Contents

1	Matrices	3
	1.1 Matrix Subspaces	4

Chapter 1

Matrices

1.0.1 Gaussian elimination

We can define three elementary operations that do not change the solution of the system.

Definition (Elementary row operations): Consider a matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$, we define three elementary row operations on A:

- 1. multiplication of one row by a non-zero scalar c, denoted by $e_r(c)$.
- 2. replacement of $r_{\rm th}$ row of A by row r plus c times row $s \neq r$ that is $r_{\rm new} = r + cs$ and it is denoted by $e_{rs}(c)$
- 3. Interchange two rows e_{rs} .

Theorem 1.1. To each elementary row operation e there corresponds an elementary row operation e^{-1} , of the same type as e, such that $e^{-1}(e(A)) = e(e^{-1}(A)) = A$ for any A. Furthermore, each elementary operation has a $n \times n$ matrix representation.

Proof. It is easily verified by hand that the inverses exist and are of the same kind.

At each step of Gaussian elimination, one takes an element to be the **pivot** and eliminate the element from the other equations. At the end, the system has been reduced to a **upper triangle** (maybe with permuation). For **Gauss-Jordan method** the pivot needs to be one and the element must be eliminate from all equations.

1.0.2 LU decomposition

With some assumption one can transform matrix A to an upper triangular matrix U via elementary row operations. That is, there exists an elementary matrix E such that EA = U. It can be verified that E is lower triangular matrix and hence $L = E^{-1}$ is lower triangular and A = LU. The assumptions made can be simplified if we allow permuations. That is

Theorem 1.2. There exists a permuation of a matrix A that has a LU decomposition. In other words, there exists a permuation matrix P such that

$$PA = LU$$

Theorem 1.3. If A is strongly invertible matrix that is, every submatrix A(1:i,1:i) is invertible (leading minors are non-zero) then there exists a unique lower unitriangular matrix L and a unique upper triangular matrix U such that A = LU.

4 1. Matrices

Theorem 1.4. If the decomposition A = LU exist where L is a lower unitriangular matrix, then the decomposition A = LDU exists where D is a diagonal matrix and L and U are lower and upper unitriangular matrices respectively. Furthermore, if such LDU decomposition exists and $A = A^T$ then $A = LDL^T$

1.1 Matrix Subspaces

1.1.1 Column space

The **column space** of a matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$, usually denoted by colsp A is the span of its columns.

$$\operatorname{colsp} A = \{ Ax \, | \, x \in \mathbb{F}^n \}$$

It is obvious that $\dim \operatorname{colsp} A$ is the number of linearly independent columns of A.

1.1.2 Null space

The **null space** or **kernel** of a matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ is all the vectors $x \in \mathbb{F}^n$ such that Ax = 0, and it is denoted by ker A.

$$\ker A = \{ x \in \mathbb{R}^n \,|\, Ax = 0 \}$$

To find the null space of a matrix A, we need to solve the homogeneous equation Ax = 0. One way of doing this is employing the Guassian elimination to find a row reduced form of A.

Example 1.1. We want to find the null space of

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 \\ 2 & 4 & 1 & 5 & 3 \\ 3 & 6 & 1 & 7 & 1 \\ 4 & 8 & 1 & 9 & 4 \end{bmatrix}$$

we have

$$A = \begin{bmatrix} 1 & 2 & 1 & 3 & 2 \\ 2 & 4 & 1 & 5 & 3 \\ 3 & 6 & 1 & 7 & 1 \\ 4 & 8 & 1 & 9 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 3 & 2 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & -2 & -2 & -5 \\ 0 & 0 & -3 & -3 & -4 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 2 & 1 & 3 & 2 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 1 & 3 & 2 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

hence we must solve the following system

$$\begin{cases} x_1 + 2x_2 + x_3 + 3x_4 + 2x_5 = 0 \\ -x_3 - x_4 - x_5 = 0 \\ -3x_5 = 0 \end{cases}$$

hence all the solutions are

$$\alpha \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \beta \begin{bmatrix} -2 \\ 0 \\ -1 \\ 1 \\ 0 \end{bmatrix} \qquad \forall \alpha, \beta \in \mathbb{R}$$

Moreover, by turning A to its row reduced echolon form we have

$$\begin{bmatrix} 1 & 2 & 1 & 3 & 2 \\ 0 & 0 & -1 & -1 & -1 \\ 0 & 0 & 0 & 0 & -3 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

hence we can re-write

$$Rx = \begin{bmatrix} 1 & 2 & 0 & 2 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \underbrace{\begin{bmatrix} x_1 \\ x_3 \\ x_5 \end{bmatrix}}_{T_{\text{pringt}}} + \begin{bmatrix} 2 & 2 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \underbrace{\begin{bmatrix} x_2 \\ x_4 \end{bmatrix}}_{x_{\text{free}}} = 0$$

by removing the zero rows we get that

$$Ix_{\text{pivot}} + Fx_{\text{free}} = 0$$

$$\implies \begin{bmatrix} x_{\text{pivot}} \\ x_{\text{free}} \end{bmatrix} = \begin{bmatrix} -F \\ I \end{bmatrix} x_{\text{free}}$$

note that, for some permuation matrix P

$$\begin{bmatrix} x_{\text{pivot}} \\ x_{\text{free}} \end{bmatrix} = Px$$

which implies that

$$x = P^{-1} \begin{bmatrix} x_{\text{pivot}} \\ x_{\text{free}} \end{bmatrix} = \underbrace{P^T \begin{bmatrix} -F \\ I \end{bmatrix}}_{\text{null matrix}} x_{\text{free}}$$

Proposition 1.5. For every matrix $A \in \mathcal{M}_{m \times n}(\mathbb{F})$ we have

- 1. pivot columns are linearly independent and free columns are a linear of combination of them
- 2. non-zero rows are linearly independent.
- 3. the number of pivot columns is equal to the number of independent columns and number of independent rows.

6 1. Matrices

Definition: The **rank** of a matrix rank *A* to be number of pivot columns. A **full row rank** matrix is a matrix that all of its rows are linearly independent and a **full column rank** is a matrix that all of its columns are linearly independent. Lastly, a matrix that all of its columns and row are linearly independent is called **full rank**.

Furthermore, the number free columns is equal to the null = dim ker A and it is equal to $n - \operatorname{rank} A$.

Proposition 1.6. For the linear system Ax = b we have:

- 1. If A is full rank then only one solution.
- 2. If A is full row rank then infinitely many solution.
- 3. If A is full column rank then either no solution or one solution.
- 4. Otherwise, then the system either has no or infinitely many solutions.

1.1.3 Row space

Similar to column space, **row space** is the space spanned by the rows of A which is the same as colsp A^T

Proposition 1.7.

$$\ker A \cap \operatorname{colsp} A^T = \{0\}$$

Theorem 1.8.

$$\operatorname{null} A + \operatorname{rank} A = n$$