Exercise

1. Import the dataset ('Exercise.txt') into R and store it in a data frame called "branch data".

2. Identify the variable type and scale of measurement for each variable.

```
7 #Q2
8 fix(branch_data)
9 str(branch_data)
10 attach(branch_data)
11
```

■ Data Editor — □ X							
File Edit Help							
	Branch	Sales_X1	Advertising_X2	Years_X3	var5	var6	var7
1	1	3.4	120	4			
2	2	4.1	150	7			
3	3	2.8	90	3			
4	4	5	200	10			
5	5	3.7	110	5			
6	6	4.5	175	6			
7	7	3	95	2			
8	8	4.9	185	9			
9	9	3.2	105	4			
10	10	2.5	80	1			
11	11	3.9	130	5			
12	12	4.2	140	7			
13	13	2.7	100	3			
14	14	3.6	125	4			
15	15	4.8	190	8			
16	16	3.3	115	5			
17	17	4	135	6			
18	18	5.1	210	12			
19	19	3.8	145	6			

> #Q2

> fix(branch_data)

> str(branch_data)

'data.frame': 30 obs. of 4 variables:

\$ Branch : num 1 2 3 4 5 6 7 8 9 10 ...
\$ sales_x1 : num 3.4 4.1 2.8 5 3.7 4.5 3 4.9 3.2 2.5 ... \$ Advertising_X2: num 120 150 90 200 110 175 95 185 105 80 ... \$ Years_X3 : num 4 7 3 10 5 6 2 9 4 1 ...

> attach(branch_data)

3. Obtain boxplot for sales and interpret the shape of the sales distribution.

```
boxplot(branch_data$sales_x1,main="boxplot for sales",
    ylab = "sales"
)
```

boxplot for sales

4. Calculate the five number summary and IQR for advertising variable.

```
16 #Q4
17 #five number summary
18 summary(Advertising_X2)
19 #IQR
20 IQR(Advertising_X2)
21
```

```
> #Q4
> #five number summary
> summary(Advertising_X2)
   Min. 1st Qu. Median Mean 3rd Qu. Max.
   80.0 101.2 132.5 134.8 158.8 210.0
> #IQR
> IQR(Advertising_X2)
[1] 57.5
> |
```

5. Write an R function to find the outliers in a numeric vector and check for outliers in years variables.

```
Z T
 22 #Q5
 23 - get.outliers<- function(z){
 24  q1 <- quantile(z)[2]</pre>
      q3 <- quantile(z)[4]
 25
 26
      igr <- q3 - q1
 27
 28
     ub <- q3 + 1.5*iqr
 29
      lb <- q1 - 1.5*iqr
 30
      print(paste("Upper bound = ",ub))
 31
      print(paste("Lower bound = ",1b))
 32
       print(paste("Outliers: ",paste(sort(z[z<lb | z>ub],
 33
                                           collapse = ","))))
 34
 35 . }
36 get.outliers(Years_X3)
               > get.outliers(Years_X3)
               [1] "Upper bound = 14.5"
               [1] "Lower bound = -3.5"
```