JOOST BASTINGS / NLP II

NEURAL MACHINE TRANSLATION

PHRASE-BASED VS NEURAL MT

Phrase-based SMT (e.g. Moses):

- The basic units are phrases
- Similar phrases do not share statistical weight
- This leads to sparsity: many rare/unseen phrase pairs!

Continuous representations:

- Capture similarity (morphological, syntactic, semantic)
- Can be used in language models, overcoming sparsity
- Are sensitive to conditioning information
- Can be constructed for phrases and sentences

NEURAL MACHINE TRANSLATION

- A recent approach
- Build a neural net to read in the sentence and output a correct translation
- Most approaches consist of:
 - An encoder that captures the source sentence into a vector
 - A decoder that builds the target sentence from that vector

INTRODUCTION

LANGUAGE MODELLING

RECURRENT LANGUAGE MODEL (RLM)

- Gives the probability of a sequence of words $w_1...$ w_n
- Prob. is factorised as the product of each word given its previous words
- I transforms the input (a one-hot vector) into a word embedding
- O transforms the hidden layer into a next word prediction (output)

COMPUTATION

$$h_1 = \sigma(I \cdot w_1)$$

$$h_{i+1} = \sigma(R \cdot h_i + I \cdot w_{i+1})$$

$$o_{i+1} = O \cdot h_i$$

PART 1

RESCORING

INTRODUCTION TO RCTM

- A Recurrent Continuous Translation
 Model (RCTM) maps a sentence
 from the source language to a
 probability distribution over
 sentences in the target language
- So they can give us the probability of a translation

- There are 2 architectures that both make use of a recurrent language model for the generation of the target sentence
- They differ in how they condition that target language model on the source sentence

RCTM ESTIMATION

The probability of a target sentence $y_1...y_m$ given a source sentence (captured by vector c):

$$P(y \mid x) = \prod_{i=1}^{m} P(y_i \mid y_{1:i-1}, c)$$

AN RCTM HAS 2 PARTS

- 1. A recurrent language model (RLM) as in Mikolov et al. (2010) that **predicts** the next word given all previous words
- 2. An architecture that **conditions** that prediction on the source sentence (context) **c**

RCTM I

- RCTM I can be seen as a Recurrent Language Model with the source sentence representation c provided to each hidden layer
- c is built by a Convolutional Sentence Model (CSM)

So what is a CSM? (And what is convolution?)

Example: Convolution

CONVOLUTIONAL SENTENCE MODEL (CSM)

- A CSM models the representation of a sentence based on the continuous representations of the words in that sentence
- Let X contain source sentence $x_1...x_m$ (i.e. stacked vectors)
- A sequence of weight matrices K₂,
 K₃, ... will act as kernels

- We convolve X using the K_i,
 reducing its size by i − 1 every time
- The vector that results is the sentence representation c

RCTM I COMPUTATION

$$\mathbf{h}_1 = \sigma(\mathbf{I} \cdot \mathbf{y}_1 + \mathbf{W} \cdot \mathbf{c})$$

$$\mathbf{h}_{i+1} = \sigma(\mathbf{R} \cdot \mathbf{h}_i + \mathbf{I} \cdot \mathbf{y}_{i+1} + \mathbf{W} \cdot \mathbf{c})$$

$$o_{i+1} = O \cdot h_i$$

Almost the same computation as RLM!

RCTM II

RESCORING

- We can take the k best translations from an SMT system and score them with the RCTM
- Then we don't need to search in the space of possible translations ourselves!

K-BEST LIST

- 1. Entre le début des années 70, lorsque le Boeing 747 jumbo défini les voyages long-courriers, moderne et le tournant du siècle, le poids de l'Américain moyen des hommes de 40 à 49 ans a augmenté de 10 %, selon les données du ministère de la Santé américains (-20.9978)
- 2. Entre le début des années 1970 , lorsque le Boeing 747 jumbo défini les voyages long-courriers , moderne et le tournant du siècle , le poids de l' Américain moyen de sexe masculin de 40 à 49 ans a augmenté de 10 % , selon les données du ministère de la Santé américains . (-21.0182)
- 3. ...

RESCORING WITH RCTMS

The RCTMs are able to rescore *almost* just as well as cdec which uses 12 engineered features (5 translation models, 2 LMs, and a word penalty)

WMT-NT	2009	2010	2011	2012
RCTM 1	19.7	21.1	22.5	21.5
RCTM 2	19.8	21.1	22.5	21.7
cdec	19.9	21.2	22.6	21.8

DISCUSSION

- The perplexity of the RCTMs is much lower than IBM Model 1, even though they do not use word alignments
- RCTM II is shown to be sensitive to word order (worse perplexity when permuting the source sentences)

- Sampling from RCTM II gives wellformed sentences, showing sensitivity to syntax and semantics
- RCTMs were used successfully to rescore (rerank) 1000-best candidate translations from cdec, showing that they learned both translation and language modelling distributions

PART II

DECODING FEATURE

MOTIVATION

- So far we have used the neural net only after a phrase-based SMT system outputs its k-best list
- If we can use the neural net during decoding we can influence a much bigger space of translations!
- Devlin et al. (2014) introduce a Neural Network Joint Model with Bengio's NN Language Model as a starting point
- ▶ Technological contributions: 10.000x speed-up by pre-computation & self-normalisation

NEURAL NETWORK JOINT MODEL

$$P(Y | X) = \prod P(y_i | y_{i-1:i-n+1}, S_i)$$

- S_i is the source window that is most relevant to y_i
- \mathbf{y}_i is conditioned only on the n-1 previous words

DEFINING SOURCE WINDOW S_I

- Each target word yi is affiliated with 1 source word at index ai
- S_i is then the m-word source window centred at a_i

```
..., X<sub>ai-1</sub>, X<sub>ai</sub>, X<sub>ai+1</sub>, ...
```

- There must always be 1 affiliated source word
 - If multiple aligned words, take the middle one
 - If unaligned, use the affiliation of the closest aligned word, with preference to the right

EXAMPLE: CHINESE-TO-ENGLISH

- This is essentially an (n+m)-gram language model!
- In all experiments n=4 and m=11
- A traditional LM would be extremely sparse with this amount of context

RECAP: BENGIO'S NEURAL NETWORK LANGUAGE MODEL

ARCHITECTURE

- Like Bengio et al. (2003)
- Input is 3 target, 11 source word vectors
- Input vocabulary:16000 src & 16000 target
- Output vocabulary:32000 target words

TRAINING

- Training is similar to Bengio et al. (2003)
- This time we use a parallel corpus
- We maximise the log-likelihood of the target words y_i in the training data

```
L = \sum_{i} \log P(\mathbf{y}_{i})
```

Deptimisation: back-propagation with stochastic gradient ascent, mini batches

DECODING

- Language models are easily integrated in an SMT decoder
- We can store the target word span in state space, so a LM can compute the probability of the translation

Now we also store their affiliated source words

DISCUSSION

- +3.0 BLEU on top of a strong and feature-rich baseline
- +6.3 BLEU on top of a simple hierarchical baseline
- The model is simple: no linguistic resources, no feature engineering, and only a few hyper-parameters
- Any thoughts? Criticisms? What are the contributions?

PART III

END-TO-END NMT

END-TO-END NMT

- We still haven't actually translated using neural nets!
- Another approach looks at sentences more generally as sequences (of words)
- MT then basically is sequence-to-sequence translation
- Key problem (as before): Neural nets require fixed input and output dimensions, and with sentences these vary!

ENCODER-DECODER

ENCODER-DECODER (FORMAL)

Words are one-hot vectors

Example: $\mathbf{x}_1 = [0, 0, 0, 1, 0, 0]^T$

A sentence is a sequence of words

$$x_{1:n} = (x_1, x_2, ..., x_n)$$

$$y_{1:m} = (y_1, y_2, ..., y_m)$$

ENCODER-DECODER (FORMAL)

Calculate the hidden states of the encoder RNN:

- Use last hidden state as context vector, i.e. $c = h_n$
- ► Get translation probability from the decoder RNN:

$$p(y_{1:m}) = \prod_{i=1}^{m} g(y_{i-1}, s_i, c)$$
softmax

ENCODER-DECODER ISSUES

- One fixed-size vector needs to capture the meaning of the whole src sentence
- This includes very long sentences
- Cho et al. (2014) showed that this is problematic
- Sutskever et al. (2014) found that reversing the input sentence helps

LONG SHORT-TERM MEMORY (LSTM)

- A type of RNN introduced by Hochreiter and Schmidhuber (1997)
- Each unit has input (i), forget (f) and output (o) gates
- The gates of a single node protect it from irrelevant inputs, and protect the other nodes from a currently irrelevant activation

LSTM

GATED RECURRENT UNIT (GRU)

- Introduced by Cho et al. (2014)
- Simpler version of LSTM
- Each unit has an update gate (z) and a reset gate (r)

GRU

TRAINING

- Training objective: $\frac{1}{|S|} \sum_{(X,Y) \in S} \log p(Y|X)$
- Sutskever et al. use:
 - ▶ 4 layers, each 1000 cells, and 1000-dimensional word embeddings
 - Input vocabulary 160k, output vocabulary 80k
 - A sentence is represented by 8000 real numbers
 - Training with stochastic gradient descent, in mini batches
 - 10 days on an 8-GPU machine!

DECODING

After training, we would like to get the most likely translation

```
\hat{Y} = arg max p(Y | X)
```

- We can find it with a beam search:
 - Go from left to right, always
 keeping a small number of partial
 hypotheses (a prefix of Y)
 - At each time step, expand with each possible word
 - ... then keep only the best B hypotheses

EXPERIMENTS

WMT '14 task (English to French)

Baseline	33.30
LSTM	26.17
LSTM (reversed)	30.59
5 reversed LSTMs, beam size 12	34.81
Best WMT result	37.0

Rescoring the baseline with the best setup gives BLEU = 36.5

DISCUSSION

- The decoded translations did not outperform the state-of-the-art on WMT'14
- ... but this was the first time that a pure neural MT system outperformed a phrase-based SMT baseline on a large scale MT task
- Surprising: LSTM did well on long sentences
- Initial results reported only on the (relatively easy) English-French task
- ▶ In WMT '15, NMT systems ranked first on En→Cs and En→De

SUMMARY

- Neural networks can be used for:
 - 1. Rescoring k-best lists
 - 2. As a powerful decoding feature
 - 3. End-to-end Machine Translation
- Only Devlin et al. (2014)'s model can be easily integrated in a beamsearch decoder, because it uses a limited source window

- Sadly, not all papers report pure MT results, so we cannot compare the various approaches very well
- Recent work focuses on incorporating language models, subword units, and using attention

NMT WITH ATTENTION (BAHDANAU ET AL., 2015)

CALCULATING ATTENTION WEIGHTS (FFNN)

REFERENCES

- Bahdanau et al. (2015). Neural Machine Translation by Jointly Learning to Align and Translate.
- ▶ Bengio et al. (2003). A Neural Probabilistic Language Model.
- Cho et al. (2014). Learning Phrase Representations using RNN Encoder-Decoder for SMT.
- Devlin et al. (2014). Fast and Robust Neural Network Joint Models for SMT.
- Nalchbrenner and Blunsom (2013). Recurrent Continuous Translation Models.
- Sutskever et al. (2014). Sequence to Sequence Learning with Neural Networks.