

In the Claims

- 1.** (original) A method comprising:
determining that a first wireless terminal at a location can communicate with a second wireless terminal with a level of service; and
transmitting to a third wireless terminal an indication that said third wireless terminal should be able to communicate with said second wireless terminal with said level of service at said location.
- 2.** (original) The method of claim 1 wherein said first wireless terminal and said third wireless terminal are different.
- 3.** (original) The method of claim 1 further comprising displaying said indication.
- 4.** (original) The method of claim 3 wherein displaying said indication occurs in the form of a graphical map, wherein said graphical map portrays said location.
- 5.** (original) The method of claim 3 wherein said third wireless terminal performs displaying said indication.
- 6.** (original) The method of claim 1 wherein said level of service is in terms of at least one of (i) throughput, (ii) error rate, and (iii) latency.
- 7.** (previously presented) The method of claim 1 wherein said location is determined with Global Positioning System measurements.
- 8.** (original) The method of claim 1 wherein said second wireless terminal is an IEEE 802.11 access point.
- 9.** (previously presented) A method comprising:
receiving from a first wireless terminal a measurement of a characteristic of an electromagnetic signal radiated by a source, wherein said measurement is associated with a location; and
transmitting to a second wireless terminal an indication that said second wireless terminal should be able to receive at said location said electromagnetic signal with said measurement exceeding a threshold.
- 10.** (original) The method of claim 9 wherein said first wireless terminal and said second wireless terminal are different.

11. (original) The method of claim 9 wherein said electromagnetic signal conveys a data block.

12. (original) The method of claim 11 wherein said source is an IEEE 802.11 access point and said data block constitutes a beacon frame.

13. (original) The method of claim 9 wherein said indication constitutes a set of displayable information, wherein said set of displayable information comprises said location.

14. (original) The method of claim 13 further comprising displaying at said second wireless terminal said set of displayable information.

15. (original) The method of claim 13 wherein said set of displayable information is in the form of a graphical map, wherein the size of said set of displayable information is dependent on said second wireless terminal.

16. (original) The method of claim 9 wherein said characteristic is one of (i) throughput, (ii) error rate, (iii) latency, and (iv) signal strength.

17. (previously presented) The method of claim 9 wherein said location is determined with Global Positioning System measurements.

18. (previously presented) A method comprising:
receiving information comprising a location;
determining that a measurement of a characteristic of a first electromagnetic signal transmitted by a first wireless terminal exceeds a threshold; and
transmitting to a second wireless terminal an indication that said second terminal should be able to communicate at said location with an access point such that said access point receives a second electromagnetic signal transmitted by said second wireless terminal with said measurement exceeding said threshold.

19. (original) The method of claim 18 wherein said first wireless terminal and said second wireless terminal are different.

20. (original) The method of claim 18 wherein said first electromagnetic signal conveys a data block.

21. (original) The method of claim 18 wherein said access point performs measuring said characteristic.

22. (original) The method of claim 18 wherein said indication constitutes a set of displayable information, wherein said set of displayable information comprises said location.

23. (original) The method of claim 22 further comprising displaying at said second wireless terminal said set of displayable information.

24. (original) The method of claim 22 wherein said displayable information is in the form of a graphical map, wherein the size of said set of displayable information is dependent on said second wireless terminal.

25. (original) The method of claim 18 wherein said characteristic is one of (i) throughput, (ii) error rate, (iii) latency, and (iv) signal strength.

26. (original) An apparatus comprising:

a processor for determining that a first wireless terminal at a location can communicate with a second wireless terminal with a level of service; and

a transmitter for transmitting to a third wireless terminal an indication that said third wireless terminal should be able to communicate with said second wireless terminal with said level of service at said location.

27. (original) The apparatus of claim 26 wherein said first wireless terminal and said third wireless terminal are different.

28. (original) The apparatus of claim 26 further comprising a display for displaying said indication.

29. (original) The apparatus of claim 28 wherein displaying said indication occurs in the form of a graphical map, wherein said graphical map portrays said location.

30. (original) The apparatus of claim 26 wherein said level of service is in terms of at least one of (i) throughput, (ii) error rate, and (iii) latency.

31. (original) The apparatus of claim 26 wherein said second wireless terminal is an IEEE 802.11 access point.

32. (original) An apparatus comprising:

a receiver for receiving from a first wireless terminal a measurement of a characteristic of an electromagnetic signal radiated by a source, wherein said measurement is associated with a location; and

a transmitter for transmitting to a second wireless terminal an indication that said second wireless terminal should be able to receive at said location said electromagnetic signal with said measurement exceeding a threshold.

33. (original) The apparatus of claim 32 wherein said first wireless terminal and said second wireless terminal are different.

34. (original) The apparatus of claim 32 wherein said electromagnetic signal conveys a data block.

35. (original) The apparatus of claim 34 wherein said source is an IEEE 802.11 access point and said data block constitutes a beacon frame.

36. (original) The apparatus of claim 32 wherein said indication constitutes a set of displayable information, wherein said set of displayable information comprises said location.

37. (original) The apparatus of claim 36 further comprising a display at said second wireless terminal for displaying said set of displayable information.

38. (original) The apparatus of claim 36 wherein said set of displayable information is in the form of a graphical map, wherein the size of said set of displayable information is dependent on said second wireless terminal.

39. (original) The apparatus of claim 32 wherein said characteristic is one of (i) throughput, (ii) error rate, (iii) latency, and (iv) signal strength.