MATH 112: Introduction to Analysis Fall 2025 Semester

Homework 4: Due Tuesday October 07, 10:00am PST.

Assignment (2 Problems: 50 + 50 = 100 points total.)

 \square **Problem 1** [Fields] Let $(F, \oplus, \mathbb{O}, \otimes, \mathbb{I})$ be a field satisfying the 10 field axioms from L7. Prove each of the following propositions, indicating which field axioms you use in each step.

- 1.1 [10 points] $\forall x \in F \ \forall y \in F \ \forall c \in F \ \left((x \oplus c = y \oplus c) \ \Rightarrow x = y \right).$
- 1.2 [10 points] $\forall x \in F \ \mathbb{O} \otimes x = \mathbb{O}$. Hint: $\mathbb{O} = \mathbb{O} \oplus \mathbb{O}$.
- 1.3 [10 points] $\forall x \in F \ \forall y \in F \ \Big((x = \mathbb{O} \ \lor \ y = \mathbb{O}) \ \Rightarrow \ x \otimes y = \mathbb{O} \Big).$
- 1.4 [10 points] $\forall x \in F \ \forall y \in F \ (x \otimes y = \mathbb{O} \ \Rightarrow \ (x = \mathbb{O} \ \lor \ y = \mathbb{O})).$
- 1.5 [10 points] $\neg (\exists \sigma \in F \ \mathbb{O} \otimes \sigma = \mathbb{I}).$
- 1.1) $\forall x \in F \ \forall y \in F \ \forall c \in F \ \left((x \oplus c = y \oplus c) \ \Rightarrow x = y \right).$

Assume $x \oplus c = y \oplus c$. By the hypothetical strategy, if x = y when we make this assumption, the original statement is True. Since, by axiom 4, we know that all elements have \oplus -inverses. if we $\oplus (-c)$ to each side:

$$x \oplus c = y \oplus c$$

$$x \oplus c \oplus (-c) = y \oplus c \oplus (-c)$$

$$x \oplus \mathbb{O} = y \oplus \mathbb{O}$$

$$x = y.$$

Since by axoim 4 any value \oplus its inverse equals $\mathbb O$ the equation simplifies down to $x\oplus\mathbb O=y\oplus\mathbb O$. And since, by axiom 3, any value plus the identity $\mathbb O$ equals itself we can simplify to x=y. Since we have proved that when we assume $x\oplus c=y\oplus c$, x=y is True, by the hypothetical stretegy, $(x\oplus c=y\oplus c)\Rightarrow x=y$) is True for all $x,y,c\in F$. \square

1.2) $\forall x \in F \ \mathbb{O} \otimes x = \mathbb{O}$

let $x \in F$. If we use the Hint that $\mathbb{O} = \mathbb{O} \oplus \mathbb{O}$ and substitute \mathbb{O} for $\mathbb{O} \oplus \mathbb{O}$ in the original equation:

$$\mathbb{O} \otimes x = (\mathbb{O} \oplus \mathbb{O}) \otimes x$$
$$= (\mathbb{O} \otimes x) \oplus (\mathbb{O} \otimes x).$$

Using axiom 9, we can take $(\mathbb{O} \oplus \mathbb{O})$ and distribute \otimes over \oplus to get $(\mathbb{O} \otimes x) \oplus (\mathbb{O} \otimes x)$. Then we can use axiom 4 to take the inverse of $(x \oplus c)$ and $\oplus (-(\mathbb{O} \oplus x))$ to both sides:

$$(\mathbb{O} \otimes x) \oplus (-(\mathbb{O} \oplus x)) = (\mathbb{O} \otimes x) \oplus (\mathbb{O} \otimes x) \oplus (-(\mathbb{O} \otimes x))$$
$$\mathbb{O} = (\mathbb{O} \otimes x) \oplus \mathbb{O}$$
$$= \mathbb{O} \otimes x.$$

Since a value \oplus its inverse equals $\mathbb O$ by axiom 9, $(\mathbb O\otimes x)\oplus(-(\mathbb O\otimes x))=\mathbb O$ and we can substitute one for the other on both sides. Since, by axiom 3 a value \oplus the identity $\mathbb O$, it follows that $(\mathbb O\otimes x)\oplus\mathbb O=\mathbb O\otimes x$. Thus, by the slinky method, $\mathbb O=\mathbb O\otimes x$. \square

1.3)
$$\forall x \in F \ \forall y \in F \ \left((x = \mathbb{O} \ \lor \ y = \mathbb{O}) \ \Rightarrow \ x \otimes y = \mathbb{O} \right)$$

First Assume $(x = \mathbb{O} \lor y = \mathbb{O})$. By the Hypothetical strategy, if we can prove $x \otimes y = \mathbb{O}$ under this assumption, the original statement is True. if $(x = \mathbb{O} \lor y = \mathbb{O})$, we can evaluate the implication by thinking of two cases: case (1) $x = \mathbb{O}$, and case (2) $y = \mathbb{O}$.

Case (1): $x = \mathbb{O}$ if we substitute our value of x into the statement $x \otimes y$:

$$x \otimes y = \mathbb{O} \otimes y$$
$$= \mathbb{O}.$$

Since we proved that the identity, \mathbb{O} , \otimes , any value equals the identity, \mathbb{O} in problem 2, it follows that

$$\forall x \in F \ \forall y \in F \ (x \otimes y = \mathbb{O} \ \Rightarrow \ (x = \mathbb{O} \ \lor \ y = \mathbb{O}))$$

1.4)
$$\neg (\exists \sigma \in F \ \mathbb{O} \otimes \sigma = \mathbb{I})$$

- □ **Problem 2** [Induction] Prove each of the following propositions by induction.
 - 2.1 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \leq n \Rightarrow 2^n < n!\right)$. where $n! = \prod_{k=1}^n k$ and 0! = 1.
 - 2.2 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \frac{1}{n} < 0.112 \right)$.
 - 2.3 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ 1 + 0.112n \le (1 + 0.112)^n \right)$
 - 2.4 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ \sum_{i=1}^n j = \frac{n(n+1)}{2} \right)$.
 - 2.5 [10 points] $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z} \right) \ for \ z \in \mathbb{C} \ and \ z \ne 1.$

Recall from L10: to prove $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \leq n \ \Rightarrow \ P(n)\right)$ by induction requires two steps:

- (i) nominate a base case n₀ ∈ N and prove P(n₀)
 (ii) prove ∀n ∈ N ((n₀ ≤ n) ∧ P(n) ⇒ P(n+1)) using the hypothetical strategy from P3. In the inductive step (ii), try to format your proof of the implication via the "slinky method".
- 2.1) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \leq n \Rightarrow 2^n < n!\right)$. where $n! = \prod_{k=1}^n k \ and \ 0! = 1$. proof. we will prove this by induction. First note that the statement holds when n=4
- 2.2) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \frac{1}{n} < 0.112 \right)$
- 2.3) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ 1 + 0.112n \le (1 + 0.112)^n \right)$
- 2.4) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ \sum_{j=1}^n j = \frac{n(n+1)}{2} \right)$
- 2.5) $\exists n_0 \in \mathbb{N} \ \forall n \in \mathbb{N} \ \left(n_0 \le n \ \Rightarrow \ \sum_{k=0}^n z^k = \frac{1-z^{n+1}}{1-z}\right) \ for \ z \in \mathbb{C} \ and \ z \ne 1.$
- \square Bonus [X points] Construct an example of a field F with |F| = 4.