

Background Definition

Background

- The stock market is a complex and dynamic environment where investors constantly seek opportunities to maximize returns and minimize risks.
- Effective and informed investment decision-making in the stock market is important

Definition

- Extract, transform, and load financial data from the Yahoo Financial
- Analyze stock market trends and patterns using MongoDB for JSON data storage, PostGRE for structured data storage, and Flask for API service
- Generate investment recommendations for users

Data Source Specification & Procurement Details

1 Data Source Specification

"File" 1:

Collect symbol from https://stockanalysis.com/stocks/.

Symbol, as the representative of the company, is an important connection during the integration of its basic information and its OHLC stock prices.

"File" 2:

The basic information about each company based on symbol and the daily OHLC of each company from Yahoo Finance in JSON format, ranging from 2013 to 2023.

2 Procurement Details

Contains **5602** companies and the latest history caught before the deadline for the submission is: **2023–4–19**.

Proposed Design Choices & Rationale for Selected Technologies

MongoDB

- 1. Historical data storage
- 2. Real-time Data ingestion in JSON format
- 3. Store Unstructured Json files
- 4. Easy to Scale
- Document-oriented database
- Highly scalable, both vertically and horizontally
- High availability
- Aggregation framework

PostgreSQL

- 1. Structured data storage
- 2.ACID compliance: data reliability
- 3. Easy to manipulate data in a structured manner

- Data consistency and integrity
- High scalability
- Extensible data types

Flask

- 1. Flexible and customization
- 2. Built in support for RESTful APIs

- Lightweight framework
- Highly flexible
- RESTful request handling: easy to build APIs and web services.

ETL PipDiagram

Scalability and Cost Implications

Cost Implications* (Monthly)

1. Infrastructure Costs	(1) Cloud Service Provider	Compute instances, Storage, Database services	\$100~\$200
	(2) On premises Hardware	Server hardware, Network equipment (one time cost)	\$300~\$1500
2. Data Storage and Processing Costs	(1) Data Storage	SQL databases (PostgreSQL)	\$100~\$200
	(2) Data Processing	Real-time analytics services	\$100~\$200
3. API Usage Costs	NASDAQ Financial Data API	Basic / Premier tier	\$50~\$100

^{*}Since this is currently an academic project, its monetary costs will be relatively small. A large portion of the percentage will be the cost of the R&D member's time. If the decision is made to expand it into a corporate project, the monetary cost will increase significantly.

Scalability and Cost Implications

Horizontal Scaling

Distribute data and workload across servers

Vertical Scaling

upgrade hardware resources

Elasticity

Leverage cloud-based solutions for on-demand resource allocation

<u>Data Quality dimension</u> ensures

- **ACCURACY:** data cleaning & validation checks
- **COMPLETENESS:** fill in missing values
- **CONSISTENCY:** data schema & data normalization
- TIMELINESS: real-time data sources
- **RELEVANCY:** exclude irrelevant data

Licensing: use permissive open-source data that can be accessed, used, shared, and modified

<u>Scalability</u> ensures:

- (1) adapt to changing demands& requirements
- (2) handle increasing data volumes & processing demands

Conclusion

Success Metric & Evaluation Criteria

Data Extraction

Success Metric: Extraction Efficiency

Rationale

It is crucial because it directly impacts the speed and accuracy of downstream data processing and analysis

Evaluation Criteria

Data extraction rate of **5000** records per minute or higher.

Data Storage

Success Metric: Data Reliability and Integrity Rationale

If the data stored is corrupted, incomplete, or inaccurate, it will affect the accuracy of analysis, and any insights based on this analysis may be flawed.

Evaluation Criteria

Data loss rate of 0.5% or less

Data Processing

Success Metric: Data Processing Time Rationale

- Affects the speed at which insights can be gained from the data.
- Affects the cost of data processing. Longer processing time = More resources(CPU, memory)
 Higher costs.

Evaluation Criteria

Data processing time of 10 seconds or less

Success Metric: Scalability

Rationale

Our data updates each day. Without scalability, we may not be able to handle the increasing data volume= slower processing times + increased resource usage + potential data loss.

Evaluation Criteria

Process 30 years of stock data without a significant decrease in performance

>5000

Extraction Rate

<0.5%

Data

loss rate

<10s

Processing Time

30Y

data process

References

https://stockanalysis.com/stocks/

https://finance.yahoo.com/

https://rapidapi.com/sparior/api/mboum-finance

Group Members

- Julia Yang (yy3276)
- Jianing Yang (jy3229)
- Jiehui Ding (jd3894)
- Xinyang Tang (xt2275)
- Xinyi Liu (xl3206)