Математическая логика

Михайлов Максим

30 апреля 2021 г.

Оглавление стр. 2 из 38

Оглавление

Лекци	ия 1	12 февраля	4
0	Мот	ивация	4
	0.1	Математикам	4
	0.2	Программистам	5
1	Исчи	исление высказываний	5
	1.1	Язык	5
	1.2	Метаязык и предметный язык	5
	1.3	Сокращения записи	6
	1.4	Теория моделей	6
	1.5	Теория доказательств	7
	1.6	Правило Modus Ponens и доказательство	7
Лекци	ия 2	19 февраля	8
2	Инт	уиционистская логика	11
	2.1	ВНК-интерпретация (Brouwer–Heyting–Kolmogorov)	11
Лекци	ия 3	26 февраля	12
	2.2	Естественный (натуральный) вывод	12
	2.3	Теория решеток	13
Лекци	ия 4	5 марта	16
	2.4	Табличные модели	16
	2.5	Модели Крипке	17
Лекци	ия 5	12 марта	19
3	Изог	морфизм Карри-Ховарда	19
	3.1	Алгебраические типы	19
	3.2	Применение восьмой аксиомы интуиционистской логики	20
4	Исчи	исление предикатов	21
	4.1	Язык исчисления предикатов	21
	4.2	Теория моделей	22
	4.3	Теория доказательств	23
Лекці	ия 6	19 марта	24
	4.4	Вхождение	24
	4.5	Свобода для подстановки	25
Лекци	ия 7	2 апреля	27
	4.6	Полнота исчисления предикатов	27
Лекци	ия 8	9 апреля	31

Оглавление	стр. 3 из 38

	4.7	Теорема Гёделя о полноте исчисления предикатов	31
	4.8	Неразрешимость исчисления предикатов	33
Лекці	ия 9	16 апреля	35
5	Teop	рия первого порядка	35
	5.1	Аксиоматика Пеано	35
	5.2	Формальная арифметика	37

Лекция 1

12 февраля

0 Мотивация

0.1 Математикам

Аксиома 1 (Архимеда). Для любого k > 0 найдётся n, такое что kn > 1.

Под эту аксиому не подходят бесконечно малые числа и это является проблемой. Например, $\lim_{x\to +\infty} \frac{1}{x} = 0 = \lim_{x\to +\infty} \frac{1}{x^2}$, но мы хотим уметь различать эти два числа. Ньютон предложил идею бесконечно малых чисел, откуда пошли последовательности. Возникает вопрос — что такое последовательность и что такое число?

Общепринятое определение целых чисел $\mathbb N$ происходит из теории множеств. Однако эта теория содержит в себе множество фундаментальных парадоксов, от которых нельзя избавиться.

Возникает вопрос — а что такое множество? Посмотрим на некоторое множество $A=\{x\mid x\notin x\}$. Содержит ли оно себя, $A\in A$? На этот вопрос нельзя ответить, это называется парадокс Рассела. Есть простой способ его разрешить — запретить ставить такой вопрос. Нет вопроса — нет парадокса. Существование такого парадокса ставит под вопрос существование любого множества — а существует ли \mathbb{N} ? Может быть его существование парадоксально, просто мы не нашли этот парадокс. Пришло чуть более умное решение парадокса — запретим множества, содержащие себя. Таким образом вывели аксиоматику теории множеств (Цермело — Френкеля).

Пример. Рассмотрим множество всех чисел, которые можно задать в ≤ 1000 слов русского языка. Фраза "наименьшее число, которое нельзя задать в ≤ 1000 слов" содержит ≤ 1000 слов, т.е. такое число принадлежит искомому множеству — парадокс.

Возникает идея — человеческий язык порождает парадоксы, поэтому нужно задать новый язык, который их не порождает. Этот язык и является математической логикой.

0.2 Программистам

Математическая логика применяется в двух областях (для программистов):

- 1. Языки программирования
- 2. Формальные доказательства

Для языков программирования матлогика применима как теория типов (переменных).

Формальные доказательства нужны например для smart-контрактов, где корректность программы критически важна, т.к. если в нём есть ошибка, у вас злоумышленник заберет все деньги, а вы не сможете этот контракт откатить.

1 Исчисление высказываний

1.1 Язык

Определение. Язык содержит в себе:

1. Пропозициональные переменные

 A_i' — большая буква начала латинского алфавита, возможно с индексом и/или штрихом.

2. Связки

Пусть α, β — высказывания. Тогда $(\alpha \to \beta), (\alpha \& \beta), (\alpha \lor \beta), (\neg \alpha)$ — высказывания. α, β называются метапеременными.

Примечание. Математическая логика алгеброподобна (а не анализоподобна), т.к. в ней много определений и мало доказательств.

1.2 Метаязык и предметный язык

У нас есть два различных языка — предметный язык и метаязык. Метаязык — русский, предметный язык мы определили выше.

Пример. $\alpha \to \beta$ — метавыражение; $A \to (A \to A)$ — предметное выражение.

Обозначение. Метапеременные обозначаются различными способами в зависимости от того, что они обозначают:

- Буквы греческого алфавита $(\alpha, \beta, \gamma, ..., \varphi, \psi)$ выражения
- Заглавные буквы конца латинского алфавита (X,Y,Z) произвольные переменные

 $\mbox{\it Пример.}\ X \to Y \Rightarrow A \to B$ — подстановка переменных. Этот синтаксис не формален, мы будем записывать так:

$$(X \to Y)[X := A, Y := B] \equiv A \to B$$

Соглашение. символы логических операций не пишутся в метаязыке.

Пример.

$$(\alpha \to (A \to X))[\alpha := A, X := B] \equiv A \to (A \to B)$$
$$(\alpha \to (A \to X))[\alpha := (A \to P), X := B] \equiv (A \to P) \to (A \to B)$$

1.3 Сокращения записи

- \lor , &, \lnot скобки слева направо (лево-ассоциативные операции) (не коммутативные)
- \rightarrow правоассоциативная.

Примечание. Здесь операторы записаны в порядке их приоритета

Пример. Расставим скобки в следующем выражении:

$$A \rightarrow B \& C \rightarrow D$$

$$A \rightarrow ((B \& C) \rightarrow D)$$

1.4 Теория моделей

Модель состоит из:

Обозначение.

- P некоторое множество предметных переменных
- au множество высказываний предметного языка
- V множество истинностных значений. Классическое $\{\Pi, \Pi\}$
- $[\![\,]\!]: au o V$ оценка высказывания (высказывание ставится в скобки).
- 1. $[\![x]\!]: P \to V$ задается при оценке.
- 2. $[\![\alpha\star\beta]\!]=[\![\alpha]\!]\star[\![\beta]\!]$, где \star есть логическая операция (\vee , &, \neg , \rightarrow), а \star определено естественным образом как элемент метаязыка.

1.5 Теория доказательств

Определение. Схема высказывания — строка, соответствующая определению высказывания + метапеременные.

Пример.

$$(\alpha \to (\beta \to (A \to \alpha)))$$

10 схем аксиом:

- 1. $\alpha \to \beta \to \alpha$
- 2. $(\alpha \to \beta) \to (\alpha \to \beta \to \gamma) \to (\alpha \to \gamma)$
- 3. $\alpha \rightarrow \beta \rightarrow \alpha \& \beta$
- 4. $\alpha \& \beta \rightarrow \alpha$
- 5. $\alpha \& \beta \rightarrow \beta$
- 6. $\alpha \rightarrow \alpha \vee \beta$
- 7. $\beta \rightarrow \alpha \vee \beta$
- 8. $(\alpha \to \gamma) \to (\beta \to \gamma) \to (\alpha \lor \beta \to \gamma)$
- 9. $(\alpha \to \beta) \to (\alpha \to \neg \beta) \to \neg \alpha$
- 10. $\neg \neg \alpha \rightarrow \alpha$

1.6 Правило Modus Ponens и доказательство

Определение. Доказательство (вывод) есть конечная последовательность высказываний $\alpha_1 \dots \alpha_n$, где α_i — либо аксиома, либо $\exists k, l < i : \alpha_k \equiv \alpha_l \to \alpha_i$ (правило Modus Ponens)

Пример. $\vdash A \rightarrow A$

- 1. $A \rightarrow A \rightarrow A$ cx. akc. 1
- 2. $A \rightarrow (A \rightarrow A) \rightarrow A$ cx. akc. 1
- 3. $(A \rightarrow (A \rightarrow A)) \rightarrow (A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A)$ cx. akc. 2
- 4. $(A \rightarrow (A \rightarrow A) \rightarrow A) \rightarrow (A \rightarrow A)$ M.P. 1, 3
- 5. $A \rightarrow A$ M.P. 2, 4

Определение. Доказательство $\alpha_1 \dots \alpha_n$ доказывает выражение β , если $\alpha_n \equiv \beta$

Лекция 2

19 февраля

Обозначение. Большая греческая буква середины греческого алфавита (Γ, Δ, Σ) — список высказываний.

Определение (следование). α следует из Γ (обозначается $\Gamma \models \alpha$), если $\Gamma = \gamma_1 \dots \gamma_n$ и всегда, когда все $[\![\gamma_i]\!] = \mathsf{U}$, то $[\![\alpha]\!] = \mathsf{U}$.

Пример. $\models \alpha - \alpha$ общезначимо.

Определение. Теория Исчисление высказываний корректно, если при любом α из $\vdash \alpha$ следует $\models \alpha$.

Определение. Исчисление **полно**, если при любом α из $\models \alpha$ следует $\vdash \alpha$.

Теорема 1 (о дедукции).

$$\Gamma, \alpha \vdash \beta \Leftrightarrow \Gamma \vdash \alpha \to \beta$$

Доказательство.

- \Leftarrow Пусть $\Gamma \vdash \alpha \to \beta$, т.е. существует доказательство $\delta_1 \dots \delta_n$, где $\delta_n \equiv \alpha \to \beta$ Построим новое доказательство: $\delta_1 \dots \delta_n$, α (гипотеза) , β (М.Р.). Эта новая последовательность доказательство Γ , $\alpha \vdash \beta$
- \Rightarrow Рассмотрим $\delta_1 \dots \delta_n, \Gamma, \alpha \vdash \beta$. Рассмотрим последовательность $\sigma_1 = \alpha \to \delta_1 \dots \sigma_n = \alpha \to \delta_n$. Это не доказательство.

Но эту последовательность можно дополнить до доказательства, так что каждый σ_i есть аксиома, гипотеза или получается через М.Р. Докажем это.

Доказательство. База: n = 0 — очевидно.

Переход: пусть $\sigma_0 \dots \sigma_n$ — доказательство. Покажем, что между σ_n и σ_{n+1} можно добавить формулы так, что σ_{n+1} будет доказуемо.

У нас есть 3 варианта обоснования δ_{n+1}

1. δ_{n+1} — аксиома или гипотеза, $\not\equiv \alpha$

Будем нумеровать дробными числами, потому что нам ничто это не запрещает, т.к. нам нужна только упорядоченность.

$$n + 0.2$$
 δ_{n+1} — верно, т.к. это аксиома или гипотеза

$$n+0.4$$
 $\delta_{n+1} \to \alpha \to \delta_{n+1}$ (аксиома 1)

$$n+1$$
 $\alpha \to \delta_{n+1}$ (M.P. $n+0.2, n+0.4$)

2.
$$\delta_{n+1} \equiv \alpha$$

$$n+0.2, 0.4, 0.6, 0.8, 1$$
 — доказательство $lpha o lpha$

3.
$$\delta_k \equiv \delta_l \rightarrow \delta_{n+1}, \ k, l \leq n$$

$$k \quad \alpha \to (\delta_l \to \delta_{n+1})$$

$$l \quad \alpha \to \sigma_l$$

$$n+0.2 \quad (\alpha \to \sigma_l) \to (\alpha \to (\sigma_l \to \sigma_{n+1})) \to (\alpha \to \sigma_{n+1})$$
 (аксиома 2)

$$n+0.4 \quad (\alpha \to \sigma_l \to \sigma_{n+1}) \to (\sigma \to \sigma_{n+1}) \text{ (M.P. } n+2, l)$$

$$n+1 \quad \alpha \to \sigma_{n+1} \text{ (M.P. } n+0.4, k)$$

Теорема 2. Пусть $\vdash \alpha$. Тогда $\models \alpha$.

Доказательство. Индукция по длине доказательства: каждая $[\![\delta_i]\!]=$ И, если $\delta_1\dots\delta_n$ — доказательство α

Рассмотрим n и пусть $[\![\delta_1]\!] = [\![N, \dots]\!] = [\![N, \dots]\!]$.

Тогда рассмотрим основание δ_{n+1}

1. δ_{n+1} — аксиома. Это упражнение.

Пример.
$$\delta_{n+1} \equiv \alpha \rightarrow \beta \rightarrow \alpha$$

$$\sphericalangle \llbracket \alpha \to \beta \to \alpha \rrbracket^{\llbracket \alpha \rrbracket := a, \llbracket \beta \rrbracket := b} = \mathbf{M}$$

a	b	$\beta \to \alpha$	$\alpha \to \beta \to \alpha$
Л	Л И Л И	И	И
Л	И	Л	И
И	Л	И	И
И	И	И	И

Аналогично можно доказать для остальных аксиом.

2.
$$\delta_{n+1}$$
 – M.P. $\delta_k = \delta_l \rightarrow \delta_{n+1}$

Фиксируем оценку. Тогда $[\![\delta_k]\!] = [\![\delta_l]\!] = \mathsf{И}$. Тогда:

$\llbracket \delta_k rbracket$	$[\delta_{n+1}]$	$\llbracket \delta_k \rrbracket = \llbracket \delta_l \to \delta_{n+1} \rrbracket$
Л	Л	И
Л	И	И
И	Л	Л
И	И	И

Первых трёх вариантов не может быть в силу $[\![\delta_k]\!] = [\![\delta_l]\!] = \mathsf{U}$. Таким образом, $[\![\delta_{n+1}]\!] = \mathsf{U}$.

Теорема 3 (о полноте). Пусть $\models \alpha$. Тогда $\vdash \alpha$.

Фиксируем набор переменных из α : $P_1 \dots P_n$.

Рассмотрим $\llbracket \alpha \rrbracket^{P_1:=x_1\dots P_n:=x_n} = \mathsf{И}$

Обозначение.
$$[\beta]\alpha \equiv \begin{cases} \alpha, & \llbracket\beta\rrbracket = \mathbf{H} \\ \neg\alpha, & \llbracket\beta\rrbracket = \mathbf{J} \end{cases} \mathbf{u}_{\,[x]}\alpha \equiv \begin{cases} \alpha, & x = \mathbf{H} \\ \neg\alpha, & x = \mathbf{J} \end{cases}$$

Докажем, что
$$\underbrace{_{[x_1]}P_1,\ldots_{[x_n]}P_n}_{\Pi} \vdash {}_{[\alpha]}\alpha$$

Доказательство. По индукции по длине формулы:

База: $\alpha = P_{i\ [P_i]}P_i \vdash_{[P_i]}P_i$, значит $\Pi \vdash_{[P_i]}P_i$

Переход: пусть $\eta, \zeta: \Pi \vdash_{[\eta]} \eta, \Pi \vdash_{[\zeta]} \zeta$ (по индукционному предположению). Покажем, что $\Pi \vdash_{[\eta\star\zeta]} \eta\star\zeta$, где \star — все связки

Это упражнение.

Лемма 1. $\Gamma, \eta \vdash \zeta, \Gamma, \neg \eta \vdash \zeta$. Тогда $\Gamma \vdash \zeta$.

Доказательство. Было в ДЗ.

Доказательство теоремы о полноте. $\models \alpha$, т.е. $_{[x_1]}P_1\dots _{[x_n]}P_n \vdash _{[\alpha]}\alpha$. Но $[\![\alpha]\!] = \Pi$ при любой оценке. Тогда $_{[x_1]}P_1\dots _{[x_n]}P_n \vdash \alpha$ при все x_i .

Лемма 2 (об исключении допущения). Если $_{[x_1]}P_1\dots _{[x_n]}P_n \vdash \alpha$ и $_{[x_1]}P_1\dots _{[x_n]} \neg P_n \vdash \alpha$, то $_{[x_1]}P_1\dots _{[x_{n-1}]}P_{n-1} \vdash \alpha$

$$\underbrace{ \stackrel{[x_1]}{P_1 \dots [x_{n-1}]} P_{n-1}, P_n \vdash \alpha}_{[x_1]} \underbrace{ \stackrel{\text{по лемме}}{\Longrightarrow} [x_1]} P_1 \dots [x_{n-1}]}_{[x_{n-1}]} P_{n-1} \vdash \alpha$$

2 Интуиционистская логика

2.1 ВНК-интерпретация (Brouwer-Heyting-Kolmogorov)

Определим выражения:

- α & β есть α и β
- $\alpha \vee \beta$ есть α либо β и мы знаем, какое
- $\alpha \to \beta$ есть способ перестроить α в β
- \perp конструкция без построения (bottom)
- $\neg \alpha \equiv \alpha \rightarrow \perp$

Теория доказательств есть классическая логика без десятой схемы аксиомы, вместо нее $\alpha \to \neg \alpha \to \beta$

Теория моделей — теория, в которой $[\![\alpha]\!]$ — открытое множество в Ω — топологическом пространстве.

В ней определено следующее:

$$[\![\alpha \& \beta]\!] = [\![\alpha]\!] \cap [\![\beta]\!]$$

$$[\![\alpha \lor \beta]\!] = [\![\alpha]\!] \cup [\![\beta]\!]$$

$$[\![\alpha \to \beta]\!] = ((X \setminus [\![\alpha]\!]) \cup [\![\beta]\!])^{\circ}$$

$$[\![\bot]\!] = \varnothing$$

$$[\![\neg \alpha]\!] = (X \setminus [\![\alpha]\!])^{\circ}$$

Лекция 3

26 февраля

2.2 Естественный (натуральный) вывод

Рассмотрим новый способ записи доказательств — в виде деревьев, называемый естественным выводом.

Тогда язык будет состоять из переменных $A\dots Z,\vee,\&,\bot,\vdash,-$

У нас используются следующие правила вывода:

1.
$$\frac{\Gamma \vdash \gamma, \gamma \in \Gamma}{\Gamma}$$
 (аксиома)

2.
$$\frac{\Gamma, \varphi \vdash \psi}{\Gamma \vdash \varphi \rightarrow \psi}$$
 (введение \rightarrow)

3.
$$\frac{\Gamma \vdash \varphi \qquad \Gamma \vdash \psi}{\Gamma \vdash \varphi \And \psi} \ \ (\text{введение} \And)$$

4.
$$\frac{\Gamma \vdash \varphi \to \psi \qquad \Gamma \vdash \varphi}{\Gamma \vdash \psi} \ \ (\text{удаление} \to)$$

5.
$$\frac{\Gamma \vdash \varphi \And \psi}{\Gamma \vdash \varphi}$$
 (удаление &)

6.
$$\frac{\Gamma \vdash \varphi \And \psi}{\Gamma \vdash \psi} \ \ (\text{удаление} \And)$$

7.
$$\frac{\Gamma \vdash \varphi}{\Gamma \vdash \psi \lor \varphi}$$
 (введение \lor)

8.
$$\frac{\Gamma \vdash \psi}{\Gamma \vdash \psi \lor \varphi}$$
 (введение \lor)

9.
$$\frac{\Gamma \vdash \bot}{\Gamma \vdash \varphi}$$
 (удаление \bot)

$$10. \ \, \frac{\Gamma, \varphi \vdash \rho \qquad \Gamma, \psi \vdash \rho \qquad \Gamma \vdash \varphi \lor \psi}{\Gamma \vdash \rho} \\ \, \Pi \textit{ример.} \ \, \frac{\overline{A \vdash A}}{\vdash A \to A} \ \, \text{(введение \&)} \\ \, \frac{\overline{A \& B \vdash A \& B}}{A \& B \vdash B} \ \, \frac{\overline{A \& B \vdash A \& B}}{A \& B \vdash A} \ \, \text{(акс.)} \\ \, \frac{\overline{A \& B \vdash A \& B}}{\vdash A \& B \to B \& A} \ \, \text{(введение \rightarrow)}$$

2.3 Теория решеток

Определение.

- **Частичный порядо**к рефлексивное, транзитивное, антисимметричное отношение.
- Линейный порядок сравнимы любые два элемента.
- Наименьший элемент S такой $k \in S$, что если $x \in S$, то $k \le x$
- Минимальный элемент S такой $k \in S$, что нет $x \in S$, что $x \le k$
- Множество верхних граней a и $b : \{x \mid a \le x \& b \le x\}$.
- Множество нижних граней a и $b : \{x \mid x \le a \& x \le b\}.$
- a+b наименьший элемент множества верхних граней (может не существовать).
- $a \cdot b$ наибольший элемент множества нижних граней.
- Решетка множество + отношение, где для каждых a, b есть как a + b, так и $a \cdot b$.
- Дистрибутивная решетка если всегда $a\cdot(b+c)=a\cdot b+a\cdot c$

Лемма 3. В дистрибутивной решетке $a + b \cdot c = (a + b)(a + c)$

Определение.

- Псевдодполнение a и b обозначается $a \to b$ и равно наибольшему элементу множества $\{c \mid a \cdot c \leq b\}$
- Импликативная решетка решетка, где $\forall a,b \; \exists a \to b$
- 0 наименьший элемент решетки.
- 1 наибольший элемент решетки.
- Псевдобулева алгебра (алгебра Гейтинга) импликативная решетка с нулём.
- Булева алгебра псевдобулева алгебра, такая что $a + (a \to 0) = 1$

Пример.

$$\begin{array}{ccc}
1 & \longrightarrow & b \\
\downarrow & & \downarrow \\
a & \longrightarrow & 0
\end{array}$$

$$a \cdot 0 = 0$$
$$1 \cdot b = b$$
$$a \cdot b = 0$$
$$a + b = 1$$

Лемма 4. В импликативной решетке всегда есть 1.

Доказательство. Возьмём $a \to a = 1$ для некоторого a.

$$a \to a = \mathbf{h}\{x \mid a \cdot x \leq a\} = \mathbf{h}(A)$$

Таким образом, A имеет наибольший элемент и это $a \to a$

Теорема 4.

- Любая алгебра Гейтинга модель интуиционистского исчисления высказываний.
- Любая булева алгебра модель классического исчисления высказываний.

Определение (топология). Рассмотрим множество X, называемое "носитель" и $\Omega \subset \mathcal{P}(X)$ — подмножество подмножеств X, называемое "топология", такое что:

- 1. $\bigcup_{\alpha} x_i \in \Omega$, где $x_i \in \Omega$
- 2. $\bigcap_{i=1}^n x_i \in \Omega$, где $x_i \in \Omega$
- 3. $\emptyset \in \Omega, X \in \Omega$

Пример. Пусть X — узлы дерева, Ω — все множества узлов, которые содержат узлы вместе со всеми потомками.

Определение.

$$X^\circ \stackrel{\mathrm{def}}{=} \mathrm{наиб}\{w \mid w \subseteq X, w - \mathrm{открыто}\}$$

Теорема 5. Пусть (X,Ω) — топологическое пространство, $a+b=a\cup b, a\cdot b=a\cap b, a\to b=((X\setminus a)\subset b)^\circ, a\le b\Leftrightarrow a\subseteq b,$ тогда (Ω,\le) есть алгебра Гейтинга.

Пример. Дискретная топология — $\Omega = \mathcal{P}(X)$. Тогда (Ω, \leq) — булева алгебра.

1.
$$X^{\circ} = X$$

2.
$$a \to 0 = (X \setminus a \cup \varnothing) = X \setminus a$$

Таким образом, $a+(a \rightarrow 0)=a+X\setminus a=X$

Определение. Пусть X — все формулы логики. Определим отношение порядка $\alpha \leq \beta$ это $\alpha \vdash \beta$. Будем говорить, что $\alpha \approx \beta$, если $\alpha \vdash \beta$ и $\beta \vdash \alpha$.

 $(X/_{\approx}, \leq)$ есть алгебра Гейтинга.

Определение. $(X/_\approx,\leq)$ — алгебра Линденбаума, где X,\approx из интуиционистской логики.

Теорема 6. Алгебра Гейтинга — полная модель интуиционистской логики.

Доказательство. $\models \alpha$ — истинно в любой алгебре Гейтинга, в частности в $(X/_\approx, \leq)$. $[\![\alpha]\!] = [\![A \to A]\!]$, т.е. $\alpha \in [A \to A]_\approx$, т.е. $A \to A \vdash \alpha$.

Лекция 4. 5 марта стр. 16 из 38

Лекция 4

5 марта

Определение. Полный порядок — линейный, где в каждом подмножестве есть наименьший элемент. Множество с полным порядком называют вполне упорядоченным.

 Π ример. \mathbb{N} — вполне упорядоченное множество

 \mathbb{R} — не вполне упорядоченное множество, т.к. (a,b) не имеет наименьшего $\forall a,b$. Кроме того, \mathbb{R} не имеет наименьшего.

Определение. Предпорядок — транзитивное, рефлексивное отношение.

Как мы знаем из домашнего задания, по предпорядку можно построить частичный порядок, сжав компоненты связности в классы эквивалентности.

2.4 Табличные модели

Определение. Табличная модель для интуиционистского исчисления высказываний:

- V множество истинностных значений
- $f_{\rightarrow}, f_{\&}, f_{\lor}: V^2 \rightarrow V$
- Выделенное истинное значение $T \in V$
- Оценка переменных $[\![P_i]\!] \in V, f_{\mathcal{P}} : P_i \to V$

$$M [P_i] = f_{\mathcal{P}}(P_i), [\alpha \star \beta] = f_{\star}([\alpha], [\beta]), [\neg \alpha] = f_{\neg}([\alpha])$$

 $\models \alpha$ означает, что $\llbracket \alpha \rrbracket = T$ при любой $f_{\mathcal{P}}$

Определение. Конечная табличная модель — табличная модель с конечным V.

Теорема 7. У интуиционистского исчисления высказываний не существует корректной полной табличной модели.

Лекция 4. 5 марта стр. 17 из 38

Неформально эта теорема говорит, что нельзя считать, что в интуиционистской логике есть три значения — истинна, ложь и "неизвестно".

2.5 Модели Крипке

Идея моделей Крипке следующая: общезначимое утверждение истинно во всех мирах.

Определение (модели Крипке).

- 1. $W = \{W_i\}$ множество миров
- 2. \leq частичный порядок на W
- 3. Отношение вынужденности $W_i \Vdash P_i$, где P_i переменная, т.е. (\Vdash) $\subset W \times \mathcal{P}$

При этом, если $W_i \Vdash P_i$ и $W_i \leq W_k$, то $W_k \Vdash P_i$

Определение.

- $W_i \Vdash \alpha$ и $W_i \Vdash \beta$, тогда (и только тогда) $W_i \Vdash \alpha \& \beta$
- $W_i \Vdash \alpha$ или $W_i \Vdash \beta$, тогда (и только тогда) $W_i \Vdash \alpha \lor \beta$
- Пусть во всех $W_i \leq W_j$ всегда, когда $W_j \Vdash \alpha$, имеет место $W_j \Vdash \beta$. Тогда $W_i \Vdash \alpha \to \beta$
- $W_i \Vdash \neg \alpha$ значит, что α не вынуждено нигде, начиная с W_i : $W_i \leq W_j \Rightarrow W_i \nvDash \alpha$

Теорема 8. Если $W_i \Vdash \alpha$ и $W_i \leq W_j$, то $W_i \Vdash \alpha$

Определение. Если $W_i \Vdash \alpha$ при всех $W_i \in W$, то $\models \alpha$

Теорема 9. ИИВ корректно в моделях Крипке.

Доказательство. Рассмотрим (W,Ω) — топологию, где $\Omega = \{w \subset W \mid \text{если } w_i \in w, w_i \leq w_j, \text{ то } w_j \in w\}$. Это можно представить как множество подлесов, где любая вершина входит со своими потомками.

 $\{W_k \mid W_k \Vdash P_i\}$ — открытое множество, что очевидно из определения Ω и \Vdash .

Примем $[\![P_i]\!] = \{W_k \mid W_k \Vdash P_j\}$ и аналогично $[\![\alpha]\!] = \{W_k \mid W_k \Vdash \alpha\}$. Корректность этого определения докажем в ДЗ.

Поскольку любая топология является корректной моделью ИИВ, искомое доказано. \Box

Доказательство теоремы о нетабличности. Предположим обратное, т.е. существует конечная табличная модель, |V|=n.

Рассмотрим следующую формулу:

$$\varphi_n = \bigvee_{\substack{1 \le i, j \le n+1 \\ i \ne j}} (P_i \to P_j \& P_j \to P_i)$$

2. $\models \varphi_n$ в V по принципу Дирихле: $\exists i \neq j : [\![P_i]\!] = [\![P_j]\!]$, а значит $[\![P_i \to P_j]\!] = \mathsf{И}$, и соответственно $[\![\varphi_n]\!] = \mathsf{I}\mathsf{U}$.

Т.к. $\models \varphi_n$, то $\vdash \varphi_n$, но это не так — противоречие.

Определение. Дизъюнктинвость ИИВ: $\vdash \alpha \lor \beta$ влечет $\vdash \alpha$ или $\vdash \beta$

Определение. Алгебра Гёделя — алгебра Гейтинга, в которой из a+b=1 следует a=1 или b=1

Определение. Пусть $\mathcal{A}-$ алгебра Гейтинга. Тогда $\Gamma(\mathcal{A})$ получается переименовыванием 1 в ω и добавлением нового элемента $1_{\Gamma(\mathcal{A})}$, являющегося единицей для новой алгебры.

Теорема 10. $\Gamma(\mathcal{A})$ есть алгебра Гейтинга и $\Gamma(\mathcal{A})$ Гёделева.

Доказательство. Очевидно.

Определение. Гомоморфизм алгебр Гейтинга — отображение $\varphi: \mathcal{A} \to \mathcal{B}$, где \mathcal{A}, \mathcal{B} — алгебры Гейтинга, $\varphi(a \star b) = \varphi(a) \star \varphi(b)$, $\varphi(1_{\mathcal{A}}) = 1_{\mathcal{B}}$, $\varphi(0_{\mathcal{A}}) = 0_{\mathcal{B}}$

Теорема 11. Если $a \leq b$, то $\varphi(a) \leq \varphi(b)$

Определение. Пусть α — формула ИИВ, f,g — оценки ИИВ, где f: ИИВ $\to \mathcal{A},g:$ ИИВ $\to \mathcal{B}.$ Тогда φ согласовано с f,g, если $\varphi(f(\alpha))=g(\alpha)$

Теорема 12. Если $\varphi:\mathcal{A}\to\mathcal{B}$ согласована с f,g и $[\![\alpha]\!]_g\neq 1_{\mathcal{B}}$, то $[\![\alpha]\!]_f\neq 1_{\mathcal{A}}$

Доказательство. Рассмотрим алгебру Линденбаума \mathcal{L} , $\Gamma(\mathcal{L})$ и $\varphi:\Gamma(\mathcal{L})\to\mathcal{L}$ — гомоморфизм.

$$arphi(x) = egin{cases} 1_{\mathcal{L}}, x = \omega \ 1_{\mathcal{L}}, x = 1_{\Gamma(\mathcal{L})} \ x,$$
 иначе

Пусть $\vdash \alpha \lor \beta$. Тогда $[\![\alpha \lor \beta]\!]_{\Gamma(\mathcal{L})} = 1_{\Gamma(\mathcal{L})}$, но по Гёделевости $\Gamma(\mathcal{L})$ $[\![\alpha]\!] = 1$ или $[\![\beta]\!] = 1$.

Пусть $ot \vdash \alpha$ и $ot \vdash \beta$. Тогда $\varphi(\llbracket \alpha \rrbracket) \neq 1_{\mathcal{L}}$ и $\varphi(\llbracket \beta \rrbracket) \neq 1_{\mathcal{L}}$. Тогда $\llbracket \alpha \rrbracket_{\Gamma(\mathcal{L})} \neq 1_{\mathcal{L}}, \llbracket \beta \rrbracket \neq 1_{\mathcal{L}} -$ противоречие.

Лекция 5

12 марта

3 Изоморфизм Карри-Ховарда

Примечание. Эта тема в нашем курсе рукомахательная.

Пусть p — программа, т.е. функция, принимающая α и возвращающая β , т.е. $p:\alpha\to\beta$

Можем посмотреть на это с другой стороны: p доказательство, что из α следует β , например в Haskell f a = а гласит, что f доказывает, что A -> A, где подразумевается $\forall A$.

Такое сопоставление программам доказательств и высказываниям типов называется изоморфизмом Карри-Ховарда:

логическое исчисление	типизированное λ -исчисление
логическая формула	тип
доказательство	программа
доказуемая формула	обитаемый тип
\rightarrow	функция
&	упорядоченная пара
V	алгебраический тип <i>(тип-сумма)</i>

Примечание. Обитаемый тип — тип, у которого есть хотя бы один экземпляр.

Несложно заметить, что логика, соответствующая λ -исчислению, является интуиционистской, поэтому мы её в основном изучаем.

3.1 Алгебраические типы

Рассмотрим следующее определение списка в Pascal:

```
type list : record
nul : boolean;
```

```
case nul of
        true: ;
        false: next ^list
    end
end;
Рассмотрим то же самое в C, опустив bool и скажем, что nul = (next == null) (это в
какой-то степени костыльно):
struct list {
    next: *list;
}
Определим таким же способом дерево:
struct tree {
    tree* left;
    tree* right;
    int value;
}
```

Это ещё более костыльно, т.к. то, является ли вершина листом, закодировано в неявном виде.

Определение. Отмеченное (дизъюнктное) объединение множеств A, B обозначается $A \sqcup B$ или $A \uplus B$ 1 и равно $\{\langle ``A", a \rangle \mid a \in A\} \cup \{\langle ``B", b \rangle \mid b \in B\}$.

Примечание. Это определение интуиционистское по своей сути, т.к. если дано $s \in A \sqcup B$, то мы знаем, из какого множества s.

Определение. Тип, соответствующий такому объединению множеств, называется алгебраическим

```
Пример. В C++ такой тип реализован как std::variant<...>
Пример. Список в Haskell:

data List a = nil | Cons a (List a)
```

3.2 Применение восьмой аксиомы интуиционистской логики

Вспомним восьмую аксиому интуиционистской 2 логики и запишем её как правило натурального вывода:

$$\frac{\Gamma \vdash \alpha \to \gamma \qquad \Gamma \vdash \beta \to \gamma \qquad \Gamma \vdash \alpha \vee \beta}{\Gamma \vdash \gamma}$$

¹ или ещё десятком других символов

² и классической

Рассмотрим программу в Haskell, которая преобразует список в строку:

```
let rec string_of_list l =
   match l with
     Nil -> "Nil"
     Cons(head, tail) -> head ^ ":" ^ string_of_list tail
```

Подставим в рассматриваемую аксиому соответствующие значения:

$$\frac{\Gamma \vdash Nil \to string \quad \Gamma \vdash list \to string \quad \Gamma \vdash Nil \lor list}{\Gamma \vdash string}$$

Несложно заметить, что эта аксиома описывает match в Haskell — мы даем выражения после "->", т.е. правила Nil \rightarrow string, list \rightarrow string и элемент Nil или list, a match возвращает string.

4 Исчисление предикатов

4.1 Язык исчисления предикатов

Выражения в этом языке бывают двух видов:

- 1. Логические выражения, называемые "предикаты" или "формулы"
- 2. Предметные выражения, называемые "термы"

 θ — метапеременная для термов.

Термы бывают двух видов:

- Атомы:
 - Предметные переменные обозначаются буквами $a, b, c \dots$
 - Метапеременные обозначаются буквами x,y,z
- Применение функциональных символов:
 - Функциональные символы: f, g, h и записывается $f(\theta_1 \dots \theta_n)$
 - Метапеременная тоже обозначается f

Логические выражения:

- Применение предикатных символов $P(\theta_1, \dots \theta_n)$, где P метапеременная для предикатных символов, а предикатный символ $A, B, C \dots$
- Связки $\&, \lor, \neg, \to c$ правилами из языка классической логики.
- Кванторы 3 $\forall x. \varphi$ или $\exists x. \varphi$, где φ любое логическое выражение.

³ По записи кванторов нет общепринятого соглашения.

Мы используем жадность кванторов. 4 Это значит, что квантор берет в φ все, пока не встретит конец выражения или скобку, которая оканчивает этот квантор.

Пример.
$$\forall x.P(x) \& \forall y.P(y) \equiv \forall x.(P(x) \& (\forall y.P(y)))$$

4.2 Теория моделей

Определим оценку формулы в исчислении предикатов:

- 1. Фиксируем D предметное множество, $V = \{ \mathbf{И}, \mathbf{Л} \}$
- 2. Каждому $f_i(x_1 \dots x_n)$ сопоставим функцию $f_{f_n}:D^n \to D$
- 3. Каждому $P_j(x_1\dots x_n)$ сопоставим функцию $^{\mathfrak s}\, f_{p_n}:D^n o V$
- 4. Каждой x_i сопоставим $f_{x_i} \in D$
- $\llbracket x \rrbracket = f_{x_i}$
- $[\![\alpha \star \beta]\!]$ так же, как в исчислении высказываний.
- $[P_i(\theta_1 \dots \theta_n)] = f_{p_i}([\theta_1] \dots [\theta_n])$
- $\llbracket f_i(\theta_1 \dots \theta_n) \rrbracket = f_{f_i}(\llbracket \theta_1 \rrbracket \dots \llbracket \theta_m \rrbracket)$
- $[\![orall x. arphi]\!] = egin{cases} \mbox{\tt И}, & \mbox{\rm если} \ [\![arphi]\!] = \mbox{\tt И} \mbox{ при всех } k \in D \\ \mbox{\tt Л}, & \mbox{\rm иначе} \end{cases}$

Пример. $\forall x. \forall y. E(x,y)$

Пусть
$$D=\mathbb{N}$$
, $E(x,y)=egin{cases} \mathtt{M}, & x=y \\ \mathtt{J}, & x \neq y \end{cases}$

$$[\![\forall x. \forall y. E(x,y)]\!]_{x:=1,y:=2} =$$
 Л, т.к. $[\![E(x,y)]\!] =$ Л.

Вспомним определение предела последовательности из матанализа:

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ |a_n - a| < \varepsilon$$

Перепишем это определение с богомерзкого языка матанализа на православный язык исчисления предикатов. 6

 $^{^4}$ В отношении жадности кванторов также нет соглашения; встречается запись, где квантор — унарная операция, аналогичная \neg

^{5,} называемую предикат

⁶ Это термины лектора, все претензии от адептов матанализа и других религий — к нему.

Пусть
$$(>)(a,b) = G(a,b), |a| = m_1(a), (-)(a,b) = m_-(a,b), m_a : n \mapsto a_n, 0() = m_0$$

$$\forall \varepsilon.\varepsilon \to 0 \ \exists N. \forall n. (n > N) \to (|a_n - a| < \varepsilon)$$

$$\forall \varepsilon.\varepsilon \to 0 \ \exists N. \forall n. (n > N) \to (|a_n - a| < \varepsilon)$$

$$\forall e. G(e, m_0) \ \exists n_0. \forall n. G(n, n_0) \to G(e, m_1(m_-(m_a(n), a))) < \varepsilon)$$

4.3 Теория доказательств

Bce аксиомы исчисления высказываний + Modus Ponens + две схемы аксиом + два правила:

```
1. (\forall x.\varphi) \to \varphi[x := \theta]
```

2.
$$\varphi[x := \theta] \to \exists x. \varphi$$

Обе эти схемы применимы только если θ свободен для подстановки вместо x в φ , т.е. никакое свободное вхождение x в θ не станет связным.

Пример.

```
int f(int x) {
    x = y;
}
После замены y := x код станет следующим:
int f(int x) {
```

int f(int x) {
 x = x;
}

И код потеряет свой смысл.

Правила следующие:

1.
$$\frac{\varphi \to \psi}{\varphi \to (\forall x. \psi)}$$
 (правило \forall)

2.
$$\frac{\psi \to \varphi}{(\exists x. \psi) \to \varphi}$$
 (правило \exists)

Лекция 6

19 марта

 Π ример. $\frac{\varphi \to \psi}{\exists x. (\varphi \to \psi)}$ — возможно доказуемо, но это не правило вывода для \exists .

Определение. $\alpha_1 \dots \alpha_n$ — доказательство, если выполняется одно из:

- 1. α_i аксиома
- 2. Существует j, k < i, такие что $\alpha_k = \alpha_i \rightarrow \alpha_i$
- 3. Существует j, такое что $\alpha_j=\varphi\to\psi$ и $\alpha_i=(\exists x.\varphi)\to\psi$, причём x не входит свободно в ψ .
- 4. Существует j, такое что $\alpha_j=\psi \to \varphi$ и $\alpha_i=\psi \to \forall x. \varphi$, причём x не входит свободно в ψ .

4.4 Вхождение

Рассмотрим некоторую формулу и рассмотрим вхождения x в неё:

$$(P(\underbrace{x}_1) \lor Q(\underbrace{x}_2)) \to (R(\underbrace{x}_3) \& (\underbrace{\forall \underbrace{x}_4.P_1(\underbrace{x}_5)}))$$

- Вхождение 4 связывающее
- Вхождение 5 связано вхождением 4
- Вхождения 1-3 свободны.

Случай множественного связывания:

Область действия
$$\forall$$
 по x

$$\forall x. \forall y. \quad \forall x. \forall y. \quad \forall x. P(x)$$
Область действия \forall по x

Определение. Вхождение свободно, если не связано.

Примечание. Свободно входящие переменные нельзя переименовывать, т.к. к формуле могут приписать кванторы, которые используют данные имена переменных. Это ограничение не распространяется на связанные переменные.

Любая аксиома есть предикат.

4.5 Свобода для подстановки

Определение. θ свободен для подстановки вместо x в φ , если никакая свободная переменная в θ не станет связанной в $\varphi[x:=\theta]$

 $\textit{Обозначение. } \varphi[x := \theta]$ — заменить все свободные вхождения x в φ на θ

Пример.

$$(\forall x. \forall y. \forall x. P(x))[x := y] \equiv \forall x. \forall y. \forall x. P(x)$$
$$P(x) \lor \forall x. P(x)[x := y] \equiv P(y) \lor \forall x. P(x)$$
$$(\forall y. x = y)[x := y] \equiv \forall y. y = y$$

В этой формуле новый y связался.

Примечание. В определении можно опустить "*свободная*" в нашем исчислении, но это не верно в достаточно извращенных исчислениях.

Лемма 5. Пусть $\vdash \alpha$. Тогда $\vdash \forall x.\alpha$

Доказательство. Т.к. $\vdash \alpha$, то существует $\gamma_1 \dots \gamma_n : \gamma_n \equiv \alpha$

Создадим новое доказательство.

Лемма 6. $(\alpha \to \varphi \to \psi) \to \alpha \& \varphi \to \psi$

Лемма 7. $(\alpha \& \varphi \rightarrow \psi) \rightarrow (\alpha \rightarrow \varphi \rightarrow \psi)$

Доказательство двух лемм. По теореме о полноте исчисления высказываний.

Теорема 13 (о дедукции). Пусть даны Γ , α , β .

- 1. Если $\Gamma, \alpha \vdash \beta$, то $\Gamma \vdash \alpha \to \beta$ при условии, если в доказательстве $\Gamma, \alpha \vdash \beta$ не применялись правила для \forall, \exists по переменным, входящим свободно в α .
- 2. Если $\Gamma \vdash \alpha \rightarrow \beta$, то $\Gamma, \alpha \vdash \beta$.

Доказательство. По индукции. Пусть доказано $\alpha \to \delta_i$ для $i \in [1,n]$, докажем $\alpha \to \delta_{n+1}$. Рассмотрим случаи:

- 1. Схемы аксиом 1-10 аналогично¹.
- 2. М.Р. аналогично
- 3. Аксиомы 11-12 аналогично первому пункту.
- 4. Пусть δ_{n+1} получено правилом $\forall:\delta_{n+1}\equiv\varphi\to \forall x.\psi$ и существует $\delta_k\equiv\varphi\to\psi$ и $k\leq n$, причём x не входит свободно в φ .

При этом в новом доказательстве уже доказано $lpha o \delta_k$

Примечание. Доказательство пункта 2 аналогично исходному доказательству для исчисления высказываний.

¹ доказательству ИВ

Лекция 7

2 апреля

Определение. Будем говорить, что $\Gamma \models \alpha$, т.е. α следует из Γ , если при всех оценках, таких что все $\gamma \in \Gamma$ $[\![\gamma]\!] = \mathcal{U}$, выполнено $[\![\alpha]\!] = \mathcal{U}$

Пример (странный случай). $x=0 \vdash \forall x.x=0$, но $x=0 \nvDash \forall x.x=0$

Условие для корректности: правила для кванторов по свободным переменным из Γ запрещены. Тогда $\Gamma \vdash \alpha$ влечёт $\Gamma \models \alpha$ и $[\![\alpha[x := \Theta]]\!] = [\![\alpha]\!]^{x := [\![\Theta]\!]}$

Примечание. Здесь и далее мы предполагаем условие корректности.

4.6 Полнота исчисления предикатов

Определение. Γ — непротиворечивое. если $\Gamma \nvdash \alpha$ & $\neg \alpha$ ни при каком α

Пример.

- Непротиворечивое: \varnothing , $A \lor \neg A$
- Противоречивое: $A \& \neg A$

Мы будем рассматривать непротиворечивое множество замкнутых бескванторных формул и обозначать (...).

Пример.

- {*A*}
- $\{0 = 0\}$

Определение. Моделью для (...) Γ называется такая модель, что каждая формула из Γ оценивается в И.

Определение. (...) Γ называется полным, если для каждой замкнутой бескванторной формулы α либо $\alpha \in \Gamma$, либо $\neg \alpha \in \Gamma$.

Аналогично определяется для не бескванторного множества.

Теорема 14. Если Γ (. . .) и α — замкнутая бескванторная формула, то либо Γ \cup $\{ \neg \alpha \}$ — (. . .)

Аналогичное верно для не бескванторного множества.

Доказательство. Пусть и $\Gamma \cup \{\alpha\}$, и $\Gamma \cup \{\neg \alpha\}$ — противоречивы, т.е.:

$$\Gamma, \alpha \vdash \beta \& \neg \beta \quad \Gamma, \neg \alpha \vdash \beta \& \neg \beta$$

$$\begin{cases} \Gamma \vdash \alpha \to \beta \& \neg \beta \\ \Gamma \vdash \neg \alpha \to \beta \& \neg \beta \end{cases} \Rightarrow \gamma \vdash \beta \& \neg \beta$$

Т.е. Γ — противоречиво. Это противоречие.

Теорема 15. Если $\Gamma - (\dots)$ и в языке счётное количество формул¹, то можно построить $\Delta -$ полное (\dots) , такое что $\Gamma \subset \Delta$.

Аналогичное верно для не бескванторного множества.

Доказательство. Пусть $\varphi_1, \varphi_2 \dots$ замкнутые бескванторные формулы исчисления предикатов.

$$\Gamma_0 := \Gamma$$

 $\Gamma_1:=\Gamma_0\cup\{arphi_1\}$ или $\Gamma_0\cup\{\lnotarphi_1\}$ — смотря что непротиворечиво

 $\Gamma_2 := \Gamma_1 \cup \{\varphi_2\}$ или $\Gamma_1 \cup \{\neg \varphi_2\}$ — смотря что непротиворечиво

:

 $\Gamma^* := \bigcup_i \Gamma_i$, тогда Γ^* — полное и непротиворечивое. Первое очевидно, покажем второе.

Пусть $\Gamma^* \vdash \beta \& \neg \beta$. Это конечное доказательство $\delta_1 \dots \delta_s$ использует конечное число гипотез, пусть они $\gamma_1 \dots \gamma_k$ и $\gamma_i \in \Gamma_{R_i}$. Возьмём $\Gamma_{\max(R_i)}$. Тогда $\Gamma_{\max(R_i)} \vdash \beta \& \neg \beta$ — противоречие.

Теорема 16. Любое полное (...) Γ имеет модель, т.е. существует оценка $[\![]\!]$, такая что если $\gamma \in \Gamma$, то $[\![\gamma]\!] = \mathsf{M}$

Доказательство. Пусть D — все записи из функциональных символов:

$$[f_0^n]^2 \Rightarrow "f_0^n"$$

¹ В исчислении предикатов это верно.

² константа

$$[\![f_k^n(\theta_1\dots\theta_k)]\!] \Rightarrow "f_k^n("+[\![\theta_1]\!]","+\dots+","+[\![\theta_n]\!]+")"$$

Предикатные символы:
$$[\![P(\theta_1\dots\theta_n)]\!]=\begin{cases} \mathtt{M}, & P(\theta_1\dots\theta_n)\in\Gamma\\ \mathtt{JI}, & \mathtt{uhave} \end{cases}$$

Свободных предметных переменных нет, поэтому для них не нужно придумывать оценку.

Так построенная модель — модель для Γ . Докажем это по индукции по количеству связок: любая формула α , имеющая $\leq n$ связок, истинно $\Leftrightarrow \alpha \in \Gamma$.

База. Очевидно.

Переход. Рассмотрим случай $\alpha \& \beta$.

- 1. Если $\llbracket \alpha \rrbracket =$ И и $\llbracket \beta \rrbracket =$ И, то α & $\beta \in \Gamma$
- 2. Если $\llbracket \alpha \rrbracket \neq \mathsf{И}$ или $\llbracket \beta \rrbracket \neq \mathsf{И}$, то $\alpha \& \beta \notin \Gamma$

Определение. Предварённая нормальная форма — форма, где $\forall \exists \forall \dots (\tau)$, где τ — формула без кванторов.

Теорема 17. Если φ — формула, то существует ψ в предварённой нормальной форме и при этом $\varphi \to \psi$ и $\psi \to \varphi$.

Теорема 18 (Гёделя о полноте исчисления предикатов). Если Γ — полное непротиворечивое множество замкнутых формул, то оно имеет модель.

Доказательство. План таков: рассмотрим Γ — полное непротиворечивое множество замкнутых формул. Построим по нему Γ^Δ — п.н.м. бескванторных з.ф. Построим по нему по теореме о существовании модели модель M^Δ и покажем, что M^Δ — модель для Γ :

$$\Gamma$$
 M id \uparrow id \uparrow $\Gamma^{\Delta} \stackrel{ ext{Teopema}}{\longrightarrow} M^{\Delta}$

Рассмотрим $\Gamma_0\subset \Gamma_1\ldots\Gamma_i\cdots\subset \Gamma^*$ и $\Gamma^*=\bigcup_i\Gamma_i$, а также $\Gamma_0=\Gamma_1$, где все формулы в предварённой нормальной форме. Определим переход $\Gamma_i\to\Gamma_{i+1}$.

Построим семейство функциональных символов d^i_j , которые нигде ранее не использовались.

Рассмотрим случаи того, чем является $\varphi_j \in \Gamma_i$.

1. φ_j без кванторов — не трогаем.

- 2. $\varphi_j \equiv \forall x.\psi$ добавим все формулы вида $\psi[x:=\theta]$, где θ терм, состваленный из $f,d_0^l,d_1^l,\dots d_{i-1}^l$
- 3. $\varphi_j \equiv \exists x. \psi$ добавим формулу $\psi[x := d_i^j]$

Таким образом, мы получим $\Gamma_{i+1} = \Gamma_i \cup \{$ все добавленные формулы $\}.$

 $\mathit{Следствие}$ 18.1. Пусть $\models \alpha$ и α замкнута, тогда $\vdash \alpha.$

Доказательство. Пусть $\models \alpha$, но не $\nvdash \alpha$. Значит, $\{ \neg \alpha \}$ — непротиворечивое множество замкнутых формул.

Почему непротиворечиво? $\neg \alpha \vdash \beta$ & $\neg \beta, \beta$ & $\neg \beta \vdash \alpha$, следовательно $\neg \alpha \vdash \alpha$, но ещё и $\alpha \vdash \alpha$. Таким образом, $\vdash \alpha$.

Значит, у $\neg \alpha$ есть модель M, $[\![\neg \alpha]\!]_M =$ И. Значит, $\nVdash \alpha$

Теорема 19. Если Γ_i непротиворечиво, то Γ_{i+1} непротиворечиво.

Теорема 20. Γ^* непротиворечиво.

 $\Gamma^{\Delta} = \Gamma^*$ без формул с \forall , \exists

Лекция 8

9 апреля

4.7 Теорема Гёделя о полноте исчисления предикатов

Теорема 21 (Гёделя о полноте исчисления предикатов). У любого замкнутого непротиворечивого множества формул исчисления предикатов существует модель.

Теорема 22. Если φ — замкнутая¹ формула исчисления предикатов, то найдётся ψ — замкнутая формула исчисления предикатов, такая что $\vdash \varphi \to \psi$ и $\psi \to \varphi$, при этом ψ с поверхностными кванторами.

Доказательство. В домашних заданиях.

Рассмотрим Γ — непротиворечивое множество замкнутых формул. Рассмотрим Γ' — полное расширение Γ . Пусть φ — формула из Γ' , тогда найдётся $\psi \in \Gamma'$, что ψ — с поверхностными кванторами и $\vdash \varphi \to \psi, \vdash \psi \to \varphi$.

Рассмотрим новое множество констант d^i_j . Построим семейство $\{\Gamma_j\}$: $\Gamma'=\Gamma_0\subset\Gamma_1\subset\Gamma_2\subset\cdots\subset\Gamma_j\subset\cdots$

Опишем переход $\Gamma_i \Rightarrow \Gamma_{i+1}$.

Рассмотрим все формулы из $\Gamma_j:\{\gamma_1,\gamma_2,\dots\}.$

- 1. γ_i формула без кванторов оставим как есть.
- 2. $\gamma_i \equiv \forall x. \varphi$ добавим в Γ_{j+1} все формулы вида $\varphi[x := \theta]$, где θ составлен из всех функциональных символов исчисления предикатов и констант вида $d_1^k \dots d_j^k$.
- 3. $\varphi_i \equiv \exists x. \varphi$ добавим $\varphi[x := d^i_{j+1}]$

Утверждение 1. Γ_{i+1} непротиворечиво, если Γ_i непротиворечиво.

 $^{^{1}}$ Слово "замкнутая" не нужно, но мне нравится — Д.Г.

Доказательство. От противного. Пусть $\Gamma_{i+1} \vdash \beta \& \neg \beta$

$$\Gamma_i, \gamma_1 \dots \gamma_n \vdash \beta \& \neg \beta, \gamma_i \in \Gamma_{i+1} \setminus \Gamma_i$$

$$\Gamma_i \vdash \gamma_1 \rightarrow \gamma_2 \rightarrow \cdots \rightarrow \gamma_n \rightarrow \beta \& \neg \beta$$

Докажем, что $\Gamma_i \vdash \beta$ & $\neg \beta$ по индукции. $\Gamma_i \vdash \gamma \to \varepsilon^2$, т.е. γ получен из $\forall x.\xi \in \Gamma_i$ или $\exists x.\xi \in \Gamma_i$

Покажем, что $\Gamma_i \vdash \varepsilon$.

Рассмотрим случай $\forall x.\xi$. Заметим, что $\Gamma_i \vdash \forall x.\xi$, т.к. $\forall x.\xi \in \Gamma_i$. По индукционному предположению $\Gamma_i \vdash \gamma \to \varepsilon$. $\Gamma_i \vdash (\forall x.\xi) \to \underbrace{\left(\xi[x:=\theta]\right)}_{\gamma \text{ по}}$ — по аксиоме 11. Очевидно, что

 $(\forall x.\xi) \to \varepsilon$ и у нас есть гипотеза $\forall x.\xi$, поэтому по М.Р. ε .

В случае $\exists x.\xi$ аналогично доказать не получится. Поэтому мы будем делать странное, без этого в теореме Гёделя никак³.

Рассмотрим $\Gamma_i \vdash \underbrace{\xi[x:=d^k_{i+1}]}_{\Sigma} \to \varepsilon$. Заметим, что d^k_{i+1} не входит в ε . Заменим все d^k_{i+1} в

доказательстве на y — новую переменную. Это будет доказательством $\Gamma \vdash \xi[x:=y] \to \varepsilon$. Тогда $\exists y.\xi[x:=y] \to \varepsilon^4$. По ДЗ можно заметить, что $(\exists x.\xi x) \to (\exists y.\xi[x:=y])$ и по лемме $(\exists x.\xi) \to \varepsilon$ и у нас есть гипотеза $\exists x.\xi$, поэтому по М.Р. ε .

Таким образом, $\Gamma_i \vdash \beta \& \neg \beta$ — противоречие.

$$\Gamma^* := \bigcup_i \Gamma_i$$

Утверждение 2. Γ^* непротиворечиво.

Доказательство. Предположим обратное: $\Gamma_0 \vdash \gamma_1 \to \cdots \to \gamma_n \to \beta \& \neg \beta$, где $\gamma_i \in \Gamma_i$. $\Gamma_{\max_i} \vdash \beta \& \neg \beta$, значит Γ_{\max} противоречиво — противоречие.

Пусть $\Gamma^{\Delta} - \Gamma^*$ без кванторов. По утверждению у Γ^{Δ} есть модель M.

Утверждение 3. Если $\gamma \in \Gamma'$, то $[\![\gamma]\!]_M = \mathsf{U}$.

Доказательство. Докажем по индукции; база очевидна.

Переход — рассмотрим два случая:

² что-то

³ Это цитата.

 $^{^{4}}$ Правило можно применять, т.к. y не входит в правую часть.

1. $\gamma \equiv \forall x.\delta$

 $[\![\!] \forall x.\delta]\!] = \mathsf{И},$ если $[\![\![\delta]\!]^{x:=k} = \mathsf{I} \mathsf{I}, k \in D^{\mathtt{5}}.$ Рассмотрим $[\![\![\delta]\!]^{x:=k}, k \in D.$ k осмысленно в некотором Γ_p . δ добавлено на шаге q. Рассмотрим шаг $\Gamma_{\max(p,q)}$. В шаге $\Gamma_{\max(p,q)+1}$ добавлено $\delta[x:=k]$. $\delta[x:=k]$ меньше на один квантор, чем γ , и соответственно $[\![\![\![\delta]\!] x:=k]\!] = \mathsf{I} \mathsf{I}$.

2. $\gamma \equiv \exists x.\delta$ — аналогично.

4.8 Неразрешимость исчисления предикатов

Теорема 23. Исчисление предикатов неразрешимо.

Определение. Язык – множество слов.

Определение. Язык $\mathcal L$ разрешим, если существует алгоритм A такой, что по слову w A(w) останавливается в "1", если $w \in \mathcal L$

Проблема останова: не существует алгоритма, который по программе машины Тьюринга ответит, остановится она или нет. Альтернативная формулировка: пусть \mathcal{L}' — язык всех останавливающихся программ для машин Тьюринга. \mathcal{L}' неразрешим.

Доказательство. Вспомним операцию конкатенации элементов cons.

Пусть A — алфавит ленты 6 . Создадим два набора функциональных нульместных символов: $S_x, x \in A$ и e — nil. Также создадим c(a,b) — двухместный функциональный символ, которому соответствует cons.

Пусть S — множество состояний, тогда b_s , если $s \in S$ — функциональный символ для состояния. b_0 — начальное состояние, b_Δ — допускающее.

Создадим предикат $R(\alpha, w, b_s)$, гласящий, придет ли машина Тьюринга в состояние b_s , при этом слева от головки (и под ней) строка α , справа строка w. В частности, $R(\alpha, e, b_0)$ истинно, т.к. это начальное состояние при запуске на строке α .

Машина Тьюринга совершает переходы вида $(s_x,b_s) \to (s_yb_t,a)$, где a — одно из действий "передвинуться влево", "перевдинуться вправо", "не двигаться". x — буква на ленте, s — текущее состояние. То же самое, но в терминах предиката :

1. Не двигаться:

$$\forall z. \forall w. R(c(s_x, z), w, b_s) \rightarrow R(c(s_x, z), w, b_t)$$

2. Передвинуться влево:

$$\forall z. \forall w. R(c(s_x, z), w, b_s) \rightarrow R(z, c(s_y, w), b_t)$$

⁵ все записи из функциональных символов

⁶ машины Тьюринга

3. Передвинуться вправо:

$$\forall z. \forall w. R(z, (s_u, w), b_s) \rightarrow R(c(s_u, z), w, b_t)$$

Мы опустили некоторые технические шаги — описать начальное и завершающее состояния.

Взяв & по всем формулам, мы получим некоторую формулу φ . Эта формула описывает машину Тьюринга и из неё выводится завершающее состояние: $\varphi \to \exists z. \exists w. R(z,w,b_\Delta)$. Таким образом, разрешимость этой формулы эквивалентна разрешимости машины Тьюринга.

Лекция 9

16 апреля

5 Теория первого порядка

Это исчисление предикатов + нелогические функциональные предикатные символы + нелогические (математические) аксиомы.

- Теория нулевого порядка без кванторов
- Теория первого порядка кванторы по предметным переменным
- Теория второго порядка кванторы по предикатам
- Теория третьего порядка кванторы по предикатам от предикатов

И так далее. Чем больше порядок, тем о большем количестве вещей мы можем судить. Теория нулевого порядка описывает объекты, первого — множества, второго — множества множеств и т.д.

Теория первого порядка нам нужна, чтобы зафиксировать некоторый набор аксиом. Можно их всегда писать перед " \vdash ", но мы не хотим. В какой-то степени это похоже на программы, где мы используем стандартную библиотеку $U\Pi$ и навешиваем свои функции.

5.1 Аксиоматика Пеано

Это первая попытка формализации чисел. Будем говорить, что N соответствует аксиоматике Пеано, если:

- 1. Задана (') : $N \to N$ инъективная функция.
- 2. Задан $0 \in N$: нет такого $a \in N$, что a' = 0

¹ рукомахательная

3. Если P(x) — некоторое утверждение, зависящее от $x \in N$, такое, что P(0) и всегда, когда P(x), также и P(x'), тогда P(x). Это свойство индукции.

 Π римечание. Мы неявно зависим от множества вещей — что такое равенство, что такое утверждение и т.д.

Утверждение 4. 0 единственный.

Доказательство. Пусть 0 и n нули. Тогда нет x: x' = 0 и x' = n. Рассмотрим утверждение P(x) = x = 0, либо существует t: t' = x. Рассмотрим случаи:

- 1. $P(0): 0 = 0 o\kappa$.
- 2. Пусть P(x) выполнено, докажем P(x'). Заметим, что t=x.

Таким образом, P(x) при всех $x \in N$.

Определение.

$$a+b = \begin{cases} a, & b=0\\ (a+c)', & b=c' \end{cases}$$

Пример.

$$2 + 2 = 0'' + 0'' = (0'' + 0')' = ((0'' + 0)')' = ((0'')')' = 0'''' = 4$$

Определение.

$$a \cdot b = \begin{cases} 0, & b = 0\\ (a \cdot c) + a, b = c' \end{cases}$$

$$a^b = \begin{cases} 1, & b = 0\\ (a^c) \cdot a, & b = c' \end{cases}$$

Утверждение 5. a + 0 = 0 + a

Доказательство. Пусть $P(a) \equiv a + 0 = 0 + a$.

База: P(0) = 0 + 0 = 0 + 0

Переход: $P(x) \rightarrow P(x')$

$$0 + x' \stackrel{\text{orp.}}{=}^{+} (0 + x)' \stackrel{\text{инд.}}{=}^{\text{предп.}} (x + 0)' \stackrel{\text{инд.}}{=}^{\text{предп.}} x' + 0$$

Утверждение 6. a + b' = a' + b

Доказательство. При b=0:

$$a' + 0 = a' = (a + 0)' = a + 0'$$

При b=c' есть a+c'=a'+c. Докажем a+c''=a'+c'

$$(a+c')' = (a'+c)' = a'+c$$

Утверждение 7. a + b = b + a

Доказательство. База: b = 0 — утверждение 5

Переход: a + c'' = c + a, если a + c' = c' + a

$$a+c'' \stackrel{\text{orp.}\,+}{=} (a+c')' \stackrel{\text{инд.}}{=} (c'+a)' \stackrel{\text{огр.}\,+}{=} c'+a'$$

5.2 Формальная арифметика

Рассмотрим следующую теорию первого порядка: исчисление предикатов, в которое добавили следующие символы:

- 0-местный функциональный символ 0
- 1-местный функциональный символ '
- 2-местные функциональные символы $(\cdot), (+)$
- 2-местный предикатный символ (=)

И добавили следующие 8 аксиом:

1.
$$a = b \to a' = b'$$

2.
$$a = b \rightarrow a = c \rightarrow b = c$$

3.
$$a' = b' \to a = b$$

4.
$$\neg a' = 0$$

5.
$$a + b' = (a + b)'$$

6.
$$a + 0 = a$$

7.
$$a \cdot 0 = 0$$

8.
$$a \cdot b' = a \cdot b + a$$

9. Схема аксом индукции:

$$(\psi[x:=0]) \& (\forall x.\psi \rightarrow (\psi[x:=x'])) \rightarrow \psi$$

Если x входит свободно в ψ

Определение. $\exists ! x. \varphi(x) \equiv (\exists x. \varphi(x)) \& \forall p. \forall q. \varphi(p) \& \varphi(q) \rightarrow p = q$

Определение. $a \leq b$ — сокращение для $\exists n.a + n = b$

Определение.

$$0^{(n)} = \begin{cases} 0, & n = 0 \\ 0^{(n-1)'}, & n > 0 \end{cases}$$
$$\overline{n} = 0^{(n)}$$

Определение. Пусть $W\subset \mathbb{N}_0^n$. W — выразимое в формальной арифметике отношение, если: (пусть $k_1\dots k_n\in \mathbb{N}$)

1.
$$(k_1 \dots k_n) \in W$$
, тогда $\vdash w[x_1 := \overline{k}_1 \dots x_n := \overline{k}_n]$

2.
$$(k_1 \ldots k_n) \notin W$$
, тогда $\vdash \neg w[x_1 := \overline{k}_1 \ldots x_n := \overline{k}_n]$

Определение. $f:\mathbb{N}^n \to \mathbb{N}$ представима в формальное арифметике, если найдётся φ — формула с n+1 свободной переменной $k_1\dots k_{n+1}\in\mathbb{N}$

1.
$$f(k_1 \dots k_n) = k_{n+1}$$
, to $\vdash \varphi(\overline{k}_1 \dots \overline{k}_{n+1})$

$$2. \vdash \exists ! x. \varphi(k_1 \dots k_n, x)$$