PCR Optimization Package

Lionel Tukei and Lily Torp

Background

What is PCR?

 Polymerase chain reaction (PCR): a common molecular biology technique for amplifying DNA sequences.

What is the problem?

- Many factors to consider when designing PCR:
 - Enzyme cost per reaction (\$\$)
 - Primer annealing temperature
 - Primer-gene compatibility
 - Total PCR reaction time

Result after 1 cycle: # of DNA molecules doubled

PCR Protocol Optimizer

A python package for:

- Checking gene and primer sequences for errors and evaluating primer binding.
- Optimizing a PCR protocol for cost, time, or both factors depending on user preference.

Design

One Object:

1. PCR

- a. Gene, forward primer and reverse primer are input in 5'-3' format as strings. DNA template type is also specified (plasmid, lambda, BAC DNA, or genomic).
- b. Object stores information and contains relevant functions

Two Functions:

1. Check

a. check() takes a PCR object (gene, forward primer, reverse primer) and checks sequences for errors and compatibility. User will fix any errors.

Recommend

- a. recommend() will optimize PCR based on user-defined factor ("time", "cost", or both if left blank)
- b. Return a table with results for factor

Use Cases

Ex: A user wants to optimize their PCR reaction for cost

- 1. User will install pcr_optimizer
- Define a new pcr object containing gene, forward primer, reverse primer, and template type.
- 3. Run **check** function:
 - a. Ensure all bases are standard (A/T/G/C) and primers anneal in correct locations on the target gene sequence
 - b. Statements are returned to the user specifying errors. They will manually fix them and redefine the pcr object

4. Run **recommend** function

a. User can designate time or cost as the optimization factor. Function will return a table for (1) Cost: enzyme amount and cost per reaction or (2) Time: annealing temperature/time, extension time, and total PCR reaction time.

Demo

Demo Google Colab Notebook

Project Structure

Lessons Learned and Future Work

Software engineering lessons:

- Functional and component specifications are important!
- Small details → big errors
- Creating a package and uploading to PyPI is cool and useful

Future work:

- Add more enzymes/protocols
- Use Dataframes instead of text output
- Have function evaluate multiple factors and choose one overall "winner"
- Model PCR reagents over time
- Include cost of reagents