Credit Card Customer Segmentation

```
In [1]:
```

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

Load the Data

```
In [3]:
```

```
df = pd.read_csv('CC GENERAL.csv')
```

In [4]:

df.head()

Out[4]:

	CUST_ID	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_
0	C10001	40.900749	0.818182	95.40	0.00	95.4	
1	C10002	3202.467416	0.909091	0.00	0.00	0.0	64
2	C10003	2495.148862	1.000000	773.17	773.17	0.0	
3	C10004	1666.670542	0.636364	1499.00	1499.00	0.0	2
4	C10005	817.714335	1.000000	16.00	16.00	0.0	
4							•

```
In [5]:
```

df.describe()

Out[5]:

	BALANCE	BALANCE_FREQUENCY	PURCHASES	ONEOFF_PURCHASES	INSTALLMENTS_PURCHASES	CASH_ADV#
count	8950.000000	8950.000000	8950.000000	8950.000000	8950.000000	8950.00
mean	1564.474828	0.877271	1003.204834	592.437371	411.067645	978.87
std	2081.531879	0.236904	2136.634782	1659.887917	904.338115	2097.16
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.00
25%	128.281915	0.888889	39.635000	0.000000	0.000000	0.00
50%	873.385231	1.000000	361.280000	38.000000	89.000000	0.00
75%	2054.140036	1.000000	1110.130000	577.405000	468.637500	1113.82
max	19043.138560	1.000000	49039.570000	40761.250000	22500.000000	47137.21
4						Þ

```
In [6]:
```

```
df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 8950 entries, 0 to 8949
Data columns (total 18 columns):

Column --- ----0 CUST ID Non-Null Count Dtype
----8950 non-null object

```
BALANCE
                                       8950 non-null
                                                       float64
   BALANCE FREQUENCY
                                       8950 non-null float64
   PURCHASES
                                       8950 non-null float64
   ONEOFF PURCHASES
                                      8950 non-null float64
   INSTALLMENTS PURCHASES
                                      8950 non-null float64
    CASH_ADVANCE 8950 non-null float64
PURCHASES_FREQUENCY 8950 non-null float64
ONEOFF_PURCHASES_FREQUENCY 8950 non-null float64
    PURCHASES FREQUENCY
 7
 8
    PURCHASES_INSTALLMENTS_FREQUENCY 8950 non-null float64
 10 CASH ADVANCE FREQUENCY
                               8950 non-null float64
 11 CASH ADVANCE TRX
                                       8950 non-null int64
 12 PURCHASES TRX
                                       8950 non-null int64
 13 CREDIT LIMIT
                                       8949 non-null float64
                                       8950 non-null float64
 14 PAYMENTS
                                       8637 non-null float64
 15 MINIMUM PAYMENTS
 16 PRC FULL PAYMENT
                                       8950 non-null float64
 17 TENURE
                                       8950 non-null int64
dtypes: float64(14), int64(3), object(1)
memory usage: 1.2+ MB
In [7]:
df.isna().mean()*100
Out[7]:
CUST ID
                                    0.000000
BALANCE
                                    0.000000
BALANCE FREQUENCY
                                    0.000000
PURCHASES
                                    0.000000
ONEOFF PURCHASES
                                    0.000000
INSTALLMENTS PURCHASES
                                    0.000000
CASH ADVANCE
                                    0.000000
PURCHASES FREQUENCY
                                    0.000000
ONEOFF_PURCHASES_FREQUENCY
                                    0.000000
PURCHASES_INSTALLMENTS_FREQUENCY
                                    0.000000
CASH ADVANCE FREQUENCY
                                    0.000000
CASH ADVANCE TRX
                                    0.000000
PURCHASES TRX
                                    0.000000
CREDIT LIMIT
                                    0.011173
PAYMENTS
                                    0.000000
MINIMUM PAYMENTS
                                    3.497207
PRC FULL_PAYMENT
                                    0.000000
TENURE
                                    0.000000
dtype: float64
Data Processing
In [8]:
df.drop(['CUST ID'], axis=1, inplace=True)
In [9]:
df.dropna(subset=['CREDIT LIMIT'], inplace=True)
In [10]:
df['MINIMUM PAYMENTS'].fillna(df['MINIMUM PAYMENTS'].median(), inplace=True)
In [11]:
plt.figure(figsize=(20,35))
for i, col in enumerate(df.columns):
    if df[col].dtype != 'object':
```

ax = plt.subplot(9, 2, i+1)
sns.kdeplot(df[col], ax=ax)

plt.xlabel(col)


```
© 0.75 - 0.50 - 0.50 - 0.00 5 6 7 8 9 10 11 12 13
```

In [12]:

cols = ['BALANCE', 'ONEOFF_PURCHASES', 'INSTALLMENTS_PURCHASES', 'CASH_ADVANCE', 'ONEOFF_
PURCHASES_FREQUENCY', 'PURCHASES_INSTALLMENTS_FREQUENCY', 'CASH_ADVANCE_TRX', 'PURCHASES_T
RX', 'CREDIT_LIMIT', 'PAYMENTS', 'MINIMUM_PAYMENTS', 'PRC_FULL_PAYMENT']

In [13]:

```
for col in cols:
    df[col] = np.log(1 + df[col])
```

In [14]:

```
plt.figure(figsize=(15,20))
for i, col in enumerate(cols):
    ax = plt.subplot(6, 2, i+1)
    sns.kdeplot(df[col], ax=ax)
plt.show()
```


In [15]:

plt.figure(figsize=(12,12))
sns.heatmap(df.corr(), annot=True)
plt.show()

In [16]:

```
pca = PCA(n_components=0.95)
X_red = pca.fit_transform(df)
```

Model Training

```
In [17]:
```

```
from sklearn.cluster import KMeans

kmeans_models = [KMeans(n_clusters=k, random_state=23).fit(X_red) for k in range (1, 10)
]
innertia = [model.inertia_ for model in kmeans_models]

plt.plot(range(1, 10), innertia)
plt.title('Elbow method')
plt.xlabel('Number of Clusters')
plt.ylabel('WCSS')
plt.show()
```


In [18]:

```
from sklearn.metrics import silhouette_score

silhoutte_scores = [silhouette_score(X_red, model.labels_) for model in kmeans_models[1:
4]]
plt.plot(range(2,5), silhoutte_scores, "bo-")
plt.xticks([2, 3, 4])
plt.title('Silhoutte scores vs Number of clusters')
plt.xlabel('Number of clusters')
plt.ylabel('Silhoutte score')
plt.show()
```



```
from sklearn.metrics import silhouette_score

kmeans = KMeans(n_clusters=2, random_state=23)
kmeans.fit(X_red)

print('Silhoutte score of our model is ' + str(silhouette_score(X_red, kmeans.labels_)))

Silhoutte score of our model is 0.8700455999561806
```

In [20]:

```
df['cluster_id'] = kmeans.labels_
```

In [21]:

```
for col in cols:
    df[col] = np.exp(df[col])
```

In [22]:

```
plt.figure(figsize=(10,6))
sns.scatterplot(data=df, x='ONEOFF_PURCHASES', y='PURCHASES', hue='cluster_id')
plt.title('Distribution of clusters based on One off purchases and total purchases')
plt.show()
```


In [23]:

```
plt.figure(figsize=(10,6))
sns.scatterplot(data=df, x='CREDIT_LIMIT', y='PURCHASES', hue='cluster_id')
plt.title('Distribution of clusters based on Credit limit and total purchases')
plt.show()
```


