|                                      | LABORATORIUM Teoria Automatów                 |  |  |  |
|--------------------------------------|-----------------------------------------------|--|--|--|
| Temat Ćwiczenia: <b>Hazardy</b>      |                                               |  |  |  |
| Grup                                 | Grupa laboratoryjna: <b>1a, wtorek 11:</b> 00 |  |  |  |
| L.p.                                 | Nazwisko i imię                               |  |  |  |
| 1                                    | Aleksandrowicz Maciej                         |  |  |  |
| 2                                    | Krzyszczuk Michał                             |  |  |  |
| 3                                    | Marczewski Marcin                             |  |  |  |
|                                      |                                               |  |  |  |
| Data wykonania ćwiczenia: 30.10.2017 |                                               |  |  |  |

# Wstęp

Zadaniem ćwiczenia jest poznanie zagadnień hazardów w układach logicznych. Zadanie ma przebiegać w kilku etapach co ma pomóc zrozumieć występowanie hazardów od strony teoretycznej ( analiza tabel Karnaugha) oraz praktycznej (po uprzedniej detekcji hazardów, obserwacja przy użyciu oscyloskopu). Ostatnim etapem ćwiczenia jest zamodelowanie nowego układu bez hazardów. Rozważany przez nas układ został umieszczony w instrukcji do ćwiczenia.

# Przygotowanie do ćwiczenia

Pracę na stanowisku rozpoczęliśmy od sprawdzenia stanu technicznego przewodów , bramek logicznych oraz oscyloskopu.

# Przebieg ćwiczenia

Dany jest układ o schemacie logicznym podanym poniżej.



## Plan wykonania zadania:

- 1) Teoretyczna analiza układu w oparciu o tabele Karnaugh'a.
- 2) Zmontowanie rzeczywistego układu na stanowisku laboratoryjnym.
- 3) Detekcja hazardów na poszczególnych bramkach oraz określenie typu hazardu.
- 4) Obserwacja hazardów na poszczególnych bramkach oraz wyjściu przy użyciu oscyloskopu.
- 5) Eliminacja hazardów poprzez zmianę modelu układu.
- 6) Sformułowanie wniosków i obserwacji.

Ad 1,2.

Bramka 5

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 1  | 1  | 0  | 1  |
| 1    | 1  | 1  | 0  | 1  |

Nie występują hazardy

Bramka 4

Zgodnie z prawem De Morgana

$$\overline{(5)} + \overline{(B)} = (4)$$

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 0  | 0  | 1  | 0  |
| 1    | 0  | 0  | 1  | 0  |

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 1  | 0  | 0  | 1  |
| 1    | 1  | 0  | 0  | 1  |

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 1  | 0  | 1  | 1  |
| 1    | 1  | 0  | 1  | 1  |

Na wyjściu bramki logicznej numer 4 występuje hazard statyczny jedynki oznaczony pogrubieniem.

#### Bramka 3

$$\overline{(5)} + \overline{(A)} = (3)$$

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 0  | 0  | 1  | 0  |
| 1    | 0  | 0  | 1  | 0  |

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 1  | 1  | 0  | 0  |
| 1    | 1  | 1  | 0  | 0  |

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 1  | 1  | 1  | 0  |
| 1    | 1  | 1  | 1  | 0  |

Na wyjściu bramki numer (3) występuje hazard statyczny jedynki.

### Bramka 2

$$\overline{(4)} + \overline{(C)} = (2)$$

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 0  | 1  | 0  | 0  |
| 1    | 0  | 1  | 0  | 0  |

| C∖AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 1  | 1  | 1  | 1  |
| 1    | 0  | 0  | 0  | 0  |

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 1  | 1  | 1  | 1  |
| 1    | 0  | 1  | 0  | 0  |

Na wyjściu bramki numer (2) zaobserwujemy hazard statyczny, przenoszony przez bramkę numer (4).

#### Bramka 1

$$\overline{(2)} + \overline{(3)} = (1)$$

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 0  | 0  | 0  | 0  |
| 1    | 1  | 0  | 1  | 1  |

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 0  | 0  | 0  | 1  |
| 1    | 0  | 0  | 0  | 1  |

| C\AB | 00 | 01 | 11 | 10 |
|------|----|----|----|----|
| 0    | 0  | 0  | 0  | 1  |
| 1    | 1  | 0  | 1  | 1  |

## **WNIOSKI Z ANALIZY TEORETYCZNEJ:**

- 1. Hazard statyczny w stanie działania może być zaobserwowany na wyjściu bramki (1) przy przejściu ze stanu (111) do stanu (101).
- 2. Hazard statyczny w stanie niedziałania może być zaobserwowany na wyjściu bramki (1) przy przejściu ze stanu (011) do stanu (010).
- 3. Hazard dynamiczny może wystąpić w następujących sytuacjach:
  - Ze stanu (111) do (110)
  - Ze stanu (010) do (001)

Aby zlikwidować hazardy dynamiczne, koniecznym jest zaprojektować układ bez hazardów statycznych. Zagadnienie to realizuje poniższa funkcja:

$$F = a\bar{b} + ac + c\bar{b}$$

Z praw De Morgana

$$F = \overline{\overline{a\overline{b}}} \, \overline{ac} \, \overline{\overline{c}\overline{b}}$$

3



Schemat układu bez hazardów, spełniający funkcję logiczną analizowanego układu.

# Zbudowany układ rzeczywisty:



Zdj. 1 Stanowisko pracy w trakcie wykonywania ćwiczenia

#### Pomiar 1:



Zdj. 1 Konfiguracja badanego stanowiska

| Α | В                  | С |
|---|--------------------|---|
| 1 | Wejście generatora | 1 |

Tab. 1 Konfiguracja stanów logicznych wejść układu



Zdj. 2 Hazardy Statyczne

Na zdjęciu numer 1 widać wskazania oscyloskopu w trybie analizatora logicznego dla sond ponumerowanych od D1 do D5, które zostały podłączone do wyjść odpowiednio ponumerowanych bramek. Sygnały wejściowe badanego układu zostały ustalone zgodnie z tabelą nr . Odczyt sondy D0 jest przebiegiem generatora sygnałów. Można tutaj zauważyć występowanie hazardu statycznego "1" dla bramek nr 1 i 4 oraz hazard statyczny "0" dla bramki numer 2.

#### Pomiar 2:



Zdj. 3 Konfiguracja badanego stanowiska

| Α                  | В | С |
|--------------------|---|---|
| Wejście generatora | 1 | 1 |

Tab. 2 Konfiguracja stanów logicznych wejść układu



Zdj. 4 Hazardy statyczne i hazard dynamiczny

Do badanego układu doprowadzono wejścia zgodne z tabelą 2. Na oscyloskopie można było zauważyć występowanie hazardów statycznych "1" dla bramki numer 3, jak również hazard statyczny "0" dla bramki 5 (w pobliżu trzeciej linii podziałki od prawej strony). Szczególną uwagę powinien jednak przykuć hazard dynamiczny widoczny na wyjściu bramki numer 1.

Kolejnym zadaniem było wyeliminowanie wykrytego hazardu dynamicznego. W tym celu zmodyfikowano badany układ.



Zdj. 6 Zmodyfikowany układ

Wprowadzając poprawki wynikające z wniosków analizy teoretycznej, udało się wyeliminować hazard statyczny "1" na bramce numer 3, a tym samym rozwiązać problem hazardu dynamicznego na wyjściu bramki numer 1.

#### **WNIOSKI:**

 Hazard występuje, gdy stan sygnału wyjściowego jest uzależniony od czasu propagacji sygnału przez poszczególne układy logiczne – powoduje to zmiany stanu, które przy nieskończenie szybkiej propagacji sygnału nie występowałyby. Dlatego, zawsze należy przeprowadzić analizę teoretyczną w celu ich wykrycia i eliminacji.