Seguridad en Servicios Web en C++

Antonio Espín Herranz

Contenidos

- Autenticación y autorización: OAuth2, JWT y Basic Auth.
- Protección contra ataques comunes (CSRF, XSS, SQL Injection).
- Cifrado y TLS en servicios web.
- Configuración de logs y auditoría de accesos

Autenticación y autorización: OAuth2, JWT y Basic Auth

OAuth2

JWT

JWT

- JSON Web Tokens
 - Formato compacto y seguro
 - Sirve para transmitir información entre partes como un objeto JSON
 - Se utiliza para autenticación y autorización

- Tiene 3 partes codificadas en Base64
 - HEADER.PAYLOAD.SIGNATURE

jwt Header

• Contiene el tipo de token y el algoritmo de firma:

jwt - PayLoad

• Contiene los datos (claims) que quieres transmitir, como el usuario, roles, expiración, etc.

```
{
    "sub": "1234567890",
    "name": "Antonio",
    "admin": true,
    "exp": 1699999999
```

jwt - Signature

• Es una firma digital generada con el algoritmo especificado (como HMAC o RSA), que garantiza que el contenido no ha sido alterado.

JWT se utiliza

• Autenticación de usuarios: El servidor genera un token tras el login y el cliente lo usa en cada petición.

Autorización: El token puede incluir roles o permisos.

• Intercambio seguro de datos: Entre servicios o microservicios.

Tipo de Seguridad que ofrece

- JWT no cifra el contenido, pero sí lo firma. Proporciona:
 - Integridad: Nadie puede modificar el contenido sin invalidar la firma.
 - Confidencialidad: Cualquiera puede leer el contenido si intercepta el token (por eso se recomienda usar HTTPS).
 - Autenticidad: El receptor puede verificar que el token fue emitido por una fuente confiable.

Tipos de JWT

Tipo	Seguridad	Uso común
JWS	Firmado	Autenticación y autorización
JWE	Encriptado	Transmisión de datos sensibles

Tipos de proyectos con JWT y C++

- Servidores REST en C++ (con Pistache, Boost.Beast, Crow, etc.)
- Microservicios en entornos embebidos
- Aplicaciones cliente que consumen APIs protegidas
- Sistemas distribuidos que necesitan autenticación sin sesiones
- Integración con sistemas web donde C++ actúa como backend o middleware

Trabajar en jwt con C++

 La biblioteca más popular en jwt-cpp. Es ligera moderna y compatible con C++11.

• Se puede crear, firmar y verificar tokens fácilmente y soporta algoritmos como HS256, RS256 y ES256.

Flujo jwt

Inicio de sesión:

El cliente envía las credenciales al servidor

Creación del JWT:

• El servidor valida las credenciales y genera un token firmado

Validación del JWT:

• El cliente guarda el token y lo envía al servidor en futuras peticiones, el servidor lo verifica

Solicitud y respuesta:

• Si el token es válido, el servidor procesa la solicitud y responde.

Instalar jwt-cpp en Visual Studio

- Con el botón derecho sobre el proyecto:
- Administrar paquetes NuGet
- Examinar: jwt-cpp

Crear un token

Basic Auth

Basic Auth

Protección contra ataques comunes

CSRF

Cross-Site Request Forgery

- **CSRF** es un tipo de ataque en el que un usuario autenticado en un sitio web es engañado para ejecutar una acción no deseada en ese mismo sitio, sin saberlo.
- Nos podemos proteger de estos ataques utilizando las librerías: Crow, Boost.Beast o Pistache.

XSS

- XSS (Cross-Site Scripting) es una de las vulnerabilidades más comunes y peligrosas en aplicaciones web.
- Afecta principalmente a lenguajes como JavaScript, los servicios web escritos en C++ también pueden ser vulnerables si no se validan correctamente los datos que se envían al navegador.
- XSS es un tipo de ataque que permite a un atacante inyectar código malicioso (generalmente JavaScript) en páginas web que otros usuarios visitan.
 - El código se ejecuta en el navegador de la víctima, no en el servidor, lo que lo hace difícil de detectar.

¿Qué puede hacer un ataque XSS?

- Robar cookies o tokens de sesión
- Suplantar identidad del usuario
- Redirigir a sitios maliciosos
- Mostrar contenido falso o engañoso
- Ejecutar acciones en nombre del usuario

Tipos de XSS

Tipo de XSS	Descripción	
Reflejado	El script se envía en la URL y se refleja directamente en la respuesta	
Almacenado	El script se guarda en la base de datos y se muestra a otros usuarios	
Basado en El script se ejecuta por el navegador al manipular el DOM con datos maliciosos		

SQL Injection

• SQL Injection (SQLi) es un ataque que consiste en insertar código SQL malicioso en campos de entrada (como formularios o URLs) para manipular las consultas que tu aplicación envía a la base de datos.

- ¿Qué se puede hacer con SQLi?
 - Ver o robar datos confidenciales (usuarios, contraseñas, tarjetas)
 - Borrar o modificar registros
 - Eludir autenticaciones
 - Tomar control del servidor de base de datos
 - Es como si el atacante escribiera comandos directamente en tu consola SQL, aprovechando que tu aplicación confía ciegamente en lo que el usuario escribe

Ejemplo

std::string query = "SELECT * FROM usuarios WHERE nombre = " + nombre + "'";

• Se añade OR '1' = '1'

Cifrado y TLS en servicios web

Configuración de logs y auditoría de accesos

Herramientas

- Fluentd es un colector de logs de código abierto que:
 - Recolecta logs desde múltiples fuentes (archivos, syslog, stdout, etc.)
 - Los transforma y filtra (formato, etiquetas, niveles)
 - Los reenvía a destinos como Elasticsearch, Kafka, S3, etc.
 - Es parte de la **Cloud Native Computing Foundation (CNCF)** y se usa en producción por empresas como Amazon, Microsoft y Google.

Elasticsearch

- Es un motor de búsqueda y análisis de texto distribuido que:
 - Indexa logs en tiempo real
 - Permite búsquedas complejas y agregaciones
 - Se integra con Kibana para visualización

Integración Fluentd y Elasticsearch

- Fluentd recolecta los logs del servicio C++ (por ejemplo, desde archivos generados por spdlog, Boost.Log, etc.)
- Los transforma (añade etiquetas, convierte a JSON, etc.)
- Los envía a Elasticsearch, donde se almacenan e indexan
- Kibana (opcional) los visualiza en dashboards interactivos

Instalación en Docker

Fluentd

```
docker run -d -p 24224:24224 -p 24224:24224/udp \
-v /path/to/fluent.conf:/fluentd/etc/fluent.conf \
fluent/fluentd
```

Elasticsearch

```
docker run -d -p 9200:9200 -p 9300:9300 \
  -e "discovery.type=single-node" \
  elasticsearch:8.12.0
```

Se puede auditar

- Accesos a endpoints
- Errores HTTP
- IPs de origen
- Usuarios autenticados
- Cambios en datos sensibles