Regression (Linear and Logistic) Machine Learning for Finance (FIN 570)

Instructor: Jaehyuk Choi

Peking University HSBC Business School, Shenzhen, China

2021-22 Module 1 (Fall 2021)

Notations and conventions: vector and matrix

General rules (guess from the context)

- Scalar (non-bold): x, y, X, Y
- Vector (lowercase bold): $\boldsymbol{x} = (x_i), \boldsymbol{y} = (y_i)$
- Matrix (uppercase bold): $X = (X_{ij}), Y = (Y_{ij})$
- The (i,j) component of X: X_{ij}
- The *i*-th row vector of \boldsymbol{X} : $\boldsymbol{X}_{i*} = (X_{i1}, X_{i2}, \cdots, X_{ip})^T$
- The j-th column vector of X: $X_{*j} = (X_{1j}, X_{2j}, \cdots, X_{Nj})$

Examples

- Dot product: $\langle {m x}, {m y}
 angle = {m x}^T {m y}$
- Vector norm: $|x| = \sqrt{x^T x}$
- ullet Matrix multiplication: $oldsymbol{Z} = oldsymbol{X} oldsymbol{Y} o Z_{ij} = oldsymbol{X}_{i*} oldsymbol{Y}_{*j}$

Notation and conventions: variables and observations

General rules

- Generic (or representative) variables (uppercase non-bold): X (input), Y (output), G (classification output)
- ullet The predictions: \hat{Y} , \hat{G}
- X (input) may be p-dimensional (features/predictors): X_j ($j \leq p$), row vector
- Y (output) may be K-dimensional (responses): Y_k ($k \le K$), row vector.
- The N observations of X or Y are stacked over as rows: \boldsymbol{X} ($N \times p$ matrix), \boldsymbol{Y} ($N \times K$ matrix)
- ullet The i-th observation of the j-th feature: $oldsymbol{X_{ij}}$ v.s. $X_j^{(i)}$ in $oldsymbol{\mathsf{PML}}$
- ullet The i-th observation set: $oldsymbol{X_{i*}}$ (1 imes p row vector) v.s. $X^{(i)}$ in \mathbf{PML}
- All observation of j-th feature X_j : X_{*j} ($N \times 1$ row vector) v.s. X_j in **PML**
- ullet $oldsymbol{X} = (oldsymbol{X}_{*1} \cdots oldsymbol{X}_{*p})$ (column-wise concatenation)
- ullet The weight vector, eta or $oldsymbol{w}$, are column vectors used interchangeably.

Simple Linear Regression (Ordinary Least Square)

For scalar predictor (X) and response (Y),

$$Y \approx \beta_0 + \beta_1 X \longrightarrow \hat{\boldsymbol{y}} = \beta_0 + \beta_1 \boldsymbol{x}.$$

For N observations $(x_1, y_1), \cdots, (x_N, y_N)$, the set of $(\hat{\beta}_0, \hat{\beta}_1)$ to minimize the residual sum of squares (RSS):

$$RSS(\beta) = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i)^2 = (\boldsymbol{y} - \beta_0 - \beta_1 \boldsymbol{x})^T (\boldsymbol{y} - \beta_0 - \beta_1 \boldsymbol{x})$$

is given as

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{\mathsf{Cov}(X, Y)}{\mathsf{Var}(X)},$$
$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

for $\bar{x} = \sum x_i/N$ and $\bar{y} = \sum y_i/N$.

Multi-dimensional Linear Regression

For (p+1)-vector predictor (X) and scalar response (Y),

$$Y \approx X\boldsymbol{\beta} \longrightarrow \hat{\boldsymbol{y}} = \boldsymbol{X}\boldsymbol{\beta},$$

where $X_0=1$ $(\boldsymbol{X}_{*0}=\boldsymbol{1})$ and $\boldsymbol{\beta}$ is a (p+1)-column vector.

$$\mathsf{RSS}(\boldsymbol{\beta}) = \frac{1}{2} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})$$

$$\frac{\partial}{\partial \boldsymbol{\beta}} \mathsf{RSS}(\boldsymbol{\beta}) = -\boldsymbol{X}^T (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \quad \Rightarrow \quad \hat{\boldsymbol{\beta}} = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

For (p+1)-vector predictor (X) and K-vector response (Y), the result is similarly given as

$$\hat{m{Y}} = m{X}m{B}$$
 where $\hat{m{B}} = (m{X}^Tm{X})^{-1}m{X}^Tm{Y},$

which is the independent regressions on Y_j ($m{Y}_{*j}$) combined together,

$$\hat{\boldsymbol{B}}_{*j} = (\boldsymbol{X}^T\boldsymbol{X})^{-1}\boldsymbol{X}^T\boldsymbol{Y}_{*j}$$

The shape of RSS

The linear regression coefficients (β_0, β_1) indeed minimizes the RSS:

$$\mathsf{RSS}(\boldsymbol{\beta}) = \sum_{i=1}^{N} (y_i - \beta_0 - \beta_1 x_i)^2$$

RSS - Regression coefficients

If the error function is more complex, we resort to the

Gradient Descent

A first-order iterative optimization algorithm for finding the minimum of a function. To find a local minimum of a function using gradient descent, one takes steps proportional to the negative of the gradient (or of the approximate gradient) of the function at the current point

The minimum location $J(\boldsymbol{x})$ can be found by the following iteration:

$$\boldsymbol{x}_{n+1} = \boldsymbol{x}_n - \eta \boldsymbol{\nabla} J(\boldsymbol{x}_n)$$

The constant η is called *learning rate*. Typically we use $0 < \eta < 1$ to avoid *overshooting*.

Gradient Descent of Weight: A Simple Case

How can we search for the right weight w to minize the error (or cost)? Imagine we fit a simple linear model y=xw to a single observations (x_1,y_1) . We need find w to minimize the RSS:

$$J(w) = \frac{1}{2}(y_1 - x_1 w)^2$$

Although we know the answer $(w=y_1/x_1)$, let's pretend that we need to improve w iteratively, such that

$$w := w + \Delta w$$
 with an initial guess $w^{(0)}$.

The amount of update should be proportional to the derivative

$$\Delta w = -\eta \frac{d}{dw} J(w) = \eta (y_1 - x_1 w) \ x_1 = \eta (y_1 - \hat{y}_1) \ x_1.$$

The result is intuitive: the update is proportional to (i) the magnitude of error from $(y_1 - x_1 w)$, and (ii) the direction (sign) of update from x_1 . You will see this equation often over the course!

Gradient Descent of Weight: Linear Regression (Adaline)

Remind that the error (RSS) function and the gradient are

$$J(\boldsymbol{w}) = \frac{1}{2} \sum_{i} (y_i - \boldsymbol{X}_{i*} \boldsymbol{w})^2, \quad \frac{\partial}{\partial w_j} J(\boldsymbol{w}) = -\sum_{i} (y_i - \boldsymbol{X}_{i*} \boldsymbol{w}) X_{ij}.$$

The weight update rule, with *learning rate* η , is given by

$$\boldsymbol{w} := \boldsymbol{w} + \Delta \boldsymbol{w}$$

$$\Delta w_j = -\eta \frac{\partial}{\partial w_j} J(\boldsymbol{w}) = \eta \sum_i (y_i - \boldsymbol{X}_{i*} \boldsymbol{w}) X_{ij} = \eta \sum_i (y_i - \hat{y}_i) X_{ij}.$$

Perceptron's updating rule in **PML** Ch.2 is based on this result.

Note that one sample (y_i, X_{i*}) contributes $(y_i - \hat{y}_i)X_{ij}$ to the update Δw_j . In **batch gradient descent**, w is updated from all i's. In **stochastic gradient descent** (iterative/online), however, w is updated from randomly selected single i.

Jaehyuk Choi (PHBS) MLF: Regression 2021-22 M1

Logistic Regression (Classification)

- ullet Qualitative (categorical) response (binary dependent variable, $Y \in \{0,1\}$)
- It is difficult to give numeric order to multiple categories: e.g., 0-1-2 vs 2-0-1?
- Linear regression (quantitative) is not proper
- Logistic (sigmoid) function: $\sigma(logit) = quantile$

$$p = \phi(t) = \frac{e^t}{1 + e^t} = \frac{1}{1 + e^{-t}}$$
 for $t = Xw \ (X_0 = 1)$

Logit function (the inverse): log odds

$$\phi^{-1}(p) = \log\left(\frac{p}{1-p}\right) = \log(p) - \log(1-p)$$

Likelihood function

- For a given the prediction model, measures the likelihood of a data set.
- The best prediction model/weight is the one that maximizes the likelihood of the dataset.

For a data set $(\boldsymbol{X}, \boldsymbol{y})$ where $y_i \in \{0, 1\}$),

$$L(\boldsymbol{w}) = \prod_{i} P(y_i = \hat{y}_i) = \prod_{i:y_i = 1} \phi(\boldsymbol{X}_{i*}\boldsymbol{w}) \prod_{i:y_i = 0} (1 - \phi(\boldsymbol{X}_{i*}\boldsymbol{w}))$$
$$= \prod_{i} \phi(\boldsymbol{X}_{i*}\boldsymbol{w})^{y_i} (1 - \phi(\boldsymbol{X}_{i*}\boldsymbol{w}))^{1 - y_i}$$
$$\log L(\boldsymbol{w}) = \sum_{i} y_i \log \phi(\boldsymbol{X}_{i*}\boldsymbol{w}) + (1 - y_i) \log (1 - \phi(\boldsymbol{X}_{i*}\boldsymbol{w}))$$

The cost function (to minimize) is $J(\boldsymbol{w}) = -\log L(\boldsymbol{w})$

Gradient Descent of Weight: Logistic Regression

We use the properties of logistic function,

$$\frac{d}{dt}\phi(t) = \frac{e^{-t}}{(1+e^{-t})^2} = \phi(t)(1-\phi(t)), \quad \frac{\partial}{\partial w_j}\phi(\boldsymbol{X}_{i*}\boldsymbol{w}) = \phi(\cdot)(1-\phi(\cdot))X_{ij},$$

the gradient of error function is obtained as

$$\begin{split} \frac{\partial}{\partial w_j} J(\boldsymbol{w}) &= \sum_i \left(-\frac{y_i}{\phi(\boldsymbol{X}_{i*}\boldsymbol{w})} + \frac{1-y_i}{1-\phi(\boldsymbol{X}_{i*}\boldsymbol{w})} \right) \frac{\partial}{\partial w_j} \phi(\boldsymbol{X}_{i*}\boldsymbol{w}) \\ &= \sum_i \left(-y_i(1-\phi(\cdot)) + (1-y_i)\phi(\cdot) \right) X_{ij} \\ &= -\sum_i (y_i - \phi(\cdot)) X_{ij} = -\sum_i (y_i - \hat{y}_i) X_{ij}, \\ \Delta w_j &= \eta \sum_i (y_i - \hat{y}_i) X_{ij}. \end{split}$$

We get the exactly same weight updating rule as that of linear regression and Adaline!

Jaehyuk Choi (PHBS) MLF: Regression 2021-22 M1

Regularization

To avoid overfitting, we do not want $oldsymbol{w}$ to be too big. We add penalty for big $oldsymbol{w}$:

$$\begin{split} J(\boldsymbol{w}) &= -\log L(\boldsymbol{w}) + \frac{\lambda}{2} |\boldsymbol{w}|^2 \\ J(\boldsymbol{w}) &= -C \log L(\boldsymbol{w}) + \frac{1}{2} |\boldsymbol{w}|^2 \quad (C = \frac{1}{\lambda}, \mathsf{SciKit\text{-}Learn}) \end{split}$$

An example from polynomial curve fitting:

	M = 0	M = 1	M = 6	M = 9
w_0^*	0.19	0.82	0.31	0.35
w_1^{\star}		-1.27	7.99	232.37
w_2^*			-25.43	-5321.83
w_3^*			17.37	48568.31
w_4^{\star}				-231639.30
w_5^{\star}				640042.26
w_6^{\star}				-1061800.52
w_7^{\star}				1042400.18
w_8^{\star}				-557682.99
w_9^{\star}				125201.43