

Università degli Studi di Milano – Bicocca Master Degree in Data Science Academic Year 2022/2023

CLASSIFICATION & CLUSTERING OF AMAZON FINE FOOD REVIEWS DATASET

Gianluca CAVALLARO - n. 826049 Remo MARCONZINI - n. 883256

/ Outline

- □ Introduction
- □ Data Cleaning & Data Exploration
- ■Preprocessing
- ☐ Text Representation
- ☐ Text Classification
- ■Text Clustering
- □ Conclusions

INTRODUCTION

/ Introduction

- Online shopping is an increasingly common practice
- When making an online purchase, one of the most important aspects are the reviews left by previous customers
- ☐ The leader in the sector is undoubtedly Amazon
- ☐ In this project, we want to study the Amazon Fine Foods dataset
- ☐ The main purpose of this study is to apply **text** classification and **text clustering techniques**

TEXT CLASSIFICATION

TEXT CLUSTERING

/ Dataset

- ☐ The dataset contains **568,454 reviews**
- They cover the time period between **October 1999** and **October 2012**

- □ 256,059 **unique** users and 74,258 **different** products
- ☐ The dataset contains 10 features

ld	Productid	Userld	ProfileName	HelpfulnessNumerator	HelpfulnessDenominator	Score	Time	Summary	Text
0 1	B001E4KFG0	A3SGXH7AUHU8GW	delmartian	1	1	5	1303862400	Good Quality Dog Food	I have bought several of the Vitality canned d
1 2	B00813GRG4	A1D87F6ZCVE5NK	dll pa	0	0	1	1346976000	Not as Advertised	Product arrived labeled as Jumbo Salted Peanut
2 3	B000LQOCH0	ABXLMWJIXXAIN	Natalia Corres "Natalia Corres"	1	1	4	1219017600	"Delight" says it all	This is a confection that has been around a fe
3 4	B000UA0QIQ	A395BORC6FGVXV	Karl	3	3	2	1307923200	Cough Medicine	If you are looking for the secret ingredient i
4 5	B006K2ZZ7K	A1UQRSCLF8GW1T	Michael D. Bigham "M. Wassir"	0	0	5	1350777600	Great taffy	Great taffy at a great price. There was a wid

/ Research questions

□ Text classification

- 1. Can a review be classified as good or bad from its text?
- 2. Is it possible to predict the user's rating starting from the text of the review?

□ Text clustering

1. Is it possible to group similar reviews?

DATA CLEANING & DATA EXPLORATION

/ Data Cleaning

- Deleting rows with inconsistent values for HelpfulnessNumerator and HelpfulnessDenominator
- Missing values
 - Missing values for ProfileName and Summary only
- ☐ Removing duplicates
 - We have removed rows with identical values for UserId, Time, and Text
- ☐ The dataset is reduced to 393,931 reviews

/ Data Exploration

☐ The main focus is on the attributes **Score** and **Text**:

Number of reviews per Score value

Number of words per review per Score value

PREPROCESSING

/ Normalization & Tokenization

■ NORMALIZATION

- Text is transformed into a single canonical form
 - Conversion to lower case
 - Removing alphanumeric characters
 - Removing emoji, URLs and HTML tags
 - Removal of duplicate characters and spelling correction
 - Removal of punctuation and special characters

■ TOKENIZATION

- Texts are splitted into tokens
- We decided not to consider n-grams

/ Stopwords removal & Lemmatization

☐ STOPWORDS REMOVAL

 We remove very frequent words (articles, pronouns, ...) without semantic meaning

□ LEMMATIZATION

- All the inflected forms of a word are grouped into a single token
- More expensive than Stemming, but preserves the meaning of the words

'I have bought several of the Vitality canned dog food products and have found them all to be of good quality. The product looks more like a stew than a processed meat and it smells better.

My Labrador is finicky and she appreciates this product better than most.'

TEXT REPRESENTATION

/ Text Representation

- ☐ 3 possible text representation for both **binary** and **multi-class** classification:
 - Bag-of-Words
 - TF-ID
 - Word2Vec
 - 300 components
 - CBOW

Representation	Binary	Multi-class		
BOW	80999	72807		
TF-IDF	80999	79518		

Original no. of features

- **☐ Dimensionality reduction** for both BOW and TF-IDF:
 - Singular Value Decomposition (SVD)
 - Cumulative variance analysis:
 - 85% of the total variance in the dataset (threshold)

Representation	Binary	Multi-class		
BOW	1466	1413		
TF-IDF	4776	4719		

Optimal no. of components

CLASSIFICATION

/ Objective

- Answer the following two questions:
 - Can a review be classified as good or bad from its text?
 - Is it possible to predict the user's rating starting from the text of the review?

- ☐ With the following techniques:
 - Binary Classification
 - Single-Label-Multi-Class Classification

/ Preprocessing

- Building the **Binary** datasets:
 - Negative class: merging class "1" and "2"
 - Positive class: merging class "4" and "5"
 - Excluding the **intermediate** class 3.
- ☐ Class imbalance problem:
 - For both binary and multi-class datasets
 - Downsampling of the datasets
 - rebalancing with respect to the least populated class
- ☐ Final datasets, divided into training (70%) and test (30%) set
 - Binary datasets: 114216 reviews
 - Multi-class datasets: 104010 reviews

Multi-Class score distribution

Binary score distribution

/ Algorithm Implementation

- ☐ We used four different algorithms:
 - Logistic Regression,
 - XGBoost
 - K-NN
 - Random Forest

- ☐ We performed **fine-tuning** with **cross-validation**
 - Random Search
 - K = 2

- These classifiers were estimated using all three text representations:
 - BOW,
 - F-IDF
 - W2V

- Performance evaluation
 - Accuracy
 - AUC-ROC curve (binary classification)
 - Confusion matrix (multi-class classification)

/ Binary Classification - Analysis Of The Results

☐ Can a review be classified as good or bad from its text?

Model	Bag-Of-Word		TF-II)F	Word2Vec	
Model	Accuracy	AUC	Accuracy	AUC	Accuracy	AUC
Logistic Regression	0.87	0.94	0.88	0.95	0.86	0.93
K-NN	0.55	0.58	0.64	0.70	0.82	0.90
Random Forest	0.74	0.83	0.79	0.87	0.85	0.92
XG-Boost	0.81	0.89	0.83	0.91	0.86	0.93

- ☐ In term of accuracy and AUC:
 - Logistic regression and XGBoost have a better performance
 - Across all the text representation
- AUC values for the Word2Vec representation are relatively high across all models
 - Word2Vec captures semantic information

AUC-ROC curve, Word2Vec

/ Multi-Class Classification - Analysis Of The Results

☐ Is it possible to predict the user's rating starting from the text of the review?

Model	Bag-Of-Word Accuracy	TF-IDF Accuracy	Word2Vec Accuracy
Logistic Regression	0.22	0.31	0.47
K-NN	0.22	0.22	0.38
Random Forest	0.28	0.29	0.45
XG-Boost	0.27	0.43	0.45

- ☐ In term of accuracy:
 - Lower with respect to the binary classification task
 - Word2Vec representation has the best performance across all models
 - capture semantic information
 - is a dense vector representation
- ☐ The models performed well in classifying the **extreme classes**
 - Intermediate ratings may contain mixed sentiments

Confusion Matrix, Word2Vec, Logistic Regression

CLUSTERING

/ Clustering: choosing the optimal number of clusters

- Is it possible to group similar reviews?
- Two different clustering algorithms: K-Means and Agglomerative clustering
- The optimal number of cluster is chosen considering the **Silhouette coefficients**
 - ☐ The optimal number corresponds to the highest Silhouette coefficient

/ Clustering: K-Means

- Iterative process
 - Random selection of centroids
 - Assignment of each record to the closest centroid
 - Iterate until stop criterion
- Optimal number of clusters:
 - \square BOW = 2
 - \Box TF-IDF = 3
 - \square W2V = 2
- We use Silhouette coefficients and Davies-Bouldin index as validation metrics
- Both metrics are generally bad
- ☐ No common concept for the clusters

Text representation	Silhouette	Davies-Bouldin		
BOW	0.336	5.376		
TF-IDF	0.013	6.257		
W2V	0.086	3.035		

Evaluation metrics

Text representation					
BOW - cluster 1	taste	like	product	good	one
BOW - cluster 2	like	taste	one	coffee	product
TF-IDF - cluster 1	tea	taste	like	flavour	good
TF-IDF - cluster 2	coffee	like	taste	cup	flavour
TF-IDF - cluster 3	like	taste	product	good	one
W2V - cluster 1	taste	like	coffee	flavour	good
W2V - cluster 2	product	one	like	food	would

Most frequent words per cluster

/ Clustering: Agglomerative Clustering

- Hierarchical clustering algorithm
- Observations starts in their own cluster and then are progressively merged until a single cluster is obtained
- Optimal number of clusters is 2
 - For all text representations
- Metrics are still bad
 - ☐ Slight improvement for W2V
- Still difficult to a common concept for the clusters

Text representation	Silhouette	Davies-Bouldin		
BOW	0.401	5.642		
TF-IDF	0.002	8.022		
W2V	0.178	1.825		

Evaluation metrics

Text representation					
BOW - cluster 1	taste	like	product	good	one
BOW - cluster 2	like	coffee	taste	one	food
TF-IDF - cluster 1	like	taste	product	good	one
TF-IDF - cluster 2	coffee	like	taste	cup	flavour
W2V - cluster 1	taste	like	coffee	flavour	good
W2V - cluster 2	product	like	one	food	would

Most frequent words per cluster

CONCLUSIONS

/ Conclusions

- □ CLASSIFICATION
 - Binary Classification
 - Logistic Regression and XG-Boost performed the best across all text representations
 - ☐ TF-IDF or Word2Vec representation with these models may yield the best results
 - □ MultiClass Classification
 - Word2Vec representation gives the best results in combination with Logistic
 Regression

☐ CLUSTERING

- No satisfactory results
- There are probably no well-defined clusters in the data
 - Possible reasons:
 - Presence of many semantically useless words
 - The proposed text representations generate sparse vectors when applied on short texts on short texts tend to generate sparse vectors
- Ad-hoc preprocessing could lead to better results
 - Example: a rigorous application of the Zipf's law

References

☐ Scikit-learn. URL: https://scikit-learn.org/stable/index.html

Stanford Network Analysis Project. Amazon Fine Food Reviews. URL: https://www.kaggle.com/datasets/snap/amazon-fine-food-reviews
 Chen H-H Cheng C-H. "Sentimental text mining based on an additional features method for text classification". In: (2019). DOI: https://doi.org/10.1371/journal.pone.0217591
 Dilip Valeti. Classification using Word2vec. URL: https://medium.com/@dilip.voleti/classification-using-word2vec-bld79d375381
 G. Pasi and M. Viviani. Text Mining and search course lecture notes and slides. 2022-23
 Tune Hyperparameters for Classification Machine Learning Algorithms. URL: https://machinelearningmastery.com/hyperparameters-for-classification-machine-learning-algorithms/