распределения, которые были оценены. Для нормального распределения оцениваются два параметра (математическое ожидание и среднее квадратическое отклонение), поэтому r = k - 1 - 2 = k - 3 .

В соответствии с процедурой проверки гипотезы следует вычислить наблюдаемое значение критерия. Чтобы вычислить частоты эмпирического распределения, весь интервал наблюдаемых значений делят на k частичных интервалов (бинов) точками \boldsymbol{z}_k :

$$-\infty = z_0 < z_1 < z_2 < \dots < z_{k-1} < z_k = \infty$$
 (4.9)

 m_i определяют, подсчитав число измерений (4.4), которые попадают в i - й интервал (z_{i-1}, z_i) .

Используя теоретический закон распределения (4.5) можно рассчитать ожидаемое число $m_i^{\ T}$ Результатов измерений для каждого интервала і. Вероятность того, что результат одного измерения попадает в интервал (z_{i-1}, z_i) , равна

$$p_i = P(z_{i-1} \le \xi < z_i) = F_N(z_i) - F_N(z_{i-1}), (4.10)$$

Где $F_N(z)$ – интегральный закон нормального распределения: $F_N(z) = \int\limits_{-\infty}^z f(t) dt$. Учитывая, что функция распределения $F_N(x)$ с параметрами m и σ связана со стандартной нормальной функцией формулой $F_N(x) = \Phi\bigg(\frac{x-m}{\sigma}\bigg)$, соотношение (4.10) можно записать в следующем

$$p_i = \Phi\left(\frac{z_i - m^*}{s}\right) - \Phi\left(\frac{z_{i-1} - m^*}{s}\right).$$
 (4.11)

Поскольку проводится не одно, а n измерений и эти измерения независимы, то их можно рассматривать как n испытаний Бернулли, в которых "успехом" считается попадание результата измерения в интервал (z_{i-1}, z_i) . Тогда числа m_i^T вычисляются по формуле

$$m_i^T = n \cdot p_i^{(4.12)}$$

(математическое ожидание числа "успехов" при n испытаниях).

Для заданного уровня значимости по таблицам определяют критическое значение критерия. Сравнивая наблюдаемое и критическое значения критерия делают, вывод о соответствии экспериментальных данных предполагаемому закону распределения.

Пример 4.1. Проверить с помощью критерия χ2 при уровне значимости 0,05 гипотезу о том, что выборка объема η = 50, представленная интервальным вариационным рядом в таблице 4.4, извлечена из нормальной генеральной совокупности.

Таблица 4.4

Номер Интервала <i>I</i>	1 раницы	Частота <i>т</i> і
1	0 - 2	5
2	2 – 4	11
3	4 –6	17
4	6 – 8	10
5	8 – 10	7

Решение. 1. Сформулируем нулевую и альтернативную гипотезы: H0 – эмпирическое распределение соответствует нормальному; H1 - эмпирическое распределение не соответствует нормальному.

Для проверки нулевой гипотезы необходимо рассчитать наблюдаемое значение критерия χ^2 набл по формуле (4.8) и сравнить его с критическим значением χ^2 кр.

2. Определим параметры предполагаемого (теоретического) нормального закона распределения.

Найдем середины интервалов $\overline{x_i} = \frac{z_{i-1} + z_i}{2}$ и относительные частоты $p_i^* = \frac{m_i}{n}$. Получим следующие значения:

<u> </u>	1	3	5	6	7	Оценку математического ожидания найдем по формуле (4.1):							
~l						* (, 5 , 11 , 5 17 , 10 , 7)							
*	5	11	17	10	7	$m^* = \left(1 \cdot \frac{5}{50} + 3 \cdot \frac{11}{50} + 5 \cdot \frac{17}{50} + 7 \cdot \frac{10}{50} + 9 \cdot \frac{7}{50}\right) =$							
p_i	50	50	50	50	50	1 (5 - 22 - 25 - 52 - 52) 256							
						$=\frac{1}{50}(5+33+85+70+63)=\frac{256}{50}=5,12$							

Оценки дисперсии и стандартного отклонения вычислим по формулам (4.2) и (4.3):

$$s^{2} = ((1-5,12)^{2} \cdot 5 + (3-5,12)^{2} \cdot 11 + (5-5,12)^{2} \cdot 17 + (7-5,12)^{2} \cdot 10 + (9-5,12)^{2} \cdot 7) \cdot \frac{1}{49} = \frac{1}{49} \cdot 275, 27 = 5,62;$$

$$s = \sqrt{5,62} = 2,37.$$

3. Выполним расчет теоретических частот m_i^T по формуле (4.12). Для вычисления вероятностей p_i по формуле (4.11) воспользуемся таблицей В Приложения со значениями нормальной стандартной функции распределения. При этом наименьшее значение, т. е. z_0 , полагаем равным $-\infty$, а наибольшее, т. е. z_5 , полагаем равным ∞ . Последовательно находим для интервала (- ∞ , 2)

$$p_1 = \Phi\left(\frac{2-5,12}{2,37}\right) - \Phi(-\infty) = \Phi(-1,3) - 0 = 1 - \Phi(1,3) = 1 - 0,9 = 0,1$$
 и $m_1^T = 50 \cdot 0,1 = 5;$

Для интервала (2,4) находим

$$p_2 = \Phi\left(\frac{4-5,12}{2,37}\right) - \Phi\left(\frac{2-5,12}{2,37}\right) = \Phi(-0,5) - \Phi(-1,3) = 0,90 - 0,69 = 0,21$$

$$m_{2}^{T} = 50 \cdot 0.21 = 10.5$$

Для интервала (4,6) соответственно:

$$p_3 = \Phi\left(\frac{6-5,12}{2,37}\right) - \Phi\left(\frac{4-5,12}{2,37}\right) = \Phi(0,4) - \Phi(-0,5) = 0,66-0,31 = 0,35;$$

$$m_3^T = 50 \cdot 0,35 = 17,5;$$

Для интервала (6,8):

$$p_4 = \Phi\left(\frac{8-5,12}{2,37}\right) - \Phi\left(\frac{6-5,12}{2,37}\right) = \Phi(1,2) - \Phi(0,4) = 0,88 - 0,66 = 0,22$$

$$M_{4}^{T} = 50 \cdot 0,22 = 11;$$

Для интервала $(8, \infty)$ вычислим

$$p_5 = \Phi(\infty) - \Phi\left(\frac{8-5,12}{2,37}\right) = \Phi(\infty) - \Phi(1,2) = 1-0,88 = 0,12;$$

$$m_5^T = 50 \cdot 0.12 = 6$$

4. По формуле (4.8) найдем значение χ^2 набл:

$$\chi^2$$
 набл = $\sum_{i=1}^{5} \frac{\left(m_i - m_i^T\right)^2}{m_i^T} = \frac{\left(5-5\right)^2}{5} + \frac{\left(11-10,5\right)^2}{10,5} +$

$$+ \frac{(17 - 17,5)^2}{17,5} + \frac{(10 - 11)^2}{11} + \frac{(7 - 6)^2}{6} = 0,29.$$

5. По таблице квантилей распределения $\chi 2$ (см. таблицу С Приложения) с числом степеней свободы r=k-3=5-3=2 находим, что $\chi 2$ кр = 6,0 для $\alpha=0,05$.

Поскольку $\chi^2_{\text{набл}} < \chi^2_{\kappa p}$ (0,29 < 6,0), то можно считать, что гипотеза о нормальном распределении генеральной совокупности не противоречит опытным данным.

Порядок выполнения лабораторной работы

В данной лабораторной работе задания 1 и 2 представляют собой контрольный пример, решение которого приводится ниже. Задания 3 и 4 составляют индивидуальное задание.

Задание 1. Для выборки из 40 значений случайной величины ξ , полученной в задании 1 работы 1, оценить близость эмпирического распределения к нормальному распределению:

- А) построить интервальный вариационный ряд и гистограмму частот;
- Б) построить на одном графике гистограмму относительных частот и график плотности нормального распределения.

<u>Задание 2.</u> При уровне значимостит 0.05 проверить гипотезу о нормальном распределении генеральной совокупности с использованием $\chi 2$ - критерия как критерия согласия.

<u>Задание 3.</u> Для выборки нормальной случайной величины, смоделированной в задании 3 работы 1, построить, на выбор, либо гистограмму частот, либо гистограмму относительных частот.

<u>Задание 4.</u> Пользуясь критерием Пирсона при уровне значимости 0,01 проверить, согласуется ли с нормальным распределением статистическое распределение из задания 3 работы 1.

Выполнение задания 1.

- 1. Подготовьте рабочий лист в EXCEL. Для этого выполните следующее:
- · перейдите на новый лист и введите в ячейку В1 название таблицы *ПОСТРОЕНИЕ ГИСТОГРАММЫ*;
- · назовите ярлык листа **Гистограмма**;
- разместите в ячейках A5:B24 выборку, которая была получена при выполнении задания 1.1 лабораторной работы 1 (40 значений нормальной случайной величины с параметрами m=4 и σ =0,5), либо выполнив копирование значений с листа **Оценки**, либо повторив процедуру моделирования выборки заданного закона распределения.

Создаваемая электронная таблица представлена в таблице 4.5 в режиме вычислений и в таблице 4.6 в режиме формул.

Таблица 4.5

Ţ,				пост	РОЕНИЕ ГИ	TOPPAMM	ы	
Вариац	- D.W.	Объем выб.	368.8	MEXIC	k	Ben servas	Оценка мат. ож	Несм станд откл
2,522	3,085	40	2,5	5	6,32	0,38457	3,90417	0,52407
4,06	4,547							
4,475	3,9922							
2,868	4,1885	None	Non.	Карман	Vacnoma	OTH VACT	HIDOT. OTH. WACT.	
4,037	3,8017	2,3	2,7	2,7	1	0,025	0,06501	0,05778
4,496	3,8 608	2,7	3,1	3,1	3	0,075	0,19502	0,23364
4,173	3,9781	3,1	3,5	3,5	4	0,1	0,26003	0,55136
4,163	3,296	3,5	3,9	3,9	\$	0,2	0,52006	0,75941
3,786	4,0209	3,9	4,3	4,3	15	0,375	0,97511	0,61045
3,549	3,9667	4,3	4,6	4,6	7	0,175	0,45505	0,2864
3,504	3,9258	4,6	5		2	0,05	0,13002	0,07842
4,547	4,1243			Eme	0	хок троль	1	
4,318	4,3007							
3,047	4,272							
3,788	4,2343		3.					
4,13	3,983							
4,059	4,9519			0				
3,184	3,2014			9				
3,759	4,7737							
3,766	3,433							

Labrasia 4.0

	ПОСТРОЕНИЕ ГИСТОГРАММЫ								
Вариац рад		Объем выб	Мин	Maxe	k				
2,52181645110249	3,08504378254293	40	=MI/H(A5:B24)	=MAKC(A5:B24)	=1+3,32*LOG10(C5)				
4,05986862561258	4,54702354645997								
4,47481989895459	3,99217777713056								
2,86788828007411	4,18848368199542	левый кон	правый кон	Карман	Частота				
4,0368095243175	3,80174720803916	=\$D\$5-\$G\$5/2	=C9+\$G\$5	2,71410160827802	1				
4,49595882956055	3,86077227731585	=D9	=C10+\$G\$5	3,09867192262907	3				
4,17288584786002	3,97809538854199	=D10	=C11+\$G\$5	3,48324223698012	4				
4,16321280327247	3,29598743619863	=D11	=C12+\$G\$5	3,86781255133117	8				
3,78621588070382	4,02087062966893	=D12	=C13+\$G\$5	4,25238286568222	15				
3,54936356516554	3,96671760982281	=D13	=C14+\$G\$5	4,63695318003327	7				
3,50391611491796	3,92577329521737	=D14	=C15+\$G\$5	5,02152349438432	2				
4,54688484851795	4,12433702067938			Еще	0				
4,31765694075148	4,30070737011556			***************************************					
3,04744072409812	4,27199803298572	1,2							
3,78797518451756	4,23425229755958	0.8			потность отн частот				
4,12970929219591	3,9829947228136	0,6							
4,05863626029168	4,951854417508	0.4	/_		потность ероятности				
3,18396497378125	3,20142727205529	0,2							
3,75902483129175	4,77369577411446	2,714	3,099 3,483 3,868 4	252 4,637 5,022					

- 2. Для построения интервального вариационного ряда выполните следующие действия:
- 2.1. Произведите расчет длины частичных интервалов в ячейках C5:G5 по указанным в ячейках формулам и комментариям так, как указано ниже.

Ячейка Значение Ячейка Значение

С5 40 С4 объем выб.

D5 =МИН(A5:B24) D4 минимум

E5 = MAKC(A5:B24) E4 максимум

F5 = 1+3,32*LOG10(C5) F4 k

G5 =(E5-D5)/F5 G4 вел. инт-ла

H5 =CP3HAЧ(A5:B24) H4 оценка мат. ож.

I5 = CTАНДОТКЛОН(A5:B24) I4 несм. станд. откл.

2.2. Разместите массив значений границ интервалов в ячейках С9:D15 (в столбце С – значения левых границ, в столбце D – значения правых границ).

Выполните это так:

- · для определения левой границы первого частичного промежутка введите в ячейку С9 формулу -=\$D\$5-\$G\$5/2;
- · для определения правой границы введите в ячейку D9 формулу C9+\$G\$5;
- \cdot поскольку левая граница последующего частичного промежутка совпадает с правой границей предыдущего введите в ячейку C10 формулу =D9;
- · перенесите автозаполнением формулу из ячейки C10 на диапазон C11:C15, а формулу из D9 в ячейки D10:D15;

- \cdot в ячейку C8 введите текст Левый кон, в ячейку D8 Правый кон.
- 3. Для построения гистограммы частот воспользуемся инструментом анализа Гистограмма. Выполните команду Сервис – Анализ данных – Гистограмма. В окне "Гистограмма" задайте параметры;
- · введите в поле Входной интервал \$A\$5:\$B\$24, в поле Интервал карманов \$D\$9:\$D\$15, в Выходной интервал – \$Е\$8:
- · установите флажок Вывод графика;
- · нажмите **ОК**.

На экране появятся выходная таблица и гистограмма. В левом столбце таблицы размещен Карман – так в MS Excel называется набор граничных значений частичных интервалов. Правый столбец содержит вычисленные значения частот.

Поместите полученную диаграмму (выделите и перетащите) так, чтобы левый верхний конец находился в ячейке Ј8.

- 4. Подготовим исходные данные для построения гистограммы относительных частот и графика плотности вероятности.
- 4.1. Расчет относительных частот произведите в ячейках G9:G15, для этого введите в ячейку G9 формулу =F9/\$С\$5 и перенесите ее на диапазон G10:G15.
- 4.2. При построении гистограммы используются значения плотности относительных частот. Выполните расчет этих значений в ячейках Н9:Н15. Введите в ячейку Н9 формулу = G9/\$G\$5 и скопируйте ее в ячейки Н10:Н15. Озаглавьте столбцы: введите в G8 текст Отн. част., в Н8 – Плот. отн. част.
- 4.3. Сформируйте в ячейках 19:115 массив значений плотности вероятности, по которым будет построен график. Указанные значения вычислите с использованием функции НОРМРАСП в граничных точках частичных интервалов, размещенных в ячейках D9:D15. Введите в I9 формулу
- $=HOPMPAC\Pi(D9;\$H\$5;\$I\$5;0)$

И перенесите ее на диапазон I10:I15.

- 5. Как отмечалось выше, площадь гистограммы относительных частот численно равна единице. Введите для контроля правильности вычислений в ячейку G16 текст Контроль, а в ячейку H16 – формулу =CУMM(H9:H15)*\$G\$5.
- 6. Для построения гистограммы и графика выполните следующие действия:
- выделите ячейки Н9:115, в которых размещены данные;
- · нажмите кнопку **Мастер диаграмм**, откроется окно диалога;
- выберите вкладку "Нестандартные" и вид графика График! гистограмма, нажмите кнопку Далее;
- на втором шаге построения диаграммы выберите вкладку "Ряд". Измените текст легенды (условного обозначения для рядов данных): в разделе Ряд выделите Ряд 1, перейдите в поле Имя и введите текст Плотность вероятности, затем выделите Ряд 2 и в поле Имя Наберите Плотность отн. частот;
- · введите в поле "Подписи оси X" диапазон D9:D15 и нажмите кнопку Далее;
- оформление гистограммы на третьем шаге можно опустить (либо выполните по своему желанию);
- · на четвертом шаге задайте место размещения гистограммы –Имеющийся лист И нажмите OK.

Выполнение задания 2

- 1. Подготовьте рабочий лист. Для этого выполните следующие действия:
- · перейдите на новый лист и введите в ячейку С1 название таблицы ПРОВЕРКА ГИПОТЕЗЫ ПО КРИТЕРИЮ ПИРСОНА;
- назовите ярлык листа Крит Пирсона;
- занесите в ячейку Е2 значение заданного уровня значимости 0,05, а в С2 Уровень значимости;
- · перенесите содержимое столбцов A, B, C, D, а также четвертой и пятой строк с листа Гистограмма На лист Крит Пирсона.

Создаваемая электронная таблица представлена в таблице 4.7 в режиме формул и в таблице 4.8 в режиме вычислений.

Чтобы вычислить наблюдаемое значение критерия по формуле (4.7), для каждого частичного интервала необходимо найти значения эмпирической и теоретической частот.

- 2. Частоту появления значений выборки в построенных частичных интервалах (эмпирическую частоту) вычислите с помощью функции ЧАСТОТА, которая возвращает распределение частот в виде вертикального массива. Эта функция подсчитывает для данного множества значений и данного множества карманов (интервалов, в математическом смысле), сколько исходных значений попадает в каждый интервал. Выполните следующие действия:
- выделите ячейки Е9:Е15, в которые будет введена функция ЧАСТОТА (данная функция возвращает массив, поэтому она должна задаваться в качестве формулы массива);
- нажмите кнопку Вставка функции;
- в открывшемся окне диалога "Мастер функций" выберите функцию ЧАСТОТА из категории Статистические и нажмите кнопку ОК;
- · укажите в поле Массив данных диапазон \$A\$5:\$B\$24, в поле Двоичный массив \$D\$9:\$D\$15 (массив верхних границ интервалов);
- · не выходя из строки формул, одновременно нажмите клавиши Ctrl+Shift+Enter;
- · введите в ячейку Е7 текст Эмп. частота, в D16 Число бинов, а в Е16 формулу для подсчета числа бинов
- =C4ET(E9:E15).
- 3. Расчет теоретической частоты по формулам (4.10) и (4.12) произведите в ячейках F9:H15. Выполните следующее:
- определите значения интегральной функции распределения на правом конце для каждого частичного промежутка, для чего введите в ячейку F9 формулу =HOPMPACП(D9;\$H\$5;\$I\$5;1)
- · и перенесите ее автозаполнением на диапазон F10:F14 (в ячейку F15 введите 1, поскольку $F(\infty)=1$);
- вычислите вероятность того, что результат одного измерения попадет в частичный интервал, для чего введите в ячейку G9 формулу: =F9-F8

И скопируйте ее на диапазон G10:G15;

- сосчитайте теоретические частоты, введя в ячейку Н9 формулу:

=\$C\$5*G9

09.02.2017

И

автозаполнением

перенесите

ee

на

диапазон

H10:H15;

Таблица 4.7

		ODERIA FIRE	ATT OF THE CASE	Таблица 4./
	111	ЕРИЮ ПИРСОНА		
		Уровенъ	значимости	0.05
Вари	ыц ряд	Объем выб.	Мин.	Макс.
2,52181645110249	3,08504378254293	40	=MI/H(A5:B24)	=MAKC(A5:B24)
4,05985862561258	4,54702354645997			
4,47481989895459	3,99217777713056	Левый кон.	Правый кон.	Эмп. частота
2,86788828007411	4,18848368199542			
4,0368095243175	3,80174720803916	=\$D\$5-\$G\$5/2	=C9+\$G\$5	=4ACTOTA(A5B24;D9:D15)
4,49595882956055	3,86077227731585	=D9	=C10+\$G\$5	=4ACTOTA(A5B24;D9:D15)
4,17288584786002	3,97809538854199	=D10	=C11+\$G\$5	=4ACTOTA(A5B24;D9:D15)
4,16321280327247	3,29598743619863	=D11	=C12+\$G\$5	=4ACTOTA(A5B24;D9:D15)
3,78621588070382	4,02087062966893	=D12	=C13+\$G\$5	=4ACTOTA(A5B24;D9:D15)
3,54936356516554	3,96671760982281	=D13	=C14+\$G\$5	=4ACTOTA(A5B24;D9:D15)
3,50391611491796	3,92577329521737	=D14	=C15+\$G\$5	=4ACTOTA(A5B24;D9:D15)
4,54688484851795	4,12433702067938		число бин ов	=C YÉT(E9:E15)
4,31765694075148	4,30070737011556		l'A	
3,04744072409812	4,27199803298572			
3,78797518451756	4,23425229755958			
4,12970929219591	3,9829947228136			
4,05863626029168	4,951854417508		ij.	
3,18396497378125	3,20142727205529			
3,75902483129175	4,77369577411446			
3,76566243731213	3,43298575999506			

Продолжение таблицы 4.7

K	Вел инт-ла	Оценка мат ож	Несм станд откл
=1+3,32*LOG10(C5)	=(E5- D5)/F5	=CP3HA4(A5:B24)	=СТАНДОТКЛОН(А5:В24)
Фр на пр конце	Вер	Теор частота	
=HOPMPACΠ(D9;\$H\$5;\$I\$5;1)	=F9- F8	=\$C\$5*G9	=(E9-H9)^2/H9
=HOPMPACΠ(D10;\$H\$5;\$I\$5;1)	=F10- F9	=\$C\$5*G10	=(E10-H10)^2/H10
=HOPMPACΠ(D11;\$H\$5;\$I\$5;1)	=F11- F10	=\$C\$5*G11	=(E11-H11)^2/H11
=HOPMPACΠ(D12;\$H\$5;\$I\$5;1)	=F12- F11	=\$C\$5*G12	=(E12-H12)^2/H12
=HOPMPACΠ(D13;\$H\$5;\$I\$5;1)	=F13- F12	=\$C\$5*G13	=(E13-H13)^2/H13
=HOPMPACΠ(D14;\$H\$5;\$I\$5;1)	=F14- F13	=\$C\$5*G14	=(E14-H14)^2/H14
1	=F15- F14	=\$C\$5*G15	=(E15-H15)^2/H15

Набл зн критерия =CУММ(I9:I15)
Крит зн критерия =XИ2ОБР(\$E\$2;\$E\$16-3)

Таблица 4.8

		ПРОВЕРКА ГИПОТЕЗЫ ПО КРИТЕРИЮ ПИРСОНА						
		Уровень значимости	0,05					
Вариац ряд	.Объем выб.	Мин.	Макс	K	Вел. инт-ла		Несм. станд. откл.	
2,522	3,08504	40	2,52182	4,951854	6,318839171	0,3845703	3,904166	0,5240692
4,06	4,54702							
4,475	3,99218	Левый кон.	Правый кон.		Ф. р. на прконце	Bep.	Теор. частота	
2,868	4,18848							
4,037	3,80175	2,3295	2,7141	1	0,011579055	0,0115791	0,463162	0,622233
4,496	3,86077	2,7141	3,09867	3	0,062146626	0,0505676	2,022703	0,4721948
4,173	3,9781	3,0987	3,48324	4	0,210934098	0,1487875	5,951499	0,6398973
4,163	3,29599	3,4832	3,86781	8	0,472348174	0,2614141	10,45656	0,577121
3,786	4,02087	3,8678	4,25238	15	0,746798016	0,2744498	10,97799	1,473542
3,549	3,96672	4,2524	4,63695	7	0,918983001	0,172185	6,887399	0,0018409
3,504	3,92577	4,637	5,02152	2	1	0,081017	3,24068	0,4749888
4,547	4,12434		Число бинов	7			Набл. знкритерия	4,2618178
4,318	4,30071						Крит. зн. критерия	9,487729
3,047	4,272							
3,788	4,23425							
4,13	3,98299							
4,059	4,95185							
3,184	3,20143							
3,759	4,7737							
3,766	3,43299							

- поясните полученные результаты, для этого в ячейку F7 введите текст Φ . p. на np. конце, в ячейку G7- Вер., а в H7 - Теор. частота.
- 4. Вычислите слагаемые критерия Пирсона, для чего введите в ячейку 19 формулу
- $=(E9-H9)^2/H9$

И автозаполнением перенесите эту формулу в ячейки I10:I15.

- 5. Наблюдаемое значение критерия вычислите по формуле (4.6) в ячейке I16, для чего введите формулу =CУММ(I9:I15).
- 6. Критическое значение критерия "хи-квадрат" для уровня значимости 0,95 и числа степеней свободы r = 3 выведите в ячейке I17, набрав формулу
- =ХИ2ОБР(\$E\$2:\$E\$16-3).

Функция ХИ2ОБР возвращает обратную функцию для χ2-распределения.

В ячейку Н16 введите текст Набл. зн. критерия, а в Н17 – Крит. зн. критерия.

Так как наблюдаемое значение критерия, равное 4,26, меньше критического значения, равного 9,49, то гипотезу о нормальном распределении генеральной совокупности не отвергаем. Другими словами, расхождение эмпирических и теоретических частот незначительное. Следовательно, смоделированные значения случайной величины согласуются с гипотезой о распределении случайной величины с заданным законом распределения.

Подготовить отчет:

- 1. Название работы и задание.
- 2. По две распечатки таблиц, созданных при выполнении заданий 3 и 4 (одна распечатка содержит результаты вычислений, другая – сами формулы).
- 3. Выводы по результатам выполнения задания 4.

