Säure-Base-Reaktionen

Schnelltest

_		
c	′	Т
		٥
-	1	ļ
_	Ì	_
4	9	ַ
	1	,
ž	2	

<u>.</u>
ş
흔
S
ē
面
<u></u>
ě
걸
တ္တ
2
201
0

1. Säuren nach BRÖNSTED sind	7. Je kleiner der p K_S -Wert ist,
A ☐ Stoffe, die Protonen abgeben,	A 🗇 desto geringer ist die Tendenz zur Abgabe
B □ Teilchen, die Protonen abgeben,	von Elektronen,
C ☐ Teilchen, die Elektronen aufnehmen, D ☐ saure Lösungen.	B desto weiter liegt das Protolysegleichgewicht auf der Seite der Produkte,
B B sadie Losungen.	C desto weiter liegt das Protolysegleichgewicht
2. Bei der Reaktion von Chlorwasserstoffgas mit	auf der Seite der Edukte,
Wasser	D 🗇 umso schwächer ist die korrespondierende
A ☐ entsteht eine alkalische Lösung,	Base.
B □ entsteht eine saure Lösung,	
C ☐ erfolgt ein Protonenübergang vom Chlor-	8. Bei schwachen Säuren und Basen
wasserstoffmolekül auf das Wassermolekül,	A ☐ beträgt der Protolysegrad 1,
D ☐ reagiert das Wassermolekül als Säure.	B 🗇 liegt das Protolysegleichgewicht auf der Seite
A 51 100 5 5 11	der Edukte,
3. Folgende Säure-Base-Paare sind an der	C 🗆 sind die korrespondierenden Teilchen eben-
Reaktion von Ammoniak mit Wasser beteiligt:	falls schwach,
A \(\text{NH}_4^+/\text{NH}_3, \)	D = entspricht die Gleichgewichtskonzentration
B \(\text{NH}_3/\text{NH}_2^-, \)	der Säure oder Base annähernd der Aus-
C □ H ₃ O ⁺ /H ₂ O,	gangskonzentration c_0 .
D □ H ₂ O/OH⁻.	O Bai ainam Cäura Basa Indikatar
A Dealenanredukt des Wessers	9. Bei einem Säure-Base-Indikator
4. Das lonenprodukt des WassersA ☐ ist für verdünnte wässrige Lösungen konstant,	A ☐ ist der Umschlagsbereich bei pH = pK _S (Hln) ± 3,
B ist in neutraler Lösung eine Folge der Auto-	B ☐ erfolgt mit der Säure eine Redoxreaktion,
protolyse,	C ☐ liegt ein pH-abhängiges Protolysegleich-
C □ beträgt 10 ⁻²⁰ mol ³ · l ⁵ ,	gewicht vor,
D ☐ hängt nicht von der Temperatur ab.	D ☐ hat die Indikatorsäure eine andere Farbe als
B hangt mont von der remperatur ab.	die Indikatorbase.
5. Eine wässrige Natiumcarbonatiösung reagiert	die maikatorbase.
A □ sauer,	10. Eine Titrationskurve
B □ neutral,	A ☐ zeigt die Änderung des pH-Wertes im Verlauf
C □ alkalisch,	einer Säure-Base-Titration,
<u> </u>	B □ zeigt am Halbäquivalenzpunkt die Stoffmenge
6. Eine Seifenlösung hat einen pH-Wert von 8,5.	der in der Probelösung enthaltenen Säure
Die Lösung enthält	oder Base an,
A 🗆 eine Konzentration an Hydroniumionen von	C □ zeigt bei einer zweiprotonigen Säure drei
$3.2 \cdot 10^{-11} \text{ mol} \cdot 1^{-1}$	Äquivalenzpunkte.
B ☐ eine Konzentration an Hydroniumionen von	D ☐ zeigt an, ob eine starke oder eine schwache
$3.2 \cdot 10^{-9} \text{ mol} \cdot \Gamma^{-1}$	Säure titriert wurde,
C ☐ eine Konzentration an Hydroxidionen von	
$3.2 \cdot 10^{-9} \text{ mol} \cdot \text{I}^{-1}$,	11. Eine Pufferlösung
D □ eine Konzentration an Hydroxidionen von	A ☐ enthält äquimolare Anteile einer schwachen
$3.2 \cdot 01^{-6} \text{ mol} \cdot 1^{-1}$.	Säure und ihrer korrespondierenden Base,
	B \square hat einen Pufferbereich von pH = p $K_S \pm 1.5$,
	C □ lässt sich durch Titration einer starken Base
	mit einer starken Säure herstellen,
	D ☐ hält den pH-Wert auch nach Zugabe von
	sauren und alkalischen Lösungen konstant