



Module : Biophysique Basé sur : le cours

- -> Ce résumé est un complément de cours, il contient suffisamment d'informations, mais ne remplace pas le polycopié du professeur.
- -> Merci d'envoyer toutes vos remarques via l'adresse mail suivante : mahdikettani1@gmail.com
- -> Bon courage et bonne lecture!

Auteur : Kettani El Mahdi, étudiant de la promotion médecine 2019

اللهم أستودعك ما قرأت و ما حفظت و ما تعلمت، فرده عند حاجتي إليه، إنك على كل شيء قدير

## Relations Biophysique

| Cours             | Nom                                                                                   | Relation                                                                                   | Unité de mesure                                                   |
|-------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| Oeil et la vision | Indice de réfraction                                                                  | $n = \frac{C}{V}$                                                                          | Sans unité                                                        |
|                   | Loi de Descartes                                                                      | $n_1 \times \sin i = n_2 \times \sin r$                                                    | Sans unité                                                        |
|                   | Puissance d'un dioptre en fonction de n                                               | $P = \frac{n_2 - n_1}{\overline{sc}}$                                                      | $\delta = m^{-1} = \frac{\dots - \dots}{m}$                       |
|                   | Puissance d'un dioptre en fonction de la distance focale $\overline{SF'}$             | $P = \frac{n_2}{\overline{SF'}}$                                                           | $\delta = m^{-1} = \frac{\dots}{m}$                               |
|                   | Position de l'image A' d'un objet A par rapport au sommet du dioptre                  | $\frac{n_2}{\overline{SA'}} - \frac{n_1}{\overline{SA}} = \frac{n_2 - n_1}{\overline{SC}}$ | $\delta = m^{-1}$                                                 |
|                   | Puissance d'une lentille en fonction de n                                             | $P = (n_2 - n_1) \left( \frac{1}{\overline{SC}} - \frac{1}{\overline{SC'}} \right)$        | $\delta = m^{-1}$                                                 |
|                   | Puissance d'une lentille en fonction de la distance focale $\overline{SF'}$           | $\frac{P}{n_1} = \frac{1}{SF'}$                                                            | $\delta = m^{-1}$                                                 |
|                   | Position de l'objet et l'image par rapport à F'                                       | $\frac{1}{\overline{SA'}} - \frac{1}{\overline{SA}} = \frac{1}{\overline{SF'}}$            | $\delta = m^{-1}$                                                 |
|                   | Proximité                                                                             | $\Pi_R = \frac{1}{\overline{SR}}$ et $\Pi_P = \frac{1}{\overline{SP}}$                     | $\delta = m^{-1}$                                                 |
|                   | Parcours d'accommodation                                                              | $\overline{SP} - \overline{SR}$                                                            | m                                                                 |
|                   | Amplitude maximale d'accommodation                                                    | $A = P_P - P_R = \frac{1}{\overline{SR}} - \frac{1}{\overline{SP}} = \Pi_R - \Pi_P$        | $\delta = m^{-1}$                                                 |
|                   | Correction de la presbytie                                                            | $P = 4\delta - A restante$                                                                 | $\delta = m^{-1}$                                                 |
|                   | Acuité visuelle                                                                       |                                                                                            | $\frac{m}{m} = \text{radian}$ convertir en min d'arc, calculer AV |
|                   | Degré d'amétropie (en cas d'amétropie, c'est la puissance de la lentille correctrice) | $\frac{1}{\overline{SR}} = \Pi_R$                                                          | $\delta = m^{-1}$                                                 |
|                   | Correction de la presbytie en cas<br>d'amétropie                                      | $\Pi_R$ vision de loin $\Pi_R + 4\delta - A \ restante$ vision de près                     | $\delta = m^{-1}$ $\delta = m^{-1}$                               |
|                   | Degré d'astigmatisme                                                                  | $A_s = P_{max} - P_{min}$                                                                  | $\delta = m^{-1}$                                                 |

| Cours                             | Nom                                                                        | Relation                                                           | Unité de mesure                                                               |
|-----------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Audition                          | Perturbation d'un son pur                                                  | $X = a \sin(\omega t + \varphi)$                                   | X : décibel<br>ω : Hz<br>a : décibel                                          |
|                                   | Perturbation d'un son complexe                                             | $X = \sum_{n=1}^{n} a_n \sin(\omega_n t + \varphi_n)$              | décibel                                                                       |
|                                   | Pression                                                                   | $P = \rho v c$                                                     | $Kg.m^{-1}.s^{-2}$ $= \frac{Kg}{m^3} \times \frac{m}{s} \times \frac{m}{s}$   |
|                                   | Puissance et intensité                                                     | $I = \frac{W}{S} = \frac{puissance\ acoustique}{4\pi R^2}$         | $W/m^2$                                                                       |
|                                   | Relation entre intensité et pression                                       | $I = v p$ avec $P = \rho v c$<br>donc $I = v^2 \rho c$             | $W/m^2 = \left(\frac{m}{s}\right)^2 \times \frac{Kg}{m^3} \times \frac{m}{s}$ |
|                                   |                                                                            | $S_A = \log_{10} \frac{I}{I_0} (Bel)$                              | Bel                                                                           |
|                                   | Niveau sonore : le Décibel                                                 | $S_A = 10 \log_{10} \frac{I}{I_0} (d\acute{e}cibel)$               | décibel                                                                       |
|                                   | Impédance acoustique Z                                                     | $Z = \frac{P}{V} = \rho c$                                         | g/cm <sup>2</sup> .s ou Kg/m <sup>2</sup> .s                                  |
|                                   | Passage d'une onde acoustique d'un milieu à un autre avec des Z différents | $W_i = W_r + W_t$                                                  |                                                                               |
|                                   | Coefficient de réflexion énergétique<br>= Pouvoir réflecteur               | $R = \frac{W_r}{W_i} = \left(\frac{Z_1 - Z_2}{Z_1 + Z_2}\right)^2$ | Sans unité                                                                    |
|                                   | Coefficient de transmission énergétique = Pouvoir de transmission          | $T = \frac{W_t}{W_i} = \frac{4 Z_1 Z_2}{(Z_1 + Z_2)^2}$            | Sans unité                                                                    |
| Activité<br>électrique<br>du cœur | Potentiel électrostatique d'une charge isolée                              | $Vp = K\frac{q}{r}$                                                | $volt = cte \frac{C}{m}$                                                      |
| uu cwui                           | Potentiel électrostatique d'une dipôle électrique                          | $Vp = K' \frac{qa \cos \alpha}{r^2}$                               | $volt = cte \frac{C \times m \times \dots}{m}$                                |
|                                   | Potentiel crée par un feuillet électrique                                  | $Vp = K \Omega \mu = K \Omega \left( a \frac{d_q}{dS} \right)$     | volt                                                                          |
|                                   | Dérivation unipolaire                                                      | $aV_R = V_R - V_W$ $aV_F = V_F - V_W$ $aV_L = V_L - V_W$           | ev                                                                            |
|                                   | Dérivation bipolaire                                                       | $D_1 = V_L - V_R$ $D_2 = V_F - V_R$ $D_3 = V_F - V_L$              | ev                                                                            |

| Circulation sanguine | Pression, volume ventriculaire = Travail du cœur                | $Wc = P \times V$ $Pression \times volume$                                                              | Watt = Pa $\times m^3$                                                   |
|----------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                      | Vitesse d'écoulement d'un fluide                                | $V = \frac{d}{t} = \frac{distance}{temps}$                                                              | $\frac{m}{s}$                                                            |
|                      | Débit d'écoulement d'un fluide                                  | $D = \frac{Vo}{t} = \frac{volume}{temps}$                                                               | $\frac{m^3}{s}$                                                          |
|                      | Relation entre débit et vitesse<br>d'écoulement                 | $D = S \times V$ avec S = surface = $(\pi r^2)$                                                         | $\frac{m^3}{s} = m^2 \times \frac{m}{s}$                                 |
|                      | Théorème de Bernoulli (liquide parfait)                         | $p_{1} + \frac{1}{2}\rho v_{1^{2}} + \rho g h_{1} =$ $p_{2} + \frac{1}{2}\rho v_{2^{2}} + \rho g h_{2}$ | p: Pa $\rho: \frac{Kg}{m^3}$<br>v: $m/s$<br>h: m<br>g: $N/Kg$            |
|                      | Loi de poiseuille (liquide réel)                                | $D = \Delta p \frac{\pi R^4}{8\eta l}$ avec $\Delta p = p_1 - p_2$                                      | $D: \frac{m^3}{s} \qquad l: m$ $R: m$ $p: Pa$ $\eta: Pa. s = poiseuille$ |
|                      | Nombre de Reynolds                                              | $\mathcal{R} = \frac{\rho \ d \ v}{\eta}$                                                               | $\rho: kg/m^3$ $d:m$ $v: m/s$ $\eta: Pa.s = poiseuille$                  |
|                      | Vitesse critique                                                | $Vc = \frac{2400 \eta}{\rho d}$                                                                         | $\eta: Pa. s = poiseuille$ $\rho: kg/m^3$ $d: m$                         |
|                      | Résistance d'un vaisseau                                        | $\mathbb{R}i = \frac{8\eta l}{\pi R^4}$                                                                 | $\eta: Pa.s = poiseuille$ $l: m$ $R: m$ $\mathbb{R}i: sans unité$        |
|                      | Résistance globale d'un secteur                                 | $\mathbb{R}g = \frac{\mathbb{R}i}{n}$                                                                   | $\mathbb{R}g:$ $sans$ $unit$ é                                           |
|                      | Perte de charge au niveau d'un secteur                          | $\Delta p = \mathbb{R}g \times D$                                                                       | $Pa = \times \frac{m^3}{s}$                                              |
| Tampons<br>de        | Potentiel hydrogène d'une solution aqueuse d'acide ou de base   | $pH = -\log_{10}[H^+]$                                                                                  | = mol/l                                                                  |
| l'organisme          | pH en fonction du $pk_a$ , $[A^-]$ et $[AH]$                    | $pH = pk_a + \log_{10} \frac{[A^-]}{[AH]}$                                                              | $ = \cdots + \frac{mol/l}{mol/l}$                                        |
|                      | Pouvoir tampon                                                  | $T = \left  \frac{\Delta x}{\Delta pH} \right $ $\text{avec } \Delta pH = pH_f - pH_i$                  | $ = \frac{mol}{}$                                                        |
|                      | Concentration de la base $HCO_3^-$ (troubles métaboliques purs) | $[HCO_3^-] = \alpha P_{CO2} \times 10^{ph-6,1}$                                                         | mol/l                                                                    |

| Respiration                           | Loi de Boyle-Mariotte                                      | P.V = cte                                                                                               | Pa.m <sup>3</sup>                                                                                |
|---------------------------------------|------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                       | Compliance ou distensibilité pulmonaire                    | $C = \frac{dV}{dP}$                                                                                     | l<br>Pa                                                                                          |
|                                       | Tension superficielle                                      | $E_s = T S$                                                                                             | $j = \frac{j}{m^2} m^2$                                                                          |
|                                       | La loi de la Place                                         | $\frac{2T}{r} = p \text{ équilibre, alvéole ouvert}$ $\frac{2T}{r} > p \text{ rétraction de l'alvéole}$ | $\frac{j}{m^3} = Pa$                                                                             |
|                                       | Débit et résistance de l'air                               | $D = \frac{\Delta P}{Rg} = \Delta P \frac{\pi R^4}{8\eta l}$                                            | $D: \frac{m^3}{s} \qquad l: m$ $R: m$ $\Delta P: Pa$ $\eta: Pa. s = poiseuille$                  |
|                                       | Pression totale                                            | $P_{tot} = \sum P_i$ ( $P_i$ pression partielle)                                                        | atm  1 atm = 1 bar = $10^5 Pa = 760 \text{ mmHg}$                                                |
|                                       | Fraction molaire                                           | $oldsymbol{x}_i = rac{n_i}{n}$ $n_i$ : nbr de mole du gaz i $n$ : nbr total de mole du mélange         | $ = \frac{mol}{mol}$                                                                             |
|                                       | Pression partielle                                         | $P_i = x_i.P_{tot}$                                                                                     | $atm = \times atm$                                                                               |
|                                       | Diffusion = Loi de Fick                                    | $dq = \mathcal{D} S \frac{dc}{dx} dt$                                                                   | $dq : mol  dc : mol/l$ $\mathcal{D} : m^2/s  dx : m$ $S : m^2 (\pi.R^4)  dt : s$                 |
|                                       | Diffusion en phase gazeuse à travers une membrane          | $dq = \mathcal{D}  S \frac{dp}{e}  dt$ $\Phi = \frac{\mathcal{D}.S.dP}{e}$                              | $dq: 	ext{mol} \qquad dp: 	ext{Pa} \ \mathcal{D}: m^2/s \qquad dt: s \ S: m^2 (\pi. R^4) \ e: m$ |
|                                       | Pression partielle d'un gaz i dans l'alvéole               | $P_i = x_i \cdot (P_{environnante} - P_{alv\'eolaire})$                                                 | $P_{alv\'eolaire} = 47 \ mmHg$<br>$P_{environnante} \ et \ P_i : atm$<br>$x_i : sans unit\'e$    |
|                                       | Loi de Henry = Quantité de gaz dissoute<br>dans un liquide | $V_i = s_i.P_i$<br>Avec $s_i$ coefficient de solubilité                                                 | $m^3 = \times Pa$                                                                                |
| Milieu<br>intérieur de<br>l'organisme | Concentration pondérale                                    | $C_{\rm p} = \frac{m}{\rm v}$                                                                           | g/l                                                                                              |
|                                       | Concentration molaire = Molarité                           | $C_M = \frac{n}{V}$                                                                                     | mol/l                                                                                            |
|                                       | Concentration osmolaire = Osmolarité                       | $C_{os} = \frac{n_{os}}{v}$                                                                             | osmol/l                                                                                          |
|                                       | Concentration équivalente = Normalité                      | $C_{eq} = \frac{n_{eq}}{\mathrm{v}}$                                                                    | eq/l                                                                                             |

| Molalité                                                                                                                         | $b = \frac{n}{\mathbf{m}_{solution}}$                                                                                                                  | mol/kg                                                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Osmolalité                                                                                                                       | $C_{Osm} = \frac{n_{os}}{m_{solution}}$                                                                                                                | mol/kg                                                                                                     |
| Electroneutralité d'une solution                                                                                                 | $\Sigma$ nb d'équivalents anionniques<br>= $\Sigma$ nb d'équivalents cationiques<br>Ou<br>$\Sigma$ $C_{eq}$ des anions = $\Sigma$ $C_{eq}$ des cations | =<br>ou<br>eq/l = eq/l                                                                                     |
| Potentiel chimique d'un soluté dans une solution                                                                                 | $\mu_i = \mu_i^{\circ} + R T \ln c_i$                                                                                                                  | j/mol R: cte des gaz parfait = 8,32 J.K <sup>-1</sup> . mol <sup>-1</sup> T: température absolue en Kelvin |
| Loi de Fick                                                                                                                      | $dq = -\mathcal{D} S \frac{dc}{dx} dt$                                                                                                                 | $dq: mol  dc: mol/l$ $\mathcal{D}: m^2/s  dx: m$ $S: m^2 (\pi. R^4)  dt: s$ $D_i: m^2. sec^{-1}$           |
| Coefficient de diffusion du soluté i à travers la membrane                                                                       | $D_i = U_i.R.T$                                                                                                                                        | $D_i: m^2.sec^{-1} \ U_i: m.s^1.Newton^{-1} ou mole$                                                       |
| Perméabilité de la membrane pour un soluté i                                                                                     | $P_i = \frac{D_i}{e}$                                                                                                                                  | $P_i: m/s$ $D_i: m^2. s^{-1}$ $e: m$                                                                       |
| Pression hydrostatique                                                                                                           | $P_{hy} = \rho g \Delta h$                                                                                                                             | Pa                                                                                                         |
| Loi de Pfeffer , Pression osmotique d'un soluté                                                                                  | $\Pi_{os} = cte. \frac{C_p}{M}. T$                                                                                                                     | $Pa = \times \frac{m.mol}{g.v} \times K$                                                                   |
| Loi de Van't Hoff, pression osmotique d'une solution                                                                             | $\Pi_{os} = R.\Sigma C_{os}.T$                                                                                                                         | Pa                                                                                                         |
| Application de la loi de Van't Hoff                                                                                              | $\Pi_{os} = \rho \text{ g } \Delta h = R.T.\Sigma C_{os}$ $\Rightarrow \Sigma C_{os} = \frac{\rho.g}{R.T}.\Delta h$                                    | Pa                                                                                                         |
| Loi de Raoult                                                                                                                    | $\Delta\theta = K.C$                                                                                                                                   | $K: {}^{\circ}K.kg/osmole $ (cte du solvant) $C: osmol/kg$ $\Delta\theta: temp\'erature$                   |
| Relation entre $\Delta\theta$ et pression osmotique $\Pi$                                                                        | $\Pi_{os} = \frac{RT}{K} . \Delta \theta$                                                                                                              | Pa                                                                                                         |
| Le flux d'une diffusion à travers une<br>membrane perméable à tous les ions sous<br>l'effet d'une différence de concentration    | $\Phi_{1\to 2} = \frac{dn}{dt} = -D.S. \frac{(C_2 - C_1)}{e}$ $\Phi_{1\to 2} = -P.S (C_2 - C_1)$                                                       | mol.sec <sup>-1</sup> .m <sup>-2</sup>                                                                     |
| Le travail d'une diffusion à travers une<br>membrane perméable à tous les ions sous<br>l'effet d'une différence de concentration | $\Delta W_1 = n(\mu_1 - \mu_2)$                                                                                                                        | j = mol(j/mol - j/mol)                                                                                     |

|                  | Le flux de cations d'une diffusion à travers<br>une membrane perméable à tous les ions sous<br>l'effet d'une différence de potentiel électrique | $\Phi_{1\to 2} = -U^+. C. S. \frac{(V_2 - V_1)}{e}$                                                                        | mol.sec <sup>-1</sup> .m <sup>-2</sup>                                                                                    |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                  | Le flux d'anions d'une diffusion à travers une<br>membrane perméable à tous les ions sous<br>l'effet d'une différence de potentiel électrique   | $\Phi_{1\to 2} = U^{-}.C.S.\frac{(V_2 - V_1)}{e}$                                                                          | mol.sec <sup>-1</sup> .m <sup>-2</sup>                                                                                    |
|                  | Le travail d'une diffusion à travers une<br>membrane perméable à tous les ions sous<br>l'effet d'une différence de potentiel électrique         | $\Delta W_2 = Q(V_1 - V_2)$ $\Delta W_2 = \text{nzF}(V_1 - V_2)$                                                           | W: j V: volt n: mol z = charge de l'ion F = constante de                                                                  |
|                  | Potentiel électrochimique                                                                                                                       | $\frac{\mu}{zF} + V$                                                                                                       | Faraday 96500 $C/mol$ $V: volt$ $\mu: j/mol$ $z= charge de l'ion$ $F= constante de$ Faraday 96500 $C/mol$                 |
|                  | Relation de Goldman (potentiel de diffusion)                                                                                                    | $V_1 - V_2 = \frac{RT}{F} \ln \frac{U_{K^+}[K^+]_2 + U_{Na^+}[Na^+]_2}{U_{K^+}[K^+]_1 + U_{Na^+}[Na^+]_1}$                 | Volt                                                                                                                      |
|                  | Relation de Nernst                                                                                                                              | $V_1 - V_2 = \frac{RT}{zF} \ln \frac{[X^+]_{2f}}{[X^+]_{1f}}$                                                              | Volt                                                                                                                      |
|                  | Relation de Gibbs Donnan                                                                                                                        | $[Na^+]_1 \times [Cl^-]_1 = [Na^+]_2 \times [Cl^-]_2$                                                                      | mol/l                                                                                                                     |
|                  | Potentiel de la cellule                                                                                                                         | $V_{cell} = \frac{RT}{F} \ln \frac{[K^+]_{ext}}{[K^+]_{int}}$                                                              | Volt                                                                                                                      |
|                  | Puissance efficace de filtration                                                                                                                | $P_{\mathrm{eff}} = P_{\mathrm{Hyd}} - \Pi_{onc}$                                                                          | mmHg ou Pa                                                                                                                |
|                  | Flux liquidien de 1 à 2 lors d'une filtration le long d'un capillaire                                                                           | $\Phi_{1\to 2} = K.S(P_{\text{eff }1} - P_{\text{eff }2})$ $\Phi_{1\to 2} = K.S(\Delta P_{\text{Hyd}} - \Delta \Pi_{onc})$ | $P_{ m eff}={ m Pa}$                                                                                                      |
| Lumière<br>laser | Énergie du photon = énergie absorbée                                                                                                            | $E_{photon} = h v = E_2 - E_1$                                                                                             | $h = 6.63 \times 10^{-34} \text{ j.s}$<br>E: j<br>v : Hz                                                                  |
|                  | Loi de Boltzmann : Proportion d'atomes entre 2 niveaux d'énergie $E_2$ et $E_1$                                                                 | $N_2 = N_1 \times exp\left(-\frac{E_2 - E_1}{k T}\right)$                                                                  | N: sans unité $E$ : sans unité $k$ : 1,38 × 10 <sup>-23</sup> $J$ . $K$ <sup>-1</sup> $T$ : température absolue en Kelvin |
|                  | Fréquence des ondes dans l'amplificateur                                                                                                        | $v = \frac{k c}{2 L}$                                                                                                      | v: Hz                                                                                                                     |