Segmentation/Classification de processus.

Application à l'analyse des données de microarrays CGH.

Franck PICARD

UMR INAPG/ENGREF/INRA MIA 518

Sous la direction de J-J. Daudin

16 Novembre 2005

Organisation de la présentation

- 1. Présentation du contexte biologique.
- 2. Application des méthodes de segmentation aux données CGH.
- 3. Développement d'un nouveau modèle de segmentation/classification.
- 4. Comparaison avec d'autres méthodes.
- 5. Perspectives.

Organisation de la présentation

1. Présentation du contexte biologique :

- → délétion/amplification de séquences d'ADN et microarrays CGH,
- → domaines d'applications,
- → nature du signal étudié,
- → interprétation d'un profil CGH.
- 2. Application des méthodes de segmentation aux données CGH.
- 3. Développement d'un nouveau modèle de segmentation/classification.
- 4. Comparaison avec d'autres méthodes.
- 5. Perspectives.

Présentation de la technologie des microarrays CGH

► Réarrangements chromosomiques de grande taille et pathologies humaines :

- → outil d'étude : caryotype,
- \rightarrow résolution \sim chromosome \sim 100Mb.
- ► Délétion/amplification de séquences d'ADN :
 - → CGH : Comparative Genomic Hybridization,
 - → microarrays CGH : 1997,
 - ightarrow dernière génération de puces : résolution \sim 100kb.

Présentation simplifiée des données de microarrays CGH

Applications des CGH en génétique humaine

▶ Génétique des cancers :

- \rightarrow recherche de régions hotspots sur le génome associées aux cancers,
- → portraits moléculaires des tumeurs.
- ► Nouvelles perspectives pour l'étude du **polymorphisme humain** :
 - → variations du nombre de copies de séquences d'ADN de grande taille,
 - → comparaison de génomes humains/primates.

⇒ Besoin de nouveaux outils statistiques.

Nature du signal étudié

- ► Le phénomène biologique étudié est discret :
 - → **comptage** de copies de séquences d'ADN.
- ▶ Le nombre de copies possible est inconnu.
- ▶ Différentes sources de variabilité :
 - → variabilité **technique** (ex : saturation),
 - → variabilité **biologique** (ex : hétérogénéité des tissus).
- ► Le nombre de copies est quantifié par fluorescence :
 - \rightarrow le signal étudié est **continu**.

Interprétation d'un profil CGH

Un point sur le graphique représente

$$\log_2 \left\{ rac{ ext{signal à la position } t ext{ dans le génome test}}{ ext{signal à la position } t ext{ dans le génome référence}}
ight\}$$

Interprétation d'un profil CGH

Une succession de "segments" :

zones du génome où le signal est homogène en moyenne.

Organisation de la présentation

- 1. Présentation du contexte biologique.
- 2. Application des méthodes de segmentation aux données CGH :
 - → présentation des modèles de segmentation,
 - → estimation des paramètres et sélection de modèle,
 - \rightarrow applications aux CGH.
- 3. Développement d'un nouveau modèle de segmentation/classification.
- 4. Comparaison avec d'autres méthodes.
- 5. Perspectives.

Détection de ruptures dans un signal gaussien

- $Y = \{Y_1, ..., Y_n\}$ un processus gaussien, Y_t indépendantes.
- On suppose que les paramètres de la loi des Y sont affectés par K-1 changements abrupts à des instants inconnus $T=\{t_1,...,t_{K-1}\}.$
- Ces instants de ruptures définissent une partition des données en K segments :

$$I_k = \{t, t \in]t_{k-1}, t_k]\}, Y^k = \{Y_t, t \in I_k\}.$$

- On suppose que les paramètres sont constants entre deux ruptures :

$$\forall t \in I_k, \ \mathbb{E}(Y_t) = \mu_k, \ \mathbb{V}(Y_t) = \sigma_k^2.$$

- Les paramètres de ce modèle sont :

$$\to T = \{t_1, ..., t_{K-1}\},$$

$$\rightarrow \Theta = (\theta_1, \ldots, \theta_K), \ \theta_k = (\mu_k, \sigma_k^2).$$

Estimation des paramètres et sélection de modèle

► Log-vraisemblance du modèle :

$$\log \mathcal{L}_K(T,\Theta) = \sum_{k=1}^K \log f(y^k; \theta_k) = \sum_{k=1}^K \sum_{t \in I_k} \log f(y_t; \theta_k).$$

- lacktriangle Estimation des paramètres à K fixé par maximum de vraisemblance :
 - \rightarrow optimisation par programmation dynamique (complexité algorithmique $\mathcal{O}(n^2)$),
 - → optimum global.
- ▶ Sélection de modèle : choix de K.
 - ightarrow Vraisemblance pénalisée : $\hat{K} = \mathop{Argmax}\limits_{K \geq 1} \left(\log \hat{\mathcal{L}}_K \beta imes pen(K)
 ight)$.
 - → **Objectif** : établir un compromis entre bon ajustement du modèle aux données et un nombre raisonnable de paramètres à estimer.

Application des méthodes de segmentation aux données de microarrays CGH

- ▶ Quels sont les paramètres du modèle affectés par des changements abrupts ?
 - → Modélisation de la variance.

Variances hétérogènes

Variance homogène

Application des méthodes de segmentation aux données de microarrays CGH

- ▶ Quelle méthode pour sélectionner le nombre de segments ?
 - → Méthode adaptative proposée par Lavielle (2005).

Application des méthodes de segmentation aux données de microarrays CGH

- Quels sont les paramètres du modèle affectés par des changements abrupts ?
 - → Moyenne à variance constante.
- ► Quel algorithme d'optimisation de la vraisemblance ?
 - → Programmation dynamique (optimum global).
- ▶ Quelle méthode pour sélectionner le nombre de segments ?
 - → Méthode adaptative proposée par Lavielle (2005).
- ⇒ Publication dans BMC Bioinformatics (Fev 2005)
- \Rightarrow Citation dans Lai et. al (2005)

Organisation de la présentation

- 1. Présentation du contexte biologique.
- 2. Application des méthodes de segmentation aux données CGH.

3. Développement d'un nouveau modèle de segmentation/classification :

- → présentation du modèle,
- → construction d'un algorithme d'estimation,
- → construction d'une heuristique de sélection de modèle.
- 4. Comparaison avec d'autres méthodes.
- 5. Perspectives.

Attentes des biologistes et nécessité d'un nouveau modèle

Segmentation: structure spatiale du signal

$$\theta_k = (\mu_k, \sigma_k^2)$$

Segmentation/Classification

$$\theta_p = (m_p, s_p^2)$$

Modèle de segmentation/classification

- On suppose qu'il existe une deuxième structure sous-jacente des segments en P populations de poids $\pi_1, ..., \pi_P$.
- On introduit des variables cachées, ${\cal Z}_p^k$ indicatrices de la population d'appartenance ${f du}$ segment k .
- Ces variables sont supposées indépendantes de loi multinomiale :

$$(Z_1^k,\ldots,Z_P^k) \sim \mathcal{M}(1;\pi_1,\ldots,\pi_P).$$

- Conditionnellement aux variables cachées, on connaît la loi des Y:

$$Y^{k}|Z_{p}^{k}=1 \sim \mathcal{N}_{n_{k}}(\mathbb{1}_{n_{k}}m_{p}, s_{p}^{2}I_{n_{k}}).$$

- Les paramètres de ce modèle sont :

$$o T=\{t_1,...,t_{K-1}\},$$
 $o \Theta=\{\pi_1,\ldots,\pi_P\,;\, heta_1,\ldots, heta_P\}$, avec $heta_p=(m_p,s_p^2).$

Définition des unités statistiques du modèle

- On observe n données $\{Y_t\}$ structurées en K segments.
- Les K segments sont structurés en P groupes :
 - → les unités statistiques du modèle de mélange sont des segments de différentes tailles,
 - → les unités statistiques du mélange changent avec les paramètres de segmentation et le nombre de segments.
- Les données complètes de ce modèle s'écrivent :

$$X^{k} = (Y_{t_{k-1}+1}, \dots, Y_{t_{k}}, Z^{k}).$$

Algorithme hybride d'optimisation de la vraisemblance

- \blacktriangleright Estimation alternée des paramètres à K et P fixés
- 1. À T fixé, l'algorithme **EM** optimise la vraisemblance en Θ :

$$\hat{\Theta}^{(\ell+1)} = Argmax \left\{ \log \mathcal{L}_{KP} \left(\Theta, T^{(\ell)}\right) \right\}.$$

2. À Θ fixé, la **programmation dynamique** optimise la vraisemblance en T:

$$\hat{T}^{(\ell+1)} = Argmax \left\{ \log \mathcal{L}_{KP} \left(\hat{\Theta}^{(\ell+1)}, T \right) \right\}.$$

▶ Une suite croissante de vraisemblances :

$$\log \mathcal{L}_{KP}(\hat{\Theta}^{(\ell+1)}; \hat{T}^{(\ell+1)}) \geq \log \mathcal{L}_{KP}(\hat{\Theta}^{(\ell)}; \hat{T}^{(\ell)}).$$

Initialisation de l'algorithme

- ► Algorithme itératif : nécessité d'une double initialisation :
 - $\rightarrow \Theta^{(0)}$ les paramètres du mélange,
 - $\rightarrow T^{(0)}$ les coordonnées des ruptures.
- ► Proposition d'une méthode hiérarchique pour initialiser EM.
- ► Étude de sensibilité à l'étape d'initialisation :
 - → l'algorithme est sensible à la méthode d'initialisation,
 - → il n'existe pas de meilleure méthode (multicritères),
 - → choix de la méthode hiérarchique.
- ▶ Proposition d'une méthode pour éviter les maxima locaux.

Sélection de modèle

- ► Nouveau problème :
 - \rightarrow choix simultané de P et K.
- ► Méthode :
 - → vraisemblance pénalisée.
- ► Paramètres de différentes natures :
 - $ightarrow \Theta$ paramètres continus,
 - ightarrow T paramètres discrets.

⇒ Les méthodes classiques de pénalisation ne peuvent pas être appliquées dans ce cadre.

Propriété du modèle

▶ Modèles emboîtés :

$$\begin{cases} \mathcal{M}(K,P) \not\subset \mathcal{M}(K+1,P), \\ \mathcal{M}(K,P) \subset \mathcal{M}(K,P+1). \end{cases}$$

 $lackbox{ Propriété du modèle}: \mathcal{M}(P) = \bigcup\limits_{K \geq 1} \mathcal{M}(K,P),$

$$\mathcal{M}(P) \subset \mathcal{M}(P+1)$$
.

 \Rightarrow Choisir P dans un premier temps et choisir K ensuite.

Méthode heuristique de sélection de modèle

Construction d'une suite croissante de vraisemblances :

$$\log \widetilde{\mathcal{L}}_1 \ldots \leq \log \widetilde{\mathcal{L}}_P \leq \ldots \log \widetilde{\mathcal{L}}_{P_{max}},$$

$$\log \widetilde{\mathcal{L}}_P = \max_K \left\{ \log \mathcal{L}_{KP}(\widehat{T}; \widehat{\psi}) \right\}.$$

2. Choix du nombre de groupes :

$$\hat{P} = \operatorname*{argmax}_{P} \left\{ \log \widetilde{\mathcal{L}}_{P} - \beta pen(P) \right\}.$$

3. Choix du nombre de segments :

$$\hat{K}_{\hat{P}} = \operatorname*{argmax}_{K} \left\{ \log \mathcal{L}_{K\hat{P}}(\hat{T}; \hat{\psi}) - \frac{1}{2} \log(n) \times K \right\}.$$

Étude de performances par simulations

- \rightarrow taille des segments,
- \rightarrow distance entre groupes.

Conclusion sur le modèle de segmentation/classification

- ▶ Présentation d'un nouveau modèle dans le cas gaussien généralisable à d'autres distributions :
 - → étude du cas discret avec applications aux séquences d'ADN.
- ► Développement d'un algorithme hybride :
 - → étude de sensibilité à l'étape d'initialisation,
 - → méthode heuristique pour les maxima locaux.
- ▶ Proposition d'une heuristique de sélection de modèle :
 - → méthode séquentielle,
 - \rightarrow analyse de performances par simulations.

Organisation de la présentation

- 1. Présentation du contexte biologique.
- 2. Application des méthodes de segmentation aux données CGH.
- 3. Développement d'un nouveau modèle de segmentation/classification.
- 4. Comparaison avec d'autres méthodes :
 - \rightarrow segmentation,
 - → Chaînes de Markov cachées (HMM).
- 5. Perspectives.

Segmentation vs segmentation/classification

27

Comparaison avec les Chaînes de Markov cachées (HMM)

- Modèle à structure cachée :
 - o on suppose qu'il existe une séquence de variables cachées $\{Z_t\}$ telle que $Y_t|Z_t=p\sim \mathcal{N}(m_p,s_p^2).$
 - ightarrow Dépendance spatiale des $\{Z_t\}$ modélisée à l'aide d'une chaîne de Markov : $\Pr\{Z_t=\ell|Z_{t-1}=p\}=\phi(p,\ell).$
 - → Les HMMs modélisent implicitement la taille des "segments" (loi géométrique).
- ► Comparaison avec le modèle de segmentation/classification :
 - → la structure spatiale est modélisée grâce au modèle de segmentation,
 - → les ruptures sont des paramètres qui sont estimés.

Perspectives

► Analyse des données CGH :

- → prendre en compte l'ensemble des chromosomes dans la procédure de segmentation,
- → analyser les profils CGH de plusieurs patients simultanément,
- → segmentation sur données dépendantes (nouvelles génération de puces).

► Méthodes de segmentation :

→ intervalles de confiance pour les paramètres des ruptures.

► Segmentation/classification :

- → développer un critére théorique pour la sélection de modèle,
- → approche bayésienne (modèles hiérarchiques).