Signature Scheme NCS1

setup.

- **1.** Given a pairing friendly elliptic curve with groups \mathbb{G}_1 , \mathbb{G}_2 , and \mathbb{G}_T , choose generators $p \in \mathbb{G}_1$ and $q \in \mathbb{G}_2$.
- **2.** Choose a random value, $sk \stackrel{\$}{\longleftarrow} \mathbb{F}_p$, where \mathbb{F}_p is the scalar field of the elliptic curve, and set $r := sk \times q$. Note that the operation \times corresponds to elliptic curve scalar multiplication.
- **3.** Output the public key pk := (p, q, r) and the secret key sk.

sign(sk, pk, id, index, m).

Given a secret key, sk, the point p from the public key pk, an identifier, id, an index corresponding to the row being signed and message, m, output the signature as

$$signature := sk \times (hash_to_curve(id, index) + m \times p)$$

Note that + corresponds to elliptic curve point addition.

verify(pk, id, index, m, signature).

Given a public key, pk = (p, q, r), an identifier, id, an index corresponding to the row being verified, a message, m, and a signature, calculate

$$left = e(signature, q)$$

 $right = e(hash_to_curve(id, index) + m \times p, r)$

where the function e(.,.) is the bilinear pairing. If left = right output true, else output false.

combine(weights, signatures).

Given a vector of weights and vector of signatures, each of length n, calculate the aggregate signatures as

$$aggregate_signature = \sum_{i=0}^{n-1} weight_i \times signature_i$$

verify_aggregate(pk, id, weights, m, aggregate_signature).

Given a public key pk = (p, q, r), an identifier id, a vector of weights of length n, a message m, and an $aggregate_signature$, verify that the message m corresponds to the weighted average of signed original messages by calculating

$$left = e(signature, q)$$

$$right = e\left(\sum_{i=0}^{n-1} weight_i \times hash_to_curve(id, i) + m \times p, r\right)$$

If left = right output true, else output false.