Lecture 6: Isomorphism

Consider the symmetries of the chess board as shown in the figure. There are four symmetries $\{e, r, q_1, q_2\}$ here r is the rotation by angle TT about the axis going through the centre and perpendicular to the plane in which the chessboard lies. q_1 and q_2 are reflections.

about the two diagonals. The group multiplication table is given below

Now consider the set {1,3,5,7} with operation ax6= ab mod 8. This set forms a group and its group multiplication table is

If we define a mapping $\Phi: \{e,r,q_1,q_2\} \rightarrow \{1,3,5,7\}$ $\Phi(e)=1$, $\Phi(r)=3$, $\Phi(q_1)=5$, $\Phi(q_2)=7$ then we see that the bijective map Φ obeys $\Phi(a*b)=\Phi(a)*\Phi(b)$. The two groups are shuckurally identical.

Defn: (Iso morphism)

Two groups G and K are said to be isomorphic if there exists a bijective map $\Phi: G \to K$ such that $\Phi(a + b) = \overline{\Phi}(a) + \overline{\Phi}(b)$ for all a, b $\in G$.

Example 1:

(IR,t) is isomorphic to (IR ", x)

The map $\Phi(x) = e^x$ is a bijection from R to R^{pos} . Moreover $\Phi(x+y) = e^{x+y} = e^x \cdot e^y = \Phi(x) \Phi(y)$. Hence $\Phi(x) = e^x \cdot e^y = e^x \cdot e^x \cdot e^y = e^x \cdot e^x \cdot e^x \cdot e^y = e^x \cdot e^x \cdot e^x \cdot e^x \cdot e^x \cdot e^x \cdot e^y = e^x \cdot e$

Example 2: The group of rotational symmetries of a tetrahedron is isomorphic to A4

Example 3: Every infinite cyclic group is isomorphic to Z.

Let G be an infinite cyclic group and let x be the generator of G then the mapping $\Phi(x^m) = m$ is an isomorphism (check)

Example 4: If G is a finite cyclic group of order m then it is isomorphic to \mathbb{Z}_m . $\overline{\Phi}(w^k) = k \mod m$ is the isomorphism. (check!)

Example 5: $\{1, -1, i, -i\}$ under multiplication is a group. Notice that it is a cyclic group.

i and -i are generators. It is a group of order 4. Hence by example 4 it must be iso morphic to \mathbb{Z}_4 . $1 \to 0$, $-1 \to 2$, $1 \to 1$, $-1 \to 3$.

Example 6: Q is not isomorphic to Q POS

If there was an isomorphic mapping from Q to Q^{POS} then there exists $x \in Q$ s.b. $\Phi(x) = 2$. $\Phi(x_2 + x_2) = 2$. $\Rightarrow \Phi(x_2) \Phi(x_2) = 2$ (Since Φ is an isomorphism), which implies that $\Phi(x_2) = \sqrt{2}$, which is a contradiction. Therefore there is no isomorphic mapping from Q to Q^{POS}

If \$: G→K is an isomorphism then the following are true

- l ⊈(e) = e.
- 3. $|\mathcal{H}| = |\underline{\Phi}(\kappa)|^{-1}$
- 4. If G is cyclic then K is abelian.

5. If G is abelian then K is abelian.
6. If H≤G then Φ(H)={Φ(N): h∈H} is a subgroup of K
•
Proofs: easy try it
Consider the three groups A4, D6 and Z_{12} . They are all groups of order 12.
Are they isomorphic?
Z12 is cyclic so it is not isomorphic to either A4 or D6 neither of which
are cyclic. Moreover D6 has an element of order 6 (r) but A4 has no
element of order 6. Therefore De and A4 are not isomorphic.