Tema: Розв'язування прямокутних трикутників

Мета:

- Навчальна: навчити розв'язувати прямокутні трикутники;
- Розвиваюча: розвивати вміння застосовувати отримані знання до розв'язування задач
- Виховна: виховувати наполегливість, вміння об'єктивно оцінювати здібності, виховувати звичку охайно вести конспект уроку.

Хід уроку

$$\angle A+\angle B=90^\circ;$$
 $a^2+b^2=c^2$ (теорема Піфагора); $a=c\sin A=c\cos B=b\operatorname{tg} A=rac{b}{\operatorname{tg} B};$ $b=c\sin B=c\cos A=a\operatorname{tg} B=rac{a}{\operatorname{tg} A};$

Pозв'язати прямокутний трикутник – це означа ϵ знайти його невідомі сторони й кути за відомими сторонами й кутами.

1. Розв'язування прямокутного трикутника **3a** гіпотенузою і гострим кутом

ightharpoonup Як можемо знайти $\angle eta$? $\angle oldsymbol{eta} = \mathbf{90}^{\circ} - \angle oldsymbol{lpha}$

$$\angle \beta = 90^{\circ} - \angle \alpha$$

▶ Як можемо виразити катет а?

$$a = c \cdot \sin \alpha$$

 \triangleright Як можемо виразити катет b?

$$b = c \cdot \cos \alpha$$

2. Розв'язування прямокутного трикутника за катетом і гострим кутом.

$$\angle \beta = 90^{\circ} - \angle \alpha$$

$$b = \frac{a}{\operatorname{tg} \alpha}$$

$$b = a \cdot \lg \beta$$
$$c = \frac{a}{\sin \alpha}$$

$$c = \sqrt{a^2 + b^2}$$

3. Розв'язування прямокутного трикутника катетом і гіпотенузою

▶ Чи можемо знайти катет а?

$$a = \sqrt{c^2 - b^2}$$

 \blacktriangleright Чи можемо знайти значення кута β або α ?

$$\sin\beta = \frac{b}{c}$$

 $(\angle \beta$ знаходимо за допомогою таблиць)

b c B

4. Розв'язування прямокутного трикутника за двома катетами

> Чи можемо знайти гіпотенузу?

$$c = \sqrt{a^2 + b^2}$$

 \triangleright Чи можемо знайти значення кута β або α ?

$$tg \beta = \frac{b}{a}$$

(∠**β** знаходимо за допомогою таблиць)

$$\angle \alpha = 90^{\circ} - \angle \beta$$

Розв'язування задач

Задача №1

Знайдіть довжину траси київського фунікулера, якщо різниця висот між нижньою і верхньою станціями дорівнює 75 м, а синус кута нахилу траси до горизонту становить $\frac{25}{74}$.

Дано:

 ΔMAT – прямокутний ($\angle A = 90^{\circ}$)

 $MA \perp AT$

$$\sin T = \frac{25}{74}$$

$$MA = 75 \text{ M}$$

Знайти:

$$MT-?$$

Розв'язок:

$$\sin T = \frac{MA}{MT} \Rightarrow MT = \frac{MA}{\sin T} = 75 \cdot \frac{74}{25} = 222 \text{ M}$$

Відповідь: 222 м

Задача №2

Розв'яжіть прямокутний трикутник за гіпотенузою і гострим кутом:

a) c = 8, $\alpha = 30^{\circ}$;

Дано:

 ΔMAT – прямокутний ($\angle A = 90^{\circ}$)

 $MA \perp AT$

MT = 8

 $\angle M = 30^{\circ}$

Знайти:

MA-?

AT-?

$$\angle T - ?$$

Розв'язок:

$$\angle T = 90^{\circ} - \angle M = 90^{\circ} - 30^{\circ} = 60^{\circ}$$

$$\sin M = \frac{AT}{MT} \Rightarrow AT = \sin M \cdot MT = \frac{1}{2} \cdot 8 = 4$$

За теоремою Піфагора:

$$MA = \sqrt{MT^2 - AT^2} = \sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} = 4\sqrt{3}$$

Відповідь: $MA = 4\sqrt{3}$; AT = 4; $\angle T = 60^{\circ}$.

Задача№3

Розв'яжіть прямокутний трикутник за катетом і гострим кутом:

a)
$$a = 2$$
, $\beta = 45^{\circ}$;

Дано:

 ΔMAT – прямокутний ($\angle A = 90^{\circ}$)

 $MA \perp AT$

AT = 2

 $\angle T = 45^{\circ}$

Знайти:

MA-?

MT-?

∠*M*−?

Розв'язок:

$$\angle M = 90^{\circ} - \angle T = 90^{\circ} - 45^{\circ} = 45^{\circ}$$

$$\angle M = \angle T = 45^{\circ} \Rightarrow \Delta MAT$$
 – рівнобедрений $\Rightarrow AM = AT = 2$

$$\cos T = \frac{AT}{MT} \Rightarrow MT = \frac{AT}{\cos T} = 2 \cdot \frac{2}{\sqrt{2}} = \frac{4}{\sqrt{2}} = \frac{4\sqrt{2}}{2} = 2\sqrt{2}$$

Відповідь: $a=2, b=2, c=2\sqrt{2}, \alpha=45^{\circ};$

Підсумок уроку

- Що означає розв'язати трикутник?
- Які можна використати співвідношення між сторонами і кутами прямокутного трикутника, щоб розв'язати його?

• Як розв'язати прямокутний трикутник за гіпотенузою і гострим кутом?

<mark>Домашнє завдання</mark>

Повторити § 21

Виконати № 783(1,2), 791, 793 (1).

783. За гіпотенузою AB прямокутного трикутника ABC і гострим кутом знайдіть інші його сторони та другий гострий кут (сторони трикутника в задачах 3) і 4) знайдіть із точністю до сотих).

1)
$$AB = 6$$
 дм; $\angle A = 45^{\circ}$; 2) $AB = 14$ см; $\angle B = 60^{\circ}$;

791. За малюнком 209 знайдіть відстань від об'єкта B до недоступного об'єкта A, якщо $\angle C = 90^{\circ}$, BC = 80 м, $\angle B = 57^{\circ}$.

Мал. 209

793. За двома катетами трикутника ABC ($\angle C = 90^{\circ}$) знайдіть його гіпотенузу та гострі кути з точністю до мінут:

1)
$$AC = 2\sqrt{3}$$
 cm; $BC = 2$ cm;

Відправити на Human або електронну пошту smartolenka@gmail.com