# Training Models

Using Machine Learning Tools

Geron Chapter 4

### Last Time ...

- Classification vs. regression
- Range of classifier approaches, white box vs. black box
- Several performance metrics
  - Accuracy, Confusion matrix
  - Precision, Recall
  - ROC, AUC
- Look at the data at all stages:
  - scatter plot
  - model parameters / decision boundaries
- Today we will look at training (i.e. optimisation of model parameters) in more detail

### Model

- A mapping of input values to predicted outcome values
- Flexible due to model parameters
- Constrained by fixed hyper-parameters



Example: Linear model





Image: Chartrand et al. RadioGraphics 2017

### Cost Function = Error = Loss Function

- Measures errors or differences between predicted and target values
- Want to minimise it for training data
- Global minimum: smallest value overall
- Local minimum: smallest value in some region
- Example: Mean square error (MSE)



Cost function

Global

$$MSE(X, h_{\theta}) = \frac{1}{M} \sum_{i=1}^{M} (\theta^{T} x^{(i)} - y^{(i)})^{2}$$
Targets for  $i^{th}$  sample

Parameters (same for all samples)

Local

minimum

## Training = Fitting = Optimisation

- Minimise cost function by adjusting model parameters
- Start with initial guess of model parameters
- Iteratively change model parameters & evaluate cost function

Input values

Model parameters

Predicted output values

Cost function

Target output values

t against poor local minima

Hyperparameters

• Ideal algorithm: fast, but robust against poor local minima

**Gradient Descent** 

Partial derivatives of cost function

= Local gradient =  $\nabla_{\theta}$  MSE( $\theta_n$ )

 Iteratively step downhill (negative gradient)

$$\theta_{n+1} = \theta_n - \eta \nabla_{\theta} MSE(\theta_n)$$

Learning rate "eta"  $\eta$  = sets size of step

This is an important hyper-parameter!



### Learning rate η

Example: trying to fit line to points



- Small  $\eta$  values take a long time to change, but go in the right direction
- Large  $\eta$  values overstep and can easily become unstable
- Can monitor the behaviour of the cost function values over iterations to spot these







## Stopping Criteria and Final Result

#### Stop if:

- No further improvement
  - e.g. 5 iterations in a row show "no change"
  - early stopping: turn on/off
  - n\_iter\_no\_change: number of iterations
  - tol: if cost difference between steps is less than  $\epsilon$  (tolerance) then treat it as no change
- Maximum number of iterations reached
  - max\_iter: maximum number of iterations



- Final result: best model across the training process
  - this might not be the final model

Images: Geron, Hands On ML

### Stochastic Gradient Descent

- Pick one random sample
- Calculate the cost function gradient only from that sample

#### Better algorithm:

- Shuffle instances of the training set
- Use one instance after the other
- Adjust the learning rate  $\eta$
- Reshuffle and repeat



Image: Geron, Hands On ML

Pros: Fast, low memory, randomisation can help escape local minimum

Cons: Very noisy & no guarantee that minimum is reached

## Learning Curve = Training Curve



- Epoch = one pass through whole dataset ≅ iteration
- Shows both training *and* validation performance
  - allows both underfitting and overfitting to be seen

Image: Chartrand et al. RadioGraphics 2017

### Sources of Generalisation Error

- Variance
  - Irreducible error
    - Due to randomness in the data itself
  - Overfitting leads to over-sensitivity to small variations in the data
    - Too many model parameters
- Bias or systematic error
  - Sub-optimal model choice or hyperparameter choice
    - Especially underfitting
  - Representativeness of data
    - Lack of data coverage (model extrapolations are usually bad)
    - Bias in the data (e.g. due to limitations or bias in sampling)
    - Imbalances in the data (e.g. due to nature of problem)
      - disease vs healthy; suspicious vs normal transactions

## Regularisation

- Add a term to the cost function that tries to prevent overfitting
  - ullet usually controlled by an adjustable weight  $\alpha$

- Purpose
  - Prevent overfitting by penalising large parameter values or lack of smoothness in outputs
  - Add a-priori knowledge (desired properties) to an underdetermined problem
- A form of multi-objective optimisation

# L2 (Ridge/Tikhonov) Regularisation

• Effect: Keep model parameters small

Cost Data term Regularisation term 
$$J(\boldsymbol{\theta}) = \text{MSE}(\boldsymbol{\theta}) + \alpha \frac{1}{2} \sum_{i=1}^{n} \theta_{i}^{2}$$
Regularisation Model parameters, in this case except  $\theta_{0}$ 

- Scaling of data important for setting  $\alpha$
- Scikit learn: penalty parameter "12"



## L1 (Lasso) Regularisation

- LASSO = Least Absolute Shrinkage and Selection Operator
- Effect: Keep model parameters small
- Also tends to eliminate least important features (i.e. sets some  $\theta_i = 0$ )

$$J(\mathbf{\theta}) = \text{MSE}(\mathbf{\theta}) + \alpha \sum_{i=1}^{n} |\theta_i|$$

- Scaling of data important for setting  $\alpha$
- Scikit learn: penalty parameter "11"
- Not differentiable at 0, but most optimisers can cope with this



### "Elastic Net"

Just a mixture of L2 and L1 regularisation



## Summary

- Training: Minimise cost function by adjusting model parameters
- Regularisation: Penalise large parameters via an extra term in the cost function
- It can be helpful to understand how these work to get some intuition for good settings to use and how to diagnose problems
- Critically evaluate the implementation at hand and the defaults
  - Example: SGD classifier by default uses L2 (Ridge) regularisation