Device Modeling Report

COMPONENTS: MOSFET: OPERATIONAL AMPLIFIER

PART NUMBER:NJM2060

MANUFACTURER: NEW JAPAN RADIO CO.,LTD

Bee Technologies Inc.

SPice Model


```
*$
* PART NUMBER:NJM2060
* MANUFACTURER: NEW JAPAN RADIO
* All Rights Reserved Copyright (c) Bee Technologies Inc. 2007
.Subckt NJM2060 OUT1 -IN1 +IN1 V+ +IN2 -IN2 OUT2 OUT3 -IN3 +IN3 V-
+ +IN4 -IN4 OUT4
X U1 +IN1 -IN1 V+ V- OUT1 NJM2060_SUB
X_U2 +IN2 -IN2 V+ V- OUT2 NJM2060_SUB
X_U3 +IN3 -IN3 V+ V- OUT3 NJM2060_SUB
X_U4 +IN4 -IN4 V+ V- OUT4 NJM2060_SUB
.ends NJM2060
.subckt NJM2060_SUB 1 2 3 4 5
 c1 11 12 8.6603E-12
 c2 6 7 30.000E-12
 dc 5 53 dy
 de 54 5 dy
 dlp 90 91 dx
 dln 92 90 dx
 dp 4 3 dx
 egnd 99 0 poly(2) (3,0) (4,0) 0 .5 .5
 fb 7 99 poly(5) vb vc ve vlp vln 0 1.9100E6 -1E3 1E3 1E6 -1E6
 ga 6 0 11 12 2.1781E-3
 gcm 0 6 10 99 66.404E-9
 iee 3 10 dc 120.68E-6
 hlim 90 0 vlim 1K
 q1 11 2 13 qx1
 q2 12 1 14 qx2
 r2 6 9 100.00E3
 rc1 4 11 459.12
 rc2 4 12 459.12
 re1 13 10 30.178
 re2 14 10 30.178
 ree 10 99 1.6573E6
 ro1 8 5 50
 ro2 7 99 25
 rp 3 4 1.2924E3
 vb 9 0 dc 0
 vc 3 53 dc 4.3545
 ve 54 4 dc 4.3555
 vlim 7 8 dc 0
```

```
vlp 91 0 dc 200
vln 0 92 dc 200
.model dx D(Is=800.00E-18)
.model dy D(Is=800.00E-18 Rs=1m Cjo=10p)
.model qx1 PNP(Is=800.00E-18 Bf=1.4004E3)
.model qx2 PNP(Is=814.9854E-18 Bf=1.6149E3)
.ends
*$
```

Output Voltage Swing

Simulation result

Evaluation circuit

Comparison table lo = 25 mA

Output Voltage Swing	Measurement	Simulation	%Error
+Vout(V)	+11.5	+11.500	0
-Vout(V)	-11.5	-11.499	-0.009

Input Offset Voltage

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Vos (mV)	0.5	0.5	0

Slew Rate

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
Slew Rate(v/us)	4	3.996	-0.1

Input current

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
lb (nA)	40	40.029	0.073
lbos (nA)	5	5.0057	0.114

Open Loop Voltage Gain vs. Frequency

Simulation result

Evaluation circuit

	Measurement	Simulation	%Error
f-0dB(MHz)	10	10.21	2.100
Av-dc(dB)	100	99.994	-0.006

Common-Mode Rejection Voltage gain

Simulation result

Evaluation circuit

CMRR=20*LOG(99930.946/3.1555) = 90.012 dB

	Measurement	Simulation	%Error
CMRR(dB)	90	90.012	-0.06

Remark Output Voltage Swing

Before

Remark Input Offset Voltage

Before

Remark Slew Rate

Before

Remark Input current

Before

Remark Open Loop Voltage Gain vs. Frequency

Before

Remark Common-Mode Rejection Voltage gain

Before

