Снова индукция

11 января • 8 класс

Правила. Как минимум половину задач нужно сдать письменно. Считайте, что каждая задача, сданная письменно, даёт вам купон на устную сдачу (одной задачи). Записывать нужно самодостаточный текст, а не набросок или поток мыслей! Удачи!

Задачи для самостоятельного решения

Задача 1. Докажите, что $1+3+5+7+\cdots+(2n-1)=n^2$.

Задача 2. Докажите, что $(7^{2n} - 1) \vdots 24$.

Задача 3. (Неравенство Бернулли) Докажите, что $(1+a)^n \ge 1 + an$ при a > -1.

Задача 4. Докажите, что при каждом натуральном n>3 существует выпуклый n-угольник, имеющий ровно три острых угла.

Задача 5. Докажите, что $\left(1-\frac{1}{4}\right)\left(1-\frac{1}{9}\right)\cdots\left(1-\frac{1}{n^2}\right)=\frac{n+1}{2n}$. **Задача 6.** Последовательность натуральных чисел a_n начинается с $a_0=0$ и $a_n=3a_{n-1}+$

2. Докажите, что $a_n = 3^n - 1$.

Задача 7. (a) $2^n > 2n + 1$ при натуральных n > 2.

(b) $2^n > n^2$ при натуральных n > 4.

Задача 8. Докажите, что $(4^n + 15n - 1) \vdots 9$.

Задача 9. (а) Докажите, что из 2^{n+1} натуральных чисел можно выбрать ровно 2^n , сумма которых делится на 2^n . (b) Докажите, что хватит и $2^{n+1}-1$ числа.

Задача 10. На сколько частей делят плоскость n прямых, если среди них нет параллельных и никакие три не пересекаются в одной точке?

Задача 11. Докажите, что $\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot 2n} < \frac{1}{\sqrt{3n+1}}$.

Задача 12. На какое наибольшее число частей могут разбивать плоскость n окружностей?

Задача 13. (а) Докажите, что сумма углов выпуклого шестиугольника равна 720° .

(b) Найдите сумму углов выпуклого n-угольника.

Задача 14. Докажите, что сумма длин звеньев любой ломаной не может быть меньше, чем расстояние между началом ломаной и её концом.

Задача 15. Найдите ошибку в следующем рассуждении.

Peшение: Докажем при помощи метода математической индукции, что любые <math>n карандашей имеют один и тот же цвет. При n=1 доказывать нечего: карандаш один и цвет у него один. Предположим теперь, что при n=k любые n карандашей имеют один цвет, и докажем это утверждение для n=k+1. Рассмотрим произвольный набор из k+1карандаша. Если мы отбросим последний карандаш, то по предположению индукции первые k карандашей будут иметь один цвет. Если же мы отбросим первый карандаш, то по предположению индукции последние k карандашей будут иметь один цвет. Значит,

первый и последний карандаш одного цвета — того самого, который имеют второй, третий, ..., k-ый карандаши. Итого, все карандаши одного цвета.

Задача 16. Шеренга новобранцев стоит перед старшиной. Старшина командует: «нале-ВО!» Но по неопытности часть солдат поворачивается налево, а часть — направо. После этого каждую секунду солдаты, оказавшиеся друг к другу лицом, понимают, что произошла ошибка, и оба поворачиваются кругом. Докажите, что, тем не менее, рано или поздно повороты прекратятся (при любом числе солдат и при любом их положении после команды старшины).

Задача 17. Докажите, что $|x_1+x_2+\ldots+x_n| \leq |x_1|+|x_2|+\ldots+|x_n|$ для любых вещественных $x_1,x_2,\ldots,x_n\in\mathbb{R}$.

Задача 18. Докажите, что при n>2 справедливо неравенство

$$\frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n} < \frac{3}{5}.$$

Задача 19. Докажите, что $2(\sqrt{n+1}-1)<\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\cdots+\frac{1}{\sqrt{n}}<2\sqrt{n}$ при всех n.

Задача 20. Бизнесмен заключил с чёртом сделку: он может любую имеющуюся у него купюру обменять у чёрта на любой набор купюр любого меньшего достоинства (по своему выбору, без ограничения общей суммы). Бизнесмен может также тратить деньги, но не может получать их в другом месте (кроме как у чёрта). При этом каждый день на еду ему нужен рубль. Сможет ли бизнесмен жить так бесконечно долго?