# Matching algorithm with CP-decomposition

Geonwoo Ban

Pusan National University Department of Statistics

2022-05-19

#### List

- Image matching
  - Matching algorithm
- CP-decomposition
  - ► Footprint image decomposition
  - Restored footprint image
- Experiment
  - Rank 1 CP-decomposition
  - CP-decomposition matching algorithm
  - Compare with descriptor method

# **Image matching**

#### Matching algorithm with deep learning



# **CP-decomposition**

#### **Basic concept**



$$x_{ijk} \approx \sum_{r=1}^{R} a_{ir} b_{jr} c_{kr}$$

# **CP-decomposition**

#### Footprint image decomposition



#### Original



















#### Data

- Everspry footprint data
- 2,000 matching pairs vs 2,000 non-matching pairs
- ullet Alignment o check
- $\bullet$  Resized to 224 imes 224
- Rank 1 CP-decomposition
- Image  $\rightarrow$  3 vectors
  - ▶ a1 : Height vector
  - ▶ b1 : Width vector
  - ▶ c1 : color vector
- Distance(L2-norm)
  - ▶ d1 : L2-norm of a1 vectors
  - ▶ d2 : L2-norm of b1 vectors
  - ▶ d3 : L2-norm of c1 vectors
  - ► TW : Sum of d1, d2 and d3

#### Histogram(d1)



#### Histogram(d2)



#### Histogram(TW)



#### The optimal point

- ullet Measurement for classification o **TW**
- Find the optimal point for classification

#### **Left upper = the optimal point**



#### Ways

- 1. maximize (TPR FPR)
- 2. maximize (TPR + TNR)
- 3.  $TPR + FPR \simeq 1$

#### Chosen ways

- 1. maximize(TPR + TNR)
- ∴  $FPR = 1 TNR \rightarrow \text{way } 1 = \text{way } 2$
- 2.  $TPR + FPR \simeq 1$

#### **Process**

Input: norm of decomposed vector pair

- step 1) Min-max scaling with the train set to plot ROC curve.
- step 2) Find two candidate cut-off points on ROC curve.
  - maximize(TPR + TNR)
  - ▶ ②  $TPR + FPR \simeq 1$
- step 3) Choose the better point to use the validation set with classification measures.
  - ► ① Accuracy =  $\frac{TP+TN}{TP+FP+TN+FN}$ ► ② Recall =  $\frac{TP}{TP+FN}$

  - Specificity =  $\frac{TN}{TN \perp FD}$
- step4) Calculate general performance with the test set.

#### step1

|      | d1       | d2       | norm     | label |
|------|----------|----------|----------|-------|
| 0    | 0.042624 | 0.021934 | 0.064558 | 0     |
| 1    | 0.028146 | 0.027882 | 0.056029 | 0     |
| 2    | 0.024677 | 0.014908 | 0.039585 | 0     |
| 3    | 0.039464 | 0.023737 | 0.063201 | 0     |
| 4    | 0.023993 | 0.021579 | 0.045571 | 0     |
|      |          |          |          |       |
| 3995 | 0.046316 | 0.051611 | 0.097927 | 1     |
| 3996 | 0.085854 | 0.054567 | 0.140421 | 1     |
| 3997 | 0.055624 | 0.058244 | 0.113868 | 1     |
| 3998 | 0.104781 | 0.096818 | 0.201599 | 1     |
| 3999 | 0.061951 | 0.085333 | 0.147285 | 1     |



| 0    | 0.081303 |
|------|----------|
| 1    | 0.155488 |
| 2    | 0.054586 |
| 3    | 0.163227 |
| 4    | 0.067733 |
|      |          |
| 3995 | 0.345240 |
| 3996 | 0.706199 |
| 3997 | 0.757723 |
| 3998 | 0.409596 |
| 3000 | 0.452294 |

#### step2



• method1(red): 0.1127, method2(green): 0.1107

### step3

| Validation | Accuracy | Recall | Specificity |  |
|------------|----------|--------|-------------|--|
| Method1    | 0.9765   | 0.9765 | 0.9705      |  |
| Method2    | 0.9773   | 0.9805 | 0.9740      |  |

#### step4

| Test    | Accuracy | Recall | Specificity |  |
|---------|----------|--------|-------------|--|
| Method2 | 0.9735   | 0.9765 | 0.974       |  |

#### Comparison method

• Use image descriptors(Harris, SURF, SIFT, BRISK, ORB and FAST)





#### **Descriptor dataset**

|      | SURF_Location | SURF_Feature | ${\sf SIFT\_Location}$ | SIFT_Feature | ${\tt BRISK\_Location}$ | BRISK_Feature | FAST_Location | FAST_Feature |
|------|---------------|--------------|------------------------|--------------|-------------------------|---------------|---------------|--------------|
| 0    | 118.14190     | 1.866757     | 702.8141               | 5987.205     | 145.58560               | 634.982327    | 604.3364      | 691.003654   |
| 1    | 293.39580     | 2.571002     | 493.1164               | 5198.918     | 315.41560               | 776.806158    | 431.0917      | 636.572622   |
| 2    | 394.15090     | 3.480249     | 568.0880               | 6089.463     | 116.18280               | 640.419124    | 642.0845      | 592.685139   |
| 3    | 436.86560     | 7.279379     | 1143.9950              | 8378.478     | 381.02250               | 627.591131    | 495.3411      | 769.329759   |
| 4    | 331.90300     | 3.121050     | 1202.7280              | 5843.481     | 382.48290               | 786.034772    | 330.9722      | 664.069473   |
|      |               |              |                        |              |                         |               |               |              |
| 3995 | 1044.39300    | 3.581189     | 1397.8900              | 8864.790     | 417.06220               | 598.587447    | 316.4314      | 645.091262   |
| 3996 | 715.76900     | 6.845936     | 966.9949               | 7136.091     | 548.60520               | 736.468216    | 812.0153      | 826.091037   |
| 3997 | 262.30190     | 3.313372     | 514.8018               | 5263.430     | 87.87259                | 550.433351    | 319.5481      | 725.317340   |
| 3998 | 522.48550     | 3.917512     | 1813.5840              | 7530.857     | 554.12220               | 761.749788    | 739.4476      | 792.050120   |
| 3999 | 27.99572      | 4.208055     | 133.9072               | 4536.682     | 445.89550               | 776.799690    | 154.9125      | 750.378960   |

#### **CP-decomposition vs Descriptors**

- 1.  $\mathsf{CP}\text{-}\mathsf{decomposition} \to \mathsf{Find} \ \mathsf{Threshold} \to \mathsf{Classification}$
- 2. Modeling random forest with descriptor dataset
- 3. Modeling random forest with norm of decomposed vectors

#### **CP-decomposition vs Descriptors**



# **Summary**

- The rank 1 CP-decomposition method can describe the footprint image.
- The CP-decomposition method is better than the descriptor comparison method.
- Need to understand more about CP-decomposition.
- Need to use different decomposition methods.