Fórmulas primer parcial, Mate V

(Ariel Nowik: anowik@itba.edu.ar - Consultas - correcciones - sugerencias)

Famosos transformada de fourier continua

(.)	Tr / A\
x(t)	X(f)
X(t)	x(-f)
$x(t-t_0)$	$e^{-j2\pi f t_0} X(f)$
$e^{j2\pi f_0 t}x(t)$	$X(f-f_0)$
x(at)	$rac{1}{\ a\ }X(f/a)$
(x*y)(t)	XY(f)
xy(t)	(X*Y)(-f)
$x^{(n)}(t)$	$(j2\pi f)^{(n)}X(f)$
$t^nx(t)$	$rac{1}{(-j2\pi)^{(n)}}rac{d^n}{df^n}X(f)$
$\delta(t-t_0)$	$e^{-j2\pi f t_0}$
$e^{j2\pi f_0 t}$	$\delta(f-f_0)$
$\Lambda(rac{t}{ au})$	$ au sinc^2(au f)$
$\Pi(rac{t}{ au})$	au sinc(au f)
u(t)	$rac{\delta(f)}{2}+rac{1}{j2\pi f}$
signo(t)	$rac{1}{j\pi f}$
$cos(2\pi f_0 t)$	$rac{1}{2}\delta(f-f_0)+rac{1}{2}\delta(f+f_0)$
$sin(2\pi f_0 t)$	$rac{1}{2j}\delta(f-f_0)-rac{1}{2j}\delta(f+f_0)$
$e^{-\alpha t}u(t)$	$rac{1}{lpha+j2\pi f}, lpha>0$
$e^{-\alpha \ t\ }$	$rac{2lpha}{lpha^2+(2\pi f)^2}$
x(t) periodica	$\sum_{n=-\infty}^{\infty} X_n \delta(f-n/T)$
$\sum_{n=-\infty}^{\infty} \delta(t-nT)$	$\sum_{n=-\infty}^{\infty}rac{1}{T}\delta(f-rac{n}{T})$
$\int_{-\infty}^t x(au) d au$	$rac{X(0)}{2}\delta(f)+rac{X(f)}{i2\pi f}=X(f)st F(u(t))$

Famosos transformada discreta de fourier

x(n)	X(f)
$x(n-n_0)$	$X(f)e^{-i2\pi f n_0} = X(f)s^{n_0}$
$x(n)e^{i2\pi f_0 n}$	$X(f-f_0)$
$e^{i2\pi f_0 n}$	$\delta(f-f_0)$
x(n) periodica	$\sum_{k=0}^{N-1} a_k \delta(f-rac{k}{N})$
x * y(n)	X(f)Y(f)
x(n)y(n)	$\int_0^1 X(s)Y(f-s)ds$
$n^k x(n)$	$(rac{-1}{i2\pi})^krac{d^k}{df^k}X(f)$
u(n)	$\frac{\delta(f)}{2} + \frac{1}{1 - e^{-i2\pi f}} = \frac{\delta(f)}{2} + \frac{1}{1 - s}$
$\alpha^n u(n)$	$rac{1}{1-lpha e^{-i2\pi f}}=rac{1}{1-lpha s},\ lpha\ <1$
$nlpha^{(n)}u(n)$	$rac{lpha e^{-i2\pi f}}{(1-lpha e^{-i2\pi f})^2}=rac{lpha s}{(1-lpha s)^2},\ lpha\ <1$

Integrales utiles

x(t)	$\int x(t)dt$
te^{at}	$rac{e^{at}}{a}(t-rac{1}{a})$
tcos(at)	$\frac{cos(at)}{a^2} + \frac{tsin(at)}{a}$
tsin(at)	$rac{sin(at)}{a^2} - rac{tcos(at)}{a}$

Definiciones

Serie de fourier trigonometrica continua

$$x(t) \sim a_0 + \sum_{k \geq 1} a_k cos(2\pi kt/T) + b_k sin(2\pi kt/T)$$

Coeficientes serie de fourier trigonometrica continua

$$a_0 = 1/T \int_{t_0}^{t_0+T} x(t) dt \qquad \quad a_k = 2/T \int_{t_0}^{t_0+T} x(t) cos(2\pi kt) dt \qquad \quad b_k = 2/T \int_{t_0}^{t_0+T} x(t) sin(2\pi kt) dt$$

Parseval serie de fourier trigonometrica continua

$$rac{2}{T}\int_{t_0}^{t_0+T} |x(t)|^2 dt = 2|a_0|^2 + \sum_{k\geq 1} |a_k|^2 + |b_k|^2$$

Serie de fourier exponencial continua

$$x(t) \sim \sum_{k \in Z} X_k e^{i2\pi kt/T}$$

Coeficientes de fourier exponencial continua

$$X_k=1/T\int_{t_0}^{t_0+T}x(t)e^{-i2\pi kt/T}dt$$

Parseval serie de fourier exponencial continua

$$rac{1}{T}\int_{t_0}^{t_0+T}|x(t)|^2dt=\sum_{k
olimits Z}|X_k|^2$$

Serie de fourier discreta

$$x(n)=\sum_{k=k_0}^{k_0+N-1}c_ke^{i2\pi kn/N}$$

Coeficientes de fourier discreta

$$c_k = 1/N \sum_{n=n_0}^{n_0+N-1} x(n) e^{-i2\pi nk/N}$$

Transformada de fourier continua

$$X(f) = \int_{-\infty}^{\infty} x(t) e^{-i2\pi f t} dt \qquad \qquad x(t) = \int_{-\infty}^{\infty} X(f) e^{i2\pi f t} df$$

Transformada de fourier discreta

$$X(f)=\sum_{n=-\infty}^{\infty}x(n)e^{-i2\pi fn} \hspace{0.5cm} x(n)=\int_{t_0}^{t_0+1}X(f)e^{i2\pi fn}df$$