Specifikace softwarového díla & Časový plán implementace pro Mobilní aplikace sloužící k ovládání ToF kamer

Projekt se zaměřuje na vývoj mobilní aplikace pro ovládání ToF kamer přes Raspberry Pi. Aplikace umožní uživateli komunikovat přes Bluetooth a na dálku tak nahrávat a přehrávat zaznamenaný obsah.

Verze: 1.0.1

Karel Velička

31. KVĚTNA 2024

Contents

1	Zák	Základní informace				
	1.1	Popis a zaměření softwarového díla	2			
	1.2	Použité technologie	2			
	1.3	Konvence tohoto dokumentu	2			
	1.4	Odkazy (Reference)	2			
2	Stručný popis softwarového díla					
	2.1	Důvod vzniku softwarového díla a jeho základní části a cíle řešení	3			
	2.2	Hlavní funkce	3			
	2.3	Motivační příklad užití	3			
	2.4	Prostředí aplikace	3			
	2.5	Omezení díla	3			
3	Vnější rozhraní					
	3.1	Uživatelské rozhraní, vstupy a výstupy	3			
	3.2	Rozhraní s hardware	4			
	3.3	Rozhraní se software	4			
	3.4	Komunikační rozhraní	4			
4	Det	Detailní popis funkcionality				
	4.1	Spuštění serveru na RPi	4			
	4.2	Bluetooth připojení	4			
	4.3	Nastavení	4			
	4.4	Přehrávač	4			
5	Obi	Obrazovky				
	5.1	Mobilní aplikace - Nastavení, Přehrávač, Bluetooth	5			
6	Tin	Time-line & Milestones				
7	Poz	Poznámky				

1 Základní informace

1.1 Popis a zaměření softwarového díla

ToF kamera je zařízení, které využívá technologii Time-of-Flight k měření vzdálenosti. Kamera vysílá infračervené světlo, které se odráží od objektů a vrací zpět k senzoru. Na základě času, který světlu trvá cesta tam a zpět, kamera vypočítá vzdálenost k jednotlivým objektům, čímž umožňuje přesnou detekci pohybu a tvarů v prostoru.

Existují již podobné projekty, které se zaměřily na zobrazování záznamu z ToF kamer, příkladem může být třeba ArduCAM, nebo espros. Nicméně žádná implementace prozatím není v jazyce Java a žádná implementace nezajišťuje přenos do mobilního telefonu skrz Bluetooth.

Tento projekt se tedy zaměřuje na vývoj mobilní aplikace v systému Android, která umožní uživateli komunikovat přes Bluetooth a na dálku tak nahrávat a přehrávat zaznamenaný obsah z kamery.

1.2 Použité technologie

V projektu jsou použita zařízení $Nucleo\ board\ STM32F401\$ spolu s kamerou $VL53L5\ ToF\$ a $Raspberry\ Pi\ 5.$

Jinak je, pro tvorbu Android aplikace, využito Android Studio Flamingo a obecně programovací jazyk Java 21 spolu s knihovnami:

- JSON In Java knihovna usnadňující práci s '.json' soubory
- JSerialComm knihovna usnadňující práci s porty (připojená zařízení přes USB)

1.3 Konvence tohoto dokumentu

Odkazy na webové stránky jsou uváděny modrou barvou. Raspberry Pi bude někdy zkracováno na RPi

1.4 Odkazy (Reference)

- Webová stránka s Nucelo board specifikací:
 - https://www.st.com/en/evaluation-tools/stm32-nucleo-boards.html, STMicroelectronics, 2024
- Webová stránka s ToF specifikací:
 - https://www.st.com/en/imaging-and-photonics-solutions/vl53l5cx.html, STMicroelectronics, 2024

2 Stručný popis softwarového díla

2.1 Důvod vzniku softwarového díla a jeho základní části a cíle řešení

Důvodem vzniku, jak již bylo popsáno v sekci výše, je neexistence mobilní aplikace komunikující s kamerou ToF.

Projekt je obecně rozdělen do dvou částí, ačkoliv je hlavním ovládacím zařízením právě telefon.

- 1. Získávání informací z ToF kamery. To zajišťuje samostatný skript, který zároveň spouští Bluetooth server a čeká na připojení klienta (mobil).
- 2. Mobilní aplikace sloužící jako Bluetooth klient a umožňující nastavit, nahrát přehrát video záznam.

2.2 Hlavní funkce

- Připojení přes bluetooth: RaspberryPi \rightleftarrows Mobilní telefon.
- Přehrání video záznamu z JSON souboru.
- Nahrání a uložení videa do JSON souboru.
- Drobnosti navíc pro zpříjemnění přehrávání změna FPS, vzdálenost, otáčení kolem osy.

2.3 Motivační příklad užití

Uživatel spustí na Raspberry Pi (připojené k Nucleo board + ToF) tento program. Tím se vytvoří Bluetooth server a čeká na připojení klienta.

Uživatel zároveň spustí Mobilní aplikaci, připojí se k Raspberry Pi, vybere si v nastavení vše co požaduje, začne nahrávat. Následně si přehraje video záznam.

2.4 Prostředí aplikace

Program pro Raspberry Pi bude konzolová Java aplikace fungující také na běžných Linuxových distribucích.

Aplikace pro mobilní telefon bude spustitelná pouze na zařízeních Android 5.0 Lollipop a novějších a bude ovladatelná skrz běžné (defaultní) grafické rozhraní.

2.5 Omezení díla

Pro účely práce bude odladěn pouze program pro Raspberry Pi (respektive Linuxová zařízení).

3 Vnější rozhraní

3.1 Uživatelské rozhraní, vstupy a výstupy

Mobilní aplikace od uživatele dostává veškeré pokyny, které má v nabídce. Umožní se připojit přes Bluetooth, nastavit konfigurační soubor, začít nahrávat a následně spouštět video.

Z hlediska RPi programu je vstupem vždy požadavek získaný od klienta přes Bluetooth. Požadavek bude ve smyslu "start record", "stop record", "send video", "capture config". Výstupem pak bude právě nahrané video v JSON formátu. Jinak uživatel s tímto programem nijak jinak, než že jej spustí, nekomunikuje.

3.2 Rozhraní s hardware

RPi komunikuje s ToF kamerou prostřednictvím micro USB kabelu. Komunikaci nám usnadňuje knihovna *jSerialComm*.

3.3 Rozhraní se software

Veškeré Fragmenty mobilních rozhraní komunikují s kódem za pomoci binding a CreateView. Přes Bluetooth se přenese JSON soubor s obsahem videa. JSON soubor se parsuje za pomoci knihovny JSON In Java.

3.4 Komunikační rozhraní

Komunikace mezi Serverem (RPi) a klientem (Mobil) probíhá prostřednictvím otevřeného standardu Bluetooth verze 5.0 (respektive nižší, pokud Android telefon nepodporuje 5.0).

RPi vytvoří server a čeká na připojení klienta. Android vytvoří požadavek na spárování a následně začne komunikace.

Odesílají se bloky dat v podobě (hlavička, data), kde hlavička obsahuje typ požadavku/ zprávy.

4 Detailní popis funkcionality

4.1 Spuštění serveru na RPi

Uživatel připojí Nucleo board (spolu s ToF) k Raspberry Pi. Na RPi se spustí program příkazem java -jar btof.jar. Tím se automaticky vytvoří Bluetooth server a nastane čekání na připojení klienta.

4.2 Bluetooth připojení

Uživatel spustí mobilní aplikaci, přejde na "Bluetooth připojení", stiskne "vyhledat" a vybere RPi server. (Pokud se zařízení nezobrazí, může stisknout "refresh"). Tím je připojen k RPi a tedy i k ToF kameře.

4.3 Nastavení

Uživatel může v nastavení nastavit specifikaci pro přehrávání videa. Rotace otočí video přehrávač o $\{0, 90, 180, 270\}$ stupňů. FPS nastaví počet snímků za sekundu (defaultně nastaveno na 10). Dále je možné nastavit Detekovaný cíl, Vzdálenost a Statistiku, což jsou textové údaje, které se zobrazí na jednotlivých čtverečcích videa.

4.4 Přehrávač

Uživatel může přehrát či pozastavit video. Bude zároveň obsahovat tlačítko "nahrát", které nahraje záznam z kamery.

5 Obrazovky

5.1 Mobilní aplikace - Nastavení, Přehrávač, Bluetooth

Obr. 1: Jednotlivé náhledy Fragmentů z mobilní aplikace.

6 Time-line & Milestones

Datum	Milník	Způsob prezentace
31. 05. 2024	Finální verze této specifikace	Existující dokument
31. 07. 2024	Funkční komunikace mezi RPi a ToF	Předvedení (osobní/ online)
31. 08. 2024	Funkční komunikace mezi RPi a Androidem	Předvedení (osobní/ online)
31. 09. 2024	Doladění do finální verze	Předvedení

7 Poznámky

Tato specifikace je více než inspirována šablonami:

- Software Requirements Specification by by Karl E. Wiegers
- SAFETM Development System Requirements