Report.md 9/27/2021

Multivariate Case in Linear Regression

Following is an impementation of Classification using Linear Regression problem. Data set used in this problem is the Iris Data set.

Section One

Importing data and encoding target values.

Data is imported using Python's Pandas library.

```
dataFrame = pd.read_csv("iris.csv")
```

After importing the dataset, target values in the dataset are mapped to numerical values.

```
mapping = {
    'Iris-setosa': 1,
    'Iris-versicolor': 2,
    'Iris-virginica': 3
}
```

The updated data sample will look like

SepalLength	SepalWidth	PetalLength	PetalWidth	Species
5.1	3.5	1.4	0.2	1
5.8	2.7	5.1	1.9	3

Section Two

Splitting the dataset using Cross Validation techniques

To crate a *balanced* Test and Train data, the dataset needs to be shuffled. To shuffle a Pandas dataFrame we use the df.sample() method.

```
df = df.sample(frac=1, ignore_index=True)
```

To easily split the dataset into two sets we can use Python Slicing.

```
trainDF = Sdf[:115]
testDF = Sdf[115:]
```

Report.md 9/27/2021

Section three

Training The model

In this section we are implementing the Multivariate Case Formula, F(theta) = ([Theta] * [X] - [Y]). Transpose ([Theta] * [X] - [Y]). Here we minimize Theta by calculating the Error. On each epoch the Theata value is adjusted until an accurate result is produced.

Result

Error over Epochs.

Accuracy of the Model

