LINEAR MOTION velocity, $\vec{v} = \Delta \vec{x}$ occeleration, $\vec{a} = \Delta \vec{v}$ Newton's 2nd Law, F_{NET} = M·ã Constant Acceleration $V_f = V_i + at$ Δx= Vit + ½at² $V_f^2 = V_i^2 + 2a\Delta x$ Work, W=|F||d|.cost Power, $P = \frac{W}{t}$ Kinetic Energy, K= 12mv2 Potential Energy, U=mgh Momentum, p= mv

ROTATIONAL MOTION angular velocity, $W = \frac{\Delta \Theta}{t}$ angular acceleration, $\alpha = \frac{\Delta n}{t}$ torque, T=F. I sinD rotational inertia, I Newton's 2nd Law TNET = I. X constant angular acceleration Wf = W; + at Δ0 = Wit + 12 xt2 $\omega_f^2 = \omega_i^2 + 2 \lambda \Delta D$ Angular Momentum, L= I.w Tangential velocity to angular velocity V = W·r Rotations Sign convention counterclockwish -> (+) clockwish -> 0

MISCELLANEOUS weight, Fg = mg friction, f=MN centripetal acceleration/centripetal form $a_e = \frac{V^2}{r} = \omega^2 r \rightarrow F_e = \frac{mV^2}{r}$ or $F_e = m\omega^2 r$ arc length, $\Delta = \Theta \Gamma$ (Θ in radians) Hooke's Law, F=-kx Spring Potential Energy, Us= 1/2 kx2 height - length - augh of a purdulum $h = l(1 - cos \Theta)$ Elastic collision w/ one object initially at rest $\left| \begin{array}{cc} \overrightarrow{A^{i_{r}}} & \overrightarrow{A^{i_{r+o}}} \\ & \bigodot \end{array} \right| \left| \begin{array}{cc} \overrightarrow{A^{i_{r+o}}} \\ & \bigodot \end{array} \right| \left| \begin{array}{cc} \overrightarrow{A^{i_{r+o}}} \\ & \bigodot \end{array} \right| \left| \begin{array}{cc} \overrightarrow{A^{i_{r+o}}} \\ & \bigodot \end{array} \right| \right|$ $V_{if} = V_{ii} \cdot \frac{(m_i - m_z)}{(m_i + m_z)}$ $V_{2f} = V_{ii} \cdot \frac{2m_i}{(m_i + m_z)}$ SIMPLE HARMONIC MOTION

Impulear, Ap= Faxsit Vector Addition, R=A+B+C+... $K_x = A_x + B_x + C_x + \dots$ Ry = Ay + By + Cy + ... $|\overline{R}| = \sqrt{R_x^2 + R_y^2}$ $\Theta = \tan^{-1}\left(\left|\frac{R_{y}}{R_{x}}\right|\right)$ THERMODYNAMICS

C'to F°

TF = 9 Tc + 32°F

C. to K

Linear Expansion

华= スケ

Ideal Gas Law

PV=NKBT

Kg= 1.38.10-23 J/K

Chater = 4.186 KT & C

Tk= Tc+273,15

ELASTICITY stross = <u>F</u> Area $Strain = \Delta L$ strus a strain FA=YAL

Y= Young's modulus

DOPPLER EFFECT FOR SOUND fobs = (Vsound - Vobs) . fsource Vols and Vsource are positive if moving in direction of wave propogation, negative it moving in opposite direction to wave

 $\omega = \sqrt{\frac{k}{m}}$ $\omega = 2\pi f$ $f = \frac{1}{T}$ $X_{max} = A$ X(t) = Acos(wt) $V_{\text{max}} = \omega A$ $V(t) = -\omega A \sin(\omega t)$

$$a_{\text{max}} = \omega^2 A$$
 $a(t) = -\omega^2 A \cos(\omega t)$

Velocity on a string $V = \sqrt{\frac{F}{\mu}} \qquad M = \frac{M}{L}$ standing wares

 $f_{N} = \frac{n V}{2L}$ n = 1, 2, 3, ...

- · pipe open on both ends $f_n = \frac{nv}{2L}$ n = 1, 2, 3, ...
- o pipe open on one end fn = nv n=1,3,5,7,...

WAVE MOTION

Wavenumber, $k = \frac{2\pi}{\lambda}$ V=331 m/s at O°C (273°K) periodic wave relation intensity, I = Power Area | loudness (intensity level) B = 102B log, (1) Threshold of -> Io= 10'2 Wm2
Hearing
Beat frequency Best frequency $f_{bost} = f_2 - f_1 = \Delta f$

FACTORS AND PERCENT CHANGE $\frac{\chi_z}{\chi_1} = k$ $\frac{\chi_z - \chi_1}{\chi_1} = \frac{n\chi}{100}$

 $k = 1 \pm \frac{n\%}{100}$

propogation NA= 6.022 . 1028 things/mole Heat to change temperature | Heat to change phase

Q = m · C · DT | Q = m · L f

Cice = 2.1 kT/2 Lf(ice) = 333.7 kT/2

ELECTRIC FORCE

Conlomb's Law |F| = k | g : 1 | g 2 |

 $k = 9 \cdot 10^{9} \frac{Nm^{2}}{C^{2}} = \frac{1}{4\pi\epsilon_{0}}$ $\epsilon_{0} = 8.85 \cdot 10^{-12} \frac{C^{2}}{Nm^{2}}$

e= 1.6.10-19 C

 $M_e = 9.109 \cdot 10^{-31} \, \text{kg}$

mp = 1.673 · 10-27 kg

Electric Field, $\vec{E} = \frac{F}{q}$ Electric Field from a point charge $E = \frac{kq}{q^2}$

Electric Field inside a parallel plate capacitor $E = \frac{\Delta V}{E} = \frac{\Delta V}{d}$

Potential Energy for two point charges from infinity

U= kg,q2

Electric Potential, V = UE

Electric Potential for a point charge referenced from infinity

V= kg.

Electric Flux, DE=E.A.cosO

Gouss's Law

D = gend Es

INTERFERENCE + DIFFRACTION

Constructive Interference

 $\Delta l = m \lambda$ (m=0,±1,±2,...)

Destructive Interference

 $\Delta L = (m+\frac{1}{2})\lambda \quad (m=0,\pm 1,\pm 2,...)$

Thin Film Interference

Constructive: $2nt = (m+\frac{1}{2})\lambda_o$ Destructive: $2nt = m\lambda_o$

Double Slit: dsind = m)

Single Slit: asinθ=mλ

Small angle approx: $\sin \Theta \stackrel{\times}{\sim} \frac{X}{D}$ diffraction grating: $d \sin \Theta = \frac{d \times}{\sqrt{X^2 + D^2}}$ CIRCUITS

Ohn's Law, V=IR

Resistance in a wine

R= PA

resistivity change w/ temperature $f = f_0(1 + \alpha \cdot \Delta T)$

ΔT=T-T.

current from drift velocity

resistors in skries

 $R_{E_q} = R_1 + R_2 + \dots + R_N$

resistors in parallel $\frac{1}{R_{Eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}$

power supplied by emf

power dissipated by resistor

 $P=IM=I^2R=\frac{\Delta V^2}{R}$

capacitanu, C = Q

parallel plate capacitance

C = E.A

energy stored in a capacitor

 $U = \frac{1}{2}Q\Delta V = \frac{1}{2}C\Delta V^2 = \frac{Q^2}{2c}$

capacitors in series

 $\frac{1}{C_{Eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$

Q1 = Q2 = ... = QN

capacitors in parallel

CEq = C, + C2+ ... + CN

Q = Q, + Q,+...+Q,

charging an RC circuit

 $V_c(t) = \mathcal{E}(1 - e^{-t/\tau})$

 $I(t) = \frac{\mathcal{E}}{R} e^{-t/\tau}$ T = RC

discharging an RC circuit $V_c(t) = \Xi e^{-t/\tau}$

MAGNETIC FORCE

Force on a charged perticle

F=qvxB=qvBsinD

Force on a current

产=lixB=lIBomD

Torque on a current loop

T = NIAB sine

Magnetic Field due to a current or distance away from a $B(r) = \frac{M_0 I}{2Tr}$

· at the center of a coil } B = MONI with N turns and radius R B = ZR

, at the center of a solenoid B= 40NI wy n turns per unit langth

M=41.10 Tm

Motional emf, E=VIB

Magnetic flux, \$\bar{\Phi}_8 = B.A

Faraday's Law, $\xi = -\frac{\Delta \Phi}{\Delta t}$

LIGHT AND OPTICS

index of refraction, $n = \frac{c}{V}$

wavelength and frequency, $V = \lambda \cdot \hat{f}$ relation

wavenumber, K = Z#

intensity, I = P I x 1/2 for a point source

Doppler effect for light

$$f_0 = f_3 \left(\frac{\sqrt{1 + \frac{V_{rel}}{V_{rel}}}}{\sqrt{1 - \frac{V_{rel}}{V_{rel}}}} \right) \approx f_3 \left(1 + \frac{V_{rel}}{V_{rel}} \right)$$
 for $V_{rel} < C$
 $V_{rel} < O$, objects are approaching

incident light unpolarized through ideal polarizor $I_t = \frac{1}{2}I_i$

incident light polarized through ideal polarizer (Malasis Law)

It = I; cos² Crangle between polorizations

Nisindi=Ntsindt

Apparent depth/actual depth => $\frac{d}{d} = \frac{n_T}{n_i} = \frac{n_{air}}{n_{woter}}$

Critical angle $\Theta_c = \sin^{-1}\left(\frac{n_t}{n_i}\right)$ Mirror/thin less equation

 $\frac{1}{p} + \frac{1}{q} = \frac{1}{f}$

focal length from mirror curvature, $f = \frac{R}{2}$ magnification $M = \frac{h'}{h} = -\frac{q}{p}$