ПРИМЕР ОРГАНИЗАЦИИ ПАРАЛЛЕЛЬНЫХ ЗЕРНИСТЫХ ВЫЧИСЛИТЕЛЬНЫХ ПРОЦЕССОВ И ОБМЕНА ДАННЫМИ

(вариант 21 ЛабМММ)

Дан ijk-алгоритм перемножения двух квадратных матриц порядка N:

do
$$i = 1, N$$

do $j = 1, N$
 $S_1(i,j)$: $c(i,j) = 0$
do $k = 1, N$
 $S_2(i,j,k)$: $c(i,j) = c(i,j) + a(i,k) b(k,j)$
enddo
enddo

Требуется разработать параллельный алгоритм согласно варианту 21. Тайлинг: r_1 – параметр,

 r_2 – параметр,

$$Q_3$$
 – параметр, $r_3 = \left\lceil \frac{N}{Q_3} \right\rceil$;

s-координата: k;

коммуникации: трансляция части (согласованной с тайлом) C.

Информационная структура алгоритма. Зависимости алгоритма задаются функциями

$$\overline{\Phi}_{1,2}(i,j,1) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} i \\ j \\ 1 \end{pmatrix}, \quad V_{1,2} = \left\{ (i,j,k) \in Z^3 \middle| 1 \le i \le N, \ 1 \le j \le N, \ k = 1 \right\},$$

$$\overline{\Phi}_{2,2}(i,j,k) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} i \\ j \\ k \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \quad V_{2,2} = \left\{ (i,j,k) \in Z^3 \middle| 1 \le i \le N, \ 1 \le j \le N, \ 2 \le k \le N \right\}.$$

Тайлинг. Разобьем все три цикла (циклы с параметрами i, j, k);

$$Q_1 = \left\lceil \frac{N_1}{r_1} \right\rceil$$
, $Q_2 = \left\lceil \frac{N_2}{r_2} \right\rceil$. Получим

do
$$i^{gl} = 0$$
, Q_1-1
do $i = 1 + i^{gl} r_1$, $\min((i^{gl} + 1)r_1, N)$
do $j^{gl} = 0$, Q_2-1
do $j = 1 + j^{gl}r_2$, $\min((j^{gl} + 1)r_2, N)$
 $S_1(i,j)$: $c(i,j) = 0$
do $k^{gl} = 0$, Q_3-1
do $k = 1 + k^{gl}r_3$, $\min((k^{gl} + 1)r_3, N)$
 $S_2(i,j,k)$: $c(i,j) = c(i,j) + a(i,k) b(k,j)$

```
enddo
enddo
enddo
enddo
enddo
enddo
```

Цикл с параметром k^{gl} не может быть внутренним по отношению к локальным циклам. Кроме того, его не должно быть в окружении оператора c(i,j)=0, так как в окружении этого оператора первоначально не было цикла с параметром k. Поэтому распределим циклы с параметрами i и j между выполняемыми операторами и осуществим необходимую перестановку локальных и глобальных циклов:

```
do i^{gl} = 0, Q_1 - 1
    do j^{gl} = 0, Q_2 - 1
         do i = 1 + i^{gl} r_1, min((i^{gl} + 1)r_1, N)
              do j = 1 + j^{gl}r_2, min((j^{gl} + 1)r_2, N)
                   c(i,j) = 0
S_1(i,j):
              enddo
         enddo
         do k^{gl} = 0, Q_3 - 1
              do i = 1 + i^{gl} r_1, min((i^{gl} + 1)r_1, N)
                   do j = 1 + j^{gl}r_2, min((j^{gl} + 1)r_2, N)
                        do k = 1 + k^{gl}r_3, min((k^{gl}+1)r_3, N)
                            c(i,j) = c(i,j) + a(i,k) b(k,j)
S_2(i,j,k):
                        enddo
                   enddo
              enddo
         enddo(k^{gl})
    enddo(j^{gl})
enddo(i^{gl})
```

Операторы S_1 и S_2 окружены разными наборами глобальных циклов, поэтому требуются тайлы двух типов:

```
do i^{gl} = 0, Q_1-1

do j^{gl} = 0, Q_2-1

Tile 1(i^{gl},j^{gl})

do k^{gl} = 0, Q_3-1

Tile 2(i^{gl},j^{gl},k^{gl})

enddo(k^{gl})

enddo(i^{gl})
```

Вычисления тайла первого типа Tile1(i^{gl} , j^{gl}):

do
$$i = 1 + i^{gl} r_1$$
, $\min((i^{gl} + 1)r_1, N)$
do $j = 1 + j^{gl}r_2$, $\min((j^{gl} + 1)r_2, N)$
 $S_1(i,j)$: $c(i,j) = 0$
enddo
enddo

Вычисления тайла второго типа Tile2(i^{gl} , j^{gl} , k^{gl}):

```
do i = 1 + i^{gl} r_1, \min((i^{gl} + 1)r_1, N)

do j = 1 + j^{gl}r_2, \min((j^{gl} + 1)r_2, N)

do k = 1 + k^{gl}r_3, \min((k^{gl} + 1)r_3, N)

S_2(i,j,k): c(i,j) = c(i,j) + a(i,k) b(k,j)

enddo

enddo

enddo
```

Обоснуем корректность тайлинга (для любого варианта). Имеются зависимости $S_1(i,j) \rightarrow S_2(i,j,1)$, $S_2(i,j,k-1) \rightarrow S_2(i,j,k)$. Достаточные условия допустимости тайлинга выполняются: для любой зависимости $S_{\alpha}(I) \rightarrow S_{\beta}(J)$ имеет место $\beta \geq \alpha$ и, если у I и J есть координата с одинаковым номером, её значение в J не меньше, чем в I.

Запись параллельных зернистых вычислительных процессов. Из условия следует, что Q_3 — число процессов, предназначенных для реализации алгоритма. Единый для каждого из Q_3 процессов псевдокод параллельного алгоритма (без учета операций обмена данными) можно записать следующим образом (p=k gl — номер процесса):

Для каждого процесса \Pr_p , $0 \le p \le Q_3 - 1$:

do
$$i^{gl} = 0$$
, Q_1-1
do $j^{gl} = 0$, Q_2-1
if $p=0$ Tile1 (i^{gl},j^{gl})
Tile2 (i^{gl},j^{gl},p)
enddo (i^{gl})

В нулевом процессе \Pr_0 осуществляются все операции $S_1(i,j)$ и все вычисления алгоритма, для которых $1 \le k \le r_3$; в процессе \Pr_1 осуществляются вычисления, для которых $r_3 + 1 \le k \le 2r_3$. Далее в процессе \Pr_p , кроме, возможно, (Q_3-1) -го процесса, осуществляются все вычисления алгоритма, для которых $1+p \ r_3 \le k \le (p+1)r_3$; в процессе с номером Q_3-1 осуществляются вычисления алгоритма, для которых $1+(Q_3-1)r_3 \le k \le \min(Q_3r_3,N)$.

Распределение входных и выходных данных. Соответственно распределению вычислений происходит распределение между процессами элементов матриц A и B; согласно заданию варианта 21 элементы матрицы C назначаются процессам динамически. Произвольному процессу \Pr_p распределяются столбцы матрицы A и строки матрицы B с номерами с $1+p\,r_3$ по $\min((p+1)r_3,N)$. Нулевой процесс \Pr_0 отправляет процессам \Pr_p , p>0, «свои» части, обозначим их A_p и B_p , матриц A и B. Результаты вычислений — вся матрицы C — окончательно подсчитывается в $\Pr_{O_{3}-1}$.

Общее представление о работе параллельного алгоритма и об обмене данными. Эти рассуждения здесь не приводим (в контрольной работе этот пункт тоже можно опустить).

Выделение массивов. Приватизация массивов. A_p — матрицѕ размера $N \times r_3$ и B_p — матрицы размера $r_3 \times N$ — приватизируются процессом \Pr_p , $0 \le p \le Q_2 - 1$. CP — матрица размера $r_1 \times r_2$ используется для трансляции. Результирующая матрица C формируется в процессе $\Pr_{Q_3 - 1}$.

Запись тайла с выделенными массивами. Напомним вид тайла Tile1(i^{gl} , j^{gl}):

do
$$i=1+i^{gl}r_1$$
, $\min((i^{gl}+1)r_1,N)$
do $j=1+j^{gl}r_2$, $\min((j^{gl}+1)r_2,N)$
 $S_1(i,j)$: $c(i,j)=0$
enddo
enddo

Tile1(i^{gl} , j^{gl}) с выделенными массивами:

do
$$i = 1 + i^{gl} r_1$$
, $\min((i^{gl} + 1)r_1, N)$
do $j = 1 + j^{gl}r_2$, $\min((j^{gl} + 1)r_2, N)$
 $ip = i - i^{gl} r_1$
 $jp = j - j^{gl} r_2$
 $S_1(i,j)$: $cp(ip,jp) = 0$
enddo
enddo

Напомним вид тайла Tile2(i^{gl} , j^{gl} ,p):

do
$$i = 1 + i^{gl} r_1$$
, $\min((i^{gl} + 1)r_1, N)$
do $j = 1 + j^{gl}r_2$, $\min((j^{gl} + 1)r_2, N)$
do $k = 1 + p r_3$, $\min((p+1)r_3, N)$
 $S_2(i,j,k)$:
$$c(i,j) = c(i,j) + a(i,k) b(k,j)$$
enddo
enddo
enddo

Tile $2(i^{gl}, j^{gl}, p)$ с выделенными массивами:

```
do i = 1 + i^{gl} r_1, \min((i^{gl} + 1)r_1, N)

ip = i - i^{gl} r_1

do j = 1 + j^{gl} r_2, \min((j^{gl} + 1)r_2, N)

jp = j - j^{gl} r_2

do k = 1 + p r_3, \min((p + 1)r_3, N)

kp = k - p r_3

cp(ip, jp) = cp(ip, jp) + a_p(i, kp) b_p(kp, j)

enddo

enddo

enddo
```

Оптимизация вычислений в тайлах. Оптимизацию вычислений (например, вычисление границ цикла следует выполнять вне цикла) рассматривать не будем. В контрольной работе этот пункт можно опустить.

Структурирование коммуникаций. Трансляцию данных опишем непосредственно при записи псевдокода.

Псевдокод параллельного зернистого алгоритма.

Для каждого процесса \Pr_p , $0 \le p \le Q_3 - 1$:

```
{if p=0 сформировать матрицы A_q, 0 \le q \le Q_3-1, \operatorname{send}(\operatorname{Pr}_q; A_q; N \times r_3), 1 \le q \le Q_3-1, \operatorname{сформировать} матрицы B_q, 0 \le q \le Q_3-1, \operatorname{send}(\operatorname{Pr}_q; B_q; r_3 \times N), 1 \le q \le Q_3-1} if p>0 receive(\operatorname{Pr}_0; A_p; N \times r_3), receive(\operatorname{Pr}_0; B_p; r_3 \times N) do i^{gl}=0, Q_1-1 do j^{gl}=0, Q_2-1 if p=0 Tile1(i^{gl},j^{gl}) if p>0 receive(\operatorname{Pr}_{p-1}; CP; r_1 \times r_2) Tile2(i^{gl},j^{gl},p) if p<Q_3-1 send(\operatorname{Pr}_{p+1}; CP; r_1 \times r_2) if p=Q_3-1 используя CP сформировать часть матрицы C enddo(i^{gl}) enddo(i^{gl})
```