01_02_Nonlinear Models

```
1. Standard System Model
```

```
2. System Properties
```

Linear Systems

Time-invariant and Autonomous Systems

Equilibrium Points

3. Solvable Conditions

Problem with Nonlinear System

Piecewise Continuity

Lipschitz Continuity

Solvability Conditions

Solvability over $[t_0, t_1]$

Solvability over $[t_0, t_0 + \delta]$

Solvability over $[t_0, \infty)$

Summary

1. Standard System Model

Definition: Compact Notion of Standard Systems

$$\dot{x} = f(t,x,u), \quad x\left(t_0
ight) = x_0, \quad ext{ where } x = \left[egin{array}{ccc} x_1 & \dots & x_n \end{array}
ight]^T, ext{ etc.}$$

2. System Properties

Linear Systems

Definition: Linear

The systems $\dot{x}=f(t,x,u)$ is linear if it can be written in the form

$$\dot{x}(t) = A(t)x(t) + B(t)u(t)$$

where A(t) and B(t) are real matrices for all t

Remark:

A(t) and B(t) have to be independent of x(t) and u(t)

Theorem:

The system $\dot{x}=f(t,x,u)$ is linear if and only if

1.
$$f\left(t, lpha x_a + eta x_b, 0
ight) = lpha f\left(t, x_a, 0
ight) + eta f\left(t, x_b, 0
ight)$$
, The influence of the state is additive

2.
$$f\left(t,0,lpha u_{a}+eta u_{b}
ight)=lpha f\left(t,0,u_{a}
ight)+eta f\left(t,0,u_{b}
ight)$$
 , The influence of the input is additive

3. $f(t, \alpha x_a, \beta u_b) = \alpha f(t, x_a, 0) + \beta f(t, 0, u_b)$, The influence of the input and the state are independent for all real vectors x_a, x_b, u_a, u_b , scalars α, β and times $t \ge t_0$.

Note:

1. How to show that a system is linear

Find matrices A(t) and B(t) such that $\dot{x} = Ax + Bu$.

2. Hot to show that a system is nonlinear

Verify that one of the conditions on the previous slide is violated. (It is not sufficient to write " f(x,t) can not be written as Ax+Bu")

Time-invariant and Autonomous Systems

Definition: Time Invariant

The system $\dot{x}=f(t,x,u)$ is called time invariant if

$$\dot{x} = f(x, u)$$

i.e., f does not depend on t. Otherwise, it is called time varying.

Definition: Autonomous

A time invariant system without inputs is called autonomous, i.e.,

$$\dot{x} = f(x).$$

Theorem:

Let $x(t;t_0,x_0,u)$ denote the state of the a time-invariant system that results from the initial condition $x(t_0)=x_0$ and the input u(t). Then,

$$x\left(t;t_{0},x_{0},u(t)
ight)=x\left(t+a;t_{0}+a,x_{0},u(t-a)
ight)$$

for all initial states x_0 , inputs u(t) and $a\in\mathbb{R}.$

Note:

1. How to show that a system is time invariant

Show that f(t, x, u) is independent of t for all x and u.

2. How to show that a system is time varying

Show that f(t, x, u) changes with t for some specific values of x and u. (It is not sufficient to write "t.v. since there is a t in $f(t, x) = \dots$ "!)

Equilibrium Points

Definition: Unforced System

A system without inputs, i.e., $\dot{x}=f(t,x)$, is called unforced.

Definition: Equilibrium and Isolated Equilibrium

An unforced system $\dot{x}=f(t,x)$ has an $extbf{equilibrium}$ at $x\in\mathbb{R}^n$ if $x(t)=x^*$ is a solution. That is,

$$0=f\left(t,x^{st}
ight)$$

for all $t \geq t_0$.

An equilibrium is **isolated** if there is an $\epsilon>0$ such that every other equilibrium $x^* \neq x^*$ satisfies $\|x^*-x^*\|>\epsilon$.

Property:

linear systems cannot have multiple isolated equilibrium points. This is a unique nonlinear phenomenon:

Illustration:

make a line between to isolated equilibrium points, and based on linear property, the line will all be equilibrium points

3. Solvable Conditions

Problem with Nonlinear System

- The solution may only exists on a finite time interval
- The system may have more than one solution

$$\dot{x} = x^{\frac{1}{3}}, x(0) = 0$$

Piecewise Continuity

Definition: Piecewise Continuous

The function

$$f: J \times D \to \mathbb{R}^n$$
, $J = \text{ interval }, D = \text{ domain in } \mathbb{R}^n$,

is <u>piecewise continuous</u> in t if, for any fixed $ar{x} \in D$, the function

$$g:J o \mathbb{R}^n,\quad g(t):=f(t,ar{x}),$$

satisfies the following two conditions:

- ullet at any $t=t_0\in J$, the function g(t) is either **continuous or makes a jump of finite height**
- the number of jumps that g(t) makes in any finite interval

$$J_0 = [a,b], \quad a < b, \quad a,b \in J,$$

is finite

Note:

A domain is a open and connected set:

- Open: a point in the domain has a $\epsilon>0$ neighborhood in the domain
- Connected: Two points, can be connected by an arc in the set

Lipschitz Continuity

Definition: Lipschitz (Continuity)

The function

$$f: J \times D \to \mathbb{R}^n$$
, $J = \text{interval}$, $D = \text{domain in } \mathbb{R}^n$,

is **Lipschitz (continuous)** if there exists a L>0 s.t.

$$||f(t,y)-f(t,x)|| \le L||y-x||$$
 for all $x,y \in D$ and $t \in J$.

Definition: Globally Lipschitz Continuity

It is **Globally Lipschitz Continuous** if furthermore $D=\mathbb{R}^n$

Definition: Locally Lipschitz Continuity

It is **Locally Lipschitz Continuous in** x_0 if there exists an $\epsilon > 0$ s.t.

$$f_0: J \times \{x \in D: \|x - x_0\| < \epsilon\} \to \mathbb{R}^n, \quad f_0(t, x) = f(t, x)$$

is a Lipschitz Continuous Function

Theorem: Lipschitz continuity via partial derivatives

• Locally Lipschitz:

Let $f: J \times D \to \mathbb{R}^n$, J = interval, $D = \text{domain in } \mathbb{R}^n$, and

$$\left[rac{\partial f}{\partial x}
ight] = \left[egin{array}{ccc} rac{\partial f_1}{\partial x_1} & \cdots & rac{\partial f_1}{\partial x_n} \ dots & & dots \ rac{\partial f_n}{\partial x_1} & \cdots & rac{\partial f_n}{\partial x_n} \end{array}
ight]$$

both be **continuous.** Then, f is locally Lipschitz in x_0 for all $x_0 \in D$.

Lipschitz

Furthermore, f is Lipschitz if and only if $[\partial f/\partial x]$ is **uniformly bounded**, i.e, there exists a B>0 such that

$$\left\|\left[rac{\partial f(t,x)}{\partial x}
ight]
ight\| \leq B \quad ext{ for all } t \in J, x \in D$$

Any B>0 that fulfills this condition is a ${\color{red} {\bf Lipschitz\ constant}},$

$$||f(t,y) - f(t,x)|| \le B||y - x||$$
 for all $t \in J, x \in D$

Definition: Frobenius Norm

ullet For a vector $x\in\mathbb{R}^n$, we consider the/usual **Eucledian norm** $\|x\|:=\sqrt{x_1^2+\cdots+x_n^2}$.

- For a matrix $A \in \mathbb{R}^{n \times n}$, $\|A\| := \max_{x \in \mathbb{R}^n, \|x\| = 1} \|Ax\|$ is the **spectral norm** (It corresponds to the largest singular value, which is not always easy to compute)
- The Frobenius norm

$$\|A\|_F := \sqrt{\sum_{i=1}^n \sum_{j=1}^n a_{i,j}^2}$$

is often a practical alternative when bounding $\|[\partial f/\partial x]\|$ since

$$\frac{1}{n} \|A\|_F \le \|A\| \le \|A\|_F$$

Solvability Conditions

Solvability over $[t_0,t_1]$

Theorem

Let the function

$$f:J imes D o \mathbb{R}^n,\quad J=\left[t_0,t_1
ight],D=\mathbb{R}^n,$$

be **piecewise continuous in** t and **globally Lipschitz continuous**. Then, the unforced system

$$\dot{x}=f(t,x),\quad x\left(t_{0}
ight) =x_{0},$$

has a unique solution over $[t_0,t_1]$ for any x_0 .

Solvability over $[t_0,t_0+\delta]$

Let the function

$$f:J imes D o \mathbb{R}^n,\quad J=\left[t_0,t_1
ight], D= ext{ domain in }\mathbb{R}^n,$$

be **piecewise continuous in** t and **locally Lipschitz continuous** at x_0 . Then, there exists a $\delta>0$ such that the unforced system

$$\dot{x}=f(t,x),\quad x\left(t_{0}
ight)=x_{0}$$

has a unique solution over $[t_0,t_0+\delta]$.

Solvability over $[t_0,\infty)$

Let the function

$$f:J imes D o \mathbb{R}^n,\quad J=[t_0,\infty)\,,D= ext{ domain in }\mathbb{R}^n,$$

be piecewise continuous in t and locally Lipschitz continuous in x. Furthermore, let W be a compact (closed and bounded) subset of D such that $x_0 \in W$. If any solution x(t) of

$$\dot{x}=f(t,x),\quad x\left(t_{0}
ight) =x_{0},$$

stays in **W** as long as it exists, then it has a unique solution on $[t_0, \infty)$.

Summary

- System Properties:
 - linear
 - time-varying
 - autonomous (first should be time-invariant)
- Piece-wise Continuous
- Lipschitz Continuity:
 - definition
 - \circ sufficient condition: derivative continuous \Rightarrow locally Lipschitz
 - \circ n+s condition: bounded derivative \Rightarrow globally Lipchitz
- Solvable: f, J, D
 - \circ $[t_0,t_1]$: piecewise continuity (t) + global Lipchitz (x)
 - can be extended to $[t_0, \infty]$
 - $\circ \ [t_0,t_0+\delta]$: piecewise continuity (t) + locally Lipchitz (x)
 - $\circ \ [t_0,\infty]$: piecewise continuity (t) + compact $W\subset D$ + locally lipcitz (x)