1. 已知函数 $f(x) \in C^{3}[0,2]$, 给定求积公式

$$\int_0^2 f(x)dx \approx Af(0) + Bf(x_0),$$

试确定参数A, B, x_0 , 使该求积公式代数精度尽可能高, 并指出代数精度次数.

2. 给定求积公式

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{6} \left[f(a) + 4f(\frac{a+b}{2}) + f(b) \right] + \beta(b-a)^{4} [f'''(a) - f'''(b)],$$

求参数 β ,使求积公式具有尽可能高的代数精度,并指出所达到的最高代数精度.

3. 以 1, $\frac{3}{2}$, 2 为插值节点作函数 f(x) 的 2 次插值多项式 $p_2(x)$, 用 $f(x) \approx p_2(x)$ 构造如下求积公式:

$$\int_0^3 f(x)dx \approx A_0 f(1) + A_1 f(\frac{3}{2}) + A_2 f(2),$$

试确定参数 A_0 , A_1 和 A_2 , 并指出该公式的代数精度.

4. 考虑积分
$$I(f) = \int_a^b f(x)dx$$
,取正整数 $n \ge 2$,记
$$h = (b-a)/n, \ x_k = a + kh, \ k = 0,1, \cdots n,$$

设 $f(x) \in C^2[a,b]$.

- (1) 写出计算积分I(f)的复化梯形公式 $T_n(f)$ 及截断误差表达式;
- (2) 求极限 $\lim_{h\to 0} \frac{I(f)-T_n(f)}{h^2}$.