

CIC0203 - Computação Experimental -TA - 2022.2 - Tarefa T6 - Aprimoramento de uma Simulação URL Read-only Overleaf: https:

//www.overleaf.com/read/wjcdzwppxkfh

Edgar Sampaio de Barros (edgarsamp)

Brasília, 2023-01-21 01:15:41Z

Sumário

	- Aprimoramento de uma Simulação: Laboratório e Experimento d êndios florestais, por Edgar Sampaio de Barros (edgarsamp)	
1.1	Introdução	
1.2	O Fenômeno do Mundo Real	
1.3	O Laboratório sobre incêndios florestais	
	1.3.1 O Conceito da Simulação	
	1.3.2 O Simulador	,
	1.3.2.1 Variáveis Independentes ou de Controle	
	1.3.2.2 Variáveis Dependentes	
	1.3.3 A Hipótese Causal	
	1.3.4 O Código do Simulador	
1.4	Os Experimentos Realizados	
	1.4.1 Os Dados Coletados	
	1.4.2 Análises exploratórias preliminares	
1.5	Discussão e insights preliminares sobre as hipóteses	
1.6	Conclusão	

SUMÁRIO

Lista de Figuras

1.1	Interface gráfica da simulação
	Matriz após 16 etapas da simulação
1.3	Matriz no final da simulação
1.4	Quantidade de árvores em cada condição por etapa
1.5	Quantidade de árvores em cada condição no término da simulação
1.6	Distribuição de frequência para variação 0
1.7	Distribuição de frequência para variação 1
1.8	Distribuição de frequência para variação 2
	Distribuição de frequência para variação 3
1.10	Distribuição de frequência para variação 4
	Distribuição de frequência para variação 5
	Comparação entre os <i>boxplot's</i> de cada variação

LISTA DE FIGURAS

Lista de Tabelas

1.1	Variáveis de controle	10
1.2	Resultado de 10 simulações.	12
1.3	Valores das variáveis fixas	14
1.4	Dados gerados por 8 simulações	15
1.5	Relação entre média e desvio padrão para cada variação da biomassa	18

Resumo

Este documento contém o produto da tarefa especificada no título deste documento, conforme as orientações em https://www.overleaf.com/read/cytswcjsxxqh.

Parte I Simulação Computacional

Capítulo 1

T6 - Aprimoramento de uma Simulação: Laboratório e Experimento de incêndios florestais, por Edgar Sampaio de Barros (edgarsamp)

1.1 Introdução

Este capítulo apresenta a construção e uso do laboratório de simulações sobre a propagação de incêndios florestais para a realização de experimentos que tem por objetivo investigar a hipótese causal "a variação da biomassa na floresta influencia diretamente na área de queimada" que relaciona variáveis independentes e variáveis dependentes, presente nos estudos bibliométricos por mim realizados e disponíveis em ??.

É composto por mais cinco seções:

- 1. Descrição do fenômeno real;
- 2. Apresentação do laboratório de simulações;
- 3. Apresentação de análises exploratórias dos dados de experimentos realizados com o uso do laboratório;
- 4. Discussão sobre insights obtidos após os experimentos; e
- 5. Conclusões.

1.2 O Fenômeno do Mundo Real

O fenômeno estudado é o de incêndio florestal e como o fogo se propaga em florestas. Tal fenômeno tem características tanto biológicas quanto físicos.

A definição de incêndios florestais de acordo com (WIKIPEDIA, 2023) é:"incêndio florestal é um fogo ou queimada que se propaga sem controle em uma área florestal".

Segundo (KLOSTER, 2012), com o aumento da média global de temperatura (mudanças climáticas) a quantidade de gases e partículas suspensas no ar que são liberadas durante incêndios também tente a aumentar.

1.3 O Laboratório sobre incêndios florestais

O experimento realizado no laboratório sobre incêndios florestas é a simulação computacional de um incêndio florestal, o programa simula com base em conjunto de variáveis iniciais como o fogo se propaga em uma floresta. O estudo de tal fenômeno é de interesse para nossa sociedade atual, pois incêndios florestais estão se tornando cada vez mais comuns (KLOSTER, 2012) e tem grandes consequências na qualidade de vida em geral da população.

1.3.1 O Conceito da Simulação

Para realizar as simulações do fenômeno, foi utilizado como base para o código de exemplo forest-fire presente no framework Mesa feito em Python.

No exemplos a floresta é representada por uma uma matriz e cada célula pode conter ou não uma árvore. As árvores podem estar em três estados diferentes, sendo eles: não queimadas, em chamas ou queimadas, cada estado é representado por uma cor diferente, as árvores não queimadas são da cor verde, as que estão em chamas estão na cor vermelha e as que foram queimadas estão na cor preto. O fogo se propaga para as árvores vizinhas das que estão em chamas, as deixando em chamas e mudando o estado da árvore para queimada. A simulação termina quando o fogo se apaga, ou seja, quando não existe mais árvores em chamas. Para dar inicio a simulação é considerado que as árvores da primeira coluna estão pegando fogo.

1.3.2 O Simulador

O simulador conta com uma interface gráfica ilustrada na figura 1.1, por meio dela é possível manipular as variáveis independentes da simulação, observar o desenvolvimento da propagação do fogo por etapa e visualizar os gráficos gerados com as variáveis dependentes em tempo real.

Figura 1.1: Interface gráfica da simulação.

1.3.2.1 Variáveis Independentes ou de Controle

São as seguintes as variáveis Independentes ou de Controle, manipuláveis na interface gráfica do simulador:

Tree density : é a probabilidade de uma célula da matriz se tornar uma árvore na geração da floresta;

Average biomass: é o valor médio da biomassa de uma árvore na floresta; e

Biomass variation : é quanto a biomassa pode variar (tanto para cima quando para baixo) em cada árvore.

1.3.2.2 Variáveis Dependentes

São as seguintes as variáveis Dependentes, cujos valores são coletados e apresentados na interface gráfica do simulador:

Fine: Quantidade de árvores que não foram queimadas;

On Fire: Quantidade de árvores que estão queimando;

Burned Out : Quantidade de árvores queimadas;

Partially Burnt: Quantidade de árvores atingidas pelo fogo porém que não queimaram completamente;

1.3.3 A Hipótese Causal

A hipótese causal que iremos analisar é "A variação da biomassa na floresta influencia diretamente na área de queimada".

Com base na pesquisa bibliográficas realizada foi encontrado a palavra "biomassa" como palavra-chave em diversos artigos, o que pode significar que a biomassa da floresta pode está associada na forma como incêndios florestais se propagam. O estudo de (HILTNER; HUTH; FISCHER, 2022) utiliza a quantidade de biomassa acima do solo na floresta como uma das variável que define as florestas do estudo, portanto seria plausível estudar como a variação da mesma interfere na simulação.

Além disso foi possível concluir que o estudo dos incêndios florestais está ligado com as mudancas climáticas que nosso planeta vem sofrendo nas últimas décadas (KLOSTER, 2012).

Levando isso em consideração o intuito deste trabalho é ver o quão relacionado está a variação da biomassa local com a área queimada por incêndios florestais.

1.3.4 O Código do Simulador

Para adicionar a variável estudada no modelo de simulação foi necessário alterar o código-fonte de duas classes, sendo elas: model e TreeCell.

A classe model é responsável por criar o modelo e realizar as etapas na simulação. A mudança realizada nela foi a adição da categoria partially burnt de árvores no coletor de dados, além de calcular o valor da biomassa na geração da árvore com base nos valores coletas por meio da interface gráfica.

A classe TreeCell é a classe que emula a árvore, ela possui como atributo a posição na grid, a condição atual da árvore em questão ("Sem fogo", "Pegando fogo", "Queimada", "Queimada parcialmente") e a quantidade de biomassa atual. A classe também é responsável por definir o que o agente deve realizar em cada etapa da simulação. Após a adaptação do código, em cada etapa, caso a árvore estiver com o estado "Pegando fogo", ela deve alterar os estados das árvores ao seu redor para "Pegando fogo", depois deve subtrair em um a sua quantidade de biomassa atual e checar a condição de seus vizinhos, caso nenhum esteja com o estado de "Pegando fogo"ela muda seu estado para "Queimada parcialmente", e por fim caso a sua quantidade de biomassa tenha chegado em zero ela altera seu estado para "Queimada".

Pela listagem de código 1.1 e 1.3 é possível ver como ficou das classes model e agent, respectivamente, após as alterações.

Para ajudar na visualização do fenômeno as árvores que estão no estado "Queimada parcialmente" estão representadas na matriz na cor laranja.

Listagem de Código 1.1: Código da classe model.

```
import mesa
      import random as rd
      from .agent import TreeCell
      class ForestFire(mesa.Model):
          Simple Forest Fire model.
 9
10
11
          def __init__(self, width=100, height=100, density=0.65, biomass=5, variation=5):
12
13
               Create a new forest fire model.
14
15
16
                    width, height: The size of the grid to model
17
                    density: What fraction of grid cells have a tree in them.
18
               # Set up model objects
\frac{20}{21}
               self.schedule = mesa.time.RandomActivation(self)
               self.grid = mesa.space.Grid(width, height, torus=False)
23
               self.datacollector = mesa.DataCollector(
24
                         "Fine": lambda m: self.count_type(m, "Fine"),
"On Fire": lambda m: self.count_type(m, "On Fire"),
"Burned Out": lambda m: self.count_type(m, "Burned Out"),
\frac{26}{27}
28
                         "Partially Burnt": lambda m: self.count_type(m, "Partially Burnt"),
29
30
               )
31
               # Place a tree in each cell with Prob = density
for (contents, x, y) in self.grid.coord_iter():
    if self.random.random() < density:</pre>
32
34
                         # Create a
new_tree = TreeCell((x, y), self, rd.randint(biomass-variation, biomass+variation))
35
37
38
                         # Set all trees in the first column on fire if x == 0:
39
                              new_tree.condition = "On Fire"
                         self.grid.place_agent(new_tree, (x, y))
self.schedule.add(new_tree)
40
42
43
               self.running = True
45
               self.datacollector.collect(self)
46
          def step(self):
48
49
               Advance the model by one step.
51
52
               self.schedule.step()
               # collect data
               self.datacollector.collect(self)
54
55
               # Halt if no more fire
               if self.count_type(self, "On Fire") == 0:
57
                    self.running = False
59
          def count_type(model, tree_condition):
60
62
               Helper method to count trees in a given condition in a given model.
63
65
               for tree in model.schedule.agents:
66
                    if tree.condition == tree_condition:
                         count += 1
               return count
```

Listagem de Código 1.2: Código da classe agent.

```
1 import mesa
2
3 class TreeCell(mesa.Agent):
4 """
5 A tree cell.
6
7 Attributes:
8 x, y: Grid coordinates
9 condition: Can be "Fine", "On Fire", or "Burned Out"
10 unique_id: (x,y) tuple.
11 biomass: Amount of agent biomass
```

```
unique_id isn't strictly necessary here, but it's good
         practice to give one to each agent anyway.
15
         def __init__(self, pos, model, biomass):
17
18
              Create a new tree.
20
                 pos: The tree's coordinates on the grid.
                   model: standard model reference for agent.
              biomass: Amount of agent biomass
              super().__init__(pos, model)
              self.biomass = max(0, biomass)
self.pos = pos
              self.condition = "Fine"
         def step(self):
              If the tree is on fire, spread it to nearby trees and reduce their biomass by 1. If nearby trees are not on fire, put out
32
              if self.condition == "On Fire":
                  neighbors = self.model.grid.iter_neighbors(self.pos, True)
neighborsConditions = []
35
37
                  for neighbor in neighbors:
                       \verb"neighborsConditions.append(neighbor.condition)"
38
                       if neighbor.condition ==
                           neighbor.condition = "On Fire"
40
                  if not ("On Fire" in neighborsConditions):
    self.condition = "Partially Burnt"
42
43
                  self.biomass = max(0, self.biomass-1)
                       self.condition = "Burned Out"
```

1.4 Os Experimentos Realizados

Foram realizados diversos experimentos alterando todas as variáveis de controle, a seguir podemos ver os resultados de uma simulação onde foram configurados os seguintes parâmetros iniciais:

Tree density	0.65
Avarage biomass	6
Biomass variation	

Tabela 1.1: Variáveis de controle

As figuras 1.2 e 1.3 mostram a evolução da matriz de simulação de acordo com as etapas realizadas. Através do gráfico ilustrado na figura 1.4 é possível acompanhar a quantidade de árvores em cada condição por etapa da simulação.

A simulação teve fim na etapa 41 (figura 1.3), a figura 1.5 mostra um gráfico pizza construído com os resultados obtidos no final da simulação, nele é mostrado a proporção de árvores em cada um dos quatro estados possíveis.

Figura 1.2: Matriz após 16 etapas da simulação.

Figura 1.3: Matriz no final da simulação.

Figura 1.4: Quantidade de árvores em cada condição por etapa.

Figura 1.5: Quantidade de árvores em cada condição no término da simulação.

Depois foi realizado mais 10 simulações variando os parâmetros *Avarage biomass* e *Biomass variation*, os valores dessa variação assim como os resultados obtidos estão na tabela 1.2.

Tree density	Average biomass I	Biomass variation	Fine	On Fire	Burned Out	Partially Burnt
0.65	10	1	8	0	6493	35
0.65	10	1	1	0	6440	43
0.65	10	1	6	0	6437	42
0.65	10	1	2	0	6497	47
0.65	10	1	6	0	6416	42
0.65	10	5	7	0	5817	698
0.65	10	5	7	0	5739	718
0.65	10	5	3	0	5737	685
0.65	10	5	9	0	5895	677
0.65	10	5	10	0	5724	693

Tabela 1.2: Resultado de 10 simulações.

1.4.1 Os Dados Coletados

Para realizar a coleta de dados foi criado um *script* em *python* com base em um modelo disponibilizado pelo professor. O código pode ser visto na listagem 1.3.

Listagem de Código 1.3: Código da classe agent.

```
import mesa
      import pandas as pd
      import numpy as np
      from forest_fire.model import ForestFire
      from datetime import datetime
      # planejamento do experimento
# hipotese 1 - A variacao da biomassa na floresta influencia diretamente na area de queimada
      controles_e_seus_niveis = {
    "width": 100,
    "height": 100,
10
11
            "density": 0.65, "biomass": 5,
13
14
            #"variation": 1,
16
      }
17
      variaveis_independentes_e_seus_niveis = {
              'variation": [*range(0, 6, 1)]
      }
19
20
21
      lista_de_fatores = variaveis_independentes_e_seus_niveis.keys()
22
       print("Lista de Fatores: "+str(lista de fatores))
      lista_de_niveis_por_fator = variaveis_independentes_e_seus_niveis.values()
      print("Lista de tratamentos ou niveis por fator: "+str(lista_de_niveis_por_fator))
qtd_de_tratamentos_por_fator = [len(f) for f in lista_de_niveis_por_fator]
print("Quantidade de tratamentos ou niveis por fator: "+str(qtd_de_tratamentos_por_fator))
25
27
      qtd_total_tratamentos = np.prod([len(f) for f in variaveis_independentes_e_seus_niveis.values()])
print("Quantidade total de tratamentos a serem aplicados: "+str(qtd_total_tratamentos))
28
29
30
      # soma os dois dicionarios
31
      experimental_design_of_independent_plus_control_variables = controles_e_seus_niveis.copy()
       experimental_design_of_independent_plus_control_variables.update(variaveis_independentes_e_seus_niveis)
      replicacoes=100 # no desenho experimental, esse parametro e chamado de replicacao, e indica a quantidade de replicacoes de cada tratamento print("Quantidade de replicacoes para cada tratamento:"+str(replicacoes))
print("Quantidade total de simulacoes independentes a serem realizadas:"+str(replicacoes*qtd_total_tratamentos))
34
36
37
      print("Uma vez que cada simulacao e um sujeito novo, completamente definido por variaveis aleatorias, estaremos fazendo um 'Between Subject F
38
      qtd_maxima_passos_para_estabilizar = 100 # qtd de interacoes necessarias para o fenomeno e estabilizar
39
40
      inicio_experimento = datetime.now()
41
42
      atd processadores = 8
      results = mesa.batch_run(
44
45
            ForestFire,
46
            parameters=experimental_design_of_independent_plus_control_variables,
47
            iterations=replicacoes,
            max_steps=qtd_maxima_passos_para_estabilizar,
49
            number_processes=qtd_processadores, # usar todos os processadores disponiveis em um arranjo multithread
50
            {\tt data\_collection\_period=-1}\,,
            display_progress=True,
52
      )
53
      # gera uma string com data e hora
fim_experimento = datetime.now()
duracao_experimento = fim_experimento - inicio_experimento
55
56
      fim_experimento_str = str (fim_experimento)
58
59
      file name suffix = (
           "_fatores[" +str(lista_de_fatores).replace("[","").replace("]","").replace("(","").replace(")","").replace("-","").replace("dict_keys",""
"_tratam[" + str(qtd_total_tratamentos) +"]" +
"_replic[" + str (replicacoes) +"]"+
61
62
63
            "_passos["+ str (qtd_maxima_passos_para_estabilizar)+"]"+
     "_passos["+ str (qtd_maxima_passos_para_estabilizar)+"]"+

"_process["+ str (qtd_processadores)+ "]"+

"_segs["+ str(duracao_experimento.seconds) + "]"+

"_final["+ fim_experimento_str +"]"
). replace ( ":", "-"). replace ( " ", "-")

# define um prefixo para o nome para o arquivo de dados

model_name_preffix = "Exp.Tot.Cruzados_BetweenSubject_SchellingPolarizado"

# define o nome do arquivo
64
65
66
67
69
      # define o nome do arquivo
file_name = model_name_preffix + file_name_suffix + ".csv"
70
      print(file_name)
72
      results_df = pd.DataFrame(results)
      results_df.to_csv("data/"+file_name)
```

O código 1.3 configura as variáveis independentes, as variáveis de controle além de outros fatores relevantes para a simulação tais como: quantidade de replicações de cada tratamento, quantidade máxima de passos para estabilizar o sistema e número de processadores usados para realizar as simulações. Por fim salva os dados coletados em um arquivo .csv com um nome descrevendo as variáveis geradoras para tal conjunto de dados.

O arquivo .csv registra as seguintes variáveis sobre cada replicação:

Step Quantidade de passos para estabilizar;

Width Largura da matriz;

Height Altura da matriz;

Density Densidade da floresta;

Biomass Média da biomassa:

Variação da biomassa;

Fine Quantidade de árvores que não foram queimadas;

On Fire Quantidade de árvores queimando;

Burned Out Quantidade de árvores queimadas totalmente;

Partially Burnt Quantidade de árvores queimadas parcialmente;

Alived Quantidade de árvores que não foram queimadas totalmente.

A tabela 1.4 ilustra os dados coletados por 8 simulações, neles os valores das variáveis width, height, density e biomass foram fixos de acordo com a tabela 1.3.

width	height	density	biomass
100	100	0.65	5

Tabela 1.3: Valores das variáveis fixas.

EDGAR SAMPAIO DE BARROS (EDGARSAMP)

528

530

3

Variation	Fine	On Fire	Burned Out	Partially Burnt	Alived
0	4	0	6522	56	60
0	3	0	6477	36	39
1	3	0	6300	196	199
1	2	0	6329	232	234
2	7	0	6197	368	375
2	10	0	6086	375	385
3	3	0	5947	530	533

Tabela 1.4: Dados gerados por 8 simulações.

6078

Levando em consideração os dados da tabela 1.4 é possível constatar que a quantidade de árvores com o estado *Partially Burnt* tem uma certa tendencia de decrescimento, porem não somente com essa quantidade de experimentos não podemos constatar que existe alguma relação entre estas variáveis.

1.4.2 Análises exploratórias preliminares

2

0

Para realizar uma breve análise exploratória foram realizados 600 experimentos utilizando as mesmas configurações iniciais da tabela 1.3 e permutando a variação da biomassa entre os valores 1 e 5.

Com base nos dados gerados e com o auxílio da linguagem de programação R foi gerado uma distribuição de frequência para cada valor das variações de biomassa e a quantidade de árvores queimadas totalmente, as imagens a seguir mostra o resultado dessa análise.

Figura 1.6: Distribuição de frequência para variação 0.

Figura 1.7: Distribuição de frequência para variação 1.

3 de Variação

Figura 1.8: Distribuição de frequência para variação 2.

Figura 1.9: Distribuição de frequência para variação 3.

Figura 1.10: Distribuição de frequência para variação 4.

Figura 1.11: Distribuição de frequência para variação 5.

Todas as distribuições de frequência tem o mesmo formato e se assimilam na forma da curva da distribuição normal, porém é notório que a quantidade de árvores totalmente queimadas teve um aumento significativo, tal fenômeno pode ser melhor visto com maior clareza quando comparamos o *boxplot* para cada variação (figura 1.12).

Figura 1.12: Comparação entre os boxplot's de cada variação.

A tabela 1.5 mostra a média e o desvio padrão para cada valor da variação de biomassa. Dessa forma, é possível ver novamente a tendência de decrescimento na quantidade de árvores *Partially Burnt* quando existe um crescimento na variação da biomassa.

Variação	Média	Desvio padrão
0	6449.33	47,88708
1	6300.27	52,25247
2	6111.12	52,59974
3	5972.66	49,56095
4	5861.3	58,83885
5	5773.64	53,27108

Tabela 1.5: Relação entre média e desvio padrão para cada variação da biomassa.

1.5 Discussão e *insights* preliminares sobre as hipóteses

Apesar da quantidade de simulações realizadas ter sido baixa, os resultados obtidos por elas parecem indicar que de fato exista alguma relação entre a variação da biomassa e a área total da queimada.

Com base nos dados gerados da tabela 1.2 podemos ver que, alterando somente a variação da biomassa a quantidade de árvores que imadas totalmente teve uma redução e a quantidade de árvores que sobreviveram ao incêndio (que estão nos estados "Fine"ou "Partially Burnt") tiveram uma aumente significativo.

Depois de realizar as simulações descritas na seção 1.4 é possível ter uma validação maior de nossa hipótese, pois foram realizados 600 experimentos e com base em seus resultados notamos uma clara relação entre o aumento da variação de biomassa e a ará total de queimada.

Na próxima seção deste trabalho serão realizados diversos testes estatísticos para ter uma maior certeza acerca de nossa hipótese.

1.6 Conclusão

O estudo deste fenômeno vem sendo uma experiencia muito enriquecedora. Através dele consegui aprimorar minhas habilidades de pesquisa e escrita científica, além de aprender sobre simulações e como é possível emular um fenômeno real por meio da computação para realizar experimentos e gerar novos conhecimentos.

No primeiro momento tive algumas dificuldades pois nunca havia trabalho com o framework MESA ou com qualquer outro de simulações, porem a sua documentação e os exemplos são bem ricos e me ajudaram a sanar a maioria das dúvidas que surgiam. Outra adversidade encontrada foi a minha não familiaridade com o tema abordado, eu sempre tive curiosidade sobre o tema de queimadas, pois moro no cerrado, um bioma onde as queimadas ocorrem anualmente e é um fenômeno natural, contudo nunca tinha passado de curiosidade e com este trabalho tive que aprofundar um pouco meus conhecimentos acerca do tema para conseguir realizar as simulações.

Bibliografia

- HILTNER, U.; HUTH, A.; FISCHER, R. Importance of the forest state in estimating biomass losses from tropical forests: combining dynamic forest models and remote sensing. *Biogeosciences*, v. 19, n. 7, p. 1891–1911, 2022. DOI: 10.5194/bg-19-1891-2022. Disponível em: https://bg.copernicus.org/articles/19/1891/2022/. Citado na p. 8.
- KLOSTER, S. The impacts of climate, land use, and demography on fires during the 21st century simulated by CLM-CN, 26 jan. 2012. DOI: 10.5194/bg-9-509-2012. Citado nas pp. 6, 8.
- WIKIPEDIA, the free encyclopedia. *Wildfire*. Instituto Nacional de Metereologia. 2023. Disponível em: https://en.wikipedia.org/wiki/Wildfire. Acesso em: 6 jan. 2023. Citado na p. 6.