interconnected, as a lower learning_rate means that more trees are needed to build a model of similar complexity. In contrast to random forests, where a higher n_esti mators value is always better, increasing n_estimators in gradient boosting leads to a more complex model, which may lead to overfitting. A common practice is to fit n estimators depending on the time and memory budget, and then search over different learning rates.

Another important parameter is max_depth (or alternatively max_leaf_nodes), to reduce the complexity of each tree. Usually max_depth is set very low for gradient boosted models, often not deeper than five splits.

Kernelized Support Vector Machines

The next type of supervised model we will discuss is kernelized support vector machines. We explored the use of linear support vector machines for classification in "Linear models for classification" on page 56. Kernelized support vector machines (often just referred to as SVMs) are an extension that allows for more complex models that are not defined simply by hyperplanes in the input space. While there are support vector machines for classification and regression, we will restrict ourselves to the classification case, as implemented in SVC. Similar concepts apply to support vector regression, as implemented in SVR.

The math behind kernelized support vector machines is a bit involved, and is beyond the scope of this book. You can find the details in Chapter 1 of Hastie, Tibshirani, and Friedman's *The Elements of Statistical Learning*. However, we will try to give you some sense of the idea behind the method.

Linear models and nonlinear features

As you saw in Figure 2-15, linear models can be quite limiting in low-dimensional spaces, as lines and hyperplanes have limited flexibility. One way to make a linear model more flexible is by adding more features—for example, by adding interactions or polynomials of the input features.

Let's look at the synthetic dataset we used in "Feature importance in trees" on page 77 (see Figure 2-29):

In[76]:

```
X, y = make blobs(centers=4, random state=8)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
```


Figure 2-36. Two-class classification dataset in which classes are not linearly separable

A linear model for classification can only separate points using a line, and will not be able to do a very good job on this dataset (see Figure 2-37):

In[77]:

```
from sklearn.svm import LinearSVC
linear_svm = LinearSVC().fit(X, y)

mglearn.plots.plot_2d_separator(linear_svm, X)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
```

Now let's expand the set of input features, say by also adding feature1 ** 2, the square of the second feature, as a new feature. Instead of representing each data point as a two-dimensional point, (feature0, feature1), we now represent it as a three-dimensional point, (feature0, feature1, feature1 ** 2). This new representation is illustrated in Figure 2-38 in a three-dimensional scatter plot:

¹⁰ We picked this particular feature to add for illustration purposes. The choice is not particularly important.

Figure 2-37. Decision boundary found by a linear SVM

In[78]:

```
# add the squared first feature
X_new = np.hstack([X, X[:, 1:] ** 2])
from mpl_toolkits.mplot3d import Axes3D, axes3d
figure = plt.figure()
# visualize in 3D
ax = Axes3D(figure, elev=-152, azim=-26)
# plot first all the points with y == 0, then all with y == 1
mask = y == 0
ax.scatter(X_new[mask, 0], X_new[mask, 1], X_new[mask, 2], c='b',
           cmap=mglearn.cm2, s=60)
ax.scatter(X_new[~mask, 0], X_new[~mask, 1], X_new[~mask, 2], c='r', marker='^',
           cmap=mglearn.cm2, s=60)
ax.set_xlabel("feature0")
ax.set ylabel("feature1")
ax.set_zlabel("feature1 ** 2")
```


Figure 2-38. Expansion of the dataset shown in Figure 2-37, created by adding a third feature derived from feature1

In the new representation of the data, it is now indeed possible to separate the two classes using a linear model, a plane in three dimensions. We can confirm this by fitting a linear model to the augmented data (see Figure 2-39):

In[79]:

```
linear svm 3d = LinearSVC().fit(X new, y)
coef, intercept = linear svm 3d.coef .ravel(), linear svm 3d.intercept
# show linear decision boundary
figure = plt.figure()
ax = Axes3D(figure, elev=-152, azim=-26)
xx = np.linspace(X_new[:, 0].min() - 2, X_new[:, 0].max() + 2, 50)
yy = np.linspace(X_new[:, 1].min() - 2, X_new[:, 1].max() + 2, 50)
XX, YY = np.meshgrid(xx, yy)
ZZ = (coef[0] * XX + coef[1] * YY + intercept) / -coef[2]
ax.plot_surface(XX, YY, ZZ, rstride=8, cstride=8, alpha=0.3)
ax.scatter(X_new[mask, 0], X_new[mask, 1], X_new[mask, 2], c='b',
           cmap=mglearn.cm2, s=60)
ax.scatter(X_new[~mask, 0], X_new[~mask, 1], X_new[~mask, 2], c='r', marker='^',
           cmap=mglearn.cm2, s=60)
ax.set xlabel("feature0")
ax.set_ylabel("feature1")
ax.set_zlabel("feature0 ** 2")
```


Figure 2-39. Decision boundary found by a linear SVM on the expanded threedimensional dataset

As a function of the original features, the linear SVM model is not actually linear anymore. It is not a line, but more of an ellipse, as you can see from the plot created here (Figure 2-40):

In[80]:

Figure 2-40. The decision boundary from Figure 2-39 as a function of the original two features

The kernel trick

The lesson here is that adding nonlinear features to the representation of our data can make linear models much more powerful. However, often we don't know which features to add, and adding many features (like all possible interactions in a 100-dimensional feature space) might make computation very expensive. Luckily, there is a clever mathematical trick that allows us to learn a classifier in a higher-dimensional space without actually computing the new, possibly very large representation. This is known as the *kernel trick*, and it works by directly computing the distance (more precisely, the scalar products) of the data points for the expanded feature representation, without ever actually computing the expansion.

There are two ways to map your data into a higher-dimensional space that are commonly used with support vector machines: the polynomial kernel, which computes all possible polynomials up to a certain degree of the original features (like feature1 ** 2 * feature2 ** 5); and the radial basis function (RBF) kernel, also known as the Gaussian kernel. The Gaussian kernel is a bit harder to explain, as it corresponds to an infinite-dimensional feature space. One way to explain the Gaussian kernel is that

it considers all possible polynomials of all degrees, but the importance of the features decreases for higher degrees.11

In practice, the mathematical details behind the kernel SVM are not that important, though, and how an SVM with an RBF kernel makes a decision can be summarized quite easily—we'll do so in the next section.

Understanding SVMs

During training, the SVM learns how important each of the training data points is to represent the decision boundary between the two classes. Typically only a subset of the training points matter for defining the decision boundary: the ones that lie on the border between the classes. These are called *support vectors* and give the support vector machine its name.

To make a prediction for a new point, the distance to each of the support vectors is measured. A classification decision is made based on the distances to the support vector, and the importance of the support vectors that was learned during training (stored in the dual_coef_ attribute of SVC).

The distance between data points is measured by the Gaussian kernel:

```
k_{\text{rbf}}(x_1, x_2) = \exp(|y||x_1 - x_2||^2)
```

Here, x_1 and x_2 are data points, $||x_1 - x_2||$ denotes Euclidean distance, and χ (gamma) is a parameter that controls the width of the Gaussian kernel.

Figure 2-41 shows the result of training a support vector machine on a twodimensional two-class dataset. The decision boundary is shown in black, and the support vectors are larger points with the wide outline. The following code creates this plot by training an SVM on the forge dataset:

In[81]:

```
from sklearn.svm import SVC
X, y = mglearn.tools.make_handcrafted_dataset()
svm = SVC(kernel='rbf', C=10, gamma=0.1).fit(X, y)
mglearn.plots.plot_2d_separator(svm, X, eps=.5)
mglearn.discrete_scatter(X[:, 0], X[:, 1], y)
# plot support vectors
sv = svm.support_vectors_
# class labels of support vectors are given by the sign of the dual coefficients
sv_labels = svm.dual_coef_.ravel() > 0
mglearn.discrete\_scatter(sv[:, 0], sv[:, 1], sv\_labels, s=15, markeredgewidth=3)
plt.xlabel("Feature 0")
plt.ylabel("Feature 1")
```

¹¹ This follows from the Taylor expansion of the exponential map.

Figure 2-41. Decision boundary and support vectors found by an SVM with RBF kernel

In this case, the SVM yields a very smooth and nonlinear (not a straight line) boundary. We adjusted two parameters here: the C parameter and the gamma parameter, which we will now discuss in detail.

Tuning SVM parameters

The gamma parameter is the one shown in the formula given in the previous section, which controls the width of the Gaussian kernel. It determines the scale of what it means for points to be close together. The C parameter is a regularization parameter, similar to that used in the linear models. It limits the importance of each point (or more precisely, their dual_coef_).

Let's have a look at what happens when we vary these parameters (Figure 2-42):

In[82]:

```
fig, axes = plt.subplots(3, 3, figsize=(15, 10))
for ax, C in zip(axes, [-1, 0, 3]):
    for a, gamma in zip(ax, range(-1, 2)):
        mglearn.plots.plot_svm(log_C=C, log_gamma=gamma, ax=a)
axes[0, 0].legend(["class 0", "class 1", "sv class 0", "sv class 1"],
                  ncol=4, loc=(.9, 1.2))
```


Figure 2-42. Decision boundaries and support vectors for different settings of the parameters C and gamma

Going from left to right, we increase the value of the parameter gamma from 0.1 to 10. A small gamma means a large radius for the Gaussian kernel, which means that many points are considered close by. This is reflected in very smooth decision boundaries on the left, and boundaries that focus more on single points further to the right. A low value of gamma means that the decision boundary will vary slowly, which yields a model of low complexity, while a high value of gamma yields a more complex model.

Going from top to bottom, we increase the C parameter from 0.1 to 1000. As with the linear models, a small C means a very restricted model, where each data point can only have very limited influence. You can see that at the top left the decision boundary looks nearly linear, with the misclassified points barely having any influence on the line. Increasing C, as shown on the bottom right, allows these points to have a stronger influence on the model and makes the decision boundary bend to correctly classify them.

Let's apply the RBF kernel SVM to the Breast Cancer dataset. By default, C=1 and gamma=1/n_features:

In[83]:

The model overfits quite substantially, with a perfect score on the training set and only 63% accuracy on the test set. While SVMs often perform quite well, they are very sensitive to the settings of the parameters and to the scaling of the data. In particular, they require all the features to vary on a similar scale. Let's look at the minimum and maximum values for each feature, plotted in log-space (Figure 2-43):

In[84]:

```
plt.plot(X_train.min(axis=0), 'o', label="min")
plt.plot(X_train.max(axis=0), '^', label="max")
plt.legend(loc=4)
plt.xlabel("Feature index")
plt.ylabel("Feature magnitude")
plt.yscale("log")
```

From this plot we can determine that features in the Breast Cancer dataset are of completely different orders of magnitude. This can be somewhat of a problem for other models (like linear models), but it has devastating effects for the kernel SVM. Let's examine some ways to deal with this issue.

Figure 2-43. Feature ranges for the Breast Cancer dataset (note that the y axis has a logarithmic scale)

Preprocessing data for SVMs

One way to resolve this problem is by rescaling each feature so that they are all approximately on the same scale. A common rescaling method for kernel SVMs is to scale the data such that all features are between 0 and 1. We will see how to do this using the MinMaxScaler preprocessing method in Chapter 3, where we'll give more details. For now, let's do this "by hand":

In[85]:

```
# compute the minimum value per feature on the training set
min_on_training = X_train.min(axis=0)
# compute the range of each feature (max - min) on the training set
range_on_training = (X_train - min_on_training).max(axis=0)
# subtract the min, and divide by range
# afterward, min=0 and max=1 for each feature
X_train_scaled = (X_train - min_on_training) / range_on_training
print("Minimum for each feature\n{}".format(X_train_scaled.min(axis=0)))
print("Maximum for each feature\n{}".format(X_train_scaled.max(axis=0)))
```

Out[85]:

```
Minimum for each feature
   0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
   Maximum for each feature
   1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
In[86]:
   # use THE SAME transformation on the test set,
   # using min and range of the training set (see Chapter 3 for details)
   X_test_scaled = (X_test - min_on_training) / range_on_training
In[87]:
   svc = SVC()
   svc.fit(X_train_scaled, y_train)
   print("Accuracy on training set: {:.3f}".format(
      svc.score(X_train_scaled, y_train)))
   print("Accuracy on test set: {:.3f}".format(svc.score(X_test_scaled, y_test)))
Out[87]:
   Accuracy on training set: 0.948
   Accuracy on test set: 0.951
```

Scaling the data made a huge difference! Now we are actually in an underfitting regime, where training and test set performance are quite similar but less close to 100% accuracy. From here, we can try increasing either C or gamma to fit a more complex model. For example:

In[88]:

```
svc = SVC(C=1000)
    svc.fit(X_train_scaled, y_train)
    print("Accuracy on training set: {:.3f}".format(
        svc.score(X_train_scaled, y_train)))
    print("Accuracy on test set: {:.3f}".format(svc.score(X_test_scaled, y_test)))
Out[88]:
    Accuracy on training set: 0.988
    Accuracy on test set: 0.972
```

Here, increasing C allows us to improve the model significantly, resulting in 97.2% accuracy.

Strengths, weaknesses, and parameters

Kernelized support vector machines are powerful models and perform well on a variety of datasets. SVMs allow for complex decision boundaries, even if the data has only a few features. They work well on low-dimensional and high-dimensional data (i.e., few and many features), but don't scale very well with the number of samples. Running an SVM on data with up to 10,000 samples might work well, but working with datasets of size 100,000 or more can become challenging in terms of runtime and memory usage.

Another downside of SVMs is that they require careful preprocessing of the data and tuning of the parameters. This is why, these days, most people instead use tree-based models such as random forests or gradient boosting (which require little or no preprocessing) in many applications. Furthermore, SVM models are hard to inspect; it can be difficult to understand why a particular prediction was made, and it might be tricky to explain the model to a nonexpert.

Still, it might be worth trying SVMs, particularly if all of your features represent measurements in similar units (e.g., all are pixel intensities) and they are on similar scales.

The important parameters in kernel SVMs are the regularization parameter C, the choice of the kernel, and the kernel-specific parameters. Although we primarily focused on the RBF kernel, other choices are available in scikit-learn. The RBF kernel has only one parameter, gamma, which is the inverse of the width of the Gaussian kernel. gamma and C both control the complexity of the model, with large values in either resulting in a more complex model. Therefore, good settings for the two parameters are usually strongly correlated, and C and gamma should be adjusted together.

Neural Networks (Deep Learning)

A family of algorithms known as neural networks has recently seen a revival under the name "deep learning." While deep learning shows great promise in many machine learning applications, deep learning algorithms are often tailored very carefully to a specific use case. Here, we will only discuss some relatively simple methods, namely *multilayer perceptrons* for classification and regression, that can serve as a starting point for more involved deep learning methods. Multilayer perceptrons (MLPs) are also known as (vanilla) feed-forward neural networks, or sometimes just neural networks.

The neural network model

MLPs can be viewed as generalizations of linear models that perform multiple stages of processing to come to a decision.