Bootcamp Bring ML Models into Production

Lesson 2: Batch

Agenda

- Recap
- Deployment setup
- Batch inference on Azure
- Exercises & Home assignment

Dexter-Pyladies energy case

To prevent blackouts energy generation & demand have to be matched:

- The solar & wind forecast you can acquire from an external company
- Can you deploy a energy demand prediction model to solve the problem of Pytown?

Batch Workflow

Phase 1

Infrastructure Setup

- Configure and set up development and test environments.
- Ensure the necessary compute, storage, and software tools are provisioned for training and deploying ML models.

ML Development

- Developing ML models within an efficient framework that enables automation and optimization.
- Building and managing data pipelines.
- Testing model performance.

Phase 2

Transition to Operations

Pre-requisites

- Model artifacts with necessary logging and auditability to track model performance and functionality.
- Model is tested for inference and functionality and documented.

Key tasks

- Serialization and containerization of model artifacts.
- Model Serving (API or inference provisioning).
- Deployment of models to production environment using CI/CD and acceptance testing.
- Compliance with quality assurance guidelines.

Phase 3

MLOps Operations

- ML model performance monitoring (model drift, bias), incident resolution, model retraining.
- Monitor inference service telemetry.

Data Operations

 Monitoring and incident resolution of data pipelines and data and ML platform, security management.

Deployment setup

Steps

- Prerequisites
- Data preparations (EDA locally, datasets registration on Azure)
- Model training (locally, experiment tracking on Azure)
- Model evaluation and registration (locally, experiment tracking and registration - on Azure)

Tips

Never hardcode secrets in your code

- For local dev use .env (add it to .gitignore)
- For cloud dev such as Azure use Azure Key Vault

```
### Irror_mod.use_z = False
 _operation == "MIRROR_Y"
Lrror_mod.use_x = False
lrror_mod.use_y = True
 irror_mod.use_z = False
  operation == "MIRROR_Z"
  rror_mod.use_x = False
  rror_mod.use_y = False
  irror_mod.use_z = True
 melection at the end -add
  ob.select= 1
  er_ob.select=1
   ntext.scene.objects.action
  "Selected" + str(modified)
  irror_ob.select = 0
 bpy.context.selected_obj
  lata.objects[one.name].sel
  int("please select exaction
  -- OPERATOR CLASSES ----
         onerator):
```

Batch inference on Azure

Steps

- Prepare files for batch inference
- Setup and schedule Azure Machine Learning Pipeline:
 - provision inference compute
 - prepare score.py script
 - prepare conda inferencing env
 - create a pipeline
 - publish pipeline
 - schedule pipeline

Exercises & Home assignment

Exercises & Home assignment – Lesson 2

https://github.com/pyladiesams/bootcamp-bringing-ML-models-intoproduction-intermediary-junaug2021/blob/master/bootcamp/lesson2/lesson2 tasks.md

print(f"{user_name} thanks for watching")