Varianta 63

Subjectul I.

$$\mathbf{a)} \quad \left| \sqrt{3} + i \right| = 2$$

b)
$$DE = 3\sqrt{3}$$
.

c)
$$\vec{v} \cdot \vec{w} = 18$$
.

d) Punctele
$$L, M, N$$
 sunt coliniare, deoarece $\overrightarrow{LN} = 2 \cdot \overrightarrow{LM}$.

e)
$$S_{ABC} = 3$$
.

f)
$$a = \frac{1}{10}$$
, $b = \frac{4}{5}$.

Subjectul II.

1.

a) În mulțimea
$$Z_5$$
, $\hat{3}^{2007} = \hat{2}$.

b)
$$a_5 = 9$$
.

c)
$$g(3)=1$$
.

d)
$$x = 2$$
.

e)
$$x_1 + x_2 + x_3 + x_4 = -1$$
.

2

a)
$$f'(x)=1+2^x \ln 2$$
, $\forall x \in \mathbf{R}$.

b)
$$\int_{0}^{1} f(x) dx = \frac{1}{2} + \frac{1}{\ln 2}.$$

c)
$$f''(x) > 0$$
, $\forall x \in \mathbf{R}$, deci funcția f este convexă pe \mathbf{R} .

d)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 1 + 2 \cdot \ln 2$$
.

e)
$$\int_{0}^{1} \frac{x^{2}}{x^{3} + 10} dx = \frac{1}{3} \cdot \ln \frac{11}{10}.$$

Subjectul III.

a)
$$\det(A) = -6$$
.

b) rang
$$(A) = 3$$
.

c)
$$a = \frac{1}{3}$$
, $b = \frac{1}{2}$, $c = 1$.

- d) Evident.
- e) Se arată prin calcul direct.
- **f**) Considerăm $Y \in C(A)$, astfel încât $Y^2 = O_3$.

Din **e**) deducem că există $a,b,c \in \mathbb{C}$, astfel încât $Y = \begin{pmatrix} a & 0 & c \\ 0 & b & 0 \\ 3c & 0 & a \end{pmatrix}$.

Deoarece $Y^2 = \begin{pmatrix} a^2 + 3c^2 & 0 & 2ac \\ 0 & b^2 & 0 \\ 6ac & 0 & a^2 + 3c^2 \end{pmatrix} = O_3$, obţinem a = b = c = 0, deci $Y = O_3$.

g)
$$Z^{2007} = O_3 \implies Z^{2048} = O_3 \iff (Z^{2^{10}})^2 = O_3 \iff Z^{2^{10}} = O_3 \iff \dots Z^2 = O_3 \iff Z = O_3.$$

Subjectul IV.

- a) Deoarece avem $\{x+1\}=\{x\}$, rezultă că f(x+1)=f(x), pentru orice $x \in \mathbb{R}$.
- **b**) Pentru $x \in [0,1)$, f(x) = 3 + x(1-x) și pentru $x \in [1,2)$, f(x) = 3 + (x-1)(2-x), de unde deducem că f este continuă în x = 1.
- c) Pentru $x \in [0,1)$, $f(x) = 3 + x x^2$ și obținem $F(x) = 3x + \frac{x^2}{2} \frac{x^3}{3}$, $\forall x \in [0,1)$.
- **d**) Evident, folosind faptul că $\forall x \in \mathbf{R}$, $0 \le \{x\} < 1$.
- e) Se arată că funcția f este continuă pe ${\bf R}$. În consecință, f are primitive pe ${\bf R}$. Considerăm o primitivă oarecare $G: {\bf R} \to {\bf R}$ a funcției f.
- Din d) deducem că funcția G e strict crescătoare pe \mathbf{R} .
- f) Considerăm x > 0.

Din **d**) avem că $\forall t \in \mathbf{R}$, $f(t) \ge 3$, deci $F(x) = \int_{0}^{x} f(t) dt \ge 3x$ și obținem

$$\lim_{x \to \infty} F(x) \ge \lim_{x \to \infty} 3x = +\infty, \text{ adică } \lim_{x \to \infty} F(x) = +\infty.$$

- **g**) Se arată că $\forall x \in \mathbf{R}$, F(x+1)-F(x)=F(1)-F(0)
- şi $G(x+1)-G(x)=0 \iff a=F(1)-F(0)$.

Așadar pentru a = F(1) - F(0), funcția G este periodică pe \mathbb{R} , de perioadă 1.