

RTL_EXERCISE_1 BOUND FLASHER

Author	Group 1 – L03
Date	2022/03/03
Version	1.1

Contents

1. Interface	. 2
2. Functional implementation.	.3
3. Internal implementation	. 5
3.1. Overall	. 5
3.2. State Machine	.7
4. History	. 8

1. Interface

Figure 1: The figure of Bound Flasher System

Signal	Width	In/Out	Description	
flick 1			Asynchronous input signal; when the output (led) is	
	In	turned OFF gradually, at LEDs[5] or LEDs[10], if flick		
		= 1, then the output will turn on gradually again to the		
			max led of the previous state, except the final state.	
reset 1		Reset signal; LOW-ACTIVE; reset = 0: system restarts		
	1	In	to Initial State; "reset" is asynchronous signal (does not	
			depend on "clock" signal).	
clock	ala als 1	In	Clock signal; The function operates state's transition at	
clock 1	1		the rising edge of the clock signal.	
output 1		6 Out	16-bit led from LEDs[0] to LEDs[15]; LEDs[0] is the	
	16		Least Significant Bit; LEDs[15] is the Most Significant	
			Bit.	

Table 1: Description of signals in Bound Flasher

2. Functional implementation.

- Implement a 16-bits LEDs system
- System's Operation base on three input signals
 - Reset
 - Clock
 - Flick
- The system specification
 - Clock signal is provided for system inspire of function status. The function operates state's transition at positive edge of the clock signal.
 - Reset signal:
 - LOW-ACTIVE Reset = 0: System is restarted to Initial State.
 - HIGH-ACTIVE Reset = 1: System is started with initial state.
- Flick signal: special input for controlling state transfer.
- At the initial state, all lamps are OFF. If flick signal is ACTIVE, the flasher starts operating:
 - The lamps are turned ON gradually from LEDs [0] to LEDs [5].
 - The LEDSs are turned OFF gradually from LEDs [5] (max) to LEDs [0] (min).
 - The LEDSs are turned ON gradually from LEDs [0] to LEDs [10].
 - The LEDSs are turned OFF gradually from LEDs [10] (max) to LEDs [5] (min).
 - The LEDSs are turned ON gradually from LEDs [5] to LEDs [15].
 - Finally, the LEDs s are turned OFF gradually from LEDSs [15] to LEDSs [0], return to initial state.
- Additional condition: At each kickback point (LEDs [5] and LEDs [10]), if flick signal is ACTIVE, the lamps will turn OFF gradually again to the **min** lamp of the previous state, then continue operation as above description. For simple, kickback point is considered only when the lamps are turned ON gradually, except the first state.

- Some insulations:
 - When flick = 0 at kickback points

• When flick = 1 at kickback points (led [10])

3. Internal implementation.

3.1. Overall.

Figure 3.1: Block diagram of Bound Flasher

Block	Description	
D-FF (1)	Synchronize the input signal (ledTemp[15:0]) with the rising edge clock. Using the clock signal to increase or decrease the 16-bit led. The rst (reset) signal is the lowactive asynchronous signal (whenever rst == 0, all the led will be off immediately).	
"Control ledTemp" Combinational Logic block	Using the input signals (state[2:0] and led[15:0]) to control the ledTemp[15:0] signal.	
D-FF (0)	Synchronize the input signal (state[2:0]) with the rising edge clock. Using the clock signal to change the output signal (stateR[2:0]) (stateR means "state Real"). The rst (reset) signal is the low-active asynchronous signal	

	(whenever rst == 0, then the "Real state" will be reset to Initial State immediately).	
"Control state" Combinational Logic block	If "flick signal" is 1 at "kick-back points", "state" will be changed to previous "state"; If "flick signal" is 1 at "Initial State", "state" will be changed to "State 1". The rst (Reset) signal is the low-active asynchronous signal (whenever rst==0, state will be reset to Initial State immediately).	
"Control flickFlag" Combinational Logic block	Using a flag (called flickFlag) to check if there is a flick signal (flick == 1) at "kick-back points". If there is a flick signal (flick == 1) at any point of the "kick-back points", this 1-bit flag will be 1 (flickFlag = 1). The changing of "stateR" signal (state Real) and the led will help to set this flag back to 0. The rst (Reset) signal is the low-active asynchronous signal (whenever rst == 0, flickFlag = 0 immediately).	

Table 3.1: Block diagram of Bound Flasher Description

3.2. State Machine

Figure 3.2: State Machine of Bound Flasher

Variable name	Description	
reset	Asynchronous signal input. When reset = 0, the state will return to the initial state.	
flick	When the output (led) is gradually turned OFF (=0) gradually,	
	at LEDs[5] or LEDs[10], if flick = 1, then the lamps will turn	
	OFF gradually again to the min lamp of the previous state,	
	except the final state.	
LEDs	16 bits output represents 16 lamps. LEDs[0] is the LSB and	
	LEDs[15] is the MSB.	

Table 3.2: Variable name of State machine

State Name	Description	
INITIAL	All LEDs is OFF (16 bits output = $LED[0:15] = 0$)	
	If flick = 1, then state will change to STATE_1.	
	The LEDs is gradually turned ON from LEDs[0] to LEDs[5], if	
STATE_1	reset = 0, the state will return to INITIAL. If LEDs[5] is ON, the	
	state will change to STATE_2.	
	The LEDs is gradually turned OFF from LEDs[5] to LEDs[0], if	
STATE_2	reset = 0, the state will return to INITIAL.	
	If LEDs[0] is OFF, the state will return to STATE_3.	
	The LEDs is gradually turned ON from LEDs[0] to LEDs[10], if	
	reset = 0, the state will return to INITIAL.	
	If (flick=1 and LEDs[5]=1 (ON)) or (flick=1 and	
STATE_3	LEDs[10]=1(ON)), all LEDs will gradually turn OFF to min	
	lamp of the STATE_2 (LEDs[0]=0) and the state will return to	
	STATE_2. Else, if LEDs[10] is ON, the state will change to	
	STATE_4.	
	The LEDs is gradually turned OFF from LEDs[10] to LEDs[5], if	
STATE_4	reset = 0, the state will return to INITIAL. If LEDs[5] is OFF, the	
	state will return to STATE_5.	
	The LEDs is gradually turned ON from LEDs[5] to LEDs[15], if	
STATE_5	reset = 0, the state will return to INITIAL. If (flick=1 and	
	LEDs[5]=1 (ON)) or (flick=1 and LEDs[10]=1(ON)), all LEDs	
	will gradually turn OFF to min lamp of the STATE_4	
	(LEDs[5]=0) and the state will return to STATE_4. Else, if	
	LEDs[15] is ON, the state will change to FINAL.	
EINIAI	The LEDs is gradually turned OFF from LEDs[15] to LEDs[0]. If	
FINAL	LEDs[0] is OFF, the state will change to INITIAL.	

Table 3.3: State name of State machine

4. History

Date	Author	Modified part	Description
2022/02/25	Group 1	All	New creation
2022/03/05	Group 1	All	Update information
2022/04/07	Group 1	State diagram	Update state diagram