2024 NCKU Program Designed I Midterm - Programming Test

Student ID: Name:

System Information:

- Online Judge Link: http://140.116.154.71
 - You can choose any operating system you want and access this link through a browser.

Before Start:

Please check your personal account and log into the online judge system.

Scoring:

Task	Name	Time Limits	Memory Limits	Points
A	One Delete Operator of Palindrome	1s	256 MB	10
В	Sumikko Gurashi and Jumping	1s	256 MB	10
С	Goldbach's conjecture	1s	256 MB	10
D	Attention is all you need	1s	256 MB	10

Judging result:

Result	Explanation	
Correct	Your program passed all test cases.	
Wrong Answer	Your program produced incorrect output for some test cases.	
Run-Error	Your program encountered a memory error or an unexpected issue and was terminated by the system (ex. Segmentation Fault).	
Compiler-Error	Your program failed to compile.	
NO-Output	Your program produced no output.	

Problem A. One Delete Operator of Palindrome - (10%)

Given a positive integer in which each digit is guaranteed to be non-zero, you can choose any one position and delete the digit at that position to obtain a new number. For example, if you delete the second position (**right to left**) in 1234, the new number would be 124. Our goal is to determine which positions can be deleted to make the new number a <u>palindrome</u> (回文).

A palindrome is defined as a number that reads the same from left to right as it does from right to left. For example, 1221 and 959 are palindromes.

Please design a program to output all positions that can be deleted, sorted in ascending order or report that is impossible.

Input Format:

number

Input Limies:

- $11 <= number <= 10^9$
- Each digit is guaranteed to be non-zero

Sample Testcase:

Sample Input 1	Sample Output 1
1234	Impossible
Sample Input 2	Sample Output 2
1221	2 3
Sample Input 3	Sample Output 3
12397321	4 5

Scoring Details:

<u> </u>		
Group	Number of tests	Points
Sample Testcase	3	1
Public Testcase	5	3
Private Testcase	10	6

Problem B. Sumikko Gurashi and Jumping - (10%)

A shrimp is currently in a <u>rice field (稻田)</u> of length n. We can imagine this rice field as n cells, where '.' represents an empty space, '+' represents a crop, and 'V' represents the current position of the shrimp.

The shrimp will make *m* jumps, and each time it jumps, it can choose to jump a certain number of cells to the left or to the right. If it lands on a cell containing a crop, that crop will be destroyed by the jump.

Please design a program that outputs the state of the rice field after each jump, line by line.

Note: It is possible for a jump to go out of the bounds of the grid. If a jump would exceed the range, you must report "**Out of range**" and ignore this operation.

Input Format:

```
n m

c_1 ... c_n (c_i represents i-th of cell)

[L or R] number

.

. (total of m times)

.

[L or R] number
```

Input Limits:

- 1 <= *n*, *m*, *number* <= 10
- $c_i = '+' \mid '-' \mid 'V'$
- It is guaranteed that 'V' will definitely appear in *c* and that there will be only one instance of it.

Sample Testcase:

Sample Input 1	Sample Output 1
10 3 V L 1 R 1 L 2	V V .V
Sample Input 2	Sample Output 2
1 4 V L 1 R 10 L 3 L 10	Out of range Out of range Out of range Out of range
Sample Input 3	Sample Output 3
6 4 .+++V. R 1 L 2 L 10 L 2	.+++.V .++V Out of range .V+

Scoring Details:

Group	Number of tests	Points
Sample Testcase	3	1
Public Testcase	5	3
Private Testcase	5	6

Problem C. Goldbach's conjecture - (10%)

Goldbach's Conjecture (哥德巴赫猜想) is one of the unsolved problems in number theory. It proposes that any even integer greater than 2 can be expressed as the sum of two prime numbers (質數). Please design a program that, given an integer \mathbf{n} greater than 2, outputs two prime numbers \mathbf{x} and \mathbf{y} such that $\mathbf{x} + \mathbf{y} = \mathbf{n}$. If there are multiple solutions, prioritize the one where \mathbf{x} is smaller.

As of 2014, mathematicians have verified even numbers up to 4×10^{18} In all these verifications, no <u>counterexamples (反例)</u> to Goldbach's conjecture for even numbers have been found.

Input Format:

n	

Input Limits:

• 1 <= n <= 500 and must be an even number.

Sample Testcase:

Sample Input 1	Sample Output 1
44	3 41

Scoring Details:

Group	Number of tests	Points
Sample Testcase	1	1
Public Testcase	5	3
Private Testcase	10	6

Problem D. Attention is all you need - (10%)

There are n people and n tasks. The attention level of the i-th person on the j-th task is represented by $a_{i,j}$. Given an n * n matrix, this matrix records the "attention level" of each person on each task. Your objective is to assign n people to n different tasks and design a program to calculate the optimal assignment (The sum of attention level is maximized).

Your program must output a sequence where the number at the **i-th position** indicates the person assigned to the **i-th task**.

Note: If there are multiple assignment methods that yield an optimal result, please prioritize outputting the assignment where the numbers on the left are as small as possible (如果有多種最佳答案, 請讓輸出的結果越左邊的數字是越小的).

Input Format:

Input Limits:

- 1 <= n <= 3
- $1 <= |a_{i,i}| <= 10^6$

Sample Testcase:

Sample Input 1	Sample Output 1
3 111 115 111	1 3 2

Sample Input 2	Sample Output 2
2 1 2 4 2	2 1
Sample Input 3	Sample Output 3
1 -1000000	1

Scoring Details:

Group	Number of tests	Points
Sample Testcase	3	1
Public Testcase	5	3
Private Testcase	10	6