

"It's a non-linear pattern with outliers.....but for some reason I'm very happy with the data."

Econometrics for dummies

About qualitative and nonlinear relationships

by Ralf Martin (r.martin@imperial.ac.uk)

Objectives for this lecture

- Learn how to deal with modelling qualitative aspects of reality
- We can code those with dummy (binary) variables
 - As explanatory variables
 - As dependent variables

- Appreciate that dummy variables an important building block for constructing more sophisticated models
 - Allowing for non-linear relationships
 - Controlling for many potential confounding factors
- There are some other easy example of nonlinear models. Let's look at those.

Looking at wage regressions as example again:

```
wage1 <- read.csv("https://www.dropbox.com/s/9agc2vmamfztlel/WAGE1.csv?dl=1")
r1 <- lm(wage ~ female, wage1)
r1 %>% summary()
Change the
```

F-statistic: 68.54 on 1 and 524 DF, p-value: 1.042e-15

Change the x variable by 1 unit.
What's the effect on the Y
variable?

i.e. go from male to female, what's the effect on wages?

How can we interpret the coefficients?

$$Wage = \beta_0 + \beta_1 \times FEMALE + \epsilon$$

A closer look at those regression coefficients

```
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.0995 0.2100 33.806 < 2e-16 ***
## female -2.5118 0.3034 -8.279 1.04e-15 ***
## ---</pre>
```

Notice, that the intercept (β_0) is the average wage for men. To get the average wage for women we need to add the coefficient:

$$E\{wage|Women\} = \beta_0 + \beta_1 = 4.587...$$

where $E\{wage|Women\}$ is a mathematical way of saying the average (or expected) wage for women.

Conditional expectation

Dummies as bars

The underlying model: $Y = \beta_0 + \beta_1 FEMALE + \epsilon$

Instead of a linear relationship between the x and y variable we we get a nonlinear one

What about men?

- R dropped "female" because of multi-collinearity
- We cannot see from our data what happens when female changes while male is kept constant.

NA

NA

• Interpretation of coefficients: $E\{Y|Women\} = \beta_{Const}$ $E\{Y|Men\} = \beta_{Cons} + \beta_{male}$

i.e.
$$\beta_{male} = E\{Y|Men\} - E\{Y|Women\}$$

2 cases in the data. We only need 2 parameters to represent those

male

female

Another option

- Instead of dropping "female" we can drop "male"
- However, we can also drop the constant as in the regression above
- Consequently $E\{Y|Women\} = \beta_{female}$ $E\{Y|Men\} = \beta_{male}$

Main take-away

 Various ways to represent the same thing/model that men and women have a different average wage by including combinations of dummy variables from the following

"constant" : always equal to 1

• "male" : equal to 1 for men

• "female" : equal to 1 for women

- Which dummies we include exactly will affect the interpretation of the coefficients ($\beta's$)
- If we include "constant" and "male" ("female") then "female" ("male") becomes the reference category
- The mean of the reference category is represented by the constant coefficient

Sets of dummies

- Dummies "male" and "female" classify the sample exhaustively
- We often have classifications with more than two categories
- e.g. rather than having the education in years we might have only a categorical variable capturing 3 levels of education:

Your turn: How would you conduct regression analysis of the relationship between wage and education if all you had was the educats variable?

- (a) e.g. Im(wage~educats)
- (b) something else?

Regression on categorical variable

```
> summary(lm(wage ~ educats, wage1))
Call:
lm(formula = wage \sim educats, data = wage1)
Residuals:
   Min 1Q Median 3Q
                                Max
-5.2933 -2.2542 -0.9292 1.2301 17.6867
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
                      0.2765 14.016 <2e-16 ***
(Intercept) 3.8751
                      0.1961 8.717 <2e-16 ***
educats
       1.7091
```

Can you interpret this coefficient?

Creating sets of dummies from categories approach 1

```
##
## Call:
## lm(formula = wage ~ edu low + edu normal + edu high, data = wage1)
## Residuals:
     Min 10 Median 30 Max
## -5.393 -2.119 -1.033 1.245 17.587
## Coefficients: (1 not defined because of singularities)
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.3926 0.2372 31.165 < 2e-16 ***
## edu_lowTRUE -3.3359 0.3989 -8.363 5.56e-16 ***
## edu_normalTRUE -2.0213 0.3413 -5.922 5.78e-09 ***
## edu highTRUE
                     NA
                                NA
                                        NA
                                                NA
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```


- We cannot regress dummies for all categories and a constant (dummy variable trap)
- R makes sure we don't fall in the trap and drops one of the dummies (thank you R...that was a close call)

Interpretation

```
## Coefficients: (1 not defined because of singularities)
                  Estimate Std. Error t value Pr(>|t|)
                    5.3714
                                0.2454
                                        21.884
   (Intercept)
                                                < 2e-16 ***
                   -1.3146
## edu lowTRUE
                                0.4038
                                        -3.255
                                                0.00121 **
## edu highTRUE
                                         5.922 5.78e-09 ***
                    2.0213
                                0.3413
## edu_normalTRUE
                        NA
                                    NA
                                            NA
                                                     NA
```


Testing the validity of a linear model

Linear: A change of 1 in x variable always has the same effect on the y variable

This means in current context

Edu low to mid = Edu mid to high

How to say that in terms of model parameters?

•
$$\beta_{mid}$$
 , β_{high} $\beta_{mid} = \frac{\beta_{high}}{2}$

$$Wage = \beta_0 + \beta_{edulow} edu_low + \beta_{eduhigh} edu_high + \epsilon$$

Test $\beta_{edulow} = -\beta_{eduhigh}$

Testing the validity of the linear model

```
reg=lm(wage ~ edu_low+edu_high, wage1)
linearHypothesis(reg,c("edu_lowTRUE=-edu_highTRUE"))
```

```
## Linear hypothesis test
##
## Hypothesis:
## edu_lowTRUE + edu_highTRUE = 0
##
## Model 1: restricted model
## Model 2: wage ~ edu_low + edu_high
##
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 524 6253.5
## 2 523 6238.6 1 14.888 1.2481 0.2644
```

What do you conclude?

High p-value, so we cannot reject.

Hence, it would be valid to use the linear model here

Creating sets of dummies from categories approach 2

- Instead of creating a separate dummy variable for every category, we can tell R that we are dealing with a categorical/factor variable
- Good if we have a large number of categories

```
wage1 =wage1 %>% mutate(educatsf=factor(educats,label=c("low","normal","high")))
```

R creates dummy variables automatically

```
> summary(lm(wage ~ educatsf, wage1))
Call:
lm(formula = wage ~ educatsf, data = wage1)
Residuals:
  Min
          10 Median
                              Max
-5.393 -2.119 -1.033 1.245 17.587
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept)
                4.0567
                           0.3207 12.651 < 2e-16 ***
educatsfnormal 1.3146
                           0.4038
                                  3.255 0.00121
educatsfhigh
                3.3359
                           0.3989 8.363 5.56e-16
```

```
> summary(lm(wage ~ 0+educatsf, wage1))
Call:
lm(formula = wage \sim 0 + educatsf, data = wage1)
Residuals:
          10 Median
  Min
                             Max
-5.393 -2.119 -1.033 1.245 17.587
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                4.0567
                          0.3207
educatsflow
                                   12.65
                                           <2e-16 ***
                                   21.88
                          0.2454
educatsfnormal
                5.3714
                                           <2e-16 ***
                          0.2372
                                   31.16
educatsfhigh
                7.3926
                                           <2e-16 ***
```

Several Dummy Sets

```
> wage1["gender"]<-factor(wage1$female, label=c("male","female"))</pre>
> summary(lm(wage ~ educatsf+gender, wage1))
Call:
lm(formula = wage \sim educatsf + gender, data = wage1)
Residuals:
            1Q Median
   Min
                            30
                                  Max
-5.4467 -2.0765 -0.4759 0.9779 16.6133
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          0.3280 15.611 < 2e-16 ***
                5.1207
(Intercept)
                          0.3817 4.206 3.06e-05 ***
educatsfnormal 1.6052
                          0.3755 8.644 < 2e-16 ***
educatsfhigh 3.2460
genderfemale
                          0.2867 -8.278 1.06e-15 ***
               -2.3735
```

• Implied model: $Wage = \beta_C$ $+\beta_{normal} normal + \beta_{high} high$

 $+\beta_{female}female + \epsilon$

- Reference category for education: Low
- Reference category for gender: Male

Interpretation

$$Wage = \underline{\beta_C} + \beta_{normal} normal + \beta_{high} high + \beta_{female} female + \epsilon$$

 $\beta_C = E\{WAGE | Educ low, Male\}$

Interpretation

$$Wage = \beta_C + \beta_{normal} normal + \beta_{high} high$$
$$+ \beta_{female} female + \epsilon$$

 $E\{WAGE | Educ\ Low, Female\} = \beta_C + \beta_{female}$

 $E\{WAGE|Educ\ Normal, Female\} = \beta_C + \beta_{female} + \beta_{normal}$

Dummies as dependent variables

- So far we discussed dummies as explanatory variables
- However, we might also have dummies as dependent variables
- E.g Bertrand Mullainathan Data:

bm=read.csv("https://www.dropbox.com/s/e4w6pjm6b4wz9do/bm.csv?dl=1")

• We regress $CALL = \beta_0 + \beta_1 BLACK + \epsilon$

- $CALL = \begin{cases} 1 \text{ call back} \\ 0 \text{ otherwise} \end{cases}$
- Hence, following the discussion in this lecture:
- $\beta_0 = E\{CALL|Non\ Black\}$ –

Average of the CALL variable for Non Black

• $\beta_1 = E\{CALL|Black\} - E\{CALL|Non Black\}$

Difference between average for Black vs Non Black

Interpretation of β 's with Dummy as dependent variable

•
$$\beta_0 = E\{CALL|Non\ Black\} = \frac{\sum_{i \in NonBlack} CALL_i}{n_{NonBlack}} = P\{Call|NonBlack\}$$

- Average CALL foris the sum of CALL divided by number of Non Black people in the sample
- Because CALL is either 0 or 1 this is equivalent to the share that received a call back
- Which we can think of as an estimate of the call back probability
- $\beta_1 = E\{CALL|Black\} E\{CALL|Non Black\}$ = $P\{Call|Black\} - P\{Call|NonBlack\}$
- $\hat{\beta}_0$: share of non Black receiving call back
- $\hat{\beta}_1$: share of black receiving call of share of non-Black receiving call
- i.e. there is a natural interpretation of coefficients when regressing dummies on dummies
- Things are a bit less clear when regressing dummies on say a linear term

Dummies as dependent variables - In action

```
summary(lm(call~black,bm))
##
## Call:
## lm(formula = call ~ black, data = bm)
## Residuals:
       Min
                 10 Median
  -0.09651 -0.09651 -0.06448 -0.06448 0.93552
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.096509 0.005505 17.532 < 2e-16 ***
              -0.032033 0.007785 -4.115 3.94e-05 ***
## black
                            Q01 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes: 0 '***
## Residual standard error:
                                      4868 degrees of freedom
## Multiple R-squared: 0.0034
                                          ed R-squared: 0.003261
## F-statistic: 16.93 on 1 and
                                              ve: 3.941e-05
```

```
library (qqplot2)
agg=bm %>% group by(black) %>% summarise(call=mean(call))
qqplot(aqq,aes(x=black,y=call))+qeom bar(stat="identity")+theme m
inimal()
 0.100
 0.075
0.050
 0.000
                                                      1.0
                                     black
```

CVs with "black" sounding names have a 3.2 **percentage point** lower chance of receiving a call back

Dummies as dependent variables - linear model case

$$Call = \beta_1 + \beta_2 Experience + \epsilon$$

```
(linear0 <- lm(call ~ yearsexp , data = bm)) %>% summary()
##
## Call:
                                             Probability of call back increases by 0.3
## lm(formula = call ~ yearsexp, data = bm)
                                             percentage points with every additional
##
                                            year of experience
## Residuals:
  Min 10 Median 30
##
                                         Max
## -0.20030 -0.08101 -0.07439 -0.06776 0.94218
##
## Coefficients:
      Estimate Std. Erro value Pr(>|t|)
##
## (Intercept) 0.0545046 0.001949 7.575 4.26e-14 ***
## yearsexp 0.0033136 0.0007716 4.295 1.78e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.2716 on 4868 degrees of freedom
## Multiple R-squared: 0.003774, Adjusted R-squared: 0.00357
## F-statistic: 18.44 on 1 and 4868 DF, p-value: 1.784e-05
```

Dummies as dependent variables...and many dummies as explanatory variables as an alternative to a linear relationship

```
(linear1 <- lm(call \sim factor(yearsexp), data = bm)) %>% summary()
```

```
## Call:
## lm(formula = call ~ factor(yearsexp), data = bm)
## Residuals:
       Min
                 10 Median
## -0.25000 -0.08194 -0.07246 -0.05998 0.97059
## Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                      0.0666667 0.0404239
                                            1.649
                                                    0.0992 .
## factor(yearsexp)2 -0.0041667 0.0429301 -0.097
                                                    0.9227
## factor(yearsexp)3 -0.0202749 0.0448679 -0.452
                                                    0.6514
## factor(yearsexp)4
                    0.0152700 0.0420835
                                            0.363
                                                    0.7167
## factor(yearsexp)5 0.0043393 0.0421797
                                            0.103
                                                    0.9181
## factor(yearsexp)6 -0.0066911 0.0415222 -0.161
                                                    0.8720
## factor(yearsexp)7 0.0109673 0.0420715
                                            0.261
                                                    0.7943
## factor(yearsexp)8 0.0059977 0.0419680
                                            0.143
                                                    0.8864
## factor(yearsexp)9 0.0276730 0.0457883
                                            0.604
                                                    0.5456
## factor(yearsexp)10 0.0487179 0.0469013
                                            1.039
                                                    0.2990
## factor(yearsexp)11 0.0373796 0.0453778
                                            0.824
                                                    0.4101
## factor(yearsexp)12 0.0057971 0.0519596
                                            0.112
                                                    0.9112
## factor(yearsexp)13 0.1021645 0.0459520
                                            2.223
                                                    0.0262 *
                                            0.010
## factor(yearsexp)14 0.0004474 0.0461260
                                                    0.9923
## factor(yearsexp)15 -0.0372549 0.0616186
                                           -0.605
                                                    0.5455
## factor(yearsexp)16 0.0929078 0.0491566
                                            1.890
                                                    0.0588 .
## factor(yearsexp)17 -0.0666667 0.1616955 -0.412
                                                    0.6801
## factor(yearsexp)18 0.0242424 0.0508830
                                            0.476
                                                    0.6338
## factor(yearsexp)19 0.0855072 0.0568565
                                            1.504
                                                    0.1327
                                            2.182
                                                    0.0292 *
## factor(yearsexp)20 0.1333333 0.0611152
## factor(yearsexp)21 0.0609929 0.0565566
                                            1.078
                                                    0.2809
## factor(yearsexp)22 0.1833333 0.1040473
                                            1.762
                                                    0.0781 .
## factor(yearsexp)23 -0.0666667 0.0990179
                                           -0.673
                                                    0.5008
## factor(yearsexp)25 -0.0666667 0.1101769 -0.605
                                                    0.5451
## factor(yearsexp)26 0.0391026 0.0483854
                                                    0.4190
## factor(yearsexp)44 -0.0666667 0.2741681 -0.243
                                                    0.8079
```

Alternatively use a model with a separate effect for every year of experience; e.g. with 13 years the probability goes up by 10 percentage points relative to reference group

Effect of experience on call back

Other non-linear relationships

- Relationship between explanatory and dependent variables may be non-linear
- There are general methods to deal with this
- However, in many cases we can avoid using different methods because many types of seemingly non-linear relationship can be represented in what boils down to a linear regression.
- e.g. suppose you suspect that the relationship between wage and education in wage1.dta is actually following a quadratic form:

$$Wage = \beta_0 + \beta_1 EDU + \beta_2 EDU^2 + \epsilon$$

Your turn: Any ideas how to deal with this?

A square relationship

```
wage1=wage1 %>%
mutate(educ2 =educ^2)
```

> summary(lm(wage ~ educ+educ2, wage1))

Call:

```
lm(formula = wage \sim educ + educ2, data = wage1)
```

Residuals:

```
Min 1Q Median 3Q Max -6.8722 -2.0002 -0.7472 1.2642 17.0159
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 5.40769 1.45886 3.707 0.000232 ***
educ -0.60750 0.24149 -2.516 0.012181 *
educ2 0.04907 0.01007 4.872 1.46e-06 ***
Signif. codes: 0 '***' 0.001 **' 0.01 '*' 0.05 '.' 0.18
```

Residual standard error: 3.7 on 523 degrees of freedor $^{\circ}$ Multiple R-squared: 0.201 Adjusted R-squared: 0.1 DF, p-value: < 2.2e-16 $^{\circ}$

Seems to be significant

How to interpret things?

Note what we do in the linear case $Y = \beta X + \epsilon$

$$\frac{\partial Y}{\partial X} = \beta$$

In the linear case β is the marginal effect of X on Y

We can work out the same thing in the nonlinear case

$$Y = \beta_1 X + \beta_2 X^2 + \epsilon \longrightarrow \frac{\partial Y}{\partial X} = \beta_1 + 2\beta_2 X$$

- The marginal effect (how much Y changes in response to change in X) varies for different values of X
- We can also find the extreme point by looking at $\frac{\partial Y}{\partial x} = 0$

log-linear relationships

The most popular non-linear model is probably

$$Y = \exp(\beta_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon)$$

• To make it linear all that is required is to take the (natural) logarithm on both sides of the equation:

$$\ln Y = \beta_1 + \beta_2 X_2 + \dots + \beta_k X_k + \epsilon$$

• One of the reasons why it's popular is the interpretation of the β coefficients it implies

Interpreting log-linear relationships

$$ln Y = \dots + \beta X + \epsilon$$

- As before: change in dependent variable for given change in X
- However now:
- $DepVar_a DepVar_b$
- = $\ln Y_a \ln Y_b$
- $= \ln \left(\frac{Y_a}{Y_b} \right)$
- = $\ln\left(1 + \frac{Y_a}{Y_b} 1\right)$
- $\approx \frac{Y_a}{Y_b} 1$
- $\bullet = \frac{Y_a Y_b}{Y_b}$

Hence, β captures (approximately) the Growth in dependent variable Y when we change X by 1 unit

Which is more plausible?

- 1. Change in X leads to fixed change in $Y \rightarrow$ use Y
- 2. Change in X leads to fixed percentage change in $Y \rightarrow use lnY$

Going log crazy: log log

$$ln Y = \dots + \beta \quad ln X \quad + \epsilon$$

- As before: change in dependent variable for given change in X
- However now:

$$\beta = \frac{DepVar_a - DepVar_b}{XVar_a - XVar_b} = \frac{\ln Y_a - \ln Y_b}{\ln X_a - \ln X_b}$$

$$=\frac{\frac{Y_a - Y_b}{Y_b}}{\frac{X_a - X_b}{X_b}}$$

Elasticity

Famous example: production functions

Cobb Douglas production function:

employment

Value added

$$Y = AL^{\alpha_L}K^{\alpha_K}$$

capital

Taking logs:

Productivity shock: $A_0 \exp(\epsilon)$

$$\ln Y = \alpha_0 + \alpha_L \ln L + \alpha_K \ln K + \epsilon$$

Elasticity of output with respect to a change in employment

log transformation overview

Case	Formula	Interpretation of β coefficient
No logs	$y = \beta x + \epsilon$	Change of 1 unit of X leads to β units of Y
log on LHS	$ ln y = \beta x + \epsilon $	Change of 1 unit of X leads to $\beta \times 100~\%$ growth in Y
log on RHS	$y = \beta \ln x + \epsilon$	A 1% growth of X leads to a $\frac{\beta}{100}$ change of Y in units of Y
log on RHS & LHS	$ \ln y = \beta \ln x + \epsilon $	A 1% growth of X leads to $\beta\%$ growth in Y

Summary

- Dummies are cool: Model qualitative and non-linear aspects
- Don't fall in the dummy variable trap
- The same model can be represented in several ways
- Be careful with interpretation of dummies
- A lot of stuff that looks non-linear at first glance is linear after all

Extra Slides

Interactions?

In the context of the model regressing wages on skill and gender we might ask if income gap between man and women is the same irrespective of the educational group; e.g.

$$E\{Wage|Women, Low\} - E\{Wage|Men, Low\}$$

 $=E\{Wage|Women,Normal\}-E\{Wage|Men,Normal\}?$

Notice that in terms of the model we used before it is impossible to have differences in the gap across education group.

$$Wage = \beta_C + \beta_{normal} normal + \beta_{high} high + \beta_{female} female + \epsilon$$

By construction the gap is always β_{female}

Interactions?

In the context of the model regressing wages on skill and gender we might ask if income gap between man and women is the same irrespective of the educational group; e.g.

$$E\{Wage|Women, Low\} - E\{Wage|Men, Low\}$$

 $= E\{Wage|Women, Normal\} - E\{Wage|Men, Normal\}?$

Notice that in terms of the model we used before it is impossible to have differences in the gap across education group.

$$Wage = \beta_C + \beta_{normal} normal + \beta_{high} high + \beta_{female} female + \epsilon$$

By construction the gap is always β_{female}

A more complex model

We can get a more complex model using interactions:

$$Wage = \beta_C + \beta_{normal} normal + \beta_{high} high$$

$$+\beta_{female}female$$

$$+\beta_{fem \times norm} normal \times female$$

$$+\beta_{fem \times high} high \times female + \epsilon$$

A more complex model

We can get a more complex model using interactions:

$$E\{Wage|Women, Low\} - E\{Wage|Men, Low\} = \beta_{female}$$

 $E\{Wage|Women,Normal\} - E\{Wage|Men,Normal\} = \beta_{female} + \beta_{fem \times norm}$

How would you test if the wage gap is different for normally educated persons?

Interactions?

```
> summary(lm(wage ~ educatsf*gender, wage1))
Call:
lm(formula = wage \sim educatsf * gender, data = wage1)
Residuals:
   Min
            10 Median
                           3Q
                                  Max
-5.5235 -1.8394 -0.4407 0.9131 16.5365
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
                            4.6780
                                      0.4057 11.530 < 2e-16 ***
(Intercept)
                                      0.5371 4.223 2.85e-05
                            2.2683
educatsfnormal
                                      0.4989 7.548 1.99e-13 ***
educatsfhigh
                            3.7656
genderfemale
                           -1.3859 0.6059 -2.287 0.0226 *
educatsfnormal:genderfemale -1.3737
                                      0.7644 -1.797 0.0729
educatsfhigh:genderfemale
                                                       0.1211
                           -1.1749
                                      0.7567 -1.553
```

How does the wage gap differ for different educational groups?

Interactions and continuous variables

```
> summary(lm(wage ~ educatsf*exper, wage1))
Call:
lm(formula = wage \sim educatsf * exper, data = wage1)
Residuals:
   Min
            1Q Median
                           3Q
                                 Max
-7.3796 -1.9595 -0.6658 1.3310 16.3972
Coefficients:
                   Estimate Std. Error t value Pr(>|t|)
                                        6.922 1.32e-11 ***
(Intercept)
                   3.468072
                              0.501029
educatsfnormal
                              0.650598 1.989 0.04720 *
                   1.294190
                2.469483
educatsfhigh
                              0.617135 4.002 7.21e-05 ***
                   0.028100 0.018721 1.501 0.13396
exper
educatsfnormal:exper 0.005466 0.026468
                                        0.206 0.83648
educatsfhigh:exper
                                        2.817 0.00503 **
                   0.077254
                              0.027425
```

Your turn: Does experience affect the educational groups differently?

- (a) No
- (b) Yes: experience has a bigger impact for the highest educated
- (c) Yes: experience has a smaller impact for the highest educated

Interactions and continuous variables

Relating the figure to the model

The overall model is:

$$Wage = \beta_C + \beta_{normal} normal + \beta_{high} high + \beta_{exper} exper$$
$$+ \beta_{normal \times exper} normal \times exper + \beta_{high \times exper} high \times exper + \epsilon$$

Topline (EDU high):
$$\beta_C + \beta_{high} + (\beta_{exper} + \beta_{high \times exper}) \times exper$$

Middle line (EDU normal): $\beta_C + \beta_{normal} + (\beta_{exper} + \beta_{normal \times exper}) \times exper$

Bottom line (EDU low): $\beta_C + \beta_{exper} \times exper$

So many dummies

- Note that we often use large numbers of dummies in regression models
- Helps to control for a wide range of potential confounding factors

Accounts for sector level confounding factors

Examples:

- Sector dummies when using firm level data from several sectors
- Regional dummies
- Firm dummies when having panel data for firms
- Time dummies when having panel data

Firm panel data example

Firm panel data example

reg1<-lm(lnva~lnl+lnk,prod)

reg1 %>% summary()

library(dplyr)
prod=read.csv("https://www.dropbox.com/s/v1j4xzkaado8zlz/prod_b
alanced.csv?dl=1")
prod=prod %>% mutate(lnl=log(l),lnva=log(va))

```
##
## Call:
## lm(formula = lnva ~ lnl + lnk, data = prod)
##
  Residuals:
                10 Median
       Min
                                 30
                                        Max
  -3.8415 -0.4453 0.0326 0.4820
                                     3.0979
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
   (Intercept) 3.423770
                           0.034256
                                      99.95
                                              <2e-16 ***
  lnl
               0.950352
                                      91.81
                                              <2e-16 ***
               0.304229
                          0.005801
                                      52.45
                                              <2e-16 ***
  lnk
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '
```

Controlling for firm effects: successful firms will attract more investment and will have higher sales (and thus value added)

```
reg2<-lm(lnva~lnl+lnk+factor(year)+factor(id),prod)
reg2 %>% summary()
```

```
##
## Call:
## lm(formula = lnva ~ lnl + lnk + factor(year) + factor(id), d
   = prod)
##
## Residuals:
      Min
               10 Median
                               3Q
                                      Max
## -3.5554 -0.2349 0.0323 0.2767 3.2121
## Coefficients:
                    Estimate Std.
## (Intercept)
                   5.6053565 0.
                                   Controlling for year
## lnl
                   0.7302864 0
                                      effects: e.g. a
                   0.0832028 0.
##lnk
                                     recession could
## factor(year)80
                   0.0775959 0.
                   0.1594889 0.
## factor(year)81
                                   depress sales (and
## factor(year)82 -
                                   thus value added)
## factor(year)83
                 -0.04223
## factor(year)84
                   0.0061375 0.
                                     and investment
                  -0.0543233
## factor(year)85
                   0.0725690 0.0173079
                                          4.193 2.77e-05 ***
## factor(year)86
## factor(id)81
                   1.4392760 0.2608948
                                          5.517 3.52e-08 ***
## factor(id)99
                  -0.1671771 0.2580364
                                         -0.648 0.517073
                   0.8002776 0.2582686
                                          3.099 0.001948 **
## factor(id)117
                  -0.0069199 0.2578253 -0.027 0.978588
## factor(id)135
## factor(id)162
                   1.5912130 0.2632387
                                          6.045 1.54e-09 ***
                   1.0838099 0.2594566
## factor(id)171
                                          4.177 2.97e-05 ***
## factor(id)198
                  -0.6712341 0.2578931 -2.603 0.009258 **
## factor(id)342
                   0.5866663 0.2610479
                                          2.247 0.024635 *
                                         0.476 0.634033
## factor(id)396
                   0.1227912 0.2579268
```

Revisiting dummies as dependent variables

Experience

We saw we could model the probability of the dependent variable equal to 1 as a line $P(Y_i = 1|X_i) = \beta_0 + \beta_1 X$

• We could interpret β_1 as the change in probability in response to change in X

More plausible model probability that outcome dummy is 1 with the logistic function:

$$P(Y_i = 1|X_i) = \frac{1}{1 + \exp(-[\beta_0 + \beta_1 X])} = g(\beta_0 + \beta_1 X)$$

Generalized linear model: A linear model inside a non-linear function

0.4

Implement logit in R

```
> library(aod)
   library (margins )
   logit <- glm(call ~ yearsexp, data = bm, family = "binomial")</pre>
>
  summary(logit)
>
Call:
glm(formula = call ~ yearsexp, family = "binomial", data = bm)
Deviance Residuals:
   Min
             10 Median 30 Max
-0.7780 -0.4075 -0.3924 -0.3779 2.3598
Coefficients:
           Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.75960 0.09620 -28.687 < 2e-16 ***
yearsexp 0.03908 0.00918 4.257 2.07e-05 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 2726.9 on 4869 degrees of freedom
Residual deviance: 2710.2 on 4868 degrees of freedom
```

0.8

Call

How to interpret things?

Note what we do in the linear case $Y = \beta X + \epsilon$

$$\frac{\partial Y}{\partial X} = \beta$$

In the linear case β is the marginal effect of X on Y

We can work out the same thing in the nonlinear case

How to interpret things?

Compute marginal effect on of variable on probability of Y=1

$$\frac{\partial P(Y_i = 1|X_i)}{\partial X_i} = \frac{exp(-\widehat{\beta}X_i)\widehat{\beta}}{\left[1 + exp(-\widehat{\beta}X_i)\right]^2}$$

Not constant for different observations. So we have to compute for every observation separately. Or at specific observations we are interested in.

R margins() command will help

```
> margins(logit)
Average marginal effects
glm(formula = call ~ yearsexp, fam

yearsexp
0.002881
Can be compared to linear probability model

## Coefficients:
## Estimate Std. Error
## (Intercept) 0.0545046 0.0071949
## yearsexp
0.0033136 0.0007716
## ---
```