μA741E

ELECTRICAL CHARACTERISTICS: $V_S = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ unless otherwise specified.

CHARACTERISTICS (see definitions)		CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage		R _S ≤ 50Ω		0.8	3.0	mV
Average Input Offset Voltage Drift		115 4 3012		0.0	15	μV/°C
Input Offset Current				3.0	30	nA
Average Input Offset Current Drift			-		0.5	nA/°C
Input Bias Current				30	80	nA
Power Supply Rejection Ratio		$V_S = +10, -20; V_S = +20, -10V, R_S = 50\Omega$		15	50	μV/V
Output Short Circuit Current		13 10, 20, 13 120, 101, 13	10	25	40	mA
Power Dissipation		V _S = ±20V		80	150	mW
Input Impedance		V _S = ±20V	1.0	6.0		MΩ
Large Signal Voltage Gain		$V_S = \pm 20V, R_1 = 2k\Omega, V_{OUT} = \pm 15V$	50			V/mV
Transient Response	Rise Time		 	0.25	0.8	μs
(Unity Gain)	Overshoot		1	6.0	20	%
Bandwidth (Note 4)			.437	1.5		MHz
Slew Rate (Unity Gain)		V _{IN} = ±10V	0.3	0.7		V/µs
The following	specifications apply	for 0° C ≤ T _A ≤ 70° C	1			
Input Offset Voltage					4.0	mV
Input Offset Current					70	nA
Input Bias Current					210	nA
Common Mode Rejection Ratio		$V_S = \pm 20V$, $V_{IN} = \pm 15V$, $R_S = 50\Omega$	80	95		dB
Adjustment For Input Offset Voltage		V _S = ±20V	10			mV
Output Short Circuit Current		,	10		40	mA
Power Dissipation		V _S = ±20V			150	mW
Input Impedance		V _S = ±20V	0.5			MΩ
Output Voltage Swing		R _L = 10kΩ	±16			V
		$V_{S} = \pm 20V, \frac{R_{L} = 10k\Omega}{R_{L} = 2k\Omega}$	±15			V
Large Signal Voltage Gain		$V_S = \pm 20V$, $R_L = 2k\Omega$, $V_{OUT} = \pm 15V$	32			V/mV
		$V_S = \pm 5V, R_1 = 2k\Omega, V_{OUT} = \pm 2V$	10			V/mV

