Beschreibung Fahrstuhl Modell

Das Fahrstuhl Modell soll die Funktionsweise eines Fahrstuhls simulieren. Im folgenden sind alle Signale mit ihrer Bedeutung, Richtung und Belegung innerhalb der PMods erklärt.

Silke Behn – TI Labor

Pmod1

Im Pmod1 sind alle Button Signale vereint. Die Buttons sind low activ.

Pin	Signal		Beschreibung				
1	ButtonDown2	in	Mensch steht in der 2ten Etage und möchte runter				
2	ButtonUp1	in	Mensch steht in der 1ten Etage und möchte hoch				
3	ButtonDown1	in	Mensch steht in der 1ten Etage und möchte runter				
4	ButtonUpE	in	Mensch steht im Erdgeschoss und möchte hoch				
5	Gnd						
6	3.3V						
7	CabinButton2	in	Mensch steht in der Fahrkabine und möchte in die 2te				
			Etage				
8	CabinButton1	in	Mensch steht in der Fahrkabine und möchte in die 1te				
			Etage				
9	CabinButtonE	in	Mensch steht in der Fahrkabine und möchte in den				
			Erdgeschoss				
10	ButtonClk	in	Ein entprelltes Signal wird gesendet (für z.B. Clock				
			generieren)				
11	Gnd						
12	3.3V						

Pmod2

Im Pmod2 sind 8 Led Anzeigen anzusteuern

Pin	Signal		Beschreibung			
1	LedDown2	out	Mensch steht in der 2ten Etage und hat ButtonDown2			
			gedrückt			
2	LedUp1	out	Mensch steht in der 1ten Etage und hat ButtonUp1			
			gedrückt			
3	LedDown1	out	Mensch steht in der 1ten Etage und hat ButtonDown1			
			gedrückt			
4	LedUpE	out	Mensch steht im Erdgeschoss und hat ButtonUpE			
			gedrückt			
5	Gnd					
6	3.3V					
7	CabinLed2	out	Die Fahrstuhlkabine ist in der 2ten Etage			
8	CabinDoor2	out	Die Tür der 2ten Etage ist auf			
9	CabinLed1	out	Die Fahrstuhlkabine ist in der 1ten Etage			
10	CabinDoor1	out	Die Tür der 1ten Etage ist auf			
11	Gnd					
12	3.3V					

Silke Behn – TI Labor 2

Pmod3

Im Pmod3 sind 2 Led Anzeigen anzusteuern. Die Pins 3,4,7-10 dienen der Steuerung der Fahrkabinenanzeige

Pin	Signal		Beschreibung
1	CabinLedE	out	Die Fahrstuhlkabine ist im Erdgeschoss
2	CabinDoorE	out	Die Tür im Erdgeschoss ist auf.
3	MR	out	Fahrkabinenanzeige: Masterreset, low active
4	Clk	out	Fahrkabinenanzeige: Clock
5	Gnd		
6	3.3V		
7	S0	out	S0:1 S1:0 RigthShift => Cabine Up
8	S1	out	S0:0 S1:1 LeftShift => Cabine Down
9	DS0	out	Value RightShift, Wert der von unten rein geht
10	DS23	out	Value LeftShift, Wert der von oben rein geht
11	Gnd		
12	3.3V		

Die 24 LED Leiste soll als Anzeige dienen, wo sich die Fahrkabine gerade befindet. Sie wurde durch ein 24Bit Shiftregister (3 gekoppelte 8Bit Shiftregister) realisiert. Wenn die Fahrkabine nach oben fährt, muss von unten eine 0 geschoben werden. S0 und S1 geben dabei die Richtung vor, und DS0 und DS23 den Wert, der in das Register geschoben werden soll.

Nach einem Masterreset sind alle LEDs aus, so das zuerst 8 Einsen in das Shiftregister geschoben werden müssen.

Wenn nicht geshiftet werden soll, dann müssen die Eingänge S0+S1 auf low liegen, da die LED Eingänge sonst offen liegen und undefinierte Werte liefern.

	INPUTS							REGISTER OUTPUTS				
FUNCTION	MR	CP	S 0	S 1	DS0	DS7	I/On	Q0	Q1		Q6	Q7
RESET (CLEAR)	L	X	X	X	X	X	X	L	L		L	L
Shift Right	Н	1	h	- 1	- 1	X	X	L	q ₀		q ₅	q ₆
	Н	1	h	_	h	X	Х	Н	q ₀		q ₅	Q6
Shift Left	Н	1	- 1	h	X	- 1	Х	q ₁	q2		q ₇	L
	Н	1	- 1	h	X	h	Х	q ₁	q ₂		q ₇	Н
Hold (Do Nothing)	Н	1	- 1	- 1	X	X	Х	q ₀	q ₁		q ₆	q ₇
Parallel Load	Н	1	h	h	X	X	_	L	L		L	L
	Н	1	h	h	X	Х	h	Н	Н		Н	Н

H = Input Voltage High Level, h = Input voltage high one set-up timer prior clock transition; L = Input Voltage Low Level; I = Input voltage low one set-up time prior to clock transition; qn = Lower case letter indicates the state of the reference output one set-up time prior to clock transition; X - Voltage level on logic status don't care; Z = Output in high impedance state, ↑ = Low to High Clock Transition.

Silke Behn – TI Labor 3