1. Using the data set of two examination results design a predictor using logistic regression for predicting whether a student can get an admission in the institution. Use regularizer to further tune the parameters. Use 70 % data for training and rest 30% data for testing your predictor and calculate the efficiency of the predictor/hypothesis.

Hints: 1. You can pre process the data for convenience

2. You must use Python program for evaluating parameters using batch gradient descent algorithm (GDA). No function should be used for GDA.

Answer:

As the data is given in the word form, first we need to convert the data into specified format. I have converted it into csv format and read the data in the form of data frame.

Data visualization:

```
import seaborn as sns
# Use the 'hue' argument to provide a factor variable
sns.lmplot( x="X", y="Y", data=df, fit_reg=False,hue = 'label' ,legend=False)
plt.show()
```

It can be seen that data can be separated using a linear curve.

Normalisation: Mean shifting and variance scaling has been used for normalisation.

```
[4]: X = (X - np.mean(X))/np.std(X)
```

Adding bias term and initialising weights.

```
[5]: X.insert(loc = 0,column = 'bias',value=np.ones(X.shape[0]))
[6]: X_train, X_test,Y_train,Y_test = train_test_split(X,Y,test_size = 0.3)
[7]: w = np.random.normal(0,1,3)
```

Creating the Model.

Sigmoid function:

Sigmoid function is used for converting any value in the range of 0 and 1. It is also known as activation function for the logistic regression. It can be defined as follows.

```
def sigmoid(x):
    return 1/(1 + np.exp(-x))
```

Also for logistic regression we use log loss function for calculating the cost and we minimize this log loss function by using gradient Descent. Loss can be defined as

```
def loss(y,hx):
    return ((-y * np.log(hx)) - (1-y) * np.log(1-hx)).mean()
```

Gradient Descent algorithm for Logistic regression:

Gradient descent algorithm is as earlier except different cost functions and it's derivative.

```
def gradient_descent(w,alpha,num_iters):
    theta = []
    cost = []
    for i in range(num_iters):
        pred = np.dot(X_train,w)
        h = sigmoid(pred)
        error = loss(Y_train,h)
        grad = np.dot(X_train.T,h- Y_train)/Y_train.size
        theta.append(w)
        cost.append(error)
        w = w - alpha * grad
    return cost,theta
cost, theta = gradient_descent(w,0.6,100)
```

At every iteration, value of theta is stored in theta[] list. We can use last value of theta for our prediction.

Cost vs. Number of iteration curve.

```
13]: plt.plot(cost)
plt.xlabel("No. of iterations")
plt.ylabel("value of cost")

13]: Text(0,0.5,'value of cost')

0.55
0.50
0.45
0.50
0.45
0.50
0.25
0.20
0.20
0.300
0.25
0.20
0.00 300 400 500

No. of iterations
```

Predicting the class:

By taking sigmoid of the dot product, we can predict the class.

```
21]: def pred(data):
    return sigmoid(np.dot(data,theta))

22]: a = pred(X_test)

23]: a = a >= 0.5|
    pred = pd.DataFrame(data = {"label":a}).astype(int)
```

Calculating the accuracy:

Accuracy for logistic regression is defined as ratio of correctly classified points to the ratio of total points.

Plotting the decision Boundary:

Using Regularisation

For using regularisation, we need to add some polynomial features first in order to create a non-linear classifier. Three extra features has been added which is X^2, Y^2, X_Y. After adding these extra features we can try to re-run out algorithm.

Below Code has been implemented by me to add polynomial features.

Gradient descent algorithm can be modified a bit for regularisation. Below implementation has been used for calculation.

```
In [63]: lemda = 0.001

In [64]: def gradient_descent(w,alpha,num_iters,lemda):
    theta = []
    cost = []
    lembda_mat = lemda * np.identity(X.shape[1])
    lembda_mat[0][0] = 0
    for i in range(num_iters):
        pred = np.dot(X_train,w)
        h = sigmoid(pred)
        error = loss(Y_train,h) + lemda * np.dot(w.T, w)
        grad = (np.dot(X_train.T,h- Y_train) + np.matmul(lembda_mat,w))/Y_train.size
        theta.append(w)
        cost.append(error)
        w = w - alpha * grad
        return cost,theta

In [85]: cost, theta = gradient_descent(w,0.3,500,lemda)
```

Cost vs number of Iterations:

```
[19]: plt.plot(cost)
        plt.xlabel("No. of iterations")
        plt.ylabel("value of cost")
:[19]: Text(0,0.5,'value of cost')
          18
           16
           1.4
        12
5
5
10
         o.o na
           0.6
           0.4
                       100
                                200
                                        300
                                                400
                                                         500
                               No. of iterations
```

Calculating the accuracy:

Accuracy for logistic regression is defined as ratio of correctly classified points to the ratio of total points.

Observation:

We can see that accuracy has improved from 0.86667 to 0.93333 using regularisation

Plotting the Decision boundary:

```
import seaborn as sns
# Use the 'hue' argument to provide a factor variable
sns.lmplot( x="X", y="Y", data=plot_data, fit_reg=False,hue = 'label' ,legend=False)
x_0 = min(plot_data['X'])
x_1 = max(plot_data['X'])
plt.plot([x_0,1 * -(theta[0] + theta[1]* x_0)/theta[2]], [ x_1,1 * -(theta[0] + theta[1]* x_1)/theta[2] ],label = "Decis"
# Move the legend to an empty part of the plot
plt.legend(loc='best')
```

:[60]: <matplotlib.legend.Legend at 0x118910c88>

