Advanced Artificial Intelligence Assignment 1

2.6.4

(i)
$$A \rightarrow B, A \vdash B$$

Proof. The proof is as follow.

(1)
$$A \to B, A \vdash A \to B$$
 (from (\in))

(2)
$$A \to B, A \vdash A$$
 (from (\in))

(3)
$$A \to B, A \vdash B$$
 (from $(\to -), (1), (2)$)

(ii)
$$A \vdash B \to A$$

Proof. The proof is as follow.

(1)
$$A, B \vdash A$$
 (from (\in))

(2)
$$A \vdash B \to A \text{ (from } (\to +), (1))$$

(iv)
$$A \to (B \to C)$$
, $A \to B \vdash A \to C$

Proof. The proof is as follow.

- (1) $A \to B, A \vdash B$ (from 2.6.4(i), $A \Rightarrow A, B \Rightarrow B$)
- (2) $A \to (B \to C), A \vdash B \to C \text{ (from 2.6.4(i)}, A \Rightarrow A, B \Rightarrow (B \to C))$
- (3) $A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash B$ (from (+), (1))
- (4) $A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash B \rightarrow C$ (from (+), (2))
- (5) $A \rightarrow (B \rightarrow C), A \rightarrow B, A \vdash C$ (from $(\rightarrow -), (3), (4)$)

2.6.9

(i) $A \vdash A \lor B$, $B \lor A$

Proof. The proof is as follow.

- $(1) \quad A \vdash A \qquad (from (\in))$
- (2) $A \vdash A \lor B, B \lor A$ (from $(\lor+)$, (1))

(ii) $A \vee B \mapsto B \vee A$

Proof. The proof for $A \vee B \vdash B \vee A$ is as follow.

- (1) $A \vdash B \lor A$ (from 2.6.9(i), $A \Rightarrow A, B \Rightarrow B$, term 2)
- (2) $B \vdash B \lor A$ (from 2.6.9(i), $A \Rightarrow B$, $B \Rightarrow A$, term 1)
- (3) $A \vee B \vdash B \vee A$ (from $(\vee -)$, (1), (2))

When we do substitution $A \Rightarrow B$, $B \Rightarrow A$, we will have $B \lor A \vdash A \lor B$, therefore we have proved the other side.

(iii) $A \lor (B \lor C) \longmapsto (A \lor B) \lor C$

Proof. Before proving the quality, we will first prove a lemma:

(transitivity): if $A \vdash B$, $B \vdash C$, then $A \vdash C$.

The proof is as follow.

(1)
$$A \vdash B$$
 (given)

(2)
$$B \vdash C$$
 (given)

(3)
$$A, B \vdash C$$
 (from $(+), (2)$)

(4)
$$A \vdash B \to C \text{ (from } (\to +), (3))$$

(5)
$$A \vdash C$$
 (from $(\to -)$, (1), (4))

Then, the proof for $A \vee (B \vee C) \vdash (A \vee B) \vee C$ can be generated as follow.

(1)
$$A \vee B \vdash (A \vee B) \vee C \quad \text{(from 2.6.9(i), } A \Rightarrow (A \vee B), \ B \Rightarrow C\text{)}$$

(2)
$$C \vdash (A \lor B) \lor C \text{ (from 2.6.9(i), } A \Rightarrow C, B \Rightarrow (A \lor B))$$

(3)
$$A \vdash A \lor B$$
 (from 2.6.9(i), $A \Rightarrow A, B \Rightarrow B$)

(4)
$$B \vdash A \lor B$$
 (from 2.6.9(i), $A \Rightarrow B, B \Rightarrow A$)

(5)
$$A \vdash (A \lor B) \lor C$$
 (from (transitivity), (1), (3))

(6)
$$B \vdash (A \lor B) \lor C$$
 (from (transitivity), (1), (4))

(7)
$$B \vee C \vdash (A \vee B) \vee C \quad \text{(from } (\vee -), (6), (2))$$

(8)
$$A \vee (B \vee C) \vdash (A \vee B) \vee C$$
 (from $(\vee -)$, (3), (7))

And the proof for $(A \vee B) \vee C \vdash A \vee (B \vee C)$ can be generated as follow.

(1)
$$B \vee C \vdash A \vee (B \vee C)$$
 (from 2.6.9(i), $A \Rightarrow (B \vee C), B \Rightarrow A$)

(2)
$$A \vdash A \lor (B \lor C)$$
 (from 2.6.9(i), $A \Rightarrow A, B \Rightarrow (B \lor C)$)

(3)
$$B \vdash B \lor C$$
 (from 2.6.9(i), $A \Rightarrow B, B \Rightarrow C$)

(4)
$$C \vdash B \lor C$$
 (from 2.6.9(i), $A \Rightarrow C, B \Rightarrow B$)

(5)
$$B \vdash A \lor (B \lor C)$$
 (from (transitivity), (1), (3))

(6)
$$C \vdash A \lor (B \lor C)$$
 (from (transitivity), (1), (4))

(7)
$$A \vee B \vdash A \vee (B \vee C) \quad \text{(from } (\vee -), (2), (5))$$

(8)
$$(A \lor B) \lor C \vdash A \lor (B \lor C)$$
 (from $(\lor -)$, (7) , (4))

(iv) $A \lor B \vdash \neg A \to B$

Proof. The proof for $A \vee B \vdash \neg A \to B$ is as follow.

(1)
$$A, \neg A, \neg B \vdash A$$
 (from (\in))

$$(2) \quad A, \ \neg A, \ \neg B \ \vdash \neg A \qquad (from \ (\in))$$

(3)
$$A, \neg A \vdash B$$
 (from $(\neg -), (1), (2)$)

(4)
$$A \vdash \neg A \to B \quad (\text{from } (\to +), (3))$$

(5)
$$B \vdash \neg A \rightarrow B \text{ (from 2.6.4 (ii))}$$

(6)
$$A \lor B \vdash \neg A \to B \quad (\text{from } (\lor -), (4), (5))$$

Before proving $\neg A \rightarrow B \vdash A \lor B$, we will first prove a lemma:

(contraposition): if
$$A \vdash B$$
, then $\neg B \vdash \neg A$.

The proof is as follow.

(1)
$$A \vdash B$$
 (given)

(2)
$$\varnothing \vdash A \to B \pmod{(\to +)}$$
, (1))

(3)
$$A, \neg B \vdash A \rightarrow B$$
 (from (+), (2))

(4)
$$A, \neg B \vdash A$$
 (from (\in))

(5)
$$A, \neg B \vdash \neg B$$
 (from (\in))

(6)
$$A, \neg B \vdash B$$
 (from $(\to -), (3), (4)$)

(7)
$$\neg B \vdash \neg A$$
 (from $(\neg -)$, (5) , (6))

Then, the proof for $\neg A \to B \vdash A \lor B$ can be generated as follow.

(1)
$$A \vdash A \lor B$$
 (from 2.6.9(i), $A \Rightarrow A, B \Rightarrow B$)

(2)
$$\neg (A \lor B) \vdash \neg A \qquad \text{(from (contraposition), (1))}$$

(3)
$$\neg (A \lor B) \vdash \neg B \qquad \text{(similar to (2))}$$

(4)
$$\neg A \rightarrow B, \ \neg (A \lor B) \vdash \neg A$$
 (from (+), (2))

(5)
$$\neg A \rightarrow B, \ \neg (A \lor B) \vdash \neg B$$
 (from (+), (3))

(6)
$$\neg A \to B$$
, $\neg (A \lor B) \vdash \neg A \to B$ (from (\in))

(7)
$$\neg A \rightarrow B, \ \neg (A \lor B) \vdash B$$
 (from $(\rightarrow -), \ (4), \ (6)$)

(8)
$$\neg A \to B \vdash A \lor B \qquad \text{(from } (\neg -), (5), (7))$$

The line (2) and (3) can be picked out as a theorem, which we will use many times afterwards:

$$(\neg \lor)$$
: $\neg (A \lor B) \vdash \neg A, \neg B$.

(v)
$$A \to B \vdash \neg A \lor B$$

Proof. The proof for $\neg A \lor B \vdash A \to B$ is as follow.

(1)
$$A, \neg A, \neg B \vdash A$$
 (from (\in))

(2)
$$A, \neg A, \neg B \vdash \neg A$$
 (from (\in))

(3)
$$A, \neg A \vdash B$$
 (from $(\neg -), (1), (2)$)

(4)
$$\neg A \vdash A \to B \quad \text{(from } (\to +), \, (3))$$

(5)
$$B \vdash A \rightarrow B \pmod{2.6.4}$$
 (ii))

(6)
$$\neg A \lor B \vdash A \to B \quad \text{(from } (\lor -), (4), (5))$$

Before proving $A \to B \vdash \neg A \lor B$, we will first prove a lemma:

$$(\neg\neg): A \longmapsto \neg\neg A.$$

The proof is as follow.

(1)
$$\neg \neg A, \neg A \vdash \neg A$$
 (from \in)

(2)
$$\neg \neg A, \neg A \vdash \neg \neg A$$
 (from \in)

$$(3) \qquad \neg \neg A \vdash A \qquad \text{(from } \neg -, \ (1), \ (2))$$

(4)
$$\neg \neg \neg A, A \vdash A$$
 (from \in)

(5)
$$\neg \neg \neg A$$
, $A \vdash \neg \neg \neg A$ (from \in)

(6)
$$\neg \neg \neg A \vdash \neg A$$
 (from (3), $A \Rightarrow \neg A$)

(7)
$$\neg \neg \neg A$$
, $A \vdash \neg A$ (from (transitivity), (5), (6))

(8)
$$A \vdash \neg \neg A \quad \text{(from } \neg -, (4), (7))$$

The proof for $A \to B \vdash \neg A \lor B$ can be generated as follow.

(10)

(1)
$$\neg A \vdash \neg A \lor B$$
 (from 2.6.9(i), $A \Rightarrow \neg A$, $B \Rightarrow B$)
(2) $\neg (\neg A \lor B) \vdash \neg \neg A$ (from (contraposition), (1); or $(\neg \lor)$)
(3) $\neg (\neg A \lor B) \vdash \neg B$ (similar to (2))
(4) $A \Rightarrow B$, $\neg (\neg A \lor B) \vdash \neg \neg A$ (from (+), (2))
(5) $A \Rightarrow B$, $\neg (\neg A \lor B) \vdash \neg B$ (from (+), (3))
(6) $\neg \neg A \vdash A$ (from $(\neg \neg)$)
(7) $A \Rightarrow B$, $\neg (\neg A \lor B) \vdash A$ (from (transitivity), (4), (6))
(8) $A \Rightarrow B$, $\neg (\neg A \lor B) \vdash A \Rightarrow B$ (from (\in))
(9) $A \Rightarrow B$, $\neg (\neg A \lor B) \vdash B$ (from $(\rightarrow -)$, (6), (8))

 $(\text{from } (\neg -), (5), (9))$

(vi) $\neg (A \lor B) \vdash \neg A \land \neg B$

Proof. The proof for $\neg (A \lor B) \vdash \neg A \land \neg B$ is as follow.

$$(1) \quad \neg(A \lor B) \vdash \neg A \qquad (from (\neg \lor))$$

 $\neg A \to B \vdash A \lor B$

$$(2) \quad \neg (A \lor B) \vdash \neg B \qquad (from (\neg \lor))$$

(3)
$$\neg (A \lor B) \vdash \neg A \land \neg B$$
 (from $(\land +)$, (1) , (2))

The proof for $\neg A \land \neg B \vdash \neg (A \lor B)$ is as follow.

$$(1) \qquad \neg \neg (A \lor B) \vdash A \lor B \qquad \text{(from } (\neg \neg))$$

(2)
$$\neg A, \neg B, \neg \neg (A \lor B) \vdash A \lor B$$
 (from (+), (1))

$$(3) A \lor B \vdash \neg A \to B (from 2.6.9(v))$$

(4)
$$\neg A, \neg B, \neg \neg (A \lor B) \vdash \neg A \to B$$
 (from (transitivity), (2), (3))

(5)
$$\neg A, \neg B, \neg \neg (A \lor B) \vdash \neg A$$
 (from (\in))

(6)
$$\neg A, \neg B, \neg \neg (A \lor B) \vdash B$$
 (from $(\rightarrow -), (4), (5)$)

(7)
$$\neg A, \neg B, \neg \neg (A \lor B) \vdash \neg B$$
 (from (\in))

(8)
$$\neg A, \ \neg B \vdash \neg (A \lor B)$$
 (from $(\neg -), \ (6), \ (7)$)

(9)
$$\neg A \vdash \neg B \to \neg (A \lor B) \qquad (from (\to +), (8))$$

(10)
$$\varnothing \vdash \neg A \to (\neg B \to \neg (A \lor B)) \text{ (from } (\to +), (9))$$

$$(11) \qquad \neg A \land \neg B \vdash \neg A \to (\neg B \to \neg (A \lor B)) \quad (\text{from } (+), (10))$$

$$(12) \neg A \wedge \neg B \vdash \neg A \wedge \neg B (from (Ref))$$

(13)
$$\neg A \wedge \neg B \vdash \neg A \qquad (from (\land -), (12))$$

$$(14) \quad \neg A \land \neg B \vdash \neg B \qquad (from (\land -), (12))$$

$$(15) \quad \neg A \land \neg B \ \vdash \neg B \to \neg (A \lor B) \quad (\text{from } (\to -), \ (11), \ (13))$$

$$(16) \quad \neg A \land \neg B \vdash \neg (A \lor B) \qquad (from (\rightarrow -), (14), (15))$$

(vii) $\neg (A \land B) \vdash \neg A \lor \neg B$

Proof. Similar to (vi), the proof for $\neg(A \land B) \vdash \neg A \lor \neg B$ is as follow.

$$(1) \qquad \neg(\neg A \lor \neg B) \vdash \neg \neg A \qquad (from (\neg \lor))$$

$$(2) \qquad \neg \neg A \vdash A \qquad (from (\neg \neg))$$

(3)
$$\neg(\neg A \lor \neg B) \vdash A$$
 (from (transitivity), (1), (2))

(4)
$$\neg(\neg A \lor \neg B) \vdash B$$
 (similar to (3))

(5)
$$\neg(\neg A \lor \neg B) \vdash A \land B$$
 (from $(\land +), (3), (4)$)

(6)
$$\neg (A \land B) \vdash \neg \neg (\neg A \lor \neg B)$$
 (from (contraposition), (5))

$$(7) \quad \neg\neg(\neg A \vee \neg B) \vdash (\neg A \vee \neg B) \qquad \text{(from } (\neg\neg))$$

(8)
$$\neg (A \land B) \vdash (\neg A \lor \neg B)$$
 (from (transitivity), (6), (7))

The proof for $\neg A \lor \neg B \vdash \neg (A \land B)$ is as follow.

(1)
$$\neg \neg (\neg A \lor \neg B) \vdash \neg A \lor \neg B$$
 (from $(\neg \neg)$)
(2) $A, B, \neg \neg (\neg A \lor \neg B) \vdash \neg A \lor \neg B$ (from $(+), (1)$)
(3) $\neg A \lor \neg B \vdash \neg \neg A \to \neg B$ (from $2.6.9(v)$)
(4) $A, B, \neg \neg (\neg A \lor \neg B) \vdash \neg \neg A \to \neg B$ (from $(transitivity), (2), (3)$)
(5) $A, B, \neg \neg (\neg A \lor \neg B) \vdash A$ (from $(-)$)
(6) $A \vdash \neg \neg A$ (from $(-)$)
(7) $A, B, \neg \neg (\neg A \lor \neg B) \vdash \neg \neg A$ (from $(transitivity), (5), (6)$)
(8) $A, B, \neg \neg (\neg A \lor \neg B) \vdash \neg \neg A$ (from $(transitivity), (5), (6)$)
(9) $A, B, \neg \neg (\neg A \lor \neg B) \vdash B$ (from $(-), (4), (7)$)
(10) $A, B \vdash \neg (\neg A \lor \neg B)$ (from $(-), (8), (9)$)
(11) $A \vdash B \to \neg (\neg A \lor \neg B)$ (from $(-), (8), (9)$)
(12) $\emptyset \vdash A \to (B \to \neg (\neg A \lor \neg B))$ (from $(+), (10)$)
(13) $A \land B \vdash A \to (B \to \neg (\neg A \lor \neg B))$ (from $(+), (11)$)
(14) $A \land B \vdash A \land B$ (from $(A) \vdash A \lor B$) (from

(viii) $\varnothing \vdash A \lor \neg A$

Proof. The proof is as follow.

$$(1) \quad \neg (A \vee \neg A) \vdash \neg A \qquad (from (\neg \vee))$$

$$(2) \quad \neg (A \vee \neg A) \ \vdash \neg \neg A \qquad \text{(from } (\neg \vee))$$

$$(3) \hspace{1cm} \varnothing \hspace{0.25cm} \vdash A \vee \neg A \hspace{0.3cm} (\text{from } (\neg -), \hspace{0.3cm} (1), \hspace{0.3cm} (2))$$