Fortgeschrittene Fehlerrechnung Übungsblatt 4

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: June 10, 2024)

Die Regressionsparameter sind bestimmt durch

$$a_{1} = \frac{1}{\Delta} \begin{vmatrix} \sum y_{i} \frac{1}{\sigma_{i}} & \sum \frac{x_{i}}{\sigma_{i}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} \\ \sum y_{i} \frac{x_{i}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{3}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{3}}{\sigma_{i}^{2}} \\ \sum y_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{4}}{\sigma_{i}^{2}} \\ \sum y_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum y_{i} \frac{1}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} \\ \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum y_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{3}}{\sigma_{i}^{2}} \\ \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum y_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum y_{i} \frac{1}{\sigma_{i}^{2}} \\ \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum y_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}} \\ \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum y_{i} \frac{x_{i}^{2}}{\sigma_{i}^{2}} \\ \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} \\ \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} \\ \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} \\ \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{3}}{\sigma_{i}^{2}} \\ \sum \frac{x_{i}^{2}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{3}}{\sigma_{i}^{2}} & \sum \frac{x_{i}^{4}}{\sigma_{i}^{2}} \end{vmatrix}$$

I. HERLEITUNG DES FEHLERAUSDRUCKS

Wir bestimmen $\sigma_{a_i}^2 = \sum_k \left[\sigma_k \left(\frac{\partial a_i}{\partial y_k} \right)^2 \right]$. Dazu bestimmen wir zuerst $\frac{\partial a_i}{\partial y_k}$. Weil $\frac{\partial}{\partial y_k} \sum_i y_i \frac{x_i^n}{\sigma_i^p} = \frac{x_k^n}{\sigma_k^p},$

können wir mit der Laplace-Entwicklung den Fehler berechnen

$$\frac{\partial a_1}{\partial y_k} = \frac{1}{\Delta} \frac{1}{\sigma_{k^2}} \left[\sum \frac{x_i^2}{\sigma_{i^2}} \sum \frac{x_i^4}{\sigma_{i^2}} - \left(\sum \frac{x_i^3}{\sigma_{i^2}} \right)^2 - x_k \left(\sum \frac{x_i}{\sigma_{i^2}} \sum \frac{x_i^4}{\sigma_{i^2}} - \sum \frac{x_i^3}{\sigma_{i^2}} \sum \frac{x_i^2}{\sigma_{i^2}} \right) + x_k^2 \left(\sum \frac{x_i}{\sigma_{i^2}} \sum \frac{x_i^3}{\sigma_{i^2}} - \left(\sum \frac{x_i^3}{\sigma_{i^2}} \right)^2 \right) \right]$$

^{*} jun-wei.tan@stud-mail.uni-wuerzburg.de

$$\begin{split} \frac{\partial a_2}{\partial y_k} &= \frac{1}{\Delta} \frac{1}{\sigma_k^2} \left[-\left(\sum \frac{x_i}{\sigma_i^2} \sum \frac{x_i^4}{\sigma_i^2} - \sum \frac{x_i^3}{\sigma_i^2} \sum \frac{x_i^2}{\sigma_i^2} \right) + x_k \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i^4}{\sigma_i^2} - \left(\sum \frac{x_i^2}{\sigma_i^2} \right)^2 \right) \right. \\ &\left. - x_k^2 \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i^3}{\sigma_i^2} - \sum \frac{x_i^2}{\sigma_i^2} \sum \frac{x_i}{\sigma_i^2} \right) \right] \\ \frac{\partial a_3}{\partial y_k} &= \frac{1}{\Delta} \frac{1}{\sigma_k^2} \left[\sum \frac{x_i}{\sigma_i^2} \sum \frac{x_i^3}{\sigma_i^2} - \left(\sum \frac{x_i^2}{\sigma_i^2} \right)^2 - x_k \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i^3}{\sigma_i^2} - \sum \frac{x_i^2}{\sigma_i^2} \sum \frac{x_i}{\sigma_i^2} \right) \right. \\ &\left. + x_k^2 \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i^2}{\sigma_i^2} - \left(\sum \frac{x_i}{\sigma_i^2} \right)^2 \right) \right] \\ \Delta &= \sum \frac{1}{\sigma_i^2} \left(\sum \frac{x_i^2}{\sigma_i^2} \sum \frac{x_i^4}{\sigma_i^2} - \left(\sum \frac{x_i^3}{\sigma_i^2} \right)^2 \right) - \sum \frac{x_i}{\sigma_i^2} \left(\sum \frac{x_i}{\sigma_i^2} \sum \frac{x_i^4}{\sigma_i^2} - \sum \frac{x_i^3}{\sigma_i^2} \right) \\ &\left. + \sum \frac{x_i^2}{\sigma_i^2} \left(\sum \frac{x_i}{\sigma_i^2} \sum \frac{x_i^3}{\sigma_i^2} - \left(\sum \frac{x_i^3}{\sigma_i^2} \right)^2 \right) \right. \end{split}$$

Eingesetzt in
$$\sigma_{a_i} = \sqrt{\sum_{k} \left[\sigma_k^2 \left(\frac{\partial a_i}{\partial y_k} \right)^2 \right]}$$
 liefert

$$\sigma_{a_1} = \sqrt{\frac{1}{\Delta} \left(\sum \frac{x_i^2}{\sigma_i^2} \sum \frac{x_i^4}{\sigma_i^2} - \left(\sum \frac{x_i^3}{\sigma_i^2} \right)^2 \right)}$$

$$\sigma_{a_2} = \sqrt{\frac{1}{\Delta} \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i^4}{\sigma_i^2} - \left(\sum \frac{x_i^2}{\sigma_i^2} \right)^2 \right)}$$

$$\sigma_{a_3} = \sqrt{\frac{1}{\Delta} \left(\sum \frac{1}{\sigma_i^2} \sum \frac{x_i^2}{\sigma_i^2} - \left(\sum \frac{x_i}{\sigma_i^2} \right)^2 \right)}$$

II. POLYNOMREGRESSION

Die Daten sind in der Aufgabenstellung gegeben. Jede Bohrung entspricht 2,0 cm. Außerdem können wir ohne Beschränkung der Allgemeinheit die erste Bohrung als Ursprung (y = 0 cm) definieren. Daraus berechnen wir die Datentabelle für die Regression

Bohrung	Zeit (s)	Ort (m)
1	0	0,00
2	0,065743	0,02
3	0,092204	0,04
4	0,111701	0,06
5	0,129847	0,08
6	0,143638	0,10
7	0,156868	0,12
8	0,169667	0,14
9	0,181285	0,16
10	0,192732	0,18
11	0,202532	0,20
12	0,21236	0,22
13	0,222212	0,24
14	0,230763	0,26
15	0,238582	0,28

Wir werden im Zukunft den Fehler durch die Streuung schätzen. Dann sind alle Fehler gleich und die σ_i kürzen sich. Wir verwenden also eine alternative Definition von Δ

$$a_{1} = \frac{1}{\Delta} \begin{vmatrix} \sum y_{i} & \sum x_{i} & \sum x_{i}^{2} \\ \sum y_{i}x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\ \sum y_{i}x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \end{vmatrix}$$
$$A_{2} = \frac{1}{\Delta} \begin{vmatrix} N & \sum y_{i} & \sum x_{i}^{2} \\ \sum x_{i} & \sum y_{i}x_{i} & \sum x_{i}^{3} \\ \sum x_{i}^{2} & \sum y_{i}x_{i}^{2} & \sum x_{i}^{4} \end{vmatrix}$$

$$a_{3} = \frac{1}{\Delta} \begin{vmatrix} N & \sum x_{i} & \sum y_{i} \\ \sum x_{i} & \sum x_{i}^{2} & \sum y_{i}x_{i} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum y_{i}x_{i}^{2} \end{vmatrix}$$
$$\Delta = \begin{vmatrix} N & \sum x_{i} & \sum x_{i}^{2} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} \end{vmatrix}$$

Daraus ergibt sich

$$\Delta = 0,0003341947203678026 \text{ s}^6$$

$$a_1 = 0,00001890136308573145 \text{ m}$$

$$a_2 = -0,02499490722866542 \text{ ms}^{-1}$$

$$a_3 = 4,997999358352541 \text{ ms}^{-2}$$

Ort eines fallendes Körpers in Abhängigkeit von der Zeit Jun Wei Tan 16.05.24

