Exercise Sheet 03 Operator Algebras

Contributors: Valentin Hock, Linus Mußmächer, Minona Schäfer

June 11, 2023

3.2

The C^* -property shows $\|a^2\| = \|a^*a\| = \|a\|^2$, and by using this as well as the C^* property again, we have for n=4 that $\|a^4\| = \|a^*a^*aa\| = \|(a^2)^*(a^2)\| = \|a^2\|^2 = \|a^4\|$. Inductively, we can likewise prove $\|a^{2^k}\| = \|a\|^{2^k}$ for all $k \in \mathbb{N}$. Now, for any $n \in \mathbb{N}$ there exists $m \in \mathbb{N}$ such that $n+m=2^k$ for some $k \in \mathbb{N}$. Then we have

$$\|a\|^{2^k} = \|a^{2^n}\| = \|a^na^m\| \leq \|a^n\| \cdot \|a^m\| \leq \|a\|^n \cdot \|a^m\| \leq \|a\|^{n+m} = \|a\|^{2^k}$$

and because the first and last element are equal, we must have equality in every intermediate step. This especially proves $||a^n|| = ||a||^n$.

Let now $a \in \mathcal{A}$ be an arbitrary element. Then $\|a^*a \dots a^*a\| = \|(a^*a)^{\frac{n}{2}}\| = \|a^*a\|^{\frac{n}{2}} = \|a\|^n$ as proven above, because (a^*a) is self-adjunct. For non-even n (and thus even n+1) we can once again calculate

$$||a||^{n+1} = ||a^*aa^* \dots a^*a|| \le ||a|| \cdot ||aa^* \dots a^*|| \le ||a|| \cdot ||a||^n = ||a||^{n+1}$$

and therefore $||aa^* \dots a^*|| = ||a||^n$ by the same argument as above.

Now, for a normal $a \in \mathcal{A}$ (that is, $a^*a = aa^*$) we have

$$\|a^n\|^{\frac{1}{n}} = (\|a^n\|^2)^{\frac{1}{2n}} = \|(a^n) * a^n\|^{\frac{1}{2n}} = \|aa^*a \dots a^*\|^{\frac{1}{2n}} = (\|a\|^{2n})^{\frac{1}{2n}} = \|a\|^{\frac{1}{2n}} = \|a\|^$$

and therefore $r(a) = \lim_{n \to \infty} ||a^n||^{\frac{1}{n}} = ||a||$.

Finally, we can use the fundamental theorem of continuous functional calculus. Consider for the moment \mathscr{A} to be unital (if it is not, consider $\widetilde{\mathscr{A}}$). Then $a \in \mathscr{A}$ is normal and $f : \mathbb{C} \to \mathbb{C}, x \mapsto |x|^2 = x \cdot \overline{x}$. f is continuous on \mathbb{C} and therefore especially on $\sigma(a)$. Thus we have

$$\sigma(aa^*) = \sigma(f(a)) = f(\sigma(a)) = \{f(\lambda) \mid \lambda \in \sigma(a)\} = \{|\lambda|^2 \mid \lambda \in \sigma(a)\}.$$

As a is normal, we also have $a^*a = aa^*$ and therefore $\sigma(aa^*) = \sigma(a^*a)$.

3.6

First, to prove that $M(\mathcal{A})$ fulfills the given property. We already know that \mathcal{A} is a closed, two-sided and essential ideal in $M(\mathcal{A})$. Consider the following morphism:

$$\varphi: \mathcal{B} \to M(\mathcal{A}), b \mapsto (L_b, R_b)$$

where

$$L_b: \mathcal{A} \to \mathcal{A}a \mapsto b \cdot a$$

 $R_b: \mathcal{A} \to \mathcal{A}a \mapsto a \cdot b$

defined via the multiplication in \mathscr{B} . Because $\mathscr{A} \subseteq \mathscr{B}$, we actually have $a \cdot b, b \cdot a \in \mathscr{A}$ for all a, b and L_b, R_b are well-defined and, as they are clearly linear, φ is also well-defined. Because of $L_{ab} = L_a \circ L_b$ and $R_{ab} = R_b \circ R_a$, we have $\varphi(ab) = \varphi(a) \cdot \varphi(b)$ with the multiplication as defined in the lecture. Furthermore, $\varphi(1) = (L_1, R_1) = (\mathrm{id}, \mathrm{id})$ and φ is therefore a homomorphism. Lastly we have $\varphi(b^*) = (L_{b^*}, R_{b^*})$ and

$$L_{b^*}(a) = b^*a = (a^*b)^* = R_b(a^*)^* = (R_b)^*(a)$$

$$R_{b^*}(a) = ab^* = (ba^*)^* = L_b(a^*)^* = (L_b)^*(a)$$

$$\Rightarrow \varphi(b^*) = (R_b^*, L_b^*) = (L_b, R_b)^*$$

so φ is indeed a *-homomorphism. Since $\varphi|_{\mathscr{A}}$ reduces to the normal left- and right-multiplication on \mathscr{A} , it coincides with canonical inclusion map as defined in the lecture. φ therefore fulfills all conditions as given.

To conclude that the universal property is indeed correct, we need to consider the case that $\mathscr{A} \subseteq \mathscr{B}$ is an essential ideal. In this case, $b\mathscr{A} = 0$ implies b = 0 for any $b \in \mathscr{B}$. Assume $\varphi(b) = \varphi(c)$ for any two $b, c \in \mathscr{B}$. Then we have $(L_b, R_b) = (L_c, R_c)$ and thus ba = ca and ab = ac for all $a \in \mathscr{A}$. This is equivalent to $b\mathscr{A} = c\mathscr{A}$ and $\mathscr{A}b = \mathscr{A}c$ or, stated differently, $(b-c)\mathscr{A} = 0$ and $\mathscr{A}(b-c) = 0$. As stated above, this implies $(b-c) = 0 \Leftrightarrow b = c$ and thus proves that φ is injective.

Next, we want to prove that any algebra $D \trianglerighteq \mathcal{A}$ that fulfills the above property (and where \mathcal{A} is a closed, two-sided essential ideal in D) is already equal to $M(\mathcal{A})$.

We already know that \mathscr{A} is an essential ideal in $M(\mathscr{A})$, so if D also fulfills the property above the therefore existent morphism $\varphi_D: M(\mathscr{A}) \to D$ must be injective. We may thus treat $M(\mathscr{A})$ as a subalgebra of D. In parallel, since \mathscr{A} is also an essential ideal of D, the morphism $\varphi_M: D \to M(\mathscr{A})$ is also injective and we may consider $M(\mathscr{A})$ as a subalgebra of D. But then these two algebras are isomorphic to subalgebras of each other, so they must already be equal.

3.7