boruta

January 10, 2023

1 Paquetes a utilizar

```
[]: from boruta import BorutaPy
from sklearn import metrics
import pandas as pd
import numpy as np
import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder, StandardScaler
```

2 Base de datos

```
[]: df = pd.read_csv("data/wisconsin_breast_cancer_dataset.csv")

print(df.describe().T)
print(df.isnull().sum())
df = df.dropna()
df = df.rename(columns={'diagnosis':'Label'})
print(df.dtypes)
df['Label'].value_counts()
```

```
\
                                                              min
                   count
                                  mean
                                                 std
id
                   569.0 3.037183e+07 1.250206e+08
                                                      8670.000000
                   569.0 1.412729e+01 3.524049e+00
radius_mean
                                                         6.981000
texture_mean
                   569.0 1.928965e+01 4.301036e+00
                                                         9.710000
                   569.0 9.196903e+01 2.429898e+01
perimeter_mean
                                                        43.790000
area_mean
                   569.0 6.548891e+02 3.519141e+02
                                                       143.500000
{\tt smoothness\_mean}
                   569.0 9.636028e-02 1.406413e-02
                                                         0.052630
                   569.0 1.043410e-01 5.281276e-02
compactness_mean
                                                         0.019380
concavity_mean
                   569.0 8.879932e-02 7.971981e-02
                                                         0.000000
points_mean
                   569.0 4.891915e-02 3.880284e-02
                                                         0.000000
symmetry_mean
                   569.0 1.811619e-01
                                       2.741428e-02
                                                         0.106000
                   569.0 6.279761e-02 7.060363e-03
dimension_mean
                                                         0.049960
radius_se
                   569.0 4.051721e-01 2.773127e-01
                                                         0.111500
                   569.0 1.216853e+00 5.516484e-01
texture_se
                                                         0.360200
perimeter_se
                   569.0 2.866059e+00 2.021855e+00
                                                         0.757000
                   569.0 4.033708e+01 4.549101e+01
area_se
                                                         6.802000
```

smoothness_se	569.0 7.04097			
compactness_se	569.0 2.54781			
concavity_se	569.0 3.18937			
points_se	569.0 1.17961			
symmetry_se	569.0 2.05423			
dimension_se	569.0 3.79490	04e-03 2.64607		
radius_worst	569.0 1.62691			
texture_worst	569.0 2.56772			0000
perimeter_worst	569.0 1.07261	12e+02 3.36025	4e+01 50.410	0000
area_worst	569.0 8.80583	31e+02 5.693570	0e+02 185.200	0000
${\tt smoothness_worst}$	569.0 1.32368	36e-01 2.283243	3e-02 0.071	.170
compactness_worst	569.0 2.54265	50e-01 1.57336	5e-01 0.027	'290
concavity_worst	569.0 2.72188	35e-01 2.086243	3e-01 0.000	0000
points_worst	569.0 1.14606	32e-01 6.57323	4e-02 0.000	0000
symmetry_worst	569.0 2.90075	66e-01 6.18674	7e-02 0.156	500
dimension_worst	569.0 8.39458	32e-02 1.80612	7e-02 0.055	5040
	25%	50%	75%	max
id	869218.000000	906024.000000	8.813129e+06	9.113205e+08
radius_mean	11.700000	13.370000	1.578000e+01	2.811000e+01
texture_mean	16.170000	18.840000	2.180000e+01	3.928000e+01
perimeter_mean	75.170000	86.240000	1.041000e+02	1.885000e+02
area_mean	420.300000	551.100000	7.827000e+02	2.501000e+03
smoothness_mean	0.086370	0.095870	1.053000e-01	1.634000e-01
compactness_mean	0.064920	0.092630	1.304000e-01	3.454000e-01
concavity_mean	0.029560	0.061540	1.307000e-01	4.268000e-01
points_mean	0.020310	0.033500	7.400000e-02	2.012000e-01
symmetry_mean	0.161900	0.179200	1.957000e-01	3.040000e-01
dimension_mean	0.057700	0.061540	6.612000e-02	9.744000e-02
radius_se	0.232400	0.324200	4.789000e-01	2.873000e+00
texture_se	0.833900	1.108000	1.474000e+00	4.885000e+00
perimeter_se	1.606000	2.287000	3.357000e+00	2.198000e+01
area_se	17.850000	24.530000	4.519000e+01	5.422000e+02
smoothness_se	0.005169	0.006380	8.146000e-03	3.113000e-02
compactness_se	0.013080	0.020450	3.245000e-02	1.354000e-01
concavity_se	0.015090	0.025890	4.205000e-02	3.960000e-01
points_se	0.007638	0.010930	1.471000e-02	5.279000e-02
symmetry_se	0.015160	0.018730	2.348000e-02	7.895000e-02
dimension_se	0.002248	0.003187	4.558000e-03	2.984000e-02
radius_worst	13.010000	14.970000	1.879000e+01	3.604000e+01
texture_worst	21.080000	25.410000	2.972000e+01	4.954000e+01
perimeter_worst	84.110000	97.660000	1.254000e+02	2.512000e+02
area_worst	515.300000	686.500000	1.084000e+03	4.254000e+03
smoothness_worst	0.116600	0.131300	1.460000e-01	2.226000e-01
compactness_worst	0.147200	0.211900	3.391000e-01	1.058000e+00
concavity_worst	0.114500	0.226700	3.829000e-01	1.252000e+00
points_worst	0.064930	0.099930	1.614000e-01	2.910000e-01
symmetry_worst	0.250400	0.282200	3.179000e-01	6.638000e-01
· · ·				

dimension_worst	0.071460	0.080040	9.208000e-02	2.075000e-01
id	0			
diagnosis	0			
radius_mean	0			
texture_mean	0			
perimeter_mean	0			
area_mean	0			
smoothness_mean	0			
compactness_mean	0			
concavity_mean	0			
points_mean	0			
symmetry_mean	0			
dimension_mean	0			
radius_se	0			
texture_se	0			
perimeter_se	0			
area_se	0			
smoothness_se	0			
compactness_se	0			
concavity_se	0			
points_se	0			
symmetry_se	0			
dimension_se	0			
radius_worst	0			
texture_worst	0			
perimeter_worst	0			
area_worst	0			
smoothness_worst	0			
compactness_worst	0			
concavity_worst	0			
points_worst	0			
symmetry_worst	0			
dimension_worst	0			
dtype: int64	V			
id	int64			
Label	object			
radius_mean	float64			
texture_mean	float64			
perimeter_mean	float64			
area_mean	float64			
smoothness_mean	float64			
	float64			
compactness_mean				
concavity_mean	float64			
points_mean	float64			
symmetry_mean	float64			
dimension_mean	float64			
radius_se	float64			
texture_se	float64			

```
perimeter_se
                          float64
                          float64
    area_se
    smoothness_se
                          float64
    compactness_se
                          float64
    concavity_se
                          float64
    points_se
                          float64
    symmetry_se
                          float64
    dimension_se
                          float64
    radius_worst
                          float64
    texture_worst
                          float64
    perimeter_worst
                          float64
                          float64
    area_worst
    smoothness_worst
                          float64
    compactness_worst
                          float64
    concavity_worst
                          float64
    points_worst
                          float64
    symmetry_worst
                          float64
    dimension_worst
                          float64
    dtype: object
[]: B
          357
    Μ
          212
     Name: Label, dtype: int64
```

3 Variable dependiente que debe predecirse

```
[]: y = df["Label"].values

# Codificación de datos categóricos
labelencoder = LabelEncoder()
Y = labelencoder.fit_transform(y)
```

4 Definir x, normalizar valores y definir variables independientes

```
[]: X = df.drop(labels = ["Label", "id"], axis=1)

feature_names = np.array(X.columns)

scaler = StandardScaler()
scaler.fit(X)
X = scaler.transform(X)
```

5 Train and test para verificar la precisión después de ajustar el modelo

```
[]: X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.25, userandom_state=42)
```

6 XGBOOST para ser utilizado por Boruta

```
[ ]: model = xgb.XGBClassifier()
```

- Crear funciones de sombra: funciones aleatorias y valores aleatorios en columnas
- Entrenar Random Forest / XGBoost y calcular la importancia de la característica a través de la disminución media de la impureza
- Comprobar si las características reales tienen mayor importancia en comparación con las características de sombra
- Repetir esto para cada iteración
- Si la función original funcionó mejor, marcarla como importante

```
[]: # definir el método de selección de características de Boruta
feat_selector = BorutaPy(model, n_estimators='auto', verbose=2, random_state=1)

# encontrar todas las características relevantes
feat_selector.fit(X_train, y_train)

# llamar a transform() en X para filtrarlo a las características seleccionadas
X_filtered = feat_selector.transform(X_train) # Aplicar selección de_
características y devolver datos transformados
```

Iteration: 1 / 100 Confirmed: 0 Tentative: 30 Rejected: 0 Iteration: 2 / 100 Confirmed: 0 Tentative: 30 Rejected: 0 3 / 100 Iteration: Confirmed: 0 30 Tentative: Rejected: 0 4 / 100 Iteration: Confirmed: 0 Tentative: 30 Rejected: 0 Iteration: 5 / 100 Confirmed: 0

30

Tentative:

Iteration: 6 / 100

Confirmed: 0
Tentative: 30
Rejected: 0

Iteration: 7 / 100

Confirmed: 0
Tentative: 30
Rejected: 0

Iteration: 8 / 100

Confirmed: 5
Tentative: 13
Rejected: 12
Iteration: 9 / 100
Confirmed: 5
Tentative: 13
Rejected: 12

Iteration: 10 / 100

Confirmed: 5 Tentative: 13 Rejected: 12

Iteration: 11 / 100

Confirmed: 5 Tentative: 13 Rejected: 12

Iteration: 12 / 100

Confirmed: 5
Tentative: 13
Rejected: 12

Iteration: 13 / 100

Confirmed: 5 Tentative: 12 Rejected: 13

Iteration: 14 / 100

Confirmed: 5 Tentative: 12 Rejected: 13

Iteration: 15 / 100

Confirmed: 5 Tentative: 12 Rejected: 13

Iteration: 16 / 100

Confirmed: 5
Tentative: 9
Rejected: 16

Iteration: 17 / 100

Confirmed: 5
Tentative: 9

Iteration: 18 / 100

Confirmed: 5 Tentative: 9 Rejected: 16

Iteration: 19 / 100

Confirmed: 5 Tentative: 9 Rejected: 16

Iteration: 20 / 100

Confirmed: 5
Tentative: 9
Rejected: 16
Theretien: 21 /

Iteration: 21 / 100

Confirmed: 5 Tentative: 9 Rejected: 16

Iteration: 22 / 100

Confirmed: 5 Tentative: 9 Rejected: 16

Iteration: 23 / 100

Confirmed: 5 Tentative: 9 Rejected: 16

Iteration: 24 / 100

Confirmed: 5 Tentative: 9 Rejected: 16

Iteration: 25 / 100

Confirmed: 5
Tentative: 9
Rejected: 16

Iteration: 26 / 100

Confirmed: 5 Tentative: 8 Rejected: 17

Iteration: 27 / 100

Confirmed: 5 Tentative: 8 Rejected: 17

Iteration: 28 / 100

Confirmed: 5
Tentative: 8
Rejected: 17

Iteration: 29 / 100

Confirmed: 5
Tentative: 8

Iteration: 30 / 100

Confirmed: 5 Tentative: 8 Rejected: 17

Iteration: 31 / 100

Confirmed: 5 Tentative: 8 Rejected: 17

Iteration: 32 / 100

Confirmed: 6
Tentative: 7
Rejected: 17
Iteration: 33 / 100

Confirmed: 6 Tentative: 7 Rejected: 17

Iteration: 34 / 100

Confirmed: 6 Tentative: 7 Rejected: 17

Iteration: 35 / 100

Confirmed: 6 Tentative: 7 Rejected: 17

Iteration: 36 / 100

Confirmed: 6 Tentative: 7 Rejected: 17

Iteration: 37 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 38 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 39 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 40 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 41 / 100

Confirmed: 7
Tentative: 6

Iteration: 42 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 43 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 44 / 100

Confirmed: 7
Tentative: 6
Rejected: 17
Iteration: 45 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 46 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 47 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 48 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 49 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 50 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 51 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 52 / 100

Confirmed: 7
Tentative: 6
Rejected: 17

Iteration: 53 / 100

Confirmed: 7
Tentative: 6

Iteration: 54 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 55 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 56 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 57 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 58 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 59 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 60 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 61 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 62 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 63 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 64 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 65 / 100

Confirmed: 8
Tentative: 5

Iteration: 66 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 67 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 68 / 100

Confirmed: 8
Tentative: 5
Rejected: 17
Iteration: 69 / 100

Confirmed: 8

Tentative: 5
Rejected: 17

Iteration: 70 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 71 / 100

Confirmed: 8
Tentative: 5
Rejected: 17

Iteration: 72 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 73 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 74 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 75 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 76 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 77 / 100

Confirmed: 8
Tentative: 4

Iteration: 78 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 79 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 80 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 81 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 82 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 83 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 84 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 85 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 86 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 87 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 88 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 89 / 100

Confirmed: 8
Tentative: 4

Iteration: 90 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 91 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 92 / 100

Confirmed: 8
Tentative: 4
Rejected: 18

Iteration: 93 / 100

Confirmed: 9
Tentative: 3
Rejected: 18

Iteration: 94 / 100

Confirmed: 9
Tentative: 3
Rejected: 18

Iteration: 95 / 100

Confirmed: 9
Tentative: 3
Rejected: 18

Iteration: 96 / 100

Confirmed: 9
Tentative: 3
Rejected: 18

Iteration: 97 / 100

Confirmed: 9
Tentative: 3
Rejected: 18

Iteration: 98 / 100

Confirmed: 9
Tentative: 3
Rejected: 18

Iteration: 99 / 100

Confirmed: 9
Tentative: 3
Rejected: 18

BorutaPy finished running.

Iteration: 100 / 100

Confirmed: 9
Tentative: 1

```
[]: """
     Revisar las características
     # zip nombres de características, rangos y decisiones
     feature_ranks = list(zip(feature_names,
                              feat_selector.ranking_,
                              feat_selector.support_))
     # imprimir los resultados
     for feat in feature_ranks:
         print('Feature: {:<30} Rank: {}, Keep: {}'.format(feat[0], feat[1], __</pre>

¬feat[2]))
     # Ahora usar el subconjunto de funciones para ajustar el modelo XGBoost en losu
      ⇔datos de entrenamiento
     xgb_model = xgb.XGBClassifier()
     xgb_model.fit(X_filtered, y_train)
     # Ahora predecir con datos de prueba usando el modelo entrenado
     # Primero aplicar la transformación del selector de funciones para asegurarseu
     de que se seleccionen las mismas funciones de los datos de prueba
     X_test_filtered = feat_selector.transform(X_test)
     prediction_xgb = xgb_model.predict(X_test_filtered)
     # Imprimir precisión
     print("Precisión = ", metrics.accuracy_score(y_test, prediction_xgb))
```

```
Feature: radius_mean
                                       Rank: 8, Keep: False
Feature: texture_mean
                                       Rank: 1, Keep: True
                                       Rank: 2, Keep: False
Feature: perimeter_mean
Feature: area_mean
                                       Rank: 1, Keep: True
                                       Rank: 13, Keep: False
Feature: smoothness_mean
Feature: compactness_mean
                                       Rank: 17, Keep: False
Feature: concavity_mean
                                       Rank: 4, Keep: False
Feature: points_mean
                                       Rank: 1, Keep: True
Feature: symmetry_mean
                                       Rank: 15, Keep: False
Feature: dimension mean
                                       Rank: 21, Keep: False
Feature: radius_se
                                       Rank: 5, Keep: False
                                       Rank: 9, Keep: False
Feature: texture_se
                                       Rank: 3, Keep: False
Feature: perimeter_se
                                       Rank: 10, Keep: False
Feature: area_se
Feature: smoothness_se
                                       Rank: 22, Keep: False
                                       Rank: 14, Keep: False
Feature: compactness_se
                                       Rank: 6, Keep: False
Feature: concavity_se
Feature: points_se
                                       Rank: 11, Keep: False
```

Feature: symmetry_se
Feature: dimension_se
Feature: radius_worst
Feature: texture_worst
Feature: perimeter_worst
Feature: area_worst

Feature: smoothness_worst
Feature: compactness_worst
Feature: concavity_worst
Feature: points_worst
Feature: symmetry_worst
Feature: dimension worst

Precisión = 0.9790209790209791

Rank: 20, Keep: False

Rank: 6, Keep: False

Rank: 1, Keep: True

Rank: 1, Keep: True

Rank: 1, Keep: True

Rank: 1, Keep: True

Rank: 12, Keep: False

Rank: 18, Keep: False

Rank: 1, Keep: True

Rank: 1, Keep: True

Rank: 15, Keep: False

Rank: 18, Keep: False