Computer Networks and Technologies Vize Notlari

Bu yazı **MIT** lisanslıdır. Lisanslar hakkında bilgi almak için buraya bakmanda fayda var.

 $\sim Yunus\ Emre\ AK$ ©

Döküman Renklendirme Yapısı

PDF Başlığı Ana Başlıklar Alt Başlıklar İç Başlıklar En İç Başlıklar Tablo Başlığı Bağlantılar Değişmez ifadeler Formüller Önemli notlar Terimsel ifadeler

Website Github 1/42 LinkedIn İletişim

İçerikler

- Temel Terimler
- Network Structure (Ağ Yapısı)
- Network Edge
 - Access Network (Bağlantı Türleri)
 - Physcial Media (Fiziksel Veri İşlemleri)
 - Fiber Optik Kablo
 - Radya Bağlantı
 - Satellite (Uydu Bağlantısı)
- Network Core
 - Circuit Switching (Devre Anahtarlama)
 - Packet Switching (Paket Anahtarlama)
 - Packet Yönteminin Circuit Switching Yöntemine Göre Farkı
- Internet Structure (Internet Alt yapısı)
 - Interter Tiers
 - Paketlerin iletimi
 - Packet Delay & Loss (Gecikme ve Kayıp)
 - Packet Switching Delay
 - Internet Delay
 - Protocol Layers (Protokol Katmanları)
 - Internet Protocol Stack (TCP / IP)
 - ISO / OSI Reference Model
 - Encapsulation (Kapsülleme)
- Network Security
 - Kötü Niyetli Uygulamalar
 - Trojan Horse
 - Worm
 - Virus
 - Spyware Malwawre
 - Kötü Niyetli Saldırılar
 - DoS
 - Packet Sniffing (Paket Yakalama)
 - IP Spoofing (IP Aldatmacası)
- Internetin Geçmişi
- Application Layer (Uygulama Katmanı)
- Network Uygulaması Oluşturmak
- Application Architectures (Uygulama Mimarileri)
 - Client-Server Architecture
 - Pear-to-Pear Architecture (Kişiden kişiye Mimarisi)
 - Client-Server ve Peer-to-Peer Karışımı
- Processes Communicating (İletişim Sistemleri)
 - Socket Yapısı
 - Adressing Processes (İşlemleri Adresleme)
- Transport Service Requirements

Website Github 2 / 42 LinkedIn İletişim

- Internet Transport Protocols Services (Taşıma Protokolleri Hizmetleri)
 - TCP (Transmission Control Protocol) Review
 - UDP (User Datagram Protocol) Review
 - Securing TCP (TCP'de Güvenlik)
- Web ve HTTP
- HTTP (Hypertext Transfer Protocol)
 - Temel HTTP Yapısı
 - HTTP Veri Aktarımı
 - HTTP Bağlantıları
 - Non-Persistent HTTP
 - Persistent HTTP
 - HTTP Request Message (İstek Mesajı)
 - HTTP Status Code (Durum Kodları)
 - Cookie (Çerezler)
 - Proxy Server & Cache
 - Conditional GET (Koşullu GET)
- Domain Name System (DNS)
 - DNS Resolution Examples (DNS Çözümleme Örnekleri)
 - DNS Record (DNS Kayıtları)
 - Inserting DNS Record
 - Attacking DNS
- P2P (Peer to Peer)
 - P2p File Distribution (Dosya Paylaşımı)
- Video Streaming and CDNs: context
 - Video Streamin
 - Content Distribution Networks (İçerik Dağıtım Ağları)
- Transport Layer
- Internet Transport Layer Protocols
- Multiplexing (Çoğullama)
- Demultiplexing (Azaltma / Parçalama)
 - TCP / UDP Demux
 - UDP Demux Örneği
 - TCP Demux Örneği
- UDP (User Datagram Protocol)
 - UDP Checksum
- Reliable Data Transfer (RDT)
 - Rdt 1.0
 - Rdt 2.0
 - Rdt 2.0 Kusurları
 - Rdt 2.1
 - Rdt 2.2
 - Rdt 3.0
- Pipelined Protocols
- TCP (Transmission Control Protocol)

Website Github 3/42 LinkedIn İletişim

Temel Terimler

Terim	Açıklama
ISP	İnternet servis sağlayıcıları
Packets	İnternet üzerinde gönderilen veriler
Protocols	Packet aktarım kuralları ve hiyerarşisi
Routers ve Switch	Packet'ların yönlendirilmesini sağlarlar
Client	Ağa bağlandığımzı araç (bilgisayarımız)
Server	Ağ hizmetini sunan, sunucu
Host	End system, son server ya da client
RFS, IETF	İnternet standartları
Stream	Veri akışı
Upstream	Bizden internete stream
Downstream	İnternetten bize stream
Bandwitdh	Bant genişliği, saniye aktarılan bit (1sn de olan <i>streaming</i>)
Transmission rate	Saniyede aktarılan bit

Website Github 4 / 42 LinkedIn İletişim

Network Structure (Ağ Yapısı)

Terim	Açıklama
Network Edge	Ağdaki uç noktaları ele alır (bilgisayarlar ve uygulamalar)
Access networks, physical media	Kablolu ve kablosuz iletişim bağlantıları
Network Core	Birbirine bağlı router'lar ve internet (network of network)

■ Edge router: İnternete ilk adımın atıldığı yönlendiriciler (routers)

Network Edge

Bizden internete olan gerçekleşen adımları ele alır.

	Yöntem	Açıklama	Örnek
	Hosts System	Host'lar arası iletişim	Web, email
Client / Serve	Client / Server	Client istekte bulunur, server karşılık verir	Web browsers
	Peer to peer	Neredeyse hiç server kullanılmaz	Skype, BitTorrent

Access Network (Bağlantı Türleri)

- Dial Up: Telefon çalışırken modem, modem çalışırken telefonun çalışmadığı eski bir sistem.
- DSL: Splitter ile telefon ve internet eş zamanlı kullanabilmekte.
 - ADSL: Asimetrik anlamındadır, download ve upload hızı farklı olur.
- Wireless LAN: Ev içerisindeki kablasuz ağlar: WiFi
- Wide-Area wireless acces: Mobil operatörler tarafından sunulan ağlar: 3G, 4G, LTE

Physcial Media (Fiziksel Veri İşlemleri)

Fiziksel verilerin (bit'lerin) aktarılmasını ele alır.

- Kablo yapısı TP (twisted pair) iç içe sarmal 2 kablodur.
- Guided: yönetimli (kablo vs ile), unguided: dağınık olarak yayılan (radyo dalgaları) verilerdir.

Fiber Optik Kablo

- Cam içerisinde bilgiler ışık yoluyla aktarılır
- İşiğin farklı frekanslarıyla birden fazla bilgi yollanabilir
- Işık hızıyla iletilir
- Elektromanyetik gürültüden etkilenmez
- Veri kaybı çok düşüktür

Radya Bağlantı

- LAN (WiFi)
- Wide-area (geniş alan bağlantıları) 3G, 4G

Satellite (Uydu Bağlantısı)

Gecikmesi çok fazladır. (250ms)

Website Github 6 / 42 LinkedIn İletişim

Network Core

Birbirine bağlı çok sayıda router'dan oluşur. Network of network olarak da tabir edilen interneti ele alır.

Aktarım Yöntemi	Açıklama
Circuit Switching	Her arama için özel devre kullanılır, telefon ağı gibi
Packet Switching	Veri ağa ayrık <i>packet</i> 'lar halinde gönderilir

Circuit Switching (Devre Anahtarlama)

Bandwitdh parçalara bölünür, her parça sadece kendi sahibi tarafından kullanılır.

- Genellikle telefon hatlarında kullanılır
- Garantili performans sunar
- Kaynaklar paylaşılmaz, kullanılmayanlar boşta bekler (verimsiz)
- Frekans ve Zaman bölme olarak iki yöntemi vardır. (FDM, TDM)

Website Github 7 / 42 LinkedIn İletişim

Devre anahtarlama: FDM veTDM

Website Github 8 / 42 LinkedIn İletişim

Packet Switching (Paket Anahtarlama)

Hostlar çok yüksek miktarda gelen veriyi parçalayarak yollarlar, her bir parçaya **packets** denir. Her bir *packet* tam *bandwitdh* kullanır ve host tarafından **tamamlanmadan** yollanmaz (storage & forward).

- Packet'ların bir sırası yoktur
- Her bilgisayar packet iletimi için aynı yolu kullanır
- Kaynaklar boşta kalmaz. (verimli)
- lacktriangle Her bir packet L kadar bit içeriyor ve transmission rate R ise transmission delay D=L/R formülü ile bulunur
- Kaynak çekişmesi olabilir. (olumsuz)
 - Toplamk kaynak talebi kullanılanı aşabilir
 - Trafik sıkışıklığı, packet'in kuyruğu ve bağlatıyı kullanmak için beklemesi
 - Packet'lar aynı anda bir yönlendiriciye iletirilir
 - Buffer'ı yetmezse packet kaybı olur

Packet Yönteminin Circuit Switching Yöntemine Göre Farkı

- Basit, arama algoritmalarının kurulmaına gerek yoktur
- Kaynaklar paylaşıldığından ağı daha fazla kullanıcı kullanabilir
- Güvenilir veri transferi ve sıkışıklık için protokellere ihtiyaç vardır.
 - Yoksa verilerinizi çalarlar (🔾

Website Github 9/42 LinkedIn İletişim

Internet Structure (Internet Alt yapısı)

Interter Tiers

Her bir katman üst katmanının müşterisidir.

Tier (Katman) Açıklama

Tier-1	Global <i>ISP</i> evrensel servis sağlayıcılarıdır. Birbirlerine bağlıdırlar Örn: Superonline, TTNet
Tier-2	Regional ISP bölgesel servis sağlayıcılarıdır. Birbirlerine değil Tier-1'e bağlıdırlar
Tier-3	Son kullanıcı ağlarıdır, <i>Tier-2</i> 'e bağlanırlar

Website Github 10 / 42 LinkedIn İletişim

Paketlerin iletimi

Paketler tier-3'ten tier-1'e ardından hedef tier-3'e doğru yol izlerler.

- Router'lar arası verilerin yayıldığı alana pipe denir
- Kalın bağlantılarda (links) veri aktarımı daha fazladır
- Ince alanlara **bottleneck link** denir
 - throughput: rate (bits/time unit) at which bits transferred between sender/receiver
 - instantaneous: rate at given point in time
 - average: rate over longer period of time

Website Github 11 / 42 LinkedIn İletişim

Packet Delay & Loss (Gecikme ve Kayıp)

Packet'lar router'ın buffer (arrabellek) alanında kuytukta beklerler

- Gelen *packet* sayısı çıkandan fazla ise fazlalık *packet*'lar *buffer*'a konulur
- Buffer yeterli alana sahip değilse packet atılır, kayıp packet'lar önceki node'dan tekrar istenir

Packet Switching Delay

Olay	Açıklama
Nodel Processing	Hatalı bitlerin kontrol edildiği aşama
Queueing Delay	Buffer'da sıralanmanın olduğu aşama
Transmisson Delay	Yayılım için <i>packet</i> 'ların <i>router</i> 'a iletilmesi
Propagation Delay	Router'daki paketlerin yayılması

Website Github 12 / 42 LinkedIn İletişim

Konvoy benzetmesi

10 araba konvoyu 1. Otoyol ödeme noktası

- Arabaların hızı 100 km/saat
- Bir arabanın geçişi 12 saniye alıyor (iletim zamanı)
- araba~bit; konvoy~ paket
- S: konvoyun 2. otoyol ödeme noktası önüne dizilmesi ne kadar zaman alır?

2. Otoyol ödeme noktası

- Tüm konvoyun 1. otoyol ödeme noktasından geçmesi toplam = 12*10 = 120 saniye alır
- Son arabanın 2. otoyol ödeme noktasına varması: 100km/(100km/saat)= 1 saat
- C: 62 dakika

Konvoy benzetmesi (devamı)

"Propagation"

- □ Şimdi arabalar 1000 km/saat hızla gidiyorlar
- □ Ödeme noktasında bir araba için 1 dakika zaman harcanıyor
- Q: bütün arabaların ödemeleri bitmeden 2. ödeme noktasına araba ulaşır mı?

ödeme noktası

- Evet! 7 dakika sonra, 1. araba 2. ödeme noktasında ve 3 araba hala 1. ödeme noktasındadır.
- □ Paket 1. router'dan tam iletilmeden paketin 1. biti router'a ulaşabilir!

Github Website 13 / 42 LinkedIn İletisim

Internet Delay

Traceroute programı kaynaktan hedefe yol üzerinde bulunan router'lardaki gecikmenin ölçümünü sağlar.

- Windows için tracert
- Linux için tracepath

Protocol Layers (Protokol Katmanları)

Ağ yapıları karmaşıktır. Bilgisayarlar, routers, protocols ... Katman yapısıyla:

- Karmaşık sistem parçalarının ilişkilerini tanımlamaya olanak sağlar
- Modüler olması sistemin bakımını ve güncelleştirilmesini kolaylaştırır
 - Bir katmandaki servis uygulamasını değiştirmek, sistemi etkilemez

Internet Protocol Stack (TCP / IP)

Öge	Açıklama
application	Ağ uygulamalarını destekleyen uygulamalar
transport	Veri aktarımı, TCP, UDP
network Kaynaktan hedefe <i>datagram</i> 'ları yönlendirir: IP, yönlendirme protoko link Komşu ağ elemanları arasında veri transferi: PPP, Ethernet	

ISO / OSI Reference Model

Internet protocol stack'te bu katmanlar yoktur, gerekirse program ile uygulanır

Ek Öğe	Açıklama	
presentatio	on Uygulamaların verilerin anlamlarını yorumlamasını sağlar: encryption, compression	
session	Senkronizasyon, denetim veri değişimi	

Encapsulation (Kapsülleme)

Veri transferleri encapsulation ile yapılmaktadır.

Website Github 16 / 42 LinkedIn İletişim

Network Security

Hiçbir protocol güvenlik tedbirleri barındırmaz. 笆

Kötü Niyetli Uygulamalar

Trojan Horse

Faydalı yazılımların gizli bir parçasıdır, web sayfalarında bulunur. (Acitve-x, plugin)

Worm

Pasif olarak alınan nesnenin kendini çalıştırması ile bulaşır, çoğalır diğer bilgisayarlara da yayılır.

Virus

Alınan nesne ile bulaşır (e-posta). Nesne açıldığında virus bulaşır, çoğalır diğer bilgisayarlara da yayılır.

Spyware Malwawre

Casus yazılımlar olarak da bilinir. Klavye tuş basımlarını ve girdiğimiz web sitelerinin bilgilerini çalar.

Kötü Niyetli Saldırılar

DoS

Denial of service olarak da bilinir. Saldırganların kaynağa çok fazla packet göndererek erişim dışı bırakmasıdır.

Website Github 17 / 42 LinkedIn İletişim

Packet Sniffing (Paket Yakalama)

Yerel ağa bağlı bir ağ kartından Wireshark uygulaması ile başka packet'lar de yakalanır.

IP Spoofing (IP Aldatmacası)

Yanlış IP adresiyle packet gönderilir

Website Github 18 / 42 LinkedIn İletişim

Internetin Geçmişi

Buradaki slaytın 62. sayfasına bakarak erişebilirsin.

Application Layer (Uygulama Katmanı)

Private

Public

Network Uygulaması Oluşturmak

Farkı *end systems* (son kullanıcı sistemleri) üzeründe çalıştırılır. Örneğin, web server yazılımı ağ üzerinden web browser yazılımı ile bağlantı kurar

Private Torrents

Temel ağ cihazları, kullanıcı programlarını çalıştırmaz. 😔

Application Architectures (Uygulama Mimarileri)

2 farklı yapı kullanılmaktadır; client-server, peer-to-peer (P2P)

Client-Server Architecture

Server Özellikleri:

- Her zaman açık
- Static IP (değişmeyen, kalıcı IP)

Client özellikleri:

- Belirlenen zamanlarda server ile iletişim kurabilirler
- Dynamic IP
- Birbiri ile iletişim kuramazlar

Pear-to-Pear Architecture (Kişiden kişiye Mimarisi)

- Server her zaman açık değildir
- Rastgele end system'lerle doğrudan iletişim olur (arada server olmaz)
- Bilgisayarlar zaman zaman bağlanabilir ve dynamic IP kullanabilirler

Yönetmesi oldukça zordur.

Client-Server ve Peer-to-Peer Karışımı

Skype

- IP üzerinden P2P uygulaması
- Merkezi sunucu: uzaktaki bilgisayarın adresini tutuyor
- Client-client bağlantı: sunucu olmadan direk bağlantı

Anlık mesajlaşma (Instant messaging)

- İki kullanıcı arasında P2P kullanarak mesajlaşma
- Merkezi servis: istemcinin varlığını ve yerini algılar
 - Kullanıcı, IP adresini merkezi sunucuya kayıt eder
 - Kullanıcı arkadaşlarının IP adresini bulmak için merkezi sunucuyla bağlantı kurar

Website Github 20 / 42 LinkedIn İletişim

Processes Communicating (İletişim Sistemleri)

İşlem	Açıklama	
Process	Bir bilgisayarda çalışan programlar, yapılan işlemler	
Client Process	İletişimi başlatan <i>process</i> 'ler	
Server Process	Bağlantıyı bekleyen <i>process</i> 'ler	

Socket Yapısı

IP adresi ve port numarasından oluşan, process'lerin alınıp / verildiği kısma socket adı verilir.

- Client, process'i kapının dışına koyar.
- Server, process'i kapıdan içeri alır
- Buradaki kapı olarak adlandırılan socket'tir

Adressing Processes (İşlemleri Adresleme)

Mesajların alınması için *process*'in bir tanımlayıcısı (*identifier*) olması gerekmektedir. 0 ile 1023 arası *well-known ports* olarak bilinmektedir. Tanımlayıcı:

■ *IP* adresi, örn: 128.119.245.12

Port numarası, örn: 80

içerir.

Örnek port numaraları:

HTTP server: 80Mail server: 25

Windows için ipconfig, linux için ifconfig ile IP adresinizi öğrenebilirsiniz.

Website Github 21/42 LinkedIn İletişim

Transport Service Requirements

Özellik	Açıklama
Data Integrity	Metin aktarımlarında çok önemlidir, ses gibi verilerim aktarılmasında önemsizdir
Timing	Ses aktarımlarında gecikmenin en az olması gereklidir.
Throughput	Multimedya uygulamaları etkili olmak için daha az veri kullanmayı tercihi eder
Security	Şifreleme ve verinin değiştirilmemesini ele alır

Uygulama	Veri kaybı	Aktarılan veri mik.	Zaman duyarlı
Dosya transferi	Kayıp olmaz	esnek	Hayır
	Kayıp olmaz	esnek	Hayır
Web belgeleri	Kayıp olmaz	esnek	Hayır
gerçek zamanlı	Kayba dayanıklı	ses: 5kbps-1Mbps	evet,
ses/video		video:10kbps-5Mbps	100 mili sn
stored audio/video	Kayba dayanıklı	Yukarısı ile aynı	evet, birkaç sn
interactive games	Kayba dayanıklı	Birkaç kbps	evet,100 mili sn
instant messaging	Kayıp olmaz	esnek	Evet ve hayır

Website Github 22 / 42 LinkedIn İletişim

Internet Transport Protocols Services (Taşıma Protokolleri Hizmetleri)

Protocol'lerin hiç biri alttaki özellikleri taşımaz, sonradan bunlara uygun sistemler oluşturulur ve entegre edilir.

- Timing (düşük gecikme)
- Min throughput (düşük veri aktarımı)
- Guarantee (garantili taşıma)
- Security (güvenli taşıma)
 - Şifreleme (*enctryption*) içermez
 - Socket ve internet verileri olduğu gibi (*cleartext*) gönderilir.

TCP/UDP segment format

TCP (Transmission Control Protocol) Review

Özellik	Açıklama
Reliable transport	Güvenilir veri aktarımı
Flow control	Veri akışı denetimi
Congestion control	Network aşırı yoğun olduğunda veri akışını azaltır

Detayları transport layer altında işlenmekte, buraya tıklayarak gidebilirsin.

Website Github 23 / 42 LinkedIn İletişim

UDP (User Datagram Protocol) Review

UDP yayıncılıkta tercih edilen bir protocol'dür. Amacı tamamıyla hızı arttırmak ve maaliyeti düşürmektir.

- Packet'in varıp, varmadığıyla ve güvenliğiyle ilgilenmez (Unreliable transport), varmazsa tekrar gönderir.
- Tıkanıklık kontrolüne (congestion control) ihtiyaç yoktur, olabildiğince hızlı gönderir
- Bağlantı kurmaya gerek yok, zaman kaybına neden olur
- Basitir, sender ve reciver asla birbiriyle iletişimde değildiir
- Olumsuz geri dönüş yoktur.

Detayları transport layer altında işlenmekte, buraya tıklayarak gidebilirsin.

Securing TCP (TCP'de Güvenlik)

TCP'de güvenlik SSL ile sağlanır, uygulamalar **SSL kütüphanesi** yardımıyla TCP ile etkileşir. SSL'in sağladıkları:

- Şifreli (encreypted) TCP bağlantısı
- Veri bütunlüğü (data integrity)
- Uç sistem doğrulaması (end-point authentication)

Web ve HTTP

- Web sayfası base HTML dosyasının referans ettiği objelerden oluşur.
- Web sayfaları objelerden oluşur, bu dosyalar; HTML, JPEG, JAVA applet vs. olabilir.
- Her obje URL'ler ile adreslenir.

www.someschool.edu/someDept/pic.gif
host name path name

Website Github 24 / 42 LinkedIn İletişim

HTTP (Hypertext Transfer Protocol)

Temel HTTP Yapısı

Applicataion Layer (uygulama katmanı) protocol'üdür.

Client: Tarayıcılar, Server: Apache Web Server

HTTP Veri Aktarımı

HTTP, TCP kullanır.

- Client TCP bağlantısını başlatır.
 - Server'a 80 port'unda socket oluşturur
- Server TCP bağlantısını kabul eder
- Client ve Server arasında HTTP mesajları aktarılır
- TCP bağlantısı kapatılır

HTTP stateless (durumsuz) olarak tanımlanır. Eski istekler (requests) hakkında bilgi sahibi değildir.

Website Github 25 / 42 LinkedIn İletişim

HTTP Bağlantıları

Bağlantı Türü	Açıklama
non-persistent (kalıcı olmayan)	En fazla bir obje TCP üzerinden gönderilir ardından bağlantı kapatılır
persistent (kalıcı)	Çok sayıda obje TCP üzerinden gönderilebilir

RTT, bir packet'in client-server arasında gidiş geliş süresi

Non-Persistent HTTP

Sunucuyu her defasında açmak için RTT kaybı yaşanacaktır, tek bir veri alınacaksa ideal seçimdir

Persistent HTTP

 Sunucu tek bir seferde açılacak lakin kapatılmak için request bekleyecektir, bu da fazladan RTT kaybı demektir.

Website Github 26 / 42 LinkedIn İletişim

HTTP Request Message (İstek Mesajı)

- sp: Boşluk
- cr: \r karakteri
- 1f: \n, satır sonu karakteri

```
İstek satır
(GET, POST,
HEAD komutları)

Başlık
satırları

Başlık
satırları

Satırbaşı,
boş satır
mesajın bittiğini
gösterir
```

HTTP Status Code (Durum Kodları)

Status Code	Açıklama
200	ОК
301	Moved Permanently
400	Bad Request
404	Not Found
505	HTTP Version not Supported

Cookie (Çerezler)

Bir websitesine ilk kez girdiğimizde bilgilerimiz **cookie** adıyla server veri tabanında saklanır.

Web siteleri kişisel bilgilerimizi saklarlar. 😟

Website Github 28 / 42 LinkedIn İletişim

Proxy Server & Cache

Client isteklerini *server* ile uzun süren bağlantılardan kaçınarak hızlıca halletmeyi amaçlar. Belli başlı *server*'lar *cache*'e atılır ve *server*'a istek yollamak yerine yerel ağdaki *proxy server*'a istek yollanarak çok hızlıca işlem halledilir.

LAN (yerel ağ) diğer network'lere kıyasla çok hızlıdır.

Website Github 29 / 42 LinkedIn İletişim

Conditional GET (Koşullu GET)

Bu yöntemler *Proxy server* önbelleğinde (cache) bulunan verilerin güncel olup olmadığı sorgulanır.

Domain Name System (DNS)

Internette adresler IP (192.168.1.1) ile tanımlanır. DNS'ler ile IP'lere isimler (google.com) atanır.

DNS eşleştirilmesi yapıldığında Local DNS'de cache'e alınır, bundan dolayı TLD sık kullanılmaz.

DNS Türü	Açıklama
Local	DNS hiyerarşisine ait değildir, her istek ilk burada eşleştirilmeye çalışılır
Root	Yerel (local) DNS sunucularının çözemedikleri isimler için buraya danışılır
TLD	Top-level domain, com, org, net, tr gibi ülke etki alanlarından sorumludurlar
Authoritative	Yetkili isim sunucuları, kurumlardaki sunucuların isimlerini eşleştirir

Website Github 30 / 42 LinkedIn İletişim

DNS Resolution Examples (DNS Çözümleme Örnekleri)

DNS Record (DNS Kayıtları)

Kayıtların formatı (name, value, type, ttl) şeklindedir.

Type	Açıklama
А	name: hostname, value: IP
NS	name: domain, value: hostname
CNAME	name: takma isim, value: domain
MX	name: alakalı isim, value: mailserver ismi

Inserting DNS Record

- DNS server ismi ve IP adersi belirlenir
- TLD Server'lara alttaki şekilde kayıt edilir

```
(dns1.manolyatekstil.com, 212.212.212.1, A)
(manolyatekstil.com, dns1.manolyatekstil.com, NS) # Nameserver
```

Attacking DNS

DDoS attacks

- Bombard root servers with traffic
 - Not successful to date
 - Traffic Filtering
 - Local DNS servers cache IPs of TLD servers, allowing root server bypass
- Bombard TLD servers
 - Potentially more dangerous

Redirect attacks

- Man-in-middle
 - Intercept queries
- DNS poisoning
 - Send bogus relies to DNS server, which caches

Exploit DNS for DDoS

- Send queries with spoofed source address: target IP
- · Requires amplification

Application Layer 2-74

P2P (Peer to Peer)

- Server torrent'e katılanları izler ve her zaman açık olmaz
- Network'teki bilgisayarlar rastgele erişim kurarlar
- Eş bilgisayarlar zaman zaman bağlantı kurarlar ve IP adresleri değişebilir

Terim	Açıklama	
Chunk	256KB'lik <i>packet</i> 'lar	
Torrent	Chunk alışveriişi yapan grup	

P2p File Distribution (Dosya Paylaşımı)

Hızlı veri aktarımı sağlayan bir yapıdır.

- Chunk'lar indirilirken aynı zamanda karşıya da yüklenir
- Çok yükleme yapan çok hızlı indirir
- İsteğe bağlı yükleme veya indirme iptal edilebilir

Website Github 34 / 42 LinkedIn İletişim

Video Streaming and CDNs: context

Video Streamin

Her video, resin topluluğundan ver resimler de *pixel*'lerden oluşur. Her *pixel* de *bit*'lerden oluşmakta ve bunların aktarımları gerçekleşmektedir. *Bit* sayısını azaltmak için;

Yöntem	Açıklama
spatial (uzaysal)	N tane renk göndermek yerine, rengi ve tekrar etme sayısını gönderir
Temportal (zamansal)	Sadece bir önceki resim ile farklı olaran yerleri gönderir

Content Distribution Networks (İçerik Dağıtım Ağları)

İçerikler kopyalanarak birden fazla server'dan akatarılır.

Case study: Netflix

Website Github 35 / 42 LinkedIn İletişim

Transport Layer

Network layer, host'lar arası mantıksal iletişimi sağlarken; *transport layer, process*'ler arası mantıksal iletişimi sağlar

Website Github 36 / 42 LinkedIn İletişim

Internet Transport Layer Protocols

Yine, UDP ve TCP protocolleri kullanılır. 😉

Multiplexing (Çoğullama)

Demultiplexing (Azaltma / Parçalama)

- Bilgisayarlardan IP *datagram*'ları alınır.
 - Datagram'larda source IP ve dest IP vardır
 - Her datagram bir segment taşır
 - Her segment'in kaynak ve dest port numaları vardır

TCP / UDP Demux

UDP Yönelendirme	TCP Yönelendirme
Source IP	Source IP
	Destination IP
	Source port numarası
Destination port numarası	Destination port numarası

Socket, source IP ve destination port numarasından oluşur.

Website Github 37 / 42 LinkedIn İletişim

UDP Demux Örneği

□ SP: Source Port DP: Destination Port

TCP Demux Örneği

Website Github 38 / 42 LinkedIn İletişim

UDP (User Datagram Protocol)

UDP yayıncılıkta tercih edilen bir *protocol*'dür. Amacı tamamıyla hızı arttırmak ve maaliyeti düşürmektir.

- Packet'in varıp, varmadığıyla ve güvenliğiyle ilgilenmez (Unreliable transport), varmazsa tekrar gönderir.
- Tıkanıklık kontrolüne (congestion control) ihtiyaç yoktur, olabildiğince hızlı gönderir
- Bağlantı kurmaya gerek yok, zaman kaybına neden olur
- Basitir, sender ve reciver asla birbiriyle iletişimde değildiir
- Olumsuz geri dönüş yoktur.

UDP segment format

UDP Checksum

Aktarılan segment'deki hataları algılamak için kullanılan yöntemdir.

example: add two 16-bit integers

Note: when adding numbers, a carryout from the most significant bit needs to be added to the result

Website Github 39 / 42 LinkedIn İletişim

Reliable Data Transfer (RDT)

Rdt 1.0

Tam güvenlikli bir kanaldır.

- Bit ve packet kayıpları yoktur
- Sender ve reciver verileri güvenli kanaldan (underlying channel) alır

Rdt 2.0

Bitlerde hatalar söz konusu olabilir.

- Bit hataları checksum ile algılanır.
- Acknowledgements (ACKs) paket alındı bilgisi, negative acknowledgements (NAKs) paketin hatalı olduğu bilgisi gibi feedback'ler vardır.

Rdt 2.0 Kusurları

- ACK / NAK mesajları bozulması durumunda geçerli packet yeniden gönderilir
- Sender her gelen packet'e segment numarası ekler, birden fazla gelen packet'ları reciever atar
- Sender bir packet gönderdikten sonra feedback için bekler, bu da zamandan kayıp demektir.

Rdt 2.1

Sender:

- Packet'lara segment numarası ekler.
- ACK / NAK bozuk alınıp alınmadığını kontrol eder

Reciever:

- Alınan packet'ların eşsiz olup olmadığını kontrol eder
- ACK / NAK mesajlarının sender tarafından alınıp alınmadığını bilmez

Rdt 2.2

NAK içermez, sadece ACK kullanarak rdt 2.1 ile aynı görevi yapar.

- NAK yerine packet başarılı alındığında ACK mesajları gönderilir.
- Çift ACK mesajı NAK gibi kabul edilir, packet yeniden gönderilir.

Website Github 40 / 42 LinkedIn İletişim

Rdt 3.0

Rdt 2.2'ye ek olarak:

- Sender belli sürede ACK mesajı almazsa (timeout) packet yeniden gönderilir.
- Eşsiz olmayan packet'lar segment numaraları ile ayırt edilir.

Website Github 41/42 LinkedIn İletişim

Pipelined Protocols

Bir packet göndermek yerine birden fazla gönderilir.

- Reciver aldığı her sağlam packet için ack gönderir
 - Hatalı *packet*'ler için *ack* gitmez
 - Kaçırılan paketler için en son gönderilen ack gönderilir
- Tekrar eden ack'lar sender tarafından görmezden gelinir ve packet yeniden gönderilir
 - Bu yapıya **Go back N (GDN)** adı verilir.

Selective repeat?

TCP (Transmission Control Protocol)

Sıkıldım 😩

Website Github 42 / 42 LinkedIn İletişim