\$3.4. Rekursiv auszāhlbare Mengen.
Evinnerung: R & IN" vekursiv = D XR: IN" - IN
vekursiv
$\gamma_{\text{Ni}} = \begin{cases} 0 & (x_{1}, x_{n}) \notin \mathbb{R} \\ 1 & (x_{1}, x_{n}) \in \mathbb{R} \end{cases}$
Bem: {A s IN ": A rekursiv } ist ahzāhlhar, da
fs. IN - IN s rekursiv 3 abz 1st.
Ben: S: IN" -OIN rekursiv =0 ex. TM, die s berechnet.
TM ahz, da wir TM eindeutig mittels
L najúvlichev Zahlen kodievi haben (3.16)
Tolgerung 320: "Die meisten" Teilmengen von IN sind
Micht rekursiv
Bew: 12 ⁶ 1 > 161.
Beispiel 3.21 Sei A die Menge mit XEA
riemannsche Vermulung gilt.
Dann ist A rekursiv
(Wenn RV gilt, ist A=1M. Wenn RV nicht gilt, ist
A=Ø in heiden fâllen ist A rekursiv)
~ Wie linden wir nicht-vekursive TM von IN?
Des 3.22. Eine Relation R = MM heißt rekursiv auszählba
(ra), wenn jur eine rekursive Relation R = IN "12 gil
$R(X_{01}, X_n) = D = \exists y R(X_{01}, X_n, y)$
Tychreihe R(Xo,-,Xn) Str (Xo,-,Xn) ER7

Bem Jecle vekursive Relation ist vek ausz
Lemma 3.23: Henn P, R \subseteq /N ⁿ V. a. sind, clann auch (1.) P \cup R
$(2.) P n R$ $(3.) \exists 2 R(X_{0,-1}, X_{n,-1}, 2)$
(4.) T(Xo,-,Xn,W) =0 Y2 < W R(Xo,-,Xn,2) (5.) SUV Jo,-, Sn: /N rekursiv R(Jo(Xo,-,XK),-, Sn(Xo,-,XK))
Ben Jeien P, R C M M2 yekursiv mil P(X,,X,) & Jy P(X,,X,y) und
$R(X_{01}-1X_{0}) = 0 \exists y \widehat{\mathbb{R}}(X_{01}-1X_{0},y). Schreibe \widehat{\mathbb{X}} $
(2.) $P(\overline{X}) \wedge R(\overline{X}) \rightleftharpoons \exists y (\widetilde{P}(\overline{X}, \beta_{A}^{2}(y)) \wedge \widetilde{R}(\overline{X}, \beta_{A}^{2}(y)))$ (3.) $\exists 2 R(\overline{X}, 2) \rightleftharpoons \exists y \widetilde{R}(X_{01-1}X_{01-1$
$(4.) T(X(W)) \stackrel{d=0}{=} 3S \forall 2 < W R(X, (S_{2}))$ $2k \text{ komp. } \{kl. \text{ avs. } lemma 3.15$
$S = \langle S_{01}, S_{m} \rangle \qquad (S)_{2} = \begin{cases} S_{i} & 2 \leq m \\ 0 & \text{sonst.} \end{cases}$ $(S) R \left(\int_{0} (\overline{X})_{i-1} \int_{n} (\overline{X})_{i} \vee \overline{X} \right) = \begin{cases} S_{i} & 2 \leq m \\ 0 & \text{sonst.} \end{cases}$
Lemma 3.24 Jei RSIN Dann ist Rra. golw. R= Ø oclev es eine rek. Fkt. f gibt mit s[IN] = R.
BCM [IN +0 IN KK +0 R= [[N] V 2. (1a)
$R(x) = 0 \exists y \exists (y) = x \text{ gill.}$ $R(x) = 0 \exists y \exists (y) = x \text{ gill.}$ $R(x) = 0 \exists y \text{ R}(x,y) \text{unch } y \in R.$ $R(x) = 0 \exists y \text{ R}(x,y) \text{unch } y \in R.$ $R(x) = 0 \exists y \text{ R}(x,y) \text{unch } y \in R.$ $R(x) = 0 \exists y \text{ R}(x,y) \text{unch } y \in R.$ $R(x) = 0 \exists y \text{ R}(x) = x \text{ gill.}$ $R(x) = 0 \exists y$
Die leeve Menge ist natürlich v.a. (r sonst.

Salz 3.25. Es gibl eine universelle v.a. Relation N = 11/2 d.h. N ist v.a. und jede v.a. Menge R S IN hat die Form R(x) =0 U(e,x) Jur ein geeigneles e E IV. Bem Sei R(x,y) rekursiv und Meine TM, die versucht $\mu_{Y} \chi_{R}(x,y) = 0$ zu herechnen. M stoppt genau dann hei Input x, wenn $\exists y \hat{R}(x,y)$ gilt. $\exists t (\exists u ; t, x)$ Es gill also $\exists y \hat{R}(x,y) \Leftrightarrow \exists x \in \mathcal{M}(x,y) \in \mathcal{B}$ Die rek ausz. Relation U(x,e) ==] + ([M, +, x) & B' ist also universell 12 Korollar 3.26. Es gibt eine Teilmenge von IV. die nicht vekursiv aber va ist. Ben Zeige zunächst: 7 Ulx,x) ist nicht ra. Ang. TU(x,x) v.a., d.h. es ex. e E/V mit 7 U(x,x) =0 U(x,e) 3 jūr x=e! = b U(x,x) ist nicht rekursiv (313), aber ra Lemma 3.27 R vekuvsiv a=0 R und 7R v.a. Bem "=0" Kla1 "a=" sei R(x) a=0 3y R(x,y) und TR(X) = 0 Jy T(X,Y) Dann gilt $f(x) = My(\tilde{R}(x,y) \vee T(x,y))$ ist rek. and Réserve $R(x) \rightleftharpoons \tilde{R}(x,f(x))$.

```
$3.5 Ein anderer Ausbau der rek. Tunktionen
    ("Leben ohne primitive Rekursion")
Del. 3.28: A Eine Tunktion S. IV" - IV heißt *-rekursiv,
     wenn sie sich aus den Grundski. S(x), I, ", Co, +,,
       X (X,y) durch Anwenden der Regeln R1
      (Einselzung) und R3 (M-Rekursion) gewinnen lassi.
Salz 329 DEINE FKI. J. IN" - IN ISI genau dann
    * - rekursiv, wenn sie rekursiv ist.
Lemma 3.30: (1.) x - y 131 * rekursiv. Mengen
         (2) Die Klasse der *- rekursiven and ist
             ang unker Bookschen Komb. (1, v, 7)
             und unter heschränkter Quantisizierung
              (119he 3 13 (8.))
       (3.) x = y is x - yekursiv

(4.) x = y (mod x = x - yekursiv

(5.) Die klasse eler x - yek. Fks. is x = x - yek. Description fallunkerscheidung (siehe x = x - y - yek).
             (1.) X = y = max (0, x-y) = M2 (x < (y+2)+1)
(2.) Abg. unter n. u, 7 wie in 3.13 (3.)
    Ben:
                  sei P(x,y) * - rekursiv Deliniere
              g(x,2) = My (P(x,y) \vee y = 2)

Dann 1SI = 3y < 2 P(x,y) \Rightarrow 0 g(x,2) < 2.

(3.) x = y \Rightarrow 0 (7x < y \wedge 7y < x)
              (4) X = y (mo(12) 40 3 W < (X+y+1)
              (5.) Wie im Beweis von 3,13 (5)
```