How reaction Wheels actually Work

How Reaction Wheels Actually Work

- Wires interfere with determining the correct balancing point
 - Additional weight changes the center of gravity
 - Disconnect all wires (use bluetooth instead)
 - Do not have wires that go to motors/CPU
 - Can only work when nothing interferes
- When testing the reaction wheel
 - Do not hold the reaction wheel just push it
 - Controller is not getting feedback so it goes full force
 - Let go when the wheels start working
- Determine the balancing point
 - Do everything only via bluetooth
 - Send c+ via serial monitor
 - Will start calibration procedure
 - C- will complete calibration procedure
 - Message that the angles is wrong if the stick is not vertical
 - Send c+
 - Place the stick vertically
 - Where it doesn't fall over to any side
 - Keep still
 - Send c-
 - Will begin to balance
 - Offsets values will be written to the EEPROM
- Check if everything is connected correctly
- When motors start turn to left/ right
 - Note which way motor is turning and which motor
- Use a battery/ cables are a bad idea
- Why voltage/ current are needed

Understanding Reaction wheels

Understanding reaction wheels

- Integral part of any satellite/ spacecraft
- Secures 3 axis attitude control without the need of external sources of torque
- Reaction wheels aka momentum wheels:
 - Flywheels that enable repositioning of space vehicles
 - Flywheel: device that contains rotational energy (conserves angular momentum)
 - Used to control position and attitude of a satellite
- Benefits:
 - Reduction in payload fraction needed for fuel
 - Extremely accurate
 - Enable precise repositioning
 - Benefits over thrusters:

- Saves space
- Light weight
- Easier to manage
- More precise
- EX:
 - Earth Observation satellites could not perform at top standards w/out reaction wheel assembly
- Thrusters are dependant on fuel
- Saves costs
- Avoid propellant issues
- How it works:
 - The object feels a force, and the reaction wheel triggers a counter rotation that is opposite to that force through the conservation of angular momentum
 - Only occurs in torque
 - Cannot move the spacecraft/ satellite
- To have complete control
 - Object needs 3 rws

Kepler Mission Operations Response to Wheel Anomalies

Larson_6.2014-1882 (1).pdf

- Mission goal:
 - Search for earth-sized planets in the habitable zone
 - Has identified 3.500 planets
- How it completed its goal:
 - Steady pointing of the aircraft
 - 4 reaction wheels, a set of fine guidance sensors, w/ science CCDs
- Reaction Wheel failure
 - Wheel 2 failed
 - Design only required 3 wheels for pointing accuracy
- Overview of mitigations and operations changes
 - Needed to preserve the reaction wheel health
 - Relied on those wheels

Introduction to Reaction Wheels

Introduction to Reaction Wheels – Space Steps

- Reaction wheel: wheel attached to a motor (motorized wheel)
 - If the object is spun one way, the wheel changes its spinning speed and moves in the opposite direction
 - Not as fast as the movement of the object itself
 - Makes spacecraft turn around objects center of mass
 - You need 3+ reaction wheels to turn the object in all directions
 - All have to be pointing in different directions
 - Used to make a spacecraft point in a certain direction
- Why reaction wheels are used:

- You want to point at things
- Want to stop your spacecraft from tumbling
 - Tumbles caused by magnetic fields, atmospheric drag, micrometeoroid, solar wind, oblateness of earth, gravity, and more
- Wheels are used to combat the twisting
- Mass of reaction wheel < mass spacecraft
 - Wheel has to change its speed a lot to twist spacecraft
 - Wheels on medium to large systems have 2k rev/min
- Angular momentum: how fast the wheel is turning
 - It's the wheel's change in speed the matters not how fast the wheel is spinning

Example of a single-axis reaction wheel

Single-Axis Reaction Wheel Self-Balancing System

Reaction Wheel Attitude Control

Charles' Labs - Reaction Wheel Attitude Control

- Physics behind reaction wheels is based on conservation of angular momentum
 - I(fly) * w(fly) + I(sat) * w(sat) = k
 - Change in w(sat) = -I(fly)/I(sat) * change in w(fly)
 - W = angular speed
 - I = moment of inertia -> opposition that the body exhibits
 - I = triple integral $p(x,y,y)||r||^2dV$
 - I for a cylinder:
 - $I = .5mR^2$
- Electronics:
 - You need something that can:
 - measure the current angular speed
 - Drive the stepper motor
 - Reun the control algorithms
 - LiPo battery
 - If the MPU and arduino are different volts you need a bi-directional level converter board
- Control Algorithms
 - Needs to control angular momentum
 - Control theory:
 - Stepper motor affects the rotation speed of the model. Measured by the gyroscope which gives feedback

PID Explained

PID Controller Explained • PID Explained

- Proportional Integral Derivative controller
 - Works by controlling an output to bring a process value to a certain point
- Key terms
 - Set point: a user entered value

- Process value: value that is being controlled
- Output: the controlled value of a PID controller
- Error: error value used to determine how to manipulate the output to bring the process value to the set point
 - Error = setpoint process value
- Explanation
 - The PID continuously monitors the error value
 - Calculates proportional, integral, and derivative values
 - Adds above values together to create the output
- Gain: multiplication factor
 - User can control how much effect the PID has on output
- P or Proportional
 - Calculated by multiplying P-Gain by the error
 - Used to have a large immediate reaction on the output
 - Error is smaller, influence of proportional value on output is less
 - Math:
 - kP = proportional gain, SP = set point, PV = process value, Err = Error,
 P = proportional
 - Err = SP PV
 - $P = kP \times Err$
- I or integral:
 - Calc by multiplying the I-gain by error then by cycle time of controller
 - Cycle time: how often controller performs PID calculation
 - Accumulates the value as total integral
 - Doesn't have as much immediate influence on output as proportional
 - Continuously accumulating
 - Takes longer for process value to reach set point
 - More effect integral will have on output
 - Math:
 - I = Integral, kI = Integral Gain, dt = cycle time of the controller, It = integral total
 - $I = kI \times Err \times dt$
 - It = It + I
- D or derivative
 - Calc by multiplying D gain by ramp rate of the process values
 - Used to predict where the process value is going
 - Bias the output in the opposite direction of proportional and integral
 - Prevents controller from overshooting set point
 - Math:
 - D = derivative, kD = derivative gain, dt = cycle time of controller, pErr
 = previous Error
 - $D = kD \times (Err pErr) / dt$
- Output
 - Calc by adding P I and D

- Determines how much effect PID have on output
- Math:
 - Output: P + It + D