

DIMENSIONALITY REDUCTION

CURSE OF DIMENSIONALITY

 Theoretically, increasing features should improve performance

CURSE OF DIMENSIONALITY

- Theoretically, increasing features should improve performance
- In practice, more features leads to worse performance

CURSE OF DIMENSIONALITY

- Theoretically, increasing features should improve performance
- In practice, more features leads to worse performance
- Number of training examples required increases exponentially with dimensionality

 Data can be represented by fewer dimensions (features)

- Data can be represented by fewer dimensions (features)
- Reduce dimensionality by selecting subset (feature elimination)

- Data can be represented by fewer dimensions (features)
- Reduce dimensionality by selecting subset (feature elimination)
- Combine with linear and non-linear transformations

- Two features: height and cigarettes per day
- Both features increase together (correlated)
- Can we reduce number of features to one?

- Two features: height and cigarettes per day
- Both features increase together (correlated)
- Can we reduce number of features to one?

- Two features: height and cigarettes per day
- Both features increase together (correlated)
- Can we reduce number of features to one?

- Two features: height and cigarettes per day
- Both features increase together (correlated)
- Can we reduce number of features to one?

- Create single feature that is combination of height and cigarettes
- This is Principal Component Analysis (PCA)

- Create single feature that is combination of height and cigarettes
- This is Principal Component Analysis (PCA)

Height + Cigarettes/Day

DIMENSIONALITY REDUCTION

Given an N-dimensional data set (x), find a $N \times K$ matrix (U):

 $y = U^T x$, where y has K dimensions and K < N

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix} \xrightarrow{U^T} y = \begin{bmatrix} y_1 \\ y_2 \\ \dots \\ y_k \end{bmatrix} (K < N)$$

SINGLE VALUE DECOMPOSITION (SVD)

- SVD is a matrix factorization method normally used for PCA
- Does not require a square data set
- SVD is used by Scikit-learn for PCA

TRUNCATED SINGLE VALUE DECOMPOSITION

- How can SVD be used for dimensionality reduction?
- Principal components are calculated from US
- "Truncated SVD" used for dimensionality reduction $(n \rightarrow k)$

IMPORTANCE OF FEATURE SCALING

- PCA and SVD seek to find the vectors that capture the most variance
- Variance is sensitive to axis scale

IMPORTANCE OF FEATURE SCALING

- PCA and SVD seek to find the vectors that capture the most variance
- Variance is sensitive to axis scale
- Must scale data!

Import the class containing the dimensionality reduction method.

from sklearn.decomposition import PCA

Import the class containing the dimensionality reduction method.

from sklearn.decomposition import PCA

Create an instance of the class.

PCAinst = PCA(n_components=3, whiten=True)

Import the class containing the dimensionality reduction method.

from sklearn.decomposition import PCA

Create an instance of the class.

PCAinst = PCA(n_components=3, whiten=True)

Import the class containing the dimensionality reduction method.

from sklearn.decomposition import PCA

Create an instance of the class.

PCAinst = PCA(n_components=3, whiten=True)

Import the class containing the dimensionality reduction method.

```
from sklearn.decomposition import PCA
```

Create an instance of the class.

```
PCAinst = PCA(n_components=3, whiten=True)
```

Fit the instance on the data and then transform the data.

```
X_trans = PCAinst.fit_transform(X_train)
```

Import the class containing the dimensionality reduction method.

```
from sklearn.decomposition import PCA
```

Create an instance of the class.

```
PCAinst = PCA(n_components=3, whiten=True)
```

Fit the instance on the data and then transform the data.

```
X_trans = PCAinst.fit_transform(X_train)
```

Does not work with sparse matrices.

TRUNCATED SVD: THE SYNTAX

Import the class containing the dimensionality reduction method.

from sklearn.decomposition import TruncatedSVD

Create an instance of the class.

```
SVD = TruncatedSVD(n components=3)
```

Fit the instance on the data and then transform the data.

```
X_trans = SVD.fit_transform(X_sparse)
```

Works with sparse matrices—used with text data for Latent Semantic Analysis (LSA).

TRUNCATED SVD: THE SYNTAX

Import the class containing the dimensionality reduction method.

from sklearn.decomposition import TruncatedSVD

Create an instance of the class.

```
SVD = TruncatedSVD (n_components=3)
```


does not center data

Fit the instance on the data and then transform the data.

```
X_trans = SVD.fit_transform(X_sparse)
```

Works with sparse matrices—used with text data for Latent Semantic Analysis (LSA).

MOVING BEYOND LINEARITY

Transformations calculated with PCA/SVD are linear

MOVING BEYOND LINEARITY

- Transformations calculated with PCA/SVD are linear
- Data can have non-linear features

MOVING BEYOND LINEARITY

- Transformations calculated with PCA/SVD are linear
- Data can have non-linear features
- This can cause dimensionality reduction to fail

dimensionality reduction fails

KERNEL PCA

 Solution: kernels can be used to perform non-linear PCA

KERNEL PCA

- Solution: kernels can be used to perform non-linear PCA
- Like the kernel trick introduced for SVMs

KERNEL PCA: THE SYNTAX

Import the class containing the dimensionality reduction method.

from sklearn.decomposition import KernalPCA

Create an instance of the class.

```
kPCA = KernalPCA(n components=3, kernel='rbf',gamma=1.0)
```

Fit the instance on the data and then transform the data.

```
X_trans = kPCA.fit_transform(X_train)
```

MULTI-DIMENSIONAL SCALING (MDS)

- Non-linear transformation
- Doesn't focus on maintaining overall variance
- Instead, maintains geometric distances between points

MDS: THE SYNTAX

Import the class containing the dimensionality reduction method.

```
from sklearn.manifold import MDS
```

Create an instance of the class.

```
mdsMod = MDS (n_components=2)
```

Fit the instance on the data and then transform the data.

```
X_trans = mdsMod.fit_transform(X_sparse)
```

Many other manifold dimensionality methods exist: Isomap, TSNE.

- Frequently used for high dimensionality data
- Natural language processing (NLP)—many word combinations
- Image-based data sets—pixels are features

Image Source: https://commons.wikimedia.org/wiki/File:Monarch_In_May.jpg

Divide image into 12 x 12 pixel sections

Image Source: https://commons.wikimedia.org/wiki/File:Monarch_In_May.jpg

- Divide image into 12 x 12 pixel sections
- Flatten section to create row of data with 144 features

Image Source: https://commons.wikimedia.org/wiki/File:Monarch_In_May.jpg

- Divide image into 12 x 12 pixel sections
- Flatten section to create row of data with 144 features
- Perform PCA on all data points

63								
	1	2	3		14 2	14 3	14 4	
	1	2	3		14 2	14 3	14 4	
	1	2	3		14 2	14 3	14 4	
6	1	2	3		14 2	14 3	14 4	
1	1	2	3		14 2	14 3	14 4	ý,
	1	2	3		14 2	14 3	14 4	

Image Source: https://commons.wikimedia.org/wiki/File:Monarch_In_May.jpg

PCA COMPRESSION: 144 → 60 DIMENSIONS

144 Dimensions

60 Dimensions

PCA COMPRESSION: 144 → 16 DIMENSIONS

144 Dimensions

16 Dimensions

SIXTEEN MOST IMPORTANT EIGENVECTORS

PCA COMPRESSION: 144 → 4 DIMENSIONS

144 Dimensions

4 Dimensions

L2 ERROR AND PCA DIMENSION

FOUR MOST IMPORTANT EIGENVECTORS

FOUR MOST IMPORTANT EIGENVECTORS

PCA COMPRESSION: 144 → 1 DIMENSION

144 Dimensions

1 Dimensions

