

Ε.Μ.Π. - ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ. ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΕΧΝΟΛΟΓΙΑΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΟΛΟΓΙΣΤΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΫΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΚΑΔ. ΕΤΟΣ 2020-2021

AΘHNA 23 - 4 - 2021

3η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΓΙΑ ΤΟ ΜΑΘΗΜΑ "Συστήματα Μικροϋπολογιστών"

Βικέντιος Βιτάλης el18803 και Αριάδνη Καζδάγλη el18838

Σειρά Ασκήσεων 3 Συστήματα Μικροϋπολογιστών 16/5/2021

Άσκηση 1:

```
ask1 - TSIK
                * 1
                                                     9
START:
        IN 10H
                       ;Epitrepei thn prosbash sthn mnhmh
       LXI H, OAOOH
MVI M, 10H
                       ;Oi theseis 0A00H-0A05H periexun ton
                       :kwdiko ektypwshs tu antistoixu pshfiov
        INX H
                       ;sthn othonh. Emeis thelume na emfanizume
                       ;kati mono sta 2 mesaia pshfia enw ola ta
;ypoloipa einai sbhsta kai den emfanizun kati.
       MVI M, 10H
                       Etsi apo6hkeyoyme stis 8eseis 0A00H-0A02H kai 0A04H-0A05H ;ths mnhmhs to kwdiko 10H pou shmainei ta antistoixa
       LXI H.OAO4H
        MVI M, 10H
        INX H
                       ;7-segments na mhn emfanizun tipota
       MVI M, 10H
       MVI A, ODH
        SIM
                       ;Arxikopoihsh maskas diakopwn
        ΕI
                       ;Energopoihsh diakpwn
WAIT:
                       ;Anamonh gia diakoph
        JMP WAIT
BCD:
        PUSH PSW
                       ;Routina metatrophs ari8mou twn ypoloipomenwn
        PUSH B
                       ;deyteroleptwn apo dekaeksadiko se dekadiko kai
                       ;emfanish toy sthn o8onh.
        PUSH D
        PUSH H
       MVI B, FFH
       MOV A, E
DECA:
                       ; Fortwse to metrhth devteroleptwn E ston A
                       ;Aykshsh kata 1 toy metrhth dekadwn ston B
;Meiwsh toy A kata 10
;An einai 8etikos synexise
        INR B
        SUI OAH
        ADT OAH
                       ;Dior8wsh arnhtikou ypoloipoy
        LXI H, OAO2H
       MOV M, A
                       ;Apothikeyse tis monades sth thesh OA00H
        INX H
                       ;Apothikeyse tis dekades sth thesh 0A01H
       MOV M,B
        LXI D, OAOOH
       CALL STDM
LXI B,0019H
                       ;Fortwse sto B thn kathisterisi 25ms
                      ;Arxikopoihsh metrhth 40 epanalhpsewn
        MVI A,28H
ONESECLOOP:
                       ;Broxos synolikhs kathisterisis 25ms * 40 = 1sec
                       ;pou emfanizei sthn o8onh
;thn idia timh deyteroleptwn
        CALL DELB
                       ;gia synoliko diasthma l deyteroleptou
       DCR A
       CPI 00H
JNZ ONESECLOOP
       POP H
POP D
        POP B
        POP PSW
        RET
INTR_ROUTINE:
                       ;Routina eksyphrethshs diakophs
       POP H
MVI A, FFH
                       ;Anapse ola ta LED(negative logic)
        CMA
        STA 3000H
        CALL MEM_INIT
       MVI E,3CH
                       ;Arxikopoihsh metrhth 60 seconds
        ΕI
                       ;Energopoihsh diakopwn
LOOP1:
       CALL BCD
CALL BLINKING ;Klhsh yporoutinas poy anabosbhnei ta LED
                       :Meiwsh tu metrhth devteroleptwn kata 1
```

Συστήματα Μικροϋπολογιστών Σειρά Ασκήσεων 3 Ακ. Έτος 2020-2021

```
MOV A, E
                       ;An o metrhths den einai 0, epanelabe
        CPI OOH
        JNZ LOOP1
        MVI A,00H
                       ;Alliws sbhse ola ta LED(arnhtikh logikh)
        CMA
        STA 3000H
        JMP WAIT
                        ;Alma sthn wait gia anamonh neas diakophs
MEM_INIT:
                        ;Routina gia apothikeysh sth thesi mnhmhs 0900H
                        ;ths arxikhs katastashs twn LED
        PUSH H
       LXI H,0900H
MOV M,A
        POP H
BLINKING:
        PUSH PSW
        PUSH B
        PUSH D
        PUSH H
        LXI B,01F4H ;Fortwsh ston BC ths kathisterisis 01F4H = 500ms LXI H,0900H ;Fortwsh ston HL th Sesh mnhmhs 0900H, h opoia
        MOV A,M
                       ;periexei thn parousa katastash twn LED. Fortwse to
                       ;periexomeno ayto ston A kai ystera apo 500ms
;emfanise to sthn eksodo(negative logic)
        CMA
        CALL DELB
        STA 3000H
                       ;Apothikeyse th nea twrinh katastash(antistrofh thw prohgumenhs)
        MOV M, A
                       ;sth thesi 0900H
        POP H
                       ;Etsi eptiygxanetai to anama/sbhsimo twn LEDse kathe klhsh
        POP D
                       ;ths blinking
        POP B
        POP PSW
        RET
END
```

Άσκηση 2:

```
ask2 - TSIK
       IN 10H
START:
       LXI H, OAO2H
                           ;load HL with the start of the memory
      MVI M, 10H
                           ;I will store the output byte
       INX H
                           ;10H means print nothing
      MVI M, 10H
                           ;We point to the block OAO2H...OAO5H
      TNX H
      MVI M.10H
                           ;0A02H to 0A05 to have code 10H, to
      INX H
      MVI M, 10H
                           ;print nothing.
                           ; here user gives threshold constants K1, K2
                           ;D = K1 = 5BH (USER GIVEN)
      MVI D,5BH
                           ;E = K2 = 7FH (USER GIVEN)
      MVI E,7FH
      INR D
                           ;for <= and >= K2
       INR E
      MVI A, ODH
                           ;enable interrupts
      SIM
                           ;in RST 6.5
       ΕI
WAIT:
       JMP WAIT
INTR_ROUTINE:
                         ;read input from keybord
       CALL KIND
                           ;reads keybord input
                           ;B has the least significant hex digit
      MOV B, A
      CALL KIND
                           ;reads keybord input
                           ;E has the most significant hex digit
      LXI H, OAOOH
      MOV M, B
                          ;0A04H<--least significant hex digit
      INX H
      MOV M, A
                           ;0A05H<--most significant hex digit
      RLC
                           ;compare with K1, K2 and light LED
      RLC
      RLC
      RLC
      ADD B
      MOV B, A
                           ;now B has the full number
      CMP D
       JC FIRST
       CMP E
       JC SECOND
      MVI A,04H
       CMA
       STA 3000H
       JMP LCD
FIRST:
      MVI A,01H
      CMA
       STA 3000H
                           ;light 1st LED
       JMP LCD
SECOND:
      MVI A,02H
       CMA
       STA 3000H
                           ;light 2nd LED
       JMP LCD
                           :LCD output
```

```
LCD:
      LXI D, OAOOH
      CALL STDM
      MVI D,5CH
      MVI E,80H
                         ;enable interrupts again
OUT:
      CALL DCD
      JMP OUT
END
Άσκηση 3:
a)SWAP Nible MACROQ
       PUSH PSW
       MOV A,Q
       RLC
       RLC
       RLC
       RLC
       MOV Q,A
       MOV A,M
       RRC
       RRC
       RRC
       RRC
       MOV M,A
       POP PSW
ENDM
β)FILL MACRORP, X, K
       PUSH PSW
       PUSH H
       LDAXR
       MOV H,A
       MVI A,X
START:
       MVI M, K
       INR M
```

DCR A JNZ START POP H POP PSW **ENDM** γ)RHLL MACRO n **PUSH PSW** PUSH B MVI A, n CPI 00H JZ FINISH MVI B,n START: MOV A,L RAR MOV L,A MOV A,H RAR MOV H,A DCR B JNZ START FINISH: POP B **POP PSW ENDM**

Άσκηση 4:

Η RST 7.5 είναι hardware διακοπή, που σημαίνει ότι θα προηγηθεί της εκτέλεσης του υπόλοιπου προγράμματος. Συμβαίνει στο μέσο της εντολής CALL 0880H, άρα θα ολοκληρωθεί η εκτέλεση της τρέχουσας εντολής: η τρέχουσα τιμή του μετρητή προγράμματος (0800H) αποθηκεύεται στην στοίβα(θέσεις μνήμης (SP-1) & (SP-2)), ο δείκτης στοίβας ανεβαίνει 2 θέσεις πάνω και στον μετρητή προγράμματος καταχωρείται η διεύθυνση 0880Η. Έπειτα σώζεται η τιμή του μετρητή προγράμματος και η κατάσταση του 8085 και εκτελείται η ρουτίνα εξυπηρέτησης της διακοπής RST 7.5. Η τιμή του μετρητή προγράμματος αποθηκεύεται ξανά στην στοίβα, ο δείκτης στοίβας ανεβαίνει άλλες 2 θέσεις πάνω και στον μετρητή προγράμματος καταχωρείται η διεύθυνση διακοπής η διεύθυνση της διακοπής, ώστε να εκτελεστεί η σχετική ρουτίνα. Μετά την εκτέλεση της ρουτίνας εξυπηρέτησης διακοπής, η διεύθυνση που βρίσκεται στην κορυφή της στοίβας(0880Η) επανέρχεται στον μετρητή προγράμματος, ο δείκτης κατεβαίνει 2 θέσεις κάτω και εκτελείται η ρουτίνα που αρχίζει από τη διεύθυνση που ορίζει η εντολή CALL 0880H. Αφού ολοκληρωθεί η εκτέλεση και της τελευταίας ρουτίνας, η διεύθυνση στην κορυφή της στοίβας επαναφέρεται στον μετρητή προγράμματος, ο δείκτης της στοίβας κατεβαίνει άλλες 2 θέσεις κάτω και συνεχίζεται η εκτέλεση του προγράμματος από τη διεύθυνση 0801Η.

Επομένως έχουμε:

АРХІКА		CALL 0880H		ΔΙΑΚΟΠΗ RST6.5		ΜΕΤΑ ΤΗΝ ΕΚΤΕΛΕΣΗ ΡΟΥΤΙΝΑΣ ΔΙΑΚΟΠΗΣ		META THN EKTEΛΕΣΗ POYTINAΣ ENTΟΛΗΣ CALL 0880	
PC	0800H	PC	0880H	PC	003CH	PC	0880	PC	0800
SP	00H	SP	00H	SP	80H	SP	00H	SP	00H
SP+1	30H	SP+1	08H	SP+1	08H	SP+1	08H	SP+1	30H
		SP+2	00H	SP+2	00H	SP+2	00H		
		SP+3	30H	SP+3	08H	SP+3	30H		
				SP+4	00H				
				SP+5	30H				

Άσκηση 5:

Στο παρακάτω πρόγραμμα ο μετρητής δεδομένων ξεκινάει από το το 64,εφόσον έχουμε δύο τμήματα για κάθε ένα από τα 32 δεδομένα. Η ρουτίνα εξυπηρέτησης διακοπής,ελέγχει με κάθε είσοδο το LSB του μετρητή για να διαπιστώσει αν δέχεται τα 4 MSB ή τα 4 LSB κάθε δεδομένου. Στην είσοδο εφαρμόζεται κατάλληλη μάσκα, ώστε να μηδενιστούν α αδιάφορα 4 MSB αυτής. Τέλος, γίνεται 3 φορές αριστερή ολίσθηση του αθροίσματος των δεδομένων(έτσι ώστε να προκύψει ο μέσος όρος).

MVI Α,0DH ;Μάσκα διακοπών

SIM

LXI Η,0000Η ;Αρχικοποίηση συσσωρευτή

MVI C,40H ;C=40H (μετρητής)

ΕΙ ;Ενεργοποίηση διακοπών

WAIT_LOOP: ;Αναμονή ανάγνωσης όλων των δεδομένων

```
MOV A,C
       CPI 00H
       JNZ WAIT_LOOP
       DI
                     ;Απενεργοποίηση διακοπών
       DAD H
                     ;Υπολογισμός του μέσου όρου με αριστερή ολίσθηση του Η-L
       DAD H
       DAD H
       HLT
0034: JMP RST6.5
RST6.5:
       PUSH PSW
       MOV A,C
       ΑΝΙ 00000000b ;δυαδικό για το LSB
       JPO GET4MSB ;Έλεγχος αν λάβαμε τα LSB ή τα MSB του δεδομένου
       IN 20H
                     ;εΙσοδος των 4ων LSB του δεδομένου
       ΑΝΙ 00001111b ;δυαδικό για τα 4 LSB της πόρτας
       MOV B,A
       JMP END
GOT4MSB:
                     ;Επεξεργασία των MSB του δεδομένου
       IN 20H
                     ;Είσοδος των 4ων MSB του δεδομένου
       ANI 00001111b
       RLC
                     ;4 φορές ολίσθηση
       RLC
       RLC
       RLC
       ORA B
       MVI D,00H
       MVI E,A
       DAD D
                     ;Πρόσθεση δεδομένων
```

DCR C END: **POP** PSW ΕI **RET** β) LXI H,00H ;Συσσωρευτής δεδομένων MVI C,64d MAIN: IN 20H ;Αναμονή μέχρι να λάβουμε χ7=1 ANI 80H JP MAIN MOV A,C ANI 00000001b ;00000001 δυαδικό για το LSB JPO 4MSB ;Έλεγχος αν λάβαμε LSB or MSB **IN 20H** ;Είσοδος των 4ων LSB ΑΝΙ 00001111b ;δυαδικό για τα 4 LSB της πόρτας MOV B,A ;Προσωρινή αποθήκευση μέχρι τη λήψη του MSB του δεδομένου JMP 4LSB ;Επιστροφή στο πρόγραμμα μέχρι να ληφθούν τα MSB 4MSB: IN 20H ;Είσοδος των 4ων MSB ANI 00001111b **RLC** ;4 φορές ολίσθηση **RLC** RLC RLC ORA B ;Ένωση με τα LSB του δεδομένου MVI D,00H DAD D ;Πρόσθεση δεδομένων 4LSB:

DCR C

;Μείωση μετρητή

JZ ADDR CHECK: ;Αναμονή για χ7=0 IN 20H ANI 80H JM CHECK **JMP MAIN** ADDR: DAD Η ;3 φορές πρόσθεση Η-L στον εαυτό του για αριστερή ολίσθηση 3 φορές DAD H DAD H MOV A,L ANI 80H MVI L,00H ;L=00Η γαι 8 bit ακρίβεια CPI 00H JNZ ROUND ; Av το MSB του L είναι ίσο με 1 να γίνει άνω στρογγυλοποίηση BACK: HLT **ROUNDING:** ;Στρογγυλοποίηση INR H **JMP BACK**