

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ "КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО"

Факультет прикладної математики Кафедра програмного забезпечення комп'ютерних систем

Лабораторна робота № 6

з дисципліни "Математичні та алгоритмічні основи комп'ютерної графіки"

Виконав	Зарахована
студент III курсу	""20p.
групи КП-81	викладачем
Дикий Ілля (прізвище, ім'я, по батькові)	Шкурат Оксаною Сергіївною (прізвище, ім'я, по батькові)

Завдання

Виконати анімацію тривимірної сцени за варіантом.

3. Анімація риби fish.obj. Риба повинна рухати плавцями, хвостом, головою, рухатися по екрану.

Лістинг коду програми

```
import com.sun.j3d.loaders.Scene;
import com.sun.j3d.loaders.objectfile.ObjectFile;
import com.sun.j3d.utils.behaviors.vp.OrbitBehavior;
import com.sun.j3d.utils.image.TextureLoader;
import com.sun.j3d.utils.universe.SimpleUniverse;
import javax.media.j3d.*;
import javax.swing.*;
import javax.vecmath.Color3f;
import javax.vecmath.Point3d;
import javax.vecmath.Vector3d;
import javax.vecmath.Vector3f;
import java.util.Enumeration;
import java.util.Hashtable;
public class Fish extends JFrame{
   public Canvas3D myCanvas3D;
   public Fish() {
       this.setDefaultCloseOperation(JFrame.EXIT ON CLOSE);
       myCanvas3D = new
Canvas3D(SimpleUniverse.getPreferredConfiguration());
       SimpleUniverse simpUniv = new SimpleUniverse(myCanvas3D);
       simpUniv.getViewingPlatform().setNominalViewingTransform();
       createSceneGraph(simpUniv);
       addLight(simpUniv);
       OrbitBehavior ob = new OrbitBehavior(myCanvas3D);
       ob.setSchedulingBounds (new BoundingSphere (new
Point3d(0.0,0.0,0.0), Double.MAX VALUE));
       simpUniv.getViewingPlatform().setViewPlatformBehavior(ob);
```

```
setTitle("Fish");
       setSize(700,700);
       getContentPane().add("Center", myCanvas3D);
       setVisible(true);
   }
   public void createSceneGraph(SimpleUniverse su) {
       ObjectFile f = new ObjectFile(ObjectFile.RESIZE);
       BoundingSphere bs = new BoundingSphere(new
Point3d(0.0,0.0,0.0), Double. MAX VALUE);
       String name;
       BranchGroup trainerBranchGroup = new BranchGroup();
       TextureLoader t = new
TextureLoader("/home/stilpert/Education/MAOKG/lab6/data/background.jpg",
myCanvas3D);
       Background trainerBackground = new Background(t.getImage());
       Scene trainerScene = null;
       try{
           trainerScene =
f.load("/home/stilpert/Education/MAOKG/lab6/data/fish.obj");
       }
       catch (Exception e) {
           System.out.println("File loading failed:" + e);
       Hashtable roachNamedObjects = trainerScene.getNamedObjects();
       Enumeration enumer = roachNamedObjects.keys();
       while (enumer.hasMoreElements()) {
           name = (String) enumer.nextElement();
           System.out.println("Name: " + name);
       }
       // start animation
       Transform3D startTransformation = new Transform3D();
       startTransformation.setScale(2.0/6);
       Transform3D combinedStartTransformation = new Transform3D();
       combinedStartTransformation.mul(startTransformation);
       TransformGroup scratStartTransformGroup = new
TransformGroup(combinedStartTransformation);
```

```
int movesCount = 100; // moves count
       int movesDuration = 500; // moves for 0,3 seconds
       int startTime = 0; // launch animation after timeStart seconds
       // head
       Appearance headApp = new Appearance();
       setToMyDefaultAppearance(headApp, new Color3f(0.1f, 0.2f, 0.1f));
       Alpha headRotAlpha = new Alpha (movesCount, Alpha. INCREASING ENABLE,
startTime, 0, movesDuration,0,0,0,0,0);
       Shape3D head = (Shape3D) roachNamedObjects.get("head");
       head.setAppearance(headApp);
       TransformGroup headTG = new TransformGroup();
       headTG.addChild(head.cloneTree());
       Transform3D headRotAxis = new Transform3D();
       headRotAxis.setTranslation(new Vector3f(0.0f, 0.0f, 0.5f));
       RotationInterpolator headRot = new RotationInterpolator(headRotAlpha,
headTG, headRotAxis, (float) -Math.PI/4, (float) Math.PI/4);
       headRot.setSchedulingBounds(bs);
       headTG.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
       headTG.addChild(headRot);
       // ventralFin
       Appearance ventralFinApp = new Appearance();
       setToMyDefaultAppearance(ventralFinApp, new Color3f(0.9f, 0.0f,
0.0f));
       Alpha ventralFinAlpha = new Alpha (movesCount,
Alpha. INCREASING ENABLE, startTime, 0, movesDuration, 0, 0, 0, 0, 0);
       Shape3D ventralFin = (Shape3D) roachNamedObjects.get("ventral finq");
       ventralFin.setAppearance(ventralFinApp);
       TransformGroup ventralFinTG = new TransformGroup();
       ventralFinTG.addChild(ventralFin.cloneTree());
       Transform3D ventralFinRotAxis = new Transform3D();
```

// moves

```
RotationInterpolator ventralFinrot = new
RotationInterpolator(ventralFinAlpha, ventralFinTG, ventralFinRotAxis, 0.0f,
(float) Math.PI/3); // Math.PI*2
       ventralFinrot.setSchedulingBounds(bs);
       ventralFinTG.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
       ventralFinTG.addChild(ventralFinrot);
       // ventralFin2
       Shape3D ventralFin2 = (Shape3D) roachNamedObjects.get("ventral fin2");
       ventralFin2.setAppearance(ventralFinApp);
       TransformGroup ventralFin2TG = new TransformGroup();
       ventralFin2TG.addChild(ventralFin2.cloneTree());
       Transform3D ventralFin2RotAxis = new Transform3D();
       RotationInterpolator ventralFin2rot = new
RotationInterpolator(ventralFinAlpha, ventralFin2TG, ventralFin2RotAxis,
0.0f, (float) Math.PI/3); // Math.PI*2
       ventralFin2rot.setSchedulingBounds(bs);
       ventralFin2TG.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
       ventralFin2TG.addChild(ventralFin2rot);
       // fin1
       Appearance finApp = new Appearance();
       setToMyDefaultAppearance(finApp, new Color3f(0.9f, 0.0f, 0.0f));
       Alpha finAlpha = new Alpha (movesCount, Alpha. INCREASING ENABLE,
startTime, 0, movesDuration, 0, 0, 0, 0, 0);
       Shape3D fin = (Shape3D) roachNamedObjects.get("fin1");
       fin.setAppearance(finApp);
       TransformGroup finTG = new TransformGroup();
       finTG.addChild(fin.cloneTree());
       Transform3D finRotAxis = new Transform3D();
       finRotAxis.setTranslation(new Vector3f(0.0f, 0.0f, 0.5f));
       RotationInterpolator finrot = new RotationInterpolator(finAlpha,
finTG, finRotAxis, 0.0f, (float) Math.PI/3); // Math.PI*2
       finrot.setSchedulingBounds(bs);
```

```
finTG.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
       finTG.addChild(finrot);
       // fin2
       Shape3D fin2 = (Shape3D) roachNamedObjects.get("fin2");
       fin2.setAppearance(finApp);
       TransformGroup fin2TG = new TransformGroup();
       fin2TG.addChild(fin2.cloneTree());
       Transform3D fin2RotAxis = new Transform3D();
       fin2RotAxis.setTranslation(new Vector3f(0.0f, 0.0f, 0.5f));
       RotationInterpolator fin2rot = new RotationInterpolator(finAlpha,
fin2TG, fin2RotAxis, 0.0f, (float) -Math.PI/3); // Math.PI*2
       fin2rot.setSchedulingBounds(bs);
       fin2TG.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
       fin2TG.addChild(fin2rot);
       // tail
       Appearance tailApp = new Appearance();
       setToMyDefaultAppearance(tailApp, new Color3f(0.9f, 0.0f, 0.0f));
       Alpha tailAlpha = new Alpha (movesCount, Alpha. INCREASING ENABLE,
startTime, 0, movesDuration, 0, 0, 0, 0, 0);
       Shape3D tail = (Shape3D) roachNamedObjects.get("tail");
       tail.setAppearance(tailApp);
       TransformGroup tailTG = new TransformGroup();
       tailTG.addChild(tail.cloneTree());
       Transform3D tailRotAxis = new Transform3D();
       Vector3f vectorTail = new Vector3f(0.0f, 0.0f, -0.6f);
       tailRotAxis.setTranslation(vectorTail);
       RotationInterpolator tailrot = new RotationInterpolator(tailAlpha,
tailTG, tailRotAxis, (float) -Math.PI/3, (float) Math.PI/3);
       tailrot.setSchedulingBounds(bs);
       tailTG.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
       tailTG.addChild(tailrot);
```

```
Appearance bodyApp = new Appearance();
       setToMyDefaultAppearance(bodyApp, new Color3f(0.1f, 0.2f, 0.1f));
       TransformGroup sceneGroup = new TransformGroup();
       sceneGroup.addChild(headTG);
       sceneGroup.addChild(ventralFinTG);
       sceneGroup.addChild(ventralFin2TG);
       sceneGroup.addChild(finTG);
       sceneGroup.addChild(fin2TG);
       sceneGroup.addChild(tailTG);
       TransformGroup tgBody = new TransformGroup();
       Shape3D nShape = (Shape3D) roachNamedObjects.get("rt body");
       nShape.setAppearance(bodyApp);
       tgBody.addChild(nShape.cloneTree());
       sceneGroup.addChild(tgBody.cloneTree());
       TransformGroup whiteTransXformGroup = translate(
               scratStartTransformGroup,
               new Vector3f(0.0f,0.0f,0.7f));
           TransformGroup whiteRotXformGroup = rotate(whiteTransXformGroup,
new Alpha(10,5000));
       trainerBranchGroup.addChild(whiteRotXformGroup);
       scratStartTransformGroup.addChild(sceneGroup);
       BoundingSphere bounds = new BoundingSphere (new
Point3d(120.0,250.0,100.0), Double.MAX VALUE);
       trainerBackground.setApplicationBounds(bounds);
       trainerBranchGroup.addChild(trainerBackground);
       trainerBranchGroup.compile();
       su.addBranchGraph(trainerBranchGroup);
   }
   public void addLight(SimpleUniverse su) {
       BranchGroup bgLight = new BranchGroup();
       BoundingSphere bounds = new BoundingSphere (new Point3d(0.0,0.0,0.0),
100.0);
       Color3f lightColour1 = new Color3f(1.0f,1.0f,1.0f);
```

// body

```
Vector3f lightDir1 = new Vector3f(-1.0f, 0.0f, -0.5f);
       DirectionalLight light1 = new DirectionalLight(lightColour1,
lightDir1);
       light1.setInfluencingBounds(bounds);
       bgLight.addChild(light1);
       su.addBranchGraph(bgLight);
   }
   private TransformGroup translate(Node node, Vector3f vector){
       Transform3D transform3D = new Transform3D();
       Transform3D rotY = new Transform3D();
       transform3D.setTranslation(vector);
       rotY.rotY(Math.PI/2);
       transform3D.mul(rotY);
       TransformGroup transformGroup =
               new TransformGroup();
       transformGroup.setTransform(transform3D);
       transformGroup.addChild(node);
       return transformGroup;
   }
   private TransformGroup rotate(Node node, Alpha alpha) {
       TransformGroup xformGroup = new TransformGroup();
       xformGroup.setCapability(TransformGroup.ALLOW TRANSFORM WRITE);
       RotationInterpolator interpolator = new
RotationInterpolator(alpha, xformGroup);
       interpolator.setSchedulingBounds(new BoundingSphere( new
Point3d(0.0,0.0,0.0),1.0));
       xformGroup.addChild(interpolator);
       xformGroup.addChild(node);
      return xformGroup;
   }
   public static void setToMyDefaultAppearance(Appearance app, Color3f col) {
       app.setMaterial(new Material(col, col, col, col, 150.0f));
```

```
public static void main(String[] args) {
    Fish start = new Fish();
}
```

Результат

