A Graph-Based Search Approach to Planning and Learning

G.S. Groote

Supervisors: C. Pezzato

M. Wisse

C. Smith

Delft University of Technology, The Netherlands

June 27, 2023

Intro: Robot Environment

Intro: Thesis Goal

- Learning System Models
- Navigation Among Movable Objects (NAMO)
- Nonprehensile Pushing

Intro: Overview Proposed Method

Intro: Research Question

How do learned objects' system models improve global task planning for a robot with nonprehensile push manipulation abilities over time?

Research Subquestions:

- How to combine learning and planning for push and drive applications?
- 2 How does the proposed framework compare against the state-of-the-art?

Intro: Task Specification

Intro: Task Specification

Assumptions

- Closed-World Assumption: Objects are manipulated, directly or indirectly only by the robot. Objects cannot be manipulated by influences from outside the environment.
- Perfect Object Sensor Assumption: the robot has full access to the poses and geometry of all objects in the environment at all times.
- 3 Tasks are Commutative Assumption: Tasks consist of multiple objects with specified target positions. The order in which objects are pushed toward their target position is commutative.
- Objects do not tip over Assumption: Movable objects slide if pushed.

State-of-The-Art

		NAMO		Specify object target poses	
Author	Learns object dynamics	Qteltereile	rangretesile	Qualterraile	rangeheiste
Ellis et al.	✓	×	✓	×	×
Sabbagh Novin et al.	✓	✓	×	✓	×
Scholz et al.	✓	✓	×	×	X
Vega-Brown and Roy	×	✓	X	✓	×
Wang et al.	✓	×	✓	×	X
Groote	✓	X	✓	X	✓