AUTHENTICATION

UT CS361S

Fall 2021

Lecture Notes

AUTHENTICATION / AUTHORIZATION

Validating Identity

Permissions
Assigned to a
Validated
Identity

THE AUTHENTICATION PROCESS

AUTHENTICATION MECHANISM

THE BIG THREE

Something you **KNOW**

Something you **HAVE**

Something you **ARE**

KNOW: PASSWORDS

Security Requirements

- The password is ONLY known by the party seeking authentication
- 2. The password cannot be easily guessed by human or computer
- 3. The password will not be forgotten by the party seeking authentication

PASSWORD REGISTRATION

COMPUTATION & ALGORITHMIC COMPONENTS

D = HASH(Y, salt

DATABASE ID X: k, D

Store identity, Salt, Hash **NETWORK**

Transport
Identity X
Password Y

TERMIN AL

Input
Identity X
Password Y

PASSWORD VERIFICATION

Verify

D' = HASH(Y, salt)k) Load D Compare D ==

D'?

DATABASE ID X: k, D

NETWORK

Transport Identity X Password Y

TERMIN AL

Input **Identity** X Password Y

COMMON PROBLEMS

CHALLENGE RESPONSE SYMMETRIC

DATABASE
ID X: Shared Secret
Y

ID
MODULE
Shared
Secret Y

CHALLENGE RESPONSE ASYMMETRIC

MAN-IN-THE-MIDDLE (MITM)

SOMETHING YOU HAVE

- Security Assumptions
- The "token" is ONLY
 possessed by the party
 seeking authentication
- 2. The token cannot be easily forged or duplicated
- 3. The authentication protocol is secure

SOMETHING YOU HAVE EXAMPLES

PROBLEMS WITH "TOKENS"

- Is it **REALLY** something you have?
- Is sending a code by email 2factor?
- What about phone cloning?
- What about network interception?
- Is an RSA Token's seed just something you know?
- "Something you can respond with"

Security Assumptions

- 1.The "characteristic" is effectively unique
- 2.Can effectively measure, record, or detect the characteristic
- 3. Characteristic cannot be forged, replicated, or otherwise "lost"
- 4. Characteristic will not change (too much) over time
- 5.Characteristic will never need to be revoked
- 6. The Authentication Protocol is Secure!

SOMETHING YOU ARE

FALSE POSITIVES VS FALSE NEGATIVES

False Negative – Do not authorize party with valid characteristic

False Positive – Authorize party with invalid characteristic

RECEIVER OPERATING CHARACTERISTIC

- The trade off between FP and FN
- Decreasing one typically increases the other
- Equal Error Rate is when FP approximately equals FN
- In most biometrics, False Negatives are worse

PROBLEMS WITH BIOMETRICS

- 1. Fingerprinting has been *seriously* misused in Courts (see Anderson at pp. 469-470)
- 2. Interpretation of results and understanding of statistics
- 3. Variable accuracy in scanning mechanism
- 4. "Freshness"
- 5. Belief in infallibility leads to security culture problems
- 6. Biometrics exclude a *lot* of people (e.g., differently abled)
- 7. Cvil Rights and Privacy issues
- 8. Injury that alter the characteristic (e.g., fingerprint)

ONE OTHER "AUTHENTICATION"

- "SomeWHERE you Are"
- Almost universally used as an ancillary form of authentication
- Generally used do disprove rather than prove identity

