Automated Model Construction through Compositional Grammars

David Duvenaud

Cambridge University
Computational and Biological Learning Lab

April 22, 2013

OUTLINE

- Motivation
- Automated structure discovery in regression
 - Gaussian process regression
 - Structures expressible through kernel composition
 - A massive missing piece
 - grammar & search over models
 - Examples of structures discovered
- ► Automated structure discovery in matrix models
 - expressing models as matrix decompositions
 - grammar & special cases
 - examples of structures discovered on images

CREDIT WHERE CREDIT IS DUE

Talk based on two papers:

- Structure Discovery in Nonparametric Regression through Compositional Kernel Search [ICML 2013]
 David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum, Zoubin Ghahramani
- Exploiting compositionality to explore a large space of model structures [UAI 2012]
 Roger B. Grosse, Ruslan Salakhutdinov,
 William T. Freeman, Joshua B. Tenenbaum

MOTIVATION

- ► Models today built by hand, or chosen from a fixed set.
 - Fixed set sometimes not that rich
 - ▶ Just being nonparametric sometimes isn't good enough
 - ▶ to learn efficiently, need to have a rich prior that can express most of the structure in your data.
 - Building by hand requires expertise, understanding of the dataset.
 - Follows cycle of: propose model, do inference, check model fit
 - Propose new model
 - ▶ Do inference
 - Check model fit
- ► Andrew Gelman asks: How would an AI do statistics?
- ► It would need a language for describing arbitrarily complicated models, a way to search over those models, nad a way of checking model fit.

FINDING STRUCTURE IN GP REGRESSION

GAUSSIAN PROCESS REGRESSION

Assume \mathbf{X} , \mathbf{y} is generated by $\mathbf{y} = \mathbf{f}(\mathbf{X}) + \epsilon_{\sigma}$ A GP prior over \mathbf{f} means that, for any finite set of points \mathbf{X} ,

$$p(\mathbf{f}(\mathbf{x})) = \mathcal{N}(\mu(\mathbf{X}), K(\mathbf{X}, \mathbf{X}))$$

where

$$K_{ij} = k(\mathbf{X}_i, \mathbf{X}_j)$$

is the *covariance function* or *kernel*. k(x, x') = cov[f(x), f(x')]

GAUSSIAN PROCESS REGRESSION

Assume \mathbf{X} , \mathbf{y} is generated by $\mathbf{y} = \mathbf{f}(\mathbf{X}) + \epsilon_{\sigma}$ A GP prior over \mathbf{f} means that, for any finite set of points \mathbf{X} ,

$$p(\mathbf{f}(\mathbf{x})) = \mathcal{N}(\mu(\mathbf{X}), K(\mathbf{X}, \mathbf{X}))$$

where

$$K_{ij} = k(\mathbf{X}_i, \mathbf{X}_j)$$

is the *covariance function* or *kernel*. k(x, x') = cov[f(x), f(x')]

Typically, kernel says that nearby x_1, x_2 will have highly correlated function values $f(x_1), f(x_2)$:

$$k_{\text{SE}}(x, x') = \exp(-\frac{1}{2\theta}|x - x'|_2^{2\theta})$$

```
function simple qp sample
    % Choose a set of x locations.
   N = 100;
    x = linspace(-2, 2, N);
    % Specify the covariance between function
   % values, depending on their location.
   for j = 1:N
       for k = 1:N
           sigma(j,k) = covariance(x(j), x(k));
   end
   % Specify that the prior mean of f is zero.
   mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
% Squared-exp covariance function.
function k = covariance(x, v)
   k = \exp(-0.5*(x - y)^2);
end
```



```
function simple qp sample
    % Choose a set of x locations.
   N = 100;
    x = linspace(-2, 2, N);
    % Specify the covariance between function
   % values, depending on their location.
   for j = 1:N
       for k = 1:N
           sigma(j,k) = covariance(x(j), x(k));
   end
   % Specify that the prior mean of f is zero.
   mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
    plot(x, f);
end
% Squared-exp covariance function.
function k = covariance(x, v)
   k = \exp(-0.5*(x - y)^2);
end
```



```
function simple qp sample
    % Choose a set of x locations.
   N = 100;
    x = linspace(-2, 2, N);
    % Specify the covariance between function
   % values, depending on their location.
   for j = 1:N
       for k = 1:N
           sigma(j,k) = covariance(x(j), x(k));
   end
   % Specify that the prior mean of f is zero.
   mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
   plot(x, f);
% Squared-exp covariance function.
function k = covariance(x, v)
   k = \exp(-0.5*(x - y)^2);
end
```



```
function simple qp sample
    % Choose a set of x locations.
   N = 100;
    x = linspace(-2, 2, N);
    % Specify the covariance between function
   % values, depending on their location.
   for j = 1:N
       for k = 1:N
           sigma(j,k) = covariance(x(j), x(k));
   end
   % Specify that the prior mean of f is zero.
   mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
   plot(x, f);
% Squared-exp covariance function.
function k = covariance(x, v)
   k = \exp(-0.5*(x - y)^2);
end
```



```
function simple qp sample
    % Choose a set of x locations.
   N = 100;
    x = linspace(-2, 2, N);
    % Specify the covariance between function
   % values, depending on their location.
   for j = 1:N
       for k = 1:N
           sigma(j,k) = covariance(x(j), x(k));
   end
   % Specify that the prior mean of f is zero.
   mu = zeros(N, 1);
    % Sample from a multivariate Gaussian.
    f = mvnrnd( mu, sigma );
   plot(x, f);
% Periodic covariance function.
function c = covariance(x, v)
   c = \exp(-0.5*(\sin((x - y)*1.5).^2));
end
```


$$f(x^*)|\mathbf{X}, \mathbf{y} \sim \mathcal{N}(k(x^*, \mathbf{X})K^{-1}\mathbf{y}, k(x^*, x^*) - k(x^*, \mathbf{X})K^{-1}k(\mathbf{X}, x^*))$$

$$f(x^*)|\mathbf{X}, \mathbf{y} \sim \mathcal{N}(k(x^*, \mathbf{X})K^{-1}\mathbf{y}, k(x^*, x^*) - k(x^*, \mathbf{X})K^{-1}k(\mathbf{X}, x^*))$$

$$f(x^*)|\mathbf{X}, \mathbf{y} \sim \mathcal{N}(k(x^*, \mathbf{X})K^{-1}\mathbf{y},$$

 $k(x^*, x^*) - k(x^*, \mathbf{X})K^{-1}k(\mathbf{X}, x^*))$

$$f(x^*)|\mathbf{X}, \mathbf{y} \sim \mathcal{N}(k(x^*, \mathbf{X})K^{-1}\mathbf{y},$$

 $k(x^*, x^*) - k(x^*, \mathbf{X})K^{-1}k(\mathbf{X}, x^*))$

$$f(x^*)|\mathbf{X}, \mathbf{y} \sim \mathcal{N}(k(x^*, \mathbf{X})K^{-1}\mathbf{y},$$

 $k(x^*, x^*) - k(x^*, \mathbf{X})K^{-1}k(\mathbf{X}, x^*))$

KERNEL CHOICE IS IMPORTANT

- ► Kernel determines almost all the properties of the prior.
- ► Many different kinds, with very different properties:

KERNELS CAN BE COMPOSED

► Two main operations: adding, multiplying

KERNELS CAN BE COMPOSED

► Can be composed across multiple dimensions

SPECIAL CASES

Bayesian linear regression
Bayesian polynomial regression
Generalized Fourier decomposition
Generalized additive models
Automatic relevance determination
Linear trend with deviations
Linearly growing amplitude

LIN $LIN \times LIN \times ...$ PER + PER + ... $\sum_{d=1}^{D} SE_d$ $\prod_{d=1}^{D} SE_d$ LIN + SE $LIN \times SE$

APPROPRIATE KERNELS ARE NECESSARY FOR EXTRAPOLATION

- ▶ SE kernel \rightarrow basic smoothing.
- ▶ Richer kernels means richer structure can be captured.

KERNELS ARE HARD TO CHOOSE

- ► Given the diversity of priors available, how to choose one?
- ► Standard GP software packages include many base kernels and means to combine them, but *no default kernel*
- ► Software can't choose model for you, you're the expert (?)

KERNELS ARE HARD TO CONSTRUCT

- Carl devotes 4 pages of his book to constructing a custom kernel for CO2 data
- requires specialized knowledge, trial and error, and a dataset small and low-dimensional enough that a human can interpret it.
- ► In practice, most users can't or won't make custom kernel, and SE kernel became *de facto* standard kernel through inertia.

RECAP

- ▶ GP Regression is a powerful tool
- ► Kernel choice allows for rich structure to be captured different kernels express very different model classes
- ► Composition generates a rich space of models
- Hard & slow to search by hand
- ► Can kernel specification be automated?

COMPOSITIONAL STRUCTURE SEARCH

- ▶ Define grammar over kernels:
 - $K \rightarrow K + K$
 - $K \to K \times K$
 - $K \rightarrow \{SE, RQ, Lin, Per\}$
- Search the space of kernels greedily by applying production rules, checking model fit (approximate marginal likelihood).

COMPOSITIONAL STRUCTURE SEARCH

EXAMPLE SEARCH: MAUNA LUA CO₂

EXAMPLE DECOMPOSITION: MAUNA LOA CO₂

COMPOUND KERNELS ARE INTERPRETABLE

Suppose functions f_1, f_2 are draw from independent GP priors, $f_1 \sim \mathcal{GP}(\mu_1, k_1), f_2 \sim \mathcal{GP}(\mu_2, k_2)$. Then it follows that

$$f := f_1 + f_2 \sim \mathcal{GP}(\mu_1 + \mu_2, k_1 + k_2)$$

Sum of kernels is equivalent to sum of functions. Distributivity means we can write compound kernels as sums of products of base kernels:

$$SE \times (RQ + LIN) = SE \times RQ + SE \times LIN.$$

EXAMPLE DECOMPOSITION: AIRLINE

EXAMPLE: SUNSPOTS

CHANGEPOINT KERNEL

Can express change in covariance:

Periodic changing to SE

CHANGEPOINT KERNEL

Can express change in covariance:

SE changing to linear

SUMMARY

- ► Choosing form of kernel is currently done by hand.
- ► Compositions of kernels lead to more interesting priors on functions than typically considered.
- ► A simple grammar specifies all such compositions, and can be searched over automatically.
- ► Composite kernels lead to interpretable decompositions.

GRAMMARS FOR MATRIX DECOMPOSITIONS

Previous work introduced idea of grammar of compositions:

- Exploiting compositionality to explore a large space of model structures [UAI 2012]
 Roger B. Grosse, Ruslan Salakhutdinov,
 William T. Freeman, Joshua B. Tenenbaum
- ► Slides that follow are from Roger Grosse

MATRIX DECOMPOSITION

RECURSIVE MATRIX DECOMPOSITION

- ► Main idea: Matrices can be recursively decomposed
- ► Example: Co-clustering by clustering cluster assignments.

BUILDING BLOCKS

Gaussian (G) $\lambda_i \sim \text{Gamma}(a, b)$ $\nu_j \sim \text{Gamma}(a, b)$ $u_{ij} \sim \text{Normal}(0, \lambda_i^{-1} \nu_i^{-1})^*$

* variance parameters shared between input rows/columns

Bernoulli (B)

$$p_j \sim \text{Beta}(\alpha, \beta)$$

 $u_{ij} \sim \text{Bernoulli}(p_j)$

Multinomial (M)

Integration (C)

$$\pi \sim \text{Dirichlet}(\alpha)$$
 $u_i \sim \text{Multinomial}(\pi)$

$$u_{ij} = \begin{cases} 1 & \text{if } i \ge j \\ 0 & \text{otherwise} \end{cases}$$

MATRIX DECOMPOSITION: GRAMMAR

Starting symbol: G

Production rules:

clustering
$$G \to MG + G \mid GM^T + G$$

 $M \to MG + G$
low rank $G \to GG + G$
binary features $G \to BG + G \mid GB^T + G$
 $B \to BG + G$
 $M \to B$
linear dynamics $G \to CG + G \mid GC^T + G$
sparsity $G \to \exp(G) \circ G$

MATRIX DECOMPOSITION: SPECIAL CASES

EVOLUTION OF IMAGE MODELS

Modeling images as linear combinations of uncorrelated basis functions gives a Fourier representation.

Bossomaier and Snyder, 1987

Modeling the sparse distribution of the linear reconstruction coefficients gives oriented edges.

Olshausen and Field, 1996

Modeling the dependencies in the sparsity pattern gives a high-level texture model.

Karklin and Lewicki, 2005

APPLICATION TO NATURAL IMAGE PATCHES

CONCLUSIONS

- ► Model-building is currently done mostly by hand.
- Grammars over composite structures are a simple way to specify open-ended model classes.
- ► Composite structures often imply interpretable decompositions of the data.
- Searching over these model classes is a step towards automating statistical analysis.

Conclusions

- ► Model-building is currently done mostly by hand.
- ► Grammars over composite structures are a simple way to specify open-ended model classes.
- ► Composite structures often imply interpretable decompositions of the data.
- Searching over these model classes is a step towards automating statistical analysis.

Thanks!

RELATED WORK

- Algorithmic information theory, e.g. Solomonoff induction (Solomonoff, 1964)
- Structure learning in other domains
 - Bayesian networks (e.g. Teyssier and Koller, 2005)
 - Markov random fields (e.g. Lee et al., 2006)
- Learning the form of graph embeddings (Kemp and Tenenbaum, 2008)
- Equation discovery
 - BACON knowledge discovery engine (Langley, Simon, and Bradshaw, 1984)
 - exploiting context-free grammar (Todorovski and Dzeroski, 1997)
- Matrix factorization frameworks
 - Exponential family PCA (Collins et al., 2002)
 - Roweis and Ghahramani (1999)
 - Singh and Gordon (2008)

EXTRAPOLATION

MULTI-D INTERPOLATION

	Mean Squared Error (MSE)				
Method	bach	concrete	puma	servo	housing
Linear Regression	1.031	0.404	0.641	0.523	0.289
GAM	1.259	0.149	0.598	0.281	0.161
HKL	0.199	0.147	0.346	0.199	0.151
GP SE-ARD	0.045	0.157	0.317	0.126	0.092
GP Additive	0.045	0.089	0.316	0.110	0.102
Structure Search	0.044	0.087	0.315	0.102	0.082

GRAMMARS FOR MATRIX DECOMPOSITIONS

1. **Gaussian** (**G**). Entries are independent Gaussians:

$$u_{ij} \sim \text{Gaussian}(0, \lambda_i^{-1} \lambda_j^{-1}).$$

This is our most generic component prior, and gives a way of deferring or ignoring structure.¹

2. **Multinomial (M).** Rows are independent multinomials, with one 1 and the rest 0's:

$$\pi \sim \text{Dirichlet}(\alpha)$$
 $u_i \sim \text{Multinomial}(\pi)$.

This is useful for clustering models, where u_i determines the cluster assignment for the i^{th} row.

GRAMMARS FOR MATRIX DECOMPOSITIONS

3. **Bernoulli** (B). Entries are independent Bernoullis:

$$\pi_j \sim \text{Beta}(a, b)$$
 $u_{ij} \sim \text{Bernoulli}(\pi_j).$

This is useful for binary latent feature models.

4. **Integration matrix (C).** Entries below the diagonal are deterministically 1:

$$u_{ij}=\mathbf{1}_{i\geq j}.$$

This is useful for modeling temporal structure, as multiplying by this matrix has the effect of cumulatively summing the rows. (Mnemonic: C for "cumulative.")